UNIVERSIDADE FEDERAL DO TOCANTINS

Câmpus Universitário de **Palmas** Laboratório de Ensino de Física

ADIÇÃO DE VETORES - MESA DE FORÇAS

1. INTRODUÇÃO

A força é uma grandeza vetorial, ou seja, além de possuir intensidade, também apresenta direção e sentido. Quando duas forças F_1 e F_2 atuam sobre um mesmo ponto, o efeito combinado não é dado por uma simples soma algébrica, mas pela soma vetorial. A resultante F_r dessas duas forças pode ser obtida pela **regra do paralelogramo**, na qual os vetores F_1 e F_2 formam os lados adjacentes de um paralelogramo e a diagonal representa a resultante. (Halliday; Resnick; Walker, 2016).

Figura 1: Sistema de Forças em equilíbrio estático

Matematicamente, para duas forças que formam um ângulo θ , o módulo da resultante é dado por:

$$F_r = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta} \eqno(1)$$

Para que o sistema esteja em equilíbrio, é necessário aplicar uma terceira força F_3 , de mesmo módulo que a resultante F_r , porém de sentido oposto: $F_3=-F_r$.

Esse princípio tem diversas aplicações práticas, como no cálculo de forças em cabos de pontes e estru-

turas, na análise de forças que atuam sobre um corpo suspenso por fios em diferentes direções, e no equilíbrio de objetos submetidos a tensões em máquinas simples.

Figura 2: Mesa de Forças.

- (a) Aparato experimental.
- (b) Posição de equilíbrio.

O experimento da mesa de forças, ilustrada na Figura 2 permite compreender de forma visual e prática como a soma vetorial se manifesta no mundo real e como o conceito de equilíbrio está diretamente ligado ao princípio da adição de vetores.

2. OBJETIVOS

- **2.1.** Compreender que a força é uma grandeza vetorial;
- **2.2.** Aplicar a *regra do paralelogramo* para determinar a resultante de um par de forças;
- **2.3.** Determinar experimentalmente o valor de uma força que equilibra duas outras forças.

3. MATERIAL NECESSÁRIO

- Mesa de forças composta por um transferidor de ângulos e base de fixação;
- 03 polias móveis;
- Conjunto de massas e suportes;
- Fios:
- Balança digital.

4. PROCEDIMENTOS

Atenção

Cada suporte tem massa de 5 gramas.

- **4.1.** Monte a mesa de forças conforme mostrado na Figura 2a. Duas para as forças que serão somadas $(F_1 \ e \ F_2)$ e a terceira polia para a força F_3 que equilibra as demais.
- **4.2.** Organize os conjuntos de massa + suporte em três grupos, cada um com massa total igual a **40** g:

$$m_1 = 40 \, \text{g}; m_2 = 40 \, \text{g}; e \, m_3 = 40 \, \text{g}$$

- **4.3.** Passe os fios sobre as polias e prenda as massas nas extremidades.
- **4.4.** Fixe uma das polias na marcação de 0° no transferidor da mesa de forças. A massa acoplada, que corresponderá à massa m_3 , e a posição dessa polia não serão alteradas durante a execução do experimento.
- **4.5.** Por tentativa e erro, ajuste posição das outras duas polias (para m_1 e m_2) de modo que o sistema fique em equilíbrio (O sistema estará em equilíbrio quando o disco transparente ficar centralizado em relação à mesa de força, conforme Figura 2b.).
- **4.6.** Anote o ângulo θ formado pelos fios ligados às massas m_1 e m_2 no campo correspondente da Tabela 1.
- **4.7.** Utilizando o valor da aceleração da gravidade $g=9,8\mathrm{m/s^2}$, calcule o valor das forças F_1,F_2 e F_3 correspondentes aos pesos das massas $m_1,$ m_2 e m_3 , respectivamente. Anote os resultados na Tabela 1.

- **4.8.** Aplique a Equação 1 e determine a Força resultante F_r esperada que equilibraria as forças F_1 e F_2 com um ângulo θ .
- **4.9.** Represente as forças F_1 , F_2 e F_3 no diagrama apropriado do Anexo Análise Gráfica. Use a regra do paralelogramo para determinar graficamente a força F_r .
- **4.10.** Repita os passos acima para os ternos de massas m_1 , m_2 e m_3 na Tabela 1.

Tabela 1: Coleta e análise de dados

m ₁ (g)	m_2 (g)	m ₃ (g)	F ₁ (N)	F ₂ (N)	F ₃ (N)	θ(°)	F _r (N)	E(%)
40	40	40						
35	35	40						
25	35	40						

5. ANÁLISE DE DADOS

Atenção

Nesta seção, consideraremos os valores calculados da força F_r como $valores\ esperados\$ para a força resultante da soma F_1+F_2 . Em contrapartida, os valores medidos F_3 serão nossos $valores\$ experimentais.

Vamos avaliar a qualidade do experimento por meio do cálculo do erro percentual:

- **5.1.** Usando a Equação 2, calcule o erro percentual E (%) na determinação da força resultante de cada distribuição de massas. Anote o resultado na coluna correspondente da Tabela 1.
- **5.2.** A análise gráfica permite concluir que a relação $F_3=-F_r$ é verdadeira? Explique as causas de possíveis erros.

REFERÊNCIAS

HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 10. ed. Rio de Janeiro: LTC, 2016. v. 2

Adição de Vetores - Mesa de Forças

ANEXO - ANÁLISE GRÁFICA

m_1 (g)	m_2 (g)	m_3 (g)
35	35	40

Laboratório de Ensino de Física/UFT

