Cartesian Equation of a Line

Focus: Derive vector, parametric, and Cartesian equations of a line.

Recall:

- y = mx + b (called "slope-y-intercept form")
- Ax + By + C = 0 (called "Standard", "Cartesian", or "Scalar Equation of a line")

The direction numbers of the direction vector can be easily used to determine the slope of the line

$$\rightarrow$$
m = $\frac{b}{a}$

Ex 1.

Determine the vector and parametric equations of a line y = -2x + 3.

$$(x_1y)=(0,3)+t(1,-1), t \in \mathbb{R}$$

 $x=t$ $y=3-2t$

Ex 2.

Write the Cartesian form of a line with an equation:

a)
$$\vec{r} = (2,4) + t(-1,5)$$

Rearrange

Slope formula

 $M = \frac{y-y_1}{x-x_1}$
 $-5 = \frac{y-4}{x-2}$
 $-5x+16=y-4$
 $y = mx+b$
 $y = mx+b$
 $y = -5(2)+b$
 $y = -5x+14$

b)
$$\vec{r} = (-1,2) + s(0,-7)$$

$$M = \frac{1}{0} \quad \text{Vertical like}$$

$$X = -1 \quad \text{Vertical like}$$

Introduction of the Normal Vector (\vec{n})

- A line is drawn perpendicular to the line L from the origin. This perpendicular line is called the NORMAL axis.
- There are an infinite number of normal vectors on the normal axis.
- The normal is perpendicular to any vector on the given line
- The Cartesian equation and the normal are related through the coefficients A and B. (the proof is in your textbook on page 438)

$$Ax + By + C = 0$$
, where $\vec{n} = (A, B)$

Ex 3.

Determine the Cartesian equation for a line with a normal vector of (2,3) and passing through the point (-1,4).

T=
$$(1,3)$$

$$2x+3y+c=0$$

$$2x+3y+c=0$$

$$2x+3y-c=0$$

$$2x+3y-c=0$$

$$2x+3y-c=0$$

$$2x+3y-c=0$$

$$2x+3y-c=0$$

Ex 4.

Determine the acute angle between the two lines x = 2t, y = -1 and (x,y) = (1,1) + s(3,1).

$$X = 0 + 2t$$

$$Y = -1 - 3t$$

$$(x,y) = (0,-1) + t_{(2,-3)}$$

$$\overrightarrow{m}_{1} = (2,-3)$$

$$m_1 \cdot m_3 = \chi(3) + 1(-3)$$

$$= 3$$

$$|\vec{m}_1| = \sqrt{4+9} = \sqrt{13}$$

$$|\vec{m}_2| = \sqrt{9+1} = \sqrt{10}$$

 $\vec{m}_1 \cdot \vec{m}_2 = \lambda(3) + 1(-3)$ = 3 $|\vec{m}_1| = \sqrt{4+9} = \sqrt{13}$ $\cos \phi = \vec{m}_1 \cdot \vec{m}_2$ $|\vec{m}_1| = \sqrt{4+9} = \sqrt{13}$ $\cos \phi = \vec{m}_1 \cdot \vec{m}_2$ (5) = 75°

IF₁L₁ and L₂ are parallel then their normalsare scalar multiples.

If L₁ and L₂ are perpendicular then their normal are also perpendicular.

$$\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$$

Determine the Cartesian equation of a line that is perpendicular to 2x - y + 4 = 0 and passes through the point

Ex 6.

Are the following lines perpendicular?

 L_1 has a normal vector of (1,3) and L_2 has a normal vector of (3, -1)

$$3 + (-3) = 0$$
 $0 = 0$

L5 | RS

 $|(3) - |(3)|$
 0

L5 = RS

 $(1,3)\cdot(3,-1)=0$

Point (2,3)

point (x,y)

$$M = \frac{y-3}{x-2}$$
 $X = (x-2,y-3)$
 $A = (1,2)$
 $A = (1$

given

$$\vec{n} = (2,-1)$$

$$m = -1$$
Given line

$$m_{\perp} = \frac{2}{1}$$
 $m_{\perp} = \frac{2}{1}$
 $m_{\perp} = \frac{$