Examenul de bacalaureat naţional 2014 Proba E. d)

Fizică

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Model

Se consideră: numărul lui Avogadro $N_A = 6{,}02 \cdot 10^{23} \,\mathrm{mol}^{-1}$, constanta gazelor ideale $R = 8{,}31 \,\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = \nu RT$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Simbolurile unităților de măsură fiind cele utilizate în manuale, unitatea de măsură în S.I. pentru căldura specifică este:

a.
$$\frac{J}{kg \cdot K}$$

b.
$$\frac{J}{\text{kg} \cdot \text{mol}}$$
 c. $\frac{J}{K}$

c.
$$\frac{J}{K}$$

d.
$$\frac{J}{\text{mol} \cdot K}$$
 (3p)

- 2. Un sistem termodinamic care nu schimbă substanță cu exteriorul și al cărui înveliș este adiabatic:
- a. nu poate primi lucru mecanic din exterior
- b. nu poate ceda lucru mecanic exteriorului
- c. nu poate schimba căldură cu exteriorul
- d. nu îşi poate modifica temperatura.

(3p)

3. Se amestecă o masă m de gaz ideal cu masa molară μ cu o masă 2m din alt gaz ideal cu masa molară 2μ. Masa molară a amestecului este:

c.
$$1,75\mu$$

d.
$$2\mu$$

4. Densitatea unui gaz ideal având masa molară μ , aflat la temperatura T şi presiunea p poate fi scrisă:

a.
$$\frac{pV}{VR}$$

b.
$$\frac{p\mu}{RT}$$

c.
$$\frac{RT}{p\mu}$$

d.
$$\frac{m}{\mu}RT$$

5. O cantitate dată de gaz ideal trece din starea 1 în starea 2 prin trei procese termodinamice distincte notate cu a, b și c. Procesele sunt reprezentate în coordonate p-V în graficul din figura alăturată. Relația corectă între valorile lucrurilor mecanice schimbate de gaz cu mediul exterior este:

$$\textbf{a. } L_{a} < L_{b} < L_{c}$$

b.
$$L_{a} > L_{b} > L_{c}$$

c.
$$L_a = L_b = L_c$$

d.
$$L_a < L_b = L_c$$

(3p)

II. Rezolvati următoarea problemă:

Într-o butelie cu pereți rigizi, având volumul V = 1 L, se introduce o cantitate ν de azot, considerat gaz ideal, cu masa molară $\mu_{N_2} = 28 \cdot 10^{-3} \, \text{kg/mol}$. Presiunea gazului din butelie are valoarea $p = 1,662 \cdot 10^5 \, \text{Pa}$, iar temperatura acestuia este constantă și are valoarea $t = 7^{\circ}$ C. Pereții buteliei rezistă până la o presiune maximă $p_{\text{max}} = 4,155 \cdot 10^5 \text{ Pa}$. Determinaţi:

- a. cantitatea de azot din butelie;
- **b.** masa unei molecule de azot:
- c. masa suplimentară de azot ce trebuie introdusă în butelie pentru ca presiunea gazului din incintă să se dubleze, temperatura rămânând constantă;
- d. valoarea temperaturii maxime până la care poate fi încălzită butelia, după introducerea masei suplimentare de azot.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O cantitate $v = 0.12 \cong \left(\frac{1}{8.31}\right)$ mol de gaz ideal monoatomic ($C_V = 1.5R$) aflat în starea iniţială 1, caracterizată

de temperatura $t_1 = 27^{\circ}$ C, efectuează un proces ciclic format din următoarele transformări: 1 \rightarrow 2 destindere la presiune constantă până la dublarea volumului inițial; $2 \rightarrow 3$ răcire la volum constant și $3 \rightarrow 1$ comprimare la temperatură constantă până în starea inițială. Se cunoaște $\ln 2 \cong 0.7$.

- **a.** Reprezentaţi grafic, în coordonate (p-V), procesul ciclic $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.
- b. Determinati valoarea energiei interne a gazului în starea 2.
- **c.** Calculati lucrul mecanic efectuat de gaz în cursul transformării $1 \rightarrow 2$.
- d. Determinați căldura cedată de gaz mediului exterior pe parcursul procesului ciclic.