NASA TECHNICAL NOTE

AND SPRICE NAME OF THE PARTY OF

NASA TN D-8059 c./

2. u/u

LOAN COPY: RETU AFWL TECHNICAL L KIRTLAND AFB, I

A FINITE-DIFFERENCE PROGRAM FOR STRESSES IN ANISOTROPIC, LAYERED PLATES IN BENDING

Nicholas J. Salamon George C. Marshall Space Flight Center

Marshall Space Flight Center, Ala. 35812

NATIONAL AERONAUTICS AND SPACE ADMIN<mark>ISTRATION • WASHINGTON, D. C. • (SEPTEMBER 1975</mark>

1 REPORT NO. NASA TN D-8059	2. GOVERNMENT ACCESSION NO.	3. RECI.	0133795
4 TITLE AND SUBTITLE		5. REPORT DATE September	
A Finite-Difference Program for S Plates in Bending	tresses in Anistropic, Layered	6. PERFORMING ORG	
7. Author(s) Nicholas J. Salamon*	-	8. PERFORMING ORGA	ANIZATION REPORT #
9. PERFORMING ORGANIZATION NAME AND	ADDRESS	10. WORK UNIT, NO.	
George C. Marshall Space Flight C Marshall Space Flight Center, Alab		11. CONTRACT OR G	
12. SPONSORING AGENCY NAME AND ADDRE	SS	13. TYPE OF REPORT	& PERIOD COVERED
National Aeronautics and Space A		Technical N	ote
Washington, D.C. 20546		14. SPONSORING AG	ENCY CODE
*The work reported on herein was Doctoral Resident Research Asso 16. ABSTRACT	s performed while the author held a Niciateship at MSFC.	Vational Research Co	ouncil Post-
	cant among the results are apparent s ain problems and an interlaminar str		
			·
17. KEY WORDS	18. DISTRIBUTION S	TATEMENT	
19. SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF. (of this page)	21. NO. OF PAGES	22, PRICE
Unclassified	Unclassified	89	\$4.75

ACKNOWLEDGMENT

The author is indebted to Dr. Nicholas J. Pagano for suggesting this area of research.

TABLE OF CONTENTS

	Page
TRODUCTION	1
OBLEM FORMULATION	2
Laminate Description	2 3 5
NITE-DIFFERENCE SIMULATION	7
Function Representation	7 9 14
SULTS	15
ONCLUSIONS	22
PENDIX A: LAMINATE CONSTANTS	42
PENDIX B: STRAIN SPECIFICATION	44
PENDIX C: THE COMPUTER PROGRAM	45
Program Description	45 47
FERENCES	77

LIST OF ILLUSTRATIONS

Figure	Title		Page
1.	Laminate geometry	•	23
2.	Finite-difference mesh		24
3.	A typical laminate mesh	•	25
4.	Equations selected for each node		26
5.	Variation of strain with y		27
6.	Variation of shear strain with y		28
7.	Variation of the normal stress σ_z (symmetric in y) with y for a $[\theta, 0, 0, \theta]$ laminate		29
8.	Variation of the normal stress σ_z (symmetric in y) with y for a $[0, \theta, \theta, 0]$ laminate		30
9.	Numerical peculiarities in the normal stress $\sigma_{\rm Z}$		31
10.	Variation of the shear stress τ_{yz} (antisymmetric in y) with y for a $[\theta, 0, 0, \theta]$ laminate		32
11.	Variation of the shear stress τ_{yz} (antisymmetric in y) with y for a [0, θ , θ , 0] laminate		33
12.	Variation of the shear stress $\tau_{\rm XZ}$ (antisymmetric in y) with y		34
13.	Variation of the normal stress σ_X (antisymmetric in z) with z for each layer with respect to position where the adjacent layer is oriented at $\theta = 0$ degree		35
14.	Variation of the normal stress $\sigma_{\mathbf{x}}$ (symmetric in y) with y	•	36
	••	·	-
15.	Variation of the normal stress σ_y (antisymmetric in z) with z for a $[\theta, 0, 0, \theta]$ laminate		37
16.	Variation of the normal stress σ_X (antisymmetric in z) with z for a $[0, \theta, \theta; 0]$ laminate		38

LIST OF ILLUSTRATIONS (Concluded)

Figure	Title	Page
17.	Variation of the shear stress $ au_{xy}$ with z	. 39
18.	Variation of the normal stress $\sigma_{\mathbf{y}}$ with \mathbf{y}	. 40
19.	Variation of the shear stress τ_{XY} with y	. 41

LIST OF TABLES

Table	Title	Page
1.	Node Identification	. 12
2.	Mesh Description Taken From Program Output	. 16
3.	Typical Laminate Data and Load Constants Taken From Program Output	. 18
4.	Displacement Function Results Taken From Program Output for Laminate Described in Tables 2 and 3	. 20

LIST OF SYMBOLS

Symbol	Definition
A	laminate configuration; coefficient matrix [equation (22)]
В	laminate configuration; load vector [equation (22)]
$\mathrm{B}_{\mathrm{ij}}^{\prime}$	constitutive matrix (Appendix A)
B_u, B_v	laminate load constants [equation (7)]
$C_{\mathbf{i}}$	laminate load constants [equation (5)]
c_{ij}^{\prime}	elastic coefficients with respect to x',y',z'
$c_{\mathbf{i}\mathbf{j}}$	elastic coefficients with respect to x, y, z [equation (1)]
C,D	load values [equation (33)]
D_{v}	laminate load constant [equation (7)]
D'_{ij}	constitutive matrix (Appendix A)
Eii	Young's moduli
G_{ij}	shear moduli
h _i	node spacing (Fig. 2)
I,J	nodal coordinates (Figs. 2 and 3)
M,M_i	applied moments [equation (4a)]
m	layer number (Fig. 1)
U,V,W	displacement functions [equation (6)]
u,v,w	displacements with respect to x, y, z [equations (3) and (8)]
x,y,z	laminate coordinate axes (Fig. 1)
x',y',z'	lamina orthotropic axes (Fig. 1)

LIST OF SYMBOLS (Concluded)

Symbol	<u>Definition</u>
X	unknown vector [equation (22)]
γ_{ij}	shear strains [equation (2)]
$\epsilon_{ m i}$	normal strains [equation (2)]
θ	lamina orientation angle (Fig. 1)
$\sigma_{\mathbf{i}}$	normal stress [equation (1)]
$ au_{ ext{ij}}$	shear stress [equation (1)]
$\nu_{ m ii}$	Poisson's ratio

Symbols appearing in the computer program are defined in the subsection entitled "The Mesh Simulation."

A FINITE-DIFFERENCE PROGRAM FOR STRESSES IN ANISOTROPIC, LAYERED PLATES IN BENDING

INTRODUCTION

One critical feature associated with structural composites of laminated construction, using materials or geometrical arrangements that exhibit different elastic properties from layer to layer, is the possibility that the glued layers will separate or delaminate. This was undoubtedly realized from the outset of their use, and a brief historical sketch of the American scene is presented by Pipes [1]. However, the earliest serious investigation into the cause of delamination-type failure, namely the interlaminar stress problem, was apparently done in Japan by Hayashi [2,3], who reported that the maximum interlaminar shearing stresses occurred at the free edge of a laminate under tension. Hayashi used a plane stress model for the layers and approximated the interlaminar shears by a strain-averaging technique. Using a similar model, Puppo and Evensen [4] likewise discovered a sharp rise in the interlaminar stresses near a free edge. Notably, the use of the above models ignored the interlaminar normal stress. In two publications, Pipes and Pagano [5.6] developed a finite-difference program to solve the exact elasticity equations for a long laminate in uniaxial extension. In their development, the stresses are assumed independent of the axial coordinate and include all six components. The results of this investigation show that a sharp rise in both the interlaminar shear stresses and the normal stress occurs near the free edge. Thereafter, Oplinger [7] did an analysis of angle ply laminates in tension using a model similar to that of References 2 through 4. His approach allows a large number of layers to be considered. Indeed it was discovered that a singularity in the interlaminar shear occurs at the free edge of a laminate of one particular type of construction. An alternative solution to that employed in the above references is used by Rybicki [8] who applied a three-dimensional finite element formulation. His results agree with References 5 and 6.

The present report marks the initial phase of a study of the interlaminar stresses induced in a layered laminate by bending. Following the approach used by Pipes [5], the laminate is modeled as a continuum and the resulting elasticity equations are solved using the finite-difference method. This solution technique is made possible by assuming that the laminate is bent into a cylindrical surface such that the stresses are independent of the axial coordinate. The objective of this report is to set forth the mathematical framework, present some preliminary results, and to avail the computer program to others. The results reveal a simplifying symmetry relationship in the displacements that will allow significant reduction in the size of certain numerical problems. In addition, trends in the interlaminar stress distribution are somewhat similar to those found for stretching problems, in that a sharp rise occurs at the free edge.

PROBLEM FORMULATION

Laminate Description

The laminated composites considered in this report consist of rectangular laminae symmetrically stacked with respect to a midplane and bonded together to form a flat laminate. The bonding is assumed to provide perfect adhesion between the laminae, which nullifies the possibility of slip between adjacent laminae thus establishing the conditions of continuous displacements and tractions at each interface. Each individual lamina is considered to be elastic, homogeneous, and orthotropic (i.e., each lamina possesses three planes of elastic symmetry). The assumption of homogeneity eliminates micromechanical effects such as those involving fibers or matrix. The geometry of a typical lamina and laminate is illustrated in Figure 1. One may note that the orthotropic coordinate axes (x',y',z) of a lamina are referred through a clockwise rotation about z to the fixed coordinate axes (x, y, z) of the laminate. The laminae are stacked along z to form a laminate whose sides are normal to x, y, and z. Each lamina is given a layer number m.

Limiting the analysis to linear elastic materials, the constitutive relation for each lamina referred to the x, y, z coordinate system is

$$\begin{bmatrix} \sigma_{X} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & 0 & 0 & c_{16} \\ & c_{22} & c_{23} & 0 & 0 & c_{26} \\ & & c_{33} & 0 & 0 & c_{36} \\ & & & c_{44} & c_{45} & 0 \\ & & & & c_{55} & 0 \\ & & & & c_{66} \end{bmatrix} \begin{bmatrix} \epsilon_{X} \\ \epsilon_{y} \\ \epsilon_{z} \\ & & & & \\ \gamma_{yz} \\ & & & & & \\ \gamma_{xz} \\ & & & & & \\ \gamma_{xy} \end{bmatrix} , \quad (1)$$

where the elastic constants c_{ij} are related to the nine orthotropic constants c'_{ij} through the well known transformation equations of References 9 and 10. By associating the displacements u, v, and w with x, y, and z, respectively, the strains for each lamina are defined as

^{1.} In using the transformation equations in References 9 and 10 substitute θ for θ since here the constants are referred to the unprimed coordinate axes of the laminate.

$$\epsilon_{x}^{m} = u_{,x}^{m} \qquad \epsilon_{y}^{m} = v_{,y}^{m} \qquad \epsilon_{z}^{m} = w_{,z}^{m}$$

$$\gamma_{yz}^{m} = w_{,y}^{m} + v_{,z}^{m} \qquad \gamma_{xz}^{m} = w_{,x}^{m} + u_{,z}^{m} \qquad \gamma_{xy}^{m} = v_{,x}^{m} + u_{,y}^{m} \quad , \quad (2)$$

where the comma denotes partial differentiation.

Loading and Field Quantities

Consider a laminate loaded by bending about y at the ends x = constant. Assuming that the laminate is long enough in the x-direction and that Saint-Venant's principle holds for a laminate, the resulting stress distribution will be independent of x in regions sufficiently removed from the areas of loading. Using this assumption and following Lekhnitskii [11], the elastic strain-stress relations can be integrated to yield displacements for each lamina of the form

$$u^{m} = (C_{1}y + C_{2}z + C_{3})x + U^{m}(y, z)$$

$$v^{m} = -\frac{1}{2}C_{1}x^{2} + C_{4}xz + V^{m}(y, z)$$

$$w^{m} = -\frac{1}{2}C_{2}x^{2} - C_{4}xy + W^{m}(y, z) , \qquad (3)$$

where U^m , V^m , and W^m are unknown functions of y, z. The layer number, m, is left off the constants C_i because it results that each C_i must be the same for every lamina in order to satisfy the displacement continuity conditions at the interfaces. Thus, the C_i are found to be properties of the entire laminate. The displacement equations (3) represent the full three-dimensional elasticity solution that holds for all points in the laminate.

