& Data WarehousingMSIS 2621 & OMIS 3386

Jonathan Wu

Team Kickass

Bhakti Mohadkar Frederick Su Mike Greco Sagar Botta Sangramsingh Kardekar

Contents

•	Executive Summary	2
•	List of Team Members and Responsibilities	3
•	Technical Architecture	4
•	Challenges and issues	4
•	Changes from original project proposal	5
•	Data Transformation and Loading	6
•	SQL Statements	7
•	Data Validation	8
	Method of Analysis	
•	Results	8
•	Source Files	9
•	Dimensional Model	13
•	Data Integration Mapping	14
	BI Printouts	
•	Appendix 1	16

Executive Summary:

Team Kickass designed and developed a business intelligence solution that aims to shed light on the specific factors that influence housing prices in the San Francisco Bay Area. We considered regional and specifically corporate factors that directly contribute towards the highly volatile real estate in the area. We analyzed data from 2010-2015, aiming for timely and actionable results for the current market. The data analyzed includes weather data, unemployment, a variety of stock prices, and the housing price index. We have identified which factors are most statistically correlated to the change in average housing prices across each major locale within the San Francisco Bay Area.

Collecting and relating this data has been a challenging process. Each data source had it's own quirks and inconsistencies, and transforming each one into a usable format took a considerable amount of effort. Housing prices posed a particular challenge, with many of the best data sources remaining locked away behind paywalls. Fortunately the Federal Housing Finance Agency publishes a Housing Price Index which gave us precisely what we needed.

Our final deliverable is a series of visualisations for each locale mapping the average percent difference for each of our measures over a configurable time span. We have calculated the percentage change for each of our measures so that we may directly compare elements on a common scale and axis. This has allowed us to use a variety of statistical methods to compare data trends including: linear regression, the comparison of regression slopes, and the analysis of covariance between two regressions.

Running an analysis of variance on each linear regression of change allows us to determine how closely correlated each data set is to housing price in an objective fashion. Comparing the slope of each regression allows us to determine the scaling factor of each related element and whether the element is positively or negatively correlated to the housing price.

This analysis has provided us with 3 key insights:

- 1) The housing price index is very highly correlated with the stock performance of Yahoo! and HP Inc. across the entirety of the San Francisco Bay Area.
- 2) Although the average housing price is variable by Bay Area locale, the rate of change for each area is very similar.
- 3) The housing price index is most significantly affected by the stock prices of large institutions, startups have little to no impact on the average price of real estate.

List of Team Members and Responsibilities:

Team Member	Responsibilities
Mike Greco	Project Manager, Technical Architect, and Implementer. Bringing together all aspects of the project. Filling in the gaps and verifying correctness at each stage. Resident do-it-all.
Fred Su	Business Analyst, Data Sourcer. Identify usable data sources, converting high-level requirements into quantifiable ones. Ensuring the implementation matches the concept.
Bhakti Mohadkar	Project Coordinator, Data integrator, Technical Writer. Worked on gathering data sources and data cleansing. Maintained data guidelines and data dictionary. Drove project completion and led completion of project deliverables. Documented working process for creation of project report.
Sangramsingh Kardekar	Technical Architect, Data Sourcer. Identified viable technologies by conducting trial runs before actual implementation. Researched and summarized product features used in the implementation of deliverable.
Sagar Botta	Developer, Data Sourcer. Automating data cleansing and integration. Manipulating data sources and deriving insights from visuals. Code guy.

Technical Architecture:

Our technology stack includes: Python for data conversion, MySQL for the database, and Tableau Desktop for analytics. Additional tooling includes: Microsoft Excel for CSV manipulation, phpMyAdmin and Sequel Pro for database access, and vi for text manipulation.

Challenges and issues with your project and group:

Our project had quite a few significant challenges along the way. Our most significant challenge was in the procurement of free data sets that would satisfy our needs. Many desirable data sources tangential to the real estate industry require expensive subscriptions to access. Other datasets could not be converted to a usable format in any reasonable amount of time, forcing our team to scrap them.

Our team also suffered from a lack of development experience. As a result, team members capable of large scale data transformation became critical path. Similar challenges were faced in the creation of our SQL queries and the SQL based percentage change calculations. All delays in project timeline could be attributed to the bottleneck of development experience.

Cumulatively the team contributed approximately 140 person-hours of work toward the project. 10 hours of work can be attributed to defining the project direction and staging of the work environment. 20 hours of work can be attributed to gathering appropriate data sources. Cleansing and transformation of the data required 60 hours of work, including the development of data transformation scripts. Integrating data took 20 hours of work, and the creation of documentation and reporting materials took a final 30 hours of work.

Changes from original project proposal:

Our original project proposal called for data to be culled from:
Google trends, Yahoo finance, Zillow or Trulia, The DOT, Weather Underground, the
Department of Labor, The FBI, the US Census, The California Department of Education and
WalkScore.com.

After deeper investigation we discovered that the APIs for Zillow, Trulia, and WalkScore.com required specific locations to be provided to gather any results. This would require we compile a list of all street addresses within our target locations to gather results for these data sources. This was a larger technical hurdle than we were equipped to deal with, and as a result we found an alternative data source in the Housing Price Index provided by the Federal Housing Finance Agency.

Traffic data from the Department of Transportation proved to be more difficult to parse than our collective skillset would accommodate. Traffic volume statistics were reported "before" and "after" selected intersections on highways, with the next level of location granularity being county. The level of complexity in transforming this data was deemed too great to accomplish with the technical resources we had available and was therefore dropped.

The source of weather data was initially Weather Underground. Further investigation into the Weather Underground API revealed that historical data required an expensive subscription. Weather data was instead sourced from the United States Historical Climatology Network, provided free of charge by the US Department of Energy.

We initially intended on incorporating school rating data into the model, and planned on creating a mapping between district name and ZIP code. Upon deeper investigation we discovered that district name was not consistently comparable to city name. Manually mapping this data proved to be too labor intensive to sustain and the data was dropped as a result.

The last difference from project proposal came in the form of crime data. Crime data was available at a minimum resolution of one year. This low resolution introduced scaling issues which could not be resolved within the time frame allotted, causing us to drop crime as a datapoint.

Data Transformation and Loading:

All of the data leveraged in our project required cleansing and transformation to be actionable. Date was our most commonly used primary and foreign key. The preferred date format for MySQL is YYYY-MM-DD. Unfortunately Microsoft Excel does not cooperate with this date format easily. Instead of using a custom format in Excel, the team chose to automate the process by using a python conversion script to convert the format as the last step prior to loading the data.

We also had data resolution issues, specifically with the Housing Price Index and stock data. HPI was available per-quarter only due to the relatively slow rate usually observed in an index of this fashion. To better analyze the trends in this data over time, we extrapolated HPI to representative daily values using a technique called linear interpolation. By filling in the missing values we were able to more efficiently map and plot HPI data to rapidly changing measures such as stock price and weather data.

