AS.110.413 Introduction to Topology

Daniel Yao

Spring 2025

Contents

0	Introd	uction	9
U	0.0		
		Section	
1	-	ogical Spaces	
	1.0	Section.	10
	1.1	Definition	10
	1.2	Definition	10
	1.3	Definition	
	1.4	Definition.	
	1.5	Lemma.	
	1.6	Proof	
	1.7	Lemma	
	1.8	Proof	
	1.9	Lemma	10
	1.10	Example	10
	1.11	Definition	11
	1.12	Definition	
	1.13	Remark.	
	1.14	Definition	
	1.15	Theorem	
	1.16	Proof	
	1.17	Definition	11
	1.18	Theorem	11
	1.19	Proof	11
	1.20	Definition	
	1.21	Lemma.	
	1.22	Proof.	
	1.23	Lemma.	
	1.24	Proof	
	1.25	Theorem.	
	1.26	Proof	12
	1.27	Theorem	12
	1.28	Proof	
	1.29	Theorem.	
	1.30	Proof	
	1.31		
	-	Theorem.	
	1.32	Proof	
	1.33	Theorem.	
	1.34	Proof	13
	1.35	Definition	13
	1.36	Theorem.	13
	1.37	Proof.	
	1.38	Theorem.	
	1.39	Proof	
	1.40	Definition	13
	1.41	Theorem	_
	1.42	Proof.	13
	1.43	Corollary	13
	1.44	Proof	13
	1.45	Definition	
	1.46	Definition	
	1.40 1.47	Theorem.	
	1.48	Proof	14

4 40	mi	- 4
1.49	Theorem.	14
1.50	Definition	14
1.51	Theorem.	14
1.52	Proof	14
1.53	Theorem	14
1.54	Proof	 14
1.55	Theorem	 14
1.56	Proof	 14
1.57	Definition	 14
1.58	Theorem	 15
1.59	Proof	 15
1.60	Defintiion	 15
1.61	Definition	 15
1.62	Theorem	 15
1.63	Proof	 15
1.64	Lemma	15
1.65	Proof	15
1.66	Theorem	16
1.67	Proof.	16
1.68	Definition	16
1.69	Definition.	16
1.70	Theorem.	16
1.70 1.71	Theorem.	16
1.72	Proof.	16
1.72 1.73	Theorem.	16
$1.73 \\ 1.74$	Proof	16
$1.74 \\ 1.75$	Theorem.	17
1.76	Proof	$17 \\ 17$
$1.70 \\ 1.77$	Theorem	$\frac{17}{17}$
1.78		
	Proof.	17
1.79	Example	17
1.80	Definition	17
1.81	Definition	17
1.82	Definition	17
1.83	Definition	17
1.84	Definition	17
1.85	Definition	18
1.86	Theorem.	 18
1.87	Proof	18
1.88	Lemma.	18
1.89	Theorem.	18
1.90	Proof	 18
1.91	Definition	18
1.92	Theorem.	 18
1.93	Proof	 18
1.94	Theorem	 18
1.95	Proof	 19
1.96	Theorem	 19
1.97	Lemma	 19
1.98	Proof	 19
1.99	Theorem	 19
1.100	Definition	 19
1.101	Theorem	 19
1.102	Proof	 19

2		ectedness and Compactness	
	2.0	Section.	20
	2.1	Definition	20
	2.2	Remark	20
	2.3	Lemma	20
	2.4	Proof	20
	2.5	Lemma.	20
	2.6	Proof	20
	2.7	Theorem.	20
	2.8	Proof.	20
	2.9	Theorem.	20
	2.10	Proof	21
	2.10	Remark.	21
	2.12	Theorem.	21
	2.13	Proof.	21
	2.14	Theorem	21
	2.15	Proof	21
	2.16	Theorem.	21
	2.17	Proof	21
	2.18	Example	21
	2.19	Definition	21
	2.20	Theorem.	21
	2.21	Proof	21
	2.22	Corollary.	22
	2.23	Proof.	22
	2.24	Theorem.	22
	2.24 2.25	Proof.	$\frac{22}{22}$
	2.26	Example.	$\frac{22}{22}$
	2.20 2.27	Example. Example.	$\frac{22}{22}$
		•	$\frac{22}{22}$
	2.28	Definition	
	2.29	Definition	22
	2.30	Theorem.	22
	2.31	Proof	22
	2.32	Example	22
	2.33	Example	22
	2.34	Definition	23
	2.35	Theorem	23
	2.36	Proof	23
	2.37	Definition	23
	2.38	Theorem.	23
	2.39	Proof	23
	2.40	Theorem.	23
	2.41	Proof.	23
	2.42	Definition	23
	2.43	Defintiion	$\frac{23}{24}$
	2.43		$\frac{24}{24}$
		1	
	2.45	Theorem.	24
	2.46	Proof	24
	2.47	Theorem.	24
	2.48	Proof	24
	2.49	Theorem	24
	2.50	Theorem	24
	2.51	Definition	24
	2.52	Definition	24

2.53	Definition	. 25
2.54	Lemma.	
2.55	Proof	
2.56	Theorem	
2.57	Proof	
2.58	Theorem.	
2.59	Proof.	
2.60	Lemma.	
2.60	Proof.	
2.62	Theorem.	
2.63	Proof.	
2.64	Theorem.	
2.65	Proof	
2.66	Lemma	
2.67	Proof	
2.68	Theorem.	
2.69	Proof	
2.70	Remark	
2.71	Definition	
2.72	Theorem.	
2.73	Proof	
2.74	Theorem.	
2.75	Proof	
2.76	Corollary	. 27
2.77	Proof	. 27
2.78	Theorem	
2.79	Proof	. 28
2.80	Theorem	. 28
2.81	Proof	. 28
2.82	Definition	. 28
2.83	Theorem	. 28
2.84	Lemma.	. 28
2.85	Proof	. 29
2.86	Theorem	. 29
2.87	Proof	
2.88	Definition	
2.89	Theorem	. 29
2.90	Proof	
2.91	Corollary	. 29
2.92	Proof	
2.93	Definition.	
2.94	Theorem.	
2.95	Proof.	
2.96	Example.	
2.97	Definition.	
2.98	Theorem.	
2.99	Proof	
2.100		
2.101		
	Proof.	
	Example	
	Example	
	Theorem.	
2.106	Proof	. 31

	2.107	Definition	
	2.108	Theorem	
	2.109	Proof	31
	2.110	Corollary	31
	2.111	Proof	31
	2.112	Corollary	31
	2.113	Proof	32
3		ability and Separation Axioms	
	3.0	Section.	
	3.1	Definition	
	3.2	Definition	
	3.3	Lemma.	
	3.4	Proof.	
	3.5	Theorem.	
	3.6	Proof	
	3.7	Definition	
	3.8		
		Lemma	
	3.9	Proof	
	3.10	Example	
	3.11	Theorem.	
	3.12	Proof	
	3.13	Definition	
	3.14	Theorem	
	3.15	Proof	
	3.16	Definition	
	3.17	Theorem	
	3.18	Proof	34
	3.19	Theorem	34
	3.20	Proof	34
	3.21	Definition	34
	3.22	Lemma	34
	3.23	Proof.	35
	3.24	Definition	35
	3.25	Definition	35
	3.26	Definition	
	3.27	Definition	
	3.28	Definition	
	3.29	Theorem.	
	3.30	Proof.	35
	3.31	Remark.	35
	3.32	Lemma	35
	3.33	Proof.	35
	3.34	Lemma	36
	3.35		36
	3.36	Theorem.	36
	3.37	Proof	36
	3.38	Example.	36
	3.39	Example.	36
	3.40	Example.	36
	3.41	Theorem.	36
	3.42	Proof	37
	3.43	Theorem	37
	3.44	Proof	37
	3.45	Theorem	37

	3.46	Proof	37
	3.47	Theorem	38
	3.48	Proof	38
	3.49	Remark	38
	3.50	Example	38
	3.51	Example	38
	3.52	Lemma.	38
	3.53	Proof	38
	3.54	Definition	39
	3.55	Remark	39
	3.56	Definition	39
	3.57	Remark.	39
	3.58	Theorem	39
	3.59	Proof	39
	3.60	Theorem.	39
	3.61	Proof	39
	3.62	Theorem.	39
	3.63	Proof	40
	3.64	Theorem.	40
	3.65	Theorem.	40
	3.66	Proof.	40
1		amental Group.	41
	4.0	Section.	41
	4.1	Definition.	41
	4.2	Definition	41
	4.3	Definition	41
	4.4	Lemma	41
	4.4	Proof.	41
	4.6	Definition.	41
	4.7	Example.	41
	4.7	Definition	41
	4.0	Definition	41
	4.10	Lemma.	42
	4.10	Proof	$\frac{42}{42}$
	4.12 4.13	Lemma	$\frac{42}{42}$
	4.13	Proof	
	4.14	Theorem	
	4.16	Theorem.	42
	4.17	Proof.	43
	4.18	Definition.	43
	4.19	Definition.	43
	$4.20 \\ 4.21$	Definition.	43
		Definition.	43
	4.22	Definition.	43
	4.23	Definition	43
	4.24	Definition.	43
	4.25	Definition.	43
	4.26	Definition	43
	4.27	Example.	43
	4.28	Definition	44
	4.29	Theorem.	44
	4.30	Proof.	44
	4.31	Corollary.	44

4.32	Proof	. 44
4.33	Remark	44
4.34	Definition	44
4.35	Lemma	44
4.36	Proof	44
4.37	Definition	. 45
4.38	Theorem	
4.39	Proof	
4.40	Theorem	
4.41	Proof	
4.42	Corollary.	
4.43	Proof.	
4.44	Definition	
4.45	Definition	
4.46	Definition	
$4.40 \\ 4.47$	Example	
4.48	•	
-	Theorem	
4.49	Proof.	
4.50	Theorem.	
4.51	Proof.	
4.52	Theorem.	
4.53	Proof	
4.54	Example.	
4.55	Example	
4.56	Example	
4.57	Definition	
4.58	Example	
4.59	Lemma	
4.60	Proof	
4.61	Lemma	47
4.62	Proof	48
4.63	Theorem	48
4.64	Proof	48
4.65	Definition	48
4.66	Theorem	48
4.67	Proof	48
4.68	Theorem	
4.69	Proof	49
4.70	Definition	49
4.71	Remark	49
4.72	Theorem.	-
4.73	Proof.	
4.74	Definition	
4.75	Lemma.	
4.76	Proof.	
4.77	Theorem.	
4.78	Proof.	
4.79	Lemma	
4.80	Proof.	
4.81	Corollary	
4.82	Proof.	
4.83	Theorem.	
4.84	Proof.	_
4 85	Theorem	51

4.8	6 Proof	51
4.8	7 Theorem	51
4.8	8 Proof	51
4.8	9 Remark	51
4.9	0 Corollary	51
4.9	1 Proof	51
4.9	2 Theorem	51
4.9	3 Proof	51

0.0 Section.

Introduction.

1.0 Section.

Topological Spaces.

1.1 Definition.

A topological space is a tuple (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that

- (a) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- (b) \mathcal{T} is closed under arbitrary union.
- (c) \mathcal{T} is closed under finite intersection.

1.2 Definition.

T is finer than T' if $T \supseteq T'$. T is coarser than T' if $T \subseteq T'$. T and T' are comparable if $T \subseteq T'$ or $T' \subseteq T$.

1.3 Definition.

A basis \mathcal{B} for a topology on X is a collection of subsets of X such that

- (a) for each $x \in X$, there exists a $B \in \mathcal{B}$ such that $x \in B$.
- (b) if $x \in B_1 \cap B_2$, then there exists a $B_3 \subseteq B_1 \cap B_2$ such that $x \in B_3$.

1.4 Definition.

Let \mathcal{B} be a basis. The topology \mathcal{T} generated by \mathcal{B} is such that U is open in X if and only if for each $x \in U$, there exists a $B \in \mathcal{B}$ such that $x \in B \subseteq U$.

1.5 Lemma.

Let \mathcal{B} be a basis for the topology \mathcal{T} on X, Then \mathcal{T} is the collection of unions of elements of \mathcal{B} .

1.6 Proof.

TODO!

1.7 Lemma.

Let X be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open set U of X and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Then \mathcal{C} is a basis for the topology of X.

1.8 Proof.

TODO!

1.9 Lemma.

Let \mathcal{B} and \mathcal{B}' be bases for \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent.

- (a) \mathcal{T}' is finer than \mathcal{T} .
- (b) For each $x \in X$ and each basis element $B \in \mathcal{B}$, there exists a $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

1.10 Example.

 R_l and R_K are finer than \mathbb{R} , but \mathbb{R}_l and \mathbb{R}_K are incomparable.

1.11 Definition.

A subbasis S for a topology on X is a collection of subsets of X whose union equals X. The topology generated by the subbasis S is defined to be the collection T of all unions of finite intersections of elements of S.

