

Robust Multiview Multimodal Driver Monitoring System Using Masked Multi-Head Self-Attention

Yiming Ma ¹ Victor Sanchez ¹ Soodeh Nikan ² Devesh Upadhyay ² Bhushan Atote ¹ Tanaya Guha ³

¹University of Warwick

²Ford Motor Company

³University of Glasgow

Outline

- 1. Introduction
- 2. Related Work
- 3. Method
- 4. Experiments

Introduction

Introduction Driver Monitoring Systems

Modern *driver monitoring systems* (DMSs) in Level-2+ self-driving-enabled cars aim to enhance safety by estimating drivers' readiness levels for driving and enabling safe control handovers when necessary.

Fig. 1: A simplified illustration of a DMS.

Introduction Driver Monitoring Systems

These systems usually rely various sensors, which may be deployed at different in-car locations, to comprehensively monitor drivers' states, e.g.,

RGB: optical details.

▶ **Depth**: 3D information.

▶ Infrared: thermal information.

► ECG: heart rates.

► Audio: speech and sound.

Hence, modern DMSs are multimodal (and multiview).

Introduction Our Work

Our work specifically focuses on *driver action recognition*, which involves classifying drivers' actions into *normal driving* and several *non-driving-related activities* (NDRAs), e.g., texting and drinking.

Fig. 2: Sample frames from the DAD dataset [1].

Introduction Our Work

Our contributions in this paper are as follows:

- 1. We propose a novel robust *multiview multimodal* DMS for driver action recognition that leverages feature-level fusion through masked *multi-head self-attention* (MHSA).
- 2. We manually annotated the anomalies in DAD dataset with 9 fine-grained classes of non-driving-related activities (NDRAs).
- 3. We conduct extensive experiments on the DAD dataset to compare different fusion strategies, assess the significance of individual views/modalities, and evaluate the efficacy of patch masking in enhancing MHSA's robustness against view/modality collapses. Results show that our MHSA-based DMS achieves state-of-the-art performance with an AUC-ROC score of 97.0%.

Related Work

Related Work **Driver Monitoring Datasets**

▶ AUC-DD [2] is the first public dataset for DMSs. It was collected using an RGB camera from a single side view and thus have some limitations.

Fig. 3: A sample from the AUC-DD dataset [2] illustrating that RGB is not robust to illumination changes.

Related Work Driver Monitoring Datasets

- ▶ Later databases [1], [3]–[5] have incorporated additional views and modalities to address these issues.
 - ► For example, top and front views have also been introduced to capture the driver's hand and head movements amongst other movements.
 - Regarding modalities, IR and depth have also become popular, as they can provide thermally based features and geometry information, which are complementary to the optical details from RGB.
- ▶ Among these datasets, we benchmark our models on DAD [1], the only one designed for SAE L2+ with open-set recognition: its test set contains extra classes of NDRAs in addition to those in the training split.

Related Work Multimodal DMSs

Various multiview multimodal DMSs have also been proposed with different emphases:

- ▶ Kopuklu *et al.* [1] proposed a novel learning framework based on contrastive learning.
- ▶ Ortega et al. [4] and Su et al. [6] proposed to leverage Conv-LSTM structures.
- ▶ Only Shan *et al* [7] proposed a feature-level modality fusion method, but it has several drawback:
 - ► Features are pooled before fusion, which leads to the loss of semantic information.
 - ▶ Its fusion module has the additional task of handling the temporal dimension.

Method

Fig. 4: An overview of our proposed DMS.

Method Overview

- 1. We first use R3D-18 [8] to extract spatiotemporal features from the input multiview multimodal videos.
- 2. We the feed the feature maps to our masked multi-head self-attention module to interact and fuse the features.
- 3. We also used the supervised contrastive learning based on MoCo [9] to facilitate training.
- 4. The classifier is co-trained under the supervision of the cross-entropy loss.

Method Multi-Head Self-Attention Fusion

Fig. 5: The architecture of our masked multi-head self-attention module.

