

CW32W031

ARM® Cortex®-M0+ 32 位低功耗无线微控制器,ChirploT ™ 64K 字节 FLASH,8K 字节 RAM

数据手册 版本号: Rev 1.0

重要提示 - 请仔细阅读

武汉芯源半导体有限公司保留随时对产品和本文档进行更改、更正、增强、修改的权利,恕不另行通知。购买者应该在官网上获取最新的产品信息。

产品下单前,芯源半导体根据在订购时的销售条款和条件进行销售承认。购买者对芯源半导体产品的选择和使用负全部责任,芯源半导体对应用帮助活动和对购买者的产品的设计不承担任何责任。芯源半导体在此,未授予任何知识产权的任何明示或暗示的许可。转售具有与此处所述信息不同的规定的芯源半导体产品将使芯源半导体对此类产品授予的任何保证无效。

CW 标志是芯源半导体的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代并替换本文档任何先前版本中提供的信息。

© 2021 Wuhan Xinyuan Semiconductor Co., Ltd. – All rights reserved

www.whxy.com

目录

1	产品	品特性 3							
2	简介	介							
3	描述		7						
4	功能	:一览	10						
	4.1	集成 FLASH 和 SRAM 的 ARM® Cortex®-M0+ 微处理器平台	10						
	4.2	存储器	10						
	4.3	引导模式	10						
	4.4	射频子系统	11						
		4.4.1 ChirploT ™简介	13						
		4.4.2 射频系统框图	13						
		4.4.3 射频应用参考图	12						
		4.4.4 射频内部接口	12						
	4.5	循环冗余校验计算单元(CRC)	15						
	4.6	电源管理	16						
		4.6.1 电源供电方案	16						
		4.6.2 电源监控	16						
		4.6.3 电源稳压器	16						
		4.6.4 低功耗工作模式	16						
	4.7	时钟和启动	17						
	4.8	通用输入输出端口(GPIO)	18						
	4.9	直接内存访问(DMA)	18						
	4.10	嵌套向量中断控制器(NVIC)	18						
	4.11	模拟数字转换器(ADC)	19						
		4.11.1 温度传感器	19						
		4.11.2 内置电压参考	19						
		模拟电压比较器(VC)							
		低电压检测器(LVD)							
	4.14	定时器和看门狗							
		4.14.1 高级定时器(ATIM)	22						
		4.14.2 通用定时器(GTIM12)	22						
		4.14.3 基本定时器(BTIM13)							
		4.14.4 独立看门狗(IWDT)							
		4.14.5 窗口看门狗(WWDT)							
		4.14.6 SysTick 定时器							
		自动唤醒定时器(AWT)							
		实时时钟(RTC)							
	4.17	I2C 接口(I2C)	24						

	4.18	串行接	·□(UART)	24
	4.19	串行外	设接口(SPI)	25
	4.20	红外调	制发送器(IR)	25
	4.21	串行调	试接口(SWD)	25
5	引脚	定义		26
6	地址	:镜像		34
7	电气	特性		36
	7.1	参数条	件	36
		7.1.1	最大值和最小值	36
		7.1.2	典型值	36
		7.1.3	典型曲线	36
		7.1.4	负载电容	36
		7.1.5	引脚输入电压	37
		7.1.6	电源系统	38
		7.1.7	电流消耗测试	39
	7.2	极限参	数	40
	7.3	工作条	件	42
		7.3.1	一般工作条件	42
		7.3.2	RF ChirpIoT ™特性	43
		7.3.3	上电 / 掉电时的工作条件	45
		7.3.4	内置复位和电源控制电路特性	45
		7.3.5	内部电压参考	46
		7.3.6	供电电流特性	47
		7.3.7	低功耗模式及其唤醒时间	50
		7.3.8	外部时钟源特性	51
		7.3.9	内部时钟源特性	54
		7.3.10	存储器特性	55
		7.3.11	ESD 特性	56
		7.3.12	I/O 口特性	56
		7.3.13	NRST 引脚特性	59
		7.3.14	12 位 ADC 特性	60
		7.3.15	温度传感器特征参数	62
		7.3.16	模拟电压比较器特性	63
		7.3.17	定时器特性	64
		7.3.18	通信接口	65
8	封装	信息		68
	8.1	QFN64	l 封装信息	68
9	订货	信息		71
	1111			

§ 产品特性 CW32W031

1 产品特性

● 内核: ARM® Cortex®-M0+

- 最高主频 48MHz

● 工作温度: -40°C至 85°C

● 工作电压: LDO 模式 1.8V~3.6V; DCDC 模式 2V~3.6V

● 存储容量

- 最大 64K 字节 FLASH,数据保持 25 年 @85℃

- 最大 8K 字节 RAM, 支持奇偶校验

- 128 字节 OTP 存储器

● 射频

- 通信频段: 370MHz~590MHz, 740MHz~1180MHz

- 调制方式: ChirploT™

- 发射输出功率: -7dBm~22dBm

- 最大链路预算可达: 162dB

- 接收灵敏度: -140dBm@62.5kHz

- 工作电流

深度休眠电流: 400nA

接收电流: 12.5mA@DCDC 模式

发射电流: 135mA@22dBm, 83mA@18dBm, 25mA@0dBm

- 支持带宽: 62.5kHz、125kHz、250kHz、500kHz

- 支持 SF 因子: 7~12, 支持扩频因子自动识别

- 支持码率: 4/5, 4/6, 4/7, 4/8

- 支持 CAD 功能

- 支持低速率模式: 0.08kbps~20.4kbps

- 完全集成的频率合成器

● CRC 硬件计算单元

● 复位和电源管理

- 低功耗模式(Sleep, DeepSleep)
- 上电和掉电复位 (POR/BOR)
- 可编程低电压检测器(LVD)

§ 产品特性 CW32W031

● 时钟管理

- 32MHz 晶体振荡器用于射频子系统
- 4MHz~32MHz晶体振荡器
- 32kHz 低速晶体振荡器
- 内置 48MHz RC 振荡器
- 内置 32kHz RC 振荡器
- 内置 10kHz RC 振荡器
- 内置 150kHz RC 振荡器
- 时钟监测系统
- 允许独立关断各外设时钟
- 支持最多 33 路 I/O 接口
 - 所有 I/O 口支持中断功能
 - 所有 I/O 支持中断输入滤波功能
- 四通道 DMA 控制器
- 模数转换器
 - 12 位精度, ±1 LSB
 - 最高 1M SPS 转换速度
 - 内置电压参考
 - 模拟看门狗功能
 - 内置温度传感器
- 双路电压比较器
- 实时时钟和日历
 - 支持由 Sleep/DeepSleep 模式唤醒
- 定时器
 - 16 位高级控制定时器,支持 6 路捕获 / 比较通道和 3 对互补 PWM 输出,死区时间和灵活的同步功能
 - 二组 16 位通用定时器
 - 三组 16 位基本定时器
 - 16 位自动唤醒定时器
 - 窗口看门狗定时器
 - 独立看门狗定时器
- 通信接口
 - 三路低功耗 UART,支持小数波特率,支持 LIN 通信接口
 - 一路 SPI 接口 12Mbit/s
 - 一路 I2C 接口 1Mbit/s
 - IR 调制器

§ 产品特性 CW32W031

- 串行调试接口 (SWD)
- 80 位唯一ID

表 1-1 封装型号列表

系列	型号	封装	
CW32W031x8	CW32W031R8	QFN64	

§ 简介 CW32W031

2 简介

本数据手册提供订货信息和 CW32W031 芯片的机械电气特性。

本文需要结合 CW32W031 的用户手册共同阅读。

关于 ARM® Cortex®-M0+ 的相关信息,请参考 www.arm.com 网站上的《Cortex®-M0+ Technical Reference Manual》。

§ 描述 CW32W031

3 描述

CW32W031 是采用 ChirploT ™调制解调技术的低功耗远距离无线微控制器,支持半双工无线通信,工作频段为 370MHz ~ 590MHz 和 740MHz ~ 1180MHz。

CW32W031 集成了主频高达 48MHz 的 ARM® Cortex®-M0+ 内核、高速嵌入式存储器(多至 64K 字节 FLASH 和多至 8K 字节 SRAM)以及一系列全面的增强型外设和 I/O 口。

所有型号都提供全套的通信接口(三路 UART、一路 SPI 和一路 I2C)、12 位高速 ADC、五组通用和基本定时器以及一组高级控制 PWM 定时器。

CW32W031 可以在 -40° C 到 85° C 的温度范围内工作,供电电压 $1.8V\sim3.6V$ 。支持 Sleep 和 DeepSleep 两种低功耗工作模式。

§ 描述 CW32W031

内部框图如下图所示:

图 3-1 内部框图

§ 描述 CW32W031

CW32W031 提供 QFN64 封装,具体功能情况如下表所示:

表 3-1 CW32W031 家族产品功能列表

	外设	CW32W031R8U6
FLASH	I(K 字节)	64
SRAM	(K 字节)	8
Ch	irploT ™	370MHz ~ 590MHz,740MHz ~ 1180MHz, -7dBm ~ 22dBm
	高级定时器	1
定时器	通用定时器	2
	基本定时器	3
	SPI	1
	12C	1
	UART	3
	位 ADC \通道数)	1 (13 外 3 内)
	GPIO	33
内	核主频	48MHz
I	作电压	LDO 模式: 1.8V~3.6V DCDC 模式: 2V~3.6V
I	作温度	-40°C ~ 85°C
	封装	QFN64

4 功能一览

4.1 集成 FLASH 和 SRAM 的 ARM® Cortex®-M0+ 微处理器平台

ARM® Cortex®-M0+ 内核是 ARM® 为小型嵌入式系统开发的最新一代 32 位内核平台,用以实现方便使用的低成本解决方案。该平台在仅需有限的引脚数和功率消耗的同时,给用户提供出色的计算性能和快速的中断响应。

ARM® Cortex®-M0+ 32 位精简指令集处理器提供出色的代码效率,在小储存空间的条件下给用户提供对 ARM 内核所期望的高性能。

CW32W031 家族产品均采用嵌入式 ARM 内核并保持与所有 ARM 工具和软件的全面兼容。

4.2 存储器

产品包含如下功能:

- 以系统时钟速度对8K字节嵌入式SRAM的零等待访问,并具有奇偶校验和异常管理功能,适用于高可靠性关键应用。
- 非易失存储器分为 2 个区域
 - 64K 字节嵌入式 FLASH 用于存放用户程序和数据;
 - 2.5K 字节的启动程序存储器。
- FLASH 存储器擦写以及读保护:通过寄存器进行 FLASH 存储器的擦写保护,通过 ISP 指令进行 4 级读保护等级设置。
 - LEVELO

无读保护,可通过 SWD 或者 ISP 方式对 FLASH 进行读取操作。

- LEVEL1

FLASH 读保护,不可通过 SWD 或 ISP 方式读取。可通过 ISP 或者 SWD 接口降低保护等级到 LEVEL0,降级后 FLASH 处于整片擦除状态。

- LEVEL2

FLASH 读保护,不可通过 SWD 或 ISP 方式读取。可通过 ISP 接口降低保护等级到 LEVEL0,降级后 FLASH 处于整片擦除状态。

- LEVEL3

FLASH 读保护,不可通过 SWD 或 ISP 方式读取。不支持任何方式的保护等级降级。

4.3 引导模式

在启动时,BOOT 引脚可用来选择如下两个启动选项:

- 运行内部 Bootloader
- 运行用户程序

当运行 Bootloader 时,用户可通过 UART1(引脚为 PA13/PA14)利用 ISP 通信协议进行 FALSH 编程。

4.4 射频子系统

4.4.1 ChirploT ™简介

CW32W031 嵌入低功耗远距离 ChirploT ™射频子系统,工作频段为 370MHz ~ 590MHz 和 740MHz ~ 1180MHz,支持半双工无线通信,支持 0.08kbps ~ 20.4kbps 的低速率模式,支持扩频因子自动识别和 CAD 功能。

ChirploT ™是一种基于线性扩频信号(Chirp 信号)的无线通信调制解调技术,通过对线性扩频信号进行信号时域和频域上的变化改进,使其与常规调制技术相比,具有如下主要优势:

- 在相同功率、相同通信速率条件下,比 FSK、OOK、MSK 等传统的其他无线方式传播的距离更远,通信距离比传统的无线射频通信距离扩大 3~5 倍。
- 阻塞和邻道选择方面具有显著的优势,可以进一步提高通信可靠度。
- 较大的灵活性,用户可自行调节扩频调制带宽、扩频因子和纠错率,有效改善采用常规调制技术的芯片 在距离、抗干扰能力和功耗之间的折衷问题。

