

3. PARTIAL FRACTIONS

SYNOPSIS

- 1. **Polynomial:** An expression $a_0 + a_1x + a_2x^2 + \dots + a_n x^n$ is called a polynomial in x with real coefficients. Polynomials are generally denoted by f(x), g(x) R(x) etc. ie $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_n x^n$ where $(a_n \neq 0) \implies \deg f(x) = n$
- 2. Remainder obtained when f(x) is divided by x-a is f(a). If f(a) = 0 then x a is a factor of f(x) If degree of divisor is 'n', then the degree of remainder is (n 1).
- 3. Rational fraction: If f(x) and g(x) are two polynomials with $g(x) \neq 0$ then $\frac{f(x)}{g(x)}$ is called a rational fraction.
- 4. **Proper & improper fraction :** A rational fraction $\frac{f(x)}{g(x)}$ is called
 - i) Proper fraction if $\deg f(x) < \deg g(x)$
 - ii) Improper fraction if $\deg f(x) \ge \deg g(x)$

Note: 1) Proper fraction is expressed as the sum of two or more proper fractions.

2) If it is Improper use division Algorithm

Division Algorithm: f(x), g(x) are two polynomials. If $g(x) \neq 0$, then \exists two polynomials q(x), r(x) such that $\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)}$ if the degree of f(x) is \geq that of g(x) is > that of r(x)

Method of resolving proper fraction $\frac{f(x)}{g(x)}$ into partial fractions

Type 1: When g(x) contains non-repeated linear factors i.e. g(x) = (x - a)(x - b)(x - c)

$$\frac{f(x)}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} \quad \text{where} \quad A = \frac{f(a)}{(a-b)(a-c)}, B = \frac{f(b)}{(b-a)(b-c)}, C = \frac{f(c)}{(c-a)(c-b)}$$

Type 2: When g(x) contains repeated and non-repeated linear factors i.e. $g(x) = (x - a)^2 (x - b)$,

$$\frac{f(x)}{(x-a)^2(x-b)} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b} \text{ where } A = \frac{f(a)}{a-b} - \frac{f(a)}{(a-b)^2}, B = \frac{f(a)}{a-b}, C = \frac{f(b)}{(a-b)^2}$$

Note: Polynomial of the form $ax^2 + bx + c$, where $a,b,c \in R$ and $b^2 < 4ac$ is the irreducible polynomial over real.

Type 3: When g(x) contains non repeated irreducible quadratic factors.

i.e.
$$g(x) = (ax^2 + bx + c)(x - d)$$

$$\frac{f(x)}{(ax^2 + bx + c)(x - d)} = \frac{Ax + B}{(ax^2 + bx + c)} + \frac{C}{x - d} \text{ where } C = \frac{f(d)}{ad^2 + bd + c}$$

 $f(x) = (x - d)(Ax + B) + C(ax^2 + bx + c)$ and by equating the coefficients, we get A and B.

OBJECTIVE MATHEMATICS II A - Part 1

Type 4: When g(x) contains repeated irreducible quadratic factors i.e. $g(x) = (ax^2 + bx + c)^2 (x - d)$

$$\frac{f(x)}{(ax^2 + bx + c)^2(x - d)} = \frac{Ax + B}{(ax^2 + bx + c)} + \frac{Cx + D}{(ax^2 + bx + c)^2} + \frac{E}{x - d} \text{ where } E = \frac{f(d)}{(ad^2 + bd + c)^2}$$

We write $f(x) = (Ax + B) (ax^2 + bx + c) (x - d) + (Cx + D) (x - d) + E(ax^2 + bx + c)^2$ and by equating the coefficients, we get A, B, C and D.

5.
$$\frac{Px+q}{x^2(x-a)} = \frac{-q}{ax^2} - \frac{Pa+q}{a^2x} + \frac{Pa+q}{a^2(x-a)}$$

6.
$$\frac{1}{x^3(x+a)} = \frac{1}{a^3x} - \frac{1}{a^2x^2} + \frac{1}{ax^3} - \frac{1}{a^3(x+a)}$$

7.
$$\frac{1}{(x-a)(x^2+b)} = \frac{1}{a^2+b} \left[\frac{1}{x-a} - \frac{x+a}{x^2+b} \right]$$

