Each Section (01 to 30) contains **30** multiple choice questions which have only one correct answer. Each question carries **+4** marks for correct answer and **-1** mark for wrong answer.

Useful Informations

Acceleration due to gravity g = 10 m/s2 Planck constant h = 6.6 1034 J-s

Charge of electron e = 1.6 1019 C Mass of electron me = 9.1 1031 kg Permittivity of free space = 8.85

1012 C 2 /N-m 2 Density of water water = 103 kg/m3 Atmospheric pressure Pa = 105 N/m2 Gas constant R

= 8.314 J K1 mol1

- 1. Atomic No:H=1, He = 2, Li=3, Be=4, B=5, C=6, N=7, O=8, N=9, Na=11, Mg=12, Si=14, Al=13, P=15, S=16, Cl=17, Ar=18, K=19, Ca=20, Cr=24, Mn=25, Fe=26, Co=27, Ni=28, Cu = 29, Zn=30, As=33, Br=35, Ag=47, Sn=50, I=53, Xe=54, Ba=56, Pb=82, U=92.
- 2. Atomic masses: H=1, He=4, Li=7, Be=9, B=11, C=12, N=14, O=16, F=19, Na=23, Mg=24, Al = 27, Si=28, P=31, S=32, Cl=35.5, K=39, Ca=40, Cr=52, Mn=55, Fe=56, Co=59, Ni=58.7, Cu=63.5, Zn=65.4, As=75, Br=80, Ag=108, Sn=118.7, I=127, Xe=131, Ba=137, Pb=207, U=238.

There are some passengers inside a stationary railway compartment. The centre of mass of the compartment itself (without the passengers) is C₁, while the centre of mass of the 'compartment plus passengers' system is C2. If the passengers move about inside the compartment, (A) both C₁ and C₂ will move with respect to the ground

(B) neither C₁ nor C₂ will move with respect to the ground (C) C₁ will move but C₂ will stationary with respect to the ground

(D) C₂ will move but C₁ will be stationary with respect to the ground

A false balance has equal arms. An object weighs x when placed in one pan and y in the other pan. The true weight of the object is equal to

A)
$$\sqrt{xy}$$
 (B) $\frac{x+y}{2}$

(A)
$$\sqrt{xy}$$
 (B) $\frac{x+y}{2}$ (C) $\frac{x^2+y^2}{2}$ (D) $\frac{\sqrt{x^2+y^2}}{2}$

Two identical cylindrical vessels with their bases at the same level, each contains a liquid of density ρ . The height of the liquid in one vessel is h_1 and that in the other h_2 . The area of either base is A. The work done by gravity in equalizing the levels when the vessels are inter connected is

(A)
$$A\rho g \left(\frac{h_1 - h_2}{2}\right)$$
 (B) $A\rho g \left(\frac{h_1 - h_2}{2}\right)^2$

(C)
$$A\rho g \left(\frac{h_1 - h_2}{4}\right)$$
 (D) $A\rho g \left(\frac{h_1 - h_2}{4}\right)^2$

Dimensional formula for Plank's constant is identical to that of (A) Torque (B) Power

(C) Linear momentum (D) Angular momentum

A wheel of radius r rolls without slipping with a speed v on a horizontal road. When it is at a point A on the road, a small blob of mud separates from the wheel at its highest point and lands at point B on the road

(A)
$$AB = v\sqrt{\frac{r}{g}}$$
 (B) $AB = 2v\sqrt{\frac{r}{g}}$

(C)
$$AB = 4v\sqrt{\frac{r}{g}}$$
 (D) $AB = 8v\sqrt{\frac{r}{g}}$

A particle moves along the parabolic path $y = ax^2$ in such a way that the x-component of the velocity remains constant, say c. The acceleration of the particle is

(A) $ac\hat{k}$ (B) $2ac^2\hat{j}$

(C) $ac^2\hat{k}$ (D) $a^2c^2\hat{j}$

A radioactive nucleus of mass number A, initially at rest, emits an α particle with speed v. The recoil speed of the daughter nucleus is

A particle of mass m is fixed to one end of a light spring of force constant k and unstretched length l. The system is rotated about the other end of the spring with an angular velocity ω , in gravity free space. The increase in length of the spring will be

A)
$$\frac{ml\omega^2}{k}$$
 (B) $\frac{ml\omega^2}{k-m\omega^2}$

(C)
$$\frac{\mathsf{ml}\omega^2}{}$$

(D) None of these

A particle is moving in a circle of radius r centred at O with

constant speed v. The change in velocity in moving from P to Q $(\angle POQ = 40^{\circ})$ is

(B) 2vsin40° (A) 2vcos40° (C) 2vcos20° (D) 2vsin20°

The electric potential (in volt) in a region is given by

 $V = 6x - 8xy^2 - 8y + 6yz - 4x^2$ Then electric force acting on a point charge of 2C placed at the or

Then electric force acting on a point charge of 2C placed at the origin will be

(A) 2 N (C) 8 N (B) 6 N (D) 20 N Which of the following tests you would perform to identify the functional group present in salicylic acid?