Location posed a particular issue, as none of our location based data was reported in a consistent format. The housing price index is reported by CBSA, or Core Based Statistical Area. Most other location based data is reported by ZIP code, which is not directly compatible with CBSA. Since CBSA is the larger area, location data based on ZIP codes required aggregation and mapping to be comparable.

Our last major data transformation hurdle was scaling the data to comparable figures. The HPI index is given as a number without a specified unit. Stock prices are generally USD. Weather information comes in the form of degrees and inches. One unifying measure out of all these incompatible data types is percentage change. Calculating the percent change of each figure allows us to directly compare each rate of change on the same axis.

The percentage change for each time variant element was calculated with the following SQL query while loading the fact table:

```
LEFT JOIN (Select S1.Date as "Date", S1.place_id, ((S1.hpi - S2.hpi) / S2.hpi)*100 as "Change" FROM HPI as S1 INNER JOIN HPI as S2 ON S1.Date = (ADDDATE(S2.Date, INTERVAL 1 DAY)) and S1.place_id = S2.place_id and S1.place id = 34900) AS CHPI on CHPI.Date = WEATHER.Date
```

Tableau provided some utilities to perform SQL joins and calculations on our behalf, but the performance of these features was not acceptable to rapidly iterate on the data set. As a result, we crafted SQL statements to calculate this data and load it prior to any analysis or manipulation in Tableau.

SQL Statements:

The primary SQL statement used was in the creation of the fact table:

```
CREATE TABLE FACT 34900 AS (
SELECT WEATHER.*, CFB.Change As 'FB % Change', CGOOGL.Change As 'GOOGL % Change', CHP.Change
As 'HP % Change', CORCL.Change As 'ORCL % Change', CYHOO.Change As 'YHOO % Change',
CAAPL.Change as 'AAPL % Change', CHPI.Change as 'HPI % Change', UNEMPLOYMENT.UNEMPLOYMENT
FROM WEATHER
    JOIN UNEMPLOYMENT
       ON UNEMPLOYMENT CBSA = 34900
       LEFT JOIN (Select S1.Date as "Date", S1.place id, ((S1.hpi - S2.hpi) / S2.hpi) *100 as
"Change" FROM HPI as S1 INNER JOIN HPI as S2 ON S1.Date = (ADDDATE(S2.Date, INTERVAL 1 DAY))
and S1.place id = S2.place id and S1.place id = 34900) AS CHPI
              on CHPI.Date = WEATHER.Date
       LEFT JOIN (Select S1.Date as "Date", ((S1.Price - S2.Price) / S2.Price)*100 as "Change"
FROM HP as S1 INNER JOIN HP as S2 ON S1.Date = (ADDDATE(S2.Date, INTERVAL 1 DAY))) AS CHP on
CHP.Date = WEATHER.Date
      LEFT JOIN (Select S1.Date as "Date", ((S1.Price - S2.Price) / S2.Price)*100 as "Change"
FROM ORCL as S1 INNER JOIN ORCL as S2 ON S1.Date = (ADDDATE(S2.Date, INTERVAL 1 DAY))) AS
CORCL on CORCL.Date = WEATHER.Date
      LEFT JOIN (Select S1.Date as "Date", ((S1.Price - S2.Price) / S2.Price) *100 as "Change"
FROM YHOO as S1 INNER JOIN YHOO as S2 ON S1.Date = (ADDDATE(S2.Date, INTERVAL 1 DAY))) AS
CYHOO on CYHOO.Date = WEATHER.Date
       LEFT JOIN (Select S1.Date as "Date", ((S1.Price - S2.Price) / S2.Price) *100 as "Change"
FROM FB as S1 INNER JOIN FB as S2 ON S1.Date = (ADDDATE(S2.Date, INTERVAL 1 DAY))) AS CFB on
CFB.Date = WEATHER.Date
       LEFT JOIN (Select S1.Date as "Date", ((S1.Price - S2.Price) / S2.Price) *100 as "Change"
FROM AAPL as S1 INNER JOIN AAPL as S2 ON S1.Date = (ADDDATE(S2.Date, INTERVAL 1 DAY))) AS
CAAPI, on CAAPI, Date = WEATHER Date
      LEFT JOIN (Select S1.Date as "Date", ((S1.Price - S2.Price) / S2.Price)*100 as "Change"
FROM GOOGL as S1 INNER JOIN GOOGL as S2 ON S1.Date = (ADDDATE(S2.Date, INTERVAL 1 DAY))) AS
CGOOGL on CGOOGL.Date = WEATHER.Date
WHERE WEATHER.Date > "2010-01-01"
);
```

An additional SQL statement was used to create aggregate dimension tables for plotting:

```
CREATE TABLE DIMENSION 34900 AS (
SELECT WEATHER.*, FB.Price As 'FB', GOOGL.Price As 'GOOGL', HP.Price As 'HP', ORCL.Price As
'ORCL', YHOO.Price As 'YHOO', AAPL.Price as 'AAPL', HPI.hpi, UNEMPLOYMENT.UNEMPLOYMENT
FROM WEATHER
   LEFT JOIN FB
       ON FB.Date = WEATHER.Date
   LEFT JOIN GOOGL
       ON GOOGL.Date = WEATHER.Date
   LEFT JOIN HP
       ON HP.Date = WEATHER.Date
   LEFT JOIN ORCL
       ON ORCL.Date = WEATHER.Date
   LEFT JOIN YHOO
       ON YHOO.Date = WEATHER.Date
    LEFT JOIN AAPL
       ON AAPL.Date = WEATHER.Date
   LEFT JOIN HPI
       ON HPI.Date = WEATHER.Date and HPI.place id = 34900
   LEFT JOIN UNEMPLOYMENT
      ON UNEMPLOYMENT.CBSA = 34900
WHERE WEATHER.Date > "2010-01-01");
```

Data Validation

After data was loaded into the environment, we validated the data by verifying the checksum. We performed a select sum(column) from table function in SQL and compared this against the sum generated in Microsoft Excel to validate data. Fact table data was spot checked against manual calculations and was individually assessed for completeness.

Method of Analysis:

We used a number of statistical analysis methods to make accurate determinations from the dataset that we have compiled. The baseline tool of analysis has been linear regression. Linear regression has allowed us to plot the general trend of a measure's change. Calculating the formula of linear regression has also allowed us to perform an analysis of variance or ANOVA test, giving us an objective measure to assess the significance of an individual measure in our model. Finally the slope of the formula of linear regression for a measure allows us to compare the impact of variance in a measure to the model as a whole. Tableau made generating the linear regression for each measure straightforward, using the trend line feature. Once trend lines have been generated, Tableau also allowed us to export the raw statistical data for deeper analysis.

Results:

Bay Area housing prices are highly volatile, but largely homogenous. Over the time period assessed, from 2010-2015, when the price of housing goes up in one locale, it will go up in the entire San Francisco Bay Area. As a result, no measures we incorporated affect one locale more strongly than another.

