Basic Statistics

Dr. Sudipta Das

Department of Computer Science, Ramakrishna Mission Vivekananda Educational & Research Institute

Outline I

- Statistical Inference
 - Introduction
 - Interval Estimation

Chapter 8: Statistical Inference

Statistical Inference I

- The main objective in any statistical enquiry is the properties of one or more population.
 - However, the population(s) is (are) usually unknown to us, and we simply have a sample from the population (or, a sample from each of the given populations)

Statistical Inference II

Statistical Inference:-

Given the properties of the sample (or, of the samples), to infer about those of the population(s) is the problem of statistical inference

- It is analogous to the inductive logic, the only difference being that the induction is achieved under probabilistic framework
 - Probability comes due to random sampling
- It is a process of going over from the known sample to unknown population.

Statistical Inference III

Statistical set-up of the problem of inference

- Let $(X_1, X_2, ..., X_n)$ be a random sample of size n drawn from a population (discrete/continuous) with p.m.f/p.d.f $f(\underline{x}; \underline{\theta}) = f_{\underline{\theta}}(\underline{x})$, where $\underline{\theta}$ is the unknown parameter(s) of interest.
 - Our problem is to infer about $\underline{\theta}$
- Let Θ be the set of all possible values of θ
 - Θ is called the parameter space
- Note:
 - In the problem of statistical inference, Θ is known, although θ is unknown.
 - Example 1: $X_1, X_2, \dots, X_n \sim \text{Bernoulli}(p)$
 - $\theta = p$ is unknown, $\Theta = [0, 1]$ is known
 - Example 2: $X_1, X_2, \dots, X_n \sim \text{Normal}(\mu, \sigma)$
 - $\underline{\theta} = [\mu, \sigma]'$ is unknown, $\Theta = (-\infty, \infty) \times (0, \infty)$ is known
 - $\theta = \mu$ is unknown, $\Theta = (-\infty, \infty)$ is known
 - $\theta = \sigma$ is unknown, $\Theta = (0, \infty)$ is known

Statistical Inference IV

- Statistical Inference
 - Estimation
 - i Point Estimation
 - ii Interval Estimation
 - Hypothesis-testing

Statistical Inference V

1 Estimation:-

Here, we have **no idea** about the true value of θ and the problem is **to estimate** the likely value of θ on the basis of the random sample (X_1, X_2, \dots, X_n) drawn from the population

Statistical Inference VI

i Point Estimation:-

Here, we estimate θ by a **single** value (i.e., by a point)

- Let $T = T(X_1, X_2, ..., X_n)$ be a statistic which is used to estimate the parameter θ , is called an **estimator** of θ
- For the observed sample $(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$, the observed value of the estimator, namely,

$$t = T(x_1, x_2, \ldots, x_n)$$

is called an estimate of θ

Statistical Inference VII

ii Interval Estimation:-

Here, we estimate θ by an **interval** of values

• Let $T_1 = T_1(X_1, X_2, \dots, X_n)$ and $T_2 = T_2(X_1, X_2, \dots, X_n)$ be two statistics such that

$$P[T_1 \le \theta \le T_2] = 1 - \alpha,$$

where α is a pre-assigned small quantity. Usually, we take $\alpha=$ 0.05 or 0.01 etc.

• If $\alpha=0.05$, then $P[T_1 \leq \theta \leq T_2]=0.95$. Hence, the observed values of $[T_1,T_2]=[t_1,t_2]$, say, is called a 95% confidence interval of θ

Statistical Inference VIII

2 Hypothesis-testing:-

Here we have some idea about the true value of θ , in the form of a hypothesis, say, $\theta = \theta_0$,

• Our problem is **to judge or test** the validity/ feasibility/ tenability of the given hypothesis $\theta=\theta_0$ on the basis of random sample of the population

Chapter 8b: Interval Estimation

Interval Estimation I

- We estimate the parameter θ by an **interval** of values
 - Let

$$L = T_1(X_1, X_2, ..., X_n)$$
 and $U = T_2(X_1, X_2, ..., X_n)$

be two statistics such that

$$P[L \le \theta \le U] = 1 - \alpha,$$

where α is a pre-assigned small quantity. Usually, we take $\alpha = 0.05$ or 0.01 etc.

