

Le besoin humain

Dès le début, une personne cherche à satisfaire ses désirs personnels et moraux, comme :

- Se procurer de la nourriture, puis la préserver,
- Assurer sa sécurité
- · Contre l'insécurité face aux autres,
- · Les menaces naturelles,
- Assurer la continuité de l'espèce.
- En partie préservée dans le code génétique de l'espèce,
- Découvrir l'inconnu!

Contexte de la conversation

- Peut-être que l'instinct de manger, ou en d'autres termes, de se nourrir, serait en quelque sorte le point de départ pour explorer les différents domaines d'activité humaine.
- Depuis le berceau de l'humanité, l'homme a tendance à conquérir l'espace en cherchant à se nourrir comme principale motivation...
- Le nutriment en question change de forme et de nature...
 - Si avant on chercher quoi manger,
 - A présent, on est à la recherche de l'énergie et des matériaux...

Signification de l'énergie

- · L'énergie c'est l'existence!
- La formule d'Einstein : équivalence matière – énergie E= mc2
- La manifestation de l'énergie :
 - Conversion : Energie Travail
- L'énergie est sentie sous différents mode :

Corps vivants, matière, mouvement; électricité, magnétisme, chaleur, lumière, pression

Dans un autre sens

- Les humains ont commencé à se regrouper en clans depuis l'Antiquité.
- Bien qu'il existe de nombreuses théories sur l'origine des anciennes regroupement humains.
- Il est plutôt intéressant de faire le lien entre le regroupement et l'évolution,
- Aussi, il serait intéressant de savoir comment la densité implique le changement des pratiques et du mode de vie...

a naissance des civilisations

- Il est certain qu'au moment où le nombre d'individus dans un groupement humain conditionne leur mode de vie,
- Comme par exemple:
 - De petit nombre (vie familiale)
 - Nombre moyen (vie en tribu)
 - Assez grande (villes)
 - Assez assez grande (Etats et civilisation)
 -

Civilisation et la gestion

- Depuis le début de l'histoire, les civilisations se sont bâties autour des prospérités ...
- Ceci implique
 - La croissance des populations,
 - Des ressources,
 - La répartition de l'espace vital,
 - ...
 - Création de l'ordre social!

Contraintes de la gestion

- La gestion pose plusieurs problématiques:
- · La mémoire ou l'archivage,
- · L'arithmétique,
- · La résolution des problèmes:
 - La remise et la résolution des équations,
 - La recherche des optimums (min, max, ...)
 - · La reconnaissance des positions
 - Le suivit du temps et des astres ...
 - Prévoir l'avenir ?

Homme et machine

- Quel est le rapport entre ce qui a été mentionné et notre sujet ?
- Les connaissances, les découvertes et les inventions de l'humanité ont leurs motivations.
- Le besoin de l'homme en machines est dicté par sa recherche constante de meilleurs moyens de vivre.
- Pour comprendre ce qui se passe et ce qui pourrait arriver, il faut prêter attention aux besoins des gens.

L'homme et ses premières techniques

- Sans doute, depuis la nuit des temps, l'homme a découvert :
 - Le feu.
 - · L'agriculture,
 - La domestication des animaux,
- Dans tous les temps, l'homme cherchait :
 - Une substitution à son énergie propre (animaux, machine...)
 - Atteindre des records (en production, en richesse, en puissance)

L'archivage, le calcul et l'astrologie

- Parmi les besoins humain depuis le début :
 - L'archivage s'impose comme mémoire d'où l'écriture,
 - L'arithmétique comme moyen de gestion,
 - Le temps, la position, la direction...
- Les moyens de calcul ont été développés parallèlement à toutes civilisation.
- Dans le même sens, l'automatisation de ces moyens fut introduite...

La vie et l'automatisme

- Le lien entre l'automatisme et la vie comporte des notions indispensables au programmes d'enseignement :
 - Les métiers dans l'avenir ont tendance à s'automatiser, (industrie 4.0 ... 5.0),
 - Les apprenants doivent être au courant du développement technologique,
 - les personnes doivent maîtriser les techniques d'aujourd'hui et de demain.

'automatisation

- L'automatisation désigne ici tout traitement par machine :
 - les calculatrices (mécaniques, électronique)
 - les moulins hydrauliques,
 - Les horloges à sable, solaire ...
 - Les machines industrielles...
 - Les automobiles...

Histoire de l'automatisation

- Les machines à calculer sont utilisées depuis des milliers d'années :
 - à Babylone en 3000 avant notre ère.
 - Calculateurs analogiques très perfectionnés fabriquées par les Grecs.
- Autrefois, un procédé de calcul faisait l'objet d'un discours mathématique en langage clair.
- Le procédé d'Euclide (300 av J.C): si « d » divise à la fois « a » et « b », alors « d » divise aussi leur différence (« a » « b »)

Partie I Procédés de l'automatisation : algorithmes

L'algorithme

- C'est une suite de prescriptions précises des opérations réalisables
 - · à exécuter dans un certain ordre,
 - pour aboutir au bout d'un nombre fini d'opérations à la solution d' problème d'un certain type donné.
- Il contient tout ce qui permet de l'exécuter,
- Il est non-ambigu et indépendant du contexte.
- Un algorithme doit donner son résultat au bout d'un nombre fini d'opérations. (la convergence)

Formalisation du calcul d'Al Khawarizmi (783-850)

- La notation symbolique des nombres a été développée au VIIe siècle par un grand astronome indien : Brahmagupta.
- La notion d'algorithme ou procédé de calcul a été largement utilisée par le mathématicien : Abbou Adullah Ibn Moussa dit Al Khawarizmi,
- Il donna la solution de l'équation du second degré et définit les règles de transformation des expressions (algèbre) à partir des travaux de Brahmagupta.

