

BÁQ CÁQ ĐỘ ÁN

CÔNG NGHỆ THÔNG TIN

MÔN HỌC: MÁY HỌC

ĐỀ TÀI

NHẬN DẠNG CHỮ VIẾT TAY TIẾNG VIỆT

Giảng viên hướng dẫn: Phạm Nguyễn Trường An Lê Đình Duy

Sinh viên thực hiện: Tô Thanh Hiền - 19521490

Trần Vĩ Hào – 19521482

Trương Quốc Bình - 19521270

Lóp: CS114.L22.KHCL

Thành phố Hồ Chí Minh, ngày 19 tháng 7 năm 2021

MỤC LỤC

I. ABSTRACT	4
II. INTRODUCTION	4
III. DATASET	4
IV. DATA PREPROCESSING	7
1. Data Cleaning	7
1.1. Denoise	
1.1.1. Lựa chọn phương pháp	
1.1.1.1. Gaussian Blurring	
1.1.1.2. Average	
1.1.1.3. Median Blurring	
1.1.1.4. Bilateral Filtering	
1.1.2. Experiment	
1.2. Segmentation & Morphological	
1.2.1. Lựa chọn phương pháp	
1.2.1.2. Threshold	
1.2.1.2.1 Simple threshold	
1.2.1.2.2. Adaptive threshold	
1.2.2. Experiment	
1.2.3. Kết luận	
2. Data augmentation	15
2.1. Addition of noise	16
2.2. Rotation	16
2.3. Translation.	16
2.4. Shearing	
2.5. Experiment	17
V. BUILDING MODEL	19
1. CNN	20
2. CRNN	21
3. So sánh 2 model	22
4. Kết luận	22
VI. FINAL RUN	23
1.D.	22
1. Preprocessing	23
1.1. Dala Vigalilie	

1.2. Data Augmentation	23
3. Model sử dụng	25
3.1 ReLu activation function	
3.2. Dropout	26
3.3. Optimizer	
3.4. Loss funtion	26
4. Kết quả cuối cùng (Test result)	26
5. Nhận xét	27
VII. TÀI LIỆU THAM KHẢO	28
•	

I. ABSTRACT

Nhận diện chữ viết tay là ứng dụng cốt lõi của thị giác máy tính. Đây là ứng dụng tuy không hề mới mẻ nhưng vẫn còn đang phát triển và có nhiều tiềm năng ở Việt Nam. Trong bài báo cáo sẽ giới thiệu model nhận diện chữ cái viết tay tiếng Việt xây dựng bằng Convolutional Neural Network (CNN) và bằng Convolutional Recurrent Neural Network (CRNN).

II. INTRODUCTION

Nhận dạng là lĩnh vực được các nhà khoa học rất quan tâm để giải quyết các yêu cầu trong cuộc sống hiện nay, có nhiều lĩnh vực nhận dạng như nhận dạng tín hiệu, nhận dạng tiếng nói hay nhận dạng ảnh. Vấn đề nhận dạng chữ viết tay thực sự là một thách thức đối với những nhà nghiên cứu.

Chữ viết tay xuất hiện ở hầu hết trong các công việc cảu các cơ quan, nhà máy, xí nghiệp, trường học. Việc nhập một văn bản viết tay trên giấy vào máy tính hầu như chỉ có một cách giải quyết đó là gõ lại từng ký tự, việc này luôn chiếm nhiều thời gian và đôi khi không đảm bảo tiến độ hoạt động của công việc. Việc nhận dạng chữ viết tay hầu như đã có nhiều nhà nghiên cứu thử sức, nhưng phần lớn họ chỉ nhận diện chữ viết tiếng Anh, vậy những ngôn ngữ của các quốc gia khác thì sao? Với những lý do trên nhóm em đã chọn nghiên cứu đề tài: "Nhận dạng chữ viết tay tiếng Việt".

Có thể mô tả tổng quát bài toán như sau:

- + Bài toán thuộc dạng bài phân loại.
- + Input đầu vào sẽ là một tấm ảnh trong đó có chứa đúng một chữ cái tiếng Việt. Output sẽ là chữ cái tương ứng với tấm ảnh đó.

