Vérification déductive de programmes

Jean-Christophe Filliâtre CNRS

Diplôme Universitaire spécialité Numérique et Sciences Informatiques

20 juin 2019

Software is hard. - Don Knuth

pourquoi?

- mauvaise interprétation des spécifications
- programmation dans l'urgence
- changements incompatibles
- logiciel = objet très complexe
- etc.

un exemple célèbre : la recherche dichotomique

première publication en 1946 première publication sans bug en 1962

Jon Bentley. Programming Pearls. 1986.

Writing correct programs

the challenge of binary search

et pourtant...

et pourtant

en 2006, un bug a été trouvé dans le code de la bibliothèque standard de Java

Joshua Bloch, Google Research Blog "Nearly All Binary Searches and Mergesorts are Broken"

ce bug était là depuis 9 ans

```
int mid = (low + high) / 2;
int midVal = a[mid];
...
```

peut provoquer un débordement de capacité arithmétique, suivi d'un accès en dehors des bornes du tableau

un correctif possible

```
int mid = low + (high - low) / 2;
```

que peut-on faire?

de meilleurs langages de programmation

- meilleure syntaxe
 (éviter de considérer DO 17 I = 1. 10 comme une
 affectation)
- plus de typage (éviter de confondre des mètres et des yards)
- plus d'avertissements du compilateur (éviter d'oublier certains cas)
- etc.

une autre réponse

le test systématique et rigoureux est une autre réponse, complémentaire

mais le test est

- coûteux
- parfois très difficile à mettre en œuvre
- et surtout incomplet (à de très rares exceptions près)

les méthodes formelles proposent une approche mathématique de la correction du logiciel

qu'est-ce qu'un programme?

il y a plusieurs aspects en jeux

- ce que l'on calcule (quoi)
- la manière de le calculer (comment)
- la raison pour laquelle c'est correct (pourquoi)

qu'est-ce qu'un programme?

le programme, ce n'est que le « comment », et rien d'autre

le « quoi » et le « pourquoi » n'en font pas partie

ce sont des cahiers des charges, des commentaires, des pages web, des croquis, des articles de recherche, etc.

un exemple

• comment : 2 lignes de C

```
 a[52514], b, c=52514, d, e, f=1e4, g, h; main() \{ for(; b=c=14; h=printf("\%04d", e+d/f)) \} \\ for(e=d\%=f; g=--b*2; d/=g) \\ d=d*b+f*(h?a[b]:f/5), a[b]=d\%--g; \}
```

un exemple

• comment : 2 lignes de C

```
a[52514],b,c=52514,d,e,f=1e4,g,h;main(){for(;b=c-=14;h=printf("%04d",e+d/f))for(e=d%=f;g=-b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;}
```

• quoi : 15 000 décimales de π

pourquoi : beaucoup de maths, dont

$$\pi = \sum_{i=0}^{\infty} \frac{(i!)^2 2^{i+1}}{(2i+1)!}$$

méthode formelle

les méthodes formelles proposent une approche rigoureuse de la programmation, où on se donne

- une spécification écrite dans un langage mathématique
- une preuve que le programme vérifie cette spécification

quelle spécification

que souhaite-t-on prouver?

- sûreté : le programme ne « plante » pas
 - pas d'accès illégal à la mémoire
 - pas d'opération illégale, comme une division par zéro
 - le programme termine
- correction fonctionnelle
 - le programme fait ce qu'il est censé faire

de nombreuses approches

on peut citer le model checking, l'interprétation abstraite, etc.

cet exposé présente la vérification déductive

ce n'est pas nouveau

A. M. Turing. Checking a large routine. 1949.

ce n'est pas nouveau

Tony Hoare.
An Axiomatic Basis for Computer Programming. 1969.


```
u = 1
for r in range(0, n):
    v = u
    for s in range(1, r + 1):
        u = u + v
```



```
précondition \{n \ge 0\}

u = 1

for r in range(0, n):

v = u

for s in range(1, r + 1):

u = u + v

postcondition \{u = fact(n)\}
```



```
\label{eq:condition} \begin{split} & \text{pr\'econdition } \{n \geq 0\} \\ & u = 1 \\ & \text{for } r \text{ in range(0, n): invariant } \{u = \textit{fact(r)}\} \\ & v = u \\ & \text{for s in range(1, r + 1): invariant } \{u = s \times \textit{fact(r)}\} \\ & u = u + v \\ & \text{postcondition } \{u = \textit{fact(n)}\} \end{split}
```

