Министерство образования Республики Беларусь

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра физики

ЛАБОРАТОРНАЯ РАБОТА № 2э.3

ИЗУЧЕНИЕ ПОЛЯ ЭЛЕКТРИЧЕСКОГО ДИПОЛЯ В ДАЛЬНЕЙ ЗОНЕ

МЕТОДИЧЕСКОЕ УКАЗАНИЕ

ЛАБОРАТОРНАЯ РАБОТА № 2э.3

изучение поля ЭЛЕКТРИЧЕСКОГО ДИПОЛЯ В ДАЛЬНЕЙ ЗОНЕ

Цель работы:

- 1. Изучить основные характеристики электростатических полей.
- 2. Ознакомиться с методом моделирования электростатических полей.
- 3. Изучить закон изменения потенциала электростатического поля диполя в дальней зоне.

МЕТОДИЧЕСКОЕ ОБОСНОВАНИЕ РАБОТЫ

Решение ряда задач при конструировании конденсаторов, электрически перепрограммируемой памяти, фотоэлектронных умножителей и т.д. требует знания строения электростатического поля в пространстве между электродами сложной конфигурации.

Электростатическим полем называется электрическое поле неподвижных в выбранной системе отсчета зарядов. Основными характеристиками электростатического поля являются вектор напряженности и потенциал.

Вектором напряженности электрического поля \vec{E} в данной точке поля называется физическая величина, численно равная силе, действующей на единич-

ный положительный заряд, помещенный в ту же точку: $\vec{E}(\vec{r}) = \frac{F(\vec{r})}{r}$. Напряжен-

ность – силовая характеристика электростатического поля. Вектор напряженности электрического поля точечного заряда q в точке с радиусом-вектором \vec{r} может быть определен на основе закона Кулона:

$$\vec{E} = k \frac{q}{r^3} \vec{r}$$
, (1) где k – размерная константа, $k = \frac{q}{4\pi\varepsilon_0} = 9\cdot10^9 \mathrm{H}\cdot\mathrm{M}^2\mathrm{K}\mathrm{J}^{-2}$.

Электростатическое поле может быть наглядно изображено с помощью силовых линий. называются кривые линии, касательные к которым в каждой точке совпадают по направлению с вектором напряженности в той же точке поля (рис.1).

Рис.1 Рис.2

Число линий, пронизывающих единицу площади поверхности, перпендикулярной им, прямо пропорционально величине напряженности электрического поля в данном месте. Линии напряженности начинаются на положительном заряде (или в бесконечности) и заканчиваются на отрицательном заряде (или в бесконечности) (рис.2). Линии напряженности не пересекаются, так как в каждой точке поля вектор \vec{E} может иметь лишь одно направление.

Напряженность поля системы зарядов равна векторной сумме напряженностей полей, которые создавал бы каждый из зарядов системы в отдельности: $\vec{E} = \sum_i \vec{E}_i$. Данное соотношение выражает принцип суперпозиции для вектора напряженности электрических полей. В настоящий момент для визуализации силовых свойств электрического поля используются график векторного поля. Ниже приведен график для суперпозиций полей, который соответствуют системе разноименных точечных зарядов (рис. 3).

Рис.3

Потенциалом ф в данной точке поля называется скалярная физическая величина, численно равная потенциальной энергии, которой обладал бы единичный положительный заряд, помещенный в ту же точку: $\varphi(r) = \frac{W(r)}{a}$. Потенциал электрического поля точечного заряда q в точке с радиусом-вектором \vec{r} может быть определен на основе закона Кулона:

$$\varphi(r) = k \frac{q}{r}.\tag{2}$$

Потенциал – энергетическая характеристика электростатического поля. Если нулевой уровень потенциальной энергии системы зарядов условно выбрать на бесконечности, то выражение (2) представляет собой работу внешней силы по перемещению единичного положительного заряда из бесконечности в рассматриваемую точку B:

$$\varphi(r) = \frac{A_{\infty \to B}}{q} \,. \tag{3}$$

Геометрическое место точек в электрическом поле, которым соответствует одно и то же значение потенциала $\varphi(x,y,z)=const$, называется эквипотенциальной поверхностью. Потенциал поля системы точеных зарядов равен алгебраической сумме потенциалов полей, которые создавал бы каждый из зарядов системы в отдельности: $\varphi = \sum_i \varphi_i$. Данное соотношение выражает *принцип суперпозиции*

