Práctica 9: Derivación parcial. Gradiente.

Objetivos

- Determinar las derivadas parciales de una función de forma simbólica.
- Representar el campo gradiente y mostrar su interpretación geométrica.

Comandos de Matlab

quiver

Dibuja los vectores U, V con flechas en los puntos X, Y. Las matrices X, Y, U, V deben tener el mismo tamaño.

Ejemplo:

```
[X,Y]=meshgrid(-1:0.5:1);
U=Y+X;V=-X+Y;
quiver(X,Y,U,V)
```

gradient

Calcula el gradiente de forma numérica de una matriz

Ejemplo:

```
[x,y] = meshgrid(-2:.2:2, -2:.2:2);

z = x \cdot exp(-x \cdot 2 - y \cdot 2);

[px,py] = gradient(z,.2,.2);
```

clabel

Permite etiquetar las curvas de nivel con el valor de la función en los puntos de cada curva. La opción clabel('manual') permite poner etiquetas únicamente a las curvas que se deseen.

Ejemplo:

```
[X,Y] = meshgrid(-1:0.5:1);

Z=X+Y;

[c,h] = contour(X,Y,Z);

Clavel(c,h)
```

Ejercicios resueltos

Cálculo de la derivada parcial en forma simbólica

Dada la función $f(x, y) = sen(xy) + cos(xy^2)$ calcular

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial x \partial y}$, $\frac{\partial f}{\partial y \partial x}$

Recuerda que las derivadas parciales de segundo orden se definen:

$$\frac{\partial}{\partial x} \left(\frac{\partial x}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2} = z_{xx}^{"}(x, y) = f_{xx}(x, y)$$

$$\frac{\partial}{\partial y} \left(\frac{\partial x}{\partial x} \right) = \frac{\partial^2 z}{\partial x \partial y} = z_{xy}^{"}(x, y) = f_{xy}(x, y)$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2} = z_{yy}^{"}(x, y) = f_{yy}(x, y)$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2} = z_{yy}^{"}(x, y) = f_{yy}(x, y)$$

$$\frac{\partial}{\partial x} \left(\frac{\partial x}{\partial y} \right) = \frac{\partial^2 z}{\partial y \partial x} = z_{yx}^{"} (x, y) = f_{yx} (x, y)$$

(b) Comprueba que se verifica el teorema de Schwarz

TEOREMA DE SCHWARZ.- Sea z = f(x, y) es una función de dos variables. Si se verifica que existen $f, f_x, f_y, f_{xy}, f_{yx}$ y además f_{xy} es continua en una región abierta D entonces se cumple que en dicha región se da la igualdad de las derivadas cruzadas de segundo orden, $f_{xy} = f_{yx}$.

Solución

(a) Código Matlab

```
syms x y
f=\sin(x*y)+\cos(x*y^2);
fx=diff(f,x,1)
fy=diff(f,y,1)
fxy=diff(fx,y,1)
fyx=diff(fy,x,1)
```

Nota: Puedes realizar los cálculos a mano y comprobar el resultado con Matlab

Visualizando el gradiente de funciones de dos variables

Definición (*Gradiente*).- Si z = f(x, y) es una función de dos variables se define el gradiente de f en el punto $\overline{x_o} = (a,b)$ como el vector: $\nabla f(a,b) = f_x(a,b)\mathbf{i} + f_y(a,b)\mathbf{j}$

Dibujar en cada punto de la malla [-5,5]x[-5,5] el vector gradiente de la función $f(x, y) = x^2 + y^2$

Solución

Comandos Matlab. Una posibilidad puede ser:

```
[X,Y]=meshgrid(-1:0.1:1)
U=2*X;
V=2*Y;
quiver(X,Y,U,V)
```

Otra posibilidad:

```
[X,Y]=meshgrid(-1:0.1:1);
Z=X.^2+Y.^2;
[U,V]=gradient(Z,0.1,0.1)
quiver(X,Y,U,V)
```

3

El gradiente y las curvas de nivel

Superponer a la figura del gráfico obtenido en el ejercicio 2 las distintas curvas de nivel de la función $f(x, y) = x^2 + y^2$.

Solución

Código Matlab

```
grid off
hold on
[c,h]=contour(X,Y,Z);
%Ponemos un título al gráfico de la figura 1
title('Gradiente y curvas de nivel')
%Para identificar las curvas de nivel
clabel(c,h)
%Probar clabel(c,'manual')
```

Podemos dibujar también la gráfica de la función

```
%Representamos la gráfica de la función
figure(2)
surf(X,Y,Z)
title('Superficie')
```

Observa que:

• El vector gradiente en un punto es ortogonal a la curva de nivel que pasa por dicho punto. Puedes visualizar esta propiedad del gradiente con ayuda del applet que se encuentra en la página:

http://personales.unican.es/alvareze/Descartes/Gradiente/00 gradiente.html

- En cada punto el vector gradiente apunta a la dirección de máximo crecimiento de la función.
- La longitud del vector gradiente aumenta a medida que aumenta la razón de crecimiento de la función.

Ejercicios propuestos

Estudio de la función en las proximidades de un punto crítico (es decir, un punto donde el gradiente se anula)

1

Considerar la función $z = f(x, y) = xe^{-x^2 - y^2}$ sobre la región $D = \{(x, y) / -1 \le x \le 1, -1 \le y \le 1\}$. Se pide:

- (a) Representar el campo gradiente.
- (b) Superponer las curvas de nivel.
- (c) Representar la función.

¿Qué observas en relación a los puntos donde el gradiente se anula y los puntos donde la función toma los valores máximo y mínimo?

Dibujar el campo vectorial gradiente superpuesto a las curvas de nivel para cada una de las siguientes funciones:

7

(a)
$$f(x,y) = 4 - x^2 - y^2$$
 sobre $D = \{(x,y)/-2 \le x \le 2, -2 \le y \le 2\}$
(b) $f(x,y) = \frac{x^4 + 2x^3y - 6x^2y^2 + y^4}{x^4 + y^4 + 1}$ sobre $D = \{(x,y)/-1 \le x \le 1, -1 \le y \le 1\}$

Explicar qué información dan estos gráficos respecto a la localización de los puntos máximos y mínimos de esta función en D.