```
In [5]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
In [2]: from sklearn.datasets import load boston
In [6]: boston=load boston()
In [10]: boston.keys()
        dict keys(['data', 'target', 'feature names', 'DESCR', 'filename'])
Out[10]:
In [11]: print(boston.DESCR)
        .. boston dataset:
        Boston house prices dataset
        _____
        **Data Set Characteristics: **
            :Number of Instances: 506
            :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 1
        4) is usually the target.
            :Attribute Information (in order):
                - CRIM per capita crime rate by town
                - ZN
                         proportion of residential land zoned for lots over 25,000 sq.ft.
                - INDUS proportion of non-retail business acres per town
                - CHAS
                         Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
                - NOX
                         nitric oxides concentration (parts per 10 million)
                         average number of rooms per dwelling
                - RM
                         proportion of owner-occupied units built prior to 1940
                - AGE
                - DIS
                         weighted distances to five Boston employment centres
                         index of accessibility to radial highways
                - RAD
                      full-value property-tax rate per $10,000
                - TAX
                - PTRATIO pupil-teacher ratio by town
                          1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
                - B
                - LSTAT
                          % lower status of the population
                - MEDV
                         Median value of owner-occupied homes in $1000's
            :Missing Attribute Values: None
            :Creator: Harrison, D. and Rubinfeld, D.L.
        This is a copy of UCI ML housing dataset.
        https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
        This dataset was taken from the StatLib library which is maintained at Carnegie Mellon U
        niversity.
        The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
        prices and the demand for clean air', J. Environ. Economics & Management,
        vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
```

The Boston house-price data has been used in many machine learning papers that address ${\bf r}$

...', Wiley, 1980. N.B. Various transformations are used in the table on

pages 244-261 of the latter.

egression problems.

.. topic:: References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and So urces of Collinearity', Wiley, 1980. 244-261.
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceeding s on the Tenth International Conference of Machine Learning, 236-243, University of Mass achusetts, Amherst. Morgan Kaufmann.

```
In [12]: print(boston.data)
        [[6.3200e-03 1.8000e+01 2.3100e+00 ... 1.5300e+01 3.9690e+02 4.9800e+00]
         [2.7310e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9690e+02 9.1400e+00]
         [2.7290e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01 3.9283e+02 4.0300e+00]
         [6.0760e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 5.6400e+00]
         [1.0959e-01 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9345e+02 6.4800e+00]
         [4.7410e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01 3.9690e+02 7.8800e+00]]
In [13]: print(boston.target)
        [24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9 21.7 20.4
         18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8
         18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9 20. 21. 24.7 30.8 34.9 26.6
         25.3 24.7 21.2 19.3 20. 16.6 14.4 19.4 19.7 20.5 25. 23.4 18.9 35.4
         24.7 31.6 23.3 19.6 18.7 16. 22.2 25. 33. 23.5 19.4 22. 17.4 20.9
         24.2 21.7 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28. 23.9 24.8 22.9
         23.9 26.6 22.5 22.2 23.6 28.7 22.6 22. 22.9 25. 20.6 28.4 21.4 38.7
         43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8 19.4 21.7 22.8
         18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22. 20.3 20.5 17.3 18.8 21.4
         15.7 16.2 18. 14.3 19.2 19.6 23. 18.4 15.6 18.1 17.4 17.1 13.3 17.8
         14. 14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4
         17. 15.6 13.1 41.3 24.3 23.3 27. 50. 50. 50. 22.7 25. 50. 23.8
         23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2
         37.9 32.5 26.4 29.6 50. 32. 29.8 34.9 37. 30.5 36.4 31.1 29.1 50.
         33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5 50. 22.6 24.4 22.5 24.4 20.
         21.7 19.3 22.4 28.1 23.7 25. 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1
         44.8 50. 37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29. 24. 25.1 31.5
         23.7 23.3 22. 20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
         29.6 42.8 21.9 20.9 44. 50. 36. 30.1 33.8 43.1 48.8 31. 36.5 22.8
         30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32. 33.2 33.1 29.1 35.1
         45.4 35.4 46. 50. 32.2 22. 20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9
         21.7 28.6 27.1 20.3 22.5 29. 24.8 22. 26.4 33.1 36.1 28.4 33.4 28.2
         22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21. 23.8 23.1
         20.4 18.5 25. 24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
         19.5 18.5 20.6 19. 18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6
         22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25. 19.9 20.8 16.8
         21.9 27.5 21.9 23.1 50. 50. 50. 50. 50. 13.8 13.8 15. 13.9 13.3
         13.1 10.2 10.4 10.9 11.3 12.3 8.8 7.2 10.5 7.4 10.2 11.5 15.1 23.2
          9.7 13.8 12.7 13.1 12.5 8.5 5. 6.3 5.6 7.2 12.1 8.3 8.5 5.
         11.9 27.9 17.2 27.5 15. 17.2 17.9 16.3 7. 7.2 7.5 10.4 8.8 8.4
         16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11. 9.5 14.5 14.1 16.1 14.3
         11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6
         14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20. 16.4 17.7
         19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3
         16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7.
          8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
         22. 11.9]
```

