Fonctions trigonométriques

1. Repérage sur le cercle trigonométrique

Hypothèse. On se place dans le plan muni d'un repère orthonormé (0, I, I).

Définition. On appelle **cercle trigonométrique** le cercle \mathcal{C} de centre l'origine O du repère et de rayon OI = 1.

Remarque. Le périmètre du cercle trigonométrique est 2π .

Définition. Le sens direct (ou sens positif ou sens trigonométrique) est le sens contraire de rotation des aiguilles d'une montre.

Le **sens indirect** est le sens de rotation des aiguilles d'une montre.

Définition. Pour repérer un point *M* du cercle trigonométrique, on enroule autour du cercle dans le sens direct, un axe vertical orienté vers le haut. On peut associer à chaque réel x de l'axe vertical un **point image** M sur le cercle. Le nombre réel x est une mesure de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$.

Définitions. L'angle orienté $(\overline{OI}, \overline{OM})$ est la longueur de l'arc de cercle \widehat{IM} , comptée positivement dans le sens direct, négativement dans le sens indirect. L'unité associée à cette mesure est le radian noté rad.

Exemple. Le point-image de $\frac{\pi}{2}$ est J. Autrement

orienté $(\overrightarrow{OI}, \overrightarrow{OI})$ est 2π .

dit, une mesure de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OJ})$ est $\frac{\pi}{2}$. **Exemple**. Le point-image de 2π est I. Autrement dit, une mesure de l'angle

Remarque. Tout point sur le cercle trigonométrique correspond à plusieurs nombres, tous distants d'un multiple de 2π (le périmètre du cercle), selon le nombre de tours complets de l'enroulement de l'axe. Autrement dit, un angle orienté donné a plusieurs mesures possibles (une infinité) toutes distantes de 2π .

Exemple. Les points de la droite des réels 0; 2π ; 4π , et plus généralement de la forme $2k\pi$ (avec $k \in \mathbb{Z}$) ont pour image le même point : *I*. Ils correspondent tous au même angle orienté de 0 rad.

Définition. On choisit comme mesure principale de $(\overline{OI}, \overline{OM})$ la longueur du seul arc \widehat{IM} de longueur comprise dans $]-\pi;\pi]$. Les calculs d'angles se font modulo 2π (à multiple de 2π près).

Exemple. Un tour de cercle admet pour mesure d'angle 2π rad puisque le périmètre de \mathcal{C} est 2π . Cependant la mesure principale de cet angle est 0 rad, car $0 \times 2\pi$ est l'unique multiple de 2π compris dans $]-\pi;\pi]$.

Définition. $1^{\circ} = \frac{2\pi}{360} = \frac{\pi}{180}$ rad **Remarque.** $30^{\circ} = \frac{\pi}{6}$ rad ; $45^{\circ} = \frac{\pi}{4}$ rad ; $90^{\circ} = \frac{\pi}{2}$ rad ; $180^{\circ} = \pi$ rad ; $360^{\circ} = 2\pi$ rad

2. Coordonnées d'un point du cercle trigonométrique

Définition. Pour tout réel x, on appelle **cosinus de** x et **sinus de** x, notés $\cos(x)$ et $\sin(x)$ les coordonnées du point M_x image de x sur le cercle trigonométrique. On écrit $M_x = (\cos(x); \sin(x))$.

Propriétés. Sinus et cosinus.

Pour tout nombre réel x, $(\cos(x))^2 + (\sin(x))^2 = 1$

Pour tout nombre réel x, $-1 \le \cos(x) \le 1$

Pour tout nombre réel x, $-1 \le \sin(x) \le 1$

Notation. On note parfois $\cos^2(x)$ au lieu de $(\cos(x))^2$ et $\sin^2(x)$ au lieu de $(\sin(x))^2$.

Propriété. Valeurs remarquables

Angle \widehat{IOM}	0°	30°	45°	60°	90°
Réel x	0	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	π
		6	4	3	$\overline{2}$
$\cos(x) = \cos(\widehat{IOM})$	1	$\sqrt{3}$	$\sqrt{2}$	1_	0
		2	2	2	
$\sin(x) = \sin(\widehat{10M})$	0	1_	$\sqrt{2}$	$\sqrt{3}$	1
		$\overline{2}$	2	2	

3. Fonctions cosinus et sinus

Définition. La fonction cosinus, notée cos, est la fonction définie sur \mathbb{R} par cos: $x \mapsto cos(x)$ **Définition**. La fonction sinus, notée sin, est la fonction définie sur \mathbb{R} par sin: $x \mapsto sin(x)$

Propriété (admis). Les fonctions cosinus et sinus ont les variations suivantes sur $[-\pi;\pi]$

Graphes. Fonctions cosinus et sinus.

Propriété. Les fonctions sinus et cosinus sont des fonctions périodiques de période 2π .

Pour tout $x \in \mathbb{R}$, $\cos(x + 2\pi) = \cos(x)$

Pour tout $x \in \mathbb{R}$, $\sin(x + 2\pi) = \sin(x)$

Propriété. La fonction cosinus est paire. Sa courbe représentative est symétrique par rapport à l'axe des ordonnées. Pour tout $x \in \mathbb{R}$, $\cos(-x) = \cos(x)$

Propriété. La fonction sinus est impaire. Sa courbe représentative est symétrique par rapport à l'origine du repère. Pour tout $x \in \mathbb{R}$, $\sin(-x) = -\sin(x)$

Remarque. Les courbes représentatives du cosinus et du sinus sont « décalées » de $\frac{\pi}{2}$.

Cela découle des propriétés de symétrie : $\cos\left(\frac{\pi}{2}-x\right)=\sin(x)$ et $\sin\left(\frac{\pi}{2}-x\right)=\cos(x)$.

Propriété. Table des valeurs du cosinus et du sinus autour du cercle trigonométrique.

<i>ÎOM</i>	-150	-135	-120	- 90	-60	-45	-30	0	30	45	60	90	120	135	150	180
(°)																
x	5π	3π	2π	$-\frac{\pi}{}$	$-\frac{\pi}{}$	$-\frac{\pi}{}$	$-\frac{\pi}{}$	0	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	2π	3π	5π	π
	6	4	3	2	3	4	6		6	4	3	2	3	4	6	
cos(x)	$\sqrt{3}$	$\sqrt{2}$	_ 1	0	1	$\sqrt{2}$	$\sqrt{3}$	1	$\sqrt{3}$	$\sqrt{2}$	1	0	_ 1	$\sqrt{2}$	$\sqrt{3}$	-1
	$-{2}$	$-{2}$	_ 2		2	2	2		2	2	2		_ 2	<u>-</u>	$-{2}$	
sin(x)	1	$\sqrt{2}$	$\sqrt{3}$	-1	$\sqrt{3}$	$\sqrt{2}$	1	0	1	$\sqrt{2}$	$\sqrt{3}$	1	$\sqrt{3}$	$\sqrt{2}$	1	0
	$-{2}$	$-{2}$	$-{2}$		$-{2}$	$-{2}$	$-{2}$		$\frac{\overline{2}}{2}$	2	2		2	2	2	

