MATH 4108: Abstract Algebra II

Frank Qiang Instructor: Jennifer Hom

Georgia Institute of Technology Spring 2024

Contents

1		8 - Rings and Fields	3
	1.1	Lots of Definitions	3
2	Jan.	. 10 — Field of Fractions, Polynomials	6
	2.1	Isomorphisms	6
	2.2	Field of Fractions	7
	2.3	The Characteristic of a Field	8
	2.4	Polynomials	9
3	Jan.	. 17 — Irreducible Polynomials	10
	3.1	Principal Ideal Domains and Irreducibile Polynomials	10
	3.2	Irreducible Polynomials over \mathbb{C} , \mathbb{R} , \mathbb{Q} , and \mathbb{Z}	11
4	Jan.	. 22 — Field Extensions	15
•	4.1	More on Irreducibility	15
	4.2	Field Extensions	16
5	Jan.	. 24 — Algebraic Extensions	2 0
	5.1	Minimal Polynomials	20
	5.2	Algebraic Extensions	21
6	Jan.	. 29 — Geometric Constructions	2 3
	6.1	K-Isomorphisms	23
	6.2	Applications to Geometric Constructions	24
	6.3	Classic Problems	25
		6.3.1 Duplicating the Cube	25
		6.3.2 Trisecting the Angle	25
7	Ian	. 31 — Splitting Fields	27
'	7.1	Review of Notation	27
	7.2	Splitting Fields	$\frac{27}{27}$
	7.3	Finite Fields	29
	1.0		20
8	Feb.	. 5 — Finite Fields	30
	8.1	Last Time	30
	8.2	Finite Fields	30
	8.3	Automorphisms of Fields	32
9	Feb.	. 7 — The Galois Correspondence	34
	9.1	Automorphisms of Fields	34
	9.2	The Galois Correspondence	34

CONTENTS 2

	9.3	Normal Extensions	36
10	10.1	Normal Closures Separable Extensions	38 38 40
11	11.1	21 — Galois Extensions Example of an Inseparable Extension	42 42 42
12	12.1	Normal Subgroups	44 44 44
13		. 28 — Join of Subgroups and Subfields Join of Subgroups	47 47
14	14.1	Solvable Groups Solvable Polynomials	48 48 50
15	15.1	Cyclotomic Polynomials Cyclotomic Polynomials The Galois Groups of Cyclotomic Polynomials	52 52 53
16	16.1 16.2 16.3	More on Cyclotomic Polynomials Solvable Polynomials Insolvability of the Quintic Finitely-Generated Extensions	56 56 56 58 58
17	17.1	Transcendental Extensions	60 60 60
18	18.1 18.2 18.3	E. 25 — Modules Introduction to Modules Submodules Module Homomorphisms Direct Sums of Modules	64 64 65 65 66
19	19.1	The Homomorphism Theorem	69 70

Jan. 8 — Rings and Fields

1.1 Lots of Definitions

Recall the definitions of a ring and a field:

Definition 1.1 (Ring). A ring $R = (R, +, \cdot)$ is a non-empty set R together with two binary operations + and \cdot , called addition and multiplication respectively, which satisfy:

- (R1) Associative law for addition: (a+b)+c=a+(b+c) for all $a,b,c\in R$.
- (R2) Commutative law for addition: a + b = b + a for all $a, b \in R$.
- (R3) Existence of zero: There exists $0 \in R$ such that a + 0 = a for all $a \in R$.
- (R4) Existence of additive inverses: For all $a \in R$, there exists $-a \in R$ such that a + (-a) = 0.1
- (R5) Associative law for multiplication: (ab)c = a(bc) for all $a, b, c \in R$.
- (R6) Distributive laws: a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in R$.

Definition 1.2 (Commutative ring). In this class, we will mostly be interested in *commutative rings*, which satisfy the following additional property for multiplication:

(R7) Commutative law for multiplication: ab = ba for all $a, b \in R$.

Definition 1.3 (Ring with unity). A ring with unity satisfies the additional property that

(R8) Existence of unity: There exists $1 \neq 0 \in R$ such that and a1 = 1a = a for $a \in R$.

Note that a ring need not be commutative to have a unity.

Definition 1.4 (Domain). A commutative ring with unity is called a *(integral) domain* if it has the following cancellation property:

- (R9) Cancellation: For all $a, b \in R$ and $c \neq 0$, ca = cb implies a = b.
- (R9') No zero divisors: For all $a, b \in R$, ab = 0 implies a = 0 or b = 0.

The conditions (R9) and (R9') are equivalent.

Definition 1.5 (Field). A commutative ring with unity is called a *field* if it has the following additional property for multiplicative inverses:

(R10) Existence of multiplicative inverses: For all $a \neq 0 \in R$, there exists $a^{-1} \in R$ such that $aa^{-1} = 1$.

Note that we'll usually write a - b in place of a + (-b).

Example 1.5.1. Some examples of rings are $\mathbb{Z}/2\mathbb{Z}$, which also happens to be a field. The ring \mathbb{Z} is a domain. The set $M_{2\times 2}(\mathbb{R})$ is a non-commutative ring with unity, and has zero divisors. The ring \mathbb{Q} is a field. The real polynomials in a single variable $\mathbb{R}[x]$ form a ring, which is a domain but not a field. The complex numbers \mathbb{C} and the real numbers \mathbb{R} both form a field. The even integers $2\mathbb{Z}$ form a commutative ring without unity. In general, $\mathbb{Z}/n\mathbb{Z}$ is a commutative ring with unity, and is a field if and only if n is prime (and has zero divisors otherwise, if n is composite).

Remark. If $(R, +, \cdot)$ is a ring, then (R, +) is an abelian group. If $(K, +, \cdot)$ is a field, then (K^*, \cdot) is an abelian group, where $K^* = K \setminus \{0\}$.

Definition 1.6 (Group of units). Let R be a commutative ring with unity. The group of units of R is

$$U = \{u \in R \mid \text{there exists } v \in R \text{ such that } uv = 1\}.$$

Exercise 1.1. Show that U is in fact a group under multiplication.

Definition 1.7 (Associate). If $a, b \in R$ such that a = ub for some $u \in U$, then a and b are called associates, denoted by $a \sim b$.

Exercise 1.2. Show that \sim is in fact an equivalence relation.

Example 1.7.1. The group of units of \mathbb{Z} is $\{1, -1\}$. The group of units of a field K is $K^* = K \setminus \{0\}$.

Exercise 1.3. Let $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Check the following:

- 1. R is a commutative ring with unity.
- 2. The group of units of R is $\{a+b\sqrt{2} \mid a,b\in\mathbb{Z}, |a^2-2b^2|=1\}$.

Definition 1.8 (Divisor). Let D be an integral domain, $a \in D \setminus \{0\}$, $b \in D$. Then a divides b, or a is a divisor or factor of b, denoted by a|b, if there exists $z \in D$ such that az = b. We write $a \nmid b$ if a does not divide b. We say that a is a proper divisor or that a properly divides b if z is not a unit.

Remark. Equivalent, a is a proper divisor of b if and only if a|b and $b\nmid a$.

Definition 1.9 (Subring). A subring U of a ring R is a non-empty subset of R with the property that for all $a, b \in R$, $a, b \in U$ implies $a + b \in U$ and $ab \in U$, and $a \in U$ implies $-a \in U$.

Remark. Equivalently, U is a subring of R if and only if $a, b \in U$ implies $a - b \in U$ and $ab \in U$.

Remark. We automatically have $0 \in U$ since we can pick any $a \in U$, and then $0 = a - a \in U$.

Definition 1.10 (Subfield). A *subfield* of a field K is a subset E containing at least two elements such that $a, b \in E$ implies $a - b \in E$ and $a \in E, b \in E \setminus \{0\}$ implies $ab^{-1} \in E$. If E is a subfield and $E \neq K$, then we say E is a *proper* subfield.

Remark. As before, we can replace the last condition with the equivalent statement that $a, b \in E$ implies $ab \in E$ and $a \in E \setminus \{0\}$ implies $a^{-1} \in E$.

Definition 1.11 (Ideal). An *ideal* of R is a non-empty subset I of R with the properties that $a, b \in I$ implies $a - b \in I$ and $a \in I, r \in R$ implies $ra \in I$.

Remark. All ideals are subrings, but the converse is not true in general.

Example 1.11.1. The integers \mathbb{Z} form a subring of \mathbb{R} but not an ideal.

²In fact, \mathbb{Q} is somehow the smallest field containing \mathbb{Z} .

Remark. We trivially have that $\{0\}$ and R are both ideals of R. An ideal I is called *proper* if $\{0\} \subseteq I \subseteq R$.

Theorem 1.1. Let $A = \{a_1, \ldots, a_n\}$ be a finite subset of a commutative ring R. Then the set

$$Ra_1 + \dots + Ra_n = \{x_1a_1 + \dots + x_na_n \mid x_i \in R\}$$

is the smallest ideal of R containing A.

Proof. See Howie. Check this is indeed an ideal and is contained in any other ideal containing A. \square

Definition 1.12 (Ideals generated by elements of a ring). The set $Ra_1 + \cdots + Ra_n$ is the *ideal generated* by a_1, \ldots, a_n , denoted by $\langle a_1, \ldots, a_n \rangle$. If the ideal is generated by a single element $a \in R$, then we say that $Ra = \langle a \rangle$ is a *principal ideal*.

Example 1.12.1. In \mathbb{Z} , the ideal $\langle 2 \rangle = 2\mathbb{Z}$ are the even numbers. We have $\langle 2, 3 \rangle = \mathbb{Z}$, but $\langle 6, 8 \rangle = \langle 2 \rangle$.

Theorem 1.2. Let D be an integral domain with group of units U and let $a, b \in D \setminus \{0\}$. Then

- 1. $\langle a \rangle \subseteq \langle b \rangle$ if and only if b|a,
- 2. $\langle a \rangle = \langle b \rangle$ if and only if $a \sim b$,
- 3. $\langle a \rangle = D$ if and only if $a \in U$.

Proof. See Howie. \Box

Definition 1.13 (Homomorphism of rings). A homomorphism from a ring R to a ring S is a mapping $\varphi: R \to S$ such that $\varphi(a +_R b) = \varphi(a) +_S \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$.

Example 1.13.1. The zero mapping $\varphi(a) = 0$ is always a homomorphism. The inclusion map $\iota : 2\mathbb{Z} \to \mathbb{Z}$ or $\iota : \mathbb{Z} \to \mathbb{Q}$ is a homomorphism.

Theorem 1.3. Let R, S be rings and $\varphi: R \to S$ a homomorphism. Then

- 1. $\varphi(0_R) = 0_S$,
- 2. $\varphi(-r) = -\varphi(r)$ for all $r \in R$,
- 3. the image $\varphi(R)$ is a subring of S.

Proof. See Howie. \Box

Definition 1.14 (Monomorphism). Let $\varphi : R \to S$ be a homomorphism. If φ is injective, we say that φ is a *monomorphism* or an *embedding*.

Example 1.14.1. The inclusion map $\varphi : \mathbb{Z} \to \mathbb{R}$ given by $\varphi(n) = n$ is an embedding.

Jan. 10 — Field of Fractions, Polynomials

2.1 Isomorphisms

Definition 2.1 (Isomorphism). If a homomorphism $\varphi : R \to S$ is both one-to-one and onto, then φ is an *isomorphism* and we say R and S are *isomorphic*, denoted $R \cong S$.

Definition 2.2 (Automorphism). An isomorphism $\varphi: R \to R$ is called an *automorphism*.

Example 2.2.1. For any ring R, the identity map $\varphi: R \to R$ with $\varphi = \mathrm{id}$ is an automorphism.

Exercise 2.1. The complex conjugation $\varphi : \mathbb{C} \to \mathbb{C}$ with $\varphi(z) = \overline{z}$ is an automorphism.

Definition 2.3 (Kernel). Let $\varphi: R \to S$ be a homomorphism. The kernel of φ is

$$\ker \varphi = \phi^{-1}(0_S) = \{ a \in R : \varphi(a) = 0_S \}.$$

Exercise 2.2. For any homomorphism φ , ker φ is an ideal.

Definition 2.4 (Residue class). Let I be an ideal of a ring R and $a \in R$. The set

$$a+I=\{a+x\mid x\in I\}$$

is the $residue\ class$ of a modulo I.

Exercise 2.3. The set R/I of residue classes modulo I forms a ring with respect to the operations

$$(a+I) + (b+I) = (a+b) + I$$
 and $(a+I)(b+I) = ab + I$.

Exercise 2.4. The map $\theta_I : R \to R/I$ with $\theta_I(a) = a + I$ is a surjective homomorphism onto R/I with kernel I. This map θ_I is called the *natural homomorphism* from R to R/I.

Example 2.4.1. Consider \mathbb{Z} and $I = \langle n \rangle = n\mathbb{Z}$. Then $\theta_I : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ with $\theta_I(a) = a + \langle n \rangle$ is the natural homomorphism. There are n residue classes, which are

$$\langle n \rangle$$
, $1 + \langle n \rangle$, ..., $(n-1) + \langle n \rangle$.

Theorem 2.1. Let $n \in \mathbb{Z}_{>0}$. Then $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is prime.

Proof. See Howie.
$$\Box$$

Remark. If n = 0, then $\mathbb{Z}/0\mathbb{Z} \cong \mathbb{Z}$.

Theorem 2.2. Let $\varphi: R \to S$ be a surjective homomorphism with kernel K. Then there is an isomorphism $\alpha: R/K \to S$ such that the following diagram commutes (i.e. $\varphi = \alpha \circ \theta_K$):

$$R \xrightarrow{\varphi} S$$

$$\theta_K \downarrow \qquad \alpha \qquad \qquad S$$

$$R/K$$

Proof. See Howie. But the general idea is to define $\alpha : R/K \to S$ by $\alpha(a+K) = \varphi(a)$. Then need to check that α is well-defined and an isomorphism.

2.2 Field of Fractions

The motivating question is: How do we get from \mathbb{Z} to \mathbb{Q} ? Recall that

$$\mathbb{Q} = \{ a/b \mid a, b \in \mathbb{Z}, b \neq 0 \},\$$

where a/c = b/d if ad = bc. We add and multiply fractions by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

How do we do this more generally (construct a field out of an arbitrary integral domain)?

Definition 2.5 (Field of fractions of a domain). Let D be an integral domain and

$$P = D \times (D \setminus \{0\}) = \{(a, b) \mid a, b \in D, b \neq 0.\}$$

Define an equivalence relation \equiv on P by $(a,b) \equiv (a',b')$ if ab'=a'b. Then the field of fractions of D is

$$Q(D) = P/\equiv.$$

We denote the equivalence class [a, b] by a/b, i.e. a/b = c/d if ad = bc. We define addition and multiplication on Q(D) by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

Exercise 2.5. Do the following:

- 1. Check that \equiv is an equivalence relation.
- 2. Check that these operations are well-defined.
- 3. Check that Q(D) is a commutative ring with unity.
 - The zero element is 0/b for $b \neq 0$.
 - The unity element is a/a for $a \neq 0$.
 - The negative of a/b is (-a)/b or equivalently a/(-b).
 - The multiplicative inverse of a/b is b/a for $a, b \neq 0$.
- 4. Complete the previous exercise and check that Q(D) is a field.

Exercise 2.6. The map $\varphi: D \to Q(D)$ defined by $\varphi(a) = a/1$ is a monomorphism. In particular, the field of fractions Q(D) contains D as a subring and Q(D) is the smallest field containing D, in the sense that if K is a field with the property that there exists a monomorphism $\theta: D \to K$, then there exists a monomorphism $\psi: Q(D) \to K$ such that the following diagram commutes:

$$D \xrightarrow{\theta} K$$

$$\varphi \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Q(D)$$

2.3 The Characteristic of a Field

Note that for $a \in R$, we might write a + a as 2a and $a + a + \cdots + a$ (n times) as na. Furthermore, $0a = 0_R$ and (-n)a = n(-a) for $n \in \mathbb{Z}_{>0}$. Thus na has meaning for all $n \in \mathbb{Z}$.

Exercise 2.7. For $a, b \in R$ and $m, n \in \mathbb{Z}$, we have (ma)(nb) = (mn)(ab).

Definition 2.6 (Characteristic of a ring). For an arbitrary ring R, there are two possibilities:

- 1. $m1_R$ for $m \in \mathbb{Z}$ are all distinct. In this case, we say that R has characteristic 0.
- 2. There exists $m, n \in \mathbb{N}$ such that $m1_R = (m+n)1_R$. In this case, we say that R has *characteristic* n, where n is the least positive n for which this property holds.

We denote the characteristic of R by char R. If char R = n, then $na = 0_R$ for all $a \in R$ since

$$na = (n1_R)a = 0a = 0.$$

Example 2.6.1. We have char $\mathbb{Z}/n\mathbb{Z} = n$.

Theorem 2.3. The characteristic of a field is either 0 or a prime.

Proof. Let K be a field and suppose char $K = n \neq 0$ and n is not prime. Then we can write n = rs where 1 < r, s < n. The minimal property of n implies that $r1_K \neq 0$ and $s1_K \neq 0$. But then

$$r1_K \cdot s1_K = rs1_K = n1_K = 0,$$

which is impossible since K is a field and thus has no zero divisors.

Remark. Note the following:

1. If K is a field with char K = 0, then K has a subring isomorphic to \mathbb{Z} , i.e. elements of the form $n1_K$ for $n \in \mathbb{Z}$, and K has a subfield isomorphic to \mathbb{Q} , i.e.

$$P(K) = \{ m1_K / n1_K \mid m, n \in \mathbb{Z}, n \neq 0 \}.$$

This is the prime subfield of K, and any subfield of K must contain P(K).

2. If K is a field with char K = p, then the prime subfield of K is

$$P(K) = \{1_K, 2 \cdot 1_K, \dots, (p-1) \cdot 1_K\},\$$

which is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

¹This is saying that any abelian group is naturally a module over the integers \mathbb{Z} .

Remark. In other words, every field of characteristic 0 is an *extension* of \mathbb{Q} (contains \mathbb{Q} as a subfield), and every field of characteristic p is an *extension* of $\mathbb{Z}/p\mathbb{Z}$ (contains $\mathbb{Z}/p\mathbb{Z}$ as a subfield).

Remark. If char K = 0, then writing $a/n1_K$ as a/n is fine. But if char K = p, then a/n does not make sense when p|n (since $p \cdot 1_K = 0$).

Theorem 2.4. If K is a field with char K = p, then for all $x, y \in K$, $(x + y)^p = x^p + y^p$.

Proof. See Howie. Uses the binomial theorem.

2.4 Polynomials

Let R be a ring, then we have the polynomial ring over R

$$R[X] = \{a_0 + a_1X + \dots + a_nX^n \mid a_i \in R, n \in \mathbb{N}\}.$$

If $f \in R[X]$, then it has degree n if the last nonzero element in the sequence $\{a_0, a_1, \dots\}$ is a_n , denoted $\partial f = n$. By convention, the zero polynomial has degree $-\infty$. The coefficient a_n is called the *leading coefficient*, and if $a_n = 1$, then f is *monic*. Addition and multiplication work as expected:

$$(a_0 + a_1X + \dots + a_mX^m) + (b_0 + b_1X + \dots + b_nX^n) = (a_0 + b_0) + (a_1 + b_1)X + \dots$$

and

$$(a_0 + a_1X + \dots + a_mX^m)(b_0 + b_1X + \dots + b_nX^n) = c_0 + c_1X + \dots$$

where

$$c_k = \sum_{i+j=k}^k a_i b_j.$$

The ground ring R sits inside of the polynomial ring R[X]. Take the monomorphism $\theta: R \to R[X]$ by $\theta(a) = a$, i.e. an element a maps to the constant polynomial a.

Theorem 2.5. Let D be an integral domain. Then

- 1. D[X] is an integral domain.
- 2. If $p, q \in D[X]$, then $\partial(p+q) \leq \max(\partial p, \partial q)$.
- 3. If $p, q \in D[X]$, then $\partial(pq) = \partial p + \partial q$.
- 4. The group of units of D[X] coincides with the group of units of D.

Proof. Statements (2) and (3) are left as exercises.

- (1) We need to show that D[X] has no zero divisors. For this, suppose that p, q are nonzero polynomials with leading coefficients a_m and b_n respectively. Then the leading coefficient of pq is $a_m b_n$, which is nonzero since D is an integral domain and thus has no zero divisors. So pq is nonzero.
- (4) Let $p, q \in D[X]$ and suppose pq = 1. Since $\partial(pq) = \partial(1) = 0$, we must have $\partial p = \partial q = 0$. Thus $p, q \in D$ and pq = 1 if and only if p and q are in the group of units of D.

Since D[X] is a domain, we can consider polynomials in the variable Y with coefficients in D[X]:

$$D[X,Y] = (D[X])[Y].$$

We can repeat this to get polynomials in n variables: $D[X_1, X_2, \dots, X_n]$, which is an integral domain.

Jan. 17 — Irreducible Polynomials

3.1 Principal Ideal Domains and Irreducibile Polynomials

Definition 3.1. The field of fractions of D[X] consists of rational forms

$$\frac{a_0 + a_1 X + \dots + a_m X^m}{b_0 + b_1 X + \dots + b_n X^n}$$

where $b_0 + b_1 X + \cdots + b_n X^n \neq 0$, denoted by D(X).

Definition 3.2. A domain D is a principal ideal domain (PID) if all of its ideals are principal.¹

Example 3.2.1. The integers \mathbb{Z} is a PID, since every ideal is of the form $\langle n \rangle$.

Definition 3.3. A non-zero, non-unit element p in a domain D is *irreducible* if it has no proper factors.

Definition 3.4. A domain D is a unique factorization domain (UFD) if every non-unit $a \neq 0$ in D has an essentially unique² factorization into irreducible elements.

Example 3.4.1. Again \mathbb{Z} is a UFD, e.g. $12 = 2 \cdot 2 \cdot 3 = (-2) \cdot 2 \cdot (-3)$.

Theorem 3.1. Every PID is a UFD.

Proof. See Howie.
$$\Box$$

Theorem 3.2. If K is a field, then K[X] is a PID.

Proof. See Howie.
$$\Box$$

Theorem 3.3. Let p be an element in a PID D. Then the following are equivalent:

- 1. p is irreducible.
- 2. $\langle p \rangle$ is maximal.
- 3. $D/\langle p \rangle$ is a field.

In particular if $f \in K[X]$, then $K[X]/\langle f \rangle$ is a field if and only if f is irreducible.

Proof. See Howie.
$$\Box$$

¹Recall that a principal ideal is one generated by a single element.

²As in, unique up to use of associates or adding in units.

Definition 3.5. Let D be a domain and $\alpha \in D$. Let $\sigma_{\alpha} : D[X] \to D$ defined by

$$\sigma_{\alpha}(a_0 + a_1X + \dots + a_nX^n) = a_0 + a_1\alpha + \dots + a_n\alpha^n.$$

Note that we often write $\sigma_{\alpha}(f)$ as $f(\alpha)$. If $f(\alpha) = 0$, we say α is a root of f, or a zero.

Exercise 3.1. Check that σ_{α} is a homomorphism.

