Final PPT - Capstone

SUPPLY CHAIN PROJECT

SUBMITTED BY

SUNDAR RAM S

PGP DSBA -ONLINE DEC_C 2021

AGENDA

- ✓ Problem Definition & Objective
- ✓ Approach
- ✓Insights & Recommendations

PROBLEM DEFINITION

- Miss-Match in the demand and supply of Noodles
- High Demand Low Supply & Low Demand High Supply
- ✓ Inventory cost loss to the company

OBJECTIVE

Optimization of Supply Quantity in all ware houses

Determining optimum weight to be shipped

Analyze demand patterns

Boost sales/ bottom line through targeted campaigning

"80% of the cost is accommodated by only 20% of the products"

APPROACH

DATA OVERVIEW

- ✓ Total Records 25K
- ✓ Total Variables 24
- ✓ Total Cells 6L
- ✓ 23 Independent Variables
- ✓ 1 dependent Target Variable

14 int64, 8 object type &2 float64 variables

	S.No	Variable Name	Data Type
	1	Ware_house_ID	Object
	2	WH_Manager_ID	Object
	3	Location_type	Object
	4	WH_capacity_size	Object
	5	zone	Object
	6	WH_regional_zone	Object
	7	num_refill_req_l3m	int64
	8	transport_issue_l1y	int64
	9	Competitor_in_mkt	int64
	10	retail_shop_num	int64
	11 wh_owner_type 12 distributor_num		Object
			int64
	13	flood_impacted	int64
	14	flood_proof	int64
	15	electric_supply	int64
	16	dist_from_hub	int64
	17	workers_num	float64
	18	wh_est_year	float64
	19	storage_issue_reported_l3m	int64
	20	temp_reg_mach	int64
	21	approved_wh_govt_certificate	Object
	22	wh_breakdown_l3m	int64
	23	govt_check_l3m	int64
	24	product_wg_ton	int64

DATA CLEANSING

Null Values

- Count: ~ 13.8 K (2% of the dataset)
- Most ML Algorithms don't work & Leads to Biased Models giving incorrect results
- Lack of Precision in Statistical Analysis
- Treated Using Forward Fill Technique

990 - workers_num 11881 - wh_est_year 908 - approved_wh_govt_certificate

Outliers

- Values abnormally away from the other values Count: ~ 1.6 K (0.2% of the dataset)
- Affects arithmetic mean of the continuous variables & skews the value to one side
- Visualized using Box Plot
- Treated by imputing the max and min values

Variables	Minimum	Maximum	
workers_num	10.5	46.5	
retail_shop_num	2532.5	7280.5	

948 - retail_shop_num 631 - workers_num Maximum = [Q3 + 1.5(IQR)] Minimum = [Q1 - 1.5(IQR)]

Feature Engineering

- Addition of New variables Age of the Ware house Added based on the wh_est_year
- Variable Transformation Binning of Age & Weight variables

• Feature Engineering helps better Analysis & also sometimes better model building

Ware_house_ID & Manager_ID are dropped as they are mere identification numbers and don't add any value to model building

DATA VISUALIZATION

DATA VISUALIZATION - CONTD...

DATA VISUALIZATION – CONTD...

- Presence of Multi collinearity
- ✓ Indicates presence of correlation amongst independent variables
- Undermines the statistical significance of an independent variable
- Requires Suitable treatment

14

Insights from EDA

- ✓ Multi collinearity present in the data Correlation Plot
- ✓ Warehouses in the Northern region & rural location type of Zone 6 are the most prominent.
- ✓ Most of the Warehouses are C certified & carry medium category weight
- ✓ Most of the Ware houses are new but the customer base is strong for expert category Warehouses.

