Computer-Aided Program Design Spring 2015, Rice University

Unit 4

Swarat Chaudhuri

February 17, 2015

Symbolic model checking

- So far, we have seen:
 - 1. Bounded verification
 - 2. Explicit-state (or enumerative) verification.
- Better for finding bugs...
- Today: symbolic verification.

Symbolic model checking

- Based on a fixpoint computation.
- ▶ Compute a sequence of sets of states $S_0, S_1, S_2, ...$, where S_i consists of the set of states reached in i steps from the initial states.
 - 1. Suppose you want to find the set of all states that have some path to a buggy state.
 - 2. Consider a function Pre(S) that gives you the set of states that from which you can reach S in 1 step.
 - 3. Then $S_0 = Bad$, and $S_{i+1} = S_i \cup Pre(S_i)$
 - 4. The set you want is a *fixpoint* of this transformation.

Representing sets

Question: how do you represent sets?

Representing sets

- Question: how do you represent sets?
- Idea: as boolean formulas.
- Let us assume a CNF representation...
- Can you give an implementation of Pre?

Representing sets

- Question: how do you represent sets?
- Idea: as boolean formulas.
- Let us assume a CNF representation...
- ► Can you give an implementation of *Pre*?
 - You have to use quantifiers...

$$Pre(\varphi) = \exists x' : T(x, x') \land \varphi(x').$$

But in the boolean world, you can rewrite the existential quantifier using disjunction:

$$\exists x': \varphi = \varphi[x' \mapsto \top] \lor \varphi[x' \mapsto \bot]$$

Pre and Post

- Backward vs. forward fixpoint computations
- ▶ What you saw above: backward fixpoint computation
- ► Forward computation would use *Post* rather than *Pre*.

Representing sets of states

- CNF formulas have some merits, but...
- ▶ Binary decision diagrams are a classic data structure especially useful for this application.
- ► Less in vogue since the rise of SAT-solvers, but potentially useful for future applications.
- ► See http://www.itu.dk/courses/AVA/E2005/bdd-eap.pdf for more details.

Binary decision diagrams (BDDs)

- \blacktriangleright Any boolean function φ can be rewritten as a decision tree, where:
 - nodes are labeled by variables
 - if the root is labeled x, then the left and right subtrees off the root respectively represent the functions $\varphi[x \mapsto \bot]$ and $\varphi[x \mapsto \top]$
 - ▶ In other words, φ is rewritten as $Ite(x, \varphi_1, \varphi_2)$, where Ite represents the if-then-else function.

Binary decision diagrams (BDDs)

- \blacktriangleright Any boolean function φ can be rewritten as a decision tree, where:
 - nodes are labeled by variables
 - if the root is labeled x, then the left and right subtrees off the root respectively represent the functions $\varphi[x \mapsto \bot]$ and $\varphi[x \mapsto \top]$
 - ▶ In other words, φ is rewritten as $Ite(x, \varphi_1, \varphi_2)$, where Ite represents the if-then-else function.
- ► The BDD (technically, ROBDD) for the function is obtained by:
 - Setting an order on the variables
 - Removing nodes from which both edges lead to the same node
 - Coalescing isomorphic subtrees.

Example

- ▶ Draw the BDD for $(x_1 \leftrightarrow x_2) \land (y_1 \leftrightarrow y_2)$
- ▶ Try the orders $(x_1 < x_2 < y_1 < y_2)$ and $(x_1 < y_1 < x_2 < y_2)$.

BDD for order $(x_1 < x_2 < y_1 < y_2)$. The one for $(x_1 < y_1 < x_2 < y_2)$ is far larger.

BDDs

- ► For a fixed variable ordering, a function has a unique BDD.
- ► Finding the optimal ordering is a computationally hard problem (PSPACE-complete).
- Some functions, for example multiplication, have no polynomial-sized BDD.

How do we:

Negate a BDD?

How do we:

- ▶ Negate a BDD?
- Check the satisfiability of a formula represented as a BDD?

How do we:

- ► Negate a BDD?
- Check the satisfiability of a formula represented as a BDD?
- Check the validity of a formula represented as a BDD?

How do we:

- ▶ Negate a BDD?
- Check the satisfiability of a formula represented as a BDD?
- Check the validity of a formula represented as a BDD?
- Check if two functions represented by BDDs are equivalent?

Suppose we are given BDDs for φ_1 and φ_2 . Give the BDDs for:

- $\triangleright \varphi_1 \lor \varphi_2$
- $ightharpoonup \varphi_1 \wedge \varphi_2.$

Suppose we are given BDDs for φ_1 and φ_2 . Give the BDDs for:

- $\triangleright \varphi_1 \lor \varphi_2$
- $\triangleright \varphi_1 \wedge \varphi_2.$

Hint: Use the following recurrence

$$\mathit{Ite}(x, f_1, f_2) \oplus \mathit{Ite}(x, g_1, g_2) = \mathit{Ite}(x, f_1 \oplus f_2, g_1 \oplus g_2)$$

if \oplus is either \vee or \wedge .

