

USER MANUAL WT931

Inclinometer Sensor

Tutorial link

Google Drive

Link to instructions DEMO: WITMOTION Youtube Channel WT931 Playlist

If you have technical problems or cannot find the information that you need in the provided documents, please contact our support team. Our engineering team is committed to providing the required support necessary to ensure that you are successful with the operation of our AHRS sensors.

Contact

Technical Support Contact Info

Application

- AGV Truck
- Platform Stability
- Auto Safety System
- 3D Virtual Reality
- Industrial Control
- Robot
- Car Navigation
- UAV
- Truck-mounted Satellite Antenna Equipment

Contents

Tutorial link 2 -
Contact 2 -
Application 2 -
Contents 3 -
1 Introduction
1.1 Warning Statement 6 -
2 Use Instructions with PC
2.1 Connection Method 7 -
2.1.1 Serial Connection 7 -
2.2 Software Introduction 9 -
2.2.1 Main Menu 9 -
2.2.2 Menu of Configuration 10 -
2.3 Calibration
2.3.1 Accelerometer Calibration 14 -
2.3.2 Magnetic Field Calibration 15 -
2.3.3 Gyroscope Automatic Calibration 18 -
2.3.4 Reset Z-axis Angle 18 -
2.3.5 Reset Height to 0 18 -
2.4 Configuration 19 -
2.4.1 Return Content 19 -
2.4.2 Output Rate 20 -
2.4.3 Baud Rate 21 -
2.4.4 Data Recording 22 -
2.4.5 Data Playback 24 -
2.4.6 Standby and Wake Up 26 -
2.4.7 Placement Direction 27 -

	2.4.8 Bandwidth	28 -
	2.4.9 Restore Factory Setting	30 -
	2.4.10 6-axis/ 9-axis Algorithm	31 -
3 MCU	Connection -	32 -
3.1	Arduino	32 -
3.2	STM32	32 -
3.3	Raspberry pi	32 -
3.4	C#	32 -
3.5	C++	33 -
3.6	Matlab	33 -

1 Introduction

The WT931 is a multi-sensor device detecting acceleration, angular velocity, angle as well as magnetic filed. The small outline makes it perfectly suitable for industrial retrofit applications such as condition monitoring and predictive maintenance. Configuring the device enables the customer to address a broad variety of use cases by interpreting the sensor data by smart algorithms.

WT931's scientific name is AHRS IMU sensor. A sensor measures 3-axis angle, angular velocity, acceleration, magnetic field. Its strength lies in the algorithm which can calculate three-axis angle accurately.

WT931 is employed where the highest measurement accuracy is required. It offers several advantages over competing sensor:

- Heated for best data availability: new WITMOTION patented zero-bias automatic detection calibration algorithm outperforms traditional accelerometer sensor
- High precision Roll Pitch Yaw (X Y Z axis) Acceleration + Angular Velocity + Angle + Magnetic Field output
- Low cost of ownership: remote diagnostics and lifetime technical support by WITMOTION service team
- Developed tutorial: providing manual, datasheet, Demo video, free software for Windows computer, and sample code for MCU integration including 51 serial, STM32, Arduino, Matlab, Raspberry Pi, communication protocol for project development
- WITMOTION sensors have been praised by thousands of engineers as a recommended attitude measurement solution

1.1 Warning Statement

- Putting more than 5 Volt across the sensor wiring of the main power supply can lead to permanent damage to the sensor.
- VCC cannot connect with GND directly, otherwise it will lead to the burning of the circuit board.
- For proper instrument grounding: use WITMOTION with its original factory-made cable or accessories.
- For secondary developing project or integration: use WITMOTION with its compiled sample code.

Use Instructions with PC 2

2.1 **Connection Method**

PC software is only compatible with Windows system.

The software will be continuously improved and upgraded according to user's feedback. There will be a few differences between the current user interface and new version. Your understanding is highly appreciated.

Link to WT931's demo video

2.1.1 Serial Connection

Step 1. Need to embed WT931 in evaluation board first and then connect the sensor with a serial converter / Micro-USB cable PIN Connection(serial cable is required):

VCC -5V

TX -RX

RX -TX

GND - GND

(When connecting with computer, VCC-5V is recommended.)

