Documentation for GEONU Software

Shuai Ouyang¹

2025.03.21

¹shuaiouyang@mail.sdu.edu.cn Shuai.Ouyang@snolab.ca

Contents

1	Intr	roduction	1
	1.1	What is Geoneutrino	1
	1.2	GEONU Software	1
	1.3	How to use GEONU?	2
2	Geo	\mathbf{plogy} $\mathbf{Information}(\mathbf{TBA})$	5
	2.1	Huang Method	5
	2.2	Bivart Method	5
	2.3	Crust 1.0	5
	2.4	Crust 2.0	5
	2.5	Litho 1	5
	2.6	ECM	5
3	Inp	ut Parameters	7
	3.1	Physics Parameters	7
	3.2	Geology Parameters	7
	3.3	Parameters for Low-, Mid-, and High-Q Models (TBA)	8
4	Des	sign of Software	9
	4.1	Design Philosophy	9
		4.1.1 Monte Carlo Sampling Framework	9
		4.1.2 Statistics and Error	9
	4.2	Physics	9
	4.3	Lithosphere	10
	4.4	Mantle	12
R	efere	nce	13

ii CONTENTS

Chapter 1 Introduction

1.1 What is Geoneutrino

Geoneutrino is electron antineutrino originating from the interior of the earth, and it was firstly proposed in geological research. With the development of seismology, we have gained a understanding of the Earth's physical structure, but we still know little about its chemical properties. These chemical properties have an important impact on the Earth's evolution, such as continental drift and mantle convection. Although, there are several theories currently describe the Earth's internal chemical composition, experimental validation is needed to determine which theory is correct, since there are no direct measurements of the mantle. Geoneutrino detection is the only method currently available to probe this mystery.

Radiogenic power is one of the key energy sources driving Earth's internal dynamics. It it generated by the decay of heat-producing elements (HPEs), such as ²³⁵U, ²³⁸U, ²³²Th and ⁴⁰K. These elements undergo weak decay processes [1] (Eq.1.1-1.5) and emit neutrinos in the process. Due to their extremely weak interaction with matter, neutrino can travel from the Earth's interior to the surface with negligible attenuation, effectively carrying information from deep within the Earth.

$$^{235}U \longrightarrow ^{207}Pb + ^{4}He + 4e^{-} + 4\overline{\nu}_{e} + 0.283 \text{ MeV},$$
 (1.1)

$$^{238}U \longrightarrow ^{206}Pb + 8\alpha + 6e^{-} + 6\overline{\nu}_{e} + 51.7 \text{ MeV},$$
 (1.2)

$$^{232}Th \longrightarrow ^{208}Pb + 6\alpha + 4e^{-} + 4\overline{\nu}_{e} + 42.7 \text{ MeV},$$
 (1.3)

$${}^{40}K \underset{(89.3\%)}{\longrightarrow} {}^{40}Ca + e^{-} + \overline{\nu}_{e} + 1.31 \text{ MeV}, \tag{1.4}$$

$${}^{40}K \underset{(10.7\%)}{\longrightarrow} {}^{40}Ar + \nu_{e} + 1.505 \text{ MeV}. \tag{1.5}$$

$$^{40}K \xrightarrow{40} ^{40}Ar + \nu_e + 1.505 \text{ MeV}.$$
 (1.5)

Geonu is detected by inverse beta decay for now:

$$\overline{\nu}_e + p \longrightarrow n + e^+,$$
 (1.6)

The Positron annihilates with an electron almost immediately after being generated, generating a prompt signal in detector. The neutron, on the other hand, undergoes thermalization through random scattering and is eventually captured by a proton, emitting a delayed signal. Considering the energy threshold of IBD is 1.806 Mev, only geoneutrino from decay of ²³⁸U and ²³²Th can currently be observed (Fig.1.1).

