

W3.Solutions()

Dokumen Laporan Final Project

Latar Belakang Masalah

Problem:

Sebuah perusahaan *e-commerce* berbasis internasional ingin menemukan *insight* dari data pelanggan.. Berdasarkan data dari perusahaan tersebut, terdapat kurang lebih 60% yang mengalami keterlambatan dalam penerimaan barang. Berdasarkan studi dari voxware yang melakukan survey terhadap 600 orang, sebanyak 62% pelanggan akan cenderung berkurang atau berhenti berbelanja dari retailer online jika barang yang mereka beli terlambat 2-3 hari dari tanggal yang dijanjikan. Maka dari itu pihak *e-commerce* ingin menjaga dan meningkatkan customer retention dan meningkatkan performa logistik dikarenakan banyak dari pelanggan yang melakukan komplain mengenai ketepatan waktu pengiriman. (https://www.supplychainbrain.com/articles/14912-impact-of-late-or-inaccurate-deliveries-can-be-disast-rous-study-shows)

Role:

Sebagai konsultan data scientist untuk perusahaan *e-commerce*, kami diminta memprediksi apakah penerimaan tersebut tepat waktu atau tidak berdasarkan data yang tersedia dan kami diminta untuk menganalisis faktor-faktor yang mempengaruhi ketepatan waktu penerimaan serta memberikan insight dan rekomendasi berdasarkan hasil analisis.

Goal:

Menurunkan persentase keterlambatan

Objective:

Membuat model *machine learning* untuk memprediksi ketepatan waktu pengiriman barang agar mencegah keterlambatan agar persentase keterlambatan menurun. Perusahaan diharapkan dapat menggunakan model tersebut untuk menentukan keputusan bisnis sehingga customer retention dan tingkat kepuasan pelanggan tetap atau meningkat.

Business Metrics:

