EC5.102: Information and Communication

(Lec-4)

Source coding-4

(10-March-2025)

Arti D. Yardi

Email address: arti.yardi@iiit.ac.in

Office: A2-204, SPCRC, Vindhya A2, 1st floor

Summary of the last class

- Introduction to source coding:
 - Definition
 - Expected length of code L(C)
- Types of source codes:
 - ► Singular/Non-singular codes
 - Uniquely decodable codes
 - Prefix or instantaneous

- Introduction to source coding:
 - Definition
 - Expected length of code L(C)
- Types of source codes:
 - ► Singular/Non-singular codes
 - Uniquely decodable codes
 - Prefix or instantaneous
- Algorithms for constructing source codes:
 - Huffman codes
 - Lempel-Ziv algorithm

- Introduction to source coding:
 - Definition
 - Expected length of code L(C)
- Types of source codes:
 - ► Singular/Non-singular codes
 - Uniquely decodable codes
 - Prefix or instantaneous
- Algorithms for constructing source codes:
 - Huffman codes
 - Lempel-Ziv algorithm
 - Encoding

- Introduction to source coding:
 - Definition
 - ► Expected length of code *L*(*C*)
- Types of source codes:
 - ► Singular/Non-singular codes
 - Uniquely decodable codes
 - Prefix or instantaneous
- Algorithms for constructing source codes:
 - Huffman codes
 - Lempel-Ziv algorithm
 - Encoding
 - Decoding

Lempel Ziv coding

Lempel-Ziv (L-Z) Coding: Example 1

- Consider the sequence: 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0
- Parsing: Identify phrases of the smallest length that haven't appeared before.
- Notice: New phrase is concatenation of a previous phrase and a new source message.

In which dictionary

 Encoding: Lexicographic (dictionary) ordering of the previous phrase and the new source message are concatenated.

		prefix of the content appeared before	The last message of the content
Dictionary location	Contents	Codeword	
1	1	(0,1)	
2	0	(0,0)	
3	10	(1,0)	
4	11	(1,1)	
5	01	(2,1)	
6	101	(3,1)	
7	010	(5,0)	
8	1010	(6,0)	

Lempel-Ziv (L-Z) Coding

The steps of L-Z algorithm are as follows:

- Any sequence of the source output is uniquely parsed into phrases of varying length and these phrases are encoded using codewords of equal length. (This is a variable-to-fixed length coding scheme.)
- Parsing is done by identifying phrases of the smallest length that have not appeared before.
- The new phrase is the concatenation of a previous phrase and a new source message.
- Encoding: Lexicographic (dictionary) ordering of the previous phrase and the new source message are concatenated.

Today's agenda

- Kraft inequality
- Show that: For Prefix codes, $L(C) \ge H(X)$
- Statement of source coding theorem

Kraft inequality

Kraft inequality: Statement

• Suppose we wish to construct an instantaneous code (prefix code)

Kraft inequality: Statement

- Suppose we wish to construct an instantaneous code (prefix code)
- Let $\ell_1, \ell_2, \dots, \ell_m$ be codeword lengths of an instantaneous code.

Kraft inequality: Statement

- Suppose we wish to construct an instantaneous code (prefix code)
- Let $\ell_1, \ell_2, \dots, \ell_m$ be codeword lengths of an instantaneous code.
- Kraft inequality: Any binary instantaneous code with lengths $\ell_1, \ell_2, \dots, \ell_m$ should satisfy:

$$\sum_{i=1}^{m} 2^{-\ell_i} \le 1.$$

Proof: In Class

Kraft inequality: Any binary instantaneous code with lengths $\ell_1, \ell_2, \dots, \ell_m$ should satisfy: $\sum_{i=1}^m 2^{-\ell_i} \leq 1$.

• Without loss of generality, suppose $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_m$.

- Without loss of generality, suppose $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_m$.
- Binary tree: Branches represent codewords

- Without loss of generality, suppose $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_m$.
- Binary tree: Branches represent codewords
- Prefix condition: Each codeword eliminates its descendants as possible codewords.