In [14]: print(boston.feature_names)
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'

['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT']

```
In [16]:
         dataset=pd.DataFrame(boston.data,columns=boston.feature names)
         dataset.head()
In [17]:
Out[17]:
             CRIM
                    ΖN
                        INDUS CHAS NOX
                                             RM AGE
                                                        DIS RAD
                                                                   TAX PTRATIO
                                                                                     B LSTAT
         0 0.00632
                    18.0
                                     0.538 6.575
                                                 65.2 4.0900
                                                                  296.0
                                                                            15.3 396.90
                           2.31
                                  0.0
                                                              1.0
                                                                                         4.98
         1 0.02731
                    0.0
                           7.07
                                  0.0
                                     0.469
                                           6.421
                                                 78.9 4.9671
                                                              2.0
                                                                  242.0
                                                                            17.8 396.90
                                                                                         9.14
         2 0.02729
                    0.0
                           7.07
                                  0.0
                                           7.185
                                                 61.1 4.9671
                                                                            17.8 392.83
                                                                                         4.03
                                     0.469
                                                              2.0
                                                                  242.0
         3 0.03237
                    0.0
                           2.18
                                  0.0 0.458
                                           6.998
                                                 45.8
                                                     6.0622
                                                                  222.0
                                                                            18.7 394.63
                                                                                         2.94
                                                              3.0
         4 0.06905
                    0.0
                                  0.0 0.458 7.147
                                                 54.2 6.0622
                                                              3.0 222.0
                                                                            18.7 396.90
                                                                                         5.33
                           2.18
         dataset['Price']=boston.target
In [18]:
         dataset.head()
In [19]:
                    ZN INDUS CHAS
                                      NOX
                                             RM AGE
                                                         DIS RAD
                                                                   TAX PTRATIO
                                                                                     B LSTAT Price
Out[19]:
             CRIM
         0.00632
                    18.0
                           2.31
                                  0.0
                                      0.538 6.575
                                                 65.2 4.0900
                                                                  296.0
                                                                            15.3 396.90
                                                                                         4.98
                                                                                               24.0
                                                              1.0
         1 0.02731
                    0.0
                           7.07
                                  0.0
                                      0.469
                                           6.421
                                                  78.9
                                                     4.9671
                                                                  242.0
                                                                            17.8 396.90
                                                                                         9.14
                                                                                               21.6
                                                              2.0
         2 0.02729
                    0.0
                           7.07
                                  0.0
                                      0.469
                                           7.185
                                                 61.1 4.9671
                                                              2.0
                                                                  242.0
                                                                            17.8 392.83
                                                                                         4.03
                                                                                               34.7
         3 0.03237
                     0.0
                           2.18
                                  0.0
                                     0.458
                                           6.998
                                                 45.8 6.0622
                                                              3.0 222.0
                                                                            18.7 394.63
                                                                                         2.94
                                                                                               33.4
         4 0.06905
                    0.0
                           2.18
                                  0.0 0.458 7.147
                                                 54.2 6.0622
                                                              3.0 222.0
                                                                            18.7 396.90
                                                                                         5.33
                                                                                               36.2
In [20]:
         dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 506 entries, 0 to 505
         Data columns (total 14 columns):
          #
              Column Non-Null Count Dtype
              -----
                        -----
          0
              CRIM
                        506 non-null
                                          float64
                       506 non-null
                                        float64
          1
             7N
              INDUS
          2
                        506 non-null float64
          3
             CHAS
                        506 non-null float64
          4
             NOX
                        506 non-null float64
                        506 non-null float64
          5
             RM
          6
              AGE
                        506 non-null float64
          7
              DIS
                        506 non-null float64
          8
              RAD
                        506 non-null
                                         float64
          9
              TAX
                        506 non-null
                                         float64
          10 PTRATIO 506 non-null float64
          11
                        506 non-null float64
                                        float64
          12
              LSTAT
                        506 non-null
          13 Price
                        506 non-null float64
         dtypes: float64(14)
         memory usage: 55.5 KB
In [21]:
         dataset.describe()
                                                                                             DIS
Out[21]:
                    CRIM
                                ZN
                                       INDUS
                                                   CHAS
                                                              NOX
                                                                         RM
                                                                                   AGE
                                                                                                       RAD
         count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000
```