Persentase keterlambatan

Data Exploration

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10999 entries, 0 to 10998
Data columns (total 12 columns):
    Column
                         Non-Null Count Dtype
                         10999 non-null int64
    Warehouse block
                         10999 non-null object
    Mode of Shipment
                         10999 non-null object
    Customer care calls 10999 non-null int64
    Customer rating
                         10999 non-null int64
    Cost of the Product 10999 non-null int64
    Prior purchases
                         10999 non-null int64
    Product importance 10999 non-null object
    Gender
                         10999 non-null
                                        object
    Discount offered
                         10999 non-null
                                        int64
    Weight in gms
                         10999 non-null int64
    Reached.on.Time Y.N 10999 non-null int64
dtypes: int64(8), object(4)
memory usage: 1.0+ MB
```

Pengamatan:

- Data terdiri dari 10999 baris
- 2. Tidak terdapat data yang null atau missing value
- 3. Sepertinya tidak ada issue yang mencolok pada tipe data untuk setiap kolom (sudah sesuai)

Dan dari beberapa kali sample

Sepertinya tidak ada anomali pada setiap entri kolom sudah sesuai

[4] df.sample(5)

	ID Wa	arehouse_block	Mode_of_Shipment	Customer_care_calls	Customer_rating	Cost_of_the_Product	Prior_purchases	Product_importance	Gender	Discount_offered	Weight_in_gms	Reached.on.Time_Y.N
1440 14	41	D	Ship	3	2	273	3	low	М	41	3464	1
6032 603	33	Α	Flight	6	3	283	5	medium	М	10	1483	0
3838 38	39	С	Flight	4	1	190	4	medium	F	5	5570	1
9812 98	13	Α	Ship	4	3	253	3	low	F	5	5703	0
8148 81	49	D	Ship	3	2	176	2	medium	F	1	5292	0

Dan dari beberapa kali sample:

Sepertinya tidak ada anomali pada setiap entri kolom sudah sesuai

Exploratory Data Analysis

[6] df[nums].describe()

	Customer_care_calls	Customer_rating	Prior_purchases	Discount_offered	Cost_of_the_Product	Weight_in_gms	Reached.on.Time_Y.N
count	10999.000000	10999.000000	10999.000000	10999.000000	10999.000000	10999.000000	10999.000000
mean	4.054459	2.990545	3.567597	13.373216	210.196836	3634.016729	0.596691
std	1.141490	1.413603	1.522860	16.205527	48.063272	1635.377251	0.490584
min	2.000000	1.000000	2.000000	1.000000	96.000000	1001.000000	0.000000
25%	3.000000	2.000000	3.000000	4.000000	169.000000	1839.500000	0.000000
50%	4.000000	3.000000	3.000000	7.000000	214.000000	4149.000000	1.000000
75%	5.000000	4.000000	4.000000	10.000000	251.000000	5050.000000	1.000000
max	7.000000	5.000000	10.000000	65.000000	310.000000	7846.000000	1.000000

Beberapa pengamatan:

- 1. Kolom Customer_care_calls, customer_rating, dan Cost_of_the_Product tampak sudah cukup simetrik distribusinya (mean dan median tak berbeda jauh)
- 2. Kolom Discount_offered dan Prior_purchases tampaknya skew ke kanan (long-right tail)
- 3. Kolom Reached.on.Time_Y.Nbernilai boolean/binary

df[cats].describe()

	Mode_of_Shipment	Product_importance	Gender	Warehouse_block
count	10999	10999	10999	10999
unique	3	3	2	5
top	Ship	low	F	F
freq	7462	5297	5545	3666

Beberapa pengamatan:

- Untuk kategori gender perempuan lebih dominan,
- untuk kategori product importance di dominasi oleh kategori low
- untuk kategori mode pengiriman di dominasi oleh pengiriman menggunakan kapal (ship)
- untuk warehouse_block didominasi oleh block F
- Semua unique value tiap kategori masih dalam kategori normal sekitar 2-5 unique values

Exploratory Data Analysis - Univariate Analysis

Dari distribution plot terlihat bahwa:

0.4

0.6

Reached.on.Time Y.N

0.8

0.2

0.50

Kolom cost_of_the_product tampak sudah mendekati distribusi normal

1.0

- Seperti dugaan kita ketika melihat boxplot di atas, kolom Prior_purchases, dan Discount_offered sedikit skewed Berarti ada kemungkinan kita perlu melakukan sesuatu pada kolom2 tersebut nantinya
- Kolom-kolom Reached.on.Time sejatinya adalah biner, sehingga tidak perlu terlalu diperhatikan bentuk distribusinya
- Untuk kolom weigh_in_gms terdapat ketidakpastian distribusi karena berbentuk u-shape.
- untuk kolom customer_care_calls dan customer_rating distibusi merata

Seperti pengamatan kita sebelumnya, distribusi kategori low (Product_importance), gudang penyimpanan(warehouse_block) dan kategori Ship (Mode_of_Shipment) didominasi 1-2 value.

Exploratory Data Analysis - Bivariate Analysis

-0.8

-0.6

-0.4

-0.2

-0.0

-0.2

-0.4

Dari correlation heatmap di atas dapat dilihat bahwa:

- Target kita Reached.on.Time_Y.N memiliki korelasi positif lemah dengan customer_rating, cost_of_the_product, customer_care_calls dan prior_purchases
- Ia juga memiliki korelasi positif cukup kuat dengan Discount_offered
- Ia juga memiliki korelasi negatif cukup kuat dengan weight_in_gms

Pengamatan

- shipment dengan ship cenderung akan mengalami telat pengiriman
- untuk produk_importance dengan kategori low dan medium cenderung akan mengalami telat pengiriman
- untuk warehouse_block dengan kategori F cenderung mengalami telat pengiriman

EDA Conclusion

Beberapa hal yang kita temukan dari EDA dataset ini adalah:

- Data terlihat valid dan tidak ada kecacatan yang major/signifikan
- Ada beberapa distribusi yang sedikit skewed, hal ini harus diingat apabila kita ingin melakukan sesuatu atau menggunakan model yang memerlukan asumsi distribusi normal
- Beberapa feature memiliki korelasi yang jelas dengan target, mereka akan dipakai
- Beberapa feature terlihat sama sekali tidak berkorelasi, mereka sebaiknya diabaikan
- Dari fitur kategorikal, "mode_of_shipment"," warehouse_block", dan "product_importance" sepertinya berguna untuk menjadi prediktor model

Insight and Visualization

Package arrival base on mode of shipment

Every mode of shipment is relatively delayed but shipments made by ship present higher numbers due to a higher volume of shipments

Package arrival base on mode of shipment

Every mode of shipment presents a similar on-time to delayed shipments ratio despite the varying volumes of shipments

Insight: Pada awalnya kami berasumsi bahwa metode shipment 'Ship' berperforma paling buruk di antara ketiga metode shipping. Namun, saat dibandingkan berdasarkan ratio on-time dan delay, dapat dilihat bahwa ketiga-tiganya underperform. Namun, yang harus lebih diselidiki lagi adalah metode shipment 'Flight' karena seharusnya adalah metode shipment paling cepat.

Rekomendasi bisnis:

Client dapat meningkatkan performa logistik dan evaluasi internal untuk semua metode pengiriman terutama flight karena dapat dilihat underperformance dari ketiga-tiganya

Insight: Kami berasumsi di awal bahwa low product importance mempunyai performance paling buruk. Namun saat dibandingkan secara persentase terlihat bahwa produk high importance memiliki persentase delayed tertinggi di antara ketiganya dimana seharusnya produk high importance diprioritaskan

Rekomendasi bisnis:

Client dapat meningkatkan performa logistik untuk semua *product importance* terutama 'high' karena seharusnya diprioritaskan dan terlihat underperformance dari ketiga-tiganya

Shipments made from warehouse block F have a higher volume of shipments compared to other blocks despite having the same delayed to on-time ratio as other blocks

Package arrival base on Warehouse Block

nin

Shipments from all warehouses have similar late to on-time shipments ratio

Insight: Asumsi awal adalah block F mempunyai performa paling buruk di antara 5 warehouse. Namun, saat dibandingkan secara persentase terlihat bahwa kelima-limanya underperform

Rekomendasi bisnis:

Client dapat meningkatkan performa logistik dan evaluasi internal untuk semua warehouse block karena dapat dilihat underperformance dari ketiga-tiganya

Package arrival base on Discount Offer

Insight: Di saat discount antara 0 dan < 20 shipment akan on time, namun saat discount yang lebih besar ditawarkan shipment yang delayed pun meningkat

Rekomendasi bisnis:

Client dapat meningkatkan SDM dalam pengiriman saat customer diberikan banyak discount seperti 'Black Friday', Harbolnas, dan event-event khusus lainnya

Data Cleansing - Handle Missing Value

