Bewijzen - Inleveropgave 2

B.H.J. van Boxtel

28 september 2022 - Week 39

Theorem 1. $n^2 \equiv 1 \pmod{3} \iff 3 \nmid n \text{ voor elke } n \in \mathbb{Z}.$

Om deze stelling te bewijzen moeten allebei de implicaties (van links naar rechts en van rechts naar links) worden bewezen. Deze zal ik apart als **lemma 1.1** en **lemma 1.2** bewijzen.

Lemma 1.1. $n^2 \equiv 1 \pmod{3} \implies 3 \nmid n \text{ voor elke } n \in \mathbb{Z}.$

Voor het bewijs van deze implicatie heb ik nog een supplementair argument nodig, wat ik als eerst bewijs.

Lemma 1.1.1. $3 \nmid n^2 \implies 3 \nmid n$.

Dit ga ik bewijzen met behulp van contrapositie, in andere woorden ik ga bewijzen dat $3 \mid n \implies 3 \mid n^2$.

Bewijs.

Stel $3 \mid n \text{ met } n \in \mathbb{Z}.$

Dan is n te schrijven als n = 3q met $q \in \mathbb{Z}$.

Als we links en rechts kwadrateren, vinden we $n^2 = 9q^2$.

Dit kunnen we ook schrijven als $n^2 = 3 \cdot 3q^2$.

 $3q^2 \in \mathbb{Z}$, dus hieruit volgt dat $3 \mid n^2$.

Dus $3 \mid n \implies 3 \mid n^2$.

Dus
$$3 \nmid n^2 \implies 3 \nmid n$$
.

Met lemma 1.1.1 bewezen, kan lemma 1.1 worden bewezen.

Bewijs.

Stel $n^2 \equiv 1 \pmod{3}$.

Dit betekent dat n^2 gelijk is aan 3k+1 met $k \in \mathbb{Z}$.

 $3 \nmid 3k + 1$, dus $3 \nmid n^2$.

Volgens **lemma 1.1.1** betekent dit dat $3 \nmid n$.

Dus $n^2 \equiv 1 \pmod{3} \implies 3 \nmid n \text{ voor elke } n \in \mathbb{Z}$.

Lemma 1.2. $3 \nmid n \implies n^2 \equiv 1 \pmod{3}$ voor elke $n \in \mathbb{Z}$.

Dit zal ik met behulp van gevallen
onderzoek bewijzen. Als n niet deelt door 3, geeft dit twee gevallen, een waar n 1 meer is dan een veelvoud van 3, en een waar n 2 meer is dan een veelvoud van 3. Voor elk van deze gevallen bewijs ik dat hieruit volgt dat $n^2 \equiv 1 \pmod{3}$.

Bewijs.

Geval 1.
$$n = 3k + 1$$
 met $k \in \mathbb{Z}$.
 $n = 3k + 1 \implies n^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$
 $k \in \mathbb{Z}$, dus $3k^2 + 2k \in \mathbb{Z}$.
Na delen door 3 blijft er dus 1 als rest over.
Dit betekent $n^2 \equiv 1 \pmod{3}$.

Geval 2.
$$n = 3k + 2$$
 met $k \in \mathbb{Z}$.
 $n = 3k + 2 \implies n^2 = 9k^2 + 12k + 4 = 3(3k^2 + 6k + 1) + 1$
 $k \in \mathbb{Z}$, dus $3k^2 + 6k + 1 \in \mathbb{Z}$.
Na delen door 3 blijft er dus 1 als rest over.
Dit betekent $n^2 \equiv 1 \pmod{3}$.

Dus
$$n^2 \equiv 1 \pmod{3}$$
 geldt voor elk geval.
Dus $3 \nmid n^2 \implies n^2 \equiv 1 \pmod{3}$.

Nu kan **Theorem 1** bewezen worden.

Bewijs.

Omdat alle twee de implicaties (**lemma 1.1** en **lemma 1.2**) nu zijn bewezen, betekent dit dat $n^2 \equiv 1 \pmod{3} \iff 3 \nmid n \text{ voor elke } n \in \mathbb{Z}.$