Meeting Notes

Zhiwei Zhou

June 27, 2022

1 28.06.2022 Meeting draft

1.1 Notation

Vectors

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \in \mathbb{R}^n$$

Matrices and Columns

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
$$= \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \in \mathbb{R}^{m \times n}, \ a_i \in \mathbb{R}^m$$

$$Ae_i := a_i$$

 $e_i = i$ -th column of I

Block Matrices and Block Columns

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1l} \\ A_{21} & A_{22} & \cdots & A_{1l} \\ \vdots & \vdots & \ddots & \vdots \\ A_{k1} & A_{k2} & \cdots & A_{kl} \end{bmatrix}, \ A_{ij} \in \mathbb{R}^{m \times n}$$
$$= \begin{bmatrix} A_1 & A_2 & \cdots & A_l \end{bmatrix} \in \mathbb{R}^{km \times ln}, \ A_i \in \mathbb{R}^{km \times n}$$

$$\begin{split} AE_i &:= A_i \\ E_i &= i\text{-th block column of } I \end{split}$$

1.2 Bidiagonal matrix (upper)

$$U = \begin{bmatrix} d_1 & b_1 & & & & \\ & d_2 & b_2 & & & \\ & & \ddots & \ddots & & \\ & & & d_{n-1} & b_{n-1} \\ & & & & d_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} \in \mathbb{R}^{n \times 1} \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} \in \mathbb{R}^{n \times 1} \qquad y^{\mathrm{T}} = \begin{bmatrix} y_1 & y_2 & \cdots & y_{n-1} & y_n \end{bmatrix} \in \mathbb{R}^{1 \times n}$$

$$xy^{\mathrm{T}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_{n-1} & y_n \end{bmatrix}$$

$$= \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_{n-1} & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_{n-1} & x_2y_n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n-1}y_1 & x_{n-1}y_2 & \cdots & x_{n-1}y_{n-1} & x_{n-1}y_n \\ x_ny_1 & x_ny_2 & \cdots & x_ny_{n-1} & x_ny_n \end{bmatrix}$$

$$= x \begin{bmatrix} y_1 & y_2 & \cdots & y_{n-1} & y_n \end{bmatrix}$$

$$= \begin{bmatrix} xy_1 & xy_2 & \cdots & xy_{n-1} & xy_n \end{bmatrix}$$

$$\operatorname{triu}(xy^{\mathrm{T}}) = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_{n-1} & x_1y_n \\ 0 & x_2y_2 & \cdots & x_2y_{n-1} & x_2y_n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & x_4y_{n-1} & x_4y_n \\ 0 & 0 & \cdots & 0 & x_5y_n \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} x_{1:1} \\ 0_{n-1} \end{bmatrix} y_1 & \begin{bmatrix} x_{1:2} \\ 0_{n-2} \end{bmatrix} y_2 & \cdots & \begin{bmatrix} x_{1:n-1} \\ 0 \end{bmatrix} y_{n-1} & xy_n \end{bmatrix}$$

$$U^{-1} = \operatorname{triu}(xy^{\mathrm{T}})$$
$$I = U \operatorname{triu}(xy^{\mathrm{T}})$$

n-th column,

$$e_n = U \operatorname{triu}(xy^{\mathrm{T}})e_n$$

= Uxy_n

$$x := U^{-1}e_n$$

$$e_n = Uxy_n$$

$$= UU^{-1}e_ny_n$$

$$= e_ny_n$$

$$y_n := 1$$

(n-1)-th column,

$$e_{n-1} = U \operatorname{triu}(xy^{\mathrm{T}}) e_{n-1}$$
$$= U \begin{bmatrix} x_{1:n-1} \\ 0 \end{bmatrix} y_{n-1}$$

