Statistiques mathématiques : cours 3

Guillaume Lecué

29 août 2018

Rappel des cours précédents

- <u>outils</u>: LFGN, TCL multi-dimensionnel, Lemme de Slutsky, méthode Delta
- ▶ <u>estimateurs</u> : fonction de répartition empirique, quantile empirique, estimateur plug-in,
- ▶ <u>Résultats</u> consistance et normalité asymptotique de ces estimateurs :

$$\widehat{F}_n$$
, $\widehat{q}_{n,p}$, $T(\widehat{F}_n) = h\left(\frac{1}{n}\sum_{i=1}^n g(X_i)\right)$

 $\underline{\wedge}$ Jusqu'à maintenant, on n'a pas utilisé la notion de modèle statistique pour construire et étudier des méthodes d'estimation

Aujourd'hui

modèle dominé

Méthodes d'estimation dans les modèles

Méthode des moments

Z-estimation

M-estimation

Principe de maximum de vraisemblance

Rappels : expériences et modèle statistique (1/2)

Définition

Une expérience statistique $\mathcal E$ est un triplet

$$\mathcal{E} = (\mathfrak{Z}, \mathcal{Z}, \{ \mathbb{P}_{\theta}, \theta \in \Theta \}),$$

avec

- $(\mathfrak{Z}, \mathcal{Z})$ espace mesurable (souvent $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$),
- ▶ $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ famille de mesures de probabilités définies sur $(\mathfrak{Z}, \mathcal{Z})$ appelée modèle

Question : Un modèle est une connaissance/intuition a priori sur les données. Comment tirer profit du modèle pour construire et étudier des estimateurs "plus efficaces" que les estimateurs sans modèle \widehat{F}_n , $\widehat{q}_{n,p}$

Exemple : expérience et modèles statistique (2/2)

<u>Probléme</u>: un physicien observe la durée de vie d'atomes radioactifs qu'il décide de modéliser par des variables aléatoires X_1, \ldots, X_n i.i.d.. Il souhaite utiliser ces données pour estimer leur loi sous-jacente. Il peut choisir entre deux approches :

- ightharpoonup "sans modèle" : en estimant la fonction de répartition des X_i par \widehat{F}_n
- ▶ "avec modèle": il sait que les durées de vie suivent une loi exponentielle $\in \{\mathcal{E}xp(\theta): \theta>0\}$. Dans ce cas, il suffit d'estimer θ par un estimateur $\widehat{\theta}_n$ et d'approcher la fonction de répartition des X_i par $F_{\widehat{\theta}_n}$ où

$$F_{\theta}(x) = \mathbb{P}[\mathcal{E}xp(\theta) \le x] = \begin{cases} 0 & \text{si } x \le 0 \\ 1 - \exp(-\theta x) & \text{sinon.} \end{cases}$$

http://localhost:8888/notebooks/cdf_empirique.ipynb cdf - model

Expériences dominées

 On fait une hypothèse minimale de "structure" sur le modèle statistique. But : ramener l'étude de la famille

$$\{\mathbb{P}_{\theta}, \, \theta \in \Theta\}$$

à l'étude d'une famille de fonctions

$${z \in \mathfrak{Z} \mapsto f(\theta, z) \in \mathbb{R}_+, \, \theta \in \Theta}$$
.

▶ Via la notion de domination : si μ, ν sont deux mesures (positives) σ -finies sur \mathfrak{Z} , alors μ domine ν (notée $\nu \ll \mu$) quand

$$\forall A \in \mathcal{Z}, \quad \mu[A] = 0 \Rightarrow \nu[A] = 0$$

Théorème de Radon-Nikodym

Théorème

Soient ν et μ deux mesures σ -finies sur $(\mathfrak{Z}, \mathcal{Z})$.

Si $\nu \ll \mu$ alors il existe une fonction positive (μ -p.p.), appelée densité de ν par rapport à μ , notée

$$z\mapsto \frac{d\nu}{d\mu}(z),$$

définie μ -p.p., μ - intégrable, telle que, pour tout $A \in \mathcal{Z}$,

$$\nu[A] = \int_A \frac{d\nu}{d\mu}(z)\mu(dz)$$

Expérience dominée

Définition

Une expérience statistique $\mathcal{E} = (\mathfrak{Z}, \mathfrak{Z}, \{\mathbb{P}_{\theta}, \theta \in \Theta\})$ est dominée par la mesure σ -finie μ définie sur $(\mathfrak{Z}, \mathfrak{Z})$ si

$$\forall \theta \in \Theta : \mathbb{P}_{\theta} \ll \mu$$

On appelle densités de la famille $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ par rapport à la mesure dominante μ , la famille de fonctions (définies μ – p.p.)

$$z\mapsto \frac{d\,\mathbb{P}_{\theta}}{d\mu}(z),\;z\in\mathfrak{Z},\;\theta\in\Theta.$$

Dans un modèle dominé, on est ramené à estimer une densité plutôt qu'une mesure de probabilité. De plus l'estimation de la densité peut se réduire à l'estimation du paramétre θ .

modèle d'échantillonnage dominé (sur \mathbb{R})

