Algorithmen und Datenstrulcturen - Übung OZ

Markus Pawellek - 144645

<u>Lemma:</u> (Eigenschaften von 0,0,0)

Seien fig.h: N -> [0, co) gegeben. Dann gilt:

- a) $a \cdot f \in O(f)$ für alle a > 0 (insbesondere $f \in O(f)$)
- b) $f \in O(g) \implies hf \in O(hg)$ (analog für O und Ω)
- c) $f + g \in \Theta(\max\{f,g\})$

Beweis: α) Sei $\alpha > 0$ beliebig. Dann gilt: $f(n) \leq f(n)$ für alle $n \in \mathbb{N}$ $\Rightarrow \alpha \cdot f(n) \leq \alpha \cdot f(n) \leq \alpha \cdot f(n)$ für alle $n \in \mathbb{N}$ $\Rightarrow \forall b = 0$ with b = 0 and b = 0

b) $f \in \theta(g) \Longrightarrow es gibt c_{1}, c_{2} = 0$ und $n_{0} \in \mathbb{N}_{1}$ sodass $c_{1} \cdot g(h) \leq f(h) \leq c_{2} \cdot g(h) \quad \text{for allo } n \geq n_{0}$ da h positiv ist gilt: $c_{1} \cdot h(h)g(h) \leq h(h)f(h) \leq c_{2} \cdot h(h)g(h)$ $far alle \quad n \geq n_{0}$

=> hf $\in \Theta(h_g)$ (Bewels analog für O und OO)

C) es gilt allgemein, da fig $\geq O$: max $\{f_{ig}\} \in f_{ig} \in 2 \cdot \max\{f_{ig}\} \}$ => Wähle $C_1 = 1, C_2 = 2$ und $N_0 = 1$. Dann gilt: $C_1 \cdot \max\{f_{ig}\} \subseteq f_{ig} \in C_2 \cdot \max\{f_{ig}\} \}$ für alle $n \geq N_0$ => $f_{ig} \in \Theta(\max\{f_{ig}\})$

Lemma: (Nuch mahr Eigenschaften)

Seien fig: $N \rightarrow R$ schließlich positive Funktionen (d.h. es gibt $n_0 \in IN$, socials $f(n) \ge 0$, $g(n) \ge 0$ für alle $n \in IN$, $n \ge n_0$). Dunn gilt:

ftg & O(max {f,g})

Beweis: (analog 24 c) $\max \{f_{ig}\}(n) \leq (f_{ig})(n) \leq 2 \cdot \max \{f_{ig}\}(n) \text{ für alle } n \geq n_0$

$$\Rightarrow$$
 ftg $\in O(\max\{f_{ig}\})$ mit $c_1 = 1, c_2 = 2$

Aufgabe 4

Seien $f_n,...,f_k:IN \rightarrow IR$ m/t $k \in IN$ gegeben. Dann gilt im Allgemeinen weder Aussage a) noch Aussage 6), da Funktionen $f_n,...,f_k$ auch negativ sein lönnten.

Gegenbeispiel: k-2, $f_a(n) = 1$, $f_z(n) = -1$

 $\Rightarrow \max \{f_{1}, f_{2}\} = f_{1}, \min \{f_{1}, f_{2}\} = f_{2}$ $\Rightarrow C_{1}, \min \{f_{1}, f_{2}\}(n) = C_{1}, (-1) \in (f_{1}, f_{2})(n) = 0 \in C_{2}, (1) = C_{1}, \max \{f_{1}, f_{2}\}$ $f \text{ if alle } C_{1}, C_{2} > 0, \text{ of linke Seite immer negative und rather}$ Seite immer positive

=> fr+f2 & O(min {fifz}), fi+fz & O(max {fiifz})

Sind ober farm, for schließlich positive Funktionen, folgt Aussage a):

Set no EN so gewählt, doss filu) 20 für alle 15 jele und alle nz No.

 $= > \left(\max_{1 \leq j \leq k} f_j\right)(n) \leq \sum_{j=1}^k f_j(n) \leq \sum_{j=1}^k \left(\max_{1 \leq j \leq k} f_j\right)(n) = k \cdot \left(\max_{1 \leq j \leq k} f_j\right)(n)$

für alle nzno

Aufgabe 3

Seien $f_{ig}, h: \mathbb{N} \to \mathbb{R}$ mit $f \in O(g)$ and $g \in O(h)$. Dann gilt:

es gibt $c_1>0$ and $n_1\in IN$, sodoss $f(n) \subseteq c_1g(n)$ for alle $n \ge n_1$ and es gibt $c_2>0$ and $n_2\in IN$, sodoss $g(n) \subseteq c_2h(n)$ for alle $n \ge n_2$

Sei nun $\tilde{h} := \max\{u_1, u_2\}$. $\Longrightarrow f(n) \in C_g(u) \in C_a C_z h(u)$ für die $n \ge \tilde{h}$

Wähle nun $\widetilde{c} = c_1c_2 > 0$. Dann folgt: $f_n \in \widetilde{c}h(u)$ für alle $u \ge \widetilde{h}$

=> f e O(4)

Aufgabe 1

a) logn
$$e$$
 $O(n) => \sqrt{\log n!} e$ $O(\sqrt{n}) => \sqrt{n \log n!} e$ $O(n)$
 $=> \sqrt{n \log n!} e$ $O(\frac{1}{4}n) => \frac{1}{4}n e$ $SC(\sqrt{n \log n!})$

6) 6.
$$3^{\frac{n}{2}+1} = 18.\sqrt{37}^n \in O(\sqrt{37}^n)$$

Ser
$$C>0$$
, $h_0 \in IN$ mit Bedingung: $\sqrt{37}^n \subseteq C \cdot 2^n$ fix alle $n \ge h_0$

$$= > \left(\frac{\sqrt{37}}{2}\right)^n \subseteq C \implies ab \text{ bestimmten } n_0 \text{ git Ungleichung}$$

$$= > \sqrt{37}^n \in O(2^n)$$
monofon fallend $(\sqrt{37} < 2)$

$$= > \sqrt{37}^n \in O(2^n)$$

=> ungekehrt:
$$\left(\frac{2}{\sqrt{37}}\right)^n$$
 & C => es gibt immer ein n_0 , sodax für alle $n \ge n_0$ die Ungleichung nicht erfüllt ist $2^n \in O(\sqrt{37}^n)$

c)
$$n \in \Omega(\log n) \Rightarrow (n\log n) \cdot n \in \Omega((n\log n) \log n)$$

$$\Rightarrow n^{2}\log n \in \Omega(n\log^{2}n)$$

d)
$$\log(n!) = \log \prod_{j=1}^{n} j = \sum_{j=1}^{n} \log j \leq \sum_{j=1}^{n} \log n = n \log n$$

$$\Rightarrow$$
 $log(n!) \in O(nlogn)$

Ansatz:
$$n^r = (\log n)^{\log n} = 3 \log n^r = r \cdot \log n = \log (\log u^{\log n})$$

$$= \log n \cdot \log \log n$$

=>
$$r = \log \log n > 1$$
 ab einem bestimmten n

->
$$nlogh \in O(nr) = O(logn(lgn))$$

 $hlogh \notin N(nr)$

$$=$$
 $f \in O(g)$

e) o.E.
$$\alpha, b > 1$$
: $\log_{\alpha} n = \frac{\log_b n}{\log_b \alpha} \in \Theta(\log_b n)$