ТЕХНОЛОГИИ ОБРАБОТКИ ИНФОРМАЦИИ

ЛЕКЦИЯ 5

ПЕРЕДАЧА ИНФОРМАЦИИ

В телекоммуникациях передача информации - это процесс перемещения сообщений, содержащих информацию от пользователя, от источника к приемнику через канал связи.

В этом смысле передача информации эквивалентна передаче данных, что подчеркивает более практические, технические аспекты

КАНАЛ СВЯЗИ

Канал связи относится либо к физической среде передачи, такой как провод, либо к логическому соединению через мультиплексированную среду, такую как радиоканал в телекоммуникациях и компьютерных сетях

ХАРАКТЕРИСТИКИ КАНАЛОВ СВЯЗИ

- Эффективно передаваемая полоса частот ΔF
- Динамический диапазон $D = 10 \lg \frac{P_{max}}{P_{min}}$
- Волновое сопротивление
- Пропускная способность
- Помехоустойчивость
- Объём $\,V_{_k}\,$

ПРОПУСКНАЯ СПОСОБНОСТЬ КАНАЛА

Для канала без шума

$$C = \lim_{T \to \infty} \frac{\log_2 N(T)}{T}$$

N(T) — число всех возможных сигналов за время T

Пример. Пусть алфавит канала без "шумов" состоит из двух символов — 0 и 1, длительность τ секунд каждый. За время T успеет пройти $n = T/\tau$ сигналов, всего возможны 2^n различных сообщений длиной n.

$$C = \lim_{T o \infty} \frac{\log_2 2^{(T/\tau)}}{T} = 1/\tau$$
 бод

модуляция

Модуляция - это процесс изменения одного или нескольких свойств периодического сигнала, называемого несущим сигналом, с другим сигналом, называемым сигналом модуляции, который обычно содержит информацию, которая должна быть передана.

Например, сигнал модуляции может быть аудиосигналом, представляющим звук с микрофона, видеосигналом, представляющим движущиеся изображения с видеокамеры, или цифровым сигналом, представляющим последовательность двоичных цифр, поток битов с компьютера.

Виды модуляции

Аналоговая модуляция

AM * SSB * ЧМ (FM) * ЛЧМ * ФМ (PM) * СКМ

Цифровая модуляция

AMH * ФМH * KAM * ЧМH * GMSK * OFDM * COFDM * TCM

Импульсная модуляция

АИМ * ДМ * ИКМ * АДИКМ * $\Sigma \Delta *$ ШИМ * ЧИМ * ФИМ

Расширение спектра

FHSS * DSSS * CSS

АМПЛИТУДНАЯ МОДУЛЯЦИЯ (АМ)

- $u_m(t)$ информационный (модулирующий) сигнал
- $u_c(t)$ несущий (модулируемый) сигнал (несущее колебание)

$$u_{am}(t) = u_c(t) [1 + m \frac{u_m(t)}{|u_m(t)|_{max}}]$$

$$u_c(t) = U_c \cos(\omega_c t)$$

$$u_{am}(t) = U_{c}[1 + m \frac{u_{m}(t)}{|u_{m}(t)|_{max}}]\cos(\omega_{c}t)$$

ЧАСТОТНАЯ МОДУЛЯЦИЯ (FM)

ФАЗОВАЯ МОДУЛЯЦИЯ

АМПЛИТУДНО-ИМПУЛЬСНАЯ МОДУЛЯЦИЯ

ШИРОТНО-ИМПУЛЬСНАЯ МОДУЛЯЦИЯ