1.12 Definition.

Let X be a simply ordered set with more than one element. Let \mathcal{B} consist of

- (a) all open intervals (a, b),
- (b) all rays $[a_0, b)$ where a_0 is the smallest element of X, and
- (c) all rays $(a, b_0]$ where b_0 is the largest element of X.

The topology generated by \mathcal{B} is called the order topology on X.

1.13 Remark.

The collection of open rays in X is a subbasis for the order topology on X.

1.14 Definition.

Let X and Y be topological spaces. The product topology on $X \times Y$ is the topology generated by the basis of the sets $U \times V$ where U and V are open in X and Y, respectively.

1.15 Theorem.

If \mathcal{B} and \mathcal{C} are bases for X and Y, respectively, then the collection of sets $B \times C$ where $B \in \mathcal{B}$ and $C \in \mathcal{C}$ is a basis for the product topology on $X \times Y$.

1.16 **Proof.**

TODO!

1.17 Definition.

Let $\pi_1: X \times Y \to X$ be the projection of $X \times Y$ onto X and similarly for $\pi_2: X \times Y \to Y$.

1.18 Theorem.

The collection

$$\mathcal{S} = \{\pi_1^{-1}(U) \mid U \in \mathcal{T}_1\} \cup \{\pi_2^{-1}(V) \mid V \in \mathcal{T}_2\}$$

is a subbasis for the product topology on $X \times Y$, where \mathcal{T}_1 and \mathcal{T}_2 are the topologies on X and Y, respectively.

1.19 Proof.

TODO!

1.20 Definition.

Let X be a topological space with topology \mathcal{T} . If Y is a subset of X, the collection

$$T_Y = \{ U \cap Y \mid U \in \mathcal{T} \}$$

is a topology on Y called the subspace topology on Y.

1.21 Lemma.

If \mathcal{B} is a basis for X, then the collection

$$\mathcal{B}_Y = \{ B \cap Y \mid B \in \mathcal{B} \}$$

is a basis for the subspace topology on Y.

1.22 Proof.

TODO!

1.23 Lemma.

Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open in X.

1.24 Proof.

TODO!

1.25 Theorem.

If A is a subspace of X and B is a subspace of Y, then the product topology on $A \times B$ is the same as the subspace topology of $A \times B$ as a subspace of $X \times Y$.

1.26 Proof.

TODO!

1.27 Theorem.

Let x be an ordered set in the order topology. Let Y be a subset of X that is convex in X. Then the order topology on Y is the same as the subspace topology on Y as a subspace of X.

1.28 Proof.

TODO!

1.29 Theorem.

Let X be a topological space. Then the following properties hold.

- (a) \emptyset and X are closed.
- (b) Arbitrary intersections of closed sets are closed.
- (c) Finite unions of closed sets are closed.

1.30 Proof.

TODO!

1.31 Theorem.

Let Y be a subspace of X. Then a set is closed in Y if and only if it equals the intersection of a closed set of X with Y.

1.32 Proof.

TODO!

1.33 Theorem.

Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.

1.34 Proof.

TODO!

1.35 Definition.

The closure \overline{A} of a set A is the intersection of all closed sets that contain A.

1.36 Theorem.

Let Y be a subspace of X. Let A be a subset of Y. Let \overline{A} denote the closure of A in X. Then the closure of A in Y equals $\overline{A} \cap Y$.

1.37 Proof.

TODO!

1.38 Theorem.

Let A be a subset of X.

- (a) $x \in \overline{A}$ if and only if every open set U containing x intersects A.
- (b) $x \in \overline{A}$ if and only if every basis element B containing x intersects A.

1.39 Proof.

TODO!

1.40 Definition.

Let X be a topological space. A point x is a limit point of a set A if every neighborhood of x contains a point of A other than x. That is, x is a limit point of A if $x \in \overline{A \setminus \{x\}}$.

1.41 Theorem.

Let A be a subset of X. Let A' be the set of all limit points of A. Then $\overline{A} = A \cup A'$.

1.42 **Proof.**

TODO!

1.43 Corollary.

A subset of a topological space is closed if and only if it contains all its limit points.

1.44 Proof.

A is closed if and only if $A = \overline{A}$, which holds if and only if $A' \subseteq A$.

1.45 Definition.

A sequence (x_n) in X is said to converge to x if for every neighborhood U of x, there exists an N such that for all $n \geq N$, $x_n \in U$.

1.46 Definition.

A topological space X is said to be T_1 if for every x and y distinct in X, there exists a neighborhood of x that does not contain y.

1.47 Theorem.

Every finite set in a T_1 space is closed.

1.48 **Proof.**

TODO!

1.49 Theorem.

Let X be a T_1 space. Let A be a subset of X. Then x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.

1.50 Definition.

A topological space X is said to be a Hausdorff space if for every x and y distinct in X, there exist disjoint neighborhoods of x and y.

1.51 Theorem.

If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

1.52 Proof.

TODO!

1.53 Theorem.

Every simply ordered set is Hausdorff in the order topology.

1.54 Proof.

TODO!

1.55 Theorem.

- (a) A subspace of a Hausdorff space is Hausdorff.
- (b) A finite product of Hausdorff spaces is Hausdorff.

1.56 Proof.

TODO!

1.57 Definition.

A function $f: X \to Y$ is said to be continuous if for every open subset V of Y, the preimage $f^{-1}(V)$ is open in X. It suffices to only consider the case where V is a basis element of Y.

1.58 Theorem.

Let $f: X \to Y$. Then the following are equivalent.

- (a) f is continuous.
- (b) For every subset A of X, $f(\overline{A}) \subseteq \overline{f(A)}$.
- (c) For every closed set B of Y, $f^{-1}(B)$ is closed in X.
- (4) f(x) is continuous at each point x. That is, for each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.

1.59 Proof.

TODO!

1.60 Defintiion.

If $f: X \to Y$ is a bijection and both f and f^{-1} are continuous, then f is a homeomorphism. The spaces X and Y are said to be homeomorphic.

1.61 Definition.

Let $f: X \to Y$. Let Z = f(X) be a subspace of Y. If the restriction $f: X \to Z$ is a homeomorphism, then f is said to be an imbedding of X in Y.

1.62 Theorem.

Let X, Y, Z be topological spaces.

- (a) If $f: X \to Y$ is a constant function, then f is continuous.
- (b) If A is a subspace of X, the inclusion map $j: A \to X$ is continuous.
- (c) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then $g \circ f: X \to Z$ is continuous.
- (d) If $f: X \to Y$ is continuous and if A is a subspace of X, then the restriction $f \mid A: A \to Y$ is continuous.
- (e) If $f: X \to Y$ is continuous and Z is a subspace of Y that contains f(X), then the restriction $g: X \to Z$ is continuous. If Z is a space with Y as a subspace, then the extension $h: X \to Z$ is continuous.
- (f) The map $f: X \to Y$ is continuous if X can be written as the union of open sets $\{U_{\alpha}\}$ such that $f \mid U_{\alpha}$ is continuous for each α .

1.63 Proof.

TODO!

1.64 Lemma.

(Pasting Lemma) Let $X = A \cup B$ where A and B are either both open or both closed in X. Let $f: A \to Y$ and $g: B \to Y$ be continuous. If f(x) = g(x) for all $x \in A \cap B$, then the function $h: X \to Y$ defined as

$$h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}$$

is continuous.

1.65 Proof.

TODO!

1.66 Theorem.

Let $f: A \to X \times Y$ be defined as

$$f(a) = (f_1(a), f_2(a))$$

where $f_1: A \to X$ and $f_2: A \to Y$. Then f is continuous and only if and only if f_1 and f_2 are continuous.

1.67 Proof.

TODO!

1.68 Definition.

Let $\{X_{\alpha}\}$ for $\alpha \in J$ be an indexed family of topological spaces. The basis of all sets of the form

$$\prod_{\alpha \in J} U_{\alpha}$$

where U_{α} is open in X_{α} is called the box topology. It suffices to only consider the case where U_{α} is a basis element of X_{α} .

1.69 Definition.

Let $\{X_{\alpha}\}$ for $\alpha \in J$ be an indexed family of topological spaces. Let S_{β} denote the collection

$$S_{\beta} = \{ \pi_{\beta}^{-1}(U_{\beta}) \mid U_{\beta} \text{ is open in } X_{\beta} \}.$$

Let S denote the union of all such S_{β} for $\beta \in J$. The topology generated by the subbasis S is called the product topology. It suffices to only consider the case where U_{β} is a basis element of X_{β} .

1.70 Theorem.

Let $\{X_{\alpha}\}$ for $\alpha \in J$ be an indexed family of topological spaces. the product topology has basis consisting of all sets of the form

$$B = \prod_{\alpha \in J} U_{\alpha}$$

where U_{α} is open in X_{α} and $U_{\alpha} = X_{\alpha}$ for all but finitely many α . It suffices to only consider the case where U_{α} is a basis element of X_{α} .

1.71 Theorem.

let A_{α} be a subspace of X_{α} for each $\alpha \in J$. The product of the $\{A_{\alpha}\}$ is a subspace of the product of the $\{X_{\alpha}\}$ if both products are given the box topology or if both products are given the product topology.

1.72 Proof.

TODO!

1.73 Theorem.

If each X_{α} is Hausdorff, then the product of the $\{X_{\alpha}\}$ is Hausdorff in the box topology and in the product topology.

1.74 Proof.

TODO!

1.75 Theorem.

Let $\{X_{\alpha}\}$ be an indexed family of topological spaces. Let $A_{\alpha} \subseteq X_{\alpha}$ for each α . Then

$$\prod \overline{A_{\alpha}} = \overline{\prod A_{\alpha}}$$

in both the box topology and the product topology.

1.76 Proof.

TODO!

1.77 Theorem.

Let

$$f: A \to \prod_{\alpha \in J} X_{\alpha}$$

be defined as

$$f(a) = (f_{\alpha}(a))_{\alpha \in J}.$$

In the product topology, f is continuous if and only if each f_{α} is continuous.

1.78 Proof.

TODO!

1.79 Example.

TODO!

1.80 Definition.

A metric on a set X is a function $d: X \times X \to \mathbb{R}$ such that

- (a) (Nonnegativity) $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 if and only if x = y.
- (2) (Symmetry) d(x, y) = d(y, x) for all $x, y \in X$.
- (3) (Triangle Inequality) $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$.

1.81 Definition.

Denote the open ε -ball centered at x by $B(x, \varepsilon)$.

1.82 Definition.

If X has the metric d, then the collection of all ε -balls $B(x, \varepsilon)$ is a basis for the topology on X. The topology generated by the collection of all ε -balls is called the metric topology on X.

1.83 Definition.

A topology is said to be metrizable if there exists a metric d on the set X that induces the topology of X. A metric space is a metrizable space X together with a metric d that gives the topology of X.

1.84 Definition.

Let (X,d) be a metric space. A subset A of X is said to be bounded of there exists a $M \ge 0$ such that $d(x,y) \le M$ for all $x,y \in A$.

1.85 Definition.

If A is bounded and nonempty, then the diameter of A is defined as

$$diam(A) = \sup_{x,y \in A} d(x,y).$$

1.86 Theorem.

Let (X,d) be a metric space. Define the standard bounded metric corresponding to d to be $\overline{d}: X \times X \to \mathbb{R}$ by

$$\overline{d}(x,y) = \min\{d(x,y), 1\}.$$

Then \overline{d} is a metric on X that induces the same topology as d.

1.87 Proof.

TODO!

1.88 Lemma.

Let d and d' be two metrics on the set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce, respectively. Then \mathcal{T}' is finer than \mathcal{T} if and only if for each $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$B_{d'}(x,\delta) \subseteq B_d(x,\varepsilon)$$
.

1.89 Theorem.

The topologies induced by d and ρ on \mathbb{R}^n are the same as the product topology on \mathbb{R}^n .

1.90 Proof.

TODO!

1.91 Definition.

Define the uniform metric $\overline{\rho}$ on \mathbb{R}^J by the formula

$$\overline{\rho}(x,y) = \sup_{j \in J} \overline{d}(x_j, y_j).$$

It induces the uniform topology on \mathbb{R}^J .

1.92 Theorem.

The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. If J is infinite, then there relationsips are strict.

1.93 Proof.

TODO!

1.94 Theorem.

Let \overline{d} be the standard bounded metric on \mathbb{R} . Define for \mathbb{R}^{ω} the metric

$$D(x,y) = \sup \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\}.$$

It induces the product topology on \mathbb{R}^{ω} .

1.95 Proof.

TODO!

1.96 Theorem.

Let $f: X \to Y$ and let X and Y be metrizable with metrics d_X and d_Y , respectively. Then f is continuous if and only if for every $x \in X$ and every $\varepsilon > 0$, there exists a $\delta > 0$ such that $d_X(x,y)$ implies $d_Y(f(x), f(y)) < \varepsilon$.

