VARMETRANSMISSION KAP. I INTRODUKTION

FORLØB

Se videoer op til hver lektion

Regne opgaver

Differential- og integralregning

2 case

Aflevering er en forudsætning for at deltage i eksamen

- radiator

- måling på varmeveksler Eksamen mundtlig

Varmetransmission vs Termodynamik

Termodynamik:

- Ligevægt vil blive nået ved 20°C.
- Mængden af varme overført.

Varmetransmission:

- •Hvor lang tid tager det?
- ullet Hvad er varmeoverførselshastigheden $\frac{\text{Mængden af varme}}{\text{Tid}}$

HVOR HAR VI BRUG FOR VARMETRANSMISSION?

Power generation

Cooling/refrigeration

Chemical industry

Indoor climate

Thermal management

...

VARMETRANSMISSIONSMEKANISMER

Three mechanisms of heat transfer

Illustrations from https://www.drenergysaver.com/

KONDUKTION - VARMELEDNING

$$q_{cond} = -Ak \frac{dT}{dx}$$

- Overførsel af energi fra mere energiske partikler i et stof til de tilstødende mindre energiske.
- Det sker både i faste stoffer og væsker.
- Altid gennem materielt medium.

KONVEKTION - VARMEOVERGANG

$$q_{conv} = hA(T_S - T_{\infty})$$

- Altid mellem en fast overflade og en strømmende væske.
- Naturlig (fri) konvektion: strøm skabt af opdriftskraft (strøm og varmeoverførsel koblet sammen)
- Tvungen konvektion: strøm skabt af en ekstern drivkraft (strøm og varmeoverførsel adskilt).

 T_{∞} Ambient fluid

KONVEKTION - VARMEOVERGANG

TABLE 1.1 Typical values of the convection heat transfer coefficient

Process	h (W/m ² · K)
Free convection	
Gases	2-25
Liquids	50-1000
Forced convection	
Gases	25-250
Liquids	100-20,000
Convection with phase change	
Boiling or condensation	2500-100,000

STRÅLING

 $q_{rad} = \varepsilon \sigma A (T_S^4 - T_{Sur}^4)$ Gas Gas T, hT, hSurroundings at T_{sur} Surface of emissivity Surface of emissivity $T_s > T_{sur}, T_s > T$ ε , absorptivity α , and $\varepsilon = \alpha$, area A, and temperature T_s temperature T_s (a) (b)

TERMODYNAMIK

FIGURE 1.7 The components of total energy. The sum of thermal and mechanical energy, *E*, is of interest in the field of heat transfer.

Første hovedsætning

$$\Delta U = Q - W$$
 Bog

TERMODYNAMIK

Lukkede systemer

$$\Delta E_{st} = E_{in} - E_{out} + E_{gen}$$

$$\frac{dE_{st}}{dt} = \dot{E}_{in} - \dot{E}_{out} + \dot{E}_{gen}$$
 [W]

TERMODYNAMIK

Åbne systemer

$$q = \dot{m}c_p(T_{out} - T_{in})$$

OPGAVER

Opgave 1.6

Opgave 1.19

Opgave 1.48

SCHEMATIC:

