Vector Algebra

EE24Btech11022 - Eshan Sharma

	I.	MCOs	WITH	ONE	CORRECT	ANSWE
--	----	-------------	------	-----	---------	-------

1)	The	unit	vector	which	is	orthog	gonal	to	the
				\hat{k} and is			with	vec	tors
	$2\hat{i}$ +	$\hat{j} + \hat{k}$	and \hat{i}	$\hat{i} - \hat{j} + \hat{k}$	is		(200	4S)

- c) $\frac{3\hat{i}-\hat{k}}{\sqrt{10}}$ d) $\frac{4\hat{i}+3\hat{j}-3\hat{k}}{\sqrt{34}}$
- 2) A variable plane at a distance of one unit from the origin cuts the coordinate axes at **A, B** and **C**. If the centroid $\mathbf{D}(x, y, z)$ of triangle ABC satisfies the relation $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k$, then the value k is
 - a) 3

b) 1

- 3) If **a**, **b**, **c** are three non-zero, non-coplanar vectors and $\mathbf{b_1} = \mathbf{b} - \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}^2|} \mathbf{a}$, $\mathbf{b_2} = \mathbf{b} + \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}^2|} \mathbf{a}$, $\mathbf{c_1} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{a}^2|} \mathbf{a} + \frac{\mathbf{b} \cdot \mathbf{c}}{|\mathbf{c}^2|} \mathbf{b_1}$, $\mathbf{c_2} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{a}^2|} \mathbf{a} + \frac{\mathbf{b_1} \cdot \mathbf{c}}{|\mathbf{b_1}^2|} \mathbf{b_1}$, $\mathbf{c_3} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{c}^2|} \mathbf{a} + \frac{\mathbf{b} \cdot \mathbf{c}}{|\mathbf{c}^2|} \mathbf{b_1}$, $\mathbf{c_4} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{c}^2|} \mathbf{a} = \frac{\mathbf{b} \cdot \mathbf{c}}{|\mathbf{b}^2|} \mathbf{b_1}$, then the set of orthogonal vectors is (2005S)
 - a) (a, b_1, c_3)
- c) (a, b_1, c_1)
- b) (a, b_1, c_2)
- d) (a, b_2, c_2)
- 4) A plane which is perpendicular to two planes 2x-2y+z=0 and x-y+2z=4 passes through (1, -2, 1). The distance of the plane from the point (1,2,2) is (2006 - 3M, -1)
 - a) 0

b) 1

- 5) Let $\mathbf{a} = \hat{i} + 2\hat{j} + \hat{k}, \mathbf{b} = \hat{i} \hat{j} + \hat{k}$ and $\mathbf{c} = \hat{i} + \hat{k}$ $\hat{i} + \hat{j} - \hat{k}$. A vector in the plane of **a** and **b** whose projection on **c** is $\frac{1}{\sqrt{3}}$, is (2006-3M,-1)
 - a) $4\hat{i} \hat{j} + 4\hat{k}$
 - b) $3\hat{i} + \hat{j} 3\hat{k}$
 - c) $2\hat{i} + \hat{j} 2\hat{k}$
 - d) $4\hat{i} + \hat{j} 4\hat{k}$
- 6) The number of distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is (2007 - 3marks)

a) 1

c) 3

b) 2

- d) 4
- 7) let \mathbf{a} , \mathbf{b} , \mathbf{c} be unit vectors such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$. Which of the following are correct? 3marks)
 - a) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} = \mathbf{0}$
 - b) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} \neq \mathbf{0}$
 - c) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{a} \times \mathbf{c} \neq \mathbf{0}$
 - d) $\mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}$ are mutually perpendicular
- 8) The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2}$. Then, the volume of the parallelopiped is

- 9) Let two non-collinear unit vectors \hat{a} and \hat{b} form an acute angle. A point P moves so that at any time t the position vector \overrightarrow{OP} (where O is the origin) is given by $\hat{a}\cos t + \hat{b}\sin t$. When **P** is farthest from origin O, let M be the length of \overrightarrow{OP} and \hat{u} be the unit vector along \overrightarrow{OP} . Then,

 - (2008) a) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$ b) $\hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$ c) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$ d) $\hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$
- 10) Let P(3,2,6) be a point in space and Q be a point on the line

$$\mathbf{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k}.$$

Then the value of μ for which the vector PQis parallel to the plane x-4y+3z=1 is (2009)

- c) $\frac{1}{8}$ d) $-\frac{1}{8}$
- 11) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d} are unit vectors such that ($\mathbf{a} \times$ **b**) \cdot (**c** \times **d**) = 1 and $\mathbf{a} \cdot \mathbf{c} = \frac{1}{2}$, then
 - a) a, b, c are non-coplanar

- b) **b**, **c**, **d** are non-coplanar
- c) **b**, **d** are non-parallel
- d) a, d are parallel and b, c are parallel
- 12) A line with positive direction cosines passes through the point P(2, -1, 2) and makes equal angles with the coordinate axes. The line meets the plane 2x + y + z = 9 at point Q. The length of the line segment PQ equals (2009)
 - a) 1

c) $\sqrt{3}$

b) $\sqrt{2}$

- d) 2
- 13) Let **P**, **Q**, **R** and **S** be the points on the plane with position vectors $-2\hat{i} \hat{j}$, $4\hat{i}$, $3\hat{i} + 3\hat{j}$ and $-3\hat{i} + 2\hat{j}$ respectively. The quadrilateral PQRS must be a (2010)
 - a) parallelogram, which is neither a rhombus nor a rectangle
 - b) square
 - c) rectangle, but not a square
 - d) rhombus, but not a square
- 14) Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is (2010)
 - a) x + 2y 2z = 0
 - b) 3x + 2y 2z = 0
 - c) x 2y + z = 0
 - d) 5x + 2y 4z = 0
- 15) If the distance of the point P(1, -2, 1) from the plane $x+2y-2z = \alpha$, where $\alpha > 0$, is 5, then the foot of the perpendicular from P to the plane is (2010)
 - a) $\left(\frac{8}{3}, \frac{4}{3}, \frac{-7}{3}\right)$
 - b) $\left(\frac{4}{3}, \frac{-4}{3}, \frac{1}{3}\right)$
 - c) $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$
 - d) $(\frac{2}{3}, \frac{-1}{3}, \frac{5}{2})$