1.97 Lemma.

(Sequence Lemma) Let X be a topological space. Let $A \subseteq X$. If there is a sequence of points of A that converges to x, then $x \in \overline{A}$. The converse holds if X is metrizable.

1.98 Proof.

TODO!

1.99 Theorem.

Let $f: X \to Y$. If f is continuous, then for every convergent sequence $(x_n) \to x$ in X, the sequence $(f(x_n))$ converges to f(x). The converse holds if X is metrizable.

1.100 Definition.

Let $f_n: X \to Y$ be a sequence of functions from the set X to the metric space Y. The sequence (f_n) converges uniformly to the function $f: X \to Y$ if given $\varepsilon > 0$, there exists an N such that

$$d(f_n(x), f(x)) < \varepsilon$$

for all n > N and all $x \in X$.

1.101 Theorem.

(Uniform Limit Theorem) Let $f_n: X \to Y$ be a sequence of continuous functions from the topological space X to the metric space Y. If (f_n) converges uniformly to $f: X \to Y$, then f is continuous.

1.102 Proof.

TODO!

2.0 Section.

Connectedness and Compactness.

2.1 Definition.

Let X be a topological space. A separation of X is a pair (U, V) of disjoint nonempty subsets of X whose union is X. A space X is said to be connected if there exists no separation of X.

2.2 Remark.

An equivalent definition is that X is connected if the only clopen sets of X are \emptyset and X.

2.3 Lemma.

If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose union is Y, neither of which contains a limit point of the other. The space Y is connected if there exists no separation of Y.

2.4 Proof.

Suppose that A and B form a sepration of Y. Then A is both open and closed in Y. A is closed, so $A = \overline{A} \cap Y$, that is, $\overline{A} \cap B = \emptyset$. So B contains no limit points of A. Similarly, A contains no limit points of B.

Conversely, suppose that A and B are disjoint nonempty sets whose union is Y, neither of which contians a limit point of the other. Then $\overline{A} \cap B = \emptyset$ and $\overline{B} \cap A = \emptyset$, so $\overline{A} \cap Y = A$ and $\overline{B} \cap Y = B$. Thus A and B are both closed in Y and therefore both open in Y.

2.5 Lemma.

If the sets C and D form a separation of X and if Y is a connected subspace of X, then Y lies entirely in C or entirely in D.

2.6 Proof.

The sets $C \cap Y$ and $D \cap Y$ are disjoint nonempty sets whose union is Y. If both are nonempty, then Y is not connected, a contradiction.

2.7 Theorem.

The union of a collection of connected subspaces of X that have a point in common is connected.

2.8 Proof.

Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X that share a point p. Let U denote the union of the collection. Suppose, by way of contradiction, that $Y = C \cup D$ is a separation of Y. Without loss of generality, suppose that $p \in C$. Since A_{α} is connected, it must lie entirely in C. Hence $A_{\alpha} \subseteq C$ for all α , so $Y \subseteq C$, a contradiction of the assumption that D is nonempty.

2.9 Theorem.

Let A be a connected subspace of X. If $A \subseteq B \subseteq \overline{A}$, then B is connected.

2.10 Proof.

Let A be connected and let $A \subseteq B \subseteq \overline{A}$. Suppose that $B = C \cup D$ is a separation of B. Assume, without loss of generality, that A lies entirely in C by Lemma 2.5. Then \overline{A} lies entirely in \overline{C} , for \overline{C} is disjoint from D by Lemma 2.3. So B does not intersect D, a contradiction that D is nonempty.

2.11 Remark.

That is, if A is a connected subspace, then adjoining some or all of its limit points yields another connected subspace.

2.12 Theorem.

The image of a connected space under a continuous map is connected.

2.13 Proof.

Let $f: X \to Y$ be a continuous map. Let X be connected. Let Z = f(X) be the image of f. Let $g: X \to Z$ be the restriction of f to the codomain Z. It is surjective. Suppose, by way of contradiction, that $Z = A \cup B$ is a separation of Z. Then $g^{-1}(A) \cup g^{-1}(B)$ is a separation of X, a contradiction.

2.14 Theorem.

A finite product of connected spaces is connected.

2.15 Proof.

TODO!

2.16 Theorem.

A product of connected spaces is connected in the product topology.

2.17 Proof.

TODO!

2.18 Example.

 \mathbb{R}^{ω} in the box topology is not connected, for A the set of bounded sequences and B the set of unbounded sequences form a separation of \mathbb{R}^{ω} .

2.19 Definition.

A simply ordered set L with more than one element is a linear continuum if

- (a) L has the least upper bound property, and
- (b) if x < y, there exists x < z < y.

2.20 Theorem.

If L is a linear continuum in the order topology, then L is connected. Moreoever, intervals and rays are connected in L.

2.21 Proof.

TODO!

2.22 Corollary.

The real line \mathbb{R} is connected, and so are intervals and rays in \mathbb{R} .

2.23 Proof.

 \mathbb{R} is a linear continuum, so Theorem 2.20 applies.

2.24 Theorem.

(Intermediate Value Theorem) Let $f: X \to Y$ be a continuous map, where X is a connected space and Y is an ordered set in the order topology. If a and b are two points of X and if r is a point of Y between f(a) and f(b), then there exists a c in X such that f(c) = r.

2.25 Proof.

The sets $A = f(x) \cap (-\infty, r)$ and $B = f(X) \cap (r, \infty)$ are disjoint nonemty open sets in f(X). If there exists no f(c) = r, then A and B would form a separation of f(X), a contradiction of Theorem 2.12.

2.26 Example.

The ordered square is a linear continuum.

2.27 Example.

If X is a well-ordered set, then $X \times [0,1)$ is a linear continuum.

2.28 Definition.

A path in X between x and y is a continuous map $f: I \to X$ such that f(0) = x and f(1) = y.

2.29 Definition.

A space X is said to be path connected if every pair of points x and y are connected by a path in X.

2.30 Theorem.

A path connected space is connected.

2.31 Proof.

Suppose, by way of contradiction, that $X = A \cup B$ is a separation of X. Let $f: I \to X$ be a path in X. f(I) must be connected by Theorem 2.12, so it lies entirely in A or B, a contradiction of the path-connectedness of X.

2.32 Example.

The ordered square is connected but not path connected.

2.33 Example.

Let $S \subseteq \mathbb{R}^2$ be the set

$$S = \{x \times \sin(1/x) \mid 0 < x < 1\}.$$

S is connected as the image of a connected space under a continuous map by Theorem 2.12. So it's closure

$$\overline{S} = S \cup (0 \times I)$$

is also connected by Theorem 2.9. However, \overline{S} is not path connected. Suppose, by way of contradiction, that there exists a path $f: I \to \overline{S}$ such that $f(0) = 0 \times 0$ and $f(1) \in S$. The preimage $f^{-1}(0 \times I)$ is closed, so it has a maximum element b. Let $f: [b,1] \to \overline{S}$ be a path that maps b to $0 \times I$ and maps all other points of [b,1] to S. Replace [b,1] with [0,1] for convenience. Let f(t) = (x(t), y(t)). There exists a sequence of points $t_n \to 0$ such that $y(t_n) = (-1)^n$, contradicting the continuity of f (for the sequence does not converge).

Indeed, given n, choose 0 < u < x(1/n) such that $\sin(1/u) = (-1)^n$. Then use the intermediate value theorem to choose $0 < t_n < 1/n$ such that $x(t_n) = u$.

2.34 Definition.

Let X be a topological space. Define the equivalence relation \sim on X, where $x \sim y$ if there is a connected subspace of X that cotnains both x and y. The equivalence classes of \sim are called the (connected) components of X.

2.35 Theorem.

The components of X are disjoint subspaces of X whose union is X such that each nonempty connected subspace of X intersects only one component of X.

2.36 **Proof.**

TODO!

2.37 Definition.

Let X be a topological space. Define the equivalence relation \sim_p on X where $x \sim_p y$ if there exists a path in X between x and y. The equivalence classes of \sim_p are called the path components of X.

2.38 Theorem.

The path components of X are path-connected disjoint subspaces of X whose union is X such that each nonempty path-connected subspace of X intersects only one path component of X.

2.39 Proof.

TODO!

2.40 Theorem.

Let X be a topological space. The components of X are closed. If X has finitely many components, then the components are open as well.

2.41 **Proof.**

The components are closed for they are connected to their closures by Theorem 2.9. If X has finitely many components, then the components are open as well, for they are the complements of a finite union of closed sets.

2.42 Definition.

A space X is said to be locally connected at x if every neighborhood of U of x contains a connected neighborhood V of x. A space X is said to be locally connected if it is locally connected at each of its points.

2.43 Defintiion.

A space X is said to be locally path connected at x if every neighborhood of U of x contains a path connected neighborhood V of x. A space X is said to be locally path connected if it is locally path connected at each of its points.

2.44 Example.

The topologist's sine curve is connected but not locally connected. For a small neighborhood of $x \in 0 \times I$ contains infinitely many disjoint pieces of the sine curve, so it is not connected.

2.45 Theorem.

A space X is locally connected if and only if for every open set U of X, each component of U is open in X.

2.46 Proof.

- (\Rightarrow) Suppose that X is locally connected. Let U be an open set of X. Let C be a component of U. If $x \in C$, then there exists a connected neighborhood V of x such that $V \subseteq U$. V is connected, so it lies entirely in C, so C is open in X.
- (\Leftarrow) Let U be an open set in X. Suppose that the components of U are open in X. Given $x \in X$ and a neighborhood U of x, let C be the component of U that contains x. C is connected, so it is open in X by hypothesis. So X is locally connected at x.

2.47 Theorem.

A space X is locally path connected if and only if for every open set U of X, each path component of U is open in X.

2.48 Proof.

The proof is similar to that of Theorem 2.45.

2.49 Theorem.

If X is a topological space, each path component of X lies in a component of X. If X is locally path connected, then the components and path components are the same.

2.50 Theorem.

Let $x \in X$ and let C its component and P be its path component. $P \subseteq C$ because P is connected.

Suppose, by way of contradiction, that $P \neq C$. Let Q denote the union of all path components of X that are different from P and intersect C. Each lies in C, so that $C = P \cup Q$. X is locally path connected, so P and Q are disjoint nonempty open sets in C, a contradiction of the connectedness of C.

2.51 Definition.

A collection \mathcal{A} of subsets of X is said to be a covering of X if its union is equal to X. It is said to be an open covering if each of its elements is open in X.

2.52 Definition.

A space X is said to be compact if every open covering of X admits a finite subcovering of X.

2.53 Definition.

Let Y be a subspace of X. A collection \mathcal{A} of subsets of X is said to be a covering of Y if its union contains Y.

2.54 Lemma.

Let Y be a subspace of X. Then Y is compact if and only if every covering of Y by open sets of X admits a finite subcovering of Y.

2.55 Proof.

 (\Rightarrow) Let Y be compact and let $\mathcal{A} = \{A_{\alpha}\}$ for $\alpha \in J$ be a covering of Y by sets open in X. The collection

$${A_{\alpha} \cap Y \mid \alpha \in J}$$

is a covering of Y by sets open in Y, hence a finite subcollection of A covers Y.

 (\Leftarrow) Let $\mathcal{A}' = \{A'_{\alpha}\}$ be a covering of Y by sets open in Y. For each α , choose an A_{α} open in X such that

$$A'_{\alpha} = A_{\alpha} \cap Y$$
.

Then $\mathcal{A} = \{A_{\alpha}\}$ is a covering of Y by setes open in X. By hypothesis, some finite sobcollection A_1, \ldots, A_n covers Y, so A'_1, \ldots, A'_n covers Y.

2.56 Theorem.

A closed subspace of a compact space is compact.

2.57 Proof.

Let Y be a closed subspace of a compact space X. Let \mathcal{A} be a covering of Y by open sets of X. Define

$$\mathcal{B} = \mathcal{A} \cup \{X - Y\},\$$

which is an open covering of X. Some finite subcollection of \mathcal{B} covers X. If it includes $X \setminus Y$, discard $X \setminus Y$. The remaining collection is a finite subcollection of \mathcal{A} that covers Y, so Y is compact by Lemma 2.54.

2.58 Theorem.

A compact subspace of a Hausdorff space is closed.

2.59 Proof.

Let Y be a compact subspace of a Hausdorff space X. Let $x_0 \in X \setminus Y$. There exists a neighborhood of x_0 that is disjoint from Y. Indeed, for each $y \in Y$, choose disjoint neighborhoods U_y and V_y of x_0 and y, respectively. The collection $\{V_y\}$ is an open covering of Y, so some finite collection V_{y_1}, \ldots, V_{y_n} covers Y. The set

$$V = \bigcup_{i=1}^{n} V_{y_i}$$

is open and contains Y and is disjoint from

$$U = \bigcap_{i=1}^{n} U_{y_i}.$$

So U is a neighborhood of x_0 that is disjoint from Y, so $X \setminus Y$ is open, so Y is closed.

