CS 330: Network Applications & Protocols

Application Layer: DNS

Galin Zhelezov
Department of Physical Sciences
York College of Pennsylvania

Overview of Application Layer

- Network Application Architectures
- HyperText Transfer Protocol (HTTP)
- File Transfer and Email protocols (FTP, SMTP)
- Domain Name System (DNS)
 - Function
 - Distributed Structure
 - DNS Caching
 - DNS Records
 - DNS Vulnerabilities
- Peer-to-Peer Applications (P2P)

DNS: Domain Name System

- DNS servers translate a host name to IP address
 - e.g. www.ycp.edu → 54.210.214.116
 - Would be painful to browse Internet and remember IP addresses
- Hosts and name servers communicate to resolve names
 - address → name translation
- Distributed database of all hosts in the universe
 - Avoids single point of failure
 - Distributes name resolution traffic
 - Geographically distributed
 - Easier to maintain
- Often used by other application-layer protocols (e.g. SMTP, HTTP, FTP) to translate hostnames to IP addresses

Other Services Provided By DNS

Host aliasing

- Provides canonical name when alias name is provided
- www.gmail.com → googlemail.l.google.com

Mail server aliasing

Load distribution

- Why not centralize DNS?
- Replicated web servers, many IP addresses correspond to one name

DNS Example

- Nslookup -type=a yahoo.com
- Nslookup -type=ns yahoo.com
- Nslookup -query=mx yahoo.com
- Nslookup -type=any yahoo.com

DNS: A Distributed, Hierarchical Database

Client wants IP for www.amazon.com

- Client queries root server to find com DNS server
- Client queries .com DNS server to get amazon.com DNS server
- Client queries amazon.com DNS server to get IP address for www.amazon.com

Root DNS Servers

- Contacted by local name server that can not resolve name
- Root name server:
 - Contacts authoritative name server if name mapping not known
 - Gets mapping
 - Returns mapping to local name server

Top-Level Domain & Authoritative DNS servers

Top-Level Domain (TLD) Servers

- Responsible for com, org, net, edu, aero, jobs, museums, and all toplevel country domains (e.g. uk, fr, ca, jp)
- Verisign maintains servers for .com TLD (and many others)
- Educause maintains servers for .edu TLD

Authoritative DNS Servers

- Organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- Can be maintained by organization or service provider

Local DNS Name Server

- Does not strictly belong to the DNS hierarchy
- Each ISP (residential ISP, company, university) has one
 - Also called "default name server"
- When host makes DNS query, query is sent to its local DNS server
 - Has local cache of recent name-to-address translation pairs (but may be out of date!)
 - Acts as proxy, forwards query into hierarchy

DNS Name Resolution Example

- Host at cs.ycp.edu wants IP address for www.amazon.com
- Iterated query:
 - Contacted server replies with name/address of server to contact
 - "I don't know this name, but ask this server"

DNS Caching / Updating Records

- Once (any) name server learns mapping, it caches mapping
 - Cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited
- Cached entries may be out-of-date (best effort name-to-address translation!)
 - If a named host changes its IP address, may not be known Internetwide until all TTLs expire

DNS Records

Resource Record (RR) format stored by DNS servers

```
-RR: (name, value, type, ttl)
```

Four different RR types

Type=A

name is hostname

value is IP address

Type=NS

name is domain (e.g. foo.com)

value is hostname of authoritative
name server for this domain

Type=CNAME

name is alias name for some
"canonical" (the real) name

www.ibm.com is really
servereast.backup2.ibm.com

value is canonical name

Type=MX

value is name of mail server
associated with name

DNS Message Format

- Query and Reply messages, both use same message format
 - Message Header
 - Identification: 16 bit # for query, reply includes same #
 - Flags:
 - Query or reply
 - Recursion desired
 - Recursion available
 - Reply is authoritative
 - Question section: contains name and type fields for the query
 - Answer section: contains RRs in response to a query
 - Authority section: contains RR for authoritative servers

	of 5
Identification	Flags
# Questions	# Answer RRs
# Authority RRs	# Additional RRs
Questions (variable # of questions)	
Answers (variable # of answers)	
Authority (variable # of RRs)	
Additional Info (variable # of RRs)	

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 (networkutopia.com, dns1.networkutopia.com, NS)
 (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com

DNS Vulnerabilities

- Distributed Denial of service attacks on name server
 - Bombard root servers with traffic
 - Not successful to date
 - Root servers are protected by traffic filters
 - Local DNS servers cache IP addresses of TLD servers, allowing root server bypass
 - Bombard TLD servers
 - Potentially more dangerous
- Redirect attacks
 - Man-in-middle
 - Intercept queries and return bogus replies
 - DNS poisoning
 - Send bogus replies to DNS server which then caches that info