WORKING GROUP ON CONTRACTING ENDOMORPHISMS OF VALUED FIELDS

This is all taken from [2].

1. Notation. We consider a field of characteristic zero K with a distinguished endomorphism $\sigma \in \text{End}(K)$. We will write $\mathbb{N}[\sigma]$ for the semi-ring of formal finite sums $\lambda_n \sigma^n + \cdots + \lambda_1 \sigma + \lambda_0$, where $\lambda_i \in \mathbb{N}$ for all i. If $I \in \mathbb{N}[\sigma]$ can be written as $I = \lambda_n \sigma^n + \cdots + \lambda_1 \sigma + \lambda_0$, then by a^I we mean the element $\sigma^n(a)^{\lambda_n} \sigma^{n-1}(a)^{\lambda_{n-1}} \cdots \sigma(a)^{\lambda_1} a^{\lambda_0}$. By $K(a^{\mathbb{N}[\sigma]})$ we mean the difference field extension obtained as $K(a, \sigma(a), \sigma^2(a), \cdots)$. We will say that an element a in an extension (L,σ) of (K,σ) is transformally algebraic over K if there are $\{c_I \mid I \in \mathbb{N}[\sigma]\} \subseteq K$, all but finitely many zero, such that $\sum_I c_I a^I = 0$.

If (K, v) is a valued field, $a \in K$ and $\gamma \in \Gamma_{>0}$, then

$$B_{\gamma}(a) = \{b \in K \mid v(b-a) > \gamma\} \subseteq B_{\gamma}[a] = \{b \in K \mid v(b-a) \ge \gamma\}.$$

23/10

- 2. The theory FE. Given a difference field (K,σ) , we will consider it in the language $\mathcal{L}_{\sigma} = \{+, \times, -, 0, 1\} \cup \{\sigma\}$ and consider the \mathcal{L}_{σ} -theory FE saying that (K, σ) is a difference field with $\sigma(K)^{\text{alg}} \cap K = \sigma(K)$.
- 3. Transformally separable extensions. We will say that an extension of difference fields $(K, \sigma) \subseteq (L, \sigma)$ is transformally separable if K is linearly disjoint from $\sigma(L)$ over $\sigma(K)$. Equivalently, if the inversive closure $K^{\text{inv}} := \bigcup_{n>0} \sigma^{-n}(K)$ is linearly disjoint from L over K.

This notion is not transitive in towers: as an example, consider a tower of difference fields $K \subseteq M \subseteq L$ where K is inversive, M is not, and $L = M^{\text{inv}}$. Trivially, $K \subseteq L$ and $K \subseteq M$ are transformally separable, but $M \subseteq L$ is not.

- **Lemma 3.1** (Proposition 4.18). If A is a model of FE, which is algebraically closed, and B, C are transformally separable extensions of A which are linearly disjoint over A, then $B \otimes_A C$ is a model of FE.
- 4. Transitivity in towers, when the base is transformally algebraic. The idea is that since we are in characteristic zero, if $(K, \sigma) \models FE$, then $\sigma(K) \subseteq K$ is not just primary (as imposed by FE) but actually regular, and thus K is linearly disjoint from $\sigma(L)$ over $\sigma(K)$ if and only if K is algebraically free from $\sigma(L)$ over $\sigma(K)$ ([2] call this almost transformally separable).

Proposition 4.1 (Propositions 4.30 and 4.31). Let $K \subseteq M \subseteq L$ be a tower of models of FE, where $K \subseteq M$ is transformally algebraic. Then $K \subseteq L$ is transformally separable if and only if both $K \subseteq M$ and $M \subseteq L$ are.

Proof. It is enough to prove that

$$K \mathop{\downarrow}^{\mathrm{alg}}_{\sigma(K)} \sigma(L) \iff K \mathop{\downarrow}^{\mathrm{alg}}_{\sigma(K)} \sigma(M) \wedge M \mathop{\downarrow}^{\mathrm{alg}}_{\sigma(M)} \sigma(L).$$

The \iff direction is clear. As for the \implies direction, one immediately has that K is algebraically free from $\sigma(M)$ over $\sigma(K)$. It is thus enough to show that M is algebraically free from $\sigma(L)$ over $\sigma(M)$.

