POLITECHNIKA POZNAŃSKA WYDZIAŁ ELEKTRYCZNY

Instytut Matematyki

PRACA DYPLOMOWA MAGISTERSKA

TESTY PIERWSZOŚCI LICZB I ICH ZASTOSOWANIA W KRYPTOGRAFII

Małgorzata Lipińska

Promotor:

dr hab. Małgorzata Migda

KARTA PRACY DYPLOMOWEJ Z

DZIEKANATU (kserokopia z podpisami)

Podziękowania

Składam serdecznie podziękowania moim rodzicom,

Spis treści

Ws	tęp .			11		
1.	Licz	by pier	wsze	13		
	1.1.	Zasad	nicze twierdzenie arytmetyki i twierdzenie Euklidesa	13		
	1.2.	Twier	dzenie i algorytm Euklidesa	17		
	1.3. Kongruencje i ich zastosowania					
	1.4. Sito Eratostenesa, Atkina i Sundarama					
	1.5.	Spiral	a Ulama	26		
	1.6.	Twier	dzenie Wilsona i małe twierdzenie Fermata	27		
	1.7.	Własn	ności liczb pierwszych	31		
2.	Test	y pierw	vszości liczb	35		
	2.1.	Testy	deterministyczne	35		
		2.1.1.	Metoda naiwna	35		
		2.1.2.	Test pierwszości AKS	36		
		2.1.3.	Test pierwszości APR	39		
		2.1.4.	Test Lucasa-Lehmera	39		
	2.2.	Testy	probabilistyczne	39		
		2.2.1.	Test pierwszości Fermata	39		
		2.2.2.	Test pierwszości Lehmana	41		
		2.2.3.	Test pierwszości Solovaya-Strassena	42		
		2.2.4.	Test pierwszości Millera-Rabina	44		
		2.2.5.	Chiński test pierwszości	45		
3.	Zast	osowan	nia w kryptografii	47		
Skr	ypty	z prog	gramu Matlab	49		
	Sito	Eratos	tenesa	49		
	Sito	Sunda	rama	49		
	Funl	kcja Eu	llera	50		
	Rząc	d multi	plikatywny	50		
	Meto	oda nai	iwna	51		
	Tost	niorwe	ezości AKS	52		

Test pierwszości Fermata	54
Test pierwszości Lehmana	55
Test pierwszości Solovaya-Strassena	55
Test pierwszości Millera-Rabina	56
Bibliografia	59

Spis oznaczeń:

Wstęp

1. Liczby pierwsze

Poniższy rozdział jest zbiorem najważniejszych pojęć i twierdzeń związanych z liczbami pierwszymi oraz ich własnościami.

1.1. Zasadnicze twierdzenie arytmetyki i twierdzenie Euklidesa

Jednym z najważniejszymi twierdzeń dotyczących liczb pierwszych jest zasadnicze twierdzenie arytmetyki. Jego wprowadzenie i udowodnienie wymaga zdefiniowania kilku podstawowych pojęć z zakresu teorii liczb, które zostaną omówione w tym podrozdziale.

Definicja 1.1. [2, s. 3] $Liczba\ całkowita\ b\ jest\ podzielna\ przez\ liczbe\ całkowita\ a$, jeśli istnieje taka liczba całkowita e, że zachodzi b=ae. Wtedy liczba a jest dzielnikiem liczby b, z kolei o liczbie b mówi się, że jest wielokrotnością a.

Jeśli liczba b jest podzielna przez a (a dzieli b), to używa się oznaczenia $a \mid b$, natomiast w przeciwnym przypadku stosuje się oznaczenie $a \nmid b$.

Definicja 1.2. Liczbą pierwszą nazywa się liczbę naturalną większą od 1, która ma dokładnie dwa dzielniki: jedynkę i samą siebie.

Zbiór wszystkich liczb pierwszych oznacza się literą \mathbb{P} . Liczbą złożoną jest więc liczba, która ma więcej niż dwa dzielniki. Warto zauważyć, że 1 nie jest liczbą ani pierwszą, ani złożoną.

Definicja 1.3. Najmniejsza wspólna wielokrotność dla zadanych liczb całkowitych to najmniejsza liczba naturalna, którą dzieli się bez reszty przez każdą z tych liczb.

Najmniejszą wspólną wielokrotność liczba i b oznacza się symbolem NWW(a,b), np. NWW(2,15)=30.

Definicja 1.4. Największy wspólny dzielnik dla zadanych dwóch lub więcej liczb całkowitych to największa liczba naturalna, która dzieli każdą z tych liczb.

Największy wspólny dzielnik liczb a i b oznaczany jest symbolem NWD(a,b), np. NWD(18,15)=3.

Definicja 1.5. Liczby względnie pierwsze to liczby całkowite, których największym wspólnym dzielnikiem jest liczba 1.

Jeśli dwie liczby a i b są względnie pierwsze to zapisuje się to jako NWD(a,b)=1 lub (a,b)=1.

Lemat 1.1. (Euklides) [5, s. 10] Jeśli liczba pierwsza p dzieli iloczyn ab, to dzieli przynajmniej jeden z tych czynników. Inaczej, jeśli $p \in \mathbb{P}$ oraz $p \mid ab$, to $p \mid a$ lub $p \mid b$.

Dowód. Przyjmijmy, że $p \nmid a$, czyli NWD(a, p) = 1, gdyż $p \in \mathbb{P}$. Wtedy $p \mid b$.

Lemat 1.2. [2, s. 9] Jeżeli $p \in \mathbb{P}$ i $p \mid a_1 \cdot ... \cdot a_n$, to istnieje $k \ (1 \le k \le n)$, takie że $p \mid a_k$.

Dowód. Dowód wynika wprost z dowodu Lematu 1.1. Iloczyn $a_1 \cdot \ldots \cdot a_n$ można przedstawić w postaci $(a_1 \cdot \ldots \cdot a_{n-1})a_n$. Wtedy $p \mid (a_1 \cdot \ldots \cdot a_{n-1})a_n$, czyli z poprzedniego dowodu $p \mid a_1 \cdot \ldots \cdot a_{n-1}$ lub $p \mid a_n$. Zasadę tą można uogólnić dla dowolnego k $(1 \leq k \leq n)$. Wtedy $p \mid a_k \cdot \prod_{i \neq k}^n a_i$, a więc $p \mid \prod_{i \neq k}^n a_i$ lub $p \mid a_k$.

Lemat 1.3. [2, s. 9] Jeśli liczby $p, q_1, ..., q_n \in \mathbb{P}$ oraz $p \mid q_1 \cdot ... \cdot q_n$, to $p = q_k$ dla pewnego k, gdzie $1 \leq k \leq n$.

Dowód. Z Lematu 1.2 wiadomo, że istnieje takie k, że $p \mid q_k$, ale $q_k \in \mathbb{P}$ oraz p > 1, skąd wynika, że $p = q_k$.

Trzy powyższe lematy to lematy pomocnicze, które posłużą do udowodnienia zasadniczego twierdzenia arytmetyki, mówiącego o tym, że liczby pierwsze są czynnikami, na które można rozłożyć wszystkie złożone liczby naturalne.

Twierdzenie 1.1. (Zasadnicze twierdzenie arytmetyki) [2, s. 10] Każdą liczbę naturalną większą od 1, która nie jest liczbą pierwszą, można jednoznacznie przedstawić w postaci iloczynu liczb pierwszych.

Dowód. Dowód powyższego twierdzenia należy podzielić na dwie części. Pierwsza dotyczyć będzie istnienia rozkładu, a druga jego jednoznaczności.

Istnienie rozkładu. Załóżmy, że liczba n jest liczba złożoną. Wtedy

$$D = \{ d \in N, 1 < d < n, d \mid n \}$$

jest niepustym zbiorem dzielników liczby n. Niech p_1 będzie najmniejszą liczbą zawartą w tym zbiorze. Zatem p_1 jest liczbą pierwszą, gdyż w przeciwnym przypadku istniałoby $q < p_1$ takie, że q > 1 i $q \mid p_1$, co byłoby sprzeczne z wyborem p_1 . Stąd wynika, że

$$n = p_1 \cdot n_1$$

gdzie $1 < n_1 < n$. Jeżeli liczba $n_1 \in \mathbb{P}$, to żądany rozkład został osiągnięty, w przeciwnym wypadku rozumowanie należy powtórzyć dla n_1 , skąd dostajemy

$$n = p_1 \cdot p_2 \cdot n_1,$$

gdzie $1 < n_2 < n_1, p_1, p_2 \in \mathbb{P}$. Na koniec uzyskuje się rozkład

$$n = p_1 \cdot \ldots \cdot p_k$$

ponieważ $n_1 > n_2 > ... > 1$ jest malejącym ciągiem liczb naturalnych, czyli jest ciągiem skończonym.

Jednoznaczność rozkładu. Załóżmy przeciwnie, że rozkład nie jest jednoznaczny, czyli $n=p_1\cdot\ldots\cdot p_r=q_1\cdot\ldots\cdot q_s,\ (r\leqslant s),$ gdzie p_i i q_j dla i=1,2,...,r i j=1,2,...,s są pierwsze i uporządkowane niemalejąco. Ponieważ $p_1\mid q_1...q_s,$ zatem z Lematu 1.3 wynika, że $p_1=q_k$ dla pewnego k, gdzie $1\leqslant k\leqslant s,$ skąd wynika, że $p_1\geqslant q_1.$ Analogicznie $q_1\mid p_1...p_r,$ więc $q_1\geqslant p_1,$ czyli $p_1=q_1.$ Dzieląc początkową równość przez $p_1=q_1$ i powtarzając to samo rozumowanie dla kolejnych czynników obu rozkładów, otrzymujemy

$$1 = q_{r+l} \cdot \dots \cdot q_s,$$

jeśli r < s. Jest to sprzeczne dla $q_{r+l}, ..., q_s \in \mathbb{P}$, a więc r = s oraz $p_i = q_i$ dla każdego i = 1, 2, ..., r, czyli rozkład jest jednoznaczny.

Z Zasadniczego Twierdzenia Arytmetyki 1.1 wynika bezpośrednio poniższy wniosek.

Wniosek 1.1. [2, s. 10] Każda liczba naturalna n>l może być jednoznacznie zapisana w postaci kanonicznej

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_r^{\alpha_r},$$

gdzie $p_i \in \mathbb{P}, \ \alpha_i \in \mathbb{N}$ dla każdego i=1,2,...,r oraz $p_1 < p_2 < ... < p_r$.