The largest influencers in our analysis on Bay Area housing prices are the stocks of HP and Yahoo. There is a strong positive correlation between these stocks and the housing market in the area, so a dramatic rise or drop in either stock will act as a predictor for housing value.

Facebook, a large company with a relatively recent IPO, contributed in a small but measurable way to the general upward trend in HPI. In contrast small startup companies with a recent IPO had no statistical correlation with HPI.

HPI Source File:

http://www.fhfa.gov/DataTools/Downloads/Documents/HPI/HPI PO state.xls

hpi_type	hpi_flavor	frequency	level	place_nar	place_id	yr	period	index_nsa	index_sa
traditional	all-transactions	quarterly	MSA	Napa, CA	34900	1978	4	34.63	
traditional	all-transactions	quarterly	MSA	Napa, CA	34900	1979	1	35.77	
traditional	all-transactions	quarterly	MSA	Napa, CA	34900	1979	2	37	
traditional	all-transactions	quarterly	MSA	Napa, CA	34900	1979	3	39.57	
traditional	all-transactions	quarterly	MSA	Napa, CA	34900	1979	4	39.99	
traditional	all-transactions	quarterly	MSA	Napa, CA	34900	1980	1	43.25	
traditional	all-transactions	quarterly	MSA	Napa, CA	34900	1980	2	43.06	
traditional	all-transactions	quarterly	MSA	Napa, CA	34900	1980	3	44.71	
traditional	all-transactions	quarterly	MSA	Napa, CA	34900	1980	4	45.77	

HPI Data Cleansing Process:

The most consistent data was based off of "traditional" and "all transactions", so all other types were discarded. The seasonally adjusted index (index_sa) was incomplete for some date ranges, therefore we used the non-seasonally adjusted index (index_nsa). The data file was then split by location for easier processing.

year	period	place_id	place_nan	index_nsa
2001	1	34900	Napa	160.98
2001	2	34900	Napa	166.96
2001	3	34900	Napa	171.68
2001	4	34900	Napa	172.75
2002	1	34900	Napa	179.28
2002	2	34900	Napa	184.58
2002	3	34900	Napa	191.37
2002	4	34900	Napa	196.99
2003	1	34900	Napa	203.46

Converting the quarterly data into individual days was done via a pair of python scripts. The first script, getmonths.py, converted quarters into months, leaving the HPI field blank for months without associated data. The second, getdays.py, fills in day-level data for each given month. This script is calendar-accurate, accounting for leap year and other date variations.

With our template for each place_id in place, we used a technique called Interpolation to fill in the empty data points. Instead of coding this manually, we used the following tool to do this: http://www.digdb.com/excel_add_ins/fill_blank_cells_interpolate/

Date	place_id	place_name	hpi
1/1/2001	34900	Napa	160.98
1/2/2001	34900	Napa	161.05
1/3/2001	34900	Napa	161.11
1/4/2001	34900	Napa	161.18
1/5/2001	34900	Napa	161.25
1/6/2001	34900	Napa	161.31
1/7/2001	34900	Napa	161.38
1/8/2001	34900	Napa	161.45
1/9/2001	34900	Napa	161.51

Stock Source Files:

http://finance.yahoo.com/q/hp?s=AAPL+Historical+Price

Date	Open	High	Low	Close	Volume	Adj Close
12/3/2015	116.55	116.79	114.22	115.2	41476500	115.2
12/2/2015	117.34	118.11	116.08	116.28	33199000	116.28
12/1/2015	118.75	118.81	116.86	117.34	34701000	117.34
11/30/2015	117.99	119.41	117.75	118.3	37658700	118.3
11/27/2015	118.29	118.41	117.6	117.81	13023700	117.81
11/25/2015	119.21	119.23	117.92	118.03	21388300	118.03
11/24/2015	117.33	119.35	117.12	118.88	42803200	118.88
11/23/2015	119.27	119.73	117.34	117.75	32482500	117.75
11/20/2015	119.2	119.92	118.85	119.3	34287100	119.3

We used only Adj Close and Date from the stock data. Adjusted Close accounts for any inconsistency in stock data such as a stock split.

All stock data followed a consistent format after cleansing:

Date	Adj Close
10/28/2015	119.27
10/27/2015	114.55
10/26/2015	115.28
10/23/2015	119.08
10/22/2015	115.5
10/21/2015	113.76
10/20/2015	113.77
10/19/2015	111.73
10/16/2015	111.04

Weather Source File:

Historical weather details were provided by the United States Historical Climatology Network. http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn map interface.html
http://cdiac.ornl.gov/cgi-bin/broker? PROGRAM=prog.climsite daily.sas& SERVICE=default&id=040693& DEBUG=0

Date	PRCP (in)	TAVE (F)	TMAX (F)	TMIN (F)
1/1/2000	0	48	50	45
1/2/2000	0	47	53	40
1/3/2000	0	49	55	42
1/4/2000	0.05	49	55	42
1/5/2000	0	48	56	40
1/6/2000	0	50	59	41
1/7/2000	0	50	58	41
1/8/2000	0	51	56	45
1/9/2000	0	51	56	46
1/10/2000	0.02	52	57	47

The Climatology Network provides a number of options to generate a file including date range, selected columns, and even file name. No additional data cleansing was required.

Unemployment Source File:

http://zipatlas.com/us/ca/city-comparison/unemployment-rate.htm

#	Zip Code	Location	City	Population	% Unemployment	National Rank
1	95232	38.358464	Glencoe, (17	100.00%	#5
2	96119	41.042003	Madeline,	70	66.66%	#21
3	90822	33.778436	Long Beac	422	66.27%	#23
4	95424	38.970739	Clearlake	91	64.28%	#26
5	96108	41.750354	Davis Cree	91	55.17%	#48
6	95387	37.546007	Westley,	897	53.64%	#49
7	95655	38.549822	Mather, C	914	52.91%	#53
8	90013	34.044639	Los Angel	9,727	50.19%	#60
9	93447	35.666506	Paso Robl	794	50.00%	#61
10	95981	39.584580	Strawberr	98	47.45%	#76

Cleaning this data consisted of removing: #, Location, City, Population and National Rank. After doing so, we generated averages for all ZIP codes within a CBSA.