- ▶ On observe un *n*-échantillon de v.a.r. $X_1, ..., X_n$.
- ▶ La loi des X_i appartient au modèle $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ (famille de probabilités sur \mathbb{R}), dominé par une mesure (σ -finie) μ sur \mathbb{R} . On note les densités : $\forall \theta \in \Theta, x \in \mathbb{R}$,

$$f(\theta, x) = \frac{d \, \mathbb{P}_{\theta}}{d \mu}(x)$$

▶ La loi du *n*-uplet $(X_1, ..., X_n)$ s'écrit

$$\mathbb{P}^{(X_1,\ldots,X_n)} = \mathbb{P}_{\theta}^n = \mathbb{P}_{\theta}^{\otimes n} \ll \mu^{\otimes n}$$

elle admet alors une densité : $\forall x_1, \dots, x_n \in \mathbb{R}$,

$$\frac{d \mathbb{P}_{\theta}^{\otimes n}}{d \mu^{\otimes n}}(x_1, \ldots, x_n) = \prod_{i=1}^n f(\theta, x_i)$$

Exemple 1 : modèle de densité gaussienne univariée

$$X_i \sim \mathcal{N}(m, \sigma^2)$$
, avec $\theta = (m, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+ \setminus \{0\}$.

▶ la mesure dominante est λ : $\mathbb{P}_{\theta} = f.\lambda$ où

$$f(\theta, x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

▶ la densité d'un *n*-uplet est : pour tout $x_1, \ldots, x_n \in \mathbb{R}$,

$$\frac{d \mathbb{P}_{\boldsymbol{\theta}}^{n}}{d\mu^{\otimes n}}(x_{1},\ldots,x_{n}) = \prod_{i=1}^{n} f(\boldsymbol{\theta},x_{i})$$

$$= \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \boldsymbol{m})^{2}\right)$$

Exemple 2 : modèle de Bernoulli

 $X_i \sim \mathsf{Bernoulli}(\theta)$, avec $\theta \in \Theta = [0,1]$

la mesure dominante est ici $\mu=\delta_0+\delta_1$, la mesure de comptage sur $\{0,1\}$:

$$\mathbb{P}_{\theta} = (1 - \theta)\delta_0 + \theta\delta_1 \ll \mu$$

et pour tout $x \in \{0, 1\}$

$$\frac{d \mathbb{P}_{\theta}}{d\mu}(x) = f(\theta, x) = (1 - \theta)I(x = 0) + \theta I(x = 1) = \theta^{x}(1 - \theta)^{1 - x}$$

la loi des observations a pour densité par rapport à $\mu^{\otimes n}$,

$$\frac{d\mathbb{P}_{\theta}^{n}}{d\mu^{\otimes n}}(x_{1}\cdots x_{n})=\prod_{i=1}^{n}\theta^{x_{i}}(1-\theta)^{1-x_{i}},$$

pour $x_1, ..., x_n \in \{0, 1\}$

Exemple 3 : temps de panne « arrêtés » (1/3)

- ▶ On observe $X_1, ..., X_n$, où $X_i = Y_i \land T$, avec Y_i lois exponentielles de paramètre θ et T temps fixe (censure).
- ▶ $\underline{\mathsf{Cas}\ 1}: T = \infty$ (pas de censure). Alors $\theta \in \Theta = \mathbb{R}_+ \setminus \{0\}$ et

$$\mathbb{P}_{\theta} = f.\lambda \text{ où } f(\theta, x) = \theta \exp(-\theta x)I(x \ge 0)$$

et

$$\frac{d\mathbb{P}_{\boldsymbol{\theta}}^{n}}{d\mu^{\otimes n}}(x_{1},\ldots,x_{n})=\boldsymbol{\theta}^{n}\exp\Big(-\boldsymbol{\theta}\sum_{i=1}^{n}x_{i}\Big),$$

pour tout $x_i \in \mathbb{R}_+$ et 0 sinon.

▶ Cas 2 : Comment s'écrit le modèle dans le cas où $T < \infty$ (présence de censure) ? Comment choisir μ ?

Exemple 3 : temps de panne « arrêtés » (2/3)

▶ Loi \mathbb{P}_{θ} de $X = Y \wedge T$: $Y \sim \mathcal{E}xp(\theta)$:

$$X = Y1_{\{Y < T\}} + T1_{\{Y \ge T\}}$$

$$= \theta e^{-\theta \times I} (0 \le y \le T)$$

d'où, pour
$$g(\theta, x) = \theta e^{-\theta x} I(0 \le x < T)$$
,

$$\begin{split} \mathbb{P}_{\theta} &= g.\lambda + \mathbb{P}[Y \geq T] \delta_T \\ &= g.\lambda + e^{-\theta T} \delta_T \\ &\ll \mu = \lambda + \delta_T \quad \text{(par exemple)}. \end{split}$$

Exemple 3 : temps de panne « arrêtés » (3/3)

▶ Alors, pour ce choix de mesure dominante

$$\frac{d \mathbb{P}_{\theta}}{d \mu}(x) = \frac{\theta}{\theta} e^{-\theta x} I(0 \le x < T) + e^{-\theta T} I(x = T)$$

► Finalement,

$$\mathbb{P}_{\theta}^{n} = \mathbb{P}_{\theta}^{\otimes n} \ll \mu^{\otimes n} = \bigotimes_{i=1}^{n} \left[\lambda + \delta_{T} \right]$$

et, pour $N_n(T) = \sum_{i=1}^n I(x_i < T)$,

$$\frac{d \mathbb{P}_{\theta}^{n}}{d\mu^{\otimes n}}(x_{1},\ldots,x_{n}) = \prod_{i=1}^{n} \left(\theta e^{-\theta x_{i}} I(0 \leq x_{i} < T) + e^{-\theta T} I(x_{i} = T)\right)$$
$$= \theta^{N_{n}(T)} e^{-\theta \sum_{i=1}^{n} x_{i} I(x_{i} < T)} e^{-\theta T \left(n - N_{n}(T)\right)},$$

quand $0 \le x_i \le T$ et 0 sinon.

