

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 043 051 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

11.10.2000 Bulletin 2000/41

(21) Application number: 00101051.1

(22) Date of filing: 20.01.2000

(51) Int. CI.⁷: **B01D 15/00**, B01J 20/30, C07D 311/72

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 25.01.1999 EP 99101305

(71) Applicant:

F. HOFFMANN-LA ROCHE AG 4070 Basel (CH) (72) Inventor: Fleck, Ute 4057 Basel (CH)

(74) Representative:

Kellenberger, Marcus Dr. et al F.Hoffmann-La Roche AG Grenzacherstrasse 124 4070 Basel (CH)

(54) Process for preparing an adsorbent which is loaded with an oil

- (57) The invention relates to a process for preparing a highly loaded adsorbent, which process comprises the steps of
 - a) extracting an oil from an oil crude product by means of supercritical fluid extraction thus, obtaining a loaded supercritical fluid (SCF);
 - b) expanding the loaded SCF of step a) followed by heating to obtain a liquid phase and a in-loading reduced SCF phase;
 - c) optionally decreasing the pressure and/ or raising the temperature of the SCF phase of step b) to conditions of adsorption;
 - d) introducing the SCF of step b) or step c) into a fixed bed adsorber to obtain an adsorbent loaded with the purified oil and pure SCF;
 - e) feeding the liquid phase of step b) as a reflux to the extraction device of step a);
 - f) compressing and tempering the pure SCF of stepd) to extraction conditions;
 - g) recycling the pure SCF to the extraction device of step a).

The invention further comprises a process for purifying an oil from an oil crude product by desorbing the adsorbed oil.

The invention further comprises 16 A process for

purifying an oil, optionally combined with a process for preparing a highly loaded adsorbent, which process comprises the steps of:

- A) extracting a fraction containing the oil together with high volatile components from a crude synthetic or natural oil mixture by means of supercritical fluid extraction (SFE) thus, obtaining a loaded supercritical fluid (SCF) and a raffinate containing the low volatile components of the crude product;
- B) expanding the loaded SCF of step A) followed by heating to obtain a liquid phase containing the oil and high volatile components and an unloaded gas phase (step B-1) or to obtain an in-loading reduced SCF and a liquid phase (step B-2);
- C) optionally decreasing the pressure and/ or raising the temperature of the in-loading reduced SCF phase of step B-2) to conditions of adsorption;
- D) optionally introducing the in-loading reduced SCF of step B-2) or of step C) into a fixed bed adsorber to obtain an unloaded gas phase and an adsorbent loaded with oil;
- E) collecting the unloaded gas phase of step B-1) or of step D) in a vessel and controlling the content of the gas components;
- F) optionally feeding pure gas into the vessel of step E) to guarantee the same gas composition over the whole process time;

EP 1 043 051 A2

- G) feeding part of the liquid phase of step B-1) or all of the liquid phase of step B-2) at the same temperature and pressure of the column as a reflux to the extraction device of step A);
- H) pressurizing the gas phase of step E) or of step F) followed by cooling to separation conditions;
- I) recycling the SCF of step H to the extraction device of step A);
- J) optionally feeding the liquid phase of step B-1) to a second extraction device;
- K) extracting a fraction of high volatile components from the extract of step B-1) by means of SFE thus obtaining a loaded SCF and the pure oil as raffinate;
- L) treating the reflux and the SCF as described in the steps B-1 I);
- M) collecting the oil at the bottom of the column as a raffinate.

25

35

40

45

Description

[0001] The present invention relates to a process for purifying an oil and to a process for preparing an adsorbent which is loaded with an oil.

[0002] One embodiment of the invention relates to a process for preparing an adsorbent which is loaded with an oil by combining supercritical fluid extraction (SFE) with adsorption.

[0003] Another embodiment of the invention relates to a process for purifying an oil by combining SFE, adsorption and desorption.

[0004] Another embodiment of the invention relates to a process for purifying an oil by SFE, whereby in a first step the oil is extracted together with high volatile components while the low volatile components are separated in a raffinate stream. In a second step the high volatile components are separated.

[0005] The supercritical fluid extraction (SFE) is a known process which is e.g. described by G. Brunner: Gas Extraction in "Topics in Physical Chemistry", Steinkopff, Springer, Darmstadt and New York 1994.

[0006] The combination of a continuous fluid extraction with adsorption is known to purify gases. US Patent No. 5676737 describes e.g. a separation of solutes dissolved in a gaseous phase by passing the gaseous solvent containing the solute through a sorbent bed to produce a purified gaseous solvent.

[0007] It has now been found that a combination of supercritical fluid extraction, separation of solute and solvent and adsorption as described below provides a continuous process to effectively prepare a highly loaded adsorbent.

[0008] Accordingly, the invention relates in one embodiment to a process for preparing a highly loaded adsorbent, which process comprises the steps of

- a) extracting an oil from an oil crude product by means of supercritical fluid extraction thus, obtaining a loaded supercritical fluid (SCF);
- b) expanding the loaded SCF of step a) followed by heating to obtain a liquid phase and a in-loading reduced SCF phase;
- c) optionally decreasing the pressure and/ or raising the temperature of the SCF phase of step b) to conditions of adsorption;
- d) introducing the SCF of step b) or step c) into a fixed bed adsorber to obtain an adsorbent loaded with the purified oil and pure SCF:
- e) feeding the liquid phase of step b) as a reflux to the extraction device of step a);
- f) compressing and tempering the pure SCF of stepd) to extraction conditions;

g) recycling the pure SCF to the extraction device of step a) .