Since $(K, \sigma) \subseteq (M, \sigma)$ and $(K, \sigma) \subseteq (L, \sigma)$ are both transformally separable, we can take the tensor products $M_0 := M \otimes_K K^{\text{inv}}$ and $L_0 := L \otimes_K K^{\text{inv}}$, and upon replacing K with K^{inv} , M with M_0 and L with L_0 , we can assume that we are working with an inversive K.

Now, we argue that if K is inversive and $K \subseteq M$ is transformally algebraic, then actually $\sigma(M) \subseteq M$ is an algebraic extension. Indeed, given any $a \in M$, there are $\{c_I \mid I \in \mathbb{N}[\sigma]\} \subseteq K$, all but finitely many zero, such that $\sum_I c_I a^I = 0$. Upon applying σ^{-1} enough times (since K is inversive), we reduce this equation to an algebraic equation for a over $\sigma(a), \sigma^2(a), \ldots$ and K.

As $\sigma(M) \subseteq M$ is algebraic, one gets trivially that M is algebraically free from $\sigma(L)$ over $\sigma(M)$.

5. **Simple roots.** We call expression of the form $\sum_I c_I X^I$, where X is a variable and $\{c_I \mid I \in \mathbb{N}[\sigma]\} \subseteq K$, a difference polynomial (or difference polynomial, or transformal polynomial) over K. Alternatively, we can see a difference polynomial p(X) as obtained from a multivariate polynomial $P(X_0, \ldots X_n) \in K[X_0, \ldots X_n]$ by

$$p(X) := P(X, \sigma(X), \dots \sigma^n(X)).$$

Under this identification, we can define

$$p'(X) := \frac{\partial P}{\partial X_0}(X, \sigma(X), \dots \sigma^n(X)).$$

We will say that $a \in L$, where L is some extension of K, is a *simple root* of p(X) if p(a) = 0 and $p'(a) \neq 0$.

Proposition 5.1 (Proposition 4.39). We let $(K, \sigma) \models FE$ and $L = K(a^{\mathbb{N}[\sigma]})$ be a transformally algebraic extension. Then $K \subseteq L$ is transformally separable if and only if there is a difference polynomial p(X) over K such that p(a) = 0 and $p'(a) \neq 0$.

Proof. Assume that there is p(X) over K such that p(a) = 0 and $p'(a) \neq 0$. This means that a is algebraic over $K(\sigma(a)^{\mathbb{N}[\sigma]})$, i.e. $K\sigma(L) \subseteq L$ is algebraic. As the base is FE, it is enough to check that K and L are algebraically free over $\sigma(K)$. Thus, we compute

$$\operatorname{trdeg}_K(L) = \operatorname{trdeg}_K(K\sigma(L)) \leq \operatorname{trdeg}_{\sigma(K)}\sigma(L) = \operatorname{trdeg}_KL,$$

so we obtain $\operatorname{trdeg}_K(K\sigma(L)) = \operatorname{trdeg}_{\sigma(K)} \sigma(L)$, as needed.

For the reverse implication, we choose a difference polynomial $p(X) = \sum_{I} c_{I} X^{I}$ over K such that p(a) = 0. First, we may assume that $p' \neq 0$, i.e. that there is some $I = \lambda_{n} \sigma^{n} + \cdots + \lambda_{1} \sigma + \lambda_{0} \in \mathbb{N}[\sigma]$ such that $c_{I} \neq 0$ and $\lambda_{0} \neq 0$. Otherwise, we could apply σ^{-1} and obtain

