1 RS и RF.

Bonpoc 1. $Ymo\ makoe\ RS?$

Ответ. Reference System (RS), Пространственно-временная система координат (ПВСК) — теоретическая концепция пространственно-временных координат, моделей и стандартов, которая позволяет измерять положения и движения объектов в пространстве и времени. Для задания ПВСК необходимы:

- 1. Теория пространства-времени (классическая теория или ОТО)
- 2. Система координат и аппарат преобразования координат
- 3. Модели физических явлений, влияющих на измерения
- 4. Значения астрономических постоянных (параметры моделей)

Bonpoc 2. *Ymo makoe ICRS?*

Ответ. International Celestial Reference System — международная небесная система координат. Центр — барицентр Солнечной системы. Оси зафиксированы в пространстве относительно внегалактических радиоисточников (направление выбрано по осям в FK5). Основная плоскость — средний экватор FK5, ось X направлена в точку весеннего равноденствия на эпоху J2000. Шкала времени — TCB (Barycentric Coordinate Time). □

Boπpoc 3. *Ymo maκοe ITRS?*

Ответ. International Terrestrial Reference System — международная земная система координат. Центр — в геоцентре Земли (включая океан и атмосферу). Ориентация осей определяется из наблюдений IERS (international Earth Rotation and Reference Systems Service). Ось z является средней осью вращения Земли и направлена в опорный полюс (IRP — IERS Reference Pole). Ось x лежит в плоскости опорного меридиана (IRM — IERS Reference Meridian). Единицей длины является метр, шкалой времени — шкала ТСG (Geocentric Coordinate Time (англ.) — геоцентрическое координационное время). Вращается вместе с Землей. □

Вопрос 4. Чем реализована ICRS в оптическом диапазоне?

Ответ. Каталоги HIPPARCOS (заменил HCRF), TYCHO, GAIA. □

Вопрос 5. Чем реализована ICRS в радио-диапазоне?

Omeem. ICRF3 (2018)

- 4536 радиоисточников с точностью до 0.03 mas.
- 303 defining радиоисточника.
- Изменен подход к выбору defining источников, предприняты меры по их равномерному распределению.

Bonpoc 6. $4mo \ make RF$?

Ответ. Reference Frame, Пространственно-временная система отсчета (ПВСО) — практическая реализация концепции ПВСК, созданная с помощью создания шкал времени и каталогов опорных источников с известными положениями и собственными движениями. □

Boπpoc 7. *Ymo maκοe ICRF?*

Ответ. International Celestial Reference Frame — практическая реализация ICRS в радиодиапазоне, с центром в барицентре Солнечной Системы, оси фиксированы по 212 (с точностью до 0,5 мсд) и по 608 (с точностью до 1 мсд) радиоисточникам. Главная плоскость совпадает со средним экватором FK5 (в пределах его точности), ось X направлена на точку весеннего равноденствия γ (настоящую), реализуется с помощью РСДБ. □

Bonpoc 8. *Ymo makoe ITRF?*

Ответ. International Thrrestrial Reference Frame — практическая реализация ITRS, с центром с барицентре Земли, координаты фиксированы по (примерно) 800 опорным пунктам на поверхности Земли, имеющим декартовы координаты x, y, z, v_x, v_y, v_z , ось расположена в плоскости Главного (Гринвечевского) меридиана. \square

Вопрос 9. C помощью каких наблюдательных средств определяется связь ICRF и ITRF?

Ответ.

- РСДБ самая высокая точность для наземных наблюдений порядка 0,1 мсд.
- ГНСС (GPS,ГЛОНАСС) для определения координат самих пунктов наблюдений.

Вопрос 10. Входит ли плоскость экватора в число базовых плоскостей ICRS?

Ответ. Нет. В ICRS оси фиксированы на эпоху J2000, так что плоскость экватора уже не входит в число базовых плоскостей. □

2 Определения координат небесных тел.

Вопрос 11. Что такое абсолютные определения координат небесных тел?

Ответ. Абсолютный способ определения координат заключается в нахождении координат по непосредственному показанию приборов и последующей редукции данных (определения погрешностей), без использования опорных объектов. □

Вопрос 12. Что такое относительные определения координат небесных тел?

Ответ. Относительный способ определения координат заключается в нахождении координат с помощью уже известных координат ранее наблюдавшихся объектов. При этом в ошибку включается ошибка определения координат опорных объектов.

Сводится к измерению разностей координат определяемых и опорных звезд. Использована идея RF. \square

Вопрос 13. Написать матрицу преобразования:

Ответ.

• прямоугольных координат (x, y, z) при повороте в положительном направлении (против часовой стрелки, если смотреть с конца оси) системы координат вокруг оси x, y, z на угол α, β, γ .

$$R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & \sin(\alpha) \\ 0 & -\sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

$$R_y(\beta) = \begin{bmatrix} \cos(\beta) & 0 & -\sin(\beta) \\ 0 & 1 & 0 \\ \sin(\beta) & 0 & \cos(\beta) \end{bmatrix}$$

$$R_z(\gamma) = \begin{bmatrix} \cos(\gamma) & \sin(\gamma) & 0 \\ -\sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Вопрос 14. Какова точность привязки каталога HIPPARCOS к системе ICRS?

