CO353 course note

Chenxuan Wei Jan 2022

Contents

1	Week 1 4				
	1.1	Graph preliminaires	4		
	1.2	Shortest Paths: Dijkstra's algorithm	5		
	1.3	Shortest Paths: correctness	6		
	1.4	Running time and efficient algorithms	7		
	1.5	Big-O notation	8		
	1.6	Dijkstra's algorithm	9		
2	Wee	ek 2	11		
	2.1	Minimum spanning trees	11		
	2.2	Cut property	12		
	2.3	Prim's Algorithm	13		
	2.4	Kruskal's algorithm	14		
	2.5	0 11	15		
	2.6	Clustering application: Correctness	16		
3	Week 3				
	3.1	Arborescences	17		
	3.2	Min cost Arborescences	17		
	3.3	Edmond's Algorithm	18		
	3.4	Analysis	19		
4	Week 4 20				
-			α		
-	4.1		20		
•	4.2	Matriod optimization	21		
-	4.2 4.3	Matriod optimization	21 22		
-	4.2	Matriod optimization	21		
5	4.2 4.3 4.4	Matriod optimization	21 22		
	4.2 4.3 4.4 Wee 5.1	Matriod optimization	21 22 23 24 24		
	4.2 4.3 4.4 Wed 5.1 5.2	Matriod optimization	21 22 23 24 24 25		
	4.2 4.3 4.4 Wee 5.1 5.2 5.3	Matriod optimization	21 22 23 24 24 25 26		
	4.2 4.3 4.4 Wee 5.1 5.2 5.3 5.4	Matriod optimization	21 22 23 24 24 25 26 27		
	4.2 4.3 4.4 Wee 5.1 5.2 5.3	Matriod optimization Corresness runtime ek 5 Minimum Steiner tree algorithm discussion Computational complexity - the class P	21 22 23 24 24 25 26		
	4.2 4.3 4.4 Wed 5.1 5.2 5.3 5.4 5.5	Matriod optimization Corresness runtime ek 5 Minimum Steiner tree algorithm discussion Computational complexity - the class P Polynomial-Time Reduction	21 22 23 24 24 25 26 27		
5	4.2 4.3 4.4 Wed 5.1 5.2 5.3 5.4 5.5	Matriod optimization Corresness runtime ek 5 Minimum Steiner tree algorithm discussion Computational complexity - the class P Polynomial-Time Reduction	21 22 23 24 24 25 26 27 28		
5	4.2 4.3 4.4 Wee 5.1 5.2 5.3 5.4 5.5	Matriod optimization Corresness runtime ek 5 Minimum Steiner tree algorithm discussion Computational complexity - the class P Polynomial-Time Reduction ek 6 Computional complexity model	21 22 23 24 24 25 26 27 28 29		
5	4.2 4.3 4.4 Wee 5.1 5.2 5.3 5.4 5.5 Wee 6.1	Matriod optimization Corresness runtime ek 5 Minimum Steiner tree algorithm discussion Computational complexity - the class P Polynomial-Time Reduction ek 6 Computional complexity model	21 22 23 24 24 25 26 27 28 29		
5	4.2 4.3 4.4 Wee 5.1 5.2 5.3 5.4 5.5 Wee 6.1 wee 7.1	Matriod optimization Corresness runtime ek 5 Minimum Steiner tree algorithm discussion Computational complexity - the class P Polynomial-Time Reduction ek 6 Computional complexity model	21 22 23 24 24 25 26 27 28 29 29		
5 6 7	4.2 4.3 4.4 Wee 5.1 5.2 5.3 5.4 5.5 Wee 6.1 wee 7.1	Matriod optimization Corresness runtime ek 5 Minimum Steiner tree algorithm discussion Computational complexity - the class P Polynomial-Time Reduction ek 6 Computional complexity model kk 7 NP completeness of Set cover and Steiner tree ek 8 a-approcximation algorithms	21 22 23 24 24 25 26 27 28 29 29 30		

9	Week 9	33	
	9.1 Primal-dual algorithm	33	
10	Week 10		
	10.1 Mar 15: Set cover - primal-dual and greedy algorithms	34	
	10.2 Mar 17: Set cover - LP rounding algorithms, uncapacitated fa-		
	cility location	36	
11	Week 11	38	
	11.1 Mar 22: UFL - general assignment costs	38	
	11.2 Metric UFL	40	
12	Week 12	41	
	12.1 Mar 29: Solution methods - relaxations	41	
	12.2 Branch and Bound, knapsack problem	43	

1.1 Graph preliminaires

- 1. A graph is a tuple $(V, E \subseteq (v, v))$
 - uv-path is a sequence of vertices from u to v
 - cycle is a sequence of vertices where start and end are the same
 - connected if $\forall u, v \in V$, there is a uv path
 - cryclic = no cycle in the graph
 - a tree is a connected cryclic graph
- 2. Spanning Tree

Let G = (V, E) be a connected graph, and $T = (V_T, E_T)$

- $E_T \subseteq E$
- $V_T = V$

then it is a spanning tree

3. Minimal spanning tree

Assume C is a cycle, then $C - \{e\}$ is still a connected graph So if G is a connected graph and contains a cycle C, then $G - \{e\}$ is still a connected graph

Hence $G - \{e\}$ is a minimal connected subgraph of G.

