

Melhorando o desempenho de preditores para detecção de transações fraudulentas

intro

Problemas encontrados:

- Disponibilidade de datasets públicos;
- Class Imbalance;
- Falsos Negativos & Overfitting.

intro

Objetivos propostos:

- Entender datasets relacionados à fraudes;
- Construir preditores;
- Otimizar seus desempenhos.

fraudes

"Caracteriza-se como fraude todo ato ardiloso, enganoso e de má fé que possui como objetivo lesar ou ludibriar outrem."

Lei Federal N 8.137 - 27 de dezembro de 1990.

antifraudes

Detecção de transações fraudulentas:

- Análises estatísticas;
- Regras de negócios bem definidas;
- Análises comportamentais.

Detecção de padrões:

- Geográficos;
- Monetários;
- Comportamentais.

Aprendizado de máquina.

Modelos Preditivos:

- Tree Classifiers;
- Random Forests;
- SVM (Support Vector Machines).

Sampling:

- ROS/RUS;
- SMOTe.

Tree Classifiers:

- Aprendizado Supervisionado;
- Regressão e Classificação;
- Nós;
- Relacionamento entre nós.

Random Forests:

- Múltiplas Árvores de Decisão;
- Regressão e Classificação;
- Melhores taxas de assertividade e maior custo computacional.

Figura 3 – SVM Fonte: Gandhi, Rohith. Support Vector Machine – Introduction to ML Algorithms.

Support Vector Machines (SVM):

- Um dos mais preferidos de Data Scientists;
- Regressão e Classificação;
- Trade-off entre assertividade e custo computacional;
- Hiperplano Ótimo.

Oversampling minority class

Undersampling majority class

Figura 4 - Sampling
Fonte: https://stats.stackexchange.com/questions/351638/random-sampling-methods-for-handling-class-imbalance.

Sampling:

- Class Imbalance;
- Random Oversampling;
- Random Undersampling.

0010

- Majority class samples
- Minority class samples
- Synthetic samples

Figura 4 – Sampling Fonte: https://istats.stackexchange.com/questions/351638/random-sampling-methods-for-handling-class-imbalance.

Synthetic Minority Oversampling Technique (SMOTe):

- k-nn:
- Oversampling;
- Novos Registros.

Organização dos Tópicos:

- Aquisição de dados;
- Pré-processamento;
- Overfitting e Falsos Negativos;
- Otimização dos datasets;
- Benchmarking dos preditores.

Headers	Explicação	Exemplo
step:	Unidade de tempo. 1 step equivale à 1 hora.	1
type:	Tipo de transação.	PAYMENT
amount:	Unidade monetária. Valor total da transação.	1060.31
nameOrig:	ID da conta que iniciou a transação.	C429214117
oldBalanceOrig:	Balanço inicial antes a transação - conta de origem.	1089.0
newBalanceOrig:	Balanço final após a transação - conta de origem.	28.69
nameDest:	ID da conta que recebeu a transação.	M1591654462
oldBalanceDest:	Balanço inicial antes a transação - conta de destino.	0.0
newBalanceDest:	Balanço final após a transação - conta de destino.	0.0
isFraud:	A transação é uma fraude?	0
isFlaggedFraud:	A transação foi marcada como fraude pelo sistema da NTNU?	0

Base de Dados:

- Página do Kaggle da Nowergian
 University of Science and Technology
 (NTNU);
- Synthetic Financial Datasets for Fraud Detection;
- Diminuída 4 vezes do tamanho original;
- 31 dias de transações;
- 11 Atributos;
- 6.354.407 Registros

Exemplo Original – type(string)	Conversão – type(int)
Cash_In	0
Cash_Out	1
Debit	2
Payment	3
Transfer	4

Tabela 2 – Variável type Fonte: Autor

	fraud_proportion	non_fraud_proportion	fraud_examples	non_fraud_examples	total
sample					
train	0.001291	0.998709	6570	5083525	5090095
test	0.001292	0.998708	822	635442	636264
validation	0.001290	0.998710	821	635440	636261

Tabela 3 – Divisão do dataset

Pré-processamento:

- Preparação, Organização e Estruturação dos dados;
- Limpeza e Normalização;
- Atributos Utilizados: 'isFraud', 'type',
 'amount', 'oldBalanceOrig',
 'newBalanceOrig', 'oldBalanceDest' e
 'newBalanceDest';
- Divisão em 4 sub-datasets (Training,
 Tests, Validation e Fraud).

	train	test	validation	fraud	training time
tree classifier	0.999	0.999	0.999	0.041	0:00:05.459905
random forest	1.000	1.000	1.000	0.595	0:07:41.670989
svm	0.999	0.999	0.999	0.365	0:03:38.943760