2.60 Lemma.

If Y is a compact subspace of a Hausdorff space X and if $x_0 \in X \setminus Y$, then there exist disjoint open sets U and V containing x_0 and Y, respectively.

2.61 Proof.

The proof is the same as that of Theorem 2.58.

2.62 Theorem.

The image of a compact space under a continuous map is compact.

2.63 **Proof.**

Let $f: X \to Y$ be continuous and let X be compact. Let \mathcal{A} a covering of f(X) by open sets of Y. The collection

$$\{f^{-1}(A) \mid A \in \mathcal{A}\}$$

is an open covering of X, so there exists a finnite subcollection $f^{-1}(A_1), \ldots, f^{-1}(A_n)$ that covers X. Then the collection $\{A_1, \ldots, A_n\}$ is a finite subcollection of A that covers f(X).

2.64 Theorem.

Let $f: X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

2.65 Proof.

We show that f is a closed map. Let A be a closed subset of X. Then A is compact, so f(A) is compact, by Theorem 2.62. But Y is Hausdorff, so f(A) is closed, by Theorem 2.58.

2.66 Lemma.

(Tube Lemma) Consider the product space $X \times Y$, where Y is compact. If N is an open set of $X \times Y$ containing the slice $x_0 \times Y$, then N contains some tube $W \times Y$ about $x_0 \times Y$, where W is a neighborhood of x_0 in X.

2.67 Proof.

Let X and Y be spaces, where Y is compact. Suppose that $x_0 \in X$ and N is an open set of $X \times Y$ containing the slice $x_0 \times Y$ of $X \times Y$. Cover $x_0 \times Y$ by basis elements $U \times V$ lying in N. The space $x_0 \times Y$ is compact, being homeomorphic to Y, so there is a finite subcover of $x_0 \times Y$ of basis elements $U_1 \times V_1, \ldots, U_n \times V_n$. (Assume each basis element intersects $x_0 \times Y$.) Define

$$W = \bigcap_{i=1}^{n} U_i,$$

which is open and contains x_0 .

 $U_1 \times V_1, \dots, U_n \times V_n$ cover $W \times Y$. Indeed, let $x \times y \in W \times Y$. Consider $x_0 \times y \in x_0 \times Y$. Now $x_0 \times y \in U_i \times V_i$, for some i, so that $y \in V_i$. But $x \in U_i$ for every j because $x \in W$, so $x \times y \in U_i \times V_i$, as desired.

 $U_1 \times V_1, \dots, U_n \times V_n$ lie in N, and they cover $W \times Y$, so $W \times Y$ lies in N.

2.68 Theorem.

A product of finitely many compact spaces is compact.

2.69 Proof.

Let X and Y be commpact spaces. Let \mathcal{A} be an open covering of $X \times Y$. Given $x_0 \in X$, the slice $x_0 \times Y$, being homeomorphic to Y, so it is covered by a finite subcollection A_1, \ldots, A_m of \mathcal{A} . The union

$$N = \bigcup_{i=1}^{m} A_i$$

is an open set containing $x_0 \times Y$. By the tube lemma, N contains a tube $W \times Y$ about $x_0 \times Y$, where W is open in X. Then $W \times Y$ is covered by finitely many elements A_1, \ldots, A_m of A.

For each $x \in X$, choose a neighborhood W_x such that $W_x \times Y$ can be covered by finitely many elements of \mathcal{A} . The collection $\{W_x\}$ is an open covering of X, so there exists a finite subcollection W_{x_1}, \ldots, W_{x_n} that covers X. The collection $W_1 \times Y, \ldots, W_n \times Y$ is a finite subcollection of \mathcal{A} that covers $X \times Y$, so $X \times Y$ is compact. It follows by induction that a product of finitely many compact spaces is compact.

2.70 Remark.

The product of infinitely many compact spaces is compact by the Tychonoff theorem, though this result is difficult to prove.

2.71 Definition.

A collection \mathcal{C} of subsets of X is said to have the finite intesection property if the intersection of every finite subcollection of \mathcal{C} is nonempty.

2.72 Theorem.

Let X be a topological space. Then X is compact if and only if for every collection \mathcal{C} of closed sets in X having the finite intersection property, the intersection of all the elements of \mathcal{C} is nonempty.

2.73 Proof.

TODO!

2.74 Theorem.

Let X be a simply ordered set having the least upper bound property. In the order topology, each closed interval in X is compact.

2.75 Proof.

TODO!

2.76 Corollary.

Every closed interval in \mathbb{R} is compact.

2.77 Proof.

 \mathbb{R} is a simply ordered set having the least upper bound property, so the result follows from Theorem 2.74.

2.78 Theorem.

(Heine-Borel Theorem) A subspace A of \mathbb{R}^n is compact if and only if it is closed and is bounded in the euclidean metric d or the square metric ρ .

2.79 Proof.

It suffices to only consider ρ , for

$$\rho(x,y) \le d(x,y) \le \sqrt{n}\rho(x,y)$$

implies that A is bounded under d if and only if it is bounded under ρ .

 (\Rightarrow) Suppose that A is compact. Then A is closed by Theorem 2.58. Consider the collection of open sets

$$\{B_{\rho}(0,m)\mid m\in\mathbb{Z}_{+}\},\$$

which union is all of \mathbb{R}^n . Some finite subcollection covers A, so $A \subseteq B_{\rho}(0, M)$ for some finite M. Then $\rho(x, y) \leq 2M$ for all $x, y \in A$, so A is bounded.

(\Leftarrow) Suppose that A is closed and bounded under ρ . Suppose that $\rho(x,y) \leq N$ for all $x,y \in A$. Choose a point of $x_0 \in A$ and let $\rho(x_0,0) = b$. Then $\rho(x,0) \leq N+b$ for all $x \in A$. If P = N+b, then $A \subseteq [-P,P]^n$, which is compact by Theorem 2.68. A is also compact by Theorem 2.56.

2.80 Theorem.

(Extreme Value Theorem) Let $f: X \to Y$ be continuous, where Y is an ordered set in the order topology. If X is compact, then there exist points c and d in X such that

$$f(c) \le f(x) \le f(d)$$

for all $x \in X$.

2.81 Proof.

The image A = f(X) is compact by Theorem 2.62. A has a smalllest element m and a largest element M, so there exist f(c) = m and f(c) = M.

Indeed, if A has no largest element, then the collection

$$\{(-\infty, a) \mid a \in A\}$$

is an open covering of A. A is compact, so some finite subcollection

$$\{(-\infty, a_1), \ldots, (-\infty, a_n)\}$$

covers A. If a_i is the largest of the a_1, \ldots, a_n then a_i belongs to none of these sets, which contradicts the assumption that the sets cover A. Hence, A has a largest element. A similar argument shows that A has a smallest element.

2.82 Definition.

Let (X, d) be a metric space. Let A be a nonempty subset of X. For each $x \in X$, define the distance from x to A by

$$d(x, A) = \inf\{d(x, y) \mid y \in A\}.$$

2.83 Theorem.

The diameter of a bounded subset A of a metric space (X, d) is

$$\sup\{d(a_1, a_2) \mid a_1, a_2 \in A\}.$$

2.84 Lemma.

(Lebesgue Number Lemma) Let \mathcal{A} be an open covering of a metric space (X, d). If X is compact, then there exists a $\delta > 0$ such that every subset of X having diameter less than δ is contained in some element of \mathcal{A} . δ is called the Lebesgue number for the covering \mathcal{A} .

2.85 Proof.

Let \mathcal{A} be an open covering of X. If $X \in \mathcal{A}$, then any $\delta > 0$ is a Lebesgue number, so assume that $X \notin \mathcal{A}$.

A finite subcollection A_1, \ldots, A_n covers X. For each i, let $C_i = X \setminus A_i$ and define $f: X \to \mathbb{R}$ by

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} d(x, C_i).$$

f(x) > 0 for all x. Indeed, given $x \in X$, choose i such that $x \in A_i$. Then choose ε such that $B(x, \varepsilon) \subseteq A_i$. Then $d(x, C_i) \ge \varepsilon$, so $f(x) > \varepsilon/n$.

Since f is continuous and X is compact, f has a minumum value $\delta > 0$ by the extreme value theorem. δ is the Lebesgue number. Indeed, let B be a subset of X with diameter less than δ . Choose a point $x_0 \in B$. Then $B \subseteq B(x_0, \delta)$. Now

$$\delta \le f(x_0 \le d(x_0, C_m))$$

where $d(x_0, C_m)$ is the largest such $d(x_0, C_i)$. Then $B(x_0, \delta) \subseteq X - C_m = A_m$.

2.86 Theorem.

(Uniform Continuity Theorem) Let $f: X \to Y$ be a continuous map of the compact metric space (X, d_X) to the metric space (Y, d_Y) . Then f is uniformly continuous.

2.87 Proof.

Given $\varepsilon > 0$, cover Y by open balls $B(y, \varepsilon/2)$ for $y \in Y$. Let \mathcal{A} be the open covering of X by the preimages of the open balls in Y. Choose δ to be the a Lebesgue number for \mathcal{A} . Then if x_1 and x_2 are two points of X such that $d_X(x_1, x_2) < \delta$, then $f(x_1)$ and $f(x_2)$ are in the same open ball, the images $f(x_1)$ and $f(x_2)$ lie in some ball $B(y, \varepsilon/2)$. so $d_Y(f(x_1), f(x_2)) < \varepsilon$.

2.88 Definition.

A point $x \in X$ is said to be an isolated point of X if the one-point set $\{x\}$ is open in X.

2.89 Theorem.

Let X be a nonempty compact Hasudorff space. If X has no isolated points, then X is uncountable.

2.90 Proof.

TODO!

2.91 Corollary.

Every closed interval in \mathbb{R} is uncountable.

2.92 **Proof.**

The closed interval [a, b] is a nonempty compact Hausdorff space with no isolated points, so it is uncountable by Theorem 2.89.

2.93 Definition.

A space X is said to be limit point compact if every finite subset of X has a limit point.

2.94 Theorem.

Compactness implies limit point compactness.

2.95 Proof.

Let X be a compact space. If A has no limit point, then A is finite.

Indeed, if A has no limit points, then A is closed. For each $a \in A$, choose a neighborhood U_a of a such that U_a intersects a alone. The space X is covered by the open set X - A and the open sets $\{U_a\}$, so a finite subcollection of these sets covers X. So A must be finite for each $a \in A$ is contained only in U_a .

2.96 Example.

Let Y consist of two points and give Y the indiscrete topology. The space $X = Z_+ \times Y$ is limit point compact, for every nonempty subset of X has a limit point. It is not compact, for the covering of X by the open sets $U_n = \{n\} \times Y$ for $n \in Z_+$ has no finite subcovering.

2.97 Definition.

Let X be a topological space. If (x_n) is a sequence of points of X and if $n_1 < n_2 < \dots$ is a sequence of positive integers, then let $(y_i) = (x_{n_i})$ be a subsequence of (x_n) . A space X is said to be sequentially compact if every sequence of points of X has a convergent subsequence.

2.98 Theorem.

Let X be a metrizable space. Then the following are equivalent.

- (a) X is compact.
- (b) X is limit point compact.
- (c) X is sequentially compact.

2.99 Proof.

TODO!

2.100 Definition.

A space X is said to be locally compact at x if there is some compact subspace C of X that contains a neighborhood of x. A space X is said to be locally compact if it is locally compact at each of its points.

2.101 Theorem.

A compact space is locally compact.

2.102 Proof.

The proof is trivial.

2.103 Example.

 \mathbb{R}^n is locally compact. \mathbb{R}^{ω} is not locally compact.

2.104 Example.

A simply ordered set X with the least upper bound is locally compact.

2.105 Theorem.

Let X be a space. Then X is locally compact Hausdorff if and only if there exists a space Y that satisfies the following properties.

- (a) X is a subspace of Y.
- (b) The set $Y \setminus X$ consists of one point.
- (3) Y is compact Hausdorff.

If Y and Y' are two such spaces, then there is a homeomorphism of Y with Y' that equals the indentity map on X.

2.106 Proof.

TODO!

2.107 Definition.

If Y is commpact Hausdorff and X is a proper subspace of Y whose closure equals Y, then Y is said to be a compactification of X. If $Y \setminus X$ consists of one point, then Y is said to be a one-point compactification of X.

2.108 Theorem.

Let X be a Hausdorff space. Then X is locally compact if and only if given $x \in X$, and given a neighborhood U of x, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subseteq U$.

