Лабораторна робота №2.2

Запам'ятовуючі пристрої. Дослідження тригерів

Мета роботи:

- дослідження структури та алгоритмів роботи асинхронних та синхронних тригерів;
- дослідження функцій переходів та збудження основних типів тригерів;
- дослідження можливості взаємозаміни тригерами різних типів.

Прилади та елементи:

	Поле приладів
джерело живлення TTL + 5 B;	Source
заземлення;	Source
двохпозиційні перемикачі;	Basic
логічні пробники;	Indicators
двохвходові елементи "І", "І-НЕ", "АБО", "АБО-НЕ"	Misc digital
RS-тригер, JK-тригер, D-тригер	Misc digital

Порядок виконання роботи

1. Дослідження RS-тригера

S=0 ;R=1

X1: Q=0; X2: ~Q=1

3. R=0; S=1

X1: Q=1; X2: ~Q=0

2. S=0; R=0

X1: Q =0; X2: ~Q=1

4. R=0; S=0

X1: Q=1; X2: ~Q=0

R	S	Q_t
1	0	0
0	0	$Q_t = 0$
0	1	1
0	0	$Q_t = 1$

2. Дослідження RS -тригер

$$S = 1; R = 0$$

X1: Q=0; X2: ~Q=1

X1: Q=0; X2: ~Q=1

X1: Q=1; X2: ~Q=0

$$S = 1; R = 1$$

X1: Q=1; X2: ~Q=0

Переконалися в тому, що:

- при S = 1, R = 0 тригер встановлюється в стан Q = 0;
- при переході до S = 1, R = 1 тригер зберігає попередній стан Q = 0;
- при S = 0, R = 1 тригер встановлюється в стан Q = 1;
- при переході до S = 1, R =1 тригер зберігає попередній стан Q = 1.

Таблиця функцій збудження			
S	R	Q	
1	0	0	
1	1	$Q_t = 0$	
0	1	1	
1	1	Q_t =1	

3. Дослідження ЈК-тригера

1. при S = 0, R = 1 тригер встановлюється в стан Q = 1незалежно від стану інших входів;

2. при S = 1, R = 0 тригер встановлюється в стан Q = 0 незалежно від стану інших входів.

Для того, щоб скласти часові діаграми роботи тригера для усіх можливих комбінацій Jt, Kt, Qt, застосуємо *Logic Analyzer:*

Використаемо такі параметри для Logic Analyzer:

Встановимо S=1; D=1 та модифікуємо схему:

С
J
K
Q

Таблиця 4.4			
$\boldsymbol{Q_t}$	Q_{t+1}	J	K
0	0	X	0
0	1	0	1
1	0	1	0
1	1	1	Х

4. Дослідження ЈК-тригера в лічильному режимі (Т-тригер)

Зберемо схему та під'єднаємо Logic Analyzer:

Отримаємо часові діаграми:

Таблиця відношень				
С	1	0	1	0
Q	0	0	1	1

5. Дослідження ЈК-тригера, побудованого на базі логічних елементів

Побудуємо схему та підключимо Logic Analyzer:

Отримуємо часову діаграму роботи тригера:

Таблиця відповідності				
С	1	0	1	0
Q1	0	0	1	1
Q2	1	0	0	1

Можемо зробити висновок:

C=0 => Q2 змінюється на протилежний, Q1 залишається незмінним

C=1 => Q1 змінюється на протилежний, Q2 залишається незмінним

6. Дослідження D-тригера

Побудуємо схему для D-тригера:

S=0; R=1 X1: Q=1; X2:~Q=2 S=1; R=0 X1: Q=0; X2:~Q=1

Незалежно від стану інших входів, тригери зберігають свої значення:

Для складання часових діаграм модифікуємо схему для більш точних вимірювань:

Таблиця 4.6			
Q_t	Q_{t+1}	D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

Перевірили справедливість таблиці функцій збудження

7. Дослідження роботи D-тригера в лічильному режимі

Складемо схему для дсолідження роботи D-тригера в лічильному режимі:

Для дослідження на часові діаграми модифікуємо схему:

Висновок: у лабораторній роботі досліджувалися запам'ятовуючі пристрої, зокрема RS-тригери, JK-тригери, та D-тригери. Через ретельне аналізування їх функцій переходів та збудження, було підтверджено їхню працездатність та можливість використання в різних схемах. Експерименти показали, що кожен тип тригера має свої унікальні особливості та застосування, що дозволяє конструювати складні логічні пристрої та лічильники.