

Programación de robots

- Robot industrial: manipulador multifuncional y programable.
- Objetivo: Indicar la secuencia de acciones a realizar durante la tarea.
 - Movimientos a puntos predefinidos.
 - Manipulación de objetos.
 - Interacción/sincronización con el entorno.
- Partes del robot involucradas:
 - Memoria.
 - Sistema de control cinemático/dinámico.
 - E/S.
- Manejo de localizaciones y sistemas de coordenadas.

2

Programación de robots

- Programación on-line y off-line
- Programación por aprendizaje o guiado
- Programación textual
- Características de los sistemas y lenguajes de programación

3

PROGRAMACIÓN ON-LINE Y OFF-LINE

Programación On-line

- Se ha de disponer del robot para desarrollar su programación.
- Ejemplo: Programación a partir de paletas de control como el flex-pendant de ABB.

Fuente: Youtube. Jim Kosmala de ABB Robotics USA

5

Programación On-line

- Ventajas:
 - Robot programado en concordancia con la posición actual del equipamiento y los objetos a manipular.
 - Buena precisión.

Fuente: Youtube

Programación On-line

• Inconvenientes:

- El robot no se encuentra operativo durante la programación.
- Coste equivalente al valor de producción.
- Movimiento lento del robot durante la programación.
- Difícil programación de la lógica y cálculos del programa.
- Programa sin documentación.

7

Programación Off-line

• Utilización de entornos complejos de programación y simulación:

RobotStudio de ABB, KUKA Roboter, MELSOFT de Mitsubishi, FANUC Robotics'
 ROBOGUIDE, COSIMIR, Robcad de Siemens, WorkSpace, Ropsim, SimPRO...

Programación Off-line

Ventajas:

- Programación efectiva de la lógica y cálculos necesarios para la tarea.
- Simulador de célula robotizada y posibilidad de generar el programa directamente para el robot real.
- Depuración de programas.
- Reutilización de datos existentes de tipo CAD.
- Coste independiente de la producción.
 El robot puede seguir trabajando mientras se programa.

Fuente: Youtube

9

Programación Off-line

• Inconvenientes:

- Modelado 3D del entorno.
 Posibilidad de errores.
- Errores al considerar la cinemática ideal.
- Necesidad de personal experto en la programación de robots.

Programación híbrida

- Se almacenan las posiciones de manera on-line.
- Se crea el programa o procedimiento de manera off-line.
- El conocimiento preciso de las piezas a manipular al conocer el modelo CAD permite programar off-line las posiciones de manipulado relativas.
- Los tiempos de parada del robot se reducen.

11

PROGRAMACIÓN POR APRENDIZAJE O GUIADO

- Indicar al robot los movimientos a realizar para su posterior repetición.
 - Pasivo. Se realiza el movimiento manual del robot.
 - Directo. Se mueve el robot físicamente.
 - Uso de maquetas.

Guiado pasivo directo (Robot Gaiotto)

Guiado pasivo con maniquí (Robot Nordson)

13

Programación por aprendizaje

- Indicar al robot los movimientos a realizar para su posterior repetición.
 - Pasivo. Se realiza el movimiento manual del robot.
 - Directo. Se mueve el robot físicamente.
 - Uso de maquetas.

Fuente: Youtube

- Indicar al robot los movimientos a realizar para su posterior repetición.
 - Pasivo. Se realiza el movimiento manual del robot.
 - Directo. Se mueve el robot físicamente.
 - Uso de maquetas.

Fuente: Youtube

15

Programación por aprendizaje

- Indicar al robot los movimientos a realizar para su posterior repetición.
 - Pasivo. Se realiza el movimiento manual del robot.
 - Directo. Se mueve el robot físicamente.
 - Uso de maquetas.

Fuente: Youtube

- Indicar al robot los movimientos a realizar para su posterior repetición.
 - Activo. Se emplean dispositivos para el manejo del robot.
 - Joystick.
 - Dispositivo de enseñanza.

17

Programación por aprendizaje

- Indicar al robot los movimientos a realizar para su posterior repetición.
 - Activo. Se emplean dispositivos para el manejo del robot.
 - Joystick.
 - Dispositivo de enseñanza.

