Факторным экспериментом называется такой эксперимент, в котором все уровни данного фактора комбинируются со всеми уровнями всех других факторов. Под «симметричностью» понимается одинаковое количество уровней для всех факторов. Полный факторный эксперимент (ПФЭ) — эксперимент, в котором реализуются все возможные комбинации уровней факторов.

ПФЭ 2k

Если число уровней каждого фактора 2, то имеем полный факторный эксперимент типа 2k, — он прост в планировании. Требуемое количество машинных прогонов N=2k, k — число факторов, 2 — число уровней.

В планировании эксперимента используют кодированные значения факторов: +1, -1.

Так как каждый фактор принимает лишь два значения

$$x_{iH} = x_{i0} - \Delta x_i \, \mathbf{H} \, x_{iB} = x_{i0} + \Delta x_i$$

то принимают нижний уровень как -1, верхний как +1, а основной – нулю. Это легко достигается с помощью преобразования вида

$$\widetilde{x}_i = (x_i - x_{i0}) / \Delta x_i, \quad i = \overline{1,k}$$

где \tilde{x}_i — кодированное значение *i*-го фактора; x_i — натуральное значение фактора; x_{i0} — нулевой уровень;

 $\Delta x_i = (x_{iB} - x_{iH})/2$ — интервал варьирования фактора

Матрица планирования эксперимента ПФЭ 2².

Содержит 4 эксперимента, 4 возможные комбинации уровней факторов.

№ опыта	<i>X</i> ₁	X_2	Y
1	-1	-1	Y_1
2	-1	+1	Y_2
3	+1	-1	Y_3
4	+1	+1	Y_4

Геометрическая интерпретация ПФЭ 2^2 . В области определения факторов, найдем точку, соответствующую основному уровню, и проведем оси координат. Вершины квадрата соответствуют опытам, каждая сторона равно двум интервалам. Площадь, ограниченная квадратом называется областью определения эксперимента. План 2^2 задается координатами вершин квадрата.

Геометрической интерпретацией ПФЭ 23 служит куб, координаты вершин которого задают условия прогонов.

СВОЙСТВА ПОЛНОГО ФАКТОРНОГО ЭКСПЕРИМЕНТА

ПФЭ типа 2^k обладает свойствами: симметричности, нормировки, ортогональности, рототабельности.

1. Симметричность относительно центра эксперимента: Алгебраическая сумма элементов вектор-столбца каждого фактора равна 0.

$$\sum_{i=1}^{N} X_{ji} = 0$$

где $j=1,\dots,k$ – номер фактора, N – число опытов.

2. Условие нормировки: сумма квадратов элементов каждого столбца равна числу опытов, или *N*.

$$\sum_{i=1}^{N} X^2_{ji} = N$$

(т.к. значения факторов в матрице задаются +1, -1)

Свойства 1, 2 вытекают из построения матрицы планирования.

3.Ортогональность матрицы планирования: сумма почленных произведений любых двух вектор- столбцов матрицы равна 0.

$$\sum_{i=1}^{N} X_{ji} X_{ui} = 0, \qquad j \neq u, u = 1, 2, \dots, k$$

4. Рототабельность (для линейной модели), т.е. точки в матрице планирования подбираются так, что точность предсказания значений отклика одинакова на равных расстояниях от центра эксперимента и не зависит от направления.