To evaluate the C_i , the scheme is as follows. Since equations (3) hold for all points in the laminate, they must converge to the plane stress solution, which is an exact solution, in the interior region of the laminate. Integrating the relation [10,12]

$$e_i = B'_{ij}M_j + zD'_{ij}M_j$$
; i, j = 1, 2, 6 (4a)

for the case where $M_1 = -M$ and $M_2 = M_6 = 0$, the plane stress displacements are found to be

$$u_{ps} = (-D'_{11}Mz - B'_{11}M)x - B'_{61}My - \frac{1}{2}D'_{16}Myz + f(z)$$

$$v_{ps} = -\frac{1}{2}D'_{16}Mxz - (B'_{21}M + D'_{12}Mz)y + g(z)$$

$$w_{ps} = \frac{1}{2}D'_{11}Mx^2 + \frac{1}{2}D'_{16}Mxy + \frac{1}{2}D'_{12}My^2 + f^*(x) + g^*(y) , \quad (4b)$$

where B'_{ij} and D'_{ij} are laminate properties defined in Appendix A, and M is the applied moment. Comparing equations (3) and (4b) leads to the results:

$$C_1 = 0$$
 $C_2 = -D'_{11}M$

$$C_3 = -B'_{11}M C_4 = -\frac{1}{2}D'_{16}M$$
(5)

and

$$U^{m}(y, z) \rightarrow B_{u}y + C_{4}yz + U^{m}(y, z)$$

$$V^{m}(y, z) \rightarrow B_{v}y + D_{v}yz + V^{m}(y, z)$$

$$W^{m}(y, z) \rightarrow -\frac{1}{2}D_{v}y^{2} + W^{m}(y, z) , \qquad (6)$$

where2

$$B_{U} = -B'_{61}M$$
 , $B_{V} = -B'_{21}M$, and $D_{V} = -D'_{12}M$. (7)

^{2.} The extended forms (6) for U^m , V^m , and W^m are not necessary to the solution.

Substituting the results (6) into equations (3) yields displacements of the following functional form for each layer

$$u^{m} = (C_{2}z + C_{3})x + (B_{u} + C_{4}z)y + U^{m}(y, z)$$

$$v^{m} = C_{4}xz + (B_{v} + D_{v}z)y + V^{m}(y, z)$$

$$w^{m} = -\frac{1}{2}C_{2}x^{2} - C_{4}xy - \frac{1}{2}D_{v}y^{2} + W^{m}(y, z) , \qquad (8)$$

where C_i , B_i , and D_v are defined by equations (5) and (7). The strains are found by substituting the displacements (8) into the strain relations (2). The stresses then follow directly using the constitutive relation (1).

It is of interest to examine the strain ϵ_x^m which is

$$\epsilon_{\mathbf{x}}^{\mathbf{m}} = \mathbf{C}_{2}\mathbf{z} + \mathbf{C}_{3} \qquad . \tag{9}$$

Should the laminate be a balanced composite, i.e., the laminae are symmetrically stacked, according to composition and orientation with respect to the midplane z = 0, then $B'_{ij} = 0$ and from equations (5) $C_3 = 0$, which results in a case of pure bending. For the opposite case, an unbalanced composite exhibits an extensional strain, C_3 , in bending. Such coupling effects are common to laminated composites.

Field Equations and Boundary Conditions

In regions sufficiently removed from the load planes, the nonboundary points must satisfy the reduced equilibrium equations

$$\tau_{xy,y}^{m} + \tau_{xz,z}^{m} = 0$$

$$\sigma_{y,y}^{m} + \tau_{yz,z}^{m} = 0$$

$$\tau_{yz,y}^{m} + \sigma_{z,z}^{m} = 0$$
(10)

where the stresses exhibit no x-dependence, which conforms to an earlier assumption. Substituting for the stresses in terms of displacements yields the field equations for each lamina

$$c_{6\,6}^{m}U_{yy}^{m} + c_{5\,5}^{m}U_{zz}^{m} + c_{2\,6}^{m}V_{yy}^{m} + c_{4\,5}^{m}V_{zz}^{m} + (c_{3\,6}^{m} + c_{4\,5}^{m})W_{yz}^{m} = 0$$

$$c_{26}^{m}U_{yy}^{m} + c_{45}^{m}U_{zz}^{m} + c_{22}^{m}V_{yy}^{m} + c_{44}^{m}V_{zz}^{m} + (c_{23}^{m} + c_{44}^{m})W_{yz}^{m} = 0$$

$$(c_{36}^{m} + c_{45}^{m})U_{,yz}^{m} + (c_{23}^{m} + c_{44}^{m})V_{,yz}^{m} + c_{44}^{m}W_{,yy}^{m} + c_{33}^{m}W_{,zz}^{m}$$

$$= -(c_{13}^{m}C_{2} + c_{23}^{m}D_{x} + 2c_{34}^{m}C_{4}) .$$

$$(11)$$

The boundary conditions on the free surfaces normal to y are

$$\sigma_{y}^{m} = \tau_{xy}^{m} = \tau_{yz}^{m} = 0$$
 (12)

and on the free surfaces normal to z are

$$\sigma_{z}^{m} = \tau_{xz}^{m} = \tau_{yz}^{m} = 0$$
 (13)

For continuity at the interfaces, the boundary conditions are:

$$(u^m, v^m, w^m) = (u^{m+1}, v^{m+1}, w^{m+1})$$

$$(\sigma_{z}^{m}, \tau_{xz}^{m}, \tau_{yz}^{m}) = (\sigma_{z}^{m+1}, \tau_{xz}^{m+1}, \tau_{yz}^{m+1})$$

respectively.

It is noted that the corner conditions are ambiguous in that there are five possible conditions out of which only three can be employed at any one time. The remaining two may or may not be satisfied by the solution. Thus, combinations may be tried until some satisfying results are achieved.

FINITE-DIFFERENCE SIMULATION

Function Representation

The mathematical basis for the finite-difference method is Taylor's Series. Referring to Figure 2, the Taylor Series expansion for a function f at some point y, z about the point (or node) I, J is

$$f(y, z) = f(I, J) + yf_{,y}(I, J) + zf_{,z}(I, J) + \frac{1}{2}y^{2}f_{,yy}(I, J) + \frac{1}{2}z^{2}f_{,zz}(I, J) + yzf_{,yz}(I, J) + ...$$
 (15)

Thus, for the specific node I-1, J, the expansion is

$$f(I-1, J) = f(I, J) - h_1 f_{,y} + \frac{1}{2} h_1^2 f_{,yy} - ...$$
 (16)

Writing similar expansions for the remaining seven points neighboring the node I, J and simultaneously solving expansions for the first and second derivatives yields the finite-difference approximations for these derivatives. All but the last of these expressions, given below, are taken from Forsythe and Wasow [13]. They are

$$f_{,y}(I, J) = \frac{1}{h_1 + h_2} \left[\frac{h_1}{h_2} f(I+1, J) - \frac{h_2}{h_1} f(I-1, J) \right] + \frac{h_2 - h_1}{h_1 h_2} f(I, J) + 0(h^2)$$

$$f_{,z}(I, J) = \frac{1}{2h_3} \left[f(I, J+1) - f(I, J-1) \right] + 0(h^2)$$

$$f_{,yy}(I, J) = \frac{2}{h_1 + h_2} \left[\frac{1}{h_2} f(I+1, J) + \frac{1}{h_1} f(I-1, J) \right] - \frac{2}{h_1 h_2} f(I, J) + 0(h^2)$$

$$f_{,zz}(I, J) = \frac{1}{h_3^2} \left[f(I, J+1) + f(I, J-1) - 2f(I, J) \right] + 0(h^2)$$

$$f_{,yz}(I, J) = \frac{1}{2h_3(h_1 + h_2)} \left[f(I+1, J+1) - f(I-1, J+1) - f(I+1, J-1) + f(I-1, J-1) \right]$$

$$+ f(I-1, J-1) + 0(h^2) , \qquad (17)$$

where h is an order of magnitude equal to h_1 , h_2 , or h_3 . The difference equations (17) are "central" differences.

At boundaries and interfaces it is convenient to use "forward" and "backward" differences. Such difference equations are one-sided in that they express a boundary point in terms of neighboring points interior to the boundary. For the present problem, only first derivatives are of concern.

To derive such difference equations, expand two points, both lying on one side of the reference point I, J, by using equation (15) in conjunction with Figure 2. For example, a forward expansion yields

$$f(I + 1, J) = f(I, J) + h_2 f_{,y}(I, J) + \frac{1}{2} h_2^2 f_{,yy}(I, J) + 0(h_2^3)$$

$$f(I + 2, J) = f(I, J) + 2h_2 f_{,y}(I, J) + \frac{1}{2} (4h_2^2) f_{,yy}(I, J) + 0(h_2^3)$$
(18)

Subtracting one expression from the other to eliminate the second derivative leads to the difference equation for the first derivative. Thus, the forward differences are

$$f_{,y}(I, J) = \frac{1}{2h_2} \left[4f(I+1, J) - 3f(I, J) - f(I+2, J) \right] - 0(h_2^2)$$

$$f_{,z}(I, J) = \frac{1}{2h_3} \left[4f(I, J+1) - 3f(I, J) - f(I, J+2) \right] - 0(h_3^2)$$
(19)

Similarly, the backward differences are

$$f_{,y}(I, J) = \frac{1}{2h_1} \left[3f(I, J) + f(I - 2, J) - 4f(I - 1, J) \right] + 0(h_1^2)$$

$$f_{,z}(I, J) = \frac{1}{2h_3} \left[3f(I, J) + f(I, J - 2) - 4f(I, J - 1) \right] + 0(h_3^2)$$
(20)

It should be pointed out that more simplified, but less accurate, forward and backward expressions can be written; however, the present application requires all the accuracy that it is possible to attain near the free boundaries. Thus, the higher order difference was chosen. In addition, this choice yields a magnitude of error equal to that found in equations (17).

Using the representations just obtained, equations (11) through (14) can be transformed into difference equations characterizing the problem. For example, the last equation in (11) becomes

$$\frac{h_1 h_2}{2h_3(h_1 + h_2)} \left\{ (c_{36}^m + c_{45}^m) \left[U(I+1, J+1) - U(I-1, J+1) - U(I+1, J-1) + U(I-1, J-1) \right] \right.$$

$$+ U(I-1, J-1) \right] + (c_{23}^m + c_{44}^m) \left[V(I+1, J+1) - V(I-1, J-1) \right] \right\}$$

$$+ V(I-1, J+1) - V(I+1, J-1) + V(I-1, J-1) \right]$$

$$+ \frac{2h_1}{h_1 + h_2} c_{44}^m \left[W(I+1, J) + \frac{h_2}{h_1} W(I-1, J) \right]$$

$$+ \frac{h_1 h_2}{h_3^2} c_{33}^m \left[W(I, J+1) + W(I, J-1) \right]$$

$$- 2(c_{44}^m + \frac{h_1 h_2}{h_3^2} c_{33}^m) W(I, J) = -h_1 h_2 \left[c_{13}^m C_2 + c_{23}^m D_V \right]$$

$$+ 2c_{36}^m C_4 \right] , \qquad (21)$$

where the layer number, m, is left off U, V, and W since their location is determined by the node I, J.

Developing the Matrix Equation

In this section, the difference equations, like (21), are transformed into a linear matrix equation of the form

$$[A] [X] = [B] , \qquad (22)$$

where A is an $N \times N$ coefficient matrix (N being the number of unknowns or equations), X is the solution vector, and B is the load or input vector. To accomplish this, the three unknowns (U, V, and W) must be uniquely collapsed into the single unknown X so that at each node three unique equations in X will be created. For instance, let

$$\begin{array}{c} U \rightarrow X(1) \\ V \rightarrow X(2) \\ W \rightarrow X(3) \end{array} \qquad \begin{array}{c} U \rightarrow X(4) \\ V \rightarrow X(5) \\ W \rightarrow X(6) \end{array} \qquad \text{at Node 2} \qquad . \quad (23)$$

It remains to generalize such a transformation for all nodes.

It is convenient to follow Pipes [1] and his notation is adopted. If LAT is the number of nodes in one column along the vertical axis (LAminate Thickness direction), then the nodes, unknowns, and equations can be identified by a unique number in terms of the nodal position (I, J). If

$$JJ1 = 3[LAT(I-1) + J] - 2 , \qquad (24)$$

then

NODE = LAT(I - 1) + J

$$U(I, J) = X(JJ1)$$

 $V(I, J) = X(JJ1 + 1)$
 $W(I, J) = X(JJ1 + 2)$
(25)

and

Number the 1st equation: JJ1

Number the 2nd equation: JJ1 + 1

Number the 3rd equation: JJ1 + 2 . (26)

Letting I = 1 and J = 1, 2 consecutively generates the results in (23).

