Minor Exam Start time: 2:00pm 2201-COL759 Total marks: 25 End time: 3:30pm

1 (a). The crypto pledge (1 mark)

I promise that once I see how simple cryptographic constructions really are, I will not implement them in **production code** even though it will be really fun. This agreement will remain in effect until I learn all about side-channel attacks and countermeasures to the point where I lose all interest in implementing them myself.¹

Name:		
Entry Number:		
Signature:		

¹Taken from the course textbook, originally due to Jeff Moser.

1 (b). True/False (4 marks)

For each of the following questions, indicate whether the statement is true or false, and **provide a one-line justification for your answer**.

1. (1 mark) The signing algorithms of all MAC systems are also secure pseudorandom functions.

No! Consider MAC'(k,m)=MAC(k,m)||MAC(k,m)

(1 mark) Let $G: \{0,1\}^n \to \{0,1\}^{2n}$ be a secure pseudorandom generator. Since it is a secure PRG, the statistical distance of the following two distributions is bounded by a negligible function of n:

$$\mathcal{D}_0 := \left\{ \text{Sample uniformly random } s \leftarrow \{0, 1\}^n, \text{ output } G(s) \right\}$$

$$\mathcal{D}_1 := \left\{ \text{Output uniformly random } u \leftarrow \{0, 1\}^{2n} \right\}$$

No, the distance is in fact close to 1. Consider those points which are not in the range of G

(1 mark) If (Sign, Verify) is a secure MAC system, then at least some bits of m are guaranteed to be hidden if I give out $\sigma = \text{Sign}(m, k)$.

This is not necessary. We can even make sign(m,k)=m||F(m,k)

 \mathcal{A} (1 marks) If $G: \{0,1\}^n \to \{0,1\}^{2n}$ is a secure pseudorandom generator, then so is $H: \{0,1\}^n \to \{0,1\}^{2n}$ where $H(s) = G(s) \oplus G(0^n)$ for all $s \in \{0,1\}^n$.

Yes

1 (c). Multiple Choice Questions (8 marks)

For each of the following MCQs, select the correct option. Provide a short justification.

1.	(2 marks) Consider a symmetric key encryption scheme $\mathcal E$ that satisfies Semantic Security. Then	ı,
	(A) \mathcal{E} is No-Query-Semantic-Security secure against ALL (computationally unbounded adversaries.)

(B)	There exists a computationally unbounded adversary that wins the No-Query-Semantic-Security
	game against scheme \mathcal{E} with probability greater than $1/2$.

(9) Neither of the above. It depends on the scheme \mathcal{E} .	

Let $F: \mathcal{X} \times \mathcal{K} \to \mathcal{Y}$ be a secure pseudorandom function with $\mathcal{X} = \mathcal{K} = \mathcal{Y} = \{0,1\}^n$ (here \mathcal{K} is the key space). Consider the following keyed functions. For each of them, indicate whether the keyed function is a provably secure PRF, may be/may not be a secure PRF (depends on some additional properties of F), or is definitely insecure.

- 2. (2 marks) F'(x,k) = F(x,k) || F(x,F(x,k))
 - (A) F' is provably secure, assuming F is.
 - (B) F' may/may not be a secure PRF. It requires some additional properties of F.
 - (\mathcal{O}) F' is an insecure PRF.

1			

3. (2 marks) $F'(x,k) = F(x,k) \oplus x$

(A) F' is provably secure, assuming F is.

- (B) F' may/may not be a secure PRF. It requires some additional properties of F.
- (C) F' is an insecure PRF.

4. (2 marks) $F'(x,k) = F(x,k) || F(x,x \oplus k)$

- (A) F' is provably secure, assuming F is.
- (B) F' may/may not be a secure PRF. It requires some additional properties of F.
- (\mathcal{C}) F' is an insecure PRF.

2. PRGs with large expansion (4 marks)

Let $G_1:\{0,1\}^n\to\{0,1\}^{2n}$, and $G_2:\{0,1\}^n\to\{0,1\}^{3n}$ be secure pseudorandom generators. Consider the following function $H:\{0,1\}^n\to\{0,1\}^{6n}$ defined as follows:

$$H(s) = y_1 \mid\mid y_2 \mid\mid \dots \mid\mid y_5 \mid\mid y_6$$
 where
$$G_1(s) = s_0 \mid\mid s_1$$

$$y_1 \mid\mid y_2 \mid\mid y_3 = G_2(s_0)$$

$$y_4 \mid\mid y_5 \mid\mid y_6 = G_2(s_1)$$

Here, each y_i , s_0 and s_1 are n bit strings.

