Enjoy a Cozy and Green Bath Summary

abstract...

Keywords: Keyword one, Keyword two, Keyword three

Contents

I		oduction	4			
	1.1	Background	4			
	1.2	Restatement and Analysis of the Problem	4			
	1.3	Overview of Our Work	5			
2	Assu	mptions and Justification	5			
3	List	of Notations	5			
4	Data	Pre-processing	5			
	4.1	Outlier and Missing Value Handling	5			
5	Task	1	6			
	5.1	Significance Analysis of Host Effect	6			
	5.2	Analysis of Key Indices	7			
		5.2.1 Host effect	7			
		5.2.2 Event held	7			
		5.2.3 Definition of Dominant Event	7			
		5.2.4 Strong Events	7			
		5.2.5 Percentage of winners	8			
		5.2.6 Medal Distribution Concentration	8			
		5.2.7 historical performance	8			
	5.3	Prediction of Medal Count for Medal-Winning Countries Using LSTM	8			
	5.4		11			
		5.4.1 Prediction Visualization	13			
		5.4.2 Results Showcase	13			
			14			
6	Task	2.	15			
U	6.1		15			
	6.2		15			
	0.2	•	15			
		ϵ	15			
			15			
	6.3	1 1 1	16			
7	Task	3: xxx	17			
8	Task	4: xxx	17			
9	Task	5	17			
10	Sensi	itivity Analysis	17			
11	Strer	ngth and Weakness	17			
			17			
	11.2		17			
12			17			
			18			
Ke	References 19					

Appendices		19
Appendix A	First appendix	19
Appendix B	Second appendix	19

Team # 2504496 Page 4 of 19

1 Introduction

1.1 Background

The medal table of the 2024 Paris Olympics shows that the United States and China each won 40 gold medals and tied for the top spot, but the United States led with a total of 126 medals. The host country France ranked fifth in gold medals (16) and fourth in total medals (64). Dominica, Saint Lucia and other countries won their first Olympic medals, while 60 countries still have not broken through for any medals.

Figure 1: The medals of the 2024 Paris Olympics

1.2 Restatement and Analysis of the Problem

Based on the provided historical data-set of the Olympic Games from 1896 to 2024, we are employed to analyze and answer the following questions:

- 1. Develop a **prediction model** to forecast the number of medals each country will win in 2028, and identify countries that may progress or regress.
- 2. Provide **prediction intervals** and estimates of **uncertainty** and metrics to measure the model's performance.
- 3. Estimate the number of countries that will win their **first medal** and the probability of this happening.
- 4. Analyze the **relationship** between specific Olympic events (in terms of quantity and type) and the number of medals, explore which events are more important, and the impact of the host country's event selection strategy on the outcome.
- 5. Verify whether the **mobility of coaches** significantly enhances a country's performance in specific sports (such as Lang Ping and Bela Karolyi).
- 6. Quantify the contribution of **coaching effectiveness** to the number of medals, and recommend key sports for investment and expected returns for the three countries.
- 7. Extract the less-attended-to patterns from the model and provide strategic **suggestions** for the Olympic Committee.

Team # 2504496 Page 5 of 19

For Task 1, we selected seven indicators and established an LSTM-based medal quantity prediction model, and provided interval predictions using Bayesian estimation. As for countries that have never won medals, we built an SVM-based "first medal breakthrough" prediction model based on the new events, the number of athletes, and historical participation trends.

1.3 Overview of Our Work

2 Assumptions and Justification

To simplify the problem and make it convenient for us to simulate real-life conditions, we make the following basic assumptions, each of which is properly justified.

- 1. ...
- 2. ...

3 List of Notations

Symbols	Description
A_C, A_S	Set of country, all sports in Olympic.
A_T	$\{1, \ldots, 30\}$, representing the ordinal number of year Olympic held.
$A_H(t)$	Set of host country in year t .
$MG_{t,i,j,k}$	Number of gold medals country i won in sport j at event k in year t.
$MS_{t,i,j,k}$	Number of silver medals country i won in sport j at event k in year t.
$MB_{t,i,j,k}$	Number of bronze medals country i won in sport j at event k in year t.
$MT_{t,i}$	Number of total medals country i won in year t .
$N_{athletes}(t,i)$	Total number of athletes from country i in year t .
$N_{award}(t,i)$	Number of athletes who won medals from country i in year t .
H(t,i)	Host effect.
$G_{ m growth}(t,i)$	Growth rate of the number of athletes from country i in year t .
$P_{Medal}(t,i)$	Probability of country i winning a medal in year t .
$P_{Gold}(t,i)$	Probability of country i winning a gold medal in year t .

