MATH 20700 (Honors Analysis in \mathbb{R}^n I) Notes

Steven Labalme

October 11, 2021

Contents

Ι	Linear Algebra	1
1	Basic Notions	2
2	Systems of Linear Equations	4
3	Determinants	6
4	Introduction to Spectral Theory	8
5	Inner Product Spaces	10
\mathbf{R}	eferences	15

List of Figures

3.1	Visualizing properties of determinants	(
5.1	The unit hall of norms corresponding to $n=1,2,\infty$	1

Part I Linear Algebra

Basic Notions

- 9/27: Vector space: Basically, a set for which you have an addition and multiplication.
 - \mathbb{F}^d is used for \mathbb{R}^d or \mathbb{C}^d in Treil (2017).
 - \mathbb{P}_n is the vector space of polynomials up to degree n.
 - C([0,1]) is the set of continuous functions defined on [0,1], an infinite-dimensional vector space.
 - Generating set: A subset of a vector space, all linear combinations of which generate the vector space. Also known as spanning set.
 - Any element of VS is a linear comb. of elements of the generating set.
 - Linearly independent (list): A list of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k \in V$ such that $\sum_{i=1}^k \alpha_i \mathbf{v}_i = 0$ implies $\alpha_i = 0$ for all i.
 - Base: A generating set consisting of linearly independent vectors.
 - Any element of a VS can be written as a unique linear combination of the vectors in a base.
 - If $\mathbf{x} = \sum_{i=1}^k \alpha_i \mathbf{v}_i = \sum_{i=1}^k \beta_i \mathbf{v}_i$, then $\alpha_i = \beta_i$ for all i.
 - Linear transformation: A function $T: X \to Y$, where X, Y are VSs, such that

$$T(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha T \mathbf{x} + \beta T \mathbf{y}$$

for all $\mathbf{x} \in X$, $\mathbf{y} \in Y$.

- Examples of linear transformations:
 - Consider \mathbb{P}_n . Let $Tp_n = p'_n$. This T is linear.
 - Rotation in \mathbb{R}^d .
 - \blacksquare Think graphically about two vectors $\mathbf{x},\mathbf{y}.$
 - Rotating and summing them is the same as summing and rotating. Same for scaling.
 - Thus, rotation is actually linear!
 - Reflection as well.
- Consider $T: \mathbb{R} \to \mathbb{R}$.
 - Any linear map on the line is a line.
 - We must have $Tx = \alpha x$: $Tx = T(1x) = xT(1) = x\alpha$.
- Consider $T: \mathbb{R}^n \to \mathbb{R}^m$ linear.

- Any linear map between \mathbb{R}^n and \mathbb{R}^m is linear.
- Thus, $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$, where A is an $m \times n$ matrix.
- To find A, do the same calculation as for $Tx = \alpha x$ but more carefully:
 - Let $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ be a basis.
 - So $\mathbf{x} = \sum_{i=1}^{n} \alpha_i \mathbf{e}_i$.
 - Thus, $T\mathbf{x} = \sum_{i=1}^{n} \alpha_i T(\mathbf{e}_i)$.
 - Each $T(\mathbf{e}_i)$ is part of the matrix that we multiply by the column vector representing \mathbf{x} .
- Multiplication of matrices is equivalent to composition of linear maps.
- Consider $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^m \to \mathbb{F}^r$.
 - $T_2 \circ T_1$ is equivalent to BA, if A represents T_1 and B represents T_2 . In other words, $(T_2 \circ T_1)(\mathbf{x}) = BA\mathbf{x}$ for all \mathbf{x} .
- Recall that if $A = (\alpha_{ij})$ and $B = (\beta_{ij})$, then $(BA)_{ij} = (\sum \beta_{ik} \alpha_{kj})$.
- Properties of multiplication:

$$(AB)C = A(BC)$$
$$A(B+C) = AB + AC$$
$$(A+B)C = AC + BC$$

- However, it is not true in general that AB = BA.
- Trace (of an $n \times n$ matrix A): The sum of the diagonal entries of A. Denoted by $\operatorname{tr}(A)$. Given by