4. Directed graph: each edge has a direction and goes from a node to a node i.e. $(1,2) \in E$ but $(2,1) \notin E$

1.2 Shortest Paths: Dijkstra's algorithm

1. Shortest path problem

Given directed graph G = (V, E) with edge cost $\{c_e \geq 0 \ e \in E\}$, find st path with min cost

with $C(P) = \sum_{e \in P} c_e$ denote the cost let d(u) = min(c(p)) be the shortest path cost from s to u

2. Some idea

If $(u, v) \in E$ then we have $d(v) \le d(u) + C(u, v)$

3. Dijkstra's Algorithm

Let G = (V, E) be directed graph, cost $c_e, e \in E$ find min sv path cost

- Initial set $A = \{s\}, d(s) = 0, \forall v \neq s, l(v) = \infty$
- While $A \neq V$
 - $\forall v \notin A \text{ such that } \exists u \in A \text{ with } (u,v) \in E, \text{ update } l(v) =$ $min\{l(v), (d(u) + C_{(u,v)})\}u \in A, (u,v) \in E$
 - select $w \in V A$ such that l(w) has minimum $l(v), v \notin A$
 - update $A = A \cup \{w\}$, d(u) = l(u)

4. Remark

- Can get the shortest path by a get the node $u \in A$ that determins l(w)
- the path we get in first remark is a directed tree

1.3 Shortest Paths: correctness

1. Theorem 1.1 If w is added to A in step 2(c), then $d^{alg}(w)=d(w)$

1.4 Running time and efficient algorithms

1. Runtime

Number of elementary operation performed by algorithm as a function of input size

- elementary operation
 - Addition, subtration, multiplication, division
 - comparision
 - simple logical: if, else
 - Assignments
- input size

of bits needed to specify the input bits for integer $= log_2(x)$

2. Reasonable Running time

is a polynimial of input size =; big O notation

1.5 Big-O notation

1. Definition

Given function
$$f: \mathbb{R}^n \to \mathbb{R}$$
 and $g: \mathbb{R}^n \to \mathbb{R}$, we say $f(n) = O(g(n))$ if \exists consts $c > 0$ and $n_0 \ge 0$ s.t. $f(n) \le c * g(n), \forall n \ge n_0$

2. More definition

$$\exists c \text{ s.t. } f(n) = O(n^c), \forall n \geq n_0$$

3. efficient

$$= f(n) = O(n^{O(1)})$$

1.6 Dijkstra's algorithm

- 1. first idea
 - let m = |E|, n = |V|
 - there are n iterations of while loop
 - In each iteration:
 - computing l(v) takes $O(d^{in}(v))$, $d^{in}(v)$ = number of edges entering v (step 1)
 - computing $l(v), \forall v$ takes O(m) times since we gothrough each edges once (step 2)
 - take O(n) times to compare min l(v) value for all nodes max n nodes $\to O(n)$ run time
 - takes O(1) to assign d(w) = l(w)

So each interation takes O(m+n) = O(m) since we need a connected graph which means $m \geq n$

• Overall running time = $O(mn) \rightarrow poynomial$ of input $\rightarrow efficient$

2. Better Implementation

if $\{u \in A : (u, v) \in E\}$ does not change across interations, then l(v) does not change

So we don't recomputing all $l(v), \forall v \notin A$, we do the following:

• when pick $w \notin A$ to add to A, we only update $l(v), \forall v \notin A$ s.t. $(w,v) \in E$, and set $l^{new}(v) = min(l^{odd}(v), d(w) + C_{w,v})$

So we will change the while loop to be

Let w* = last node added to A, Initially w* = s

- $\forall (w*,v), v \notin A$ update $l(v) = min(l(v), d(w*) + C_{(w*,v)})$ Decrease key operation
- Find $w \notin A$ with min l(w) value Extract min operation
- $A = A \cup \{w\}, d(w) = l(w), w^* = w$

So we examine each edge(u,v) at most once in step (a)

- (a) Using a simple array to store l() values:
 - DecKey: O(1)
 - Extract Min: O(n) times

Runtime = $O(m + n^2) = O(n^2)$ (go throught each edges once only, then n nodes for each operation, for n interation)

- (b) Priority Queue
 - DecKey: $O(\log(n))$
 - Extract Min: O(log(n)) times

Runtime= O(mlogn)

- (c) Fibonaci heap
 - DecKey: O(1)
 - Extract Min: O(log(n)) times

Runtime= O(m + n * log n)

2.1 Minimum spanning trees

1. Spanning tree

Let
$$G = (V, E)$$

A spanning tree $T = (V_T, E_T)$ satisfied $E_T \subseteq E$, $V_T = V$ and this will be a connected subgraph with minimum edges.

2. Minimum Spanning Tree problem

Given a connected undirected graph G = (V, E) edge cost $\{c_e\}, e \in E$, with no restirction on any c_e

find a spanning tree with minimum total edge cost

Since V doesn't change, we will just consider edges now

use
$$C(T) = \sum_{e \in T} c_e$$

- 3. Note
 - $c_e \in R$
 - if $c_e \ge 0, \forall e \in E$, then it is equvilenty as MST problem: find the mincost connected subgraph of G Since there is always a optimal solution that is minimal connected
- 4. Fundemental theorem of tree (2.1)

Let T = (V, F) let n = |v|, then if one of following is true, all is true

• T is a tree

subgraph

- T is a connected graph has n-1 edges
- T is a acylic, has n-1 edges

2.2 Cut property

- 1. Notations
 - $\delta(v)$ whrere $v \in V$ is the set of edges incident to v
 - $\delta(s)$ where $s \subseteq V = \{uv \in E : u \in S, v \not lnS\}$
- 2. Assume: All edge costs are unique
- 3. Cut

is a partition (A, V - A) of the vertex set V, where $A \neq \emptyset$, $A \subset V$ $\delta(A) = \delta(V - A)$ which is the edges divide the vertices if $F \in E$ and $F \cap \delta(A) \neq \emptyset$ then F is in the cut