Theorem 3.4. Let K be a field, $\beta \in K$ and f a non-zero polynomial in K[X]. Then β is a root of f if and only if $X - \beta | f$.

Proof. See Howie. \Box

Example 3.5.1. We have $X^2 + 1$ in $\mathbb{R}[X]$ is irreducible, so $\mathbb{R}[X]/\langle X^2 + 1 \rangle$ is a field. In fact this field is isomorphic to the complex numbers \mathbb{C} .

Exercise 3.2. Do the following:

1. Show that $\varphi : \mathbb{R}[X] \to \mathbb{C}$ given by

$$\varphi(a_0 + a_1X + \dots + a_nX^n) = a_0 + a_1i + \dots + a_ni^n$$

is a surjective homomorphism.³

2. Show that $\ker \varphi = \langle X^2 + 1 \rangle$.

So by the first isomorphism theorem we can conclude that $\mathbb{R}[X]/\langle X^2+1\rangle=\mathbb{R}/\ker\varphi\cong\varphi(\mathbb{R}[X])=\mathbb{C}.$

Theorem 3.5. Let K be a field and $g \in K[X]$ an irreducible polynomial. Then $K[X]/\langle g \rangle$ is a field containing K up to isomorphism.

Proof. Since g is irreducible, $K[X]/\langle g \rangle$ is a field. Now define $\varphi: K \to K[X]/\langle g \rangle$ by

$$\varphi(a) = a + \langle g \rangle.$$

(Left as an exercise to check that φ is a homomorphism.) We need to show that φ is injective. For this, take $a, b \in K$. If $a + \langle g \rangle = b + \langle g \rangle$, then $a - b \in \langle g \rangle$. But K is a field, so this happens precisely when a = b. Thus φ embeds K into $K[X]/\langle g \rangle$, as desired.

3.2 Irreducible Polynomials over \mathbb{C} , \mathbb{R} , \mathbb{Q} , and \mathbb{Z}

Our goal now is to study irreducible polynomials. Note that linear polynomials are irreducible, and recall that every polynomial in \mathbb{C} factorizes, essentially uniquely, into linear factors. Furthermore, complex roots of real polynomials come in conjugate pairs, hence

$$g = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{R}[X]$$

factors as

$$g = a_n(X - \beta_1) \dots (X - \beta_r)(X - \gamma_1)(X - \overline{\gamma}_1) \dots (X - \gamma_3)(X - \overline{\gamma}_s)$$

³Note that there's some technicality about this φ not being a σ_{α} since we defined σ_{α} for α in the base domain, and i is kind of somewhere else.

in $\mathbb{C}[X]$, where $\beta_1, \ldots, \beta_r \in \mathbb{R}$ and $\gamma_1, \ldots, \gamma_s \in \mathbb{C} \setminus \mathbb{R}$ and r+2s=n. Thus over $\mathbb{R}[X]$, g factors as

$$g = a_n(X - \beta_1) \dots (X - \beta_r)(X^2 - (\gamma_1 + \overline{\gamma}_1)X + \gamma_1\overline{\gamma}_1) \dots (X^2 - (\gamma_s + \overline{\gamma}_s)X + \gamma_s\overline{\gamma}_s)$$

in $\mathbb{R}[X]$, where the quadratic factors are irreducible in $\mathbb{R}[X]$.

Exercise 3.3. A quadratic $aX^2 + bX + c \in \mathbb{R}[X]$ is irreducible if and only if its discriminant $b^2 - 4ac < 0$.

Now we have pretty much characterized irreducible polynomials in $\mathbb{R}[X]$. But what about $\mathbb{Q}[X]$?

Theorem 3.6. Let $g = a_0 + a_1 X + a_2 X^2 \in \mathbb{Q}[X]$. Then

- 1. If g is irreducible over \mathbb{R} , then it is irreducible over \mathbb{Q} .
- 2. If $g = a_2(X \beta_1)(X \beta)$ with $\beta_1, \beta_2 \in \mathbb{R}$, then g is irreducible in $\mathbb{Q}[X]$ if and only if β_1 and β_2 are irrational.

Proof. (1) We show the contrapositive. If g factors as

$$g = a_2(X - q_1)(X - q_2) \in \mathbb{Q}[X],$$

then g also factors in $\mathbb{R}[X]$.

(2) If β_1 and β_2 are rational, then g factors in $\mathbb{Q}[X]$ and is thus not irreducible. For the other direction, if β_1 and β_2 are irrational, then $g = a_2(X - \beta_1)(X - \beta_2)$ is the only factorization in $\mathbb{R}[X]$ since $\mathbb{R}[X]$ is a UFD, so there is no factorization in $\mathbb{Q}[X]$ into linear factors.

Example 3.5.2. Are the following polynomials irreducible in $\mathbb{R}[X]$? In $\mathbb{Q}[X]$?

- 1. $X^2 + X + 1$ is irreducible over \mathbb{R} and \mathbb{O} since $b^2 4ac = -3$.
- 2. $X^2 X 1$ has roots $(-1 \pm \sqrt{5})/2$, so it factors over $\mathbb R$ but is irreducible over $\mathbb Q$.
- 3. $X^2 + X 2$ factors as (X + 2)(X 1) over \mathbb{R} and \mathbb{Q} .

Now that we have studied irreducible polynomials in $\mathbb{R}[X]$ and $\mathbb{Q}[X]$, can a polynomial in $\mathbb{Z}[X]$ be irreducible over \mathbb{Z} but not \mathbb{Q} ? The answer is no!

Theorem 3.7 (Gauss's lemma). Let f be a polynomial in $\mathbb{Z}[X]$, irreducible over \mathbb{Z} . Then f is irreducible over \mathbb{Q} .

Proof. For sake of contradiction, suppose f = gh with $g, h \in \mathbb{Q}[X]$ and $\partial g, \partial h < \partial f$. Then there exists $n \in \mathbb{Z}_{>0}$ such that nf = g'h' where $g', h' \in \mathbb{Z}[X]$. Let n be the smallest positive integer with this property. Let

$$g' = a_0 + a_1 X + \dots + a_k X^k$$

 $h' = b_0 + b_1 X + \dots + b_l X^l$.

If n = 1, then g' = g and h' = h, a contradiction. Now $n \ge 1$, so let p be a prime factor of n.⁴ Without loss of generality, assume p divides g', i.e. g' = pg'' where $g'' \in \mathbb{Z}[X]$. Then

$$\frac{n}{p}f = g''h',$$

contradicting the minimality of n. Hence f cannot be factored over \mathbb{Q} .

⁴Lemma: Either p divides all the coefficients of g' or p divides all the coefficients of h'. Proof left as an exercise.

Example 3.5.3. Show that $g = X^3 + 2X^2 + 4X - 6$ is irreducible over \mathbb{Q} .

Proof. If g factors over \mathbb{Q} , it factors over \mathbb{Z} and at least one factor must be linear, i.e.

$$g = X^3 = 2X^2 + 4X - 6 = (X - a)(X^2 + bX + c)$$

where $a, b, c \in \mathbb{Z}$. We must have ac = 6, so $a \in \{\pm 1, \pm 2, \pm 3, \pm 6\}$ and g(a) = 0. We can check this:

Hence g is irreducible over \mathbb{Z} and thus also irreducible over \mathbb{Q} .

We could do this trick since the degree was 3, forcing a linear factor. What about degrees higher than 3?

Theorem 3.8 (Eisenstein's criterion). Let $f = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{Z}[X]$. Suppose there exists a prime p such that

- 1. $p \nmid a_n$,
- 2. $p|a_i \text{ for } i = 0, \ldots, n-1,$
- 3. $p^2 \nmid a_0$.

Then f is irreducible over \mathbb{Q} .

Proof. By Gauss's lemma, it suffices to show that f is irreducible over \mathbb{Z} . Suppose for sake of contradiction that f = gh for

$$g = b_0 + b_1 X + \dots + b_r X^r$$
 and $h = c_0 + c_1 X + \dots + c_s X^s$,

r, s < n, and r + s = n. Note that $a_0 = b_0 c_0$, so $p|a_0$ from (2) implies that $p|b_0$ or $p|c_0$. Since $p^2 \nmid a_0$, it cannot be both. Without loss of generality, assume $p|b_0$ and $p\nmid c_0$. Now suppose inductively that p divides b_0, \ldots, b_{k-1} where $1 \le k \le r$. Then

$$a_k = b_0 c_k + b_1 c_{k-1} + \dots + b_{k-1} c_1 + b_k c_0$$

and since p divides a_k , b_0c_k , b_1c_{k-1} , ..., $b_{k-1}c_1$, it follows that $p|b_kc_0$. Since $p\nmid c_0$ by assumption, we must have $p|b_k$. Thus $p|b_r$ and since $a_n = b_rc_s$, we have $p|a_n$, contradicting (1). Hence is f is irreducible. \square

Example 3.5.4. The polynomial

$$X^5 + 2X^3 + \frac{8}{7}X^2 - \frac{4}{7}X + \frac{2}{7}$$

is irreducible over \mathbb{Q} .

Proof. Multiply by 7 and take the integer polynomial $7X^5 + 14X^3 + 8X^2 - 4X + 2$. Taking p = 2 satisfies Eisenstein's criterion, so this polynomial is irreducible over \mathbb{Z} and thus also irreducible over \mathbb{Q} .

Example 3.5.5. If p > 2 is prime, then show that

$$f = 1 + X + X^2 + \dots + X^{p-1}$$

is irreducible over \mathbb{Q} .

Proof. First observe that

$$f = \frac{X^p - 1}{X - 1}.$$

Let g(X) = f(X+1). Then

$$g(X) = \frac{(X+1)^p - 1}{(X+1) - 1} = \frac{1}{X}((X+1)^p - 1) = \frac{1}{X}\sum_{i=0}^p \binom{p}{i}X^{p-i} - 1$$
$$= \frac{1}{X}\sum_{i=0}^{p-1} \binom{p}{i}X^{p-i} = \sum_{i=0}^{p-1} \binom{p}{i}X^{p-i-1}.$$

Note that $\binom{p}{1}, \binom{p}{2}, \ldots \binom{p}{p-1}$ are all divisible by p, so g is irreducible by Eisenstein's criterion. Now if f factors as f = uv, then g(X) = u(X+1)v(X+1), which is a contradiction since g is irreducible. \square

Jan. 22 — Field Extensions

4.1 More on Irreducibility

The following excerpt is from Howie:

Another device for determining irreducibility over \mathbb{Z} (and consequently over \mathbb{Q}) is to map the polynomial onto $\mathbb{Z}_p[X]$ for some suitably chosen prime p. Let $g = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{Z}[X]$, and let p be a prime not dividing a_n . For each i in $\{0, 1, \ldots, n\}$, let \overline{a}_i denote the residue class $a_i + \langle p \rangle$ in the field $\mathbb{Z}_p = \mathbb{Z}/\langle p \rangle$, and write the polynomial $\overline{a}_0 + \overline{a}_1 X + \cdots + \overline{a}_n X^n$ as \overline{g} . Our choice of p ensures that $\partial \overline{g} = n$. Suppose that g = uv, with $\partial u, \partial v < \partial f$ and $\partial u + \partial v = \partial g$. Then $\overline{g} = \overline{u} \overline{v}$. If we can show that \overline{g} is irreducible in $\mathbb{Z}_p[X]$, then we have a contradiction, and we deduce that g is irreducible. The advantage of transferring the problem from $\mathbb{Z}[X]$ to $\mathbb{Z}_p[X]$ is that \mathbb{Z}_p is finite, and the verification of irreducibility is a matter of checking a finite number of cases.

Example 4.0.1. Show that

$$q = 7X^4 + 10X^3 - 2X^2 + 4X - 5$$

is irreducible over \mathbb{Q} .

Proof. Let p = 3 and

$$\overline{g} = X^4 + X^3 + X^2 + 1$$

This has no linear factors since

$$\bar{g}(0) = 1, \quad \bar{g}(1) = 2, \quad \bar{g}(-1) = 1.$$

So suppose

$$\overline{g} = X^4 + X^3 + X^2 + X + 1 = (X^2 + aX + b)(X^2 + cX + d)$$

in $\mathbb{Z}_3[x]$. Then for some $a, b, c, d \in \mathbb{Z}_3 = \{-1, 0, 1\}$, we have

$$\begin{cases} X^3 & a+c=1\\ X^2 & b+ac+d=1\\ X & ad+bc=1\\ 1 & bd=1 \end{cases}$$

The first case is if b = d = 1, but this implies ac = -1, so $a = \pm 1$ and $c = \mp 1$. But a + c = 1, so this cannot happen. The second case is if b = d = -1. This implies that ac = 0 and a + c = 1. So if a = 0, then c = 1, so 1 = ad + bc = b, which is a contradiction with b = -1. If c = 0, then 1 = ad + bc = d,

which is a contradiction with d = -1. Thus \overline{g} is irreducible in $\mathbb{Z}_3[x]$, so g is irreducible in $\mathbb{Z}[x]$, and by Gauss's lemma, g is irreducible in $\mathbb{Q}[x]$.

Remark. If we had tried p=2, then we have $\overline{g}=x^4+1\in\mathbb{Z}_2[x]$, which is not in fact irreducible since

$$\overline{g} = x^4 + 1 = (x+1)^4 \in \mathbb{Z}_2[x].$$

4.2 Field Extensions

Definition 4.1. Let K, L be fields and $\varphi : K \to L$ an injective homomorphism. Then L is a *field extension* of K, denoted L : K.

Example 4.1.1. We have $\mathbb{C} : \mathbb{R}$ is a field extension.

Definition 4.2. Recall that V is a K-vector space if

- 1. V is an abelian group under +,
- 2. For $a, b \in K$ and $x, y \in V$, we have

(i).
$$a(x+y) = ax + ay$$
, (ii). $(a+b)x = ax + bx$, (iii). $(ab)x = a(bx)$, (iv). $1x = x$.

Remark. If L: K is a field extension, then L is a a vector space over K.

Definition 4.3. A basis for a vector space is a linearly independent spanning set.

Example 4.3.1. The complex numbers \mathbb{C} is a \mathbb{R} -vector space with basis $\{1, i\}$. Bases are not unique, since $\{1 + i, 1 - i\}$ is another basis for \mathbb{C} .

Example 4.3.2. If there is a vector space that we know to be a field, then it is automatically a field extension of its ground field.

Definition 4.4. The dimension of L is the cardinality of a basis for L: K.¹ The dimension is also called the degree of L: K, denoted [L: K]. We say that L is a finite extension if [L: K] is finite, and an infinite extension otherwise.

Example 4.4.1. We have $[\mathbb{C}:\mathbb{R}]=2$, which is finite. On the other hand, $\mathbb{R}:\mathbb{Q}$ is an infinite extension.

Theorem 4.1. Let L: K be a field extension. Then L = K if and only if [L: K] = 1.

Proof. (\Rightarrow) If L = K, then $\{1\}$ is a basis for L : K, and thus [L : K] = 1.

(\Leftarrow) If [L:K]=1, then $\{x\}$ is a basis for L:K for some $x\in L$. Then there exists some $a\in K$ such that 1=ax, so $x=a^{-1}\in K$. For every $y\in L$, there exists $b\in K$ such that y=bx. But then

$$y = bx = b(a^{-1}) \in K,$$

so $y \in K$ as well by closure. Thus L = K as desired.

Remark. Let L: K and M: L be field extensions with

$$K \xrightarrow{\alpha} L \xrightarrow{\beta} M$$

¹Note that this is well-defined since any two bases of L have the same length.

Then M: K is also a field extension.

Theorem 4.2. For field extensions L: K and M: L, we have [M:L][L:K] = [M:K].

Proof. Suppose $\{a_1, a_2, \dots a_r\}$ is a linearly independent subset of M over L and $\{b_1, b_2, \dots, b_s\}$ is a linearly independent subset of L over K. Now we claim that

$${a_ib_i \mid 1 \le i \le r, 1 \le j \le s}$$

is a linearly independent subset of M over K. To see this, suppose

$$\sum_{i=1}^{r} \sum_{j=1}^{s} \lambda_{ij} a_i b_i = 0$$

for some $\lambda_{ij} \in K$. We can rewrite this as

$$\sum_{i=1}^{r} \left(\sum_{j=1}^{s} \lambda_{ij} b_j \right) a_i = 0.$$

Since the a_i are linearly independent over L, it follows that

$$\sum_{j=1}^{s} \lambda_{ij} b_j = 0$$

for each i = 1, ..., r. Since the b_j are linearly independent over K, it follows that $\lambda_{ij} = 0$ for each i, j, which proves the claim. Returning to the main proof, if [M:L] or [L:K] is infinite, then r or s can be made arbitrarily large, so

$$\{a_ib_j \mid 1 \le i \le r, 1 \le j \le s\}$$

can also be made arbitrarily large, and hence [M:K] is infinite. Now suppose $[M:L] = r < \infty$ and $[L:K] = s < \infty$. Let $\{a_1, a_2, \ldots, a_r\}$ be a basis for M:L and $\{b_1, b_2, \ldots, b_s\}$ be a basis for L:K. We will show that

$$\{a_ib_j \mid 1 \le i \le r, 1 \le j \le s\}$$

is a basis for M:K. Since we already showed that $\{a_ib_j\}$ is linearly independent, it only remains to show that they span M over K. For each $z \in M$, there exist $\lambda_1, \ldots, \lambda_r \in L$ such that

$$z = \sum_{i=1}^{r} \lambda_i a_i.$$

Then for each $\lambda_i \in L$, there exist $\mu_{i1}, \ldots, \mu_{is} \in K$ such that

$$\lambda_i = \sum_{j=1}^s \mu_{ij} b_j.$$

Combining this yields

$$z = \sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{ij} a_i b_j$$

as desired, which finishes the proof.

Example 4.4.2. Consider $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$

Exercise 4.1. Show that $\mathbb{Q}[\sqrt{2}]$ is a field. (Hint: $1/(a+b\sqrt{2})=(a-b\sqrt{2})/(a^2-2b^2)$.)

Definition 4.5. Let K be a subfield of L and S a subset of L. The *subfield of* L *generated over* K *by* S, denoted K(S), is the intersection of all subfields of L containing $K \cup S$. If $S = \{\alpha_1, \ldots, \alpha_n\}$ is finite, we write $K(\alpha_1, \ldots, \alpha_n)$.

Theorem 4.3. Let E be the elements in L that can be expressed as quotients of finite K-linear combinations of finite products of elements in S. Then K(S) = E.

Proof. To see that $K(S) \subseteq E$, simply check that E is a subfield of L containing $K \cup S$.

For $E \subseteq K(S)$, note that any subfield of L containing K and S must contain all finite products of elements in S, all linear combinations of such products, and all quotients of such linear combinations. This is precisely what is means to have $E \subseteq K(S)$.

Definition 4.6. A simple extension of K is $K(\alpha)$, i.e. S has a single element $\alpha \notin K$.

Example 4.6.1. The previous example $\mathbb{Q}(\sqrt{2})$ is a simple extension.

Theorem 4.4. Let L be a field, K a subfield, and $\alpha \in L$. Then either

- 1. $K(\alpha)$ is isomorphic to K(X), the field of rational forms with coefficients in K,
- 2. or there exists a unique monic polynomial $m \in K[X]$ with the property that for all $f \in K[X]$,
 - (a) $f(\alpha) = 0$ if and only if m|f,
 - (b) the field $K(\alpha)$ coincides with $K[\alpha]$, the ring of all polynomials in α with coefficients in K,
 - (c) and $[K[\alpha]:K] = \partial m$.

Proof. Suppose there does not exist nonzero $f \in K[X]$ such that $f(\alpha) = 0$. Then there exists a map $\varphi : K(X) \to K(\alpha)$ with $f/g \mapsto f(\alpha)/g(\alpha)$, which is defined since $g(\alpha) = 0$ only if g is the zero polynomial. Note that φ is a surjective homomorphism, which one can check as an exercise. Now we show that φ is also injective. To see this, suppose

$$\varphi(f/g) = \varphi(p/q),$$

which happens if and only if

$$f(\alpha)q(\alpha) - p(\alpha)g(\alpha) = 0.$$

in L. This happens if and only if fq - pg = 0 in K[X], which happens if and only if f/g = p/q in K(X). This completes the first case of the theorem.

Now suppose there exists nonzero $g \in K[X]$ such that $g(\alpha) = 0$. Furthermore, suppose g is a polynomial of least degree with this property. Let a be the leading coefficient of g, and let m = g/a, so that m is monic and $m(\alpha) = 0$ still. The reverse implication in (2a) is clear. For the forwards implication in (2a), note that by division with remainder for polynomials over a field, we can write

$$f = qm + r,$$

where $\partial r < \partial m$. By the minimality of ∂m , we must have r = 0, so m|f. For the uniqueness of m, suppose there exists m' with the same properties. Then $m(\alpha) = m'(\alpha) = 0$, so m|m' and m'|m, which

²Also check that φ is well-defined.

implies that m=m' since m and m' are monic. For the irreducibility of m, suppose for the sake of contradiction that m=pq with $\partial p, \partial q < \partial m$. Then $m(\alpha)=p(\alpha)q(\alpha)=0$, so either $p(\alpha)=0$ or $q(\alpha)=0$, which contradicts the minimality of ∂m .

Now we show (2b), which says that $K(\alpha) = K[\alpha]$. For this, consider $p(\alpha)/q(\alpha) \in K(\alpha)$ for $q(\alpha) \neq 0$. Then $m \nmid q$, and since m is irreducible we have $\gcd(m,q) = 1$. Now by Theorem 2.15 of Howie (about gcd's in the Euclidean domain K[X]), there exist polynomials a, b such that aq + bm = 1. Setting $X = \alpha$ yields $a(\alpha)q(\alpha) = 1$, so

$$\frac{p(\alpha)}{q(\alpha)} = p(\alpha)a(\alpha) \in K[\alpha].$$

Thus $K(\alpha) \subseteq K[\alpha]$. Since we already know that $K[\alpha] \subseteq K(\alpha)$, we conclude that $K(\alpha) = K[\alpha]$.

Finally we show (2c), which claims that $[K[\alpha]:K]=\partial m$. For this, suppose $\partial m=n$ and let

$$p(\alpha) \in K[\alpha] = K(\alpha).$$

Then p = qm + r where $\partial r < \partial m = n$. We have $p(\alpha) = r(\alpha)$, so if

$$r = c_0 + c_1 X + \dots + c_{n-1} X^{n-1}$$

for $c_i \in K$, then

$$p(\alpha) = c_0 + c_1 \alpha + \dots + c_{n-1} \alpha^{n-1}$$
.

So $\{1, \alpha, \dots, \alpha^{n-1}\}$ is a spanning set for $K[\alpha]$. To see that $\{1, \alpha, \dots, \alpha^{n-1}\}$ is also linearly independent, suppose there exists $a_i \in K$ such that

$$a_0 + a_1 \alpha + \dots + a_{n-1} \alpha^{n-1} = 0.$$

Then $a_0 = \cdots = a_{n-1} = 0$ since otherwise we would have a polynomial

$$p = a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$$

with $\partial p \leq n-1$ and $p(\alpha)=0$, which is a contradiction with the minimality of $\partial m=n$. Thus $\{1,\alpha,\ldots,\alpha^{n-1}\}$ is a basis, and so $[K[\alpha]:K]=n=\partial m$.

