Diseño de bloques completos al azar y diseño factorial

KEVIN STEVEN GARCÍA^a, ALEJANDRO VARGAS^b, ALEJANDRO SOTO^c

1. Punto 1

Uno de los objetivos de la industria metalúrgica nacional es determinar cuál de los tres elementos: níquel, hierro o cobre es el mejor agente soldante. Se sueldan una serie de lingotes de acero utilizando cada uno de los posibles agentes soldantes (níquel, hierro o cobre). Existen diferencias entre los lingotes de acero utilizados en este proceso, se utiliza en total 7 lingotes (todos diferentes), se mide la fuerza (expresada en 1000 libras por pulgada cuadrada) necesaria para soldar los lingotes. Los resultados fueron:

	AGENTE	SOLDANTE	
LINGOTE	NIQUEL	HIERRO	COBRE
1	67.0	71.9	72.2
2	67.5	68.8	66.4
3	76.0	82.6	74.5
4	72.7	78.1	67.3
5	73.1	74.2	73.2
6	65.8	70.8	68.7
7	75.6	84.9	69.0

a.

El diseño de bloques completos al azar (DBCA) es el adecuado para este problema, ya que, se quieren comparar 3 tratamientos contenidos en 7 bloques (lingotes) relativamente homogéneos, se consideran los lingotes como bloques, ya que nos dicen que los 7 son diferentes y teniendo en cuenta esto, se podría decir que es un factor perturbador el cual tiene un efecto en la variable de respuesta pero no es de nuestro interés, entonces se desea controlar esta variabilidad que surge de este factor (lingote) que podría afectar en los resultados.

b. - Unidad experimental: Lingote

- Factor de tratamiento: Agente Soldante

Niveles: Niquel, Hierro, Cobre.Factor de control: Tipo de lingote

- Niveles: 1,2,3,4,5,6 y 7.

- Tratamientos: Niquel, Hierro y Cobre.

- Variable de respuesta: Fuerza necesaria para soldar los lingotes $(1000lb/plg^2)$

c.

Estadísticas descriptivas:

Dado que nuestro interés se centra en los tratamientos que en este caso son los niveles de los agentes soldantes (Niquel, Hierro y Cobre), obtendremos descriptivas por estos niveles y no por los tipos de lingotes (bloques) los cuales no son de nuestro interés:

^aCódigo: 1533173. E-mail: kevin.chica@correounivalle.edu.co

^bCódigo: 1525953. E-mail: jose.alejandro.vargas@correounivalle.edu.co

^cCódigo: 1532457. E-mail: asotomurillo@gmail.com

	Mín	Q1	Mediana	Media	Q3	Máx	Des. Estándar	CV(%)
Niquel	65,8	67,25	72,7	71,1	74,35	76,0	4,25597619	5,985901815
Hierro	68,8	$71,\!35$	74,2	75,9	80,35	84,9	6,137860648	8,086772922
Cobre	66,4	68	69,0	70,2	72,7	74,5	3,109892051	4,430947356

En la tabla anterior, podemos observar que el hierro tiene un promedio de 75.9 $1000lb/plg^2$, mientras que el Niquel y el Cobre tienen un promedio de 71.1 y 70.2 $1000lb/plg^2$ respectivamente, lo cuál nos indicaría a priori, que el efecto de los agentes soldantes Niquel y Cobre sobre la fuerza necesaria para soldar los lingotes son muy parecidos, mientras que el efecto del agente soldante Hierro es distinto a los nombrados anteriormente. En cuanto a la desviación estándar, sucede lo mismo que con la media, la de los agentes soldantes Niquel y Cobre son bastante parecidas (4.256 y 3.11 $1000lb/plg^2$ respectivamente), mientras que la del agente soldante Hierro es un poco más elevada (6.1378 $1000lb/plg^2$). Finalmente, si se observan en general los estadísticos mínimo y máximo y los cuartiles, se llega a lo mismo mencionado anteriormente, los agentes soldantes Nique y Cobre se comportan de una manera similar, mientras que el Hierro parece necesitar mayor fuerza para soldar los lingotes.

En ésta gráfica se confirman las interpretaciones dadas anteriormente, los agentes soldantes Niquel y Cobre, son muy parecidos en cuanto a su media y su comportamiento en general con respecto a la fuerza necesaria para soldar los lingotes, mientras que el agente soldante Hierro, tiene una media más elevada y una dispersión mayor, lo que significa que con este agente soldante se necesita mayor fuerza para soldar los lingotes.

Se plantea el siguiente modelo:

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$
 $i = 1, ..., 3$ $j = 1, ..., 7$

El cuál se construye bajo los siguientes supuestos:

$$\varepsilon_{ij} \approx N(0, \sigma^2), \ E[\varepsilon_{ij}] = 0 \ \forall_{ij}, \ V[\varepsilon_{ij}] = \sigma^2, \ cov[\varepsilon_{ij}, \varepsilon_{i'j'}] = 0$$

Donde:

d.

 y_{ij} =Fuerza necesaria para soldar el lingote j-ésimo con el agente soldante i-ésimo.

 μ =Media general de contenido de calcio por lote sin tener en cuenta el agente soldante ni el tipo de lingote.

 τ_i =Efecto del i-ésimo agente soldante sobre la fuerza necesaria para soldar el lingote.

 β_j =Efecto del j-ésimo lingote sobre la fuerza necesaria para soldarlo.

 ε_{ij} =Error aleatorio debido al i-ésimo agente soldante y a el j-ésimo lingote.

e.

Dado que no nos interesan los bloques(tipo de lingote), ya que a priori nos dijeron que entre estos existen diferencias. Nos centraremos en los efectos de los tres tratamientos o agentes soldantes. Por lo que se plantea la siguiente hipótesis:

$$H_0: \tau_1 = \tau_2 = \tau_3 = \tau$$
 $H_1:$ Al menos una de las igualdades no se cumple.

f.

Antes de realizar la ANOVA e interpretar los resultados, se comprobarán los supuestos del modelo para saber si las interpretaciones que obtengamos si van a ser correctas. Sobre los errrores se tienen los siguientes supuestos:

$$arepsilon_{ij} pprox N(0, \sigma^2)
ightarrow Normalidad$$

$$E[arepsilon_{ij}] = 0 \quad \forall_{ij}
ightarrow Correcta \ especificacion$$

$$V[arepsilon_{ij}] = \sigma^2 \quad \forall_{ij}
ightarrow Homocedasticidad$$

$$cov[arepsilon_{ij}, arepsilon_{i'j'}] = 0 \quad \forall_{i \neq i'} \quad \land \quad \forall_{i \neq j'}
ightarrow Independencia$$

- Normalidad: Para probar el supuesto de normalidad, se realizarán dos pruebas gráficas (histograma y QQ-plot) y una prueba estadística(Shapiro Wilk).

En estas gráficas no se observa un incumplimiento claro de este supuesto, ya que en el QQplot se observa que los puntos no se salen de los intervalos de confianza de la recta de cuantiles teórica de la distribución normal y en el histograma no se ve un comportamiento muy diferente a una distribución normal. Sin embargo, las pruebas gráficas no son muy convincentes ya que su interpretación puede ser distinta de una persona a otra y depende mucho de la experiencia del investigador. Por ello se acude a la prueba formal.

* Test Shapiro-Wilk:

 H_0 : Los datos provienen de una distribucion normal

 H_a : Los datos no provienen de una distribucion normal

$$W = 0.98289, p - value = 0.9606$$

Como el p-valor=0.9606 es muy superior a nuestro nivel de significancia $\alpha = 0.05$, no se rechaza la hipótesis nula, y concluimos que no hay evidencia estadística suficiente para decir que los datos no provienen de una distribución normal, lo que nos indica que este supuesto de normalidad en los errores no se incumple.

- Correcta Especificación: Sabemos que este supuesto siempre se cumple, ya que el método o la construcción del modelo asegura que la esperanza de los residuales sea igual a cero, sin embargo, se realizó una prueba t para comprobarlo.
- * T-test:

 $H_0: La \ verdadera \ media \ es \ igual \ a \ 0$

 $H_a: La\ verdadera\ media\ no\ es\ igual\ a\ 0$

t = 1.9109e - 16, df = 24, p - value = 1

Como el p-valor=1 es superior a nuestro nivel de significancia $\alpha=0.05$, no se rechaza la hipótesis nula, y se verifica lo dicho anteriormente.

- Homocedasticidad:Para analizar la homocedasticidad se realizó una gráfica(Residuos estandarizados por agente soldante) y una prueba estadística (Test de Barlett)

En esta gráfica se observa que para el agente soldante Niquel, la dispersión de los puntos(residuales estandarizados) es menor que la de los otros dos agentes soldantes(Hierro y Cobre) las cuales son muy parecidas, por lo que se pensaría que este supuesto podría incumplirse, sin embargo se realiza la prueba formal, la cual se espera que tenga un p valor no tan alto, por el gráfico obtenido anteriormente.

