Villamosmérnök alapszak	F1	F2	F3	F4	М	E1	E2	E3	E4	E5	Összesen	Bónusz	
Fizika1													in a ver
1. vizsga, 2017. dec. 20.	O SALES				1021	S. G.E.	346	Site	150				

NÉV: Neptun kód: Előadó: Márkus □ / Sarkadi □

- 1. Egy autó a t=0 időpillanattól kezdve álló helyzetből egyenletesen gyorsul a gyorsulással. A kérdésekre adott válaszokban szereplő vektorokat koordinátás alakban adja meg!
 - a) Adja meg a kerék $\varphi(t)$ szögelfordulását az idő függvényében! A kerék sugara Y

R, mindvégig tisztán gördül. (1) $\beta = \frac{\alpha}{R} \quad \mathcal{V}_{t} = \mathcal{V}_{0} + \omega_{0}t + \frac{\beta}{2}t^{2} = \frac{\alpha}{2R}t^{2}$ W=0 4,=0

Tinta gérdilés esetén
$$V_K = W_{(+)} \cdot R = V_H = \alpha t_1$$

$$\overline{V_p} = \left[\alpha t_1 - \alpha t_1\right]$$

c) Mekkora a kerék P pontjának érintő irányú gyorsulásvektora a t₁ időpillanatban <u>a kerék</u> tengelyéhez rögzített, x',y' vonatkoztatási rendszerben! (1)

d) Mekkora a kerék P pontjának sugár irányú gyorsulásvektora a t₁ időpillanatban <u>a kerék</u> tengelyéhez rögzített, x',y' vonatkoztatási rendszerben! (1)

$$a_{cp} = \frac{V_k^2}{R} = \frac{(a t_1)}{R}$$

$$a_{qp} = \frac{V_k^2}{R} = \frac{(a t_1)^2}{R}$$

$$a_{qp} = \frac{(a t_1)^2}{R}$$

$$a_{qp} = \frac{(a t_1)^2}{R}$$

e) Mekkora a kerék P pontjának gyorsulásvektora a t₁ időpillanatban <u>a talajhoz rögzített</u>, x,y vonatkoztatási rendszerben! (1)

$$\bar{a}_{p} = \left[a - aqp_{i} - a \xi \right]$$

$$\bar{a}_{p} = \left[a - \left(\frac{a t_{i}}{R} \right)^{2} - a \right]$$

- 2. Egy m tömegű, R sugarú tekegolyót lökünk el síkos pályán úgy, hogy kezdetben egyáltalán nem forog, tömegközéppontja viszont v_0 kezdősebességgel halad. A pálya és a golyó közti csúszási súrlódási együttható μ
 - a) Írjá fel a golyó tömegközéppontjának mozgásegyenletét, és határozza meg a tömegközéppont

b) Írja fel a golyóra a forgómozgás alapegyenletét, és határozza meg a golyó szögsebességét az idő függvényében! A gömb tehetetlenségi nyomatéka $\Theta = \frac{2}{5} mR^2$ (2)

c) Mennyi idő múlva és mekkora út megtétele után kezd el a pályán csúszó golyó tisztán gördülni?

Tinte gordilis feltetel:
$$RU_{(t)} = U_{(t)}$$
 $t_1 = ?$
 $V_6 - \mu g t_1 = \frac{5 \mu g}{2R} t_1 \cdot R$
 $V_6 - \mu g t_1 = \frac{5}{2} \mu g t_1 \implies t_1 = \frac{2 U_0}{79 \mu}$
 $S = V_0 t_1 + \frac{2}{2} t_1^2 = V_0 t_1 - \frac{\mu g}{2} t_1^2 = V_0 \cdot \frac{2 U_0}{79 \mu} - \frac{9 \mu}{2} \cdot \frac{4 V_0^2}{49 g^2 \mu^2} = \frac{12 U_0^2}{49 \mu g}$

3. Vízszintes, súrlódásmentes felületen csúszik egy m_l tömegű test v_θ sebességgel. Nekiütközik egy álló

b) Mekkora körfrekvenciájú rezgés alakul ki? (1)

c) Mekkora lesz a rezgés amplitúdója? (1)

