Opticafe - Reférence Guide

Loïc Huguel

December 10, 2015

Contents

T	Deeling with Opticale				
	1.1	Introduction			
		1.1.1 With external measures			
		1.1.2 Without external measures			
	1.2	Step 1: Define a system of equations			
	1.3	Step 2: Loading measures			
	1.4	Step 3: Minimise the system of equations			
2		mples Exemples			
	2.1				
	2.2	Polynomial regression			
	2.3	Multiple regression			
3	Adv	Advanced Exemples			
	3.1	Rosenbrock function			
	3.2	Newton optimisation			

1 Deeling with Opticafe

1.1 Introduction

Opticase is design to solve Non-Linear problèmes in order to fit a **model to data** or **find non trivial zeros** of a funtion. It implements severals famous algorithms (Gauss-Newton, Levenberg-Marquards or DogLeg) to optimise a system of equations witch the global form are:

1.1.1 With external measures

$$\hat{Y}_i = f(P, \hat{X}_i)$$

Where

- \hat{Y}_i are the outputs vectors of measures provide by user (see 1.3)
- \hat{X}_i are the inputs vectors of measures provide by user (see 1.3)
- ullet P the vector of parameters you're trying to optimise.

In this case Opticafe will try to minimise : $\sum |f(P,\hat{X_i}) - \hat{Y_i}|^2 = 0$

1.1.2 Without external measures

$$Y = f(P)$$

Where

- Y is the output vector
- P the vector of parameters you're trying to optimise.

In this case Opticafe will guess the zeros of the function ie it will try to minimise : $|f(P)|^2 = 0$

1.2 Step 1: Define a system of equations

So the first step consist in writing your system of equations. Write "yj" to specifie the component "j" of the Y vector $(j \in [0, 9])$. Write "xk" to specifie the component "k" of the X vector $(k \in [0, 9])$. Write "pl" to specifie the component "l" of the P vector $(k \in [0, 9])$.

For instances:

$y0=\sin(p0)$	$R^1 \Rightarrow R^1$ with no measures
$y0=\sin(p0)$	$R^1 \Rightarrow R^2$ with no measures
$y1=\cos(p0)$	
$y0=\sin(p0+p1)$	$R^2 \Rightarrow R^1$ with no measures
$y0 = \sin(p0 + p1 * x0)$	$R^2 \Rightarrow R^1$ with measures
$y0 = \sin(p0 + p1 * x0)$	$R^2 \Rightarrow R^2$ with measures
$y1 = \cos(p0 + p1 * x0)$	
$y0 = \sin(p0 + p1 * x0)$	$R^3 \Rightarrow R^3$ with measures
y1 = cos(p0 + p1*x0)-1	
y2 = tan(p0+p1/p3*x0+x2)	

1.3 Step 2: Loading measures

Maybe you have define a system with measures so it may be useful to load them. To deel with this you just have to write data = Path/measures.txt after you defined the system.

The format of measures.txt as to be:

```
y1;y2;...;yn; x1;x2;...;xn
y1;y2;...;yn; x1;x2;...;xn
y1;y2;...;yn; x1;x2;...;xn
y1;y2;...;yn; x1;x2;...;xn
....
```

And must match the system defined, so for instance if you have defined:

You need to measure file witch could be:

0;0;0 ; 1;2;2 1;0;0 ; 1;2;2 1;1;0 ; 1;2;2 0;0;0 ; 1;2;3

1.4 Step 3: Minimise the system of equations

Now you want to minimise or find the roots. The most important step is to define the initial vector of parameters (p_init). Just write "p_init=0.0" if P has to dimensions. If non specified p_init=0.

Sélect an algorithm in the menu, press "Minimise" and see the results.

For instance:

2 Simples Exemples

- 2.1 Linear regression
- 2.2 Polynomial regression
- 2.3 Multiple regression
- 3 Advanced Exemples
- 3.1 Rosenbrock function
- 3.2 Newton optimisation