Test di Calcolo Numerico

Ingegneria Informatica 21/02/2018

COGNOME	NOME
MATRICOLA	
RISPOSTE	
1)	
2)	
3)	
4)	
5)	

 $\mathbf{N.B.}$ Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 21/02/2018

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x+y}{r} .$$

2) Una matrice $A \in \mathbb{C}^{4\times 4}$ ha autovalori

$$\lambda_1 = 1, \quad \lambda_2 = \frac{1}{2}, \quad \lambda_3 = -\frac{1}{5}, \quad \lambda_4 = \frac{\sqrt{3}}{2} + \frac{1}{2}i.$$

La matrice A verifica le condizioni per la applicazione del metodo delle potenze? La matrice A^{-1} verifica le condizioni per la applicazione del metodo delle potenze?

- 3) Risolvere l'equazione $x^4 4x^3 + 3x^2 + 4x 4 = 0$. Il metodo di bisezione risulta convergente se utilizzato (su intervalli opportuni) per approssimare le soluzioni di tale equazione?
- 4) Determinare i numeri reali α per i quali risulta di grado minimo il polinomio che interpola i dati riportati nella tabella che segue:

5) Per approssimare l'integrale $I=\int_0^1\frac{1}{x+1}dx~(=\log 2)$ si utilizza la formula dei trapezi.

In quanti sotto intervalli si deve suddividere l'intervallo di integrazione per otte nere una approssimazione con massimo errore assoluto $|E| \leq 10^{-2}$?

SOLUZIONE

1) Considerando l'algoritmo

$$r_1 = x + y$$
, $r_2 = \frac{r_1}{x}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_1 + \epsilon_2 + \frac{y}{x+y} (\epsilon_y - \epsilon_x)$$
.

2) Applicato alla matrice A il metodo delle potenze non converge non avendo un solo autovalore (eventualmente di molteplicià maggiore di 1) di modulo massimo ($|\lambda_1| = |\lambda_4|$ e $\lambda_1 \neq \lambda_4$).

La matrice A^{-1} ha un solo autovalore di modulo massimo $1/\lambda_3$.

3) L'equazione data ha soluzioni

$$\alpha_1 = 1$$
, $\alpha_2 = -1$, $\alpha_3 = \alpha_4 = 2$.

Il metodo di bisezione (applicato su intervalli opportuni) converge per approssimare α_1 e α_2 (radici sempici) ma non per approssimare α_3 (radice di molteplicità 2).

- 4) Dal quadro delle differenze divise si ricava che il polinomio di interpolazione risulta di grado minimo (grado=2) se $\alpha = 1$ o $\alpha = -6$.
- 5) Essendo $f''(x) = 2(x+1)^{-3}$ si ha $M_2 = \sup_{x \in [0,1]} |f''(x)| = 2$. Imponendo che l'errore commesso nel sostituire l'integrale esatto con la formula di quadratura dei trapezi non superi $\frac{1}{2}10^{-2}$, si ricava che si devono utilizzare almeno 6 (sei) sottointervalli.