Olympiades Françaises de Mathématiques 2012-2013

Test du mercredi 9 janvier – Corrigé

Exercices Juniors

Exercice 1. Si k est un entier strictement positif, on désigne par S(k) la somme des chiffres de son écriture décimale.

- 1) Existe-t-il deux entiers a et b strictement positifs tels que S(a) = S(b) = S(a + b) = 2013?
- 2) Existe-t-il deux entiers a et b strictement positifs tels que S(a) = S(b) = S(a+b) = 2016?

Solution.

1) Rappelons que pour tout α , les entiers α et $S(\alpha)$ sont congrus modulo 9. En effet, si $\overline{\alpha_k \cdots \alpha_1 \alpha_0}$ est l'écriture décimale de α , alors comme $10 \equiv 1$ [9], on a pour tout $j \geqslant 0 : 10^j \equiv 1^j = 1$ [9], donc $\alpha = \sum_{j=0}^k \alpha_j 10^j \equiv \sum_{j=0}^k \alpha_j = S(\alpha)$ [9].

Supposons par l'absurde qu'il existe a et b comme dans l'énoncé. Modulo 9, on a

$$a \equiv S(a) \equiv 2013 \equiv 6$$
 $b \equiv S(b) \equiv 2013 \equiv 6$
 $a + b \equiv S(a + b) \equiv 2013 \equiv 6$

On ajoute les deux premières congruences et on retranche la troisième, ce qui donne $0 \equiv 6+6-6=6$ [9]. Impossible.

2) On remarque que $2016 = 9 \times 224$, donc on peut prendre $a = b = 9090 \cdots 09$ où le chiffre 9 apparaît 224 fois, et $a + b = 1818 \cdots 18$ où le motif 18 apparaît 224 fois.

Exercice 2. Les réels a, b, c sont distincts et non nuls, et on suppose qu'il existe deux réels x et y tels que $a^3 + ax + y = 0$, $b^3 + bx + y = 0$ et $c^3 + cx + y = 0$.

Prouver que a + b + c = 0.

Solution.

On a

$$\begin{cases} a^{3} + ax + y = 0 \\ b^{3} + bx + y = 0 \\ c^{3} + cx + y = 0. \end{cases}$$

On retranche la première et la troisième équation : $(a^3 - c^3) + (a - c)x = 0$. Or, $a^3 - c^3 = (a - c)(a^2 + ac + c^2)$, donc $(a - c)(a^2 + ac + c^2 + x) = 0$. Comme $a - c \neq 0$ il vient

$$a^2 + ac + c^2 + x = 0.$$

De même, on montre que $b^2 + bc + c^2 + x = 0$. En retranchant les deux dernières équations, on obtient $0 = a^2 - b^2 + ac - bc = (a - b)(a + b + c)$. Comme $a - b \neq 0$, on en déduit que a + b + c = 0.

Exercice 3. Sur le cercle Γ, on choisit les points A, B, C de sorte que AC = BC. Soit P un point de l'arc AB de Γ qui ne contient pas C. La droite passant par C et perpendiculaire à la droite (PB) rencontre (PB) en D.

Prouver que PA + PB = 2PD.

Solution.

Prolongeons la demi-droite [PB] et introduisons le point Q tel que BQ = PA.

On a donc AP = BQ et AC = BC ainsi que $\widehat{QBC} = \pi - \widehat{CBP} = \widehat{PAC}$. Cela assure que les triangles CBQ et CAP sont égaux, et donc que CP = CQ. Par suite, le triangle CPQ est isocèle et le point D, pied de la hauteur issue de C, est alors le milieu de [PQ].

On a donc PA + PB = BQ + PB = PQ = 2PD.

 $E_{xercice}$ 4. Sur un terrain, 2013×2013 chaises sont placées sur les sommets d'un quadrillage. Chaque chaise est occupée par une personne. Certaines personnes décident alors de changer de place : certaines se décalent d'un cran vers la droite, d'autres de 2 crans vers l'avant, d'autres de 3 crans vers la gauche, et d'autres de 6 crans vers l'arrière. A la fin, chaque chaise est toujours occupée par une seule personne.

Prouver qu'au moins une personne n'a pas changé de place.

Solution.

