Assignment: Data Structure and Algorithm

Total Marks: 100 | Level: BCS 3rd Year, 6th Semester

Table of Contents

- 1. Section A: Theoretical Questions (30 Marks)
- 2. Section B: Numerical / Problem-Solving (30 Marks)
- 3. Section C: Programming / Implementation (40 Marks)

Section A: Theoretical Questions (30 Marks)

Answer three questions. $(3 \times 10 = 30 \text{ marks})$

- 1. Define Time and Space Complexity.
 - Explain best, worst, and average-case time complexity with examples of common algorithms (e.g., linear search, binary search, bubble sort).
- 2. Describe how a stack is used in expression evaluation.
 - o Compare Linear Queue and Circular Queue.
 - o Provide scenarios where circular queue is preferred over linear queue.
- 3. Differentiate between singly, doubly, and circular linked lists.
 - o Discuss the advantages of using linked lists over arrays.
 - o Provide basic insertion and deletion operations.
- 4. Define recursion.
 - o Compare recursion with iteration using the example of factorial.
 - o Discuss the pros and cons of using recursion.

Section B: Numerical / Problem-Solving (30 Marks)

Answer three questions. $(3 \times 10 = 30 \text{ marks})$

1. Convert the following infix expression into postfix and prefix notation:

$$(A + B) * (C - D) / E$$

- Evaluate the postfix expression for A=2, B=3, C=5, D=1, E=2.
- 2. Given the array:

$$A = [8, 5, 3, 9, 1]$$

- o Sort the array using Bubble Sort and show all steps.
- o Calculate the total number of comparisons and swaps.
- 3. Given a sorted array:

$$A = [2, 4, 6, 8, 10, 12, 14, 16, 18]$$

- o Search for element 10 using Binary Search.
- o Show the steps and calculate its time complexity.
- 4. Given the following undirected weighted graph:
- 5. A --2-- B
- 6. A --3-- C
- 7. B --1-- C
- 8. B --4-- D
- 9. C --5-- D
 - o Use Kruskal's Algorithm to find the Minimum Spanning Tree.
 - Show all steps and the final MST.

Section C: Programming / Implementation (40 Marks)

Answer any two questions. $(2 \times 20 = 40 \text{ marks})$

- 1. Write a program (in C) to implement a stack using an array.
 - o Include functions for push, pop, peek, and display.
 - o Demonstrate stack operations with sample inputs.
- 2. Write a program to implement a singly linked list with the following operations:
 - o Insert at beginning
 - o Insert at end
 - o Delete a node from a given position
 - Display the list
 - o Provide sample input and output
- 3. Implement the Tower of Hanoi problem for n disks using recursion.
 - o Provide source code
 - Show the output for n = 3

- 4. Implement a hash table using linear probing for collision resolution.
 - Accept keys from the user and store them in a fixed-size hash table
 - o Show the hash function used
 - o Provide sample input and the resulting table

Texas College of Management & IT Bachelor of Computer Science (Network Technology & Cyber Security)

Project Title:	
Submitted By:	
Name:	
LCID:	
Semester: 3rd Year, 6th Semes	ster
,	
Submitted To:	
Instructor Name:	
Course:	_
Date of Submission:	

Texas College of Management & IT, Kathmandu