190 Méthodes combinatoires, problèmes de dénombrement.

I - Dénombrement

1. Principes de base

Définition 1. On dit qu'un ensemble E est **fini** s'il est vide ou s'il existe $n \in \mathbb{N}^*$ tel qu'il existe une bijection de [1, n] dans E. Dans ce cas, l'entier n ne dépend pas de la bijection, on l'appelle **cardinal** de E. Il est noté |E|. Si E est vide, on pose |E| = 0.

[**GOU21**] p. 299

Proposition 2. Soient E et F deux ensembles.

- (i) Si *E* est fini et s'il existe une injection de *E* vers *F*, alors *E* est fini et $|E| \le |F|$.
- (ii) Si *E* est fini et s'il existe une surjection de *E* vers *F*, alors *F* est fini et $|E| \ge |F|$.
- (iii) Si E et s'il existe une bijection de E vers F, alors F est fini et |E| = |F|.

Corollaire 3. Soit *B* un ensemble fini et $A \subseteq B$. Alors *A* est fini et $|A| \le |B|$. Si |A| = |B|, alors A = B.

Corollaire 4 (Principe des tiroirs). Soient E et F deux ensembles finis avec |E| > |F|. Si φ est une application de E vers F, alors il existe $y \in F$ ayant au moins deux antécédents par φ dans E.

Remarque 5 (Interprétation). Si on doit ranger n + 1 chaussettes dans n tiroirs, alors un des tiroirs (au moins) contiendra deux chaussettes ou plus.

Proposition 6. Soient *A* et *B* deux ensembles finis. Alors,

- (i) $|A \cup B| = |A| + |B| |A \cap B|$.
- (ii) $|A \setminus B| = |A| |A \cap B|$.

Proposition 7 (Formule du crible de Poincaré). Soient A_1, \ldots, A_n des ensembles finis. Alors,

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}|$$

[**G-K**] p. 401

Exemple 8. Pour n = 3, on a

$$|A_1 \cap A_2 \cap A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_2 \cap A_3| - -|A_1 \cap A_3| + |A_1 \cup A_2 \cup A_3|$$

Lemme 9 (des bergers). Soient A et B deux ensembles. On suppose A fini. Soit $\varphi : A \to B$ surjective telle que tout élément de B admet exactement a antécédents par φ . Alors,

$$|A| = \frac{|B|}{a}$$

2. Combinatoire

a. Listes

Proposition 10. Soient n ensembles finis E_1, \ldots, E_n . Le produit cartésien $E_1 \times \cdots \times E_n$ est un ensemble fini et vérifie $|E_1 \times \cdots \times E_n| = |E_1| \times \cdots \times |E_n|$. En particulier, pour un ensemble E fini, on a $|E^n| = |E|^n$.

[**GOU21**] p. 301

Définition 11. Soit E un ensemble et $p \in \mathbb{N}^*$. On appelle p-liste (ou p-uplet) de E, tout élément (x_1, \dots, x_p) de E^p .

Remarque 12. — Si *E* est fini, il y a $|E|^p$ *p*-listes de *E*.

— Dans une liste, l'ordre des éléments importe.

Exemple 13. Dans un jeu de 52 cartes, le nombre de façons de tirer 10 cartes avec remise est 52^{10} .

b. Arrangements

Définition 14. Soit E un ensemble fini de cardinal n. Soit p un entier inférieur à n. On appelle p-arrangement de E toute p-liste de E d'éléments distincts.

Proposition 15. En reprenant les notations précédentes, le nombre de p-arrangements de E est

$$A_n^p = n(n-1)...(n-p+1) = \frac{n!}{(n-p)!}$$

Remarque 16. — Si p = n, on trouve que le nombre de n-arrangements est n!.

— Dans les arrangements, l'ordre des éléments importe, mais ceux-ci sont distincts.

Exemple 17. Dans un jeu de 52 cartes, le nombre de façons de tirer 10 cartes sans remise est $A_{52}^{10} = 52 \times \cdots \times 43$.

Application 18 (Nombre d'applications entre deux ensembles finis). Soient E et F deux ensembles finis.

- (i) L'ensemble des applications de E vers F, noté F^E est fini, de cardinal $|F|^{|E|}$.
- (ii) Lorsque $|E| \le |F|$, l'ensemble des applications injectives de E dans F est fini, de cardinal A_n^p .
- (iii) L'ensemble des bijections de E vers E appelées permutations de E, noté $\mathcal{S}(E)$, est fini et de cardinal |E|!.

