

Introdução

- Humanidade vem produzindo um volume massivo de dados (aumentando a cada ano)
- Isso se reflete em diversas áreas humanas, incluindo na ciência

Fig. 01: volume de dados (ZB) produzidos na última década

Introdução

- Astronomia: instrumentos modernos, novas técnicas e tecnologias -> grande volume de dados
- Necessidade de metodologias eficientes para lidar com essa quantidade de dados
- Machine learning, algoritmos de classificação, reconhecimento de padrões, simulações de rotas e órbitas

Introdução

- Projeto CHIRP (Continuous High-resolution Image Reconstruction using Patch priors)
- Sincronizou vários telescópios ao redor do planeta para simular uma lente gigante
- Utilizou algoritmos de classificação para diferenciar buracos negros de outros objetos
- Utilizou algoritmos de combinação reconstrução de imagem

Figs. 02 e 03: Event Horizon Telescope, Katie Bouman e a primeira imagem de um buraco negro

Objetivos

Objetivos

- Aplicar implementação de Random Forest em dataset de objetos astronômicos para classificação
- Implementar uma solução multi-thread (OMP)
- Comparar sklearn, C++ single, e C++ multi-thread

- Dataset -> Sloan Digital Sky Survey DR18
 - CSV com 10.000 entradas de 43 features
 - Objetos classificados em STAR, GALAXY e QSO (Quasi-Stellar Object ou Quasar)

- Implementação
 - Python
 - Pré-processamento dos dados
 - Implementação do Sklearn como referência
 - Chamada em módulos C++
 - Avaliação

- Implementação
 - C++
 - Implementação de módulo para Random Forest
 - Modificação do módulo para paralelização com OMP

- Testes
 - Treinamento com 8000 entradas
 - Testes com 2000 entradas
 - 10x execuções -> média aritmética

Resultados

Accuracy, precision, recall, f1-score e tempo de execução

Speedup, eficiência, fração e métrica de Karp-Flatt

Speedup, eficiência, fração e métrica de Karp-Flatt

Considerações

- Trouxe um ganho considerável de performance no quesito tempo
- Em compensação, reduziu a acurácia e precisão
- Não necessariamente relacionado a paralelização, mas sim a implementação escolhida

- Baixa eficiência e valor baixo para métrica de Karp-Flatt indicam utilização ineficiente do paralelismo
 - Núcleos de processamento mal aproveitados
 - Overhead
- A paralelização é promissora, e, aplicada corretamente, pode trazer melhorias significativas aos algoritmos

Alguma dúvida?