4.4.4. ИНТЕРФЕРОМЕТР ФАБРИ-ПЕРО

Цель работы: измерение длины волны жёлтых линий ртути, жёлтого дублета натрия, определение спектральных характеристик интерферометра Фабри—Перо.

Оборудование: интерферометр Фабри—Перо, линзы, светофильтры, ртутная и натриевая лампы, катетометр КН-6.

Теоретическая часть

Рис. 1: Амплитуды волн в интерферометре Фабри-Перо

Как спектральный прибор высокой разрешающей способности интерферометр Фабри-Перо широко используется в физических экспериментах. Он применяется для исследования тонкой структуры спектральных линий, является неотъемлемым элементом лазера, выполняя роль оптического резонатора, и т. д. Интерферометр Фабри-Перо состоит из двух стеклянных или кварцевых пластин с хорошо отполированными поверхностями (с шероховатостью до $10-2\lambda$), которые установлены параллельно друг другу на некотором расстоянии. На одну поверхность каждой пластины нанесены хорошо отражающие свет покрытия. Для получения коэффициента отражения $r \approx 0.9$ используют металлические покрытия (Ag, Al), для достижения $r \approx 0.99$ наносятся многослойные диэлектрические интерфе-

ренционные покрытия. Интерферометр Фабри-Перо можно рассматривать как плоскопараллельную пластину, в которой происходят многократные отражения и интерференция световых волн. На рис. 1 приведена схема интерферирующих волн. Коэффициенты пропускания и отражения по интенсивности отдельного зеркала интерферометра равны t и rсоответственно (из закона сохранения энергии следует, что t+r=1). Пусть A_0 – амплитуда падающей на интерферометр волны, тогда амплитуда отражённой от первого зеркала волны равна $A_0\sqrt{r}$, амплитуда прошедшей внутрь интерферометра волны – $A_0\sqrt{t}$, амплитуда волны, отражённой от второго зеркала, $-A_0\sqrt{rt}$, амплитуда первой прошедшей волны равна A_0t и т. д. В результате многократных переотражений на выходе интерферометра будем иметь набор волн, амплитуды которых равны A_0t , A_0tr , A_0tr^2 ,.... Фазовая задержка между двумя «соседними» волнами равна $k\Delta$, где $k=2\pi/\lambda$ – волновое число; Δ – разность хода для угла падения θ . Интерференционная картина, наблюдаемая с помощью зрительной трубы, настроенной на бесконечность, состоит из концентрических колец равного наклона. Найдём условие возникновения интерференционной картины для световой длины волны λ . Выразим разность хода двух интерферирующих волн, падающих на интерферометр под углом:

$$\Delta = 2L \left(\frac{1}{\cos \theta} - \tan \theta \sin \theta \right) = 2L \cos \theta, \tag{1}$$

где L – расстояние между зеркалами, или БАЗА ИНТЕРФЕРОМЕТРА. Интерференционные максимумы будут наблюдаться для волн, падающих под углами θ_m , удовлетворяющими

условию:

$$2L\cos\theta_m = m\lambda. \tag{2}$$

Просуммируем комплексные амплитуды световых волн, прошедших интерферометр. Можно видеть, что амплитуды прошедших волн образуют геометрическую прогрессию. Считая её бесконечной, получим комплексную амплитуду суммарной прошедшей волны:

$$A = \frac{A_0 t}{1 - r \exp^{ik\Delta}}$$

и ее интенсивность:

$$I = |A|^2 = \frac{|A_0|^2 t^2}{1 + r^2 - 2r \cos(\frac{4\pi}{\lambda} L \cos \theta)} = \frac{I_0}{1 + \frac{4r}{(1-r)^2} \sin^2(\frac{2\pi}{\lambda} L \cos \theta)}.$$
 (3)

Угловое расстояние между парами уменьшается при увеличении угла наблюдения или уменьшении порядка спектра. Кроме того, уменьшается расстояние между кольцами в одном порядке и их ширина.

