

Assignment Project Exam Help

https://powwoder.com

Add WeChat powcoder

From BCNF to 3NF

Assignment Project Exam Help

h There exists an appoint in that can generate a lossless degomposition into BCNF.

(2) However, a BCNF-decomposition that is both lossless and dependency-preserving does not always exist.

Add WeChat powcode1

 3NF is a less restrictive normal form such that a lossless and dependency preserving decomposition can always be found.

3NF - Definition

Assignment Project Exam Help

- A relation schema R is in 3NF if whenever a non-trivial FD $X \to A$ holds in R, he will a supperhap of Wis prime attribute. On
- 3NF allows data redundancy but excludes relation schemas with certain kind of FDs in experital FDs and transitive FDs).
 Add Well Dowcoder

Assignment Project Fxam Help

• {ConfirmedBy_ID} \rightarrow {StaffName}.

ł	1ttps	<u>/</u>	V ENROL	derime Cy (1)	StaffName
	123456	COMP2400	2010 S2	u12	Jane
	123458	COMP2400	2008 S2	u13	Linda
	123458	COMP2600	2008 S2	u13	Linda
F	Add	Wec	'hat i	powco	der

Is ENROL in 3NF?

- {StudentID, CourseNo, Semester} is the only key.
- ENROL is not in 3NF because {ConfirmedBy_ID} → {StaffName}, {ConfirmedBy_ID} is not a superkey and {StaffName} is not prime attribute.

Assignment Project Exam Help

Input: a relation schema R and a set Σ of FDs on R.

Output: a set S of relation schemas in 3NF each having a set of FDs

- \bullet Group FDs in Σ' by their left-hand-side attribue sets
- ullet For each distinct left-hand-side X_i of FDs in Σ' that includes

A dd x Wee C hat powcoder

- Remove all redundant ones from S (i.e., remove R_i if $R_i \subseteq R_j$)
- if S does not contain a superkey of R, add a key of R as R_0 into S.
- Project the FDs in Σ' onto each relation schema in S

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

Add WeChat powcoder

 $X_1 \rightarrow A_K$

 $X_n \rightarrow A$

Assignment Project Exam Help

Minimal Cover – The Hard Part!

Assignment Project Exam Help

- Σ_m is equivalent to Σ , i.e., start with $\Sigma_m = \Sigma$; behandent: each FD in Σ_m has only a single attribute on its right hand side, i.e., replace each FD $X \to \{A_1, \ldots, A_k\}$ in Σ_m with $X \to A_1, \ldots, X \to A_k$;
 - **Potern name** varied D has a stew at the Levi Model of the Levi Model of the possible, i.e., for each FD $X \to A$ in L_m , check each attribute B of X to see if we can replace $X \to A$ with $(X B) \to A$ in Σ_m ;
- 4 Remove a FD from Σ_m if it is redundant.

Minimal Cover

Assignment Project Exam Help

The minimal cover of a set of functional dependencies Σ always exists but is not necessarily unique.

• Examples: Consider the following set of functional dependencies:

Add W_BODET

DOWNGOODET

 Σ has two different minimal covers:

- $\bullet \ \Sigma_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$
- $\bullet \ \Sigma_2 = \{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$

Minimal Cover - Examples

Assignment, Projectuce Exam \rightarrow Lelp because $\{A \rightarrow C\}$ is implied by the other two.

- Given the set of FDs $\Sigma = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$, we can compute the minimal cover of Σ as follows: WCOder.COM start from Σ ;
 - check whether all the FDs in Σ have only one attribute on the right hand side (look good):
 - The prime if $AB \rightarrow D$ can be replaced by $B \rightarrow D$;
 - 4 look for a redundant FD in $\{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$ $(B \rightarrow A \text{ is redundant})$;

Therefore, the minimal cover of Σ is $\{D \to A, B \to D\}$.

Normalisation to 3NF - Example

Assignment Project Exam Help (Studentib), CourseNo, Semester) of Confirmed By JD, Staff Name (Project Exam Help)

{ConfirmedBy₋ID} → {StaffName}

Can we normalise ENROL into 3NF by a lossless and dependency preserving decomposition? That powcoder

Normalisation to 3NF – Example

Consider ENBO again: Project Exam Help studentib, courselvo, Semester) \rightarrow {Confirmed By ID, Staff Name}

{ConfirmedBy_ID} → {StaffName}

h that course were defined by a fightname

- A minimal cover is {{StudentID, CourseNo, Semester}} → $\{ \begin{array}{c} \text{ConfirmedBy_ID} \}_{\text{Hence}} \text{ We Chat powcoder} \\ \text{Hence} \text{ We have}. \end{array}$
- - R₁={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester} → {ConfirmedBy_ID}
 - R₂={ConfirmedBy_ID, StaffName} with $\{ConfirmedBy_ID\} \rightarrow \{StaffName\}$
 - Omit R₀ because R₁ is a superkey of ENROL.

3NF - Exercises

Assignment-Project-Exam Help

• Exercise 1: $R = \{A, B, C, D\}$ and $\Sigma = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$:

https://powcoder.com

3NF - Exercises

Assignments Projecto Exam Help

• Exercise 1: $R = \{A, B, C, D\}$ and $\Sigma = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$:

The 3NF-decomposition is {ABD, BC}.

$\overset{\text{AExelcist}}{\text{Add}} \overset{\text{Z}}{\text{W}} \overset{\text{AB}}{\text{ec}} \overset{\text{AB}}{\text{cover}} \overset{\text{AB}}{\text{pow}} \overset{\text{B}}{\text{cover}} \overset{\text{AB}}{\text{pow}} \overset{\text{B}}{\text{cover}} \overset{\text{AB}}{\text{cover}} \overset{\text{B}}{\text{cover}} \overset{\text{B}}{\text$

- $R_1 = ABD$, $R_2 = ABC$, $R_3 = CB$ (omit R_3 because $R_3 \subseteq R_2$ and omit R_0 because R_1 is a superkey of R)
- The 3NF-decomposition is {ABD, ABC}.