8. The partial fractions of $\frac{1}{(x^2+a^2)(x^2+b^2)}$ are

i)
$$\frac{1}{b^2 - a^2} \left[\frac{1}{x^2 + a^2} - \frac{1}{x^2 + b^2} \right]$$
 ii) $\frac{1}{a^2 - b^2} \left[\frac{1}{x^2 + b^2} - \frac{1}{x^2 + a^2} \right]$

1. The remainders of the polynomial f(x) when divided by x + 1, x + 2, x - 2 are 6, 15, 3 the remainder of f(x) when divided by (x + 1)(x + 2)(x - 2) is

1)
$$2x^2 - 3x + 1$$

2)
$$3x^2 - 2x + 1$$

3)
$$2x^2 - x - 3$$

3)
$$2x^2 - x - 3$$
 4) $3x^2 - 2x + 1$

2. If
$$\frac{x+1}{(x-a)(x-3)} = \frac{2}{x-a} + \frac{b}{x-3}$$
 then $(a, b) =$

1)
$$(7, -1)$$

$$4)$$
 $(-4, -1)$

3. If
$$\frac{x^2 - 10x + 13}{(x - 1)(x^2 - 5x + 6)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{K}{x - 3}$$
 then K =

$$1) -1$$

$$2) -2$$

$$3) -3$$

4. If
$$\frac{x^2 + 5x + 1}{(x+1)(x+2)(x+3)} = \frac{A}{x+1} + \frac{B}{(x+1)(x+2)} + \frac{C}{(x+1)(x+2)(x+3)}$$
 then $B =$

5. The partial fractions of $\frac{x^3-5}{x^2-3x+2}$ are

1)
$$x + 3 - \frac{4}{x-1} + \frac{3}{x-2}$$

2)
$$x + 3 + \frac{4}{x-1} - \frac{3}{x-2}$$

3)
$$x + 3 - \frac{4}{x-1} - \frac{2}{x-2}$$

4)
$$x + 3 + \frac{4}{x-1} + \frac{3}{x-2}$$

PARTIAL FRACTIONS

6. If $\frac{x^4}{(x-a)(x-b)(x-c)} = P(x) + \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$ then P(x) =

1) x - a

3) x - a - b - c

7. If $\frac{1}{x^3(x+3)} = \frac{1}{Ax} - \frac{1}{Bx^2} + \frac{1}{Cx^3} - \frac{1}{D(x+3)}$ then A + B + C + D =

- 1) 56
- 2) 6

- 4) 76

8. If $\frac{3x^2 + x + 1}{(x - 1)^4} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{(x - 1)^3} + \frac{D}{(x - 1)^4}$ then A + B - C + D = 0

- 1) 0

3) 1

4) 10

9. The no. of partial fractions of $\frac{5x-6}{x^3(x^2-1)^3}$ is

- 3) 8
- 4) 9

10. The partial fractions of $\frac{x^2}{(x^2+a^2)(x^2+b^2)}$ are

1)
$$\frac{1}{a^2 + b^2} \left[\frac{a^2}{x^2 + a^2} - \frac{b^2}{x^2 + b^2} \right]$$

2)
$$\frac{1}{b^2 - a^2} \left[\frac{a^2}{x^2 + a^2} - \frac{b^2}{x^2 + b^2} \right]$$

3)
$$\frac{1}{a^2-b^2} \left[\frac{a^2}{x^2+a^2} - \frac{b^2}{x^2+b^2} \right]$$

4)
$$\frac{1}{a^2-b^2} \left[\frac{1}{x^2+a^2} - \frac{1}{x^2+b^2} \right]$$

11. The partial fractions of $\frac{1}{(x^2+9)(x^2+16)}$ are

1)
$$\frac{1}{7} \left[\frac{1}{x^2 + 9} - \frac{1}{x^2 + 16} \right]$$

2)
$$\frac{1}{9} \left[\frac{1}{x^2 + 9} - \frac{1}{x^2 + 16} \right]$$

$$3)\frac{1}{7}\left[\frac{1}{x^2+16} - \frac{1}{x^2+9}\right]$$

4)
$$\frac{1}{25} \left[\frac{1}{x^2 + 9} - \frac{1}{x^2 + 16} \right]$$

12. $\frac{3x^3-2x^2-1}{x^4+x^2+1}$ =

1)
$$\frac{2x+1}{x^2+x+1} + \frac{x-2}{x^2-x+1}$$

2)
$$\frac{2x+1}{x^2+x+1} - \frac{x-2}{x^2-x+1}$$

3)
$$\frac{2x-1}{x^2+x+1} + \frac{x+2}{x^2-x+1}$$

4)
$$\frac{3x+4}{x^2+x+1} - \frac{x+3}{x^2-x+1}$$

13. $\frac{1}{x^4+1}$ =

1)
$$\frac{x+\sqrt{2}}{2\sqrt{2}(x^2+\sqrt{2}x-1)} + \frac{\sqrt{2}-x}{2\sqrt{2}(x^2+\sqrt{2}x-1)}$$

