В.В. Подбельский

Иллюстрации к курсу лекций по дисциплине «Программирование на С#»

О языках программирования и дисциплине «Программирование на С#»

Обработка Данных

Сравнение Языков Программирования по Парадигмам

- Императивная
- Объектно-ориентированная
- Функциональная
- Рефлексивная

- Обобщённая
- Логическая
- Декларативная
- Распределенная

СРАВНЕНИЕ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ:

https://en.wikipedia.org/wiki/Comparison of programming languages (англ.) https://ru.m.wikipedia.org/wiki/Сравнение языков программирования (рус.)

Краткая Хронология Языков Программирования

Процедурные языки

1954	1959	1960	1964	1964	1970	1972	1978-1983
FORTRAN	COBOL	ALGOL	BASIC	PL/1	Pascal	С	Ada
Джон	Грейс	IFIP	Томас Курц,	IBM	Никлаус	Денис	Honeywell
Бэкус	Хоппер		Джон Кемени		Вирт	Ритчи	

Объектно-ориентированные языки

1967	1969	1980	1985
Simula Кристен Ньюгорд, Оле-Йохан Даль	Smalltalk Алан Кэй	Smalltalk-80 Xerox PARK	С++ Бьерн Страуструп

«Мультипарадигменные» языки

1987	1990	1994	1994	1995	2001
Perl	Python	PHP	Java	Ruby	C#
Ларри Уолл	Гвидо ван	Расмус	Sun	Юкихиро	Андерс
	Россум	Лердорф	Microsystems	Мацумото	Хейлсберг

Процедурные Языки

- 1954 FORTRAN (Джон Бэкус)
- 1959 COBOL (Грейс Хоппер)
- 1960 ALGOL (IFIP)
- 1963 BASIC (Джон Кемени и Томас Куртц)
- 1964 PL/1 (IBM)
- 1970 Pascal (Никлаус Вирт)
- 1972 С (Денис Ритчи)
- 1978-1983 Ada (Honeywell)

Объектно-Ориентированные Языки

- 1967 Simula, Кристен Ньюгорд и Оле-Йохан Даль
- 1969 Smalltalk, Алан Кэй;
- 1980 Smalltalk-80, Xerox PARK
- 1985 С++, Бьерн Страуструп

Декларативные Языки

- 1958 Лисп (LISP), Джон Маккарти (язык обработки списков)
- 1972 Prolog (Пролог язык логического программирования)
- 1974 SQL, Язык управления реляционными базами данных (Oracle).
- 1990 Haskell (функциональный язык, назван в честь математика Хаскелла Карри)
- 2008 F#, Дон Сайм (Microsoft Research)

Мультипарадигмальные Языки

- 1987 Perl, Ларри Уолл
- 1990 Python, Гвидо ван Россум
- 1994 PHP, Расмус Лердорф
- 1994 Java, Sun Microsystems
- 1995 Ruby, Юкихиро Мацумото
- 2001 C#, Microsoft, Андерс Хейлсберг

Парадигмы Программирования С#

Рубрики Классификации Языков

- Семантика
- Класс языка
- Появился
- Автор
- Выпуск
- Система типов

- Основные реализации
- Диалекты
- Испытал влияние
- На какие языки повлиял?
- Стандартизован ли?

Признаки Классификации Языков Программирования

- Парадигмы
- Типизация
- Компилятор / интерпретатор
- Управление памятью
- Управление потоком вычислений
- Типы и структуры данных

- Объектно-ориентированные возможности
- Функциональные возможности
- Разное
- Стандартизация

СРАВНЕНИЕ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ:

https://en.wikipedia.org/wiki/Comparison of programming languages (англ.) https://ru.m.wikipedia.org/wiki/Сравнение языков программирования (рус.)