(n-1)-th row of (n-1)-th column,

$$e_i^{\mathrm{T}} e_j = \delta_{ij}$$

$$e_{n-1}^{\mathbf{T}} e_{n-1} = 1 = e_{n-1}^{\mathbf{T}} U \begin{bmatrix} x_{1:n-1} \\ 0 \end{bmatrix} y_{n-1}$$

$$= \begin{bmatrix} 0_{n-2} & d_{n-1} & b_{n-1} \end{bmatrix} \begin{bmatrix} x_{1:n-1} \\ 0 \end{bmatrix} y_{n-1}$$

$$= d_{n-1} x_{n-1} y_{n-1}$$

$$y_{n-1} := (d_{n-1} x_{n-1})^{-1}$$

$$e_n = Ux$$

$$e_n^{\mathsf{T}} e_n = 1 = e_n^{\mathsf{T}} Ux$$

$$= \begin{bmatrix} 0_{n-1} & d_n \end{bmatrix} x$$

$$= d_n x_n$$

$$y_n := 1$$

$$: = (d_n x_n)^{-1}$$

$$x := U^{-1}e_n$$
$$y_i := (d_i x_i)^{-1}$$

1.3 Tridiagonal matrix (Upper)

n = 2k

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{k-1} \\ X_k \end{bmatrix} \in \mathbb{R}^{2k \times 2} \qquad Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_{k-1} \\ Y_k \end{bmatrix} \in \mathbb{R}^{2k \times 2} \qquad Y^{\mathrm{T}} = \begin{bmatrix} Y_1^{\mathrm{T}} & Y_2^{\mathrm{T}} & \cdots & Y_{k-1}^{\mathrm{T}} & Y_k^{\mathrm{T}} \end{bmatrix} \in \mathbb{R}^{2 \times 2k}$$

$$XY^{\mathrm{T}} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{k-1} \\ X_k \end{bmatrix} \begin{bmatrix} Y_1^{\mathrm{T}} & Y_2^{\mathrm{T}} & \cdots & Y_{k-1}^{\mathrm{T}} & Y_k^{\mathrm{T}} \\ X_{k-1} & X_1 Y_2^{\mathrm{T}} & \cdots & X_1 Y_{k-1}^{\mathrm{T}} & x_1 Y_k^{\mathrm{T}} \\ X_2 Y_1^{\mathrm{T}} & X_2 Y_2^{\mathrm{T}} & \cdots & X_2 Y_{k-1}^{\mathrm{T}} & x_2 Y_k^{\mathrm{T}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ X_{k-1} Y_1^{\mathrm{T}} & X_{k-1} Y_2^{\mathrm{T}} & \cdots & X_{k-1} Y_{k-1}^{\mathrm{T}} & X_{k-1} Y_k^{\mathrm{T}} \\ X_k Y_1^{\mathrm{T}} & X_k Y_2^{\mathrm{T}} & \cdots & X_k Y_{k-1}^{\mathrm{T}} & X_k Y_k^{\mathrm{T}} \end{bmatrix}$$

$$= X \begin{bmatrix} Y_1^{\mathrm{T}} & Y_2^{\mathrm{T}} & \cdots & Y_{k-1}^{\mathrm{T}} & Y_k^{\mathrm{T}} \\ X_k Y_1^{\mathrm{T}} & X Y_2^{\mathrm{T}} & \cdots & X_k Y_{k-1}^{\mathrm{T}} & X Y_k^{\mathrm{T}} \end{bmatrix}$$

$$= [XY_1^{\mathrm{T}} & XY_2^{\mathrm{T}} & \cdots & XY_{k-1}^{\mathrm{T}} & XY_k^{\mathrm{T}} \end{bmatrix}$$

$$\begin{aligned} \operatorname{triu}(X_k) &\coloneqq X_k \\ \operatorname{triu}(Y_k^{\mathrm{T}}) &\coloneqq Y_k^{\mathrm{T}} \\ \operatorname{triu}(X_k Y_k^{\mathrm{T}}) &= X_k Y_k^{\mathrm{T}} \end{aligned}$$

