Statistics Assignment

Vishanraj Daby Gay Ihsaan Ramjanee 2315007 Zakariyya Kurmally 2315839

April 19, 2024

Contents

1	Neg	gative Binomial Distribution (NBD)	:
	1.1	Probability Mass Function Of NBD	
	1.2	Expected Value and Variance of NBD	
	1.3	Assumptions of NBD	
	1.4	Relationship between Binomial Distribution (BD) and NBD	
	1.5	Illustration of NBD	
		1.5.1 Issues with this application	
2	Hyp 2.1 2.2	Dergeometric Distribution (HD) Probability Mass Function of HD	
	2.3	Assumptions of a HD	
	2.4	Illustration of a HD	
3	God	odness of Fit	
	3.1	NBD	
	3.2	HD	

1 Negative Binomial Distribution (NBD)

A Bernoulli trial is an experiment that can result is either a 'success' or a 'failure', but not both.

Consider a sequence of Bernoulli trials with probability of success p and probability of failure q such that $0 \le p \le 1$ and p + q = 1. If X is the number of failures before the r^{th} success, X is said to follow a NBD with parameters r and p, denoted by:

$$X \sim \mathrm{NBin}(r, p)$$

Note:

- Mean is always greater than variance for a NBD. This is known as dispersion
- A random variable D which follows a NBD can also be defined as the number of trials before the r^{th} success. In such a case, D = (X + r)
- The terms 'success' and 'failure' in a NBD are arbitrary. As such, a NBD can also be described as modeling the number of successes before a desired number of failures. In this case, the roles of p and p are reversed

1.1 Probability Mass Function Of NBD

$$P(X=n) = \binom{n+r-1}{r-1} p^r q^n$$
, for $n \in \mathbb{N}$, where $q = 1-p$

1.2 Expected Value and Variance of NBD

$$E(X) = \frac{r(1-p)}{p}$$

$$Var(X) = \frac{r(1-p)}{p^2}$$

1.3 Assumptions of NBD

- Experiment must have 2 mutually exclusive outcomes denoted as 'success' or 'failure'
- Probability of success must be constant for each trial
- Each trial must be independent
- The experiment must have a finite number of success(es)

1.4 Relationship between Binomial Distribution (BD) and NBD

Consider n independent Bernoulli trials with the same probability of success p. If Y is the number of successes, it is said to follow a binomial distribution with parameters n and p.

$$Y \sim Bin(n, p)$$

Upon comparison, both the BD and NBD are based upon independent Bernoulli trials. However, they differ in what they are counting. The BD counts the number of successes in a fixed number of trials n while the NBD counts the number of failures until a fixed number of successes r.

1.5 Illustration of NBD

To illustrate, we will use data from Statistics Mauritius pertaining to grades of student in Economics A Level during the 2023 seating. Below is a summary of the data collected, along with mean and variance.

Grade	Point Range	f_i
A*	129-180	75
A	113-129	261
В	95-112	435
C	83-95	419
D	71-83	513
E	60-71	490
F	0-60	495

From the above data, mean and variance can be calculated as follows:

$$E(X) = \frac{\sum x \cdot f}{\sum f} = \frac{163}{50} = 3.26$$

$$Var(X) = \frac{(x_i - \mu)^2}{n - 1} = 5.46$$

Since E(X) < Var(X), the NBD can be applied.

Scenario: Consider an event where A-Level economics students are gathered, the event organiser wants an r^{th} number of students who obtained A* and starts approaching attendees about their grades. Let the random variable X represent the probability that the organiser gathers those students after n number of attempts.

Using the rnbinom function in R outputs the following data:

	X	0	1	2	3	4	5	6	7	8	9	10	11
Ì	f	4	10	8	6	8	6	3	4	0	0	0	1

1.5.1 Issues with this application

2 Hypergeometric Distribution (HD)

Consider a population of N objects which are divided into 2 types: type A and type B. There are n objects of type A and N - n objects of type B. Suppose a random sample of size r is taken (without replacement) from the entire population of N objects. If X is the number of objects of type A in the sample, then X follows a HD with parameters n, N-n and r denoted by:

$$X \sim \mathrm{HGeom}(n, N-n, r)$$

2.1 Probability Mass Function of HD

$$p(k) = \frac{{}^{n}C_{k} \cdot {}^{(N-n)}C_{(r-k)}}{{}^{N}C_{r}}, \text{ for } \max\{0, r - (N-n)\} \le k \le \min\{r, n\}$$

2.2 Expected Value and Variance of HD

$$E(X) = \frac{nr}{N}$$

$$Var(X) = \frac{nr}{N} \cdot \frac{N-r}{N} \cdot \frac{N-n}{N-1}$$

2.3 Assumptions of a HD

- Finite population
- Population can be seperated into 2 types
- Sampling is done without replacement (dependent trials).

2.4 Illustration of a HD

Here, we will use data from MES concerning the number of students who sat for the A-Level exams in 2023 in Rodrigues. The following table shows amount of students classified by gender:

Male	Female	Total		
94	150	244		

After this, the following data was generated using the rhyper function in R, called with:

	X	7	8	9	10	11	12	13	14	15	17
ĺ	f	1	1	3	6	5	4	4	3	2	1

3 Goodness of Fit

3.1 NBD

Based on the sampled data, the mean and variance can be calculated:

$$\mu = \frac{\sum x \cdot f}{\sum f} = \frac{163}{50} = 3.26$$
$$\sigma^2 = \frac{(x_i - \mu)^2}{n - 1} = 5.46$$

∴ mean < variance

x	O_i	E_i (4 d.p)	$(O_i - E_i)^2 / E_i $ (4 d.p)
0	4	5.106	0.2394
1	10	9.3534	0.04476
2	8	10.2813	0.5062
3	6	8.7898	0.8855
4	8	6.4412	0.3772
5	6	4.2481	0.4124
6	3	2.5942	0.0635
7	4	1.4936	0.2060
8	0	0.8209	0.8209
9	0	0.4345	0.4345
10	0	0.2229	0.2290
11	1	0.1113	0.0689
	50	49.8968	15.2882

$$x^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 15.2882$$
$$x_{ll}^{2}(0.05) = 19.675$$

Since $x^2 < x_{ll}^2(0.05)$, assuming a 5% significane level, the random variable X does in fact follow a negative binomial distribution.

3.2 HD

x	O_i	E_i (4 d.p)	$(O_i - E_i)^2 / E_i$
7	1	0.9165	0.0076
8	1	1.7910	0.3493
9	3	2.9187	0.0023
10	6	4.0077	0.9904
11	5	4.6722	0.0230
12	4	4.6515	0.0913
13	4	3.9711	0.0002
14	3	2.9148	0.0025
15	2	1.8423	0.0135
17	1	0.4704	0.5963
	30	28.1562	2.0764

$$x^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 2.0764$$
$$x_{9}^{2}(0.05) = 16.919$$

Since $x^2 < x_9^2(0.05)$ the random variable X does follow a hypergeometric distribution.