Поддержка Парадигм Языком С#

• Императивная	(+)	• Логическая	(-)
• Объектно-Ориентированная	(+)	• Доказательная	(-)
• Рефлексивная	(-/+)	• Декларативная	(-/+)
• Функциональная	(+/-)	• Распределённая	(-/+)
• Обобщённая	(+)		

(+)	указанная возможность присутствует
(-)	указанная возможность отсутствует
(+/-)	возможность поддерживается не полностью
(-/+)	возможность поддерживается очень ограничено

Типизация

Статическая типизация	(+)	Вывод типов переменных из инициализатора	(+)
Динамическая типизация	(+)	Вывод типов переменных из использования	(-)
Явная типизация	(+)	Вывод типов-аргументов при вызове метода	(+)
Неявная типизация	(-/+)	Вывод сигнатуры для локальных функций	(-)
Явное приведение типов	(+)	Параметрический полиморфизм	(+)
Неявное приведение типов без потери (точности)	(+)	Параметрический полиморфизм с ковариантностью	(+/-)
Неявное приведение типов с потерей данных	(+)	Параметрический полиморфизм высших порядков	(-)
Неявное приведение типов в неоднозначных ситуациях	(+)	Информация о типах в runtime	(+)
Алиасы типов	(+)	Информация о типах-параметрах в runtime	(+)

Возможности Разработки на С#

- 1. Настольные приложения (Windows Forms/WPF);
- 2. Мобильная разработка на Xamarin для iOS, Android;
- 3. Web-приложения с использованием **ASP.NET Core**;
- 4. Сервисы (WCF) и распределённые приложения;
- 5. Компьютерные 2D/3D игры с использованием движка Unity.

Mexaнизм **ADO .NET** (ActiveX Data Objects .NET) для работы с базами данных.

- ADO.NET Entity Framework;
- LINQ (Language Integrated Query).

Microsoft Azure for Education (ex. Imagine, ex. DreamSpark)

- 1. Для получения доступа к личному кабинету необходимо использовать корпоративную почту: ...@edu.hse.ru.
- 2. Доступ в личный кабинет осуществляется по ссылке: https://portal.azure.com/#home.

Полная информация о получении доступа к Microsoft Azure for Education: https://it.hse.ru/dream

План Преподавания Дисциплины в 2021-2022 году

Распределение аудиторных часов по модулям:

Модуль 1: в неделю: лек. 2, практ. 2.

Экзамен.

Модуль 2: в неделю: лек. 2, практ. 2.

Экзамен

Модуль 3: в неделю: лек. 2, практ. 2.

КДЗ. Экзамен

Итог: 200 часов аудиторных занятий.

Самостоятельная работа

Порядок Формирования Оценок

Условные обозначения:

- **HO<i>** накопленная оценка і-го модуля;
- **CP<i>_<j>** оценка самостоятельной работы ј в i-м модуле (контест / пиргрейд / тест);
- ЭК<і> оценка за экзаменационный контест (первая часть экзамена) і-го модуля;
- **ЭТ<і>** оценка за экзаменационный тест (вторая часть экзамена) і-го модуля;
- **30<i>** экзаменационная оценка i-го модуля (является неблокирующей в первом модуле и блокирующей во 2 и 3 модуле);
- **ИО<i>** итоговая оценка i-го модуля;

Порядок Формирования Оценок 1 Модуля

ИО1 = Округление(0,5*301 + 0,5*H01).

$$HO1 = (CP1_1 + CP1_2 + CP1_3 + CP1_4 + CP1_5 + CP1_6) / 6.$$

Если экзамен состоит из двух частей (контест и тест):

ЭО1 = 0.5*ЭК1 + 0.5*ЭТ1, если min(ЭК1; ЭТ1) ≥ 3.5 ;

иначе 901 = min(9K1; 9T1).

Обозначения:

ЭК<i>- экзаменационный контест <i>-го модуля;

ЭТ<і> - экзаменационный тест <i>-го модуля.

Порядок Формирования Оценок 2 Модуля

ИО2 = Округление(0,5*302 + 0,5*H02).

$$HO2 = (CP2_1 + CP2_2 + CP2_3 + CP2_4 + CP2_5 + CP2_6) / 6.$$

Экзамен состоит из двух частей (контест и тест):

ЭО2 = 0.5*ЭK2 + 0.5*ЭТ2, если min(9K2; 9T2) $\ge 3.5;$ иначе 9C2 = min(9K2; 9T2).

Обозначения:

ЭК<i>- экзаменационный контест <i>-го модуля;

ЭТ<і> - экзаменационный тест <i>-го модуля.

