Formal Languages Homework 2

Liam Dillingham

February 4, 2019

1 Problem 2.3.2

Convert to a DFA the following NFA:

	0	1
$\rightarrow p$	$\{q, s\}\$	{q}
*q	$\{q, s\}$ $\{r\}$	$\{q,r\}$
		$\{p\}$
* 8	0	$\{p\}$

2 Problem 2.3.3

Convert the following NFA to a DFA and informally describe the language it accepts.

	0	1
$\rightarrow p$	$\{p,q\}$	{ p}
q	$\{r,s\}$	$\{t\}$
r	$\{p,r\}$	$\{t\}$
* 8	Ø	Ø
*t	Ø	Ø

The language accepted by the NFA/DFA is all strings ending in 01.

3 Problem 2.3.4

Give nondeterministic finite automata to accept the following languages. Try to take advantage of nondeterminism as much as possible

- 3.1 a). The set of strings over alphabet $\{0,1,...,9\}$ such that the final digit has appeared before
- 3.2 b). The set of strings over alphabet $\{0, 1, ..., 9\}$ such that the final digit has not appeared before
- 3.3 c). The set of strings of 0's and 1's such that there are two 0's separated by a number of positions that is a multiple of 4. Note that 0 is an allowable multiple of 4

4 Problem 2.4.1

Design NFA's to recognize the following sets of strings:

- 4.1 a). abc, abd, and aacd, Assume the alphabet is $\{a, b, c, d\}$.
- 4.2 b). 0101, 101, and 011.
- 4.3 c). ab, bc, and ca. Assume the alphabet is $\{a, b, c\}$.

5 Problem 2.4.2b

Convert each of your NFA's from Problem 2.4.1 to DFA's (We only complete part b here).