Johns Hopkins Engineering

Immunoengineering

Immunoengineering—Allergy and Autoimmunity

Tolerance through scaffolds

Biomaterial Case Studies to Illustrate Design Principles

- Replicating tolerance at the cellular level particles
- Replicating tolerance at the organ level scaffolds
 - Recreating the thymus for antigen-specific modulation
 - Immunodeficiencies and Autoimmunity applications
 - Lose T cells in HIV, cancer, or bone marrow transplantation
 - Tissue transplantation
 - Biologic modeling
- Delivery of allergen immunotherapy

Importance of 3D environments

- mTEC (medullary thymic epithelial cells) regulate autoantigen specific tolerance
- Lose gene expression in 2De.g. AIRE, FOXN1
- Produce matrix remodeling in 3D condition with co-culture

Artificial Thymus to Develop CD4+ and CD8+ T cells

- Deriving T cells from CD34+ stem cells requires cytokines and chemokines
- CellFoam tantalum coated matrix
 - Pore density and size
 - Thymic stroma
 - T cell density

Artificial Thymus to Develop CD4+ and CD8+ T cells

 Require 2-3 weeks to differentiate and acquire CD4+ and CD8+ markers

Scaffold Source for Developing the Artificial Thymus

Scaffold Source for Developing the Artificial Thymus

- Decellularized matrices enable effective maintenance of TECs and development of T cells
- In vivo thymic organoids recruit immune cells which can initiate antigen-specific immune response
- Further mixing TECs from donor and recipient allow acceptance of skin graft

Immune Organs

The Importance of Cell Source

- Usually systems used xenogenic tissues or human fetal thymus
 - No MHC or not MHC matched to patients
 - Limits understanding of specific disease or generating therapeutic T cells
- Keratinocytes and fibroblasts were able to replace thymic epithelial cells
 - Skin is accessible tissue

The Importance of Cell Source

- iTECs are fibroblasts transduced to express FOXN1
- Just aggregating iTECs and implanting into adulty mice form functional thymus
 - Develop T cells in vivo
 - But require fetal thymic mesenchyme

Immune organs

Engineering approaches	Applications	Advantages (+) and limitations (–)
1) Reconstruction of TSC's 3-D network		
Fetal thymic organ culture (FTOC) Reaggregate thymus organ culture (RTOC) Artificial scaffolds Decellularized thymic scaffolds	To study T cell tolerance and MHC restriction in vitro To study thymopoiesis in vivo upon grafting into an ectopic locations of athymic mice	Simple and straightforward design (+) Absolute dependency on biopsy and isolation of thymus or thymic cells (-) Limited culture sizes of 3-D platforms (-) Limited number of T cells that cobe generated in vitro (-)
2) Cellular Engineering		
Differentiation of stem cells into TSCs Genetic introduction of effector molecules that define TSC functions to cell lines or somatic cells Cell reprogramming	To use human pluripotent stem cells for regeneration of thymus or induction of immune tolerance To generate T cell precursors and functional T cells using robust 2-D culture platforms in vitro	Use of clinically relevant, endogenous stem cell sources (+) Use of readily available 2-D cultuplatforms for recapitulation of T lyphopoesis in vitro (+) Potential xenogenic crosscontamination (OP9-DL1) (-) Ineffective positive selection of C+T cells (OP9-DL1) (-) Need for complex genetic modifications and related risk of vicontamination (-)
3) Biomaterials-driven artificial presentation	n of developmental signaling molecules	
Plate- or bead-bound Notch ligands for differentiation of T precursors from vari- ous stem cells Use of pMHC tetramer to induce antigen specificity on developing T cells	 To generate T precursors from various stem cells in vitro, which later can be employed in adoptive cell therapies. To induce or selectively expand antigenspecific T cells 	Potential realization of purely biomaterial-based T lymphopoesis vivo (+) Requirement for expensive recombinant proteins (–) Generation of potentially self-reactive T cells due to lack of neg

tive selection (-)

Summary

- Scaffolds enable the three dimensional architecture found within the thymus
 - This allows growth of important regulatory epithelial cells to developing T cells
 - o This enables migration and communication from T cells to epithelial cells
- Applications in immunosuppression and autoimmunity to generate functional T cells
- Important considerations for scaffold design of an artificial thymus
 - Pore size
 - Material and source
 - Strength
 - Cell concentration
 - Cell choice and source
 - Bioreactor
 - Cell maintenance cytokines, chemokines, growth factors, etc.