2.109 Proof.

- (\Rightarrow) $C = \overline{V}$ is a compact set that contains the neighborhood V of X, so X is locally compact.
- (\Leftarrow) Suppose that X is locally compact and let $x \in X$ have the neighborhood U. Take the one-point compactification Y of X and let $C = Y \setminus U$. C is closed in Y, so C is a compact subspace of Y. By Lemma 2.60, there exist disjoint open sets V and W that contain x and C, respectively. The closure \overline{V} of V in Y is compact. Moreover, \overline{V} is disjoint from C, so $\overline{V} \subseteq U$.

2.110 Corollary.

Let X be a locally compact Hausdorff space. Let A be a subspace of X. If A is closed in X or open in X, then A is locally compact.

2.111 Proof.

Suppose that A is closed in X. Given $x \in A$, let C be a compact subspace of X that contains a neighborhood U of x. Then $C \cap A$ is closed in C and thus compact by Theorem 2.56. It contains a neighborhood $U \cap A$ of $x \in A$. (We need not assume that X is Hasudorff.)

Suppose that A is open in X. Given $x \in A$, apply Theorem 2.108 to choose a neighborhood V of x in X such that \overline{V} is compact and $\overline{V} \subseteq A$. Then $C = \overline{V}$ is a compact subspace of A that contains the neighborhood V of x in A.

2.112 Corollary.

A space X is homeomorphic to an open subspace of a compact Hasudroff space if and only if X is locally compact Hasudorff.

2.113 Proof.

Apply Theorem 2.105 and Corollary $2.112. \,$

3.0 Section.

Countability and Separation Axioms.

3.1 Definition.

A space X is said to have a countable basis at x if there exists a countable collection \mathcal{B} of neighborhoods of x such that each neighborhood of x contains at least one of the elements of \mathcal{B} .

3.2 Definition.

A space X is said to be first-countable if it has a countable basis at each of its points.

3.3 Lemma.

(Sequence lemma) Let X be a topological space. Let A be a subset of X. If there exists a sequence of points of A converging to x, then $x \in \overline{A}$. The converse holds if X if first-countable.

3.4 Proof.

- (\Rightarrow) Let (x_n) be a sequence of points of A converging to x. Then, every neighborhood U of x contains all but finitely many points of (x_n) , so $U \cap A$ is nonempty, which means precisely that $x \in \overline{A}$.
- (\Leftarrow) Let X be first-countable. Let B_1, B_2, \ldots be a countable basis at x. Define a new countable basis with $B'_1 = B_1$ and $B'_{n+1} = B_{n+1} \cap B'_n$ for $n = 1, 2, \ldots$ For each n, choose a point $x_n \in B'_n \cap A$. Then, (x_n) is a sequence of points of A converging to x.

3.5 Theorem.

Let $f: X \to Y$. If f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). The converse holds if X is first-countable.

3.6 Proof.

- (\Rightarrow) Let V be a neighborhood of f(x). Then $f^{-1}(V)$ is a neighborhood of x that contains all but finitely many points of (x_n) . Thus, all but finitely many points of $(f(x_n))$ are in V, so $f(x_n) \to f(x)$.
- (\Leftarrow) Let X be first-countable. Let $A \subseteq X$. We want to show $f(\overline{A}) \subseteq \overline{f(A)}$. By the sequence lemma, if $x \in \overline{A}$, then there exists a sequence (x_n) of points of A converging to x and hence a sequence of points $f(x_n)$ of f(A) converging to f(x). So $f(x) \in \overline{f(A)}$ by the sequence lemma, which means that $f(\overline{A}) \subseteq \overline{f(A)}$.

3.7 Definition.

A space X is said to be second-countable if it has a countable basis.

3.8 Lemma.

If X is second-countable, then any discrete subspace of X is countable.

3.9 Proof.

Let Y be a discrete subspace of X. For each $y \in Y$, choose a basic neighborhood B_y that contains only y. Then the map $y \mapsto B_y$ is injective, so Y is countable.

3.10 Example.

The uniform topology \mathbb{R}^{ω} is first-countable but not second-countable. \mathbb{R}^{ω} is metrizable, so it is first-countable. Let Y be the set of all sequences of 0s and 1s. Then Y is a discrete subspace, but Y is uncountable, so \mathbb{R}^{ω} is not second-countable in the uniform topology.

3.11 Theorem.

- (a) A subspace of a first-countable space is first-countable.
- (b) A countable product of first-countable spaces is first-countable.
- (c) A subspace of a second-countable space is second-countable.
- (d) A countable product of second-countable spaces is second-countable.

3.12 Proof.

The proof is obvious.

3.13 Definition.

A space X is said to satisfy the Lindlof property if every open cover of X has a countable subcover.

3.14 Theorem.

A second-countable space is Lindlof.

3.15 Proof.

Let \mathcal{A} be an open cover of X. Let $\{B_n\}$ be a countable basis for X. For each n for which it is possible, choose $A_n \in \mathcal{A}$ such that $B_n \subseteq A_n$. Then the collection $\{A_n\}$ is a countable subcover of \mathcal{A} . Indeed, for all $x \in X$, there exists an open $A \in \mathcal{A}$ that contains x, which in turn contains a basic neighborhood B_n of x. So A_n is defined and contains x.

3.16 Definition.

A space X is said to be separable if it has a countable dense subset.

3.17 Theorem.

A second-countable space is separable.

3.18 Proof.

Let $\{B_n\}$ be a countable basis for X. For each n, choose an $x_n \in B_n$. Then the set D of all such x_n is countable and dense.

3.19 Theorem.

Second-countability, Lindlofness, and separability are equivalent for a metrizable space.

3.20 Proof.

See Munkres Section 30 Exercise 5.

3.21 Definition.

A space X is said to be T_1 is for every pair of distinct points x and y, there exists a neighborhood U of x such that $y \notin U$.

3.22 Lemma.

A space X is T_1 if and only if every singleton set $\{x\}$ is closed.

3.23 Proof.

- (\Rightarrow) Suppose that X is T_1 . $\{x\}$ is its own closure, for any other point y has a neighborhood U disjoint from $\{x\}$. So $\{x\}$ is closed.
- (\Leftarrow) Suppose that $\{x\}$ is closed. Let $y \in X$ be distinct from x. Then there exists a neighborhood U of y that does not contain x. So X is T_1 .

3.24 Definition.

A space X is said to be T_2 , or Hausdorff, if every pair of distinct points x and y have distinct neighborhoods U and V, respectively.

3.25 Definition.

A space X is said to be regular if for every point x and closed set A such that $x \notin A$, there exists disjoint neighborhoods U and V, respectively,

3.26 Definition.

A space X is said to be T_3 if it is T_1 and regular.

3.27 Definition.

A space X is said to be normal if for every pair of disjoint closed sets A and B, there exist disjoint neighborhoods U and V of A and B, respectively.

3.28 Definition.

A space X is said to be T_4 if it is T_1 and normal.

3.29 Theorem.

 T_4 implies T_3 implies T_2 implies T_1 .

3.30 Proof.

The proof is obvious.

3.31 Remark.

For convenience, regular shall refer to T_3 and normal shall refer to T_4 .

3.32 Lemma.

Let X be a T_1 space. X is regular if and only if for every $x \in X$ and every neighborhood U of x, there exists a neighborhood V of x such that $\overline{V} \subseteq U$.

3.33 Proof.

- (\Rightarrow) Let $x \in X$ and U be a neighborhood of x. Let B = X U. Then A is closed, so there exists a neighborhood V of x that is disjoint from a neighborhood W of B. Moreover, \bar{V} is disjoint from B, and $\bar{V} \subseteq U$, as desired.
- (\Leftarrow) Let $x \in X$ and $B \subseteq X$ be a closed subset disjoint from x. Let U = X B. By hypothesis, there exists a neighborhood V of x such that $\bar{V} \subseteq U$. The open sets V and $X \bar{V}$ are disjoint open sets containing x and B, respectively.

3.34 Lemma.

Let X be a T_1 space. X is normal if and only if for every closed subset A of X and every neighborhood U of A, there exists a neighborhood V of A such that $\overline{V} \subseteq U$.

3.35 **Proof.**

The proof is exactly the same as for the previous theorem.

3.36 Theorem.

- (a) A subspace of a Hausdorff space is Hausdorff.
- (b) A product of Hausdorff spaces is Hausdorff.
- (c) A subspace of a regular space is regular.
- (d) A product of regular spaces is regular.

3.37 Proof.

- (a) Let X be Hausdorf and let Y be a subspace of X. Let x and y be distinct points of Y. There exist disjoint neighborhoods U and V of x and y, respectively, in X. Then $U \cap Y$ and $V \cap Y$ are disjoint neighborhoods of x and y, respectively, in Y.
- (b) Let $\{X_{\alpha}\}$ be a collection of Hausdorff spaces and let X be the product space. Let x and y be distinct points of X. Then there exists at least one β such that $x_{\beta} \neq y_{\beta}$. Let U_{β} and V_{β} be disjoint neighborhoods of x_{β} and y_{β} , respectively, in X_{β} . The sets $\pi_{\beta}^{-1}(U_{\beta})$ and $\pi_{\beta}^{-1}(V_{\beta})$ are disjoint neighborhoods of x and y, respectively, in X.
- (c) Let X be regular and let Y be a subspace of X. Let $x \in Y$ and let B be a closed subset of Y that does not contain x. Let \overline{B} be the closure of B in X. Then $\overline{B} \cap Y = B$, so $x \notin \overline{B}$. By the regularity of X, the exist disjoint neighborhoods U and V of x and \overline{B} , respectively, in X. Then $U \cap Y$ and $V \cap Y$ are disjoint neighborhoods of x and B, respectively, in Y.
- (d) Let $\{X_{\alpha}\}$ be a collection of regular spaces and let X be the product space. It follows immediately that X is T_1 by Theorem 2.36a. Let $x \in X$ have the neighborhood U equals the product of U_{α} . For each U_{α} , let V_{α} be a neighborhood of X_{α} such that $\overline{V_{\alpha}} \subseteq U_{\alpha}$ by Lemma 2.32. If $U_{\alpha} = X_{\alpha}$, then let $V_{\alpha} = X_{\alpha}$. Let V be the product of V_{α} . Then $\overline{V} \subseteq U$, so X is regular.

3.38 Example.

 \mathbb{R}_K is Hausdorff but not regular.

3.39 Example.

 \mathbb{R}_l is normal.

3.40 Example.

 $\mathbb{R}_l \times \mathbb{R}_l$ is regular but not normal.

3.41 Theorem.

A regular space with a countable basis is normal.

3.42 Proof.

Let X be a regular space with a countable basis \mathcal{B} . Let A and B be disjoint closed subsets of X. For each $x \in A$, there exists a neighborhood U of x and a neighborhood V of x such that $\overline{V} \subseteq U$. For each such V, choose a basic neighborhood U_x of x contained in V. This is a countable covering of A by sets whose closures do not intersect B. Index these sets as $\{U_n\}$. Similarly, cover B with a countable collection of neighborhoods $\{V_n\}$.

Define

$$U_n' = U_n - \bigcup_{i=1}^n \overline{V_i}$$

and

$$V_n' = V_n - \bigcup_{i=1}^n \overline{U_i}.$$

Each such set is open because it is the difference between an open set and a closed set. Furthermore, the collection $\{U'_n\}$ is an open cover of A and the collection $\{V'_n\}$ is an open cover of B. The open sets

$$U' = \bigcup_{n=1}^{\infty} U'_n$$

and

$$V' = \bigcup_{n=1}^{\infty} V'_n$$

are disjoint open sets that contain A and B. Indeed, if $x \in U' \cap V'$, then $x \in U'_i \cap V'_j$ for some i and j. Without loss of generality, assume that $i \leq j$. Then $x \in U_i$, but $x \notin \overline{U_i}$, hence a contradiction.

3.43 Theorem.

A metrizable space is normal.

3.44 Proof.

Let X be a metrizable space with metric d. Let A and B be disjoint closed subsets of X. For each $a \in A$, choose ε_a such that $B(a, \varepsilon_a)$ is disjoint from B, and similarly, choose ε_b for each $b \in B$. The open sets

$$U = \bigcup_{a \in A} B(a, \varepsilon_a/2)$$

and

$$V = \bigcup_{b \in B} B(b, \varepsilon_b/2)$$

are disjoint and contain A and B, respectively.

3.45 Theorem.

A compact Hausdorff space is normal.

3.46 Proof.

Let X be a compact Hausdorff space. Let A and B be disjoint closed subsets of X. For each $x \in A$, choose disjoint neighborhoods U_x and V_x of x and B, respectively. The collection $\{U_x\}$ is an open cover of A, so there exists a finite subcover U_1, \ldots, U_n . It follows that the sets

$$U = \bigcup_{i=1}^{n} U_i$$

and

$$V = \bigcap_{i=1}^{n} V_i$$

are disjoint neighborhoods of A and B, respectively.

