Algumas considerações sobre latches

Circuito assíncrono

saídas dos circuitos lógicos <u>podem</u> mudar de **estado** (nível lógico) assim que as entradas tiverem seus níveis lógicos alterados

- Unidade elementar de memória => 1 bit
- No momento em que o circuito é alimentado não é possível predizer o estado inicial do latch (isto é, Q = 1 ou Q = 0), se suas entradas estivem no nível lógico de "descanso" (ou inativo).

- Sequencial x combinacional
- Circuitos sequenciais assíncronos e síncronos
- Latches e flip-flops
- Latch SR
- Flip-flop SR
- Flip-flop JK
- Flip-flop D
- Flip-flop T
- Entradas assíncronas

Flip-flop Conceitos básicos

Representação usual dos flip-flops

Flip-flop Conceitos básicos

Representação usual dos flip-flops

As saídas do flip-flop podem mudar <u>apenas</u> quando ocorre a borda <u>ativa</u> do sinal de clock.

Representação usual do flip-flop SR

S	R	CLK	Saída Q	
0	0	1	Q_0	<pre>estado anterior</pre>
1	0	1	1	
0	1	1	0	
1	1	1	Proibido	

Representação usual do flip-flop SR

S	R	CLK	Saída Q	
0	0	\	Q_0	<pre>estado anterior</pre>
1	0	\	Q = 1	
0	1	\	Q = 0	
1	1	1	Proibido	

Exemplo de funcionamento

Diagrama de tempo

Exemplo de funcionamento

Diagrama de tempo

Flip-flop SR Circuito interno

Diagrama simplificado do circuito interno de um flip-flop SR

Flip-flop SR Circuito interno

Diagrama simplificado do circuito interno de um flip-flop SR

Flip-flop SR Circuito interno

Diagrama simplificado do circuito interno de um flip-flop SR

- Sequencial x combinacional
- Circuitos sequenciais assíncronos e síncronos
- Latches e flip-flops
- Latch SR
- Flip-flop SR
- Flip-flop JK
- Flip-flop D
- Flip-flop T
- Entradas assíncronas

Flip-flop JK Tabela verdade

Representação usual do flip-flop JK

J	K	CLK	Estado	
0	0	1	Q_0	<pre>estado anterior</pre>
1	0	1	Q = 1	
0	1	1	Q = 0	
1	1	1	$\overline{\overline{Q}}_0$	← Oposto do estado anterior

Flip-flop JK Tabela verdade

Representação usual do flip-flop JK

J	K	CLK	Estado	
0	0	\	Q_0	<pre>estado anterior</pre>
1	0	\	Q = 1	
0	1	\	Q = 0	
1	1	\	$\overline{\overline{Q}}_0$	← Oposto do estado anterior

Flip-flop JK

Exemplo de funcionamento

Diagrama de tempo

Flip-flop JK

Exemplo de funcionamento

Diagrama de tempo

Flip-flop JK Circuito interno

Diagrama simplificado do circuito interno de um flip-flop JK

- Sequencial x combinacional
- Circuitos sequenciais assíncronos e síncronos
- Latches e flip-flops
- Latch SR
- Flip-flop SR
- Flip-flop JK
- Flip-flop D
- Flip-flop T
- Entradas assíncronas

Flip-flop D Tabela verdade

Representação usual do flip-flop D

D	CLK	Estado
0	↑	Q = 0
1	1	Q = 1

Flip-flop D Tabela verdade

Representação usual do flip-flop D

D	CLK	Estado
0	\	Q = 0
1	\	Q = 1

Flip-flop D

Exemplo de funcionamento

Diagrama de tempo

Flip-flop D Implementação

Implementação de um flip-flop D utilizando um flip-flop JK

J	K	CLK	Estado
0	0	•	
0	0		Q_0
1	0	↑	Q = 1
0	1	†	Q = 0
1	1	*	10
			Q_0

D	CLK	Estado
0	↑	Q = 0
1	1	Q = 1

- Sequencial x combinacional
- Circuitos sequenciais assíncronos e síncronos
- Latches e flip-flops
- Latch SR
- Flip-flop SR
- Flip-flop JK
- Flip-flop D
- Flip-flop T
- Entradas assíncronas

Flip-flop T

Representação usual do flip-flop T

Т	CLK	Estado	
0	↑	Q_0	← estado anterior
1	1	$\overline{\overline{Q}}_0$	Oposto do estado anterior

Flip-flop T Implementação

Implementação de um flip-flop T utilizando flip-flop JK

J	K	CLK	Estado
0	0	↑	Q_0
1	0		0 1
	U		Q - 1
0	1	*	0 0
0			Q – U
1	1	↑	$\overline{\overline{Q}}_0$

Т	CLK	Estado
0	↑	Q_0
1	1	$\overline{\overline{Q}}_0$

- Sequencial x combinacional
- Circuitos sequenciais assíncronos e síncronos
- Latches e flip-flops
- Latch SR
- Flip-flop SR
- Flip-flop JK
- Flip-flop D
- Flip-flop T
- Entradas assíncronas

 A maioria dos flip-flops possuem entradas assíncronas, que operam independentemente das entradas síncronas e do sinal de clock.

A maioria dos flip-flops possuem entradas assíncronas, que operam independentemente das entradas sínci onas e do sinal de clock. **PRESET PRESET PRESET** S Q Q CLK CLK CLK R K **CLEAR CLEAR CLEAR**

 A maioria dos flip-flops possuem entradas assíncronas, que operam independentemente das entradas síncronas e do sinal de clock.

Usualmente, as entradas assíncronas são ativadas em nível lógico baixo.

 Entradas assíncronas são usadas para levar o estado do flip-flop (FF) para nível lógico alto ou baixo a qualquer momento.

PRESET	CLEAR	Resposta do FF
1	1	Operação normal
1	0	Força Q = 0
0	1	Força Q = 1
0	0	Não utilizado

Responde as entradas síncronas e ao sinal de clock.

Entradas assíncronas

- Podem ser utilizadas para <u>segurar</u> o estado do flip-flop em um estado particular.
- Usualmente, são utilizadas para "setar" ou "resetar" a saída do flip-flop, aplicando um <u>pulso</u> de nível lógico baixo na entrada apropriada.

PRESET	CLEAR	Resposta do FF
1	1	Operação normal
1	0	Força Q = 0
0	1	Força Q = 1
0	0	Não utilizado

Exemplo de operação com entradas assíncronas

Atividade: obter a forma de onda da saída Q.

Exemplo de operação com entradas assíncronas

Operação normal (inverte estado anterior)

Exemplo de operação com entradas assíncronas

Entrada <u>assíncrona</u> leva estado do FF para nível lógico <u>alto</u>

Exemplo de operação com entradas assíncronas

Operação normal (inverte estado anterior)

Exemplo de operação com entradas assíncronas

Operação normal (inverte estado anterior)

Exemplo de operação com entradas assíncronas

Entrada <u>assíncrona</u> leva estado do FF para nível lógico baixo

Exemplo de operação com entradas assíncronas

Entradas síncronas e sinal de clock <u>sem efeito</u> (entrada **assíncrona** possui prioridade)

Exemplo de operação com entradas assíncronas

Operação normal (inverte estado anterior)

Latches e Flip-flops (Parte 1) – ELD22102

Engenharia Eletrônica

Prof. Reginaldo Steinbach

reginaldo.steinbach@ifsc.edu.br