Математическая логика

Исчисление предикатов

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
Π/Π	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизъюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Определение предиката

Предикатами являются выражения, имеющие форму высказывания, но содержащие переменные, принадлежащие некоторому множеству D.

Множество D называется предметной областью, а переменные — предметными переменными.

Определение предиката

Предикаты отражают свойства и отношения между предметами из заранее заданной предметной области.

Предикат при подстановке конкретных констант из предметной области может принимать значения U или \mathcal{I} .

Пример высказываний:

- 1) 2 простое число,
- 2) 3>1

Пример предикатов:

- 1) n простое число, D = N,
- 2) $n_1 > n_2$, D = N.

Введем следующие обозначения:

 $P_1(n)$ — свойство «быть простым числом», $P_2(n_1,n_2)$ отношение « n_1 больше n_2 ».

Рассмотрим значения предикатов при разных значениях n, n_1, n_2 .

1) n=2, $n_1=3$, $n_2=1$. Найдите значения предикатов.

$$P_1(2)$$
 – «2–простое число»,

$$P_2(3,1)$$
 – «3 больше 1» –

истинные высказывания, $P_1(2) = \mathcal{H}$, $P_2(3,1) = \mathcal{H}$.

2) при значениях n = 4, $n_1 = 1$, $n_2 = 3$ найдите значения предикатов.

2) при значениях n = 4, $n_1 = 1$, $n_2 = 3$ значения предикатов

$$P_1(4)$$
 – «4 – простое число»,

$$P_2(1,3)$$
 – «1 больше 3» –

ложные высказывания, т.е.

$$P_1(4) = \Pi,$$

$$P_2(1,3) = Л.$$

Кванторы

∀ – квантор всеобщности;

∃ – квантор существования.

Кванторы

Пусть P(x) – одноместный предикат.

Запись $(\forall x)P(x)$ означает, что свойство P выполняется для всех предметов из предметной области, а

 $(\exists x)P(x)$ означает, что существует по крайней мере один предмет, обладающий свойством P .

Кванторы

Переход от P(x) к $(\forall x)P(x)$ или к $(\exists x)P(x)$ называется связыванием переменной или навешиванием квантора на переменную x.

Переменная, на которую навесили квантор, называется связанной, несвязанная переменная называется свободной.

Алфавит исчисления предикатов

Пусть

```
D — предметная область (множество),
```

$$f: \mathbf{D}^n \to \mathbf{D} - n$$
 -местная функция,

$$p: \mathbf{D}^n \to \mathbf{B} = \{0,1\} - n$$
-местный предикат.

- V множество предметных переменных,
- C множество предметных констант,
- F множество функциональных (1,2,...- местных) символов,
- P множество предикатных (1,2,...- местных) символов, $\{\neg,\lor,\land,\to\}$ множество операций,
- $\{\exists, \forall\}$ множество кванторов,
- $\{(,)\}$ множество вспомогательных символов.

Алфавит исчисления предикатов

 $V \cup C \cup F \cup P \cup \{\neg, \lor, \land, \rightarrow\} \cup \{\exists, \forall\} \cup \{(,)\}$ – алфавит исчисления предикатов.

V – множество предметных переменных,

C – множество предметных констант,

F — множество функциональных (1,2,...- местных) символов,

P — множество предикатных (1,2,...- местных) символов,

Терм

Определим понятие терма.

- 1. Любая предметная переменная является термом.
- 2. Любая предметная константа является термом.
- 3. Если f n-местный функциональный символ, а t_1, \ldots, t_n термы, то $f(t_1, \ldots, t_n)$ терм.

Атом

Определим понятие атома.

Если P-n-местный предикатный символ, $t_1,...,t_n$ - термы, то $P(t_1,...,t_n)$ — атом (атомарная или простейшая формула).

Формула

Определим понятие формулы.

- 1. Атом является формулой.
- 2. Если А и В формулы, то $(\neg A)$, $(A \lor B)$, $(A \land B)$, $(A \to B)$ формулы, причем все переменные в этих формулах свободные.
- 3. Если A формула, а x свободная переменная в A, то $(\forall x)A$ и $(\exists x)A$ формулы.