Lets prepare the dataframe

In [15]:

	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000

In [23]: ## Check the missing values
 dataset.isnull().sum()

Out[23]:

CRIM 0 INDUS 0 CHAS 0 NOX RM0 AGE 0 DIS 0 0 RAD TAX 0 0 PTRATIO В 0 LSTAT 0 Price dtype: int64

In [24]: ## EDA

EDA
dataset.corr()

Out[24]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	T/
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	0.625505	0.5827
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.311948	-0.3145
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.595129	0.7207
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.007368	-0.0355
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.611441	0.6680
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.209847	-0.2920
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.456022	0.5064
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.494588	-0.5344
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.000000	0.9102
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.910228	1.0000
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.464741	0.4608
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.444413	-0.4418
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.488676	0.5439
Price	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.381626	-0.4685


```
In [30]: sns.set(rc={'figure.figsize':(10,8)})
sns.heatmap(dataset.corr(),annot=True)
```

Out[30]: <AxesSubplot:>


```
In [32]: plt.scatter(dataset['CRIM'], dataset['Price'])
   plt.xlabel("Crime Rate")
   plt.ylabel("Price")
```

Out[32]: Text(0, 0.5, 'Price')


```
In [35]: sns.set(rc={'figure.figsize':(8,6)})
plt.scatter(dataset['RM'],dataset['Price'])
```

Out[35]: <matplotlib.collections.PathCollection at 0x1f792e23a30>


```
In [34]: sns.regplot(x="RM", y="Price", data=dataset)
```

Out[34]: <AxesSubplot:xlabel='RM', ylabel='Price'>

In [36]: sns.regplot(x="LSTAT", y="Price", data=dataset)

Out[36]: <AxesSubplot:xlabel='LSTAT', ylabel='Price'>

In [37]: sns.regplot(x="CRIM", y="Price", data=dataset)

Out[37]: <AxesSubplot:xlabel='CRIM', ylabel='Price'>

In [39]: sns.boxplot(dataset['CRIM'])

C:\Users\win10\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas s the following variable as a keyword arg: x. From version 0.12, the only valid position al argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[39]: <AxesSubplot:xlabel='CRIM'>

In [40]: dataset.head()

