2.1 Определения

Множество, основные теоретико-множественные операции, декартово произведение

 $\mathit{Mножества}$ состоят из элементов. Запись $x \in M$ означает, что x является элементом множества M.

Говорят, что множество A является *подмножеством* множества B (запись: $A \subset B$), если все элементы A являются элементами B.

Множества A и B *равны* (запись: A = B), если они содержат одни и те же элементы (другими словами, если $A \subset B$ и $B \subset A$).

Если A — подмножество B, не равное всему B, то A называют собственным подмножеством B

Пустое множество не содержит ни одного элемента и является подмножеством любого множества.

Пересечение $A \cap B$ двух множеств A и B состоит из элементов, которые принадлежат обоим множествам A и B. Это записывают так: $A \cap B = \{x | x \in A \text{ и } x \in B\}$

Объединение A∪B состоит из элементов, которые принадлежат хотя бы одному из множеств A и B: A ∪ B = $\{x | x \in A \text{ или } x \in B\}$

Разность А \ В состоит из элементов, которые принадлежат А, но не принадлежат В: А \ В = $\{x | x \in A \text{ и } x \notin B\}$

Если множество B является подмножеством множества A, разность $A \setminus B$ называют также дополнением B до A.

Симметрическая разность $A \triangle B$ состоит из элементов, которые принадлежат ровно одному из множеств A и B:

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

```
Определение кортежа Идея понятия: кортеж — упорядоченная последовательность Идея определения: кортеж состоит из головы (первый элемент) и хвоста (всё остальное) Рекурсивное определение: Кортеж длины 0 — это \emptyset. T = \begin{pmatrix} a_1, \cdots, a_N \end{pmatrix} - \text{ кортеж длины } N \Rightarrow \\ (a,T) = \{a,\{a,T\}\} - \text{ кортеж } (a,a_1, \cdots, a_N) \text{ длины } N+1 \\ a - \text{ голова, } T - \text{ хвост} \\ \text{По этому опр. кортеж длины } 1 - \{a,\{a,\emptyset\}\} \\ \text{Кортеж длины } 2 - \{a,\{a,\{b,\{b,\emptyset\}\}\}\} - \text{ ещё один вариант определения пары } \\ \text{Теорема : } (a_1, \cdots, a_N) = (b_1, \cdots, b_N) \Leftrightarrow \forall i \ a_i = b_i \\ \text{Идея доказательства : } \{a,\{a,T\}\} = \{b,\{b,S\}\} \\ \text{либо } a = b \text{ и } \{a,T\} = \{b,S\} \text{ (тогда } T = S \text{ и можно рассуждать по индукций), } \\ \text{либо } a = \{b,S\} \text{ и } b = \{a,T\} - \text{ тогда нарушается аксиома фундированности}
```

Опр Декартово произведение $A \times B = \{(a,b) | a \in A, b \in B\}$

Отображения и соответствия. Образ и прообраз. Инъекции, сюръекции, биекции. Композиция отображений. Возведение множества в степень множества

Опр *Соответствие* между А и В - это любое множество пар из $A \times B$

Обозначения: $F \subset A \times B, \ F : A \to B, \ F : A \rightrightarrows B, (a,b) \in F, b \in F(a)$

Опр Отображение - это однозначное соответствие, т.е. $\forall x \exists ! y(x,y) \in F$

- Опр Интективное соответствие: если $x \neq y$, то $F(x) \cap F(y) = \emptyset$
- Oпр Индекция это инъективное отображение: если $x \neq y$, то $F(x) \neq F(y)$
- Опр Сюръективное соответствие: если $\forall y \exists x \ y \in F(x)$
- Опр Сюръекция это сюръективное отображение: $\forall y \exists x \ y = F(x)$

Опр Биекция - это сюръекция + инъекция

Пусть есть соответствие $F: A \to B, S \subset A, T \subset B$

Опр Образ S - это множество $F(S) = \bigcup_{x \in S} F(x) = \{ y \mid \exists x \in S \ (x,y) \in F \}$

Опр Проообраз T - это множество $F^{-1}(T) = \{x \mid \exists y \in T \ (x,y) \in F\}$

Опр Композицией отображений $F:A\to B,\ G:B\to C$ называется отображение $H=G\cdot F,$ определяемое соотношением $z=H(x)\Longleftrightarrow\ \exists y:y=F(x)$ и z=G(y)

Опр Пусть A и В — два множества. Тогда множеством B^A называется множество всех отображений из A в B

Равномощность. Счётные и континуальные множества.

