First import all libraries

```
In [71]:
         %pylab
         %matplotlib inline
         import pandas as pd
         import seaborn as sns
         sns.set(style="white")
         # import library for ML
         import sklearn
         from sklearn import preprocessing
         from sklearn.model selection import train test split
         from sklearn.metrics import accuracy_score
         from sklearn.model selection import cross val score
         from sklearn.metrics import confusion matrix
         from sklearn import svm
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn import tree
         Using matplotlib backend: MacOSX
         Populating the interactive namespace from numpy and matplotlib
         /Users/ashrafulislam/anaconda3/lib/python3.7/site-packages/IPython/core/magic
         s/pylab.py:160: UserWarning: pylab import has clobbered these variables:
         ['f', 'clf']
          %matplotlib` prevents importing * from pylab and numpy
           "\n`%matplotlib` prevents importing * from pylab and numpy"
```

Data Acquision and Cleaning

We will describe data collection and cleaning part here. We have collected two datasets, one for **heart-disease-death** and another one for **Social Vulnerability Index (SVI)**.

Heart rate disease dataset

Read data

This data has several columns. However, for our purpose, the final data will have three columns: COUNTY, STATE, RATE (death rate from heart disease per 10,000 people)

```
In [72]: hd filename = "./Heart Disease Mortality Data Among US Adults 35 by State T
         erritory and County.xls"
         df xls = pd.read excel(hd filename) # original dataset
         # get data for 'overall' gender and 'overall' ethnicity
         df xls = df xls[(df xls['Stratification1']=='Overall') & (df xls['Stratificati
         on2']=='Overall')]
         print("Column names in the original dataset")
         print(df xls.columns)
         Column names in the original dataset
         Index(['Year', 'LocationAbbr', 'LocationDesc', 'GeographicLevel', 'DataSourc
         e',
                'Class', 'Topic', 'Data_Value', 'Data_Value_Unit', 'Data_Value_Type',
                'Data_Value_Footnote_Symbol', 'Data_Value_Footnote',
                'StratificationCategory1', 'Stratification1', 'StratificationCategory
         2',
                'Stratification2', 'TopicID', 'LocationID', 'Location 1'],
               dtype='object')
```

Clean data

```
In [73]: df = pd.DataFrame()
    df['COUNTY'] = df_xls.LocationDesc.apply(lambda name: name.lower().replace("co
    unty", "").strip())
    df['STATE'] = df_xls.LocationAbbr
    df['RATE'] = df_xls.Data_Value
    df_hr = df.dropna() # clean data
    df_hr = df_hr.sort_values(by=['STATE', 'COUNTY'])
    df.head()
```

Out[73]:

	COUNTY	STATE	RATE
0	aleutians east	AK	105.3
1	aleutians west	AK	211.9
2	anchorage	AK	257.9
3	bethel	AK	351.6
4	bristol bay	AK	NaN

SVI data

Read data

```
In [74]: svi_filename = "./SVI2014_US_CNTY.csv"
    df_xls_svi = pd.read_csv(svi_filename)
```

Clean Data

This is a large dataset. The metrics that will be in the analysis:

- 1. EP POV (person below povert estimate),
- 2. EP_UNEMP (civilian unemployed),
- 3. EP PCI (per capita income),
- 4. EP_NOHSDP (person with no high school diploma),
- 5. EP_AGE65 (person age 65+),
- 6. EP_AGE17 (17+),
- 7. EP SNGPNT (single parent household with one children),
- 8. EP_MINRTY (minority estimate except white, non-hispanic),
- 9. EP_LIMENG (person who speaks English less than well),
- 10. EP NOVEH (household with no vehicle),
- 11. EP_GROUPQ (person in group quarters),
- 12. E_TOTPOP (total population).

All values are in percentage [0-100] except E_TOTPOP and EP_PCI.

```
In [75]: columns_to_chose = ["ST_ABBR", "COUNTY", "E_TOTPOP", "EP_POV", "EP_UNEMP", "EP
_PCI", "EP_NOHSDP", "EP_AGE65", "EP_AGE17", "EP_SNGPNT", "EP_MINRTY", "EP_LIME
NG", "EP_NOVEH", "EP_GROUPQ"]
df_svi = df_xls_svi.filter(columns_to_chose).dropna()
df_svi['COUNTY'] = df_xls_svi.COUNTY.apply(lambda name: name.lower().replace(
    "county", "").strip())
df_svi = df_svi.rename(columns={"ST_ABBR": "STATE"})
df_svi = df_svi.sort_values(by=['STATE', 'COUNTY'])
df_svi.head()
```

Out[75]:

	STATE	COUNTY	E_TOTPOP	EP_POV	EP_UNEMP	EP_PCI	EP_NOHSDP	EP_AGE65	EP_
67	AK	aleutians east	3296.0	16.4	2.2	27122.0	20.5	5.1	
68	AK	aleutians west	5650.0	8.9	2.7	32700.0	14.5	5.7	
69	AK	anchorage	298178.0	8.3	6.9	36508.0	7.5	8.1	
70	AK	bethel	17576.0	23.7	17.3	18875.0	19.8	6.2	
71	AK	bristol bay	995.0	7.2	5.5	37012.0	8.8	6.7	
4									•

Show correlation among different metrics

Here, we show correlation among different columns of the dataset

Out[76]: <matplotlib.axes._subplots.AxesSubplot at 0x1a226b92d0>

From the heatmap, we can have some interesting findings:

- There is high correlation between EP_UNEMP and EP_POV, *i.e.*, poverty and unemploymet rate highly correlates. Same goes for poverty vs no-high-school-diploma.
- High correlation between minority population (EP_MINRTY) and limited English (EP_LIMENG), minority population and no vehicle in household(EP_NOVEH), minority population and single parent household (EP_SNGPNT)
- High correlation between single parent household and poverty, which is interesting, as this is generally reversed in developing nations.

