

Inertial Navigation with Android

Lewis Collum, Mahesh K. Banavar

1. Sensing 44)

Linear Acceleration:

Measures the acceleration force in m/s² that is applied to the device on all three physical axes (x, y, and z), excluding the force of gravity.

Rotation Vector:

Measures the orientation of the device, provided in quaternion form (x, y, z, and

2. Sending

Android app sends the sensor data as a CSV file, via email.

Room for Improvement (future):

Data will be sent realtime with Bluetooth.

OpenGL can then be used for visualizing real-time position of the phone.

3. Organizing

Data is sliced from the CSV file and stored in data structures, VectorSet and QuaternionSet.

Reusability:

These custom data structures inherit from NumPy's "ndarray".

This allows them to be seamlessly used with algorithms from packages including NumPy, SciPy, etc.

4. Filtering \dashv

Moving Average:

Splits data into segments, then averages data within each segment. This also helps synchronize data.

Low-Pass:

Helps smooth spikes and noise.

High-Pass:

Helps reduce low-frequency effects, e.g,

5. Fusing

Global Acceleration:

Orientation must be applied to the local acceleration (along the phone's axes) to obtain global acceleration (along the world's axes).

How Orientation Works 4D representation of a 3D rotation

Axis-Angle:

Visually intuitive, algebraically not.

Cannot apply the rotation to a vector.

Must convert to quaternion.

Quaternions:

Algebraically intuitive, visually not.

Easily interpolated.

Easy to apply to a vector (e.g. acceleration).

Check out our current projects at...

acceleration twice.

COSINE.CLARKSON.EDU