Manifold Statistics: Fréchet Mean

Geometry of Data

September 23, 2021

This lecture is about statistical analysis of data on a **known manifold**.

Such data often arises from nonlinear constraints.

For example, if your data has unit length (such as directional data), it lives on the unit sphere, S^d .

Theorem. Let $f:M\to N$ be a smooth map between two manifolds of dimension $m\geq n$. If $y\in N$ is a regular value, then the set $f^{-1}(y)$ is a smooth manifold of dimension m-n.

Manifold Examples

Euclidean Space: \mathbb{R}^d

 $\mathrm{id}:\mathbb{R}^d \to \mathbb{R}^d$ is a global coordinate chart

Manifold Examples

ightharpoonup Euclidean Space: \mathbb{R}^d

 $\mathrm{id}:\mathbb{R}^d o \mathbb{R}^d$ is a global coordinate chart

▶ The Sphere: S^d

Local coordinate chart for S^2 :

$$(-\pi,\pi)\times(0,2\pi)\to S^2$$

$$(\theta,\phi) \mapsto (\cos(\theta)\cos(\phi),\cos(\theta)\sin(\phi),\sin(\theta))$$

Manifold Examples: Matrix Groups

- ▶ General Linear Group: GL(n)
 - Space of nonsingular $n \times n$ matrices
 - ightharpoonup Open set of $\mathbb{R}^{n \times n}$

Manifold Examples: Matrix Groups

- ▶ General Linear Group: GL(n)
 - Space of nonsingular $n \times n$ matrices
 - ightharpoonup Open set of $\mathbb{R}^{n\times n}$
- **Special Orthogonal Group:** SO(n)
 - ightharpoonup Rotations of \mathbb{R}^n
 - All matrices $R \in \operatorname{GL}(n)$ such that $RR^T = I$ and $\det(R) = 1$

Manifold Examples: Positive-Definite Tensors

 $A \in \operatorname{PD}(2)$ is of the form

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix},$$

$$ac - b^2 > 0, \quad a > 0.$$

Similar situation for PD(3) (6-dimensional) or PD(d).

Manifold Examples: Shape Spaces

Kendall's Shape Space

Space of Diffeomorphisms

Shape Statistics: Averages

Review: Tangent Spaces

A **tangent vector** is the velocity of a curve on M.

Review: Riemannian Metrics

A **Riemannian metric** is a smoothly varying inner product on the tangent spaces, denoted $\langle v, w \rangle_p$ for $v, w \in T_pM$.

This metric now gives us the **norm** of a tangent vector:

$$||v||_p = \sqrt{\langle v, v \rangle_p}.$$

Review: Geodesics

A **geodesic** is a curve $\gamma \in M$ that locally minimizes

$$E(\gamma) = \int_0^1 \|\gamma'(t)\|^2 dt.$$

Turns out it also locally minimizes arc-length,

$$L(\gamma) = \int_0^1 \|\gamma'(t)\| dt.$$

Review: Directional Derivatives

Tangent vector $v \in T_pM$ is directional derivative operator on smooth functions, $f: M \to \mathbb{R}$

Notation: $vf(p) = \frac{d}{dt}f(\gamma(t))|_{t=0}$

Gradient on a Manifold

Given $f:M\to\mathbb{R}$, define gradient $\mathrm{grad} f(p)$ as vector in T_pM such that:

$$vf(p) = \langle \operatorname{grad} f(p), v \rangle,$$

for all tangent vectors $v \in T_pM$.

The Exponential Map

Notation: $\operatorname{Exp}_p(v)$

- $ightharpoonup p \in M$: starting point
- $\triangleright v \in T_pM$: initial velocity
- Output: endpoint of geodesic segment, starting at p, with velocity v, with same length as ||v||

The Log Map

Notation: $\operatorname{Log}_p(q)$

- ► Inverse of Exp
- $\triangleright p, q$: two points in M
- Output: tangent vector at p, such that $\operatorname{Exp}_p(\operatorname{Log}_p(q)) = q$
- Gives distance between points: $d(p,q) = \| \operatorname{Log}_p(q) \|.$

Intrinsic Means (Fréchet)

The *intrinsic mean* of a collection of points x_1, \ldots, x_N in a metric space M is

$$\mu = \arg\min_{x \in M} \sum_{i=1}^{N} d(x, x_i)^2,$$

where $d(\cdot, \cdot)$ denotes distance in M.

Gradient of the Geodesic Distance

The gradient of the Riemannian distance function is

$$\operatorname{grad}_{x} d(x, y)^{2} = -2 \operatorname{Log}_{x}(y).$$

So, gradient of the sum-of-squared distance function is

$$\operatorname{grad}_{x} \sum_{i=1}^{N} d(x, x_{i})^{2} = -2 \sum_{i=1}^{N} \operatorname{Log}_{x}(x_{i}).$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)$$

Gradient Descent Algorithm:

Input: $\mathbf{x}_1, \dots, \mathbf{x}_N \in M$

 $\mu_0 = \mathbf{x}_1$

$$\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)$$

Gradient Descent Algorithm:

Input: $\mathbf{x}_1, \dots, \mathbf{x}_N \in M$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input: $\mathbf{x}_1, \dots, \mathbf{x}_N \in M$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \frac{\text{Log}_{\mu_k}(\mathbf{x}_i)}{\mu_{k+1}} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input: $\mathbf{x}_1, \dots, \mathbf{x}_N \in M$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$

$$\mu_{k+1} = \operatorname{Exp}_{\mu_k}(\delta\mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$

$$\mu_{k+1} = \mathrm{Exp}_{\mu_k}(\delta\mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$

$$\mu_{k+1} = \mathrm{Exp}_{\mu_k}(\delta\mu)$$

Example of Mean on Kendall Shape Space

Example of Mean on Kendall Shape Space

Least Squares and Maximum Likelihood

Geometric: Least squares

$$\min_{\text{model}} \sum_{i=1}^{N} d(\text{model}, y_i)^2$$

Probabilistic: Maximum likelihood

$$\max_{\mathsf{model}} \prod_{i=1}^N p(y_i; \mathsf{model})$$

How about this "Gaussian" likelihood?

$$p(y_i; \text{model}) \propto \exp\left(-\tau d(\text{model}, y_i)^2\right)$$

A Riemannian Normal Distribution

For a simple model with Fréchet mean:

$$p(y; \mu, \tau) = \frac{1}{C(\mu, \tau)} \exp\left(-\tau d(\mu, y)^2\right)$$

Notation: $y \sim N_M(\mu, \tau^{-1})$

Problem: Normalizing constant may depend on μ :

$$\ln p(y; \mu, \tau) = -\ln C(\mu, \tau) - \tau d(\mu, y)^2$$

Note: not a problem in \mathbb{R}^d because $C(\mu, \tau) \propto \tau^{-d/2}$.

Riemannian Homogeneous Spaces

Definition: A Riemannian manifold M is called a **Riemannian homogeneous space** if its isometry group G acts transitively.

Theorem: If M is a homogeneous space, the normalizing constant for a normal distribution on M does not depend on μ .

Fletcher, IJCV 2013

Examples of Homogeneous Spaces

- Constant curvature spaces: Euclidean spaces, spheres, hyperbolic spaces
- ▶ **Lie groups:** SO(n) (rotations), SE(n) (rigid transforms), GL(n) (non-singular matrices), Aff(n) (affine transforms), etc.
- ▶ Stiefel manifolds: space of orthonormal k-frames in \mathbb{R}^n
- ▶ Grassmann manifolds: space of k-dimensional subspaces in \mathbb{R}^n
- Positive-definite symmetric matrices