Since the finite-difference equations involve unknowns at nodes neighboring the JJ1 node, it is necessary to develop transformation relations like (24) in order to number unknowns at these nodes as well. For example, using I, J as the reference node, a

transformation relation for an unknown at the node I - 1, J + 1 is found by letting $I \rightarrow I$ - 1 and $J \rightarrow J + 1$ in (24) and giving the result a unique name, for example JJ7. Thus,

$$JJ7 = 3[LAT(I-2) + J] + 1 . (27)$$

Using Table 1, which identifies all the unknowns at nodes neighboring I, J, and following the above procedure yields the transformation relations that uniquely number each unknown. In summary, all of these transformations are

where

$$II = I - I$$
. (29)
 $I2 = I - 2$

TABLE 1. NODE IDENTIFICATION

Node	U	V	w
I, J	X(JJ1)	X(JJ1 + 1)	X(JJ1 + 2)
I - 1, J	X(JJ2)	X(JJ2 + 1)	X(JJ2 + 2)
I - 1, J - 1	X(JJ3)	X(JJ3 + 1)	X(JJ3 + 2)
I + 1, J	X(JJ4)	X(JJ4 + 1)	X(JJ4 + 2)
I + 1, J + 1	X(JJ5)	X(JJ5 + 1)	X(JJ5 + 2)
I, J + 1	X(JJ6)	X(JJ6 + 1)	X(JJ6 + 2)
I - 1, J + 1	X(JJ7)	X(JJ7 + 1)	X(JJ7 + 2)
I, J - 1	X(JJ8)	X(JJ8 + 1)	X(JJ8 + 2)
I + 1, J - 1	X(JJ9)	X(JJ9 + 1)	X(JJ9 + 2)
I, J - 2	X(JJ10)	X(JJ10 + 1)	X(JJ10 + 2)
I + 2, J	X(JJ11)	X(JJ11 + 1)	X(JJ11 + 2)
I, J + 2	X(JJ12)	X(JJ12 + 1)	X(JJ12 + 2)
I - 2, J	X(JJ13)	X(JJ13 + 1)	X(JJ13+2)

Generation of the matrix equation (22) now remains. To do this, straightforward substitution for U, V, and W, using Table 1, into equations (11) through (14) yields the desired results in equation form. For example, equation (21) becomes

$$\frac{h_1 h_2}{2h_3 (h_1 + h_2)} \left\{ (c_{36}^m + c_{45}^m) \left[X(JJ5) - X(JJ7) - X(JJ9) + X(JJ3) \right] \right. \\
+ \left. (c_{23}^m + c_{44}^m) \left[X(JJ5 + 1) - X(JJ7 + 1) - X(JJ9 + 1) \right. \\
+ \left. X(JJ3 + i) \right] \right\} + \frac{2h_1}{h_1 + h_2} c_{44}^m \left[X(JJ4 + 2) + \frac{h_2}{h_1} X(JJ2 + 2) \right] \\
+ \frac{h_1 h_2}{h_3^2} c_{33}^m \left[X(JJ6 + 2) + X(JJ8 + 2) \right] \\
- 2(c_{44}^m + \frac{h_1 h_2}{h_3^2} c_{33}^m) X(JJ1 + 2) \\
= -h_1 h_2 \left[c_{13}^m C_2 + c_{23}^m D_v + 2c_{36}^m C_4 \right] . \tag{30}$$

To assure non-zero diagonal terms in the A-matrix, an appropriate equation number for (30) is JQ2 (in this case there is only one possibility) where

$$JQ2 = JJ1 + 2$$
 (31)

Now, from equation (30), the only nonzero elements for the JQ2 row in the A-matrix are

$$A(JQ2, JJ5) = A(JQ2, JJ3) = C$$

$$A(JQ2, JJ7) = A(JQ2, JJ9) = -C$$

$$A(JQ2, JJ5 + 1) = A(JQ2, JJ3 + 1) = D$$

$$A(JQ2, JJ7 + 1) = A(JQ2, JJ9 + 1) = -D$$

$$A(JQ2, JJ4 + 2) = 2h_1 c_{44}^{m}/(h_1 + h_2)$$

$$A(JQ2, JJ2 + 2) = (h_2/h_1) \cdot 2h_1 c_{44}^{m}/(h_1 + h_2)$$

$$A(JQ2, JJ6 + 2) = A(JQ2, JJ8 + 2) = h_1 h_2 c_{33}^{m}/h_3^2$$

$$A(JQ2, JJ1 + 2) = -2(c_{44}^{m} + h_1 h_2 c_{33}^{m}/h_3^2) , \qquad (32)$$

where

$$C = h_1 h_2 (c_{36}^m + c_{45}^m)/2h_3(h_1 + h_2)$$

$$D = h_1 h_2 (c_{23}^m + c_{44}^m) / 2h_3 (h_1 + h_2) . (33)$$

Note that the material constants c_{44}^{m} and c_{33}^{m} are non-zero ensuring a non-zero diagonal element A(JQ2, JJ1 + 2). In addition to this, the load vector is

$$B(JQ2) = -h_1 h_2 \left[c_{13}^m C_2 + c_{23}^m D_v + 2 c_{36}^m C_4 \right] \qquad (34)$$

Of course, these results only apply to node numbers where the third equilibrium equation in (11) holds. The computer program logically connects appropriate equations with each node. The matrix elements for the remaining equations (11) through (14) are generated in a similar fashion.

The Mesh Simulation

The continuum is to be simulated by a number of nodal points that form a finite-difference mesh. The mesh is distributed over a cross section of the laminate as shown in Figure 3. The mesh is defined by the following parameters:

NLAY: the number of laminae

LAT: the number of nodes along one column in the LAminate Thickness direction

LAW: the number of nodes along one row in the LAminate Width direction

FSW1: the first change in nodal spacing termed Fine Simulation Width

K: magnification factor of the fine simulation width

H: the fine simulation width

Given these parameters, the following parameters can be determined:

INF(M): values of J at the upper INterFace of the mth layer

FSW2: the second change in nodal spacing

KH: the coarse simulation width (K = 1, 2, 3, ...)

JOMAX = 3*LAT*LAW: the number of unknowns or equations

IBW = 2*(3*LAT + 1): the half bandwidth

NBAND = 2*IBW + 1: the full band

The bandwidth of the coefficient matrix is found by considering that the maximum number of nodes involved in the difference equations is three, as can be seen from expressions (19) and (20), and calculating the maximum number of consecutive elements on both sides of the diagonal to and including the last off-diagonal non-zero element.

Selecting equations representing the conditions to be imposed at each node remains to be accomplished. Because of the arbitrariness of the corner conditions, a number of choices are possible. Those selected for this program are illustrated in Figure 4.

A user's guide and a more detailed description of the computer program are presented in Appendix C. A program listing is provided also in Appendix C.

RESULTS

The results given below were obtained using a square mesh, magnification factor K=1, of size (LAW, LAT) = (13, 9). A complete mesh description, taken from the program output, is displayed in Table 2. It is seen that these dimensions represent a beam rather than a plate. The program was run on an IBM 370 computer utilizing virtual storage.

A single material having properties typical of a high modulus graphite-epoxy was chosen for the above mesh. Using standard notation,

$$E_{11} = 20.0 \times 10^6 \text{ psi}$$
 , $v_{12} = v_{13} = v_{23} = 0.21$

$$E_{22} = E_{33} = 2.1 \times 10^6 \text{ psi}$$

$$G_{12} = G_{13} = G_{23} = 0.85 \times 10^6 \text{ psi}$$

TABLE 2. MESH DESCRIPTION TAKEN FROM PROGRAM OUTPUT

-*** UNI FORM	BENDING OF	A LAMIN	NATED PLATE	***		
*** INPUT 54						
		LLVEDE	IN CARE	ECTIEN	- 	·
	TOTSER OF	EATERS	Tid Cki 32 2	CULLY,	NLAT -	4
	NUMBER OF	NODES (ON VERTICAL	AXIS; t	AT =	13
	NUMBER OF	N-ODES (ON HORTZONT	At AXIS	, t a+ =	. ç
	CHANGE IN		IDTH (FSWL)	AT I	= 3	
	CHANGE IN	MESH WI	DTH (FSW2)	AT I	= 7	
	MESH AIDTE	MAGNIF	FICATION FA	CTOP, K	= 1	
	LAYER NO.	1	INTERFACE	= AT J =	÷ 4	
					- 7 · · · ·	
	LAYER NO.		INTERFACE		: 10	
	-£ <u>\$</u> ¥ ⊆ \$ - NO •	4	- INTERFACE	AT	13	· -
				-		
	FINE SIMIL	4710N W	HDTH, H = (0.00167		-

where the subscript "1" refers to the fiber direction. The two laminate configurations which are considered are

$$\mathbf{A} = [\theta, 0, 0, \theta]$$

and

$$B = [0, \theta, \theta, 0]$$

with θ as in Figure 1 such that 0 degree $\leq \theta \leq 90$ degrees. Typical laminate data and load constants are displayed in Table 3.³ Here the additional constant MT is the resulting moment required to produce a specified maximum strain which, for the present analysis, is $\epsilon_x = 1.0 \times 10^{-3}$ inch/inch (see Appendix B).

A sample of the results for the displacement functions U, V, and W is presented in Table 4. Examination of their variation with respect to z reveals the apparent symmetry relations,

U, V antisymmetric in z

W symmetric in z

within an accuracy of two digits.

Symmetries with respect to y are evident for the strains within three-digit accuracy. Samples of these results are plotted in Figures 5 and 6. Coupling these apparent symmetries with the strain relations (2) in an expanded form yields

U, V antisymmetric in y

W symmetric in y

The displacement results verify this precisely for U (to four places), but show some deviation in V and W.⁴

To illustrate the effect of bending on the stress distribution, Figures 7 through 19 are presented. Although convergence to the exact values has yet to be demonstrated, the results do have qualitative merit. The following cases result from a bending strain of $\epsilon_{\rm X}$ = 1.0 \times 10⁻³ inch/inch prescribed at the bottom surface.

Of principal interest are the interlaminar stresses illustrated in Figures 7 through 12. We note that laminates composed of 30 degree or 45 degree layers produce the greatest stress rise in σ_z at the free edge with a more pronounced effect occurring if the angle plies are on the outside, i.e., system $A = [\theta, 0, 0, \theta]$. A similar effect is seen in the shear stress τ_{yz} , although the rise in stress is sharply blunted by the requirement of zero

^{3.} The thermal problem is neglected in this preliminary analysis even though expansion coefficients appear in the program.

^{4.} It is interesting to note that the y-symmetries for V and W are verified precisely using the coarser mesh (LAW, LAT) = (8, 9) which decreases the relative size of the bandwidth.

TABLE 3. TYPICAL LAMINATE DATA AND LOAD CONSTANTS TAKEN FROM PROGRAM OUTPUT

				- — - ** *	MATERIAL D	ATA ***		-			
LAYER	611	E27	- F33	£12	F 13	F23	- NU1?	NU13	NU23		
 1	20.000E+03	2-1076+06	2.1075+76	0.350[+06	0.8505+06	0.850=+0	6 0.21	0.21	0.21		
2	20.0002+36	2.10)5+06	2.1COE+06	0.95JE+C6	0.850E+06	0.950F+0	6 0.21	0.21	0.21		•
3	20.0005+36	2.1308+06	2.100F+06	0.350E+06	0.850E+06	0.8505+0	6 0.21	0.21	0.21		
4	20.0CDE+75	2.100E+06	2.1008+36	0.350E+C6	0.950F+06	0.850F+0	6 0.21	0-21	0+21		
				*** ST	I≅FNESS MAT	RICES ***					
1 4¥ E 7 / T I	HETA	x-	Y-L MATRIX		·			-Y-Z-PRIMI	E MATRIX		· <u>-</u>
_											
 1	-6.745E+36 5.	045E+06 5.210	7F+05 0.0	0.0	4.536F+06	2.0240+07	5.6480+05	5.648D+05	0.0	0.0	n.o -——
		145E+06 5.21	0E+05-0.0		4.506F+06		2.2130+06	4 .7710+05	0.0	- 0. 0	n. r
-		2.21	3E+06 0.e	9.0	4.3875+04			2.2130+06	0.0	0.0	0.0
45.0 -			8.5006	+05 0.9 -	- 9 .e				R.5000+05	9.0- · -	0:-0
				9.500E+05	1.0					9.5000+05	0.0
_	-				5.330F+06						8 -5000+05 -
	- 2-0245+17-5-	->48E+05 5.648	9E+05-0-0	——————————————————————————————————————	-).0	2 • 02 49+ 37	5.6480405	-5. 64 AD+05		9.0	0-0
		213E+06 4.77		0.0	9. e			4.7710+05			0.0-
~			3E+06 0.0	-0.0			~	7.213D+06		0.0	-n_n
_0.0			9,50-)F		- }. (8.5000+05		0.0
				9.50·)E+-)5							-n. o
					3.500F+05						R.5000+05
3	2.0248+37 5.	,343E+05 5,64°	9E+J5 0.0	·)•0	3.0	2.0240+17	5.6487+05	5.6480+05	0.0	0.0 -	-0.0-
	2.	213E+06 4.77	1F+05 0.0	0.0	0.0		2.2139+06	4.7710+05	0.0	0.0	0.0
			3[+-)4-0+7-		·)•C			2.21 3D+06	-0.0	-0.n	n.0-
0.0			9.500F	+05 0.0	J. 0				8.5000+05	2.0	0.0
-				8.500E+05	· ·) • (-			-		# <u>. *0</u> 90+05	0.0

TABLE 3. (Concluded)

	t.	745E+04 5.210F+05 C	·· · · · · · · · · · · · · · · · · · ·	-4-596F+06	2.21304	06 4.7710+05	0.0 0.0	
		- 2.213€+06 0	-0.0	4.387F+04		2.21 30+06	0.0	-0.0
45 .0 -		- ·	.507F+95 9.0	o. e · · ·			-8. 5000+05 -9. 0 -	
			9.5996	+35 7.0				9+95-0 <u>.</u> 0
			-	5.330F+06				- A.500D+05
	·							
			*** CJEFFICI	TENTS OF THERMA	AL FXPANSION ***			
AYER	THETA	ALI	VF.5	AL 3	Δ[5	ALIP	AL 2P	AL 3P
1	45.3	0.600E-05	0.6305-35	0.120F-04	-0.127F-04	0.0	0.120F-04	0.120F-04
3	0.3 -45.3	-).0).0 	0.120E-04 0.120E-04 0.60E-05	0.120E-04 0.120E-04	0.9 0.7 0.120F-04	0.0	0.120F-04 0.120F-04	0.120F-04
			a					
			•					
			*** THE I	LAMINATE-LNAD-(TONSTANTS ***			
		-	٠ =		-	-		
2 = -1.0)€0E-)1 €3	= 9·n	= -1.311E-01 ·-	90 = 0.0	ηψ = 0.9	- nv -		MT-=-5.537E-
RRUR- CON	IDITION OF 53	tve e Routtine 15 n.	0 PANK IS	351 9 ++	PO-1 - THANTMA		· 	