Example 4.6.2. Continuing the same example, note that

$$\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} = \{a_0 + a_1\sqrt{2} + a_2\sqrt{2}^2 + a_3\sqrt{2}^3 + \dots + a_n\sqrt{2}^n \mid a_i \in \mathbb{Q}\},\$$

which falls in the second case of the previous theorem.

Remark. We also have $\mathbb{Q}[\sqrt{2}] = \mathbb{Q}[X]/\langle X^2 - 2 \rangle$.

Jan. 24 — Algebraic Extensions

5.1 Minimal Polynomials

Remark. The m in the previous theorem from last class is called the minimal polynomial of α .

Example 5.0.1. Let

$$\mathbb{Q}[i\sqrt{3}] = \{a + bi\sqrt{3} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{C}.$$

Here $m = X^2 + 3$, so this is a degree 2 extension.

Exercise 5.1. Write $1/(a + bi\sqrt{3})$ in the form $c + di\sqrt{3}$.

Example 5.0.2. Is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ a simple extension? In fact it is! Note that certainly

$$\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}).$$

For the reverse inclusion, observe that $(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 1$, so

$$1/(\sqrt{3} + \sqrt{2}) = \sqrt{3} - \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3}).$$

From this we have

$$(\sqrt{3} + \sqrt{2}) + (\sqrt{3} - \sqrt{2}) = 2\sqrt{3},$$

which implies that $\sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Similarly $\sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$, so that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Now we can consider

$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}[\sqrt{2}, \sqrt{3}] = (\mathbb{Q}[\sqrt{2}])[\sqrt{3}].$$

First we have $[Q[\sqrt{2}]:\mathbb{Q}]=2$. Note that X^2-3 is the minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}[\sqrt{2}]$, so $[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}[\sqrt{2}]]=2$. Hence $[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}]=4$ with basis $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$. To find the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q} , we can compute

$$(\sqrt{2} + \sqrt{3})^2 = 2 + 2\sqrt{6} + 3 = 5 + 2\sqrt{6}$$
$$(\sqrt{2} + \sqrt{3})^4 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6}.$$

Thus $X^4 - 10X^2 + 1$ is the minimal polynomial, since $\alpha^4 - 10\alpha^2 + 1 = 0$ for $\alpha = \sqrt{2} + \sqrt{3}$.

¹Since $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\alpha]$ where $\alpha = \sqrt{2} + \sqrt{3}$, we have $\{1, \alpha, \alpha^2, \alpha^3\}$ as another basis.

5.2 Algebraic Extensions

Definition 5.1. If α has a minimal polynomial over K, we say α is algebraic over K, and $K[\alpha] = K(\alpha)$ is an algebraic extension of K. A complex number that is algebraic over $\mathbb Q$ is called an algebraic number. Otherwise, if $K(\alpha) \cong K(X)$, then we say α is transcendental over K. A transcendental number α is a complex number that is transcendental over $\mathbb Q$.

Example 5.1.1. We have that $\mathbb{Q}(i\sqrt{3})$, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, and $\mathbb{Q}(\sqrt{2},\sqrt{3})$ are all simple algebraic extensions of \mathbb{Q} , whereas $\mathbb{Q}(X)$ is a simple transcendental extension of \mathbb{Q} .

Theorem 5.1. Let $K(\alpha)$ be a simple transcendental extension of K. Then $[K(\alpha):K]=\infty$.

Proof. Observe that $1, \alpha, \alpha^2, \ldots$ are linearly independent over K, since no minimal polynomial exists. \square

Definition 5.2. An extension L over K is an algebraic extension if any element of L is algebraic over K. Otherwise, L is a transcendental extension.

Theorem 5.2. Every finite extension is algebraic.

Proof. Let L: K be a finite extension and suppose for sake of contradiction that $\alpha \in L$ is transcendental over K. Then $1, \alpha, \alpha^2, \ldots$ are linearly independent, contradicting the fact that L: K is finite. \square

Theorem 5.3. Let L: K be a field extension and let A(L) be the set of elements in L that are algebraic over K. Then A(L) is a subfield of L.

Proof. See Howie. Just need to show the closure of algebraic elements under usual field operations. \Box

Example 5.2.1. For $L = \mathbb{C}$ and $K = \mathbb{Q}$, we have that $\mathcal{A}(\mathbb{C})$ is the field \mathbb{A} of algebraic numbers.

Theorem 5.4. The set of algebraic numbers \mathbb{A} is countable.

Proof sketch. Note that the set of monic polynomials of degree n with coefficients in \mathbb{Q} is countable, and each such polynomial has at most n distinct roots in \mathbb{C} . Hence the number of roots of such polynomials is countable. Then \mathbb{A} is the countable union of countable sets, so \mathbb{A} is countable.

Theorem 5.5. Transcendental numbers exist.

Proof. Since $|\mathbb{R}| = |\mathbb{C}| = 2^{\aleph_0} > \aleph_0$, we must have that $\mathbb{C} \setminus \mathbb{A}$ is nonempty.

Remark. The above proof is very nonconstructive, what about actual examples of transcendental numbers? In 1844, Liouville constructed the following example:

$$\sum_{n=1}^{\infty} 10^{-n!},$$

which was shown to be transcendental. In 1873, Hermite showed that e is transcendental, and in 1882, Lindemann showed that π is transcendental.

Theorem 5.6. Let L: K be a field extension and $\alpha_1, \ldots, \alpha_n \in L$ have minimal polynomials m_1, \ldots, m_n , respectively. Then $[K(\alpha_1, \ldots, \alpha_n): K] \leq \partial m_1 \partial m_2 \ldots \partial m_n$.

Proof. See Howie. Uses induction and the fact that [M:L][L:K] = [M:K].

Example 5.2.2. Consider

$$[\mathbb{Q}[\sqrt{2}]:\mathbb{Q}] = [\mathbb{Q}[\sqrt{3}]:\mathbb{Q}] = [\mathbb{Q}[\sqrt{6}]:\mathbb{Q}] = 2,$$

but $[\mathbb{Q}[\sqrt{2},\sqrt{3},\sqrt{6}]:\mathbb{Q}]=4$. So the bound in the previous theorem cannot be made into an equality.

Proposition 5.1. A field extension L: K is finite if and only if for some n, there exist $\alpha_1, \ldots, \alpha_n$ algebraic over K such that $L = K(\alpha_1, \ldots, \alpha_n)$.

Proof. (\Leftarrow) This is precisely the previous theorem.

 (\Rightarrow) Suppose L: K is finite and $\{\alpha_1, \ldots, \alpha_n\}$ is a basis for L over K. Since finite extensions are algebraic, the α_i must be algebraic.

Exercise 5.2. Show that $\varphi: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[X]/\langle X^2 - 2 \rangle$ defined by

$$a + b\sqrt{2} \mapsto a + bX + \langle X^2 - 2 \rangle$$

is an isomorphism.

Theorem 5.7. Let K be a field and m a monic irreducible polynomial in K[X]. Then $L = K[X]/\langle m \rangle$ is a simple algebraic extension $K[\alpha]$ of K, and $\alpha = X + \langle m \rangle$ has minimal polynomial m over K.

Proof. First note that L is indeed a field since m is irreducible. Also L:K is indeed a field extension since $\varphi:K\to L$ defined by $a\mapsto a+\langle m\rangle$ is an injective homomorphism. Now let $\alpha=X+\langle m\rangle$. For

$$f = a_0 + a_1 X + \dots + a_n X^n \in K[X],$$

we have

$$f(\alpha) = a_0 + a_1 \alpha + \dots + a_n \alpha^n = a_0 + a_1 (X + \langle m \rangle) + \dots + a_n (X + \langle m \rangle)^n$$

= $a_0 + a_1 X + \dots + a_n X^n + \langle m \rangle = f + \langle m \rangle.$

So $f(\alpha) = 0$ if and only if $f \in \langle m \rangle$, i.e. m|f. Hence m is the minimal polynomial of α .

Jan. 29 — Geometric Constructions

6.1 K-Isomorphisms

Recall from last class that $L = K[X]/\langle m \rangle$ is a simple algebraic extension of K. In fact, we can show that the field L is essentially unique, i.e. unique up to isomorphism.

Theorem 6.1. Let K be a field and and f and an irreducible polynomial in K[X]. If L and L' are two extensions of K containing roots α and α' respectively of f, then there exists an isomorphism $K[\alpha] \to K[\alpha']$ which fixes every element of K.

Proof sketch. Suppose

$$f = a_0 + a_1 X + \dots + a_n X^n.$$

Then $K[\alpha]$ consists of polynomials of the form

$$b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1}.$$

This is because multiplication in $K[\alpha]$ relies on the observation that

$$\alpha^n = -\frac{1}{\alpha_n}(a_0 + a_1\alpha + \dots + a_{n-1}\alpha^{n-1})$$

since α is a root of f. Define $\psi: K[\alpha] \to K[\alpha']$ by $\psi(g(a)) = g(\alpha')$ and show that ψ is an isomorphism. \square

Exercise 6.1. Check the following from the previous proof:

- 1. ψ is one-to-one and onto,
- 2. ψ fixes K,
- 3. and ψ is a homomorphism.

For the last point, the addition is mostly straightforward but the multiplication is more involved since we need to reduce when we get α^n terms in the product.

Definition 6.1. A K-isomorphism is an isomorphism $\varphi: L \to L'$ such that $\varphi(x) = x$ for all $x \in K$.

Example 6.1.1. For $\mathbb{C} : \mathbb{R}$, the complex conjugation map $\varphi : \mathbb{C} \to \mathbb{C}$ given by $\varphi(a + bi) = a - bi$ is a \mathbb{R} -isomorphism.

Example 6.1.2. For $\mathbb{Q}[X]/\langle X^2+3\rangle:\mathbb{Q}^1$, the map $\psi:\mathbb{Q}[X]/\langle X^2+3\rangle\to\mathbb{Q}[X]/\langle X^2+3\rangle$ given by

$$\psi(a+bX+\langle X^2+3\rangle) = a-bX+\langle X^2+3\rangle$$

is a \mathbb{Q} -isomorphism. The analogous map $\psi : \mathbb{Q}[i\sqrt{3}] \to \mathbb{Q}[i\sqrt{3}]$ given by $\psi(a + bi\sqrt{3}) = a - bi\sqrt{3}$ also works, which we can view as a restriction of the complex conjugation map to $\mathbb{Q}[i\sqrt{3}]$.

6.2 Applications to Geometric Constructions

Consider the straightedge and compass Constructions from geometry. Let B_0 be a set of points. Then we have the following operations:

- 1. (straightedge) Draw a straight line through any two points in B_0 .
- 2. (compass) Draw a circle whose center is a point in B_0 passing through another point in B_0 .

Let $C(B_0)$ be the set of points which are intersections of lines or circles obtained form B_0 by (1) and (2). Let $B_1 = B_0 \cup C(B_0)$, and proceed inductively to get $B_n = B_{n-1} \cup C(B_{n-1})$.

Definition 6.2. A point is *constructible from* B_0 if it belongs to B_n for some n. A point is *constructible* if it is constructible from $\{O, I\}$ where O = (0, 0) and I = (1, 0).

Example 6.2.1. To find the midpoint of the line segment OI from $B_0 = \{O, I\}$, we can do the following:

- 1. Draw a circle with center O passing through I.
- 2. Draw a circle with center I passing through O.
- 3. Mark points P and Q where these circles intersect. So $B_1 \supseteq \{O, I, P, Q\}$.
- 4. Draw a line connecting P and Q.
- 5. Draw a line connecting O and I.
- 6. Mark the point M where PQ and OI meet. So $B_2 \supseteq \{O, I, P, Q, M\}$.

Thus M is constructible from $\{O,I\}$.

The algebraic perspective is the following: Associate to B_i the subfield of \mathbb{R} generated by coordinates of points in B_i , i.e. view each coordinate of each point as an element and take the subfield generated.

Example 6.2.2. For $B_0 = \{(0,0), (1,0)\}$, we have $\{0,0,1,0\} \subseteq K_0 = \mathbb{Q}$ is the subfield of \mathbb{R} generated by the coordinates of B_0 . Next take²

$$B_1 = \{O, I, P, Q\} = \{(0, 0), (1, 0), (1/2, \pm \sqrt{3}/2)\},\$$

so that $K_1 = \mathbb{Q}[\sqrt{3}]$ is the field generated by B_1 . Then

$$B_2 = \{O, I, P, Q, M\} = \{(0, 0), (1, 0), (1/2, \pm \sqrt{3}/2), (1/2, 0)\},\$$

and the field generated by B_2 is still $K_2 = \mathbb{Q}[\sqrt{3}]$.

Note that $\mathbb{Q}[X]/\langle X^2+3\rangle\cong\mathbb{Q}[i\sqrt{3}]$. The isomorphism is given by $a+bX+\langle X^3+3\rangle\mapsto a+bi\sqrt{3}$.

²There is some abuse of notation here since we take B_i to be only some subset of all the actual possible points.

Theorem 6.2. Let P be a constructible point belonging to B_n , where $B_0 = \{(0,0), (1,0)\}$, and let K_n be the field generated over \mathbb{Q} by B_n . Then $[K_n : \mathbb{Q}]$ is a power of 2.

Proof sketch. We proceed by induction. The base case is $K_0 = \mathbb{Q}$, so $[K_0 : \mathbb{Q}] = 1 = 2^0$. Now suppose $[K_{n-1} : \mathbb{Q}] = 2^k$ for some $k \geq 0$, and we want to show that $[K_n : K_{n-1}]$ is a power of 2. Observe that new points in B_n can be obtained by

- 1. intersection of two lines,
- 2. intersection of a line and a circle,
- 3. or intersection of two circles.

In case (1), the intersection of two lines is given by solving a system of two linear equations, which only involves rational operations³. In other words, this case takes place entirely in K_{n-1} .

In case (2), the intersection of a line and a circle is given by solving of a system of one linear equation and one quadratic equation. Solving the linear equation for one of the variables and substituting into the quadratic equation reduces the system down to a single quadratic equation in a single variable. The solution involves $\sqrt{\Delta}$, where Δ is the discriminant. Then the new points are in $K_{n-1}[\sqrt{\Delta}]$.

In case (3), the intersection of two circles is given by solving a system of two quadratic equations. Subtracting the two quadratic equations yields a linear equation, which reduces back to case (2).

Thus the elements in K_n are either in K_{n-1} or $K_{n-1}[\sqrt{\Delta}]$ for some $\Delta \in K_{n-1}$.⁴ Hence $[K_n : K_{n-1}]$ is either 1 or 2, so by induction $[K_n : \mathbb{Q}]$ is a power of 2.

6.3 Classic Problems

6.3.1 Duplicating the Cube

Consider the problem of taking a cube of volume 1, and constructing a cube of volume 2. We need α such that $\alpha^3 = 2$. But $X^3 - 2$ is irreducible over \mathbb{Q} by Eisenstein's criterion, so $[\mathbb{Q}[\alpha] : \mathbb{Q}] = 3$. This is not a power of 2, so α is not constructible and thus we cannot duplicate the cube.

6.3.2 Trisecting the Angle

Recall the triple angle formula:

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta.$$

Suppose $\cos 3\theta = c$. So to find $\cos \theta$, we want a root of $4X^3 - 3X - c = 0$. This depends on c.

Example 6.2.3. If $3\theta = \pi/2$, then c = 0 and the polynomial factors into

$$4X^3 - 3X = 4X(4X^2 - 3),$$

so $[\mathbb{Q}[\alpha]:\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}]:\mathbb{Q}]=2$. So in fact we can trisect $\pi/2=90^\circ$.

³By rational operations we mean addition, subtraction, multiplication, division.

⁴We can set it up so that we only gain one extra intersection, i.e. only one Δ , at each step.

Example 6.2.4. If $3\theta = \pi/3$, then c = 1/2 and we have $4X^3 - 3X - 1/2$. Let

$$f(X) = 8X^3 - 6X - 1,$$

so that $g(X) = g(X/2) = X^3 - 3X - 1$. Note that g does not factor over \mathbb{Z} since that requires a linear factor of $X \pm 1$ but $g(\pm 1) \neq 0$. So g is irreducible over \mathbb{Z} and by Gauss's lemma, g is irreducible over \mathbb{Q} . Thus f is irreducible. Hence $[\mathbb{Q}[\alpha]:\mathbb{Q}] = 3$, so we cannot trisect $\pi/3$ with a straightedge and compass.

Jan. 31 — Splitting Fields

7.1 Review of Notation

Recall that

$$\mathbb{Q}[X] = \{a_0 + a_1 X + \dots + a_n X^n : a_i \in \mathbb{Q}\}$$

$$\mathbb{Q}(X) = \{f/q : f, q \in \mathbb{Q}[X], q \neq 0\} / \sim,$$

where \sim is the usual relation on fractions, e.g. 2f/2g = f/g. Next, recall that

$$\mathbb{Q}[\sqrt{2}] = \{a_0 + a_1\sqrt{2} + \dots + a_n\sqrt{2}^n : a_i \in \mathbb{Q}\} = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}\$$

since $\sqrt{2}^2 = 2$. Also $\mathbb{Q}(\sqrt{2})$ is the smallest subfield of \mathbb{R} containing $\mathbb{Q} \cup \{\sqrt{2}\}$. In this case, $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}]$ since

$$\frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{a^2 - 2b^2}.$$

Next, we have

$$\mathbb{Q}[X]/\langle X^2 - 2 \rangle = \{ a_0 + a_1 X + \dots + a_n X^n + \langle X^2 - 2 \rangle : a_i \in \mathbb{Q} \}$$

= $\{ a + bX + \langle X^2 - 2 \rangle : a, b \in \mathbb{Q} \}$

since $X^2 + \langle X^2 - 2 \rangle = 2 + \langle X^2 - 2 \rangle$. In fact, $\mathbb{Q}[X]/\langle X^2 - 2 \rangle \cong \mathbb{Q}[\sqrt{2}]$.

7.2 Splitting Fields

The motivating question here is: When can we factor a polynomial into linear factors?

Definition 7.1. A polynomial splits completely over K if it can be factored into linear factors over K.

Example 7.1.1. The polynomial X^2+2 splits completely over $\mathbb{Q}[i\sqrt{2}]$ since $X^2+2=(X-i\sqrt{2})(X+i\sqrt{2})$.

Example 7.1.2. The polynomial $X^3 - 2$ is irreducible over \mathbb{Q} by Eisenstein's criterion. However, it factors as

$$X^{3} - 2 = (X - \alpha)(X^{2} + \alpha X + \alpha^{2})$$

in $\mathbb{Q}[\alpha]$, where $\alpha = \sqrt[3]{2}$. Also $X^2 + \alpha X + \alpha^2$ is irreducible over $\mathbb{Q}[\alpha]$, since its discriminant shows that it is irreducible even over \mathbb{R} . But in \mathbb{C} , we can factor it as

$$X^{3} - 2 = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{4\pi i/3}).$$

A smaller field that $X^3 - 2$ splits completely over is $\mathbb{Q}[\sqrt[3]{2}, i\sqrt{3}]$.

¹Here the isomorphism $\mathbb{Q}[X]/\langle X^2-2\rangle \to \mathbb{Q}[\sqrt{2}]$ is given by $a+bX+\langle X^2-2\rangle \mapsto a+b\sqrt{2}$.

Definition 7.2. Let K be a field and $f \in K[X]$. An extension L of K is a splitting field for f over K if

- 1. f splits completely over L,
- 2. and f does not split completely over any subfield E with K < E < L.

Example 7.2.1. From the last two examples, $\mathbb{Q}[i\sqrt{2}]$ is a splitting field over \mathbb{Q} for X^2+2 , and $\mathbb{Q}[\sqrt[3]{2},i\sqrt{3}]$ is a splitting field for X^3-2 over \mathbb{Q} .

Theorem 7.1. Let K be a field and $f \in K[X]$ with $\partial f = n$. Then there exists a splitting field L for f over K and $[L:K] \leq n!$.

Proof. The proof is essentially the process we perform in the following example. At each step, construct an extension in which we can split off a linear factor from f. For more details, see Howie.

Example 7.2.2. Let us find a splitting field for

$$f = X^5 + X^4 - X^3 - 3X^2 - 3X + 3$$

over \mathbb{Q} . Note that $\partial f = n$. Stare hard enough and we can see that

$$f = (X^3 - 3)(X^2 + X - 1),$$

where the first factor is irreducible by Eisenstein's criterion and the second factor is irreducible by checking the discriminant. Now add a root, say $\alpha = \sqrt[3]{3}$, and let $E_1 = \mathbb{Q}(\alpha)$. Then

$$f = (X - \alpha)(X^{2} + \alpha X + \alpha^{2})(X^{2} + X - 1).$$

Note that $[E_1:K] \leq n = \partial f$. Now let $E_2 = E_1(\alpha e^{2\pi i/3})$, so that

$$f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X^2 + X - 1).$$

Note that $[E_2:\mathbb{Q}] \leq n(n-1)$. Next $E_3 = E_2(\alpha e^{-2\pi i/3})$ with

$$f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X^2 + X - 1).$$

Note that $[E_3:K] \leq n(n-1)(n-2)$. Now let

$$\gamma = \frac{-1 + \sqrt{5}}{2}, \quad \delta = \frac{-1 - \sqrt{5}}{2}.$$

Let $E_4 = E_3(\gamma)$,

$$f = (X - \alpha)(X - \alpha e^{2\pi i/3})(X - \alpha e^{-2\pi i/3})(X - \gamma)(X - \delta).$$

Finally $E_5 = E_4(\delta)$ is the splitting field for f over \mathbb{Q} . Note that we did much better than n! here, since

$$[E_1:\mathbb{Q}]=3, \quad [E_2:E_1]=2, \quad [E_3:E_2]=1, \quad [E_4:E_3]=2, \quad [E_5:E_4]=1,$$

so $[E_5:\mathbb{Q}] = 12 \le 120$.

Remark. Splitting fields are unique (up to isomorphism).

Theorem 7.2. Let L and L' be splitting fields of f over K. Then there exists an isomorphism $\varphi: L \to L'$ fixing K.

Proof sketch. Induct on the number of roots of f that are not in K. The induction step uses Theorem 6.1 from last class giving an isomorphism $K[\alpha] \to K[\alpha']$ for α, α' roots of an irreducible polynomial. \square

Example 7.2.3. Let us find the splitting field of $f = X^4 - 2$ over \mathbb{Q} and its degree. Note that $X^4 - 2$ is irreducible over \mathbb{Q} by Eisenstein's criterion. Note that

$$X^4 - 2 = (X - \alpha)(X + \alpha)(X - i\alpha)(X + i\alpha)$$

where $\alpha = \sqrt[4]{2}$. So the splitting field is $\mathbb{Q}(\sqrt[4]{2},i)$. For the degree, note that $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = 4$ since the minimal polynomial of $\sqrt[4]{2}$ is $X^4 - 2$. A basis for this extension is $\{1, \sqrt[4]{2}, \sqrt[4]{2}^2, \sqrt[4]{2}^3\}$. Since $i \notin \mathbb{Q}(\sqrt[4]{2})$, we have $[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}(\sqrt[4]{2})] = 2$ since the minimal polynomial of i over $\mathbb{Q}(\sqrt[4]{2})$ is $X^2 + 1$. Thus we see that the degree of the splitting field is $[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}] = 8$.

