Computer Vision and Image Processing

Gil Ben-Artzi

Agenda

- Topic 1
 - Image Enhancement: histogram, quantization
- Topic 2
 - Filtering: smoothing, median filtering, sharpening
 - Low level detection: Template matching, Edges, Line, Circles
- Topic 3
 - Image Pyramids and Blending, Optical Flow
- Topic 4
 - Geometry: 2D Transformation, Image Warping, Camera Model
- Topic 5
 - Stereo, Homography, Image Stitching (Mosaic/Panorama)
 - Features, RANSAC

Stereo

Why multiple views?

Structure and depth are inherently ambiguous from single views.

Stereo

Stereo can help dissolve ambiguity

Random Dot Stereograms

Estimating depth with stereo

- Stereo: shape from "motion" between two views
- We'll need to consider:
 - Info on camera pose ("calibration")
 - Image point correspondences

Stereo Configuration

Geometry for a stereo system

 Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). What is expression for Z?

Similar triangles (p_I, P, p_r) and (O_I, P, O_r):

$$\frac{T + x_l - x_r}{Z - f} = \frac{T}{Z}$$

$$Z = f \frac{T}{x_r - x_l}$$
 disparity

Depth from disparity

image I(x,y)

image I'(x',y')

$$(x',y')=(x+D(x,y), y)$$

So if we could find the **corresponding points** in two images, we could **estimate relative depth**...

Basic stereo matching algorithm

- Assume each scanline in the left image is the corresponding scanline in the second image
- For each pixel x in the first image
 - Find corresponding scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Compute disparity x-x' and set depth(x) = f * T/(x-x')

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Matching windows:

Similarity Measure

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

Formula

$$\sum_{(i,j)\in W} |I_1(i,j) - I_2(x+i,y+j)|$$

$$\sum_{(i,j)\in W} (I_1(i,j) - I_2(x+i,y+j))^2$$

$$\sum_{(i,j)\in W} |I_1(i,j) - \bar{I}_1(i,j) - I_2(x+i,y+j) + \bar{I}_2(x+i,y+j)|$$

$$\sum_{(i,j)\in W} |I_1(i,j) - \frac{\bar{I}_1(i,j)}{\bar{I}_2(x+i,y+j)} I_2(x+i,y+j)|$$

$$\frac{\sum_{(i,j)\in W}I_{1}(i,j).I_{2}(x+i,y+j)}{\sqrt[2]{\sum_{(i,j)\in W}I_{1}^{2}(i,j).\sum_{(i,j)\in W}I_{2}^{2}(x+i,y+j)}}$$

NCC

Ground truth

Correspondence search

Correspondence search

Effect of window size

W = 3

W = 20

- Smaller window
 - + More detail
 - More noise
- Larger window
 - + Smoother disparity maps
 - Less detail

Failures of correspondence search

Results with window search

Data

Window-based matching

Ground truth

How can we improve window-based matching?

So far, matches are independent for each point

What constraints or priors can we add?

Stereo constraints/priors

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image

Stereo constraints/priors

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views

Stereo constraints/priors

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views

Priors and constraints

Uniqueness

 For any point in one image, there should be at most one matching point in the other image

Ordering

Corresponding points should be in the same order in both views

Smoothness

We expect disparity values to change slowly (for the most part)

Stereo Cost Function

- What defines a good stereo correspondence?
 - 1. Match quality
 - Want each pixel to find a good match in the other image
 - 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

Stereo Cost Function

Objective: compute horizontal displacement for matches between left and right images

 x_i is spatial shift of i th pixel

$$f(\mathbf{x}) = \sum_{i=1}^n m_i(x_i) + \sum_{i=2}^n \phi(x_{i-1}, x_i)$$
 quality of match uniqueness, smoothness

Stereo Cost Function

$$m_i(x_i) = I_{left}(i) - I_{right}(i + x_i)$$

$$\phi(x_{i-1}, x_i) = x_{i-1} - x_i$$

Back to Stereo Correspondence

$$m(x) = \alpha(1 - NCC)^2$$

left image band right image band

normalized cross correlation(NCC)

NCC of square image regions at offset (disparity) x

Dynamic Programming

Consider a cost function $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ of the form

$$f(\mathbf{x}) = \sum_{i=1}^{n} m_i(x_i) + \sum_{i=2}^{n} \phi_i(x_{i-1}, x_i)$$

where x_i can take one of h values

Complexity of minimization:

- exhaustive search O(hⁿ)
- dynamic programming O(nh²)

Complexity of Our Stereo Correspondence

Objective: compute horizontal displacement for matches between left and right images

 x_i is spatial shift of i'th pixel $\rightarrow h = 40$

 \mathbf{x} is all pixels in row $\rightarrow n = 256$

Complexity $O(40^{256})$ vs $O(256 \times 40^2)$

Coherent stereo on 2D grid

Scanline stereo generates streaking artifacts

Scanline (Dynamic Programming)

Window Based

 Can't use dynamic programming to find spatially coherent disparities/ correspondences on a 2D grid

Stereo matching as energy minimization

$$E(D) = \sum_{i} \left(W_{1}(i) - W_{2}(i + D(i))\right)^{2} + \lambda \sum_{\text{neighbors } i,j} \rho \left(D(i) - D(j)\right)$$

$$data \ term$$

$$smoothness \ term$$

- Random field interpretation
- Energy functions of this form can be minimized using graph cuts

Graph Cut Results

Fast Approximate Energy Minimization via Graph Cuts

http://www.middlebury.edu/stereo/