グレブナ基底と代数多様体入門 (Ideals, Varieties, and Algorithms)

ashiato45 のメモ, 著者は D.Cox, J.Little, D.O'Shea

2015年7月3日

- 1 幾何,代数,アルゴリズム
- 2 グレブナ基底
- 3 消去理論
- 4 代数と幾何の対応
- 5 多様体上の多項式関数と有理関数
- 6 ロボティクスの幾何の定理の自動証明
- 7 有限群の不変式論
- 7.1 対称多項式

定理 3(対称式の基本定理): $k[x_1,\ldots,x_n]$ の任意の対称多項式は、基本対称式 σ_1,\ldots,σ_n の多項式として一意に表すことができる。

証明

- $1. x_1 > x_2 > \cdots > x_n$ という順序を使う。
- $2. \ \forall f \colon f \in k[x_1,\ldots,x_n]$ を $f \neq 0$ とする。
- 3. a, α : LT $(f) = ax^{\alpha}$
- 4. α_{\bullet} : $\alpha = (\alpha_1, \ldots, \alpha_n)$
- 5. $\alpha_1 \ge \alpha_2 \ge \ldots \ge \alpha_n$?
 - (a) $\exists i: \alpha_i < \alpha_{i+1}$ と仮定する。
 - (b) β : $\beta = (..., \alpha_{i+1}, \alpha_i, ...)$
 - (c)3より、 ax^{α} はfの項。
 - (d) f は対称式なので、 ax^{β} も f の項。
 - (e) $\beta > \alpha$ なので、上は3のLTであることに矛盾。
 - (f) $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_n$
- $6.\ h:\ h=\sigma_1^{lpha_1-lpha_2}\sigma_2^{lpha_2-lpha_3}\dots\sigma_{n-1}^{lpha_{n-1}-lpha_n}\sigma_n^{lpha_n}$ උする。

7.5より、

$$LT(h) = LT(\sigma_1^{\alpha_1 - \alpha_2} \sigma_2^{\alpha_2 - \alpha_3} \dots \sigma_{n-1}^{\alpha_{n-1} - \alpha_n} \sigma_n^{\alpha_n})$$
(1)

$$= LT(\sigma_1)^{\alpha_1 - \alpha_2} LT(\sigma_2)^{\alpha_2 - \alpha_3} \dots LT(\sigma_n)^{\alpha_n}$$
(2)

$$=x_1^{\alpha_1-\alpha_2}(x_1x_2)^{\alpha_2-\alpha_3}\dots(x_1\dots x_n)^{\alpha_n} \tag{3}$$

$$=x_1^{\alpha_1}\dots x^{\alpha_n}. (4)$$

- 8. 上より、LT(f) = LT(ah) となる。
- 9. $f ah \neq 0$ のときは、 $f_1 = f ah$ とする。
- 10. ∃t: 5-9 までの操作を繰替えすと、

$$\operatorname{multideg}(f) > \operatorname{multideg}(f_1) > \operatorname{multideg}(f_2) > \dots$$
 (5)

をみたす列が得られる。これは停止するので、 $f_{t+1}=0$ となる t がある。

- 11. $f = ah + a_1h_1 + \cdots + a_th_t$ となる。存在は示された。
- 12. g_1,g_2 : $f=g_1(\sigma_1,\ldots,\sigma_n)=g_2(\sigma_1,\ldots,\sigma_n)$ とする。 $g_1,g_2\in k[y_1,\ldots,y_n]$ とする。 $g_1=g_2$ を示したい。
- 13. g: $g = g_1 g_2$
- 14. $g(\sigma_1, \ldots, \sigma_n) = 0$
- 15. g = 0 を示したい。 $g \neq 0$ と仮定する (背理法)。
- 16. a_{\bullet} : $g = \sum_{\beta} a_{\beta} y^{\beta}$ とする。
- 17. g_{ullet} : $g_{eta}=a_{eta}\sigma_1^{eta_1}\dots\sigma_n^{eta_n}$ とする。 $g_{eta}\in k[x_1,\dots,x_n]$ になっている。
- $18.\ g(\sigma_1,\ldots,\sigma_n)$ は g_{eta} たちの和である。 $g(\sigma_1,\ldots,\sigma_n)=\sum_{eta}a_{eta}g_{eta}$ である。
- 19. 計算すると、

$$LT(g_{\beta}) = a_{\beta} x_1^{\beta_1 + \dots + \beta_n} x_2^{\beta_2 + \dots + \beta_n} \dots x_n^{\beta_n}$$

$$(6)$$

20.

$$(\beta_1, \dots, \beta_n) \mapsto (\beta_1 + \dots + \beta_n, \beta_2 + \dots + \beta_n, \dots, \beta_n)$$
(7)

は単射である(尻尾から決めればいい。)。

- 21. 上と 19 より、 g_{β} たちはそれぞれ異なる先頭項を持つ。
- 22. $\mathrm{LT}(g_{eta})$ が最高になるものを選べるが、上よりそのようなものは1 つしかない。それを β にする。
- $23. \ \gamma \neq \beta$ なら、 $\mathrm{LT}(g_{\beta})$ は g_{γ} のすべての項よりおおきい。

$$LT(g_{\beta}) > LT(g_{\gamma}) \ge (\forall g_{\gamma}$$
の頃) (8)

24. $g(\sigma_1,\ldots,\sigma_n)$ は $k[x_1,\ldots,n]$ で零でない*1。これは 14 に矛盾。

(証終)

命題 4: 環 $k[x_1,\ldots,x_n,y_1,\ldots,y_n]$ において、 x_1,\ldots,x_n のうち 1 つでも含む単項式は、 $k[y_1,\ldots,y_n]$ のすべて の単項式より大きくなるような単項式順序を 1 つ固定する。G をイデアル

$$\langle \sigma_1 - y_1, \dots, \sigma_n - y_n \rangle \subset k[x_1, \dots, x_n, y_1, \dots, y_n]$$
 (9)

のグレブナ基底とする。このとき、次のことが成り立つ。

- (i) f が対称であることと、 $g \in k[y_1, \ldots, y_n]$ は同値である。
- (ii) f が対称ならば、 $f=g(\sigma_1,\ldots,\sigma_n)$ は、f の基本対称式 σ_1,\ldots,σ_n の多項式としての一意的な表示である。

 $^{^{*1}}$ g が $k[y_1,\ldots,y_n]$ のなかで零であることを示したかった。そのこととは違う。

証明

- 1. g_{\bullet} : $G = \{g_1, \dots, g_t\}$ とする。
- $2. f, A_{\bullet}, g: f \in G$ で割る。

$$f = A_1 g_1 + \dots + A_t g_t + g. \tag{10}$$

- $3. \Leftarrow$ を示す。 $g \in k[y_1, \ldots, y_n]$ とする。
 - (a) 仮定の $f \in k[x_1,\ldots,x_n]$ 、 y_\bullet がないことより、 $f(x_1,\ldots,x_n,\sigma_1,\ldots,\sigma_n)=f$ である。
 - (b) $y_{\bullet} \Leftarrow \sigma_{\bullet}$ という代入操作を行うと、 $\langle \sigma_1 y_1, \dots, \sigma_n y_n \rangle$ の元はすべて 0 になる。
 - (c) 上のことより $y_{\bullet} \Leftarrow \sigma_{\bullet}$ によって $g_1, \ldots, g_t \in \langle \sigma_1 y_1, \ldots, \sigma_n y_n \rangle$ は 0 になる。
 - (d) $2 ic y_{\bullet} \Leftarrow \sigma_{\bullet}$ すると、(a)-(c) より、

$$f = g(\sigma_1, \dots, \sigma_n) \tag{11}$$

である。

- (e) f は対称である。
- $4. \Rightarrow$ を示す。 $f \in k[x_1, \ldots, x_n]$ が対称であるとする。
 - (a) g'^{*2} : $f = g'(\sigma_1, \ldots, \sigma_n)$ となるような $g' \in k[y_1, \ldots, y_n]$ が存在する。
 - (b) $(f \in G$ でわったあまりが g'?)
 - (c) $lpha_1,\ldots,lpha_n\in\mathbb{Z}_{\geq 0}$ とすると、 $B_1,\ldots,B_n\in k[x_1,\ldots,x_n,y_1,\ldots,y_n]$ を用いて、

$$\sigma_1^{\alpha_1} \dots \sigma_n^{\alpha_n} = (y_1 + (\sigma_1 - y_1))^{\alpha_1} \dots (y_n + (\sigma_n - y_n))^{\alpha_n}$$
(12)

$$= y_1^{\alpha_1} \dots y_n^{\alpha_n} + B_1 \cdot (\sigma_1 - y_1) + \dots + B_n \cdot (\sigma_n - y_n). \tag{13}$$

とかける。

(d)上より、g'の y_{\bullet} たちでできた単項式について上を適用し足し合わせて、

$$g'(\sigma_1, \dots, \sigma_n) = g'(y_1, \dots, y_n) + C_1 \cdot (\sigma_1 - y_1) + \dots + C_n \cdot (\sigma_n - y_n). \tag{14}$$

となる $C_1,\ldots,C_n\in k[x_1,\ldots,x_n,y_1,\ldots,y_n]$ である。

(e)(a)と上より、

$$f = C_1 \cdot (\sigma_1 - y_1) + \dots + C_n \cdot (\sigma_n - y_n) + q'(y_1, \dots, y_n). \tag{15}$$

