Sets and Maps

Sets

```
\mathbb{N} = \{0, 1, 2, \dots\} \qquad \text{*natural numbers*}
\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\} \qquad \text{*integers*}
\mathbb{Q} = \left\{\frac{k}{n} \mid k, n \in \mathbb{N}, n \neq 0\right\} \qquad \text{*rationals*}
\mathbb{R} = \qquad \text{*real numbers*}
\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\} \qquad \text{*complex numbers*}
i = \qquad \text{*imaginary unit*}
characterized by <math>i^2 = -1.
\mathbb{R}^d = \{(a_1, \dots, a_d) \mid a_i \in \mathbb{R}\} \qquad \text{*d-dimensional space*}
\mathbb{R}^\infty = \{(a_0, a_1, a_2, \dots) \mid a_i \in \mathbb{R}\} \qquad \text{*space of infinite sequences of reals*}
```

Operations on Sets

$$A \cup B = \{c \mid c \in A \text{ or } c \in B\}$$
 union
 $A \cap B = \{c \mid c \in A \text{ and } c \in B\}$ *intersection*
 $A \setminus B = \{c \in A \mid c \notin B\}$ *difference*
 $A \triangle B = A \setminus B \cup B \setminus A$
 $= (A \cup B) \cap (A \cap B)$ *symmetric difference*

Indexed Family of Sets

Let $(A_{\alpha})_{\alpha \in I}$ be an *indexed family of sets* (index set I). **Examples:**

1.
$$I = \mathbb{N}$$
, $A_{\alpha} := \{\alpha, \alpha + 1\}$

2.
$$I = \mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\},\$$

 $A_{\alpha} := [\alpha, \infty)$

Union:

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for some } \alpha \in I \}$$
$$= \{ a \mid \exists \alpha \in I \text{ such that } a \in A_{\alpha} \}$$

Intersection:

$$\bigcap_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for every } \alpha \in I \}$$
$$= \{ a \mid \forall \alpha \in I, a \in A_{\alpha} \}$$

Maps

Maps are also called *functions*, *mappings*, or *transformations*. Let A, B be sets. A *map* f

$$f: A \to B$$

 $a \mapsto f(a)$

is an *assignment*: to $\forall a \in A$, f assigns a unique $b \in B$ which is called the *value of f at a* and is denoted by f(a).

Note: f assigns to $\forall a \in A$ a value, but there may exist $b \in B$ s.t. $f(a_1) = f(a_2) \ \forall a_1, a_2 \in A$.

A is called the *domain* of f.

B is called the *target space* of f.

Restriction

If $A' \subset A$, then the map f'

$$f': A' \to B$$

 $a \mapsto f'(a) = f(a)$

is called the *restriction* of f to A' (denoted by $f' = f|_{A'}$).

Examples:

1.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sin(x)$$

$$\rightarrow f = \sin$$

$$2. f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$$

$$x\mapsto \frac{1}{x}$$

3.
$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{1}{x} & x \neq 0 \\ 2 & x = 0 \end{cases}$$

4. $f: V \to \text{set of subspaces of } V = \mathcal{S}$

$$v \mapsto \operatorname{span}(v)$$

5.
$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$$

$$p(x) \mapsto p'(x) = p'$$

derivative