

NLP: Vorstellung Assignment

KI Labor - Wintersemester 2022

Stefan Käser, Jochen Gietzen, Maximilian Blanck, Adrian Westermaier, Tim Bossenmaier, Pascal Fecht

Zeitplan

Datum	Thema	Inhalt	Präsenz
30. Sept	Allg.	Organisation, Teamfindung, Vorstellung CV	Ja
7. Okt.	Ausfall (DMA Techday)		
14. Okt.	CV	Q&A Sessions	Nein
21. Okt.	CV	Sprintwechsel, Vorstellung Assignment	Ja
28. Okt.	CV	Q&A Sessions	Nein
4. Nov.	CV / NLP	Abgabe CV, Vorstellung NLP	Ja
11. Nov.	NLP	Q&A Sessions	Nein
18. Nov.	NLP	Sprintwechsel, Vorstellung Assignment	Ja
25. Nov.	NLP	Q&A Sessions	Nein
2. Dez.	Ausfall (Winter Plenum)		
9. Dez.	NLP / RL	Abgabe NLP, Vorstellung RL	Ja
16. Dez.	RL	Q&A Sessions	Nein
23. Dez.	RL	Sprintwechsel, Vorstellung Assignment	Ja / Nein
13. Jan.	RL	Q&A Sessions	Nein
20. Jan.	RL	Abgabe RL, Abschluss Kl Labor	Ja

Agenda

> Besprechung Übungsaufgaben

- Word Embeddings Alice im Wunderland (Aufgabe 1)
- Sentiment Analyse f
 ür Twitter Posts (Aufgabe 2)

Vorstellung Assignment

- Fine-Tuning bzw. Prompting mit Transformern

Übungsaufgaben

Theorie

Scenario for this lecture

- > Task: Detecting sentiment on poem verses
- Dataset from Investigating Societal Biases in a Poetry Composition
 Systems; Emily Sheng, David Uthus; <u>2011.02686</u>
- Around 1100 crowd-sourced samples

Verse	Sentiment
that has a charmingly bourbon air.	Positive
ah, what a pang of aching sharp surprise	Negative
down in the west upon the ocean floor	No Impact (Neutral)

Examples in this lecture:

- > Implement sentiment analysis for english poem verses
 - Fine-Tune a pre-trained model
 - Use prompting for a pre-trained model
- Compare different approaches and results
- Demo in Google Colab

Pre-Trained Language Models

Pre-Trained Language Models (PLM)

- Language Model (LM): Given a context, predict the next word:
 - the weather was $[MASK] \Rightarrow [MASK] = (0.5 \text{ hot}, 0.3 \text{ cold}, ...)$
- Semi-supervised learning task (without labels)
 - Trained on very large datasets.
- **Transformer**-architecture scales up to trillions of parameters
- Large LM encode general knowledge features

Why "Pre-Trained"?

Pre-Training Fine-Tuning or Prompting Sentence Classification Language modeling Token Classification (NER) ••• Source task Target task(s)

Left-to-Right language models

Predicts the next token given a sequence of tokens.

Models

> GPT-2, GPT-3

(Main) application

Text generation

Masked Language Model (MLM)

Predicts a masked token in a sequence of tokens (cloze task).

Models

> BERT

(Main) application

Classification

Our Scenario: Model and dataset

- Selecting the type of model
 - Masked language model for sentiment analysis
 - load <u>bert-base-uncased</u> from <u>huggingface transformers</u>
- > Prepare the dataset
 - Load the poem sentiment dataset with <u>datasets</u>
 - Tokenization

Fine-Tuning

Pre-Training and Fine-Tuning

Pre-Training Fine-Tuning or Prompting **Sentence Classification** Language modeling Token Classification (NER) Source task Target task(s)

Fine-Tuning: Sentiment Analysis

Pre-Training and Fine-Tuning

Our Scenario: Fine-Tuning the model

Download bert-base-uncased model from huggingface model hub.

Fine-tune bert-base-uncased for text classification and the sentiment task.

Adaptive Fine-Tuning

- Additional step to continue the pre-training on different data
- Can be domain-, task- or language-specific.
- > Improves performance while losing the generalization capabilities.

Adaptive Fine-Tuning: Domain Adaptation

Our scenario: Domain Adaptation

Download bert-base-uncased from huggingface model hub.

Continue Pre-training (!) with public available poem dataset (not the poem sentiment used for fine-tuning!)

Fine-tune adapted-1m on sentiment task with sentiment poem dataset (as before).

Behavioural Fine-Tuning

- > Additional step to teach the model task-specific behaviour
- Intermediate-task training: Supervised learning of a related task (for instance for named entities)

Intermediate-task training

Our scenario: Intermediate-task training

Use model bert-base-uncased-sst2

- provided by the community (!)
- trained on SST2 and GLUE dataset

Fine-tune bert-base-uncased-sst2 on sentiment task with poem dataset.

Summary: Fine-Tuning

- > Fine-Tuning has become fast and straight-forward
- Domain adaptation can help to transfer to a different domain / language
- > Intermediate task-training can teach task-specific knowledge.

Prompting

Prompting Overview

Define a **prompt** to formulate the original task as language modeling problem.

- No architectural changes needed.
- Popularized by GPT-3
- Mainly possible with large models

Zero-/Few-Shot-Learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

Beispiele: https://beta.openai.com/examples

Chain-of-Thought Prompting

Standard Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

https://ai.googleblog.com/2022/05/language-maodels-perform-reasoning-via.html

Aspects of Prompting

Prompt Design

Answer Engineering (Verbalizer)

OpenPrompt

- OS Framework for Prompt Learning
- Simplifies usage and generation of prompts
- Integrates huggingface transformers

Prompt-Based Fine-Tuning

There is much more in prompting...

- › Automatic Prompt Search
- Soft Prompts instead of discrete prompts

https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html

Open-Ended Assignment Fine-Tuning and/or Promting

Anforderungen

- Wähle passende Transformer-Modelle (https://huggingface.co/) und einen Datensatz zu einem NLP-Task (Translation, Text Generation, Classification, QA, ...)
- › Datensatz und Task erklären können
- > Wähle eine der folgenden Möglichkeiten auf den nächsten Slides

Promting

Möglichkeit 1

- > Fine-Tuning **und** Prompting
- > Beide initialen Ansätze ausprobieren
- › Beispiel: Fine-Tuning auf Dataset und Zero-Shot Prompting → Evaluation auf Test daten

Fine-Tuning

- Fokus liegt auf Vergleich der beiden Ansätze
 - Welcher Ansatz funktioniert besser?
 - Wie verändern sich die Ergebnisse bei mehr Daten?
 - Vergleich der Ansätze auf großem vs. kleinem Sprachmodell?
 - ...

Fine-Tuning

Prompting

Möglichkeit 2

- > Fine-Tuning **oder** Prompting
 - Neben den initialen Ansätzen.
 - > Fine-Tuning: Ansätze wie Domain-Adaption und Intermediate-Task-Training
 - Prompting: Ansätze wie Automatic Prompt-Search, Prompt-Based Fine-Tuning,
 Parameter-Efficient Fine-Tuning
 - > Fokus liegt auf Vergleich der verschiedenen Ansätze
 - Bspw. Wie verändern sich die Ergebnisse, wenn Domain Adaptation bzw. Prompt-Based Fine-Tuning verwendet wird?
 - Welcher Ansatz liefert die besten Ergebnisse?

Beispiel: Generierung von Book Reviews

https://www.bookreview.io/

- › Quellen zur Inspiration
 - https://beta.openai.com/examples
 - https://www.buildgpt3.com/
 - https://paperswithcode.com/methods/area/natural-language-processing
 - https://huggingface.co/models
- > Weitere Links
 - > Recent advances in Fine-Tuning: https://ruder.io/recent-advances-lm-fine-tuning
 - Tutorial auf ACL22 zum Thema Prompting: https://github.com/allenai/acl2022-zerofewshot-tutorial/blob/main/acl2022-zerofewshot-tutorial.pdf