Figure 1.1: Spectra for different HPEs [2]

GEONU Software 1.2

GEONU is an open-source MATLAB code currently maintained by Tytrice Faison and Laura Sammon [3]. It provides a model of the earth and is capable of computing geonu signal rates, geonu fluxex at detectors, and radiogenic power. Based on the original version, I have rewritten the entire code to improve it readability, maintainability, and modularity, making it more convenient for geonu-related researches in SNO+.

GEONU models earth into three major components: Lithosphere, mantle and core. Since the core contains negligible amounts of HPEs, GEONU only considers contributions from the lithosphere and mantle.

The lithosphere is divided into sevens layers: three layers of sediment(s1, s2, s3), three layers of crust (upper crust–UC, middle crust–UC, lower crust–LC), and one layer of lithospheric mantle (LM). Each layer is discretized into 64,800 grid cells, defined a resolution of $1^{\circ} \times 1^{\circ}$ in the longitude and latitude (see Fig. 1.2).

The mantle component contains two layers: depleted mantle (DM) and enriched mantle (EM), each also composed of 64, 800 grid cells. The averall structure of all layers is shown in Fig. 1.3.

CC MC W OC LM LC NONO DM DM EM EM

Figure 1.2: Layer structure division

Figure 1.3: Internal structure of the Earth [4]

In addition, GEONU requires external geological model inputs. For the lithosphere component, four models are available: Crust 1.0, Crust 2.0, Lith and ECM. For the mantle component, PREM model is used. Currently, the updated version of GEONU supports Crust 1.0 for the lithosphere and PREM for the mantle.

After constructing the Earth model, the next step is to calculate the geonu signal rates. For geonu rate generated by i-th HPE, the calculation follows:

$$S_i = \int_{\oplus} \rho A_i dV \times \frac{1}{a_i} \times \frac{\ln 2}{\tau_i} \times \int \frac{dn}{dE} \sigma_{IBD} dE \times \frac{P_{ee}}{4\pi L^2} \times 1 \text{yr} \times N_{proton} \times \varepsilon_{detector}, \tag{1.7}$$

where ρ is the rock desity; A_i, a_i, τ_i are abundance, atomic mass, and half-life of the *i*-the HPE, respectively; P_{ee} is the electron antineutrino survival probability; L is the distance from the source element to the detector; N_{proton} is number of target protons in the detector; and $\varepsilon_{detector}$ is the detection efficiency.

The geonu flux is calculated as:

$$\Phi = \int_{\oplus} \rho A_i dV \times \frac{1}{a_i} \times \frac{\ln 2}{\tau_i} \times \int \frac{dn}{dE} dE \times \frac{P_{ee}}{4\pi L^2},$$
(1.8)

with units is $cm^{-2}s^{-1}$.

The rediogenic power is derived by multiplying the total mass of each HPE with its specific power factor (i.e. heat released per unit mass). This is the framework of GEONU. More detailed methods and implementation will be introduced in the following sections.

1.3 How to use GEONU?

If this is your first time using GEONU software, please ensure that MATLAB is properly installed on your computer. After installation, open the main.mlx, select the detector of interest, set the desired number of iterations, and click the "Run" button. Since memory comsuption is strongly dependent on the number of iteration, please refer to the recommended configuration table below:

Table 1.1: Recommended Memory and Runtime for Different Iteration Settings

Iteration	Recommended Memory	Estimated Runtime
1000	32 GB	102 s
4000	64 GB	280 s

After the simulation finishes, results are stored in the Output folder. The output file contains three structures: Physics, Geology, and Output. The first two structures record the physics and geological input parameters, facilitating verification and reproducibility; the the Output stores the computed results.

Plot.m script demostrates how to read, process and visualize the results. All generated figures are saved in the Pics folder.

The LITE version demostrates the fundamental computational framework. Both ADVANCE and SPECTRUM versions are extended from it. If you plan to modify or develop your own version, LITE version is an excellent reference. To control the memory consumption, the following versions are released:

- LITE Focuses on signal rate computation
- ADVANCE Computes signal rate, flux, and radiogenic power.
- SPECTRUM Compute signal rate and detected spectra.
- APPLICATION For user-defined development and customized applications.

