Interoperation for Lazy and Eager Evaluation

- Matthews & Findler
 - New method of interoperation
 - Type safety, observational equivalence & transparency
 - Eager evaluation strategies
- Lazy vs. eager

Lambda calculus

Typing
Model
Interoperation
Laziness
Solution

Syntax

Expressions, e

(1)

 $x \in e$

 $v = \lambda x \cdot e$

(2) $M \in e \Rightarrow \lambda x . M \in e$

e = x | v | e e

(3) $M, N \in e \Rightarrow M N \in e$

by (I)

(1) *x* (2) λ *x* . e

(3) e e

λz.z by (1), (2)

 $(\lambda z.z) (\lambda z.z)$ by (1), (2), (3)

Syntactic sugar

$$\lambda x . x x = \lambda x . (x x) \neq (\lambda x . x) x$$

$$\lambda x x' \cdot e = \lambda x \cdot \lambda x' \cdot e$$

$$e e' e'' \equiv (e e') e''$$

Semantics

Reduction relation, →

$$e \rightarrow e'$$

$$e' \rightarrow e''$$

$$e \rightarrow e' \rightarrow e''$$

$$(\lambda x.e) v \rightarrow e [v/x]$$

$$e \rightarrow e' \Rightarrow e e'' \rightarrow e' e''$$

$$e \rightarrow e' \Rightarrow v e \rightarrow v e'$$

$$\frac{e \rightarrow e'}{e e'' \rightarrow e' e''}$$

$$\frac{e \rightarrow e'}{v e \rightarrow v e'}$$

term [term argument / term parameter] = term'

$$x [e/x] = e$$
 $x [e/x'] = x$
 $(\lambda x.e) [e'/x] = \lambda x.e$
 $(\lambda x.e) [e'/x'] = \lambda x.(e [e'/x'])$
 $(e e') [e''/x] = (e [e''/x]) (e' [e''/x])$

Errors

error condition → error

$$\frac{e \rightarrow e'}{e e'' \rightarrow e' e''}$$

$$\frac{e \rightarrow e'}{v e \rightarrow v e'}$$

$$\begin{array}{c} e \rightarrow error \\ e e' \rightarrow error \end{array}$$

$$e \rightarrow error$$
 $v e \rightarrow error$

Evaluation contexts, E

$$E = [] | Ee | vE$$

$$E' = ...[]...$$

$$E'$$
 [e] = ...e...

$$E[(\lambda x.e)v] \rightarrow E[e[v/x]]$$

E [error condition] → error

$$v = \lambda x \cdot e \mid \underline{n}$$

$$e = x | v | ee | +/- ee | if 0 e e e | fun? e$$
num? e | wrong string

$$E = \frac{[]|Ee|vE|+/-Ee|+/-vE|if0Eee}{fun?E|num?E}$$

```
E [wrong string] → Error: string
E [+ \underline{n} \underline{n'}] \rightarrow E [\underline{n+n'}]
E \left[ - \underline{n} \underline{n}' \right] \rightarrow E \left[ \underline{\max(n - n', 0)} \right]
E [ if 0 \underline{0} e e' ] \rightarrow E [ e ]
E[\mathbf{if0} \ \underline{n} \ \mathbf{e} \ \mathbf{e}'] \rightarrow E[\mathbf{e}']
E [ fun? (\lambda x.e) ] \rightarrow E [ \underline{0} ]
E [fun? v] \rightarrow E[\underline{I}]
E [ num? \underline{n} ] \rightarrow E [ \underline{0} ]
E [ num? v ] \rightarrow E [ \underline{I} ]
```