<u>VD:</u>

Input:

Output: a

III. DATASET

Bảng chữ cái Việt Nam bao gồm 29 chữ cái. Trong đó 22 chữ cái là thuộc chữ cái latin. Có 7 chữ cái biến thể bằng cách thêm dấu. Không những thế chữ cái còn có thêm 6 ngữ âm là ngang, sắc , huyền , hỏi, ngã, nặng. Kết hợp với các nguyên âm sẽ tạo nên các biến thể khác. Tổng cộng chúng ta sẽ có 89 loại chữ cần thu thập.

Nhóm em đã làm các tờ giấy thu nhập chữ viết phân phát cho người thân và bạn bè. Ngoài ra, nhóm em sẽ share dataset với nhóm của bạn **Nguyễn Dương Hải**. Một bộ mẫu thu dataset sẽ có hai tờ giấy, bao gồm 89 chữ cái, mỗi chữ cái sẽ được điền 10 lần. Sau đó các tờ giấy sẽ được thu nhập và chụp hình lại. Hình sau đó sẽ được phân tách ra thành từng chữ cái và dán nhãn. Đây là phương thức vô cùng mất thời gian nhưng đảm bảo tính đa dạng của dataset.

Hình 1. Một mẫu thu nhập chữ viết

Từng ảnh chứa chữ cái sẽ được zoom và resize để có cùng kiểu phân bố

Hình 2. Một mẫu ảnh chữ đã được zoom và resize

Bộ dataset chữ cái viết tay tiếng Việt sau khi thu thập có tổng cộng 50114 hình ảnh đã được phân loại, bao gồm:

à - 513

å - 543

ã - 472

á - 551

a - 615

ă - 667

à - 468

å - 443

ã - 449

á - 470

ă - 474

â - 607

à - 479

å - 456

ã - 410

ấ - 476

ậ - 485

b - 418

c - 806

d - 438

đ - 372

e - 828

è - 496

. . . .

ė - 468 ẽ - 467

é - 471

.,,1

ę - 468

ê - 536

è - 459

ể - 430

ễ - 368

é - 409

ệ - 411

g - 282

h - 430

i - 1127

ì - 873

i - 818

ĩ - 828

í - 873

i - 834

k - 559

1 - 560

m - 584

n - 670

o - 1242

ò - 461

o - 481

 $\tilde{o}-433$

ó - 432

o - 491

ô - 520

ò - 423

ổ - 387

ỗ - 398

ố - 425

ộ - 414

o - 462

ờ - 362

ở - 334

õ - 300

σ́ - 290

o - 306

p - 496

q - 388

r - 707

s - 701

t - 747

u - 908

ù - 753

ů - 742

ũ - 699

. _..

ú - 702

ų - 711

u - 776

a , , ,

ù - 661

ử - 647

ữ - 654

ứ - 599

ự - 654

v - 728

x - 754

y - 574

ỳ - 658

ỷ - 338

ỹ - 368

ý - 434

, ...

<u>y</u> - 346

Dataset được chia làm ba set: 30068 ảnh cho Training set, 10023 ảnh cho Val set và 10023 ảnh cho Test set.

IV. DATA PREPROCESSING

Tiền xử lý ảnh là một bước vô cùng quan trọng để chuẩn bị dữ liệu cho các model. Có rất nhiều bước quan trọng trong xử lý tiền dữ liệu như data cleaning, data transformation và feature selection. Một tập dữ liệu sẽ chứa rất nhiều biến số, một biến số sẽ chứa rất nhiều thông tin. Vì vậy để đơn giản hóa các chiều không gian của model, chúng ta sẽ chỉ chọn những biến số độc đáo và chứa thông tin quan trọng.

1. Data Cleaning

1.1. Denoise

1.1.1. Lựa chọn phương pháp

OpenCV cung cấp một số công cụ để loại bỏ nhiễu ra khỏi ảnh.