Опр Множества А и В назваются равномщными, если существует биекция между А и В

Опр Множество А называется *счетным*, если оно равномощно множеству N

Опр Множество A называется *континуальным*, если оно равномощно множеству \mathbb{R}

Бинарные отношения. Рефлексивность, транзитивность, (анти-)симметричность и т.д. Отношения эквивалентности и отношения порядка

Опр *Бинарным отношением на множестве* А называется любое подмножество $A^2 = A \times A$ или, что тоже самое, любая функция из A^2 в $\{0,1\}$.

Классификация отношений:

- 1. рефлексивные $\forall x \ xRx \quad (= \leqslant \vdots \subset \cong)$
- 2. антирефлексивные $\forall x \neg (xRx)$ (<)
- 3. симметричные $\forall x, y \ xRy \to yRx \ (= \cong \mod \parallel)$
- 4. антисимметричные $\forall x, y \ (xRy \land yRx) \rightarrow (x=y) \ (< \leqslant \vdots \subset)$
- 5. транзитивные $\forall x, y, z \ (xRy \land yRz) \rightarrow xRz \ (= < \vdots \subset \cong)$
- 6. антитранзитивные $\forall x, y, z \ (xRy \land yRz) \rightarrow \neg (xRz) \ (\bot$ на плоскости)
- 7. евклидово (правое) $\forall x,y,z \ (xRy \land xRz) \rightarrow yRz$ (нетразитивное $\mathbf{R} = \{(1,2),(2,2),(2,3),(3,2),(3,3)\}$)
- отношение эквивалентности: рефлексив. + симметрич. + транзитив.
- отношение нестрогого (частичного) порядка: рефлексив. + антисимметрич. + транзитив.
- отношение строгого (частичного) порядка: антирефлексив. + антисимметрич. + транзитив.
- ullet отношение (нестрогого) предпорядка: peфлексив. + mpанзитив.

Упорядоченное множество, линейно упорядоченное множество, фундированное множество, вполне упорядоченное множество

Опр Упорядоченым множеством называется пара (A, \leq_A) - множество и частичный порядок на нем

Опр Частично упорядоченное множество называется *линейно упорядоченным*, если любые два элемента в нем сравнимы

Опр Частично упорядоченное называется $\phi y + \partial u p o s a h + h w m$, если в любом его непустом подмножестве есть минимальный элемент

Пример

$$\checkmark$$
 < \mathbb{N} , ≤>, < \mathbb{N} + \mathbb{N} , ≤>, < \mathbb{N} , | > с заданным тривиально порядком фундированы

$$\times \mathbb{Z}, [0,1]$$
 - не фундированы

Опр Множество называется *вполне упорядоченным*, если оно линейно упорядочено и фундировано

Пример

- × Множество всех конечных слов из букв латинского алфавита
- \times [0,1], $< \mathbb{N}, |>$
- \checkmark \mathbb{N}

Цепи в упорядоченных множествах. Верхние и нижние грани, максимальные и минимальные, наибольшие и наименьшие элементы

Опр Подмножество частично упорядоченного множества называется *цепью*, если любые два его элемента сравнимы.

Опр Элемент $x \in A$ наибольший в упорядоченном множестве (A, \leq_A) , если $\forall y \in A : y \leq_A x$. Элемент $x \in A$ максимальный в упорядоченном множестве (A, \leq_A) , если $\not\exists y \in A : x \leq_A y$. Наименьший и минимальный элементы определяются аналогично.

