قضاء البقاع الغربي	محافظة البقاع	ثانوية سحمر الرسمية (1011)
المدة:90 دقيقة	الصف: علوم عامة	امتحان: الفصل الأول
الأستاذ: - علي عيسى	المادة: الرياضيات	العام الدراسي: 2023-2024

The Exam is made up of two pages

The grades are distributed over 20

I- (6 points)

In the table below, each question have exactly one correct answer among the proposed answers. Indicate the number of each question and choose, by justification, the correct answer.

No	Questions	Answers				
		a	b	c		
1)	Let $f(x) = \ln(\frac{2e^{-x+5} - 1}{3 + e^{x-100}})$] $-\infty$; 5 + $ln2$ [] $-\infty$; $ln2$ [IR		
	, then $oldsymbol{D}_f =$					
2)	The set solution of the inequality $(2x - 1)\ln(2 - x) \ge 0$ is S =	$[\frac{1}{2};2]$	$[\frac{1}{2};1]$	$]-\infty;\frac{1}{2}]$		
3)	$\lim_{x \to -\infty} \frac{\ln(3x^2e^{2x})}{x} =$	2	+∞	0		
4)	The equation $ln(4-x) - x - 2 = 0$ admits	no root	one root	two roots		

II-(4 points)

The derivative f' of the function f is defined over]0; $+\infty$ [by $f'(x) = \frac{2alnx + 2x^2 - bx}{x}$, where a, b are integers

The below table is the table of variations of f'

- 1) Calculate a and b and show that $f'(x) = \frac{2lnx + 2x^2 x}{x}$
- 2) a) Show that the equation f'(x) = 0 admits a unique root α and verify $0.78 < \alpha < 0.8$
 - b) Study the sign of f'(x), according to the values of x with justification
- 3) Show that $f''(\alpha) = \frac{2-\alpha+4\alpha^2}{\alpha^2}$

III-(10 points)

Part A

In the adjacent figure (C_g) is the graph of the function g defined over IR by $g(x) = 1 + (x^2 + x - 1)e^{-x}$

The graph(C_g) intersects the axis of abscissas x'ox at two points of abscissas 0 and α The line y = 1 is an asymptote to (C_g) at $+\infty$

- 1) Given that
 - g(-1) = 1 e and $g(2) = 1 + 5e^{-2}$

Set up the table of variations of g

- 2) Show that α verifies two conditions $-1.52 < \alpha < -1.5$ and $\alpha^2 + \alpha = 1 e^{\alpha}$
- 3) Study the sign of g(x), according to the values of x
- 4) Let $h(x) = \sqrt{g(x)} + \ln(-x)$. Find domain of definition of h

Part B

Consider a function f defined on IR by $f(x) = -x + (x^2 + 3x + 2)e^{-x}$ Let (C) be the representative curve of f in an orthonormal system (O, $\overrightarrow{\iota}$, \overrightarrow{J})

- 1) Calculate $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to -\infty} \frac{f(x)}{x}$
- 2) a) Calculate $\lim_{x \to +\infty} f(x)$
 - b) Show that the line (D):y = -x is an oblique asymptote to (C) at $+\infty$
 - c) Study the relative positions of (C) and (D)
- 3) a) Show that f'(x) = -g(x)
 - b) Set up the table of variations of *f*
- 4) Show that (C) admits two points of inflection of coordinates to be determined
- 5) Plot (C) . Choose $\alpha = -1.51$
- 6) Let $F(x) = -\frac{x^2}{2} + (ax^2 + bx + c)e^{-x}$
 - a) Determine a, b and c so that F is an antiderivative of f
 - b) Calculate the area of the region bounded between (C), x'ox, y'oy and a line x = 1.

