

taxonomic

Home | TNRS Application | Instructions | Sources | About | Collaborators | Known Issues | Optimize Your Search | How to Cleaning With

Taxonomic cleaning

- Why bother?
- Taxonomic scrubbing applications
- General glitches and gotchas
- TNRS glitches and gotchas
- Pre-processing
- Post-processing
- Understanding the output

Taxonomic cleaning: why bother?

Widespread tropical tree

Hieronyma oblonga

Taxonomic cleaning: why bother?

Widespread tropical tree

Hieronyma oblonga

Synonym of *Hieronyma* oblonga, once thought to be endemic to Costa Rica

Hieronyma poasana

Taxonomic cleaning: why bother?

Widespread tropical tree

Hieronyma oblonga

Common misspellings of *Hieronyma oblonga*

Hyeronima oblonga Hieronima oblonga

Synonym of *Hieronyma* oblonga, once thought to be endemic to Costa Rica

Hieronyma poasana

Why bother?

Table 5 Total names within two plant taxonomic databases before and after name resolution using the TNRS

Name source	Original names	After matching by TNRS	After matching & synonym conversion by TNRS	
NCBI	99743	97734	90142	10% "bad" names
ITIS	46483	45960	45025	
NCBI+ITIS (shared names)	4412	19935	20670	
NCBI+ITIS (total unique names)	141814	123759	114497	

Boyle et al. BMC Bioinformatics 2013, 14:16 http://www.biomedcentral.com/1471-2105/14/1

SOFTWARE

Open Access

The taxonomic name resolution service: an online tool for automated standardization of plant names

Brad Boyle^{1,2*}, Nicole Hopkins^{2,3}, Zhenyuan Lu^{2,4}, Juan Antonio Raygoza Garay^{2,3}, Dmitry Mozzherin⁵, Tony Rees⁶, Naim Matasci^{1,2,3}, Martha L Narro^{3,3}, William H Piel⁷, Sheldon J Mckay^{2,3,4}, Sonya Lowny^{2,3}, Chris Freeland⁸, Robert K Fee⁶, ⁴ and Bran J Enquist^{1,10}

Why bother?

Table 5 Total names within two plant taxonomic databases before and after name resolution using the TNRS

Name source	Original names r	After matching by TNRS	After matching & synonym conversion by TNRS
NCBI	99743	97734	90142
ITIS	46483	45960	45025
NCBI+ITIS (shared names)	4412	19935	20670
NCBI+ITIS (total unique names)	141814	123759	114497

Boyle et al. BMC Bioinformatics 2013, 14:16

Overlap between databases only 3%!

SOFTWARE

Onon Assess

The taxonomic name resolution service: an online tool for automated standardization of plant names

Brad Boyle^{1,2*}, Nicole Hopkins^{2,3}, Zhenyuan Lu^{2,4}, Juan Antonio Raygoza Garay^{2,3}, Dmitry Mozzherin⁵, Tony Rees⁶, Naim Matasci^{1,2,3}, Martha L Narro^{2,3}, William H Piel⁷, Sheldon J Mckay^{2,3,4}, Sonya Lowry^{2,3}, Chris Freeland⁸, Robert K Peet⁹ and Brian J Enquist^{1,10}

Why bother?

Table 5 Total names within two plant taxonomic databases before and after name resolution using the TNRS

Name source	Original names	After matching by TNRS	After matching & synonym conversion by TNRS	
NCBI	99743	97734	90142	
ITIS	46483	45960	45025	
NCBI+ITIS (shared names)	4412	19935	→ 20670	400% increase in overlap
NCBI+ITIS (total unique names)	141814	123759	114497	

Boyle et al. BMC Bioinformatics 2013, 14:16 http://www.biomedcentral.com/1471-2105/14/1

SOFTWAR

Open Access

The taxonomic name resolution service: an online tool for automated standardization of plant names

Brad Boyle^{1,2*}, Nicole Hopkins^{2,3}, Zhenyuan Lu^{2,4}, Juan Antonio Raygoza Garay^{2,3}, Dmitry Mozzherin⁵, Tony Rees⁶, Nairn Matasci^{1,2,3}, Martha L Narro^{2,3}, William H Piel⁷, Sheldon J Mckay^{2,3,4}, Sonya Lowny^{2,3}, Chris Freeland⁸, Robert K Fee⁷, ⁴ and Brad J Enquist^{1,10}

Taxonomic cleaning applications

- TNRS
 - (http://tnrs.iplantcollaborative.org/index.html)
- TaxonStand
 - http://onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2012.00232.x/full
- Global Name Resolver
 - http://resolver.globalnames.org/
- PlantMiner
 - http://www.plantminer.com/
- Many others...