$$\begin{aligned} \text{triu}(XY^{\text{T}}) &= \begin{bmatrix} \text{triu}(X_{1}Y_{1}^{\text{T}}) & X_{1}Y_{2}^{\text{T}} & \cdots & X_{1}Y_{k-1}^{\text{T}} & X_{1}Y_{k}^{\text{T}} \\ 0_{2\times2} & \text{triu}(X_{2}Y_{2}^{\text{T}}) & \cdots & X_{2}Y_{k-1}^{\text{T}} & X_{2}Y_{k}^{\text{T}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0_{2\times2} & 0_{2\times2} & \cdots & \text{triu}(X_{k-1}Y_{k-1}^{\text{T}}) & X_{k-1}Y_{k}^{\text{T}} \\ 0_{2\times2} & 0_{2\times2} & \cdots & 0_{2\times2} & X_{k}Y_{k}^{\text{T}} \end{bmatrix} \\ &= \begin{bmatrix} \text{triu}(X_{1}Y_{1}^{\text{T}}) \\ 0_{2(k-1)\times2} \end{bmatrix} & \begin{bmatrix} X_{1}Y_{2}^{\text{T}} \\ \text{triu}(X_{2}Y_{2}^{\text{T}}) \\ 0_{2(k-2)\times2} \end{bmatrix} & \cdots & \begin{bmatrix} X_{1:k-2}Y_{k-1}^{\text{T}} \\ \text{triu}(X_{k-1}Y_{k-1}^{\text{T}}) \\ 0_{2\times2} \end{bmatrix} & XY_{k}^{\text{T}} \end{bmatrix} \end{aligned}$$

$$U^{-1} = \operatorname{triu}(XY^{\mathrm{T}})$$
$$I = U \operatorname{triu}(XY^{\mathrm{T}})$$

$$E_i = \begin{bmatrix} 0 & \cdots & 0 & I_{2\times 2} & 0 & \cdots & 0 \end{bmatrix}^{\mathrm{T}}$$

k-th block column,

$$E_k = U \operatorname{triu}(XY^{\mathrm{T}}) E_k$$
$$= UXY_k^{\mathrm{T}}$$

$$X := U^{-1}E_k$$

$$E_k = UXY_k^{\mathrm{T}}$$

$$= UU^{-1}E_kY_k^{\mathrm{T}}$$

$$= E_kY_k^{\mathrm{T}}$$

$$Y_k^{\mathrm{T}} := I_{2\times 2}$$

(k-1)-th block column,

$$E_{k-1} = U \operatorname{triu}(XY^{T}) E_{k-1}$$

$$= U \begin{bmatrix} X_{1:k-2} Y_{k-1}^{T} \\ \operatorname{triu}(X_{k-1} Y_{k-1}^{T}) \\ 0_{2 \times 2} \end{bmatrix}$$

(k-1)-th block row of (k-1)-th block column,

$$E_i^{\mathrm{T}} E_j = \begin{cases} I_{2 \times 2}, & \text{if } i = j ; \\ 0_{2 \times 2}, & \text{otherwise.} \end{cases}$$

$$\begin{split} E_{k-1}^{\mathrm{T}} E_{k-1} &= I_{2 \times 2} = E_{k-1}^{\mathrm{T}} U \begin{bmatrix} X_{1:k-2} Y_{k-1}^{\mathrm{T}} \\ \mathrm{triu}(X_{k-1} Y_{k-1}^{\mathrm{T}}) \\ 0_{2 \times 2} \end{bmatrix} \\ &= \begin{bmatrix} 0_{2 \times 2(k-2)} & D_{k-1} & B_{k-1} \end{bmatrix} \begin{bmatrix} X_{1:k-2} Y_{k-1}^{\mathrm{T}} \\ \mathrm{triu}(X_{k-1} Y_{k-1}^{\mathrm{T}}) \\ 0_{2 \times 2} \end{bmatrix} \\ &= D_{k-1} \operatorname{triu}(X_{k-1} Y_{k-1}^{\mathrm{T}}) \\ Y_{k-1}^{\mathrm{T}} &:= (D_{k-1} X_{k-1})^{-1} \end{split}$$

$$\begin{split} D_{k-1} &= \operatorname{triu}(D_{k-1}) \\ D_{k-1}^{-1} &= \operatorname{triu}(D_{k-1}^{-1}) \\ Y_{k-1}^{\mathrm{T}} &\coloneqq (D_{k-1}X_{k-1})^{-1} \\ D_{k-1} \operatorname{triu}(X_{k-1}Y_{k-1}^{\mathrm{T}}) &= D_{k-1} \operatorname{triu}(X_{k-1}(D_{k-1}X_{k-1})^{-1}) \\ &= D_{k-1} \operatorname{triu}(X_{k-1}X_{k-1}^{-1}D_{k-1}^{-1}) \\ &= D_{k-1} \operatorname{triu}(D_{k-1}^{-1}) \\ &= D_{k-1}D_{k-1}^{-1} \\ &= I_{2\times 2} \end{split}$$