[0009] The advantage of the above described process is to be seen in avoiding mechanical stress while loading the adsorbent and in reducing the energy cost in comparison to the SFE process with pressure reduction as separation principle for solute and solvent or in comparison to conventional vacuum distillation.

[0010] As used herein the term "oil" refers to a lipophilic active ingredient such as e.g. vitamin A, D, E or K, carotenoids or PUFAs (polyunsaturated fatty acids). Preferred is vitamin E including synthetically manufactured dl alpha tocopherols and the corresponding esters, such as e.g. dl alpha tocopherolacetat, or a mixture of natural tocopherols and the corresponding esters.

[0011] As used herein the term "supercritical fluid" refers to carbon dioxide, methane, ethane, propane, n-butane, acetone and mixtures thereof. Preferred is carbon dioxide.

[0012] As used herein the term "adsorbent" refers e.g. to zeolites, activated carbon, molecular sieves, silica, activated alumina and the like. Preferred is silica. A suitable silica is e.g. ZEOFREE 5170 available from J.M. Huber Corp. Locust N.J. USA.

[0013] As used herein the term "highly loaded adsorbent" refers to a loading of the adsorbent with the oil of at least 30 wt%, preferably at least 50 wt%.

[0014] As used herein the term "conditions of adsorption" does no refer to fixed conditions. The conditions depend on the kind of oil and the desired loading of the adsorbent.

[0015] As used herein the term "extraction conditions" does not refer to fixed conditions. The conditions of extraction depend on the kind of oil crude product and the SCF used. Pressure and temperature must have a value above the critical temperature and pressure, at least in the near critical region.

[0016] Thus, in a preferred embodiment the invention relates to a process for preparing a silica loaded with at least 50 wt % vitamin E, which process starts extracting vitamin E from a vitamin E crude product in an extraction device to obtain a technical grade vitamin E containing about 92wt% of pure vitamin E.

[0017] The purification of crude vitamin E by selective extraction using supercritical carbon dioxide (step a) is known in the art and described in the French publication FR 2 602 772. As described therein a good separation is effected e.g. at a pressure in the range of 80 to 250 bar and at a temperature in the range of 35 to 55 ° C. Thus, a loaded supercritical carbon dioxide is obtained, loaded with vitamin E containing about 60 wt % to about 98 wt % of pure vitamin E.

[0018] According to the present invention a good separation can also be effected at higher temperatures and higher pressures as described in FR 2 602 772. Temperatures up to 100°C and pressures up to 310 bar

15

25

30

35

40

45

are suitable. Thus, a good separation is effected at a pressure in the range of about 80 to about 310 bar and at a temperature in the range of about 35 °C to about 100 °C. Preferred is a temperature of about 60°C and a pressure of about 140 to about 170 bar.

[0019] The process for preparing a highly loaded adsorbent will now be set forth in greater detail with reference to Figure 1, showing schematically a device for preparing a highly loaded adsorbent.

[0020] The process starts by feeding the supercritical fluid under pressure into the extraction device (1). The oil crude product is fed into the extraction device (1) where the oil is dissolved and extracted obtaining supercritical fluid (SCF) loaded with oil (step a). The oil crude product may be a synthetic crude product or may be obtained from natural sources.

[0021] The extraction can also be carried out batchwise in an autoclave.

[0022] The loaded SCF is then expanded by passing through pressure reduction valve (2) to a pressure where the solubility of the SCF is reduced to obtain a inloading reduced SCF and a liquid phase (step b). The pressure reduction depends on the applied SCF and on the extraction conditions. Because of the pressure drop, temperature is reduced. Thus, the in-loading reduced SCF and the liquid phase are passed to a heater (3).

[0023] In the separator (9) the liquid phase is separated from the in-loading reduced SCF. From the separator (9) the liquid phase is fed via pump (10) as reflux to the extraction device (1) (step e).

[0024] The "conditions of adsorption" depend on the kind of oil and the desired loading of the adsorbent and are not fixed. The in-loading reduced SCF is fed to a fixed bed adsorber (4) either directly or after decreasing the pressure by passing through reduction valve (5) (step d).

[0025] The reduced pressure causes a reduction of the temperature, too, thus, another heat exchanger (6) is necessary.

[0026] The loaded SCF is expanded to a pressure in the range of about 30 to about 300 bar, and heated to about 40 to 120 °C in order to reduce the loading of the SCF so that enough liquid phase for the reflux is provided. The gas flow through the fixed bed adsorber is about 0.1-5 g_{solvent}/(min*g_{adsorbent}).

[0027] In case of vitamin E the loaded supercritical carbon dioxide is expanded to a pressure in the range of about 120 to about 150 bar, and heated to about 80°C thus, reducing the loading of the supercritical carbon dioxide to about 1wt%. The gas flow through the fixed bed adsorber is about 1.3 g_{solvent}/(min*g_{adsorbent}). Passing through the fixed bed adsorber, the diluted components are adsorbed, obtaining an adsorbent which is loaded with an oil and pure SCF, which is recycled via compressor (7) and cooler (8) to the extraction device (steps f and g). Before the SCF is recycled, content of gas mixture is analyzed and optionally regulated by feeding pure gas.

[0028] Fig. 2 is a schematic view of a device for preparing an adsorbent which is loaded with an oil followed by desorbing the oil according to an illustrative embodiment of the present invention.

