1 Rappel de théorie des groupes et de leurs actions

Un groupe est une paire (G,*), ou G est un ensemble et * est une opération $(*: G \times G \to G)$

3 axiomes:

- 1. $a * (b * c) = (a * b) * c \quad \forall a, b, c \in G$
- 2. $\exists e \in G | e * a = a * e = a \forall a \in G$
- 3. $\forall a \in G, \exists b \in G | a * b = e$

$$\operatorname{Ex}: (\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{R},+), \cdots$$

Les groupes matriciels sont très importants

Tout les groupes mentionné jusqu'à maintenant sont infini, un exemple de groupe fini est $(\mathbb{Z}_n, +)$

$$S_E = \{ f : E \to E | f \text{ est inversible } \}$$

avec l'opération de composition o

On l'appel le groupe symétrique de E

$$S_n = S_{\{1,2,\cdots,n\}}$$

Est le groupe des permuations de n éléments

Notation pour désigner les éléments $\sigma \in S_n$:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \cdots & \sigma(n) \end{pmatrix}$$

<u>Définition</u>: Un <u>morphisme/homomorphisme</u> de groupes (G, H) est une fonction $f: G \to H$ t.q. $f(a *_G b) = f(a) *_H f(b)$. Si f est inversible alors f^{-1} est aussi un morphisme et on dit alors que f est un isomorphisme

Exemples:

- det : $GL_n(\mathbb{R}) \to \mathbb{R}^*$
- $-- \ |\cdot|: \mathbb{C} \to \mathbb{R}^*$
- $-\mathbb{Z} \to \mathbb{Z}_n$

Définition : Une action d'une groupe G sur un ensemble X est une application

$$\bullet:G\times\to X$$

satisfaisant

$$e \bullet x = x \quad \forall x \in X$$

et

$$a \bullet (b \bullet x) = (a * b) \bullet x$$

Exemple:

$$G = GL_n(\mathbb{R}) \quad X = \mathbb{R}^n$$

<u>Définition</u>: Une <u>action</u> de G sur x est un homomorphisme $f: G \to S_x$

Les deux définition sont équivalentes

On définit $f(g) = (x \mapsto g \bullet x)$

$$f(g_1 * g_{2)(x)} = (g_1 * g_2) \bullet x$$

$$= g_1 \bullet (g_2 \bullet x)$$

$$= g_1 \bullet f(g_2)(x)$$

$$= f(g_1)(f(g_{2)(x))}$$

$$= [f(g_1) \circ f(g_2)](x) \quad \forall x \in X$$

$$\implies f(g_1 * g_2) = f(g_1) \circ f(g_2)$$

Si X a plus de structure et qu'on a une action de de G sur X qui preserve la structure lors on dit que G agit par (homéomorphise, isométrie, application linéaire, ... (linéairement)) sur X

exemple : $G = S_3$ agit par isométrie sur un triangle équilatéral (voir 1)

ATTENTION: S_4 n'agit pas (fidelement, injectivement) sur le carré par isométrie (certaines permuations brisent le triangle) S. Par contre S_4 agit par isométries sur le cube!

 $A_n \subset S_n$ et est groupe des permuations paire

 A_5 agit par isométrie sur le dodécaèdre

<u>Théorème</u>: [Cayley] Tout groupe est isomorphe à un sous-groupe d'un groupe de permutation S_E

<u>Démonstration</u>: On considère l'action de G sur lui-même (x = G)

$$g_1 \bullet g_2 = g_1 * g_2$$

on obtiens $f: G \to S_G$: homomorphisme injectif car si $f(g_1) = f(g_1)$ alors $f(g_1)(e) = f(g_2)(e)$, $g_1 \bullet e = g_2 \bullet e$, $g_1 = g_2$

$$\implies f(G) \subset S_G$$
 est isomorphe a G

<u>Définition</u>: Une représentation d'un groupe G est une actions linéaire de G sur un espace vectoriel V. Autremenet dit, un homomorphisme $\rho: G \to \operatorname{GL}(V)$. Le rang d<une représentation est dimV

exemples:

$$\rho \mathbb{C}^* \to \mathrm{GL}(2,\mathbb{R})$$

$$O^{-} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$\mathcal{H} = \begin{pmatrix} 12 & 3 \\ 23 & 1 \end{pmatrix}$$

$$F(\sigma)$$

Réflextion du trianglae

 $Figure\ 1-Triangles\ \acute{e}quilat\acute{e}rals$

$$a+ib \to \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Si

retour sur le dernier cours

 (G, \bullet) c'est un groupe

 $S_E = \{\sigma: E \to E | \sigma \text{ inversible }\} \quad \text{ est une groupe pour la composition }$