Method Other Fusion Methods

Fig. 6: The architectures of the other fusion methods.

Experiments

Experiments Detecting NDRAs

Sources	Decision [1]	Sum	Conv	SE	AFF	MHSA (our)		
Top (D)	91.3		92.9					
Top (IR)	88.0		91.3					
Top (D+IR)	91.7	91.7	92.2	92.3	92.5	92.9		
Front (D)	90.0		91.7					
Front (IR)	87.0		90.2					
Front (D+IR)	92.0	92.7	92.9	92.9	93.1	93.1		
Top+Front (D)	96.1	94.8	05.8	05.9	96.5	96.7		
Top+Front (IR)	93.1	94.5	94.6	94.9	95.0	95.7		
Top+Front (D+IR)	96.6	96.3	96.2	96.4	96.7	97.0		

Table 1: The AUC-ROC scores of different fusion methods on the NDRAs detection task on DAD. **D** and **IR** denote the depth and infrared modalities, respectively. The best scores for each view and modality are in **bold**.

Experiments Classifiying Drivers' Actions

Source	Decision	Sum	Conv	SE	AFF	MHSA (ours)			
Top (D)	84.3								
Top (IR)	83.7								
Top (D+IR)	84.5	85.0	85.4	85.4	85.4	85.7			
Front (D)	87.7								
Front (IR)	83.7								
Front (D+IR)	87.9	87.7	88.1	88.2	88.5	88.7			
Top+Front (D)	90.7	90.1	90.4	90.5	90.6	90.9			
Top+Front (IR)	88.4	89.9	90.2	90.2	90.4	90.6			
Top+Front (D+IR)	90.9	90.8	91.2	91.4	91.5	91.6			

Table 2: The mAP scores for multi-classification of drivers' activities on DAD.

Experiments

Classifiying Drivers' Actions

Fig. 7: Visualisation of the middle frames of four test samples from DAD.

Experiments

Robustness against Modality/View Collapses

Fig. 8: Masked training improves MHSA's robustness against corrupt views/modalities CVPR

Thanks!

References I

- [1] O. Köpüklü, J. Zheng, H. Xu, and G. Rigoll, "Driver anomaly detection: A dataset and contrastive learning approach," in *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, 2021, pp. 91–100.
- [2] Y. Abouelnaga, H. M. Eraqi, and M. N. Moustafa, "Real-time distracted driver posture classification," in Neural Information Processing Systems (NIPS 2018), Workshop on Machine Learning for Intelligent Transportation Systems, Dec. 2018.
- [3] M. Martin, A. Roitberg, M. Haurilet, et al., "Drive&act: A multi-modal dataset for fine-grained driver behavior recognition in autonomous vehicles," in *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2019, pp. 2801–2810.
- [4] J. D. Ortega, N. Kose, P. Cañas, et al., "Dmd: A large-scale multi-modal driver monitoring dataset for attention and alertness analysis," in *European Conference on Computer Vision*, Springer, 2020, pp. 387–405.
- [5] I. Jegham, A. B. Khalifa, I. Alouani, and M. A. Mahjoub, "A novel public dataset for multimodal multiview and multispectral driver distraction analysis: 3mdad," *Signal Processing: Image Communication*, vol. 88, p. 115 960, 2020.
- [6] L. Su, C. Sun, D. Cao, and A. Khajepour, "Efficient driver anomaly detection via conditional temporal proposal and classification network," *IEEE Transactions on Computational Social Systems*, 2022.

References II

- [7] G. Shan, Q. Ji, and Y. Xie, "Multi-view vision transformer for driver action recognition," in 2021 6th International Conference on Intelligent Transportation Engineering (ICITE 2021), Springer, 2022, pp. 962–973.
- [8] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, "A closer look at spatiotemporal convolutions for action recognition," in *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, 2018, pp. 6450–6459.
- [9] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, "Momentum contrast for unsupervised visual representation learning," in *Proceedings of the IEEE/CVF conference on computer vision and pattern* recognition, 2020, pp. 9729–9738.