Fuente: Youtube

- Tipos de aprendizaje.
 - Aprendizaje básico. Se indican únicamente los puntos por los que ha de pasar el robot.
 - Aprendizaje extendido. Se pueden indicar velocidades, tipo de trayectoria, precisión, control de flujo.
- Ventajas:
 - No precisa disponer de las coordenadas de los elementos del entorno de trabajo.
 - No se producen errores de posicionamiento por incorrecta calibración del robot o su enforno.
 - Fáciles de aprender.
- Inconvenientes:
 - Se ha de disponer del robot para realizar la programación.
 - Son limitados: fundamentalmente instrucciones de movimiento. No son reactivos.
 - Difícil depuración e inexistencia de documentación.

19

Programación textual

- Se indica la tarea mediante un lenguaje de programación.
- Un programa se corresponde con una serie de órdenes que se pueden editar y posteriormente ejecutar.
- Existe un texto o código alto nivel (que se traducirá al código máquina de la CPU).
- No precisa la presencia del robot durante la fase de desarrollo del programa.

21

Programación textual

- Intentos de estandarización.
 - IRDATA (Univ. Karlsruhe).
 - Código intermedio entre el sistema de programación utilizado y el propio sistema de programación del robot.
 - IRL (Industrial Robot Language).
 - Notación independiente de cualquier robot
 - Puede ser traducido a un código intermedio para el control de un robot.
 - Implementado en Cosimir.

Ejemplo IRL I

```
PROGRAM ejemplo IRL

VAR

INPUT BOOL: pieza at 1; {entrada digital que indica la presencia de pieza} repetir at 2; {entrada digital que indica el deseo de repetir la acción} OUTPUT BOOL:electrm at 1; {salida digital que activa el electroimán del efector final} BEGIN

IF NOT pieza THEN HALT;ENDIF; R_ACC:=300.0; {especifica la aceleración} {especifica la velocidad}
```

23

Ejemplo IRL II

```
Bucle:

MOVE LIN p_sb_pieza; {movimiento en línea recta a punto sobre pieza}

MOVE LIN p_pieza; {movimiento en línea recta a punto recogida pieza}

electrm:=TRUE; {activa el electroimán del efector para coger la pieza}

MOVE LIN p_sb_pieza; {movimiento en línea recta a punto sobre pieza}

MOVE LIN p_intermedio; {movimiento en línea recta a punto intermedio}

MOVE LIN p_destino; {movimiento en línea recta hasta situarse sobre destino}

electrm:=FALSE; {desactiva el electroimán del efector para dejar la pieza}

MOVE LIN p_intermedio; {regresa al punto intermedio}

IF repetir = TRUE THEN GOTO bucle; ENDIF; {¿Repetir → coger nueva pieza?}

MOVE LIN home; {Fin de tarea. Se retorna a la posición de reposo}

HALT; {Para la ejecución del programa}

END PROGRAM
```


25

Lenguajes orientados a robot

- Las instrucciones hacen referencia a las acciones del robot.
- Ventajas (respecto a programación por aprendizaje o guiado):
 - Estructuras de programación similares a las de los computadores (iterativas, condicionales, subrutinas).
 - Acceso a E/S con comandos (interacción entorno).
 - Sincronización fácil (órdenes "Espera", "Mientras Entrada no activada...", etc.).
- Inconvenientes: más complejidad.
 - Necesita computador y programador.
 - Los comandos suelen depender del robot y lenguaje concretos.
 - Número elevado de instrucciones.
- Ejemplos:
 - AS (KAWASAKI), KAREL (FANUC), KRL (KUKA), RAPID (ABB), V+ (ADEPT), VALII (UNIMATION).

Lenguajes orientados a objeto

- Las instrucciones hacen referencia al modo en que deben quedar los objetos manipulados por el robot.
- Disminuye la complejidad del programa.
- La programación se realiza de manera más cómoda.
- Un planificador de la tarea se encargará de consultar una base de datos y generar las instrucciones a nivel de robot.
- Ejemplos:
 - LAMA.
 - AUTOPASS.
 - RAPT.

