2017 QuantEcon Workshops

Economic Modeling with Julia

John Stachurski

August 2017

What's Julia

- Modern
- Open source
- Focused on scientific computing
- High productivity and high speed

...sometimes

What's Julia

- Modern
- Open source
- Focused on scientific computing
- High productivity and high speed

...sometimes

Part 1: Julia's JIT compilation system

See John/Julia/julia_jit_compilation.ipynb

Part 2: An application to recursive preference models

Based on joint work with Jaroslav Borovička

- 1. Overview of problem
- 2. Description of model
- 3. Review of code

Overview of Problem

Recursive utilities models used to value consumption streams

Existence, uniqueness of solutions are parameter dependent

We lack reliable, globally convergent methods to compute solutions

Our aims:

- Provide practical conditions for existence / uniqueness
- Provide globally convergent computational methods

Confessions

We assume compact state space

Overview of Problem

Recursive utilities models used to value consumption streams

Existence, uniqueness of solutions are parameter dependent

We lack reliable, globally convergent methods to compute solutions

Our aims:

- Provide practical conditions for existence / uniqueness
- Provide globally convergent computational methods

Confessions

We assume compact state space

Overview of Problem

Recursive utilities models used to value consumption streams

Existence, uniqueness of solutions are parameter dependent

We lack reliable, globally convergent methods to compute solutions

Our aims:

- Provide practical conditions for existence / uniqueness
- Provide globally convergent computational methods

Confessions:

• We assume compact state space

Valuation

How to model the value of a lifetime consumption path $\{C_t\}$?

We allow the path to be nonstationary

Following Hansen and Scheinkman's multiplicative functional formulation,

$$\ln C_{t+1} - \ln C_t = \kappa(X_{t+1}, Y_{t+1}, X_t), \tag{1}$$

- κ is a continuous real-valued function
- $\{X_t\}$ is a Markov process taking values in $\mathbb X$
- $\{Y_t\}$ is an IID innovation

EZ Preferences

The value V_t of consumption path $\{C_i\}_{i\geq t}$ is defined by

$$V_{t} = \left[\zeta C_{t}^{1-1/\psi} + \beta \left\{ \mathcal{R}_{t} \left(V_{t+1} \right) \right\}^{1-1/\psi} \right]^{1/(1-1/\psi)}$$

Here \mathcal{R}_t is the KP certainty equivalent operator

$$\mathcal{R}_t(V_{t+1}) := (\mathbb{E}_t V_{t+1}^{1-\gamma})^{1/(1-\gamma)}$$

- $\beta \in (0,1) =$ time discount factor
- γ governs the level of relative risk aversion
- $\psi =$ elasticity of intertemporal substitution

Manipulations give

$$\left(\frac{V_t}{C_t}\right)^{1-1/\psi} = \zeta + \beta \left\{ \mathcal{R}_t \left(\frac{V_{t+1}}{C_{t+1}} \frac{C_{t+1}}{C_t}\right) \right\}^{1-1/\psi}$$

Equivalently,

$$W_{t} = \zeta + \beta \left\{ \mathbb{E}_{t} W_{t+1}^{\theta} \exp[(1 - \gamma) \kappa(X_{t+1}, Y_{t+1}, X_{t})] \right\}^{1/\theta}$$

•
$$\theta:=(1-\gamma)/(1-1/\psi)$$
 and

•
$$W_t := (V_t/C_t)^{1-1/\psi}$$

We seek a Markov solution $W_t = w(X_t)$ for some $w \colon \mathbb{X} \to \mathbb{R}$ satisfying

$$w(x) = \zeta + \beta \left\{ \int w(x')^{\theta} \int \exp[(1 - \gamma)\kappa(x', y', x)] \nu(\mathrm{d}y') Q(x, \mathrm{d}x') \right\}^{1/\theta}$$

Equivalently, we seek fixed points in \mathscr{C}_+ of

$$Tw(x) = \zeta + [Kw^{\theta}(x)]^{1/\theta}$$

$$Kg(x) := \beta^{\theta} \int g(x') \int \exp[(1-\gamma)\kappa(x',y',x)]\nu(\mathrm{d}y')Q(x,\mathrm{d}x')$$

Theorem 1

If $\theta < 0$, then the following statements are equivalent:

- 1. r(K) > 1
- 2. T has a fixed point in \mathscr{C}_+
- 3. T has a unique fixed point in \mathscr{C}_+
- 4. T is globally asymptotically stable on \mathscr{C}_+

Theorem 2

If $\theta > 0$, then the following statements are equivalent:

- 1. r(K) < 1
- 2. T has a fixed point in \mathscr{C}_+
- 3. T has a unique fixed point in \mathscr{C}_+
- 4. T is globally asymptotically stable on \mathscr{C}_+

Application: Long-Run Risk

In Bansal and Yaron (2004), consumption growth obeys

$$ln(C_{t+1}/C_t) = \mu + z_t + \sigma_t \, \eta_{t+1}$$

where

$$z_{t+1} = \rho z_t + s_z \, \sigma_t \, \epsilon_{t+1}$$

and

$$\sigma_{t+1}^2 = v \, \sigma_t^2 + \bar{\sigma}^2 (1 - v) + s_\sigma \, \omega_{t+1}$$

Innovations are all $\stackrel{\mbox{\tiny IID}}{\sim} N(0,1)$

The state can be represented as $X_t := (z_t, \sigma_t)$

Discretization

To compute r(K),

- discretize \mathbb{X} to $\hat{\mathbb{X}} = \{x_1, \dots, x_M\}$
- let $\mathbf{Q}_{ij} := \mathbb{P}\{X_{t+1} = x_j \mid X_t = x_i\}$

The operator K reduces to the matrix

$$\mathbf{K}_{ij} = \beta^{\theta} \int \exp[(1 - \gamma)\kappa(x_j, y, x_i)] \nu(\mathrm{d}y) \mathbf{Q}_{ij}$$
$$= \beta^{\theta} m(x_i) \mathbf{Q}_{ij}$$

$$m(x) = m(z,\sigma) := \exp\left\{ (1-\gamma)(\mu+z) + \frac{(1-\gamma)^2\sigma^2}{2} \right\}$$

Parameters for the Bansal and Yaron (2004) model

- $\mu = 0.0015$
- $\psi = 1.5$
- $\gamma = 10.0$
- $\beta = 0.998$
- $\rho = 0.979$
- $s_z = 0.044$
- v = 0.987
- $\bar{\sigma} = 0.0078$
- $s_{\sigma} = 0.0000026$

Figure: Spectral radius for the Bansal-Yaron model

Parameters for the Bansal, Kiku and Yaron (2012) model

- $\mu = 0.0015$
- $\psi = 1.5$
- $\gamma = 10.0$
- $\beta = 0.9989$
- $\rho = 0.975$
- $s_z = 0.038$
- v = 0.999
- $\bar{\sigma} = 0.0072$
- $s_{\sigma} = 0.0000028$

Figure: Spectral radius for the Bansal-Kiku-Yaron model

Let's look at the code...

See John/Julia/wams_demo.ipynb