- 1. Compute the Fourier transform of $e^{-|x|}$ for $x \in \mathbb{R}$.
- 2. Compute the Fourier transform of $e^{-a|x|^2}$, a > 0, directly, where $x \in \mathbb{R}$. You will need to use the Cauchy Theorem.
- 3. If $f \in L^1(\mathbb{R}^d)$ and f > 0, show that for every $\xi \neq 0$, $|\hat{f}(\xi)| < \hat{f}(0)$.
- 4. If $f \in L^1(\mathbb{R}^d)$ and f(x) = g(|x|) for some g, show that $\hat{f}(\xi) = h(|\xi|)$ for some h. Can you relate g and h?
- 5. Let $1 \leq p < \infty$ and suppose $f \in L^p(\mathbb{R})$. Let $g(x) = \int_x^{x+1} f(y) \, dy$. Prove that $g \in C_v(\mathbb{R})$.
- 6. Show that the Fourier transform $\mathcal{F}: L^1(\mathbb{R}^d) \to C_v(\mathbb{R}^d)$ is not onto. Show, however, that $\mathcal{F}(L^1(\mathbb{R}^d))$ is dense in $C_v(\mathbb{R}^d)$. [Hint: see Exercise 5.]
- 7. Consider the function $f(x) = |x|^{-1/2}e^{-|x|}$. Show that f is in $L^1(\mathbb{R})$ but not in $L^2(\mathbb{R})$. Also, find the Fourier transform of f.
- 8. Give an example of a function $f \in L^2(\mathbb{R}^d)$ which is not in $L^1(\mathbb{R}^d)$, but such that $\hat{f} \in L^1(\mathbb{R}^d)$. Under what circumstances can this happen?
- 9. Suppose that $f \in L^p(\mathbb{R}^d)$ for some p between 1 and 2.
 - (a) Show that there are $f_1 \in L^1(\mathbb{R}^d)$ and $f_2 \in L^2(\mathbb{R}^d)$ such that $f = f_1 + f_2$.
 - (b) Define $\hat{f} = \hat{f}_1 + \hat{f}_2$. Show that this definition is independent of the choice of f_1 and f_2 .
- 10. The Young and Hausdorff-Young inequalities.
 - (a) Prove the following generalization of Young's inequality. For $r \geq 1$, suppose K(x,y) is continuous (measurable would be enough) on $\mathbb{R}^d \times \mathbb{R}^d$ and there is some constant C > 0 such that

$$\int_{\mathbb{R}^d} |K(x,y)|^r dx \le C^r \quad \text{and} \quad \int_{\mathbb{R}^d} |K(x,y)|^r dy \le C^r.$$

Let the operator T be defined by

$$Tf(x) = \int_{\mathbb{R}^d} K(x, y) f(y) dy.$$

If $p \ge 1$ and $q \ge 1$ satisfy 1/p + 1/r = 1/q + 1, then $T : L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d)$ is a bounded linear map with norm $||T|| \le C$.

- (b) Use this result to show the following special case of the Hausdorff-Young inequality: The Fourier transform $\mathcal{F}: L^{4/3}(\mathbb{R}^d) \to L^4(\mathbb{R}^d)$. [Hint: note that $\|\hat{f}\|_{L^4}^2 = \|(\hat{f})^2\|_{L^2}$, and $(\hat{f})^2$ can be written as the Fourier transform of a convolution.]
- 11. Let the ground field be $\mathbb C$ and define $T:L^2(\mathbb R^d)\to L^2(\mathbb R^d)$ by

$$Tf(x) = \int e^{-|x-y|^2/2} f(y) \, dy.$$

Use the Fourier transform to show that T is a positive, injective operator, but that T is not surjective.

12. Suppose that f and g are in $L^2(\mathbb{R}^d)$. The convolution f * g is in $L^{\infty}(\mathbb{R}^d)$ but it need not be in L^2 . So it may not have a classically defined Fourier transform. Nevertheless, prove that

 $f * g = (2\pi)^{d/2} (\hat{f}\hat{g})^{\vee}$ is well defined, and that the inverse Fourier transform is given by the usual integration formula.

- 13. Find the four possible eigenvalues of the Fourier transform: $\hat{f} = \lambda f$. For each possible eigenvalue, show that there is at least one eigenfunction. [Hint: when d = 1, consider $p(x)e^{-x^2/2}$, where p is a polynomial.]
- 14. Prove that if $\{f_j\}_{j=1}^{\infty} \subset \mathcal{S}$ and $f_j \xrightarrow{\mathcal{S}} f$, then for any $1 \leq p \leq \infty$, $f_j \xrightarrow{L^p} f$.
- 15. Let $\varphi \in \mathcal{S}(\mathbb{R}^d)$, $\hat{\varphi}(0) = (2\pi)^{-d/2}$, and $\varphi_{\epsilon}(x) = \epsilon^{-d}\varphi(x/\epsilon)$. Prove that $\varphi_{\epsilon} \to \delta_0$ and $\hat{\varphi}_{\epsilon} \to (2\pi)^{-d/2}$ as $\epsilon \to 0^+$. In what sense do these convergences take place?
- 16. Is it possible for there to be a continuous function f defined on \mathbb{R}^d with the following two properties?
 - (a) There is no polynomial P in d variables such that $|f(x)| \leq P(x)$ for all $x \in \mathbb{R}^d$.
 - (b) The distribution $\phi \mapsto \int \phi f dx$ is tempered.
- 17. When is $\sum_{k=1}^{\infty} a_k \delta_k \in \mathcal{S}'(\mathbb{R})$? (Here, δ_k is the point mass centered at x = k.)
- 18. For $f \in \mathcal{S}(\mathbb{R})$, define the Hilbert transform of f by $Hf = \text{PV}\left(\frac{1}{\pi x}\right) * f$, where the convolution uses ordinary Lebesgue measure.
 - (a) Show that $PV(1/x) \in \mathcal{S}'$.
 - (b) Show that $\mathcal{F}(\text{PV}(1/x)) = -i\sqrt{\pi/2} \operatorname{sgn}(\xi)$, where $\operatorname{sgn}(\xi)$ is the sign of ξ . [Hint: recall that $x \operatorname{PV}(1/x) = 1$.]
 - (c) Show that $||Hf||_{L^2} = ||f||_{L^2}$ and HHf = -f, for $f \in \mathcal{S}(\mathbb{R})$.
 - (d) Extend H to $L^2(\mathbb{R})$.
- 19. The gamma function is $\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt$. Let $\phi \in \mathcal{S}(\mathbb{R}^d)$ and $0 < \alpha < d$.
 - (a) Show that $|\xi|^{-\alpha} \in L^1_{loc}(\mathbb{R}^d)$ and $|\xi|^{-\alpha}\hat{\phi} \in L^1(\mathbb{R}^d)$.
 - (b) Let $c_{\alpha} = 2^{\alpha/2}\Gamma(\alpha/2)$. Show that

$$\left(|\xi|^{-\alpha}\hat{\phi}\right)^{\vee}(x) = \frac{c_{d-\alpha}}{(2\pi)^{d/2}c_{\alpha}} \int_{\mathbb{R}^d} |x-y|^{\alpha-d}\phi(y) \, dy.$$

[Hint: first show that

$$c_{\alpha}|\xi|^{-\alpha} = \int_0^{\infty} t^{\alpha/2 - 1} e^{-|\xi|^2 t/2} dt,$$

and then recall that $e^{-|\xi|^2t/2}=t^{-d/2}\big(e^{-|x|^2/2t}\big)^{\wedge}.]$

- 20. Compute the Fourier transforms of the following functions, considered as tempered distributions.
 - (a) $f(x) = x^n$ for $x \in \mathbb{R}$ and for integer $n \ge 0$.
 - (b) $g(x) = e^{-|x|}$ for $x \in \mathbb{R}$.
 - (c) $h(x) = e^{i|x|^2}$ for $x \in \mathbb{R}^d$.

- (d) $\sin x$ and $\cos x$ for $x \in \mathbb{R}$.
- 21. Give a careful argument that $\mathcal{D}(\mathbb{R}^d)$ is dense in \mathcal{S} . Show also that \mathcal{S}' is dense in \mathcal{D}' and that distributions with compact support are dense in \mathcal{S}' .
- 22. Make an argument that there is no simple way to define the Fourier transform on \mathcal{D}' in the way we have for \mathcal{S}' .
- 23. Let

$$H = \left\{ \text{measurable functions } f : \mathbb{R} \to \mathbb{C} \ \middle| \ f \in \mathcal{S}', \ \hat{f} \text{ is a measurable function,} \right.$$

$$\text{and } \|f\|_H^2 \equiv \int |\hat{f}(\xi)|^2 \, m(\xi) \, d\xi < \infty \right\},$$

where $m(\xi) \geq m_* > 0$ is also measurable (but possibly unbounded). The space H is endowed with the inner-product

$$(f,g)_H \equiv \int \hat{f}(\xi) \, \overline{\hat{g}(\xi)} \, m(\xi) \, d\xi.$$

- (a) Show carefully that H is complete (and thus a Hilbert space).
- (b) Prove that H is continuously imbedded in $L^2(\mathbb{R})$.
- (c) If $m(\xi) \ge \alpha |\xi|^2$, for some $\alpha > 0$, prove that for $f \in H$, the (tempered) distributional derivative $f' \in L^2(\mathbb{R})$.
- 24. Let $s \in \mathbb{R}$ and

$$H^{s}(\mathbb{R}^{d}) = \{ f \in L^{2}(\mathbb{R}^{d}) : (1 + |\xi|^{2})^{s/2} |\hat{f}(\xi)| \in L^{2}(\mathbb{R}^{d}) \}.$$

- (a) Show that there is some $s_0 \in \mathbb{R}$ such that for all $f \in H^s(\mathbb{R}^d)$, $\hat{f}(\xi) \in L^1(\mathbb{R}^d)$ for $s > s_0$.
- (b) Apply the Riemann-Lebesgue Lemma to $\hat{f}(\xi)$ to show that, for $s > s_0$, there is some continuous function g such that f = g almost everywhere.
- 25. Use the Fourier transform to find a solution to

$$u - \frac{\partial^2 u}{\partial x_1^2} - \frac{\partial^2 u}{\partial x_2^2} = e^{-x_1^2 - x_2^2}.$$

[Hint: write your answer in terms of a suitable inverse Fourier transform and a convolution.] Can you find a fundamental solution to the differential operator?

26. Consider the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad -\infty < x < \infty, \ 0 < y < \infty,$$

$$u(x,0) = f(x) \text{ and } u(x,y) \to 0 \text{ as } x^2 + y^2 \to \infty,$$

for the unknown function u(x,y), where f is a nice function.

- (a) Find the Fourier transform of $e^{-|x|}$.
- (b) Using your answer from (a), find the Fourier transform of $\frac{1}{1+x^2}$.
- (c) Find a function g(x,y) such that $u(x,y) = f * g(x,y) = \int f(z) g(x-z,y) dz$.

27. Consider the Telegrapher's equation

$$u_{tt} + 2u_t + u = c^2 u_{xx}$$
 for $x \in \mathbb{R}$ and $t > 0$,

where also

$$u(x, 0) = f(x)$$
 and $u_t(x, 0) = g(x)$

are given in $L^2(\mathbb{R})$.

- (a) Use the Fourier transform (in x only) and its inverse to find an explicit representation of the solution.
- (b) Justify that your representation is indeed a solution.
- (c) Show that the solution can be viewed as a sum of two wave packets, one moving to the right with a given constant speed, and the other moving to the left with the same speed.
- 28. Use the Fourier transform and its inverse to find a representation of solutions to the *Klein-Gordon equation*

$$u_{tt} - \Delta u + u = 0, \quad x \in \mathbb{R}^d \text{ and } t > 0,$$

where u(x,0) = f(x) and $u_t(x,0) = g(x)$, $f,g \in L^2(\mathbb{R}^d)$, are given. Leave your answer in terms of an inverse Fourier transform.

- 29. Consider the problem u'''' + u = f (4 derivatives). Up to calculating an integral, find a fundamental solution that is real. Using the fundamental solution, find a solution to the original problem.
- 30. Consider the linear problem

$$\Delta^2 u + u = f(x)$$
 for $x \in \mathbb{R}^d$,

where $\Delta^2 u = \Delta \Delta u$.

- (a) Suppose that $f \in \mathcal{S}'(\mathbb{R}^d)$. Use the Fourier Transform to find a solution $u \in \mathcal{S}'$ to the problem. Leave your answer as a multiplier operator, i.e., $u = (m(\xi)\hat{f})^{\vee}$ for some $m(\xi)$, but justify each of your steps.
- (b) Is your solution unique? Why or why not?
- (c) Suppose now that $f \in \mathcal{S}(\mathbb{R}^d)$. Write the solution as a convolution operator (you may leave your answer in terms of an inverse Fourier Transform).
- (d) Show that $\check{m} \in L^2(\mathbb{R}^d)$ for some range of d, and use this to extend your convolution solution to $f \in L^1(\mathbb{R}^d)$. In that case, in what $L^p(\mathbb{R}^d)$ space is u?
- 31. Consider $L^2(0,\infty)$ as a real Hilbert space. Let $A:L^2(0,\infty)\to L^2(-\infty,\infty)$ be defined by

$$Au(x) = u(x) + \int_0^\infty \omega(x - y) u(y) dy,$$

where $\omega \in L^1(0,\infty) \cap L^2(0,\infty) \cap C^2(0,\infty)$ is nonnegative, decreasing, convex, and extended to \mathbb{R} as an even function.

- (a) Show that A maps into $L^2(-\infty,\infty)$. [Hint: extend u by zero outside $(0,\infty)$ in the integral.]
- (b) Show that A is symmetric on $L^2(0,\infty)$.
- (c) Show that $\hat{\omega} \geq 0$.

- (d) Use the Fourier transform to show that A is strictly positive definite on $L^2(0,\infty)$.
- (e) Use the Fourier transform to solve Au = f for $f \in L^2(-\infty, \infty)$.
- (f) Why is the solution unique?
- 32. Let T be a multiplier operator mapping $L^2(\mathbb{R}^d)$ into itself, so there is a bounded measurable function $m(\xi)$ such that $\widehat{Tf}(\xi) = m(\xi)\widehat{f}(\xi)$ for all $f \in L^2(\mathbb{R}^d)$. Show that T commutes with translation and $||T|| = ||m||_{L^{\infty}}$.
- 33. Let $u \in L^2(\mathbb{R}^d)$ and define the operator $T: L^1(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ by convolution with u. Show that T is a bounded linear operator, a multiplier operator, and translation invariant.

1. Prove that for $f \in H^1(\mathbb{R}^d), \, \|f\|_{H^1(\mathbb{R}^d)}$ is equivalent to

$$\left\{ \int_{\mathbb{R}^d} (1+|\xi|^2) |\hat{f}(\xi)|^2 d\xi \right\}^{1/2}.$$

Can you generalize this to $H^k(\mathbb{R}^d)$?

2. Prove that if $f \in H_0^1(0,1)$, then there is some constant C > 0 such that

$$||f||_{L^2(0,1)} \le C||f'||_{L^2(0,1)}.$$

If instead $f \in \{g \in H^1(0,1) : \int_0^1 g(x) dx = 0\}$, prove a similar estimate.

- 3. Prove that $\delta_0 \notin (H^1(\mathbb{R}^d))^*$ for $d \geq 2$, but that $\delta_0 \in (H^1(\mathbb{R}))^*$. You will need to define what δ_0 applied to $f \in H^1(\mathbb{R})$ means.
- 4. Prove that $H^1(0,1)$ is continuously embedded in $C_B(0,1)$. Recall that $C_B(0,1)$ is the set of bounded and continuous functions on (0,1).
- 5. Suppose that $\Omega \subset \mathbb{R}^d$ is a bounded set and $\{U_j\}_{j=1}^N$ is a finite collection of open sets in \mathbb{R}^d that cover the closure of Ω (i.e., $\bar{\Omega} \subset \bigcup_{j=1}^N U_j$). Prove that there exists a finite C^{∞} partition of unity in Ω subordinate to the cover. That is, construct $\{\phi_k\}_{k=1}^M$ such that $\phi_k \in C_0^{\infty}(\mathbb{R}^d)$, $\phi_k \subset U_{j_k}$ for some j_k , and

$$\sum_{k=1}^{M} \phi_k(x) = 1.$$

6. Suppose that $\Omega \subset \mathbb{R}^d$ is a (possibly unbounded) domain and $\{U_\alpha\}_{\alpha \in \mathcal{I}}$ is a collection of open sets in \mathbb{R}^d that cover Ω (i.e., $\Omega \subset \bigcup_{\alpha \in \mathcal{I}} U_\alpha$). Prove that there exists a locally finite partition of unity

in Ω subordinate to the cover. That is, there exists a sequence $\{\psi_j\}_{j=1}^{\infty} \subset C_0^{\infty}(\mathbb{R}^d)$ such that:

- (i) For every K compactly contained in Ω , all but finitely many of the ψ_j vanish on K;
- (ii) Each $\psi_j \geq 0$ and $\sum_{j=1}^{\infty} \psi_j(x) = 1$ for every $x \in \Omega$;
- (iii) For each j, the support of ψ_j is contained in some U_{α_j} , $\alpha_j \in \mathcal{I}$.