Un cycle est un élément de S_n de la forme

$$\sigma(a_1) = a_{i \neq 1}, \ \sigma(a_k) = a_1, \ i = 1, \cdots, k$$

On le note $(a_1 a_2 a_3 \cdots a_k)$

Fait important

Toute permutation se décompose de manière unique en cycles disjoint Exemple :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix} = (12) \circ (35) = (35) \circ (12)$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 4 & 1 & 6 & 2 & 5 \end{pmatrix} = (1\,7\,5\,6\,2\,3\,4)$$

Le signe (ou la signature) d'un cycle de longeur ℓ est

 $(-1)^{\ell-1}$ $\begin{cases} +1 : \text{la permutation est paire} \\ -1 : \text{la permutation est imparire} \end{cases}$

On a la relation $\operatorname{sgn}(\sigma_1 \circ \sigma_2) = \operatorname{sgn}(\sigma_1)\operatorname{sgn}(\sigma_2)$

On peut utiliser une manière graphique pour calculer la signature d'une permutation (graph : compter le nombre d'intersections)

Action de G sur X: deux définitions

- 1. \bullet : $G \times X \to X$
- 2. homomorphisme $f: G \to S_x$

Représentation de G : action linéaire de G sur un espace vectoriel V

Exemple : La Représentation vectoriel sur V

$$g \circ \mathbf{v} = \mathbf{v} \quad \forall g \in G, v \in V$$

 $\rho: G \to GL(V)$

$$g\mapsto \mathbb{1}$$

Pour G fixé, on a la représentation régulière (R) (pour chaque élément du groupe on a un vecteur)

$$\langle e_{g_1}, \cdots, e_{g_n} \rangle$$
 où $G = \{g_1, \cdots, g_n\}$

On définit $g \bullet e_g = e_{g \bullet g}$

Exemple:

$$Z_{3} = \{0, 1, 2\}$$

$$V = \langle e_{0} e_{1} e_{2} \rangle$$

$$R(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R(1) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$R(2) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Les éléments du groupe \mathbb{Z}_3 sont ici representé par les matrices 3x et l'addition (modulaire) est remplacé par la multiplication matriciel des éléments de la représentation.

Autre exemple:

$$S_3 = \{e, (12), (13), (23), (123), (132)\}\$$

Plus généralement , si G agit sur E (ensemble fixé), on définit une représentation de permutation sur $\langle e_1, e_2, \cdots, e_n \rangle$ $E = \{e_1, \cdots, e_n\}$ par $\rho(g)(e_i) = g \bullet e_1$ (action de G sur E)

exemple : $V=\mathbb{C}$ Ou on prend \mathbb{C} comme un espace vectoriel

$$G=\mathbb{Z}_3$$

$$\rho:\mathbb{Z}_3\to\mathbb{C}^*=\mathrm{GL}(1,\mathbb{C})$$

$$n\mapsto\omega^n\quad\text{où}\quad\omega=e^{2\pi i/3}$$

<u>Définition</u>: Un sous-représentaation de

$$\rho: G \to \mathrm{GL}(\mathrm{V})$$

est la restriction de ρ à un sous-espace $U \subset V$ invariant par ρ . c-à-d, si $u \in U$, alors $\rho(g)u \in U \forall g \in G$

Exemple: Pour $R: S_3 \to \mathrm{GL}(6,\mathbb{C})$ Le sous-espace $\left\{ \begin{pmatrix} z \\ z \\ z \\ z \\ z \end{pmatrix} \in \mathbb{C}^6 | z \in \mathbb{C} \right\}$ est une sous représentation <u>triviale</u>