Угловая дисперсия ИФП оценивается формулой

$$D = \frac{d\theta}{d\lambda} = -\frac{m}{2L\sin\theta_m} \approx -\frac{1}{\lambda\theta_m}.$$
 (4)

Дифракция Фраунгофера на апертуре интерферометра также влияет на ширину интерференционного кольца и разрешающую способность. Строго говоря, имеет значение не размер освещённой области зеркала, а размер её однородно обработанного участка. Напомним, что погрешность обработки и настройки базы интерферометра L должна быть много меньше λ .

Мы ограничимся рассмотрением зависимости разрешающей способности интерферометра Фабри–Перо от величины базы L (порядка спектра) и коэффициента отражения зеркал r, определим угловое расстояние между двумя близкими линиями, соответствующее условию Релея. Пусть, как и в случае дифракционной решётки, две линии пересекаются на уровне половинной мощности каждой линии. Запишем это условие для угла $\theta_m + \delta\theta/2$ (угол θ_m соответствует максимуму для длины волны λ порядка m). Используя равенство (3), имеем

$$\frac{4r}{(1-r)^2}\sin^2\left(\frac{\pi}{\lambda}2L\cos(\theta_m+\delta\theta/2)\right) = 1.$$

Учитывая условие резонанса (2) и малось углов, получаем

$$\sin^2\left(\frac{\pi}{\lambda}2L\cos(\theta_m + \delta\theta/2)\right) = \sin^2\left(\frac{2\pi}{\lambda}\cos\theta_m - \frac{\pi L}{\lambda}\sin\theta_m \cdot \delta\theta\right) \approx \left(\frac{\pi L}{\lambda}\theta_m\delta\theta\right)^2.$$

Пусть угловому радиусу $\theta_m + \delta\theta$ соответствует максимум интерференционного кольца с тем же порядком спектра m и длиной волны $\lambda + \delta\lambda$ (при пересечении двух линий на уровне половинной мощности угловое расстояние между максимумами линий в два раза больше полуширины отдельной линии). Величину $\delta\lambda$ можно определить, используя выражение для угловой дисперсии (4):

$$\delta\theta = \frac{1-r}{2\pi\sqrt{r}}\frac{\lambda}{2L}\frac{1}{\theta_m} \approx D\delta\lambda/2 = \frac{m}{4L\theta_m}\delta\lambda.$$

Разрешающая способность для порядка спектра $m \approx 2L/\lambda$ равна

$$R = \frac{\delta \lambda}{\lambda} \approx \frac{\pi \sqrt{r}}{1 - r} m. \tag{5}$$

Экспериментальная установка

Схема экспериментальной установки приведена на рис. 2. Свет от лампы S, пройдя через линзу Π 0 и светофильтр C, попадает на интерферометр Фабри—Перо (ИФП). Линза Π 0 служит для формирования пучка лучей (слегка сходящегося или слегка расходящегося). Интерференционные кольца наблюдаются в фокальной плоскости линзы . Картина рассматривается через зрительную трубу T, сфокусированную на эту плоскость. Диаметры колец измеряются с помощью микроскопа катетометра. Зрительная труба , отсчётный микроскоп — элементы катетометра — прибора, предназначенного для измерения расстояний в вертикальной плоскости вдоль вертикальной оси.

Рис. 2: Схема экспериментальной установки

Результаты и обработка

1. Для малых углов θ из формулы (2) можно получить:

$$\theta_m^2 = 2 - m \frac{\lambda}{L}.$$

При этом угол связан с диаметром кольца соотношением $\theta = \frac{D}{2f}$.

2. **Ртутная лампа**: при помощи катетометра измеряем диаметры 6 колец для зеленой спектральной линии. Полученные данные приведены в таблице . В соответствии с формулами выше по наклону графика (см. рис. 3) $D^2(m)$, зная длину волны зеленой линии $\lambda_3 = 546.1$ нм, определим базу ИФП L:

$$k = (242 \pm 4) \text{ mm}^2, \ k = \frac{4f^2\lambda}{L} \Rightarrow L = \frac{4f^2\lambda_3}{k} = (0.109 \pm 0.002) \text{ mm}.$$

3. при помощи катетометра измеряем диаметры 6 колец для пары желтых спектральных линий. Полученные данные приведены в таблице . По наклону графика (см. рис. 4) $[D_1^2 + D_2^2](m)$, определим среднюю длину волны:

$$k = (549 \pm 4) \text{ MM}^2, \ k = \frac{8f^2\overline{\lambda}}{L} \Rightarrow \overline{\lambda} = \frac{kL}{8f^2} = (620 \pm 10) \text{ HM}.$$

