SISTEMI OPERATIVI e LABORATORIO DI SISTEMI OPERATIVI (A.A. 13-14) – 9 FEBBRAIO 2015

IMPORTANTE:

- 1) Fare il login sui sistemi in modalità Linux usando il proprio **username** e **password**, attivare syncexam.sh e passare in modalità testuale.
- 2) I file prodotti devono essere collocati in un sottodirettorio (che deve essere nella directory studente_XXX) che deve essere creato e avere nome ESAME09Feb15_1_01. FARE ATTENZIONE AL NOME DEL DIRETTORIO, in particolare alle maiuscole e ai trattini indicati. Verrà penalizzata l'assenza del direttorio con il nome indicato e/o l'assenza dei file nel direttorio specificato, al momento della copia automatica del direttorio e dei file. ALLA SCADENZA DEL TEMPO A DISPOSIZIONE VERRÀ INFATTI ATTIVATA UNA PROCEDURA AUTOMATICA DI COPIA, PER OGNI STUDENTE DEL TURNO, DEI FILE CONTENUTI NEL DIRETTORIO SPECIFICATO.
- 3) Il tempo a disposizione per la prova è di **75 MINUTI** per lo svolgimento della sola parte C e di **120 MINUTI** per lo svolgimento di tutto il compito.
- 4) Non è ammesso **nessun tipo di scambio di informazioni** né verbale né elettronico, pena la invalidazione della verifica.
- 5) L'assenza di commenti significativi verrà penalizzata.
- 6) AL TERMINE DELLA PROVA È INDISPENSABILE CONSEGNARE IL TESTO DEL COMPITO (ANCHE IN CASO CHE UNO STUDENTE SI RITIRI): IN CASO CONTRARIO, NON POTRÀ ESSERE EFFETTUATA LA CORREZIONE DEL COMPITO MANCANDO IL TESTO DI RIFERIMENTO.

Esercizio

Si realizzi un programma concorrente per UNIX che deve avere una parte in Bourne Shell e una parte in C.

La <u>parte in Shell</u> deve prevedere **due** parametri: il primo deve essere il nome assoluto di un direttorio che identifica una gerarchia (**G**) all'interno del file system, mentre il secondo deve essere considerato un numero intero strettamente positivo (**K**). Il programma deve cercare nella gerarchia **G** specificata tutti i direttori che contengono almeno **un** file leggibile con lunghezza in linee pari a **K**: si riporti il nome assoluto di tali direttori sullo standard output. <u>Al termine dell'intera esplorazione ricorsiva di G</u>, per ogni file trovato **Fi** si deve richiedere all'utente un numero **Xi** intero strettamente positivo e minore o uguale a **K**: quindi si deve invocare la parte in C passando come parametri <u>i nomi assoluti</u> dei file trovati intervallati dal numero corrispondente chiesto all'utente (perciò i parametri saranno: **F0**, **X0**, **F1**, **X1**, ... **FN-1**, **XN-1**).

La <u>parte in C</u> accetta un numero variabile pari **2N** di parametri maggiore o uguale a 2 (*da controllare*) che rappresentano **N** nomi assoluti di file **F0**, **F1**, ... **FN-1** intervallati da numeri interi strettamente positivi **X0**, **X1**, ... **XN-1** (da controllare). Il processo padre deve generare **N** processi figli: i processi figli **Pi** sono associati ai file **Fi** e al numero **Xi**. Ognuno di tali figli deve creare a sua volta un processo nipote **PPi**: ogni processo nipote **PPi** esegue concorrentemente inviando al figlio le prime **Xi** linee del file **Fi** usando in modo opportuno il comando *head* di UNIX/Linux.

Ogni processo figlio **Pi** deve ricevere tutte le prime **Xi** linee dal suo processo nipote **PPi** e deve inviare al processo padre l'ultima linea inviata dal nipote **PPi**.

Il padre ha il compito di ricevere, rispettando l'ordine dei file, la linea inviata da ognuno dei figli **Pi** che deve essere riportata sullo standard output insieme con l'indicazione del numero d'ordine del figlio, del numero di linea del file e il nome del file da cui è stata letta tale linea.

Al termine, ogni processo figlio **Pi** deve ritornare al padre il valore di ritorno del proprio processo nipote **PPi** (che a sua volta deve tornare il valore di ritorno del comando *head* oppure -1 in caso di errore nell'invocazione del comando *head*) e il padre deve stampare su standard output il PID di ogni figlio e il valore ritornato.