INPORTANCE: if any results from either the original or the new GEONU software are used in your publication, please cite this reference [5], which is the first one introduced the code.

Chapter 2 Geology Information(TBA)

- 2.1 Huang Method
- 2.2 Bivart Method
- 2.3 Crust 1.0
- 2.4 Crust 2.0
- 2.5 Litho 1
- 2.6 ECM

Chapter 3

Input Parameters

3.1 Physics Parameters

The following physical parameters are required as input:

- 1. Element properties Detailed values are provided in Table 3.1.
- 2. Neutrino oscillation The oscillation parameters are listed in Table 3.2. The survival probability is given by:

$$P_{ee}(E,L) = 1 - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \left(\frac{1.27\Delta m_{21}^2 L}{E} \right)$$

$$- \sin^2 2\theta_{13} \cos^2 \theta_{12} \sin^2 \left(\frac{1.27\Delta m_{31}^2 L}{E} \right)$$

$$- \sin^2 2\theta_{13} \sin^2 \theta_{12} \sin^2 \left(\frac{1.27\Delta m_{32}^2 L}{E} \right),$$
(3.1)

where E and L are neutrino energy and distance, in units of MeV and km, respectively.

- 3. **Emitted neutrino spectra of HPEs** The geoneutrino spectra currently used are calculated by Enomoto [2]. Refer to Fig. 1.1 for the spectra.
- 4. **IBD cross-section** the electron and nucleon massed are listed in Table 3.3. The IBD cross section is calculated as:

$$\sigma_{IBD}(E) = 9.52 \times (E - \Delta)^2 \sqrt{1 - \frac{m_e^2}{(E - \Delta)^2}} \times 10^{-44} \text{cm}^2,$$
 (3.2)

where $\Delta \equiv m_n - m_p \approx 1.2933 \text{ MeV}$

Table 3.1: Element Properties

Property	²³⁵ U	²³⁸ U	²³² Th	$^{40}{ m K}$	Reference
Natural abundance	0.7%	99.3%	100%	0.0117%	Wiki
Atomic mass (amu)	235.0439299	238.05078826	232.0380536	39.96399848165	Wiki
Half-life (s)/ $3.1536e7$	4.468e9	0.704e9	14.05e9	1.248e9	Wiki
Heat power $(\mu W/kg)$	568.48	95.13	26.28	24.47	Ref [6]

Table 3.2: Neutrino Oscillation Parameters (PDG 2024)

Mixing Angle	Value	Mass-Square Difference(eV^2)	Value
$\sin^2 \theta_{13}/10^{-2}$	2.203 ± 0.059	$\Delta m_{21}^2/10^{-5}$	7.41 ± 0.21
$\sin^2 \theta_{12}/10^{-1}$	3.03 ± 0.12	$\Delta m_{31}^2/10^{-3}$	2.437 ± 0.028
$\sin^2 \theta_{23}/10^{-1}$	5.72 ± 0.23	$\Delta m_{32}^2/10^{-3}$	2.437 ± 0.028

Table 3.3: Electron and Nucleon Masses

$m_e(\text{MeV})$	$m_p(\text{MeV})$	$m_n(\text{MeV})$	Reference
0.51099895069	938.27208943	939.56542052	Wiki

3.2 Geology Parameters

The following geological parameters are required as input:

1. **Lithospheric geological models** GEONU currently supports Crust 1.0 model and will support Crust 2.0, Litho 1.0 and ECM1 in the future. These models provides information such as rock density, depth, thickness and other information of each grid cell.

