

ExplaiNN: interpretable and transparent neural networks for genomics

A tutorial, by **Oriol Fornes**

Research Associate & Deputy Group Leader @ Wasserman Lab University of British Columbia

December, 2022

oriol@cmmt.ubc.ca

OFORNES

What is ExplaiNN?

- ExplaiNN (<u>Explai</u>nable <u>Neural</u> <u>Networks</u>) is a glass-box deep learning model for genomic tasks trained on one-hot encoded sequences
- ExplaiNN performs well compared to more complex models and provides similar interpretation to more complex and time-consuming approaches
- Preprint: https://doi.org/10.1101/2022.05.20.492818
- GitHub: https://github.com/wassermanlab/ExplaiNN

Contents of the GitHub repository

- conda contains a bash script to create a conda environment for the tutorial
- data contains different datasets (e.g. for this tutorial)
- **explainn** i.e., the explain library
- notebooks contains different Jupyter notebooks (e.g. paper figures)
- **scripts** contains different Python scripts (e.g. to train models)

The ExplaiNN library

- explainn/
 - interpretation/
 - interpretation.py contains code to interpret ExplaiNN models
 - models/
 - **networks.py** contains different models (e.g. ExplaiNN, DanQ, ...)
 - train/
 - train.py contains code to train ExplaiNN models
 - test.py contains code to test ExplaiNN models
 - utils/
 - tools.py contains general functions (e.g. one-hot encoder)

Conda prerequisites

Make sure that conda is available

```
conda init bash
source ~/.bashrc
```

Add libmamba solver and custom packages directory

```
conda config --set solver libmamba
conda config --add pkgs_dirs ${HOME}/.conda/pkgs
```


Installing ExplaiNN

 Clone ExplaiNN from GitHub and switch to the beta branch git clone https://github.com/wassermanlab/ExplaiNN.git
 cd ExplaiNN

Install all requirements via conda

```
./conda/create-conda-env.sh
conda activate explainn
```

Verify that the requirements were installed correctly

```
>>> import torch ← from the Python console
>>> torch.cuda.is_available() ← should return "True"
tomtom ← from the Terminal; should return the help message
```


Installing ExplaiNN

- Install the ExplaiNN library (developer mode)
 python setup.py install
 - Verify that the ExplaiNN library was installed correctly
 - On GPURTX / GPURTX-2:

jupyter notebook --notebook-dir=./notebooks --no-browser --port=XXXX

On your local machine:

ssh -N -f -L localhost:YYYY:localhost:XXXX user@gpurtx.cmmt.ubc.ca
open http://localhost:YYYY/notebooks/test.ipynb

Where XXXX and YYYY can be any two numbers

Python scripts (e.g. ExplaiNN library wrappers)

- scripts/
 - train.py trains ExplaiNN models
- ≥ o interpret.py interprets ExplaiNN models
 - test.py provides performance of ExplaiNN models on the test set
 - predict.py computes predictions using ExplaiNN models for a set of sequences in a FASTA file

The ExplaiNN TSV file format

- Files can be gzipped
- 1st column sequence identifier
- 2nd column the sequence
- 3rd to nth columns i.e., the values for the different classes

ERR1002407.188226	AATTAGCTCACATTCCCTGCGTGGCGCAACATACGCTGCG	0.0	0.0	1.0	0.0
ERR1002409.315766	CATTCACCGCGAGCTACCTAGCGCAGTGCATTGCACAACG	0.0	0.0	0.0	1.0
ERR1002405.154226	TTCTAGCGTCTCACCAGCATGGCGCAACTTCAGGATTGCG	0.0	1.0	0.0	0.0
ERR1002403.79059	GCATGGAACATATAACGTAGAAAAACCCACCGACACAGGG	1.0	0.0	0.0	0.0
ERR1002405.194629	GCATTGCTTGCATCATAGATACACGGCGCATCCGCCACTA	0.0	1.0	0.0	0.0
ERR1002407.57779	CGCCTACAAAGGAGCACGCACTTACGCAATGAGCCGTCCA	0.0	0.0	1.0	0.0
ERR1002407.418287	ACCTTGGCCCTGTCGATGGTCCACACGAGAGTATTGCGAA	0.0	0.0	1.0	0.0
ERR1002405.78846	GAACAATTACCTCTCCTAGCGGGTAAAGACCCGTTGCAAA	0.0	1.0	0.0	0.0
ERR1002405.187854	GCAAGATCTGCAGTGTTGCCCCGCCGTCACACCACGCCAT	0.0	1.0	0.0	0.0
ERR1002407.111275	GAGTGATGCAAGTCCCAGAGTGTACTGTACACTAGTTTAT	0.0	0.0	1.0	0.0

