第一部分 集合论

第1章 集合 条合的概念及其表示法 第1章 集合 条合的基本运算及其性质 包含排斥原理

对任意集合 A 有 $\Phi \subseteq A \subseteq E$

幂集的定义

由集合A的所有的子集组成的集合 (包括空集和A本身),称为集合A的幂集,

记为P(A)(或 $\rho(A),2^A$)。

1.2 集合的基本运算及其性质

$$A - B = \{x \mid x \in A \perp x \notin B\}$$

对称差

 $A \oplus B = \{x \mid (x \in A \perp x \notin B)$ 或 $(x \in B \perp x \notin A)\}$

对称差的性质

1.
$$A \oplus B = B \oplus A$$
 2. $A \oplus \emptyset = A$ 3. $A \oplus A = \emptyset$

$$2. A \oplus \varnothing = A$$

$$3. A \oplus A = \emptyset$$

定理1 设 A_1 , A_2 为有限集合,其元素个数

分别为 $|A_1|$, $|A_2|$,则有下列结论:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

定理2 设 A_1 , A_2 , ..., A_n 为有限集合, 其元素个数分别为 $|A_1|$, $|A_2|$, ..., $|A_n|$, 则有下列结论:

$$\begin{aligned} \left| A_1 \bigcup A_2 \bigcup \cdots \bigcup A_n \right| &= \sum_{i=1}^n \left| A_i \right| - \sum_{1 \le i < j \le n} \left| A_i \cap A_j \right| \\ &+ \sum_{1 \le i < j < k \le n} \left| A_i \cap A_j \cap A_k \right| + \cdots + (-1)^{n-1} \left| A_1 \cap A_2 \cap \cdots \cap A_n \right| \end{aligned}$$

定理2是定理1的推广

第一部分 集合论

第2章 二元关系-

序关系

2.1.2 笛卡儿乘积(直积)

定义4 设A和B是任意两个集合,若序偶的第一元素取自A,第二元素取自B,所有这些序偶的集合,称为集合A与B的笛卡尔乘积(直积),记为 $A \times B = \{ \langle a,b \rangle | a \in A,b \in B \}$ 若A中有n个元素,B中有m个元素

A×B 中含有 nm 个元素

n 阶笛卡儿乘积

$$A_1 \times A_2 \times \dots \times A_n$$

$$= \{ \langle x_1, x_2, \dots, x_n \rangle \mid x_1 \in A_1, x_2 \in A_2, \dots x_n \in A_n \}$$

$$A \times A \times \cdots \times A = A^n$$

2.2.1 关系

定义5 若一个集合的元素都是序偶,称该集合是一个二元关系,简称关系,记为R。在R中的任一序偶<x,y>,可记为

 $\langle x, y \rangle \in R$ \vec{y} xRy

定义6 设有任意两个集合 X 和 Y , $X \times Y$ 的子集 R 称为 X 到 Y 的(二元)关系,当 X = Y 时,称 R 为 X 上的二元关系。

集合A上的三种特殊关系

1、空关系:由于空集 Φ 是 $A \times A$ 的子集,故也是A上的关系,称其为空关系。

2、全域关系:

$$E_A = \{ \langle x, y \rangle | x \in A, y \in A \} = A \times A$$

3、恒等关系:

$$I_A = \{\langle x, x \rangle | x \in A\}$$

定义7 设R 是二元关系,由 $< x,y> \in R$ 中所有x 组成的集合,称为R 的定义域,记为dom R $dom R = \{x \mid Fexy, < x,y> \in R\}$

定义8 设R是二元关系,由 $< x,y> \in R$ 中所有y组成的集合,称为R的值域,记为ranR $ranR = \{y \mid Fax, < x,y> \in R\}$

定义9 关系R的定义域和值域一起称为R的域,记为 $fldR = dom R \cup ran R$

关系矩阵

设两个有限集合

$$X = \{x_1, x_2, \dots, x_m\}, Y = \{y_1, y_2, \dots, y_n\}$$

R为X到Y的一个二元关系,对应于关系R有

一个关系矩阵
$$M_R = (r_{ij})_{m \times n}$$

其中
$$r_{ij} = \begin{cases} 1 & \text{当} < x_i, y_j > \in R \\ 0 & \text{当} < x_i, y_j > \notin R \end{cases}$$

$$(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$$

关系图 设两个有限集合

 $X = \{x_1, x_2, \dots, x_m\}, Y = \{y_1, y_2, \dots, y_n\}$ R 为 X 到 Y 的一个二元关系

在平面上作m个结点和n个结点,若 $x_i R y_j$,则可自结点 $x_i \subseteq y_j$ 作一有向弧段;若 $x_i R y_j$,则结点 x_i 和 y_j 没有连线,这种方法作出的图称为R的关系图。当R为X上的二元关系时,关系图中的结点仅表示X中的元素。

自反性与反自反性

关系的性质-

对称性与反对称性

传递性

R是 X上的自反关系 $\Leftrightarrow \forall x(x \in X \rightarrow \langle x, x \rangle \in R)$

R为X上的反自反关系 $\Leftrightarrow \forall x(x \in X \rightarrow \langle x, x \rangle \notin R)$

一个关系的自反性与反自反性可能都不存在

所有关系

定义在非空集合上的空关系是反自反的,对称的,反对称的,传递的

例 设
$$X = \{1,2,3\}$$
, X 上的关系 $R = \{<1,1>,<2,2>\}$

既是对称的又是反对称的。

- 一个关系可以既有对称性又有反对称性,
- 一个关系也可以既不对称也不反对称。

所有关系

2.4 复合关系和逆关系

定义14 设R为X到Y的关系,S为Y到Z的关系,称 $R \circ S$ 为R和S的复合关系(。也称为R与S的合成运算),它是一个X到Z的关系表示为

$$R \circ S = \{ \langle x, z \rangle | x \in X, z \in Z, \exists y \in Y,$$

 使得 $\langle x, y \rangle \in R, \langle y, z \rangle \in S \}$

复合关系可用矩阵运算表示

利用布尔运算
$$M_{R \circ S} = M_R \bullet M_S = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