Omsem. Точность привязки осей $\sigma_\epsilon-\pm~0.6$ мсд., Годовое изменение $\omega-\pm~0.25$ мсд/год. \square

Вопрос 15. Для чего использовалась главная решетка (Main Grid) в проекте HIPPARCOS?

Ответ. Она увеличивала количество наблюдений одной звезды, таким образом повышая точность наблюдений. В решётке было порядка 1000 штрихов, получали некоторый периодический сигнал, который потом обрабатывался с помощью Фурье. Таким образом за один "проход" звезды по решётке получались очень точные измерения (наклон решетки позволяет определять координаты звезды в поле зрения) □

3 Задержки

Вопрос 16. Основное уравнение РСДБ:

Oтвет.

$$c\tau = e\cos\delta\cos h + p\sin\delta$$

 $e = b\cos\psi$
 $p = b\sin\psi$

- \bullet *c* скорость света
- *т* задержка РСДБ
- е- экваториальная проекция базы
- р полярная проекция базы
- h- часовой угол от меридиана базы
- b— априорный вектор базы

Вопрос 17. Геометрическая задержка

Ответ. Геометрическая задержка связана с базой и скоростью света

$$(b, \rho) = c\tau_a$$

ho — направление на радиоисточник \Box

Вопрос 18. Групповая задержка.

Ответ. Групповая задержка связана с обработкой сигнала, самим сигналом

$$\tau_{gr} = \frac{d\phi}{d\omega}$$

 ϕ — фаза кросскорреляционного сигнала (получена после корреляционной обработки сигналов с обоих телескопов), ω — циклическая частота сигнала. \square

Вопрос 19. Гравитационная задержка.

Ответ. Для Земли гравитационная задержка составляет 20 пкс. \square

Вопрос 20. Новые астрометрические методы.

Ответ.

Методы (инструменты)	Роль, достижения, результаты
Спутниковые радионавигационные систе-	Геоданные и изучение Земли, в т.ч. дви-
мы и ГНСС	жение и структура континентальных плит
	(точность – метры), изучение состава ат-
	мосферы, а также оценка вероятности зем-
	летрясений.
Радиоинтероферометрия со сверхдлинной	ICRF и все пять параметров ориентации
базой	Земли.
Дальномерные измерения (Лазерная лока-	Параметры спутников и грав. поля Земли,
ция и радиолокация)	координаты полюса Земли.
Космическая гравиметрия (исследование	Изучение гравитационного поля Земли.
гравитационного поля Земли с помощью	
MC3)	
Космическая астрометрия (преимуще-	Возможно, в конечном счете даст новую
ственно в оптическом диапазоне)	глобальную систему отсчета.

Вопрос 21. Параметры ориентации Земли и методы их определения:

Ответ.

- x_p, y_p координаты полюса, фотозенитная труба, ГНСС, РСДБ, лазерная локапия:
- UT1-UTC угол собственного вращения, пассажный инструмент, часы, ГНСС, РСДБ;
- LOD = (UT1 UTC) избыточная продолжительность суток;
- $\Delta \epsilon$ угол прецессии, РСДБ;
- $\Delta \psi$ угол нутации, РСДБ;

Вопрос 22. Периоды Эйлера, Чандлера

Ответ.

Период Эйлера — период свободной нутации — равен 305 дней, найден теоретически, из предположения, что Земля — абсолютно твёрдое тело Формула Коткинского:

$$\phi - \phi_{cp} = x_p \cos \lambda + y_p \sin \lambda$$

- ullet ϕ широта пункта наблюдения;
- ϕ_{cp} средняя широта пункта;

- x_p, y_p координаты полюса;
- λ долгота пункта.

В действительности был найден другой период (Чандлером), равный 430 дней. Одно из первых предположений-объяснений, объясняющих разность периодов, состоит в том, что Земля не является абсолютно твердым телом.

□

4 Остальное

Вопрос 23. Основное уравнение космической геодезии:

Ответ.

$$r = R + \rho$$

- *r* радиус-вектор ИСЗ в геоцентрической сист.коорд.;
- ρ радиус-вектор от точки на Земле до спутника (топоцентрическая сист.коорд.);
- R радиус-вектор этой точки в геоцентрической системе координат.

Вопрос 24. Параллакс 0.01 ± 0.001 найти расст. в парсеках оценить среднеквадратичную ошибку:

Omeem.

П

 $r = \frac{1}{\pi''} = 100pc \pm 10(10\%)$

Вопрос 25. Что такое редукционное уравнение?

Ответ.

$$\rho' = M\rho$$

Уравнение,
исправляющее отличие реального инструмента от идеального,
т.е.ошибки за наклон, азимут и коллимацию. \square

Вопрос 26. На каких инструментах можно делать относительные определения координат небесных тел?

