Mid-to long-term modeling of electricity market prices

	ntation · May 2			
2011 2012	110/110/20/20/20	•		
CITATION	S		READS	
0			5	
1 auth	or:			
	Martin Klein			
9	German Aeros	pace Center (DLR)		
	23 PUBLICATIONS	40 CITATIONS		
	SEE PROFILE			

Mid- to long-term modeling of electricity market prices

Martin Klein

German Aerospace Center DLR Institute of Engineering Thermodynamics Department Systems Analysis and Technology Assessment

Gesellschaft für Energiewissenschaft und Energiepolitik e.V. 25. Workshop des Student Chapters

EWI, Köln, 04th May 2018

AMIRIS – An Agent-Based Model of the German Electricity System

Agent-based model as a container framework

Example of model within model // explicit internal model coupling

Electricity spot market price modeling

Hybrid fundamental and econometric approach

Electricity spot market price modeling Input and output

Time series:

- **demand** curve (hourly)
- generation potentials for PV and wind (hourly)
- fuel prices for coal, gas and oil (daily)
- power plant unavailabilities (planned) (monthly)
- capacities for all power plant classes (nuclear, lignite, hard coal, gas combined cycle, gas turbine, oil, PV, wind onshore, wind offshore, hydro, biomass, import DRE, storage) (yearly)
- power plant efficiencies (min and max) (yearly)

Constants:

- power plant unavailabilities (unplanned)
- Average block sizes of power plants
- minimum and maximum markups/markdowns on top of the marginal bid of each block

Output: Hourly electricity market prices in €MWh

Data

Sources:

Power Plant Capacities and Efficiencies: Open Power System Data

Demand, Spot Prices: SMARD, BMWi

Planned Unavailabilities: EEX Transparency

Fuel Prices: Quandl / Destatis

We investigate the wholesale electricity market price curve of Germany for the years 2012-2016

• **Training:** Genetic algorithm works on first half of data set (2012 – 2014)

• Validation: on an *independent* data set which was not used for fitting (2015 – 2016)

Genetic algorithm to determine markups

• One gene = one set of possible markups

• Example:
$$\begin{pmatrix} min & max \\ -200 & -10 \\ -30 & 10 \\ -50 & 30 \end{pmatrix}$$
 Nuclear Gas CC

- Pseudo-Code:
 - Evaluate Fitness Of Genepool
 - Remove Low Fitness Solutions
 - Calculate Selection Probabilities
 - For generationSize :
 - Make new Children

Genetic algorithm to determine markups

Multi-objective fitness criteria

Optimization Criteria	Unit	target t_i	weight w_i
Pearson Correlation	1	1.0	3
Mean Average Error	€/MWh	0.00	5
Standard Deviation	€/MWh	16.63	3
Mean	€/MWh	37.74	3
Minimum	€/MWh	-221.99	1
Maximum	€/MWh	210.00	1
Number of hours with negative prices	1	178	2

Genetic algorithm to determine markups

• One gene = one set of possible markups

• Example:
$$\begin{pmatrix} -200 & -10 \\ -30 & 10 \\ -50 & 30 \end{pmatrix}$$

- Pseudo-Code:
 - Evaluate Fitness Of Genepool
 - Remove Low Fitness Solutions
 - Calculate Selection Probabilities
 - For generationSize s:
 - Make new Children

• Multi-objective Fitness Evalution:

Optimization Criteria	Unit	target t_i	weight w_i
Pearson Correlation	1	1.0	3
Mean Average Error	€/MWh	0.00	5
Standard Deviation	€/MWh	16.63	3
Mean	€/MWh	37.74	3
Minimum	€/MWh	-221.99	1
Maximum	€/MWh	210.00	1
Number of hours with negative prices	1	178	2

• Make new children with random crossover

$$\begin{pmatrix}
-200 & -10 \\
-30 & 10 \\
-50 & 30
\end{pmatrix} + \begin{pmatrix}
-300 & -30 \\
-70 & 30 \\
-20 & 60
\end{pmatrix} \rightarrow \begin{pmatrix}
-200 & -10 \\
-30 & 10 \\
-20 & 60
\end{pmatrix}$$

Validation - Descriptive statistics

DESCRIPTIVE STATISTICS Model vs. Data (2015 – 2016)	
Pearson Correlation	0.87
Rank Correlation	0.89
MAE [€MWh]	4.79
RMSE [€MWh]	6.78

SHAPE PARAMETERS	DATA	MODEL
Mean [€MWh]	30.30	28.73
Std.D. [€MWh]	12.64	13.10
# Hours < 0€MWh	223	446
Min [€MWh]	-130.09	-57.93
Max [€MWh]	104.96	85.90

Electricity spot market price modelingResults

Further randomized examples

Discussion and outlook

- Novel hybrid method to model electricity market prices is presented
- Combines fundamental bidding mechanism with a machine learning algorithm
- Very good agreement with validation data set (high correlation, low mean average error)
- Capable of reproducing the stylized facts of spot market prices including negative prices, high volatility and kurtosis
- Open Question: To what extent are the markup values characteristic for the technology class and to what extent to the "whole" power plant park?
- Can this approach be used for long-term energy scenarios?

Example Scenario 2035: VRE 50%, RES 60%; less coal, security of supply ensured with gas power plants and some dispatchable imports, demand increase 1%/a, fossil fuel prices on same level as of today,

Mid- to long-term modeling of electricity market prices

Martin Klein

German Aerospace Center DLR Institute of Engineering Thermodynamics Department Systems Analysis and Technology Assessment

Gesellschaft für Energiewissenschaft und Energiepolitik e.V. 25. Workshop des Student Chapters EWI, Köln, 04th May 2018

Contact

