

Ciência da Computação

ENGENHARIA DE SOFTWARE

Métricas e Estimativas do Projeto

Prof. Claudinei Dias

email: prof.claudinei.dias@gmail.com

Roteiro

- Introdução
- Métricas
- APF Análise de Pontos de Função
- Estimativas
 - Prazos;
 - Custos;
 - Recursos.
- Ferramentas

Introdução

- Não se pode gerenciar o que não se pode medir (Tom DeMarco)
- O gerenciamento de projetos deve ser auxiliado pela utilização de uma métrica que permita a mensuração de um projeto e consequentemente a geração de sua estimativa de prazo, custo e recursos.

Medidas do software

- Medir é fundamental em engenharia;
- Para que medir um software?
 - qualidade,
 - produtividade,
 - benefícios,
 - Estimativas.
- Diretas (pontos de função, número de linha de códigos);
- Indiretas (qualidade, eficiência)

Medidas do software (cont.)

- Orientadas a tamanho:
 - Produtividade = linhas de código por pessoa num mês;
 - Qualidade = linhas de código por pessoa num mês / números de erros;
 - Custo = custo total / linhas de código total;
 - Documentação = páginas de documentação / linhas de código.
- Problemas (???).

Medidas do software (cont.)

- Orientadas à função FP (pontos por função):
 - Produtividade = FP por pessoa num mês;
 - Qualidade = FP/ números de erros;
 - Custo = custo total / FP;
 - Documentação = páginas de documentação / FP.

Unidade de medida para Sistemas

Análise de Pontos de Função (APF)

 A APF é um método-padrão para a medição do desenvolvimento de software

Os objetivos da APF são:

- Medir as funcionalidades do sistema requisitadas e recebidas pelo usuário;
- Medir projetos de desenvolvimento e manutenção de software, sem se preocupar com a tecnologia que será utilizada na implementação.
- Gerência → Planejamento → Estimativas (esforço humano, duração e custos);

Histórico APF

- A técnica de Análise de Pontos de Função (APF) foi desenvolvida na década de 70 por Alan Albrecht funcionário da IBM
- Na década de 80 foi fundado o Grupo Internacional de Usuários de Pontos de Função (IFPUG) e criado um manual de prática de contagem
- Em 1994, a IFPUG lançou a Versão 4.0 do seu Manual de Prática de Contagem
- Atualmente o Manual se encontra na versão 4.3

Benefícios

- Uma técnica que permite dimensionar o tamanho de um software a ser adquirido pela instituição;
- uma técnica para estimativas de custo e recursos para o desenvolvimento e manutenção de softwares;
- uma unidade de medida para comparação;
- implantação de um programa de métricas;
- maior controle de qualidade;
- ferramenta de auxílio gerencial.

Benefícios

- Melhora o grau de assertividade das estimativas de produtividade de projetos.
- Apóia o relacionamento entre cliente e fornecedores com uma mesma linguagem.
- Apóia a contratação mais justa, se aplicado os propósitos do método.
- Facilita a gestão dos contratos.
- Gera orçamentos mais precisos e permite uma previsão orçamentária.
- Auxilia os gestores na tomada de decisões nas fases iniciais dos projetos.
- Auxilia na avaliação de melhorias no processo de desenvolvimento dos projetos.

Processo de Contagem

- Determinação do Tipo de Contagem
 - Desenvolvimento
 - Manutenção
 - Aplicação
- Fronteiras da Aplicação
- Funções do Tipo Dados
 - ALI (Arquivo Lógico Interno)
 - AIE (Arquivo de Interface Externa)
- Funções do Tipo Transação
 - EE (Entrada Externa)
 - SE (Saída Externa)
 - CE (Consulta Externa)
- Determinação dos Pontos de Função Brutos
 - Simples
 - Média
 - Complexa

Processo de Contagem

Determinação do Fator de Ajuste

- 1. Comunicação de Dados
- 2. Funções Distribuídas
- 3. Performance
- 4. Configuração do equipamento
- 5. Volume de Transações
- 6. Entrada de dados On-Line
- 7. Interface com o usuário
- 8. Atualização On-Line
- 9. Processamento Complexo
- 10. Reusabilidade
- 11. Facilidade de Implantação
- 12. Facilidade Operacional
- 13. Múltiplos Locais
- 14. Facilidade de Mudanças (flexibilidade)