Corollaire 19. Soit *E* un ensemble fini. Le nombre total de parties de *E* est $|\mathscr{P}(E)| = 2^{|E|}$.

c. Combinaisons

Définition 20. Soit E un ensemble fini de cardinal n. Soit $p \in \mathbb{N}$. On appelle p-combinaison de E toute partie de E de cardinal p. Ce nombre ne dépend que de n et de p, on le note $\binom{n}{p}$.

Proposition 21. Soient $n, p \in \mathbb{N}$. Alors,

$$\binom{n}{p} = \begin{cases} \frac{n!}{p!(n-p)!} & \text{si } p \le n \\ 0 & \text{sinon} \end{cases}$$

Remarque 22. Dans les combinaisons, l'ordre des éléments n'importe pas, mais ceux-ci sont distincts.

Exemple 23. Dans un jeu de 52 cartes, le nombre de façons de tirer 10 cartes simultanément est $\binom{52}{10}$.

Définition 24. Soit E un ensemble fini de cardinal n. Soit p un entier inférieur à n. On appelle p-combinaison avec répétition les p-listes dans lesquelles ont autorise les répétions, mais dans lesquelles l'ordre ne compte pas.

Proposition 25. En reprenant les notations précédentes, il y a $\binom{n+p-1}{p}$ p-combinaisons avec répétition.

Proposition 26. Soit $n \in \mathbb{N}$.

(i) On a:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

(ii) Soient a et b deux éléments d'une algèbre qui commutent. Alors,

$$(a+b)^n \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Application 27. Soit (F_n) la suite de Fibonacci définie par $F_0=0$, $F_1=1$ et $\forall n\geq 2$, $F_n=F_{n-1}+F_{n-2}$. Alors,

$$\forall n \in \mathbb{N}, F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right) = \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \binom{n-k}{k}$$

II - En théorie des groupes

Soit *G* un groupe fini.

1. Actions de groupes

Soit X un ensemble fini. On considère une action \cdot de G sur X.

[**ULM21**] p. 71

p. 311

Proposition 28. Soit $x \in X$. Alors :

$$- |G \cdot x| = (G : \operatorname{Stab}_G(x)).$$

$$-- |G| = |\operatorname{Stab}_{G}(x)||G \cdot x|.$$

$$-- |G \cdot x| = \frac{|G|}{|\operatorname{Stab}_G(x)|}$$

Théorème 29 (Formule des classes). Soit Ω un système de représentants d'orbites de l'action de G sur X. Alors,

$$|X| = \sum_{\omega \in \Omega} |G \cdot \omega| = \sum_{\omega \in \Omega} (G : \operatorname{Stab}_{G}(\omega)) = \sum_{\omega \in \Omega} \frac{|G|}{|\operatorname{Stab}_{G}(\omega)|}$$

Définition 30. On définit :

- $X^G = \{x \in X \mid \forall g \in G, g \cdot x = x\}$ l'ensemble des points de X laissés fixes par tous les éléments de G.
- $X^g = \{x \in X \mid g \cdot x = x\}$ l'ensemble des points de X laissés fixes par $g \in G$.

Théorème 31 (Formule de Burnside). Le nombre r d'orbites de X sous l'action de G est donné par

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

Application 32. Deux colorations des faces d'un cube sont les mêmes si on peut passer de l'une à l'autre par une isométrie du dodécaèdre. Alors, le nombre de colorations distinctes d'un cube avec c couleurs est $\frac{c^2}{24}(c^4+3^2+12c+8)$

[**I-P**] p. 121

2. p-groupes

Définition 33. On dit que G est un p-groupe s'il est d'ordre une puissance d'un nombre premier p.

[ROM21] p. 22

Proposition 34. Soit p un nombre premier. Si G est un p-groupe opérant sur un ensemble X, alors,

$$|X^G| \equiv |X| \mod p$$

où X^G désigne l'ensemble des points fixes de X sous l'action de G.

Corollaire 35. On note $G \cdot h_1, \dots, G \cdot h_r$ les classes de conjugaison de G. Alors,

$$|G| = |Z(G)| + \sum_{\substack{i=1\\|G \cdot h_i| = 2}}^{r} |G \cdot h_i|$$

$$= |Z(G)| + \sum_{\substack{i=1\\|G \cdot h_i| = 2}}^{r} \frac{|G|}{|\operatorname{Stab}_G(h_i)|}$$

Corollaire 36. Soit p un nombre premier. Le centre d'un p-groupe non trivial est non trivial.