4. Lemma 2.2: Cut property

Consider any cut (A, B), where B = V - A

If e is the unique min-cost edges across the cut, then e belong to every MST

2.3 Prim's Algorithm

- 1. Prim's Algorithm
 - (a) Pick a seed node $s \in V$
 - (b) Initilize $A = \{s\}, T = \emptyset$
 - (c) while $A \neq V$
 - Choose $e = uv \in \delta(A)$ with min cost, where $u \in A, v \notin A$
 - $A = A \cup \{v\}, T = T \cup \{e\}$
 - (d) return T, which is the set of edge for the MST
- 2. Theorem 2.3

Prim's algorim correctly compute the MST

3. Corollary

T is a unique MST

Howeer, if edge cost is not distinct:

- Prim's algorithm still works, return one of the MST
- There will be mutiple MST
- 4. Running time

For each interation

- (a) For each edge wv where $v \notin A$, update $a(v) = min(a(v), C_{wv})$ Decrease Key
- (b) Find $w \in V A$ with smallest a(w) extract min
- (c) $A = A \cup \{v\}, T = T \cup \{e\}$

So run time = $O(m + n^2)$ if using simple array

O(m+nlogn) using Fibonacchi Heap

2.4 Kruskal's algorithm

- 1. Steps
 - (a) Sort the edges in increasing order of cost
 - (b) set $T = \emptyset$
 - (c) For each edge e in sorted order
 - if $T \cup \{e\}$ does not create a cycle: $T = T \cup \{e\}$
 - (d) Return T
- 2. Theorem 2.4: it returns a unique MST, when all cost are distinct
- 3. Running Time:
 - Sorting m edges takes O(mlog(m)) times, by quicksort
 - check if e = uv can be added, will bedone in O(log n) times
 - So total time for one interation is O(mlogn) times, since we need to check all edges
 - Hence total is O(mlog m + mlog n) = O(mlog n) since $m \le n^2$

2.5 Clustering application

1. General iDea:

Given a set of object and some notion with similarty and dissimilarty between them, and

- Object in same group are "similar"
- boject in different groups are "dissimilar" to each other
- 2. Maximum Spacing clustering

Given : a set $V = \{p_1 \dots p_n\}$ of objects/points, and pariwise distance $d(p_i, p_i) = d(p_i, p_i) \ge 0$

Goal: Partition V into k cluster $C_1 \dots C_k$ (So $C_i \cap C_j = \emptyset$, $\bigcup_{i=1}^k C_i = V$) to max the min inter-cluster spacing = min distance between a pair of points in different clusters

which is $Max(min\{d(p,q): p \in C_i, q \in C_j, i \neq j\})$

- 3. Algorithm: single linkage clustering: agglomerative algorithm
 - start with put every point in a separte cluster
 - \bullet Repeatally merge the 2 clusters with smallest inter cluster distance, until k cluster left
- 4. Analysis algorithm

Consider a graph G with V and edge between every pair of $p, q \in V, p \neq q$ with cost d(p, q)

merge 2 cluster = adding edge pq

stop when there are k components

similar to apply kruskal algorithm and find a MST

but delete k-1 most costly edges in the MST

2.6 Clustering application: Correctness

3.1 Arborescences

- 1. Definition = Directed spanning tree Let G = (V, E) be a directed graph, and let $r \in V$ be the root node An aborescence rooted at r is a subgraph T = (V, F) s.t.
 - there is a $r \to v$ path $\forall v \in V$
 - T is a spanning tree if we ignore the direction (undirective property)
- 2. Lemma 3.1: useful alternate characterictic of aborecences T=(V,F) is aborescence rooted at $r\iff T$ has no directed cycle and $v\neq r$ have exactly one incoming edge

3.2 Min cost Arborescences

1. The problem

Let G = (V, E) be a directed graph, and root node $r \in V$ and edge costs $c_e, e \in E$

And we want to find a arborescences with min total edge cost Assume $\forall v \in V, \exists r \to v$ path

- 2. Two greddy strategies(inspired by MST)
 - Pick the cheapest edge entering a node v
 - Consider somecycle, delete the most costly edge of the cycle
- 3. Observations
 - if (V, F*) is an A, then it is an MCA, where F*=all edge enter a v with min cost

If it is not a A, then by lemma 3.1, it must have a cycle C

• Suppose for every node $v \neq r$, for each edge e entering v, we subtract a common amount p_v

for c_e where the edge entering v

Then for any arborescence T, the cost is differ by a constant = $\sum_{v \neq r} P_v$

4. Corollary

Let $y_v = min(C_{uv})$ and $c'_e = c_e - y_v \forall eenteringv, <math>\forall v \neq r$ Then T is an MCA with $\{c_e\}$ cost \iff T is MCA with $\{c'_e\}$

3.3 Edmond's Algorithm

- 1. Algorithm Input:
 - Directed Graph G = (V, E)
 - root $r \in V$
 - $\{c_e\}$ edge cost
 - $\exists r \to V, \forall v \in V$
 - (a) Base case: if only one node, return \emptyset
 - (b) For each $v \neq r$
 - let $y_v = min(C_{uv}), uv \in E$
 - set $c'_e = c_e y_v, \forall eenteringv$
 - (c) For each $v \neq r$, choose a 0 c' cost edge entering v, let F* be the set of all edges
 - (d) if F* is A, return it
 - (e) then it must contain a directed cycle, Let $Z\subseteq F*$ be the cycle, $r\not\in Z$ Contract Z in to single super node, get graph G'=(V',E')
 - (f) And recursily run find a MCA in G'
 - (g) Extend (V', F') to an a (V, F) in G
 - Let $v \in Z$ be the node that has a incoming edge in F'
 - Let $F = F' \cup Z \{ \text{edge of z entering v} \}$
 - (h) Return F

3.4 Analysis

- 1. Running time: Make O(m) operations and a recursive call to smaller graph, at most n recursive call make O(mn) time
- 2. Lemma 3.2 Suppose we have $\{d_e\}$ edge costs, and a 0 d-cost cycle Z Then \exists an MCA with d-costs that has exatly one edge entering Z

4.1 Matriods - definition and examples

1. Definition

is a tuple M = (V, I), where U is a ground set, $I \subseteq 2^U$ is a collection of subset of U satisfied the following property

- $\bullet \ \emptyset \in I$
- if $A \in I$ and $B \subseteq A$, then $B \in I$
- exchange property, if $A, B \in I$ with |A| < |B| then $\exists e \in B A$, s.t. $A \cup \{e\} \in I$

2. Terms

- if $A \in I$, it is a independent set, if not, it is s dependent set
- A maximal independent set, Bs.t $B \cup \{e\} \notin I, \forall e \in U - B$, is called a basis
- universial matriods $I = \{A \subseteq U, |A| \le k\}$
- partition matroid $I = \{ A \subseteq U, |A \cap S_i| \le r_i \}$
- graphic matriod (cycle matriod) $I = \{A \subseteq E \text{ A is acylic } \}$

4.2 Matriod optimization

- 1. maximum weight indep
dendent set problem (MWIS) Given M = (U, I), and $\{w_e\}, e \in U$
 find max-weight independent set, find $A \in I$, where $W(A) = \sum_{e \in A} w_e$ be maxed
- 2. Common independent set Given $M_1=(U,I_1), M_2=(U,I_2),$ and $\{w_e\}, e\in U$ find maximum weight set is independent in both matroids
- 3. MWIS problem Sepcial case \rightarrow MST problem
- 4. Greedy Algorithm for MWIS Define $M=(U,I), \{w_e\}, e\in V$ Assume $w_e>0$ Define $M'=(U'=\{e\in U, w_e\geq 0\}, I'=\{A\subseteq U': A\in I\})$ Algo:
 - sort element in U
 - Let $A = \emptyset$
 - considering element in sorted order if $A \cup \{e\}$ is independent, then $A = A \cup \{e\}$ if not, move to next one
 - return A

4.3 Corresness

Let A be the set returned by greedy

- 1. All basis in M have same length 4.1 Proof: if not, then |A| < |B|, $A, B \in I$ trigger property c which shows $|A| \cup \{e\} \in I$ contradiction
- 2. A is a basis of M 4.2

Proof: Assume it is not, then $\exists e \not\in A, \ A \cup \{e\} \in I$ then at some point in algorithm we should have $S \subseteq A$ where we are deciding if $\{e\}$ should be added Since $S \subseteq A$, we have $S \cup \{e\} \subseteq A \cup \{e\}$ So $S \cup \{e\} \in I$ too by property b, so e can be added, but not right now, hence contradiction

3. Actual prove

Let A* be a MWIS, and this will be basis too hence by 4.1, we have |A| = |A*|Suppose w(A) < w(A*), with

- $\bullet \ A = \{e_i\},$
- $A* = \{e*_i\}$
- both weight in decreasing order

And A_i , $A*_i$ be the first i element in them consider the smallest j s.t. $w(A_j) < w(A*_j)$ and we know $|A_{j-1}| = j-1 < j = |A*_j|$ then by property c, we know $\exists e \in A*_j - A_{j-1}, A_{j-1} \cup \{e\} \in I$ and claim $w_e \geq w_{e*_j} > w_{e_j}$

- first is true since $e \in A*_j$, $e*_j$ will have least weight in A*
- the second is true since j is smallest index difference appear so $w(A_{j-1}) = w(A*_{j-1})$, then we have the second is true

Then when the algo runs on A_{j-1} , we know $A_{j-1} \cup \{e\} \in I$ So we should add e instead of e_j hence contradiction

4.4 runtime

- 1. Independent or cicle a procedure that give a set $S\subseteq U$, return if $S\in I$
- 2. Running time
 - sorting takes O(mlog m)
 - O(1)
 - $\bullet\,$ m calls to orcle

So it is efficient

5.1 Minimum Steiner tree

1. Definition

Let G = (V, E) be undirected $\{c_e\}, c_e \ge 0$, a set $T \subseteq V$ called terminal we want to find a MST for T, and this MST is called steiner tree T' for vertices in Steriner Tree but $\notin T$, is a steine node

2. Useful transformation: $(G, c, T) \rightarrow (G', c', T)$ where G' = (V, E') be complete graph on V and $c'_{uv} =$ shortest path cost in G between u and v Note: $c'_{uw} \leq c'_{uv} + c'_{uw}$ (triangle inequality) Let F' be MsinT in G', F be MsinT in G

3. Claims

- Any steiner tree F in G also a steiner tree in G' and $c'(F) \leq c(F)$
- Any steiner tree F' in G' yeilds a steiner tree F in G s.t. $c(F) \le c'(F')$

4. Proofs for claims

- It is clearly that since $E \subseteq E'$, also $\forall uv \in E, c'_{uv} \leq c'_{uv}$, so we get the result
- Let $\overline{F} = \bigcup_{uv \in F'} P_{uv}$ where P_{uv} is the shortest uv-path in G Cleary \overline{T} have all vertices in T, but cycle may appear, but it is easy to check/remove So $c(F) \leq c(\overline{F}) \leq \sum_{uv \in F'} c(P_{uv}) = \sum_{uv \in F'} c'_{uv} = c'(F')$