Note: The Summer Olympics have been held for a total of 32 sessions.

4 Data Pre-processing

4.1 Outlier and Missing Value Handling

As the **1906 Intercalated Games** lacked the medal data of various countries and the competition results were not recognized by the International Olympic Committee, the data of 1906 is not taken into account.

In adition, **Skating** and **Ice Hockey** have been included in the Winter Olympics since 1920, so these two events are not within the scope of consideration. Otherwise, the "·" is replaced by the number 0.

Team # 2504496 Page 6 of 19

It was noticed that **Jeu de Paume** and **Roque** sports in the **summerOly_programs.csv** do not have Codes. Upon researching information from https://en.wikipedia.org/wiki/Jeu_de_paume and https://en.wikipedia.org/wiki/Roque, it was found that only a few people are still engaged in these two sports, which have even not been held for 26 consecutive years in the Summer Olympics. Therefore, these two sports have been excluded.

5 Task 1

5.1 Significance Analysis of Host Effect

Host Effect refers to the phenomenon where a host country tends to perform better in large-scale international events (such as the Olympic Games or the World Cup) due to the advantages associated with competing on home soil. This often manifests in a significant increase in the host country's medal count, competition results, and overall performance.

To assess the significance of the host effect, we employed a paired samples **t-Test**. First, we selected the medal count of the host country for each year, denoted as MT_t , as the first sample. To eliminate the influence of overall growth trends in medal counts, we used the average medal count from the two preceding Olympic Games as the second sample, as shown in equation (1),

$$MT_t^H = \frac{MT_{t-1} + MT_{t+1}}{2} \tag{1}$$

where $t = 2, 3, \dots, 29, i \in A_C$.

The data set $\{MT_t, MT_t^s\}$ then forms a paired sample with a size of 30.

Define $d_t = MT_t - MT_t^s$, and assume that

$$H_0: \mu_d = 0, \quad vs \quad H_1: \mu_d \neq 0.$$

Select the t-test statistic as

$$T = \frac{\bar{d}}{s_d/\sqrt{28}} \sim (27) \tag{2}$$

where $\bar{d} = \frac{1}{28} \sum_{t=2}^{29} d_t$ is the mean of paired samples, and $s_d = \frac{1}{27} \sum_{t=2}^{29} \left(d_t - \bar{d} \right)^2$ is the sample variance of the differences of paired data,

For a given significance level α , the rejection domain for the hypothesis test is

$$W_{\alpha} = \left\{ |T| \ge t_{1 - \frac{\alpha}{2}}(29) \right\} \tag{3}$$

By following the described procedure, the results of the t-test were obtained and are summarized in Table 1.

Table 1: Transposed Presentation of t-Test Results

	t-statistic	p-value	Critical value (α=0.05)	Test conclusion
Value	4.045	0.0004	2.052	Reject null hypothesis

Team # 2504496 Page 7 of 19

5.2 Analysis of Key Indices

5.2.1 Host effect

Define Logical Variable $H_{t,i}$ as equation (4),

$$H(t,i) = \begin{cases} 1, & \text{Country } i \text{ is host in year } t, \\ 0, & \text{others.} \end{cases}$$
 (4)

where $t \in A_T$, $i \in A_C$.

5.2.2 Event held

The event vector V(t) is defined as:

$$V(t) = (v_1(t), v_2(t), \dots, v_M(t))^T,$$

where: $v_i(t)=1$ if event i is held in year t, $v_i(t)=0$ if event i is not held in year t. Here, M represents the total number of distinct Olympic events considered up to year t ($t=1,2,\cdots,30$) and the elements of V(t) are binary values indicating the participation of each event in year t.

5.2.3 Definition of Dominant Event

Let $I_j(t)$ represent the dominance of event j in year t, where the dominance is calculated based on the medal count over the past three years and the total number of medals in year t.

$$I_{j}(t) = \frac{\sum_{q=t-3}^{t-1} MT_{q,i,k,j}}{\sum_{q=t-3}^{t-1} V_{j}(q) \cdot MT_{q,i,j,k}}$$

Next, define $I(t) = (I_1(t), I_2(t), \dots, I_M(t))^T$ as the dominance vector.