- (f)(g'はfをGでわった余り?)
- (g) g' のどの項も、LT(G) の項でも割りきれない?
 - i. g' のある項が $\mathrm{LT}(G)$ のある項で割り切れるとする。
 - $ext{ii.}$ $\exists i: \operatorname{LT}(g_i)$ が g' を割り切るような $g_i \in G$ がある。
 - iii. $g' \in k[y_1, \ldots, y_n]$ より、 $LT(g_i)$ は y_1, \ldots, y_n だけを含む。
 - iv. 上と、順序付の仮定 *3 より $g_i \in k[y_1,\ldots,y_n]$ となる。
 - v. $g_i \in \langle \sigma_1 y_1, \dots, \sigma_n y_n \rangle$ なので、 $g_i(\sigma_1, \dots, \sigma_n) = 0$ となる。
 - vi. 上より、 g_i は $k[x_1,\ldots,x_n]$ として対称多項式である。
 - vii. 上と定理 3、それに v より、 $g_i \in k[y_1, \ldots, y_n]$ は $k[y_1, \ldots, y_n]$ の元として 0 である。
 - viii. 上は、 g_i がグレブナ基底の一個であり、非零であることに矛盾する。

g' のどの項も、 $\mathrm{LT}(G)$ のどの項を使っても割り切ることはできない。

- (h) (e),(g) と、G がグレブナ基底であることより、f を G で割ったあまりは g' である。
- (i)上より、 $g=g'\in k[y_1,\ldots,y_n]$ となり、 $g\in k[y_1,\ldots,y_n]$ である。

後半の (ii) は、 $f = q(\sigma_1, \dots, \sigma_n)$ となっていることは上の考察から従う。それが一意であることは定理 3 から従う。

 $^{^{*2}}$ 本だと字がぶつかっていてやばい。

 $^{^{*3}}$ x_{ullet} を含んだら y_{ullet} だけの単項式より大きい

命題 5: $k[x_1,\ldots,x_n,y_1,\ldots,y_n]$ 上の $x_1>\cdots>x_n>y_1>\ldots y_n$ で決まる \log に対して、多項式

$$g_k = h_k(x_k, \dots, x_n) + \sum_{i=1}^k (-1)^i h_{k-i}(x_k, \dots, x_n) y_i$$
(16)

は、イデアル $\langle \sigma_1 - y_1, \dots, \sigma_n - y_n \rangle$ のグレブナ基底をなす。

証明

演習問題 10 をとく。 h_k は、次数 k の単項式すべての和である。 x^α は k 次の単項式であり、 x^α にあらわれる変数の個数を a とする。

(a) 「 x^{α} が $h_{k-i}\sigma_i$ のなかに現れるならば、 $i\leq a$ を示せ。」 x^{α} も $h_{k-i}\sigma_i$ のすべての項も次数 k なので次数の心配はいらない。仮に i>a とする。 σ_i にはちょうど i 個の 変数があらわれるので、 $h_{k-i}\sigma_i$ のすべての項には i 個以上の変数があらわれ、つまり a よりも真に大きい個数 の変数があらわれる。このとき、 x^{α} の変数の個数は a なのだから、 $h_{k-i}\sigma_i$ の項たちにあらわれることができない。対偶が示された。

 $i \leq a$ ならば、 σ_i のなかのちょうど $inom{a}{i}$ 個の項が、 x^{lpha} にあらわれる変数だけを含んでいる。

(b) あきらか。

$$i \leq a$$
 ならば、 x^{lpha} は係数 $inom{a}{i}$ を持つ $h_{k-i}\sigma_i$ の項であることを示せ。

(c) σ_i のなかから x^α に含まれている変数だけを持っているものを選び、それに対して適当な h_{k-i} の項を選んでかければ (これは h_{k-i} の定義より可能である。) 多重次数は α に一致する。また、 x^α に含まれていない変数を選んでものそのようなことはできない。よって、 x^α の $h_{k-i}\sigma_i$ での係数は、 σ_i での x^α に含まれる係数だけを持つもの全体の個数と一致する。よって、それは上の問題より $\begin{pmatrix} a \\ i \end{pmatrix}$ である。

 $\sum_{i=0}^k (-1)^i h_{k-i} \sigma_i^{*4}$ における x^α の係数は $\sum_{i=0}^\alpha (-1)^i inom{a}{i}$ であることを結論せよ。それから 2 項定理を使って x^α の係数が 0 であることを示せ。

- (d) 係数は上よりあきらか。係数も、これは $(1-1)^a$ なので簡単。
- (e) 以上で、

$$0 = \sum_{i=0}^{k} (-1)^{i} h_{k-i} h_{i}(x_{1}, \dots, x_{n}) \sigma_{i}(x_{1}, \dots, x_{n}).$$
(17)

次に、問題 11 をとく。 $S \subset \{1,\dots,k-1\}$ のとき、 x^S で変数の積をあらわす。

(a) r

$$\sigma_i(x_1, \dots, x_n) = \sum_{S \subset \{1, \dots, k-1\}} x^S \sigma_{i-|S|}(x_k, \dots, x_n)$$
(18)

ここで、j < 0 のとき $\sigma_j = 0$ 。」 左と右の項を考えれば。

$$\sum_{i=0}^{k} (-1)^{i} h_{k-i}(x_{k}, \dots, x_{n}) \sigma_{i}(x_{1}, \dots, x_{n}) = \sum_{S \subset \{1, \dots, k-1\}} x^{S} (\sum_{i=|S|}^{k} (-1)^{i} h_{k-i}(x_{k}, \dots, x_{n}) \sigma_{i-|S|}(x_{k}, \dots, x_{n})).$$

$$(19)$$

 (\mathbf{b}) (\mathbf{a}) の式に $(-1)^i h_{k-i}$ をかけて $\sum_{i=0}^k$ をとる。 $\sigma_{\mathrm{flow}}=0$ に注意して、

$$\sum_{i=0}^{k} (-1)^{i} h_{k-i}(x_{k}, \dots, x_{n}) \sigma_{i}(x_{1}, \dots, x_{n}) = \sum_{S \subset \{1, \dots, k-1\}} x^{S} (\sum_{i=0}^{k} (-1)^{i} h_{k-i}(x_{k}, \dots, x_{n}) \sigma_{i-|S|}(x_{k}, \dots, x_{n}))$$
(20)

$$= \sum_{S \subset \{1,\dots,k-1\}} x^{S} \left(\sum_{i=|S|}^{k} (-1)^{i} h_{k-i}(x_{k},\dots,x_{n}) \sigma_{i-|S|}(x_{k},\dots,x_{n}) \right). \tag{21}$$

$$\sum_{i=|S|}^{k} (-1)^{i} h_{k-i}(x_{k}, \dots, x_{n}) \sigma_{i-|S|}(x_{k}, \dots, x_{n}) = 0$$
(22)

(c)

$$\sum_{i=|S|}^{k} (-1)^{i} h_{k-i}(x_{k}, \dots, x_{n}) \sigma_{i-|S|}(x_{k}, \dots, x_{n}) = \sum_{j=0}^{k-|S|} (-1)^{j+|S|} h_{k-j-|S|}(x_{k}, \dots, x_{n}) \sigma_{j}(x_{k}, \dots, x_{n})$$
(23)

$$= (-1)^{|S|} \sum_{j=0}^{k-|S|} (-1)^j h_{(k-|S|)-j}(x_k, \dots, x_n) \sigma_j(x_k, \dots, x_n)$$
(24)

$$\stackrel{\text{\tiny [BB 10]}}{=} 0. \tag{25}$$

次に演習 12 をとく。

$$g_k = h_k(x_k, \dots, x_n) + \sum_{i=1}^k (-1)^i h_{k-i}(x_k, \dots, x_n) y_i$$
(26)

としてある。

$$g_k = (-1)^k (y_k - \sigma_k) + \sum_{i=1}^{k-1} (-1)^i h_{k-i}(x_k, \dots, x_n) (y_i - \sigma_i)$$
(27)

は既知。

(a) r

$$\langle \sigma_1 - y_1, \dots, \sigma_n - y_n \rangle \subset \langle q_1, \dots, q_n \rangle$$
 (28)

」 $\sigma_1-y_1=g_1$ なので、 $\sigma_1-y_1\in$ (右) となる。 $(-1)^2\sigma_2-y_2=g_2-g_1\in$ (右) となる。以降おなじ。

- (b) $LT(g_k) = x_k^k$ であること。定義の式からあきらか y_i を含まないほうしか見るものがない。
- (c) g_1,\ldots,g_k がグレブナ基底? (b) より、 $i\neq j$ のとき、 $\mathrm{LT}(g_i)$ と $\mathrm{LT}(g_j)$ は互いに素になっている。よって、命題 g-4 より、 $S(g_i,g_j)\to_G 0$ になる。よって、命題 g-3 より、 $\{g_1,\ldots,g_n\}$ はグレブナ基底になっている。

証明する。

1. 演習 10 と 11 より、

$$0 = h_k(x_k, \dots, x_n) + \sum_{i=1}^k (-1)^i h_{k-i}(x_k, \dots, x_n) \sigma_i.$$
 (29)

 $2. g_1, \ldots, g_n$ は $\langle \sigma_1 - y_1, \ldots, \sigma_n - y_n \rangle$ の基底?

