

Math: Exponential function

- I) Consider the function f defined over IR by $f(x) = \frac{1}{2}e^{2x} 4e^x + 3$.
 - (C) its representative curve in an orthonormal system (O, i, j).
 - 1) a) Show that (d): y = 3 is an asymptote to (C). b) Calculate the coordinates of point B the intersection of (C) and (d).
 - 2) Show that $f'(x) = e^x(e^x 4)$. Set up the table of variations of f.
 - 3) Draw (C) and (d) in the same system.
 - 4) Calculate the area of the region bounded by (C), (x'x) and the lines x = 0 and x = 1.
 - 5) Study graphically, according to the values of the parameter m, the number of solutions of the equation $e^{2x} 8e^x = 2m 6$.
- II) Consider the function f defined over IR by $f(x) = (2x-3)e^{x-2} + 4$.
 - (C) its representative curve in an orthonormal system (O, i, j).
 - 1) Calculate $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.
 - 2) Show that $f'(x) = (2x-1)e^{x-2}$. Set up the table of variations of f.
 - 3) Determine the equation of the tangent (T) to (C) at the point of abscissa 2.
 - 4) Draw (C) and (T).
 - 5) Prove that line (1): y = 4x cuts the curve (C) in two points α and β . Verify that: $0.9 < \alpha < 1$ and $2.9 < \beta < 3$.
 - 6) a) Show that $F(x) = (2x-5)e^{x-2} + 4x$ is an anti-derivative of f.
 - b) Calculate, in terms of α and β the area of the region bounded by (C) and (l).
- III) Consider the function f defined over IR by $f(x) = x + \frac{2e^x}{1 + e^x}$.
 - (C) its representative curve in an orthonormal system (O, i, j)
 - 1) Calculate $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.
 - 2) Prove that (D): y = x is an asymptote to (C) at $-\infty$ and (D'): y = x + 2 is an asymptote to (C) at $+\infty$.
 - 3) Study the relative position of (C) with respect to (D) and (D').
 - 4) Study the variations of f and set up its table of variations.
 - 5) Write the equation of the tangent (T) to (C) at the point of abscissa zero.
 - 6) Show that I(0, 1) is the center of symmetry of (C).
 - 7) Draw (C), (D), (D') and (T).
 - 8) Calculate the area of the region bounded by (C), (D) and the two lines x = 1 and x = e.
- IV) Consider the function f defined over IR by $f(x) = (2x+1)e^{-2x}$.
 - (C) its representative curve in an orthonormal system (O, i, j).
 - 1) Calculate $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.
 - 2) Find f'(x) and set up its table of variations.
 - 3) Find the points of intersection of (C) and (x'x).
 - 4) Study the sign of f.

- 5) Show that $f''(x) = 4(2x-1)e^{-2x}$ and find the coordinates of B the inflection point of f.
- 6) Find the equation of the tangent (T) to (C) at B.

7) Let
$$g(x) = f(x) - \left(\frac{-2}{e}x + \frac{3}{e}\right)$$
.

- a) Find g'(x) and g''(x).
- b) Study the sign of g''(x) and deduce the sense of variation of g'(x).
- c) Find the sign of g' and deduce the sense of variations of g.
- d) Deduce the relative position of (C) and (T).
- e) Draw (C) and (T).
- 8) Calculate the area of the region bounded (C), x-axis and the two lines x = -1 and x = 1.
- V) Consider the function f defined over $]0; +\infty[$ by $f(x) = 2x 2 + \frac{1}{e^x 1}]$. Designate by (C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.
 - 1) a- Determine $\lim_{x\to 0} f(x)$. Deduce an asymptote to (C).
 - b- Determine $\lim_{x\to +\infty} f(x)$ and show that the line (d) of equation y = 2x 2 is an asymptote to (C).
 - c- What is the relative position of (C) and (d)?
- 2) a- Show that $f'(x) = \frac{(e^x 2)(2e^x 1)}{(e^x 1)^2}$.

X	0	ln2	+ ∞
f'(x)		0	
$f(\mathbf{x})$			

- b- Complete the adjacent table of variations of f.
- 3) Draw (d) and (C).
- 4) Verify that $\frac{1}{e^x 1} = \frac{e^x}{e^x 1} 1$. Calculate the area of the region

bounded by (C), line (d) and the two lines $x = \ln 2$ and $x = \ln 3$.

- 5) Consider the function g defined over $]0 ; + \infty[$ by $g(x) = \ln(f(x))$.
 - a- Calculate $\lim_{x\to 0} g(x)$ and $\lim_{x\to +\infty} g(x)$.
 - b- Set up the table of variations of g.
 - c- Show that the equation g(x) = 0 admits two real distinct roots.
- VI) A) Let h be a function defined over IR by: $h(x) = e^x x 1$.

 Designate by (C) its representative curve in an orthonormal system.
 - 1) a- Determine $\lim_{x\to +\infty} h(x)$.
 - b- Determine $\lim_{x\to\infty} h(x)$ and show that the line (d) of equation y=-x-1 is an asymptote to (C).
 - 2) a- Calculate h'(x) and set up the table of variations of h.
 - b- Draw (d) and (C).
 - c- Deduce that $e^x \ge x+1$ for every x.
 - B) Let f be the function defined by: $f(x) = \frac{e^x}{e^x x}$. Designate by (C') its representative curve in an orthonormal system.
 - 1) Show that the function f is defined over IR.
 - 2) Determine the asymptotes of (C').
 - 3) Verify that $f'(x) = \frac{(1-x)e^x}{(e^x x)^2}$. Set up the table of variations of f.