2

WITH MY BEST WISHES

Ι	Correction	6
1)	f is defined for $\frac{2e^{-x+5}-1}{3+e^{x-100}} > 0$ $2e^{-x+5}-1 > 0$ since $3+e^{x-100} > 0$ for all $x \in IR$ $2e^{-x+5} > 1$ $e^{-x+5} > \frac{1}{2}$ $lne^{-x+5} > ln\frac{1}{2}$ -x+5 > -ln2 -x > -5 - ln2	1.5
	$x < 5 + ln2$ $x \in]-\infty; 5 + ln2 [$ $D_f =]-\infty; 5 + ln2 [$ (a)	
2)	$(2x-1)\ln(2-x) \ge 0$ $D_{inequality} =] - \infty; 2[$ $2x-1 \ge 0, then \ x \ge \frac{1}{2}$ $\ln(2-x) \ge 0, then \ x \le 1$ $S = [\frac{1}{2}; 1]$ $x -\infty 1/2 1 2$ $2x-1 - \emptyset + + $ $\ln(2-x) + + 0 - $ $(2x-1)\ln(2-x) - \emptyset + \emptyset - $ (b)	1.5
3)	$\lim_{x \to -\infty} \frac{\ln(3x^2 e^{2x})}{x} = \lim_{x \to -\infty} \frac{\ln 3 + 2\ln x + 2x}{x} = \lim_{x \to -\infty} \left(\frac{\ln 3}{x} + \frac{2\ln x }{x} + 2\right) = 2 $ (a)	1.5
4)	Let $f(x) = \ln(4-x) - x - 2$ $D_f =] - \infty; 4[$ $\lim_{x \to -\infty} f(x) = +\infty$ $\lim_{x \to 4^-} f(x) = -\infty$ $f'(x) = \frac{x-5}{4-x}$ $x \in] - \infty; 4[$ $\text{then } x < 4 \text{ , then } x - 5 < 4 - 5 \text{ , then } x - 5 < -1 \text{ , then } x - 5 < 0$ $f'(x) < 0$ $f \text{ is continuous and strictly decreasing on }] - \infty; 4[\text{ from } +\infty > 0 \text{ onto } -\infty < 0 \text{ , then } f \text{ changes its sign from positive onto negative } $ $\text{, hence the equation } f(x) = 0 \text{ admits a unique root } \alpha \text{ so that } \alpha \in] - \infty; 4[\text{ (b)}$	1.5

II	Correction	4
1)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	From table of variations of f' , we have $\begin{cases} f'(1) = 1 \\ f''(1) = 4 \end{cases}$ Plan: To calculate a and b , we should apply the above conditions $f'(x) = \frac{2alnx + 2x^2 - bx}{x}$ $f'(1) = 1, \text{ then } \frac{2aln1 + 2(1)^2 - b(1)}{1} = 1 \text{ . then } 2 - b = 1, \text{ then } b = 1$ $, \text{ then } f'(x) = \frac{2alnx + 2x^2 - x}{x}$ $f''(x) = \frac{\left(\frac{2a}{x} + 4x - 1\right)(x) - (2alnx + 2x^2 - x)}{x^2}$ $f''(x) = \frac{2a + 4x^2 - x - 2alnx - 2x^2 + x}{x^2}$ $f''(x) = \frac{2a + 2x^2 - 2alnx}{x^2}$ $f''(1) = 4, \text{ then } \frac{2a + 2(1)^2 - 2aln(1)}{1^2} = 4 \text{ . then } 2a + 2 = 4, \text{ then } a = 1$	
	$f'(x) = \frac{2lnx + 2x^2 - x}{x}$ and $f''(x) = \frac{2 + 2x^2 - 2lnx}{x^2}$	1.5
2)a)	* f' is continuous and strictly increasing on $]0$; $+\infty[$ from $-\infty < 0$ onto $+\infty > 0$, then f' changes its sign from negative onto positive, hence the equation $f'(x) = 0$ admits a unique root α so that $\alpha \in]0$; $+\infty[$ verify $0.78 < \alpha < 0.8$?? $f'(x) = \frac{2lnx + 2x^2 - x}{x}$ $f'(0.78) \approx -0.077$ $f'(0.8) \approx 0.042$ $f'(0.78) \times f'(0.8) < 0$, then $0.78 < \alpha < 0.8$	0.5

