Método de puntos de referencia

$$3x^{2} - 6x - 24 \ge 0$$

$$x^{2} - 2x - 8 \ge 0$$

$$(x - 4)(x + 2) \ge 0$$

$$x - 4 = 0 \quad \land \quad x + 2 = 0$$

Valores de referencia: x = 4 \land x = -2

Valores de prueba: x = -3

$$x = 0$$

$$x = 5$$

$$CS =]-\infty; -2] \cup [4; \infty[$$

$$\frac{x^2 - 4}{x + 1} \ge 0$$

$$\frac{(x + 2)(x - 2)}{x + 1} \ge 0$$

$$(x + 2)(x - 2) = 0 \quad \land \quad x + 1 \ne 0$$

VR:
$$x = -2$$
 \wedge $x = 2$ \wedge $x \neq -1$

Valores de paso: x = -3 x = -1.5 x = 0 x = 3

$$\mathrm{CS} = [-2; -1[\ \cup \ [2; \infty[$$

$$-2x^2 + 31x - 84 > 30$$

$$-2x^2 + 31x - 114 > 0$$

$$(-2x+19)(x-6)=0$$

VR:
$$x = \frac{19}{2} \land x = 6$$

VP:
$$x = 5$$
 $x = 7$ $x = 10$

$$CS = [6; 9,5]$$

Ejemplo 1:

$$x^{3} \ge 3x^{2}$$

$$x^{3} - 3x^{2} \ge 0$$

$$x^{2}(x - 3) \ge 0$$

$$x^{2} = 0 \quad \land \quad x - 3 = 0$$

$$VR: \quad x = 0 \quad \land \quad x = 3$$

$$VP: \quad x = -1 \qquad \qquad x = 4$$

$$CS = \{0\} \cup [3; \infty[$$

$$x^{2}(x - 3) \ge 0$$

$$x = 0 \quad \lor \quad x - 3 \ge 0$$

$$x = 0 \quad \lor \quad x \ge 3$$

$$CS = \{0\} \cup [3; \infty[$$

Ejemplo 2:

$$(1-x)(x+3)^{2} \ge 0$$

$$1-x=0 \quad \land \quad x+3=0$$

$$VR: \ x=1 \quad \land \quad x=-3$$

$$VP: \quad x=-4 \qquad x=0 \qquad x=2$$

$$CS =]-\infty; 1]$$

$$(1-x)(x+3)^{2} \ge 0$$

$$1-x \ge 0 \quad \lor \quad x+3=0$$

$$x \le 1 \quad \lor \quad x=-3$$

$$CS =]-\infty; 1]$$

Ejemplo 3:

$$(x-2)^2 + 1 > 0$$
 $(x+5)^2 \le 0$
 $(x-2)^2 > -1$ $CS = \mathbb{R}$

Trabajo en clase

Determine el conjunto solución de las inecuaciones:
a.
$$(2-x)^2(5-x) < 0$$

 $(2-x)^2(5-x) < 0$
 $2-x=0$ $\wedge 5-x=0$
VR: $x=2$ $\wedge x=5$
VP: $x=1$ $x=3$ $x=6$

$$CS =]5; \infty[$$

$$(2-x)^2(5-x) < 0$$

$$2-x \neq 0$$
 $\forall 5-x < 0$

$$(2-x)^{2}(5-x) < 0$$

 $2-x \neq 0 \quad \forall \quad 5-x < 0$
 $x \neq 2 \quad \forall \quad 5 < x$
 $CS =]5; \infty[$

b.
$$9 - x^2 \le 0$$

c.
$$(x+3)(x-2) \le 6$$

¿Cómo resolvemos esta desigualdad?

Ejemplo 4:

Ejemplo 5:

$$\frac{2x}{x+1} > 1$$

$$\frac{2x}{x+1} - 1 > 0$$

$$\frac{2x - 1(x+1)}{x+1} > 0$$

$$\frac{2x - x - 1}{x+1} > 0$$

$$\frac{x-1}{x+1} > 0$$

$$x - 1 \neq 0 \quad \land \quad x + 1 \neq 0$$

$$VR: \quad x \neq 1 \quad \land \quad x \neq -1$$

$$VP: \quad x = -2 \qquad x = 2$$

$$CS =]-\infty; -1[\cup]1; \infty[$$

Ejemplo 6:

$$CS = \mathbb{R}^+ =]0; \infty[$$

Ejemplo 7:

Determine el conjunto solución de la inecuación:

$$\frac{x^{2} + 2x + 1}{x^{2}} \le \frac{4}{x}$$

$$\frac{x^{2} + 2x + 1}{x^{2}} - \frac{4}{x} \le 0$$

$$\frac{(x^{2} + 2x + 1)x - 4(x^{2})}{x^{2}(x)} \le 0$$

$$\frac{x^{3} + 2x^{2} + x - 4x^{2}}{x^{3}} \le 0$$

$$\frac{x^{3} - 2x^{2} + x}{x^{3}} \le 0$$

$$\frac{x(x^{2} - 2x + 1)}{x^{3}} \le 0$$

$$x = 0 \quad \land \quad x - 1 = 0 \quad \land \quad x^{3} \ne 0$$

$$VR: \quad x = 0 \quad \land \quad x = 1 \quad \land \quad x \ne 0$$

$$VP: \quad x = -1 \qquad x = 0,5 \qquad x = 2$$

$$\frac{(x - 1)^{2}}{x^{2}} \le 0$$

$$\frac{(x - 1)^{2}}{x^{2}} \le 0$$

$$x - 1 = 0$$

$$CS = \{1\}$$

Ejemplo 8:

$$\frac{9}{6x - x^2} \le 1$$

$$\frac{9}{6x - x^2} - 1 \le 0$$

$$\frac{9 - (6x - x^2)}{6x - x^2} \le 0$$

$$\frac{x^2 - 6x + 9}{6x - x^2} \le 0$$

$$\frac{(x - 3)^2}{x(6 - x)} \le 0$$

$$x - 3 = 0 \quad \land \quad x \ne 0 \quad \land \quad 6 - x \ne 0$$

Trabajo en casa

2. Se sabe que $6 - x^2 \in [-3; +\infty[$, ¿a qué intervalo pertenece x?

$$6 - x^2 \ge -3$$

$$0 \ge x^2 - 9$$