# Cloud Computing and Distributed Systems Introduction

Raja Appuswamy

Eurecom

# **Cloud computing: The disruption**

"In 2020, the global cloud computing market was valued at \$371.4 billion, and it is estimated that by 2025 it will rise to a staggering \$832.1 billion." – Marketsandmarkets

"74% of Amazon's operating profit comes from AWS" - Amazon

"80% of organizations will migrate toward the cloud by 2025." - Gartner

"50% of all data will be held in the cloud by 2020. Cloud data centers will process 94% of workloads in 2021." – IDC & Cisco

"Global data centers used roughly 416 terawatts (3% of the total electricity) last year, nearly 40% more than the entire United Kingdom." - Forbes

"Big data solutions via cloud subscriptions will increase about 7.5 times faster than on-premise options." - Forrester

"Al without the cloud is tough" - Information Age

#### **This Course**

- What you will learn (roadmap)
  - · Economic foundations
    - Service models
  - Infrastructure foundations
    - Virtualization, containerization, serverless functions
  - Systems foundations
    - · Hadoop, Apache Spark
    - Relational databases, Distributed file systems, maybe bitcoin & blockchain
  - Programming foundations
    - Map—reduce and functional programming
    - SQL and NoSQL
  - Algorithmic foundations
    - Consistency, Serializability, Transactions
    - Atomic commitment, two-phase, three-phase commit
    - Consensus, PAXOS, CAP theorem

#### Who is this course for?

- Cloud developers, architects, data engineers, data analysts, ...
  - Cloud computing sector is expected to grow 14 percent annually and create one million new jobs in 2022
  - Right now there are an estimated 5.6 million cloudrelated jobs worldwide
  - \$80,000 to \$200,000 per year
  - You will ace system design interview with this course
  - You will be on your way to getting certified

#### Requirements

- Some familiarity with operating systems concepts
- Some familiarity with computer architecture
- Knowledge of c++, python, git, web frameworks

# **Grading**

#### Exams

- Final 30% of the overall grade
- Midterm 20% of the overall grade
- Entirely based on course lectures
- · Design questions, problems, ...

#### In-class Quizzes

- 10% of grade
- Based on previous lecture, after mid-class break

#### Labs

- 40% of grade
- Work with public cloud platform(s)
- · Develop an awesome dist. system (more later)

#### How to make the most of this course?

#### Attend classes

- Many discussions in live classes
- Lecture notes in Moodle
- Last year's lectures on mediaserver

#### PLAN AHEAD FOR LABS & PROJECT

- Labs/project will be hard if you have non-CS background
- Everything can be done remotely
- We can hold additional recitation sessions if necessary

#### Books

- Designing data intensive applications
- · Spark: The Definitive Guide

## **Tentative timeline**

| Date   | Tentative lecture topic                     |
|--------|---------------------------------------------|
| Oct 5  | Introduction to cloud computing             |
| Oct 12 | infrastructure fundamentals                 |
| Oct 19 | Intra-node parallelism                      |
| Oct 26 | Shared-nothing parallelism, MPI, Map-Reduce |
| Nov 09 | Memory Hierarchy & Spark                    |
| Nov 16 | Memory Hierarchy & Spark                    |
| Nov 23 | Midterm                                     |
| Nov 30 | Cloud storage: Databases & Transactions     |
| Dec 07 | Cloud storage: File systems & Consistency   |
| Dec 14 | Atomic commitment in distributed systems    |
| Jan 04 | Atomic commitment in distributed systems    |
| Jan 11 | Consensus in distributed systems            |
| Jan 18 | Consensus in distributed systems            |
| Jan 25 | Consensus in distributed systems            |

# Introduction to the Cloud Computing

#### We live in a world of data



Figure: Data deluge.

#### **Big Data**

- Big data is defined as large pools of data that can be captured, communicated, aggregated, stored, and analyzed.
- Data continues to grow



Figure: Global datasphere

- Applications are becoming data intensive
  - More data leads to better accuracy
  - With more data, accuracy of different algorithms converges

# Let's look at your data.



You want to access, shared, process your data from all your devices, anytime, anywhere.

# How will we manage all this data?

#### Manage it ourselves?

- How do we store it?
- How do we share it?
- How can we enable access to it from any place?
- How do we process all of it?
- How do we secure it?
- ....

#### What if it is managed by someone else?

- Someone provides a management "service"
- You pay a subscription for this "service"

# **Utility-Product-Service lifecycle: Water**



# **Utility-Product-Service lifecycle: Electricity**



# **Generalizing the lifecycle**



# **Cloud computing: The prophecy**

•In 1965, MIT's Fernando Corbató and the other designers of the Multics operating system envisioned a computer facility operating "like a power company or water company".