Merge two datasets

In this section, we merge two datasets together. We only filter those values that are common in both datasets.

```
In [77]: # Merge two different datasets along 'STATE' and 'COUNTY'
df_merge = pd.merge(df_hr, df_svi, on=['COUNTY', 'STATE'])
df_merge = df_merge.dropna()
```

Correlation with Heart-disease-death-rate

Here, we show the correlation between different factors in SVI with heart-disease-death-rate

HEART-DISEASE-RATE

Some findings from the heat-map:

- Heart-disease-death-rate highly correlates with poverty and no-high-school-diploma-household
- Heart-disease-death-rate inversely correlates with per-capita-income and limited-English-speakingability

Machine Learning Part

Data Preprocessing

```
In [79]: # Convert heart rate disease values to categorical values
         df_merge['RATE_CAT'] = pd.cut(df_merge.RATE.values, bins=[0, 320, 420, 800],
                     labels=["low", "medium", "high"])
         df merge['RATE CAT'].value counts(sort=False)
Out[79]: low
                   373
         medium
                   483
         high
                   254
         Name: RATE CAT, dtype: int64
In [80]: # get feature and target
         feature_columns = ["E_TOTPOP", "EP_POV", "EP_UNEMP", "EP_PCI", "EP_NOHSDP", "E
         P_AGE65", "EP_AGE17", "EP_SNGPNT", "EP_MINRTY", "EP_LIMENG", "EP_NOVEH", "EP_G
         ROUPQ"]
         target column = ["RATE CAT"]
         X = df_merge.loc[:, feature_columns]
         X_scale = preprocessing.scale(X)
         Y = df merge.loc[:, target column].values.ravel()
         le = preprocessing.LabelEncoder()
         Y = le.fit_transform(Y)
         n target = len(np.unique(Y))
In [81]: # test train split
         X train, X test, Y train, Y test = train test split(X scale, Y, test size=0.3,
         random state=1)
         print("train sample: ", X_train.shape[0])
         print("test sample: ", X_test.shape[0])
         train sample: 777
         test sample: 333
```

SVM Classification

Accuracy: 0.663663663663637

From SVM classifier, we can get around 67% classification accuracy

```
In [84]: # helper function
         from sklearn.utils.multiclass import unique labels
         def plot confusion matrix(y true, y pred, classes,
                                    normalize=False,
                                    title=None,
                                    cmap=plt.cm.Blues):
              .. .. ..
             This function prints and plots the confusion matrix.
             Normalization can be applied by setting `normalize=True`.
             if not title:
                  if normalize:
                      title = 'Normalized confusion matrix'
                  else:
                      title = 'Confusion matrix, without normalization'
             # Compute confusion matrix
             cm = confusion_matrix(y_true, y_pred)
             # Only use the labels that appear in the data
             classes = classes[unique labels(y true, y pred)]
             if normalize:
                  cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                  print("Normalized confusion matrix")
                  print('Confusion matrix, without normalization')
             print(cm)
             fig, ax = plt.subplots(figsize=(5,5))
             im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
             ax.figure.colorbar(im, ax=ax)
             # We want to show all ticks...
             ax.set(xticks=np.arange(cm.shape[1]),
                     yticks=np.arange(cm.shape[0]),
                     # ... and label them with the respective list entries
                     xticklabels=classes, yticklabels=classes,
                     title=title,
                     ylabel='True label',
                     xlabel='Predicted label')
             # Rotate the tick labels and set their alignment.
             plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
                       rotation mode="anchor")
             # Loop over data dimensions and create text annotations.
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i in range(cm.shape[0]):
                 for j in range(cm.shape[1]):
                      ax.text(j, i, format(cm[i, j], fmt),
                              ha="center", va="center",
                              color="white" if cm[i, j] > thresh else "black")
             fig.tight_layout()
             plt.autoscale()
             return ax
```

Plot Confusion-matrix

K-NN Classifier

```
In [86]: clf = KNeighborsClassifier(n_neighbors=10)
    clf.fit(X_train, Y_train)

y_pred = clf.predict(X_test)
    _score = accuracy_score(Y_test, y_pred, normalize=True)
    print("Accuracy : ", _score)
```

Accuracy: 0.663663663663637

```
In [87]: clf = tree.DecisionTreeClassifier()
    clf.fit(X_train, Y_train)

y_pred = clf.predict(X_test)
    _score = accuracy_score(Y_test, y_pred, normalize=True)
    print("Accuracy : ", _score)
```

Accuracy: 0.5255255255256

SVM and K-NN seem to work best for this problem