Méthodes d'estimation dans les modèle d'échantillonnage dominés

- Méthode de substitution (ou des moments)
- ▶ *Z*-estimation
- M-estimation
- ► Le principe du maximum de vraisemblance

La notation \mathbb{E}_{θ}

Soit un modèle statistique $\{\mathbb{P}_{\theta}: \theta \in \Theta\}$ pour une observation Z. Soit $\theta \in \Theta$, on note \mathbb{E}_{θ} l'espérance sous \mathbb{P}_{θ} : càd pour toute fonction mesurable f,

$$\mathbb{E}_{\theta} f(Z) = \int_{\mathfrak{Z}} f(z) \, \mathbb{P}_{\theta}(dz)$$

C'est l'espérance de f(Z) quand Z est supposée être de loi \mathbb{P}_{θ} . Remarque : étant donné $\theta \in \Theta$, on ne sait pas si la loi de l'observation Z est bien \mathbb{P}_{θ} (on sait seulement qu'elle appartient à $\{\mathbb{P}_{\theta}:\theta\in\Theta\}$), quand on écrit \mathbb{E}_{θ} , on fait donc l'hypothèse que Z a pour loi \mathbb{P}_{θ} et on en déduit des conséquences (par exemple des constructions d'estimateurs ou des résultats statistiques). Si ce résultat est vrai pour tout les $\theta\in\Theta$ alors il est en particulier vrai pour le "vrai θ " : celui pour lequel Z est vraiment distribuée selon \mathbb{P}_{θ} .

Méthode des moments en dimension 1

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \mathbb{P}_{\theta}$, avec $\theta \in \Theta \subset \mathbb{R}$
- ▶ pour tout $\theta \in \Theta$, on calcul le moment d'ordre 1 de X (sous \mathbb{P}_{θ}) :

$$m_1(\theta) = \mathbb{E}_{\theta} X$$

▶ la méthode des moments en dimension 1 consiste à "estimer" la quantité inconnue $\mathbb{E}_{\theta} X$ par la moyenne empirique $\bar{X}_n = \frac{1}{n} \sum X_i$ et à :

trouver
$$\hat{ heta}_n \in \Theta$$
 tel que $m_1(\hat{ heta}_n) = \bar{X}_n$

• (quand il y a une solution) c'est un estimateur plug-in pour g(x) = x et $h(x) = m_1^{-1}$:

$$\boxed{ heta=m_1^{-1}ig(\mathbb{E}_{m{ heta}}Xig)} ext{ et } \boxed{\hat{ heta}_n=m_1^{-1}ig(ar{X}_nig)}$$

Méthode des moments en dimension 1

• Qualité d'estimation via la méthode Delta : pour $h(x) = m_1^{-1}(x)$ (et si h est C^1),

$$\sqrt{n}\big(\widehat{\theta}_n - \theta\big) \overset{d}{\to} \mathcal{N}\big(0, h'(\mathbb{E}_{\theta} \, X)^2 \mathrm{Var}_{\theta}(X)\big)$$

en loi sous \mathbb{P}_{θ} . (La variance asymptotique dépend en général de $\theta \rightsquigarrow id\acute{e}$: remplacer θ par $\widehat{\theta}_n$ via le lemme de Slutsky)

▶ Exemple : $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{E}xp(\theta)$ pour $\theta > 0$. On a pour tout $\theta > 0$,

$$m_1(\theta) = \mathbb{E}_{\theta}\left[X\right] = \frac{1}{\theta},$$

l'estimateur par moment associé est solution de $m_1(\widehat{ heta}_n) = ar{X}_n$, càd

$$\widehat{\theta}_n = \frac{1}{\overline{X}_n}$$

Méthode des moments en dimension d

 $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \mathbb{P}_{\theta}$, avec $\theta \in \Theta \subset \mathbb{R}^d$

▶ pour tout $\theta \in \Theta$, on calcul les d premiers moments de X (sous \mathbb{P}_{θ}) :

$$m_1(\theta) = \mathbb{E}_{\theta} X, m_2(\theta) = \mathbb{E}_{\theta} X^2, \dots, m_d(\theta) = \mathbb{E}_{\theta} X^d$$

▶ la méthode des moments consiste à "estimer" les quantités inconnues $\mathbb{E}_{\theta} X^k$ par leurs moyennes empiriques $\overline{X_n^k} = \frac{1}{n} \sum X_i^k$ et à : trouver $\hat{\theta}_n \in \Theta$ solution de $m_k(\hat{\theta}_n) = \overline{X_n^k}$ pour tout $k = 1, \ldots, d$

▶ il n'y a pas forcément de solution!