```
df.isna().sum()
```

ID	0
Warehouse_block	0
Mode_of_Shipment	0
Customer_care_calls	0
Customer_rating	0
Cost_of_the_Product	0
Prior_purchases	0
Product_importance	0
Gender	0
Discount_offered	0
Weight_in_gms	0
Reached.on.Time_Y.N	0
dtype: int64	

penjelasan : Missing values tidak perlu dihandle karena tidak ada missing values pada setiap feature

Data Cleansing - Handle Duplicated Data

penjelasan : Duplicated Data tidak perlu dihandle karena tidak ada duplicated data pada setiap feature

Data Cleansing - Handle Missing Value

Jumlah baris setelah memfilter outlier: 10642

```
[13] #code
    df2 = df.copy()
    print(f'Jumlah baris sebelum memfilter outlier: {len(df2)}')

filtered_entries1 = np.array([True] * len(df2))

for col in nums:
    zscore = abs(stats.zscore(df2[col])) # hitung absolute z-scorenya
    filtered_entries1 = (zscore < 3) & filtered_entries1 # keep yang kurang dari 3 absolute z-scorenya

df2 = df2[filtered_entries1] # filter, cuma ambil yang z-scorenya dibawah 3

print(f'Jumlah baris setelah memfilter outlier: {len(df2)}')

Jumlah baris sebelum memfilter outlier: 10999</pre>
```

penjelasan : dengan menggunakan z-score untuk setiap feature yang ada membuang sekitar 3% data outlier jadi data menjadi 10642. karena kami menganggap setiap data berharga jadi kami menggunakan z-score untuk tidak membuang terlalu banyak data

Data Cleansing - Handle Outliers

