Wyznaczanie charakterystyki prądowo-napięciowej diody rezonansowo-tunelowej (RTD) oraz zastosowanie przybliżenia adiabatycznego do wyznaczenia zjawiska kwantyzacji konduktancji w kwantowym kontakcie punktowym (QPC).

P. Wójcik

10 czerwca 2021; ostatnia aktualizacja 13 kwietnia 2023

1 Metoda macierzy transferu

Rysunek 1: Wspołczynnik transmisji i odbicia w funkcji energii przy założeniu stałej masy efektywnej.

Rysunek 2: Wspołczynnik transmisji i odbicia w funkcji energii przy założeniu zmiennej masy efektywnej.

2 Dioda rezonansowo-tunelowa

Rysunek 3: Wspołczynnik transmisji i odbicia w funkcji energii przy założeniu zmiennej masy efektywnej, dla diody RTD.

Rysunek 4: Charakterystyka prądowo-napięciowa diody RTD.

3 Kwantowy kontakt punktowy w przybliżeniu adiabatycznym - kwantyzacja konduktancji.

Rysunek 5: Profil potencjału pochodzący od elektrod bramki dla parametrów zadanych w instrukcji.

Rysunek 6: Profile $E_n(x)$ dla poszczególnych n=1,2,3,4,5.

Rysunek 7: Konduktancja w funkcji energii padającego elektronu wyznaczona dla QPC przy pomocy przybliżenia adiabatycznego.

Rysunek 8: Konduktancja w funkcji napięcia V_{qpc} na bramkach. Wyniki dla $E=50~{
m meV}$ oraz $E=100~{
m meV}.$