GENERAL DYNAMICS FORT WORTH TEX CONVAIR AEROSPACE DIV F/G 17/9 ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING, VOLUME II. PAR-ETC(U) JUN 76 R J HANCOKY. FH CLEVILAND F30602-73-C-0380 AD-A102 278 RADC-TR-76-186-VOL-2-PT-1 UNCLASSIFIED NL

LEVEL I

RADC-TR-76-186, Vol II, Pt l Final Technical Report June 1976

ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING (Computer Program Documentation)

General Dynamic

STIC SELECTE JUL 3 1 1981

Approved for public release; distribution unlimited.

Laboratory Directors' Fund Number 01707310 with Proj. 6512 funds added.

THE COPY FURNISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
THE COPY FURNISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT

ROME AIR DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND GRIFFISS AIR FORCE BASE, NEW YORK 13441

西哥

81 7 31 015

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

John C. Cleary
John C. CLEARY Proje : Engineer

APPROVED: Mous C. Dust.

MOSES A. DIAB

Acting Technical Director Surveillance Division

FOR THE COMMANDER: John P. Kuss

JOHN P. HUSS

Acting Chief, Plans Office

Initially funded under RADC Laboratory Directors' Funds with Proj. 6512 funds added.

Do not return this copy; retain or destroy.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

19 TR-76-186-VOL-2-PT-7

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	2. 278
ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING Q	tinal fechnical Reportoverso
II. PartI.	N/A PERFORMING ORG. REPORT NUMBER
Robert J./Hancock Fred H./Cleveland	F30602-73-C-0380
9. PERFORMING ORGANIZATION NAME AND ADDRESS General Dynamics	10. PPOGPAN FLEMENT, PROJECT, TASK APEA A WORK UNIT NUMBERS
Convair Aerospace Division P O Box 748, Ft Worth TX 76101	1017 1017 01707310 /7 7 3
11. CONTROLLING OFFICE NAME AND ADDRESS	June 1976
Rome Air Development Center (OCSA) Griffias AFB NY 13441	13. NUMBER OF PAGES 12 344
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	IS. SECURITY CLASS. (of into report) UNCLASSIFIED
Same	154. DECLASSIFICATION/DOWNGRADING
M. DISTRIBUTION STATEMENT (ALMIA BARRA)	N/A SCHEDULE
Approved for public release; distribution unlimite	ed.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro Same	om Report)
18 FURDI PARATARY NOTES	
RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors' added.	Funds with Proj. 6512 funds
19. KEY WORDS (Continue on reverse eide if necessary and identify by block number, Radar Simulation Computer Modeling)
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
tal computer programs that will augment the RADC of tion model procured under Contr F30602-72-C-0393 of grams shall consist of a sequence of subroutines of functions such as a chaff model, target model, promodel. The original radar simulation model will	digital computer radar simula- (01707201). The computer pro- that correspond to separate opagation effects and clutter be expanded to include a bi-
	RADO TR-76-186 Vol II, Pt 1 AD - A D O ATMOSPHERIC LA TMOSPHERIC RADAR MODELING Computer Program Pocumentation II. Parti Robert J. Hancock Fred H./ Cleveland 9. Performing organization name and address General Dynamics Convair Aerospace Division P O Box 748, Ft Worth TX 76101 11. Controlling office name and address Rome Air Development Center (OCSA) Griffias AFB NY 13441 14. Monitoring agency name a address(ii different from Controlling Office) Same 16. Distribution Statement (of the abstract entered in Block 20, 11 different from Same 17. Distribution Statement (of the abstract entered in Block 20, 11 different from Same 18. Supplementary notes RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors' added. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Radar Simulation Computer Modeling 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This effort is concerned with the development and tal computer programs that will augment the RADC tion model procured under Contr F30602-72-C-0393 grams shall consist of a sequence of subroutines in functions and as a chaff model, target model, pre-

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED O OSE URITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ceiver techniques. In addition, an interactive system has been designed for the simulation. Using an interactive display, an engineer would be able to understand what is happening by being able to observe results at several intermediate points in the problem. A picture is worth a thousand words. For example, an antenna pattern or waveform response to a target is more meaningful than a long table of numerical listings, Parts of the simulation were used by RADC for Deep Space Surveillance Radar (DSSR) waveform analysis, generating antenna patterns and tradeoffs involving phase shifter bit-size for the Advanced Space Defense Program (ASDP). The RADC radar simulation model is being used to support Seek Sail, Cobra Judy, Digital Coded Radar and Seek Sentry.

UNCLASSIFIED

This report contains a large percentage of machine-produced copy which is not of the highest printing quality but because of economical consideration, it was determined in the best interest of the government that they be used in this publication.

This report contains Vol I, Pt 1 (Sections 1-7 and 9-10) (Pages 1-1 thru 1-5, 2-1 thru 2-24, 3-1 thru 3-35, 4-1 thru 4-23, 5-1 thru 5-6, 6-1 thru 6-39, 7-1 thru 7-30, 9-1 thru 9-3 and 10-1 thru 10-2).

Vol I, Pt 2 contains Section 8 (Pages 8-1 thru 8-174).

Vol I, Pt 3 contains Section 8 (Pages 8-175 thru 8-418).

Vol II, Pt 1 contains Sections 1 - 8 and 10 & 11 (Pages 1-1, 2-1 thru 2-24, 3-1 thru 3-15, 4-1 thru 4-137, 5-1 thru 5-16, 6-1 thru 6-44, 7-1, 8-1 thru 8-26, 10-1 thru 10-4 and 11-1 thru 11-2).

Vol II, Pt 2 contains Sections 9 and 10 (Pages 9-1 thru 9-234 and Pages 10-1 thru 10-4).

Vol III contains Sections 1 thru 6 (Pages 1-1 thru 1-2, 2-1 thru 2-22, 3-1 thru 3-53, 4-1 thru 4-141, 5-1 thru 5-3 and 6-1).

Vol IV, Pt 1 contains Appendices A-K and Appendix M.

Vol IV, Pt 2 contains Appendix L.

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	List of Figures	νi
1	Introduction	1-1
2	Data Initialization Controller	2-1
3	Simulation Controller	3-1
4	Stimulus/Transfer Function Modules	4-1
	ATOD CDIGFL CFAR CGEN CGENSF CLUTTR DCFAR DFT DIGFIL DIGFSF DIGTFL ECM FGENXY FILT HET HWDET INGTOR IONOS LAMPCP MTIFLT NONLIN PHDEC PHENC PXFRM RDIGFL RECF RNDARY SHIFT SWPINT TARGET	4-2 4-6 4-10 3-3, Vol III 3-9, Vol IIII 4-14 4-20 4-24 4-30 4-34 4-41 4-45 4-51 4-60 4-65 4-70 4-74 4-80 4-83 4-91 4-94 4-100 3-12, Vol III 4-105 3-50, Vol III 4-109 4-113 4-118 4-122

SECTION	TITLE	PAGE
	TSARY WEITRE WVGUID	3-27, Vol III 4-129 4-135
5	Connection Modules	5-1
	CONV ZFFT	5-2 5-7
6	Peripheral Modules	6-1
7	CLINT CUMDIS ERGYCP PLOTTR PLTFMT PTLIST RTOPDB SCANNR SPCAVG Supervisory Modules	6-2 6-11 6-16 6-18 6-23 6-28 6-35 6-40 3-46, Vol III
	ANTARY TSRPAT	3-17, Vol III 3-42, Vol III
8	Subordinate Modules	8-1
	ABORT ANTINT AZGAIN/ELGAIN BLOCK DATA DBLKX IBOOL IFLD IPACK PACK RRAND	8-2 8-4 8-8 8-10 8-12 8-14 8-15 8-16 8-18

SECTION	TITLE	PAGE
9	RADSIM Computer Program Flow Charts	9-1
	(Contained in Volume II, Part 2)	
10	Index	10-1
11	Recursive Computation of Sine/Cosine Pairs	11-1
	ADDENDA	
4	Stimulus/Transfer Function Modules	
	CHAFF DIPOLE SCYL	, Vol I, Pt 3 , Vol I, Pt 3 , Vol I, Pt 3
6	Peripheral Modules	
	(Bistatic Antenna Initialization) ERRPRC	, Vol I, Pt 3
8	Subordinate Modules	
	BISTGT GAM BESS EXPI	, Vol I, Pt 3 , Vol I, Pt 3 , Vol I, Pt 3 , Vol I, Pt 3

LIST OF FIGURES

NUMBER	TITLE	PAGE
2-1	Data Initialization Load Module Functional Block Diagram	2-2
3-1	Simulation Load Module Functional Block Diagram	3-2
CDIGFL-1	Block Diagram of CDTGFL/CDFNCL	4-8
CFAR-1	Block Diagram of CFAR	4-11
CLUTTR-1	Clutter Model Geometry	4 - 15
DCFAR-1	Block Diagram of DCFAR	4-22
DIGFIL-1	Block Diagram of DIGFIL/DIGFNC	4-32
DIGFSF-1	Block Diagram of DIGFSF	4-37
DIGFSF-2	Combination Filter Zero Locations in the Z-Plane	4-38
DIGFSF-3	Block Diagram of a Complex Resonator	4-39
DIGTFL-1	Block Diagram of DIGTFL	4-43
ECM-1	Block Diagram of ECM	4-48
FGENXY-1 HET-1 INGTOR-1	Output Waveform Envelopes Block Diagram of SSB Modulator Block Diagram of INGTOR	4-55 4-64a 4-72
MTIFLT-1	Block Diagram of MTIFLT/MTINCL (Floating Point Arithmetic)	4-87
MTIFLT-2	Block Diagram of MTIFLT/MTINCL (Integer Arithmetic)	4-88
PHDEC-1	Block Diagram of a Tapped Delay Line Phase Decoder	4-97
NONLIN-1 PHDEC-2	Example of Non Linear Trans, Function Surface Wave Device Diagrams	4-92a 4-98

NUMBER	TITLE	PAGE
PHENC-1	Block Diagram of Pseudo- Random Phase Code Generators	4-103
RDIGFL-1	Block Diagram of RDIGFL/RDFNCL	4-107
SWPINT-1	Block Diagram of SWPINT/NCSWPI	4-120
TARGET-1	Target Model Geometry	4-126
CLINT-1	Clutter Model Geometry	6- 5/6-6
11-1	Z-Plane Representation of the Digital Oscillator	11-1
11-2	Digital Oscillator Block Diagram	11-2

SECTION 1

INTRODUCTION

This volume of the final technical report contains the descriptions of the computer programs and subprograms which constitute the Radar System Simulation Model.

The simulation model computer program is divided into two distinct phases: (1) Data initialization activity, and (2) Simulation activity. In terms of software, each phase is composed of one main and a group of subprograms.

The subprograms are divided into five distinct groups: Stimulus/transfer function modules, connection modules, peripheral modules, supervisory modules and subordinate modules. These groups are more fully described in the sections devoted to each group.

The flow charts and cross reference tables for the entire Radar System Simulation Model are located in Part 2 of this volume.

The module descriptions, program listings, flow charts and cross reference tables have all been cross indexed and are located in Section 10. This section has been included in both parts of the volume for convenience.

SECTION 2

SIMULATION DATA LOADER EXECUTIVE (MAIN-1)

The simulation data loader serves as the interface between the user and the segment of the computer program which performs the simulation. This segmentation was necessary since input data in a format convenient to the user must be converted to a form suitable for use by the simulation mod-The punch cards which define the simulation to be performed are of two types: simulation control cards and module parameter data cards. The simulation control cards determine what operations are to be performed in the simulation activity. This includes not only the scheduling of modules for execution but also the movement of data to and from temporary storage, and the modification of parameters for multiple executions of a simulation model configuration. Each control card with the exception of ENDPAS, ENDCFG, and ENDJOB is converted into a control word by the control word generator and placed in the control word block. Each control word contains the code number of the operation to be performed, the module to be executed and data set reference number if The module parameter data cards define the parameters of the simulation modules to be executed in the simulation. Each module requiring input data has a unique namelist which contains the input parameters.

Figure 2-1 is a block diagram of the Initializer load module. In the block diagram the data flow paths are shown as solid lines and control paths are shown as dashed lines. Control normally is retained by the Simulation Data Loader Executive but control transfer does occur to the subprograms CLINT and PHENC. The blocks containing the letter M represent data transfers between two storage areas. Arrows are used to indicate the direction of data flow. The blocks containing C&M perform perform a search operation to determine if the word stored in a buffer is a member of a reference dictionary. If the search is successful, the data in the buffer is transferred to the storage area designated by an arrow. The function served by certain blocks in the diagram are evident from their titles. Those blocks requiring further explanation are discussed in the following paragraphs.

DATA INITIALIZATION LOAD MODULE FUNCTIONAL BLOCK DIAGRAM **Figure 2-1**

The Module Parameter Namelist Dictionary serves the function of directing the input data to the proper location within the Module/System Parameter Table. Appendix B contains a list of the parameters in each namelist and the storage location assigned to each parameter. The namelist name is the same as the Module Reference Number, i.e., the namelist for module 101 is NL101.

The Module Reference Number Dictionary is a cross reference between Module Reference Numbers and the overhead operations which must be accomplished prior to execution of a module. For example, to generate a phase encoded waveform requires that the user supplied data be preprocessed by subroutine PHENC.

The Command Word Dictionary is a cross reference between input command words and the operations to be performed in the simulation. The control word is entered in columns 1 through 6 of the simulation control card. The following is a list of the command words and the corresponding operation initiated by each:

- EXEC This command word schedules execution of the module corresponding to the number appearing in columns 15 through 17 of the control card. No input data cards are required.
- This command word is the same as EXEC with the additional requirement that input data is read. The namelist name for entering the data is the same as the module reference number contained in columns 15 through 17 of the simulation control card.
- MODIFY
 This command word causes the data loaded in a previous step to be modified. This is typically used to change parameters when multiple simulation passes are to be made. The step number to be changed is entered in columns 10 through 12 of the simulation control card, right adjusted. The Module Reference Number is entered in columns 15 through 17 of the simulation control card.
- ENDPAS This command word signifies the end of a pass through a simulation configuration.

ENDCFG This command word signifies the end of a configuration.

ENDJOB This command word signifies the end of a simulation job.

This command word causes the contents of the XT signal storage array to be stored on a temporary data set, usually a disc file. The Data Set Reference Number is entered in columns 11 and 12 of the simulation control card.

Same as STOREX except the contents of signal storage array YT are stored.

Same as STOREX except the contents of auxiliary storage array XA are stored.

STOREB Same as STOREX except the contents of auxiliary storage array XB are stored.

LOAD X This command word causes the data located in a temporary file to be loaded into the signal storage array XT. The Data Set Reference Number is entered in columns II and I2 of the simulation control card.

LOAD Y Same as LOAD X except the signal storage array YT is loaded.

LOAD A Same as LOAD X except the auxiliary storage array XA is loaded.

LOAD B Same as LOAD X except the auxiliary storage array XB is loaded.

REWIND This command word causes a temporary file to be rewound. For a disc file this moves the access pointer to the beginning of the data set. The Data Set Reference Number is entered in columns 11 and 12 of the simulation control card.

The output from the data loader are stored on temporary storage files. Data Set Reference Number 11 contains the control word block which controls the simulation activity and the module/system parameter tables used to define the modules and system characteristics. Data Set Reference Number 2 contains the clutter scatterer parameters.

Flow Chart: Page 9-2

Cross Reference Table: Page 9-206

ORZERZY) INCOLUSIONO

AUTUFLUM CHAFT SET - FWEZSCE - KADSIM

restrainmentities () to a stacket

Full It was the the	.	((13))	2-6
Card .	نيد د د	CLNIENTS	****
		CUMMENZICKIZ CSCAT(3000)	
		CUMMEN YOUKEN TIEMPISOUD, TEXECISOUD	
		CCMMCN/BERKND/ XRNUMI1411	
•,	L		
	t,		
		DIMERCIAL ANTACTZ+75) . ANTELTZ+75)	
ı		: americacii wix(5,100) , w7(3,100) , FZEKC(2,50) , FFCEE(2,50),	010
		*(a.Ata-(1, 4), 1) \(\frac{1}{2}, \frac{5}{0}\)	
•.	ŧ		
8 ·		118 Jac 2 Jan + Conn 1300), D&C(3, 2Z), 1PY(8)	
3.1		cimensuch iscal(5,100)	
1.		CAMERISACIA ISSUESCIOLI	
		CAMERILAN DEFERE (3, 200)	
J **		DIMERLICN HAPLS, 100)	
		cliniciestone +=14111,+5AM(2,1901,+6Cii+(2,25),+++coi+(2,25)	
	ι		
. (CHANACTER VILERIO . VICERIOU . UNICALITE	
•		INTERES (XCC) ENCHAS, ENEUER, ENDERGO STELEX, STEREY, STEREA,	U25
		+ I finely Kewing, CETTY, CUTTY, CUTTA, CUTT	
. 1		I STOLEN LEI AND OLLEART OLLEARTS CLEART OBLANK OUR IP	
s &		FURL UMBI DROBETARTOUVELOUPEF COODER	
		Without the Table Table SAMLe MEDite Unit Danie	
	٧.		
e i		CATH CASC/*CASC */ , ESTIVIC/*EUTXEC*/ , ENUTAS/*ENDEAS*/ ,	125
		<pre>conduct/filesecufy = sentCEGZfeNtCEG*/ y = MbuleYZfMCDIFY*/ +</pre>	126
,		> Strandistance , STURGY/STURGY! , STURGAY .	127
•		THE STATE OF THE S	156
• •		core extern with a bose affairm the a commentarist a	2.5

1

```
with Azitelli Aiz is contributed at a collimation of the state of the 
. 4
                                                                                                                                                                                                                         130
                                                                                                                                                                                                                                       プ-J
                                                  - coll asteelf ets , inpubstinpulate, interpolation,
                                                      INFUTATINGULATO . INFUTITE INFUTETY , UNITED SKIP .
                                             LAIN BELEEXY * NELDEX * / + (LEAF X/ * LELAKX * / + LELAKY / * LELAKY * / +
                                                                                                                                                                                                                                     360
                                                       LLLANA/ *LLLANA */ + CLEAKE/*CLEAKE */ + OLANK/ *
                                                                                                                                                                                       1/
                                              LIGIVALETICE
                                                                                  CLIEMPE 11, NZ
                                                                                                                                              1. (1 Fi MF ( .) + 5
                                                                                                                                                                                                                       042
                                                                                  INTEMPE SI, FIFU
                                                                                                                                              I, IIT CMF ( +1, SIMON
                                                                                                                                                                                                                       043
                                                                                  (ATEMPE 5). ISBUMP
                                                                                                                                              D. (ITIMPL O). ICINV
                                                                                                                                                                                                               1. 044
                                                                                  CATEMPE 71. ICELE
                                                                                                                                              1. (TEMPE C). SIMPO
                                                                                                                                                                                                                       045
                                                                                  CITEMPE 4), NORMET
                                                                                                                                              1. (1 ILMP( 10). WSCAN
                                                                                                                                                                                                                        U46
                                                                                   (ITEMPE 11), F1
                                                                                                                                              lillicmet leli fi
                                                                                                                                                                                                                        047
                                                                                   (ITEMPE 13), LAMBLA
                                                                                                                                              1, (ITLMF( 14), KNGCEL
                                                                                                                                                                                                              ), 048
                                                                                  (ITEMP( 15). FSHIFT
                                                                                                                                              D. CITCAPE Lab. TIME
                                                                                                                                                                                                                        044
                                                                                  (ITEMP( 17). ALANG
                                                                                                                                              INCITEMPE LEIN ANTAZO
                                                                                                                                                                                                              1, 050
                                                                                  (ITEMP( 14), ELANG
                                                                                                                                              1, (llight 20), ANIELO
                                                                                                                                                                                                                       051
                                                                                   (11EMP(150), AZBST
                                                                                                                                              1. (ITEMP (151), MPTAZ
                                                                                                                                                                                                                        052
                                                                                   (ITEMP(ISZ), ELBST
                                                                                                                                              1.(ITCMP(153), RPTEL
                                                                                                                                                                                                                        053
                                                                                   (ITEMP(2011, OFTIN(1,111,(ITEMP(2001, NIMP
                                                                                                                                                                                                               1. 054
                                                                                   (ITEMP(201), ANTAL(1.1)).(ITEMP(351), ANTEL(1.1))
                                                                                                                                                                                                                         055
                                                                                (1 FEMF (130), PR1(1)
                                                                                                                                              ),(ITEMP(1+2), NPKIS
                                                                                                                                                                                                                     056
                                                                                (ITEMP(145), IPKIFT
                                                                                                                                              ),(ITEMP(144), NKEPET
                                              LIMIVALENCE
                                                                                  CATEMPE 211, IDDUMP
                                                                                                                                              ), (ITEMP( 22), IRNU
                                                                                                                                                                                                               1, 059
                                                                                  (ITcMP( 23), 1AUD1
                                                                                                                                              1.(1TeMP( 24), JRND
                                                                                                                                                                                                               ), 060
                                                                                  (ITEMP( 25), UMEAN
                                                                                                                                              I, (ITEMP( 24), UEXT
                                                                                                                                                                                                              1, 061
                                                                                   (ITEMPE 27) - XMEAN
                                                                                                                                              FACIFEMPE 201, SIGMA
                                                                                                                                                                                                              ), 062
                                                                                  (IfEMPE 29), DUMKNO
                                                                                                                                              1, (ITEMP ( 50), 516250
                                                                                                                                                                                                               1, 063
                                                                                  (ATEM# ( 31), UL
                                                                                                                                              1, (ITEMPE 32), XUEXT
```

1. 004

N	and Challes	6.1	CREEN CRAFT SET - PACZELL	+ 4.	JULIM
	e r u a	C. 11.4. 11	Ι,	ò	2-8
		Latito (aul), to sha (1)	F		C65
	· ·				
	co. Wetcher	(Aleme (Sale Aleca)	10114 ofer 11M. [1] of	1,	067
·	À	(item) (s.), aster	•		589
• •	t				064
r	PecaVALENCE	(III Mr (30) + NAVL	1, (11cho (57), NewT	١,	C70
× ·	*	(IICMF(38), 1846	1,(11,8)(1), wl(1,1))	071
	Ł				072
	: LIVELIA.	(ITEMP(14), TEIM),(IT. FP(40), blim	1.	073
	•	(ITEMF(41), NHIST	INTITEMPE I, NOFACK	, (v74
	•	(TTEMP(43), HEFACK	•		υ 7 5
. •	4.				076
1	CALANAGE	(STUME (44), NUNUPT	1. (ITEMPE -1). NIYPER)	677
, <u>.</u>	EVE IVALENCE	(ITENEL HA), NECS	1. (ITEMPL -7), REAFE.),	078
7.	•	(11thF(~(), KWFn	}+(l]rmr(+5)+ WNUVEL),	074
,	,	(ITCME(SU), VELANU),(1):MEC 11), FREXT),	080
<i>t</i> +	4	(1TEMF(52), RNO),(1TEMF(52), AZEXT	١,	081
4.1	*	(11:MF(54), A20	1.(17, MF (>5), MM),	UE2
7.	¥	(1TLMF(56), LLEXT	1,(11cmpt 57), ELU	1.	083
,,	*	(11) MP(58), NN	1,		084
i	•	(ITEMP(120), KK), (ITEMP(121), NECKS	١,	085
1.	.	CATEMP (1723, MCDE),(17tM)(123), DELAZ),	066
	*	(ITEMP(124), Dilte), (THEMP(125), AVEANG).	087
	*	(11:MF(1:6), ICFEC	1. (ITEMPLE, 7). BULLING)	880

MITEMPHIZEL, KCELL

(116MF(61), FK

COULYFERDOR (TEMP(113), IFCODE COLIVERORS) (ATEMP(54), 51

084 040

F. 091

1. 092

),(11cm+(60), +h6

), (LTENEL OL), LE

,		4	(41) mit (55), librar	1. Claumet colo NAGIC 1	, 043	λ-9
		•	(Himbersh), H	totalithet ools le to	. U54	
, ,			(11cMo (2011) VILI, (Alemm(2541, VUE),		
•		*	(Blemp(BOA), GEBE)		
~ <u>L</u>					647	,
		COLVALITICE	CITEMPE C7), ATEN),(ITEMP(.cli, 1+n(1,1))	048	
	ţ					
V,		e, withherlite	tilemit ab), tru),(ITLME(c4), FF1)	. 100	I
¥.,0		4	(1TEMP(70), FE1).(ITEMP(71). Fb2)	101	
·		ent avaletion	(1]:MP(6:), FFF),(1]EM	IF(04), FF1),		1031
51		*	(111MF(70), FOR)+(171M	11 (71), rec)		1032
ω,		COLVARRINGE	(ITEMP(IAO), IFFON),(1TcMP(151), 1FF00),	, 102	
94		*	(ATEMM(162), IFFIN).(ITEMP(163), 1FE10).	, 103	
<u> 4</u> 3.3€		Þ	(1TEMP(104), 16614	1.(17cMP(105), 1F616)	, 104	
		÷	(1TtMP(100), 1Fb2N),(11tMP(1o7), 1Fb20	, 105	,
450.		¥	()TEMP(105), MCDEDE),(11cM((LoS), NEITUE)	106	
4 (-)		EGULVALINGE	(1TEMP(160), 1FFRN).(1T	LMP(Iol), Itrku),		1081
11.4			(11tmp(102), 1ff1h),(11	EMP(165), 16616),		1062
.15		*	(1TEMP(164), IFERN).(1T	EMP(105), 1fthul,		1083
14.2		•	(17tmP(166), IFUIN),(11	tMP(107), IttIu)		1084
11.7	Ų.					
4 * *		CECTVALENCE	(1TEMP(72), NZ	FILTEMPL 75), NF)	108	
110		*	(11EMP(74), SF	1.(17:MF(201). FZ:RO(1.1))	109	
4.41		*	(11EMP(301), FPULL(1,	111	110)
111	(111	
144		LEUIVALLNCE	(ITEMP(75), FECK)	112	
4.4	١,				113	i
11.4		ert Ivalence	CITEMPE TOTA NTSAF	1, (ITEME (77), UX).	, 114	
110		*	(ITEMP1 78), THETAS).(1TEMP(79). NREWS)	. 115	ı

`

	as Followard Las	Au	TUREOW CHART ALL - FROZSCE	. f A	u-SIM	
arta i area		((N))	s T t		2-/0	
. 1	¥	CITEMPC COL, NEWSCO),([[.Mrt 84), [NF50(١.	110	
		CITEMPL EZIO NEPSK	1. CLEEMEL BOLL INFOR		117	
4.4	¢.	SITEMPE 54), INCAM	1, CITEMPE EST, NEOLS),	11 b	
444	*	(ATIMPE to), TOLINE	1,(1fthPt a/), ANGLE	1,	114	
	4	(ITEMPE OB), NOUFES	IstateMPE BMIs TOUGHLM)	120	
4. 4	٠,	(111cmP(115), TIMESB),(1		·	1221	
1 < 4	· •	(ITEMP(117), KECUEL),(I			7701	
1.	•	CITCHPCITAL THETAKE	The Carry West of the Carry			
	· •	(Ilemetaul), Takecatl	•		121	
	•	(ITEMP(185), TULMUN)	•		14.4	
4	C. CAYALITEC	TITEMETER ST. TOLENOW			122	
4. 1	. WIVAECHUE	(ITEMPE 40), FW	1.(11:MF(41), FSTRT	١.	123	
		(ITEMPE 92), ENIRP	1, (ITEMPT 93), FMOW		124	
1.	•	117-MP1 421, EMIKE		•	125	
ķ. ~	•	(111MP(46) NSUEP	1.(ITEMP(47), SPW).	126	
• 24	•					
	•	(ITEMPE 481, KISTIM),(ITEM# (94), FALIIM	,	127	
•	•	(ITEMPCIONE, ISTAFI	1,(lTeMp(rol), pocoe(l)	3.	300	
, , ,	*),(ITEMP(LI4), LPKI),			
\$ · · •	•	(11EMP(129), VPEAK),			
•	*	(ITEMP(144). ICCUE	* • 411.MY(1:3).MUDERH	13,		
1 - 1	¥	(17cMF(184), NSK), (11/mp(160), 1rY(11)			
. •	· ·				130	
6 - 4	L. (LVALIGOR	CITEMPCOULL NTAPS), (ITLMP(IGL), FCUEC	1.	131	
4 ',	*	CITCMP(194), TAPSPC)	, (ITEMP(155), INFTF),			
\$ 6 m		(17cm+4201), 17Ap41,11	3,(lTEMP(2013, UCC11,11	•	132	
4 17 1	ι				133	
1 **,	ENGRAPENCE	(ITEMP(IU3). XESB	1.CITCMPCLOW), NEEDS	> •	13*	
t ··	•	(ITEMP(105)+ INDES	1+(11cM+(144)+ ALL)5	1	135	
4 • •	L				136	

```
1. (11_MF(407), KIG)
                                                                                  1, 137 2-11
                   CONTACENCE CITEMPOSONS, HILL
1 ..
                                                         ), (ITCMF(104), TERINT
                                                                                      138
                                 (LITEMPE (101), AND TOT
150
                                                         1. (ITEMP (IIII). NSCAT
                                                                                      139
                                 (ITEMP(110), KSIM
1-1
                                                         ), (11EMP(201), TSCAT(1,1))
                                 (ITEMP(112), TGTVLL
14.
                                                         1,111EMP(148), TAVU
                   LUGIVALENCE (ITEMP(170), NCELL
1...
                    LEUIVALEIGE (ITEMP(1451, GAIN
410
                                                         1. (IT. MP(ItI). SHPHAS
                                                                                       142
                   CHLIVALING (ITEMP(180), SHTO
1 - 1
                                                                                       143
                                 (1TEMP(182), TJTT
400
                                                                                       144
                     ENDIVALENCE (ITEMP(146), CFRED ), (ITEMP(147), XWLENG
                            LITEMP (1481+SEDENS
                     EGGIVALENCE (ITEMP(195), RADIUS), (ITEMP(196), NSAM ).
                               (1TEMP(1471. NUFZ). (1TEMP(201). FSAM(1.1))
                     ENCLIVALENCE (ITEMF(199), NSEC ), (ITEMP(201), FHOUEF(1,1)),
                               (1TEMP(251), FFCUEF(1,11)
                     ELUIVALENCE (ITEMP(171), JRNC ).
                               (11EMP(172), JRS1M ) , (1TEMP(173), JMAZ ),
1.1
                               (11EMP(174), JHGT ) , (1TEMP(175), JEKP ).
                               (17EMP(176), JEMBW ) , (1TLMP(177), JPW ).
 10.
                               (ITEMP(178), JFO ) , (ITEMP(174), JSTART),
 40.4
                                (ITEMP(156). JVEL | . (ITEMP(157). JFERCU)
 400
 100
                    NAMLLISI/NLIUI/IADDI.IRND.JRND.UMEAN.UEXT.SIGMA.XMLAN.NRAND.
 167
                   * ILDUMF
 100
                    NAMELIST/NLIUZ/ UMLAN-UEXT.SIGMA.XMLAN.IDDUMP
 209
                     NEMELIST/NLIU4/ NAVG
 170
                     NAMELIST/NEIUS/ NAVG
 171
                     NAMELIST/NETUE/ NAVG
 174
                     NAMELIST/NLIUE/ NAVG
 1/3
```

.

	200 3 6121776	AUTUFLUM CHAFT SET - FMUZSUL	KAHSIM
s _a •• • ·		COMTENTS	2-12
.1.	141.0012470	ALIZA, ROBLĪARĪHĪKA, THĪKA, NOLIK	
• *	100 M. L. L. S. L. Z.	ALTOIZ SIMOWAUFIINANIMEAIDLUME	
. 6	444.6151/1	.CZUZZ NZ.FSHIFT,ICINV,ICFUR,SIMAW.NUF.MFT	156
	MANEL I STAN	NEZOLZ NOOFSMIFT,ICINV,ICFER,SIMBW,NCKMFI	
	. A M C L 15 1 / M	FLOGZILIM, FLIM, NHIST, NCFAUK, NDFAUK	
. 0	148521 12171	E SVIEIMOTEIMONES STONEFACKONDRACK	
	WAME LILLY	OLLIUM METALK	
	o sectaly)	ILLILY NUFAUK	
	00 Ft L 11 170	NELLE NEFACK	
	N/ 5 c L 15 1 //	CLEST NEFACK	
• *	Sec. 12.471	CLICAN NETWORD ON TYPE F	
	WAMELISTA	ALCASY NAMED ONTARCE	
	10 1 / 10	ALLEON XLOMANTITE ATRIMER ANDES	
	Config a 10 TVA	SCLETY XLSE+NGITS+IRCFF+ASCFS	
	JACKISIA	ALCICZ XLSE+NHITS+4FCHH	
* · *·	or Met Load	CLIANA XUSI MITTI SAAFUFF	
• *	WMEETELY.	NELLOZ XESCONETTSOTFUFF	
	anM. Llotzi	ALLLIV AFWITCHILDOWT	
	IANT. LI. TIN	VECULA NEW TOURS (COMT	
	Wickary.	accide Oh witchic.wi	
		ec47 SH10+SHPHAS+SIMFO	
. •	orta Lluiza	*LZZYZ SHTO#SHFHA5#S1MFC	
	o decisi/	*LLLOV SHITU+SHEMAS+SIMFU	
** 1	Mcclatz	OLYZZZZ SHITO+SHPHAS+SIMFU	
	106M26451X	AL, ZMZ SHTU,SHPHAS,SIMBO,TUIT	
	Somewalle	ec Sm.Tu+SMPHAS+SAMFU+TJIT	
•	*********	CLININ SHITH OHEMAS OSIMECOTULT	
	. 151.07	TILIFORMES SIMPOSTULE	
	W. M. Car. I.	Construction of the water tricale through from	

, (.)	CAMERALIZATION OF THE MODE TAMPERS AND COMMON ACCOUNTY OF THE COMMON COM	
. 64	NAMELISTANLASSA NITARK	
ec.	NAMELIST/NL 36/ NTYPER	
200	NAMELISTYNL, STY NTYPER	
201	NAMELISIZALBULZ SIMBW.NZ.FS.RFFU .ISUUMP.LCINV.ICFUR.SIMFU .WSCAN	176
z tru	****** PET+NOFMET+TIME+ANTAZG+ANTELO+AZEST+EL+ ST+NPTAZ+NPTEL+	177
_ UM	* ANTAZ-ANTEL-KNUCEL-TI-FI-LAMBUA-NPF.15-FR1-1PK1P1	178
* 10	NAMELISTYNLEUZY NECSONAWPH ORWPHONUVELOVELANGORNEXTORNUS AZEXTO	179
1	* AZOOMMOELZXIOLEUONNORNOCELOILDUMM	
	* JANAMELKSAMOREADELAZADELELATOFICALOPPINGANCELE	
. i +	NAMELISTANDOUSA STORNGOLFORDE ONEKFONAUTE OTHOREOTECLUC	
.14	NAMELISTYMESHAY STARNOALFAVULANSKFANAUTUATHATEATFOLIC	
-1	NAMEE ID IVNESUDV STORNOOLFOVDEONSKE ONAUTUOTHOTEO IF CULL	
210	GAMELISTANCOLOX STARNEALFAVOLANSKEANAUTLATHATLAIFLEEL	
	NAMEELSTANCOUTA STORNGOLFOVILOVULOUHLONAUTCOTHOTE OFFICER ONSKE	
4.4.	NAMELISTANCE OF STARNGALLAVIE, VDE ADEBLANAUTE, THATE AT FOULE ANSKE	
	NAMEESSTANESOWA STOPINGOLFOVIEOVOLOGEREONAUTEOTHOTEOTHECE DEONSKR	
- A.V	NAMERISTALBION STORNGORFONTE, VIROUTE, NAUTE, THORTE, INCODE, NSKP	
	NAMELISTANLAUIA TENANTEN	
	NAMOLES INNEHUZY THRANTEN	
	GEMCCISTYMEAUSY FFRAFFIAFRAFRIAIFFRGAIFFRGAIFFAGAIFFAGAIFFAGAIFFAGA	
	* It: FA. #It NAU # In O. IN #IT BIU # NOI TUT #MODE OF	
	NAMECISIVIALAGEN FERGEERGEBIGIFFKNOIFFFDGIFFIAGIFFIC	
	* if DKN, if tku, if tin, if tiu, noithf, modula	
	NAMELISTYML403/ FF0+FF1+FB1+FS2+IFF0N+IFF0N+IFF1N+IFF1N+IFF1N+	146
	• IFC10,1Fc,N+1FH20+NFITUF+MCLEUF	
	NAMELICIVALADON FECAFFIAFHIAFRZAIFFCNAIFFC (AIFFINAIFFIDAIFEINA	148
4 1	→ ir. 10.1Fo2N.1Fb2P.NFITUE.MCUECE	
	NAMOLISTANLANYA NIANPASEAFRINDAAPIL.	

LO TEATIVILA WITH

MURLIFELM CHART SET - INC/SUL RADSIM

J/11/10

arrel tarable

. 61	NAMELISTAL437/FULK	21-
267	NAMELIST/NL44U/ NUELL	
200	NAMELICT/NL441/ NCELL	
204	NAMELIST/NE451/ FMCK+FECTEL+HECTFT, THETAK+LX+NHEWS	
255	NAMELISTYNL+DZY FOCK-KECUEL-KELIKT-THETAK-WX-NKUWS	
د (۰ ن	NAMELISIZNE+53/ UX, THE LAS, NI CWS, NI FSCO, IKFSCO,	
251	* NPUES-NUGPES-1CGNUM-NPWTX-FMBW-WIX-KISTIM-FALIIM-IIMESB	
·	NAMELIST/NL454/ SIMBU.SPW.NSUER.BERI	
269	NAMELIST/WEH55/ UX+THETAS+NACWS+TOUNLM+SAW	
15	NAMELISTANIADOS GAIN	
271	NAMELIST/NL457/ GAIN	
212	NAMELIST/NEWSON GAIN	
. 13	NAMELIST/NESSY/ TAVE	
214	NAMELIST/NETOC/ TAVG	
cin	NAMELISTANDAGIA NSEC. SF. AFECUEF AFFUCEF	
. 10	NAMELIST/NEGOZ/ NEEL-SF-FBUCEF-FFULEF	
277	HAMELIST/NETOS/ FADIUS+NSAM+NUTZ+FSAM	
214	NAMEDIANICALIZATOR TOTALIZATOR TOTALIZADE IL NICHENICALIZADAN	
. 74	* 75C47.161VEL	
2.4	WAMELIDIFFULDOZZ IDDUMPONTGTON FUTOANGTGTOTCHINTOKSIMONSCATO	
	* ISCAT, INTVEL	
400	NAMELISTANESUMA NISAR (NIXARPEU) THE TASANEUMS, NI PSEC (TRESCGANSPSE) 235	
. 65	# AKPSK+ANCEM+1UUUMP+NPUES+TSKEUS	
214	VAMELICITATEDEST IDDUMPONISATODY, THETASONICHSON	,
4 - 5	 AUTKT9AUZUP9AUZET9TSKLUS9FELDICE9TKETAK9MUUZSK9ÄECIFT9FBCK9 	
_ =0	* TELMIN	
201	NAMELIST/NESOO/ NSK. MODEFH. 1PY. ICCUE. CHIKP. FSTAT. SPW. NSUBP. SWTIM.	
4 = 1	* TITAKT, SIMEU. VPEAK, FISTIM. FALTIM	
	NAME LISTANCICAL INSERMADE PHOTPY OF CLUE OCHTER OF STOTOSE WONSUMF OSNITMO	

CO2.47 F	2.600 az.1160	AUTUFLUM CHART SUT - FWO/SCE	
timb to see	-+++	centents	7-16
£ 541	- 12 cm cosimbo	CyVFEARyEISTIM+FALTIM	
. ~ .	tom. List/fil.	JUSZ FULLES, TAPSPU, INPTE	
	PARCE LATEN	FORZ FOUCE, TARSEC, INFTE	
29.8	HAMELIS TANK	JIV CERECOXWEETER	
	NAME ELL TYPE	STIV SCHANS	
, 🕶	WARELIST/ME	pi // JFNG,JFSiM,JMAZ,JHCT,JERF,JFMGW,JFW,	
, . .	» Jr(+ρJV; ⊾ p	JECKULI, FAUTUS "NSAM"NUHZ "FSAM	
. • •	LAIR NE CAPELLA	NOOD40,NOO141,NOO415,NOO500/1,48,141,4455,500/	239
. ™	entr houseles	%00013,Nc0021,K00129/12,12,21,129/	
_ 114	(
J. C. C.	L		
	unce Entitlet	.1.500)	
٠, .	2+ c X c € ± 1		
> .	11 XEC(500)=	1	
4.44	11 LCUK=1		
. 6. 5	1C+C+1		
ι,	10 z v=100		
, 1	11 Y (0) - 1		
	. Colef Heck		
., 4	to a diagram		
. 01	11: MP(01=0		
٠ ٠ ٨	_ Centifica		
* • •	t is a welfer		
• 1	1.2.0(3) - 0		
. **	. Contitue		
J: +	C .		
/.	1+(10+00.00) wi∈11r(11°1) TEXCC	
, , i	¥.		

1. 1010 1-11 tons

```
1614 11:MP(1) = 0
314
                                                                                     7-11
320
                   JSTEP=U
324
                   151M=1
                   IFLAGG = 1
                    1FCF±6≈0
323
                    VPLAK=1.0
٠, د
3.5
              2000 CENTINUE
325
                   1F1 IFLAGE .EQ. C 1 GO TO 2003
3.7
                   IFLAGE = U
                   WESTER OF A COURT SIMPLER
3:4
              2001 FCHMAT(1H1+*SIMULATION PASS*+14+*DATA LCAU FUF CENFLOCRATION NUMBE273
330
                  *K 1.14.1 15 BEGINNING 1)
sil
              2003 CUNTINUE
352
                   fShlFT=0.0
ذذد
134
                   116=0
335
                   100UMP=U
                   INFTF=U
230
                   READ(5,8) ICARD, III . MODULE
337
                 ¿ FURMAT( A6 . 3X. 13. 3X. 13 )
ع فرد
                    WRITE(0,16) ICARD, III, MCDULE
324
                18 FURMAT(////+1H +Ao +10X+13+16X+13)
341
                   IFF ICARD .EW. NCLUEX 1 GU TL 1600
                   THE TURKU .EQ. EXEC 1 GO TO 1605
ذ+د
                   IFT ICAKU .EW. LUEXEC 1 GO TO 1610
344
345
                   IFI ICARD .EG. ENUPAS 1 GO TO 1500
                   IF ( ICARD .EL. ENDJOB ) GO TO 1800
540
                   IFT ICARD .EQ. ENDCEG 1 GC TO 1700
347
```

	1,110, 111, 111,	POTCH CER CHAPT SET	WC/SCE KROSIII
tambi. Pr	***	(RECNTS	X-18
٠, ٠,٠	AFC TOAFD .E. NUDIFY T GO TO I	/16	
	16 C TOAKD -10. SKIP 1 GC TO 1	710	
	027cH=02fEF+1		
44.25 A	11-0-11-		
. •	THE ECAPT LEVE STOREX FOR THE 19	615	
21 - 21	IFF SCAPE -EF - STEREY) CE TE 1	524	
27.34	ATT ALADA AREA LICETA) OF TO IS	625	
ar t	and acomplete acompatible by the ad-	800	
	irt flang .co. EJANX) to To 10	621	
, . (In C. ICAGO	F-4-1	
٠, ٠, ٠,	IFT TUASE -cc - LUADA 1 GE 10 10	0 →*	
. · · · · · ·	IFT ICANO ACCA CLAPE I GO TO 10	1/7A	
26.50	in (stand well fewind) of fit 1	f. *. *	
	att awarb .c LUTTX) we to 1	(·6t)	
1 19E	ir(10mm, .c Duffy) () I(10	1.61	
٠	IN CHARL .co. (UITA) GC 10 10	15 7 (-	
1154	IF (TOAKE .c., OBITE) Gt TO 10	1.75	
+ K ***	IFT SCAPO INFUTX 1 GC TC 1:	51.1	
5.1/2	IFT ICARD -CC - INDUTY DIC TO A	685	
201	11 17 (ATUMAI • 22• (nAUI) 11	n u (
	and loans accompanied to be in a	42	
* 54	Intercaption of Charles 1 Go To a	7. (
, / 1	SEL SCHIC SECONDERARY & CE TO 1	(con	
- (4	INC TUARRO CLEARN D. GC TC T	740	
٠.	IF CAPP .c. CLEAR FCC TO 1	14:	
	outch=outch=s		
774	en a (v (tope s)		
**	FORMATO * INCLEHECT ALPHA INFEL	· CART IGNORED. */ }	316
,	Confidences		

ACTUALLY CHART LET - FWOZSCE KAUSIM

total enter

```
17د
                                                                                              2-19
                 31 CENTINUE
78 د
                     IF (INUEX.EG.+1..CR.INDEX.EQ.426.CR.INDEX.EV.504) GU TO 32
379
                     IF (1NUEX-EV-505) GU TO 32
380
                     66 TG 34
251
                 32 UL 33 J=1,100
382
ده د
                 33 TSKLUSIUI=1.0
                 34 CLINTINUL
ತ೬∗
                      IF (INGEX.LT. 303. UK. INGEX.GT. 310) GOTO 35
3と2
350
                      μυ 3ο μ=1•1δ
3:7
                      ITEMP1200+J)=BLANK
                      ITEMP (250+J) = ELANK
                      ITEMP1300+J)=ELANK
304
                      CUNTINUE
340
               26
                      CUNTINUE
346
               در
              C
54.
                     IF (INDEX.LE.LOU. DR. INDEX.GE. 600) OF TO 2040
343
                     IF (INUEX.GT. AUG. AND. INDEX.LT. 2001 GL TE 106
344
345
                     IF (INDEX. 67.200. AND. INDEX. LT. 300) GC TC 20.
                     IF (INDEX.GT.JOU.AND.INDEX.LT.400) GC TO 300
540
341
                     IF (INCEX.GT.400.AND.INDEX.ET.5001 GO TO 400
                     IF (INDEX.ST.SUD.AND.INDEX.LT.600) GC TO SOU
340
۴۴ر
4(1)
401
                     UL TERIOL : 102 : 103 : 104 : 105 : 100 : 107 : 105 : 109 : 110 : 111 : 112 : 113 : 114 :
                                                                                              330
                    * 115,110,17,118,119,1201,1NEEX
403
                200 INDEX=INDEX=200
404
                     UL TULEUL: 162,763,764,765,205,206,267,268,264,716,212,212,212,214,
                                                                                              333
```

.

i

And the second s

0071176	146CT C1511A	NC AUTOFEDW CHART SET - FWO/SCL RA	DSIM
UARO O	क के के के	CENTENTS	7-70
76.1	* £ £5	0+216+217+21E+214+220+721+222+225+224+225+226+227+228+ 224 +	334
41.1	اد، *	192319252925339234923592369237923692349246924192429243)91NUEX	335
** () (530 Hill	LA=INULA-JOC	
٠,, ٧	6.5-1	1: 1301,302,,103,304,305,30n,207,306,304,310,311,312, 313),1N UEX	337
+1t	wit lives	LX=INUCX~~OC	
444	Conf	13(40),440,440,4404,405,406,407,408,404,410,411,412,413,414,	339
414	* 41	hg410g411g41cg414g420g421g422g4c3g424g4chg42hg427g42Eg424g	340
** 4.3	* 455	Ugus1guszgus5gu3ugu35gu3bgu3bgu35gu35gu3bgu4uugu41gu4zgu45gu44g	341
444	* 445	>+4+C+447+446+444+450+451+452+453+454+435+430+457+436+454+	
~1 5	# 401	4401+402+403+465+460+467+60+4701+1NUEX	
440	SUC INDE	t X=1/NDt X-500	
417	(- <u>L</u>]	1. (501,502,):03,504,505,508,507,508,509,510,511,512,513,	
41.	¥ 14	a = 95 15 \$ 9 India X	
414	L		
٠٠٠٠	عبره ۱ الدي	(Dankara)	
٠	1F ()	TADDI.E	
444	lAuc	ol=i	
463	liol Cut) I fault	
44	CFLE	L SHOLK A ENGOUGH + NGOOT 3 + NGOT 2 9 + NKAND + XPNDM)	
465	Lavet Callet	TINUE	
4.0	5 a G.	coursigma=SICMA	
4.7	(' L = (UMEAN-0.5+UEAT	
420	XUE	AT=ULXIZ==05973UHE10	
444	1+ (.	JKNU.LLU3 JFND=1	
ارب	CALI	L SEBERX(MUDUZI,NOCUUI,NUCUIZ,ITEMP,XRNUM)	
#J\$	WK &	Telumeluli	
434	U.	Tu 1000	
4	Ĺ		
	korz nak	0(5)(t)(102)	

- 1) a = b Fa produces a = b Fa Fb
- 2) Fa (a = b) produces Fa a = b Fb

Though reduction is defined as a post processing operation, it is, in reality, more of a resolution operation and, therefore, should be executed within the resolution procedure or prior to other post processing operations.

(6) Ordering

Literals to the right of the right-most framed literal are free to be reordered. Reordering may not occur across framed literals without special care.

2.4 FACT DETERMINATION

OL-deduction, as has been stated, is a refutation procedure. A questionable assertion, that is, a query, is presented in negated form to the OL-deduction mechanism. Deductions are then generated and are sought to be refuted. A refutable deduction implies the existance of a collection of rules and facts (possibly a null collection) that refutes the negated query, and consequently, satisfies the assertion of the query. It is the collection of facts that is the answer to the positive query and that is provided by the inference system.

A resolved deduction is a clause consisting of only resolution literals; that is, it is a deduction clause that has been fully resolved.