Typing
Model
Interoperation
Laziness
Solution

Simple types

Types, t

$$t = \mathbf{N} \mid t \rightarrow t$$

 $\lambda x:t.e$

$$t \rightarrow t \rightarrow t \equiv t \rightarrow (t \rightarrow t)$$

Judgments, ⊢

$$e:t = (e,t)$$

$$\Gamma = x_n : t_n, \ldots, x_l : t_l$$

$$\lambda x_n : t_n . (\dots \lambda x_l : t_l . e)$$

$$\Gamma \vdash e:t \vdash e:t$$

$$\Gamma \vdash t \vdash t$$

Number type ⊢ **N**

Function type
$$\Gamma \vdash t - \Gamma \vdash t'$$

$$\Gamma \vdash t \rightarrow t'$$

Number
$$\vdash \underline{n} : \mathbf{N}$$

Variable
$$\Gamma, x : t \vdash x : t$$

Function
$$\Gamma, x : t \vdash e : t'$$

$$\Gamma \vdash \lambda x : t \cdot e : t \rightarrow t'$$

Application
$$\Gamma \vdash e : t \rightarrow t' - \Gamma \vdash e' : t$$

$$\Gamma \vdash e e' : t'$$

Arithmetic
$$\Gamma \vdash e : N - \Gamma \vdash e' : N$$

$$\Gamma \vdash + - e e' : N$$

$$Condition$$

$$\Gamma \vdash e : N - \Gamma \vdash e'/e'' : t$$

$$\Gamma \vdash if0 e e' e'' : t$$

$$Error$$

$$\Gamma \vdash t$$

$$\Gamma \vdash t$$

$$\Gamma \vdash wrong t string : t$$

Closed-term typing

 Number $\Gamma \vdash \underline{n} : \mathbf{T}$

Variable $\Gamma, x : T \vdash x : T$

Application $\Gamma \vdash \mathbf{e} : \mathbf{T} - \Gamma \vdash \mathbf{e}' : \mathbf{T}$ $\Gamma \vdash \mathbf{e} \in \mathbf{e}' : \mathbf{T}$

Predicate
$$\Gamma \vdash e : T$$

$$\Gamma \vdash fun?/num? e : T$$

Error
$$\Gamma \vdash \mathbf{wrong} \ string : \mathbf{T}$$

Type abstraction

Type variable y Universally-quantified types $\forall y . t$

Type abstraction Λ y . e

Free & bound type variables $\Lambda y . (...y...)$

Type application e < t >

Syntactic sugar

$$\Lambda y y' . e = \Lambda y . \Lambda y' . e$$

$$e \langle t \rangle \langle t' \rangle \equiv (e \langle t \rangle) \langle t' \rangle$$

Semantics

 $E[(\Lambda y.e) \langle t \rangle] \rightarrow E[e[t/y]]$

Type-in-term substitution

term [type argument / type parameter] = term'

$$x[t/y] = x$$
 $(\lambda x : t . e) [t/y] = \lambda x : t[t/y] . e[t/y]$
 $(e e') [t/y] = (e[t/y]) (e'[t/y])$
 $(+/-e e') [t/y] = +/-(e[t/y]) (e'[t/y])$

(if0 e e' e")
$$[t/y]$$
 = (e' $[t/y]$)
((x,y)) (e" $[t/y]$)
((x,y)) (e" $[t/y]$)
((x,y)) (e' $[t/y]$)

Type-in-type substitution

type [type argument / type parameter] = type'

$$N[t/y] = N$$

$$(t \rightarrow t')[t/y] = t[t/y] \rightarrow t'[t/y]$$

$$y[t/y] = t$$

$$y[t/y'] = y$$

$$(\forall y.t) [t'/y] = \forall y.t$$

$$(\forall y.t) [t'/y'] = \forall y.t [t'/y']$$

Lambda calculus
Typing
Model
Interoperation
Laziness
Solution

"ML" & "Scheme"

- Numbers, arithmetic & conditions
- Function abstractions & applications
- Errors
- Eager evaluation
- Language subscripts m and s for nonterminals

ML

- Statically typed
- Parametric polymorphism

ML syntax

```
t_m = N | y_m | t_m \rightarrow t_m | \forall y_m . t_m
 v_m = \underline{n} | \lambda x_m : t_m . e_m | \Lambda y_m . e_m
e_m = \begin{cases} x_m & v_m & e_m e_m \\ if 0 & e_m e_m e_m \end{cases} wrong t_m string
E_{m} = \begin{bmatrix} \end{bmatrix}_{m} \begin{bmatrix} E_{m} e_{m} & v_{m} E_{m} \end{bmatrix} E_{m} \langle t_{m} \rangle \\ +/- E_{m} e_{m} \end{bmatrix} +/- v_{m} E_{m} \end{bmatrix} \text{ if } 0 E_{m} e_{m} e_{m}
```

Scheme

- Dynamically typed
- Closed-term typing
- Ad-hoc polymorphism

Scheme syntax

```
v_s = \underline{n} | \lambda x_s . e_s

e_s = x_s | v_s | e_s e_s | +/- e_s e_s | \text{if0 } e_s e_s e_s | \text{fun? } e_s

e_s = \text{num? } e_s | \text{wrong } \text{string}

E_s = []_s | E_s e_s | v_s E_s | +/- E_s e_s | +/- v_s E_s

if0 E_s e_s e_s | \text{fun? } E_s | \text{num? } E_s
```

