СОСТОЯНИЕ ТЕОРИИ РЕКТИФИКАЦИИ И ВОЗМОЖНОСТЬ ЕЕ УТОЧНЕНИЯ

М. С. Рогалев, Р. З. Магарил

(Тюменский государственный нефтегазовый университет)

Ключевые слова: ректификация, ректификационные колонны, процесс массопередачи, термодинамическое равновесие

Key words: rectification, rectification tower, process of mass transfer, thermodynamic equilibrium

В современной теории ректификации при описании процесса массопередачи между паровой и жидкой фазами на контактных устройствах колонн (тарелках) используется понятие «теоретической тарелки» [1]. Оно делает допущение о достижении в системе пар-жидкость состояния равновесия. При переходе от рассмотрения работы «теоретической тарелки» к реальной вводится понятие коэффициента полезного действия (КПД тарелки). Его значение определяется на основании накопленного опыта эксплуатации тарелок данного типа или по эмпирическим формулам [1].

Эффективность эксплуатации контактных устройств зависит также от режима работы, который влияет на интенсивность процесса массопередачи в системе пар-жидкость. Фактически массопередача на тарелках определяется диффузией компонентов из паровой фазы в жидкую [2]. Этот процесс описывается I законом Фика. Движущей силой процесса является разница между парциальным давлением компонентов в паровой фазе и давлением их насыщенных паров в жидкой, которая описывается законом Дальтона—Рауля [2]. Процесс массопередачи может быть представлен уравнением

$$M = K_1 \cdot \frac{D \cdot S \cdot \tau}{r} \cdot \left[\pi \cdot y_i - P_i \cdot x_i \right], \tag{1}$$

где M — количество паров диффундирующих из паровой фазы в жидкую; K_1 — коэффициент массопередачи; D — коэффициент диффузии в паровой фазе; S — поверхность пузырей паровой фазы барботирующих через флегму на тарелке; τ — время контакта между фазами на тарелке; r — толщина поверхностного слоя; π — общее давление паров (давление в системе ректификации); P_i — давление насыщенных паров і—й фракции в жидкой фазе; y_i и x_i — мольные доли і—й фракции в паровой и жидкой фазах соответственно.

Рассмотрим влияние изменения давления на скорость массопередачи. При этом изменением абсолютной температуры пренебрегаем.

Коэффициент диффузии в паровой фазе в соответствие с [3] как функция давления в ректификационной колонне выражается

$$D = K_2 \cdot \frac{1}{\pi} \,. \tag{2}$$

На образование поверхности раздела фаз в соответствии с [4] затрачивается работа (A), величина которой постоянная для систем с развитой поверхностью (в частности, для процесса ректификации):

$$A = S \cdot \sigma \,, \tag{3}$$

где σ – поверхностное натяжение на границе раздела между паровой и жидкой фазами на контактном устройстве.

На основании работы [5] и уравнения Менделеева-Клапейрона выражение для межфазного поверхностного натяжения будет иметь вид

$$\sigma = K_3 \cdot \left[\rho_{\mathcal{K}} - \rho_{\Pi} \right]^b = K_3 \cdot \left[\rho_{\mathcal{K}} - K_4 \cdot \pi \right]^b, \tag{4}$$

где K_3 , K_4 – коэффициент пропорциональности; $\rho_{\mathcal{K}}$ и ρ_{Π} – плотности жидкой и паровой фаз в определенном сечении колонны; b = 3,3 – коэффициент рассчитан для углеводородов на основании данных [5].

Выражение для поверхности раздела между паровой фазой борбатирующей через слой флегмы на тарелке из зависимостей (3) и (4) следующее:

$$S = K_5 \cdot \frac{1}{\left[\rho_{\mathcal{K}} - K_4 \cdot \pi\right]^b} \,. \tag{5}$$

Время контакта между паровой и жидкой фазами на тарелке в зависимости от давления:

$$\tau = \frac{s}{V} = K_6 \cdot \pi \,, \tag{6}$$

где S — сечение колонны; V — объемная скорость паров, согласно уравнению Менделеева-Клапейрона, равная $V = n \cdot R \cdot \frac{T}{r}$.