5. Metric completion

(G', c') defined above is metric completion of (G, c) so we can always solve steiner tree problem on metric completion

5.2 algorithm

- 1. Algorithm:
 - Input: $G = (V, E), c_e \ge 0, T$
 - For G'[T] = (T, E'[T]), where for $uv \in E'[T], u, v \in T$, find a MST on it with c' costs
 - map it back to G by 5.1(b)
- 2. idea

```
cost of solution \leq MST(G', c', T) let OPT = OPT(G', c', T) = OPT(G, c, T), and they are optimal solution for the graph
```

- 3. Theorem 5.2: $F' = MST(G', c', T) \le 2 * OPT$
- 4. Proof:

let F*: optimal Ster T for (G',c',T) pick some $r\in T$, root F* at r, and do a DFS travelsal of F* starting at r, the DFST return a tour that visit all node of F*, has c' cost $\leq 2c'(F*) = 2*OPT$ list out the node traveled for DFST, find the first occurance of $v\in T$ and find cycle \overline{Z} visist every terminal node exactly once

 $=r, v_1, v_2 \dots v_{j-1}, r$ where v_I will not be visited then by triangle inequality, we have $c_{v_i v_{i+1}} \leq c'(Z_{v_I v_{i+1}})$ so we have $c'(\overline{Z}) \leq c'(z) = 2 * OPT$

5.3 discussion

1. A α -approximation algorithm with $\alpha \geq 1$ For a minimization probelm, is a efficient algorithm is efficient algorithm that on every cases it will ruturn a solution of cost $\leq \alpha *$ (optimal) So algorithm for steiren tree is a 2-approximation algorithm

5.4 Computational complexity - the class P

1. P

is the set of all problems that can be solved by polytime algorithm

- 2. This includes
 - SP, MST, MCA
 - Is composite
 - Factoring: by using is composite
 - Is prime?
- 3. Algorithm for factoring: Eratoochhenes Sieve consider all $x \in [2, \sqrt{n}]$, see it devide n if so then n is composite, and x, n/x is a factorization of n not poly time
- 4. Decision problem
 A problem with yes/no answer

5.5 Polynomial-Time Reduction

1. Definition

Let probelm A, B we say A reduct in polytime to B, denote $A \leq_p B$, if we can solve A using algorithm of B polynumber of time

2. note

if $B \in P$, $A \in P$ if $A \notin P$, $B \notin P$

6.1 Computional complexity model

- 1. Verifier V for Dec problem P is an algorithm that take two input
 - x: a feasible solution of P
 - y : a certificate

Output: Yes/No which satisfied

- x is a Yes instance of P, then $\exists y$ such that V(x, y) = YES
- x is a No instance of P, then $\forall y, V(x,y) = No$
- 2. NP

If $p \in NP$, then

- ∃ polynomial p
- a verifier V

Such that

 \forall yes instance of x of P, \exists a certificate y with $|y| \leq p(|x|)$ means the number of bits to specify y is poly less than bit need to specify x

s.t. V(x, y) = yes

Generaly speaking, a NP problem's yes instance will have a shorter certificate

- 3. Claim 6.1 $P \subseteq NP$ if a dec problem $P \in P$, $P \in NP$
- 4. More defs

A probelm B is

- NP hard: if $X \leq_p B, \forall X \in NP$
- NP- complete: if $B \in NP$, and B is NP hard
- 5. Proves
 - find a NP-hard problem B
 - show $B \leq_p Y$, if so, Y is np-hard
 - if y is NP, then Y is NP complete

7 week 7

7.1 NP completeness of Set cover and Steiner tree

- 1. Cook-kevin theorem 3-SAT is NP-complete
- 2. Set cover $\overline{\cap}$ Given universe U and a collection δ of subset of U, integer $k \geq 0$ are there k set in δ which union is U?
- 3. Theorem: $3\text{-SAT} \leq_p \overline{\cap}$
 - vertex cover let G = (V, E) be a undirected graph with $U = E, \delta = \{\delta(v), v \in V\}$
 - theorem 7.2: 3-SAT \leq_p vector cover $\leq_p \overline{\cap}$
 - Proof
 - Let $F = \cap C_i$, where $C_i = y_{i1} + y_{i2} + y_{i3}$ (3 y only)
 - create a graph based on the rule that every y_i is a vertex (y_{ij}, i) edges are created between $(y_{ij}, i), (y_{ab}, a)$ if i = a or $\overline{y_{ij}} = y_{ab}$
 - show F is satisifiable \iff the graph is a vertex cover with size $\leq 2m~({\bf k}=2{\bf m})$
 - * => every C_i must have one y_i be true let $\delta = \{\delta(y_{ij}) : y_{ij} \text{ false }\}$ and this have maximum 2m vertices and this will cover all edges in vector cover since all edges in triangle will be cover and y_{ij} and $\overline{y_{ij}}$ can't be both false or true
 - * <=
- 4. Theorem 7.3 Set cover \leq_p Steiner tree a set cover of size $\leq k \iff$ a steiner tree of cost $\leq n(k+1) + k, n = |U|$