Exemple en dimension d > 1

 $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \mathsf{B\acute{e}ta}(\alpha, \beta)$, de densité

$$x \mapsto \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} 1_{\{0 < x < 1\}},$$

- ▶ Le paramètre est $\theta = (\alpha, \beta) \in \Theta = \mathbb{R}_+ \setminus \{0\} \times \mathbb{R}_+ \setminus \{0\}$.
- ► On a

$$\left| \mathbb{E}_{\theta} \left[X \right] = \frac{\alpha}{\alpha + \beta}, \ \mathbb{E}_{\theta} \left[X^2 \right] = \frac{\alpha(\alpha + 1)}{(\alpha + \beta + 1)(\alpha + \beta)} \right|$$

Exemple en dimension d > 1

L'estimateur par moment $\widehat{\theta}_n = (\widehat{\theta}_n^{(1)}, \widehat{\theta}_n^{(2)})$ associé est défini par

$$\begin{cases}
\overline{X}_n = \frac{\widehat{\theta}_n^{(1)}}{\widehat{\theta}_n^{(1)} + \widehat{\theta}_n^{(2)}} \\
\overline{X}_n^2 = \frac{\widehat{\theta}_n^{(1)}(\widehat{\theta}_n^{(1)} + 1)}{(\widehat{\theta}_n^{(1)} + \widehat{\theta}_n^{(2)} + 1)(\widehat{\theta}_n^{(1)} + \widehat{\theta}_n^{(2)})}
\end{cases}$$

► Etude asymptotique via le TCL multidimensionnel et la méthode Delta multidimensionnelle.

Limites de la méthode des moments

- ► Méthode non systématique (pb d'existence)
- ► Représentation pas toujours explicite
- Choix "optimal" des moments? (notion d'optimalité parmi une classe d'estimateurs)
- ► Généralisation : Z-estimation (ou estimation par méthode des moments généralisés, GMM= generalized method of moments).

Z-estimation

▶ La méthode des moments (en dimension 1) est basée sur "l'inversibilité" des fonctions

$$m_k(\theta) = \mathbb{E}_{\theta} X^k$$

i.e. pour tout $\theta \in \Theta$, on voit θ comme solution de l'équation

$$\mathbb{E}_{\theta}\left[m_k(\theta)-X^k\right]=0$$

Principe de construction d'un Z-estimateur : remplacer les $m_k(\theta) - x^k$ par une fonction $\phi(\theta, x) : \Theta \times \mathbb{R} \to \mathbb{R}$ arbitraire telle que

$$\forall \theta \in \Theta, \mathbb{E}_{\theta} \left[\phi(\theta, X) \right] = 0$$

Z-estimation

Résoudre l'équation empirique associée :

Trouver
$$a \in \Theta$$
 tel que $\frac{1}{n} \sum_{i=1}^{n} \phi(a, X_i) = 0$

Définition

On appelle **Z**-estimateur (**Z** : "zéro") associé à ϕ tout estimateur $\widehat{\theta}_n$ satisfaisant

$$\sum_{i=1}^n \phi(\widehat{\theta}_n, X_i) = 0$$

quand ϕ est telle que

$$\forall \theta \in \Theta, \mathbb{E}_{\theta} \left[\phi(\theta, X) \right] = 0$$

Z-estimation : programme

Etablir des conditions sur ϕ et sur le modèle $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ pour :

- ightharpoonup obtenir l'existence et l'unicité de $\widehat{\theta}_n$
- ▶ obtenir la consistance de $\widehat{\theta}_n$: pour tout $\theta \in \Theta$,

$$\widehat{\theta}_n \xrightarrow{\mathbb{P}_{\theta}} \theta$$

▶ obtenir la normalité asymptotique de $\widehat{\theta}_n$: pour tout $\theta \in \Theta$,

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \nu(\theta))$$

sous \mathbb{P}_{θ} .

Z-estimation: exemple du modèle de localisation "shift model"

$$\Theta = \mathbb{R}$$
, $(d \mathbb{P}_{\theta} / d\lambda)(x) = f(x - \theta)$ où f est symétrique : $f(-x) = f(x)$, $\forall x \in \mathbb{R}$.

- ▶ Il n'y a pas d'hypothèse d'existence de moments!
- On pose

$$\phi(a,x) = \operatorname{Arctg}(x-a)$$

▶ La fonction

$$a \mapsto \mathbb{E}_{\theta} \left[\phi(a, X) \right] = \int_{\mathbb{R}} \operatorname{Arctg}(x - a) f(x - \theta) dx$$

est strictement décroissante et s'annule seulement en $a = \theta$.

ightharpoonup Z-estimateur associé : unique solution $\widehat{\theta}_n$ de

$$\sum_{i=1}^n \operatorname{Arctg}(X_i - \widehat{\theta}_n) = 0$$

Le cas multidimensionnel

Si $\Theta \subset \mathbb{R}^d$ avec d > 1, la fonction ϕ est remplacée par

$$\Phi = (\phi_1, \ldots, \phi_d) : \Theta \times \mathbb{R} \to \mathbb{R}^d.$$

Definition

On appelle Z-estimateur associé à Φ tout estimateur $\widehat{\theta}_n$ satisfaisant

$$\sum_{i=1}^n \Phi(\widehat{\theta}_n, X_i) = 0$$

c'est-à-dire $\sum_{i=1}^n \phi_\ell(\widehat{\theta}_n, X_i) = 0$, $\ell = 1, \ldots, d$ quand Φ est telle que $\forall \theta \in \Theta, \mathbb{E}_\theta \left[\Phi(\theta, X) \right] = 0$

Z-estimation $\rightarrow M$ -estimation

► En dimension 1 : si

$$\phi(\theta, x) = \partial_{\theta} \psi(\theta, x)$$

pour une certaine fonction ψ , résoudre $\sum_{i=1}^{n} \phi(\theta, X_i) = 0$ revient à chercher un point critique (max ou min local) de

$$\theta \mapsto \sum_{i=1}^n \psi(\theta, X_i)$$

- ▶ En dimension $d \ge 1$, il faut $\phi(\theta, x) = \nabla_{\theta} \psi(\theta, x)$.
- Invite à généraliser la recherche d'estimateurs via la maximisation d'un critère → M-estimation (M : "maximum").

