Multiplexing holograms

2.1 Multiplexed holographic blazed gratings

Blazed gratings have an optimal diffraction efficiency to a single order. The generation of these holograms is depicted in Fig. 2, where we adapt the notation of Dong et al.⁷

Figure 2: Diagram of holographic blazed gratings. a) Visualized generation of the holographic phase pattern. $H_k(x, y)$ is blazed by using only one interference term. b) A selected amount of the incoming wavefront is imaged at a separate location in the focal plane. Image adapted from Dong et al. $(2012)^7$ and Wilby et al. (2016).

We generate an interferogram between a reference wavefront $R_k(x,y)$ with a biased phase $\phi_b(x,y)$ and a object wavefront $O_k(x,y)$. The reference wavefront is given by

$$R_k(x,y) = e^{i\phi_b(x,y)} \tag{1}$$

and the object wavefront by

$$O_k(x,y) = e^{2i\pi(f_{kx}x + f_{ky}y)},\tag{2}$$

where f_{kx} and f_{ky} are the spatial frequencies the hologram is placed in the focal plane, $f_{kx} = x'_k/f\lambda$. Here the focal plane coordinates are given by (x'_k, y'_k) . HAM does not require a biased reference wavefront other than a piston term $(\phi_b(x, y) = c_k)$ that is used to phase scramble interferometric PSFs. The interferogram $H_k(x, y)$ between the two waves is then given by

$$H_k(x,y) = |O_k(x,y) + R_k(x,y)|^2$$
 (3)

$$H_k(x,y) = |O_k|^2 + |R_k|^2 + O_k^* R_k + O_k R_k^*$$
(4)

$$H_k(x,y) = 2 + O_k^* R_k + O_k R_k^*, (5)$$

where * stands for the complex conjugate operator. The interferogram now generates two PSF copies, the ± 1 orders of the grating. Having only one of the two copies is preferred for HAM, as having two would increase the necessary detector space by a factor of two. We therefore blaze the grating by selecting one interference term,

Multiplexing holograms -> spectral information

$$\phi_h(x,y) = \frac{1}{\pi} \arg \left[\sum_{k=0}^{N} s_k H_k(x,y) \right]. \tag{9}$$

An example of a multiplexed holographic grating is shown in Fig. 3.

Figure 3: Holographic multiplexing of an aperture. The light is multiplexed in one, two and five holograms from left to right respectively.

Generates Toliman PSF

No bias -> perfect PSF

0-pi grating solution

(hologram amplitudes arbitrary)

Continuous grating solution

(hologram amplitudes arbitrary)