Out[40]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Price
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6

```
3 0.03237
                      0.0
                             2.18
                                        0.458 6.998
                                                     45.8 6.0622
                                                                       222.0
                                                                                  18.7 394.63
                                                                                                2.94
                                                                                                      33.4
                                                                   3.0
          4 0.06905
                      0.0
                             2.18
                                    0.0 0.458 7.147
                                                     54.2 6.0622
                                                                   3.0 222.0
                                                                                  18.7 396.90
                                                                                                5.33
                                                                                                     36.2
          ## Independent And Dependent Features
In [41]:
          X=dataset.iloc[:,:-1]
          y=dataset.iloc[:,-1]
          X.head()
In [42]:
               CRIM
                      ZN INDUS CHAS
                                         NOX
                                                RM
                                                     AGE
                                                             DIS
                                                                 RAD
                                                                        TAX PTRATIO
                                                                                           B LSTAT
Out[42]:
                                                     65.2 4.0900
          0.00632
                     18.0
                             2.31
                                    0.0
                                         0.538
                                               6.575
                                                                   1.0
                                                                       296.0
                                                                                  15.3 396.90
                                                                                                4.98
          1 0.02731
                      0.0
                             7.07
                                    0.0
                                         0.469
                                               6.421
                                                     78.9 4.9671
                                                                   2.0 242.0
                                                                                  17.8 396.90
                                                                                                9.14
          2 0.02729
                      0.0
                             7.07
                                    0.0
                                         0.469
                                              7.185
                                                     61.1 4.9671
                                                                   2.0 242.0
                                                                                  17.8 392.83
                                                                                                4.03
          3 0.03237
                                                                                  18.7 394.63
                      0.0
                             2.18
                                    0.0
                                         0.458
                                               6.998
                                                     45.8 6.0622
                                                                   3.0 222.0
                                                                                                2.94
          4 0.06905
                      0.0
                             2.18
                                    0.0 0.458 7.147
                                                     54.2 6.0622
                                                                   3.0 222.0
                                                                                  18.7 396.90
                                                                                                5.33
In [43]:
                  24.0
Out[43]:
          1
                  21.6
          2
                  34.7
          3
                  33.4
                  36.2
                  . . .
          501
                  22.4
          502
                  20.6
          503
                  23.9
          504
                  22.0
          505
                  11.9
          Name: Price, Length: 506, dtype: float64
In [44]:
          from sklearn.model selection import train test split
In [45]:
          X_train, X_test, y_train, y_test = train_test_split(
               X, y, test size=0.33, random state=10)
In [50]:
          X train.shape
          (339, 13)
Out[50]:
In [51]:
          y train.shape
          (339,)
Out[51]:
In [52]:
          X test.shape
          (167, 13)
Out[52]:
          y test.shape
In [53]:
          (167,)
Out[53]:
In [55]:
          ## Standardize or feature scaling the datasets
```

from sklearn.preprocessing import StandardScaler

2 0.02729

0.0

7.07

0.0 0.469 7.185

61.1 4.9671

2.0 242.0

17.8 392.83

4.03

34.7

```
In [56]: scaler
        StandardScaler()
Out[56]:
In [58]: X train=scaler.fit transform(X train)
        X test=scaler.transform(X test)
In [59]:
        X train
In [60]:
        array([[-0.13641471, -0.47928013, 1.16787606, ..., -1.77731527,
Out[60]:
                 0.39261401, 2.36597873],
                [-0.41777807, -0.47928013, -1.18043314, ..., -0.75987458,
                  0.14721899, -0.54115799],
                [ 1.31269177, -0.47928013, 0.95517731, ..., 0.76628645,
                 0.19334986, 2.52100705],
                [-0.13520965, -0.47928013, 0.95517731, ..., 0.76628645,
                 0.17012536, 0.06331026],
                [-0.40281114, -0.47928013, 2.04022838, ..., 0.25756611,
                 0.32166792, 0.27238516],
                [-0.33104058, 0.34161649, -1.07552092, ..., -2.56351944,
                 0.39993132, -0.34772815]])
In [61]: X_test
        array([[-0.41664568, 0.87519929, -1.33277144, ..., -0.06616502,
Out[61]:
                  0.41011193, -0.56391444],
                [-0.42063267, 1.98340973, -1.22498491, ..., -1.36108953,
                  0.41021798, -1.11860295],
                [-0.41894074, 2.80430634, -1.16175014, ..., -1.12985301,
                  0.44765291, -1.16980497],
                [-0.40804678, 1.36773726, -1.15169007, ..., -1.54607875,
                  0.29854946, -1.18545003],
                [-0.41098494, -0.47928013, 0.19779729, ..., 0.07257689,
                 0.20119741, -0.13154186],
                [-0.37856708, -0.47928013, -0.22328875, \ldots, -0.06616502,
                  0.43482111, -0.5141347 ]])
        Model Training
        from sklearn.linear model import LinearRegression
In [62]:
In [63]:
         regression=LinearRegression()
In [64]:
         regression
        LinearRegression()
Out[64]:
         regression.fit(X train, y train)
In [65]:
        LinearRegression()
Out[65]:
```

print the coefficients and the intercept

 $[-1.29099218 \quad 1.60949999 \quad -0.14031574 \quad 0.37201867 \quad -1.76205329 \quad 2.22752218$

