يسم الله الرحمن الرحيم

ساختمانهای داده

جلسه ۱۴

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

Maps

- A map models a searchable collection of key-value entries
- The main operations of a map are for searching, inserting, and deleting items
- Multiple entries with the same key are not allowed (GTM)
- O Applications:
 - address book
 - student-record database

Map ADT

- O Data:
 - (key, value) pairs
- O Methods:
 - insert(key,value)
 - find(key)
 - delete(key)

پیادهسازی با آرایه و لیست پیوندی

o برای یک map یا دیکشنری با n جفت (key, value) (بدون نیاز به چک کردن تکراری بودن)

	insert	find	delete
Unsorted linked-list	<i>O</i> (1)	O(n)	O(n)
Unsorted array	<i>O</i> (1)	O(n)	O(n)
Sorted linked list	O(n)	O(n)	O(n)
Sorted array	O(n)	O(logn)	O(n)

Mojtaba Khalili

درخت

- یک ساختمان داده غیرخطی (مناسب برای جستجو)
 - مناسب برای روابط سلسله مراتبی

در ادامه...

10 Search Trees 42	23
10.1 Binary Search Trees	24
10.1.1 Searching	26
10.1.2 Update Operations	28
10.1.3 C++ Implementation of a Binary Search Tree 43	32
10.2 AVL Trees	38
10.2.1 Update Operations	10
10.2.2 C++ Implementation of an AVL Tree	16
10.3 Splay Trees	50
10.3.1 Splaying	50
10.3.2 When to Splay	54
10.3.3 Amortized Analysis of Splaying ★	56
10.4 (2,4) Trees	51
10.4.1 Multi-Way Search Trees	
10.4.2 Update Operations for $(2,4)$ Trees	57
10.5 Red-Black Trees	
10.5.1 Update Operations	75
10.5.2 C++ Implementation of a Red-Black Tree	
10.6 Exercises)2

What is a Tree?

What is a Tree?

A graph without cycles

 In software systems, a tree is an abstract model of a hierarchical structure

Compared with "linear" data structures

 A tree consists of nodes with a parent-child relation

Applications:

- Organization charts
- File systems
- Programming environments

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node
 without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

 Subtree: tree consisting of a node and its descendants

Tree Terminology

A tree is ordered if there is a linear ordering defined for the children of each node;
 that is, we can identify children of a node as being the first, second, third, and so on.

Figure 7.4: An ordered tree associated with a book.

Example (unordered tree): File System

Node	level	depth	height
Α	0	0	3
В	2	2	1
С	3	3	0

Tree ADT

IUT-ECE

- We can use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean empty()
- Accessor methods:
 - position root()
 - list<position> positions()
- Position-based methods:
 - position p.parent()
 - list<position> p.children()

- Query methods:
 - boolean p.isRoot()
 - boolean p.isExternal()
- Additional "update" methods may be defined by data structures implementing the Tree ADT
 - Remove the node at some position
 - Swap a parent and its specific child
 - Etc ...

A linked structure for General Trees

IUT-ECE

One way of implementing a general tree

Tree Traversal Algorithms

Traversal Computations

- 1. Depth?
- 2. Height?
- 3. Visit every nodes
 - Preorder
 - Postorder
 - Inorder
- These are the basic things to do for a given tree

1. Depth of a node

The depth of p's node can also be recursively defined as follows:

- If p is the root, then the depth of p is 0
- Otherwise, the depth of p is one plus the depth of the parent of p

1. Depth of a node


```
Algorithm depth(T, p):

if p.isRoot() then

return 0

else

return 1 + depth(T, p.parent())
```

Complexity? $O(d_p)$, worst-case O(n)

Proposition 7.4: The height of a tree is equal to the maximum depth of its external nodes.

IUT-ECE

- Equal to the maximum depth of its leaves
- OK. Then, what about this algorithm?

```
Algorithm height 1(T):

h = 0

for each p \in T.positions() do

if p.isExternal() then

h = \max(h, \operatorname{depth}(T, p))

return h
```

Complexity?

Worst-case: $O(n^2)$

Two Trees

Why is height1 inefficient?

The *height* of a node p in a tree T is also defined recursively.

- If p is external, then the height of p is 0
- Otherwise, the height of p is one plus the maximum height of a child of p

Why is height1 inefficient?

```
Algorithm height2(T,p):

if p.isExternal() then

return 0

else

h=0

for each q \in p.children() do

h=\max(h, \operatorname{height2}(T,q))

return 1+h
```

Proposition 7.5: Let T be a tree with n nodes, and let c_p denote the number of children of a node p of T. Then $\sum_p c_p = n - 1$.

Why is height1 inefficient?

```
Algorithm height2(T,p):

if p.isExternal() then

return 0

else

h=0

for each q \in p.children() do

h=\max(h, \operatorname{height2}(T,q))

return 1+h
```

$$O(\sum_{p}(1+c_p))$$
 Worst-case: $O(n)$

3. Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm preOrder(v) visit(v) for each child w of v preorder (w)

3. Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

3. Inorder Traversal

In an inorder traversal a node is visited after its left subtree and before its right subtree

