CSCB63 – Design and Analysis of Data Structures

Anya Tafliovich¹

¹with huge thanks to Anna Bretscher and Albert Lai

finding the shortest paths

- Given an (edge-)weighted graph and two vertices in it,
- find the cheapest (minimum possible weight) path between them, or
- report that one does not exist.

finding the shortest paths

Even better:

- Given an (edge-)weighted graph and a vertex s in it,
- find the cheapest (minimum possible weight) paths from s to all other vertices.

Dijkstra's algorithm: idea

Dijkstra's algorithm finds shortest paths by a BFS with a twist

- the queue is replaced with a minimum priority queue
- with an additional operation decrease-priority(vertex, new-priority)

Keep unvisited vertices in the priority queue:

$$priority(v) = distance(start, v)$$
 via finished vertices only $priority(v) = \infty$ if no such path

The algorithm grows paths by one edge at a time.

Correctness idea: every time we extract-min, we get the next vertex closest to start.

Priority queue contains vertices not in tree:

vertex					е		g	h	i
priority	0	∞							
pred									

Distance tree:

{ }

Priority queue contains vertices not in tree:

vertex		h	С	d	е	f	g	i
priority	4	8	∞	∞	∞	∞	∞	∞
pred	а	а						

Distance tree:

{ }

Priority queue contains vertices not in tree:

vertex	h	С	d	е	f	g	i
priority	8	12	∞	∞	∞	∞	∞
pred	а	b					

Distance tree:

Priority queue contains vertices not in tree:

vertex	g	С	i	d	е	f
priority	9	12	15	∞	∞	∞
pred	h	b	h			

Distance tree:

Priority queue contains vertices not in tree:

vertex	f	С	i	d	е
priority	11	12	15	∞	∞
pred	g	b	h		

Distance tree:

Priority queue contains vertices not in tree:

vertex	С	i	е	d
priority	12	15	21	25
pred	b	h	f	f

Distance tree:

Priority queue contains vertices not in tree:

vertex	i	d	е
priority	14	19	21
pred	С	С	f

Distance tree:

$$\{\ (a,b,4),\ (a,h,8),\ (h,g,9),\ (g,f,11),\ (b,c,12),\qquad\}$$

Priority queue contains vertices not in tree:

vertex	d	е
priority	19	21
pred	С	f

Distance tree:

$$\{\ (a,b,4),\ (a,h,8),\ (h,g,9),\ (g,f,11),\ (b,c,12),\ (c,i,14),\quad \}$$

Priority queue contains vertices not in tree:

vertex	е
priority	21
pred	f

Distance tree:

$$\{\ (a,b,4),\ (a,h,8),\ (h,g,9),\ (g,f,11),\ (b,c,12),\ (c,i,14),\ (c,d,19),\ \ \}$$

Priority queue contains vertices not in tree:

Distance tree:

$$\{ (a,b,4), (a,h,8), (h,g,9), (g,f,11), (b,c,12), (c,i,14), (c,d,19), (f,e,21) \}$$

Dijkstra's algorithm

```
0. PQ := new min-heap()
1. PQ.insert(0, start)
2. \text{ start.d} := 0
3. for each vertex v != start:
4. PQ.insert(inf, v)
5. \quad v.d := inf
6. while not PQ.is-empty():
7. u := PQ.extract-min()
8. for each v in u's adjacency list:
9.
       d' := u.d + weight(u, v)
10. if d' < v.d:
11.
         PQ.decrease-priority(v, d')
12.
        v.d := d'
13.
        v.pred := u
```

Dijkstra's algorithm: time

Let n = |V| and m = |E|. Then:

- every vertex enters and leaves min-heap once
 - enters in the beginning only; continue until heap is empty
 - $\mathcal{O}(\log n)$ each, for a total of $\mathcal{O}(n \log n)$
- with every edge may call decrease-priority
 - $\mathcal{O}(\log n)$ each, for a total of $\mathcal{O}(m \log n)$
- the rest can be done in $\Theta(1)$ per vertex or per edge

Total time worst case: $O((n+m)\log n)$