Union-Find

2023-Fall

국민대학교 최준수

Union-Find (Disjoint-Set) Data Structure

A data structure that stores a collection of disjoint (non-overlapping) sets.

- The universe consists of n elements, named 0, 1, ..., n-1
- Each element is in exactly one set
 - Sets are disjoint (non-overlapping)
 - Initially, each set is a singleton (a set with exactly one element)
- Each set has a representative member (any element in the set will do)
- Operations:

Union/Find operations	
<pre>void init(int n)</pre>	initialize union-find data structure with n singleton sets ({0}, {1},, { n -1})
<pre>void union(int p, int q)</pre>	merge the set containing p and and the set containing q
<pre>int find(int p)</pre>	find a representative member of a set containing p (0 to n -1)
<pre>boolean in_same_set(int p, int q)</pre>	find out if p and q in the same sets?

Goal: Design efficient data structure for union-find operations.

- Number of elements *n* can be huge.
- Number of union/find operations *m* can be huge.
- Union/find operations may be intermixed.

Data Structure: disjoint-set forest

- Node of the forest
 - A pointer: used to make "parent pointer trees"
 - non-root node of a tree points points to its parent
 - root node points to itself or has a sentinel value (like NULL, -1, ...)
 - Auxiliary information: a size
- Each tree represents a set stored in the forest
 - Members of the set being the nodes in the tree
 - Root nodes provides set representatives

Data Structure:

- Integer array pt[] of length *n*.
- Interpretation: pt[i] is parent of i.
- Root of i is pt[pt[pt[...pt[i]...]]].

Find

• What is the root of *p*?

In the same set?

Do p and q have the same root?

Union/Find operations	
<pre>int find(int p)</pre>	find a representative member of a set containing p (0 to n -1)
<pre>boolean in_same_set(int p, int q)</pre>	find out if p and q in the same sets?

Union

• Set the parent of *p*'s root to the *q*'s root.

Union/Find operations

void union(int p, int q)

merge the set containing p and and the set containing q

Init

• Creates *n* singleton sets {0}, {1}, ..., {*n*-1}

Union/Find operations

void init(int n)

initialize union-find data structure with n singleton sets ({0}, {1}, ..., {n-1})

Union-Find Data Structure: implementation

```
void init(int n)
   for(int i=0; i<n; i++)
                                                    sets parent of each element to itself
       pt[i] = i;
                                                    (create n singletons)
int find(int i)
   while(pt[i] != i)
                                                    1. follows the chain of parent pointers
       i = pt[i];
                                                      from a query node i until it reaches a root element
    return i;
                                                    2. returns the root element it reaches
boolean in_same_set(int p, int q)
    return find(p) == find(q);
void union(int p, int q)
    int i = find(p);
                                                    changes root of p to point to root of q
    int j = find(q);
    if(i != j)
       pt[i] = j;
```

Shortcoming:

• Trees can get tall and find() operations are too expensive.

```
union(0, 1);
union(1, 2);
...
union(n-2, n-1);
find(0);
find(0);
...
find(0);
```


Weighting:

- Modify to avoid tall trees
- Keep track of size of each tree (number of elements)
- Balance by linking root of smaller tree to root of large tree.

Implementation of Weighting:

- maintain extra array sz[i] to keep the number of elements in the tree rooted at i.
- change the union function:
 - link root of smaller tree to the root of larger tree
 - update the sz[] array

```
void init(int n)
{
    for(int i=0; i<n; i++)
    {
       pt[i] = i;
       sz[i] = 1;
    }
}</pre>
```

Best case:

•••

Worst case:

• Every union merges two sets with the same size

```
union(0, 1);
union(2, 3);
...
union(n/2, n-1);
```


Worst case:

Every union merges two sets with the same size

```
union(0, 1);
union(2, 3);
...
union(n/2, n-1);
```


depth of any node is at most $\lg n$ ($\lg n = \log_2 n$)

Running Time:

- Find: takes time proportional to depth of a node p.
- Union: takes constant time, given roots.

Proposition: Depth of any node x is at most $\lg n$.

- Increases the depth of a node *x* by 1 when
 - tree T_1 containing x is merged into another tree T_2
 - the size of T_1 and T_2 are same.

Running Time:

- Find: takes time proportional to depth of a node p.
- Union: takes constant time, given roots.

Proposition: Depth of any node x is at most $\lg n$.

algorithm	init	find	union	in-same-set
UF-Weighting	n	lg n	lg n	lg n

find() with path compression:

find() with path compression:

```
int find(int i)
{
    while(pt[i] != i)
    {
        id[i] = id[id[i]];
        i = pt[i];
}
return i;
}

one-pass (one-loop) implementation

make every other node in path point to
its grandparent

its grandparent

}
```

Analysis (Amortized):

- [Hopcroft-Ullman, Tarjan]
 - Starting from an empty data structure, any sequence of m union-find operations on n elements makes $\leq c$ ($n + m \lg^* n$) array accesses.
 - Analysis can be improved to $n + m \alpha(m, n)$

n	lg* n
1	0
2	1
4	2
16	3
65536	4
265536	5

 $\lg^* n$: iterated \lg function

 number of times the lg must be iteratively applied before the result is less than or equal to 1

 $\alpha(n)$: inverse Ackermann function

- grows extraordinarily slowly
- 4 or less for any n that can actually be written in the physical universe
- almost constant

Analysis:

- Number of elements *n* can be huge.
- Number of union/find operations *m* can be huge.
- Union/find operations may be intermixed.

algorithm	Worst-case	
UF-Weighting	$n + m \lg n$	
UF-Weighting, Path compression	$n + m \lg^* n$ $n + m \alpha(m, n)$	