[Hint: let S be a countable dense subset of Ω (e.g., points with rational coordinates). Consider the countable collection of balls $\mathcal{B} = \{B_r(x) \subset \mathbb{R}^d : r \text{ is rational, } x \in S, \text{ and } B_r(x) \subset U_\alpha \text{ for some } \alpha \in \mathcal{I}\}$. Order the balls and construct on $B_j = B_{r_j}(x_j)$ a function $\phi_j \in C_0^\infty(B_j)$ such that $0 \le \phi_j \le 1$ and $\phi_j = 1$ on $B_{r_j/2}(x_j)$. Then $\psi_1 = \phi_1$ and $\psi_j = (1 - \phi_1) \cdots (1 - \phi_{j-1})\phi_j$ should work.]

- 7. Let $u \in \mathcal{D}'(\mathbb{R}^d)$ and $\phi \in \mathcal{D}(\mathbb{R}^d)$. For $y \in \mathbb{R}^d$, the translation operator τ_y is defined by $\tau_y \phi(x) = \phi(x-y)$.
 - (a) Show that

$$u(\tau_y \phi) - u(\phi) = \int_0^1 \sum_{j=1}^d y_j \frac{\partial u}{\partial x_j} (\tau_{ty} \phi) dt.$$

(b) Apply this to

$$f \in W^{1,1}_{loc}(\mathbb{R}^d) = \left\{ f \in L^1_{loc}(\mathbb{R}^d) : \frac{\partial f}{\partial x_j} \in L^1_{loc}(\mathbb{R}^d) \text{ for all } j \right\}$$

to show that

$$f(x+y) - f(x) = \int_0^1 y \cdot \nabla f(x+ty) \, dt.$$

(c) Let the locally Lipschitz functions be defined as

$$C^{0,1}_{loc}(\mathbb{R}^d) = \{ f \in C^0(\mathbb{R}^d) : \forall R > 0, \text{ there is some } L_{R,f} \text{ depending on } R \text{ and } f \text{ such that } |f(x) - f(y)| \le L_{R,f}|x - y| \ \forall x, y \in B_R(0) \}.$$

Conclude that $W_{\text{loc}}^{1,\infty}(\mathbb{R}^d) \subset C_{\text{loc}}^{0,1}(\mathbb{R}^d)$.

- 8. Counterexamples.
 - (a) No embedding of $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ for $1 \leq p < d$ and q > dp/(d-p). Let $\Omega \subset \mathbb{R}^d$ be bounded and contain 0, and let $f(x) = |x|^r$. Find r so that $f \in W^{1,p}(\Omega)$ but $f \notin L^q(\Omega)$.
 - (b) No embedding of $W^{1,p}(\Omega) \hookrightarrow C_B^0(\Omega)$ for $1 \le p < d$. Note that in the previous case, f is not bounded. What can you say about which (negative) Sobolev spaces the Dirac mass lies in?
 - (c) No embedding of $W^{1,p}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for $1 . Let <math>\Omega \subset \mathbb{R}^d = B_R(0)$ and let $f(x) = \log(\log(4R/|x|))$. Show $f \in W^{1,p}(B_R(0))$.
 - (d) $C^{\infty} \cap W^{1,\infty}$ is not dense in $W^{1,\infty}$. Show that if $\Omega = (-1,1)$ and u(x) = |x|, then $u \in W^{1,\infty}$ but u(x) is not the limit of C^{∞} functions in the $W^{1,\infty}$ -norm.
- 9. Suppose that $f_j \in H^2(\Omega)$ for $j = 1, 2, ..., f_j \rightharpoonup f$ weakly in $H^1(\Omega)$, and $D^{\alpha}f_j \rightharpoonup g_{\alpha}$ weakly in $L^2(\Omega)$ for all multi-indices α such that $|\alpha| = 2$. Show that $f \in H^2(\Omega)$, $D^{\alpha}f = g_{\alpha}$, and, for a subsequence, $f_j \to f$ strongly in $H^1(\Omega)$.
- 10. Suppose that $\Omega \subset \mathbb{R}^d$ is bounded with a Lipschitz boundary and $f_j \to f$ and $g_j \to g$ weakly in $H^1(\Omega)$. Show that, for a subsequence, $\nabla(f_j g_j) \to \nabla(f g)$ as a distribution. Find all p in $[1, \infty]$ such that the convergence can be taken weakly in $L^p(\Omega)$.
- 11. Interpolation inequalities.
 - (a) Show that for $f \in H^1(\mathbb{R}^d)$ and $0 \le s \le 1$, $||f||_{H^s(\mathbb{R}^d)} \le ||f||_{H^1(\mathbb{R}^d)}^s ||f||_{L^2(\mathbb{R}^d)}^{1-s}$. Can you generalize this result to $f \in H^r(\mathbb{R}^d)$ for r > 0?
 - (b) If Ω is bounded and $\partial\Omega$ is smooth, show that there is a constant C such that for all $f \in H^1(\Omega)$, $||f||_{L^2(\partial\Omega)} \le C||f||_{H^1(\Omega)}^{1/2} ||f||_{L^2(\Omega)}^{1/2}$. [Hint: show for d=1 on (0,1) by considering

$$f(0)^{2} = f(x)^{2} - \int_{0}^{x} \frac{d}{dt} f(t)^{2} dt.$$

For d > 1, flatten out $\partial \Omega$ and use a (d = 1)-type proof in the normal direction.

- 12. Suppose that $\Omega \in \mathbb{R}^d$ is a bounded domain with Lipschitz boundary and $\{u_k\} \subset H^{2+\epsilon}(\Omega)$ is a bounded sequence, where $\epsilon > 0$. For this problem, you will need to use the fact that the Rellich-Kondrachov Theorem extends to fractional order spaces.
 - (a) Show that there is $u \in H^2(\Omega)$ such that, for a subsequence, $u_j \to u$ in $H^2(\Omega)$.

- (b) Find all q and $s \ge 0$ such that, for a subsequence, $u_i \to u$ in $W^{s,q}(\Omega)$.
- (c) For a subsequence, $|u_j|^r \nabla u_j \to |u|^r \nabla u$ in $L^2(\Omega)$ for certain $r \geq 1$. For fixed d, how big can r be? Justify your answer.
- 13. Prove that $H^s(\mathbb{R}^d)$ is continuously embedded in $C_B^0(\mathbb{R}^d)$ if s > d/2 by completing the following outline.
 - (a) Show that $\int_{\mathbb{R}^d} (1+|\xi|^2)^{-s} d\xi < \infty$.
 - (b) If $\phi \in \mathcal{S}$ and $x \in \mathbb{R}^d$, write $\phi(x)$ as the Fourier inversion integral of $\hat{\phi}$. Introduce $1 = (1 + |\xi|^2)^{s/2}(1 + |\xi|^2)^{-s/2}$ into the integral and apply Hölder to obtain the result for Schwartz class functions.
 - (c) Use density to extend the above result to $H^s(\mathbb{R}^d)$.
- 14. Suppose $f \in L^2(\mathbb{R})$ and $\hat{\omega}(\xi) = \sqrt{|\xi|}$. Make sense of the definition $g = \omega * f$, and determine s such that $g \in H^s(\mathbb{R})$.
- 15. Suppose that $\omega \in L^1(\mathbb{R})$, $\omega(x) > 0$, and ω is even. Moreover, for x > 0, $\omega \in C^2[0,\infty)$, $\omega'(x) < 0$, and $\omega''(x) > 0$. Consider the following equation for u:

$$\omega * u - u'' = f \in L^2(\mathbb{R}).$$

- (a) Show that $\hat{\omega}(\xi) > 0$. [Hint: use that ω is even, integrate by parts, and consider subintervals of size $2\pi/|\xi|$.]
- (b) Find a fundamental solution to the differential equation (i.e., replace f by δ_0). You may leave your answer in terms of an inverse Fourier transform.
- (c) For the original problem, find the solution operator as a convolution operator.
- (d) Show that the solution $u \in H^2(\mathbb{R})$.
- 16. Let H be a Hilbert space and Z a closed linear subspace. Prove that H/Z has the inner-product

$$(\hat{x}, \hat{y})_{H/Z} = (P_Z^{\perp} x, P_Z^{\perp} y)_H,$$

and that H/Z is isomorphic to Z^{\perp} .

