Day5 exercise solutions

Ali Movasati

Oct. 14th, 2024

Problem 1

```
# read in the data
salary <- read.table(file = "/Users/alimos313/Documents/studies/phd/university/courses/stat-modelling/S</pre>
```

1.A)

1.B)

• Numerical summary

```
# summary of dataset
skim(salary)
```

Table 1: Data summary

Name	salary
Number of rows	325
Number of columns	4
Column type frequency:	
character	1

 $\begin{array}{ccc} \text{factor} & & 1 \\ \text{numeric} & & 2 \\ \hline \\ \hline \text{Group variables} & & \text{None} \end{array}$

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
District	0	1	3	24	0	325	0

Variable type: factor

skim_variable	n_missing	$complete_rate$	ordered	n_unique	top_counts
size	0	1	FALSE	3	1: 223, 2: 68, 3: 34

Variable type: numeric

skim_variablen	_missingcompl	ete_ra	te mean	sd	p0	p25	p50	p75	p100	hist
salary	0	1	33168.33	3412.77	23889.50	30847.70	32867.50	35296.70	43232.6	
experience	0	1	11.86	2.55	3.91	10.44	11.97	13.33	20.6	

The average salary in USD is 3.3168327×10^4 and in CHF is 2.8856445×10^4 !

• Graphical summary

```
# visualize the dataset

## scatter plot
salary %>%
    ggplot(aes(x = experience, y = salary, color = size)) +
    geom_point(size = 3) +
    theme_bw()
```



```
## boxplots

bxp1 <- salary %>%
    ggplot(aes(x = size, y = salary, color = size)) +
    geom_boxplot() +
    stat_compare_means(ref.group = "1", method = "t.test") +
    theme_bw() +
    theme(legend.position = "none")

bxp2 <- salary %>%
    ggplot(aes(x = size, y = experience, color = size)) +
    geom_boxplot() +
    stat_compare_means(ref.group = "1", method = "t.test") +
    theme_bw()

# Arrange the plots side by side
grid.arrange(bxp1, bxp2, ncol = 2)
```


- 1.C)
- 1.D)
- 1.E)
- 1.F)
- 1.G)

Problem 2

- 2.A)
- 2.B)
- 2.C)
- 2.D)
- 2.E)