(a) g_k の定義

$$g_k = h_k(x_k, \dots, x_n) + \sum_{i=1}^k (-1)^i h_{k-i}(x_k, \dots, x_n) y_i$$
(30)

から1の式を引いて、

$$g_k = \sum_{i=1}^k (-1)^i h_{k-i}(x_k, \dots, x_n) (y_i - \sigma_i).$$
(31)

- (b) よって、 $\langle g_1, \ldots, g_n \rangle \subset \langle \sigma_1 y_1, \ldots, \sigma_n y_n \rangle$
- (c)(a)から、

$$g_k = (-1)^k (y_k - \sigma_k) + \sum_{i=1}^{k-1} (-1)^i h_{k-i}(x_k, \dots, x_n) (y_i - \sigma_i).$$
(32)

- (d)上と演習 12 より、 $\langle \sigma_1 y_1, \dots, \sigma_n y_n \rangle \subset \langle g_1, \dots, g_n \rangle$ 。
- (e)(b)(d)より、 $\langle \sigma_1-y_1,\ldots,\sigma_n-y_n \rangle = \langle g_1,\ldots,g_n \rangle$ となる。
- 3. 演習問題 12 で $\mathrm{LT}(g_k) = x_k^k$ を示して、さらにグレブナ基底であることを示す。おわり。

(証終)

命題 7:多項式 $f \in k[x_1,\ldots,x_n]$ が対称であることと、f のすべての斉次成分が対称であることは同値である。

証明

 \Rightarrow を示せばよい。 f が対称であるとする。

- $1. \forall i_1, \dots, i_n: x_{i_1}, \dots, x_{i_n}$ を x_1, \dots, x_n の置換とする。
- 2. 置換しても、次数はかわらない。
- 3. $f(x_{i_1},\ldots,x_{i_n})=f(x_1,\ldots,x_n)$
- 4. 上 2 つより、全次数が k の斉次も対称。

(証終)

定理 8: k が有理数体 $\mathbb Q$ を含む体ならば、 $k[x_1,\dots,x_n]$ の任意の対称多項式はベキ和 s_1,\dots,s_n の多項式として表せる。

証明

演習 14 をやる。ニュートン恒等式は

$$s_k - \sigma_1 s_{k-1} + \dots + (-1)^{k-1} \sigma_{k-1} s_1 + (-1)^k k \sigma_k = 0 \quad (1 \le k \le n), \tag{33}$$

$$s_k - \sigma_1 s_{k-1} + \dots + (-1)^{n-1} \sigma_{n-1} s_{k-n+1} + (-1)^n \sigma_n s_{k-n} = 0 \quad (k > n)$$
(34)

である。

1. 「 $\sigma_0 = 1$ と i < 0, i > n のときに $\sigma_i = 0$ としておく。このとき、

$$\forall k \ge 1: s_k - \sigma_1 s_{k-1} + \dots + (-1)^{k-1} \sigma_{k-1} s_1 + (-1)^k k \sigma_k = 0$$
(35)

と同値?」 $k \le n$ と k > n とで分ける。

2. 「上の恒等式を変数の数 n に関する帰納法で示せ。ただし、n 変数の σ_i を σ_i^n 、 s_k を s_k^n とする。」n=1 のとき: 1 < k < n のとき、すなわち k=1 のときを考える。

$$\underbrace{s_k^1 - \sigma_1^1 s_{k-1}^1 \dots + (-1)^{k-1} \sigma_{k-1}^1 s_1^1}_{k \supset} + (-1)^k k \sigma_k^1 = s_1^1 + (-1)^1 \cdot 1 \cdot \sigma_1^1 = x_1 - x_1 = 0. \tag{36}$$

k>n のとき、すなわち k>1 のときを考える。このときは、 σ_0,σ_1 だけが非零になる。

$$\underbrace{s_k^1 - \sigma_1^1 s_{k-1}^1 \dots + (-1)^{k-1} \sigma_{k-1}^1 s_1^1}_{k \exists} + (-1)^k k \sigma_k^1 = s_1^1 + \sigma_1^1 s_0^1 + (-1)^1 \cdot 1 \cdot \sigma_1 \tag{37}$$

$$= x_1 + x_1 \cdot 0 - x_1 \tag{38}$$

$$=0. (39)$$

n-1変数でうまく行っているとする。???

(証終)

7.2 有限行列群と不変式環

 $\mathbb{Q} \subset k$ とする。

定義 1: 体 k の元を成分に持つ可逆な $n \times n$ 行列全体の集合を GL(n,k) であらわす。

定義 2: 有限部分集合 $G\subset GL(n,k)$ が有限行列群であるとは、空でなく、行列のかけ算で閉じていることをいう。G の元の個数を、G の位数とよび、|G| であらわす。

 $G \subset GL(n,k)$ を有限行列群とする。

- (i) $I_n \in G_{\circ}$
- (ii) $A \in G$ ならば、ある正の整数 m があって、 $A^m = I_n$ となる。
- (iii) $A \in G$ ならば、 $A^{-1}G$ である。

証明

- (ii):
 - 1. $A \in G$ とする。
 - 2.~G が積で閉じているので、 $\left\{A,A^2,A^3,\dots\right\}\subset G$ である。

- 3.~i,j:~G は有限なので、 $A^i=A^j$ となる $i,j\in\mathbb{N}$ がある。i>j とする。
- 4. m = i j とする。
- 5.~3 より、 $A^m=A^{i-j}=A^iA^{-j}=E$ となる。m が条件をみたしたことになる。
- (iii):
 - 1. $I_n = A^{m-1} \cdot A$ となる。m は上のもの。
 - 2. G は積で閉じているので、 $A^{m-1} \in G$ となる。
 - $3. A^{-1} = A^{m-1} \in G$ となる。
- (i): $I_n = A^m \in G$ となる。

定義 7: $G\subset GL(n,k)$ を有限行列群とする。多項式 $f(\mathbf{z})\in k[x_1,\ldots,x_n]$ が、すべての $A\in G$ に対して、 $f(\mathbf{z})=f(A\cdot\mathbf{z})$ をみたすとき、G で不変であるという。G で不変な多項式全体の集合を $k[x_1,\ldots,x_n]^G$ であらわす。

例 8:

$$k[x_1,\ldots,x_n]^{S_n}=\left\{k[x_1,\ldots,x_n]$$
内のすべての対称多項式 $\right\}$

命題 $9:\ G\subset GL(n,k)$ を有限行列群をする。このとき、集合 $k[x_1,\ldots,x_n]^G$ は和と積で閉じており、すべての定数多項式を含む。

証明

演習 10。

• 和: $f(\mathbf{x}), q(\mathbf{x}) \in k[x_1, \dots, x_n]^G$ とする。

$$(f+g)(Az) = f(Az) + g(Az) = f(z) + g(z) = (f+g)(z). \tag{41}$$

● 積:f,g は同様。

$$(fg)(A\mathbf{x}) = f(A\mathbf{x})g(A\mathbf{x}) = f(\mathbf{x})g(\mathbf{x}) = (fg)(\mathbf{x}). \tag{42}$$

• 定数を含む: $c \in k$ とする。

$$c(A\mathbf{x}) = c = c(\mathbf{x}). \tag{43}$$

 $c \in k[x_1, \dots, x_n]^G$ である。

(証終)

命題 $10:\ G\subset GL(n,k)$ を有限行列群とする。このとき、多項式 $f\in k[x_1,\dots,x_n]$ が G で不変であることと、その斉次成分がすべて G で不変であることとは同値である。

証明

 ${\Bbb X}\mapsto A{\Bbb X}$ は次数を変えないので、A によって単項式はその次数を変えない。よって、 $f({\Bbb X})$ の次数 N のものは $f(A{\Bbb X})$ の次数 N のものに移ることになる。

 $F:ig\{f(\mathbf{z})$ の項 $ig\} o ig\{f(A\mathbf{z})$ の項 $ig\} o ig\} o ig\{f(A\mathbf{z})$ の項 $ig\} o ig\}$ だが、先の考察より $\mathbf{z} \mapsto A\mathbf{z}$ は次数を変えないので、

 $F|_{\{\chi
otin N \cap \Pi\}}: \{f(\mathbf{z}) \circ N \rangle \circ \Pi\} \to \{f(A\mathbf{z}) \circ N \rangle \circ \Pi\}$ になっている。F が単射だったので、 $F|_{\{\chi
otin N \cap \Pi\}}$ も単射になっている。よって、 $\#\{f(\mathbf{z}) \circ N \rangle \circ \Pi\} \le \#\{f(A\mathbf{z}) \circ N \rangle \circ \Pi\}$ となる。さらに、F が有限集合同士の可逆写像なので、

$$\#\left\{f(\mathbf{z})\mathbf{O}項\right\} = \#\left\{f(A\mathbf{z})\mathbf{O}項\right\} = \sum_{N} \#\left\{f(A\mathbf{z})\mathbf{O}N\mathbf{次}\mathbf{O}項\right\} \geq \sum_{N} \#\left\{f(\mathbf{z})\mathbf{O}N\mathbf{次}\mathbf{O}項\right\} = \#\left\{f(\mathbf{z})\mathbf{O}Q\right\} \tag{44}$$

なので、各 N について、# $\left\{f(\mathbf{x}) \mathbf{o} N$ 次の項 $\right\} = \# \left\{f(A\mathbf{x}) \mathbf{o} N$ 次の項 $\right\}$ となり、 $F|_{\left\{\chi \otimes N \right\} \mathbf{o} \mathbb{I}}$ は同型になる。これは、斉次成分が G で不変であることを意味する。

(証終)

補題 $11:\ G\in GL(n,k)$ を有限行列群とし、 $A_1,\ldots,A_m\in G$ が存在して、任意の $A\in G$ を次の形で表すことができる。

$$A = B_1 B_2 \dots B_t. \tag{45}$$

ここで、各i に対して $B_i \in \{A_1,\ldots,A_m\}$ である。(このとき A_1,\ldots,A_m は群G を生成するという。)このとき、 $f \in k[x_1,\ldots,x_n]$ が $k[x_1,\ldots,x_n]^G$ の元であることと、

$$f(\mathbf{z}) = f(A_1 \mathbf{z}) = \dots = f(A_m \mathbf{z}) \tag{46}$$

が成り立つことは同値である。

証明

- $1.\ f$ が行列 B_1,\ldots,B_t すべての作用で不変であるとする。このとき積 $B_1\ldots B_t$ でも f は不変? (a) t=1 のときはあきらか。t-1 のとき成立すると仮定する。t で示す。 (b)
 - $f((B_1 \dots B_t) \mathbf{x}) = f((B_1 \dots B_{t-1}) \cdot B_t \cdot \mathbf{x})$ $\tag{47}$

$$= f(B_t \cdot \mathbf{z}) \quad (帰納法の仮定) \tag{48}$$

$$= f(\mathbf{z}). \tag{49}$$

- $2. \Leftarrow$ を示す。f は A_1, \ldots, A_m で不変であるとする。
 - (a) $\forall A: A \in G$ とする。
 - (b) $\exists t, B_ullet$: 仮定より、 $A=B_1\dots B_t$ となる $B_ullet\in\{A_1,\dots,A_m\}$ が存在する。
 - (c)1より、fはAで不変である。
- $3. \Rightarrow$ はあきらか。

(証終)

7.3 不変式環の生成元

定義 $1:\ f_1,\dots,f_m\in k[x_1,\dots,x_n]$ に対して、 f_1,\dots,f_m の k 係数の多項式全体で表される元全体からなる $k[x_1,\dots,x_n]$ の部分集合を $k[f_1,\dots,f_m]$ で表す。

