CHAPITRE

36

APPLICATIONS LINÉAIRES

36.1 APPLICATIONS LINÉAIRES

§1 Définition

Définition 1

Soient E et F deux espaces vectoriels sur le même corps \mathbb{K} . On appelle **application linéaire** de E dans F toute application $f:E\to F$ telle que pour tous $u,v\in E$, et tout $\alpha\in\mathbb{K}$,

$$f(u+v) = f(u) + f(v)$$
 et $f(\alpha u) = \alpha f(u)$.

Si l'on veut préciser le corps de base, on pourra dire que f est \mathbb{K} -linéaire.

Proposition 2

Soit f une application de l'espace vectoriel E dans l'espace vectoriel F. Alors f est linéaire si, et seulement si

$$\forall (u,v) \in E^2, \forall (\alpha,\beta) \in \mathbb{K}^2, f\left(\alpha u + \beta v\right) = \alpha f(u) + \beta f(v).$$

Test 3

Montrer le!

Test 4

Plus généralement, montrer que les applications linéaires préservent les combinaisons linéaires, autrement dit, pour tous $v_1, v_2, \dots, v_p \in E$, et tous $\alpha_1, \alpha_2, \dots, \alpha_p \in \mathbb{K}$,

$$f\left(\alpha_1v_1+\alpha_2v_2+\cdots+\alpha_pv_p\right)=\alpha_1f(v_1)+\alpha_2f(v_2)+\cdots+\alpha_pf(v_p).$$

c'est-à-dire

$$f\left(\sum_{i=1}^{p} \alpha_{i} v_{i}\right) = \sum_{i=1}^{p} \alpha_{i} f\left(v_{i}\right).$$

Proposition 5

Soit $f: E \to F$ une application linéaire, alors

$$f\left(0_{E}\right)=0_{F}.$$

Test 6

Montrer le! En remarquant par exemple que $0_E + 0_E = 0_E$.

Définition 7

Soit E un \mathbb{K} -espace vectoriel.

 Si f: E → E est une application linéaire, on dit que f est un endomorphisme de l'espace vectoriel E.

L'ensemble L(E, E) se note plus simplement L(E).

• Si $f: E \to \mathbb{K}$ est une application linéaire, on dit que f est une forme linéaire sur E.

L'ensemble $L(E, \mathbb{K})$ se note également E^* .

§2 Exemples

Exemple 8

Soit $p \in \mathbb{R}$, $f_1 : \mathbb{R} \to \mathbb{R}$, $x \mapsto px$. Alors f_1 est linéaire car pour tous $x, y \in \mathbb{R}$ et $\alpha, \beta \in \mathbb{R}$,

$$f_1(\alpha x + \beta y) = p(\alpha x + \beta y) = \alpha(px) + \beta(py) = \alpha f_1(x) + \beta f_1(y).$$

Test 9

Soit $f_2: \mathbb{R} \to \mathbb{R}$, $x \mapsto px + q$ (avec $p, q \in \mathbb{R}$ et $q \neq 0$) et $f_3: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$. Montrer que ni f_2 , ni f_3 , ne sont des applications linéaires puisqu'elles ne vérifient pas l'assertion

$$\forall (x, y) \in \mathbb{R}^2, f(x + y) = f(x) + f(y).$$

Test 10

Soit $E = \mathbb{R}^2$ et $f: \mathbb{R}^2 \to \mathbb{R}^2$. Montrer que f est linéaire, c'est-à-dire $(x,y) \mapsto (2x+y,x)$

$$\forall (u, v) \in E^2, \forall \alpha \in \mathbb{R}, f(u+v) = f(u) + f(v) \text{ et } f(\alpha u) = \alpha f(u).$$

Exemple 11

On note $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$ l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} dérivables une infinité de fois.

L'application

$$T: \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$$

$$f \mapsto f'' - f$$

est une application linéaire.

Test 12

Soit $n \in \mathbb{N}^*$ et

$$S:$$
 $\mathbb{K}^n \to \mathbb{K}$ $(x_1 \ x_2 \ \dots \ x_n)^T \mapsto \sum_{i=1}^n x_i$

Montrer que S est une application linéaire.