1.25191514

0.32268871 -3.31184248 2.70288107 -2.09005699 -1.7609799

print(regression.coef)

In [66]:

scaler=StandardScaler()

```
print(regression.intercept)
In [67]:
         22.077286135693214
         ## PRediction for the test data
In [68]:
         reg pred=regression.predict(X test)
        reg pred
In [69]:
        array([31.43849583, 31.98794389, 30.99895559, 22.31396689, 18.89492791,
Out[69]:
                16.21371128, 35.9881236 , 14.81264582, 25.04500847, 37.12806894,
                21.49110158, 30.88757187, 28.05752881, 34.05600093, 33.75791114,
                40.63880011, 24.24023412, 23.41351375, 25.54158122, 21.34135664,
                32.71699711, 17.88341061, 25.49549436, 25.01006418, 32.54102925,
                20.48979076, 19.48816948, 16.92733183, 38.38530857, 0.36265208,
                32.42715816, 32.15306983, 26.10323665, 23.79611814, 20.67497128,
                19.69393973, 3.50784614, 35.26259797, 27.04725425, 27.66164435,
                34.35132103, 29.83057837, 18.40939436, 31.56953795, 17.91877807,
                28.50042742, 19.49382421, 21.69553078, 38.0954563 , 16.44490081,
                24.58507284, 19.67889486, 24.53954813, 34.30610423, 26.74699088,
                34.87803562, 21.06219662, 19.87980936, 18.68725139, 24.71786624,
                19.96344041, 23.56002479, 39.57630226, 42.81994338, 30.37060855,
                17.03737245, 23.83719412, 3.2425022, 31.5046382, 28.63779884,
                18.49288659, 27.14115768, 19.67125483, 25.34222917, 25.05430467,
                10.29463949, 38.96369453, 8.26774249, 18.52214761, 30.34082002,
                22.87681099, 20.96680268, 20.04604103, 28.73415756, 30.81726786,
                28.23002473, 26.28588806, 31.59181918, 22.13093608, -6.48201197,
                21.53000756, 19.90826887, 24.96686716, 23.44746617, 19.28521216,
                18.75729874, 27.40013804, 22.17867402, 26.82972 , 23.39779064,
                23.9260607 , 19.16632572, 21.09732823, 11.01452286, 13.7692535 ,
                20.74596484, 23.54892211, 14.04445469, 28.88171403, 15.77611741,
                15.25195598, 22.429474 , 26.60737213, 28.88742175, 24.29797261,
                18.26839956, 16.26943281, 17.40100292, 15.53131616, 21.27868825,
                33.78464602, 30.00899396, 21.16115702, 13.95560661, 16.18475215,
                29.30998858, 13.1866784 , 22.08393725, 24.34499386, 31.86829501,
                33.45923602, 5.90671516, 35.20153265, 24.17614831, 17.54200544,
                24.25032915, 28.44671354, 34.50123773, 6.33164665, 1.93565618,
                28.40727267, 12.56461105, 18.31045646, 19.71015745, 5.50105857,
                14.51366874, 37.193992 , 25.81821367, 23.31632083, 26.43254504,
                11.38255141, 20.46224115, 35.27645709, 20.57841598, 11.48799917,
                16.23913171, 24.56511742, 10.53131603, 15.07115005, 25.98488217,
                11.2136222 , 11.695686 , 19.40437966, 19.58768384, 32.43800883,
                22.66170871, 25.68576052])
```

Assumptions Of Linear Regression

```
In [72]: plt.scatter(y_test,reg_pred)
  plt.xlabel("Test Truth Data")
  plt.ylabel("Test Predicted Data")
```

Out[72]: Text(0, 0.5, 'Test Predicted Data')

-3.83392028]


```
## residuals
In [73]:
         residuals=y_test-reg_pred
In [74]:
         residuals
         305
               -3.038496
Out[74]:
         193
               -0.887944
         65
               -7.498956
         349
                4.286033
         151
                0.705072
                   . . .
               -1.004380
         442
         451
               -4.387684
         188
               -2.638009
         76
               -2.661709
         314
               -1.885761
         Name: Price, Length: 167, dtype: float64
In [75]: sns.displot(residuals,kind="kde")
         <seaborn.axisgrid.FacetGrid at 0x1f795e0f520>
Out[75]:
```



```
In [76]: ## SCatter plot with predictions and residual
    ##uniform distribution
plt.scatter(reg_pred,residuals)
```