2)
$$\frac{x+\sqrt{2}}{2\sqrt{2}(x^2+\sqrt{2}x+1)} + \frac{\sqrt{2}-x}{2\sqrt{2}(x^2-\sqrt{2}x+1)}$$

3)
$$\frac{x+\sqrt{2}}{2\sqrt{2}(x^2+\sqrt{2}x-1)} + \frac{\sqrt{2}-x}{2\sqrt{2}(x^2-\sqrt{2}x+1)}$$

4)
$$\frac{x+\sqrt{2}}{2\sqrt{2}(x^2-\sqrt{2}x+1)} + \frac{\sqrt{2}-x}{2\sqrt{2}(x^2-\sqrt{2}x+1)}$$

14. The no. of partial fractions of $\frac{5x^2+9}{(x^2+1)^5}$ is

15. If $\frac{1}{(x-a)(x^2+b)} = \frac{A}{x-a} + \frac{Bx+C}{x^2+b}$ then $\frac{1}{(x-a)(x^2+b)^2} =$

1)
$$\frac{A^2}{x-a} + \frac{A(Bx+C)}{x^2+b} + \frac{Bx+C}{(x^2+b)^2}$$

2)
$$\frac{A^2}{x+a} + \frac{A(Bx-C)}{x^2+b} + \frac{Bx+C}{(x^2-b)^2}$$

3)
$$\frac{A^2}{x+a} + \frac{A(Bx+C)}{x^2+b} + \frac{Bx-C}{(x^2+b)^2}$$

4)
$$\frac{A^2}{x-a} + \frac{A(Bx-C)}{x^2-b} + \frac{Bx+C}{(x^2-b)^2}$$

16. The coefficient of x^5 in $\frac{x^2+1}{(x^2+4)(x-2)}$ is

1)
$$-\frac{1}{256}$$
 2) $-\frac{1}{199}$

$$2) - \frac{1}{199}$$

3)
$$\frac{1}{256}$$

4)
$$\frac{1}{199}$$

17. The coefficient of x^n in $\frac{x-4}{x^2-5x+6}$ is

1)
$$\frac{1}{3^{n+1}} - \frac{1}{2^n}$$
 2) $\frac{1}{3^{n+1}} + \frac{1}{2^n}$ 3) $\frac{1}{5^{n+1}} + \frac{1}{2^n}$ 4) $\frac{1}{5^n} + \frac{1}{2^n}$

2)
$$\frac{1}{3^{n+1}} + \frac{1}{2^n}$$

3)
$$\frac{1}{5^{n+1}} + \frac{1}{2^n}$$

4)
$$\frac{1}{5^n} + \frac{1}{2^n}$$

18. The coefficient of x^n in $\frac{x+1}{(x-1)^2(x-2)}$ is

1)
$$1-2n-\frac{3}{2^{n+1}}$$

2)
$$1-2n-\frac{3}{2^{n-1}}$$

3)
$$1+2n+\frac{3}{2^{n+1}}$$

1)
$$1-2n-\frac{3}{2^{n+1}}$$
 2) $1-2n-\frac{3}{2^{n-1}}$ 3) $1+2n+\frac{3}{2^{n+1}}$ 4) $1+2n-\frac{3}{2^{n-1}}$

19. If $\frac{1}{x(x+1)(x+2)....(x+n)} = \frac{A_0}{x} + \frac{A_1}{x+1} + \frac{A_2}{x+2} + + \frac{A_n}{x+n}$ then $A_r =$

1)
$$\frac{(-1)^r r!}{(n-r)!}$$

1)
$$\frac{(-1)^r r!}{(n-r)!}$$
 2) $\frac{(-1)^r}{r!(n-r)!}$ 3) $\frac{1}{r!(n-r)!}$ 4) $\frac{1}{r!(n+r)!}$

3)
$$\frac{1}{r!(n-r)!}$$

4)
$$\frac{1}{r!(n+r)!}$$

PRACTICE SHEET

- 1. The remainder obtained when the polynomial $x^4 3x^3 + 9x^2 27x + 81$ is divided by x 3 is