8.1 a-approcximation algorithms

- 1. Designing steps
 - Come up with a LB on OPT
 - • Design an polytime algorithm and show that it return a cost $\leq a*LB \leq a*OPT$
- 2. Theorem 8.1 LPs can be solved in polytime
- 3. LP rounding algorithms this is a a approximation problem
- 4. Promed Dual algorithms we know every feasible solution y to D has a value $\leq OPT_{(p)}$ so we can think of designing an algorithm that contract an interger solution x and dual solution y show $cost(x) \leq a*(value(y))$
- 5. Some notation for LP relaxation $\lambda = \{S \subseteq V : S \cap T \neq \emptyset, T S \neq \emptyset\}$ $\delta(s)$ is cut of s
- 6. Duality
 - Weak Duality Let x be a feasible solution to P, y be a fesible solution to D then $\sum_{e \in E} c_e x_e \ge \sum_{s \in \lambda} y_s$
 - Strong duality if x and y are optimal, then $\sum_{e \in E} c_e x_e = \sum_{s \in \lambda} y_s$
 - Complementary slackness condition

$$-x*_{e} > 0, \sum_{s \in \lambda, e \in \delta(s)} y*_{s} = c_{e}$$

- $y*_{s} > 0, \sum_{e \in \delta(s)} x*_{e} = 1$

8.2 Network connectity problem

- 1. Modeling Framework
 - define a new $f(s): 2^v \to \{0,1\}$ where f(s) = 1 for $s \subseteq v$ shows that a feasible solution must include a edge from $\delta(s)$ (cut of s)
 - f-connectivity problem find a min-cost set of edge F such that $F \cap \delta(s) \neq \emptyset, \forall s \subseteq V, f(s) = 1$
- 2. LP-relaxation for f-connectivity problem

let
$$\lambda = \{ S \subseteq V : f(s) = 1 \}$$

LP: min $\sum_{e \in E} c_e x_e$

- $\sum_{e \in \delta(s)} x_e \ge 1, \forall S \in \lambda$
- $x_e \ge 0, \forall e \in E$

Dual: max $\sum_{S \in \lambda} y_S$

- $\sum_{s \in \lambda: e \in \delta(s)} y_s \le c_e, \forall e \in E$
- $y_s \ge 0, \forall S \in \lambda$
- 3. $\{0,1\}$ proper function: $f: 2^v \to \{0,1\}$
 - f(v) = 0
 - $f(s) = f(v-s), \forall S \subseteq V$
 - $\forall A, B \subseteq V, A, B \neq \emptyset, A \cap B = \emptyset$ $f(A \cup B) = 1 \rightarrow f(A) = 1 \text{ or } f(B) = 1$

9.1 Primal-dual algorithm

1. Remainder

$$\lambda = \{ S \subseteq V : f(s) = 1 \}$$

2. Violated set

At any stage, given a infeasible solution F, S is a violated set, then $f(s)=1, F\cup \delta(S)=\emptyset$

3. Minimal Violated set (MVSs)

let
$$V = \{S \in \lambda : f(S) = 1, F \cup \delta(S) = \emptyset, \forall T \subset S, T \neq S, T \text{ is not violated}\}\$$

4. Lemma 8,2

Given a set F od edges, the MVS are $\{S \subseteq V : Sisacomponent of (V, F) and f(s) = 1\}$

5. Corollary 9.1

 $F\subseteq E$ is feasible \iff every connected component C of (V,F) has f(C)=0

- 6. Primal Dual Algorithm
 - Initializa $F = \emptyset$, $y_s = 0, \forall S \in \lambda$, t = 0 with $V* = \{S \subseteq V : S \text{ is a component of } (V, F) \text{ s.t.} f(S) = 1\}$ which is the MVSs
 - While $V* \neq \emptyset$ raise y_s uniformly at the same rate $\forall S \in V*$, until some edge $e \in \delta(S)$ goes tight for some $S \in V$ update $F = F \cup \{e\}$, update V* due to the change of F
 - Reverse delte let $F = \{e_k \dots e_1\}$ where e is the last one instered if $F \{e_i\}$ is feasible, set it to F
 - Return

7.
$$\delta_Z(S) = \delta(S) \cap Z$$

8. Lemma 9.2

At any point in algorithm $\sum_{s \in V_*} |\delta_f(s)| \le 2|V_*|$

9. Theorem 9.3

Let F be the return, y be a feasible dual solution such that $C(F) \le 2\sum_{S\in\lambda} y_S$

hence it is a 2-approximation algorithm

10.1 Mar 15: Set cover - primal-dual and greedy algorithms

1. Review set cover

Given universe U, and $\lambda = \{S_i\}, S_i \subseteq U$, with W_{S_i} represent the weight of each set

find the minimum-weight collection of set union = U

2. Special case

if $W_S = 1$ it is NP-hard, even vector cover

- 3. LP-relaxation for set cover and dual S is element of λ , e is element of U
 - P: $\min \sum_{S} W_S x_S$ s.t. $\forall e \in U, \sum_{S:e \in S} x_S \ge 1$ $x \ge 0$
 - D: $\max \sum_{e} y_{e}$ s.t. $\forall S \in \lambda, \sum_{e \in S} y_{e} \leq W_{S}$ y > 0
- 4. Complentary slackness
 - $x_S > 0 \rightarrow \sum_{e \in S} y_e = w_S$
 - $y_e > 0 \rightarrow \sum_{S: e \in S} x_S = 1$
- 5. B-approximation Algorithm

 $B = max|\{S \in \lambda : e \in S\}|$

- Inilize $y_e = 0, \forall e \in V, \delta = \emptyset$ $N = U - \bigcup_{S \in \delta} S$
- While $N \neq \emptyset$ Pick some $e \in N$, raise y_e until $\sum_{e \in S} y_E = W_S$ for some S such $e \in S$, make $\delta = \delta \cup S$ update N
- Return δ
- 6. Theorem 10.1: The above algorithm is B-approximation algorithm