Recommendations from EDA

- ✓ Analysis of market requirement
 ✓ Targeted marketing & Strategic Pricing
- ✓ Planning of warehouse inventory
 ✓ C to A+ certifications conversions
- ✓ Timely Introduction of new products

FEATURE TRANSFORMATION & SELECTION

- ✓ Encoding of Object type variables One Hot Encoding & Dummy Encoding
- ✓ Multi collinearity treatment through Variance Inflation Factor method
- ✓ Measure of how much the variable is contributing to the standard error
- ✓ A value of up to 5 for VIF is allowed.
- ✓ The variables with a VIF above 5 are removed one by one and the VIF is recalculated after each removal.

14 FINAL SIGNIFICANT VARIABLES

		variables	VIF
	8	govt_check_l3m	4.899737
	7	approved_wh_govt_certificate	4.807978
	5	storage_issue_reported_l3m	3.800284
	0	num_refill_req_l3m	3.485383
	4	electric_supply	2.877205
1	0	wh_owner_type_Rented	1.848336
1	2	WH_regional_zone_Zone 6	1.735769
	6	temp_reg_mach	1.629826
1	4	WH_capacity_size_Small	1.417972
	1	transport_issue_l1y	1.402753
1	3	zone_South	1.397069
1	11	WH_regional_zone_Zone 5	1.383800
	2	flood_impacted	1.153500
	9	Location_type_Urban	1.096589
	3	flood_proof	1.080488

Model Building

Model Description

- ✓ Supervised Regression Problem
- ✓ Predict any value between 0 to + infinity for weight

- Models for Regression Problems
- ✓ Linear Regression ●
- ✓ Decision Tree Regressor CART ●
- ✓ Ensemble models
 - Random Forest Regressor Adaboost •
 - Bagging •

Gradient boost Regressor

Train Test Split

- ✓ Train the model using train data and test using test data
- ✓ Separation of Dependent & Independent variables.
- ✓ Split data in to Train & Test data (70:30)

LINEAR REGRESSION

- ✓ Linear combination of the explanatory variables
- ✓ An expression of one or more variables scaled by a constant factor and added together
- ✓ Dependent variable value = (weight *independent variable) + constant
- ✓ It is the straight line in the scatter plot of the variables

Y = m1X1+ m2X2+ + mnXn+ C + e

Predictive power

✓ The best fit line can be found out using the Gradient Descent method

Residual error

✓ Linear Regression models are built using SKLEARN & SCIPY STATS in Python

P1	Original y data point for given x			
P2	Estimated y value for given x			
Ybar	Average of all Y values in data set			
SST	Sum of Square error Total (SST), Variance of P1 from Ybar (Y Ybar) ²			
SSR	Regression error (p2 ybar) 2 (portion SST captured by regression model)			
SSE	Residual error (p1 p2) ²			

Best Fit line, SSE = 0 => SSR/SST =1 R² = SSR/SST (Coefficient of Determination)

R² tends to 1 Lower the RMSE better the model

Train & Test model

Model Definition &

Building Approach

Errors & Metrics in

linear regression

model

- √ The model is initialized using the specific library
- √Train data is fit in to the model & model gets trained for predictions
- √The model is tested using test data and the metrics R² & RMSE are evaluated

DECISION TREE REGRESSOR

- ✓ CART Classification And Regression Tree is a binary decision tree
- ✓ Gives both categorical & continuous output
- ✓ Nodes are split based on the least mean squared error for regression
- ✓ Model is built using the SKLEARN library in Python
- ✓ Errors, Metrics, training & testing models remain the same as in linear regression model.
- ✓ Decision Tree Regressor function is called and initialized with certain hyper parameters
- ✓ Hyper parameters determines the way the nodes are split and their criteria
- ✓ Criterion Squared error is the split criterion (for regression models)
- √ Maximum depth number of branches that the tree can be split along vertically
- ✓ Min sample leaf minimum number of records that a node must contain after splitting.
- ✓ Min sample split minimum number of records that a node must have so that it can be split
- ✓ The model is built for default parameters & further tuned to avoid over fitting (Exceptional in train data, while fails in test data)
- ✓ Grid search cross validation-
- ✓ Grid search technique to select the best ML model, parameterized by a grid of hyper parameters.
- √Cross validation splits dataset into random groups, holding one group as test, and training the model on the remaining groups
- ✓ Process is repeated for each group being held as test, then the average of models is used for the resulting model.