Example 7.2.4. Let us look at monic quadratic polynomials over $\mathbb{Z}_3 = \{-1, 0, 1\}$. These are

$$X^2$$
 $X^2 + 1$ $X^2 - 1$
 $X^2 + X$ $X^2 + X + 1$ $X^2 + X - 1$
 $X^2 - X$ $X^2 - X + 1$ $X^2 - X - 1$.

We have 0 is a root of the polynomials in the first column, 1 is a root of $X^2 - 1$ and $X^2 + X + 1$, and -1 is a root of $X^2 - X + 1$. So the irreducible polynomials over \mathbb{Z}_3 are

$$X^2 + 1$$
, $X^2 + X - 1$, $X^2 - X - 1$.

Let $L = \mathbb{Z}_3[X]/\langle X^2 + 1 \rangle$. Observe that $\alpha = X + \langle X^2 + 1 \rangle$ satisfies

$$\alpha^2 = X^2 + \langle X^2 + 1 \rangle = -1 + \langle X^2 + 1 \rangle.$$

Hence L is a splitting field for $X^2 + 1$ since $(X - \alpha)(X + \alpha) = X^2 + 1$. Similarly, $\mathbb{Z}_3[X]/\langle X^2 + X - 1 \rangle$ is a splitting field for $X^2 + X - 1$ and $\mathbb{Z}_3[X]/\langle X^2 - X - 1 \rangle$ is a splitting field for $X^2 - X - 1$. Note that each of these fields have $9 = 3^2$ elements since they are degree 2 extensions of \mathbb{Z}_3 .

Remark. In L, we had $\alpha \in L$ such that $\alpha^2 = -1$ and addition is performed modulo 3. Now observe

$$(\alpha + 1)^2 + (\alpha + 1) - 1 = (\alpha^2 - \alpha + 1) + (\alpha + 1) - 1 = \alpha^2 - \alpha + \alpha + 1 + 1 - 1 = 0$$

since $\alpha^2 = -1$. So $\alpha + 1$ is a root of $X^2 + X - 1$ in L. By a similar computation, we see that $-\alpha + 1$ is a root of $X^2 + X - 1$, so L is also a splitting field for $X^2 + X - 1$. Additionally, $\alpha - 1$ and $-\alpha - 1$ are roots of $X^2 - X - 1$, so L is also a splitting field for $X^2 - X - 1$. So by uniqueness of splitting fields,

$$\mathbb{Z}_3[X]/\langle X^2+1\rangle \cong \mathbb{Z}_3[X]/\langle X^2+X-1\rangle \cong \mathbb{Z}_3[X]/\langle X^2-X-1\rangle.$$

Exercise 7.1. Find explicit isomorphisms between these fields.

7.3 Finite Fields

Definition 7.3. Let $f = a_0 + a_1 X + \cdots + a_n X^n \in K[X]$. Then the formal derivative of f is

$$Df = a_1 + 2a_2X + \dots + na_nX^{n-1}.$$

Exercise 7.2. The usual formulas for derivatives

$$D(kf) = kDf, \quad D(f+g) = Df + Dg, \quad D(fg) = (Df)g + f(Dg)$$

all still hold for $f, g \in K[X]$ and $k \in K$.

²Note that as opposite to \mathbb{Q} , this field has finite characteristic.

Feb. 5 — Finite Fields

8.1 Last Time

Example 8.0.1. The splitting field of $X^4 - 2$ over \mathbb{Q} is $\mathbb{Q}(i, \sqrt[4]{2})$ since

$$X^{4} - 2 = (X - \sqrt[4]{2})(X + \sqrt[4]{2})(X - i\sqrt[4]{2})(X + i\sqrt[4]{2}).$$

Example 8.0.2. The splitting field of $Y^2 + 1$ over \mathbb{Z}_3 is $\mathbb{Z}_3[X]/\langle X^2 + 1 \rangle$. If $\alpha = X + \langle X^2 + 1 \rangle$, then

$$Y^2 + 1 = (Y - \alpha)(Y + \alpha).$$

Also the degree of this extension is $[Z_3[X]/\langle X^2+1\rangle:\mathbb{Z}_3]=2$, and a basis for the extension is $\{1,X\}$.

8.2 Finite Fields

Lemma 8.1. Let $f \in K[X]$, K a field, and L be a splitting field for f over K. Then the roots of f are distinct if and only if f and Df have no nonconstant common factor.

Proof. (\Leftarrow) We show the contrapositive. Suppose f has a repeated root α in L. Then

$$f = (X - \alpha)^r g$$

for some $r \geq 2$. Then

$$Df = (X - \alpha)^r Dg + r(X - \alpha)^{r-1}g,$$

so Df and f both have $X - \alpha$ as a factor.

 (\Rightarrow) Suppose the roots of f are all distinct. Then for each root α of f in L, we have

$$f = (X - \alpha)g,$$

where $g(\alpha) \neq 0$. Then

$$Df = (X - \alpha)Dg + g,$$

so that

$$(Df)(\alpha) = g(\alpha) \neq 0,$$

i.e. $X - \alpha \nmid Df$. This holds for factor of f in L[X], so f and Df have no common proper factors. \square

Theorem 8.1. Finite fields exist and are unique up to isomorphism. In particular,

- 1. Let K be a finite field. Then $|K| = p^n$ for some prime p and integer $n \ge 1$. Every element of K is a root of $X^{p^n} X$ and K is a splitting field of $X^{p^n} X$ over \mathbb{Z}_p .
- 2. Let p be a prime and $n \in \mathbb{Z}$, $n \geq 1$. Then there exists a unique field of order p^n up to isomorphism.

Proof. (1) Let char K = p. Then K is a finite extension of \mathbb{Z}_p . Let $n = [K : \mathbb{Z}_p]$. If $\{\delta_1, \ldots, \delta_n\}$ is a basis for K over \mathbb{Z}_p , then every element in K can be uniquely written as

$$a_1\delta_1 + \cdots + a_n\delta_n$$

for some $a_i \in \mathbb{Z}_p$. There are p^n such elements, so $|K| = p^n$. Then $|K^*| = p^n - 1$. For any $\alpha \in K^*$, the order of α divides $p^n - 1$. So $\alpha^{p^n - 1} = 1$, and hence $\alpha^{p^n} - \alpha = 0$. We also have $0^{p^n} - 0 = 0$ so every element in K is a root of $X^{p^n} - X$. Hence $X^{p^n} - X$ splits completely over K. Since $X - \alpha$ is a factor of $X^{p^n} - X$ for each of the p^n elements of K, $X^{p^n} - X$ does not split over any proper subfield of K. Thus we conclude that K is a splitting field of $X^{p^n} - X$ over \mathbb{Z}_p .

(2) Given a prime p and an integer $n \geq 1$, let L be the splitting field of $X^{p^n} - X$ over \mathbb{Z}_p . Note that

$$Df = p^n X^{p^n - 1} - 1 = -1$$

since char $\mathbb{Z}_p = p$. Then Df and f have no nonconstant common factors, so by Lemma 8.1, we see that $X^{p^n} - X$ has p^n distinct roots in L. Let K be the set of p^n distinct roots, and we claim that K is a subfield of L. To check this, let $a, b \in K$. Then by an extension of Theorem 2.4,

$$(a-b)^{p^n} = a^{p^n} - b^{p^n} = a - b$$

in \mathbb{Z}_p , $a - b \in K$. Also

$$(ab^{-1})^{p^n} = a^{p^n}(b^{p^n})^{-1} = ab^{-1},$$

so $ab^{-1} \in K$. Hence K is a field of order p^n . In fact, K = L since K contains all the roots of $X^{p^n} - X$ and no proper subfield does. By uniqueness of splitting fields, K is unique up to isomorphism.

Definition 8.1. We call the field of order p^n the Galois field of order p^n , denoted $GF(p^n)$.

Example 8.1.1. We have $GF(3^2) = \mathbb{Z}_3[X]/\langle X^2 + 1 \rangle \cong \mathbb{Z}_3[X]/\langle X^2 + X - 1 \rangle \cong \mathbb{Z}_3[X]/\langle X^2 - X - 1 \rangle$.

Remark. Recall that for a finite group G and $a \in G$, the *order* of a is

$$\operatorname{ord}(a) = \min\{k \in \mathbb{N} : a^k = 1\}.$$

The exponent of G is

$$\exp(G) = \min\{k \in \mathbb{N} : a^k = 1 \text{ for all } a \in G\}.$$

Also recall that ord(a) divides |G| for all $a \in G$, and thus exp(G) divides |G|.

Exercise 8.1. Show that $\exp(G) = \operatorname{lcm} \{\operatorname{ord}(a) : a \in G\}.$

Example 8.1.2. For $S_3 = \{ id, (12), (23), (13), (123), (132) \}$, the order of the transpositions is 2 and the order of 3-cycles is 3. So we see that $\exp(S_3) = 6$.

Proposition 8.1. If G is a finite abelian group, then there exists $a \in G$ such that ord(a) = exp(G).

¹Recall that K^* is the set of nonzero elements of K, which forms a group under multiplication. We also call K^* the group of units of K.

Proof. Suppose that

$$\exp(G) = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k},$$

where the p_i are distinct primes and $\alpha_i \geq 1$ for all i. Since

$$\exp(G) = \operatorname{lcm}\{\operatorname{ord}(a) : a \in G\},\$$

there exists $h_1 \in G$ such that $p_1^{\alpha_1} | \operatorname{ord}(h_1)$. So $\operatorname{ord}(h_1) = p_1^{\alpha_1} q_1$ where $q_1 | p_2^{\alpha_2} \dots p_k^{\alpha_k}$. Let $g_1 = h_1^{q_1}$. For each $m \geq 1$, we have $g_1^m = h_1^{mq_1}$, and

$$h_1^{mq_1} = 1 \iff p_1^{\alpha_1} q_1 | mq_1 \iff p_1^{\alpha_1} | m.$$

Hence $\operatorname{ord}(g_1) = p_1^{\alpha_1}$. Similarly for $i = 2, \ldots, k$, we can find elements g_i of order $p_i^{\alpha_i}$. Let

$$a = g_1 g_2 \dots g_k$$

and $n = \operatorname{ord}(a)$. Now check as an exercise that $\operatorname{ord}(a) = \exp(G)$. This relies on

$$a^n = g_1^n g_2^n \dots g_k^n = 1,$$

which uses the assumption that G is abelian.

Remark. The previous example shows that the abelian condition in this theorem is necessary.

Corollary 8.1.1. If G is a finite abelian group with $\exp(G) = |G|$, then G is cyclic.

Theorem 8.2. The group of units $GF(p^n)^*$ of a Galois field is cyclic.

Proof. Let $e = \exp(\operatorname{GF}(p^n)^*)$. Then $a^e = 1$ for all $a \in \operatorname{GF}(p^n)^*$, so every element $a \in \operatorname{GF}(p^n)^*$ is a root of $X^e - 1$. Since $X^e - 1$ has at most e roots, we see that $|\operatorname{GF}(p^n)^*| \le e$. But $e \le |\operatorname{GF}(p^n)^*|$ since $\exp(\operatorname{GF}(p^n)^*)$ divides $|\operatorname{GF}(p^n)^*|$. Hence $|\operatorname{GF}(p^n)^*| = e$, so by Corollary 8.1.1, $\operatorname{GF}(p^n)^*$ is cyclic. \square

8.3 Automorphisms of Fields

Example 8.1.3. The complex conjugation $f: \mathbb{C} \to \mathbb{C}$ given by f(a+bi) = a-bi is an automorphism of \mathbb{C} . Observe that f(c) = c if and only if $c \in \mathbb{R}$.

Theorem 8.3. Let K be a field. The set $\operatorname{Aut} K$ of automorphisms of K forms a group under composition.

Proof. First observe that composition is associative. The identity element in Aut K is the identity map id_K . For inverses, let $\alpha \in \mathrm{Aut}\,K$. Since α is a bijection, there exists an inverse map $\alpha^{-1}:K\to K$, where $\alpha^{-1}(x)$ is the unique element s such that $\alpha(s)=x$. Now we check that α^{-1} is also a homomorphism. For this, let $x,y\in K$ and suppose that $\alpha^{-1}(x)=s$ and $\alpha^{-1}(y)=t$. Then $\alpha(s)=x$ and $\alpha(t)=y$, so

$$\alpha(s+t) = \alpha(s) + \alpha(t) = x+y$$

since α is a homomorphism. Then we see that

$$\alpha^{-1}(x+y) = s + t = \alpha^{-1}(x) + \alpha^{-1}(y).$$

Similarly, $\alpha(st) = xy$, so

$$\alpha^{-1}(xy) = st = \alpha^{-1}(x)\alpha^{-1}(y).$$

Hence $\alpha^{-1} \in \operatorname{Aut} K$ and $\alpha \circ \alpha^{-1} = \alpha^{-1} \circ \alpha = \operatorname{id}_K$, so $\operatorname{Aut} K$ is indeed a group.

Definition 8.2. We call Aut K the group of automorphisms of K.

Definition 8.3. Let L be a field extension of K. A K-automorphism is an automorphism $\alpha: L \to L$ such that $\alpha(x) = x$ for all $x \in K$. The Galois group of L over K, denoted $\operatorname{Gal}(L:K)$, is the set of K-automorphisms of L. The Galois group $\operatorname{Gal}(f)$ of a polynomial $f \in K[X]$ is $\operatorname{Gal}(L:K)$ where L is a splitting field of f over K.

Theorem 8.4. The Galois group Gal(L:K) is a subgroup of Aut L.

Proof. Clearly $\mathrm{id}_L \in \mathrm{Gal}(L:K)$ since it fixes all elements of L. Now let $\alpha, \beta \in \mathrm{Gal}(L:K)$. Then we have $\alpha(x) = x$ and $\beta(x) = x$ for all $x \in K$. Then $\beta^{-1}(x) = x$, which gives

$$\alpha \beta^{-1}(x) = \alpha(x) = x,$$

so $\alpha \beta^{-1} \in \operatorname{Gal}(L:K)$. Thus $\operatorname{Gal}(L:K)$ is a subgroup of Aut L.

Remark. The big idea here is that there is a correspondence between subfields E with $K \subseteq E \subseteq L$ and subgroups H of Gal(L:K).

Exercise 8.2. From a past homework, we identified the subfields of $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ as:

Compare the subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q})$ to the subfields of $\mathbb{Q}(\sqrt{3},\sqrt{5})$ containing \mathbb{Q} .

Feb. 7 — The Galois Correspondence

9.1 Automorphisms of Fields

Example 9.0.1. The complex conjugation $\beta: \mathbb{C} \to \mathbb{C}$ given by $\beta(a+bi) = a-bi$ is a nontrivial element of the Galois group of $\mathbb{C}: \mathbb{R}$. In fact, $Gal(\mathbb{C}: \mathbb{R}) = \{id, \beta\}$. Note that β fixes \mathbb{R} , id fixes \mathbb{C} , and

9.2 The Galois Correspondence

Definition 9.1. Define

$$\Gamma(E) = \{ \alpha \in \text{Aut } L : \alpha(z) = z \text{ for all } z \in E \},$$

$$\Phi(H) = \{ x \in L : \alpha(x) = x \text{ for all } \alpha \in H \},$$

where E is a subfield of L and H is a subgroup of Gal(L:K). This is called the Galois correspondence.

Example 9.1.1. In the previous example of $\mathbb{C} : \mathbb{R}$, we have $\Gamma(\mathbb{C}) = \{id\}$ and $\Gamma(\mathbb{R}) = \{id, \beta\}$. We also have $\Phi(\{id, \beta\}) = \mathbb{R}$ and $\Phi(\{id\}) = \mathbb{C}$.

Remark. The goal is to determine: When are Γ and Φ inverses of one another?

Theorem 9.1. We have the following:

- 1. For every subfield E of L containing K, $\Gamma(E)$ is a subgroup of $\operatorname{Gal}(L:K)$.
- 2. Conversely, for every subgroup H of $\operatorname{Gal}(L:K)$, $\Phi(H)$ is a subfield of L containing K.

Proof. See Howie.

Theorem 9.2. Let $z \in L \setminus K$. If z is a root of $f \in K[X]$ and $\alpha \in Gal(L : K)$, then $\alpha(z)$ is also a root of f.

Proof. Let $f = a_0 + a_1 X + \cdots + a_n X^n$, where $a_i \in K$. Then since α fixes each $a_i \in K$, we have

$$f(\alpha(z)) = a_0 + a_1 \alpha(z) + \dots + a_n (\alpha(z))^n = \alpha(a_0) + \alpha(a_1)\alpha(z) + \dots + \alpha(a_n)(\alpha(z))^n$$

= $\alpha(a_0 + a_1 z + \dots + a_n z^n) = \alpha(0) = 0,$

which completes the proof.

Example 9.1.2. Recall this example from homework:

A basis for L over K is $\{1, \sqrt{3}, \sqrt{5}, \sqrt{15}\}$. Since $\sqrt{3}$ is a root of $X^2 - 3$, by the previous theorem, any element in Gal(L:K) must send $\sqrt{3} \mapsto \pm \sqrt{3}$. Similarly, any element must send $\sqrt{5} \mapsto \pm \sqrt{5}$. So the \mathbb{Q} -isomorphisms of $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ are

$$\alpha(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a-b\sqrt{3}+c\sqrt{5}-d\sqrt{15},$$

$$\beta(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a+b\sqrt{3}-c\sqrt{5}-d\sqrt{15},$$

$$\gamma(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a-b\sqrt{3}-c\sqrt{5}+d\sqrt{15},$$

$$\mathrm{id}(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}.$$

We can write the multiplication table for this group as:

The proper subgroups are $H_1 = \{id, \alpha\}$, $H_2 = \{id, \beta\}$, and $H_3 = \{id, \gamma\}$. Also $\{id\}$ and $G = \{id, \alpha, \beta, \gamma\}$ are subgroups. Then

$$\Phi(H_1) = \mathbb{Q}(\sqrt{5}), \quad \Phi(H_2) = \mathbb{Q}(\sqrt{3}), \quad \Phi(H_3) = \mathbb{Q}(\sqrt{15}),$$

$$\Phi(\{\text{id}\}) = \mathbb{Q}(\sqrt{3}, \sqrt{5}), \quad \Phi(G) = \mathbb{Q}.$$

Under Φ , this gives the diagram:

Also note that $\Gamma(\mathbb{Q}(\sqrt{3})) = \{id, \alpha\}$ since

$$\alpha(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a-b\sqrt{3}+c\sqrt{5}-d\sqrt{15}.$$

Exercise 9.1. Show that Γ is the inverse of Φ in the previous example.

Theorem 9.3. Let L: K be a field extension. Then

- 1. If E_1, E_2 are two subfields of L containing K, then $E_1 \subseteq E_2$ implies $\Gamma(E_1) \supseteq \Gamma(E_2)$.
- 2. If H_1, H_2 are subgroups of Gal(L:K), then $H_1 \subseteq H_2$ implies $\Phi(H_1) \supseteq \Phi(H_2)$.

Proof. (1) Suppose $E_1 \subseteq E_2$ and $\alpha \in \Gamma(E_2)$. Then α fixes every element in E_2 , so since $E_1 \subseteq E_2$, α also fixes every element in E_1 . Hence $\alpha \in \Gamma(E_1)$ by definition.

(2) Suppose $H_1 \subseteq H_2$ and let $z \in \Phi(H_2)$. Then $\alpha(z) = z$ for every $\alpha \in H_2$, and since $H_1 \subseteq H_2$, $\alpha(z) = z$ for every $\alpha \in H_1$ as well. Hence $z \in \Phi(H_1)$ by definition.

Remark. Note that Γ and Φ are not always inverses of one another.

Example 9.1.3. Consider the extension $\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}$. If $\alpha \in \text{Gal}(\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q})$, then

$$\alpha(\sqrt[3]{2})^3 = \alpha(2) = 2.$$

Since there is only one cube root of 2 in this field, we must have $\alpha(\sqrt[3]{2}) = \sqrt[3]{2}$. So $Gal(\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}) = \{id\}$. So Γ cannot be the inverse of Φ here since there are two subfields, namely $\mathbb{Q}(\sqrt[3]{2})$ and \mathbb{Q} . In particular,

$$\Gamma(\mathbb{Q}(\sqrt[3]{2})) = \Gamma(\mathbb{Q}) = \{id\} \text{ and } \Phi(\{id\}) = \mathbb{Q}(\sqrt[3]{2}).$$

Theorem 9.4. For any subfield E of L and subgroup H of Gal(L:K), we have

- 1. $E \subseteq \Phi(\Gamma(E))$
- 2. and $H \subseteq \Gamma(\Phi(H))$.

Proof. (1) Let $z \in E$. Then $\Gamma(E)$ is the set of all automorphisms fixing every element of E, and so z is fixed by every element of $\Gamma(E)$. Hence $z \in \Phi(\Gamma(E))$.

(2) Let $\alpha \in H$. Then $\Phi(H)$ is the set of elements of L fixed by every element of H, and so α fixes every element of $\Phi(H)$. Hence $\alpha \in \Gamma(\Phi(H))$.

Remark. Now the goal will be to find sufficient conditions for Γ and Φ to be inverses of one another.

9.3 Normal Extensions

Definition 9.2. A field extension L: K is *normal* if every irreducible polynomial in K[X] having at least one root in L splits completely over L.

Example 9.2.1. An nonexample is $\mathbb{Q}(\sqrt[3]{2})$: \mathbb{Q} . This is not a normal extension since X^3-2 is irreducible and has a root in $\mathbb{Q}(\sqrt[3]{2})$, but does not split completely over $\mathbb{Q}(\sqrt[3]{2})$.

Remark. Is $\mathbb{Q}(\sqrt{2}) : \mathbb{Q}$ normal?

Theorem 9.5. A finite extension L: K is normal if and only if it is a splitting field for some polynomial in K[X].

Proof. (\Rightarrow) Let L be a finite normal extension and $\{z_1, \ldots, z_n\}$ be a basis for L: K. let m_i be the minimal polynomial for z_i , and let

$$m=m_1m_2\ldots m_n$$
.

Each m_i has at least one root z_i in L, hence m splits completely over L since L is normal. Since L is generated by z_1, \ldots, z_n , it is not possible for m to split over a proper subfield of L, hence L is a splitting field for m over K.

(\Leftarrow) See Howie. Relies on the isomorphism $K(\alpha) \to K(\beta)$ for α, β roots of an irreducible polynomial f. We also need properties of degrees of field extensions.

Corollary 9.5.1. Let L be a normal extension of K and E a subfield of L containing K. Then every injective K-homomorphism $\varphi : E \to L$ can be extended to a K-automorphism φ^* of L.

