第一题:

解 根据所给条件,犯第一类错误的概率为

$$\alpha = P\left(x \geqslant \frac{2}{3} \mid H_0\right) = \int_{\frac{2}{3}}^{2} \frac{1}{2} \mathrm{d}x = \frac{2}{3},$$

犯第二类错误的概率为

$$\beta = P\left(x < \frac{2}{3} \mid H_1\right) = \int_0^{\frac{2}{3}} \frac{x}{2} dx = \frac{1}{9}.$$

第二题:

.B

检验犯第二类错误:接受实际不真的假设 H。所犯的错误 β ,

$$X \sim N(\mu, 4), \text{ EP } \overline{X} \sim N(11.5, \frac{1}{4}),$$

$$\beta = P(\overline{X} \leqslant 11) = P\left\{\frac{\overline{X} - 11.5}{\sqrt{\frac{1}{4}}} \leqslant \frac{11 - 11.5}{\sqrt{\frac{1}{4}}}\right\} = P\left\{\frac{\overline{X} - 11.5}{\frac{1}{2}} \leqslant -1\right\}$$

$$= \Phi(-1) = 1 - \Phi(1).$$

答案选(B).

第三题:

$$\frac{\overline{X}\sqrt{n(n-1)}}{Q}.$$

解 当
$$H_0$$
 成立时,有 $\overline{X}-0 \sim N(0.1)$,而
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

即 $\frac{Q^2}{\sigma^2} \sim \chi^2(n-1)$,且相互独立,故

$$T = \frac{\frac{\overline{X}}{\sigma/\sqrt{n}}}{\sqrt{\frac{Q^2}{\sigma^2(n-1)}}} = \frac{\overline{X} \sqrt{n(n-1)}}{Q} \sim t(n-1).$$

第四题:

本题需检查假设

$$H_0: \mu \ge \mu_0 = 21, \qquad H_1: \mu < \mu_0$$

 $\diamondsuit n=17, \overline{x} = 20, s=3.984,$

$$t = \frac{\bar{x} - \bar{X}_0}{s / \sqrt{n}} = \frac{20 - 21}{3.9843 / \sqrt{17}} = -1.035 t_{\alpha}(16) = 1.7459$$

由于 t>-1.7495 ,未落入拒绝域,接受原假

设,即可以认为这批罐头符合要求。

第五题:

解 依题意,罐头重量 $X \sim N(\mu, \sigma^2)$, n = 16, $\bar{x} = 252$, s = 4, $\alpha = 0.05$. 先检验 μ 是否等于 250 g,再检验 σ^2 是否超过了 3^2 .

(1) 先检验 μ 是否等于 250 g. 按题意总体 $X \sim N(\mu, \sigma^2)$, μ , σ^2 均未知,要求在水平 $\alpha=0.05$ 下检验假设 $H_0:\mu=250$, $H_1:\mu\neq250$.

由于因 σ^2 未知,故采用t检验,取检验统计量为 $t = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$,又 $t_{\frac{a}{2}}(n-1) = t_{0.025}(15) = 2.1315$,拒绝域为

$$|t| = \left| \frac{\bar{x} - \mu}{s / \sqrt{n}} \right| \ge t_{0.025}(15) = 2.1315.$$

由于观察值 $|t| = \left| \frac{252 - 250}{\frac{4}{\sqrt{16}}} \right| = 2 < 2.1315, 没落在拒绝域内, 所以接受 <math>H_0$.

(2) 检验 σ^2 是否超过了 3^2 . 检验假设 $H_0': \sigma^2 \leqslant \sigma_0^2 = 9$, $H_1': \sigma^2 > \sigma_0^2 = 9$.

因为 μ 未知,所以选取统计量 $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$,且 $\chi^2_\sigma(15) = \chi^2_{0.05}(15) = 24.996$, 拒绝域为

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} > \chi_{0.05}^2 (15) = 24.996.$$

由于 $\chi^2 = \frac{15}{9} \times 4^2 = 26.667 > \chi^2_{0.05}(15) = 24.996$,所以拒绝 H'_0 .

综合(1) 和(2),在显著性水平 $\alpha = 0.05$ 时,可以认为机器工作不正常.

第六题:

解 按题意总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 两总体的 方差相等, 均等于 σ^2 , σ^2 未知, 两样本相互独立, 本题需在水平 $\alpha=0.05$ 下检验假设

$$H_0: \mu_1 = \mu_2, \quad H_1: \mu_1 \neq \mu_2.$$

采用
$$t$$
 检验,取检验统计量为 $t = \frac{\overline{X} - \overline{Y} - \delta}{S_w \sqrt{1/n_1 + 1/n_2}}$, 今 $n_1 = 8$,

$$n_2 = 10, \bar{x} = 0.2319, \bar{y} = 0.2097, s_1^2 = 0.0146^2, s_2^2 = 0.0097^2,$$

$$s_w^2 = [(8-1)s_1^2 + (10-1)s_2^2]/(8+10-2) = 0.012^2, \delta = 0,$$

t_{0.025}(16) = 2.1199.拒绝域为

$$|t| = \left| \frac{\bar{x} - \bar{y}}{s_w \sqrt{1/n_1 + 1/n_2}} \right| \ge t_{a/2} (n_1 + n_2 - 2) = 2.1199.$$

因观察值

$$|t| = \left| \frac{0.2319 - 0.2097}{0.012 \sqrt{1/8 + 1/10}} \right| = 3.900 > 2.1199,$$

落在拒绝域之内, 故拒绝 H₀, 认为两个作家所写的小品文中包含由 3 个字母组成的单字的比例有显著的差异.