Üt sőzés ntáni pillanot: egyansúlyi helpet:
$$V_{K} = V_{max}$$
 $V_{max} = \omega \cdot A$
 $A = \frac{V_{max}}{\omega} = \frac{V_{12}}{\omega} = \frac{m_{1} + m_{2}}{\sqrt{k(m_{1} + m_{2})}}$

d) Írja fel a mozgás sebesség-idő függvényét! (1)

e) A két test egymással összeragadt felületeit maximálisan mekkora nagyságú erő próbálja szétszakítani a rezgőmozgás során? (1)

a) Hány mól gáz van a tartályban? (0,5)
$$P_6 V_6 = MRT_6 \quad \text{M} = \frac{P_6 V_6}{RT_6}$$

b) Fejezze ki T_0 al az 1 és 2 állapotokhoz tartozó T_1 , T_2 hőmérsékleteket! (0,5)

$$\frac{P_{0}}{T_{0}} = \frac{P_{1}}{T_{1}} \implies T_{1} = \frac{P_{1}}{P_{0}} T_{0} = \frac{2P_{0}}{P_{0}} \cdot T_{0} = \frac{2T_{0}}{2T_{0}}$$

$$\frac{P_{0}}{T_{0}} = \frac{P_{1}}{T_{1}} \Rightarrow T_{1} = \frac{P_{1}}{P_{0}} T_{0} = \frac{2P_{0}}{P_{0}} T_{0} = \frac{2T_{0}}{P_{0}} T_{0} = \frac{2V_{0}}{T_{0}} T_{0} = \frac{2V_{0}}{T_{0}} T_{0} = \frac{2V_{0}}{V_{0}} T_{0} = \frac$$

b) Fejezze ki P_0 , V_0 paraméterekkel a gáz által végzett munkát az egyes folyamatok során! (1,5)

Proclar:
$$W_{0\rightarrow 1} = 0$$
 $W_{1\rightarrow 2}: 2P_0\{V_6 = P_6 \cdot (V_6 - 2V_6) = -P_6 \cdot V_0\}$
 $V_{2\rightarrow 0} = P \cdot 4V = P_6 \cdot (V_6 - 2V_6) = -P_6 \cdot V_0$

c) Fejezze ki
$$P_0$$
, V_0 paraméterekkel a gáz által felvett hőt az egyes folyamatok során! (1,5)
$$\Delta E_{b0\rightarrow 1} = C_V \cdot N\Delta T = \frac{3}{2} R \frac{P_0 V_0}{RT_0} (2T_0 - T_0) = \frac{3}{2} P_0 V_0$$

$$Q_{0\rightarrow 1} = \Delta E_{b0} + W_{gaz04} = \frac{3}{2} P_0 V_0 + O = \frac{3}{2} P_0 V_0$$

$$Q_{1\rightarrow 2} = \Delta E_{b12} + W_{gaz12} = O + \frac{3}{2} P_0 V_0 = \frac{3}{2} P_0 V_0$$

$$\Delta E_{b1\rightarrow 2} = O + \frac{3}{2} P_0 V_0 = \frac{3}{2} P_0 V_0$$

$$\Delta E_{b1\rightarrow 2} = C_V \cdot N\Delta T = \frac{3}{2} R \cdot \frac{P_0 V_0}{RT_0} (T_0 - 2T_0) = -\frac{3}{2} P_0 V_0$$

$$Q_{2\rightarrow 3} = \Delta E_{b20} + W_{gaz20} = -\frac{3}{2} P_0 V_0 - P_0 V_0 = \frac{5}{2} P_0 V_0$$

$$Q_{2\rightarrow 3} = \Delta E_{b20} + W_{gaz20} = -\frac{3}{2} P_0 V_0 - P_0 V_0 = \frac{5}{2} P_0 V_0$$

d) Határozza meg a körfolyamatnak, mint hőerőgépnek a hatásfokát! (1)

d) Határozza meg a körfolyamatnak, mint hőerőgépnek a hatásfokát! (1)
$$\mathcal{I} = \frac{\sum W_{gar}}{\sum Q_{gar}} = \frac{W_{gar} O_1 + W_{gar} I_2 + W_{gar} I_2}{Q_{DA} + Q_{I2}} = \frac{O + \frac{3}{2} P_0 V_0 - P_0 V_0}{\frac{3}{2} P_0 V_0 + \frac{3}{2} P_0 V_0} = \frac{3}{2} P_0 V_0 + \frac{3}{2} P_0 V_0$$

$$\frac{3}{2} - 1 \qquad 1 \qquad | * Valdjálban ar 1 > 2 folyamat egy ring$$

$$N = \frac{\frac{3}{2} - 1}{\frac{3}{2} + \frac{3}{2}} = \frac{1}{6}$$

/* Valdjølan ar 1-2 folgamet egg rikin lößelvetel, manik vinen helvada's tortenik Elpe taleit a feet hamitatt entiskel maggall, a Lutasfor peaking 2 < 1

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifejezésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizika1 tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg!