для потенциалов электрических полей. В настоящий момент для визуализации скалярной характеристики электрического поля используются контурные графи- κu , которые соответствуют эквипотенциальным линиям $\varphi(x,y)=const.$

На (рис.4). приведен контурный график для суперпозиции потенциалов, которые соответствуют системе двух разноименных точечных зарядов. Эквипотенциальные линии на нем показаны сплошными линиями.

Рис.4

Рассмотрим перемещение единичного заряда вдоль эквипотенциальной линии в произвольной системе зарядов (рис.5): работа сил поля в этом случае равна нулю: $\delta A = -d\varphi = 0$, так как нет изменения потенциальной энергии заряда.

С другой стороны, работу по перемещению единичного заряда можно определить как $\delta A = \overrightarrow{E} \cdot d\overrightarrow{l} = Edlcos(\alpha)$. Решая систему получаем, что $cos(\alpha) = 0$, то есть сила, действующая на единичный заряд, все время перпендикулярна вектору перемещения $d\overrightarrow{l}$. Следовательно, вектор напряженности поля в каждой точке перпендикулярен эквипотенциальной линии, что изображено на графике.

Рис.5

перемещения

 \vec{r}_1 \vec{r}_2 Рис. 6

 $Ecos(\alpha)\cdot dl=E_l\cdot dl=-d\varphi$, как $E_S=-rac{d\varphi}{dl},$ (4) то есть, равна взятому с обратным знаком

 $d\vec{l}$ (рис.6), проекция вектора напряженности поля E_s на это направление находится из ре-

произвольного

то есть, равна взятому с обратным знаком приращению потенциала на единицу длины в направлении вектора $d\vec{l}$. В декартовой системе координат вектор напряженности \vec{E}

может быть разложен по ортонормированному базису: $\vec{E} = \vec{\iota} E_x + \vec{j} E_y + \vec{k} E_z$. Подставляя в это разложение проекции вектора \vec{E} в виде (4), получаем связь между напряженностью \vec{E} и потенциалом электрического поля ϕ :

Для

шения уравнения

$$\vec{E} = -gr\vec{a}d\varphi = -\left(\frac{\partial\varphi}{\partial x}\vec{i} + \frac{\partial\varphi}{\partial y}\vec{j} + \frac{\partial\varphi}{\partial z}\vec{k}\right). \tag{6}$$

Электрическим диполем называется совокупность двух равных по величине разноименных точечных зарядов, расположенных на некотором расстоянии друг от друга. Количественной мерой способности диполя участвовать в электрическом взаимодействии и создавать электрическое поле является дипольный электрический момент $\vec{p} = q \cdot \vec{l}$. Положительным направлением электрического дипольного момента условились считать направление от отрицательного заряда к положительному.

Геометрическое место точек на плоскости, для которых l << r (рис.7) определим как дальняя зона поля диполя. В таком приближении упрощается расчет величины потенциала электростатического поля, который находится по принципу суперпозиции:

Рис. 7

$$\varphi(r) = k \cdot q \cdot \left(\frac{1}{r} - \frac{1}{r}\right) = k \cdot q \cdot \frac{r - r}{r + r} \approx k \cdot q \cdot \frac{l \cos(\theta)}{r^2}, \tag{7}$$

где $r_{-} - r_{+} \approx l \cos(\theta)$, $r_{-} r_{+} \approx r^{2}$, окончательно, получаем

$$\varphi(r,\theta) \approx k \cdot \frac{p \cos(\theta)}{r^2}.$$
 (8)

Применяя определение градиента для напряженности электрического поля $\vec{E} = -gr\vec{a}d\varphi$ в полярной системе координат (r,θ) , можно получить формулу для модуля вектора напряженности электрического диполя из выражения (7), которая будет иметь вид: $E(r,\theta) \approx k \frac{p}{r^3} \sqrt{1 + 3cos^2(\theta)}$. На рис. 3 приведен график векторного поля \vec{E} , который соответствуют системе разноименных точечных зарядов, то есть диполю.

