Machine learning - Information theory

Yonghoon Dong

March 8, 2024

Entropy

- The entropy of a probability distribution can be interpreted as a measure of uncertainty.
- We can also use entropy to define the information content of a data source.

For example, let we observe a sequence of symbols X_n generated from distribution p. If p has **high entropy**, it will be **hard to predict** the value of each observation X_n . Hence we say that the dataset \mathcal{D} **high information content**.

Entropy: Discrete case

The entropy of a discrete random variable X with distribution p over K states is defined by

$$\mathbb{H}(X) := -\sum_{k=1}^K p(X=k)\log_2 p(X=k) = -\mathbb{E}_X[\log p(X)] \geq 0$$

If there is any confusion, we could alternatively write $\mathbb{H}(p(X))$ instead of $\mathbb{H}(X)$.

Entropy: Continuous case (Differential entropy)

Differential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy, a measure of average (surprisal) of a random variable, to continuous probability distributions.

$$h(X) = -\int_{\mathcal{X}} p(x) \log_2 p(x) dx = -\mathbb{E}_X[\log p(X)]$$

Cross entropy

The **cross entropy** between distribution p and q is defined by

$$\mathbb{H}_{ce}(
ho,q) := -\sum_{k=1}^K
ho_k \log q_k$$

One can show that the cross entropy is the expected number of bits needed to compress some data samples drawn from distribution p using a code based on distribution q because $-\log q_k$ can be interpreted as a number of bits needed to compress.

Joint entropy

The **joint entropy** of two random variables X and Y is defined as

$$\mathbb{H}(X,Y) := -\sum_{x,y} p(x,y) \log_2 p(x,y)$$

It satisfies the following property

$$\mathbb{H}(X,Y) \ge \max\{\mathbb{H}(X),\mathbb{H}(Y)\} \ge 0$$

Intuitively, this says combining variables together does not make the entropy go down: we can't reduce uncertainty merely by adding more unknowns to the problem

Conditional entropy

The conditional entropy of Y given X is uncertainty we have in Y after seeing X, averaged over possible values for X

$$\begin{split}
\mathbb{H}(Y|X) &:= \mathbb{E}_{p(X)}[\mathbb{H}(p(Y|X))] \\
&= \sum_{x} p(x)\mathbb{H}(p(Y|X=x)) \\
&= -\sum_{x} p(x) \sum_{y} p(y|x) \log p(y|x) \\
&= -\sum_{x,y} p(x,y) \log p(y|x) = -\sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)} \\
&= -\sum_{x,y} p(x,y) \log p(x,y) + \sum_{x} p(x) \log p(x) \\
&= \mathbb{H}(X,Y) - \mathbb{H}(X)
\end{split}$$

Conditional entropy

- If Y is a deterministic function of X, then knowing X completely determines Y, so $\mathbb{H}(Y|X)=0$
- ② If X and Y are independent, $\mathbb{H}(Y|X) = \mathbb{H}(Y)$ because knowing X tells us nothing about Y
- § Since $\mathbb{H}(X,Y) \leq \mathbb{H}(Y) + \mathbb{H}(X)$, $\mathbb{H}(Y|X) \leq \mathbb{H}(Y)$ with equality iff X and Y are independent.

This shows that, on average, conditioning on data never increases one's uncertainty. The caveat "on average" is necessary because one may get $\mathbb{H}(Y|x) > \mathbb{H}(Y)$ for any particular observation value of X

Conditional entropy

We already know that

$$\mathbb{H}(X_1,X_2)=\mathbb{H}(X_1)+\mathbb{H}(X_2|X_1)$$

This can be generalized to get the chain rule for entropy

$$\mathbb{H}(X_1, X_2, \dots, X_n) = \sum_{i=1}^n \mathbb{H}(X_i | X_1, \dots, X_{i-1})$$

Relative entropy (KL divergence)

Given two distribution p and q, it is often useful to define a **distance metric** to measure how close they are. We will be more general and consider a **divergence measure** D(p,q) which quantifies how far q is from p. This metric satisfies

- **①** Positive definiteness : $D(p,q) \ge 0$ with equality iff p=q
- **②** Triangle inequality : $D(q, r) \le D(p, q) + D(q, r)$

Note that the symmetry condition for satisfying the metric is **not** required.