Parsers from different formats to the ExplaiNN format

- scripts/parsers/
 - bed2explainn.py from BED to ExplaiNN train/validation/test files
 - fasta2explainn.py from FASTA to ExplaiNN train/validation/test files
 - fastq2explainn.py from FASTQ to ExplaiNN train/validation/test files
 - pbm2explainn.py from PBM to ExplaiNN train/validation/test files
 - o **json2explainn.py** from JSON to ExplaiNN train/validation/test files

Utilities

scripts/utils/

- match-seqs-by-gc.py given two or more FASTA files, subsample the same number of sequences from each file while accounting for the %GC
- subsample-seqs-by-gc.py subsample n sequences from FASTA file while accounting for the original %GC distribution
- resize.py resizes intervals in a BED file to desired size
- jaspar2logo.py / meme2logo.py convert PWMs in JASPAR / MEME formats to motif logos
- meme2clusters.py / tomtom.py clusters PWMs in MEME format based on Tomtom similarities

Download non-redundant human CTCF ChIP-seq peaks from <u>ReMap</u>

```
cd ./data/tutorial
URL=https://remap.univ-amu.fr/storage/remap2022/hg38/MACS2/TF/CTCF
wget -P CTCF ${URL}/remap2022_CTCF_nr_macs2_hg38_v1_0.bed.gz
output: ./CTCF/remap2022_CTCF_nr_macs2_hg38_v1_0.bed.gz
```

- Download the human genome assembly hg38 using genomepy genomepy install -p UCSC -g ./genomes -t 8 -f hg38 output: (folder "./genomes/hg38/") hg38.fa, hg38.fa.sizes, etc.
- Download the <u>JASPAR</u> CORE collection of vertebrates profiles
 URL=https://jaspar.genereg.net/download/data/2022/CORE
 wget -P JASPAR \${URL}/JASPAR2022_CORE_vertebrates_non-redundant_pfms_meme.txt
 output: ./JASPAR/JASPAR2022_CORE_vertebrates_non-redundant_pfms_meme.txt

Extract the ChIP-seq peak summits

```
zless ./CTCF/remap2022_CTCF_nr_macs2_hg38_v1_0.bed.gz | \
    awk '{print $1"\t"$7"\t"$8}' > ./CTCF/CTCF_summits.bed
output: ./CTCF/CTCF_summits.bed
```

Extend the summits 100 bp in each direction for a total size of 201 bp

Get the FASTA sequences of the resized peaks

```
bedtools getfasta -fi ./genomes/hg38/hg38.fa -fo ./CTCF/CTCF_201bp.fa \
    -bed ./CTCF/CTCF_201bp.bed
output: ./CTCF/CTCF_201bp.fa
```


Subsample 10K sequences for training (i.e., for training faster)

```
PY_SCRIPT=../../scripts/utils/subsample-seqs-by-gc.py
${PY_SCRIPT} -o ./CTCF/CTCF_201bp_10K.fa --subsample 10000 ./CTCF/CTCF_201bp.fa
output: ./CTCF/CTCF_201bp_10K.fa
```

 Create training/validation/test splits (% = 80/10/10); negative sequences are obtained by dinucleotide shuffling CTCF peak sequences using <u>BiasAway</u>

```
PY_SCRIPT=../../scripts/parsers/fasta2explainn.py
${PY_SCRIPT} -o ./CTCF/ -p CTCF ./CTCF/CTCF_201bp_10K.fa
output: (folder "./CTCF/") CTCF.train.tsv.gz, CTCF.validation.tsv.gz, CTCF.test.tsv.gz
```


Train an ExplaiNN model that predicts the binding of CTCF

Measure the model's performance on the test set

```
PY_SCRIPT=../../scripts/test.py

${PY_SCRIPT} -o ${OUT_DIR} ${OUT_DIR}/model_epoch_best_3.pth \
    ${OUT_DIR}/parameters-train.py.json ./CTCF/CTCF.test.tsv.gz
    output: ./ExplaiNN/CTCF/performance-metrics.tsv
```

The performance of the model on the test set is ~0.85

Interpret the model

Obtain a logo for each filter in PNG format (option "-f")

```
PY_SCRIPT=../../scripts/utils/meme2logo.py

${PY_SCRIPT} -c 8 -f png -o ${OUT_DIR}/logos ${OUT_DIR}/filters.meme
output: (folder "./ExplaiNN/CTCF/logos/") filter0.fwd.png, filter0.rev.png, etc.
```