Do obliczania NWW i NWD stosuje się najczęściej rozkład badanych liczb na iloczyn liczb pierwszych.

Przykład 1.1. Obliczyć NWW i NWD liczb 123 i 567.

Rozkład danych liczb na czynniki pierwsze:

$$123 = 3 \cdot 41,$$

$$567 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 7.$$

Aby obliczyć NWW(a, b) należy pomnożyć wszystkie czynniki pierwsze liczby a i czynniki pierwsze liczby b, które się nie powtarzają przy rozkładzie a.

$$NWW(123, 567) = 3 \cdot 41 \cdot 3 \cdot 3 \cdot 3 \cdot 7 = 3^4 \cdot 7 \cdot 41 = 23247.$$

NWD(a,b) to iloczyn czynników pierwszych, które powtarzają się w rozkładzie liczby a i b.

$$NWS(123, 567) = 3.$$

Wniosek 1.2. [5, s. 8]

$$NWD(a, b) \cdot NWW(a, b) = ab.$$

Dowód. Niech

$$a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_n^{\alpha_n},$$

$$b = p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot \dots \cdot p_n^{\beta_n},$$

będą rozkładami liczba i b na czynniki pierwsze. Wówczas

$$NWD(a,b) = p_1^{\min(\alpha_1,\beta_1)} \cdot p_2^{\min(\alpha_2,\beta_2)} \cdot \dots \cdot p_n^{\min(\alpha_n,\beta_n)},$$

$$NWW(a,b) = p_1^{\max(\alpha_1,\beta_1)} \cdot p_2^{\max(\alpha_2,\beta_2)} \cdot \dots \cdot p_n^{\max(\alpha_n,\beta_n)}.$$

Po pomnożeniu $NWD(a,b) \cdot NWW(a,b)$ otrzymano

$$\begin{split} p_1^{\min(\alpha_1,\beta_1)+\max(\alpha_1,\beta_1)} & \cdot p_2^{\min(\alpha_2,\beta_2)+\max(\alpha_2,\beta_2)} \cdot \ldots \cdot p_n^{\min(\alpha_n,\beta_n)+\max(\alpha_n,\beta_n)} = \\ & = p_1^{\alpha_1+\beta_1} \cdot p_2^{\alpha_2+\beta_2} \cdot \ldots \cdot p_n^{\alpha_n+\beta_n} = \\ & = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_n^{\alpha_n} \cdot p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot \ldots \cdot p_n^{\beta_n} = a \cdot b. \end{split}$$

1.2. Twierdzenie i algorytm Euklidesa

Euklides, żyjący około 300 roku p.n.e., to grecki matematyk pochodzący z Aten, uczeń Akademii Platońskiej i wykładowca w słynnej Szkole Aleksandryjskiej. Zaliczany jest do grona największych matematyków w historii, znany głównie jako twórca podstaw geometrii klasycznej. Jego największym dziełem są *Elementy*, które stanowią jedną z pierwszych prac teoretycznych z matematyki. Podręcznik ten zawiera między innymi dwa klasyczne i bardzo ważne pojęcia z zakresu teorii liczb twierdzenie Euklidesa o liczbach pierwszych i algorytm pozwalający znaleźć największy wspólny dzielnik dwóch liczb naturalnych.

Twierdzenie 1.2. (Euklides) [5, s. 5] Istnieje nieskończenie wiele liczb pierwszych.

Powstało kilkanaście dowodów twierdzenia 1.2. Poniżej przedstawiono pierwszy z nich, który został sformułowany w IV wieku p.n.e. przez Euklidesa w *Elementach*. **Dowód.** Załóżmy, że istnieje skończony zbiór liczb pierwszych ponumerowanych kolejno $p_1, p_2, ..., p_k$. Rozważmy liczbę

$$n = p_1 p_2 ... p_k + 1.$$

Z Twierdzenia 1.1 wynika, że n może być liczbą pierwszą różną od wszystkich p_i lub ma rozkład na czynniki pierwsze. Załóżmy, że jednym z tych czynników jest p. Liczba n przy dzieleniu przez każde z p_i daje resztę 1, więc p jest różne od wszystkich p_i . Z tego wynika, że albo p jest pierwsze lub samo n jest kolejną liczbą pierwszą, większą od każdego p_i , co jest sprzeczne z założeniem.

Definicja 1.6. Algorytm Euklidesa to szybki sposób wyznaczania największego wspólnego dzielnika dwóch liczb naturalnych.

Do zrozumienia działania powyższego algorytmu potrzebne będzie zdefiniowanie pojęcia reszty z dzielenia.

Definicja 1.7. [5, s. 8] Dla dowolnej liczby całkowitej n i dowolnej liczby naturalnej k istnieje tylko jedna para liczb całkowitych q i r taka, że

$$n = qk + r$$
, gdzie $0 < r < k - 1$.

Liczbę r nazywa się wtedy resztą z dzielenia.

Zasadę działania algorytmu Euklidesa najlepiej wyjaśnić przy pomocy przykładu.

Przykład 1.2. Za pomocą algorytmu Euklidesa wyznaczyć NWD(1628, 374). Działanie algorytmu przebiega następująco:

$$1628 = 4 \cdot 374 + 132$$
$$374 = 2 \cdot 132 + 110$$
$$132 = 1 \cdot 110 + 22$$
$$110 = 5 \cdot 22 + 0.$$

Ostatnia niezerowa reszta jest szukanym największym wspólnym dzielnikiem badanych liczb. W przypadku powyższego przykładu NWD(1628, 374) = 22.

Lemat 1.4. (Bézout) [5, s. 9] Niech NWD(a, b) = d. Wówczas istnieją dwie liczby całkowite k i l takie, że

$$d = ka + lb$$
.

Dowód. Niech a i b będą niezerowymi liczbami całkowitymi, a K oznacza zbiór wszystkich dodatnich liczb całkowitych postaci am + bn, gdzie $m, n \in \mathbb{Z}$. Zbiór K jest niepusty, więc istnieje w nim element najmniejszy d, gdzie d = ax + by. Zgodnie z algorytmem dzielenia z resztą, istnieją takie liczby $q, r \in \mathbb{Z}$, dla których zachodzi a = qd + r, przy czym $0 \le r < d$. Z drugiej strony

$$r = a - qd = a - q(ax + by) = a - aqx - bqy = a(1 - qx) + b(-qy).$$

Jeżeli 0 < r < d, to znaczy, że $r \in K$, co jest sprzeczne ze stwierdzeniem, że d jest najmniejszym elementem w K. Stąd r = 0, a z tego wynika, że a = qd, a to oznacza, że d|a. Podobnie można wykazać, że d|b, skąd wynika, że d jest wspólnym dzielnikiem dla a i b. Jeśli c jest innym wspólnym dzielnikiem liczb a i b, to c dzieli również ax + by = d, co z definicji oznacza, że d = NWD(a, b).

Wniosek 1.3. Niech a i b są względnie pierwsze, czyli NWD(a,b)=1, to istnieją dwie liczby całkowite k i l takie, że

$$ka + lb = 1$$
.

1.3. Kongruencje i ich zastosowania

W poniższym rozdziale zawarte zostały najważniejsze informacje i twierdzenia związane z kongruencją. Pojęcia te będą wykorzystywane w dalszej części pracy.

Definicja 1.8. [4, s. 41] Niech n będzie dowolną liczbą naturalną. Liczby całkowite a i b przystają modulo n, jeżeli ich różnica a-b jest podzielna przez n. Symbolicznie zapisuje się to jako

$$a \equiv b \pmod{n}$$
.

Relację tą nazywamy kongruencją lub przystawaniem modulo.

Kongruencja jest relacją równoważności. Jest ona

I. Zwrotna, ponieważ każda liczba przystaje sama do siebie

$$a \equiv a \pmod{n}$$
.

Dowód. Wystarczy zauważyć, że a-a=0 jest podzielna przez każde $n\in\mathbb{N}$.

II. Symetryczna, gdyż kongruencja

$$a \equiv b \pmod{n} \Leftrightarrow b \equiv a \pmod{n}$$
.

Dowód. Jeżeli a-b=kn, gdzie $k\in\mathbb{Z}$, to b-a=-kn. Stąd wynika, że $a\equiv b\pmod{n}$.

III. Przechodnia, ponieważ zachodzi

$$(a \equiv b \pmod{n} \land b \equiv c \pmod{n}) \Rightarrow a \equiv c \pmod{n}.$$

Dowód. Wiadomo, że $a-b\equiv 0\pmod n$ i $b-c\equiv 0\pmod n$. Opierając się na tożsamości

$$a - c = (a - b) + (b - c)$$

otrzymujemy, że $a - c \equiv 0 \pmod{n}$, skąd wynika, że $a \equiv c \pmod{n}$.

Twierdzenie 1.3. [3, s. 37] Relacja kongruencji spełnia następujące własności:

(i) Jeżeli $a \equiv b \pmod{n}$ oraz $c \equiv d \pmod{n}$, to

$$a + c \equiv b + d \pmod{n}$$
,

$$a - c \equiv b - d \pmod{n}$$
,

$$ac \equiv bd \pmod{n}$$
.

- (ii) Kongruencja $a \equiv b \pmod{n}$ zachodzi wtedy i tylko wtedy, $gdy \ n|(a-b)$.
- (iii) Jeżeli $ab \equiv ac \pmod{n}$ i (a, n) = 1, to $b \equiv c \pmod{n}$.
- (iv) Jeżeli $a \in \mathbb{N}$ i $ab \equiv ac \pmod{an}$, to $b \equiv c \pmod{n}$.
- (v) Jeżeli $a \equiv b \pmod{n}$ to $a^k \equiv b^k \pmod{n}$.

Dowód. (i) Wiemy, że a-b=hn i c-d=gn, gdzie $g,h\in\mathbb{Z}$. Z tożsamości

$$(a+c) - (b+d) = (a-b) + (c-d) = (h+g)n,$$

wynika, że

$$(a+c)-(b+d) \equiv 0 \pmod{n} \Rightarrow a+c \equiv b+d \pmod{n}$$

Podobnie dla odejmowania prawdziwa jest tożsamość

$$(a-c) - (b-d) = (a-b) - (c-d) = (h-g)n,$$

skąd wynika, że

$$(a-c)-(b-d) \equiv 0 \pmod{n} \Rightarrow a-c \equiv b-d \pmod{n}.$$

Opierając się na tożsamości

$$ac - bd = (a - b)c + (c - d)b = hnc + gnb = (hc + gb)n$$
,

otrzymujemy, że

$$ac - bd = 0 \pmod{n} \Rightarrow ac = bd \pmod{n}$$
.

