

École Supérieure Privée d'Ingénierie et de Technologies

Classes : $3^{\text{\`e}me}$ A&B Techniques d'estimation pour l'ingénieur Nombre de pages : 5

Date: 10/11/2021 Heure: 15h Dur'ee: 1h

NB: La rédaction et la clarté des résultats seront prises en compte.

Exercice 1:

Soit T une variable aléatoire suivant une loi normale $\mathcal{N}(0,1)$.

- 1. En utilisant la table statistique, calculer :
 - a. (1 **pt**) $\mathbb{P}(0 \le T \le 0.8)$
 - b. (1 pt) $\mathbb{P}(T \ge -0.5)$
 - c. (**1 pt**) $\mathbb{P}(|T| \ge 1.5)$
- 2. (1.5 pt) Tracer la densité de la variable T (prenez soin d'indiquer sur le graphe l'espérance et l'écarttype).
- 3. (1.5 pt) Illustrer graphiquement les probabilités précédentes (Dans 3 graphes différents).
- 4. Déterminer a et b tels que :
 - a. (**1 pt**) $\mathbb{P}(T \le a) = 0.90$
 - b. (**1 pt**) $\mathbb{P}(|T| \ge b) = 0.80$
- 5. On note F la fonction de répartition de T. Montrer que pour tout $t \in \mathbb{R}$ on a :
 - a. (**1 pt**) F(-t) = 1 F(t)
 - b. (1 pt) $\mathbb{P}(|T| > t) = 2(1 F(t))$

Correction Exercice1:

1. a.

$$P(0 \le T \le 0.8) = F(0.8) - F(0)$$

$$= P(T \le 0.8) - P(T \le 0)$$

$$= (1 - P(T \ge 0.8)) - (1 - P(T \ge 0))$$

$$= P(T \ge 0) - P(T \ge 0.8).$$

$$= 0.5 - 0.21186$$

$$= 0.28811$$

b.

$$P(T \ge -0.5) = P(T \le 0.5)$$

= $1 - P(T \ge 0.5)$
= $1 - 0.30854$
= 0.69146

c.

$$P(|T| \ge 1.5) = 1 - P(|T| \le 1.5)$$

$$= 1 - P(-1.5 \le T \le 1.5)$$

$$= 1 - [P(T \le 1.5) - P(T \le -1.5)]$$

$$= 1 - [P(T \le 1.5) - P(T \ge 1.5)]$$

$$= 1 - [1 - P(T \ge 1.5) - P(T \ge 1.5)]$$

$$= 1 - [1 - 2P(T \ge 1.5)]$$

$$= 2P(T \ge 1.5).$$

$$= 2 * 0.06681$$

$$= 0.13362$$

2. T suit la loi Normale centrée réduite alors E(T)=0 et V(T)=1.

3. graphes des probabilités :

- a. $P(T \le a) = 0.9$ alors $P(T \ge a) = 0.1$ et par une lecture inverse de la table de la loi normale le quantile a = 1.28.
- b. $P(|T| \ge b) = 2P(T \ge b) = 0.8$ donc $P(T \ge b) = 0.4$ et le quantile b = 0.25.
- 4. a.

$$F(-t) = P(T \le -t)$$

$$= P(T \ge t) \quad parsymétrie.$$

$$= 1 - P(T \le t)$$

$$= 1 - F(t).$$

b.

$$P(|T| \ge t) = 2P(T \ge t)$$

$$= 2[1 - P(T \le t)]$$

$$= 2[1 - F(t)]$$

Exercice 2:

Un sismologue mesure le nombre de jours qui s'écoulent entre deux sèismes de magnitude supérieure à 8. On suppose que cette durée est une v.a. X dont la densitée est :

$$f(x) = \begin{cases} \frac{k(\theta-1)}{2} x^{(\theta-2)} & \text{si} \quad 0 \le x \le 1\\ 0 & \text{sinon.} \end{cases}$$

avec k est un réel à déterminer et $\theta > 1$ un paramètre à estimer.