 Plug your thin client into the computing Utility and Play your favorite Intensive Compute & Communicate Application

# **Cloud Computing**

#### Transformation of IT from a product to a service



#### Formal definition



Cloud Computing is the delivery of computing as a service rather than a product,

whereby shared resources, software, and information are provided to computers and other devices





as a metered service over a network.

#### IT as a service

- How do we offer IT as a service?
- Different users have different needs
  - Average end user
  - Mobile app developer
  - Enterprise systems architect
- Let us look at some service models

#### Basic cloud service models



#### SaaS

- Software is delivered as a service over the Internet, eliminating the need to install and run the application on the customer's own computer
- Simplifies maintenance and support
- You use SaaS products everyday
  - Gmail, Google docs, Youtube, ...
- Salesforce.com is a popular commercial pioneer (ERP, CRM, ...)

#### **PaaS**

- The Cloud provider exposes a set of tools (a platform) and APIs which allows users to create SaaS applications
- The SaaS application runs on the provider's infrastructure
- The cloud provider manages the underlying hardware and requirements
- Examples: Google App Engine, Windows Azure Web App service

#### **laaS**

- The cloud provider leases to users Virtual Machine Instances (i.e., computer infrastructure) using the virtualization technology
- The user has access to a standard Operating System environment and can install and configure all the layers above it
- Ex: AWS EC2, Rackspace, Google Compute Engine



#### Other services models

- Hardware-as-a-service (HaaS)
  - You get access to barebones hardware machines, do whatever you want with them, Ex: Your own cluster
  - https://www.youtube.com/watch?v=pqfd4t9ISHY
- X-as-a-service, where X can be
  - Backend (BaaS), Desktop (DaaS), ...

# **Cloud Computing**



Cloud Computing is the delivery of computing as a service rather than a product,

whereby shared resources, software, and information are provided to computers and other devices,





as a metered service over a network.

# Cloud Infrastructure

#### What is a server?

- Servers are computers that provide "services" to "clients"
  - Typically designed for reliability and to service a large number of requests
  - Dual-socket servers are the fundamental building block of cloud infrastructure
- Organizations typically require many physical servers to provide various services
  - Web server, database server, mail server, ...
- Server hardware is becoming more compact
  - · conserving floor space
  - improving manageability
  - · power and cooling

#### What is a rack?

- Servers are grouped, placed, and organized in racks
- Equipment are designed in a modular fashion to fit into rack units (1RU = 4.45cm)
- A single rack (6 ft or 180cms) can hold up to 42 1U servers



Figure: Global datasphere

#### What is a data center?

- Facility used to house a large number of computer systems and associated components
  - · Air conditioning
  - Power supply
  - Hazard protection
  - Security and monitoring systems
  - Networking and connectivity
- Let's take a look at two datacenters.
  - https://www.youtube.com/watch?v=zDAYZU4A3w0&t=416s
  - <a href="https://www.youtube.com/watch?v=L2oJw1a">https://www.youtube.com/watch?v=L2oJw1a</a> qEM

# Problems with privately owned data centers

- Expensive to setup (High capital expenses or CAPEX)
  - Real estate, server and peripherals, ...
- Expensive to operate (High operational expenses or OPEX)
  - Energy costs (Good data centers have efficiency of 1.7, 0.7
     Watts lost for each 1W delivered to the servers)
  - Administration costs
- Difficult for applications to grow/shrink
  - How do we map applications to servers?
  - What if we over/under provision?
- Low utilization (30% server usage considered good)
  - Throw money at the performance problem (peak provisioning)
  - Uneven application fit: each server has CPU, memory, and disk: most applications exhaust one resource, stranding the others
  - Uncertainty in demand: Demand for a new service can spike quickly

#### What if

- Turn the servers into a single large resource pool and let services dynamically expand and contract their footprint as needed?
- Two main requirements:
  - Means for rapidly and dynamically satisfying application fluctuating resource needs
    - · Provided by virtualization
  - Means for servers to quickly and reliably access shared and persistent data
    - Provided by programming models and distributed file/storage/database systems

#### What is a cloud then?

## Single-site cloud

 A data center hardware and software that the vendors use to offer the computing resources and services

#### Geographically distributed cloud

- Multiple such sites, with each site perhaps having different structure and services
- https://www.youtube.com/watch?v=47e\_3WBCe-Q



Figure: Azure: 1 million servers, 100 data centers across 90 countries.

