1. Vyšetrite konvergenciu radu $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{-1}{n^2 + n + 2}.$

Výsledok: Rad* diverguje do _____ — osciluje — konverguje.

2. Vyšetrite konvergenciu radu $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \operatorname{arctg} \frac{3}{\sqrt[6]{n}}$.

Výsledok: Rad* diverguje do _____ — osciluje — konverguje.

3. Vyšetrite konvergenciu radu $\sum\limits_{n=2}^{\infty}a_n=\sum\limits_{n=2}^{\infty}\frac{\sqrt{n-2}-\sqrt{n+1}}{n}.$

Výsledok: Rad* diverguje do _____ — osciluje — konverguje.

4. Vyšetrite konvergenciu radu $\sum\limits_{n=1}^{\infty}a_n=\sum\limits_{n=1}^{\infty}\left[\frac{3n+1}{2n-1}\right]^{n-1}.$

Výsledok: Rad* diverguje do _____ — osciluje — konverguje.

5. Vyšetrite konvergenciu radu $\sum\limits_{n=2}^{\infty}a_n=\sum\limits_{n=2}^{\infty}\frac{1}{\ln n^3}.$

Výsledok: Rad* diverguje do _____ — osciluje — konverguje.

6. Vyšetrite relatívnu a absolútnu konvergenciu radu $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4+1}.$

Výsledok: Rad* konverguje absolútne — konverguje relatívne — diverguje — osciluje.

7. Vypočítajte súčet radu $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n+2} \left(\frac{1}{3}\right)^{n-1}.$

Výsledok: Súčet radu = _____.

8. Vypočítajte súčet radu $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left[\sqrt[5]{n+1} - \sqrt[5]{n+3} \right].$

Výsledok: Súčet radu = $\underline{\hspace{1cm}}$.

9. Vypočítajte súčet radu $\sum_{n=2}^{\infty}a_n=\sum_{n=2}^{\infty}\frac{(-1)^{n+1}(n-2)}{(n+1)!}.$

Výsledok: Súčet radu = _____.