

HIFI-Barcode SOP - Assembling COI barcodes using highthroughput sequencing Version 3

Shanlin Liu, Chentao Yang, Chengran Zhou, Xin Zhou

Abstract

We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length COI barcodes from pooled PCR amplicons generated by individual specimens. Using indexed primer sets and high-throughput sequencing platform strategy, and optimized analysis pipeline, the analytical cost and chemistry cost will significantly be reduced. The new protocol includes DNA preparation, amplification, and data analysis pipeline.

Citation: Shanlin Liu, Chentao Yang, Chengran Zhou, Xin Zhou HIFI-Barcode SOP – Assembling COI barcodes using high-throughput sequencing. **protocols.io**

dx.doi.org/10.17504/protocols.io.k9icz4e

Published: 17 May 2018

Before start

Before starting this work, we recommend you read the paper we have published, "Shanlin Liu, Chentao Yang, Chengran Zhou, Xin Zhou; Filling reference gaps via assembling DNA barcodes using high-throughput sequencing—moving toward barcoding the world, *GigaScience*, Volume 6, Issue 12, 1 December 2017, Pages 1–8, https://doi.org/10.1093/gigascience/gix104", and if you have any question, just contact us.

Materials

10X PCR buffer by <u>Takara</u>
exTaq by <u>Takara</u>
Cap strips by <u>Applied Biosystems</u>
10mM dNTP mix by <u>Takara</u>

Protocol

Overview

Step 1.

DNA preparation

Step 2.

Individual Genomic DNA could be extracted using the Glass Fiber Plate method following manufacturer's protocol or other existing method.

http://ccdb.ca/site/wp-content/uploads/2016/09/CCDB DNA Extraction.pdf

DNA amplification

Step 3.

3.1 PCR reaction mixture

Consumables & Equipment for PCR amplification

- 1.10X PCR Buffer for exTaq Store at -20°C.
- 2.10mM dNTP mix. Store at -20°C

- 3.molecular grade ddH2O
- 4.exTaq store at -20°C
- 5.Microplate(Eppendorf® plates)
- 6.Cap strips or sealing film
- 7. Eppendorf 5830R high speed centrifuge

8.primer sets.

Ninety-six pairs of different tags were added to both ends of a common COI barcode primer set (LCO1490 and HCO2198) with each tag containing 5 bps allowing for \geq 2 bp differences from each other.