ChirploT™射频系统具有高抗干扰性、高灵敏度、低功耗和超远传输距离等特性。最高具有-140dBm的灵敏度,22dBm的最大输出功率,产生业界领先的链路预算,使其成为远距离传输和对可靠性要求极高的应用的最佳选择。

4.4.2 射频系统框图

射频子系统集成射频发射机、射频接收机、晶体振荡器、频率发生器、电源管理和 ChirploT ™调制解调器等功能模块,其系统框图如下图所示:

图 4-1 射频系统框图

4.4.3 射频应用参考图

RF 模块包含专用引脚,具体引脚定义请参见表 5-2 CW32W031 引脚定义。图 4-2、图 4-3 中的原理图和表 4-1 中列出的外部组件仅供参考。

VDD } L1 VDD VDDRF TX_ANT_HP 💢 C1 = 发射端 R1 VSSRF TX_ANT_LP 🔀 C2 DVDD 🔀 ANTP 💢 接收端 VDD VDD1/2/3 ANTN 💢 ∨LX RFXC1 X1 === 32MHz ∨FB RFXC2 C5

图 4-2 射频前端原理图(LDO 模式)

VDD VDD √ VDDRF TX_ANT_HP C1 : 发射端 R1 ∇SSRF TX_ANT_LP 🔀 C2 ₩ DVDD ANTP 🔀 接收端 VDCDC ▼ VDD1/2/3 ANTN 🔀 C4 VLX RFXC1 X1 === 32MHz L2 DCDC模式 VDCDC VFB RFXC2 Ċ5

图 4-3 射频前端原理图 (DCDC 模式)

表 4-1 典型外部器件

元件	描述	值
C1	射频去耦电容	10μF//3×100nF
R1	单点接地	Ω
C2	数字电源 LDO 输出去耦电容	1μF
C3	VDD1/2/3 模拟电源去耦电容	3×100nF
X1	晶体 ¹	32MHz
C4、C5	晶体负载电容	参见注 1
L1	发射端输出偏置电感 ²	参见注 2
L2	DCDC 电感	10μΗ
C6	DCDC 输出电容	10μF // 10nF

注1:对于外部晶体的要求如下

- 1. 晶体频率 32MHz;
- 2. ESR < 50Ω;
- 3. 晶体负载电容≤ 12pF;
- 4. 晶体频率误差≤ 10ppm。
- 注 2: 电感 L1 需根据实际射频频段调整,推荐使用直流内阻小于 2Ω、额定电流大于 150mA 的器件。

4.4.4 射频内部接口

射频子系统提供一个内部处理单元来处理与 CPU 的通信,通信由通过内部 SPI 接口发送的命令处理,内置 IRQ 中断用于发出事件信号。

通信接口已在芯片内部连接,当使用射频功能时,芯片外部引脚的 SPI 功能不可用,且最高通信速率要求低于 10Mbps。

RF 内部接口引脚如下表所示:

表 4-2 RF 内部接口

RF 接口	引脚
IRQ	PB06
SPI_MOSI	PB05
SPI_MISO	PB04
SPI_CS	PB03
SPI_SCK	PB13

4.5 循环冗余校验计算单元(CRC)

CRC 计算单元可按所选择的算法和参数配置来生成数据流的 CRC 码。

有些应用中,可利用 CRC 技术来验证数据的传输和存储的完整性。

产品支持 8 种常用的 CRC 算法,包括:

CRC16_IBM

CRC16_MAXIM

CRC16_USB

CRC16_MODBUS

CRC16_CCITT

CRC16_CCITT_FALSE

CRC16_X25

CRC16_XMODEM

4.6 电源管理

4.6.1 电源供电方案

 V_{DD} 在 LDO 模式为 1.8V 到 3.6V, 在 DCDC 模式为 2V 到 3.6V 为 I/O 口和内部稳压器提供电源,通过 VDD 引脚接入。

- V_{DDA} 在 LDO 模式为 1.8V 到 3.6V,在 DCDC 模式为 2V 到 3.6V 为 ADC、复位电路、片内 RC 振荡器供电,通过 VDDA 引脚接入,需要 V_{DDA} 总是大于或等于 V_{DD} 电压。
- V_{DDRF} 在 LDO 模式为 1.8V 到 3.6V,在 DCDC 模式为 2V 到 3.6V 为射频子系统供电,通过 VDDRF 引脚接入。

为射频子系统供电的 VDDRF 是独立的,当使用射频子系统时,VDDRF 必须连接到与 VDD 相同的电源。

关于电源引脚供电的详细情况可参见图 7-3 电源系统。

4.6.2 电源监控

产品内部集成上电复位(POR)和掉电复位(BOR)电源监控电路。POR 和 BOR 始终处于工作状态,当监测到电源电压低于特定电压门限(V_{POR/BOR})时,芯片一直保持复位状态而无须外部复位电路。

POR/BOR 同时监控 VDD 和 VDDA 电源电压,为保证芯片解除复位后工作正常,须在电路设计上保证 VDD/VDDA 同时上下电。

4.6.3 电源稳压器

内置稳压器具有"正常"和"低功耗"两种工作模式,并且在复位后一直保持工作。

- "正常"模式:对应全速操作的状态。
- "低功耗"模式:对应部分供电工作状态,包括 Sleep 和 DeepSleep 工作模式。

4.6.4 低功耗工作模式

CW32W031 微控制器支持两种低功耗模式:

- Sleep 模式 在 Sleep 模式下,CPU 停止运行,所有外设保持工作,并且可以在发生中断或事件的时候唤醒 CPU。
- DeepSleep 模式

DeepSleep用于实现最低功耗, CPU停止运行, 高速时钟模块 (HSE、HSIOSC) 自动关闭, 低速时钟 (LSE、LSI、RC10K、RC150K) 保持原状态不变。

当发生外部复位,或 IWDT 复位,或部分外设中断发生,或 RTC 事件发生时,芯片退出 DeepSleep 模式。

4.7 时钟和启动

MCU 复位后,默认选择 HSI(由内部 48MHz HSIOSC 振荡器分频产生)作为 SysClk 的时钟源,系统时钟频率默认值是 8MHz。时钟故障检测模块能持续检测外部时钟源状态,一旦检测到外部时钟源故障,系统会自动切换到内部 HSIOSC 时钟源。如果对应故障检测中断处于使能状态,则会产生中断便于用户记录故障事件。

有多个预分频器允许由应用程序配置 AHB 和 APB 域的频率,AHB 和 APB 域的最大频率为 48MHz。

系统内部时钟树如下图所示:

图 4-4 CW32W031 的时钟树

4.8 通用输入输出端口(GPIO)

每个 GPIO 引脚可软件配置为推挽或开漏的数字输出,或带内部上拉或下拉的数字输入,以及外设复用功能。 部分 GPIO 引脚具有模拟功能,与内部模拟外设连接。所有 I/O 可配置为外部中断输入引脚,同时具有数字 滤波功能。

4.9 直接内存访问 (DMA)

芯片内置 DMA 控制器,4 条独立通道,外设和存储器之间、外设和外设之间、存储器和存储器之间的高速数据传输。

每个 DMA 通道都通过专用的硬件连接 DMA 请求,并支持独立的软件触发。软件可单独配置每个通道的传输方向和数据长度。

4.10 嵌套向量中断控制器 (NVIC)

CW32W031 系列微控制器嵌入了一个嵌套向量中断控制器,能够处理多达 32 个可屏蔽外部中断(不包括内核的 16 个中断源),支持可编程 4 级优先级。

- 中断入口向量表地址可重映射
- 紧耦合的 NVIC 与内核的接口
- 处理后发的高优先级中断
- 支持尾链处理
- 处理器状态自动保存

此硬件模块提供灵活的中断管理功能,并具有最小的中断延迟。

4.11 模拟数字转换器 (ADC)

内置 12 位模数转换器具有多达 13 个外部通道和 3 个内部通道(温度传感器、电压基准、VDDA/3),支持单通道或序列模式转换。

在序列通道模式下,对选定的一组模拟输入自动转换。

可以外接高精度电压基准。

ADC 可为 DMA 提供数据。

模拟看门狗功能可以精确地监控一个选定通道的转换电压。当转换电压位于所设定的阈值范围时会产生中断。

4.11.1 温度传感器

温度传感器(TS)产生一个随温度线性变化的电压 V_{SENSE}。

温度传感器内部连接到 ADC_IN14 输入通道,用于将传感器输出电压转换为数字值。

传感器提供良好的线性度,用户应先对其进行校准以获得良好的温度测量整体精度。由于温度传感器的偏移因工艺变化而随芯片而异,未校准的内部温度传感器适用于仅检测温度变化的应用。

为了提高温度传感器测量的准确性,制造商对每个芯片进行了单独的工厂校准。温度传感器出厂校准数据被存储在 FLASH 存储器中。

ADC 参考电压	校准值存放地址	校准值精度
内部 1.5V	0x0010 0A0A - 0x0010 0A0B	±3°C
内部 2.5V	0x0010 0A0C - 0x0010 0A0D	±3°C

表 4-3 内部温度传感器校准值地址

4.11.2 内置电压参考

ADC 参考电压除了可以选择 VDDA 和外部参考电压之外,还可以选择内部参考电压。内置参考电压生成器 (BGR) 可为 ADC 提供稳定的电压输出,分别是 1.5V 和 2.5V。

4.12 模拟电压比较器 (VC)

内部集成 2 个模拟电压比较器(VC),用于比较两路模拟输入电压,并将比较结果从引脚输出。电压比较器的正端输入支持多达 8 路外部模拟输入,负端既支持 8 路外部模拟输入,又支持内部电压基准、内部电阻分压器、内部温度传感器等电压参考。比较结果输出具有滤波功能、迟滞窗口功能,以及极性选择。支持比较中断,可用于低功耗模式下唤醒 MCU。

模拟电压比较器(VC)的主要特性有:

- 双路的模拟电压比较器 VC1、VC2
- 内部 64 阶电阻分压器
- 多达8路外部模拟信号输入
- 4路片内模拟输入信号
 - 内置电阻分压器输出电压
 - 内置温度传感器输出电压
 - 内置 1.2V 基准电压
 - ADC 参考电压
- 可选择输出极性
- 支持迟滞窗口比较功能
- 可编程的滤波器和滤波时间
- 3种中断触发方式,可组合使用
 - 高电平触发
 - 上升沿触发
 - 下降沿触发
- 支持低功耗模式下运行,中断唤醒 MCU

4.13 低电压检测器 (LVD)

低电压检测器(LVD)用于监测 VDDA 电源电压或外部引脚输入电压,当被监测电压与 LVD 阈值的比较结果满足触发条件时,将产生 LVD 中断或复位信号,通常用于处理一些紧急任务。

LVD 产生的中断和复位标志,只能由软件清零;只有当中断或复位标志被清零后,在再次达到触发条件时, LVD 才能再次产生中断或者复位信号。

低电压检测器(LVD)的主要特性有:

- 4路监测电压源 VDDA 电源电压, PA00、PB00、PB11 引脚输入。
- 16 阶阈值电压,范围 1.8V~3.3V
- 3种触发条件,可组合使用
 - 电平触发: 电压低于阈值
 - 下降沿触发: 电压跌落到阈值以下的下降沿
 - 上升沿触发: 电压回升到阈值以上的上升沿
- 可触发产生中断或复位信号,二者不能同时产生
- 8 阶滤波可配置
- 支持迟滞功能
- 支持低功耗模式下运行,中断唤醒 MCU

4.14 定时器和看门狗

CW32W031 微控制器内部集成二个通用定时器、三个基本定时器和一个高级控制定时器。

各个定时器的功能差异如下表所示:

表 4-4 定时器功能比较

定时器类型	定时器	计数器 位宽	计数方式	分频因子	DMA 请求	捕获 / 比较 通道	互补输出
高级定时器	ATIM	16 位	上/下/上下	2 ^N (N=0,,7)	YES	6	3
(本田中 中県	GTIM1	16 位	上/下/上下	1,2,3,4,…,65536	YES	4	1
通用定时器	GTIM2	16 位	上/下/上下	1,2,3,4,…,65536	YES	4	1
	BTIM1	16 位	上	1,2,3,4,…,65536	YES	0	1
基本定时器	BTIM2	16 位	上	1,2,3,4,…,65536	YES	0	1
	BTIM3	16 位	上	1,2,3,4,…,65536	YES	0	1