Corollaire 37. Soit p un nombre premier. Un groupe d'ordre p^2 est toujours abélien.

Application 38 (Théorème de Cauchy). On suppose G non trivial et fini. Soit p un premier divisant l'ordre de G. Alors il existe un élément d'ordre p dans G.

[DEV]

[**GOU21**] p. 44

[GOZ]

p. 87

Application 39 (Premier théorème de Sylow). On suppose G fini d'ordre np^{α} avec $n, \alpha \in \mathbb{N}$ et p premier tel que $p \nmid n$. Alors, il existe un sous-groupe de G d'ordre p^{α} .

III - En théorie des corps finis

Soit $q = p^n$ avec p premier et $n \ge 2$.

1. Polynômes irréductibles

Théorème 40.

$$\mathbb{F}_q = \mathbb{F}_p[X]/(P)$$

où $P \in \mathbb{F}_p[X]$ est un polynôme irréductible de degré n sur \mathbb{F}_p .

Corollaire 41. (i) Il existe des polynômes irréductibles de tout degré dans $\mathbb{F}_p[X]$.

(ii) Si $P \in \mathbb{F}_p[X]$ est un polynôme irréductible sur \mathbb{F}_p de degré n, alors P divise $X^q - X$. En particulier, il est scindé sur \mathbb{F}_q . Donc son corps de rupture $\mathbb{F}_q = \mathbb{F}_p[X]/(P)$ est aussi son corps de décomposition.

Théorème 42. Pour tout $j \in \mathbb{N}^*$, on note I(p,q) l'ensemble des polynômes irréductibles unitaires de degré j sur \mathbb{F}_p . Alors,

$$X^q - X = \prod_{d \mid n} \prod_{Q \in I(p,q)} Q$$

Corollaire 43.

$$q = \sum_{d|n} d|I(p,d)|$$

Définition 44. On définit la **fonction de Möbius**, notée μ , par

$$\mu: \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z} \\ \mu: & n & \mapsto \begin{cases} 1 & \text{si } n=1 \\ (-1)^k & \text{si } n=p_1\dots p_k \text{ avec } p_1,\dots,p_k \text{ premiers distincts} \\ 0 & \text{sinon} \end{cases}$$

Théorème 45 (Formule d'inversion de Möbius). Soient f et g des fonctions de \mathbb{N}^* dans \mathbb{C} telles que $\forall n \in \mathbb{N}^*$, $f(n) = \sum_{d \mid n} g(d)$. Alors,

$$\forall n \in \mathbb{N}^*, g(n) = \sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)$$

Corollaire 46.

$$\forall n \in \mathbb{N}^*, |I(p,q)| = \frac{1}{n} \sum_{d|n} \mu(d) p^{\frac{n}{d}} = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d$$

2. Carrés dans les corps finis

Proposition 47. On note $\mathbb{F}_q^2 = \{x^2 \mid x \in \mathbb{F}_q\}$ et $\mathbb{F}_q^{*2} = \mathbb{F}_q^2 \cap \mathbb{F}_q^*$. Alors \mathbb{F}_q^{*2} est un sous-groupe de

p. 93

(i) Si p = 2, $\mathbb{F}_q^2 = \mathbb{F}_q$, donc $\mathbb{F}_q^{*2} = \mathbb{F}_q^*$. **Proposition 48.**

- (ii) Si p > 2, alors:
 - \mathbb{F}_q^{*2} est le noyau de l'endomorphisme de \mathbb{F}_q^* défini par $x\mapsto x^{\frac{q-1}{2}}$.
 - \mathbb{F}_q^{*2} est un sous-groupe d'indice 2 de \mathbb{F}_q^* .

 - $\begin{aligned}
 &- |\mathbb{F}_q^{*2}| = \frac{q-1}{2} \text{ et } |\mathbb{F}_q^2| = \frac{q+1}{2}.\\
 &- (-1) \in \mathbb{F}_q^{*2} \iff q \equiv 1 \mod 4.\end{aligned}$

3. Groupe linéaire sur un corps fini

Soit V un espace vectoriel de dimension finie n sur un corps \mathbb{K} .