$$\operatorname{tr}(A) = \sum \alpha_{ii}$$

- It is true that tr(AB) = tr(BA).
 - Indeed, on the diagonals, multiplication is commutative; it's the other terms that mess you up in general.
- Invertibility of matrices.
 - In general, matrices are not invertible: Not every system of equations is solveable; Ax = b does not always have a solution $x = A^{-1}b$.
- C is the inverse from the left: CA = I. B is the inverse from the right: AB = I. A matrix can have a left and a right inverse and still not be invertible. A matrix is invertible iff C = B.
- Any time we write "inverse," we do so under the assumption that it exists.
- $(AB)^{-1} = B^{-1}A^{-1}$ easy proof by multiplication.
- If $A = (a_{ij}), A^T = (a_{ji}).$
 - $(A^{-1})^T = (A^T)^{-1}.$
 - $(AB)^T = B^T A^T.$
- Let X, Y VS.
 - $-X \cong Y^{[1]}$ if there exists a linear $T: X \to Y$ that is one-to-one and onto.
 - Check: A(basis of X)=basis of Y. Prove by definition and expression of elements as linear combinations.
- Subspace: A subset of a vector space which happens to be a vector space, itself.

 $^{^1}$ "X is isomorphic to Y."

Systems of Linear Equations

9/29: • Row elimination:

- Let

$$A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 3 & 1 & 2 & 7 \\ 2 & 1 & 2 & 1 \end{pmatrix}$$

- Then the **eschelon form** matrix

$$A_e = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 2 & -4 \end{pmatrix}$$

- Lastly, the **reduced eschelon form** matrix

$$A_{re} = \begin{pmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

• Eschelon form:

- All zero rows are below nonzero rows.
- For any nonzero row, its leading element is strictly to the left of the nonzero entry of the next row.

• Reduced eschelon form:

- All pivots are 1.
- Used to solve systems of the form Ax = b.
- Inconsistent (system of equations): A system with no solution.
 - If the last row is of the form $(0, \dots, 0, b)$ where $b \neq 0$, then there is no solution.
- Unique solution if A_e has a pivot in every column.
- There exists a solution for every b if there is a pivot in every row?
- Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a matrix. Then $\ker A = \{x \in \mathbb{R}^n : Ax = 0\}$ (subspace of \mathbb{R}^n) and range $A = \{Ax : x \in \mathbb{R}^n\}$ (subspace of \mathbb{R}^m).
- Also consider $\ker(A^T)$ and range (A^T) , the basis of the kernel and range, and dimension.
- Finite-dimensional vector spaces:

- A basis is a generating set (so every element of V can be written uniquely as a linear combination of the basis) the length of which is equal to the dimension of V.
- All bases of finite-dimensional vector spaces have the same number of elements.
 - Let v_1, v_2, v_3 and w_1, w_2 be two generating sets of V.
 - Then

$$v_1 = \lambda_{11}w_1 + \lambda_{12}w_2$$

$$v_2 = \lambda_{21}w_1 + \lambda_{22}w_2$$

$$v_3 = \lambda_{31}w_1 + \lambda_{32}w_2$$

- Suppose the only solution to $\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 = 0$ is $\alpha_1 = \alpha_2 = \alpha_3 = 0$.
- But this is not true, as we can find another one in terms of the λ s.
- If you have a list of linearly independent vectors, you can complete it into a basis.
 - If there exists a vector that can't be written as a linear combination of the list, add it to the list.
- If you find any particular solution to a system Ax = b, and you add to it any element of ker A, you will obtain another solution.
 - $Ax_1 = b$ and $Ax_h = 0$ implies that $A(x_1 + x_h) = b$.
 - $Ax_1 = b$ and $Ax_2 = b$ imply that $A(x_1 x_2) = 0$, i.e., that $x_1 x_2 \in \ker A$.
- If $A: \mathbb{R}^n \to \mathbb{R}^m$ and dim range A=m, then Ax=b is solveable for all $b \in \mathbb{R}^m$.
- Let rank $A = \dim \operatorname{range} A$.
- Rank theorem:
 - \blacksquare rank $A = \operatorname{rank} A^T$.
 - Let $A: \mathbb{R}^n \to \mathbb{R}^m$. We know that dim ker $A + \dim \operatorname{range} A = n$.

 - This theorem survives linear algebra and enters functional analysis under the name Fred-holm's alternative.
- Fredholm's alternative: Ax = b has a solution for all $b \in \mathbb{R}^n$ iff dim ker $A^T = 0$.
 - dim ker $A^T = 0$ implies rank $A^T = m$ implies rank A = m implies dim range A = m, as desired.
- Pivot column (of A): A column of A where A_e has pivots.
- The **pivot columns** of A give a basis for range A.
- The pivot rows of A_e give a basis for range A^T .
- A basis for the kernel is enough to solve Ax = 0.
- If you take these three things as givens, you can prove the rank theorem.