Аналитический расчет поля удается только в наиболее простых случаях. Сложные электростатические поля исследуются обычно экспериментально методом моделирования.

Метод изучения электростатического поля путем создания другого эквивалентного ему поля называется *моделированием*.

Прибегать к изучению эквивалентного поля приходится из-за того, что прямое изучение электростатического поля сопряжено с рядом технических трудностей.

В данной работе экспериментальное изучение строения электростатического поля заменяется простыми и более точными измерениями характеристик поля стационарных токов (постоянных во времени электрических токов). В качестве характеристики такого поля используется вектор плотности тока $\overrightarrow{J_{\rm T}}$.

В соответствии с локальной формулировкой закона Ома: $\overrightarrow{J_{\rm T}} = \sigma \cdot \overrightarrow{E}$, где σ – электропроводность среды. В этом случае, векторы $\overrightarrow{J_{\rm T}}$ и \overrightarrow{E} являются коллинеарными. Электрическое поле стационарных токов, как и электростатическое, является потенциальным. Вектор напряженности \overrightarrow{E} электростатического поля всегда перпендикулярен поверхности проводника.

Вектор \vec{E} поля стационарных токов также перпендикулярен поверхности электродов любой формы, если удельная электропроводность окружающей среды намного меньше удельной электропроводности вещества электродов.

При моделировании эквивалентных векторных полей $\overrightarrow{J_{\mathrm{T}}}$ и \overrightarrow{E} форма и расположение электродов модели и электрических зарядов совпадают (рис.3). Пространство между электродами заполняется однородной слабо проводящей средой, например, электропроводная бумага или лак. Измерения потенциалов между электродами осуществляется с помощью зонда. Искажения, связанные с размерами зонда, оказываются незначительными при измерениях на модели, изготовленной в сильно увеличенном масштабе.

Особенно удобно исследовать с помощью зондов плоские поля, когда потенциал ϕ и вектор \vec{E} напряженности электрического зависят от двух координат. Исследование такого поля требует измерения потенциала или напряженности только в одной из плоскостей. К рассматриваемым полям относятся поле электрического диполя, плоского цилиндрического конденсатора, поле системы параллельных проводников и другие.

Макеты представляют собой плоские поверхности токопроводящего лака или электропроводной бумаги, на которой закреплены плоские металлические электроды, подсоединенные к источнику постоянного тока. Электропроводная бумага — это обычная бумага, в составе которой имеются соприкасающиеся друг с другом частицы графита или сажи.

Поле стационарных токов на токопроводящей поверхности является плоским полем вектора \vec{j} . В данной работе экспериментально изучается закон изменения величины потенциала электростатического поля диполя в дальней зоне (рис.7), эквипотенциальные линии которого изображены на рис.4.

Потенциал в произвольной точке поля диполя измеряется с помощью зонда, соединенного с вольтметром или другим измерительным прибором.

Лабораторная установка состоит из макета плоского электростатического поля диполя, вольтметра, зонда и блока питания. Измерения потенциала точечных металлизированных контактов на слабо проводящей бумаге производятся зондом. Исследуется изменение потенциала диполя в дальней зоне: а) по расстоянию при фиксированном угловом положении; б) по угловому положению зонда при фиксированной дальности.

Измерительный макет представляет собой многослойную систему:

- 1- точечные металлические контакты,
- 2- органическое стекло,
- 3- бумага,
- 4- слабо проводящая бумага,
- 5- плита ДСП.