Each resolution (framed) literal in a resolved deduction clause is a literal about which the information system can supply facts or is an acceptable inferred literal. An inferred literal will often be a simple binary proposition, signifying a yes or no; true or false; 0 or 1 value. In the more general case, where the framed literal is a complex predicate, the literal will tend to be a fact literal for which the information system will supply all facts. For example, given L(X,5) where L(X,5) means "X" is a worker in factory "5", then the information system will search out all workers in factory number 5 and supply these as facts satisfying the literal. We call this procedure "fact determination" When fact determination is applied to all of the fact literals of a completely resolved deduction, we then determine a largest subset of these facts that can satisfy the deduction as an entirety.

```
2.22.
                                                       CUNTENTS
LARD No
   +0+
                   208 KEAU (5.NL208)
                       WRITE(O,NLZUE)
   405
                       UL TG 1206
                   209 KEAD(5,NLZU9)
   #07
                       WKITE (6.NL 204)
   400
                  1206 IF ( NHIST .LE. 6000 ) GC TO 1000
   404
   47L
                       WRITE(0,1210)
                  1210 FURMAT( . THE SPECIFIED NUMBER OF POINTS IN HISTLIGHAM EXCEEEDS
   471
                      *8600 .... NHIST SET TO 8600 . 1
   47_
                       NH151 = 8000
   473
                      CC TC 1000
   414
   475
                 ζ
   476
   417
                  210 CONTANDE
   470
                       KEAU(5,NLZiu)
                       WKITE (O.NLEJU)
   <del>- 7</del>4
                       GL 16 1606
   48€
                   211 KEAU(5.NL211)
   464
                       WKITE (6.NLZ11)
   452
                       60 TO 1000
   433
                   212 CUNTING
   404
                       KEAU (5, NLZ121
   やじン
                       WKITE (O.N.212)
                       GL TO 1000
   407
                   213 KLAU(SANLE131
   438
                       WKITE (O.NEZIS)
   464
                       GL TL AUGU
   ~40
   771
```

INFUT LISTING

214 REAUISHHEZIAL

Ub/11/75

AUTOFLOW CHART SET - FWU/SCL RADSIM

```
mille (contein.
4, 4
                    CC TC 1000
                As tracts decist
ų.,
                    and leterhears
4.0
                    ou le rece
                . Ic Fractbonkelo)
                     me ala terplaha kul
., 44
                    C. 16 1217
500
504
                . 11 FEMBLESHEZITT
                     well (torNL:17)
71.2
               1.17 IFTALLES-LW-U-U) GUTD 3217
5003
                     N=1r1X1F5/ACCF5+0.44)
50.04
                     LRES=AUSTIAULES-IESZELUATINITIZES)
ير بروق
                      Attetts. Llowet-141 Late 1000
うしょ
                      HUCES=ESZELUATENT
36 /
                      WESTLEONELLY) ALIEFS
5.0°C
               . ILL FORMATE THE SPECIFIED VALUE OF ( FSZAUCES ) NUTT.
204
                    * " AN INTEGER ... ALICES SET EQUAL TO", ELS.ST
.10
                     CC16 1000
141
               .... AULTS=TS
241
                     on to icon
243
                LIC KLALICS, HLZ 161
31 4
                     WKITE COOKE 2121
111
                    UL TO ALOU
240
                ZET KLADISONEZISI
121
                     WKITE CO.NEZIYI
246
                    cd 16 1660
>1*
ں عر•
```

ZZU KŁALISONIZZU)

261

,

•

.

ļ

المستعمد المسادان والأستعارية

2-23

00/11/75	INPUT LITTING	AUTUFLUW CHART SET - FWC/SCL	RAUSI
LANE 190	****	CUNTENTS	
3 s. s.	nnite (a,NL220)		
٥	CL TO LOUG		
> . **	. LI READ(D.NEZZ)		
A . **	WE. 116 (6. NE. 21)		
14.00	03 Tt 1000		
	222 KEAU(SAMEZZZ)		
2 .	WELL CONFILEZZ)		

mille (conters) nd 10 1000 124 PLAL (Selecce) WELTE CONNECCES CC 16 2000 LOS FRAUIDANLESS WEITE (CONLESS) CC TC 1000 ... remotophicas) malla (ostaliza) et 41, 1000 . . / tool (Splake 2) and to took (27) oc it solo

٠.٠٠

INPUT LISTING

Les moderates est molte (rophless)

GC 16 1600

LES FEAULOGICERES

to to too Charletteller

we all to state (a)

or he leec

AUTUFLUW CHART SET - FWC/SCL RAUSIM

552	WRITE(C,NL231)
553	CU TU 1000
354	232 READ(5+NE232)
555	WKITE(O+NLZ3Z)
550	60 TO 1000
557	and REAU(D:NL233)
ახა	White (0+NL233)
559	GLTC 1000
5ის	COM NEAD (5+NE COM)
>01	WR1TE(0.NL254)
564	60 1 6 1000
563	NEAD(5,NL235)
564	WKITE (0,NLZ35)
505	00To 1000
300	ZOD KEAU (5, NE ZOC)
564	White(o, hezo)
30c	G610 1000
269	(3) KLAU(5,NL237)
570	WELTE (Cold.257)
574	OCTC 1600
57.	L
21,	SOF CENTANUE
574	1C+UK=1
575	1c1nv=1
210	FEAU (5.NESUL)
500	11 (1 5.162.0.0) 11=1.0/15
57.	18 (11.66c.0.0.ANU.85.64.0.0) 65=1.0/T1
>14	IF [KFFU-HE-U-U] LAMBDA= 0.2997428/FFFU

231 READ(5, NE231)

554

(6/11/15)	impul cjsTiNo	AUTCHLEW CHART SET - FWE/SCL - KAUSIM
CAND No.	***	CONTENTS
920	11-(1-1-	.U.U) FI=FS/FELAT(2**N/)
584	IFISINGW.	LE . W. L L. R SIMBW . GT . F. S. I SIMBW = F.S.
う は.:	.uc. Ir (Kloct	LackadadaANDaSIMSWafifadad) FROCEL=1ad/SIMeW
565	it (NIGOL	L.L1.11) FNGC(L=T1
564	ALANU=Ahl	ALU+HOLAN+T1MF
ちこう	CLANG=ANI	cto
500	16(61.00	-0-0) (C TC 2701
7:10	NF=IFIX(S	_M8m/r1)
500	1+(N+.LL.	C14216C TO 2301
50 4	MH.ITE (G)	301)
うりむ	SOUT FURMAT(*	THE REWULKED NUMBER OF FREE. DEMAIN SAMPLES EXCEEDS*/
241	*,* 8192	THIS JUB WILL BE TERMINATED!
592	or 10 1/9	7
593	Apolification Augus	Loual
574	GETU 100	ar
575	5501 WKITE(U	11) NECEST
546	1+C=FED(6,6,1,XEU(11)
547	ELEAU (111	IFC) ITEMP
243	6201 162 FT=16	£#7+1
1,44	1F (IF, E F)	*GT.NKLPET) GCTC 1*01
500	IvEUCK=1	JLUCK+1
400	IF(=loL(CK
667	I+R1+I=1	PF 1+1+1
6 03	1F (1PK 1F	T.GT.NFRIS) IPRIFT=1
664	TIME=11A	L+PEI(IPFIPT)
665	AZANG=A	ITALU+#SCAN*TIME
969	WHITE(I)	"AFC) ITEMP
ю7	+£U(6+6	IEXCC(1))=IFC
わしょ	6UTO 150	.u

グーグに

UUM	11 FURMAT(* THIS CONFIGURATION WILL BE REPLATED*,13,	2-27
010	* 'TIMES'!	A-7 /
011	LUZ NEAD(5,NE302)	
ole	IF(KNOCEL.LT.II) FNGCELETI	
913	CALL CLINI(\$2302)	
014	WK17E(C+NE3UZ)	
613	ου Τυ 1000	
040	SUD REAU(5.NLSUS)	
617	WK1 FE (0.0NL 303)	
olu	6L TO 1006	
514	304 NEWO (DOINE 304)	
0.0	WKITE(0+NE3U4)	
(.1	CC 4C 1000	
o, 2	305 RCAD(5+NC305)	
A4 5	WELLE (CHILDOD)	
G 2 M	ου Τα 10 ₀ ς.	
963	SUC REAU(SONESUO)	
0.00	WEITE (6.NLSUS)	
(66 TL 4600	
and the	201 BEARISONE 2071	
6,9	WELTE COUNTEDOT	
5 A	by ft 1000	
• •	Love His tillagn som	
057	MELIE (OSMESUO)	
usu	Ct II. 1000	
	LUN REALITABLOCY)	
•	Whatetophe 2093	
. 4 . 5 . 4	on to ton	
. 1	ic nemotions is	

.

CO/11/75	INPUT CISTING	AUTUFILW CHART SET - FWC/SCL	F.AUSTM 2-3
CARL NU	****	CENTENTS	
3c8	WKITE (6.NE310)		
₽ۈن	GE TE 1000		
હના	· ·		
6 ↔¥	46 1 NE AU (5+166+01)		
04.	WKITE (C+NE+C1)		
649	GE TE 1000		
A, 44.44	que hemp(5. Neque)		
لاجين	wnlfc(o+hcmu?)		
c +0	6L 10 1000		
(47	c		
044	HUS NEALLOONLHUS		
,	WKITE (C+NL4U3)		
ي مراز	of 10 teen		
557.▲	HUM REAL (STALHUM)		
6 5.	METTE (DAVEHOR)		
6,52	GO TE 1000		
624	405 REAU(5+NE405)		
نار الله ما الله الله الله الله الله الله الله ال	WKITE (OFFICEOS)		
650	66 TC 1000		
557	HUE REAUTHING		
روق	WHITE (ColdEnce)		
<i>6</i> ; ∀	er te leov		
૩ (∪	ι		
o to is	41 / FEAL (54NE407)		
oba	WESTE (CONLANT)		
ULS	GC 10 1000		
604			
(6)	WEITE COOKSE OF		

50 Tc 1000

....

001	444 KEAU (5, NL4UY)
005	WRITE (6.NL 4U4)
400	60 10 1000
610	410 READ(5-NE410)
3/1	WK11E(0+NL+10)
012	GC TL 1000
673	413 KEAD(5+NL413)
014	WRITE(O.NL413)
0/2	GU 7L 1000
u7c	Ĺ
011	420 KEAU(5+NE420)
ϵR	WKITE (OFNL+20)
614	1420 IF(KISTIM-LT-TI) KISTIM=TI
nou	AF (FALTIM.LT.)]) FALTIM=)]
0.4	IF (SWIIM.LT.TI) SWTIM=TI
v. č	U. 16 100C
005	421 KEAU(5,NL421)
UL 4	MKISE (CONEMAL)
est :	GC 16 1420
600	Ĺ
J. 1	472 KEAU (SANE422)
O.C.	WE 174 (0.01422)
0.4	GC TO 1000
.,44	ALS KLAUIDINLAZSI
. 41	WELTE (0.006425)
اړ وال	GC TO 1000
45,	ı
1,04	HED REAL (STREMES)
والواق	WKITE (CANTAS)

16/11/42	AILPOT LIBERING	ACTOREDW CHART SET TWO SEE	
Carrie Tree	****	CUNTENTS	አ-ን 0
£ 24 €	1r (NF.61.4000)	oc10-2426	
·~ 1	U(10 1000		
	HER NEW COMERCOL		
	welle (concreto)		
,	income in (Maritanalias)	6012-2006	
	11 (70 . 11 . 4000)	00 7 tb 1000	
:	to a well top sweat		
1 .	1460 FERNALL INC. HO	MEER LIF PREC. DEMAIN SAMPLES (XCECHS HUDDI	•
	* * 1mib dec wit	L DE TERMINATEU®)	
,	6. 1. 2 191		
1 %	and the method of the second		
<i>i I</i>	minte (copid sel)		
•	0.1 1520		
i ••	to the market probability		
	ME A LE (COPING MODE)		
1	the state of the state		
<i>e</i> .	modern and Company of December 1		
	entition (material)		
	1 1. 2430		
	the followith the		
1 i ,	WELLCONFORMAN		
1.1	va 10 1500		
1.	955 F. AH (196495)		
1.1	NEATE (CoME433)		
i	LANGE CONTRACTE		
• .	11111100-10-01	FF::CC=1	
<i>t</i>	11 (11110-14-4)	[FF]D=]	
1, 1	st (1te 10.00.00)	led10=1	

OBZITZES TOOL CISTING

AUTOFLOW CHART SET - FWU/SCE - RADSIM

٠.

In Cirofination Charles 21 -1

465	GC TG 1000
7.5	434 KEAU(5+NL434)
727	WF LTL (0.NL 434)
7	60 TO 1000
124	435 KEAU (5.NL435)
150	WK11E(0:NL435)
734	GE TO 1000
1 12	436 REAULSINE4361
723	#K1 [L (0 + NL 430)
1.54	66 f6 1coo
15%	437 NEAU(5+NL437)
1_0	WK1 [E (0,NL457)
7. 1	66 EC 1660
15.	440 FEEL (STILLAND)
1.14	HRITE (O.NLHAU)
140	OF TE 1000
141	441 KEAU(5.NL441)
1~.	WELTE (O.NL -4.)
<i>(•</i>) .	CC TO TODO
144	4-1 NEAULSANEADII
74 5	While (0.NL451)
140	CC 16 1000
1-1	477 NEAD(DONE 452)
1.,_	mhile (naNLab.)
47	60 16 1600
's <i>t</i>	455 KEAU (5.16493)
' i	Whale (Jeffless)
	odit .coo
• ,	HIM TEAU (DINEADA)

2-31

2-32

			2-2-5
EARL IN	***	CONTENTS	
Per		ж.: 11 (буNLФОч)	
17.75		0015-1000	
<i>t</i> .	44.00	F & AD (5) 10 855 1	
<i>t</i> : <i>t</i>		w. ITe (c., Genob)	
1		och 1eeu	
1. 50			
1.	40° °	ECAN (STOLES)	
/ .		Whill to Mt 450)	
·		(1 le 1000	
t :	~ 1	BLAS (DENEMBER)	
, ,		we (lite, b) 40 ll	
•		veto 1000	
,		Established and I	
• 1		with Constituted	
•		Colombia	
,		real (Solvenies)	
		ARTIC CONSTANT	
, , ,		e (favorthatierro) lavo Tierro	
, 1		v. 1: 1000	
1 -			
+ 1		we lite (correspond)	
		or 40 - 1945	
11.		, a, a, et e, such a c 1 1	
i .		wrate to place of t	
1 .		(,). Tobe	
	٠.	The transfer of the second	
,		we also to places 2)	
,		3.40 000	
•		exacts extract (Co.)	

•		
1.5	021c 2000	
Ro	ι	
1.0	DOL NEAD(DANEDOL)	
121	malic (oghtbul)	
Tet	GO TE 2000	
1. ~	bus Flattophisus)	
150	WKITE (CONESO/)	
1-1	CO TO 1005	
14.	bow Continue	
740	FLAD (5)NLSU4)	
1~~	WKITE (O.NESU4)	
14:	BL 16-1666	
170	50% READ(5. REDUS)	
1~1	WF 11: (6.NL505)	
193	If (NF.67.4000) 6070 2426	
144	66 10 1000	
UG	ι	
ul a	SUS KLAD(SINLSUG)	
E () a	WA11E(0+NL5G6)	
303	CALL PHENC(\$1506)	
८ ७५	ML()ULE=420	
200	GUTC 1420	
800	507 REAU(5+NL5U7)	
103	WK1TE(6+NL507)	
olis	CALL PHENC(\$1>06)	
£0 9	MUDULE=421	
Liu	GCTU 1420	
611	508 FOULL=SIMFO	

WKITE (OFFICE OS)

ineci Listific

S 7117 6

(1 () () ()

CUNTENTS

3-34

~ ~ 1	204 CENTINUE
34.	205 CENTINUE
043	206 CENTINUE
U44	207 CENTINUE
>	220 CUNTINUE
(46	ese CENTINUE
J4 f	Ç
640	117 CENTINUE
644	SEE CONTINUE
o to	ί
J. 1	414 CUAIINUE
	415 CENTINUE
353	410 CUNTINUE
C	417 CUNTINUE
uto	410 CENTINGE
0 ر ن	414 CENTINGE
.51	+36 CUNTINUE
05-	439 CONTINUE
124	442 CCHTINUE
COU	443 (ENITABLE
, c. i	445 CENTINUL
4.44	*** CUNTINUL
	447 CLATINUE
£ 114	440 CENTINUE
£05	CENTINUE
	opin CINTINUE
. 7	L
6.4	202 CENTINUE
. 44	ι

1.711/10	Paul (1844)	AUTTELLW CHAFT S. F - FWG/SCL - KAUSIM
Carlo to	a com	CENTERIS 2-36
	1136 (0,00) asi	P #MC4.ULF
. /*	e ematerno, * Mc	THING ECAING FOR STOP NUMBER 18, 1 The MUDULE 065
¥.	v 2 (1. 1. 1. 1. 1. 1. 1. 1.	
7	se lie get a	
. *.	1000000	
	er ar total was	
	Comments of the second	
	e production and a fall of	
	and the state of	
	Last Care	
	Same Barrell	
	Service College	
	Control of the	
	. · · · · · · · · · · · · · · · · · · ·	
	Contractions	
	20 20 Tel 10 Co	
<i>;</i>	ing the later	
	P. C.	
••	*** 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	production of the state of	
+ 4	Comment of the Commen	
	6. 60 Co. C. C. Carlotta	
	· · · · · · · · · · · · · · · · · · · ·	
	the control of	
	er en alime,	
•	0.000	
. 1	er en en tana	

A Company of Association

```
بوبول
             243
                  CUNTINUL
                                                                                          2-37
             514 CUNTINUE
400
             515 CUNTINUE
401
             2040 WRITE (0,51) JSTEP, MODULE
402
                51 FURMATE . THE MUDULE NUMBER FOR THE . 13. TH STEP IS INVALID... THE 649
905
                  * MUDULE NUMBER IS *. [4]
404
                   JUTEP=JUTEP-1
                                                                                          7042
405
                   IBLUCK=IBLUCK-I
                                                                                          7043
400
                   60 Th 2000
407
                    ** LLAU DATA BLOCK AND EXEC WORD **
400
             1000 WRITE (11"IFC) ITEMP
40.4
             1001 ITEXEC= MUDULE
910
                   IILALC= IPACK(12,1CW, ITEXEC)
∀li
                   ITEXEL= IPAUR(24, IFC, ITEXEC)
412
                   ILXEC(JSTEP)= IPACK(30+1CFG+1TEXEC)
460
                   61 16 2000
714
                                 ** ENDPAS **
715
             1500 IBLUCK=1666K+1
410
                    ILXCLISOU F=16LUCK
417
                    white (11 "IDEXEC) TEXEC
410
                    WHITE (0.01) IBEXEL, IFLUCK
717
              61 FIRMAT( ! 10EXEL = 1.110. | IFLUCK = 1.1101
420
                    TEEXEL=16LUCK
421
                   151M=151M+1
                                                                                      73u
426
4.3
                    IF INKEPET ..... GUTC 1501
                    ## (IKEPT.EQ.C) GC16 5301
4.4
                    LUEG OFUR
447
              ibul lftAt6=1
410
                   CL TO 2000
461
```

and the second s

```
UL/44/75
              INPUT LISTING
                                                                                        2-38
 LAKU NL
                                                    CUNTENTS
                 1530 Whll.(0,1935)
    4.0
                  1000 FURMATE . MURE THAN 250 JEB STEPS PER SIMULATION PASS ATTEMPTED ... 734
    ٧. ٠
                      * THE SIMULATION ACTIVITY IS DEELTED!
    426
                       by HE abab
     4,5
                 TOUS INDEX = MODULE
                       104 - r
     434
     رو ب
                       .rl=16LULK
                        Ir (IrchiGalgat) IfC=IntXtC-1
                       Juler - Jaierti
                       IF ( USTER -CT. 250 ) GC TC 1530
                       Ci il cuso
                 lunc icazi
     4-1
                       or lo tota
                 1610 ICW=2
                       1+C+L(=1
     7 44
                       ITEGER = ICECCE+1
     445
                       attantulkoutonut ul TL 1744
     445
                  IGII INULX = MUUULL
     447
     ٠,,,
                       Ublick=Ublick+1
                       1rt 3512p+61+256 1 66 16 1530
                       1rt=1blbck
                                                                                         753
                        WELLE (C. 4312) INDEX
     451
                  10.2 FERMATTANOS THE NEXT SEPEK OF DATA TO BE ECADED IS FER MODULE NUM754
                      *GET.*, 14 // )
                                                                                         755
     4,40
                       to to al
                                                                                         750
     4.4
     4.5
```

4.

aval Calabation

AUTCHLOW CHART SET - FWO/SCL RAUSIN

758

```
16W=4
457
                    60 TO 1001
458
               1620 CONTINUE
454
                    1LW=5
960
                    66 TC 1001
401
               1625 CENTINUE
402
                    16W=0
403
                    GE TE 1001
404
               LOSG CENTINUE
405
                    16W=7
400
                    GE TE 1001
407
               1635 CUNTINUE
 403
                     1 L W= E
 404
                     CU TO 1001
 470
                1840 CENTINUE
 471
                     11 W= 9
 472
                     66 Tt 1601
 475
                LOND CENTINUE
 474
                     10W=10
 475
                     60 TO 1001
 470
                LADO CENTINUE
  411
                     1(W=11
  410
                      66 TO 1661
  474
                 1055 LINTINUL
  400
                      1(W=3
  40 L
                      GG 10 1001
  4.2
                 TAGO CENTINUE
  463
                      1(W=1.
  46.4
                      60 10 1001
```

410

e8/11/75	INPUT L	1571NG	AUTOFLUM CHART SET - FWU/SCL	RAUSIM
LAKU NU	****		CENTENTS	2-40
4.0	loot	CENTINUE		
5,7		10W=13		
400		61 To 1001		
فيان به	1676	CENTINGE		
446		1LW=14		
441		6L 1L 1001		
442	1675	CCNT INUE		
443	•	ICW=.5		
444		or 16 1001		
>	1050	CENTINUE		
446		1CW=10		
447		OL 11 1001		
44 5	:605	CUNTINUE		
دبب		1LW=17		
1060		GL TE 1001		
1001	1646	CONTINUE		
1002](=] +		
خ 100		of the 1001		
100+	₹ 94.5	CENTINUE		
1005		1CW=19		
1000		60 To 1004		
1007	1750	CUNTINUE		
1000		ICM=50		
1004		66 Ti. 1001		
1010	1721	CUNTINUL		
1011		1Cw=21		
1012		66 TC 1661		
1013	∡7 4 ∪	CENTINGE		

▲∪ ₄ ·•

164=,2

1015	the To rote	2-41
1016	1745 CONTINUE	``
1411	10 W≈ ∠ ±	
10.0	ce te ioui	
10.14	C ** ENUCFG **	
10.°6	1706 CENTINUT	b22
1011	12IM=12IM-1	£2 >
1022	WRITE (0.1701) 1CFG.1SIM	826
1625	1701 FERMATCHO. THE DATA LOAD FEE CONFIGURATION NUMBER 13. HAS BEEN	827
1024	#CCMFLETEU SIMULATION FALLES WERE ECACEUFF	£28
1025	1660=1660+1	
luzo	ou to 5	£30
1027	** MODIFY **	
اندد	1710 CENTINUE	832
1029	JOTEF = 11i	€33
1020	IMUE X=MILDULE	£34
1051	10W=FLy(12912+12XEC(JSTEP))	
1052	1+C=+LU(c,c,1rxEC(JSTrP))	
1025	1+(1CARU_EW-SKIP) WRITE(6,1751) USTER	
1024	1751 FUFMAT(STEP NUMBER + 13, WILL BE BYPASSED FUR KEMAINDER +	
んりこと	* * OF THIS CUNFIGURATION*)	
1036	IF (ICARO-EW-MODIFY) MRITE (6-1712) ICIM-IFC -JSTEF-MODULE	
1037	1712 FURMATILM , MED FCR PASS NUMBER 1,15, 1 DATA BECCK 1,15, 1 FER J	
1058	WEB STEP +14. * CALLING MODULE *+34. * 15 TO BE MUDIFIED * 1	638
1074	C	634
2040	111 114 .N. O) GC TC 1720	840
£1347	WF1TE(6+1714)	541
1042	3714 FORMATE * IBLUCK = 0 MUDIFICATION NOT PERFURMED.*)	842
1	GC TO selver	

03771772	iture 1 tisline	AUTOFLOW CHART SET - FMC/SC	
CARD NO	****	CONTENTS	2-42
1044	1720 KEAU (11*1FC)	1TEMP	
1045	IBLUCK=16LUCK	•1	
1046	11-1-10-10-1		
16-7	1+(1CAKD.EW.M	L(1FY) GDTO 35	
1045	MUDULE≈0		
1049	6610 1001		
1050	ι		851
1054	1302 WAITE (0,2002)	1(66	652
1052	2302 FURMATIF NUN-S	TANDARD RETURN FROM CLINITHE CENTIGURATION	UNS PRE853
1053	*CLED1NU**15**	MILL RE EXECUTED.)	854
1054	6C TO 1797		€55
1055	1500 MK17r(6,2500)		856
1050	2500 FURMAT (NUN-S	TANUARD RETURN FROM PHENCFRECEEDING	8520
1657	* CUNFIGURATION	S WILL BE EXECUTED!	8521
1056	00 TC 1797		
1059	1799 WEITE (6,1795)	1CF6	854
1000	1798 FURMATE THE	NUMBER OF DATA BECCKS TO BE ECADED EXCLEDS ST	URAGE A860
1001	+VAILABLET	HE CUNFIGURATIONS PRECEEDING*.15.* WILL BE EX	FCUIFD 661
1002	*)		862
104.5	1797 CONTINUE		
1000	1200 CONTINCA		
1000	16+6=16+6-1		
1000	white (0+1001)	1046	663
1007	1601 FLEMATEIHU.*TH	IL DATA LUAD FUR 10,100 CUNFIGURATIONS HAS BEEN	CUMPLE 867
3004	*TttSIMULA	TION ACTIVITY FOLLOWS*)	868
100%	1510 1EXEC(1)=0		
1076	WK116 (111416)	XEC) lexac	
2071	(.		673
11.7	CELL (XII		674
11.7.	· ·		875
1014	510)		676
10.7%	e Nelv		

SECTION 3

SIMULATION CONTROLLER

(M A I N - 2)

The simulation controller serves as the switchboard which connects the simulation modules together in the manner prescribed by the control cards read by the simulation data loader. Figure 3-1 is a block diagram of the Simulation Load Module. The control word blocks and System/Module Parameter Tables are stored in DSRN #11 which was initialized during the simulation data loader activity. The clutter scatterer parameters are stored in DSRN #2 which was initialized during the simulation data loader activity. In addition, provisions are available for reading and writing data on user defined disc and magnetic tape data sets.

There are two storage arrays allocated for storing simulated signal data. These arrays are designated as XT and YT. In addition, two auxiliary arrays are allocated for storing either signal data, processed data such as probability distributions, or other miscellaneous data. These arrays are designated as XA and XB. All four arrays are composed of 8192 elements.

The following is a description of the sequence of events that occur in performing a step of the simulation.

- 1. The operation to be performed in the Jth step is defined by the control word stored in location J of the control word block. This word is compared with the control word dictionary to determine (1) the operation to be performed, (2) the reference number of the module to be executed, and (3) the Data Set Reference Number.
- 2. If the operation to be performed is the execution of a module with no input data requirements, then control is transferred to the designated module. If the operation to be performed is execution of a module requiring input data, then the System/ Module Parameter table is loaded from DSRN #11 and control is transferred to the designated module. For operations involving data transfers the contents of the designated array are either loaded from or transferred to the DSRN which was specified.

SIMULATION LOAD MODULE FUNCTIONAL BLOCK DIAGRAM Figure 3-1

3. Once the operation for the Jth step is completed the job step counter is incremented by 1 and the process is repeated.

When a blank (all zeros) control word is encountered, the simulation pass is ended. The job step counter is reset to 1 and a new pass through the simulation is begun with a different set of parameters. A block of data containing all zeros is used to designate the end of a simulation configuration. When this is encountered the simulation controller will move the next block of data into the control word buffer. This new block of control words defines a new simulation configuration. When a new control word block containing all zeros is encountered, the simulation job is terminated.

Flow Chart: Page 9-34

Cross Reference Table: Page 9-210

1076 1077 1073		CCMMCN 1T,TCK1G,DELT,TDUM,XT(8193),ATY,TGK1GY,DELTY,TDUMY, * Y1(8193),1XA,XA(R1G,XADEL,XADUM,XA(8193),1EXEG(500) COMMON/DERI/1DATA(500)	3-4
1073		* Y1(8193), IXA, XA(R1G, XADEL, XAUUM, XA(8193), IEXEC(500)	
		COMMONZOEK IZIDATA (500)	
1000		COMMUNICEKSSUZICECON(30)	
1001		CLMMDN/AZPAT/ CLEFAZ(304)	
1002		CEMMENTEURATE CLEFEL (304)	
1000		COMMENTECOUGEZ (XB.XECRIG.XSUEL.XSUUM.XB(8193)	
1020		CUMMUNZOEKENUZ KNEDAT(141)	80
1055		CUMMUN/SYS/ MUDULE,1CW,1FC	
1016	L		
AUG 7		EIMCHSIGN XTT(516),YTT(516),XAT(516),XBT(516)	100
11100	Ĺ		
11.09		JIMENSIEN XUI(4010),X02(4010),X01(4010),X02(4010)	
1090		DIMENSION 1X1(3192),1YT(8192)	
1041		DIMENSION ANTAZ (150), ANTEL (150)	
10.5%		DIMENS.CN XTM(4010),YTM(4010)	
2045	l,		
16.44		LAIA AXI/* XI */, AYI/* YY */, AXA/* XA */, AXE/* XB */	1 80
1000		6416 6193+6194+N195+N190/-3+-2+-1+0/	
10,45	L		
1094		CHARACTER CAPE*10	
1086		ENVIVALENCE (The XEG. TEXEC(5001)	
1044		c QUIVALETICE (ANATA (310) + LAME)	
1100		ENCIVALENCE (XT(1),1XT(1)),(YT(1),1YT(1))	
111.		CHINACING C XITCH, IT J, CYITCH, LIY J,	

CARU NU	****	LUNTE	NIS	3-5.
1102	•	(XAT(1), IXA),	(XET(1), 1XD)	
1102	EUUIVALENC	c (XU1(1),XA(1)),(XU2(1),	XA(4011))	
11(-,	LUUIVALEN	CE (X61(1),X8(1)),(X82(1)	,X8(4011))	
4100	EWUIVALLNO	: (XIM(1),XT(4011)),(YIM(1),YT(+011))	
1106	LUUIVALENC	t (104T4(150), 4285T) ,	(IDATA(151).NFTAZ).	
1107	*	(IDATA(IDZ), ELEST),	(LLal Mair (CCI) ATAUL)	
1100	•	(10ATA(201),ANTAZ(11),	(IDATA(351), ANTEL(11)	
1109	e welvate No	: (IDATA(160), MODEUF)		
1110	SWUIVALLNU	SN . ([DATAUL)	1,(10A1A(2), FS) •
1111	*	(INATAL 3), REFU	I, (IUAIAL +), SIMEW),
111-	*	(IDATA(5), ISDUMP	I, (ILATAL O), ICINV	1.
*11»	•	(10ATAL 7), 10FEE),(IDATA(8), SIMPO) ·
111-	*	(IDATAL 4). NURMET),(ILATA(10), WSCAN),
1115	•	(IUATA(11), FI	11 ((st)ATAUI), () ,
1115	+	(IUATAL 131, LAMBUA	Includial 141, KNGLEL	
111/	4	CIDATAC 161. PRF	INCIDATAL 161. TIME	
1114	+	CIDATAC 171, AZANG	INCLUATAC 121, ANTALU),
1112	*	CIDATA(14), ELANO	I. (IDAIA(LU), ANTELO	•
4420	C			
1114	PATA NOUU		10239NCU1249NCU201	
11.2	* /0,1,12,4	1,13,129,201/		
114	C			
14.7	CALL KANS	12(11,500)		
s ikdbe	iteXeL-1			
11.0	1CLCUN(20)	= 0		
11.1	CALL FXIFE	(00,1,1,6)		480
11.4	#SCOMP=#			
4447	640 REAL(111)	DEALCH TEXEC		

WRITE (COLYG) ILEXEC

0011211 104VT CL/TY30

AUTOFEUM CHART SET - FWG/SCL - RAUSIM

```
(Offet = Jiskish + Jiansay - Lev.
                                                                                                                                                                                                                                                                                      3-6
                                                                while (0,090) to a lexic(al, u-lector)
11 .
                                                 .95 FURMAT(10 +502X+ *10XCC(*+ 15+ *1= *+0121)
                                                                                                                                                                                                                                                                                                 550
11 5
11.-
                                               C44 1+405=1
11.
                                                                ICto=lftu(0.0.lexc(1))
                                                                 IF (ILFO-LE-U-AND-IELXEL-EK-1) NO TO 2000
1100
                                                                 attribusce of the poen
41.1
                                                              LO TL 944
11 ...
                                                 Soc CULTINUE
 11.9
                                                                ARTICLOSILL HASSILLEG
11-4
                                                     7. CORMATCATIO, * SAMULATION PASS NUMBER *, 13, * OF CENTIOURATION NUMBER*
 11-1
                                                             *.13. HAZ I CEN LUMPLETED*1
114.
11-1
                                                               IFASS: IFASS+1
                                                                FEAULITACEMENT TENEC
 1499
                                                                   WELTE (GYEYO) IBEXEC
 11.00
                                                                  THE CONTRACTOR AS THE PROPERTY OF THE PROPERTY
 11-6
                                                                   attactions attacher (nacall XLC(1))) of the com-
 11.6
1.4.
                                                  444 CHATHAUL
                                                                WELTE CO. FOI TRASS. ICEG
 1244
                                                    TO FERMATCHELAS SIMULATION FASS NUMBERS, 13, SE CENTIQUEATION NUMBERS
 44:11
                                                            *. is, * 15 troffming!)
 1151
                                                                JSICHAU
 411.
                                             The James Climate
 42.4
                                                               Militaria (.m., 12, 1ext((JitteP))
                                                                                                                                                                                                                                                                                                  730
 1320
                                                                10 WORLD CLOSES, TEXECOUNTERIN
                                                                                                                                                                                                                                                                                                  740
 11500
 11.7
                                                                THE-PED 11.6.1. XEC (USTEP))
                                                                18 (10 Washard) ( ... 16 900
 1150
 11 9
                                                                ITEMPSMC(ULE
```

J11175	INPUT LICIANO	AUTUFLOW CHART SET - FWU/SCL RADS	»IM
CARD NO	¢ ‡ * \$	CONTENTS	3-7
liet	(a. 16 1551)	452,453,454,455,456,457,458,459,400,401,462 ,463,464,	
44.4	* 465,466,46	7,465,469,470,471,472,473).ICW	
1102	951 CONTINUE		
2203	44. ITMEUL=TIM	اد	
110~	ALAHOLEALA	No.	
1105	CEANCU=EE A	INC	
1100	FEAUTIL*1F	C) ILATA	
1167	lr(MiGULE.	389 0T0 ₀ (10c.ua.	
1150	TIME = TIME	:L	
1164	ALANG-ALAN	lor	
1170	c LANG= E LAN	i Gu	
1171	MEE CENTINUE		
117.	WELTCLOOZUM	1)	
د117ء	2644 HUMMAT CIMI	.)	
11/4	WF 1 TE (6 + 2 0 4) MubULE,ICW,IFC,ICFG	
1175	LU42 FUHMAT(ME	HOULE=",110," ICH=",110," IFC=",110," ICFG=",110)	
1176	1+(ISDUMP.	.Ut.2) WRITE(6,2040) (J.1UATA(J), J=1,500)	
1111	2040 FURMATCH :	5(2X, *IDATA(*, 13, *)= *,Q12))	900
447.	WEITE CO, 201	I ITEMP	
1110	10 FLHMAT(* TH	AL NEXT SCHEDULED OPERATION HAS AN EXEC NUMBER OF *+141	
1100	L		
1161	IF (17EMP+L	.T.303.GR.1TEMP.GT.310) GUTU 998	
1167	ENCLUEILA	L,37) 1PASS,1CFG	
1183	37 FURMATE! F	PASS=*,12,* CFG=*,12)	
11.04	44. CENTINUE		
1105	IFE ITEMP .	LE. 100 JER. ITEMP -GE. COU 1 GE TE 2100	
1110	JF(11EMP.G)	1.100.AND.ITEMP.LT.2001 CO TO 100	
1167	1+(1TEM+.G1	1.200.AND.1TEMP.LT.300) GO TO 200	

if (ITEMP. GT. 300. AND . ITEMP. LT. 400) GC TU 300

11.0

11.9	IF (ITEMPOSTO + COO AND OTTEMPOSTO SOU) OF THE 4CC	3-3
1190	IF (ITEMP.GT.SUG.AND.)TEMP.LT.6600) GO TO SUG	
1141	L	
1192	ι	
د114	100	
1144	60 70(101,162,103,164,105,106,107,108,104,110,111,112,113,114,	
1145	+ 115,110,117,118,119,120),ITEMP	
1146	200 ITEMP=1TEMP-200	
1147	60 16(201,202,203,204,205,206,207,206,204,210,211,212,213,214,	
1198	* 215,216,217,218,219,220,221,222,223,224,225,226,227,226,229,	
1159	* 230,231,232,233,234,235,236,237,238,234,240,241,242,243),1TEMP	
1200	300 11LMF=11EMP-300	
1201	60 10(301,302,303,304,305,306,307,306,309,310,311,312,313),ITEMP	
1262	400 ITEMP=1TEMP-400	
1265	GC 16 (401,402,403,404,405,406,407,408,404,410,411,412,413,414,	
1204	* +15,410,417,416,419,420,421,422,423,424,425,420,427,426,429,	
1205	* 430,431,432,433,434,435,436,437,438,434,441,442,442,444	
1200	* 445,440,447,448,444,450,451,452,453,454,455,450,457,458,454,	
1207	* 460,461,462,463,464,465,466,467,466,469,470),ITEMP	
1200	500 ITEMP=ITEMP-500	
1209	Gu 10(501,502,503,504,505,506,507,508,509,510,511,5121,1TEMD	
1210	ι	
1211	Ĺ	
1212	101 CUNTINUE	
د ا ۱۷	CALL SUBLEX (NGO 201, NOU013, NOO129, 1DATA, RNDDAT)	1240
1244	102 CALL SUPERXINGGOO1.NGGGO12.IDATA.RNDDAT)	1250
1215	WKITE(6,1101) (J,RNDDAT(J), J=1,141)	
1216	1101 FURMAT(1H , 4(2X, *RNDDAT(*,13, *) = *, U12))	1270
1217	60 TO 1006	

JE/11/75	INPUT LISTING	AUTUFLUM CHART SET - FMC/SCL RADSIA	1
CAKLI NU	***	CENTENTS	3-9
1216	105 CALL RTUPUS(XT.YT.XA.XB)		
1419	GE TE 1000		
1220	104 CALL XYTCUE (XT-YT-XA)		
lčet	GC 10 1000		
1222	105 CALL XYIUM(AT,YT,XA)		
1223	CD 16 1000		
144	100 CALL XYTUMZ(XT+YT+XA)		
1225	60 1C 1006		
leen	TOR CALL XYTODE(X1.YT.X1)		
1227	GE TO 1000	*	
1220	110 CALL KTUPM(XT,YT,XA,XB)		
iczu	GC TO 1000		
1.30	111 CALL KTUPM2(XT,YT,XA,XF)		
a di sa	66 To 1000		•
1,52	113 CALL PLIEMT(XT,YT+XA+\$1070)		1450
ود ۽ 1	OL TO 1000		
1254	ι		
1235	114 CALL LOLKXINI93+E147+XI+XA)		
14:0	CALL DOLKX (NIS3, 8197, Y1, XE)		
1.57	OC TO FOOD		
1232	L		
1. 34	115 CALL LOLKX(N193+6197+XA+XT)		
1240	CALL DBLKX(N193.E197.X6.YT)		
1:	60 To 4000		
1244	ι		
1.4	110 CALL ENGYNEIXT)		
1-44	(110 1000		
1.40	110 UPLL CHUYNLIYTT		
-			

G. Te 4000

3	-10
•	

1247	118 CALL ENGYLPIXT.YT)	
1248	GDTU 1000	
1249	Ĺ	
1250	201 CALL DETIXINATI	
1251	GC TU 1606	
1252	202 CENTINUE	
1253	CALL ZEFT(XT.YT)	
1254	GL TU 1000	
1255	203 CENTINUE	
1250	CALL LIFFT(XI,YT)	
1257	GL TU 1000	
1256	CU4 LALL CUNVIXT,YT,XA,XE,S11301	
1254	GD TO 1000	
1260	LUS CALL CUNVMP(XT.YT.XA,X6,\$1130)	
1001	60 Te 1000	
1202	CHA CALL DIVALXTOYTONA, XB, \$11301	
1203	60 It 1000	
1204	207 CALL AUDA(XT.XA.\$1130)	
1205	GC 10 1000	
1,00	LUE CALL CUMDIS(XT+XA)	
1267	GE 76 1000	
1200	LUM CALL LUMDIS(YT.XA)	
1204	GL 76 1000	
1270	STO CAFF FALCHWEND * XV)	
1471	GE TO 1000	
1.7.	11 CALL GUTCUMEXA, XA)	
1273	GL 1600	
1-74	LAZ CALL PUF (XB.XA)	
1275	GE 11 1000	

U&/11/75	INPUT LISTING	AUTOFLOW CHART SET - FWO/SCL	RADSIM
CARU NO	****	CUNTENTS	3-11
1270	215 CALL PUF(XA,XA)		
1277	GU TU XUOU		
1278	14 CALL KNUARY(XT)		
1279	60 16 1000		
1220	215 CALL RNUARY(YT)		
1281	QU Ti. 4000		
1282	ZIG CALL ATUGIXT.IXI)		
1283	00 ft 1000		
1204	217 CALL ASLUSYT, 1YT)		
1265	GC 16 1060		
1200	210 CALL DIGA(IXY,XT)		
1227	GE TO 1000		
1265	TY- CALL DIGALITY, YT)		
1204	(if [f 1000		
1290	220 CALL DIGA(1YI,XA)		
1-41	GE IE 1000		
1292	221 CALL WEITHE (XI, YT, \$1010)		
1295	60 fc 1000		
1244	ZZZ CALL WEITUF(XT,YT,\$1010)		
1245	GO TO 1000		
1790	CALL MESTMP(XT, YT. \$1016)		
1297	GC 10 1000		
1295	LZ4 CALL SHIFTEXT, XT, XT, YT)		
1299	60 It. 1000		
1300	725 CALL SHIFT(XT,YT,XA,XB)		
1301	of 16 1000		
1302	220 CALL SHIFTS(XT+XX+XF)		
1303	GG TC 1000		
1504	227 CONTINUE		

٦-	12	

1305	GD TO 972
1306	1227 CUNTINUE
1307	GL TC 973
1308	2227 CALL SHIFTS(XT,YT,XA,XB)
1309	GO TO 1000
1310	228 CALL DTUATIXT, XA)
1341	GU TO 1000
1512	229 CALL RSHIFT(XT+YT+XT+YT)
1313	GU TU 1600
1514	230 CALL KSHIFT(XT,YT,XA,XB)
215	60 TU 1000
1316	231 CALL RSHFTS(XT,YT+XA,XB)
1517	GC TC 1600
مندا	232 CUNTINGE
1314	GL TU 472
1320	1232 UU TG 973
1321	2232 CALL RSHETS(XT, YT, XA, XB)
2>61	GC TU 1000
1323	235 CALL DETRE(XT+YT)
1364	66TB 1880
1325	234 CALL UPTHO(XI,YI)
1520	Cu T u 1000
1527	235 CALL ALUKNU(XT)
1320	GGTG 1000
1329	230 CALL AUDKNU(YI)
1330	GUTU 1000
1351	237 CALL AURNUCIXT.YT)
1332	GCTG 1000
ذددا	Zad CALL CLNV(X1,YT,XL1,XL2,\$1130

ł

65/11/35	INFUT LI	151106	AUTUFLOW CHART SET - FWU/SCL	RADSIM
ÇAKU NU	****		CUNTENTS	3-13
1224		GUTG 10	066	
266 £	239	LALL AL	JUA(YT,X5,\$113U)	
1366		GUTL 10	יטט	
1227	С			
1236	501	CUNTINUE	:	
1359		IFIICFG.	GT.1.AND.NPTAZ.EG.U) GL TL 13U2	
1540		LALL ANT	(INTINPTAZ»AZEST»ANTAZ»CCEFAZ)	
1541	1502	IF (IC+G.	GT. 1.AND. NPTEL.EG. 01 GC TO 1000	
1542		CALL ANT	(INT (NPTEL , ELBST , ANTEL , CUEFEL)	
1343		00 TC 10	νου	
1344	302	LALL SDE	DEKX140+1+13+1DATA+IGECEN)	
1545		CALL SUB	ckX1120,14,9,1DATA,1CLCUN1	
1340		GC TO 10	ρύυ	
1347	どいど	CALL FIL	.15T(XT)	
1340		UL 16 10	υ υ υ	
1244	504	CALL PIL	191(AL)	
טפנו		66 TO 10	illo	
1551	205	CALL PTL	LIST(XA)	
Lapa		60 To 10	900	
1553	206	CALL PTL	15T(x6)	
1554		GC TG IC	·00	
1355	207	CALL PLL	TIK(XT)	
1350		GU TU 10	υθυ	
1551	ئاند	CALL PLL	TIK(AI)	
1358		GC TC 10)GU	
1354	204	CALL PLL	JTK(XA)	
1500		60 TC 10	, 60	
1361	316	LALL PLU	OTTK(Xb)	
1362		GG TC 10	,au	

100	SIE CALL SPOAVO(AA, \$1090)	2500 3 -74
1304	CC TO 1000	
وغوه	UKL CALL SCANNR(KA)	2520
1 500	55 To 1660	
150/	٤	
1356	L	
کان د د	SOL CALL NUMBER (XT. \$1050)	
* = 11	66 Tc 2000	
15/1	THE CALL NUMBER (YT+11050)	
15%	et 1: 1000	
1315	HOW CALE OF TOPE (XI.YT)	
1-1+	OF IC ANDO	
4373	-C+ CHLL COPNER(XI,YI)	
1.5 %	CC 34 4000	
42 CT	HER CHEL KLIGHT (XT, YT)	
1 116	CC 16 4000	
1519	MU LALL PLANCEXITYTE	
* 1 CO	66 Tt. 4000	
A A	mil CALL FILT(XI,YT)	
4.35 +	co fo 1000	
•	GOVERNMENT CALL CARPART	
1000	otte ,000	
	my crue Inville(Al.XI)	
4 (x /x	on to some	
15 C	+10 CALL .NOTCH(YT,YT)	
4000	G. 11 1000	
	MA. CALL ANIANY(XT.YT.S1000)	2700
4 → 90.	of It aceo	
4.00 %	WAN LALL TIMULA (XI) XI)	

UE/11/35	INPUT LISTING	AUTOFELW CHART SET - PWOZSCE - KADSIM	
CAKU NO	****	CUNTENTS 3-15	
1392	60 TC 1000		
בלגו	HIS CALL HWULTIYI.	YT)	
1374	66 FU 1000		
1395	410 CALL PHULTEXT.	xi)	
1240	UL 11 1000		
1347	4.7 LALL FWULTTYI.	YT)	
1346	on to toor		
1344	HIS CALL SUBSTIXI,	XII	
4400	GC TE 1000		
1401	414 CALL SOLETIYE,	YT)	
140.	6L 1L 1006		
1463	ACO CALL FOENXY (X)	,47,810301	
1404	OL TE 1000		
1405	421 CALL FOENMFIAT	,YT,110301 28c0	
1460	OL 71 1000		
1964	422 LALL DIOTFE(IX	Т,ІХТ)	
1400	הר גף זהני		
1404	425 CALL DIGIFLIAY	I,1YT)	
1410	66 Tt 1000		
14.1	425 LALL COENIXT,Y	T+X()1+XDZ+\$3U4()	
1412	66 10 1000		
1413	426 CALL TSARYEXT,	YT, XD1, XD2, 116201	
1+1+	66 Ti 1660		
1415	427 CALL ISAKYITXT	*YT*X01*XU2*\$1U2U}	
1-10	66 Jt 1600		
1417	450 66 76(1430,243		
1416	1430 LALL MIJHLI(XI	(TX,	
1444	GE TO TOOL		
4764	1470 CALL MITTETIN	1,1X1)	

1	_	١	ı
١,	_	١	۱۸

1422	431 GU TU(1431,24311,MODEOF
14.3	1431 CALL MTIFLE(YT,YT)
1+64	GU 11 1006
1425	2431 CALL MILLHTELYT, LYT)
1470	60 TO 1000
1447	432 OU 10(1432+2432)+MUDEDF
1426	1452 CALL MTINULEXT.XT3
1464	GU TO 1000
1420	2452 CALL MITING(IXI, IXI)
1+31	GU TU 1000
1432	433 OU 10(143342433)#MODEUF
1425	1433 CALL MITINULITY TYTE
1424	GE TU 1000
1435	2433 CALL MILINC(1YI,1YI)
1430	GL TO LOGE
1957	434 LALL SWINT(XI,XI)
1400	66 TO 1000
14.4	435 CALL SWEINERYFATT
\$440	GE 11 1000
1	430 CALL NESHPE(XT, XT)
1442	60 FE 1000
1449	457 CALL NCSWF1(YI,YI)
1444	6.6 16 1000
1445	422 CALL HLIM(XT,XT)
1444	G. 10 1000
1441	ASS CALL HEIMITT, YTT
1460	GC 17. 4000
	CALL CC BAB (1127 - MA)

GU 11 1000

1421

4.0

يست ين سور سيسه،

المنتخب يتاري

CARU NO	****	CUNIENTS	3-17
1450	GC TO 1000		
1451	441 CALL DEFAREITT XD)		
145.	UL 16 4000		
1455	442 CALL INCIMINATEIXTE		
1454	CL 16 1000		
1455	443 CALL IHLIM(1YT+1YT)		
1450	6L 16 1060		
1457	445 CALL IMMULTERXT, IXT)		
1450	GL TU 1000		
1459	446 CALL IMMULT(19T+19T)	•	
1466	GL TL 1000		
i+r i	447 CALL IFMUET(IXT.IXT)		
140.	GL TC 1000		
1465	440 CALL IFMUEIGIVI.IVI)		
1404	GE TO 1060		
1405	444 CALL ISGUET(IXT+IXT)		
1400	60 TC 1000		
1401	450 CALL ISSUET(IYT+IYT)		
1+0.	GC TE 2000		
1+64	451 CALL RECFEXTOXAGXES		
1+10	66 TE 1000		
1 /1	HOL CALL RECETE (XT+YT)		
1472	CC TO 1000		
1-15	-50 CALL COUNSE(XT.YT)		
4770	OLIC 1000		
1471	454 CALL FAFRE(XT+YT)		
1975	nafu 1000		
1477	1000 UNEL ELEMENTATION		

Co 16 4000

A = 1.