$$\sum_{I} c_{I}^{\frac{1}{\sigma}} a^{\frac{I}{\sigma}} = 0,$$

giving a linear dependence relation for $(a^{\frac{I}{\sigma}})_I$ over $\sigma^{-1}(K)$. But because $K \subseteq L$ is transformally separable, this means that the $(a^{\frac{I}{\sigma}})_I$ had to be K-linearly dependent already, i.e. there are $(b_I)_I \subseteq K$ such that $\sum_I b_I a^{\frac{I}{\sigma}} = 0$. Upon iterating this process, we may assume that we land on a difference polynomial q(X) with q(a) = 0 and $q' \neq 0$. Now, if q'(a) = 0, then we replace q with q' and iterate this process. Eventually, we must find a difference polynomial r(X) with r(a) = 0 and $r'(a) \neq 0$.

Proposition 5.2 (Proposition 4.39). Let $K \subseteq L$ be a transformally algebraic extension of difference fields, with K a model of FE. Then the extension is transformally separable if and only if every element of L is the simple root of a difference polynomial over K.

6. The FE closure. If K is a difference field, then there is a difference field extension $K \subseteq E$ which is a model of FE and satisfies the universal property: whenever $K \subseteq F$ is a difference field extension and F is a model of FE, then E embeds uniquely in F over K. We can define $E := K^{\text{alg}} \cap K^{\text{inv}}$, and quickly verify all conditions.

7. The relative transformally separable transformally algebraic closure. This is mostly Theorem 4.46.

- (1) If $E \subseteq F$ is an extension of models of FE, then there is a transformally separable, transformally algebraic extension $\tilde{E} \models FE$ with $E \subseteq \tilde{E} \subseteq F$ that satisfies the following property: if $E \subseteq L$ is a transformally separable, transformally algebraic extension of E that is a model of FE, then any embedding of E in E over E has image contained in E. One has E if and only if it is the simple root of a difference polynomial over E.
- (2) If $E \subseteq \tilde{E} \subseteq F$ is a tower of models of FE as above, then F is transformally separable over \tilde{E} if and only if it is transformally separable over E.

Indeed, to prove (1) consider the set $X \subseteq F$ of simple roots of difference polynomials over E. The difference field $E' := E(X^{\mathbb{N}[\sigma]})$ is a transformally separable, transformally algebraic extension of E. As F is a model of FE, the FE closure E'' of E' sits inside of F over E', so we have a tower of inclusions $E \subseteq X \subseteq E' \subseteq E''$. Now, we argue that E'' is a transformally separable, transformally algebraic extension of E: indeed, it is transformally algebraic and moreover, since $E \models FE$, it is enough to check that E^{inv} is algebraically free from E'' over E. However, since this is true for E' in the place of E'', and $E' \subseteq E''$ is algebraic, this follows. This means in particular that $E'' \subseteq X$, meaning

that the tower of inclusions was a tower of equalities, X is a difference field, and we can define $\tilde{E} := X$.

8. The theory VFE. We will consider structures in the language

$$\mathcal{L}_0 = \mathcal{L}_\sigma \cup \{0, \mathfrak{m}\},\$$

where \mathfrak{O} and \mathfrak{m} are unary predicates. We will denote by VFE the \mathcal{L}_0 -theory that says of a model (K, v, σ) that:

- (1) (K, v) is a valued field with valuation ring \mathcal{O}_v and maximal ideal \mathfrak{m}_v ,
- (2) $(K, \sigma) \models FE$,
- (3) $\sigma^{-1}(\mathcal{O}_v) = \mathcal{O}_v$ and $\sigma^{-1}(\mathfrak{m}_v) = \mathfrak{m}_v$,
- (4) σ is ω -increasing (relative to v), i.e. for any $\alpha \in \mathfrak{m}_v$ and any $n \geq 1$, $v(\sigma(\alpha)) > nv(\alpha)$.

In this language, the model companion is inversive (and it is $\widetilde{\text{VFA}}$ as in [3]). To avoid this, we expand the language to

$$\mathcal{L}_1 = \mathcal{L}_0 \cup \{R_n \mid n \in \mathbb{N}\},\$$

where we interpret $R_n(x_1, \ldots x_n)$ to mean that $x_1, \ldots x_n$ are $\sigma(K)$ -linearly independent. Note that this expansion of the language is the one already used in [1] to obtain the model companion of non-inversive difference fields.