```
df2 = df.copy()
print(f'Jumlah baris sebelum memfilter outlier: {len(df2)}')

filtered_entries1 = np.array([True] * len(df2))

for col in nums:
    zscore = abs(stats.zscore(df2[col])) # hitung absolute z-scorenya
    filtered_entries1 = (zscore < 3) & filtered_entries1 # keep yang kurang dari

df2 = df2[filtered_entries1] # filter, cuma ambil yang z-scorenya dibawah 3

print(f'Jumlah baris setelah memfilter outlier: {len(df2)}')

Jumlah baris sebelum memfilter outlier: 10999
Jumlah baris setelah memfilter outlier: 10642</pre>
```

penjelasan : dengan menggunakan z-score untuk setiap feature yang ada membuang sekitar 3% data outlier jadi data menjadi 10642. karena kami menganggap setiap data berharga jadi kami menggunakan z-score untuk tidak membuang terlalu banyak data

df2.describe()

	ID	Customer_care_calls	Customer_rating	Cost_of_the_Product	Prior_purchases	Discount_offered	Weight_in_gms	Reached.on.Time_Y.N
count	10642.000000	10642.000000	10642.000000	10642.000000	10642.000000	10642.000000	10642.000000	10642.000000
mean	5570.347773	4.065683	2.989194	210.578557	3.463447	12.528660	3646.514189	0.590303
std	3159.806013	1.145348	1.412344	48.077818	1.288855	14.992539	1639.849048	0.491801
min	1.000000	2.000000	1.000000	96.000000	2.000000	1.000000	1001.000000	0.000000
25%	2881.250000	3.000000	2.000000	170.000000	3.000000	4.000000	1837.000000	0.000000
50%	5604.500000	4.000000	3.000000	215.000000	3.000000	7.000000	4172.000000	1.000000
75%	8300.750000	5.000000	4.000000	251.000000	4.000000	10.000000	5063.750000	1.000000
max	10999.000000	7.000000	5.000000	310.000000	8.000000	61.000000	7846.000000	1.000000

```
# Normalisasi :
df2['Customer_rating'] = MinMaxScaler().fit_transform(df2['Customer_rating'].values.reshape(len(df2), 1))

#Standarisasi :
df2['Customer_care_calls'] = StandardScaler().fit_transform(df2['Customer_care_calls'].values.reshape(len(df2), 1))
df2['Cost_of_the_Product'] = StandardScaler().fit_transform(df2['Cost_of_the_Product'].values.reshape(len(df2), 1))
df2['Prior_purchases'] = StandardScaler().fit_transform(df2['Prior_purchases'].values.reshape(len(df2), 1))
df2['Discount_offered'] = StandardScaler().fit_transform(df2['Discount_offered'].values.reshape(len(df2), 1))
df2['Weight_in_gms'] = StandardScaler().fit_transform(df2['Weight_in_gms'].values.reshape(len(df2), 1))
```


Hasil Normalisasi dan Standarisasi

df2.describe()

	ID	Customer_care_calls	Customer_rating	Cost_of_the_Product	Prior_purchases	Discount_offered	Weight_in_gms	Reached.on.Time_Y.N
count	10642.000000	1.064200e+04	10642.000000	1.064200e+04	1.064200e+04	1.064200e+04	1.064200e+04	10642.000000
mean	5570.347773	6.986956e- 1 5	0.497298	5.756426e-16	-6.094584e-15	2.935728e-14	1.339529e-17	0.590303
std	3159.806013	1.000047e+00	0.353086	1.000047e+00	1.000047e+00	1.000047e+00	1.000047e+00	0.491801
min	1.000000	-1.803627e+00	0.000000	-2.383302e+00	-1.135516e+00	-7.689960e-01	-1.613343e+00	0.000000
25%	2881.250000	-9.304889e-01	0.250000	-8.440579e-01	-3.595969e-01	-5.688870e-01	-1.103516e+00	0.000000
50%	5604.500000	-5.735048e-02	0.500000	9.196863e-02	-3.595969e-01	-3.687781e-01	3.204627e-01	1.000000
75%	8300.750000	8.157880e-01	0.750000	8.407899e-01	4.163217e-01	-1.686692e-01	8.642883e-01	1.000000
max	10999.000000	2.562065e+00	1.000000	2.068025e+00	3.519996e+00	3.233183e+00	2.561018e+00	1.000000

penjelasan : beberapa fitur dilakukan standarisasi agar lebih mudah untuk pemodelan dan juga agar fitur mendekati distribusi normal. terkhusus 'customer_rating' di normalisasi karena kita sudah mengetahui batasan dari rating yaitu 1-5 jadi hanya perlu di normalisasi

Log Transformation

/usr/local/lib/python3.7/dist-packages/pandas/core/arr
result = getattr(ufunc, method)(*inputs, **kwargs)

/usr/local/lib/python3.7/dist-packages/pandas/core/arra
result = getattr(ufunc, method)(*inputs, **kwargs)

/usr/local/lib/python3.7/dist-packages/pandas/core/arra
result = getattr(ufunc, method)(*inputs, **kwargs)

/usr/local/lib/python3.7/dist-packages/pandas/core/array
result = getattr(ufunc, method)(*inputs, **kwargs)