4.14.1 高级定时器(ATIM)

高级定时器(ATIM)由一个 16 位的自动重载计数器和 7 个比较单元组成,并由一个可编程的预分频器驱动。 ATIM 支持 6 个独立的捕获 / 比较通道,可实现 6 路独立 PWM 输出或 3 对互补 PWM 输出或对 6 路输入进行捕获。可用于基本的定时 / 计数、测量输入信号的脉冲宽度和周期、产生输出波形(PWM、单脉冲、插入死区时间的互补 PWM 等)。

4.14.2 通用定时器 (GTIM1..2)

内部集成 2 个通用定时器(GTIM),每个 GTIM 完全独立且功能完全相同,各包含一个 16bit 自动重装载计数器并由一个可编程预分频器驱动。GTIM 支持定时器模式、计数器模式、触发启动模式和门控模式 4 种基本工作模式,每组带 4 路独立的捕获 / 比较通道,可以测量输入信号的脉冲宽度(输入捕获)或者产生输出波形(输出比较和 PWM)。

4.14.3 基本定时器 (BTIM1..3)

内部集成3个基本定时器(BTIM),每个BTIM 完全独立且功能相同,各包含一个16bit 自动重装载计数器并由一个可编程预分频器驱动。BTIM 支持定时器模式、计数器模式、触发启动模式和门控模式4种工作模式,支持溢出事件触发中断请求和DMA请求。得益于对触发信号的精细处理设计,使得BTIM可以由硬件自动执行触发信号的滤波操作,还能令触发事件产生中断和DMA请求。

4.14.4 独立看门狗(IWDT)

独立看门狗定时器(IWDT)使用专门的内部 RC 时钟源 RC10K,可避免运行时受到外部因素影响。一旦启动 IWDT,用户需要在规定时间隔内对 IWDT 的计数器进行重载,否则产生溢出会触发复位或产生中断信号。 IWDT 启动后,可停止计数。用户可选择在深度休眠模式下 IWDT 保持运行或暂停计数。

专门设置的键值寄存器可以锁定 IWDT 的关键寄存器,防止寄存器被意外修改。

4.14.5 窗口看门狗(WWDT)

CW32W031 微控制器内部集成窗口看门狗定时器(WWDT),用户需要在设定的时间窗口内进行刷新,否则看门狗溢出将触发系统复位。WWDT 通常被用来监测有严格时间要求的程序执行流程,防止由外部干扰或未知条件造成应用程序的执行异常,导致发生系统故障。

4.14.6 SysTick 定时器

此定时器常用于实时操作系统,但也可用作标准递减计数器。它的特点是:

- 24 位递减计数器
- 自动重装载能力
- 当计数器达到 0 时产生可屏蔽的系统中断

4.15 自动唤醒定时器(AWT)

自动唤醒定时器(AWT)包含一个 16bit 向下计数器,并由一个可编程预分频器驱动。AWT 可选 5 种计数时钟源,可工作于定时模式或计数模式。当计数器时钟源为 LSE 或 LSI 时,AWT 可在深度休眠模式下保持运行,下溢出中断可唤醒 MCU 回到运行模式。

4.16 实时时钟(RTC)

实时时钟(RTC)是一个专用的计数器 / 定时器,可提供日历信息,包括小时、分钟、秒、日、月份、年份以及星期。

RTC 具有两个独立闹钟,时间、日期可组合设定,可产生闹钟中断,并通过引脚输出;支持时间戳功能,可通过引脚触发,记录当前的日期和时间,同时产生时间戳中断;支持周期中断;支持自动唤醒功能,可产生中断并通过引脚输出;支持 1Hz 方波和 RTCOUT 输出功能;支持内部时钟校准补偿。

CW32W031 内置经独立校准的 32kHz 频率的 RC 时钟源为 RTC 提供驱动时钟,RTC 可在深度休眠模式下运行,适用于要求低功耗的应用场合。

4.17 I2C 接口(I2C)

I2C 控制器能按照设定的传输速率将需要发送的数据按照 I2C 规范串行发送到 I2C 总线上,同时对通信过程中的状态进行检测,支持多主机通信的总线冲突和仲裁处理。

I2C 控制器的主要特性有:

- 支持主机发送 / 接收,从机发送 / 接收四种工作模式
- 支持时钟延展(时钟同步)和多主机通信冲突仲裁
- 支持标准(100Kbps)/ 快速(400Kbps)/ 高速(1Mbps)三种工作速率
- 支持 7bit 寻址功能
- 支持3个从机地址
- 支持广播地址
- 支持输入信号噪声过滤功能
- 支持中断状态查询功能

4.18 串行接口(UART)

内部集成3个通用异步收发器(UART),支持异步全双工、同步半双工和单线半双工模式,支持硬件数据 流控和多机通信,还支持LIN(局域互连网络);可编程数据帧结构,可以通过小数波特率发生器提供宽范 围的波特率选择。内置定时器模块,支持等待超时检测、接收空闲检测、自动波特率检测和通用定时功能。

UART 控制器工作在双时钟域下,允许在深度休眠模式下进行数据的接收,接收完成中断可以唤醒 MCU 回到运行模式。

4.19 串行外设接口(SPI)

串行外设接口(SPI)支持双向全双工、单线半双工和单工通信模式,可配置 MCU 作为主机或从机,支持多主机通信模式,支持直接内存访问(DMA)。

串行外设接口(SPI)的主要特性有:

- 支持主机模式、从机模式
- 支持全双工、单线半双工、单工
- 可选的 4 位到 16 位数据帧宽度
- 支持收发数据 LSB 或 MSB 在前
- 可编程时钟极性和时钟相位
- 主机模式下通信速率高达 PCLK/2
- 从机模式下通信速率高达 PCLK/4
- 支持多机通信模式
- 8个带标志位的中断源
- 支持直接内存访问(DMA)

4.20 红外调制发送器(IR)

内部集成红外调制发送器(IR),通过两路通用定时器或一路通用定时器与 UART 配合使用,可方便实现各种标准的 PWM 或 PPM 编码方式,也可实现 UART 数据的红外调制发送。

红外调制发送器(IR)的主要特性有:

- 支持 IrDA 标准 1.0 的 SIR
- 最高数据速率 115.2kbps
- 可适应高低电平红外发射管

4.21 串行调试接口(SWD)

提供一个 ARM SWD 接口,用户可使用芯源半导体的 CW-DPLINK 连接到 MCU,在 IDE 开发环境中进行调试和仿真。

5 引脚定义

图 5-1 QFN64 封装引脚图(顶视图)

表 5-1 引脚定义表中的项目说明和缩写

名称	缩写	定义
引脚名	除非有特别说明,在领	夏位后引脚的默认功能和引脚名相同
	S	电源引脚
 引脚类型	I	输入引脚
1脚矢至	I/O	输入/输出引脚
	0	输出引脚
	ТТа	连接模拟功能的 I/O 口
	TC	标准的 I/O 口
I/O 架构	RF	RF I/O
	В	BOOT 专用引脚
	RST	复位输入引脚
备注	除非有特别说明,在领	夏位后所有引脚处于高阻输入状态
附加功能	数字功能	功能由 GPIOx_AFRy 寄存器的值决定
PIN ハロ・ケノ目已	模拟功能	功能直接由外设寄存器决定

表 5-2 CW32W031 引脚定义

引脚号					附加功能		
QFN64	付別脚名称(复位后的默认力。 分能)	引脚类型	I/O 结构	备注	数字功能	模拟功能	
1	NRST	I	RST	-	芯片复位输入		
2	VSSA	S	-	-	模拟地		
3	VDDA	S	-	-	模拟电源供电		
4	PA00	I/O	ТТа	-	UART3_CTS, UART2_CTS, RTC_TAMP, VC1_OUT, GTIM2_CH1, GTIM2_ETR	ADC_INO, VC1_CH0, LVD_CH1	
5	PA01	I/O	TTa	-	UART3_RTS, UART2_RTS, LVD_OUT, GTIM2_CH2, RTC_TAMP	ADC_IN1, VC1_CH1	
6	PA02	I/O	ТТа	-	UART3_TXD, UART2_TXD, VC2_OUT, GTIM2_CH3, AWT_ETR	ADC_IN2, VC1_CH2	
7	PA03	I/O	TTa	-	UART3_RXD, UART2_RXD, GTIM2_CH2, PCLK_OUT, UART3_TXD, GTIM2_CH4, ATIM_CH3A	ADC_IN3, VC1_CH3	
8	PA04	I/O	TTa	-	MCO_OUT, UART2_CTS, HCLK_OUT, SPI_CS, GTIM2_ETR, ATIM_CH2A	ADC_IN4, VC1_CH4	
9	PA05	I/O	TTa	-	GTIM2_ETR, UART2_RTS, BTIM2_TOGN, SPI_SCK, GTIM2_CH1, ATIM_CH1A	ADC_IN5, VC1_CH5, VC2_CH0	
10	PA06	I/O	ТТа	-	UART2_RXD, UART2_TXD, VC1_OUT, BTIM2_TOGP, SPI_MISO, TIM1_CH1, ATIM_BK	ADC_IN6, VC1_CH6, VC2_CH1	
11	PA07	I/O	TTa	-	UART2_TXD, ART2_RXD, VC2_OUT, BTIM1_TOGN, SPI_MOSI, GTIM1_CH2, ATIM_CH1B	ADC_IN7, VC1_CH7, VC2_CH2	
12	PB00	I/O	TTa	-	UART2_RXD, UART1_CTS, UART2_TXD, BTIM1_TOGP, HSIOSC_OUT, GTIM1_CH3, ATIM_CH2B	ADC_IN8/ ExRef, VC2_CH3, LVD_CH2	
13	PB01	I/O	TTa	-	UART2_TXD, UART1_RTS, UART2_RXD, BTIM3_TOGN, GTIM1_CH4, ATIM_CH3B	ADC_IN9, VC2_CH4	
14	PB02	I/O	TTa	-	UART2_CTS, UART1_TXD, HSE_OUT, UART1_RXD, BTIM3_TOGP, GTIM1_ETR, ATIM_CH1A	ADC_IN10, VC2_CH5	
15	PB10	I/O	ТТа	-	UART2_RTS, UART1_RXD, I2C_SCL, UART1_TXD, GTIM2_CH3, ATIM_CH2A	ADC_IN11, VC2_CH6	

引脚号					附加功能		
QFN64	付別脚名称(复位后的默认力。 付別的一位后的默认可能)	1 4/1/ 1	1/0 结构	鲁注	数字功能	模拟功能	
16	PB11	I/O	ТТа	-	LSI_OUT, I2C_SDA, BTIM_ETR, GTIM2_CH4, ATIM_CH3A	ADC_IN12, VC2_CH7, LVD_CH3	
17	VSS	S	-	-	数字地		
18	VDD	S	-	1	数字电源供电		
19	PB12	I/O	TC	-	GTIM2_TOGP, LSE_OUT, SPI_CS, GTIM1_TOGP, ATIM_BK		
20	PB14	I/O	TC	-	GTIM2_CH1, SPI_MISO, RTC_OUT, ATIM_CH2B		
21	PB15	I/O	TC	-	GTIM2_CH2, BTIM2_TOGN, SPI_MOSI, RTC_1Hz, ATIM_CH3B		
22	PA08	I/O	TC	-	UART1_TXD, BTIM2_TOGP, MCO_OUT, LVD_OUT, ATIM_CH1A		
23	PA09	I/O	TC	-	UART3_TXD, UART1_RXD, I2C_SCL, BTIM1_TOGN, SPI_CS, UART3_RXD, ATIM_CH2A		
24	PA10	I/O	TC	-	UART3_RXD, UART1_CTS, I2C_SDA, BTIM1_TOGP, SPI_SCK, UART3_TXD, ATIM_CH3A		
25	PA11	I/O	TC	-	UART3_CTS, UART1_RTS, VC1_OUT, SPI_MISO, ATIM_GATE		
26	PA12	I/O	TC	-	UART3_RTS, BTIM_ETR, VC2_OUT, SPI_MOSI, ATIM_ETR		
27	PA13/ SWDIO	I/O	TC	1	I2C_SDA, UART1_RXD, UART2_TXD, IR_OUT		
28	PF06	I/O	TC	-	UART3_CTS, I2C_SCL, UART2_CTS, BTIM3_TOGN		
29	PF07	I/O	TC	-	UART3_RTS, I2C_SDA, UART2_RTS, BTIM3_TOGP		
30	PA14/ SWCLK	I/O	TC	1	UART3_TXD, I2C_SCL, UART1_TXD, UART2_RXD,		
31	VDDRF	S	-	-	电源供电(RF)		
32	DVDD	S	-	-	数字电源 LDO 输出		
33	VDD1	S	-	-	模拟电源,DCDC 模式连接 VFB,LDO 模式连接总电源		

