DSCI353-353m-453: LE4: Moving Beyond Linearity To Machine Learning

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, M. Li, D. Colvin

25 February, 2023

Contents

4.1	LE4: Set Your Primary Linux Group To Course Group, 0.5 points total	. 2
4.2	LE4A: ISLR2 Chapter 7: Moving Beyond Linearity, 2 points total	. 4
	4.2.1 LE4A: ISLR2 7.7, 0.5 point	. 4
	4.2.2 LE4A Continued: ISLR2 7.9 1.5 point	
	4.2.2.1 (a)	. 5
	4.2.2.2 (b)	. 5
	4.2.2.3 (d)	. 5
	4.2.2.4 (e)	. 6
	4.2.2.5 (f)	. 7
4.3	LE4B: ISLR2 Chapter 8: Tree-Based Methods, 2 points total	. 7
	4.3.1 LE4B: ISLR2 8.7, 0.5 point	. 7
	4.3.2 LE4B Continued: ISLR2 8.8, 1.5 points	
	4.3.2.1 (a)	
	4.3.2.2 (b)	
	4.3.2.3 (c)	. 8
	4.3.2.4 (d)	
	4.3.2.5 (e)	. 8
	4.3.2.6 (f)	. 8
4.4	LE4C: Support Vector Machine, 2 points total	
	4.4.1 LE4C: ISLR 12.8 Principal Components Analysis (1 point)	
	4.4.1.1 (a) Data Preparation	
	4.4.1.2 (b) SVM	
	4.4.1.3 (c) ROC curve and predictions	

LE4, in 4 parts (A, B, C, D)

Details

- Due Tuesday, March 1st
 - At 11:59 p.m.
- The grading is done on how you show your thinking,
 - explain yourself and
 - show your R code and
 - the output you got from your code.
- Code style is important
 - Follow Rstudio code diagnostics notices
 - And the Google R Style Guide

LE4 Points

- LE4A: 2 points total
- LE4B: 2 points total
- LE4C: 2 points total
- LE4D: 2 points total (in a separate file because requires GPUs on Markov)
 - 0.5 point Code Style
 - 0.5 Set your primary linux group to be DSCI33-4453

To be done as an Rmd file,

- where you turn in
 - the Rmd file and
 - the compiled pdf showing your work.

You will want to produce a report type format

- (html and pdf type document) to turn in.
- And not an ioslides or beamer (slide type) compiled output.
 - These are presentation formats, and can be fussy

Are you backing up your git repo

- in a second and third location,
- to avoid corruption problems?

4.1 LE4: Set Your Primary Linux Group To Course Group, 0.5 points total

To avoid us all getting "Quota Locked Out"

- as we move to Machine Learning and Deep Learning
 - With Neural Networks
- Its important everyone has their primary Linux Group
 - Set to be dsci353_353m_453

To do this you need to login to https://amara.case.edu

- Using your CaseID and your pwd (password)
- And then locate the section for
 - Cluster Storage Group

Some background info on your Cluster Storage Group

- This table lists the storage groups that you belong to across all clusters,
 - So the Markov Data Science Cluster,
 - And the Rider (RHEL7) and Pioneet (RHEL8) compute clusters
 - including the quota and current usage.
- Your default group will be used to create files (and accrue quota usage)
 - if you do not explicitly change groups using the newgrp command.

Under Cluster Storage Group you should see two or more choices

- You sould see rxf131-software
 - This gives you access to our OnDemand Containerized Apps
- And you should see dsci353 353m 453

So in your CaseID account's Amara settings

• Your Cluster Storage Group Should Be dsci353_353m_453

- If it isn't then select the radio button
 - next to dsci353_353m_453

When done successfully, You should see this in Amara

Figure 1: Successful setting of Cluster Storage Group

Now launch an SDLE-Diagnostics OnDemand App

- from https://ondemand.case.edu
- And in SDLE-Diagnostics
 - On the first screen ("User Diagnostics")
- You should see GREEN box, stating
 - $-\ dsci353_353m_453$
 - "Your primary group is correct!"

Now you won't be the cause of us all getting

• Quota Lockout, as we move forward this semester.

4.2 LE4A: ISLR2 Chapter 7: Moving Beyond Linearity, 2 points total

4.2.1 LE4A: ISLR2 7.7, 0.5 point

In this exercise, you will further analyze the Wage data set considered throughout this chapter.

The Wage data set contains a number of other features

- not explored in this chapter,
- such as marital status (maritl), job class (jobclass),
- and others.

Explore the relationships between some of these other predictors and wage,

- and use non-linear fitting techniques
- in order to fit flexible models to the data.

Use the deviance() function to evaluate the accuracy of the model fits.

```
# Put your code here, with comments and good style and syntax
library(ISLR2)
library(gam)

## Loading required package: splines

## Loading required package: foreach

## Loaded gam 1.22-1

# Firstly, load the data

# draw some plots to see the relationship between each factor and the response:

# Now make a number of gam models with different predictors

# Do ANOVA tests to find out best model:

# Find the deviance of each model

# Find the smallest deviance

# Make the plot to visualize
```

- 1. What is the number output telling you?
- Is this value absolute or relative?
- Is it meaningful on its own?

ANSWER:

2. Why can't we fit splines with variables like maritl and jobclass?

ANSWER:

• Why is the **predict** function unable to generate values?

ANSWER:

3. What did you find was the best model for predicting wage?

ANSWER:

4.2.2 LE4A Continued: ISLR2 7.9 1.5 point

This question uses the variables

• dis (the weighted mean of distances to five Boston employment centers)

- and nox (nitrogen oxides concentration in parts per 10 million)
- from the Boston data.

We will treat dis as the predictor and nox as the response.