Hyper Parameters

Model Definition &

Building Approach

RANDOM FOREST REGRESSOR

- Model Definition, Building
 Approach & Tuning
- ✓ Ensemble technique multiple CART models are built to get the accuracy in the predicted value.
- ✓ Model building is same except that we need to build a Random Forest Regressor model instead of Decision Tree Regressor
- ✓ Errors, Metrics, training & testing models remain the same as in the other two models
- ✓ Model tuning is same as in that of the Decision tree regressor

- **Hyper Parameters**
- ✓ Same as that of DT Regressor
- ✓ Some additional hyper parameter include Max_features (no. of independent variables to be considered) and n_estimators (no. of DTs to be built)
- ✓ The model is built for default parameters & further tuned to avoid over fitting.

BOOTSTRAP AGGREGATING

- Model Definition & Building Approach
- ✓ A technique of sampling creates sub sample of observation with the actual dataset, with replacementme
- ✓ Reduced chances of over fitting
- ✓ Self imposed Model tuning trains a large number of "strong" learners in parallel & combines to "smooth out" predictions
- ✓ Model is built using the Bagging Regressor of SKLEARN in python
- ✓ Model initialization includes defining the model over which the Bagging has to happen. In this case it is the RF Regressor

BOOSTING

- ✓ Linear sequential process model minimizes errors by learning from previous model predictions
- ✓ Large number of weak learners trained sequentially Combines to forma a strong learner
- √ Two types of boosting Adaptive/ Ada boost & Gradient boosting

Ada Boost

Gradient Boost

- ✓ Successive learners are created with a focus on the ill fitted data of the previous learner
- ✓ Adaboost Regressor library of Sklearn is used to build the model
- ✓ Initialized with number of Decision trees
- ✓ Each learner is fit on a modified version of original data
- ✓ New models are fit to the residuals
- ✓ The overall learner improved where the residuals are high
- ✓ Gradient boosting Regressor library of Sklearn is used to build the model

Model Results & Insights

- ✓ Gradient boosting has the least RMSE in test data & RMSE has decreased for testing data
- ✓ Implies the least possible inventory cost loss
- ✓ Aids in pre-planning and specific campaigns
- ✓ Boost sales which aids to further boosts the bottom line of company.

