Matthew Borger, A08781527 49/50 Sahar

Jennifer Delizo, A94013393 Part 1: 43/50

Clarence Lam, A08676105

Arthur Robertson, A08280000

ECE 108

1) Short Channel Inverter

These are the calculations for obtaining W_P . $k_P = k_n$ $2.0 \times 10^{-5} \left(\frac{W_n}{L_n}\right)$ Discussion and compare the result-3••

Total-43••

Total-43••

Below is our SPICE simulation when we step our gate length.

Below are the calculations for V_{DSSAT} , I_D (unified mod) and I_D (square mod) for $L=2.5\mu m$, $1.2\mu m$, and $0.6\mu m$. As stated in the lecture notes, we assume $v_{sat}=10^5 m/s$.

For $L_p = 2.5 \mu m$

NMOS (voltage high)

$$V_{DSSAT} = L \frac{v_{sat}}{\mu}$$

$$= \frac{2.5 \times 10^{-6} \times 10^{5}}{655.881 \times 10^{-2}}$$

$$= \frac{38.12mV}{2}$$

$$I_{D(unified)} = \frac{k}{2} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

$$= \frac{2 \times 10^{-5}}{2} (38.12 \times 10^{-3})^{2} (1 + 0.0367072)$$

$$= \frac{38.12 \times 10^{-3}}{2}$$

$$= \frac{14.549nA}{2}$$

$$I_{D(squarelaw)} = \frac{k}{2} (V_{GS} - V_{T})^{2}$$

$$= \frac{2.0 \times 10^{-5}}{2} (38.12 \times 10^{-3})^{2}$$

$$= \frac{0.8 \times 10^{-5}}{2}$$

For $L_p = 1.2 \mu m$

NMOS (voltage high)

$$V_{DSSAT} = L \frac{v_{sat}}{\mu}$$

$$= \frac{1.2 \times 10^{-6} \times 10^{5}}{655.881 \times 10^{-2}}$$

$$= 18.30 \text{mV}$$

$$I_{D(unified)} = \frac{k}{2} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

$$= \frac{2 \times 10^{-5}}{2} (18.30 \times 10^{-3})^{2} (1 + 0.0367072 \times 18.3 \times 10^{-3})$$

$$= 3.350 \text{nA}$$

$$I_{D(squarelaw)} = \frac{k}{2} (V_{GS} - V_{T})^{2}$$

$$= \frac{2.0 \times 10^{-5}}{2} (18.30 \times 10^{-3})^{2}$$

$$= \frac{3.347 \text{nA}}{2}$$

You have a unit problem in the calculations. the unit of mobility is cm2/V-s. I guess you used cm/V-s. So all the calculations are wrong.

$$L \frac{v_{sat}}{\mu}$$

$$^{-6} * 10^{5}$$

$$= 95.43mV$$

$$I_{D(unified)} = \frac{k}{2}(V_{GS} - V_{T})^{2}(1 + \lambda V_{DS})$$

$$= \frac{0.8 * 10^{-5}}{2} (95.43 * 10^{-3})^{2}(1 + 0.0612279)$$

$$^{*} 95.43 * 10^{-3})$$

$$= 36.639nA$$

$$I_{D(squarelaw)} = \frac{k}{2}(V_{GS} - V_{T})^{2}$$

$$= \frac{0.8 * 10^{-5}}{2} (95.43 * 10^{-3})^{2}$$

$$= 36.238nA$$

PMOS (voltage low)

$$V_{DSSAT} = L \frac{v_{sat}}{\mu}$$

$$= \frac{1.2 \times 10^{-6} \times 10^{5}}{261.977 \times 10^{-2}}$$

$$= \frac{45.81 \text{mV}}{2}$$

$$I_{D(unified)} = \frac{k}{2} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

$$= \frac{0.8 \times 10^{-5}}{2} (45.81 \times 10^{-3})^{2} (1 + 0.0612279 \times 45.81 \times 10^{-3})$$

$$= \frac{8.416 \text{nA}}{2}$$

$$I_{D(squarelaw)} = \frac{k}{2} (V_{GS} - V_{T})^{2}$$

$$= \frac{0.8 \times 10^{-5}}{2} (45.81 \times 10^{-3})^{2}$$

$$= \frac{8.39 \text{nA}}{2}$$

For $L_p = 0.6 \mu m$

NMOS (voltage high)

$$V_{DSSAT} = L \frac{v_{sat}}{\mu}$$

$$= \frac{0.6 \times 10^{-6} \times 10^{5}}{655.881 \times 10^{-2}}$$

$$= 9.15mV$$

$$I_{D(unified)} = \frac{k}{2} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