Порядок Формирования Оценок 3 Модуля

ИО3 = Округление(0,5*3O3 + 0,5*HO3).

$$HO3 = (CP3_1 + CP3_2 + CP3_3 + CP3_4 + CP3_5 + CP3_6 + CP3_7 + CP3_8 + CP3_9) / 9.$$

Экзамен состоит из двух частей (контест и тест):

ЭОЗ = $0.5*ЭКЗ + 0.5*ЭТЗ, если min(ЭКЗ; ЭТЗ) <math>\geq 3.5$; иначе ЭОЗ = min(ЭКЗ; ЭТЗ).

Обозначения:

ЭК<i>- экзаменационный контест <i>-го модуля;

ЭТ<і> - экзаменационный тест <i>-го модуля.

"НЕУДОВЛЕТВОРИТЕЛЬНО":

<u>1 балл:</u>

- 1. Разработка программы не завершена.
- 2. Программа имеет синтаксические ошибки (не компилируется).

<u>2 балла:</u>

- 1. Программа не решает основную задачу или не соответствует спецификации.
- 2. В программе обнаруживаются не обработанные исключения при решении основных и второстепенных подзадач.

3 балла:

- 1. Программа не решает основную задачу при некоторых вариантах исходных данных.
- 2. Программа завершается аварийно при некоторых вариантах исходных данных.

"УДОВЛЕТВОРИТЕЛЬНО":

<u>4 балла:</u>

1. Программа решает основную задачу, но имеет отклонения от спецификации.

5 баллов:

- 1. Программа соответствует критериям получения оценки 4 балла.
- 2. Программа соответствует отдельным дополнительным критериям.

"ХОРОШО":

6 баллов:

- 1. Программа решает поставленную задачу и соответствует спецификации. Отклонения от спецификации допущены при реализации второстепенных подзадач.
- 2. Исходный текст документирован.

7 баллов:

- 1. Программа соответствует критериям получения оценки 6 баллов.
- 2. Программа в целом соответствует дополнительным критериям.

"ОТЛИЧНО":

8 баллов:

- 1. Программа решает все поставленные задачи и полностью соответствует спецификации.
- 2. Студент в комментариях обосновал принятые конструктивные решения.
- 3. Исходный текст документирован. Присутствуют сведения о назначении используемых переменных, параметров, методов, классов, объектов.
- 4. Программа остается работоспособной при вводе неверных исходных данных.
- 5. Предусмотрено повторное решение задачи без повторного запуска программы.
- 6. Программа реализована по модульному принципу и хорошо декомпозирована.

"ОТЛИЧНО":

9 баллов:

- 1. Программа соответствует критериям получения оценки 8 баллов.
- 2. Программа соответствует некоторым дополнительным критериям.

<u>10 баллов:</u>

- 1. Программа соответствует критериям получения оценки 8 баллов.
- 2. Программа полностью соответствует всем дополнительным критериям.
- 3. Студент отразил в комментариях возможность альтернативных вариантов решения задачи.

Дополнительные Критерии Оценивания

- 1. Исходный текст программы структурирован.
- 2. Программа имеет средства изменения размерности и формы представления данных без изменения исходного текста или при минимальных изменениях (динамическое выделение памяти, именованные константы, и т.п.).
- 3. Программа реализована по модульному принципу и соответствующим образом декомпозирована.
- 4. В коде программы обоснованно использованы конструкции, изученные студентом самостоятельно, и их применение не противоречит основным требованиям, предъявляемым к решаемой задаче.
- 5. Предусмотрено самодокументирование программы.

Где искать материалы?

Команда MS Teams "Программирование на С# (2021-2022)":

– http://bit.do/cshse2021

Работа в компьютерном классе

- В начале сеанса работы в классе студент должен на диске **D** создать папку и назвать ее своей фамилией.
- В папке следует сохранять результаты работы на практическом занятии.

Внимание: После выключения компьютера, все папки с рабочего стола и диска С:\ автоматически удаляются!

План Проверочных Работ (Модуль 1)

- Контест: 07.09-13.09
- Peer Review: 14.09-20.09
- Kohtect: 21.09-27.09
- Tect: 28.09-04.10
- Контест: 05.10-11.10
- Peer Review: 12.10-17.10

Экзамен - 18-24 октября