Решение задачи о минимизации булевой функции

Задача. С помощью карт Карно найдите сокращенную, все тупиковые и минимальные ДНФ или КНФ булевой функции f(x1,x2,x3,x4), заданной вектором своих значений. (1100 0101 0011)

Решение. Составим таблицу истинности для функции f:

x_1	x_2	x_3	x_4	f
0 0	0 0	0 0	0 1 0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0 0 0	1 1 1	0 1 1	0 1 0 1	1
0	1	1	0	0
0	1	1	1	1 0 1 0
1	0	0	0	0
1	0	0	1	0 1 1
1		1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0 1	1	0 1 1
1	1	1	0	1
1	1	1	1	1

Выпишем $N_f = \{0000, 0001, 0101, 0111, 1010, 1011, 1110, 1111\}$.

Используем метод карт Карно. Составляем карту Карно для функции 4 переменных. В клетках ставим 1, если на данном наборе функция принимает значение 1 (данный набор присутствует в СДНФ), другие клетки оставляем пустыми. Получаем:

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1		
01		1	1	
11			1	1
10			1	1

Строим сокращенную ДНФ по карте Карно. Склеиваем все соседние пары единиц, а также прямоугольники максимальной величины.

Задача скачана с сайта www.MatBuro.ru

Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm

©МатБюро - Решение задач по математике, экономике, статистике

1) Получаем x_1x_3

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1		
01		1	1	
11			1	1
10			1	1

2) Получаем $\bar{x_1}x_2x_4$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1		
01		1	1	
11			1	1
10			1	1

3) Получаем $\overline{x_1} x_2 x_3$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1		
01		1	1	
11			1	1
10			1	1

4) Получаем $\overline{x_1} \overline{x_3} x_4$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1		
01		1	1	
11			1	1
10			1	1

5) Получаем $x_2x_3x_4$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00	1	1		
01		1	1	
11			1	1
10			1	1

Получили простые импликанты: x_1x_3 , $\overline{x_1}x_2x_4$, $\overline{x_1}x_2\overline{x_3}$, $\overline{x_1}x_3x_4$, $x_2x_3x_4$. Сокращенная ДНФ:

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

$$D_{corp.} = x_1 x_3 \vee \overline{x_1} x_2 x_4 \vee \overline{x_1} \overline{x_2} \overline{x_3} \vee \overline{x_1} \overline{x_3} x_4 \vee x_2 x_3 x_4$$

Выбираем ядровые импликанты. Им соответствуют такие прямоугольники, после удаления которых получим незакрытую 1. Лишние импликанты убираем и приходим к тупиковым ДНФ:

1) 1, 2 и 3 импликанты.
$$D_{myn} = x_1 x_3 \vee \overline{x_1} x_2 x_4 \vee \overline{x_1} \overline{x_2} \overline{x_3}$$

2) 1, 3, 4 и 5 импликанты.
$$D_{myn.} = x_1 x_3 \vee \overline{x_1} \overline{x_2} \overline{x_3} \vee \overline{x_1} \overline{x_3} x_4 \vee x_2 x_3 x_4$$

Минимальная ДНФ (с минимальным количеством импликант):

$$D_{\text{\tiny MUH.}} = x_1 x_3 \vee \overline{x_1} x_2 x_4 \vee \overline{x_1} \overline{x_2} \overline{x_3} .$$