Disjunction of BDDs using dynamic programming

```
function Apply_OR(f, g) =
if T[f, g] \neq empty:
     return T[f, g]
else if f \in 0, 1 and g \in 0, 1
     T[f, g] := f \vee g
else if var(f) = var(g):
      T[f,g] := BDD(var(f), Apply_OR (false(f), false(g)),
                            Apply_OR(true(f), true(g)))
else if var(f) < var(g):
      T[f,g] := BDD(var(f), Apply_OR (false(f), g),
                            Apply_OR(true(f), g))
else:
      T[f,g] := BDD(var(f), Apply_OR(f, false(g)),
                            Apply_OR(f, true(g)))
return T[f,g]
```

Fixpoints and BDD

- ▶ How do we do fixpoint computation using BDDs?
- ► Core operations: *Pre* and *Post*.

Fixpoints and BDD

- ▶ How do we do fixpoint computation using BDDs?
- Core operations: Pre and Post.
- Homework question: Give the most efficient algorithm you can think of to convert a boolean function given as CNF into a BDD.

Simple example: two-bit counter

- ▶ Variables: *x*, *y*
- ▶ Initial condition: $\neg x \land \neg y$
- Transition relation:

$$((x' \leftrightarrow \neg x) \land (y' \leftrightarrow y)) \lor ((x' \leftrightarrow x) \land (y' \leftrightarrow \neg y))$$

▶ Goal: Find the set of states that from which a state that satisfies $\varphi \equiv \neg x \land \neg y$ is reachable.

Exercise

Give a fixpoint-based algorithm to find all states from which all paths satisfy $\mathbf{F} q$.

Exercise

Give a fixpoint-based algorithm to find all states from which all paths satisfy $\mathbf{F} q$.

Note that the above properties are *state properties* as opposed to *path properties*.

CTL: a logic to express state properties

Let Prop be a set of $atomic\ propositions$. A formula φ in Computation Tree Logic (CTL) has the form

$$\varphi ::= p \mid \top \mid \bot \mid \neg \varphi_1 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \mathbf{EX} \ \varphi_1 \mid \mathbf{E}(\varphi_1 \ \mathbf{U} \ \varphi_2) \mid \mathbf{AX} \ \varphi_1 \mid \mathbf{A}(\varphi_1 \ \mathbf{U} \ \varphi_2)$$

where $p \in Prop$.

CTL: a logic to express state properties

Let Prop be a set of $atomic\ propositions$. A formula φ in Computation Tree Logic (CTL) has the form

$$\varphi ::= p \mid \top \mid \bot \mid \neg \varphi_1 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \mathbf{EX} \ \varphi_1 \mid \mathbf{E}(\varphi_1 \ \mathbf{U} \ \varphi_2) \mid \mathbf{AX} \ \varphi_1 \mid \mathbf{A}(\varphi_1 \ \mathbf{U} \ \varphi_2)$$

where $p \in Prop$.

Semantics:

- **EX** φ means that there is a next state where φ holds. (Same as $Pre(\varphi)$.)
- ▶ $AX \varphi$ means that for all next states, φ holds.
- ▶ $\mathbf{E}(\varphi_1 \mathbf{U} \varphi_2)$ means that there is a path from the current state that satisfies $(\varphi_1 \mathbf{U} \varphi_2)$
- ▶ $\mathbf{A}(\varphi_1 \mathbf{U} \varphi_2)$ means that on all paths from the current state, we have $(\varphi_1 \mathbf{U} \varphi_2)$.

CTL: a logic to express state properties

Let Prop be a set of $atomic\ propositions$. A formula φ in Computation Tree Logic (CTL) has the form

$$\varphi ::= p \mid \top \mid \bot \mid \neg \varphi_1 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2$$
$$\mid \mathbf{EX} \ \varphi_1 \mid \mathbf{E}(\varphi_1 \ \mathbf{U} \ \varphi_2) \mid \mathbf{AX} \ \varphi_1 \mid \mathbf{A}(\varphi_1 \ \mathbf{U} \ \varphi_2)$$

where $p \in Prop$.

Semantics:

- **EX** φ means that there is a next state where φ holds. (Same as $Pre(\varphi)$.)
- ▶ $AX \varphi$ means that for all next states, φ holds.
- ▶ $\mathbf{E}(\varphi_1 \mathbf{U} \varphi_2)$ means that there is a path from the current state that satisfies $(\varphi_1 \mathbf{U} \varphi_2)$
- ▶ $\mathbf{A}(\varphi_1 \mathbf{U} \varphi_2)$ means that on all paths from the current state, we have $(\varphi_1 \mathbf{U} \varphi_2)$.
- ▶ Derived operators: **AF**, **AG**, **EG**, **EF**...

