Formula:

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

$$f(x)$$
 = probability density function

 σ = standard deviation

 μ = mean

The steps to derive that formula:

1) e^x

2) e^{-x}

- 3) $e^{-|x|}$: Why is there '-' before |x|?
- i) $e^0 = 1$ and we want the maximum value on Y Axis is 1 according to **Normal Distribution**.
- ii) $e^{any_negative_value}$ is < 1. So if we take |x| which turns -ve value into +ve and then put '-' before |x| to get <1 values for all x!=0 values, then we will have a graph which kind of resembles Normal Distribution but not, because $e^0 = 1$, $e^{0.1} = 0.9$, $e^{0.2} = 0.8$, $e^{0.3} = 0.7$ etc where the outputs are continuously decreasing that doesn't make it Normal Distribution and $e^{-(x^2)}$ solves this issue. How? See the next step.

4) for
$$x = 0.1$$
, $e^{-(0.1^{\circ}2)} = e^{-0.01} = 0.99$,
for $x = 0.2$, $e^{-(0.2^{\circ}2)} = e^{-0.02} = 0.98$,
for $x = 0.3$, $e^{-(0.3^{\circ}2)} = e^{-0.03} = 0.97$...

This time the values are not directly decreasing from 0.9 to 0.8 to 0.7 and hence we will have "swelling" **around the mean** like we see in **Normal Distribution**.

But why x^2 ? 0.1^2 = 0.01 and 0.01 is almost 0 and that's why for x = 0.1, $e^{-0.01}$ gives us a value veryyyyyyyyyy close to 1. And since 0.01(x=0.1), 0.02(x=0.2), 0.03(x=0.3) are almost 0, so they all give us 0.9 which creates **SWELL around the MEAN**.

5) The Middle_Line/Mean is 0 here.

Now, how can we shift the graph towards the Positive Side e.g. we want the Middle_Line/Mean on 4. That means on 4 the value on Y Axis must be 1. But only $e^0 = 1$, not e^4 . So how can we treat 4 as 0? By subtracting 4 from 4.

Similarly to shift the graph towards the negative side e.g. on

-2:

So final equation so far:

$$e^{-(x-\mu)^2}$$
, where μ = Mean

6) We have done **shifting**. Now how can we make it look Tall/Fat i.e. **scale_**it/control_its_**deviation**? Divide by **Variance**(σ²) i.e. STD² :

$$e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Why variance(σ^2) but not STD(σ)? Both GPT and deepseek said "At above we have done square, so at below we will do square as well".

Why is 2 multiplied with variance(σ^2)? So that both sides of the MEAN get properly distributed.

So final equation so far:

$$e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

7) If we integrate the above equation, we will get:

$$\sigma\sqrt{2\pi}$$

Now since the Area Under The Graph is 1, so we have to divide 1 with that result :

$\frac{1}{\sigma\sqrt{2\pi}}$

Now multiply this with the final equation in step 6. So FINAL EQUATION:

$$p(x) = rac{1}{\sigma \sqrt{2\pi}}\,e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

where σ is the standard deviation and μ the mean

Note: Step **7** is not the main point to understand here, but until step **6** where we learnt how to shift the Graph on X Axis for any MEAN(μ) and how to scale(σ) it.

e^{-\frac{(x-0)^{2}}{4}}