To get the modified dominance vector I'(t), we set the components corresponding to the three largest values of I(t) to 1, and all other components to 0:

$$\hat{I}(t) = \begin{cases} 1 & \text{if } j \in \text{Top3}(I(t)) \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{I}(t) = \mathbf{1}_{\{j \in \text{Top3}(I(t))\}},$$

where Top3(I(t)) refers to the indices corresponding to the three largest values in the vector I(t), and 1 is the indicator function.

5.2.4 Strong Events

Let I(t) and V(t) be the dominance vector and the event vector for year t, respectively. The number of strongpoints S(t) can be defined as:

$$S(t) = \sum_{i=1}^{M} \mathbf{1}\{\hat{I}_i(t) = 1 \text{ and } v_i(t) = 1\},$$

where $\mathbf{1}\{\cdot\}$ is the indicator function, which is 1 if the condition inside the curly brackets is true and 0 otherwise. In this context, $\hat{I}_i(t) = 1$ means that event i has a dominant position in year t, and $v_i(t) = 1$ indicates that event i is held in year t.

Team # 2504496 Page 8 of 19

5.2.5 Percentage of winners

$$R(t, i) = \frac{N_{\text{award}}(t, i)}{N_{\text{athletes}}(t, i)}$$

5.2.6 Medal Distribution Concentration

$$HHI(t,i) = \sum_{i=1}^{M} \left(\frac{MT_{t,i,j}(t)}{MT_{t,i}(t)} \right)^{2}$$

where the closer the **HHI**(Herfindahl-Hirschmann Index)[1] is to 1, the more concentrated the distribution of medals is in a small number of sports, and the closer it is to 0, the more widely distributed the medals are.

5.2.7 historical performance

$$\widetilde{MT}(t,i) = \frac{1}{3} \sum_{q=t-3}^{t-1} MT_{q,i}$$

5.3 Prediction of Medal Count for Medal-Winning Countries Using LSTM

In this study, we propose to utilise a Long Short-Term Memory (LSTM) network [2] for Olympic medal prediction, exploiting both temporal dynamics and uncertainty quantification. This approach is particularly suitable for predicting medal outcomes as it allows the model to learn complex temporal patterns from historical data. To better illustrate how the LSTM model can be useful in medal prediction, the detailed workflow of the model is shown in Fig2.

Figure 2: Flow of LSTM based on Monte Carlo Dropout

The LSTM model is designed to process temporal sequences of features related to the countries' historical performance and other influencing factors. These features are embedded into a multidimensional tensor, which is fed into the LSTM architecture for further processing. The construction of this feature matrix is key to understanding how various factors contribute to the medal predictions.

Team # 2504496 Page 9 of 19

Multidimensional Tensor Construction

$$X(t,i) = \begin{bmatrix} \underbrace{H(t,i)}_{\text{Host}} & \underbrace{S(t)}_{\text{Strong}} & \underbrace{R(t,i)}_{\text{Percentage of winners}} \\ \underbrace{\text{HHI}(t,i)}_{\text{Medal Distribution}} & \underbrace{MT(t,i)}_{\text{Performance}} & \underbrace{N_{\text{athletes}}(t,i)}_{\text{Number of Athletes}} \end{bmatrix}$$

This tensor includes critical features such as the host country effect, the presence of strong events, and the distribution of winners, which together form the basis for our predictions. The matrix structure is carefully designed to capture the interdependencies between these factors, ensuring that temporal correlations are properly accounted for during the prediction process.

Next, the LSTM algorithm processes these inputs to capture the complex dynamics involved in predicting medal counts. The key steps in the LSTM implementation are outlined in the following algorithm. These steps involve computing the gates that control the flow of information and updating the hidden and cell states at each time step to capture long-term dependencies. The process is shown below.

Algorithm 1 LSTM Medal Prediction

- 1: **Input:** Historical sequence $X = [H(t,i), S(t), R(t,i), HHI(t,i), MT(t,i), N_{\text{athletes}}(t,i)]$
- 2: **Initialize:** Parameters $\theta = \{W_f, W_i, W_o, W_c, b_f, b_i, b_o, b_c\}$
- 3: Initialize hidden state $h_0 \leftarrow \mathbf{0}$, cell state $c_0 \leftarrow \mathbf{0}$
- 4: Set dropout rate p = 0.4
- 5: **for** each t = 1 to T **do**
- 6: Compute forget gate $f_t = \sigma(W_f[h_{t-1}, x_t] + b_f)$
- 7: Compute input gate $i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$
- 8: Compute candidate state $\tilde{c}_t = \tanh(W_c[h_{t-1}, x_t] + b_c)$
- 9: Update cell state $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- 10: Compute output gate $o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$
- 11: Update hidden state $h_t = o_t \odot \tanh(c_t)$
- 12: end for
- 13: **Return:** h_T