Table 1. Indexed Primer sequences

Primer	5'to3'	Primer 5'to3'
Rev001	AAAGCTAAACTTCAGGGTGACCAAAAAATCA	A For001 AAAGCGGTCAACAAATCATAAAGATATTGG
Rev002	AACAGTAAACTTCAGGGTGACCAAAAAATCA	A For002 AACAGGGTCAACAAATCATAAAGATATTGG
Rev003	AACCTTAAACTTCAGGGTGACCAAAAAATCA	A For003 AACCTGGTCAACAAATCATAAAGATATTGG
Rev004	AACTCTAAACTTCAGGGTGACCAAAAAATCA	A For004 AACTCGGTCAACAAATCATAAAGATATTGG
Rev005	AAGCATAAACTTCAGGGTGACCAAAAAATCA	A For005 AAGCAGGTCAACAAATCATAAAGATATTGG
Rev006	AAGGTTAAACTTCAGGGTGACCAAAAAATCA	A For006 AAGGTGGTCAACAAATCATAAAGATATTGG
Rev007	AAGTGTAAACTTCAGGGTGACCAAAAAATCA	A For007 AAGTGGGTCAACAAATCATAAAGATATTGG
Rev008	AATGGTAAACTTCAGGGTGACCAAAAAATCA	A For008 AATGGGGTCAACAAATCATAAAGATATTGG
Rev009	ACACTTAAACTTCAGGGTGACCAAAAAATCA	A For009 ACACTGGTCAACAAATCATAAAGATATTGG
Rev010	ACAGATAAACTTCAGGGTGACCAAAAAATCA	A For010 ACAGAGGTCAACAAATCATAAAGATATTGG
Rev011	ACCATTAAACTTCAGGGTGACCAAAAAATCA	A For011 ACCATGGTCAACAAATCATAAAGATATTGG
Rev012	ACCTATAAACTTCAGGGTGACCAAAAAATCA	A For012 ACCTAGGTCAACAAATCATAAAGATATTGG
Rev013	ACGAATAAACTTCAGGGTGACCAAAAAATCA	A For013 ACGAAGGTCAACAAATCATAAAGATATTGG
Rev014	ACGTTTAAACTTCAGGGTGACCAAAAAATCA	A For014 ACGTTGGTCAACAAATCATAAAGATATTGG
Rev015	ACTGTTAAACTTCAGGGTGACCAAAAAATCA	A For015 ACTGTGGTCAACAAATCATAAAGATATTGG
Rev016	AGAACTAAACTTCAGGGTGACCAAAAAATCA	A For016 AGAACGGTCAACAAATCATAAAGATATTGG
Rev017	AGACATAAACTTCAGGGTGACCAAAAAATCA	A For017 AGACAGGTCAACAAATCATAAAGATATTGG
Rev018	AGAGTTAAACTTCAGGGTGACCAAAAAATCA	A For018 AGAGTGGTCAACAAATCATAAAGATATTGG
Rev019	AGATGTAAACTTCAGGGTGACCAAAAAATCA	A For019 AGATGGGTCAACAAATCATAAAGATATTGG
Rev020	AGCTTTAAACTTCAGGGTGACCAAAAAATCA	A For020 AGCTTGGTCAACAAATCATAAAGATATTGG
Rev021	AGGATTAAACTTCAGGGTGACCAAAAAATCA	A For021 AGGATGGTCAACAAATCATAAAGATATTGG
Rev022	AGTAGTAAACTTCAGGGTGACCAAAAAATCA	A For022 AGTAGGGTCAACAAATCATAAAGATATTGG
Rev023	AGTCTTAAACTTCAGGGTGACCAAAAAATCA	A For023 AGTCTGGTCAACAAATCATAAAGATATTGG
Rev024	AGTGATAAACTTCAGGGTGACCAAAAAATCA	A For024 AGTGAGGTCAACAAATCATAAAGATATTGG
Rev025	AGTTCTAAACTTCAGGGTGACCAAAAAATCA	A For025 AGTTCGGTCAACAAATCATAAAGATATTGG
Rev026	ATACCTAAACTTCAGGGTGACCAAAAAATCA	A For026 ATACCGGTCAACAAATCATAAAGATATTGG
Rev027	ATCACTAAACTTCAGGGTGACCAAAAAATCA	A For027 ATCACGGTCAACAAATCATAAAGATATTGG

