10.5.2.14

EE23BTECH11003 - pranav

Question: How many multiples of 4 lie between 10 and 250?

Solution:

Variable	Description	Value
S(0)	First term of the AP	12
d	Common difference of the AP	d
S(n)	General term of the AP	$12 + 4 \cdot n$
$4n_1$	first multiple of 4 between 10 and 250	?
$4n_2$	last multiple of 4 between 10 and 250	?

TABLE 1: Variables Used

$$4n_1 > 10$$
 and $4n_2 < 250$ (1)

$$\implies n_1 = 3, n_2 = 62 \quad (as \ n \in \mathbb{N})$$
 (2)

 \therefore number of multiples of 4 which lie between 10 and 250 are 62 - 3 + 1 = 60 considering the series to start from n = 0 the general term

$$X(n) = [X(0) + n \cdot d].u(n) \tag{3}$$

$$X(n) = 4n.u(n) \tag{4}$$

Fig. 1: stem plot of X(n)

applying Z transform

$$X(z) = \sum_{n = -\infty}^{\infty} X(n) \cdot z^{-n}$$
 (5)

$$\implies X(z) = \sum_{n=-\infty}^{\infty} 4n \cdot u(n) \cdot z^{-n}$$
 (6)

$$\implies X(z) = \sum_{n=0}^{\infty} 4n \cdot z^{-n} \tag{7}$$

$$\implies X(z) = \frac{4 \cdot z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1 \tag{9}$$