42100	0.062941
41884	0.046182
42034	0.024286
34900	0.041818
41940	0.047833
36084	0.053038
44700	0.108824

ZIP Code Source File:

https://www.census.gov/econ/cbp/download

To cleanse ZIP code data, we removed columns: name, empflag, emp_f, emp, qp1_nf, qp1, ap_nf, ap, est, and city. We then mapped ZIP Code to CBSA using a VLOOKUP in excel.

zip	CBSA	cty_name
93925	41940	MONTEREY
94002	41884	SAN MATEO
94005	41884	SAN MATEO
94010	41884	SAN MATEO
94011	41884	SAN MATEO
94014	41884	SAN MATEO
94015	41884	SAN MATEO
94017	41884	SAN MATEO

CBSA Source File:

http://www.huduser.gov/portal/datasets/usps crosswalk.html

zip	cbsa
94503	34900
94508	34900
94515	34900
94558	34900
94559	34900
94562	34900
94567	34900
94573	34900

CBSA did not require cleansing, however it did require filtering by the CBSAs we were interested in. This was determined visually using this map:

http://www2.census.gov/geo/maps/metroarea/stcbsa pg/Feb2013/cbsa2013 CA.pdf

Dimensional Model:

Data Integration Mapping

Printouts of Business Intelligence Technology:

Sou	ırce	Transformation	Target	
Description:			Description:	
database name:			database name:	
Table Name	Column Name	Logic	Column Name	Comment
Facebook Stock Dimension	Price	finding the percentage change	Fact Table	
Google Stock Dimension	Price	finding the percentage change	Fact Table	
HP Stock Dimension	Price	finding the percentage change	Fact Table	
Yahoo Stock Dimension	Price	finding the percentage change	Fact Table	
Apple Stock Dimension	Price	finding the percentage change	Fact Table	
Oracle Stock Dimension	Price	finding the percentage change	Fact Table	
Anet Stock Dimension	Price	finding the percentage change	Fact Table	
Aten Stock Dimension	Price	finding the percentage change	Fact Table	
GoPro Stock	Price	finding the percentage change	Fact Table	
Weather		finding the percentage change	Fact Table	
Unemployment		finding the percentage change	Fact Table	
Housing Price Index		finding the percentage change	Fact Table	

TABLE_NAME [1]	TABLE_DESCRIPT [2]	TABLE_T [3]	SUBJECT_A [4]	DB_TYPE [5]	LOCATION [6]
Hpi	House Price Index	Dimension		MySQL	
Weather	Weather information	Dimension		MySQL	
School Ratings	School ratings information	Dimension		MySQL	
Crime Rate	Crime related data	Dimension		MySQL	
Unemployment Rate	Unemployment rate by CBSA	Dimension		MySQL	
Stock	Daily Adj closing price of each stocks per day	Dimension		MySQL	
CBSA	Mapping of all ZipCodes to CBSA Codes	Dimension		MySQL	

TABLE_NAME [1]	COL_NAME [2]	COL_BUS_NAME [3]	DESCRIPTION	DATA TYPE NULLABL	E Y/N VALIDATION_R [4] TRANSLATION_R [5]
Hpi	hpi_type		X	X	Set to NA if "NULL"
Hpi	hpi_flavor		x	X	Set to NA if "NULL"
Hpi	frequency		x	X	Set to NA if "NULL"
Hpi	level		X	X	Set to NA if "NULL"
Hpi	place name		Traditional names.	Char	Set to NA if "NULL"
Hpi	place id		Abbreviations or CBSA codes.	Int	Set to NA if "NULL"
Нрі	vr vr		Only the all-transactions data are published before 1991.	Int	Set to NA if "NULL"
	period		Period is either 1 through 4 for quarterly or 1 through 12 for monthly data.	Date	
Hpi				Double	Set to NA if "NULL"
Hpi	index_nsa	-	index, non seasonally adjusted		Set to NA if "NULL"
Hpi	index_sa		index, seasonally adjusted	Double	Set to NA if "NULL"
Mr	D-1-			1-1-	0-44- NA 75-10-11-11
Weather Weather	Date PRCP (in)		Description	date double	Set to NA if "NULL" Set to NA if "NULL"
Weather	TAVE (F)		Precipitation Average Temperature	double	Set to NA If "NULL"
Weather	TMAX (F)	+	Maximum Temperature	double	Set to NA II NOLL Set to NA II NULL"
Weather	TMIN (F)		Minimum Temperature	double	Set to NA if NOLL
vveaulei	TIVIII (F)	+	Millimum Temperature	double	Set to NA II NOLL
School Ratings	Zip code		This is the main point of reference for the table	Int	Set to NA if "NULL"
School Ratings	SNAME		Optional information that could lead to additional analyses but not a part of the primary analysis	Character	Set to NA if "NULL"
School Ratings	DNAME		Y	X	Set to NA if "NULL"
_	CNAME				
School Ratings			X	X	Set to NA if "NULL"
School Ratings	AVG_NW		X	X	Set to NA if "NULL"
School Ratings	AVG_W		We wil be using this measurement for primary analysis/analyses.	Int	Set to NA if "NULL"
Crime Rate	Areaname		County names (X)	Character	Set to NA if "NULL"
Crime Rate	Year		Years from 1981 to 2014 (X)	Int	Set to NA if "NULL"
Crime Rate	Number of Crimes		Number of Violent crimes reported by DoJ-FBI(1981-2010) and by the Sheriff's office or county police departm	nent(2011-2014) (X) Int	Set to NA if "NULL"
Unemployment Rate	#		l v	X	Set to NA if "NULL"
Unemployment Rate	Zip Code	+	Zip codes of areas in the bay	Int	Set to NA if "NULL"
Unemployment Rate	Location		Zip codes of areas in the bay	X	Set to NA II NOLL Set to NA If "NULL"
Unemployment Rate	City		Name of city	Char	Set to NA if "NULL"
Unemployment Rate	Population		Y Y	X	Set to NA if "NULL"
Unemployment Rate	% Unemployment Rate		rate of Unemployment	Double	Set to NA if "NULL"
Unemployment Rate	National Rank		v	Y Y	GELLO NA II NOLL
Onemployment Kate	National Natio		^	^	
Stock	Date		Date of the Adj Close price	Date	Set to NA if "NULL"
Stock	Adj Close		The adjusted closing price of the specific Stock on the given date	Float	Set to NA if "NULL"
ZipCode	Zip		ZipCode	Int	Set to NA if "NULL"
ZipCode	Name		X	X	Set to NA if "NULL"
ZipCode	empflag	1	X	X	Set to NA if "NULL"
ZipCode	emp nf		X	X	Set to NA if "NULL"
ZipCode	emp		X	X	Set to NA if "NULL"
ZipCode	gp1 nf		X	X	Set to NA if "NULL"
ZipCode	ap nf		X	X	Set to NA if "NULL"
ZipCode	est		X	X	Set to NA if "NULL"
ZipCode	city		X	X	Set to NA if "NULL"
ZipCode	stabbr		In the state of California	Varchar	Set to NA if "NULL"
ZipCode	cty name		The name of the city in the State of California	Varchar	Set to NA if "NULL"

