Interpretable Machine Learning

Shapley Kernel SHAP

Learning goals

- Understand KernelSHAP as weighted least-squares regression over coalitions
- Grasp how background samples impute "absent" features
- Observational vs. interventional SHAP

Definition: A kernel-based, model-agnostic method to compute Shapley values via local surrogate models (e.g. linear model)

- **①** Sample coalition vectors $\mathbf{z}' \in \{0, 1\}^p$
- Map coalition vectors to original feature space and predict
- Compute kernel weights for surrogate model
- Fit a weighted linear model
- Return Shapley values

Step 1: Sample coalition vectors

• Sample K coalitions from the simplified (binary) feature space

$$\mathbf{z}^{\prime(k)} \in \{0,1\}^p, \quad k \in \{1,\ldots,K\}$$

- $\mathbf{z}^{\prime(k)} \in \{0,1\}^p$ indicates which features are present in k-th coalition
- ullet To evaluate the model on each coal., we must map $\mathbf{z}'^{(k)}$ to original space
- Example $(\mathbf{x} = (51.6, 5.1, 17.0)) \Rightarrow 2^p = 2^3 = 8 \text{ coals (without sampling)}$

	Map to original feature space								
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws		$\mathbf{z}^{(k)}$	hum	temp	ws
Ø	z ′ ⁽¹⁾	0	0	0		z ⁽¹⁾	?	?	?
hum	z ′ ⁽²⁾	1	0	0		z ⁽²⁾	51.6	?	?
temp	z ′ ⁽³⁾	0	1	0		z (3)	?	5.1	?
ws	z ′ ⁽⁴⁾	0	0	1		$z^{(4)}$?	?	17.0
hum, temp	z ′ ⁽⁵⁾	1	1	0		z ⁽⁵⁾	51.6	5.1	?
temp, ws	z ′ ⁽⁶⁾	0	1	1		$z^{(6)}$?	5.1	17.0
hum, ws	z ′ ⁽⁷⁾	1	0	1		$z^{(7)}$	51.6	?	17.0
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1		z ⁽⁸⁾	51.6	5.1	17.0

Step 2: Map coalition vectors to original feature space and predict

- Define mapping $h_{\mathbf{x},\mathbf{x}'}:\{0,1\}^p \to \mathbb{R}^p: (h_{\mathbf{x},\mathbf{x}'}(\mathbf{z}'))_j = \begin{cases} x_j & \text{if } z_j' = 1 \\ x_j' & \text{if } z_j' = 0 \end{cases}$
- Construct $\mathbf{z} = h_{\mathbf{x},\mathbf{x}'}(\mathbf{z}')$ where present features take their values from \mathbf{x} and absent features are imputed with values from a random background sample $\mathbf{x}' = (64.3, 28.0, 14.5)$
- Evaluate the model on each constructed vector: $\hat{f} = \hat{f}(h_{\mathbf{x},\mathbf{x}'}(\mathbf{z}'^{(k)}))$

Step 2: Map coalition vectors to original feature space and predict

Fix z' = (1,0,0); draw multiple background samples $\mathbf{x}'^{(1)},\ldots,\mathbf{x}'^{(B)}$

 \Rightarrow keep $\mathbf{hum},$ replace \mathbf{temp} and \mathbf{ws} by draws from the background data.

Sample b	hum (from x)	temp (from $\mathbf{x}^{\prime(b)}$)	ws (from $\mathbf{x}^{\prime(b)}$)	$\hat{f}(h_{\mathbf{x},\mathbf{x}'^{(b)}}(\mathbf{z}'))$
1	51.6	28.0	14.5	4635
2	51.6	5.1	14.5	3295
3	51.6	28.0	17.0	5586
:				'
:		• • •		• • •

$$\mathbb{E}_{\mathbf{X}_{-S}}[f(\mathbf{x}_{S},\mathbf{X}_{-S})] pprox rac{1}{B} \sum_{b=1}^{B} \hat{f}(h_{\mathbf{x},\mathbf{x}'^{(b)}}(\mathbf{z}'))$$

- Background samples $\mathbf{x}^{\prime(b)}$ are drawn from:
 - Conditional distribution $\mathbf{x}'^{(b)} \sim P_{\mathbf{X}|\mathbf{X}_c = \mathbf{x}_c} \leadsto \mathbf{Observational SHAP}$
 - Marginal distribution x^{'(b)} ~ P_X → Interventional SHAP
- The same procedure applies to every other coalition vector $\mathbf{z}^{\prime(k)}$.