Proof. By the theorem, there exists $f \in K[X]$ such that L is a splitting field for f over K. But L is also a splitting field for f over E and $\varphi(E)$. From here, a slight generalization of the proof of uniqueness of splitting fields gives the desired K-automorphism of L extending φ .

Example 9.2.2. Let
$$L = \mathbb{Q}(\sqrt{3}, \sqrt{5})$$
, $K = \mathbb{Q}$, and $E = \mathbb{Q}(\sqrt{3})$. Define $\varphi : E \to L$ by $\varphi(a + b\sqrt{3}) = a - b\sqrt{3}$,

which is an injective K-homomorphism. We have the following diagram:

$$\mathbb{Q}(\sqrt{3}) \xrightarrow{\varphi} \mathbb{Q}(\sqrt{3}, \sqrt{5})$$

$$\downarrow i \qquad \qquad \qquad \downarrow q$$

$$\mathbb{Q}(\sqrt{3}, \sqrt{5})$$

Then we can define

$$\varphi^*(a + b\sqrt{3} + c\sqrt{5} + d\sqrt{15}) = a - b\sqrt{3} + c\sqrt{5} - d\sqrt{15}$$

as an extension of φ . Note that we could have also defined

$$\varphi^*(a+b\sqrt{3}+c\sqrt{5}+d\sqrt{15}) = a-b\sqrt{3}-c\sqrt{5}+d\sqrt{15}.$$

Remark. From the previous example we see that φ^* is not unique.

Feb. 12 — Normal Closures

10.1 Normal Closures

Recall this theorem from last time:

Theorem 9.5. A finite extension L: K is normal if and only if it is a splitting field for some polynomial in K[X].

A natural question to ask is: Can we always extend a finite extension to make it normal?

Definition 10.1. Let L: K be a finite extension. A field N containing L is a normal closure of L: K if

- 1. N is a normal extension of K,
- 2. and if E is a proper subfield of N containing L, then E is not a normal extension of K.

Theorem 10.1. Let L: K be a finite extension. Then

- 1. there exists a normal closure N of L over K,
- 2. and N is unique up to isomorphism.

Proof. Let $\{z_1, \ldots, z_n\}$ be a basis for L: K. Since L: K is finite, each z_i is algebraic over K, with say minimal polynomial $m_i \in K[X]$. Let

$$m=m_1\ldots m_n$$

and let N be the splitting field of m over L. Then N is also a splitting field of m over K, since L is generated over K by some of the roots of m in N. Hence N is a normal extension of K containing L.

To see that N is the smallest such field, suppose E is a subfield of N containing L, and suppose E is normal. For each m_i , E contains a root z_i , so the normality of E implies that E contains all the roots of m, so E = N. For uniqueness, see Howie. The proof relies on the uniqueness of splitting fields.

Definition 10.2. Let K_1, \ldots, K_n be subfields of L. The *join* of K_1, \ldots, K_n , denoted

$$K_1 \vee K_2 \vee \cdots \vee K_n$$

is the smallest subfield of L containing $K_1 \cup K_2 \cup \cdots \cup K_n$.

Remark. The smallest subfield of L containing $K_1 \cup K_2$ is $K_1 \vee K_2 = K_1(K_2) = K_2(K_1)$, similar to how the smallest subfield of \mathbb{R} containing $\mathbb{Q} \cup \{\sqrt{3}\}$ is $\mathbb{Q}(\sqrt{3})$.

Example 10.2.1. Let $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(e^{2\pi i/3} \cdot \sqrt[3]{2}) \subseteq \mathbb{C}$. Then $\mathbb{Q}(\sqrt[3]{2}) \vee \mathbb{Q}(e^{2\pi i/3} \cdot \sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$, since

$$e^{2\pi i/3} \cdot \sqrt[3]{2} = -\frac{\sqrt[3]{2}}{2} + \frac{i\sqrt{3}}{2}\sqrt[3]{2}.$$

Remark. In the above example, we have $\mathbb{Q}(\sqrt[3]{2}) \cong \mathbb{Q}(e^{2\pi i/3} \cdot \sqrt[3]{2}) \cong \mathbb{Q}[X]/\langle X^3 - 2 \rangle$.

Corollary 10.1.1. Let L: K be a finite extension, and N the normal closure of L: K. Then

$$N = L_1 \vee L_2 \vee \cdots \vee L_k$$

where L_1, L_2, \ldots, L_k are subfields of N containing K isomorphic to L.

Proof. As in the previous proof, suppose $\{z_1, \ldots, z_n\}$ is a basis for L: K, so $L = K(z_1, \ldots, z_n)$, and m_i is a minimal polynomial for z_i , and N a splitting field for $m = m_1 \ldots m_n$ over K. Let z_i' be an arbitrary root of m_i . Since z_i and z_i' are both roots of m_i , there exists a K-isomorphism $\varphi: K(z_i) \to K(z_i')$, which by Corollary 9.5.1 implies there exists a K-automorphism $\varphi^*: N \to N$. We have that

$$z_i' \in \varphi^*(L) \cong L$$
,

so every root of m_i is contained in a subfield $L' = \varphi^*(L)$ of N that contains K and is isomorphic to L, since φ^* is a K-automorphism. Since N is generated over K by the roots of m, it is generated by finitely many subfields containing K and isomorphic to L.

Example 10.2.2. Find the normal closure of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} . Following the proof of the theorem,

$$\{1, \sqrt[3]{2}, \sqrt[3]{2}^2\}$$

is a basis of $\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}$. The minimal polynomials of $1, \sqrt[3]{2}, \sqrt[3]{2}$ are $X-1, X^3-2, X^3-4$, respectively. The splitting field of

$$(X-1)(X^3-2)(X^3-4)$$

over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$, since

$$X^{3} - 2 = (X - \sqrt[3]{2})(X - e^{2\pi i/3}\sqrt[3]{2})(X - e^{-2\pi i/3}\sqrt[3]{2})$$

and

$$X^{3} - 4 = (X - \sqrt[3]{2})(X - e^{2\pi i/3}\sqrt[3]{2})(X - e^{-2\pi i/3}\sqrt[3]{2}).$$

So $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) = L_1 \vee L_2 \vee L_3$, where $L_1 = \mathbb{Q}(\sqrt[3]{2})$, $L_2 = \mathbb{Q}(e^{2\pi i/3}\sqrt[3]{2})$, and $L_3 = \mathbb{Q}(e^{-2\pi i/3}\sqrt[3]{2})$, and

$$L_1 \cong L_2 \cong L_3 \cong \mathbb{Q}[X]/\langle X^3 - 2 \rangle.$$

Theorem 10.2. Let L: K be a finite normal extension and E a subfield of L containing K. Then E is a normal extension of K if and only if every K-monomorphism of E into L is a K-automorphism of E.

Proof. (\Rightarrow) Suppose E:K is normal and let $\varphi:E\to L$ be a K-monomorphism. Now we would like to show that $\varphi(E)\subseteq E$. So let let $z\in E$ and suppose

$$m = a_0 + a_1 X + \dots + a_n X^n$$

is the minimal polynomial of z over K. Then

$$a_0 + a_1 z + \dots + a_n z^n = 0,$$

so that

$$a_0 + a_1 \varphi(z) + \dots + a_n \varphi(z)^n = 0$$

since φ is a homomorphism fixing K pointwise. Hence $\varphi(z)$ is also a root of m in L. Since E:K is normal, the irreducible polynomial m splits completely over E. Hence $\varphi(z) \in E$, so that $\varphi(E) \subseteq E$. Then¹

$$[\varphi(E) : K] = [\varphi(E) : \varphi(K)] = [E : K] = [E : \varphi(E)][\varphi(E) : K],$$

so $[E:\varphi(E)]=1$. Hence $\varphi(E)=E$, so φ is a K-automorphism of E.

(\Leftarrow) Suppose every K-monomorphism $E \to L$ is a K-automorphism of E. Let f be an irreducible polynomial in K[X] having a root $z \in E$. We need to show that f splits completely over E. Since L is normal, f splits completely over L. Let z' be another root of f in L. Then there exists a K-automorphism $K(z) \to K(z')$ which sends $z \mapsto z'$, which by Corollary 9.5.1 extends to a K-automorphism ψ of L. Let $\psi^* = \psi|_E$, i.e. the restriction of ψ to E. By hypothesis, ψ^* is a K-automorphism of E, so

$$z' = \psi(z) = \psi^*(z) \in E.$$

That is, E is normal.

Example 10.2.3. Consider $\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}$, which is not normal. The \mathbb{Q} -monomorphism $\varphi:\mathbb{Q}(\sqrt[3]{2})\to\mathbb{C}$ given by

$$\varphi(a+b\sqrt[3]{2}+c\sqrt[3]{2}) = a+be^{2\pi i/3}\sqrt[3]{2}+ce^{-2\pi i/3}\sqrt[3]{2}$$

is not an automorphism of $\mathbb{Q}(\sqrt[3]{2})$.

Example 10.2.4. Consider $\mathbb{Q}(\sqrt{2}):\mathbb{Q}$, which is normal. The \mathbb{Q} -monomorphisms are id and

$$\varphi(a+b\sqrt{2}) = a - b\sqrt{2},$$

which are both \mathbb{Q} -automorphisms of $\mathbb{Q}(\sqrt{2})$.

10.2 Separable Extensions

Definition 10.3. An irreducible polynomial $f \in K[X]$ is *separable* over K if it has no repeated roots over a splitting field. A polynomial $g \in K[X]$ is *separable* over K if its irreducible factors are separable over K. An algebraic element in L:K is *separable* over K if its minimal polynomial is separable over K. An algebraic extension L:K is *separable* if every $\alpha \in L$ is separable over K.

Remark. A polynomial like $(X-2)^2$ actually is separable over \mathbb{Q} since its irreducible factors are X-2 and X-2, which are each separable.

Definition 10.4. A field K is *perfect* if every polynomial in K[X] is separable over K.

Theorem 10.3. We have the following:

1. Every field of characteristic 0 is perfect.

¹We need to make this argument since E may be infinite, so injectivity does not imply bijectivity.

2. Every finite field is perfect.

Proof. (1) It suffices to show that if char K=0, then any irreducible polynomial f is separable. Let

$$f = a_0 + a_1 X + \dots + a_n X^n$$

for $n \ge 1$ and suppose f is not separable. Then f and Df have a non-constant common factor d. Since f is irreducible, d must be a constant multiple of f, and thus d cannot divide Df unless

$$Df = a_1 + 2a_2X + \dots + na_nX^{n-1}$$

is the zero polynomial, by comparing degrees. Then

$$a_1 = 2a_2 = \dots = na_n = 0.$$

Since char K = 0, this implies

$$a_1 = a_2 = \dots = a_n = 0,$$

and so $f = a_0$, a constant polynomial.² Contradiction. Hence f is separable.

(2) The same argument as above implies the only possible inseparable irreducible polynomials are of the form³

$$f(X) = b_0 + b_1 X^p + b_2 X^{2p} \cdots + b_m X^{mp}.$$

Now Theorem 7.24 of Howie implies that if K is finite, such a polynomial is reducible. Hence every irreducible polynomial is separable, so K is perfect. See Howie for details.

Remark. Recall that $\mathbb{Z}_p(X)$ is an example of an infinite field with characteristic p.

²Recall that an irreducible polynomial is by definition a non-unit.

³We can still conclude $ka_k = 0$ implies $a_k = 0$ when k is not a multiple of p.

Feb. 21 — Galois Extensions

11.1 Example of an Inseparable Extension

Example 11.0.1. The field $K = \mathbb{Z}_p(X)$ is not perfect. Consider the polynomial

$$f = Y^p - X \in \mathbb{Z}_p(X)[Y],$$

which is irreducible. Now let L be a splitting field of f over K and α a root of f, i.e. $\alpha^p - X = 0$. Then

$$(Y - \alpha)^p = Y^p - \alpha^p = Y^p - X$$

by freshman exponentiation. In particular, α is a repeated root of f in L.

11.2 Galois Extensions

Definition 11.1. A Galois extension of K is a finite extension that is both normal and separable.

Remark. The main goal here is: For a Galois extension, Γ and Φ are inverses of one another.

Theorem 11.1. Let L: K be a separable extension of degree n. Then there are exactly n distinct K-monomorphisms of L into a normal closure N of L over K.

Proof. Use strong induction on the degree of L:K. See Howie for details.

Corollary 11.1.1. If L: K is Galois, then |Gal(L:K)| = [L:K].

Proof. If L: K is Galois, then L: K is normal and separable. So the previous theorem applies, where L is its own normal closure. So we get exactly [L: K] distinct K-monomorphisms of L into L, which are precisely the K-automorphisms of L and thus the elements of the Galois group.

Example 11.1.1. The extension $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}$ is Galois with $[\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}] = 6$. We could have

$$\sqrt[3]{2} \mapsto \sqrt[3]{2} \text{ or } e^{2\pi i/3} \sqrt[3]{2} \text{ or } e^{-2\pi i/3} \sqrt[3]{2} \text{ and } i\sqrt{3} \mapsto i\sqrt{3} \text{ or } -i\sqrt{3}.$$

Combinining these options gives us 6 distinct maps, so these must in fact all be \mathbb{Q} -automorphisms of $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$, since we know the Galois group has size 6. In fact, $Gal(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}) \cong S_3 \cong D_3$.

Remark. The proper nontrivial subfields of $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$ are $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(e^{2\pi i/3}\sqrt[3]{2})$, $\mathbb{Q}(e^{-2\pi i/3}\sqrt[3]{2})$, and $\mathbb{Q}(i\sqrt{3})$. Maybe draw a pretty diagram with this showing the Galois correspondence.

Exercise 11.1. Show that $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Exercise 11.2. Show that $\mathbb{Z}/4\mathbb{Z} \ncong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Theorem 11.2. Let L: K be a finite extension. Then $\Phi(Gal(L:K)) = K$ if and only if L: K is normal and separable.

Proof. (\Leftarrow) Let [L:K]=n. By Corollary 11.1.1, we have $|\operatorname{Gal}(L:K)|=n$. Let $K'=\Phi(\operatorname{Gal}(L:K))$. By definition, $K\subseteq K'$. By Theorem 7.12 of Howie, we find that

$$[L:K'] = |Gal(L:K)|.$$

Hence [L:K'] = [L:K] and thus we conclude that K = K'.

$$(\Rightarrow)$$
 See Howie.

Exercise 11.3. Show that if $K \subseteq K'$ and [L:K'] = [L:K], then K = K'.

Theorem 11.3. Let L: K be Galois and E a subfield of L containing K. If $\delta \in Gal(L:K)$, then

$$\Gamma(\delta(E)) = \delta\Gamma(E)\delta^{-1}$$
.

Proof. We begin by showing $\delta\Gamma(E)\delta^{-1} \subseteq \Gamma(\delta(E))$. For this, let $\theta \in \Gamma(E)$ and $z' \in \delta(E)$. Then there exists a unique $z \in E$ such that $\delta(z) = z'$, since δ is an automorphism. Then

$$\delta\theta\delta^{-1}(z') = \delta\theta(z) = \delta(z) = z'$$

since $\delta(z) = z'$ and $\theta \in \Gamma(E)$. So we see that $\delta\theta\delta^{-1} \in \Gamma(\delta(E))$.

Now for $\Gamma(\delta(E)) \subseteq \delta\Gamma(E)\delta^{-1}$, we will show that $\delta^{-1}\Gamma(\delta(E))\delta \subseteq \Gamma(E)$. Let $\theta' \in \Gamma(\delta(E))$ and $z \in E$. Then $\delta(z) \in \delta(E)$ and so $\theta'(\delta(z)) = \delta(z)$. Thus

$$(\delta^{-1}\theta'\delta)(z) = (\delta^{-1} \circ \delta)(z) = z,$$

so we get $\delta^{-1}\theta'\delta \in \Gamma(E)$, as desired.

Example 11.1.2. Consider $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}$. Define the elements of $Gal(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q})$ by

$$\mu_{1}: \sqrt[3]{2} \mapsto \sqrt[3]{2}, i\sqrt{3} \mapsto -i\sqrt{3}, \quad \mu_{2}: \sqrt[3]{2} \mapsto e^{2\pi i/3} \sqrt[3]{2}, i\sqrt{3} \mapsto -i\sqrt{3},$$

$$\mu_{3}: \sqrt[3]{2} \mapsto e^{-2\pi i/3} \sqrt[3]{2}, i\sqrt{3} \mapsto -i\sqrt{3},$$

$$\rho_{1}: \sqrt[3]{2} \mapsto e^{2\pi i/3} \sqrt[3]{2}, i\sqrt{3} \mapsto i\sqrt{3}, \quad \rho_{2}: \sqrt[3]{2} \mapsto e^{-2\pi i/3} \sqrt[3]{2}, i\sqrt{3} \mapsto i\sqrt{3}.$$

Let $\delta = \mu_3$ and $E = \mathbb{Q}(\sqrt[3]{2})$. Then $\delta(E) = \mathbb{Q}(e^{-2\pi i/3}\sqrt[3]{2})$ since $\mu_3(\sqrt[3]{2}) = e^{-2\pi i/3}\sqrt[3]{2}$. Now

$$\mu_2(e^{-2\pi i/3}\sqrt[3]{2}) = \mu_2(e^{-2\pi i/3})\mu_2(\sqrt[3]{2}) = \mu_2(-\frac{1}{2} - i\frac{\sqrt{3}}{2})\mu_2(\sqrt[3]{2})$$
$$= (-\frac{1}{2} + i\frac{\sqrt{3}}{2})(e^{2\pi i/3}\sqrt[3]{2}) = e^{2\pi i/3}e^{2\pi i/3}\sqrt[3]{2} = e^{-2\pi i/3}\sqrt[3]{2},$$

so $\Gamma(\delta(E)) = \{id, \mu_2\}$. Also $\Gamma(E) = \{id, \mu_1\}$, and we find that

$$\delta\Gamma(E)\delta^{-1} = {\{\delta id\delta^{-1}, \delta\mu_1\delta^{-1}\}} = {\{id, \mu_3\mu_1\mu_3^{-1}\}} = {\{id, \mu_2\}},$$

so indeed we have $\Gamma(\delta(E)) = \delta\Gamma(E)\delta^{-1}$ in this case.

Feb. 26 — The Fundamental Theorem

12.1 Normal Subgroups

Recall the following:

Definition 12.1. A subgroup H of G is normal if

$$gHg^{-1} = H$$

for all $g \in G$ (equivalently, gH = Hg for all $g \in G$). This is denoted $H \triangleleft G$.

Remark. If G is abelian, then every subgroup of G is normal.

Exercise 12.1. If [G:H]=2, then H is normal.

Remark. Normality is a necessary and sufficient condition for G/H to be a well-defined group (with operation induced by the operation on G).

Theorem 12.1. Let $\varphi: G \to G'$ be a surjective homomorphism with kernel H. Then there exists a unique isomorphism $\alpha: G/H \to G'$ such that the following diagram commutes:

$$G \xrightarrow{\varphi} G'$$

$$\pi \downarrow \qquad \qquad \alpha \qquad \qquad G/H$$

Here $\pi: G \to G/H$ is the canonical projection $g \mapsto gH$.

12.2 The Fundamental Theorem of Galois Theory

Theorem 12.2 (Fundamental theorem of Galois theory). Let L: K be a separable, normal extension of finite degree n. Then

- 1. For all subfields E of L containing K and for all subgroups H of $\mathrm{Gal}(L:K)$,
 - (a) $\Phi(\Gamma(E)) = E$ and $|\Gamma(E)| = [L:E]$,
 - $(b) \ \Gamma(\Phi(H)) = H \ and \ |\mathrm{Gal}(L:K)|/|\Gamma(E)| = [E:K].$
- 2. A subfield E is a normal extension of K if and only if $\Gamma(E)$ is a normal subgroup of $\operatorname{Gal}(L:K)$. If E:K is normal, then

$$Gal(E:K) \cong Gal(L:K)/\Gamma(E).$$

Proof. (1) By a homework exercise, L:K being normal implies that L:E is normal. Also, by Howie's Theorem 7.26, L:K being finite and separable implies that L:E is separable. Hence L:E is Galois, so $|\Gamma(E)| = [L:E]$. Then

$$[E:K] = \frac{[L:K]}{[L:E]} = \frac{|Gal(L:K)|}{|\Gamma(E)|}.$$

Now $\Gamma(E) = \operatorname{Gal}(L:E)$, so L:E being Galois and Howie's Theorem 7.30 imply that $\Phi(\Gamma(E)) = E$. Now let H be a subgroup of $\operatorname{Gal}(L:K)$. We showed that $H \subseteq \Gamma(\Phi(H))$. Also $\Phi\Gamma\Phi = \Phi$, so

$$|H| = [L : \Phi(H)] = [L : \Phi\Gamma\Phi(H)] = |\Gamma\Phi(H)|$$

by Howie's Theorem 7.12. Now finiteness and $H \subseteq \Gamma(\Phi(H))$ imply that $H = \Gamma(\Phi(H))$.

(2) (\Rightarrow) Suppose E: K is normal and let $\delta \in \operatorname{Gal}(L:K)$. Let $\delta' = \delta|_E$, the restriction of δ to E. Hence δ' is a monomorphism $E \to L$ and thus a K-automorphism of E, by Howie's Theorem 7.21. Hence

$$\delta(E) = \delta'(E) = E$$
,

and so by Theorem 11.3,

$$\Gamma(E) = \Gamma(\delta(E)) = \delta\Gamma(E)\delta^{-1}$$

i.e. $\Gamma(E)$ is a normal subgroup of Gal(L:K).

(\Leftarrow) Suppose $\Gamma(E)$ is a normal subgroup of $\operatorname{Gal}(L:K)$. Let δ_1 be a K-monomorphism from E to L. This extends (by Howie's Corollary 7.14) to a K-automorphism δ of L. Since $\Gamma(E)$ is normal, $\delta\Gamma(E)\delta^{-1}=\Gamma(E)$. Hence by Theorem 11.3, we get $\Gamma(\delta(E))=\Gamma(E)$. Since Γ is injective,

$$\delta_1(E) = \delta(E) = E,$$

so δ is a K-automorphism of E. By Howie's Theorem 7.21, this implies E:K is normal.

Now suppose E: K is normal, and we want to show that

$$Gal(E:K) \cong Gal(L:K)/\Gamma(E).$$

Let $\delta \in \operatorname{Gal}(L:K)$ and $\delta' = \delta|_E$. By Howie's Theorem 7.21, having E:K be normal implies that $\delta'(E) = E$. Thus we can define $\theta : \operatorname{Gal}(L:K) \to \operatorname{Gal}(E:K)$ by $\delta \mapsto \delta'$, i.e. restricting δ to E. Clearly θ is surjective onto $\operatorname{Gal}(E:K)$. Also, we see that

$$\ker \theta = \{ \delta \in \operatorname{Gal}(L : K) \mid \delta|_E = \operatorname{id}_E \} = \Gamma(E).$$

Hence by the first isomorphism theorem, $Gal(E:K) \cong Gal(L:K)/\ker \theta = Gal(L:K)/\Gamma(E)$.

Exercise 12.2. Show that $\Phi\Gamma\Phi = \Phi$.