[0029] The extraction, adsorbing and desorbing device shown in Fig. 2 includes a SCF supply section (11), adsorbing/desorbing devices (12), (13), (14) and a separator (18).

[0030] The SCF loaded with the extracted oil is fed to the fixed bed adsorber (12). When the loading has nearly reached the desired value, valve (15) is opened to start the loading of fixed bed adsorber (13). When fixed bed adsorber (12) is completely loaded, the SCF flow to adsorber (12) is closed and adsorber (13) is solely loaded.

[0031] When the loading of adsorber (13) has nearly reached the desired value, valve (16) is opened to start the loading of fixed bed adsorber (14). When fixed bed adsorber (13) is completely loaded, the SCF flow to adsorber (13) is closed and adsorber (14) is solely loaded.

[0032] The desorption solvent is adapted to the conditions of desorption by passing through hydraulic valve (19) and heater (20). Over valve (21) the desorbing solvent is passed to the fixed bed adsorber (12). By passing through the fixed bed adsorber, the solvent is loaded with the former adsorbed oil. The desorbed oil is fed over valve (26) in order to decrease the pressure and thus solubility. Afterwards the loaded solvent is fed to the separator (18) where the adsorbed oil is obtained as a liquid phase. Moreover the unloaded solvent is recycled and brought to desorption conditions to be provided for the next desorption step which is effected in adsorber (13).

[0033] When the loading of adsorber (14) has nearly reached the desired value, valve (17) is opened to start loading again fixed bed adsorber (12). When fixed bed adsorber (14) is completely loaded, the SCF flow to adsorber (14) is closed and adsorber (12) is solely loaded again.

[0034] When adsorber (13) is completely loaded, the desorbing solvent is passed via valve (22) to the fixed bed adsorber (13). The desorbed oil is fed over valve (25) to the separator (18).

[0035] When adsorber (14) is completely loaded, the desorbing solvent is passed via valve (23) to the fixed bed adsorber (14). The desorbed oil is fed over valve (24) to the separator (18).

[0036] A purified oil is obtained from an oil crude product by the whole process of extraction, adsorption and desorption.

[0037] Thus, the present invention further comprises a process for purifying an oil, which process comprises the steps of:

a) extracting an oil from an oil crude product by means of supercritical fluid extraction thus, obtaining a loaded supercritical fluid (SCF);

20

- b) expanding the loaded SCF of step a) followed by heating to obtain a liquid phase and a in-loading reduced SCF phase;
- c) optionally decreasing the pressure and/ or raising the temperature of the SCF phase of step b) to conditions of adsorption;
- d) introducing the SCF of step b) or step c) into a fixed bed adsorber to obtain an adsorbent loaded with the purified oil and pure SCF;
- e) feeding the liquid phase of step b) as a reflux to the extraction device of step a);
- f) compressing and tempering the pure SCF of stepd) to extraction conditions;
- g) recycling the pure SCF to the extraction device of step a);
- h) desorbing the adsorbed oil by passing a desorbing solvent through the fixed bed adsorber.

[0038] Suitable "desorbing solvents" are e.g. carbon dioxide, methane, ethane, propane, n-butane, acetone, ethanol, ethylacetate and mixtures thereof

[0039] The "conditions of desorption" are about 30 to about 300 bar and about 40 to 150 $^{\circ}$ C.

[0040] Vitamin E is preferably desorbed by propane at about 60 bar and about 70°C.

[0041] The desorbed oil can be further purified in a second circuit, e.g. the adsorbed technical grade vitamin E containing about 92wt% pure vitamin E can thus be purified to a pharma grade vitamin E containing at least 97wt% pure vitamin E. It is possible to purify the desorbed oil up to contents of 99.9wt%.

[0042] To further purify the desorbed technical grade vitamin E the desorbate is fed to an extraction device. The extraction principle remains the same as before (step a). Pure SCF is provided at the bottom of the extraction device (1). The loaded SCF is released (step b), conditions are optionally changed for adsorption (step c) and the in-loading reduced SCF is led to a fixed bed adsorber. A reflux which is provided by step b) is fed to the extraction device (step e) and the pure SCF is brought up to extraction conditions (step f).

[0043] The process described in FR 2 602 772 starts by extracting the high volatile components of the tocopherol crude product. The raffinate contains a mixture of low volatile components and tocopherol.

[0044] In contrast to FR 2 602 772 it has now been found that a first separation of the low volatile components in a raffinate stream increases the separation quality and the yield of the process. After the separation of the low volatile components, separation of the high volatile components is much easier and yield is further increased. Yields up to 99.9% may be obtained.

[0045] Thus, another embodiment of the invention is a process for purifying an oil, optionally combined with a process for preparing a highly loaded adsorbent, which process comprises the steps of