Cálculo dos Pontos de Função Ajustados

Processo de Contagem

Resumo

- Identificar ALIs, AIEs, EEs, SEs e CEs
- Classificar quanto à complexidade:
 Simples, Média ou Complexa
- Cálculo de PFBruto
- Determinação do FA (Fator de Ajuste) através do NI (Níveis de Influência)
- Cálculo de PFAjustado

Diagrama de Funções e Fronteira da Aplicação

Procedimento para Cálculo APF

 Verificar detalhes das fórmulas no material Estimativas - APF (Analise de Ponto de Função)

Aplicação	PF	Aplicação	PF
1. Produtos de Software		2. Sist. Comerciais Diversos	
Ferramenta CASE IEF (Texas)	20.000	Imposto de Renda Pessoal	2.000
Compilador Visual Basic (Microsoft)	3.000	Contabilidade Geral	1.500
SGBD IMS (IBM)	3.500	Processamento de Pedidos	1.250
Gerenciador de TP CICS (IBM)	2.000	Recursos Humanos	1.200
Word 7.0 (Microsoft)	2.500	Suporte a Vendas	975
Excel 6.0 (Microsoft)	2.500	Preparação de Orçamento	750
MS Project (Microsoft)	3.000		

Parâmetro de medida	Número de ocorrências	Complexidade baixa	Complexidade média	Complexidade alta	Total
Entradas do usuário	20 baixa	*2	*6	*9	40
Acesso ao banco de dados Número de telas	média	*3	*5 *6	*9 *10	30
Numero de teras	baixa	73	-0	10	30
Página de documentação	30 baixa	*2	*5	*9	60
Número de subprogramas	6 alta	*2	*5	*9	54

Estimativa

- FP = 204. Se uma pessoa conseguir 4 FP por dia, levará 26 dias para duas pessoas;
- FP = 4238. Quantos dias levará para sete pessoas, onde cada pessoa consegue 4FP por dia?

- Estimativa de custos e esforço
- Dado um FP = 204. A estimativa de produtividade de 4 FP por pessoa-mês e o valor bruto salarial é de R\$ 8000 por mês.
 Cada FP terá um custo de R\$2000. O custo total então será de R\$ 408000 e de 51 pessoas por mês aproximadamente;
- Exercício: Dados um FP = 4238. Qual a estimativa de custo esforço humano dado o valor de salário bruto de R\$ 6000 e uma estimativa de produtividade de 5,5 FP por pessoa-mês ?

Ferramentas

- Modelagem em UML
 - Jude ou Astah

- Gestão de projetos
 - OpenProj
 - Redmine
- Estimativa de software
 - APF

Referências

- Mais detalhes acesse o site:
- http://www.bfpug.com.br/
- http://www.ifpug.org/
- http://carloscamposinfo.com/cjec/
- http://www.fattocs.com.br/livro.asp

Bibliografia

BIBLIOGRAFIA BÁSICA:

PRESSMAN, R.S. Engenharia de Software. Mc Graw Hill, 5ª Edição 2001.

SOMMERVILLE, I. Engenharia de Software. Addison Wesley, 6ª Edição 2003.

REZENDE, D.A. Engenharia de Software e Sistemas de Informação. Brasport, 2ª edição.

BIBLIOGRAFIA COMPLEMENTAR:

WEBER, K.C. et all. Qualidade e produtividade em Software. Makron Books, 1999.

ROCHA, A.R.C et all; Qualidade de Software. Editora Linarth, 1999.

Anais do SBES - Simpósio Brasileiro de Engenharia de Software.

SEI. SOFTWARE ENGINEERING INSTITUTE. CMMI for Development (CMMI-DEV), Version 1.2, Technical report CMU/SEI-2006-TR-008. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2006.

SOFTEX. MPS.BR - Melhoria de Processo do Software Brasileiro. Guia Geral, versão 1.2. 2007.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO/IEC 12207 – Tecnologia de informação - Processos de ciclo de vida de software. Rio de Janeiro, 1998.

ISO/IEC - The International Organization for Standardization and The International Electrotechnical Commission, ISO/IEC TR 15504 Software Process Assessment. 1998.

Ciência da Computação

ENGENHARIA DE SOFTWARE

Métricas e Estimativas do Projeto

Prof. Claudinei Dias

email: prof.claudinei.dias@gmail.com