ЗАДАНИЕ

- 1. Подключить блок питания лабораторной установки и вольтметр к сети 220 В.
- 2. Включить на вольтметре переключатель диапазона 200 мВ.
- 3. На макете выбрать фиксированное направление вектора \overrightarrow{r} (рис.8) и произвести экспериментальные зондовые измерения величины потенциала диполя в нескольких точках вдоль этого направления.
- 4. Данные внести в таблицу 1.
- 5. Следуя указаниям ПРИЛОЖЕНИЯ1 «ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗ-МЕРЕНИЙ, п.1» построить средствами *MS Excel* точеный график зависимости $\varphi(r)$, а также степенную линию тренда для него вида $\varphi(r) = B \cdot r^{-n}$.
- 6. Сделать заключение, о величине показателя степени n и о согласовании экспериментальных данных с законом изменения функции одной переменной $\varphi(r) = k \cdot p \cos(\theta) \cdot r^{-2}$, при угле $\theta = const$.
- 7. На макете выбрать дугу, отвечающую неизменному радиусу r в дальней зоне, и произвести экспериментальные зондовые измерения величины потенциала диполя в нескольких точках вдоль дуги, изменяя угол в пределах $\theta \in [60^{\circ}, 90^{\circ}]$ (рис.9).
- 8. Данные внести в таблицу
- 9. Следуя указаниям ПРИЛОЖЕНИЯ1 «ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗ-МЕРЕНИЙ, п.2» построить средствами MS Excel: а) точеную диаграмму зависимости $\varphi(\theta)$ по экспериментальным данным, б) точечную диаграмму, гладкая кривая с маркерами, вида $\varphi(\theta) = Acos(\theta)$ по рассчитанным значениям функции $cos(\theta)$.
- 10. Сделать заключение, о расположении маркеров экспериментальных данных по отношению к расчетной линии функции $cos(\theta)$.
- 11. Отключить лабораторную установку от сети 220 В.

Таблица 1

№	heta,град	<i>r</i> , м	φ(r), мВ	<i>r</i> , м	heta,град	φ(θ), мВ	$Acos(\theta),$ MB
1.	80	0,20		0,2	60		
2.	80	0,21		0,2	65		
	80	0,30		0,2	90		

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Дать определение основных характеристик электростатического поля.
- 2. Дать определение силовой линии. С какими характеристиками вектора напряженности \vec{E} она связана?
- 3. Дать определение эквипотенциальной поверхности. Как она количественно связана с потенциалом электрического поля ф?
- 4. Доказать ортогональность эквипотенциальных поверхностей и линий напряженности.
- 3. Показать, что линейный интеграл $\int_{L} \vec{E} \cdot \vec{dl}$ не зависит от формы кривой, соединяющей две точки поля. Записать условие потенциальности поля.
 - 4. Получить в общем виде связь между напряженностью \vec{E} и потенциалом φ .
 - 5. Вывести выражение для потенциала диполя в дальней зоне (6).
- 6. Обосновать справедливость использования полей стационарных токов для исследования электростатических полей.
- 7. Пояснить принцип работы используемых макетов. Изобразить картины эквипотенциальных и силовых линий диполя на одном рисунке.

ЛИТЕРАТУРА

- 1. Курс общей физики : учебное пособие : в 5 книгах / И. В. Савельев. Москва : АСТ : Астрель, 2008. 5 кн.
- 2. Курс физики : учебное пособие для втузов / А. А. Детлаф, Б. М. Яворский. Москва : Высшая школа, 1989. 607 с.
- 3. Физика : учебник / И. И. Наркевич, Э. И. Волмянский, С. И. Лобко. Минск : Новое знание, 2004. 680 с.

ПРИЛОЖЕНИЕ 1

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

1. Так как графическое изображении функции двух переменных $\varphi(r,\theta)$ в виде поверхности является сложным, то для упрощения ситуации зафиксируем угол, например, как $\theta=80^\circ$ и рассмотрим построение графика функции одной переменной $\varphi(r)$. На макете выберем фиксированное направление вектора \overrightarrow{r} (рис.8) и произведем зондовые измерения величины потенциала диполя в нескольких точках вдоль этого направления.