1.1.1.1. Gaussian Blurring

Hình 3: Ảnh trước và sau Gaussian blur

1.1.1.2. Average

Hình 4: Ảnh trước và sau blur

1.1.1.3. Median Blurring

Hình 5: Ảnh trước và sau khi Median blur

1.1.1.4. Bilateral Filtering

Hình 6: Ảnh trước và sau khi Bilateral blur

1.1.2. Experiment

Ở đây chúng ta sẽ kiểm thử từng phương pháp. Dataset sẽ được xử lý qua từng phương pháp như Gaussian Bluring , Median Blurring,... Kết quả sẽ được đánh giá qua valloss và val-acc.

Dataset: ta sẽ dùng dataset đã thu thập được

Proposed model architecture

Hình 7: Model sử dụng

Result:

Training set:3333, Val set:1667 sau 30 epoch

	VAL-ACC	VAL-LOSS
RAW	0.8666	0.5545
AVERAGE	0.8430	0.6659
GAUSSIAN	0.8755	0.5658
MEDIAN	0.8343	0.6783
BILATERAL	0.8335	0.8335

Training set: 37586, Val set: 12528 sau 20 epoch

	VAL-ACC	VAL-LOSS
RAW	0,8902	0,3456
AVERAGE	0,8076	0,5825
GAUSSIAN	0,9073	0,2997
MEDIAN	0,8579	0,4559
BILATERAL	0,8902	0,3481

Kết luận:

Với cả dataset nhỏ và dataset lớn, Gaussian blur hoặc không xử lý gì hết cho ra kết quả tốt nhất.

1.2. Segmentation & Morphological

1.2.1. Lựa chọn phương pháp

1.2.1.1. Erosion, dilation, opening & closing

Erosion

Hình 8: Ảnh trước và sau Erode

Erosion giống như tên gọi của nó. Nó làm xói mòn (erode) loại bỏ lớp viền (cạnh) giúp cho vật nhỏ hơn.

Dilation

Hình 9: Ảnh trước và sau dilation

Hoàn toàn ngược lại với erosion, nó làm tăng kích thước của vật.

Opening

Hình 10: Ånh trước và sau opening

Closing

Hình 11: Ảnh trước và sau closing

Chất lượng của dataset là không đồng đều. Nên có nhiều ảnh sau khi opening đã mất dạng hoàn toàn.

1.2.1.2. Threshold

1.2.1.2.1. Simple threshold Binary

Hình 12: Ảnh trước và sau threshold

Trunc

Hình 13: Ảnh trước và sau threshold

Torenzo

Hình 14: Ảnh trước và sau threshold

1.2.1.2.2. Adaptive threshold

Adaptive Mean threshold

Hình 15: Ảnh trước và sau threshold

Adaptive Gaussian threshold

Hình 16: Ảnh trước và sau threshold

1.2.2. Experiment

Dataset: ta sẽ sử dụng dataset thu nhập được.

Ở đây chúng ta sẽ kiểm thử từng phương pháp Segmentation & Morphological. Nhưng chúng ta sẽ xử lý dataset qua Gaussian blur trước, sau đó sẽ so sánh với các kết quả của dataset không được xử lý hay chỉ được xử lý qua phương pháp Segmentation & Morphological mà không qua Gaussian blur. Kết quả sẽ được đánh giá bằng val-acc và valloss.

Proposed model architecture

Hình 17: Model sử dụng

Training set: 3333, Val set: 1667 sau 30 epochs

Có Gaussian blur, Simple threshold:

	VAL-ACC	VAL-LOSS
BINARY	0.801	0.7961
TOZERO	0.8636	0.5711
TRUNC	0.6558	1.3378

Có Gaussian blur, adaptive threshold:

	VAL-ACC	VAL-LOSS
THRESH-MEAN	0,78	0,7438
THRESH-GAUSSIAN	0,7922	0,7917

Không Gaussian blur, simple threshold:

	VAL-ACC	VAL-LOSS
BINARY	0,8065	0,8482
TOZERO	0,892	0,4661
TRUNC	0,6558	1,397

Không Gaussian blur, adaptive threshold:

	VAL-ACC	VAL-LOSS
THRESH-MEAN	0,6955	1,1861
THRESH-GAUSSIAN	0,6225	1,5902

So với raw dataset:

VAL-ACC	VAL-LOSS
0,8493	0,5898

Training set: 37586, Val set:12528 sau 10 epochs

Có Gaussian blur, simple threshold:

	VAL-ACC	VAL-LOSS
BINARY	0,6604	1,234
TOZERO	0,8645	0,4610
TRUNC	0,0268	4,435

Có Gaussian blur, adaptive threshold:

	VAL-ACC	VAL-LOSS
THRESH- MEAN	0,8373	0,5317
THRESH- GAUSSIAN	0,8506	0,4814

Không Gaussian blur, simple threshold:

	VAL-ACC	VAL-LOSS
BINARY	0,7238	0,9818
TRUNC	0,0268	4,4356
TOZERO	0,8716	0,4417

Không Gaussian blur, adaptive threshold:

	VAL-ACC	VAL-LOSS
THRESH-	0,6623	1,4653
MEAN		
THRESH-	0,6854	1,3452
GAUSSIAN		

So với raw dataset:

VAL-ACC	VAL-LOSS
0,8911	0,3123

1.2.3. Kết luận

Không sử dụng các phương pháp segmentation & morphological là tốt nhất. Với các dataset nhỏ khoảng 5000 ảnh xử lý segmentation & morphological làm tăng độ chính xác. Nhưng với các dataset lớn hơn thì ngược lại.

2. Data augmentation

Data augmentation là phương thức tạo ra dataset mới từ dataset đã có. Ví dụ một dataset mới đã được tạo ra bằng cách quay dataset cũ một góc 10 độ cùng chiều kim đồng hồ. Kết hợp cả 2 dataset ta có 1 dataset mới.

2.1. Addition of noise

Hình 18: Ảnh trước và sau adding noise

2.2. Rotation

Hình 19: Ảnh trước và sau rotation

2.3. Translation

Vertical

Hình 20: Ånh trước và sau khi vertical translation

Horizontal

Hình 21: Ånh trước và sau Horizontal translation

2.4. Shearing

Hình 22: Ånh trước và sau shearing

2.5. Experiment

Set up:

Sẽ có 5000 bức ảnh được chọn trong bộ dataset thu nhập được, 5000 ảnh sẽ chia thành Traing set: 3334 và Val set: 1666. Traing set sẽ được thử qua từng phương pháp rotation, translation, scaling, shearing và noise addition.

Proposed model architecture

Hình 23: Model được sử dụng

Result:

	VAL-ACC	VAL-LOSS
RAW	0,8452	0,5964
ROTATION	0,8632	0,5213
VERTICAL TRANSLATION	0,8711	0,4865
HORIZONTAL TRANSLATION	0,8588	0,5557
GAUSSIAN NOISE	0,8490	0,6123
SHEARING	0,8523	0,5877

Kết luận:

Vertical Translation và rotation thể hiện tốt nhất.

V. BUILDING MODEL

 $\mathring{\text{O}}$ đây chúng ta sẽ xây dựng 2 model dựa trên cấu trúc CNN và CRNN.

1. CNN

2. CRNN

3. So sánh 2 model

Dataset sẽ chia thành Training set : 37585 và Val set: 12528.

CNN

4. Kết luận

Cả 2 model đều fit ổn, không có sự chênh lệch lớn của accuracy và loss giữa training set và val set. Tuy nhiên CRNN fit ổn định hơn.

VI. Final run 1. Preprocessing

1.1. Data cleaning

Ånh sẽ được chuyển từ ảnh *nền trắng chữ đen* sang ảnh *nền đen chữ trắng* bằng OpenCV bit_wise not sau đó sẽ được Gaussian Blur, cuối cùng resize về kích thước (28,28).

1.2. Data Augmentation

Dataset sẽ thể hiện tốt nhất nếu tăng kích thước dataset lên 4 lần bằng các phương pháp data augmentation. Các phương pháp sử dụng là counter clockwise ten degree rotation, vertical translation về phía trái và vertical translation về phía trái sau đó counter clockwise ten degree rotation.

