Лабораторная работа №2

Продвинутые методы

https://github.com/GooddiLK/AllEDa

Пластинин Алексей М3237 t.me/plstnn Малков Александр М3237 $t.me/AlexM_37$ Кинзябулатов Эдуард М3237 t.me/Eduard7000 Кулебакин Дмитрий М3237 $t.me/SinDat_tg$

Цель работы:

Сравнить эффективность работы различных методов поиска минимума в зависимости от вида функций.

• Градиентный спуск с постоянным шагом, экспоненциальным затуханием,

Используемые методы:

- условиями Армихо и Вольфе. Метод Ньютона с постоянным шагом и поиском шага по условию Вольфе.
- Newton-CG & BFGS из scipy.optimize.
- Реализация BFGS

• Задается начальная точка х 0. Инициализируется начальная аппроксимация

- матрицы Гессе H_0 . Вычисляется градиент функции в точке $x_0: \nabla f(x_0)$ • На каждой итерации алгоритм вычисляет направление движения:
- $d_k = -H_k \nabla f(x_k)$ Для поиска шага используется backtracking line search для нахождения

подходящего шага α_k , удовлетворяющего условию Армихо:

 $f(\boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k) \leq f(\boldsymbol{x}_k) + c_1 \alpha_k \nabla f(\boldsymbol{x}_k)^T \boldsymbol{d}_k, (c_1 \in (0, 1))$ Обновление точки: $x_{k+1} = x_k + \alpha_k d_k$

Обновление матрицы H_k :

 $\begin{aligned} & H_{k+1} = \left(I - \rho_k s_k y_k^T\right) H_k \left(I - \rho_k y_k s_k^T\right) + \rho_k s_k s_k^T \\ & \left(s_k = x_{k+1} - x_k, \ y_k = \nabla f(x_{k+1}) - \nabla f(x_k), \ \rho_k = \frac{1}{y_k^T s_k}\right) \end{aligned}$ • Результатом является последняя принятая точка х_k - приближение локального минимума функции

Реализация метода Ньютона Ньютон работает следующим образом - на каждой итерации он вычисляет значение, производную и гессиан в точке

Далее с помощью формулы вычисляем $\mathbf{p} = - \left(\nabla^2 f(x_k) \right)^{-1} \nabla f(x_k)$ а в направлении

 $-\nabla m(x_k)$ вычисляем минимум внутри доверительного региона далее находим пересечение линии от найденного минимума до р с границой реиона доверия - это и будет наш кандидат на x_{k+1} но чтобы понять, насколько хорошо мы аппроксимировали нашей моделью f внутри доверительного региона считаем

 $\frac{\operatorname{result} - f(x_{k+1})}{\operatorname{result} - m(x_{k+1} - x_k)}$ - это показатель того, насколько хорошо мы аппроксимировали функцию в delta-

функции до 2 члена ряда Исследование:

• $x^2 + y^2$ $3x^2 - 4xy + 10y^2$

• $(x^2+y-11)^2+(x+y^2-7)^2$ - Функция Химмельблау • $20+(x^2-10\cos(2\pi x))+(y^2-10\cos(2\pi y))$ - Функция Растригина

Рассматриваемые функции:

Nan

доверительной области

BFGS

scipy BFGS

scipy Newton-CG

Newton Вольфе

Newton Эксп

- Лучшие значения гиперпараметров, подобранные с помощью optuna:

Константный шаг, Экспоненциальный, критерии Армихо и Вольфе

Nan

 λ

Nan

Начальная точка - (100, -200).

0,411.6e-70.490.055.8e-30.498.4e-70.071,00 0.770.080.180.050.180.822.4e-66.2e-41.4e-10 F_2

0.57

 α_0

0.05

1.4e-31.2e-30.030.210.510.095.7e-42.7e-73.2e-41.8e-8BFGS, Newton с критерием Вольфе $\Delta_{\underline{ ext{max}}}$ $\Delta_{\underline{\min}}$ Δ α_0 c_1 q α_0 c_2 c_1 η F_1 1.02 0.010.040.273e-10 0.31 | 1.1e-6 0.012.1 0.065.7 0.570.07

