Introduction

****Traditional definition of quality:**

- fitness of purpose,
 - □ a quality product does exactly what the users want it to do.

Fitness of purpose

- #For software products,
 - fitness of purpose:
 - satisfaction of the requirements specified in SRS document.

Fitness of purpose

- ****A** satisfactory definition of quality for many products:
- **But, not satisfactory for software products.**

Introduction

- ****Consider a software product:**
 - functionally correct,
 - i.e. performs all functions as specified in the SRS document,
 - but has an almost unusable user interface.
 - cannot be considered as a quality product.

Introduction

- ****Another example:**
 - a product which does everything that users want.
 - but has an almost incomprehensible and unmaintainable code.

Modern view of quality

- ******Associates several quality factors with a software product :
 - Correctness
 - Portability
 - Usability
 - Reusability
 - Maintainability

Correctness

- ****A** software product is correct,
 - if different requirements as specified in the SRS document have been correctly implemented.
 - Accuracy of results.

Portability

- ****A** software product is said to be portable,
 - in different operating systems,
 - in different machines,
 - with other software products, etc.

Reusability

- ****A** software product has good reusability,
 - if different modules of the product can easily be reused to develop new products.

Usability

- ****A** software product has good usability,
 - if different categories of users (i.e. both expert and naive users) can easily invoke the functions of the product.

Maintainability

- ****A** software product is maintainable,
 - if errors can be easily corrected as and when they show up,
 - new functions can be easily added to the product,
 - In the product can be easily modified, etc.

MCCall's Model

- -- **Product operation factors:**Correctness, reliability, efficiency,
 Integrity, Usability
- -- Product revision factors: maintainability, flexibility, testability
- -- Product transition factors: portability, reusability, interoperability

Software Quality Management System

- ****Quality management system** (or quality system):
 - principal methodology used by organizations to ensure that the products have desired quality.

Quality system

- ****A** quality system consists of the following:
 - Managerial Structure
 - Individual Responsibilities.
- Responsibility of the organization as a whole.

#The quality system activities encompass the following:

- ******Auditing of projects
- #Review of the quality system
- Development of standard, procedures and guidelines
- #Production of reports for the top management summarizing the effectiveness of quality system.

Quality system

- ****Every quality conscious organization has** an independent quality department:
 - performs several quality system activities.
 - needs support of top management.
 - Without support at a high level in a company,
 - many employees may not take the quality system seriously.

Quality System Activities:

- ****Auditing of projects**
- **#Development of:**
 - standards, procedures, and guidelines, etc.
- ****Production of reports for the top management**
 - summarizing the effectiveness of the quality system in the organization.
- **Review of the quality system itself.**

Quality system

- ****A** good quality system must be well documented.
 - Without a properly documented quality system,
 - application of quality procedures become ad hoc,
 - results in large variations in the quality of the products delivered.

Quality system

- ****An undocumented quality system:**
 - sends clear messages to the staff about the attitude of the organization towards quality assurance.
- #International standards such as ISO 9000 provide:
 - guidance on how to organize a quality system.

- **#Quality systems have evolved:**
 - over the last five decades.
- #Prior to World War II,
 - way to produce quality products:
 - inspect the finished products
 - Eliminate defective products.

- #Since that time,
 - quality systems of organizations have undergone
 - is four stages of evolution.

Product assurance Inspection Quality control (QC) Quality assurance (QA) rocess assurance Total Quality Management (TQM)

- **#**Initial product inspection method:
 - gave way to quality control (QC).
- **#Quality control:**
 - not only detect the defective products and eliminate them
 - but also determine the causes behind the defects.

Quality control (QC)

- #Quality control aims at correcting the causes of errors:
 - not just rejecting defective products.
- **#Statistical quality control**
 - quality of the output of the process is inferred using statistical methods
 - in stead of inspection or testing of all products

Quality control (QC)

Quality assurance

good quality.

- ****Basic premise of modern quality assurance:**
 - □ if an organization's processes are good and are followed rigorously,
 □ the products are bound to be of

Quality assurance

- ****All modern quality paradigms** include:
 - guidance for recognizing, defining, analyzing, and improving the production process.

