

k-means & CAH

systeme informatique décisionnelle et data mining

Réalisé par : EL RHARROUBI Mohamed amine

Encadré par : Pr. Abdelhadi FENNAN

1-Importation des données, description

Hide

```
#modifier le répertoire par défaut
setwd("C:/Users/Asus/Desktop/DM")
#charger les données - attention aux options
fromage <- read.table(file="fromage.txt",header=T,row.names=1,sep="\t",dec=".")
print(fromage)</pre>
```

	calories <int></int>	sodium <dbl></dbl>	calcium <dbl></dbl>	lipides <dbl></dbl>	retinol <dbl></dbl>	folates <dbl></dbl>	proteines <dbl></dbl>	cholesterol <int></int>	magnesium <int></int>
CarredelEst	314	353.5	72.6	26.3	51.6	30.3	21.0	70	20
Babybel	314	238.0	209.8	25.1	63.7	6.4	22.6	70	27
Beaufort	401	112.0	259.4	33.3	54.9	1.2	26.6	120	41
Bleu	342	336.0	211.1	28.9	37.1	27.5	20.2	90	27
Camembert	264	314.0	215.9	19.5	103.0	36.4	23.4	60	20
Cantal	367	256.0	264.0	28.8	48.8	5.7	23.0	90	30
Chabichou	344	192.0	87.2	27.9	90.1	36.3	19.5	80	36
Chaource	292	276.0	132.9	25.4	116.4	32.5	17.8	70	25
Cheddar	406	172.0	182.3	32.5	76.4	4.9	26.0	110	28
Comte	399	92.0	220.5	32.4	55.9	1.3	29.2	120	51
1-10 of 29 rows								Previous 1	2 3 Next

#afficher les premières lignes
print(head(fromage))

	calories	sodium	calcium	lipides	retinol	folates	proteines	cholesterol	magnesium
	<int></int>	<dpl></dpl>	<dpl></dpl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
CarredelEst	314	353.5	72.6	26.3	51.6	30.3	21.0	70	20
Babybel	314	238.0	209.8	25.1	63.7	6.4	22.6	70	27
Beaufort	401	112.0	259.4	33.3	54.9	1.2	26.6	120	41
Bleu	342	336.0	211.1	28.9	37.1	27.5	20.2	90	27
Camembert	264	314.0	215.9	19.5	103.0	36.4	23.4	60	20
Cantal	367	256.0	264.0	28.8	48.8	5.7	23.0	90	30
6 rows									

Hide

```
#stat. descriptives
print(summary(fromage))
```

3rd Qu.: 90.00 3rd Qu.:30.00 Max. :120.00 Max. :51.00

calor	ies	sod:	ium	cal	cium	lip	ides	ret	inol	fo	lates	prot	eines
Min. :	70	Min.	: 22.0	Min.	: 72.6	Min.	: 3.40	Min.	: 37.10	Min.	: 1.20	Min.	: 4.10
1st Qu.:	292	1st Qu.	:140.0	1st Qu	.:132.9	1st Qu	.:23.40	1st Qu	.: 51.60	1st Q	u.: 4.90	1st Qu	.:17.80
Median :	321 I	Median	:223.0	Median	:202.3	Median	:26.30	Median	: 62.30	Media	n : 6.40	Median	:21.00
Mean :	300 1	Mean	:210.1	Mean	:185.7	Mean	:24.16	Mean	: 67.56	Mean	:13.01	Mean	:20.17
3rd Qu.:	355	3rd Qu.	:276.0	3rd Qu	.:220.5	3rd Qu	.:29.10	3rd Qu	.: 76.40	3rd Q	u.:21.10	3rd Qu	.:23.40
Max. :	406 I	Max.	:432.0	Max.	:334.6	Max.	:33.30	Max.	:150.50	Max.	:36.40	Max.	:35.70
cholest	erol	ma	gnesium										
Min. :	10.00	Min.	:10.0	0									
1st Qu.:	70.00	1st (Qu.:20.0	0									
Median :	80.00	Medi	an :26.0	0									
Mean :	74.59	Mean	:26.9	7									

2- description graphiques

#graphique - croisement deux à deux pairs(fromage)

Hide

3- CAH (HCLUST)

```
#centrage réduction des données
fromage.cr <- scale(fromage,center=T,scale=T)
#distance entre individus
d.fromage <- dist(fromage.cr)

Hide

#CAH - critère de Ward
cah.ward <- hclust(d.fromage,method="ward.D2")

Hide

#affichage dendrogramme
plot(cah.ward)
```

Cluster Dendrogram

d.fromage hclust (*, "ward.D2")

```
#découpage en 4 groupes
groupes.cah <- cutree(cah.ward,k=4)

#liste des groupes
print(sort(groupes.cah))</pre>
```