引脚号				母	附加功能			
QFN64	引脚名称 (复 位后的默认 功能)	引脚类型	1/0 结构	金	数字功能	模拟功能		
34	VSSRF	S	-	-	地(RF)			
35	VLX	-	-	-	内部 DCDC 输出,DCDC 模式连接外部串联电感,LDO 模式 NC			
36	VDDRF	S	-	-	电源供电(RF)			
37	VFB	-	-	-	内部 DCDC 反馈输入,DCDC 模式与 VDD1/2模式 NC	2/3 相连,LDO		
38	RFXC1	I	RF	-	32MHz 晶振输入(RF)			
39	RFXC2	0	RF	-	32MHz 晶振输出(RF)			
40	VDD2	S	-	-	模拟电源,DCDC 模式连接 VFB,LDO 模式运	生接总电源		
41	ANTN	I	RF	-	接收端天线负端			
42	ANTP	I	RF	-	接收端天线正端			
43	VDD1P8V	S	-	-	低功率 PA LDO 电源,DCDC 模式连接 VFB,LDO 模式连接 总电源			
44	VDDPA_LDO	S	-	-	低功率 LDO 输出			
45	TX_ANT_LP	0	RF	-	发射端低功率 PA 输出			
46	TX_ANT_HP	0	RF	-	发射端高功率 PA 输出			
47	VDDRF	S	-	-	电源供电(RF)			
48	VDD3	S	-	-	模拟电源,DCDC 模式连接 VFB,LDO 模式链	连接总电源		
40	CDIO10	I			RF 数字信号输入			
49	GPIO10	0	=	=	RF 外置 PA 使能控制信号			
Ε0	GPIO11	I			RF 数字 IO			
50	GPIOII	0	_	-	RF 信道状态指示信号			
51	GPIO1	I/O	-	-	RF 数字 IO			
52	GPIO3	I/O	-	-	RF 数字 IO			
53	PF07	I/O	TC	-	UART3_RTS, 2C_SDA, UART2_RTS, BTIM3_TOGP			
54	PF03/BOOT	I	В	-				
55	PB08	I/O	TC	-	I2C_SCL, ART1_RXD, UART1_TXD, GTIM1_CH3, ATIM_ETR			
56	PB09	I/O	ТС	_	I2C_SDA, UART1_TXD, UART1_RXD, IR_OUT, GTIM1_CH4, ATIM_BK			

引脚号					附加功能		
QFN64	引脚名称 (复 位后的默认 功能)	引蹄类型	I/0 结构	一	数字功能	模拟功能	
57	VSS	S	-	-	数字地		
58	VDD	S	-	-	数字电源供电		
59	Vcore	-	-	-	Vcore		
60	PC13	I/O	TC	-	UART1_TXD, RTC_1Hz, UART1_CTS, RTC_OUT, BTIM_ETR, RTC_TAMP		
61	PC14	I/O	TC	-	AWT_ETR, UART2_TXD, UART1_RTS, BTIM2_TOGN, UART2_RXD	OSC32_IN	
62	PC15	I/O	TC	-	HSE_OUT, UART2_RXD, MCO_OUT, BTIM2_TOGP, UART2_TXD, UART1_RXD	OSC32_OUT	
63	PF00	I/O	TC	-	AWT_ETR, UART3_TXD, I2C_SDA, BTIM1_TOGN, UART3_RXD, GTIM2_TOGP	OSC_IN	
64	PF01	I/O	TC	-	LSE_OUT, UART3_RXD, I2C_SCL, BTIM1_TOGP, UART3_TXD, GTIM2_TOGN	OSC_OUT	

注1:复位后,此引脚被配置为 SWDIO 和 SWCLK 功能,同时内部上拉电阻被默认接通。

表 5-3 通过 GPIOA_AFRy 寄存器选择的特殊功能列表

引脚名	功能 1	功能 2	功能 3	功能 4	功能 5	功能 6	功能7
PA00	UART3_CTS	UART2_CTS	RTC_TAMP	VC1_OUT		GTIM2_CH1	GTIM2_ETR
PA01	UART3_RTS	UART2_RTS		LVD_OUT		GTIM2_CH2	RTC_TAMP
PA02	UART3_TXD	UART2_TXD		VC2_OUT		GTIM2_CH3	AWT_ETR
PA03	UART3_RXD	UART2_RXD	GTIM2_CH2	PCLK_OUT	UART3_TXD	GTIM2_CH4	ATIM_CH3A
PA04	MCO_OUT	UART2_CTS		HCLK_OUT	SPI_CS	GTIM2_ETR	ATIM_CH2A
PA05	GTIM2_ETR	UART2_RTS		BTIM2_TOGP	SPI_SCK	GTIM2_CH1	ATIM_CH1A
PA06	UART2_RXD	UART2_TXD	VC1_OUT	BTIM2_TOGP	SPI_MISO	GTIM1_CH1	ATIM_BK
PA07	UART2_TXD	UART2_RXD	VC2_OUT	BTIM1_TOGN	SPI_MOSI	GTIM1_CH2	ATIM_CH1B
PA08	UART1_RXD	UART1_TXD	BTIM2_TOGP	MCO_OUT	LVD_OUT		ATIM_CH1A
PA09	UART3_TXD	UART1_RXD	I2C_SCL	BTIM1_TOGN	SPI_CS	UART3_RXD	ATIM_CH2A
PA10	UART3_RXD	UART1_CTS	I2C_SDA	BTIM1_TOGP	SPI_SCK	UART3_TXD	ATIM_CH3A
PA11	UART3_CTS	UART1_RTS		VC1_OUT	SPI_MISO		
PA12	UART3_RTS	BTIM_ETR		VC2_OUT	SPI_MOSI		ATIM_ETR
PA13/ SWDIO		I2C_SDA	UART1_RXD	UART2_TXD		IR_OUT	
PA14/ SWCLK	UART3_TXD	I2C_SCL	UART1_TXD	UART2_RXD			

表 5-4 通过 GPIOB_AFRy 寄存器选择的特殊功能列表

引脚名	功能 1	功能 2	功能 3	功能 4	功能 5	功能 6	功能 7
PB00	UART2_RXD	UART1_CTS	UART2_TXD	BTIM1_TOGP	HSIOSC_OUT	GTIM1_CH3	ATIM_CH2B
PB01	UART2_TXD	UART1_RTS	UART2_RXD		BTIM3_TOGN	GTIM1_CH4	ATIM_CH3B
PB02	UART2_CTS	UART1_TXD	HSE_OUT	UART1_RXD	BTIM3_TOGP	GTIM1_ETR	ATIM_CH1A
PB07	UART3_RXD	UART3_TXD	I2C_SDA			GTIM1_TOGN	ATIM_CH3A
PB08	I2C_SCL	UART1_RXD	UART1_TXD			GTIM1_CH3	ATIM_ETR
PB09	I2C_SDA	UART1_TXD	UART1_RXD	IR_OUT		GTIM1_CH4	ATIM_BK
PB10	UART2_RTS	UART1_RXD	I2C_SCL	UART1_TXD		GTIM2_CH3	ATIM_CH2A
PB11	LSI_OUT		I2C_SDA		BTIM_ETR	GTIM2_CH4	ATIM_CH3A
PB12	GTIM2_TOGP		LSE_OUT		SPI_CS	GTIM1_TOGP	ATIM_BK
PB14	GTIM2_CH1				SPI_MISO	RTC_OUT	ATIM_CH2B
PB15	GTIM2_CH2		BTIM2_TOGN		SPI_MOSI	RTC_1Hz	ATIM_CH3B

表 5-5 通过 GPIOC_AFRy 寄存器选择的特殊功能列表

引脚名	功能 1	功能 2	功能 3	功能 4	功能 5	功能 6	功能7
PC13	UART1_TXD	RTC_1Hz	UART1_CTS	RTC_OUT	BTIM_ETR		RTC_TAMP
PC14	AWT_ETR	UART2_TXD	UART1_RTS	BTIM2_TOGN	UART2_RXD		
PC15	HSE_OUT	UART2_RXD	MCO_OUT	BTIM2_TOGP	UART2_TXD	UART1_RXD	

表 5-6 通过 GPIOF_AFRy 寄存器选择的特殊功能列表

引脚名	功能 1	功能 2	功能 3	功能 4	功能 5	功能 6	功能 7
PF00	AWT_ETR	UART3_TXD	I2C_SDA	BTIM1_TOGN	UART3_RXD	GTIM2_TOGP	
PF01	LSE_OUT	UART3_RXD	I2C_SCL	BTIM1_TOGP	UART3_TXD	GTIM2_TOGN	
PF06	UART3_CTS	I2C_SCL		UART2_CTS			BTIM3_TOGN
PF07	UART3_RTS	I2C_SDA		UART2_RTS			BTIM3_TOGP

§ 地址镜像 CW32W031

6 地址镜像

CW32W031 内核最大寻址空间为 4GB,内置的程序存储器、数据存储器、各外设及端口寄存器被统一编址在同一个 4GB 的线性地址空间内。射频子系统具有独立的物理地址空间,M0+ 内核通过内部高速 SPI 接口访问 RF 子系统。

0xFFFF FFFF RES 0xE0FF FFFF M0+外设 0xE000 0000 0x4800 1400 - 0x4800 17FF **GPIOF RES** 0x4800 0800 - 0x4800 0BFF **GPIOC** 0x4800 17FF 0x4800 0400 - 0x4800 07FF **GPIOB** AHB 0x4800 0000 - 0x4800 03FF GPIOA AHB 0x4002 0000 0x4002 3000 - 0x4002 33FF CRC RES 0x4001 7FFF FLASH CTRL 0x4002 2000 - 0x4002 23FF APB4 0x4002 0000 - 0x4002 03FF DMA 0x4001 4000 0x4001 4C00 - 0x4001 4FFF AWT APB3 APB4 0x4001 4800 - 0x4001 4BFF BTIM1/2/3 0x4001 0000 RES 0x4000 7FFF UART1 0x4001 3800 - 0x4001 3BFF 0x4001 3000 - 0x4001 33FF SPI APB2 0x4000 4000 0x4001 2C00 - 0x4001 2FFF ATIM APB3 APB1 0x4001 2800 - 0x4001 2BFF VC/LVD 0x4000 0000 ADC 0x4001 2400 - 0x4001 27FF RES SYSCTRL 0x4001 0000 - 0x4001 03FF 0x2000 1FFF 0x4000 5400 - 0x4000 57FF I2C SRAM(8KB) 0x4000 4800 - 0x4000 4BFF UART3 APB2 0x2000 0000 0x4000 4400 - 0x4000 47FF UART2 RES 0x0010 0BFF 0x4000 3000 - 0x4000 33FF **IWDT** OTP(128B) 0x0010 0B80 WWDT 0x4000 2C00 - 0x4000 2FFF RES RTC APB1 0x4000 2800 - 0x4000 2BFF 0x0010 09FF GTIM2 0x4000 1000 - 0x4000 13FF 启动程序存储器 (2.5KB)0x4000 0400 - 0x4000 07FF GTIM1 0x0010 0000 RES 0x0000 FFFF FLASH(64KB) 0x0000 0000

