Metody optymalizacji – laboratorium

zad. 0 Przeczytać opis języka GNU MathProg w celu zapoznania się z możliwościami GNU MathProg.

zad. 1 (Sysło, Deo, Kowalik 1993) Jednym z testów na dokładność i odporność algorytmów LP jest następujące zagadnienie

$$\min \boldsymbol{c}^T \boldsymbol{x}$$

Przy warunkach

$$A\boldsymbol{x} = \boldsymbol{b}, \ \boldsymbol{x} \geqslant \boldsymbol{0},$$

gdzie

$$a_{ij} = \frac{1}{i+j-1}, \ i, j = 1, \dots, n,$$

$$c_i = b_i = \sum_{j=1}^{n} \frac{1}{i+j-1}, \ i = 1, \dots, n.$$

Rozwiązaniem tego zagadnienia jest $x_i=1,\ i=1,\ldots,n$. Macierz A występująca w tym teście, zwana macierzą Hilberta, powoduje złe uwarunkowanie zagadnienia nawet dla niezbyt dużych n.

Zapisać model w GNU Math Prog i użyć glpsol do określenia rozmi
aru problemu n jaki jeszcze można rozwiązać z dokładnością do co najm
niej 2 cyfr. Drukować błąd względny $||x-\tilde{x}||_2/||x||_2$ dla danego n, gdzie \tilde{x} jest rozwiązaniem obliczonym a x dokładnym.

Uogólnić metodę rozwiązania, tj. oddzielić model od danych, tak aby można było zadawać dane (n), w sekcji data lub w pliku, na podstawie, których GNU MathProg generowałby model i go rozwiązywał. Maksymalnie sparametryzować zapis modelu.

Jeżeli ktoś z Państwa będzie się nudził, to proszę dodatkowo zrealizować to zadanie w julii dla solverów clp, HiGHS i GLPK.

zad. 2 Pewna firma zajmuje się wypożyczaniem camperów w środkowej Europie. Zakres jej działalności obejmuje Polskę oraz sąsiednie kraje. Co jakiś czas pojawia się naturalny problem niedoboru lub nadmiaru camperów (dwa rodzaje zależne od komfortu: *Standard* i *VIP*) w miastach gdzie zlokalizowane są przedstawicielstwa firmy (punkty wypożyczania camperów). Poniżej tabela opisuje problem nadmiaru i niedoboru:

	niedob	ór	nadmiar	
miasta	Standard	VIP	Standard	VIP
Warszawa	_	4	14	_
Gdańsk	20	_	_	2
Szczecin	_	_	12	4
Wrocław	8	_	_	10
Kraków	_	8	10	_
Berlin	16	4	_	_
Rostok	2	_	_	4
Lipsk	3	_	_	10
Praga	_	4	10	_
Brno	9	_	_	2
Bratysława	4	_	_	8
Koszyce	4	_	_	4
Budapeszt	8	_	_	4
Razem	74	20	46	48

Należy ustalić plan przemieszczania camperów przy minimalizacji kosztów transportu, jeśli:

- koszt przemieszczenia campera *Standard* jest proporcjonalny do odległości (odległości ustalić na podstawie, np. google map),
- koszt przemieszczenia campera VIP jest o 15% wyższy niż campera Standard,
- camper *Standard* może być zastąpiony przez camper *VIP*. Natomiast camper *VIP* nie może zastąpić camper *Standard*.

Zapisać model programowania liniowego w GNU MathProg i rozwiązać go za pomocą glpsol. Uogólnić metodę rozwiązania, tj. oddzielić model od danych. Maksymalnie sparametryzować zapis modelu.

Sprawdzić, czy założenie całkowitoliczbowości zmiennych decyzyjnych jest potrzebne.

zad. 3 Przedsiębiorstwo produkuje cztery mieszanki - produkty końcowe (patrz schemat). Dwa z tych produktów są produktami podstawowymi, powstającymi jako mieszanki trzech surowców. Poniższa tablica pokazuje, w jaki sposób surowce te mają być wymieszane, a także zawiera ceny zbytu produktów podstawowych (zakładamy, że firma może sprzedać takie ilości wszystkich produktów, jakie wytworzy, nie zmieniając cen):

Produkt	Specyfikacja	Cena za 1 kg
\mathbf{A}	co najmniej 20% surowca 1	3\$
	co najmniej 40% surowca 2	
	nie więcej niż 10% surowca 3	
В	co najmniej 10% surowca 1	2.5\$
	nie więcej niż 30% surowca 3	

W celu zagwarantowania terminowych dostaw surowców przedsiębiorstwo zgodziło się na to, że w każdym wypadku w rozpatrywanym okresie planowania zakupi pewne minimalne ilości tych surowców. Natomiast fizyczne uwarunkowania urządzeń produkcyjnych ograniczają z góry ilość każdego z surowców, jaką przedsiębiorstwo może w tym okresie przetworzyć. Oba rodzaje ograniczeń, jak i jednostkowe ceny surowców podane są w poniższej tabeli:

Surowiec	Minimum	Maksimum	Koszt za 1 kg
	(kg)	(kg)	(\$)
1	2000	6000	2.1
2	3000	5000	1.6
3	4000	7000	1.0

Z samej natury procesu produkcji wynika fakt, że tylko pewna część każdego z surowców użytych do produkcji produktów podstawowych wchodzi bezpośrednio do tych produktów. Reszta (odpady), których ilość wyraża się każdorazowo poprzez znany współczynnik strat (patrz poniższa tabela), może być albo użyta ponownie - do produkcji produktów ${\bf C}$ i ${\bf D}$ - albo zniszczona na koszt firmy.