Опр Верхней гранью множества A называется такой элемент M, что $\forall x \in A \ x \leq M$

Опр Hижней гранью множества A называется такой элемент m, что $\forall x \in A \ x \geq m$

Гомоморфизмы и изоморфизмы упорядоченных множеств

Опр Гомоморфизмом упорядоченных множеств называется функция $f:A\to B$, такая что

$$x \leq_A y \iff f(x) \leq_B f(y)$$

Опр Изоморфизмомом упорядоченных множеств называется $f: A \to B$, такая что

- 1 f гомоморфизм
- 2 f биекция

Сложение и умножение упорядоченных множеств

$$\left\langle A, \leq_A \right\rangle + \left\langle B, \leq_B \right\rangle = \left\langle C, \leq_C \right\rangle, \ \text{где } C = A \sqcup B, \ x \leq_C y, \ \text{если} \left[\begin{matrix} x,y \in A, \ x \leq_A y \\ x,y \in B, \ x \leq_B y \\ x \in A, \ y \in B \end{matrix} \right]$$

$$\left\langle A, \leq_A \right\rangle \cdot \left\langle B, \leq_B \right\rangle = \left\langle C, \leq_C \right\rangle, \ \text{где } C = A \times B, \ (x_1, y_1) \leq_C \left(x_2, y_2 \right), \ \text{если} \left[\begin{matrix} y_1 <_B y_2 \\ y_1 = y_2, x_1 \leq_A x_2 \end{matrix} \right]$$

Начальные отрезки вполне упорядоченных множеств. Опр Начальным отрезком ВУМ называется такое $B\subset A$, что $\forall x\in B,\ \forall y\in A\backslash B\ x\leq y$

Примеры

$$\checkmark [0,a] = \{x \mid x \le a\}$$

$$\checkmark [0,a) = \{x \mid x < a\}$$

✓ Bcë A

Если $x \in [0, a] \Longrightarrow x \le a, y \in \overline{[0, a]} \Longrightarrow y > a \Longrightarrow x \le a < y$, откуда x < y.

Если множество вполне упорядочено и при этом не пусто. то всем есть наименьший элемент, тогда этот элемент обозначается 0

Предельные элементы вполне упорядоченных множеств

Опр В любом ВУМ у любого элемента, кроме максимального, есть единственный и непосредственно следующий за ним, т.е. такой c>a, что ни для какого b неверно c>b>a (элемент a+1)

Опр $\Pi pedeльным$ элементом BYM называется элемент, не являющийся непосредственно следующим ни за каким другим

Порядковые типы $\omega, \omega^k, \omega^\omega, \epsilon_0$

В любом непустом в.у.м. есть наименьший элемент - 0

Если что – то осталось, то среди оставшихся тоже есть наименьший элемент – 1

Дальше - 2, 3, ...

Если есть ещё элементы, то минимальный — ω

Следующий $-\omega + 1$, потом $\omega + 2,...$

 $\omega + \omega = \omega \cdot 2, \omega \cdot 2 + 1, \dots, \omega \cdot 3, \dots, \omega \cdot 4, \dots$

Следующий — $\omega \cdot \omega = \omega^2$

 $\omega^{2} + 1,...,\omega^{2} + \omega,...,\omega^{2} + \omega \cdot 2,...,\omega^{2} \cdot 2,...,\omega^{2} \cdot 3,...,\omega^{3},...,\omega^{4},.....\omega^{\omega}$

 $\omega^{\omega} + 1, \dots, \omega^{\omega} + \omega, \dots, \omega^{\omega} + \omega^{2}, \dots, \omega^{\omega} + \omega^{\omega} = \omega^{\omega} \cdot 2, \dots \omega^{\omega} \cdot 3, \dots \dots \omega^{\omega} \cdot \omega = \omega^{\omega+1}, \dots$ $\omega^{\omega} \cdot \omega^{2} = \omega^{\omega+2}, \dots \omega^{\omega} \cdot \omega^{\omega} = \omega^{\omega\cdot2}, \dots, \omega^{\omega} \cdot \omega^{\omega} \cdot \omega^{\omega} = \omega^{\omega\cdot3}, \dots \omega^{\omega},$

 $\varepsilon_0 = \omega^{\omega^{\omega'}} (\omega \text{ pas})$

Всё до ω^{ω} (невключительно) — "многочлены от ω "

Всё до ε_0 (невключительно) — "башни от ω "

Неформально ординалы – классы эквивалентности в.у.м. по изоморфизму

Это определение не может быть сделано строгим, потому что нет множества всех в.у.м., поэтому нельзя вводить отношение эквивалентности и выделять классы

Есть строгое определение, с которым не очень удобно работать.