Total quality management (TQM)

****Advocates:**

continuous process improvements through process measurements.

Business Process reengineering

- **#A** term related to TQM.
- Reprocess reengineering goes a step further than quality assurance:
 - aims at continuous process improvement.

Business Processreengineering

- Our focus is reengineering of the software process.
- Whereas BPR aims at reengineering the way business is carried out in any organization
 - not just software development organizations.

Total quality management (TQM)

- **XTQM** goes beyond documenting processes
 - optimizes them through redesign.
- ****Over the years the quality paradigm** has shifted:
 - In the following of the

ISO 9000

- **XISO** (International Organization for Standardization):
 - a consortium of 63 countries established to formulate and foster standardization.
- **#ISO** published its 9000 series of standards in 1987.

What is ISO 9000 Certification?

#ISO 9000 certification:

serves as a reference for contract between independent parties.

#The ISO 9000 standard:

specifies guidelines for maintaining a quality system.

What is ISO 9000 Certification?

XISO 9000 specifies:

- guidelines for repeatable and high quality product development.
- Also addresses organizational aspects
 - responsibilities, reporting, procedures, processes, and resources for implementing quality management.

ISO 9000

- ****A** set of guidelines for the production process.
 - not directly concerned about the product it self.
 - a series of three standards:
 - **ISO** 9001, ISO 9002, and ISO 9003.

ISO 9000

****Based on the premise:**

if a proper process is followed for production:

⊠good quality products are bound to follow.

ISO 9001:

****Applies to:**

- organizations engaged in design, development, production, and servicing of goods.
- △applicable to most software development organizations.

ISO 9002:

#ISO 9002 applies to:

- organizations who do not design products:
 - **⊠**but are only involved in production.

#Examples of this category of industries:

- steel or car manufacturing industries
- buy the product and plant designs from external sources:
 - ≥ only manufacture products.

ISO 9003

#ISO 9003 applies to:

organizations involved only in installation and testing of the products.

ISO 9000 for Software Industry

- **#ISO** 9000 is a generic standard:
 - applicable to many industries,
- ****Many clauses of ISO 9000 documents:**
 - use generic terminologies
 - very difficult to interpret them in the context of software organizations.

- **Very difficult to interpret many clauses for software industry:
 - software development is radically different from development of other products.

- **Software** is intangible
 - therefore difficult to control.
 - It is difficult to control anything that we cannot see and feel.
 - In contrast, in a car manufacturing unit:
 - we can see a product being developed through stages such as fitting engine, fitting doors, etc.
 - one can accurately tell about the status of the product at any time.
 - Software project management is an altogether different ball game.

- #During software development:
 - the only raw material consumed is data.
- #For any other product development:
 - Lot of raw materials consumed
 - ≥e.g. Steel industry consumes large volumes of iron ore, coal, limestone, etc.
- **#ISO** 9000 standards have many clauses corresponding to raw material control.
 - not relevant to software organizations.

- Radical differences exist between software and other product development,
 - difficult to interpret various clauses of the original ISO standard in the context of software industry.

ISO 9000 Part-3

- **XISO** released a separate document called ISO 9000 part-3 in 1991
 - to help interpret the ISO standard for software industry.
- ***At present,**
 - official guidance is inadequate

****Several benefits:**

- Confidence of customers in an organization increases
 - if organization qualified for ISO 9001 certification.

- #Many international software development contracts insist:
 - development organization to have ISO 9000 certification.

****Requires:**

- contributes to repeatable and higher quality software.
- ****Makes development process:**
 - focussed, efficient, and cost-effective

- ****Points out the weakness of an organizations:**
 - recommends remedial action.
- **Sets** the basic framework:
 - for development of an optimal process and TQM.

- ****An organization intending to obtain** ISO 9000 certification:
 - △applies to a ISO 9000 registrar for registration.
- **XISO** 9000 registration process consists of several stages.

- ****Application stage:**
 - Applies to a registrar for registration.
- **#Pre-assessment:**
 - the registrar makes a rough assessment of the organization.