图 6-1 CW32W031 的内部地址镜像

§ 地址镜像 CW32W031

表 6-1 CW32W031 的外设寄存器边界地址

设备或总线	边界地址	大小	对应外设
主 FLASH 存储器	0x0000 0000 - 0x0000 FFFF	64KB	主 FLASH
OTP 存储器	0x0010 0B80 - 0x0010 0BFF	128B	ОТР
启动程序存储器	0x0010 0000 - 0x0010 09FF	2.5KB	BootLoader
SRAM 存储器	0x2000 0000 - 0x2000 1FFF	8KB	SRAM
	0x4000 0400 - 0x4000 07FF	1KB	GTIM1
	0x4000 1000 - 0x4000 13FF	1KB	GTIM2
APB1 外设	0x4000 2800 - 0x4000 2BFF	1KB	RTC
	0x4000 2C00 - 0x4000 2FFF	1KB	WWDT
	0x4000 3000 - 0x4000 33FF	1KB	IWDT
	0x4000 4400 - 0x4000 47FF	1KB	UART2
APB2 外设	0x4000 4800 - 0x4000 4BFF	1KB	UART3
	0x4000 5400 - 0x4000 57FF	1KB	I2C
	0x4001 0000 - 0x4001 03FF	1KB	SYSCTRL
	0x4001 2400 - 0x4001 27FF	1KB	ADC
ADD2 51 \J	0x4001 2800 - 0x4001 2BFF	1KB	VC/LVD
APB3 外设	0x4001 2C00 - 0x4001 2FFF	1KB	ATIM
	0x4001 3000 - 0x4001 33FF	1KB	SPI
	0x4001 3800 - 0x4001 3BFF	1KB	UART1
	0x4001 4800 - 0x4001 4BFF	1KB	BTIM1/2/3
APB4 外设	0x4001 4C00 - 0x4001 4FFF	1KB	AWT
	0x4002 0000 - 0x4002 03FF	1KB	DMA
	0x4002 2000 - 0x4002 23FF	1KB	FLASH CTRL
	0x4002 3000 - 0x4002 33FF	1KB	CRC
AHB 外设	0x4800 0000 - 0x4800 03FF	1KB	GPIOA
	0x4800 0400 - 0x4800 07FF	1KB	GPIOB
	0x4800 0800 - 0x4800 0BFF	1KB	GPIOC
	0x4800 1400 - 0x4800 17FF	1KB	GPIOF
M0+ 外设	0xE000 0000 - 0xE00F FFFF	1MB	M0+ 内核外设

7 电气特性

7.1 参数条件

除非特别说明,所有的电压值都指相对于 Vss。

7.1.1 最大值和最小值

除非特别说明,在环境温度、电源电压和时钟频率的最坏条件下,通过在 $T_A = 25$ °C和 $T_A = T_A$ max(由所选温度范围给出)环境下对 100%产品的测试来得出各项参数的最大值和最小值保证。

在表格下方的注解中可能会提示有些数据是通过推算、设计模拟和 / 或工艺特性得到的,这些数据不是在生产线上测试得到的。在推算的基础上,最小值和最大值是通过样本测试后,取其平均值再加减三倍的标准分布(平均 $\pm 3\Sigma$)得到。

7.1.2 典型值

除非特别说明,典型值是基于 T_A = 25°C和 V_{DD} = 3.3V 测试环境的。这些数据仅用于设计指导而未经实验验证。

7.1.3 典型曲线

除非特别说明,所有的典型曲线仅用于设计指导而未经实验验证。

7.1.4 负载电容

测量引脚参数时的负载条件如下图所示:

图 7-1 引脚负载条件

7.1.5 引脚输入电压

引脚输入电压的测量方式如下图所示:

图 7-2 引脚输入电压

7.1.6 电源系统

图 7-3 电源系统

- 注 1:每个电源对(V_{DD}/V_{SS} 、 V_{DDA}/V_{SSA} 、 V_{DDRF}/V_{SSRF} 等)必须使用滤波陶瓷电容器去耦,如上图所示。这些电容必须尽可能靠近相应引脚放置或最近距离位于 PCB 背面,以确保芯片的稳定运行。
- 注 2: 所有的 V_{DD} 引脚都必须供电,且电压相同。

7.1.7 电流消耗测试

图 7-4 测试方式

7.2 极限参数

高于表 7-1、表 7-2 和表 7-3 所列的绝对最大额定值的应力可能会对芯片造成永久性的破坏。这些只是压力额定值,并不表示芯片在这种条件下能够正常工作。长时间处于最大额定条件下可能会影响芯片的可靠性。

表 7-1 电压特性 1

符号	描述	最小值	最大值	单位
V _{DD} - V _{SS}	外供主电源电压	-0.3	3.6	V
V_{DDA} - V_{SS}	外供模拟电源电压	-0.3	3.6	V
V_{DDRF} - V_{SS}	外供 RF 电源电压	-0.3	3.6	V
V_{DD} - V_{DDA}	V _{DD} 大于 V _{DDA} 时允许的最大差值	-	0.3	V
V _{IN} ²	IO 口输入电压	V _{ss} - 0.3	V_{DD}	V
ΔV_{DDx}	不同 V _{DD} 引脚间的压差	-	0.05	V
V _{SSX} -V _{SS}	不同 V _{ss} 引脚间的压差	-	0.05	V
V _{ESD(HBM)}	静电放电电压(人体模式)		9 ESD 特性	kV

注1: 所有的电源 $(V_{DD}, V_{DDA}, V_{DDA})$ 和地 $(V_{SS}, V_{SSA}, V_{SSRF})$ 引脚必须一直接在外接电源上,并保持在许可范围。

注 2: V_{IN} 的最大值是不能超过的,同时参见表 7-2 的最大允许注入电流值。

表 7-2 电流特性

符号	描述	最大值	单位
ΣI_{VDD}	全部 V _{DD} 供电线的灌电流总和(流入) ¹	+120	
ΣI_{VSS}	全部 V _{ss} 供电线的拉电流总和(流出) ¹	-120	
I _{VDD(PIN)}	单个 V _{DD} 供电线的灌电流总和(流入) ¹	+100	
I _{VSS(PIN)}	单个 V _{ss} 供电线的拉电流总和(流出) ¹	-100	
	单个 I/O 或控制引脚灌入的电流	+25	
I _{IO(PIN)}	单个 I/O 或控制引脚输出的电流	-25	mA
71	全部 I/O 或控制引脚灌入的电流总和	+80	
$\Sigma I_{IO(PIN)}$	全部 I/O 或控制引脚输出的电流总和	-80	
1 2, 3	TC 和 RST 引脚的注入电流	±5	
I _{INJ(PIN)} ^{2, 3}	TTa 引脚的注入电流	±5	
ΣI _{INJ(PIN)}	全部 I/O 或控制引脚注入的电流总和 ⁴	±25	

- 注 1: 所有的电源 $(V_{DD}, V_{DDA}, V_{DDRF})$ 和地 $(V_{SS}, V_{SSA}, V_{SSRF})$ 引脚必须一直接在外接电源上,并保持在许可范围。
- 注 2: $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{DD} 时,有一个正向注入电流;当 V_{IN} < V_{SS} 时,有一个反向注入电流。
- 注 3: 反向注入电流会干扰器件的模拟性能。
- 注 4:当几个 I/O 口同时有注入电流时, $\Sigma I_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。 该结果基于在器件 4 个 I/O 端口上 $\Sigma I_{INJ(PIN)}$ 最大值的特性。

表 7-3 温度特性

符号	描述	值	单位
T _{STG}	储存温度范围	-55 至 125	°C
T _J	最大结温	105	C

7.3 工作条件

7.3.1 一般工作条件

表 7-4 一般工作条件

符号	参数	条件	最小值	最大值	单位
f _{HCLK}	内部 AHB 总线频率	-	0	48	MIL
f _{PCLK}	内部 APB 总线频率	-	0	48	MHz
		TC I/O	-0.3	V _{DD} + 0.3	
V _{IN}	I/O 输入电压	TTa I/O	-0.3	V _{DDA} + 0.3	V
		BOOT	-0.3	V _{DD} +0.3	
LDO 模式					
V _{DD}	标准工作电压	-	1.8	3.6	
V_{DDA}	模拟工作电压	须等于 V _{DD}	1.8	3.6	V
V_{DDRF}	RF 工作电压	-	1.8	3.6	
DCDC 模式					
V_{DD}	标准工作电压	-	2.0	3.6	
V_{DDA}	模拟工作电压	须等于 V _{DD}	2.0	3.6	V
V_{DDRF}	RF 工作电压	-	2.0	3.6	

7.3.2 RF ChirpIoT ™特性

RF 处于如下测试条件:

• $T_A = 25$ °C, $V_{DDRF} = 3.3V$

● 频率: 490MHz

● 纠错码 = 4/8

● 误包率 ≤ 5%

● Payload 长度 = 10Bytes

● LDO 模式

表 7-5 RF ChirploT ™特性

符号	参数	条件	最小值	典型值	最大值	单位
Г	工作频率	-	370	-	590	
F _{OP}	工TF坝 平	-	740	-	1180	MHz
F _{XTAL}	晶振频率	-	-	32	-	
R _s	晶体串联电阻	-	-	30	50	Ω
C _{FOOT}	晶体外部电容	-	8	15	22	nΓ
C _{LOAD}	晶体负载电容	-	6	10	12	pF
F _{TOL}	初始频率容限	-	-	±10	-	ppm
BR	比特速率	-	0.08	-	20.4	kbps

注1: 不推荐使用8的整数倍以及8的整数倍 ±400kHz 以内的信道。

注 2: 信道间间隔需要大于 2×BW(带宽),并且不能为 1MHz ~ 1.1MHz 的倍数。

注 3: 工作在 863MHz~870MHz、902MHz~928MHz 频段时,若要过 ETSI 规范,不能使用最大功率档位, 推荐射频寄存器 Page1 中地址 0x63 配置值为 0xE7。

表 7-6 RF 发射特性

符号	参数	条件	最小值	最小值 典型值 最大值		单位
P_{LPWAN}	输出功率	-	-7	-	22	dBm

43 / 72

版本号: Rev 1.0

注:数据基于 490MHz 频点,其它频段参数指标上会有区别。

表 7-7 RF 接收特性

符号	参数	条件	最小值	典型值	最大值	单位
	RF 灵敏度,长距离	SF=7	-	-126	-	
RF_62.5	模式,最高LNA增益, 使用分离的RX/TX通	SF=10	-	-135	-	
	道 62.5kHz 带宽	SF=12	-	-140	-	
	RF 灵敏度,长距离	SF=7	-	-124	-	
RF_125	模式,最高 LNA 增益,使用分离的 RX/TX 通道 125kHz 带宽	SF=10	-	-132	-	
		SF=12	-	-137	-	
	RF 灵敏度,长距离	SF=7	-	-121	-	dBm
RF_250	模式,最高 LNA 增 益,使用分离的 RX/	SF=10	-	-129	-	
	TX 通道 250kHz 带宽	SF=12	-	-134	-	
	RF 灵敏度,长距离	SF=7	-	-119	-	
RF_500	模式,最高 LNA 增 益,使用分离的 RX/	SF=10	-	-126	-	
	TX 通道 500kHz 带宽	SF=12	-	-132	-	

注 1: 数据基于 490MHz 频点,其它频段参数指标上会有区别。

注 2: DCDC 模式比 LDO 模式灵敏度差 1dB~3dB。

表 7-8 RF 电流消耗

符号	参数	条件	最小值	典型值	最大值	单位
		深度休眠模式	-	400	-	nA
		TX 模式 @ 0dBm 输出功率	-	25	-	
		TX 模式 @ 18dBm 输出功率	-	83	-	
I _{DDRF}	RF 电流消耗	TX 模式 @ 22dBm 输出功率	-	135	-	
		RX 模式 @DCDC 模式,最大 LNA 增益	-	12.5	-	mA
		RX 模式 @LDO 模式,最大 LNA 增益	-	18	-	

表 7-9 RF I/O 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{OH}	输出高电平电压	-	V _{DDRF} -0.3	-	V_{DDRF}	
V _{OL}	输出低电平电压	-	$V_{\rm SSRF}$	-	V _{SSRF} +0.3	\/
V _{IH}	输入高电平电压	-	$0.8 \times V_{DDRF}$	-	-	V
V _{IL}	输入低电平电压	-	-	-	0.2×V _{DDRF}	
f _{SCK}	SPI 时钟频率	-	-	-	10	Mbps

7.3.3 上电 / 掉电时的工作条件

下表中给出的参数是在表7-4一般工作条件列出的工作条件下测试得到的。

表 7-10 上电 / 掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
+	V _{DD} 上升速率		0	∞	
t_{VDD}	V _{DD} 下降速率	-	20	∞	
4	V _{DDA} 上升速率		0	∞	μs/V
t _{VDDA}	V _{DDA} 下降速率	-	20	∞	

7.3.4 内置复位和电源控制电路特性

下表中给出的参数是在表7-4一般工作条件列出的工作条件下测试得到的。

表 7-11 内置复位和电源控制电路特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{POR/BOR} 上电 / 掉电复位门限	L中 / 指中有位门阳	下降沿	1.45 ¹	1.50	1.55^{2}	V
	工电 / 挥电发证门版 	上升沿	1.50 ²	1.55	1.60	V
$V_{BORhyst}^{}3}$	BOR 迟滞	-	-	50	-	mV
t _{RSTTEMPO} 3	复位持续时间	-	4	6.5	13	ms

