

Uni-Mol3: A Multi-Molecular Foundation Model for Advancing Organic Reaction Modeling

Lirong Wu, Junjie Wang, Zhifeng Gao, Xiaohong Ji, Rong Zhu, Xinyu Li, Linfeng Zhang, Guolin Ke, Weinan E

Fanmeng Wang

- Organic reaction, as the cornerstone of the modern chemical industry, plays an irreplaceable role in new material development and drug discovery.
 - It is a process in which molecules are transformed by recombination of atoms.
 - Its cover three elements: reactants, reaction conditions, and products.
 - Reaction conditions are the key variables that determine the reaction path and product yields, including temperature, pressure, catalysts, solvents, reagents, etc.

- While **single-molecular foundation models** like Uni-Mol and Uni-Mol2 have made remarkable progress in the representation learning of individual molecules, their extension to multi-molecular systems has been largely underexplored.
- In this context, various **organic reaction tasks** become particularly challenging, since they not only involve intermolecular interactions but are also heavily influenced by reaction conditions, which cannot be handled by single-molecule models.

■ Challenges

- Despite great progress in applying Transformer architectures with SMILES (i.e., framing organic reaction tasks as language translation problems), SMILES fail to encode full-atom 3D coordinates and stereochemical details.
- The integration of single-molecular grammars with multi-molecular dependencies to build a unified pre-training framework remains a significant hurdle.
- The severe scarcity of high-quality datasets, inconsistent annotation and standardized benchmarks.
- Building on Uni-Mol2's superior single-molecular representation capabilities, this work introduces Uni-Mol3, a novel deep learning framework that enables unified multi-molecular reaction modeling via a hierarchical pipeline.

■ Uni-Mol3

To address the inherent limitation of SMILES in capturing spatial information, we propose a **3D structure-aware molecular language system**, where a multi-scale Uni-Tokenizer quantizes 1D atomic features, 2D graph structures, and 3D coordinates into discrete tokens.

■ Uni-Mol3

➤ Uni-Mol3 employs a **two-tier pre-training strategy**: molecular pre-training learns single-molecular grammars, reaction pre-training captures fundamental principles of multi-molecular reactions, thus forming a progressive learning framework from molecular grammars to reaction mechanisms.

- Overview
- ➤ Mol-Tokenizer: Initialized by the pre-trained Uni-Mol2, we further train a Mol-Tokenizer to quantize multi-scale molecular information into discrete tokens (Finite Scalar Quantization).
- Molecular pre-training: atom-level masked modeling
- Reaction pre-training: molecular-level masked modeling
- ➤ **Backbone**: Uni-Mol3 adopts T5
 (Text-to-Text Transfer Transformer)
 as its backbone.

Stage 1: Molecular Tokenization

Mol-Tokenizer

■ Stage 1: Molecular Tokenization

- > Feature Encoding:
 - We employ RDKit to obtain atom token, atom degree, and atom types, then the single representation of atom *i* is initialized as follows:

$$x_{\text{single}}^{i} = \text{Embedding}\left(x_{\text{token}}^{i}\right) + \text{Embedding}\left(x_{\text{degree}}^{i}\right) + \text{Embedding}\left(x_{\text{type}}^{i}\right)$$

• The pair representation between atom *i* and atom *j* is initialized through bond type, the shortest path distance, and the Euclidean distance encoded by the Gaussian kernel approach with pair type, i.e.,

$$x_{\text{pair}}^{i,j} = \text{Embedding}\left(e^{i,j}\right) + \text{Embedding}\left(x_{\text{SPD}}^{i,j}\right) + x_{\text{dis}}^{i,j}$$

■ Stage 1: Molecular Tokenization

- **Encoder and Decoder:**
 - The encoder and decoder in Mol-Tokenizer adopt the same backbone as Uni-Mol2, each containing several two-track transformer layers.
 - We initialize atom and pair embeddings of the first layer as follows:

$$h_{\text{single}}^{(0)}, h_{\text{pair}}^{(0)} = x_{\text{single}}, x_{\text{pair}}$$

• Then each layer iteratively updates single and pair representations, i.e.,

$$h_{\text{single}}^{(l)}, h_{\text{pair}}^{(l)} = \psi^{(l)}(h_{\text{single}}^{(l-1)}, h_{\text{pair}}^{(l-1)})$$

- Stage 1: Molecular Tokenization
 - > Quantization:
 - We use Finite Scalar Quantization to quantize the single representation of each atom *i* from the encoder into a finite set of codewords.

$$f(h_{\text{single}}^i) = \lfloor L/2 \rfloor \tanh(h_{\text{single}}^i)$$

 $s_i = \text{round} \left(f(h_{\text{single}}^i) \right) \in \mathbb{R}^d$

where each channel in s_i takes one of L unique values. Thereby, we have a codebook $s_i \in \mathcal{A}$ ($|\mathcal{A}| = L^d$) that is the product of d per-channel codebook sets. The vectors in \mathcal{A} can be enumerated by a simple bijection from any s_i to an integer z in $\{1, \dots, L^d\}$.

■ Stage 1: Molecular Tokenization

- > Trarining:
 - We train the Mol-Tokenizer with two complementary tasks, i.e., atom type reconstruction and atom coordinate denoising.
 - For the **decoder**, the discrete 3D token z is used to initialize the single representation through Embedding(z). To prevent leakage of atom type information, we initialize the pair representations as x_{pair} rather than using the output pair representations of the encoder.

$$\mathcal{L}_{\mathrm{total}} = \mathcal{L}_{\mathrm{type}} + \mathcal{L}_{\mathrm{coor}} + \mathcal{L}_{\mathrm{distance}}$$

Stage 2: Molecular Pre-training

- To enable the model to learn the molecular grammars and chemical semantic space, we first pre-train Uni-Mol3 at the single-molecular level.
- We first transform each input molecule into **corresponding 3D tokens** using the trained Uni-Tokenizer, i.e.,

$$Z = \{z_1, z_2, \dots, z_N\} = \text{Uni-Tokenizer}(M)$$

- The **encoder** takes the masked 3D tokens \hat{Z} as input to generate a conditional embedding c
- The **decoder** generates 1D smiles X autoregressively under the condition c with the following optimization objective:

$$\mathcal{L}_{\text{Mol-Pre}} = -\sum_{i=1}^{N} \log p \left(x_i \mid x_1, x_2, \dots, x_{i-1}, \mathbf{c} \right)$$

■ Stage 3: Reaction Pre-training

- To enable the model to learn the syntax (reaction rules) and semantics (chemical meaning) of the chemical reaction, we further extends the pretraining from the single-molecular level to the multi-molecular level.
- We use the **same pretraining pipeline** as in molecular pretraining, but replace atom-level masking modeling with molecule-level masking modeling.

$$Z_{i} = \text{Uni-Tokenizer}(M_{i}), \quad \forall M_{i} \in \mathcal{R}.$$

$$Z_{\text{Reac}} = \left[Z_{1}, Z_{2}, Z_{3}, \cdots, Z_{|\mathcal{R}|}\right]$$

$$\widehat{Z}_{\text{Reac}} = \left[[M], Z_{2}, [M], \cdots, Z_{|\mathcal{R}|}\right]$$

$$\mathcal{L}_{\text{Reac-Pre}} = -\sum_{i=1}^{|\mathcal{R}|} \sum_{j=1}^{N_{i}} \log p\left(x_{i,j} \mid x_{i,1}, x_{i,2}, \dots, x_{i,j-1}, \{x_{i-1,k}\}_{k=1}^{N_{i-1}}, \dots, \{x_{1,k}\}_{k=1}^{N_{1}}, \mathbf{c}\right)$$

■ Stage 4&5: Fine-tuning and Inference

- For generative tasks, such as product prediction, retrosynthetic prediction, and condition generation, the decoder will be directly used to generate the target molecules in an autoregressive manner.
- For regression or classification tasks, a separate prediction head is used to predict the targets from the encoder's output.
- To distinguish between different tasks, a task-specific prefix token is added as a prompt to the front of the 3D token sequence output by the Uni-Tokenizer.

- Stage 4&5: Fine-tuning and Inference
 - > We mainly focuses on four representative reaction tasks:

Here, **Product Prediction** comprises two subtasks. One is labeled with the prompt token < forward-sep >, where reactants and conditions are input as separate entities. The other is labeled with the prompt token <forward-mixed>, indicating that reactants and conditions are mixed in input.

Datasets

- > Single-molecular modeling (i.e., Mol-Tokenizer and molecular pre-training)
 - Uni-Mol dataset, containing ~19M molecules, primarily from the ZINC and Pubmed databases.

> Reaction Pretraining

- We use a large-scale reaction dataset derived from the Pistachio database developed by NextMove Software.
- After preprocessing (removing reactions involving invalid molecules and those containing molecules with more than 80 atoms), we obtain a new Pistachio-full dataset containing 11,973,789 reactions.
- We further split 10,000 reactions individually for downstream task testing, i.e., Pistachio-FP, Pistachio-RS, Pistachio-CG.

高級人工智能学院 Gaoling School of Artificial Intelligence

Datasets

> Downstream Tasks

Table 1: The statistical information of datasets in this work.

Dataset	# Train	# Valid	# Test	# All	Downstream Task
USPTO-MIT [25] SMol-Reactions-FP [36] Pistachio-FP	407,791 116,360 11,963,789	29,915 - -	39,876 943 10,000	477,582 117,303 11,973,789	Product Prediction Product Prediction Product Prediction
USPTO-50k [40] SMol-Reactions-RS [36] Pistachio-RS	40,022 128,684 11,963,789	5,004 - -	5,004 1,000 10,000	50,030 129,684 11,973,789	Retrosynthesis Retrosynthesis Retrosynthesis
USPTO-500-MT [15] USPTO-Condition [41] Pistachio-CG	116,360 543,854 9,668,808	12,937 67,964	14,238 67,992 7,997	143,535 679,810 9,676,805	Condition Generation Condition Generation Condition Generation
Buchwald-Hartwig Test1 Buchwald-Hartwig Test2 Buchwald-Hartwig Test3 Buchwald-Hartwig Test4	3,057 3,055 3,058 3,055	- - -	898 900 897 900	3,955 3,955 3,955 3,955	Reaction Yield Prediction Reaction Yield Prediction Reaction Yield Prediction Reaction Yield Prediction

For the Pistachio-CG dataset, we further filter out reactions whose conditions are unavailable or unknown, resulting in fewer samples.

Metrics

- ➤ Regression Tasks (i.e., Reaction Yield Prediction)
 - Mean Absolute Error (MAE) & Mean Squared Error (MSE) & Coefficient of Determination (\mathbb{R}^2)
- ➤ Generative Tasks (i.e., Product Prediction, Retrosynthesis and Condition Generation)
 - Top-1 Accuracy
 - Levenshtein Distance (LEV), measuring the minimum edits (insert, delete, substitute) to align two SMILES strings
 - Tanimoto coefficient of molecular molar fingerprinting (MFP-TC) between predicted and ground-truth SMILES
 - Invalidity Rate

高級人工智能学院 Gaoling School of Artificial Intelligence

■ Task 1: (Forward) Product Prediction

Table 3: Performance comparison for product prediction on the USPTO-MIT dataset, where reactant-condition separated and mixed are separately evaluated. The best and second results are marked as **bold** and <u>underline</u>. (same for all the tables below)

Model	U	MIT (Mixe	ed)	USPTO-MIT (Seperated)				
1,10 401	Top-1 (%)	LEV	MFP-TC	Invalid (%)	Top-1 (%)	LEV	MFP-TC	Invalid (%)
Molformer [13]	88.3	0.543	0.971	0.32	89.0	0.445	0.975	0.26
Chemformer [27]	88.6	0.514	0.976	0.25	89.8	0.428	0.979	0.17
T5Chem [15]	88.9	0.527	0.974	0.20	90.2	0.414	0.981	0.10
Uni-Mol3 (ours)	89.6	0.485	0.979	0.15	90.8	0.387	0.983	0.15

Table 4: Performance comparison for product prediction on the Pistachio-FP dataset, where reactant-condition separated and mixed are separately evaluated.

Model	P	-FP (Mixe	ed)	Pistachio-FP (Seperated)				
Model	Top-1 (%)	LEV	MFP-TC	Invalid (%)	Top-1 (%)	LEV	MFP-TC	Invalid (%)
Molformer [13]	88.3	0.637	0.977	0.36	90.3	0.529	0.982	0.33
Chemformer [27]	90.3	0.575	0.980	0.18	91.8	0.447	0.985	0.14
T5Chem [15]	90.9	0.560	0.982	<u>0.15</u>	92.1	0.428	0.986	0.18
Uni-Mol3 (ours)	91.7	0.462	0.985	0.09	93.0	0.374	0.988	0.07

 Table 5: Results for product prediction on the SMol-Reactions-FP dataset.

Model		SMol-Re	eactions-Fl	P
1,10 (10)	Top-1 (%)	LEV	MFP-TC	Invalid (%)
Molformer [13]	32.8	10.314	0.646	4.54
Chemformer [27]	36.9	7.849	0.718	0.72
T5Chem [15]	<u>37.2</u>	8.030	0.735	0.69
PRESTO [36]	35.4	9.582	0.685	1.65
Uni-Mol3 (ours)	38.7	7.014	0.732	0.64

Uni-Mol3 outperforms existing baselines significantly—particularly in the LEV and invalidity rate metrics

■ Task 2: Retrosynthetic Prediction

Table 6: Retrosynthesis results on the Pistachio-RS and USPTO-50k datasets.

Model		achio-RS		USPTO-50k				
Model	Top-1 (%)	LEV	MFP-TC	Invalid (%)	Top-1 (%)	LEV	MFP-TC	Invalid (%)
Molformer [13]	72.6	2.554	0.953	0.56	42.6	4.486	0.911	0.79
Chemformer [27]	74.6	2.374	0.957	0.24	52.3	4.218	0.908	0.16
T5Chem [15]	75.2	2.247	0.959	0.32	46.2	3.959	0.916	0.32
Uni-Mol3 (ours)	76.9	2.145	0.963	0.18	49.0	3.653	0.924	0.06

Table 7: Results for retrosynthetic prediction on the SMol-Reactions-RS dataset.

Model	SMol-Reactions-RS								
Model	Top-1 (%)	LEV	MFP-TC	Invalid (%)					
Molformer [13]	23.9	15.382	0.659	2.73					
Chemformer [27]	26.5	12.017	0.714	0.24					
T5Chem [15]	28.0	10.593	0.758	0.26					
PRESTO [36]	27.7	11.229	0.745	1.15					
Uni-Mol3 (ours)	29.1	9.933	0.786	0.20					

Uni-Mol3 demonstrates remarkable adaptability in the retrosynthetic prediction task, particularly excelling on the SMol-Reactions-RS dataset

■ Task 3: Condition Generation

Table 8: Results for condition generation on the Pistachio-CG dataset.

Model	Pistachio-CG							
1,10 (10)	Top-1 (%)	LEV	MFP-TC	Invalid (%)				
Molformer [13]	40.4	7.272	0.810	0.11				
Chemformer [27]	42.1	6.947	0.819	0.04				
T5Chem [15]	43.3	6.705	0.823	0.06				
Uni-Mol3 (ours)	44.4	6.482	0.827	0.03				

Table 9: Results for condition generation on USPTO-500-MT and USPTO-Condition.

•	Model	USPTO-500-MT				USPTO-Condition			
		Top-1 (%)	LEV	MFP-TC	Invalid (%)	Top-1 (%)	LEV	MFP-TC	Invalid (%)
	Molformer [13]	19.9	9.773	0.694	0.068	25.6	5.439	0.739	0.031
	Chemformer [27]	24.1	8.655	0.707	0.027	29.3	5.215	0.744	0.012
	T5Chem [15]	24.9	8.541	0.712	0.012	<u>29.8</u>	5.087	0.747	0.004
Ī	Uni-Mol3 (ours)	24.5	8.523	0.715	0.007	30.5	<u>5.157</u>	0.748	0.001

Uni-Mol3 outperforms all baseline models across all four evaluation metrics, highlighting its comprehensive superiority in handling open-ended condition generation.

■ Task 4: Reaction Yield Prediction

Table 10: Results for yield prediction on 4 test sets of the Buchwald-Hartwig dataset.

Model		Test1			Test2		
	MAE ↓	$\mathrm{RMSE}\downarrow$	$R^2 \uparrow$	MAE ↓	$\mathrm{RMSE}\downarrow$	$R^2 \uparrow$	
DRFP	8.224	12.048	0.810	7.906	11.749	0.828	
Chemprop	8.531	12.406	0.798	9.444	12.710	0.780	
YieldBert	6.705	10.849	0.838	7.457	10.631	0.842	
T5Chem	8.145	11.837	0.815	6.075	8.784	0.895	
Uni-Mol3 (ours)	5.867	9.680	0.874	5.420	8.170	0.909	
Model		Test1		$\mathrm{Test2}$			
2,20,202	MAE ↓	$\mathrm{RMSE}\downarrow$	$R^2 \uparrow$	MAE ↓	$\mathrm{RMSE}\downarrow$	$R^2 \uparrow$	
DRFP	9.525	14.880	0.719	13.240	19.037	0.496	
Chemprop	10.340	15.280	0.708	15.783	20.155	0.429	
YieldBert	9.109	14.136	0.746	13.045	18.639	0.503	
T5Chem	8.977	13.892	0.765	12.952	18.711	0.610	
Uni-Mol3 (ours)	8.856	13.506	0.769	12.740	18.245	0.525	

Uni-Mol3 demonstrates overall superiority over baseline models, with the top performance on 11 out of 12 metrics

Ablation Study and Analysis

- We conduct analysis of the first three stages in the hierarchical, including Uni-Tokenizer, molecular pre-training, and reaction pre-training.
- Here, for the "w/o Uni-Tokenizer" set of experiments, we directly use SMILES strings as inputs.

Fig. 5: Ablation study on Uni-Tokenizer, molecular pre-training, and reaction pre-training on three Pistachio datasets with the Levenshtein Distance (LEV) as a metric.

Conclusion

- ➤ We propose Uni-Mol3, a deep learning framework for multi-molecular organic reaction modeling.
- ➤ By integrating 3D structure-aware molecular tokenization, hierarchical pre-training, and prompt-aware fine-tuning, the model achieves state-of-the-art performance across diverse reaction tasks.
- ➤ By unifying single and multi-molecular modeling, Uni-Mol3 defines a versatile framework for intelligent reactions, that promises to advance data-driven innovation in organic synthesis and accelerate its translation to industrial applications.

Fanmeng Wang 2025-9-5