Le sous-espace $U_0 = \left\{ \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_6 \end{pmatrix} \in \mathbb{C}^6 | z_1 + z_2 + \dots + z_6 = 0 \right\}$ est aussi une sous-représentation de R de dimension 5

<u>Définition</u>: Une représentation est <u>irréductible</u> si elle n'admet aucune sous représentation propre $(\neq 0, \neq V)$

Exemple: S_3 :

 $\rho: S_3 \to \operatorname{GL}(3, \to \mathbb{C})$ la représentation de permutation induite par l'action $\underline{???}$ de S_3 sur $\{1, 2, 3\}$ $\rho(12) = \cdots 3x3$, $\rho(123) = \cdots 3x3$

 ρ est elle irréductible? non,

$$\left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle = \{ \begin{pmatrix} z \\ z \\ z \end{pmatrix} \in \mathbb{C}^3 | z \in \mathbb{C} \}$$

est invariant est irréductible

Également,
$$U_0 = \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\rangle = \left\{ \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} | z_1 + z_2 + z_3 = 0 \right\}$$
 est invariant

Es-ce que U_0 est irréducibleÉ

Cherchons un sous-espace invariant de dim 1

$$\rho(12) \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} z_2 \\ z_1 \\ z_1 - z_2 \end{pmatrix} = \lambda \begin{pmatrix} z_1 \\ z_2 \\ -z_1 - z_2 \end{pmatrix}$$

. . .

Conculsion : U_0 est une représentation irréductible. On l'appelle représentation standard de S_3

 $\underline{\operatorname{Ex}}:S_3$

$$\operatorname{sgn}: S_3 \to \mathbb{C}^* = \operatorname{GL}(1, \mathbb{C})$$

$$\sigma \mapsto \operatorname{sgn}(\sigma)$$

Si $\rho_1:G \to GL(u)$, $\rho_2:G \to GL(v)$ sont 2 représentation de G, leurs somme directe est la représentation $\rho_1 \oplus \rho_2:GGL(u \oplus v)$

$$(\rho_1 \oplus \rho_2)(g)(u \oplus v) = \rho_1(g)u \oplus \rho_2(g)v$$

Exemple : si $U = \mathbb{R}^n \ V = \mathbb{R}^m$

$$U \oplus V = \mathbb{R}^{n+m}$$

 $U \oplus v$ contient $u \oplus 0$ et $0 \oplus v$ comme sous représentation

Proposition : Soit $U \subset V$ une sous-repr/sentation de $\rho : G \to \mathrm{Gl}(V)$. Alors, il existe une sous-représentation $W \subset V$ telle que $\overline{V = U \oplus W}$

Attention!

Faux en général pour les groupes infinis

Exemple: $\rho: \mathbb{Z} \to \mathrm{GL}(2,\mathbb{C})$

$$n \mapsto \begin{pmatrix} 1 & n \\ 0 & 2 \end{pmatrix}$$

est une représentation de \mathbb{Z} , $\langle e_1 \rangle$ est une sous-représentation triviale, mais il n'en existe par d'autre

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ y \end{pmatrix}$$

<u>Démonstration</u>:

Soit $V_0\subset V$ n'importe quel complément de U $(V=U\oplus W_0)$

Ce n'est pas un sous-espace en général

$$\rho(g)w \notin W_o$$
 pour $w \in W_0$

Soit $\pi: V \to U$ la projection complémentaire à W_0

Définissons $\pi' = \frac{1}{|G|} \sum_{g \in G} \rho(g) \circ \pi \circ \rho(g^{-1})$ si $u \in U$

$$\pi'(u) = \frac{1}{|G|} \sum_{g \in G}^{\infty} \rho(g) \pi \left[\rho(g') u \right]$$

$$\frac{1}{|G|} \sum_{g \in G} \underline{\rho(g)} \rho(g^{-1}) u$$

$$\frac{1}{|G|}|G|u=u$$

 $\implies \pi': V \to U \quad \text{est surjectif et indentit\'e sur}$

 $W=Ker(\pi')$ est notre candidat de sous-représentation

Vérifions que W est $\rho(G)$ invariant

$$h \in G \quad V \in \mathrm{Ker}\pi'$$

$$\pi'(\rho(h)V) = \frac{1}{|G|} \sum_{g \in G}^{\infty} \rho(g)\pi\rho(g')\rho(h)v = \dots = 0$$