- (ii) Jeżeli $a \equiv b \pmod{n}$ to $a-b \equiv 0 \pmod{n}$, więc a-b=hn, gdzie $h \in \mathbb{Z}$. Zachodzi n|hn, skąd wynika, że n|a-b. Dowód implikacji w drugą stronę przebiega analogicznie.
- (iii) Jeżeli $ab \equiv ac \pmod{n}$, to znaczy, że n|(b-c)a. Założenie (a,n)=1 oznacza, że $n \nmid a$, więc n|(b-c). Stąd wynika, że $b \equiv c \pmod{n}$.
- (iv) Jeżeli $ab \equiv ac \pmod{an}$, to an|a(b-c), z czego wynika, że n|(b-c), więc $b \equiv c \pmod{n}$.
- (v) Dowód indukcyjny. Dla k=1 kongruencja zachodzi. Załóżmy, że teza jest spełniona dla pewnego k. Mamy więc $a\equiv b\pmod n$ oraz $a^k\equiv b^k\pmod n$. Wykorzystując własność (i) mnożymy przez siebie obie kongruencje, otrzymując

$$aa^k \equiv bb^k \pmod{n} \Rightarrow a^{k+1} \equiv b^{k+1} \pmod{n},$$

co kończy dowód.

Stwierdzenie 1.1. [2, s. 30] Relacja kongruencji modulo m jest relacją równoważności w zbiorze liczb całkowitych \mathbb{Z} , a warstwy (klasy abstrakcji) tej relacji nazywamy klasami reszt modulo m.

Każdą liczbę całkowitą a można zapisać w postaci a=qm+r, gdzie $0 \le r < m$, więc każda liczba całkowita przystaje modulo m do jednej z liczb ze zbioru $\{0,1,...,m-1\}$. Żadne dwie liczby spośród liczb 0,1,...,m-1 nie przystają do siebie modulo m, więc zbiór postaci $\{0,1,...,m-1\}$ tworzy pełny układ reprezentantów warstw.

Definicja 1.9. [2, s. 31-32] $Petnym \ uktadem \ reszt \ modulo \ m$ nazywamy pełny układ reprezentantów klas relacji przystawania modulo m.

Definicja 1.10. Zredukowanym układem reszt modulo m nazywamy układ reprezentantów tych klas relacji przystawania modulo m, które składają się z liczb względnie pierwszych z modułem m.

Definicja 1.11. [5, s. 31] $Funkcją \varphi$ (Eulera) lub tocjentem nazywamy funkcję arytmetyczną, która każdej liczbie naturalnej m przypisuje liczbę elementów zredukowanego układu reszt modulo m.

Można zauważyć, że dla każdej liczby naturalnej m zbiór

$$\phi(m) := \{k : 1 \le k \le m, (k, m) = 1\}$$

tworzy zredukowany układ reszt modulo m.

Stwierdzenie 1.2. Funkcji Eulera ma następujące własności:

- (1) Dla każdej liczby naturalnej n > 1 zachodzi $\varphi(n) \le n 1$.
- (2) Jeśli liczby naturalne n i m są względnie pierwsze to $\varphi(nm) = \varphi(n)\varphi(m)$.
- (3) Jeśli p jest liczbą pierwszą to $\varphi(p) = p 1$.
- (4) Jeśli p jest liczbą pierwszą to $\varphi(p^k) = p^{k-1}(p-1)$.
- (5) Jeśli p i q są różnymi liczbami pierwszymi to $\varphi(pq) = (p-1)(q-1)$.
- (6) Jeśli $p_1, p_2, ..., p_k$ są wszystkimi czynnikami pierwszymi liczby n bez powtórzeń, to

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_k}\right).$$

Przykład 1.3. Obliczyć $\varphi(9)$, $\varphi(12)$, $\varphi(13)$.

Pełnym układem reszt modulo 9 jest zbiór $R = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. Jeśli usuniemy z niego wszystkie liczby, które nie są względnie pierwsze z 9, otrzymamy zbiór $R = \{1, 2, 4, 5, 7, 8\}$. Liczba elementów zbioru R jest równa 6, więc $\varphi(9) = 6$.

Pełnym układem reszt modulo 12 jest zbiór $R = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$. Usuwamy z niego wszystkie liczby, które nie są względnie pierwsze z 12 i otrzymujemy zbiór $R = \{1, 5, 7, 11\}$. Liczba elementów zbioru R wynosi 4, więc $\varphi(12) = 4$.

Wartość funkcji φ dla liczby 13 można obliczyć z własności (3) stwierdzenia 1.2:

$$\varphi(13) = 13 - 1 = 12.$$

Funkcja Eulera jest bardzo prosta do zaimplementowania w środowisku Matlab (skrypt 3.3). Poniżej przedstawiono tabelę z wynikami i czasem działania powyższej funkcji dla liczb o różnej wielkości.

Lp.	Liczba n	Wartość funkcji $\varphi(n)$	Czas działania funkcji $[s]$
1	23	22	0.023398
2	100	40	0.029472
3	567	324	0.047793
4	1000	400	0.051363
5	12345	6576	0.496064
6	123456	41088	5.326313
7	1234567	1224720	65.953887

Tabela 1.1. Wartość funkcji $\varphi(n)$ dla liczb o różnej wielkości.

Stwierdzenie 1.3. Jeśli zbiór $\{a_1, a_2, ..., a_{\varphi(m)}\}$ tworzy zredukowany układ reszt modulo m i (k, m) = 1, to zbiór $\{ka_1, ka_2, ..., ka_{\varphi(m)}\}$ także tworzy zredukowany układ reszt modulo m.

Definicja 1.12. [5, s. 15] Odwrotnością elementu a modulo n jest taki element, oznaczany przez a^{-1} , że

$$aa^{-1} \equiv 1 \pmod{n}$$
.

Twierdzenie 1.4. Liczba naturalna a jest odwracalna modulo n wtedy i tylko wtedy, gdy a i n są względnie pierwsze.

Dowód. Niech (a, n) = 1. Wtedy na mocy lematu Bézouta 1.4 dla pewnych k i l zachodzi ka + ln = 1. Korzystając z własności (i) twierdzenia 1.3 otrzymujemy

$$ka + ln = 1 \pmod{n}$$
,

skad

$$ka = 1 \pmod{n}$$
,

więc k jest odwrotnością elementu a modulo n.

Implikacja w drugą stronę: Odwracalność elementu a modulo n oznacza, że istnieje k, dla którego prawdziwa jest kongruencja $ka \equiv 1 \pmod{n}$. Wówczas $ka - 1 \equiv 0 \pmod{n}$, skąd wynika, że

$$ka - 1 = ln \Rightarrow ka + (-l)n = 1.$$

Z powyższej tożsamości wynika, że a i n są liczbami względnie pierwszymi.

1.4. Sito Eratostenesa, Atkina i Sundarama

Problem z liczbami pierwszymi polega na ich nieregularnym rozmieszczeniu pośród liczb naturalnych. Nie odkryto dotąd żadnego wzoru pozwalającego na wyszukiwanie kolejnych liczb pierwszych, ale powstało kilka metod znajdowania takich liczb w zadanym przedziale. Metody te są nazywane sitami, ponieważ aby znaleźć wszystkie liczby pierwsze mniejsze od liczby n wystarczy ze zbioru liczb naturalnych mniejszych lub równych n odsiać liczby złożone i jedynkę. Pierwszy służący do tego algorytm został przedstawiony przez Eratostenesa z Cyreny (III-II w. p.n.e.). Sito to zostało później ulepszone przez Arthura Atkina i D.J. Bernsteina. Innym, mniej znanym sitem, jest sito Sundarama.

Definicja 1.13. [1, s. 55] Sito Eratostenesa jest algorytmem wyszukiwania kolejnych liczb pierwszych z przedziału $\{2, n\}$.

Algorytm polega na usuwaniu liczb złożonych ze zbioru liczb naturalnych większych od 1 i mniejszych bądź równych n. Na początek z zadanego zbioru wybieramy liczbę najmniejszą i usuwamy wszystkie jej wielokrotności z wyjątkiem jej samej. Następnie wybieramy najmniejszą liczbę z pozostałych i znów usuwamy wielokrotności tej liczby większe od niej. Postępujemy tak dopóki liczba, której wielokrotności mamy usuwać, jest mniejsza niż \sqrt{n} . Na koniec procesu w zbiorze pozostaną tylko liczby pierwsze.

Przykład 1.4. Za pomocą sita Eratostenesa wyznaczyć wszystkie liczby pierwsze należące do zbioru $P = \{2, 3, ..., 40\}$.

I. Najmniejszą liczbą w zbiorze P jest 2, więc usuwamy wszystkie większe od 2 wielokrotności liczby 2.

$$P = \{2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39\}.$$

II. Kolejną najmniejszą liczbą w zbiorze (nie biorąc pod uwagę liczby 2) jest liczba 3, więc usuwamy wszystkie jej wielokrotności, przy czym nie usuwamy samej trójki.

$$P = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37\}.$$

III. Następną najmniejszą liczbą w zbiorze (nie biorąc pod uwagę liczb2 i 3) jest liczba 5, więc wyrzucamy ze zbioru P wszystkie jej wielokrotności, zostawiając samą 5.

$$P = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\}.$$

Krok trzeci jest ostatni, ponieważ w czwartym kroku najmniejszą liczbą, której wielokrotności musielibyśmy usunąć, jest liczba 7, ale n=40, a $\sqrt{40}\approx 6.32$. Liczba 7 jest więc większa niż 6.32, możemy zatem zatrzymać algorytm. Po trzecim kroku w zbiorze P pozostały jedynie liczby pierwsze.

Sito Eratostenesa można teoretycznie zapisać w postaci funkcji, na przykład w programie Matlab (skrypt 3.1). Poniżej przedstawiona została tabela z wynikami działania algorytmu dla przedziałów o różnej długości.