Exercise 12.3. Check that θ is a homomorphism.

Example 12.1.1. Let $L = \mathbb{Q}(\sqrt[4]{2}, i)$ with $[L : \mathbb{Q}] = 8$. Any \mathbb{Q} -automorphism in $Gal(L : \mathbb{Q})$ must map $i \mapsto \pm i$. $\sqrt[4]{2} \mapsto \pm \sqrt[4]{2}, \pm i \sqrt[4]{2}$.

So there are only 8 possible automorphisms, and thus each of these must in fact be automorphisms since $|Gal(L:\mathbb{Q})| = [L:\mathbb{Q}] = 8$. We can enumerate these automorphisms via

id,
$$\alpha: \sqrt[4]{2} \mapsto i\sqrt[4]{2}, i \mapsto i$$
, $\beta: \sqrt[4]{2} \mapsto -\sqrt[4]{2}, i \mapsto i$, $\gamma: \sqrt[4]{2} \mapsto -i\sqrt[4]{2}, i \mapsto i$, $\lambda: \sqrt[4]{2} \mapsto \sqrt[4]{2}, i \mapsto -i$, $\mu: \sqrt[4]{2} \mapsto i\sqrt[4]{2}, i \mapsto -i$, $\nu: \sqrt[4]{2} \mapsto -i\sqrt[4]{2}, i \mapsto -i$, $\rho: \sqrt[4]{2} \mapsto -i\sqrt[4]{2}, i \mapsto -i$.

Note that $Gal(L : \mathbb{Q})$ is not abelian, as

$$\lambda \alpha(\sqrt[4]{2}) = \lambda(i\sqrt[4]{2}) = -i\sqrt[4]{2}, \quad \lambda \alpha(i) = \lambda(i) = i,$$

so $\lambda \alpha = \rho$. We can show as an exercise that $\alpha \lambda = \mu \neq \rho$, so $\lambda \alpha \neq \alpha \lambda$. The subgroups of $Gal(L : \mathbb{Q})$ are

$$\begin{split} G &= \operatorname{Gal}(L:\mathbb{Q}), \quad \{\operatorname{id}\}, \quad \{\operatorname{id},\beta\}, \quad \{\operatorname{id},\mu\}, \quad \{\operatorname{id},\nu\}, \quad \{\operatorname{id},\rho\}, \\ &\{\operatorname{id},\alpha,\beta,\gamma\}, \quad \quad \{\operatorname{id},\beta,\lambda,\nu\}, \quad \{\operatorname{id},\beta,\mu,\rho\}. \end{split}$$

Now we could draw a nice subgroup lattice for this (identical to D_4 , the dihedral group of order 8). The normal subgroups of $Gal(L:\mathbb{Q})$ are

$$G$$
, $\{id, \beta, \lambda, \nu\}$, $\{id, \alpha, \beta, \gamma\}$, $\{id, \beta, \mu, \rho\}$, $\{id, \beta\}$, $\{id\}$.

Let $H_1 = \{ \mathrm{id}, \alpha, \beta, \gamma \}$. Then $\Phi(H_1) = \mathbb{Q}(i)$. Also $\Phi(\{ \mathrm{id}, \lambda \}) = \mathbb{Q}(\sqrt[4]{2})$ and $\Phi(\{ \mathrm{id}, \nu \}) = \mathbb{Q}(i\sqrt[4]{2})$. We can also see that $\Phi(\{ \mathrm{id}, \mu \}) = \mathbb{Q}((1+i)\sqrt[4]{2})$ and $\Phi(\{ \mathrm{id}, \rho \}) = \mathbb{Q}((1-i)\sqrt[4]{2})$.

Exercise 12.4. Write out the multiplication table for $Gal(L : \mathbb{Q})$.

Feb. 28 — Join of Subgroups and Subfields

13.1 Join of Subgroups

Let H_1, H_2 be subgroups of G.

Exercise 13.1. Show that $H_1 \cap H_2$ is a subgroup of G.

Remark. In general, $H_1 \cup H_2$ is not a subgroup of G.

Definition 13.1. The *join* of H_1 and H_2 , denoted $H_1 \vee H_2$, is the smallest subgroup of G containing $H_1 \cup H_2$, i.e. $H_1 \vee H_2$ consists of all products of the form

$$a_1b_1\ldots a_nb_n$$
,

where $a_i \in H_1$ and $b_i \in H_2$ for all n.

Remark. Recall that if E_1 and E_2 are subfields of L, then $E_1 \cap E_2$ is also a subfield of L, as is the join

$$E_1 \vee E_2 = E_1(E_2) = E_2(E_1).$$

Example 13.1.1. In Example 12.1.1, we have $\{id, \beta\} \vee \{id, \lambda\} = \{id, \beta, \lambda, \nu\}$. Now notice that

$$\Phi(\{\mathrm{id},\beta\}) = \mathbb{Q}(i,\sqrt{2}), \quad \Phi(\{\mathrm{id},\lambda\}) = \mathbb{Q}(\sqrt[4]{2}), \quad \Phi(\{\mathrm{id},\beta,\lambda,\nu\}) = \mathbb{Q}(\sqrt{2}).$$

Notice that $\mathbb{Q}(i, \sqrt{2}) \cap \mathbb{Q}(\sqrt[4]{2}) = \mathbb{Q}(\sqrt{2}).$

Theorem 13.1. Let L: K be Galois and E_1, E_2 subfields of L containing K. If

$$\Gamma(E_1) = H_1, \quad \Gamma(E_2) = H_2,$$

then $\Gamma(E_1 \cap E_2) = H_1 \vee H_2$ and $\Gamma(E_1 \vee E_2) = H_1 \cap H_2$.

Proof. Certainly $E_1 \cap E_2 \subseteq E_1$, so $H_1 = \Gamma(E_1) \subseteq \Gamma(E_1 \cap E_2)$, since the Galois correspondence is order reversing. Similarly, $H_2 = \Gamma(E_2) \subseteq \Gamma(E_1 \cap E_2)$, so $H_1 \vee H_2 \subseteq \Gamma(E_1 \cap E_2)$. Now $H_1 \subseteq H_1 \vee H_2$, so we get $E_1 = \Phi(H_1) \supseteq \Phi(H_1 \vee H_2)$. Similarly, $E_2 = \Phi(H_2) \supseteq \Phi(H_1 \vee H_2)$, so $\Phi(H_1 \vee H_2) \subseteq E_1 \cap E_2$. Since L: K is Galois, we get

$$H_1 \vee H_2 \supseteq \Gamma(E_1 \cap E_2)$$

by applying Γ to both sides. So $\Gamma(E_1 \cap E_2) = H_1 \vee H_2$.

The proof for $\Gamma(E_1 \vee E_2) = H_1 \cap H_2$ is similar, see Howie for details.

Mar. 4 — Solvable Groups

14.1 Solvable Groups

Definition 14.1. A finite group G is solvable if, for some $m \geq 0$, it has a finite series

$${id} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_m = G$$

of subgroups such that for $i = 0, \ldots, m - 1$,

- 1. $G_i \triangleleft G_{i+1}$,
- 2. and G_{i+1}/G_i is cyclic.

Remark. We require $G_i \triangleleft G_{i+1}$, but G_i need not be normal in G.

Example 14.1.1. Let $G = \operatorname{Gal}(\mathbb{Q}(i, \sqrt[4]{2}), \mathbb{Q})$ from Example 12.1.1. We have

$$\{id\} \subseteq \{id, \lambda\} \subseteq \{id, \beta, \lambda, \nu\} \subseteq G,$$

where $G_i \triangleleft G_{i+1}$ and $|G_{i+1}/G_i| = 2$, so it is cyclic. Observe that $\{id, \lambda\}$ is not normal in G, since

$$\alpha\{\mathrm{id},\lambda\} = \{\alpha,\mu\} \neq \{\alpha,\rho\} = \{\mathrm{id},\lambda\}\alpha.$$

Theorem 14.1. Every finite abelian group G is solvable.

Proof. Recall from the structure theorem for finitely generated abelian groups that every finite abelian group is a direct sum of cyclic groups. Then

$$G = U_1 \oplus U_2 \oplus \cdots \oplus U_k$$

where each U_i is cyclic. Let

$$G_i = U_1 \oplus \cdots \oplus U_i$$
.

Observe that $G_i \triangleleft G_{i+1}$ since G is abelian, and $G_{i+1}/G_i \cong U_{i+1}$, which is cyclic. So G is solvable. \square

Remark. Recall that S_n is the symmetric group on n elements.

Theorem 14.2. Every permutation can be expressed as a product of transpositions (i.e. 2-cycles).

Definition 14.2. A permutation σ is *even* (respectively *odd*) if σ can be expressed as a product of an *even* (respectively *odd*) number of transpositions. This is well defined. The set

$$A_n = \text{subgroup of even permutations}$$

is called the alternating group.

Example 14.2.1. We have $S_3 = \{id, (12), (23), (13), (123), (132)\}$. We can write

$$\{id\} \subseteq \{id, (123), (132)\} \subseteq S_3.$$

Call these G_i for i=0,1,2. Then $G_i \triangleleft G_{i+1}$, and $G_2/G_1 \cong \mathbb{Z}_2$ and $G_1/G_0 = G_1 \cong \mathbb{Z}_3$. So S_3 is solvable.

Example 14.2.2. The symmetric group S_4 is solvable. We can write

$$\{id\} \subseteq \{id, (12)(34)\} \subseteq \{id, (12)(34), (13)(24), (14)(23)\} \subseteq A_4 \subseteq S_4.$$

Call the first three subgroups G_i for i = 0, 1, 2. Then $G_i \triangleleft G_{i+1}$, and we have

$$S_4/A_4 \cong \mathbb{Z}_2$$
, $A_4/G_2 \cong \mathbb{Z}_3$, $G_2/G_1 \cong \mathbb{Z}_2$, $G_1/G_0 \cong \mathbb{Z}_2$.

Exercise 14.1. Show that $G_2 = \{id, (12)(34), (13)(24), (14)(23)\} \triangleleft A_4$.

Definition 14.3. A group is *simple* if it has no proper normal subgroups.

Remark. A non-abelian simple group is not solvable.

Theorem 14.3. For $n \geq 5$, the alternating group A_n is simple.

Proof. See Howie. \Box

Theorem 14.4. We have the following:

- 1. If G is solvable, then every subgroup of G is solvable.
- 2. If G is solvable and $N \triangleleft G$, then G/N is solvable.
- 3. Let $N \triangleleft G$. Then G is solvable if and only if N and G/N are solvable.

Proof. (1) Since G is solvable, there exists

$$\{id\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_m = G$$

where $G_i \triangleleft G_{i+1}$ and G_{i+1}/G_i is cyclic. Now let H be a subgroup of G. Let $K_i = G_i \cap H$. Now check as an exercise that

$${id} = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_m = H$$

is the desired series of subgroups. In particular, check that $K_i \triangleleft K_{i+1}$ and K_{i+1}/K_i is cyclic (show that it is a subgroup of the cyclic group G_{i+1}/G_i).

(2) Take

$$N/N = NG_0/N \subseteq NG_1/N \subseteq \dots NG_m/N = G/N$$

as the desired series of subgroups. Here

$$NG = \{ ng \mid n \in N, g \in G \}.$$

Check as an exercise that this construction works. For the cyclic part, verify that $(NG_{i+1}/N)/(NG_i/N)$ is a quotient of the cyclic group G_{i+1}/G_i . One of the isomorphism theorems may help here.

(3) (\Rightarrow) this follows from (1) and (2).

 (\Leftarrow) Suppose N and G/N are solvable. Then there exists a series

$$\{id\} \subseteq N_0 \subseteq N_1 \subseteq \cdots \subseteq N_p = N$$

such that $N_i \triangleleft N_{i+1}$ and N_{i+1}/N_i is cyclic, and a series

$${id} = N/N = G_0/N \subseteq G_1/N \subseteq \cdots \subseteq G_n/N = G/N$$

such that $G_i/N \triangleleft G_{i+1}/N$ and $(G_{i+1}/N)/(G_i/N) \cong G_{i+1}/G_i$ by one of the isomorphism theorems, so it is cyclic as well. Now check as an exercise that

$$\{id\} = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_p = N = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G$$

is the desired series (i.e. check the normal and cyclic conditions).

Corollary 14.4.1. For $n \geq 5$, S_n is not solvable.

Proof. For $n \geq 5$, A_n is simple, hence it is not solvable. Now if S_n were solvable, all of its subgroups would be solvable, which leads to a contradiction since $A_n \subseteq S_n$.

14.2 Solvable Polynomials

Definition 14.4. A field extension L: K is a radical extension if there exists a sequence

$$K = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_m = L$$

such that $L_{j+1} = L_j(\alpha_j)$, where α_j is a root of a polynomial in $L_j[X]$ of the form $X^{n_j} - c_j$.

Example 14.4.1. For $L_0 = \mathbb{Q}$, we can take

$$L_{0} = \mathbb{Q},$$

$$L_{1} = L_{0}(\alpha_{0}), \qquad \alpha_{0}^{2} = 2,$$

$$L_{2} = L_{1}(\alpha_{1}), \qquad \alpha_{1}^{5} = 3 + \sqrt{2} \in L_{1},$$

$$L_{3} = L_{2}(\alpha_{2}), \qquad \alpha_{2}^{2} = 2 + \sqrt[5]{3 + \sqrt{2}} \in L_{2}.$$

This is a radical extension of \mathbb{Q} .

Definition 14.5. A polynomial $f \in K[X]$ is solvable by radicals if there is a splitting field for f contained in a radical extension of K.

Example 14.5.1. Any quadratic $f = X^2 + bX + c \in \mathbb{Q}[X]$ is solvable by radicals, since its roots are

$$\frac{-b \pm \sqrt{b^2 - 4c}}{2}.$$

Remark. In the 16th and 17th centuries, mathematicians proved that cubics

$$X^3 + a_2 X^2 + a_1 X + a_0$$

and quartics

$$X^4 + a_3X^3 + a_2X^2 + a_1X + a_0$$

are solvable by radicals. For cubics, the idea is to *depress* the cubic, i.e. make a substitution to remove the quadratic term. Then we get

$$Y^3 + 3aY + b = 0.$$

By a lengthy algebra argument, the roots are

$$q+r$$
, $q\omega+r\omega^2$, $q\omega^2+r\omega$,

where

$$q = \left(\frac{1}{2}(-b + \sqrt{b^2 + 4a^3})\right)^{1/3}$$

and we have similar expressions for r and ω . A similar but longer algebraic manipulations can be made for quartics. In particular, the expressions for the roots of cubics and quartics only involve radicals.

Theorem 14.5. Let L: K be a radical extension and N the normal closure of L over K. Then N is also a radical extension of K.

Proof. By Corollary 10.1.1, we have

$$N = L_1 \vee \cdots \vee L_k$$

where each $L_i \cong L$, hence they are all radical. Now it suffices to show that the join of two radical extensions is radical. For this, let

$$L_1 = K(\alpha_1, \dots, \alpha_m), \quad L_2 = K(\beta_1, \dots, \beta_n),$$

where $\alpha_i^{k_i} \in K(\alpha_1, \dots, \alpha_{i-1})$ and $\beta_i^{l_j} \in K(\beta_1, \dots, \beta_{j-1})$. Then

$$L_1 \vee L_2 = K(\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_n),$$

where $\alpha_i^{k_i} \in K(\alpha_1, \dots, \alpha_{i-1})$ and $\beta_j^{l_j} \in K(\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_{j-1})$, so $L_1 \vee L_2$ is radical.

Remark. Radical extensions involve polynomials of the form $X^m - c$. Let us look more closely at $X^m - 1$. We focus on fields K of characteristic 0, so that the splitting field L of $X^m - 1$ over K is normal and separable.

Lemma 14.1. The set R of roots of $X^m - 1$ is a cyclic group under multiplication.

Proof. Check as an exercise that R is indeed a subgroup of L. To see that it is cyclic, recall that

$$\exp(R) = \text{smallest positive integer } e \text{ such that } a^e = 1 \text{ for all } a \in R.$$

Clearly we have $\exp(R) \leq |R|$. Now observe that $x^e - 1$ has at most e roots, so $|R| \leq e$. Hence e = |R| = m, so (R, \cdot) is cyclic.

Definition 14.6. A primitive mth root of unity ω is a generator for (R, \cdot) .

Remark. We have

$$R = \{1, \omega, \omega^2, \dots, \omega^{m-1}\},\$$

and ω^i is a primitive mth root of unity if gcd(m, i) = 1.

Definition 14.7. Let $P_m = \{\text{primitive } m \text{th roots of unity}\}$. The cyclotomic polynomial Φ_m is

$$\Phi_m = \prod_{\varepsilon \in P_m} (X - \varepsilon).$$

Mar. 6 — Cyclotomic Polynomials

15.1 Cyclotomic Polynomials

Example 15.0.1. For $X^p - 1$ with p prime, all roots except 1 are primitive:

$$X^{p} - 1 = (X - 1)(X^{p-1} + X^{p-2} + \dots + 1).$$

So we get $\Phi_p = X^{p-1} + X^{p-2} + \dots + 1$.

Example 15.0.2. Consider $f = X^{12} - 1$, where $L \subseteq \mathbb{C}$ is the splitting field of f over \mathbb{Q} . We have

$$P_{12} = \{\omega, \omega^5, \omega^7, \omega^{11}\},\$$

the powers of $\omega = e^{2\pi i/12}$ relatively prime to 12. This gives

$$\Phi_{12} = (X - \omega)(X - \omega^{11})(X - \omega^5)(X - \omega^7) = (X^2 - (\omega + \omega^{11})X + 1)(X^2 - (\omega^5 + \omega^7)X + 1)$$
$$= (X^2 - \sqrt{3}X + 1)(X^2 + \sqrt{3}X + 1) = X^4 - X^2 + 1,$$

since $\omega^{11} = \overline{\omega}$ with $\text{Re}(\omega) = \sqrt{3}/2$ (a similar analysis works for ω^5 and ω^7). We have $P_6 = \{\omega^2, \omega^{10}\}$, so

$$(X - \omega^2)(X - \omega^{10}) = X^2 - (\omega^2 + \omega^{10})X + 1 = X^2 - X + 1$$

Next $P_3 = \{\omega^3, \omega^9\} = \{\pm i\}$, so

$$\Phi_4 = (X - i)(X + i) = X^2 + 1.$$

Now $P_3 = \{\omega^4, \omega^8\}$, so

$$\Phi_2 = (X - \omega^4)(X - \omega^8) = X^2 + X + 1.$$

Finally $P_2 = {\{\omega^6\}}$, so $\Phi_2 = X + 1$, and $P_1 = {\{1\}} = {\{\omega^{12}\}}$, so $\Phi_1 = X - 1$.

Remark. Observe that

$$X^{12} - 1 = \prod_{d|12} \Phi_d = (X - 1)(X + 1)(X^2 + X + 1)(X^2 + 1)(X^2 - X + 1)(X^4 - X^2 + 1).$$

This works in general, i.e.

$$X^m - 1 = \prod_{d|m} \Phi_d.$$

Note that we need 1|m and m|m here.

Remark. The question here is: Does Φ_d always have coefficients in K?

Lemma 15.1. Let K, L be fields and $K \subseteq L$. If $f, g \in L[X]$ such that $f, fg \in K[X]$, then $g \in K[X]$.

Proof. Let

$$f = a_0 + a_1 X + \dots + a_m X^m$$

for $a_i \in K$, $a_m \neq 0$, and

$$g = b_0 + b_1 X + \dots + b_n X^n$$

for $b_i \in L$, $b_n \neq 0$. Then

$$fg = c_0 + c_1 X + \dots + c_{m+n} X^{m+n}$$

for $c_i \in K$, so $b_n = c_{m+n}/a_m \in K$. Now suppose inductively that $b_j \in K$ for all j > r. Then

$$c_{m+r} = a_m b_r + a_{m-1} b_{r+1} + \dots + a_{m-n+r} b_n$$

where $a_i = 0$ if i < 0. Then we get that

$$b_r = \frac{c_{m+r} - a_{m-1}b_{r+1} - \dots - a_{m-n+r}b_n}{a_m}.$$

Since each $a_i \in K$, $c_{m+r} \in K$, and $b_j \in K$ for j > r, we get that $b_r \in K$. So in fact $b_j \in K$ for all j by induction, and thus $g \in K[X]$.

Theorem 15.1. Let char K = 0 (so the prime subfield $K_0 \cong \mathbb{Q}$). Suppose K contains the mth roots of unity, where $m \geq 2$. Then for every divisor d of m, $\Phi_d \in K_0[X]$.

Proof. Note that $\Phi_1 = X - 1 \in K_0[X]$. Let $d|m, d \neq 1$, and suppose inductively that $\Phi_r \in K_0[X]$ for all proper divisors r of d. Now

$$X^d - 1 = \left(\prod_{r|d,r \neq d} \Phi_r\right) \Phi_d,$$

so Lemma 15.1 gives $\Phi_d \in K_0[X]$.

Remark. In fact, $\Phi_m \in \mathbb{Z}[X]$.

Theorem 15.2. The cyclotomic polynomials Φ_m are irreducible over \mathbb{Q} .

Proof. See Howie.

15.2 The Galois Groups of Cyclotomic Polynomials

Remark. When we talk about the *Galois group of a polynomial*, we mean the Galois group of the splitting field of that polynomial.

Theorem 15.3. Let L be a splitting field over \mathbb{Q} of $X^m - 1$. Then $Gal(L : \mathbb{Q}) \cong \mathbb{Z}_m^*$.

Proof. Let ω be a primitive mth root of unity and $\sigma \in \operatorname{Gal}(L : \mathbb{Q})$. Since $L = \mathbb{Q}(\omega)$, $\sigma(\omega)$ must be another primitive mth root of unity, so $\sigma \in \operatorname{Gal}(L : \mathbb{Q})$ if and only if $\sigma(\omega) = \omega^{k_{\sigma}}$ where $\gcd(k_{\sigma}, m) = 1$. Then $\sigma \mapsto k_{\sigma}$ is an isomorphism $\operatorname{Gal}(L : \mathbb{Q}) \to \mathbb{Z}_m^*$, so $\operatorname{Gal}(L : \mathbb{Q}) \cong \mathbb{Z}_m^*$.

Exercise 15.1. Show that the map $\sigma \mapsto k_{\sigma}$ is an isomorphism $Gal(L : \mathbb{Q}) \to \mathbb{Z}_m^*$.

Corollary 15.3.1. If L is a splitting field of $X^p - 1$ over \mathbb{Q} with p prime, then $Gal(L : \mathbb{Q})$ is cyclic.

Proof. By Theorem 15.3, $Gal(L:\mathbb{Q})\cong\mathbb{Z}_p^*$, which we have previously shown is cyclic.

Example 15.0.3. Consider the splitting field $\mathbb{Q}(\omega)$ of X^8-1 over \mathbb{Q} , where $\omega=e^{2\pi i/8}=e^{\pi i/4}$. Then

$$\operatorname{Gal}(\mathbb{Q}(\omega):\mathbb{Q}) = \{\omega \mapsto \omega, \omega \mapsto \omega^3, \omega \mapsto \omega^5, \omega \mapsto \omega^7\} \cong \mathbb{Z}_8^*.$$

In particular, $Gal(\mathbb{Q}(\omega):\mathbb{Q})$ is not cyclic since every element has order 2.