Определение : множество A называется транзитивным, если из $x \in y$ и $y \in A$ следует, что $x \in A$ (всюду именно \in , а не \subset)

Например : \emptyset , $\{\emptyset\}$, $\{\emptyset,\{\emptyset\}\}$, $\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\}$

Ординал — транзитивное множество, любой элемент которого также есть транзитивное множество

 $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\$ — транзитивное множество, но не ординал, т.к. $\{\{\emptyset\}\}$ нетранзитивно

 $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$ — ординал

Аксиома выбора

Пусть задано некоторое множество А. Тогда существует функция $\phi:(2^A\setminus\{A\})\to A$, такая что $\forall S\ \phi(S)\in A\setminus S$

Базис Гамеля

Базис Гамеля в R над Q это такой набор действительных чисел, что любое другое действительное число представляется как конечная JK элементов базиса с рациональными коэффициентами, при этом никакая нетривиальная конечная линейная комбинация элементов базиса с рациональными коэффициентами не равна 0

2.2 Простые утверждения

2.2.1 Основные тождества про теоретико-множественные операции, декартово произведение, возведение множества в степень множества

- Коммутативность: \vee, \wedge, \triangle
- Ассоциативность: \vee, \wedge, \triangle
- Дистрибутивность: $A \lor (B \land C) = (A \lor B) \land (A \lor C)$

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$$

- Идемпотентность: $A \lor A = A, A \land A = A$
- Аннигиляция: $A \triangle A = \emptyset$, $A \setminus A = \emptyset$
- Законы де Моргана

Опр Декартовой степенью множества A называется множество A^n : кортеж длины n элементов A

Свойства

- $1 \ A^n = A \times A \dots \times A$ по определению
- $2 A^{n+k} = \underbrace{A \times A \dots \times A}_{n} \underbrace{A \times A \dots \times A}_{k} = \underbrace{A \times A \dots \times A}_{n+k} = A^{n} \times A^{k}$
- $\begin{array}{l} 3 \ A \times B) \times C = A \times (B \times C) \\ A \times B = \{(a,b): \ a \in A, b \in B\} \\ (A \times B) \times C = \{((a,b),c): \ a \in A, b \in B, c \in C\} = \{(a,(b,c)): \ a \in A, b \in B, c \in C\} = A \times (B \times C) \end{array}$
- $4\ A imes (B \lor C) = (A imes B) \lor (A imes C)$ $A imes (B \lor C) = \{(a,k):\ a \in A, k \in B \ or\ k \in C\} = \{(a,k):\ a \in A, k \in B\}$ или $\{(a,k):\ a \in A, k \in C\} = (A imes B) \lor (A imes C)$

2.2.2 Равномощность — отношение эквивалентности.

- $1 \ A \cong A$ биекция id
- $2 A \cong B \Longrightarrow B \cong A$ очевидно
- $A\cong B, B\cong C$ композиция биекций биекция, значит $A\cong C$

2.2.3 Объединение и декартово произведение счётных множеств счётны.

& Ecre A-konero de cremo, mo Are-creiro J:B->NT-EURIUMA 1. Ecre ANB = 6 1A1 = 12 A = 600. ax-15. 9(x) = 6 (x)+12, x \in B. => EURIUMA 9(x) = 6 (x)+12, x \in B. => EURIUMA 5. x = ai 2. Econ ANB # \$,000 compound Everence anauaurens D. Earn A.B-cremen, to AVB-cremen. 1. $A \cap B = \emptyset$ f: A > M - Suevague g: A > M g2. Eune ANB+6, mo BA-crietro una konermo. Ecres criero, asmaso nfumeros Obbo d. Unare Khuulluller 3.1 h: AUB => M- Euerene (F) OT reputature criethoro rescus criethor unionecto criemes (An criemes => Un=0 An - cremo) Tyems fn: M-> An - Everywe.

G: g(2/(2/k+e)) = fn(k). M-> Vo An

T. e. wood M rum counciberenden obhazon

Negernobusers & bugo 2/(2/k+1), mo g unoexigue

The smow y fi(j) navogerus maxoe rum

2(aj+e) rumo g (2(aj+1)) - fi(j) => g-cropoexigue

2(aj+e) rumo g (2(aj+1)) - fi(j) => g-cropoexigue

Декартово произведение - это счетное объединение счетных множеств

2.2.4 В любом бесконечном множестве найдётся счётное подмножество

Т.к А бесконечно, в нем существует элемент a_0 . Т.к. А бесконечно, $A \setminus a_0$ также бесконечно, значит, в нем найдется a_1 . И т.д. получим множество $A_1 = \{a_0, a_1,\}, A_1 \subset A$

2.2.5 Несчётность множества точек на отрезке.