Lp.	Koniec przedziału $\{2,n\}$	Czas działania programu [s]	Liczba liczb pierwszych
1	100	0.002345	25
2	1000	0.00219	168
3	10 000	0.107349	1229
4	100 000	0.191775	9592
5	1 000 000	0.253845	78 498
6	10 000 000	6.684239	664 579
7	100 000 000	174.164354	5 761 455

Tabela 1.2. Wyniki działania funkcji szukającej liczb pierwszych sitem Eratostenesa.

Niestety w przypadku większego zakresu liczb czas oczekiwania na wynik jest bardzo długi. Na przykład przeszukiwanie zbioru liczb naturalnych {2,10000000000} może trwać już kilka godzin. Co więcej, największa znana obecnie liczba pierwsza jest o wiele większa od liczb, które można znaleźć za pomocą tego algorytmu nawet na nowoczesnych komputerach o dużej wydajności.

Definicja 1.14. [1, s. 55-56] *Sito Atkina* lub *sito Atkina-Bernsteina* to algorytm autorstwa dwóch matematyków - Arthura Atkina i D.J. Bernsteina, który służy do wyszukiwania liczb pierwszych w dużych przedziałach.

Metoda ta działa podobnie do sita Eratostenesa, jednak dzięki wykorzystaniu pewnych zależności jest efektywniejsza i wymaga znacznie mniej pamięci. Na przykład algorytm całkowicie pomija wszystkie liczby podzielne przez 2, 3 lub 5, liczby z parzystą resztą z dzielenia przez 60, liczby, które mają resztę z dzielenia przez 60 podzielną przez 3 oraz liczby z resztą z dzielenia przez 60 podzielną przez 5. Pierwszość pozostałych liczb rozpatrywana jest na podstawie ich reszty z dzielenia przez liczbę 12. Jeżeli wynosi ona:

- 1 lub 5 liczba jest pierwsza, jeśli liczba rozwiązań równania $4x^2 + y^2 = n$ (gdzie n jest analizowaną przez nas liczbą, a x i y to dowolne liczby naturalne) jest nieparzysta, a n nie jest kwadratem innej liczby naturalnej,
- 7 liczba jest pierwsza, jeśli liczba rozwiązań równania $3x^2 + y^2 = n$ (gdzie n to analizowana przez nas liczba, a x i y to dowolne liczby naturalne) jest nieparzysta, a n nie jest kwadratem innej liczby naturalnej,
- 11 liczba jest pierwsza, jeśli liczba rozwiązań równania $3x^2 \, \dot{} y^2 = n$ (gdzie n to analizowana przez nas liczba, a x i y to dowolne liczby naturalne i x > y) jest nieparzysta, a n nie jest kwadratem innej liczby naturalnej.

Definicja 1.15. [1, s. 55] *Sito Sundarama* to prosty algorytm autorstwa XX-wiecznego indyjskiego matematyka Sundarama, który służy do wyszukiwania liczb pierwszych przedziale $\{1, n\}$.

Algorytm przebiega w następujący sposób:

- I. Wybieramy przedział $\{1, n\}$.
- II. Z zadanego przedziału usuwamy liczby obliczone wzorem l=i+j+2ij, gdzie $i,j\in\mathbb{N},\,1\leq i\leq j$ oraz $i+j+2ij\leq n$.
- III. Pozostałe liczby ze zbioru mnożymy przez 2 i dodajemy 1.

Po przeprowadzeniu algorytmu uzyskujemy listę liczb pierwszych z przedziału $\{3, 2n+1\}$.

Sito Sundarama można zapisać w postaci funkcji, na przykład w programie Matlab (skrypt 3.2). Poniższa tabela zawiera wyniki działania sita Sundarama dla przedziałów o różnej długości.

Lp.	Koniec przedziału $\{1, n\}$	Czas działania programu $[s]$	Liczba liczb pierwszych
			w przedziale $\{2, 2n+1\}$
1	50	0.000764	26
2	500	0.000663	168
3	5000	0.001613	1229
4	50 000	0.006975	9592
5	500 000	0.055643	78 498
6	5 000 000	0.639726	664 579
7	50 000 000	7.374154	5 761 455
8	500 000 000	137.090207	50 847 534

Tabela 1.3. Wyniki działania funkcji szukającej liczb pierwszych sitem Sundarama.

Jak łatwo zauważyć, algorytm Sundarama jest o wiele szybszy niż sito Eratostenesa.

1.5. Spirala Ulama

Stanisław Marcin Ulam (ur. 13 kwietnia 1909 we Lwowie, zm. 13 maja 1984 w Santa Fe) to polski matematyk i przedstawiciel lwowskiej szkoły matematycznej. W swoim dorobku ma wiele dokonań w zakresie matematyki i fizyki matematycznej oraz metod numerycznych. W 1963 roku zaprezentował przedstawienie rozkładu liczb pierwszych w formie graficznej, zwanej dziś spiralą Ulama.

Definicja 1.16. [8] Spirala Ulama lub spirala liczb pierwszych to graficzna metoda przedstawiania rozkładu liczb pierwszych.

Sposób zapisu polega na tym, że na kwadratowej tablicy zaczynając od 1 w środku spiralnie wypisuje się kolejne liczby naturalne. Okazuje się, że na pewnych przekątnych liczby pierwsze pojawiają się o wiele częściej niż na innych. Co więcej, zjawisko nie zależy od wyboru pierwszej liczby w spirali. Na Rysunku 1.5 przedstawiono spiralę Ulama o rozmiarze 400x400.

Rysunek 1.1. Spirala Ulama o rozmiarze 400x400 [8].

1.6. Twierdzenie Wilsona i małe twierdzenie Fermata

Podrozdział ten jest poświęcony dwóm klasycznym twierdzeniom z zakresu teorii liczb - twierdzeniu Wilsona i małemu twierdzeniu Fermata. Mają one szerokie zastosowanie w testach pierwszości liczb.

Twierdzenie 1.5. (Twierdzenie Wilsona, 1770 r.) [5, s. 18] Liczba naturalna p > 1 jest liczbą pierwszą wtedy i tylko wtedy, gdy

$$(p-1)! + 1 \equiv 0 \pmod{p}$$
.

Za odkrywcę powyższego twierdzenia uznaje się Johna Wilsona, zostało jednak opublikowane przez Edwarda Waringa. Jak się okazuje, wcześniej mówił o nim już al-Hajsam (X/XI w.) i Leibniz (XVII w.). Pierwszy dowód twierdzenia Wilsona pochodzi od Lagrange'a i został przedstawiony w 1777 roku.

Dowód. Na początek należy pokazać, że jeśli p jest liczbą pierwszą, to zachodzi powyższa kongruencja. Dla p=2 implikacja jest spełniona, więc ograniczono się do liczb pierwszych nieparzystych. Ponieważ p jest liczbą pierwszą, więc każda z liczb

1,2,3,...,p-2,p-1ma swoją odwrotność modulo p. Poszukuje się, dla jakich a spośród tych liczb zachodzi

$$a \equiv a^{-1} \pmod{p}$$
,

tzn.

$$a^2 \equiv 1 \pmod{p}$$
.

Ostatni warunek oznacza, że liczba p musi dzielić

$$a^2 - 1 = (a+1)(a-1).$$

Z Lematu 1.1 (Euklidesa) wynika, że p dzieli a+1 lub a-1, więc a=p-1 lub a=1. Te dwie liczby na razie pominięto. Wówczas liczby 2,3,...,p-2 dzielą się na pary, liczba i jej odwrotność modulo p, skąd wynika, że

$$2 \cdot 3 \cdot \dots \cdot (p-2) \equiv 1 \pmod{p}$$
.

Mnożąc obie strony powyższej kongruencji przez p-1 otrzymano

$$(p-1)! \equiv p-1 \equiv -1 \pmod{p}$$
,

co kończy dowód pierwszej implikacji.

Teraz wystarczy pokazać implikację w drugą stronę. Należy zatem udowodnić, że jeżeli n jest liczbą złożoną to zachodzi

$$(n-1)! + 1 \not\equiv 0 \pmod{n}$$
.

Jeśli n jest liczbą złożoną, to zachodzi n = pq. Założono, że p < q. Wówczas

$$(n-1)! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) \cdot p \cdot \dots \cdot (q-1) \cdot q \cdot \dots \cdot (n-1),$$

więc (n-1)! jest podzielne przez n. Stąd (n-1)!+1 nie może być podzielne przez n. Wynika stąd, że

$$(n-1)! + 1 \not\equiv 0 \pmod{n}$$
,

co kończy dowód.

Twierdzenie 1.6. (Eulera) [2, s. 33] Jeżeli n i a są względnie pierwszymi liczbami naturalnymi, to zachodzi

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Dowód. Niech układ

$$r_1, r_2, ..., r_{\varphi(n)}$$

będzie układem reszt modulo n. Po pomnożeniu każdej z nich przez a i podzieleniu przez m powstaje nowy układ reszt r_i' :

$$r_i a = q_i n + r_i', i = 1, 2, ..., \varphi(n).$$

Układ można również przedstawić w postaci kongruencji

$$r_i a = r_i' \pmod{n}, \ i = 1, 2, ..., \varphi(n).$$
 (1.1)

Po wymnożeniu przez siebie wszystkich $\varphi(n)$ kongruencji 1.1 otrzymano

$$a^{\varphi(n)}r_1r_2...r_{\varphi(n)} \equiv r_1'r_2'...r_{\varphi(n)}' \pmod{n}$$

Zarówno r_i i r_i' dla $i=1,2,...,\varphi(n)$ są względnie pierwsze z n, więc obie strony można podzielić przez ich identyczny iloczyn, co daje

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Twierdzenie 1.7. (Małe twierdzenie Fermata, 1640 r.) [5, s. 19] Jeśli p jest liczą pierwszą, to dla każdej liczby całkowitej a niepodzielnej przez p zachodzi

$$a^{p-1} \equiv 1 \pmod{p}.$$

Twierdzenie to zostało odkryte jednocześnie przez Fermata i Leibniza. Żaden z nich nie opublikował jednak dowodu.

 ${\bf Dowód.}$ Jeśli liczba pierwsza pnie dziel
ia, to ciąg reszt z dzielenia a prze
zp 1, 2, 3, ..., p-1oraz ciąg liczb

$$a, 2a, 3a, ..., (p-1)a \pmod{p}$$
 (1.2)

różnią się jedynie kolejnością. Łatwo zauważyć, że jeśli p nie dzieli a, to niemożliwe jest, aby $ka \equiv 0 \pmod{p}$ dla k=1,2,...,p-1. Z tego wynika, że wszystkie reszty $ka \pmod{p}$ są liczbami naturalnymi od 1 do p-1. Ponieważ liczb tych jest dokładnie p-1, więc należy pokazać, że są one parami różne.