Example 15.0.4. Consider the splitting field $\mathbb{Q}(\omega)$ of X^5-1 over \mathbb{Q} , where $\omega=e^{2\pi i/5}$. Then

$$Gal(\mathbb{Q}(\omega):\mathbb{Q}) = \{\omega \mapsto \omega, \omega \mapsto \omega^2, \omega \mapsto \omega^3, \omega \mapsto \omega^4\} \cong \mathbb{Z}_5^*.$$

Theorem 15.4. Let $f = X^m - a \in K[X]$, where char K = 0. Let L be a splitting for f over K. Then

- 1. L contains a primitive mth root of unity ω ,
- 2. $Gal(L:K(\omega))$ is cyclic, with order dividing m,
- 3. and $|Gal(L:K(\omega))| = m$ if and only if f is irreducible over $K(\omega)$.

Proof. If α is a root of f, then over L we have

$$f = (X - \alpha)(X - \omega \alpha)(X - \omega^2 \alpha) \dots (X - \omega^{m-1} \alpha)$$

where ω is a primitive mth root of unity. Since $\alpha, \omega\alpha \in L$, this proves (1). Thus $L = K(\omega, \alpha)$, and an element $\sigma \in \text{Gal}(L : K(\omega))$ is determined by $\sigma(\alpha)$, which must be another root of f. Hence $\sigma(\alpha) = \omega^{k_{\sigma}}\alpha$ for some $k_{\sigma} \in \{0, 1, \ldots, m-1\}$. Now for $\sigma, \tau \in \text{Gal}(L : K(\omega))$,

$$\sigma \circ \tau(\alpha) = \sigma(\omega^{k_{\tau}}\alpha) = \omega^{k_{\tau}}\sigma(\alpha) = \omega^{k_{\tau}}\omega^{k_{\sigma}}\alpha = \omega^{k_{\sigma}+k_{\tau}}\alpha,$$

so $\sigma \mapsto k_{\sigma}$ is a homomorphism $\operatorname{Gal}(L:K(\omega)) \to \mathbb{Z}_m$. This homomorphism is injective since

$$k_{\sigma} \equiv 0 \pmod{m}$$

if and only if $m|k_{\sigma}$, if and only if $\sigma(\alpha = \alpha)$. Hence $\operatorname{Gal}(L:K(\omega))$ is isomorphic to a subgroup of the cyclic group \mathbb{Z}_m , so $\operatorname{Gal}(L:K(\omega))$ is cyclic (subgroups of cyclic groups are cyclic). This proves (2).

(3) (\Leftarrow) Suppose f is irreducible over $K(\omega)$. Then by the Galois correspondence

$$|\mathrm{Gal}(L:K(\omega))| = [L:K(\omega)] = \partial f = m,$$

where the second equality follows from the characterization of simple algebraic extensions. So we get $Gal(L:K(\omega)) \cong \mathbb{Z}_m$, since we already showed that $Gal(L:K(\omega))$ is isomorphic to a subgroup of \mathbb{Z}_m .

(3) \Rightarrow) We show the contrapositive. Suppose f is not irreducible over $K(\omega)$, so f has a monic proper factor g with $\partial g < m$. Let β be a root of g. Then

$$X^{m} - a = (X - \beta)(X - \omega\beta) \dots (X - \omega^{m-1}\beta),$$

so $L = K(\omega, \beta)$ is a splitting field for f over $K(\omega)$. Hence

$$|\mathrm{Gal}(L:K(\omega))| = [L:K(\omega)] = \partial g < m,$$

so the Galois group is a proper subgroup of \mathbb{Z}_m .

Theorem 15.5 (Abel's theorem). Let char K = 0, p prime, and $a \in K$. If $X^p - a$ is reducible over K, then it has a linear factor X - c in K[X].

Proof. Suppose $f = X^p - a$ is reducible over K. Let $g \in K[X]$ be a monic irreducible factor of f of egree d. If d = 1, then we are done, so suppose 1 < d < p. Let L be a splitting field of f over K, and β a root of f in L. Then in L[X],

$$g = (X - \omega^{n_1}\beta)(X - \omega^{n_2}\beta)\dots(X - \omega^{n_d}\beta)$$

where ω is a primitive pth root of unity and $0 \le n_1 < n_2 < \cdots < n_d < p$. Suppose

$$g = X^d - b_{d-1}X^{d-1} + \dots + (-1)^d b_0.$$

Then we have

$$b_0 = \omega^{n_1 + n_2 + \dots + n_d} \beta^d = \omega^n \beta^d$$

where $n = n_1 + n_2 + \cdots + n_d$. So

$$b_0^p = \omega^{pn} \beta^{pd} = (\beta^p)^d = a^d$$

since $\omega^p = 1$ and β is a pth root of a. We have $\gcd(d, p) = 1$ since p is prime, so there exist $s, t \in \mathbb{Z}$ such that sd + tp = 1. Then since $a^d = b_0^p$, we get that

$$a = a^{sd+tp} = a^{sd}a^{tp} = b_0^{sp}a^{tp} = (b_0^s a^t)^p.$$

Now $X - b_0^s a^t$ is the desired linear factor of f in K[X].

Example 15.0.5. Let L be the splitting field of X^5-7 over \mathbb{Q} . We have $L=\mathbb{Q}(\sqrt[5]{7},\omega)$, where $\omega=e^{2\pi i/5}$. Note that the minimum polynomial of ω is $X^4+X^3+X^2+X+1$. What is $\mathrm{Gal}(L:\mathbb{Q})$? First we show that X^5-7 is irreducible over $\mathbb{Q}(\omega)$. To do this, suppose not. Then by Abel's theorem, X^5-7 has a linear factor X-c in $\mathbb{Q}(\omega)[X]$, i.e. $c=\sqrt[5]{7}\in\mathbb{Q}(\omega)$ and $[\mathbb{Q}(c):\mathbb{Q}]=5$. But if $c\in\mathbb{Q}(\omega)$, then

$$[\mathbb{Q}(c):\mathbb{Q}] \le [\mathbb{Q}(\omega):\mathbb{Q}] = 4,$$

a contradiction. Now notice that the roots of $X^5 - 7$ in $\mathbb C$ are

$$\alpha, \omega\alpha, \omega^2\alpha, \omega^3\alpha, \omega^4\alpha,$$

where $\alpha = \sqrt[5]{7}$. Since $|\operatorname{Gal}(L:\mathbb{Q})| = 20$, define the maps

$$\sigma_{p,q}: \alpha \mapsto \omega^p \alpha, \quad \omega \mapsto \omega^q$$

for $0 \le p \le 4$ and $1 \le q \le 4$. Then we can write

$$Gal(L : \mathbb{Q}) = \{ \sigma_{p,q} \mid 0 \le p \le 4, 1 \le q \le 4 \},\$$

where the identity element is id = $\sigma_{0,1}$.

Exercise 15.2. Check that

$$\sigma_{p,q}\sigma_{r,s} = \sigma_{rq+p,qs}$$

in the above example, where the subscripts are taken modulo 5 (i.e. compute $\sigma_{p,q}\sigma_{r,s}(\alpha)$ and $\sigma_{p,q}\sigma_{r,s}(\omega)$).

Mar. 11 — Solvable Polynomials

16.1 More on Cyclotomic Polynomials

Exercise 16.1. From Example 15.0.5, check that

$$(\sigma_{1,1})^n = \sigma_{n,1}, \quad (\sigma_{0,2})^n = \sigma_{0,2^n}, \quad \sigma_{2,1}\sigma_{0,2} = \sigma_{2,2} = \sigma_{0,2}\sigma_{1,1}.$$

Let $a = \sigma_{1,1}$ and $b = \sigma_{0,2}$. Use the above to show that

$$Gal(L : \mathbb{Q}) = \langle a, b \mid a^5 = 1, b^4 = 1, a^2b = ba \rangle$$

is a presentation for $Gal(L : \mathbb{Q})$ in terms of generators and relations.

Theorem 16.1. Let char K = 0 and suppose $X^m - 1$ splits completely over K. Let L : K be a cyclic extension with [L : K] = m. Then there exists $a \in K$ such that

- 1. $X^m a$ is irreducible over K,
- 2. L is a splitting field for $X^m a$ over K,
- 3. and $L = K(\alpha)$ where α is a root of $X^m a$.

Proof. See Howie. \Box

Remark. This is a partial converse to Theorem 15.4.

16.2 Solvable Polynomials

Remark. For $f \in K[X]$, we define Gal(f) = Gal(L:K) where L is a splitting field for f over K.

Theorem 16.2. Let char K = 0 and $f \in K[X]$. If Gal(f) is solvable, then f is solvable by radicals.

Proof. Let L be a splitting field of f over K, where Gal(L:K) is solvable by hypothesis, and let m = |Gal(L:K)|. If K does not contain an mth root of unity, adjoin one, i.e. let E be the splitting

field of $X^m - 1$ over K. Let M be the splitting field of f over E. This gives the subfield lattice:

By Theorem 7.36 of Howie, we get $G = \operatorname{Gal}(M : E) \cong \operatorname{Gal}(L : E \cap L)$. Now $\operatorname{Gal}(L : E \cap L) \subseteq \operatorname{Gal}(L : K)$, i.e. G is isomorphic to a subgroup of a solvable group, hence it is also solvable. So

$$\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{r-1} \triangleleft G_r = G,$$

with G_{i+1}/G_i cyclic. By the fundamental theorem of Galois theory, we get

$$M_0 = M \supseteq M_1 \supseteq \cdots \subseteq M_{r-1} \supseteq M_r = E \supseteq K$$
,

where $M_i: M_{i+1}$ is normal. We have $Gal(M: M_i) = G_i$, so

$$Gal(M_i: M_{i+1}) \cong Gal(M: M_i)/\Gamma(M_i) \cong G_{i+1}/G_i$$

which yields that $M_i: M_{i+1}$ is cyclic. Let $d_i = [M_i: M_{i+1}]$. Then $d_1|[M:E] = \operatorname{Gal}(M:E)$. Now since $\operatorname{Gal}(M:E) \cong \operatorname{Gal}(L:E \cap L)$, we have that

$$|\operatorname{Gal}(L:E\cap L)|\big||\operatorname{Gal}(L:K)|=m,$$

so $d_1|m$. Since M_{i+1} contains E, it contains every mth root of unity, so E also contains all d_i th roots of unity. By Theorem 15.4, there exists $\beta_i \in M_i$ such that $M_i = M_{i+1}(\beta_i)$, where β_i is a root of $X^{d_i} - c_{i+1}$ with $c_{i+1} \in M_{i+1}$. Hence we get that f is solvable by radicals.

Theorem 16.3. Let char K = 0 and $K \subseteq L \subseteq M$ where M is a radical extension. Then Gal(L : K) is solvable.

Proof. By hypothesis, there exists a sequence

$$M_r = M \supseteq M_{r-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = K$$
,

where $M_{i+1} = M_i(\alpha_i)$ with α_i a root of $X^{n_i} - a_i \in M_i[X]$. The main idea from here is that if L: K and M: K are normal, then

$$Gal(L:K) \cong Gal(M:K)/Gal(M:L),$$

so it is sufficient to show that Gal(M:K) is solvable. Now use Theorem 8.18 and Corollary 8.14 from Howie to show that Gal(M:K) is solvable (uses induction). See Howie for details.

Theorem 16.4. A polynomial $f \in K[X]$ with char K = 0 is solvable by radicals if and only if Gal(f) is solvable.

Proof. This is summarizing the previous two theorems.

16.3 Insolvability of the Quintic

Theorem 16.5. Let $f \in \mathbb{Q}[X]$ be a monic irreducible polynomial with $\partial f = p$, p prime. Suppose f has exactly two roots in $\mathbb{C} \setminus \mathbb{R}$. Then $Gal(f) = S_p$.

Proof. Let $L \subseteq \mathbb{C}$ be a splitting field for f. Now $G = \operatorname{Gal}(L : \mathbb{Q})$ is a subgroup of S_p since G is a group of permutations on the p roots of f in L. Consider $\mathbb{Q}(\alpha)$, where α has minimum polynomial f. Then $[\mathbb{Q}(\alpha) : \mathbb{Q}] = p$, so we get that

$$|G| = |\operatorname{Gal}(L : \mathbb{Q})| = [L : \mathbb{Q}] = [L : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = [L : \mathbb{Q}(\alpha)] \cdot p.$$

By the Sylow theorems, G has an element of order p.¹ Now G is a subgroup of S_p , and the only elements in S_p of order p are p-cycles, so G contains a p-cycle. Also complex roots of f come in conjugate pairs, so G contains a transposition τ that swaps conjugate roots (there are only two complex roots of f in $\mathbb{C} \setminus \mathbb{R}$). Then G is a subgroup of S_p that contains a p-cycle and a transposition, so by Homework 8, $G = S_p$. \square

Example 16.0.1. Consider the polynomial $f = X^5 - 8X + 2$, which is irreducible over \mathbb{Q} by Eisenstein's criterion. Now we have:

So by the intermediate value theorem, f has at least 3 real roots. Then $f'(X) = 5X^4 - 8$, and $f'(X) \le 0$ if and only if

$$-\sqrt[4]{\frac{8}{5}} \le X \le \sqrt[4]{\frac{8}{5}} \approx 1.12.$$

Rolle's theorem tells us that there exists at least one zero of f'(X) between zeroes of f(X).² Thus f has exactly 3 real roots. Then by the previous theorem, $Gal(f) = S_5$, so f is not solvable by radicals since S_5 is not solvable. So there exists a quintic polynomial which is not solvable by radicals.

16.4 Finitely-Generated Extensions

Definition 16.1. A subset $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq L$ is algebraically independent over K if for all polynomials $f(X_1, X_2, \dots, X_n)$ with coefficients in K, we have

$$f(\alpha_1, \alpha_2, \dots, \alpha_n) = 0 \iff f = 0...$$

Example 16.1.1. Notably, this is a stronger condition than linear independence. A non-example is $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$, which is linearly independent over \mathbb{Q} but not algebraically independent, since

$$\sqrt{2} \cdot \sqrt{3} - \sqrt{6} = 0.$$

This means we can take $f(X_1, X_2, X_3, X_4) = X_2 \cdot X_3 - X_4$ to get $f(1, \sqrt{2}, \sqrt{3}, \sqrt{6}) = \sqrt{2} \cdot \sqrt{3} - \sqrt{6} = 0$.

Exercise 16.2. Show that $\{\alpha_1, \ldots, \alpha_n\}$ is algebraically independent over K if and only if α_1 is transcendental over K and for each $2 \le d \le n$, α_d is transcendental over $K(\alpha_1, \ldots, \alpha_{d-1})$. Also show that this is if and only if

$$K(\alpha_1, \alpha_2, \dots, \alpha_n) \cong K(X_1, X_2, \dots, X_n).$$

¹Cauchy's theorem directly gives this, but also $|S_p| = p!$, so the p-Sylow subgroup can only have order p.

²The above conditions guarantee that f'(X) has only two zeroes, so f(X) can have at most three.

Definition 16.2. An extension L of K is *finitely generated* if $L = K(\alpha_1, \alpha_2, \dots, \alpha_n)$ for some natural number n.

Example 16.2.1. Finite extensions are finitely generated.

Example 16.2.2. The extension K(X) is finitely generated but not a finite extension.

Theorem 16.6. Let $L = K(\alpha_1, ..., \alpha_n)$ be a finitely generated extension of K. Then there exists a field E with $K \subseteq E \subseteq L$ such that for some m with $0 \le m \le n$,

- 1. $E = K(\beta_1, \beta_2, \dots, \beta_m)$, where $\{\beta_1, \beta_2, \dots, \beta_m\}$ are algebraically independent,
- 2. and [L:E] is finite.

Proof. If all the α_i are algebraic over K, then [L:K] is finite and we can take E=K with m=0. Otherwise, there exists α_i that is transcendental over K. Let $\beta_1=\alpha_i$. If $[L:K(\beta_1)]$ is not finite, then there exists α_j that is transcendental over $K(\beta_1)$. Let $\beta_2=\alpha_j$, and so on. Repeat this process, which terminates in at most n steps, so

$$E = K(\beta_1, \beta_2, \dots, \beta_m)$$

with $m \leq n$. By construction, $\{\beta_1, \ldots, \beta_m\}$ are algebraically independent over K and [L:E] is finite. \square

Remark. We can think of this theorem as saying that E is the "transcendental part" of the extension.

Remark. The elements β_i are not unique, but the number m is determined uniquely by L and K.

Mar. 13 — Symmetric Polynomials

17.1 Transcendental Extensions

Theorem 17.1. Let $K, L, m, E, \beta_1, \ldots, \beta_m$ be as defined in Theorem 16.6. If $K \subseteq F \subseteq L$ and

- 1. $F = K(\gamma_1, \gamma_2, \dots, \gamma_p)$ where $\{\gamma_1, \gamma_2, \dots, \gamma_p\}$ are algebraically independent over K,
- 2. [L:F] is finite,

then p = m.

Proof. Suppose p > m. Since [L : E] is finite, γ_1 is algebraic over E, so γ_1 is the root of a polynomial with coefficients in $E = K(\beta_1, \ldots, \beta_m)$. In other words, there exists a nonzero polynomial f with coefficients in K such that

$$f(\beta_1,\ldots,\beta_m,\gamma_1)=0.$$

Since γ_1 is transcendental over K, at least one β_i (without loss of generality say β_1) must show up in this polynomial. Hence β_1 is algebraic over $K(\beta_2, \beta_3, \dots, \beta_m, \gamma_1)$ and $[L: K(\beta_2, \dots, \beta_m, \gamma_1)]$ is finite. Repeat this argument, replacing each β_i with γ_i , so $[L: K(\gamma_1, \dots, \gamma_m)]$ is finite. Recall that p > m by assumption. But γ_{m+1} is transcendental over $K(\gamma_1, \dots, \gamma_m)$, a contradiction. Thus we must have $p \leq m$.

We also get $m \leq p$ for free by symmetry, so we conclude that p = m.

Definition 17.1. The m in Theorem 16.6 is called the transcendence degree of L:K.

17.2 Symmetric Polynomials

Definition 17.2. Let $L = K(t_1, t_2, ..., t_n)$ where $\{t_1, ..., t_n\}$ are algebraically independent over K. For $\sigma \in S_n$, define the K-automorphism $\varphi_{\sigma} : L \to L$ by $\varphi_{\sigma}(t_i) = t_{\sigma(i)}$, i.e. it permutes the t_i 's by σ . Let

$$\operatorname{Aut}_n = \{ \varphi_\sigma \mid \sigma \in S_n \}.$$

Example 17.2.1. If $\sigma = (1 \ 2 \ 3)$, then we have

$$\varphi_{\sigma}\left(\frac{t_1+t_2}{t_3}\right) = \frac{t_2+t_3}{t_1}.$$

Exercise 17.1. Show that the map $\sigma \mapsto \varphi_{\sigma}$ is an isomorphism $S_n \to \operatorname{Aut}_n$.

Example 17.2.2. What is $\Phi(Aut_n)$, the fixed field of Aut_n ? Certainly $\Phi(Aut_n)$ includes all of

$$s_1 = t_1 + t_2 + \dots + t_n,$$

 $s_2 = t_1 t_2 + t_1 t_3 + \dots + t_{n-1} t_n,$
 \vdots
 $s_n = t_1 t_2 \dots t_n.$

We call these the elementary symmetric polynomials. All rational combinations of the s_i are also fixed.

Exercise 17.2. Show

$$X^{n} - s_{1}X^{n-1} + \dots + (-1)^{n}s_{n} = \prod_{i=1}^{n} (X - t_{i}).$$

Example 17.2.3. The sum of the squares of the t_i is fixed by Aut_n . We can also see that

$$t_1^2 + t_2^2 + \dots + t_n^2 = s_1^2 - 2s_2$$
.

Theorem 17.2. The fixed field of Aut_n is precisely $\Phi(\operatorname{Aut}_n) = K(s_1, s_2, \dots, s_n)$.

Proof. We claim $[K(t_1, \ldots, t_n) : K(s_1, \ldots, s_n)] \leq n!$. The proof follows since $K(s_1, \ldots, s_n) \subseteq \Phi_n(\operatorname{Aut}_n)$ and we have¹

$$[K(t_1,\ldots,t_n):\Phi_n(\operatorname{Aut}_n)]=|\operatorname{Aut}_n|=n!.$$

So it suffices to prove the claim to finish.

We show the claim by induction on n. The base case n = 1 is clear. Now for the inductive step, suppose we have

$$K(t_1,\ldots,t_n)\supseteq K(s_1,\ldots,s_n,t_n)\supseteq K(s_1,\ldots,s_n).$$

Note that

$$f(X) = X^n - s_1 X^{n-1} + \dots + (-1)^n s_n = (X - t_1) \dots (X - t_n)$$

over $K(t_1,\ldots,t_n)$, so the minimum polynomial of t_n over $K(s_1,\ldots,s_n)$ divides f. So we get

$$K(t_1, \dots, t_n) : K(s_1, \dots, s_n)] \le n. \tag{*}$$

Now let s'_1, \ldots, s'_{n-1} be the elementary symmetric polynomials in t_1, \ldots, t_{n-1} , and notice that

$$s'_{1} = t_{1} + t_{2} + \dots + t_{n-1},$$

 $s_{2} = s'_{1} + t_{n}$
 \vdots
 $s_{j} = s'_{j} + s'_{j-1}t_{n},$
 \vdots
 $s_{n} = s'_{n-1}t_{n}.$

So $K(s_1, ..., s_n) = K(s'_1, ..., s'_{n-1}, t_n)$ and so

$$[K(t_1,\ldots,t_n):K(s_1,\ldots,s_nt_n)] = [K(t_1,\ldots,t_n):K(s_1',\ldots,s_{n-1}',t_n)]$$

= $[K(t_n)(t_1,\ldots,t_{n-1}):K(t_n)(s_1',\ldots,s_{n-1}')] \le (n-1)!$

by the inductive hypothesis. So this combined with (\star) completes the inductive step.

¹Note that $K(s_1, \ldots, s_n) \subseteq \Phi(\operatorname{Aut}_n) \subseteq K(t_1, \ldots, t_n)$.

Theorem 17.3. The elementary symmetric polynomials s_1, \ldots, s_n are algebraically independent.

Proof. We have $[K(t_1,\ldots,t_n):K(s_1,\ldots,s_n)]$ is finite since t_1,\ldots,t_n are roots of

$$X^{n} - s_1 X^{n-1} + \dots + (-1)^{n} s_n.$$

Hence $K(t_1, \ldots, t_n)$ and $K(s_1, \ldots, s_n)$ have the same transcendence degree over K, namely n, so we get that s_1, \ldots, s_n must be algebraically independent.

Definition 17.3. The general polynomial of degree n over K is

$$f = X^n - s_1 X^{n-1} + \dots + (-1)^n s_n.$$

Remark. Note that:

- 1. The coefficients live in $K(s_1, \ldots, s_n)$.
- 2. For now, s_i are just algebraically independent elements.

