EPITA

Mathématiques

Examen S2-B3-EV

Espaces vectoriels

durée: 1 heure

Mars 2025

Nom:	
Prénom :	
Classe:	
NOTE:	
Le barème est sur 20 points.	
Consignes: — Lire le sujet en entier avant de commencer. Il y a en tout 4 exercices.	

— La rigueur de votre rédaction sera prise en compte dans la note.

— Dans le sujet, sev signifie sous-espace vectoriel et deg signifie degré.

— Documents et calculatrices interdits.

— Aucune réponse au crayon de papier ne sera corrigée.

— Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

Exercice 1: sous-espaces vectoriels (6 points)

1.	Soient E un \mathbb{R} -espace vectoriel et F un ensemble. Donner les conditions mathématiques pour avoir : « F es un sous-espace vectoriel de E »		
2.	Dire si les ensembles suivants sont des \mathbb{R} -espaces vectoriels. Justifiez rigoureusement votre réponse.		
	(a) $F = \{(x, y, z) \in \mathbb{R}^3, 2x + y = 0\}$		
	(b) $G = \{ f \in \mathbb{R}^{\mathbb{R}}, f(0) \times f(1) = 0 \}$		

Exercice 2: cours 1 sur les sev (3 points)

Soient E un \mathbb{R} -espace vectoriel et F et G deux sous-espaces vectoriels de E.

1.	Compléter les pointillés par « Vrai » ou « Faux ».
	- $F \cap G$ est un sous-espace vectoriel de E :
	- $F \cup G$ est un sous-espace vectoriel de E :
	- $F + G$ est un sous-espace vectoriel de E :
2.	Justifier votre réponse pour $F \cap G$ (si vous avez répondu « Vrai », faire une preuve, sinon donner un contre exemple).

Exercice 3 : somme de sous-espaces vectoriels (7 points)

	\mathbb{R}^3 , on considère les deux sev $F = \{(x, y, z) \in \mathbb{R}^3, \ x + y + z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3, \ x - y = 0\}$ ométriquement, que représentent F et G ?
	$t u = (x, y, z) \in E.$
(a)	Soient $v = (y, 2y - x, x - 3y)$ et $w = (x - y, -y + x, z + 3y - x)$. Montrer que $v \in F$ et $w \in G$.
(b)	En déduire que $u \in F + G$.
(c)	A-t-on $E = F + G$? Justifier.
3. Do	nner la définition de $E = F \oplus G$.
4. A-	t-on ici $E = F \oplus G$? Justifier.

Exercice 4: cours 2 sur les familles (4 points)

1.	Da	ns $E = \mathbb{R}_2[X] = \{P \in \mathbb{R}[X], \deg(P) \leq 2\}$, on considère la famille de vecteurs $\mathcal{F} = (P_1, P_2, P_3)$.
	(a)	Donner la définition mathématique (avec les quantificateurs) de « $\mathcal F$ est une famille libre de E ».
	(b)	Donner la définition mathématique (avec les quantificateurs) de « $\mathcal F$ est une famille liée de E ».
	(c)	Donner la définition mathématique (avec les quantificateurs) de « $\mathcal F$ est une famille génératrice de E ».
2.	Do	onner, sans justifier, un exemple d'une famille libre de \mathbb{R}^3 composée de 2 vecteurs.
3.	Do	nner, sans justifier, un exemple d'une famille liée de \mathbb{R}^3 composée de 3 vecteurs.