TABLE 4. DISPLACEMENT FUNCTION RESULTS TAKEN FROM PROGRAM OUTPUT FOR LAMINATE DESCRIBED IN TABLES 2 AND 3

*** -6	110° C18	T D ESPLACEMENT FU NC T	IANS ***	
-	NCDE	J-DI SPLACEMENT	V-PISPLACEMENT	W-DISPLACEMENT
	1	0.1615610-04	0 • 2646360 - 34	-0.909037D-95
	2	0.1495800-04	0.2198310-04	-0.936804D+05
	3	0.125381D-04	0.1731769-04	-0.9519390-05
	4	0.9535940-05	0.1270140-04	-0.953590D-05
	5	0.6116960-05	0.3182379-35	-0.9400929-05
-	÷	0.3043950-05	0.4033640-05	-9.9246860-05
	7	0.4871890-09	0.2507697-38	-0.9165890-05
-	8	-0.3042919-05	-0 •4039139-05	-0.9250840-05
Marine condition was assumed as	 3	-0.6115750-05	-0.3194327-05	-0.937698D-05
-	1-7	-0.9266890-05	-0.1263087-)4	-0.9528920-05
	11	-0.1253540-04	-0.1732119-04	-0.9544189-05
	1.2	-0.1495500-04	-0.2193309-04	-0.937161N-05
		-0.161503D-04	-0.2648030-04	-0.909891D-05

stress at the free edge, and here the stress in system $B = [0, \theta, \theta, 0]$ is slightly more pronounced than that in A. The largest stress rise, an order of magnitude greater than σ_Z and τ_{YZ} , is created in the A-system in τ_{XZ} . Again it is the 30 degree laminate incurring the sharpest stress rise, but here the 15 degree laminate overshadows the 45 degree laminate. In summary, the laminates containing 15 degree through 45 degree layers located adjacent to 0 degree layers have the largest interlaminar stresses for the cases considered; i.e., 0 degree $\leq \theta \leq 90$ degrees taken in 15 degree intervals.

Some results peculiar to the numerical method of solution should be pointed out. Referring to Figure 9, we note a sharp rise in the stress σ_Z at the midpoint node (I, J) = (5, 7). This is a result of fixing the displacements at I = 5 and 6, J = 7 in the program in order to zero-out rigid body motion and drift in the solution routine. However averaging the values for σ_Z just above and just below the interface (at J = 7, m = 2 and m = 3) yields a more plausible result. Since the tractions must be continuous at the interface anyway, this averaging technique was also applied at the free edges where the free surface conditions were adopted in lieu of the continuity conditions. This technique had varying success as illustrated by the 75 degree and 90 degree configurations in Figures 10 and 11.

The in-plane stresses are illustrated in Figures 13 through 19. In Figure 13, we find that σ_X in the 0 degree layers is independent of the orientation of the adjacent layer when the maximum strain is specified. This facilitates the presentation of both systems A and B in one figure. It is interesting to note in Figure 14 that σ_X rises at the free edge if the 0 degree layers are outside the laminate and drops if these layers are inside the laminate.

Observation of Figures 15 and 17 for the distribution of σ_y and τ_{xy} with respect to z reveals that the off-axis layers, particularly again for 15 degrees through 45 degrees, serve as stress raisers with the effect considerably more pronounced if the 0 degree layers are inside.

Typical distributions of σ_y and τ_{xy} with respect to y are shown in Figures 18 and 19. The disturbing feature of these plots is that the stresses just above an interface do not approach zero at the free surface. One cause of this problem is the placement of nodes directly on the interface, which requires their occupation by both layers. Then at the corners, as stated previously, the multitude of boundary conditions cannot be satisfied.⁶ However this problem is confined to the free surface nodes and one line of

^{5.} In agreement with the beam theory approximation.

^{6.} Placing the interface between two nodal lines may alleviate this problem.

interior nodes. To see this, one may examine the curves for the A-system at J = 4- and J = 10+ and note that they are reflections of each other within the range $3 \le I \le 7$. Since, from above, σ_y and τ_{xy} appear, in general, to be antisymmetric in z, the correct values at J = 10+ are recovered within this range if we accept the values at J = 4-.

CONCLUSIONS

Although only two types of laminate systems were considered, namely $A = [\theta, 0, 0, \theta]$ and $B = [0, \theta, \theta, 0]$, it is reasonable to assume from these results and from physical considerations that the following symmetry relations hold for balanced $(B_{ij} = 0)$ composites:

U, V antisymmetric in y and z

W symmetric in y and z

where U, V, and W are displacement functions of y and z. Based on the stress results, laminates containing layers oriented within the range 15 degrees $\leq \theta \leq$ 45 degrees produce the largest interlaminar stresses out of the cases studied, 0 degrees $\leq \theta \leq$ 90 degrees taken in 15 degree intervals. In fact this same group of laminates produces high values in the in-plane stresses as well, with the effect considerably more pronounced for the A-system. Although some deviations in stress occur in the numerical solution, they are localized to a double line of nodes at the boundary. This is a disconcerting feature of the solution in that the boundary region stresses appear to be critically involved in delamination-type failure, which makes their accurate determination desirable.

This study provides a base for future work in this area. Using the present program coupled with an out-of-core equation solver routine, unbalanced laminates may be studied. Using the symmetry relations discussed above, the present computer program may be modified to more efficiently handle balanced laminates ($B_{ij} = 0$).

Figure 1. Laminate geometry.

Figure 2. Finite-difference mesh.

24

......

Figure 3. A typical laminate mesh.

*AT INF(m) WHERE 1 < I < LAW AND 1 \le m < NLAY:

$$[u^{m}, v^{m}, w^{m}] = [u^{m+1}, v^{m+1}, w^{m+1}]$$

$$[\sigma_{z}^{m}, \tau_{yz}^{m}, \tau_{xz}^{m}] = [\sigma_{z}^{m+1}, \tau_{yz}^{m+1}, \tau_{xz}^{m+1}]$$

• STATIC EQUILIBRIUM IS IMPOSED AT ALL INTERIOR POINTS

Figure 4. Equations selected for each node.

Figure 5. Variation of strain with y.

Figure 6. Variation of shear strain with y.

Figure 7. Variation of the normal stress $\sigma_{\rm Z}$ (symmetric in y) with y for a $[\theta,\,0,\,0,\,\theta]$ laminate.

Figure 8. Variation of the normal stress $\sigma_{\rm Z}$ (symmetric in y) with y for a [0, θ , θ , 0] laminate.

Figure 9. Numerical peculiarities in the normal stress $\sigma_{\rm Z}$.

Figure 10. Variation of the shear stress τ_{yz} (antisymmetric in y) with y for a $[\theta, 0, 0, \theta]$ laminate.

Figure 11. Variation of the shear stress τ_{yz} (antisymmetric in y) with y for a $[0, \theta, \theta, 0]$ laminate.

Figure 12. Variation of the shear stress $\tau_{\rm XZ}$ (antisymmetric in y) with y.

Figure 13. Variation of the normal stress σ_X (antisymmetric in z) with z for each layer with respect to position where the adjacent layer is oriented at $\theta = 0$ degree.

Figure 14. Variation of the normal stress $\boldsymbol{\sigma}_{\mathbf{X}}$ (symmetric in y) with y.

Figure 15. Variation of the normal stress σ_y (antisymmetric in z) with z for a $[\theta, 0, 0, \theta]$ laminate.

Figure 16. Variation of the normal stress σ_y (antisymmetric in z) with z for a $[0, \theta, \theta, 0]$ laminate.

-

Figure 17. Variation of the shear stress τ_{xy} with z.

Figure 18. Variation of the normal stress σ_y with y.

Figure 19. Variation of the shear stress $\tau_{\rm Xy}$ with y.

APPENDIX A

LAMINATE CONSTANTS

Following Reference 9 or 10, define

$$Q_{ij}^{m} = c_{ij}^{m} - \frac{c_{i3}^{m} c_{j3}^{m}}{c_{33}^{m}}$$
; i, j = 1, 2, 6

and let t be the half-thickness of the laminate, h₀ the thickness of a lamina, and N the total number of layers; then

$$\begin{split} A_{ij} &= h_0 \sum_{m=1}^{N} Q_{ij}^{m} \\ B_{ij} &= \frac{h_0^2}{2} \left\{ \sum_{m=1}^{N} Q_{ij}^{m} (2m-1) - N \sum_{m=1}^{N} Q_{ij}^{m} \right\} \\ D_{ij} &= \frac{h_0^3}{3} \left\{ \sum_{m=1}^{N} Q_{ij}^{m} (3m^2 - 3m + 1) - \frac{3}{2} N \sum_{m=1}^{N} Q_{ij}^{m} (2m - 1) + \frac{3}{4} N^2 \sum_{m=1}^{N} Q_{ij}^{m} \right\} \end{split}$$

with i, j = 1, 2, 6. Finally, let

$$A^* = A^{-1}$$
 , $B^* = -A^{-1}B$, and $D^* = D - BA^{-1}B$

where the letters symbolize 3 X 3 matrices. Then,

$$B' = B*(D*)^{-1}$$

and

$$D' = (D^*)^{-1}$$

Considerable simplification is attained if the laminate is balanced, which implies $B_{ij} = B'_{ij} = 0$.

APPENDIX B

STRAIN SPECIFICATION

Rather than prescribe the laminate loading as end moments, the maximum strain, $\epsilon_{\mathbf{x}}^{\text{max}}$, at the top and bottom surfaces, $z = \pm z^{\text{max}}$, will be prescribed. From equation (9), we have

$$\epsilon_x^{\text{max}} = C_2 z^{\text{max}} + C_3$$
.

Now from equations (5),

$$C_3 = -B'_{11}M = \frac{B'_{11}}{D'_{11}}C_2$$
,

so that

$$\epsilon_{X}^{\text{max}} = C_{2} \left(z^{\text{max}} + \frac{B'_{11}}{D'_{11}} \right)$$

and, thus,

$$C_2 = \frac{D'_{11} \epsilon_X^{max}}{B'_{11} + D'_{11} z^{max}}$$
.

In the computer program, we set $\epsilon_{\rm X}^{\rm max} = -1.0 \times 10^{-3}$ inch/inch at the top surface z = $+z^{\rm max}$ to evaluate the constant C_2 which represents the inverse bending radius.

APPENDIX C

THE COMPUTER PROGRAM

Program Description

The computer program is an in-core program and is not overlayed. It is felt that a flow chart of the program would be no less complicated than the presentation of a listing with an accompanying explanation, so the latter choice will be followed. Certain statements in the program are extraneous to the problem in this report because the program is in steady transition to handle more general problems. A part-by-part description follows.

Part I. Part I contains a brief definition of terms and an explanation of the order and format of the data cards. The dimensions of the data are: H is in inches, E is material constants in psi (the shear moduli G_{12} , etc., are read into the E12, etc., arrays), ALPHA is the coefficient of expansion in inches/inch/°F, and THETA is the lamina orientation in angular degrees. Precision and dimension statements are then established, data are read in, and mesh parameters are calculated. The letter M refers to the layer number. In the loop, D0 9000, IRAN counts each laminate layup from one to IRUN (only changes in lamina orientation are allowed for within this loop).

Part II. Part II calculates the anisotropic stiffness matrix. BETA is in radians. CP11, etc., are the orthotropic elastic constants in the primed coordinate system. C11(M), etc., are the anisotropic elastic constants for the Mth lamina in the x, y, z coordinate system. AL1P(M), etc., are the coefficients of thermal expansion in the primed coordinate system and AL1(M) are those coefficients in the x, y, z coordinate system, both the the Mth lamina. Finally, the subroutine MATCON, which calculates the laminate MATerial CONstants, is called.

Part III. Part III calculates the coefficient matrix for the difference equations. The loops D0 100 and D0 101 count through the mesh node-by-node. D0 3000 zeroes out the A-matrix.

The logic that associates the various field conditions with each node and correctly fills out the A-matrix is contained in D0 102. First the node I, J is tested to determine the proper layer number, M. Then the node is checked to see if it lies on a boundary, along J equals a constant, or lies at some select position (in this case, IMID or JMID). If it does, the program is routed to the statement number that contains the non-zero matrix elements satisfying the conditions imposed at this node. Should the node not lie at any of these preselected locations, the program passes through the IF statements on J to statement number 193, which initiates a series of checks to see if the node lines on selected values of I. These values include the boundaries I = 1 or I = LAW, the changes in

nodal spacing I = FSW1 or I = FSW2, and all points in the region between FSW1 and FSW2. Should the node not lie at any of these locations, the program passes through the IF statements on I and evaluates the non-zero coefficients for the only remaining possibility, the equilibrium terms for a square mesh.