- 2. **HPE abundances in the lithospphere** Users are required to input the mean and standard deviation of Uranium, Thorium and Potassium abundances. GEONU then samples and assigns values to each cell accordingly. For the CC portion in the MC or LC, abundances are calculated using either the Huang or Bivart method.
- 3. **Mantle geological model**: GEONU incorporates the PREM model, which provides the Earth's density profile as a function of depth.
- 4. **Mantle abundances** Required inputs include U abundance and Th/U and K/U ratios for both the DM and BSE.
- 5. Other geological parameters: Additional parameters relevant to geophysical calculations may also be specified.

Table 3.4: Default HPE Abundances in Lithosphere Layers

Lavor		CC			OC	
Layer	$U/10^{-6}$	$Th/10^{-6}$	$K/10^{-2}$	$U/10^{-6}$	$Th/10^{-6}$	$K/10^{-2}$
Sediment	1.73 ± 0.09	8.10 ± 0.59	$(2.21 \pm 0.14) * 0.83$	1.73 ± 0.09	8.10 ± 0.59	$(2.21 \pm 0.14) * 0.83$
UC	2.7 ± 0.6	10.5 ± 1.0	2.32 ± 0.19	0.07 ± 0.021	0.21 ± 0.063	0.0716 ± 0.0215
MC/LC		Huang/Biv	vart	0.07 ± 0.021	0.21 ± 0.063	0.0716 ± 0.0215
LM	$0.033^{+0.049}_{-0.020}$	$0.15^{+0.277}_{-0.097}$	$0.0315^{+0.04316}_{-0.01826}$		0	

Table 3.5: Default HPE Abundances in BSE

$U/10^{-9}$	Th/U	K/U
0.19 ± 0.038	$3.776^{+0.122}_{-0.075}$	13800 ± 1300

Table 3.6: Default Mantle Input Parameters

EM (mass fraction)	Th/U	K/U
19%	$3.45^{+1.66}_{-1.18}$	19000 ± 1300

Table 3.7: Other Default Geological Inputs

Earth mass $(kg)/10^{24}$	Core mass $(kg)/10^{24}$
5.97218 ± 0.00006	1.93265 ± 0.0579795

3.3 Parameters for Low-, Mid-, and High-Q Models (TBA)

Chapter 4 Design of Software

4.1 Design Philosophy

4.1.1 Monte Carlo Sampling Framework

One of the core design principles of GEONU is the use of Monte Carlo sampling to incorporate uncertainties in geological parameters. This is achieved through the following functions:

- 1. Generate_Random_Normal() Performs Gaussian sampling based on mean and standard deviation.
- 2. Generate_Random_Log_Normal() Performs log-normal sampling.

These sampling methods allow GEONU to account for input uncertainties and propagate them through the entire calculation. In addition, GEONU uses correlation coefficients in sampling to make a more realistic simulation.

4.1.2 Statistics and Error

In the original GEONU software, the function Abund_And_Flux() invoked stat() and similar functions to perform statistical analysis immediately after computation. However, this approach significantly slowed down the programm and randomness of the overall results. In the updated version of GEONU, all statistical operations have been completely removed from the computation phase. Statistical analysis is now applied only to the final results in subsequent post-processing steps. For pratical implementation, refer to ./Plot.m.

4.2 Physics

All functions related to physics are stored in ./Functions/Physics, and are summarized as follows:

- 1. Compute_Relative_Abundance_Mass() This function computes the natural abundance by mass of the element. For example, in GEONU, the input and computed abundance of uranium refers to the total abundance, whereas uranium consist of ²³⁸U and ²³⁵U. This function calculates the contribution of ²³⁸U from the total abundance.
- 2. Load_Oscillation_Parameters() This function stores the default oscillation parameters. It also includes a flag Physics.Oscillation.Constant to control whether random sampling of the oscillation parameters is applied; however, this feature is currently distabled. At end of the function, three variables p1, p2, p3 are computed as:

$$p1 = -\sin^2 2\theta_{12}\cos^4 \theta_{13}, \quad p2 = -\sin^2 2\theta_{13}\cos^2 \theta_{12}, \quad p3 = -\sin^2 2\theta_{13}\sin^2 \theta_{12}. \tag{4.1}$$

These variables simplify the neutrino oscillation calculation and improve the code's readability and maintainability.

