

3 Value functions $\frac{\pi(a|s)}{=Pr(A_1=a|s)}$ Agent S = 2 $\sqrt{z} = \mathbb{E}^{\mathbb{Z}} \left[\mathcal{E}^{\mathsf{f}} \middle| \mathcal{E}^{\mathsf{f}} = \mathcal{E}^{\mathsf{f}} \right] =$ = [= [= x k R + k+1 | \$ = s] $Q_{\pi}(s, \alpha) = E_{\pi}[G_{t}|S_{t}=s, A_{t}=a] = G_{\pi}[\Sigma_{Y}^{t}R_{t+t+1}]S_{t}=n$ $V_{\tau}(s) = \sum_{\alpha} \pi(\alpha|s) \cdot Q_{\tau}(s_{\alpha})$ Q_T(S,a)= E_T [Rt+1 + 8 G++1 | S_t = S, A_t = a] = = E-[R++ | S+=s, A+-a] + & E- [G++ | S+=s, A+=a] $\mathcal{Z}(s,a) = \mathcal{Z}(s,a) + \mathcal{Z}(s',a) \cdot \mathcal{V}_{\pi}(s')$ $\mathcal{Z}(s',a) = \mathcal{Z}(s,a) + \mathcal{Z}(s',a) \cdot \mathcal{V}_{\pi}(s')$ $\mathcal{Z}(s',a) = \mathcal{Z}(s,a) + \mathcal{Z}(s',a) \cdot \mathcal{V}_{\pi}(s')$ $V_{\pi}(s) = \mathbb{E}_{\pi} \left[G_{t} \middle| S_{t} = s \right] =$ = E_ [R_++ + \ G_++ | S_+ = s] = $= \sum_{\alpha} \pi(\alpha|s) \cdot \sum_{\beta} \sum_{\gamma} p(s', z|\beta, \alpha) \left[z + \beta E_{\pi} C_{G_{HH}} | S_{HH} = s' \right]$ $\forall S \ \forall \pi(S) = \sum_{\alpha} \pi(\alpha | S) \sum_{S'} \sum_{z} p(s', z | s, \alpha) (z + \delta) \forall \pi(S')$ Bellman equations $Q_{\pi}(s,a) = \sum_{s'} \sum_{z} p(s',z|s,a) \left[z + \chi \cdot \sum_{\alpha'} \pi(\alpha'|s') Q_{\pi}(s',a') \right]$