comme $\pi'/i=\mathbb{1}_u$

$$U \cup, , , , , ,$$

Rappels

- représentation de $G \rho \to GL(V)$
- somme direct $\rho_1: G \to \operatorname{GL}(V), \, \rho_2: G \to \operatorname{GL}(U), \, \rho_1 \oplus \rho_2: G \to (V \otimes U)$
- Sous-représentation $U \subset V$ G invarient $\forall g \in G, \, \rho(g)u \in U$
- ρ est irréductible si les seul sous-représentation sont $\{0\}$ et V
- Théorème : Si $U \subset V$ est une sous représentation de $\rho: G \to \operatorname{GL}(V)$ alors $\exists W \subset V$ sous-espace t.q. $V = U \oplus W$

Exemple:

 $\rho: S_3 \to \mathrm{GL}(\mathbb{C}^3)$: représentation de permutation

$$U = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle \subset \mathbb{C}^3$$

est une sous-représentation

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{C}^3 | x + y + z = 0 \right\}$$

$$\mathbb{C}^3 = U \oplus W$$

Corrolaire: Toute représentation s'écrit comme une somme directe de représentation irréductible

 $\underline{\text{D\'efinition}:} \text{ Un } \underline{\text{morphisme de repr\'esentation}} \text{ entre } \rho_1: GGL(U), \ \rho_2: \rho_2: GL(U) \text{ est une application lin\'eaire } \varphi V \to U$ telle que $\forall g \in G$

$$\varphi \circ \rho_{1(g)} = \rho_{2(g)} \circ \varphi$$

Si φ est inversible, c'est un isomorphisme de représentation

Proposition:

- 1. $Ker(\varphi) \subset V$
- 2. $\operatorname{Im}(\varphi) \subset U$ sont des sous représentation

$\underline{\text{D\'emonstration}}$:

1. Si
$$v < in \text{Kerr}(\varphi) \implies \varphi(v) = 0$$

$$\varphi(\rho_1(g)v) = \rho_2(g)(\varphi(v)) = 0$$

$$\implies \rho_1(g)v \in \ker(\varphi)$$

2. $\rho_2(g)(\varphi(v)) = \varphi(\rho_1(g)V) \in \operatorname{Im}(\varphi)$

Lemme de Shur

1. $\varphi:V\to U$ est un morphisme entre représentation irréductible alors $\varphi=0$ ou φ est un iso

2. $\varphi:V\to V$ Morphisme de V représentation irréductible alors $\varphi=\lambda\mathbb{1}$

 $\underline{\text{D\'emonstration}}:\varphi:V\to U$

1.

. . .

2. $\varphi V \to V \varphi$ admet une valeur propre λ

$$\implies \operatorname{Kerr}(\varphi - \lambda \mathbb{1}) \neq 0$$

$$\implies \operatorname{Kerr}(\varphi - \lambda \mathbb{1}) = V$$

$$\implies \varphi - \lambda \mathbb{1} = 0$$

$$\implies \varphi = \lambda I$$

La décomposition en irréductible

$$V = V_1^{m_1} \oplus \cdots V_k^{m_k}$$

est unique à isomorphisme près

Exemple : Soit G une goupe fini abélien

$$G = \mathbb{Z}_{m_1}^{n_1} \oplus \cdots$$

et supposons $\rho: G \to \mathrm{GL}(V)$ irréductible. Fixons $g \in G$

 $\rho(g): V \to V$ alors $\rho(g)$ est une morphisme de représentation car $\rho(h)(\rho(h)v) = \rho(gh)b = \rho(hg)v = \rho(h)(\rho(g)v)$

Par le Lemme de Shor $\rho(g) = \lambda_g \mathbb{1} \implies \text{tout les } \rho(g) \operatorname{sont} \lambda_g \mathbb{I}$

 \implies tout sous-espace de V est stable par $\rho(g) \forall g \in G$

donc dim V = 1

Conclusion : tout représentaiton irréductible d'un groupe abélien est de dim 1

Exemple: $G = \mathbb{Z}_4$

. . .