Determinants

- 9/29: The determinant, geometrically, is the volume of the object (in \mathbb{R}^3) you get when you take linear combinations of the vectors.
 - In 2D:
 - Let v_1, v_2 be two vectors. Put tail to tail and forming a parallelogram, the determinant of the matrix (v_1, v_2) is the area of said parallelogram.
 - Linearity 1: $D(av_1, v_2, \ldots, v_n) = aD(v_1, \ldots, v_n)$ is the same as saying that if you stretch one vector by a, you scale up the area by that much, too.
 - Linearity 2: $D(v_1, \ldots, v_{k+} + v_{k-}, \ldots, v_n) = D(-) + D(+)$.
 - Antisymmetry: $D(v_1, \ldots, v_k, \ldots, v_j, \ldots, v_n) = -D(v_1, \ldots, v_j, \ldots, v_k, \ldots, v_n)$. Interchanging columns flips the sign of the determinant.
 - Basis: $D(e_1, ..., e_n) = 1$.
 - Determinant: Denoted by $D(v_1, \ldots, v_n)$, where (v_1, \ldots, v_n) is an $n \times n$ matrix.
- 10/1: Consider an $n \times n$ matrix A consisting of n columns containing vectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$.
 - D(A) is the volume of the solid $V = \sum_{i=1}^{n} \alpha_i v_i$.
 - $-D(\mathbf{e}_1,\ldots,\mathbf{e}_n)=1.$

Figure 3.1: Visualizing properties of determinants.

- Basic properties of the determinant.
 - If A has a zero column, then $\det A = 0$: Scalar property.
 - If A has two equal columns, then $\det A = 0$: Multiply one by minus and add.

- If A has a column which is a multiple of another, then $\det A = 0$: Pull out the multiple and then you have the previous one.
- If columns are linearly dependent, then $\det A = 0$: Decompose it into sums, split, add back up with previous properties.
- The determinant is preserved under column reduction.
- $-\det A^T = \det A$: Put everything in rref.
- If A is not invertible, then $\det A=0$ (not invertible implies linearly dependent columns, implies $\det A=0$).
- $-\det(AB) = \det A \det B.$

• Determinant of...

- A diagonal matrix: The product of the diagonal entries (pull out the terms, and then note that the remaining identity matrix has determinant 1).
- An upper triangular matrix: The product of the diagonal entries (column reduction to make it into a diagonal matrix, and then the property above).

Introduction to Spectral Theory

- **Difference equation**: Like a differential equation, but instead of writing a differentials, you write differences.
 - Suppose we want to solve $x_{n+1} = Ax_n$ with x_0 given.
 - You will find that $x_n = A^n x_0$.
 - This gets hard to compute, so we want to find a way to simplify the computation.
 - Thus, we want to diagonalize the matrix, and this concept is inherently linked to eigenvalues and eigenvectors.
 - If you can decompose the x_0 into a linear combination of eigenvectors, then you can simplify the computation a lot:

$$x_n = \sum \alpha_i A^n v_i = \sum \alpha_i \lambda_i^n v_i$$

- An $n\times n$ matrix will have n eigenvalues. You want n linearly independent eigenvectors, creating an eigenbasis.
- To find eigenvalues and eigenvectors, we need to solve $Ax = \lambda x$, i.e., $(A \lambda I)x = 0$. Thus, $\ker(A \lambda I) \neq \{0\}$, so $\det(A \lambda I) = 0$.
- The eigenvalues of A are independent of the choice of basis of the domain of A or the range.
- 10/4: We need to know everything in Treil (2017).
 - We don't need to know the applications sections, but you should be interested.
 - Spectral theory: Decomposing a linear operator.
 - Let $A:V\to V$ be a linear operator. $\lambda\in\mathbb{C}$ is an eigenvalue if there exists $x\in V$ nonzero such that $Ax=\lambda x$.
 - Let A be an $n \times n$ matrix over \mathbb{C} or \mathbb{R} .
 - The eigenvalues are the roots of the polynomial $det(A \lambda I) = 0$ in λ .
 - Things we want to do:
 - Given A, find the eigenvalues and eigenvectors (solve $(A \lambda I)x = 0$).
 - In order to simplify A, make it a diagonal matrix:

$$A = S \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} S^{-1}$$

- Eigenvalues are independent of the choice of basis.
 - From the book, we have that

$$[A]_{\mathcal{A}\mathcal{A}} = [S]_{\mathcal{A}\mathcal{B}}[B]_{\mathcal{B}\mathcal{B}}[S]_{\mathcal{A}\mathcal{B}}^{-1}$$