2.5 关系的闭包运算

定义16 设R是X上的二元关系, 若存在关系 R' 满足:

- (1) R' 是自反的;
- $(2) R' \supseteq R ;$
- (3) 对于任何自反的关系R'',

如果有 $R'' \supseteq R$,一定有 $R'' \supseteq R'$,称关系 R' 为 R 的自反闭包,记为 r(R)

定义16 设R是X上的二元关系, 若存在关系 R' 满足:

- (1) R' 是对称的;
- $(2) R' \supseteq R ;$
- (3) 对于任何对称的关系 R'',

如果有 $R'' \supseteq R$,一定有 $R'' \supseteq R'$,称关系 R' 为 R 的对称闭包,记为 s(R)

定义16 设R是X上的二元关系, 若存在关系 R' 满足:

- (1) R' 是传递的;
- $(2) R' \supseteq R ;$
- (3) 对于任何传递的关系 R'', 如果有 $R'' \supseteq R$,一定有 $R'' \supseteq R'$,称关系 R'为 R 的传递闭包,记为 t(R)

定理9 设R 是集合X上的二元关系,则 $r(R) = R \cup I_X$ 自反闭包的

构造方法

定理10 设R 是集合X 上的二元关系,则

$$s(R) = R \cup R^{-1}$$

对称闭包的 构造方法

定理12 设集合X含有n个元素,R是X

上的二元关系,则存在一个正整数 $k \le n$,使得

$$t(R) = R^{+} = \bigcup_{i=1}^{k} R^{i} = R \cup R^{2} \cup \cdots \cup R^{k}$$

定理说明:最多只要求到k=n即可。

用矩阵形式运算

$$M_R = egin{pmatrix} 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{M}_{R^3} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^4} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- 2.6 等价关系与等价类
- 2.6.1 等价关系

定义17 设R是X上的二元关系,若R是自反的、对称的和传递的,则R称为X上的等价关系。

同余关系是等价关系

2.6.2 等价类

定义18 设R是X上的等价关系,对任何 $a \in X$,集合

$$[a]_R = \{x \mid x \in X, aRx\}$$

称为元素a关于R的等价类,也称由元素a生成的R等价类。

定义19 设X是非空集合,若存在一个X

的子集族 $S = \{S_1, S_2, \dots S_m\}$, 满足以下条件:

(1)
$$S_i \subseteq X$$
, $S_i \neq \Phi$ $(i = 1, 2, \dots m)$

(2)
$$S_i \cap S_j = \Phi \quad (i \neq j)$$

$$(3) \quad \bigcup_{i=1}^m S_i = X$$

称 S 为 X 的一个划分, S_i ($i = 1, 2, \dots m$) 称为划分块。

定理13 集合A上一个等价关系R,决定了A的一个划分,该划分就是商集A/R(由等价关系诱导的划分)。

一个等价关系决定集合的一个划分

定理**14** 集合A的一个划分确定A的元素间一个等价关系(由划分诱导的等价关系)。

一个划分决定集合上的一个等价关系

由A上的划分确定其诱导的等价关系R的方法

设 $S = \{S_1, S_2, \dots S_m\}$ 是集合A 的一个划分

则 $R = R_1 \cup R_2 \cup \cdots \cup R_m$ 即为所求的等价关系。

同一划分块中的元素有关系R

例28 设
$$A = \{a,b,c,d,e\}$$
有一个划分 $S = \{\{a,b\},\{c\},\{d,e\}\}$

试求由S诱导的A的一个等价关系。

解
$$R_1 = \{a,b\} \times \{a,b\}$$

 $= \{< a,a>, < a,b>, < b,a>, < b,b>\}$
 $R_2 = \{c\} \times \{c\} = \{< c,c>\}$
 $R_3 = \{d,e\} \times \{d,e\} = \{< d,d>, < d,e>, < e,d>, < e,e>\}$
 $R = R_1 \cup R_2 \cup R_3 = \{< a,a>, < a,b>, < b,a>, < b,b>,$
即为所求 $< c,c>, < d,d>, < d,e>, < e,d>, < e,e>\}$

由前面的讨论知

集合A上的等价关系 $\leftarrow^{-->\text{对应}}$ 集合A的划分

想要知道一个集合上有多少个等价关系

只要求出此集合有多少个不同的划分即可。

2.7.1 偏序关系

定义21 设R 是集合X上的二元关系,若R 是自反的、反对称的和传递的,称R 是X 上的一个偏序关系,记为" \preceq ",序偶 $< X, \preceq >$ 称为偏序集。 哈斯图

特殊元素:极大元、极小元、最大元、最小元,上界,上确界,下届,下确界

第二部分 代数系统

第3章 代数系统的

一般概念和性质

-运算的性质、特殊元素

代数系统

运算*的性质和特殊元素在运算表中的体现

1.封闭性:表中各元素与表头中元素相同。

2.交换律:表中各元素关于对角线对称。

3.等幂律:表中对角线各元素与之相应的表头 元素相同。

4.零元: 该元素所对应的行和列中的元素 与该元素相同。

- 5. 幺元: 该元素所在的行和列中的元素依次与表头元素相同。
- 6.可逆元:前提是存在幺元,若a与b互逆,当且 仅当a所在的行,b所在列的元素以及 b所在的行,a所在列的元素均为幺元

3.1.3 代数系统

定义12 一个非空集合A,连同若干个定义在该集合上的运算 f_1,f_2,\cdots,f_k ,构成的系统称为一个代数系统,记为 $< A,f_1,f_2,\cdots,f_k>$ 。

一个代数系统需要满足三个条件:

- ①有一个非空集合S;
- ②定义一些运算;
- ③这些运算在集合 5 上是封闭的。

第二部分 代数系统

半群 群与子群 代数系统 循环群与置换群 陪集与拉格朗日定理

半群的概念:

设< S,*>为代数系统,若运算*满足结合律,称代数系统< S,*>为半群。

半群的性质:

定理 设<S,*>是一个半群,若S是一个有限集,则必存在 $a \in S$,使得 a*a=a。

定义2 若半群 < S, *> 中的二元运算满足交换律, 称其为可换半群。

定义3 若半群 < S, *> 中含有幺元,称其为独异点(也称含幺半群)。

4.1.2 子半群

定义2 设 < S, * > 是一个半群,若对非空集 $B \subseteq S, *$ 在 B 上是封闭的,那么 < B, * > 也是一个半群,称 < B, * > 是 < S, * > 的子半群。

群的定义:

定义4 设 < S, * > 是一个代数系统,* 是 S 上的一个二元运算,若满足

- (1) 运算*是可结合的; -----半群
- (2) 存在幺元 e; -----独异点
- (3) 对于每一个元素 $x \in S$, 存在它的逆元 $x^{-1} \in S$, 称< S, *>是一个群。

群的阶数

定义5 设<G,*>是一个群,若G是一个有限集,称<G,*>是有限群,G中元素的个数称为该有限群的阶数,记为|G|;若G是无限集,称<G,*>是无限群。

元素的阶数 定义6 设 < G,> 之 是群, $x \in G$,使得 $x^k = e$ 成立的最小正整数 k 称为 x 的阶数(或周期)记为 |x|。

定义7 若群 < G, * > 中的运算 * 是可交换的 称该群为交换群,也称为阿贝尔群。

不是所有的群都是交换群

概括地说,代数系统仅仅是一个具有封闭二元运算的非空集合;半群是一个满足结合律的代数系统;独异点是带有幺元的半群;群是每个元素都有逆元的独异点。

{群}⊂{独异点}⊂{半群}⊂{代数系统}

定理1 阶数大于1的群中没有零元。

定义10 代数系统<G,*>中,如果存在 $a \in G$,有a*a=a,称a为等幂元。

两类特殊的群

循环群:

(1)定义:

定义11 设<G,*>是一个群,若存在元素

 $a \in G$, 使得 $G = \{a^k | k \in Z\}$ $a^1 = a, a^2 = a * a, ..., a^{j+1} = a^j * a$

称 < G, *> 为循环群,记作 G = < a >,称 a 为此群 的生成元。

(2)性质:

- a) 任何一个循环群必是阿贝尔群
- b) 循环群中生成元的阶数与群的阶数相同

- (3)分类: 无限阶循环群和有限阶循环群
- (4) 生成元:

对无限阶循环群 G=<a>,其生成元是 $<z_{s},\oplus>$ 是6阶循环群, 1和5都与6互质, 故1和5是生成元。

对n 阶循环群 $G = \langle a \rangle = \{e, a, a^{\epsilon}, \cdots a^{n-1}\},$ 其生成元是 a^{ϵ} ,当且仅当t与n互质。

(5)循环子群

- a)无限阶循环群的子群除 <e>外,均为无限循环群。
 - b)有限阶循环群 的子群:

定理**12** n 阶循环群 $G = \langle a \rangle$ 的子群的 阶数均为n 的因子。对于n 的每个正因子d,有且只有一个d 阶循环子群,生成元为 $a^{\frac{n}{d}}$ 。

置换群:

- (1)置换的概念:每一次置换产生一个全排列,每一个全排列对应着一个置换;
- (2)置换表示: 置换表和不交的轮换之积表示

说明 按两个函数进行复合运算

(12)
$$\circ$$
 (13) $=$ $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ \circ $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ $=$ $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ $=$ (132)

$$(23) \circ (123) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13)$$

- 4.4 陪集与拉格朗日定理
- 4.4.1 陪集

定义14 设<G,*>是一个有限群,<H,*>是其子群,且 $H = \{h_1, h_2, \dots, h_n\}$, $\forall g \in G$,集合 $\{g*h_1, g*h_2, \dots, g*h_n\}$ ($\{h_1*g, h_2*g, \dots, h_n*g\}$) 称为g关于子群<H,*>的左(右) 陪集,记作g*H(H*g),若左、右陪集相等,称其为关于子群<H,*>的陪集。

三个引理

引理1 设<G,*>是一个有限群,<H,*>是其子群, $\forall h_i \in H$,则 $h_i * H = H * h_i = H$

引理2 设<G,*>是一个有限群,<H,*>是其子群,对 $a \in G$, $h \in H$,有 (a*h)*H = a*H

引理3 设<G,*>是一个有限群,<H,*>是其子群,a,b \in G,则a*H与b*H或者相等,或者互不相交。

4.4.2 拉格朗日定理

定理14 设<G,*>是一个有限群,<H,*>

是其子群,若 |G| = m, |H| = n, 则 $n \mid m$ 。

-拉格朗日定理

定理表明

子群存在时,子群的阶数 一定是原群阶数的因子

其逆不真

即若n能够整除m, m阶群也不一定有 n阶子群。

由拉格朗日定理得到以下结论

推论1 设<G,*>是一个m 阶群, $a \in G$,且 $a \in k$ 阶元,则 $k \mid m$ 。

元素的阶数是群阶数的因子。

推论2 设 < G,* > 是一个m 阶群, $\forall a \in G$,

则 $a^m = e$ 。

推论3 素数阶群没有非平凡子群。

推论4 素数阶群必是循环群,且除幺元外 其余元素均为生成元。 拉格朗日定理表明,m 阶群若有n 阶子群时,一定有n |m; 可群不一定有其因子阶数的子群,但对循环群有下面定理:

定理15 设<G,*>是一个m 阶循环群,

且 $n \mid m$,则 < G ,* > 必有 n 阶循环子群。

- 4.5 环与域
- 4.5.1 环

定义15 设 $\langle A, \star, \star \rangle$ 是一个代数系统, 若

- 满足 (1) $\langle A, \star \rangle$ 是阿贝尔群;
 - (2) < A,* > 是一个半群;
 - (3) 运算*对于运算★是可分配的.