- #Document review and adequacy audit:
 - process and quality-related documents.
 - the registrar reviews the documents
 - makes suggestions for improvements.

- Compliance audit: the registrar checks
 - whether the suggestions made by it during review have been complied.

***Registration:**

The registrar awards ISO 9000 certificate after successful completions of all previous phases.

#Continued surveillance:

The registrar continues monitoring the organization periodically.

ISO 9000 Certification

- ****An ISO certified organization**
 - can use the certificate for corporate advertizements
 - cannot use the certificate to advertize products.

 - not any product of the organization.
 - An organization using ISO certificate for product advertizements:
 - **Important Proof** It is a second of the certificate.

Summary of ISO 9001 Requirements

#Management responsibility(4.1):

- Management must have an effective quality policy.
- The responsibility and authority of all those whose work affects quality:
 - must be defined and documented.

Management responsibility (4.1)

- **Responsibility** of the quality system.
 - independent of the development process,
 - can work in an unbiased manner.
- ****The effectiveness of the quality system:**
 - must be periodically by audited.

Quality system (4.2) and contract reviews (4.3):

****A quality system must be** maintained and documented.

#Contract reviews (4.3):

- Before entering into a contract, an organization must review the contract
 - ensure that it is understood,

Design control (4.4):

- #The design process must be properly controlled,
 - this includes controlling coding also.
- ****A** good configuration control system must be in place.

Design control (4.4):

- **#Design must be verified.**
- ★Design output must be of required quality.
- #Design changes must be controlled.

Document control (4.5):

- ****Proper procedures for**
 - document approval, issue and removal.
- ****Document changes must be controlled.**
 - use of some configuration management tools is necessary.

Purchasing (4.6):

- **#Purchased material, including** bought-in software:
 - must be checked for conforming to requirements.

Purchaser Supplied Products (4.7):

- Material supplied by a purchaser,
 - for example,
 - Client-provided software must be properly managed and checked.

Product Identification (4.8):

The product must be identifiable at all stages of the process.

In software development context this means configuration management.

Process Control (4.9):

- #The development must be properly managed.
- ****Quality requirements must be identified in a quality plan.**

Inspection and Testing (4.10):

- In software terms this requires effective testing i.e.,
 - unit testing, integration testing and system testing.
- **#Test records must be** maintained.

Inspection, measuring and test equipment(4.11):

- #If integration, measuring, and test equipments are used,
 - must be properly maintained and calibrated.

Control of nonconforming product (4.13):

- **XIn software terms,**
 - keeping untested or faulty software out of released product,
 - or other places whether it might cause damage.

Corrective Action (4.14):

- **#This is both about correcting errors** when found,
 - investigating why they occurred
 - improving the process to prevent further occurrences.
- **#**If an error reoccurs despite the quality system,
 - the system needs improvement.

Handling (4.15) and Quality audits (4.17):

- #Handling (4.15) Deals with:
 - storage, packing, and delivery of the software product.
- Quality Audits (4.17):
 - quality system audit must be carried out to ensure its effectiveness.

Training (4.18):

- ****Training needs must be identified and met.**

Salient features of ISO 9001 requirements:

- ****All documents concerned with the development of a software product**
 - should be properly managed, authorized, and controlled.
- ****Proper plans should be prepared**
 - progress against these plans should be monitored.

Salient features of ISO 9001 requirements:

- #Important documents independently checked and reviewed:
 - for effectiveness and correctness.
- ****The product should be tested:**
 - against specification.
- ****Several organizational aspects:**
 - e.g., management reporting of the quality team.

Shortcomings of ISO 9001 Certification (1)

- **#ISO** 9000 requires a production process to be adhered to:
 - but does not guarantee the process to be of high quality.
 - Does not give any guideline for defining an appropriate process.