- 7. Greedy algorithm for set cover
 - Intilize $y_e = 0, \forall e \in V, \delta = \emptyset$ $N = U - \bigcup_{S \in \delta} S$, (just like b-appro), t = 0
 - while $N \neq \emptyset$ raise y_e uniformly at some rate unitl $\sum_{e \in S \cap N} y_e = w_S$ $\delta = \delta \cup \{S\}, N = N S$
 - return δ
- 8. Analysis for greedy
 - y constructed is not necessaryly a feasible solution
 - let $\Delta = \max_{S \in \delta} |S|$
 - for a integer k $H_k = \sum_{i=1}^k \frac{1}{i}$
- 9. Theorem 10.3
 - $y' = \frac{y}{H_{\Delta}}$ is a feasible dual solution
 - $\bullet\,$ greedy is a H_Δ approximation algorithm
- 10. Theorem 10.2 For every set S, $\sum_{e \in S} y_e \leq H_{\Delta} * w_S$

10.2 Mar 17: Set cover - LP rounding algorithms, uncapacitated facility location

- 1. LP rounding algorithm Observations Let x* be optimal solution for SC-P
 - if $x_S* \ge \frac{1}{c}$ and we set $x_S = 1$ in an integer solution then cost increase by a factor of at most c
 - $\forall e \in U, \exists S, x_S * \geq \frac{1}{B}$
 - Combine the first 2 we get set x_S to
 - -1, if $x * S \ge \frac{1}{B}$
 - -0, if not
- 2. O(ln n)-app algorithm, n = —U— Idea: interpret $x*_S \in [0,1]$ as probability of weather S pick it or not we may have 2 error
 - we may not cover all element
 - can only say expected cost is bounded

expected =
$$\sum_{S \in \lambda} P = \sum_{S \in \lambda} w_S x_S * = OPT_{LP}$$

3. Deal with first error

- 4. Uncomactated facity location (UFL) Given:
 - a complete bipartite graph, $G = (V = F \cup C, E)$
 - every $i \in F$ have a opening cost $f_i \ge 0$
 - each edge $e = ij \in E$ have a connection cost $c_{ij} \ge 0$, which is the cost of assign client j to facility i

Goal: choose a set of $F'\subseteq F$ of facilities to open, and a assignment $\{ij\}=E'\subseteq E,$ where $i\in F'$ to minimize $\sum_{i\in F'}f_i+\sum_{i\in F',j\in c}c_{ij}$

- 5. LP relaxization define the following
 - y_i indicate if facility f is open
 - x_{ij} indicate if assignment between i and j is there

$$\min_{\mathbf{S} \ \mathbf{t}} \sum_{i \in F} f_i y_i + \sum_{j \in C} \sum_{i \in F} c_{ij} x_{ij} \ (\text{UFL-P})$$

- $\sum_{i} x_{ij} \ge 1, \forall j \in C$
- $x_{ij} \leq y_i$
- $x, y \ge 0$

 $\max_{s.t.} \sum_{j} a_j \text{ (UFL - D)}$

- $a_j B_{ij} \le c_{ij}$
- $\sum B_{ij} \leq f_i$
- *a*, *B* ≥ 0

11.1 Mar 22: UFL - general assignment costs

- 1. Economic
 - α_i = amount c in willing to pay to get connected
 - First of all, assume no open cost, then each client c will pay lowest assignment cost $min_{i \in F}(c_{ij})$
 - After there is open cost of a protion $B_{ij} \geq 0$ of it's opening cost f_i to client j. the opening cost satisfied $\sum_j B_{ij} \leq f_i$ (no overcharge allowed)
 - So the cost for a j has to pay is $c_{ij} + B_{ij}$
- 2. LP and dual for eco
 - Max $\sum_{j \in C} \min_{i \in F} (c_{ij} + B_{ij})$ s.t. $\sum_{j \in C} B_{ij} \le c_i$ $B \ge 0$
 - $\begin{aligned} \bullet & \min \sum_{j \in C} a_j \\ a_j & \leq c_{ij} + B_{ij} \\ \sum_{j \in C} B_{ij} & \leq f_i \\ B & \geq 0, a \geq 0 \end{aligned}$
- 3. Complementary Slackness condition
 - $x_{ij} > 0 \rightarrow a_i = c_{ij} + B_{ij} \rightarrow a_j \ge c_{ij}$
 - $y_i > 0 \to \sum_{j \in C} B_{ij} = f_i$
 - $a_j > 0 \rightarrow \sum_{i \in F} x_{ij} = 1$
 - $B_{ij} > 0 \rightarrow x_{ij} = y_i$
- 4. General assignment costs

let (x*, y*) be solution for UFL - P, (a*, b*) be opt solution for UFL-D OPT_{LP} be optimal value

let
$$F_j * = \{i : x_{ij} * > 0\}$$

5. Observations

$$c_{ij} \le a_j *, \forall i \in F_j *$$

- Suppose we find $F' \subseteq F$ such that $F' \cap F_j * \neq 0, \forall j$ cost of solution that assigns each client c to some facity in $F' \cap F_j *$ is at most
 - $\sum_{i\in F'}f_i+$ total client assignment cost $\leq \sum_{i\in F'}f_i+\sum_{j\in C}a_j=\sum_{i\in F'}f_i+OPT_{LP}$
- Find mi-cost set F' satisified set cover for each facility i, set weight is f_i that cover all client j where $i \in F_j * U = C$
- y* is feasible to LP relaxiation for set cover in last observation
- using greddy algorithm for set cover, we get a H_n+1 approximation for UFL, where n=|C|

11.2 Metric UFL

1. Definition

```
all c_{ij} satisfied triangle inequality which is for i, i' \in F, j, j' \in C, c_{i'j} \leq c_{ij} + c_{ij'} + c_{i'j'}
```