Rev028 CAAAGTAAACTTCAGGGTGACCAAAAAATCA For028 CAAAGGGTCAACAAATCATAAAGATATTGG Rev029 CAACTTAAACTTCAGGGTGACCAAAAAATCA For029 CAACTGGTCAACAAATCATAAAGATATTGG Rev030 CAATCTAAACTTCAGGGTGACCAAAAAATCA For030 CAATCGGTCAACAAATCATAAAGATATTGG Rev031 CAGAATAAACTTCAGGGTGACCAAAAAATCA For031 CAGAAGGTCAACAAATCATAAAGATATTGG Rev032 CATACTAAACTTCAGGGTGACCAAAAAATCA For032 CATACGGTCAACAAATCATAAAGATATTGG Rev033 CATCATAAACTTCAGGGTGACCAAAAAATCA For033 CATCAGGTCAACAAATCATAAAGATATTGG Rev034 CCAATTAAACTTCAGGGTGACCAAAAAATCA For034 CCAATGGTCAACAAATCATAAAGATATTGG Rev035 CGATTTAAACTTCAGGGTGACCAAAAAATCA For035 CGATTGGTCAACAAATCATAAAGATATTGG Rev036 CGTATTAAACTTCAGGGTGACCAAAAAATCA For036 CGTATGGTCAACAAATCATAAAGATATTGG Rev037 CGTTATAAACTTCAGGGTGACCAAAAAATCA For037 CGTTAGGTCAACAAATCATAAAGATATTGG Rev038 CTAACTAAACTTCAGGGTGACCAAAAAATCA For038 CTAACGGTCAACAAATCATAAAGATATTGG Rev039 CTACATAAACTTCAGGGTGACCAAAAAATCA For039 CTACAGGTCAACAAATCATAAAGATATTGG Rev040 CTATGTAAACTTCAGGGTGACCAAAAAATCA For040 CTATGGGTCAACAAATCATAAAGATATTGG Rev041 CTCAATAAACTTCAGGGTGACCAAAAAATCA For041 CTCAAGGTCAACAAATCATAAAGATATTGG Rev042 CTGATTAAACTTCAGGGTGACCAAAAAATCA For042 CTGATGGTCAACAAATCATAAAGATATTGG Rev043 CTGTATAAACTTCAGGGTGACCAAAAAATCA For043 CTGTAGGTCAACAAATCATAAAGATATTGG Rev044 CTTAGTAAACTTCAGGGTGACCAAAAAATCA For044 CTTAGGGTCAACAAATCATAAAGATATTGG Rev045 CTTCTTAAACTTCAGGGTGACCAAAAAATCA For045 CTTCTGGTCAACAAATCATAAAGATATTGG Rev046 GAAACTAAACTTCAGGGTGACCAAAAAATCA For046 GAAACGGTCAACAAATCATAAAGATATTGG Rev047 GAACATAAACTTCAGGGTGACCAAAAAATCA For047 GAACAGGTCAACAAATCATAAAGATATTGG Rev048 GAATGTAAACTTCAGGGTGACCAAAAAATCA For048 GAATGGGTCAACAAATCATAAAGATATTGG Rev049 GACTTTAAACTTCAGGGTGACCAAAAAATCA For049 GACTTGGTCAACAAATCATAAAGATATTGG Rev050 GAGATTAAACTTCAGGGTGACCAAAAAATCA For050 GAGATGGTCAACAAATCATAAAGATATTGG Rev051 GAGTATAAACTTCAGGGTGACCAAAAAATCA For051 GAGTAGGTCAACAAATCATAAAGATATTGG Rev052 GATAGTAAACTTCAGGGTGACCAAAAAATCA For052 GATAGGGTCAACAAATCATAAAGATATTGG Rev053 GATCTTAAACTTCAGGGTGACCAAAAAATCA For053 GATCTGGTCAACAAATCATAAAGATATTGG Rev054 GATGATAAACTTCAGGGTGACCAAAAAATCA For054 GATGAGGTCAACAAATCATAAAGATATTGG Rev055 GATTCTAAACTTCAGGGTGACCAAAAAATCA For055 GATTCGGTCAACAAATCATAAAGATATTGG Rev056 GCAAATAAACTTCAGGGTGACCAAAAAATCA For056 GCAAAGGTCAACAAATCATAAAGATATTGG Rev057 GCTATTAAACTTCAGGGTGACCAAAAAATCA For057 GCTATGGTCAACAAATCATAAAGATATTGG Rev058 GCTTATAAACTTCAGGGTGACCAAAAAATCA For058 GCTTAGGTCAACAAATCATAAAGATATTGG Rev059 GGAATTAAACTTCAGGGTGACCAAAAAATCA For059 GGAATGGTCAACAAATCATAAAGATATTGG Rev060 GGATATAAACTTCAGGGTGACCAAAAAATCA For060 GGATAGGTCAACAAATCATAAAGATATTGG Rev061 GGTTTTAAACTTCAGGGTGACCAAAAAATCA For061 GGTTTGGTCAACAAATCATAAAGATATTGG Rev062 GTAGATAAACTTCAGGGTGACCAAAAAATCA For062 GTAGAGGTCAACAAATCATAAAGATATTGG Rev063 GTCATTAAACTTCAGGGTGACCAAAAAATCA For063 GTCATGGTCAACAAATCATAAAGATATTGG Rev064 GTGAATAAACTTCAGGGTGACCAAAAAATCA For064 GTGAAGGTCAACAAATCATAAAGATATTGG Rev065 GTGTTTAAACTTCAGGGTGACCAAAAAATCA For065 GTGTTGGTCAACAAATCATAAAGATATTGG Rev066 GTTACTAAACTTCAGGGTGACCAAAAAATCA For066 GTTACGGTCAACAAATCATAAAGATATTGG Rev067 GTTCATAAACTTCAGGGTGACCAAAAAATCA For067 GTTCAGGTCAACAAATCATAAAGATATTGG Rev068 TAAGGTAAACTTCAGGGTGACCAAAAAATCA For068 TAAGGGGTCAACAAATCATAAAGATATTGG Rev069 TACTGTAAACTTCAGGGTGACCAAAAAATCA For069 TACTGGGTCAACAAATCATAAAGATATTGG Rev070 TAGGATAAACTTCAGGGTGACCAAAAAATCA For070 TAGGAGGTCAACAAATCATAAAGATATTGG Rev071 TAGTCTAAACTTCAGGGTGACCAAAAAATCA For071 TAGTCGGTCAACAAATCATAAAGATATTGG

