1 Dalen

- . אינו מתאים f_1^2 אינו מספר הארגומנטים של אינו מחשים:
- ב. ביטוי לא תקין: הארגומנטים של סימן פרדיקט צריכים להיות שמות-עצם. כאן אחד הארגומנטים, אינו שם-עצם אלא בעצמו ביטוי לא תקין, $\sim (x_2) \ ,$ כי שם-עצם אינו מכיל קשרים לוגיים.
 - ג. תבנית לא אטומית שאינה פסוק (יש משתנה חפשי).
 - ד. תבנית אטומית שאינה פסוק (יש משתנה חפשי).
- ה. ביטוי לא תקין: הארגומנטים של סימן פונקציה צריכים להיות שמות-עצם. כאן אחד הארגומנטים הוא תבנית.
 - ו. תבנית אטומית שהיא פסוק.
- ביטוי לא תקין: אחרי סימן כמת והמשתנה שלו צריך לבוא סימן פותח של תבנית: כמת נוסף או סימן פרדיקט או סימן השלילה. כאן מופיע אחרי הכמת סימן פונקציה. במלים אחרות: הביטוי שעליו "פועל" הכמת צריך להיות תבנית ולא פונקציה (בכתיב מלא יבוא אחרי הכמת והמשתנה סוגר שמאלי. אבל הסימן כאן גם אינו סוגר שמאלי...).
 ח. תבנית לא אטומית שהיא פסוק.

2 ภอเยภ

 $\exists xig(\sim R(x,x)ig)$: היחס R אינו רפלקסיביR אינו $\neg \forall xR(x,x): \neg x$

 $A \sim \forall x \forall y \big(R(x,y) \to R(y,x) \big) :$ אינו סימטרי : ψ_2

. $\exists x \exists y (R(x,y) \land \sim R(y,x))$ שקול לוגית ל:

 $A \sim \forall x \forall y \forall z \big((R(x,y) \land R(y,z)) \rightarrow R(x,z) \big)$ אינו טרנזיטיבי: ψ_3

 $\exists x \exists y \exists z \big(R(x,y) \land R(y,z) \land \sim R(x,z) \big)$ ישקול לוגית ל

3 noien

א. פירוש התבנית באינטרפרטציה הנתונה הוא:

x שווה לקבוצה x עם הקבוצה x שווה לקבוצה א לכל קבוצה y

x שימו לב ש- x מופיע חפשי בתבנית, לכן התבנית אומרת משהו על x, היא מתארת תכונה של x בעוד ש- y מופיע רק באופן קשור (מכומת), לכן y הוא משתנה עזר בלבד: התבנית אינה אומרת דבר על ערכו של y ראו הדיון בעמ׳ 113 בספר - חשוב להבין אותו. כדי להדגיש נקודה זו,

נציין שאם נרשום z במקום y בכל מקום בתבנית הנ״ל, נקבל תבנית שקולה לוגית לתבנית המקורית.

משתנה מכומת בלוגיקה דומה למשתנה סכימה באריתמטיקה, או למשתנה פנימי של לולאה בתכנות - הוא משתנה עזר בלבד.

לפיכך מה שמעניין אותנו הוא השמת ערך ל-x בלבד. הערך שניתן ל-y אינו רלבנטי (פורמלית, ראו הגדרה 3.14 מקרה 4, ושימו לב שמחליפים שם את ההשמה של המשתנה הקשור בכל השמה אפשרית, לכן ערכו בהשמה הנתונה אינו רלבנטי).

.∅ שווה טענה עם של כל קבוצה עם שווה $\sigma(x)$ בהשמה $\sigma(x)$

. הנייל σ הנייל העולם , $P(\mathbb{N})$ הנייל העולם טענה נכונה בעולם , $P(\mathbb{N})$

, $\sigma(x) \cap \emptyset = \emptyset \neq \sigma(x)$ אז למשל $\sigma(x) \neq \emptyset$ מצד שני, אם

. $\sigma(x) \neq \emptyset$ בלומר התבנית אינה אמיתית בהשמה בה

. היא היחידה שבה התבנית אמיתית $\sigma(x) = \emptyset$

יש כמובן חופש לתת למשתנים y,z כל ערך שנרצה.

ב. פירוש התבנית באינטרפרטציה הנתונה הוא:

z עם y של טבעיים, כך שהחיתוך של z עם y עם y שלואה על קבוצה y שווה לקבוצה x

. שוב x הוא המשתנה החפשי היחיד, והתבנית x

כדי להדגיש זאת, ניתן לומר בתחילת הפירוש הנייל: "י". היא קבוצה המקיימת ש-". קל לראות, בדומה לסעיף הקודם, ש- \emptyset היא הקבוצה היחידה המקיימת זאת.

. כלומר ההשמה x בה תבנית זו אמיתית היחידה עבור המשתנה x בה תבנית זו אמיתית כלומר

: הוא J_1 -ב מסעיף א ב- , f_1^2 פירוש התבנית מסעיף א ב- ג. אחר שניעזר במשמעות הפונקציה , x שווה x

. $J_{\scriptscriptstyle 1}$ -ב מובן נכון בכל השמה שניתן ל- $J_{\scriptscriptstyle 1}$, לכן התבנית הראשונה אמיתית ב-

 \cdot התבנית השנייה מתפרשת ב- $J_{\scriptscriptstyle 1}$ כטענה קצת מוזרה

. x שווה y -ש כך z קיים z לכל y לכל (שווה x)

! $\sigma(x)$ זה אינו נכון באף השמה

אין אף קבוצה z השווה לכל קבוצה y שניקח (גם אם נבחר בדרך קבוצה z כלשהי...). לכן התבנית השנייה שקרית ב- J_1

 $\sigma(x)=arnothing$ התבניות הללו אמיתיות בהשמה העיפור בסעיפים א, ב ראינו שבאינטרפרטציה העד התבניות הללו אמיתיות לוגית. ושקריות לוגית אחרות. לכן הן אינן אמיתיות לוגית והשניה שקרית (בכל ההשמות) , בסעיף ג ראינו שב- J_1 התבנית הראשונה אמיתית והשניה שקרית (בכל ההשמות) לכן הן אינן שקולות לוגית.

4 nalen

- , $\,\{1,2\}\,$ אינטרפרטציה אינטרפרט $\,J\,$ ו- , $\,\psi=\,A^1_{\rm l}(x)\,$ המשל לא. לא. א
 - .יי1 מתפרש כתכונה יילהיות שווה $A_{
 m l}^{
 m l}$
- $J_{\sigma}(\forall x\psi)=\mathrm{F}$ בעוד ש- $J_{\sigma}(\psi)=\mathrm{T}$ נקבל כי $\sigma(x)=1$
 - ב. נכון. זהו בדיוק מה שנטען בשאלה 3.18א בעמי 112 בספר.
 - ג. נכון זהו סעיף ב של שאלה 3.18 הנייל.
- $\sigma(x) = 2$ יחיד שנקח א, בהבדל מסעיף א, אותה דוגמא נגדית: אותה דוגמא לא נכון. דוגמא נגדית

איתי הראבן