

<u>Course</u> > <u>Omega</u>... > <u>Omega</u>... > Assess...

Audit Access Expires Sep 9, 2020

You lose all access to this course, including your progress, on Sep 9, 2020. Upgrade by Jul 5, 2020 to get unlimited access to the course as long as it exists on the site. **Upgrade now**

Assessment: Zeno's Paradox

Zeno's Paradox Paradox Grade: 2

It seems to me that from a contemporary perspective, Zeno's paradox deserves a lowish paradoxicality grade. This is because nowadays the mathematical notion of a limit is commonplace. And limits can be used to show that—contrary to what is claimed above—it is possible to complete infinitely many tasks in a finite amount of time, if the time required to complete successive tasks deceases quickly enough.

Here is an example. Tortoises of the genus *Gopherus* have been clocked walking at speeds of about 0.1m/s. Suppose the distance from point A to point B is 100m. This is how long it would take Marty the Tortoise to complete each of Zeno's infinitely many tasks:

Task number	Task description	Time required, at $0.1m/s$
Task 1:	travel $50m$ to reach $50m$ mark	500s
Task 2:	travel $25m$ to reach $75m$ mark	250s
Task 3:	travel $12.5m$ to reach $87.5m$ mark	125s
: :	: :	· ·
Task n :	travel $\frac{100m}{2^n}$ to reach $\frac{(2^n-1)100m}{2^n}$ mark	$\frac{1000}{2^n}s$
	:	:
	•	•

But by using the mathematical notion of a limit, one can show that

$$500 + 250 + 125 + \ldots + \frac{1000}{2^n} + \ldots = 1000$$

So even though Marty must complete infinitely many tasks to get from point *A* to point *B*, he should be able to do so in 1000s.

I certainly don't want to suggest that Zeno was a fool—he was not. For someone in Zeno's position, the paradox deserves a grade much higher than 2.

Video Review: Agustín Walks to the Door

So say that it takes me half a second

to reach the first one, and 1/4, and 1/8, and so forth.

Since this series adds up to one,

that means that I'll make it to the door in one second.

And that's fine.

OK.

So far, so good.

End of transcript. Skip to the start.

2:21 / 2:21 66 X ▶ 1.50x CC

Video

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

Problem 1

1/1 point (ungraded)

Is the following true or false?

$$\lim_{n o\infty}\left(500+250+125+\ldots+rac{1000}{2^n}
ight)=1000$$

False

Explanation

Let $f(n) = \frac{1000}{2^1} + \frac{1000}{2^2} + \cdots + \frac{1000}{2^n}$. Then it is easy to verify that for each n, $f(n) = 1000 - \frac{1000}{2^n}$. (*Proof:* It is obvious that $f(1) = \frac{1000}{2^1}$. For n > 1, we may assume that n = m+1, and that $f(m) = 1000 - \frac{1000}{2^m}$. It follows that $f(n) = 1000 - \frac{1000}{2^n} + \frac{1000}{2^n}$. But $\frac{1000}{2^m} = 2\frac{1000}{2^n}$. So $f(n) = 1000 - 2\frac{1000}{2^n} + \frac{1000}{2^n} = 1000 - \frac{1000}{2^n}$.) Since $f(n) = 1000 - \frac{1000}{2^n}$ for each n, $\lim_{n \to \infty} f(n)$ must be 1000. To see this, note that for any $\epsilon > 0$ we can find a δ such that for any $k > \delta$, $|1000 - f(k)| < \epsilon$: simply let δ be such that $\frac{1000}{2^{\delta}} < \epsilon$.

Submit

• Answers are displayed within the problem

Problem 2

1/1 point (ungraded)

Suppose Marty slows down as he approaches the 100m mark:

Task number	Task description	Speed
Task 1:	travel $50m$ to reach $50m$ mark	$rac{1}{10\cdot 2^1}m/s$
Task 2:	travel $25m$ to reach $75m$ mark	$rac{1}{10\cdot 2^2}m/s$
Task 3:	travel $12.5m$ to reach $87.5m$ mark	$rac{1}{10\cdot 2^3}m/s$
:	:	:
Task n :	travel $\frac{100m}{2^n}$ to reach $\frac{(2^n-1)100m}{2^n}$ mark	$rac{1}{10\cdot 2^n}m/s$
:	:	•

On these revised assumptions, is it possible for Marty to make it to the 100m mark in a finite amount of time?

Explanation

No. Under our new assumptions, Marty would require an infinite amount of time to make it to the 1000m mark.

To see this, note that Marty will have to complete each of the following tasks before he can make it to the 1000m mark:

Task number	Task description	Speed	Time required
Task 1:	travel $50m$ to reach $50m$ mark	$rac{1}{10\cdot 2^1}m/s$	1000s
Task 2:	travel $25m$ to reach $75m$ mark	$rac{1}{10\cdot 2^2}m/s$	1000s
Task 3:	travel $12.5m$ to reach $87.5m$ mark	$rac{1}{10\cdot 2^3}m/s$	1000s
:	÷	:	:
Task n :	$ ext{travel } rac{100m}{2^n} ext{ to reach } rac{(2^n-1)100m}{2^n} ext{ mark}$	$rac{1}{10\cdot 2^n}m/s$	1000s
:	<u>:</u>	:	:

So the number of seconds that Marty would need to complete her infinitely many tasks is $1000 + 1000 + 1000 + \ldots = \infty.$

Submit

1 Answers are displayed within the problem

Discussion

Show all posts

Hide Discussion

by recent activity >

Topic: Week 3 / Assessment: Zeno's Paradox

~

Add a Post

So how did the old greek phylosophers resolve this paradox? 11 If in the ancient greeks they didn't know about the concept of limit I guess they probably came with ...

© All Rights Reserved