Exemple 13

Soit $V = \mathbb{R}^n$ et $F = \mathcal{F}(\mathbb{R}, \mathbb{R})$. On définit l'application $T: V \to F$ par

$$T(u) = T \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = p_{u_1, u_2, \dots, u_n} = p_u$$

où p_u est la fonction polynômiale définie par

$$p_u(x) = u_1 x + u_2 x^2 + x_3 x^3 + \dots + u_n x^n.$$

Alors T est une application linéaire.

En effet, soit $u = (u_1, u_2, \dots, u_n) \in V$, $v = (v_1, v_2, \dots, v_n) \in V$ et $\alpha \in \mathbb{R}$, on a

$$T(u + v) = p_{u+v}$$
 $T(u) = p_u$ $T(v) = p_v$.

Montrons que T(u+v)=T(u)+T(v) c'est-à-dire $p_{u+v}=p_u+p_v$. Pour $x\in\mathbb{R},$

$$p_{u+v}(x) = p_{u_1+v_1,u_2+v_2,...,u_n+v_n}(x)$$

$$= (u_1 + v_1)x + \dots + (u_n + v_n)x^n$$

$$= (u_1x + \dots u_nx^n) + (v_1x + \dots v_nx^n)$$

$$= p_u(x) + p_v(x)$$

$$= (p_u + p_v)(x).$$

Ainsi les fonction p_{u+v} et $p_u + p_v$ sont égales. La preuve que $T(\alpha u) = \alpha T(u)$ est analogue.

Test 14

Montrer que $T(\alpha u) = \alpha T(u)$.

L'application T est donc linéaire.

§3 Quelques applications particulières

Exemple 15

Soit E un K-espace vectoriel et $\lambda \in K$. L'application

$$h_{\lambda}: E \rightarrow E$$
 $v \mapsto \lambda v$

est un endomorphisme de E appelé homothétie de rapport λ .

Exemple 16

Soit E un \mathbb{K} -espace vectoriel. L'application identique de E, Id_E : $E \to E$ est $x \mapsto x$ linéaire.

Exemple 17

Soit E et F deux \mathbb{K} -espaces vectoriels. L'application nulle

$$\widetilde{0}: E \to F$$

$$x \mapsto 0_{F}$$

est une application linéaire.

Proposition 18

Soit A une matrice de type (m, n). Alors l'application

$$T: \mathbb{K}^n \to \mathbb{K}^m$$
$$x \mapsto Ax$$

est une application linéaire.

L'application T est la multiplication à gauche par A.

Démonstration. C'est une conséquence de la «bilinéarité» du produit matriciel. Pour $(u, v) \in \mathbb{K}^n$ et $\alpha \in \mathbb{K}$,

$$T(u+v) = A(u+v) = Au + Av = T(u) + T(v)$$

et $T(\alpha u) = A(\alpha u) = \alpha Au = \alpha T(u)$.

Test 19

L'application $T: \mathbb{R}^2 \to \mathbb{R}^2$ vu précédemment est la multiplication à gauche par une matrice A. Déterminer A.

§4 Composition et combinaison linéaire d'applications linéaires

Proposition 20

Soient E, F, G trois \mathbb{K} -espaces vectoriels, T une application linéaire de E dans F, S une application linéaire de F dans G. Alors l'application composée $S \circ T$ est linéaire.

Test 21

Montrer le!

Test 22

Lorsque

$$T: \mathbb{K}^n \to \mathbb{K}^m \text{ et } S: \mathbb{K}^m \to \mathbb{K}^p ,$$

 $x \mapsto Bx \qquad x \mapsto Ax$

de quels types sont les matrices A et B? Pour quelle matrice C a-t-on

$$\forall x \in \mathbb{K}^n, (S \circ T)(x) = Cx ?$$

Proposition 23

Soient E et F deux espaces vectoriels sur K. Alors L(E, F) est un espace vectoriel sur K.

En particulier si $S,T:E\to F$ sont des applications linéaires, alors S+T et $\alpha S,\alpha\in\mathbb{K}$, sont linéaires.

