The Foundations for Probability Limiting Theory by Zhengyan Lin & Chuanrong Lu & Zhonggen Su					
Lecture Notes for Probability Limiting Theory Seminar (2020 Spring, SUSTech)					
(Scribed and Edited by QIU JIAXIN & YANG XuzнI)					
Lastest Updated: January 30, 2020, 15:08					

Contents

1	Preliminary				
	1.1	Basis for Martingale	1		
2 Infinite Divisible Distribution Function					
	2.1	Definition of Infinite Divisible Distribution Function	1		
	2.2	Properties of i.d.c.f	1		
	2.3	Levy-Khinchine Representation	2		
Bi	bliog	craphy	4		

Latest Updated: January 30, 2020

Lecture 1

Preliminary

Basis for Martingale

Let (Ω, \mathcal{A}, P) is a probability space and X is an integrable random variable, G is a subalgebra of \mathcal{A} . **Definition 1.1.1.** For an integrable random variable *X*, if there exist a random varibale *Y* such that

- Y is \mathscr{G} measurable;
- for any $A \in \mathcal{G}$ we have

$$\int_{A} YdP = \int_{A} XdP,$$

then we say Y is the conditional expectation of X given σ -algebra \mathscr{G} . We can write it as $E[X|\mathscr{G}]$.

Remark 1.1.2. The conditional expectation is unique in the sense of *a.s.*, see Jacod and Protter [2012].

Remark 1.1.3. • For any real number c_1 and c_2 , we have

$$\mathsf{E} \; (c_1 X_1 + c_2 X_2 | \mathscr{G}) = c_1 \mathsf{E} \; (X_1 | \mathscr{G}) + c_2 \mathsf{E} \; (X_2 | \mathscr{G}) \quad \textit{a.s.}$$

$$E(XY|\mathscr{G}) = YE(X|\mathscr{F})$$
 a.s

 $\forall A \text{ is } \mathcal{G}_1$ - measurable

• Let $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathcal{A}$, then we have $\int_{A} E[E(X|\mathcal{G}_2)|\mathcal{G}_1] dp = \int_{A} E(X|\mathcal{G}_2) dp$

$$E[E(X|\mathscr{G}_2)|\mathscr{G}_1] = E(X|\mathscr{G}_1) = E[E(X|\mathscr{G}_1)|\mathscr{G}_2]$$
 a.s.

= SABE(x/y)dp.

 $= \int_{A} x \, dp = \int_{A} E(x|\mathcal{G}_{i}) \, dp$ Note that when $\mathcal{G}_{i} = \emptyset$ the first equality will turn to the normal Adam's law.

= SA. JB-E(xly) dp

Let $\{X_n\}$ is a sequence of independent random variables with zero mean and $S_n = \sum_{j=1}^n X_j$. Then we have

$$E(S_{n+1}|X_1,\dots,X_n) = E(S_n + X_{n+1}|X_1,\dots,X_n)$$

= $S_n + EX_{n+1} = S_n$ a.s.,

which indicates that the conditional expectation of S_{n+1} only relates to the previous n random variables.

Definition 1.1.4. Let $\{\mathscr{A}_n\}$ is an increasing sequence of sub σ -algebra of \mathscr{A} . We say a sequence of random variables $\{S_n\}$ is a **martingle** if

- (i) S_n is \mathcal{A}_n —measurable;
- (ii) $E[S_n] < \infty$;
- (iii) for m < n, $\mathsf{E}(S_n | \mathscr{A}_m) = S_m$ a.s.,

if the equality in (iii) turns out to be \leq (\geq) then we say { S_n } is a supermartingale (submartingale).

Example 1.1.1. See pp.24.

Example 1.1.2. See pp.24.

(i) $\{S_n\}$ is a submartingale (supermartingale), Φ is a non-decreasing convex (concave) real function. if $E|\Phi(S_n)| < \infty$, then $\{\Phi(S_n)\}$ is also a submartingale (supermartingale).