- It follows that

$$A - \lambda I = [S]_{\mathcal{AB}}(B - \lambda I)[S]_{\mathcal{AB}}^{-1}$$

so

$$\det(A - \lambda I) = \det([S]_{\mathcal{AB}}(B - \lambda I)[S]_{\mathcal{AB}}^{-1}) = \det([S]_{\mathcal{AB}}[S]_{\mathcal{AB}}^{-1}(B - \lambda I)) = \det(B - \lambda I)$$

- If $p(z) = (z \lambda)^k q(z)$, then k is the algebraic multiplicity of λ . The geometric multiplicity of λ is dim $\ker(A \lambda I)$.
 - These terms are not always the same, but they are related.
- Diagonalization:
 - Given A that corresponds to $T:V\to V$, can we find a basis of V in which the operator is a diagonal matrix?
 - $-A = SDS^{-1}$ iff there exists a basis of V consisting of the eigenvectors of A.
 - Proves $A^N = SD^N S^{-1}$ via $A^2 = SDS^{-1}SDS^{-1} = SDIDS^{-1} = SD^2 S^{-1}$.
- Let A be an $n \times n$ matrix over \mathbb{F} . If $\lambda_1, \ldots, \lambda_r$ are distinct eigenvalues, then their eigenvectors are linearly independent.
 - Prove with induction contradiction argument. Assume true for \mathbf{v}_{r-1} . Then

$$0 = (A - \lambda_r I)[\mathbf{v}_1 + \dots + \mathbf{v}_r] = (\lambda_1 - \lambda_r)\mathbf{v}_1 + \dots + (\lambda_{r-1} - \lambda_r)\mathbf{v}_{r-1}$$

- Implies $\lambda_r = \lambda_i$ for all $i \in [r-1]$, a contradiction.
- If A has n distinct eigenvalues, then A is diagonalizable.
- If $A: V \to V$ has n complex eigenvalues, then A is diagonalizable iff the algebraic multiplicity equals the geometric multiplicity for each eigenvalue.
- Goes through a sample diagonalization with $\begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix}$.
 - We have

$$A - \lambda I = \begin{pmatrix} 1 - \lambda & 2 \\ 8 & 1 - \lambda \end{pmatrix}$$

SO

$$0 = \det(A - \lambda I) = (1 - \lambda)^2 - 16$$

- It follows that $\lambda = 5, -3$.
- This yields

$$\begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}^{-1}$$

by inspection.

- As another example, consider $\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$.
 - Here, we have $\lambda = 1 \pm 2i$.

Inner Product Spaces

10/6: • We define

$$\ell^{2}(\mathbb{R}) = \left\{ \{a_{n}\}_{n \geq 1} \subset \mathbb{R} : \sum_{1}^{\infty} |a_{n}|^{2} < \infty \right\}$$

- Inner product: A map $V \times V \to \mathbb{F}$ that takes $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} \cdot \mathbf{y}$. Denoted by $\cdot, (\cdot, \cdot), \langle \cdot, \cdot \rangle$.
- Properties of the inner product:

$$-(\mathbf{x}, \mathbf{y}) = \overline{(\mathbf{y}, \mathbf{x})}$$
 (symmetry).

-
$$(\alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z}) = \alpha(\mathbf{x}, \mathbf{z}) + \beta(\mathbf{y}, \mathbf{z})$$
 (linearity).

$$-(\mathbf{x},\mathbf{x}) \geq 0.$$

$$- (\mathbf{x}, \mathbf{x}) = 0 \text{ iff } \mathbf{x} = 0.$$

• If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_i y_i$$

• If $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$, then

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_i \bar{y}_i$$

• If $f, g \in \mathbb{P}_n(t)$, then

$$(f,g) = \int_{-1}^{1} f\bar{g} \,\mathrm{d}t$$

- The conjugate of a polynomial is the polynomial with the conjugate of the coefficients of the original polynomial. Symbolically, if $f = \sum_{i=0}^{n} \alpha_i t^i$ is a polynomial, then $\bar{f} = \sum_{i=0}^{n} \bar{\alpha}_i t^i$.
- It is a fact that

$$\left| \sum_{n=0}^{\infty} a_n \bar{b}_n \right| \le \| (a_n)_{n \ge 1} \| \| (b_n)_{n \ge 1} \|$$

- Suppose we want to define the inner product between two matrices.
 - A common one is

$$(A, B) = \operatorname{tr}(B^*A)$$

where $B^* = \overline{B}^T = \overline{B^T}$ is the conjugate transpose.

