Inlämningsuppgift i kursen Programmeringsteknik 2

Uppsala Universitet Höst 2020 Roger Forsman

Uppgift 1

Svar till Algoritmanalys delen.

(Övning 3) För fibonacci algoritmen des tidsåtgången av:

 $T(n) = c \cdot 1.618^n$ Programkörning av koden algo_analys.py ger

för n = 40 , T(40) = 71.1868 [s] Vi kan då beräkna konstanten c = 71.1868 [s] Vi kan då uppskatta vad tiderna skulle bli för n = 50 och n = 100

$$\begin{array}{ll} n = 50 & \Rightarrow \text{ger då} & T_{50} = 8754 \, [s] & \text{eller} & 2.43 \, [h] \\ n = 100 & \Rightarrow \text{ger då} & T_{100} = 2.461 \cdot 10^{14} \, [s] & \text{eller} & 780378 \, [\text{år}] \end{array}$$

 $(\ddot{O}vning\ 5)$ Tidsåtgången för instickssortering ges av: $T_i(n) = c_1\,n^2$

vi vet att för n = 1000 så är $T_i(1000) = 1 [s]$ detta ger då $c_1 = 10^{-6} [s]$ För $n = 10^6$ och $n = 10^9$ får vi då resultatet för instickssortering:

$$T(10^6) = 10^6 [s]$$

 $T(10^9) = 10^{12} [s]$

Tidsåtgången för mergsort ges av: $T_m(n) = c_2 n \log(n)$

P.s.s med $T_m(1000)=1$ [s] så får vi för konstanten $c_2=3.333\cdot 10^{-4}$ [s] med resultatet för $n=10^6$ och $n=10^9$

$$T(10^6) = 2000 [s]$$

 $T(10^9) = 3 \cdot 10^6 [s]$

Prog 2: Inlupp 1 Forsman

(Övning 6) Givet i uppgiften var:

$$T_A(n) = n$$

 $T_B(n) = c n \log(n)$

För algoritm B var även givet att: $T_B(10)=1$ [s] Det ger då c=0.1 [s] Kravet var att finna det $n=n_{min}$ så att $T_A(n_{min})< T_B(n_{min})$ d.v.s

$$n_{min} < c \, n_{min} \log(n_{min}) \implies 1 < c \log(n_{min}) \iff \frac{1}{c} < \log(n_{min})$$
 Med $c = 0.1 \, [s]$ så får vi: $10 < \log(n_{min})$ $\therefore n_{min} > 10^{10}$