产品概述:

qiftech.cn.lab 软件实验室:可测量两个通道单端输入电压,直流耦合方式。

输入阻抗 $300k-2M \parallel 10 pF$ 。可测量的输入信号范围为 0V/100V。分 2 个档次,第一档 0V/100V,第二档 0V/100V。两个通道输入精度为 12 位 ADC (模数转换器),可选定的采样率 (50 kS/s ... 15 MS/s) 对输入电压进行采样。

输出:两个通道 OUT1,2 并联输出,每通道中包含两个子通道并联输出。

OUT1,2 可以输出 3V ,1k-1.5M 的方波,也可以调节占空比和相位。也提供 0V-3V,1k-20k 的正弦波\三角波\自定义波形。

提供 2.5V,5V 输出电流测量,可以对 5V 电子模块闭环测试, 5V 输出最大提供 50ma 电流。 提供 OUT1 输出电流测量.最大提供 3ma 电流。

USB 连接:使用 USB 2.0 高速传输。可连接到个人电脑 ,提供 UBUNTU 和 WIN 版本。

电压限制:输入电压超出 100 V 的安全范围会导致永久性损坏!

不要将软件实验室的 GND 连接到 220v,110v,设备的 GND, 因为它可以破坏软件实验室和 PC! 这不是该设备的限制,而是大多数设备的典型限制,即使是更贵的设备也是如此。

软件实验室有零点误差由1-5%的电阻产生。

触发器:软件实验室没有提供硬件触发功能,直接采集显示采集轨迹。

硬件接线图:

OUT1 G 5V 10V 100V (Ch1) OUT2 G 2.5V 10V 100V (Ch2)

两个通道输入 Ch1,Ch2 有两档 10V,100V。

程序安装:程序为绿色版本,下载,用

CertUtil -hashfile qiftech.cn.lab.tar MD5; CertUtil -hashfile qiftech.cn.lab.tar; 查看 MD5 和 SHA1;

启动软件实验室:

可执行程序名为 qiftech.cn.lab。它安装在(Linux,win 下)或者任意目录。Linux最好用sudo / qiftech.cn.lab 打开。在极少数情况下,当另一个高速 USB 设备阻塞了同一 USB 总线时,就会连接不上这种情况。需要重新拔插 USB 设备以及关闭再重新开启 qiftech.cn.lab。驱动安装:

Linux 一般自带驱动,UBUNTU 下可以用 sudo apt-get install libusb* 安装;

检查是否接通,可以先接入设备,然后用 sudo Isusb -t 进行检查是否有新设备。

WIN7-10 可以用 zadig.akeo.ie, zadig 安装驱动,驱动包括 WINUSB (推荐) 或者 libsdk,安装完毕,可以发现设备。

第一步先安装 WINUSB:

第二步再安装 Wcid:

qiftech.cn.lab 可以切换 2 种驱动(0,1),设置 0 需要开机重新拔插 USB 设备再开启 qiftech.cn.lab, 但是切换采样量程速度快。设置 1 不需要开机重新拔插 USB,但是切换采样量程速度会慢。

micro USB 最好直接连接到 PC,中间不要使用 USB 集线器。确保设备不与其他设备共享高速总线。如果在使用 USB3 端口时遇到问题,应切换到 USB2,该设备通过 USB 供电,典型电流消耗小于 500 mA,因此使用优质的 USB 2.0 电缆是非常必要的。 退出时会自动保存所选设置,并在下次退出时恢复。

快速入门指南。

使用的两个探头中 CH1, CH2 接上电感,并将其连接到输出 OUT1。 设置 PMW 波形,输入 10000HZ,软件实验室将显示方波轨迹。 暂停,点击方波轨迹,可以求两点间频率。

电压测量:

可以测量两个通道测量与 GND 的单端电压。可以显示通道名称、电压范围、频谱范围、峰峰值。直流电压分量、交流电压分量、分贝。相位与相位差,dB 与 dB 差,CH1-CH2、CH2/CH1,Abs 计算绝对信号值。

电流测量:

提供 5V 输出电流测量,可以对 5V 电子产品测试,最大提供 50ma 电流。提供 OUT1 输出电流测量,最大提供 3ma 电流。

FFT 谱:

重要提示: 采样频谱分量高于奈奎斯特频率的信号会导致到混叠, 即较高的频谱分量被镜像到低频率范围。查看频谱时需要考虑到这一点。暂停,用鼠标 2 次点击,计算相关 FFT 谱计算值。

频率扫描:

频率范围:1k-1.4M,每个采样频道不一样。下面是 LC 频率扫描 。LTspice 模拟原理图,可以按照图框内元件接好连线,L1(三脚升压电感 1.5mH,工形电感),C3(10nF)是要添加的,其他是寄生电路元件, 按图连接设备的 Ch1, Ch 2,Out1。

设置 Ch1,2 的采样频率,这里是 8M,

StartFrequency(HZ): 设置 100k,

SteppedFrequency(0.1kHZ): 设置 5k,

Repeart: 设置 1, 设置更大可以让结果更加精确,但是速度慢,

Points: 100-300 点,然后开始, 打开波特图 DEMO2 为频率扫描结果。

波特图:

频率扫描完毕可以打开波特图,鼠标点击曲线,可以看到 XY 值。

DEMO1:升压电感 68mH 串联 10nF 频率扫描;DEMO2:升压电感 1.5mH 串联 10nF 频率扫描。 其他功能 Log,ABS 绝对值,Smooth 平滑。

打开 DEMO2 通过平滑功能,完善画面. 完善后画面可以看到谐振频率 200KHZ 附近. 注意平滑功能可能把主要数据过滤。

真实数据

平滑功能等

对比下 LTspice 模拟与 DEMO2; 可以看到谐振频率 200KHZ 附近为谐振频率。

电压扫描:

电流可以选择,5V 输出电流或者 OUT1 输出电流。

这个实验是调节 PWM 占空比来调节电压,需要借助电容完成电压扫描。下面是一个二极管扫描,可以按照图示接好连线,实际电路 C1 为电解电容,U2 为 9013 三极管, U4 为 IN4007 二极管。

C1,U2,U4 是要添加的,其他是寄生电路元件,按图连接,5V 输出, Ch1, Ch 2,Out1,GND。

设置 Ch1,2 的采样频率, NO2 档,

Current(mA): 设置 5V,

StartFrequency(HZ): 设置 50K,

SteppedFrequency(0.1kHZ): 电压扫描这里不用设置,

Repeart: 设置 1, 设置更大可以让结果更加精确,但是速度慢,

Points: 100 点,然后开始,然后打开电压扫描图,DEMO 为频率电压扫描结果。

电压扫描图。

打开 DEMO,菜单 X1T2(XY 坐标翻转)-->Y+T-(Y 坐标+-翻转)-->LOG(对数)得到下图。

对比 LTspice 模拟,CH1/CH2 对应 V(CH1)/V(CH2),5V(ma) 对应 I(R2),可以看到二极管 0.7v 上升拐点电流 5-6ma。

定点频率扫描:

求定点频率(频率不变,占空比不变)的电流等,可选择 5V 输出电流或者 OUT1 输出电流。选择 Ch1,2 的采样频率 NO2 档,频率 50K,points 30点,然后开始,然后打开电压扫描图,SAVE 保存结果。

定制波形:

输入数组为 127 个小于 4096 的值,可以调节输出大小,可以做各种输出。

输出:OUT1,OUT2 为 2 个 PWM 或正弦波,三角波输出频道并联到 OUT1,OUT2。

输出提供 3 V,1k-1.5M 的方波,可以调节占空比和相位的方波;

切换 PMW,调节 Duty cycle or Pulse 可以实现调节占空比和相位的方波;

PMW: 两个通道 Out1,2 相位差为 0, Out1 的占空比 1/2, Out2 占空比可以调节;

PMW1:两个通道 Out1,2 相位差为 0, Out1Out2 占空比可以调节;

PMW2:两个通道 Out1,2 相位差为 90, Out1Out2 占空比可以调节;

PMW3:两个通道 Out1,2 相位差为 0, 占空比固定 1/2, 相位可以调节;提供 $0 \ V / 3 \ V,1k-20k$ 正弦波\三角波\自定义波形。

Output Level 可以调节正弦波\三角波\自定义波形输出大小。

数据导出:

右面文本窗口可以导出 txt,存储测量的样本,可以导出到 MATLAB,Excal 处理。