Chapitre 1 : modèle géométrique direct

Transformation de repères:

Soit un corps solide S, un repère $\{R_s\}$ lié à ce solide et un repère fixe $\{R_0\}$

Tout point P du solide admet des coordonnées qui peuvent être exprimées dans $\{R_0\}$ ou $\{R_s\}$ telles que:

$$\overline{O_0 P}_{/R_0} = \begin{pmatrix} P_{x_0} \\ P_{y_0} \\ P_{z_0} \end{pmatrix}_{/R_0} = P_{x_0} \vec{x}_0 + P_{y_0} \vec{y}_0 + P_{z_0} \vec{z}_0 :$$

Coordonnée de P exprimées dans {R₀}

$$\overline{O_S P}_{/R_S} = \begin{pmatrix} P_{x_S} \\ P_{y_S} \\ P_{z_S} \end{pmatrix}_{/R_S} = P_{x_S} \vec{x}_S + P_{y_S} \vec{y}_S + P_{z_S} \vec{z}_S :$$

Coordonnée de P exprimées dans {R_s}

$$\overrightarrow{O_0O_S}_{/R_0} = \begin{pmatrix} T_{x_0} \\ T_{y_0} \\ T_{z_0} \end{pmatrix}_{/R_0} = T_{x_0}\vec{x}_0 + T_{y_0}\vec{y}_0 + T_{z_0}\vec{z}_0 \text{ : coordonn\'ees de l'origine O}_s \text{ du rep\`ere R}_s \text{ exprim\'ees dans le rep\`ere R}_0$$

Transformation de repères:

La relation de Chasles permet d'écrire:

$$\overrightarrow{O_0P}_{/R_0} = \overrightarrow{O_0O_S}_{/R_0} + \underbrace{\overrightarrow{O_SP}_{/R_0}}_{?}$$

$$\Leftrightarrow \overrightarrow{O_0P}_{/R_0} = \overrightarrow{O_0O_S}_{/R_0} + \underbrace{R_{0,S}}_{?} \overrightarrow{O_SP}_{/R_S}$$

 $R_{0,S}$: est la matrice de passage du repère $\{R_S\}$ vers le repère $\{R_0\}$. Elle exprime la rotation (orientation) de $\{R_S\}$ vis-à-vis de (par rapport à) $\{R_0\}$

 $\overrightarrow{O_0O_{S/R_0}}$: est le vecteur position du repère $\{R_S\}$ par rapport au repère $\{R_0\}$. Il exprime les coordonnées de l'origine du repère $\{R_S\}$ dans le repère $\{R_0\}$.

$$\begin{pmatrix} P_{x_0} \\ P_{y_0} \\ P_{z_0} \end{pmatrix}_{/R_0} = \begin{pmatrix} T_{x_0} \\ T_{y_0} \\ T_{z_0} \end{pmatrix}_{/R_0} + R_{0,S} \begin{pmatrix} P_{x_S} \\ P_{y_S} \\ P_{z_S} \end{pmatrix}_{/R_S}$$

Transformation de repères:

Notations simplifiées :

$$\begin{vmatrix}
p_0 = \overrightarrow{O_0 P}_{/R_0} \\
t_{0,S} = \overrightarrow{O_0 O_S}_{/R_0} \\
p_S = \overrightarrow{O_S P}_{/R_S}
\end{vmatrix} \Rightarrow p_0 = t_{0,S} + R_{0,S} p_S$$

La matrice d'orientation (de rotation) $R_{0,S}$ est définie telle que les éléments de ses colonnes sont les projections des vecteurs unitaires du repère R_s par rapport aux vecteurs unitaires du repère R_0 :

$$R_{0,S} = \begin{bmatrix} \langle x_s \mid x_0 \rangle & \langle y_s \mid x_0 \rangle & \langle z_s \mid x_0 \rangle \\ \langle x_s \mid y_0 \rangle & \langle y_s \mid y_0 \rangle & \langle z_s \mid y_0 \rangle \\ \langle x_s \mid z_0 \rangle & \langle y_s \mid z_0 \rangle & \langle z_s \mid z_0 \rangle \end{bmatrix}$$

La transformation inverse : passage du repère R₀ vers le repère R_S

⇒ Exprimer les coordonnées de P dans le repère R_S en passant par le repère R₀

$$p_{S} = -R_{_{0,S}}^{-1}t_{0,S} + R_{_{0,S}}^{-1} p_{0}$$

La connaissance de $R_{0,S}$ et $t_{0,S}$ suffit donc pour passer aisément d'un repère à l'autre !!!