(A) FeCl₃ and NaHCO₃ test
(B) FeCl₃ and NaOH test
(C) FeCl₃ and 2, 4-dinitrophenylhydrazine test
(D) FeCl₃ and Schiff's reagent test

A metal oxide is yellow when hot and white when cold. The metal oxide is (A) CuO (B) ZnO

(C) PbO (D) All

A metal chloride solution	on mixing wi	ith K2CrO4	solution	gives a	yellow	ppt.	insoluble	in	acetic
acid. The metal may be.									
(A) Mercury		(1	B) Zinc						
(C) Silver		(1	D) Lead						

Enthalpy of dissociation of water in kJ mol⁻¹ is

(A) + 13.7

(C) + 18.0

(B) +57.3

(D) $+18 \times 4.2$

For the preparation of iodoform from acetone; we require

(A) KI (C) KOI (B) KI₃ (D) KIO₃

Cl2 gas passed through Lassaigne's extract conta	aining CCl ₄ . If the extract contains both NaBr and					
Nal then which colour will appear in the CCl ₄ layer?						
(A) Violet colour	(B) Brown colour					
(C) Green colour	(D) Yellow colour					

Which one of the following does not involve peptisation? (A) Fe(OH)₃ precipitate shaken with a small amount of dil. HCl

(B) Fe(OH)₃ precipitate shaken with FeCl₃ solution

(C) AuCl₃ solution shaken with SnCl₂ solution

(D) AgNO₃ solution shaken with KI solution

The increasing order of stability of the following carbocation is

(A) IV < I < III < II

(C) I < II < III < IV

$$CH_3$$
— CH_2 CH_3 — CH_2 CH_2 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

(B) II < I < IV < III

(D) ||| < || < ||V| < ||

(D) None of the above

The value of $\int_{-1}^{1} \tan^{-1} \left[x^2 + \frac{1}{2} \right] dx + \int_{-1}^{1} \cot^{-1} \left[x^2 - \frac{1}{2} \right] dx$ is equal to (where [.] denotes greatest integer

function)
$$3\pi(-1)$$

$$3\pi(-1)$$

function)

(A)
$$\frac{3\pi}{4} \left(1 - \frac{1}{\sqrt{2}}\right)$$

(B) $\frac{3\pi}{4} \left(1 + \frac{1}{\sqrt{2}}\right)$

(D) none of these

(C) $\frac{\pi}{4} \left(1 - \frac{1}{\sqrt{2}} \right)$

The number of ordered pairs of positive integers (m, n) satisfying m \le 2n \le 60, n \le 2m \le 60 is (A) 240 (B) 480

(C) 900 (D) none of these

Let 'P' be a point which does not lie outside the triangle ABC, A = (3, 2), B = (0, 0), C = (0, 4) and satisfies $d(P, A) \ge maximum \{d(P, B), d(P, C)\}$, then maximum distance of P from side BC where d(P, A) gives the distance between P and A, is

(A) $\frac{3}{4}$ (B) $\frac{4}{3}$

(C) 3 (D) 0

The mth term of an arithmetic progression is x and the nth term is y. Then the sum of the first

The materm of an arithmetic progression is x and the naterm is y. Then the sum of the first
$$(m + n)$$
 terms is
$$(A) \frac{m+n}{(x+v)+\frac{x-y}{x-y}}$$

$$(B) \frac{m+n}{(x-v)+\frac{x+y}{x-y}}$$

(m + n) terms is
(A)
$$\frac{m+n}{2} \left[(x+y) + \frac{x-y}{m-n} \right]$$
 (B) $\frac{m+n}{2} \left[(x-y) + \frac{x+y}{m-n} \right]$

(D) $\frac{1}{2} \left[\frac{x+y}{m+n} - \frac{x-y}{m-n} \right]$

(C) $\frac{1}{2} \left[\frac{x+y}{m+n} + \frac{x-y}{m-n} \right]$

$$\lim_{n\to\infty} \frac{5^{n+1}+3^n-2^{2n}}{5^n+2^n+3^{2n+3}} \text{ is equal to}$$

(B)3(D) zero

(A) 5 (C) 1

If the point $P(x_1 + t(x_2 - x_1), y_1 + t(y_2 - y_1))$ divides the join of $A(x_1, y_1)$ and $B(x_2, y_2)$ internally then (A) t < 0 (B) 0 < t < 1

(D) t = 1

(C) t > 1

If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in G. P with the same common ratio, then the points

 $(x_1, y_1), (x_2, y_2) \text{ and } (x_3, y_3)$

(A) Lie on a straight line
(B) Lie on an ellipse
(C) Lie on a circle
(D) are vertices of a

(C) Lie on a circle (D) are vertices of a triangle

If in a \triangle ABC, cos A + 2 cos B + cos C = 2, then a, b, c are in (A) AP (B) HP (C) GP (D) none of these

If
$$f(x) = \int_{-\infty}^{\infty} \frac{x^2 + t^2}{x^2 + t^2} dt$$
, then the curve $y = f(x)$ represents a

If $f(x) = \int_{0}^{1} \frac{x^2 + t^2}{2 - t} dt$, then the curve y = f(x) represents a

(A) Straight line

(C) Hyperbola

(B) Parabola

(D) None of these