CEPAINTE INFUT LISTING

AUTUFLUM CHAFT SET - FWE/SCL KADSIM

9	۱	0
3	, ,	b

7414	450	CALL LAMPRE (XT , XT)	3-1
14cu		GUTU 1606	
inoi	457	CALL LAMPRESYT, YT)	
1+62		GUTU 1600	
1463	458	CALL LAMPCPIXT, YT, XT, YT)	
1+6+		GCTC 1600	
\$40 ⁵	454	CALL LFAR(XT,XA)	
1400		GGTC 1000	
1+37	400	CALL CFAR(YT.X6)	
1400		GCTU 1000	
1+04	401	CALL DIGFILEXT, YT)	
1440		GUTC 1000	
1471	462	CALL DIGFNCEXT.YT)	
1440		0LTU 1C00	
1442	top	CALL DIGESFIXE, YTE	
1454		ULTU 1000	
1445	L		
1440	Sul	CALL TARGET(ATBYF)	
1447		GD TO 1000	
1446	buz	CALL TGINCL(XT, YT)	
1449		CL TL 1000	
<u> 1</u> July	500	1f (1clccn(20).64.0) 60 TE 1121	
1504		CALL CLUTTE (XT, YT, XH1, XR2, \$1120)	
190.		60 TO 1000	
1905	504	LALL ANTHATEXT, YT, \$10001	540
1 % () ***		of It 1000	
15 05	505	CALL TERPATERIANCE, NECESTIMANTIMASTERS	
1500		ot. fu 1006	
1967	56	CALL PHUEC(XI+YT)	

		٠.	7	
68/	1	1/	•	7

INFUT LISTING

AUTUFLUM CHART SET - FWEZSEL RADSIM

3-19

CENTENTS

LAKU NO	***
1200	GLTC 1000
1509	SUY CALL PHULC(XA, XB)
1510	6010 1000
1111	510 LALL WVGULU(XT,YT)
1>12	6010 1000
1513	511 CALL JUNUS(AT, YT)
1514	6010 1000
1515	512 CALL ECMIXIOYT)
1210	CLTG 1600
1517	L
151-	107 CENTINUE
1514	139 CUNTINUE
1520	112 CENTINUE
1924	114 CENTINUE
1522	120 CONTINUE
15.5	L
1524	240 CUNTINUL
1515	241 CUNTINUE
15.0	.42 CUNTINUE
1527	143 CENTINEE
1520	L
1524	oll continue
1550	L
1534	422 CENTINUE
15.54	was continue
1:00	aca binilhbi
19.4	420 CENTINUL
Lyws	as a constance
4000	man certalie

```
3-20
                the CONTINUE
               507
                      CUMP INDE
                      CLINT MUL
15-L
               ** ( **
1.91
               465
                      CENT INUE
                -60
                      CUNTINUE
                      CUNTINUE
               400
                      LUNT INGL
150.
               40,0
                      CLN11NUL
               470
                      LLN1 INUL
1.40
45.07
                     WEITERESON JSTEP, MUDULE
12...
1247
                  DU FLEMATE * NETHING PERFURMED FOR *. 13. "TH INFUT DATA ITEM. DATA I
                    *TEM = 1, 14 1
1550
                     UL TL 1000
1554
1557
1980
                453 CENTINUE
1724
                     REWIND IFC
                     WEITE (6,1453) 1FC
1755
               1953 FURMATE . TEMPURARY FILE NUMBER . 15. HAS BEEN RENGUNDED
4000
                     GL TL 10CG
1557
122.
1554
                954 CUNTINUL
                     WEITERIFC) ATT
1500
                     1F( 17.67.512) WRITE(IFC) (XT(J),J=513,17 )
1501
                                                                                               4140
Lyon
                     WELTE (6,1954) AXT, IFC
               1904 FURMATE " THE ARRAY". A6. "HAS BEEN STORED IN UATA SET NO. ". 151
                                                                                               4160
1502
                     60 To 1000
1564
1500
```

÷

processing the state of the sta

08/11/75	INPUT LISTING	AUTUFLUM CHART SET - FWUZSCL RADS	SIM
CAKU NU	****	CONTENTS	3-7/
1206	455 CENTINUE		
1567	WKITE(IFC) YIT		
1500	1F(ITY=6T-512) W	WRITE(IFC) (YT(J).J=513,ITY)	4210
1564	WRITE(0+1954) AY	rT.IFC	
1570	60 TO 1006		
1571	C		
15/2	456 CUNTINUE		
1575	WKITE(IFC) XAT		
15/4	IF(IXA-UT-512) V	MRITE(IFC) (XA(J),J=513,1XA)	4270
1575	WK1TE(0,1754) A)	(A.IFC	
1576	GL TC 1000		
1577	C		
1575	45/ CLNTINUE		
1579	WKITE(IFC) XDT		
1500	1F(1X6.04.512) v	wRITE(IFC) (XE(J),J=513,IX6)	4330
1501	AKITL(6,1754) A	18,1FC	
1582	60 TO 1000		
1565	L		
1 104	450 CENTINUE		
2265	KCAULIFU) ATT		
1500	18(17.07.512)	READ(IFC) (XT(J),J=513,IT)	4390
1361	WKITE(C,1450) A)	KT,1FC	
3344	1990 FURMATE . THE AF	KRAY",A6, "HAS BEEN LUADED FRUM DATA SET NU.",15)	4410
1509	ct 1t 1000		
1540	L		
1541	454 CUNTINUL		
1,90	REAU(IFC) YIT		
1595	16(174.67.512)	READ(IFC) (YT(J),J=513,1TY)	4460
A 75 - 1944	WEITE (0,1456) A	YT,IFC	

1549	GL 76 1000	3-29
1540	ι	5 60
1541	SOU CONTINUE	
1548	REAU(IFC) XAT	
1544	IF(IXA.GT.DI2) READ(IFC) (XA(J),J=513,IXA)	4520
1500	WRITE(0,1452) AXA,1FC	
1661	GC TO 1000	
1602	ι	
1003	401 CONTINUE	
1004	nemb(ifc) xb1	
1005	16(1x6.01.512) REAU(160) (X8(J),J=513,1X6)	4580
1600	MRITE (0.1456) AXB. IFC	
1607	66 To 1006	
1000	MOS CENTINUE	
1614	GC 10 1000	
1610	40 - LUNTIMUE	
1011	at Tr 1060	
16.2	454 CENTINGE	
1615	GL 1L 1000	
1014	405 CENTINUE	
1615	C.C. T.C. 1000	
1010	450 CCNTINUE	
1017	6c To 1000	
16}:*	467 CCHIANIC	
1014	(6 10 1000	
16,0	ANT CENTINUE	
10. 1	GE TE 2000	
1622	464 CENTINUE	
15. 2	GL. TE 1000	

:

06/11/75	INPUT LISTING		AUTUFLUW	CHAFT S	ET - FWO/SCL	RADSIM
CARD NL	****		CUNTENTS			1-73
1624	Ĺ					
1025	970 CONTINUE					
1020	UU 1970 K	(=1,8147				
1027	1570 XTT(K)=0.	·u				
1026	11=2**Na	ż				
1024	U11 T=11					
1650	WK1TL(6+4	2970) AXT				
10-1	.970 FURMAT(*	THE AKRAY ", AG, " HAS	BEEN SET 10	0.0 1		4850
1632	66 TE 100	υU				
1033	471 CUNTINUE					
1054	DC 1971 F	X=1,8147				
1635	1971 YTT(K)=0.	•0				
1030	117=2**/	NZ'				
1657	()LLTY=T)	1				
1530	WKITE (0,2	470) AYT				
1074	GC 1C 100	a()				
1040	472 CUNTINUL					
1641	UU 1972 P	(=1,0147				
1692	1912 XAT(K)=0.	٠.٥				
Atres 5	WRITE (6.	AXA LUTP				
1044	IF (MODULE	GC TL 1227				
10-5	1+1Mubuli	•EQ-232) 60 TO 1237				
1646	1XA=2**	NZ				
1040	XALCEL=11	ı				
1040	60 1c 1oc	υ υ				
1044	473 CENTINUE					
1050	DU 1973 F	(=1+b147				
1054	1973 XET(K)=U	•0				

105.

WEITE (C. 2970) AXE

```
11 (MCEULE .. C. . 227) OF TO 2227
4....
                                                                                         3-24
1054
                    ir (MCDOLt .EQ.232) GD TO 2232
                     1x6=2**N2
10.00
1000
                    XbDeL=11
                    LL 12 1000
1057
1025
10.9
               JULU WALTE (0,1015)
4000
               THE FORMATE . NEW-STANDARD RETURN FROM SUBROUTINE WELL .
                    W. To 2020
1001
Lou.
               1026 WF 11: (0.1625)
                                                                                             5111
1000
1004
               1025 FURMATE * NUN-STANDARD RETURN FROM SUBRUUTINE ISARY* )
                                                                                             5112
                                                                                             5113
1000
                    66 TO 2024
                                                                                             5114
1000
1007
               1030 WKITE (6,1035)
                                                                                             5141
luc.
               100 FERMATE * NEW-STANGARD RETURN FROM SUBROUTINE FGENXY *)
1064
                    60 16 2626
1000
               1040 WEITE (6:1045)
1071
               1045 FURNATI * NUN-STANDARD KETURN FRUM SUBRUUTINE CGEN*1
167.
                     GETU ZUZU
1015
1074
               1030 MRITE (6,1055)
               1055 FURMATE THE . * NUNLINEAR TRANSFORM IMPROPERLY DEFINED * 1
107:
10/0
                    66 TO 2020
1677
1071
               1000 WKITE (6,1005)
1674
               1005 FURMATE * NUN-STANDARD RETURN FROM SUBROUTINE ANTARY *1
16.0
                    66 TO 2660
1051
```

```
AUTHELW CHAFT SET - PWE/SEE HAUSIM
              shrut Labland
GELLIAM
                                                                                               3-25
                                                      LIGITENTS
 LAKU NO
                  TUTO WELLE (8.10/5)
    1002
                   1075 FURMATE * HUB-STANDARD RETURN FROM SUBROUTINE PLTEMT*)
    luca
                        UL TE ZUZU
    1004
    Luch
                   LUHU WKITE (0, LUYS)
    1000
                   1045 FURMATE . MUN-STANEARD FETURN FROM SUBMUUTENE SPEAKS . )
    1601
                        66 10 1000
    1035
    1044
                   1120 WKITE (0,1125)
    1040
                   1225 FURMATE NUM-STANDARD FETURN FRUM SUBRUUTING CRUTTE 1)
    lovi
                         GO TO LUCO
    1042
    د۲٥٧٥
                    1121 WKITE (6,1122)
    1044
                    THE FURNAT COUTHE CLUTTER MODEL HAS NOT BEEN PROPERLY INITIACIZED BY .
     1045
                        **CLINT .. .. LLUTTH .. WILL NOT BE EXECUTED. ...
     1040
                        GG TG 2620
     1647
                   C
     1045
                    1130 WRITE (O.LISS)
     1044
                    1135 FLEMATE NON-STANDARD RETURN FROM SUBRUUTINE CONVI)
     1700
                         GG TU ZUZE
     1701
     1702
                    1152 MAITE (6,1163)
     1703
                    1185 FURMATE . SUBRUUTINE TSRPAT NUT EXECUTED .
     1704
```

CLUD FURMATE " STEP ", 13. " WITH MUDULE = ", 14. " HAS SCHEUULED AN OP

*ERATION WITH EXEC NUMBER *, 13, WHICH IS OUT OF KANGE. *)

66 TC 2020

66 TG 1000

ZIUG WKITERO.ZIDD) JSTEP. MODULE. ITEMP

1705

1767

1105

1704

1710

```
1:11
              . 0.0 willic (0,2025)
11...
              LOUS FORMAT ("OA CONDITION EXISTS WHICH WILL CAUSE THE FEMAINDER OF THE
1715
1714
                   *5 CUNFIGURATION TO BE BYPASSED. *1
1110
                    66 16 890
1/10
1111
              . 000 WKITE (6.2055)
1716
               1055 FLEMATE * THIS JUD CUMPLETE * 1
1719
                    CALL LAIT
11.0
               2000 WKITE (0,2005)
11.1
               LUOS FERMATE! THIS JUB ABURTED BECAUSE OF IMPROPER INPUT DATA".
1112
                   * *... SEE PRINT OUT FROM ACTIVITY 1.1
                    LALL EXII
1725
                    SILF
11.4
11.5
                    z NL
```

3-26

CALL DTOA (IX,X)

Where: IX contains the Input Waveform

X contains the Output Waveform

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. If the computed digital output is greater than the largest number which can be specified by NBITS, it will be set to the maximum number.

b. Flow Chart: Page 9-98

c. Cross Reference Table: 9-220.

6. THEORY OF OPERATION

The analog-to-digital conversion is performed by dividing the floating point input signal by the value of the least significant digital bit. If round off is to be performed, 0.5 is then added to the value. The value thus obtained is converted to an integer number and its absolute value is tested against the maximum allowable number, 2**(NBITS-1). If the magnitude of the signal is greater than the maximum allowable, it is set equal to the maximu. The basic mechanization equation for the ATOD module is:

IX (J) = IFIX(X(J)/XLSB + 0.5 * IROFF)

The digital-to-analog conversion is made by changing the input to a floating point number and multiplying it times the value of the least significant bit. The basic mechanization equation for the DTOA module is:

X(J) = FLOAT (IX(J)) * ZLSB

where: ZLSB = BOOL (IX(N196))

```
SUBRUUTINE ATODIX.IX)
4544
4000
            C**** THIS SUBRUUTINE PERFORMS AN ANALUG TO DIGITAL (REAL TO INTEGER)
2361
                     CUNVERSION WITH SPECIFIED DIGITAL PRECISION AND SATURATION
4002
                     LEVEL. OR A DIGITAL TO ANALOG (INTEGER TO REAL) CONVERSION
6013
                     . 004
こわしち
                CUMMUN/BLKI/BKI(500)
26€5
                DIMENSION X(1)+IX(1)
2667
                 EQUIVALENCE (6K1(103), XLSB
2606
                                              ),
                          (BK1(104), NBITS
                                               1, (BK1(105), IKUFF
2004
```

4-4

```
INFUL EISTING
                                                                                                                                                                                                            ALTUFLUM CHART SET - FWC/SCL RADSIM
08/11/75
                                                                                                                                                                                                                                                                                                                       4-42
                                                                                                                                                                                                 CONTENTS
      CARD No
                                                                                                                             (BK1(144). AUCES
             2610
                                                                                    DATA N193, N194, N195, N196/-3, -2,-1,6/
             2011
                                                                                      WKITE (6, 120)
              2012
                                                                                      TIAUL=1.0/Abs(AUCFS)
              2615
                                                                                      11=X(N145)
              2014
              2015
                                                                                      T1MAUC=3(N194)
                                                                                      TIME=TIMAUC+11+0.5
              2015
                                                                                      N=15ULL(X(N143))
              2017
              2615
                                                                                     # (No.115 .te. 31) GU TU 20
              4615
                                                                                    nc 118 = 31
               2020
                                                                                      WELL (c. 110) NEITS
               2021
                                                                        20 CANTINUE
               20.2
                                                                                    MAX = 2 ++ (NE115-1)
              26:0
                                                                                   KUT = U.S*FLCAT(INGFF)
               و ۵۰ ب
                                                                                  UXLUD = 1.0 / ALSB
               .0.)
               LP_0
                                                                 CHASE MIMLEC TO SILITAL CONVERSION ******************************
               20.1
               26.26
                                                                                پار جوز، ال ≃ ≨ی ای
               40.4
                                                                                   TELTIME . LT. TIMADEL GO TE 16
               لادين
                                                                                      1X(K)=1F1X(X(J)*6XLS..+F2F)
               2031
               10 .
                                                                CAPPER TOOL FOR CARLO ATTICK ARMERORSBERRORD FRANCISCO PROFESSOR F
               ن . ب
                                                                                       IT TIPE _ (IACK) | L. T. Max) IX(K) = 1: 1: f (SIAX, 1X(F))
               . ....
                                                                                       1) MARC = & I MARC = * I FAIC
               . . 1
                                                                                        . . . . . . .
```

```
1+(AIR+S) 31,32,32
2034
                      1 \times (K) = 1 \times (K-1)
20-0
                3.1
                      K-K+1
-041
                      TIM: = TIME + TI
1042
2043
                  40 CENTINUL
2044
645
                     1x(N193)=K-1
2641
                     1X(N194) = 15UUL(X(N194))
4641
                     IX(N195)=1600E(TIADE)
                      1r(AUCFS.LT.U.U) 1X(N195)=6COL(T1)
2040
2044
                     IX(h140) = Incol XESB 1
2056
                     KE TUEN
                     ENTRY DILA(IX,X)
2011
                     #116 (6, 130)
2052
                     X(N193) = BBBE(1X(N193))
20:0
2354
                     X(i,194) = obde(IX(N194))
                     X(N195) = cUUL(1X(N195))
2000
                     N = 1x(N193)
6656
                     LLSe = SOUL (1x (N196))
2057
2056
2054
               6 * * * * 1-1617AL TO ANALUG CONVERSION **************************
2000
2601
                     بار. دال با= 1 و اب
                     A(J) = FECAT(I)(J)) * ZESH
2000
                 or Cold India
2000
2000
                     FETURN
                 THE FERMAT ( NBITS IS EXCESSIVE. THE VALUE OF NBITE HAS BEEN SET TO
20.00
                    **,1 }
2000
                 170 FLEMAT (/// +4x+ + + + A TO D CONVERTER + + + + */ / )
2007
                 150 FLEBATON 494, 14 + + + D TO A CONVERTER + + + + 1 / / 1
200
                     Lists
4004
```

٠,٠

SUBROUTINE CDIGFL

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
CDIGFL	LTI-4	403
CDFNCL	LTI-4	404

2. PURPOSE:

This subroutine is used to simulate a cross-coupled digital filter and synthesize a filter transfer function having one complex pole and/or one complex zero.

3. INPUT PARAMETERS:

Name	O/R	<u>T</u>	Description
FFR	0	F	Feed - Forward coefficient - R
FFI	0	F	Feed - Forward coefficient - I
FBR	0	F	Feedback coefficient - R
FB1	0	F	Feedback coefficient - I

4. CALLING SEQUENCES:

CALL CDIGFL (X,Y)

Where: X contains the Input Waveform - R
Y contains the Input Waveform - I
X contains the Output Waveform - R
Y contains the Output Waveform - I

The storage registers (TX1 and TY1) are cleared before execution begins.

CALL CDFNCL (X,Y)

Where: X contains the Input Waveform - R
Y contains the Input Waveform - I
X contains the Output Waveform - R
Y contains the Output Waveform - I

The storage registers, TX1 and TY1, are not cleared before execution begins.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. Flow Chart: Page 9-96

b. Cross Reference Table: 9-220

6. THEORY OF OPERATION

The block diagram of the complex digital filter simulated by this module is shown in Figure CDIGFL-1. The Z-plane transfer function is given by the following expression:

$$T(Z) = \frac{Z - (FFR + jFFI)}{Z - (FBR + jFBI)}$$

Figure CDIGFL-1 BLOCK DIAGRAM OF CDIGFL/CDFNCL

2501	SUBBLUTIBL CUTOFL(X,Y)	р-4
690a	COMMUNICERIZONI (500)	•
25113	EQUIVALENCE (ENIGE), FFX), (BK1405), FFXY),	47 0
- JU4	* (EN1(70), FEX), (BN1(71), FOXY)	480
6060	VE-16414 ALAU	490
2500	DIMERSION X(X),Y(1)	
2501	184=0.0	510
2511	171=0.0	526
2564	ENTRY CURNCE(X.Y)	
2: 70	ned De (Minigol)	
2211	13 10 J-191.	57ú
2211	Fl=X(J)+lX1*FEX-TY1*F6XY	
25/10	G1=Y(J)+TY1*F6X+TX1*F6XY	
25/4	χ(J)=μ1*FFX-∪1*FFXY+TX1	
2579	IYT+YX+1+1A+X+1+1c+(L)Y	
2570	184-74	620
.577	TY1=51	621
c37	IN CONTINUE	622
25/4	NETURN	623
2434	eta	624

SUBROUTINE CFAR

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

CFAR NL-2 459,460

2. PURPOSE:

This subroutine is used to simulate a constant false alarm rate (CFAR) video processor.

3. INPUT PARAMETERS:

 $\frac{\text{Name}}{\text{Name}} \quad \frac{\text{O/R}}{\text{T}} \quad \frac{\text{Description}}{\text{Description}}$

TAVG R F Width of averaging window used

in determining video gain

 $(TAVG \ge 2*TI)$

4. CALLING SEQUENCES:

Where:

CALL CFAR(VIN, VOUT)

VIN contains the Input Waveform

VOUT contains the Output Waveform

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. The input and output arrays cannot be equivalenced.

b. Flow Chart: Page 9-66

c. Cross Reference Table: Page 9-216

6. THEORY OF OPERATION

The block diagram of the CFAR processor simulated by this module is shown in Figure CFAR-1. Each sample of the input waveform is passed through a variable gain amplifier which is controlled by the average value

Figure CFAR-1 BLOCK DIAGRAM OF CFAR

of this waveform surrounding the sample being processed. The gain applied to the Jth sample is given by the following expression:

$$G(J) = \frac{2*NCELL2}{K = J+NCELL2}$$

$$\sum_{K = J-NCELL2} \left(|VIN(K)| - |VIN(J)| \right)$$

where: NCELL2 < J ≤ NPTS - NCELL2

NCELL2 = IFIX(TAVG*0.5/TI)

TI = independent variable increment between samples

NPTS = number of samples in the input array

حقيو		SUBROUTINE CFAR(VIN. VOUT)
2001		CUMMUN/BLK1/ BK1(200)
2002		DIMENSION VIN(1).VOUT(1)
2003		EQUIVALENCE (RKI(196), TAVG)
2664		UATA N193.N194.N195/-3Z1/
2005		NCELL2=IF1X(TAVG+0.5/VIN(N195))
2000		XCell=2*NCELL2
2001		NPTS=bLOL(VIN(N1431)
2000		NSTLP=NPTS-NCELL2
2009		NCELL1=NCELL2+1
2010		AV=U_U
2011		Du 100 J=1.NCcLL2
2012		ffl)niv) zda+va=va
2015	100	LLNTINUE
2014		6F=1.0
2015		UU 200 J=1.NPTS
2010		IF(J.LE.MSTUP) AV=AV+ABS(VIN(J+NCELL2))
2017		IF(J.CT.NCELL1) AV=AV-ABS(VIN(J-NCELL1))
2016		UVSR=AV-AES(VIN(J))
2019		1F(UVSR.GT.1.GE-20) GF=XCELL/DVSR
a lla li		VCUT(J)=V1N(J)+GF
žve1	. 00	CUNTINUE
2022		VLUI (N143)=V1N(N143)
2023		VLUT (N144)=V1N(N144)
2024		vlut(n195)=vin(n145)
2045		FETURN
20.20		LND

SUBROUTINE CLUTTR

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
CLUTTR	LTI-3	503
	or	
	LTV-3	

2. PURPOSE:

This subroutine generates the transfer function of a clutter volume. A pictorial diagram of the clutter volume is shown in Figure CLUTTR-1.

3. <u>INPUT PARAMETERS</u>:

All required input data is entered via the clutter model initialization subroutine (CLINT).

4. CALLING SEQUENCES:

CALL CLUTTR(XT,YT,GAZ,GEL)

WHERE: XT cont a

XT contains the Output Impulse response - R

YT contains the Output Impulse response - I

GAZ-Temporary storage for antenna azimuth gain values (MM=number of storage cells required)

GEL-Temporary storage for antenna elevation gain values (NN - number of storage cells required)

5. RESTRICTIONS, REQUIREMENTS, AND MISCELLANEOUS DATA

- a. The subroutines CLINT must have been successfully executed prior to calling CLUTTR. See p 6-4 for restrictions on CLINT.
- b. The functions AZGAIN and ELGAIN are used to compute the antenna gain associated with each scatterer.

Figure CLUTTR-1 CLUTTER MODEL GEOMETRY

c. Flow Chart: Page 9-112

d. Cross Reference Table: Page 9-222

6. THEORY OF OPERATION

The clutter model is based on the premise that a volume of clutter can be represented by an ensemble of discrete scatterers. The RCS of these scatterers is derived from a theoretical probability density function, but can be easily modified to allow the use of a density function derived from measurements data. The phase behavior of the scatterer is determined from motion of the scatterer due to wind and from any inherent frequency spread derived from measurements data. The basic mechanization equation for the clutter model is given by the following expressions:

a. MODE = 1 (stationary clutter):

$$XT(K) + jYT(K) = \sum_{N=1}^{NN} GEL(N) \sum_{M=1}^{MM} GAZ(M) \left[CLUX(IPNT) + jCLUY(IPNT) \right]$$

where: GEL(N) - Normalized antenna gain corresponding to an elevation angle of EL \emptyset \emptyset + DELEL *(N-1)

- GAZ(M) Antenna gain corresponding to an azimuth angle of AZ $\emptyset \emptyset \emptyset$ + DELAZ * (M-1)
- IPNT Scatterer element pointer which is
 determined as follows:
 IPNT = (K*(N-1)(M-1)+(N-1)*MM+M) MODULO 250
- CLUX() Array containing real part of clutter scatterer specification
- CLUY()- Array containing imaginary part of clutter scatterer specification

b. MODE = 2 (Time varying clutter):
$$XT(K) + jYT(K) = \sum_{N=1}^{NN} GEL(N) \sum_{M=1}^{MM} GAZ(M) CLUX(PDNT) + jCLUY(IDNT) + e$$
PHDEL

"New" CLUX (IDNT)+;CLUY (IDNT)

Where: PHDEL = is the phase term to be applied to each scatter

= 57.29578*DELTIM*DOPFRQ*COS XVLANG-DELAZ*(M-1) /57.29567 + PHRW

DELTIM = Radar interpulse period

PHRW = The random walk phase. This variable is generated by a random number generator from a umiform distribution.

$$\frac{-\text{RWPH}}{2.0}$$
 < $\frac{\text{PHRW}}{2.0}$ < $\frac{\text{RWPH}}{2.0}$

The pulse phase shift due to doppler is computed via a recursive loop which is more efficient than a direct evaluation of the cosine function.

$$C(N+1) = C(N)*DELCS - S(N)*DELSN$$

 $S(N+1) = C(N)*DELSN+S(N)*DELCS$

where C = Phase shift due to doppler C(1) = DOPFRQ*DELTIM*2 π * COS(XVLANG) S(1) = DOPFRQ*DELTIM*2 π * SIN(XVLANG)

The clutter scatterer parameters (CLUX and CLUY) are updated by PHDEL for each execution of the clutter model and the new values are stored in the random disc file.

GENERAL DYNAMICS FORT WORTH TEX CONVAIR AEROSPACE DIV F/6 17/9 ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING, VOLUME II. PAR-ETC(U) JUN 76 R J HANCOCK: F H CLEVELAND F30602-73-C-0380 AD-A102 278 ENDO ATMOSPHERIC-EXO ATMOSPHERIA F30602-73-0
JUN 76 R J HANCOCK, F H CLEVELAND F30602-73-0
RADC-TR-76-186-VOL-2-PT-1 UNCLASSIFIED NL 2 or 4

```
SUBRULTINE CLUTTREXT.YT.GAZ.GLL.*)
2400
                    CUMMUN/ELK1/ 6K1(200)
2450
                    CCMMCN/BLK330/BK4(30)
2457
                     LIMENSIUM GAZ(1).GEL(1).CLUX(250).CLUY(250)
2458
                    CUMMEN/BUKKND/ IIII(12),NRAND(129)
2454
                    DIMENSION X1(1).YT(1).CSCAT(500).1R4NU(128)
2400
                    ENUIVALENCE (CLUX(1), CSCAT(1)) , (IRANU(1), NKANU(2))
1461
                     LAUIVALENCE (CLUY(II.CSCAT(2511)
2400
                    EXHIVALENCE TOKAL 141. TOELL
                                                           1.(5K1( /1), 10MF
-503
                                  fek1f 12), TI
2404
                                                           INCOME A IN ES
                                  1.K41 31. RWPH
                                                           1,
2455
                                  IBK41 6), KNEXT
2400
                                  15K41 7), RNUGU
                                                           1. [BK-1 41. AZGUG
                                  15K41 101. MM
                                                           1. (EK4( 12), ELUOU
400
                                  (0K4( 13), NN
                                                           ),(BK+( 14), KK
404
2970
                                  16K+1 16). MEDE
                                                           ). (6K+( 17), DELAZ
                                                                                     ١.
                                  (tK+( 12). DELEL
                                                           1. (BK+( 14), XVLANG
4411
2972
                                  Idkal 201, ICFLG
                                                           1, (6K4( 21), UUFFR4
                                  (1K41 221. KCELL
2472
                    EWOLVALINCE (PK1( 16), TIME
. 474
15/2
                    J-14 N143+N144+N145+N146/-3+-2+-1+0/
                     DATA GILAL, IMULT, P12/0.6, 1220703125,6.2631055/
470
                     CALL BANSIZIUZ,5001
2417
2416
2414
                     WELTE (6:10) (6K4(J):J=1:30)
                 10 FLAMA((1H + U12+8X+(12+8X+(12+8X+(12+8X+(12)
24-1
                     NWPHL= MWPF #F12/1 360.0#12.0##3511
                     DELACK=ULLAZZ57.29578
. 4.4
2403
                    ULLTAM= TIME-CTIME
                    :.TIML=TIML
.44 .44
                    U= OLPFRG+UELTIM+FIZ
246.
```

UL=U+ULL[AVEARH-D: EAZK]

. 4 . . .

4-18

```
SHELL * STIME / VEARON-DELACK!
. 4. . 1
6900
                        DECEMBEL STURBARNI
                        Ittibelia (Uttazk)
. ...
                       WELLSHIPP
-440
                       14. 140 M-1.MM
2001
                       CAL(M)=AZCAIN(ANCLE)
2992
                       MALLE = MALLE + LEL AZ
وياون
                   1000 CENTINEE
. 4.4
                         IN CALMADAGE AND WELTE (6-1001) (CAZCAL) ASSET LAMMA
. 4445
                       A'outr-choon
. 440
                       Dic. 4 50 H- L-114
2441
                        CLE COD-LEC AIN (ANGLE)
1996
                        ANGEL -ANGEL FOLLEL
. 444
                   LOW COMPLMOR
                         in (lower account welfe (as loot) (GEL(J), J-1, N)
201
                        DE MY J-1. KUELL
14/17
                        X1(J)=0.0
5000
                        Y1())=0.0
                    our contellitude
 A + (1.4)
8 11.15
                        K148E:0.5*11
                        INEL-1
31.1.0
                         linkw=0.6
5010
                        1+N1=1
                        HEADIZ TREET CSCAT
50.11
 1012
                        DL SOU FELOKK
 2013
                        A - U - U
3,114
                        6-6.0
 3015
                        UU 000 N=1.NN
```

LLO

4-18 a

(

w/11/7.	Heral C18111a	AUTUFLUM CHAFT SET - FWU/SCL - RAUS
CARL NO	****	CUNTENTS
0 4 المراد	(+03	
1111	5± ∪N	
3016	OU FLO MAI+MM	
3019	IF (IFNT-LL - 250) CC T	(- 7 5e
غدرن	UL 1.(1,5,730),MUDE	
2023	130 WELLE (2 TINEU) CSCAT	
عاديد	7.0 1660-1666-1	
30	FLAL (LTINECT CSEAT	
500 4	11 15 6 - 4	
341. 5	Programme (M) + GEL (N)	
مهر بر داخت	GE TE (YOU + YYU) + MCDE	
30.1	INCO ASARCTUX (IPMI)+6	
30.0	r=c+ctoY(1rnf)*6	
30.4	or to coo	
30.2a	IIC CUNTINUL	
50 ° 4	#H (KWH) at Wall at) - OF	Tu 780
50 52	I + I to Lit A to Li (MAL)	
30.53	THE TRADESTALL	1
34 بارد	16N; =(Lv(1,35,1KN[1
3035	JKNU-1KNU	
3636	1+ ANL (MAL) = 1+NU	
3637	MAL-FLU(15,7,1KNU)	
oust	FHFW=FLUAT(JEND)#E	WPHC
٧٤ ٥ د	760 CUNTIMO	
3040	IFILED-0.01 ON TO	790
3641	TIMP=C	
3042	(=C*DECUS~S*DELSN	
3043	S=11MF*DELSN+S*DEL(28

790 CLNTINUE

AUTUFLUM CHART SET - FWU/SCL - KAUSIM

```
4-19a
```

```
VUUS=(US(FHITEL)
311-60
                       VJIN-SIN(FHULL)
2647
                       TIMP=CLUX(1+N1)
3646
                       CLUX(IFNI)=TIME+VCCS-CLUY(IFNI)+VSIN
31147
                       CLUY(1+NT1=TIMP*VSIN+CLUY(1PNT)*VCES
2050
                       A-A+U+ULUX(IPNT)
2051
                       0=0+0*CCCY(1PH1)
4024
36.70
                 roo CUNTINDO
                      1FNT=1FGT+1
3454
30%
                  700 LENTINUE
                 030 CONTINUE
36:0
                      LLC-IFIX(NIIME*FS)
3051
                      11(L.()=L
3000
                      if (Luc) +L
54.27
                      1. TIME = h. FIME + TELLE
SHEW
                  SOO CLINTINGS
s_{ij} \in \mathbf{I}
sut.
                      TELMEDERENRET WEITERPIRECT CSCAT
ز ۱۰۰۰ ر
                      XT(N.95) COUDE (KULLE)
                      X1(1.1541=1.NO00
3016
                      XT(6195)=T1
3000
                      YT(N193)=XT(N193)
Sec. 1
                      Y1(N19+)=X1(N194)
1101
                      YT(11145]=X1(N145)
36 O4
                 1001 FURMAT(14 +61 +05)
3070
                        1F(1DMF.C..1) WK17E(0,1001) (XT(J), YT(J), J=1,KCELL )
3071
3072
                      RETURN
```

Frank E=FHKW+L

James

J673

٠.

i

E NU

SUBROUTINE DCFAR

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

DCFAR NL-2 440,441

2. PURPOSE:

This subroutine is used to simulate a digital constant false alarm rate (CFAR) video processor.

3. INPUT PARAMETERS:

NCELL R I Number of cells to be averaged in computing the video gain.

4. CALLING SEQUENCES:

CALL DCFAR (IN, IOUT)

Where: IN contains the Input Waveform IOUT contains the Output Waveform

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The input and output arrays cannot be equivalenced.
- b. All calculations are in integer format.
- c. Flow Chart: Page 9-93
- d. Cross Reference Table: Page 9-220

6. THEORY OF OPERATION

The block diagram of the digital CFAR processor simulated by this module is shown in Figure DCFAR-1. Each sample of the input waveform is passed through a variable gain amplifier which is controlled by the average value of the waveform surrounding the sample being processed. The gain applied to the Jth sample is given by the following expression:

$$IG = \frac{\frac{NCELL}{K=J+NCELL2}}{\sum_{K=J-NCELL2} |IN(K)| - |IN(J)|}$$

where:

NCELL 2 < J \le NPTS - NCELL2

NCELL 2 = NCELL/2

The value of the Jth output sample is computed as follows:

$$IOUT(J) = IN(J) * IG$$

Figure DCFAR-1 BLOCK DIAGRAM OF DCFAR

```
4515
                       SUBFIGUTINE OUF AR (IN- IDUT)
                      CEMMENZOLKIZ EKI(200)
2510
2-17
                      GIMENSION INCLUSIOUT(II)
2510
                      ENCIVALIBLE (UKI(170), NIELL
2514
                      LAIR MIYS, MIYH, NIYH, NIYH /-3, -2, -1, W
                      NCELEZ-NCELEZZ
. 540
                      LULLE = HE ELL +.
25.1
                      Selbeati N195
. . . .
. . . .
                      MOTOFFREIS-NOCEEL
25/4
                      Liu 100 JaigNCELLZ
2725
                      IAV=IAV+IN(J)
. ) . (.
27.1
                 100 CONTINUE
                      MCELLI=NCELLZ+1
ويرون
2364
                      HE ZUN JELINPTS
24 30
                      IF (J.LE.NSTUP) TAV=TAV+TARS(IN(J+NCELL2))
                   IF (J.CT. NCELL1) IAV=1AV-IAUS(IN(J-HCELL1))
42.1
2002
                      ICF=IAV-IABS(IN(J))
                      It (ILt. iw. u) ICF=1
25.3
                      ItUT(J)>(IN(J)*NC:LL)/ICF
L) 24
                 LUN CONTINUE
2534
                      1601(0142)=18(0142)
6326
2531
                      1601(N194)=18(N194)
                      1.01(0195)=15(0195)
25. u
                      11U1 (N140) - IN (N140)
25,54
                      RETURN
. > +0
. 141
                      t fel:
```

SUBROUTINE DFT

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
DFT	LTI-2	201
DFTFØ	LTI-2	234
DFTRF	LTI-2	233
DFTNCL	LTI-2S	None

2. PURPOSE:

This subroutine computes the finite discrete Fourier transform of a sequence of $\delta\text{-functions.}$

3. INPUT PARAMETERS:

Name	<u>0/R</u>	Ţ	Description
SIMFØ	0	F	Center frequency of discrete output spectrum (DFTFØ only)
FI	R	F	Frequency increment between samples of the output spectrum
FEXT	R	F	Width of output spectrum
NIMP	R	I	Number of δ -functions to be transformed
IDMP	R	I	Diagnostic data dump parameter = 0; no diagnostic data = 1; dump internal parameters: PS, DELPS,
FØ	0	F	Center frequency of discrete output spectrum (DFTRF only)
INORM	R	I	Normalization Flag = 0; $f_N = TI$ = 1; $f_N = 1.0/NIMP$ = 2; $f_N = TI$ = 3; $f_N = 1.0/NIMP$ = 4; $f_N = 1.0$

Name	<u>O/R</u>	$\underline{\mathbf{T}}$	Description
TI	0	F	Time increment between simulated wave- form samples. Used in this subroutine for normalization only (required only if INORM = 0 or 2)
DIN	R	F	Array containing the parameters of the δ -functions. The specification for the Jth δ -function is the following: DIN(1,J) = phase angle DIN(2,J) = time of occurrence DIN(3,J) = amplitude

4. CALLING SEQUENCES:

Video spectrum

CALL DFT (X,Y)

Where:

X contains the Output Waveform - R

Y contains the Output Waveform - I

The range of the independent variable, f, used in computing the spectrum is:

$$-\frac{\text{FEXT}}{2} \le f < \frac{\text{FEXT}}{2}$$

IF spectrum

CALL DFTFØ (X,Y)

Where:

X contains the Output Waveform - R

Y contains the Output Waveform - I

The range of the independent variable, f, used in computing the spectrum is:

$$SIMF\emptyset - \frac{FEXT}{2} \le f < SIMF\emptyset + \frac{FEXT}{2}$$

RF spectrum

CALL DFTRF (X,Y)

where:

X contains the Output Waveform - R

Y contains the Output Waveform - I

The range of the independent variable, f, used in computing the spectrum is:

$$F\emptyset - \frac{FEXT}{2} \le f < F\emptyset + \frac{FEXT}{2}$$

Transform additional sample

CALL DFTNCL (X,Y)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

X contains the Output Waveform - R

Y contains the Output Waveform - I

The computed spectrum is added to the spectrum contained in arrays X and Y. The range of the independent variable is determined by the previous execution of DFT, DFTFØ, or DFTRF.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. This subroutine is quite time consuming and therefore should be used only when necessary. For most applications the AFFT subroutine which uses the Fast Fourier Transform algorithm should be used. The execution time for this subroutine can be estimated using the following expression

$$\frac{\text{FEXT}}{\text{FI}}$$
 x NIMP x 50 μ S

- b. This subroutine is used normally in conjunction with other subroutines such as PHDEC and CGEN.
- c. The output spectrum has a center frequency of zero, i.e. it is the low pass equivalent.
- d. Flow Chart: Page 9-142
- e. Cross Reference Table: Page 9-226
- f. DFT lets user generate 100 delays to be considered.

6. THEORY OF OPERATION

The Fourier transform of a sequence of samples represented by S-functions is given by the following expression:

$$S(f) = F_N \int_{-\infty}^{\infty} \left[\sum_{m=1}^{NIMP} a(m) e^{j\emptyset(m)} \delta(t-t_{(m)}) \right] e^{-j2\pi ft} dt$$

where: F_N is the normalization factor determined by the flag INORM.

flag INORM.

Interchanging the order of integration and summation the following result is obtained:

$$S(f) = F_N \sum_{m=1}^{NIMP} a_{(m)} e^{j\emptyset(m)} e^{-j2\pi ft(m)}$$

If only K equally spaced samples of S(f) are computed, the following expression results:

the following expression results:
$$S_{k} = S_{*}(f) \begin{vmatrix} = F_{N} \sum_{m=1}^{NIMP} \\ f_{=k}F_{1}+f_{0} \end{vmatrix} = a(m) e^{j\emptyset(m)} e^{-j2\pi kF_{1}f(m)}$$

where: $K = \frac{FEXT}{FI}$ and f_0 is defined in the following manner for each module name:

DFT:
$$f_o = -\frac{FEXT}{2}$$

DFTFØ:
$$f_O = SIMFØ - \frac{FEXT}{2}$$

DFTRF:
$$f_O = F\emptyset - \frac{FEXT}{2}$$

```
4-28
3041
                   SUCHOULING DET(X,Y)
                   LLMMLN/BLK1/ EK1(200) . DIN(3.100)
3044
                   EGGIVALENCE (SIMFO, BK1(8)) . (F1. BK1(11)) . (FEXT, UK1(4)),
                               (NIMP+8K1(200)), (10MP+6K1(21)), (FU+FK1(3))
3100
                   * , (INLKM , EKI(4)), ( Ti , BKI(iz))
5714
                   DIMERSION X(1) + Y(1)
1162
3/03
                   DATA N193,N194,N195,P12,D1/-3,-2,-1,6.231253,2.77777781-03/
                                                                                         1650
                    FULNI-U.U
1104
                    66T6 10
310)
3110
                   ENIKY DETEN(X.Y)
3107
3/140
                  FLENT=SIMFO
                   61 10 10
3100
3710
3711
                  ENTRY LETRE (X.Y)
```

0(/11//5	INPUT L	LUTING	AUTUFLOW CHART SET - FWU/SCL	KAUSIM
LAND IEL	****		CLNIENTS	4-280
2612		+CeNT=+u		
د71ء	L		•	
3/14	10	LUNTINU		
5715		MRTS = IFIX(FEXT / FI)		
٥/١٥		NPTS2= NPTSZ.		
2714		NP35= 2*NP352		
2115		be bu desphirts		
3/14		X(J)=0.0		
2/20		Y(J)=0.6		
3124	70	Cutellteur		
5722		X(N143)=BUGE(NPTS)		
2712		X(1444)=-F1*FEUAT(NPTS2)		
3/44		X(n) 45)=r1		
31.5		Y(N.45)=X(N145)		
31.6		Y (i+1 4+) = X (N144)		
3121		Y (M145)=X (M145)		
3720	L			
3129		CNIKY DEINCLEX.Y)		
3750		if(iUMF) 00,00,55		
27.1	55	CLNIINUE		
3132		WKI[c(6,1607) ((DIN(K,J),K=1	,3),J=1,N1MF)	
5/3.	1007	rUMMAT(1H +6E15.5)		
3134	50	CUNTINUE		
2725		XN=[]		
3/36		IF (INURM.Ly.1.UK.INURM.Ey.3) XN=1-0/FLUAT(N]MP)	
3737		IF(INUKM.E4.4) XN=1.0		
3130		DC 200 J=1.NIMP		
3734		NX*(L,E)N1U=A		

3/40

1=U1N(2+J)

		7000	
1	LFr: 1 * 4	4-29	
	10205±1	•	
3844	K=10 TSL+1	ì	i
143	$\kappa \omega{\kappa} \kappa \approx 1$		
2840	L		;
J741	e) (callinus		:
574.	Fue (Phraid) (Fn1)*F12		
2144	CLEPO=(DELPH=AINT(LEEPH))*PIZ		
J116	しとこ しにともとりません		3 i
2011	UN- Dim(PD)*A		1
20.2	metricl-cl24reafil		
31: 1	nuture offetouthod		
5759	Introduce of the TC 70	2196	
2111	METEROPIC CERES PLECES PRESPRIME		
210 a	ACCA COMMAICS OF ESCAPELATIONS OF COLPMESCAPELATIONS OF MITS-Sellings (MIMPE		l
5194	~*,110)		l
2 () .	Postal Pape		1
2159	we will be selected TSP		ŀ
2100	x (n) = x (n) + C5		7
2106	Y(r)=Y(r)+U+		I
216.	1cmr=C2		I
3100	Complete the contract of the c		ı
10.	STABLE ALL TEMPRASTILL		1
. 100	1 = 1 +1,00 L		1
. 1.00	man Contanta		
J. 1	ι		1
	Interesting and the TC 200		

•

,

IMPLI LISTING AUTUFLEW CHART SET - FWLZSCL RAUSIN (1/11/15 4-294 CUNTENTS CANDO 57 fu K=NF15c 2114 KULL=-1 PH=PH-LILLEN 311c DELPH=-DELFH 3775 3/14 or It 71 511. 200 CONTINCE 11, 2430 1+ (11 80-21 20, 15, 20 3/11 75 CONTINUE .11. WEITE (0,1002) (A(M),Y(M), M=1,N(TS) 31.4 TOUR FURMATION GEROSS 116 LU CENTINUE , 1. KE TUKI. 1800 FNL , . . .

.

SUBROUTINE DIGFIL

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
DIGFIL	LTI-4	461
DIGFNC	LTI-4	462
ECMEL	LTI-4	None

2. PURPOSE:

This subroutine is used to simulate a multiple section digital filter.

3. INPUT PARAMETERS:

Name	<u>0/R</u>	T	Description
NP	R	I	Number of 2-delay sections
SF	R	F	Scale factor
FB	0	F	Array containing the feedback coefficients. The coefficients for the Kth section are the following: FB(1,K) = 1-delay feedback coef. FB(2,K) = 2-delay feedback coef.
FF	0	F	Array containing the feed-forward coefficients. The coefficients for the Kth section are the following: FF(1,K) = 0-delay feed-forward coef. FF(2,K) = 1-delay feed-forward coef.

4. CALLING SEQUENCES:

CALL DIGFIL (X,Y)

Where:

X contains the Input Waveform - R
Y contains the Input Waveform - I
X contains the Output Waveform - R
Y contains the Output Waveform - I

The storage register arrays (XM and YM) are cleared before execution begins.

CALL DIGFNC (X,Y)

Where:

X contains the Input Waveform - R
Y contains the Input Waveform - I
X contains the Output Waveform - R
Y contains the Output Waveform - I

The storage register arrays (XM and YM) are not cleared before execution begins.

CALL ECMFL (X,Y)

Where:

X contains the Input Waveform sample - R Y contains the Input Waveform sample - I X contains the Output Waveform sample - R Y contains the Output Waveform sample - I

One complex sample processed for each execution of the module.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. Flow Chart: Page 9-101

b. Cross Reference Table: Page 9-221

6. THEORY OF OPERATION

The block diagram of one section of the digital filter simulated by this module is shown in Figure DIGFIL-1. The Z-plane transfer function for this section is given by the following expression:

$$T_{K}(Z) = FF(1,K) \frac{Z^{2} + \frac{FF(2,K)}{FF(1,K)}Z + \frac{1}{FF(1,K)}}{Z^{2} - FB(1,K)Z - FB(2,K)}$$

The Z-plane transfer function for the complete filter is given by the following expression:

$$T(Z) = SF$$

$$\prod_{K=1}^{K=NP} T_K(Z)$$

Figure DIGFIL-1 BLOCK DIAGRAM OF DIGFIL/DIGFNC

2044	SUBEGUTINE DIGFIL(X.Y)
2045	CUMMUN/bLK1/ rK1(200),FR(2,25),FF(2,25)
2040	LAUIVALENCE (BK1(194), NP) . (BK1(74), SF)
2041	VAIN NIMALA
2046	D1MENSION X(1),Y(1),XM(3,25),YM(3,25)
2044	OC 100 J=1,25
2700	UU 100 K=1.3
2701	XM(K,J)=0.0
102	YM(K,J)=0.0
2703	100 CENTINUE
2104	ENTRY DIDENCIX,Y)
2105	N= 3(OL(X(N193))
2700	06 1 0 150
2101	ENTRY ELMPL(X.Y)
2100	G_{ij}
2709	150 (na 200 J=1.N
.710	λλ=X(J)
1711	YY: Y(1)
2712	14. 300 K=1.NP
2715	XM(1,4K)=XM(2,4K)+F8(1,4K)+XM(3,4K)+F6(2,4K)+XX
2714	YM(1,K)=YM(2,K)+FB(1,K1+YM(3,K1+FE(2,K)+YY
(71)	XX=XM(1+K)*FF(1+K)+XM(2+K)*FF(2+K)+XM(3+K)
2116	xy=ym(1,K)*FF(1,K)+ym(2,K)*FF(2,K)+Ym(3,K)
2/1/	XM (4 +K) = XM (2 +K)
elio	XM(2+K)=XM(1+K)
-114	YM()+N)*YM(z+K)
21.0	YM(Z+K)~YM(1+K)
2121	SUU CENTINUE
21.	A(J)=XXX+UF
27.5	Y(J)=YY*5F
.7	LOO CONTINUE
2747	RETURN
2120	LIBU

SUBROUTINE DIGFSF

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
DIGFSF	LTI-4	463
ECMFSU	LTI-4	None
ECMFSF	LTI-4	None

2. PURPOSE:

This subroutine is used to simulate a digital filter based on the frequency sampling design concept.

