

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina - Probabilidade e Estatística Gabarito da AP1 do 2° semestre de 2011

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

<u>1ª questão – 3,0 pontos</u>

Os dados da Tabela 1 referem-se ao salário (em salários mínimos) de 20 funcionários administrativos em uma indústria I_1 e a Tabela 2 fornece, por faixas salariais, os salários dos funcionários administrativos da indústria I_2 .

Ī	10,1	7,3	8,5	5	4,2	3,1	2,2	9	9,4	6,1
	3,3	10,7	1,5	8,2	10	4,7	3,5	6,5	8,9	6,1

Tabela 1

Salário	1 3	3 5	5 7	7 9	9 11	total
Freqüência	4	10	8	16	12	50

Tabela 2

Pede-se:

(i) (1,0 ponto) construa uma tabela de freqüências para a Tabela 1, utilizando faixas que possibilitem comparações com os dados da Tabela 2:

Resposta:

Tabela 1 (por faixas)

Salário	Freqüências
1 3	2
3 5	5
5 7	4
7 9	4
9 11	5
total	20

(ii) (0,5 ponto) verifique se a mediana e a moda das 2 indústrias estão na mesma faixa de salários. Identifique quais são as faixas;

■ Resposta:

Não. Nem a mediana e nem a moda estão nas mesmas faixas de salário mínimo.

Tabela 1:

Mediana: 5 |-- 7 Moda: 3 |-- 5 e 9 |-- 11

Tabela 2:

Mediana: 7 |-- 9 Moda: 7 |-- 9

(iii) (1,5 pontos) sabendo que a média dos salários da indústria I₂ é de 6,72 salários mínimos e que o desvio padrão é de 2,46 salários, compare a média e o desvio da padrão das duas indústrias (Obs: considere, para o cálculo da média e do desvio padrão, a média de salários das respectivas faixas).

Resposta:

Cálculo da média:

Faixa de Salário	Freqüência (f)	Média de S.M. de cada faixa (m)	(f)x(m)	
1 3	2	2	4	
3 5	5	4	20	
5 7	4	6	24	
7 9	4	8	32	
9 11	5	10	50	
total (Σ)	20	-	130	

$$m\acute{e}dia = \frac{\sum_{k=1}^{5} (freq)_k \times (m\acute{e}dia.da.faixa)_k}{20} = \frac{130}{20} = 6,5.S.M.$$

Cálculo do desvio padrão:

Faixa de Salário	freqüência (f)	média de S.M. de cada faixa (m)	(f) x(m)	a=(med.faixa - 6,5) ²	(f) x (a)
1 -3	2	2	4	20,25	40,5
3 -5	5	4	20	6,25	31,25
5 -7	4	6	24	0,25	1
7 -9	4	8	32	2,25	9
9 -11	5	10	50	12,25	61,25
total (Σ)	20		130		143

$$desvio.padr\tilde{a}o = \sqrt{\text{var}} = \sqrt{\frac{143}{20}} = 2,67$$

A média, em salários mínimos, é um pouco menor mas tem um desvio padrão maior.

2ª questão - 2,0 pontos

Na Caixa 1 há 10 círculos (6 lisos e 4 com listas) e 13 quadrados da Caixa 2, sendo 8 lisos e 5 com listas. Todos dos círculos e quadrados (lisos e com listas) das Caixas 1 e 2 serão misturados na Caixa 3. Pergunta-se:

■ Resposta:

10 círculos sendo 6 lisos e 4 com listas 13 quadrados sendo 8 lisos e 5 com listas

Total de objetos na caixa 3: 23, sendo 10 círculos e 13 quadrados.