When a node does lie on some select location, say J equals LAT, then the logic in that statement series, say the series starting from statement number 202, guides the program through the checks on selected values of I in a fashion similar to that above. The logic is easily understood by reading directly from the listing.

Upon reaching statement number 102, the A-matrix (3 × JQMAX) is full. The elements of the A-matrix lying within the bandwidth are then stored in the banded matrix AX. The loops D0 100 or D0 101 then continue for the next node, if any. The previous A-matrix is destroyed and regenerated for the new node until the loop D0 100 is satisfied.

At rewind 9, the matrix AX and the load vector X are stored for later use. The loop D0 107 stores the load vector X(I) in AX(I, NBD). Then a series of WRITE statements (listed as comments) will output the coefficient matrix AX and load vector X should they be desired. Finally, the solver routine, TRMSTR, is called.⁷

Part IV. Part IV outputs the functional displacements and provides an accuracy check. Just below statement number 4006, the STOP 1 statement will terminate the program if the coefficient matrix AX is singular. (Such an occurrence probably indicates an error.) The loop D0 108 stores the solution vector AX(I, 1) in X(I). Then the original values of the matrix AX and load vector X are read back into the AX array and R vector, respectively.

The loops D0 11 and D0 12 output the values for the functions U(y, z), V(y, z), and W(y, z) which occur in the displacements u, v, and w, respectively.

The series of statements from the one above 9950 to 9990 outputs the accuracy results. These results provide the difference between the original load vector, now stored in the R-array, with the calculated load vector, which is found by substituting the appropriate solution vectors, X(I), into each matrix equation. In addition to giving the accuracy of each equation, an average accumulated accuracy is provided.

Part V. Part V outputs the strains and stresses. The logic is similar to that in Part III. Knowing that the finite-difference relations for the strains differ for various mesh locations, the strains are split into terms dependent upon the value of I and terms dependent upon the value of J. The strain SX, which represents ϵ_{xx} , depends upon neither the value of I nor the value of J and is determined prior to any logical branching.

^{7.} Actually the AX-matrix stores a transposed A-matrix; i.e., instead of storing row elements crosswise or in a row, they are stored in the AX-matrix vertically or in a column. The result is a drastic reduction in "wall-time" on the IBM 370. This necessitated a slight revision in the solver routine, TRIMSS, as written by Billy Gibbs, U.S. Army, Redstone Arsenal [14]. So here it is called TRMSTR or TRIMSS transposed.

First, the node is checked to determine its location with respect to I, and I-dependent strains (or the partial strain, SYZI) are calculated. Then the loop D0 392 establishes the correct layer number, M, in order to check if J lies on the interface, INF(M). Upon determining the correct location of the node with respect to J, the J-dependent strains (or the partial strain, SYZJ) are calculated. Statement number 391 totals the partial strains to obtain SYZ. The stresses are then calculated in a straight forward manner using equation (1). Note that the stresses are calculated twice at interface nodes, once for the material below the interface and again for the material above.

Part VI. The subroutine MATCON calculates the MATerial CONstants C_j , BU, BV, and DV as defined earlier in the text.

Part VII. The subroutine MAMULT is a MAtrix MULTiplier and is easily understood from the listing.

Part VIII. The subroutine MATIN4 is a MATrix INversion routine which is described in Reference 14.

Part IX. The subroutine TRMSTR is the equation solver which is described in the listing.

Part X. The subroutine RITE is used to wRITE out a matrix or vector.

Program Listing

The complete listing of the program is contained in the following pages.

MAIN

DO 101 J=1, LAT

C

FORTRAN IV G1	RELEASE 2.0	MAIN	DATE = 75007	08/16/07	
0283	D = HH1*	HR*(C23(M)+C44(M))/	2.		00004070
	С				06004080
0284	A(KQ1,JJ	3+2) = D			00004090
0285	A(KQ1,JJ				00004100
0286		7+2) = -D			00004110
0287		9+2) = -D			00004120
	C				00004130
0288	A(KQ2,JJ	3) = C			00004140
0289	A(KQ2.JJ				00004150
0290	A(KQ2.JJ	7) = -C			00004160
0291	A(KQZ.JJ	9) = -C			00004170
0292	A(KQ2, JJ	3+1) = D			00004180
0293	A(KQ2.JJ	5+1) = D			00004190
0294	A(KQ2.JJ	7+1) = -0			00004200
0295	A(KQ2,JJ	9+1) = -D			00004210
0296		1+2) = -2.*(C44(M)+	HMU*C33(M))		00004220
0297	A(KQ2,JJ	2+2) = 2.*HR*C44(M)			00004230
0298	A(KQ2,JJ	4+2) = 2.*C44(M)/(1	.+HH)		00004240
0299	A(KQ2.JJ	6+2) = HMU*C33(M)			00004250
0300	A(KQ2,JJ	8+2) = HMU*C33(M)			00004260
	С				00004270
0301	X(JJ1) =	0.			00004280
0302	X(JQ1) =	0.			00004290
0303	X(JQ2) =	-HH3*(C13(M)*C2 +	C23(M)*DV + 2.*C36(M)*C4	4)	00004300
0304	GO TO 10	2			00004310
	С				00004320
0305	200 IF(I.EQ.				00004330
0306		LAW) GO TO 211			00004340
	С				00004350
		MATRIX TERMS FOR I	BETWEEN 1 AND LAW AND .	J=1.	00004360
	c				00004370
0307		1) = -3.*C55(M)			00004380
0308		6) = 4.*C55(M)			00004390
0309		12) = -C55(M)			00004400
0310	C	1.11 - 2 46/6/41			00004410
0310		1+1) = -3.*C45(M)			00004420
0311		6+1) = 4.*C45(M)			00004430
0312	C A(KJI,JJ	12+1) = -C45(M)			00004440
0313		1) = -3.*C45(M)			00004450 00004460
0314		6) = 4.*C45(M)			00004470
0315		12) = ~C45(M)			00004470
0313	C	127 - 043(117			00004490
0316	-	1+1) = +3.*C44(M)			00004490
0317		6+1) = 4.*C44(M)			00004510
0318		12+1) = -C44(M)			00004520
	C				00004530
0319	A(KQ2.JJ	1+2) = -3.*C33(M)			00004540
0320		6+2) = 4.*C33(M)			00004550
0321		12+2) = -C33(M)			00004560
	С				00004570
0322	CZ1 = C1	3(M)*C3 + C23(M)*BV	+ C36(M)*BU		00004580
0323		3(M)*C2 + C23(M)*DV	+ 2.*C36(M)*C4		00004590
	С				00004600
0324	X(JJJ) =				00004610
0325	X(JQ1) =				00004620
0326		-2.*H*(CZ1 + CZ2*Z)		00004630
	С				00004640

```
X(JQ2) = 0.
                                                                                                                    00005810
0413
                             GO TO 102
                                                                                                                    00005820
0414
                                                                                                                    00005830
                     C FREE SURFACE MATRIX TERMS FOR J=1 AND I=LAW
                                                                                                                    00005840
                                                                                                                    00005850
0415
                        211 \text{ A(KJ1,JJ1)} = 3.*C66(M)
                                                                                                                    00005860
                             A(KJ1,JJ2) = -4.*C66(M)

A(KJ1,JJ13) = C66(M)
0416
                                                                                                                    00005870
 0417
                                                                                                                    00005880
                             A(KJ1,JJ1+1) = 3.*C26(M)
A(KJ1,JJ2+1) = -4.*C26(M)
 0418
                                                                                                                    00005890
0419
                                                                                                                   00005900
                             A(KJ1,JJ13+1) = C26(M)
                                                                                                                    00005910
0420
0421
                             A(KJ1,JJ1+2) = -3.*C36(M)
                                                                                                                    00005920
                             A(KJ1, JJ6+2) = 4.*C36(M)
                                                                                                                    00005930
0422
 0423
                             A(KJ1,JJ12+2) = -C36(M)
                                                                                                                    00005940
                     C
                                                                                                                   00005950
                                                                                                                    00005960
0424
                             A(KQ) - JJ1) = 3 - *C26(M)
                             A(KQ1,JJ2) = -4.*C26(M)

A(KQ1,JJ13) = C26(M)
                                                                                                                    00005970
0425
0426
                                                                                                                    00005980
                             A(KQ1,JJ1+1) = 3.*C22(M)

A(KQ1,JJ2+1) = -4.*C22(M)
0427
                                                                                                                    00005990
0428
                                                                                                                   00006000
                             A(KQ1,JJ13+1) = C22(M)
A(KQ1,JJ13+1) = -3.*C23(M)
A(KQ1,JJ6+2) = 4.*C23(M)
                                                                                                                   00006010
0429
0430
                                                                                                                    00006020
0431
                                                                                                                   00006030
                             A(KQ1+JJ12+2) = -C23(M)
0432
                                                                                                                   00006040
                                                                                                                   00006050
                     С
                                                                                                                   00006060
0433
                             A(KQ2,JJ1) = -3.*C45(M)
0434
                             A(KQ2,JJ6) = 4.*C45(M)
                                                                                                                   00006070
                             A(KQ2,JJ12) = -C45(M)
A(KQ2,JJ1+1) = -3.*C44(M)
A(KQ2,JJ6+1) = 4.*C44(M)
0435
                                                                                                                   00006080
0436
                                                                                                                   00006090
                                                                                                                   00006100
0437
                             A(KQ2,JJ12+1) = -C44(M)
0438
                                                                                                                   00006110
                             A(KQ2,JJ1+2) = 3.*C44(M)
                                                                                                                   00006120
0439
0440
                             A(KQ2,JJ2+2) = -4.*C44(M)
                                                                                                                   00006130
                             A(KQ2,JJ13+2) = C44(M)
0441
                                                                                                                   00006140
                                                                                                                   00006150
                     С
                                                                                                                   00006160
0442
                             CY1 = C12(M)*C3 + C22(M)*BV + C26(M)*BU
                             CY2 = C12(M)*C2 + C22(M)*DV + 2.*C26(M)*C4

CXY1 = C16(M)*C3 + C26(M)*BV + C66(M)*BU

CXY2 = C16(M)*C2 + C26(M)*DV + 2.*C66(M)*C4
0443
                                                                                                                   00006170
0444
                                                                                                                   00006180
0445
                                                                                                                   00006190
                                                                                                                   00006200
                     C
                             X(JJ1) = -2.*H*(CXY1 + CXY2*Z)

X(JQ1) = -2.*H*(CY1 + CY2*Z)

X(JQ2) = 0.
                                                                                                                   00006210
0446
                                                                                                                   00006220
0447
0448
                                                                                                                   00006230
0449
                             GO TO 102
                                                                                                                   00006240
                                                                                                                   00006250
                    C
0450
                       201 P = M+1
                                                                                                                   00006260
0451
                             IF(I.EQ.1) GO TO 220
                                                                                                                   00006270
                             IF(I.-CO.FSW1) GO TO 221
IF(I.-LT.-FSW2.AND.I.-GT.-FSW1) GO TO 222
IF(I.-EQ.-FSW2) GO TO 221
0452
                                                                                                                   00006280
                                                                                                                   00006290
0453
                                                                                                                   00006300
0454
                             IF(I.EQ.LAW) GO TO 223
                                                                                                                   00006310
0455
                                                                                                                   00006320
                    C MATRIX TERMS AT INTERFACE FOR I BETWEEN 1 AND FSW1 OR FSW2 AND LAW
                                                                                                                   00006330
                                                                                                                   00006340
                            A(KJ1,JJ1) = 3.*(C55(M)+C55(P))
0456
                                                                                                                   00006350
                            A(KJ1,JJ6) = -4.*C55(P)

A(KJ1,JJ8) = -4.*C55(M)
                                                                                                                   00006360
0457
0458
                                                                                                                   00006370
0459
                            A(KJ1,JJ10) = C55(M)
                                                                                                                   00006380
```