4) a- Write the equation of tangent (T) to (C') at point E of abscissa 0.

b- Verify that
$$f(x)-x-1=\frac{x(x+1-e^x)}{e^x-x}$$
.

- c- Study, according to the values of x, the position of (C') with respect to (T).
- d- Draw (T) and (C').
- VII) A) Consider the function h defined over $[0; +\infty[$ by $h(x) = (x-2)e^x 1$
 - 1) Study the variation of h and setup its table of variations.
 - 2) Show that h(x)=0 admits a unique solution α over]2.12;2.13[. Deduce that $e^{\alpha}=\frac{1}{\alpha-2}$.
 - 3) Study the sign of h(x) over $[0,+\infty]$.
 - B) In this part take $\alpha = 2.125$. Consider the function f defined over $[0, +\infty[$ by: $f(x) = \frac{e^x + 1}{e^x + x}$.

Designate by (C) its curve in an orthonormal system.

- 1) Calculate $\lim_{x \to +\infty} f(x)$. Deduce the asymptote of (C).
- 2) Show that $f(\alpha) = \frac{1}{\alpha 1}$.
- 3) Show that $f'(x) = \frac{h(x)}{(e^x + x)^2}$. Set up the table of variations of f.
- 4) Write the equation of the line (T) tangent to (C) at a point of abscissa 0.
- 5) Draw (C) and (T).
- 6) Calculate the area of the region bounded by (C) (x'Ox) and x = e.
- VIII) Consider the function f defined on IR by $f(x) = x + (x+1)e^{-x}$ and let (C) be its representative curve in an orthonormal system $(0; \vec{i}, \vec{j})$.
 - 1) a) Calculate the limits of f at the boundaries of its domain. Calculate f(-2).
 - b) Prove that the straight line (d): y = x is an asymptote to (C) at $+\infty$.
 - c) Study the relative position of (C) & (d).
 - 2) Prove that $f'(x) = 1 xe^{-x}$ and $f''(x) = (x-1)e^{-x}$.
 - 3) a) Setup the table of variations of f'.
 - b) Deduce that f is an increasing function and setup the table of variations of f.
 - 4) Prove that the curve (C) admits a point of inflection I whose coordinates are to be determined.
 - 5) Prove that the equation f(x) = 0 admits a unique root $\alpha \in [-0.7, -0.6]$.
 - 6) Determine the coordinates of the point A on (C) where the tangent (T) to (C) at A is parallel to (d).
 - 7) Draw (d), (T) & (C).
 - 8) Determine a primitive of $(x+1)e^{-x}$. Deduce the area of the domain limited by (C), (x'x) and the straight line (δ) : y = -x + 1.
- IX) The plane is referred to an orthonormal system $(0; i^{-}, \overrightarrow{j})$ The adjacent curve is the graph of the function f defined over \mathbb{R} .
 - 1) Using the graph answer the following:
 - a) Determine: f'(-1), f'(-4) and f(0).
 - b) Determine: $\lim_{x \to +\infty} f(x)$; $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - c) Study according to the values of x the sign f'(x).

- 2) Suppose that $f(x) = (ax^2 + bx + c)e^x + r$, where: a, b, c and r are constants.
- a) Justify that $f(x) = (x^2 + 3x + 1)e^x + 1$.
- b) Calculate f(-1) and f(-4). Set up the table of variations of f f.
- 3) Let (γ) be the representative curve of the function g defined as $g(x) = (x^2 + x)e^x + x$. Let (d)be the straight line of equation y = x.
 - a) Study according to the values of x the position between (d) and (γ) .
 - b) Show that $\lim_{x \to -\infty} g(x) = -\infty$. Deduce that (d) is an asymptote to (γ) .
 - c) Calculate $\lim_{x \to +\infty} g(x)$ and $\lim_{x \to +\infty} \frac{g(x)}{x}$
 - d) Dresser le tableau de variations de g. Draw (T), (d) and (γ) in the same system.
- X) A) The adjacent figure represents the curve (l) of a function G defined and differentiable over IR where $G(x) = \int g(x)dx$.

Given A(ln2; 0)

- 1) Find G(0) and g(0).
- 2) Using the adjacent figure, study the sign of the function g, then complete the following tables of signs.

signs.			
x	-∞	0	+∞
g(x)			

x	-∞	ln2	+∞
G(x)	1		

- 3) a) Given that: $G(x) = ae^{2x} + be^{x}$ where a and b are two real numbers.
 - Show that a = 1 and b = -2.
 - b) Deduce that $g(x) = 2e^{2x} 2e^x$.
- 4) Calculate the area of the region bounded by (C''), the representative curve of g, the x-axis and the two lines of equations x = 0 and $x = \ln 2$.
- B) Consider the function f defined over $\ln 2$; $+\infty$ by $f(x) = \ln(e^{2x} 2e^x)$. Denote by (C) its representative curve in a direct orthonormal system.
- 1) Calculate the limits of f at the boundaries of its domain. Deduce an equation of an asymptote to (C).
- 2) Show that $f'(x) = \frac{g(x)}{G(x)}$. Set up the table of variations of f.
- 3) Find the coordinates of the point of intersection of (C) with the axis of abscissas.
- 4) Draw (C). (1 unit = 2 cm).