Conjuntos Finitos e Infinitos

Gláucio Terra

glaucio@ime.usp.br

Departamento de Matemática IME - USP

Axiomas de Peano

Axiomas de Peano

(N1) $s: \mathbb{N} \to \mathbb{N}$ é injetiva e o complementar da sua imagem contém apenas um elemento, denotado pelo símbolo "1".

Axiomas de Peano

- (N1) $s: \mathbb{N} \to \mathbb{N}$ é injetiva e o complementar da sua imagem contém apenas um elemento, denotado pelo símbolo "1".
- (N2) Seja $S \subset \mathbb{N}$; então $S = \mathbb{N}$ se, e somente se:
 - 1. $1 \in S$;
 - 2. $n \in S \Rightarrow s(n) \in S$.

10. Princípio da Indução

TEOREMA Seja $P:\mathbb{N}\to\{0,1\}$. Se (i) P(1)=1 e (ii) $P(n)=1\Rightarrow P\big(s(n)\big)=1$, então $\forall n\in\mathbb{N}$, P(n)=1.

Princípio da Definição por Recorrência

Seja X um conjunto. Queremos definir uma função $f: \mathbb{N} \to X$. Suponha que seja dado o valor f(1) e, para todo $n \in \mathbb{N}$, uma regra para se definir f(s(n)) supondo-se definido f(n). Então existe uma única $f: \mathbb{N} \to X$ nestas condições.

Soma de Números Naturais

Define-se indutivamente, $\forall n \in \mathbb{N}$:

Soma de Números Naturais

Define-se indutivamente, $\forall n \in \mathbb{N}$:

 $n+1 \doteq s(n);$

Soma de Números Naturais

Define-se indutivamente, $\forall n \in \mathbb{N}$:

- $n + 1 \doteq s(n)$;
- $n + s(m) \doteq s(m+n)$.

Produto de Números Naturais

Define-se indutivamente, $\forall n \in \mathbb{N}$:

Produto de Números Naturais

Define-se indutivamente, $\forall n \in \mathbb{N}$:

• $n \cdot 1 \doteq n$;

Produto de Números Naturais

Define-se indutivamente, $\forall n \in \mathbb{N}$:

- $n \cdot 1 \doteq n$;
- $n \cdot s(m) \doteq n \cdot m + n$.

Relação de Ordem em N

Definição Sejam $n, m \in \mathbb{N}$.

$$m < n \quad \cdot \equiv \cdot \quad \exists p \in \mathbb{N}/n = m + p$$

$$m \leqslant n \quad \cdot \equiv \cdot \quad m = n \text{ ou } m < n$$

Teorema da Boa Ordenação

TEOREMA Seja $A \subset \mathbb{N}$ não-vazio. Então A possui um menor elemento.

20. Princípio da Indução

TEOREMA Seja $P: \mathbb{N} \to \{0,1\}$. Suponha que, para todo $n \in \mathbb{N}$, $(k < n \land P(k) = 1) \Rightarrow P(n) = 1$. Então $\forall n \in \mathbb{N}$, P(n) = 1.

Princípio da Definição por Recorrência

Seja X um conjunto. Queremos definir uma função $f: \mathbb{N} \to X$. Suponha que seja dado o valor f(1) e uma regra para se definir f(n) supondo-se definidos os valores f(m) para todo m < n. Então existe uma única $f: \mathbb{N} \to X$ nestas condições.

DEFINIÇÃO Diz-se que um conjunto X é finito se $X=\emptyset$ ou se existir $n\in\mathbb{N}$ e uma bijeção $f:I_n\to X$. Neste caso, diz-se que X tem n elementos.

TEOREMA Seja $A \subset I_n$. Suponha que existe $f: A \to I_n$ bijeção. Então $A = I_n$.

TEOREMA Seja $A \subset I_n$. Suponha que existe $f:A \to I_n$ bijeção. Então $A=I_n$.