9. Transformal henselianity. We say that $(K, v, \sigma) \models \text{VFE}$ is transformally henselian if for every difference polynomial f(X) over \mathcal{O}_v and $a \in \mathcal{O}_v$ such that v(f(a)) > 0 and v(f'(a)) = 0, there is $b \in \mathcal{O}_v$ such that f(b) = 0 and v(b-a) > 0.

Take an extension $K \subseteq L$ of models of VFE. If $K \subseteq L$ is transformally separably transformally algebraically closed, and L is transformally henselian, then K is transformally henselian. Moreover, k is transformally separably transformally algebraically closed in l: indeed, if $\alpha \in l$ is transformally separably transformally algebraic over k, say as witnessed by some g(X) over k with $g(\alpha) = 0$ and $g'(\alpha) \neq 0$. Then we can lift it to f(X) over K satisfying $v(f(\alpha)) > 0$ and $v(f'(\alpha)) = 0$. By transformal henselianity, we find $a \in L$ with f(a) = 0 and residue α . Note that then $f'(a) \neq 0$, since otherwise we would have $g'(\alpha) = 0$. The element a is then transformally separable and transformally algebraic over K, thus $a \in K$. It then follows that $\alpha \in k$.

Remark 9.1. If $K \models VFE$ is henselian, then k is a model of FE.

We say that K is *strictly transformally henselian* if it is transformally henselian, and k is a model of SCFE.

- 10. **The theory** $\widetilde{\text{VFE}}$. We will extend VFE to $\widetilde{\text{VFE}}$ by further imposing on models K that:
 - (1) K is strictly transformally henselian,
 - (2) $k \vDash SCFE$,

- (3) $\Gamma \neq 0$ and it is tamely transformally divisible, i.e. for every $\eta \in \mathbb{Z}[\sigma]$ with non-zero constant term, $\eta \Gamma = \Gamma$,
- (4) if $\tau \in K[x^{\mathbb{N}[\sigma]}]$ is an additive operator with $\tau' \neq 0$, then τ is onto on K.

We let $\widetilde{\text{VFE}}_e$ be the expansion of $\widetilde{\text{VFE}}$ that further requires that K is not inversive and it has imperfection degree equal to e. (For us, e = 0).

Remark 10.1. Later, we will see that in fact, for models of VFE, the residue field is a model of ACFA, because the model is dense in its inversive hull.

02/11

- 11. **Descent, generation and amalgamation.** This is the second part of Theorem 4.46.
 - (1) If E is a model of FE, then there is a canonical equivalence of categories

 $\{E \subseteq F \text{ transformally separable transformally algebraic}\}$

 \simeq

 $\{E^{\text{inv}} \subset L \text{ inversive transformally algebraic}\}.$

- (2) If $E \subseteq F$ is a transformally separable extension of models of FE, then there is a transformal transcendence basis $b \subseteq F$ of F over E such that $E(b^{\mathbb{N}[\sigma]}) \subseteq F$ is transformally separable, transformally algebraic (i.e., $E \subseteq F$ is transformally separably generated.)
- (3) If $E = E^{\text{alg}}$ is a model of FE, and $E \subseteq E_1, E_2$ are two transformally separable extensions which are models of FE, then $E_1 \bigcup_E^{\text{l.d.}} E_2$ and $E_1 \otimes_E E_1 \vDash \text{FE}$.
- 12. **Transformal henselianity, again.** Take an extension $K \subseteq L$ of models of VFE. If $K \subseteq L$ is transformally separably transformally algebraically closed, and L is transformally henselian, then K is transformally henselian. Moreover, k is transformally separably transformally algebraically closed in k: indeed, if k is transformally separably transformally algebraic over k, say as witnessed by some k is transformally separably transformally algebraic over k, say as witnessed by some k is transformally k over k with k over k satisfying k over k with k over k satisfying k over k is transformal k over k satisfying k satisfying

Remark 12.1. If $K \models VFE$ is henselian, then k is a model of FE.