Формула и ее компоненты

Если задана интерпретация I, то значение формулы определяется по следующим правилам:

- а) если заданы значения формул G и H, то значения формул \bar{G} , $G \wedge H$, $H \vee G$, $H \to G$ можно определить по таблицам;
- б) $(\forall x)$ G принимает значение U, если G имеет значение U для $\forall x \in D$; в противном случае G принимает значение Π ;
- в) ($\exists x$) G принимает значение U, если G принимает значение U хотя бы для одного $x \in D$; в противном случае G принимает значение Π .

б) ($\forall x$)G принимает значение U, если G имеет значение U для $\forall x \in D$; в противном случае G принимает значение Π ;

$$(\forall x)G(x) = U$$
, если $G = U \ \forall x \in \mathbf{D}$.

$$(\forall x)G(x) = \mathcal{I}, ecnu \exists x \in \mathbf{D}, r \partial e G(x) = \mathcal{I}.$$

б) ($\forall x$)G принимает значение U, если G имеет значение U для $\forall x \in D$; в противном случае G принимает значение Π ;

$$(\forall x)G(x) = M, ecnu G = M \forall x \in \mathbf{D}.$$

$$(\forall x)G(x) = \mathcal{I}, ecnu \exists x \in \mathbf{D}, r \partial e G(x) = \mathcal{I}.$$

в) ($\exists x$)G принимает значение U, если G принимает значение U хотя бы для одного $x \in D$; в противном случае G принимает значение \mathcal{I} .

$$(\exists x)G(x) = \mathcal{U}, ecnu \ \exists x \in \mathbf{D}, \ r\partial e \ G(x) = \mathcal{U}.$$
 $(\exists x)G(x) = \mathcal{I}, ecnu \ He \ \exists x \in \mathbf{D}, \ r\partial e \ G(x) = \mathcal{U},$ $m.e. \ G(x) = \mathcal{I} \ \forall x \in \mathbf{D}.$

Пример. Рассмотрим формулу

 $G: (\forall x)(P(x) \to Q(f(x), a))$ и проверим ее истинность в данной интерпретации.

Интерпретация:

- 1) $D = \{1, 2\}$;
- 2) a = 1;
- 3) f(1)=2; f(2)=1;
- 4) $P(1) = \mathcal{I}$, $P(2) = \mathcal{U}$; $Q(1,1) = \mathcal{U}$, $Q(1,2) = \mathcal{U}$; $Q(2,1) = \mathcal{I}$, $Q(2,2) = \mathcal{U}$.

Решение:

1) При x = 1 получаем:

$$(P(1) \to Q(f(1),1)) = \mathcal{I} \to Q(2,1) = \mathcal{I} \to \mathcal{I} = \mathcal{I}$$
.

2) При x = 2 получаем:

$$(P(2) \to Q(f(2),1)) = H \to Q(1,1) = H \to H = H$$
.

Т.е. для любого $x \in D$ формула истинна.

Домашнее задание:

Доказать при a = 2 истинность формулы.

В исчислении предикатов верны также теоремы о логическом следствии, доказанные для исчисления высказываний.

Пример.

$$F_1: (\forall x) (P(x) \rightarrow Q(x))$$

$$F_2: P(a)$$

G:Q(a).

Рассмотрим предметную область

$$\mathbf{D} = \left\{ n \in \mathbb{N}, \, n = 6k, \, k \in \mathbb{Z} \right\},\,$$

P(x) - свойство « x кратно 6»,

Q(x) - свойство « x - четное число».

Если F_1 и F_2 истинны, то $F_1 \wedge F_2$ также истинна, T.e.

 $F_1 = (\forall x) (P(x) \rightarrow Q(x)) = U$, т.е. истинна для любого x, и будет истинна, например, при подстановке x = a.

$$F_1 \wedge F_2 = (\forall x) (P(x) \rightarrow Q(x)) \wedge P(a) = M$$
, T.e.

$$F_1 \wedge F_2 = (P(a) \rightarrow Q(a)) \wedge P(a) = M$$

Следовательно, Q(a) = H, а это и есть вопрос задачи. T.e. G - логическое следствие ПО определению. 27

Тема следующей лекции:

 $\langle\langle\Pi H\Phi\rangle\rangle$.