

FIG. 1

FIG. 2

FIG. 3

(ENVIRO-MATIC) MODULES	FUNCTIONS	BENEFITS
Aggregates Reclaiming Module	Separates aggregates from slurry, washes, dewaters aggregates. Choice of models and capacities.	High quality construction by Stephens Mfg. produces long life, trouble-free performance.
Shaker Screen Module (optional)	Separates coarse and fine aggregates.	Reduces material handling costs.
Hydrocyclone Module (optional)	Strips sand fines (100+) from slurry on demand. Centrifugal flow device has no moving parts.	Maximizes recovery of fines. Reduces slurry density for better recycling or dewatering.
Slurry Vessel Module	Stores slurry for later recycling, dewatering or disposal.	Underground location saves space, permits dilution to control density. Agitators run on demand, use minimal power.
Density Cell Module	Measures specific gravity of slurry.	Ensures total quality control of concrete made with recycled slurry.

FIG. 4

Solids Correction Programming Instruction Module	Powerful, proprietary software interfaces with batch plant control system, maintains yield, water/cement ratio and mix proportions regardless of slurry density	Protects quality of your product. Permits total recycling of slurry with no compromise in mix design. Works with all major computerized plant controls. Only the Enviro-Matic System has this vital quality control capability.
Cyclic Plate Filter Press Module (optional)	Simple, economical method of dewatering slurry when it cannot be recycled into new concrete. Range of sizes and capacities.	Completely eliminates any slurry problem. Supports extreme demands up to 150 cu. yd. per day of returned concrete. Solids are compressed into stable, solid cake byproduct easy to load, haul and dump as fill material. Filtrate water is clarified and reusable.
Continuous Belt Filter Press Module (optional)	Minimizes or eliminates need for extensive settling ponds.	
Drainage Containment Interface Module (optional)	All plant site storm drainage, fugitive water, filtrate, and make-up water can be prioritized by Enviro-Matic control.	Aids in compliance with regulations even with maximum production, adverse job conditions, high volumes of returned concrete and severe weather.

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FILTER PRESS DILUTION

VESSEL	GAL. CAP.	S.G.		PRESS			PUMP			COMP			CYCLE TIME-MIN			NUMBER CYCLES	FOB COST		
		START	STOP	SIZE	GPM	HP	PSI	CFM	HP	PSI	1 ST	LAST	TOT.	PRESS	PUMP	COMP			
EM20	5,000	1.25	1.03	
EM40	10,000	1.25	1.03	

FIG. 9A

FILTER PRESS FILTRATE

VESSEL	GALLON CAP.		S.G.	PRESS		PUMP			COMP			CYCLE TIME-MIN		NO. CYCLES	TOTAL TIME MIN			FOB COST
	START	STOP		SIZE	GPM	HP	PSI	CFM	HP	PSI	1 ST	LAST	TOT.	PRESS	PUMP	COMP		
EM20	5,000	500	1.25		
EM40	10,000	1,000	1.25		

FIG. 9B

BELT PRESS FILTRATE

WIDTH METERS	CAP. LB/HR	SG	GPM	LB/CY	CY/MIN	AVG. FEED TO E-M	INTER- MITTENT FEED TO E-M	CY/HR	EM20	EM40	EM20	EM40	FOB COST BELT PRESS	COST/DAY POLYMER
1.2	12,000	1.22	70	620	0.32		1	19.2	77	97	64	135		
1.7	18,000	1.22	105	620	0.48		1	28.8	106	126	43	90		
2.2	24,000	1.22	140	620	0.64		1	38.4	135	155	32	68		

FIG. 10

E D T O A X D M E T H I S S O C O P Y
**CLOSED CIRCUIT MATERIAL UTILIZATION CHART
FOR RETURNED CONCRETE**

WATER SOURCE	CODE	CONCRETE RECYCLE MACHINE	PLANT BATCH WATER	BELT PRESS	FILTER PRESS	POND	HYDRO CYCLONE	DENSITY CELL
FRESH	F	X	X	X	X			X
CLARIFIED SLURRY	CS	X						
CLARIFIED POND	CP	X	X					
SLURRY	S		X	X	X	X		X
DRAINAGE	D					X		
FILTRATE	FT					X		
RETURN CONCRETE	RC	X						

FIG. 11