- **4.2.2.1** (a) Use the poly() function to fit a cubic polynomial regression
 - to predict nox using dis.

Report the regression output,

- and plot the resulting data and polynomial fits.
- using ggplot2

ANSWER:

- **4.2.2.2** (b) Plot the polynomial fits for a range of different polynomial degrees
 - (say, from 1 to 10),
 - and report the associated residual sum of squares.

```
# Put your code here, with comments and good style and syntax
# Make the fitting models from 1 to 10

# Make the plots

# Make ANOVA Analysis

# Store the RSS
```

ANSWER: #### (c)

Perform cross-validation or another approach

- to select the optimal degree for the polynomial,
- and explain your results.

Put your code here, with comments and good style and syntax

ANSWER:

- 4.2.2.3 (d) Use the bs() function to fit a regression spline
 - to predict nox using dis.

Report the output for the fit

• using four degrees of freedom.

How did you choose the knots?

Plot the resulting fit, using ggplot2.

```
# Put your code here, with comments and good style and syntax
library(splines)
# fit a model
```

```
# summary of your model

# visualize your model

# knots chosen:

# Plot with the knots added, use base plot as a comparison to ggplot

# Predict based on model

# Plot, including 2-se confidence interval

# Add knots to your plot, to visualize them
```

ANSWER:

- 4.2.2.4 (e) Now fit a regression spline for a range of degrees of freedom,
 - and plot the resulting fits
 - and report the resulting RSS.

Describe the results obtained.

```
# Put your code here, with comments and good style and syntax

# fit models

# Summary of the model

# knots chosen:

# ANOVA and RSS calculation

# Visualize

# Predict based on model

# Plot, including 2-se confidence interval

# Draw the graph to choose
```

ANSWER:

- 4.2.2.5 (f) Perform cross-validation or another approach
 - in order to select the best degrees of freedom
 - for a regression spline on this data.

Describe your results.

Put your code here, with comments and good style and syntax

ANSWER:

4.3 LE4B: ISLR2 Chapter 8: Tree-Based Methods, 2 points total

4.3.1 LE4B: ISLR2 8.7, 0.5 point

In the lab, we applied random forests to the Boston data

• using mtry = 6 and using ntree = 25 and ntree = 500.

Create a plot displaying the test error resulting from

- training random forest models on this data set
- for a more comprehensive range of values for mtry and ntree.

You can model your plot after Figure 8.10.

```
# Put your code here, with comments and good style and syntax library(randomForest)
```

```
## randomForest 4.7-1.1
```

Type rfNews() to see new features/changes/bug fixes.

Describe the results obtained.

ANSWER:

4.3.2 LE4B Continued: ISLR2 8.8, 1.5 points

In the lab, a classification tree was applied to the Carseats data set

• after converting Sales into a qualitative response variable.

Now we will seek to predict Sales using regression trees and related approaches,

• treating the response as a quantitative variable.

4.3.2.1 (a) Split the data set into a training set and a test set.

```
# Put your code here, with comments and good style and syntax
library(ISLR2)
library(ggplot2)
```

```
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
```

4.3.2.2 (b) Fit a regression tree to the training set.

- Plot the tree,
- ullet and interpret the results.

Put your code here, with comments and good style and syntax library(tree)

What test MSE do you obtain?

ANSWER:

4.3.2.3 (c) Use cross-validation in order to determine the optimal level of tree complexity.

Does pruning the tree improve the test MSE?

ANSWER:

Put your code here, with comments and good style and syntax

4.3.2.4 (d) Use the bagging approach in order to analyze this data.

What test MSE do you obtain?

ANSWER:

Use the importance() function

• to determine which variables are most important.

Put your code here, with comments and good style and syntax

ANSWER:

4.3.2.5 (e) Use random forests to analyze this data.

Put your code here, with comments and good style and syntax

What test MSE do you obtain?

ANSWER:

Use the importance() function

• to determine which variables are most important.

Describe the effect of m.

- the number of variables considered at each split,
- on the error rate obtained.

Put your code here, with comments and good style and syntax

ANSWER:

4.3.2.6 (f) The BART package is for Bayesian Additive Regression Trees

• discussed in section 8.2.4.

Now analyze the data using BART,

• and report your results.

ANSWER:

4.4 LE4C: Support Vector Machine, 2 points total

4.4.1 LE4C: ISLR 12.8 Principal Components Analysis (1 point)

The Water Potability dataset is available here: https://www.kaggle.com/datasets/adityakadiwal/water-potability,

It is a dataset that - records the potability (whether the water can be drunk) - and the related variables

4.4.1.1 (a) Data Preparation

- Read the data from the file, and separate into training and testing data (70%/30%)
- Eliminate the missing data
- Standardize the data (exclude the Potability response) by using scale() function.
- Calculate the Point-biserial correlation coefficient (for variables and the response "Potability")
- Then draw the plot to describe the data.
- What are the results of the correlations?

```
# Read the data
rawdata <- read.csv("data/water_potability.csv")
# Eliminate the missing data
data <- na.omit(rawdata)
# Standardize the data
# Training and testing
# point-biserial correlation</pre>
```

ANSWER:

4.4.1.2 (b) SVM Now, we use support vector machine to train the model - By using different kernel functions - Try different kernel functions (linear, radial, polynomial, etc) - Select the best kernel functions and made the predictions (With the Confusion Matrix for each cases)

ANSWER:

4.4.1.3 (c) ROC curve and predictions After choosing the kernel function, draw the ROC curve - What is the accuracy of your model? - Choose the threshold to determine whether the water should be used for drink or not

t Thus the best i	cernel here is radial,	which accuracy is
-------------------	------------------------	-------------------

Answer: