Ryan Brinkley

CSE 408 Project 2 Report

All of the algorithms worked well in categorizing the different images based on their similarity in color or edges. Pokémon are often very colorful and have several colors that make up their image. This often confused the algorithms. Average Pixel Color had some issues when there several different colors and shades of colors in an image, which resulted in a very mottled and dull average color for the image. This resulted in many of the outputs being different from what you would typically expect. For example, a picture of Charmander (4.png) is very bright and orange, but brown Pokémon like Sandile (551.png) were returned when using SSD to determine the relationship. Spatial Grid of Average Pixel Colors had similar issues when there were several different colors in the same grid space. This was most likely due to the reduction in size of the original matrix to make the submatrices. When this is done, some of the detail is lost in the image, which would ultimately affect the output. Color Histograms didn't experience this problem as much as the first two algorithms, but there were still a few issues where large numbers of pixels with colors the same as the input image would result in incorrect outputs. For example, Charmander (4.png) has many oranges and tan colors, but the outputs of Servine (496.png) and Persian (53.png) aren't close at all to the input. Edge Energy in a Spatial Grid worked well in finding Pokémon with similar edges to the input image, but Pokémon are often complex in the different edges in the image. This resulted in some outputs that weren't completely consistent with the main shape of the input. Charmander (4.png) produced Charmeleon (5.png) which is very similar, but it also produced Spheal (363.png) which isn't all that similar in shape. The best feature extraction would take both color and shape into consideration in order to more accurately capture the innate qualities of the image and not ignore important details.

The Angle Between Vectors knn classification appeared to work better than SSD for most of the input images used. This was most likely due to the more complex association between the vectors. SSD only uses distance, and the exclusion or inclusion of similar or dissimilar pixel colors can greatly alter the distance and the resulting output. Angle Between Vectors takes into consideration additional qualities and computations on the vectors, which results in a more refined classification of the images based on their features.

The output quality was usually very good when the Pokémon used a consistent color and didn't have any colors that were on different ends of the color spectrum. This would confuse the program. More often than not evolution lines were not outputted. This was often due to the different base colors that many of the evolution lines use. For example, Charmander (4.png) is a basic orange, but its family members are a bright red or include blues that confused the system. Sewaddle (540.png) did produce all of its family members when using the Color Histograms approach due to their highly similar color palettes. Additionally, the database images had the Pokémon in very different stances and positions that were not similar base input. This made it very difficult for evolution lines to be returned when using the Edge Energy in a Spatial Grid approach. If the database images were more consistent with the official images for the Pokémon, the system would be consistent as they are typically in similar positions that would make the edge energy better. To further test the accuracy and validity of the tests, one could measure the percentage of test inputs that result in an evolution family member in the output. Or, one could measure the precision based on the relative similarity between the outputs and the input image.

The PCA feature embedding seemed to work fairly well. The 1st principal component was graphed along the x axis, and the 2nd principal component was graphed along the y. It is somewhat difficult to determine the correctness of the plot without knowing how the coordinates are evaluated, but generally it appears to be correct. Most of the very similar Pokémon were clumped together in one section of the graph, and some of the more unique Pokémon were farther away from the center of the mass. In addition, evolution lines were generally very close to one another on the plot. For example, Ekans and Arbok are close to one another along the same y axis. A reasonable evaluation metric could be the average distance between a Pokemon and its evolution family members. You would generally expect this to be a fairly low distance if this was a successful extraction of features.

Below are the results from the 10 different image inputs with both SSD and Angle Between Vectors knn classification.

- Average Pixel Color
 - o 4.png
 - SSD

- o 25.png
 - SSD

- o 39.png
 - SSD

Angle Between Vectors

- o 63.png
 - SSD

- o 129.png
 - SSD

- o 147.png
 - SSD

Angle Between Vectors

- o 252.png
 - SSD

246.png	
496.png	
495.png	
52.png	
410.png	
280.png	
540.png	
397.png	
253.png	
404.png	

- o 374.png
 - SSD

403.png
633.png
501.png
280.png
574.png
197.png
447.png
575.png
525.png
587.png

- o 540.png
 - SSD

495.png	
548.png	
133.png	
399.png	
252.png	
542.png	
433.png	
587.png	
559.png	
532.png	

- o 572.png
 - SSD

15.png	
627.png	
530.png	
523.png	
576.png	
405.png	
544.png	
515.png	
445.png	
174.png	

470.png
496.png
495.png
246.png
548.png
610.png
547.png
172.png
549.png
477.png

Angle Between Vectors

446.png
195.png
376.png
204.png
502.png
375.png
131.png
483.png
134.png
471.png

Angle Between Vectors

549.	ong	
455.	ong	
135.	ong	
470.	ong	
496.	ong	
181.	ong	
495.	ong	
548.	ong	
172.	ong	
25.pr	ng	

15.png
611.png
355.png
411.png
493-normal.png
493.png
627.png
587.png
522.png
478.png

- Spatial Grid of Average Pixel Colors
 - o 4.png
 - SSD

- o 25.png
 - SSD

- o 39.png
 - SSD

- o 63.png
 - SSD

Angle Between Vectors

587.png
410.png
548.png
135.png
610.png
524.png
499.png
607.png
541.png
40.png

Angle Between Vectors

517.png
363.png
572.png
529.png
546.png
304.png
281.png
52.png
544.png
361.png

Ę	559.png
ľ	135.png
1	53.png
1	390.png
1	311.png
1	391.png
ľ	136.png
ľ	179.png
13	305.png
4	170.png

- o 129.png
 - SSD

- o 147.png
 - SSD

453.png
531.png
68.png
512.png
553.png
92.png
493-normal.png
493.png
134.png
148.png

- o 252.png
 - SSD

246.png	
133.png	
495.png	
498.png	
511.png	
552.png	
443.png	
403.png	
610.png	
172.png	

- o 374.png
 - SSD

Angle Between Vectors

512.png
453.png
531.png
66.png
633.png
68.png
94.png
15.png
92.png
639.png

Angle Between Vectors

246.png
133.png
573.png
443.png
533.png
636.png
595.png
498.png
495.png
511.png

624.png
280.png
529.png
575.png
471.png
524.png
446.png
42.png
53.png
544 nng

- o 540.png
 - SSD

- o 572.png
 - SSD

- Color Histograms
 - o 4.png
 - SSD

- o 25.png
 - SSD

Angle Between Vectors

363.png
517.png
613.png
39.png
281.png
574.png
529.png
179.png
501.png
515.png

Angle Between Vectors

129.png	
559.png	
513.png	
433.png	
133.png	
136.png	
496.png	
52.png	
390.png	
595.png	

559.png
548.png
179.png
433.png
390.png
52.png
15.png
172.png
358.png
280.png

- o 39.png
 - SSD

- o 63.png
 - SSD

- o 129.png
 - SSD

- o 147.png
 - SSD

Angle Between Vectors

Angle Between Vectors

513.png
4.png
559.png
391.png
135.png
133.png
433.png
493-normal.png
493.png
496.png

305.png
493-normal.png
493.png
304.png
573.png
363.png
613.png
180.png
134.png
607.png

- o 252.png
 - SSD

- o 374.png
 - SSD

- o 540.png
 - SSD

- o 572.png
 - SSD

Angle Between Vectors

253.png
41.png
403.png
529.png
501.png
280.png
610.png
495.png
607.png
627.png

Angle Between Vectors

541.png
542.png
624.png
559.png
133.png
495.png
433.png
52.png
548.png
280.png

ſ	246.png
I	52.png
l	196.png
ı	574.png
l	53.png
ı	150.png
l	358.png
l	66.png
l	15.png
ı	546.png

- Edge Energy in a Spatial Grid
 - o 4.png
 - SSD

5.png	3
363.p	ong
501.p	ong
613.p	ong
608.p	ong
66.pr	ng
513.p	ong
517.p	ong
498.p	ong
252.p	ong

- o 25.png
 - SSD

- o 39.png
 - SSD

540.png
495.png
572.png
399.png
575.png
542.png
397.png
613.png
513.png
574.png

- o 63.png
 - SSD

Angle Between Vectors

548.png
587.png
374.png
524.png
624.png
280.png
53.png
559.png
529.png
390.png

Angle Between Vectors

54	10.png
49	5.png
53	32.png
57	5.png
57	2.png
28	31.png
55	54.png
51	15.png
52	2.png
47	0.png

4	146.png
Ę	517.png
6	609.png
4	110.png
3	361.png
1	136.png
6	325.png
Ę	530.png
Ę	560.png
6	608.png

- o 129.png
 - SSD

- o 147.png
 - SSD

- o 252.png
 - SSD

- o 374.png
 - SSD

Angle Between Vectors

Angle Between Vectors

573.png
608.png
393.png
390.png
363.png
246.png
304.png
595.png
447.png
204.png

o 540.png

SSD

39.png
495.png
574.png
399.png
613.png
572.png
513.png
501.png
498.png
433.png

o 572.png

SSD

Angle Between Vectors

495.png
39.png
52.png
574.png
572.png
513.png
554.png
515.png
390.png
281.png