	Metrics						
Model	Train Data Test Data		st Data	Model Fitness	Business Implication		
		RMSE	R2	RMSE			
Linear Regression using SKLEARN	0.9766	1780.4493	0.9777	1716.9875	Good		
Linear Regression using SKLEARN - Scaled	0.9766	0.1528	0.9777	0.149	Good	Larger value of RMSE shows that variation in prediction with	
Linear Regression using Statsmodel		1780.4493	0.977	1716.9875	Good	rest to actual weight is high and predictions might sometime	
Linear Regression using Statsmodel after		4700 72	0.077	1716 7560	Card	lead to Inventory cost loss in the ware house.	
removing non significant variables	0.977	1780.72	0.977	1716.7562	Good		
CART Model (DT)	0.9998	154.7	0.9878	1270.2599	Poor	Model performs exceptionally well in the train data with a low RMSE amongst the models built. However, the model is overfit that is evident from the wide gap between the RMSEs of train and test data. Deploying this model for production would incur huge losses to the business	
Reg. Cart DT (max_depth =10,	0.9941	891.524	0.9935	926.8318	Good		
min_samples_leaf=10, min_samples_split=30)							
Reg. Cart DT Grid Search CV (max_depth =10,	0.9939	904.7152	0.9935	925.018	Good	Larger value of RMSE shows that variation in prediction with	
min_samples_leaf=10, min_samples_split=45)						rest to actual weight is high and predictions might sometime	
Reg. Cart DT Grid Search CV (max_depth =9,	0.9939	908.675	0.9935	922.737	Good	lead to Inventory cost loss in the ware house.	
min_samples_leaf=5, min_samples_split=15) Reg. Cart DT Grid Search CV (max_depth =9,							
min_samples_leaf=5, min_samples_split=12)	0.9939	908.1311	0.9935	923.33	Good		
Random Forest Model	0.9988	390.449	0.993	963.7913	Poor	Model performs exceptionally well in the train data with a low RMSE amongst the models built. However, the model is overfit that is evident from the wide gap between the RMSEs of train and test data. Deploying this model for production would incur huge losses to the business	
Random Forest Model with Grid Search CV (max_depth = 10, max_features=7, min_samples_leaf=5, min_samples_split=15, n_estimators=301)	0.9927	991.32	0.9919	1031.8729	Good	Larger value of RMSE shows that variation in prediction with rest to actual weight is high and predictions might sometime	
Random Forest Model with Grid Search CV (max_depth = 10, max_features=9, min_samples_leaf=10, min_samples_split=30, n_estimators=150)	0.9938	913.4476	0.9935	924.6953	Good	lead to Inventory cost loss in the ware house.	
Bagging	0.9974	587.0825	0.9934	929.7687	_	Model performs exceptionally well in the train data with a low RMSE amongst the models built. However, the model is overfit that is evident from the wide gap between the RMSEs of train	
AdaBoost	0.9986	427.6	0.993	958.0611	Poor	and test data. Deploying this model for production would incur huge losses to the business	
Gradient Boosting	0.9935	936.6518	0.9938	902.504	Good	Larger value of RMSE shows that variation in prediction with rest to actual weight is high and predictions might sometime lead to Inventory cost loss in the ware house.	
SUPPLY CHAIN PROJECT 22							

15-Sep-25 SUPPLY CHAIN PROJECT 22

- ✓ Gradient boosting can be deployed for predictions as it has the least RMSE in test data & RMSE has decreased for testing data
- ✓ Analysis of market requirement in Northern region, rural location of Zone 6
- ✓ Proper planning of warehouse inventory
- ✓ Timely introduction of new products
- ✓ Targeted marketing based on demography & Strategic Pricing
- ✓ C to A+ certifications conversions of all the warehouses in turn developing
 the customer base

Thank You

APPENDIX

Boxplot of retail_shop_num Boxplot of distributor_num Boxplot of retail shop_num Boxplot of distributor_num **Appendix 1** 2000 4000 6000 8000 10000 20 40 50 3000 4000 7000 20 40 retail_shop_num retail_shop_num distributor_num distributor_num Boxplot of dist_from_hub Boxplot of dist_from_hub 100 150 200 60 150 200 250 15 25 30 35 dist_from_hub workers_num dist_from_hub workers_num Boxplot of storage_issue_reported_l3m Boxplot of govt_check_l3m Boxplot of storage_issue_reported_l3m Boxplot of govt_check_l3m 0 5 10 15 20 25 30 35 40 0 10 15 20 25 0 5 10 15 20 25 30 35 40 0 15 20 storage_issue_reported_l3m govt_check_l3m storage_issue_reported_I3m govt_check_l3m Boxplot of product_wg_ton Boxplot of product_wg_ton 0 0 10000 20000 30000 40000 10000 20000 30000 40000 product_wg_ton product_wg_ton

Appendix 2

Age Bins	Description		
-1	Yet to Establish		
0	Less than 1 year		
1 to 9	New		
10 to 17	Mediocre		
18 to 26	Expert		

Weight Bins	Description	
2065 to 17695.33	Low	
17695.34 to	Medium	
35390.67		
35390.68 to 55151	High	