- A) extracting a fraction containing the oil together with high volatile components from a crude synthetic or natural oil mixture by means of supercritical fluid extraction (SFE) thus, obtaining a loaded supercritical fluid (SCF) and a raffinate containing the low volatile components of the crude product;
- B) expanding the loaded SCF of step A) followed by heating to obtain a liquid phase containing the oil and high volatile components and an unloaded gas phase (step B-1) or to obtain an in-loading reduced SCF and a liquid phase (step B-2);
- C) optionally decreasing the pressure and/ or raising the temperature of the in-loading reduced SCF phase of step B-2) to conditions of adsorption;
- D) optionally introducing the in-loading reduced SCF of step B-2) or of step C) into a fixed bed adsorber to obtain an unloaded gas phase and an adsorbent loaded with oil;
- E) collecting the unloaded gas phase of step B-1) or of step D) in a vessel and controlling the content of the gas components;
- F) optionally feeding pure gas into the vessel of step E) to guarantee the same gas composition over the whole process time;
- G) feeding part of the liquid phase of step B-1) or all of the liquid phase of step B-2) at the same temperature and pressure of the column as a reflux to the extraction device of step A);
- H) pressurizing the gas phase of step E) or of step F) followed by cooling to separation conditions;
- I) recycling the SCF of step H to the extraction device of step A);
- J) optionally feeding the liquid phase of step B-1) to a second extraction device;
- K) extracting a fraction of high volatile components from the extract of step B-1) by means of SFE thus obtaining a loaded SCF and the pure oil as raffinate:
- L) treating the reflux and the SCF as described in the steps B-1 I);
- M) collecting the oil at the bottom of the column as

20

25

40

a raffinate.

[0046] The fat soluble oil is preferably vitamin E as defined above.

[0047] The above described process for purifying a noil, optionally combined with a process for preparing a highly loaded adsorbent, is preferably a process for purifying a vitamin E crude product. The preferred process comprises the following parts:

an extraction process for preparing technical grade vitamin E from a vitamin E crude product by separating the low volatile components (steps A, B-1; E, F; G, H and I);

an extraction process for preparing pharma grade vitamin E from a technical grade vitamin E by separating the high volatile components (steps K-M).

[0048] Optionally the process may be combined with an adsorption process to prepare an absorbent loaded with technical grade vitamin E (steps A, B-2, C and D).

[0049] The process for purifying vitamin E starts by extracting a mixture of high volatile components and vitamin E in an extraction device to obtain a technical grade vitamin containing about 92wt% of pure vitamin. This technical grade vitamin E can be fed to a second extracting device (step J) or the technical grade vitamin E may be introduced to a fixed bed adsorber to obtain a highly loaded adsorbent (steps C- D). In a second purification process (steps K, L and M) a pharma grade vitamin E containing up to 99,9 wt% of vitamin E may be obtained.

[0050] Supercritical solvents used to extract a mixture of vitamin E and high volatile components from the crude product (steps A, B-1; E, F; G, H and I) are the solvents used in the process for preparing a highly loaded adsorbent and listed above. A preferred supercritical solvent is a mixture of carbon dioxide and propane. The content of propane can vary in a broad range from 1-99.9%, preferred is a propane content of about 10 vol% to about 30 vol%.

[0051] Supercritical solvents used to extract high volatile components from a mixture of vitamin E and high volatile components (steps K-M) are the solvents used in the process for preparing a highly loaded adsorbent and listed above. Preferred is carbon dioxide. [0052] The above described purification process uses in contrast to FR 2 602 722 a constant reflux with same temperature and pressure as in the separation column. Thus, the separation process is isothermal. By using such a reflux, the process control is improved and the purity of the product and the yield can easily be increased.

[0053] Fig. 3 shows schematically a device suitable for a process for purifying an oil whereby the high volatile components and the oil is extracted and the low volatile components are separated in a raffinate stream

followed by the separation of high volatile components.

[0054] The device of Fig. 3 contains the device elements of Fig. 1 (1, 2, 3, 7, 8, 9, 10).

[0055] The process starts by feeding the supercritical fluid under pressure into the extraction device (1). The oil crude product is fed into the extraction device (1) where the oil is dissolved and extracted obtaining SCF loaded with oil (step A).

[0056] The loaded SCF is then expanded by passing through pressure reduction valve (2) to a pressure where the solubility of the SCF is reduced to obtain an unloaded SCF and a liquid phase (step B-1) or to obtain a in-loading reduced SCF and a liquid phase (step B-2). The pressure reduction depends on the applied SCF and on the extraction conditions. Because of the pressure drop, temperature is reduced. Thus, the unloaded SCF and the liquid phase (step B-1) or the in-loading reduced SCF and the liquid phase (step B-2) are passed to a heater (3).

[0057] In the separator (9) the liquid phase is separated from the unloaded SCF or from the in-loading reduced SCF. The in-loading reduced SCF may be fed to a fixed bed adsorber as shown in Fig. 1 (steps C and D). After passing the fixed bed adsorber an unloaded gas phase is obtained. This is not shown in Fig. 3.

[0058] The unloaded SCF of step B-1 is collected in vessel (28) (step E) and recycled via compressor (7) and cooler (8) to the extraction device (1) (step I). If necessary pure gas from vessel (29) is fed into vessel (28). The raffinate stream of the first extraction step containing the low volatile components is collected in vessel (41).

[0059] From the separator (9) the liquid phase is fed via pump (10) as reflux to the extraction device (1) (step G). Concerning step B-1 only a part of the liquid phase containing the oil and high volatile components is fed back to the extraction device. The other part is collected in vessel (30) and is fed via pump (31) to a second extracting device (32). Compared to extraction device (1) the extraction conditions in device (32) change in terms of lower solvent density and higher solvent flow. The loaded SCF (loaded with high volatile components) is expanded (33), heated (34) and fed to a separator (35). After expansion a liquid phase is obtained containing the high volatile components which are collected in vessel (39). The unloaded SCF is recycled via compressor (37) and cooler (38) to the extraction device (32). Vessel (40) contains the pure oil as raffinate.