Shortcomings of ISO 9001 Certification (6)

- **#ISO 9001 addresses mostly management** aspects.
- #Techniques specific to software development have been ignored
 - Configuration management
 - Reviews
 - Release builds
 - Problem Notification system

- Developed by Software Engineering Institute (SEI) of the Carnegie Mellon University, USA:

 - The rationale was to include:

- #Major DoD contractors began CMMbased process improvement initiatives:
 - as they vied for DoD contracts.
- **#SEI CMM** helped organizations:
 - Improve quality of software they developed
 - Realize adoption of SEI CMM model had significant business benefits.
- ****Other organizations adopted CMM.**

XIn simple words,

- CMM is a model for apprising the software process maturity of a contractor into different levels.
- Can be used to predict the most likely outcome to be expected from the next project that the organization undertakes.

- **#Can be used in two ways:**
 - Capability evaluation

Capability Evaluation

Reprovides a way to **assess** the software process capability of an organization

Helps in selecting a contractor

Software Process Assessment

- **#Used by an organization to assess its current process:**
 - Suggests ways to improve the process capability.
 - This type of assessment is for purely internal use.

- The SEI CMM classifies software development industries into:
 - Five maturity levels.
 - Stages are ordered so that improvements at one stage provide foundations for the next
 - Based on the pioneering work of Philip Crosby

Level 1: (Initial)

- **#Organization operates**
 - without any formalized process or project plans
- ****An organization at this level is characterized by**
 - △ad hoc and often chaotic activities.

Level 1: (Initial)

- ****Software production processes are not defined,**
 - different engineers follow their own process
 - development efforts become chaotic.
 - The success of projects depend on individual efforts and heroics.

Level 2: (Repeatable)

- #Production process is ad hoc
 - not formally defined
 - also not documented.

Level 3: (Defined)

- **Management and development activities:
 - defined and documented.
 - Common organization-wide understanding of activities, roles, and responsibilities.

Level 3: (Defined)

- ☆ The process though defined,
 △ process and product qualities are not measured.
- **XISO** 9001 aims at achieving this level.

Level 4: (Managed)

- **#Quantitative quality goals for products** are set.
- **Software process and product quality** metrics are collected:

Level 4: (Managed)

- ****Organization sets quantitative quality goals**
- World-wide about 100 organizations assessed at this level.

Level 5: (Optimizing)

- Statistics collected from process and product measurements are analyzed:
 - continuous process improvement based on the measurements.
 - Known types of defects are prevented from recurring by tuning the process

Level 5: (Optimizing)

- **XIdentify** best software engineering practices and innovations:
 - tools, methods, or process are identified
 - transferred throughout the organization
- ****World-wide about 50 organizations have been assessed at this level.**

Key Process Areas

- ***Each level is associated with a** key process area (KPA) identifies
 - where an organization at the previous level must focus to reach this level

Level 2 KPAs

- ****Software project planning**
 - Size, cost, schedule.
 - project monitoring
- **#Configuration management**
- **#Subcontract management**

Level 3 KPAs

- ****Process definition and documentation**
- **#Reviews**
- **#Training program**

Level 4 KPAs

****Quantitative measurements **Process management**

Level 5 KPAs

#Defect prevention
#Technology change management
#Process change management

Shortcomings of CMM

- 1. Focuses on what needs to improve but does not guide about how to improve.
- Thicker documentations and longer meetings are required
- Getting an accurate measure of an organization's current maturity level is also an issue

Comparison between ISO 9001 and SEI CMM

- **XISO** 9001 awarded by an international standards body
 - can be quoted in official documents and communications
- ****SEI CMM** assessment is purely for internal use.

Comparison between ISO 9001 and SEI CMM

- **#SEI CMM** was developed specifically for software industry:
- **#SEI** goes beyond quality assurance
 - aims for TQM

Comparison between ISO 9001 and SEI CMM

- **#SEI CMM provides a list of key areas**
 - on which to focus to take an organization from one level to the other
- ****Provides a way for gradual quality** improvements over several stages.
 - e.g trying to implement a defined process before a repeatable process:
 - counterproductive as managers are overwhelmed by schedule and budget pressure.

