Strojno učenje – domaća zadaća 2

UNIZG FER, ak. god. 2013./2014.

Zadano: 20.10.2013. Rok: 25.10.2013.

Napomena: Zadatke možete rješavati samostalno ili u grupi. Ako zadatke rješavate u grupi, pobrinite se da svi članovi grupe pridonose rješenju i da ga naposlijetku svi razumiju. Po potrebi konzultirajte sve dostupne izvore informacija. Rješenja zadataka ponesite na iduće auditorne vježbe. Zabilježite sve nejasnoće i nedoumice, kako bismo ih prodiskutirali.

- 1. [Svrha: Prisjetiti se zajedničke, marginalne i uvjetne vjerojatnosti. Prisjetiti se očekivanja, varijacije, kovarijacije i korelacije varijabli.]
 - (a) Neka je zajednička vjerojatnost P(X,Y) varijabli X i Y sljedeća: $P(1,1) = 0.2, \ P(1,2) = 0.05, \ P(1,3) = 0.3, \ P(2,1) = 0.05, \ P(2,2) = 0.3, \ P(2,3) = 0.1.$ Izračunajte marginalne vjerojatnosti P(X) i P(Y) te uvjetne vjerojatnosti P(X|Y) i P(Y|X). Uvjerite se da Bayesov teorem daje isti rezultat.
 - (b) Za prethodni primjer izračunajte očekivanje $\mathbb{E}[X]$, varijancu $\mathrm{Var}(X)$, kovarijancu $\mathrm{Cov}(X,Y)$, koeficijent korelacije $\rho_{X,Y}$ i kovarijacijsku matricu Σ .
 - (c) Dokažite:
 - i. $Var(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$
 - ii. $Var(aX) = a^2 Var(X)$
 - iii. $Cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- 2. [Svrha: Razumjeti nezavisnost slučajnih varijabli i shvatiti da linearna nekoreliranost ne znači nezavisnost.]
 - (a) Definirajte nezavisnost slučajnih varijabli (preko zajedničke vjerojatnosti i preko uvjetne vjerojatnosti).
 - (b) Sudeći po iznosu koeficijenta korelacije $\rho_{X,Y}$, jesu li varijable iz zadatka 1 linearno zavisne? Jesu li nezavisne?
 - (c) Za koje od sljedećih varijabli očekujete da su zavisne, a za koje da je ta zavisnost linearna: (i) dob i veličina cipela, (ii) dob i sati spavanja, (iii) razina buka i udaljenost od izvora buke, (iv) razina unosa masnoća i rizik od bolesti srca?
 - (d) Dokažite da su nezavisne varijable linearno nekorelirane.
- 3. [Svrha: Razviti intuiciju o uvjetnoj nezavisnosti i odnosu između nezavisnosti i uvjetne nezavisnosti.]
 - (a) Definirajte uvjetnu nezavisnost sl. varijabli. Pokažite da je definicija pomoću zajedničke vjerojatnosti istovjetna definiciji pomoću uvjetne vjerojatnosti.
 - (b) Za sljedeće primjere razmotrite sve parove varijabli i odredite za koje parove možemo pretpostaviti nezavisnost odnosno uvjetnu nezavisnost:

- i. P = danas je ponedjeljak, S = danas je subota, L = danas je listopad.
- ii. S = sunčano je; V = vruće je; K = ljudi se kupaju.
- iii. L= dokument sadrži riječ "lopta"; N= dokument sadrži riječ "nogomet"; S= dokument je o sportu.
- iv. K= pada kiša; C= pukla je cijev; M= ulica je mokra.
- (c) Razmotrite ponovo posljednji primjer. Neka je P(K) = 0.2, P(C) = 0.01 te neka $K \perp C$. Definirajte zajedničku vjerojatnost P(K,C,M) te pokažite da $P(K|C,M) \leq P(K|M)$. Ovaj se fenomen zove explaining away (činjenica da je cijev pukla objašnjava mokru ulicu i smanjuje vjerojatnost da padanje kiše objašnjava mokru ulicu.)
- (d) Temeljem prethodnih primjera, odgovorite implicira li nezavisnost dviju varijabli njihovu uvjetnu nezavisnost, $A \perp B \Rightarrow A \perp B \mid C$? Vrijedi li obrnut slučaj, $A \perp B \Rightarrow A \perp B \mid C$?
- 4. [Svrha: Razumjeti kako podatci određuju izglednost parametara posredstvom funkcije izglednosti.]
 - (a) Definirajte funkciju izglednosti $\mathcal{L}(\boldsymbol{\theta}|\mathcal{D})$. Na kojoj se pretpostavci o skupu \mathcal{D} temelji ta definicija?
 - (b) Raspolažemo skupom (neoznačenih) primjera $\mathcal{D} = \{x^{(i)}\}_i = \{-2, -1, 1, 3, 5, 7\}$. Pretpostavljamo da se primjeri pokoravaju Gaussovoj distribuciji, $x^{(i)} \sim \mathcal{N}(\mu, \sigma^2)$. Napišite funkciju izglednosti $\mathcal{L}(\mu, \sigma^2 | \mathcal{D})$. Koliko iznosi izglednost parametara $\mu = 0$ i $\sigma^2 = 1$, a koliko vjerojatnost uzorka \mathcal{D} uz te parametre?
 - (c) Novčić bacamo N puta, pri čemu smo m puta dobili glavu, a N-m puta pismo. Ishodi bacanja novčića sačinavaju naš uzorak \mathcal{D} . Napišite izraz za funkciju izglednosti parametriziranu s N i m, tj. $\mathcal{L}(\mu|N,m)$.
 - (d) Skicirajte funkciju izglednosti za slučaj N=10 i m=1. Koja je vrijednost parametra μ najizglednija?
- 5. [Svrha: Osvježiti znanje matematike potrebno za izvođenje ML-procjenitelja dviju osnovnih univarijatnih razdioba.]
 - (a) Definirajte ML-procjenitelj $\hat{\boldsymbol{\theta}}_{\mathrm{ML}}$.
 - (b) Izvedite ML-procjenitelj $\hat{\mu}_{\text{ML}}$ za parametar μ Bernoullijeve razdiobe $p(x|\mu)$.
 - (c) Izvedite ML-procjenitelje $\hat{\mu}_{\text{ML}}$ i $\hat{\sigma}^2$ za parametre μ odnosno σ^2 univarijatne Gaussove razdiobe $p(x|\mu,\sigma^2)$.
- 6. [Svrha: Isprobati izračun pristranost procjenitelja i shvatiti da ML-procjenitelj može biti pristran, tj. da najveća izglednost ne jamči nepristranost.]
 - (a) Dokažite da je $\hat{\mu}_{\text{ML}}$ nepristran, a $\hat{\sigma}_{\text{ML}}^2$ pristran. Koliko iznosi pristranost $b(\hat{\sigma}^2)$?
 - (b) Što mislite: je li ta pristranost u praksi problematična? Obrazložite.
- 7. [Svrha: Izvježbati izračun procjene parametara multivarijatne Gaussove razdiobe (v. zadatak 3.5 u skripti). Uočiti da koreliranost varijabli dovodi do problema.] Raspolažemo uzorkom $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^6$ za koji znamo da potječe iz multivarijatne normalne razdiobe:

$$\mathbf{x}^{(1)} = (9.59, -0.75, 2.88)$$
 $\mathbf{x}^{(4)} = (2.24, 0.02, 0.67)$ $\mathbf{x}^{(2)} = (2.30, 0.37, 0.69)$ $\mathbf{x}^{(5)} = (6.59, -0.20, 1.98)$ $\mathbf{x}^{(6)} = (3.69, 0.35, 1.11)$