ì

FORTRAN IV G1	RELEASE	2.0	MAIN	DATE	= 75007	08/16/07	
	c						00008130
0591		A(K02.JJ1	+1) = -2.*D1*E				00008140
0592			+1) = -2.*D3*E				00008150
0593			+1) = 2.*D2*E				00008160
0594		GO TO 102	20.02.0				00008170
0271	С	00 10 102					00008180
		TRIY TERMS /	AT AN INTERFACE FOR	I THE AND	T RETWEEN	ECM1 AND ECM5	00008190
	Č	INIA ILINIO P	AN INTERNACE FOR	3-111 AITU	1 DETHEEN	1381 AND 1382	00008190
0595	-	XK = FLOAT	(K)				00008200
0596	222		= 3.*(C55(M)+C55(F	211			
0597			= -4.*C55(P)	• • •			00008220
0598			= -4.*C55(M)				00008230
0599)) = C55(M)				00008240
0600			() = C55(P)				00008250
0000	С	A(KJI)JJIZ	./ = C55(F)				00008260
0601	C	A (V 11 111 1	11 - 3 */C/E/H).C/E	(0)			00008270
0602			(1) = 3.*(C45(M)+C45)	(17)			00008280
			-1) = -4.*C45(P)				00008290
0603			·1) = -4.*C45(M)				00008300
0604)+1) = C45(M)				00008310
0605	_	A(KJI,JJIZ	(+1) = C45(P)				00008320
0/0/	С	A (W 1) 1 1 2 .	2) - (64510) 645141	1.444			00008330
0606			(2) = (C45(P) - C45(M))				00008340
0607	_	AIRJI	(2) = (C45(M) - C45(P))	// AN			00008350
0608	С	A/K01 (11)	- 2 *1045141104515				00008360
0609			= 3.*(C45(M)+C45(P	11			00008370
			= -4.*C45(P)				00008380
0610			= -4.*C45(M)				00008390
0611		A(KQ1,JJ10					00008400
0612	С	A(KQ1,JJ12) = C45(P)				00008410
0/13	C			(01)			00008420
0613			1) = 3.*(C44(M)+C44	(P))			00008430
0614			1) = -4.*C44(P)				00008440
0615			1) = -4.*C44(M)				00008450
0616			+1) = C44(M)				00008460
0617	_	A (KQI , JJI2	+1) = C44(P)				00008470
2412	С						00008480
0618			2) = (C44(P) - C44(M)				00008490
0619	_	A (KQ1+3J4+	2) = (C44(M) - C44(P))/XK			00008500
0.4.00	С						00008510
0620			= (C36(P)-C36(M))/				00008520
0621	_	AIKQ2,JJ41	= (C36(M)-C36(P))/	xĸ			00008530
0/22	С	14400 1101	1) - (692(0) 662(**)	1 / / / /			00008540
0622			1) = (C23(P) - C23(M)				00008550
0623	_	AIKUZ,JJ4+	1) = (C23(M) - C23(P)	1 / XK			00008560
0.00	С						00008570
0624			2) = 3.*(C33(M)+C33	(P))			00008580
0625			2) = -4. *C33(P)				00008590
0626			2) = -4.*C33(M)				00008600
0627			+2) = C33(M)				00008610
0628			+2) = C33(P)				00008620
0629	_	X(JQ1) = 0	•				00008630
0430	С	671 - 1515	(6) 6:0/411:				00008640
0630			(P)-C13(M))*C3 + (C2				
0631		CZZ = CC13	(P)-C13(M))*C2+(C23	(PJ-C23(M)	1*DA+5**(C	36(P)-C36(M))*C4	
0.400	С						00008670
0632		X(JJ1) = 0					00008680
0633			*H*(CZ1 + CZ2*Z)				00008690
0634		GO TO 102					00008700

X(JQ1) = 0.

```
MAIN
                                                                  DATE = 75007
                                                                                          08/16/07
FORTRAN IV G1 RELEASE 2.0
                                                                                                       00009290
 0675
                          X(JQ2) = 0.
                                                                                                        00009300
 0676
                          GO TO 102
                                                                                                        00009310
                                                                                                        00009320
 0677
                     202 IF(I.EQ.1) GO TO 220
                          IF(I.EQ.LAW) GO TO 223
                                                                                                        00009330
 0678
                                                                                                        00009340
                   C FREE SURFACE MATRIX TERMS FOR I BETWEEN 1 AND LAW AND J=LAT
                                                                                                        00009350
                                                                                                       00009360
                                                                                                        00009370
 0679
                          A(KJ1,JJ1) = 3.*C55(M)
                          A(KJ1,JJ8) = -4.*C55(M)
                                                                                                        00009380
 0680
                          A(KJ1,JJ10) = C55(M)
                                                                                                       00009390
 0681
                                                                                                        00009400
                   С
                                                                                                        00009410
                          A(KJ1,JJ1+1) = 3.*C45(M)

A(KJ1,JJ8+1) = -4.*C45(M)
 0682
                                                                                                        00009420
 0683
                          A(KJ1, JJ10+1) = C45(M)
                                                                                                       00009430
 0684
                                                                                                       00009440
                   С
                                                                                                       00009450
                          A(KQ1,JJ1) = 3.*C45(M)

A(KQ1,JJ8) = -4.*C45(M)
 0685
                                                                                                       00009460
0686
                          A(KQ1, JJ10) = C45(M)
                                                                                                       00009470
0687
                                                                                                       00009480
                   С
                          A(KQ1,JJ1+1) = 3.*C44(M)
A(KQ1,JJ8+1) = -4.*C44(M)
A(KQ1,JJ10+1) = C44(M)
                                                                                                       00009490
 0688
                                                                                                       00009500
 0689
                                                                                                       00009510
0690
                                                                                                       00009520
                   С
                                                                                                       00009530
0691
                          A(KQ2, JJ1+2) = 3.*C33(M)
0692
                          A(KQ2.JJ8+2) = -4.*C33(M)
                                                                                                       00009540
                          A(KQ2,JJ10+2) = C33(M)
                                                                                                       00009550
0693
                                                                                                       00009560
                   С
                          CZ1 = C13(M)*C3 + C23(M)*BV + C36(M)*BU
                                                                                                       00009570
0694
                          CZ2 = C13(M)*C2 + C23(M)*DV + 2**C36(M)*C4
                                                                                                       00009580
0695
                                                                                                       00009590
                   C
                          X(JJ1) = 0.
X(JQ1) = 0.
X(JQ2) = -2.*H*(CZ1 + CZ2*Z)
                                                                                                       00009600
0696
                                                                                                       00009610
0697
0698
                                                                                                       00009620
                   С
                                                                                                       00009630
                                                                                                       00009640
0699
                          IF(I.EQ.FSW1) GO TO 231
                                                                                                       00009650
                          IF(I.EQ.FSW2) GO TO 231
IF(I.GT.FSW1.AND.I.LT.FSW2) GO TO 234
0700
                                                                                                       00009660
0701
                                                                                                       00009670
                    IF I IS BETWEEN 1 AND FSW1 OR BETWEEN FSW2 AND LAW, CONTINUE BELOW
                                                                                                       00009680
                                                                                                       00009690
                   С
                          A(KJ1_*JJ2+2) = -C45(M)
                                                                                                       00009700
0702
                          A(KJ1,JJ4+2) = C45(M)
                                                                                                       00009710
0703
                   С
                                                                                                       00009720
0704
                          A(KQ1,JJ2+2) = -C44(M)
                                                                                                       00009730
                                                                                                       00009740
0705
                          A(KQ1,JJ4+2) = C44(M)
                                                                                                       00009750
                   С
                          A(KQ2*JJ2) = -C36(M)
                                                                                                       00009760
0706
                          A(KQ2,JJ4) = C36(M)
                                                                                                       00009770
0707
                   С
                                                                                                       00009780
                          A(KQ2,JJ2+1) = -C23(M)
A(KQ2,JJ4+1) = C23(M)
GO TO 102
0708
                                                                                                       00009790
                                                                                                       00009800
0709
                                                                                                       00009810
0710
                                                                                                       00009820
                  C CASE WHERE I=FSW1 OR FSW2 AND J=LAT
                                                                                                       00009830
                                                                                                       00009840
                     231 XK = FLOAT(K)
D1 = 2.*(XK-1.)/XK
                                                                                                       00009850
0711
                                                                                                       00009860
0712
```

FORTRAN IV G1	RELEASE	2.0	MAIN	DATE =	75007	08/16/07	
0713		D2 = 2.*XK/{	XK+1_)				00009870
0714		D3 = 2./((XK					00009880
	С						00009890
0715		IF(I.EQ.FSW2) GO TO 232				00009900
	С						00009910
0716		A(KJ1,JJ1+2)					00009920
0717			= -D2*C45(M)				00009930
0718	С	A(KJ1,JJ4+2)	= D3*C45(M)				00009940 00009950
0719	C	A(KQ1,JJ1+2)	= D1 *C44(M)				00009960
0720			= -D2*C44(M)				00009970
0721		A(KQ1,JJ4+2)					00009980
• • • • • • • • • • • • • • • • • • • •	С						00009990
0722		A(KQ2,JJ1) =	D1*C36(M)				00010000
0723		A(KQ2,JJ2) =					00010010
0724	_	A(KQ2,JJ4) =	D3*C36(M)				00010020
0705	С	******	D1#602(N)				00010030
0725		A(KQ2,JJ1+1)					00010040
0726 0727		A(KQ2,JJ2+1) A(KQ2,JJ4+1)					00010050 00010060
0728		GO TO 102	- D3#C23(M)				00010030
0120	С	00 10 102					00010080
0729	_	A(KJ1,JJ1+2)	= -D1*C45(M)				00010090
0730		A(KJ1, JJ2+2)					00010100
0731		A(KJ1,JJ4+2)	= D2*C45(M)				00010110
	С						00010120
0732		A(KQ1,JJ1+2)					00010130
0733		A(KQI, JJ2+2)					00010140
0734		A(KQ1,JJ4+2)	= D2*C44(M)				00010150
0725	С	A4K02 1111 =	D1#C34 (W)				00010160
0735 0736		A(KQ2,JJ1) = A(KQ2,JJ2) =					00010170
0737		A(KQ2,JJ4) =					00010190
0.5.	С		52 555111,				00010200
0738		A(KQ2,JJ1+1)	= -D1*C23(M)				00010210
0739		A(KQ2,JJ2+1)	= -D3*C23(M)				00010220
0740		A(KQ2,JJ4+1)	= D2*C23(M)				00010230
0741	_	GO TO 102					00010240
	C C 4 C 1		CTUCEN COUL AND COU	2 AND 1-	LAT		00010250
	C	* WHEKE 1 15 1	BETWEEN FSW1 AND FSW2	Z AND J-	LAI		00010260 00010270
0742	-	XK = FLOAT(K)				00010270
0743	23.		= -C45(M)/XK				00010290
0744		A(KJ1,JJ4+2)					00010300
	С						00010310
0745			= -C44(M)/XK				00010320
0746	_	A(KQ1,JJ4+2)	= C44(M)/XK				00010330
	С		654441				00010340
0747		A(KQ2,JJ2) =					00010350
0748	С	$\Delta(KQ2,JJ4) =$	COOLM1/XK				00010360 00010370
0749	C	Δ(KQ2,JJ2+1)	= -C23(M)/XK				00010370
0750		A(KQ2,JJ4+1)					00010390
	С		,				00010400
0751	_	CONTINUE					00010410
	С						00010420
		RM THE NONSYME	ETRIC BANDED MATRIX A	ΔX			00010430
	С						00010440

```
FORTRAN IV G1 RELEASE 2.0
                                              MAIN
                                                                    DATE = 75007
                                                                                             08/16/07
                           IL = KJ1+3*(NODE-1)
                                                                                                          00010450
 0753
                           IN = IL+2
                                                                                                          00010460
                                                                                                          00010470
                    C.
                           DO 103 IK=IL, IN
                                                                                                          00010480
 0754
                           II = IK-IL+1
                                                                                                           00010490
 0755
                    С
                                                                                                          00010500
 0756
                           DO 104 JK=1,NBAND
                                                                                                          00010510
                           JJ = IK+JK-IBW-1
                                                                                                          00010520
 0757
                           IF(IK.LE.IBW1) JJ = JK
IF(JJ.GT.JQMAX) GD TO 105
AX(JK.IK) = A(II.JJ)
                                                                                                          00010530
 0758
 0759
                                                                                                          00010540
 0760
                                                                                                          00010550
                      GO TO 104
105 AX(JK, IK) = 0.0
 0761
                                                                                                          00010560
                                                                                                          00010570
 0762
                      104 CONTINUE
                                                                                                          00010580
 0763
                      103 CONTINUE
                                                                                                          00010590
 0764
                      101 CONTINUE
                                                                                                          00010600
 0765
                                                                                                          00010610
 0766
                      100 CONTINUE
                   С
                           REWIND 9
                                                                                                          00010630
 0767
                           WRITE(9) ((AX(J,I),J=1,NBAND),I=1,JQMAX)
                                                                                                          00010640
 0768
 0769
                           WRITE(9) (X(I), I=1, JQMAX)
                                                                                                          00010650
                                                                                                          00010660
                           END FILE 9
 0770
                                                                                                          00010670
                           REWIND 9
 0771
                   С
                                                                                                          00010680
 0772
                           NBD = NBAND+1
                                                                                                          00010690
                           DO 107 I=1, JQMAX
AX(NBD,I) = X(I)
                                                                                                          00010700
 0773
                                                                                                          00010710
 0774
                      107 CONTINUE
                                                                                                          00010720
 0775
                    С
                                                                                                          00010730
                   00010740
C4000 FORMAT(1H1, ' EQUATION', 35X, 'THE BANDED MATRIX TERMS AX(I,J)' //)00010750
C CALL RITE(1, JQMAX, NBD, JQMAX, NBD, AX)
00010760
C WRITE(6,4003)
                           WRITE(6,4000)
                                                                                                          00010740
                   C4003 FORMAT(1H1, 45X, '*** THE LOAD VECTOR X(I) ***' /// )
C WRITE(6,4004) (X(I), I=1, JQMAX)
C4004 FORMAT(28(2X, 10D12-3 / ))
                                                                                                          00010780
                                                                                                          00010790
                                                                                                          00010800
                                                                                                          00010810
                   С
                           CALL TRMSTR(AX, JQMAX, NBD , IBW, IBW, NBAND, DT, RT, ET)
                                                                                                          00010820
 0776
                                                                                                          00010830
                   ¢
                    WRITE(6,4006) ET, RT, DT

4006 FORMAT(/// ' ERROR CONDITION OF SOLVER ROUTINE IS ', F4.1, 5X,

1 'RANK IS ', F6.1, 5X, 'DETERMINANT = ', G10.3)

IF(ET.EQ.1.) STOP 1
                                                                                                          00010840
 0777
                                                                                                          00010850
 0778
                                                                                                          00010860
                                                                                                          00010870
 0779
                                                                                                          00010880
                   С
                           DD 108 I=1, JQMAX X(I) = AX(1,I)
 0780
                                                                                                          00010890
                                                                                                          00010900
 0781
                      108 CONTINUE
                                                                                                          00010910
 0782
                                                                                                          00010920
                   С
 0783
                           READ(9) ((AX(J,I),J=1,NBAND),I=1,JQMAX)
READ(9) (R(I),I=1,JQMAX)
                                                                                                          00010930
                                                                                                          00010940
 0784
                                                                                                          00010950
                   С
                       ***********************
                                                                                                         00010980
                       OUTPUT OF THE NODAL DISPLACEMENTS, U, V, W
                                                                                                          00010990
                                                                                                          00011000
                       *****************
```

