合成孔径雷达风像及处理

第一讲

北京航空航天大学电子信息工程学院

孙进平 (82317240) sunjp2000@263.net

<u>参考书目</u>

张澄波,合成孔径雷达:原理、系统分析与应用。科学出版社,1989年 刘永坦等,雷达成像技术,哈尔滨工业大学出版社,1999年 魏钟铨等,合成孔径雷达卫星,科学出版社,2001年

黄永红,星载合成孔径雷达成像处理与运动补偿,北航博士论文,1992 贾洪江,机载合成孔径雷达成像算法研究与实现,北航硕士论文,1998年

John C. Curlander, et al., Synthetic Aperture Radar System and Signal Processing. John Wiley & Sons, INC., 1991.

Carrara W. G., et al., Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Artech House, 1995

C. V. Jakowatz et al, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, Kluwer Academic Publishers, Norwell Mass., 1996

Chris Oliver et al, *Understanding Synthetic Aperture Radar Images*, Artech House, 1998

Mehrdad Soumekh, Synthetic Aperture Radar Signal Processing: with MALAB Algorithms, John Wiley & Sons, INC., 1999

应用	入射角(度)	最佳工作频率	合孔径雷达参数 	极化要求
	l	地质及矿物资	1	
结构	山区约 45°。在3 原区 小擦地分		Ku 波段只显示值	vv 或 HH ∴
岩性学		未知, 致为了穿透植被频率 低些为好	未知。 但希望多频段工作	VV 或 HH
结构材料	10°至 20°或在 20°—70°中任派 值	未知, 家为了穿透植被频率 低些为好	未知。 但希望多频段工作	VV 或 HH
	山区约 45° ,平原区 小擦地角		希望一高工作频率 和一低工作频率	vv 成 HH

农业及自然植被应用					
作物鉴别	30° -70°	14006MHz >	需要9000,14000及 17000MHz	同极化或交叉极	
作物及牧		ĺ			
生长状态	30°-70°	>3000MHz	常要 待定	单极化	
病态	30° -70°	>8000MHz	需要 待定	单极化	
土壤湿度	5°-20°	4000—5000MHz	大概无 待定	单极化	
田界	30°—70°	>8000MHz	大概无 待定	 同极化或交叉极/	
耕作效果	30° ·80°	- 大概无	大概无 特定	同极化或交叉极	
自然植被	30° - 70°	>8000MHz	常要 待定	同极化成交叉极	
森林村庄		•	[
鉴别	20° 70°	特定	需要 待定	同极化或交叉极	
状态	20°70°	持定	需要 持定	同极化或交叉极值	
侵蚀	30° 80°	大概无待定	光	单极化	
灌溉	5°20°	4000-5000MHz	大概无 待定	单极化	

<u>距离向一脉冲压缩</u>

脉冲压缩是雷达提高视向分辨率的最常用方法

旧的矩形脉冲一原理和局限

假期國際理论。

雷达的距离分辨率 ρ_r 由雷达信号带宽 B_r 决定,且有: $\rho_r = c/2B_r$ 。其中 c 为光速。在这一理论指导下,人们可以设计这样的波形: 它既具有较长的持续时间以便获得较大的平均功率,从而获得较远的雷达作用距离; 又具有较大的信号带宽,以便获得较好的距离分辨率。

<u>距离向一脉冲压缩</u>

有多种信号波形能满足这些要求,其中模拟线性调频脉冲信号(又称为Chirp 信号)是其中较为成熟并应用广泛的一种。Chirp信号经过压缩(通过匹配滤波或谱分析的方法)可以得到理论上的高分辨率。

脉冲宽度为 T_n ,调频率为 k_n 的模拟脉冲线性调频信号的形式为:

$$s(t) = rect(\frac{t}{T_p}) \exp(j2\pi f_c t + j\pi k_r t^2)$$

接收机接收回波后先要利用微波器件去除载频,得到中频信号或者称为视频信号(Video Signal),然后分成I、Q通道分别进行A/D转换,得到要处理的雷达回波复信号的实部和虚部。

<u>距离向一脉冲压缩</u>

Chirp信号的频谱一點定程位原理

$$s(t) = rect(\frac{t}{T_p}) \exp(j\pi k_r t^2)$$

$$S(f) = rect(\frac{f}{B_r}) \exp(-j\pi \frac{f^2}{k_r})$$

在频域实现匹配滤波 利用使用FFT快速计算

<u>距离向一脉冲压缩</u>

如果对Chirp信号采用匹配滤波的方法进行脉冲压缩,得到输出信号

$$C_s(\tau) = \sqrt{k_r} (T_p - |\tau|) \operatorname{sinc} [k_r \tau (T_p - |\tau|)] \exp(j2\pi f_c \tau)$$

包络的主瓣半功率宽度为

$$\tau_0 = \frac{1}{k_r T_p} = \frac{1}{B_r}$$

脉冲压缩比为

$$r = \frac{T_p}{\tau_0} = B_r T_p$$

就是Chirp信号的时间带宽积

<u>距离向一脉冲压缩</u>

根据信号包络的主瓣半功率宽度来定义的邻近目标名义距离分辨率

$$\rho_r = \frac{c\,\tau_0}{2} = \frac{c}{2B_r}$$

MATLAB 源代码:

Chirp信号示例: chirp_sig.m

脉冲压缩示例: range_compress.m

Stimson "Introduction to Airborne Radar", Second Edition

机载雷达导论,电子工业出版社

