ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 1

- 1. Sia $X = C_{\mathbb{C}}[0,1]$; è noto che X è uno spazio di Banach con la norma $\|\cdot\|_{\infty}$ della convergenza uniforme. Siano $Y = \{p|_{[0,1]}: p \in \mathcal{P}\}$ il sottospazio delle funzioni polinomiali in X, e $Y_n = \{p|_{[0,1]}: p \in \mathcal{P}_n\}$ quello delle funzioni polinomiali di grado al più n, per ogni $n \in \mathbb{N}$.
 - (a) Dimostrare che $(Y, \|\cdot\|_{\infty})$ non è uno spazio di Banach. [Suggerimento: Y è denso in X.]
 - (b) Dimostrare che $(Y_n, \|\cdot\|_{\infty})$ è uno spazio di Banach per ogni $n \in \mathbb{N}$.
- 2. Sia $X = C_{\mathbb{C}}[0,1]$. Per $f \in X$, definiamo

$$||f||_* = \sup_{t \in [0,1]} |tf(t)|, \qquad ||f||_{**} = \sup_{t \in [0,1]} |(1+t)f(t)|.$$

- (a) Dimostrare che $\|\cdot\|_*$ e $\|\cdot\|_{**}$ sono norme su X.
- (b) Dimostrare che $\|\cdot\|_{**}$ è equivalente a $\|\cdot\|_{\infty}$.
- (c) Dimostrare che $\|\cdot\|_*$ non è equivalente a $\|\cdot\|_{\infty}$.
- (d) Per $n \in \mathbb{N}$, sia $Y_n = \{p|_{[0,1]} : p \in \mathcal{P}_n\}$. Dimostrare che le norme indotte da $\|\cdot\|_*$ e $\|\cdot\|_{**}$ su Y_n sono equivalenti.
- 3. Sia $X = C_{\mathbb{R}}[0,1]$ con la norma $\|\cdot\|_{\infty}$. Definiamo $f_0, f_1, f_2 \in X$ ponendo

$$f_0(t) = 1,$$
 $f_1(t) = t,$ $f_2(t) = 1 - t$ $\forall t \in [0, 1].$

Determinare l'intersezione della palla unitaria chiusa $\overline{B}(0,1)$ nello spazio di Banach X con i seguenti sottospazi:

- (a) span $\{f_1\}$; (b) span $\{f_0, f_1\}$; (c) span $\{f_1, f_2\}$.
- 4. (a) Dimostrare che la formula

$$||f|| = \int_0^1 |f(t)| \, dt \tag{\dagger}$$

definisce una norma $\|\cdot\|$ sullo spazio $C_{\mathbb{R}}[0,1]$ delle funzioni continue sull'intervallo [0,1].

- (b) Dimostrare che la formula (†) <u>non</u> definisce una norma sullo spazio $C_{\mathbb{R}}[-1,1]$ delle funzioni continue sull'intervallo [-1,1].
- (c) Dimostrare che la formula (†) definisce una norma $\|\cdot\|$ sullo spazio \mathcal{P} dei polinomi in una variabile a coefficienti reali.
- 5. Sia X uno spazio normato. Siano $B(0,1) = \{x \in X : ||x|| < 1\}$ la palla unitaria aperta e $S(0,1) = \{x \in X : ||x|| = 1\}$ la sfera unitaria in X. Ricordiamo che il segmento di estremi $x,y \in X$ è l'insieme delle combinazioni convesse $\{(1-\theta)x + \theta y : \theta \in [0,1]\}$; i punti interni del segmento sono i punti del segmento diversi dagli estremi.
 - (a) Dimostrare che, se $x \in S(0,1)$ e $y \in B(0,1)$, allora tutti i punti interni del segmento di estremi x e y sono in B(0,1).
 - (b) Dimostrare che, se $x, y \in S(0,1)$ sono distinti, e un punto interno del segmento di estremi x e y appartiene a S(0,1), allora tutto il segmento di estremi x e y è contenuto in S(0,1).
 - (c) Dimostrare che le seguenti proprietà sono equivalenti:

- (i) S(0,1) contiene un segmento (con estremi distinti);
- (ii) esistono $x, y \in X$ linearmente indipendenti tali che

$$||x|| + ||y|| = ||x + y||.$$

6. Siano $n\in\mathbb{N}_+,\,X=\mathbb{R}^n$ e $p\in(0,1).$ Definiamo $|\cdot|_p:X\to[0,\infty)$ ponendo

$$|x|_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p} \quad \forall x = (x_1, \dots, x_n) \in X.$$

- (a) Dimostrare che, se n > 1, allora $|\cdot|_p$ non è una norma su X.
- (b) Dimostrare che $(a+b)^p \leq a^p + b^p$ per ogni $a, b \in [0, \infty)$. [Suggerimento: applicare ai vettori $(a^p, 0), (0, b^p) \in \mathbb{R}^2$ la disuguaglianza triangolare per la norma $\|\cdot\|_{1/p}$.]
- (c) Dimostrare che, per ogni $x, y \in X$,

$$|x+y|_p^p \le |x|_p^p + |y|_p^p.$$

- (d) Determinare se $x \mapsto |x|_p^p$ è una norma su X.
- 7. Ricordiamo il Teorema del Punto Fisso per contrazioni in spazi metrici: se (X,d) è uno spazio metrico completo e $\Phi: X \to X$ è lipschitziana di costante L < 1, allora esiste un unico $x \in X$ tale che $\Phi(x) = x$.

Siano $M \in (0, \infty)$ e $F : \mathbb{R}^2 \to \mathbb{R}$ continua e tale che

$$|F(x,y) - F(x,y')| \le M|y - y'| \qquad \forall x, y, y' \in \mathbb{R}.$$

Siano $x_0, y_0 \in \mathbb{R}, r \in (0, \infty)$ e $I = [x_0 - r, x_0, +r]$.

- (a) Dimostrare che le seguenti affermazioni sono equivalenti per una funzione $u:I\to\mathbb{R}$:
 - (i) $u \in C^1(I)$ e

$$\begin{cases} u'(x) = F(x, u(x)) & \forall x \in I, \\ u(x_0) = y_0; \end{cases}$$

(ii) $u \in C(I)$ e

$$u(x) = u(x_0) + \int_{x_0}^x F(t, u(t)) dt \qquad \forall x \in I.$$

[Suggerimento: Teorema Fondamentale del Calcolo.]

(b) Sia $\Phi: C(I) \to C(I)$ definita da

$$\Phi(u)(x) = y_0 + \int_{x_0}^x F(t, u(t)) dt \qquad \forall x \in I$$

per ogni $u \in C(I)$. Dimostrare che Φ è lipschitziana di costante rM rispetto alla metrica dell'estremo superiore d_{∞} su C(I).

(c) Dimostrare che, se rM < 1, allora il problema di Cauchy

$$\begin{cases} u'(x) = F(x, u(x)) \\ u(x_0) = y_0; \end{cases}$$

ha un'unica soluzione sull'intervallo I.

[Suggerimento: Teorema del Punto Fisso.]