

Факултет техничких наука Универзитет у Новом Саду

Виртуелизација процеса

Евиденција прогнозиране и остварене потрошње електричне енергије

Професор: Бојан Јелачић

Асистенти: Зорана Бабић Зоран Пајић Зоран Јанковић Бојан Јелачић Аутори:

Илија Чекеревац Татјана Спасојевић Вероника Иванић Бојан Кирћански

САДРЖАЈ

1	Oı	пште информације о пројекту	3
2	Oı	пис пројектног задатка	3
3	Αŗ	рхитектура пројекта	3
	3.1	База података	3
	3.2	Сервисни слој	3
	3.3	Кориснички интерфејс	3
	3.4	Common	3
4	Кс	омуникација између сервиса и клијента	4
5	УЕ	воз података	4
6	M	одел података	4
	6.1	Load	4
	6.2	ImportedFile	4
	6.3	Audit	4
7	Пр	рорачун одступања	4
8	Oı	пис интерфејса	5
9	Τe	ехнички и имплементациони захтеви	5
10)	Технологије које су коришћене	5
12	2	Упутство за покретање апликације	5
13	3	Закључак	5

1 Опште информације о пројекту

Евиденција прогнозиране и остварене потрошње електричне енергије је пројекат из предмета "Виртулизација процеса" који се слуша у VI семестру на Факултету техничких наука у Новом Саду.

Задатак је развити апликацију која ће водити евиденцију о прогнозираној и оствареног потрошњи електричне енергије за компанију за пренос електричне енергије.

2 Опис пројектног задатка

Циљ овог пројекта је развити апликацију за евиденцију прогнозиране и остварене потрошње електричне енергије за компанију за пренос електричне енергије. Апликација омогућава увоз података из CSV датотека које садрже информације о прогнозираној и оствареној потрошњи. Након увоза, врши се валидација података и упис у базу података. Такође, апликација врши прорачун одступања између прогнозиране и остварене потрошње.

3 Архитектура пројекта

3.1 База података

Одлука да ли ће подаци бити уписани у XML базу података или In-Memory базу података доноси се на основу подешавања у **App.config** датотеци сервисног дела апликације.

- **XML база података**: Користи се за чување података у XML формату. Свака табела има своју XML датотеку.
- **In-Memory база података**: Користи се за чување података у меморији док је сервис покренут. Имплементирана је као (Concurrent)Dictionary.

3.2 Сервисни слој

- Обавља пословну логику апликације, укључујући увоз података, прорачун одступања и ажурирање базе података.
- Користи WCF (Windows Communication Foundation) за комуникацију са корисничким интерфејсом.

3.3 Кориснички интерфејс

- Конзолна апликација која омогућава кориснику да importuje податке о прогнозираној и оствареној потрошњи електричне енергије.
- Користи WCF за комуникацију са сервисним слојем.

3.4 Common

• Заједнички пројекат који садржи дељене класе, константе и помоћне функционалности које се користе у свим слојевима апликације.

4 Комуникација између сервиса и клијента

Комуникација између клијентске апликације (корисничког интерфејса) и сервиса се обавља путем WCF-а. WCF омогућава пренос података између клијента и сервиса кроз дефинисане канале и ендпоинте. Клијент шаље захтеве сервису за увоз података и остале операције, док сервис обрађује захтеве и враћа одговор.

5 Увоз података

Подаци о прогнозираној и оствареној потрошњи електричне енергије увозе се из CSV датотека. Кроз кориснички интерфејс, корисник уноси путању до директоријума у којем се налазе CSV датотеке. Датотеке се importuju на основу назива датотеке који садржи тип датотеке (прог или оств) и датум у формату уууу_мм_дд_хх. Подаци се валидирају, а невалидне датотеке генеришу Audit објекте са одговарајућом грешком.

6 Модел података

Модел података обухвата три класе: Load, ImportedFile и Audit.

6.1 Load

- Представља податке о прогнозираној и оствареној потрошњи за један сат.
- Садржи поља: Id, Timestamp, ForecastValue, MeasuredValue, AbsolutePercentageDeviation, SquaredDeviation, ImportedForecaseFileId, MeasuredFileId.

6.2 ImportedFile

- Представља информације о importovanoj CSV датотеци.
- Садржи поља: Id, FileName.

6.3 Audit

- Представља информације о грешкама приликом importa датотека.
- Садржи поља: Id, Timestamp, MessageType, Message.

7 Прорачун одступања

Након importa података, сервисни слој врши прорачун одступања између прогнозиране и остварене потрошње по сату. Одступање се може израчунати као апсолутно процентуално одступање или квадратно одступање, у зависности од подешавања у **App.config** датотеци сервиса. Одступање се уписује у базу података за сваки ред појединачно.

8 Опис интерфејса

Кориснички интерфејс апликације је имплементиран као конзолна апликација. Корисник има могућност да унесе путању до директоријума у којем се налазе CSV датотеке са подацима о прогнозираној и оствареној потрошњи. Након уноса путање, апликација врши увоз података из датотека, валидира их и уписује у базу података. Такође, апликација врши прорачун одступања између прогнозиране и остварене потрошње.

9 Технички и имплементациони захтеви

- Апликација је имплементирана у вишеслојној архитектури.
- Рад са датотекама се врши уз одржавање меморије, коришћењем Dispose патерна.
- Комуникација између клијента и сервиса се обавља кроз WCF.
- За import датотека користи се MemoryStream за пренос података.
- Догађај ажурирања базе података прорачунатим подацима се активира помоћу Event-a и Delegate-a.
- Постоји могућност конфигурисања апликације кроз App.config датотеку за подешавање типа одступања.
- Документација апликације укључује User manual и документ који описује архитектуру апликације.

10 Технологије које су коришћене

- С# програмски језик за развој апликације
- XML база података за чување података
- In-Memory база података за чување података током рада апликације
- WCF за комуникацију између клијентске апликације и сервиса
- Dispose pattern за управљање меморијом при раду са датотекама

12 Упутство за покретање апликације

Покретање апликације се извршава покретањем једне инстанце сервера, затим једне инстанце клијента. Након отварања конзолне апликације корисник је дузан да унесе путање до захтеваних датотека, и тек тада креће да проверава унете податке, и да враћа исправне и прорачунате вредности.

13 Закључак

Имплементирана апликација за евиденцију прогнозиране и остварене потрошње електричне енергије пружа функционалности увоза података из CSV датотека, валидације података, уписа у базу података и прорачуна одступања. Могући правци будућег истраживања и проширења задатка укључују додатне функционалности као што су графички приказ података, могућност извоза података, имплементација додатних аналитичких метода и оптимизација перформанси апликације.