[0060] In the process of Fig. 3 preferably Vit. E is purified, including synthetically manufactured dl alpha tocopherols and the corresponding esters, such as e.g. dl alpha tocopherolacetat, or a mixture of natural tocopherols and the corresponding esters.

[0061] In case of vitamin E step A is carried out at a temperature of about 40 °C to about 100 °C, preferably of about 40 °C to about 60 °C and a pressure of about 60 bar to about 310 bar, preferably of about 120 bar to about 170 bar.

20

[0062] In step B-1 the pressure is reduced to separation conditions of about 60 bar to about 150 bar, preferably of about 60 bar to about 70 bar. The subsequent heating step is carried out at about 40 °C to about 80 °C, preferably of about 50 °C to about 60 °C.

[0063] In step B-1 the pressure is reduced as described above for the process shown in Fig. 1. The loaded SCF is expanded to a pressure in the range of about 120 bar to about 150 bar, and heated to about 80°C.

[0064] The temperature and pressure of the reflux stream corresponds to the temperature and pressure of step A. Thus, the reflux stream has a temperature of of about 40 °C to about 100 °C, preferably of about 40 °C to about 60 °C and a pressure of about 60 bar to about 240 bar, preferably of about 120 bar to about 160 bar.

[0065] The following Examples illustrate the invention but do not limit its scope in any manner.

Example 1

[0066] Preparation of a loaded silica, loaded with 50 wt.-% of technical grade vitamin E containing about 92wt% of pure vitamin E.

[0067] The extraction was done in an autoclave. The conditions in the autoclave were: 60°C and 160 bar. The SCF was CO₂. These conditions simulate the conditions needed for a reduced solubility of the SCF in the separator (9). In the autoclave a phase equilibrium was reached. The gas phase was led through a hydraulic valve to the fixed bed adsorber (4). The hydraulic valve was controlled by pressure measurement. Pressure was reduced to adsorption conditions of 150 bar. The fixed bed adsorber was tempered at 80°C. When the desired pressure in the fixed bed adsorber was reached, flow control started. The flow of the gas phase was controlled by massflow measurement, which is based on the Coriolis force. The gas flow was about 1.3 g_{solvent}/(min*g_{adsorbent}). Adsorption was stopped, when a loading of about 50 wt.-% was reached. With a solubility of the gas phase in the autoclave of 1 wt.-% this means a total gas flow of 3000 g or 150 minutes of adsorption time, resp. The amount of adsorbent was about 30 g. Adsorption was stopped by closing a manually operated valve, which is placed between autoclave and fixed bed adsorber.

Example 2:

[0068] Desorption of the adsorbed vitamin E of 50 Example 1.

[0069] Desorption follows directly after adsorption. In case of desorption, pure solvent is necessary to desorb the adsorbed oil. Thus, the manually operated valve between autoclave and fixed bed adsorber remained closed and another manually operated valve was opened to provide pure solvent for desorption. The principle of the hydraulic valves to regulate pressure and

massflow remains the same as in case of adsorption (Example 1). For desorption, pressure was reduced to 60 bar and the fixed bed adsorber was tempered at 70°C. The solvent was propane. Flow of propane was about 0.17 g_{solvent}/(min*g_{adsorbent}). First, the unpressurized fixed bed adsorber was done under pressure. Second, the hydraulic valve to regulate the massflow was opened. After the fixed bed adsorber, propane was released and the desorbed oil was collected in a letdown vessel. Finally, desorption was stopped after a total flow of 350 g propane. Afterwards, pressure of the fixed bed adsorber was released and adsorption can start again.

15 Example 3

[0070] Preparation of a loaded silica while purifying the desorbed technical grade vitamin E of Example 2 up to pharma grade vitamin E containing about 97wt% pure vitamin E.

[0071] The extraction was done in an autoclave. The conditions in the autoclave were: 60°C and 150 bar. The SCF was CO2 which was loaded after the extraction step by technical grade vitamin E and impurities which are low volatile compared to vitamin E. In the autoclave a phase equilibrium was reached. The gas phase was led through a hydraulic valve to the fixed bed adsorber (4). The hydraulic valve was controlled by pressure measurement. Pressure was reduced to adsorption conditions of 120 bar. The fixed bed adsorber was tempered at 80°C. When the desired pressure in the fixed bed adsorber was reached, flow control started. The flow of the gas phase was controlled by massflow measurement, which is based on the Coriolis force. The gas flow was about 1.3 g_{sol-} vent/(min*gadsorbent). Adsorption was stopped, when a loading of about 50 wt.-% was reached. With a solubility of the gas phase in the autoclave of 1 wt.-% this means a total gas flow of 3000 g or 150 minutes of adsorption time, resp. The amount of adsorbent was about 30 g. Adsorption was stopped by closing a manually operated valve, which was placed between autoclave and fixed bed adsorber.

5 Example 4

40

[0072] Desorption of the adsorbent obtained in Example 3.

[0073] The manually operated valve between autoclave and fixed bed adsorber remained closed and another manually operated valve was opened to provide pure solvent for desorption. The principle of the hydraulic valves to regulate pressure and massflow remains the same as in case of adsorption (Example 3). For desorption, pressure was reduced to 60 bar and the fixed bed adsorber was tempered at 80°C. The solvent was propane. Flow of propane was about 0.17 g_{solvent}/(min*g_{adsorbent}). First, the unpressurised fixed bed

20

25

35

40

45

adsorber was done under pressure. Second, the hydraulic valve to regulate the massflow was opened. After the fixed bed adsorber, propane was released and the desorbed oil was collected in a let-down vessel. Finally, desorption was stopped after a total flow of 360 g propane. Afterwards, pressure of the fixed bed adsorber was released and adsorption can start again.