Key parameter configurations (Table 2) were determined through temporal cross-validation:

Team # 2504496 Page 10 of 19

Table 2: L	LSTM Model	l Parameters	Specification
------------	------------	--------------	---------------

Parameter	Description	Dimensions	Activation
Input dimension	Feature space dimension	37	nodes
Hidden units	LSTM layer capacity	16	neurons
Sequence length	Temporal window size	30	years
Batch size	National committee groups	233	nations
Embedding dim	Categorical feature space	16	dimensions
Dropout rate	Regularization probability	0.2	_
Learning rate	Adam optimizer step size	0.15	-
Training epochs	Optimization cycles	100	cycles
Loss function	Optimization criterion	MSE	-
Activation	Gate nonlinearity	Sigmoid/Tanh	_

Figure 3: Medal Predictions for China and USA in 2028

Prediction Results for China's Medal Count

Figure 3 (a) shows China's gold medal count rising steadily since 1980, with LSTM projections reaching 47 by 2028. The model demonstrates strong generalization (5% deviation in 2010–2020) and robust temporal pattern recognition. Total medals (Fig. 3 (b)) are forecast to surpass 96 by 2028 (5.4% CAGR), supported by high historical fit ($R^2 = 0.93$ for 1960–2000) and consistent post-2000 trajectory alignment.

Prediction Results for the United States' Medal Count

Team # 2504496 Page 11 of 19

The U.S. gold medal forecast (Fig. 3 (c)) projects 44 medals by 2028 (10% CAGR), reflecting stable growth in professional sports ecosystems. Total medals (Fig. 3 (d)) are predicted to hit a record 128 by 2028, with precise training-phase calibration (MAE=3.2) and test-phase sensitivity to global competition dynamics (MAE=7.8 post-2000). Prediction splits post-2020 show high temporal coherence (Pearson r=0.89), confirming adaptive event modeling capabilities.

5.4 Uncertainty Quantification Modeling with Monte Carlo Dropout

In sports events, there are often unexpected incidents such as injuries, which are full of uncertainties for Olympics. The Monte Carlo Dropout (MC Dropout) can quantify uncertainty of the model [3].

The uncertainty is estimated by generating the distribution of predicted values through multiple random activation of the Dropout layer during the inference stage. By conducting multiple forward passes, the variance of the model's output is used to measure the confidence of the prediction.

To address temporal dependencies and uncertainty in Olympic medal predictions, we propose an embedding-enhanced LSTM-MCD framework shown in Figure 4.

Figure 4: Flow of LSTM based on Monte Carlo Dropout

Assume $f(x;\theta)$ is the prediction model we build, x is its input and θ is parameters. In the training stage, Dropout operates with a probability p randomly dropping neurons is equivalent to sampling from the posterior distribution $P(\theta|D)$ (D are training data) of the parameters. In the inference stage, perform forward propagations 30 times before each time, generating a mask $\{f(x;\theta,m_t)\}_{t=1}^{30}$ each time. Then, the calculation of the predicted mean and variance is as follows:

We have empirically validated the selection of key implementation parameters for Monte Carlo Dropout, as shown in the table 3

Team # 2504496 Page 12 of 19

Algorithm 2 Monte Carlo Dropout Uncertainty Quantification

11: **end for** 12: **return** μ , σ^2

Require: Trained model f_{θ} , dropout probability p, test sample x^* , MC samples T=30**Ensure:** Predictive mean μ , predictive variance σ^2 1: Initialize empty prediction set $\{\hat{y}^{(t)}\}_{t=1}^{T}$ 2: for each test sample $x^* \in X_{\text{test}}$ do $\mathbf{for}\ t = 1\ \mathbf{to}\ T\ \mathbf{do}$ 3: Sample mask $m_t \sim \text{Bernoulli}(p)$ 4: Apply masked weights: $\theta_{\text{masked}} \leftarrow \theta \odot m_t$ 5: Compute prediction: $\hat{y}^{(t)} \leftarrow f(x^*; \theta_{\text{masked}})$ 6: end for 7: Calculate statistics: 8: $\mu \leftarrow \frac{1}{T} \sum_{t=1}^{T} \hat{y}^{(t)}$ $\sigma^{2} \leftarrow \frac{1}{T} \sum_{t=1}^{T} (\hat{y}^{(t)} - \mu)^{2}$ ▷ Predictive mean 9: 10: ▷ Predictive variance