CTL Verification

- ▶ Given: Symbolic transition system \mathcal{M} , CTL property φ .
- ▶ Question: Find the set of states $\llbracket \varphi \rrbracket$ in \mathcal{M} that satisfies φ .

Algorithm

- Induction on the formula.
- ► For instance,

$$\llbracket \varphi_1 \vee \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket.$$

► Challenge: Computing $\llbracket \varphi \rrbracket$ when φ has temporal operators. How do we compute $\llbracket \mathbf{E}(\varphi_1 \ \mathbf{U} \ \varphi_2) \rrbracket$ when we have $\llbracket \varphi_1 \rrbracket$ and $\llbracket \varphi_2 \rrbracket$?

Algorithm for $\mathbf{E}(\varphi_1 \mathbf{U} \varphi_2)$

- 1. Let $S := [\![\varphi_2]\!]$
- 2. Repeat until fixpoint:

$$S := S \cup (\llbracket \varphi_1 \rrbracket \cap (\mathbf{EX} \ S))$$

Algorithm for $\mathbf{E}(\varphi_1 \mathbf{U} \varphi_2)$

- 1. Let $S := [\![\varphi_2]\!]$
- 2. Repeat until fixpoint:

$$S := S \cup (\llbracket \varphi_1 \rrbracket \cap (\mathbf{EX} \ S))$$

How do you do this for $\mathbf{A}(\varphi_1 \mathbf{U} \varphi_2)$?

Algorithm for **EG** φ

- ▶ One possibility: use the identity **EG** $\varphi \equiv \neg AF (\neg \varphi)$.
- ▶ But can you give a direct algorithm for this property?

Least and greatest fixpoints

- ▶ Consider transformations of the form $f: S_1 \mapsto S_2$, where S_1 and S_2 are sets of states
- ▶ Fixpoint of f: a solution to the equation f(X) = X.
- ▶ But an equation can have multiple solutions... think of X = Pre(X).

Least and greatest fixpoints

- ▶ Consider transformations of the form $f: S_1 \mapsto S_2$, where S_1 and S_2 are sets of states
- ▶ Fixpoint of f: a solution to the equation f(X) = X.
- But an equation can have multiple solutions... think of X = Pre(X).
- ▶ In particular, we are interested in the *least* and *greatest* fixpoints.

Knaster-Tarski theorem

- ▶ Let *U* be the universe of states
- ▶ Assume that $f(X): 2^U \to 2^U$ is a *monotone* function.
- In that case, f(X) has a unique least fixpoint and a unique greatest fixpoint

Knaster-Tarski theorem

- ▶ Let *U* be the universe of states
- ▶ Assume that $f(X): 2^U \to 2^U$ is a *monotone* function.
- In that case, f(X) has a unique least fixpoint and a unique greatest fixpoint
- Moreover:
 - **Ifp**.f(X) appears in the sequence

$$\emptyset$$
, $f(\emptyset)$, $f(f(\emptyset))$, . . .

gfp.f(X) appears in the sequence

$$U, f(U), f(f(U)), \dots$$

▶ **Ifp**.f(X) is usually written as $\mu X.f$, and **gfp**.f(X) is usually written as $\nu X.f$, when f is represented by a formula.

CTL properties as least and greatest fixpoints

Express the following properties in terms of least and greatest fixpoint operators:

- ightharpoonup EF φ
- $\blacktriangleright \ \ \mathbf{EG} \ \varphi$
- \blacktriangleright $\mathbf{E}(\varphi_1 \mathbf{U} \varphi_2)$

The modal μ -calculus: a logic of fixpoints

Let Prop be a set of propositions, and Var a set of variables. A formula φ in the modal μ -calculus has the form

$$\varphi ::= p \mid \neg p \mid Z \mid \top \mid \bot \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \mathbf{EX} \ \varphi_1 \mid \mathbf{AX} \ \varphi_1 \mid \mu Z.\varphi_1 \mid \nu Z.\varphi_1.$$

where $p \in Prop$ and $Z \in Var$.

[See

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.916]

The modal μ -calculus: Semantics

- (Set-valued) variables appearing in formulas φ can be either free or bound.
- ▶ In $(Z \lor p)$, Z is a free variable.
- A formula $\varphi(Z)$ with a free variable Z can be viewed as a transformer from sets to sets.
- $\varphi[Z:=T]=$ set of states that satisfy φ if Z is replaced by T.