# Cloud h/w-s/w stack

#### The Cloud Stack

#### Applications

Cloud applications can range from Web applications to scientific computational jobs

#### Data

- Old SQL systems (Oracle, SQLServer)
- NoSQL systems (MongoDB, Cassandra)
- NewSQL systems (TimesTen, Impala, Hekaton)

#### Runtime environment

- Runtime platforms to support cloud programming models
- Example: Hadoop, Spark



#### The Cloud Stack

#### Middleware

 Platforms for Resource Management, Monitoring, Provisioning, Identity Management and Security

# Operating systems

- Standard Operating Systems used in Personal Computing
- Packaged with libraries and software for quick deployment and provisioning
- E.g., Amazon Machine Images (AMI) contain OS as well as required software packages as a "snapshot" for instant deployment

# Virtualization (serverse, storage, networking)

- Key enabler of cloud computing
- Providers resource virtualization, multitenancy
- Ex: Amazon EC2 is based on the Xen virtualization platform, Azure based on HyperV



#### Cloud service models and the cloud stack



# **Cloud Computing**



Cloud Computing is the delivery of computing as a service rather than a product,

whereby shared resources, software, and information are provided to computers and other devices,





as a metered service over a network.

# "A Cloudy History of Time"



Cloud computing: Full circle back to time sharing

# **Supporting technologies**

- Cloud computing is a combination of technologies
  - Connectivity to move data => Networked systems
  - Interactivity for seamless interface => Web 2.0 and HCI
  - Reliability against failures => Dependable systems
  - Acceptable performance => Parallel and distributed systems
  - Ease of programmability for developing new services => Programming languages
  - Manageability for Big Data => Storage systems
  - Pay-as-you-go to avoid capital investment => Utility computing & economics
  - Scalability and elasticity for changing needs => Virtualization

# Why Cloud Computing?



- Reduce capr
   expenditure
   No unfront co
- No upfront cost
   Reduced Time to
   Market



# Simplified IT management

- All you need is access to the internet.
- It's the providers responsibility to manage the details.



# Scale quickly and effortlessly

- Resources can be rented and released as required
- Software Controlled Instant scalablility



# Flexible options Configure software

- packages, instance types operating systems.

  • Any software platfor
- Any software platform
   Access from any
  machine connected
  to the Internet



#### Resource Utilization is improved

 Reduce Idle resources by sharing and conolidation
 Better utilization of CPU / Storage and Bandwidth



#### Carbon Footprint decreased

 Sharing of resources means less servers, less power and less emissions

## Applications enabled by cloud computing

# High-growth applications

- When you startup gains traction, can you keep up?
- Friendster(2001): Could not keep up with user growth
- Facebook (2006): \$Billion company today
- Airbnb, Uber, Expedia, ...

#### Aperiodic applications

- How do you deal with sudden load peaks?
  - https://aws.amazon.com/blogs/aws/amazon-prime-day-2022-aws-for-the-win/
  - Flipkart website crashed on their "Big Billion Day" sale due to DDOS attack: <a href="https://review.firstround.com/navigating-the-leap-from-big-tech-to-startups-advice-from-a-former-google-and-flipkart-exec">https://review.firstround.com/navigating-the-leap-from-big-tech-to-startups-advice-from-a-former-google-and-flipkart-exec</a>
- If you design for peak, how do you deal with low loads?
  - Amazon normal day: 1.3 billion transactions

## Applications enabled by cloud computing(2)

# On-off applications

- Scientific simulation using 1000s of computers
  - DNA Nexus and Baylor college of medicine analyzed DNA of more than 14,000 individuals
  - 2.4 million core-hours of computational time, 440 TB of results, 1PB of storage
- Why not rent computing time to run such one-off experiments?

# Periodic applications

- Stock market analysis
  - Mine market data during day
  - Analyze data during night
  - · Different computational requirements at different times
- Dynamic, flexible infrastructure can reduce costs, improve performance

# Types of clouds

#### Public (external) cloud

- Open market for on demand computing and IT resources
- Concerns: Limited SLA, reliability, availability, security, and trust

# Private (internal) cloud

For large enterprises with the budget and large-scale IT

#### Hybrid cloud

- Extend private cloud by connecting it to public cloud
- Use the local cloud, and when you need more resources, burst into the public cloud
- Dropbox use case: <a href="https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/">https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/</a>

#### Multi cloud

- Replicate/partition microservices across public cloud vendors
- Prevent vendor lock in, resilient to cloud outage

# **Cloud adoption**

# 94% of Respondents Are Using Cloud



- All major cloud providers are extending their offering to private and hybrid markets
  - Example: Google Anthos, Microsoft AzureStack

#### Know the leaders

# Cloud Provider Competitive Positioning



Source: Synergy Research Group