Original

Counter clockwise rotation

Vertical translation

Vertical translation and counter clockwise rotation.

3. Model sử dụng

3.1 ReLu activation function

ReLU (Rectified Linear Unit) function là 1 non-linear function. ReLU là 1 function phổ biến.

3.2. Dropout

Dropout giúp cho model không bị overfitting. Nó giúp model trong lúc train tránh bị hiện tượng overfitting.

3.3. Optimizer

Nhóm em sẽ sử dụng adam. Adam thể hiện tốt hơn Stochastic gradient descent.

3.4. Loss funtion

Loss function là categorical-crossentropy cho multi-label classification.

4. Kết quả cuối cùng (Test result)

Training process:

Network sẽ train trong epoch 10, mỗi epoch có 1879 step với batch size là 64.

Kết quả tập Training set: 0.9681

Kết quả tập Val set: 0.9716

TEST RESULT:

accuracy			0.97	10023
macro avg	0.97	0.97	0.97	10023
weighted avg	0.97	0.97	0.97	10023

Kết quả tập test set: 0.9720

5. Nhận xét

Model có độ chính xác cao. Accuracy đối với test set là 0,97. Model fit tốt với 0,9681 đối với Training set; 0,9716 với Val set và 0,9720 với Test set.

Tuy vậy vẫn có sự lẫn lộn giữa những class có độ tương đồng cao như 'ê' với 'ể' hay 'ề'; 'o' và 'ỏ' hay 'ơ' v.v...

Nguyên nhân:

- Dataset chưa thật sự nhiều và không cân bằng giữa các class. Có class trên 1500 ảnh nhưng có class chỉ dưới 400 ảnh. Và những class có tỷ lệ dự đoán thiếu chính xác nhất rơi vào chính những class có ít ảnh ấy.
- Dataset có chất lượng không cân bằng. Có ảnh nhìn rõ, có ảnh thì mờ.
- Xử lý ảnh vẫn chưa tốt. Nếu quá cố loại bỏ nhiễu ra khỏi ảnh thì nhiều ảnh thì sẽ mất hoàn toàn, còn không thì một số ảnh sẽ có rất nhiều nhiễu số.

Hướng cải thiện:

- Tăng số lượng dataset. Nếu đảm bảo ít nhất mỗi class có thể đạt tối thiểu trên 1000 ảnh thì model có thể sẽ đạt độ chính xác trên 99%.
- Học cách xử lý mô hình tốt hơn.
- Tìm kiếm các phương pháp xử lý ảnh tốt hơn.

VII. Tài liệu tham khảo

- [1] https://docs.opencv.org/4.5.2/d7/d4d/tutorial_py_thresholding.html
- [2] https://www.geeksforgeeks.org/erosion-dilation-images-using-opency-python/
- [3] https://docs.opencv.org/3.4/db/df6/tutorial_erosion_dilatation.html
- [4] https://docs.opencv.org/4.5.2/d4/d13/tutorial_py_filtering.html
- [5]
- $\underline{https://theses.ubn.ru.nl/bitstream/handle/123456789/2620/Klep\%2C_D.M.J._1.pdf?se~quence=1$
- [6] https://towardsdatascience.com/improving-accuracy-on-mnist-using-data-augmentation-b5c38eb5a903
- [7] https://towardsdatascience.com/image-pre-processing-c1aec0be3edf
- [8] <u>https://towardsdatascience.com/get-started-with-using-cnn-lstm-for-forecasting-6f0f4dde5826</u>
- [9] <u>https://towardsdatascience.com/data-preprocessing-and-network-building-in-cnn-15624ef3a28b</u>
- [10]https://www.researchgate.net/publication/341798621_Vietnamese_handwritten_c haracter_recognition_using_convolutional_neural_network
- [11] https://www.kaggle.com/yassineghouzam/introduction-to-cnn-keras-0-997-top-6
- [12] https://www.kaggle.com/residentmario/automated-feature-selection-with-sklearn
- [13] https://www.kaggle.com/samfc10/handwriting-recognition-using-crnn-in-keras
- [14] https://www.tensorflow.org/tutorials/images/data augmentation