Visualize the logos of CTCF-like filters

```
PY SCRIPT=../../scripts/utils/tomtom.py
${PY SCRIPT} -c 8 -o ${OUT DIR}/tomtom ${OUT DIR}/filters.meme \
     ./JASPAR/JASPAR2022 CORE vertebrates non-redundant pfms meme.txt
output: ./ExplaiNN/CTCF/tomtom/tomtom.tsv.gz
zgrep MA0139.1 ${OUT DIR}/tomtom/tomtom.tsv.gz
filter31
              MA0139.1
                             -2
                                    4.27616e-09
                                                   3.59625e-06
                                                                  3.57994e-06
filter21
              MA0139.1
                                    1.33438e-10
                                                   1.12221e-07
                                                                  2.199e-07
filter3
                                    6.02406e-09
                                                   5.06624e-06
                                                                  9.93355e-06
              MA0139.1
                             -1
(results can differ)
```


- To train the previous ExplaiNN model, we used a negative set of CTCF sequences (i.e., not bound) obtained by dinucleotide shuffling
- For this example, we will use a more realistic negative set obtained from subsampling accessible regions across 733 human biosamples from <u>ENCODE</u> that do not overlap any CTCF ChIP-seq peak

```
URL=https://www.encodeproject.org/files/ENCFF503GCK/@@download
FILE=ENCFF503GCK.tsv
wget -P ENCODE ${URL}/${FILE}
output: ./ENCODE/ENCFF503GCK.tsv
```

Remove accessible regions that overlap with CTCF peaks

```
tail -n +2 ENCODE/${FILE} | bedtools subtract -A -a - \
    -b ./CTCF/remap2022_CTCF_nr_macs2_hg38_v1_0.bed.gz > ENCODE/no_CTCF.bed
output: ./ENCODE/no_CTCF.bed
```


• Extract the summits and extend them 100 bp in each direction (size = 201 bp)

Get the FASTA sequences of the resized regions

 Subsample 100K sequences for training by matching the %GC content between CTCF peaks (i.e., positives) and ENCODE regions (i.e., negatives)

Create training/validation/test splits (% = 80/10/10)

```
PY_SCRIPT=../../scripts/parsers/json2explainn.py
${PY_SCRIPT} -o ./CTCF/ -p CTCF+ENCODE ./CTCF/CTCF+ENCODE_201bp_100K.json
output: (folder "./CTCF/") CTCF+ENCODE.train.tsv.gz,
CTCF+ENCODE.test.tsv.gz
```


Train, test and interpret a second ExplaiNN model that predicts CTCF binding

```
PY_SCRIPT=../../scripts/train.py
OUT DIR=./ExplaiNN/CTCF+ENCODE
${PY SCRIPT} -o ${OUT DIR} --input-length 201 --criterion BCEWithLogits \
    --rev-complement ./CTCF/CTCF+ENCODE.train.tsv.gz \
     ./CTCF/CTCF+ENCODE.validation.tsv.gz
PY SCRIPT=../../scripts/test.py
${PY SCRIPT} -o ${OUT DIR} ${OUT DIR}/model epoch best 5.pth \
    ${OUT DIR}/parameters-train.py.json ./CTCF/CTCF+ENCODE.test.tsv.gz
PY SCRIPT=../../scripts/interpret.py
${PY SCRIPT} -o ${OUT DIR} --exact-match \
    ${OUT DIR}/model epoch best 5.pth ${OUT DIR}/parameters-train.py.json \
    ./CTCF/CTCF+ENCODE.train.tsv.gz
output: (folder "./ExplaiNN/CTCF+ENCODE/") losses.tsv, model epoch best 5.pth (name can
differ), parameters-train.py.json, filters.meme, importances.tsv, etc.
```


- This time, the performance of the model on the test set is ~0.7 (it is harder to make predictions on genomic sequences than on shuffled sequences)
- Again, the model learned multiple instances of the CTCF motif

```
PY SCRIPT=../../scripts/utils/meme2logo.py
${PY SCRIPT} -c 8 -f png -o ${OUT DIR}/logos ${OUT DIR}/filters.meme
PY SCRIPT=../../scripts/utils/tomtom.py
${PY SCRIPT} -c 8 -o ${OUT DIR}/tomtom ${OUT DIR}/filters.meme \
     ./JASPAR/JASPAR2022 CORE vertebrates non-redundant pfms meme.txt
zgrep MA0139.1 ${OUT DIR}/tomtom/tomtom.tsv.gz
filter81
              MA0139.1
                                   2.25891e-06
                                                  0.00189975
                                                                0.00189975
filter50
              MA0139.1
                                   1.05544e-16
                                                  8.87626e-14
                                                                1.75871e-13
filter56
              MA0139.1
                                   6.75372e-17
                                                  5.67988e-14
                                                                1.1315e-13
```


filter81

filter56

- Now, let's use the model to make predictions of CTCF binding
- Download CTCF and accessible regions in the mouse genome

```
URL=https://downloads.wenglab.org/cCREs
FILE=mm10-CTCF.bed
wget -P ENCODE ${URL}/${FILE}
URL=https://www.encodeproject.org/files/ENCFF910SRW/@@download
FILE=ENCFF910SRW.tsv
wget -P ENCODE ${URL}/${FILE}
output: (folder "./ENCODE/") mm10-CTCF.bed, ENCFF910SRW.tsv
```