III	Correction			
	Part A			
1)	Table of variations of g			
	$x \mid -\infty \qquad -1 \qquad \qquad 2 \qquad \qquad +\infty$			
	$g'(x)$ - ϕ + ϕ -			
	$g(x) \mid +\infty$	1		
	1-e			
2)	g(-1.52) = 0.041			
	g(-1.5) = -0.1204	0.25		
	$g(-1.52) \times g(-1.5) < 0$,then $-1.52 < \alpha < -1.5$	0.25		
	α is a root of the equation $g(x) = 0$	0.25		
	$g(\alpha) = 0$, then $1 + (\alpha^2 + \alpha - 1)e^{-\alpha} = 0$, then $\alpha^2 + \alpha = 1 - e^{\alpha}$			
3)	Table of sign of $g(x)$			
	$x \mid -\infty \alpha 0 +\infty$			
	$\frac{\omega}{\omega}$ $\frac{\alpha}{\omega}$ $\frac{1}{\omega}$	0 =		
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5		
4)	<i>h</i> is defined for $\begin{cases} g(x) \ge 0 \\ -x > 0 \end{cases}$, then $\begin{cases} x \in]-\infty; \alpha] \cup [0; +\infty[\\ x \in]-\infty; 0[\end{cases}$			
	then $x \in]-\infty$; α	0.5		
	, hence $D_h =]-\infty$; α]			
	Part B			
1)	$f(x) = -x + (x^2 + 3x + 2)e^{-x}$			
	$f(x) = -x + x^2(1 + 3/x + 2/x^2)e^{-x}$ is the new form of f			
	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[-x + x^2 (1 + 3/x + 2/x^2) e^{-x} \right]$	0.5		
	$= +\infty + \infty(1+0+0)e^{+\infty}$			
	$=+\infty$			
	and $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left[-1 + \left(x + 3 + \frac{2}{x} \right) e^{-x} \right]$	0.5		
	$=-1+(\infty+3+0)e^{+\infty}=+\infty$			

2)a)	$f(x) = -x + (x^2 + 3x + 2)e^{-x}$						
	$f(x) = -x + \frac{x^2 + 3x + 2}{e^x}$						
	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-x) + \lim_{x \to +\infty} \frac{x^2 + 3x + 2}{e^x} = -\infty + 0 = -\infty$						
	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-x) + \lim_{x \to +\infty} \frac{1}{e^x} = -\infty + 0 = -\infty$ $\lim_{x \to +\infty} \frac{x^2 + 3x + 2}{e^x} = 0 \text{ (applying l'hospital rule two times)}$						
	$x \to +\infty$ e^x (wpp. 3 in spinor)						
2)b)							
	$\lim_{x \to +\infty} [f(x) - y_D] = \lim_{x \to +\infty} \frac{x^2 + 3x + 2}{e^x} = 0 \text{ (proved before)}$	0.5					
	, then the line (D): $y = -x$ is an oblique asymptote to (C) at $+\infty$						
2)c)	$f(x) - y_D = (x^2 + 3x + 2)e^{-x}$						
	$f(x) - y_D = (x^2 + 3x + 2)e^x$ $f(x) - y_D = 0$, then $x^2 + 3x + 2 = 0$, then $x = -1$ or $x = -2$						
	Sign of $f(x) - y_D$ is that of the trinomial $x^2 + 3x + 2$						
	$x \mid \infty$						
	$egin{array}{c ccccccccccccccccccccccccccccccccccc$						
	$\left f(x) - y_D ight \hspace{0.4cm} + \hspace{0.4cm} oldsymbol{\phi} \hspace{0.4cm} \hspace{0.4cm} + \hspace{0.4cm} oldsymbol{\phi} \hspace{0.4cm} \hspace{0.4cm} + \hspace{0.4cm} oldsymbol{\phi} \hspace{0.4cm} \hspace{0.4cm} \hspace{0.4cm} + \hspace{0.4cm} oldsymbol{\phi} \hspace{0.4cm} \hspace{0.4cm} \hspace{0.4cm} + \hspace{0.4cm} oldsymbol{\phi} \hspace{0.4cm} \hspace{0.4cm}$	0.5					
	$\begin{array}{c cccc} \textbf{Relative} & (C)is & & (C)is \\ \textbf{position} & above(D) & & below(D) & & above(D) \end{array}$	0.5					
	$(C) \cap (D) = \{E(-2;2), F(-1;1)\}$						
3)a)	$f(x) = -x + (x^2 + 3x + 2)e^{-x}$						
	$f'(x) = -1 + (2x + 3)e^{-x} - e^{-x}(x^2 + 3x + 2)$						
	$f'(x) = -1 - e^{-x}(x^2 + x - 1)$ $f'(x) = -[1 + e^{-x}(x^2 + x - 1)]$	0.5					
	$f'(x) = \begin{bmatrix} 1 & e & (x + x + 1) \end{bmatrix}$ $f'(x) = -g(x)$						
3)b)	Sense of variations of f						
	$f'(x) = 0$, then $g(x) = 0$, then $x = 0$ or $x = \alpha$ (PartA -3)						
	f(0) = 2						
	$f'(x) > 0$, then $-g(x) > 0$, then $g(x) < 0$, then $x \in \alpha$; 0 [(PartA -3)						
	, then $\lambda \subset [u]$, $v[(1 \text{ at } A - 3)]$						