 $\langle f_1, \ldots, f_m \rangle$ とは違う。

定義 2: 有限行列群 $G\subset GL(n,k)$ に対し、次のように定義される写像 $R_G\colon k[x_1,\ldots,x_n] o k[x_1,\ldots,x_n]$ を G

のレイノルズ作用素という。すなわち、 $f(\mathbf{x}) \in k[x_1, \dots, x_n]$ に対し、

$$R_G(f)(\mathbf{x}) = \frac{1}{|G|} \sum_{A \in G} f(A\mathbf{x}). \tag{50}$$

命題 3: 有限行列群 G のレイノルズ作用素 R_G に対し、次が成り立つ。

- (i) R_G は k 線型写像である。
- (ii) $f \in k[x_1, ..., x_n]$ ならば $R_G(f) \in k[x_1, ..., x_n]^G$ 。
- (iii) $f \in k[x_1, \dots, x_n]^G$ ならば $R_G(f) = f$ 。

証明

(i) を示す。

$$R_G(af + bg)(\mathbf{x}) = \frac{1}{|G|} \sum_{A \in G} (af + bg)(A\mathbf{x})$$
(51)

$$= \frac{a}{|G|} \sum_{A \in G} (f)(A\mathbb{X}) + \frac{b}{|G|} \sum_{A \in G} (g)(A\mathbb{X})$$

$$\tag{52}$$

$$= aR_G(f)(\mathbf{z}) + bR_G(g)(\mathbf{z}) \tag{53}$$

$$= (aR_G(f) + bR_G(f))(x). \tag{54}$$

(ii) を示す。

1. $\forall B \colon B \in G$

2.

$$R_G(f)(B\mathbf{z}) = \frac{1}{|G|} \sum_{A \in G} f(A \cdot B\mathbf{z})$$
 (55)

$$=\frac{1}{|G|}\sum_{A\in G}(AB\cdot \mathbf{x}). \tag{56}$$

- 3. $\exists A_ullet: G = \left\{A_1,\ldots,A_{|G|}
 ight\}$ とする。重複のないようにしておく。
- $4. i \neq j$ のとき、 $A_iB \neq A_jB$ になる。
- 5. 上より、 $\left\{A_1B,\ldots,A_{|G|}B
 ight\}$ はそれぞれ異なる |G| 個の元である。
- 6. また、 $\left\{A_1B,\ldots,A_{|G|}B\right\}$ は1 の $B\in G$ より、 $\subset G$ である。
- 7. 3,5,6 より、

$$G = \{A_1, \dots, A_{|G|}\} = \{A_1 B, \dots, A_{|G|} B\} = \{AB; A \in G\}.$$

$$(57)$$

8.

$$\frac{1}{|G|} \sum_{A \in G} f(AB \cdot \mathbf{z}) \stackrel{\boxed{7}}{=} \frac{1}{|G|} \sum_{A \in G} f(A \cdot \mathbf{z}) = R_G(f)(\mathbf{z}). \tag{58}$$

9. 1 おわり:

$$\forall B \in G: R_G(f)(B \cdot \mathbf{z}) = R_G(f)(\mathbf{z}). \tag{59}$$

10. 上より、 $R_G(f) \in k[x_1,\ldots,x_n]^G$ となる。

(iii) を示す。 $f \in k[x_1, \ldots, x_n]^G$ とする。f は不変式なので、

$$R_G(f)(\mathbf{x}) = \frac{1}{|G|} \sum_{A \in G} f(A\mathbf{x}) = \frac{1}{|G|} \sum_{A \in G} f(\mathbf{x}) = f(\mathbf{x}). \tag{60}$$

(証終)

定理 5: 有限行列群 $G \subset GL(n,k)$ に対し、

$$k[x_1, \dots, x_n]^G = k[R_G(x^\beta); |\beta| \le |G|]$$
 (61)

が成り立つ。特に、 $k[x_1,\ldots,x_n]^G$ は有限個の斉次不変式で生成される。

証明

⊂を示す。

- 1. $\forall f: f = \sum_{\alpha} c_{\alpha} x^{\alpha} \in k[x_1, \dots, x_n]^G$ とする。
- 2. 命題3より、

$$f = R_G(f) = R_G(\sum_{\alpha} c_{\alpha} x^{\alpha}) = \sum_{\alpha} c_{\alpha} R_G(x^{\alpha}).$$
(62)

- 3.~1 おわり: すべての不変式は $R_G(x^{lpha})$ の k 上の線形結合である。
- 4. すべての lpha について、 $R_G(x^lpha)$ が $|eta| \leq |G|$ をみたす $R_G(x^eta)$ に関する多項式?
 - (a) $\forall k$: $k \in \mathbb{Z}_{\geq 0}$ とする。
 - (b) a:

$$(x_1 + \dots + x_n)^k = \sum_{|\alpha| = k} a_{\alpha} x^{\alpha}$$
(63)

(c) a_{α} が正整数であることを示す。演習 4。 $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{Z}^n_{\geq 0}$ とし、 $|\alpha|=k$ とする。

$$\binom{k}{\alpha} = \frac{k!}{\alpha_1! \dots \alpha_n!}.$$
 (64)

i. 「 $\begin{pmatrix} k \\ \alpha \end{pmatrix}$ は正整数?」2 項係数が整数になることは既知とする *5 。 n=2 のときは成立している。n のと

$$\begin{pmatrix}
k \\
(\alpha_1, \dots, \alpha_{n+1})
\end{pmatrix} = \frac{k!}{\alpha_1 \dots \alpha_{n+1}}
= \frac{(\alpha_1 + \dots + \alpha_n)!}{\alpha_1! \dots \alpha_n!} \cdot \frac{k \cdot \dots \cdot (k - (\alpha_1 + \dots + \alpha_n) + 1)}{\alpha_{n+1}!}$$

$$= \begin{pmatrix} \alpha_1 + \dots + \alpha_n \\ (\alpha_1, \dots, \alpha_n) \end{pmatrix} \cdot \frac{(\alpha_{n+1} + (\alpha_n + \dots + \alpha_1)) \cdot \dots \cdot (\alpha_{n+1} + 1)}{\alpha_{n+1}!}$$

$$= \begin{pmatrix} \alpha_1 + \dots + \alpha_n \\ (\alpha_1, \dots, \alpha_n) \end{pmatrix} \cdot \frac{(\alpha_{n+1} + (\alpha_n + \dots + \alpha_1))!}{\alpha_{n+1}! (\alpha_n + \dots + \alpha_1)!}$$

$$= \begin{pmatrix} \alpha_1 + \dots + \alpha_n \\ (\alpha_1, \dots, \alpha_n) \end{pmatrix} \cdot \begin{pmatrix} \alpha_{n+1} + (\alpha_n + \dots + \alpha_1) \\ \alpha_{n+1}! (\alpha_n + \dots + \alpha_1) \end{pmatrix} .$$

$$= \begin{pmatrix} \alpha_1 + \dots + \alpha_n \\ (\alpha_1, \dots, \alpha_n) \end{pmatrix} \cdot \begin{pmatrix} \alpha_{n+1} + \dots + \alpha_1 \\ (\alpha_n + \dots + \alpha_1, \alpha_{n+1}) \end{pmatrix} .$$

$$(65)$$

$$= \frac{(\alpha_1 + \dots + \alpha_n)!}{\alpha_1! \dots \alpha_n!} \cdot \frac{k \cdot \dots \cdot (k - (\alpha_1 + \dots + \alpha_n) + 1)}{\alpha_{n+1}!}$$
(66)

$$= \begin{pmatrix} \alpha_1 + \dots + \alpha_n \\ (\alpha_1, \dots, \alpha_n) \end{pmatrix} \cdot \frac{(\alpha_{n+1} + (\alpha_n + \dots + \alpha_1)) \cdot \dots \cdot (\alpha_{n+1} + 1)}{\alpha_{n+1}!}$$
(67)

$$= \begin{pmatrix} \alpha_1 + \dots + \alpha_n \\ (\alpha_1, \dots, \alpha_n) \end{pmatrix} \cdot \frac{(\alpha_{n+1} + (\alpha_n + \dots + \alpha_1))!}{\alpha_{n+1}! (\alpha_n + \dots + \alpha_1)!}$$
(68)

$$= \begin{pmatrix} \alpha_1 + \dots + \alpha_n \\ (\alpha_1, \dots, \alpha_n) \end{pmatrix} \cdot \begin{pmatrix} \alpha_{n+1} + \dots + \alpha_1 \\ (\alpha_n + \dots + \alpha_1, \alpha_{n+1}) \end{pmatrix}. \tag{69}$$

ii. r

$$(x_1 + \dots + x_n)^k = \sum_{|\alpha| = k} {k \choose \alpha} x^{\alpha}.$$
 (70)

」あきらか。

^{*5} パスカルの三角形の漸化式で多分行ける。

(d)記号を整備する。

$$(A\mathbf{x})^{\alpha} = (A_1\mathbf{x})^{\alpha_1} \cdot (A_n\mathbf{x})^{\alpha_n} \tag{71}$$

と \square^{α} : $k^n \to k$ を定める。

(e)

$$R_G(x^{\alpha}) = \frac{1}{|G|} \sum_{A \in G} (A \mathbf{x})^{\alpha}. \tag{72}$$

(f) u_1,\ldots,u_n : 不定元 u_1,\ldots,u_n を用意して、(b) に $x_1 \Leftarrow u_i A_i$ x を代入すると、

$$(u_1 A_1 \mathbf{z} + \dots + u_n A_n \mathbf{z})^k = \sum_{|\alpha| = k} a_{\alpha} (A \mathbf{z})^{\alpha} u^{\alpha}. \tag{73}$$

(g) b_{\bullet} : 上で $A \in G$ にわたる和をとり S_k とする。

$$S_k = \sum_{A \in G} (u_1 A_1 \mathbf{x} + u_n A_n \mathbf{x})^k \tag{74}$$

$$= \sum_{|\alpha|=k} a_{\alpha} \left(\sum_{A \in G} (A \mathbf{z})^{\alpha} \right) u^{\alpha} \tag{75}$$

$$= \sum_{|\alpha|=k} \underbrace{b_{\alpha}}_{\exists} R_G(x^{\alpha}) u^{\alpha}. \tag{76}$$