- 3. Load_Geonu_Spectrum() This function loads the neutrino spectra from decay of HPEs. The original spectra have units of keV and 1/keV. To boost simulation and consider the limit to the energy resolution of the detector, the spectra re resummed. Currently, only the energy range from 0-3.5 MeV with a bin width of 0.1 MeV is considered.
- 4. Compute_Cross_Section() This function loads IBD cross-section.
- 5. Compute_Signal_Response() This function computes the signal rate response, g_i , for ²³⁸U and ²³²Th, defined as:

$$g_i \equiv \frac{1}{4\pi} \frac{1}{a_i} \frac{\ln(2)}{\tau_i} \left(\frac{dn}{dE}\right) \sigma_{IBD} \times 1 \mathbf{yr} \times 10^{32} \times \frac{1}{10^4},\tag{4.2}$$

where the factor 10^{-4} accounts for the unit conversion form cm^2 to m^2 . Consequently, the geonu signal rate is computed as:

$$S = \int_{\oplus} \rho A_i dV \times g_i \times \frac{P_{ee}}{L^2}.$$
 (4.3)

6. Load_Detector() This function loads information of the detectors, including 1) longitude; 2) latitude; 3) depth (m); 4) detection efficiency; 5) target proton number; 6) longitude and latitude of the grid cell closet to the detector; 7) detector name.

4.3 Lithosphere

All scripts and functions related to the Lithosphere are stored in ./Functions/Geology,

./Functions/Computation/Lithosphere, and ./Functions/Computation/DeepCrust. The first directory involves geological inputs before computation, while the last two refer to the computational details.

The script./Functions/Geology/Setting_Asign.m records the abundance inputs for each lithospheric layer and call almost all functions under ./Functions/Geology. Their names and purposes are summarized as follow:

- 1. Load_Lithosphere_Data() This function first loads specified geological model. Then it calls Assign_OC_CC() to classify the grid cells according to the model, indentifying which cells belong to the CC and which to the OC. This classification directly affects how abundances are assigned and how signals are calculated in later steps. Finally, it calls Preallocate_Variables_Lithosphere() to define the data structure for PHEs in each layer: each row represents a grid cell with three columns-(1) mean value, (2) positive error, and (3) negative error.
- 2. Generate_Correlations() This function generates the correlation efficients used for sampling. For Bivart method, the correlation coefficients involving SiO₂ are handled separately in Generate_Correlations_DeepCrust().
- 3. Compute_Abundance_DeepCrust() This function produces the data needed for the Huang method and loads datasets required for the Bivart method. It is important to note that, in the Huang method, the potassium abundance is given as the weight fraction (wt%) of K₂O instead of in g/g units. Therefore, a conversion using wt and K2O is needed to obtain the final potassium abundance.
- 4. Assign_Abundance_Layer() This function assigns HPE abundances to all grid cells.
- 5. Compute_Abundance_BSE() This function computes HPE abundances for the BSE model.
- 6. Find_Near_Cells() This function was originally designed to find the grid cells nearest to the detector. However, it is currently disabled and will not be used in the future.

The script ./Functions/Computation/Lithosphere/Generate_Temp_Variables_For_Parallel.m defines the variables required during the computation process, including the initialization of array_for_signal.

The script $./Functions/Computation/Lithosphere/Compute_Temp_Variables.m$ computes template variables for different layers.

The script ./Functions/Output/LITE/Record_Lithosphere_Results.m records output data, which can be customized for specific needs.