Theorem 17.4. Let char K = 0 and f as above. Let L be a splitting field for f over $K(s_1, \ldots, s_n)$. Then

- 1. the zeros t_1, \ldots, t_n of f in L are algebraically independent over K,
- 2. and $Gal(L: K(s_1, ..., s_n)) = S_n$.

Proof. Note that $[L:K(s_1,\ldots,s_n)]$ is finite, so the transcendence degree of L over K is the transcendence degree of $K(s_1,\ldots,s_n)$ over K, which is n. So $L=K(t_1,\ldots,t_n)$, which means that t_1,\ldots,t_n must be algebraically independent. Then we have that

$$X^{n} - s_{1}X^{n-1} + \dots + (-1)^{n}s_{n} = \prod_{i=1}^{n}(X - t_{i}),$$

so s_1, \ldots, s_n are precisely the elementary symmetric polynomials in t_1, \ldots, t_n . So by Theorem 10.8 from Howie, we get $\Phi(\operatorname{Aut}_n) = K(s_1, \ldots, s_n)$. From here we have

$$[L: K(s_1, \ldots, s_n)] = [L: \Phi(Aut_n)] = |Aut_n| = |S_n| = n!,$$

so $Gal(L: K(s_1, \ldots, s_n)) \cong S_n$.

Corollary 17.4.1. If char K = 0 and $n \ge 5$, then the general polynomial

$$X^{n} - s_1 X^{n-1} + \dots + (-1)^{n} s_n$$

is not solvable by radicals.

Corollary 17.4.2. Every finite group is the Galois group of some field extension.

Proof. Recall that by Cayley's theorem, every finite group is a subgroup of S_n for some n. By Theorem 17.4, we can realize S_n as the Galois group of $L: K(s_1, \ldots, s_n)$. The fundamental theorem of Galois theory then says that for every subgroup G of S_n , there exists a subfield M of L containing $K(s_1, \ldots, s_n)$ such that G = Gal(L:M).

Remark. In the above theorem, we kind of lost control of the ground field, which is just some field M. Given a finite group G, is it the Galois group of a Galois extension over \mathbb{Q} ? Equivalently, does there exist $f \in \mathbb{Q}[X]$ such that $G = \operatorname{Gal}(f)$? If so, we say that G is realizable (over \mathbb{Q}). This is known as the inverse Galois problem.

Remark. In 1956, Shafarevich showed that every solvable group is realizable. An open question is: Is every finite simple group realizable?

Mar. 25 — Modules

18.1 Introduction to Modules

Remark. Let (G, +) be an abelian group. Recall that given $n \in \mathbb{Z}$, we defined

$$ng = \begin{cases} g + \dots + g & \text{if } n > 0, \\ 0 & \text{if } n = 0, \\ (-g) + \dots + (-g) & \text{if } n < 0, \end{cases}$$

where we add g or its inverse n times. This gives a map $\mathbb{Z} \times G \to G$ by $(n,g) \mapsto ng$ that satisfies

- 1. $(n_1n_2)g = n_1(n_2g)$,
- 2. $(n_1 + n_2)g = n_1g + n_2g$,
- 3. and $n(g_1 + g_2) = ng_1 + ng_2$.

From this, we would say that every abelian group G is naturally a \mathbb{Z} -module.

Definition 18.1. A module M over a ring R is an abelian group M together with a map $R \times M \to M$, called the *product*, satisfying

- 1. $(r_1r_2)m = r_1(r_2m)$,
- 2. $(r_1 + r_2)m = r_1m + r_2m$,
- 3. $r(m_1 + m_2) = rm_1 + rm_2$,
- 4. and 1m = m.

Remark. For this class, we will only consider modules over commutative rings with unity.

Exercise 18.1. Verify the following:

- 1. 0m = 0, r0 = 0,
- 2. r(-m) = -(rm) = (-r)m,
- 3. (-1)m = -m.

Example 18.1.1. A K-vector space is a module over K, where K is a field.

Example 18.1.2. A ring R is always a module over itself, where the product $R \times R \to R$ is the normal ring multiplication in R.

Example 18.1.3. An ideal I in a ring R is a module over R. The product $R \times I \to I$ is given by $(r,m) \mapsto rm$, where $rm \in I$ since I is an ideal.

Example 18.1.4. The set $R^n = R \times \cdots \times R$ is an R-module, where the product is given by

$$r(r_1, r_2, \dots, r_n) = (rr_1, rr_2, \dots, rr_n).$$

18.2 Submodules

Definition 18.2. A *R-submodule* of an *R*-module M is a subgroup W of M such that for all $r \in R$ and $w \in W$, we have $rw \in W$.

Example 18.2.1. Recall that R is a module over itself. Then any ideal of R is a submodule, and conversely, any submodule is an ideal.

Proposition 18.1. Let M be an R-module.

- 1. If $\{M_{\alpha}\}\$ is a collection of submodules of M, then $\bigcap_{\alpha} M_{\alpha}$ is also a submodule.
- 2. If $M_1 \subseteq M_2 \subseteq ...$ is an increasing sequence of submodules, then $\bigcup_n M_n$ is a submodule.
- 3. If A and B are submodules of M, then $A + B = \{a + b \mid a \in A, b \in B\}$ is a submodule of M.

Proof. Left as an exercise.

Definition 18.3. Let M be an R-module and S a subset of M. The submodule of M generated by S is

$$RS = \{r_1s_1 + r_2s_2 + \dots + r_ns_n \mid r_i \in R, s_i \in S, n \in \mathbb{N}\}.$$

Exercise 18.2. Verify that RS is a submodule.

Example 18.3.1. If $S = \{x\}$ for some $x \in M$, then $R\{x\}$ is the *cyclic module* generated by x.

Definition 18.4. If there exists $x \in M$ such that $M = R\{x\}$, then we say M is *cyclic*. If there exists a finite set $S \subseteq M$ such that M = RS, then M is *finitely generated*.

18.3 Module Homomorphisms

Definition 18.5. Let M and N be R-modules. Then an R-module homomorphism $\varphi: M \to N$ is a homomorphism of abelian groups such that $\varphi(rm) = r\varphi(m)$ for all $r \in R$ and $m \in M$.

Definition 18.6. An R-module isomorphism is a bijective R-module homomorphism. An R-module endomorphism is an R-module homomorphism from M to itself.

Remark. The set of all R-module homomorphisms from M to N is denoted $\text{Hom}_R(M, N)$, and the set of all R-module endomorphisms of M is denoted $\text{End}_R(M)$.

Definition 18.7. The *kernel* of an R-module homomorphism $\varphi \in \operatorname{Hom}_R(M,N)$ is

$$\ker \varphi = \{ x \in M \mid \varphi(x) = 0 \}.$$

Example 18.7.1. Let $M = R^m$ and $N = R^n$, thought of as column vectors. Let T be a fixed $n \times m$ matrix with entries in R. Then left multiplication by T is an R-module homomorphism from M to N.

18.4 Direct Sums of Modules

Definition 18.8. The *direct sum* of R-modules M_1, \ldots, M_n , denoted

$$M_1 \oplus \cdots \oplus M_n$$
,

is the product $M_1 \times \cdots \times M_n$ endowed with the operations

$$(x_1,\ldots,x_n)+(x_1',\ldots,x_n')=(x_1+x_1',\ldots,x_n+x_n')$$
 and $r(x_1,\ldots,x_n)=(rx_1,\ldots,rx_n)$.

Remark. Note that M_i is naturally isomorphic to the following submodule of $M_1 \oplus \cdots \oplus M_n$:

$$\widetilde{M}_i = \{0\} \oplus \cdots \oplus M_i \oplus \cdots \oplus \{0\},\$$

and
$$M = \widetilde{M}_1 + \cdots + \widetilde{M}_n = \{m_1 + \cdots + m_n \mid m_i \in \widetilde{M}_i\}.$$

Proposition 18.2. Let M be an R-module with submodules A_1, \ldots, A_s such that $M = A_1 + \cdots + A_s$. Then the following are equivalent:

- 1. $(a_1, \ldots, a_s) \mapsto a_1 + \cdots + a_s$ is a group isomorphism $A_1 \times \cdots \times A_s \to M$.
- 2. $(a_1, \ldots, a_s) \mapsto a_1 + \cdots + a_s$ is an R-module isomorphism $A_1 \times \cdots \times A_s \to M$.
- 3. Each element $x \in M$ can be expressed as a sum

$$x = a_1 + \cdots + a_s$$

with $a_i \in A_i$ is exactly one way.

4. If $0 = a_1 + \cdots + a_s$ with $a_i \in A_i$, then $a_i = 0$ for all i.

Proof. (2) \Rightarrow (1) This is clear since an R-module isomorphism is also a group isomorphism.

 $(1) \Rightarrow (2)$ Let $\varphi: A_1 \times \cdots \times A_s \to M$ be the given group isomorphism. Then

$$\varphi(r(a_1,\ldots,a_s))=\varphi(ra_1,\ldots,ra_s)=ra_1+\cdots+ra_s=r(a_1+\cdots+a_s)=r\varphi(a_1,\ldots,a_s),$$

so φ is also an R-module isomorphism.

Now observe that (1), (3), (4) say nothing about the module structure of R, so from here $(1) \Leftrightarrow (3) \Leftrightarrow (4)$ is just an exercise in group theory.

Example 18.8.1. Let $M = \mathbb{Z}_6$ with $R = \mathbb{Z}$, and let $A_1 = \{0, 2, 4\}$ and $A_2 = \{0, 3\}$. Then the map $A_1 \oplus A_2 \to M$ given by

$$(a_1, a_2) \mapsto a_1 + a_2.$$

We can see that this is an isomorphism since $A_1 \cong \mathbb{Z}_3$ and $A_2 \cong \mathbb{Z}_2$.

Definition 18.9. A subset $S \subseteq M$ is linearly independent over R if for any distinct $x_1, \ldots, x_n \in S$,

$$r_1 x_1 + \dots + r_n x_n = 0$$

if and only if $r_i = 0$ for all i.

Definition 18.10. A basis for M is a linearly independent set S with RS = M. An R-module M is called *free* if it has a basis.

Example 18.10.1. Every vector space over a field K is free as a K-module.

Example 18.10.2. Note that \mathbb{Z}_n is not a free \mathbb{Z} -module since na = 0 for all $a \in \mathbb{Z}_n$. So $\{a\}$ for $a \neq 0$ is in fact linearly dependent. More generally, any finite abelian group G is not a free \mathbb{Z} -module.

Example 18.10.3. However, \mathbb{Z} is a free \mathbb{Z} -module. In general, \mathbb{R}^n is a free \mathbb{R} -module. The *standard basis* for \mathbb{R}^n is the set $\{e_1, \ldots, e_n\}$ where

$$e_1 = (1, 0, 0, \dots, 0), \dots, e_n = (0, 0, 0, \dots, 1).$$

Definition 18.11. Let M be an R-module and $B = \{x_1, \ldots, x_n\}$ be distinct nonzero elements in M. Then the following are equivalent:

- 1. B is a basis for M.
- 2. The map $\varphi:(r_1,\ldots,r_n)\mapsto r_1x_1+\ldots r_nm_n$ is an R-module isomorphism from R^n to M.
- 3. For each i, the map $R \to M$ given by $r \mapsto rx_i$ is injective and $M = Rx_1 \oplus \cdots \oplus Rx_n$.

Proof. (1) \Leftrightarrow (2) Observe that B is linearly independent if and only if φ is injective and B spans M if and only if φ is surjective. Now check as an exercise that φ is an R-module homomorphism.

$$(1) \Leftrightarrow (3)$$
 Left as an exercise.

Proposition 18.3. We have the following:

- 1. If $\varphi \in \operatorname{Hom}_R(M, N)$, then $\ker \varphi$ is a submodule of M and $\varphi(M)$ is a submodule of N.
- 2. If $\varphi \in \operatorname{Hom}_R(M, N)$ and $\psi \in \operatorname{Hom}_R(N, P)$, then $\psi \circ \varphi \in \operatorname{Hom}_R(M, P)$.

Proof. (1) We need to show that if $m \in \ker \varphi$ and $r \in R$, then $rm \in \ker \varphi$. For this, observe that

$$\varphi(rm) = r\varphi(m) = r0 = 0$$

since $m \in \ker \varphi$, so we have $rm \in \ker \varphi$. The rest of the proof is left as an exercise.

Proposition 18.4. We have the following:

1. $\operatorname{Hom}_R(M,N)$ is an abelian group with the operation

$$(\varphi + \psi)(m) = \varphi(m) + \psi(m).$$

2. $\operatorname{End}_R(M)$ is a ring with addition as above and multiplication given by composition.

Proof. (1) Clearly the addition is associative and commutative. The identity element is the zero map, and the inverse of φ is $-\varphi$, i.e. if $\varphi: m \mapsto n$, then $-\varphi: m \mapsto -n$.

(2) Left as an exercise (the multiplicative identity is the identity map id_M).

Remark. Many of the usual facts about group and ring homomorphisms have module analogues.

Proposition 18.5. Let M be an R-module and N an R-submodule. Then the quotient group M/N is an R-module and the quotient map $\pi: M \to M/N$ is an R-module homomorphism.

Proof. Define the product $R \times M/N \to M/N$ by

$$r(m+N) = rm + N.$$

To see that this product is well-defined, observe that if m + N = m' + N, then $m - m' \in N$. Hence

$$rm - rm' = r(m - m') \in N$$

since N is an R-submodule. Thus rm + N = rm' + N as desired. Now check as an exercise that this makes M/N into an R-module.

For the latter part about the quotient map $\pi: M \to M/N$, simply observe that

$$\pi(rm) = rm + N = r(m+N) = r\pi(m),$$

so indeed π is an R-module homomorphism.

Mar. 27 — Multilinear Functions

19.1 The Homomorphism Theorem

Theorem 19.1 (Homomorphism theorem). Let $\varphi: M \to \overline{M}$ be a surjective R-module homomorphism with kernel N. Then φ descends to an homomorphism on the quotient M/N, i.e. there exists $\widetilde{\varphi}: M/N \to \overline{M}$ such that the following diagram commutes (i.e. $\varphi = \widetilde{\varphi} \circ \pi$):

In particular, $\widetilde{\varphi}$ is an R-module isomorphism.

Proof. Define $\widetilde{\varphi}: M/N \to \overline{M}$ by $\widetilde{\varphi}(m+N) = \varphi(m)$ for any $m \in M$. To see that $\widetilde{\varphi}$ is well-defined, suppose m+N=m'+N. Then m'=m+n for some $n \in N$, so

$$\widetilde{\varphi}(m'+N) = \varphi(m') = \varphi(m+n) = \varphi(m) + \varphi(n) = \varphi(m) = \widetilde{\varphi}(m+N)$$

since $n \in N = \ker \varphi$. So $\widetilde{\varphi}$ is well-defined. Now by the usual first isomorphism theorem for groups, $\widetilde{\varphi}$ is a group homomorphism. To see that $\widetilde{\varphi}$ also respects R-actions, observe that

$$\widetilde{\varphi}(r(m+N)) = \widetilde{\varphi}(rm+N) = \varphi(rm) = r\varphi(m) = r\widetilde{\varphi}(m+N)$$

So $\widetilde{\varphi}$ is an R-module homomorphism. We also get that $\widetilde{\varphi}$ is bijective for free by the first isomorphism theorem for groups. Thus $\widetilde{\varphi}$ is an R-module isomorphism.

Example 19.0.1. Let M be an R-module and let $x \in M$. Consider the cyclic submodule

$$R_x = \{ rx \mid r \in R \}.$$

Then $\varphi: R \to R_x$ defined by $r \mapsto rx$ is an R-module homomorphism (and is surjective). The kernel ker φ is called the *annihilator* of x, denoted ann(x). Then by the homomorphism theorem, $R/\text{ann}(x) \cong R_x$.

Example 19.0.2. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}/n\mathbb{Z}$. Let x = 1. Then $\operatorname{ann}(x) = n\mathbb{Z} = \ker \varphi$ where $\varphi : \mathbb{Z} \to R_x$ is defined by $r \mapsto rx$. Then by the homomorphism theorem, $\mathbb{Z}/n\mathbb{Z} \cong R/\operatorname{ann}(x) \cong R_x = M \cong \mathbb{Z}/n\mathbb{Z}$.

19.2 Multilinear Functions

Definition 19.1. Let M_1, \ldots, M_n, N be R-modules. We say that a function $\varphi : M_1 \times \cdots \times M_n \to N$ is R-multilinear (or just multilinear) if for each j and fixed $x_i \in M_i$ for $i \neq j$, the map $M_j \to N$ given by

$$x \mapsto \varphi(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)$$

is an R-module homomorphism.

Exercise 19.1. If $\varphi: M_1 \times M_2 \to N$ is multilinear, then

- 1. $\varphi(m_1 + m_1', m_2) = \varphi(m_1, m_2) + \varphi(m_1', m_2),$
- 2. $\varphi(m_1, m_2 + m_2') = \varphi(m_1, m_2) + \varphi(m_1, m_2')$
- 3. $\varphi(rm_1, m_2) = r\varphi(m_1, m_2),$
- 4. and $\varphi(m_1, rm_2) = r\varphi(m_1, m_2)$.

Remark. We will focus on the case where all the M_i 's are the same, i.e. $\varphi: M^n \to N$.

Remark. Recall that a permutation $\sigma \in S_n$ is even (respectively odd) if it can be expressed as a product of an even (respectively odd) number of transpositions. We say that the sign of σ is

$$\varepsilon(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd.} \end{cases}$$

Note that the sign $\varepsilon: S_n \to \{\pm 1\}$ is in fact a group homomorphism.

Example 19.1.1. The permutation (123) = (12)(23) is even and the permutation (12) is odd.

Definition 19.2. We say that an R-multilinear function $\varphi: M^n \to N$ is symmetric¹ if

$$\varphi(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \varphi(x_1, x_2, \dots, x_n)$$

for all $x_1, \ldots, x_n \in M$ and $\sigma \in S_n$. We say that φ is skew-symmetric² if

$$\varphi(x_{\sigma(1)},\ldots,x_{\sigma(n)})=\varepsilon(\sigma)\varphi(x_1,\ldots,x_n)$$

for all $x_1, \ldots, x_n \in M$ and $\sigma \in S_n$. We say that φ is alternating if

$$\varphi(x_1,\ldots,x_n)=0$$

whenever $x_i = x_j$ for some $i \neq j$.

Example 19.2.1. Let $M = \mathbb{Z}^2$, where we write $x_1, x_2 \in M$ as

$$x_1 = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$$
 and $x_2 = \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}$,

where $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. Consider the map $\varphi : M^2 \to \mathbb{Z}$ defined by

$$\varphi(x_1, x_2) = \begin{bmatrix} a_1 & b_1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \end{bmatrix} \begin{bmatrix} 2a_2 + b_2 \\ a_2 + 5b_2 \end{bmatrix} = 2a_1a_2 + a_1b_2 + b_1a_2 + 5b_1b_2.$$

Recall that a matrix A is symmetric if $A^T = A$.

²Recall that a matrix A is skew-symmetric if $A^T = -A$.

Now observe that

$$\varphi(x_2, x_1) = \begin{bmatrix} a_2 & b_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} a_2 & b_2 \end{bmatrix} \begin{bmatrix} 2a_1 + b_1 \\ a_1 + 5b_1 \end{bmatrix} = 2a_1a_2 + a_2b_1 + b_2a_1 + 5b_2b_1,$$

so $\varphi(x_1, x_2) = \varphi(x_2, x_1)$ and in fact φ is symmetric. Notice the matrix we picked was symmetric.

Example 19.2.2. Taking the matrix

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

makes φ in the above example skew-symmetric (and alternating). Notice that A is skew-symmetric.

Lemma 19.1. The symmetric group S_n acts on the set of R-multilinear functions from $M^n \to N$ by

$$\sigma\varphi(x_1,\ldots,x_n)=\varphi(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Additionally, the sets of symmetric, skew-symmetric, and alternating multilinear functions are invariant under this action.

Proof. Check as an exercise that id acts as it's supposed to. To see that $\sigma(\tau\varphi) = (\sigma\tau)\varphi$ for all $\sigma, \tau \in S_n$, observe that

$$\sigma(\tau\varphi)(x_1,\ldots,x_n)=(\tau\varphi)(x_{\sigma(1)},\ldots,x_{\sigma(n)})=(\tau\varphi)(y_1,\ldots,y_n)$$

if we let $y_i = x_{\sigma(i)}$. Then $y_{\tau(j)} = x_{\sigma(\tau(j))} = x_{(\sigma\tau)(j)}$, and thus

$$\sigma(\tau\varphi)(x_1,\ldots,x_n) = (\tau\varphi)(y_1,\ldots,y_n)$$

= $\varphi(y_{\tau(1)},\ldots,y_{\tau(n)}) = \varphi(x_{(\sigma\tau)(1)},\ldots,x_{(\sigma\tau)(n)}) = (\sigma\tau)\varphi(x_1,\ldots,x_n).$

So we indeed have a group action (technically still need to check that $\sigma\varphi$ is still multilinear). The rest of the proof (if φ is symmetric, skew-symmetric, or alternating, then so is $\sigma\varphi$) is left as an exercise.

Remark. We see that φ is symmetric if and only if $\sigma\varphi = \varphi$ for all $\sigma \in S_n$, and φ is skew-symmetric if and only if $\sigma\varphi = \varepsilon(\sigma)\varphi$ for all $\sigma \in S_n$.

Lemma 19.2. An alternating multilinear function $\varphi: M^n \to N$ is skew-symmetric.

Proof. Fix i < j and elements $x_k \in M$ for $k \neq i, j$. Define $\lambda : M^2 \to N$ by

$$\lambda(x,y) = \varphi(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_{j-1}, y, x_{j+1}, \dots, x_n).$$

Since φ is multilinear and alternating, λ is bilinear and alternating. Hence,

$$0 = \lambda(x+y,x+y) = \lambda(x,x) + \lambda(x,y) + \lambda(y,x) + \lambda(y,y) = \lambda(x,y) + \lambda(y,x)$$

since λ is alternating (so $\lambda(x,x)=0$). Thus $\lambda(x,y)=-\lambda(y,x)$, so λ is skew-symmetric. Thus

$$\varphi(x_{\sigma(1)},\ldots,x_{\sigma(n)})=-\varphi(x_1,\ldots,x_n)$$

when σ is a transposition (ij). Since any σ is a product of transpositions $\sigma = \tau_1 \dots \tau_\ell$, we have

$$\sigma \varphi = (\tau_1 \dots \tau_\ell) \varphi = (-1)^\ell \varphi = \varepsilon(\sigma) \varphi.$$

This gives that φ is skew-symmetric.

Lemma 19.3. Let $\varphi: M^n \to N$ be multilinear. Then

$$S(\varphi) = \sum_{\sigma \in S_n} \sigma \varphi \text{ is symmetric} \quad and \quad A(\varphi) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \sigma \varphi \text{ is alternating and skew-symmetric}.$$

Proof. Next class.