1. A testek mozgásállapot változtató hatás ellenében tanúsított ellenállását a (toletaben) tomeg nevű fizikai mennyiséggel jellemezzük.
2. Rugalmatlan ütközés előtt a testek mechanikai energiáinak összege mindig
magnalt mint ütközés után.
3. Inerciarendszerekben igaz a teletetluség törvénye.
4. Egy hullámvasút egy függőleges síkú hurok legfelső pontján mozog, az utasok mégsem esnek
ki. Ekkor a jármű Centripe tallis gyorsulása nagyobb, mint g
5. Tömegpontrendszer teljes impulzusa megmarad, ha a tömegpontrendszerre ható külső
6. Centra'lis erőtérben mozgó tömegpontra ható erő mindig párhuzamos egy
adott vonatkoztatási pontból a tömegponthoz húzott sugárral.
7. Kepler III. törvénye értelmében a bolygópályák nagytengelyeinek கூர்ட்டை úgy
aránylanak egymáshoz, mint a keringési időkegyzetter
8. Hőtágulás következtében egy forgó test minden mérete arányosan megnő γ-szorosára. A
tehetetlenségi nyomatéka ekkor szorosára nő.
9. A munkatétel értelmében a testre ható erők munkája egyenlő a test Linetikus energisjának megveiltozásásala
10. A mindkét végén nyitott síp alapharmonikusának, mint állóhullámnak a csomópontja a síp
Lozepein található.
11. Mechanikus hullámokat terjesztő közeg minden egyes pontja
mozgást végez.
12. hechov folyamatokban a gáz nyomása egyenesen arányos a
hőmérséklettel.
13. Izochor folyamat esetén a gen belse anergiajand megral megegyezik a gázzal
közölt homennyiseggel.
14. A tymodineurikar II. fötotelinek értelmében nem konstruálható olyan
hőerőgép, mely a befektetett hőt teljes egészében mechanikai munkává tudná alakítani.
15. Az intanzív állapotjellemzők kölcsönhatás során kiegyenlítődnek.

Kifejtendő kérdések

Tömör, lényegre törő, vázlatszerű, fizikailag és matematikailag pontos válaszokat várunk. Ha szükséges, rajzoljon magyarázó ábrákat!

1. Szövegesen fogalmazza meg (0,5p) és matematikai alakban (0,5p) írja le a kölcsönhatási axiómát! Írja fel egy tömegpontrendszer m_i tömegpontjának mozgásegyenletetét! (1p) Ezt követően – alkalmazva a kölcsönhatási axiómát – milyen fontos állítás fogalmazható meg a tömegpontrendszer mozgására vonatkozóan? (1) 1/1/1/2 – 1/2 –

mozgására vonatkozóan? (1) Kelt tömeg pont kzólcsön hatása sonán fellípó eről ngyamkésra

magyságnak, de ellentétos izánynak.

Fiz Fzz Fzz Fzz Fzz Tomegsáréppont

Fije m; Fxi: i-adik tömegyonte hatá külső eről eredője apportása

Fije i és j tömeg ponták kénti kélcsönhatás

Fije i és j tömegpont noregásagpanlale: Fxi t Fij = mijai

i-adik tömegpont noregásagpanlale: Fxi t Fij = mijai

Morgásegpanlatels átnegá EFxi t EEFij = Emijai Marke

Mivel EEFij = a kölcsönlatáni axiána máth, erebt a pantandren

TKP-jirák appanlását a külső eről eredője határona meg: EFxi = Mārke

M=Emij

2. Hogyan nevezzük azokat az erőtereket, amelyek munkavégzése független a pálya alakjától (úttól)? (1p) Írjon két példát! (1p) Milyen fontos tétel mondható ki az ilyen erőterekkel kapcsolatban? (1p)

→ Konzervativ enôtemek nevernůk. pl: - Grevita'a's enôtev - Rug'énô

→ A medanismi evergia megmanadés torvenze: (Komervativ erôtésben mengo testes sinetissus es potarcialis energialisse alhage allandó)

3. Írja fel a gerjesztett rezgés mozgásegyenletét! (Nevezze meg a fizikai mennyiségeket!) (1p) A tranziensek lecsillapodása után milyen a kitérés időbeli változása egy rögzített gerjesztő frekvencia mellett? (1p) Vázolja a rezonanciagörbét! (1p)

X_t+2βx_t+ω² X_t = F_o. Nin (ωt)

β: csillaprite's temper

ω_o: saji't felwerca: ω_o= [ξ]

κε = F_o. Nin (ωt): grijesto esò

κιτίνει - ido figguing:

Χ_t = A_ω, Nin (ωt)

WA = (W2-2/22

4. Tárgyalja – matematikai összefüggések és ábrák segítségével –, hogy az L hosszúságú mindkét végén befogott húron (1p), illetve L hosszúságú az egyik végén zárt, másik végén nyitott sípban (1p) milyen hullámhosszúságú állóhullámok jelennek meg. A hang terjedési sebessége c. Mekkora frekvenejéken szól a síp? (1p)

izotem

5. A p-V síkon ábrázolja az izoterm, izochor, izobár és adiabatikus folyamatokat. (2) Adja meg az állapotváltozók közt fennálló összefüggéseket a megadott folyamatok esetén! (1)