- 17. Elliptic regularity theory shows that if the domain $\Omega \subset \mathbb{R}^d$ has a smooth boundary and $f \in H^s(\Omega)$, then $-\Delta u = f$ in Ω , u = 0 on $\partial\Omega$, has a unique solution $u \in H^{s+2}$. For what values of s will u be continuous? Can you be sure that a fundamental solution is continuous? The answers depend on d.
- 18. Consider $x \in \mathbb{R}^{n \times n}$ with associated ℓ^2 -norm $||x|| = \left(\sum_{j=1}^n \sum_{k=1}^n |x_{j,k}|^2\right)^{1/2}$ and total-variation semi-norm

$$|x|_{TV} = \sum_{j=1}^{n} \sum_{k=1}^{n-1} |x_{j,k+1} - x_{j,k}| + \sum_{j=1}^{n-1} \sum_{k=1}^{n} |x_{j+1,k} - x_{j,k}|.$$

- (a) Why is $|\cdot|_{TV}$ not a norm?
- (b) Prove directly the following Sobolev inequality: if $x_{1,j} = x_{j,1} = 0$ for all $1 \le j \le n$, then

$$||x|| \le \frac{1}{2} |x|_{TV}.$$

[Hint: find two ways to write $x_{j,k}$ as a sum of discrete differences.]

- (c) Does the result in (b) extend to ℓ^2 (assuming we reorder ℓ^2 to possess a two-dimensional indexing structure)?
- 19. Let $\Omega \subset \mathbb{R}^d$ be a domain with a Lipschitz boundary and let $w \in L^{\infty}(\Omega)$. Define

$$H_w(\Omega) = \{ f \in L^2(\Omega) : \nabla(wf) \in (L^2(\Omega))^d \}.$$

- (a) Give reasonable conditions on w so that $H_w(\Omega) = H^1(\Omega)$.
- (b) Prove that $H_w(\Omega)$ is a Hilbert space. What is the inner-product?
- (c) Can you define the trace of f on $\partial\Omega$? [Hint: first consider the trace of wf.]
- (d) Characterize $H_w(\mathbb{R})$ if w(x) is the Heaviside function.

- 1. If A is a positive definite matrix, show that its eigenvalues are positive. Conversely, prove that if A is symmetric and has positive eigenvalues, then A is positive definite.
- 2. Suppose that the hypotheses of the Generalized Lax-Milgram Theorem 8.10 are satisfied. Suppose also that $x_{0,1}$ and $x_{0,2}$ in \mathcal{X} are such that the sets $X + x_{0,1} = X + x_{0,2}$. Prove that the solutions $u_1 \in X + x_{0,1}$ and $u_2 \in X + x_{0,2}$ of the abstract variational problem (8.16) agree (i.e., $u_1 = u_2$). What does this result say about Dirichlet boundary value problems?
- 3. Suppose that we wish to find $u \in H^2(\Omega)$ solving the nonlinear problem $-\Delta u + cu^2 = f \in L^2(\Omega)$, where $\Omega \subset \mathbb{R}^d$ is a bounded Lipschitz domain. For consistency, we would require that $cu^2 \in L^2(\Omega)$. Determine the smallest p such that if $c \in L^p(\Omega)$, you can be certain that this is true, if indeed it is possible. The answer depends on d.
- 4. Consider the boundary value problem for $u(x,y): \mathbb{R}^2 \to \mathbb{R}$ such that

$$-u_{xx} + e^y u = f, for (x, y) \in (0, 1)^2,$$

$$u(0, y) = 0, u(1, y) = \cos(y), for y \in (0, 1).$$

Rewrite this as a variational problem and show that there exists a unique solution. Be sure to define your function spaces carefully and identify where f must lie.

5. Suppose that $\Omega \subset \mathbb{R}^d$ is a smooth, bounded, connected domain. Let

$$H = \left\{ u \in H^2(\Omega) : \int_{\Omega} u(x) \, dx = 0 \text{ and } \nabla u \cdot \nu = 0 \text{ on } \partial \Omega \right\}.$$

Show that H is a Hilbert space, and prove that there exists C > 0 such that for any $u \in H$,

$$||u||_{H^1(\Omega)} \le C \sum_{|\alpha|=2} ||D^{\alpha}u||_{L^2(\Omega)}.$$

6. Use the Lax-Milgram Theorem to show that, for $f \in L^2(\mathbb{R}^d)$, there exists a unique solution $u \in H^1(\mathbb{R}^d)$ to the problem

$$-\Delta u + u = f \qquad \text{in } \mathbb{R}^d.$$

Be careful to justify integration by parts. [Hint: \mathcal{D} is dense in $H^1(\mathbb{R}^d)$.]

7. The symmetric gradient of a vector function $v \in (H^1(\Omega))^d$ is a $d \times d$ matrix of the form

$$\epsilon(v)_{i,j} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right).$$

It arises often in structural mechanics problems. Assuming that $\Omega \in \mathbb{R}^2$ is smooth and bounded, prove *Korn's inequality*, which says that there is some C > 0 such that

$$||v||_{H^1(\Omega)} \le C||\epsilon(v)||_{L^2(\Omega)}$$
 for all $v \in (H^1_0(\Omega))^2$.

[Hint: you will need to show that all *rigid motions*, i.e., vector fields of the form $v = \alpha(x_2, -x_1) + (\beta, \gamma)$, vanish in $(H_0^1(\Omega))^2$.]

8. Suppose $\Omega \subset \mathbb{R}^d$ is a bounded, connected Lipschitz domain and $V \subset \Omega$ has positive measure. Let $H = \{u \in H^1(\Omega) : u|_V = 0\}$.

- (a) Why is H a Hilbert space?
- (b) Prove the following Poincaré inequality: there is some C > 0 such that

$$||u||_{L^2(\Omega)} \le C||\nabla u||_{L^2(\Omega)} \qquad \forall u \in H.$$

9. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with a Lipschitz boundary, $f \in L^2(\Omega)$, and $\alpha > 0$. Consider the Robin boundary value problem

$$\begin{cases} -\Delta u + u = f & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} + \alpha u = 0 & \text{on } \partial \Omega. \end{cases}$$

(a) For this problem, formulate a variational principle

$$B(u, v) = (f, v) \quad \forall v \in H^1(\Omega).$$

- (b) Show that this problem has a unique weak solution.
- 10. Let $\Omega = [0,1]^d$, define

$$H^1_\#(\Omega) = \bigg\{ v \in H^1_{\mathrm{loc}}(\mathbb{R}^d) \, : \, v \text{ is periodic of period 1 in each direction and } \int_\Omega v \, dx = 0 \bigg\},$$

and consider the problem of finding a periodic solution $u \in H^1_\#(\Omega)$ of

$$-\Delta u = f$$
 on Ω ,

where $f \in L^2(\Omega)$.

- (a) Define precisely what it means for $v \in H^1(\mathbb{R}^d)$ to be periodic of period 1 in each direction.
- (b) Show that $H^1_\#(\Omega)$ is a Hilbert space.
- (c) Show that there is a unique solution to the partial differential equation.
- 11. Consider

$$B(u,v) = (a\nabla u, \nabla v)_{L^2(\Omega)} + (bu, \nabla v)_{L^2(\Omega)} + (cu, v)_{L^2(\Omega)}$$

- (a) Derive a condition on b to insure that B is coercive on $H^1(\Omega)$ when a is uniformly positive definite and c is uniformly positive.
- (b) Suppose b = 0. If c < 0, is B not coercive? Show that this is true on $H^1(\Omega)$, but that by restricting how negative c may be, B is still coercive on $H^1_0(\Omega)$.
- 12. Suppose $\Omega \subset \mathbb{R}^d$ is a $C^{1,1}$ domain. Consider the biharmonic BVP

$$\begin{cases} \Delta^2 u = f & \text{in } \Omega, \\ \nabla u \cdot \nu = g & \text{on } \partial \Omega, \\ u = u_D & \text{on } \partial \Omega, \end{cases}$$

wherein $\Delta^2 u = \Delta \Delta u$ is the application of the Laplace operator twice.

- (a) Determine appropriate Sobolev spaces within which the functions u, f, g, and u_D should lie, and formulate an appropriate variational problem for the BVP. Show that the two problems are equivalent.
- (b) Show that there is a unique solution to the variational problem. [Hint: use the Elliptic Regularity Theorem to prove coercivity of the bilinear form.]
- (c) What would be the natural BC's for this partial differential equation?
- (d) For simplicity, let u_D and g vanish and define the energy functional

$$J(v) = \int_{\Omega} \left(|\Delta v(x)|^2 - 2f(x) v(x) \right) dx.$$

Prove that minimization of J is equivalent to the variational problem.