	Produkt	
Surowiec	${f A}$	\mathbf{B}
1	0.1	0.2
2	0.2	0.2
3	0.4	0.5

Drugorzędny produkt \mathbf{C} otrzymuje się poprzez wymieszanie dowolnych ilości odpadów z surowców 1, 2, 3 otrzymanych przy wyrobie produktu \mathbf{A} z oryginalnym surowcem 1, przy czym ten ostatni musi stanowić (wagowo) dokladnie 20% mieszanki. Podobnie, drugorzędny produkt \mathbf{D} otrzymuje się poprzez wymieszanie dowolnych ilości odpadów z surowców 1, 2, 3 otrzymanych przy wyrobie produktu \mathbf{B} z oryginalnym surowcem 2, przy czym ten ostatni

musi stanowić (wagowo) dokładnie 30% mieszanki. Przy produkcji produktów drugorzędnych nie powstają żadne odpady. Ceny rynkowe (za 1 kg) produktów $\bf C$ i $\bf D$ wynoszą odpowiednio 0.6\$ i 0.5\$.

Poniższa tabela zawiera koszty zniszczenia odpadów nie użytych do produkcji produktów drugorzędnych. Ceny te są różne w zależności od pochodzenia odpadów (kombinacja surowiec/produkt podstawowy), ponieważ odpady z różnych procesów produkcyjnych mają różne własności chemiczne:

	Produkt	
	$\mathbf{A} \mathbf{B}$	
Surowiec	(\$,	/kg)
1	0.1	0.05
2	0.1	0.05
3	0.2	0.40

Przedsiębiorstwo chce znaleźć odpowiedź na następujące pytania:

- Ile zakupić surowców 1, 2 i 3?
- Jaką część każdego z surowców przeznaczyć do produkcji jakiego produktu (${f A},\,{f B},\,{f C}$ i ${f D}$)?
- Jaką część odpadów z produkcji produktów A i B zniszczyć, a jaką przeznaczyć do produkcji produktów drugorzędnych?

Zapisać model programowania liniowego w GNU MathProg i rozwiązać go za pomocą glpsol. Tutaj można napisać model programowania liniowego pod konkretne dane z zadania - nie trzeba oddzielać danych od modelu.

zad. 4 Student uczęszcza na pięć następujących przedmiotów: algebrę, analizę, fizykę, chemię minerałów i chemię organiczną. Ze względu na dużą liczbę studentów, do każdego z tych przedmiotów zorganizowano cztery grupy ćwiczeniowe. W poniższej tabeli podane są godziny zajęć każdej z tych grup:

	Algebra	Analiza	Fizyka	Chemia min.	Chemia org.
	Pn.	Pn.	Wt.	Pn.	Pn.
I	13-15	13-15	8-11	8-10	9-10:30
	Wt.	Wt.	Wt.	Pn.	Pn.
II	10-12	10-12	10-13	8-10	10:30-12
	Śr.	Śr.	Cz.	Cz.	Pt.
III	10-12	11-13	15-18	13-15	11-12:30
	Śr.	Cz.	Cz.	Pt.	Pt.
IV	11-13	8-10	17-20	13-15	13-14:30

Dla każdego z przedmiotów student wyraził swoje preferencje wobec poszczególnych grup, przyporządkując każdej z nich ocenę między 0 a 10 punktów. Ocena ta bierze pod uwagę godzinę odbywania się ćwiczeń oraz opinię, jaką cieszy się prowadzący je asystent. Preferencje te podane są w poniższej tabeli:

	Algebra	Analiza	Fizyka	Chemia min.	Chemia org.
Ι	5	4	3	10	0
II	4	4	5	10	5
III	10	5	7	7	3
IV	5	6	8	5	4

Student pragnie w ten sposób zapisać się na zajęcia z pięciu obowiązujących go przedmiotów, by zmaksymalizować sumę punktów preferencyjnych. Chce on przy tym respektować trzy następujące ograniczenia:

- nie zapisywać się na więcej niż cztery godziny ćwiczeń dziennie,
- mieć codziennie między 12 a 14 jedną godzinę wolną (by zjeść obiad w stołówce, która otwarta jest tylko w tych godzinach),
- móc trenować przynajmniej raz w tygodniu swoją ulubioną dyscyplinę sportu. Treningi odbywają się: w poniedziałek od 13 do 15 oraz w środę od 11 do 13 i od 13 do 15 (może więc trenować raz, dwa lub trzy razy w tygodniu).
- 1. Zapisać model programowania calkowitoliczbowego w GNU MathProg i rozwiązać go za pomocą glpsol.
- 2. Czy istnieje taki rozkład zajęć, w którym wszystkie ćwiczenia z przedmiotów obowiązkowych byłyby zgrupowane w trzech dniach w poniedziałek, wtorek i czwartek oraz wszystkie odpowiadałyby preferencjom nie mniejszym niż 5?

Tutaj można napisać model programowania calkowitoliczbowego pod konkretne dane z zadania - nie trzeba oddzielać danych od modelu.

Rozwiązania problemów przedstawić w sprawozdaniu, plik pdf, które powinno zawierać:

1. modele

- (a) definicje zmiennych decyzyjnych (opis, jednostki),
- (b) ograniczenia wraz z interpretacją (nie umieszczać źródeł modelu),
- (c) funkcje celu wraz z interpretacją,

2. wyniki oraz ich interpretację.

Model, zmienne w sprawozdaniu zapisujemy matematycznie (nie w GNU MathProg) - zob. na stronie przykład opisu modelu.

Do sprawozdania należy dołączyć pliki w GNU MathProg (*.mod, *.dat) Pliki powinny być skomentowane: imię i nazwisko autora, komentarze zmiennych, zaetykietowane ograniczenia oraz komentarz ograniczeń.

Uwaga: Za zadania 1, 2, 3 (zadania obowiazkowe) można otrzymać co najwyżej ocene dobra.