Sprawozdanie IV

Reprezentacja niepewności

Prawdopodobieństwo warunkowe - proste przeliczenie

Szacuje się, że 0,05% populacji USA ma HIV. Istnieje test na HIV: (a) jeśli badany ma HIV, test ma 98% szansy na pozytywny wynik; (b) jeżeli osoba nie ma HIV, test ma 3% szansy na pozytywny wynik. Tomek ma wynik pozytywny. Jakie jest prawdopodobieństwo, że ma HIV?

$$P(HIV) = 0.05$$

$$P(T_{pos} | HIV) = 0.03$$

$$P(T_{pos} | HIV) = 0.03$$

$$P(T_{one} | HV) = 0.03$$

$$P(T_{one} | HV) = 0.03$$

$$P(T_{one} | HV) = P(P_{os} | T_{one} | HV) = P(P_{os})$$

$$P(T_{os} | HIV) \cdot P(HV) = P(P_{os} | T_{one} | HV) + P(P_{os} | T_{one} | HV) \cdot P(T_{one} | HV) = P(P_{os} | T_{one} | HV) \cdot P(T_{one} | HV)$$

Klasyfikator Naive Bayes - ręcznie

Rozważmy taki prosty zbiór treningowy, w którym każdy przykład ma cztery binarne atrybuty i przydzieloną jedną z dwóch klas (+/-):

Przykład	Atrybut_1	Atrybut_2	Atrybut_3	Atrybut_4	Klasa
x1	1	1	1	1	+
x2	1	1	0	1	+
х3	0	1	1	0	+
x4	1	0	0	1	+
x5	1	0	0	0	+
х6	1	0	1	0	-
x7	0	1	0	0	-
x8	0	0	1	0	-

W jaki sposób naiwny klasyfikator Bayesowski, wyuczony na powyższym zbiorze treningowym, zaklasyfikuje poniższy przykład? Policz ręcznie :)

Przykład	Atrybut_1	Atrybut_2	Atrybut_3	Atrybut_4	Klasa
x9	1	1	0	0	-

	an	a ₂	az	04	14
X,	1	1	1	1	+
X ₂	1	1	0	1	+
X3	0	1	1	0	+
X4	1	0	0	1	+
X ₅	1	0	0	0	
Xc	1	0	1	0	
X ₇	0	1	0	0	
X ₈	0	0	la	0	
Xq	11	1	0	0	2
P(I	a;) =			P(+, -a,	
= 5	- · (p(c	u (t) 0 P	(azlt)	· P (!a, !	t) P[ault] =
= \$	(美	. 3	, 35 .	至)=	125
P(-).	TT (P(1 · 1 · 1 · 3)) = =	45	(ant) · Part) · (lan 1-) · Me

Zastosowanie klasyfikatora Naive Bayes w Wece

- 1. Włącz Wekę i wczytaj plik weather.numeric.arff ze znanego Ci już zbioru danych: data.tar.gz
- 2. Przejrzyj ten zbiór danych i przypomnij sobie czego on dotyczy.
- 3. Przejdź na zakładkę **Classify**. Weka udostępnia dwie wersje Naive Bayes. Zapoznaj się z ich opisami:
 - NaiveBayes
 - NaiveBayesUpdateable
- 4. Przetestuj obydwie wersje algorytmu? Jakie są różnice?
 Podczas testowania nie zauważyłem żadnych różnic w wartościach wyjściowych. W dokumentacji tak samo jest nie wiele napisane na temat tych metod i nie można wywnioskować jakie są różnice. Jedynie jest wspomniane o tym, że jest to wersja updateable, zatem mogę przypuszczać, że w trakcie predykcji po podaniu prawdziwej odpowiedzi metoda może zaktualizować swoje parametry
- 5. Następnie przetestuj te same algorytmy na pliku weather.nominal.arff. Jakie różnice występują teraz? Co jest przyczyną występowania różnic odpowiedz korzystając z opisów algorytmów.

Multinomial Naive Bayes w Wece

- 1. Wczytaj w Wece plik ReutersGrain-train.arff i zapoznaj się z jego budową. Jakie są atrybuty? Jakie przyjmują wartości? Jest to zbiór zawierający tekst oraz przypisaną do nich etykietę. Liczba rekordów wynosi 1554. Etykiety to 0 lub 1 przy czym elementów oznaczonych jako jest 14 razy więcej. Po przefiltrowaniu text używając StringToWordVector pojawiły się klasy zawierające każde słowo/liczbe/zbiór znaków z oryginalnego tekstu.
- 2. Przejdź do zakładki **Classify**, z gałęzi meta wybierz **FilteredClassifier**:
 - W ustawieniach wybierz classifier NaiveBayes oraz filter StringToWordVector.
 - b. W polu Test options wybierz **Supplied test set** i wskaż plik ReutersGrain-test.arff.
 - c. Uruchom klasyfikację wciskając **Start**. Zapoznaj się z otrzymanymi wynikami.

 Wykonaj klasyfikację w analogiczny sposób korzystając z NaiveBayesMultinomial oraz algorytmu tworzenia drzewa decyzyjnego J48. Porównaj wyniki.

Naive Bayes

NaiveBayesMultinomial

Jak widać Naive Bayes ma problemy z klasyfikacją dlatego nie poświęce mu dużo uwagi.

NaiveBayesMultinomial sprawuję się trochę gorzej niż J48 (ma więcej źle zaklasyfikowanych rekordów), ale ma mniej False Negatives(13 do 19). Może zdarzyć się sytuacja w której będziemy chcieli uniknąć takiego błędu (np. badanie ludzi na HIV jest idealnym przykładem, ale nie odnoszącym się do nagłówków z reutersa)

4. Zapoznaj się z opisem filtru **StringToWordVector**. Jak myślisz, które jego opcje mogłyby poprawić klasyfikację? Zwróć uwagę np. na opcje outputWordCounts, lowerCaseTokens, useStoplist. Przetestuj działanie wybranych opcji pojedynczo i w grupach korzystając z algorytmu **NaiveBayesMultinomial**. Jak wpłynęły na jego skuteczność? Użyte pojedynczo opcje ogólnie polepszają wyniki klasyfikatora. Najlepsze poprawki wprowadziła opcja outputWordCounts. Po użyciu jej z lowerCaseTokens wyniki spadły, ale były wciąż lepsze niż bez żadnej opcji. StringToWordVector zwraca wektory w bardzo podstawowej formie, warto zwrócić uwagę na fakt, że np. `he is` oraz `he's` będzie reprezentowane tak samo pomimo takiego samego znaczenia. W tym przypadku pominąłbym preprocessing w weka na rzecz stworzenia własnego filtru i zaimplementowania tam reguł gramatycznych, które mogą znacząco wpłynąc na rozmiar wektora. Tak samo nie jest istotne, że w tekście jest napisana liczb 67, tylko fakt, że jest to liczba.