Lambda calculus
Typing
Model
Interoperation
Laziness
Solution

Syntax

Converting from Scheme to ML

$$e_m = \cdots \mid ms \ t_m \ e_s$$

$$E_m = \cdots \mid \mathbf{ms} \ t_m \ E_s$$

Converting from ML to Scheme

$$e_s = \cdots \mid sm t_m e_m$$

$$E_s = \cdots \mid sm t_m E_m$$

Typing

ML—Scheme

$$\Gamma \vdash_m t_m - \Gamma \vdash_s e_s : T$$

$$\Gamma \vdash_m \mathbf{ms} t_m e_s : t_m$$

Scheme-ML

$$\frac{\Gamma \vdash_m t_m - \Gamma \vdash_m e_m : t_m' - t_m = t_m'}{\Gamma \vdash_s sm t_m e_m : T}$$

Sunday, May 15, 2011

Converting numbers

Outermost evaluation context, &

$$\mathscr{E}[\mathbf{ms} \ \mathbf{N} \ \underline{n}]_m \to \mathscr{E}[\underline{n}]$$

$$\mathscr{E}[\mathbf{sm} \mathbf{N}_{\underline{n}}]_{s} \to \mathscr{E}[\underline{n}]$$

 \mathscr{E} [ms \mathbb{N} v_s]_m $\to \mathscr{E}$ [wrong \mathbb{N} "Not a number"]

Converting functions

 e_s e_s'

Convert from ML to Scheme $sm = sm t_m x_m$

Apply the Scheme function $app = F_s sm$

Convert from Scheme to ML ms = $ms t_m'$ app

Abstract the ML argument $F_m = \lambda x_m : t_m . ms$

Converted Scheme function in ML $F_m = \lambda x_m : t_m . ms t_m' (F_s (sm t_m x_m))$

```
\mathscr{E}\left[\mathsf{ms}\left(\mathsf{t}_{\mathsf{m}}\to\mathsf{t}_{\mathsf{m}}'\right)\left(\lambda\;\mathsf{x}_{\mathsf{s}}\,.\,\mathsf{e}_{\mathsf{s}}\right)\right]_{\mathsf{m}}
\mathscr{E}\left[\lambda x_m:t_m.ms\ t_m'\left((\lambda x_s.e_s)\left(sm\ t_m\ x_m\right)\right)\right]
                                   \mathscr{E}\left[\operatorname{sm}\left(t_{m}\to t_{m}'\right)v_{m}\right]_{s}
                  \mathscr{E} \left[ \lambda x_s \cdot \operatorname{sm} t_m' \left( v_m \left( \operatorname{ms} t_m x_s \right) \right) \right]
                                   \mathscr{E}\left[\mathbf{ms}\left(\mathbf{t_m} \rightarrow \mathbf{t_m'}\right) \mathbf{v_s}\right]_{m}
     \mathscr{E} [ wrong (t_m \to t_m') "Not a function"]
```

(ms t_m' (($\lambda x_s . e_s$) (sm $t_m x_m$))) [e_m / x_m]

Boundary substitution

(ms
$$t_m e_s$$
) [e_m / x_m] = ms $t_m (e_s [e_m / x_m])$

Foreign substitution

$$(...e_s...)[e_m/x_m] = ...e_s[e_m/x_m]...$$

$$(\mathbf{sm}\ t_m\ \mathbf{e}_m)\ [\mathbf{e}_m'\ /\ x_m] = \mathbf{sm}\ t_m\ (\mathbf{e}_m\ [\mathbf{e}_m'\ /\ x_m])$$

Converting type abstractions

$$\mathcal{E} \left[\mathbf{sm} \left(\forall \ y_m \cdot t_m \right) \left(\bigwedge \ y_m' \cdot \mathbf{e}_m \right) \right]_s$$

$$\mathcal{E} \left[\mathbf{sm} \ t_m \left[\ \mathbf{L} \ / \ y_m \ \right] \mathbf{e}_m \left[\ \mathbf{L} \ / \ y_m' \ \right] \right]$$

$$\mathcal{E} \left[\mathbf{sm} \ \mathbf{L} \left(\mathbf{ms} \ \mathbf{L} \ v_s \right) \right]_s \rightarrow \mathcal{E} \left[\ \mathbf{v_s} \ \right]$$

$$id = \Lambda y . ms (y \rightarrow y) (\lambda x . x)$$

id ⟨ N ⟩behaves the same asid ⟨ N → N ⟩

$$id_m = \Lambda y . ms (y \rightarrow y) (\lambda x . if 0 (num? x) x 0)$$

 $\begin{array}{c} \text{id}_m \, \langle \, \, \mathbf{N} \, \, \rangle \\ \text{behaves differently than} \\ \text{id}_m \, \langle \, \, \mathbf{N} \, \rightarrow \, \mathbf{N} \, \, \rangle \end{array}$

