

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

CKE 2013	UZUP	EŁNIA ZDAJĄCY	miejsce
ny © (KOD	PESEL	miejsce na naklejkę
graficz			
Układ			

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

	48 18 B C C C C C C C C C	

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY		
Upraw	nienia	a zdającego do:
		dostosowania kryteriów oceniania
		nieprzenoszenia zaznaczeń na kartę
		dostosowania w zw. z dyskalkulią

5 MAJA 2020

Godzina rozpoczęcia: 9:00

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 1P-202

ZADANIA ZAMKNIĘTE

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (1 pkt)

Wartość wyrażenia $x^2 - 6x + 9$ dla $x = \sqrt{3} + 3$ jest równa

A. 1

- **B.** 3
- C. $1+2\sqrt{3}$
- **D.** $1-2\sqrt{3}$

Zadanie 2. (1 pkt)

Liczba $\frac{2^{50} \cdot 3^{40}}{36^{10}}$ jest równa

- **A.** 6^{70}
- **B**. 6^{45}
- C. $2^{30} \cdot 3^{20}$
- **D.** $2^{10} \cdot 3^{20}$

Zadanie 3. (1 pkt)

Liczba $\log_5 \sqrt{125}$ jest równa

A. $\frac{2}{3}$

- **B.** 2
- **C.** 3
- **D.** $\frac{3}{2}$

Zadanie 4. *(1 pkt)*

Cenę x pewnego towaru obniżono o 20% i otrzymano cenę y. Aby przywrócić cenę x, nową cene v należy podnieść o

- **A.** 25%
- **B.** 20%
- **C.** 15%
- **D.** 12%

Zadanie 5. (1 pkt)

Zbiorem wszystkich rozwiązań nierówności 3(1-x) > 2(3x-1)-12x jest przedział

- A. $\left(-\frac{5}{3}, +\infty\right)$ B. $\left(-\infty, \frac{5}{3}\right)$ C. $\left(\frac{5}{3}, +\infty\right)$ D. $\left(-\infty, -\frac{5}{3}\right)$

Zadanie 6. (1 pkt)

Suma wszystkich rozwiązań równania x(x-3)(x+2) = 0 jest równa

A. 0

- **B.** 1
- **C.** 2
- **D.** 3

Informacja do zadań 7.–9.

Funkcja kwadratowa f jest określona wzorem f(x) = a(x-1)(x-3). Na rysunku przedstawiono fragment paraboli będącej wykresem tej funkcji. Wierzchołkiem tej paraboli jest punkt W = (2, 1).

Zadanie 7. (1 pkt)

Współczynnik a we wzorze funkcji f jest równy

A. 1

- **B.** 2
- **C.** −2
- **D.** −1

Zadanie 8. (1 pkt)

Największa wartość funkcji f w przedziale $\langle 1, 4 \rangle$ jest równa

- **A.** −3
- **B.** 0
- **C.** 1
- **D.** 2

Zadanie 9. (1 pkt)

Osią symetrii paraboli będącej wykresem funkcji f jest prosta o równaniu

- **A.** x = 1 **B.** x = 2 **C.** y = 1
- **D.** y = 2

Zadanie 10. (1 pkt)

Równanie $x(x-2) = (x-2)^2$ w zbiorze liczb rzeczywistych

A. nie ma rozwiązań.

B. ma dokładnie jedno rozwiązanie: x = 2.

C. ma dokładnie jedno rozwiązanie: x = 0.

D. ma dwa różne rozwiązania: x = 1 i x = 2.

Zadanie 11. *(1 pkt)*

Na rysunku przedstawiono fragment wykresu funkcji liniowej f określonej wzorem f(x) = ax + b.

Współczynniki a oraz b we wzorze funkcji f spełniają zależność

A. a+b>0

B. a+b=0

C. $a \cdot b > 0$

 $a \cdot b < 0$ D.

Zadanie 12. (1 pkt)

Funkcja f jest określona wzorem $f(x) = 4^{-x} + 1$ dla każdej liczby rzeczywistej x. Liczba $f\left(\frac{1}{2}\right)$ jest równa

B. $\frac{3}{2}$

C. 3

D. 17

Zadanie 13. (1 pkt)

Proste o równaniach y = (m-2)x oraz $y = \frac{3}{4}x + 7$ są równoległe. Wtedy

A. $m = -\frac{5}{4}$ **B.** $m = \frac{2}{3}$ **C.** $m = \frac{11}{4}$ **D.** $m = \frac{10}{3}$

Zadanie 14. (1 pkt)

Ciąg (a_n) jest określony wzorem $a_n = 2n^2$ dla $n \ge 1$. Różnica $a_5 - a_4$ jest równa

A. 4

B. 20

C. 36

D. 18

Zadanie 15. (1 pkt)

W ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, czwarty wyraz jest równy 3, a różnica tego ciągu jest równa 5. Suma $a_1 + a_2 + a_3 + a_4$ jest równa

A. -42

B. −36 **C.** −18

D. 6

Zadanie 16. *(1 pkt)*

Punkt $A = (\frac{1}{3}, -1)$ należy do wykresu funkcji liniowej f określonej wzorem f(x) = 3x + b. Wynika stąd, że

A. b = 2

B. b=1 **C.** b=-1 **D.** b=-2

Zadanie 17. *(1 pkt)*

Punkty A, B, C, D leżą na okręgu o środku w punkcie O. Kąt środkowy DOC ma miarę 118° (zobacz rysunek).

Miara kata ABC jest równa

A. 59°

48° В.