FILE NAME [1]	FILE DESCRIPTI [2]	SUBJECT A [3]	FILE T [4]	LOCATION INF RETENT (6)	TOTAL RO [7]	RUN FREQUE (81	EXTRACT AVAILA (9)	MAX ROW [10]	VALIDATION R [11]	PUSHED OR PUT121	RECEIPT ACK REQUILITIST	EXTRACT READINESS INDIC [14]	SOURCE DOCUMENTA [15]
TIEL_HAME [1]	Daily Stock adj Closing price for the recent IPO		1122_1 [4]	ESSATI [S] ONEME_NETENT [S]	TOTAL_RO[7]	NON_TREGOT [0]	EXTRACT_AVAILA [0]	INAX_RON_[10]	VALIDATION_R[11]	T CONED ON TO [12]	RESERVE ASK_REGISTED	EXTRACT_READINESC_INDIC [14]	OGROE_BOOMERTA (15)
ANET.csv	companies in the bay area	Stock	.csv	finance.vahoo.com	352	Daily		352	NA	PULLED	NO	NA	NA
	Daily Stock adj Closing price for the recent IPO companies in the bay												
ATEN.csv	area	Stock	.csv	finance.yahoo.com	405	Daily		405	NA	PULLED	NO	NA	NA
	Daily Stock adj Closing price for the recent IPO companies in the bay												
GoPro.csv	area	Stock	.CSV	finance.yahoo.com	338	Daily		338	NA	PULLED	NO	NA	NA
	Daily Stock adj Closing price for the recent IPO companies in the bay												
FIT.csv	Daily Stock adj	Stock	.CSV	finance.yahoo.com	92	Daily		92	NA	PULLED	NO	NA	NA
yhoo.csv	closing price for bay area tech companies Daily Stock adj	Stock	.csv	finance.yahoo.com	1467	Daily		1467	NA	PULLED	NO	NA	NA
oracle.csv	closing price for bay area tech companies Daily Stock adj	Stock	.csv	finance.yahoo.com	1467	Daily		1467	NA	PULLED	NO	NA	NA
hp.csv	closing price for bay area tech companies	Stock	.csv	finance.yahoo.com	1467	Daily		1467	NA	PULLED	NO	NA	NA
googl.csv	Daily Stock adj closing price for bay area tech companies Daily Stock adj	Stock	.csv	finance.yahoo.com	1467	Daily		1467	NA	PULLED	NO	NA	NA
fb.csv	closing price for bay area tech companies Daily Stock adj	Stock	.csv	finance.yahoo.com	868	Daily		868	NA	PULLED	NO	NA	NA
aapl.csv	closing price for bay area tech companies	Stock	.csv	finance.yahoo.com	1467	Daily		1467	NA	PULLED	NO	NA	NA
All_hpi.csv	CBSA ID, HPI, Place Name, and the Date		.csv		37059	Quarterly		37059	NA	PULLED	NO	NA	NA
stockton_44700.csv	CBSA ID, HPI, Place Name, and the Date	HPI	.csv		5295	Quarterly		5295	NA	PULLED	NO	NA	NA
sf_41884.csv	CBSA ID, HPI, Place Name, and the Date CBSA ID, HPI, Place		.csv		5295	Quarterly		5295	NA	PULLED	NO	NA	NA
santacruz_42100.csv	Name, and the Date	HPI	.csv		5295	Quarterly		5295	NA	PULLED	NO	NA	NA
sanrafael_42034.csv	CBSA ID, HPI, Place Name, and the Date CBSA ID, HPI, Place		.csv		5295	Quarterly		5295	NA	PULLED	NO	NA	NA
sanjose_41940.csv	Name, and the Date	HPI	.csv		5295	Quarterly		5295	NA	PULLED	NO	NA	NA
oakland_36084.csv	CBSA ID, HPI, Place Name, and the Date CBSA ID, HPI, Place	HPI	.csv		5295	Quarterly		5295	NA	PULLED	NO	NA	NA
napa_34900.csv	Name, and the Date	HPI	.csv		5295	Quarterly		5295	NA	PULLED	NO	NA	NA
Porklay Weather	Daily Precipitation, Average Temp, Max Temp, and Min Temp info for the bay area	Weather		http://cdiac.ornl.gov/epubs/ndp/ http://cdiac.ornl.gov/cgi-bin/bro	5440	Daily		5418	NA .	PULLED	NO	NA	NA
Berkley Weather.csv	as a unit	vveatner	.CSV	mtp.//culac.orm.gov/cgr-bin/bro	5418	Daliy		5418	INA	FULLED	INO	NA	INA
bay_area_zip_cbsa.cs	Mapping of the Zipcode data to the CBSA data for all v Cities in CA	Zip Code / CBSA	.csv	http://maps.huge.info/zip.htm https://www.census.gov/econ/cbp/	416	FIXED		416	NA	PULLED	NO	NA	NA

FILE_NA [1]	COL_NAME [2]	COL_BUS_NAME [3]		DATA TYPE	NULLABLE Y/N?	VALIDATION_R [4]	TRANSLATION_R [5]
ANICT	Data	Sama as Cal Nama	Date of the	Data	V	l NI A	D. AND SENIOU
ANET.csv	Date	Same as Col_Name	closing price	Date	Y	NA	Put NA if Null
	Adj Close	Same as Col_Name	Adjusted closin Date of the	поат	Y	NA	Put NA if Null
ATEN.csv	Date	Same as Col Name	closing price	Date	Y	NA	Put NA if Null
	Adj Close	Same as Col Name	Adjusted closin		Υ	NA	Put NA if Null
			Date of the				
GoPro.csv	Date	Same as Col_Name	closing price	Date	Υ	NA	Put NA if Null
	Adj Close	Same as Col_Name	Adjusted closin	float	Υ	NA	Put NA if Null
FIT.csv	Date	Sama as Cal Nama	Date of the	Date	Y	NA	Dut NA if Null
FII.CSV		Same as Col_Name	closing price	float	Y	NA	Put NA if Null
	Adj Close	Same as Col_Name	Adjusted closin Date of the	Illoat	Ť	INA	Put NA if Null
yhoo.csv	Date	Same as Col Name	closing price	Date	Υ	NA	Put NA if Null
J. 10 0 10 0 1	Adj Close	Same as Col Name	Adjusted closin		Y	NA	Put NA if Null
	,,		Date of the				
oracle.csv	Date	Same as Col_Name	closing price	Date	Υ	NA	Put NA if Null
	Adj Close	Same as Col_Name	Adjusted closin	float	Υ	NA	Put NA if Null
			Date of the				
hp.csv	Date	Same as Col_Name	closing price	Date	Y	NA	Put NA if Null
	Adj Close	Same as Col_Name	Adjusted closin	float	Υ	NA	Put NA if Null
googl osy	Date	Same as Col Name	Date of the closing price	Date		NA	Put NA if Null
googl.csv	Adj Close	Same as Col_Name			Y	NA	Put NA if Null
	Auj Ciose	Same as Coi_Name	Date of the	lioat		INA	F ULIVA II INUII
fb.csv	Date	Same as Col Name	closing price	Date	Y	NA	Put NA if Null
	Adj Close	Same as Col Name	Adjusted closin	float	Υ	NA	Put NA if Null
		-	Date of the				
aapl.csv	Date	Same as Col_Name	closing price	Date	Υ	NA	Put NA if Null
	Adj Close	Same as Col_Name	Adjusted closin	float	Υ	NA	Put NA if Null
All_hpi.csv	Date	Same as Col_Name	Date	Date		NA	Put NA if Null
	place_id	Same as Col_Name	CBSA code	Int		NA	Put NA if Null
	place_name	Same as Col_Name	Name of the City	varchar		NA	Put NA if Null
			HPI number at				
	hni	Come on Cal Name	this given date	floot		l _{NIA}	Dut NA if Null
	hpi	Same as Col_Name	and city	float		NA	Put NA if Null
stockton_4470							
0.csv	Date	Same as Col Name	Date	Date		NA	Put NA if Null
0.001	place_id	Same as Col_Name	CBSA code	Int		NA	Put NA if Null
			Name of the				
	place_name	Same as Col_Name	City	varchar		NA	Put NA if Null
			HPI number at				
	hni	Come as Cal Name	this given date	floot		l _{NIA}	Dut NA if Ni II
	hpi	Same as Col_Name	and city	float		NA	Put NA if Null