Założono, że dla i, j < p, gdzie $i \neq j$ zachodzi $ai \equiv aj \pmod{p}$. Z treści twierdzenia wiadomo, że a nie jest podzielne przez p, więc obie strony można podzielić

przez a, skąd otrzymano $i \equiv j \pmod{p}$. Obie liczby są z założenia mniejsze od p, więc i = j, co prowadzi do sprzeczności.

Jak wcześniej zauważono, ciąg liczb 1.2 modulo p to ciąg 1,2,...,p-1, więc

$$a \cdot 2a \cdot 3a \cdot \ldots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (p-1) \pmod{p}$$

a po przekształceniu

$$(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}.$$

Z Twierdzenia 1.5 wiadomo, że liczba (p-1)! jest względnie pierwsza z p, więc obie strony kongruencji można podzielić przez (p-1)!, co kończy dowód.

Definicja 1.17. Jeżeli n jest nieparzystą liczbą złożoną, a liczba b, względnie pierwsza z n, spełnia warunek

$$b^{n-1} \equiv 1 \pmod{n},$$

to n jest liczba pseudopierwsza przy podstawie b.

Z twierdzenia Fermata 1.7 wynika, że dla każdej liczby a, która jest względnie pierwsza z modułem n, istnieje liczba naturalna k taka, że $a^k \equiv 1 \pmod{n}$.

Definicja 1.18. [10] Rzędem multiplikatywnym liczby całkowitej a modulo n, gdzie (a, n) = 1, nazywamy najmniejszą liczbę naturalną k, dla której zachodzi

$$a^k \equiv 1 \pmod{n}$$
.

Rząd elementu a modulo n oznacza się $ord_n(a)$ lub $o_n(a)$.

Przykład 1.5. Obliczyć rząd multiplikatywny liczby 4 modulo 7.

Szukamy najmniejszej liczby $k \in \mathbb{N}$, dla której prawdziwa jest kongruencja

$$4^k \equiv 1 \pmod{7}.$$

Sprawdzamy kongruencję dla kolejnych wartości liczby k:

$$k = 1 \Rightarrow 4^1 = 4 \equiv 4 \pmod{7} \neq 1 \pmod{7},$$

 $k = 2 \Rightarrow 4^2 = 16 = 2 \cdot 7 + 2 \equiv 2 \pmod{7} \neq 1 \pmod{7},$
 $k = 3 \Rightarrow 4^3 = 64 = 9 \cdot 7 + 1 \equiv 1 \pmod{7}.$

Rzędem multiplikatywnym liczby 4 modulo 7 jest 3.

Obliczanie rzędu elementu a modulo n jest również proste do zaimplementowania w środowisku Matlab (skrypt 3.4). Poniżej przedstawiono tabelę z wynikami i czasem działania powyższej funkcji.

Lp.	Liczba n	Liczba a	Wartość funkcji $o_n(a)$	Czas działania funkcji $[s]$
1	7	4	3	0.033575
2	4	7	2	0.025657
3	100	387	20	0.031364
4	167	379	166	0.036658
5	1000	37	100	0.035297

Tabela 1.4. Wartość funkcji $o_n(a)$ dla liczb o różnej wielkości.

1.7. Własności liczb pierwszych

Liczby pierwsze mogą przyjmować różne postaci. Podrozdział ten skupia się na różnych rodzajach liczb pierwszych, takich jak liczby pierwsze Fermata, bliźniacze, czworacze, Sophie Germain czy Mersenne'a. W części tej przedstawione zostanie również zestawienie dziesięciu największych znanych liczb pierwszych na rok 2018.

Twierdzenie 1.8. [2, s. 46] Istnieje nieskończenie wiele liczb pierwszych postaci 4k-1.

Dowód. Przypuśćmy przeciwnie, że $\{q_1, q_2, ..., q_r\}$ jest zbiorem wszystkich liczb pierwszych postaci 4k-1. Zdefiniujmy $N=4q_1q_2...q_r-1$.

Ponieważ N jest liczbą nieparzystą, więc wszystkie dzielniki liczby N również są nieparzyste. Z kolei każda liczba nieparzysta ma postać 4k-1 lub 4k+1. Wiadomo także, że iloczyn liczb postaci 4k+1 jest też liczbą postaci 4k+1, więc N musi mieć dzielnik pierwszy q postaci 4k-1. Jak wiadomo, $q_1 \nmid N$, $q_2 \nmid N$, ..., $q_r \nmid N$, skąd wynika, że $q \notin \{q_1, q_2, ..., q_r\}$, co jest sprzeczne z założeniem.

Twierdzenie 1.9. [2, s. 46] Istnieje nieskończenie wiele liczb pierwszych postaci 4k + 1.

Twierdzenie 1.10. (Dirichlet) [2, s. 47] Jeśli $m \in \mathbb{N}$, $a \in \mathbb{Z}$ oraz (a, m) = 1, to w ciągu arytmetycznym a + mk, gdzie k = 1, 2, ..., istnieje nieskończenie wiele liczb pierwszych.

Definicja 1.19. Niech $n \in \mathbb{N}$. Liczbę w postaci

$$F_n = 2^{2^n} + 1, (1.3)$$

gdzie $n \ge 1$, nazywa się n-tą liczbą Fermata.

Fermat obliczył, że $F_1=5$, $F_2=17$, $F_3=2575$, $F_4=65537$ są liczbami pierwszymi i założył, że każda liczba postaci 1.3 jest liczbą pierwszą. Hipotezę tą obalił Euler, który udowodnił, że F_5 jest podzielne przez 641.

Definicja 1.20. [6] Liczby pierwsze p i q = p + 2 nazywane są liczbami pierwszymi bliźniaczymi.

Liczbami pierwszymi bliźniaczymi są np.: (3, 5), (11, 13), (1949, 1951), (4967, 4969). Największe znane dziś liczby bliźniacze, każda składająca się z 388 342 cyfr, to

$$2\,996\,863\,034\,895\cdot 2^{1\,290\,000}\pm 1$$
,

znalezione w 2016 roku.

Definicja 1.21. [6] *Liczba pierwsza Sophie Germain* to dowolna liczba pierwsza p, dla której liczba 2p + 1 także jest liczbą pierwszą (np. 23, gdyż $2 \cdot 23 + 1 = 47$).

Największą znaną obecnie liczbą pierwszą Sophie Germain jest

$$2618163402417 \cdot 2^{1290000} - 1$$

a jej zapis dziesiętny wymaga 388 342 cyfr. Została ona odkryta w 2016 roku.

Definicja 1.22. [2, s. 52] *Liczbami Mersenne'a* są liczby postaci $M_n = 2^n - 1$, $n \ge 1$. Jeżeli liczba Mersenne'a jest pierwsza to nazywa się *liczbą pierwszą Mersenne'a*.

Nie wiadomo, czy istnieje nieskończenie wiele liczb pierwszych Mersenne'a. Do 2018 roku znanych ich 50. Co więcej, dziewięć na dziesięć największych odkrytych do tej pory liczb pierwszych to właśnie liczby Mersenne'a. Zostały one przedstawione w Tabeli 1.5. Ich poszukiwaniem zajmuje się projekt GIMPS (ang. Great Internet Mersenne Prime Search), w którym mogą wziąć udział ochotnicy z całego świata.

Nr	Liczba pierwsza	Liczba cyfr	Data odkrycia	Odkrywcy
1	$2^{77232917} - 1$	23 249 425	2018-01-03	J. Pace, GIMPS
2	$2^{74207281} - 1$	22 338 618	2016-01-07	Cooper, GIMPS
3	$2^{57885161} - 1$	17 425 170	2013-01-25	Cooper, GIMPS
4	$2^{43112609} - 1$	12 978 189	2008-08-23	Edson Smith, GIMPS
5	$2^{42643801} - 1$	12 837 064	2009-06-04	Strindmo, GIMPS
6	$2^{37156667} - 1$	11 185 272	2008-09-06	H. Elvenich, GIMPS
7	$2^{32582657} - 1$	9 808 358	2006-09-04	Boone, Cooper, GIMPS
8	$2^{30402457} - 1$	9 152 052	2005-12-15	Boone, Cooper, GIMPS
9	$2^{25964951} - 1$	7 816 230	2005-02-18	Nowak, GIMPS
10	$2^{24036583} - 1$	7 235 733	2004-05-15	Findley, GIMPS

Tabela 1.5. Dziesięć największych znanych liczb pierwszych Mersenne'a na 2018 rok [7].

2. Testy pierwszości liczb

Test pierwszości to algorytm, który określa, czy zadana liczba jest liczbą pierwszą, czy złożoną. Poniższy rozdział ma na celu przedstawienie algorytmów, które testują pierwszość zadanej liczby.

2.1. Testy deterministyczne

Testy deterministyczne to testy, które wydają certyfikat pierwszości, czyli ich wynik jest prawidłowy z prawdopodobieństwem 1. Zwracają odpowiedź, że podana na wejściu liczba n jest pierwsza wtedy i tylko wtedy, gdy naprawdę tak jest, czyli wynik działania testu jest jednoznaczny.

2.1.1. Metoda naiwna

Najprostszą deterministyczną metodą testowania pierwszości jest metoda na-iwna. Algorytm działania jest bardzo prosty: dla danej liczby n > 2 wystarczy sprawdzić, czy dzieli się ona kolejno przez 2, 3, ..., n-1. Jeżeli wśród tych liczb nie ma dzielnika liczby n, wtedy n jest pierwsza. Jeśli chociaż przez jedną z tych liczb n dzieli się bez reszty, wtedy n jest złożona.

Jak się okazuje, nie trzeba testować podzielności przez wszystkie liczby od 2 do n-1, wystarczy ograniczyć się do przedziału $2,3,...,\sqrt{n}$.

Co więcej, algorytm można ulepszyć dzieląc liczbę n jedynie przez wszystkie liczby pierwsze mniejsze lub równe \sqrt{n} . Listę takich liczb możemy wyznaczyć sitem Eratostenesa 1.13.

Warto zauważyć, że jeśli liczba n okaże się być złożona, to jednocześnie wyznaczany jest jej nietrywialny dzielnik.