Exemple: $G = S_3 = \{e, (12), (12), (123), (132)\}$

$$H = \{e, (123), (132)\}$$

est le plus grand sous-groupe de G que est abélien

Remarque: G est engendré par (123) et (12)

On leur donne des petit non spéciaux en cette honneur $\tau = (123), \sigma = (12)$

$$\sigma \tau \sigma = (12)(123)(12) = (132) = \tau^2$$

Soit $\rho: S_3 \to \operatorname{GL}(V)$ une représentation irréductible

on a $\rho(\tau)^3 = 1 \operatorname{car} \tau^3 = e$

 $\implies \rho(\tau)$ est diagonalisable est ses valeurs propres sont des racines cubiques de 1. Soit $v \in V$ vecteurs propres de $\rho(\tau)$ $\implies \rho(\tau)v = \omega^k v$ pour $\omega = e^{2\pi i/3}, i \in \{0,1,2\}$

on a

$$\begin{split} \rho(\tau) \left(\rho(\sigma) v \right) = & \rho(\tau \sigma) v \\ &= \rho(\sigma \tau^{2)} v \\ &= & \rho(\sigma) \rho(\tau)^{2} v \\ &= & \rho(\sigma) \omega^{2k} v \\ &= & \omega^{2k}(\rho(\sigma) v) \end{split}$$

conclusion si v est une vecteur propre de $\rho(\tau)$ de valeur propre ω^k alors $\rho(\tau)v$ est vecteur propre de $\rho(\tau)$ de valeur propre $\omega^2 k$

Il y a deux cas selon la valeur propre

1. k = 1 ou $2 \implies \omega^2 \neq \omega^{2k}$

$$\implies v \text{ et } \rho(\sigma)v$$

sont linéairement indépendants $U = \langle v_1 \rho(\sigma) v \rangle$, U est stable par G: V et $\rho(\sigma)V$ sont vecteur propres de $\rho(\tau)$ et $\rho(\sigma)(v) = \rho(\sigma)v$, $\rho(\sigma)(\rho(\sigma)(v)) = v$

$$\implies U = V$$

et dans la base $v, \rho(\sigma)v$ on alors

$$\rho(\tau) = \begin{pmatrix} \omega^k & 0 \\ 0 & \omega^{2k} \end{pmatrix}$$

$$\rho(\sigma) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

2. k = 0

$$\rho(\tau)v = v$$
$$\rho(\tau)(\rho(\sigma)v) = \rho(\sigma)v$$

(a)
$$\rho(\sigma)v = \lambda v$$
 et $\lambda \in \{1, -1\}$ $(\sigma^2 = 1)$ si $\lambda = 1$ $\langle v \rangle = V$ et $\rho = \rho_{\text{trivial}}$ si $\lambda = -1$, $\langle v \rangle = V$ et $\rho - \rho_{\text{sign}}$

(b) v et $\rho(\sigma)v$ sont linéairement indépendants

Considérons
$$V + \rho(\sigma)v$$
, $V - \rho(\sigma)v$

$$\rho(\tau)(v+\rho(\sigma)v)=v+\rho(\sigma)v \text{ et } \rho(\sigma)(v+\rho(\sigma)v)=\rho(\sigma)v+v$$

$$\implies v + \rho(\sigma)v$$
 est stable par G .

idem pour -. C'est donc une contradiction au fait que ${\cal V}$ soit irréductible.

Théorie des caractères

 soit

$$\rho: G \to \mathrm{GL}(\mathbf{v})$$

une représentation

Alors sont <u>caractère</u> est la fonction

$$\chi_{\rho}:G\to\mathbb{C}$$

$$g \mapsto \operatorname{tr}(\rho(\mathbf{g}))$$

Rappel

Un morphisme de représentation est une application linéaire $\varphi: V \to U$ (qui est compatible avec les deux représentation) t.q.

$$\rho_2(g) \circ \varphi = \varphi \circ \rho_2(g)$$

 φ est appelée une application équivariante

Lemme de Shur

- 1. Si ρ_1 , ρ_2 sont irréductible φ morphisme $\implies \varphi = 0$ ou isomorphe
- 2. Si V=U alors $\varphi=\lambda \mathbb{1}$

Prop: Tout représentation irréductible d'un groupe abélien est de dimension (rang) 1.

