Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convcatoria de septiembre

Ejercicio 1. (2.5 puntos) Sea Ω un dominio de $\mathbb C$ y $f,g\in\mathcal H(\Omega)$. Supongamos que existe $n\in\mathbb N$ tal que $f^n(z)=g^n(z)$ para todo $z\in\Omega$. Probar que existe $\lambda\in\mathbb C$, con $\lambda^n=1$, tal que $f(z)=\lambda g(z)$ para todo $z\in\Omega$.

Ejercicio 2. (**2.5 puntos**) Integrando una conveniente función sobre la poligonal $[-R, R, R+2\pi i, -R+2\pi i, -R]$ con R > 0, calcular la integral

$$\int_{-\infty}^{+\infty} \frac{\mathrm{e}^{x/2}}{\mathrm{e}^x + 1} \, dx.$$

Ejercicio 3. (2.5 puntos) Sean Ω un abierto de \mathbb{C} , $a \in \Omega$ y $f \in \mathcal{H}(\Omega \setminus \{a\})$. Supongamos que f tiene un polo en el punto a. Probar que el polo es simple si, y sólo si, f es inyectiva en $D(a,r) \setminus \{a\}$ para algún r > 0 con $D(a,r) \subset \Omega$.

Ejercicio 4. (2.5 puntos) Para cada $n \in \mathbb{N}$ se considera la función $f_n : \mathbb{C} \to \mathbb{C}$ dada por

$$f_n(z) = \int_0^n \sqrt{t}e^{-tz} dt$$
 $\forall z \in \mathbb{C}.$

- a) Probar que f_n es una función entera y calcular su desarrollo en serie de Taylor centrado en el origen.
- b) Estudiar la convergencia de la sucesión $\{f_n\}$ en el dominio $\Omega = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}.$
- c) Deducir que $f \in \mathcal{H}(\Omega)$, donde $f(z) = \int_0^{+\infty} \sqrt{t} e^{-tz} dt$ para todo $z \in \Omega$.