3.47 Theorem.

Every well-ordered set is normal in the order topology.

3.48 Proof.

First observe that any interval (x, y] is open, for if y is not the maximum element, then (x, y] = (x, y') where y' is the immediate successor of y. Let A and B be disjoint closed sets in X.

Assume that neither A nor B contains the minimum element a_0 of X. For each $a \in A$, choose a neighborhood $(x_a, a]$ disjoint from B. For each $b \in B$, choose a neighborhood $(y_b, b]$ disjoint from A. The sets

$$U = \bigcup_{a \in A} (x_a, a]$$

and

$$V = \bigcup_{b \in B} (y_b, b]$$

are disjoint open sets containing A and B, respectively. Indeed, if $z \in U \cap V$, then $z \in (x_a, a] \cap (y_b, b]$ for some $a \in A$ and $b \in B$. Without loss of generality, assume that a < b. If $a \le y_b$, then the intervals are disjoint. If $a > y_b$, then $(y_b, b]$ is not disjoint from A, a contradiction.

If A contains a_0 , then the set $A - \{a_0\}$ is closed and disjoint from B, so it admits disjoint open intervals U and V of $A - \{a_0\}$ and B, respectively. Now the sets $U \cup \{a_0\}$ and V are disjoint neighborhoods of A and B, respectively.

3.49 Remark.

Indeed, every ordered set is normal in the order topology.

3.50 Example.

If J is uncountable, then the product space \mathbb{R}^J is not normal. So the product of normal spaces need not be normal. Nor does the subspace of a normal space need be normal (for \mathbb{R}^J is homeomorphic to a subspace of $[0,1]^J$).

3.51 Example.

The product space $S_{\Omega} \times \overline{S_{\Omega}}$ is not normal. So the product of normal spaces need not be normal. Nor does the subspace of a normal space need be normal (for $\overline{S_{\Omega}} \times \overline{S_{\Omega}}$ compact Hasudorff and therefore normal).

3.52 Lemma.

(Urysohn Lemma) Let X be a normal space. Let A and B be disjoint closed subsets of X. Then there exists a continuous map $f: X \to [0,1]$ such that f(x) = 0 for all $x \in A$ and f(x) = 1 for all $x \in B$.

3.53 Proof.

TODO!

3.54 Definition.

If A and B are two subsets of X, and if there exists a continuous function $f: X \to [0,1]$ such that f(x) = 0 for all $x \in A$ and f(x) = 1 for all $x \in B$, then we say that A and B are separated by a continuous function.

3.55 Remark.

The Urysohn lemma says that if every pair A and B of disjoint closed subsets can be separated by open sets, then they can be separated by a continuous function. The converse is trivial.

3.56 Definition.

A space X is said to be completely regular if it is T_1 and if for every $x_0 \in X$ and every closed set A that does not contain x_0 , there exists a continuous function $f: X \to [0,1]$ such that $f(x_0) = 0$ and f(x) = 1 for all $x \in A$.

3.57 Remark.

Complete regularity is also known as $T_{3+1/2}$.

3.58 Theorem.

- (a) A subspace of a completely regular space is completely regular.
- (b) A product of completely regular spaces is completely regular.

3.59 Proof.

- (a) Let X be completely regular and let Y be a subspace of X. Let $x_0 \in Y$ and let A be a closed subset of Y that does not contain x_0 . Then $A = \overline{A} \cap Y$, where \overline{A} is the closure of A in X, and moreoever, $x_0 \notin \overline{A}$. There exists a continuous function $f: X \to [0,1]$ such that $f(x_0) = 0$ and f(x) = 1 for all $x \in \overline{A}$. Then $f \mid Y$ is a continuous function from Y to [0,1] such that $f(x_0) = 0$ and f(x) = 1 for all $x \in A$.
- (b) Let X be the product of completely regular spaces $\{X_{\alpha}\}$. Let $b \in X$ and let A be a closed set of X that does not contain b. Choose a basic neighborhood U of b, and denote U_1, \ldots, U_n the basic neighborhoods of b_{α} in X_{α} that are not all of X_{α} . For each U_i , choose a continuous function $f_i: X_{\alpha} \to [0,1]$ such that $f_i(b_{\alpha}) = 0$ and $f_i(x) = 1$ for all $x \in A$. The function $f: X \to [0,1]$ defined by

$$f(x) = \prod_{i=1}^{n} f_i(x_{\alpha})$$

is continuous and satisfies the desired properties.

3.60 Theorem.

(Urysohn Metrization Theorem) A regular space with a countable basis is metrizable.

3.61 Proof.

TODO!

3.62 Theorem.

(Embedding Theorem) Let X be a a T_1 space. Suppose that $\{f_{\alpha}\}$ is a family of continuous functions indexed for $\alpha \in J$. If $f_{\alpha}: X \to \mathbb{R}$ satisfying the requirement that for each point $x_0 \in X$ and each neighborhood U of x_0 , there is an index α such that $f_{\alpha}(x_0) > 0$ and $f_{\alpha}(x) = 0$ for all $x \notin U$. Then the function $F: X \to \mathbb{R}^J$ defined by

$$F(x) = \prod_{\alpha \in J} f_{\alpha}(x)$$

is an imbedding of X in \mathbb{R}^J . If f_α maps X into [0, 1], then F is an imbedding of X in $[0, 1]^J$.

3.63 Proof.

TODO!

3.64 Theorem.

A space X is completely regular if and only if it is homeomorphic to a subspace of $[0,1]^J$ for some J.

3.65 Theorem.

(Tietze Extension Theorem) Let X be a normal space. Let A be a closed subspace of X. Any continuous map of A into [0,1] or A into \mathbb{R} can be extended to a continuous map of X into [0,1] or \mathbb{R} , respectively.

3.66 Proof.

TODO!

4.0 Section.

Fundamental Group.

4.1 Definition.

If f and f' are continuous maps of X into Y, we say that f is homotopic to f' if there exists a continuous map $F: X \times I \to Y$ such that F(x,0) = f(x) and F(x,1) = f'(x) for all $x \in X$. We denote $f \simeq f'$ and call F a homotopy between f and f'.

4.2 Definition.

If $f \simeq f'$ and f' is a constant map, then we say that f is nullhomotopic.

4.3 Definition.

If f and f' are paths in X with initial point x_0 and final point x_1 , then we say that f is path homotopic to f' if there exists a continuous map $F: I \times I \to X$ such that F(x,0) = f(x) and F(x,1) = f'(x) for all $x \in I$ and $F(0,t) = x_0$ and $F(1,t) = x_1$ for all $t \in I$. We denote $f \simeq_p f'$ and call F a path homotopy between f and f'.

4.4 Lemma

The relations \simeq and \simeq_p are equivalence relations.

4.5 Proof.

The proof is obvious.

4.6 Definition.

Denote [f] the equivalence class of f under the relation \simeq_p . [f] is called the path homotopy class of f.

4.7 Example.

If A is a convex subspace of \mathbb{R}^n , then any two paths in A with the same endpoints are homotopic. For the straight-line homotopy

$$F(x,t) = (1-t)f(x) + tf'(x)$$

is a homotopy between f and f'.

4.8 Definition.

If f is a path in X from x_0 to x_1 and g is a path in X from x_1 to x_2 , then the product h = f * g is defined as

$$h(s) = \begin{cases} f(2s) & \text{if } s \in [0, 1/2] \\ g(2s - 1) & \text{if } s \in [1/2, 1]. \end{cases}$$

4.9 Definition.

The product between path-homotopy classes is defined as [f]*[g] = [f*g]. Indeed, let F be a path homotopy between f and f' and let G be a path homotopy between g and g'. Define

$$H(s,t) = \begin{cases} F(2s,t) & \text{if } s \in [0,1/2] \\ G(2s-1,t) & \text{if } s \in [1/2,1]. \end{cases}$$

4.10 Lemma.

If $k: X \to Y$ is a continuous map and if F is a path homotopy in X between f and f', then $k \circ F$ is a path homotopy in Y between $k \circ f$ and $k \circ f'$.

4.11 Proof.

The proof is obvious.

4.12 Lemma.

If $k: X \to Y$ is a continuous map and if f and g are paths in X such that f(1) = g(0), then

$$k \circ (f * g) = (k \circ f) * (k \circ g).$$

4.13 Proof.

The proof is obvious.

4.14 Theorem.

The operation * satisfies the following properties.

- (a) (Associativity) [f] * ([g] * [h]) = ([f] * [g]) * [h] whenever the products are defined.
- (b) (Identity) Let e_x denote the constant path at point x. If f is a path from x_0 to x_1 , then $[f] * [e_{x_1}] = [f]$ and $[e_{x_0}] * [f] = [f]$.
- (c) (Inverse) If f is a path from x_0 to x_1 , then let its reverse \overline{f} be defined as $\overline{f}(s) = f(1-s)$ for $s \in I$. Then $[f] * [\overline{f}] = [e_{x_0}]$ and $[\overline{f}] * [f] = [e_{x_1}]$.

4.15 **Proof.**

(a) Let [a, b] and [c, d] be two intervals in I. There exists an unique continuous map $p : [a, b] \to [c, d]$ of the form p(x) = mx + k called the positive linear map. The inverse of a positive linear map is a positive linear map, and the composition of two positive linear maps is a positive linear map.

When the triple product f * g * h is defined, it is the path k_{ab} in X where on [0,a], it is the positive linear map of [0,a] to [0,1] followed by f and similarly for [a,b] and [b,1]. The path homotopy class of k_{ab} is independent of the choice of a and b. Indeed, [f] * ([g] * [h]) is the path homotopy class of k_{ab} where a = 1/2 and b = 3/4 whille ([f] * [g]) * [h] is the path homotopy class of k_{ab} where a = 1/4 and b = 1/2. These are equivalent.

(b) Let e_0 denote the constant path in I at 0 and let i denote the identity path in I. Then $e_0 * i$ is a path in I from 0 to 1. I is convex, so there is a path homotopy G between i and $e_0 * i$, so $f \circ G$ is a path homotopy between $f \circ i = f$ and

$$f \circ (e_0 * i) = (f \circ e_0) * (f \circ i) = e_{x_0} * f.$$

The proof for right identity is entirely similar.

(c) Let i denote the identity path in I and \bar{i} denote its reverse. I is convex, so there is a path homotopy H between e_0 and $i * \bar{i}$. Then $f \circ H$ is a path homotopy between $f \circ e_0 = e_{x_0}$ and

$$f \circ (i * \overline{i}) = (f \circ i) * (f \circ \overline{i}) = f * \overline{f}.$$

The proof for left inverse is entirely similar.

4.16 Theorem.

Let f be a path in X. Let a_0, \ldots, a_n such that that $0 < a_0 < \ldots < a_n < 1$. Let f_i be the path in X defined as the positive linear map of I to $[a_{i-1}, a_i]$ followed by f. Then

$$[f] = [f_1] * \dots * [f_n].$$

4.17 Proof.

The proof is sketched in Proof 3.15a.

4.18 Definition.

Let G and G' be two groups with the operation \cdot . A homomorphism $f:G\to G'$ is such that

$$f(x \cdot y) = f(x) \cdot f(y)$$

for all $x, y \in G$. f satisfies f(e) = e' and $f(x^{-1}) = f(x)^{-1}$ for all $x \in G$.

4.19 Definition.

The kernel of f is the set $f^{-1}(e')$. It is a subgroup of G.

4.20 Definition.

The image of f is the set f(G). It is a subgroup of G'.

4.21 Definition.

A homomorphism is called a monomorphism if it is injective (or equivalently of $f^{-1}(e') = e$). It is called an epimorphism if it is surjective. It is called an isomorphism if it is bijective.

4.22 Definition.

Let H be a subgroup of G. Let xH denote the set of products xh for all $h \in H$. It is called the left coset of H in G, and the collection of all such xH for $x \in G$ is a partition of G. Similarly, let Hx denote the right coset of H in G.

4.23 Definition.

H is said to be a normal subgroup of G if $xhx^{-1} \in H$ for all $x \in G$ and $h \in H$. In this case, xH = Hx for all $x \in G$. The partition G/H is called the quotient group of G by H with the operation (xH)(yH) = xyH.

4.24 Defintion.

The map $f: G \to G/H$ defined by f(x) = xH is epimorphism with kernel H. Conversely, if $f: G \to G'$ is an epimorphism and N is a normal subgroup of G, then f induces an isomorphism $g: G/N \to G'$ defined by g(xN) = f(x).

4.25 Definition.

If H is not normal, then G/H denotes the collection of right cosets of H in G.

4.26 Definition.

Let X be a topological space and let $x_0 \in X$. The fundamental group $\pi_1(X, x_0)$ relative to the base point x_0 is the group of path homotopy classes of loops in X based at x_0 with the operation *.

4.27 Example.

Any convex subspace of \mathbb{R}^n has a trivial fundamental group.