Soit α (resp. b, c, d) le nombre de personnes qui se décalent vers la droite (resp. la gauche, l'avant, l'arrière). On peut supposer qu'il existe un repère tel que les personnes ont toutes des coordonnées entières (x_i, y_i) . Comme $\sum_i x_i$ ne change pas, mais que le déplacement d'un cran vers la droite (resp. 3 crans vers la gauche) a pour effet de faire augmenter (resp. diminuer) $\sum_i x_i$ de la quantité α (resp. 3c), on en déduit que $\alpha = 3c$, et donc α et α ont la même parité. De même, α be α donc be t d ont la même parité. Finalement, α be α contra qu'il existe qu'il existe qu'il existe qu'il existe qu'il existe par déplacée.

Sujet Olympique

Exercice 5. Soit $0 \le x_1 \le x_2 \le \cdots \le x_n \le 1$ et $0 \le y_1 \le y_2 \le \cdots \le y_n \le 1$ des réels. On pose $x_{n+1} = 1$.

Prouver que

$$\sum_{i=1}^{n} (x_i - y_i) + n \sum_{i=1}^{n} (x_{i+1} - x_i) y_i \ge 0.$$

Solution.

On va raisonner par récurrence sur $n \ge 1$.

- Pour n=1, on considère deux réels $x_1,y_1\in [0,1]$ et on pose $x_2=1$. Il s'agit de prouver que $(x_1-y_1)+(x_2-x_1)y_1\geqslant 0$.

Or, on a
$$(x_1 - y_1) + (x_2 - x_1)y_1 = (x_1 - y_1) + (1 - x_1)y_1 = x_1(1 - y_1) \ge 0$$
, ce qui conclut.

- Supposons que pour un certain $n\geqslant 1$ et pour tous réels $0\leqslant a_1\leqslant a_2\leqslant \cdots\leqslant a_n\leqslant 1$ et $0\leqslant b_1\leqslant b_2\leqslant \cdots\leqslant b_n\leqslant 1$ et avec $a_{n+1}=1$, on ait

$$\sum_{i=1}^{n} (a_i - b_i) + n \sum_{i=1}^{n} (a_{i+1} - a_i) b_i \geqslant 0.$$

On considère alors des réels $0 \leqslant x_1 \leqslant x_2 \leqslant \cdots \leqslant x_{n+1} \leqslant 1$ et $0 \leqslant y_1 \leqslant y_2 \leqslant \cdots \leqslant y_{n+1} \leqslant 1$ et on pose $x_{n+2} = 1$.

En isolant les contributions de x_1 et y_1 , on a

$$\begin{split} \sum_{i=1}^{n+1} (x_i - y_i) + (n+1) \sum_{i=1}^{n+1} (x_{i+1} - x_i) y_i \\ &= \sum_{i=2}^{n+1} (x_i - y_i) + n \sum_{i=2}^{n+1} (x_{i+1} - x_i) y_i + x_1 - y_1 + \sum_{i=2}^{n+1} (x_{i+1} - x_i) y_i \\ &+ (n+1) (x_2 - x_1) y_1 \end{split}$$

 $\geqslant x_1 - y_1 + \sum_{i=2}^{n+1} (x_{i+1} - x_i)y_i + (n+1)(x_2 - x_1)y_1$ d'après l'hypothèse de récurrence

appliquée aux réels $a_i = x_{i+1}^{i=2}$ et $b_i = y_{i+1}$

$$\geqslant x_1 - y_1 + \sum_{i=2}^{n+1} (x_{i+1} - x_i)y_1 + (n+1)(x_2 - x_1)y_1$$
 puisque $y_1 \leqslant y_i$ et $x_{i+1} \geqslant x_i$ pour

tout i

$$= x_1 + y_1[-1 + (n+1)(x_2 - x_1) + \sum_{i=2}^{n+1} (x_{i+1} - x_i)]$$

$$= x_1 + y_1[nx_2 - (n+1)x_1]$$

$$= x_1(1 - y_1) + ny_1(x_2 - x_1)$$

$$> 0$$

ce qui prouve le résultat cherché pour la valeur n + 1 et achève la démonstration.

Exercice 6. Trouver le plus grand entier $n \ge 3$, vérifiant :

"pour tout entier $k \in \{2, 3, \dots, n\}$ si k et n sont premiers entre eux alors k est un nombre premier."