13. Suppose $\Omega \subset \mathbb{R}^d$ is a bounded Lipschitz domain. Consider the Stokes problem for vector u and scalar p given by

$$\begin{cases}
-\Delta u + \nabla p = f & \text{in } \Omega, \\
\nabla \cdot u = 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}$$

where the first equation holds for each coordinate (i.e., $-\Delta u_j + \partial p/\partial x_j = f_j$ for each j = 1, ..., d). This problem is not a minimization problem; rather, it is a *saddle-point problem*, in that we minimize some energy subject to the *constraint* $\nabla \cdot u = 0$. However, if we work over the constrained space, we can handle this problem by the ideas of this chapter. Let

$$H = \{ v \in (H_0^1(\Omega))^d : \nabla \cdot u = 0 \}.$$

- (a) Verify that H is a Hilbert space.
- (b) Determine an appropriate Sobolev space for f, and formulate an appropriate variational problem for the constrained Stokes problem.
- (c) Show that there is a unique solution to the variational problem.
- 14. Let $\mathcal{H} = H_0^1(\Omega) \times H^1(\Omega)$ and consider the solution $(u, v) \in \mathcal{H}$ to the differential problem

$$-\Delta u = f + a(v - u) \quad \text{in } \Omega,$$

$$v - \Delta v = g + a(u - v) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{and} \quad \nabla v \cdot \nu = \gamma \quad \text{on } \partial \Omega,$$

where $a \in L^{\infty}(\Omega)$.

- (a) Develop an appropriate weak or variational form for the problem. In what Sobolev spaces should f, g, and γ lie?
- (b) Prove that there exists a unique solution to the problem, provided that $a \geq 0$.
- 15. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with a smooth boundary. The equations of linear elasticity can be formulated for the displacement vector $u = (u_1, u_2)^T$ using the *symmetric gradient tensor* $\epsilon(u)$ defined by

$$\epsilon_{ij}(u) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

as

$$\sum_{i} \frac{\partial}{\partial x_{i}} \left[2\mu \epsilon_{ij}(u) + \lambda \nabla \cdot u \, \delta_{ij} \right] = f_{j} \quad \text{in } \Omega,$$

where μ and λ are positive constants. We assume the boundary condition u=0 on $\partial\Omega$.

- (a) Develop an appropriate weak form for the equations that involve the integrals $(\nabla \cdot u, \nabla \cdot v)$ and $\sum_{i,j} (\epsilon_{ij}(u), \epsilon_{ij}(v))$. For the latter, you will need to use the fact that $\epsilon(u)$ is indeed symmetric.
- (b) In which spaces should u and $f = (f_1, f_2)^T$ lie?
- (c) Show that there is a unique solution to the problem using the Lax-Milgram Theorem. You will need to use Korn's Inequality, which says that there is $\gamma > 0$ such that

$$\|\epsilon(u)\|_{(L^2(\Omega))^{2\times 2}} \ge \gamma \|u\|_{(H^1(\Omega))^2} \quad \forall u \in (H_0^1(\Omega))^2.$$

16. Let $\Omega \subset \mathbb{R}^2$ be a domain with a smooth boundary and consider the variational problem: Find $u \in V$ such that

$$(au, v) + (\nabla \cdot u, \nabla \cdot v) = (f, \nabla \cdot v)$$
 for all $v \in V$,

where u and v are vectors in \mathbb{R}^2 , $a \in L^{\infty}(\Omega)$, $a(x) \geq a_* > 0$ for some constant a_* , $(au, v) = \int_{\Omega} a(x) \left(u_1(x) \, v_1(x) + u_2(x) \, v_2(x) \right) dx$, and $\nabla \cdot u = \operatorname{div} u = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2}$.

- (a) For the problem to make sense, define V and a space for f.
- (b) State the Lax-Milgram theorem for Hilbert spaces.
- (c) Show that the hypotheses of the Lax-Milgram theorem hold for this problem. What norm do we use for V?
- (d) Define $p = f \nabla \cdot u$ and determine the strong form of the equation represented by the variational problem. What boundary condition should you impose on p?
- 17. Let H and W be real Hilbert spaces and let $V \subset H$ be a linear subspace. Let $A: H \to H$ and $B: V \to W$ be bounded linear operators, where we give V the norm $\|v\|_V = \|v\|_H + \|Bv\|_W$. For any $f \in V$ and $0 \le \delta < 1$, consider the problem: Find $(u, p) \in V \times W$ such that

$$\langle Au, v \rangle_H - \langle B^*p, v \rangle_H + \langle Bu, w \rangle_W + \langle p, w \rangle_W + \delta \langle Bu, Bv \rangle_W + \delta \langle p, Bv \rangle_W$$

$$= \langle f, v \rangle_H \quad \forall (v, w) \in V \times W.$$

Assume that A is coercive on V (i.e., there is $\alpha > 0$ such that $\alpha ||v||_V^2 \leq \langle Av, v \rangle_V$).

- (a) Assuming there is a solution, find a bound on the norm of the solution (u, p).
- (b) Show that there is a unique solution for any $\delta \in (0,1)$.
- (c) Show that there is a unique solution for $\delta = 0$. [Hint: replace w by $w \delta Bv$.]
- 18. Let $\Omega \subset \mathbb{R}^d$ be a domain and define the potential and solenoidal vector fields

$$H_{\text{pot}} = \{ \nabla \phi : \phi \in H_0^1(\Omega) \} \text{ and } H_{\text{sol}} = \{ \psi \in (L^2(\Omega))^d : \nabla \cdot \psi = 0 \}.$$

These are clearly linear subspaces of $(L^2(\Omega))^d$.

- (a) Show that H_{pot} and H_{sol} are $(L^2(\Omega))^d$ -orthogonal to each other.
- (b) Show that both H_{pot} and H_{sol} are closed in $(L^2(\Omega))^d$.

- (c) Prove that $(L^2(\Omega))^d = H_{\text{pot}} \oplus H_{\text{sol}}$, i.e., an L^2 vector can be written uniquely as the sum of a potential and solenoidal vector. This fact is called the *Helmholtz decomposition*.
- (d) Show that for $u \in (L^2(\Omega))^d = \nabla \phi + \psi$,

$$||u||_{(L^2(\Omega))^d}^2 = ||\nabla \phi||_{(L^2(\Omega))^d}^2 + ||\psi||_{(L^2(\Omega))^d}^2.$$

(e) Suppose $u_j \in H_{\text{pot}}$ and $\nabla \cdot u_j = f_j \in L^2(\Omega)$ for all j. If

$$||u_j||_{(L^2(\Omega))^d} + ||\nabla \cdot u_j||_{(L^2(\Omega))^d} \le M < \infty \quad \forall j,$$

show that there is some $u \in H_{\text{pot}}$ such that, for a subsequence, u_{j_k} converges strongly to u in $(L^2(\Omega))^d$.

19. Let $\Omega \subset \mathbb{R}^4$ be a bounded domain with a smooth boundary in 4 dimensions, and let $f \in L^2(\Omega)$. Consider the nonlinear BVP

$$-\Delta u + u^3 = f$$
 in Ω , $u = 0$ on $\partial \Omega$.

We attempt to solve this iteratively from $u_0 = 0$ by computing for each n = 1, 2, ..., the solutions to the linear BVPs

$$-\Delta u_n + u_{n-1}^2 u_n = f$$
 in Ω , $u_n = 0$ on $\partial \Omega$.

- (a) Find the appropriate variational problems (i.e., weak forms) for the linear BVPs and show that they are well defined in $H_0^1(\mathbb{R}^4)$ if $u_{n-1} \in H_0^1(\mathbb{R}^4)$. [Hint: Sobolev Imbedding Theorem.]
- (b) Show that there is a unique solution $u_n \in H_0^1(\mathbb{R}^4)$, assuming $u_{n-1} \in H_0^1(\mathbb{R}^4)$. Moreover, find a bound for the norm of u_n .
- (c) Show that the nonlinear BVP has a weak solution. [Hint: Extract a subsequence of $\{u_n\}_{n=0}^{\infty}$ that converges weakly to some u, and show that u satisfies the weak form of the nonlinear BVP.]
- 20. Let $\Omega \subset \mathbb{R}^d$ be a bounded Lipschitz domain. Using the Lax-Milgram Theorem and the definition of the $H^{1/2}(\partial\Omega)$ -norm (but *not* the Elliptic Regularity Theorem), show that there is some constant C>0 such that

$$||u||_{H^{1}(\Omega)} \le C\{||\Delta u||_{H^{-1}(\Omega)} + ||u||_{H^{1/2}(\partial\Omega)}\}$$
 for all $u \in H^{1}(\Omega)$.

21. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with a Lipschitz boundary, and define

$$H(\mathrm{div};\Omega) = \big\{v \in (L^2(\Omega))^d : \nabla \cdot v \in L^2(\Omega)\big\}.$$

(a) Show that $H(\text{div}; \Omega)$ is a Hilbert space with the inner-product

$$(u,v)_{H(\operatorname{div};\Omega)} = (u,v)_{(L^2(\Omega))^d} + (\nabla \cdot u, \nabla \cdot v)_{L^2(\Omega)}.$$

(b) The trace theorem does not imply that $\partial_{\nu}v = v \cdot \nu$ exists on $\partial\Omega$. Nevertheless, show that $\partial_{\nu}: H(\operatorname{div};\Omega) \to H^{-1/2}(\partial\Omega) = (H^{1/2}(\partial\Omega))^*$ is a well defined bounded linear operator in the sense of integration by parts:

$$\int_{\partial\Omega} v \cdot \nu \, \phi \, d\sigma(x) = \int_{\Omega} \nabla \cdot v \, \phi \, dx + \int_{\Omega} v \cdot \nabla \phi \, dx.$$

(c) Prove the following inf-sup condition: there exists $\gamma > 0$ such that

$$\inf_{w \in L^2(\Omega)} \sup_{v \in H(\operatorname{div};\Omega)} \frac{(w,\nabla \cdot v)_{L^2(\Omega)}}{\|w\|_{L^2(\Omega)} \|v\|_{H(\operatorname{div};\Omega)}} \geq \gamma > 0.$$

[Hint: solve $\Delta \varphi = w$ in $H_0^1(\Omega)$ and consider $v = \nabla \varphi$.]

22. Let $s, t \ge 0$ and define

$$\begin{split} \langle f,g\rangle &= \int_{\mathbb{R}^2} \hat{f}(\eta,\zeta)\,\overline{\hat{g}(\eta,\zeta)}(1+\eta^2)^s (1+\zeta^2)^t\,d\eta\,d\zeta,\\ H^{s,t} &= \{f\in L^2(\mathbb{R}^2) \ : \ \|f\|^2 = \langle f,f\rangle < \infty\}. \end{split}$$

- (a) Show that $\langle \cdot, \cdot \rangle$ is an inner product on $H^{s,t}$, $H^{s,t}$ is continuously imbedded in $H^{\min(s,t)}(\mathbb{R}^2)$, and $H^{s+t}(\mathbb{R}^2)$ is continuously imbedded in $H^{s,t}(\mathbb{R}^2)$.
- (b) Show that $H^{s,t}$ is complete and $\mathcal{S}(\mathbb{R}^2) \subset H^{s,t}$ is dense.
- (c) Define the trace operator $\gamma_0: C^2(\mathbb{R}^2) \to C^0(\mathbb{R})$ by $\gamma_0 f(x) = f(x,0)$. Find reasonable hypotheses on s and t as well as an r so that γ_0 extends to a bounded linear operator $\gamma_0: H^{s,t} \to H^r(\mathbb{R})$.
- 23. Modify the statement of Theorem 8.14 to allow for nonhomogeneous essential boundary conditions, and prove the result.
- 24. Let $\Omega \in \mathbb{R}^d$ have a smooth boundary, V_n be the set of polynomials of degree up to n, for n = 1, 2, ..., and $f \in L^2(\Omega)$. Consider the problem: Find $u_n \in V_n$ such that

$$(\nabla u_n, \nabla v_n)_{L^2(\Omega)} + (u_n, v_n)_{L^2(\Omega)} = (f, v_n)_{L^2(\Omega)}$$
 for all $v_n \in V_n$.

(a) Show that there exists a unique solution for any n, and that

$$||u_n||_{H^1(\Omega)} \le ||f||_{L^2(\Omega)}.$$

- (b) Show that there is $u \in H^1(\Omega)$ such that $u_n \rightharpoonup u$ weakly in $H^1(\Omega)$. Find a variational problem satisfied by u. Justify your answer.
- (c) Show that $||u u_n||_{H^1(\Omega)}$ decreases monotonically to 0 as $n \to \infty$.
- (d) What can you say about u and $\nabla u \cdot \nu$ on $\partial \Omega$?
- 25. Consider the finite element method in Section 8.6.
 - (a) Modify the method to account for nonhomogeneous Neumann conditions.
 - (b) Modify the method to account for nonhomogeneous Dirichlet conditions.
- 26. Compute explicitly the finite element solution to (8.28) using $f(x) = x^2(1-x)$ and n = 4. How does this approximation compare to the true solution?
- 27. Suppose that $u \in H^1(\Omega)$, where $\Omega \subset \mathbb{R}^d$ is a bounded, connected domain. Recall that the $H^1(\Omega)$ -seminorm is $|u|_{H^1(\Omega)} = \left\{ \sum_{|\alpha|=1} \|D^{\alpha}u\|_{L^2(\Omega)}^2 \right\}^{1/2}$.
 - (a) Show that there is some constant C_{Ω} , depending on Ω but not on u, such that

$$\inf_{c \in \mathbb{R}} \|u - c\|_{L^2(\Omega)} \le C_{\Omega} |u|_{H^1(\Omega)}.$$

(b) Let $\Omega = (0, h)^d$ for some h > 0. Show that there is a constant C, independent of h and u, such that

$$\inf_{c \in \mathbb{R}} \|u - c\|_{L^2(\Omega)} \le C h |u|_{H^1(\Omega)}.$$

[Hint: change variables to integrate over $(0,1)^d$, and use (a).]

(c) Let $\Omega = (0,1)^d$ and let P be the set of piecewise discontinuous constants over the grid of spacing h = 1/N for some positive integer N. Show that there is a constant C, independent of h and u, such that

$$\inf_{p \in P} \|u - p\|_{L^2(\Omega)} \le C \, h \, |u|_{H^1(\Omega)}.$$

28. Let H_h be the set of continuous piecewise linear functions defined on the grid $x_j = jh$, where h = 1/n for some integer n > 0. Let the interpolation operator $\mathcal{I}_h : H_0^1(0,1) \to H_h$ be defined by

$$\mathcal{I}_h v(x_j) = v(x_j) \qquad \forall j = 1, 2, ..., n - 1.$$

- (a) Show that \mathcal{I}_h is well defined, and that it is continuous. [Hint: use the Sobolev Embedding Theorem.]
- (b) Show that there is a constant C > 0 independent of h such that

$$||v - \mathcal{I}_h v||_{H^1(x_{j-1}, x_j)} \le C ||v||_{H^2(x_{j-1}, x_j)} h.$$

[Hint: change variables so that the domain becomes (0,1), where the result is trivial by Poincaré's inequality Corollary 7.20 and Theorem 8.12.]

- (c) Show that (8.30) holds.
- 29. Consider the problem (8.28).
 - (a) Find the Green's function.
 - (b) Instead impose Neumann BC's, and find the Green's function. [Hint: recall that now we require $-(\partial^2/\partial x^2)G(x,y) = \delta_y(x) 1$.]
- 30. If \mathcal{L} is self-adjoint on $L^2(\Omega)$ and has a Green's function G, show that G(x,y) = G(y,x) for a.e. $x,y \in \Omega$.

- 1. Let X, Y_1 , Y_2 , and Z be normed linear spaces and $P: Y_1 \times Y_2 \to Z$ be a continuous bilinear map (so P is a "product" between Y_1 and Y_2).
 - (a) Show that for $y_i, \hat{y}_i \in Y_i$,

$$DP(y_1, y_2)(\hat{y}_1, \hat{y}_2) = P(y_1, \hat{y}_2) + P(\hat{y}_1, y_2).$$

(b) If $f: X \to Y_1 \times Y_2$ is differentiable, show that for $h \in X$,

$$D(P \circ f)(x) h = P(Df_1(x) h, f_2(x)) + P(f_1(x), Df_2(x) h).$$

- 2. Let X be a real Hilbert space and $A_1, A_2 \in B(X, X)$, and define $f(x) = (x, A_1x)_X A_2x$. Show that Df(x) exists for all $x \in X$ by finding an explicit expression for it.
- 3. Let X = C([0,1]) be the space of bounded continuous functions on [0,1] and, for $u \in X$, define $F(u)(x) = \int_0^1 K(x,y) \, f(u(y)) \, dy$, where $K : [0,1] \times [0,1] \to \mathbb{R}$ is continuous and f is a C^1 -mapping of \mathbb{R} into \mathbb{R} . Find the Fréchet derivative DF(u) of F at $u \in X$. Is the map $u \mapsto DF(u)$ continuous?
- 4. Suppose X and Y are Banach spaces, and $f: X \to Y$ is differentiable with derivative $Df(x) \in B(X,Y)$ being a compact operator for any $x \in X$. Prove that f is also compact.
- 5. Set up and apply the contraction mapping principle to show that the problem

$$-u_{xx} + u - \epsilon u^2 = f(x), \quad x \in \mathbb{R},$$

has a smooth bounded solution if $\epsilon > 0$ is small enough, where $f(x) \in \mathcal{S}(\mathbb{R})$.