condition de vérification

```
axiome fact(0) = 1
axiome \forall n. \ n \geq 1 \Rightarrow fact(n) = n \times fact(n-1)
```

```
\forall n. \ n > 0 \Rightarrow
   (0 > n - 1 \Rightarrow 1 = fact(n)) \land
   (0 \le n-1 \Rightarrow
       1 = fact(0) \wedge
       (∀u.
           (\forall r. \ 0 < r \land r < n-1 \Rightarrow u = fact(r) \Rightarrow
              (1 > r \Rightarrow u = fact(r+1)) \land
              (1 < r \Rightarrow
                  u = 1 \times fact(r) \wedge
                  (\forall u_1.
                      (\forall s. \ 1 \leq s \ \land \ s \leq r \Rightarrow u_1 = s \times fact(r) \Rightarrow
                          (\forall u_2.
                             u_2 = u_1 + u \Rightarrow u_2 = (s+1) \times fact(r)) \wedge
                      (u_1 = (r+1) \times fact(r) \Rightarrow u_1 = fact(r+1)))) \wedge
           (u = fact((n-1)+1) \Rightarrow u = fact(n))))
```

de manière générale

c'est un énoncé logique qui exprime

- la sûreté
 - pas de division par zéro
 - accès dans les bornes des tableaux
 - terminaison
- respect des spécifications
 - les invariants sont initialisés et préservés
 - · les postconditions sont établies dans les fonctions
 - les préconditions sont établies dans les appels

ensuite

que faire de cet énoncé mathématique?

bien sûr, on pourrait le prouver à la main (comme Turing et Hoare) mais c'est long, fastidieux, sujet à de nombreuses erreurs

aussi, on se tourne vers des outils qui mécanisent le raisonnement mathématique

démonstration automatique

sans espoir

il n'est pas possible d'écrire un tel programme (Turing/Church, 1936, d'après Gödel)

c'est le théorème anti-chômage pour les mathématiciens

Kurt Gödel

démonstration automatique

exemples: Z3, CVC4, Alt-Ergo, Vampire, SPASS, etc.

assistant de preuve

si on se contente de vérifier une preuve, cela redevient décidable

exemples: Coq, Isabelle, PVS, HOL-light, etc.

Why3, un outil de vérification déductive

démo

$$x \leftarrow x + 1$$
 « $x = x + 1$ »

 $\ll x + 1$ est pair $\gg x \leftarrow x + 1 \ll x$ est pair \gg

$$\ll x + 1$$
 est pair \gg $x \leftarrow x + 1$ $\ll x$ est pair \gg

$$\ll \psi[e] \gg x \leftarrow e \ll \psi[x] \gg$$

while c do P done $\ll \psi \gg$

invariant de boucle

une propriété P

- vraie initialement
- préservée par toute itération de la boucle

$$P \longrightarrow P \longrightarrow P \longrightarrow \cdots \longrightarrow P \longrightarrow P$$

en particulier, P sera vraie après la boucle quel que soit le nombre d'itérations (y compris 0)

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
       r = r + p
   p = p + p
    q = q // 2
                   b
```

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	b	p	q	r
7	6			
		7	6	0

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	b	p	q	r
7	6			
		7	6	0
				Λ

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	b	p	q	r
7	6			
		7	6	0
		14		0

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	b	p	q	r
7	6			
		7	6	0
		14	3	0

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	b	p	q	r
7	6			
		7	6	0
		14	3	0
				14

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	b	p	q	r
7	6			
		7	6	0
		14 28	3	0
		28		14

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	b	p	q	r
7	6			
		7	6	0
		14	3	0
		28	1	14

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	b	p	q	r
7	6			
		7	6	0
		14	3	0
		28	1	14
				42

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	Ъ	p	q	r
7	6			
		7	6	0
		14	3	0
		28 56	1	14
		56		42

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	b	p	q	r
7	6			
		7	6	0
		14	3	0
		28 56	1	14
		56	0	42

