

Classification of Retail Customers

Zhen Qian (Martin)
(Quantitative Finance Program of Rutgers Business School)
May 2016

Problem Statement

Data Set Source:

A retail company has collected the data sets of customer behaviors

Data Mining Objectives:

Development algorithms or methods to prediction the customer loyalty

Classification Accuracy Definition:

The target variable is "Active_Customer", 1 means loyal, 0 means not loyal.

Accuracy=predicted results matches actual results/ total prediction results ***Please see notes for details.

2

Attached files: (1)Accuracy definition file: accuracy.pdf. (2) train data: Train.csv.(3)test data for prediction: Test.csv. (4) sample submission data: Sample_Submission.csv. You should fill up the Active_Customer results for test data based on your prediction.

Data Mining Analysis: Big

•Brief Description of Data Set :

- (1) Cust_status (Old or New)
- (2) Cust_Tenure (Income)
- (3) 41 trans records
- (4) 164 Food records
- (5) 48 Promotion records
- (6) Active_Customer for company loyalty (1 means loyal, 0 means not)

Use statistical language to short calculations:

- (1) Mean, STD(Standard Deviation), Freq(response times) and SUM (total amount) for three items-Trans, Food, Promotion records.
- (2) So, the calculation is based on Cust_Tenure, trans_mean, trans_std, trans_freq, Trans_sum, food_mean, food_std, food_freq, food_sum, pro_mean, pro_std, Pro_freq, pro_sum and Active_Customer.

- (1) Tenure distribution is used to illustrate the task difficulty, other items have the similar situations.
- (2) Non traditional distribution, fat tail, high positive skewness and high standard deviation.
- (3) Very close sharp for loyalty and non-loyalty customers.
- (4) The task is great challenging and I decide to apply ANN algorithm first.

The model based on ANN algorithm will generate a forecast value, and it will round to 1 if it is greater than 0.5 or 0 if it is less than 0.5.

Further Optimization

- •Firstly, I need a server to build 300 neural cells rather than 15 neural cells for training and modeling, but it is impossible.
- •Second, train more iterations to improve model. However, it cannot breakdown at the accuracy bottleneck.
- •Third, use another method to predict data sets that ANN model's prediction value is located between 0.3 and 0.7.

Conclusion

- •It is a great framework to use ANN algorithm.
- •The further optimization process is more difficult than imagining. I have tried to use Gradient boosting algorithm, a machine learning technique to build another model. However, how to hybrid two methods to produce a win-win effect is a great challenging.

Final Results

	Group.Name	University	Score	Time
1	Columbia-ds	Columbia University	0.711207	6/1/2016 21:13
2	Dataminers	North Carolina State University	0.704545	6/1/2016 21:37
3	Olympian	University of Texas at Dallas	0.693182	2016-06-02 18:02:16
4	hundred	DePaul University	0.690168	6/1/2016 20:21
5	снк	Stevens Institute of Technology	0.689004	2016-06-02 10:44:29
6	White Sox	DePaul University	0.688616	6/2/2016 7:19
41	Arpita	Illinois Institute of Technology	0.667270	2016-06-02 14:48:10
42	BENCH MARK	RANG-KVRA	0.667141	5/27/2016 14:30
43	Hofstra Pride	Hofstra University	0.655886	6/1/2016 22:51
44	SmartSnake	Rutgers	0.653169	2016-06-03 20:11:48
45	Ms. Doudou	University of Southern California	0.634929	6/1/2016 22:46