The script LITE_Compute_Lithosphere_Cell() serves as the core function of GEONU, responsible for (1) computing abundance, (2) subdividing grid cells, and (3) calculating signal rates. The input variables are outlined as follow:

- 1. index Index of the grid cell, primarily used for debugging purposes.
- 2. Iteration Number of iterations, used to define the size of matrices.
- 3. name_model The name of method applied for Deepcrust calculations.
- 4. name_layer The name of layer; certain layers require special handing.
- 5. last_layer_pressure Pressure from last layer, necessary for Huang method.
- 6. cor_array Correlation efficients required in Monte Carlo sampling.
- 7. array_for_radius array_for_mass array_for_abundance array_for_signal Structures containing information related to radius, mass, abundance, and signal rate computations, respectively.
- 8. detector Detector information.

The output variables are outlined as follows:

- 1. TOTAL_MASS MASS_U MASS_TH Mass of the rock (kg), uranium (kg), and thorium (kg), respectively. These quantities are used to calculate the masses in the mantle.
- 2. PRESSURE_TO_LAYER The pressure value required for pressure correction in the Huang method. This value will be passed to the next layer during abundance calculations.

4.3. LITHOSPHERE 11

A general computational framework is adopted, which helps to understand the main logic as there are various cases handled in this function. This framework applies to s1-s3, UC, MC_CC, LC_CC, and LM_CC layers; other layers require special treatments, which will be described separately. The general framework is outlined as follow:

- 1. Thickness check If the thickness of the layer is 0, the computation terminates immediately and returns zero values for outputs.
- 2. MASS_TOTAL The radius of the grid cell is calculated based on the rock depth and thickness. The rock density is then sampled according to the specified statistical model, and the total rock mass of the grid cell is computed.
- 3. PRESSURE: The pressure increment from this grid cell is computed as $\Delta p_i = \rho_i g h_i$. The total pressure at the center of the grid cell is given by $p_{i-1} + \Delta p_i/2$, and the pressure propagated to the next grid cell is $p_i = p_{i-1} + \Delta p_i$.
- 4. ABUNDANCE: The abundances of HPEs are sampled using either Gaussian or log-normal distributions, depending on array_for_abuance.
- 5. MASS_U, MASS_TH The total masses of the uranium and thorium are computed as $m_i = A_i \times M$.
- 6. SIGNAL_U, SIGNAL_TH GEONU first computes the distance from the grid cell to the detector. Based on the distance, the grid cell may be subdivided up to two times to improve accuracy. Each subdivided volume element j contributes to the geonu_factor G_i defined as:

$$G_i \equiv \sum_j \Delta V_j \times g_j \times \frac{P_{j,ee}}{L_j^2},\tag{4.4}$$

where j is the index of subdivided cell. Finally the signal from this grid cell is given by:

$$\Delta S_i = \rho_i A_i \Delta V_i \times g_i \times \frac{P_{ee}}{L^2} = \rho_i A_i G_i. \tag{4.5}$$

This marks the end of the general framework. Special cases are handled as follow:

- 1. LM_OC The function immediately terminates and returns zero values for this layer, as such a geological structure doesn't exist in reality.
- 2. LM_CC in Crust1.0 and Crust2.0: The thickness of this layer is calculated using the LAB and Moho boundaries. The underlying reason for this treatment remains unclear at present and requires further investigation.
- 3. MC_CC and LC_CC The abundances in these layers are computed by Huang or Bivart method, which are described in Sections 2.1 and Sections 2.2, respectively. The variables PRESSURE and TEMPERATURE are used in the Huang method.

Finally, the manuscript ./Fuctions/Computation/Lithsophere/LITE/Clear_Template_Variables.m is designed to clear intermediate variables and release memory.