13. The transformally henselian hull. We consider an extension of models of VFE $K \subseteq L$. We will say that L is a algebraically closed transformally henselian hull of K if L is algebraically closed and transformally henselian, and further if $K \subseteq K' \subseteq L$ is an algebraically closed, transformally henselian subfield, then K' = L. We will say that K is a *strict amalgamation basis* if its inversive henselian hull has no non-trivial finite

 σ -invariant Galois extension (i.e. no non-trivial difference extension which is finite and Galois as a field extension).

Lemma 13.1. If K is a model of VFE and a strict amalgamation basis, then there is up to isomorphism a unique algebraically closed and transformally henselian hull of K, transformally separable over K.

Proof. If K is inversive, then Corollary 5.4 from [3] gives a unique algebraically closed and transformally henselian hull. Then we take the relative transformally separable closure.

14. **Amalgamation.** Let K be a model of VFE, algebraically closed and transformally henselian. Let L_1, L_2 be transformally separable extensions of K and models of VFE. Then there is a model L of VFE, transformally separable over K, in which L_1 and L_2 jointly embed over K. We can take L_1 and L_2 to be linearly disjoint over K in L, and L to be transformally separable over L_1 and L_2 .

We know amalgamation for models of FE; to equip the resulting $L = L_1 \otimes_K L_2$ with an VFE structure, we work with $L_1^{\text{inv}} \otimes_{K^{\text{inv}}} L_2^{\text{inv}}$, for which the result is true by amalgamation in VFA, and then use descent.

15. **The strict transformal henselization.** Using descent from the same result in VFA, we obtain the following.

Proposition 15.1 (Proposition 5.20). If K is a model of VFE whose residue field k is a model of FE, and k' is a model of FE which is transformally separably transformally algebraic over k, then there is a transformally henselian model K' of VFE which is transformally separably transformally algebraic over K and induces the embedding $k \subseteq k'$, that satisfies the following property: if $K \subseteq L$ is a transformally henselian model of VFE, then every embedding of k into k into k into k in k is a strict amalgamation basis and k is algebraically closed, then k' is also a strict amalgamation basis.

If K is an henselian model of VFE, then an extension K' of K is a *strict transformal* henselization of K if it is strictly transformally henselian and it is the K' mentioned in the Proposition above.

- 16. Some further considerations on VFE. Recall that VFE was the theory of strictly transformally henselian models of VFE with further
 - (1) $k \models SCFE$,
 - (2) $\Gamma \neq 0$ and it is tamely transformally divisible, i.e. for every $\eta \in \mathbb{Z}[\sigma]$ with non-zero constant term, $\eta \Gamma = \Gamma$,
 - (3) if $\tau \in K[x^{\mathbb{N}[\sigma]}]$ is an additive operator with $\tau' \neq 0$, then τ is onto on K.

We write VFE and $\widetilde{\text{VFE}_0}$ if we further require σ to be non-surjective.

{5.25}

Proposition 16.1 (Proposition 5.25). Let $K \models \text{VFE}$. Then $K \models \text{VFE}$ if and only if $K^{\text{inv}} \models \text{VFA}$. More generally, if L is a purely transformally inseparably algebraic extension of K, then $K \models \text{VFE}$ if and only if $L \models \text{VFE}$. In particular, if $K \models \text{VFE}$ and $E \subseteq K$ is non-trivially valued and relatively transformally separably algebraically closed, then $E \models \text{VFE}$.

Proof. The residue field of K^{inv} is k^{inv} , which is then a model of ACFA. Moreover, K^{inv} is a directed union of transformally henselian models of VFE, and thus it is transformally henselian. In other words, K^{inv} is strictly transformally henselian if K is. Viceversa, K is transformally separably, transformally algebraically closed in K^{inv} .