Recommended tools:

3-in-1 serial converter

6-in-1 serial converter

Step 2. Unzip the software and install the driver CH340 or CP2102 (Depending on which accessory for usage.)

Link to tutorial of 3-in-1 serial converter/ TTL serial cable (CH340 driver)

Link to tutorial of 6-in-1 serial converter (CP2102 driver)

Step 3. Plugin the converter to computer and confirm the "com port" in device manager

Step 4. Open the software(Minimu.exe) Data will appear after auto-search finishes

Notice: If not successful, please operate manually Choose the com port and baud rate 9600, data will be shown on the software.

2.2 Software Introduction

Link to download software

2.2.1 Main Menu

	Main Menu of Software					
Button		Function				
File		Launch recorded HEX file (Bin format)				
Tools		Hide or display tools box on left side				
Record		Record function				
3D		3D DEMO				
Config		Configuration setting				
	Language	English or Chinese				
Help	Bluetooth Set	Binding device or unbind				
	Firmware update	Option for firmware update				
About Minimu		Info about Minimu.exe				
	Factory test	For manufacturer internal test only				
Auto-search		Auto searching the sensor				
Port		Com port selection				
Baud		Baud rate selection				
Туре		Fixed setting as Normal for WT931				
Open		Open com port				
Close		Close com port				

2.2.2 Menu of Configuration

Menu of Configuration						
Button	Function					
Read Config	Reading the current configuration					
Lock	Lock the sensor					
Unlock	Unlock the sensor					
Calibrate Time	Calibration time of chip					
Save Config	Save configuration					

Instruction Start-up:

Calibrate

This function is used to prevent the data sent by the module after connecting to the computer to conflict with the mouse, causing the mouse to jump. After checking this function, the function will take effect the next time the module is used, or it can take effect when the module is powered on again.

Menu of Range					
Button	Function				
Acceleration	Acceleration measurement range				
Gyro	Gyroscope measurement range				
Band Width	Bandwidth range				
GPS Time Zone	GPS positioning of time zone				

Communication	on					
Baud Rate:	9600 ~	Output Rate:	10Hz v	Device Address:	0x50	change

Menu of Communication					
Button	Function				
Baud Rate	Baud rate selection				
Output Rate	Return rate selection				
Device Address	IIC address				

Content					
☑ Time	✓ Acceleration	✓ Velocity	✓ Angle	✓ Magnetism	Port
Pressure	Location	☐ PDOP	Quaternion	Positioning Accuracy	GPS Original

Me	Menu of Content						
Button	Function						
Time	Time data output						
Acceleration	Acceleration data output						
Velocity	Angular velocity data output						
Angle	Angle data output						
Magnetism	Magnetic field data output						
Port	Port data output						
Pressure	Pressure output, only available with the						
	sensor built-in barometer like HWT901B,						
	WTGAHRS2, WT901B, etc						
Location	Latitude&Longitude data output, only for						
	GPS IMU series, such as WTGAHRS1,						
	WTGAHRS2						
PDOP	Ground velocity data output, only for GPS						
	IMU series, such as WTGAHRS1,						
	WTGAHRS2 GPS IMU						

Quaternion	Quaternion data output				
Positioning Accuracy	Option for GPS positioning accuracy output,				
	including Satellite quantity, PDOP, HDOP,				
	VDOP data, only for GPS IMU series, such as				
	WTGAHRS1, WTGAHRS2				
GPS Original	Only output GPS raw data, only for GPS IMU				
	series, such as WTGAHRS1, WTGAHRS2				
Menu of Port					
D0 Model	Extended port D0				
D1 Model	Extended port D1				
D2 Model	Extended port D2				
D3 Model	Extended port D3				
Pulse width	Pulse width of PWM				
Cycle	Cycle of PWM				

Calibration 2.3

Preparation:

Make sure the sensor is "Online".

Calibration on PC software:

It is required to calibrate for the first time usage.

2.3.1 Accelerometer Calibration

Purpose:

The accelerometer calibration is used to remove the zero bias of the accelerometer. Before calibration, there will be different degrees of bias error. After calibration, the measurement will be accurate.