ここで、 $b_{\alpha} = |G| a_{\alpha}$ とした。

(h) U_{\bullet} : $A \in G$ をインデックスとして、

$$U_A = u_1 A_1 \mathbf{x} + \dots + u_n A_n \mathbf{x} \tag{77}$$

とする。

- (i) $S_k(\square)$: $S_k=S_k(U_A:A\in G)=\sum_{A\in G}U_A^k$ 。 S_k は U_1,\ldots,U_A の「k 乗のベキ和」になっている。
- $(\,\mathrm{j}\,)$ 上と定理 $1\text{-}7\text{-}8^{*6}$ より、 $\{U_A;A\in G\}$ の対称式は $S_1,\ldots,S_{|G|}$ のの多項式である。
- (k) $\exists F \colon S_k$ は $\{U_A; A \in G\}$ の対称式なので、上より

$$S_k = F(S_1, \dots, S_{|G|})$$
 (78)

となる k 係数 n 変数多項式 F が存在する。 a 、これは b b b でもよい!! 1

(1) 上 (k) に (g) を代入 $S_k \Leftarrow \sum_{|\alpha|=k} b_\alpha R_G(x^\alpha) u^\alpha$ する。

$$\sum_{|\alpha|=k} b_{\alpha} R_G(x^{\alpha}) u^{\alpha} = F(\sum_{|\beta|=1} b_{\beta} R_G(x^{\beta}) u^{\beta}, \dots, \sum_{|\beta|=|G|} b_{\beta} R_G(x^{\beta}) u^{\beta})$$

$$(79)$$

- (m) $\forall \alpha$: $|\alpha| = k$ とする。
- (n)(l)の両辺の多重次数 α の項を取り出して係数比較すると、

$$b_{\alpha}R_G(x^{\alpha}) = (|\beta| \le |G|)$$
 となる β についての $R_G(x^{\beta})$ の多項式). (80)

(o) (g) で $b_{\alpha}=|G|\,a_{\alpha}$ と、4 の $a_{\alpha}>0$ と体 k の標数が 0 であることより、 $b_{\alpha}\neq 0$ である。

(p)(n)(o)より、

$$R_G(x^{\alpha}) = (|\beta| \le |G|)$$
となる分についての $R_G(x^{\beta})$ の多項式). (81)

よって、すべての α について、 $R_G(x^{\alpha})$ が $|\beta| \leq |G|$ をみたす $R_G(x^{\beta})$ に関する多項式。

^{*6} 対称式はベキ和で表せる

よって、全次数が |G| 以下である全ての単項式についてレイノルズ作用素を計算すれば G の不変式環の生成元全体を求めることができる。

多項式 $f_1,\dots,f_m\in k[x_1,\dots,x_n]$ が与えらえれたとする。ここで、 $k[x_1,\dots,x_n,y_1,\dots,y_m]$ の単項式順序を、変数 x_1,\dots,x_n のうち 1 つでも含む多項式は $k[y_1,\dots,y_m]$ のすべての単項式より大きくなるように定める。イデアル $\langle f_1-y_1,\dots,f_m-y_m\rangle\subset k[x_1,\dots,x_n,y_1,\dots,y_m]$ のグレブナ基底を G とする。与えられた $f\in k[x_1,\dots,x_n]$ に対し、 $g=\overline{f}^G$ を f の G による割り算の余りとする。このとき次が成り立つ。

- (i) $f \in k[f_1, \ldots, f_m]$ と $g \in k[y_1, \ldots, y_m]$ は同値。
- (ii) $f\in k[f_1,\ldots,f_m]$ ならば、 $f=g(f_1,\ldots,f_m)$ となり、これは f の f_1,\ldots,f_m の多項式としての表示を与える。

証明

- (i) を示す。
 - 1. $G: G = \{g_1, \dots, g_t\}$ とし、重複、0 はないものとする。
 - 2. A_{\bullet} : f を G で割って、

$$f = A_1 g_1 + \dots + A_t g_t + g. \tag{82}$$

 $A_1,\ldots,A_t\in k[x_1,\ldots,x_n,y_1,\ldots,y_m]$ を得る。

- $3. \Leftarrow$ を示す。 $g \in k[y_1, \ldots, y_m]$ とする。
 - (a) 2 に $y_{\bullet} \Leftarrow f_{\bullet}$ を代入する。 $g_{\bullet} \in \langle f_1 y_1, \ldots, f_m y_m \rangle$ なので、 $g_{\bullet}(x_1, \ldots, x_n, f_1, \ldots, f_m) = 0$ となり、 $f \in k[x_1, \ldots, x_n]$ なのんで代入するとそのまま f である。

$$f = \widetilde{g}(f_1, \dots, f_m). \tag{83}$$

- (b)上より、 $f \in k[f_1, \ldots, f_m]$ となる。
- $4. \Rightarrow$ を示す。 $f \in k[f_1, \ldots, f_m]$ とする。
 - (a) $\exists \widetilde{g} \colon \widetilde{g} \in k[y_1,\ldots,y_m]$ があって、 $f = \widetilde{g}(f_1,\ldots,f_m)$ とかける。
 - (b)

$$f = C_1 \cdot (f_1 - y_1) + \dots + C_m \cdot (f_m - y_m) + \widetilde{g}(y_1, \dots, y_m).$$
(84)

i. $k[f_1,\ldots,f_m]$ の lpha 次の単項式は、

$$f_1^{\alpha_1} \dots f_m^{\alpha_m} = (y_1 + (f_1 - y_1))^{\alpha_1} \dots (y_m + (f_m - y_m))^{\alpha_m}$$
 (85)

$$= y_1^{\alpha_1} \dots y_m^{\alpha_m} + B_1 \cdot (f_1 - y_1) + \dots + B_m \cdot (f_m - y_m). \tag{86}$$

と、 $B_1, \ldots, B_m \in k[x_1, \ldots, x_n, y_1, \ldots, y_m]$ を使ってかける。

ii. 上を係数をかけて足せば、

$$\widetilde{g}(f_1, \dots, f_m) = C_1 \cdot (f_1 - y_1) + \dots + C_m \cdot (f_m - y_m) + \widetilde{g}(y_1, \dots, y_m)$$

$$\tag{87}$$

と、 $C_1, \ldots, C_m \in k[x_1, \ldots, x_n, y_1, \ldots, y_m]$ を使ってかける。

iii. (a) と上より、

$$f = C_1 \cdot (f_1 - y_1) + \dots + C_m \cdot (f_m - y_m) + \widetilde{g}(y_1, \dots, y_m). \tag{88}$$

(c) $G': G' = G \cap k[y_1, \ldots, y_m]$ とする。 さらに、 $G' = \{g_1, \ldots, g_s\}$ としてよい。

(d) B_1,\ldots,B_s,g' : \widetilde{g} をG'で割る。

$$\widetilde{g} = B_1 g_1 + \dots + B_s g_s + g' \tag{89}$$

となる $B_1, \ldots, B_s, g' \in k[y_1, \ldots, y_m]$ が得られる。

(e) C_1', \ldots, C_m' : (b),(d), $g_{\bullet} \in \langle f_1 - y_1, \ldots, f_m - y_m \rangle$ より、

$$f = C'_1 \cdot (f_1 - y_1) + \dots + C'_m \cdot (f_m - y_m) + g'(y_1, \dots, y_m)$$
(90)

となる $C_1',\ldots,C_m'\in k[x_1,\ldots,x_n,y_1,\ldots,y_m]$ が得られる。

- (f) g' は f の割り算の余り? つまり、g' のどの項も $\mathrm{LT}(G)$ の元で割り切れない?
 - i. g' のある項が $\mathrm{LT}(G)$ のある元で割り切れると仮定する (背理法)。
 - ii. $\exists i \colon \mathrm{LT}(g_i)$ は g' のある項を割り切る、となるような $g_i \in G$ が存在する。
 - iii. $g' \in k[y_1, \ldots, y_m]$ なので、 $LT(g_i)$ は y_1, \ldots, y_m のみを含む。
 - iv. 上と、順序付より $g_i \in k[y_1,\ldots,y_m]$ となる。
 - v. 上と、 $g_i \in G$ より、 $g_i \in G'$ となる。(G' は 4-(c))。
 - ${
 m vi.}\,\,g'$ は G' による割り算の余りなので $({
 m d})$ 、 ${
 m LT}(g_i)$ は g' のどの項も割り切らない。
 - vii. 上は、i に矛盾する。

よって、g' は f の割り算の余り。 $g=g'\in k[y_1,\ldots,y_m]$ となる。

(ii) を示す。 $f \in k[f_1,\ldots,f_m]$ なら、上の証明の後半の(4-e)と(4-f)より、

$$f = C'_1 \cdot (f_1 - y_1) + \dots + C'_m \cdot (f_m - y_m) + g(y_1, \dots, y_m)$$
(91)

となっている。ここで、 $y_{\bullet} \Leftarrow f_{\bullet}$ とすることで、

$$f = g(f_1, \dots, f_m). \tag{92}$$

(証終)

7.4 生成元の間の関係と軌道の幾何

関係のイデアル: $F = (f_1, \dots, f_m)$ としたとき、

$$I_F = \left\{ h \in k[y_1, \dots, y_m]; h(f_1, \dots, f_m) = 0_{k[x_1, \dots, x_n]} \right\}$$
(93)

命題 1: $k[x_1, \dots, x_n]^G = k[f_1, \dots, f_m]$ であるとき、

- (i) I_F は $k[y_1,\ldots,y_m]$ の素イデアル。
- (ii) $f\in k[x_1,\ldots,x_n]^G$ に対して、 $f=g(f_1,f_m)$ を f の f_1,\ldots,f_m による多項式表示の 1 つとする。このとき、 f_1,\ldots,m によるすべての多項式表示は、

$$f = g(f_1, \dots, f_m) + h(f_1, \dots, f_m)$$
 (94)