[PER] p. 119

— Le **groupe linéaire** de V, GL(V) est le groupe des applications linéaires de V dans lui-même qui sont inversibles.

- Le **groupe spécial linéaire** de V, SL(V) est le sous-groupe de GL(V) constitué des applications de déterminant 1.
- Les quotients de ces groupes par leur centre sont respectivement notés PGL(V) et PSL(V).

Proposition 50. On se place dans le cas où $\mathbb{K} = \mathbb{F}_q$. Alors, les groupes précédents sont finis,

- (i) $|GL(V)| = q^{\frac{n(n-1)}{2}}((q^n 1)...(q-1)).$
- (ii) $|PGL(V)| = |SL(V)| = \frac{|GL(V)|}{a-1}$

p. 124

(iii)
$$|PSL(V)| = |SL(V)| = \frac{|GL(V)|}{(q-1)\operatorname{pgcd}(n,q-1)}$$
.

IV - En analyse

1. Probabilités sur un ensemble fini

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

[**G-K**] p. 137

Définition 51. Soit $E \subseteq \Omega$ fini. On appelle loi uniforme sur E la loi discrète définie sur $\mathscr{P}(\Omega)$ par

$$\mathcal{P}(\Omega) \to \begin{bmatrix} 0,1 \end{bmatrix}$$

$$A \mapsto \frac{|A \cap E|}{|E|}$$

Remarque 52. Il s'agit du nombre de cas favorables sur le nombre de cas possibles. Ainsi, X suit la loi uniforme sur E si on a $\forall x \in E$, $\mathbb{P}(X = x) = \frac{1}{|E|}$ et $\forall x \notin E$, $\mathbb{P}(X = x) = 0$.

C'est, par exemple, la loi suivie par une variable aléatoire représentant le lancer d'un dé non truqué avec E = [1, 6].

Définition 53. Une variable aléatoire X suit une **loi de Bernoulli** de paramètre $p \in [0,1]$, notée $\mathcal{B}(p)$, si $\mathbb{P}(X=1) = p$ et $\mathbb{P}(X=0) = 1 - p$.

Proposition 54. En reprenant les notations précédentes, X est une loi discrète et on a

$$\mathbb{P}_X = (1 - p)\delta_0 + p\delta_1$$

Définition 55. Une variable aléatoire X suit une **loi de binomiale** de paramètres $n \in \mathbb{N}$ et $p \in [0,1]$, notée $\mathcal{B}(n,p)$, si X est la somme de n variables aléatoires indépendantes qui suivent des lois de Bernoulli de paramètre p.

Proposition 56. En reprenant les notations précédentes, X est une loi discrète et on a

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Remarque 57. Il s'agit du nombre de succès pour *n* tentatives.

C'est, par exemple, la loi suivie par une variable aléatoire représentant le nombre de "Pile" obtenus lors d'un lancer de pièce équilibrée.

2. Utilisation des séries pour dénombrer

Théorème 58 (Dérangements). Soit $n \in \mathbb{N}^*$. On note \mathcal{D}_n l'ensemble des permutations de [1, n] sans point fixe. Alors,

[**GOU21**] p. 312

p. 314

$$|\mathcal{D}_n| = n! \sum_{k=0}^n \frac{(-1)^k}{k!} = \left\lfloor \frac{n!}{e} + \frac{1}{2} \right\rfloor$$

Exemple 59. n personnes laissent leur chapeau à un vestiaire. En repartant, chaque personne prend un chapeau au hasard. La probabilité que personne ne reprenne son propre chapeau est d'environ $\frac{1}{a}$.

[DEV]

Théorème 60 (Nombres de Bell). Pour tout $n \in \mathbb{N}^*$, on note B_n le nombre de partitions de [1, n]. Par convention on pose $B_0 = 1$. Alors,

$$\forall k \in \mathbb{N}^*, B_k = \frac{1}{e} \sum_{n=0}^{+\infty} \frac{n^k}{n!}$$

Bibliographie

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2^e éd. Ellipses, 1^{er} avr. 2009.

https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-l3-m1-2e-edition-9782729842772.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.

Théorie des groupes [ULM21]

Felix Ulmer. *Théorie des groupes. Cours et exercices.* 2e éd. Ellipses, 3 août 2021.

https://www.editions-ellipses.fr/accueil/13760-25304-theorie-des-groupes-2e-edition-9782340057241.html.