TD N°3 de TG

Exercice 1.

1. Appliquer l'algorithme de Bellman-Ford : pour trouver les plus courts chemins du graphe G depuis le sommet 2 et faire apparaître l'arbre de parcours sur le graphe.

2. Appliquer l'algorithme de Dijkstra-Moore sur le graphe G pour calculer les chemins les plus courts depuis le sommet 6 et en modifiant le poids de l'arc (4,1) par la valeur 2.

Exercice 2.

On veut transporter des produits chimiques par le rail. A, B, C, D, E, F, G et H désignent huit produits chimiques. Dans le tableau ci-dessous, une croix signifie que les produits ne peuvent pas être entreposés dans le même wagon, car il y aurait risque d'explosion:

	A	В	С	D	Е	F	G	Н
Α		X	X	X			X	X
В	X				X	X	X	
С	X			X		X	X	X
D	X		X		X			X
Е		X		X		X	X	
F		X	X		X			
G	X	X	X		X			
Н	X		X	X				

Quel nombre minimum de wagons faut-il?

Exercice 3.

Utilisez l'algorithme de coloration de Welsh et Powell pour colorer les graphes suivants :

Exercice 4.

Calculer le flot maximal et la coupe minimale du graphe suivant :

