EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING

MAHITHA S(1904087)

SWATHI D(1904117)

KAVEYA S(1904084)

NAVEENA R(1904096)

LITERATURE SURVEY

S.NO	TITLE	INFERENCE
	Quadir, R., Beeravolu, A.R., Jonkman, M. and De Boer, F., 2021. A comprehensive unsupervised	Implemented five unsupervised algorithms, K-Means Clustering, DB-Scan, I-Forest, and Autoencoder. And integrating them with various feature selection methods. Integrating feature reduction methods with K-Means Clustering algorithm has achieved an overall accuracy of 90% in classifying the clinical data of CKD and Non-CKD.
	Feng, C. and Chen, B., 2019. A machine learning methodology for diagnosing chronic kidney disease. <i>IEEE Access</i> , 8, pp.20991-21002.	Six machine learning algorithms (logistic regression, random forest, support vector machine, k-nearest neighbor, naive Bayes classifier and feed forward neural network) were used to establish models. Among these machine learning models, random forest achieved the best performance with 99.75% diagnosis accuracy. An integrated model that combined logistic regression and random forest by using perceptron, achieved an average accuracy of 99.83% after ten times of simulation.

LITERATURE SURVEY

S.NO	TITLE	INFERENCE
3.	Chen, G., Ding, C., Li, Y., Hu, X., Li, X.,	The Adaptive Hybridized Deep Convolutional Neural Network
	Ren, L., Ding, X., Tian, P. and Xue, W.,	(AHDCNN) is used for the prediction and diagnosis of Chronic Kidney
	2020. Prediction of chronic kidney	Disease. A deep learning system is used for identifying the distinctive
	disease using adaptive hybridized deep	subtypes of lesions from CT images in renal cancer. Different features
	convolutional neural network on the	associated with kidney disease are determined from the noise-free data and
	internet of medical things platform. <i>IEEE Access</i> , 8, pp.100497-100508.	fed in the classifier implemented to identify variations in kidney patterns.
4.	Bhaskar, N. and Manikandan, S., 2019. A	The raw sensor signal is directly given to the deep learning algorithm for
	deep-learning-based system for	predictive decision making. The proposed sensing approach is tested and
	automated sensing of chronic kidney	validated by the physician. The statistical analysis to determine how well
	disease. IEEE Sensors Letters, 3(10),	the proposed sensing method values and traditional urea estimation values
	pp.1-4.	are correlated. A positive correlation is observed is observed between the
		two values with r and R^2 values of 0.9898 and 0.9799 respectively. The
		proposed sensing module can be successfully used with the capabilities of
		deep learning techniques for detecting CKD more effectively than
		traditional methods.
5.	Nishanth, A. and Thiruvaran, T., 2017.	If the important attributes that could help to detect CKD is known then even
	Identifying important attributes for early	people who are not diagnosed CKD also may get a clue of the condition of
	detection of chronic kidney	their kidney from the medical test taken for some other purposes. A
	disease. IEEE reviews in biomedical	weighing vector based on CSP filter and LDA analysis and then
	engineering, 11, pp.208-216.	classification analysis using LDA and KNN classifiers were used to identify
		the dominant attributes. These analyses suggest that when hypertension and
		diabetes mellitus are not available, blood glucose random and blood
		pressure can be used.