- 2. Clustering Algorithm to find c'
 - Let L be list of client in c sorted in up order of a_j*
 - Initialize $c' = \emptyset$
 - While $L \neq \emptyset$
 - Let j: first client in L; set $c' = c' \cup \{j\}, L = L \{j\}$
 - For all $k\in L$ such that $F_k*\cap F_j*\neq\emptyset,$ set $L=L-\{k\},$ neighbor(k) = j
 - Return c'
- 3. Algorithm for metric UFL
 - get c'
 - set $F' = \emptyset$
 - for each $j \in C'$
 - Open $i \in F_j *$ with smallest f_i , add this to F'
 - Assign j to i, and assign every $k \in C C'$ with neighbor(k) = j to i
 - Return F', clienet assignment in step 3
- 4. lemma 11.2

if $j \in C'$, then it is assigned to facility i such that $c_{ij} \leq a_j *$ if $k \in C - C'$, then it is assigned to a facility i such that $c_{ik} \leq 3 * a_k *$

5. lemma 11.3

cost for open facilities is at most $\sum_i f_i y_i *$

6. Theorem 11.4

we have a 4 appriximation algorithm

12.1 Mar 29: Solution methods - relaxations

1. Relaxation

Assume We have $P: \max f(\mathbf{x})$ s.t. $x \in X$ With $R: \max g(\mathbf{x})$ s.t. $x \in G$

then R is a relaxation of P if

- $X \subseteq G$
- $f(x) \leq g(x)$
- 2. Notation

Let x_1 be opt solution to P

Let x_2 be opt solution to R

3. Theorem 12.1 $OPT_R \ge OPT_P$

4. Theorem 12.2

Suppose f = g, then if $x_2 \in X$, then it is a optimal solution for P too

5. Lagragian relaxation

Suppose $P: \max c^{\intercal} x$ s.t. $Dx \leq d, x \in X$

Let $\lambda \in \mathbb{R}^m_+$ consider

 $LR(\lambda)$: max $c^{\mathsf{T}}x + \lambda^{\mathsf{T}}(d - Dx)$ s.t. $x \in X$ = max $\lambda^{\mathsf{T}}d + (c^{\mathsf{T}} - \lambda^{\mathsf{T}}D)x$ s.t. $x \in X$

6. Lemma 12.3

 $LR(\lambda)$ is a relaxation of P $\forall \lambda \geq 0$

- 7. Example with MST
 - Given a undirected G = (V, E), weight $\{w_e\}$, degree bounds $\{b_v \ge 0\}$
 - Goal: find a ST of maximum weight s.t. every node v has degree $\leq b_v$
- 8. Incidence vector

Let $F\subseteq E,\,X^F$ of F is the $\{0,1\}$ vector in R^E given by $X_e^F=1$ if $e\in F,\,0$ otherwise

9. Convex

A set $Z \subseteq \mathbb{R}^n$ is convex if $\forall x, y \in \mathbb{Z}, \forall \lambda \in [0, 1]$

 $\lambda x + (1 - \lambda)y$ is also in z

Note: \emptyset is a convex set

If $\{Z_i\}$ are all convex set, the intersection of them is convex too

10. Convex hull

denoted conv(Z) is the smallest convex set contain Z if c is convex and $conv(z) \not\subseteq C$ or $C \subset conv(z)$ then $Z - C \neq \emptyset$

11. Theorem 12.4

Let P be: max $c^\intercal xs.t.Ax \leq b, xinteger$ Let A, b be rational, then

- The conv(z) is a polyhedron (a set of $\{x : Mx \le d\}$)
- Consider R: max $c^{\intercal}xs.t.x \in conv(z)$, then
 - (R) is a ralaxation of (P)
 - (R) is an LP
 - $-OPT_R = OPT_P$

12. Lemma 12.5

Suppose $Z = \{\epsilon_i\} \subseteq \mathbb{R}^n$

then $\operatorname{conv}(\mathbf{Z})$ is a polyhedron

12.2 Branch and Bound, knapsack problem

1. Lemma 12.6

Let $Z \subseteq \mathbb{R}^n$

P: $\max c^{\intercal} x$ s.t. $x \in Z$

R: max $c^{\mathsf{T}}x$ s.t. $x \in conv(Z)$

x* be opt solution for P, then it is also a opt solution for R

2. theorem 12.7

Suppose $conv(X_1)$ is a polyhedron,

then $\epsilon_{LD} = maxc^{\mathsf{T}}x$ s.t. $Dx \leq d, x \in conv(X_1)$

In particular if

- X_1 is finite, or
- $X_1 = \{x : Ax \le b, xint\}$

where A, b are rational

then $conv(X_1)$ is a polyhedron, and the above explanation for ϵ_{LD} holds

3. Branch and Bound Metohd

goal: solve the optimalization problem P: max f(x) st.t. $x \in X$ the arguments are like Bnb(Q, LB) where Q is the problem, LB is the lower bound

- Solve a relaxation (R) of Q, (Assume R is not unbounded) If R is infeasible, return Q is infeasible Otherwise, Let $\epsilon_R = OPT_R$, $x^{(R)}$ be optimal solution for R
- If $\epsilon_R \leq LB$, then stop, LB is the best
- Otherwise, use $x^{(R)}$ to find opt solution to Q If we can use 12.2, then use it If not, Branch: Partition X_Q into union of X_i and recursively call BnB to find best solution for each X_i update LB when we find a feasible solution to P and always maintain the best solution found so far
- Return LB at the end
- Theorem 12.8, a algo to solve LP for knapsock List item $\{1 \dots n\}$ in decreasing order of $P_i = v_i/a_i$ set each x_i as large as possible, and find the x_l such we switch from 1 to 0

and branch 2 of $x_{l+1} = 1$ and $x_{l+1} = 0$