```
df2['log_prior_purchases'] = np.log(df2['Prior_purchases'])
df2['log_discount_offered'] = np.log(df2['Discount_offered'])
df2['log_weight_in_gms'] = np.log(df2['Weight_in_gms'])
df2['log_cost_of_the_Product'] = np.log(df2['Cost_of_the_Product'])
df2['log_customer_care_calls'] = np.log(df2['Customer_care_calls'])

df2 = df2.drop(columns=['ID', 'Prior_purchases', 'Discount_offered', 'Weight_in_gms','Cost_of_the_Product', 'Customer_care_calls'])
df2.describe()
```

/usr/local/lib/python3.7/dist-packages/pandas/core/arraylike.py:364: RuntimeWarning: invalid value encountered in log result = getattr(ufunc, method)(*inputs, **kwargs)

	Customer_rating	Reached.on.Time_Y.N	log_prior_purchases	log_discount_offered	log_weight_in_gms	log_cost_of_the_Product	log_customer_care_calls
count	10642.000000	10642.000000	4212.000000	2304.000000	6145.000000	5573.000000	3521.000000
mean	0.497298	0.590303	-0.232526	0.224030	-0.425354	-0.464535	0.081788
std	0.353086	0.491801	0.694371	0.952796	0.724980	0.914966	0.399492
min	0.000000	0.000000	-0.876297	-3.459681	-7.006352	-4.736844	-0.203601
25%	0.250000	0.000000	-0.876297	-0.184072	-0.764418	-0.808381	-0.203601
50%	0.500000	1.000000	-0.876297	0.530048	-0.252014	-0.198464	-0.203601
75%	0.750000	1.000000	0.175834	0.916071	0.101796	0.142193	0.524093
max	1.000000	1.000000	1.258460	1.173467	0.940405	0.726594	0.940814

Penjelasan : Terdapat beberapa perubahan dari beberapa fitur agar mendekati distribusi normal dengan log transformation seperti Prior_purchases, Discount_offered, Weight_in_gms, Cost_of_the_Product , Customer_care_calls

Data Cleansing - Feature Encoding

```
value counts of column Mode of Shipment
Ship
          7462
Flight
          1777
Road
          1760
Name: Mode of Shipment, dtype: int64
value counts of column Product importance
low
          5297
medium
          4754
high
           948
Name: Product importance, dtype: int64
value counts of column Gender
     5545
     5454
Name: Gender, dtype: int64
value counts of column Warehouse block
     3666
    1834
   1833
    1833
     1833
Name: Warehouse_block, dtype: int64
```

Penjelasan:

- Label encoding: mengubah distinct values dengan nilai tertentu. Digunakan pada data kategorikal dengan jumlah distinct values = 2 atau data benbentuk ordinal(dapat diurutkan)
- One hot encoding: mengubah distinct values menjadi feature tersendiri. Digunakan pada data nominal(tidak dapat diurutkan)

Teknik encoding

- Product_importance & Gender : Label Encoding
- Mode_of_Shipment & Warehouse_block : One Hot Encoding

Data Cleansing - Feature Encoding

Label Encoding

Mengubah value

'low' : 0, 'medium' : 1, 'high' : 2

'F' : 0, 'M' : 1

Prod	uct_importance	Gender
	medium	F
	medium	F
	low	F
	medium	M
	low	F

Data Cleansing - Feature Encoding

One Hot Encoding

Mengubah menjadi feature tersendiri

Warehouse_block	Mode_of_Shipment	(
А	Ship	
В	Ship	
С	Ship	
F	Ship	
D	Ship	

Mode_of_Shipment_Flight	Mode_of_Shipment_Road	Mode_of_Shipment_Ship	Warehouse_block_A	Warehouse_block_B	Warehouse_block_C	Warehouse_block_D	Warehouse_block_F
0	0	1	1	0	0	0	0
0	0	1	0	1	0	0	0
0	0	1	0	0	1	0	0
0	0	1	0	0	0	0	1
0	0	1	0	0	0	1	0

Data Cleansing - Handle Class Imbalance