Methods:

- Step 1. Keep the module horizontally stationary
- Step 2. Click the accelerometer calibration
- Step 3. Click the "Start calibration" and wait for 3 seconds

Step 4. Click "Complete Calibration"

Step 5. Judge the result--confirm if there is 1g on Z-axis acceleration

1. After $1 \sim 2$ seconds, the three axial acceleration value of the module is about 0, 0,1, the X and Y axis Angle is around 0°. After calibration, the x-y axis Angle is accurate.

Note: When putting the module horizontal, there is 1g of gravitational acceleration on the Z-axis.

2.3.2 Magnetic Field Calibration

Purpose:

Magnetic calibration is used to remove the zero bias of the magnetic field sensor. Usually, the magnetic field sensor will have a large zero error when it is manufactured. If it is not calibrated, it will bring a large measurement error, which will affect the accuracy of the measurement of the z-axis Angle of the heading Angle.

Preparation:

Sensors should be 20CM away from magnetic and iron and other materials

Methods:

Step 1. Open the Config menu

Step 2. Click the magnetic field calibration button. click the "Start calibration"

Step 3. Slowly rotate the module 360° around X, Y, Z, 3-axis accordingly

Step 4. After rotation, click "End calibration"

Successful result:

Most of data dots will be within the ellipse.

If not successful, please stay away from the objective that can create magnetic field interference.

WT931 | manual v0707 | http://wiki.wit-motion.com/english

2.3.3 Gyroscope Automatic Calibration

The gyroscope calibration is to calibrate the angular velocity, and the sensor will calibrate automatically.

It is recommended that the automatic calibration of gyroscopes can be inactivated only if the module rotates at a constant speed.

2.3.4 Reset Z-axis Angle

Note: If you want to avoid magnetic interference, you can change the algorithm to Axis 6, then you can use reset function of "Reset Z-axis angle".

The z-axis angle is an absolute angle, and it takes the northeast sky as the coordinate system can not be relative to 0 degree.

Z axis to 0 is to make the initial angle of the z axis angle is relative 0 degree. When the module is used before and z - axis drift is large, the z - axis can be calibrated, When the module is powered on, the Z axis will automatically return to 0.

Calibration methods as follow: firstly keep the module static, click the "Config" open the configuration bar and then click "Reset Z-axis Angle" option, you will see the the angle of the Z axis backs to 0 degree in the module data bar.

2.3.5 Reset Height to 0

Only available for the module built-in barometer like WT901B, HWT901B, WTGAHRS1, WTGAHRS2.

2.4 Configuration

2.4.1 Return Content

Setting method: The content of the data return can be set according to user needs, click the configuration option bar, and check the data content to be output.

Taking WT931 as an example, the default output of the module is acceleration, angular velocity, angle, and magnetic field.

Notice: If choosing the GPS Original, there will be no other data output. Under normal circumstances, do not directly check ""GPS original".

2.4.2 **Output Rate**

The default return rate of the module is 500Hz, that is, the return rate of the PC software is selected as "single 单次", the baud rate is 921600, it is 500Hz, and the return rate supports up to 500Hz.

500HZ refers to the return of 500 data packets in 1S. By default, 1 data packet is 44 bytes.

Note: If there is more backhaul content and the communication baud rate is lower, it may not be possible to transmit so much data. At this time, the module will automatically reduce the frequency and output at the maximum allowable output rate. To put it simply, if the return rate is high, the baud rate should be set higher, generally 921600.

2.4.3 **Baud Rate**

The module supports multiple baud rates, and the default baud rate is 921600. Set the baud rate of the module based on the correct connection between the software and the module, select the baud rate to be changed in the communication rate drop-down box in the configuration bar (Normal-Config), and wait a few seconds after the setting is completed. The module will complete the change of the baud rate. If the data cannot be displayed, power on the module again.

Note: After the change, the module will output at the original baud rate, but it is incorrect.

2.4.4 Data Recording

Method are as follows:

Step 1: Click "Record" and "Begin"

Step 2: Click "Stop"

Step 3: Extract the data as "txt" file

Notice: If there is repeated "TIME" of data, that's caused by low-resolution of the Windows system's time. The changes in other data is correct.