注1:产品的特性由设计保证至最小的数值 V_{POR/BOR}。

注 2: 由参数推导,不在生产中测试。 注 3: 由设计保证,不在生产中测试。

7.3.5 内部电压参考

表 7-12 内部电压参考

符号	参数	条件	最小值	典型值	最大值	单位
V _{REFINT1V5}	内部 1.5V 参考电压	-40°C < T _A < +85°C	1.485	1.50	1.515	V
V _{REFINT2V5}	内部 2.5V 参考电压	-40°C < T _A < +85°C	2.475	2.50	2.525	V
ΔV_{REFINT}	全温度范围内的内部参考 电压分布	V _{DDA} = 3V	-	-	10 ¹	mV
T _{Coeff}	温度系数	-	-60 ¹	-	+601	ppm/°C

注1:由设计保证,不在生产中测试。

7.3.6 供电电流特性

电流消耗是受多种因素影响的,例如:工作电压、环境温度、I/O 引脚负载、软件程序配置、工作频率、I/O 口开关速率、以及程序运行时取指令的存储位置等等。

图 7-4 测试方式显示了测试电流消耗的电路。

所有运行模式的电流消耗测量结果,均基于测试 CoreMark 时相同的有限代码。

典型和最大电流消耗

MCU 处于如下测试条件:

- 全部 I/O 口处于模拟输入状态
- 全部外设除了特定提醒的部分,都处于关闭状态
- FLASH 的访问速度调整到 f_{HCLK} 频率
 - 0~24MHz 时不插入等待位
 - 超过 24MHz 时插入 1 个等待位
 - 超过 48MHz 时插入 2 个等待位
- 当外设使能时 f_{PCLK} = f_{HCLK}

表7-13到表7-15中给出的数据源自备注的环境温度和供电电压下的测试,测试条件详见表7-4一般工作条件。

表 7-13 V_{DD} = V_{DDA} = 3.6V 时的典型及最大电流消耗

				全部夕	卜设打开	
符号	参数	条件	f _{HCLK}	典型值	最大值 ¹	单位
				— 灰 宝旭	T _A = 85°C	
. 2	运行模式的供电		48MHz	4.6	5.2	
l _{DD} ²	电流(代码自 FLASH中运行)	HSI 或 HSE 时钟	24MHz	3.7	4.2	mA
	运行模式的供电		48MHz	2.6	2.9	
I _{DD}	电流(代码自 RAM中运行)	HSI 或 HSE 时钟	24MHz	1.5	1.7	mA
	Sleep 模式的供 电电流(代码自		48MHz	1.1	1.23	
I _{DD}	FLASH 或 RAM 中运行)	HSI 或 HSE 时钟	24MHz	0.75	0.86	mA

注 1:数据基于表征结果,除非另有说明,否则未经生产测试。

注 2: Inn 是 Vnn 和 VnnA 的总电流消耗。

表 7-14 系统时钟为 LSE 时的电流消耗

符号	\$ *h	参数 条件		V _{DD} = 1.8	8V~3.6V	$V_{DD} = 3.3V$	公
切写	多数 	余件		最小值 1 最大值 1		典型值	单位
	\=\\^\+\\		T _A = -40° C	7.6	8.7	8.1	
	运行模式的供电电流 (代码自 FLASH 中	LSE=32768Hz	T _A = 25° C	8.0	8.7	8.2	
	运行,全部外设时钟	(AMP=0, DRIVER=0)	T _A = 50° C	8.6	9.3	8.8	
l _{DD} ²	打开)		T _A = 85° C	12.0	13.4	12.7	
IDD	~~ # + 的 # 中 中 淬		T _A = -40° C	5.8	6.9	6.3	μΑ
	运行模式的供电电流 (代码自 FLASH 中 运行,全部外设时钟 关闭)	LSE=32768Hz	T _A = 25° C	6.2	6.9	6.4	
		(AMP=0, DRIVER=0)	T _A = 50° C	6.8	7.5	7.0	
			T _A = 85° C	10.3	11.6	10.9	

注1:数据基于表征结果,除非另有说明,否则未经生产测试。

注2: IDD 是 VDD 和 VDDA 的总电流消耗。

表 7-15 DeepSleep 时的典型及最大电流消耗

符号	参数	参数 条件		最大值 ¹	单位
			3.6V	T _A =85°C	
l _{DD} ²	DeepSleep 模式	稳压器处于运行模式,全部振荡器关闭	0.45	3.84	
I _{DD}	供电电流	稳压器处于运行模式,LSI 和 IWDT 打开	1.11	4.65	μΑ

注 1:数据基于表征结果,除非另有说明,否则未经生产测试。

注2: IDD 是 VDD 和 VDDA 的总电流消耗。

典型电流消耗

MCU 处于如下测试条件:

- $V_{DD} = V_{DDA} = 3.3V$
- 全部 I/O 口处于模拟输入状态
- FLASH 的访问速度调整到 f_{HCLK} 频率
 - 0~24MHz 时不插入等待位
 - 超过 24MHz 时插入 1 个等待位
 - 超过 48MHz 时插入 2 个等待位
- 当外设使能时 f_{pcik} = f_{hcik}
- 对应 4MHz、2MHz、1MHz 和 500kHz,AHB 分频系数分别为 2、4、8 和 16

			典型	型值	
参数	条件	f_{HCLK}	全部外设	全部外设	

以8MHz外部晶体振荡

器时钟从 FLASH 运行

单位

mA

关闭

4.6

1.6

打开

7.2

2.1

48MHz

8MHz

表 7-16 运行模式的典型电流消耗,程序从 FLASH 运行

注1: Inn 是 Vnn 和 VnnA 的总电流消耗。

运行模式的供电电流

I/O 系统电流消耗

符号

 I_{DD}^{1}

I/O 系统的电流消耗包括两个部分: 静态和动态

● I/O 静态电流消耗

当全部的I/O引脚由外部保持低电平时,I/O口处于输入模式并打开内部上拉的情况下,会产生电流消耗。这部分的数据可以简单的通过表 7-30 I/O 静态特性中的上拉电阻值来计算。

作为输出引脚,任何外部的下拉或者外部负载也需要考虑电流消耗。

如果 I/O 口的输入电平是中间电平,将会不断引起内置施密特触发器翻转,导致额外的随机电流消耗(尽管很小),如果不需要实时判断电平翻转情况,那应该将 I/O 口置于模拟输入模式以避免这一点。

- 注:由于外部电磁噪声,任何浮动输入引脚也可能稳定到中间电压电平或无意中切换。为避免与浮动引脚相关的电流消耗,它们必须配置为模拟模式,或在内部强制为确定的数字值。这可以通过使用上拉/下拉电阻或通过将引脚配置为输出模式来完成。
 - I/O 动态电流消耗

除了之前测量的内部外设电流消耗外,应用程序使用 I/O 也会影响电流消耗。当 I/O 引脚切换时,它使用来自 I/O 电源电压的电流为 I/O 引脚电路供电,并对连接到该引脚的容性负载(内部或外部)进行充电和放电:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

其中:

Isw 是开关 I/O 为容性负载充电 / 放电所吸收的电流

V_{DDIOx} 是 I/O 的供电电压

fsw 是 I/O 开关切换频率

C 是 I/O 口总电容: C = C_{INT} + C_{EXT} + C_S

C。是 PCB 板包括焊盘的寄生电容

测试引脚被配置成推拉输出模式并由软件以固定的频率不断翻转。

表 7-17 开关输出 I/O 电流消耗

符号	参数	条件 1	I/O 翻转频率 (f _{sw})	典型值	单位
			4MHz	0.18	
		$V_{DDIOx} = 3.3V$	8MHz	0.37	
		$C_{EXT} = 0pF$ $C = C_{INT} + C_{EXT} + C_{S}$	16MHz	0.76	
			24MHz	1.39	mA
		$V_{DDIOx} = 3.3V$ $C_{EXT} = 22pF$ $C = C_{INT} + C_{EXT} + C_{S}$	4MHz	0.49	
I _{SW}	I/O 电流消耗		8MHz	0.94	
			16MHz	2.38	
			24MHz	3.99	
		V _{DDIOX} = 3.3V	4MHz	0.81	
		C _{EXT} = 47pF	8MHz	1.7	
		$C = C_{INT} + C_{EXT} + C_{S}$	16MHz	3.67	

注1: C_s = 7pF(估计值)。

7.3.7 低功耗模式及其唤醒时间

下表给出的唤醒时间是在 HSIOSC 的唤醒阶段测试得到的。

从 Sleep 模式及 DeepSleep 模式唤醒后,SYSCLK 时钟源设置保持不变。

所有测试环境均来自表 7-4 一般工作条件中总结的环境温度和电源电压条件。

表 7-18 低功耗模式唤醒时间

符号	参数	条件	典型值 @V _{DD} (V _{DD} = V _{DDA}) 3.3V	最大值	单位
t _{wusleep}	从 Sleep 模式唤醒	-	4	4	HCLK
t _{WUDEEP}	从 DeepSleep 模式唤醒	稳压器处于运行模式	4.0	5.0	μs

7.3.8 外部时钟源特性

外部输入的高速用户时钟源

在旁路模式下,HSE 振荡器被关闭,此时的输入引脚是一个标准的 GPIO。

外部时钟信号须遵守 7.3.12 I/O 口特性中的 I/O 特性。推荐的时钟输入波形如图 7-5 高速外部时钟源交流时序所示。

参数1 符号 单位 最小值 典型值 最大值 $f_{\text{HSE_EXT}}$ 用户外部时钟源频率 1 32 MHzOSC_IN 输入引脚高电平电压 V_{HSEH} $0.7\,V_{\text{DDIOx}}$ V_{DDIOx} V $0.3 V_{DDIOx}$ V_{HSEL} OSC IN 输入引脚低电平电压 V_{SS} $t_{\text{W(HSEH)}}$ OSC_IN 输入高 / 低电平时间 15 $t_{W(HSEL)}$ ns $t_{\text{r}(\text{HSE})}$ OSC_IN 输入升 / 降沿时间 20 $t_{f(HSE)}$

表 7-19 高速外部时钟输入特性

注1:由设计保证,量产过程不会测试。

图 7-5 高速外部时钟源交流时序

外部输入的低速用户时钟源

在旁路模式下,LSE 振荡器被关闭,此时的输入引脚是一个标准的 GPIO。

外部时钟信号须遵守 7.3.12 I/O 口特性中的 I/O 特性。推荐的时钟输入波形如图 7-6 低速外部时钟源交流时 序所示。

符号	参数 1	最小值	典型值	最大值	单位
f _{LSE_EXT}	用户外部时钟源频率	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN 输入引脚高电平电压	0.7 V _{DDIOx}	-	V_{DDIOx}	V
V _{LSEL}	OSC32_IN 输入引脚低电平电压	V _{SS}	-	0.3 V _{DDIOX}	V
t _{W(LSEH)}	OSC32_IN 输入高 / 低电平时间	450	-	-	nc
t _{r(LSE)}	OSC32_IN 输入升 / 降沿时间	-	-	50	ns

表 7-20 低速外部时钟输入特性

注 1: 由设计保证,量产过程不会测试。

图 7-6 低速外部时钟源交流时序

由晶体 / 陶瓷谐振器产生的高速外部时钟

高速外部时钟 (HSE) 可以使用一个 4MHz 到 32MHz 的晶体 / 陶瓷谐振器构成的振荡器产生。本节给出的所 有信息都是基于下表中所述的典型外部组件的设计模拟结果。在应用中,谐振器和负载电容必须尽可能地靠 近振荡器引脚,以减少输出失真和启动稳定时间。有关谐振器特性(频率、封装、精度)的更多细节,请参 阅晶体谐振器制造商。

数据手册 52 / 72 版本号: Rev 1.0

条件1 最小值2 符号 参数 典型值 最大值2 单位 MHz振荡器频率 4 8 32 f_{osc in} $R_{\scriptscriptstyle F}$ 反馈电阻 1.4 $M\Omega$ 启动3 900 $V_{DD} = 3.3 \text{ V},$ $R_m = 45 \Omega$, 430 $C_L = 10 pF@8 MHz$ HSE 电流消耗 I_{DD} μΑ $V_{DD} = 3.3 \text{ V},$ $R_m = 30 \Omega$, 980 $C_1 = 20 \text{ pF}@32 \text{ MHz}$ $t_{\text{su(HSE)}}\,^{\text{4}}$ 启动时间 V_{DD} 稳定 2 ms