Algorytm metody naiwnej w wersji udoskonalonej działa następująco:

- I. Pobierz liczbę n.
- II. Wyznacz zbiór p wszystkich liczb pierwszych mniejszych lub równych \sqrt{n} .
- III. Dziel liczbę n przez kolejne liczby ze zbioru p.
- IV. Jeśli n dzieli się przez przynajmniej jedną z liczb ze zbioru p bez reszty, wtedy n jest złożona.
- V. Jeśli wśród liczb p nie ma dzielnika liczby n, wtedy n jest pierwsza.

Jest to algorytm deterministyczny, który uznaje pierwszość liczby ze stuprocentową pewnością. W związku z tym, że metoda jest bardzo dokładna, wymaga aż $O(\sqrt{n}\lg^2 n)$ kroków, więc jej efektywność spada dla bardzo dużych liczb.

Algorytm metody naiwnej w programie Matlab został przedstawiony na końcu tej pracy (skrypt 3.5. Tabela 2.1 przedstawia wyniki i czas działania algorytmu dla liczb o różnej wielkości.

Lp.	Testowana liczba	Czas działania programu $[s]$	Liczba pierwsza/złożona
1	7	0.005050	pierwsza
2	23	0.004529	pierwsza
3	365	0.002450	złożona
4	5737	0.002264	pierwsza
5	99 487	0.015185	pierwsza
6	99 489	0.014734	złożona
7	100 001	0.013290	złożona
8	12 192 109	9.409341	pierwsza
9	14 476 001	11.304216	pierwsza
10	100 000 001	215.084406	złożona

Tabela 2.1. Wyniki działania funkcji testującej pierwszość liczb metodą naiwną z sitem Eratostenesa.

Łatwo zauważyć, że dla niewielkich liczb czas działania jest bardzo krótki, ale dla liczb rzędu 10^8 sprawdzanie pierwszości trwa już kilka minut.

2.1.2. Test pierwszości AKS

Test pierwszości AKS (lub inaczej test pierwszości Agrawal-Kayal-Saxena lub cyklotomiczny test AKS) jest deterministycznym testem pierwszości liczb opracowanym przez trójkę indyjskich naukowców - Manindra Agrawala, Neeraja Kayala i Nitina Saxena z Indyjskiego Instytutu Technologii w Kanpurze. Test został po raz pierwszy opublikowany 6 sierpnia 2002 roku w artykule zatytułowanym PRIMES is in P. W 2006 roku autorzy otrzymali za to odkrycie dwie nagrody - Nagrodę Gödla, którą przyznaje się za osiągnięcia w dziedzinie informatyki teoretycznej, oraz nagrodę Fulkersona, przyznawaną za wybitne prace z zakresu matematyki dyskretnej.

Poniższe opracowanie opiera się na artykule PRIMES is in P [9].

Test AKS jest pierwszym opublikowanym algorytmem testującym czy dana liczba jest pierwsza, który jest jednocześnie szybki, jednoznaczny i bezwarunkowy. Oznacza to, że algorytm ten zawsze zwróci poprawną odpowiedź (w przeciwieństwie do testów probabilistycznych), a jego działanie nie bazuje na żadnych nieudowodnionych hipotezach.

Test pierwszości AKS opiera się na pewnej tożsamości liczb pierwszych, która jest uogólnieniem małego twierdzenia Fermata 1.7.

Lemat 2.1. (małe twierdzenie Fermata dla wielomianów) Niech $a, n \in \mathbb{N}$ i $n \geq 2$ oraz (a, n) = 1. Wówczas n jest liczbą pierwszą wtedy i tylko wtedy, gdy

$$(X+a)^n = X^n + a \pmod{n}. \tag{2.1}$$

Dowód. Równanie 2.1 można zapisać w postaci

$$(X+a)^n - (X^n + a) = 0 \pmod{n}.$$

Dla $0 \le i \le n$ współczynnik przy X^i w wyrażeniu $((X+a)^n - (X^n+a))$ wynosi $\binom{n}{i}$ a^{n-i} .

Załóżmy, że n jest liczbą pierwszą. Wtedy $\binom{n}{i} = 0 \pmod{n}$, a więc wszystkie współczynniki są zerowe.

Załóżmy, że n jest liczbą złożoną. Rozważmy liczbę pierwszą q, która jest dzielnikiem n i dla pewnego k niech $q^k \mid n$. Wtedy q^k nie dzieli $\binom{n}{q}$ i jest względnie pierwsza z a^{n-q} . Stąd współczynnik przy X^q jest niezerowy (mod n). Zatem wyrażenie $((X+a)^n-(X^n+a))$ nie jest tożsamościowo równe zero (mod n).

Powyższa tożsamość sugeruje prosty test pierwszości: pobieramy badane n, wybieramy a i sprawdzamy, czy kongruencja 2.1 jest spełniona. Jednak wymaga to czasu, ponieważ w najgorszym przypadku należy oszacować n współczynników po lewej stronie równania. Prostym sposobem na zmniejszenie liczby tych współczynników jest oszacowanie obu stron kongruencji 2.1 modulo wielomian postaci X^r-1 dla odpowiednio wybranego małego r. Innymi słowy, sprawdzić, czy spełnione jest równanie

$$(X+a)^n = X^n + a \ (mod \ X^r - 1, n). \tag{2.2}$$

Z Lematu 2.1 wynika natychmiast, że wszystkie liczby pierwsze n spełniają równanie 2.2 dla wszystkich wartości a i r. Problem polega na tym, że niektóre liczby złożone n mogą również spełnić równanie dla kilku wartości a i r. Jednak możemy pokazać,

że dla odpowiednio dobranego r, jeśli równanie 2.2 jest spełnione dla kilku a, to n musi być potęgą liczby pierwszej.

Algorytm działania metody AKS jest następujący:

- I. Wybierz testowaną liczbę n > 1.
- II. Jeśli istnieje takie $a \in \mathbb{N}$ i b > 1, że $n = a^b$, to liczba n jest złożona stop.
- III. Znajdź najmniejsze r takie, że $o_r(n) > (log_2n)^2$.
- IV. Jeśli 1 < NWD(a, n) < n dla pewnego $a \le r$, wtedy n jest złożona stop.
- V. Jeśli $n \le t$, n jest pierwsza stop.
- VI. Dla a=1 do $\lfloor \sqrt{\varphi(r)}log_2n \rfloor$ rób jeśli $((X+a)^n \neq X^n + a \pmod{X^r-1}, n), n$ jest złożona - stop.

VII. n jest pierwsza.

Kod metody AKS zaimplementowany w środowisku Matlab został przedstawiony w części pracy poświęconej skryptom (skrypt 3.6). Tabela poniżej przedstawia wyniki i czas działania testu pierwszości AKS.

Lp.	Liczba n	Pierwsza/złożona	Czas działania funkcji $[s]$
1	3	pierwsza	0.034859
2	23	pierwsza	0.047291
3	25	złożona	0.009026
4	123	złożona	0.045841
5	199	pierwsza	4.284376
6	1000	złożona	0.020794
7	1001	złożona	0.047622
8	1223	pierwsza	35.298198
9	3313	pierwsza	113.642901
10	3315	złożona	0.044053

Tabela 2.2. Wartość funkcji $\varphi(n)$ dla liczb o różnej wielkości.

Łatwo zauważyć, że algorytm radzi sobie bardzo szybko z liczbami złożonymi i niewielkimi liczbami pierwszymi, jednak już dla liczb pierwszych czterocyfrowych potrzebne jest ponad pół minuty na potwierdzenie ich pierwszości. Test AKS ma niestety znikomą wartość praktyczną, ponieważ złożoność tego algorytmu jest duża, a to oznacza, że liczba wykonywanych operacji rośnie bardzo szybko wraz ze wzrostem wielkości badanej liczby.

2.1.3. Test pierwszości APR

2.1.4. Test Lucasa-Lehmera

2.2. Testy probabilistyczne

Testy probabilistyczne (znane także jako testy randomizacyjne) są obecnie najczęściej stosowanymi i najbardziej efektywnymi testami pierwszości liczb, które w swoim działaniu używają losowości. Wykorzystuje się w nich losowo wygenerowane liczby z zadanego przedziału. Zależność od takich elementów powoduje, że algorytm może dać błędny wynik testu pierwszości, lecz prawdopodobieństwo takiego zdarzenia jest bardzo małe.

2.2.1. Test pierwszości Fermata

Zgodnie z małym twierdzeniem Fermata 1.7 dla liczb pierwszych p zachodzi kongruencja

$$a^{p-1} \equiv 1 \pmod{p}. \tag{2.3}$$

 $Test\ pierwszości\ Fermata\ [5,\ s.\ 49]$ to probabilistyczny test pierwszości, który opiera się na założeniu, że zachodzi wynikanie odwrotne do Twierdzenia 1.7, czyli jeśli prawdziwa jest kongruencja 2.3, to liczba p jest pierwsza z dużym prawdopodobieństwem.

Algorytm testu pierwszości Fermata dla zadanej liczby p wygląda następująco:

- I. Wylosuj $a \in [2, p-2]$.
- II. Oblicz d = NWD(a, p). Jeśli d > 1 to p jest liczbą złożoną.
- III. Sprawdź zachodzenie kongruencji $a^{p-1} \equiv 1 \pmod{p}$.
- IV. Jeśli zachodzi, to p może być liczbą pierwszą, w innym przypadku p jest liczbą złożoną.

Przy kilkukrotnym powtórzeniu losowania dla różnych liczb test Fermata daje bardzo wiarygodny wynik.

Implementacja testu pierwszości Fermata w programie Matlab przedstawiona została w skrypcie 3.7. Tabela 2.3 przedstawia wyniki działania tego kodu dla różnych liczb pierwszych i złożonych oraz czas działania algorytmu.

Lp.	Liczba p	Liczba powtórzeń n	Wynik	Czas działania funkcji $[s]$
1	5	2	pierwsza (100%)	0.069366
2	15	8	złożona (100%)	0.097156
3	47	18	pierwsza (100%)	0.102425
4	199	28	pierwsza (100%)	0.090658
5	1999	68	pierwsza (100%)	0.092615
6	6899	190	pierwsza (100%)	0.095254
7	94 427	19	pierwsza (100%)	0.080347
8	94 428	19	złożona (100%)	0.070723
9	15 472 147	30	pierwsza (100%)	0.071718
10	15 472 147	5530	pierwsza (100%)	0.733975
11	15 472 148	5530	złożona (100%)	0.575719

Tabela 2.3. Wyniki działania testu pierwszości Fermata dla liczb o różnej wielkości.