- 2. (a-1) is a factor of $a^5 a^4 4a^3 + 4a^2 + 4a + k$ then k =
- 2) -4

- 4) -2
- 3. If the remainders of the polynomial f(x) when divided by x-1, x-2 are 2, 5 then the remainder of f(x)when divided by (x-1)(x-2) is
 - 1) 0
- 2) 1 x
- 3) 2x-1
- 4) 3x-1
- 4. If the remainders of the polynomial f(x) when divided by x+1 and x-1 are 7, 3 then the remainder of f(x) when divided by x^2-1 is
 - 1) 3x+5
- 3) -2x+5
- 4) 3x+7

- 5. If $\frac{2x-1}{(x-1)(2x+3)} = \frac{1}{5(x-1)} \frac{k}{5(2x+3)}$ then k =

3) 2

4) -8

- 6. If $\frac{1}{x^2-25} = \frac{1}{k} \left[\frac{1}{x-5} \frac{1}{x+5} \right]$ then k =
 - 1) 10

- 3) $\frac{1}{10}$
- 4) $-\frac{1}{10}$
- 7. If $\frac{x^3}{(x-a)(x-b)(x-c)} = 1 + \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$ then A =
- 1) $\frac{a^3}{(c-b)(c-a)}$ 2) $\frac{a^3}{(b-c)(b-a)}$ 3) $\frac{a^3}{(a-b)(a-c)}$ 4) $\frac{1}{(a-b)(a-c)}$
- 8. If $\frac{x^4}{(x-1)(x+2)} = \frac{1}{3(x-1)} \frac{16}{3(x+2)} + x^2 x + k$ then k =

- 4) 3
- 9. If $\frac{(1+x)(1+2x)(1+3x)}{(1-x)(1-5x+6x^2)} = k + \frac{A}{1-x} + \frac{B}{1-2x} + \frac{C}{1-3x}$ then

- 4) k + A + B + C = 0

- 10. The partial fractions of $\frac{x^2 + 13x + 15}{(2x+3)(x+3)^2}$ are
 - 1) $\frac{1}{2x+3} \frac{1}{x+3} + \frac{5}{(x+3)^2}$

2) $\frac{-1}{2x+3} + \frac{1}{x+3} + \frac{5}{(x+3)^2}$

- 3) $\frac{-1}{2x+3} \frac{1}{x+3} + \frac{5}{(x+3)^2}$
- 4) $\frac{1}{2x+3} + \frac{1}{x+3} + \frac{5}{(x+3)^2}$

OBJECTIVE MATHEMATICS II A - Part 1

PARTIAL FRACTIONS

11. The No. of partial fractions of $\frac{x^2 + 5x + 7}{x^3 - x}$ is

4) 1

12. If f(x) is a function of x such that $\frac{1}{(1+x)(1+x^2)} = \frac{A}{1+x} + \frac{f(x)}{(1+x^2)}$ for all $x \in R$ then f(x) is

- 2) $\frac{1+x}{2}$

13. If $\frac{x}{(1+x^2)(3-2x)} = \frac{A}{3-2x} + \frac{Bx+C}{1+x^2}$ then C =

- 1) $\frac{-1}{13}$
- 2) $\frac{2}{12}$
- 3) $\frac{-2}{12}$
- 4) $\frac{1}{12}$

14. The partial fractions of $\frac{(x+1)^2}{x(x^2+1)}$ are

- 1) $\frac{1}{2x} + \frac{x}{x^2 + 1}$ 2) $\frac{1}{x} \frac{2}{x^2 + 1}$ 3) $\frac{1}{x} + \frac{1}{x^2 + 1}$ 4) $\frac{1}{x} + \frac{2}{x^2 + 1}$