'algorithme d'Al Khawarismi (783 – 850)

- Il a écrit une encyclopédie des procédés de calcul qui sera diffusée dans le monde entier, traduite en latin.
- On appel algorithme tout procédé de calcul ou raisonnement formel.

'« algorithme universel »

- Jusqu'au XXe siècle, il était admis que la solution de tout problème pouvait faire l'objet d'un algorithme dit « universel »,
- La recherche de cet algorithme universel était un des grands problèmes de la mathématique.
- Il a été clairement énoncé pour la première fois par Leibnitz.

es limites des algorithmes

- Existe -t il un algorithme universel capable de résoudre sans réfléchir tout problème
- Est-il admissible que toute opération intelligente pouvait être décrite par un algorithme?
- Ce problème était formulé par Leibniz (1710) et reposé par HILBERT en 1901 ...
- Existe elle une machine capable d'exécuter tout algorithme?

L'algorithme d'Alain Turing

- En 1935, Alan TURING imagina une machine idéale pour exécuter tout algorithme et la décrivit dans une publication célèbre en 1937.
- Cette machine était constituée :
 - d'une bande de papier infinie composée d'une suite de cases contenant un seul symbole ou vide.
 - d'une unité de contrôle située devant une case et qui pouvait:
 - · lire, écrire, effacer ce qu'il y avait dans la case située devant elle,
 - se déplacer d'une case à droite ou à gauche.

Le schéma de la machine d'Alain Turing

- A tout instant, l'unité de contrôle est dans un état donné.
- L'étape suivante ou le changement d'état est dicté par :
 - ce qu'il y a dans la case,

Les instructions de la machine de Turing

- Les instructions sont mises sous forme d'une table des états dans l'unité de contrôle qui alors opère toute seule.
- TURING montra qu'il existe une table des états pour tout algorithme,
 - donc qu'il existe une machine pour tout algorithme.
 - La machine de Turing binaire correspond aux cas: chaque case 0, 1 ou rien.

Impasse des algorithmes universels

- · Le mathématicien autrichien, Kurt GÖDEL, énonçait son théorème en 1931 :
- certains problèmes que l'intelligence humaine savait résoudre ne pouvaient pas être résolus par un algorithme!
- · Le mathématicien, Alonzo CHURCH, montra en 1936 que cela conduisait à l'impossibilité de réaliser l'algorithme universel.

es chaînes de MARKOV

- Un autre objet mathématique a aussi joué un rôle important dans la théorie des algorithmes :
 - la chaîne de MARKOV (décrite en 1914 par un mathématicien norvégien, THUE;
 - dont les propriétés ont été étudiées par le mathématicien russe Andréi A. MARKOV).

es chaînes de MARKOV

- Il s'agit d'une suite de caractères alignés.
- On se pose le problème de la règle systématique qui, appliquée à cette chaîne, puis encore au résultat, permet d'arriver à une autre chaîne donnée.
- Ce problème qui semblerait relever des mathématiques amusantes a pris un grand intérêt lorsqu'on a montré qu'il y avait un isomorphisme entre les algorithmes et les chaînes de MARKOV.

Les chaînes de MARKOV

- On disposait donc d'une formalisation mathématique de l'algorithme
- Les théorèmes sur les transformations des chaînes de MARKOV pouvaient s'appliquer aux algorithmes.
- Nous avons là un exemple intéressant du rôle que peuvent jouer du jour au lendemain des travaux mathématiques apparemment de la plus totale gratuité.

Partie II Automatisation du suivit du temps

Les automates

- Les automates ou systèmes artificiels autonomes animés ont toujours été un vieux rêve de l'humanité,
 - En forme d'humains (androïdes)
 - ou d'animaux (zooïdes).
- Le besoin de dispositifs destinés à mesurer le temps a conduit naturellement à réaliser de tels systèmes autonomes.

Histoire des automates

- L'historique des automates conduit directement aux premiers pas de l'informatique,
- L'histoire des automates artificiels peut être résumée en quelques réalisations célèbres :
- Deux grandes raisons :
 - Une horloge doit fonctionner de manière autonome;
 - Les techniques utilisées en horlogerie sont aussi celles qui servent à réaliser des automates.

'horlogerie de Su-song

- Une tradition d'horloges à eau existait en Chine depuis 200 av. J.C..
- La machine ci-contre fut construite par Su-song en 1092
- En 1126 elle fut démontée par les Tartares et emportée à Pékin.

e développement de l'horlogerie et l'informatique

 les automates arabes réalisés en 1206 pour Haroun Al Rachid par Al JAZARI

L'horlogerie mécanique

- L'horloge mécanique date du XIIIe siècle et au cours du XIVe siècle il y eut d'innombrables réalisations et des progrès très importants :
 - Système de programmation de la sonnerie des heures (le nombre de coups par heure : chaperon),
 - Carillons programmés à commande par tambour sculpté

Partie III Automatisation du calcul

Automatisation du calcul

- Calcul analogique : Il s'agit d'un modèle
 - · La méthode est très ancienne,
 - Un plan, une maquette sont des modèles analogiques d'une réalité existante,
 - On isole certaines propriétés, grandeurs, proportions d'une réalité pour l'étudier.
- Calcul numérique
 - Le plus ancien instrument de calcul numérique semble être le boulier.

