ECE 463 Introduction to Computer Networks Lecture: Internet Architecture

Sanjay Rao

Multiplexing/Demultiplexing

Sharing system resource among multiple users

Solution Space

- Circuit switching
 - Used by Telephone networks
 - Many realizations: Time Division Multiplexing,
 Frequency Division Multiplexing
- Packet switching
 - Approach taken by Internet.

Time Division Multiplexing

- Time divided in frames and frames divided in slots
- Relative slot position inside a frame determines which conversation the data belongs to
 - E.g., slot 0 belongs to red conversation
- Issue:
 - If a conversation does not use its circuit the capacity is lost!

Packet Switching: Statistical Multiplexing

- Data from any conversation can be transmitted at any given time
 - A single conversation can use the entire link capacity if it is alone

Packet Switching

- Data are sent as formatted bit-sequences, socalled packets.
- Packets have the following structure:

 At each node the entire packet is received, stored briefly, and then forwarded to the next node based on the header information (Storeand-Forward Networks)

Packet vs. Circuit Switching

- Packet-switching: Benefits
 - Ability to exploit statistical multiplexing
 - More efficient bandwidth usage

- Packet switching: Concerns
 - Needs to buffer and deal with congestion:
 - More complex switches
 - Harder to provide good network services (e.g., delay and bandwidth guarantees)

Datagram Packet Switching

- Each packet is independently switched
 - Each packet header contains destination address

Implications of Internet model

- "Best-effort" network
 - Packets may be lost
 - Packets may be delayed
 - Packets may arrive out of order