Łatwo zauważyć, że algorytm działa niezwykle szybko i zwraca stuprocentowo pewny wynik nawet dla bardzo dużych liczb. Czas działania zależy głównie od wyboru liczby powtórzeń n - im liczba n jest większa, tym czas działania algorytmu się wydłuża. Jednak już dla niewielkich n wynik jest podawany z prawdopodobieństwem równym 1.

Trzeba zaznaczyć, że kongruencja 2.3 może zachodzić także w pewnych przypadkach, gdy p nie jest liczbą pierwszą. Liczby te omówione zostały poniżej.

Definicja 2.1. [5, s. 49] *Liczby Carmichaela* to złożone liczby naturalne, dla których teza małego twierdzenia Fermata 1.7 jest prawdziwa. Liczba naturalna n jest liczbą Carmichaela wtedy i tylko wtedy, gdy jest liczbą złożoną i dla każdej liczby naturalnej a z przedziału 1 < a < n, względnie pierwszej z n, liczba $a^{n-1} - 1$ jest podzielna przez n.

Najmniejszą liczbą Carmichaela jest $561=3\cdot11\cdot17$. Innymi z nich są na przykład $1105=5\cdot13\cdot17,\,1729=7\cdot13\cdot19$ lub $2465=5\cdot17\cdot29$.

Test Fermata zastosowany do liczby Carmichaela jest nieskuteczny, co pokazuje Tabela 2.4.

Lp.	L. Carmichaela	Liczba powtórzeń n	Wynik	Czas działania $[s]$
1	561	5	pierwsza (60%)	0.064905
2	561	15	pierwsza (73%)	0.097156
3	561	150	pierwsza (58%)	0.102425
4	1105	5	pierwsza (100%)	0.067776
5	1105	15	pierwsza (73%)	0.068222
6	1105	150	pierwsza (70.6%)	0.088589
7	1729	5	pierwsza (60%)	0.069128
8	1729	15	złożona (66.67%)	0.078923
9	1729	150	pierwsza (76.67%)	0.082983
10	2465	5	pierwsza (80%)	0.064879
11	2465	15	pierwsza (60%)	0.070719
12	2465	150	pierwsza (75.3%)	0.090890

Tabela 2.4. Wyniki działania testu pierwszości Fermata dla liczb Carmichaela.

Jak wynika z powyższej tabeli, liczby Carmichaela przechodzą test pierwszości Fermata z dużym prawdopodobieństwem.

2.2.2. Test pierwszości Lehmana

 $Test\ Lehmana\ [1,\,s.\,60]$ jest kolejnym testem probabilistycznym pierwszości liczb. Algorytm testu Lehmana dla dużej liczby p wygląda następująco:

- I. Wylosuj dużą liczbę a < p.
- II. Oblicz $b = a^{(p-1)/2} \pmod{p}$.
- III. Jeśli $b \equiv 1 \pmod p$ lub $b \equiv -1 \pmod p$ to p jest liczbą pierwszą z prawdopodobieństwem większym lub równym 50%. W przeciwnym wypadku p jest liczbą złożoną.

Skrypt 3.8 przedstawia algorytm Lehmana w programie Matlab. Wyniki działania programu przedstawione zostały w Tabeli 2.5.

Lp.	Liczba p	Wynik	Czas działania funkcji $[s]$
1	5	pierwsza ($\geq 50\%$)	0.023871
2	47	pierwsza ($\geq 50\%$)	0.032829
3	199	pierwsza ($\geq 50\%$)	0.031084
4	1999	pierwsza ($\geq 50\%$)	0.026158
5	6899	pierwsza ($\geq 50\%$)	0.029798
6	94427	pierwsza ($\geq 50\%$)	0.023563
7	94 428	złożona (100%)	0.015226
8	15472145	złożona (100%)	0.027043
9	15472147	pierwsza ($\geq 50\%$)	0.026316
10	15485857	pierwsza ($\geq 50\%$)	0.024070

Tabela 2.5. Wyniki działania testu pierwszości Lehmana dla liczb o różnej wielkości.

Algorytm Lehmana jest bardzo szybki i zwraca prawidłowe wyniki dla liczb o różnej wielkości.

2.2.3. Test pierwszości Solovaya-Strassena

Kolejnym probabilistycznym testem pierwszości jest test Solovaya-Strassena, opracowany przez dwóch matematyków - amerykańskiego profesora Roberta M. Solovaya i profesora Volkera Strassena z Niemiec. Do wprowadzenia algorytmu testowania niezbędna jest definicja symbolu Legendre'a.

Definicja 2.2. Niech p będzie liczbą pierwszą większą od 2, a a liczbą całkowitą. $Symbol\ Legendre'a\left(\frac{a}{p}\right)$ definiuje się następująco

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0, \text{ jeśli} a \text{jest wielokrotnością liczby} p, \\ 1, \text{jeśli istnieje } b \text{takie}, \text{ że } b^2 = a \pmod{p}, \\ -1, \text{jeśli nie istnieje żadne } b \text{ takie}, \text{ że} b^2 = a \pmod{p}. \end{cases}$$

Symbol Legendre'a można obliczyć następującym wzorem

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \ (mod \ p).$$

Symbol Legendre'a może być uogólniony do symbol
u Jacobiego $\left(\frac{a}{n}\right)$, gdzie n jest dowolną liczbą nieparzystą, która ma rozkład na czynniki pierwsze

$$n = p_1^{m_1} \cdot p_2^{m_2} \cdot \dots \cdot p_k^{m_k}.$$

Wtedy symbol Jacobiego można zapisać w postaci

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{m_1} \cdot \left(\frac{a}{p_2}\right)^{m_2} \cdot \dots \cdot \left(\frac{a}{p_k}\right)^{m_k}.$$

Jeżeli n jest liczbą pierwszą to symbol Jacobiego i symbol Legendre'a są sobie równe.

Definicja 2.3. Jeśli n jest liczbą złożoną nieparzystą, a liczba b, względnie pierwsza z n, spełnia warunek

$$b^{\frac{n-1}{2}} \equiv \left(\frac{b}{n}\right) \pmod{n},\tag{2.4}$$

to n jest pseudopierwszą liczbą Eulera przy podstawie b.

Test pierwszości liczby n algorytmem Solovaya-Strassena przebiega następująco

- I. Losujemy $b \in \{2, ..., n-2\}.$
- II. Obliczamy $r=b^{\frac{n-1}{2}} \pmod{n}$. Jeśli $r\neq \pm 1$, to n jest liczbą złożoną.
- III. Obliczamy $s=\left(\frac{b}{n}\right)$. Jeśli $r\neq s$, to n jest złożona.

Jeżeli po zakończeniu algorytmu nie ma odpowiedzi "n jest złożona", to test należy powtórzyć. Po k-krotnym powtórzeniu testu i stwierdzeniu, że n jest liczbą pseudopierwszą Eulera przy każdej z wybranych podstaw b, prawdopodobieństwo, że liczba n jest jednak złożona wynosi $\frac{1}{2k}$.

Skrypt jednorazowego przejścia algorytmu testu pierwszości Solovaya-Strassena w programie Matlab został przedstawiony na końcu pracy (skrypt 3.9). Tabela 2.6 przedstawia wyniki otrzymane za pomocą powyższego algorytmu i czas działania funkcji dla każdej operacji.

Lp.	Liczba n	Wynik	Czas działania funkcji $[s]$
1	5	pierwsza	0.034387
2	47	pierwsza	0.032534
3	199	pierwsza	0.039209
4	1999	pierwsza	0.032661
5	6899	pierwsza	0.036613
6	94 427	pierwsza	0.034677
7	94 428	złożona	0.017758
8	15 472 145	złożona	0.027369
9	15 472 147	pierwsza	0.056256
10	15 485 857	pierwsza	0.033962

Tabela 2.6. Wyniki działania testu pierwszości Solovaya-Strassena dla liczb o różnej wielkości.

2.2.4. Test pierwszości Millera-Rabina

Test pierwszości Millera-Rabina jest kolejnym testem probabilistycznym, który z pewnym prawdopodobieństwem określa, czy dana liczba jest pierwsza, czy złożona. Oryginalna wersja tego testu, stworzona przez profesora Gary'ego L. Millera, jest testem deterministycznym, lecz jego prawidłowość bazuje na uogólnionej hipotezie Riemanna, która nie została dotychczas udowodniona. W 1975 roku kryptolog Michael O. Rabin przekształcił algorytm Millera do algorytmu probabilistycznego.

Fakt 2.1. Niech n będzie nieparzystą liczbą pierwszą i niech $n-1=2^s \cdot t$, gdzie $2 \nmid t$. Niech $b \in \phi(n)$. Wtedy albo $b^t \equiv 1 \pmod{n}$, albo $b^{2^r t} \equiv -1 \pmod{n}$ dla pewnego $r \in \{0, 1, ..., s-1\}$.

Definicja 2.4. Niech n będzie nieparzystą liczbą złożoną i niech $n-1=2^s \cdot t$, gdzie $2 \nmid t$. Niech $b \in \phi(n)$. Jeżeli

- $b^t \equiv 1 \pmod{n}$ lub
- $b^{2^rt} \equiv -1 \pmod{n}$ dla pewnego $r \in \{0, 1, ..., s-1\}$

to liczbę n nazywamy liczbą silnie pseudopierwszą przy podstawie b.

Fakt 2.2. Jeśli n jest nieparzystą liczbą złożoną, to jest silnie pseudopierwsza przy podstawie b dla co najwyżej 25% wszystkich podstaw b takich, że 0 < b < n.

Algorytm działania testu pierwszości Millera-Rabina przebiega następująco:

- I. Obliczamy $n-1=2^s \cdot t$, gdzie t jest liczbą nieparzystą.
- II. Losujemy $b \in \{2, ..., n-2\}$.
- III. Obliczamy $a = b^t \pmod{n}$. Jeśli $a = \pm 1$, to n może być pierwsza.
- IV. Obliczamy $a = b^{2^r t} \pmod{n}$ dla 0 < r < s. Jeśli dla pewnego r otrzymamy a = -1, to n może być pierwsza, w przeciwnym razie n jest złożona.

Po otrzymaniu odpowiedzi "n jest pierwsza" powtarzamy kroki algorytmu 2-4.