We will say that a model of VFE is *deeply transformally ramified* if it is non-trivially valued and dense in its inversive hull.

Proposition 16.2 (Lemma 5.27). Models of VFE are deeply transformally ramified.

Proof. Let $F \models VFE$. By induction, it is enough to prove that $\sigma(F) \subseteq F$ is dense. In other words, given $a \in F$ and $\gamma \in \Gamma_{>0}$, we want to show that there is $b \in F$ such that $\sigma(b) \in B_{\gamma}(a)$.

Case 1: $v(a) \ge 0$. Take $c \in K^{\times}$ with $v(c) > \max(v(a), \gamma)$. By axiom (3) above, there is $b \in K$ with $\sigma(b) - cb - a = 0$. Now, $v(b) \ge 0$, otherwise $v(\sigma(b)) < \min(v(cb), v(a))$, a contradiction. Thus, $v(\sigma(b) - a) = v(cb) \ge v(c) > \gamma$, i.e. $\sigma(b) \in B_{\gamma}(a)$.

Case 2: v(a) < 0. Then we take $c \in K^{\times}$ such that $v(\sigma(c)) \ge -v(a)$. Then we take $a' = a\sigma(c), \ \gamma' = \gamma + v(\sigma(c)), \$ and reduce to case 1.

Remark 16.3. What we are really using here is axiom (3), i.e. the fact that all linear difference operators τ with $\tau' \neq 0$ are surjective; indeed, this is exactly the proof that if K is a model of SCVF, then K is dense in K^{alg} .

17. The road ahead. Our goal is proving that $\widetilde{\text{VFE}}_0$ is the model companion of VFE in the language

$$\mathcal{L}_2 = \mathcal{L}_0 \cup \{\lambda_n \mid n \in \mathbb{N}\},\$$

where λ_n takes $(a_1, \ldots a_n, b)$ as input and outputs 0 if $a_1, \ldots a_n$ are $\sigma(K)$ -linearly dependent, or if $b \notin \langle a_1, \ldots a_n \rangle_{\sigma(K)}$. Otherwise, it outputs the unique $c_1, \ldots c_n \in \sigma(K)$ such that $\sum_{i=1}^n a_i c_i = b$.

We will first prove that models of $\widetilde{\text{VFE}_0}$ are existentially closed, namely the following theorem.

{main}

Theorem 17.1 (Theorem 7.3). Let K be a saturated model of \widehat{VFE}_0 and let $F \subseteq K$ be a small, strictly amalgamative model of VFE, with K transformally separable over F. If we have a small model E of VFE that is transformally separable over F, then there is an F-embedding of E in K, with K transformally separable over the image.

Strategy. (1) First, we may replace E with a transformally separable model of $\widetilde{\text{VFE}}_0$ (Proposition 18.1).

- (2) Next, we may assume that F is relatively transformally separably algebraically closed in E (Proposition 18.2). In particular, F is a model of $\widehat{\text{VFE}}_0$ (Proposition 16.1).
- (3) Thus, any element $a \in E \setminus F$ is generic over F in a F-definable ball or a properly infinite intersection of F-definable balls (Proposition 19.6).
- (4) By compactness, we may assume that E is transformally separably generated over F, and moreover (by repeating step 1) that $E = F(a^{\mathbb{N}[\sigma]})$. Then E is strictly amalgamative and we can apply Proposition 19.7.

18. The steps.

{step-1}

Proposition 18.1 (Proposition 7.2). Let E be a model of VFE. Then there is a model of $\widetilde{\text{VFE}}_0$ transformally separable over E.

Proof. Work inside a big $\mathcal{U} \models \widetilde{VFA}$ containing F.

