Nome: Matrícula:		
1ª Prova - MTM1049 - T 10	1.	
	2	
4 de Outubro de 2017	۷.	
,	3.	
Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Res-	1	
postas sem justificativas, que não usem os métodos indicados ou que não incluam os	4.	
válculos necessários não serão consideradas. Nesta prova A^t denota sempre a trans-	\sum	

Questão 1. (5pts)

posta da matriz A.

- (a) Defina, como visto em aula, o que significa dizer que \mathbb{W} é um subespaço de \mathbb{R}^n ;
- (b) Mostre que o conjunto solução de um sistema linear homogêneo com n incógnitas é um subespaço de \mathbb{R}^n ;
- (c) Considere os vetores $V_1 = (1, 2, 3), V_2 = (-2, -5, -8)$ e $V_3 = (1, 1, 1)$. Verifique se os vetores $W_1 = (1, -2, -5)$ e $W_2 = (2, -1, -3)$ são combinação linear de V_1, V_2 e V_3 . Detalhe o escalonamento que usar (Sugestão: os dois podem ser verificados simultaneamente);
- (d) Observando sua solução no item (c), $\{V_1, V_2, V_3\}$ é LI? Se não for, expresse um deles como combinação linear dos demais;
- (e) Encontre uma base e a dimensão do subespaço $\mathbb{W} = \{(a-2b+c, 2a-5b+c, 3a-8b+c) \in \mathbb{R}^3; a, b, c \in \mathbb{R}\}.$

Questão 2. (1pts) Mostre que um conjunto com mais do que n vetores em \mathbb{R}^n é linearmente dependente. (Deve argumentar observando o sistema linear originado).

Questão 3. (2pts) Considere a matriz $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

(a) Calcule $B = A + A^t$. Calcule det $B = \det(A + A^t)$, usando escalonamento e desenvolvendo por $linha/colunas de zeros, até chegar num det 1 <math>\times$ 1.

Se $B = A + A^t$ for invertível, encontre a inversa de $B = A + A^t$. Neste escalonamento pode fazer mais de uma operação por vez;

(b) Volte para a matriz A. Determine todos os valores reais λ (Não use Sarrus!), tais que existe $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \overline{0}$ que satisfaz

$$AX = \lambda X;$$

(c) (detalhe os conjuntos solução mas não detalhar os escalonamentos aqui)

Para cada um dos valores de λ encontrados no item anterior, determinar todos $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ tais que

$$AX = \lambda X$$
.

Questão 4. (2pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa ou contraexemplo:

- i-() Se D é uma matriz diagonal $n \times n$ (as entradas fora da diagonal de D são 0), então DA = AD para toda matriz $n \times n$ A;
- ii-() Se A é uma matriz 2×3 , então o sistema linear AX = B tem infinitas soluções;
- iii-() Pode-se mostrar que "se A e B são matrizes invertíveis, então AB é invertível" sem usar determinantes;
- iv-() Se A é uma matriz 2×2 , então $\det(2A) = 4 \det(A)$;
- v-() Se $\{V_1, V_2, V_3\} \subseteq \mathbb{R}^n$ é LD, então V_2 é combinação linear de V_1 e V_3 .