6. Use the contraction-mapping theorem to show that the Fredholm Integral Equation

$$f(x) = \varphi(x) + \lambda \int_{a}^{b} K(x, y) f(y) \, dy$$

has a unique solution $f \in C([a, b])$, provided that λ is sufficiently small, wherein $\varphi \in C([a, b])$ and $K \in C([a, b] \times [a, b])$.

- 7. Suppose that F is defined on a Banach space X, that $x_0 = F(x_0)$ is a fixed point of F, $DF(x_0)$ exists, and that 1 is *not* in the spectrum of $DF(x_0)$. Prove that x_0 is an isolated fixed point.
- 8. Consider the first-order differential equation

$$u'(t) + u(t) = \cos(u(t))$$

posed as an initial-value problem for t > 0 with initial condition

$$u(0) = u_0.$$

- (a) Use the contraction-mapping theorem to show that there is exactly one solution u corresponding to any given $u_0 \in \mathbb{R}$.
- (b) Prove that there is a number ξ such that $\lim_{t\to\infty} u(t) = \xi$ for any solution u, independent of the value of u_0 .

9. Set up and apply the contraction mapping principle to show that the boundary value problem

$$-u_{xx} + u - \epsilon u^2 = f(x), \quad x \in (0, \infty),$$

$$u(0) = u(\infty) = 0,$$

has a smooth solution if $\epsilon > 0$ is small enough, where f(x) is a smooth compactly supported function on $(0, \infty)$.

10. Consider the partial differential equation

$$\frac{\partial u}{\partial t} - \frac{\partial^3 u}{\partial t \partial x^2} - \epsilon u^3 = f, \quad -\infty < x < \infty, \ t > 0,$$

$$u(x, 0) = g(x).$$

Use the Fourier transform and a contraction mapping argument to show that there exists a solution for small enough ϵ , at least up to some time $T < \infty$. In what spaces should f and g lie?

11. Let $\phi(x) \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Consider the nonlinear initial value problem (IVP)

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} + 3u^2 \frac{\partial u}{\partial x} - \frac{\partial^3 u}{\partial x^2 \partial t} = 0, \quad x \in \mathbb{R}, \ t > 0,$$
$$u(x,0) = \phi(x).$$

(a) Use the Fourier transform in x to show that the (IVP) can be rewritten in the form

$$\partial_t u = K * (u + u^3), \quad x \in \mathbb{R}, \ t > 0,$$

 $u(x,0) = \phi(x),$

for some $K(x) \in L^1(\mathbb{R})$.

- (b) Set up and apply the contraction mapping principle to show that the initial value problem has a continuous and bounded solution u = u(x, t), at least up to some time $T < \infty$.
- 12. Let X be a Banach space and $F: X \to X$ be a smooth map. Suppose that x_* is a simple root of F in the sense that $F(x_*) = 0$ and the derivative $DF(x_*)$ is invertible. Given any starting point x_0 , for $k \ge 0$ consider the full Newton-Kantorovich Method

$$x_{k+1} = G(x_k)$$
 where $G(x) = x - DF(x)^{-1}F(x)$.

Complete the following outline to show that if x_0 is sufficiently close to x_* , then $x_k \to x_*$ as $k \to \infty$.

- (a) Show that $G(x_*) = x_*$, $DG(x_*) = 0$ and that there is a closed ball B about x_* such that $||DG(x)|| \le \frac{1}{2}$ for all $x \in B$. [Hint: you do *not* need to compute DG(x), only $DG(x_*)$.]
- (b) Show that $G(x) \in B$ for all $x \in B$.
- (c) Show that $G: B \to B$ is a contraction.
- (d) Prove that $x_k \to x_*$ as $k \to \infty$ for any $x_0 \in B$.
- (e) If $F \in C^3$, show that, for some $C < \infty$,

$$||x_{k+1} - x_*|| \le C||x_k - x_*||^2.$$

That is, if the Newton-Kantorovich iteration converges, it does so quadratically in the error. [Hint: note that $x_{k+1} - x_* = G(x_k) - G(x_*)$ and apply the Mean Value Theorem twice.]

- 13. Surjective Mapping Theorem: Let X and Y be Banach spaces, $U \subset X$ be open, $f: U \to Y$ be C^1 , and $x_0 \in U$. If $Df(x_0)$ has a bounded right inverse, then f(U) contains a neighborhood of $f(x_0)$.
 - (a) Prove this theorem from the Inverse Function Theorem. [Hint: let R be the right inverse of $Df(x_0)$ and consider $g: V \to Y$ where $g(y) = f(x_0 + Ry)$ and $V = \{y \in Y : x_0 + Ry \in U\}$.]
 - (b) Prove that if $y \in Y$ is sufficiently close to $f(x_0)$, there is at least one solution to f(x) = y.
- 14. Suppose $f \in C^0([0,1])$ and that we want to solve

$$\frac{1}{1+\epsilon u^2}u' = f(x), \quad x \in (0,1), \quad \text{and} \quad u(0) = 0.$$

We note that there is a unique solution $u_0(x)$ when $\epsilon = 0$.

- (a) Use the Implicit Function Theorem to show that there is a continuously differentiable solution for ϵ small enough.
- (b) Use the Banach Contraction Mapping Theorem to show that there is a unique continuous solution in a closed ball about u_0 in an appropriate Banach space for ϵ sufficiently small.
- 15. Let X and Y be Banach spaces.
 - (a) Let F and G take X to Y be C^1 on X, and let $H(x,\epsilon) = F(x) + \epsilon G(x)$ for $\epsilon \in \mathbb{R}$. If $H(x_0,0) = 0$ and $DF(x_0)$ is invertible, show that there exists $x \in X$ such that $H(x,\epsilon) = 0$ for ϵ sufficiently close to 0.
 - (b) Let $f \in C^0([0,1])$ and $\epsilon \in \mathbb{R}$. Use the previous result to show that, for sufficiently small $|\epsilon|$, there is a solution $w \in C^2([0,1])$ to

$$w'' = f + w + \epsilon w^2$$
, $w(0) = w(1) = 0$.

16. Prove that for sufficiently small $\epsilon > 0$, there is at least one solution to the functional equation

$$f(x) + \sin x \int_{-\infty}^{\infty} f(x - y) f(y) dy = \epsilon e^{-|x|^2}, \quad x \in \mathbb{R},$$

such that $f \in L^1(\mathbb{R})$.

17. Let X and Y be Banach spaces, and let $U \subset X$ be open and convex. Let $F: U \to Y$ be an n-times Fréchet differentiable operator. Let $x \in U$ and $h \in X$. Prove that in Taylor's formula, the remainder is actually bounded as

$$||R_{n-1}(x,h)|| = ||F(x+h) - F(x) - DF(x)h + \dots + \frac{1}{(n-1)!}D^{n-1}F(x)(h,\dots,h)||$$

$$\leq \sup_{0 \leq \alpha \leq 1} ||D^n F(x+\alpha h)|| ||h||^n.$$

18. Prove that if X is an NLS, U an open convex subset of X, and $f:U\to\mathbb{R}$ is strictly convex and differentiable, then, for $x,y\in U,\,x\neq y$,

$$f(y) > f(x) + Df(x)(y - x),$$

and Df(x) = 0 implies that f has a strict and therefore unique minimum.

19. Let $\Omega \subset \mathbb{R}^d$ have a smooth boundary, and let g(x) be real with $g \in H^1(\Omega)$. Consider the BVP

$$\begin{cases} -\Delta u + u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial \Omega. \end{cases}$$

- (a) Write this as a variational problem.
- (b) Define an appropriate energy functional J(v) and find DJ(v).
- (c) Relate the BVP to a constrained minimization of J(v).
- 20. Let $\Omega \subset \mathbb{R}^n$ have a smooth boundary, A(x) be an $n \times n$ real matrix with components in $L^{\infty}(\Omega)$, and let c(x), f(x) be real with $c \in L^{\infty}(\Omega)$ and $f \in L^2(\Omega)$. Consider the BVP

$$\begin{cases} -\nabla \cdot A \nabla u + c u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

- (a) Write this as a variational problem.
- (b) Assume that A is symmetric and uniformly positive definite and c is uniformly positive. Define the energy functional $J: H_0^1 \to \mathbb{R}$ by $J(v) = \frac{1}{2} \int_{\Omega} \{|A^{1/2}\nabla v|^2 + c|v|^2 2fv\} dx$. Find DJ(v).
- (c) Prove that for $u \in H_0^1$, the following are equivalent: (i) u is the solution of the BVP; (ii) DJ(u) = 0; (iii) u minimizes J(v).
- 21. Let X and Y be Banach spaces, $U \subset X$ an open set, and $f: U \to Y$ Fréchet differentiable. Suppose that f is compact, in the sense that for any $x \in U$, if $\overline{B_r(x)} \subset U$, then $f(B_r(x))$ is precompact in Y. If $x_0 \in U$, prove that $Df(x_0)$ is a compact linear operator.
- 22. Suppose we wish to find the surface u(x,y) above the square $Q = [-1,1]^2$, with u = 0 on ∂Q , that encloses the greatest volume, subject to the constraint that the surface area is fixed at s > 4.
 - (a) Formulate the problem, and reformulate it incorporating the constraint as a Lagrange multiplier. [Hint: the surface area is $\iint_{O} \sqrt{1+|\nabla u|^2} \, dx \, dy$.]
 - (b) Using the definition of the Fréchet derivative, find the conditions for a critical point.
 - (c) Find a partial differential equation that u must satisfy to be an extremal of this problem. [Remark: a solution of this differential equation, that also satisfies the area constraint, gives the solution to our problem.]