Rev072 TATCGTAAACTTCAGGGTGACCAAAAAATCA For072 TATCGGGTCAACAAATCATAAAGATATTGG Rev073 TATGCTAAACTTCAGGGTGACCAAAAAATCA For073 TATGCGGTCAACAAATCATAAAGATATTGG Rev074 TCACATAAACTTCAGGGTGACCAAAAAATCA For074 TCACAGGTCAACAAATCATAAAGATATTGG Rev075 TCAGTTAAACTTCAGGGTGACCAAAAAATCA For075 TCAGTGGTCAACAAATCATAAAGATATTGG Rev076 TCATGTAAACTTCAGGGTGACCAAAAAATCA For076 TCATGGGTCAACAAATCATAAAGATATTGG Rev077 TCCAATAAACTTCAGGGTGACCAAAAAATCA For077 TCCAAGGTCAACAAATCATAAAGATATTGG Rev078 TCCTTTAAACTTCAGGGTGACCAAAAAATCA For078 TCCTTGGTCAACAAATCATAAAGATATTGG Rev079 TCGATTAAACTTCAGGGTGACCAAAAAATCA For079 TCGATGGTCAACAAATCATAAAGATATTGG Rev080 TCGTATAAACTTCAGGGTGACCAAAAAATCA For080 TCGTAGGTCAACAAATCATAAAGATATTGG Rev081 TCTCTTAAACTTCAGGGTGACCAAAAAATCA For081 TCTCTGGTCAACAAATCATAAAGATATTGG Rev082 TGAAGTAAACTTCAGGGTGACCAAAAAATCA For082 TGAAGGGTCAACAAATCATAAAGATATTGG Rev083 TGACTTAAACTTCAGGGTGACCAAAAAATCA For083 TGACTGGTCAACAAATCATAAAGATATTGG Rev084 TGAGATAAACTTCAGGGTGACCAAAAAATCA For084 TGAGAGGTCAACAAATCATAAAGATATTGG Rev085 TGCTATAAACTTCAGGGTGACCAAAAAATCA For085 TGCTAGGTCAACAAATCATAAAGATATTGG Rev086 TGGAATAAACTTCAGGGTGACCAAAAAATCA For086 TGGAAGGTCAACAAATCATAAAGATATTGG Rev087 TGTACTAAACTTCAGGGTGACCAAAAAATCA For087 TGTACGGTCAACAAATCATAAAGATATTGG Rev088 TGTCATAAACTTCAGGGTGACCAAAAAATCA For088 TGTCAGGTCAACAAATCATAAAGATATTGG Rev089 TGTGTTAAACTTCAGGGTGACCAAAAAATCA For089 TGTGTGGTCAACAAATCATAAAGATATTGG Rev090 TTACGTAAACTTCAGGGTGACCAAAAAATCA For090 TTACGGGTCAACAAATCATAAAGATATTGG Rev091 TTAGCTAAACTTCAGGGTGACCAAAAAATCA For091 TTAGCGGTCAACAAATCATAAAGATATTGG Rev092 TTCTCTAAACTTCAGGGTGACCAAAAAATCA For092 TTCTCGGTCAACAAATCATAAAGATATTGG Rev093 TTGACTAAACTTCAGGGTGACCAAAAAATCA For093 TTGACGGTCAACAAATCATAAAGATATTGG Rev094 TTGCATAAACTTCAGGGTGACCAAAAAATCA For094 TTGCAGGTCAACAAATCATAAAGATATTGG Rev095 TTGGTTAAACTTCAGGGTGACCAAAAAATCA For095 TTGGTGGTCAACAAATCATAAAGATATTGG Rev096 TTTCCTAAACTTCAGGGTGACCAAAAAATCA For096 TTTCCGGTCAACAAATCATAAAGATATTGG

PCR reagents per 25 µl reaction:

#of reactions	1x	10x
ddH ₂ O	16.2ul	1620ul
10uM Primer forward*	1ul	100ul
10uM Primer reverse*	1ul	100ul
10X primer buffer	3ul	300ul
DNTP mix	2.5ul	250ul
exTaq	0.3ul	30ul
Total	24ul	2400ul
DNA template	1ul perl well	

General recommendations

• The use of filter tips is recommended for all PCR reagents to avoid contamination. Clean the bench top with alcohol before setting up reactions.