We will show that H is a secure pseudorandom generator, assuming G_1 and G_2 are secure PRGs. The proof will go via a sequence of hybrids. In World-0, the challenger samples a uniformly random $s \leftarrow \{0,1\}^n$ and sends H(s). In World-1, the challenger chooses a 6n-bit uniformly random string $u \leftarrow \{0,1\}^{6n}$ and sends u.

Define the intermediate hybrids required to prove security of H. No need to provide reductions for showing indistinguishability of hybrids.

3. A broken encryption scheme (4 marks)

Let $P:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a secure pseudorandom permutation, and let P^{-1} be its inverse (that is, for all $x,k,\,P^{-1}(P(x,k),k)=x$). Consider the following encryption scheme with message space $\{0,1\}^{\ell\cdot n}$ for some $\ell>3$:

- KeyGen: choose a random PRP key $k \leftarrow \{0,1\}^n$.
- $\mathsf{Enc} \Big(m = (m_1, \dots, m_\ell), k \Big)$: choose a uniformly random string $x_0 \leftarrow \{0, 1\}^n$ and set $\mathsf{ct}_0 = P(x_0, k)$.

For i = 1 to ℓ , do the following:

- $\operatorname{set} x_i = m_i \oplus x_{i-1}$
- compute $\operatorname{ct}_i = P(x_i, k)$.

Output $\mathsf{ct} = (\mathsf{ct}_0, \mathsf{ct}_1, \mathsf{ct}_2, \dots, \mathsf{ct}_\ell)$ as the final ciphertext.

- $\operatorname{Dec}\left(\operatorname{ct}=(\operatorname{ct}_0,\operatorname{ct}_1,\ldots,\operatorname{ct}_\ell),k\right)$: Let $y_0=P^{-1}(\operatorname{ct}_0,k)$. For each i=1 to ℓ , do the following:
 - compute $y_i = P^{-1}(\mathsf{ct}_i, k)$.
 - $\text{ set } m_i = y_i \oplus y_{i-1}$

Output $m = (m_1, m_2, \dots, m_\ell)$ as the final decryption.

Show that the above scheme does not satisfy No-Query-Semantic-Security.

4. A new MAC scheme (4+1 marks)

Let MAC = (Sign, Verify) be a MAC scheme with message space \mathcal{M} , key space \mathcal{K} and signature space \mathcal{T} , satisfying **weak** unforgeability. Consider the following MAC scheme MAC' = (Sign', Verify'):

- $\operatorname{Sign}'(m,k) = \operatorname{Compute} \sigma_1 \leftarrow \operatorname{Sign}(m,k), \, \sigma_2 \leftarrow \operatorname{Sign}(m,k), \, \operatorname{output} \, (\sigma_1,\sigma_2).$
- Verify' $(m, (\sigma_1, \sigma_2), k)$: Output 1 if either Verify $(m, \sigma_1, k) = 1$ or Verify $(m, \sigma_2, k) = 1$.
- 1. Is MAC' a weakly unforgeable MAC scheme, assuming MAC is?
- 2. Suppose MAC is a **strongly** unforgeable message auth. code. Can we conclude that MAC' is also **strongly** unforgeable?

Definitions

Definition 04.01. A function $\mu : \mathbb{N} \to [0,1]$ is said to be negligible if, for any polynomial $p(\cdot)$, there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$, $\mu(n) < 1/p(n)$.

Definition 04.02. An encryption scheme (KeyGen, Enc, Dec) is said to satisfy no-query-semantic-security if, for any probabilistic polynomial time adversary A, there exists a negligible function $\mu(\cdot)$ such that for all n,

$$\Pr\left[\mathcal{A} \ wins \ the \ \mathsf{No-Query-Semantic-Security} \ game \ \right] \leq 1/2 + \mu(n)$$

where the No-Query-Semantic-Security game is defined in Figure 1.

No-Query-Semantic-Security

- 1. Adversary sends two messages m_0, m_1 to the challenger, such that $|m_0| = |m_1|$.
- 2. The challenger chooses a bit $b \leftarrow \{0,1\}$, key $k \leftarrow \mathcal{K}$ and sends $\mathsf{Enc}(m_b,k)$ to the adversary.
- 3. The adversary sends its guess b', and wins the security game if b = b'.

Figure 1: The No-Query Semantic Security Game

Definition 05.01. A deterministic polynomial time computable function $G : \{0,1\}^n \to \{0,1\}^\ell$ is a secure pseudorandom generator (PRG) if $\ell > n$, and for any prob. poly. time adversary \mathcal{A} , there exists a negligible function $\mu(\cdot)$ such that for all n,

 $\Pr[A \text{ wins the } PRG \text{ security } game \text{ against } G] \leq 1/2 + \mu(n),$

where the PRG game is defined in Figure 2.