表 7-21 HSE 振荡器特件

注1:由晶体/陶瓷谐振器制造商提供的谐振器特性。

注 2: 设计保证,不经生产测试。

注 3: 该消耗水平发生在 t_{su(HSE)} 启动时间的前 2/3。

注 4: $t_{su(HSE)}$ 是从启动 (通过软件) 到达到稳定的 8MHz 振荡的启动时间。这个值是标准晶体谐振器的测量值, 它可以随晶体制造商的不同而显著变化

由晶体 / 陶瓷谐振器产生的低速外部时钟

低速外部时钟 (LSE) 可以使用一个 32.768kHz 的晶体 / 陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数 (频率、封装、精度等),请咨询相应的生产厂商。

符号	参数 1	条件	最小值 ¹	典型值	最大值 ¹	单位
	105 th 75 WH	最小驱动能力	-	0.35	0.45	
		较小驱动能力	-	0.45	0.60	
I _{DD}	LSE 电流消耗	正常驱动能力	-	0.70	0.90	μΑ
		较强驱动能力	-	1.60	2.00	
t _{su(LSE)} ²	启动时间	V _{DD} 稳定	-	1.50	-	S

表 7-22 LSE 振荡器特性 (f_{LSF} =32.768kHz)

注1:设计保证,不经生产测试。

注 2: $t_{su(LSE)}$ 是从启用 (通过软件) 到达到稳定的 32.768kHz 振荡的启动时间。这个值是对标准晶体测量的,它可以随着晶体制造商的不同而显著变化。

7.3.9 内部时钟源特性

以下列表给出的测试数据基于表 7-4 一般工作条件提示的测试环境抽样测试。

高速内部(HSIOSC)RC 振荡器

表 7-23 HSI 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSI}	频率	-	-	48	-	MHz
TRIM	HSI 用户修正步长	-	-	0.2	-	%
Duty _{HSI}	占空比	-	45	-	55	%
۸۵۵	HSI 工厂校准精度	T _A = -40°C ~ +85°C	-2.0	-	+2.0	%
ACC _{HSI}	NSI 工厂 仪准相反	T _A = +25°C	-0.5	-	+0.5	%
t _{su(HSI)}	HSI 振荡器建立时间	-	3	-	5	μs
I _{DDA(HSI)}	HSI 振荡器电流消耗	-	-	600	-	μΑ

低速内部(LSI)RC 振荡器

表 7-24 LSI 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{LSI}	频率	-	-	32.8	-	kHz
TRIM	LSI 用户修正步长	-	-	1	-	%
Duty _{LSI}	占空比	-	45	-	55	%
۸۵۵	LSI 工厂校准精度	T _A = -40°C ~ +85°C	-3	-	+3	%
ACC _{LSI}	LSI 工厂 作的技	T _A = +25°C	-1	-	+1	%
t _{SU(LSI)}	LSI 振荡器建立时间	-	-	-	50	μs
I _{DDA(LSI)}	LSI 振荡器电流消耗	-	-	1	-	μΑ

超低速内部(RC10K)RC 振荡器

表 7-25 RC10K 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{RC10K}	频率	-	-	8	-	kHz
Duty _{RC10K}	占空比	-	45	-	55	%
4.66	DC101/ 山厂结舟	T _A = -40°C ~ +85°C	-50	-	+50	%
ACC _{RC10K}	RC10K 出厂精度	T _A = +25°C	-20	-	+20	%

中低速内部(RC150K)RC振荡器

表 7-26 RC150K 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{RC150K}	频率	-	-	120	-	kHz
Duty _{RC150K}	占空比	-	45	-	55	%
4.00	DC150V 山厂结舟	T _A = -40°C ~ +85°C	-50	-	+50	%
ACC _{RC150K}	RC150K 出厂精度	T _A = +25°C	-20	-	+20	%

7.3.10 存储器特性

FLASH 存储器

未特别说明的情况下,下列数据针对 -40℃~+85℃测试环境。

表 7-27 FLASH 存储器特性

符号	参数	条件	最小值	典型值	最大值 ¹	单位
t _{prog8}	8 位编程时间	T _A = -40°C ~ +85°C	-	30	-	μs
t _{prog16}	16 位编程时间	T _A = -40°C ~ +85°C	-	37	-	μs
t _{prog32}	32 位编程时间	T _A = -40°C ~ +85°C	-	51	-	μs
t _{ERASE}	页擦除时间	T _A = -40°C ~ +85°C	-	4.6	-	ms
t _{ME}	整片擦除时间	T _A = -40°C ~ +85°C	-	35	-	ms
	供电电流	写模式	-	-	3.5	mA
I _{DD}	洪电电流 	擦除模式	-	-	2.0	mA
V_{prog}	编程电压	-	1.8	-	3.6	V

注1:由设计保障,非量产实测。

表 7-28 FLASH 存储器寿命和数据保存期限

符号	参数	条件	最小值 ¹	单位
N _{NED}	寿命	$T_A = -40^{\circ}C \sim +85^{\circ}C$	20000	次
+	 数据保存期限	T _A = 25°C	100	年
t_{RET}	数1位1木1子积1吨	T _A = 85°C	25	++

注1: 由综合评估得出,非量产实测。

7.3.11 ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

表 7-29 ESD 特性

符号	参数	条件	典型值	最大值	单位
V _{ESD(HBM)}	静电放电电压 (人体模型)	T _A =+25°C, 符合 JESD22-A115C	-	8	kV
V _{ESD(CDM)}	静电放电电压 (充电设备模型)	T _A =+25°C, 符合 JESD22-A115C	-	2	KV

7.3.12 I/O 口特性

通用输入输出特性

无特别声明的情况下,下表给出的测试数据基于表 7-4 一般工作条件提示的测试环境。 全部的 I/O 口按 CMOS 和 TTL 兼容的方式设计。

表 7-30 I/O 静态特性

符号	范围	条件	最小值	典型值	最大值	单位
V_{IL}	低电平输入电压	TC 和 TTa I/O	-	-	0.3 V _{DDIOx}	V
V_{IH}	高电平输入电压	TC 和 TTa I/O	0.7 V _{DDIOx}	-	-	V
V_{hys}	施密特触发迟滞	TC 和 TTa I/O	-	400 ¹	-	mV
		TC 和 TTa I/O 数字模式 V _{SS} ≤ V _{IN} ≤ V _{DDIOX}	-	-	±0.1	
l _{ikg}	输入漏电流	TTa I/O 数字模式 V _{DDIOX} ≤ V _{IN} ≤ V _{DDA}	-	-	1	μΑ
		TTa I/O 模拟模式 V _{SS} ≤ V _{IN} ≤ V _{DDA}	-	-	±0.2	
R _{PU} ²	弱上拉等效电阻	$V_{IN} = V_{SS}$	45	75	220	kΩ
R _{PD} ²	弱下拉等效电阻	$V_{IN} = V_{DDIOx}$	16	30	50	kΩ
C _{IO}	I/O 引脚电容	-	-	5	-	pF

注1:基于设计和仿真的数据,未实测。

注 2: 上拉和下拉电阻是由 PMOS/NMOS 控制的真实电阻,PMOS/NMOS 的内阻对串联电阻的贡献很小。

输出驱动能力

GPIO 的引脚可以灌入或拉出多达 ± 8 mA 的电流,对输出的 V_{OH} 和 V_{OL} 要求不严格的时候可以多达 ± 20 mA。实际应用中,必须限制可以驱动电流的 I/O 引脚数量,以遵守 **7.2 极限参数**中指定的绝对最大额定值:

- V_{DDIOX} 上所有 I/O 提供的电流总和加上 V_{DD} 上提供的 MCU 的最大消耗,不能超过绝对最大额定值 ΣI_{VDD} (见表 7-1 电压特性 1)。
- V_{ss} 上所有 I/O 吸收的电流之和,加上 V_{ss} 上吸收的 MCU 的最大消耗,不能超过绝对最大额定值 $ΣI_{vss}$ (见表 7-1 电压特性 ½)。

输出电压电平

无特别声明的情况下,下表给出的测试数据基于表 **7-4** 一般工作条件提示的测试环境。 全部的 I/O 口按 CMOS 和 TTL 兼容的方式设计。

表 7-31	输出电压特性

符号	参数	条件	最小值	最大值	单位
\/	高电平输出电压源电流	Sourcing 10mA, $V_{DD} = 3.3V^1$	3.02	-	
V _{OH}	同电十捌山电压源电流	Sourcing 20mA, $V_{DD} = 3.3V^2$	2.7	-	
V	瓜 中亚烩山中 <u>厂</u> 遊中运	Sinking 10mA, $V_{DD} = 3.3V^1$	-	0.23	
V _{OL}	低电平输出电压灌电流	Sinking 20mA, $V_{DD} = 3.3V^2$	-	0.45	

注 1:所有输出组合的最大总电流 $I_{OH}(max)$ 和 $I_{OL}(max)$ 不应超过 40mA,以满足最大规定的电压降。

注 2:所有输出组合的最大总电流 $I_{OH}(max)$ 和 $I_{OL}(max)$ 不应超过 100mA,以满足最大规定的电压降。

输入/输出交流特性

对于 I/O 口的交流特性的值和定义,由下列图表分别给出。

无特别声明的情况下,下表给出的测试数据基于表 7-4 一般工作条件提示的测试环境。

表 7-32 输入输出交流特性

符号	参数	条件	最小值	最大值	单位
		$C_L = 30 \text{pF}, V_{DDIOx} \geqslant 2.7 \text{V}$	-	50	
$f_{\text{max(IO)out}}$	最大频率 2	$C_L = 50 \text{pF}, V_{DDIOx} \geqslant 2.7 \text{V}$	-	30	MHz
		$C_L = 50 \text{pF}, \ 2.4 \text{V} \leq V_{DDIOx} < 2.7 \text{V}$	-	20	
		$C_L = 30 \text{pF}, V_{DDIOx} \geqslant 2.7 \text{V}$	-	5	
t _{f(IO)out}	输出下降沿时间	$C_L = 50 \text{pF}, V_{DDIOx} \geqslant 2.7 \text{V}$	-	8	
		$C_L = 50 pF$, $2.4 V \leq V_{DDIOx} < 2.7 V$	-	12	nc
		$C_L = 30 pF$, $V_{DDIOx} \ge 2.7 V$	-	5	ns
$t_{r(IO)out}$	输出上升沿时间	$C_L = 50 \text{pF}, V_{DDIOx} \ge 2.7 \text{V}$	-	8	
		$C_L = 50 \text{pF}, \ 2.4 \text{V} \leq V_{DDIOx} < 2.7 \text{V}$	-	12	

注1: 该表基于设计和仿真的数据,未实测。

注 2: 最大频率由下图定义。

图 7-7 I/O 口交流特性定义

7.3.13 NRST 引脚特性

NRST 引脚内部连接了一个永久性的上拉电阻 Rpu。

无特别声明的情况下,下表给出的测试数据基于表 7-4 一般工作条件提示的测试环境。

表 7-33 NRST 引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL(NRST)}	NRST 输入低电平电压	-	-	-	0.3V _{DD}	V
V _{IH(NRST)}	NRST 输入高电平电压	-	0.7V _{DD}	-	-	-
V _{hys(NRST)}	NRST 输入迟滞电压	-	-	200	-	mV
R _{PU}	弱上拉等效电阻	$V_{IN} = V_{SS}$	7	8	9	kΩ
V _{F(NRST)}	要求的最短复位脉冲宽度	-	20	-	-	μs

图 7-8 推荐的 NRST 引脚电路

注1:外部电容保护器件引脚避免意外复位。

注 2: 须确保复位时的引脚输入电压低于表 7-33 NRST 引脚特性中的 V_{IL(NRST)} 最大值,否则不能确保复位操作。

7.3.14 12 位 ADC 特性

无特别声明的情况下,下表给出的测试数据基于表 7-4 一般工作条件提示的测试环境。

表 7-34 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	ADC 开启时的供电电压	-	1.8	-	3.6	V
I _{DDA(ADC)}	ADC 电流消耗	$V_{DD} = V_{DDA} = 3.3V$	-	1.5	-	mA
f _{ADC}	ADC 时钟频率	-	-	24	-	MHz
f _s	采样率	-	-	-	1	MHz
f _{TRIG}	外部触发频率	f _{ADC} = 24MHz	-	-	800	kHz
V _{AIN}	转换电压范围	-	0	-	V _{DDA}	V
R _{AIN}	输入阻抗(直连/缓冲)	-	-	-	100	kΩ
C _{ADC}	内部采样保持电容	-	-	9	-	pF
t _s	采样时间	-	5	-	10	1/f _{ADC}
t _{STAB}	稳定时间	-	19		1/f _{ADC}	
t _{conv}	总转换时间(含采样保持)	-	24	-	29	1/f _{ADC}