M-estimation

▶ Principe : Trouver $\psi : \Theta \times \mathbb{R} \to \mathbb{R}_+$ telle que, pour tout $\theta \in \Theta \subset \mathbb{R}^d$,

$$a\mapsto \mathbb{E}_{ heta}\left[\psi(a,X)\right]=\int \psi(a,x)\,\mathbb{P}_{ heta}(dx)$$

admet un maximum en $a = \theta$.

Définition

On appelle M-estimateur ($M=\max$ imum) associé à ψ , tout estimateur $\widehat{\theta}_n$ satisfaisant

$$\sum_{i=1}^{n} \psi(\widehat{\theta}_{n}, X_{i}) = \max_{a \in \Theta} \sum_{i=1}^{n} \psi(a, X_{i})$$

quand ψ est telle que pour tout $\theta \in \Theta$, $a \mapsto \mathbb{E}_{\theta} [\psi(a, X)]$ est maximum en θ .

▶ Il n'y a pas unicité de $\widehat{\theta}_n$ (à ce niveau).

M-estimation : exemple du modèle de localisation "shift model"

▶ $\Theta = \mathbb{R}$, $d \mathbb{P}_{\theta} / d\lambda(x) = f(x - \theta)$, et $\int_{\mathbb{R}} xf(x)dx = 0$, $\int_{\mathbb{R}} x^2 \mathbb{P}_{\theta}(dx) < +\infty$ pour tout $\theta \in \mathbb{R}$. On pose

$$\psi(\mathsf{a},\mathsf{x}) = -(\mathsf{a}-\mathsf{x})^2$$

▶ La fonction

$$a\mapsto \mathbb{E}_{\theta}\left[\psi(a,X)\right] = -\int_{\mathbb{R}} (a-x)^2 f(x-\theta) dx$$

admet un maximum en $a = \mathbb{E}_{\theta} [X] = \int_{\mathbb{R}} x f(x - \theta) dx = \theta.$

• M-estimateur associé : $\widehat{\theta}_n$ tel que

$$\sum_{i=1}^n (X_i - \widehat{\theta}_n)^2 = \min_{\mathbf{a} \in \mathbb{R}} \sum_{i=1}^n (X_i - \mathbf{a})^2.$$

Paramètre de localisation

ightharpoonup C'est aussi un Z-estimateur associé à $\phi(a,x)=2(x-a)$: on résout

$$\sum_{i=1}^{n} (a - X_i) = 0 \text{ d'où } \widehat{\theta}_n = \overline{X}_n.$$

- ▶ Dans cet exemple très simple, tous les points de vue coïncident.
- ▶ Si, dans le même contexte, $\int_{\mathbb{R}} x^2 \mathbb{P}_{\theta}(dx) = +\infty$ et f(x) = f(-x), on peut utiliser Z-estimateur avec $\phi(a,x) = \operatorname{Arctg}(x-a)$.

Lien entre Z- et M- estimateurs

- ► Pas d'inclusion entre ces deux classes d'estimateurs en général :
 - ▶ Si ψ non-régulière, M-estimateur \Rightarrow Z-estimateur
 - Si une équation de Z-estimation admet plusieurs solutions distinctes, Z-estimateur

 M-estimateur (cas d'un extremum local).
- ▶ Toutefois, si ψ est régulière, les M-estimateurs sont des Z-estimateurs : si $\Theta \subset \mathbb{R}$ (d=1), en posant

$$\phi(\mathbf{a},\mathbf{x})=\partial_{\mathbf{a}}\psi(\mathbf{a},\mathbf{x}),$$

on a

$$\sum_{i=1}^{n} \partial_{a} \psi(\theta, X_{i}) \big|_{a=\widehat{\theta}_{n}} = \sum_{i=1}^{n} \phi(\widehat{\theta}_{n}, X_{i}) = 0$$

Maximum de vraisemblance

- Principe fondamental et incontournable en statistique. Cas particuliers connus depuis le XVIIIème siècle. Définition générale : Fisher (1922).
- ► Fournit une première méthode systématique de construction d'un M-estimateur (souvent un Z-estimateur, souvent aussi a posteriori un estimateur par plug-in simple).
- Procédure optimale (dans quel sens?) sous des hypothèses de régularité de la famille {P_θ, θ ∈ Θ} (Cours 6).
- ▶ Parfois difficile à mettre en oeuvre en pratique → problème d'optimisation.