で与えられる。ここで、h は I_F をわたって動く。

証明

- (1) 素イデアルの定義どおりやる。
- (2) 2 つあったとして、その差は I_F に入る。

命題 2: $k[x_1,\ldots,x_n]^G=k[f_1,\ldots,f_m]$ のとき $I_F\subset k[y_1,$

 $dots, y_m$] を関係のイデアルとする。このとき、 I_F を法とした商環と不変式環の間には環同型

$$k[y_1, \dots, y_m]/I_F \simeq k[x_1, \dots, x_n]^G \tag{95}$$

がある。

証明

準同型定理。

(証終)

命題 3: $k[x_1,\ldots,x_n]^G=k[f_1,\ldots,f_m]$ であるとし、イデアル

$$J_F = \langle f_1 - y_1, \dots, f_m - y_m \rangle \subset k[x_1, \dots, x_n, y_1, \dots, y_m]$$

$$\tag{96}$$

を考える。

- (i) I_F は J_F の n 次の消去イデアルである。つまり、 $I_F=J_F\cap k[y_1,\ldots,y_m]$ となる。
- (ii) $k[x_1,\ldots,x_n,y_1,\ldots,y_m]$ の単項式順序を、 x_1,\ldots,x_n の 1 つでも含む単項式は $k[y_1,\ldots,y_m]$ のすべての 単項式よりも大きくなるように定め、G を J_F のグレブナ基底とする。このとき、 $G\cap k[y_1,\ldots,y_m]$ は $k[y_1,\ldots,y_m]$ 乗に誘導された単項式順序に関する I_F のグレブナ基底である。

証明

(i) を示す。

1. $p \in k[x_1, ..., x_n, y_1, ..., y_m]$ について、

$$p \in J_F \iff k[x_1, \dots, x_n]$$
において、 $p(x_1, \dots, x_n, f_1, \dots, f_m) = 0$ (97)

?

(a) \Rightarrow ?

i. $y_i \leftarrow f_i$ の代入によってあきらか。

- (b) \Leftarrow ? $p(x_1, \dots, x_n, f_1, \dots, f_m) = 0$ とする。
 - i. B_{\bullet} : p の y_{\bullet} を $f_{\bullet} (f_{\bullet} y_{\bullet})$ に置き換えて展開し、

$$p(x_1, \dots, x_n, y_1, \dots, y_m) = p(x_1, \dots, x_n, f_1, \dots, f_m) + B_1 \cdot (f_1 - y_1) + \dots + B_m \cdot (f_m - y_m)$$
(98)

となる $B_1, B_m \in k[x_1, \ldots, x_n, y_1, \ldots, y_m]$ がある。

ii. (b) の仮定により、

$$p(x_1, \dots, x_n, y_1, \dots, y_m) = B_1(f_1 - y_1) + \dots + B_m(f_m - y_m) \in J_F.$$
(99)

これで、 $p \in k[x_1, \dots, x_n, y_1, \dots, y_m]$ について、

$$p \in J_F \iff k[x_1, \dots, x_n] \text{ labit}, p(x_1, \dots, x_n, f_1, \dots, f_m) = 0$$

$$(100)$$

は示された。

2. 上から直ちに

$$p \in J_F \cap k[y_1, \dots, y_m] \iff k[x_1, \dots, x_n] \text{ label} (f_1, \dots, f_m) = 0. \tag{101}$$

(ii) は消去イデアルの議論より直ちに従う。

(証終)

定義 6: $k[x_1,\ldots,x_n]^G=k[f_1,\ldots,f_m]$ のとき、 $I_F\subset k[y_1,\ldots,y_m]$ を $F=(f_1,\ldots,f_m)$ の関係のいデアルとする。このとき、アフィン多様体 F_V を次で定義する。

$$V_F = \mathbf{V}(I_F) \subset k^m. \tag{102}$$

命題 7:

(i) V_F はパラメタ付け

$$y_1 = f_1(x_1, \dots, x_n),$$
 (103)

$$\vdots (104)$$

$$y_m = f_m(x_1, \dots, x_n) \tag{105}$$

を含む k^m の最小多様体である。

- (ii) $I_F = \mathbf{I}(V_F)$ である。したがって、 I_F は V_F 上で消えるすべての多項式関数全体のなすイデアルである。
- (iii) V_F は既約多様体である。
- (iv) $k[V_F]$ を V_F の座標環とする。このとき、環同型

$$k[V_F] \simeq k[x_1, \dots, x_n]^G \tag{106}$$

が存在する。

証明

- (i) は、 $J_F=\langle f_1-y_1,\ldots,f_m-y_m \rangle$ の n 次消去イデアルなので、多項式の陰関数表示化から従う。
 - (ii) を示す。
 - 1. \subset を示す。 $I_F \subset \mathbf{I}(\mathbf{V}(I_F)) = \mathbf{I}(V_F)$ となる。
 - 2. ⊃を示す。
 - (a) $\forall h: h \in \mathbf{I}(V_F)$ とする。
 - (b) 任意の $(a_1,\ldots,a_n)\in k^n$ について、(i) より

$$(f_1(a_1, \dots, a_n), \dots, f_m(a_1, \dots, a_n)) \in F(k^n) \subset V_F.$$
 (107)

(c)(a)より、hは V_F を全部消すので、

$$h(f_1(a_1,\ldots,a_n),\ldots,f_m(a_1,\ldots,a_n))=0.$$
 (108)

(d)上と、標数 0 の体で考えていることから、

$$h(f_1, \dots, f_m) = 0_{k[x_1, \dots, x_n]}.$$
 (109)

- (e) $h \in I_F$
- (f)(a)おわり。 $\mathbf{I}(V_F) \subset I_F$ 。
- (iii) を示す。(ii) の $I_F=\mathbf{I}(V_F)$ と I_F が素イデアルであることから従う。
- (iv) を示す。命題 2 の同型を使い、

$$k[V_F] \simeq k[y_1, \dots, y_m]/I_F \simeq k[x_1, \dots, x_n]^G.$$
 (110)

系 8: $k[x_1,\ldots,x_n]^G=k[f_1,\ldots,f_m]=k[f_1',\ldots,f_{m'}']$ と仮定する。 $F=(f_1,\ldots,f_m)$ および $F'=(f_1',\ldots,f_{m'})$ とするとき、多様体 $V_F\subset k^m$ と $V_{F'}\subset k^{m'}$ は同型である。

証明

1. 命題7より、

$$k[V_F] \simeq k[x_1, \dots, x_n]^G \simeq k[V_{F'}]. \tag{111}$$

- 2. 上の同型を与える同型写像は定数では恒等写像になる。 $(k[x_1,\ldots,x_n]^G\simeq k[x_1,\ldots,x_n]/I_F$ だが、 I_F は定義より 0 でない定数を含まない (本質的に 1 次以上)。したがって、 I_F で割っても定数はそのままになる。)
- 3. 1,2 と定理 5-4-9 より、 V_F と $V_{F'}$ は同型。

(証終)

以降 k は代数的閉体とする。

定義 9: 有限行列群 $G \subset GL(n,k)$ と $\mathfrak{a} \in k^n$ に対し、集合

$$G \cdot \mathbf{0} = \{ A \cdot \mathbf{0}; A \in G \} \tag{112}$$

 $oldsymbol{\varepsilon}$ $oldsymbol{\sigma}$ の G 軌道と体の集合を k^n/G で表し、これを軌道空間という。

あとで使うので先に示してしまう。

定理 $11: G \subset GL(n,k)$ を有限行列群とし、 $f \in k[x_1,\ldots,x_n]$ とする。N=|G| とする。このとき次の条件を満たす不変式 $g_1,\ldots,g_N \in k[x_1,\ldots,x_n]^G$ が存在する。

$$f^{N} + g_{1}f^{N-1} + \dots + g_{N} = 0. {(113)}$$

証明

 $1. \exists g_1, \ldots, g_N$: 多項式の展開を考える。

$$\prod_{A \in G} (X - f(A \cdot \mathbf{z})) = X^N + g_1(\mathbf{z})X^{N-1} + \dots + g_N(\mathbf{z})$$
(114)

となる $g_1,\ldots,g_N\in k[x_1,\ldots,x_n]$ が存在する。

- $2. g_1, \ldots, g_N$ は G 不変?
 - (a) ∀B: B∈Gとする。
 - (b) sum のインデックスを取り替えて、

$$\prod_{A \in G} (X - f(AB \cdot \mathbf{z})) = \prod_{A \in G} (X - f(A \cdot \mathbf{z})). \tag{115}$$

(c)(a)おわり:

$${}^{\forall}B \in G: X^{N} + g_{1}(B \cdot \mathbf{z})X^{N-1} + \dots + g_{N}(B \cdot \mathbf{z}) = X^{N} + g_{1}(\mathbf{z})X^{N-1} + \dots + g_{N}(\mathbf{z}). \tag{116}$$

(d) 上で係数比較して、 $g_1,\ldots,g_N\in k[x_1\ldots,x_n]^G$. よって、 $g_1,\ldots,g_N\in k[x_1,\ldots,x_n]^G$ となる。 3.1 の多項式で $X \leftarrow f$ と代入する。左辺の因子で A = E のとき、

$$X - f(A \cdot \mathbf{x}) = f - f(E \cdot \mathbf{x}) = 0 \tag{117}$$

となるので、左辺が 0 になって、

$$X^{N} + g_{1}(\mathbf{z})X^{N-1} + \dots + g_{N}(\mathbf{z}) = 0.$$
(118)

4.1 で作った g_{\bullet} が条件を満たす。示された。

(証終)

定理 10: k は代数的閉体とし、 $G \subset GL(n,k)$ を有限行列群とする。

$$k[x_1, \dots, x_n]^G = k[f_1, \dots, f_m]$$
 (119)