• We define the norm as a function $V \to [0, \infty)$ given by

$$\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})}$$

- Properties of the norm.
 - $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|.$
 - $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|.$
 - $\|\mathbf{x}\| = 0 \text{ iff } \mathbf{x} = 0.$
- In \mathbb{R}^n ,

Figure 5.1: The unit ball of norms corresponding to $p = 1, 2, \infty$.

- The standard norm is

$$\|\mathbf{x}\| = \sqrt{\sum |x_i|^2}$$

- We can also define

$$\|\mathbf{x}\|_p = \sqrt[p]{\sum |x_i|^p}$$

- We can even define

$$\|\mathbf{x}\|_{\infty} = \max|x_i|$$

- And we can prove that all of these are valid norms.
- Only the norm corresponding to ℓ^2 is given by an inner product, but all the other quantities are still norms as defined by the properties (see Treil (2017)).
- Figure 5.1 shows the unit ball of each norm, i.e., the set of all points which have norm 1.
- The parallelogram rule:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$$

- Orthogonality: Given \mathbf{v}, \mathbf{w} , if $\mathbf{v} \perp \mathbf{w}$, then $(\mathbf{v}, \mathbf{w}) = 0$.
- In particular, if $\mathbf{v} \perp \mathbf{w}$, then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$

- Let E be a subspace of V. If $\mathbf{v} \perp E$, then $\mathbf{v} \perp \mathbf{e}$ for all $\mathbf{e} \in E$, i.e., $\mathbf{v} \perp \mathbf{a}$ set of vectors spanning E.
- Any set of orthogonal vectors is linearly independent. Thus, if V is n dimensional, then $\mathbf{v}_1, \dots, \mathbf{v}_n$ orthogonal is a basis.
- Let E be a subspace of V. Take $\mathbf{v} \in V$. We want to define the projection $P_E \mathbf{v}$ of \mathbf{v} onto E.
 - We have that $P_E \mathbf{v} \in E$ and $v P_E \mathbf{v} \perp E$.
 - Additionally, we have that

$$\|\mathbf{v} - P_E \mathbf{v}\| \le \|\mathbf{v} - \mathbf{e}\|$$

for all $\mathbf{e} \in E$.

- Lastly, we have that $P_E \mathbf{v}$ is unique.
- If we receive a basis of a vector space, how do we create out of that a basis that is orthogonal? The process of doing this is called **Gram-Schmidt orthogonalization**.
 - We keep \mathbf{v}_1 , subtract $P_{\mathbf{v}_1}\mathbf{v}_2$ from \mathbf{v}_2 , subtract $P_{\{\mathbf{v}_1,\mathbf{v}_2\}}\mathbf{v}_3$ from \mathbf{v}_3 , and on and on.
- If we are given a set of orthogonal vectors, we can normalize them by dividing each by its norm. This creates an orthonormal list. The standard basis is orthonormal.
- Let

$$E^{\perp} = \{ v \in V : v \perp E \}$$

- It follows that $V = E \oplus E^{\perp}$.
- How close can we come to solving $A\mathbf{x} = \mathbf{b}$ if we cannot solve it exactly (i.e., if the columns are not linearly independent)?
 - Let A be an $m \times n$ matrix, and let $\mathbf{b} \in \mathbb{R}^m$.
 - Then the best solution is given by minimizing $||A\mathbf{x} \mathbf{b}||$. We minimize this with projections. A special case of this is least squares regression! More details in Treil (2017).
- 10/8: Soug is gonna send us a hefty amount of reading for the weekend.
 - Least square approximation:
 - If we want to minimize $||A\mathbf{x} \mathbf{b}||$, the best we can do is project **b** onto the range of A.
 - Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be an orthogonal basis of range A.
 - Then

$$\operatorname{Proj}_{\operatorname{range} A} \mathbf{b} = \sum_{k=1}^{k} \frac{(\mathbf{b}, \mathbf{v}_{k})}{\|v_{k}\|^{2}} \mathbf{v}_{k}$$

- Matrix equation form:

$$Projection_{range A} = A(A^*A)^{-1}A^*$$

if A^*A is invertible, where $A^* = \bar{A}^T$.