Example 5

[0074] Purification of crude synthetic tocopherolacetate by means of supercritical fluid extraction with a mixture of 90% carbon dioxide and 10% propane.

The extraction was done in a column with a [0075] packing height of 13.6m and an inner diameter of 35mm. The conditions in the column were 40°C and 140 bar. The SCF was a mixture of 90% carbon dioxide and 10% propane. In the column, a phase equilibrium was reached. Concentration of oil in the gas phase was about 3.7 wt.-%. The gas phase was led through a hydraulic valve and a heat exchanger to the separator (9). The hydraulic valve was controlled by pressure measurement. Pressure was reduced to separation conditions of 70 bar. The heat exchanger heated the gas phase at 40°C. After separation of solvent and liquid, gas phase was analyzed and recycled to the extraction column (1). The flow of the SCF was controlled by massflow measurement, which is based on the Coriolis force. The gas flow was about 35 kg solvent/h. Before entering the column, gas phase was pressurized and cooled to extraction conditions. Ratio of reflux to extract was about 1. Reflux was fed into the column at 40°C and 140 bar. Feed flow was 0.750 kg/h. Content of tocopherolacetate in the extract was about 93 wt.-% and yield was about 95%.

Example 6

[0076] Purification of crude synthetic tocopherolacetate by means of supercritical fluid extraction with a mixture of 80% carbon dioxide and 20% propane.

[0077] The extraction was done in a column with a packing height of 13.6m and an inner diameter of 35mm. The conditions in the column were 40°C and 120 bar. The SCF was a mixture of 80% carbon dioxide and 20% propane. In the column, a phase equilibrium was reached. Concentration of oil in the gas phase was about 5.8 wt.-%. The gas phase was led through a hydraulic valve and a heat exchanger to the separator (9). The hydraulic valve was controlled by pressure measurement. Pressure was reduced to separation conditions of 70 bar. The heat exchanger heated the gas phase at 40°C. After separation of solvent and liquid, gas phase was analyzed and recycled to the extraction column (1). The flow of the SCF was controlled by massflow measurement, which is based on the Coriolis force. The gas flow was about 32 kg solvent/h. Before entering the column, gas phase was pressurized and

cooled to extraction conditions. Ratio of reflux to extract was about 0.9. Reflux was fed into the column at 40°C and 120 bar. Feed flow was 1.080 kg/h. Content of tocopherolacetate in the extract was about 92 wt.-% and yield was about 96%.

Example 7

[0078] Preparation of a loaded silica after the purification of crude synthetic tocopherolacetate by means of supercritical fluid extraction with a mixture of 90% carbon dioxide and 10% propane.

[0079] The extraction was done in an autoclave. The conditions in the autoclave were 40°C and 120 bar. These conditions simulate the situation after the separator with a in-loading reduced SCF. The SCF was a mixture of 90% carbon dioxide and 10% propane, which was loaded after the extraction step with synthetic tocopherolacetate of technical grade and impurities which are low volatile compared to vitamin E. In the autoclave, a phase equilibrium was reached. The gas phase was led through a hydraulic valve to the fixed bed adsorber (4). The hydraulic valve was controlled by pressure measurement. Pressure was reduced to adsorption conditions of 110 bar. The fixed bed adsorber was tempered at 50°C. When the desired pressure in the fixed bed adsorber was reached, flow control started. The flow of the gas phase was controlled by massflow measurement, which is based on the Coriolis force. The gas flow was about 1.3 g_{solvent}/(min*g_{adsorbent}). Adsorption was stopped, when a loading of about 50 wt.-% was reached. With a concentration of oil in the gas phase in the autoclave of 2.3 wt.-% this means a total gas flow of 1359 g CO2 or 65 minutes of adsorption time, resp. The amount of adsorbent was about 31 g. Adsorption was stopped by closing a manually operated valve, which was placed between autoclave and fixed bed adsorber.

Example 8

[0080] Purification of technical grade vitamin E up to pharma grade vitamin E by means of supercritical fluid extraction with a carbon dioxide as a supercritical solvent.

[0081] The extraction was done in a column with a packing height of 13.6m and an inner diameter of 35mm (32). The conditions in the column were 50°C and 160 bar. The SCF was pure carbon dioxide. In the column, a phase equilibrium was reached. Concentration of oil in the gas phase was about 2.3 wt.-%. The gas phase was led through a hydraulic valve (33) and a heat exchanger (34) to the separator (35). The hydraulic valve was controlled by pressure measurement. Pressure was reduced to separation conditions of 70 bar. The heat exchanger heated the gas phase at 50°C. After separation of solvent and liquid, gas phase was and recycled to the extraction column (32). The flow of the SCF was controlled by massflow measurement, which is based

25

35

40

45

on the Coriolis force. The gas flow was about 56 kg $_{\rm sol-vent}$ /h. Before entering the column, gas phase was pressurized and cooled to extraction conditions. Ratio of reflux to extract was about 30. Reflux was fed into the column at 50°C and 160 bar. Feed flow was 0.519 kg/h. $_{\rm 5}$ Content of tocopherolacetate in the raffinate was about 97.4 wt-% and yield was about 99%.