Conversion schemes

$$id_{good} = \Lambda y . ms (y \rightarrow y) (\lambda x . x)$$

 $id_{good} \langle N \rangle$

behaves the same as

 $id_{good} \langle N \rightarrow N \rangle$

$$id_{bad} = \Lambda y . ms (y \rightarrow y) (\lambda x . if 0 (num? x) x 0)$$

id_{bad} (N)

behaves differently than

 $id_{bad} \langle N \rightarrow N \rangle$

Conversion schemes, k

$$k_m = L \mid N \mid y_m \mid k_m \rightarrow k_m \mid \forall y_m . k_m \mid b \diamond t_m$$

$$e_m = \cdots \mid \mathbf{ms} \mid k_m e_s$$

$$e_s = \cdots \mid sm \mid k_m \mid e_m$$

$$v_s = \cdots \mid sm \mid k_m \mid v_m$$

$$\mathscr{E}\left[\left(\bigwedge y_{m} \cdot e_{m}\right) \langle t_{m} \rangle\right]_{m} \to \mathscr{E}\left[e_{m}\left[b \diamond t_{m} / y_{m}\right]\right]$$

$$\mathscr{E}\left[\mathsf{ms}\left(b\diamond t_{m}\right)\left(\mathsf{sm}\left(b\diamond t_{m}\right)v_{m}\right)\right]_{m}\to\mathscr{E}\left[v_{m}\right]$$

$$\mathcal{E} \left[\mathbf{ms} \left(b \diamond t_{m} \right) v_{s} \right]_{m}$$

$$\rightarrow$$

$$\mathcal{E} \left[\mathbf{wrong} \right]_{b} \diamond t_{m} \right] \text{"Brand mismatch"} \right]$$

Sunday, May 15, 2011

```
(\lambda x_m : t_m . e_m) [b \diamond t_m' / y_m]
= \lambda x_m : t_m [t_m' / y_m] . e_m [b \diamond t_m' / y_m]
(\mathbf{ms} \ k_m \ e_s) [b \diamond t_m' / y_m]
= \mathbf{ms} \ k_m [b \diamond t_m' / y_m] e_s [b \diamond t_m' / y_m]
```

Lambda calculus
Typing
Model
Interoperation
Laziness
Solution

"Haskell"

- Eager vs. lazy evaluation
- Add "Haskell" to the mix
- Interoperation forces Haskell evaluation
 - Applying converted functions in Haskell
 - Converting values from Haskell
- Observational equivalence and transparency do not hold

Haskell syntax

$$t_{h} = \mathbf{N} | y_{h} | t_{h} \rightarrow t_{h} | \forall y_{h} \cdot t_{h}$$

$$k_{h} = \mathbf{L} | \mathbf{N} | y_{h} | k_{h} \rightarrow k_{h} | \forall y_{h} \cdot k_{h} | b \diamond t_{h}$$

$$v_{h} = \underline{n} | \lambda x_{h} : t_{h} \cdot e_{h} | \Lambda y_{h} \cdot e_{h} | \mathbf{hs L} v_{s}$$

$$e_{h} = \frac{x_{h} | v_{h} | e_{h} e_{h} | e_{h} \langle t_{h} \rangle | +/- e_{h} e_{h}}{\mathbf{if 0}} e_{h} e_{h} e_{h} | \mathbf{wrong} t_{h} string}$$

$$E_{h} = []_{h} | E_{h} e_{h} | E_{h} \langle t_{h} \rangle | +/- E_{h} e_{h}}{+/- v_{h} E_{h}} | \mathbf{if 0} E_{h} e_{h} e_{h}$$