- Soug never uses this though.
- The minimum is found when $\mathbf{b} A\mathbf{x} \perp \text{range } A$. Implies that $\mathbf{b} A\mathbf{x} \perp \mathbf{a}_k$ for all k. Implies $(\mathbf{b} A\mathbf{x}, \mathbf{a}_k) = \bar{\mathbf{a}}_k^T(\mathbf{b} A\mathbf{x}) = 0$.
- Note that we're letting $\bar{\mathbf{a}}_k^T$ be the row vector

$$\bar{\mathbf{a}}_k^T = \begin{pmatrix} \bar{a}_{1,k} & \cdots & \bar{a}_{n,k} \end{pmatrix}$$

- We also have $\bar{A}^T(\mathbf{b} A\mathbf{x}) = 0$, from which it follows that $A^*A\mathbf{x} = A^*\mathbf{b}$, so $\mathbf{x} = (A^*A)^{-1}A^*\mathbf{b}$. Thus, $\text{Proj}|_{\text{range }A} = Ax$, so $\text{Proj}|_{\text{range }A} = A(A^*A)^{-1}A^*\mathbf{b}$.
- Adjoint of a linear map $T: V \to W$ is the A^* discussed above.
 - First, we'll do this for matrices. And then we'll do it for any finite-dimensional vector space.
 - Let A be an $m \times n$ matrix. We claim then that

$$(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A^*\mathbf{y})$$

for all $\mathbf{x} \in \mathbb{C}^n$, $\mathbf{y} \in \mathbb{C}^m$. Proof:

$$(A\mathbf{x}, \mathbf{y}) = \bar{\mathbf{y}}^T A \mathbf{x}$$
$$= \mathbf{y}^* A \mathbf{x}$$
$$= (A^* \mathbf{y})^* \mathbf{x}$$
$$= (\mathbf{x}, A^* \mathbf{y})$$

- Properties of the adjoint:

$$(AB)^{T} = B^{T}A^{T}$$
$$(AB)^{*} = B^{*}A^{*}$$
$$(A^{*})^{*} = A$$

- $-A^*$ is the unique matrix B such that $(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, B\mathbf{y})$.
- Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be a basis of V, and let $\mathbf{w}_1, \ldots, \mathbf{w}_m$ be a basis of W.
- Definition of A^* : If $(A\mathbf{x}, \mathbf{y}) = (y, A^*\mathbf{x})$ for all $\mathbf{x} \in V$ and $\mathbf{y} \in W$.
- But it's not enough to define something; we have to check that it exists.
- If $[A]_{\mathcal{AB}}$, then $[A^*]_{\mathcal{AB}}$.
- More properties (give criteria for solving systems of equations):

$$\ker A^* = (\operatorname{range} A)^{\perp}$$

 $\ker A = (\operatorname{range} A^*)^{\perp}$
 $\operatorname{range} A = (\ker A^*)^{\perp}$
 $\operatorname{range} A^* = (\ker A)^{\perp}$

- Soug proves these.
- Isometries and unitary operators.
 - $-U: X \to Y$ is an isometry if $\|\mathbf{x}\| = \|U\mathbf{x}\|$ for all $\mathbf{x} \in X$. It is an isometry because it preserves the distance between points.
 - It immediately follows that $\|\mathbf{x}_1 \mathbf{x}_2\| = \|U\mathbf{x}_1 U\mathbf{x}_2\| = \|U(\mathbf{x}_1 \mathbf{x}_2)\|$.
 - This definition is equivalent to an inner product one: $(\mathbf{x}, \mathbf{y}) = (U\mathbf{x}, U\mathbf{y})$. This follows from the definition of the norm.
 - We have

$$(\mathbf{a}, \mathbf{b}) = \frac{1}{4} \sum_{\alpha = +1, +i} \alpha \|\mathbf{a} + \alpha \mathbf{b}\|^2$$