Tabela 4 – Taxas de Assertividade Fonte: Autor

					Tenn	Classifier					
	A				iree	Classifier	ltd-st			£	
	train			test			validation			fraud	
	Non-Fraud	Fraud		Non-Fraud	Fraud		Non-Fraud	Fraud		Non-Fraud	Fraud
Non-Fraud	5,083,511	0	Non-Fraud	635,437	0	Non-Fraud	635,459	0	Non-Fraud	0	0
Fraud	6,314	271	Fraud	794	31	Fraud	766	31	Fraud	1,575	68
					Rando	m Forests					
	train			test			validation			fraud	
	Non-Fraud	Fraud		Non-Fraud	Fraud		Non-Fraud	Fraud		Non-Fraud	Fraud
Non-Fraud	5,083,511	0	Non-Fraud	634,430	7	Non-Fraud	635,450	9	Non-Fraud	0	0
Fraud	0	6,585	Fraud	19	656	Fraud	154	649	Fraud	664	979
					5	NVM					
	train			test			validation			fraud	
	Non-Fraud	Fraud		Non-Fraud	Fraud		Non-Fraud	Fraud		Non-Fraud	Fraud
Non-Fraud	5,083,406	105	Non-Fraud	635,422	15	Non-Fraud	635,451	8	Non-Fraud	0	0
Fraud	537	2,375	Fraud	537	288	Fraud	499	304	Fraud	1,044	599

Tabela 5 – Matrizes de Confusão Fonte: Autor

Overfitting e Falsos Negativos:

- Altas taxas de assertividade no dataset de treinamento, teste e validação;
- Distorção;
- Falsos Negativos.

	fraud	training time	fraud	training time
tree classifier	0.041	0:00:05.459905	0.719	0:02:41.971565
random forest	0.595	0:07:41.670989	0.743	0:27:33.624551
svm	0.365	0:03:38.943760	0.730	0:24:56.213468

Tabela 6 – Assertividade no dataset fraud normalizado com ROS Fonte: Autor

Random Oversampling:

Duplicar registros da classe minoritária;

	fraud	training time	fraud	training time
tree classifier	0.041	0:00:05.459905	0.821	0:02:33.888025
random forest	0.595	0:07:41.670989	0.847	0:31:12.724637
svm	0.365	0:03:38.943760	0.834	0:28:47.734978

Tabela 7 – Assertividade no dataset fraud normalizado com SMOTe Fonte: Autor

SMOTe:

 Novos registros gerados para a classe minoritária;

Tree Classifier - validation

Non-Fraud Fraud

Imbalanced	Non-Fraud	635,459	0
	Fraud	766	31
		Non-Fraud	Fraud
ROS	Non-Fraud	635,102	357
	Fraud	239	654
		Non-Fraud	Fraud
SMOTe	Non-Fraud	635,152	307
	Fraud	102	701

C1/N/	- valid	ation

	•	Non-Fraud	Frauc
Imbalanced	Non-Fraud	635.459	0
	Fraud	766	31
		Non-Fraud	Frauc
ROS	Non-Fraud	635.102	357
	Fraud	239	654
		Non-Fraud	Frauc
SMOTe	Non-Fraud	635.152	307
	Fraud	91	712

Random Forest - validation

		Non-Fraud	Fraud
Imbalanced	Non-Fraud	635.437	0
	Fraud	794	31
		Non-Fraud	Fraud
ROS	Non-Fraud	635.202	280
	Fraud	183	597
		Non-Fraud	Fraud
SMOTe	Non-Fraud	635.222	260
	Fraud	92	688

Benchmarking:

- Aumento das taxas de assertividade;
- Diminuição dos Falsos Negativos.

Tabela 7 – Matrizes de Confusão Fonte: Autor

		train	test	validation	fraud
tree classifier	ROS	0.10%	0.00%	0.00%	94.30%
	SMOTe	0.10%	0.10%	0.00%	95.01%
random forest	ROS	0.00%	-0.10%	-0.10%	19.92%
	SMOTe	0.00%	-0.10%	-0.10%	29.75%
svm	ROS	0.10%	0.00%	0.00%	50.00%
	SMOTe	-9.06%	-3.42%	-3.42%	56.24%

Tabela 8 – Comparativos das taxas de assertividade com datasets balanceados Fonte: Autor

Benchmarking:

Comparativo das taxas de assertividade;

futuro

Sugestões Futuras:

- ADASYN;
- Comparar com o preditor da NTNU;
- Balancear o dataset de treinamento por uma GAN.

obrigado

Bruno Paes

Fernando Sinigaglia

Guilherme Heitzmann

Leonardo Briotto

Leonardo Messias