Date 17/11/2021	
-----------------	--

equency

mocia

is low.

						Date 17/11/20
Expt. No	67	13	ROBN	10014		Page No.
	DESIG	H & LO	22 A 9 W	FILTER	AND	HIGH PASS FILT
OBJ	ECTIVE					
→	Design a	low pag	and V	righpeus	filten.	
->	Calculate +	lower c	utoff.	frequency	and h	igher cut-off for
	ipments re Function					
	Bread Bo	0		De Lin		
	CRO/DSO			4		
	bouent He				4	
	> Resistor					
	> Capacito					
The	онц		Margal 1			
A	filten is					tilten consists a
						inclustons & no
						ency Hesponso of
						in) in dB as a
functi	on of fried	nency (f)	1. The	frequen	cy of c	which the outpu
						value is called t
lut-	off Frequer	acy (fc)	. When	the dB	volta	ge gain is plotte

as a function of frequency on a semilog graph using straight

a Bode plot. A Bode plot is an ideal plot of the filter frequency

response because it assumes that the voltage gain Hemains

constant, until the cutoff frequency is reached. The

lines to appreximate the actual frequency nesponses it is called

Teacher's Signature

	Date
Expt.	No
	filter network voltage gain in de is calculated from the actual voltage gain using the equation Ade = 20 log A, where A = Vout/Vin A low pass filter (LPE) is designed to pass all frequencies below the autoff frequencies and reject all frequencies above the autoff frequencies. It is simply on RC series aircuit across the input, the output taken across the capacitor. At the outoff frequency, the apacitive reactance of the capacitor C is equal to the resistance of resistor R, causing the output voltage to be 0.707 times the input voltage. The expected cut off frequency (fc) of the low pass fifter based on the circuit component values, can be calculated from: R = 1 27RC
	A high pace filter (HPF) is designed to pass all frequencies above the cutoff frequencies and reject all frequencies below the cutoff frequencies. It is simply an RC series circuit across the input, with the output taken across the mesistom Similar to LPE expected cutoff frequency (fc) of the HPF is gained as fc = 1 27 RC Procedure: Other circuit is setup as shown by taking the output across the capaciton. The input of futer is taken from the autput of function generator. The input of futer is
-	also connected to channel of 2 of the CRO/DSO. 2) The frequency of input signal is varied over a wide frequence thanks (but the input amolived is fixed) ye

are noted for each frequency the connesponding gains are calculated

Teacher's Signature

fight. No.

Page No.

graph paper and enough frequency are plotted in a semilog

Observation Table:-Band with curoff frequency measurement (LPF)

Vin	Frequency	Vout	gain in dB
(Vpx.pw)	(Hz)	(in velt)	
10 V	50	10.1	0
	100	10-1	.0.0864
	500	9.46	-0.432
	1k	7.6	- 2 - 383
	34	5-2	-5.679
	3 K	H	-7.95
	HK	3-12	-10.11
	5K	2.56	-11.83
	64	2.16	-13.31
	7 k	1.92	-14.33
	8 k	1.46	-15.089
	9x	1.60	- 15-91
	104	1.44	- 16.832

Teacher's Signature

Expt. No.

Page No. _

	0	A	
High	1251	filter	1 .

Vio	Inequency	Vout	gain
	(in Hz)	(involt)	(in dB)
0 4	50	0.480	-26-37
	100	0.960	- 20-35
	500	3.80	- 8.313
	114	6.34	- 4.096
	214	8.16	-1.76
	3 K	9.28	- 0-6490
	4K	01.2	-0:454
	5k	9.76	- 0.511
	6 K	9.92	-0.069
	3 K	9.92	- 0.069
	8 K	10	0
	9 K	10	0
	10 K	10	0

Calculation:

Calculate	of fc = Yourse	Measur	red te_
low-page	high-paces	low-puss	high-pass
1.592 k	1.592 k	1.15 k	1.35 K
NO TO R			

Conclusion :-

In this experiment, we came to knowabout the different types of filter and studied their frequency responses. These filters are used to modify audio signal in readio, transmitten els.