Propriétés des matrices de passages:

Si $\{R_0\}$ et $\{R_s\}$ sont des repères orthonormés alors : $R_{0,s}R_{0,s}^T=I \Leftrightarrow R_{0,s}^{-1}=R_{0,s}^T=R_{s,0}$

On a alors :
$$p_{S} = -R_{_{0,S}}^{T} t_{0,S} + R_{_{0,S}}^{T} p_{0}$$

Transformations successives de repères

$$\left. \begin{array}{l} p_{0} = t_{0,1} + R_{0,1} \ p_{1} \\ p_{1} = t_{1,2} + R_{1,2} \ p_{2} \\ \vdots \\ p_{n-1} = t_{n-1,n} + R_{n-1,n} \ p_{n} \end{array} \right\} \Rightarrow p_{0} = t_{0,1} + R_{0,1} \left(t_{1,2} + R_{1,2} \left(t_{2,3} + R_{2,3} \left(\dots + R_{n-2,n-1} \left(t_{n-1,n} + R_{n-1,n} \ p_{n} \right) \right) \right) \right)$$

Le passage par n repères différents implique l'expression de p_0 sous forme polynomiale d'ordre n !

Comment simplifier cette expression?

Transformations homogènes:

Soit la transformation de repère donnée par:

$$p_0 = t_{0,1} + R_{0,1} p_1$$
 (1)

On définit les vecteurs de position augmentés (coordonnées homogènes):

$$\overline{p}_{0} = \left(\frac{p_{0}}{1}\right) = \begin{pmatrix} p_{x0} \\ p_{y0} \\ p_{z0} \\ 1 \end{pmatrix}; \ \overline{p}_{1} = \left(\frac{p_{1}}{1}\right) = \begin{pmatrix} p_{x1} \\ p_{y1} \\ p_{z1} \\ 1 \end{pmatrix}$$

On définit la transformation homogène :

$$\overline{p}_0 = A_{0,1} \overline{p}_1 \quad (2)$$

Où
$$A_{0,1} = \begin{bmatrix} R_{0,1} & t_{0,1} \\ \hline 0 & 1 \end{bmatrix}$$
 est appelée matrice de transformation homogène (4x4).

Exercice : démontrer que les transformations (1) et (2) sont équivalentes.

Transformations homogènes successives

Exprimer les coordonnées du point P dans le repère $\{R_0\}$ en passant par les repères $\{R_n\},...,\{R_1\}$

$$\begin{array}{c} \overline{p}_{0} = A_{0,1} \ \overline{p}_{1} \\ \overline{p}_{1} = A_{1,2} \ \overline{p}_{2} \\ \vdots \\ \overline{p}_{n-1} = A_{n-1,n} \ \overline{p}_{n} \end{array} \} \Rightarrow \overline{p}_{0} = A_{0,1} \ A_{1,2} \cdots A_{n-1,n} \ \overline{p}_{n}$$

$$\overline{p}_0 = A_{0,n} \ \overline{p}_n$$

Avec:

$$A_{0,n} = \left[\begin{array}{c|c} R_{0,n} & t_{0,n} \\ \hline 0 & 1 \end{array} \right]$$

Inverse d'une matrice homogène:
$$A_{i,i-1} = A_{i-1,i}^{-1} = \begin{bmatrix} R_{i-1,i}^T & | -R_{i-1,i}^T t_{i-1,i} \\ 0 & 1 \end{bmatrix}$$
 (à démontrer en exercice)