It is highly recommended that data can be pasted to an Excel file. In this way, all data will be shown in order.

address	Time(s)	ChipTime	ax(g)	ay(g)	az(g)	wx(deg/s)	wy(deg/s)	wz(deg/s)	AngleX(deg	AngleY(deg	AngleZ(deg)	T(°)	hx	hy	hz
0x50	43:06.4	02:40.4	0.4443	0.1777	-0.8696	3.1738	-0.3662	-29.541	166.0364	-29.2072	120.6299	29.97	0	50	313
0x50	43:06.5	02:40.5	0.02	0.5796	-0.7739	-192.0166	283.9355	-700.2563	142.0532	-24.884	154.8907	30	-29	7	312
0x50	43:06.6	02:40.6	-0.2896	0.8599	-0.5571	-8.2397	-3.7842	-264.5264	124.0741	20.0171	-158.2196	30	-7	-85	291
0x50	43:06.7	02:40.7	-0.771	0.5322	-0.4761	36.0718	43.8232	-226.8677	132.984	41.4514	-138.0872	30	38	-93	289
0x50	43:06.8	02:40.8	-0.5601	0.4233	-0.5562	55.7861	101.9897	274.1699	144.5087	35.5792	-132.4292	30	22	-58	301
0x50	43:06.9	02:40.9	-0.0059	0.5503	-1.0103	139.0991	-32.7759	432.251	141.4929	1.8073	-174.1113	30	-22	-9	308
0x50	43:07.0	02:41.0	0.2656	0.3887	-0.8594	124.3896	7.8735	341.1865	154.6985	-15.5896	157.3077	30.01	-14	46	307
0x50	43:07.1	02:41.1	0.3911	0.1104	-0.8467	40.7715	11.9019	257.1411	177.3303	-25.7684	127.7325	30	0	104	294
0x50	43:07.2	02:41.2	0.3896	0.3022	-0.8994	-90.0879	135.3149	-268.9819	163.4601	-31.9867	128.6829	30.03	-2	67	308
0x50	43:07.3	02:41.3	0.2939	0.9531	-0.2837	-251.5259	48.645	-750.4272	119.0149	-0.3625	-174.1608	30.03	-30	-56	295
0x50	43:07.4	02:41.4	-0.4614	0.7075	-0.3384	-27.3438	-19.4702	-226.9287	112.8021	30.6519	-161.4001	30	33	-122	272
0x50	43:07.5	02:41.5	-0.7988	0.6279	-0.5044	28.0762	81.7261	122.1924	122.0087	39.8035	-151.1389	30	63	-110	275
0x50	43:07.6	02:41.6	-0.2495	0.8135	-0.5327	36.377	5.6763	93.0176	121.8494	15.7214	-161.109	30	12	-108	288
0x50	43:07.7	02:41.7	0.3057	0.7432	-0.5996	74.0356	-0.061	379.7607	126.7603	-11.4478	-176.6711	30.03	-51	-68	295
0x50	43:07.8	02:41.8	0.4922	0.4653	-0.7129	134.7656	24.231	268.9819	145.3656	-32.4756	163.3832	30.02	-83	10	295
0x50	43:07.9	02:41.9	0.4507	0.4272	-0.7871	-186.5234	-36.3159	420.6543	166.2616	-49.1583	130.2924	30.02	-86	71	292
0x50	43:08.0	02:42.0	0.6045	-0.062	-0.8027	37.9028	7.6294	-138.0005	173.4357	-45.8514	118.0206	30.03	-66	75	298
0x50	43:08.1	02:42.1	0.4712	0.6011	-0.5688	-172.6685	-7.1411	-537.6587	137.6312	-31.2396	163.8171	30.03	-78	20	300
0x50	43:08.2	02:42.2	-0.0649	0.873	-0.4028	-115.6616	2.3193	-276.2451	113.6481	4.6417	-169.8761	29.98	-37	-101	283
0x50	43:08.3	02:42.3	-0.4092	0.856	-0.1816	-134.8877	-38.208	-155.7007	99.8822	26.933	-165.943	30.03	32	-166	244
0x50	43:08.4	02:42.4	-0.5171	0.8809	-0.1152	84.1064	0.9155	86.2427	94.8285	33.2666	-167.5415	30.06	72	-186	218
0x50	43:08.5	02:42.5	-0.1782	0.9595	-0.2793	243.2861	29.3579	406.8604	110.7367	13.3429	-169.0686	30.03	29	-156	254