- 11 11 75 6112

389 SZ = HR*(4.*X(JJ6+2)-3.*X(JJ1+2)-X(JJ12+2))

```
MAIN
                                                                                           DATE = 75007
                                                                                                                             08/16/07
FORTRAN IV G1 RELEASE 2.0
                              602 FORMAT(//// 5X, 18H*** INPUT DATA *** ///
 0914
                                                                                                                                               00012770
                                                18X, 'NUMBER OF LAYERS IN CROSS SECTION, NLAY =', I4 //
18X, 'NUMBER OF NODES ON VERTICAL AXIS, LAT =', I4 //
18X, 'NUMBER OF NODES ON HORIZONTAL AXIS, LAW =', I4 ///
                                                                                                                                               00012780
                                                                                                                                               00012790
                                                                                                                                               00012800
                                                      18X, 37HCHANGE IN MESH WIDTH (FSW1) AT I = , I4 //
18X, 37HCHANGE IN MESH WIDTH (FSW2) AT I = , I4 //
                                                                                                                                               00012810
                                                                                                                                               00012820
                                                      18X, 37HMESH WIDTH MAGNIFICATION FACTOR, K = , I4 /)
                                                                                                                                               00012830
                                                                                                                                               00012840
 0915
                              603 FORMAT(8G12.5)
                                                                                                                                               00012850
                                                                                                                                               00012860
                             604 FORMAT(1H1, 55X, 21H*** MATERIAL DATA *** /// 2X, 5HLAYER, 7X, 1 3HE11, 9X, 3HE22, 9X, 3HE33, 9X, 3HE12, 9X, 3HE13, 9X, 2 3HE23, 8X, 4HNU12, 4X, 4HNU13, 4X, 4HNU23 // )
 0916
                                                                                                                                               00012870
                                                                                                                                               00012880
                                                                                                                                               00012890
                                                                                                                                               00012900
                                               (3X, I2, 6X, 2PE10.3, 2(2X, 1PE10.3), 3(2X, 0PE10.3), 3(3X, F5.2) / )
                                                                                                                                               00012910
 0917
                                                                                                                                               00012920
                                                                                                                                               00012930
 0918
                             606 FORMAT(10G10.3)
                                                                                                                                               00012940
                          С
                                                                                                                                               00012950
 0919
                              607 FORMAT(/// 18X, 26HFINE SIMULATION WIDTH, H = ,F8.5)
                                                                                                                                               00012960
                          С
                                                                                                                                               00012970
                              608 FORMAT(// 18X, 9HLAYER NO., 2X, I3, 5X, 17HINTERFACE AT J = ,I3)
 0920
                                                                                                                                              00012980
                                                                                                                                               00012990
                             611 FORMAT(// 45X, 41H*** COEFFICIENTS OF THERMAL EXPANSION ***, ///
1 1X, 5HLAYER, 8X, 5HTHETA, 12X, 3HAL1, 12X, 3HAL2, 12X,
2 3HAL3, 12X, 3HAL6, 12X, 4HAL1P, 11X, 4HAL2P, 11X, 4HAL3P
                                                                                                                                               00013000
 0921
                                                                                                                                              00013010
                                                                                                                                              00013020
                                                                                                                                              00013030
                                                                                                                                               00013040
 0922
                              613 FORMAT(// 53X, 26H*** STIFFNESS MATRICES *** /// 1X,
                                                                                                                                              00013050
                                               11HLAYER/THETA, 21X, 12HX-Y-Z MATRIX, 44X, 18HX-Y-Z PRIME MATRIX /// )
                                                                                                                                              00013060
                                                                                                                                              00013070
                                                                                                                                              00013080
0923
                             614 FORMAT(2X, 12, 9X, F5.1, 5X, 7(5X, E10.3))
                                                                                                                                              00013090
                                                                                                                                              00013100
                             620 FORMAT(2X, I2, 5X, 1P12E10.3 // 19X, 5E10.3, 10X, 5E10.3 // 29X, 1 4E10.3, 20X, 4E10.3 // 1X,0PF5.1, 33X, 1P3E10.3, 30X, 2 3E10.3 // 49X, 2E10.3, 40X, 2E10.3 // 59X, E10.3, 50X,
0924
                                                                                                                                              00013110
                                                                                                                                              00013120
                                                                                                                                              00013130
                                               E10.3 /// )
                                                                                                                                              00013140
                                                                                                                                              00013150
                             650 FORMAT(1H1 // 10X, '*** GRID POINT DISPLACEMENT FUNCTIONS ***' //00013160

1 16X, 5H NODE, 5X, 14HU-DISPLACEMENT, 6X, 14HV-DISPLACEMENT,00013170

2 6X, 14HW-DISPLACEMENT /// ) 00013180
 0925
                                                                                                                                              00013190
 0926
                             651 FORMAT(10X, I10, 3E20.6 // )
                                                                                                                                              00013200
                             652 FORMAT(// 12H ********* // )
653 FORMAT(// 10X, 12H ********* // )
 0927
                                                                                                                                              00013210
                                                                                                                                              00013220
 0928
                                                                                                                                              00013230
                             670 FORMAT(1H1, 10X, 77H*** DUTPUT STRESSES AND STRAINS FOR A MAXIMUM 00013240 1LONGITUDINAL BENDING STRAIN OF, F6.0, 22H MICRO-INCHES/INCH AND /00013250 2 48X, 40H AN APPLIED AXIAL EXTENSIONAL STRAIN OF, F6.0, 00013260 3 19H MICRO-INCHES/INCH. // 10X, 'NOTE: INTERFACE NODES ARE REPEAT00013270
0929
                                  4ED WITH VALUES GIVEN BELOW AND ABOVE THE INTERFACE RESPECTIVELY.
                                                                                                                                             00013280
                                                                                                                                              00013290
                                                                                                                                              00013300
                             671 FORMAT(1X,5HNODE , 5X, 5HSIG-X, 6X, 5HSIG-Y, 6X, 5HSIG-Z, 6X, 1 6HTAU-YZ, 5X, 6HTAU-XZ, 5X, 6HTAU-XY, 5X, 5HEPS-Y, 6X, 2 5HEPS-Z, 6X, 6HEPS-YZ, 5X, 6HEPS-XZ, 5X, 6HEPS-XY / 17X, 3 5HEPS-X /// )
0930
                                                                                                                                              00013310
                                                                                                                                              00013320
                                                                                                                                              00013330
                                                                                                                                              00013340
                                                                                                                                              00013350
                             '672 FORMAT(1X, I3, 4X, 1P11E11.3 /)
                                                                                                                                              00013360
0931
                                                                                                                                              00013370
                                                                                                                                              00013380
0932
                                    STOP
```

END

QM(2,2) = C22(M)-C23(M)*C23(M)/C33(M)

QM(2,3) = C26(M)-C23(M)*C36(M)/C33(M)QM(3,1) = QM(1,3)

QM(3,2) = QM(2,3)

```
DATE = 75082
                                                                                        19/49/20
FORTRAN IV GI RELEASE 2.0
                                           MATCON
                                                                                                    00013960
                         QM(3,3) = C66(M)-C36(M)*C36(M)/C33(M)
0030
                                                                                                    00013970
                      NOTE THAT THE SUBSCRIPT 3 IN QM REPLACES A 6 IN STANDARD NOTATION.
                                                                                                    00013980
                                                                                                    00013990
                      THE SAME IS TRUE BELOW IN A(I,J), B(I,J), D(I,J), ETC.
                                                                                                    00014000
                   С
                         M1 = 2*M-1

M2 = 3*M*(M-1)+1
                                                                                                    00014010
0031
                                                                                                    00014020
0032
                                                                                                    00014030
00014040
                  c
0033
                         0034
                                                                                                    00014050
0035
                                                                                                    00014060
                      30 CONTINUE
0036
                                                                                                    00014070
                                                                                                    00014080
                      INVERT (A). STORE IN (A).
                                                                                                    00014090
                                                                                                    00014100
                         CALL MATIN4 (A.ORDER)
0037
                                                                                                    00014110
                  С
                                                                                                    00014120
                      MULTIPLY (A) INVERSE * (B). STORE IN A.
                                                                                                    00014130
                  č
                                                                                                    00014140
0038
                         CALL MAMULT (A,B,ORDER,A)
                                                                                                    00014150
                  С
                                                                                                    00014160
                      MULTIPLY (B) * (A) INVERSE * (B). STORE IN B.
                                                                                                    00014170
                                                                                                    00014180
0039
                         CALL MAMULT (B,A,ORDER,B)
                                                                                                    00014190
                  С
                                                                                                    00014200
                                                                                                    00014210
0040
                         DO 40 I=1.3
                         DO 40 J=1,3
                                                                                                    00014220
0041
0042
                         A(I,J) = -1.*A(I,J)
                                                                                                    00014230
0043
                         D(I,J) = D(I,J) - B(I,J)
                                                                                                    00014240
0044
                     40 CONTINUE
                                                                                                    00014250
                                                                                                   00014260
                     INVERT NEW MATRIX (D). THE RESULT IS D-PRIME. STORE IN D.
                                                                                                    00014270
                  c
                                                                                                   00014280
0045
                         CALL MATIN4 (D,ORDER)
                                                                                                    00014290
                                                                                                   00014300
                     MULTIPLY -(A) INVERSE * B * D-PRIME WHICH YIELDS B-PRIME. STORE IN B. 00014310
                                                                                                   00014320
                  C
                         CALL MAMULT (A,D,ORDER,B)
0046
                                                                                                    00014330
                  С
                                                                                                   00014340
                     DETERMINE THE LOAD CONSTANTS. MINUS C2 IMPLIES A SMILING PLATE.
                                                                                                   00014350
                                                                                                   00014360
                  С
0047
                                                                                                    00014370
0048
                         C2 = -D(1,1)*SXMAX/(B(1,1) +D(1,1)*ZMAX)
                                                                                                   00014380
0049
                         RATIO = C2/D(1,1)
                                                                                                   00014390
                  C.
                                                                                                   00014400
0050
                        C3 = B(1,1)*RATIO + C3E
                                                                                                   00014410
0051
                        C4 = .5 * D(1,3) * RATIO
                                                                                                   00014420
0052
                        BU = B(3,1)*RATIO
                                                                                                   00014430
                        BV = B(2,1)*RATIO
DV = D(1,2)*RATIO
RATIO = -RATIO
0053
                                                                                                   00014440
0054
                                                                                                   00014450
                                                                                                   00014460
                        WRITE(6,50)
0055
                                                                                                   00014470
0056
                     50 FORMAT(//// 48X, 35H*** THE LAMINATE LOAD CONSTANTS *** /// )
                     WRITE(6,60) C2, C3, C4, BU, BV, DV, RATIO 00014490
60 FORMAT(' C2 = ', 1PE10.3, 4X, 'C3 = ', E10.3, 4X, 'C4 = ',E10.3, 00014500
1 4X, 'BU = ', E10.3, 4X, 'BV = ', E10.3, 4X, 'DV = ', E10.3,00014510
2 4X, 'MT = ', E10.3 )
0057
0058
                        RETURN
0059
                                                                                                   00014530
                                                                                                   00014540
0060
                        FND
```

```
*OPTIONS IN EFFECT* NOTERM, NOID, EBCDIC, SOURCE, NOLIST, NODECK, LOAD, NOMAP, NOTEST *OPTIONS IN EFFECT* NAME = MATCON , LINECNT = 60 *STATISTICS* SOURCE STATEMENTS = 60, PROGRAM SIZE = 2060 *STATISTICS* NO DIAGNOSTICS GENERATED
```

FORTRAN IV	G1	RELEASE	2•0	MAMULT	DATE =	75082	19/49/20	
0001				JLT(B,C,N,A) .IES MATRIX (B) BY A) WHERE N IS THE				00014550 00014551 00014552 00014553
0002 0003 0004 0005 0006			DOUBLE PRECISION DIMENSION A(N,N DO 1 I=1,N DO 1 J=1,N SUM = 0. DO 2 K=1,N	DN A,B,C,SUM }, B(N,N}, C(N,N)				00014560 00014570 00014580 00014590 00014600
0008 0009 0010 0011 0012 0013		_	SUM = SUM + B(I CONTINUE A(I,J) = SUM CONTINUE RETURN END	,K)*C(K,J)				00014620 00014630 00014640 00014650 00014660 00014670
FORTRAN IV	G1	RELEASE	2.0	MAMULT	DATE =	75082	19/49/20	
				DIC, SOURCE, NOLIST		LOAD, NOMAP, NOTE	: S T	