27

Lenguajes orientados a tarea

- Se indica qué se desea realizar.
- Utilización de inteligencia artificial.
- Modelo del entorno (CAD).
- Uso de simuladores.
- Sistema sensorial.
- En investigación.
- Inconveniente: complejidad.
- Ventajas:
 - El programador piensa en la cadena de montaje; el robot es una simple herramienta cuyas características exactas no tiene por qué conocer.
 - El chequeo de situaciones imprevistas las hace el compilador o intérprete.

Ejemplo niveles programación

Lenguaje orientado a robot:

Mover_a P1 via P2
Vel = 0.2 * VELMAX
Pinza=ABRIR
Prec=ALTA
Mover_recta_a P3
Pinza=CERRAR
Espera=0.5
Mover_recta_a P1
Prec=MEDIA
Vel=VELMAX
Mover_a P4 via P2
Prec=ALTA
Vel=0.2*VELMAX
Mover_recta_a P5
Pinza=ABRIR

29

I Ejemplo niveles programación

Lenguaje orientado a objeto:

Situar B sobre C
haciendo coincidir

LADO_B1 con LADO_C1

Situar A dentro D
haciendo coincidir

EJE_A con EJE_HUECO_D y
BASE_A con BASE_D

Lenguaje orientado a tarea:

Ensamblar A con D

CARACTERÍSTICAS DE LOS SISTEMAS Y LENGUAJES DE PROGRAMACIÓN

31

Características lenguajes programación

- Entorno de programación.
- Modelado del entorno.
- Tipos de datos.
- Manejo de entradas/salidas.
- Comunicaciones.
- Control de movimiento.
- Control de flujo de ejecución del programa.

Entorno de programación

- Aumenta la productividad de la programación.
- Depuración de programas. Ejecución paso a paso.
- Monitorización del desarrollo del programa.
- Otras opciones:
 - Programación fuera de línea.
 - Simulador de célula robotizada y posibilidad de generar el programa directamente para el robot real.

33

Modelado del entorno

- Representación geométrica de los objetos con los que interacciona el robot (posición, orientación, forma, peso, dimensiones...)
- Definición de sistemas de coordenadas asociados a cada objeto.
- Definición de relaciones entre objetos:
 - Independientes. El movimiento de un objeto no afecta al otro.
 - Unión rígida. El movimiento de uno implica el del otro y viceversa
 - Unión no rígida. El movimiento de uno implica el del otro pero no al revés.

Tipos de datos

- Tipos de datos convencionales (booleanos, enteros, reales...).
- Definición de posiciones y orientaciones.
 - Coordenadas articulares.
 - Coordenadas cartesianas.
 - · Posición. Coordenadas cartesianas del origen del sistema
 - · Orientación:
 - Ángulos de Euler.
 - Cuaternios.
 - Matriz de rotación.

35

Manejo de entradas-salidas

- Comunicación del robot con otras máquinas o procesos.
- Instrucciones para leer y activar entradas y salidas digitales.
- Ejecución de interrupciones.
- Monitorización del robot a través de conexión serie o LAN.
- Integración de sensores.
 - Modificar la trayectoria.
 - Elegir entre diversas alternativas.
 - Obtener la identidad y posición de objetos y sus características.
 - Cumplir con restricciones externas.

Comunicaciones

- El robot debe poder comunicarse con otros robots o máquinas que participan en la producción con el objetivo de:
 - Adaptar los movimientos del robot a situaciones cambiantes.
 - Actualización del programa en función de nuevas órdenes de producción.
 - Monitorización o supervisión del estado de la célula.
 - Control del estado de la producción.
- Comunicación mediante RS232, Devicenet, CanBus, Profibus, Ethernet, etc.

37

Control del movimiento del robot

- Especificación del movimiento del robot.
- Tipos de trayectorias.
 - Punto a punto (eje a eje, simultaneo ejes)
 - Coordinadas.
 - Trayectoria continua.
- Velocidad.
- Precisión.

Control del movimiento del robot

- Especificación de puntos de paso.
 - Precisión baja. El robot se encamina hacia la siguiente configuración sin haber llegado a la anterior. Poca modificación de velocidad.
 - Precisión alta. Menor continuidad.

39

Control del flujo de ejecución

- Ejecución de bucles.
- Sentencias condicionales.
- Capacidad de procesamiento paralelo.
- Sincronización.
- Gestión de interrupciones (prioridades, activar/desactivar interrupciones...)