Time represents time, ax ay az represents the acceleration in the three axes of x y z, wx wy wz represents the angular velocity in the three axes of x y z. Anglex Angley Anglez represents the angles of the three axial directions of x y z, T represents the temperature, and hx hy hz represents the magnetic fields of the three axial directions of x y z respectively.

2.4.5 Data Playback

New function: When creating recorded file each time, there will a BIN file created in the folder of record file in path of installed software meanwhile. Recorded data playback method:

Step 1: Disconnect the sensor

Step 2: Click "File" Button and then click "Load"

Step 3: Choose the original path of software installation and load the Bin file

Step 4: Click "Run" and the Binary file will be playback When playback, the rate can be editable.

2.4.6 Standby and Wake Up

Sleep: The module paused working and entered the standby mode. Power consumption is reduced after sleeping.

Wake up: The module enters the working state from the standby state.

The module defaults to a working state, in the "Config" of the software, click

"Sleep" option to enter the sleep state, click "Sleep" again to release sleep.

2.4.7 Placement Direction

The default installation direction of the module is horizontal. When the module needs to be installed vertically, the vertical installation can be set.

Step 1: Rotate the module 90 degrees around the X-axis

Step 2: Place the sensor 90 degrees vertically

Step 3: Click "Vertical" as install directions on "Config" menu

2.4.8 Bandwidth

Default bandwidth is 20Hz.

Function:

1. The higher rate of bandwidth setting will lead to the higher fluctuation in data waveform. Conversely, the lower rate of bandwidth, data will become more fluent.

For example:

Bandwidth as 20Hz, Output rate as 10Hz. The waveform is very steady.

Bandwidth as 256Hz, Output rate as 10Hz. The waveform will show more fluctuation.

2. The higher rate of bandwidth will solve the data-repeating problem.

For example, if the bandwidth setting is 20Hz, retrieval rate as 100Hz, there will be 5 repeating data.

If you prefer there is no repeating data, it is required to increase the bandwidth more than 100Hz.

2.4.9 Restore Factory Setting

There are two ways to restore the factory settings, the short circuit method and the command method.

Short-circuit method: short-circuit the D2 pin and VCC pin of the module with wires, and then power on the module. The LED of the module is on continuously for about 2 seconds. The LED is off, and the factory reset operation is completed.

Command method: connect the WT931 module and the computer through the USB-TTL module, click the setting tab, and click to restore the default. After restoring the factory settings, power on the module again.

(This method needs to know the baud rate of the module in advance, if the baud rate does not match the instruction will not take effect, please try to use the short circuit method to recover)

2.4.10 6-axis/ 9-axis Algorithm

6-axis algorithm: Z-axis angle is mainly calculated based on angular velocity integral. There will be calculated error on Z-axis angle.

9-axis algorithm: Z-axis angle is mainly calculated and analyzed based on the magnetic field. Z-axis angle will have few drift.

The default algorithm of WT931 is 9-axis. If there is magnetic field interference around installed environment, it is recommended to switch to 6-axis algorithm to detect the angle.

Method:

Step 1: Switch to the "6-axis" algorithm on "Config" menu

Step 2: Proceed the "Accelerometer calibration" and "Reset Z-axis angle" calibration.

After the calibration is completed, it can be used normally.

3 MCU Connection

Link to download all sample code

Link to sample code instructions demo

Notice: There is no sample code provided for Linux or Python system at present.

3.1 Arduino

Download link

Arduino UNO3 Demo Link

3.2 STM32

Download link

3.3 Raspberry pi

Tutorial link

3.4 C#

DEMO link

3.5 C++

DEMO link

3.6 Matlab

Receive Sample Code

Dataplot DEMO