- 1. Let $F(u) = \int_{-1}^{5} [(u'(x))^2 1]^2 dx$.
 - (a) Find all extremals in $C^1([-1,5])$ such that u(-1)=1 and u(5)=5.
 - (b) Decide if any extremal from (a) is a minimum of F. Consider u(x) = |x|.
- 2. Consider the functional

$$F(y) = \int_0^1 [(y(x))^2 - y(x)y'(x)] dx,$$

defined for $y \in C^1([0,1])$.

- (a) Find all extremals.
- (b) If we require y(0) = 0, show by example that there is no minimum.
- (c) If we require y(0) = y(1) = 0, show that the extremal is a minimum. [Hint: note that $yy' = (\frac{1}{2}y^2)'$.]
- 3. Find all extremals of

$$\int_0^{\pi/2} \left[(y'(t))^2 + (y(t))^2 + 2y(t) \right] dt$$

under the condition $y(0) = y(\pi/2) = 0$.

4. Suppose that we wish to minimize

$$F(y) = \int_0^1 f(x, y(x), y'(x), y''(x)) dx$$

over the set of $y(x) \in C^2([0,1])$ such that $y(0) = \alpha$, $y'(0) = \beta$, $y(1) = \gamma$, and $y'(1) = \delta$. That is, with $C_0^2([0,1]) = \{u \in C^2([0,1]) : u(0) = u'(0) = u(1) = u'(1) = 0\}, y \in C_0^2([0,1]) + p(x)$, where p is the cubic polynomial that matches the boundary conditions.

- (a) Find a differential equation, similar to the Euler-Lagrange equation, that must be satisfied by the minimum (if it exists).
- (b) Apply your equation to find the extremal(s) of

$$F(y) = \int_0^1 (y''(x))^2 dx,$$

where y(0) = y'(0) = y'(1) = 0 but y(1) = 1, and justify that each extremal is a (possibly nonstrict) minimum.

5. Prove the theorem: If f and g map \mathbb{R}^3 to \mathbb{R} and have continuous partial derivatives up to second order, and if $u \in C^2([a,b])$, $u(a) = \alpha$ and $u(b) = \beta$, minimizes

$$\int_a^b f(x, u(x), u'(x)) dx,$$

subject to the constraint

$$\int_{a}^{b} g(x, u(x), u'(x)) \, dx = 0,$$

then there is a nontrivial linear combination $h = \mu f + \lambda g$ such that u(x) satisfies the Euler-Lagrange equation for h.

6. Consider the functional

$$\Phi(x, y, y') = \int_a^b F(x, y(x), y'(x)) dx.$$

(a) If $F \in C^2$ and F = F(y, y') only, and if we assume that $y \in C^2$, prove that in this case the Euler-Lagrange equations reduce to

$$\frac{d}{dx}(F - y'F_{y'}) = 0.$$

(b) Among all C^2 curves y(x) joining the points (0,1) and $(1,\cosh(1))$, find the one which generates the minimum area when rotated about the x-axis. Recall that this area is

$$A = 2\pi \int_0^1 y\sqrt{1 + (y')^2} \, dx.$$

$$\left[\text{Hint: } \int \frac{dt}{\sqrt{t^2 - C^2}} = \ln(t + \sqrt{t^2 - C^2}).\right]$$

7. Consider the functional

$$J[x,y] = \int_0^{\pi/2} [(x'(t))^2 + (y'(t))^2 + 2x(t)y(t)] dt$$

and the boundary conditions

$$x(0) = y(0) = 0$$
 and $x(\pi/2) = y(\pi/2) = 1$.

- (a) Find the Euler-Lagrange equations for the functional.
- (b) Find all extremals.
- (c) Find a global minimum, if it exists, or show it does not exist.
- (d) Find a global maximum, if it exists, or show it does not exist.
- 8. Consider the problem of finding a C^1 curve that minimizes

$$\int_0^1 (y'(t))^2 dt$$

subject to the conditions that y(0) = y(1) = 0 and

$$\int_0^1 (y(t))^2 dt = 1.$$

- (a) Remove the integral constraint by incorporating a Lagrange multiplier, and find the Euler-Lagrange equations.
- (b) Find all extremals to this problem.
- (c) Find the solution to the problem.

(d) Use your result to find the best constant C in the inequality

$$||y||_{L^2(0,1)} \le C||y'||_{L^2(0,1)}$$

for functions that satisfy y(0) = y(1) = 0.

9. Find the C^2 curve y(t) that minimizes the functional

$$\int_0^1 \left[(y(t))^2 + (y'(t))^2 \right] dt$$

subject to the endpoint constraints

$$y(0) = 0$$
 and $y(1) = 1$

and the constraint

$$\int_0^1 y(t) \, dt = 0.$$

- 10. Find the form of the curve in the plane (not the curve itself), of minimal length, joining (0,0) to (1,0) such that the area bounded by the curve, the x and y axes, and the line x=1 has area $\pi/8$.
- 11. Solve the constrained Brachistochrone problem: In a vertical plane, find a C^1 -curve joining (0,0) to (b,β) , b and β positive and given, such that if the curve represents a track along which a particle slides without friction under the influence of a constant gravitational force of magnitude g, the time of travel is minimal. Note that this travel time is given by the functional

$$T(y) = \int_0^b \sqrt{\frac{1 + (y'(x))^2}{2g(\beta - y(x))}} \, dx.$$

- 12. Consider a stream between the lines x = 0 and x = 1, with speed v(x) in the y-direction. A boat leaves the shore at (0,0) and travels with constant speed c > v(x). The problem is to find the path y(x) of minimal crossing time, where the terminal point $(1,\beta)$ is unspecified.
 - (a) Find conditions on y so that it satisfies the Euler-Lagrange constraint. [Hint: the crossing time is $t = \int_0^1 \frac{\sqrt{c^2(1+(y')^2)-v^2}-vy'}{c^2-v^2}dx$.]
 - (b) What free endpoint constraint is required?
 - (c) If v is constant, find y.
- 13. For $y \in C^1([0,1])$ with y(0) = 0, consider minimizing

$$F(y) = \int_0^1 \left[xy(x) + (y'(x))^2 \right] dx.$$

- (a) Show that F(y) is strictly convex.
- (b) Find the minimum if y(1) = 0.
- (c) Find the minimum if y(1) = 0 and we add the constraint $\int_0^1 y(x) dx = 1$.

- (d) Suppose we apply the same constraint, $\int_0^1 y(x) dx = 1$, but we do *not* constrain y at x = 1. First derive \tilde{A} conditions for the minimum, including a free end condition, and then find the minimum.
- 14. Given I = [0, b], consider the problem of finding $u: I \to \mathbb{R}$ such that

$$\begin{cases} u'(t) = g(t)f(u(t)), & \text{for a.e. } t \in I, \\ u(0) = \alpha, \end{cases}$$

where $\alpha \in \mathbb{R}$ is a given constant, $g \in L^p(I)$, $p \ge 1$, and $f : \mathbb{R} \to \mathbb{R}$ are given functions. We suppose that f is Lipschitz continuous and satisfies f(0) = 0. Consider the functional

$$F(u) = \alpha + \int_0^t g(s) f(u(s)) ds.$$

- (a) Show that F maps $C^0(I)$ into $C^0(I) \cap W^{1,p}(I)$. Moreover, show that $u \in C^0(I) \cap W^{1,p}(I)$ solves the problem if and only if it is a fixed point of F.
- (b) Show that there exists b small enough, not depending on α , such that F has a unique fixed point in $C^0(I)$.
- (c) Show that the problem has a unique solution $u \in C^0(I) \cap W^{1,p}(I)$ for any $g \in L^p(I)$ and b > 0.
- 15. Prove Proposition 10.11.