表 7-35 ADC 精度 1

符号	参数	条件	最小值	典型值	最大值 ²	单位
ET	综合误差		-	±2.5	±3.0	
EO	偏移误差		-	±1.5	±2.4	
EG	增益误差		-	±2.2	±2.7	LSB
DNL	微分非线性	$f_{ADC} = 24MHz$,	-	±0.5	±1.0	
INL	积分非线性	$V_{DDA} = 1.8V \sim 3.6V,$ $T_{A} = -40^{\circ}C \sim +85^{\circ}C$	-	±1.0	±3.0	
SINAD	信噪比失真		-	67	-	
SNR	信噪比		-	66	-	dB
THD	总谐波失真		-	-70	-	
		$V_{ref} = V_{DDA}/ExRef$ $100KSPS@V_{DDA} = 1.8V\sim2V$ $200KSPS@V_{DDA} = 2V\sim2.4V$	-	10.3	-	
ENOB	有效位数	$V_{ref} = V_{DDA}/ExRef$ $500KSPS@V_{DDA} = 2.4V\sim2.7V$ $1MSPS@V_{DDA} = 2.7V\sim3.6V$	-	10.8	-	bits
		V _{ref} = 内部 1.5V 参考电压 100KSPS@V _{DDA} = 1.8V~2V 200KSPS@V _{DDA} = 2V~3.6V	-	9.8	-	
		V _{ref} = 内部 2.5V 参考电压 200KSPS@V _{DDA} = 2.8V ~ 3.6V	-	10.3	-	

注1:

ADC DC 精度值是在内部校准后测量的;

应避免在任何模拟输入引脚上注入电流,因为这会降低在另一个模拟输入上执行的转换的精度,建议 在可能注入电流的模拟引脚上添加一个肖特基二极管(引脚到地);

在受限的 V_{DDA}、频率和温度范围内可以实现更好的性能。

注2:

数据基于表征结果,未经生产测试。

7.3.15 温度传感器特征参数

表 7-36 温度传感器特性

符号	参数	最小值	典型值	最大值	单位
TL	V _{SENSE} 随温度线性度	-	±2	±5	°C
Avg_Slope	平均斜率	2.66	2.69	2.72	mV / °C
V ₂₅	25℃对应电压(±5℃)	0.77	0.79	0.8	V
t _{START}	TS 内置温度传感器跟随器建立时间	-	-	45	μs
t _{S_temp}	读取温度时的 ADC 采样时间	5	-	-	μs

7.3.16 模拟电压比较器特性

表 7-37 比较器特性

符号	参数	条件	最小值	典型值	最大值 ¹	单位
V_{DDA}	模拟供电电压	-	1.8	-	3.6	V
V _{IN}	比较器输入电压范围	-	0	-	V_{DDA}	V
		极低速	-	10	10	
_	 比较器启动时间	低速	-	1	2	
t _{START}		中速	-	0.5	1	
		高速	-	0.1	0.25	
		极低速	-	10	10	μs
_		低速	-	1	2	
$t_{\scriptscriptstyle D}$	比较器延迟时间	中速	-	0.5	1	
		高速	-	0.2	0.5	
V _{offset}	比较器偏移误差	-	-	±3	±10	mV
dThreshold/dt	阈值电压温度系数	$V_{DD} = 3.3V$, -40°C < T_A < +85°C , $V_{-} = (n/64) \times V_{ref}$	-	40	80	ppm/°C
		极低速	-	0.2	0.3	
		低速	-	1	1.2	
DD(VC)	比较器电流消耗	中速	-	8	10	μΑ
		高速	-	16	20	
		无迟滞 (VCx_CR0.HYS=00)	-	0	-	
V_{hys}		低迟滞 (VCx_CR0.HYS=01)	-	10	-	201/
	比较器迟滞	中迟滞 (VCx_CR0.HYS=10)	-	20	-	mV
		高迟滞 (VCx_CR0.HYS=11)	-	30	-	

注1:数据基于表征结果,未经生产测试。

7.3.17 定时器特性

下表给出的参数由设计方式保证。

参见 **7.3.12 I/O 口特性**以了解作为特殊功能时的 I/O 口输入输出特性的细节。(输出比较,输入捕获,外部时钟以及 PWM 输出)

表 7-38 定时器特性

	符号	参数	条件	最小值	典型值	最大值	单位
	$T_{res(TIM)}$	定时器分辨率	-	-	1	1 - t _{TIN}	
		企 凹	$f_{TIMCLK} = 48MHz$	-	20.8	-	ns
	f _{EXT}	定时器外部输入信号频率	-	-	-	f _{TIMCLK} /2	MHz
Ī	t _{MAX_COUNT}	最大定时周期	-	-	-	65536	t _{TIMCLK}

表 7-39 使用 10kHz (RC10K) 时 IWDT 最小 / 最大超时周期

分频系数	IWDT_CR.PRS	最小超时周期	最大超时周期	单位
4	0	0.417	2560	
8	1	0.834	5120	
16	2	1.667	10240	
32	3	3.334	20480	, ma a
64	4	6.667	40960	ms
128	5	13.334	81920	
256	6	26.667	163840	
512	7	53.334	327680	

表 7-40 使用 48MHz (PCLK) 时 WWDT 最小 / 最大超时周期

分频系数	控制位	最小超时周期	最大超时周期	单位
4096	0	0.086	3.413	
8192	8192 1		6.826	
16384	2	0.342	13.653	
32768	3	0.683	27.306	ms
65536	4	1.366	54.613	ms
131072	5	2.731	109.226	
262144 6		5.461	218.428	
524288 7		10.923	436.906	

7.3.18 通信接口

I2C 接口特征参数

● I2C 接口符合 I2C-bus 规范和用户手册中

- Standard-mode(Sm): 最高比特率 100kbit/s

- Fast-mode(Fm): 最高比特率 400kbit/s

- Fast-mode Plus(Fm+): 最高比特率 1Mbit/s

● 当 I2C 外设配置正确时,I2C 时序要求由设计保证(请参阅用户手册)。

● SDA和 SCL I/O 要求满足以下限制

- SDA 和 SCL I/O 引脚不是"真正的"开漏,最高输入电压受规范限制。 当配置为开漏时,连接在 I/O 引脚和 V_{DDIOX} 之间的 PMOS 被禁用,但仍然存在。

有关 I2C I/O 特性,请参阅 7.3.12 I/O 口特性。

表 7-41 I2C 特性

符号	参数	标准模式	t (100K)	快速模式	t (400K)	高速模	式 (1M)	单位	
105	多数 	最小值	最大值	最小值	最大值	最小值	最大值	丰山	
t _{w(SCLL)}	SCL 时钟低时间	4.7	-	1.25	-	0.5	-	116	
t _{w(SCLH)}	SCL 时钟高时间	4.0	-	0.6	-	0.26	-	μs	
t _{su(SDA)}	SDA 建立时间	250	-	100	-	50	-	26	
t _{h(SDA)}	SDA 数据保持时间	0	-	0	-	0	-	ns	
t _{h(STA)}	开始条件保持时间	2.5	-	0.625	-	0.25	-		
t _{su(STA)}	重复的开始条件 建立时间	2.5	-	0.6	-	0.25	-		
t _{su(STO)}	停止条件建立时间	0.25	-	0.25	-	0.25	-	μs	
t _{w(STO:STA)}	停止条件至开始 条件的时间 (总线空闲)	4.7	-	1.3	-	0.5	-		

注1:由设计保证,不在生产中测试。

图 7-9 I2C 时序图

SPI 接口特征参数

表 7-42 SPI 特性

符号	参数	条件	最小值	最大值	单位
f _{SCK}	SPI 时钟频率	主模式	-	16	MHz
$1/t_{c(SCK)}$	SFI的研例平	从模式	-	10	IVITIZ
$t_{r(SCK)}$ $t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C = 15pF	-	6	
t _{su(NSS)}	NSS 建立时间	从模式	4×T _{PCLK}	-	
t _{h(NSS)}	NSS 保持时间	从模式	2×T _{PCLK} +10	-	
$t_{\text{w(SCKH)}} \\ t_{\text{w(SCKL)}}$	SCK 高低电平时间	主模式, f _{PCLK} =48MHz, SCK 分频系数 = 4	T _{PCLK} -2	T _{PCLK} +2	
t _{su(MI)}	数据输入建立时间	主模式 (SMP=1)	0		ns
t _{su(SI)}		从模式	2		
t _{h(MI)} t _{h(SI)}	数据输入保持时间	主模式	2	-	
t _{v(MO)}		从模式	2	-	
$t_{v(SO)}$	数据输出有效时间	从模式 f _{PCLK} =48MHz	-	50	
t _{v(MO)}		主模式	-	3	
t _{h(SO)}	数据输出保持时间	从模式 f _{PCLK} =48MHz	30	-	
t _{h(MO)}		主模式	2	-	
DuCy(SCK)	SPI 从机输入时钟占空比	从模式 f _{PCLK} =48MHz	45	55	%

注1:数据基于表征结果,未经生产测试。

图 7-10 SPI 时序图 - 从模式 CPHA=0

图 7-11 SPI 时序图 - 从模式 CPHA=1

图 7-12 SPI 时序图 - 主模式

§ 封装信息 CW32W031

8 封装信息

8.1 QFN64 封装信息

QFN64 是指 64 引脚,7.5 x 7.5mm Quad Flat No-leads Package

图 8-1 QFN64 引线

注1:图示并非严格按照比例绘制。

§ 封装信息 CW32W031

表 8-43 QFN64 尺寸数据

符号		毫米			英寸 ¹		
切亏	最小	典型	最大	最小	典型	最大	
А	0.700	0.750	0.800	0.0276	0.0295	0.0315	
A1	-	0.020	0.050	-	0.0008	0.0020	
A2		0.203 REF			0.0080 REF		
b	0.150	0.200	0.250	0.0059	0.0079	0.0098	
D	7.400	7.500	7.600	0.2913	0.2953	0.2992	
D2	6.150	6.200	6.250	0.2421	0.2441	0.2461	
Е	6.900	7.500	7.600	0.2717	0.2953	0.2992	
E2	6.150	6.200	6.250	0.2421	0.2441	0.2461	
е		0.400 BSC		0.0157 BSC			
K	0.200	0.250	0.300	0.0079	0.0098	0.0118	
L	0.350	0.400	0.450	0.0138	0.0157	0.0177	
h	0.300	0.350	0.400	0.0118	0.0138	0.0157	
Ne	6.000 BSC			0.2362 BSC			
Nd	6.000 BSC				0.2362 BSC		

注1: 英寸数值是由毫米数据转换而来,保持了4位小数。

§ 封装信息 CW32W031

器件标识

下图给出了顶部标记方向与引脚1标识符位置的示例。

印刷标记可能因供应链而异。其他可选标记或插入 / 加厚标记,用于识别整个供应链操作中的元素,未在下方说明。

图 8-2 QFN64 顶部标记示例

注 1: 标记为 ES 或 E 或附有工程样品通知函的零件尚不合格,因此未获准用于生产。芯源半导体不对此类 使用造成的任何后果负责。在任何情况下,芯源半导体均不对在生产中使用任何这些工程样品的客户 负责。在决定使用这些工程样品进行认证活动之前,必须先联系芯源半导体的质量部门。

§ 订货信息 CW32W031

9 订货信息

型号举例: CW32W031R8U6x

产品家族

CW32=ARM-based

产品系列

W=射频系列

子系列

031=CW32R031xx

引脚数

K=32 pins

C=48 pins

R=64 pins

代码容量

6=32K字节Flash

8=64K字节Flash

封装

P=TSSOP

T=LQFP

U/V=QFN

温度范围

6=-40°C~85°C

7=-40°C~105°C

选项

xxx=预编程订制品

TR=卷带包装品

表 9-1 最小订单量(MOQ)

型号	包装方式	数量	MOQ	MSL	备注
CW32W031R8U6	Tray	260片/盘	2600 片	3	10盘/盒,6盒/箱, 单盒抽真空

版本号: Rev 1.0

§ 版本历史 CW32W031

10 版本历史

表 10-1 文档版本历史

日期	版本	变更信息
2023-01-04	Rev 1.0	初始发布