2020/5/28 测试二 (2020.5)

测试二 (2020.5)

选择	题 (总分: 50.00)
1.	包含n个物品的背包问题中,所有物品集合的子集共有多少? A 2^n B n^2 C n^3 D n! 正确答案: A
2.	以下说法正确的是A分治法计算乘法时,存在性能超过传统方法的临界点。 B分治法计算乘法始终比传统方法要快 C分治法计算乘法始终要比传统方法要慢。 D分治法计算乘法的效率是平方的。正确答案: A
3.	按照字典序生成的排列中,237654后面的是哪个? A 327654 B 247653 C 237645 D 243567 正确答案: D
4.	约瑟夫斯问题J(n,2)中,如果n为11,则结果为: A 5 B 7 C 11 D 1 正确答案: B
5.	哪一种树的遍历算法在遍历二叉树时会产生一个有序列表? A 都不能 B 中序遍历 C 先序遍历 D 后序遍历 正确答案: B
6.	合并排序的最优效率是在什么情况下出现?A 合并时,有一个数组的元素始终比另一个数组的元素大或者小B 合并时,两个数组的元素大小交错。C 合并时,有一个数组在合并到一半时变成空的。D 无法判断。 正确答案: A
7.	快包算法的最差效率出现在什么情况下? A 所有点分布在一条直线的一侧 B 所有点在一条直线上 C 所有点间的距离不同 D 所有点分布在正圆的圆弧上 正确答案: D
8.	二分查找只适用()存储结构。 A 栈 B 顺序 C 任意 D 堆 正确答案: B

2020/5/28 测试二 (2020.5)

9. 不可以采用预排序方法提高问题算法效率的是_

A 0-1背包

- B 元素唯一性判定
- C 查找问题
- D 模式计算 正确答案: A
- **10**. 对于AVL树说法正确的是
 - A AVL树是一棵满二叉树
 - B AVL树是一棵完全二叉树
 - C AVL树是一棵二叉查找树
 - D 以上说法都不正确 正确答案: C

判断题 (总分: 10.00)

- 1. 从时间效率来看,使用俄式乘法计算n x m和m x n没有区别。 正确答案: 错误
- 2. 合并排序是一个稳定的算法。 正确答案: 正确

简答题 (总分: 40.00)

1. 生成子集 (分值: 10.00)

分别使用减一法和位串法对集合{a1,a2,a3,a4}生成所有子集。

参考答案:

n					subsets			
0	Ø							
1	Ø	$\{a_1\}$						
2	Ø	$\{a_1\}$	$\{a_2\}$	$\{a_1, a_2\}$				
3	Ø	$\{a_1\}$	$\{a_2\}$	$\{a_{1},a_{2}\}$	$\{a_3\}$	$\{a_1, a_3\}$	$\{a_2, a_3\}$	$\{a_1, a_2, a_3\}$
4	Ø	$\{a_1\}$	$\{a_2\}$	$\{a_{1},a_{2}\}$	$\{a_3\}$	$\{a_1, a_3\}$	$\{a_2, a_3\}$	$\{a_1, a_2, a_3\}$
	$\{a_4\}$	$\{a_1,a_4\}$	$\{a_2,a_4\}$	$\{a_1, a_2, a_4\}$	$\{a_3, a_4\}$	$\{a_1, a_3, a_4\}$	$\{a_2, a_3, a_4\}$	$\{a_1, a_2, a_3, a_4\}$

位串法:

0000	0001	0010	0011	0100	0101	0110	0111
Ø	{a4}	{a3}	{a3,a4}	{a2}	{a2,a4}	{a2,a3}	{a2,s3,a4}
1000	1001	1010	1011	1100	1101	1110	1111
{a1}	{a1,a4}	{a1,a3}	{a1,a3,a4}	{a1,a2}	{a1,a2,a4}	{a1,a2,a3}	{a1,a2,a3,a 4}

2020/5/28 测试二 (2020.5)

2. 合并排序递推式 (分值: 20.00)

建立合并排序的最优和最差键值比较次数的递推关系式,并分别进行求解,假设n=2^k。

参考答案:

最优情况写的递推式为

$$C_w(n) = 2C_w(n/2) + n - 1$$
 for $n > 1$ (and $n = 2^k$), $C_w(1) = 0$.

求解递推式可得

$$\begin{array}{lll} C_w(2^k) & = & 2C_w(2^{k-1}) + 2^k - 1 \\ & = & 2[2C_w(2^{k-2}) + 2^{k-1} - 1] + 2^k - 1 = 2^2C_w(2^{k-2}) + 2 \cdot 2^k - 2 - 1 \\ & = & 2^2[2C_w(2^{k-3}) + 2^{k-2} - 1] + 2 \cdot 2^k - 2 - 1 = 2^3C_w(2^{k-3}) + 3 \cdot 2^k - 2^2 - 2 - 1 \\ & = & \dots \\ & = & 2^iC_w(2^{k-i}) + i2^k - 2^{i-1} - 2^{i-2} - \dots - 1 \\ & = & \dots \\ & = & 2^kC_w(2^{k-k}) + k2^k - 2^{k-1} - 2^{k-2} - \dots - 1 = k2^k - (2^k - 1) = n\log n - n + 1. \end{array}$$

最差情况下递推式为

$$C_b(n) = 2C_b(n/2) + n/2$$
 for $n > 1$ (and $n = 2^k$), $C_b(1) = 0$.

求解递推式

$$\begin{split} C_b(2^k) &= 2C_b(2^{k-1}) + 2^{k-1} \\ &= 2[2C_b(2^{k-2}) + 2^{k-2}] + 2^{k-1} = 2^2C_b(2^{k-2}) + 2^{k-1} + 2^{k-1} \\ &= 2^2[2C_b(2^{k-3}) + 2^{k-3}] + 2^{k-1} + 2^{k-1} = 2^3C_b(2^{k-3}) + 2^{k-1} + 2^{k-1} + 2^{k-1} \\ &= \dots \\ &= 2^iC_b(2^{k-i}) + i2^{k-1} \\ &= \dots \\ &= 2^kC_b(2^{k-k}) + k2^{k-1} = k2^{k-1} = \frac{1}{2}n\log n. \end{split}$$

2020/5/28 测试二 (2020.5)

堆 (分值: 10.00) 3.

- (1) 用自底向上算法为为序列{4, 1, 3, 2, 16, 9, 10, 14, 8, 7}构造一个堆。
- (2) 使用堆排序对列表 {54321} 升序排序

参考答案:

(2)

Heap Construction

3 1 3 5 2 1

$\mathbf{5}$ 3 1 4 5

Maximum Deletions

 $\mathbf{2}$

1