4.28 Definition.

Let α be a path in X from x_0 to x_1 . Define the map $\hat{\alpha}: \pi_1(X, x_0) \to \pi_1(X, x_1)$ by

$$\widehat{\alpha}([f]) = [\overline{\alpha}] * [f] * [\alpha].$$

If f is a loop at x_0 , then $\overline{\alpha} * f * \alpha$ is a loop at x_1 .

4.29 Theorem.

The map $\hat{\alpha}$ is an isomorphism of $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$.

4.30 Proof.

We compute that

$$\begin{split} \widehat{\alpha}([f]) * \widehat{\alpha}([g]) &= [\overline{\alpha}] * [f] * [\alpha] * [\overline{\alpha}] * [g] * [\alpha] \\ &= [\overline{\alpha}] * ([f] * [g]) * [\alpha] \\ &= \widehat{\alpha}([f] * [g]), \end{split}$$

so $\hat{\alpha}$ is a homomorphism. We show that $\hat{\alpha}$ has a left inverse and a right inverse. Let $\beta = \overline{\alpha}$. Then

$$\hat{\beta}(\hat{\alpha}([f])) = [\overline{\beta}] * ([\overline{\alpha}] * [f] * [\alpha]) * [\beta]$$

$$= [e_{x_0}] * [f] * [e_{x_1}]$$

$$= [f]$$

for all $[f] \in \pi_1(X, x_0)$. A similar computation shows that $\hat{\beta}$ is also a right inverse of $\hat{\alpha}$. So $\hat{\alpha}$ is an isomorphism.

4.31 Corollary.

If X is path connected and $x_0, x_1 \in X$, then $\pi_1(X, x_0)$ is isomorphic to $\pi_1(X, x_1)$.

4.32 **Proof.**

The proof is trivial.

4.33 Remark.

We must still specify the base point x_0 in the definition of the fundamental group, for the isomorphism $\hat{\alpha}$ depends on the choice of α .

4.34 Definition.

A space X is said to be simply connected if it is path connected and $\pi_1(X, x_0)$ is trivial for one (and hence all) $x_0 \in X$.

4.35 Lemma.

If X is simply connected, then any two paths in X with the same endpoints are path homotopic.

4.36 Proof.

Let α and β be two paths in X from x_0 to x_1 . We compute that

$$[\alpha] = [\alpha] * [\overline{\beta}] * [\beta]$$
$$= [\alpha * \overline{\beta}] * [\beta]$$
$$= [e_{x_0}] * [\beta]$$
$$= [\beta].$$

4.37 Definition.

Let $h:(X,x_0)\to (Y,y_0)$ be a continuous map. The homomorphism $h_*:\pi_1(X,x_0)\to \pi_1(Y,y_0)$ induced by h, relative to base point x_0 , is defined as

$$h_*([f]) = [h \circ f].$$

 h_* is a homomorphism because

$$h \circ (f * g) = (h \circ f) * (h \circ g).$$

 h_* depends on the choice of x_0 , so we denote $(h_{x_0})_*$ when necessary.

4.38 Theorem.

If $i:(X,x_0)\to (X,x_0)$ is the identity map, then i_* is the identity homomorphism of $\pi_1(X,x_0)$.

4.39 Proof.

We compute that

$$i_*([f]) = [i \circ f]$$
$$= [f].$$

4.40 Theorem.

If $h:(X,x_0)\to (Y,y_0)$ and $k:(Y,y_0)\to (Z,z_0)$ are continuous maps, then

$$(k \circ h)_* = k_* \circ h_*.$$

4.41 **Proof.**

We compute that

$$\begin{split} (k \circ h)_*([f]) &= [(k \circ h) \circ f] \\ &= [k \circ (h \circ f)] \\ &= k_*([h \circ f]) \\ &= (k_* \circ h_*)([f]). \end{split}$$

4.42 Corollary.

If $h:(X,x_0)\to (Y,y_0)$ is a homeomorphism, then h_* is an isomorphism of $\pi_1(X,x_0)$ and $\pi_1(Y,y_0)$.

4.43 Proof.

Let k be the inverse of h. Then $(k \circ h)_* = i_*$ is the identity homomorphism of $\pi_1(X, x_0)$, and $(h \circ k)_* = j_*$ is the identity homomorphism of $\pi_1(Y, y_0)$. So h_* is an isomorphism.

4.44 Definition.

Let $p: E \to B$ be a continuous surjective map. An open set U of B is said to be evenly covered by p if $p^{-1}(U)$ is a disjoint union of open sets $\{V_{\alpha}\}$ such that $p \mid V_{\alpha}$ is a homeomorphism onto U for each α . The collection $\{V_{\alpha}\}$ is a partition of $p^{-1}(U)$ into slices.

4.45 Definition.

Let $p: E \to B$ be a continuous surjective map. If each point $b \in B$ has a neighborhood U that is evenly covered by p, then p is said to be a covering map and E is said to be a covering space of B.

4.46 Definition.

A map $p: E \to B$ is a local homeomorphism if for every point $e \in E$ has a neighborhood U that is homeomorphic to a neighborhood of p(e) in B. A covering map is a local homeomorphism, but the converse does not hold necessarily.

4.47 Example.

The map $p: \mathbb{R}_+ \to \S^1$ defined by $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is surjective and a local homomorphism, but it is not a covering map. For the point $b_0 = (1,0)$ has no neighborhood U that is evenly covered by p. This example also shows that the restriction of a covering map need not be a covering map.

4.48 Theorem.

The map $p: \mathbb{R} \to S^1$ defined by $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is a covering map.

4.49 Proof.

Let U be the subset of S^1 consisting of points with positive first coordinate, i.e., the open right semicircle. The preimage $p^{-1}(U)$ is the union of the open intervals $V_n = (n - 1/4, n + 1/4)$ for $n \in \mathbb{Z}$. The restriction $p \mid V_n$ is injective because $\sin \mid V_n$ is strictly monotonic, and it is surjective by the intermediate value theorem. $p \mid V_n$ is a continuous bijective map between a compact space and a Hausdorff space, so it is a homeomorphism of V_n and U, so U is evenly covered by p. A similar argument can be made for the left, upper, and lower semicircles. Thesse semicircles form an open cover of S^1 , and each one is evenly covered by p, so p is a covering map.

4.50 Theorem.

Let $p: E \to B$ be a covering map. If B_0 is a subspace of B, and if $E_0 = p^{-1}(B_0)$, then the map $p_0: E_0 \to B_0$ is a covering map, where p_0 is the restriction of p to E_0 .

4.51 Proof.

Let $b_0 \in B_0$. Let U be a neighborhood of b_0 in B that is evenly covered by p. Let $\{V_\alpha\}$ be a partion of $p^{-1}(U)$ into slices. Then $U \cap B_0$ is a neighborhood of b_0 in B_0 , and the sets $\{V_\alpha \cap E_0\}$ are a partition of $p_0^{-1}(U \cap B_0)$ into slices.

4.52 Theorem.

If $p: E \to B$ and $p: E' \to B'$ are covering maps, then $p \times p': E \times E' \to B \times B'$ is a covering map.

4.53 Proof.

Given $b \in B$ and $b' \in B'$, let U and U' be neighborhoods of b and b', respectively, that are evenly covered by p and p, respectively. Let $\{V_{\alpha}\}$ and $\{V'_{\beta}\}$ be partitions of $p^{-1}(U)$ and $(p')^{-1}(U')$ into slices. Then the preimage of $U \times U'$ is the union of all the sets $V_{\alpha} \times V'_{\beta}$. These are disjoint open sets in $E \times E'$, and each is mapped homeomorphically onto $U \times U'$ by $p \times p'$. So $p \times p'$ is a covering map.

4.54 Example.

Let $T = S^1 \times S^1$ be the torus. The map $p \times p : R^2 \to T$ is a covering map, where p is the covering map $p : \mathbb{R}toS^1$ of Theorem 3.48. Intuitively, each unit square of \mathbb{R}^2 is mapped homeomorphically onto a unit disk of T.

4.55 Example.

Let $p \times p : \mathbb{R}^2 \to T$ be the covering map of the previous example. Let $b_0 = p(0)$, and let B_0 denote the figure-eight

$$B_0 = (S^1 \times b_0) \cup (b_0 \times S^1).$$

The preimage of B_0 is

$$E_0 = (\mathbb{R} \times \mathbb{Z}) \cup (\mathbb{Z} \times \mathbb{R}),$$

and the map $P_0: E_0 \to B_0$ obtained by restricting $p \times p$ is a covering map.

4.56 Example.

Let $p: \mathbb{R} \to S^1$ be the covering map of Theorem 3.48. Let $p \times i: R \times R_+ \to S^1 \times R_+$ be a covering map, where i is the identity map of R_+ . Let $x \times t \mapsto tx$ be a homeomorphism of $S^1 \times R_+$ with $R^2 \setminus \{0\}$. The composition yields a covering map $\mathbb{R} \times R_+ \to R^2 \setminus \{0\}$.

4.57 Definition.

Let $p: E \to B$ be a map. If $f: X \to B$ is continuous, a lifting of f is a map $\tilde{f}: X \to E$ such that $p \circ \tilde{f} = f$.

4.58 Example.

Let $p: \mathbb{R} \to S^1$ be the covering map of Theorem 3.48. The path $f: I \to S^1$ defined by $f(t) = (\cos 2\pi f t, \sin 2\pi f t)$ lifts to the path $\tilde{f}: I \to \mathbb{R}$ defined by $\tilde{f}(t) = f t$.

4.59 Lemma.

Let $p: E \to B$ be a covering map. Let $p(e_0) = b_0$. Any path $f: I \to B$ beginning at b_0 has a unique lifting to a path $\tilde{f}: I \to E$ beginning at e_0 .

4.60 Proof.

Cover B by open sets U each of which is evenly covered by p. Find a subdivision of I, say s_0, \ldots, s_n such that every $f([s_i, s_{i+1}])$ lies in a U. (Use the Lebesgue number lemma.)

Define $\tilde{f}(0) = e_0$. Suppose that $\tilde{f}(s)$ is defined for $0 \le s \le s_i$. Define \tilde{f} on $[s_i, s_{i+1}]$ as follows. The set $f([s_i, s_{i+1}])$ is contained in a U that is evenly covered by p. Let $\{V_{\alpha}\}$ be a partition of $p^{-1}(U)$ into slices. Now $\tilde{f}(s_i)$ lies in one of these sets, say V_0 . Define $\tilde{f}(s)$ for $s_i \le s \le s_{i+1}$ by

$$\tilde{f}(s) = (p \mid V_0)^{-1}(f(s)).$$

 $p \mid V_0 : V_0 \to U$ is a homeomorphism, so tildef is continuous on $[s_i, s_{i+1}]$. Hence, \tilde{f} may be defined on I by induction. It is continuous by the pasting lemma, and $p \circ \tilde{f} = f$.

Suppose that \tilde{f}' is another lifting of f beginning at e_0 . Then $\tilde{f}'(0) = e_0 = \tilde{f}(0)$. Suppose that $\tilde{f}'(s) = \tilde{f}(s)$ for all $0 \le s \le s_i$. By construction, $\tilde{f}'(s_i)$ lies in the same slice V_0 as $\tilde{f}(s_i)$. The map $p \mid V_0$ is a homeomorphism, so $\tilde{f}'(s_i) = \tilde{f}(s_i)$. By induction, $\tilde{f}'(s) = \tilde{f}(s)$ for all $s \in I$, so the lifting is unique.

4.61 Lemma.

Let $p: E \to B$ be a covering map. Let $p(e_0) = b_0$. Let $F: I \times I \to B$ be continuous, with $F(0,0) = b_0$. There is a unique lifting of F to a continuous map $\tilde{F}: I \times I \to E$ such that $\tilde{F}(0,0) = e_0$. If F is a path homotopy, then \tilde{F} is a path homotopy.

4.62 Proof.

Given F, define $\tilde{F}(0,0) = e_0$. Use Lemma 3.59 to define \tilde{F} for $\{0\} \times I$ and for $I \times \{0\}$. Choose subdivisions $s_0 < \ldots, < s_m$ and $t_0 < \ldots, < t_n$ small enough such that each rectangle $I_i \times J_j = [s_{i-1}, s_i] \times [t_{j-1}, t_j]$ is contained in an open set U of B that is evenly covered by p. (Use the Lebesgue number lemma.)