```
[33] df['Reached.on.Time_Y.N'].value_counts()

1 6563
0 4436
Name: Reached.on.Time_Y.N, dtype: int64
```

penjelasan:

rasio target prediksi sudah cukup balance, jadi tidak perlu over/undersampling

Feature Engineering - Feature Selection

penjelasan: From the figure above, some features that passed the threshold (0,05) according to the targeted feature (Reached.on.Time_Y.N) are chosen to be processed, such as Customer_care_calls, Cost_of_the_Products, Prior_Purchases, Discount_offered, and Weight_in_grms

Penjelasan: From the figure above can be seen that all features have a quite bigdifference in terms of sum in counts, except Gender, that features is excluded because have the same numbers in counts

Feature Engineering - Feature Extraction

	Warehouse	Reached.on.Time_Y.N	Count	Total_Warehouse	Persen
0	Α	0	758	1833	41.35
1	Α	1	1075	1833	58.65
2	В	0	729	1833	39.77
3	В	1	1104	1833	60.23
4	С	0	739	1833	40.32
5	С	1	1094	1833	59.68
6	D	0	738	1834	40.24
7	D	1	1096	1834	59.76
8	F	0	1472	3666	40.15
9	F	1	2194	3666	59.85

Penjelasan: untuk menghitung persentase tiap warehouse yang on time dan tidak

	Rating	Reached.on.Time_Y.N	Count	Total Rating	Persen
0	1	0	922	2235	41.25
1	1	1	1313	2235	58.75
2	2	0	892	2165	41.20
3	2	1	1273	2165	58.80
4	3	0	882	2239	39.39
5	3	1	1357	2239	60.61
6	4	0	886	2189	40.48
7	4	1	1303	2189	59.52
8	5	0	854	2171	39.34
9	5	.1	1317	2171	60.66

Penjelasan : untuk menghitung persentase tiap rating yang on time dan tidak

	Importance	Reached.on.Time_Y.N	Count	Total importance	Persen
0	high	0	332	948	35.02
1	high	1	616	948	64.98
2	low	0	2157	5297	40.72
3	low	1	3140	5297	59.28
4	medium	0	1947	4754	40.95
5	medium	1	2807	4754	59.05

Penjelasan : untuk menghitung persentase tiap prorduct importance yang on time dan tidak

	Purchase	Reached.on.Time_Y.N	Count	Total purchase	Percentage
0	2	0	974	2599	37.48
1	2	1	1625	2599	62.52
2	3	0	1421	3955	35.93
3	3	1	2534	3955	64.07
4	4	0	984	2155	45.66
5	4	1	1171	2155	54.34
6	5	0	645	1287	50.12
7	5	1	642	1287	49.88
8	6	0	247	561	44.03
9	6	1	314	561	55.97
10	7	0	44	136	32.35
11	7	1	92	136	67.65
12	8	0	45	128	35.16
13	8	1	83	128	64.84
14	10	0	76	178	42.70
15	10	1	102	178	57.30

Penjelasan : untuk menghitung persentase jumlah pembelian yang on time dan tidak

Feature Engineering - Feature Tambahan

- 4 feature tambahan yang mungkin akan sangat membantu membuat performansi model semakin bagus:
- 1. Date time Agar mengetahui waktu keberangkatan paket
- 2. Destination Agar mengetahui tempat tujuan paket
- 3. Type of package Agar mengetahui tipe package yang akan dikirim
- 4. Distance Agar mengetahui jarak pengiriman barang