- Without loss of generality, suppose $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_m$.
- Binary tree: Branches represent codewords
- Prefix condition: Each codeword eliminates its descendants as possible codewords.
- Focus on the branches at level ℓ_m :
 - Some of them are codewords
 - Some are descendants of codewords
 - Some are neither

- Without loss of generality, suppose $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_m$.
- Binary tree: Branches represent codewords
- Prefix condition: Each codeword eliminates its descendants as possible codewords.
- Focus on the branches at level ℓ_m :
 - Some of them are codewords
 - 2 Some are descendants of codewords
 - Some are neither
- A codeword at level ℓ_i has $2^{\ell_m-\ell_i}$ descendants at level ℓ_m .

- Without loss of generality, suppose $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_m$.
- Binary tree: Branches represent codewords
- Prefix condition: Each codeword eliminates its descendants as possible codewords.
- Focus on the branches at level ℓ_m :
 - Some of them are codewords
 - 2 Some are descendants of codewords
 - Some are neither
- A codeword at level ℓ_i has $2^{\ell_m-\ell_i}$ descendants at level ℓ_m .

$$\sum_{i=1}^m 2^{\ell_m - \ell_i} \le 2^{\ell_m}$$

For Prefix codes, $L(C) \ge H(X)$

Theorem

• Show that: The average length of any prefix-free source code is lower bounded by entropy of the source, i.e.,

$$L(C) \geq H(X)$$
.

Proof: In Class

Source Coding Theorem (SCT) (Formal statement)

Huffman codes with L(C) approaching H(X)

Huffman code: Example

- A zero-memory source emits messages m_1 and m_2 with probabilities 0.8 and 0.2 respectively.
 - Find binary Huffman code.
 - ▶ Find Huffman code for its second and third order extensions.
 - ▶ Determine code efficiency in each case.
- Solution: In class

Huffman code: Solution of Example

• Huffman code for n = 1 will be 0 and 1.

$$\circ$$
 $L(C) = 1$ and $H(X) = -(0.8 \log_2(0.8) + 0.2 \log_2(0.2)) = 0.72$ bits

$$\circ \eta = H(X)/L(C) = 0.72$$

• Huffman code for n = 2:

m_1 m_1	0.64	0
$m_1 m_2$	0.16	11
m_2 m_1	0.16	100
m_2 m_2	0.04	101

- $\circ L_1(C) = 1.56$. But this word length for two messages of the original source.
- Word length per message will be L(C) = 1.56/2 = 0.78

$$0.000$$
 $\eta = 0.72/0.78 = 0.923$

Huffman code: Solution of Example

• Huffman code for n = 3:

m_1 m_1 m_1	0.512	0
m_1 m_1 m_2	0.128	100
m_1 m_2 m_1	0.128	101
m_2 m_1 m_1	0.128	110
m_1 m_2 m_2	0.032	11100
m_2 m_1 m_2	0.032	11101
m_2 m_2 m_1	0.032	11110
m_2 m_2 m_2	0.008	11111

- \circ $L_3(C) = 2.184$. But this word length for three messages of the original source.
- Word length per message will be L(C) = 2.184/3 = 0.728
- $\circ \eta = 0.72/0.728 = 0.989$

Observations from Example

- Summary:
 - For n = 1, $\eta = 0.72$
 - ▶ For n = 2, $\eta = 0.923$
 - ▶ For n = 3, $\eta = 0.989$
- Thus, as the block length increases, the coding efficiency improves and approaches to 1.
- As we use the Huffman coding algorithm over longer and longer blocks of symbols, the average number of bits required to encode each symbol approaches the entropy of the source.
- We will next see why is it so.