- The number 1α is called the confidence coefficient
 - and the limits U and L, are called the upper and lower confidence limits, respectively.

Interval Estimation II

- The interval (L, U) is referred to as a $(1 \alpha)100\%$ confidence interval (CI) of the parameter θ .
- For example, if $\alpha = 0.05$, then $P[L \le \theta \le U] = 0.95$.
 - Hence, the observed values of [L, U] = [l, u], (say), is called a 95% confidence interval of θ .

Interval Estimation III

- An interval (*L*, *U*) should have two properties:
 - $P(L < \theta < U)$ is high, that is, the true parameter θ is in (L, U) with high probability, and
 - the length of the interval (L, U) should be relatively narrow on the average.
- In summary,
 - Interval estimation goes a step beyond point estimation by providing, in addition to the estimating interval (L, U), a measure of one's confidence in the accuracy of the estimate.

Interval Estimation I

- Preliminary Notations Let $(x_1, ..., x_n)$ be the random sample drawn from the population of interest.
 - 1 n : Sample size
 - $\bar{\mathbf{z}}$: Sample mean (Calculated)

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

3 s2 : Sample variance (Calculated)

$$s^2 = \frac{1}{n-1} \left[(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \cdots + (x_n - \bar{x})^2 \right]$$

 \hat{p} : Sample proportion (Calculated)

$$\hat{p} = \frac{\text{Total No. of sample units having the specific characteristic}}{n}$$

Interval Estimation II

Estimating population mean (μ)

- Pivotal quantity (Point Estimate): Sample mean (\bar{x})
- Intervals:
 - $\left[\bar{X} Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$, where $Z_{1-\frac{\alpha}{2}}$ is the $(1-\alpha/2)^{th}$ quantile from the standard normal distribution
 - Under the assumption: Population is Normal and variance (σ^2) is known
 - $\left[\bar{x}-t_{1-\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}},\bar{x}+t_{1-\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}\right]$, where $t_{1-\frac{\alpha}{2},n-1}$ is the $(1-\alpha/2)^{th}$ quantile from a t- distribution with n-1 d.f.
 - Under the assumption: Population is Normal and variance is unknown
 - $\left[\bar{x} z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{x} + z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right]$, where $z_{1-\frac{\alpha}{2}}$ is the $(1-\alpha/2)^{th}$ quantile from the standard normal distribution
 - Under the assumption: Sample size (n) is large

Interval Estimation III

- Example 6.2.3; (Page 302)
- Example 6.3.1; (Page 311)

Interval Estimation IV

Estimating population variance (σ^2)

- Pivotal quantity (Point Estimate): Sample variance (s²)
- Intervals:
 - $\left[\frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}},\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}}\right]$, where $\chi^2_{1-\frac{\alpha}{2},n-1}$ and $\chi^2_{\frac{\alpha}{2},n-1}$ are the $(1-\alpha/2)^{th}$ and $(\alpha/2)^{th}$ quantiles from a χ^2 distribution with (n-1) d.f., respectively.
 - Under the assumption: Population is Normal
- Example 6.4.1; (Page 317)

Interval Estimation V

Estimating population proportion (p)

- Pivotal quantity (Point Estimate): Sample proportion (p̂)
- Intervals:

•
$$\left[\hat{p} - z_{1-\frac{\alpha}{2}} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}, \hat{p} + z_{1-\frac{\alpha}{2}} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right]$$
, where $z_{1-\frac{\alpha}{2}}$ is the

- $(1-\alpha/2)^{th}$ quantile from the standard normal distribution
 - Under the assumption: Sample size (n) is large Both np > 5 and n(1 - p) > 5
- Example 6.2.4; (Page 303)

Interval Estimation VI

• Width of a $(1-\alpha)100\%$ CI, for the true proportion (p)

$$b=2z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$

- Note: $-b = 2z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le z_{1-\frac{\alpha}{2}}\sqrt{\frac{1}{n}}$.
- Margin of error at $(1 \alpha)100\%$ CI, for the true proportion (p)

where

$$d=\frac{\max b}{2}=\frac{z_{1-\frac{\alpha}{2}}}{2\sqrt{n}}$$

 Note: - Width and margin of error reduce as sample size increases.