```
p = a
q = b
r = 0
while q > 0:
    if q % 2 == 1:
        r = r + p
    p = p + p
    q = q // 2
```

a	X	b	=	p	X	q	+	r
7		6						
7	×	6	=	7	×	6	+	0
7	\times	6	=	14	×	3	+	0
7	×	6	=	28	×	1	+	14
7	×	6	=	56	×	0	+	42

```
p,q,r = a,b,0
while q > 0: # invariant a*b==p*q+r
    if q%2 == 1: r = r + p
    p = p + p
    q = q // 2
# r == a*b
```

```
p,q,r = a,b,0
while q > 0: # invariant a*b==p*q+r
   if q\%2 == 1: r = r + p
   p = p + p
   q = q // 2
   # a*b == p*q+r
# r == a*b
```

```
p,q,r = a,b,0
while q > 0: # invariant a*b==p*q+r
    if q%2 == 1: r = r + p
   p = p + p
   \# a*b == p * (q//2) + r
   q = q // 2
   # a*b == p*q+r
# r == a*b
```

```
p,q,r = a,b,0
while q > 0: # invariant a*b==p*q+r
    if q%2 == 1: r = r + p
    \# a*b == 2*p * (q//2) + r
   p = p + p
   # a*b == p * (q//2) + r
   q = q // 2
    # a*b == p*q+r
# r == a*b
```

```
p,q,r = a,b,0
while q > 0: # invariant a*b==p*q+r
    \# si q\%2 == 1 alors a*b == 2*p * (q//2) + r + p
               sinon \ a*b == 2*p * (q//2) + r
    if q%2 == 1: r = r + p
    \# a*b == 2*p * (q//2) + r
    p = p + p
    # a*b == p * (q//2) + r
    q = q // 2
    # a*b == p*q+r
\# r == a*b
```

```
a*b == a*b + 0 et
pour tous p, q, r tels que a*b == p*q + r
    si q > 0 alors
        \sin \frac{q}{2} = 1 \text{ alors } a*b == 2*p * (\frac{q}{2}) + r + p
                   sinon \ a*b == 2*p * (q//2) + r
    sinon r == a * b
p,q,r = a,b,0
while q > 0: # invariant a*b==p*q+r
    \# si q\%2 == 1 alors a*b == 2*p * (q//2) + r + p
                sinon \ a*b == 2*p * (q//2) + r
    if q%2 == 1: r = r + p
    \# a*b == 2*p * (q//2) + r
    p = p + p
    \# a*b == p * (q//2) + r
    q = q // 2
    # a*b == p*q+r
\# r == a*b
```

énoncé final

```
a*b == a*b + 0 et

pour tous p, q, r tels que a*b == p*q + r

si q > 0 alors

si q%2==1 alors a*b == 2*p * (q//2) + r + p

sinon a*b == 2*p * (q//2) + r

sinon r == a * b
```

énoncé final

```
\forall a, b.
a \times b = a \times b + 0 \land
\forall p, q, r. \ a \times b = p \times q + r \Rightarrow
(q > 0 \Rightarrow
(q \equiv 1 \mod 2 \Rightarrow a \times b = a \times 2p * \lfloor q/2 \rfloor + r + p) \land
(q \not\equiv 1 \mod 2 \Rightarrow a \times b = a \times 2p * \lfloor q/2 \rfloor + r)) \land
(q \leq 0 \Rightarrow
r = a \times b)
```


l'outil Why3

plus de détails sur

```
http://why3.lri.fr/
```

- logiciel libre
- plus de 160 programmes prouvés
- documentation, notes de cours (y compris en français)

résumé

- la vérification déductive est une méthode formelle de preuve de programme (ce n'est pas la seule)
- elle s'appuie en particulier sur les démonstrateurs, automatiques et interactifs, qui mécanisent les raisonnements logiques
- cela reste un processus très coûteux, notamment en moyens humains (écrire des spécifications, des invariants, des preuves)

défis scientifiques

- définir de meilleurs langages de programmation, mieux adaptés à la preuve
- définir de meilleurs langages logiques, plus expressifs
- définir de meilleurs démonstrateurs automatiques

tension