	I	I	Ι.	I .		I
	Epochs	Training	Accuracy	Accuracy	Num of	Training loss curve
		time	(training)	(val)	parameters	
Linear model	20	1s	0.8274	0.8555	32800	Learning rate = 0.01 0.7 0.6 0.7 0.0 0.0 0.0 0.0 0.0
CNN model	20	16min	0.7980	0.8333	28,033	Learning rate =0.01 0.75 - 0.70 - 0.65 - 0.50 - 0.45 - 0.40 - 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 iterations (per hundreds)
Tensorflow CNN model	20	10s	0.8157	0.8444	370,433	1.0 0.8 0.6 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0

Describe how you design or choose your own model architecture, and how you choose loss function and optimizer.

我有參考一些網路上的資料去用類似的參數還有 layer 做 model,但他們的照片都不只是 32 X 32,所以可以做比較多層,有試著用過 resize 還有增加左右翻轉的資料下去 train,但我不知道為什麼用這些方法之後我的 accuracy 反而往下掉。再加上我後來發現從上面那個實驗發現 CNN 會把長寬一直壓縮,最後跑進 dense layer 的大小反而很小,所以最後就只是用一層 con2D 的 CNN model。

loss function 因為是 binary 所以我就選擇 BinaryCrossentropy optimizer 則是根據查到的資料用 adam

参考資料: https://towardsdatascience.com/medical-x-ray-%EF%B8%8F-image-classification-using-convolutional-neural-network-9a6d33b1c2a. https://towardsdatascience.com/medical-x-ray-%EF%B8%8F-image-classification-using-convolutional-neural-network-9a6d33b1c2a. Pre-processing-methods in chest X-ray image classification | PLOS ONE