По наклону графика (см. рис. 5) $[D_1^2 - D_2^2](m)$, определим разность длин волн:

$$k = (11.4 \pm 3.2) \text{ mm}^2, \ k = \frac{4f^2\delta\lambda}{L} \Rightarrow \delta\lambda = \frac{kL}{4f^2} = (25 \pm 7) \text{ Hm}.$$

4. **Натриевая лампа**: при помощи катетометра измеряем диаметры 6 колец для пары желтых спектральных линий. Полученные данные приведены в таблице 3. По наклону графика (см. рис. 6) $[D_1^2 + D_2^2](m)$, определим среднюю длину волны:

$$k = (497 \pm 4) \text{ mm}^2, \ k = \frac{8f^2\overline{\lambda}}{L} \Rightarrow \overline{\lambda} = \frac{kL}{8f^2} = (560 \pm 10) \text{ HM}.$$

По наклону графика (см. рис. 7) $[D_1^2 - D_2^2](m)$, определим разность длин волн:

$$k = (3.2 \pm 0.6) \text{ mm}^2, \ k = \frac{4f^2\delta\lambda}{L} \Rightarrow \delta\lambda = \frac{kL}{4f^2} = (7 \pm 1) \text{ Hm}.$$

5. Оценим максимальный порядок интерференции:

$$m_{max} = \frac{2L}{\lambda} = (377 \pm 6);$$

и дисперсионную область ИФП:

$$\Delta \lambda = \frac{\lambda}{m_{max}} = (1.53 \pm 0.02)$$
 нм.

6. Оценим разрешающую способность:

$$R_{exp} = \frac{\lambda}{\delta \lambda} = \frac{|d\theta/\dot{\lambda}|\lambda}{\delta \theta} =$$

Рис. 3: Зависимость квадрата диаметра от номера кольца для зеленой линии Hg

Рис. 4: Зависимость суммы квадратов диаметров от номера колец для желтых линий Hg

Рис. 5: Зависимость разницы квадратов диаметров от номера колец для желтых линий Hg

Рис. 6: Зависимость суммы квадратов диаметров от номера колец для желтых линий Na

Рис. 7: Зависимость разницы квадратов диаметров от номера колец для желтых линий Na

Таблица 1: Координаты колец зеленой спектральной линии ртути

m	h_1	h_2	D^2 , mm^2	$\sigma_{D^2}, \text{ MM}^2$
6	156.260	192.463	1310.657	18.102
5	157.925	190.609	1068.244	16.342
4	159.499	189.021	871.548	14.761
3	162.218	186.657	597.265	12.220
2	164.963	184.172	368.986	9.605
1	169.630	180.114	109.914	5.242

Таблица 2: Координаты колец желтых спектральных линий ртути

recorning a record moving moving charge and parameter and the							
m	h_{11}	h_{12}	h_{21}	h_{22}	$D_1^2 + D_2^2$	$D_1^2 - D_2^2$	σD^2
6	156.338	194.627	156.985	194.320	2859.950	72.145	8.494
5	157.993	193.150	158.531	192.843	2413.328	58.701	7.662
4	159.664	191.570	160.526	190.383	1909.433	126.552	11.250
3	162.191	188.872	163.533	187.919	1306.553	117.199	10.826
2	165.671	186.018	166.839	184.120	712.633	115.367	10.741
1	169.585	181.500	172.072	179.231	193.219	90.716	9.524

Таблица 3: Координаты колец желтых спектральных линий натрия

m	h_{11}	h_{12}	h_{21}	h_{22}	$D_1^2 + D_2^2$	$D_1^2 - D_2^2$	σD^2
6	135.300	174.043	136.069	173.530	2904.347	97.694	3.954
5	137.392	172.399	138.110	171.796	2360.237	90.743	3.810
3	141.500	168.445	142.334	167.670	1367.946	84.120	3.669
2	144.005	165.983	144.897	164.835	880.556	85.509	3.699
1	147.265	162.582	148.575	161.036	389.887	79.334	3.563