В выражении (1) величиной парциального давления і–й фракции во флегме на тарелке пренебрегаем, так как величина $\pi \cdot y_i^{'}$ во много раз больше $P_i \cdot x_i^{'}$.

Учитывая сказанное, а также зависимости (2), (5) и (6), получаем следующий вид уравнения массопередачи в системе пар — жидкость на контактных устройствах с учетом давления в ректификационной колонне (условие укрепляющей колонны):

$$M = K_7 \cdot \frac{\pi}{\left[\rho_{\mathcal{K}} - K_4 \cdot \pi\right]^b \cdot r} \,. \tag{7}$$

Из выражения (7) видно, что при прочих равных условиях массопередача из паровой фазы в жидкую возрастает при увеличении давления в ректификационной колонне. Следовательно, повышение давления приближает систему пар—жидкость на контактных устройствах к равновесной, что увеличивает КПД тарелки.

Полученные выводы подтверждены на работе атмосферной ректификационной колонны (диаметр 2,14м, 29 тарелок клапанного типа, расстояние между тарелками 600 мм), результаты которой приведены в таблице.

Результаты опытного пробега

	ле Па	Извлечение светлых фракций нефти от потенциала,%	Наложение фракций, ^о С		Рабочие параметры атмосферной ректификационной колонны температура, ^о С расходы орошений, м ³ /ч					
Давление в системе ректификации, МПа	Давление в систем ректификации, МІ		HK-18 <u>0</u> 180-360	<u>180–360</u> более 360	верх	вывод дизельной фракции в стрипинг	низ	острое орошение	1 ЦО	п цо
	0,15	93,7	25 – 35	110–120	132	231	332	23,4	27,0	9,0
	0,30	96,9	-10 – 0	50-60	146	247	319	18,4	18,0	7,2

Выводы

- При описании в теории ректификации работы тарелки необходимо учитывать динамику процесса массопередачи при контакте паров с флегмой.
- Повышение давления в системе ректификации приводит к увеличению скорости массопередачи между фазами ($M \approx \pi$ согласно выражению (7)).
 - Имеется возможность увеличения четкости ректификации при повышении давления.

Список литературы

- 1. В. В. Кафаров. Основы массопередачи. Изд. 2, перераб. и доп. М.: Высшая школа, 1972.
- 2. А. И. Скобло, Ю. К. Молоканов, А. И. Владимиров, В. А. Щелкунов. Процессы и аппараты нефтегазопереработки и нефтехимии. Изд. 3, перераб. и доп. М.: ООО «Недра-Бизнесцентр», 2000.
- 3. М. С. Рогалев, Р. 3. Магарил. Способ интенсификации процесса первичной перегонки нефти. // Известия вузов. Нефть и газ, 2008.– № 5. С. 90–93.
 - 4. Химическая энциклопедия // Под ред. И. Л. Кнунянц. Т. 3. М.: Большая Российская энциклопедия, 1992. 639с.
- 5. Р. 3. Магарил. Связь теплоты парообразования с плотностью жидкости и ее насыщенного пара и поверхностным натяжением жидкости. // Физическая химия, 1957.—№ 4. С. 53–57.

Сведения об авторах

Магарил Р.3., д.т.н., профессор, главный научный сотрудник, Тюменский государственный нефтегазовый университет, тел. 8(3452)256942, e-mail: magaril67@mail.ru.

Рогалев М.С., к.т.н., доцент кафедры «Переработка нефти и газа», Тюменский государственный нефтегазовый университет, тел. 8(3452)256942, e-mail: rogalev_max@mail.ru.

Magaril R.Z., Doctor of Technical Science, professor, Tyumen State Oil and Gas University, phone: 8(3452)256942, e-mail: magaril67@mail.ru.

Rogalev M.S., Candidate of Technical Science, assistant professor of Department «Chemistry and Technology of Oil and Gas», Tyumen State Oil and Gas University, phone: 8(3452)256942, e-mail: rogalev_max@mail.ru.