* Prueba de Barlett:

 H_0 : Las varianzas de todos los grupos son iguales

 H_a : Al menos una delas varianzas es diferente

 $Bartlett's\ K-squared=4.3295, df=2, p-value=0.1148$

Como el p-valor=0.1148 es superior a nuestro nivel de significancia $\alpha = 0.05$, no se rechaza la hipótesis nula, y concluimos que no hay evidencia estadística suficiente para decir que al menos entre dos grupos la varianza es diferente, lo que nos indica que este supuesto de homocedasticidad en los errores no se incumple.

- Independencia:Para probar el supuesto de independencia en los errores, no se debe realizar un correlograma o una prueba sobre la autocorrelación(prueba de Durbin-Watson) ya que estas dependen del orden en el cuál se obtuvieron los datos, y esa información no se tiene, por lo tanto, solo se realizará una prueba de rachas.
- * Test de rachas:

 H_0 : La muestra es aleatoria (las observaciones son independientes)

 H_a : La muestra no es aleatoria (las observaciones no son independientes)

 $Standard\ Normal = 0.68395, p-value = 0.494$

Como el p valor=0.494 es mayor que nuestro nivel de significancia $\alpha=0.05$, no rechazamos la hipótesis nula y concluimos que no hay evidencia estadística suficiente para decir que los residuales no están distribuidos de manera aleatoria, en otras palabras, no podemos decir que no son independientes. Teniendo en cuenta esto, podemos decir que este supuesto de independencia en los errores parece no incumplirse.

Ya que según las pruebas aplicadas, ninguno de los supuestos se incumple, procedemos a realizar e interpretar la ANOVA:

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Agente	2	131.9	65.95	6.359	0.0131*
Lingote	6	268.3	44.71	4.311	0.0151*
Residuals	12	124.5	10.37		

El análisis se centra en el factor que nos interesa, el cual es el factor de tratamiento (tipo de agente soldante). Vemos que se obtiene un pvalor = 0.0131 menor que nuestro nivel de significancia $\alpha = 0.05$, por lo que se rechaza la hipótesis nula planteada en el literal e, y concluimos que hay evidencia estadística para decir que los agentes soldantes (Cobre, Hierro y Niquel) no producen el mismo efecto en cuanto a la fuerza necesaria para soldar los lingotes.

Haciendo un análisis breve sobre el factor de control o factor de bloqueo(Lingote), dado que el pvalor = 0.0151 < 0.05, se confirma lo descrito en el enunciado. Existen diferencias entre los lingotes de acero utilizados en este proceso.

g. Se realizará la prueba postanova de comparaciones múltiples de Tukey, ya que en la ANOVA se encontró que si existen diferencias. Los resultados resumidos para esta prueba son:

Agente	lsmean	SE	df	lower.CL	upper.CL	group
3Cobre	70.2	1.22	12	67.5	72.8	a
1Niquel	71.1	1.22	12	68.4	73.8	a
2Hierro	75.9	1.22	12	73.2	78.6	b

Los tratamientos con la misma letra no son significativamente diferentes. Es decir, los agentes soldantes Niquel y Cobre no son significativamente diferentes, siendo estos, los que menos fuerza (expresada en 1000 libras por pulgada cuadrada) requieren para soldar los lingotes. Mientras que el agente soldante Hierro es estadisticamente diferentes a los dos anteriores; este requiere un poco más de fuerza para soldar los lingotes. Lo anterior confirma loa hipótesis que se tenía desde las estadísticas descriptivas, donde dijimos que este agente soldante parecía diferir de los otros dos.

h. La primera conclusión que se obtiene es que existen diferencias entre los tres agentes soldantes en cuanto a la fuerza requerida para soldar los lingotes, en la ANOVA se detectó que al menos uno de los agentes soldantes difiere. Posteriormente en la prueba postanova de comparaciones múltiples, se observó que los agentes soldantes Cobre y Niquel son los que menor fuerza requieren para soldar los lingotes, mientras que el agente soldante Hierro requiere un poco más de fuerza. Suponiendo que el mejor agente soldante sea el que menos fuerza requiera para soldar los diferentes lingotes, se le daría como respuesta a la industria metalúrgica nacional que los mejores son el Cobre y el Niquel, por lo cuál se seleccionaría el que resulte menos costoso, ya que la diferencia entre la fuerza requerida para estos dos es insignificante, es decir, requieren la misma fuerza para soldar los diferentes lingotes.

2. Punto 2

3. Punto 3

Se están estudiando los factores que influyen en la resistencia a la ruptura de una fibra sintética. Se selecciona tres operadores y cuatro máquinas, para el experimento se utilizan fibras de un mismo lote de producción. Los resultados son los siguientes:

OPERARIO		MAQUINA (B)		
(A)	1	2	3	4
1	109	110	108	110
1	110	115	109	108
2	110	110	111	114
2	112	111	109	112
3	116	112	114	120
3	114	115	119	117

4. Punto 4