称<*A*,★,*>是环。

通常称★为加法运算,*为乘法运算

环可简单叙述为:

- (1) 对加法是可换群
- (2) 对乘法是半群
- (3) 乘法对加法是可分配的

定义19 设 < A, +, • > 是一个代数系统, 若满足

- (1) < A,+>是阿贝尔群;
- (2) $< A \{\theta\}, \bullet >$ 是阿贝尔群;
- (3)运算•对于运算+是可分配的.

称 < A,+,● > 是域。

第三部分 图论

第5章 图的一般 概念与性质 图的基本概念

连通性与赋权图的 最短路径

图的矩阵表示

5.1.3 结点的度数

定义6 在图 $G = \langle V, E \rangle$ 中,与结点 $v(v \in V)$ 关联的边数,称为该点的度数,记为 deg(v)。

记
$$\Delta(G) = \max\{\deg(v) | v \in V(G)\}$$

$$\delta(G) = \min\{\deg(v) | v \in V(G)\}$$

分别称为图 $G = \langle V, E \rangle$ 的最大度数和最小度数。

设
$$V = \{v_1, v_2, \dots, v_n\}$$
, 称 $\{\deg(v_1), \deg(v_2), \dots, v_n\}$

 $deg(v_n)$ } 为图G的度数序列。

规定在计算度数时,环算两度

定理1 任何一个图 $G = \langle V, E \rangle$, 其结点度数总和,等于边数的两倍,即

$$\sum_{v \in V} \deg(v) = 2|E| \quad (Handshaking 握手定理)$$

定理2 在任何图中,度数为奇数的结点必 是偶数个。 定义7 在有向图中,射入一个结点 v_i 的边数称为该结点的入度,记为 $\deg^-(v_i)$;射出一个结点 v_j 的边数称为该结点的出度,记为 $\deg^+(v_j)$

定理3 在任何一个有向图中,所有结点的入度之和等于出度之和,且等于边数。

5.1.4 完全图与子图

定义9 简单图G=<V,E>中,若每对结点间都有边关联,称该图为完全图,n 阶无向完全图记为 K_n 。

 K_4

 K_{5}

n 阶无向完全图 K_n 的边数等于 $C_n^2 = \frac{1}{2}n(n-1)$ 5/11/2022 6:10 PM

定义11 设图 $G = \langle V, E \rangle$,存在图 $G' = \langle V', E' \rangle$ 且 $E' \subseteq E, V' \subseteq V$,称 G'为 G 的子图。如果 G 的子图包含 G 的所有结点,称该子图为 G 的生成子图。

5.2.2 连通性

定义14 在无向图G中,若从结点u到结点v存在通路,称结点u和v是连通的。

连通分支数

连通图

定义16 设无向图 $G = \langle V, E \rangle$ 为连通图,若有点集 $V_1 \subset V$,使图 G 删除了 V_1 中的所有结点后,得到的子图是不连通的,而删除了 V_1 的任何真子集后,所得的子图仍是连通图,称 V_1 是 G 的一个点割集。若某个点割集中只含有一个点,称该点为割点,称

 $k(G) = \min\{|V_1||V_1 \in G$ 的点割集} 为图G的点连通度(简称连通度)。

连通度 k(G) 是为了产生一个不连通图,需要删除的点的最少数目,因此一个非连通图其连通度 k(G)=0;存在割点的连通图,其连通度 k(G)=1;而完全图 K_p ,其连通度 k(G)=p-1

定义17 设无向图 $G = \langle V, E \rangle$ 为连通图, 若有边集 $E_1 \subseteq E$,使图 G 中删除了 E_1 中的所有 边后,得到的子图是不连通图,而删除了 E_1 的 任何真子集后所得到的图是连通图,称 E_1 是G的一个边割集, 若某个边割集中只含有一条边 称该边为割边(或桥),称 $\lambda(G) = \min\{|E_1||E_1 \in G$ 的边割集} 为图G的边连通度。

5/11/2022 6:10 PM

边连通度 $\lambda(G)$ 是为了产生一个不连通图需要删除的边的最少数目,故一个非连通图,其边连通度 $\lambda(G) = 0$; 存在割边的连通图,其边连通度 $\lambda(G) = 1$ 。

下面讨论有向图的连通性

定义18 在简单有向图G中, 若任意两个 结点间,至少从一个结点到另一个结点存在通 路(也称可达),称此图为单侧连通的;若任 意两个结点均可达, 称此图为强连通的: 若去 掉边的方向后,该图是无向连通图,称此图为 弱连通的。

如图所示 例 单侧连通 强连通 弱连通 强连通 — 单侧连通 — 弱连通

求赋权图最短路径的Dijkstra标号算法

基本思想:给 n 阶赋权图 G 的每个结点记一个数 (称为标号),标号有两种:临时标号 (T 标号)和固定标号 (P 标号),T 标号表示从始点到终点的最短通路的权的上界;P 标号表示从始点到该点的最短通路的权。

具体算法如下:

第一步 给始点 v_1 标上P标号 $d(v_1)=\infty$,给其它结点标上T标号 $d(v_j)=w_{1j}$ ($2 \le j \le n$),其中 w_{ij} 是连接 v_i 和 v_j 的边权,若 v_i 与 v_j 没有边相连令 $w_{ij}=\infty$,用计算机计算时,可根据具体问题,取一个足够大的数代替 ∞ 。

第二步 在所有的T标号中取最小者,如 v_k 的T标号 $d(v_k)$ 最小,则将 v_k 的T标号改为P标号

并重新计算具有T标号的其它结点 v_i 的T标号:

新的 $d(v_j) = \min\{|\exists id(v_j), d(v_k) + w_{kj}\}$

第三步 若终点已具有 P 标号,则此标号即为所求的最短路径的权,算法停在;否则转入第二步。

若要求始点到其它各点的最短路径,第三 步修改为所有结点都已具有**P**标号时算法停止

- 5.3 图的矩阵表示
- 5.3.1 图的邻接矩阵与可达性矩阵

定义22 设 $G = \langle V, E \rangle$ 是一个简单图,且

有n个结点 $V = \{v_1, v_2, \dots, v_n\}$,称n 阶方阵 $A(G) = (a_{ij})$ 为G的邻接矩阵,其中

$$a_{ij} = \begin{cases} 1, & v_i \ adj \ v_j \\ 0, & v_i \ nadj \ v_j \ or \ i = j \end{cases}$$

(adj表示邻接, nadj表示不邻接)

(3) 设邻接矩阵
$$A(G) = (a_{ij})_n$$
,则

$$(a_{ij}^{(2)})_n = (A(G))^2 = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \bullet \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

其中 $a_{ij}^{(2)}$ ($i \neq j$)表示从结点 v_i 到 v_j 的长度为2的通路数目; $a_{ii}^{(2)}$ 表示结点 v_i 到自身的长度为2的回路数目; 以此类推, $a_{ij}^{(l)}$ ($i \neq j$)表示从结点 v_i 到 v_j 的长度为l的通路数目; $a_{ii}^{(l)}$ 表示结点 v_i 到自身的长度为l的回路数目, 其中 ($a_{ij}^{(l)}$)_n = (A(G))^l

(A(G))¹ 中所有元素之和是 长度为1的所有通路和回路的总数目

5/11/2022 U:10 I NI

定义23 设 $G = \langle V, E \rangle$ 是一个简单有向图,有n个结点 $V = \{v_1, v_2, \dots, v_n\}$,称n 阶方阵 $P(G) = (p_{ij})$ 为G的可达性矩阵,其中

$$p_{ij} = \begin{cases} 1, & v_i \text{ 到} v_j \text{ 至少有一通路} \\ 0, & v_i \text{ 到} v_j \text{ 不存在通路} \end{cases}$$

说明 可达性矩阵表明图中两结点间是否存在通路或回路。

(可达性矩阵的定义可以推广到无向图)

利用邻接矩阵求可达性矩阵的方法

设 $G=\langle V,E\rangle$ 是一个简单有向图,有n个结点 $V=\{v_1,v_2,\cdots,v_n\}$,其邻接矩阵为A,令

$$\boldsymbol{B}_n = \boldsymbol{A} + \boldsymbol{A}^2 + \dots + \boldsymbol{A}^n$$

再将 B_n 中不为0的元素均改为1,得到的矩阵即为可达性矩阵P。

求可达性矩阵可以利用布尔运算

5.3.2 图的关联矩阵

定义24 设
$$G = \langle V, E \rangle$$
是一个无向图,且 $V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\},$ 称矩阵 $M(G) = (m_{ij})_{n \times m}$

为无向图G的关联矩阵。其中

$$m_{ij} = \begin{cases} \mathbf{0}, & v_i = e_j \text{ 不关联} \\ \mathbf{1}, & v_i = e_j \text{ 关联一次} \\ \mathbf{2}, & v_i = e_j \text{ 关联两次} \end{cases}$$
 的环。

定义25 设
$$G = \langle V, E \rangle$$
是一个简单有向图
$$V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\}, 称矩阵$$

$$M(G) = (m_{ij})_{n \times m}$$

为有向图G的关联矩阵。其中

$$m_{ij} = \begin{cases} 1, & v_i \neq e_j \text{ 的起点} \\ 0, & v_i \neq e_j \text{ 不关联} \\ -1, & v_i \neq e_j \text{ 的终点} \end{cases}$$

欧拉图的定义:

欧拉图的判断方法:

定理1 无向图 G 存在欧拉通路 $\Leftrightarrow G$ 是连通的,且有0个或2个奇数度结点。

推论 无向图 G 存在欧拉回路 $\Leftrightarrow G$ 是 连通的,且所有结点的度数均为偶数。

与哥尼斯堡七桥问题类似的还有图的一笔 画的判断问题。要判断一个图是否可以一笔画 出,有两种情况:

- (1) 从图中某一个结点出发,经过每条边一次 且仅一次,到达另一个结点;(用定理1判断)
- (2) 从图中某一个结点出发,经过每条边一次 且仅一次,再回到该结点。(用推论判断)

6.2.2 二部图

定义5 若能将无向图 $G = \langle V, E \rangle$ 的结点集 V 划分为两部分 V_1 和 V_2 ($V_1 \cup V_2 = V_1 \cap V_2 = \Phi$), 使得G中任一条边的两个端点,一个属于 V_1 , 另一个属于V,,称G是二部图(也称为偶图), V_1 和 V_2 称为互补结点子集,将G记为 $G = \langle V_1, V_2, E \rangle$

若 V_1 中任一结点与 V_2 中所有结点有且仅有一条边相关联,称该二部图G为完全二部图(或完全偶图),若 $|V_1|=n$, $|V_2|=m$,将完全二部图记为 $K_{n,m}$ 。

 $K_{2,3}$

 $K_{3,3}$

判断二部图的方法

定理5 一个无向图 $G = \langle V, E \rangle$ 是二部图

 \Leftrightarrow G 中所有回路的长度均为偶数。

5/11/2022 6:10 PM

定理6 设二部图 $G = \langle V_1, V_2, E \rangle$, $|V_1| \leq |V_2|$, G 中存在从 V_1 到 V_2 的完备匹配 $\Leftrightarrow V_1$ 中任意 k $(k = 1, 2, \dots, |V_1|)$ 个结点至少邻接 V_2 中 k 个结点。

证(些)。

说明 定理中的条件称为"相异性条件"。

——Hall定理

定理7 设二部图 $G = \langle V_1, V_2, E \rangle$,若满足

- (1) V_1 中每个结点至少关联 t(t>0) 条边;
- (2) V_2 中每个结点至多关联t条边.

