

Supply Chain Analytics Project – Data Overview & Exploration

Overview of the Project:

The "Dynamic Supply Chain Logistics Analytics" project aims to analyze and optimize supply chain operations using a large-scale logistics dataset. This dataset reflects real-world supply chain activities including production, shipping, supplier performance, inventory, and customer behavior. The goal is to use Python and MySQL to extract, clean, and analyze data, then communicate findings via dashboards and reporting.

This project is conducted as part of the Data Analysis Diploma's final requirement and is meant to simulate a real freelance or industry project scenario where business decisions depend on data-driven insights.

Problem Statement:

Supply chain systems are increasingly complex, with issues such as delayed shipments, inefficient supplier management, poor inventory forecasting, and rising logistics costs. Without a data-driven approach, businesses struggle to understand where inefficiencies lie.

Project Goals:

- Identify key performance trends in logistics and inventory data.
- Analyze supplier performance and risk.
- Forecast demand and shipping delays using historical data.
- Build actionable dashboards for decision-makers.
- Gain hands-on experience in end-to-end data projects using MySQL and Python.

Dataset Columns:

COLUMN NAME	DESCRIPTION
TIMESTAMP	The date and time at which a logistics event or data point was recorded. This acts like the heartbeat of the entire system, allowing us to track events over time.
VEHICLE_GPS_LATITUDE	The real-time latitude location of the vehicle involved in delivery or shipping. Used for tracking movements.
VEHICLE_GPS_LONGITUDE	The corresponding longitude for the GPS coordinate — helps create a full map of the journey.
FUEL_CONSUMPTION_RATE	Measures how much fuel the vehicle is using. Useful for cost and sustainability analysis.
ETA_VARIATION_HOURS	The difference between actual and expected arrival time, measured in hours. Key to evaluating delivery performance.
TRAFFIC_CONGESTION_LEVEL	Indicates how bad traffic was during the delivery — essential for route optimization.

WAREHOUSE_INVENTORY_LEVEL	It shows how fully the warehouse was at that time — critical for demand planning and restocking decisions.
LOADING_UNLOADING_TIME	Time spent loading or unloading goods. High times might point to inefficiencies at the dock.
HANDLING_EQUIPMENT_AVAILABILITY	Whether tools like forklifts and cranes were available — important for warehouse efficiency.
ORDER_FULFILLMENT_STATUS	Whether a customer order was fulfilled on time or not. Affects satisfaction and KPIs.
WEATHER_CONDITION_SEVERITY	Describes how extreme the weather was — storms, snow, rain, etc. This influences safety and delays.
PORT_CONGESTION_LEVEL	How busy the port was — a major factor in global shipping delays.
SHIPPING_COSTS	The total cost of moving goods from origin to destination — critical for financial optimization.
SUPPLIER_RELIABILITY_SCORE	Rates how dependable a supplier is based on past performance — higher = more trustworthy.
LEAD_TIME_DAYS	Time in days between placing and receiving an order. Vital for supply chain planning.
HISTORICAL_DEMAND	How many units were previously requested — helps with forecasting future needs.
IOT_TEMPERATURE	IoT sensor data reporting the temperature during shipping — essential for perishable goods.
CARGO_CONDITION_STATUS	A status update on whether the cargo arrived in good condition or not.
ROUTE_RISK_LEVEL	How risky the transportation route was, considering weather, traffic, theft, etc.
CUSTOMS_CLEARANCE_TIME	Time spent waiting for customs approval. Bottlenecks here can slow down international shipments.
DRIVER_BEHAVIOR_SCORE	Score based on the driver's performance — speed, braking, safety compliance, etc.
FATIGUE_MONITORING_SCORE	IoT-driven estimate of driver tiredness — higher fatigue increases risk.
DISRUPTION_LIKELIHOOD_SCORE	Predicts the chances of a supply chain disruption. Preventative planning relies on this.
DELAY_PROBABILITY	Probability that a shipment will be delayed based on all real-time and historical factors.
RISK_CLASSIFICATION	Categorize the shipment or route into risk levels (e.g., Low, Medium, High).
DELIVERY_TIME_DEVIATION	The actual difference between scheduled and actual delivery time. Like ETA variation, but from a scheduling standpoint.

Task Assignment & Roles

Team Member	Main Task	%	Secondary task	%
Ziad Khaled	Build Data Model, Data	100%	Visualization Dashboard and	Not
Masoud	Cleaning and Preprocessing		Final Presentation	started
Abdelrhman	Analysis Questions Phase	100%	Visualization Dashboard and	Not
Ahmed			Final Presentation	started
Sama	Analysis Questions Phase	100%	Forecasting Questions	Pending
Mahmoud			Phase	
Seif El-Deen	Forecasting Questions	In	Analysis Questions Phase	Pending
Ahmed	Phase	progress		
Mohamed	Forecasting Questions	85%	Analysis Questions Phase	Not
Hymeda	Phase			started
Reneh Romany	Visualization Dashboard and	Not	Build Data Model, Data	100%
	Final Presentation	started	Cleaning and Preprocessing	
Mohamed	Visualization Dashboard and	Not	Forecasting Questions	Pending
Rafaat	Final Presentation	started	Phase	