NLP section 5

Text Classification

Text Classification

- Text Classification is the task of assigning a label or class to a given text
- Why text classification?
 - 1- Spam/Not Spam
 - 2- Positive/Negative
 - 3- Fake/Real
 - 4- Bot/Human

Multinomial Naive Bayes: Bayesian Theorem

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Multinomial Naive Bayes: Cont.

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c)P(c)$$

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c_j) \prod_{x \in X} P(x \mid c) = \underset{c_j \in C}{\operatorname{argmax}} \left[\log P(c_j) + \sum_{i \in \text{positions}} \log P(x_i \mid c_j) \right]$$

Multinomial Naive Bayes: Cont.

$$\begin{split} \hat{P}(c_{j}) &= \frac{doccount(C = c_{j})}{N_{doc}} \\ \hat{P}(w_{i} \mid c_{j}) &= \frac{count(w_{i}, c_{j})}{\sum_{w \in V} count(w, c_{j})} \xrightarrow{\text{Laplace for Smoothing}} \hat{P}(w_{i} \mid c) = \frac{count(w_{i}, c) + 1}{\sum_{w \in V} (count(w, c)) + 1} \\ \sum_{w \in V} (count(w, c)) + 1 \Big(\sum_{w \in V} count(w, c) + |V| \Big) \end{split}$$

Multinomial Naive Bayes: Example

Email	Class	Content
1	Spam	"buy cheap toys now"
2	Spam	"cheap replica watches buy"
3	Spam	"buy toys cheap"
4	Ham	"meeting schedule now"
5	Ham	"project meeting tomorrow"
6	Ham	"schedule project review"

Text to Classify:

- Schedule meating review
- Buy cheap watches now

Neural Network

Code

- Multinomial Naive Bayes
- Neural Network
- Neural Network with GloVe