- (1) We may assume that F is not inversive. Indeed, let $x \in \mathcal{U}$ be transformally transcendental over F and let $E = F(x^{\mathbb{N}[\sigma]})^{\text{alg}}$. Then E is a model of VFE which fails to be inversive.
- (2) We may assume that F is non-trivially valued. Indeed, let $x \in \mathcal{U}$ be transformally transcendental over F with v(x) > 0. Then $E = F(x^{\mathbb{N}[\sigma^{\pm 1}]})$ is a model of VFE transformally separable over F.
- (3) Now we take E to be the relative transformal separable algebraic closure of F in \mathcal{U} . Then E fails to be inversive and is non-trivially valued and transformally separably algebraically closed in \mathcal{U} , and thus it is a model of $\widetilde{\text{VFE}}_0$.

{step-2}

Proposition 18.2 (Proposition 5.28). Suppose $K \vDash \widetilde{\text{VFE}}$ is saturated. Let $F \subseteq K$ be a strict amalgamation basis, with the extension being transformally separable. If $F \subseteq E \vDash \text{VFE}$ is transformally separably transformally algebraic, then E embeds in K over F, with $E \subseteq K$ transformally separable.

Proof. If there is an embedding, then by (the converse of) transitivity in towers K is automatically transformally separable over E.

So we build the embedding, i.e. for any finite tuple $a \in E$ and quantifier-free formula $\varphi(X)$ in the language \mathcal{L}_0 , if $E \models \varphi(a)$, then there is $a' \in K$ with $K \models \varphi(a')$. We may switch K with the relative transformally separable closure of F in K, thus $F \subseteq K$ is transformally separable and transformally algebraic.

For simplicity, |a| = 1. Now, since a is transformally separable transformally algebraic over F, there is a difference polynomial $f(X) \in F[X]_{\sigma}$ such that f(a) = 0 and $f'(a) \neq 0$. Switching $\varphi(X)$ with

$$\varphi(X) \wedge (f(X) = 0) \wedge (f'(X) \neq 0),$$

we may assume all solutions of $\varphi(X)$ are simple roots of f(X). As F is a strict amalgamation basis, the theory of models of \widehat{VFA} over F is complete ([3, Proposition 4.29]). Since K^{inv} is one such model, by model completeness $\varphi(X)$ has a solution in K^{inv} . But all simple roots in K^{inv} of difference polynomials over K are elements of K already, hence $\varphi(X)$ has a solution in K.

19. Genericity in a ball. We work in a large enough saturated model $\mathcal{U} \models \widehat{VFA}$.

Definition 19.1. We work in the three-sorted language of valued fields enlarged with a symbol for the action of σ . We denote by VF the valued field sort, and say that a definable set $B \subseteq \mathrm{VF}^1$ is a closed ball if $B = a + \gamma \mathfrak{O}$ for some $a \in \mathrm{VF}$, $\gamma \in \Gamma$. We say it is an open ball if $B = \mathrm{VF}$ or $B = a + \gamma \mathfrak{m}$ as before. By a (possibly degenerate) ball we mean a ball as above, or a singleton. A ∞ -definable ball is the intersection of a (small) chain of balls, regarded as a partial quantifier free type.

We work over an algebraically closed, transformally henselian model F of VFE, so that the theory of \mathcal{U} is independent of the choice of \mathcal{U} (and thus definability of balls over F is intrinsic, independent of \mathcal{U}). A ball $B \subseteq VF$ over F is *split* if there are $a \in F$ and $\gamma \in \Gamma_F$ such that $B = a + \gamma \mathcal{O}$.

Proposition 19.2 (Proposition 6.2). Let $F \models VFE$. Then all F-definable balls are split over F.

Proof. Let $E = F^{\text{inv}}$. Then every element of E is F-definable and thus E-definable balls and F-definable balls are the same. As $F \subseteq E$ is dense, being split is also independent of working over F or E. We can thus work over E, and use model completeness to argue that all E-definable balls split over E, since $E \models \widehat{\text{VFA}}$.

Lemma 19.3. Let F be an algebraically closed, transformally henselian model of VFE. Let f(X) be a difference polynomial over F and $B \subseteq VF$ be a closed ball, definable over F; then the function $\theta_f \colon x \mapsto v(f(x))$ has a minimum on B.

