Recursion / fixpoint combinators "combinator" = $3x \cdot x$ identity combinator $V = 3h \cdot h \cdot h$ def fact (x): if x = 0 then return 1 else x = 0 that (x - 1)

Imagine we can do recursion in
$$\gamma$$
-calc

fact = $\chi \times if (x=0)$ then 1 else $x * fact (x-1)$

fact = $\chi h \cdot \chi \times if (x=0)$ then 1 else $x * (hh)(x-1)$

fact fact

 $\chi = \chi h \cdot \chi \times if (x=0)$

fixed point combinators

$$f: \mathbb{R} \to \mathbb{R}$$

if $x \in \mathbb{R}$ sit $x = f(\infty)$

then $x = \infty$ is a fixed point of $f(x) = x^2 - 1$
 $f(x) = x^2 - 1$

fact =
$$x \times ...$$

$$F(f) = x \cdot if x = 0 \text{ then } l \text{ else } x \cdot f(x-l)$$

I that a fixed point of F

Deriving the Y combandor

$$F = x \cdot ... F \cdot ...$$

Poll out the "unknown" F

$$F = (xf \cdot x \cdot ... f \cdot ...) F$$

where $f = h \cdot f$

let $F = F' \cdot F'$

therefore (fallowing *) becomes

$$F' \cdot F' = h \cdot (x \cdot x) \cdot F'$$

$$= (x \cdot h \cdot (x \cdot x)) \cdot F'$$

$$= (x \cdot h \cdot (x \cdot x)) \cdot F'$$

 $F = F'F' = (\lambda x \cdot h(\alpha x)) (\lambda x \cdot h(\alpha x))$

$$F = h F$$

$$F = \frac{Ah' \cdot (xx) \cdot (xx) \cdot (xx) \cdot (xx)}{F = \frac{Ah}{h}}$$