iemisc: Air Stripping By Packed Column Examples

Irucka Embry, E.I.T. (EcoC²S)

2023-03-03

Contents

Replicate the R code	1
Example 1 ["Appendix D Example Air Stripping By Packed Column" from Design (page	
D-1 - D-18)]	2
Example 1: Table 1. Contaminants Table {Reference document}	3
Example 1: Table 2. Removal Requirements Table {Reference document}	4
Example 1: Table 3. Critical Contaminant Table {Reference document}	4
Example 1: Table 4. Air Stripper Design Table {Reference document}	5
Example 1: Table 1. Contaminants Table {Manufacturer's values}	6
Example 1: Table 2. Removal Requirements Table {Manufacturer's values}	6
Example 1: Table 3. Critical Contaminant Table {Manufacturer's values}	7
Example 1: Table 4. Air Stripper Design Table {Manufacturer's values}	7
Example 2 (Spring 2011 Hazardous Waste Management Air Stripper Group Project)	8
Example 2: Table 1. Contaminants Table {Original Design}	8
Example 2: Table 2. Removal Requirements Table {Original Design}	9
99.2 0.3523 0.00296	9
Example 2: Table 3. Critical Contaminant Table {Original Design}	9
Example 2: Table 4. Air Stripper Design Table {Original Design}	10
Example 2: Table 1. Contaminants Table {Modified Design}	10
Example 2: Table 2. Removal Requirements Table {Modified Design}	11
99.6 0.7405 0.00296	11
Example 2: Table 3. Critical Contaminant Table {Modified Design}	11
Example 2: Table 4. Air Stripper Design Table {Modified Design}	11
Works Cited	12
EcoC ² S Links	12
Copyright and License	13

Replicate the R code

Note: If you wish to replicate the R code below, then you will need to copy and paste the following commands in R first (to make sure you have all the packages and their dependencies):

```
install.packages(c("install.load", "iemisc", "pander"))
# install the packages and their dependencies
```

Example 1 ["Appendix D Example Air Stripping By Packed Column" from Design (page D-1 - D-18)]

```
install.load::load_package("iemisc", "pander")
panderOptions("table.continues", "")
panderOptions("table.caption.prefix", "")
# values to match the Reference document
T = 20
pTe = 1
contam1 = c("Benzene", "Toluene", "Trichloroethylene")
Cai = c(750, 1000, 750)
Cae = c(10, 100, 100)
contam2 = c("Benzene", "Toluene", "Trichloroethylene")
cas = c("71-43-2", "108-88-3", "79-01-6")
Ha = c(309.2, 353.1, 506.1)
Q = 440
loading = 45
ns = 2
DL = c(8.91 * 10^-10, NA_{real}, NA_{real})
DG = c(9.37 * 10^{-6}, NA_{real}, NA_{real})
dP = 0.0508
at = 157
Sc = 0.033
cf = 15
R = 3.5
dP_units = "inch"
at_units = "ft^2/ft^3"
Sc\_units = "kg/s^2"
contaminants_table = 1
removal requirements table = 1
critical_contaminant_table = 1
air1 <- air_stripper(T = T, pTe = pTe, contam1 = contam1, Cai = Cai, Cae = Cae, contam2 = contam2,
   cas = cas, Ha = Ha, Q = Q, loading = loading, ns = ns, DL = DL, DG = DG, dP = dP,
   at = at, Sc = Sc, cf = cf, R = R, T_units = "SI", dP_units = "inch", at_units = "ft^2/ft^3",
   Sc_units = "kg/s^2", contaminants_table = 1, removal_requirements_table = 1,
    critical_contaminant_table = 1)
# Changes to reflect the manufacturer's values
T = 20
pTe = 1
contam1 = c("Benzene", "Toluene", "Trichloroethylene")
Cai = c(750, 1000, 750)
Cae = c(10, 100, 100)
contam2 = c("Benzene", "Toluene", "Trichloroethylene")
cas = c("71-43-2", "108-88-3", "79-01-6")
Ha = c(309.2, 353.1, 506.1)
Q = 440
```

```
loading = 45
ns = 2
DL = c(8.91 * 10^{-10}, NA_{real}, NA_{real})
DG = c(9.37 * 10^{-6}, NA_{real}, NA_{real})
dP = 2
at = 48
Sc = 0.033
cf = 16
R = 3.5
T units = "SI"
dP_units = "inch"
at_units = "ft^2/ft^3"
Sc\_units = "kg/s^2"
contaminants_table = 1
removal_requirements_table = 1
critical_contaminant_table = 1
air2 <- air_stripper(T = T, pTe = pTe, contam1 = contam1, Cai = Cai, Cae = Cae, contam2 = contam2,
    cas = cas, Ha = Ha, Q = Q, loading = loading, ns = ns, DL = DL, DG = DG, dP = dP,
    at = at, Sc = Sc, cf = cf, R = R, T_units = "SI", dP_units = "inch", at_units = "ft^2/ft^3",
    Sc_units = "kg/s^2", contaminants_table = 1, removal_requirements_table = 1,
    critical_contaminant_table = 1)
```

