Escher

Nome do arquivo: "escher.x", onde x deve ser c, cpp, pas, java, js, py2 ou py3

M. C. Escher foi um artista gráfico holandês que fazia incríveis ilustrações onde preenchia a tela com objetos auto-similares, cujos contornos encaixam neles próprios, criando simetrias geométricas muito impressionantes. Veja um exemplo dessa ideia na figura, que mostra um objeto que é um perfil ortogonal definido por uma sequência de números naturais representando a sequência de alturas. Podemos pegar uma cópia do objeto, rotacionar 180 graus e encaixar perfeitamente no objeto original, formando um retângulo.

Em termos mais gerais, se uma sequência de N números naturais representando a sequência de alturas for $A_1, A_2, A_3, \ldots, A_{N-2}, A_{N-1}, A_N$, o perfil definido será chamado de perfil Escher se tivermos $A_1 + A_N$ igual a $A_2 + A_{N-1}$ igual a $A_3 + A_{N-2}$, e assim por diante. Neste problema, será dada a sequência de alturas que definem o perfil e seu programa deve decidir se o perfil é Escher, ou não.

Entrada

A primeira linha da entrada contém um número N, indicando quantos números tem a sequência. A segunda linha da entrada contém N números naturais, A_i , para $1 \le i \le N$, definindo a sequência de alturas do perfil.

Saída

Seu programa deve imprimir uma linha contendo o caractere S, se o perfil for Escher; ou N, senão.

Restrições

- $3 \le N \le 10000$.
- $1 \le A_i \le 1000$, para todo $1 \le i \le N$.

Informações sobre a pontuação

- Em um conjunto de casos de teste somando 20 pontos, N=3.
- Em um conjunto de casos de teste somando 80 pontos, nenhuma restrição adicional.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
12	S
3 6 6 4 3 2 8 7 6 4 4 7	

Exemplo de saída 2
4
1