■ $(a+b)^2 - (a-b)^2 = 4ab$ for any $a, b \in \mathbb{R}$, so $ab = \frac{1}{4}[(a+b)^2 - (a-b)^2]$. Thus, in a real inner product space,

$$(\mathbf{a}, \mathbf{b}) = \frac{1}{4} (\|\mathbf{a} + \mathbf{b}\|^2 - \|\mathbf{a} - \mathbf{b}\|^2)$$

- It follows that isometries preserve inner products.
- U is an isometry if and only if $U^*U = I$. Proof:

$$(\mathbf{x}, \mathbf{x}) = (U\mathbf{x}, U\mathbf{y}) = (U^*U\mathbf{x}, \mathbf{x})$$
$$(\mathbf{x}, \mathbf{y}) = (U\mathbf{x}, U\mathbf{y}) = (U^*U\mathbf{x}, \mathbf{y})$$
$$(\mathbf{x}, \mathbf{y}) = (U\mathbf{x}, U\mathbf{y}) = (\mathbf{x}, \mathbf{y})$$

for all \mathbf{y} .

- An isometry is unitary if it is invertible.
 - Thus, $U: X \to Y$ an isometry is unitary iff dim $X = \dim Y$.
- Note that it follows that $U^* = U^{-1}$ for U an isometry.
- U unitary implies $|\det U| = 1$, so λ an eigenvalue of U implies that $|\lambda| = 1$.
- A is diagonalizable iff it has an orthogonal basis of eigenvectors.
- 10/11: Spectral decomposition of self-adjoint linear maps.

- Can we write a map in term of the eigenvalues only?
- Let $A: X \to X$ be linear and self-adjoint. Where dim $X < \infty$.
- Let A have eigenvalues $\lambda_1, \ldots, \lambda_n$ and eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. The there is an orthonormal basis of X consisting of eigenvectors of A. An operator is self-adjoint if $A = A^*$.
- If A is self-adjoint, then A can be written as diagonal with the eigenvalues on the diagonal with respect to some orthonormal basis of eigenvectors.
- Let $\mathbb{F} = \mathbb{C}$.
- If there exists an orthonormal basis u_1, \ldots, u_n of X such that A is triangular, then $A = UTU^*$ where U is unitary and T is upper triangular.
 - Proved with induction on dim X.
 - $-\dim X = 1$ is clear.
 - Assume for dim X = n 1, WTS for dim X = n.
 - The subspace has a basis $\mathbf{v}_1, \dots, \mathbf{v}_{n-1}$ such that A has a diagonal form.
 - Let $u \in X$ be linearly independent of $\mathbf{v}_1, \dots, \mathbf{v}_{n-1}$.
 - Let λ be the remaining eigenvalue and u the corresponding eigenvector. Let E = span(u). Then make the matrix λ in the upper left corner, and block diagonal with " A_{n-1} " in the bottom right corner, zeroes everywhere else.
- Self-adjoint (matrix A): A linear map $A: X \to X$ where dim $X < \infty$ such that $A = A^*$.
 - Similarly, (Ax, y) = (x, Ay).
 - A self-adjoint implies all eigenvalues are real, eigenvectors corresponding to different eigenvalues are orthogonal.
 - Soug proves this.
- Strictly positive (operator A): A self-adjoint operator $A: X \to X$ such that (Ax, x) > 0 for all $x \neq 0$. Also known as positive definite.
 - Implies that all eigenvalues are strictly positive.
- Nonnegative (operator A): A self-adjoint operator $A: X \to X$ such that $(Ax, x) \ge 0$ for all $x \ne 0$. Also known as definite.
 - All eigenvalues are nonnegative.
- Suppose $A \ge 0$ is self-adjoint. Then there exists a unique self-adjoint $B \ge 0$ such that $B^2 = A$.
 - -A self-adjoint is diagonal (wrt. some basis).
 - A positive means that all eigenvalues (diagonal entries) are positive.
 - Thus, take

$$B = \begin{pmatrix} \sqrt{\lambda_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sqrt{\lambda_n} \end{pmatrix}$$

– Suppose $B^2 = A$, $C^2 = A$. Then we have an orthonormal basis corresponding to B and an orthonormal basis corresponding to C. It follows that $B^2 = C^2 = A$. Write B^2x and C^2x in terms of their bases; will necessitate that the bases are the same.

References

Treil, S. (2017). Linear algebra done wrong [http://www.math.brown.edu/streil/papers/LADW/LADW_2017-09-04.pdf].