- 1. (2 pt) Vérifier que pour k = 2, f est bien une densité de probabilité.
- 2. (1 pt) Montrer que $\mathbb{E}(X) = \frac{\theta 1}{\theta}$.
- 3. (2 pt) En déduire un estimateur $\hat{\theta}_n^{EMM}$ de θ par la méthode des moments.
- 4. Pour étudier le paramètre θ , on a effectué une suite de n expériences indépendantes qui ont donné les réalisations $(x_1,..,x_n)$ de n v.a. $(X_1,..,X_n)$ i.i.d. de même loi que X tel que $0 \le x_i \le 1$ avec i=1,..,n.
 - (a) (2 pt) Donner la fonction de vraisemblance $L(x_1,...,x_n;\theta)$ associée à l'échantillon d'observations.
 - (b) (1 pt) Montrer que la fonction Log-vraisemblance associée à l'échantillon d'observations est donnée par :

$$lnL(x_1,...x_n;\theta) = nln(\theta - 1) + \theta \sum_{i} ln(x_i) - 2\sum_{i} ln(x_i)$$

(c) ($\mathbf{2}$ \mathbf{pt}) En déduire l'estimateur $\hat{\theta}_n^{EMV}$ de θ par la méthode de vraisemblance.

Correction exercice2:

1. Calculant k qui vérifie que $f\geq 0$ et $\int_{\mathbb{R}}f(x)dx=1.$ Alors $k\geq 0$ et

$$\int_0^1 f(x)dx = 1 \quad alors$$

$$\int_0^1 k \frac{(\theta - 1)}{2} x^{\theta - 2} dx = k \frac{(\theta - 1)}{2} \int_0^1 x^{\theta - 2} dx$$

$$= k \frac{(\theta - 1)}{2} \left[\frac{1}{\theta - 1} x^{\theta - 1} \right]_0^1$$

$$= \frac{k}{2} = 1$$

$$\Rightarrow k = 2$$

2.

$$E(X) = \int_0^1 x f(x) dx$$

$$= (\theta - 1) \int_0^1 x^{\theta - 1} dx$$

$$= (\theta - 1) \left[\frac{1}{\theta} x^{\theta} \right]_0^1$$

$$= \frac{\theta - 1}{\theta}.$$

- 3. $E(X) = \frac{\theta 1}{\theta} = \varphi(\theta)$ alors $\widehat{\theta}_n^{EMM} = \varphi^{-1}(\overline{X}_n) = \frac{1}{1 \overline{X}_n}$.
- 4. a. la fonction de vraisemblance est donnée par :

$$L(x_1, ..., x_n; \theta) = \prod_{i=1}^n f(x_i)$$

$$= \prod_{i=1}^n (\theta - 1) x_i^{\theta - 2}$$

$$= (\theta - 1)^n \prod_{i=1}^n x_i^{\theta - 2}$$

b.

$$lnL(x_{1},...x_{n};\theta) = ln[(\theta-1)^{n} \prod_{i=1}^{n} x_{i}^{\theta-2}]$$

$$= ln(\theta-1)^{n} + ln(\prod_{i=1}^{n} x_{i}^{\theta-2})$$

$$= nln(\theta-1) + ln(\prod_{i=1}^{n} x_{i}^{\theta}) + ln(\prod_{i=1}^{n} x_{i}^{-2})$$

$$= nln(\theta-1) + \sum_{i=1}^{n} ln(x_{i}^{\theta}) + \sum_{i=1}^{n} ln(x_{i}^{-2})$$

$$= nln(\theta-1) + \theta \sum_{i=1}^{n} ln(x_{i}) - 2 \sum_{i=1}^{n} ln(x_{i})$$

c. pour calculer l'estimateur de maximum de vraisemblace on dérive la fonction $lnL(x_1,...x_n;\theta)$ par

rapport à θ et on prend la valeur qui annule cette dérivée :

$$\frac{\partial lnL(x_1, ...x_n; \theta)}{\partial \theta} = \frac{n}{\theta - 1} + \sum_{i=1}^n ln(x_i) = 0$$

$$\Rightarrow \frac{n}{\theta - 1} = -\sum_{i=1}^n ln(x_i)$$

$$\Rightarrow \theta = \frac{n}{-\sum_{i=1}^n ln(x_i)} + 1$$

On vérifie qu'il s'agit bien d'un maximum en calculant la dérivée seconde et en vérifiant quil est négative pour $\theta = \frac{n}{-\sum_{i=1}^n ln(x_i)} + 1 = \widehat{\theta}_n^{EMV}$. $\frac{\partial^2 lnL(x_1,\dots x_n;\theta)}{\partial \theta^2} = -\frac{n}{(\widehat{\theta}_n^{EMV}-1)^2} \leq 0$

$$\frac{\partial^2 \ln L(x_1, \dots x_n; \theta)}{\partial \theta^2} = -\frac{n}{(\widehat{\theta}_n^{EMV} - 1)^2} \le 0$$