3. <u>INPUT PARAMETERS</u>:

4. CALLING SEQUENCES:

Process a waveform

CALL DIGFSF (X,Y)

Where: X contains the Input Waveform - R

Y contains the Input Waveform - I X contains the Output Waveform - R

Y contains the Output Waveform - I

The storage register arrays (S and PF) are cleared before execution begins.

Set up for use by ECM module

CALL ECMFSU (X,Y)

Where: X contains the Input Waveform sample - R

Y contains the Input Waveform sample - I

X contains the Output Waveform sample - R

Y contains the Output Waveform sample - I

The storage register arrays (S and PF)

are cleared and coefficients are

initialized.

Process 1 sample (called by ECM module)

CALL ECMFSF (X,Y)

Where: X contains the Input Waveform sample - R

Y contains the Input Waveform sample - I

X contains the Output Waveform sample - R

Y contains the Output Waveform sample - I

The storage register arrays (S and PF) are not cleared before execution begins.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. This subroutine is structured to simulate a low pass digital filter only.

b. References:

- C. M. Rader and B. Gold: "Digital Filter Design Techniques in the Frequency Domain", Proc. IEEE, Vol. 55, pp 149-171, Feb. 1967.
- L. R. Rabiner, B. Gold, and C. A. McGonegal:
 "An Approach to the Approximation Problem for
 Nonrecursive Digital Filters", <u>IEEE Trans. Audio</u>
 <u>Electroacoust.</u>, Vol. AU-18, pp 83-106, June 1970.
- L. R. Rabiner and B. Gold: Theory and Application of Digital Signal Processing, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1975, pp 105-123.
- c. Flow Chart: Page 9-107
- d. Cross Reference Table: Page 9-222.

6. THEORY OF OPERATION

The basic concept of this filter design technique is as follows. A comb filter is used to synthesize N zeros around a circle of radius R in the Z-plane. The banks of parallel resonators are placed in cascade with the comb filter. The resonators are chosen such that once the desired passband region their poles exactly cancel the zeros. The weight applied to the resonators are samples of the desired frequency domain transfer function.

The block diagram of the digital filter simulated by the subroutine is shown in Figure DIGFSF-1. Since the phases at resonance of the consecutive lesonators differ by , a phase adjustment is inserted after each resonator. The location of the zeros synthesized by the comb filter are shown in Figure DIGFSF-2. The block diagram of a typical complex resonator is shown in Figure DIGFSF-3.

Figure DIGFSF-1 BLOCK DIAGRAM OF DIGFSF

Figure DIGFSF-2 COMBINATION FILTER ZERO LOCATIONS IN THE Z-PLANE

Figure DIGFSF-3 BLOCK DIAGRAM OF A COMPLEX RESONATOR

	4-40	
5	SCORECE MAINTEN (X+Y) 7-10	
	CLAMMINUTER IN VARIOUS PESAMISONS	
	COMMISSION (VARCISTS, FADIUS) , (VARCIST), man),	
	WARRINGTO NOTE 1	
	COMPLEX FORMARE CONTACTOR (1100) - 2 (100)	
1	COMPLEX SPANNET + EMPLYER LAND (Unit + Unit)	
	Lametonate Allegarie	
,	(AIA 10497-10411/0000021852/	
	CATA TO THE CONTRACT OF THE CO	
1		
	A C 10 (20)	
	ENTRY LEMPSERANT	
	(e) 1 : + i	
	Continue	
فياد الماري	ing well while **	
(Alike Later technique	
	11 - 1 = + 4 - + 4 - 4 - 4	
• • •	: _u_(< 1.4	
* **	all notelessam	
4 1 41	control * trong ()	

ı.

•

4-40

uE/41/75	INPUT LISTING	AUTOFLOW CHART SET - FWO/SCL	RADS1M 4- 40
CARU NU	****	CONTENTS	·
284Z	FCULFIR)=CMPLX(CUSII	PH)+SIN(PH))*RADIUS	
2843	FSAM(K)=FSAM(K)*DtL	sc	
2844	DELSC=-DELSC		
2845	S(K)=LZERD		
25.40	100 CONTINUE		
2547	MAC=NU+ Z+ I		
2840	UU 105 K=1.NUC		
2844	FF (K)=CZEKU		
2350	100 CUNTINUE		
2001	UELSC=NAU1US##NUFZ		
2854	1KF=1		
2853	I > F = 1		
2654	ENTRY ECMESE (X+Y)		
2825	UL ZLU K=1.NPTS		
2000	1KP=1KP+1		
ا د ناد	SM1=CMFLX(X(K)+Y(K	(1)	
2654	FF {15P}=SM1*UELSC		
_ 265₩	LM=SMI-rr(1kr)		
2601	126=18B		
Ztal	IF (IIP of Golder) IK	P=U	
يان د	SMUTEUZERU		
2863	OU SCO METENSAM		
2004	5MLT=5MUT+5(M)*F5	AM(M)	
26.05	S(M)=S(M)*FCUEF(M	13+ZM	
25.00	JOO CENTINUE		
2.01	A(K)=KLAL(SMUT)*X	KN1	
بران ا مان ا	Y IN TEATMAGESMUT P	▶ xN1	
ين بي	, CO CENTINGE		
-			

ha BUEN

2016

4-40a

SUBROUTINE DIGTFL

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

DIGTFL NL-2 422,423

2. PURPOSE:

This subroutine is used to simulate a digital transversal filter.

3. INPUT PARAMETERS:

O/R T Description Name NTAPS R Τ Number of taps Array containing the tap specifi-ITAP Ι R cations. The coefficient for the Kth tap are the following: ITAP(1.K) = numerator of tap gainITAP(2,K) = denominator of tap gainITAP(3,K) = delay in samplingincrements

4. CALLING SEQUENCES:

CALL DIGTFL(IN, IOUT)

Where:

IN contains the Input Waveform

IOUT contains the Output Waveform

5 RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. This device is typically used as a digital phase decoder.
- b. Flow Chart: Page 9-95
- c. Cross Reference Table: Page 9-220

6. THEORY OF OPERATION

The block diagram of the digital transversal filter simulated by this module is shown in Figure DIGTFL-1. All calculations performed by this module are in integer format.

Figure DIGTFL-1 BLOCK DIAGRAM OF DIGTFL

2542	SUBROUTINE DIGITALINGIOUT)	4-44
2545	CLMMLN/bLK1/bK1(200)+ITAP(3+1GU)	
2544	DIMENSION IN(1),1CUT(1)	
a'bre's	EULIVALENCE (ERITIOI), NTAPS)	
2546	UAIA N173+N174+N175+N196/-3+2+-1+0/	
2541	WSTOP=IN(N143)	
2560	NSTUP=NSTUP-ITAP(3,NTAPS)	
2049	UL 100 J=1.NSTUP	
255u	1 A = U	
25.51	ы, 200 K=1,NTAPS	

00/11/15	INPUT EX	STING AUTOFLUW CHART SET ~ FWU/SCL	RAUSIM
CARD NO	****	CONTENTS	****
6554		IA=1A+ (IIAP(1+K)+ IN(J+ITAP(3+K))) / ITAP(2+K)	
2993	200	CCNT I NUE	
2954		IEUT(J)=IA	
خ ۇلا ي	100	CENTINUE	
2550		1cut(N193)=NSTGP	
2557		1UUT (N1941=1N(N194)	
درد ،		ILUI (N145)=IN(N145)	
2959		KE TUKN	
2560		ENO	

SUBROUTINE ECM

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
ECM	SOU-1S	512

2. PURPOSE:

This subroutine simulates a noise modulation jammer.

3. INPUT PARAMETERS:

Name	O/R	<u>T</u>	Description
TIME	R	F	Elapsed time since beginning of simulation
JRNG Ø	0	F	True jammer range corresponding to TIME = 0.0
JRSIM	R	F	Jammer range to be used in computing the starting time of the jammer.
JMAZ	R	F	Jammer azimuth angle
JHGT	0	F	Jammer height above ground
JERP	R	F	Jammer effective radiated power
JFMBW	0	F	Jammer swept bandwidth
JPW	0	F	Jammer on time for pulsed jammers
JFØ	0	F	Jammer center frequency offset from radar center frequency
JVEL	0	F	Jammer radial velocity with respect to the radar site
JPER 0 D	0	F	Jammer pulse repetition interval for pulsed jammer

Name	O/R	Ţ	Description
N2	R	I	2**N2 = total number of signal storage array elements available
NDFZ	R	I	Number of zeros to be synthe- sized by the frequency sampling digital filter (DIGFSF).

In addition to the above parameters the characteristics of the jammer spectrum must be specified via the parameters of DIGFSF. These parameters are also members of NLS12.

4. CALLING SEQUENCES:

CALL ECM (X, Y)

Where: X contains the Input Waveform - R
Y contains the Input Waveform - I
X contains the Output Waveform - R
Y contains the Output Waveform - I

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The digital filter routine DIGFSF is used to specify the spectral characteristics of the jammer.
- b. Flow Chart: Page 9-104
- c. Cross Reference Table: Page 9-221

6. THEORY OF OPERATION

This module has four modes of operation:

(1) Spot noise/Barrage noise

JPW = 0.0

(2) Swept noise (single sweep)

JFMBW \neq 0.0 JPW \neq 0.0 JPEROD = 0.0 (3) Swept noise (repeating sweep)

JFMBW ≠ 0.0 JPW ≠ 0.0 JPEROD = JPW

(4) Pulsed noise

JPW ≠ 0.0 JPEROD > JPW

Dependeing on the range and azimuth positioning of the jammer with respect to the target either a self screening or a standoff jammer can be simulated.

A block diagram of this module is shown in figure ECM-1. The output of the ECM simulation is summed with the data in arrays X and Y.

Figure ECM-1 BLOCK DIAGRAM OF ECM

CARD MIL	**** Cuhithry	****
. 147	SULFLUSING CEMESTS	
27-6	COMMUNICARIA NELLEGISTA	
. 144	CLMMUNYDERNNIN UMYETTY	
. ** 1	eculvacione tenti tota TIME . For tonifility unless to	
	· GIFTETTATE DESIRED : ELECTION OFFI	
. 15.	 qualify and 3 a toki(ffs) dut 6 be 	
. 10.0	· CATCLEGE JEMEN F. CONTILITIES JEW F.	
	• 4c+ststely JFV 1 •	
•	* EFFERS'OF, DVEL F . EPFERS'TE, MERKELE	
	*	
. 1 -1	Cambridge to Agalovill	
, 1 .	1414 MIA 1441AN 141A22-41-51-11-11-1-51-51-51-51-51-51-51-51-51-	
, 4 - 4	FEAU JAMANA PARA BLOTUME NAME HIS HELH LAND OF	
, 1 m	Krac Jeccelle, Killer J & Tak Te JRMileu	
. 111	NFS, inceparately	
	one texpresses	
. P.	U: IANI- (J) NIMAUY(LATIM) IVU-IAMONA	
. 6. 4	11:110	
. •	JANIS JANIS + 13Mg + JYEL	
. 1. 1	and on recover and sections	
	torestation, New Manual Value (1997)	
. 1	GEOGRAFIA CHASHAZAR + CE 1	
.104	n constant	
	15 - 10 ₁ 0 -	
/ 1	Control of Mt Listan water 1	
	The large of pNLF a	
***	An-MANELL I LALL ILME DE CONYXXI	
. 114	too collings	
	NITE	
	Net La	
, , , , ,	10 Lynn, No. 22 to 200	
11.	1605 t	
	US MANATE	
	e o he ha de c	
	tris ka su su	
.,,	to the sex	

This model is incomplete since the TWT does not produce saturated noise and the output of this model is not properly scaled for range effects. This will be accomplished in the near future.

08/14/75	INFUL LIST	146	AUTUFLUM CHAFT SCT - FWC/SCE	
CARD NO	***		CUNTENTS	4-50
2754	LUU Jo	G=IFIX(JSTART/OLLT)		
2165	i	F(J8C.11.1) J6G=1		
2765	~	ST=1F1X(JPW/DELTI+JBG		
2161	j	FIJST.GT.NITE) JST=NTTL		
.718	t	STRT=JFU-JFM6W#0+5		
2164	(HIKP4=JFM6W/JPW+0+5		
2140	4	FIJPERUDIEW.U.U. GETO 300		
2191	1	***I=1		
2792	;	IF CUPERED - GT - JPH) CUTE 246		
2743	•	ucturr= 1		
£74a	•	a It 500		
2795	640 ·	JC IC FF=1F1X((JPEFC0)-JFW)\be	LT)+1	
2140	, O().	IF (NETS-OL-NTTL) GCTU 316		
2797	•	(=NP10+1		
2195	1	on our wakemill		
2799		\(\subset = \cdot\)		
2010		Y(J)=0.0		
2611	33.4	CC 141 A 140 E		
e = 0 .		X(M192)=pEEE(MTEE)		
ز بان ع		Y(W147)=X{W19}}		
£ 5 C 4	-10	I = C = O		
20.00		(1 top J-deli, JST		
4, 5 (.3		AF=FFANL(C)		
		CARE LUMBUR (ARAYR)		
4 4 4 7 1		PH= Indirl+UhlaP2*T1*T		
6.91.00		rr - Am. httrpl-v)#F12		
		(=tru(+4)		
4.5		5 1h(+#)		
• • •		A(d) = A(u) + U + A · ~ U + Y !		
		Y (41 × Y (41 + 6 + Y) + 5 + 3 +		
		1-1<(())		
	100	A C. Lab Albatic		
		THE COURT OF STREET		
		acces of the first		
- / Å		Jr (w. Caccled III.) relief		
2019		ant-actementally attents		
<i>()</i>				
, c. k		the le .1t		

c * ...

4 . . 4

SUBROUTINE FGENXY

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
FGENXY	SOU-1 or LTI-3	420
FGENMP	SOU-1 or LTI-3	421

2. PURPOSE:

This subroutine is used to simulate the radar waveform generator. In general, the waveform generator subsystem in a radar drives the power amplifier.

3. INPUT PARAMETERS

a. MODE #1; single pulse, internal modulation

<u>)/R</u>	$\underline{\mathbf{T}}$	<u>Description</u>
R	F	Simulation sampling rate
R	F	Center frequency of output wave- form
R	I	Normalization flag
R	F	Time increment between output waveform samples
R	I	Set = 0 for this mode
0	F	Linear FM bandwidth
R	I	Set = 0 for this mode
0	F	Rise Time
0	F	Fall Time
0	F	Start time of the output waveform
R	F	Pulsewidth
	R R R R O R O	R F R F R I O F R I O F O F

Name	O/R	<u>T</u>	Description
VPEAK	R	F	Peak output voltage
N2	R	I	Simulation parameter used to specify maximum array length

Figure FGENXY-1(a) shows the relationship between some of the input parameters and the output waveform.

b. MODE #2; single pulse, User modulation function

Name	<u>0/R</u>	<u>T</u>	Description
FS	R	F	Simulation sampling rate
FØ	0	F	Center frequency of output wave- form
INORM	R	I	Normalization flag
TI	R	F	Time increment between output waveform samples
NPWTX	R	I	Number of points in user specified modulation function
WT	R	F	Array containing the user specified modulation function. The specification for the Jth sample of the weighting function is the following: WT(1,J) = Gain WT(2,J) = Time WT(3,J) = Phase angle
NSUBP	R	I	Set = 0 for this mode
FSTART	0	F	Starting frequency at time = TSTART
CHIRP	0	F	Linear FM sweep rate
TSTART	0	F	Start time of the output waveform

Name	O/R	$\underline{\underline{\mathbf{T}}}$	<u>Description</u>
VPEAK	R	F	Peak output voltage
N2	R	I	Simulation parameter used to specify maximum array length

NOTE: Either FO or FSTART & FMBW must be specified.

Figure FGENXY-1(b) shows the relationship between some of the input parameters and the output waveform.

c. MODE #3; phase coded waveform

Name	<u>0/R</u>	<u>T</u>	Description
FS	R	F	Simulation sampling rate
FØ	0	F	Center frequency of output waveform
INOR	1 R	I	Normalization flag
TI	R	F	Time increment between output waveform samples
NPWT	K R	I	Set = 0 for this mode
NSUBI	P R	I	Number of subpulses
SPW			Subpulse width
PCODI	E R	F	Array containing the phase code
SWTI	0	F	Switching time between subpulses
RIST	[M 0	F	Rise time
FALT	M 0	F	Fall time
FSTA	RT 0	F	Starting frequency at time = TSTART
CHIRI	9 0	F	Linear FM sweep rate
TSTAI	RT O	F	Start time of the output waveform

Time O/R T Description

VPEAK R F Peak output waveform

N2 R I Simulation parameter used to specify maximum array length

NOTE: Either FO or FSTART & FMBW must be specified.

Figure FGENXY-1(c) shows the relationship between some of the input parameters and the output waveform.

4. CALLING SEQUENCES:

CALL FGENXY (X,Y)

Where: X contains the Output Waveform - R

Y contains the Output Waveform - I

CALL FGENMP (X,Y)

Where: X contains the Output Waveform - M

Y contains the Output Waveform - P

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The number of waveform samples to be generated must be less than 2**N2 where N2 ≤ 13.
- b. The normalization flag, INORM, is used to indicate whether the output is to be interpreted as a matched filter impulse response or as a frequency generator output waveform.

If INORM = 0, 2 or 4 the output represents a frequency generator output.

If INORM = 1 or 3 the output represents the impulse response of an ideal matched filter and therefore TSTART is set equal to zero and no trailing zeros are added to the output. This procedure is required because the normalization procedure used in the Fourier transform routine is different for waveforms and impulse responses.

c. For Mode #3 the sign of NSUBP indicates whether a polyphase or binary phase code is to be generated.

Figure FGENXY-1a OUTPUT WAVEFORM ENVELOPE - MODE 1

Figure FGENXY-1b OUTPUT WAVEFORM ENVELOPE - MODE 2

Figure FGENXY-1c OUTPUT WAVEFORM ENVELOPE - MODE 3 4-55

If NSUBP is positive the phase is either 0° or 180° with respect to the carrier. If NSUBP is negative the phase between subpulses is determined by linear interpolation.

d. Operation of this module in Mode #3 causes the phase code array (PCODE) to be copies into the storage array XMITPC for later use by the phase decoder routine, PHDEC. In this way the phase decoder is automatically slaved to the phase code of the waveform generator.

e. Abort error codes

- User attempted to specify both a phase code and a complex envelope
- 2, User attempted to specify a complex envelope with less than 4 points
- 3, The time span of the waveform to be generated is greater than the simulation time span, i.e. TI*(2**N2).
- 104, An error occurred during execution of the weighting function routine, WEITCP or WEITMP.
- f. Flow Chart: Page 9-72
- g. Cross Reference Table: Page 9-217.

6. THEORY OF OPERATION

This simulation is used to simulate the master frequency source of a radar system. The basic mechanization equation is given by the following expression:

$$S(t) = a(t) \exp j(2\pi f_0 t + \theta(t))$$

The envelope a(t) and the phase modulation term $\theta(t)$ are determined either directly by the user (MODE #2) or indirectly through parameters (MODE #1 or #2).

This module can also handle a staggered PRF by specifying NPRIS and PRI(J) in the system module (301) namelist. NPRIS is the number of pulse repetitions and must be \leq 11. PRI(J) are the intervals in seconds of the pulses. For example, under \$NL301 might be included "..., NPRIS = 4, PRI = 1.0, 0.9, 1.1, 1.0\$."

```
SUBRUUTINE FOENXY (X.Y)
2074
2075
                    LLMMLN/6LK1/ VAR(200), WT(3,100)
                    CUMMON/PHOLUE/ XMITFC13021
2010
                    DIMENSION POUDE(300).X(1).Y(1)
2077
                     EQUIVALENCE (#T(1.1) .PCCBE(1))
207€
                     EQUIVALENCE IVARY 2) .FS 1 , (VARL 6) , FL
2074
                                 (VAR ( 4), INCRM
4020
                                (VAR( 121 +TI
                                                ) . (YARE 37) . NPWT ).
2001
                                (VAR(38) . ORIG ) . (VAR( 42) . CHIFF ) .
2001
                                (VART 43) . FMRW 1 . (VART 44) .NEWTX 1.
41163
                                (VARC 45) + SPW ) + (VARC 40) + NSUBP )+
2004
                                (VARL 97) , SWTIM ) , (VARL 98) , EISTIMI,
2003
                                (VAR. 94) , FALTIMI , (VAR. 190) . ISTAKT).
2650
                                (VART 41) . FSTART) . (VART 40) . PW
2607
```

4-57

المساور المراسطين برا

المستحدد وو

ct/11/35	AMPUT LI:	STEIGE AUTOFLUM CHART SET - FHE/SCL	RAUSIM
LAKU NU	, ***	CCINTENTS	H-57a
4008	•	(VAR(124) . VPEAR) . (VAR(1) . N2)	
2029		UNTA N143.N144.N145.OTR/-3,-2,-1,1.7453242c-02/	
2046	ı	ALT XCTMC/5.41116-03/-61316-3/2014/74-3/2014/74-3/2014/74-3/2014/74-3/2014/74-3/2014/74-3/2014/74-3/2014/74-3/	
<671		11YFc=1	
دياب		GUTE 100	
2043		ENTRY PGENMP(X,Y)	
265%		ATYPE = _	
21145	100	IPHM=U	
26 40		trinshorousou) Gett 110	
2047		NSUBF#-NSUBF	
2646		4FMF4	
2074	140	1HILMINP.CL.C.O) FSTART#FC	
2.00		NTTL=2**142	
2101		IF (NEUEF.EC.O) GOTE 200	
21.02		AF (NEWTX-NU-OF CALL ABORT(1)	
2103		100FP#PCGD2 ()}	
£404		XMJTFL (JULI)=BLCLINSURP)	
6.405		XMITHU(SCZ)=SPW	
2100		de sou y≈l•nsieH	
2467		XMATPC(J)=FCUHC(J)	
2400	bod	CCN1 INUE	
2104		OF TE ODO	
5110	it	CLMIINUE	
٤١١١		IF (MPWIX. Lugu) GCTC 300	
تقلقم		1F(NPWTX-LT.4) CALL ABORTEZ)	
4113		LPW=WT(_sNFwTX)	
c11+		F1571M=74	
2115		FACTIM=T1	

CLTU 460

H-57a

2116		SPW=PW+(KISIIM+FALTIM)#G.5	
2119		ir(CHIKP•E@•U•O) CHIRF≈FMBW/PW	4-58
2120		FSTART=FL-CHIRP+(PW+RISTIM)+G.5	
2121	400	CONTINUE	
2122		SUBPH=0.0	
2123		NSUBF=1	
2124		SWIIM=RISIIM+FALTIM	
22.75	ουυ	∪= £ X ₹ Z	
2126		IF (INGKK-LW-I-UK-INGKM-EW-3) GUTE 051	
21.27		N5]K]=1F1X(15fART#FS)	
2128		ISTART=11*FLGAT(NSTRT)	
2129		NSIKT=NSIKT+4	
2.30		tio 650 J=1,NSTKT	
2431		V.J=(L)X	
2132		Y{J}=u•u	
2133	650	CUNTINUE	
2134	opi	NS=1FIX(FLCAT(NSUBP)*SPW*FS)+NSTRT	
4425		IF (NS.UI.NTTL) CALL ABORT(3)	
2130		TIME=U.U	
215/		κ = 1	
∠1 58		J=NSIAI	
2139	*		
2140	****	LEADING EDGE OF XMITTED WAVEFURM *****	
2141	•		
2142		1KF0=0	
2143		ASLCPE=VPEAK/KISTIM	
2144		IF(IPHM.cu.o) ASLCPE=ASLCPE+CUS(SUbPH+UTK)	
6445		rsturt=6.0	

UE/11/75	INFUT LIS	TING	AUTUFLUM CHART SE	1 - FWU/SCL	RAUSIM	
LARD NO	****		CENTENTS		4-580	****~
21+6		TUK16=0.0				
2147		PURIG=SULPH				
21+5		ALK16=0.0				
2144		BREAK=KISTIM				
2156	760	J=J+1				
2151		11Mc=TIML+TI				
2152	£ (H)	IFITIME-GE-BREAKT GETE 400				
د 44 5		DIIM=IIME-TOKIG				
2154		PH=(FSTAKT+CHIRP*U.5*TIME)	* TIME			
2155		if (ifHM.Ew.i) FH=PH+(PERIG	PSLCFE*DTIMI*XCIFC			
Ž156		AMPL=ALRIG + ASLUPE*DIIM				
2157	ξου	1+(1114+6.60.1) GUTU 870				
2158		X (J) = AMPL				
2154		Y(J)=PH*360.0				
2160		6LTL 706				
2404	∵7 ∪	rmas=(Ph-Fluat(IFIX(PH)))*i	212			
2162		X(J)=AMPL*CUS(PHAS)				
21 03		YIJ)=AMPL+SIN(PHAS)				
2104		CETU 700				
2105	400	iteG=ikeU+i				
2200		TURIG=ORE4K				
.167		JE(1860-62-2) GUTO 410				
2100		1811KLG.LL.4) GC1C 1000				
2164		16(1666.46.3) GETO 920		K. Appelance		
2110		1KEG=1KEC-2		I .		
2:71	•					
. 172	****	TEP OF SUBPOLSE #1	***			
2175	•					
2174	~10	EREAK=+KEAK+SPW-SWTIM				

.

4

(

```
4-59
                      ruttre=0.0
....
2276
                      FLEID-SULFA
                      #SLUPE=0.6
6.17
.17-
                      ALKIL = VPLAK
                      IF (IPHM. CH. . U. ) AUF ICE VPC AK*CUS (SUBFH*DTR)
c174
                      celt teo
Litt
21.1
41.0
                        SWATCH RECIEN
2155
               920 K#K+1
41:4
                      IF IN . C. T. M. SUMPI GITE 450
41.5
                      EFEAR=EFEAR+SWTIM
2160
21.7
                      SUBPHERCOURTKI
                      PSECIE (SCEEN - PUPIG)/SWTIM
2100
                      IF (IFHM.LQ.O) ASLOPE=(VPEAK*CLS(SUBPH*DTR)-AURIG)/SWTIM
2107
                     atte aco
2240
2141
                        THAILING CUGE OF XMITTED WAVEFORM
2142
2143
               950 SHEAK#SHEAK+FALTIM
2194
                      ALLEFE = - ALF ALFALTIM
2245
                     1766=3
2446
2147
                      6676 E60
               ICUL IFIINCKM.LU.I.CR.INGRM.EU.31 GUTU 1501
2146
2144
                      DC 1500 K=J.NTTE
                      X(K)=0.0
2200
                      Y(K)=0.0
£2(·1
226e
               1500 LENTINEE
2203
                      GLTC 150.
```

Į

input Li	57 Linu	AUTEFLOW CHART SET - FWO/SCL	RADSIM
****		CENTENTS	H-590 ****
1501	N111 = J = 1		
150.	A(.4145)=500E(NTTE)		
	X(1:194)=0.0		
	X (14145 (=11		
	Y (%14%) = X (%14%)		
	A(11124)=Y(11124)		
	Y((41.451≈ x(141.451		
	In thermal action of the TURN		
	CF10=15TAN1		
	ter wit shorw tix		
	18 (17) 48 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -		
	in a the or Jacobs with		
	(U, () [M - MK		
	WT(1+J)≃AM*CUS(WT(3+J)*ETR)		
	LaTu*(Lec)TW)aIC*MA=(Lec)TW		
, (-1))	CINTINCI		
	CALL MUSICE(X,Y,11200)		
	FETUEN		
Iran	Cret willmeth. Y. 2 1 cool		
	REALEN		
\$ c - + (+	CALL ACORT(104)		
	FUTUEN		
	ENI-		
	1501 150.	1001 NIT(=J-1 100. A(-145)=000E(NTTE) A(0144)=000 X(0145(=11 Y(0145)=X(0145) Y(0145)=X(0145) Y(0145)=X(0145) If (00013-000) AETUKN CHIOLISTORI OF ACTUAL WI(1-0)=XM+CU2(WI(3-0)+CTE) WI(1-0)=XM+CU2(WI(3-0)+CTE) WI(1-0)=XM+CU2(WI(3-0)+CTE) COO CININCT CALL NCITCH(X+Y+1100) FETUEN 1000 CALL ACONTITO*) FCTOEN	#### 1501 NIT(=U-1 150. A(.195)=500L(NTTL) A(R194)=5.55 X(R195)=11 Y(R195)=X(R195) Y(R195)=X(R195) Y(R195)=X(R195) If (Semia.co.o) & ETHEN CHICALDIANI NOWTHERMIX IF (LIYPE.NE.1) GOTO 1999 GOTO US AND STANDOM WI (1,0)=AM**SIR(MT (3,0)*CTE) WI (1,0)=AM**SIR(MT (3,0)*CTE) WI (1,0)=AM**SIR(MT (3,0)*CTE) COOL OF NINCE CALL MODIC (X,Y,11:00) FEIGH 1999 CALL ACORTICOL GOTO CALL ACORTICOL FOR NINCE CALL ACORTICOL C

SUBROUTINE FILT

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
FILT	LTI-1	407,408

2. PURPOSE:

This subroutine simulates a continuous filter which is defined by an S-domain polynomial transfer function.

3. <u>INPUT PARAMETERS</u>:

Name	<u>0/R</u>	<u>T</u>	Description
NZ	R	I	Number of zeros in the transfer function.
NP	R	I	Number of poles in the transfer function.
SF	R	F	Scale factor.
FZERO	0	F	Array containing the zero specifications. The s-plane location for the Kth zero is given by the following coefficients: FZERO(1,K) = real component
			FZERO(2,K) = imaginary component
FPOLE	0	F	Array containing the pole specifications. The s-plane location for the Kth pole is given by the following coefficients:
			<pre>FPOLE(1,K) = real component</pre>
			FPOLE(2,K) = imaginary component

4. CALLING SEQUENCES:

CALL FILT (X, Y)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

X contains the Output Waveform - R

Y contains the Output Waveform - I

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. A purely imaginary pole may not be specified within the frequency extent of the input waveform. This would cause either zero or an extremely small number to occur in the denominator of the transfer function.

b. Flow Chart: Page 9-55

c. Cross Reference Table: Page 9-215

6. THEORY OF OPERATION

The S-domain transfer function for a general filter can be represented by the ratio of two polynomials as shown in the following expression

$$H(S) = \frac{(S-Z_1)(S-Z_2)(S-Z_3)...(S-Z_{NZ})}{(S-P_1)(S-P_2)(S-P_3)...(S-P_{NP})} \cdot SF$$

In general, H(S) is a complex function of the frequency variable s. The filter output signal $S_0(f)$ can be determined using the following expression

$$S_0(f) = H(f) S_i(F)$$

where $S_1(f)$ is the input signal representation in the frequency domain. The discrete representation of these equations used in the module are the following:

$$H(J) = SF \cdot \frac{\prod_{K=1}^{K=NZ} \{jFREQ(J) - [FZER\Theta(1,K) + jFZERO(2,K)]\}}{\prod_{K=1}^{K=NP} \{jFREQ(J) - [FP\ThetaLE(1,K) + jFP\ThetaLE(2,K)]\}}$$

$$X(J)+j Y(J) = H(J) * [X(J)+j Y(J)]$$

where: FREQ(J) is the frequency associated with the Jth sample

```
SUBROUTINE FILT( X. Y)
1740
                   CUMMUN/6LK1/ 6K1(200),FZER0(2,50),FFOLE(2,50)
1721
                   EQUIVALENCE ( NZ +8K1(72)) . ( NP +8K1(73)). ( SF +8K1(741)
1728
                    DIMENSION X(1). Y(1)
1724
                    DATA N143,N144,N145,N146/-3.-2,-1.0/
1750
                    FREU=X(N194)
1751
                    N = 16CGL(X(N143))
1752
                    DELF = X(N195)
1733
                    IF( SF .EQ. 0. ) SF = 1.0
1734
                    μά 100 J=1•N
1725
                    IF(NZ.EC.0) GO TO 150
1736
                    DU 200 K=1.NZ
1737
                    WD = FREW - FZERG(2.K)
1735
                    A = X(J)
1734
```

4-63

```
00/14/75
                Listed Listing
                                                          AUTUFLUM CHART SET - FWCZSCE RADSIM
                                                                                         4-634
 CARL NO
                                                       CONTENTS
                        \lambda(J) = -A + f \angle ERU(1+K) - Y(J) + WU
   17-0
   11-1
                        Y(J) = A + HL - Y(J) + FZEKU(I,K)
    1742
                    200 CUNTINUL
                    150 IF (NP.EE.U) GL TO 300
    1143
                        UC 250 N≈1.NP
    1144
    1745
                        WU = FREW -FFULE 12,K)
    1140
                        A = XIJ)
                        AA = FPULE(1.K) + FPULE(1.K) + WU + WU
    1/4/
    1740
                        X(J) = (-A + FFLLE(1,K) + Y(J) + WU) / AA
                        Y(3) = (-A * WU - Y(3) * FPOLE(1.K)) / AA
    1144
                    . DU CUNTINUE
    1750
    1751
                    300 X(J) = X(J) + SF
                        Y(J) = Y(J) + SF
    1752
    1163
                        FREW = FREW + DELF
    1754
                    100 CUNTINUE
    17:5
                        KETUKN
    1/50
                        END
```

SUBROUTINE HET

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

HET LTV-4

2. PURPOSE:

This subroutine simulates a single sideband modulator which is used to heterodyne waveforms.

3. INPUT PARAMETERS:

Name O/R T Description

FSHIFT R F Frequency shift to be applied to the input waveform.

4. CALLING SEQUENCE:

CALL HET(X,Y)

where: X contains the Input Waveform - R

Y contains the Input Waveform - I

X contains the Output Waveform - R

Y contains the Output Waveform - I

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA:

a. Flow Chart: Page 9-103

b. Cross Reference Table: Page 9-221

6. THEORY OF OPERATION:

The basic mechanization equation for this module is the following:

$$s'(t) = s(t) \times e^{j FSHIFT \cdot t}$$

02

 $X'(t) + jY'(t) = [X(t)+jY(t)] \cdot [\cos (FSHIFT \cdot t) + j \sin(FSHIFT \cdot t)]$ The block diagram of a SSB modulator is shown in Figure HET-1.

Figure HET-1 BLOCK DIAGRAM OF SSB MODULATOR

. 1. 1	the Full File Ht ((X+Y)	4-646
	(1M(684)& X(1),Y(1)	
. 1. 4	(CPMCH VELKIX VAR (500)	
. 1.0	ENGIVALINGE (VAR. (15). FIHIFT)	
151	N112 N143+N144+N145+N146 N-3++-1+ UN+H18/0+-C3+C5/	
. 1.2	NETS-COUL(XIN1931)	
c1 3	CK = X(N194)	
c1.4	(_L_X(a145)	
21.5	Date69=1.8615	
. 136	Inclas uk*rshifi	
.1.1	THE TAR CHEETAR FLEAT (BETXCIBETA))) +FL	
21.00	C= COS(THCTA)	
2134	:- : IN(THETA)	
_ / 40	TMP=X(J)	
c 1 = 1	A(J) = X(J) * C - Y(J) * S	
214.	Y(J)= TMF+5 + Y(J)+C	
143	CR_ CK +DEL	
27~~	FOO CC44TINDE	
2495	RETURN	
. 1.11	\$ N (

SUBROUTINE HWDET

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
HWDET	NL-1	414,415
FWDET	NL-1	416,417
SQDET	NL-1	418,419
HLIM	NL-1	438,439
IHWDET	NL-1	445,446
IFWDET	NL-1	447,448
ISQDET	NL-1	449,450
IHLIM	NL-1	442,443

2. PURPOSE:

This subroutine simulates a signal detector. Depending on the entry point, a half-wave detector, a full-wave detector, a square-law detector, or a hard limiter is simulated.

3. INPUT PARAMETERS:

NONE

4. CALLING SEQUENCES AND THEORY OF OPERATION

a. Half-Wave Detector

CALL HWDET(XIN, XOUT)

Where: XIN contains the Input Waveform

XOUT contains the Output Waveform

XOUT(J) = XIN(J); if XIN(J) > 0.0

= 0.0 ; otherwise

4-65

b. Full-Wave Detector

CALL FWDET(XIN, XOUT)

Where: XIN contains the Input Waveform

XOUT contains the Output Waveform

XOUT(J) = |XIN(J)|

c. Square-Law Detector

CALL SQDET(XIN, XOUT)

Where: XIN contains the Input Waveform

XOUT contains the Output Waveform

XOUT(J) = XIN(J)*XIN(J)

d. Hard Limiter

CALL HLIM(XIN, XOUT)

Where: XIN contains the Input Waveform

XOUT contains the Output Waveform

XOUT(J) = 1.0; if $XIN(J) \ge 0.0$

= -1.0; if XIN(J) < 0.0

e. Digital Half-Wave Detector

CALL IHWDET(IN, IOUT)

Where: IN contains the Input Waveform

IOUT contains the Output Waveform

IOUT(J) = IOUT(J); if IOUT(J) > 0

= 0 ; otherwise

f. Digital Full-Wave Detector

CALL IFWDET(IN, IOUT)

Where:

IN contains the Input Waveform

IOUT contains the Output Waveform

IOUT(J) = IABS(IN(J))

g. Digital Square-Law Detector

CALL ISQUET(IN, IOUT)

Where:

IN contains the Input Waveform

IOUT contains the Output Waveform

IOUT(J) = IN(J)*IN(J)

h. Digital Hard Limiter

CALL IHLIM(IN, IOUT)

Where:

IN contains the Input Waveform

IOUT contains the Output Waveform

IOUT(J) = 1 ; IN(J) > 0

= 0 ; IN(J) = 0

= 1 ; IN(J) < 0

- 5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
 - a. Flow Chart: Page 9-137
 - b. Cross Reference Table: Page 9-225

```
4-68
```

```
SUBROUTING HABETE XIN. XCUT)
2500
                     DIMENSION XIN(1), XUUT(1), IN(1), IUUT(1)
3561
                     UATA NA43+N144+N145+N146/-3+-2+-1+U/
3502
                     NS = IDEUL(XIN(N1931)
3563
                     LO 20 1=1.NS
3204
                     xcut(1) = xin(1)
3565
                  _0 IF( XLUI(I) .LT. 0.0 ) XOUT(I) = 0.0
 3500
                     66 16 160
3701
 3500
                     INIKY FWEEL XIN. XLUTT
 3334
                      NS = 16000 (XIN(N1431)
 55.40
                      UL 40 1-1,165
 2571
                   40 XCC((1) = ADS(XIN(1))
 ,,7:
                      (L. 16 100
 3573
 3574
                      CHITTY SENETE XIN. XCUT)
 3510
                      NS = IECUL(XIN(N193))
  35 Po
                      Do Co 1=1.00
  .577
                    01) AUU (11) = AP((1)+XIN(1)
  313
                       GC 10 100
  .,14
  5* . W
                       ENTRY BEIMININ, XEUT)
  , 9 € €
                       NU-INCOL(XININIA3))
  30. . .
                       in. on 1=1 +1+5
  55. . 3
                       44 (XIN(1)) 61.62.62
                     . Xtt)(1)=-1.0
   30.0
                       GL IL EG
   ن لان
                     .. ALUT(1)=1.0
                     SU CERNINUL
                    CONTRACTOR STREET
                        ALUIINIVA) = XIN(N194)
    . ...
                        Xala ((0195) = XIN(N195)
    . . . .
                        CLIUPN
    ....
                        CHIEF TEMPETERMETORY
```

6.71179	narot cistna	ACTUALCH CHART SET - PML/SCE	+ # 151M 14-69
CARU ING	****	CUNTENTS	
3746	N2= 14(N143)		
3597	LC 30 1=1,105		
वश्रदेह	1+(1N(1)) >1+31+>?		
3544	51 1601(1)=0		
اناهد	of 10 sc		
shul	or ILUT(al=IN(1)	/	
3602	SU CENTANUE		
داان	(.t Tt 200		
300-	L		
sout	ENTRY TEMOET (IN-1607)		
3000	Now Refuses		
3007	11 to 1=1.45		
ب)در	%(1001(1)=1ApS(1R(1))		
Ja€4	GC TG 200		
2610	·		
30 11	(NTOY INCLESSION TO THE		
3646	tex = Atomickes b		
3012	50 70 x=0,00		
• ₄ باز	/o 1(UT(1)=1N(1)*1N(1)		
5648	of to exc		
sele	C.		
3617	CITICY AMERICAN FOURTH		
JC-11	$t_{\rm eff} = 1 \log t_{\rm eff} + 2 S_{\rm eff} + 2 S_{\rm eff}$		
2014	ig (4) 1 = 2 • f ε ξ		
3043	11 (15(11) 4.44.44		
vo. 4	· ((1)==1		
2006	tic 1. sec		
	Section (1)-c		
•• ••	A Professional Control		
- **	we seedfal-a		
9	More Controlled		
Sec. 1	t		
	, i i, orthograph national t		
. _{9.} 4	1 () 1 (1,2 m) = 11, (1, 2 m)		

100 ((0195)=1, (0195)

riktel.

SUBROUTINE INGTOR

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

INGTOR LTI-4 409, 410

INGNCL LTI-4 None

2. PURPOSE:

This subroutine is used to simulate a digital integrator.

3. INPUT PARAMETERS:

4. CALLING SEQUENCES:

CALL INGTOR (DIN, DOUT)

Where: DIN contains the Input Waveform DOUT contains the Output Waveform

The storage register (C1) is cleared before execution begins.

CALL INGNCL (DIN, DOUT)

Where: DIN contains the Input Waveform
DOUT contains the Output Waveform

The storage register (C1) is not cleared before execution begins.

5. RESTRICTIONS, REQUIREMENT, MISCELLANEOUS DATA

a. Flow Chart: Page 9-97

b. Cross Reference Table: Page 9-220

6. THEORY OF OPERATION

The block diagram of the digital integrator simulated by this module is shown in Figure INGTOR-1. The Z-plane transfer function is given by the following expression:

$$T(Z) = \frac{Z}{Z - FBCK}$$

Figure INGTOR-1 BLOCK DIAGRAM OF INGTOR

```
SUCKCULING INCICK (GIN. DEUT)
.5.1
                    COMMONZELKIZOKI (500)
. 5 . .
                    DIMENSION DIRECTIONEUTICS
در د ،
                    CHELVACENCE CERTE 211. THMY
                                                        ), 16K11 75), FECK
6764
                     WATA NIY3, NIY4, NIY5, NIY6/-3,-2,-1,6/
25.5
                     C1 = 0.0
2580
                     LIGHT INGULLIDING COT)
2501
                     N = lecte (Dlm(N143))
2503
                     OCOTOMISS = OANOMISS
2504
2,40
                     14 01 (1144) = U1N(N144)
                     J(U1(N195) = L1N(N195)
2591
                     باولا≃ل باد باد
.546
                     CZ = Win(J)+C]*FG(K
. , . ,
                     Section = CI
2344
6547
                     (1 = 62
440
                  IC LLNJINUE
                     LUILEN
2541
                     LNU
2543
```

670

4-73

SUBROUTINE IONOS

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

IONOS LTI-1 511

2. PURPOSE:

This subroutine is used to simulate the effect of the ionosphere on signals propagating through it.

3. INPUT PARAMETERS:

Name O/R T Description

RFFØ R F Center frequency of the electromagnetic wave traversing the ionosphere

SEDENS R F The integrated electron density along the propagation path

4. CALLING SEQUENCES:

CALL IONOS (X, Y)

Where: X contains the Input Waveform - R

X contains the Output Waveform - R

Y contains the Input Waveform - I

Y contains the Output Waveform - I

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. The effect of the earth's magnetic field is not included in this model.

- b. The effect of electron collisions with ions and neutral particles is not included in this model. The major effect resulting from electron collisions is a damping term which results in absorption of energy from the electromagnetic wave transversing the ionized medium. For frequencies above 100 MHz electron collisions have negligible effect on the phase behavior of the ionosphere as a function of frequency.
- c. Reference:

Berkowitz, R. S. ed. Modern Radar Analysis, <u>Evaluation</u>, and System Design, John Wiley & Sons, Inc., New York, 1965, pp 349-354, 364-370.

- d Flow Chart: Page 9-117
- e. Cross Reference Table: Page 9-223

6. THEORY OF OPERATION

The index of refraction of an ionized medium is given by the following expression:

$$n = \sqrt{1 - \frac{N_e e^2}{m\pi f^2}}$$
 (1)

where: N_e is the electron density (electrons/cm³)

e is the electron charge (4.8 \times 10⁻¹⁰ esu)

f is the frequency of this incident electromagnetic energy

Collisions between electrons and ions or neutral particles are neglected.

The phase velocity of the propagating wave, V_p , is given by the following expression:

$$V_{p} = c/n \tag{2}$$

where: c is the speed of light in free space

Therefore, combining equations 1 and 2 the following expression is obtained:

$$V_{p} = \frac{C}{\sqrt{1 - N_{e}e^{2}/m\pi f^{2}}}$$
 (3)

The phase velocity will approach infinity as the denominator of equation 3 decreases to zero. When this condition arises, further wave propagation is impossible. The frequency for which this occurs is called the critical frequency and is given by the following expression:

$$f_c^2 = \frac{Ne \ e^2}{m \pi} = 8.0 \times 10^7 N_e \ (Hz)^2$$
 (4)

Equation 3 now becomes the following:

$$V_{p} = \frac{C}{\sqrt{1 - f_{c}^{2}/f^{2}}}$$
 (5)

The differential phase shift dØ that a wave will encounter in traversing an element of path length ds is given by the following expression:

$$d\emptyset = \frac{2\pi}{\lambda} ds \tag{6}$$

where: λ is the wavelength of the radiated electromagnetic energy

Since $\lambda = V_p/f$ the following expression is obtained by substitution of equation 5 into equation 6:

$$d\emptyset = \frac{2\pi f}{c} \sqrt{1 - fc^2/f^2} \quad ds \tag{7}$$

This expression can be further simplified by adding the term $\frac{f_c^4}{4f^2}$ to the terms inside the square root

radical. For most radar applications $f_c << f$ so this will introduce a very small error. Equation 7 now becomes:

$$d\emptyset = \frac{2\pi f}{C} \sqrt{\left(1 - \frac{f_c^2}{2f^2}\right)^2}$$
 ds
$$= \frac{2\pi f}{C} \left(1 - \frac{f_c^2}{2f^2}\right)$$
 ds (8)

In order to determine the phase shift over a propagation path from s_1 to s_2 the following expression will be used

$$\emptyset = \frac{2\pi f}{C} \int_{S_1}^{S_2} \left(1 - \frac{f_c^2}{2f^2}\right) ds$$

$$= \frac{2\pi f}{C} \int_{s_1}^{s_2} ds - \frac{2\pi}{2Cf} \int_{s_1}^{s_2} f_c^2 ds$$

substituting for f_c^2 the following is obtained:

$$\emptyset = \frac{2\pi f}{C} \int_{s_1}^{s_2} ds - \frac{\pi}{Cf} 8.0 \times 10^7 \int_{s_1}^{s_2} N_e ds$$
 (9)

The first term of equation 9 is the linear phase shift due to propagation over a path of length s_2 - s_1 and will be omitted since it represents a time delay only

Therefore, the equation used to calculate the disperive effect of the ionosphere is given by the following expression:

$$\emptyset(f) = -2\pi \frac{4.0 \times 10^7}{3.0 \times 10^{10}} \frac{1}{f}$$
 SEDENS

where: SEDENS =
$$\int_{s_1}^{s_2} N_e ds$$
 = integrated electron density

$$f = RFF\emptyset + k \Delta F$$
, $-\frac{FEXT}{2 \Delta F} < k < \frac{FEXT}{2 \Delta F}$

FEXT = frequency extent of input waveform
 representations

F = independent variable spacing of input waveform representations.

```
3.04
                     SUBBLUTANE ALMUS (X.Y)
54.05
                     LLMMUN/LLKIZ VAK(500)
3100
                     DIMENSION X(1),Y(1)
31.07
                     ENUIVALENCE (VAR(148) .SEDENS ) . (VAR( 3) . EFFO )
3160
                  VARIABLE SEILING IS INTEGRATED ELECTRON DENSITY ALONG
                          FFUPAGATION PATH (ELECTRONSZEMACM)
3104
                     UATA N193.N194.N195/~3.-2.-1/ CUNS/ 1.3333E-03 /.F12/0.2831653/
3110
                     NETS=BUUL (X(N193))
2111
2112
                     FREW= (X1m194)+RFF0) +1.0E+09
3115
                     UELF=X(N1451#1.0E+09
                     UL 200 J=1.NFTS
311-
                     THE TA= CLNS+SEDENS/FREQ
3115
3116
                     THE TA= (THE TA-FLUAT (TFIX (THE TA) ) ) +P12
3111
                     IMP=X(J)
                     L=CUS(THETA)
3116
3114
                     S=SIN(THLIA)
2120
                     2*(L)Y-3*(L)X=(L)X
                     Y(J)=TMP+5+Y(J)+C
31.1
                     FREU=FREU+UELF
3122
               200 CUNTINUE
3123
3124
                     KETURN
3125
                     ŁNU
```

4-79

SUBROUTINE LAMPCP

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

LAMPCP LTI-1 or LTI-4 458

LAMPRE LTI-1 or LTI-4 456, 457

2. PURPOSE:

This subroutine is used to simulate a linear amplifier.