Skrypt testu pierwszości Millera-Rabina przedstawiony został w dalszej części pracy (skrypt 3.10). Tabela 2.7 przedstawia wyniki otrzymane za pomocą powyższego algorytmu i czas działania funkcji dla każdej operacji.

Lp.	Liczba n	Wynik	Czas działania funkcji $[s]$
1	5	pierwsza	0.036212
2	47	pierwsza	0.036644
3	199	pierwsza	0.038669
4	1999	pierwsza	0.037960
5	6899	pierwsza	0.037959
6	94 427	pierwsza	0.040197
7	94 428	złożona	0.018025
8	15 472 145	złożona	0.049525
9	15 472 147	pierwsza	0.035766
10	15 485 857	pierwsza	0.045164

Tabela 2.7. Wyniki działania testu pierwszości Millera-Rabina dla liczb o różnej wielkości.

2.2.5. Chiński test pierwszości

3. Zastosowania w kryptografii

Skrypty z programu Matlab

Sito Eratostenesa

Listing 3.1. Skrypt funkcji Sito Eratostenesa.

```
function [n,p] = sitoEratostenesa(N)
sito=1:N;
a=2;
while a^2<=N
sito(a^2:a:N)=0;
a=find(sito>a,1);
end
p = sito(sito>1);
n = length(p)
end
```

Sito Sundarama

Listing 3.2. Skrypt funkcji Sito Sundarama.

```
function L = sitoSundarama(n)
P = 1:n;
for i = 1:n
    for j = i:(n-i)/(2*i+1)
        if i+j+2*i*j<=n
        P(i+j+2*i*j) = -1/2;
    end
end

P = P(P>0);
P = [2, P*2+1];
L = length(P);
```

Funkcja Eulera

Listing 3.3. Skrypt funkcji Eulera.

```
function [m] = euler_phi(n)
m=0;
for i=1:n
    if gcd(i,n)==1
        m=m+1;
end
end
end
end
end
```

Rząd multiplikatywny

Listing 3.4. Skrypt funkcji liczącej rząd multiplikatywny.

```
function [k] = mult_order(n,a)

if gcd(a,n)~=1
    disp('liczby nie są względnie pierwsze')
    return
end

k=1;
while powermod(a,k,n)~= 1
    k=k+1;
end
end

end
```

Metoda naiwna

Listing 3.5. Algorytm metody naiwnej.

```
function MetodaNaiwna(N)
   tic;
2
     X=['Liczba', num2str(N), 'jest liczbą złożoną.'];
3
     Y=['Liczba', num2str(N), 'jest liczbą pierwszą.'];
4
     Z=['Liczba', num2str(N), ...]
          ' nie jest ani pierwsza, ani złożona.'];
6
     if (N==2 | | N==3)
7
          disp(Y)
          return
9
      elseif (N==1)
10
          \operatorname{disp}(Z)
11
          return
12
     else
13
     [n,p] = sitoEratostenesa(N);
14
     lp = p(p \le sqrt(N));
15
     l = length(lp);
16
     m = ones(1,1);
17
18
     for i=1:l
19
          if \mod(N, lp(i)) == 0
20
               \operatorname{disp}(X)
^{21}
               break
^{22}
          else
23
               m(i) = 0;
^{24}
               i=i+1;
^{25}
          end
26
     end
27
     if sum(m) == 0
28
          disp(Y)
29
     end
30
    toc;
31
   end
```

Test pierwszości AKS

Listing 3.6. Skrypt testu pierwszości AKS.

```
function MetodaAKS(n)
2
   for b=2:n-1
3
        if \operatorname{round}(\log(n)/\log(b)) = \log(n)/\log(b)
            disp ('n jest złożona')
5
            return
        end
   end
8
   r = 2;
10
11
   if \gcd(r,n)^{\sim}=1
12
        disp ('n jest złożona')
13
        return
   end
15
16
   k=mult_order(r,n);
17
18
   while k < = (log 2 (n))^2
19
        if \gcd(r, n)^{\sim}=1
            disp('n jest złożona')
21
              return
22
        end
        k=mult_order(r,n);
24
        r=r+1;
25
        i\,f\quad r{>}\!\!=\!\!n
             disp('n jest pierwsza')
27
              return
28
        end
   end
30
31
  for a=2:min(r,n-1)
```

```
if \mod(n,a) == 0
33
              disp ('n jest złożona')
^{34}
              return
35
         end
36
   end
38
   i\,f\quad n{<}{=}r
39
         disp('n jest pierwsza')
40
         return
41
   end
42
43
   meuler_phi(r);
   syms x
45
46
   v=sym2poly(x^r-1);
48
   for a=1:floor(sqrt(m)*log2(n))
49
         [q1,w1] = deconv(sym2poly((x+a)^n),v);
         [\,q2\,,w2]\!=\! \textcolor{red}{\texttt{deconv}}\,(\,sym\,2\,poly\,(\,x\,\hat{}\,n+a\,)\,\,,v\,)\;;
51
         w1 = mod(w1, n); w2 = mod(w2, n);
52
         if w1~=w2
                disp ('n jest złożona')
54
                return
55
         end
   end
   disp('n jest pierwsza')
58
59
   end
```

Test pierwszości Fermata

Listing 3.7. Skrypt testu pierwszości Fermata.

```
function testFermata(p,n)
        X=['Liczba', num2str(p), 'jest liczbą złożoną.'];
2
        Y=['Liczba', num2str(p), 'może być pierwsza.'];
3
        if (p \le 0 \mid n \le 0)
              disp ('Liczby p i n muszą być większe od 0')
5
             return
        end
        if (p==2 | p==3)
8
             \operatorname{disp}(Y)
              return
10
        end
11
        if n>(p-3)
12
             disp ('Podaj mniejszą liczbę n')
13
              return
14
        end
15
        pierwsza = zeros(n,1);
16
        zlozona=zeros(n,1);
17
        a=randperm(p-3,n)+1;
18
        for i = 1:n
19
             if gcd(a(i),p)>1
                 z \log \alpha (i) = 1;
21
              elseif powermod (a(i), p-1, p)^{\sim} = 1
22
                 z l o z o n a (i) = 1;
23
              else
24
                 pierwsza(i)=1;
25
             end
26
        end
27
        if sum(pierwsza)>=sum(zlozona)
28
              disp(Y)
29
              disp ('Prawdopodobienstwo wynosi:')
30
             \operatorname{disp}(\operatorname{sum}(\operatorname{pierwsza})/\operatorname{n}*100)
31
        else
32
```

```
\begin{array}{c|c} {}_{33} & & disp\left(X\right) \\ {}_{34} & end \\ {}_{35} & end \end{array}
```

Test pierwszości Lehmana

Listing 3.8. Skrypt testu pierwszości Lehmana.

```
function testLehmana(p)
  X = ['Liczba', num2str(p), 'jest liczbą złożoną.'];
  Y = ['Liczba', num2str(p), ...]
     ' może być pierwsza z prawdopodobieństwem >= 50\%.'];
  if mod(p, 2) == 0
       disp(X)
6
       return
  end
  a = randi([(p-1)/2, p-1]);
  b = powermod(a, (p-1)/2, p);
  if \pmod{(b,p)} == 1 \mid \pmod{(b,p)} - p == -1
       disp(Y)
1\,2
  else disp(X)
13
  end
  end
15
```

Test pierwszości Solovaya-Strassena

Listing 3.9. Skrypt testu pierwszości Solovaya-Strassena.

```
b = randi([2, n-2]);
8
         r = powermod(b, (n-1)/2, n);
9
         if (r = 1 \& r-n = -1)
10
              \operatorname{disp}(X)
11
              return
12
         else
13
              s = 1;
14
              f = factor(n);
15
              for i = 1: length(f)
16
                    s = s*powermod(b, (f(i)-1)/2, n);
17
              end
18
              if r~=s
19
                    \operatorname{disp}(X)
20
                    return
21
              end
22
         end
23
         \operatorname{disp}(Y)
24
   end
```

Test pierwszości Millera-Rabina

Listing 3.10. Skrypt testu pierwszości Millera-Rabina.

```
function TestMilleraRabina(n)
1
       X=['Liczba', num2str(n), 'jest liczba złożoną.'];
2
       Y=['Liczba', num2str(n), 'może być pierwsza.'];
3
       if (n==2 | | n==3)
4
            \operatorname{disp}(Y)
            return
       end
7
       if \mod(n,2) == 0
            \operatorname{disp}(X)
            return
10
       end
11
       f = factor(n-1);
12
```

```
s = 0;
13
        for i = 1: length(f)
14
              if f(i) == 2
15
                   s = s+1;
16
              \quad \text{end} \quad
17
        end
18
        t = 1;
19
        for j = s+1:length(f)
20
            t = t * f(j);
^{21}
        end
22
        b = randi([2, n-2]);
23
        a1 = powermod(b, t, n);
^{24}
        if (a1 == 1 | | a1 == n-1)
25
              disp(Y)
26
              return
27
        end
^{28}
        for r = 1:s
29
              a2(r) = powermod(b, 2^{(r-1)*t}, n);
30
        end
31
        for i = 1: length(a2)
32
              if a2(i) == n-1
                   disp(Y)
34
                   return
35
              end
36
        end
37
        \operatorname{disp}(X)
38
   end
39
```

Bibliografia

- [1] M. Karbowski, *Podstawy kryptografii*, Wydanie III, Helion, Gliwice, (2014).
- [2] W. Marzantowicz, P. Zarzycki, *Elementarna teoria liczb*, Wydawnictwo Naukowe PWN, Warszawa, (2006).
- [3] W. Narkiewicz, Teoria liczb, Wydawnictwo Naukowe PWN, Warszawa, (2003).
- [4] W. Sierpiński, Wstęp do teorii liczb, Wydawnictwa Szkolne i Pedagogiczne, (1987).
- [5] M. Zakrzewski, Teoria liczb, Wydanie I, Oficyna Wydawnicza GiS, Wrocław, (2017).
- [6] http://primes.utm.edu/largest.html (dostęp 25.03.2018)
- [7] https://www.mersenne.org/primes/ (dostep 25.03.2018)
- [8] http://mathworld.wolfram.com/PrimeSpiral.html(dostep 24.03.2018)
- [9] https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf (do-step 25.03.2018)
- [10] https://en.wikipedia.org/wiki/Multiplicative_order