Interoperation syntax

```
e_h = \cdots \mid hm t_h t_m e_m \mid hs k_h e_s
```

$$e_m = \cdots \mid \mathbf{mh} \ t_m \ t_h \ e_h$$

$$e_s = \cdots \mid sh \mid k_h \mid e_h$$

$$v_h = \cdots \mid hs L v_s$$

$$v_s = \cdots \mid \mathbf{sh} \ k_h \ e_h$$

 $E_h = \cdots \mid \mathbf{hm} t_h t_m E_m \mid \mathbf{hs} k_h E_s$

 $E_m = \cdots \mid \mathbf{mh} \ t_m \ t_h \ E_h$

 $E_s = \cdots \mid \mathbf{sh} k_h E_h$

Applying functions

$$zero_s = \lambda \times .0$$

 $\vdash_h \mathsf{zeroh} : \mathbb{N} \to \mathbb{N}$

 $zero_h = hs (N \rightarrow N) zero_s$

broken = wrong N "Broken"

zeroh broken $\rightarrow \underline{0}$

zeroh broken →* Error: "Broken"

 $zero_h broken = (hs (N \rightarrow N) zero_s) broken$

 $\rightarrow (\lambda x : N . hs N (zero_s (sh N x))) broken$

→ hs N (zero_s (sh N <u>broken</u>))

→ Error: "Broken"

Converting values

 $e_h = \cdots \mid \text{nil } t_h \mid \text{cons } e_h \mid e_h \mid \text{hd } e_h \mid \text{tl } e_h \mid \text{null? } e_h$

$$t_h = \cdots \mid \{ t_h \}$$

$$k_h = \cdots \mid \{k_h\}$$

 $E_h = \cdots \mid hd E_h \mid tl E_h \mid null? E_h$

$$\frac{\Gamma \vdash_h t_h}{\Gamma \vdash_h \{ t_h \}}$$

$$\frac{\Gamma \vdash_h e_h : \{ t_h \}}{\Gamma \vdash_h \mathbf{hd} e_h : t_h}$$

$$\frac{\Gamma \vdash_h t_h}{\Gamma \vdash_h \mathbf{nil} t_h : \{ t_h \}}$$

$$\frac{\Gamma \vdash_h e_h : \{ t_h \}}{\Gamma \vdash_h \mathbf{t} \mathbf{l} e_h : \{ t_h \}}$$

$$\frac{\Gamma \vdash_h e_h : \{ t_h \}}{\Gamma \vdash_h null? e_h : N}$$

$$\frac{\Gamma \vdash_h e_h : t_h \Gamma \vdash_h e_h' : \{ t_h \}}{\Gamma \vdash_h \mathbf{cons} e_h e_h' : \{ t_h \}}$$

 \mathscr{E} [hd (nil t_h)] $_h \to \mathscr{E}$ [wrong t_h "Empty list"]

 \mathscr{E} [hd (cons $e_h e_h'$)] $_h \to \mathscr{E}$ [e_h]

 $\mathscr{E}[\mathsf{tl}(\mathsf{nil}\ t_h)]_h \to \mathscr{E}[\mathsf{wrong}\{t_h\}\text{"Empty list"}]$

 \mathscr{E} [tl (cons $e_h e_h'$)] $_h \to \mathscr{E}$ [e_h']

 \mathscr{E} [null? (nil t_h)] $_h \to \mathscr{E}$ [$\underline{0}$]

 \mathscr{E} [null? (cons $e_h e_h'$)]_h $\rightarrow \mathscr{E}$ [$\underline{\mathsf{L}}$]

$$\mathscr{E}[\mathsf{hs}\{t_h\}\mathsf{nil}]_h \to \mathscr{E}[\mathsf{nil}\,t_h]$$

$$\mathscr{E} \left[\text{ hs } \left\{ t_h \right\} \left(\text{cons } v_s \, v_s' \right) \right]_h$$

$$\rightarrow$$

$$\mathscr{E} \left[\text{ cons } \left(\text{hs } t_h \, v_s \right) \left(\text{hs } \left\{ t_h \right\} \, v_s' \right] \right]$$

 $v_m = \cdots \mid nil t_m \mid cons v_m v_m$

 $v_s = \cdots \mid nil \mid cons v_s v_s$

 $E_m = \cdots \mid cons E_m e_m \mid cons v_m E_m$

 $E_s = \cdots$ | cons $E_s e_s$ | cons $V_s E_s$

Sunday, May 15, 2011

brokenh = wrong N "Broken"

empty_h = nil N

list_h = cons broken_h empty_h

 $list_s = sh \{N\} list_h$

list_s → cons broken_s empty_s

list_s →* Error: "Broken"