$$= \frac{2 \times 10^{-5}}{2} (9.15 \times 10^{-3})^{2} (1 + 0.0367072 \times 9.15 \times 10^{-3})$$

$$= 0.837nA$$

$$I_{D(squarelaw)} = \frac{k}{2} (V_{GS} - V_{T})^{2}$$

$$= \frac{2.0 \times 10^{-5}}{2} (9.15 \times 10^{-3})^{2}$$

$$= 0.837nA$$

PMOS (voltage low)

$$V_{DSSAT} = L \frac{v_{sat}}{\mu}$$

$$= \frac{0.6 \times 10^{-6} \times 10^{5}}{261.977 \times 10^{-2}}$$

$$= \frac{22.90 \text{mV}}{2}$$

$$I_{D(unified)} = \frac{k}{2} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

$$= \frac{0.8 \times 10^{-5}}{2} (22.90 \times 10^{-3})^{2} (1 + 0.0612279 \times 22.90 \times 10^{-3})$$

$$= \frac{2.10 \text{nA}}{2}$$

$$I_{D(squarelaw)} = \frac{k}{2} (V_{GS} - V_{T})^{2}$$

$$= \frac{0.8 \times 10^{-5}}{2} (22.90 \times 10^{-3})^{2}$$

$$= \frac{2.10 \text{nA}}{2}$$

These are the drain currents for each of the gate lengths.

$$L = 2.5 \mu m$$
, $I_D = 51.94 \mu A$

$L = 1.2 \mu m$, $I_D = 47.132 \mu A$

$L = 0.6 \mu m$, $I_D = 38.305 \mu A$

As we see from our calculated results, as the gate length decreases, our V_{DSSAT} and I_D all decrease. This is because V_{DSSAT} is directly proportional to gate length and our drain current is directly proportional to V_{DSSAT} . We notice that there is a minute difference in the calculations our $I_{Dunifiedmodel}$ and $I_{Dsquarelaw}$ until we decrease the gate length to $0.6\mu m$. This is when the short channel effect takes over and we calculate identical drain currents. When we compare the calculated and simulated results, we obtain very different answers.

2) Scaling of the Speed Response of a CMOS Inverter

Given the layout provided, with λ = 0.6 μm , we obtained

NMOS	PMOS	
L = 1.2um	L = 1.2um	
W = 1.8um	W = 5.4um	
AD = 6.84pm	AD = 16.2pm	
AS = 6.84pm	AS = 16.2pm	
PD = 9.6um	PD = 11.4um	
PS = 9.6um	PS = 11.4um	
NRS = 0.33	NRS = 0.11	
NRD = 0.33	NRD = 0.11	

Below are the simulated rise and fall times of the DUT. We obtained $t_{\rm r}$ = 2.478ns and $t_{\rm f}$ = 1.939ns.

Using a capacitance of C = 0.05pF, we obtained rise and fall times of t_r = 4.7802ns and t_f = 3.757ns.

We estimated our effective load capacitance to be C = 5.04 fF.

Below are the calculations for the rise and fall times of the DUT under the square law assumption.

$$t_r = \frac{3CV_{DD}^2}{k_L(V_{DD} - V_{TL})^2(2V_{DD} - V_{TL})} = \frac{3 \times 5.04 \times 10^{-15} \times 9}{0.8 \times 10^{-5}(3 - 0.538861)^2(2 \times 3 - -0.538861)} = \frac{3CV_{DD}^2}{k_D(V_{DD} - V_{TD})^2(2V_{DD} - V_{TD})}$$

= 0.207s \times

Here are the rise and fall times using λ = 0.3 μ m. We obtained t_r = 1.0323ns and t_f = 0.854ns.

Below are the calculations for the rise and fall times for our effective capacitance, C = 3.78 fF.

$$t_{r} = \frac{3CV_{DD}^{2}}{k_{L}(V_{DD} - V_{TL})^{2}(2V_{DD} - V_{TL})}$$

$$= \frac{3 * 3.78 * 10^{-15} * 9}{0.8 * 10^{-5}(3 - 0.538861)^{2}(2 * 3 - 0.538861)} = \frac{3 * 3.78 * 10^{-15} * 9}{2 * 10^{-5}(3 - 0.543469)^{2}(2 * 3 - 0.543469)}$$

$$= 0.156ns = 0.155ns$$

From our simulated values, we achieve lower rise and fall times with λ = 0.3 μ m.