Fonction de vraisemblance

Définition

Dans le modèle d'échantillonnage (sur \mathbb{R}) dominé de densités

$$f(\theta, x) = \frac{d \mathbb{P}_{\theta}}{d\mu}(x), \ x \in \mathbb{R}$$

la fonction de vraisemblance du n-échantillon $(X_1, ..., X_n)$ associée à la famille $\{f(\theta, \cdot), \theta \in \Theta\}$ est :

$$\theta \in \Theta \mapsto \mathcal{L}_n(\theta, X_1, \dots, X_n) = \prod_{i=1}^n f(\theta, X_i)$$

- C'est une fonction aléatoire (définie μ-presque partout)
- c'est la densité des observations évaluée en les données

Exemples

► Exemple 1 : modèle de Poisson. On observe

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} \mathsf{Poisson}(\theta),$$

 ${\color{blue} \theta} \in \Theta = \mathbb{R}_+ \setminus \{0\}$ et prenons $\mu = \sum_{k \in \mathbb{N}} \delta_k$.

La densité de \mathbb{P}_{θ} par rapport à μ est

$$f(\theta, x) = \frac{\theta^x}{x!} e^{-\theta}, \quad x = 0, 1, 2, \dots$$

La fonction de vraisemblance associée s'écrit

$$\theta \mapsto \mathcal{L}_n(\theta, X_1, \dots, X_n) = \prod_{i=1}^n e^{-\theta} \frac{\theta^{X_i}}{X_i!}$$
$$= \frac{1}{\prod_{i=1}^n X_i!} e^{-n\theta} \theta^{\sum_{i=1}^n X_i}$$

Exemples

Exemple 2 Modèle de Cauchy. On observe

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim}$$
 Cauchy centrée en θ ,

 $\theta \in \Theta = \mathbb{R}$ et la mesure dominante est λ .

▶ On a alors

$$\frac{d \mathbb{P}_{\boldsymbol{\theta}}}{d \lambda}(x) = f(\boldsymbol{\theta}, x) = \frac{1}{\pi (1 + (x - \boldsymbol{\theta})^2)}$$

La fonction de vraisemblance associée s'écrit

$$heta \mapsto \mathcal{L}_n(heta, X_1, \dots, X_n) = rac{1}{\pi^n} \prod_{i=1}^n rac{1}{\left(1 + (X_i - heta)^2
ight)}$$

Principe de maximum de vraisemblance (1/3)

- ▶ Cas d'un modèle à deux lois : $\{\mathbb{P}_{\theta_1}, \mathbb{P}_{\theta_1}\}$, $\Theta = \{\theta_1, \theta_2\}$ avec \mathbb{P}_{θ_i} discrète sur \mathbb{N} et μ la mesure de comptage sur \mathbb{N} .
- ▶ Pour tout $(x_1, ..., x_n) \in \mathbb{N}^n$, et pour $\theta \in \{\theta_1, \theta_2\}$,

$$\mathbb{P}_{\theta}\left[X_{1}=X_{1},\ldots,X_{n}=X_{n}\right]=\prod_{i=1}^{n}\mathbb{P}_{\theta}\left[X_{i}=X_{i}\right]=\prod_{i=1}^{n}f(\theta,X_{i}).$$

C'est la probabilité sous \mathbb{P}_{θ} d'observer (x_1, \dots, x_n) .

Principe de maximum de vraisemblance (2/3)

Pour les observations X_1, \ldots, X_n , la vraisemblance

$$\theta \in \Theta \mapsto \mathcal{L}_n(\theta, X_1, \dots, X_n) = \prod_{i=1}^n f(\theta, X_i)$$

est donc la probabilité sous \mathbb{P}_{θ} d'avoir observé X_1,\ldots,X_n .

L'EMV choisit donc le θ le plus vraisemblable : càd le paramétre $\theta \in \Theta$ qui maximise la probabilité (sous \mathbb{P}_{θ}) d'avoir observé X_1,\ldots,X_n

Principe de maximum de vraisemblance (3/3)

1. Cas 1 : " θ_1 est plus vraisemblable que θ_2 " quand

$$\prod_{i=1}^n f(\theta_1, X_i) \ge \prod_{i=1}^n f(\theta_2, X_i)$$

2. Cas 2 : " θ_2 est plus vraisemblable que θ_1 " quand

$$\prod_{i=1}^n f(\theta_2, X_i) > \prod_{i=1}^n f(\theta_1, X_i)$$

Principe de maximum de vraisemblance :

$$\widehat{\theta}_{\mathrm{n}}^{\,\,\mathrm{mv}} = \left\{ \begin{array}{ll} \theta_1 & \text{ quand } \theta_1 \text{ est le plus vraisemblable} \\ \theta_2 & \text{ quand } \theta_2 \text{ est le plus vraisemblable} \end{array} \right.$$

Estimateur du maximum de vraisemblance

- On généralise le principe précédent pour une famille de lois et un ensemble de paramètres quelconque.
- ▶ <u>Situation</u>: $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \mathbb{P}_{\theta}$, $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ dominé, $\Theta \subset \mathbb{R}^d$, $\theta \mapsto \mathcal{L}_n(\theta, X_1, \ldots, X_n)$ vraisemblance associée.