The modal μ -calculus: Semantics

The semantics of a formula φ is the set of states S_{φ} where it is satisfied. These sets are defined inductively. For example:

- $\qquad \qquad \llbracket \varphi_1 \wedge \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cap \llbracket \varphi_2 \rrbracket$
- $\blacktriangleright \llbracket \varphi_1 \vee \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket$
- ▶ $\llbracket \mu Z.\varphi(Z) \rrbracket$ = intersection of all sets T such that $\varphi[Z:=T] \subseteq T$
- ▶ $\llbracket \nu Z. \varphi(X) \rrbracket$ = union of all sets T such that $T \subseteq \varphi[Z := T]$.

Questions

▶ Why is it necessary that the fixpoints exist?

Questions

- ▶ Why is it necessary that the fixpoints exist?
- ► How do you negate a formula?

Questions

- ▶ Why is it necessary that the fixpoints exist?
- ► How do you negate a formula?
- ▶ How do you compile CTL formulas into the μ -calculus?

Benefits of the μ -calculus: Games

- Suppose you have a symbolic transition system that is interacting with a hostile environment.
- ▶ The states of the system are divided into two partitions: the *system states* and the *environment states*. System states are controlled by the system; environment states by the environment.
- ▶ System's goal: to reach a set *G* of good states no matter what the environment does.
- ▶ Objective in the verification problem: find the set of states from which the system has a strategy to reach *G*.

Expressiveness of the μ -calculus

▶ The μ -calculus allows nesting of fixpoint quantifiers. This allows the expression of really complex properties. For example:

$$\nu Z.\mu Y.((\rho \wedge Z) \vee \mathbf{EX} Y).$$

This formula has alternation depth 2.

- ▶ We make a distinction between alternation and nesting depth. All CTL formulas have alternation depth 1.
- ▶ The fragment of the μ -calculus with alternation depth 1 is said to be *alternation-free*).

Expressiveness of the μ -calculus

▶ The μ -calculus allows nesting of fixpoint quantifiers. This allows the expression of really complex properties. For example:

$$\nu Z.\mu Y.((\rho \wedge Z) \vee \mathbf{EX} Y).$$

This formula has alternation depth 2.

- ▶ We make a distinction between alternation and nesting depth. All CTL formulas have alternation depth 1.
- ▶ The fragment of the μ -calculus with alternation depth 1 is said to be *alternation-free*).
- ▶ The μ -calculus includes LTL as well, but alternation depth 2 is required.

Model checking the μ -calculus

Model checking requires the use of an *environment Env* that maps free variables in formulas to sets.

Fragment of the algorithm:

```
\begin{aligned} \operatorname{eval}(\varphi, \ \operatorname{Env}) : & \dots \\ \operatorname{if} \ \varphi = \mu Z. \psi(Z) \ \operatorname{then} \\ \operatorname{S} \ := \ \emptyset \\ \operatorname{repeat} \\ \operatorname{T} \ := \ \operatorname{S} \\ \operatorname{S} \ := \ \operatorname{eval}(\psi, \operatorname{Env}[\operatorname{Z} \ := \ \operatorname{S}] \\ \operatorname{until} \ \operatorname{S} \ = \ \operatorname{T} \end{aligned}
```

Complexity

- ▶ Each loop executes at most O(n) times (n is the total number of states)
- ► Each iteration does a recursive call to eval with a different value of the fixpoint variable.
- ▶ Complexity: $O(|\varphi| \times n^k)$, where k is the maximum nesting depth of fixpoint operators.

Complexity

- ▶ Each loop executes at most O(n) times (n is the total number of states)
- Each iteration does a recursive call to eval with a different value of the fixpoint variable.
- ▶ Complexity: $O(|\varphi| \times n^k)$, where k is the maximum nesting depth of fixpoint operators.
- ▶ There is a better algorithm (by Emerson and Lei) that reduces the complexity to $O(|\varphi| \times n^d)$, where d is the alternation depth of φ .

Complexity

- ▶ Each loop executes at most O(n) times (n is the total number of states)
- Each iteration does a recursive call to eval with a different value of the fixpoint variable.
- ▶ Complexity: $O(|\varphi| \times n^k)$, where k is the maximum nesting depth of fixpoint operators.
- ▶ There is a better algorithm (by Emerson and Lei) that reduces the complexity to $O(|\varphi| \times n^d)$, where d is the alternation depth of φ .
- ▶ Does there exist a PTIME algorithm? An open question.
 - ► Known to be in NP ∩ co-NP.

The μ -calculus as a language for expressing data flow analyses

- Very busy expressions: Set of expressions that are used without modification along all possible program paths from the present point.
- ▶ <u>Live variables</u>: Set of variables that are used in some future point in an execution.

[See "Data flow analysis is model checking of abstract interpretations," By David Schmidt, http://dl.acm.org/citation.cfm?id=268950.]