Proposition 24

Soient E, F et G trois \mathbb{K} -espaces vectoriels, $T, T_1, T_2 \in L(E, F)$ et $S, S_1, S_2 \in L(F, G)$ et $\alpha \in \mathbb{K}$. Alors

$$S \circ (T_1 + T_2) = S \circ T_1 + S \circ T_2$$
$$(S_1 + S_2) \circ T = S_1 \circ T + S_2 \circ T$$
$$(\alpha S) \circ T = S \circ (\alpha T) = \alpha (S \circ T)$$

Théorème 25

Soit E un \mathbb{K} -espace vectoriel. Muni de l'addition et de la composition, l'ensemble $(\mathbf{L}(E),+,\circ)$ est un anneau.

Remarque

Le programme suggère la notation vu pour la composée $v \circ u$ et u^k pour $u \in \mathbf{L}(E)$ et $k \in \mathbb{N}$.

§5 Isomorphismes

Proposition 26

Soient E et F deux \mathbb{K} -espaces vectoriels et $T: E \to F$ une application linéaire bijective. Alors $T^{-1}: F \to E$ est linéaire.

Définition 27

Soient E et F deux \mathbb{K} -espaces vectoriels.

• Si $f: E \to F$ est une application linéaire bijective, on dit que f est un **isomorphisme d'espaces vectoriels** de E dans F.

L'ensemble des isomorphismes de E dans F peut se noter $\mathbf{Isom}(E, F)$.

• On dit que les espaces vectoriels *E* et *F* sont **isomorphes** s'il existe un isomorphisme entre *E* et *F*.

Proposition 28

Soit $T:E\to F$ et $S:F\to G$ deux isomorphismes. Alors $S\circ T:E\to G$ est un isomorphisme et

$$(S \circ T)^{-1} = T^{-1} \circ S^{-1}.$$

Exemple 29

Soit $(a, b, c) \in \mathbb{R}^3$ avec $a \neq 0$. Notons S le \mathbb{R} -espace vectoriel des solutions $y : \mathbb{R} \to \mathbb{R}$ de l'équation différentielle

$$ay'' + by' + cy = 0.$$

L'application

$$\varphi: S \to \mathbb{R}^2$$
$$y \mapsto (y(0), y'(0))$$

est un isomorphisme d'espaces vectoriels.

Définition 30

Si $f: E \to E$ est un endomorphisme bijectif de E, on dit que f est un **automorphisme** de E.

L'ensemble des automorphismes de E est le **groupe linéaire** de E et se note GL(E) : c'est le groupe des inversibles de l'anneau L(E).

Exemple 31

Soit $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + y + z \\ x - y \\ x + 2y - 3z \end{pmatrix}.$$

L'application T est-elle bijective? Si oui, déterminer sa réciproque.

Test 32

Soit $u=(1,2,3)^T$. Vérifier que $T^{-1}(w)=u$ lorsque $w=T(u)=(6,-1,-4)^T$. Vérifier plus généralement que $T^{-1}\circ T=\mathrm{Id}_{\mathbb{R}^3}$.

36.2 ANATOMIE D'UNE APPLICATION LINÉAIRE

§1 Noyau et images

Définition 33

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathbf{L}(E, F)$.

• On appelle **noyau** de f, noté ker f, l'ensemble des vecteurs de E dont l'image par f est 0_F , c'est-à-dire

$$\ker f = \left\{ x \in E \mid f(x) = 0_F \right\}.$$

• On appelle **image** de f, noté Im f, l'ensemble f(E), c'est-à-dire

Im
$$f = \{ f(x) \mid x \in E \} = \{ y \in F \mid \exists x \in E, f(x) = y \}.$$

Test 34

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathbf{L}(E,F)$. Alors le noyau ker f est un sous-espace vectoriel de E

Test 35

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathbf{L}(E, F)$. Alors l'image Im f est un sous-espace vectoriel de F.