CMMI

- #It is successor of CMM.
- **#CMM** developed from 1987-1997
- #In 2002, CMMI version 1.1 was released
- **#CMMI** aimed to improve the maturity models by integrating many different models into one framework
- ****CMM** versions are: SE-CMM, T-CMM, SSE-CMM, P-CMM, IPD-CMM etc.
- **#CMMI** integrated like: CMMI-SE/SW, CMMI-SE/SW/IPD etc.

Remarks on Quality Model Usage

- #Highly systematic and measured approach to software development process suits certain circumstances
 - negotiated software, safety-critical software, etc
- ****What about small organizations?**

 - without an established product range,
 - without revenue base, experience on past projects, etc.
 - **区MM** may be incompatible

Small Organizations

#Small organizations tend to believe:

- We are all competent people hired to do a job, we can't afford training
- We all communicate with one another
 - ∠ Osmosis works because we are so close
- We are all heroes
 - We do what needs to be done

Small Organizations

#Often have problems:

- Undocumented requirements
- Inexperienced managers
- Documenting the product
- Resource allocation
- Training
- Peer reviews

Small Organizations

- ****A** two week CMM-based appraisal is probably excessive:
- **#Small organizations need to operate more** efficiently at lower levels of maturity
 - Must first fluorish if eventually they are to mature

Personal Software Process (PSP)

- **#Based** on the work of Humphrey
- **#PSP** is a scaled down version of industrial software process
- #Even CMM assumes that engineers use effective personal practices

Personal Software Process (PSP)

- #A process is the set of steps for doing a job
- #The quality and productivity of an engineer
 - □ largely determined by his process
- **#PSP** is framework that
 - helps software engineers to measure and improve the way they work.

Personal Software Process (PSP)

- #Helps developing personal skills and methods
 - Estimating and planning method
 - Shows how to track performance against plans
 - Provides a defined process

 - Recognizes that a process for individual use is different from that necessary for a team project.

Time Management

- #Track the way you spend time
 - Boring activities seem longer then actual
 - Interesting activities seem short
- ****Record time for**
 - Designing
 - Writing code
 - Compiling

Personal Software Process (PSP)

PSP-Planning

- ***Problem definition**
- #Estimate max, min, and total LOC
- **#Determine minutes/LOC**
- ****Calculate max,min, and total development** times
- #Enter the plan data in project plan summary form
- #record the planned time in Log

PSP-Design

- #Design the program
- ****Record the design in specified format**
- Record the Design time in time recording log

PSP-Code

#Implement the design

#Use a standard format for code text

#Record the coding time in time recording log

PSP-Compile

- **#Compile the program**
- #Fix all the defects
- ****Record compile time in time recording log**

PSP-Test/Postmortem

#Test

- Fix all the defects found
- Record testing time in time recording log

#Postmortem

Compare the log data with project plan to achieve better planning in future projects to improve his process.

Personal Software Process (PSP)

Six Sigma

- Six sigma is a quantitative approach to eliminate defects
 - Applicable to all types of industry from manufacturing, product development, to service
- #The statistical representation of Six Sigma quantitatively describes
 - how a process is performing

Six Sigma

- **#To achieve six sigma**
 - a process must not produce more than 3.4 defects per million opportunities.
 - △5 Sigma -> 230 defects per million
 - 4 Sigma -> 6210 defects per million
- **#Six sigma methodologies**
 - DMAIC (Define, Measure, Analyze, Improve, Control)

Six Sigma Methodologies

- **#Evolution of quality system:**
 - product inspection
 - quality control
 - quality assurance
 - total quality management (TQM)
- **#Quality paradigm change:**
 - from product to process

#ISO 9000:

- △basic premise:
 - xif a good process is followed
 - **x**good products are bound to follow
- provides guidelines for establishing a quality system.

- **#ISO 9000**
 - series of three standards
 - ≥ 9001, 9002, and 9003
 - 9001 is applicable to software industry

#SEI CMM

- developed specially for software industry
- classifies software organizations into five categories.
 - According to the maturity of their development process.

Current Trends

- **Many organizations have already tuned their process for
 - □ Budget,

 - Quality product.
- **#Competition** is challenging them to:
 - Reduce time for delivery
 - Adopt Six-Sigma methodology