Calculateurs analogiques

- Les calculateurs analogiques travaillent donc sur des grandeurs continues.
- Depuis l'astrolabe du Moyen-âge jusqu'aux calculateurs électroniques analogiques encore en service dans les années 60.
 - la règle à calcul,
 - H
 - · les cuves rhéographiques,

Calculateurs numériques

- La première machine à calculer numérique est due à Wilhelm SCHICKARD, horloger, astronome et mathématicien de l'université de Tübingen en Rhénanie et ami de Kepler. 1623
- Détruite par un incendie en 1624,
- Reconstruite en 1961

La Pascaline

- La machine à **additionner** de Blaise PASCAL fut longtemps considérée comme la première.
- Conçue en 1641 et réalisée en 1645 connut, sous le nom de « Pascaline », fut fabriquée en de nombreux exemplaires.

La calculatrice de poche

- Il convient de mentionner la machine à calculer de poche conçue en 1666 par Samuel MORLAND en Angleterre,
- Il s'agissait d'une version miniature de la Pascaline.

Calculateur à multiplier

- · La première machine effectuant des multiplications fut décrite par Gottfried LEIBNITZ en 1673.
- Réalisée en 1694, elle comporte une innovation capitale : celle du tambour à dents inégales.
- Ce dispositif sera utilisé dans la plupart des machines à calculer mécaniques jusqu'à (1972)

Calculateur à 4 opérations de Leibniz

 Il est bien connu que la machine à calculer pour les quatre opérations arithmétiques de base a été inventée par le génie universel Gottfried Wilhelm Leibniz dans les années 1670.

La machine de Jacob Leupold

 L'intérêt de Jacob pour la mécanique était construire des appareils utilisés dans les études expérimentale s de physique.

'industrie des calculateurs au XVIIIe siècle

- De nombreuses machines à calculer sont inventées en 18^{ème} si, bien souvent réalisées pour être de luxueux objets de curiosité.
- Mentionnons les machines de :
 - Leupold (1727),
 - Braun (1727),
 - Vayringe (1750),
 - Hahn (1770),
 - Müller (1783).
 - Stanhope (1775) comprenait un système de report des retenues qu'on ne retrouvera qu'au XXe siècle.

Partie IV Du 19ème et 20ème siècles

L'industrie des calculateurs

- Il faut distinguer deux phases:
- · La phase d'expérimentation ou d'utilisation restreint des calculateurs automatiques,
- La phase de l'industrie des calculateur ou automatisation de calcul en large public.
- Utilisation large implique :
 - Le besoin du grand public,
 - · La révolution des méthodes,
 - · L'itération des processus industriels.

'Arithmomètre de Thomas de COLMAR (1820)

- · La réalisation industrielle de toute première importance:
 - l'Arithmomètre de Thomas de COLMAR (1820).
 - C'est le premier calculateur mécanique réalisé industriellement,
 - Il a duré sans rival durant 50 ans.
- On peut dire que cette machine robuste, performante joua un grand rôle dans l'histoire de l'informatique.

Le progrès des calculateurs

- L'évolution de l'industrie des calculateurs est conditionnée par :
 - · L'ingénierie des outils,
 - L'ingénierie des matériaux ,
 - L'ingénierie des procédés,
 - · L'ingénierie des calculs (l'algorithmique).
- Parallèlement, la représentation de l'information (les données) est une problématique à part...
- Qui implique l'autre ?

L'analogique ou le numérique ?

- A ne pas confondre les calculateurs et le numérique.
- Les calculateurs analogiques existaient jusqu'au années 1960.
- Le progrès de l'électronique numérique a donné l'avantage au calculateur numérique.

La naissance de l'ordinateur numérique

- Le premier ordinateur, connu sous le nom d'Electronic Numerical Integrator and Computer (ENIAC), a été développé pendant la Seconde Guerre mondiale par une équipe de scientifiques et d'ingénieurs de l'Université de Pennsylvanie.
- Le projet était dirigé par John W. Mauchly et J. Presper Eckert et financé par l'armée américaine.

Rappels sur l'horlogerie XVII

- Depuis le XVII^{ème} siècle, les horloges comprennent les mêmes organes :
 - Un organe physique oscillant (pendule, ressort ...)
 - Un capteur de l'information périodique: (échappement)
 - Des organes de calcul (mécaniques ou électroniques) convertissant la période du système en unités (des microsecondes aux secondes, minutes, heures).
 - Un système d'affichage du résultat du calcul pour l'usager (aiguilles, écran ...)
 - Une source d'énergie (poids, ressort, piles, capteur solaire).

Rappel sur l'horlogerie XIII

- Les grands horlogers du XVIIIe siècle furent aussi souvent des constructeurs d'automates visant à imiter la vie :
- Les automates de Jacques de VAUCANSON (1738) : le joueur de flûte, le canard digirateur, la machine a soie...
- Les automates de JAQUET-DROZ toujours exposés à Neuchâtel. L'écrivain, le dessinateur et la joueuse de clavecin (1773).

L'écrivain de JAQUET-DROZ

- C'est un système de génération des lettres d'un texte
- Il semble être le plus ancien exemple d'appel de sous-programme avec adresse de retour dans le programme appelant,
- Il est capable de tracer un texte de 40 signes au maximum, répartis sur quatre lignes.
- La principale invention de son mécanisme est le système de programmation par disque, qui lui permet d'écrire des textes suivis sans intervention extérieure.

les métiers à tisser automatiques

- Les automates industriels les plus perfectionnés furent les métiers à tisser automatiques :
 - 1725 : le premier métier à tisser de Basile BOUCHON, $\underline{\square}$
 - 1728 : Louis FALCON crée le premier métier à tisser programmable par cartons perforés.
 - 1745 : VAUCANSON réalise un métier à tisser programmé.
 - 1801: Métier à tisser automatique, programmable de Joseph- Marie JACQUARD qui jouera un rôle essentiel dans la genèse de l'Informatique.