sf_41884.csv	Date	Same as Col_Name	Date	Date	NA	Put NA if Null
	place_id	Same as Col_Name	CBSA code	Int	NA	Put NA if Null
	place_name	Same as Col_Name	Name of the City	varchar	NA	Put NA if Null
	hpi	Same as Col_Name	HPI number at this given date and city	float	NA	Put NA if Null
santacruz_421						
00.csv	Date	Same as Col_Name	Date	Date	NA	Put NA if Null
	place_id	Same as Col_Name	CBSA code	Int	NA	Put NA if Null
	place_name	Same as Col_Name	Name of the City	varchar	NA	Put NA if Null
			HPI number at this given date			
	hpi	Same as Col_Name	and city	float	NA	Put NA if Null
sanrafael_420						
34.csv	Date	Same as Col Name	Date	Date	NA	Put NA if Null
	place_id	Same as Col_Name	CBSA code	Int	NA	Put NA if Null
			Name of the			
	place_name	Same as Col_Name	City	varchar	NA	Put NA if Null
			HPI number at this given date			
	hpi	Same as Col_Name	and city	float	NA	Put NA if Null
sanjose_4194	Dete	O - mar and O - I N - mar	Data	D-4-	NA.	Dod NA SENGAL
0.csv	Date	Same as Col_Name	Date	Date	NA NA	Put NA if Null
	place_id	Same as Col_Name	CBSA code Name of the	Int	NA	Put NA if Null
	place name	Same as Col_Name	City	varchar	NA	Put NA if Null
			HPI number at	1 3.7 5.7 5.7	100	
			Ithis given date	[D (1) (2) (1)
	hpi 	Same as Col_Name	and city	float	NA	Put NA if Null
oakland_3608						
4.csv	Date	Same as Col Name	Date	Date	NA	Put NA if Null
	place_id	Same as Col_Name	CBSA code	Int	NA	Put NA if Null
			Name of the			
	place_name	Same as Col_Name	City	varchar	NA	Put NA if Null
			HPI number at this given date			
	hpi	Same as Col Name	and city	float	NA	Put NA if Null
	r			1.5.7	7.4.	
napa_34900.c		_	_			
sv	Date	Same as Col_Name	Date	Date	NA	Put NA if Null
	place_id	Same as Col_Name	CBSA code	Int	NA	Put NA if Null

	place_name	Same as Col_Name	Name of the City	varchar	NA	Put NA if Null
	hpi	Same as Col_Name	HPI number at this given date and city	float	NA	Put NA if Null
Berkley Weather.csv	Date	Same as Col Name	Date	Date	NA	Put NA if Null
***************************************	PRCP (in)	Precipitation in Inches			NA NA	Put NA if Null
	TAVE (F)	Ave Temp in F	average tempe	 	NA NA	Put NA if Null
	TMAX (F)	Max Temp in F	Max temperatu	t	NA	Put NA if Null
	TMIN (F)	Min Temp in F	Min temperatur		NA	Put NA if Null
bay_area_zip_						
cbsa.csv	Zip	Same as Col_Name	Zip Code of the	int	NA	Put NA if Null
	CBSA	Same as Col_Name	corresponding	int	NA	Put NA if Null
	name	Same as Col_Name	name of the cit	varchar	NA	Put NA if Null
	city	Same as Col Name	name of the cit	varchar	NA	Put NA if Null
	cty name	Same as Col Name	name of the cit	varchar	NA	Put NA if Null

Analysis of Variance:					
Field	DF	SSE	MSE	F	p-value
Measure Names	24	1.0962841	0.0456785	3.77968	< 0.0001
Individual trend lines					
Color	Coefficients				
Measure Names	p-value	StdErr	t-value	p-value	
HPI	0.0017698	9.05E-06	3.70209	0.0017698	
НР	0.0346872	6.46E-05	2.29564	0.0346872	
Yhoo	0.0449936	5.06E-05	2.16399	0.0449936	
FB	0.387697	0.0002542	0.913468	0.387697	
Aten	0.407646	0.0018354	-1.34218	0.407646	
Googl	0.492979	4.25E-05	0.700685	0.492979	
Aapl	0.566065	5.41E-05	-0.585254	0.566065	
T Max	0.666484	4.39E-05	-0.438586	0.666484	
T Avg	0.790266	4.47E-05	-0.270191	0.790266	
Orcl	0.958986	3.71E-05	-0.0521896	0.958986	
T Min	0.962417	4.78E-05	-0.04782	0.962417	
Gpro	N/A	Since the trend lin	ne model has ze	ro residual degr	
Anet	N/A	Since the trend lir	ne model has ze	ro residual degr	

Napa

Analysis of Varian	ce:				
Field	DF	SSE	MSE	F	p-value
Measure Names	24	1.0957841	0.0456577	3.77872	< 0.0001
Individual trend lin	nes:				
Color	Coefficients				
Measure Names	p-value	StdErr	t-value	p-value	
HPI	0.0021248	8.78E-06	3.61788	0.0021248	
HP	0.0346872	6.46E-05	2.29564	0.0346872	
Yhoo	0.0449936	5.06E-05	2.16399	0.0449936	
FB	0.387697	0.0002542	0.913468	0.387697	
Aten	0.407646	0.0018354	-1.34218	0.407646	
Googl	0.492979	4.25E-05	0.700685	0.492979	
Aapl	0.566065	5.41E-05	-0.585254	0.566065	
T Max	0.666484	4.39E-05	-0.438586	0.666484	
T Avg	0.790266	4.47E-05	-0.270191	0.790266	
Orcl	0.958986	3.71E-05	-0.0521896	0.958986	
T Min	0.962417	4.78E-05	-0.04782	0.962417	
Gpro	N/A	Since the trend line mo			
Anet	N/A	Since the trend line mo	del has zero res	idual degrees o	