(ii) $\{S_n\}$ is a martingale, Φ is a real convex function. if $E[\Phi(S_n)] < \infty$, then $\{\Phi(S_n)\}$ is a submartin-

gale. Why convex function is measurable: \forall as |x| = |x|

• (Measurability.) Since Φ is a convex function on real line, we can see that $\{x:f(x)< a\}$ will $[x_i, x_i]$ be either an empty set or an inteval for any $a \in \mathbb{R}$. And the mixture of measurable function will $a \in \mathbb{R}$ be mearable function. Thus $\{\Phi(S_n)\}$ is \mathscr{A}_n —measurable.

• (Inequality.) By Jensen's inequality, we have

$$\mathsf{E}\left[\Phi\left(S_{n}\right)\middle|\mathscr{A}_{n-1}\right]\geqslant\Phi\left[\mathsf{E}\left(S_{n}\middle|\mathscr{A}_{n-1}\right)\right]\geqslant\Phi(S_{n-1})\quad a.s..$$

Example 1.1.3. $\Phi(x) = x^+$ and $\Phi(x) = |x|^p$.

Let $\{\mathscr{A}_n\}$ is an increasing sequence of sub σ -algebra of \mathscr{A} and $N_{\infty} = \{1, 2, ..., \infty\}$.

Definition 1.1.6. Let α is a random variable:

$$\alpha:\Omega\to N_{\infty}$$
.

If α satisfies

$$\{\alpha = n\} \in \mathcal{A}_n, \quad n \geqslant 1$$

or equvilently

$$\{\alpha \leqslant n\} \in \mathcal{A}_n, \quad n \geqslant 1 \tag{1.1.1}$$

Latest Updated: January 30, 2020

then we say α is a **stopping time**.

Remark 1.1.7. It means that the "decision" of whether to stop at time n must be based only on the information present at time n, not on any future info.

Definition 1.1.8. Let α is a stopping time and $\mathscr{A}_{\infty} = \sigma(\{\mathscr{A}_n, n \geqslant 1\})$. We define

$$\mathcal{A}_{\alpha} = \{E : E \in \mathcal{A}_{\infty}, E \cap \{\alpha = n\} \in \mathcal{A}_n, n \geqslant 1\}$$

as the stopping time σ -algebra \mathcal{A}_{α} .

Note: $F \cap \mathcal{A} = n \setminus (E \cap \mathcal{A} = n)$.

By checking \mathcal{A}_{α} is closed under complement of sets and union of countable sets we can see that this definition is reasonable.

Lemma 1.1.9 (**Doob's**). Let $\{S_n\}$ is a martingale (submartingale) and α , β are two bounded stopping time. If $\alpha \leq \beta$, then we have

$$E(S_{\beta}|\mathscr{A}_{\alpha}) = S_{\alpha} (\geqslant S_{\alpha})$$
 a.s.

Proof. We only prove the case of submartingale. To compelte our proof, we need to verify

- integrability of S_β;
 S_α is A_α-measurable; → Υπροσφάνης
- Inequality.

Assume α and β can be bounded by m. We have $S_{\beta} = \sum_{n=1}^{m} S_n \mathbb{1}\{\beta = n\}$ and $\{S_n\}$ is a martingale. It follows that S_{β} is integrable. Let B is a Borel set on real line. Since

$$\{S_{\alpha} \in B\} = \bigcup_{k \in \mathbb{N}_{\infty}} \left(\{S_{k} \in B\} \cap \{\alpha = k\} \right) \in \mathscr{A}_{\infty}$$

$$\{S_{\alpha} \in B\} \cap \{\alpha = n\} = \{S_{n} \in B\} \cap \{\alpha = n\} \in \mathscr{A}_{n}.$$

Thus, S_{α} is \mathscr{A}_{α} —measurable. To prove the inequality we only need to prove that for any $\Lambda \in \mathscr{A}_{\alpha}$

$$\int_{\Lambda} S_{\alpha} dP \leqslant \int_{\Lambda} \mathsf{E} \left(S_{\beta} | \mathscr{A}_{\alpha} \right) dP = \int_{\Lambda} S_{\beta} dP. \tag{1.1.2}$$

What we want to do is to fix the index in (1.1.2) and change problem into fixed α and fixed β . Thus we define $\Lambda_n = \Lambda \cap \{\alpha = n\}$ to fix α and $\Lambda_n \cap \{\beta > k\}$ to fixed β , here $k \ge j$. The details of proof can be found in pp.25.