- (a) Izračunajte ML-procjenu vektora srednje vrijednosti i ML-procjenu kovarijacijske matrice.
- (b) Napišite formulu za multivarijatnu Gaussovu gustoću $p(\mathbf{x}|\boldsymbol{\mu}, \Sigma)$ (raspišite formulu do kraja). Je li ta funkcija dobro definirana? Zašto?
- (c) Matrica kovarijacije Σ mora biti pozitivno definitna da bi imala pozitivnu determinantu i inverz. Koreliranost varijabli jedan je od mogućih razloga zašto matrica nije pozitivno definitna. Izračunate Pearsonov koeficijent korelacije između varijabli, izbacite varijablu koja je previše korelirana s nekom drugom varijablom te pokušajte ponovno definirati funkciju gustoće.
- 8. [Svrha: Razumjeti MAP-procjenitelj i način njegovog izračuna za Bernoullijevu varijablu. Uočiti kako svojstvo konjugatnosti olakšava izračun aposteriorne distribucije.]
 - (a) Definirajte MAP-procjenitelj $\hat{\boldsymbol{\theta}}_{\text{MAP}}$ i objasnite zašto je on bolji od $\hat{\boldsymbol{\theta}}_{\text{ML}}$.
 - (b) Apriornu distribuciju parametra μ Bernullijeve varijable modeliramo beta-distribucijom $p(\mu|\alpha,\beta)$. Beta-distribucija konjugatna je Bernoullijevoj distribuciji $p(x|\mu)$, pa će umnožak izglednosti $\mathcal{L}(\mu|N,m)$ (zadatak 4(c)) i beta-distribucije $p(\mu|\alpha,\beta)$ opet biti neka beta-distribucija $p(\mu|\alpha',\beta')$, što pojednostavljuje izračun. Izračunajte taj umnožak i odredite parametre α' i β' aposteriorne beta-distribucije.
 - (c) Recimo da vjerujemo da je novčić pravedan, ali da u to nismo baš jako uvjereni. To možemo modelirati beta-distribucijom $p(\mu|\alpha=2,\beta=2)$. Zatim smo u N=10 bacanja novčića samo m=1 puta dobili glavu. Skicirajte apriornu gustoću $p(\mu|\alpha=2,\beta=2)$, funkciju izglednosti $\mathcal{L}(\mu|N=10,m=1)$ te njihov umnožak. Iskoristite činjenicu da je maksimum (mod) beta-distribucije jednak $\frac{\alpha-1}{\alpha+\beta-2}$.
 - (d) Izračunajte $\hat{\mu}_{\text{MAP}}$ i $\hat{\mu}_{\text{ML}}$ te komentirajte razliku. Kako bi porast broja primjera N utjecao na ovu razliku?
- 9. [Svrha: Razumjeti bayesovski procjenitelj za Bernoullijevu varijablu. Shvatiti da je Laplaceov procjenitelj poseban slučaj bayesovskog procjenitelja.]
 - (a) Definirajte bayesovski procjenitelj $\hat{\boldsymbol{\theta}}_{\text{Bayes}}$ i objasnite zašto je on bolji od $\hat{\boldsymbol{\theta}}_{\text{MAP}}$.
 - (b) Izračunajte $\hat{\boldsymbol{\theta}}_{\text{Bayes}}$ za slučaj iz prethodnog zadatka. Iskoristite činjenjicu da je očekivanje beta-distribucije jednako $\frac{\alpha}{\alpha+\beta}$. Je li procjena drugačija od MAP-procjene? Zašto?
 - (c) Ako nemamo nikakvih spoznaja o apriornoj razdiobi parametra, možemo je modelirati uniformnom beta-razdiobom s parametrima $\alpha = \beta = 1$. Takvu apriornu razdiobu parametara zovemo neinformativnom ili slabo informativnom (engl. uninformative, weakly informative prior). Bayesov procjenitelj za Bernoullijevu varijablu (također i za multinomijalnu varijablu) s uniformnom apriornom razdiobom zovemo Laplaceovim procjeniteljem (ili add-one rule). Izvedite Laplaceov procjenitelj Bernoullijeve varijable za skup od N primjera od kojih je m pozitivno.
 - (d) Izračunajte Laplaceov procjenitelj za slučaj N=10 bacanja novčića i m=0, m=1, m=9 odnosno m=10 glava. Usporedite procjenu s ML-procjenom.