Download the mouse genome assembly mm10 using genomepy

```
genomepy install -p UCSC -g ./genomes -t 8 -f mm10
output: (folder "./genomes/mm10/") mm10.fa, mm10.fa.sizes, etc.
```


Download the Al-TAC dataset

```
URL=https://www.dropbox.com/s
wget -P AI-TAC ${URL}/r8drj2wxc07bt4j/ImmGenATAC1219.peak_matched.txt
wget -P AI-TAC ${URL}/7mmd4v760eux755/mouse_peak_heights.csv
output: (folder "./AI-TAC/") ImmGenATAC1219.peak_matched.txt, mouse_peak_heights.csv
```

Extract the ATAC-seq peak centers

```
cut -f 2-4 AI-TAC/ImmGenATAC1219.peak_matched.txt | \
    awk '{C=$2+int(($3-$2)/2);printf $1"\t%.0f\t%.0f\n",C-1,C;}' \
    > ./AI-TAC/AI-TAC_centers.bed
output: ./AI-TAC/AI-TAC_centers.bed
```


Extend the centers 125 bp in each direction (size = 251 bp, as in AI-TAC)

Get the FASTA sequences of the resized peaks

```
bedtools getfasta -fi ./genomes/mm10/mm10.fa -fo ./AI-TAC/AI-TAC_251bp.fa \
    -bed ./AI-TAC/AI-TAC_251bp.bed
output: ./AI-TAC/AI-TAC_251bp.fa
```


Create training/validation splits (% = 90/10)

```
grep -v "^>" ./AI-TAC/AI-TAC 251bp.fa | cut -c 2- > ./AI-TAC/AI-TAC sequences.txt
tail -n +2 AI-TAC/mouse peak heights.csv | cut -d "," -f 1 \
    > ./AI-TAC/AI-TAC ids.txt
tail -n +2 AI-TAC/mouse peak heights.csv | cut -d "," -f 2- | \
    tr "," "\t" > ./AI-TAC/AI-TAC heights.txt
paste -d "\t" ./AI-TAC/AI-TAC ids.txt ./AI-TAC/AI-TAC sequences.txt \
    ./AI-TAC/AI-TAC heights.txt > AI-TAC/AI-TAC 251bp.tsv
awk 'BEGIN {srand()} {f = FILENAME (rand() <= 0.1 ? ".validation" : ".train");</pre>
print > f}' ./AI-TAC/AI-TAC 251bp.tsv
output: (folder "./AI-TAC/") AI-TAC 251bp.tsv.train, AI-TAC 251bp.tsv.validation
```


Train (same parameters as in the preprint; it can take a few hours) and test

The performance (i.e., PCC) of ExplaiNN on the AI-TAC dataset was ~0.35,
 which is very similar to the performance reported in the preprint (see <u>Fig. 4A</u>)

Interpret the model

• Cluster the filters (i.e., remove redundancy)

```
PY_SCRIPT=../../scripts/utils/meme2clusters.py
$PY_SCRIPT -c 8 -o ${OUT_DIR}/clusters ${OUT_DIR}/filters.meme
output: ./ExplaiNN/AI-TAC/clusters/") clusters.meme, clusters.tsv.gz, etc.
```

Obtain a logo for each cluster in PNG format (option "-f")

```
PY_SCRIPT=../../scripts/utils/meme2logo.py
${PY_SCRIPT} -c 8 -f png -o ${OUT_DIR}/logos ${OUT_DIR}/clusters/clusters.meme
output: (folder "./ExplaiNN/CTCF/logos/") filter0.fwd.png, filter0.rev.png, etc.
```


Visualize the logos of CEBP and PAX clusters (i.e., highlighted in the preprint)

```
PY SCRIPT=../../scripts/utils/tomtom.py
${PY SCRIPT} -c 8 -o ${OUT DIR}/tomtom ${OUT DIR}/clusters/clusters.meme \
     ./JASPAR/JASPAR2022 CORE vertebrates non-redundant pfms meme.txt
output: ./ExplaiNN/AI-TAC/tomtom/tomtom.tsv.gz
zgrep -e MA0069.1 -e MA0102.4 ${OUT DIR}/tomtom/tomtom.tsv.gz
cluster85
              MA0069.1
                                    2.16186e-07
                                                  0.000181813
                                                                 0.000181813
                                                  0.000512936
cluster42
              MA0102.4
                                    6.09912e-07
                                                                 0.00028401
              cluster85 (i.e., PAX)
                                                       cluster42 (i.e., CEBP)
```

 More complex visualization can be achieved by using Jupyter notebooks (or similar)