であるとき、次がなりたつ。

- (i) $F=\mathfrak{o}=(f_1(\mathfrak{o}),\dots,f_m(\mathfrak{o}))$ で定義される多項式写像 $F:k^n\to V_F$ は全射である *7 。幾何的には、これはパラメタ付け $y_i=f_i(x_1,\dots,x_n)$ が V_F の全体を覆うことを意味する。
- (ii) G 軌道 $G \cdot \mathfrak{o} \subset k^n$ を $F(\mathfrak{o}) \in V_F$ に写す写像は一対一対応

$$k^n/G \simeq V_F \tag{120}$$

を誘導する。

証明

- (i) を示す。
 - 1. $J_F: J_F = \langle f_1 y_1, \dots, f_m y_m \rangle$
 - 2. $I_F: I_F = J_F \cap k[y_1, \dots, y_m]$
 - 3. (b_1, \ldots, b_m) : $(b_1, \ldots, b_m) \in V_F = \mathbf{V}(I_F)$
 - 4.2の I_F は消去イデアルなので、上の (b_1,\ldots,b_m) は

$$y_1 = f_1(x_1, \dots, x_n)$$
 (121)

$$\vdots (122)$$

$$y_m = f_m(x_1, \dots, x_n) \tag{123}$$

の部分解。

- $5. \ \exists (a_1,\ldots,a_n): \ 3$ の $(b_1,\ldots,b_m) \in \mathbf{V}(I_F)$ は $(a_1,\ldots,a_n,b_1,\ldots,b_m) \in \mathbf{V}(J_F)$ に拡張できる?
 - (a) N: N = |G|
 - (b)次は成立?

$$\forall i$$
: $\exists p_i \in J_F \cap k[x_i, \dots, x_n, y_1, \dots, y_m]: p_i = x_i^N + (x_1$ の次数が $< N$ である項). (124)

- i. $\forall i$: $i = 1, \dots, n$ とする。
- ii. $\exists N, g_{\bullet}$: 補題 11 を $f = x_i$ として適用すると、

$$x_i^N + g_1 x_i^{N-1} + \dots + g_N = 0 (125)$$

となる N=|G| と、 $g_1,\ldots,g_N\in k[x_1,\ldots,x_n]^G$ を得る。

iii. $\exists h_ullet$: 仮定より、 $k[x_1,\ldots,x_n]^G=k[f_1,\ldots,f_m]$ であることと上より、

$$\forall j = 1, \dots, N$$
: $\exists h_j : m$ 変数多項式: $g_j = h_j(f_1, \dots, f_m)$. (126)

iv. p_i :

$$p_i(x_i, y_1, \dots, y_m) = x_i^N + h_1(y_1, \dots, y_m)x_i^{N-1} + \dots + h_N(y_1, \dots, y_m).$$
(127)

とする。

v. ii の $x_i^N + g_1 x_i^{N-1} + \dots + g_N = 0$ と iii の $g_i = h_i(f_1, \dots, f_m)$ より、 p_i で $y_{\bullet} \leftarrow f_{\bullet}$ と定義すると、

$$p_i(x_i, f_1, \dots, f_m) = 0.$$
 (128)

vi. 上と、 J_F の特徴付け*8より、 $p_i \in J_F$ となる。

vii. iv の定義より、 $p_i \in k[x_i, \ldots, x_n, y_1, \ldots, y_m]$ である。

viii. vi と vii より、

$$p_i \in J_F \cap k[x_i, \dots, x_n, y_1, \dots, y_m] \tag{129}$$

である。さらに、 ${
m iv}$ の定義より、 x_i に関する先頭項係数が 1 であるという条件も満たされている。よって、 ${
m iv}$ で作った p_i が条件をみたす。

ix. i おわり:

$$\forall i$$
: $^\exists p_i$: $p_i \in J_F \cap k[x_i,\ldots,x_n,y_1,\ldots,y_m]$ かつ「 x_i についての先頭項係数が 1 」 (130)

よって、

$$\forall i$$
: $\exists p_i \in J_F \cap k[x_i, \dots, x_n, y_1, \dots, y_m]$: $p_i = x_i^N + (x_1$ の次数が $< N$ である項). (131)

となる。

- (c) (b_1,\ldots,b_m) が $(a_{i+1},\ldots,a_n,b_1,\ldots,b_m)\in \mathbf{V}(J_F\cap k[x_{i+1},\ldots,x_n,y_1,\ldots,y_m])$ まで拡張しているとして、もう 1 つ拡張する。
 - i. $\exists a_i$: 5 の $p_i \in J_F \cap k[x_i,\ldots,x_n,y_1,\ldots,y_m]$ であることと、 p_i の x_i に関する先頭項係数が 1 であることから、上の部分解は $(a_i,\ldots,a_n,b_1,\ldots,b_m)$ に拡張できる。
- (d) $\exists a_1,\ldots,a_n$: 上を繰替えすことで、部分解は解 $(a_1,\ldots,a_n,b_1,\ldots,a_m)$ に拡張できる。
- 6. 上より、 $F(a_1,\ldots,a_n)=(b_1,\ldots,b_m)$
- 7. 上より、 $F: k^n \to V_F$ は全射。
- (ii) を示す。
- $1. F: F: k^n \to V_F$ は (i) の通り、

$$F(\mathfrak{o}) = (f_1(\mathfrak{o}), \dots, f_m(\mathfrak{o})) \tag{132}$$

としておく。

2. \widetilde{F} : \widetilde{F} : $k^n/G \rightarrow V_F$ を F から誘導された写像、すなわち

$$\widetilde{F}(G \cdot \mathbf{0}) = F(\mathbf{0}) \tag{133}$$

とする。(well-defined かはわからない。)

- $3. \ f_ullet$ は不変式と仮定してあるので、F は G 軌道 $G \cdot \mathfrak{a}$ 上同じ値をとる。よって、 \widetilde{F} は well-defined である。
- 4. (i) より、F は全射なので、 \widetilde{F} も全射。
- 5. F は単射?
 - (a) $\forall a, b$: 軌道 $G \cdot a \geq G \cdot b$ が異なるとする。
 - $(b) \sim_G$ は同値関係なので、 $G \cdot \mathfrak{o}$ と $G \cdot \mathbb{b}$ は異なる軌道である。
 - (c) $\exists g: g \in k[x_1,\ldots,x_n]^G$ で、 $g(\mathfrak{o}) \neq g(\mathfrak{b})$ なるものがある?

 $^{^{*8}}$ 命題 7-4-3 中にあった。 $p\in J_F$ と $p(x_1,\ldots,x_n,f_1,\ldots,f_m)=0$ は等価である。片方は $y_i\leftarrow f_i$ であきらか。もう片方は $y_i=f_i-(f_i-y_i)$ で単項式を展開して足し合わせる例のトリックでできる。

- i. $S: S = G \cdot \mathbb{b} \cup G \cdot \mathbb{o} \{ \mathbb{o} \}$ とする。
- ii. 上の定義より、S は有限個の点である。
- iii. 上より、S はアフィン多様体である。
- $iv. \exists f:$ 上より、S を定義するアフィン多様体 f が存在する。
- v.~S の定義 i より、 $a \notin S$ である。
- vi. 上と、iv の f の定義より、 $f(\mathfrak{Q}) \neq 0$ である。
- vii. i o S o c 義と上をまとめると、

$$f(A \cdot \mathbb{b}) = 0 \tag{134}$$

$$f(A \cdot \mathbf{0}) = \begin{cases} 0 & (A \cdot \mathbf{0}) \neq \mathbf{0}$$
 ගෙප්පී
$$f(\mathbf{0}) \neq \mathbf{0} & (A \cdot \mathbf{0}) = \mathbf{0}$$
 ගෙප්පී . (135)

viii. $g: g = R_G(f)$ とする。

ix. vii より、

$$g(\mathbb{b}) = R_G(f)(\mathbb{b}) = \frac{1}{|G|} \sum_{B \in G} f(B \cdot \mathbb{b}) = 0.$$
 (136)

x. M: M は $A \cdot \emptyset = \emptyset$ となる $A \in G$ の個数とする。

xi. vii より、

$$g(\mathbf{0}) = R_G(f)(\mathbf{0}) = \frac{1}{|G|} \sum_{B \in G} f(B \cdot \mathbf{0}) = \frac{M}{|G|} f(\mathbf{0}) \neq 0. \tag{137}$$

xii. よって、 $g(\mathfrak{o}) \neq g(\mathfrak{b})$ であり、viii の $g \in k[x_1, \dots, x_n]^G$ が条件をみたす。

よって、 $g(\mathfrak{o}) \neq g(\mathfrak{b})$ となる $g \in k[x_1, \dots, x_n]^G$ が存在する。

(d) $\exists h: \ k[x_1,\ldots,x_n]^G = k[f_1,\ldots,f_m]$ なので、

$$g = h(f_1, \dots, f_m) \tag{138}$$

となる $h \in k[y_1, \ldots, y_m]$ がある。

(e)(c)のgの条件と上より、

$$h(f_1, \dots, f_m)(\mathbf{0}) \neq h(f_1, \dots, f_m)(\mathbf{b}).$$
 (139)

- (f) $\exists i$: 上より、 $f_i(\mathfrak{o}) \neq f_i(\mathfrak{b})$ となる i がある。(全部 $f_i(\mathfrak{o}) = f_i(\mathfrak{b})$ だとしたら、(e) にならない。)
- (g) 1,2 と上より、 $\widetilde{F}(G \cdot \mathbb{G}) \neq \widetilde{F}(G \cdot \mathbb{b})$ となる。
- (h) よって、 \widetilde{F} は単射である。

よって、 \widetilde{F} は単射である。

6. 以上 3.4.5 より、 \widetilde{F} : $k^n/G \to V_F$ は同型。

(証終)

8 射影代数幾何

8.1 射影平面

定義 1: \mathbb{R} 上の射影平面 (projective plane) とは、 $\mathbb{P}^2(\mathbb{R})$ と表記される次の集合。

$$\mathbb{P}^2(\mathbb{R}) = \mathbb{R}^2 \cup \left\{$$
平行な直線からなる同値類ごとに 1 つの無限遠点 $\right\}.$ (140)