则G中存在从 V_1 到 V_2 的完备匹配。

证(略)。

说明 定理中的条件称为"t条件",满足"t条件"的二部图,一定满足"相异性条件"

有些图,无论如何改画,均不能构成平面图

例10 如图所示

 $K_{3,3}$ 和 K_5 均为非平面图

定义8 设 $G = \langle V, E \rangle$ 是一个无向连通图, 由图中的边所围成的区域,区域内既不包含图 的结点, 也不包含图中的边, 称这样的区域为 图G的面,其中面积无限的区域称为无限面, 面积有限的区域称为有限面,包含该面的诸边 构成的回路称为该面的边界,边界的长度称为 该面的次数, $\prod r$ 的次数记为 $\deg(r)$ 。

6.3.2 平面图的性质及判定

定理8 一个平面图中,面的次数之和, 等于其边数的两倍。

定理9 设有一个连通的平面图G, 共有 ν 个结点,e条边,则一定有

$$v-e+r=2$$
 ——Euler公式

其中r为图的面数。

定理12 给定无向图T,以下关于树的定义是等价的(其中e表示边数, ν 表示结点数)

- (1) 无回路的连通图;
- (2) 无回路且 e = v 1;
- (3) 连通且 e = v 1;
- (4) 无回路,但增加一边后得唯一回路;
- (5) 连通,删除任一边后便不连通;
- (6)每一对结点之间有且仅有一条通路。

定理13 任一n阶非平凡树,至少有两片树叶。(非平凡树至少有两个1度点)

定义11 若图G的生成子图T是树,称 树T 为图G 的生成树, 树T 的边称为树枝, 图 G 的不在生成树 T 中的边称为弦, 所有弦的 集合称为T的补(余树)

定义12 若G是一个有n个结点m条边的连通图,它的生成树中有n-1条边,必须删除 m-(n-1)=m-n+1

条边,称数m-n+1为连通图G的秩。

定义13 若给连通图G的每一边e,赋予一个数字C(e),称C(e)为边e的权;图G的生成树T的所有边权之和,称为生成树T的树权,记为C(T);在G的所有生成树中,树权最小的一棵称为最小生成树。

寻找最小生成树的方法 (Kruskal避圈法)

在已有的边集上找相邻不成回路的最小边

引例:如图所示的赋权图表示六个城市及它们之间的通信 线路造价。试给出一个设计图使得各城市之间能够通信而 且总造价最小。

总造价为

$$27 + 18 + 24 + 40 + 50 = 159$$

6.4.2 根树及其应用

定义14 如果一个有向图在不考虑边的方 向时是一棵树,称该有向图为有向树。

定义15 一棵有向树如果恰有一个结点的入度为0,其余所有结点的入度都为1,称它为根树;入度为0的结点称为根;出度为0的结点称为叶;出度不为0的结点称为分支点(或内点)

定义19 若每个结点的出度最大是 m (最多有m个儿子)的根树称为 m 叉 (元)树;若 每个结点的出度均为 m 或 0,称该树为完全 m 叉 (元)树;若所有树叶的层数相同,称该树为正则 m 叉 (元)树。

定理18 设有完全m叉树,其树叶数为t,分支点数为i,则 (m-1)i=t-1

当树是完全二叉树时,i=t-1,即分支点比树叶少1个。

2、最优树

定义20 一棵二叉树 $_T$,每一片树叶都带权,称该树为带权二叉树。

定义21 在带权 w_1, w_2, \dots, w_t 的二叉树中,若带权为 w_i 的树叶,其通路长度为 $L(w_i)$,将

$$W(T) = \sum_{i=1}^{t} w_i L(w_i)$$

称为带权二叉树的权,在所有带权二叉树中,W(T)最小的那棵树,称为最优树。

例18 构造叶权为 2,3,4,4,5,5,7 的最优树

过程如下 (30) (5) **10** 8 $w(T) = \sum_{i=1}^{n} w_i L(w_i)$ **10 12** 18 12 $= 2 \times 3 + 3 \times 3 + 7 \times 2 + 4 \times 3$ $+4 \times 3 + 5 \times 3 + 5 \times 3 = 83$ **30**

第7章 命题逻辑

命题与联结词 命题公式及其分类 等值演算 其它联结词 对偶与范式 推理理论 命题的语句形式 ——陈述句 非命题的陈述句 ——悖论语句

1、否定 "否定"是一个一元运算

定义3 设P是一个命题,P的否定是一个新命题,记作 ¬P。若P为T,¬P为F;若P为F,¬P为T。 其关系如表所示

P	$\neg P$
$m{T}$	$oldsymbol{F}$
$oldsymbol{F}$	$m{T}$

2、合取

"合取"是一个二元运算

定义4 设P和Q是两个命题,P与Q的 合取也是一个命题,记作 $P \land Q$,当且仅当P,Q

同时为T时, $P \wedge Q$ 为T,其它情况下, $P \wedge Q$ 均为F。 其关系如表所示

P	Q	$P \wedge Q$
T	T	T
\boldsymbol{T}	F	$oldsymbol{F}$
${m F}$	$\mid T \mid$	$oldsymbol{F}$
\boldsymbol{F}	\boldsymbol{F}	$oldsymbol{F}$