Définition

On appelle estimateur du maximum de vraisemblance tout estimateur $\widehat{\theta}_n^{\text{mv}}$ satisfaisant

$$\mathcal{L}_n(\widehat{\theta}_n^{\,\mathrm{mv}}, X_1, \dots, X_n) = \max_{\theta \in \Theta} \mathcal{L}_n(\theta, X_1, \dots, X_n).$$

▶ Programme : Existence, unicité, propriétés statistiques

Remarques

Log-vraisemblance :

$$\theta \mapsto \ell_n(\theta, X_1, \dots, X_n) = \log \mathcal{L}_n(\theta, X_1, \dots, X_n)$$

$$= \sum_{i=1}^n \log f(\theta, X_i).$$

Bien défini si $f(\theta, \cdot) > 0$ μ -pp.

Max. vraisemblance = max. log-vraisemblance.

(log-vraisemblance est parfois plus facile à maximiser)

- L'estimateur du maximum de vraisemblance ne dépend pas du choix de la mesure dominante μ.
- Equation de vraisemblance :

$$\nabla_{\theta}\ell_n(\theta, X_1, \dots, X_n) = 0$$

Exemple: modèle normal

L'expérience statistique est engendrée par un *n*-échantillon de loi $\mathcal{N}(\mu, \sigma^2)$, le paramètre est $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+ \setminus \{0\}$.

Vraisemblance

$$\mathcal{L}_n((\mu, \sigma^2), X_1, \dots, X_n) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right).$$

► Log-vraisemblance

$$\ell_n((\mu, \sigma^2), X_1, \dots, X_n) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n(X_i - \mu)^2.$$

Exemple: modèle normal

Equation(s) de vraisemblance : $\nabla_{\theta} \ell_n(\theta, X_1, \dots, X_n) = 0$,

$$\begin{cases} \partial_{\mu}\ell_{n}((\mu,\sigma^{2}),X_{1},\ldots,X_{n}) & = & \frac{1}{\sigma^{2}}\sum_{i=1}^{n}(X_{i}-\mu) \\ \partial_{\sigma^{2}}\ell_{n}((\mu,\sigma^{2}),X_{1},\ldots,X_{n}) & = & -\frac{n}{2\sigma^{2}}+\frac{1}{2\sigma^{4}}\sum_{i=1}^{n}(X_{i}-\mu)^{2} \end{cases}$$

Solution de ces équations (pour $n \ge 2$) :

$$\left(\overline{X}_n, \frac{1}{n}\sum_{i=1}^n (X_i - \overline{X}_n)^2\right) = (\overline{X}_n, \hat{\sigma}_n)$$

et on vérifie que c'est bien un maximum global alors $\widehat{\theta}_n^{\,\mathrm{mv}} = (\bar{X}_n, \widehat{\sigma}_n)$.

Exemple : modèle de Poisson

Vraisemblance

$$\mathcal{L}_n(\theta, X_1, \dots, X_n) = \frac{1}{\prod_{i=1}^n X_i!} e^{-n\theta} \theta^{\sum_{i=1}^n X_i}$$

► Log-vraisemblance

$$\ell_n(\theta, X_1, \dots, X_n) = c(X_1, \dots, X_n) - n\theta + \sum_{i=1}^n X_i \log \theta$$

Equation de vraisemblance

$$-n + \sum_{i=1}^{n} X_i \frac{1}{\theta} = 0$$
, soit $\widehat{\theta}_n^{\text{mv}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n$

Exemple : modèle de Laplace

 $X_1,\ldots,X_n\stackrel{i.i.d.}{\sim}$ Laplace de paramètre $\theta\in\Theta=\mathbb{R}$: densité par rapport à la mesure de Lebesgue :

$$f(\theta, x) = \frac{1}{2\sigma} \exp\left(-\frac{|x - \theta|}{\sigma}\right),$$

où $\sigma > 0$ est connu.

Vraisemblance

$$\mathcal{L}_n(\theta, X_1, \dots, X_n) = (2\sigma)^{-n} \exp\left(-\frac{1}{\sigma} \sum_{i=1}^n |X_i - \theta|\right)$$

► Log-vraisemblance

$$\ell_n(\theta, X_1, \dots, X_n) = -n \log(2\sigma) - \frac{1}{\sigma} \sum_{i=1}^n |X_i - \theta|$$

Exemple : modèle de Laplace

Maximiser $\mathcal{L}_n(\theta, X_1, \dots, X_n)$ revient à minimiser la fonction $\theta \mapsto \sum_{i=1}^n |X_i - \theta|$, dérivable presque partout de dérivée constante par morceaux. Equation de vraisemblance :

$$0 \in \sum_{i=1}^n \operatorname{sign}(X_i - \theta)$$

où $\operatorname{sign}(0) = [-1, 1]$. Soit $X_{(1)} \leq \ldots \leq X_{(n)}$ les statistiques d'ordre.

- ▶ n pair : $\widehat{\theta}_n^{\text{mv}}$ n'est pas unique; tout point de l'intervalle $\left[X_{\left(\frac{n}{2}\right)}, X_{\left(\frac{n}{2}+1\right)}\right]$ est un EMV.
- ▶ $n \text{ impair}: \widehat{\theta}_{\mathbf{n}}^{\text{mv}} = X_{\left(\frac{n+1}{2}\right)}$, l'EMV est unique.
- pour tout n, la médiane empirique est un EMV.

