AUTOENCODERS

REDES NEURAIS

O QUE SÃO?

- Não supervisionado
- Extração de novas features
- Redução de dimensionalidade
- □ Input igual output

Arquitetura da rede

AUTOENCODER E ANÁLISE DE COMPONENTES PRINCIPAIS

AUTOENCODER E ANÁLISE DE COMPONENTES PRINCIPAIS

REGULARIZAÇÃO

- Denoising Autoencoders
- Autoencoder contrativo
- □ Autoencoder espaçado

DENOISING AUTOENCODER

AUTOENCODER CONTRATIVO

$$egin{aligned} L(x,g(f(x))) + \Omega(h,x) \ & \Omega(h,x) = \lambda \sum_i ||
abla_x h_i ||^2 \end{aligned}$$

AUTOENCODER ESPARSO

- ☐ Restrição de esparsidade
 - $a_i pprox -1$ para todo i
- ☐ O neurônio está ativo se a: ≈ +1
- ☐ O neurônio está inativo se a: ≈ -1

g(h(x))pprox identidade

COMO O AUTOENCODER ESPARSO APRENDE

- □ X₁, X₂, X₃, ... são l.l.D. com distribuição ζ
- \square Restrição: E[ai] = ρ

- $oldsymbol{\beth}$ Passo 1: Continue estimando $\hat{
 ho}$
- Passo 2: Em cada iteração do gradient descent atualize os parâmetros para a esperança ser próxima a ρ=-0,9

PASSO 1

Para cada iteração, atualize

Para cada i

$$\hat{
ho}_i = 0,999 \hat{
ho}_i + 0,001 a_i$$
 (Eq. 1)

PASSO 2

$$a_i = f\Big(\sum_{j=1}^n w_{ij} x_j + b_i\Big)$$

- Se ρ̂i>ρi queremos que que o neuronio i seja menos ativo então diminuímos bi
- Se ρi<ρi queremos que que o neurônio i seja mais ativo então aumentamos bi

$$b_i = b_i - lpha eta(\hat{
ho}_i -
ho_i)$$
 (Eq. 2)

Recapitulando

Em cada iteração em (x, y)

- Passo Forward para computar as ativações
- Backprop para 1 passo do gradient descent
- Usa **Eq. 1** para atualizar ρ e **Eq. 2** para atualizar b

VISUALIZAÇÃO

ALGUMAS APLICAÇÕES

AUTOENCODERS VARIACIONAIS (VAE)

Poder de autogeração probabilística

VAE (PADRÃO)

DESINTANGLED VAE

MAIS FORMAS DE USO

PROCESSAMENTO DE IMAGENS

PROCESSAMENTO DE ÁUDIOS DESCOBERTA DE MEDICAMENTOS

PREPARATIVO PARA OUTROS MODELOS SISTEMAS DE RECOMENDAÇÃO COMPRESSÃO GENÉRICA

PROCESSAMENTO DE IMAGENS

SEGMENTAÇÃO

SUPER-RESOLUÇÃO DE IMAGENS

RUÍDOS