Oakland

Analysis of Varian	ce:							
Field	DF	SSE	MSE	F	p-value			
Measure Names	24	1.0947873	0.0456161	3.78032	< 0.0001			
Individual trend li	nes:							
Color	Coefficients							
Measure Names	p-value	StdErr	t-value	p-value				
НРІ	0.0003493	6.69E-06	4.45281	0.0003493				
НР	0.0346872	6.46E-05	2.29564	0.0346872				
Yhoo	0.0449936	5.06E-05	2.16399	0.0449936				
FB	0.387697	0.0002542	0.913468	0.387697				
Aten	0.407646	0.0018354	-1.34218	0.407646				
Googl	0.492979	4.25E-05	0.700685	0.492979				
Aapl	0.566065	5.41E-05	-0.585254	0.566065				
T Max	0.666484	4.39E-05	-0.438586	0.666484				
T Avg	0.790266	4.47E-05	-0.270191	0.790266				
Orcl	0.958986	3.71E-05	-0.0521896	0.958986				
T Min	0.962417	4.78E-05	-0.04782	0.962417				
Gpro	N/A	Since the trend line	model has zero	residual degree				
Anet	N/A	Since the trend line	Since the trend line model has zero residual degre					

San Francisco

Analysis of Varian	ce:				
Field	DF	SSE	MSE	F	p-value
Measure Names	24	1.0948898	0.0456204	3.77997	< 0.0001
Individual trend li	nes:				
Color	Coefficients				
Measure Names	p-value	StdErr	t-value	p-value	
HPI	0.0021331	7.02E-06	3.6161	0.0021331	
НР	0.0346872	6.46E-05	2.29564	0.0346872	
Yhoo	0.0449936	5.06E-05	2.16399	0.0449936	
FB	0.387697	0.0002542	0.913468	0.387697	
Aten	0.407646	0.0018354	-1.34218	0.407646	
Googl	0.492979	4.25E-05	0.700685	0.492979	
Aapl	0.566065	5.41E-05	-0.585254	0.566065	
T Max	0.666484	4.39E-05	-0.438586	0.666484	
T Avg	0.790266	4.47E-05	-0.270191	0.790266	
Orcl	0.958986	3.71E-05	-0.0521896	0.958986	
T Min	0.962417	4.78E-05	-0.04782	0.962417	
Gpro	N/A	Since the trend line model	has zero residu	al degrees of fr	
Anet	N/A	Since the trend line model	has zero residu	al degrees of fr	

San Jose

Analysis of Varian	ce:						
Field	DF	SSE	MSE	F	p-value		
Measure Names	24	1.0983122	0.045763	3.79349	< 0.0001		
Individual trend li	nes:						
Color	Coefficients						
Measure Names	p-value	StdErr	t-value	p-value			
HPI	0.0008295	6.20E-06	4.05142	0.0008295			
НР	0.0346872	6.46E-05	2.29564	0.0346872			
Yhoo	0.0449936	5.06E-05	2.16399	0.0449936			
FB	0.387697	0.0002542	0.913468	0.387697			
Aten	0.407646	0.0018354	-1.34218	0.407646			
Googl	0.492979	4.25E-05	0.700685	0.492979			
Aapl	0.566065	5.41E-05	-0.585254	0.566065			
т Мах	0.666484	4.39E-05	-0.438586	0.666484			
T Avg	0.790266	4.47E-05	-0.270191	0.790266			
Orcl	0.958986	3.71E-05	-0.0521896	0.958986			
T Min	0.962417	4.78E-05	-0.04782	0.962417			
Gpro	N/A	Since the trend line model has zero residual degre					
Anet	N/A	Since the trend line	Since the trend line model has zero residual degre				

Santa Rafael

Analysis of Varian	ce:					
Field	DF	SSE	MSE	F	p-value	
Measure Names	24	1.0990698	0.0457946	3.79581	< 0.0001	
Individual trend lines:						
Color	Coefficients					
Measure Names	p-value	StdErr	t-value	p-value		
HPI	0.0003447	6.35E-06	4.45901	0.0003447		
НР	0.0346872	6.46E-05	2.29564	0.0346872		
Yhoo	0.0449936	5.06E-05	2.16399	0.0449936		
FB	0.387697	0.0002542	0.913468	0.387697		
Aten	0.407646	0.0018354	-1.34218	0.407646		
Googl	0.492979	4.25E-05	0.700685	0.492979		
Aapl	0.566065	5.41E-05	-0.585254	0.566065		
т Мах	0.666484	4.39E-05	-0.438586	0.666484		
T Avg	0.790266	4.47E-05	-0.270191	0.790266		
Orcl	0.958986	3.71E-05	-0.0521896	0.958986		
T Min	0.962417	4.78E-05	-0.04782	0.962417		
Gpro	N/A	Since the trend line mod				
Anet	N/A	Since the trend line model has zero residual degrees of				

Santa Cruz

Analysis of Varianc	e:					
Field	DF	SSE	MSE	F	p-value	
Measure Names	24	1.0939957	0.045583	3.76291	< 0.0001	
Individual trend lines:						
Color	Coefficients					
Measure Names	p-value	StdErr	t-value	p-value		
HPI	0.005148	1.18E-05	3.20891	0.005148		
НР	0.034687	6.46E-05	2.29564	0.034687		
Yhoo	0.044994	5.06E-05	2.16399	0.044994		
FB	0.387697	0.000254	0.913468	0.387697		
Aten	0.407646	0.001835	-1.34218	0.407646		
Googl	0.492979	4.25E-05	0.700685	0.492979		
Aapl	0.566065	5.41E-05	-0.58525	0.566065		
T Max	0.666484	4.39E-05	-0.43859	0.666484		
T Avg	0.790266	4.47E-05	-0.27019	0.790266		
Orcl	0.958986	3.71E-05	-0.05219	0.958986		
T Min	0.962417	4.78E-05	-0.04782	0.962417		
Gpro	N/A	Since the trend line model has zero residual degrees				
Anet	N/A	Since the trend line model has zero residual degrees				