COROLÁRIO Seja A um conjunto. Se existem bijeções $f:A\to I_n$ e $f:A\to I_m$, então m=n.

COROLÁRIO Sejam A e B conjuntos finitos, ambos com n elementos. Seja $f:A \rightarrow B$. São equivalentes:

- 1. f é injetiva;
- 2. *f* é sobre;
- 3. f é bijetiva.

COROLÁRIO Sejam A e B conjuntos finitos, ambos com n elementos. Seja $f:A \rightarrow B$. São equivalentes:

- 1. f é injetiva;
- 2. *f* é sobre;
- 3. f é bijetiva.

COROLÁRIO Seja A um conjunto. Se A é finito, não existe bijeção entre A e uma parte própria de A.

TEOREMA Sejam X um conjunto finito com n elementos e $A \subset X$. Então A é finito e tem $m \leqslant n$ elementos.

TEOREMA Sejam X um conjunto finito com n elementos e $A \subset X$. Então A é finito e tem $m \leqslant n$ elementos.

COROLÁRIO Seja $f: X \rightarrow Y$. Tem-se:

- 1. Se Y é finito e f é injetiva, então X é finito.
- 2. Se X é finito e f é sobre, então Y é finito.

TEOREMA Sejam X um conjunto finito com n elementos e $A \subset X$. Então A é finito e tem $m \le n$ elementos.

Corolário Seja $f: X \rightarrow Y$. Tem-se:

- 1. Se Y é finito e f é injetiva, então X é finito.
- 2. Se X é finito e f é sobre, então Y é finito.

COROLÁRIO $X \subset \mathbb{N}$ é finito se, e somente se, for *limitado*, i.e. se existir $p \in \mathbb{N}$ tal que $(\forall n \in X)n \leqslant p$.

TEOREMA Sejam X um conjunto finito com n elementos e $A \subset X$. Então A é finito e tem $m \leqslant n$ elementos.

COROLÁRIO Seja $f: X \rightarrow Y$. Tem-se:

- 1. Se Y é finito e f é injetiva, então X é finito.
- 2. Se X é finito e f é sobre, então Y é finito.

COROLÁRIO $X \subset \mathbb{N}$ é finito se, e somente se, for *limitado*, i.e. se existir $p \in \mathbb{N}$ tal que $(\forall n \in X)n \leqslant p$.

COROLÁRIO N não é finito.

DEFINIÇÃO Um conjunto X se diz *infinito* se não for finito; X se diz *enumerável* se for finito ou se existir uma bijeção $\mathbb{N} \to X$.

TEOREMA Seja X um conjunto. São equivalentes:

- 1. X é infinito;
- 2. existe $f: \mathbb{N} \to X$ injetiva;
- 3. existe uma bijeção entre X e uma parte própria de X.

TEOREMA Seja $X \subset \mathbb{N}$. Então X é enumerável.

TEOREMA Seja $X \subset \mathbb{N}$. Então X é enumerável.

COROLÁRIO Seja $f: X \rightarrow Y$. Tem-se:

- 1. Se Y é enumerável e f injetiva, então X é enumerável.
- 2. Se X é enumerável e f é sobre, então Y é enumerável.

TEOREMA $\mathbb{N} \times \mathbb{N}$ é enumerável.

TEOREMA $\mathbb{N} \times \mathbb{N}$ é enumerável.

COROLÁRIO O produto cartesiano de dois conjuntos enumeráveis é um conjunto enumerável.

TEOREMA $\mathbb{N} \times \mathbb{N}$ é enumerável.

COROLÁRIO O produto cartesiano de dois conjuntos enumeráveis é um conjunto enumerável.

COROLÁRIO Seja $(X_i)_{i\in\mathbb{N}}$ uma família enumerável de conjuntos enumeráveis. Então $\bigcup_{i\in\mathbb{N}}X_i$ é enumerável.