Exemple : modèle de Cauchy

Vraisemblance

$$\mathcal{L}_n(\theta, X_1, \dots, X_n) = \pi^{-n} \prod_{i=1}^n \frac{1}{1 + (X_i - \theta)^2}$$

► Log-vraisemblance

$$\ell_n(\theta, X_1, \dots, X_n) = -n \log \pi - \sum_{i=1}^n \log \left(1 + (X_i - \theta)^2\right)$$

► Equation de vraisemblance

$$\sum_{i=1}^n \frac{X_i - \theta}{1 + (X_i - \theta)^2} = 0$$

pas de solution explicite et admet en général plusieurs solutions.

Choix de modèle statistique

- Le statisticien a le choix de la famille {P_θ, θ ∈ Θ}. L'EMV dépend de ce choix.
- **Exemple** : on a l'échantillon (n = 10) :

$$0.92, -0.20, -1.80, 0.02, 0.49, 1.41, -1.59, -1.29, 0.34, \frac{100}{100}$$

On choisit un modèle de localisation $\mathbb{P}_{\theta}(dx) = f(x - \theta)dx$ pour deux f différents :

- 1. f densité de la loi normale $\Rightarrow \widehat{\theta}_n^{\text{mv}} = \overline{X}_n = 9.83$.
- 2. f densité de loi de Laplace \Rightarrow tout point de l'intervalle [0.02, 0.34] est un $\widehat{\theta}_n^{\text{mv}}$, en particulier, la médiane :

$$\widehat{ heta}_{\mathsf{n}}^{\,\mathtt{mv}} = Med(\widehat{F}_{n}) = \widehat{q}_{n,1/2} = 0.02$$

▶ Autre choix de modèle...

Maximum de vraisemblance = M-estimateur

• Une inégalité de convexité : μ mesure σ -finie sur \mathbb{R} ; f,g deux densités de probabilités par rapport à μ . Alors

$$\int_{\mathbb{R}} f(x) \log f(x) \mu(dx) \ge \int_{\mathbb{R}} f(x) \log g(x) \mu(dx)$$

(si les intégrales sont finies) avec égalité ssi $f = g \mu$ -pp.

► Preuve : à montrer

$$\int_{\mathbb{R}} f(x) \log \frac{g(x)}{f(x)} \mu(dx) \le 0.$$

(avec une convention de notation appropriée)

Une inégalité de convexité

- ▶ On a $\log(1+x) \le x$ pour $x \ge -1$ avec égalité ssi x = 0.
- Donc

$$\log \frac{g(x)}{f(x)} = \log \left(1 + \left(\frac{g(x)}{f(x)} - 1\right)\right) \le \frac{g(x)}{f(x)} - 1$$

(avec égalité ssi f(x) = g(x)).

Finalement

$$\int_{\mathbb{R}} f(x) \log \frac{g(x)}{f(x)} \mu(dx) \le \int_{\mathbb{R}} f(x) \left(\frac{g(x)}{f(x)} - 1\right) \mu(dx)$$

$$= \int_{\mathbb{R}} g(x) \mu(dx) - \int_{\mathbb{R}} f(x) \mu(dx)$$

$$= 0.$$

Conséquence pour l'EMV

On pose

$$\psi(a,x) := \log f(a,x), \ a \in \Theta, \ x \in \mathbb{R}$$

(avec une convention pour le cas où on n'a pas $f(a, \cdot) > 0$.)

▶ La fonction

$$a \mapsto \mathbb{E}_{\theta} \left[\psi(a, X) \right] = \int_{\mathbb{R}} \log f(a, x) f(\theta, x) \mu(dx)$$

est maximale en $a = \theta$ d'après l'inégalité de convexité.

Le M-estimateur associé à ψ maximise la fonction

$$a \mapsto \sum_{i=1}^n \log f(a, X_i) = \ell_n(a, X_1, \dots, X_n)$$

c'est-à-dire la log-vraisemblance.

l'estimateur du maximum de vraisemblance est un *M*-estimateur

▶ C'est aussi un Z-estimateur si la fonction $\theta \mapsto \log f(\theta, \cdot)$ est régulière, associé à la fonction

$$\phi(\theta, x) = \partial_{\theta} \log f(\theta, x) = \frac{\partial_{\theta} f(\theta, x)}{f(\theta, x)}, \ \theta \in \Theta, x \in \mathbb{R}$$

lorsque $\Theta \subset \mathbb{R}$, à condition que le maximum de log-vraisemblance n'est pas atteint sur la frontière de Θ . (Se généralise en dimension d.)

Un M-estimateur qui n'est pas un Z-estimateur

- ▶ On observe $X_1, \ldots, X_n \sim_{\text{i.i.d.}}$ uniformes sur $[0, \theta]$, $\theta \in \Theta = \mathbb{R}_+ \setminus \{0\}$.
- ▶ On a

$$\mathbb{P}_{\boldsymbol{\theta}}(dx) = \boldsymbol{\theta}^{-1} 1_{[0,\boldsymbol{\theta}]}(x) dx$$

et

$$\mathcal{L}_n(\theta, X_1, \dots, X_n) = \theta^{-n} \prod_{i=1}^n 1_{[0,\theta]}(X_i)$$
$$= \theta^{-n} 1_{\{\max_{1 \le i \le n} X_i \le \theta\}}$$

- La fonction de vraisemblance n'est pas régulière.
- ▶ L'estimateur du maximum de vraisemblance est $\widehat{\theta}_n^{mv} = \max_{1 \leq i \leq n} X_i$.