Table 3: Monte Carlo Dropout Implementation Parameters

Parameter	Description	Value	Unit
Dropout rate	Neuron retention probability	0.4	-
MC iterations	Stochastic forward passes	100	counts
Sampling batch	Parallel sampling units	233	nations
Confidence level	Uncertainty coverage	90	%
Embedding dim	National identity encoding	16	dimensions
Temporal split	Training-validation ratio	70-30	%
Input features	Combined feature dimensions	37	nodes
Calibration	Empirical coverage rate	87.3	%

Team # 2504496 Page 13 of 19

5.4.1 Prediction Visualization

Figure 5: Medal Range Projections for China and USA in 2028

5.4.2 Results Showcase

The table below shows the total number of medals and gold medals for the predicted top 15 countries with the corresponding prediction intervals.

Team # 2504496 Page 14 of 19

Table 4: 2028 LA Olympics Top 15 Medal and Gold Medal Ranking

Country	Total Medal	Lower	Upper	Gold Medal	Lower	Upper
USA	128	135.0	124.0	44	45.3	50.4
CHN	96	108.1	103.1	47	45.3	42.4
GBR	71	67.5	72.5	37	35.1	40.2
GER	54	50.8	55.8	24	22.2	27.3
FRA	51	47.5	52.5	18	16.7	21.9
AUS	46	42.1	47.1	18	15.9	21.0
JPN	43	39.4	44.4	16	14.5	19.6
RUS	33	29.3	34.2	15	13.6	18.8
NED	33	29.2	34.2	15	13.1	18.3
KOR	28	24.7	29.7	14	12.5	17.7
ITA	28	24.5	29.4	14	12.2	17.3
ESP	26	21.9	26.9	13	11.7	16.8
ROC	21	17.3	22.2	12	10.0	15.1
NZL	21	17.0	22.0	11	9.2	14.3

5.4.3 Modelling Assessment

Table 5: LSTM Model Performance Evaluation (Training/Test Set Comparison)

Metric	Train	Test	Analysis
MSE	0.9836	1.1284	Small train/test error gap (Δ =0.1448) indicates mild overfitting with preserved generalization capability
RMSE	0.9918	1.0625	Prediction std dev ≈1 gold medal, meeting competition forecasting precision requirements
MAE	0.7571	0.8923	Mean absolute error <1 gold medal validates prediction reliability
R ²	0.9844	0.9216	Explains 92.16% data variance, demonstrating superior nonlinear pattern capture

Team # 2504496 Page 15 of 19

Figure 6: LSTM Training Loss Curve with Monte Carlo Dropout

• Rapid Convergence Phase (0–5 epochs): Loss drops from 0.03 to 0.025 with synchronized validation loss reduction, demonstrates rapid learning of underlying patterns

• Stabilized Optimization Phase (5–20 epochs): Training loss (↓0.0229→0.00) and validation loss (↓0.025→0.00) co-converge, suggesting appropriate dropout rate (estimated 0.2)

Final Convergence State (>20 epochs): Dual loss curves stabilize near 0.00 with ±0.001 fluctuations, indicating optimal model state

6 Task 2

6.1 Problem Overview

The objective of this model is to predict whether countries that have never won a medal in the past (i.e., "first-time winning countries") will be able to win a medal in future Olympic Games. For these countries, traditional medal prediction models (which usually rely on historical medal data) may not effectively predict their future performance. Therefore, we need to consider other potential factors, such as the host country effect, athlete participation growth, and the addition of new events.

6.2 Index Analysis

6.2.1 Target variable

$$y(t,i) = \begin{cases} 1 & \text{if country } i \text{ wins a medal in year } t \\ 0 & \text{if country } i \text{ does not win a medal in year } t \end{cases}$$

6.2.2 Athlete growth rate

The growth rate of athletes from country i in year t, calculated by the following formula:

$$G_{\text{growth}}(t,i) = \frac{N_{\text{participate}}(t,i) - N_{\text{participate}}(t-1,i)}{N_{\text{participate}}(t-1,i)}$$

where $N_{\text{participate}}(t, i)$ is the number of athletes from country i in year t.

6.2.3 Participation in new events compared to previous years

where $N_{\text{new}}(t,i)$ represents the number of new events that country i participated in during year t, and $P_{\text{new}}(t,i)$ indicates the quantity of new events in which country i participated during year. We define $\tilde{N}_{\text{new}} = \min(N_{\text{new}}[t][i], P_{\text{new}}[t][i])$.