Proof. By descent, we may assume that F is a model of \widetilde{VFA} . Then B is split and thus it is affinely isomorphic to O. We may then assume B = O. If f = O, we are done; then

we assume $f \neq 0$. Upon rescaling (which doesn't change the thesis), we may assume that f has coefficients in \mathcal{O}_F , at least one of them with valuation zero: then $v(f(a)) \geq 0$ for all $a \in \mathcal{O}$.

Let B be a F-definable ball or a properly infinite intersection. If B is closed, we call $a \in B$ generic in B over F if for every difference polynomial f(X) over F, v(f(a)) is the minimum of θ_f on B. If B is an open ball or a properly infinite intersection, then a is generic in B over F if whenever $C \subseteq B$ is a F-definable closed ball, $a \notin C$.

Proposition 19.4 (Proposition 6.5). Let F be an algebraically closed, transformally henselian model of VFE. Let B be an F-definable ball or a properly infinite intersection. Then being generic in B over F gives a complete, consistent, quantifier free type over F. A realization of this type is transformally transcendental over F, and if a is a generic of B over F, then $E = F(a^{\mathbb{N}[\sigma]})$ is a strictly amalgametive model of VFE.

Remark 19.5. Given any $a \in E \setminus F$, a is not F-definable, i.e. it is not in any degenerate F-definable subball: the only elements definable over F but not in F are elements of the inversive hull of F, but $F \subseteq E$ is transformally separable. Moreover, k_F is inversive because F is deeply transformally ramified, so no element of k_E is transformally algebraic over k_F .

 $\{step-3\}$

Proposition 19.6 (Proposition 6.6). Let F be a model of VFE. Let E be a model of VFE which is transformally separable over F. If k_F is transformally separably algebraically closed in E, then F is transformally separably algebraically closed in E. Every element e0 E1 is generic over E2 in an E3-definable ball or a properly infinite intersection.

Proof. Let \mathcal{B} be the family of all F-definable balls containing a, and $B = \bigcap_{b \in \mathcal{B}} b$. If \mathcal{B} has an open maximal element under reverse inclusion, or no minimal element under reverse inclusion, then a is generic over F in B. We may therefore assume that B is closed, so it is split and we can assume $B = \mathcal{O}$. Now, res a must be transformally transcendental over k_F , i.e. a is generic in F over \mathcal{O} .

{step-4}

Proposition 19.7 (Proposition 7.1). Let K be a saturated model of VFE₀. Let $F \subseteq K$ be a small model of VFE which is algebraically closed and transformally henselian, with K transformally separable over F. Let B be a F-definable ball or a properly infinite intersection of F-definable balls. Pick a generic over F in B and let $E = F(a^{\mathbb{N}[\sigma]})$. Then, there is an embedding of E in K over F, with K transformally separable over the image.

20. A few consequences of Theorem 17.1.

Theorem 20.1 (Theorem 7.8). Let $K \models \widetilde{\text{VFE}}_0$ and $F \subseteq K$ a model of VFE. Then $F = \operatorname{acl}(F)$ if and only if it is algebraically closed, transformally henselian, and closed under transformal λ -functions of K.

Theorem 20.2 (Theorem 7.11). The residue field and value group are stably embedded and fully orthogonal in models of $\widetilde{\text{VFE}}_0$, with induced structure of pure difference field and pure ordered transformal module.

REFERENCES 11

REFERENCES

- [1] Zoé Chatzidakis and Ehud Hrushovski. "Model theory of endomorphisms of separably closed fields". In: *Journal of Algebra* 281.2 (2004), pp. 567–603.
- [2] Yuval Dor and Yatir Halevi. Contracting Endomorphisms of Valued Fields. 2023. arXiv: 2305.18963.
- [3] Yuval Dor and Ehud Hrushovski. Specialization of Difference Equations and High Frobenius Powers. 2022. arXiv: 2212.05366.