• Notation: $X, X^n, \mathcal{X}, \mathcal{X}^n, H(X)$

- Notation: $X, X^n, \mathcal{X}, \mathcal{X}^n, H(X)$
- Encoding: For $x^n \in \mathcal{X}^n$ codeword is $f^n(x^n)$

- Notation: $X, X^n, \mathcal{X}, \mathcal{X}^n, H(X)$
- Encoding: For $x^n \in \mathcal{X}^n$ codeword is $f^n(x^n)$
- Decoding: Codeword $f^n(x^n)$ is decoded as $g^n(f^n(x^n)) := \hat{x}^n$

- Notation: $X, X^n, \mathcal{X}, \mathcal{X}^n, H(X)$
- Encoding: For $x^n \in \mathcal{X}^n$ codeword is $f^n(x^n)$
- Decoding: Codeword $f^n(x^n)$ is decoded as $g^n(f^n(x^n)) := \hat{x}^n$
- Decoding error: $\hat{x}^n \neq x^n$

- Notation: $X, X^n, \mathcal{X}, \mathcal{X}^n, H(X)$
- Encoding: For $x^n \in \mathcal{X}^n$ codeword is $f^n(x^n)$
- Decoding: Codeword $f^n(x^n)$ is decoded as $g^n(f^n(x^n)) := \hat{x}^n$
- Decoding error: $\hat{x}^n \neq x^n$
- Statement of source coding theorem:

- Notation: $X, X^n, \mathcal{X}, \mathcal{X}^n, H(X)$
- Encoding: For $x^n \in \mathcal{X}^n$ codeword is $f^n(x^n)$
- Decoding: Codeword $f^n(x^n)$ is decoded as $g^n(f^n(x^n)) := \hat{x}^n$
- Decoding error: $\hat{x}^n \neq x^n$
- Statement of source coding theorem:
 - Achievability: If average length L(C) > H(X), then there exists a sequence of codes $\{f^{(n)}, g^{(n)}\}$ of average length L(C) such that

- Notation: $X, X^n, \mathcal{X}, \mathcal{X}^n, H(X)$
- Encoding: For $x^n \in \mathcal{X}^n$ codeword is $f^n(x^n)$
- Decoding: Codeword $f^n(x^n)$ is decoded as $g^n(f^n(x^n)) := \hat{x}^n$
- Decoding error: $\hat{x}^n \neq x^n$
- Statement of source coding theorem:
 - Achievability: If average length L(C) > H(X), then there exists a sequence of codes $\{f^{(n)}, g^{(n)}\}$ of average length L(C) such that

$$P_{\mathrm{e}}^{(n)} := \mathbb{P}\Big[\hat{X}^n \neq X^n\Big] \to 0 \quad \text{as} \quad n \to \infty$$

- Notation: $X, X^n, \mathcal{X}, \mathcal{X}^n, H(X)$
- Encoding: For $x^n \in \mathcal{X}^n$ codeword is $f^n(x^n)$
- Decoding: Codeword $f^n(x^n)$ is decoded as $g^n(f^n(x^n)) := \hat{x}^n$
- Decoding error: $\hat{x}^n \neq x^n$
- Statement of source coding theorem:
 - Achievability: If average length L(C) > H(X), then there exists a sequence of codes $\{f^{(n)}, g^{(n)}\}$ of average length L(C) such that

$$P_{\mathrm{e}}^{(n)} := \mathbb{P}\Big[\hat{X}^n
eq X^n\Big] o 0 \quad \text{as} \quad n o \infty$$

► Converse:

If
$$L(C) < H(X)$$
, then $P_e^{(n)} > 0$ for any n .

 Source coding theorem establishes a fundamental limit on the rate at which the output of an information source can be compressed without causing large error probability at the receiver.

- Source coding theorem establishes a fundamental limit on the rate at which the output of an information source can be compressed without causing large error probability at the receiver.
- This is one of the fundamental theorems of information theory.

- Source coding theorem establishes a fundamental limit on the rate at which
 the output of an information source can be compressed without causing
 large error probability at the receiver.
- This is one of the fundamental theorems of information theory.
- It states that, a source with entropy rate H can be encoded with arbitrarily small error probability at any rate R (bits/source output) provided, R > H.

- Source coding theorem establishes a fundamental limit on the rate at which the output of an information source can be compressed without causing large error probability at the receiver.
- This is one of the fundamental theorems of information theory.
- It states that, a source with entropy rate H can be encoded with arbitrarily small error probability at any rate R (bits/source output) provided, R > H.
- If R < H, the error probability will be bounded away from zero, independent of the complexity of the encoder and decoder employed.