Step 3: Compute kernel weights for surrogate model

Intuition: We learn most about a feature's effect when (recall multinomial coefficient in Shapley value's set definition):

- it appears in isolation (small coalition), or
- in **near-complete context** (large coalition).
- \Rightarrow SHAP assigns highest weights to very small and very large coalitions.

Note: The figure below is illustrative and not tied to the running example.

Step 3: Compute kernel weights for surrogate model

Note: Weights differ from multinomial coefficient in the Shapley value set-definiton but are constructed to yield the same Shapley values via weighted linear regression. • "see shapley_kernel_proof.pdf" 2017

Step 3: Compute kernel weights for surrogate model

Purpose: Assign observation weights $\pi_x(\mathbf{z}')$ to each coalition vector \mathbf{z}' when solving the local surrogate (weighted linear regression), e.g.:

$$\pi_{x}(\mathbf{z}') = \frac{(p-1)}{\binom{p}{|\mathbf{z}'|}|\mathbf{z}'|(p-|\mathbf{z}'|)} \rightsquigarrow \pi_{x}(\mathbf{z}' = (1,0,0)) = \frac{(3-1)}{\binom{3}{1}|1(3-1)} = \frac{1}{3}$$

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight $\pi_{\scriptscriptstyle X}\left(\mathbf{z}'\right)$
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
WS	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

Step 3: Compute kernel weights for surrogate model

- For p > 3 features, the finite weights are all 0.33 as every shown coalition has the same size (|S| = 1 and |-S| = 2 and vice versa for p = 3).
- In general (when p > 3), weights vary with coalition size.
- \bullet Empty and full coalitions receive weight ∞ (division-by-zero term)
 - \rightsquigarrow These coalition vectors are not used as obs. for the linear regression
 - → Instead constraints are used to ensure *local accuracy* and *missingness*

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight $\pi_{\scriptscriptstyle X}\left(\mathbf{z}'\right)$
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
ws	$z'^{(4)}$	0	0	1	0.33
hum, temp	z ′ ⁽⁵⁾	1	1	0	0.33
temp, ws	z ′ ⁽⁶⁾	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

Step 4: Fit a weighted linear model

Goal

Estimate Shapley values ϕ_j as coefficents of a local, weighted linear surrogate.

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^{p} \phi_j z_j'$$

Weighted least-squares objective

$$\min_{\phi} \sum_{k=1}^{K} \pi_{\mathbf{x}}(\mathbf{z}^{\prime(k)}) \left[\hat{f}(h_{\mathbf{x}}(\mathbf{z}^{\prime(k)})) - g(\mathbf{z}^{\prime(k)}) \right]^{2}$$

Boundary coalitions ($\mathbf{z}' = \mathbf{1}$ and $\mathbf{z}' = \mathbf{0}$) enforce constraints on coefficients

$$\phi_0 = \mathbb{E}[\hat{f}(\mathbf{X})], \qquad \sum_{j=1}^p \phi_j = \hat{f}(\mathbf{x}) - \phi_0.$$

Step 4: Fit a weighted linear model

Goal

Estimate Shapley values ϕ_j as coefficents of a local, weighted linear surrogate.

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^p \phi_j z_j'$$

Numeric illustration (p = 3)

$$g(\mathbf{z}') = 4515 + 34 z_1' - 1654 z_2' - 323 z_3'$$

\mathbf{z}'	hum	temp	ws	weight $\pi_{\scriptscriptstyle X}\left(\mathbf{z}'\right)$	$\hat{f}(h_{\mathbf{x}}(\mathbf{z}'))$	$g(\mathbf{z}')$
(1,0,0)	1	0	0	0.33	4635	4549
(0,1,0)	0	1	0	0.33	3087	2861
(0,0,1)	0	0	1	0.33	4359	4192
(1, 1, 0)	1	1	0	0.33	3060	2895
(0, 1, 1)	0	1	1	0.33	2623	2538
(1,0,1)	1	0	1	0.33	4450	4226
inputs					outputs	

The inputs and outputs are used to learn the weighted lin. regression model.

Step 5: Return SHAP values

Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

$$g(\mathbf{z}^{\prime(8)}) = \hat{f}(h_{x}(\mathbf{z}^{\prime(8)})) = 4515 + 34 \cdot 1 - 1654 \cdot 1 - 323 \cdot 1$$
$$= \underbrace{\mathbb{E}(\hat{f})}_{\phi_{0}} + \phi_{hum} + \phi_{temp} + \phi_{ws} = \hat{f}(\mathbf{x}) = 2573$$