Exemple 36

Déterminer le noyau et l'image de l'application linéaire $S: \mathbb{R}^2 \to \mathbb{R}^4$ définie par

$$S\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + y \\ x \\ x - y \\ y \end{pmatrix}.$$

Test 37

Déterminer le noyau et l'image de l'application linéaire $T: \mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y \\ y - z \end{pmatrix}.$$

Exemple 38

L'endomorphisme $D: f \mapsto f'$ du \mathbb{R} -espace vectoriel $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ admet pour noyau le sous-espace vectoriel des fonctions constantes. Celui-ci est engendré par la fonction constante $1: x \mapsto 1$, c'est donc une droite vectorielle.

Test 39

Déterminer le noyau de l'application linéaire $\sigma: \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ définie par

$$\sigma(f) = f'' - 4f.$$

Théorème 40

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in L(E, F)$.

- 1. ker(f) est un sous-espace vectoriel de E.
- **2.** Im(f) *est un sous-espace vectoriel de F*.

Ce théorème est un cas particulier du résultat suivant avec $\ker f = f^{-1}(\{0_F\})$ et $\operatorname{Im} f = f(E)$.

Théorème 41

Soient E et F deux K-espaces vectoriels et $f \in \mathbf{L}(E, F)$.

- 1. Si W un sous-espace vectoriel de F, alors $f^{-1}(W)$ est un sous-espace vectoriel de E.
- **2.** Si V un sous-espace vectoriel de E, alors f(V) est un sous-espace vectoriel de F.

§2 Injectivité, surjectivité

Théorème 42

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathbf{L}(E,F)$. Alors l'application f est injective si, et seulement si $\ker(f) = \left\{ \ 0_E \ \right\}$.

L'inclusion, $\left\{ \ 0_E \ \right\} \subset \ker(f)$ étant triviale, montrer $\ker(f) = \left\{ \ 0_E \ \right\}$ revient à montrer

$$\forall x \in E, f(x) = 0_F \implies x = 0_E.$$

Exemple 43

L'endomorphisme M qui, à la fonction f de $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$ associe la fonction $x\mapsto xf(x)$, est injectif. Soit en effet un élément f du noyau; on a alors xf(x)=0 pour tout réel x, donc f(x)=0 pour tout réel non nul x. Par continuité, f est l'application constante nulle: $f=\widetilde{0}$. Le noyau de l'endomorphisme M est donc $\left\{\widetilde{0}\right\}$ et M est injectif.

Théorème 44

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathbf{L}(E, F)$. Alors l'application f est surjective si, et seulement si $\mathrm{Im}(f) = F$.

L'inclusion, $Im(f) \subset F$ étant triviale, montrer Im(f) = F revient à montrer

$$\forall y \in F, \exists x \in E, f(x) = y.$$

Ce qui est bien sûr la définition d'une fonction surjective, la linéarité ne joue aucun rôle ici.

§3 Équations linéaires

Définition 45

Une **équation linéaire** est une équation de la forme u(x) = b où

- $u \in L(E, F)$ où E et F sont des \mathbb{K} -espaces vectoriels,
- $b \in F$ est fixé,
- l'inconnue est $x \in E$.

Théorème 46

Soit \mathcal{S} l'ensemble des solutions d'une équation linéaire u(x) = b.

- Si $b \notin \text{Im } u$, alors $\mathcal{S} = \emptyset$.
- Si $b \in \text{Im } u$, c'est-à-dire si il existe $x_0 \in E$ tel que $u(x_0) = b$, alors

$$\mathcal{S} = x_0 + \ker u = \{ x_0 + y \mid u(y) = 0_F \}.$$

Définition 47

On dit que x_0 est une **solution particulière**, et y est une **solution générale** de l'équation homogène associée (c'est-à-dire l'équation $u(x) = 0_F$).

Exemple 48

Déterminer les solutions de l'équation différentielle $y''(t) - 4y(t) = \cos(t)$.

§4 Notion de sous-espace affine

Définition 49

Soit E un \mathbb{K} espace vectoriel, x_0 un point de E, et W un sous-espace vectoriel de E. On note $x_0 + W$, et on appelle **sous-espace affine** passant par x_0 et dirigé par W l'ensemble

$$\mathcal{W} = x_0 + W = \left\{ x_0 + w \mid w \in W \right\}.$$

L'espace W est appelé la **direction** du sous-espace affine W.

Si W est une droite vectorielle, $x_0 + W$ est appelé **droite affine**.