*UPITONS IN EFF	CIA MOTEKNINOTO LEBOOTO	, 300KCE, NOLISI, 1	NODECK & LUAU	* 1471 WES * 140 LC 2 L
OPTIONS IN EFF	ECT NAME = MAMULT , L	INECNT =	50	
STATISTICS	SOURCE STATEMENTS =	13,PROGRAM SI	IZE =	702
STATISTICS NO	DIAGNOSTICS GENERATED			

FORTRAN IV G1	RELEASE 2.0	MATIN4	DATE = 75082	19/49/20	
0001	C	TINE MATIN4(ARRAY,N)			00014680 00014681
	C MATIN4 IN	VERTS THE MATRIX (ARRA	Y) WHICH IS OF ORDER N	•	00014682 00014683
0002		ION ARRAY(N.N)			00014690
0003		PRECISION ARRAY			00014700
0004	DO 604	I = 1 • N			00014710
0005		= ARRAY(I,I)			00014720
0006		I,I) = 1.			00014730
0007	00 601	J=1,N			00014740
0008	601 ARRAY(I,J = ARRAY(I,J)/STOR	E		00014750
0009	DO 604	K=1,N			00014760
0010	IF(K-1	1602,604,602			00014770
0011	602 STORE	= ARRAY(K,I)			00014780
0012	ARRAY (I	(,I) = 0.			00014790
0013	00 603				00014800
0014	603 ARRAY(I	(,J) = ARRAY(K,J) - ST	ORE #ARRAY (I, J)		00014810
0015	604 CONTIN	JE	·		00014820
0016	RETURN	•			00014830
0017	END				00014840

0001		SUBROU	TINE TR	MSTR(A,N,ND,NLD,NRD,NED,D,R,E)	00014850
	С				00014860
	C T	RMSTR IS	THE SU	BROUTINE TRIMSS WITH MATRIX A TRANSPOSED.	00014870
	С			TANEOUS SOLUTIONS IS GAUSSIAN ELIMINATION,	00014880
	С			TO TAKE ADVANTAGE OF THE REDUCED MATRIX. THE	00014890
	С	RO	UTINE A	LSO USES PARTIAL PIVOTING TO REDUCE ROUNDOFF ERROR.	00014900
	С	INPUT			00014910
	C	1	A	FIRST LOCATION OF COEFFICIENT MATRIX, I.E. A(1,1).	00014920
	C			THE BAND ELEMENTS IN EACH ROW MUST BE LEFT	00014930
	C C			JUSTIFIED AND EXTEND TO THE RIGHT M PLACES (M=MIN(N,NLD+NRD+1). IF IN ANY PARTICULAR ROW	00014940 00014950
	č			THERE ARE ONLY K BAND ELEMENTS AND K IS LESS	00014960
	č			THAN M, THEN THE M-K RIGHT MOST ELEMENTS OF THAT	00014970
	č			ROW WILL BE SET TO ZERO. THE ROW WHOSE LEFT	00014980
	č			MOST COLUMN IN THE FULL BLOWN MATRIX CONTAINS	00014990
	č			A NON-ZERO ELEMENT MUST BE THE FIRST ROW OF THE	00015000
	Č			REDUCED MATRIX AND ETC. THE COLUMN TO THE	00015010
	С			IMMEDIATE RIGHT OF THE REDUCED MATRIX (FORMED AS	00015020
	С			ABOVE) MUST CONTAIN THE RIGHT HAND SIDE OF THE	00015030
	С			EQUATION SET IN QUESTION. IT SHOULD NOW BE	00015040
	С			OBVIOUS THAT AN N X N+1 FULL BLOWN SYSTEM WOULD	00015050
	C			BE REDUCED BY THE ABOVE METHOD TO AN N X M+1	00015060
	C	_		SYSTEM.	00015070
	C	2	N	NUMBER OF SIMULTANEOUS EQUATIONS TO BE SOLVED.	00015080
	C C	3	NÐ	VARIABLE DIMENSION INTEGER. MUST BE EQUAL TO ROW DIMENSION OF A IN CALLING PROGRAM.	00015090 00015100
	C	4	NLD	MAXIMUM NUMBER OF BAND ELEMENTS TO THE LEFT	00015100
	C	7	NLU	OF PRINCIPAL DIAGONAL IN ANY ROW OF SYSTEM TO	00015110
	č			BE DETERMINED.	00015130
	č	5	NRD	MAXIMUM NUMBER OF BAND ELEMENTS TO THE RIGHT	00015140
	č	-		OF PRINCIPAL DIAGONAL IN ANY ROW OF SYSTEM TO	00015150
	c			BE DETERMINED.	00015160
	С	6	NED	NED=MIN(N, NLD+NRD+1)	00015170
	С	OUTPUT			00015180
	C	1	Δ	THE FIRST COLUMN OF A CONTAINS THE SOLUTION	00015190
	C	•		VECTOR.	00015200 00015210
	C	2	D R	CONTAINS DETERMINANT OF A. CONTAINS RANK OF A.	00015210
	C C	3 4	E	E=O., SOLUTION O.K. E=1., A SINGULAR.	00015220
	c	-7	L	E=2 SOLUTION ATTEMPTED, BUT A ILL CONDITIONED	00015240
	č			OR SINGULAR. IN THIS CASE SOLUTIONS SHOULD BE	00015250
	č			CHECKED TO ASSURE VALIDITY.	00015260
	C				00015270
	C	SUBROU	TINE TR	MSTR(A,N,ND,NLD,NRD,NED,D,R,E)	00015280
0002		DIMENS	ION A(N	D,1)	00015290
0003		DOUBLE	PRECIS	ION A,D,Y,W,S	00015300
0004		X1 = 1	•		00015310
0005		L1 = 1			00015320
0006		E=0.			00015330
0007		R = 0.			00015340 00015350
8000		D=1. ND1=NE) ± 1		00015360
0009 0010		M=NLD	,,1		00015370
0010		NM1=N-	ı		00015380
0012		DO 1 I			00015390
0013				D))M=M-1	00015400
0014		NN = I + M			00015410
0015		DO 2 I	[= I , NN		00015420

FORTRAN IV G1	RELEASE	2.0	TRMSTR	DATE = 75007	08/16/07	
0016		IF(DABS(A(1,I)).	GE.DABS(A(1,	(I+1))) GO TO 2		00015430
0017		D=-D				00015440
0018		DO 3 J=1,ND1				00015450
0019		Y=A(J, I)				00015460
0020		A(J,I)=A(J,II+1)				00015470
0021	3	A(J,II+1)=Y				00015480
0022		CONTINUE				00015490
		D=D*A(1,I)				00015500
0023		IF(A(1,I) .EQ. 0	.) GO TO 10			00015510
0024		GO TO (5,13),L1				00015520
0025	13	IF(DABS(DABS((X1	-A(1,I))/X1)-	-1.).LT.1.E-07) E=2.		00015530
0026		X1 = A(1,I)				00015540
0027		R = R + 1.				00015550
0028		L1 = 2				00015560
0029		DO 4 J=2,ND1				00015570
0030		$\Lambda(J,I)=\Lambda(J,I)$	A(1,I)			00015580
0031		K= I+1				00015590
0032		NN=I+M				00015600
0033		DO 1 II=K,NN				00015610
0034		W=A(1,II)				00015620
0035		DO 6 J=1,NED				00015630
0036		A(J,II)=A(J+1,II)				00015640
0037		A(ND1,II)=A(NED,	11)			00015650
0038		A(NED, II)=0.				00015660
0039		IF(A(1,N).EQ.O.)				00015670
0040			-A(1,N))/X1)-	-1.).LT.1.E-07) E=2.		00015680
0041		R = R + 1.				00015690
0042		A(1,N)=A(ND1,N)/	A(1,N)			00015700
0043		K=NM1				00015710
0044		NN=2	NCD			00015720
0045		IF(NN.GT.NED)NN=	NED			00015730
0046		J=K+1				00015740
0047		S=0.				00015750
0048		DO 7 I=2,NN				00015760
0049		S=S+A(1,J)*A(I,K)	. 1			00015770
0050		J=J+1	•			00015780 00015790
0051		A(1,K)=A(ND1,K)-	-2			00015790
0052		NN=NN+1 K=K-1				00015810
0053 0054		IF(K.NE.0)GO TO	ο.			00015810
0054		RETURN	U			00015820
0056		E=1.				00015840
0056		RETURN				00015850
0058		END				00015860
0000		LITO				22012000

FORTRAN IV G1 RELEASE 2.0 TRMSTR DATE = 75007 08/16/07

OPTIONS IN EFFECT NOTERM,NDID,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP,NOTEST
OPTIONS IN EFFECT NAME = TRMSTR , LINECNT = 60
STATISTICS SOURCE STATEMENTS = 58,PROGRAM SIZE = 2294
STATISTICS NO DIAGNOSTICS GENERATED

FORTRAN IV G1	RELEASE 2.	O RITE	DATE = 7500	08/16/07	
0001	su	BROUTINE RITE(IDUM, NR, NC	,MR,MC,A)		00015870
0002	DC	OUBLE PRECISION A			00015880
0003	DI	MENSION A(MR,MC)			00015890
0004	IF	RINT= 12			00015900
0005	IF	(IDUM.NE.1) IPRINT= 30			00015910
0006	IF	R= IPRINT-1			00015920
0007	DC	35 K=1,NC,IPRINT			00015930
0008	M.A	X= K+IPR			00015940
0009	IF	(MAX.GT.NC) MAX=NC			00015950
0010	IF	(K.NE.1) WRITE(6,103)			00015960
0011	45 WR	ITE(6,102) (I,I=K,MAX)			00015970
0012	DO	40 J=1,NR			00015980
0013	40 WR	ITE(6,105) J,(A(J,I),I=K,	MAX)		00015990
0014	35 CO	NTINUE			00016000
0015	RE	TURN			00016010
0016	101 FC	RMAT(6X,3014)			00016020
0017	102 F0	RMAT(6X,12I10)			00016030
0018	103 FO	RMAT(1 1)			00016040
0019	104 F0	RMAT(1,15,3014)			00016050
0020	105 FO	RMAT(' ', 15, 12G10.3)			00016060
0021	EN	D			00016070

FORTRAN IV G1 RELEASE 2.0 RITE DATE = 75007 08/16/07

```
*OPTIONS IN EFFECT* NOTERM,NOID, EBCDIC, SOURCE, NOLIST, NODECK, LOAD, NOMAP, NOTEST *OPTIONS IN EFFECT* NAME = RITE , LINECNT = 60 *STATISTICS* SOURCE STATEMENTS = 21, PROGRAM SIZE = 864 *STATISTICS* NO DIAGNOSTICS GENERATED
```

STATISTICS NO DIAGNOSTICS THIS STEP

REFERENCES

- 1. Pipes, R. Byron: Interlaminar Stresses in Composite Laminates. Air Force Technical Report AFML-TR-72-18, May 1972.
- 2. Hayashi, Tsuyoshi: Trans-Japan Soc. Aero. Space Sci., vol. 10, no. 17, 1967, p. 43.
- 3. Hayashi, Tsuyoshi; and Sando, S.: Proceeding of International Symposium on Space Technology and Science. 8th, Tokyo, Japan, Aug. 25-30, 1969, pp. 291-302.
- 4. Puppo, A. H.; and Evensen, H. A.: J. of Composite Materials, vol. 4, 1970, pp. 204-220.
- 5. Pipes, R. Byron; and Pagano, N. J.: J. of Composite Materials, vol. 4, 1970, pp. 539-548.
- 6. Pagano, N. J.; and Pipes, R. B.: J. of Composite Materials, vol. 5, 1971, pp. 51-57.
- 7. Oplinger, Donald W.: Edge Effects in Angle Ply Composites. Army Technical Report AMMRC TR-71-62, Dec. 1971.
- 8. Rybicki, E. F.: J. of Composite Materials, Vol. 5, 1971, pp. 354-360.
- 9. Ashton, J. E.; and Whitney, J. M.: Theory of Laminated Plates. Technomic Pub. Co., Stamford, Conn., 1970, p. 7.
- 10. U. S. Air Force Composite Materials Design Guide.
- 11. Lekhnitskii, S. G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, Inc., San Francisco, 1963, p. 103.
- 12. Calcote, Lee R.: The Analysis of Laminated Composite Structures. Van Nostrand-Reinhold Co., New York, 1969, p. 64.
- 13. Forsythe, George E.; and Wasow, Wolfgang R.: Finite-difference Methods for Partial Differential Equations. John Wiley, New York, 1960.
- 14. Segui, William T.: Computer Programs for the Solution of Systems of Linear Algebraic Equations. NASA CR-2173, Jan. 1973, pp. 98 and 170.

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK

889 001 C1 U C 750905 S00903DS DEPT OF THE AIR FORCE AF WEAPONS LABCRATORY ATTN: TECHNICAL LIBRARY (SUL) KIRTLAND AFE NM 87117

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546