

Entropy bounds for multipartite device-independent cryptography

Federico Grasselli, G. Murta, H. Kampermann, and D. Bruß

Heinrich-Heine-Universität Düsseldorf PRX Quantum 2, 010308 (2021) & work-in-progress

THE DEVICE-INDEPENDENT (DI) SCENARIO

Each party holds a device with 2 inputs: $\{0,1\}$ and 2 outputs: A_i , B_i , C_i (i=0,1).

Bell inequalities

Alice, Bob, and Charlie certify **secret randomness** in their outcomes through the violation of a (multipartite) Bell inequality:

MABK [1]:

$$\beta_M = \langle A_0 B_0 C_1 \rangle + \langle A_0 B_1 C_0 \rangle + \langle A_1 B_0 C_0 \rangle - \langle A_1 B_1 C_1 \rangle \le 2$$

Holz [2]:

$$\beta_H = \langle A_1 B_+ C_+ \rangle - \langle A_0 B_- \rangle - \langle A_0 C_- \rangle - \langle B_- C_- \rangle \le 1$$
Parity-CHSH [3]: $\beta_{pC} = \langle A_0 B_+ \rangle + \langle A_1 B_- C \rangle \le 1$

Asymmetric-CHSH [4]:

$$\beta_{\alpha C} = \alpha \langle A_0 B_+ \rangle + \langle A_1 B_- \rangle \leq \max\{1, |\alpha|\}$$

where $B_{\pm} = (B_0 \pm B_1)/2$ and similarly C_{\pm} .

Goal

Given a violation β_M or β_H , find **analytical lower bounds** on the von Neumann entropies

$$H(A_0|E), H(A_0B_0|E)$$

which quantify Eve's uncertainty about the outcomes A_0 or A_0 , B_0 .

Applications

Entropy bounds → fraction of **secret bits** produced by DI conference key agreement (DICKA) and DI randomness expansion (DIRE) protocols.

TWO ANALYTICAL DERIVATIONS

MABK inequality [5]

Direct **analytical minimization** of $H(A_0|E)$ and $H(A_0B_0|E)$ over all the possible states ρ and measurements yielding a given MABK violation:

- Without loss of generality: ρ is N-qubit state almost diagonal in GHZ basis & Pauli measurements (valid for any N-party full-correlator Bell ineq.).
- We derive bound on maximal violation of MABK inequality given arbitrary N-qubit state ρ .

The one-outcome entropy bound reads:

$$H(A_0|E) \ge 1 - h\left(\frac{1}{2} + \frac{1}{2}\sqrt{\frac{\beta_M^2}{8}} - 1\right) \tag{1}$$

where $h(x) = -x \log_2 x - (1-x) \log_2 (1-x)$ is the binary entropy.

Holz's inequality [6]

- 1. W.l.o.g.: ρ is three-qubit state & Pauli measurements.
- 2. Careful choice of local reference frames: $A_0 = Z$; $B_+, C_+ \propto X$ $\Rightarrow \rho$ is almost diagonal in GHZ basis w.l.o.g.
- 3. Use the **entropic uncertainty relation** and data-proc. ineq.: $H(Z|E) \ge 1 H(X|BC) \ge 1 H(X|X_BX_C)$
- 4. Show that $H(X|X_BX_C) \leq h\left(\frac{1+|\langle XXX\rangle|}{2}\right)$
- 5. Prove that

$$|\langle XXX\rangle| \ge \frac{\beta_H}{2} - \frac{1}{2} + \frac{1}{2}\sqrt{\beta_H^2 + 2\beta_H - 3}$$

6. Combine 3., 4. and 5. to obtain the **tight** bound

$$H(A_0|E) \ge 1 - h\left[\frac{1}{4}\left(\beta_H + 1 + \sqrt{\beta_H^2 + 2\beta_H - 3}\right)\right]$$
 (2)

COMPARING BOUNDS ON $H(A_0|E)$, $H(A_0B_0|E)$

We assume that Alice, Bob and Charlie (Alice and Bob) share the same state: a GHZ state $(1/\sqrt{2})(|000\rangle + |111\rangle)$ (a Bell state $(1/\sqrt{2})(|00\rangle + |11\rangle)$) where each qubit is **depolarized** with probability 1 - p:

$$\beta_M, \beta_H, \beta_{pC} \sim p^3 \quad \beta_{\alpha C} \sim p^2$$
 (3)

The Holz bound (2) wins among three-party bounds, loses against the asym. CHSH bound (expected due to lower violation for given p).

The MABK bound certifies the higest fraction of secret bits in A_0 , B_0 .

REFERENCES

[1] N. D. Mermin, PRL 65, 1838 (1990); M. Ardehali, PRA 46, 5375 (1992); A. V. Belinskiĭ and D. N. Klyshko, Physics-Uspekhi, 36(8) 653 (1993).

[2] T. Holz, H. Kampermann, and D. Bruß. Phys. Rev. Res. 2, 023251 (2020).

- [3] J. Ribeiro, G. Murta, and S. Wehner. Phys. Rev. A 100, 026302 (2019).
- [4] E. Woodhead, A. Acín, and S. Pironio. Quantum 5, 443 (2021).
- [5] F. Grasselli, G. Murta, H. Kampermann, and D. Bruß. PRX Quantum 2, 010308 (2021).
- [6] F. Grasselli, G. Murta, H. Kampermann, and D. Bruß. In preparation.
- [7] R. Bhavsar, S. Ragy, and R. Colbeck. arXiv:2103.07504.

DISCUSSION

DICKA

- The key-generation outcome must be highly correlated among **all** parties: Holz & Parity-CHSH ineq. ✓ MABK ineq. ✗ [2,5]
- Using asym. CHSH needs two independent Bell tests (Bob and Charlie) \Rightarrow "GHZ states + Holz" can yield higher conference key rates

DIRE

- Testing the MABK ineq. requires more input randomness compared to CHSH or Parity-CHSH (bec. one additional party).
- Which inequality actually yields more **net randomness** in the finite-key scenario? MABK? CHSH?