Team # 2504496 Page 16 of 19

Algorithm 3 Participation in new events compared to previous years

```
1: Input: Year t, Country i, Matrices N_{\text{new}}, P_{\text{new}}
```

2: **for** each $k \in \{t-2, t-1, t\}$ **do**

3: **if** $N_{\text{new}}[k][i] > 0$ **and** $P_{\text{new}}[t][i] > 0$ **then**

4: **Return** min $(N_{\text{new}}[t][i], P_{\text{new}}[t][i])$

5: end if

6: end for

7: **Return** 0

6.3 Prediction model:

We use a Random Forest (RF) classifier to predict whether first-time winning countries will win medals. The model's input is the feature vector of the country X(t, i):

$$X(t, i) = [G_{\text{growth}}(t, i), H(t, i), \tilde{N}_{\text{new}}(t, i)]$$

The RF classifier consists of multiple decision trees, where each tree makes a prediction, and the final prediction is determined by majority voting from all the trees:

$$P(\text{Medal}(t, i)) = \frac{1}{T} \sum_{t=1}^{T} f_t(X(t, i), \theta_t)$$

where T is the number of trees in the forest, $f_t(\cdot)$ is the decision function of the t-th tree, and θ_t is the parameter learned during training for the t-th tree.

Prediction of first-time medal probability: If country i has never won a medal (i.e., no historical medals), we use the RF classifier to calculate the probability of winning a medal. If the probability exceeds a certain threshold, we predict that the country may win a medal in the future, especially a first-time medal:

$$P_{Medal}(t,i) > \text{Threshold}$$

where the threshold is determined based on the results of model evaluation.

Team # 2504496 Page 17 of 19

Algorithm 4 Prediction with Random Forest for First-Time Medal

- 1: **Input:** Year t, Country i, Matrices \tilde{N}_{new} , P_{new} , Feature vector X(t, i), RF with T trees.
- 2: **Output:** First-time medal prediction probability $P_{\text{first medal}}(t, i)$
- 3: Calculate feature vector $X(t, i) = [G_{growth}(t, i), H(t, i), N_{new}(t, i)]$
- 4: Initialize prediction sum: $P_{\text{sum}} = 0$
- 5: **for** each tree $t \in \{1, \dots, T\}$ **do**
- 6: Get prediction from tree t: $p_t = f_t(X(t, i), \theta_t)$
- 7: Update prediction sum: $P_{\text{sum}} = P_{\text{sum}} + p_t$
- 8: end for
- 9: Calculate average prediction: $P_{Medal}(t,i) = \frac{P_{\text{sum}}}{T}$
- 10: **if** $P_{Medal}(t,i) > \text{Threshold then}$
- 11: **Return** 1 (Predicted to win first medal)
- 12: **else**
- 13: **Return** 0 (Predicted not to win first medal)
- 14: **end if**
- 7 Task 3: xxx
- 8 Task 4: xxx
- 9 Task 5
- 10 Sensitivity Analysis
- 11 Strength and Weakness
- 11.1 Strength
- 11.2 Weakness
- 12 Further Discussion

Team # 2504496 Page 18 of 19

Memo

Enjoy Your Bath Time!

Sincerely yours,

Your friends

Team # 2504496 Page 19 of 19

References

[1] I. Brezina, J. Pekár, Z. Čičková, and M. Reiff, "Herfindahl-Hirschman index level of concentration values modification and analysis of their change," *Central European Journal of Operations Research*, vol. 24, no. 1, pp. 49–72, Mar. 2016, ISSN: 1613-9178. DOI: 10. 1007/s10100-014-0350-y. [Online]. Available: https://doi.org/10.1007/s10100-014-0350-y.

- [2] Y. Gal and Z. Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning," in *International Conference on Machine Learning*, 2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:160705.
- [3] Y. Gal and Z. Ghahramani, *Dropout as a bayesian approximation: Representing model uncertainty in deep learning*, 2016. arXiv: 1506.02142 [stat.ML]. [Online]. Available: https://arxiv.org/abs/1506.02142.

Appendices

Appendix A First appendix

Appendix B Second appendix

Report on Use of AI

1. OpenAI ChatGPT (Nov 5, 2023 version, ChatGPT-4,)

Query1: <insert the exact wording you input into the AI tool>

Output: <insert the complete output from the AI tool>

2. OpenAI ChatGPT (Nov 5, 2023 version, ChatGPT-4,)

Query1: <insert the exact wording you input into the AI tool>

Output: <insert the complete output from the AI tool>