定義 $2: R^3 - \{0\}$ の \sim による同値類の全体を $\mathbb{P}^2(\mathbb{R})$ であらわす。 つまり、

$$\mathbb{P}^{2}(\mathbb{R}) = (\mathbb{R}^{3} - \{0\}) / \sim. \tag{141}$$

3 つ組 $(x,y,z)\in\mathbb{R}^3-\{0\}$ が $p\in\mathbb{P}^2(\mathbb{R})$ に対応するとき、(x,y,z) を p の斉次座標 (homogeneous coordinates) という。

定義 3: 同時にゼロではない実数 A, B, C が与えられたとき、次の集合

$$p \in \mathbb{P}^2(\mathbb{R}); p$$
の斉次座標 (x,y,z) は $Ax + By + Cz = 0$ を満たす (142)

を $\mathbb{P}^2(\mathbb{R})$ の射影直線とよぶ。これは well-defined であることは確認できる。

命題 4: $R^2 \to \mathbb{P}^2(\mathbb{R}), \quad (x,y) \mapsto i(x,y,1)$ は一対一であって、その像は z=0 で定義される射影直線 H_∞ に一致する。

証明

- 1. $\forall p, x, y, x', y'$: $(x, y) \geq (x', y')$ が同じ点 p にうつったとする。
- 2. $\exists \lambda \ (x, y, 1) = \lambda(x', y', 1)$
- 3. 上より、 $\lambda = 1$ となる。
- 4. 上より、(x,y) = (x',y') となる。
- 5. p の斉次座標を (x,y,z) とする。
- 6. z=0 のとき、 $p\in H_{\infty}$
- 7. $z \neq 0$ のとき、 $\pi: \mathbb{R}^3 \to \mathbb{P}^2(\mathbb{R})$ を標準的なものとする。 $p = \pi(x,y,z) = \pi(x/z,y/z,1)$ となり、(x/z,y/z,1) は p の斉次座標。
- 8. 上より、p は写像 $\mathbb{R}^2 \to \mathbb{P}^2(\mathbb{R})$ の像に ((x/z,y/z) を引数として) なっている。
- 9. $\pi(\mathbb{R}^2) \cap H_{\infty} = \emptyset$ を示す。
 - (a) \exists : $\pi(x,y,z) \in p(\mathbb{R}^2) \cap H_{\infty}$ と仮定する。
 - (b) $\pi(x,y,z) \in H_{\infty}$ なので、z=0 である。
 - (c) $\pi(x,y,z)\in p(\mathbb{R}^2)$ なので、 $\pi(x,y,z)=\pi(\xi,\eta,1)$ なる ξ,η が存在する。よって、z
 eq 0 である。
 - (d) 上 2 つは矛盾する。
 - よって、 $\pi(\mathbb{R}^2) \cap H_\infty = \emptyset$ となる。

(証終)

8.2 射影空間と射影多様体

定義 $1: k^{n+1} - \{0\}$ の \sim による同値類の集合を体 k 上の n 次元射影空間といい、 $\mathbb{P}^n(k)$ とあらわす。つまり、

$$\mathbb{P}^{n}(k) = (k^{n+1} - \{0\}) / \sim \tag{143}$$

である。ゼロでないような (n+1) 個の k の要素の組 $(x_0,\ldots,x_n)\in k^{n+1}$ は $\mathbb{P}^n(k)$ の点 p を決めるが、 (x_0,\ldots,x_n) を p の斉次座標とよぶ。

 $\mathbb{P}^n(k)$ の部分集合を

$$U_0 = \{(x_0, \dots, x_n) \in \mathbb{P}^n(k); x_0 \neq 0\}$$
(144)

とすると、 k^n の点 (a_1,\ldots,a_n) を $\mathbb{P}^n(k)$ の斉次座標 $(1,a_1,\ldots,a_n)$ に写す写像 ϕ は k^n と $U_0\subset\mathbb{P}^n(k)$ の間の一対一写像である。

証明

 $\phi(a_1,\ldots,a_n)=(1,a_1,\ldots,a_n)$ の先頭が 0 でないので、 $\phi\colon k^n\to U_0$ は定まっている。 $\psi\colon U_0\to k^n$ を $\psi(\underbrace{x_0}_{\neq 0},\ldots,x_n)=\psi(1,x_1/x_0,\ldots,x_n/x_0)=(x_1/x_0,\ldots,x_n/x_0)$ となる。well-defined と逆写像は

示せる。

(証終)

$$\mathbb{P}^{n}(k) = \underbrace{k^{n}}_{\text{無限遠超平面。頭が0のところ}} \cup \underbrace{\mathbb{P}^{n-1}(k)}_{\text{簡が非0のところ}}$$
 (145)

系 3: $i=0,\ldots,n$ それぞれに対して、

$$U_i = \{(x_0, \dots, x_n) \in \mathbb{P}^n(k); x_i \neq 0\}$$
(146)

とおく。

- (i) U_i の点は k^n の点と一対一に対応する。
- (ii) 補集合 $\mathbb{P}^n(k) U_i$ は $\mathbb{P}^{n-1}(k)$ 同一視できる。
- (iii) $\mathbb{P}^n(k) = \bigcup_{i=0}^n U_i$ となる。

証明

 ${
m i}, {
m ii}$ は変数のつけかえで命題 2 に帰着する。 ${
m iii}$ は、 \cup をとることで $x_1 \neq 0 \lor \ldots \lor x_n \neq 0$ で、 $\mathbb{P}^n(k)$ は全部座標が 0 になることはないので全体になっている。

(証終)

射影空間の多様体は、斉次なものを使わないとうまくいかない。

命題 $4: f \in k[x_0,\dots,x_n]$ を斉次多様体とする。もし f が点 $p \in \mathbb{P}^n(k)$ のある斉次座標の組に対して消えていれば、f は p の任意の斉次座標に対して消える。とくに $\mathbf{V}(f) = \{p \in \mathbb{P}^n(k); f(p) = 0\}$ は $\mathbb{P}^n(k)$ の部分集合として矛盾なく定義される。

証明

略。

(証終)

定義 5: k を体とし、 $f_1,\ldots,f_s\in k[x_0,\ldots,x_n]$ を斉次多項式とする。

$$\mathbf{V}(f_1, \dots, f_s) = \{(a_0, \dots, a_n) \in \mathbb{P}^n(k); f_i(a_0, \dots, a_n) = 0 \quad (1 \le i \le s)\}$$
(147)

とおいて、 $\mathbf{V}(f_1,\ldots,f_s)$ を f_1,\ldots,f_s によって定義された射影多様体とよぶ。

「1 つの」斉次多項式で定義された射影多様体は「n 次超曲面」という。 射影多様体と多様体を考える。 $x_0=1$ として $V\cap U_0$ に斉次多項式を落とすことを非斉次化という。

命題 6: $V=\mathbf{V}(f_1,\ldots,f_s)$ を射影多様体とする。すると $W=V\cap U_0$ はアフィン多様体 $\mathbf{V}(g_1,\ldots,g_s)\subset k^n$ と同一視できる。ここで、 $1\leq i\leq s$ に対して、 $g_i(x_1,\ldots,x_n)=f_i(1,x_1,\ldots,x_n)$ である *9 。

証明

- 1. $\psi(W)\subset \mathbf{V}(g_1,\ldots,g_s)$ となる。 $\psi:U_0\to k^n$ は、射影座標を頭が1 になるように正規化して頭を落とす写像であった。
 - (a) $\forall x_{\bullet}$: $(x_1,\ldots,x_n)\in\psi(W)$ とする。 $\psi(1,x_1,\ldots,x_n)=(x_1,\ldots,x_n)$ であり、 $(1,x_1,\ldots,x_n)\in V$ となって いる。
 - (b) 任意のiについて、上の $(1,\ldots,x_n)\in V$ より

$$g_i(x_1, \dots, x_n) = f_i(1, x_1, \dots, x_n) = 0.$$
 (148)

- (c)(a)おわり: 上より、 $(x_1,\ldots,x_n)\in \mathbf{V}(g_1,\ldots,g_s)$ となる。
- 2. ⊃を示す。
 - (a) $\forall a_{ullet}$: $(a_1,\ldots,a_n)\in \mathbf{V}(g_1,\ldots,g_s)$ とする。
 - (b) $(1, a_1, \ldots, a_n) \in U_0$ である。
 - (c) 任意の *i* について、

$$f_i(1, a_1, \dots, a_n) = g_i(a_1, \dots, a_n) = 0.$$
 (149)

- (d)上より、 $\phi(\mathbf{V}(g_1,\ldots,g_s))\subset W$ となる。
- $3.~\phi$ と ψ は逆写像なので、W と $\mathbf{V}(g_1,\ldots,g_s)$ の点は一対一に対応する。

(証終)

非斉次化の逆を考える。 $f \in k[x_1,\ldots,x_n]$ について、すべての項の全次数が $\deg(f)$ になるように各項に x_0 の冪をかけたものを f^h という。

命題 $7: g(x_1,\ldots,x_n) \in k[x_1,\ldots,x_n]$ を全次数 d の多項式とする。

(i) g を斉次成分の和に展開して、 $g=\sum_{i=0}^d g_i$ とかく。ここで g_i の全次数は i である。すると、

$$g^{h}(x_{0},...,x_{n}) = \sum_{i=0}^{d} g_{i}(x_{1},...,x_{n})x_{0}^{d-i}$$
(150)

は全次数が d であるような $k[x_0,\dots,x_n]$ の斉次多項式である。この g^h を g の斉次化という。

(ii) 斉次多項式は次で計算できる。

$$g^h = x_0^d \cdot g(\frac{x_1}{x_0}, \dots, x f r a x_n x_0).$$
 (151)

(iii) g^h を非斉次化すると g になる。

$$g^{h}(1, x_1, \dots, x_n) = g(x_1, \dots, x_n).$$
 (152)

(iv) $F(x_0,\ldots,x_n)$ を斉次多項式とし、 x_0^e を F を割り切るような x_0 の冪乗のうち最高次のものとする。もし $f=F(1,x_1,\ldots,x_n)$ が F の非斉次化なら、 $F=x_0^e\cdot f^h$ がなりたつ。

証明

(i) はあきらか。

(ii) を示す。

.

(iii),(iv) はあきらか。

(証終)