CS687 2023 HW2

Due: April 20, 2025

- 1. Suppose you are given an arbitrary binary sequence where it is guaranteed that there is at least one 1 in every block of 50,000 positions starting from the first position. Do either (not both) of the following. [10]
 - (a) Construct a Martin-Löf test which captures this set of sequences (*i.e.* the set of all such sequences which have at least one 1 in every block of 50,000 positions).
 - (b) Define a martingale that succeeds on the set of these sequences. Show that the martingale succeeds.
- 2. A probability measure μ on Σ^* is defined by the following rules.
 - 1. $\mu(\lambda) = 1$ and
 - 2. For every string w, $\mu(w) = \mu(w0) + \mu(w1)$.

If μ and ν are probabilities on Σ^* , such that $\nu(w) \neq 0$ for any string w, then show that μ/ν is a ν -martingale.

A ν martingale is a function $m: \Sigma^* \to [0, \infty)$ such that $m(\lambda) \leq 1$ and for any string $w \in \Sigma^*$, we have

$$m(w0)\nu(w0) + m(w1)\nu(w1) = m(w)\nu(w).$$

[10]

- 3. Prove or disprove: if $d: \Sigma^* \to [0, \infty)$ is a martingale which does not assign 0 to any string, then d is the ratio of two probabilities on strings. [10]
- 4. Show that if there is a lower semicomputable martingale $m: \Sigma^* \to [0, \infty)$ such that it succeeds on $X \in \Sigma^{\infty}$ *i.e.*,

$$\limsup_{n \to \infty} m(X[0 \dots n-1]) = \infty,$$

then there is another lower semicomputable martingale $m': \Sigma^* \to \infty$ such that

$$\liminf_{n \to \infty} m(X[0 \dots (n-1)] = \infty.$$

[10]