- Always use a sterile tip when removing exTaq polymerase and the other reagents from their tubes.
- Keep DNA templates (i.e. other PCR products) away from the PCR reagents while you are setting up the reaction mixes. Add DNA after all of the reagents have been returned to the freezer.
- Always include a sample without template as a negative control to check for contamination of the reagents. Include a positive control (a DNA sample that has amplified in the past) as well to test the effectiveness of the PCR reagents.

3.2 PCR thermocycle program

The amplification program includes a thermocycling profile of :

- 94°C for 1 min:
- 5 cycles of 94°C for 30 sec, 45°C for 40 sec, and an extension at 72°C for 1 min;
- followed by 35 cycles of 94°C for 30 sec, 51°C for 40 sec, and 72°C for 1 min;
- with a final extension at 72°C for 10 min, and finally holding at 12°C.

3.3 PCR product check

All amplicons could be visualized on a 1.2% 96 Agarose E-gel (Biowest Agarose).

10X PCR buffer by <u>Takara</u> 10mM dNTP mix by <u>Takara</u> exTag by <u>Takara</u>

Sequencing

Step 4.

4.1 Hiseq or BGIseq500

All PCR products from each plate should be pooled using 1 μ l per sample resulting in two 96 μ l mixtures.

PCR amplicons should be fragmented to construct a library of an insert-size of 250 bp and sequenced with a strategy of 150 PE.

4.2 Pacbio (optional)

- All PCR products from each plate should be pooled using 1 μ l per sample resulting in two 96 μ l mixtures.
- Sequencing using PacBio RS II.

BIOINFOMATICS DATA ANALYSIS

Step 5.

5.1 HIFI-Barcode-Hiseq assembly

HIFI-Barcode-Hiseg could be downloaded from https://github.com/comery/HIFI-barcode-hiseg.

Description

HIFIBarcode is used to produce full-length COI barcodes from pooled PCR amplicons generated by individual specimens.

Installation

Clone from github

\$ git clone https://github.com/comery/HIFI-barcode-hiseq.git

\$ tar -zxvf HIFIBarcode.v1.0.tar.gz

Source code

- (1) Wrapper script: HIFIBarcode.v1.0.pl: the wrapper script to run other Perl scripts to do the work you choose.
- (2) Main scripts: Seven Perl scripts in folder HIDIBarcode.V1.0/bin/, including:
 - 1 split extract.pl
 - 2 uniqu sort cluster.Pro.pl
 - 3 sep extract overlap.pl
 - 4 cluster fromend.pl
 - 5 forgap filling.pl
 - 6_rename_kmer.pl
 - 7_final.pl
- (3) Published softwares:

VSEARCH v2.4.4. Rognes, Torbjørn, et al. 'VSEARCH: a versatile open source tool for metagenomics.' PeerJ 4 (2016): e258. COPE CMR v1.0.3. Liu, Binghang, et al. 'COPE: an accurate k-mer-based pair-end reads connection tool to facilitate genome assembly.' Bioinformatics 28.22 (2012): 2870-2874. SOAPBarcode. Liu, Shanlin, et al. 'SOAPBarcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons.' Methods in Ecology and Evolution 4.12 (2013): 1142-1150.

Pre-requisites

Examples

1: run wrapper script to get shell text and then sh runHIFIBarcode.sh to run HIFIBarcode

perl HIFIBarcode.v1.0.pl --fq1 test_1.fq --fq2 test_2.fq --index index_primer.txt --length 5 --cpunum 10 --outdir test --outpre testout

2: run shell

sh test/runHIFIBarcode.sh

NOTE

The proposed method assemble short-read Illumina sequences based on k-mer sequence matches and such misassembly was not observed in their real data, but it's still possible. The pipeline also provides an additional note file with a suffix of "note.txt" with notes alerting users about the possibilities which have similar or same scores comparing to their best alternative.

LATEST RELEASE

Version 1.1 201709

5.2 HIFI-Barcode-Pacbio assembly

HIFI-Barcode-Pacbio could be downloaded from https://github.com/comery/HIFI-barcode-pacbio.

DESCRIPTION

HIFIBarcode is used to produce full-length COI barcodes from pooled PCR amplicons generated by individual specimens.