Stockton

```
1 import csv
2 import datetime
3 import sys
4
 file = sys.argv[1]
5
6
  newfile = []
7
8
  with open(file, 'rb') as csvfile:
9
      readfile = csv.reader(csvfile)
10
      for row in readfile:
11
           if row[0] == "Date":
12
               newfile.append(row)
13
           else:
14
               date = row[0]
15
               dateobj = datetime.datetime.strptime(date, "%m/%d/%Y")
16
               newdate = dateobj.strftime("%Y-%m-%d")
17
18
               newfile.append([newdate,row[1]])
19
20
  with open("new/"+file, "w") as output:
21
      writer = csv.writer(output, lineterminator='\n')
22
      writer.writerows(newfile)
23
```

```
1 import csv
2 import calendar
3 import datetime
4
  csvfile = []
6 newcsv = []
7
  reader = csv.reader(open("extended/vallejo extended.csv"))
8
  for row in reader:
       csvfile.append(row)
10
11
12 header = csvfile.pop(0)
  #print header
13
14
  newheader = ["date","place_id","place_name","hpi"]
15
16
17
  for row in csvfile:
18
       cal = calendar.Calendar()
19
       numdays = []
20
       daysinmonth = cal.itermonthdays(int(row[0]),int(row[1]))
21
      for each in daysinmonth:
22
           if each > 0:
23
               numdays.append(each)
24
25
       for each in numdays:
26
           eachdate = datetime.date(int(row[0]),int(row[1]), each)
27
           formatteddate = eachdate.strftime("%m/%d/%y")
28
29
           if each == 1:
30
               newcsv.append([formatteddate,row[2],row[3],row[4]])
31
           else:
32
               newcsv.append([formatteddate,row[2],row[3],""])
33
34
  with open("blank/vallejo blank.csv", "w") as output:
35
      writer = csv.writer(output, lineterminator='\n')
36
      writer.writerow(newheader)
37
      writer.writerows(newcsv)
38
```

```
1 import csv
2 import calendar
3
  csvfile = []
  newcsv = []
6
  reader = csv.reader(open("orig/vallejo.csv"))
7
  for row in reader:
       csvfile.append(row)
9
10
  header = csvfile.pop(0)
11
  #print header
12
13
  for row in csvfile:
14
       if row[1] == "1":
15
           newcsv.append([row[0],"1",row[2],row[3],row[4]])
16
           newcsv.append([row[0],"2",row[2],row[3],""])
17
           newcsv.append([row[0], "3", row[2], row[3], ""])
18
       elif row[1] == "2":
19
           newcsv.append([row[0], "4", row[2], row[3], row[4]])
20
           newcsv.append([row[0], "5", row[2], row[3], ""])
21
           newcsv.append(\lceil row[0], "6", row[2], row[3], ""])
22
       elif row[1] == "3":
23
           newcsv.append([row[0], "7", row[2], row[3], row[4]])
24
           newcsv.append([row[0], "8", row[2], row[3], ""])
25
           newcsv.append([row[0], "9", row[2], row[3], ""])
26
       elif row[1] == "4":
27
           newcsv.append([row[0],"10",row[2],row[3],row[4]])
28
           newcsv.append([row[0],"11",row[2],row[3],""])
29
           newcsv.append([row[0], "12", row[2], row[3], ""])
30
31
  with open("extended/vallejo extended.csv", "w") as output:
32
       writer = csv.writer(output, lineterminator='\n')
33
       writer.writerow(header)
34
       writer.writerows(newcsv)
35
```

```
1 import csv
2
3 | dict = {}
4
  with open('school.csv', 'rb') as csvfile:
       reader = csv.reader(csvfile)
6
       for row in reader:
7
           if row[1] == '':
8
               pass
9
           else:
10
               key = int(row[0])
11
               val = int(row[1])
12
               if key not in dict:
13
                    dict[key] = [val]
14
               else:
15
                    dict[key].append(val)
16
  keysindict = dict.keys()
17
18 ziplist = []
19 for each in keysindict:
       calc = sum(dict[each])/len(dict[each])
20
       ziplist.append([each,calc])
21
22
  with open("results.csv", "w") as output:
23
       writer = csv.writer(output, lineterminator='\n')
24
       writer.writerows(ziplist)
25
```

What Affects Housing Prices in the Bay Area?

Team Kickass

Bhakti Mohadkar, Frederick Su, Mike Greco, Sagar Botta, Sangramsingh Kardekar

Project Description

Macroeconomic variables like the stock market and housing price are highly interconnected. These relationships can be identified with Business Intelligence.

Regional influences can be anticipated by identifying major employers, significant environmental variables, and regional events of interest.

We aim to determine how variations in these factors can influence the average price of housing in the San Francisco Bay Area. This will allow a savvy investor to predict market trends before they happen, not while they are already in play.

Team Member Responsibilities

Bhakti Mohadkar
Data Integration Expert

Identify usable data sources. Maintained data guidelines and data dictionary. Data Guardian.

Frederick Su Business Analyst Identify usable data sources, converting high-level requirements into quantifiable data. Ensuring the implementation matches the concept.

Mike Greco Project Manager Bringing together all aspects of the project. Filling in the gaps and verifying correctness at each stage. Resident

do-it-all.

Sagar Botta Software Engineer Automating data cleansing and integration. Manipulating data sources and deriving insights from visuals.

Developer.

Sangramsingh Kardekar Technical Architect Identified viable tools, ensuring a smooth interface between the technical stages of the project.

Data Sources and Issues

HPI - Federal Housing Finance Agency. Weighted index without unit.

(Housing Price Index)

Stocks - Yahoo Finance. Identification of key regional influencers.

Weather - US Historical Climatology Network. Limited Regional Scope.

Unemployment - ZipAtlas.com. No numerical identifier (ZIP code)

Location Mapping- US Census and US HUD. Multi-dimensional mapping required.

Statistical Analysis - Analysis of Variance

- A lower p- value indicates a greater influence within the model.
- A low overall p-value indicates the model is a good fit.

Analysis of Variance:					
Field	DF	SSE	MSE	F	p-value
Measure Names	24	1.0962841	0.0456785	3.77968	< 0.0001
Individual trend lines:					
Color	Coefficients				
Measure Names	p-value	StdErr	t-value	p-value	
HP	0.0346872	6.468-05	2.29564	0.0346872	
Yhoo	0.0449936	5.068-05	2.16399	0.0449936	
FB.	0.387697	0.0002542	0.913468	0.387697	
Aten	0.407646	0.0038354	-1.34218	0.407646	
Googl	0.492979	4.25E-05	0.700685	0.492979	
Aapl	0.566065	5.41E-05	-0.585254	0.566065	
TMax	0.666484	4.396-05	-0.438586	0.666484	
T Avg	0.790266	4.47E-05	-0.270191	0.790266	
Ord	0.958986	3.71E-05	-0.0521896	0.958986	
TMin	0.962417	4.78E-05	-0.04782	0.962417	
Gpre	N/A	Since the trend line model has zero residual degre			
Anet	N/A	Since the trend line model has zero residual degre			

Observations and Approximations

Housing price correlates closely with the stock prices of HP Inc. and Yahoo!

Housing prices across the Bay Area trend closely with each other.

Startup IPOs do not have measurable impact on average housing price.

If you are looking to buy or sell, watch HPQ & YHOO closely!

What We Learned

- Data transformation is more time consuming than we thought!
- Data is not always usable, especially if it was free.
- Having a well defined plan can save lots of time.
- Business Analytics software is extremely powerful, but isn't always perfect.
- It is more performant to store calculations in the data warehouse than performing them on-demand at the analytics stage.

Thank You.