Solution.

On remarque d'abord que n=30 vérifie la propriété. En effet, si k>1 est premier avec n, alors il est premier avec 2,3,5. Si de plus k n'est pas premier, alors il admet une factorisation non triviale $k=\ell m$ avec $\ell,m>1$. Comme ℓ,m sont premiers avec n, ils sont premiers avec n, n0, n2, n3, n4, n5, n6, n8, n9, n9

Réciproquement, montrons que si n vérifie la propriété alors $n \le 30$. Supposons par l'absurde que n > 30. Soit p le plus petit entier premier ne divisant pas n. Comme p^2 n'est pas premier mais est premier avec n, on a $p^2 > n > 30 > 5^2$ donc $p \ge 7$. En particulier, 2, 3 et 5 divisent n donc 30 divise n. Comme n > 30, on en déduit que $p^2 > n \ge 60 > 7^2$ donc p > 7, par conséquent $p \ge 11$.

Notons $\mathfrak{p}_1 < \mathfrak{p}_2 < \mathfrak{p}_3 < \cdots$ la liste des nombres premiers ($\mathfrak{p}_1 = 2, \, \mathfrak{p}_2 = 3, \, \text{etc.}$). Ce qui précède montre que $\mathfrak{p} = \mathfrak{p}_{k+1}$ où $k \geqslant 4$. De plus, $\mathfrak{p}_1, \ldots, \mathfrak{p}_k$ divisent \mathfrak{n} donc $\mathfrak{p}_{k+1}^2 > \mathfrak{n} \geqslant \mathfrak{p}_1 \cdots \mathfrak{p}_k$, ce qui contredit l'inégalité de Bonse.

Remarque : si on ne connaît pas l'inégalité de Bonse, on la retrouve facilement à partir du postulat de Bertrand qui dit que $p_{j+1} < 2p_j$ pour tout j. En effet,

$$p_{k+1}^2 < 4p_k^2 < 8p_{k-1}p_k < 2 \times 3 \times 5 \times p_{k-1}p_k \leqslant p_1p_2 \cdots p_k$$

si $k \ge 5$. De plus, si k = 4 on vérifie directement que $p_{k+1}^2 = 121 < 210 = 2 \times 3 \times 5 \times 7 = p_1 \cdots p_k$.

Remarque : il existe une démonstration élémentaire de l'inégalité de Bonse n'utilisant pas le postulat de Bertrand. On vérifie d'abord à la main que si $4 \le n \le 7$ alors $p_1p_2 \cdots p_n > p_{n+1}^2$.

Supposons par l'absurde qu'il existe $n \ge 8$ tel que $p_1 p_2 \cdots p_n \le p_{n+1}^2$. Soit $m = [\frac{n}{2}]$. On a

$$(\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_{\mathfrak{m}})^2<\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_{\mathfrak{n}}\leqslant\mathfrak{p}_{\mathfrak{n}+1}^2$$

donc $p_1p_2\cdots p_m < p_{n+1}$.

Considérons les entiers $N_j = jp_1p_2\cdots p_{m-1}-1$ $(1\leqslant j\leqslant p_m)$. Pour tout j, on a $N_j < p_1p_2\cdots p_m < p_{m+1}$ et N_j est premier avec $p_1, p_2, \ldots, p_{m-1}$. Donc si q_j est le plus petit entier premier divisant N_j , on a $p_m \leqslant q_j \leqslant p_n$.

Les q_j sont distincts car si $j < \ell$ et $q_j = q_\ell$, alors q_j divise $N_\ell - N_j = (\ell - j)p_1p_2 \cdots p_m$, donc q_j divise $\ell - j$, ce qui est impossible puisque $1 \le \ell - j < p_m \le q_j$.

Par conséquent, il y a au moins p_m nombres premiers distincts compris entre p_m et p_n : autrement dit, $p_m \le n-m+1$. Or, $n \le 2m+1$ donc $p_m \le m+2$.

Comme $p_m \geqslant 2m-1$ pour tout $m \geqslant 1$, cela entraı̂ne $2m-1 \leqslant m+2$, donc $m \leqslant 3$, et donc $n \leqslant 7$.

