

# COMPARISON BETWEEN ARIMA AND DEEP LEARNING MODELS FOR FORECASTING

Project By: Aayush Shah, Anuraag Reddy, Parth Nimbadkar



# **OBJECTIVE**

- Project Focus: Comprehensive comparison of AutoRegressive Integrated Moving Average (ARIMA) versus deep-learning models: Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN).
- Beyond Comparison: Exploration of how each model interacts with diverse dataset characteristics, including window size, seasonality, trends, and the choice between one-step and multi-step forecasting.
- Evaluation Metrics: Utilization of essential metrics—Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Error (MAE) for rigorous Absolute performance assessment.
- Investigating how tuning hyperparameters, such as step size, prediction window, and regularization, affects the accuracy of models while forecasting

### **METHODOLOGY**



FIGURE 1: ROLLING EVALUATION

## **DATASET**



FIGURE 2: DATASET

# RESULTS

# 1. Results on Electricity Dataset

DATASET : ELECTRICITY LOOKBACK = 1

Properties: Trend: Linear, Seasonal: True

|                     | Tstep                     | sstep      | istep                     | sstep      | istep                | sstep       |
|---------------------|---------------------------|------------|---------------------------|------------|----------------------|-------------|
| ARIMA               | 8258.929 -                |            | 6534.281 -                |            | 0.032                | -           |
| LSTM                | 9936.293 -                |            | 8210.613 -                |            | 0.04                 | -           |
| CNN                 | 12779.624 -               |            | 9603.25 -                 |            | 0.047                | -           |
| TASET : ELECTRICITY | LOOKBACK = 5              |            |                           |            |                      |             |
| Models              | RMSE                      |            | MAI                       | E          | MAPE                 |             |
|                     | 1step                     | 3step      | 1step                     | 3step      | 1step                | 3step       |
| ARIMA               | 8164.112                  | 9115.779   | 6477.497                  | 7200.061   | 0.032                | 0.057       |
| LSTM                | 9725.179                  | 14620.289  | 8021.952                  | 11504.041  | 0.04                 | 0.06        |
|                     |                           |            |                           |            |                      |             |
| CNN                 | 13285.55                  | 18647.398  | 10534.019                 | 13679.973  | 0.052                | 0.067       |
| TASET : ELECTRICITY | LOOKBACK = 10             |            |                           |            |                      |             |
|                     |                           |            | 10534.019<br>MAI<br>1step |            | 0.052<br>MA<br>1step |             |
| TASET : ELECTRICITY | LOOKBACK = 10             | E          | MAI                       | E          | MA                   | PE          |
| TASET : ELECTRICITY | LOOKBACK = 10  RMS  1step | E<br>3step | MAI<br>1step              | E<br>3step | MA<br>1step          | PE<br>3step |

# **TABLE 1: EVALUATION ON ELECTRICITY DATASET**

ARIMA consistently outperformed CNN and LSTM across horizons for the dataset with linear trend and seasonality.

#### 2. Results on Wind Energy Dataset

DATASET: WIND LOOKBACK=1

**Properties:** Trend: Non Linear, Seasonal: True

| Models      | KIVI         | OL          | 1417        | 4E          | WAPE        |                |
|-------------|--------------|-------------|-------------|-------------|-------------|----------------|
| wodels      | 1step        | 3step       | 1step       | 3step       | 1step       | 3step          |
| ARIMA       | 4.362        | -           | 3.2         | -           | 0.229       | -              |
| LSTM        | 4.712        | -           | 3.444       | -           | 0.245       | -              |
| CNN         | 4.846        | -           | 3.52        | _           | 0.251       | -              |
| TASET: WINI | D LOOKBACK=5 |             |             |             |             |                |
|             | D LOOKBACK=5 |             | MA          | AE          | MA          | ·PΕ            |
| TASET: WINI |              |             | M/<br>1step | AE<br>3step | MA<br>1step | NPE 3step      |
|             | RM           | SE          |             |             |             | 3step          |
| Models      | RM<br>1step  | SE<br>3step | 1step       | 3step       | 1step       | 3step<br>0.257 |

| Madala | RMS   | RMSE  |       | Æ     | MAPE  |       |  |
|--------|-------|-------|-------|-------|-------|-------|--|
| Models | 1step | 3step | 1step | 3step | 1step | 3step |  |
| ARIMA  | 4.272 | 4.722 | 3.168 | 3.59  | 0.222 | 0.259 |  |
| LSTM   | 4.69  | 5.212 | 3.373 | 3.929 | 0.237 | 0.295 |  |
| CNN    | 7.286 | 7.643 | 5.301 | 5.762 | 0.373 | 0.416 |  |

#### **TABLE 2: EVALUATION ON WIND ENERGY DATASET**

ARIMA consistently outperformed CNN and LSTM across various metrics (RMSE, MAPE, MSE) and prediction horizons for the dataset with nonlinear trend and seasonality.

#### 3. Results on Financial Dataset

DATASET: FINANCIAL LOOKBACK=1

Properties: Trend: Random, Seasonal: False



### **TABLE 3: EVALUATION ON** FINANCIAL DATASET

ARIMA outperformed LSTM and CNN in RMSE and MAE, yet, interestingly, LSTM exhibited a better MAPE score. various metrics (RMSE, MAPE, MSE) and prediction This suggests that while LSTM produces predictions with a smaller average percentage error, occasional larger errors contribute to its higher RMSE.

#### **Observation:**

LSTM exhibits a better MAPE compared to ARIMA, but a poorer RMSE, suggesting potential overfitting. To address this, regularization is introduced for improved model stability





**TABLE 4: REGULARIZATION IN LSTM** 

# **CONCLUSION & FUTURE SCOPE**

- ARIMA excelled in diverse datasets (linear, non-linear, random), consistently outperforming LSTM and CNN.
- CNNs excel at local patterns but struggle with time series' temporal nature, leading to inferior performance.
- LSTM surprisingly surpassed ARIMA in MAPE for random indicating occasional data, significant errors.
- Regularizing LSTM enhanced forecasting accuracy, mitigating substantial errors.
- Findings highlight the importance of selecting models tailored specific data to characteristics.
- Model refinement, such as regularization, proves crucial for improving predictive capabilities.
- Assess the influence of incorporating external factors on predictive accuracy in time series forecasting.