Given i_0 and j_0 , assume that \tilde{F} is defined on A, the union of $\{0\} \times I$ and $I \times \{0\}$ and all the previous rectangles. Assume that \tilde{F} is a continuous lifting of $F \mid A$. Choose an open set U of B that is evnely covered by p and contains $F(I_{i_0} \times J_{j_0})$. Let $\{V_{\alpha}\}$ be a partition of $p^{-1}(U)$ into slices. Now \tilde{F} is already defined on $C = A \cap (I_{i_0} \times J_{j_0})$, which is connected, so $\tilde{F}(C)$ is connected, so it must lie entirely in, say, V_0 . Let $p_0 : V_0 \to U$ denote the restriction of p to V_0 . Since \tilde{F} is a lifting of $F \mid A$, for $x \in C$, $p_0(\tilde{F}(x)) = p(\tilde{F}(x)) = F(x)$, so that $\tilde{F}(x) = p_0^{-1}(F(x))$. Define

$$\tilde{F}(x) = p_0^1(F(x))$$

for $x \in I_{i_0} \times J_{j_0}$. The lifting \tilde{F} may be defined on $I \times I$ by induction. It is continuous by the pasting lemma, and $p \circ \tilde{F} = F$. It is unique for the same reason as for Lemma 3.59.

Suppose that F is a path homotopy. The map F carries $\{0\} \times I$ to b_0 . Now \tilde{F} is a lifting of F, so it carries this set to $p^{-1}(b_0)$. But $p^{-1}(b_0)$ has the discrete topology as a subspace of E. Since $\{0\} \times I$ is connected, $\tilde{F}(\{0\} \times I)$ is connected, so it must be a single point. So \tilde{F} is a path homotopy.

4.63 Theorem.

Let $p: E \to B$ be a covering map. Let $p(e_0) = b_0$. Let f and g be two paths in B from b_0 to b_1 and let \tilde{f} and \tilde{g} denote their respective liftings to paths in E, beginning at e_0 . If f and g are path homotopic, then \tilde{f} and \tilde{g} end at the same point of E and are path homotopic.

4.64 Proof.

Let $F: I \times I \to B$ be the path homotoy between f and g. Then $F(0,0) = b_0$. Let $\tilde{F}: I \times I \to E$ be the lifting of F to E such that $\tilde{F}(0,0) = e_0$. By Lemma 3.61, \tilde{F} is a path homotopy, so $\tilde{F}(\{0\} \times I) = \{e_0\}$ and $\tilde{F}(\{1\} \times I) = \{e_1\}$.

The restriction $\tilde{F} \mid (I \times \{0\})$ is a path on E from e_0 that is the lifting of $F \mid (I \times \{0\})$. By the uniqueness of path liftings, $\tilde{F}(s,0) = \tilde{f}(s)$. Similarly, $\tilde{F}(s,1) = \tilde{g}(s)$. So \tilde{f} and \tilde{g} both end at e_1 , and \tilde{F} is a path homotopy between them.

4.65 Definition.

Let $p: E \to B$ be a covering map. Let $b_0 \in B$. Choose e_0 such that $p(e_0) = b_0$. Given an element $[f] \in \pi_1(B, b_0)$, let \tilde{f} be the lifting of f to a path in E that begins at e_0 . Let $\phi([f])$ denote the end point $\tilde{f}(1)$ of \tilde{f} . Then $\phi: \pi_1(B, b_0) \to p^{-1}(b_0)$ is a well-defined map. We call ϕ the lifting correspondence derived from the covering map p. It depends on the choice of e_0 .

4.66 Theorem.

Let $p: E \to B$ be a covering map. Let $p(e_0) = b_0$. If E is path connected, then the lifting correspondence $\phi: \pi_1(B, b_0) \to p^{-1}(b_0)$ is surjective. If E is simply connected, then ϕ is bijective.

4.67 Proof.

If E is path connected, then, given $e_1 \in p^{-1}(b_0)$, there is a path \tilde{f} from e_0 to e_1 . Then $f = p \circ \tilde{f}$ is a loop in B at b_0 , and $\phi([f]) = e_1$. So ϕ is surjective.

Suppose that E is simply connected. Let [f] and [g] be two elements of $\pi_1(B, b_0)$ such that $\phi([f]) = \phi([g])$. Let \tilde{f} and \tilde{g} be the liftings of f and g, respectively, to path sin E that begin at e_0 . Then $\tilde{f}(1) = \tilde{g}(1)$. Since E is simply connected, there is a path homotpy \tilde{F} in E between \tilde{f} and \tilde{g} . So $p \circ \tilde{F}$ is a path homopty in E between E and E and E are path homopty in E between E and E are path homopty in E between E and E are path homopty in E between E and E are path homopty in E between E and E are path homopty in E between E and E are path homopty in E between E and E between E are path homopty in E between E and E between E are path homopty in E between E and E between E are path homopty in E between E are path homopty in

4.68 Theorem.

The fundamental group of S^1 is isomorphic to $(\mathbb{Z}, +)$.

4.69 Proof.

Let $p: \mathbb{R} \to S^1$ be the covering map of Theorem 3.48. Let $e_0 = 0$ and let $b_0 = p(e_0)$. Then $p^{-1}(b_0) = \mathbb{Z}$. Since \mathbb{R} is simply connected, the lifting correspondence $\phi: \pi_1(S^1, b_0) \to p^{-1}(b_0)$ is bijective. Indeed, ϕ is a homomorphism.

Given [f] and [g] in $\pi_1(S^1, b_0)$, let \tilde{f} and \tilde{g} be the liftings of f and g, respectively. Let $m = \tilde{f}(1)$ and $n = \tilde{g}(1)$. So $\phi([f]) = m$ and $\phi([g]) = n$. Because p(m + x) = p(x) for all $x \in \mathbb{R}$,

$$\tilde{g}'(s) = m + \tilde{g}(s)$$

is the lifting of g to \mathbb{R} that begins at m. Then the product $\tilde{f} * \tilde{g}'$ is well-defined, and it is the lifting of f * g to \mathbb{R} that begins at 0. The end point is $\tilde{g}' = m + n$. So $\phi([f] * [g]) = m + n$. so ϕ is a homomorphism and hence an isomorphism.

4.70 Definition.

Let G be a group and let $x \in G$ have the inverse x^{-1} . If the set of all elements x^m for $m \in \mathbb{Z}$ equals G, then G is said to be a cyclic group with generator x. |G| is said to be the order of G. G has infinite order if and only if it is isomorphic to the additive group of integers. G has order k if and only if it is isomorphic to the group \mathbb{Z}/k of integers modulo k.

4.71 Remark.

If x is a generator of an infinite cyclic group G, and if y is an element of an arbitrary group H, then there exists a unique homomorphism $h: G \to H$ such that h(x) = y defined by $h(x^n) = y^n$ for all $n \in \mathbb{Z}$.

4.72 Theorem.

Let $p: E \to B$ be a covering map. Let $p(e_0) = b_0$.

- (a) The homomorphism $p_*: \pi_1(E, e_0) \to \pi_1(B, b_0)$ is a monomorphism
- (b) Let $H = p_*(\pi_1(E, e_0))$. The lifting correspondence ϕ induces an injective map

$$\Phi: \pi_1(B, b_0)/H \to p^{-1}(b_0)$$

of the collection of right cosets of H into $p^{-1}(b_0)$, which is bijective if E is path connected.

(c) If f is a loop in B based at b_0 , then $[f] \in H$ if and only if f lifts to a loop in E based at e_0 .

4.73 Proof.

- (a) Suppose that \tilde{h} is a loop in E based at e_0 and $p_*([\tilde{h}])$ is the identity element. Let F be a path homotopy between $p \circ \tilde{h}$ and the constant loop. If \tilde{F} is a lifting of F to E such that $\tilde{F}(0,0) = e_0$, then \tilde{F} is a path homotopy between \tilde{h} and the constant loop at e_0 .
- (b) Given loops f and g in B, let \tilde{f} and \tilde{g} be the liftings of them to E that begin at e_0 . Then $\phi([f]) = \tilde{f}(1)$ and $\phi([g]) = \tilde{g}(1)$. We show that $\phi([g]) = \phi([g])$ if and only if $[f] \in H * [g]$.

Suppose that $[g] \in H * [g]$. Then [g] = [h * g], where $h = p \circ \tilde{h}$ for some loop \tilde{h} in E based at e_0 . Now the product $\tilde{h} * \tilde{g}$ is defined, and it is a lifting of h * g. Because [f] = [h * g], the liftings \tilde{f} and $\tilde{h} * \tilde{g}$ must end at the same point of E. So $\phi([f]) = \phi([g])$.

Now suppose that $\phi([f]) = \phi([g])$. Then \tilde{f} and \tilde{g} end at the same point of E. The product of \tilde{f} and the reverse of \tilde{g} is a loop \tilde{h} in E based at e_0 . By direct computation, $[\tilde{h}*\tilde{g}] = [\tilde{f}]$. If \tilde{F} is a path homotopy in

E between the loops $\tilde{h}*\tilde{g}$ and \tilde{f} , then $p\circ\tilde{F}$ is a path homotopy in B between h*g and f, where $h=p\circ\tilde{h}$. Thus, $[f]\in H*[g]$ as desired.

If E is path connected, then ϕ is surjective, so Φ is surjective as well, and hence bijective.

(c) Injectivity of Φ implies that $\phi([f]) = \phi([g])$ if and only if $[f] \in H * [g]$. Now $\phi[f] = e_0$ if and only if $[f] \in H * [e_0] = H$. But $\phi([f]) = e_0$ if and only if f lifts to a loop in E based at e_0 .

4.74 Definition.

If $A \subseteq X$, a retraction of X onto A is a continuous map $r: X \to A$ such that $r \mid A$ is the identity map of A. If such an r exists, then A is said to be a retract of X.

4.75 Lemma.

If A is a retract of X, then the homomorphism of fundamental groups induced by the inclusion map $j: A \to X$ is injective.

4.76 Proof.

If $r: X \to A$ is a retraction, then the composite map $r \circ j$ equals the identity map of A. It follows that $(rcircj)_* = r_* \circ j_*$ is the identity map of $\pi_1(A, a)$ by Theorem 3.38 and Theorem 3.40, so that j_* is injective.

4.77 Theorem.

(No-Retraction Theorem) There is no retraction of B^2 onto S^1 .

4.78 Proof.

If S^1 were a retract of B^2 , then the homomorphism induced by $j: S^1 \to B^2$ would be injective by Lemma 3.75. But the fundamental group of S^1 is nontrivial while the fundamental group of B^2 is trivial, a contradiction.

4.79 Lemma.

Let $h: S^1 \to X$ be a continuous map. Then the following conditions are equivalent.

- (a) h is nulhomotopic.
- (b) h extends to a continuous map $k: B^2 \to X$.
- (3) h_* is the trivial homomorphism of fundamental groups.

4.80 Proof.

TODO!

4.81 Corollary.

The inclusion map $j: S^1 \to R^2 \setminus \{0\}$ is not nulhomotopic. The identity map $i: S^1 \to S^1$ is not nulhomotopic.

4.82 Proof.

There is a retraction of $\mathbb{R}^2 \setminus \{0\}$ onto S^1 . Therefore, j_* is injective and hence nontrivial. Similarly, i_* is the indentity homomorphism and is hence nontrivial.

4.83 Theorem.

Given a nonvanishing vector field on B^2 , there exists a point of S^1 where the vector field points directly inward and a point of S^1 where the vector field points directly outward.

4.84 Proof.

TODO!

4.85 Theorem.

(Brouwer Fixed Point Theorem) If $f: B^2 \to B^2$ is continuous, then there exists a point $x \in B^2$ such that f(x) = x.

4.86 Proof.

Suppose, by way of contradiction, that $f(x) \neq x$ for all $x \in B^2$. Then define v(x) = f(x) - x, which yields a nonvanishing vector field (x, v(x)) on B^2 . But the vector field cannot point directly outward at any point x of X^1 , for otherwise f(x) - x = ax for some a > 0, so f(x) = (1 + a)x would lie outside the unit ball B^2 , hence a contradiction.

4.87 Theorem.

(Seifert-van Kampen Theorem) Suppose that $X = U \cup V$ where U and V are open sets of X. Suppose that $U \cap V$ is path connected and that $x_0 \in U \cap V$. Let i and j be the inclusion mappings of U and V, respectively, into X. Then the images of the induced homomorphisms

$$i_*: \pi_1(U, x_0) \to \pi_1(X, x_0)$$

and

$$j_*: \pi_1(V, x_0) \to \pi_1(X, x_0)$$

generate $\pi_1(X, x_0)$.

4.88 **Proof.**

TODO!

4.89 Remark.

The Seifert-van Kampen theorem says that any loop f in X based at x_0 is homotopic to a product of the form $g_1 * (g_2 * (... * g_n))$ where each g_i is a loop in X based at x_0 that lies entirely in either U or V.

4.90 Corollary.

Suppose that $X = U \cup V$, where U and V are open sets of X. Suppose that $U \cap V$ is nonempty and path connected. If U and V are simply connected, then X is simply connected.

4.91 Proof.

The proof is obvious.

4.92 Theorem.

If n = 2, 3, ..., then S^n is simply connected.

4.93 **Proof.**

TODO!