La révolution industrielle et ses limites : Charles BABBAGE

e problème des tables numériques

 Dès le XVIIIe siècle, le besoin du calcul numérique c'est imposé pour des raisons socioéconomique multiples :

Cadastre, navigation, artillerie, statistiques, calculs d'intérêts, astronomie.

- Le problème était réaliser les tables trigonométriques et de logarithmes qui répondaient à d'importants besoins en développement.
- Le calcul par les différences finis (approximation par le développement limité)

a méthode des différences finies

- C'est une technique de recherche de solutions approchées d'équations aux dérivées partielles,
- Elle consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points voisins.

Calcul arithmétique au XVIIIe siècle

- · La méthode des différences finies :
 - développements en série,
 - · approximations successives,
- Conduit à effectuer de très grands nombres d'additions en chaîne.
- Le calcul se faisait manuel par des personnes (calculateur),
- Le résultat est publié sur des tables (rédigée manuellement),
- Multitude sources d'erreurs !

Première étape pour éviter les erreurs

- Invention d'un procédé d'édition dit « stéréotype » par Firmin DIDOT en 1805,
- Les pages composées sont conservées d'une édition à l'autre.
- Eviter et corriger les fautes.

Deuxième étape : machine de Charles BABBAGE

- Charles BABBAGE conçoit en 1820 sa machine " Difference Engine " ou machine à calculer selon les différences finies.
- Réaliser en 1823, la machine prépare les tables et le grave sur des feuilles de plomb utilisées après pour l'impression.

Machine de George SCHEUTZ (1840)

- SCHEUTZ reprend l'idée de BABBAGE 1840 et achève sa machine en 1853,
- La première machine fut présentée dans de nombreux pays, reçut de nombreuses récompenses.

Production des machines de différences finies

- Une seconde machine construite en Angleterre en 1859, fut exploitée jusqu'en 1914 pour calculer des tables numériques.
- Les progrès techniques liés au développement de la mécanographie, les importants besoins en tables numériques conduisirent à la réalisation jusqu'en 1930 de diverses machines à calculer par différences finies.

a machine analytique

- La coopération d'Ada LOVELACE et de Charles BABBAGE (1834) :
 - Comment concevoir une machine universelle à effectuer tous calculs par programme de commande modifiable : l'"Analytical Engine".
- Les auteurs se basaient sur le concept du métier à tisser de Jacquard à base des cartes perforées.

Initiative de Charles BABBAGE (1840)

- Charles BABBAGE définit toutes les fonctions nécessaires à la réalisation d'un calculateur universel :
 - Entrées/Sorties des données et résultats,
 - mémorisation interne,
 - transfert des données,
 - opérateur arithmétique,
 - programmeur/organe de commande.

Initiatives d'Ada LOVELACE (1840)

- Ada LOVELACE de sa part développait :
 - Décrire comment écrire des programmes
 - Suggérer qu'on modifie la machine pour agir sur le déroulement du programme en fonction de certains résultats.
- Elle définissait les premiers concepts d'un langage de programmation proprement dit.
- Actuellement Ada fait référence à un langage de programmation orienté objet (1980 -2022).

Le sort de la machine analytique

- Après la mort d'Ada en 1853, Babbage ne pouvait réaliser la machine analytique.
- Après la mort de Charles Babbage en 1871, Son fils Henry BABBAGE reprit son œuvre.
- Il réalisa une partie de la machine en 1880.
- C'est en 1888, que la machine analytique a put calculer et imprimer quelques calculs.

Remarques sur la machine de BABBAGE

- La machine analytique de BABBAGE possédait tous les organes d'un ordinateur moderne.
- Toutefois la technologie utilisée au siècle dernier en rendait la réalisation extrêmement difficile.
- L'idée que les résultats de calcul puissent réagir sur la commande était alors une hypothèse irréalisable à l'époque!

Conclusion

- · Les concepts d'un ordinateurs moderne sont là,
- Les concepts d'un langage de programmation sont
- Il reste à surmener le défis technologique.
- Percy LUDGATE (1883 1922) conçoit son modèle en 1909:
 - · sous-programmes fonctionnels sur des cylindresprogramme,
 - programmation et entrée/sortie des données sur ruban de papier perforé,
 - la perforation des résultats (impression),
 - L'unité de commande (clavier).

es machines logiques à raisonner (XIX)

- L'algèbre logique est devenue célère avec ses fondateurs mathématiciens en XIXe,
- Dans cet époque, les opérations de l'algèbre logique binaire sont inventée par George BOOLE en 1847.
- Le mathématicien et logicien anglais, William Stanley JEVONS (1835-1882) eut l'idée de construire une machine logique pour réaliser les opérateurs de BOOLE.
- Sa machine, appelée piano logique fut construite en 1869.

La machine logique à raisonner (XIX)

- La machine de S. JEVONS était destinée à l'apprentissage de l'algèbre de Boole seulement.
- Les expressions logiques étaient introduites par un clavier et le résultat (vrai ou faux)

es travaux de Leonardo TORRES Y QUEVEDO (1852-1936)

- Il construit sa machine logique
- Il est l'auteur d'un ouvrage fondamental : le premier traité moderne sur l'automatisme (Essai sur l'automatisme, 1915).
- Il y décrit les fonctions les plus générales de tout automate:
 - · les organes sensoriels,
 - · les organes d'action,
 - · l'énergie d'entretien,
 - · la capacité de raisonnement.