3. INPUT PARAMETERS:

Name O/R T Description

GAIN R F Amplifier gain

4. CALLING SEQUENCES:

CALL LAMPCP (XIN, YIN, XOUT, YOUT)

Where: XIN contains the Input Waveform - R

YIN contains the Input Waveform - I

XOUT contains the Output Waveform - R

YOUT contains the Output Waveform - I

CALL LAMPRE (XIN, XOUT)

Where: XIN contains the Input Waveform

XOUT contains the Output Waveform

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. Flow Chart: Page 9-68

b. Cross Reference Table: Page 9-217

6. THEORY OF OPERATION

The relationship between the input and output is given by the following expressions:

XOUT(J) = GAIN * XIN(J) ; LAMPCP & LAMPRE YOUT(J) = GAIN * YIN(J) ; LAMPCP

2027	SUBRUUTINE LAMPCP(XIN, YIN, XUUT, YOUT)	482
2028	LIMENSION XIN(1), YIN(1), XCUT(1), YEUT(1)	-1.00
2024	CCMMON/ELKI/ FIZOD)	

06/11/75	INPUT LI	STING	AUTOFLUM CHART SET - FWE/SCE	FAUSIM
LARD NE	****		CUNTENTS	****
20.11		LATA N193+N194+N195/-3,-2,-1/		
Pugi		EGUIVALENCE (E1145) , GAIN)	
2002		MUDL=1		
2005		6610 100		
2034		ENTRY LAMPRE (XIN. XCUT)		
2025		M(L'E=(
26.30	¥ (R)	rpts=eull(xin(n1931)		
2021		LL LOG J=1.NFTS		
20.0		NIAD*(LINIX=(L)TUUX		
2009	، ن	CENTINUE		
20 40		IFEMULE.EW.U1 GOTC 500		
2041		UU SUU J≈.,NPTS		
c U42		YOUT(J)=YIN(J)#GAIN		
2045	300	CONTINUE		
2044		YCUT (N1951=YIM(N1931		
2(45		YCUT (N1441=YIN(N144)		
2646		YUUT(N145)=YIN(N195)		
2047	500	XUUT(N193)=XIN(N193)		
2048		XUUT(N144)=X1N(N144)		
2044		xcut(n145)=x1H(N145)		
2050		RETURN.		
2051		ENL		

SUBROUTINE MTIFLT

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
MTIFLT (MODEDF=1)	LTI-4	430,431
MTINCL (MODEDF=1)	LTI-4	432,433
MTIIFT (MODEDF=2)	NL-2	430,431
MTIINC (MODEDF=2)	NL-2	432,433

2. <u>PUR POSE</u>:

This subroutine is used to simulate a double delay MTI processor. Either floating point or integer arithmetic is selectable.

3. INPUT PARAMETERS

a. MODEDF = 1

<u>Name</u>	<u>0/R</u>	<u>T</u>	Description
ff Ø	0	F	Feed - forward coefficient - 0 delay (no delay)
FF1	0	F	Feed - forward coefficient - 1 delay (single delay)
FB1	0	F	Feedback coefficient - 1 delay
FB2	0	F	Feedback coefficient - 2 delay (double delay)
b. MODED	F=2		
Name	<u>O/R</u>	<u>T</u>	Description
IFF Ø N	0	I	Numerator of Feed - forward coef - 0 delay
IFFØD	R	I	Denominator of feed - forward coef- O delay

Name	<u>0/R</u>	T	Description
IFF1D	R	Ι	Denominator of feed - forward coef - 1 delay
IFB1N	0	I	Numerator of feedback coef - 1 delay
IFBlD	R	I	Denominator of feedback coef - l delay
IFB2N	0	I	Numerator of feedback coef - 2 delay
IFB2D	R	I	Denominator of feedback coef 2 delay
NBITS	R	Ι	Number of bits to be used in storing one range sample in the arrays (ISR1 and ISR2) which represents the digital delay lines (includes sign bit).

4. CALLING SEQUENCES:

Floating point arithmetic

CALL MTIFLT (DIN, DOUT)

Where: DIN contains the Input Waveform

DOUT contains the Output Waveform

The range bit storage arrays (SR1 and SR2)

are cleared prior to execution.

The entry point is used only if MODEDF=1.

Floating point arithmetic

CALL MTINCL (DIN, DOUT)

Where: DIN contains the Input Waveform

DOUT contains the Output Waveform

The range bin storage arrays (SR1 and SR2) are not cleared prior to execution except for the first execution of this subroutine. This entry point is used only if MODEDF=1.

Integer arithmetic

CALL MTIIFT (IN, IOUT)

Where: IN contains the Input Waveform

IOUT contains the Output Waveform

The range bin arrays (ISR1 and ISR2) are cleared prior to execution.

This entry point is used only if MODEDF=2.

Integer Arithmetic

CALL MTIINC (IN, OUT)

Where: IN contains the Input Waveform

IOUT contains the Output Waveform

The range bin storage arrays (ISR1 and ISR2) are not cleared prior to execution except for the first execution of this subroutine.

This entry point is used only if MODEDF=2.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The maximum number of range bins simulated is 2048. If more than 2048 range samples are contained in the input array, only the first 2048 are processed.
- b. The parameter MODEDF is used by the simulation controller to determine whether the floating point or the fixed point module entry points are to be used.
- c. The entry points which use integer arithmetic are considered nonlinear because of truncation in arithmetic and saturation in the delay line.
- d. Flow Chart: Page 9-201
- e. Cross Reference Table: 9-234

6. THEORY OF OPERATION

The block diagram of the two-delay MTI processor digital filters simulated by this module are shown in Figure MTIFLT-1 and MTIFLT-2. The Z-plane transfer function for each range bin (floating point arithmetic) is given by the following expression:

$$T(z) = FF\emptyset \qquad \frac{Z^2 + \frac{FF1}{FF\emptyset}Z + \frac{1}{FF\emptyset}}{Z^2 - FB1 Z - FB2}$$

The Z-plane transfer function for each range bin (integer arithmetic) is approximated by the following expression:

$$T(Z) = \frac{\text{IFF\emptysetN}}{\text{IFF\emptysetD}} \frac{Z^2 + \frac{\text{IFF1N} \cdot \text{IFF\emptysetD}}{\text{IFF0N} \cdot \text{IFF1D}} Z + \frac{\text{IFF\emptysetD}}{\text{IFF\emptysetN}}}{Z^2 - \frac{\text{IFB1N}}{\text{IFB1D}} Z - \frac{\text{IFB2N}}{\text{IFB2D}}}$$

The delay represented by the Z operator is determined by the radar pulse repetition interval.

Figure MTIFLT-1 BLOCK DIAGRAM OF MTIFLT/MTINCL (Floating-point Arithmetic)

Figure MTIFLT-2 BLOCK DIAGRAM OF MTIFLT/MTINCL (Integer Arithmetic)

5194	SUEKUU I INE	SUBROUTING MITERI (DIN DOUT)						
5200	CLMMUN/BEK	UC7150G2						
5201	DIMENSIUM	DIN(1),DOUT(1),IN(1),IUC	JT(1),SK1(2048),SK2(2048),		UC715003			
5262	* 15K1(2046	1,15K2(2048)			UC7T5004			
5203	EWUIVALENCE	£ (Sk1(1),1Sk1(1)) , (S	5K2(1)+15K2(1))		UC775005			
5264	LATA N143+	N194.N195.N196/-321.	,u/		UC715006			
5205	DATA IFLE	u/			320			
52'00	OF CUIVALENCE	i (6K1(21), 1DMY	1, (BK11 681, FFU	,,	UC715008			
5201	ì	(bk1(64), FF1), (BK1(70), Fb1	1,	UC7T5009			
5200	2.	(BK1(71), F82	1		UC715010			
5204	EUUIVALLNU	E (6K1(16U), IFFUN), (%K1(101), 1FFUU	1,	UC7TS011			
5210	•	(BK1(162), 1FF1N),(rK1(103), 1FF1D	١.	UC715012			
5c11	*	(BK1(104), 1FB1N),(BK1(165), 1F61U	3.	OC775013			
5212	•	(BK1(166), 1FE2N	1,(6K1(1671, 1FB2U	1.	UC715014			
No. 4.5	*	(BK1(164), NB1TS	1		UC71\$615			
9244	ICIN=:				401			
54 P5	ԵՄ 10 4 €				402			
. 414	ENIRY MIIN	CE(CIN, DOUT)			403			
247	ICUN=2				404			
. 44	40 IF (IFLG.Ew	.1.AND.ICON.FU.21 GC TC	50		405			
. •	UU 20 J=1•	2 On 8			UC715016			

08/18/75	INPUT LISTING	AUTOFLUM CHART SET - FE	HU/SEL RAUSIM
CARD NU	****	CUNTENTS	H-90
5220	SR1(J)=0.	G	UC775017
5224	5×21J)=0.	u	UC7T5018
5/22	20 CHNTINUE		UC715019
5223	1+16=1		450
5224	50 CUNTINUE		451
5225	N = 1646L	(LIN(L193))	UC715021
5220	IF(N.Lt.2	04E) GO TC 15	HC715022
5227	N=2048		UC7T5023
5228	WEITE LOOK	51	UC715024
5224	25 FLKMATI 4	THE MANY PRINTS IN INPUT ARRAYFIRST 2046	PRUCESSED ULTTS025
5230	+ 1		UC715026
5231	15 DOUT(N195) = BLCL(N)	UC7TS027
5232	UUUT(N194) = U1N(N144)	UL715028
5233	DEUT (N145) = DIN(N195)	UC775029
52.54	UL 10 J=1	• N	UC7T\$030
5235	AU= SRIIJ)*FB1+SR2(J)*FB2+UIN(J)	UL715031
52.50	nrn1(1)=	AU*FFU+SR1(J)*FF1+ SR2(J)	UC715032
5637	5Kz(J)=5k	1(3)	UC715633
523a	Sh1(J)=AU	1	UC715034
534	10 CENTINUE		UC7T5035
5240	KETUKN		UL7T5036
5241	ENTRY MIL	161(10,1001)	UC7T5057
5242	1(LN=1		621
5243	(16 16 66		622
5, 44	LNIKY MT1	INCEIN SICUTS	623
5245	16(1=/		624
56.40	on Iffither	LILAND, ICUN, EQ. 21 GU TU 70	625
5047	₽₽ 100 a =) palled	UC71503E
28,40	12K1(a)=0	,	UC7T5054

5244		15K2(J)=0	4-90a	UC715040
5250	luu	CONTINUE		UC7T5041
5251		1816=1		670
5252	70	CONTINUE		671
5255		IF (NBITS.GT.G.AND.NBITS.LE.31) GO TO 95		UC775043
5254		N6175=31		UC7T5U44
5255	45	CUNTINUE		UC7T\$045
5 256		MAX=2**(Nb135~1)		UC775046
5257		N=1N(N193)		UC7TS047
5258		1F(N.LE.2048) GO TO 105		UC 775048
525¥		N=2U48		UC7TS049
2500		WKITE (6,25)		UC7T5050
5261	105	10UT(N193)= N		UC7T5051
5262		IGUT (N194)=1N(N194)		UL715052
5263		10UT (N1951=1N(N195)		UC715053
5264		DU 110 J=1,N		UC715054
5265		10=(Sk1(J +1F81N)/ F81D + 1SR2(J)+1F82N)/ F82D + 1N(J)		UC7T5055
5206		If (1455(10).67.MAX) 10*151GN(MAX,10)		UC7T\$056
2201		100f(J)=(1041FFON)/IFFOD +(ISK1(J)+IFFIN)/IFFID + ISK2(J	ŧ	UC715057
5268		1SR2(J1×1SK1(J)		UC7T5058
5269		15k1(J)=Io		UC7TS059
527u	110	CUNTINUE		UC7T5060
5271		KETUKN		UC7T5061
5272		ENU		

SUBROUTINE NONLIN

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

NONLIN

NL-1

401, 402

2. PURPOSE:

This subroutine is used to simulate a zero memory nonlinear device.

3. INPUT PARAMETERS:

Name	<u>0/R</u>	T	Description
NPTS	R	I	Number of points used to specify the transfer function
TFN	R	F	Array containing the specification of the transfer function. The coefficients for the Jth point are the following:
			TFN(1,J) = Input voltage

4. <u>CALLING SEQUENCES</u>:

CALL NONLIN (A, \$mmmm)

Where:

A contains the Input Waveform

TFN(2,J) = Output voltage

A contains the Output Waveform

\$mmmm is the statement number in the calling program to which control is returned if a discrepancy is detected in the input data.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The independent variable in the transfer function specification array must be monotonically increasing.
- b. The input data must be within the limits of the specified transfer function.
- c. Flow Chart: Page 9-135
- d. Cross Reference Table: Page 9-225

6. THEORY OF OPERATION

The input vs output characteristics of the device to be simulated are specified via the array TFN. A table lookup and linear interpolation scheme are used to compute the output value for each sample of the input waveform. An abnormal termination will occur if an input sample is outside the range of input values specified in the array TFN.

An example of the input data for this module is the nonlinear transfer function shown in Figure NONLIN-1. The associated input data statement is as follows:

\$NL401 TFN = -2.0, -2.0, -1.0, -2.0, 1.0, 2.0, 2.0, 2.0, NTFN = 4\$

Figure NONLIN-1 EXAMPLE OF NON-LINEAR TRANSFER FUNCTION

```
4-93
33.50
                     SUBRECTIBL NUNLINGA++)
3537
                     CUMMON/8LK1/6K1(5G0)
3538
                     DIMENSION A(1), TEN(2,50)
                     EQUIVALINGE (SKIT 21), INMY
3524
                                                          1. (BK11 671. NETS
3240
                                 (BK1(201), TEN(1,1)
                    UATA N143.0194.0145.0196/-3.-2.-1.0/
3541
                    NIN = TOUGE (A(N1931)
3542
3543
                    K = 1
3344
                    DO 100 J=1.NIN
3245
                     UL 10 105
                105 K=K+1
3340
3547
                    6L IL 105
3548
                104 K=K-1
3544
                105 IF (K.GI.NPTS) OF TO 500
3550
                     1F(K.Li.1) 66 (0 500
よっちょ
                     IF(A(J).LT.TEN(1.K))GO TC 104
3552
                    IF(A(J).61.TFN(1,K+1))60 TO 103
3773
                     PCT = \{A(J) - TEN(1,K)\} / \{TF'(1,K+1) - TEN(1,K)\}
3>54
                     A(J) = IFN(2,K) + PCT+(TFN(2,K+1)-TFN(2,K))
3555
                 100 CENTINUE
3550
                     KETUKN
3557
                500 CUNTINUE
3556
                    KETURN 1
3554
                    Ł NO
```

(

SUBROUTINE PHDEC

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
PHDEC	LTI-2	508, 509

2. PURPOSE:

This subroutine is used to simulate an analog phase decoder.

3. INPUT PARAMETERS

a. Automatic mode; INPTF = 0

Name	<u>O/R</u>	<u>T</u>	Description
SIMFØ	R	F	Center frequency of waveform previously generated by FGENXY/ FGENMP. This parameter is used to specify the center frequency of the tapped delay line.
INPTF	R	I	Set = 0 for this mode
SPW	R	F	Subpulsewidth of waveform pre- viously generated by FGENXY/ FGENMP. This parameter is used to specify the delay line tap spacing (TAPSPC).
XMITPC	R	F	Array containing the phase code of the waveform generated by FGENXY/FGENMP.
NSUBP	R	I	Number of subpulses in the wave- form generated by FGENXY/FGENMP. This parameter specifies the num- ber of delay line taps.

NOTE: No user supplied inputs required for this mode.
All required parameters are initialized by
FGENXY/FGENMP.

b. User Supplied data mode; INPTF = 1

Name	O/R	<u>T</u>	Description
FØDEC	R	F	Center frequency of the tapped delay line.
TAPSPC	0	F	Spacing between delay line taps. This parameter is set equal to SPW if it is not specified by the user.
INPTF	R	I	Set = 1 for this mode
XMITPC	R	F	Array containing the phase code of the waveform generated by FGENXY/FGENMP. (Initialized by FGCENXY/FGENMP)
NSUBP	R	Ι	Number of subpulses in the wave- form generated by FGENXY/FGENMP. This parameter specifies the number of delay line taps. (Initialized by FGENXY/FGENM)

4. CALLING SEQUENCES:

CALL PHDEC (X,Y)

Where: X contains the Output Waveform - R
Y contains the Output Waveform - I

5. RESTRICTIONS, RECOMMENDATIONS, MISCELLANEOUS DATA

- a. If INPTF=1 and TAPSPC is specified, then TAPSPC should be an integral multiple of the period of the waveform center frequency, i.e. TAPSPC = N*1.0/SIMFØ where N is an integer. Otherwise, the taps will not have the desired phase shifters as specified in the array XMITPC.
- b. Flow Chart: Page 9-78
- c. Cross Reference Table: Page 9-218

6. THEORY OF OPERATION

This module generates the transfer function of a tapped analog delay line. The main use of this module is to simulate a surface acoustic wave device. A block diagram of this device represented by this module is shown in Figure PHDEC-1. This module is structured to represent only the taps (energy pickoffs) of the delay line. The wave launches must be specified separately in terms of its transfer function. This can be done via either the FILT or the WEIT modules. A pictorial diagram of a surface acoustic wave device and its representation are shown in Figures PHENC-2(a) and -2(b). The impulse response of the device represented by this module is given by the following expression:

$$h(t) = \sum_{K=1}^{K=NSUBP} g_K \delta(t-Kt_d) e^{j\emptyset_K}$$

where:

$$g_{K} = tap gain$$

t_d = tap spacing

 \emptyset_v = tap phase shift

The transfer function computed by this module is given by the following expression:

$$H(f) = \int [h(t)] \int_{-\infty}^{\infty} \sum_{k=1}^{NSUBP} g_k \delta(t - kt_d) e^{j\emptyset k} e^{-j2\pi ft} dt$$

Interchanging the order of integration and summation

$$H(f) = \sum_{1}^{\text{NSUBP}} g_k e^{j \phi_k} \int_{-\infty}^{\infty} \delta(t - kt_d) e^{-j2\pi ft} dt$$

$$H(f) = \sum_{1}^{\text{NSUBP}} g_k e^{j \phi_k} e^{-j 2\pi f k t_d}$$

This version of the phase decoder module sets all $g_k = 1.0$. If a phase decoder with gain weighting or errors is desired then the DFT routine should be used to compute the transfer function.

Figure PHDEC-1 BLOCK DIAGRAM OF A TAPPED DELAY LINE PHASE DECODER

Figure PHDEC-2b SIMULATION MODEL BLOCK DIAGRAM

```
12.1
                       SUBSTITUTE THELLIX,YI
                       DIMENSION ACLIBATED
2220
                       CEMMENZENCELEZ XNITHC(3G0).NSUFF.SHW
....
                       CUMMON/SCRIZ TEMP (1941, NIME, PINCO, 100)
. 200
12.1
                       EGUIVALENCE (ITEMP(102), FORECT, (ITEMP(114), TAFSPC),
                                      CITCHER (195), SIMBOL, CITCHER(195), INCTEL
. 2 %
                       Intinetrace . 11 SIMPLE FULLE
                       IF (INFTER COULT TAPSEC = SPA
66.34
                       At (list If at C. L.ANI . TAFSEC. EL .U.O) TAFSEC=SEN
. 2 . .
                       1+ 455+N556+
. 2 56
22.1
                       T(a)N(t)=O(a)O
                LOW COSTINUE
4 . . . . .
                       MIRKEIPELS
6634
                       18 (48A55.01.100) N1MF=100
                       to Let Jalaniant
2271
                       (L-1+22A+1)3971MA=(L+1)311
44.
                       110(...d)-11ME
. . 4
                       red folded ! - x av
66.44
                       Trite - (IME + TAPOPE
6643
                in white
c240.
                       IF (IFALL .... N. UBF) CALL DETHU(X.Y)
6641
                       INCITALS. NO. NOUSP) CALL SETNOLIX.Y)
2240
                       INTERIMPARE AZOUT KETUKN
. . 45
                       1+A55=1+A55-100
4490
                       AF (TEANS . LC . U) KETUEN
2251
                       CUIC 100
2250
                       END
44 ...
```

SUBROUTINE PHENC

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
PHENC/FGGNXY	SOU-1 or LTI-3	506
PHENC/FGENMP	SOU-1 or LTI-3	507

2. PURPOSE:

This subroutine generates a phase code which is subsequently used by FGENXY/FGENMP to generate a binary phase coded waveform. Either the module FGENXY or FGENMP is automatically scheduled for execution.

3. INPUT PARAMETERS

a. MODEPH = 1; Barker Phase Code

Name	<u>O/R</u>	<u>T</u>	Description
MODEPH	R	I	Set = 1 for this mode
NSUBP	R	I	Number of subpulses to be generated. The allowable values of this parameter and the corresponding Barker codes are as follows:
			2 + - 3 + + - 4 + + - + 5 + + + - + 7 + + + + -

b. MODEPH = 2; Pseudo Random Phase Code

13

Name	<u>0/R</u>	T	Description
MODEPH	R	I	Set = 2 for this mode
NSUBP	R	I	Number of subpulses. Maximum value = 300 for this mode.

GENERAL DYNAMICS FORT WORTH TEX CONVAIR AEROSPACE DIV F/G 17/9
ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING, VOLUME II. PAR-ETC(U)
JUN 76 R J HANCOCK, F H CLEVELAND F30602-73-C-0380 AD-A102 278 UNCLASSIFIED RADC-TR-76-186-VOL-2-PT-1 NL 3 0 4 40 40 000 18

Name	<u>0/R</u>	<u>T</u>	Description
IPY	R	I	Array representing the shift register used to generate the pseudo random sequence. The storage cells of this shift register contains either 1 or 0. The user can specify the initial condition of this register if desired.
NSR	R	I	Number of stages in the shift register.

c. MODEPH = 3; User Specified Phase Code

Name	<u>0/R</u>	<u>T</u>	Description
MODEPH	R	I	Set = 3 for this mode
NSUBP	R	I	Number of subpulses. For this mode this parameter is limited to 35.
CODE	R	В	Word containing the phase code. Each bit of this 36 bit word represents the phase of one sub- pulse. The phase for the first subpulse is determined by the LSB; i.e. right most bit.

4. CALLING SEQUENCES:

CALL PHENC (\$mmmm)

Where: mmmm is the statement number to which control will be transferred if an error

is detected in the input data.

5. RESTRICTIONS, RECOMMENDATIONS, MISCELLANEOUS DATA

a. Reference for Barker and Pseudo random phase codes:

Skolnik, M. I.: <u>RADAR HANDBOOK</u>, McGraw-Hill Book Company, New York, 1970, pp 20-19 and 20-20.

b. Flow Chart: Page 9-167

c. Cross Reference Table: Page 9-229

4-101

6. THEORY OF OPERATION

This module generates a phase code determined by the input parameters and loads the array PCODE with the phase code. The operations performed for MODEPH = 1 or 3 consist of connecting bits of the word CODE into phase angles. A binary "1" is converted into 180 degrees and a binary "0" is converted into 0 degrees.

Figure PHDEC-1 is a block diagram of the shift registers used to generate the pseudo random phase codes. The parameter NSR determines the selection of shift register taps (Reference Skolnik, p 20-20, table 6). The output from the delay line is converted to a phase code according to the procedure outlined in the preceeding paragraph.

BLOCK DIAGRAM OF PSEUDO-RANDOM PHASE CODE GENERATORS Figure PHENC-1

41.3 kg	SCHECTINE PHENC(*) 4-104	4-104
45 L 3	CUMMEN/BEK2/ B12001,PCCBE13061	- ,
-310	EQUIVALENCE (ET 96), NSUMF), (ET163), MUDEFM),	
4221	* (6(184), NSE) . (E(120), 16Y(1)) ,	
4210	• (144), Cope)	
44 A A A	DIMENSION IMY(5) +HCOUN (15)	
40 E O	BAAA ($Baba$, Z) B (B (B)	
₩2 _{KLA}	gr (McCchm.cc.1)CCCE=bCCCE (MSOOR)	
م د د	1r (McccProcost-OF-MCOEPH-CO-3) OCTO 100	
4323	11.42	
4364	ir (wSnotwobolnoWSnocwot) ITI=5	
43.5	Discours del gradult P	
45.4	ISOM=1HY(1)+1HY(IT1)	
4261	Introduced GCTC 150	
~	100N=100M+1+Y(~)+1+Y(~)	
42,4	and Juliance and a SUMEC	
0250	18 (150 Marchau) 150M=1	
4.00 €	Proceedings of TSOMEO	
****	147 (NSK+1)=136 M	
#323	rtccc(u)=jcv-v=ItY(1)	
44 J. 244	the con K-lekai.	
4.3.	1 r f (N) = 1 r f (N + 1)	
9 000	CO Collabor	
4321	ger construct	
* Y + 2	rs tyra	
	rea - Colillaci	
Age of Age	In the School Company of the Torth 1	
** , ** &	ベージン=1/30/1 と	
10.00	in one as a factor P	
ر ۱۰ به	in the Compige Court	
*1 * * *	1 C. 1 . (0) - 2 P 2 4 2 C 4 C	
40 Mg	second and Missign	
The Street	t. Rei.	
*c + 1		

SUBROUTINE RDIGFL

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
RDIGFL	LTI-4	405
RDFNCL .	LTI-4	406

2. PURPOSE:

This subroutine is used to simulate a double delay digital filter and is capable of synthesizing a filter transfer function having two poles and two zeros.

3. INPUT PARAMETERS:

Name	O/R	$\underline{\underline{T}}$	Description
ff ø	0	F	Feed - forward coefficient - 0 delay
FF1	0	F	Feed - forward coefficient - 1 delay
FB1	0	F	Feedback coefficient - 1 delay
FB2	0	F	Feedback coefficient - 2 delay

4. CALLING SEQUENCES:

CALL RDIGFL (X,Y)

Where: X contains the Input Waveform - R
Y contains the Input Waveform - I
X contains the Output Waveform - R
Y contains the Output Waveform - I

The storage registers (RR1, RR2, RI1, and RI2) are cleared before execution begins.

CALL RDFNCL (X,Y)

Where: X contains the Input Waveform - R
Y contains the Input Waveform - I
X contains the Output Waveform - R
Y contains the output Waveform - I

The storage registers are not cleared before execution begins.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. Flow Chart: Page 9-100

b. Cross Reference Table: Page 9-221

6. THEORY OF OPERATION

The block diagram of the two delay digital filter simulated by this module is shown in Figure RDIGFL-1. The Z-plane transfer function is given by the following expression:

$$T(Z) = FF\emptyset \frac{Z^2 + \frac{FF1}{FF\emptyset}Z + \frac{1}{FF\emptyset}}{Z^2 - FB1Z - FB2}$$

Figure RDIGFL-1 BLOCK DIAGRAM OF RDIGFL/RDFNCL

```
SUERCUTING ROIGHL (X.Y)
2016
                    CUMPLEN/BEK1/BK1(500)
2011
                    LUUIVALENCE (BK1(68), FFO ) , (BK1(69), FF1 ) , (BK1(70), FB1 ),
2072
                                (BK1(71), FH2 )
2010
2074
                    UATA N143/-3/
                    DIMENSION XIII, YII)
2015
                    RK1=0.0
2076
                    KK2=6.0
2411
                    KI1=0.0
2675
                    £12=0.0
4674
                    ENTRY RUFNEL (X.Y)
2050
4661
                    N=BLUL(XIN143))
                    UL 16 J=1.N
2022
                    kf.u=kk1*fb1+kR2*f62+X(J)
2003
                    kIU=K11+F61+K12+F62+Y(J)
                    XIJ)=kku+rfu+kR1+FF1+RR2
2015
                    Y(J)=1.10+++0+K11+FF1+R12
2000
2001
                    RRZ=RK1
                    KK I=KKU
                    KI2=KI1
20.4
                     RII≠RIO
2640
2641
               IU CUNTINUE
                    KETURN
2642
                     ENU
```

4643

4-108

SUBROUTINE RNDARY

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
RNDARY	SOU-1	214, 215
ADDRND	SOU-1S	235, 236
ADRNDC	SOU-1S	237

2. PURPOSE:

This subroutine loads an array with random numbers generated by the random number generator function subroutine RRAND.

3. INPUT PARAMETERS:

<u>Name</u>	<u>0/R</u>	Ţ	Description
npts	Ŕ	I	Number of random distribution samples to be loaded into the array (RNDARY only).
NTYPE	R	I	Code indicating the type of random distribution to be used (RNDARY and ADDRND only).
TI	R	F	Simulation sampling increment (RNDARY only).

4. CALLING SEQUENCES:

CALL RNDARY(RND)

Where: RND contains the Output Waveform

CALL ADDRND(RND)

Where: RND contains the Input Waveform

RND contains the Output Waveform

CALL ADRNDC (RND, RNDY)

Where:

RND contains the Input Waveform - R

RNDY contains the Input Waveform - I

RND contains the Output Waveform - R

RNDY contains the Output Waveform - I

This module is used only to add Gaussian samples to the input waveform

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. User supplied function subprogram RRAND is called by the subprogram and must be initialized via NL101 or NL102 before this subroutine is executed.
- b. The random distribution code (NTYPE) is as follows:
 - (1) Floating point uniform distribution with specified mean and extent.
 - (2) Floating point Rayleigh distribution with specified standard deviation.
 - (3) Floating point Gaussian distribution with specified mean and standard deviation.
 - (4) Positive integer uniform distribution from 0 to 2**36.
 - (5) Not used by this subprogram.
 - (6) Swerling Target Models #1 & #2 with specified mean cross section.
 - (7) Swerling Target Models #3 & #4 with specified mean cross section.
 - (8) Sine distribution.
- c. Flow Chart: Page 9-150
- d. Cross Reference Table: Page 9-227

6. THEORY OF OPERATION

The mechanization equations for each entry point are the following:

RNDARY: RND(J) = RRAND (NTYPE); $KJ \le NPTS$

ADDRND: $RND(J) \approx RND(J) + RRAND$ (NTYPE); the range of

J is determined by the input array.

ADRNDC: RND(J) = RND(J) + RRAND(3)

RNDY(J) = RNDY(J) + DUM

where: RRAND(3) contains the cosine gaussian

distribution sample

DUM contains the sine gaussian

distribution sample

3161	SUBRUUTINE KNUARY(FNU)	4-112
يان د ف	CEMMUNZECKIZUKI(500)	ĸ
3684	CUMMUNZELKKNUZ KNUDAT(141)	
3.41	U1M1N21UN KND(1),RNDY(1)	
2044	ECUTVACENCE (HK16 44). NPTS J. (LK16 45). NTYFE)	
3042	EWUIVALENCE (DKI(12), 71)	
3343	LAIA NI93,NI94,NI95,NI96/-3,-2,-1,6/	R
36.44	ι	R
3645	DC 10 1=1,NPTS	
3.390	NAUCID=REANDCHTYPED	
3047	TO CONTINUE	
J.190	FAU (M153)=BOOK (NPTS)	
3699	Flot (1/2) Yes } - U = C	
3400°	KN: (N1×5)=11	
250.1	F c TUFfe	
3900	ENTRY AUDENDIAND	
3903	NETS=6001 (KND461931)	RN
3704	00 20 1=1.NFTS	k
1965	KNU(1)=RNU(1)+KRANU(NTYPE)	R
34(10	. O (Chiano)	R
2407	L	R
3401	KE TUM:	R
٥٠٠	ENTRY AURNUE (KNU, RNUY)	
3410	NETS=BOOK (RADEN1931)	
114د	UL 40 1=1.NPTS	
3412	FNU(1)=KNU(1)+KRAND(NTYFE)	
3913	FNUY(1)=KNUY(1)+KNUDAT(9)	
3914	ec CUNTINUE	
3915	Kc 1 UKI	

3416

EfeL

SUBROUTINE SHIFT

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
SHIFT	LTI-1	224,225
SHIFTS	LTI-1S	226,227
RSHIFT	LTI-1	229,230
RSHFTS	LTI-1S	231,232

2. PURPOSE:

This subroutine is used to delay a waveform in time and/or introduce a constant phase shift.

3. <u>INPUT PARAMETERS</u>:

Name	O/R	<u>T</u>	Description
ТØ	R	F	Time delay
тнт	R	F	Phase shift
TJIT	0	F	Time delay jitter
SIMFØ	R	F	Center frequency to be used in computing time delay effect.

4. <u>CALLING SEQUENCES</u>:

CALL SHIFT (X,Y,A,B)

Where: X contains the Input Waveform - R
Y contains the Input Waveform - I
A contains the Output Waveform - R
B contains the Output Waveform - I

The basic mechanization equation for this entry point is the following:

$$A(J)+jB(J)=\left[X(J)+jY(J)\right]*e^{j\left[THT-2\pi\left(FSTRT+FI*J\right)T\emptyset\right]}$$

Where:

FI = frequency increment

FSTRT = frequency corresponding to the first element of the input array

CALL SHIFTS (X,Y,A,B)

Where: X contains the Input Waveform - R

Y contains the Input Waveform - I A contains the Output Waveform - R

B contains the Output Waveform - I

The basic mechanization equation for this entry point is the following:

the following:

$$j[THT-2\pi(FSTRT +FI*J)T\phi]$$

$$A(J)+jB(J)=A(J)+jB(J)+[X(J)+jY(J)]*e$$

CALL RSHIFT (X,Y,A,B)

Where: X contains the Input Waveform - R

Y contains the Input Waveform - I A contains the Output Waveform - R

B contains the Output Waveform - I

The basic mechanization equation for this entry point is the following:

$$A(J) + jB(J) = \left[X(J) + jY(J)\right] *e^{j \left[THT - 2\pi \left(SIMF\emptyset + FI * J\right)\left(T\emptyset + p \cdot TJIT\right)\right]}$$

where p is a sample of a random process having a uniform distribution from -1/2 to 1/2.

CALL RSHFTS(X,Y,A,B)

Where: X contains the Input Waveform - R
Y contains the Input Waveform - I

A contains the Output Waveform - R B contains the Output Waveform - I

The basic mechanization equation for this entry point is the following:

 $A(J)+jB(J)=A(J)+jB(J)+\left[X(J)+jY(J)\right]*e^{j\left[THT-2\pi\left(SIMF\emptyset+FI*J\right)\cdot\left(T\emptyset+p\cdot TJIT\right)\right]}$

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. Flow Chart: Page 9-63

b. Cross Reference Table: Page 9-216

6. THEORY OF OPERATION

If the Fourier transform pair is given for the signal s(t):

$$s(t) \longrightarrow S(f)$$

then
$$s(t-t_0)$$
 ----- $S(f) e^{-j2\pi ft_0}$

This expression was derived in reference 1.

In addition the introduction of a constant phase shift in the time waveform results in the same constant phase shift in the frequency spectrum, e.g.

$$s(t)e^{j\emptyset} = S(f) e^{j\emptyset}$$

Note: Since these subroutines have classification code LTI-1 or 1S the input and output waveforms are in the frequency domain.

```
4-116
1901
                    SUBRUCTINE SHIFT (X,Y,A,B)
1902
                    CCMMGN/BLKI/ BK1(200)
1903
                    EQUIVALENCE (BK1(180).TO).(BK1(181).THT).(BK1(182).TJ11)
                               ,(BK1(8),SIMFO)
1904
                    UIMENSIUN X(1),Y(1),A(1),B(1)
1405
                    DATA N143+N144+N145+N146/-3+-2+-1+G/
1400
                    UATA P12.EX/0.2831853.2.9103830E-11/
                                                                                           1780
1407
1464
                    ICCN=U
                    TUK=TU
1910
                    60 TO 10
1911
1412
1413
                    ENTRY RSHIFT(X,Y,A,B)
```

•

.

•.

.

		AUTUFLUW CHART SET -	FWO/SCL RADSIM
06/11/75	INPUT LISTING		4-1/62
CARU NU	****	CONTENTS	•
1914	ICUN-U		
1915	60 10 27		
1410	Ċ		
1417	ENTRY SHIFTS(X+Y+A+R)		
1416	<u>i</u> ∈ GN= i		
Inta	1ck=10		
1410	60 10 10		
1461	i		
1455	ENTRY ASHFIS(X,Y,A+B)		
49.3	100N=1		
1929	Gi. 11. 21		
1975	C.		
1470	to MALPHOOF (MULAS))		
14.1	18 (10K. 16.0.0)60 10 2	U	
14.0	NETS2= NPTS/2		
19.4	4 - 2 2A 44		
49.50	K=111.12°+1		
1941	$K_{L}(t,t) > 1$		
1995	Int_Int/pocse		
40.3	PH=-12MEG#10K+1HT		
1929	GLL+H==X(N195)*TUK		
¥4.75	45 PS= (PH-AINT(Ph))*PI		
$\frac{1}{4} \Phi_{ij}(\sigma)$	CLEPUS ALLEH-AINTIL		
1951	ACTUAL CONSTRUCTES		
14.0	"Spec = SIM(DELES)		
14.4	655 (CC(rs)		
1440	14- 51N(PS)		
7 4- 1- 7	Sec. 10. 65		•
3000	(

AUTUFLUW CHART SET - FWU/SCL RADSIM

. Intalnivracknowsk 4-117 MC(:L=1.0 1444 450EL=0.0 144. US= UUS(1H1) 1940 ONE SINC INTO BETSZERETS 1740 11455=2 1444 K= 1 1446 Kirklei 1451 145. as attacked presugate 1555 . A milen are Configs . LE (FRANC (4))) *. A*(IJI]*IJI]*IJII 1955 Icha Tothi LaMa ٠٠.٠ ب 66 16 10 141 1 Le Constitution 4414 co see warphelts 4904 +2Mr=A(r) 4464 Atr. 1= 1111++CU-YEN1+21. . (n)=Y(n)+CS+(1h)+5h 1900 Title=C1 19:5 Company of the Commence of A 10 the block the rather 1400 F-K+11 LL 4001 Car Contains 15 . and the first 1-6" 1 - 1

.

,

k.

.

and the state of the

4711

CEV11/7	mast etstine	AUTOFLUM CHART SET - FMUZSCE	
LAKE to	* 4.4 *	CLNTENTS	4-1172
1472	DE 400 E21.NPTS	4	
1575	1 1MK=X(K)		
1 + 74	+(K)-A(K)+11M++0	CS-Y(K)*SN	
12/2	L {K}=€(N}+Y(K)*(US+TIMP*SN	
1970	1:MH=CL		
1577	しじゃしじゃんししょ モーンルギル	Files	
12.00	Siv= Ulv+AL; (L+It MI	F#AULLE	
1714	K=K+KUt L		
1900	wie Lendand.		
1404	(
.71.	100 Hirrardically	it li bit	
A 44 C 2	11+01=1		
10.00	K-10. 152		
171-	KI/2 L = -1		
1000	Prizer = Liber		
1/51	teern-teern		
450	10.10.25		
1~	Car Collins		
1950	L		
1441	, (1.15° 1-X (6.151)		
A 55 55 4	1 (112 14) = X (112 4 4)		
1442	Attanate Attanat		
4 19 5 19	·(.15.5) * A (5.25.5) ·		
4 **	(.150) = X (15 × 1		
	. 6.49. 1.76.19. 1		
4	·		

SUBROUTINE SWPINT

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
SWPINT	LTI-4	434,435
NCSWPI	LTI-4	436,437

2. PURPOSE:

This subroutine is used to simulate a video post detection sweep integrator.

3. INPUT PARAMETERS:

Name	<u>O/R</u>	$\underline{\mathbf{T}}$	Description
FBCK	R	F	Feedback coefficient

4. CALLING SEQUENCES:

CALL SWPINT (DIN, DOUT)

Where: DIN contains the Input Waveform

DOUT contains the Output Waveform

The range bin storage array (SRI) is cleared before execution begins.

CALL NCSWPI (DIN, DOUT)

Where: DIN contains the Input Waveform

DOUT contains the Output Waveform

The range bin storage array (SR1) is not cleared prior to execution except for the first execution of this subroutine.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. The maximum number of range bins simulated is 2048. If more than 2048 range samples are contained in

the input array, only the first 2048 are processed.

b. Flow Chart: Page 9-204

c. Cross Reference Table: Page 9-234

6. THEORY OF OPERATION

The block diagram of the video sweep integrator simulated by this module is shown in Figure SWPINT-1. The Z-plane transfer function for each range bin is given by the following expression:

$$T(Z) = \frac{Z}{Z - FBCK}$$

The delay represented by the Z operator is determined by the radar pulse repetition interval.

Figure SWPINT-1 BLOCK DIAGRAM OF SWPINT/NCSWPI

		10715062
5273	SUBMULTING SWPINT (DIN-BOUT)	4-121 UCTFLOOD
2.14	(LMMCN/OLNI/OK1 (500)	UC7+L002
5273	DIMENSION DINCIPADEUTCIPASKI(2048)	UTTEUUS
5716	EWOLVALENCE CHRIC 211. ICMY). CORE 751, FOLK) UE /PE004
5.77	UATA N143+N144+N145+N146/-3+-2+-1+U/	UC7PL005
5276	DATA IFEG/U/	US
5274	1Con=1	61
りょ と し	CI. FL 40	6 2
5781	ENTRY NOSARIBLINAPOUT)	63
524	I Claric	64
tein	40 18 (1860-64-1-AND-16(N-64-2) (6 16 50	65
54.0 4	(O 20 J=1,20,48	UC7FL007
5245	Sk4 (3)=0.0	UC7PLOOS
5.00	conjust timet	UCTPLOOP
5.67	1116-1	1(0
5, 66	or continue	10 <u>1</u>
9269	h = locoteclate(95))	UC7PE011
57.40	If Geold account CC TC 25	DC7FE012
5. 4.	lang (met	UC7PE013
5.4.	WI LIE (COO)	L(7FL014
5253	SEVERALL * TOWN MANY MOTING THE THEORY OF PROPERTY CO.	PROCESSED DUCTEOUS
5. 44	LO DOUT (NAME) = DOUT (N)	UC7F1 (1).
5,45	(1001 (14294) = 04 (14194)	uc7Fte17
5. 40	LECTIMIST = :IMMISS	CC7PLOT:
1241	ot it o≕lyf.	DC PFEO CA
5251	64=048(0)+5K2(2)*FECK	00744020
5254	JACOT (4) = SK 4 (4)	0(7)(02)
5300	0/1(d)=01	OCAL COS
1.001	TO CONTINUE	CC7FC0.3
٠,١٠,	Filler.	UU (1) k.v. w
•(r ort	CHUCK

SUBROUTINE TARGET

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
TARGET	LTI-2	501
TGTNCL	LTI-2S	502

2. PURPOSE:

This subroutine simulates a target represented by a set of discrete scattering centers.

3. INPUT PARAMETERS:

Name	<u>0/R</u>	$\underline{\mathbf{T}}$	Description
FØ	R	F	RF Center Frequency
FEXT	R	F	Simulation bandwidth
FI	R	F	Frequency increment of the output transfer function
HTGT	0	F	Height of Target
RTGTØ	0	F	Range to target (R in Figure 1) (Used to compute target return variation as a function of range and altitude)
ANGTGT	O	F	Angle from the radar reference line to the target (0 in Figure 1)
TORINT	0	F	Angle from Reference line #1 to the target coordinate system reference line (Ø in Figure 1). Reference line #1 is parallel to the radar coordinate system reference line and passes through the center of target rotation.

Name	<u>0/R</u>	<u>T</u>	Description
NSCAT	R	I	Number of scatterers
TSCAT	R	F	Array containing the location and radar cross section of each scatterer. TSCAT $(1,k)$ is the radar cross section of the kth scatterer $(\sigma_k$ in Figure 1). TSCAT $(2,k)$ is the range coordinate of the kth scatterer in the target coordinate system $(r_k$ in Figure 1). TSCAT $(3,k)$ is the angle coordinate of the kth scatterer in the target coordinate of the kth scatterer in the target coordinate system $(\beta_k$ in Figure 1).
RØØØ	R	F	Range of target in the simula- tion (used to compute time delay only)
TGTVEL	0	F	Target radial velocity
TIME	0	F	Elapsed time since beginning of simulation

4. <u>CALLING SEQUENCES</u>:

CALL TARGET (X,Y)

Where: X contains the Output Waveform - R

Y contains the Output Waveform - I

CALL TGTNCL (X,Y)

Where: X contains the Input Waveform - R

Y contains the Input Waveform - I X contains the Output Waveform - R Y contains the Output Waveform - I

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. The discrete scattering center representation used herein is obtained by imaging coherent short pulse measurements made on the target or a model of the target. The imaging procedure is described in Appendix H of this report.

- b. The target representation implemented herein includes the pulse to pulse phase shift due to target motion with respect to the radar system. However, the intrapulse phase shift is not included in this model.
- c. Flow Chart: Page 9-109
- d. Cross Reference Table: Page 9-222

6. THEORY OF OPERATION

The discrete scatterer target scintillation model is based on the premise that a target can be represented as an ensemble of scattering centers. These scattering centers are assumed to be sufficiently small that they can be represented by impulses. Therefore, this model can be described by the following expression:

$$g(t) = \sum_{n=1}^{N} \sqrt{\sigma_n} \delta(t - t_n)$$

where σ_n is the radar cross section of the nth scatterer t_n is the time delay of the nth scatterer $\delta($) is the Dirac delta function.

The Fourier transform of the above expression is given by the following equation:

$$G(f) = \int_{-\infty}^{\infty} \sum_{n=1}^{N} \sqrt{\sigma_n} \quad \delta(t - t_n) \quad e^{-j2\pi ft} dt$$

$$G(f) = \sum_{n=1}^{N} \sqrt{\sigma_n} e^{-j2\pi ft} n$$

In the target model the following equations were used in evaluating the target response in the frequency domain.

$$X(K) = G_{\epsilon} \text{ (ELANG) * } G_{\psi}(ANGTGT)* \sum_{J=1}^{\sqrt{\sigma_{J}}} \cos 2\pi K(FI+FSTRT) t_{n}$$

NSCAT

$$Y(K) = G_{\epsilon}(ELANG) * G_{\psi}(ANGTGT) * \sum_{J=1}^{\sqrt{\sigma_{J}}} \sqrt{\sigma_{J}} SIN 2\pi K(FI+FSTRT) t_{n}$$

where:

K is the frequency index
FI is the frequency increment
FSTRT is the starting frequency
FSTRT = FO - FEXT/2

 \mathbf{G}_{ψ} is the antenna azimuth gain function \mathbf{G}_{ℓ} is the antenna elevation gain function

 $ELANG = SIN^{-1} (HTGT/RTGT)$

 \boldsymbol{t}_n is the time displacement of the scatterer

$$t_n = \frac{1}{0.149896} RTGT + TSCAT(2,J)*COS(\theta-\emptyset-TSCAT(3,J))$$

Figure TARGET-1 Target Model Geometry

, (

, (

2272	SUEKULTINE TAKHET (X,Y)
()	CLIMMUNZBURIZ ENTEROUP, TSCATES, 1001
2014	EWELVALINGE (BKIE 3), FO 1, C BKIE 5), FEXT
75	* (if 11), f1),
2010	# C bK1(211, 16MY), C tK1(10), HIGT
.311	* C BRICIOT), RIGIO 1, C BRICIOSI, ANDIGI
ei i.	* C EKICLOWY, TOKINT), C EKICLES, ACOU
To	# CONSTITUTE BECAT FOR CRITICAL TOTAL
1000	• • (thi(10), 11Mt)
464	CIMENSIUM A(L) , Y(L)
4.14.674	UAIA 1414.1914144.9N1445.9N144./->+1.4U/
2000	LATA P12/0-22 31053/
: 4	· ·
2.00	Tother
46.890	00 10 At
	.27
2661	4-127
	10 c (v=1
,	L
4 to 64 A	IC CONTINUE
	atto = itia(text / ti)
<u>.</u>	ation = factor.
٠, ١	16+18= 16+182*c
6675	at fat client seed of. If 40
£ ~ .	
A 4. 4.	ecc ti d=49ist to
. . •.	2(-)-0.
	Y(J)-C.

AUTOFALIA CHAFT SET - FALZSCE FALSIM

U. 11/12

. . .

of the tree.

A OPET LASTING

```
YINJ=YINJ+24 4-128
. 4.4
                     ILBERTUS
2436
                     CLECT*ACLIE-18*ASPEC
,431
                     UN=SN*ALUEL+TEMF*ASUEL
2428
                      K=K+KLTL
ددين
                 4. U CLINIANCE
4
245%
                      18 (18402-06-1) (U TI 200
عار به ج
                      11 ALS=2
437
                      remitte
 1450
                      Killer-1
 2450
                      DENAL SUPPAGENCEPH
 2440
                      LLLFF=-LLLPF
 441
                      or to 11
 . 44.
                  Zer Linkship
 e4 5
 . 4.,,4
                       AIMISON = EUCLIMETS)
 244
                       Atii194)=-61*6LGAT(GiT5/2)
 _4,40
                       x11:1451 = 11
 2441
                       Y (MANUEL X CARAST
 ٠٠٠ خ ،
                       Y(11244) = A(11244)
 £ 4.4°
                       YERROLD - AURIEUS
 1911
  . . . 1
  4 - . .
                       A Charte
  4.
                        :1:
  . ... ..
```

SUBROUTINE WEITRE

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
WEITRE	LTI-1 or LTV-4	221
WEITCP	LTI-1 or LTV-4	222
WEITMP	LTI-l or LTV-4	223

2. PURPOSE:

This subroutine is used to represent (1) a linear time variant device in terms of its measured transfer functions or (2) a linear time varying device in terms of its measured gain (complex) as a function of time.