Example 9

[0082] Purification of technical grade vitamin E up to pharma grade vitamin E by means of supercritical fluid extraction with a carbon dioxide as a supercritical solvent.

[0083] The extraction was done in a column with a packing height of 13.6m and an inner diameter of 35mm (32). The conditions in the column were 60°C and 200 bar. The SCF was pure carbon dioxide. In the column, a phase equilibrium was reached. Concentration of oil in the gas phase was about 2.5 wt.-%. The gas phase was led through a hydraulic valve (33) and a heat exchanger (34) to the separator (35). The hydraulic valve was controlled by pressure measurement. Pressure was reduced to separation conditions of 70 bar. The heat exchanger heated the gas phase at 60°C. After separation of solvent and liquid, gas phase was and recycled to the extraction column (32). The flow of the SCF was controlled by massflow measurement, which is based on the Coriolis force. The gas flow was about 50 kg solvent/h. Before entering the column, gas phase was pressurized and cooled to extraction conditions. Ratio of reflux to extract was about 16. Reflux was fed into the column at 60°C and 200 bar. Feed flow was 0.500 kg/h. Content of tocopherolacetate in the raffinate was about 98.6 wt.-% and yield was about 91%.

Claims

- Process for preparing a highly loaded adsorbent, which process comprises the steps of
 - a) extracting an oil from an oil crude product by means of supercritical fluid extraction thus, obtaining a loaded supercritical fluid (SCF);
 - b) expanding the loaded SCF of step a) followed by heating to obtain a liquid phase and a in-loading reduced SCF phase;
 - c) optionally decreasing the pressure and/ or raising the temperature of the SCF phase of step b) to conditions of adsorption:
 - d) introducing the SCF of step b) or step c) into a fixed bed adsorber to obtain an adsorbent 55 loaded with the purified oil and pure SCF;
 - e) feeding the liquid phase of step b) as a reflux

to the extraction device of step a);

- f) compressing and tempering the pure SCF of step d) to extraction conditions;
- g) recycling the pure SCF to the extraction device of step a) .
- Process according to claim 1, wherein the oil is vitamin A, D, E or K, carotenoids or PUFAs.
- Process according to claim 2, wherein the oil is vitamin E.
- Process according to any one of claims 1 to 3, wherein the SCF is carbon dioxide, methane, ethane, propane, n-butane, acetone and mixtures thereof.
- 20 5. Process according to claim 4, wherein the SCF is carbon dioxide.
 - Process according to any one of claims 1 to 5, wherein the adsorbent is a zeolite, an activated carbon, a molecular sieve, activated alumina or silica.
 - Process according to claim 6, wherein the adsorbent is silica.
 - 8. Process according to any one of claims 1 to 7, wherein the adsorbent is loaded with the oil of at least 30 wt%, preferably 50wt%.
 - 9. Process according to any one of claims 1 to 8, wherein step a) is carried out at a pressure in the range of about 80 to about 310 bar, preferably about 140 to about 170 bar and at a temperature in the range of about 35 to about 100 °C, preferably about 60°C.
 - 10. Process according to any one of claims 1 to 9, wherein the loaded SCF of step a) is in step b) expanded to a pressure in the range of about 30 to about 300 bar, preferably in a range of about 120 to about 150 bar and heated to a temperature in the range of about 40 to about 120 °C, preferably at about 80°C.
 - A highly loaded adsorbent obtainable by a process according to any one of claims 1 to 10.
 - 12. A process for purifying an oil, which process comprises the steps of:
 - a) extracting an oil from an oil crude product by means of supercritical fluid extraction thus, obtaining a loaded supercritical fluid (SCF);

20

40

45

- b) expanding the loaded SCF of step a) followed by heating to obtain a liquid phase and a in-loading reduced SCF phase;
- c) optionally decreasing the pressure and/ or step b) to conditions of adsorption;
- d) introducing the SCF of step b) or step c) into a fixed bed adsorber to obtain an adsorbent loaded with the purified oil and pure SCF;
- e) feeding the liquid phase of step b) as a reflux to the extraction device of step a);
- f) compressing and tempering the pure SCF of step d) to extraction conditions
- g) recycling the pure SCF to the extraction device of step a);
- h) desorbing the adsorbed oil by passing a desorbing solvent through the fixed bed adsorber.
- 13. A process according to claim 12, wherein the desorbing solvent is carbon dioxide, methane, ethane, propane, n-butane, acetone, ethanol, ethylacetate and mixtures thereof.
- 14. A process according to claim 12 or 13 wherein step h) is carried out at about 30 to about 300 bar and about 40 to 150 °C.
- **15.** The use of an oil purified according to a process of any one of claims 12 to 14 as a feed additive or for further purification up to contents of 99.9wt%.
- 16. A process for purifying an oil, optionally combined with a process for preparing a highly loaded adsorbent, which process comprises the steps of:
 - A) extracting a fraction containing the oil together with high volatile components from a crude synthetic or natural oil mixture by means of supercritical fluid extraction (SFE) thus, obtaining a loaded supercritical fluid (SCF) and a raffinate containing the low volatile components of the crude product;
 - B) expanding the loaded SCF of step A) followed by heating to obtain a liquid phase containing the oil and high volatile components and an unloaded gas phase (step B-1) or to obtain an in-loading reduced SCF and a liquid phase (step B-2);
 - C) optionally decreasing the pressure and/ or raising the temperature of the in-loading