Invention de SHANNON (1937)

- Spécialiste des transmissions et des systèmes de commutation, il émet sa remarque fondamentale:
- Il a montré que les règles de l'algèbre logique à 2 états de BOOLE (1847),
- Applicables à tout raisonnement logique,
- Etaient entièrement réalisables à l'aide de circuits à relais électriques.
- Il a publié (A Symbolic analysis of relays and switching circuits) en 1938 dans IEE.

es relais électriques

- Un relais électromécanique est un organe électrique permettant de distribuer la puissance à partir d'un ordre émis par la partie commande.
- Il permet l'ouverture et la fermeture d'un circuit électrique de puissance à partir d'une information logique.

Symboles du relais

Conséquence de la découverte de SHANNON

- La possibilité de réaliser la machine logique à raisonner,
- Les fonctions élémentaires que toute technologie doit réaliser pour pouvoir construire un automate logique (un ordinateur) sont:
 - La réunion logique (fonction ou)
 - L'intersection logique (fonction et)
 - La négation logique (fonction non)
 - La gestion des flux et de la mécanographie(La carte perforée, l'impression ...).

Recueil et conclusion

- La technologie des machines à écrire jouera un rôle important dans les progrès des calculatrices.
- Le télégraphe conduisit pour la première fois à utiliser l'électricité comme support d'information.
- Le code créé par Samuel MORSE en 1837 fut le premier **code télégraphique**, ancêtre du code Baudot, puis de l'ASCII.
- Le traitements de très grandes masses d'informations diverses avec des calculs (XIX).

Les grandes réalisations des années 40 du XX^{ème} Siècle

Convergence technologique du début du 20^{ème} Siècle

- Les développements techniques (relais et tubes électroniques) :
 - Les résultats de SHANNON,
 - · Le besoin de calculs volumineux,
- Conduisent à la fin des années 30 à de multiples initiatives pour réaliser de grands calculateurs universels.

'ordinateur à relais : MARK1

- Le MARK 1, conçu en 1937 par Howard AIKEN, mathématicien à l'Université de Harvard :
 - C'était une gigantesque machine de Babbage électro-mécanique à relais.
 - Elle pesait 5 tonnes, mesurait 16 mètres de long, 2 m 60 de haut, était entraînée par un moteur de 5 chevaux, était constituée pour l'essentiel de relais décimaux,
 - Elle était alimentée par cartes ou ruban perforés.
- Le MARK 1, inauguré en 1944, était dépassé dès sa naissance !

L'ordinateur à relais et tubes électroniques ENIAC

- La réalisation de l'ENIAC (Electronic Numerical Integrator, Analyser and Computer) fut entreprise en secret en 1943 par Presper ECKERT et John MAUCHLY à l'Université de Pennsylvanie avec la collaboration de John ATANASOFF,
- L'ENIAC était aussi un monstre: 17.468 tubes électroniques et 1600 relais, 30 tonnes, 150 kWatt, plus deux puissants moteurs. Occupant 160 m2 au sol. Cette machine fut inaugurée le 15 février 1946.

Suite de l'ordinateur ENIAC

- La rencontre du responsable de l'ENIAC et du mathématicien John von NEUMANN en 1944 conclus par :
 - L'intégration de celui-ci au projet ENIAC,
 - L'enregistrement dans la mémoire les programmes et les données,
 - Ob obtient un automate ayant les propriétés de la machine de Turing, et donc une machine algorithmique universelle.

Suite de l'ordinateur ENIAC -> EDVAC

- Sous la direction de Von Neumann, l'équipe d'ENIAC passe à la conception d'une machine totalement nouvelle appelée EDVAC (Electronic Discrete Variable Automatic Computer)
- Le travail l'équipe fit l'objet d'une célèbre publication du 30 juin 1945.
- Il s'agit de la première description d'un ordinateur, qu'on appelle aussi machine de von Neumann.

La machine intelligente

- Toute opération intelligente pouvait faire l'objet d'un algorithme,
- D'où la machine intelligente universelle,
- On l'appela alors partout les ordinateurs « cerveaux électroniques ».
- Les premières réalisations industrielles n'en furent faites qu'en 1951 (UNIVAC 1 et IBM 701) malgré la tentative maladroite d'IBM.

Propriétés électriques des matériaux Isolant parfait : (résistance infini) aucune conduction électrique; Le plastique, le verre, le bois sec, l'air pur... Conducteur parfait : (résistance négligeable) Meilleurs conduction électrique; L'or, l'argent, le cuivre, l'aluminium Semi-conducteur : (résistance variable) A l'état pur non conducteur ; En présence des impuretés il devient conducteur.

Ils sont des matériaux les plus répandus dans l'industrie du matériel informatique. Les principaux semi-conducteurs: le germanium (Ge), le silicium (Si), le sélénium (Se), les composés binaires: arséniure de gallium (GaAs), antimoniure d'indium (InSb), phosphure de gallium (GaP) phosphure d'indium, Aussi des composés ternaires et quaternaires.

es Transistors MOS

- MOS est l'abréviation de Metal Oxide Semiconductor.
- Il existe deux types de transistors MOS:
 - les transistors de type n
 - les transistors de type p.
- Le CMOS, pour Complementary metal-oxidesemiconductor,...

'invention du Transistor

- Le transistor a été inventé par l'équipe des Bell Labs composée de Shockley, Brattain et Bardeen,
- Cette invention va marquer l'ouverture d'une nouvelle époque en informatique.
- La manipulation de la conduction selon les conditions d'entrée a permis l'implémentation des opérateurs logique.
- C'est le début de la boule de neige !