3. INPUT PARAMETERS:

Name	<u>O/R</u>	<u>T</u>	Description
NPWT	R	I	Number of points used to specify the weighting function
WT	R	F	Array containing the specified weighting function. The specification for the Jth sample is the following:
			WEITRE or WEITCP
			WT (1,J) = Real component
			WT (2,J) = Time
			WT (3,J) = Imaginary component (WEITCP only)
			WEITMP
			WT (1,J) = Gain
			WT (2,J) = Time

WT (3,J) = Phase angle

ORIG O F Amount the independent variables of the weighting function is to be shifted.

4. CALLING SEQUENCES:

Real Weighting Function

CALL WEITRE (X, Y, \$mmmm)

Where: X contains the Input Waveform - R
Y contains the Input Waveform - I
X contains the Output Waveform - R
Y contains the Output Waveform - I

Complex Rectangular Weighting Function CALL WEITCP (X, Y, \$mmmm)

Where: X contains the Input Waveform - R
Y contains the Input Waveform - I
X contains the Output Waveform - R
Y contains the Output Waveform - I

Complex Polar Weighting Function CALL WEITMP (X, Y, \$mmmm)

Where: X contains the Input Waveform - M
Y contains the Input Waveform - P
X contains the Output Waveform - M
Y contains the Output Waveform - P

\$mmmm is the number of the statement to which control is transferred if an error is detected. in the input data.

5. RESTRICTIONS, REQUIREMENTS, AND MISCELLANEOUS DATA

- a. The input weighting function independent variable must be monotonically increasing, except that two adjacent points may be specified with the same value. In this case, if the input value to be weighted falls exactly on that point, the first dependent value specified will be used.
- b. If the extent of the weighting function does not include any part of the input data, the subroutine will perform a nonstandard exit.

- c. If the extent of the weighting function contains only a portion of the input data, all other input points are set to zero.
- d. The subroutine performs a linear interpolation between specified points.
- e. Flow Chart: Page 9-57
- f. Cross Reference Table: Page 9-215

6. THEORY OF OPERATION

The basic mechanization equations for each entry point are as follows:

WEITCP:

$$X(J) = X(J)*XWT - Y(J) * YWT$$

 $Y(J) = X(J)*YWT + Y(J) * XWT$

A table lookup/linear interpolation scheme is used to determine the complex weight, XWT + j YWT. The value of the independent variable used in computing the weight for the Jth sample is given by the following expression:

where: XORIG = Independent variable for first element of the input arrays.

DEL = Independent variable increment between samples of the input array.

WEITRE:

$$X(J) = X(J) * XWT$$

$$Y(J) = Y(J) * XWT$$

The procedure for determination of the weight, XWT, is the same as that described above except YWT is not computed.

WEITMP:

$$X(J) = X(J) * AMPL$$

$$Y(J) = Y(J) + PHAS$$

A table lookup/interpolation scheme is used to determine the complex weight AMPL * EXP (PHAS). The procedure for determining value of the independent variable used in computing the weight is described under WEITCP.

```
TUCHUUSHAL WESSEL ( X. Y. .)
11 1
                                                                                            4-133
112.
              .... This subjectine Perferms a well-mind translate on the short merays
41.00
              C. A AND Y. COING INC WEIGHTING AFRAY. WI. THE METCHTING CHEFATION MAY
1101
              C. SC PENTONMED AS FRAL UN CEMPLEX ENLISTED OF COMPLEX OF COMPLEX ENESTEDS
              U. OF MACRITUDE AND CHASE ON MAGNITUDE ARE PRADE THEISTED. *********
1100
1100
                    CLMECTIVELKIZEKI (500)
A 1 Um
1700
                    Dimetation Atti, Yttl: W113-100)
                                                                                         WHTU4
                   OCUULVALLINGE IPALL 211,15MY
1700
                                 (BKIT 371, NEWT
                                                        I. TORIC SOLE CRIO
1100
                                 (BK1(201), WT(1,1)
170.
                    UNIA N143+N144+N145+N140/-3,-2,-1,U/
1100
                    1.14 A1/7.4505-0-4505/
11/1
                                                                                            -60
                    ALLTO = 10
1171
                    C. 16 5
                    culty weather ( x, Y, +)
1170
                    4661+ = 4
111-
                    .. 1, 5
411
                    LINITY MEATHER TAR TO 43
111.
                    LULIN - J
1111
                  : li = Alabeti
                    1 - x (14444 - 1 KIL
4114
                    ar = Elle(Xlab4a))
41.1.
                    TEXT = 1 + II#FELATINE)
. . . .
                    in Christolica ocko destablications and laborate paralle be la boo
10.2
                    arthogonatests and textollows ( , sewill to to med
11.5
                    mr. 1: (c., 1001)
11. ~
                mer accellable
                      1=m1(...)=mi(...)
                     it to become on I carlo rear
                     L PES-IALL . CHWT(3.1)1/01
                      Crown of the
                     Action See
                     1 - 1
                    21 - 5 -
                    40 - 100
                       1. . . . . .
```

AND THE COMPANY OF THE WARREST THE COMPANY OF THE C

I C. ICLEAR AND PROGRESSION THE ARTHUR ARTHUR AND ACCURATION OF THE LOCAL PROPERTY CAN INC.

we will a famo creation will did to refer the after the

...... / / / /

SUBROUTINE WVGU1D

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number
WVGUID LTI-1 510

2. PURPOSE:

This routine is used to simulate a length of waveguide for the purpose of predicting the effect of nonlinear phase behavior on waveforms.

3. INPUT PARAMETERS:

Name	<u>0/R</u>	T	<u>Description</u>
RFF	R	F	Center frequency of the electro- magnetic wave propagating in the waveguide
CFREQ	R	F	Cutoff frequency of the waveguide
XWLENG	R	F	Length of the waveguide

4. CALLING SEQUENCES:

CALL WVGUID (X, Y)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

X contains the Output Waveform - R

Y contains the Output Waveform - I

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. References:

Atwater, H. A.; <u>Introduction to Microwave Theory</u>, McGraw-Hill, New York, 162, Chapter 3.

- b. Flow Chart: Page 9-116
- c. Cross Reference Table: Page 9-223

6. THEORY OF OPERATION

A hollow rectangular perfectly conducting waveguide excited in only one of its modes has a propagation function which is described by the following expression:

$$\beta_g(f) = \sqrt{k^2 - k_c^2}$$

where: $k = 2 \pi f \sqrt{\mu_0 \epsilon_0}$

$$k_c = 2 \pi f_c \sqrt{\mu_0 \epsilon_0}$$

f_c = cutoff frequency

Substituting $\frac{1}{C^2} = \mu_0 \epsilon_0$ the following expression is obtained:

$$\beta_{g}(f) = \frac{2\pi}{C} \sqrt{f^2 - f_c^2}$$

Therefore the transfer function for a length of waveguide considering only the phase term is given by the following expressions:

$$G(f) = e^{-j\frac{2\pi}{C}} \sqrt{f^2 - f_c^2}; f_c < f$$

$$= e^{\frac{2\pi}{C}} \sqrt{f_c^2 - f^2}; f \le f_c$$

where z is the length of the waveguide.

05/11/75	INPUT LISTING	AUTUFEUW CHART SET - FWUZSCE RAUSIM
CARD NO	****	4-157
3074	SCORLUTING WV	COIL (X,Y)
3075	CEMMENVBERIV	VAK(500)
3075	DIMENSION ALL	1,7(1)
3077	EWUIVALENCE (VAR(140) , (9624) , (VAR(147) , XWELDO)
3076	EUUIVALENUI (VAR(3) . FEED)
3079	DATA NIMS+NIM	4+N195/~1+~?+~1/+(NS1/3+3233/+P12/0+263185/
3010	* Mills: Chreytoni) . XMEUNG (METERS) . UNSTENANUSECZNETER)
1500	CF=-CFKEW#CFK	r 4
3002	11=CND+*ANLEN	ж.
دەباد	12= 11*F1.	
3004	APTS=BUBL(XIA	(1931)
وياباد	FF L C = X (N1 44)+	KFFU
موررد	U(L1=X(N195)	
3057	114 - 200 J-1. 101	is
3000	12-1KL4#1KEW	
والالالا	1+(+2-1+.0+2)	COMC 100
ناجاند	THC [A-11*5UK]	(F2-CFa)
3041	Theta- (focta	-tluat(Itix(Itata)) * Pla
31.76	C=CLS(Intia)	
50¥3	5=-110(1001m)	
والميدال و	note the	
26416	gens C-cartonia + St	KT(CF2-F2)}
5046	\$= \. \	
2041	100 181-2(0)	
3040	λ(J)÷λ(J)+c-Y	({U)*s
3044	Y(U)=#6H#2+4(J)*(
2400	FREGSFRE, +OFE	, t
3101	. HO EUNTINUE	
31c.	KLTUFN	

SECTION 5

CONNECTION MODULES

This section includes all those modules that bind the stimulus/transfer function modules together in order to form the core of the simulation. The functions performed by these modules include array addition or array multiplication (CONV) and conversion between time and frequency domain representations (ZFFT).

SUBROUTINE CONV

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
CONV	Connection	204
CONVMP	Connection	205
DIVA	Connection	206
A DDA	Connection	207,239

2. PURPOSE:

This subroutine serves to connect simulation modules together by performing array addition, multiplication and division.

3. INPUT PARAMETERS:

None

4. CALLING SEQUENCES:

Complex Rectangular Array Multiplication

CALL CONV (XI, XQ, FI, FQ, \$mmmm)

Where: XI contains the Input Waveform - R Complex XQ contains the Input Waveform - I Array #1 FI contains the Input Waveform - R Complex FQ contains the Input Waveform - I Array #2 XI contains the Output Waveform - R XQ contains the Output Waveform - I

mmmm is the return address for a non-standard return

XI(J) = XI(J) * FI(J) - XQ(J) * FQ(J)XQ(J) = XI(J) * FQ(J) + XQ(J) * FI(J) Complex Polar Array Multiplication

CALL CONVMP (XI, XQ, FI, FQ, \$mmmm)

Where: XI contains the Input Waveform - M Complex

XQ contains the Input Waveform - P Array #

FI contains the Input Waveform - M Complex

FQ contains the Input Waveform - P Array #2

 ${\tt XI}$ contains the Output Waveform - ${\tt M}$

XQ contains the Output Waveform - P

mmmm is the return address for a nonstandard return.

$$XI(J) = XI(J) * FI(J)$$

$$XQ(J) = XQ(J) + FQ(J)$$

Complex Polar Array Division

CALL DIVA (XI, XQ, FI, FQ, \$mmmm)

Where: XI contains the Input Waveform - M Complex

XQ contains the Input Waveform - P Array #1

FI contains the Input Waveform - M Complex

FQ contains the Input Waveform - P Array #2

XI contains the Output Waveform - M

XQ contains the Output Waveform - P

mmmm is the return address for a non-standard return

$$XI(J) = XI(J)/FI(J)$$

$$XQ(J) = XQ(J)-FQ(J)$$

Array Addition

CALL ADDA (XI, FI, \$mmmm)

Where: XI contains the Input Waveform

FI contains the Input Waveform

XI contains the Output Waveform

mmmmm is the return address for a non-standard return

$$XI(J) = XI(J) + FI(J)$$

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The difference in the independent variable increment of the input arrays must be less than or equal to 10^{-4} .
- b. The output is set to zero for any cases where the independent variables of the two arrays do not overlap.
- c. When polar operations are performed the phase angle is measured in degrees.
- d. If the arrays do not overlap, or if they must be shifted more than 4097 increments, the problem will abort and the non-standard return will be used.
- e. Flow Chart: Page 9-60
- f. Cross Reference Table: Page 9-216.

6. THEORY OF OPERATION

Depending upon the entry point through which the subroutine is called, a control flag is set to an integer number 1 to 4. This number indicates to the subroutine the type of operation which is to be performed, either rectangular multiplication, polar multiplication, polar division, or addition. After the flag is set, the two arrays are examined (beginning at statement number 1000) to verify that the values of the increments of the two arrays are within 1/10000 of each other. The arrays are inspected to verify that they overlap, at least in part, and one array is shifted, if required, to align the two origins. If the increments are not within 1/10000 of each other, or if the arrays do not overlap, or if the origins of the two arrays are not within 4097 increments of each other, the problem is aborted. Otherwise, the proper arithmetic manipulation is performed, according to the value of the control flag and the results are placed in the X array(s). The F array(s) remain unmodified after exit from the subroutine. For the divide operation, the X complex array is the dividend and the F complex array is the divisor.

```
The Charles A Charles Harris . * )
                                                                                            . .
                                                                                          Colonials Stalematers Herry Co. . . . 1967
                                                                                          . . .
                                                                                            15 4-100
                                                                                          Leading to account the same
                                                                                          The Later
 1. -.
                                                                                         Level teaks charle y and
  4.014
                                                                                         14 . . . .
  1000
                                                                                                1. 1000
  1 ...
                                                                                           400
  16.90
                                                                     James California
                                                                                       The second of the second of the second
                                                                                            is the action (also)) to the con-
                                                                                           Control of the second section of the second 
                                                                                            Service (Althory)
                                                                                             The Brank Off Calvert
                                                                                             CARACTER + XICHANA * FLATCHXI)
                                                                                            TO THE PROPERTY OF THE PROPERTY OF THE ATTENDED A
                                                                                             Contains market cares
                                                                                               ALTONIANA CENERALA OFTEN X XICHIYS) + CONO.
```

1x1=1+1F1X((Ck1GN-X1(N194)) / X1(N195) + 0.40)	
1855 1F(1X1+NP15-GT-NX1+1) NPTS=NPTS-1 1859 1F(1F1+NPT5-GT-NF1+1) NPTS=NPTS-1 1850 WHITE(6+50) NPTS+1X1+1F1+NX1+NF1+URIGN+ENDATA+X1(N194)+F1(II 1851 50	
IF (1F1+NPTS.GT.NF1+1) NPTS=NPTS-1 ICGC	
1000 WRITE(0,50) NPTS,1XI,1FI,NXI,NFI,URIGN,ENDATA,XI(M194),FI(M100) 1000 SU FLEMAI(IH ,5112,4c14,6) 1000 Al(N193)=BBUL(NPTS) 1000 XI(N194)=URIGN 1000 IF(1UUN,20,4) OU TO 700 1000 701 X,(N193) = XI(N193)	
1:01	
1662 Al(N195)=BBBB(NPTS) 1600 XI(N194)=BBBB (NPTS) 1600 XI(N194)=BBBB (NPTS) 1600 XI(N194)=BBBB (NPTS) 1600 XI(N194)=BBBB (NPTS) 1600 XI(N195) = XI(N193)	N174)
1500 $XI(N194) = 0.00N$ 1co4 $IF(ION_0 = 0.4) OU TC 700$ 1500 $701 X_0(N_195) = XI(N193)$	
1000 $701 \times (N_195) = \times 1(N_193)$	
$701 \times (N_145) = X1(N143)$	
$x_{k}(N194) = x_{k}(N194)$	
1007 TOU COMPANDE	
1:00	******
1064 DE 20 JEINNETS	
1670 Gt TC (101+102+103+1041+1CCN	
1.71 C	
1672 ICE CENTINE	
1175	
$\lambda_{1}(j) = A*FI(IFI) \sim XC(IXI)*FC(IFI)$	
16/5 AL(J)= A*(c(l1) + Xc((XI)*F1(1F1)	
telo ou lu 2:	
i. 77	
ACA CONTINUE	
10/9 A1(J)= A1(1X.)*F1(1F1)	
1(c)	
and the above	
A. S.	
acc Cobiitor	
1 AI(UI= AI(UX,)/FI(IFI)	

```
100
                   ACCUSE ACCIAISTFACTERS
                                                                                5-6
                    GE 16 45
101 .
100/
               104 CUNTINUE
1003
                    x1(J)= x1(1X1)+F1(IF1)
1554
1040
                 25 IAlalal+1
1004
                    161=161+4
1.7.
1043
                 20 CONTINUE
1374
                    WKITE (0,50) IXI-IFI
1091
                    KETUKN
1640
1057
                200 WK17c (0,201)
                201 FUFMAT( * INDEPENDENT VARIABLE INCREMENTS DU NOT MATCH *)
1040
                202 KLTURN 1
1699
1400
                    LNL
```

į

SUBROUTINE ZFFT

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
ZFFT	Connection	202
ZIFFT	Connection	203
IFT	Connection	Not User Referenced

2. PURPOSE:

This subroutine performs the finite discrete Fourier Transform (ZFFT) and inverse Fourier Transform (ZIFFT or IFT) of a sequence of input data samples. The mechanization is based on the Fast Fourier Transform (FFT) algorithm developed by Langdon and Sande from the approach of J. W. Tukey and J. Cooley.

3. INPUT PARAMETERS:

Name	<u>0/R</u>	<u>T</u>	Description
N2	R	I	Power of 2 which determines the total number of prints (NTHPOW) transformed by the FFT.
FSHIFT	R	F	Frequency shift to be applied to frequency domain representation of the waveform.
ICPLXI	0	I	Control flag which indicates the nature of the inverse transform (ZIFFT) input data = 1 complex waveform Z = X + jY = 0 real waveform Z = X
ICPLXF	0	I	Control flag which indicates the nature of the forward transform (ZFFT) input data = 1 complex waveform Z = X + jY = 0 real waveform Z = X
SIMBW	R	F	Width of output spectrum when forward transform (ZFFT) is performed

Name

O/R T

Description

INORM

R I

Normalization flag

= 0;
$$f_N = TI$$
 $\frac{ZIFFT}{f_N} = FI$
= 1; $f_N = 1.0/NP$ $f_N = FI$
= 2; $f_N = TI$ $f_N = 1.0/(2**N2)$
= 3; $f_N = 1.0/NP$ $f_N = 1.0/(2**N2)$
= 4; $f_N = 1.0$ $f_N = 1.0$

4. CALLING SEQUENCES:

Fourier Transform

CALL ZFFT (X,Y)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

X contains the Output Waveform - R

Y contains the Output Waveform - I

Increase Fourier Transform

CALL ZIFFT (X, Y)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

X contains the Output Waveform - R

Y contains the Output Waveform - I

Inverse FFT only

CALL IFT (X, Y)

Where: X contains the Input Waveform - R

Y contains the Input Waveform - I

X contains the Output Waveform - R

Y contains the Output Waveform - I

This entry point is used in computing antenna patterns and is called by ANTPAT module only.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The maximum value of N2 is 13 which gives 8192 transformed samples.
- b. The number of points transformed by the FFT algorithm is 2 raised to an integer power. If the number of input samples is not equal to a power of 2, then zeros are used to fill in the array elements not defined by the input data; i.e., zeros are placed in the input array locations from NP + 1 to 2**N2.
- c. When the Forward Transform is executed the output spectrum is shifted by FSHFT and has a width of SIMBW: i.e., the output spectrum extends from FSHIFT SIMBW/2 to FSHIFT + SIMBW/2.
- d. When the Forward Transform is executed the origin of the independent variable X (N194) is set to the discrete frequency nearest FSHIFT - SIMBW/2 since the FFT output consists of a discrete set of frequency samples. When the Inverse Transform is executed the origin of the independent variable X(N194) is set to zero.
- e. The independent variable increment is set to 1.0/ (X(N195)*(2**N2POW)) for both the forward and inverse transform.
- f. When the inverse transform is executed the input spectrum is shifted by FSHIFT before the FFT is executed. The value of FSHIFT when the inverse transform is performed can be different from the value used when the forward transform was performed.

The following relationship must be satisfied

$$-FS/_2 \le FSHIFT + SIMBW/_2 < FS/_2$$

g. Flow Chart: Page 9-125

h. Cross Reference Table: 9-224

6. THEORY OF OPERATION

a. ZFFT - This entry point connects the time domain representation of a waveform into the corresponding frequency domain representation. The Fourier transform relationship is given by the following expression:

$$S(f) = \int_{-\infty}^{\infty} s(t) e^{-j2\pi ft} dt$$

The basic mechanization equation used in computing the discrete Fourier transform is the following:

$$S_k = f_N \sum_{0}^{NP-1} s_i W^{-k_i}$$

where: k is the frequency index 0 k NTHPOWi is the time index 0 i NP -1 f_N is the normalization factor $W = \exp(j^{2\pi}/NTHPOW)$

In general s; and Sk are complex arrays.

b. ZIFFT and IFT - These entry points connect the frequency domain representation of a waveform into the corresponding time domain representation. The inverse Fourier transform relationship is given by the following expression:

$$s(t) = \int_{-\infty}^{\infty} S(f) e^{j2\pi ft} dt$$

The basic mechanization equation used in computing the inverse discrete Fourier transform is the following:

$$s_i = f_N$$
 \sum_{0} $S_k w^{ki}$ $0 \le i \le NTHPOW-1$

The only difference between ZIFFT and IFT is that IFT performs the inverse FFT only and no normalization is performed. The FFT mechanization utilized in this module evaluates the above expression directly. In order to compute the forward transform using the same inverse FFT the following expression is used.

$$S_{k} = f_{N} \left[\sum_{i=0}^{NP-1} s_{i} * W^{ki} \right]$$

```
Decree Clabe affi (X,Y)
                                                                    5-12
 COMMONZORKIZ EKI(500)
 COUNCY PROCURIED CLEE-SUCL-CS-SN-C1-PIC-SCALE
                                                                      31
 cutivatings ( Nz . + kl(1)) . + (+thatTankl(ab)) . (acrexiankl(6)).
            (ICPLAF, ERI(7)) . (SIMIN, ERI(4)) . (TINIAN . ERI(4))
 Unin 112/002131053066700/
                                                                      51
 UATA 1.145+4194+1.145+1.146/-5+-++-1+C/
 ELEKE X(1) + Y(1) + 1 + 11 + 12 + 12 + 19
AMERICAN PAUSA SEMECCA ECIAL
rutaVALITUE (U.U.), (NAPOWOUS), (FASS, Jul).
i toxicThealte (EchoThealte (ConcoCed4); (CCAlceater)
. (IASteday) , (Aledia) , (Captale tomption telebras
     (Leventety sees to the Intellet River to the secto to go to to
- ENCIPACINGE (LEMAL(II)) (LIDAL(E)) (LIDAL(D)) (CIDAL(D)) .
. (Lagetillightelicity) + (Lagetillicity)
11 40 4 1
.......
 La la Y Little (A.Y)
 .....
 1, 4, 4
 Same to State of the
 ....
```

į

	277	4	CUNTINUE	
2	3278		NTHPUW = 2** N2	5-13
3	279		NTTL2=NTHPuW/2	
3	280		NP= BOCL(X(N193))	
3	201		GC TC(502,501,411),1FLAG	260
٤	528 2	502	k1=X(N145)	
2	3283		R2=1.0/R1	
2	264		IF(SIMBW.CT.k2) SIMBW=R2	
2	3285		1F(INCRM.eq.1.GR.INCRM.EQ.3) R1=1.U/FLUAT(NP)	
	3286		1F(1NURM.EW.4) R1=1.0	
٤	267		1F(1CPLXF.EG.0) GO TC 700	
3	1286		UU 11 J=1.NF	
٤	1254		X(J) = X(J) * k1	
2	1290		Y(J)=-Y(J)*K1	
4	3241	11	CUNTINUL	
٤	292		GU TU 761	
2	3243	7 00	DU 702 J=1.NP	
) <u>.</u> 44		X(J)= X(J)+K1	
3	245		Y(J) =0.0	
3	1246	7∪2	CENTINUE	
-	297	70 i	CENTINUE	
2	1291		1FENTHPUW-NP) 32.31.30	
3	1244	باذ	£1=NP+1	
2	3300		DO 10 J=L1,NTHPOW	
3	301		X(J) = 0.0	
-	302		$Y(J) = \psi_{\bullet} 0$	
4	د030	10	CONTINUE	
2	1304		GCTC 500	
2	305	32	WKITE(0.33) NP.NTHPOW	

i

00/11/15	INPUT LICTING	AUTCFLLW CHART SET - FWU/SCL		
LARU NO	****	CONTENTS	41-ى	****
3300	J3 FURMAT(*)	NUMBER OF INPUT SAMPLES*,14, *EXCLEUS SPECIFIED TIME*	•	
7 ن دُد	* * SEAN=2*	*NZ= * , 14)		
، اڈر	11 CUNTINUE			
⊌باؤد	w(T(500			
3310	hus Continue			
11در	at (Ntalla	NTHFLW-CK-N2-EU-13) GC TC 344		
5514	1=1,2+1			
دووو	WKiT: (0,3)	10) N2		
بدغ در	LEC FLAMAT ()	THE SIZE OF THE TRANSFERM ARRAY HAS FEEN EXPANDED.		
4 ډ کډ	* *TU 2***;	12)		
2210	66 TC 4			
5541	395 KI= X(4194)+FSH1FT		
بالخر	Ke=-flla]{1	41TL2)*X(N145)		
2214	WSHIFT= IF.	1X((E1-F2) / X(N195) + 0.40)		
3320	tan ka mi	X(N445)/2.0		
3521	(1= k1 +)	X(N195)/o		
3322	by Kothet X(N)	1951* FLEAT(NSHIFT)		
3375	WEITE (0.460)	u) NSH1FT+NP+P1+R2+R3+B1+T1+X(N144)		
4 ـ رز	HITTAMALE OF	,2110,0E15.01		
33.4	11 (n.z. 60 b.	ANU.KJ.LF.T11 GU TU OC		
ن ۽ د ز	16(K3.L1.0)	1) NSH1FT=NSH1FT+1		
33.7	Ir (ruscist	i) NoHIFT=NSHIFT-i		
، ، د ر	UL 15 59			
٠٥, ٩	ac It (45hIt la)	LT.() 66 TC 464		
ט.נג	L2=fek +feUhl1	+1		
2001	LDANE			
12.04	A) (Li .Lt .lvi	IMPUM) Gt: 10 370		
23.3	11 (ive)	3) GC TC 360		
, o 4	h, =1+. +1			

```
دووز
                     WELTE (0,310) NZ
                     60 TO 9
3330
               380 WRITE(0,385) L2,NTHPOW
3337
3336
                385 FORMATE THE NUMBER OF ARRAY ELEMENTS REQUIRED AFTER HETERODYNING.
بزوو
                    *15, *EXCELUEU AVAILABLE STORAGE ... ARRAY REDUCED TG ... 15.
3340
                    . . by DELETING HIGH FREQ TERMS!)
                    LOENTHFUW-NSHIFT
3341
3342
                     Lz=NThPuW
                . 70 IF (NSHIFT . EQ. 0) GCT0 430
3343
                     UL 460 L1=1.NF
3344
                     AlL()= X(L3)
3347
                     Y(LZ)= Y(L3)
3346
                    Li=Lz-1
3341
                     L 1=L 3=1
3340
                 SOU CENTINUE
3344
                     DE 401 LI=1.NSHIFT
3350
                     A1111=0.0
3354
                     Y(L1)-0.0
2222
                 401 CUMILITADE
2,53
                450 Laters + Manage 1+1
3354
                      IF (12.01.NINPLW) GCTG 403
2225
                     DU HOZ LIELZANTHPOW
33:6
                     X(L1)=0.0
3351
                     Y1411=0.0
3361.
                 HUL CENTIAUE
3354
                     11 1 41 2
33(N)
                -04 IF (02-15-13) 60TO 407
3361
```

3362

3303

N== N=+1

WKITC (0) STOP HZ

5-15

05/44/75	INPLI LIS	FING AUTOFLOW CHART SET - FWEZSCL I	RAUSIM 5-16	
LARU HU	****	CUNTENTS	-	***
9504		Guto 9		
رەدر	401	Lo-NY+NSH1F1		
ەندر		to mub t.=1:E3		
اعدر		X(L1)=X(L1-N5HIFT)		
المحد		Y(L1)=Y(L,-N5H1F1)		
3364	46.0	CONTINUE		
3376		Lo÷(o+)		
2011		DE NOS EX-ES,NTHPCW		
- ا ډر		X(u1)=0.40		
25/2		Y(L1)-0.0		
5 14	\$\$\$\$\$\$	COMPage 2		
3313		Cl-laction(r)		
. 310		f. (Correct) Than		
- 211	***	FLEMATICE NUMBER OF LUCATIONS FEED AFTER HETEROUPHINGS.		
٦٠٠٠.	*	*CAUCEDED AVAILABLE STURAGE*.15.* CLEMENTS DELETED*.		
14 در.	44	*FRUM GEOATIVE END OF ARRAY*)		
2300	٠, ١	ENTENDE		
300 4	1	1 (1612) 1-12-13 (66 Th 410		
, j. '	ı	r = Glightt w+.		
23.0	ı	Control decontitud		
±3 ≒	ι	v. (J		
. A. D	,	(U)- 0.5*(X(U)+X(U3))		
, 560	,	((L.))-X(J)		
I	٧	(0)= 0.5+(Y(0)-Y(E;))		
23. 1	•	(()) = -Y(J)		
200	, t. (contract		
١٧٠	4.kc (Setzmot		
2.541		e 2- 2 (1/142)		
7 1.		r (alient at une acheane RMack ad) in 7=1 auzher at (NTHE W)		

د ۱۵۹۰	1r (1m(KM-ck-4) K>=1-0	
: P44 C C	t1=NTTt.	5-1-
2343	OC 409 J=1,NITL2	
2546	c1=c1+1	
3391	F. 1 = X (L 1) + F 3	
3340	K=+Y(L1)*K3	
پيون	A(E1)=A(U)+Ko	
3400	Y(L1)=Y(J)+K3	
3401	x(J)=+1	
2401	Y(J)=K2	
را) پور	ALLA CENTINUE	
5-1	WAL CONTINCE	1050
21 + U5	X(films)=ccom(mfmpcw)	
3900	x 4162 44 1= U + O	
2401	500 CLATINUE	
يام المحد	X(((145)=1.0)(((10AT(NTHPLW)*X(N145))))	
3464	N4FUW = N2 /2	
2410	IF (MAFUNAENAU) OL TO 3	
3411	LU 2 FASS=1,N4FUW	1120
3412	NYTL1H=2**(N2 -2*PASS)	
2413	LEGGTH=4*AXTLTH	
3-14	SCALE=P12/OBL2(FLEAT(LENGTH))	1160
3415	CUEL=UCUS(SCALE)	1151
2410	SUEL =USIN(SCALE)	1152
3417	CS=1.000	1153
3410	Ste≐ 0 ≥000	1154
J+14	DC 2 J=1+NATCTH	
.54 ₆ U	CI=CS	1180
3421	51=2N	1190

00/11/75	1NFUT L151140	AUTUFLUW CHART S	LT - FWC/SCL RAUSIM
			5-18
LAKU NU	***.	CUNTENTS	****
3466	(, =(∪ * (→=	·SN×SI _V	1206
3420	¥ناران ۾ ماڻين	U2#5N	1710
24,44	L >= L1 + L1 -	51*52	1220
24.7	\$2-62*51*	o/*€1	1230
34.0	CreCS		1240
24.1	(=:5*0.2	U~51,*50g U	1250
ಎ ಇ ವರ	Six=CI#Siz	E+SN+CDEL	1260
2479	polici Sec	CC=CCNOTH+NTHPGW+CENCTH	1410
	Ji = Stat	CC-ELMUTH+J	
34.54	Ja ÷ dik+N	XILIn	
3422	us - Us4tv	iATETH	
3437	14 - 15th	Alkin	
يه ريهان	F.1 = X(a)	1+x(J*)	
24.00	Ha = Xtal	1-X(35)	
57 A	r. v = x ()z	1+4(34)	
59-57	164 = X ().)-x(34)	
3 4 10	11 = X(J)	J+Y(J5)	
34.74	i. = Ytu	()~Y(J3)	
3 *** *** **	15 - 1134) * Y (J~)	
jan 1	14 - 110.	. 1-Y(34)	
35 4.4 4.4	A (3/1) - 1	.1+ ₆ .*	
2443	Y(J1) - i	(1+1)	
J*******	Aqui)= (1	(* {} ¿~14}=±1*(12+64)	
1.414	Y(,!+)=	(*(h,-14)+(1+(12+)4)	
. 44.44	≥ (u,) = (*(+1-13) = \$1*(11-13)	
3447	Y(u.) - S	+ (r.1-r.a) + C.2+(11-1a)	
344.	A(JH) - V	14(1,+14) - 534(1,-14)	
14 M P	Y (30) 🚊 .	1.18 (c), \$ [4] \$ (C)\$ (I cop 4)	

. Latelyletic

```
00 4 J=1.NTHPUM.2
3456
                    K=X(J)+X(J+1)
3455
                    11+L)X-(L)X=(1+L)X
3454
                    X(J) = F
3455
                     I=Y(J)+Y(J+1)
3450
                     Y(J+1)=Y(J)-Y(J+1)
3457
                  + Y(J)=I
3456
                  5 00 6 3-1-14
3459
                     L(J)=1
3460
                   o If(J.Lt. N2 ) L(J)=2**( N2 +1-J)
3461
                     13=1
3462
                     UL 7 J1=1,L1
3463
                     υυ 7 Je=J1,L2,L1
3404
                     UL 7 J3=J2.L3.L2
3405
                     UL 7 J4=J3,L4,L3
5400
                     UL 7 J5=J4,L5,L4
3467
                     UL 7 J6=J5,L6,L5
3468
                     LU 7 J7=J0,L7,L6
3464
                     UL 7 JE=J7, L0, L7
347u
                     DL 7 J4=J8,L4,L6
3471
                     DC 7 J10=35.L10.L4
3472
                     DU 7 JII=JIC.LII.LIC
3473
                     UC 7 J12=J11+L12+L11
3474
                     DC 7 313=312,E13,112
3475
                     UL 7 JI =J13+L14+L13
3470
                     IF(13.66.31) GC TL 7
3477
                     K=X([J)
347.
                     X(1J)=X(J1)
3474
```

S IFE N2 .EQ.2*N4PUW) GO TC 5

3451

00/11/75	INPUT LISTING	AUTUFELW LMAKE SET - FWUZSC	
CARU NO	****	CINTENTS	5-20
3480	x(J1)=K		
iore	1=Y(1J)		
5482	(16)7=(61)7		
2462	A(7))=1		
3464	7 IJ=1u+1		
3405	If (IfLAG.EG)	GD TU 15	
3446	LI=NITL2		
3467	LL 14 J=1.NTTL2		
3466	L1=L1+1		
3469	R1=X(L1)		
2440	E2=Y(L1)		
3441	X(L1)=X(J)		
3492	A(F1)=A(A)		
2442	14=(C)X		
3444	Y(J)=K2		
3445	14 CONTINUE		
3446	KZ= -X(N145)*FL	CATINTTL2)	
3441	X(N194)=h2		
344E	1F(1FLAURE we3)	60 TC 15	
3.444	NP=IFIX1SIM6W/X	(N19511/2	
3500	FI=F2HIFT-X(NI	95 *NP	
3501	NUMIFIETF1X(FS	HIFT/X(N145))-NP+NTTL2	
35.02	NP=NP*2		
3503	6.=Kl-X(N145)/	2.0	
3504	T1=61+X(N145)/	2.0	
3505	48 K3=K2+X(N145)*	NSHIFT	
3 5 06	WRITE(0,300) N	SHIFT,NP,R1,R2,K3,61,T1	
3507	IF (F3.CE.B1.AN	U.R3.LE.711 GCTC 47	

IF (F.s.LT.bl) NSHIFT=NSHIFT+1

3568

.

.

5 (- 4	1F(K3.61.11) NSH1F1=NSH1F1-1	2-31
510	GCTC 48	
211	47 IF (Numification) CCTU 49	
51.	White(0.20)	
513	to FURMALL! THE VALUE OF NSHIFT IS NEGATIVE NSHIFT SET TO UP)	
514	Gulla be	
515	49 Ll=Nominl+NP	
516	if (Llace-Winkad) GB TU 50	
517	WELL (COST) WEHIETONP	
51c	SI ECEMATCIM .* THE SUM OF ASHIFT .!! O. AND FF .!! O. IS OT ATHROW	
·· 15	*Nothirl Sul To 0*)	
540	No. 1808 18 Tell	
22.1	por Collet 1900	
) See	x(name)=ottle(NP)	
2 *12 4	$X(\{i_1, \dots, i_{r+1}\}) = -X(\{i_1, \dots, i_{r+1}\}) + (NEX/2)$	
55dh	WELL (GOODOO) NSHAHTONFORLONGAK(NAMA)	
シ レン	from the transfer of a pint	
وعود	Non-1+1=-condel+1	
1261	X(J)=X(NSF.1FT)	
5766	Y(q)=-Y(N(q)116 T)	
5524	and contained	
المر أر	15 CCTTINUE	
27.4	At (1801-9(19180)	
ال ال	A(-31-24)=X(-31-24)	
وديد	A(0)740)=X(0)740)	
	· _ 11 · 6	

يروس.

2.100

SECTION 6

PERIPHERAL MODULES

This section includes all those modules that do not participate in the actual simulation process, but serve as the interface between the simulation and the user. In some cases this is as simple as outputting data to a disc file. In other cases the data is processed to extract some parameter, e.g. energy in a waveform, or to map data into a different representation space, e.g. the generation of a probability histogram. The following modules are included in this group:

CLINT

CUMDIS

ERGYCP

PLOTTR

PLTFMT

PTLIST

RTOPDB

KIOIDL

SCANNR

Also included in this group is the module SPCAVG, which is located in Volume III.

The following peripheral modules are related to the bistatic target model and target imaging and are included in Volume I, Part 3:

ERRPRC

(BISTATIC ANTENNA INITIALIZATION)

SUBROUTINE CLINT

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
CLINT	PERIP.	302

PURPOSE:

This subroutine initializes the clutter model scatterers and parameters.

3. <u>INPUT PARAMETERS</u>:

Name	<u>O/R</u>	$\underline{\mathbf{T}}$	Description
LAMBDA	0	F	Wavelength of the transmitted waveform. This parameter is used to compute the doppler shift of weather or chaff clutter.
TCELL	R	F	Range dimension of clutter element.
IDMP	0	I	Output data print flag.
			<pre>IDMP # 0 (a) Scatterer arrays are</pre>
NRCS	R	I	Scatterer RCS probability distribution flag.
RWPH	0	F	Scatterer random walk maximum phase shift. Represents the random motion of cluttr from one transmit cycle to the next.
WNDVEL	0	F	Speed of the clutter volume due to wind, meters/second.

Name	O/R	<u>T</u>	Description
TI	R	F	Time increment between samples (used to compute number of storage cells required by clutter impulse response).
VELANG	0	F	Relative angle of clutter velocity vector with respect to the radar site.
RNEXT	0	F	Range dimension of the clutter volume in monoseconds.
rnøøø	0	F	Clutter volume starting range.
AZEXT	0	F	Azimuth dimension of the clutter volume in degrees
AZØØØ	0	F	Clutter volume starting azimuth angle.
MM	0	I	Number of clutter volume azimuth increments.
ELEXT	0	F	Elevation dimension of the clut- ter volume in degrees.
ELØØØ	0	F	Clutter volume starting elevation angle.
NN	0	I	Number of clutter volume elevation increments.

4. CALLING SEQUENCES:

CALL CLINT (\$NNNN)

WHERE:

NNNN Statement number for abnormal return

5. RESTRICTION, REQUIREMENTS, MISCELLANEOUS DATA:

- a. The clutter model was split into two subroutines in order that the initialization process would be separate and easily changed to allow modeling of more complex clutter environments.
- only by the amount of available disc space and is approximately equal to 160 times the number of blocks of available disc space. The number of scatterers is equal to NN times MM times KK, where KK = RNEXT/TCELL. Other than their product; NN, MM and KK have no limitations.
- c. The random number generator function (RRAND) is called from this subroutine.
- d. The clutter scatterer element arrays are stored in a random disc file, FC = 02, the record size is 500 words.
- e. Flow Chart: Page 9-198
- f. Cross Reference Table: Page 9-234

6. THEORY OF OPERATION

This program can be divided into two functional sections and each will be discussed in the following paragraph.

a. User parameter testing and clutter model parameter calculation. Refer to Figures CLINT - 1(a) and 1(b).

XVLANG The angle between the wind velocity vector and a radial line from the first clutter scatterer element (0,0,0) to the radar.

XVLANG = $(AZ\emptyset\emptyset\emptyset - VELANG)/57.29578$

DOPFRQ The maximum doppler frequency shift due to the wind.

DOPGRQ = -2.0 * WNDVEL/LAMBDA

If LAMBDA is zero this calculation is not performed and DOPFRQ is set to zero.

Figure CLINT-la CLUTTER MODEL GEOMETRY

Figure CLINT-1b CLUTTER MODEL GEOMETRY (PLANE VIEW)

MM If this parameter was not specified it is set to 1.

NN If this parameter was not specified it is set to 1.

KCELL The total number of storage cells required to represent the clutter impulse response. If this parameter exceeds 4096 (half the available storage) then RNEXT is automatically reduced to make KCELL < 4096.

 $KCELL \approx RNEXT/TI$

KK Number of clutter volume range increments.

KK = RNEXT/TCELL

NBLKS The number of random disc records required to store the clutter scatterer. This parameter is arbitrarily limited to 200 and can be increased providing the control cards for DSRN 02 are changed accordingly.

DELAZ Azimuth increment between clutter scatterers.

DELAZ = AZEXT/MM

DELEL Elevation increment between clutter scatterers.

DELEL = ELEXT/NN

ICFLG This parameter is set to 1 if the clutter model has been successfully initialized.

This is tested before CLUTTR can be executed.

MODE This parameter is used to indicate if stationary (MODES) or time varying (MODE=2) clutter is to be modeled. When stationary clutter is modeled certain simplifications can be made in the processing performed in the cultter model routine CLUTTR.

b. Each clutter scatter element is represented by a radar cross section value and a phase angle. These two parameters are converted to rectangular representation and stored in the arrays CLUX and CLUY.

CLUX(J) = A*RRAND(8) CLUY(J) = A*DUM where A = $\sqrt{RCS(J)}$ = $\sqrt{RRAND(NRCS)}$ RRAND(8) = COS(θ) DUM = SIN(θ)

 θ is a sample of a random uniform distribution $300.0 < \theta \le 0.0$

5122	SUBREUTINE C	L]NT(+)				1 0
5123	(LMMUN/bLKI/	CLUX(250),CLUY(250)				(c-9
5124	CCMMEN/BEK./	6K2(5CO)				
51.5	CUMMUNZELKENI	L/ IUMF(8).UUM				
5126	DIMENSION CS	CAT (506)				С
5127	EWUIVALENCE	(CLUX(1),CSCAT(1))				
5120	E GUIVALLNC:	(MK2(13). LAMBUA).(BK_{	14), TCELL	, ,	
5174	•	15K21 21), IDMP)+tbK21	401+ NKCS	,,	
5136	•	(6K21 47), NEWPH),(6K2(45), RWPH	1,	
2151	•	(6K2(49), WNUVEL),(bK2(50). VELANG	,,	
5136	*	(8K2(51), ENEXT	1,(6820	52), KNUOU		

.

.

```
6-90
2133
                                  (6K2( 53), AZEXT
                                                           1. (BK2 ( 54), AZUGO
                                                                                     ١,
6134
                                  (bK2( 55), MM
                                                           1, (BK2( 56), ELEXT
                                                                                     ١,
5135
                                  (LK21 57), EL000
                                                           1, (BK2( 5E), NN
                                                                                     ١.
ەد ا د
                                  (8K2(12G), KK
                                                           ). (BK2(121). NELKS
                                                                                     ).
5137
                                  (6K2(122), MODE
                                                           1.(bK2(123), DELAZ
                                  (BK2(124), DELEL
                                                           1, (BK2 (125), XVLANG
5136
                                  tok2(126), ICFL6
                                                           1. (6K2(127), DCPFRG
5134
                                  (6K2(128), KCELL
                                                           )+(6K2( 12)+ 11 )
5140
5141
                    KEAL LAMEDA
                     CALL RANS12(02,500)
5142
                    XVLANC= (AZ000-VELANG)/57.2957₺
5143
                    1F (MM.GT.0) GU TO 100
5444
                    MM=1
5145
                    WKITE (6,95)
5140
                 95 FURMAT (1HU, * THE VARIABLE MM HAS BEEN SET TO 1 . )
5147
                100 JF (NN.GT.U) GE TE 200
5140
5144
                    NN = 1
5150
                     Wh.ITt16,1951
2121
                190 FURMATTIHO, THE VARIABLE NN HAS BEEN SET TO 1 1 1
5152
                200 CENTINUE
5153
                     KCELL=1F1X(KNLXT/TI)
5154
                     IF (KCELL.LT.8192) GUTD 56
5155
                     KCELL=E192
5150
                     ENEXT=11*6192.0
5157
               50 KK=IFIX(RNEXT/TCELL)
5156
                     1F (KK.GT.O) GO TO 211
5159
                    KK=1
5160
                211 WRITE (6,212) KK
5161
                212 FURMAT (1HU, THE VARIABLE KK HAS BEEN SET TO 1,15)
```

u b/1 a/ <i>1</i> >	input listing	AUTUFLUW CHANT SET - FWU/SCL	
CARD NO	****	CUNTENTS	(-\o
5162	NSCAT-MM#NN*	≠KK	
دهاد	NELKS= NSCAT	17250	Ĺ
5104	IF (MDEKS#250	U-LT.NSCAT) NHLKS=NBLKS+1	C
5165	11 (NDEKS-6)	-200) G(: TU EB8	
5106	HELAZ = AZEX	I/FLUAT(MM)	
2101	DELEK= ELEX	1/FEUAT (NN)	
5468	MUDEAZ		
5169	IF IL AMOUA . N	L.O.O) GUPFKy=-2.0*WNUVLL/LAMbUA	
5170	IF(UCPERU-E	U-O-O-AND-KWPH-EQ-O-O) MUDL=1	
5171	14ME=1		
5212	1KCC=1		
5175	LL 1600 K-1	y P. P.	
5174	ou: 1010 N=1	_v teN	
51.75	νι. 10∠0 M≃1	*WW	
5176	jr(iPNI.LL.	250) 60 10 950	C
5177	18 (16M8+64+	.c) 66 To 946	
>170	wk1TE(0,431	(LUX(J),(LUY(J), J=1,1PNT)	
5174	you tunMalfit ,	01.01	
5150	940 WKITE(2ªIKE	C) (SCAT	
5181	1K+(-1KE(+	1	
5102	T = [M 4 F		
きょとう	450 A=KRANLINK	e(S)	
5125	CLUATIENT)=	= A+RRANU(i)	
2102	CECATINET:	- A≠UUM	
51 to	1020 1 Fiel = 1 PNT	•1	
2137	TOTO (CHITMOL		
511.5	LOUG CENTINUE		
5464	1+ (1PN1.tu	.11 GB 10 007	

MATTERE THEET CSCAT

5190

```
5141
                    IF (1DMP-NE-0) WRITE (6,930) (CLUX(J),CLUY(J), J=1,1FNT)
                                                                                            6-10a
5142
                807 1LFLG=1
                    KETUKN
5195
5154
                USU WELTE (0+889) KK +NN +MM +NSCAT
5145
                $69 FLAMATE 1H .* THE PAUDUCT OF KK=*,14,* NN=*,14,* MM=*,14,* 15 TOO
5140
                   *LARGE, *, 110, * THIS JUB WILL TERMINATE ! )
5147
                    KETURN 1
                    Ł NL
5140
```

,

.

*

المحتدي المناوات المن

SUBROUTINE CUMDIS

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
CUMDIS	Peripheral	208,209
CUM2	Peripheral	Not User Referenced
OUTCUM	Peripheral	210,211
PDF	Peripheral	212,213

2. PURPOSE:

This subroutine processes a sequence of input samples in order to generate the probability density histogram and cumulative probability distribution.

3. INPUT PARAMETERS (CUMDIS):

Name	O/R	T	Description
TLIM	R	F	The upper limit of the histogram independent variable
BLIM	R	F	The lower limit of the histogram independent variable
NIXF	R	I	The number of elements in the histogram

INPUT PARAMETERS (OUTCUM):

Name	O/R	$\underline{\mathbf{T}}$	Description
NCPACK	R	I	The number of histogram elements combined to form one element of the output cumulative distribution

INPUT PARAMETERS (PDF):

Name	<u>O/R</u>	T	Description	
NDPACK	R	I	The number of histogram elements combined to form one element of the output probability density.	

4. <u>CALLING SEQUENCES</u>:

Initial histogram computation

CALL CUMDIS (DATAIN, XF)

Where:

DATAIN contains the Input Waveform

XF contains the Output Histogram

Add additional data to histogram

CALL CUM2 (DATAIN, XF)

Where:

DATAIN contains the Input Waveform

XF contains the Output Histogram

Cumulative distribution

CALL OUTCUM (DATOUT, XF)

Where:

XF

contains the Input Histogram

DATOUT contains the cumulative distribution

Probability density

CALL PDF (DATOUT, XF)

Where:

XF

contains the Input Histogram

DATOUT contains the probability density

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The number of points NIXF in the histogram XF cannot exceed 8000.
- b. Any value of the input array which lies below the bound of BLIM will be placed in the lowest element of the histogram. Any value of the input array which lies above the bound of TLIM will be placed in the highest element of the histogram.

- c. The variables NCPACK and NDPACK must be greater than or equal to 1.
- d. Flow Chart: Page 9-152
- e. Cross Reference Table: Page 9-228

6. THEORY OF OPERATION

a. The width of the histogram elements is determined using the following expression

- b. The value of each sample in the input array DATAIN is divided by DINC to determine the corresponding histogram element. The number of samples which lie within the bounds of that histogram element is incremented by one.
- c. After the histogram is generated an entry through OUTCUM causes the cumulative distribution to be calculated and placed in array DATOUT. The number of histogram elements combined to generate one output sample is determined by the variable NCPACK.
- d. If the density function is desired, entry is made through the entry point PDF. The number of histogram elements combined to generate one output sample is determined by the variable NDPACK.