Out[76]: <matplotlib.collections.PathCollection at 0x1f795989fa0>


```
In [77]: ## Performance Metrics
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,reg_pred))
print(mean_absolute_error(y_test,reg_pred))
print(np.sqrt(mean_squared_error(y_test,reg_pred)))
```

27.100991709962493 3.5206585298797926 5.205861284164465

R square and adjusted R square

```
from sklearn.metrics import r2 score
In [79]:
         score=r2 score(y test, reg pred)
         print(score)
        0.7165219393967555
In [80]:
         ## Adjusted R square
         #display adjusted R-squared
         1 - (1-score)*(len(y test)-1)/(len(y test)-X test.shape[1]-1)
        0.6924355682343882
Out[80]:
         ## Ridge
In [81]:
         from sklearn.linear model import Ridge
         ridge=Ridge()
         ridge.fit(X train, y train)
In [82]:
        Ridge()
Out[82]:
        ridge.predict(X test)
In [83]:
        array([31.32951625, 31.98180665, 30.96523995, 22.45112285, 18.93171888,
Out[83]:
                16.21770197, 35.96932532, 14.8453389 , 25.00644473, 37.08826243,
                21.49615236, 30.86395535, 27.9880323 , 33.98239498, 33.72731108,
                40.61743429, 24.27292247, 23.33888547, 25.52862017, 21.42716828,
                32.68689234, 17.88582539, 25.50293435, 25.01797349, 32.58757636,
                20.48521647, 19.51598666, 16.94098815, 38.35803356, 0.33567931,
                32.44411299, 32.10347472, 26.13567232, 23.81384315, 20.64388179,
                19.71829821, 3.56174179, 35.17319673, 27.02020897, 27.65038259,
                34.3408154 , 29.77237182, 18.39828682, 31.55283209, 17.92580288,
                28.51408759, 19.49631857, 21.65517408, 38.03589465, 16.47721333,
                24.56300743, 19.66060562, 24.490545 , 34.33513167, 26.7462751 ,
                34.83714079, 21.08524522, 19.88396747, 18.65820105, 24.71538111,
                20.00248822, 23.58585608, 39.60689645, 42.79543819, 30.3548884 ,
                17.07425788, 23.84421168, 3.23169724, 31.42539336, 28.75103892,
                18.49739555, 27.14667811, 19.64621723, 25.28950017, 25.07871104,
                10.32212282, 38.94009655, 8.26854141, 18.50624966, 30.39028455,
                22.88702308, 21.08817927, 20.09060901, 28.70289649, 30.81533585,
                28.22566424, 26.28189093, 31.61850553, 22.15784726, -6.42142112,
                21.55950809, 19.89786415, 24.96571959, 23.47361425, 19.25709566,
                18.80383821, 27.37954116, 22.19229114, 26.78224659, 23.40784376,
                23.92754566, 19.18858516, 21.09794643, 10.90877661, 13.8058827 ,
                20.78603584, 23.49652544, 14.19685075, 28.86443391, 15.85586096,
                15.26402087, 22.3935837 , 26.6360939 , 28.87654523, 24.25975975,
                18.26463183, 16.26557102, 17.44937859, 15.58602415, 21.2407358,
                33.72594686, 30.0710014 , 21.17366551, 14.04587364, 16.21847821,
                29.26644762, 13.18724919, 22.07232566, 24.34918815, 31.88230457,
                33.34230018, 5.95941842, 35.14730418, 24.25694454, 17.55532023,
                24.27022839, 28.4213874 , 34.47544702, 6.3238347 , 2.03912756,
                28.40127604, 12.59079125, 18.32110122, 19.75915926, 5.51559383,
                14.42137586, 37.15183113, 25.8605775 , 23.29888263, 26.39528404,
                11.42000684, 20.48891462, 35.29528497, 20.61619917, 11.45777136,
                16.36445822, 24.57014519, 10.51041916, 15.13830095, 26.01152356,
                11.22987126, 11.70179781, 19.39451509, 19.59207236, 32.42949
                22.67098418, 25.683763641)
```