Definition 1.1.10. (Continuous case.) See pp.26.

Latest Updated: January 30, 2020

Lecture 2

Infinite Divisible Distribution Function

2.1 Definition of Infinite Divisible Distribution Function

Definition 2.1.1. (From the perspective of c.f.) We say a characteristic function f(t) is infinite divisible (i.d.) iff. $\forall n \in \mathbb{Z}^*$, there exist some characteristic function $f_n(t)$ such that

$$f(t) = [f_n(t)]^n.$$

And the corresponding distribution function *F* is called infinite divisible distribution function.

Definition 2.1.2. (From the perspective of r.v.) Let X is a random variable, we say the distribution of X is infinite divisible iff. $\forall n \in \mathbb{Z}$, there exist an i.i.d random variable sequence $\{X_k^{(n)}\}_{n \geqslant k \geqslant 1}$ such that

$$X = X_1^{(n)} + X_2^{(n)} + \dots + X_n^{(n)}$$
.

Definition 2.1.3. (From the perspective of d.f.) We say a distribution function F is a **infinite divisible** distribution function iff. $\forall n \in \mathbb{Z}$, there exist another distribution function F_n such that

$$F=F_n^{*n}.$$

Remark 2.1.4. From (2.1.1) we have

$$[f(t)]^{\frac{1}{n}}=f_n(t).$$

Thus, for i.d.c.f. f(t), $[f(t)]^{\frac{1}{n}}$ will always be a c.f. (), f(t), f(t), f(t), f(t).

Example 2.1.1. See pp.30.

2.2 Properties of i.d.c.f.

Theorem 2.2.1. (i) I.d.c.f. are closed under finite multiplications; (ii) if f is a i.d.c.f., so does |f|.

Theorem 2.2.2. If f(t) is a i.d.c.f., then $f(t) \neq 0$.

Proof. It's hard to consider the zeros of a complex function, thus we consider $g = |f|^2$. We assme $f(t) = [f_n(t)]^n$, then $g = |f|^2 = |f_n|^{2n} \triangleq g_n^n$, where $g_n = |f_n|^2$ is also a c.f. Here we transform a problem of complex function into a problem of real function. We define

$$h(t) \triangleq \lim_{n \to \infty} g_n = \begin{cases} 1, & \text{if } g(t) > 0, \\ 0, & \text{if } g(t) = 0. \end{cases}$$

we only need to show $h \equiv 1$. Note that g(0) = 1 which indicates that h(0) = 1. Since g_n s are continous 因为cf. is uniform cousti. thus h(t) will also be continous. Thus, h is nowhere 0.

Theorem 2.2.3. Let $\{f^{(m)}(t)\}$ is a sequence of i.d.c.f. If there exist a c.f. f(t) such that $C = \int_{0}^{(m)} (t) dt = \int_{0}^{(m$

Remark 2.2.4. Note that this theorem does not tell us that i.d.c.f. are closed in the sense of limitation fit? because we need the limiting function is a c.f.

Definition 2.2.5. If c.f. f(t) satisfies

$$f(t) = \exp\{i\alpha t + \lambda(e^{i\beta t} - 1)\},\,$$

where $\lambda \geq 0$ and α , β are real number, then we say f(t) is a **poisson type c.f.**

Theorem 2.2.6. f(t) is an i.d.c.f. iff. it can be write as the limitation of the product of finite poisson type c.f.