3917		SUBREUTINE CEMUL	E (DATAIN, XF)			6-14	C
3710	L						C
3915		CUMMUN/PEKI/PKI	500)				C
3920	С						C
3921		UIMENSILM DATAIN	(1},UATOUT(1),XF(1	1			c
3922		DECLIVALENCE (BK	1(34)+ TLIM	1.			
3723		1 (6K1	(40), FLIM). (DKIC 41), NIXE	1,		ί
34.4		¿ (6K1	1 421, NCFACK	1. (PK1(45), NUFACK	1		C
3425		Neprineckin atau	145,N146/-3,-2,-1,	u /			c
3420	ι						C
34.1	L	CALCULATE HIST	UCKAM ELEMENT WILT	н			c
85.45		DINC = (TEIM-BEI	M)/FLUAT(h1XF)				C
7454		LALIN = 1- 1+1X(0)	LIMZUINCE				C
∪د 4د		XF(N143)=600E(m1)	(F)				c
3471		XF (14194)=0L1M					C
3434		XF (N145)=U1NC					C
وريو		XF (N140)= DUUL (LA	JU 1				c
بدر بور	L						С
نو ۲۶		LU ZU JELONIAL					c
ن د و د	2	E XECUT=0.0					C
reve		((16 1000					С
ىر بىر		ENTRY CUMP(LATAI)	V+XF3				C
المار لاق		NIXF=IctCL(XF(N)	1311				C
ياسيل.		U1NL=XF(1.145)					c
3441		LADURIOULL (XF (In)	ve.))				c
3742	C						ć
· ***	Ĺ	ALL PLINTS TO	RCG. DENSITY HIST	LUKAM			L

7 Mile

08/11/75	INFUT LISTING	. AUTUFLUW LMART SET - FWC/SCL	RAUSIM
LAKE NO	***	CUNTENTS	6+4a
5 4 44	Ĺ		c
3945	LOOK CENTI	I NC E	Ĺ
2440	NEATA	A = ICLL(CATAIN(N1431)	Ĺ
2447	UINC=	=1.CVJINC	C
5946	UC 90	A IA-IN-1E U .	ί
3444	1400	=1F1X(DATAIN(J)*0INC) + LAND	C
3950	1+(1)	AVIN=UUAN (FX IN. 10. UUA	Ĺ
3451	11-(1)	ALO.L].1) [ADD=1	C
39%2	50 XF(1)	AUU j=X+ (1AUU)+1.0	С
3950	€.		C
3414	r.t I U	kt.	c
3425	· ·		C
3450	ENIM	Y CUTCHMODITAME)	ι
3457	Ĺ		С
₃ 455	C LAI	ECULATE COMBLATIVE PRUB. DISTRIBUTION	C
3454	(.		c
3460	11 (14)	CHACK-LE-C) NCPACK=1	Ĺ
انەد	N1XE	= 1t CC_(XF(N193))	C
340%	UING	- XI (N142)	C
346.4	KENE	= NIXEZNCFACK	C
ي _{ان} ب	JATO	UTIN1951 = DINC*FEDAT(NCPACK)	ί
3405	JJ =	-NCPAUK	C
٤⊌٥٤	Ut M=1	u.•€	Ĺ
3467	C		c
يان) بهار	<i>(</i> νς κ	U J≈1,KLNU	С
5969	uu ÷	JU + NCFACK	C
54/u	vc n	. K=1,1.L PALK	C
5471	10 Clive	CUM+X8 (n+CU)	(
5476	JIAU U.	c1(J)=c0M	ί

2413	· ·	Ĺ
24/4	ictica c	4-15
347.	GC 10 ZCC	Ĺ
3411	· ·	L
3411	ENTRY FULLUATION (ART)	L
2473	•	C
24.14	10eA± k	
3400	IF (NEMACK -LE -11) NEPACK=1	
2961	NIXFERLUL(X) (N1951)	
3466	04fac - XF (fal 45)	C
ر ۲۰۰۷	KEINE - INTXE/HUFACK	С
,1 m _ m	UATOUT (G195)=b15C*FEGAT (NOPACK)	Ĺ
2400	JUE - HUH AUK	C
346 a	ι	C
55.1	C(M=(r _e))	С
, 19 (0	UK 100 J=1.KENO	C
بهن باق	1 t N=0 • 0	c
.440	JJ=JJ + NIFALK	С
2447	DC 90 K=I+NDFACK	c
ال المان	OLN-LLN+Xr (N+JU)	c
ويديدر	SU CONTINUE	Ĺ
24.44	t,cM÷t∪M+t tN	C
3445	DATUUT (U) = DEN	С
ن بدیدو	100 CENTINUE	C
3771	ſ.	Ĺ
3440	COU CENTINUE	С
3444	CUM=1.U/CUM	
400	Ir (ICUN-EG-1) CUM=CUM/DATUUT (N195)	
4001	DE SUU K#1. KEND	C
JUL 11/15	INPUT LISTING AUTOFLOW CHART SET - FWG	/SCL RADSIM
LAKL M	CUNTENTS	****
4002	DATEUI(K)=DATUUI(K)+CUM	С
4003	300 CUNTINUE	С
4004	DATOUT(N193) = BUOL(KEND)	С
4665	DATEUT(N194)=XF (N194)	С
4000	KE JUKN	С
+067	t NL·	С

SUBROUTINE ERGYCP

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
ERGYCP	Peripheral	118
ERGYRE	Peripheral	116,117

2. PUR POSE:

This subroutine computes the energy contained in a waveform.

3. INPUT PARAMETERS:

None

4. CALLING SEQUENCES:

Complex waveform

CALL ERGYCP (X,Y)

Where: X contains the Input Waveform - R

Y contains the Input Waveform - I

$$\mathbb{E}nergv = \Delta \sum_{J=1}^{NPTS} X(J) **(J) + Y(J) * Y(J)$$

NPTS = Number of waveform samples

Real Waveform

CALL ERGYRE (X)

Where: X contains the Input Waveform

Energy =
$$\sum_{J=1}^{NPTS} X(J) * X(J)$$

- a. The computed energy is printed on the output listing. The measurement unit is watt-nonoseconds, normally.
- b. Flow Chart: Page 9-70
- c. Cross Reference Table: Page 9-217.

```
41.
                       SUDKUUTTILE EKGYCF(X,Y)
4000
                       CIMENSIES ACTIVAL
2014
                      DATA NIYO+KIY4.NIYO/-3,-2,-1/
20:5
                      EU(t) = 1
2000
                      cere ice
2057
                      CHIEF LEWYELTX)
2600
                      Michigan
. ....
                      2006
                      14 LT=X(N145)
2001
                      15Y=U.1
2000
                      IL 200 U= LONHIS
Lucs
                      (U) X#(U) X+YUI=YUL
CONTRINUE
                4.414
410-
                      If (MUDERLESO) GETE SOU
. ....
                      OF DIE JELFAFIS
16.01
                      (L) Y+(U) Y+Y(J) + Y(J)
inc.
                200
                      CCHIINCE
4004
                , (C. Q.
                      LUY=LUY+ULLT
2010
                      WELTE ( M. LOCOL ECY
                ANGE FERMAINS ENERGY IN THE WAVEFERN = " + Elbasa" WAST-NAMESECONDS . )
. 11
2072
                      FITCHN
1175
                      Live
```

SUBROUTINE PLOTTR

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
PLOTTR	PERIP	307,308,309,310

2. PURPOSE:

This subroutine converts the data contained in the input array into a form suitable for plotting by a HP9820 desk calculator. In addition, the output can also be listed on a TTY via TSS or punched on cards.

3. INPUT PARAMETERS:

Name	<u>0/R</u>	<u>T</u>	Description
SIVST	R	F	Value of the independent variable at the start of the plot
XIVRNG	R	F	Range of the independent variable which is to be plotted
LOGFLG	R	I	Control index which indicates the nature of the input data
NSKP	0	I	This variable controls the number of input samples shipped between each plotted point. For example, if NSKP=0 or 1, each point is plotted; if NSKP=2, every other point is plotted.
NAUTO	0	I	Control flag for automatic data scanner which determines the maximum and minimum values of the dependent variable. If NAUTO=0, the scanner determines the value of TH and TL. If NAUTO=1, the use provided input parameters TH and TL are used.
гн	o	F	Maximum dependent variable value to be plotted

Name	O/R	$\underline{\mathtt{T}}$	Description
IC	R	I	Logical unit designator for output file
VIL	0	С	Independent variable label
VDL	0	С	Dependent variable label
GLBL	0	С	Plot title and miscellaneous data

4. <u>CALLING SEQUENCES</u>:

CALL PLOTTR (DV)

Where:

DV contains the Input Waveform

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. If an output file code (IC) is not specified then no data will be transferred and control will immediately be transferred back to the calling program.
- b. If the user specified parameters, XIVST and SIVRNG, specify a plot that is outside the range of the input data array then the complete input array is processed and transferred to the output file.
- c. If the file code is negative, specifying HP paper tape format, then all plot labels and miscellaneous data are suppressed. Only TH, TL. XIVOR, DELTA, and NPTS and the plot data are transferred.
- d. All floating point output values are in El3.5 format.
- e. Flow Chart: Page 9-90
- f. Cross Reference Table: Page 9-219.

6. THEORY OF OPERATION

- a. Ppon entering the subroutine the parameter IC is tested to determine that IC is not zero and what operating mode is to be used. If IC 0 then the HP paper tape mode (ICON ≈ 2) is selected. If IC 0 then the card image mode (ICON=1) is selected.
- b. If (ICON=1) the following lines (records) are transmitted to the output file.
 - 1. Header line "** Punch Card Data Output"
 - 2. XIVST, XIVRNG, XIVFR (not used), LOGFLG, VIL (first 12 characters)
 - VIL (last 60 characters)
 - 4. VDL (first 60 chara ters)
 - 5. VDL (last 12 characters), GLBL (first 48 characters)
- c. The input parameters, XVST and XIVRNG, are tested to verify that the range of the desired plot is within the limit of the input array, DV. If the desired plot extends past either end of DV, then the values of XIVST and XIVRNG are changed to be compatible with the available data. If the desired plot is totally outside the available data, then the complete input array is processed.
- d. If NAUTO = 0 the input data is scanned to determine the maximum, TH, and the minimum, TL, values of the dependent variable to be plotted.
- e. IF(ICON=1) the following lines (records) are transmitted to the output file.
 - 1. GLBL (last 10 characters)
 - 2. NSKP, NAUTO, IC
- f. The following lines (records) are transmitted to the output file.
 - 1. TH, TL, XIVOR, DELTA, NPTS
 - 2. 5 dependent variable values
 - 3. 5 dependent variable values
 - N. Last line of plot data

```
6-21
```

```
& FELLITE
_441
                   SUFRGULING FLUITRIBY)
2441
                   COMMON/OFKIN FRIESON *AIT (201) *ANT (201) *AFF (201)
2446
                   CITIVALENCE ( EKI 54), XIVST
                                                       Int okit cole XIVANG
_443
                                                      2444
                                 ( BKIC 61), XIVER
                                 ( 6K1( 63), NSKP
                                                      1-1 PKIE 641, NAUTU
2444
                                                      1.1 BALL COL. IL
                                 ( ifit 65), In
2440
                                ( ::K1(113), It
441
                   UATA N145+N144+N145+N140/-3+-2+-1+U/
_440
                   GIMENSION (VII)
4444
                    Arthick (let. olean) Chic 800
2450
                    18 (16) 500,000,16
2451
24: .
                   166/5=2
                    Lute 4
450
2454
              re6 10=-1c
2419
                    1100-6
ن د جاج
                    ULTE 12
24:1
                    AFIIt(IL, )
                 - FLEMALL **
                                FUNCH CART HATA LUIFET "1
44.00
24:4
                   w iteracyce xivit, xiveno, xives, toored, ( victor, J=1.2 )
3400
                 6066
c ** ( .
                   weilchesch t villal, derste 1
....
                 C. F. + No. T. C. I.
                                . 10 m. 1
```

•

·* · {

```
6-21e
2465
                    WKITE(10.6) ( VOL(J), J=1.10 )
2400
2407
              ι
                     WKITE(10.6) ( VDE(J), J=11.12 ), ( GLBE(J), J=1.8 )
2408
2469
                   CUNTINUL
               12
2470
                     NITE = 1800E(0V(N143))
2471
                     XIVUR = DV(N194)
2472
                     LELTA = DV(N195)
2473
                     ENDDAT = XIVUR + DELTA*(NTTL-1)
2474
                      NST=1F1X((X1V5T-X1VUR)/DELTA)+1
2475
                      1+(NST.L1.11 NST=1
2470
                      NSTUF=IFIX((XIVST-XIVER+XIVRNG)/DELTAI+I
2477
                      1F(NSTUP-GT-NTTL) NSTOP=NTTL
2476
                      IF (NSTUP.GT.NST) GOTO 11
 2474
                      NSTUP=NTTL
 2460
                      NST=1
 2461
                      LUN) INLL
                i i
 2402
 2463
                       XIVUK=XIVUK+(NST-1)*DELTA
 2464
                       NFTS= (NSTUP-NST)/NSKP+1
 2405
                       DELTA=DELTA*FLUAT(NSKP)
 2460
                      IF (NAUTO-EN-L) GC TO 100
 2467
                       THEUV(NST)
 2460
                       TL=IH
 2459
                       DE SE JENSTOF
 2440
                      (HT, (L) VU) 1 XAMA=HT
 2441
                      TL=AMINI(DV(J).TL)
 2442
                       CUNTINUE
  2443
```

•

Billista form AUTUFLOW CHART SET - PHOISEE RAUSIM Ct/11. .. 6-22 CENTENTS LAKE IL * * * * C *** *** ALL CLIPTING £ 4 4. 1. 11 11 (1 colo 664 wille(10,00) (CLEL(3),J=15,15),In L440 CO. T. COMATTER **CAD**15.61 2441 Z 79 14 c. while LICE IS I HERE MALTUIC ic rentell it esiss) 2444 and attitioned instructional Ashers .500 LE TORMAT(1F9, 1949,115) $\omega \omega \mathbf{i}$ NUMBERSHORE Leanuaristanaterandmi 2600 r = d+4*165K£ WELLE (10,00) (UV(W),N=J+K,NSKF) 4.6. Lo runhal (1) below 1 2000 L: 01 or Condition the late to 2464 (L) (11/1/2) 211 ... I CHMAIL! FEEL BATA FILE IMPROFERLY DESIGNATED. ... INC. DATA ... 2511 + * TEANSFLELD*) 2516 ELTUEN 2943

t fal-

SUBROUTINE PLTFMT

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
PLTFMT	PERIP	113

2. PURPOSE:

This subroutine is used to transform input data which is provided at equal increments of sine θ into an output array which is equally incremented in θ . The new points are determined using a parabolic interpolation. In addition, the input array is tested to determine if all input points are in visible space (independent variable between + 1), and superflows data is eliminated.

3. INPUT PARAMETERS:

Name	O/R T	Description
DELTHE	R F	Output array independent variable increment
STARPT	0 F	Lower limit of the output array
STOPT	0 F	Upper limit of the output array

4. CALLING SEQUENCES:

CALL PLTFMT (GXIN, GYIN, GOUT, \$nnnn)

Where:

GXIN contains the Input E-field - Real
Component
GYIN contains the Input E-field - Imaginary
Component
GOUT contains the Output gain

nnnn is the statement number to which control is transferred when a non-recoverable error is detected.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. The lower and upper limits of the output array must be specified in ascending order in order to

be effective. If the upper limit is less than or equal to the lower limit or no limits are specified, all valid input data will be interpolated.

- b. A double parabolic interpolation is performed to determine each output sample except in the vicinity of the end points.
- c. Flow Chart: Page 9-175
- d. Cross Reference Table: Page 9-231.

6. THEORY OF OPERATION

PLTFMT is intended primarily for converting antenna pattern data from equal increments of sine 0, generated by the Fast Fourier Transform, to equal increments of θ . This conversion is important in that it allows the pattern array to be stored as an array of gain points, equally spaced in angle. This eliminates the necessity of storing a gain-angle data pair, since the location of any point in angle can be determined from the ordinal number of the point, the origin of the array, and the angle increment. It is especially important in converting antenna pattern data for plots, since it is desirable that the points be equispaced in the independent variable direction. An additional feature of PLTFMT is that it will automatically eliminate the extraneous output from the Fast Fourier Transform, which is contained in the region commonly known as "invisible space", i.e., that region where the dependent variable lies outside $-1 \le \sin \theta \le +1$. Furthermore, by specifying angle limits for the region of interest, superflous data is eliminated, thereby reducing processing time and storage requirements.

input parameters are initialized. The end points specified for the input data are examined to determine if they are realistic and within the boundaries of the input array. If not, one of three things happens. (1) If the specified end points exceed the array limits or ±90 degrees, they are reduced to a useable value. (2) If the limits are equal or reversed, i.e., start point equals stop point or start point is greater than stop point, the limits are set to ±90 degrees or to be array limits, whichever is less. (3) If the specified

end points are in the proper order, but do not encompass any of the array data, the problem is terminated. If the adjusted end points do not encompass all of the input array, the portion of the input array to simplify processing and the array definition parameters are adjusted accordingly.

b. The output array elements are computed by interpolating between the input array points. A double parabolic interpolation is used except in the end segments where a single parabolic interpolation is used.

The double parabolic interpolation is performed by generating two quadratic equations, using three adjacent points to generate each equation. Assuming the points are labeled X1, X2, X3, and X4, and the required location is between X2 and X3, then the equations are generated using X1, X2, X3, and X2, X3, X4. Once the quadratic coefficients have been determined, the value of each quadratic at the point of interest is determined, and the two values are averaged to find the value of the dependent variable.

Within the end segments, adjacent points are not available to obtain two quadratic equations. Therefore, a single quadratic is generated and the necessary points are interp lated from this single equation. In all cases, if the point of interest falls exactly on a point in the input array, the actual value of that point is used.

· · · · · /	Subscience Pull MI (oxin, (Yin, Goul, *)	1940
***	C**** Tris sockauting extracts the Stecthies Dalk Fills the Cenarates	UC74LTG2 26
45.77	C METERICA FAITEFTS, DETERMINES THE ANGLE OF CACE SHAN POINT,	UC 7PL 103
ra to rack	LOS THE STATE OF STATE ATA FOR STATE OF THE CONTROL TO TRACE I.E. AND EUTPUT	UC7FLT04
1.794	* AREAR TO GRAIN FOINTS EQUALLY SHADED TO ANNUE . ***********************************	UC7PLT05
** ** ** ;	C-MMGAZECE1Z4K1(500)	UC7PL106
m*, m	* 18g and a Walned Decay (1)	2060
41.54	everywhere the transfer of the self of the first of the f	UC TPL TO9
•• *- •• *•	4 CHEEC 241, STARPT 1, CONT. STORT 1	UC7PL110
-9 * - 49 F	UNIX 61479141444NI4741ADZ-04-24-1457424576Z	2040
4141	in the plan solve of our To Y	2050
****	well. (c.114)	2000
early halfs	11 FERRALD TO A COLUMN THE CONTRACT OF THE CON	1 2076
., 5. 5.	THE AFFAY. EXPLUITION WILL NOT IN AFTEMPTE *)	2060
41 1 I	e c 10 é la - a	2050
4	/ No load on to kind (419.5)	2100

4553	CK101N=GX1N(N144) 6-26a	2110
4554	LELIN=UXIN(N145)	2120
4555	16 (STARPT.GE40.0) 60 TC 302	2130
4556	5TARPT=-40.0	2140
4757	White (c, luc)	2150
4906	106 FURMAT("USTART POINT WAS DEFINED BELOW HURLZON. START FUINT HAS B	2160
4559	*LEN FEDERANED &6 -50 DEG. *}	2170
4500	302 1F(\$10FT-62-90-0) GC TC 303	2160
4561	STGP1=90.0	2140
4562	While (0,111)	2200
450.,	111 FORMATE "USTOP PUINT WAS DEFINED BELOW HERIZON. STOP POINT HAS BEE	2210
4564	*M (callingto to 40 DEG.*)	2220
4500	303 INCSTARPT.LT.STUPTE GO TO 305	2 2 30
サンカロ	\$14KK1=~90.0	2240
420 <i>1</i>	516+7-90+0	2250
45 <i>6</i> 0	Skilt (0.104)	226ú
45,09	109 FORMATCH COTARTING POINT SPECIFIED AS GREATER THAN OR EQUAL TO END	2270
4576	* PLINT. ALL AVAILABLE VISIBLE SPACE WILL BE INTERPLEATED. !)	2260
4571	SUM SINCINESIN(SIANPIVNAU)	2 29 0
4572	SINSTESTICETURALI)	2300
45/5	320 DELKAD-DELTHE ZKAD	2310
4574	Y NOTKI=IFIX((SINSTR-UKIGINI/(ELIN+0.5)	2320
45/5	1F(N51k1.0t.2) 60 To 10	2530
45 /0	STAILET = STAILET + UELTHE	2340
4577	SINSTH=Sin(STANFT/KAD)	2350
45 f8	(n 1) 9	2360
4579	10 NOTOF=1F1X((SINSTF-GRIGIN)/[ELIN+0.5)	2370
4561	1F(NSTOP+1-LE-NPIS) OF TO 15	2580
4501	STORESTORE THE	2390

Ua/11/75	INPUT LISTING	AUTUFLOW CHART SET - FWC/SCL	RADSIM
CARU NO	***	CONTENTS	6-27
4582	SINSTP	=SIN(STUPT/RAD)	2400
4583	GU TU	10	2410
4554	15 STPRAU	=STUPT/KAD	2420
4505	ANGLE=	STAKFT/RAD	2430
4530	V1V=UR	IGIN+DELIN+FLUAT(NSTRT-2)	2400
4567	K=1		2441
4565	WRITE	O. LUILI STUPT. STARPT. GRIGIN. DELLIN. NPTS. NSTRT. NSTUP	2411
4564	1G11 FCKMAT	(1H ,4E15.7,3110)	2412
4241	DU 300	J=NSTKT,NSTOP	2450
4591	X1=AR5	IN(AIA)	2460
4542	XZ=AFS	IN(V1V+DELIN)	2470
4543	V I V = V I	V+DELIM	2480
4544	X3=ARS	IN(AJA+DEFIN)	2440
4545	DREAK=	(x3+x2)/2+0	2500
4546	1F (6KE	AK.GT.STPRAU) BPEAK=STPRAD	2510
4547	Y1=6x1	N(J-1)	2520
4546	Y_=UX1	NUI	2530
4599	Y3=6X1	N(J+1)	2546
40 G')	MCDE=1		255(·
4001	λ] ₄ =X]	- λ _/	2560
4002	350 YX12=0	A1-A51\X15	2570
4005	C1=(Y)	(12-((Y1-Y3)/(X1-X3)))/(X2-X3)	25 80
****	C2=YX1	2-c1*(x1*x2)	2500
43(-5	L3=Y1-	-{c1+x1+c2}+x}	2006
46(16	bl to	(401,402), MODE	2610
4007	wul Lxl=Cl	ı	2020
4606	UX:=U	e e	2630
Aprij (by	Cx:=6.		264(1
4610	ML Lit =		2650

4741	ATHUATIALOUT	6-27-a	2660
461.	Arscalu(1)		2670
4010	Y>=UYIN(J+1)		2680
4014	66 10 350		2690
4015	411, LY1×(1		2700
4115.7	ر۲،∼٤٠		2710
4017	CY:≠C3		2720
4010	40 O TELANOLE OUT ON EART OF TO 294		2730
4:544	CH=(CXI+ANCEC+CXC)+ANGEE+CX3		2740
4.3.1	U1=(CY1+ANULI+(Y4)+ANGLE+CY3		2750
*****	6001(K)=10.6+ALLG10(6R+GR+G1+G1)		2750
10 C	ANCLE = ANCLE + DEE KAU		2770
*** 172 3	K÷ K • 1		2780
مان راها	66. It 400		2790
*4475	244 IF (ANGLE-GT.STPRAD) GO TO 301		2800
4540	SUU CENTINUE		2810
4021	501 6001(N143)=600.00(K-1)		2820
	GUUT (N194)=51AKFT		2830
40.0	OLUT (N145)=OLUTHE		2840
40.00	K, TUKN		2850
	ENU		2860
40.31	CHD		

SUBROUTINE PTLIST

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
PTLIST	PERIP	303,304,305,306

2. PURPOSE:

This subroutine converts the data contained in the input array into a compact form for transmission to a remote processing station which has a CRT plotter.

3. INPUT PARAMETERS:

Name	<u>0/R</u>	<u>T</u>	Description
ST	R	F	Value of the independent variable at the start of the plot
RNG	R	F	Range of the independent variable which is to be plotted
LF	R	I	Control index which indicates the nature of the input data
NSKP	0	I	This variable controls the number of input samples skipped between each plotted point. For example, if NSKP = 0 or 1, each point is plotted; if NSKP = 2, every other point is plotted.
NAUTO	0	I	Control flag for automatic data scanner which determines the maximum and minimum values of the dependent variable. If NAUTO = 0 the scanner determines the value of TH and TL. If NAUTO = 1, the user provided input parameters TH and TL are used
ТН	0	F	Maximum dependent variable value to be plotted

Name	O/R	$\underline{\mathbf{T}}$	Description
TL	0	F	Minimum dependent variable value to be plotted
IFCODE	R	I	Logical unit designator for output file

4. <u>CALLING BEQUENCES</u>:

CALL PTLIST (DV)

Where:

DV contains the Input Waveform

F. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. A number of tests are performed on the input data to ensure that a plot can be successfully completed. If all the necessary conditions are not satisfied, a condition code index is set and the plotter is bypassed with control returned to the calling program. The following is a list of the condition code values and the meaning of each:

CODE INDEX	Error Message
1	The starting point, ST, is outside the input data array. (Too large)
2	The starting point, ST, is outside the input data array. (Too small)
3	The input data variables, ST, RNG, are improperly defined and result in a condition which places the stopping point before the starting point.
4	The user supplied value of TH is less than TL when $NAUTO = 1$.

b. The subroutine PACK is used to convert the fixed point output data into a form suitable for transmission to remote terminal via TSS.

- c. If an output file code (IFCODE) is not specified then no data will be transferred and control will immediately be transferred back to the calling program.
- d. Flow Chart: Page 9-82
- e. Cross Reference Table: Page 9-218

6. THEORY OF OPERATION

- a. Upon entering the subroutine the input parameters are first tested to verify that the range of the desired plot is within the limits of the input data array, DV.
- b. If NAUTO = 0, the input data is scanned to determine the maximum, TH, and minimum, TL, values to be plotted. From these two variables the upper and lower limits of the plot are determined.
- c. For magnitude data, TH and TL are tested to determine if the input data is bipolar or unipolar.
- d. From TH and TL the dependent variable range of the plot is computed and the LSB and BIAS to be used in the conversion from floating point to fixed point is computed.
- e. The following plot parameters are processed as one record:
 - 1. TH Maximum value of input array
 - 2. TL Minimum value of input array
 - IVST First value of input array which was processed for output
 - 4. NSTOP Last value of input array which was processed for output
 - 5. OR Independent variable value for first output point
 - 6. DEL Independent variable spacing
 - 7. RNG Independent variable range of the output data
- f. The following plot parameters are processed for output as one record:

- 1. BIAS Number subtracted from input data before conversion to fixed point
- 2. XLSB LSB of output data
- 3. Not used
- 4. ITH Largest dependent variable output value
- 5. ITL Smallest dependent variable output value
- 6. NOUT Number of output samples
- g. The dependent variable values are processed for output. The mechanization equation for this conversion is the following:

IDAT=(DV(J)-BIAS)/XLSB IVST $\leq J \leq NSTOP$

The integer IDAT is then processed by the routine PACK which converts it into 2 characters and packs it into the array line which represents our output record and has the following structure:

1	>	Z	34	dependent	variable	samples	1	Z	
1				·			بيا		ļ

header character pair

trailer character pair

£400	ZARKONIINE KILIZIO	0 4)		6-32
7267	CUMMUN/BERI/ BRITZE	161.WIL (50).VII.L	501,6401501	
1202	EUUIVALINEE (PR	41 541. 51	Fot OKIE COLO KING	1.
2264	• • • • •	111 621 ct	1.1 FRIL COLO NORF	1.
2210	• () h	IT SOLD NAUTE	FEC CHAIL OFF TH) •
2271	• 1 ax	.11 obj. TL	1.6 GR1(113).1FCUDE	•
2272	Wimeholich (VIII) elik	it (16)		
2213	CHINAMPENICREM ALAU	9.8140/-3.5-4.5-1.9	U/.#M1N.co/l.uc=.u/	
2234	DATA CLICHYC 701720	1000007		
2275	Ittlttopracault 60	Tti- ECO		
2.10	IT LOOK FOLL BALL TOUR F	· 1		
2217	NITE = TECHESOVESTS	.333		
221.	UN = 1.V(14190)			
2214	PFF = [A(U1A+1			
100	TIPLIANO			
2201	trackson rateurs soll	1-1)		
1221	artological the Th	*10		
	KNN-MM-LK+11			
11-4	J1+19			
4213	on contains			
4200	11 (12. (1. 11) va 11	741		
	6165 - 12-51			
• • •	100 C. 1.1 110 2			
	1.000 - 1.00011-1-1.00	C 5+ 2* L		
4.4.50	Oct to the second			

```
IF (IVSI-GE-NITE) NOTEL =1
2291
                     NSTUP - IFIXUEST-UR+RNGJ/DELT + 1
2242
                      CR=GF+(iVST-1)*DEL
د224
                     IFINSTUP-GI-NTTL) NSTOP = NTTL
2244
                     IF (NOTEFOLL - IVST) NOTEL = +
2245
                     IF (NUTHL-NE. U) 60 TO 1100
2290
                     IF (LF.LI.2) (1 TO 40
2247
                     UL 45 J=1VST+NSTUP
224c
                     X=AMAX: (AtS(UV(J)).XMIND6)
2244
                     IFILE-LOSE) NO TO 41
2366
                     UV(J1=10.0*ALUG10(X)
 2301
                      66 TO 42
 2302
                   41 DV(J)=ALCOIG(X)
 2303
                   42 CONTINUE
 2304
                   45 CUNTINUL
 2305
                   40 CUNTINUE
 بالأراج
                      TH = DV(1VST)
 2307
                      IL = Im
 2500
                       IF (NETFL.NE.O) GL TE 1100
  2304
                      DE THE JEIVET INSTOP
  2310
                       IH = AMAXICUV(J),Th
  2311
                       TE = AMINI(DV(J),TE)
  2312
                   HE CENTIAUL
  دارح
                       1F(1H.GT.TL) GC TC 2001
  2314
                       NCTAL=5
  £315
                       GU TL 1100
  2310
                  2001 CONTINUE
  2317
                        DEL=DEL*FLUATINSKP)
  2312
                         NCUT=(NS1CP-IVST)/NSKP+1
  2524
```

LAKE NE	****	LUNTENTS
2326		L1NE(1)=6CGL(1H)
2374		£1N£(2)=600£(1£)
2322		L1Nt (3)=1V51
23.3		L1Nc(+)=N51UF
2344		L1NL(5]=8LGL(UK)
2325		LINE(O)=CLLE(DEL)
23.0		LINC(7)=BOUL(RNG)
7		WELTERIFULDED LINE
23.8		1FilFits.Liub.LFitC.31 GDTC 700
6364		IF(TH.LE.U.U) ICUN=1
25.0		1F(TL.UE.U.U) 1CUN=2
1663		IF(TH.GT.GGANG.TE.ET.G.G) ICEN= 3
، ڏو ن		FIRE AMAXICASCIMITAPSCILIA
		PILE ALGOLO(PIH)
بدر:		ATEST = TEXMETED
رود.		AF (FTELL 1.0.0) CO TC 150
2330		X=F1HZ(10.0**11c51)
4301		ou to anti-
2300	156	X-PTH+(10.00++(1ABS(1TEST)+11)
2337	100	CUNTINUE
2540		N= LO
2241		IF (X.UE.1.U.ANU.X.LE.1.E) N=2
434.		18 (A.Ul.1.0.AHU.X.Lt.3.5) N=4
2341		IFEX.CE.DataMHD.X.LE.W.F. N=5
a* 1444		AF (X-C) - May - S. AND - X-LL - 7-C) N=1
• 350 N		1: (X=01-/=0-ANO-X=LE=9-01N=10
		ALCOHOLDS OF TURNS

P1F=F1.C61(D)*(10.0**17(51)

.

UE/11/75 INFUT LISTING

AUTUFECH CHART SET - PHOZSCE RAUSIN

6-33

2344	DOC PIN = PEUATINE VIIU-044(IABS(ITESTI+1))
2350	200 CUNTINUE
2351	ALSE=F1H/4000.0
2352	H145=(1.6)
2353	GU TU(594,401,402),ICÜN
2354	9-4 AMX = U.U
2355	AMN =-IH
2350	AMD =-1H/2.U
2357	DINC= TH/100-0
دخادع	ού 16 404
2354	4Ul AMX = TH
2300	AMIN = U.O
101	AMU = 1H/2.(
2302	uinc= 14/1(c.c
230,	ot To 404
2504	402 AMX = 15
رەدے	şMiş ∓−1m
2566	VWT = (
2367	DINGS TH/SO.0
2306	GC TO HEM
2304	NOU AME = NOS (TH-TL)
2.70	of*((o.orvony) xiii) = n
2571	1F (_MU_01.100.01 N=100
.7دے	AMX = (FECAT(1)1X(THV10.01))*1(.6
2013	O.OI+XMA=XMA (nj.TJ.XMA) 4
4374	AMN= FMX-FLLATINI
2515	in (Andi-Uf-11-Amphahalta106) N=N+10
1010	ir (Narkasu) Naruu
.571	18 (Markage) (4246)

,		6-34 ****
LAKU NL	**** CLN1ENTS	****
2518	If(N.Eq.ou.Uk.N.Eq.70) N=00	
2374	FIAS= AMX-FLUAT(N)	
2300	XLSb=0.05	
2381	IF (Nate of XLSB=0.01	
23 62	IF (N.UT.40.AND.N.LE.BU) XLSB=0.02	
2300	404 1F(NCTKL.NE.C)GC TO 1100	
⊷ٽر2	11L=(1L-£1AS)/XLSE	
2365	1TH=(TH-DIAS)/XLSE	
2330	LINE(1)=BUOL(#IAS)	
2367	LIME (2)= O(DE (XESU)	
2383	LANE (3)=N	
2309	L1Nt (+)=11H	
د ياښو	LINE(5)=ITL	
1463	LIME (c.)=mulli	
2344	White(incobe) wine	
2343	LINE(1)=LSTCH	
. 544	Line(12)=LSTCH	
دلاد <u>ے</u>	pol IMDE1	
خى ^ى ر.	1511=15	
2.547	CALL PACKINGUT, IND, 1817, LINE, \$1100)	
2346	(ic acc J=1VST+NSTLF+NSKF	
2344	16AT=(0V(0)-61A5)/XLSH	
24111	ir (1007-61-4095) 1007=4095	
2401	APRICATE (USB) TUAT = USB	
2401	CALL FACREIGAT, INC. IBIT, LINE . 1 DUC.)	
24.	(; 1L 400	
en long	the weateratture the	
en()	l wro÷ †	
£44.37	1641-16	

```
and Colollans
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            6-34a
   . 4 . 1
                                                                                                                                                                                                                                                                    . 4. . .
                                                                                                                                                                                                                                                                    wealtharters bush
 ود ريوان
                                                                                                                                                                                                                                                                F. LUNIO
   . 4 . 0
                                                                                                                                                                                          Later Westromesans NUTEL
   . .. .
   . 44.
                                                                                                                                                                                          Also resemble to cut met attemetate que la compitible come -1,151
   . 4 . .
                                                                                                                                                                                      11 ( + 11 ) ( + 1 )
   . . . . .
                                                                                                                                                                                          The state of the s
. . .
                                                                                                                                                                                                                             with the contract the state of 
   4 + 4 +
                                                                                                                                                                                                                                                            . ( : +
   24,1
```

SUBROUTINE RTOPDB

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
RTOPDB	Peripheral	103
RTOPM	Peripheral	110
RTOPM2	Peripheral	111
XYTOM	Peripheral	105
XYTOM2	Peripheral	106
XYTODB	Peripheral	104,108

2. PURPOSE:

This subroutine performs a rectangular to polar conversation on the input arrays. Depending on the entry point used, the output is in two arrays in the form of linear magnitude and phase (RTOPM), magnitude squared and phase (RTOPM2) or magnitude in decibles and phase (RTOPDB); or in one array of linear magnitude (XYTOM), linear magnitude squared (XYTOM2) or magnitude in decibels (XYTODB).

3. INPUT PARAMETERS: None

4. CALLING SEQUENCES:

Phase and decibel magnitude

CALL RTOPDB (X,Y,M,P)

Where: X contains the Input Waveform - R Y contains the Input Waveform - I M contains the Output Waveform P contains the Output Waveform - P M(J) = 10.0 * ALOGIO [X(J) * X(J) + Y(J) * Y(J)]

 $P(J) = \frac{180.0}{\pi} * ATAN2 (Y(J), X(J))$

Phase and linear magnitude

CALL RTOPM (X,Y,M,P)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

M contains the Output Waveform - M

P contains the Output Waveform - P

$$M(J) = \sqrt{X(J) * X(J) + Y(J) * Y(J)}$$

$$P(J) = \frac{180.0}{\pi} * ATAN2 (Y(J), X(J))$$

Phase and magnitude squared

CALL RTOPM2 (X,Y,M,P)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

M contains the Output Waveform - M

P contains the Output Waveform - P

$$M(J) = X(J) * X(J) + Y(J) * Y(J)$$

$$P(J) = \frac{180.0}{\pi} * ATAN2 (Y(J), X(J))$$

Linear magnitude and no phase

CALL XYTOM (X, Y, M)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

M contains the Output Waveform

$$M(J) = \sqrt{X(J) * X(J) + Y(J) * Y(J)}$$

Magnitude squared and no phase

CALL XYTOM2 (X,Y,A)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

M contains the Output Waveform

$$M(J) = X(J) * X(J) + Y(J) * Y(J)$$

Magnitude in dB and no phase

CALL XYTODB (X,Y,M)

Where:

X contains the Input Waveform - R

Y contains the Input Waveform - I

M contains the Output Waveform

$$M(J) = 10.0 * ALOGIO [X(J) * X(J) + Y(J) * Y(J)]$$

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. For entry points RTOPDB and XYTODB the minimum output value is -200 dB.
- b. The range of the output phase angle is from -190° to +170°. The break point where phase "rolls over" was chosen to be 170° instead of 180° because many waveforms have a large number of samples around 180° and each time the waveform's phase changes from 180 -E to 180 +E the output phase would change from 180-E to -180+E. This results in a phase plot with many undesirable and unnecessary discontinuities.
- c. Flow Chart: Page 9-156
- d. Cross Reference Table: Page 9-228.

********	SUE KUUTINE KTUPUB (X+Y+M+P)	R 6-38
417174	COMMUNISTRIZ OKI(500)	6.70
4010	ENDIVALLINGE (DK11 30), NAVO)	
4011	61M69510N X(1),Y(1),M(1),P(1)	k
401.	KLAL M	R
4015	\400c-\4040+6410+6410 ATA 1	R
4014	LATA A1/57.29578/	R
4015	ILLN = .	k
4015	NFHAS=1	R
401/	ot 10 10	ĸ
4C15	INTRY KILLM(X,Y,M,F)	R
wt. 15	ICUN - I	k
40.0	NPHAD= L	R
46.1	ou It Iv	k
41). 4	ENTRY KIDEMPEX, Y.M.P)	R
ر دایه	ICLN = U	R
4412'4	NFHAS=1	k
4U2 5	ob 16-10	R
4020	FNTKY XYILM(X,Y,M)	k
4627	101/4-1	R
4071	NE HASAU	ĸ
40.7	of the Le	k
m(1.51)	(NTKY XYTUMZ(X,Y,M)	R

4031	rccn=o	-3 8 4 ƙ
4032	Mr:nA3=u	Ŕ
40.5 <i>)</i>	60 IL 10	k
40.4	cNIKY XYIUDE(X,Y,M)	k
みしょう	1culv=2	ĸ
4036	MPHAS=U	k
4057	L	k
4030	AC CUNTING	۴
۷ 0 کار	1=10UL(X(N143))	R
4040	CALL ULLEX (N143.N4.X.M)	R
40-41	ir(NPMAS-cw-1) CALL DOLKX(N193,N4,X,P)	R
4042	SH (NPMASSERSUSANDSNAVOSCISI) GUTE ZUO	
4043	1 = (11+1145-24-1) + (N140)=0.0	K
مېرل مېد <i>ن</i> ې	· · · · · · · · · · · · · · · · · · ·	k
4045	DE 100 J=1.N	k
4646	IF (NMAS-EW-0) GO TO 56	k
4047	11 (X(J)-E-0-0-4A(J)-E-0-0-0 GC TC 40	K
404Ł	f(U) = 14 + 1Anzey(U)YSnata + 1A = 1U)A	k
4044	1F(P(J).67.17(.6) P(J)=P(J)~366.6	
4050	or to so	P.
4051	40 P(J) = P(J-1)	ĥ
4022	SU CLINTING!	£
4053	(L)Y*(L)X+(L)X+(L)X	R
41154	IF (ICUN-Ew-1) M(J)=SWRT(M(J))	K
4005	17(100N-102-2) GC TC 100	ĸ
4050	1+(M(J).L1.1.0E-2G) M(J)=1.0E-2C	
4057	M(J)= 10.0*ALCGlo(M(J))	k
405.	IOO CENTINCE	ĸ
4054	ne Tunn	R

,

6.111175	liaplit L1	UTUNG AUTOFLOW CHART SET - FWO/SCL RADS	į M
Eath to	***	CUNTENTS 6-3	9
4060	. Θ0	LC 21(J=1,N	
400i		W(U)=X(U)X*(U)YY(U)XY(U)	
4000	. 10	CUNTINUE	
4(PC)		AV=0.40	
4004		DU ZZU J≐I∍NAVG	
4060		AV=AV+M(J)	
4000	220	CUNTINOF	
4007		N=N-NAVG	
4005		XAVG=1.0/FLGAT(NAVG)	
4609		10 230 J=1.N	
4070		υUM=M(J)	
4071		M(J)=AV+XAVG	
41,72		IffIcun.cq.1) M(J)=SQRT(M(J))	
5075		IF (ILUN-NE-2) GUTG 225	
40 /4		IF(M(J).LT.1.UE-2U) M(J)=1.0E-2U	
4075		M(J)= 10.0*ALU-010(M(J))	R
40 lu	25	AV=AV-UUM+M(J+NAVG)	
4677	230	CUNTINUE	
4073		M(N145) #BCUL (N)	
4079		PETURN	
4080		e NU	

SUBROUTINE SCANNR

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

SCANNR PERIP 313

2. PURPOSE:

This subroutine scans an antenna pattern in the form of an input array and determines the location and gain of (1) the main lobe, (2) the highest ten sidelobes, and (3) the first twenty sidelobes on either side of the main lobe. In addition, the first minimum on either side of the main lobe is determined.

3. INPUT PARAMETERS:

None

Where:

4. CALLING SEQUENCES:

CALL SCANNR (DV)

DV contains the Input Waveform in dB gain

5. RESTRICTION, REQUIREMENTS, MISCELLANEOUS DATA

- a. All output data from this subroutine is in the form of a printed listing which is formatted for ease of interpretation.
- b. If a vestigial lobe exists, the minimum between it and the main lobe will be detected as the main lobe null.
- c. Flow Chart: Page 9-161
- d. Cross Reference Table: Page 9-229

6. THEORY OF OPERATION

- a. The antenna pattern data is scanned from left to right (increasing θ) and the gain maxima are stored in a 22 element array. Within this array, the maxima are ordered according to gain with the highest in element 1 and the lowest in element 22.
- b. The pattern data to the right of the main lobe is scanned to locate the main lobe null and the first twenty sidelobes. After this data is processed and printed, a third scan is made to the left of the main lobe for the first null and the first twenty sidelobes.
- c. The logical equation used to determine the peaks of the lobes is as follows:

Given three adjacent points DV(NTHPT-1), DV(NTHPT), and DV(NTHPT+1) the following difference parameters are computed.

DELDV1 = DV(NTHPT) - DV(NTHPT-1) DELDV2 = DV(NTHPT+1) - DV(NTHPT)

then if DELDV1 \geq 0 and DELDV2 \leq 0, the point DV(NTHPT) is considered to be a maxima, i.e., the peak of a lobe.

d. In order to find the nulls of the main lobe, the difference parameters defined in 6(c) are tested for the following condition:

DELDV1 < 0 and DELDV2 ≥ 0

If this condition is satisfied then DV(NTHPT) is considered to be a null. After the first null is found, a flag is set which causes the null test to be bypassed for the remainder of the scan on that side of the main lobe. It should be noted that the null logic will consider the minimum between the main lobe and a vestigial sidelobe (if one exists) to be the main lobe null.