2.9e-9

1.7e-3

 α_0

1.93

Итерации

8

2

2

2

3

f

9

6

2

2

3

7

6

2

2

3

1.5e-9

 c_1

2.1e-8

2.5e-6

4.5e-6

5.7e-4

5.7e-6

1.4e-4

0.03

0.07

2.1e-3

0.02

1.1

1.16

0.04 | 3.6e-5 | 0.02 | 1.2e-6 9.20.98 | 1.6e-4 0.011.9e-5 -0.50.35 | 1.4e-6 | 3.2e-5 | 4.5e-3 |2.18.6e-6 | 0.04 | 1.1e-3 0.200.95

пересчитывать шаг с уменьшенным доверительным радиусом)

 γ - trust_changing_multiply_value - множитель для изменения радиуса

F_4	4.66	2.1e-4	6.8e-4	0.47	-	3.80	4.7e-8	0.15	7.6e-5	0.05	0.53	0.02	2.3e-3	4.59
Δ_{\max} - trust_upper_bound - верхняя граница того, как хорошо предсказывает наша														
модель функции (если выше неё, значит можем расширить диапазон доверия)														
Δ_{\min} - trust_lower_bound - минимальное значение достоверности модели (если ниже														
неё, то диапазон доверия уменьшается)														
η - trust_no_trust_bound - минимальное значение достоверности модели для														
принятие результата как удовлетворяющего (если ниже, то приходится														

Постоянный (8.2e-8, -1.6e-7)13 0 12 7 (5.5e-9, -1.1e-8)0 6 Экспоненциальный (2.2e-10, -4.4e-10)7 7 6 Армихо Вольфе (-8.4e-10, 1.7e-9)6 6 6

Point

(7.2e-9, -1.4e-8)

(-2.1e-14, 2.8e-14)

(0, 0)

(0, 0)

(0, 0)

Newton Конст	(0, 0)	3	3	3
-	-	-	-	-
Постоянный	(-3.3e-8, 3.3e-7)	44	0	43
Экспоненциальный	(-3.0e-8, 1.4e-7)	32	0	31
Армихо	(9.8e-8, -3.7e-7)	69	341	68
Вольфе	(1.2e-7, 1.7e-8)	17	51	51
BFGS	(-4.0e-9, -1.4e-9)	10	12	9
scipy BFGS	(2.2e-16, -2.2e-16)	5	10	10
scipy Newton-CG	(0, 0)	7	7	7
Newton Вольфе	(0, 0)	2	2	2
Newton Эксп	(0, 0)	3	3	3
Newton Конст	(0, 0)	3	3	3
-	1	ı	_	-
Постоянный	Nan	ı	-	-
Экспоненциальный	Nan	-	-	-
Армихо	(-3.78, -3.28)	21	129	20
Вольфе	(3.58, -1.84)	35	278	278
BFGS	(60.4, 32.8)	4	10	3
scipy BFGS	(-2.80, 3.13)	34	44	44
scipy Newton-CG	(3.58, -1.84)	17	18	18
Newton Вольфе	(2.98, 2.04)	5000	6671	5000
Newton Эксп	(2.94, 2.04)	2886	4319	2886
Newton Конст	(-3.65, 5.04)	668	1013	668
-	1	ı	-	-
Постоянный	(-4.17, -1.34)	5001	0	5000
Экспоненциальный	(2.5e-7, 2.5e-7)	2738	0	2737
Армихо	(-1.98, 3.98)	31	89	30
Вольфе	(-1.98, 5.97)	30	250	250
BFGS	(-2.98, 1.00)	12	51	11
scipy BFGS	(-21.9, 19.0)	12	22	22
scipy Newton-CG	(-5.96, -1.99)	12	30	30
Newton Вольфе	(3.98, 3.98)	3	4	3
Newton Эксп	(9.95, 7.96)	7	8	7
Newton Конст	(9.95, 7.96)	4	5	4
вских методах колич ой.	ество вызовов Гесси	ана равно і	кол-ву	вызоі

В Ньютоно BOB производно

Bыводы:

На простых функциях методы Ньютона работают лучше всего, достигая минимума за 1-2 итерации. Градиентные методы тоже работают, но требуют больше итераций.

Для функции Химмельблау:

Градиентные методы с постоянным/экспоненциальным шагом не сошлись.

Методы с условиями Армихо и Вольфе нашли минимум с разной эффективностью. Newton-CG и BFGS из scipy показали хорошие результаты.

Собственная реализация BFGS не справилась.

Для функции Растригина: Градиентные методы часто застревают в локальных минимумах.

Методы Ньютона сходятся быстро, но не к глобальному минимуму. Никто не справился с задачей. (Кроме экспоненциального шага, как так).