반도체 박막 두께 분석 모델 개발

- 1.프로젝트 개요
- 2.데이터셋 소개
- 3. 데이터 전처리
- 4. 모델링
- 5. 성능 평가 및 인사이트 도출

01 프로젝트 개요

Background

- 반도체 박막 두께 분석 모델 개발
 - 1. 프로젝트 소개
 - ✓ 반도체 박막: 얇은 반도체의 막을 의미
 - ✓ 박막의 두께 측정 방법 : 반사율 측정
 - ✓ 반사율: 입사광 세기에 대한 반사광 세기의 비율 (반사율 = 반사광 / 입사광)
 - ✓ 반사율은 빛의 파장에 따라 변하며 파장에 따른 반사율의 분포를 반사율 스펙트럼이라고 정의

- ✓ 이번 프로젝트에서 분석할 소자는 질화규소(layer_1), 이산화 규소(layer_2), 질화규소(layer_3), 이산화규소(layer_4), 규소(기판)으로 총 5층 구조
- ✓ 기판인 규소를 제외한 나머지 layer들의 두께를 예측하는 것이 목표

O1 프로젝트 개요 Necessity

• 반도체 박막 두께 분석 모델 개발

- 2. 프로젝트의 필요성
- ✓ 최근 고사양 반도체 수요가 많아지면서 반도체를 수직으로 적층 하는 3차원 공정 연구 중 ex) 2022년 SK 하이닉스에서 개발한 3D NAND Flash는 총 238층
- ✓ 박막의 종류와 두께는 반도체 소자의 특정을 결정짓는 중요한 요소

- ✓ 하지만 반도체 박막의 층수가 늘어나면 반도체 공정의 난이도도 함께 높아지고, 박막 두께의 균일도 저하에 문제 발생 → 소자 구조의 변형과 성능 하락 야기
- ✓ 따라서 널리 사용되고 있는 반사율 측정을 통해 박막의 두께를 빠르고 정확하게 측정하는 과정이 필요
- ✓ 본 프로젝트의 목표: 파장에 따른 반사율 스펙트럼을 통해 반도체 박막 두께 예측 모델 개발

02 데이터셋 소개

Introduction

• 데이터셋 소개

- ✓ DACON '반도체 박막 두께 분석' dataset
- ✓ 4층 박막의 두께(layer_1~4)와 파장에 따른 반사율 스펙트럼(0~225) 제공

	layer_1	layer_2	layer_3	layer_4	0	1	2	3	4	5	 216	217	218	219	220
0	10	10	10	10	0.254551	0.258823	0.254659	0.252085	0.247678	0.253614	 0.354750	0.369223	0.388184	0.408496	0.414564
1	10	10	10	20	0.205062	0.225544	0.217758	0.202169	0.199633	0.207380	 0.557203	0.573656	0.587998	0.612754	0.627825
2	10	10	10	30	0.189196	0.165869	0.177655	0.156822	0.175094	0.177755	 0.699864	0.708688	0.721982	0.713464	0.743030
3	10	10	10	40	0.131003	0.120076	0.138975	0.117931	0.130566	0.131262	 0.764786	0.763788	0.770017	0.787571	0.778866
4	10	10	10	50	0.091033	0.086893	0.108125	0.080405	0.105917	0.077083	 0.786677	0.802271	0.806557	0.799614	0.789333

5 rows × 230 columns 종속변수

독립변수

✓ Test data의 id별 반사율 스펙트럼을 활용하여 id별 4층 박막의 두께(layer_1~4)를 예측하는 것이 목표

03 데이터 전처리 전처리 내용

• 전처리 내용

Why?

How to solve?

04 모델링 모델명

• 모델링 소개

소개

05 성능 평가 및 인사이트 도출

Conclusion

• 성능평가

내용

05 성능 평가 및 인사이트 도출

Conclusion

• 인사이트 도출

내용

Q & A Zthetle