Exercice 7. A, B, C, D, E sont cinq points d'un même cercle, de sorte que ABCDE soit convexe et que l'on ait AB = BC et CD = DE. On suppose que les droites (AD) et (BE) se coupent en P, et que la droite (BD) rencontre la droite (CA) en Q et la droite (CE) en T.

Prouver que le triangle PQT est isocèle.

Solution.

Notons α et β les angles $(\overrightarrow{AB}, \overrightarrow{AC})$ et $(\overrightarrow{AC}, \overrightarrow{AD})$ respectivement. D'après le théorème de l'angle inscrit et les hypothèses de l'énoncé, on a

$$\alpha = (\overrightarrow{DB}, \overrightarrow{DC}) = (\overrightarrow{EB}, \overrightarrow{EC}) = (\overrightarrow{CA}, \overrightarrow{CB}) = (\overrightarrow{DA}, \overrightarrow{DB}),$$
$$\beta = (\overrightarrow{BC}, \overrightarrow{BD}) = (\overrightarrow{EC}, \overrightarrow{ED}) = (\overrightarrow{BD}, \overrightarrow{BE}) = (\overrightarrow{CD}, \overrightarrow{CE}).$$

On en déduit que

$$\begin{array}{rcl} (\overrightarrow{BD},\overrightarrow{BP}) & = & \beta = (\overrightarrow{BC},\overrightarrow{BQ}) \\ (\overrightarrow{DP},\overrightarrow{DB}) & = & \alpha = (\overrightarrow{CA},\overrightarrow{CB}), \end{array}$$

donc BPD et BQC sont semblables. Il s'ensuit $\frac{BQ}{BP} = \frac{BC}{BD}$.

Or, $(\overrightarrow{BQ}, \overrightarrow{BP}) = \beta = (\overrightarrow{BC}, \overrightarrow{BD})$, donc BQP et BCD sont semblables, ce qui entraı̂ne que $\frac{BP}{PQ} = \frac{BD}{CD}$.

En échangeant les rôles de (A,B) et de (E,D), on obtient que $\frac{DP}{PT} = \frac{BD}{BC}$. En divisant les deux égalités précédentes, on en déduit que

$$\frac{BP}{DP} \times \frac{PT}{PQ} = \frac{BC}{CD}.$$

Or, BDP et BDC sont (indirectement) semblables, puisque $(\overrightarrow{BD}, \overrightarrow{BP}) = \beta = (\overrightarrow{BC}, \overrightarrow{BD})$ et $(\overrightarrow{DP}, \overrightarrow{DB}) = \alpha = (\overrightarrow{DB}, \overrightarrow{DC})$, donc $\frac{BP}{DP} = \frac{BC}{CD}$, et finalement PT = PQ.

Solution analytique.

On peut supposer que les affixes a, b, c, d, e des points A, B, C, D, E sont des nombres complexes de module 1. Le fait que ABC est isocèle en B se traduit par l'égalité $b^2 = ac$ puisque $\frac{b}{a} = e^{i\theta} = \frac{c}{b}$ où θ est l'angle $(\overrightarrow{OA}, \overrightarrow{OB}) = (\overrightarrow{OB}, \overrightarrow{OC})$. De même, on a $d^2 = ce$.

Pour calculer l'affixe p du point P, on exprime que B, P, E sont alignés, ce qui se traduit par le fait que $\frac{p-b}{p-e}$ est réel, ou encore

$$\frac{p-b}{p-e} = \frac{\bar{p} - \bar{b}}{\bar{p} - \bar{e}}.$$

On chasse les dénominateurs et on simplifie :

$$(\bar{\mathbf{b}} - \bar{\mathbf{e}})\mathbf{p} - (\mathbf{b} - \mathbf{e})\bar{\mathbf{p}} + \mathbf{b}\bar{\mathbf{e}} - \bar{\mathbf{b}}\mathbf{e} = 0.$$

Comme
$$\bar{b} - \bar{e} = \frac{1}{b} - \frac{1}{e} = -\frac{b-e}{be}$$
 et $b\bar{e} - \bar{b}e = \frac{b}{e} - \frac{e}{b} = \frac{b^2 - e^2}{be} = \frac{(b-e)(b+e)}{be}$, on en déduit
$$-\frac{(b-e)}{be}p - (b-e)\bar{p} + (b-e)\frac{b+e}{be} = 0,$$

ce qui se simplifie en

$$p + be\bar{p} = b + e.$$

De même, le fait que A, P, D sont alignés se traduit par $p + \alpha d\bar{p} = \alpha + d$. En soustrayant les deux égalités précédentes et en divisant par $be - \alpha d$, on obtient

$$\bar{p} = \frac{b+e-a-d}{be-ad}$$
.