$$X := U^{-1}E_k$$

$$E_k = UX$$

$$E_k^{\mathrm{T}}E_k = I_{2\times 2} = E_k^{\mathrm{T}}UX$$

$$= \begin{bmatrix} 0_{2\times 2(k-1)} & D_k \end{bmatrix}X$$

$$= D_kX_k$$

$$Y_k^{\mathrm{T}} := I_{2\times 2}$$

$$:= (D_kX_k)^{-1}$$

$$X := U^{-1}E_k$$
$$Y_i^{\mathrm{T}} := (D_iX_i)^{-1}$$

$$n = 2k + 1$$

$$U = \begin{bmatrix} \begin{bmatrix} d_1 \end{bmatrix} & \begin{bmatrix} b_1^1 & b_1^2 \\ d_2 & b_2^1 \\ d_3 \end{bmatrix} & \begin{bmatrix} b_2^2 \\ b_3^1 & b_3^2 \end{bmatrix} \\ & \ddots & \ddots & \\ & \begin{bmatrix} d_{2k-2} & b_{2k-2}^1 \\ d_{2k-1} \end{bmatrix} & \begin{bmatrix} b_{2k-2}^2 \\ b_{2k-1}^1 \\ d_{2k} & b_{2k}^1 \end{bmatrix} \\ & \begin{bmatrix} D_1 & \tilde{B}_1 \\ D_2 & B_2 \\ & \ddots & \ddots \\ & D_k & B_k \\ & D_{k+1} \end{bmatrix} \in \mathbb{R}^{(2k+1)\times(2k+1)}$$

$$X := U^{-1}E_{k+1}$$

 $Y_i^{\mathrm{T}} := (D_iX_i)^{-1} \text{ for } i = 2, \dots, k+1$
 $Y_1^{\mathrm{T}} := (D_1X_1)^+ = (D_1X_1)^{\mathrm{T}}(D_1X_1(D_1X_1)^{\mathrm{T}})^{-1}$

1.4 Banded matrix (Upper)

 $n = ku + r, \ 0 \le r < u$

r = 0, n = ku,

$$U = \begin{bmatrix} D_1 & B_1 & & & & \\ & D_2 & B_2 & & & \\ & & \ddots & \ddots & & \\ & & & D_{k-1} & B_{k-1} & \\ & & & & D_k \end{bmatrix} \in \mathbb{R}^{ku \times ku},$$

 $D_i \in \mathbb{R}^{u \times u}, \ B_i \in \mathbb{R}^{u \times u} \text{ for } i = 1, 2, \cdots, k.$

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix} \in \mathbb{R}^{ku \times u} \qquad Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_k \end{bmatrix} \in \mathbb{R}^{ku \times u} \qquad Y^{\mathrm{T}} = \begin{bmatrix} Y_1^{\mathrm{T}} & Y_2^{\mathrm{T}} & \cdots & Y_k^{\mathrm{T}} \end{bmatrix} \in \mathbb{R}^{u \times ku}$$

$$X_i, Y_i^{\mathrm{T}} \in \mathbb{R}^{u \times u}, \text{ for } i = 1, 2, \dots, k$$

$$X := U^{-1} E_k$$

$$Y_i^{\mathrm{T}} := (D_i X_i)^{-1}$$

 $r \neq 0, \ n = ku + r,$

$$U = \begin{bmatrix} \tilde{D}_1 & \tilde{B}_1 & & & & \\ & D_2 & B_2 & & & \\ & & \ddots & \ddots & \\ & & & D_k & B_k \\ & & & D_{k+1} \end{bmatrix} \in \mathbb{R}^{(ku+r)\times(ku+r)},$$

$$\tilde{D}_1 \in \mathbb{R}^{r \times r}, \ \tilde{B}_1 \in \mathbb{R}^{r \times u};$$

$$D_i \in \mathbb{R}^{u \times u}, \ B_i \in \mathbb{R}^{u \times u} \text{ for } i = 2, \ \cdots, \ k+1.$$