Probabilidades:

Quanto ao formato:

Probabilidade de ser círculo (C):
$$P(C) = \frac{10}{23} = 0.4348$$

Probabilidade de ser quadrado (Q):
$$P(Q) = \frac{13}{23} = 0,5652$$

Quanto a "cor":

Probabilidade de ser um objeto liso (L):
$$P(L) = \frac{14}{23} = 0,6087$$

Probabilidade de ser um objeto com listas (Lt):
$$P(Lt) = \frac{9}{23} = 0.3913$$

- (i) (1,0 ponto) se for tirado apenas um objeto da Caixa 3, qual a probabilidade deste objeto selecionado ter listas?
- Resposta:

Probabilidade de ser um elemento com listas (Lt):
$$P(Lt) = \frac{9}{23} = 0.3913$$

(ii) (1,0 ponto) se forem tirados dois objetos da Caixa 3. qual a probabilidade dos dois serem círculos?

Resposta:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(B)P(A \mid B)$$

$$P(A \cap B) = \frac{10}{23} \times \frac{9}{22} = \frac{90}{506} = 0,1779$$

3ª questão - 2,0 pontos

Em uma fábrica de teclados para computador, as linhas de montagem A, B e C respondem respectivamente por 20, 30 e 50 % da produção. Alguns teclados saem destas linhas com defeitos. A porcentagem de teclados defeituosos é de 1,2%, 0,6% e 0,4% respectivamente para as linhas A, B e C. Para evitar que os teclados defeituosos saiam da empresa e cheguem ao mercado, o controle de qualidade realiza inspeções individuais em todos os teclados fabricados. Os que apresentam algum defeito são enviados para recuperação. Calcule:

(i)(1,0 ponto) a probabilidade de um teclado qualquer produzido nesta empresa ser defeituoso

Resposta:

Sabendo que P(A) = 0.20; P(B) = 0.30 e P(C) = 0.50 e chamando de D a probabilidade do monitor apresentar defeito, temos:

$$P(D/A) = 0.012;$$

$$P(D/B) = 0.006;$$

$$P(D/C) = 0,004.$$

Logo,
$$P(D) = 0.2 \times 0.012 + 0.006 + 0.0018 + 0.004 + 0.002$$

e $P(D) = 0.0020 + 0.0018 + 0.0024 = 0.0062$

- (ii) (1,0 ponto) a probabilidade de um teclado defeituoso encontrado na inspeção ter sido produzido na linha de produção C.
- Resposta:

$$P(C/D) = \frac{P(C)P(D/C)}{P(D)} = \frac{0.5 \times 0.004}{0.0062} = 0.3226.$$

4ª questão - 3,0 pontos

Sabe-se que há um surto de pneumonia em uma determinada região e se os pacientes forem diagnosticados precocemente têm 85% de probabilidade de se curarem sem necessidade de internação. Para um grupo de 20 pacientes que estão na fila aguardando laudo para saber se serão internados ou não, calcule qual a probabilidade de:

(i) (1,5 pontos) menos de 2 necessitarem de internação:

Resposta:

Modelo Binomial

$$P(X = x_k) = \binom{n}{k} \times p^k \times (1-p)^{n-k}, k = 0,1,...,n$$

Considerando n=20 e uma das opções:

p= 0,85 (sucesso: não ser internado) → P(X>18) mais de 18 (19 ou 20) não foram internados ou

p=0,15 (sucesso: ser internado) $\rightarrow P(X<2)$ menos de 2 (1 ou 2) serem internados

Utilizando p=0,15 e P(X<2)

$$P(X < 2) = P(X = 0) + P(X = 1)$$

$$P(X < 2) = {20 \choose 0} \times 0.15^{0} \times (1 - 0.15)^{20 - 0} + {20 \choose 1} \times 0.15^{1} \times (1 - 0.15)^{20 - 1}$$

$$P(X < 2) = \frac{20!}{0!20!} (0.15)^{0} \times (0.85)^{20} + \frac{20!}{1!19!} (0.15)^{1} \times (0.85)^{19} = 0.03876 + 0.13679 = 0.1755$$

(ii) (1,5 pontos) somente o quinto paciente a ter o laudo divulgado necessitar de internação:

Resposta:

$$P(X = k + 1) = p(1 - p)^{k}$$

$$P(X = 5) = 0.15(1 - 0.15)^4 = 0.15 \times 0.5220 = 0.0783$$