Ответ. вертикальный круг, астрограф, мерид.круг □

Вопрос 27. Что такое «модель в параметров»?

Omeem. $\zeta = ax + by + c$, $\eta = Ax + By + C$ – связь рабочих корд. С тангенц. корд. \square

Вопрос 28. Что такое уравнение яркости?

Ответ. связь почернения негатива фотопластинки с реальным блеском звезды. (на рефракторах из-за дисперсии получается "микро- спектр" звезды на пластинке):

$$\zeta = \Sigma a x^i y^j m^k c^l$$

$$\eta = \Sigma A x^i y^j m^k c^l$$

Вопрос 29. Чем отличаются шкалы времени UT1 и UT2?

 $Omeem.~~\mathrm{UT2}{=}\mathrm{UT1}{+}\Delta\mathrm{Ts},~\Delta T_s$ -поправка на сезонные вариации. \square

Вопрос 30. Для чего в шкалу UTC вводят дополнительную секунду?

Ответ. для компенсации замедления Земли \square

Вопрос 31. Какая точность определения координат небесных объектов достигнута методами космической астрометрии?

Omeem. 1 мсд \square

Вопрос 32. Какой вклад внес космический аппарат им.Хаббла в программу НІРРА СОS?

Ответ. Является одним из методов привязки каталога HIPP.к системе ICRF □

Вопрос 33. Как определить среднее собственное движение звезды по координатам μ_{α} и μ_{δ} ?

Ответ.

$$\mu = \sqrt{(\mu_{\alpha}\cos\delta)^2 + \mu_{\delta}^2}$$

Вопрос 34. Для чего использовался картограф в программе НІРРАВСОЅ?

Ответ. Для определения ориентации спутника в пр-ве и выполнения прогр. ТҮСНО \Box

Вопрос 35. Угловое разрешение РСДБ при длине базы 10000 км достигает величины, равной 0,001 секунд души. Как изменится угловое разрешение РСБД, если одну антенну поместить на Земле, а вторую — на Луне (длина волны регистрируемого излучения остается преженей)?

Ответ.

$$\theta = \theta_1 \cdot D_1 / D_2 = 0,000025$$

Вопрос 36. Чем определяется начало отсчета прямых восхождений в ICRF?

Ответ. Точка весеннего равноденствия □

Вопрос 37. Приведите примеры редукционных уравнений в астрометрии.
<i>Ответ.</i> Уравнение яркости и Модель в постоянных (модель Тернера) □
Вопрос 38. Какова причина появления систематических ошибок в астрометрических наблюдениях?
$Om \varepsilon em.$
• Инструментальные ошибки
• Неполный учет факторов воздействия окружающей среды
• Метод обработки наблюдений
Вопрос 39. На каких инструментах можно определить прямые восхожедения небесных тел?
$Omsem.$ пассажный инструмент, меридианный круг, астрограф, РСДБ, спутник HIPPARCOS \square
Вопрос 40. На каких инструментах можно делать абсолютные определения координат небесных тел?
<i>Ответ.</i> вертикальный круг, мер.круг, РСДБ □
Вопрос 41. Что такое «рабочие координаты» небесных объектов?
<i>Ответ.</i> определяют звезду в системе фотопластинки □
Вопрос 42. Чем отличается шкала UT1 от UT0?
$Omsem.~UT1=UT0+\Delta\lambda,~\Delta\lambda$ –поправка из-за движения полюсов. \Box
Вопрос 43. Какова характерная точность определения координат небесных объектов методом РСБД?
$Omsem. \ 1$ мсд \square
Вопрос 44. Что такое RGC в программе HIPPARCOS?
<i>Ответ.</i> фиксированный большой круг, к которому редуцируются результаты измерений на IGC, полученные в течение одного поворота спутника вокруг Земли (10 часов 40 минут) \square
Вопрос 45. В какой астрометрической системе построен каталог HIPPARCOS?
Omeem. HCRF (HIPPARCOS Celestial Reference Frame)

 \bullet Основана на каталоге HIPPARCOS (точность ≈ 1 mas, как и у ICRF1).

- Точность привязки осей 0.6 mas
- Годовое изменение 0.25 mas/год.

Вопрос 46. Почему различаются периоды Эйлера и Чандлера свободной нутации оси вращения Земли?

Omsem. Период Эйлера был вычислен предполагая, что Земля-абс. ТВ. Тело, а пер. Чандлера — упруга \Box

Вопрос 47. Что такое шкала времени UTC?

Ответ. всемирное координированное время. Атомное время, аппроксимирующее UT1:

$$|UTC - UT1| \le 0^s.9$$

Фактически, UTC = TAI + T, где T - секунды координации. Добавляются (и вычитаются) при накоплении большего расхождения (больше 0s .9). \square

Вопрос 48. Что такое шкала времени TDT(TT)?

Omsem. Земное динамическое время. Добавка к ТАІ для сохранения эфемеридного времени.

$$TDT = TAI + 32,184sec$$

9