Table 4.1: Inputs for Different Layers: array_for_radius, array_for_mass

Layers	1	2	3	4
Sed, Crust	thick	0	depth	surface_radius
LM	thick	moho	depth	surface_radius

Table 4.2: Inputs for Different Layers: cor_array

Layer	1	2	3	4
Sed, UC, MC_OC, LC_OC, LM	thick	vp	abund	-
Huang: MC_CC, LC_CC	thick	vp	end	-
Bivart: MC_CC, LC_CC	thick	vp	biv_sio2	biv_abund

Layer		1	2	3	4	5	6	7	8	9
Sed, UC,	MC_OC,	a_U	$+\Delta a_U$	$-\Delta a_U$	a_{Th}	$+\Delta a_{Th}$	$-\Delta a_{Th}$	a_K	$+\Delta a_K$	$-\Delta a_K$
LC_OC, LM										
Huang:	MC_CC,	crust_vp	method	f_U	f_Th	f_K	m_U	m_Th	m_K	K_Ratio
LC_CC										
Bivart: MC_	CC	crust_vp	method	center_vp	am_u	am_th	am_k20	k_k20	-	_
Bivart: LC_0	CC	crust_vp	method	center_vp	gr_u	gr_u	gr_k20	k_k20	-	-

Table 4.3: Inputs for Different Layers: array_for_abund

4.4 Mantle

Due to the lack of direct measurement, All current information about the mantle is inferred. The corresponding computation is implemented in ./Functions/Computation/Mantle/Compute_Mantle_Variables.m. In GEONU, the following quantities are used:

- 1. Lithosphere Total masses of the rock, uranium and thorium.
- 2. Earth and Core Sampled total masses of the Earth and its core.
- 3. BSE Total mass of the rock and the abundances of uranium and thorium in the BSE.

Based on those inputs, the total masses of the rock, uranium and thorium can be estimated. Seismic studies suggest that the mantle consists of two components: depleted mantle (DM) and enriched mantle (EM), with a commonly assumed mass ratio of 81:19. This ratio can be adjusted via the parameter Geology.Mantle.Proption_EM.

A reference uranium abundance of $a_U = 8 \pm 2.4$ is adopted for DM, and two scenarios are considered accordingly:

- 1. **Ideal case**: If the total uranium mass in the mantle exceeds the amount required by DM at this reference abundance, GEONU assigns a_U to DM.
- 2. **Non-ideal case**: If the total uranium mass is insufficient to support this abundance in DM, GEONU assigns all avaiable uranium to DM.

The thorium and potassium abundances in DM are estimated by Th/U and K/U mass ratios. The abundances in EM are computed with residual uranium and thorium masses.

The function LITE_Compute_Mantle_Cell() is designed for signal computation in the mantle. It largely follows the same computational framework used in the Lithosphere, and is not detailed further here. However, the mantle-specific implementation introduces a simplification: GEONU first divides the region between CMB and LAB into 1km-thick layers and compute their masses using PREM density profile. These serve as the foundation for construction larger structural units.

The mantle volume for each grid cell is then divided into 9 layers: the first eight are assigned to DM and the last one to EM. The massed of these layers are computed by summing over the corresponding thin layers according to depth, and these are subsequently used to calculate the interests.

Reference

- [1] Gianni Fiorentini, Marcello Lissia, and Fabio Mantovani. Geo-neutrinos and earth's interior. *Physics Reports*, 453(5-6):117–172, 2007.
- [2] Enomoto Sanshiro. Geoneutrino Decay Spectrum.
- [3] William McDonough Laura Sammon Keen Tytrice Faison Yu Huang, Scott Wipperfurth. https://github.com/LSKgeo/GEONU.
- [4] Yu Huang, Viacheslav Chubakov, Fabio Mantovani, Roberta L Rudnick, and William F McDonough. A reference earth model for the heat-producing elements and associated geoneutrino flux. *Geochemistry, Geophysics, Geosystems*, 14(6):2003–2029, 2013.
- [5] Scott A Wipperfurth, Ondřej Šrámek, and William F McDonough. Reference models for lithospheric geoneutrino signal. *Journal of Geophysical Research: Solid Earth*, 125(2):e2019JB018433, 2020.
- [6] ST Dye. Geoneutrinos and the radioactive power of the earth. Reviews of Geophysics, 50(3), 2012.