1: Find f(1), f(2), f(3), f(4) and f(5) if f is defined recursively by f(0)=2 and for $n=1,2,\ldots$

- (a) f(n+1) = -2f(n)
- **(b)** f(n+1) = 3f(n) + 7
- (c) $f(n+1) = f(n)^2 2f(n) 2$
- (d) $f(n+1) = 2^{f(n)/2}$

2: Give a recursive definition of the sequence a_n , n = 1, 2, 3, ... if

- (a) $a_n = 3n 2$
- **(b)** $a_n = 1 (-1)^n$
- (c) $a_n = (n-1)n$
- (d) $a_n = n^2 1$

3: Give a recursive definition of

- (a) the set of even positive integers.
- (b) The set of positive integer powers of 4.
- (c) The set of polynomials with integer coefficients.

4: Give a recursive definition of w^i where w is a string and i is a nonnegative integer. (Here w^i represents the concatenation of i copies of the string w.)

5: Solve these recurrence relations together with the initial conditions given.

(a)
$$a_n = a_{n-1} + 6a_{n-2}$$
 for $n \ge 2$, $a_0 = 0$, $a_1 = 5$

(b)
$$a_n = 7a_{n-1} - 10a_{n-2}$$
 for $n \ge 2$, $a_0 = 3$, $a_1 = 0$

(c)
$$a_n = 2a_{n-1} - a_{n-2}$$
 for $n \ge 2$, $a_0 = 3$, $a_1 = 1$

(d)
$$a_n = -a_{n-2}$$
 for $n \ge 2$, $a_0 = 0$, $a_1 = -2$. Hint: You may need complex numbers.

6: Find the solution to $a_n = 5a_{n-2} - 4a_{n-4}$ with $a_0 = 3$, $a_1 = 2$, $a_2 = 6$, and $a_3 = 8$.