Sampling standardisation

Emma Dunne | APW 2023 | Thurs. Aug. 24th

Rarefaction

- Fixes to a sample **size**
- Can result in information being lost
- Rare taxa can be underrepresented in estimates when **evenness** is **low**

Classical rarefaction

draws samples **DOWN** to the level of the least-well-sampled

Classical rarefaction

- draws samples **DOWN** to the level of the least-well-sampled
- Lots of potentially useful information may be lost

Coverage-based methods

- Subsample to a fixed coverage
- Better at dealing with rare taxa than rarefaction

Coverage-based methods

- Subsample to a fixed coverage
- Better at dealing with rare taxa than rarefaction

Shareholder Quorum Subsampling (SQS)

- Developed by John Alroy in 2010
- Interpolation method (i.e. estimates from known data)
- Known among ecologists as coverage-based rarefaction

Coverage-based methods

 draw samples **UP** based on an inference from the known data

SQS

- Based on sample 'coverage' as measured by **Good's u**
- This is based on species
 frequencies to give an estimate of how 'complete' a bin is

Case study: Early tetrapods

- Was early tetrapod
 (terrestrial vertebrate)
 diversity impacted by the
 Carboniferous 'rainforest
 collapse' (CRC)?
- How does sampling impact our understanding of this?

Case study: Early tetrapods

- Raw (face-value) richness
- Raw (face-value) species richness tracks proxies for sampling
- More sampling = greater species richness

Case study: Early tetrapods

- Coverage-rarifed richness
- Implemented through iNEXT R package
- Shows a more 'intuitive' pattern given what we know about the CRC

SQS

Criticism

- Found to track evenness i.e. if sample is dominated by common species, SQS might miss true richness changes (Hannisadal et al. 2012)
- Still needs relatively high levels of sampling to compute estimates

Squares

- Also developed by John Alroy
- Another coverage-based method
- Performs well when the rank abundance of distributions of samples is particularly skewed (i.e. there are many rare taxa)

TRIPS

- True Richness estimated using a Poisson Sampling model
- Extrapolation method (<u>Shiny app</u>)

Criticism

- Tracks unstandardised diversity, particularly in well-sampled bins
- Doesn't deal well when dataset contains many common species

Other methods

Capture-mark-recapture

- Estimating rates of origination and extinction and diversity- through-time
- Next week: Isaiah Smith & Lee Hsiang Liow

Fossilized birth-death process

- A model that explicitly recognizes that the branching events in a phylogenetic tree and sampled fossils were generated by the same underlying diversification process
- Speak to Rachel Warnock

Scales of biodiversity

 α

Alpha diversity

"local richness"

Beta diversity

between two areas/regions

Gamma diversity

"global" diversity

Global vs. regional diversity

- Some authors argue that 'global' diversity is meaningless
- Spatial sampling biases are pervasive and must be corrected for
- Greater focus needed on regional diversity?

Correcting for spatial sampling

- Minimum spanning tree length
 (MST): Attempting to control for the species-area effect. Draws spatial samples of fixed extent
- 2. Spatial subsampling: Control both total sampling area (no. of occupied grid cells) and dispersion of sampling sites through time (MSTs) R package coming soon!

Variable	Time 1	Time 2
Sample area	large	medium
Species count	12	6
Mean species' area	large	large
Mean proportional species' area	tiny	medium

Which method is the best?

- Most popular = SQS/ coverage-based rarefaction
- Useful to use more than one method
- Most important that you explore your data
- Don't expect one single method to fix all problems!

Best practice

 Always consider that there are biases lurking among your data!

- 2. Explore your data thoroughly
- **3.** Choose a suitable metric to quantify sampling bias

5. Remember that your *corrected* estimates are not automatically *'correct'*!