De même, $\bar{q}=\frac{b+d-\alpha-c}{bd-\alpha c}.$ On soustrait les deux égalités précédentes :

$$\bar{p} - \bar{q} = \frac{(bd - ac)(b + e - a - d) - (be - ad)(b + d - a - c)}{(be - ac)(bd - ac)}.$$

On développe le numérateur et on remplace tous les b² par ac et tous les d² par ce, ce qui donne

$$\begin{split} \bar{p} - \bar{q} &= \frac{a(-bc + ac + cd - ad + be - ce)}{(be - ad)(bd - ac)} \\ &= \frac{a(-bc + ac + cd - ad + be - ce)}{b(be - ad)(d - b)} \end{split}$$

compte tenu de $ac=b^2$. En échangeant les rôles de (a,b) et (e,d), on obtient

$$\bar{p} - \bar{t} = \frac{e(-cd + ce + bc - be + ad - ac)}{d(ad - be)(b - d)}.$$

On voit que $\bar{p} - \bar{t} = -\frac{be}{ad}(\bar{p} - \bar{q})$. En prenant le module des deux membres, on en conclut que PQ = PT.

Exercice 8. Soit n > 0 un entier. Anne écrit au tableau n entiers strictement positifs distincts. Bernard efface alors certains de ces nombres (éventuellement aucun, mais pas tous). Devant chacun des nombres restants, il écrit un + ou un -, et effectue l'addition correspondante. Si le résultat est divisible par 2013, c'est Bernard qui gagne, sinon c'est Anne.

Déterminer, selon la valeur de n, lequel des deux possède une stratégie gagnante.

Solution.

Montrons que si $n \ge 11$ alors Bernard a une stratégie gagnante. En effet, si x_1, \ldots, x_n sont des nombres entiers, d'après le principe des tiroirs les restes modulo 2013 des entiers de la forme $a_1x_1 + \cdots + a_nx_n$ ($a_i \in \{0,1\}$) ne peuvent pas être tous distincts puisque le nombre de telles écritures est $2^n \ge 2^{11} = 2048 > 2013$. Il existe donc (a_1, \ldots, a_n) et $(b_1, \ldots, b_n) \in \{0,1\}^n$ distincts tels que $a_1x_1 + \cdots + a_nx_n \equiv b_1x_1 + \cdots + b_nx_n$ [2013]. Si on pose $c_i = a_i - b_i$, alors les c_i valent 0, 1 ou -1, ne sont pas tous nuls, et $c_1x_1 + \cdots + c_nx_n$ est divisible par 2013.

Montrons que si $n\leqslant 10$ alors Anne possède une stratégie gagnante. En effet, elle choisit les nombres $1,2,\ldots,2^{n-1}$. Si Bernard gagnait, cela signifierait qu'il pourrait trouver $c_1,\ldots,c_k,d_1,\ldots,d_\ell$ deux à deux distincts dans $\{0,1,\ldots,n-1\}$ tels que $(k,\ell)\neq (0,0)$ et $2^{c_1}+\cdots+2^{c_k}\equiv 2^{d_1}+\cdots+2^{d_\ell}$ [2013]. Or, les deux nombres $2^{c_1}+\cdots+2^{c_k}$ et $2^{d_1}+\cdots+2^{d_\ell}$ sont compris entre 0 et $1+2+\cdots+2^{n-1}=2^n-1\leqslant 2^{10}-1=1023$, donc s'ils sont congrus modulo 2013 c'est qu'ils sont égaux :

$$2^{c_1} + \dots + 2^{c_k} = 2^{d_1} + \dots + 2^{d_\ell},$$

ce qui contredit l'unicité de l'écriture en base 2 d'un entier.

Fin