Example 1: Table 1. Contaminants Table {Reference document}

pander(air1[[1]], missing = "")

	Formula	GMW (kg/kg-mole)	CAS Number
Benzene	С6Н6	78.11	71-43-2
Toluene	C6H5CH3	92.14	108-88-3
Trichloroethylene	C2HCl3	131.4	79-01-6

	${\rm Ha~(atm/mole/mole)}$	Liquid Diffusivity (m^2/s)
Benzene	309.2	8.91e-10
Toluene	353.1	
Trichloroethylene	506.1	

	Gas Diffusivity (m^2/s)
Benzene	9.37e-06
Toluene	
Trichloroethylene	

Example 1: Table 2. Removal Requirements Table {Reference document}

pander(air1[[2]], missing = "")

Contaminant	Influent Concentration (ug/L), Cai	Effluent Standard Concentration (ug/L), Cae
Total VOCs	2500	
Benzene	750	10
Toluene	1000	100
Trichloroethylene	750	100

	Removal Requirement	(%) xai (mole/mole) xae (mole/mo	ole)
98.7	0.173	0.00231	
90	0.1955	0.01955	
86.7	0.1028	0.01371	

Example 1: Table 3. Critical Contaminant Table {Reference document}

pander(air1[[3]], missing = "")

	Influent Concentration (ug/L), Cai
Benzene	750
Toluene	1000
${\bf Trichloroethylene}$	750

	Effluent Standard Concentration (ug/L), Cae	Removal Requirement (%)
Benzene	10	98.7
Toluene	100	90
Trichloroethylene	100	86.7

	xai (mole/mole)	xae (mole/mole)	Formula
Benzene	0.173	0.00231	С6Н6
Toluene	0.1955	0.01955	C6H5CH3
Trichloroethylene	0.1028	0.01371	C2HCl3

	GMW (kg/kg-mole)	CAS Number	Ha (atm/mole/mole)
Benzene	78.11	71-43-2	309.2

	GMW (kg/kg-mole)	CAS Number	Ha (atm/mole/mole)
Toluene	92.14	108-88-3	353.1
Trichloroethylene	131.4	79-01-6	506.1
	Liquid Diffusivity (m^2/s)	Gas Diffusivity (m^2/s)
Benzene	8.91e-10		9.37e-06
Toluene			
Trichloroethylene			
	(Cai - Cae) / Cai	H'a	$QGmin/QL (m^3 / m^3)$
Benzene	0.9867	0.232	4.253

0.2649

0.3797

3.397

2.282

Example 1: Table 4. Air Stripper Design Table {Reference document}

0.9

0.8667

pander(air1[[4]])

Toluene

Trichloroethylene

Critical Contamina	Stripper Cro	Water) Flow per unit of ss-Sectional Area (kg ble/m^2 s)
Benzene		30.38
folar Gas (Air) flow per unit Cross-Sectional Area (kg mo		of Transfer Unit (HTU) [m]
0.6216		2.73
Height of Transfer Unit (H	ITU) [ft] Numb	er of Transfer Units (NTU)
8.97		5.58
Packing Depth (m)	Packing Depth (ft)	Air to Water Ratio
15.23	49.98	14.89

Example 1: Table 1. Contaminants Table {Manufacturer's values}

pander(air2[[1]], missing = "")

	Formula	GMW (kg/kg-mole)	CAS Number
Benzene	С6Н6	78.11	71-43-2
Toluene	C6H5CH3	92.14	108-88-3
${\bf Trichloroethylene}$	C2HCl3	131.4	79-01-6

	Ha (atm/mole/mole)	Liquid Diffusivity (m^2/s)
Benzene	309.2	8.91e-10
${\bf Toluene}$	353.1	
Trichloroethylene	506.1	

	Gas Diffusivity (m^2/s)
Benzene Toluene Trichloroethylene	9.37e-06

Example 1: Table 2. Removal Requirements Table {Manufacturer's values}

pander(air2[[2]], missing = "")

Contaminant	Influent Concentration (ug/L), Cai	Effluent Standard Concentration (ug/L), Cae
Total VOCs	2500	
Benzene	750	10
Toluene	1000	100
Trichloroethylene	750	100

	Removal Requirement (%) xai (mole/mole) xae (mole/mole)
98.7	0.173	0.00231
90	0.1955	0.01955
86.7	0.1028	0.01371

Example 1: Table 3. Critical Contaminant Table {Manufacturer's values}

pander(air2[[3]], missing = "")

	Influent Concentration (ug/L), Cai
Benzene	750
Toluene	1000
${\bf Trichloroethylene}$	750

	Effluent Standard Concentration (ug/L), Cae	Removal Requirement (%)
Benzene	10	98.7
Toluene	100	90
Trichloroethylene	100	86.7

	xai (mole/mole)	xae (mole/mole)	Formula
Benzene	0.173	0.00231	С6Н6
Toluene	0.1955	0.01955	C6H5CH3
Trichloroethylene	0.1028	0.01371	C2HCl3

	$\mathrm{GMW}\ (\mathrm{kg/kg\text{-}mole})$	CAS Number	${ m Ha~(atm/mole/mole)}$
Benzene	78.11	71-43-2	309.2
Toluene	92.14	108-88-3	353.1
Trichloroethylene	131.4	79-01-6	506.1

	Liquid Diffusivity (m^2/s)	Gas Diffusivity (m^2/s)
Benzene Toluene Trichloroethylene	8.91e-10	9.37e-06

	(Cai - Cae) / Cai	H'a	QGmin/QL (m^3 / m^3)
Benzene	0.9867	0.232	4.253
Toluene	0.9	0.2649	3.397
Trichloroethylene	0.8667	0.3797	2.282

Example 1: Table 4. Air Stripper Design Table {Manufacturer's values}

pander(air2[[4]])

	Molar Liquid (Water) Flow per unit of Stripper Cross-Sectional Area (kg
Critical Contaminant	$mole/m^2 s)$
Benzene	30.38

Molar Gas (Air) flow per unit of Stripper Cross-Sectional Area (kg mole/m^2 s)	Height of Transfer Unit (HTU) [m]
0.6216	2.03

Height of Transfer Unit (HTU) [ft]	Number of Transfer Units (NTU)
6.66	5.58

Packing Depth (m)	Packing Depth (ft)	Air to Water Ratio
11.33	37.16	14.89

Example 2 (Spring 2011 Hazardous Waste Management Air Stripper Group Project)

Example 2: Table 1. Contaminants Table {Original Design}

```
pander(air3[[1]])
```

	Formula	GMW (kg/kg-mole)	CAS Number	Ha (atm/mole/mole)
Ammonia	NH3	17.03	7664-41-7	0.75

	Liquid Diffusivity (m^2/s)	Gas Diffusivity (m^2/s)
Ammonia	8.91e-10	9.37e-06

Example 2: Table 2. Removal Requirements Table {Original Design}

pander(air3[[2]], missing = "")

Contaminant	Influent Concentration (ug/L), Cai	Effluent Standard Concentration (ug/L), Cae
Total VOCs Ammonia	333 333	2.8

Removal Requirement (%) xai (mole/mole) xae (mole/mole)

$99.2\ 0.3523\ 0.00296$

Example 2: Table 3. Critical Contaminant Table {Original Design}

pander(air3[[3]])

	Influen	t Concentration (ug/L),		t Standard Concentration (ug/L), Cae
Ammonia		333	2.8 xai (mole/mole) xae (mole/ 0.3523 0.0029	
	Removal	Requirement (%)	vai (mole/mole)	xae (mole/mole)
Ammonia	Temovar	99.2		0.00296
	Formula	GMW (kg/kg-mole)	CAS Number	Ha (atm/mole/mole)
Ammonia	NH3	17.03	7664-41-7	0.75
	Li	quid Diffusivity (m^2/s	Gas	Diffusivity (m^2/s)
Ammonia		8.91e-10	9.37e-06	

