Jets, Substructure, and Searching for Dark Matter at the Large Hadron Collider

by

Siddharth Madhavan Narayanan

Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2018
© Massachusetts Institute of Technology 2018. All rights reserved.
Author
Department of Physics August 32, 2018
1148450 02, 2010
Certified by
Christoph M. E. Pau
Professor of Physics
Thesis Supervisor
Accepted by
Somebody
Chairman Dopartment Committee on Craduate These

Jets, Substructure, and Searching for Dark Matter at the Large Hadron Collider

by

Siddharth Madhavan Narayanan

Submitted to the Department of Physics on August 32, 2018, in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

Astrophysical observations of gravitational interactions provide strong evidence for the existence of dark matter (DM). Many theories propose and experiments test the hypothesis that DM may have a particle physics origin, but this remains unproven. One such experiment is the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC). If DM couples to particles present in protons, it is possible that DM is produced in collisions at the LHC. Because DM, by its very nature, is effectively invisible to CMS, we must look for collisions in which DM is produced in association with one or more Standard Model (SM) particles. This thesis describes three different scenarios for the SM particle hypothesis: a single top quark, a single Higgs boson, or two light quarks. All three cases result in complicated detector signatures due to the hadronization of final-state quarks. Improved jet substructure techniques to identify these unique signatures are presented. Since the observed data is consistent with SM backgrounds in all three searches, we translate this result into the most stringent constraints to date on the relevant beyond-SM models.

Thesis Supervisor: Christoph M. E. Paus

Title: Professor of Physics

${\bf Acknowledgments}$

Thank you to Professor Markus Klute for nice barbecues.

Contents

1	Introduction			15	
	1.1	The Standard Model of particle physics			
		1.1.1	Electroweak interactions	15	
		1.1.2	Quantum chromodynamics	15	
1.2 Dark matter models			matter models	15	
		1.2.1	Flavor-violating DM	15	
		1.2.2	DM through extended Higgs sectors	15	
		1.2.3	Interaction between the Higgs boson and DM	15	
2	The	CMS	experiment at the LHC	17	
	2.1	The L	arge Hadron Collider	18	
	2.2	The C	ompact Muon Solenoid	18	
		2.2.1	Detector systems	18	
		2.2.2	Particle reconstruction algorithms	18	
	2.3	Simulation of collisions			
		2.3.1	Physics simulation	18	
		2.3.2	Detector simulation	18	
3	Had	ronic	Resonance Identification	19	
	3.1	1 Reconstruction			
	3.2 Identification		fication	19	
		3.2.1	Substructure	19	
		3.2.2	Heavy flavor identification	19	

	3.3	Data v	validation	19	
4	The	Searc	h for $t + p_{\mathrm{T}}^{\mathrm{miss}}$	21	
	4.1	Signal	selection	21	
	4.2	Background estimation			
		4.2.1	Visible final states to constrain invisible final states	21	
		4.2.2	Theoretically-limited extrapolations	21	
	4.3	Result	S	21	
		4.3.1	Constraints on spin-1 FCNCs	21	
		4.3.2	Constraints on scalar resonances	21	
		4.3.3	Extending to new BSM models	21	
5	The Search for $H+p_{\mathrm{T}}^{\mathrm{miss}}$				
	5.1	Signal	selection	23	
	5.2	Backg	round estimation	23	
		5.2.1	Measuring bb -tag efficiency $in \ situ \dots \dots \dots$	23	
	5.3	Result	s	23	
		5.3.1	Constraints on two-Higgs doublet-models	23	
		5.3.2	Constraints on baryonic Z' models $\ldots \ldots \ldots \ldots$	23	
6	The	Searc	h for Invisible Decays of the Higgs Boson	25	
	6.1	Signal	selection	25	
		6.1.1	EW and QCD production of electroweak bosons	25	
	6.2	Background estimation			
	6.3	Result	s	25	
		6.3.1	Constraints on Higgs production and decay parameters $\ .\ .\ .$.	25	
		6.3.2	Constraints on scalar production of DM	25	
7	Dee	p Lear	ning for Hadronic Resonance Identification	27	
	7.1	Netwo	rk architecture	27	
	7.2	Factor	rizing physics and detector effects	27	
		$7\ 2\ 1$	Adding detector simulation	27	

7.3	Adver	sarial nuisance decorrelation	27
	7.3.1	Decorrelation of observables	27
	7.3.2	Decorrelation of latent nuisances	27

List of Figures

List of Tables

Introduction

- 1.1 The Standard Model of particle physics
- 1.1.1 Electroweak interactions

EW symmetry breaking and the Higgs boson

1.1.2 Quantum chromodynamics

Hadronization and jets

- 1.2 Dark matter models
- 1.2.1 Flavor-violating DM
- 1.2.2 DM through extended Higgs sectors
- 1.2.3 Interaction between the Higgs boson and DM

The CMS experiment at the LHC

2.1 T	ne Large	Hadron	Collider
-------	----------	--------	----------

2.2 The Compact Muon Solenoid

2.2.1 Detector systems

Silicon tracker

Electromagnetic calorimetry

Hadronic calorimetry

Muon chambers

Online trigger system

2.2.2 Particle reconstruction algorithms

Tracks and vertices

Electrons and photons

Jets

Muons

Particle flow algorithm

Missing momentum

18

2.3 Simulation of collisions

2.3.1 Physics simulation

Hadronic Resonance Identification

- 3.1 Reconstruction
- 3.2 Identification
- 3.2.1 Substructure

A combined tagger

- 3.2.2 Heavy flavor identification
- 3.3 Data validation

The Search for $t + p_{\mathrm{T}}^{\mathrm{miss}}$

- 4.1 Signal selection
- 4.2 Background estimation
- 4.2.1 Visible final states to constrain invisible final states
- 4.2.2 Theoretically-limited extrapolations
- 4.3 Results
- 4.3.1 Constraints on spin-1 FCNCs
- 4.3.2 Constraints on scalar resonances
- 4.3.3 Extending to new BSM models

The Search for $H + p_{\mathrm{T}}^{\mathrm{miss}}$

- 5.1 Signal selection
- 5.2 Background estimation
- 5.2.1 Measuring bb-tag efficiency in situ
- 5.3 Results
- 5.3.1 Constraints on two-Higgs doublet-models
- 5.3.2 Constraints on baryonic Z' models

The Search for Invisible Decays of the Higgs Boson

- 6.1 Signal selection
- 6.1.1 EW and QCD production of electroweak bosons
- 6.2 Background estimation
- 6.3 Results
- 6.3.1 Constraints on Higgs production and decay parameters
- 6.3.2 Constraints on scalar production of DM

Deep Learning for Hadronic Resonance Identification

- 7.1 Network architecture
- 7.2 Factorizing physics and detector effects
- 7.2.1 Adding detector simulation
- 7.3 Adversarial nuisance decorrelation
- 7.3.1 Decorrelation of observables
- 7.3.2 Decorrelation of latent nuisances