自然语言中:"与""但是""既…,就…" "不仅…,而且…""虽然…,但是…"等等 均可用^表示。

3、析取

"析取"是一个二元运算

定义5 设P和Q是两个命题,P与Q的 析取也是一个命题,记作 $P \lor Q$,当且仅当P,Q

同时为F时, $P \vee Q$ 为F,其它情况下, $P \vee Q$ 均为T。 其关系如表所示

P	Q	$P \lor Q$
T	T	T
\boldsymbol{T}	$oldsymbol{F}$	T
$oldsymbol{F}$	T	T
\boldsymbol{F}	F	$oldsymbol{F}$

4、蕴含

"蕴含"是一个二元运算

定义6 设P和Q是两个命题,P与Q的 蕴含也是一个命题,记作 $P \rightarrow Q$,当且仅当P

的真值为T,Q的 真值为F时, $P \rightarrow Q$ 的真值为F,其它情 况下, $P \rightarrow Q$ 均为T。 其关系如表所示

P	Q	$P \rightarrow Q$
T	$\mid T \mid$	$m{T}$
\boldsymbol{T}	F	$oldsymbol{F}$
\boldsymbol{F}	$\mid T \mid$	\boldsymbol{T}
\boldsymbol{F}	$\mid F \mid$	\boldsymbol{T}

自然语言中,"如果...,那么..."可以用

[→]表示。

5、等价 "等价"是一个二元运算

定义7 设P和Q是两个命题,P与Q的 等价也是一个命题,记作 $P \leftrightarrow Q$,当 P 与 Q的

的真值相同时, $P \leftrightarrow Q$ 的真值为T,否则 $P \leftrightarrow Q$ 的真值为 F, 其关系如表所示

P	Q	$P \leftrightarrow Q$
T	T	$m{T}$
\boldsymbol{T}	$oldsymbol{F}$	$oldsymbol{F}$
${m F}$	T	$oldsymbol{F}$
\boldsymbol{F}	$oldsymbol{F}$	$m{T}$

 $P \leftrightarrow Q$ ——充分必要条件

7.2.3 命题公式的分类

定义11 设A是一个命题公式

- (3) 若A 至少存在一组赋值使其为T,称A 是可满足式,

下面给出了24个等值式(用真值表证明)

- 1. A ⇔¬¬A (对合律)
- $2.A \Leftrightarrow A \lor A$; $3.A \Leftrightarrow A \land A$ (等幂律)
- $4. A \lor B \Leftrightarrow B \lor A, 5. A \land B \Leftrightarrow B \land A$ (交換律)
- 6. $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$ 7. $(A \land B) \land C \Leftrightarrow A \land (B \land C)$ (结合律)
- 8. $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$ 9. $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ (分配律)

数理逻辑

$$10.\neg(A \lor B) \Leftrightarrow \neg A \land \neg B$$

11.¬(A \lambda B) \ \ \ ¬A \lambda ¬B \ \ (德·摩根律)

$$12. A \lor (A \land B) \Leftrightarrow A \\ 13. A \land (A \lor B) \Leftrightarrow A$$
 (吸收律)

$$14.A \lor T \Leftrightarrow T$$
; $15.A \land F \Leftrightarrow F$ (零一律)

16.
$$A \land T \Leftrightarrow A$$
; 17. $A \lor F \Leftrightarrow A$ (同一律)

$$18.A \land \neg A \Leftrightarrow F$$
; $19.A \lor \neg A \Leftrightarrow T$ (否定律)

$$20.A \rightarrow B \Leftrightarrow \neg A \vee B$$
 (蕴含等值式)

$$21. A \leftrightarrow B \Leftrightarrow (A \to B) \land (B \to A)$$

 $\Leftrightarrow (A \land B) \lor (\neg A \land \neg B)$ (等价等值式)

$$22.A \rightarrow B \Leftrightarrow \neg B \rightarrow \neg A$$
 (假言易位)

$$23.A \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg B$$
 (等价否定等值式)

$$24.(A \rightarrow B) \land (A \rightarrow \neg B) \Leftrightarrow \neg A$$
 (归谬论)

有了上述等值式,利用逻辑推理的方法,可以证明其它等值式,此过程称为等值演算。

- 7.5 对偶与范式
- 7.5.1 对偶式

对偶式是 相互的

定义20 在仅含有联结词¬, $^{^{^{^{\prime}}}}$,次的命题公式 $^{^{\prime}}$ 中,将 $^{^{\prime}}$ 换成 $^{^{\prime}}$,为模成 $^{^{\prime}}$,若存在常元 $^{^{\prime}}$ 和 $^{^{\prime}}$ 的相互取代,所得公式 $^{^{\prime}}$ 称为 $^{^{\prime}}$ 的对偶式。

例
$$A: \neg (P \land Q) \lor (P \land (\neg Q \lor \neg S) \lor T)$$

$$A^*: \neg (P \lor Q) \land (P \lor (\neg Q \land \neg S) \land F)$$

下面给出的蕴含式,与前面的24个等值式一样,在推理过程中的任何时候均可应用。

$$1. P \land Q \Rightarrow P$$
; $2. P \land Q \Rightarrow Q$

$$3. P \Rightarrow P \lor Q$$
; $4. Q \Rightarrow P \lor Q$

$$5. \neg P \Rightarrow P \rightarrow Q$$
; $6. Q \Rightarrow P \rightarrow Q$

$$7. \neg (P \rightarrow Q) \Rightarrow P; \quad 8. \neg (P \rightarrow Q) \Rightarrow \neg Q$$

$$9.P,Q \Rightarrow P \land Q$$
; $10.\neg P, P \lor Q \Rightarrow Q$

11.
$$P, P \rightarrow Q \Rightarrow Q$$
; 12. $\neg Q, P \rightarrow Q \Rightarrow \neg P$