Les repr??? de S_3 (à iso près) sont $\rho_?, \rho_?$ et $\rho_?$

Caractère d'une représentation :

$$\chi_{\rho}:G\to\mathbb{C}$$

$$g \mapsto \operatorname{tr}(\rho(g))$$

 χ_{ρ} est un exemple de fonction <u>centrale</u> (class function) c-à-d $\forall h \in Ga, \chi_{\rho}(hgh^{-1}) = \chi_{\rho}(g)$

Dans S_n permutation de n éléments la conjugacion correspond à un "changement d'étiquette"

La <u>tables des caractères</u> d'un groupe fini G est un tableau où les <u>lignes</u> sont les représentations irréductibles et les <u>colonnes</u> sont les calsses de conjugaison dans G. Les entrées sont $\chi_{\rho}(g)$

Exemple: S_3

Tables 1 – tables des caractères de S_3

Remarques

- Dans la première colonne on lit les dimensions des représentation irréductible
- les colonnes sont orthogonales par le produit scalaire standard
- Autant de lignes que de colonnes
- chaque lignes est un vecteur de norme |G|

Exemple : \mathbb{Z}_4

	1	1	1	1
	0	1	2	3
$\overline{\chi}$?	1	1	1	1
χ ?	1	i	-1	-i
χ ?	1	-1	i	-1
χ ?	1	-i	-1	i

Table 2 – Table des caractères de \mathbb{Z}_4

Rappels et suppléments d'algèbre linéaire

V un (k)espace vectoriel est un groupe abélien muni d'une multiplication par un scalaire

$$k \times V < toV$$

$$(\lambda, \mathbf{v}) \mapsto \lambda \cdot \mathbf{v}$$

satisfaisant

1.
$$(\lambda \mathbf{u}) \cdot \mathbf{v} = \lambda \cdot (u \cdot \mathbf{v})$$

$$2. \ 1 \cdot \mathbf{v} = \mathbf{v}$$

3.
$$\lambda(u+v) = \lambda u + \lambda v$$

4.
$$(\lambda + \mu) = \lambda v + \mu v$$

Soit U, V deux k-espaces vectoriels

$$Hom(U, V) := \{L : U \rightarrow V | Lapplication linéaire \}$$

est un k-espace vectoriel lorsque muni des opérations

$$(L_1 + L_2)(u) = L_1(u) + L_2(u)$$
$$(\lambda \cdot L)(u) = \lambda \cdot (L(u))$$

$$\dim(\operatorname{Hom}(u,v)) = \dim(u)\dim(v)$$

Le produit Tensoriel de U et V est un k-espace vectoriel $U\otimes V$ muni d'une application bilinéaire

$$U \times V \to U \otimes V$$

$$(u,v)\mapsto u\otimes v$$

et satisfaisant la propriété universelle : Pour tout application bilinéaire $b:U\times V\to W$

Je vois pas ...

 $\underline{\text{En pratique}}: \text{Si } e_1, \cdots, e_n \text{ est une base de } U, \, f_1, \cdots, f_m \text{ est une base de } V \text{ alors } \{e_i \otimes f_g\} \text{ est une base de } U \times V$

Exemple:

J'ai pas envie de l'écrire

$$\begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ c \end{pmatrix} = \cdots ace_1 \otimes f_1 + \cdots$$

 $\underline{\text{Exemple}:} \text{ produit scalaire standard dans } \mathbb{C}^2 \text{ est bilin\'eaire } ((\binom{a}{b}, \, \binom{c}{d}) \to ac + bc)$

Quelle est $\bar{b}\mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}$

$$(\binom{a}{b}\otimes \binom{c}{d})\to ac+bc$$

Attention

Il est des éléments de $\mathbb{C}^2 \otimes \mathbb{C}^2$ qui n'écrivent pas comme des états factorisables