Interval Estimation VII

Sample size selection without pilot study

• To estimate p at level $(1 - \alpha)$ to within d (given) units of its true value

$$\bullet \ \frac{z_{1-\frac{\alpha}{2}}}{2\sqrt{n}} \le d \Rightarrow n \ge \frac{z_{1-\frac{\alpha}{2}}^2}{4d^2}$$

Thus,

$$n = \left\lceil \frac{z_{1-\frac{\alpha}{2}}^2}{4d^2} \right\rceil$$

Interval Estimation VIII

Sample size selection after pilot study

- Sometimes, we may have an initial estimate \tilde{p} of the parameter p from a pilot study or simulation.
- In this case, $d=\frac{b}{2}=z_{1-\frac{\alpha}{2}}\sqrt{\frac{\tilde{p}(1-\tilde{p})}{n}}$ and

$$n = \left\lceil \frac{z_{1-\frac{\alpha}{2}}^2 \tilde{p}(1-\tilde{p})}{d^2} \right\rceil.$$

Interval Estimation IX

Example:

- Suppose that a local TV station in a city wants to conduct a survey to estimate support for the president's policies on economy within 3% error with 95% confidence.
 - The number of people should be surveyed by the station, if they have no information on the support level is

$$n = \left\lceil \frac{Z_{1-\frac{\alpha}{2}}^2}{4d^2} \right\rceil = \left\lceil \frac{1.96^2}{4 \times 0.03^2} \right\rceil = 1068$$

(b) Suppose they have an initial estimate that 70% of the people in the city support the economic policies of the president. Then, the number of people should be surveyed by the station is

$$n = \left\lceil \frac{z_{1-\frac{\alpha}{2}}^2 \tilde{p}(1-\tilde{p})}{d^2} \right\rceil = \left\lceil \frac{1.96^2 \times 0.7 \times (1-0.7)}{0.03^2} \right\rceil = 897$$

Interval Estimation X

Interval Estimation

To Estimate	Assumptions	Interval
10 Latimate	Assumptions	IIILOI VAI
Mean	Population is Normal	$\left[\bar{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$
	Variance (σ^2) is known	
	Population is Normal	$\left[\bar{x}+t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}},\bar{x}-t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}\right]$
	Variance is unknown	
	Sample size (n) is large	$\left[\bar{X} + Z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X} - Z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right]$
Proportion	np > 5 as well as	$\left[\hat{p} + z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} - z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$
	n(1-p) > 5	
Variance	Population is Normal	$\left[\frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}},\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}}\right]$

Interval Estimation XI

- $(1 \alpha) \times 100$: Confidence level in percentage
- $z_{\frac{\alpha}{2}}$: $\alpha/2^{th}$ quantile from standard normal distribution

$$\textit{z}_{\frac{\alpha}{2}} = \textit{qnorm}\left(\frac{\alpha}{2}, \textit{mean} = \textbf{0}, \textit{sd} = \textbf{1}\right)$$

• $t_{\frac{\alpha}{2},n-1}: \alpha/2^{th}$ quantile from t-distribution with n-1 d.f.

$$t_{\frac{\alpha}{2},n-1}=qt\left(\frac{\alpha}{2},df=n-1\right)$$

• $\chi^2_{\frac{\alpha}{2},n-1}: \alpha/2^{th}$ quantile from χ^2- distribution with n-1 d.f.

$$\chi^2_{\frac{\alpha}{2},n-1} = qchisq\left(\frac{\alpha}{2},df=n-1\right)$$

• $\chi^2_{1-\frac{\alpha}{2},n-1}$: $(1-\alpha/2)^{th}$ quantile from χ^2 -distribution with n-1 d.f.

$$\chi^2_{1-\frac{\alpha}{2},n-1} = qchisq\left(1-\frac{\alpha}{2},df=n-1\right)$$