41.2	SUPRIDETTINE SCANNEL OV) 6-42	UC 75CNUI
4175	L	UC7SCN02
44. /	C+*** TELS SUFFICITINE SCANS THE UNINTERFICIATED ANTINHA MATTERN DATA AND	UC75CN03
-1.	C PRINTS OUR MAIN FURE NULL PUINTS AND SIGNIFICANT SIEE-LUSES. ********	UC/SUN04
41.5	·	UC751.NU5
+4 ° 0	CIMENSION COUPT(221, ACCEUN(22), EVII)	UC7SCNU6
44.31	UATA 1145-11149-N195-N140/-521-0/	UC7SCNU7
41. c	THE LVALENCE (INFTS, XPTS)	UC75CNUE
4133	L	UC7SCNU9
4134	white to, ii	UC75CN10
91.75	3 FERMAT LINU/47X,** * * * ANTENNA ELEE SCANNER * * * ** / / / }	UC7SCN11
4130	4915 = 4040E((V(N1931)	UC750N22
413/	X(r) = (V(h144)	UC7SCN13
4138	Pisho = DV(N)45)	UC7SCN14
4 1 74	CARAR THATTARTIEL CODE STURAGE AFRAY *****************************	UC7SCN15
4140	oc. 10 N=1+cc	UL7SCN16
41.41	LOTPI(N) - 0	UC750N17
410.	10 ALCOLN(II) = -200.0	UL75LN18
4145	· ·	UC750N14
	Carre 100 WV CIMY sassassassassassassassassassassassassas	UCTSCN37
4147	OC TO NIBER-1, WEIS	
	LCLOVE - OVERTHETE - OVENTHET-EE	UC 756N34

		,	
~+ 4 * · 4	Court Ve - CV (GENPT+1) - DV (GTHPC)	6-43	UC 75CHAO
14.4 P	and belove alla uso acha betove sees uso 1 of the 70		UC75CH41
5-457	· ·		UC75CN42
** \$ 110	LOBPT() = NTMFT		UL75CN43
• • •	ALUDUNICE) = LVINTHFT)		UC75CN44
~. ·	Ĺ		UC75CN45
· · · · ·	CHARR CHOILE EMENTA-CHE HEIGHE ST MAXIMA *******************	*******	**** HC75
18 A 1 18	on the mining		UC75LN47
	IF C MEG. GIG(25-AK) .LE. ALGOSN(12-HF)) OC 41 70		UC7SCN45
*· * · ·	and he is a well-colleged - No.)		UC75CN49
** * * *	ALLEGERAL - THE DECRETE HER DECRETE PROPERTY OF THE PROPERTY O		UL7SCNEO
•••	meschille, e-ten) = minthelp		UC75LN52
<u>-</u> -	action T = countities = NF)		UC756N52
	User (1.5-ak) - LUBF (122-fak)		UC75CN53
	ALL CHARLEMAN = NECEPT		UL751.1454
•• 1			UC75CN55
	to condition		CC7SCNEO
	·		LC756N57
~ 1	C+++* Compute Mally Eace ANOST Also CUTFUL ************************************	*******	+ ULTSENSE
•• • • • • •	ANGAGE - XCRO + (LCHP1(1)-1)*F15FL		UC75CN54
	while (carro) Alt:(N(1)		
~	THE PLANTAGE THE MAIN LINE GAIN IS *++15-7)		
***	ι		UC751 No1
4.6	arillicetal midumia		CCTSUNAL
	TO BOOKER THOS DAX, PERDETEN AND KEELET DAKE OF HEADER	of at SHAL	LuC7SChuS
• •	TOTAL V SOME PROPERTY OF THE CAPPAINT OF SOME PARTY NOTES	1 00 14.10	X,UC7SLN64
1	**C_CCU_1* // _^ \A+*MAIN*+ZOZ+*C-C*+1/X+1IS-/}		UC75CNO
			EE7SENUU
	THE FLOW CONTROL OF THE PROPERTY OF THE STATE OF THE STAT	******	* LL75LNA7

(6/11/75	TULOS CIPLIAN	AUTERLEW CHART SET - FWE/SCL	RAUSIM
			6-44
CANU No	***	CONTENTS	**** `
4170	DL 75 N=2+21		UC7SCN68
4177	INJOUSE = NIAJ	N1 - ALUMGN(1)	UC75CN64
4178	NK = N-1		UC75CN70
4174	ANGLE = XLNG +	(CCEPTIN)-1)*FTSPC	UC75CN71
4186	WELTE (0.74) NK	. UAIN. ANCIL	UC7SCN73
4151	TH FLEMAT & SAX.	12, 1ex, +13.7, 14x,+13.7)	UC7SCN
4182	75 CUNTINUE		UCTSCN75
	C		UC7SCN76
4154	wfjTi(6,70)		UC7SCN77
#185	TO FURMATTIMITELE	. MAIN LIEE NULL AND FIRST 20 SIDE-LLESS IC KIGH	CFUC7SCN78
4186	* (AUUVEL MAIN	Luga •	UC75CN79
4137	*/35X, *+ whek *, 10	X, PREL. GAIN*, 13X, *TRUE ANGLE*, 13X, *KEL. ANGLE*	
41 00	*/ 57X,*(US]*	,16X,*(DEC)*,16X,*(DEC)* /)	
41.7	G		UC7SCNE2
4240	L**** INITIALIZE KIG	HTHAND SLANNER ********************	*** UC75CN83
4141	HULFEU = 1)		UC7SCN84
414.	NLo = 1		UC75CN55
4145	NWSTET = LLBET	(1)+1	UC 75CN86
4144	C**** +1Mr. 21nr-Free	S TO FIGHT OF MAIN LUBE *****************	*** UC75CN87
4495	Us of NTHPJ=NW	STRY NPTS	UC7SCN68
4146	UELUVI = 1/V(HT	HPT) - DVINTHPT-1)	UC7SCNE4
4141	ULLIVE = CV(NT	HET+11 - DVINIHPT)	UC7SCN90
4146	ir (recovi ace	. 0.6 .AND. FREDV2 .CT. 0.0) GE TE CE	UC7SCN91
4144	C#### FIND KIGHTMAND	MAIN LOHE NULL **********************	*** UE756N42
420 3	IF (NULFEC.LW.	(R. OFLDV1.(E.O.OCK. UEE(V2.c1.0.0) 60 10 8	5 UC7SCN93
4201	NULFLG = 1		UC7SCN94
44.02	C#### COMPUTE ANDER	OF KIGHTHAND MAINELEE NULL *****************	*** UC756N95
4. 1/2	AMHERT = XUNG	+ (NTHPT-11*PFSPC	UCTSCNY
4204	while to east	AMNL HT	UCTSCNAR

4205	SH FURMAT(SOX+ *MAIN ECBE *+MX+*** NULL *** +13X+F13.7)	6-45
4£ Un	ου Τυ <i>8</i> 5	UC7SCN00
4201	C	UC7SCN01
4666	C**** LUMICTE RELATIVE GAIN AND RELATIVE ANGLE OF RIGHTHAND SIDE-LOBES	UC7SCN02
42(14	of CENTINUL	UC7SCN03
4210	GAIN = UV(NTHPT) - ALORGN(1)	UC7SCN04
4211	ANGLH = XUKG + (NTHPT-1)*PTSPC	UC7SCN05
4212	FELANGE ANGHA	
4213	C	UC7SCN07
4214	WEITE (6,20) NLB, GAIN, ANGLB, RELANG	
4215	10 FURMAT (39X+15+3(13X+F15+7))	
4216	NEC = NEb+1	UC7SCN10
4217	C++++ EXIT AFILE TWENTY SIDE-LOBES OF DEEP THROUGH AT END OF DATA *****	UC7SCN11
421b	181 NLE .67. 20 1 GC TO 87	UC7SCN12
4214	L	UC7SCN13
4220	ds CENTINUE	UC7SCN14
~221	WK17c(0,06)	UC7SCN15
4222	SO FLEMAT (45X, "NO FURTHER SIDE LUBES ON THIS SIDE")	UC7SCN16
4223	L	UC7SCN17
424	87 WKITE (0,88)	UC7SCN18
4225	SE FCRMAT(1HG/22X. MAIN LOBE NULL AND FIRST 20 SIDE-LUBES TO LEFT OF	UC7SCN19
4660	*(tollow) MAIN 1866	UC7SCN20
4227	#/38X, *KANK *,13X, *KEL. GAIN *,13X, *TRUE ANGLE *,13X, *KEL. ANGLE *	
4226	*/57X,*(Ub)*,16X,*(DEG)*,16X,*(LEG)* /)	
4224	ι	UC7SCN23
4 2 30	C**** INITIALIZE LEFTHAND SCANNER ***********************************	UC7SCN24
4231	NWSTRT = LOBPT(1)	UC7SCN25
4232	NWSTP = NWSTRT-2	
4233	NLE = 1	UC7SCN27

08/11/75	INFUL CISTING	AUTOFLUW CHART SET - FWO/S	CL RADSIM
LAKU NI	***	CONTENTS	6-46
4254	NULFEG = 0		UC 7SCN28
4230	Ĺ		UC7SCN29
4220	C**** FIND SIDE-LO	SbiS TC LEFT OF MAIN LOb! ******************	***** UC75CN30
4227	UL 45 NIHPT=	-1.NWSTP	UC7SCN31
4230	NAPT = NWSIK	CT - NIHPT	UC7SCN32
46.34	DELDV1 = DV((NXF1) - DV(NXPT-1)	UC75CN33
4240	lietuva = bv((NXPT+1) - OV(NXPT)	UC7SCN34
4241	ir (ottovi .	.ce. 0.0 .AND. DELOVE .LT. 0.0) GC TO 90	UC 75CN 35
4040	CAPER FIND LEFTHAN	yu MAIN LCHE NULL ********************	***** UC75CN36
وإجاليه	IF (NULFLUAE	.c.1 .6K. DFL0V1.6E.0.0 .0K. DELDV2.L1.C.0) 60 1	U 43 UC75CN37
4 ~ 41 64	C#### CEMPUTE ANGL	t of EthTHAND MAINLOBE NULL ***************	***** UC75CN38
46.60	AMNLET - XUN	SC + INXET-11+FTSPL	UC 7SCN3
4,40	NULFLU = 1		UC7SCN41
4241	WHITE (C. SH	·) AMNLET	UC7SCN42
46 46	66-10-95		UC7SLN43
4244	C		UC7SCN44
4250	U#### CUMPOTE NOTA	ATTVE GAIN AND RELATIVE ANGLE OF LEFTHAND SIDE-E	UBES + UC75CN45
4271	YO CLIATINUE		UC75CN46
425 7	GAIN = DVINX	(FT) - ALUFGN(1)	UC7SCN47
4253	AMOLE = XONG	- + (NXFT-1)*FTSPC	UC7SCN48
4654	rit Emplicación	, - ANUMN	
4255	(UC75CN50
4.70	while feath)	NL . + GAIN+AN(LH+RELANG	
7-1	* KPC) TAM 404 PU	13, 3(15%,613.71)	
+. 5x	C		UL75CN53
9219	FALT - FALE+1		UL7SCN54
4.00	C**** CXII AFICH I	TACHTY STUE-LUTES OF DRUF THROUGH AT LINE OF DATA	***** UC75CN55
4.64	1) (hEb = 0.T.	. 20 1 (0 TC 95	UL7SLN56
٠, ١	Section of the second		UC75CN57
** C ·	(UC7SCN56
4, 44	wells (cyco)		UC7SCN59
4. 0	L		UL7SEN60
9. 66	90 KETUKK		UC75CN61
4601	Elsk		UC7SCN62

SECTION 7 SUPERVISORY MODULES

This section includes those modules that supervise existing stimulus/transfer function modules to simulate the frequency scanned and time scanned array radar systems. This group includes ANTARY and TSRPAT, which are located in Volume III.

SECTION 8

S U B O R D I N A T E M O D U L E S

This section includes all those modules which are subordinate to the larger stimulus/transfer function modules, peripheral modules or supervisory modules. They include both subroutines and functions. Included in this group are the following modules:

ABORT	IBOOL
ANTINT	IFLD
AZGA IN/ELGA IN	IPACK
BLOCK DATA	PACK
DBLKX	RRAND

The following subordinate modules are related to the bistatic target model and target imaging and are located in Volume I, Part 3:

BISTGT GAM BESS EXPI

EXPI is also located in Volume IV, Part 2.

SUBROUTINE ABORT

1. MODULE IDENTIFICATION:

Name Classification Reference Number

ABORT Subordinate Not user referenced

ERRMSG Subordinate Not user referenced

2. PURPOSE:

This subroutine is used to print coded error messages to the user.

3. INPUT PARAMETERS:

Name O/R T Description

NCODE R I Error message code number. 0 < NCODE ≤ 999

4. CALLING SEQUENCES:

CALL ABORT (NCODE)

A message is printed which states a fatal error has occurred and execution will terminate.

CALL ERRMSG (NCODE)

A message is printed which states a non-fatal error has occurred, a fix-up procedure done, and execution continued.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. Flow Chart: Page 9-81

b. Cross Reference Table: Page 9-218

```
8-3
4654
                     SUB-KOUTINE ABURT (NOUDE)
2255
                     CLMMLN/SYS/ MLDULE
2256
                     WELTE (6, 1000) NCOUE, MODULE
               1000 FERMATI ENRUR : 1.13. CCCURRED BURING EXECUTION OF MODULE : 1.
2251
                   * 15. *.... PATAL ERRUR: JOE WILL TERMINATE ! )
2250
                     CALL CALL
2254
2200
                     ENTRY ERRMSU(NCOPE)
2201
                     WRITE (0, LOUI) NCODE, MODULE
```

01/11/75	INPUT LISTING	AUTOFLOW CHART SET - FWC/SCL RADSIM	1
CARU NU	****	CUNTENTS	****
2264	1001 FERMATE ERRER	: ".13," OCCURRED DUKING EXECUTION OF MUDULE : ".	
2203	* 15, *F1X=U	P DENE, REFER TO C.P.D. ; JUD WILL CONTINUE 1	
2204	KE TUFN		
22.05	Ł N U		

ł

را اين الرياد ليصيمند د ليمد دايان الميرد يبصيح دايان الوادروبساري د

SUBROUTINE ANTINT

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
ANTINT	Subordinate	(301)

2. PURPOSE:

This subroutine generates an interpolation table from the user provided sampled antenna pattern data. The interpolation table is subsequently used by the functions AZGAIN and ELGAIN to compute antenna gain.

3. INPUT PARAMETERS:

<u>Name</u>	O/R	$\underline{\mathtt{T}}$	Description
NPT	R	I	Number of user specified antenna gain values
BSIT	0	F	Angle between zero angle of user specified pattern and zero angle in radar coordinates (usually = 0.0)
ANTP(2,75)	R	F	User specified gain pattern array. ANTP(1,J) is the gain of the Jth sample. ANTP(2,J) is the angle of the Jth sample.

4. CALLING SEQUENCES:

CALL ANTINT (NPT, BSIT, ANTP, CDEF)

Where: ANTP contains the Input Antenna Pattern COEF contains the Output Interpolation coefficients table.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. If no antenna pattern is specified then the coefficients table is set up to represent an omnidirectional antenna of unity gain. b. Flow Chart: Page 9-140

c. Cross Reference Table: Page 9-226.

6. THEORY OF OPERATION

This module implements a simplified antenna representation which is based on computing the antenna gain as the product of samples from an azimuth and elevation pattern cuts through the peak of the main lobe. The azimuth pattern is true antenna gain in power units. The elevation pattern is normalized to unity gain at the peak of the main lobe.

The parabolic interpolation scheme mechanized herein is described in the following paragraph. Given three points a parabolic curve can be determined which passes through them.

where A, B, and C are the coefficients to be determined

$$A = \frac{XY12 - XY13}{X2 - X3}$$

$$B = XY12 - A * (X1 + X2)$$

$$C = Y1 - (X1A + B) * X1$$

$$XY12 = \frac{Y1 - Y2}{X1 - X2} \text{ and } XY13 = \frac{Y1 - Y3}{X1 - X3}$$

In determining the coefficient table elements a double parabolic coefficient is used where possible. This is done by determining 2 sets of coefficients for 2 curves through 4 points and averaging the coefficients. Typically a double parabolic curve fit is smoother than a single parabolic curve fit.

3634		SUCKUUTINE ANTIHTINPTOESITOANTPOLUEF)	
ب رن ز	L		
کده د		UIMEN ILN ANIFEZ.75), CUEF (4,76)	8-6
ياد باد		1F(NFT.61.2) GE TO 50	
3027		COEF(1,1)=0.0	
3038		tocr(.,1)=0.0	
باد بان		(Lef(3,1)=0.0	
٠,44		Cter(4,1)=1.0	
3041		COEF(192)=20000	
JU46		cust(cos)=uou	
3045		Cut+(3,2)=0.0	
3644		UPER (492)=0.0	
JU45		IT (NET aleta) GO TU 40	
ن+0د		CLEF(1,4)=ANTP(2,1)+HSIT	
2041		Citte=11=46T+(1,1}	
3 043		COLF (1,2)=ANTP(2,2)+BSIT	
پهور	4	o craff1,76)=600c(2)	
JC50		hF1=4	
3551		66 To %C	
2022	,	o CENTINE	
2002		cust (1,70)=600s (NPT)	

CL/11/75	INFLI	LISTING
00/11/13	2.47 C.	C A D I TINO

AUTUFLUM CHART SET - FMU/SCL FAUSIM

LAKE NU	****	CUNTENTS	7.
3054		NFTC=NFT-C	
3695		Al-u.u	
3356		n1=0.0	
ろいろり		L1=0.0	
3658		FEG =1.0	
4606		00 100 K=1.NPTc	
3660		L=K+1	
1000		M=K+	
2062		XY12=(ANTP(L+K)-ANTP(L+L))/(ANTP(2+K)-ANTP(2+L))	
3803		AYID=(ANTH(L+K)-ANTH(L+M))/(ANIH(2+K)-ANTH(L+M))	
5004		ML = (XY1, -XY1)/(ANTP(2+L)-ANTF(2+M))	
3605		DZ=XY12~AZ*(ANTPE2,K)+ANTPE2,LJ+Z.O+651T)	
3000		TEMP=ANTH (L+K)+BSIT	
Tool		U.=ANT+(1+K)-TEMP*(A2*TEMP+{2})	
2602		CL=ANTP(1,K)-ANTP(2,K)*(A2*ANTP(2,K)+62)	
36 0 %	C		
5676		LLEF11, NJ=AN1F12, K) 4 r S 1 T	
2071		unif(cgk)=FEC*(A1+A2)	
<i>5</i> 01,		(uct(3gK)=rLo*(c1+b2)	
3013		Ct cf (++k)=+Li+(C1+C2)	
ش ن (ا		AL=AL	
4075		61=r.	
2670		Clack	
5611		PLC =0.2	
3.1°s	1.0	Continue	
30.14	L		
المانو		(LC+ (+96)=AN(+(296)+85)T	
2001		Cortage levi	
2.44		Continetter	

```
LULF 14, L J= L1
3663
                                                                                       8-70
3664
                     CUEF (1.MI=ANTP(2.MI+HSIT
                     LLL+1...M)=0.0
3065
3686
                     LLEF13.M1=0.4
                     CUEF (+, M)= 6.0
3687
3005
               C
3664
                  YU CENTINUL
                      WEITE 10.45 INPT. USIT
3640
                  45 FURMATCHIA SULFBUTTNE ANTINT
                                                         NFT = 1,13, +
                                                                           -- 41 = * + 1+ 11 1.71
2641
                     WELLE COLUED (CANTEGERIOJELOZIO) CUEFILORIOLELOGIOPELONFI)
∡¥راد
                 10' FLEMAT (IM +C(IFE20+7))
)( 4 )
3044
36.45
                     RETURN
                     . .
بالابان
```

SUBROUTINE AZGAIN/ELGAIN

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
AZGAIN	Subordinate	Not user referenced
ELGAIN	Subordinate	Not user referenced

2. PURPOSE:

This function is to compute the antenna azimuth or elevation gain for any angle within the range of the user specified antenna data.

3. <u>INPUT PARAMETERS</u>:

Name	<u>0/R</u>	T	Description
ANTANG	R	F	The angle of the antenna main lobe in radar coordinates

4. CALLING SEQUENCES:

CALL G = AZGAIN (AZANGL) * ELGAIN (ELANGL)

Where: GA is the antenna gain corresponding to an azimuth angle of AZANGL and elevation angle of ELANGL.

5. RESTRICTIONS, REQUIREMENTS AND MISCELLANEOUS DATA

- a. The coefficients table must have been successfully initialized by the subroutine ANTINT before the function can be executed.
- b. Flow Charts: Pages 9-159/160
- c. Cross Reference Tables: Page 9-229.

6. THEORY OF OPERATION

The input angle ANGL is tested to determine if it is within the range of the input data. If it is outside the range, the gain value returned is zero. Otherwise, the gain is computed from the gain coefficients (A,B, and C)

that are closest in angle to ANGL.

AZGAIN = (ANGR ** 2) * A + ANGR * B + C

Note: AZANGL is the angle measured in degrees CCW from any desired reference direction. ELANGL is the angle measured in degrees up from the horizon.

```
FUNCTION AZGAINTANGED
-061
40:0
                    CUMMUNZAZPATZ LLEF (4,741,NCUEF
4UL 3
                     COMMON /BERRY BRITSON)
                     ELUIVALINCE (ANTANGOBELITTE)
                     DATA RULD/1/
41126
                     ANGKEANUL-ANTANG
                     IF COLEF (1-12-LC-ANDR-AND-ANDR-LE-COFF(1-NCUEF) NO TO 10
44...4
 ----
                     ALTUKN
 -1.-1
                  IC IF (ANUK-CUEF (1.KULU1)20.50.30
                  CO RULL-RULL-1
 404.
 4044
                   SU IFTANGRALL ACCEPTE NOLD-11166 TO 56
 4043
                     KLLU=KULU+1
 46 40
                      of To 10
                   TO ACCAINEAUSE CANGROCULFEZ-RULUI+CULFEZ-RCLUIFOANCR+CCLFE4-KGLDI F
 4073
 41110
                      K. IUFN
 -11-
 4102
                      FUNCTION CLUAINTANGLE
 4163
 41.4
                      CLMMLN/LLPAT/ LUEF (4,751 NCHEF
 4105
                      LEMMEN /FLRI/ NETESOD)
                      ENUIVALENCE (ANTANG, HR1(191)
  4207
  4103
  4104
                      ANUN=ANUL-ANTANG
                      IFECLEFEL-11.LE.ANGR.AND.ANGR.LE.COEFEL.NCCEFFIGE TC 10
                      FEGAIN-U.U
  4446
  -112
                   LU TETANUE-CUEFTI-KOLD1920-50-30
  4114
                   FE RELUPROCO-1
                      UL 11 10
  4110
                   30 IFTANGR.LE.LUEFTE.RULD+111GO TO 30 RULD+RLLU+1
  4118
  +11~
                    DU ELUAIN-(ANGRACOLF12,KOLD1+CUEF13,KCLU1)*ANGR+CUEF14,KULU1
   -1-1
   41.4
                       RETURN
   ****
                       LNU
   -1.-
```

SUBROUTINE BLOCK DATA

1. MODULE IDENTIFICATION:

Name Classification Code Reference Number

BLOCK DATA

Subordinate

None

2. PURPOSE:

This non-executable module initializes the labled common BLKRND which contains the random number array used by the random number generator.

3. INPUT PARAMETERS:

None

4. CALLING SEQUENCES:

None

This module is used only at load time to initialize the labeled area.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The numbers used to initialize the random number array were derived from tables of random numbers published by the RAND Corporation: A Million Random Digits with 100,000 Normal Deviates, the Free Press of Glencoe, New York, 1955.
- b. Flow Chart: Page 9-124
- c. Cross Reference Table: Page 9-224

sclo	BLUCK DATA	840
5217	CUMMUNZBEKENDZ TUMYŁ, IRNO, IAUDI, JEND, IUUM (Elenknul (Colenknul (64)	900
7414	LATA ALMYL, AAUUI/1,1/	910
at 14	UATA NAMUTY15154161947,27504664464,30325512272,50006227364,	920
3270	 14021003542410403140540*50306446515*11506314040* 	430
22.1	 16:01629773,118,49273156,19404991345,609777112830, 	440
3222	 62563434137,33625570091,11012341622,13401365661, 	950
3221	 31267410086,13462134250,20403855402,24,14774240, 	460
322 4	• 11557820095,30512809719,12670506319,17722780814,	470
5225	• 04122547022,16900380091,16245824041,1652044606,	480
Sect	 20. 1. 690400, 1357600 4754, 111, 8309020, 29134237211. 	94 0
3631	* 13104442040 ₄ 244008463255 ₄ 03564450630 ₄ 245134255 ₄ 4	1000
3220	* 2526/30/442,16416,51777,32749370934,/1110173570,	1016
3.79	•	1020
3230	 19794 NO 324,00840123350,27142309994,15071175950, 	1030
74.31	• composition 13 + 23 + 18 for the 14 1 + 2 + 28 2 has been 2 + 10 + 10 + 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1040
3216	# 0170,00000417000418875,10041402774,28475284721;	1050
455	\$ 1710027(437,74288744156,88833554488,38884531c0,	1060
30.34	* 10000001342,5883873659,14824731080,18081451740,	1070
26.35	* 3100-41-380V	1080
Ng 213	CATA to hor/120001500 44,00047064054,15410700000,14300345178,	1090
3631	*	1100
si se	*	1110
۵. ۶۰۰	4	1120
J. 1911	* 24176064246426866746864261356666164146683575464	1130
56.94	\$ 2507256224	1140
1242	*	1150
1243	* 10.1025/394,18438138207,012.000/404/,19002214145,	1160
3 Care	• (4511045400416742867695411616843761418144114660)	1170
2000	• 30, 42427100 4308 97407100478 700944700 433 8004457044	1180
5£4h	*	1190
3.41	4 30.24145581,07655423387,3.6.640.571,13101024674,	1200
92 4a	# 30535512969+07218771539+00229536870+1919860+401+	1510
3249	* 201027054204241078105084105344C141547CC415C1404	1220
رو کی ا	* 344140-72.5604776474,30756345460.10052745561.	1230
5751	1. 174114000, 10550707007, 10140202, 000, 4474017119/	1240
and the f	t fair	1250
		22.50

11-8

SUBROUTINE DBLKX

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
DBLKX	Subordinate	Not user referenced
SDBLKX	Subordinate	Not user referenced

2. PURPOSE:

This subroutine is used to transfer a defined block of data from one array to another array.

3. <u>INPUT PARAMETERS</u>:

O/R

a. DBLKX

Name

rame	<u>0/ K</u>	<u> </u>	Description
NST	R	I	First element of the input array to be transferred. Also, the first element of the output array to be used.
NWORD	R	I	Number of elements to be transferred.
b. SDBL	KX		
Name	O/R	<u>T</u>	Description
NST	R	I	First element of the input array to be transferred.
NWORD	R	I	Number of elements to be transferred.
LOC	R	I	First element of the output array to be used.

Description

4. CALLING SEQUENCES:

CALL DBLKX (NST, NWORD, X, Y)

Where X contains the Input Waveform Y contains the Output Waveform

Y(NST+J) = X(NST+J) J=1, NWORD

CALL SDBLKX (LOC, NST, NWORD, X,Y)

Where: X contains the Input Waveform
Y contains the Output Waveform

Y(LOC+J) = X(NST+J) J=1, NWORD

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. All input data to this subroutine is provided through the calling argument list. This subroutine is not directly available to the program user, but is used by other subprograms for data transfer.
- b. Flow Chart: Page 9-122
- c. Cross Reference Table: Page 9-223.

3140		SUBRUUTINE UDLK XINST. NWERC, X, Y)	UL 7DRL UI
3144		DIMENSION KEEL-VELL	DC708662
32 0u		N & N & S & S & S & S & S & S & S & S &	UC7DRL03
3201		bu Tu eu	UC7UBL04
3242		ENTRY SUBLEXILUCINSTINUORDIXAY)	UCTULLOS
5203		N=LCL	UC 7081.06
3204	26	CLNFINGE	DC7UBL07
3205		NSTOP=NST+NwuKU+1	UC70BL08
3206		DC 10 J=NST+NSTUP	UC7UBLO
3207		Y(J)=X(K)	UC 7081 10
3466		N≈K+1	UC 7UBL 11
3204	10	CLNTINGE	UC708L12
32 1 0		KETUKN	UC708L13
s. 11		ENL	

FUNCTION IBOOL

1. MODULE IDENTIFICATION:

Name Classification Code Reference Name

IBOOL N/A -

2. PURPOSE:

This function was used when checking out RADSIM on IBM computers. It has been replaced by the standard Honeywell intrinsic function BOOl.

- 3. INPUT PARAMETERS: N/A
- 4. CALLING SEQUENCES: N/A

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. Flow Chart: Page 9-119
- b. Cross Reference Table: Page 9-223

3196		SUBROUTINE DBLKX(NST-NWORD-X-Y)	UC7DBL01
3199		DIMENSION X(1),Y(1)	UC708L02
3200		K=NS1	UC7DBL03
3201		GL T ₀ 20	UC7DBL04
3202		ENTRY SUBLEX(LOC.NST.NWORD,X.Y)	UC708L05
3203		K=LOC	UC7DBL06
3204	20	CONTANUE	UC708L07
3205		NSTGP=NST+NWuRD-1	UC7DBL08
3206		DU 10 J=NST.NSTDP	UC7DBL09
3207		Y(J)=X(K)	UC708L10
3206		K=k+1	UC 708L 11
3204	10	CONT1NUE	UC708L12
غور 210		KETURN	UC7DBL13
3211		END	

FUNCTION IFLD

MODULE IDENTIFICATION:

Name Classification Code Reference Number IFLD

N/A

2. PUR POSE:

This function was used when checking out RADSIM on IBM computers. It has been replaced by the standard $\,$ Honeywell intrinsic function FLD.

3. INPUT PARAMETERS: N/A

CALLING SEQUENCES: N/A

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. Flow Chart: Page 9-123

b. Cross Reference Table: Page 9-224

		UC708L14
3212	FUNCTION IFLU(IST, NBITS, IWORU)	UC7IFD01
3213	IFLD=FLD(1ST,NBITS,IWORD)	UC71FD02
3214	RETURN	UC71FD03
5215	ENU	UC71FG04

FUNCTION IPACK

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
IPACK	Subordinate	Not User Referenced

2. PURPOSE:

This function subprogram is used to pack two or more groups of bits into a standard computer word (36 bits).

3. INPUT PARAMETERS:

Name	O/R	T	Description
ISTR	R	I	The lowest bit into which data transfer is to occur. The bit number is counted starting with the LSB. ISTR = 0 corresponds to the LSB and ISTR = 35 corresponds to the MSB.
IDATA	R	I	The data which is to be packed into the output word.
IWORD	R	I	The word into which the data is to be packed.

4. CALLING SEQUENCES:

CALL IOUT = IPACK (ISTR, IDATA, IWORD)

IOUT = IWORD ⊕ (IDATA*(2**ISTR)) ⊕ = inclusive or

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The field (bit locations) of the output word which is to receive the input data must contain zeros before execution of the function.
- b. If the data to be placed in the output word is larger than the allocated field then either the data in a higher field will be destroyed or if it is the highest field then some of the most

significant bits of IDATA will extend past the standard word length and be lost.

- c. Flow Chart: Page 9-118
- d. Cross Reference Table: Page 9-223

6. THEORY OF OPERATION

The input data, IDATA, is multiplied by the power of two equivalent to the number of bit positions that it must be shifted in order to line up with its field in the output word. Once the data has been shifted to the proper position, then it is merged into the output word, IWORD, by using an inclusive OR operation.

This function is not directly available to the simulation user, but is used by subprogram within the simulation.

3460	FUNCTION IPACK(ISTP+#DATA+IWURD)	UC71PK01
-1.1	1TtMr=1UA1A*(2**15Tk)	UC 714K 62
21.3	IFACK - LOLUE LUK(ITEMP, IWUKU))	UC 71FK03
3174	KE TÜKİL	UC71+KU5
J150	¿ fet.	UC71PK06

SUBROUTINE PACK

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
PACK	SUBORDINATE	Not user referenced

2. PURPOSE:

This subroutine takes a word in integer format and converts the lower 13 bits of the word into two 8 bit ASCII characters. The ASCII characters are subsequently transmitted to a remote plotting terminal via TSS. Remote plotter accuracy assumed to be 12 bits maximum.

3. INPUT PARAMETERS:

Name	<u>O/R</u>	Ţ	Description
IWD	R	I	Output array word location pointer.
IBIT	R	Ι	Bit displacement to be used in placing the characters in the output word

4. CALLING SEQUENCES:

CALL PACK (IDAT, IWD, IBIT, IARY, \$1111)

Where: IDAT is the Input word IARY is the Output array

IIII is the statement number to which control is transferred if the output array is full (68 characters)

5. RESTRICTIONS, RECOMMENDATIONS, MISCELLANEOUS DATA

- a. The maximum array length is restricted to 68 characters to be compatible with TSS.
- b. The maximum allowable accuracy of the word is 13 bits, i.e. bits 0 through 24 must be zero.
- c. Flow Chart: Page 9-88
- d. Cross Reference Table: Page 9-219

6. THEORY OF OPERATION

The input word IDAT is shown pictorially as follows:

	 _	ı
IDAT	35	ł
IDWI		ı

Bit 0 is the MSB and Bit 35 is the LSB.

This word is divided into two characters, Il and I2as illustrated by the following:

0	23 24 25 26 27 28	2930 31 32 33 34 35
	11	12

Next I2 is tested to determine if any TSS command characters have occurred. If so, the value of I2 is incremented by +1 or -1 as follows:

TSS Character	Actual No.	Increment
DC1 (XON)	²¹ 8	+1
CAN	308	+1
EOT	48	+1
RUBOUT	1778	-1
SOH	1	-1
ETX	3	-1

Since II is 6 bits in length a rubout (177_8) cannot occur. Therefore, the remaining TSS characters to protect against have values which are less than 32_{10} . Accordingly, II is tested and if its value is less than 32_{10} then bit 7 of II is set "on" to preclude occurrence of the undesired character.

Finally, I1 and I2 are packed into the output word pointed to by IWD. The parameter, IBIT, specifies the displacement of I1 from bit 0 of the output word, IARY (IWD).

2414	SUBRUUTINE PACK(IDAT.IND.IBIT.IARY.*)	8-20
270 241	LATA IRUT/C177/,18117/0100/,1X0N/021/,1LANC/030/	•
2901	DATA 1:01/4/.12/0172/.10UNA/1/.10UNC/3/	
2462	DIMENSION TARY(1)	
2473	1=1AhY(Iwu)	
6464	11=FLD(23+0+1LAT)	
2427	12=F_D(29,7,1DA1)	
. 4, 0	1+(11.61.32.ANU.11.6T.U) 11=11+1+17	
enel	1F(12.Eu.1Fd7.ck.12.EQ.1CUNA.UK.12.EQ.1CUNU) 1z=1z~1	
2976	1+(12.00.1XUA.UK.12.00.1CANC.UH.12.00.1EUT) 12=12+1	
64.4	18 (12.00.12) 12=12+1	
2450	FLU(10x7,741AKYC1WU))=11	
. · · 1	1:11=1:11+9	
2402	FEUTICIT+9+1ANY(IW[])=12	
24-5	1011=1011+9	
240.54	andarately-us) kutukn	
a marin the	1:11=0	

ce/11/6	110-01-6151100	AUTCHLUW CHART SET - FW	L/SCL KADSIM
LARS ME	* * * *	CLNICNIS	****
4 4 3 G]wi= Jmi + i		
24.1	Affini-cl.	III KLIUFN I	
	he tühti		
	1 No.		

FUNCTION RRAND

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
RRAND	Subordinate	101, 102 (Parameter initia- lization only)

2. PURPOSE:

This function generates random numbers for use in various subprograms of the simulation model. Samples from the uniform, Gaussian and Rayleigh distributions can be generated. In addition, two statistical target models are incorporated which are based on the Chi-square distribution with 2 and 4 degrees of freedom.

3. <u>INPUT PARAMETERS</u>: (User supplied data through namelist NL101)

Name	<u>O/R</u>	$\underline{\mathbf{T}}$	Description
MAD1	0	I	The starting address for selecting random numbers from the random number array (1 ⊆ MAD ← 128)
UMEAN	0	F	Mean value of the uniform distribution
UUEXT	0	F	Width of the uniform distribution
XMEAN	0	F	Mean value of the Guassian distribution
SIGMA	0	F	Standard deviation of the Guassian and Rayleigh distributions, and average cross section for target models
N T YPE	R	I	Control integer which specifies the type of distribution to be generated

Name	O/R	<u>T</u>	Description
NTYPE	R	I	NTYPE = 1 Uniform distribution
NRAND	R	I	Array containing random numbers which are used to generate the output variates

Variables initialized during execution of the initializer load module based on user supplied data. These intermediate values are generated in order to minimize execution time of the function, i.e., to avoid repeating the same calculations for each entry to RRAND.

SIG2SQ = 2.0 *SIGMA * SIGMA UL = UMEAN - 0.5 * UUEXT UEXT = UUEXT/2 ** 35

4. CALLING SEQUENCE:

VAR = RRAND (NTYPE)

VAR will contain the random sample generated by the function from the NTYPE probability distribution.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA:

- a. Before any call can be made to the function RRAND th the input data must be loaded using namelist 101.

 Any subsequent changes in random variate distributions are also made through namelist 101.
- b. For convenience and to minimize program steps the array IRAND was equivalenced to the array NRAND but displaced by one location. This structure allows an address of zero to be used, i.e., an

address of zero will access IRAND(0) which overlays NRAND(1). If this were not done, a test would have to be performed on MAD1 to ensure that an address of zero did not occur.

- c. A list of random numbers suitable for initializing the array NRAND are included at the end of this section.
- d. Flow Chart Page 9-120
- e. Cross Reference Table Page 9-223

6. THEORY OF OPERATION:

For each call to the function RRAND a number IRND is selected from the random number table IRAND. address of the number selected from the table is MAD1 which is also a random number. The number IRND is added to the random number JRND which was generated by the previous execution of the function. The sign bit is set to zero to ensure a positive number. By adding the two random numbers and truncating the overflow, a new random number is generated which is also called IRND is placed in the random number table location previously occupied by the original IRND. In this manner the random number table is updated by generating new random numbers and inserting them in the table. From this random number IRND, 7 bits are selected to determine the new address MAD1 to be used in the next call to the function. The 7-bit address field allows the addresses to range from 0 to 127. random number IRND just generated is an integer having an uniform distribution from 0 to 235 - 1. Once the random number is generated JRND is set equal to IRND for use in the subsequent executions of the function. In order to convert this number to a floating point number r having a uniform distribution from 0 to 1.0, the following conversion is used.

r = FLOAT(IRND)/235

From this uniform distribution other probability distributions can be generated by using transformations which map a uniform distribution into the desired distribution. The following is a list of the transformations used in the function:

a. Uniform distribution $a \le x \le b$

$$x_n = (b - a)r_n + a$$

b. Rayleigh distribution $P(\mathbf{x}) = \frac{\mathbf{x}}{\sigma^2} e^{\left(\frac{\mathbf{x}^2}{2\sigma^2}\right)}$

$$x_n = \sqrt{-2\sigma^2 \ln r_n}$$

 $x_n = \sqrt{-2\sigma^2} \text{ In } r_n$ c. Gaussian distribution $P(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\left(\frac{x^2}{2\sigma^2}\right)}$

$$x_n = \sqrt{2\sigma^2 \ln r_n} + \cos 2\pi r_{n+1}$$

d. Swerling Target Models #1 & #2 P(x) = $\frac{1}{\sigma}$ e $\left(\frac{\sigma}{\overline{\sigma}}\right)$

$$x_n \approx -\overline{\sigma} \ln r_n$$
 $\overline{\sigma} = \text{average cross section}$

This distribution characterizes a target with a large number of independent scatterers of approximately equal cross section (Swerling cases 1 and 2).

e. Swerling Target Models #3 & #4P(x) = $\frac{4\sigma}{\overline{\sigma}^2}$ e

$$x_{2n} = \frac{-\bar{\sigma}}{2}$$
 (ln $r_n + \ln r_{n+1}$) = average cross section

This distribution characterizes a target with one dominant scatterer plus smaller scatterers or one large reflector subject to small changes in orientation (Swerling Cases 3 and 4).

آديد	FUNCTION KRANLINTYPE)	8-25 UC7RNY01
3130	CUMMUNICKKNIZIDMYI, IRNII, MADI, JEND, UMCAN, UUEXI, XMEAN,	UC7RNYU3
21.29	#SIGMA; DUM; SIG2SU; UL; UE; XI; NKANDEIZY)	UC7RNY04
3140	UIMENSION TRANSCORRE	UC7RNY05
314k	DATA THEP1/07, IMULT/1, 20703125/	
3140	\u00ddo\u	
3145	MATA C1/2.4103t30t-11/	UC 7RNYD7
3144	CULIVALENCE CIFANUCII+NFANUCZII	UC7KNY08
3145	to Kitau- trainfautami)	UC 7KNYU9
34-11	1knu=kfnu+jfnu+jfnut1	210
-14/	1KND = +1011,25,1FNU)	UC7KNY11
3141	IRANU (MALI)=IRNU	UC7RNY12
3144	MAUL = FLU(1),7,1khu)	UL7RNY13
3150	IF (FDMYI = 1 4 - 1 1 - WEITE (N + 1000) IF NU + IRNU + MAUI + MACI + KKNU + KKNU +	
3454	• JEIN & JERN	
2157	.000 (CEMATTIE + 41115-075)	
5155	01. 10 1201,501,500,500,500,500,700,800,900,5NFFF	250
315n	YOU KRAIN = FECATEIKNUIPLEXT + UL	UL7KNY15
3455	JKIN = IKNI	UC7KNY16
2150	MAGE 1A	UL7KNY17
315/	SOU KRANE = SCREESEGSSOFACEG(FEDATTIANCIPEID)	UC7KNY18
21.40	$J_{\rm P}N_{\rm C}=1{\rm KM}_{\rm C}$	UL7RNY19
51 59	reliate	UC7KNY2U
2166	400 CENTHER	320

3161	HOU 1x=FLL(1+17+KKNU)-NiPle	8-25a
3162	12=FLU(16,17,KFND)-N2P16	
دعين	12-11-11-12-12	350
3104	AP (IS-LT-IMAX) GUTU 20	
3105	JrND=1nidu	
J400	LCTC 10	
ا ١٤٠	20 S=1.0/FLC A1(15)	
316i	VCC2=5*FE(1#1(11*11-12*17)	360
بارد. بارد	V51WL=5*2.U*FLLAT(11*12)	340
31/0	11 (mTYE cocks 2) 60 TO 405	400
J1/4	FRANCEVOUS	410
J172	LUM= VSINC	420
3173	Junto-Tunt	430
31 /4	KETUHN	440
31.75	405 BOM=SERT(SIGESE*ALUGIFLUAT(JRND1*C1))	480
2116	KRANI = DUM*VCUS + XMEAN	UC 7RNY 38
J1/7	LUM = JUM+VSINE + XMEAN	UC7RNY39
3470	JKNU = ikNU	UC7RNY40
o174	RETURN	UC7RNY41
3100	SOU KRAND = OUUL(IEND)	UC7RNY42
olci.	JENU-IKAU	UC 7RNY43
ت المد	he ILNN	UC7RNY44
دنيد	ONO KKANI-PUM	UC7KNY45
3184	KETUKN	UC7RNY46
خە دد	700 RKAND=-\$16MA*ALUG(FLUAT(IRND)*CI)	UC7RNY47
3466	JKNO=1KND	UC7RNY48
3107	KE TUKN	UC7RNY49
3163	800 1F (1REPT-EQ-1) 60 TO 801	UC 7RNY 50
5169	5Um=0.0	UC7RNY51
3140	EUR SUM=SUM+AEUG(FEDAT(IRND)+C1)	UC7RNY52
141ر	IKEPT=IKEPT+1	UC7RNY53
3142	16(1KLPT-NL-2) 60 TO 16	UC7RNY54
3193	IKEPT=0	UC7RNY55
3194	kRANU=-SIUMA#SUM/2.0	UC7RNY56
3195	JKND=IKND	UC7RNY57
3140	k e TUKN	UC 7RNY58
3197	FND	UC7RNY59

LIST OF RANDOM NUMBERS

The following list of random numbers is suitable for initializing the random number array NRAND used by the function subprogram RRAND. The numbers were derived from tables of random numbers published by RAND Corporation:

A Million Random Digits with 100,000 Normal Deviates, the Free Press of Glencoe, New York, 1955.

NRAND = 12068158044,06847664659,1541678276C,19382343178, 33122308420,25052201840,13588647(55,C11347314C8,C7289355507, 16534467415,24386072834,29317493972,C7114843643,16232718423, CE16C41E88C, 1641C917E13,2341652C791,2d825638452,10800745449, 29107616508, 23120785669, 32320902560, 15471352757, 07683759917, C3669736170,29170504246,26866574818,2033588C812,14861357546, 03451463822,25072568248,31374670078,13676667551,30463132192, 05804776974,20172084006,16184261842,14974216467,16283018420, 30256545185,13310257399,1393818E207,012E6C74657,19662214195, 10832795361,01577045480,16742867695,11686848767,18174114680, 18174114630,30892487160,30892487160,28360545700,**3336841**57**0**9, 105567(7007,17235921632,25322444850,30007056175,13488881553, 10140208896,30224148581,C7655423387,326264C2551,131C1024674, cs779017119,30533512969,07218771539,00229536870,291986044C1, C1702686304,15134181597,27509664464,3C323512272,30068227398, 17006458873,14051007893,16402190290,26306550212,11260717646, 16841482774,16801629773,11349273156,19404991345,06977712830, 26473264721,C2883434137, 2302557CC91,11012391622,13431365861, 17160292937,31267410036,13462135250,26463885502,24215774296, 29620744156,1155782C695,3C512809719,12630506319,17722780814, 08883554436,04722557022,1650C23C091,16243E24C41,16388O446C6, C3669953728,26212698408,13570004754,11188309528,29134237821, 16068801392,13164942096,29908968258,03564986666,24513426529, 05883873859,25262307992,16416251777,32749376939,21116178576, 14824731880,19395173043,20743061171,21319355579,19074491967, 18081451743, 19244390324, CEE46123356, 271423C5954, 15825176938,

SECTION 9

RADSIM COMPUTER PROGRAM

FLOW CHARTS

PUBLISHED IN PART 2 OF THIS VOLUME.

SECTION 10

INDEX

(See also Section 6 in Volume I, Part 1 and Appendix B in Volume IV, Part 1)

PROGRAM/ SUBROUTINE/ FUNCTION	MODULE NUMBERS	DESCRIPTION & LISTING PAGE	FLOW CHART PAGE	CROSS REF. PAGE
ABORT	~	8-2	9-81	9-218
A DDA	207/239 See	CONV		
ADDRND	235/236 See	RNDARY		
A DRNDC	237 See	RNDARY		
ANTARY	413	Vol III	9~170	9-230
ANTINT		8-4	9-140	9-226
ANTPAT	504 See	ANTARY		
ATOD	216/217	4-2	9-98	9-220
AZGA IN	-	8-8	9-159	9-229
BLOCK DATA	-	8-10	9-124	9-224
CDFNCL	404 See	CDIGFL		
CDIGFL	403	4-6	9-96	9-220
CFAR	459,460	4-10	9-66	9-216
CGEN	425	Vol III	9-182	9-231
CGENCW	455 See	CGENSF		
CGENSF	453	Vol III	9-149	9-227
CLINT	302	6-2	9-198	9-234
CLUTTR	503	4-14	9-112	9-222
CONV	204	5-2	9-60	9-216
CONVMP	205 See	CONV		
CUMDIS	208/209	6-11	9-152	9-228
CUM 2	- See	CUMDIS		
DBLKX	114/115	8-12	9-122	9-223
DCFAR	440/441	4-20	9-93	9-220
DFT	201	4-24	9-142	9-226
DFTFØ	234 See	DFT		
DFTRF	233 See	DFT		
DIGFIL	461	4-30	9-101	9-221
DIGFNC		DIGFIL		
DIGFSF	463	4-34	9-107	9-222
DIGTFL	422/423	4-41	9-95	9-220
DIVA		CONV		
DTOA	•	ATOD		
	220/228			
		4 A 1		

10-1

PROGRAM/ SUBROUTINE/ FUNCTION	MODULE NUMBERS	DESCRIPTION & LISTING PAGE	FLOW CHART PAGE	CROSS REF. PAGE
		4-45	9-104	9-221
ECM	512	DIGFIL	•	
ECMFL		DIGFSF		
ECMFSU	- See	8-8	9-160	9-229
ELGAIN	-	6-16	9-70	9-217
ERGYCP	118 116/117 See			
ERGYRE	116/11/ 500	ABORT		
ERRMSG	- 566	ADORI		
CCENIMO	421 See	FGENXY		9-217
FGENMP FGENXY	420	4-51	9-72	9-217
FILT	407/408	4-60	9 - 55	9-213
FWDET	416/417 See	HWDET		
TWOLL	·		9-103	9-221
HET	-	4-64	J-103	
HLIM	438/439 See	e HMDEL	9-137	9-225
HWDET	414/415	4-65	9-137	•
		0.1/	9-119	9-223
IBOOL	~	8-14	9-123	9-224
IFLD	-	8-15	, 223	
IFT		e ZFFT		
IFWDET	447/448 Se	6 HANET		
IHLIM	442/443 Se	e HWDEI		
IHWDET	445/446 Se	4-70	9-97	9-220
INGTOR	409/410	4-74	9-117	9-223
IONOS	511	8-16	9-118	9-223
IPACK	- - / 0 // 50 Ca		-	
ISQDET	449/450 S€	e umper		
	458	4-80	9-68	9-217
LAMPCP	456/457 S€			
LAMPRE	430/437 30	, C 12.1.2.4		
MATN 1	-	2-1	9-2	9-206
MAIN 1	_	2-2	9-34	9-210
MAIN 2	430/431	4-83	9-201	9-234
MTIFLT	- S	ee MTIFLT		
MTIIFT MTIINC		ee MIIFLT		
MTINCL	432/433 S	ee MTIFLT		
NCSWPI	436/437 S	ee SWPINT		0 225
NONL IN	401/402	4-91	9-135	9-225
MONTIN				
OUTCUM	210/211 S	ee CUMDIS		
T) A ("T/	_	8-18	9-88	9-219
PACK	212/213 S	ee CUMDIS		
PDF		10-2		
		10-2		

and a said

PROGRAM/ SUBROUTINE/ FUNCTION	MODULE NUMBERS	DESCRIPTION & LISTING PAGE	FLOW CHART PAGE	CROSS REF. PAGE
	508/509	4-94	9-78	9-218
PHDEC	506/507	4-100	9-167	9-229
PHENC	307-310	6-18	9-90	9-219
PLOTTR	113	6-23	9-175	9-231
PLTFMT	303-306	6-28	9-82	9-218
PTLIST	454	Vol III	9-147	9-227
PXFRM	474	VOI 111		
DDTCEI	405	4-105	9-100	9-221
RDIGFL	451	Vol III	9-145	9-227
RECF		e RECF		
RECFTF	214/215	4-109	9-150	9-227
RNDA RY RRAND	101/102	8-21	9-120	9-223
=	231/232 Se			
RSHFTS	229/230 Se			
RSHIFT	103	6-35	9-156	9-228
RTOPDB	110 Se	e RTOPDB		
RTOPM		e RTOPDB		
RTOPM2	111 50			
SCANNR	313	6-40	9-161	9-229
SDBLKX		e DBLKX		
SHIFT	224/225	4-113	9-63	9-216
SHIFTS	226/227 Se			
SPCAVG	312	Vol III	9-165	9-229
SQDET	418/419	See HWDET		
SWPINT	434/435	4-118	9-204	9-234
2ML INI	4317132			
TARGET	501	4-122	9-109	9-222
TGTNCL		ee TARGET		
TSARM		ee TSARY		
TSARY	426	Vol III	9-186	9-232
TSARY 1	427 S	ee TSARY		
TSARY 2		ee TSARY		
TSRPAT	505	Vol III	9-178	9-231
ISMAI				
WE ITCP		ee WEITRE		
WE ITMP	223 S	ee WEITRE		0 215
WE ITRE	221	4-129	9-57	9-215
WVGUID	510	4-135	9-116	9-223
	101/200 -	a DOWNDD		
XYTODB		ee RTOPDB		
XYTOM		ee RTOPDB		
XYTOM2	106 S	ee RTOPDB		

PROGRAM/ SUBROUTINE FUNCTION	MODULE NUMBERS		DESCRIPTION & LISTING PAGE	FLOW CHART PAGE	REF. PAGE
ZFFT	202 203	Se <i>e</i>	5-7 ZFFT	9-125	9-224

SECTION 11

RECURSIVE COMPUTATION

OF SINE/COSINE PAIRS

Many computer programs require the evaluation of sine and cosine functions for angles that are uniformly spaced over the interval from 0° to 360°, for example, DFT subroutine. In many cases the CPU time required to execute these computer programs can be significantly reduced by the use of the following digital oscillator to generate sine/cosine pairs. The Z-plane representation of the digital oscillator is shown in Figure 11-1.

Figure 11-1 Z-PLANE REPRESENTATION OF THE DIGITAL OSCILLATOR

The variable $\Delta\theta$ is the angular increment for which the sine/cosine pairs are to be calculated. The digital oscillator block diagram is shown in Figure 11-2.

The stimulus [cos θ_0 + j sin θ_0] is applied only when n=0 and is zero otherwise. Before execution of the digital oscillator routine, the storage registers (A & B) used to generate the unit delays must be cleared.

Figure 11-2 DIGITAL OSCILLATOR BLOCK DIAGRAM

n = number of executions of the digital oscillator routine.

The Fortran statements for implementing the digital oscillator are the following:

A = Cos (
$$\theta_{O}$$
)

B = Sin (θ_{O})

DELC = Cos ($\Delta\theta$)

DELS = Sin ($\Delta\theta$)

A and B contain the sine/cosine of [θ_{O} +(n-1) $\Delta\theta$]

TEMP = A

A = A * DELC - B * DELS

B = TEMP * DELS + B * DELC

where $\Delta\theta$ = angle increment.

 θ_{O} = starting angle.

たがともみなからなってあってあってあってなってなってなって

MISSION of Rome Air Development Center

RADC plans and conducts research, exploratory and advanced development programs in command, control, and communications (C^3) activities, and in the C^3 areas of information sciences and intelligence. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

SCASCASCASCASCASCASCASCASCASCASC