13.
$$P \rightarrow Q$$
, $Q \rightarrow R \Rightarrow P \rightarrow R$

14.
$$P \lor Q$$
, $P \to R$, $Q \to R \Rightarrow R$

15.
$$P \to R \Rightarrow (P \lor Q) \to (R \lor Q)$$

16.
$$P \rightarrow R \Rightarrow (P \land Q) \rightarrow (R \land Q)$$

要求: 熟记以上16个推理规则

直接证明法 论证方法 间接证明法 第8章 谓词逻辑

「谓词公式及其解释 谓词公式的等值式与 蕴含式

谓词逻辑的推理理论

当个体域没有特别说明时,一般指全总个体域,在符号化时,首先需要对个体加以限制, 因此引进一个新的谓词,称为特性谓词。如例3 两小题中的 M(x),一般情况下

对全称量词,特性谓词常作蕴含的前件。对存在量词,特性谓词常作合取项。

使用量词时需要注意以下几点:

- (1) 在不同的个体域中,命题符号化的的形式可能不同。
 - (2) 若没有给出个体域, 应理解为全总个体域
 - (3) 当个体域为有限集时,量词可以消掉,

如个体域 $D = \{a,b,c,d\}$,有

$$\forall x A(x) \Leftrightarrow A(a) \land A(b) \land A(c) \land A(d)$$

$$\exists x A(x) \Leftrightarrow A(a) \lor A(b) \lor A(c) \lor A(d)$$

定义8 在含有 $\forall x P(x)$ 或 $\exists x P(x)$ 的公式中, 称x为指导变元或作用变元, 称P(x)为相应 量词的作用域或辖域。在作用域中,x的一切出 现,称为约束出现(即x 受相应量词指定变元 的约束), P(x) 中除去约束以外出现的变元, 称为自由变元,自由元是不受约束的变元,尽管 有时它也在量词的作用域中,但不受量词的指 导变元的约束,故可将它看成公式中的参数。

量词的约束关系

命题演算的推广

命题逻辑中的等值式均可作为谓词逻辑中的等值式。例如

$$A(x,y) \rightarrow B(x,y) \Leftrightarrow \neg A(x,y) \lor B(x,y)$$

$$\neg \neg A(x) \Leftrightarrow A(x)$$

定理1 量词否定等值式

- (1) $\neg \forall x A(x) \Leftrightarrow \exists x \neg A(x)$ (2) $\neg \exists x A(x) \Leftrightarrow \forall x \neg A(x)$ (A(x)为任意公式)

通俗讲,量词与否定¬之间的关系如下

否定所有 ◆ 至少有一个非

否定存在 ◆ → 所有非

定理2 量词辖域的收缩与扩张等值式

设H是一个不含约束变元x的公式

- (1) $\forall x (P(x) \lor H) \Leftrightarrow \forall x P(x) \lor H$
- (2) $\forall x (P(x) \land H) \Leftrightarrow \forall x P(x) \land H$
- (3) $\exists x (P(x) \lor H) \Leftrightarrow \exists x P(x) \lor H$
- (4) $\exists x (P(x) \land H) \Leftrightarrow \exists x P(x) \land H$

定理3 量词分配等值式

- (1) $\forall x (P(x) \land Q(x)) \Leftrightarrow \forall x P(x) \land \forall x Q(x)$
- (2) $\exists x (P(x) \lor Q(x)) \Leftrightarrow \exists x P(x) \lor \exists x Q(x)$

举例说明

所有人唱歌并且跳舞 → 所有人唱歌 并且所有人跳舞。

有些人唱歌或者跳舞◆──有些人唱歌或者有些人跳舞。

定理4 多个量词的等值式

- (1) $\forall x \forall y A(x,y) \Leftrightarrow \forall y \forall x A(x,y)$
- (2) $\exists x \exists y A(x,y) \Leftrightarrow \exists y \exists x A(x,y)$

说明 相同量词可以交换,但不同量词不可随意交换。

8.4 谓词逻辑的推理理论

谓词逻辑的推理方法,可看作是命题逻辑推理方法的推广,故命题逻辑的很多等值式和蕴涵式,均可在谓词逻辑中使用,如 P 规则、T 规则和 CP 规则。

但在谓词逻辑中,某些前提与结论可能 会受量词限制,为了使用命题逻辑中的等值式 和蕴涵式,必须在推理过程中设立**消去和添加** 量词的规则,下面介绍这些规则。 8.4.1 全称指定规则(简称 US 规则)

规则如下:

由一般得到特殊

 $\forall x P(x) \Rightarrow P(c)$

其中P是谓词,c是个体域中某个个体。

8.4.2 存在指定规则(简称 ES 规则)

规则如下:

由存在得到具体

 $\exists x P(x) \Rightarrow P(c)$

其中P是谓词,c是个体域中某个个体。

注意 应用 ES 规则时,指定的个体 c 不是任意的。

8.4.3 全称推广规则(简称UG规则)

规则如下:

由全部个体得到一般

$$P(x) \Rightarrow \forall x P(x)$$

其中P是谓词。

注意 若能证明个体域中任何一个个体c,都能使 P(c) 成立,则可得结论 $\forall x P(x)$ 。

8.4.4 存在推广规则(简称EG规则)

规则如下:

由个体得到存在

$$P(c) \Rightarrow \exists x P(x)$$

其中P是谓词,c是个体域中某个个体。

谓词的演绎推理

假定推导过程都是在相同的个体域内进行的(通常是全总个体域)。

- ☞ 综合推理方法
 - 推导过程中可以引用命题演算中的规则 P 和规则 T;
 - 如果结论是以条件形式或析取形式给出,则可使用规则 CP;
 - 若需消去量词,可以引用规则 US 和规则 ES;
 - 当所求结论需定量时,可引用规则 UG 和规则 EG引入量词;
 - 证明时可采用如命题演算中的直接证明方法和间接证明方法;
 - 在推导过程中,对消去量词的公式或公式中不含量词的子公式,可以引用命题演算中的基本等价公式和基本蕴涵公式;
 - 在推导过程中,对含有量词的公式可以引用谓词中的基本等价公式和基本蕴涵公式。