General architecture

Name parser

Breaks up and classifies name components

General architecture

Name resolver

- Matches the name to reference database
- Tries fuzzy matching if exact match fails

Misspelled Hieronima poasana Standley

Correct spelling (as published) Hieronyma poasana Standl.

General architecture

- Taxonomic status & synonym conversion
 - Some applications do no do this last step

Synonym Hieronyma poasana Standl.

Currently accepted name

Hieronyma oblonga (Tul.) Müll. Arg.

Example workflow with TNRS API

- **Script**: tnrs_api_example.R
- Steps:
- 1. Extract the names
- 2. Turn into a string separated by commas
- 3. URL-encode and send to the TNRS API
- 4. Convert the returned JSON to data frame
- 5. Update your names

Pros and Cons of TNRS API

Advantages

Fast, simple, fully automated

Disadvantages

- Can't adjust all settings available in web interface
- Uses Tropicos as only source
- Can't take advantage of web interface to inspect results, choose alternative matches and research names
- Can't access download options available in web interface
- Parse-only option not available

Example basic workflow with TNRS web interface

- **Script**: tnrs_gui_example.R
- Steps:
- Extract names to CSV file with two columns: Unique ID & names
- 2. Upload to TNRS using bulk "Upload and Submit List" tab, checking box "My file contains an identifier as first column"
- 3. Adjust name processing settings and submit
- Inspect results online, selecting alternate matches if appropriate
- Download results, using options: Best matches only, Detailed results, UTF-8 format
- 6. Import TNRS results as tab-delimitted file
- 7. Remaining processing as for API

Pros and Cons of TNRS Web Interface

Disadvantages

Not fully automated

Advantages

- Can adjust name resolution settings
- More name resolution sources
- Use web interface to inspect results, choose alternative matches and research names
- Select and download alternative matches on the fly
- More download options, including "All matches" (useful if you don't like how TNRS chooses best match and want to script it yourself)
- Parse-only more (useful for comparing part of original name to matched name)

TNRS Tips & Gotchas

- Tip: Pre-pend family to name to prevent matching similar names in different families
- Gotcha: If you want to use The Plant List,
 always select TPL + ILDIS + GCC together
- Tip: Research any name where Taxonomic Status <> Accepted or Synonym
- Gotcha: Even accepted names can be wrong!

Taxonomic Status

Taxonomic Status refers to the **Matched Name**

- Accepted: Good to go!
- Synonym: Good to go, as long as accepted name supplied
- No opinion: Could be good or bad name. RESEARCH IT
- Invalid: Never validly published. DON'T USE
- Illegitimate: Violates nomenclatural rules. DON'T USE
- Rejected name: Rejected by nomenclatural committee. DON'T USE
- Misapplied name: Commonly misapplied to the wrong species. May or may not be correct. RESEARCH IT

Even accepted names can be wrong!

Name submitted	Tropicos	The Plant List
Henriettea fascicularis	=Henriettella fascicularis	=Henriettella fascicularis
Henriettea ramiflora	Accepted	Accepted
Henriettea succosa	Accepted	Accepted
Henriettella fascicularis	Accepted	Accepted
Henriettella tuberculosa	Accepted	=Henriettea tuberculosa

Systematic Botany (2010), 35(4): pp. 783–800 © Copyright 2010 by the American Society of Plant Taxonomists DOI 10.1600/036364410X539862

Actually, all belong in *Henriettea*

Henrietteeae (Melastomataceae): A New Neotropical Berry-Fruited Tribe

D. S. Penneys, 1,4 F. A. Michelangeli, 2 W. S. Judd, 3 and F. Almeda1

¹Department of Botany, California Academy of Sciences, San Francisco, California 94118-4503, U. S. A.;
e-mail: dpenneys@calacademy.org; falmeda@calacademy.org.

²The New York Botanical Garden, 200th St. & Southern Blvd., Bronx, New York 10458, U. S. A.; e-mail: fabian@nybg.org.

³Department of Biology, University of Florida, Gainesville, Florida 32611, U. S. A.; e-mail: wjudd@botany.ufl.edu.

⁴Author for correspondence