Homework 2: DFAs and NFAs

CSE 30151 Spring 2017

Due 2017/02/02 at 11:55pm

Instructions

- Create a PDF file (or files) containing your solutions.
- Please name your PDF file(s) as follows:
 - If you're making a complete submission, name your PDF file netid-hw2.pdf, where netid is replaced with your NetID.
 - If you're submitting some problems now and want to submit other problems later, name your PDF file netid-hw2-123.pdf, where 123 is replaced with the problems you are submitting at this time.
- Submit your PDF file in Sakai. Don't forget to click the Submit (or Resubmit) button!

Problems (10 points each)

- 1. **Designing finite automata.** Write a finite automaton for base-10 natural numbers (possibly with leading zeros) that are:
 - (a) divisible by 2. Please write both a formal description and a state diagram.
 - (b) divisible by 3. Please write both a formal description and a state diagram.
 - (c) divisible by k for any given k > 0. Your answer should be a formal description $M = (Q, \Sigma, \delta, s, F)$ where Q, δ, s and F are defined in terms of k. Hint: appending a digit d to a number x is equivalent to doing $x \leftarrow 10x + d$.
- 2. **Boolean operations.** Define $L_1 \uparrow L_2 = (L_1 \cap L_2)^C$ (that is, the NAND operation on languages).
 - (a) Use a product construction, as in the proof of Theorem 1.25, to prove that regular languages are closed under the \uparrow (NAND) operation.
 - (b) Apply your construction to the following two DFAs:

(c) A Boolean function is a function from k Boolean values to a Boolean value. For example,

\boldsymbol{x}	y	f(x,y)
0	0	1
0	1	0
1	0	1
1	1	1

Recall that any Boolean function can be expressed in terms of \uparrow . For example, the above function can be written as $f(x,y) = (x \uparrow x) \uparrow y$. Using this fact, show that regular languages are closed under any Boolean function. That is, if L_1, \ldots, L_k are regular languages, and f is a function from k Boolean values to a Boolean value, then the language $f(L_1, \ldots, L_k)$ is regular:

$$w \in f(L_1, \ldots, L_k)$$
 if and only if $f(w \in L_1, \ldots, w \in L_k)$.

(Here " $x \in X$ " is being used as a Boolean value, which is a little nonstandard for mathematical writing, but I hope the meaning is clear.)

3. Nondeterminism

(a) Convert the following NFA into an equivalent DFA.

(b) Write an NFA N that recognizes the following language:

 $L = \{uv \mid u, v \in \{a, b\}^*, u \text{ contains an even number of a's, and } v \text{ contains an even number of b's} \}$

- (c) For any $n \geq 0$, show an accepting path for babⁿ through N.
- (d) Convert N to a DFA M, and again show, for any $n \ge 0$, the accepting path for babⁿ through M.