Matched Molecular Sequences: finding the missing pair

Grégori Gerebtzoff, Ph.D. 3rd RDKit UGM, October 23rd 2014

Finding the missing pair

A bug in LUCID or in the chemist's head?

The chemist was searching for a specific transformation in LUCID but couldn't find it...

...despite being sure to have synthesized and measure such a pair of compounds.

After checking in the corporate database, it was not a bug in LUCID: the pair didn't exist. The chemist mistook it for a slightly different compound.

Finding the missing pair

Can we get the missing pair through another path?

$$\Delta_1$$

Assuming additivity, we can obtain the missing pair by summing up the contributions of two "networked" MMPs. Complete paths $(A \rightarrow B_1 \rightarrow C)$ are not required.

$$\Delta = \Delta_1 + \Delta_2$$

Validation of the method

Idea: compare the deltas of "normal" vs. "networked" MMPs on common replacements

			# pairs	# variations	Δ pairs	Δ variations
*:1	\longrightarrow	*:1H	61	84	-0.152 ± 0.53	-0.211 ± 0.70
*.4	\longrightarrow	*:1	98	71	-0.256 ± 0.40	-0.232 ± 0.41
*:1 H	\longrightarrow	*:1CI	131	52	-0.357 ± 0.64	-0.417 ± 0.61
*:1H	\longrightarrow	*:1OH	60	43	-0.409 ± 0.71	-0.381 ± 0.83
*:1H	\longrightarrow	*:1 OH	29	33	-0.303 ± 0.52	-0.305 ± 0.92

Usage

• Finding the missing pair

7 variations, $\Delta = 0.337 \pm 0.27$

• Getting more confidence on low populated pairs

2 pairs,
$$\Delta = 0.2 \pm 0.43$$

14 variations, $\Delta = 0.298 \pm 0.36$

Implementation into LUCID

hERG pIC50: 6.33 MOLWEIGHT: 432

Implementation into LUCID

- A new option allows searching for Matched Molecular Sequences
 - □ Search & display chemical space
 ☑ Search & display MMPs
 □ Show only compact modules
 ☑ Use only pairs of the current dataset
 ☑ Search for MMS (□ new pairs only)
- Matched Molecular Sequences are easily identifiable with the two-arrowed transformation and different striped background (left image)

• When searching for both "normal" and "networked" MMPs, if the same transformation is present in both modes they will be displayed next to each other

Implementation into LUCID

- When selecting one Matched Molecular Sequence, the list of different paths is displayed (see slide #6); as usual statistics for each path are available, and each path is colored according to the whished effect on selected properties.
- When the middle node of a path exists in the dataset, the background of the path is half striped (for instance the first example; see next slide), plain if both middle and end nodes exist.

Implementation into LUCID

- Selecting one path of a Matched Molecular Sequence will reveal the MMPs for each leg of the path; the left column corresponds to the first leg of the path, the right column the second leg.
- Statistics of each leg are displayed on top of each column.

hERG pIC50: 3 pairs n=3, Δ=-0.377, SD=0.407, ::33.33%, ::66.67%, ···:0% MOLWEIGHT: 3 pairs n=3, Δ=-26, SD=0.00471, :100%, ··:100%, ···:0%

hERG pIC50: 1 pair n=1, Δ=0.58, ↑:100%, ↓:0%, ↔:0% MOLWEIGHT: 1 pair n=1, Δ=40.1, ↑:100%, ↓:0%, ↔:0%

Confirming an example from the literature on chEMBL

Springer and Sokolnicki Chemistry Central Journal 2013, 7:167 http://journal.chemistrycentral.com/content/7/1/167

RESEARCH ARTICLE

Open Access

A fingerprint pair analysis of hERG inhibition data

Clayton Springer* and Katherine L Sokolnicki

Table Row	Transformation	Fold Chang e		# De- creas ing	delta SlogP		
4/1	$\bigvee_{N \in \mathbb{N}} N = \bigvee_{N \in \mathbb{N}} N = \bigcup_{N \in \mathbb{N}} N = \bigcup_{N$	2.95	6	0	-0.77		
4/2	$R1 \xrightarrow{N} OH \longrightarrow R1 \xrightarrow{N} N$	2.47	7	1	-0.67		
4/3	$N \longrightarrow N \longrightarrow$	2.19	8	1	-0.39		
4/4	R2 R2 R1 O	1.77	17	4	-0.30		
Figure 7 Miscellaneous lipophilicity reducing transformations. For these transformations we show the fold reduction in hERG inhibition, the							

number of examples that increase the IC50 the number that decrease the IC50, and change that this transformation makes in the SlogP model of logP.

Transformation (no "normal" MMP):

Only one variation available:

*a
$$\sim$$
 N \sim N \sim

 $\Delta = 0.39$

Acknowledgments

Roche

Stefanie Bendels

Manfred Kansy

Wolfgang Guba

Olivier Roche

...and all the LUCID users

Others

Greg Landrum (RDKit)

Jameed Hussain (MMP algorithm)