$\underline{\hspace{1cm}} x$	$-\infty$	α		0		$+\infty$
f'(x)	_	ø	+	•	_	
f(x)		f(lpha)	/	2	\	·-∞

1

0.5

4) First method

We have proved f'(x) = -g(x)

, then
$$f''(x) = -g'(x)$$

$$*f''(x) = 0$$
, then $-g'(x) = 0$

, then
$$g'(x) = 0$$
, then $x = -1$ or $x = 2$ (from graph of g)

$$f''(x) > 0$$
, then $-g'(x) > 0$

, then
$$g'(x) < 0$$
, then $x < -1$ or $x > 2$ (from graph of g)

$$f(-1) = 1$$
 and $f(2) = -2 + 12e^{-2}$

Since f'' vanishes and changes signs twice at x = -1 and x = 2

Then f admits two points of inflection F(-1; 1) and $G(2; -2 + 12e^{-2})$

Second method

$$f'(x) = -[1 + e^{-x}(x^2 + x - 1)]$$

$$f''(x) = (x^2 - x - 2)e^{-x}$$

$$f''(x) = 0 \quad \text{then } x = 1 \text{ on } x$$

$$f''(x) = 0$$
, then $x = -1$ or $x = 2$

\boldsymbol{x}	$-\infty$	-1		2		$+\infty$
f''(x)	+	ф	_		+	
Concavity	U	f(-1)	\cap	f(2)	U	

$$f(-1) = 1$$
 and $f(2) = -2 + 12e^{-2}$

Since f'' vanishes and changes signs twice at x = -1 and x = 2

Then f admits two points of inflection F(-1; 1) and $G(2; -2 + 12e^{-2})$

6)a)
$$F(x) = -\frac{x^2}{2} + (ax^2 + bx + c)e^{-x}$$

$$f(x) = -x + (x^2 + 3x + 2)e^{-x}$$

$$F'(x) = f(x)$$

$$-x + (2ax + b)e^{-x} - e^{-x}(ax^2 + bx + c) = -x + (x^2 + 3x + 2)e^{-x}$$

$$-ax^2 + (2a - b)x + b - c = x^2 + 3x + 2$$

$$, \text{ then } (a, b, c) = (-1; -5; -7)$$

$$, \text{ then } F(x) = -\frac{x^2}{2} + (-x^2 - 5x - 7)e^{-x}$$

6)b)
$$\mathcal{A} = \int_0^1 f(x) dx = F(x)|_0^1 = F(1) - F(0) = (\frac{23 - 26e^{-1}}{2}) \text{ unit}^2$$
 0.5