Template for Oxford University Press papers

Alice Anonymous

Some Institute of Technology

alice@example.com

Bob Security
Another University
bob@example.com

*

Cat Memes
Another University
cat@example.com

Derek Zoolander
Some Institute of Technology
derek@example.com

May 25, 2020

Abstract

This is the abstract.

It consists of two paragraphs.

Keywords: key; dictionary; word

1 Introduction

This template is based on the generic OUP template available here. The original OUP sample tex document, providing more details on preferred formatting for LaTeX docu-

^{*}Corresponding author; Email: bob@example.com

ments, is included with the template in the file ouparticle_sample.tex.

Here are two sample references: Feynman and Vernon Jr. [1963; Dirac, 1953]. Bibliography will appear at the end of the document.

2 Materials and methods

An equation with a label for cross-referencing:

$$\int_0^{r_2} F(r,\varphi) dr d\varphi = \left[\sigma r_2 / (2\mu_0) \right] \int_0^{\infty} \exp(-\lambda |z_j - z_i|) \lambda^{-1} J_1(\lambda r_2) J_0(\lambda r_i \lambda d\lambda) \tag{1}$$

This equation can be referenced as follows: Eq. 1

2.1 A subsection

A numbered list:

- 1) First point
- 2) Second point
 - Subpoint

A bullet list:

- First point
- Second point

3 Results

Generate a figure.

```
plot(1:10,main="Some data",xlab="Distance (cm)",ylab="Time (hours)")
```

You can reference this figure as follows: Fig. 1.

```
plot(1:5,pch=19,main="Some data",xlab="Distance (cm)",ylab="Time (hours)")
```

Reference to second figure: Fig. 2

Generate a table.

Some data

Figure 1: This is the first figure.

Some data

Figure 2: This is the second figure.

	ID	code
1	1	a
2	2	b
3	3	\mathbf{c}

Table 1: This is the table caption

You can reference this table as follows: Table 1.

4 Discussion

You can cross-reference sections and subsections as follows: Section 2 and Section 2.1.

Note: the last section in the document will be used as the section title for the bibliography.

Acknowledgements

This is an acknowledgement.

It consists of two paragraphs.

References

P.A.M. Dirac. The lorentz transformation and absolute time. *Physica*, 19(1–12):888–896, 1953. doi: 10.1016/S0031-8914(53)80099-6.

R.P Feynman and F.L Vernon Jr. The theory of a general quantum system interacting with a linear dissipative system. *Annals of Physics*, 24:118–173, 1963. doi: 10.1016/0003-4916(63)90068-X.