Asymmetric Total Synthesis of the *Stemona Alkaloid* (-)-Stenine

Peter Wipf et al. J. Am. Chem. Soc. 1995, 117, 11106-11112.

the 7th **TS** Yumeng Liao

traditional herbal medicine in east Asia(China, Japan...) and southeast Asia (Vietnam...)

suppress coughing, having antituberculosis, antibacterial, antifungal and antihelmintic properties

Racemic synthesis of stenine

$$(E)$$
RHC=CHCOX
heat
$$H$$
COX

D. J. Hart et al. J. Org. Chem. 1993, 58, 3840-3849.

超原子価ヨウ素 (hypervalent iodine)

ヨウ素はハロゲン元素の中で、サイズが大きく、分極しやすく、電気陰性度が小さい。そのため、超原子価を取りやすい。 超原子価ヨウ素化合物の反応性や安定性はアピカル位の原子団に支配されている。その脱離に伴い、安定なI価のヨウ素へ還元され、大きな脱離能や酸化能を示す。

Ⅲ価

Q1. 反応**a**では、化合物**2**と**-H**と**-OH**が *cis*配置をもつ**2**の立体異性体が、 >98:2の選択性で生成した。このジアステレオ選択性を説明せよ

Competitive 1,2-reduction without Ce(III)

Luche reduction

for 1,2-reduction of enones

hardness

 $BH(OMe)_3^- > BH_4^-$

J.-L. Luche et al. J. Am. Chem. Soc. 1981, 103, 5454-5459.

entry	conditions (solvt. = THF)	isolated yields (%)		
		4	10	11
1	Pd ₂ (dba) ₃ ·CHCl ₃ , Bu ₃ P, HCO ₂ H/Et ₃ N, 60 °C	68	6	11
2	Pd ₂ (dba) ₃ ·CHCl ₃ , Bu ₃ P, HCO ₂ NH ₄ , 60 °C	69	11	12
3	Pd ₂ (dba) ₃ ·CHCl ₃ , Cy ₃ P, HCO ₂ NH ₄ , 60 °C	7	6	65
4	Pd ₂ (dba) ₃ ·CHCl ₃ , Bu ₃ P, HCO ₂ H, 60 °C	1	82	/
5	Pd ₂ (dba) ₃ ·CHCl ₃ , Bu ₃ P, NaBH ₄ , 22 °C	7	1	65
6	Pd(Ph ₃ P) ₄ , Ph ₃ P, NaBH ₄ , 22 °C	37	1	52

Q2. **d**において塩基を用いないと10が単一の生成物として得られ、 Bu_3P の代わりに Cy_3P を用いると**11**が主生成物となる。これらの生成機構及び**4**が立体選択的に生成する理由を説明せよ

Ley-Griffth Oxidation

$$\frac{\mathbf{T}_{\text{etra}\mathbf{p}_{\text{ropyl}\mathbf{a}_{\text{mmonium}}\mathbf{p}_{\text{erruthenate}}}}{\mathbf{T}_{\text{etra}\mathbf{p}_{\text{ropyl}\mathbf{a}_{\text{mmonium}}\mathbf{p}_{\text{etruthenate}}}} \longrightarrow \mathbb{R}^{1}$$

$$\frac{\mathbb{R}^{1}}{\mathbb{R}^{2}} \longrightarrow \mathbb{R}^{2}$$

$$\underline{\mathbf{N}_{\mathbf{M}}\mathbf{e}_{\text{thylmorpholine}}} \times \mathbf{N}_{\mathbf{o}_{\mathbf{o}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{o}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{o}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{o}}}}$$

$$\underline{\mathbf{N}_{\mathbf{o}_{\mathbf{o}}}\mathbf{M}}\mathbf{e}_{\mathbf{o}_{\mathbf{o}_{\mathbf{o}}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{o}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{o}_{\mathbf{o}}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{o}_{\mathbf{o}}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{o}_{\mathbf{o}}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{o}_{\mathbf{o}}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{o}_{\mathbf{o}_{\mathbf{o}}}} \times \mathbf{n}_{\mathbf{o}_{\mathbf{$$

$$\begin{array}{c} H \\ HO \\ \\ HO \\ \\ H \\ Cbz \end{array} = \begin{array}{c} OMe \\ HO \\ \\ HO \\ \\ R \\ \end{array} \begin{array}{c} OMe \\ \\ NMe_2 \\ \\ H \\ \\ H \\ \end{array} \begin{array}{c} NMe_2 \\ \\ H \\ \\ R \\ \end{array} \begin{array}{c} NMe_2 \\ \\ H \\ \\ R \\ \end{array}$$

$$\begin{array}{c|c} & & & \\ \text{Me}_2\text{N} & & \\ \hline & & \\$$

AD-mix

AD: abbreviation of **a**symmetric **d**ihydroxylation **mix**ture contains: K₂OsO₂(OH)₄, K₃Fe(CN)₆, K₂CO₃, and a chiral ligand

Offen used in Sharpless dihydroxylation for enantioselective perparation of 1,2-diols

The reason of using AD-mix

Superior regioselectivity (cyclohexene vs <u>terminal alkene</u>) comparing with Johnson-Lemieux conditions (OsO₄/NalO₄)

Oxidative cleavage of 1,2-diol by NaIO₄

Reduction followed by TIPS protection

AIBN: radical initiator

aldehyde formation

$$\begin{array}{c|c}
 & H - SnBu_3 \\
\hline
 & -Bu_3Sn - ChO \\
\hline
 & Cbz \\
\end{array}$$

easily occurs at low temperature

cf). W. Graf et al. Helv. Chim. Acta 1980, 63, 2328.

Iodolactonization

TIPSO

$$\begin{array}{c} \text{Me}_2\text{N} \\ \text{Me}_2\text{N} \\ \text{H} \\ \text{Cbz} \end{array} \equiv \begin{array}{c} \text{NMe}_2 \\ \text{R} \\ \text{R} \end{array}$$

$$\frac{-\text{NMe}_2\text{H}}{\pm\text{H}^+}$$

Why pH = 5.5 ? supressing hydrolysis of silyl-protective group

AIBN: radical initiator

Accomplishment of synthesis