Proof. For the sufficient part we need to prove f(t) is a c.f. and it is i.d. We assume

$$f(t) = \lim_{k=1}^{n} \exp\{i\frac{\partial k}{\partial t} + \frac{\lambda r}{n} (e^{i\beta_k t} - 1)\} \right]^m f(t) = \lim_{\Delta} \prod_{k=1}^{n} \exp\{i\alpha_k t + \lambda_k (e^{i\beta_k t} - 1)\}.$$

Note that the finite multiplication of c.f. is also a c.f. and f(t) is continous at 0, we conclude that f(t)is a c.f. And it's easy to see f(t) is i.d. The proof of necessary condition can be found at pp.31.

Remark 2.2.7. This theorem implies that the limitation of a sequenc of i.d.c.f. must be a c.f. Keepthis result in mind, and combine it with Theorem 2.2.3 indicate that the i.d.c.f. class is closed under limitation.

Example 2.2.1. See pp.32.

Levy-Khinchine Representation

Let γ is a real constant and G(x) is a non-decreasing bounded and left continous function. We define

$$\psi(t) = i\gamma t + \int_{-\infty}^{\infty} g(t, x) dG(x),$$

where

$$g(t,x) = \begin{cases} \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) \frac{1+x^2}{x^2}, & \text{if } x \neq 0, \longrightarrow -\frac{1}{2} \\ -\frac{t^2}{2}, & \text{if } x = 0. \end{cases}$$

Thus it's easy to see g(t,x) is continous on \mathbb{R}^2 . (Check the limit of g(t,x) at x=0.)

Theorem 2.3.1. $e^{\psi(t)}$ is a i.d.c.f. ($e^{\frac{2}{3}}$

Proof. Note that g(t, x) has different form at 0 and other points, we separate the integral into three differenc parts. For any $1 > \epsilon > 0$, let

$$\epsilon = x_0 < x_1 < \dots < x_n = 1/\epsilon, \ x_k \le \xi_k < x_{k+1} \ (k = 0, 1, \dots, n-1).$$

We consider

$$\begin{split} &\int_{\varepsilon}^{1/\varepsilon} g(t,x) \mathrm{d}G(x) \quad \text{(git,x)} &\xi = 0 \text{ for } t \text{ of } t \text{$$

Thus, by Theorem 2.2.6 we see that

$$f_1^{(\epsilon)}(t) = \exp\{\int_{\epsilon}^{1/\epsilon} g(t, x) dG(x)\}$$

is an i.d.c.f. By Lebesgue's dominated convergence theorem (LDCT) we got

$$f_1^{(\epsilon)}(t) \rightarrow I_1(t) = \exp\{\int_{x>0} g(t,x) dG(x)\}, \quad (\mathcal{Q} \rightarrow +\infty).$$

again, by Theorem 2.2.3 or 2.2.6 we can see that $I_1(t)$ is also a i.d.c.f. Similarly, if we consider the integral of g(t,x) on $(-\epsilon,-\frac{1}{\epsilon})$ we can prove that

$$I_2(t) = \exp\{\int_{x<0} g(t,x) dG(x)\}\$$

is also an i.d.c.f. Now we write

$$e^{\psi(t)} = I_1 \times I_2 \times e^{i\gamma t} \times (-\frac{t^2}{2})[G(+0) - G(-0)].$$

Then we can see that $e^{\psi(t)}$ is a i.d.c.f.

Our goal is to prove the sufficiency of Theorem 2.3.1. Before that we define

$$\Lambda(x) = \int_{-\infty}^{x} A(y) dG(y),$$

where

$$A(y) = \begin{cases} \left(1 - \frac{\sin y}{y}\right) \frac{1 + y^2}{y^2}, & \text{if } y \neq 0; \\ \frac{1}{3!}, & \text{if } y = 0. \end{cases}$$

and

$$\lambda(t) = \psi(t) - \int_0^1 \frac{\psi(t+h) - \psi(t-h)}{2} \mathrm{d}h.$$

Then we have following observation:

- A(y) is continous and bounded. (Because it is bounded at $[\epsilon, \infty]$ and $[0, \epsilon]$.)
- $\Lambda(x)/\Lambda(+\infty)$ is a d.f.

Jean Jacod and Philip Protter. *Probability essentials*. Springer Science & Business Media, 2012.