Cooperative estimation for feature-based SLAM

Tim Woodbury, Neha Satak, Kevin Brink July 31, 2014

Outline

- Introduction
- Problem background
- Simulation results
- Summary and future work

Introduction

Multi-vehicle scenarios

- Academic problems
 - Cooperative control
 - Coalition tasking/planning
 - Mapping
- Examples
 - Search and rescue
 - Geological survey
 - Firefighting

Cooperative estimation

Challenges

- GPS-denied/indoor operation
- Sensor accuracy
- Comm bandwidth/loss
- What data to share?

Approach

- Simultaneous localization and mapping (SLAM)
- Agent-agent position sensing
- Shared feature measurements
- Decentralized filter

Pathfinder project

- Interest in project
 - Cooperative/multi-agent hardware problems
 - Game theory
 - Estimation
 - Planning
 - Mapping
 - Collaboration
 - High-level decision-making
 - Low-level sensors
- My contribution
 - Optitrack/PX4 data fusion and processing
 - Parameter identification (drag, sensor variance)

Problem definition

- Two agents, planar
- M features, known
- Interagent range & bearing
- Two cases
 - Feature range and bearing
 - Feature bearing only

Information flow

Information flow

State and measurement model

Measurements:

• Feature range and bearing:
$$\hat{\rho}_{ki} = \|[\hat{C}_{b/n}][\mathbf{r}_k]_n - [\hat{\mathbf{r}}_i]_b\| \qquad \hat{\theta}_{ki} = \arctan\frac{\left[-\sin\psi - \cos\psi\right][\mathbf{r}_k]_n - \hat{r}_{iy}}{\left[\cos\psi - \sin\psi\right][\mathbf{r}_k]_n - \hat{r}_{ix}}$$
• Feature bearing only:

Feature bearing only:

$$\Phi = \arctan \frac{\hat{r}_{ki2} - \tilde{\rho}_{ji} \sin \tilde{\theta}_{ji}}{\hat{r}_{ki1} - \tilde{\rho}_{ji} \cos \tilde{\theta}_{ji}} - \tilde{\theta}_{kj} - \tilde{\Delta}$$

 $\Delta = \pi - \theta_{ij} + \theta_{ji}$

States:

•
$$\widehat{\boldsymbol{x}} = [r_{ix} \quad r_{iy} \quad u \quad v \quad \psi]^T$$

Open-loop trajectories

Simulation parameters

100 Monte Carlo

- Fixed trajectories, features
- $-\sigma_{r} = 1, \, \sigma_{\theta} = 0.01$
- -M = 15
- 60° FOV, 1-10 m detection range

Compare

- Individual/cooperative
- Feature number
- Feature range measured/not
- Sharing rate

Animation #1

Animation #2

Sharing vs. Individual

•
$$\sigma_r = 1, \, \sigma_\theta = 0.01$$

Case	$S(\epsilon_X)$	$S(\varepsilon_{Y})$
Individual, 1	1.63	1.37
Coop, 1	0.98	0.654
Individual, 2	0.975	0.684
Coop, 2	0.713	0.668

Sparse features

•
$$\sigma_r = 1, \, \sigma_\theta = 0.01$$

•
$$M = [3,5]$$

Case	$S(\epsilon_X)$	$S(\epsilon_{Y})$
M = 5, coop	1.67	1.33
M = 4, coop	7.2	7.87
M = 5, ind	3.54	3.29
M = 4, ind	27.5	27.2

Sharing rate

- 10 Hz nominal
- M = 15

•
$$\sigma_r = 1.0$$

Case	$S(\epsilon_X)$	$S(\epsilon_{Y})$
2 Hz	1.08	0.801
1 Hz	1.24	0.943
0.04 Hz	1.26	0.959
0.01 Hz	1.36	1.07

Feature range effect

•
$$\sigma_r$$
 varies $-\sigma_r = \{1.0,10.0\}$

Case	$S(\varepsilon_X)$	S(e _Y)
B, ind	1.63	1.37
B, coop	0.98	0.654
R/b, $\sigma = 1$	0.749	0.649
R/b, $\sigma = 10$	1.33	0.973

Conclusions

- Improved estimation accuracy for cooperative
- More robustness to few features
- Sharing effective at ≈10% nominal rate
- Bearing-only vs. range/bearing

Future work

- Extensions
 - Higher dimensions
 - Hardware experiments
- Planning/tasking
- Cooperative search

http://commons.wikimedia.org/wiki/File:IRobot Roomba 780.jpg

https://store.3drobotics.com/products/apm-3drquad-rtf

Questions

Backup

References

- Gyorgy, K., Kelemen, A., and David, L., "Unscented Kalman Filters and Particle Filter methods for nonlinear state estimation," in International Conference in Engineering Interdisciplinarity, 2014
- 2. Crassidis, J.L. and Junkins, J.L., *Optimal Estimation of Dynamic Systems*, 2nd ed., CRC Press, 2011

Statistical linearization

- Bearing-only constraint: $\Phi(\tilde{\rho}_{ji}, \tilde{\theta}_{ji}, \tilde{\theta}_{ij}, \tilde{\theta}_{kj})$
- Measurement covariance numerically^[1]:
 - -2n+1 sigma vectors $\boldsymbol{\sigma}$, random var \boldsymbol{x}

$$\sigma_0 = \mathbf{x} \qquad \bar{\mathbf{y}} = \sum_{i=0}^{2n} W_i^{(m)} \mathbf{y}_i$$

$$\sigma_i = \mathbf{x} + \gamma \sqrt{P_x}, \ i = 1, \dots, n$$

$$\sigma_i = \mathbf{x} - \gamma \sqrt{P_x}, \ i = n+1, \dots, 2n \qquad P_y = \sum_{i=0}^{2n} W_i^{(c)} (\mathbf{y}_i - \bar{\mathbf{y}}) (\mathbf{y}_i - \bar{\mathbf{y}})^T$$

PX4 System Overview

PX4 System Overview

Motion capture

- Analysis tools
- Sensor characterization
 - Optic flow
 - Sonar
 - IMU
- Drag coefficient

μ	S(v _x) (m/s)	S(v _y) (m/s)
Initial	1.47	1.11
Current	0.593	0.641

Above: early drag coefficient. Below: current

Velocity controller

- Two? controllers
 - PID
 - Model inversion

Some kind of simulation result