Portes NOT (Inverseur)

- La porte la plus simple est la porte **NOT** de la négation.
- Elle prend en entrée une valeur x (0 ou 1) et elle sort la valeur 1-x.
- La table de vérité de cette porte est donnée ci-dessous:

Entrée	Sortie
I	$\neg \mathbf{I}$
0	1
1	0

La porte NOT sur circuit

- La porte not peut être réalisée en logique CMOS par un circuit constitué de deux transistors, un de type n et un de type p.
- · Ce circuit est appelé inverseur.
- L'inverseur ainsi que son symbole sont représentés à la figure ci-dessous.

La porte NAND (Not AND)

- La porte **NAND** prend en entrée deux valeurs 0 ou 1.
- La sortie vaut 0 si les deux entrées valent 1 et elle vaut 1 si au moins une des deux entrées vaut 0.
- La table de vérité est donnée ci-dessous:

Entrées		Sortie	
A	В	¬(A ∧ B)	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

a porte NAND sur circuit

- Un circuit pour réaliser la porte **NAND** en logique CMOS est donné ci-dessous.
- Il est constitué de quatre transistors dont deux n-MOS et deux p-MOS.

La porte NOR (Not OR)

- La porte NOR prend en entrée deux valeurs 0 ou 1.
- La sortie vaut 0 si au moins une des entrées vaut 1 et elle vaut 1 si les deux entrées valent 0.
- La table de vérité est donnée ci-dessous.

Entrées		Sortie	
A	В	¬(A V B)	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

La porte NOR sur circuit

- La porte **NOR** en logique CMOS est constitué de quatre transistors
 - deux n-MOS
 - deux p-MOS.
- C'est le circuit dual du circuit de la porte NAND.

La port OR (Inverse de NOR)

- La porte OR prend en entrée deux valeurs 0
- La sortie vaut 0 si les deux entrées valent 0 et elle vaut 1 sinon.

Entrées		Sortie	
A	В	AVB	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

La porte AND (inverse de NAND)

- La porte and prend en entrée deux valeurs o ou 1.
- La sortie vaut 1 si les deux entrées valent 1 et elle vaut o sinon.

Sortie	
AΛB	
0	
0	
0	
1	

Porte NOR à 3 entrées

Portes logiques à trois entrées

- On peut réaliser une porte NAND à trois entrées en combinant deux portes NAND à deux entrées.
- Il est plus économique en nombre de transistors de réaliser directement cette porte.

• Comme la porte NAND, celle-ci est schématisée par :

Les portes logiques à entrées multiples

• Par combinaison en cascade des portes simples, il est possible de réaliser des portes à entrées multiples :

a porte XOR (OU Exclusif) La porte XOR permet de réaliser la fonction ou exclusif qui s'avère très utile pour construire les additionneurs. Entrées Sortie A B A \oplus B 0 0 0 0 1 0 1

Les bascules

- · Les bascules sont les opérateurs élémentaires de mémorisation.
- Leur état présent, déterminé par l'état des sorties, est fonction des entrées et de l'état précédent des sorties.
- · Les différentes bascules sont réalisées à partir de portes logiques.
- · Ces bascules, qui opèrent uniquement selon des principes logiques, sont appelées statiques.

Les Bascules Latch

- La bascule latch ont :
 - une entrée d'état (D)
 - une entrée de commande (C).

$$\begin{array}{c|c} D & 1 & S \\ \hline & 0 & 1 & R \\ \hline & 0 & 1 & R \\ \end{array}$$

Les registres

• On appelle registre un ensemble de bascules avec une même commande d'horloge.

Figure 12 : Registre

es circuits intégrés

- Le circuit intégré (CI), aussi appelé puce électronique, est un composant électronique reproduisant une ou plusieurs fonctions électroniques plus ou moins complexes.
- Il intégré souvent plusieurs types de composants électroniques de base dans un volume réduit, rendant le circuit facile à mettre en œuvre.

Le premier circuit intégré

- Inventé en 1958 par Jack Kilby,
- Au début les transistors sont câblés entre eux.
- Quelques mois plus tard, la production de masse de puces en silicium contenant plusieurs transistors est devenue possible.
- Ces circuits microscopiques dans un même bloc, permettaient la réalisation de mémoires, ainsi que d'unités logiques et arithmétiques.
- Ils concentraient dans un volume très réduit, un maximum de fonctions logiques, auxquelles l'extérieur accédait à travers des connexions réparties à la périphérie du circuit.

Loi de Moore : évolution des ordinateurs

• les ordinateurs deviennent au fil du temps plus petits, plus rapides et moins chers, à mesure que les transistors sur circuits intégrés deviennent plus efficaces

Notion de génération

- Les générations des ordinateurs n'est pas définie clairement comme moyen de distinction des machines;
- La technologie utilisée délimite les classes ou les générations des machines;
- La technologie des ordinateurs a nettement changée durant le 20^{ème} siècle;
- La loi de Moore résume cette évolution.

La première génération

• La première génération est celle des machines à tubes électroniques et à relais électromécaniques (jusqu'à 1958).

L'approche mécanographie

- La technique électromécanique des équipements à carte perforée.
- Le coût élevé des matériels, l'informatique restait réservée aux gros organismes publics ou privés (administrations, banques, assurances, transports).
- Les équipement informatique consommait trop d'énergie et nécessitait une climatisation en permanence...