INSTALLATION

Clone from github

\$ git clone https://github.com/comery/HIFI-barcode-pacbio.git

• Or go to website https://github.com/comery/HIFI-barcode-pacbio and click 'Download ZIP'

Requirements

(1) software

 PicBio smrtanalysis download from http://www.pacb.com/products-and-services/analytical-software/smrt-analysis/

(2) programming language

- standard perl
- standard python(python2 is ok)

(3) perl module

• Bio::Perl(exactly Bio::Seq)

(4) main perl and python scripts in bin/

- primer like extract.pl
- cluster count passes length.pl
- py | see more information to go to https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Extracting-Reads-of-Insert-(C CS)-number-of-passes or directly download from https://raw.githubusercontent.com/PacificBiosciences/Bioinformatics-Training/master/scripts/ccs_passes.py
- pl

DATA requirements:

(1) pacbio original H5 file input

data/*.h5

(2) primers list

• experiment data/primer.lst

for GGTCAACAAATCATAAAGATATTGG rev TAAACTTCAGGGTGACCAAAAAATCA

(3) index(barcodes for identifying samples) list

experiment data/index.xls

001 AAAGC 002 AACAG 003 AACCT 004 AACTC 005 AAGCA

. . .

(4) samples_location.tab

• samples name and corresponding location in 96-cell plate

1 A01

2 B01

3 C01

4 D01

5 E01

...

Overview of steps

If you installed PacBio smrtanalysis, I suppose you get the file path of setup.sh, more about Pacbio Data: http://www.pacb.com/wp-content/uploads/SMRT-Link-User-Guide-v4.0.0.pdf

e.g: setup path='/path/PicBio/smrtanalysis/current/etc/setup.sh'

step 1 extract CCS from h5 files

Input:

my_inputs.fofn (my_inputs.fofn contains files list of Pacbio H5 file in 01.data/, like this-> ./01.data/m170506 092957 42199 c101149142550000001823255607191735 s1 p0.1.bax.h5)

Output:

log

data *.ccs.fasta *.ccs.fastq *.ccs.h5 reads_of_insert.fasta reads_of_insert.fastq slots.pickle

workflow

results

Run:

\$ source /path/PicBio/smrtanalysis/current/etc/setup.sh

\$ fofnToSmrtpipeInput.py my inputs.fofn > my inputs.xml

step 2 extract passes number from CCS h5 files

Input:

/data/*.ccs.h5

Output:

ccs passes.lst

Run:

Note: Before run the scripts, please in sure that you have run source /path/PicBio/smrtanalysis/current/etc/setup.sh

\$ python bin/ccs_passes.py data/*.ccs.h5 >ccs_passes.lst

step 3 filtering CCS by passes number (>15)

Input:

```
ccs_passes.lst
data/reads of insert.fasta
```

Output:

ccs passes 15.fa

Run:

```
$ awk '$2>=15{print $1}' ccs_passes.lst >ccs_passes_15.lst
```

\$ perl ./bin/fish ccs.pl ccs passes 15.lst data/reads of insert.fasta >ccs passes 15.fa

step 4 assigning CCS to samples by index

Input:

```
experiment_data/primer.fa
experiment_data/index.xls
ccs_passes_15.fa
```

Output:

Note: 'outdir' name is up to you, here default value is '02.assignment'

```
02.assignment/
assign.log.txt
ccs.successfully_assigned.fa
check.ccs passes 15.fa.log
```

Run:

\$ perl ./bin/1.primer_like_extract.pl -p experiment_data/primer.fa -index experiment_data/index.xls -fa ccs_passes_15.fa -cm 2 -cg 1

step 5 clustering CCS of each sample to find best one

Input:

```
ccs.successfully_assigned.fa
check.ccs_passes_15.fa.log
ccs_passes.lst
```

Output:

cluster.top1.fas cluster.id.txt cluster.all.fa

Run:

\$ cd 02.assignment/

 $perl../bin/2.cluster_count_passes_length.pl-ccs ccs.successfully_assigned.fa-pattern check.ccs_passes_15.fa.log-passes../ccs_passes.lst$

\$ perl ../bin/change_name-location.pl cluster.top1.fas >hifi-barcode-pacbio.cluster.top1.fa

ALL DONE!

So, 'hifi-barcode-pacbio.cluster.top1.fa' is final result!