Hard nucleophiles and Soft nucleophiles				
Small with closely held electrons with high charge density		Large & Flabby with diffuse high energy electrons		
	Only charged	Can be neutral		
	Basic (HX weak acid)	Not basic (HY strong acid)		
	Low energy HOMO	High energy HOMO		
Like to attack at C=O		Like to attack at saturated carbon		
R	D ⁻ , -NH ₂ , R ⁻ , F ⁻ , Cl ⁻	RS ⁻ , I ⁻ ,R ₃ P, RSH		
Reactions are controlled by Electrostatic interactions		Reactions are controlled by HOMO-LUMO interactions		
Broder line: N ₃ , CN, Br, RNH ₂				

Soft nucleophiles are rather large and flabby with diffuse high-energy electrons

Hard nucleophiles are small with closely held electrons and high charge density

For hard nucleophiles → reactions are dominated by electrostatic interactions

For soft nucleophiles→ reactions are dominated by HOMO-LUMO interactions

$$N + CH_3I \longrightarrow N - CH_3 + I^C$$

Explain the relative rate

Ambident nucleophile: Nucleophiles which have more than one (generally two) suitable atoms through which they can attack the substrate.

R—Br + AgCN
$$\longrightarrow$$
 AgBr \downarrow + R $^{\oplus}$ + [CN] \longrightarrow fast R—N=C \longrightarrow S_N1

R—Br + NaCN \longrightarrow [N $^{\circ}$ —R—Br] \longrightarrow R—C \Longrightarrow N2

TS

Ag* promotes the formation of R* by the formation of AgX ppt.
Nu attacks from the side that has more electro negative atom.

Na* does't show such promotion for the formation of R*.
Nu attack takes place by the end which has more polarisable atom.

R—Br + AgNO₂ \longrightarrow AgBr \downarrow + R $^{\oplus}$ + [NO₂] \longrightarrow fast R—O-N=O S_N1

R—Br + NaNO₂ \longrightarrow AgBr \downarrow + R $^{\oplus}$ + [NO₂] \longrightarrow Fast R—O-N=O S_N1

R—Br + NaNO₂ \longrightarrow CH₂ \longrightarrow RCHO \longrightarrow CH₂ \longrightarrow RCHO \longrightarrow CH₃ \longrightarrow CH₂ \longrightarrow CH₂ \longrightarrow CH₂ \longrightarrow RCHO \longrightarrow CH₃ \longrightarrow CH₂ \longrightarrow RCHO \longrightarrow CH₃ \longrightarrow CH₂ \longrightarrow CH₃ \longrightarrow CH₂ \longrightarrow

The leaving group:

Relative rate

$$RCH_2$$
— $X + HO^{\bigcirc}$ — RCH_2 — $OH + X^{\bigcirc}$
 I Br Cl F

10,000

30,000

2,00

	Strength of C-X bond	pk _a of HX	
Halide (X)	(kJ mol ⁻¹)		
Fluorine	118	+3	
Chlorine	81	-7	
Bromine	67	-9	
Iodine	E4	10	

Low C-X energy, ionizes easily

I- is weaker base

The weaker the basicity of a group, the better is the leaving ability.

Size is more important than the electronegativity

Influencing Factors of Leaving groups

- a) The strength of R-X bond
- b) The polarisability of the bond
- c) The stability of X⁽⁻⁾
- d) The degree of stabilisation through solvation of $X^{(-)}$

For halides (a) & (b) are more important

(c) & (d) becomes more important for following groups

$$\bigcirc \hspace{-0.5cm} \bigcirc \hspace$$

p-toluenesulfonate ion (Tosylate)

triflate ion
(a "super"leaving group)

Nucleophilic catalysis

$$H_{2}O: + R-CI \xrightarrow{\text{slow}} R-OH + \overset{\oplus}{H}CI$$

$$H_{2}O: + R-CI \xrightarrow{\text{fast}} R-OH$$

$$I \xrightarrow{\text{fast}} I-R + CI \xrightarrow{\text{fast}} H_{2}O:$$
Outer shell electrons in I are loosely held hence it is highly polarisable lit is a good leaving and good entering group.

Q. But
$$\frac{1. \text{ Ph}_{3}\text{P, X}_{2}}{2. \text{ H}_{2}\text{O}}$$

$$\sim 95\%$$

$$\frac{1. \text{ Ph}_{3}\text{P, X}_{2}}{2. \text{ H}_{2}\text{O}}$$

$$\sim 95\%$$

$$\frac{1. \text{ Ph}_{3}\text{P, X}_{2}}{2. \text{ H}_{2}\text{O}}$$

$$\sim 95\%$$

$$X = \text{Cl, Br, I}$$

Two conformations with H and X coplanar

In E2 eliminations, the new π bond is formed by overlap of the C-H σ bond with the C-X σ^* antibonding orbital

Only one proton for removal
$$C_6H_5$$
 C_6H_5 C_6H_5

$$C_{6}H_{5} \xrightarrow{C_{6}H_{5}} \xrightarrow{C$$

Predict the product of following reaction

$$S_{N}1 \text{ solvolysis}$$

$$EtOH$$

$$+ \longrightarrow OEt$$

$$+ \longrightarrow OEt$$

$$EtOH$$

$$+ \longrightarrow OEt$$

$$+$$

$$S_{N}2: \text{ Inversion of configuration} \\ S_{N}1: \text{ ideally Racemization} \\ \textbf{Retention of configuration}: \quad S_{N}i \text{ (substitution nucleophilic internal)} \\ \\ M_{e} \\ DH \\ SOCI_{2} \\ DH \\ H \\ CI + SO_{2} + HCI \\ H \\ CI + SO_{2} + HCI \\ H \\ CI + SO_{3} + HCI \\ H \\ CI + SO_{4} + HCI \\ H \\ CI + SO_{5} + HCI \\ H \\ C$$

Examples of
$$S_{N_1}$$
 reaction

$$H_3CCH = CHCH_2OH \xrightarrow{SOCl_2} H_3C - CH = CH_2$$

$$H_3C - CH = CH_2 \xrightarrow{SOCl_3} H_3C - CH = CH_2CH_2$$

$$OH \xrightarrow{(only)}$$

Mechanism

$$H_3CCH = CHCH_2 - O - S - CI \xrightarrow{H_3C} CH = CH_2$$

$$CH = CH_2 + SO_2$$

Q. Which compound solvolyses faster in HOAc containing NaOAc (I or II)?

The product is the same from either I or II. What is the structure of the product?

Q. Which compound solvolyses faster in HOAc? (I or II). Give the structure of the product from I.

OTS OTS
$$II$$

$$I \longrightarrow \begin{bmatrix} \delta^{-} \\ \delta^{+} \end{bmatrix} \longrightarrow \begin{bmatrix} \delta^{-} \\ \delta^{+} \end{bmatrix}$$

$$I \longrightarrow \begin{bmatrix} \delta^{-} \\ \delta^{+} \end{bmatrix} \longrightarrow \begin{bmatrix} \delta^{-} \\ \delta^{-} \end{bmatrix} \longrightarrow \begin{bmatrix} \delta^{-} \\ \delta^{-}$$

Participation of the π electrons of the double bond gives the ion III, which would be stabilized by delocalization of the positive charge.

I undergoes 10¹¹ times greater rate than II