Relative entropy (KL divergence)

There are many possible divergence measure we can use but normally people use **KL divergence**, also known as the **information gain** or **relative entropy**

Definition

For discrete distribution, the KL divergence is defined as

$$D_{\mathsf{KL}}(p\|q) := \sum_{k=1}^{K} p_k \log rac{p_k}{q_k}$$

For a continuous distribution,

$$D_{\mathsf{KL}}(p\|q) := \int p(x) \log rac{p(x)}{q(x)} dx$$

Interpretation of KL divergence

We can rewrite the KL divergence as follows

$$egin{aligned} D_{\mathsf{KL}}(p\|q) &= \sum_{k=1}^{K} p_k \log p_k - \sum_{k=1}^{K} p_k \log q_k \ &= -\mathbb{H}(p) + \mathbb{H}_{\mathsf{ce}}(p,q) \end{aligned}$$

Since $\mathbb{H}(p) \geq 0$, the cross entropy $\mathbb{H}_{ce}(p,q)$ is a lower bound. Thus we can interpret the KL divergence as the "extra number of bits" we need to pay when compressing the data sample if we use the incorrect distribution q as the basis of our coding scheme compared to the true distribution p.

Convex set

Definition (Convex set)

Let S be a vector space or an affine space over the real numbers. A subset C of S is convex if

$$\forall x, y \in C, \theta x + (1 - \theta)y \in C \text{ for all } 0 \le \theta \le 1$$

Figure: Geometric illustration of convex set and non-convex set

Epigraph

Definition (epigraph)

Let $f: \mathbb{R}^n \to \mathbb{R}$

epi
$$f = \{(x, t) \in R^{n+1} | x \in \text{dom } f, f(x) \le t\}$$

Figure: Geometric illustration of a epigraph

Convex function

Definition (Convex function)

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom } f, 0 \le \theta \le 1$, or equivalently f is convex if and only if epi f is a convex set

Definition (Strictly convex function)

 $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex if dom f is a convex set and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $0 < \theta < 1$ and $x, y \in X$ such that $x \neq y$

Convex function

Figure: Geometric illustration of a epigraph

Jensen's inequality

Theorem (Jensen's inequality)

For any convex function f,

$$f(\sum_{i=1}^n \lambda x_i) \leq \sum_{i=1}^n \lambda_i f(x_i)$$

where $\lambda_i \geq 0$ and $\sum_{i=1}^n \lambda_i = 1$. In probability perspective, it can be written as

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(x)]$$

Proof.

Using the definition of the convex function recursively and take $\lambda_i = p(x)$

Non negativity of KL divergence

Theorem

Let $A = \{x : p(x) > 0\}$ be the support of p(x).

$$D_{KL}(p||q) \ge 0$$
 with equality iff $p = q$

Non negativity of KL divergence

Proof.

$$D_{\mathsf{KL}}(p||q) = -\sum_{x \in A} p(x) \log \frac{q(x)}{p(x)} \tag{1}$$

$$\geq -\log \sum_{x\in A} p(x) \frac{q(x)}{p(x)} = -\log \sum_{x\in A} q(x)$$
 (By Jensen's inequality) (2)

$$\geq -\log\sum_{x\in\mathcal{X}}q(x) = -\log 1 = 0$$
 (Since $\log q(x) \leq 0$, for all x) (3)

Since $\log(x)$ is strictly concave function, equality holds only when p(x)/q(x) is constant for all $x \in A$ where $\mathcal{X} \subset A$

Non negativity of KL divergence

Proof.

Let p(x) = cq(x) for all $x \in A$. To satisfy (3), $\sum_{x \in \mathcal{X}} q(x) = \sum_{x \in A} q(x)$. Therefore,

$$1 = \sum_{x \in A} p(x) = c \sum_{x \in A} q(x) = c$$

Then, c=1. Hence $D_{\mathsf{KL}}(p\|q)=0$ if and only if p(x)=q(x) for all x.

