Machine Learning and Data Mining

Introduction

Maxim Borisyak September 1, 2016

National Research University Higher School of Economics

Logistics

Course structure

- Lecture:
 - theoretical material.
- · Seminar:
 - practice with technologies for ML (read libraries);
 - excersises;
 - · Q&A;
 - · student presentations.
- · Excersises from seminar becomes homework.
- Course meterials will appear at github.com/HSE-LaMBDA/Machine-Learning-Data-Mining-2016
- Please join course google group

Assessment

To pass this course you will need to:

- · do homework (3-5 during course);
- · make either:
 - · Machine Learning oriented project;
 - · a presentation on course related topic.

Syllabus

Syllabus

There are planned 3 parts of the course:

- 1. good, old-fashioned Machine Learning;
- 2. Deep Learning
- 3. Big Data

Good, old-fashioned Machine Learning

- · Machine Learning 101;
- · more or less advanced theory;
- · practice with:
 - · numpy,
 - · scipy,
 - · sklearn,
 - ...

Deep Learning

Since Deep Learning area has:

- · specific theory,
- has its own specific tools, libraries and sometimes requires specific hardware it forms separate part of the course.
- · minimal theory:
 - · Neural Networks 101;
 - · optimization 101;
- · symbolic computations (theano);
- massively parallel computations (theano on GPU);
- Deep Learning.

Big Data

We will read "Big Data" as **distributed algorithms for Machine Learning and Data Mining**.

- distributed computations (Spark);
- · SGD, again ...;
- recommendation algorithms.

Adjustments

I am not fully aware of your background. Thus I am asking you to particapate in a survey so I can make some adjestments.

Summary

Summary

- · lecture + seminar;
- · 3-5 homeworks + either project or presentation;
- · 3 parts:
 - · "Shallow" Learning,
 - · Deep Learning,
 - · "Big" Learning;
- $\boldsymbol{\cdot}$ you can influence course structure via the survey.