	(Cai - Cae) / Cai	H'a	QGmin/QL (m^3 / m^3)
Ammonia	0.9916	6e-04	1762

Example 2: Table 4. Air Stripper Design Table {Original Design}

pander(air3[[4]])

Critical Contaminant	Molar Liquid (Water) Flow per unit of Stripper Cross-Sectional Area (kg mole/m^2 s)
Ammonia	28.77
Molar Gas (Air) flow per unit of Stripp Cross-Sectional Area (kg mole/m^2 s)	
104.5	27.59
Height of Transfer Unit (HTU) [ft]	Number of Transfer Units (NTU)
90.52	11.09
Packing Depth (m) Packi	ing Depth (ft) Air to Water Ratio

1004

2643

Example 2: Table 1. Contaminants Table {Modified Design}

pander(air4[[1]])

306

	Formula	${\rm GMW}~({\rm kg/kg\text{-}mole})$	CAS Number	${ m Ha~(atm/mole/mole)}$
Ammonia	monia NH3 17.03		7664-41-7	0.75
_	T :	iquid Diffusivity (m^2/s)	Cas I	Diffusivity (m^2/s)
	17	iquid Diffusivity (iii 2/s)	Gas Diliusivity (III 2/8)	
Ammonia		2.1e-09	9.8e-06	

Example 2: Table 2. Removal Requirements Table {Modified Design}

pander(air4[[2]], missing = "")

Contaminant	Influent Concentration (ug/L), Cai	Effluent Standard Concentration (ug/L), Cae
Total VOCs Ammonia	700 700	2.8

Removal Requirement (%) xai (mole/mole) xae (mole/mole)

$99.6\ 0.7405\ 0.00296$

Example 2: Table 3. Critical Contaminant Table {Modified Design}

pander(air4[[3]])

		Effluent Influent Concentration (ug/L), Cai			Effluent	Standard Concentration (ug/L), Cae
Ammonia	a		700			2.8
		Remova	l Requirement (%)	xai (mole	/mole)	xae (mole/mole)
Ammonia	a		99.6	0.7405		0.00296
		Formula	GMW (kg/kg-mole)	CAS N	umber	Ha (atm/mole/mole)
Ammonia	ı	NH3	17.03	7664-41-7		0.75
		-	Liquid Diffusivity (m^2/s)) Gas Diffusivity (m^2/s)		Diffusivity (m^2/s)
Ammo	nia		2.1e-09	9.8e-06		9.8e-06
			(Cai - Cae) / Cai	H'a	QGmi	m/QL (m^3 / m^3)
Amr	nonia		0.996	6e-04 1798		1798

Example 2: Table 4. Air Stripper Design Table {Modified Design}

pander(air4[[4]])

Critical Contamin	Str	Liquid (Water) Flow per unit of apper Cross-Sectional Area (kg mole/m^2 s)
Ammonia		31.61
Molar Gas (Air) flow per uni	t of Stripper	
Cross-Sectional Area (kg mole/m^2 s)		Height of Transfer Unit (HTU) [m
115.3		0.99
Height of Transfer Unit (HTU) [ft]	Number of Transfer Units (NTU)
3.23		13.29
Packing Depth (m)	Packing Depth	(ft) Air to Water Ratio
13.16	43.17	2697

Works Cited

Design Guide No. 1110-1-3: Air Stripping Engineering and Design Appendix D: Example Air Stripping By Packed Column, Department Of The Army U.S. Army Corps of Engineers, 31 October 2001, pages D-1 - D-18, http://www.publications.usace.army.mil/Portals/76/Publications/EngineerDesignGuides/DG_1110-1-3.pdf?ver=2013-08-16-101222-003.

EcoC²S Links

EcoC²S Home – https://www.ecoccs.com/

About EcoC2S - https://www.ecoccs.com/about_ecoc2s.html

Products-https://www.questionuniverse.com/products.html

EcoC²S Media – https://www.ecoccs.com/media.html

EcoC²S Resources – https://www.ecoccs.com/resources.html

R Trainings and Resources provided by EcoC 2 S (Irucka Embry, E.I.T.) – https://www.ecoccs.com/rtraining.html

Copyright and License

All R code written by Irucka Embry is distributed under the GPL-3 (or later) license, see the GNU General Public License {GPL} page.

All written content originally created by Irucka Embry is copyrighted under the Creative Commons Attribution-ShareAlike 4.0 International License. All other written content retains the copyright of the original author(s).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.