SESA3029 Aerothermodynamics

Lecture 1.4
Pitot probe in compressible flow

Adiabatic flow

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} M^2$$

Isentropic flow

$$\frac{\boldsymbol{p}_0}{\boldsymbol{p}} = \left(1 + \frac{\gamma - 1}{2}\boldsymbol{M}^2\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{\rho_0}{\rho} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{1}{\gamma - 1}}$$

Shock jump relations

$$\frac{\rho_2}{\rho_1} = \frac{M_1^2 (\gamma + 1)}{2 + (\gamma - 1) M_1^2}$$

$$\frac{\rho_2}{\rho_1} = 1 + \frac{2\gamma (M_1^2 - 1)}{\gamma + 1}$$

$$\frac{T_2}{T_1} = \frac{\rho_2/\rho_1}{\rho_2/\rho_1}$$

$$M_2^2 = \frac{2 + (\gamma - 1) M_1^2}{2\gamma M_1^2 - (\gamma - 1)}$$

Today

Velocity measurement using pitot probe, considering three cases:

- incompressible,
- compressible subsonic,
- compressible supersonic

Pitot probe

Static tapping measures p₁

Pitot tube measures p₀ of flow at entry to tube

Incompressible flow

$$p_1 + \frac{1}{2}\rho V_1^2 = p_0$$

In terms of a pressure coefficient

$$C_{p_0} \equiv \frac{p_0 - p_1}{\frac{1}{2} \rho V_1^2} = 1$$
 (stagnation condition)

Rearrange for

$$V_1 = \sqrt{\frac{2(p_0 - p_1)}{\rho}}$$

Compressible subsonic flow

Rearrange for
$$\frac{p_0}{p_1} = \left(1 + \frac{\gamma - 1}{2}M_1^2\right)^{\frac{\gamma}{\gamma - 1}}.$$

$$M_1^{\frac{1}{2}} = \frac{2}{\gamma - 1} \left[\frac{p_0}{p_1}\right]^{\frac{\gamma - 1}{\gamma}} - 1$$
and
$$V_1 = a_1 M_1 = \sqrt{\frac{2\gamma RT_1}{\gamma - 1}} \left[\frac{p_0}{p_1}\right]^{\frac{\gamma - 1}{\gamma}} - 1$$

$$T_1 \text{ (dh. be estimated by obtained by obtai$$

Question: looks very different, shouldn't this be consistent with the incompressible flow result for $M_1 \rightarrow 0$?

$$V_1 = a_1 M_1 = \sqrt{\frac{2\gamma RT}{\gamma - 1} \left[\left(\frac{\boldsymbol{p}_0}{\boldsymbol{p}_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]} \qquad \frac{\boldsymbol{p}_0}{\boldsymbol{p}_1} = \left(1 + \frac{\gamma - 1}{2} M_1^2 \right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{\boldsymbol{p}_0}{\boldsymbol{p}_1} = \left(1 + \frac{\gamma - 1}{2} \boldsymbol{M}_1^2\right)^{\frac{\gamma}{\gamma - 1}}$$

For small M the isentropic relation is of the form

$$\frac{p_0}{p_1} = (1 + \varepsilon)^a = 1 + a\varepsilon + \frac{a(a-1)}{2}\varepsilon^2 + \dots$$
 Binomial expansion

$$\frac{p_{0} - p_{1}}{p_{1}} = \frac{\gamma}{2} M_{1}^{2} + O(M_{1}^{4})$$

$$\frac{\rho_0 - \rho_1}{\frac{1}{2}\rho_1 V_1^2} = \frac{\rho_1}{\frac{1}{2}\rho_1 V_1^2} \left(\frac{\gamma}{2} M_1^2 + O(M_1^4) \right)
= \frac{2}{\gamma M_1^2} \left(\frac{\gamma}{2} M_1^2 + O(M_1^4) \right) = 1 + O(M_1^2)$$

i.e. consistent with i/c flow result

Compressible supersonic flow

Photograph of M₁=2 flat-faced cylinder (comparable to entry to pitot probe)

Uniform isentropic flow to shock wave (M=M₁)

• Normal shock jump relations (gives M₂ straight after shock)

• Isentropic flow from after shock to stagnation (M<1)

shock means
$$P_{oz} + P_{o1}$$

Compressible supersonic flow

Analysis method:

- Normal shock jump relations (give M₂ p₂ straight after shock)
- Isentropic flow from after shock to stagnation (p₂ to p_{0,2})

$$\frac{\rho_{0,2}}{\rho_1} = \frac{\rho_2}{\rho_1} \frac{\rho_{0,2}}{\rho_2}$$
From isentropic flow relations
$$\frac{\rho_{0,2}}{\rho_1} = \left(1 + \frac{2\gamma \left(M_1^2 - 1\right)}{\gamma + 1}\right) \left(1 + \frac{\gamma - 1}{2}M_2^2\right)^{\frac{\gamma}{\gamma - 1}} \text{ with } M_2^2 = \frac{2 + (\gamma - 1)M_1^2}{2\gamma M_1^2 - (\gamma - 1)}$$
Can be estimated from different to the second of t

$$\frac{p_{0,2}}{p_1} = \left(1 + \frac{2\gamma (M_1^2 - 1)}{\gamma + 1}\right) \left(1 + \frac{\gamma - 1}{2}M_2^2\right)^{\frac{\gamma}{\gamma - 1}} \quad \text{with} \quad M_2^2 = \frac{2 + (\gamma - 1)M_1^2}{2\gamma M_1^2 - (\gamma - 1)}$$

Rearranges to

$$\frac{p_{0,2}}{p_{1}} = \left[\frac{(\gamma + 1)^{\gamma + 1} (\frac{1}{2} M_{1}^{2})^{\gamma}}{2\gamma M_{1}^{2} - (\gamma - 1)} \right]^{\frac{1}{\gamma - 1}}$$

The Rayleigh pitot formula

Tabulated as "p_{0,2}/p₁" in NST (only to be used for normal shock configuration)

At M₁=1 both formulae reduce to
$$\frac{p_0}{p_1} = \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma}{\gamma - 1}} = 1.893$$
(for $\gamma = 1.4$)

Example

 $p_1=80 \text{ kPa}$ $T_1=2^{\circ}\text{C}$ $p_{0,2}=400 \text{ kPa}$

Find M₁ and V₁

Normal-shock table ($\gamma = 1.4$):

M_{n1}	M_{n2}	p_2/p_1	$ ho_2/ ho_1$	T_2/T_1	p_{02}/p_{01}	"p ₀₂ /p ₁ "
1.8000	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695
1.8200	0.6121	3.6978	2.3909	1.5466	0.8038	4.7618
1.8400	0.6078	3.7832	2.4224	1.5617	0.7948	4.8552
1.8600	0.6036	3.8695	2.4537	1.5770	0.7857	4.9497
1.8800	0.5996	3.9568	2.4848	1.5924	0.7765	5.0452

$$M_1 = 1.8705$$

$$V_1 = M_1 a_1 = 621.8 \text{ m/s}$$

Pitot probe summary

If
$$\frac{p_0}{p_1} > \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma}{\gamma-1}}$$
 Supersonic flow (use NST)

If
$$\frac{p_0}{p_1} < \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma}{\gamma-1}}$$
 Subsonic flow (use IFT)

Reading: Anderson Section 8.7 pages 548-553

TM19 15 Z.1