Apellidos:	Grupo:
Nombre:NIF:	

ALEM

Grado en Ingeniería Informática

07 de febrero de 2017

1. Sea $f: \mathbb{Z}_{90} \to \mathbb{Z}_9 \times \mathbb{Z}_{10}$ la aplicación definida como

$$f(x) = (x \mod 9, x \mod 10)$$

Estudia si f es inyectiva y/o sobreyectiva.

2. Se junta un grupo de nueve amigos: Alberto, Borja, Carlos, David, Esteban, Fernando, Gerardo, Héctor e Ignacio. Deciden ordenarse por altura y peso: es decir, una persona está por delante de otra si es más alta y pesa más.

En la siquiente tabla indicamos la altura y el peso de cada uno de los miembros del grupo:

		Antonio	Borja	Carlos	David	Esteban	Fernando	Gerardo	Héctor	Ignacio
	Altura	1′8 m	1′7 m	1′78 m	1′9 m	1′87 m	1′72 m	1′71 m	1′81 m	1′85 m
ı	Peso	80 Kg	71 Kg	72 Kg	86 Kg	81 Kg	83 Kg	76 Kg	84 Kg	76 Kg

Representa en un diagrama a los nueve amigos tal y como quedarían ordenados.

Consideramos el conjunto formado por aquellos cuyo nombre empieza por vocal.

Indica quienes serían las cotas superiores e inferiores, el supremo y el ínfimo, el menor y el mayor, y los maximales y minimales.

- 3. Responde razonadamente a las siguientes cuestiones:
 - a) ¿Tiene soluciones la ecuación diofántica 213x + 185y = 111? En caso afirmativo da tres soluciones diferentes.
 - b) ¿Tiene inverso 185 en \mathbb{Z}_{213} ? En caso afirmativo, calcúlalo.
 - c) ¿Existe algún número natural $n \ge 1$ tal que $97^n = 1$ en \mathbb{Z}_{213} ? ¿y tal que $75^n = 1$ en \mathbb{Z}_{213} ? En los casos en que exista da uno.
- 4. Consideremos $\mathbb{Z}_3[x]$. Sea $p(x) = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Z}_3[x]$.
 - a) Estudia si p(x) es o no irreducible.
 - b) Calcula un representante q(x) de $[x^7 + 2x^3 + x + 2]$, como clase de $\mathbb{Z}_3[x]_{p(x)}$, que tenga grado menor que 4.
 - c) Decide si existe $[q(x)]^{-1}$ y, caso de existir, calcular ese inverso.
 - d) ¿Cuántos elementos de $\mathbb{Z}_3[x]_{p(x)}$ tienen inverso?
- 5. Ocho excursionistas deben alojarse en un albergue. El albergue dispone de una habitación triple, dos dobles (que consideramos iguales) y una individual. ¿De cuántas formas pueden repartirse en las distintas habitaciones?

Supongamos además que de los ocho excursionistas hay dos que acostumbraran a alojarse siempre juntos; ¿de cuántas formas pueden repartirse en este nuevo caso?

- 6. En el espacio vectorial \mathbb{Q}^3 consideramos el conjunto $B = \{(2, 1, -1), (1, 1, 1), (1, 1, 2)\}.$
 - a) Comprueba que B es una base de \mathbb{Q}^3 .
 - b) Calcula la matriz del cambio de base de B_c a B (donde B_c es la base canónica de \mathbb{Q}^3).
 - c) Sea u un vector cuyas coordenadas en B son (2, 3, 4). ¿De qué vector se trata?
 - d) Sea v el vector (2, -1, 4). ¿Cuáles son sus coordenadas en B?
- 7. En \mathbb{R}^3 se consideran los subespacios vectoriales dados por:

$$U_1 = L(\{(1, 1 - \alpha^2, 2), (1 + \alpha, 1 - \alpha, -2)\})$$

$$U_2 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$$

Calcula los valores de $\alpha \in \mathbb{R}$ para los que $U_1 = U_2$.

- 8. Halla una aplicación lineal $f: (\mathbb{Z}_5)^3 \to (\mathbb{Z}_5)^3$ tal que:
 - $N(f) = \{(x, y, z) \in (\mathbb{Z}_5)^3 : x + y + z = 0\}$
 - $Im(f) = \{(x, y, z) \in (\mathbb{Z}_5)^3 : x + y z = 0, x y = 0\}$
- 9. Dada la matriz

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} \in M_3(\mathbb{Z}_5),$$

estudia si A es o no diagonalizable y, en caso afirmativo, encuentra una matriz regular P tal que $P^{-1}AP$ sea una matriz diagonal D. Di cuál es la matriz D.