Les premiers de la 1^{ère} génération

- IBM
- Bull
- SAMAS
- Burroughs

e calcul scientifique ou militaire

- Machines uniques ou en très petites séries de coût très élevé.
- Recherche de Puissance de calcul
- UNIVAC
- IBM
- SEA (François-Henri RAYMOND)
- Ferranti

a 2ème génération

- Les ordinateurs à base du transistor ont fait l'objet de la deuxième génération du début des années 60.
- Ils étaient classés en deux catégories d'architectures très différentes :
 - Les ordinateurs scientifiques binaires rapides.
 - Les ordinateurs de gestion travaillant sur des données en décimal.

es premiers de la 2^{ème} génération

- Le premier ordinateur à transistors fut le TRANSAC réalisé par PHILCO pour des applications militaires..
- Pour le calcul scientifique, IBM 704 était le gros ordinateur scientifique standard dans le monde, muni d'un compilateur FORTRAN.
- Le LARC, conçu par UNIVAC, était le premier ordinateur à essayer un système d'exploitation.

Le succès de la 2^{ème} génération

- L'IBM 1401 fut l'ordinateur de gestion proprement dit :
 - Destiné au PME (35.000 exemplaires),
 - Equipé d'une :
 - unité centrale lente et conçue pour traiter des caractères et des nombres décimaux.
 - · une imprimante à chaîne,
 - lecteur et perforateur de cartes.
 - Il a duré plus de 25 ans en service.

La 3ème génération

- L'apparition en 1964 de l'IBM 360 constitue un tournant décisif dans l'histoire technique de l'informatique.
- La microprogrammation est entrée en vigueur;
- Toutes les machines ont le même jeu d'instructions interne
 - Les petite machine de gestion de PME
 - Les grande machine pour les banques ou grands laboratoires
- Un format unique de représentation des données.

Le software de la 3^{ème} génération

- L'avènement des machines performantes n'était pas limité au hardware;
- IBM réalisa aussi un ensemble de logiciels tirant parti de cette architecture :
 - systèmes d'exploitation,
 - compilateurs,
 - macro-assembleur, ...
- En 1970, l'administration américaine imposa la vente séparée (l'unbundling) des logiciels, assurant ainsi le développement d'une industrie autonome.

e succès de la 3^{ème} génération

- La série IBM 360, très populaire et performante, assura une domination quasitotale d'IBM sur le marché mondial de l'informatique.
- Les concurrents se réfugièrent dans des marchés protégés :
 - Des machines spécialisées à très hautes performances pour des applications de pointe.
 - L'importance de la série IBM 360 conduisit des pays (Japon :FUJITSU et HITACHI) (USA : RCA, UNIVAC...) à en copier l'architecture.

Le mini-ordinateur

- Le développement continu des :
 - Circuit électroniques,
 - Des architectures d'ordinateurs,
 - Des logiciels,
- A permet à des nombreux jeunes scientifiques de travailler sur la conception d'ordinateurs
- Un groupe de jeunes étudiants de M.I.T créent en 1961 Digital Equipment Corporation (DEC):
 - PDP 8 conçu en 1966;
 - PDP 11 succéda en 1970 ;
- la première version du système UNIX fut réalisée sur PDP 11.

Le microprocesseur et le microordinateur

- L'intégration de plusieurs circuits fondamentaux en un fut naitre : Le microprocesseur
- C'est la conception de Gordon E. MOORE à l'Université John Hopkins (1966).
- Le premier (MCS4) regroupait quelques centaines de transistors et organisé en :
 - organe de commande,
 - opérateur arithmétique et logique,
 - portes d'échange d'un ordinateur à mot de 4 bits.

La voie des microprocesseurs

- MOORE fonda en 1969 la société INTEL qui réalisait des circuits intégrés à la demande.
- L'équipe constituée de Federico FAGGIN, Ted HOFF et Stan MAZOR réalisa le premier microprocesseur commercial (1971):
 - Le 4004 (4 bits).
 - Le 8008 (8 bits).
- I 'apparition des microordinateurs à base du Intel 8008 commence à partir de 1972;
- Au début des années 80, IBM construit son Personal Computer (PC) autour de l'Intel 8088.

'intéraction révolutionnaire homme-machine

- Steve JOBS conçoit un ordinateur révolutionnaire (LISA):
 - le microprocesseur rapide (le MOTOROLA 6800)
 - le mode de dialogue homme-machine :
 - · Ecran graphique,
 - Souris...
 - · Logiciel à haute résolution (imprimerie, imagerie, etc)
 - C'est le début des ordinateurs Apple,
 - Une version simplifiée du LISA, appelée MacIntosh qui connut un grand succès.

La 4^{ème} génération

- Le développement rapide de la microinformatique, les baisses de coût,
- Les progrès de l'informatique se font dans deux grandes directions :
 - Augmentation de la puissance de calcul ;
 - Progression des méthodes de dialogue hommemachine (graphique, interactivité, multimédia, télétraitement, décentralisation du traitement, réseaux de communication, systèmes d'hypertextes, etc.).
- l'ordinateur devenant même un appareil électroménager familial.

a 5^{ème} génération

- Peut être elle est déjà en place!
- Caractérisée par la tendance vers l'intelligence artificielle,
- · L'intégration des services :
 - · La vie personnelle,
 - Les réseaux sociaux
 - · L'activité professionnelle,
 - ...
- Industrie 4.0 voire 5.0

L'évolution de la mémoire

Historique de la mémoire

- Depuis l'antiquité, la mémorisation des données jouait un rôle crucial dans la société!
- L'invention de l'écriture/lecture : des lettres, des chiffres, phrases des règles de calcul a servie aux société de fonder des civilisations.
- Dans le monde informatique, parallèlement à l'évolution de la technologie électronique et algorithmique, la mémoire s'est développée considérablement!

L'information, le codage

- Qu'est-ce que cette « information » qu'on conserve, transporte, transforme ?
- Selon les scientifiques, (physicien, informaticien, etc.) l'information a une définition précise qui se réfère toujours à une modification apportée à un support matériel.
- L'information reçue par un système est le rapport des réponses possibles de ce système avant et après qu'on l'ait reçue.