 $list_s = sh \{N\} (cons broken_h empty_h)$

→ cons (sh N brokenh) (sh {N} emptyh)

→ Error: "Broken"

Haskell & ML

$$\mathscr{E} \left[\mathsf{hm} \left(\forall y_h . t_h \right) \left(\forall y_m . t_m \right) \left(\bigwedge y_m' . e_m \right) \right]_h$$

$$\to$$

$$\mathscr{E} \left[\bigwedge y_h . \mathsf{hm} \ t_h \left(t_m \left[L / y_m \right] \right) \left(e_m \left[L / y_m' \right] \right) \right]$$

$$v_h = \cdots \mid hm L t_m v_m$$

$$v_m = \cdots \mid \mathbf{mh} \; \mathbf{L} \; t_h \; e_h$$

$$\Gamma \vdash_h t_h - \Gamma \vdash_m t_m - t_h \doteq t_m - \Gamma \vdash_m e_m : t_m' - t_m = t_m'$$

$$\Gamma \vdash_h \mathbf{hm} t_h t_m e_m : t_h$$

$$x \doteq x$$
 $x \doteq y \Rightarrow y \doteq x$
 $x \doteq y \land y \doteq z \Rightarrow x \doteq z$
 $t_h \doteq L$
 $t_m \doteq L$
 $t_h = t_m \Rightarrow t_h \doteq t_m$

Lambda calculus
Typing
Model
Interoperation
Laziness
Solution

Problematic contexts

Applying converted functions in Haskell

hs N (zeros (sh N broken))

vs Es

Converting values from Haskell

cons (sh N broken_h) (...)

cons E_s e_s

$$E_s =$$

	num? Es
$E_s e_s$	ifO E _s e _s e _s
v _s E _s	cons E _s e _s
$+/- E_s e_s$	cons v_s E_s
$+/- v_s E_s$	hd E _s
fun? Es	tl Es
list? Es	sh k _h E _h
null? Es	sm k _m E _m

Sunday, May 15, 2011

Restrict forcing

Rename E_s to U_s (unforced) $U_s = E_s$

Factor Scheme–Haskell out of U_s (forced) $F_s = U_s \mid \mathbf{sh} \mid k_h \mid$

> Rename v_s to u_s (unforced) $u_s = v_s$

Factor Scheme–Haskell out of u_s (forced) $f_s = u_s \mid \mathbf{sh} \mid k_h \mid e_h$

Redefine U_s in terms of U_s , F_s , u_s , f_s

```
U_s e_s
U_s = \begin{cases} u_s U_s \\ cons U_s e_s \\ cons u_s U_s \end{cases}
```

Redefine U_s in terms of U_s , F_s , u_s , f_s

 $U_s = \begin{cases}
F_s e_s \\
f_s U_s \\
cons U_s e_s \\
cons u_s U_s
\end{cases}$

$F_m = U_m \mid \mathbf{mh} \ t_m \ t_h \ E_h$

$$U_s =$$

 $[]_s$

fun? F_s

cons U_s e_s

F_s e_s

list? Fs

cons us Us

fs Es

null? Fs

 $hd F_s$

 $+/-F_s$ es

num? Fs

tl Fs

 $+/-f_sF_s$

ifO F_s e_s e_s

sh kh Eh

 $sm k_m E_m$

Rename \mathscr{E} to \mathscr{F}

$$\mathscr{F}[(\lambda x_m:t_m.e_m) u_m]_m \to \mathscr{F}[e_m[u_m/x_m]]$$

$$\mathscr{F}[\mathsf{hd}(\mathsf{cons}\,\mathsf{u_m}\,\mathsf{u_m}')]_m \to \mathscr{F}[\mathsf{u_m}]$$

$$\mathscr{F}[\mathsf{tl}(\mathsf{cons}\,\mathsf{u_m}\,\mathsf{u_m}')]_m \to \mathscr{F}[\mathsf{u_m}']$$

$$\mathscr{F}[\text{ null (cons } u_m \ u_m')]_m \to \mathscr{F}[\underline{l}]$$

Solution

- For incompatible evaluation contexts
- Mirrors laziness for Haskell boundaries
- Controls the forcing of Haskell evaluation
- Restores observational equivalence and transparency

Summary

- Matthews & Findler
- Lazy vs. eager
- Observational equivalence and transparency
- Incompatible evaluation contexts
- Laziness mirrored in eager evaluation