- reduced SCF phase of step B-2) to conditions of adsorption;
- D) optionally introducing the in-loading reduced SCF of step B-2) or of step C) into a fixed bed adsorber to obtain an unloaded gas phase and an adsorbent loaded with oil;
- E) collecting the unloaded gas phase of step B-1) or of step D) in a vessel and controlling the content of the gas components;
- F) optionally feeding pure gas into the vessel of step E) to guarantee the same gas composition over the whole process time;
- G) feeding part of the liquid phase of step B-1) or all of the liquid phase of step B-2) at the same temperature and pressure of the column as a reflux to the extraction device of step A);
- H) pressurizing the gas phase of step E) or of step F) followed by cooling to separation conditions;
- I) recycling the SCF of step H to the extraction device of step A);
- J) optionally feeding the liquid phase of step B-1) to a second extraction device;
- K) extracting a fraction of high volatile components from the extract of step B-1) by means of SFE thus obtaining a loaded SCF and the pure oil as raffinate;
- L) treating the reflux and the SCF as described in the steps B-1 I);
- M) collecting the oil at the bottom of the column as a raffinate.
- A process according to claim 16, wherein the oil is vitamin E.
- 18. A process according to claims 16 and 17, wherein the SCF is carbon dioxide, methane, ethane, propane, n-butane, acetone and mixtures thereof.
- 19. A process according to any one of claims 16-18, comprising the steps A, B-1, E, F, G, H, I, K, L and M, wherein step A is carried out at a temperature of about 40 °C to about 100 °C, preferably of about 40 °C to about 60 °C and a pressure of about 60 bar to about 310 bar, preferably of about 120 bar to about 160 bar; and wherein in step B-1 the pressure is reduced to separation conditions of about 60 bar to about 150 bar, preferably of about 60 bar to about

70 bar and the subsequent heating step is carried out at about 40 $^{\circ}$ C to about 80 $^{\circ}$ C, preferably of about 50 $^{\circ}$ C to about 60 $^{\circ}$ C.

Figure 1

Figure 2

Figure 3

PUB-NO: EP001043051A2

DOCUMENT-IDENTIFIER: EP 1043051 A2

TITLE: Process for preparing an

adsorbent which is loaded

with an oil

PUBN-DATE: October 11, 2000

INVENTOR-INFORMATION:

NAME COUNTRY

FLECK, UTE CH

ASSIGNEE-INFORMATION:

NAME COUNTRY

HOFFMANN LA ROCHE CH

APPL-NO: EP00101051

APPL-DATE: January 20, 2000

PRIORITY-DATA: EP00101051A (January 20, 2000) ,

EP99101305A (January 25, 1999)

INT-CL (IPC): B01D015/00 , B01J020/30 ,

C07D311/72

EUR-CL (EPC): B01D015/00 , B01J020/32

ABSTRACT:

CHG DATE=20001116 STATUS=O> The invention

relates to a process for preparing a highly loaded adsorbent, which process comprises the steps of a) extracting an oil from an oil crude product by means of supercritical fluid extraction thus, obtaining a loaded supercritical fluid (SCF); b) expanding the loaded SCF of step a) followed by heating to obtain a liquid phase and a in-loading reduced SCF phase; c) optionally decreasing the pressure and/ or raising the temperature of the SCF phase of step b) to conditions of adsorption; d) introducing the SCF of step b) or step c) into a fixed bed adsorber to obtain an adsorbent loaded with the purified oil and pure SCF; e) feeding the liquid phase of step b) as a reflux to the extraction device of step a) ; f) compressing and tempering the pure SCF of step d) to extraction conditions; g) recycling the pure SCF to the extraction device of step a). The invention further comprises a process for purifying an oil from an oil crude product by desorbing the adsorbed oil. The invention further comprises 16 A process for purifying an oil, optionally combined with a process for preparing a highly loaded adsorbent, which process comprises the steps of: A) extracting a fraction containing the oil together with high volatile components from a crude synthetic or natural oil mixture by means of supercritical fluid extraction (SFE) thus, obtaining a loaded supercritical fluid (SCF) and a raffinate containing the low volatile components of the crude product; B) expanding the loaded SCF of step A) followed by heating to obtain a liquid phase containing the oil and high volatile components and an unloaded gas phase (step B-1) or to obtain an in-loading reduced SCF and a liquid phase (step B-2); C) optionally decreasing the pressure and/ or raising the temperature of the inloading reduced SCF phase of step B-2) to

conditions of adsorption; D) optionally introducing the in-loading reduced SCF of step B-2) or of step C) into a fixed bed adsorber to obtain an unloaded gas phase and an adsorbent loaded with oil; E) collecting the unloaded gas phase of step B-1) or of step D) in a vessel and controlling the content of the gas components; F) optionally feeding pure gas into the vessel of step E) to quarantee the same gas composition over the whole process time; G) feeding part of the liquid phase of step B-1) or all of the liquid phase of step B-2) at the same temperature and pressure of the column as a reflux to the extraction device of step A); H) pressurizing the gas phase of step E) or of step F) followed by cooling to separation conditions; I) recycling the SCF of step H to the extraction device of step A); J) optionally feeding the liquid phase of step B-1) to a second extraction device; K) extracting a fraction of high volatile components from the extract of step B-1) by means of SFE thus obtaining a loaded SCF and the pure oil as raffinate; L) treating the reflux and the SCF as described in the steps B-1 - I; M) collecting the oil at the bottom of the column as a raffinate.