第七题:

解 设早、晚身高差 $Z\sim N(\mu_{\epsilon},\sigma_{\epsilon}^2)$, 检验假设

$$H_0: \mu_z = 0, H_1: \mu_z > 0.$$

由题意知 $z_i = x_i - y_i = 0$, 1, 3, 2, 1, 2, -1, 2, n = 8, $\alpha = 0.05$, $\bar{z} = 1.25$, $s \approx 1.282$, 拒绝域为

$$W = \left\{ \frac{\overline{z} - 0}{s / \sqrt{n}} > t_a(n - 1) \right\}.$$

查 t 分布表得 to.o5(7)=1.894 6. 计算 t 值

$$t = \frac{1.25}{1.282/\sqrt{8}} \approx 2.758 > 1.8946$$

故否定 H。,即认为早晨的身高比晚上的身高要高.

第八题:

$$H_0$$
: $\mu \le \mu_0 = 162.5$, H_1 : $\mu > \mu_0$ 统计量为 $Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} = \frac{165.2 - 162.5}{6.9/\sqrt{50}} = 2.77$

临界值法:

拒绝域为 $Z > Z_{0.02} = 2.055$, 2.77 > 2.055, 因此落入拒绝域,故拒绝 H_0 ,有理由相信平均身高变高了。

P值法:

P=P(Z>2.77)=1-Φ(2.77)=1-Φ(2.77)=1-0.9972=0.0028<α=0.02, 故拒绝 H_0 ,有理由相信平均身高变高了。

第九题:

分析 这里方差反映了生产的精度,问题归结为检验新工艺下的零件直径的方差是否减小,即需要进行两正态总体方差 σ_1^2, σ_2^2 的比较检验

$$H_0: \sigma_1^2 \leq \sigma_2^2 \longleftrightarrow H_1: \sigma_1^2 > \sigma_2^2$$

应该利用 F 检验法来进行.

解 设旧、新工艺下零件的直径分别服从 $N(\mu_1,\sigma_1^2)$, $N(\mu_2,\sigma_2^2)$. 建立假设

$$H_0: \sigma_1^2 \leq \sigma_2^2 \longleftrightarrow H_1: \sigma_1^2 > \sigma_2^2.$$

这里 $n_1 = 9$, $n_2 = 8$. 给定 $\alpha = 0.05$, $F_{0.05}(8,7) = 3.73$, 利用样本计算

$$\bar{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i = 20, \quad \bar{y} = \frac{1}{n_2} \sum_{i=1}^{n_2} y_i = 19.95,$$

$$s_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2 = 0.195, \quad s_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2 = 0.0486,$$

$$F_0 = \frac{s_1^2}{s_2^2} = 4.01.$$

由于 F_0 = 4.01> $F_{0.05}(8,7)$ = 3.73, 故拒绝 H_0 , 即认为抽样结果可以支持工厂采用新工艺.

第十题:

分析 若令 X 表示交通事故发生时的星期几数,设 $p_i = P\{X=i\}$, $i=1,2,\cdots$, 7. 交通事故与星期几无关,即需要检验假设

$$H_0: p_i = \frac{1}{7}, i = 1, 2, \dots, 7.$$

显然这是一个利用x²检验法在大样本下拟合有限离散总体的分布问题.

解 记X为交通事故发生时的星期几数,并设 $p_i = P\{X=i\}$, $i=1,2,\cdots,7$. 建立假设

$$H_0: p_i = \frac{1}{7}, i = 1, 2, \dots, 7,$$

这里 r = 7, $n_1 = 36$, $n_2 = 23$, $n_3 = 29$, $n_4 = 31$, $n_5 = 34$, $n_6 = 60$, $n_7 = 25$, $p_{i0} = \frac{1}{7}$, $i = 1, 2, \dots, 7$, n = 238. 计算可得

$$\chi_0^2 = \sum_{i=1}^r \frac{(N_i - np_{i0})^2}{np_{i0}} = 26.941.$$

给定 $\alpha = 0.05$, $\chi^2_{0.05}(6) = 12.592$, 由于 $\chi^2_0 = 26.94 > \chi^2_{0.05}(6) = 12.592$, 故拒绝 H_0 , 即认为交通事故的发生与星期几有关.