Taller de Cosmología con SimpleMC 2.0.0

Día 1: Agregando un modelo

3-5 de junio de 2020

Contents

La clase DriverMC

Agregar un modelo no cosmológico

Ejemplo 1: testModel.py

La clase Parameter

Agregar un modelo cosmológico

La clase LCDMCosmology

Modificando la clase simplemc.models.SimpleCosmoModel

Paréntesis: el módulo simplemc.runbase

Analizar modelo vía un test.py

Mañana

La clase DriverMC

La clase DriverMC

- Es la clase principal, conecta todos los modulos y clases de SimpleMC.
- Se le puede dar como argumento un inifile.ini con toda la configuración deseada, o bien, escribir los parámetros de la función con los valores deseados.
- Si se omite un valor, se usarán valores por default (salvo en el modelo).

٠

DriverMC con **kwargs

```
from simplemc.DriverMC import DriverMC
# DriverMC class con el modelo, datos y carpeta de outputs.
analyzer = DriverMC(model=LCDM, analyzername="mcmc", datasets='HD+BBAO', chainsdir="chains")
# Caracteristicas del analyzer elegido
analyzer.executer(nsamp=1000, skip=0)
analyzer.postprocess()
fig = analyzer.plot(show=True)
fig.simpleGetdist(smooth2d=0.1, smooth1d=0.1)
```

DriverMC con iniFile=archivo.ini

```
from simplemc.DriverMC import DriverMC
# Usar un ini file y cargarlo en DriverMC vía iniFile
inifile = "baseConfig.ini"
# DriverMC class con el modelo, datos y carpeta de outputs.
analyzer = DriverMC(iniFile=inifile)
# Características del analyzer elegido
analyzer.executer()
analyzer.postprocess()
fig = analyzer.plot(show=True)
fig.simpleGetdist(smooth2d=0.1, smooth1d=0.1)
```

Ejemplo de ini file

```
[custom]
;directory for chains/output
chainsdir = chains
:set model
;model options: LCDM, LCDMasslessnu, nuLCDM, NeffLCDM, noradLCDM, nuoLCDM,
;nuwLCDM, oLCDM, wCDM, waCDM, owCDM, owaCDM, JordiCDM, WeirdCDM, TLight, StepCDM,
:Spline, PolyCDM, fPolyCDM, Decay, Decay01, Decay05, EarlyDE, EarlyDE rd DE, SlowRDE, sline
;more options located in the RunBase.py
model = simpleCosmo
;varys8 True otherwise s8=0.8
varys8 = False
:set datasets used. Ex: UnionSN+BBAO+Planck
:data options: HD, BBAO, GBAO, GBAO no6dF, CMASS, LBAO, LBAO, LXBAO, MGS, Planck, WMAP, PlRd, WRd, PlDa, PlRdx10, CMBW, SN, SNx10,
UnionSN, RiessHO, 6dFGS, dline
datasets = HD+SN
:sampler can be {mcmc, nested, emcee}
:or analyzers {maxlike, genetic}
:mcmc -> metropolis-hastings
:nested
:emcee
;maxlike -> Maximum Likelihood Analyzer
:genetic
analyzername = mcmc
[mcmc]
:Nsamples
nsamp = 5000
:Burn-in
skip = 0
;if single cpu, otherwise use mpi -np #
chainno = 1
```

Agregar un modelo no cosmológico

Ejemplo 1: testModel.py

```
from simplemc.models.SimpleModel import SimpleModel
from simplemc.cosmo.Parameter import Parameter
from simplemc.DriverMC import DriverMC
```

Paréntesis: La clase Parameter

```
class Parameter:
       self.name = name
       if Ltxname:
           self.Ltxname = Ltxname
           self.Ltxname = name
       self.value = value
       self.error = err
       if bounds == None:
           self.bounds = (value-5*err, value+5*err)
           self.bounds = bounds
```

Volver a testModel.py y correrlo

```
# 1) Define your parameters objects
# name string, value intermediate, step size,
m = Parameter("m", 0.5, 0.01, (0.5), "\m_0")
b = Parameter("b", 0.5, 0.01, (0.5), "b_0")
parameterlist = [m, b]
\# unzip them and return the a function of \mathsf x with the
# parameters.
def model(parameterlist, x):
    m, b = parameterlist
    return m*x+b+10
```

Agregar un modelo cosmológico

Clases LCDMCosmology y BaseCosmology

- BaseCosmology es el esqueleto de un modelo cosmológico.
- LCDMCosmology (como su nombre lo indica) es el modelo cosmológico estándar.

Clase LCDMCosmology como base de otros modelos

 Los demás modelos en SimpleMC son extensiones de la clase LCDMCosmology.

Modificando la clase simplemc.models.SimpleCosmoModel

```
from .LCDMCosmology import LCDMCosmology
from simplemc.cosmo.Parameter import Parameter
from simplemc.cosmo.paramDefs import Ok par, w par, wa par
import math as N
class SimpleCosmoModel(LCDMCosmology):
        self.parameters = [w par]
        self.w0 = w par.value
        LCDMCosmology. init (self)
    def freeParameters(self):
        l = LCDMCosmology.freeParameters(self)
        for parameter in self.parameters:
            l.append(parameter)
    def updateParams(self, pars):
        ok = LCDMCosmology.updateParams(self, pars)
        if not ok:
```

Paréntesis: el módulo simplemc.runbase

Dados las cadenas de texto para los modelos y datos, instancia los objetos correspondientes de modelos y likelihoods

- ParseModel
- ParseDataset

Recomendación:

Al agregar un nuevo modelo cosmológico via SimpleCosmoModel, se evita modificar el módulo runbase.

Analizar modelo vía un test.py

```
analyzer = DriverMC(model="simpleCosmo", analyzername="nested", chainsdir="chains")
analyzer.executer(nlivepoints=50)
analyzer.postprocess()
fig = analyzer.plot(show=True)
fig.simpleGetdist(smooth2d=0.5, smooth1d=0.5)
```

- Correr script.
- Revisar salidas de texto y figuras.
- Comparar salidas com las de LCDM.
- Comentar algunas opciones para graficar.

Mañana

Mañana

- Añadir datos
- Comparar modelos

Bibliography

- Foreman-Mackey, D. (2017). corner. py: Corner plots. Astrophysics Source Code Library.
- Lewis, A. (2019). GetDist: a Python package for analysing Monte Carlo samples. arXiv preprint arXiv:1910.13970.