A Neural Probabilistic Language Model

By: Yoshua Bengio, Rejean Ducharme and Pascal Vincent

Introduction: Statistical Language Models

- Goal: Model distribution of natural language. Joint probability for a sequence of words: $P(w_0, w_1, ..., w_n)$
- Predict the next word in a sequence given the words that precede it:

$$P(w_0, w_1, ..., w_n)$$
= $P(w_0) * P(w_1|w_0) * ... * P(w_n|w_0, w_1, ..., w_{n-1})$

Problem: Curse of dimensionality: 100.000 word vocabulary, 10 word context: 100.000¹⁰ possibilities

Previous Approach: *n-Gram Models*

n-Gram = series of n words (or just syllables or letters)
Paper refers to **Tri**gram models (n = 3)
Context matters! - Previous words

Generate tables of conditional probabilities for next word

THE CAT IS
CAT IS WALKING
IS WALKING IN
WALKING IN THE
IN THE BEDROOM

Limitations of *n-Gram Models*

Context limited to n – 1 previous words "Similar" words not taken into consideration

Authors experiment with a new strategy!

A neural network approach

- 1. Distributed feature vector for each word in the vocabulary (real-valued vector in \mathbb{R}^m) -> Similarity between words.
- Express joint probability function of word sequences in terms of the feature vectors in the sequence -> Using information of the sequence.
- 3. Learn simultaneously the word feature vectors and the parameters of the function.

Architecture of the Neural Network

$$V = \{w_0, w_1, \dots\}$$

 $C = |V| \times m$, whose row i is the feature vector C(i) for word i

V	Vocabulary
W	Word
t	Index of the word in the sequence (n-gram)
С	Look-up Table
m	Size of the feature vector
i	Index of a word in the Look-up Table
T	Length of word sequence

Why does it work?

- Possibility to generalize word context, which not appeared in the training set
 - Example p("cat" | "the", "small")
 - Trigram ["the", "small", "cat"] is not in the training corpus
 - But ["the", "small", "dog"] is
- Word representation (feature vector) of cat and dog is similar
 - → NN is able to generalize ["cat"]
- NN could have learned similar trigrams like
 - ["a","little","dog"]
 - ["a","little","cat"]

Evaluation

Test results

- Up to 35% better prediction than smoothed trigram
- Better results by abstracting the words
- A larger context improves the result significantly
- Hidden layers improve the result

perplexity on Brown dataset

Evaluation

Problems / Improvements

- Performance
 - Training
 - stochastic gradient descent
 - early stopping
 - Execution
 - lookup table
 - short list
- No use of known grammatical structures