Représentation / Codage Ecriture / Gravure Restitution / décodage Lecture / Restitution

Type des supports de mémorisation récente

- **Support mécanique** : roues, cartes, des signes etc...
- L' aimantation permanente des corps ferromagnétiques : Disquettes, Disque durs, Bandes...
- **Propriétés optiques** : Coloration, modification géométrique, réflexion : CD-ROM, DVD...
- Circuits électriques actifs : charges électriques, courants (bascules, ZMOS, cryotrons ... clés USB, Mémoire flash..

es caractéristique d'une mémoire

- La nature : volatile / permanente.
- La réversibilité : écriture, réécriture, effacement...
- La vitesse de lecture/écriture.
- La taille en nombre de mots adressables (N) et le volume total en bits (V).
- La stabilité et la durée maximal de conservation de l'information.
- Le prix au bit (qui est en général en étroite relation avec les performances).

Le type d'accès aux données

- **séquentiel** : les données sont alignées à la suite l'une de l'autre ;
- **sélectif** : on accède par des sous-adressages hiérarchisés.
- aléatoire : on accède à n'importe quelle adresse dans un délai fixe. C'est la RAM (Random Access Memory).
- Comment est la logique d'adressage :
 - L'adressage localisé : une place fixe est définie par son adresse.
 - L'adressage non localisé, les circuits d'adressage pouvant être modifiés dynamiquement.

Module:
HISTOIRE ET EPISTEMOLOGIE DE L'INFORMATIQUE ET APPROCHE
MULTIDISCIPLINAIRE

Chapitre 5:
Les grandes classes de langages de
programmation
&
Le dialogue Homme - Machine

M.Sabbane, Faculté des Sciences - Université Moulay Ismail, 2023-2024

Codes, commandes et opérations

- L'ordinateur se caractérise par sa capacité à produire les fonctionnalités :
 - Coder pour représenter n'importe quelle information:
 - Commander pour emmètre des ordres à tous ses composants afin d'accomplir leur tache;
 - Effectuer des opérations telles quelles sont établîtes par l'algèbre de Boole.
- Assurer ces fonctionnalités indépendamment du matériel implique la création du langage de programmation.

Le langage de programmation

- Un langage de programmation est similaire à un langage naturel :
 - Il dispose de son vocabulaire;
 - Il suit sa logique de syntaxe;
 - Il obéit à une sémantique logique, claire et non ambiguë.
- Il permet d'établir le moyen de communication avec l'ordinateur:
 - Les programmeurs créent des applications grâce à un langage de programmation;
 - Les utilisateurs ordinaires exploitent des applications sans connaitre au préalable un langage de programmation.

Evolution de la programmation

- Parallèlement à l'évolution du matériel informatique, et des méthodes de traitement numérique, les langages de programmation se sont développés,
- Plusieurs niveaux sont à considérer :
 - Niveau 1:
 - Niveau 2 :
 - ...
 - ...

e niveau débutant des langages de programmation

- Le début de la programmation était restreint aux constructeurs des ordinateurs;
- Chaque constructeur développer le software nécessaire à sa machine;
- D'où les langages de niveau 1 et 2 étaient :
 - Très proches de la machine,
 - · Langage-machine,
 - Auto codeur de base,
 - Assembleur...

es niveaux intermédiaires (niveau 3 & 4)

- Les langages deviennent indépendants de la machine,
- Ces langages utilisent un vocabulaire compris par les programmeurs mais pas par les machines;
- D'où l'invention des compilateurs pour traduire les programmes sources en programmes dits en langage-machine.

La portabilité des langages

es premiers langages spécialisés

- Des langages de programmation sont aussi créer pour des domaines d'application spécialisés:
 - Le FORTRAN est le grand langage de calcul scientifique malgré ses faiblesses syntaxiques.
 - Le COBOL (COmmon Business Oriented Language) reste un standard international.
 - Le JOVIAL pour les traitements en temps réel.
 - Le LISP (LISt Processing) pour l'intelligence artificielle.
 - Le SNOBOL pour traiter les chaines de

es langages spécialisés avancés

- Avec l'avancement de l'usage du matériel digital :
 - · L'utilisation s'est diversifiée,
 - D'où de plus en plus d'évolution des langages ,
- Actuellement, les langages modernes sont tels que :
 - Python,
- Java. ...
- JavaScript. ...
- SQL. ...
- Ruby. ...
- Swift. ...
- C ou C++ ...
- Golang.

Dialogue homme-machine

- La tendance naturelle de l'évolution de l'informatique est encadrée par :
 - Abaisser les coûts des ordinateurs,
 - · Accroître la vitesse et la taille des données,
 - Rapprocher la machine de l'homme :
 - Accroissement de la vitesse et le partage de temps (time sharing),
 - Géographiquement par la disponibilité là où on a besoin (télétraitement),
 - Conceptuellement par une adaptation aux sens et à la logique humains.

Comparaison critique

- Les anciens ordinateurs :
 - Utilisateurs spécialisés,
 - Taille très grande, coût élevé...
 - Langage spécifique ...
- Les ordinateurs personnels :
 - Utilisateurs standards,
 - Taille et coût réduits...
 - Langage proche humain ...
- Les ordinateurs 3^{ème} millénaire:
 - Utilisateurs populaires,
 - Taille et coût réduits...
 - Langage populaire...

Comparaison critique

- · Aujourd'hui:
 - Tout est équipé par son ordinateur,
 - Tout est connecté...
 - Langage simplifié ...
- L'avenir nous cache –t il des surprises :
 - agréables ?
 - catastrophiques ?
 - •