C. 62°

D. 31°

Zadanie 18. (1 pkt)

Prosta przechodząca przez punkty A = (3,-2) i B = (-1,6) jest określona równaniem

A. y = -2x + 4 **B.** y = -2x - 8 **C.** y = 2x + 8 **D.** y = 2x - 4

Zadanie 19. *(1 pkt)*

Dany jest trójkąt prostokątny o kątach ostrych α i β (zobacz rysunek).

Wyrażenie $2\cos\alpha - \sin\beta$ jest równe

- A. $2\sin\beta$
- **B.** $\cos \alpha$
- **C.** 0
- **D.** 2

Zadanie 20. (1 pkt)

Punkt B jest obrazem punktu A = (-3, 5) w symetrii względem początku układu współrzędnych. Długość odcinka AB jest równa

- **A.** $2\sqrt{34}$
- **B.** 8
- **C.** $\sqrt{34}$
- **D.** 12

Zadanie 21. (1 pkt)

Ile jest wszystkich dwucyfrowych liczb naturalnych utworzonych z cyfr: 1, 3, 5, 7, 9, w których cyfry się nie powtarzają?

A. 10

B. 15

C. 20

D. 25

Zadanie 22. (1 pkt)

Pole prostokata \overrightarrow{ABCD} jest równe 90. Na bokach \overrightarrow{AB} i \overrightarrow{CD} wybrano – odpowiednio – punkty P i R, takie, że $\frac{|AP|}{|PB|} = \frac{|CR|}{|RD|} = \frac{3}{2}$ (zobacz rysunek).

Pole czworokąta APCR jest równe

A. 36

B. 40

C. 54

D. 60

Zadanie 23. (1 pkt)

Cztery liczby: 2, 3, a, 8, tworzące zestaw danych, są uporządkowane rosnąco. Mediana tego zestawu czterech danych jest równa medianie zestawu pięciu danych: 5, 3, 6, 8, 2. Zatem

A.
$$a = 7$$

B.
$$a = 6$$

C.
$$a = 5$$

D.
$$a = 4$$

Zadanie 24. (1 pkt)

Dany jest sześcian ABCDEFGH. Sinus kąta α nachylenia przekątnej HB tego sześcianu do płaszczyzny podstawy ABCD (zobacz rysunek) jest równy

A.
$$\frac{\sqrt{3}}{3}$$

B.
$$\frac{\sqrt{6}}{3}$$

C.
$$\frac{\sqrt{2}}{2}$$

D.
$$\frac{\sqrt{6}}{2}$$

Zadanie 25. (1 pkt)

Dany jest stożek o objętości 18π , którego przekrojem osiowym jest trójkąt ABC (zobacz rysunek). Kąt CBA jest kątem nachylenia tworzącej l tego stożka do płaszczyzny jego podstawy. Tangens kąta CBA jest równy 2.

Wynika stąd, że wysokość h tego stożka jest równa

A. 12

B. 6

C. 4

D. 2

Zadanie 26. *(2 pkt)*

Rozwiąż nierówność 2(x-1)(x+3) > x-1.

Odpowiedź:

Zadanie 27. (2 pkt) Rozwiąż równanie $x^3 - 9x^2 - 4x + 36 = 0$.

Odpowiedź:

	Nr zadania	26.	27.
Wypełnia egzaminator	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 28. *(2 pkt)*Wykaż, że dla każdych dwóch różnych liczb rzeczywistych a i b prawdziwa jest nierówność

$$a(a-2b)+2b^2>0.$$

Zadanie 29. (2 pkt)

Trójkąt ABC jest równoboczny. Punkt E leży na wysokości CD tego trójkąta oraz $\left|CE\right| = \frac{3}{4}\left|CD\right|$. Punkt F leży na boku BC i odcinek EF jest prostopadły do BC (zobacz rysunek).

Wykaż, że
$$|CF| = \frac{9}{16} |CB|$$
.

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. *(2 pkt)*

Rzucamy dwa razy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że co najmniej jeden raz wypadnie ścianka z pięcioma oczkami.

Odpowiedź:

Zadanie 31. *(2 pkt)*

Kąt α jest ostry i spełnia warunek $\frac{2\sin\alpha + 3\cos\alpha}{\cos\alpha} = 4$. Oblicz tangens kąta α .

Odpowiedź:

Wypełnia egzaminator	Nr zadania	30.	31.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 32. (4 pkt)

Dany jest kwadrat ABCD, w którym $A = \left(5, -\frac{5}{3}\right)$. Przekątna BD tego kwadratu jest zawarta w prostej o równaniu $y = \frac{4}{3}x$. Oblicz współrzędne punktu przecięcia przekątnych AC i BD oraz pole kwadratu ABCD.

Odpowiedź:

	Nr zadania	32.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 33. (4 pkt)

Wszystkie wyrazy ciągu geometrycznego (a_n) , określonego dla $n \ge 1$, są dodatnie. Wyrazy tego ciągu spełniają warunek $6a_1 - 5a_2 + a_3 = 0$. Oblicz iloraz q tego ciągu należący do przedziału $\left<2\sqrt{2},3\sqrt{2}\right>$.

Odpowiedź:

	Nr zadania	33.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 34. *(5 pkt)*

Dany jest ostrosłup prawidłowy czworokątny ABCDS, którego krawędź boczna ma długość 6 (zobacz rysunek). Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem, którego tangens jest równy $\sqrt{7}$. Oblicz objętość tego ostrosłupa.

Strona 24 z 26

Odpowiedź:

	Nr zadania	34.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	