Экспериментальные данные должны изменяться по *степенному* закону $\varphi(r) \sim r^{-2}$, поэтому воспользуемся процедурой построения графиков (диаграмм) в приложении *MS Excel*:

- 1.1. Ввести данные в виде столбцов для r и φ . Выделить курсором полученные столбцы. Данные измерений даны в качестве примера.
- 1.2. Выбрать «Вставка точечной диаграммы».
- 1.3. Кликнуть по точкам диаграммы и выбрать «добавить линию тренда». В открывшемся меню выбрать «степенная» и «показать уравнение».

Результаты представлены на диаграмме MS Excel в виде множества дискретных маркеров. На этой же диаграмме построен график гиперболы вида $5,883r^{-2,01}$, что соответствует cmenehhoù линии тренда. Наблюдаем хорошее согласие экспериментальных данных с законом изменения функции одной перементальных данных с законом изменения функции одном изменения фу

ной $\varphi(r) = k \cdot p \cos(\theta) \cdot r^{-2}$, угол θ в этих измерениях *является фиксированным*.

,м	φ, мВ,	A	мВ	φ = 5,88	336r ^{-2,01}	
0,200	70	70				
0,210	61	50				
0,220	59	40				
0,230	53	30			^	
0,240	44	20				
0,250	40	10				
0,260	38	0				r,
0,200	30	0,20	0,22	0,24	0,26	

2. Далее, зафиксируем модуль радиус-вектора r = const и рассмотрим функцию одной переменной $\varphi(\theta)$, а именно, $\varphi(\theta) \approx \left(k \cdot \frac{p}{r^2}\right) \cdot cos(\theta)$. На макете выберем дугу, отвечающую

неизменному радиусу r в дальней зоне, и произведем экспериментальные зондовые измерения величины потенциала диполя в нескольких точках вдоль дуги, изменяя угол в пределах $\theta \in [60^{\circ}, 90^{\circ}]$ (рис.9).

Для проверки ссоответствия экспериментальных данных закону $\varphi(\theta)$ воспользуемся процедурой построения графиков (диаграмм) в приложении *MS Excel*:

- 2.1. Ввести данные в виде столбцов для θ и ϕ . Выделить курсором полученные столбцы (в качестве примера (рис.10)).
- 2.2. Выбрать «Вставка точечной диаграммы».
- 2.3. Результаты представлены на диаграмме *MS Excel* в виде множества дискретных маркеров треугольной формы. Для того чтобы убедиться в принадлежности этого множества функции вида $\varphi(\theta) = A\cos(\theta)$ необходимо:
- 2.4. вычислить значение величины A из условия: измеренное значение потенциала при $\theta=60^\circ$ (максимальное значение $\phi_{\rm max}=\phi(60^\circ)$ равно $A\cdot\cos(60^\circ)=A\cdot\frac{1}{2}$

$$\phi(60^{\circ}) = \phi_{max} = \frac{A}{2},$$
 $A = 2 \cdot \phi(60^{\circ}) = 2\phi_{max};$

- 2.5. ввести второй блок данных $(\theta, \cos(\theta), 456\cos(\theta))$ (в качестве примера (рис.10)).
- 2.6. выбрать «Вставка точечной диаграммы, гладкая кривая с маркерами». Далее, кликнуть на диаграмме выбрать данные, выделить второй блок (рис.10) и выбрать только (θ , 456 $\cos(\theta)$).

Построенная таким образом линия должна проходить близко к маркерам треугольной формы, что свидетельствует о хорошем согласии экспериментальных данных с законом изменения функции одной переменной

$$\varphi(\theta) = A\cos(\theta),,$$

где
$$A = \left(k \frac{p}{r^2}\right)$$
.

Величина радиус-вектора r в этих измерениях является ϕ иксированной.

		_			
θ	ф, мВ		θ	$cos(\theta)$	456cos(θ)
85	45		85	0,08715	39,7404
80	76		80	0,1736	79,1616
75	110		75	0,2588	118,0128
70	148		70	0,342	155,952
65	187		65	0,4226	192,7056
60	228		60	0,5	228

PHC.10