15. If $\frac{ax-1}{(1-x+x^2)(2+x)} = \frac{x}{1-x+x^2} - \frac{1}{2+x}$ then $a = \frac{x}{1-x+x^2} - \frac{1}{2+x}$

3) 2

4) -2

16. If $\frac{1}{x(x^2+a^2)} = \frac{A}{x} + \frac{Bx+C}{x^2+a^2}$ then $\tan^{-1}\left(\frac{A}{B}\right) =$

- 1) $\frac{3\pi}{4}$ 2) $\frac{\pi}{4}$

- 3) $-\frac{\pi}{4}$
- 4) $\frac{\pi}{3}$

17. If $\frac{(x+1)^2}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$ then $\cos^{-1}\left(\frac{A}{C}\right) =$

- 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$

- 3) $\frac{\pi}{3}$
- 4) $\frac{\pi}{2}$

18. The number of partial fractions of $\frac{2}{x^4 + x^2 + 1}$ is

4) 5

19. $\frac{x^2+1}{(x^2+x+1)^2}$ =

- 1) $\frac{1}{x^2+x+1} \frac{x}{(x^2+x+1)^2}$
- 2) $\frac{1}{x^2 + x + 1} + \frac{x}{(x^2 + x + 1)^2}$
- 3) $\frac{1}{r^2+r+1} + \frac{2x+3}{(r^2+r+1)^2}$
- 4) $\frac{2x+1}{x^2+x+1} \frac{x}{(x^2+x+1)^2}$

PARTIAL FRACTIONS

20. If $\frac{1}{(ax+b)(cx+d)} = \frac{A}{ax+b} + \frac{B}{cx+d}$ then $\frac{1}{(ax+b)^2(cx+d)} = \frac{1}{(ax+b)^2(cx+d)} = \frac{1}{(a$

1)
$$\frac{A}{(ax-b)^2} + \frac{AB}{ax-b} + \frac{B^2}{cx+d}$$

2)
$$\frac{A}{(ax+b)^2} + \frac{AB}{ax-b} + \frac{B^2}{cx+d}$$

3)
$$\frac{A}{(ax+b)^2} + \frac{AB}{ax+b} + \frac{B^2}{cx+d}$$

4)
$$\frac{A}{(ax+b)^2} + \frac{B}{ax+b} + \frac{B^2}{cx+d}$$

21. If $\frac{x+1}{x^2-px+q} = \frac{A}{x-\alpha} + \frac{B}{x-\beta}$, α and β are the roots of $x^2-px+q=0$ then $\frac{A-B}{A+B} =$

$$1) \ \frac{p+2}{\sqrt{p^2-4q}}$$

$$2) \frac{p}{\sqrt{p^2 - 4q}}$$

1)
$$\frac{p+2}{\sqrt{p^2-4q}}$$
 2) $\frac{p}{\sqrt{p^2-4q}}$ 3) $\frac{p-2}{\sqrt{p^2+4q}}$ 4) $\frac{p+2}{\sqrt{p^2+4q}}$

4)
$$\frac{p+2}{\sqrt{p^2+4q}}$$

22. The coefficient of x^4 in $\frac{3x^2+2x}{(x^2+2)(x-3)}$ is

1)
$$\frac{11}{27}$$

2)
$$\frac{77}{324}$$

3)
$$-\frac{77}{324}$$
 4) $-\frac{11}{27}$

4)
$$-\frac{11}{27}$$

23. The coefficient of x^n in $\frac{x}{(x-a)(x-b)}$ is

1)
$$\frac{a^n + b^n}{a - b} \frac{1}{a^n b^n}$$
 2) $\frac{a^n - b^n}{a - b} \frac{1}{a^n b^n}$ 3) $\frac{a^n - b^n}{a + b} \frac{1}{a^n b^n}$ 4) $\frac{a^n - b^n}{a - b} a^n b^n$

$$2) \frac{a^n - b^n}{a - b} \frac{1}{a^n b^n}$$

3)
$$\frac{a^n - b^n}{a + b} \frac{1}{a^n b^n}$$

4)
$$\frac{a^n - b^n}{a - b} a^n b'$$

24. The coefficient of x^n in $\frac{(1+x)(1+2x)(1+3x)}{(1-x)(1-2x)(1-3x)}$ is

1)
$$12 - 30.2^n + 20.3^n$$
 2) $12 + 30.2^n + 20.3^n$ 3) $12 + 30.2^n - 20.3^n$ 4) $12 - 30.2^n - 20.3^n$

3)
$$12 + 30.2^n - 20.3^n$$

4)
$$12 - 30.2^n - 20.3^n$$

25. If $\frac{x^2}{(x-1)^2(x+1)} = \frac{A}{x-1} + \frac{1}{2(x-1)^2} + \frac{B}{x+1}$ the length of the vector $4A\overline{i} + 4B\overline{j}$ is

3)
$$\sqrt{10}$$

4)
$$\frac{\sqrt{10}}{4}$$

** KEY SHEET **

LECTURE SHEET

PRACTICE SHEET

21) 1

72

24) 1 25) 3

ELITE SERIES for Sri Chaitanya Sr. ICON Students