

Klasa Nazwisko i imię **MARZEC** PRÓBNY EGZAMIN MATURALNY **ROK 2019 Z MATEMATYKI** POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym. 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń rozwiazaniu zadania otwartego (6-15)spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów. 4. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem. 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane. 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

Prawa autorskie posiada Samorządowy Ośrodek Doradztwa Metodycznego i Doskonalenia Nauczycieli w Kielcach Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione

Odpowiedzi znajdziesz www.sodmidn.kielce.eu

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 4. wybierz i zaznacz poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $\log_2 5 \cdot \log_5 3 \cdot \log_3 \frac{1}{4}$ jest równa

- **A.** 4
- **B.** $-\frac{1}{2}$
- **C.** 2
- **D.** -2

Zadanie 2. (0-1)

 $\lim_{x \to 2} \frac{2x-4}{-x^2+3x-2} \qquad \text{jest równa}$ Granica

- $A. -\infty$
- **B.** -2
- **C.** +∞
- **D.** 2

Zadanie 3. (0-1)

Obrazem punktu A = (3, -5) w jednokładności o środku O = (6, 1) i skali k jest punkt B = (8, 5). Skala k tej jednokładności jest równa

- A. $-\frac{2}{3}$
- **B.** -2
- C. $\frac{2}{3}$
- **D.** $-\frac{1}{4}$

Zadanie 4. (0-1)

Liczba $\sqrt{9-4\sqrt{5}}-\sqrt{29-12\sqrt{5}}$ jest równa

- **A.** $\sqrt{-20 + 8\sqrt{5}}$ **B.** $-1 + \sqrt{5}$ **C.** $1 \sqrt{5}$ **D.** $-1 3\sqrt{5}$

Zadanie 5. (0-2)

Wyznacz $\frac{a}{b}$, gdzie a i b (a < b) są liczbami naturalnymi dodatnimi należącymi do zbioru rozwiązań nierówności $x < \frac{-2x-1}{x-4}$. W poniższe kratki wpisz kolejno cyfrę jedności i pierwsze dwie cyfry po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.

BRUDNOPIS (nie podlega ocenie)

Zadanie 6. (0-3)

Rozwiąż równanie $sin^3x - 4cos^2x - \frac{1}{4}sinx + 3 = 0$ w przedziale (0, 2π).

Zadanie 7. (0-3)

Wykaż, że wyrażenie $x^4 - 7x^2 + 4x + 25$ osiąga najmniejszą wartość dla x = -2.

Zadanie 8. (0-3)

Punkty A,B,C,D są kolejnymi wierzchołkami czworokąta wpisanego w okrąg, w którym |AB|+|AD|=|CD|+|CB|. Miara kąta BAD jest równa α . Uzasadnij, że

$$\frac{|AB| \cdot |AD|}{|CD| \cdot |CB|} = \frac{1 - \cos\alpha}{1 + \cos\alpha}$$

BRUDNOPIS (nie podlega ocenie)

Zadanie 9. (0-3)

W wyścigu kolarskim udział bierze 24 zawodników (sześć 4-osobowych drużyn). Każdy z uczestników wyścigu ma tę samą szansę wygrania. Jakie jest prawdopodobieństwo, że zawodnicy z jednego zespołu uplasują się na trzech pierwszych miejscach?

Zadanie 10. (0-5)

Dla jakich wartości parametru m funkcja $f(x) = x^2 + (3m - 4)x + m^2 - 3m + 3$ ma dwa różne miejsca zerowe należące do przedziału (1; 3)?

Zadanie 11. (0-5)

Wyznacz wszystkie wartości parametru m, dla których równanie

$$|1 - 2x| - |x + 3| = -\frac{1}{2}m^2$$

ma dwa różne dodatnie rozwiązania.

Zadanie 12. (0-5)

Punkty A = (3, 9), B = (-5, 3) oraz $C = \left(2, -6\frac{1}{3}\right)$ są kolejnymi wierzchołkami czworokąta *ABCD* opisanego na okręgu o środku w punkcie S = (2, 2). Wyznacz współrzędne punktu D.

Zadanie 13. (0-5)

Liczby x, y, z, w podanej kolejności są trzema początkowymi wyrazami malejącego ciągu geometrycznego (a_n) . Suma tych liczb jest równa $3\frac{1}{2}$. Jeżeli od trzeciej z tych liczb odejmiemy $\frac{1}{2}$, to otrzymamy trzy kolejne wyrazy ciągu arytmetycznego. Wyznacz x, y, z oraz wszystkie wartości n, dla których $a_n \geq \frac{1}{S}$, gdzie S jest sumą wyrazów nieskończonego ciągu (a_n) .

Odpowiedź:

Zadanie 14. (0-6)

W ostrosłup prawidłowy czworokątny ABCDS, w którym krawędź podstawy ma długość 10, a krawędź boczna $\sqrt{194}$, wpisano stożek. Wierzchołek stożka znajduje się w punkcie przecięcia przekątnych podstawy ostrosłupa, a jego podstawa równoległa do płaszczyzny podstawy ostrosłupa jest styczna do wszystkich ścian bocznych ostrosłupa (rysunek poniżej). Wyznacz wysokość stożka, jeżeli stosunek objętości stożka do objętości ostrosłupa jest równy $\frac{\pi}{32}$.

Odnovijedá:			
Oubowicuz	 	 	

Zadanie 15. (0-6)

Dany jest graniastosłup prawidłowy czworokątny o krawędzi podstawy 6 i wysokości 18. Wysokość tego graniastosłupa zmniejszono o x (x > 0), a wszystkie krawędzie podstaw zwiększono o $\frac{1}{2}$ x. Oblicz pole powierzchni całkowitej graniastosłupa, którego objętość jest największa.

BRUDNOPIS