Континуальность интервала. Пусть длина отрезка, до которого можно дополнить интервала, равна а. тогда

 $f(x) = tg(\pi(\frac{x}{a}-1)), x \in (0;a)$. Т.к. объединение бесконечного и не более чем счетного множеств

2.2.6 Нефундированность прямого лексикографического порядка на конечных словах.

Бесконечно убывающая последовательность: $a^n b$

2.2.7 Любой начальный отрезок вполне упорядоченного множества, отличный от всего множества, представляется в виде [0, a)

Пусть В - начальный отрезок. $B \neq A$. Тогда $A \setminus B \neq \emptyset$, в силу вполне упорядоченности существует $a = min(A \setminus B)$. Нужно доказать, что B = [0, a)1. $B \subset [0, a)$. Пусть $x \in B$. Поскольку $a \in A \setminus B$, то x < a (по опр нач отр). Значит, $x \in [0, a)$. 2. $[0, a) \subset B$. Если x < a, то $x < min(a \setminus B)$, поэтому $x \in B$

2.2.8 Вполне упорядоченное множество неизоморфно своему начальному отрезку вида [0, а) (вывод из леммы о монотонной функции).

Теорема: вполне упорядоченное множество не может быть изоморфно своему собственному начальному отрезку Доказательство. Пусть изоморфно. Тогда $f:A \to [0,a)$ — изоморфизм. Он сохраняет порядок, поэтому если x < y, то f(x) < f(y). По теореме о монотонной функции получаем $f(x) \ge x$. В частности, $f(a) \ge a$, с другой стороны, $f(a) \in [0,a)$, поэтому f(a) < a, противоречие.

2.2.9 Сумма и произведение фундированных множеств фундированы, вполне упорядоченных — вполне упорядочены

Пусть сумма и произведение фундированных множеств не фундированы. Тогда в полученном множестве существует бесконечно убывающая последовательность $(a_1, b_1) \ge (a_2, b_2)..., a_1 \ge a_2...$, из которых можно выбрать бесконечно убывающие последовательности в одном из исходных множеств, значит, оно было не фундировано

Если на множествах был линейный порядок, то в полученных множествах порядок также линеен. Так как фундированность сохраняется, полученные множества вполне упорядочены

2.2.10 Свойства сложения и умножения вполне упорядоченных множеств

- 1 Ассоциативность $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- 2 Правая дистрибутивность $\alpha*(\beta+\gamma)=\alpha\beta+\beta\gamma$

Как доказать - не нашла :(

2.2.11 Сравнимость любых двух множеств по мощности (вывод из теоремы Цермело и свойств вполне упорядоченных множеств)

Лемма

Теорема о сравнимости вполне упорядоченных множеств.

Пусть A и B — вполне упорядоченные множества. Тогда одно из них изоморфно начальному отрезку другого Более того, выполнено одно из трёх: $A \simeq B$, $A \simeq [0,b)$, $b \in B$, $B \simeq [0,a)$, $a \in A$ Идея доказательства: если одно из множеств пустое, то утверждение очевидно. Иначе в каждом из них есть минимальный элемент(0). Сопоставим эти элементы друг другу. Если в одном из множетсв больше ничего нет, то утверждение доказано. Иначе в каждом есть минимальный ненулевой элемент(1). Сопоставим их друг другу. Так будем продолжать: каждый раз либо одно из множеств закончилось и утверждение доказано, либо будем наращивать изоморфизм.

Сравнимость любых двух множеств по мощности

Из Теоремы Цорна мы знаем, что для любого множества существует равномощное ему ВУМ. Пусть даны A, B. A', B' - соответственные ВУМ, удовлетворяющие теореме Цорна. Тогда из леммы следует, что эти ВУМы можно сравнить по мощности, а значит, A и B сравнимы по мощности

Extra

Вопрос Шеня: существует ли вычислимая функция, равная в нуле единице? Ответ: ага. f(x) = x + 1