4- K-MEANS

```
#k-means avec les données centrées et réduites
#center = 4 - nombre de groupes demandés
#nstart = 5 - nombre d'essais avec différents individus de départ
groupes.kmeans <- kmeans(fromage.cr,centers=4,nstart=5)</pre>
#affichage des résultats
print(groupes.kmeans)
K-means clustering with 4 clusters of sizes 5, 4, 14, 6
Cluster means:
            sodium calcium lipides retinol folates proteines cholesterol magnesium
 calories
1 0.8395372 -0.7332260 1.2856329 0.65210487 -0.1242419 -0.8436457 1.2861074 0.9705456 1.6287198
2 -2.1572744 -1.5213272 -0.7167418 -2.19980413 -0.5136787 0.2955348 -1.8634139 -1.9945017 -1.3884943
3\quad 0.3726429\quad 0.5276310\quad 0.1925511\quad 0.41101185\quad -0.3108901\quad -0.4505349\quad 0.1522469\quad 0.3181087\quad 0.0156683
Clustering vector:
                                   Beaufort
                     Babybel
     CarredelEst
                                                      Bleu
                                                                Camembert
                                                                                  Cantal
                      3
                                    1
                                                       3
                                                                                    3
                                    Cheddar
                     Chaource
                                                              Coulomniers
       Chabichou
                                                      Comte
                                                                                    Edam
        4
                                    3
                                                     1
                                                                                     1
       Emmental Fr.chevrepatemolle
                                Fr.fondu.45 Fr.frais20nat. Fr.frais40nat.
                                                                                 Maroilles
                                                2
                                 3
        1 4
                                                                2
        Morbier
                     Parmesan
                                 Petitsuisse40
                                                PontlEveque
                                                                                 Reblochon
                                                                   Pyrenees
        3
                     1
                                  2
                                                 3
                                        Tome
      Rocquefort
                    SaintPaulin
                                                   Vacherin Yaourtlaitent.nat.
                                         3
                                                     3
Within cluster sum of squares by cluster:
[1] 9.871039 6.446342 28.737063 25.431001
(between_SS / total_SS = 72.0 %)
Available components:
                          "totss" "withinss" "tot.withinss" "betweenss" "size"
[1] "cluster"
              "centers"
               "ifault"
[8] "iter"
```

```
#correspondance avec les groupes de la CAH
print(table(groupes.cah,groupes.kmeans$cluster))
```

```
groupes.cah 1 2 3 4
1 1 0 14 2
2 4 0 0 0
3 0 0 4
4 0 4 0 0
```

5- Méthode des centres mobiles

```
#(1)évaluer la proportion d'inertie expliquée
inertie.expl <- rep(0,times=10)
for (k in 2:10){
    clus <- kmeans(fromage.cr,centers=k,nstart=5)
    inertie.expl[k] <- clus$betweenss/clus$totss
}

#graphique
plot(1:10,inertie.expl,type="b",xlab="Nb. de groupes",ylab="% inertie expliquée")</pre>
```



```
#(2) indice de Calinski Harabasz
#utilisation du package fpc
library(fpc)

#évaluation des solutions
sol.kmeans <- kmeansruns(fromage.cr,krange=2:10,criterion="ch")
#graphique
plot(1:10,sol.kmeans$crit,type="b",xlab="Nb. de groupes",ylab="Calinski Harabasz")
```


IRIS FLOWER SPECIES

```
Entrée [5]: km = KMeans(n_clusters = 3, n_jobs = 4, random_state=21)
                                                   km.fit(X)
                Out[5]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
                                                                   n_clusters=3, n_init=10, n_jobs=4, precompute_distances='auto',
                                                                   random_state=21, tol=0.0001, verbose=0)
 Entrée [7]: centers = km.cluster centers
                                                  print(centers)
                                                   [[5.77358491 2.69245283]
                                                       [5.006
                                                                                         3.428
                                                      [6.81276596 3.07446809]]
Out[8]: Text(0.5, 1.0, 'Predicted')
                                                                                                                                                                                    Actual
                                                                                                                                                                                                                                                                                                                                                                                                                                               Predicted
                                                                      4.5
                                                                                                                                                                                                                                                                                                                                        4.5
                                                                      4.0
                                                                                                                                                                                                                                                                                                                                        4.0
                                                                                                                                                                                                                                                                                                                          Sepal width separate 
                                                                     3.5
                                                         Sepal.
                                                                                                                                                                                                                                                                                                                                        2.5
                                                                      2.0
                                                                                                                                                                                                                                                                                                                                        2.0
                                                                                                                                                                                                                                                                                                       8
                                                                                                                                                                                                                                                                                                                                                                                                                                        Sepal length
                                                                                                                                                                     Sepal length
```

```
newiris <- iris
newiris$Species <- NULL
(kc <- kmeans(newiris, 3))</pre>
```

```
K-means clustering with 3 clusters of sizes 33, 96, 21
Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
   5.175758 3.624242 1.472727 0.2727273
1
2
   6.314583
          2.895833
                  4.973958 1.7031250
                  1.790476 0.3523810
         2.904762
3
   4.738095
Clustering vector:
Within cluster sum of squares by cluster:
[1] 6.432121 118.651875 17.669524
(between_SS / total_SS = 79.0 %)
Available components:
[1] "cluster"
           "centers"
                             "withinss"
                                     "tot.withinss" "betweenss"
                                                       "size"
                    "totss"
[8] "iter"
           "ifault"
```

table(iris\$Species, kc\$cluster)

```
1 2 3
         33 0 17
versicolor 0 46 4
virginica 0 50 0
```

```
Hide
plot(newiris[c("Sepal.Length", "Sepal.Width")], col=kc$cluster)
points(kc$centers[,c("Sepal.Length", "Sepal.Width")], col=1:3, pch=8, cex=2)
```