$$X = \begin{bmatrix} \tilde{X}_1 \\ X_2 \\ \vdots \\ X_{k+1} \end{bmatrix} \in \mathbb{R}^{(ku+r) \times u} \quad Y = \begin{bmatrix} \tilde{Y}_1 \\ Y_2 \\ \vdots \\ Y_{k+1} \end{bmatrix} \in \mathbb{R}^{(ku+r) \times u} \quad Y^{\mathrm{T}} = \begin{bmatrix} \tilde{Y}_1^{\mathrm{T}} & Y_2^{\mathrm{T}} & \cdots & Y_{k+1}^{\mathrm{T}} \end{bmatrix} \in \mathbb{R}^{u \times (ku+r)}$$

$$\tilde{X}_1 \in \mathbb{R}^{r \times u}$$

$$\tilde{Y}_1^{\mathrm{T}} \in \mathbb{R}^{u \times r}$$

$$X_i, Y_i^{\mathrm{T}} \in \mathbb{R}^{u \times u} \text{ for } i = 2, \dots, k+1$$

$$X \coloneqq U^{-1} E_{k+1}$$

$$\tilde{Y}_1^{\mathrm{T}} \coloneqq (D_1 X_1)^+ = (D_1 X_1)^{\mathrm{T}} (D_1 X_1 (D_1 X_1)^{\mathrm{T}})^{-1}$$

$$\operatorname{triu}(D_1 X_1 \tilde{Y}_1^{\mathrm{T}}) = I_{r \times r}$$

$$Y_i^{\mathrm{T}} \coloneqq (D_i X_i)^{-1} \text{ for } i = 2, \dots, k+1$$

2 28.06.2022 Meeting formal

Consider an upper banded matrix $U \in \mathbb{R}^{n \times n}$,

Then try to show that its inverse can be repersent as the upper triangular part of an outer product, i.e.,

$$U^{-1} = \operatorname{triu}(XY^{\mathrm{T}}) \tag{2}$$

Let $X, Y \in \mathbb{R}^{n \times u}$, consider the following cases of n,

n = ku

then (1) can be repersent as a block upper bidiagonal matrix,

3 Test

$$\begin{array}{c|cccc}
 & n \text{ columns} \\
\hline
 & 1 & 1 & 1 & \dots & 1 \\
 & 1 & 1 & 1 & & 1 \\
 & 1 & 1 & 1 & & 1 \\
 & 1 & 1 & 1 & & 1 \\
 & 1 & 1 & 1 & & 1 \\
 & 1 & 1 & 1 & & \dots & 1
\end{array}$$

$$\begin{pmatrix} 1 & 2 & 0 & 0 & 0 & 0 \\ 4 & 5 & 0 & 0 & 0 & 0 \\ -\overline{0} & -\overline{0} & -\overline{7} & -\overline{1} & 0 & 0 \\ 0 & 0 & -\overline{1} & -\overline{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \overline{3} & \overline{4} \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} d_1 & b_1^1 \\ & d_2 \end{bmatrix} & \begin{bmatrix} b_1^2 \\ b_2^1 & b_2^2 \end{bmatrix} \\ & \begin{bmatrix} d_3 & b_3^1 \\ & d_4 \end{bmatrix} & \begin{bmatrix} b_3^2 \\ b_4^1 & b_4^2 \end{bmatrix} \\ & & \ddots & & \ddots \\ & & & \begin{bmatrix} d_{2k-3} & b_{2k-3}^1 \\ & d_{2k-2} \end{bmatrix} & \begin{bmatrix} b_{2k-3}^2 & b_{2k-2}^2 \\ b_{2k-2}^1 & b_{2k-1}^1 \\ & & & \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} d_1 & b_1^1 & \cdots & b_1^{r-2} & b_1^{r-1} \\ & d_2 & & & b_2^{r-2} \\ & & \ddots & & & \vdots \\ & & & d_{r-1} & b_{r-1}^1 \\ & & & & d_r \end{bmatrix} \begin{bmatrix} b_1^r & \cdots & b_1^u \\ b_2^{r-1} & b_2^r & b_2^u \\ \vdots & & \ddots & \ddots & \vdots \\ b_{r-1}^2 & b_r^2 & \cdots & b_r^u \\ b_r^1 & b_r^2 & \cdots & b_r^{t-2} & b_1^{r-1} \\ 0 & d_2 & & b_2^{t-2} \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & d_{r-1} & b_{r-1}^1 \\ 0 & \cdots & \cdots & 0 & d_r \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \end{bmatrix}$$

0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19 20
0 [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19] 20
0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19 20
0^{-1}	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19 20