PRG-Security

- 1. The challenger chooses a bit $b \leftarrow \{0,1\}$, string $s \leftarrow \{0,1\}^n$, $u_1 \leftarrow \{0,1\}^\ell$. It computes $u_0 = G(s)$, and sends u_b to the adversary.
- 2. The adversary sends its guess b', and wins the security game if b = b'.

Figure 2: The PRG Security Game

Definition 09.01. A keyed function $F: \mathcal{X} \times \mathcal{K} \to \mathcal{Y}$ is a pseudorandom function (PRF) if, for any p.p.t. adversary \mathcal{A} , there exists a negligible function $\mu(\cdot)$ s.t. for all n,

$$\Pr[A \text{ wins the } PRF \text{ security } game] \leq 1/2 + \mu(n),$$

where the PRF security game is defined in Figure 3.

PRF-Game

- 1. Challenger chooses a bit $b \leftarrow \{0,1\}$. If b=0, challenger chooses a key $k \leftarrow \mathcal{K}$ and sets function $F_0 \equiv F(\cdot,k)$. If b=1, challenger chooses a truly random function F_1 from the set of all functions mapping \mathcal{X} to \mathcal{Y} .
- 2. The adversary sends polynomially many queries. For each query $x \in \mathcal{X}$, the challenger sends $F_b(x)$.
- 3. Finally, after polynomially many queries, the adversary sends a guess b' and wins if b' = b.

Figure 3: PRF Security Game

Definition 13.01. Given two distributions \mathcal{D}_0 and \mathcal{D}_1 over the same sample space Ω , the statistical distance of \mathcal{D}_0 and \mathcal{D}_1 is defined as

$$\mathsf{SD}(\mathcal{D}_0, \mathcal{D}_1) = \frac{1}{2} \left(\sum_{i \in \Omega} \left| \Pr_{x \leftarrow \mathcal{D}_0} \left[x = i \right] - \Pr_{x \leftarrow \mathcal{D}_1} \left[x = i \right] \right| \right)$$

Definition 15.01. An encryption scheme $\mathcal{E} = (\text{KeyGen}, \text{Enc}, \text{Dec})$ is said to satisfy Semantic Security if, for any p.p.t. adversaries \mathcal{A} , there exists a negligible function $\mu(\cdot)$ such that for all n,

$$\Pr[A \text{ wins the semantic security } game] \leq 1/2 + \mu(n)$$

where the probability is over the choice of key k, randomness used in Enc, and the adversary's randomness.

Semantic Security

- 1. **Setup:** Challenger chooses an encryption key $k \leftarrow \mathcal{K}$ and a bit $b \leftarrow \{0,1\}$.
- 2. Challenge encryption queries: Adversary sends polynomially many challenge encryption queries (adaptively). The i^{th} challenge pair consists of two messages $m_{i,0}, m_{i,1}$. The challenger sends $\mathsf{ct}_i = \mathsf{Enc}(m_{i,b}, k)$ to the adversary.
 - Note that the bit b and key k were chosen during setup, and the same bit and key are used for all queries.
- 3. **Guess:** The adversary sends its guess b', and wins the security game if b = b'.

Figure 4: Semantic Security Game

Definition 18.01. A MAC scheme (KeyGen, Sign, Verify) is said to satisfy Strong-UF-CMA if, for any p.p.t. adversary A, there exists a negligible function $\mu(\cdot)$ such that for all n,

 $\Pr[A \text{ wins the strong unforgeability game}] \leq \mu(n).$

^aNote: there are only $|\mathcal{K}|$ keys, but the number of functions from \mathcal{X} to \mathcal{Y} is much more. In some sense, this is similar to what we saw for PRGs: in one case, the set of possible outputs was equal to the size of input domain, while in the other case, it was equal to size of output domain.

${\sf Strong\text{-}UF\text{-}CMA}$

- 1. **Setup:** Challenger chooses a signing key k.
- 2. **Signature queries:** Adversary sends polynomially many signing queries (adaptively). The i^{th} query is a message m_i . The challenger sends $\sigma_i = \mathsf{Sign}(m_i, k)$ to the adversary. Note that the key k was chosen during setup, and the same key is used for all queries.
- 3. **Forgery:** The adversary sends a message m^* together with a signature σ^* , and wins if $(m^*, \sigma^*) \neq (m_i, \sigma_i)$ for all i, and $\mathsf{Verify}(m^*, \sigma^*, k) = 1$.

Figure 5: Security Game for MACs: Strong Unforgeability under Chosen Message Attack