State Space Representation

Fadi Younes

a state space representation is a linear representation of a dynamic system either in a continuous or discrete form.

The most general time-continuous linear dynamic system has the following form:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$
$$y = C(t)x(t) + D(t)u(t)$$

where:

t denotes time

the first equation is called the *state equation* and the second is called the *output equation*

x(t) is the state vector, u(t) is the input vector, and y(t) is the output vector

Note: x(t) is called the state vector because:

- Future output depends only on current state and future input
- Future output depends on past input only through current state
- State summarizes effect of past inputs on future output (like the memory of the system)

A, B, C and D are matrices where:

A(t) is the dynamics matrix

B(t) is the input matrix

C(t) is the output matrix

D(t) is the feedthrough matrix

What are the state variables?

the minimum set of variables that fully describe (enough information to predict the future behavior) the system.

The first step of representing a system is to select a state vector, which needs to be chosen according to the following:

1- A minimum number of state variables must be selected as components of the state vector.

How do we know what is the **minimum number**?

The minimum number is the order of the differential equation describing the system.

If we have a TF (transfer function) the the minimum number is the order of the denominator of the transfer function after canceling common factors in the numerator and denominator

2- The minimum number of state variables must be **linearly independent**.

Converting from state-space to a transfer function

as the above representation of the state space:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$
 $y = C(t)x(t) + D(t)u(t)$

we take the Laplace transformation (integral transform that converts a function of a real variable (time here) to a function of a complex variable):

$$sX(s) = AX(s) + BU(s)$$

 $Y(s) = CX(s) + DU(s)$

then solving for X(s):

$$X(s) = (sI - A)^{-1}BU(s)$$

where I is the identity matrix.

Then, substituting this equation into Y(s) equation above we get:

$$Y(s) = [C(sI - A)^{-1}B + D]U(s)$$

and this is the transfer function we have for our state space representation.

How do we benefit from state-space representation?

1- Stability

the state space model is **stable** if all eigenvalues of the matrix A are negative real numbers or the real part of the complex eigenvalues are negative. If at least one **eigenvalue** has a positive real part, then the system is unstable.

2- Controllability

A continuous time-invariant linear state-space model is **controllable** if and only if:

$$rank[\mathbf{B} \quad \mathbf{AB} \quad \mathbf{A}^2 \mathbf{B} \quad \dots \quad \mathbf{A}^{n-1} \mathbf{B}] = n$$

where rank is the number of linearly independent rows in a matrix, and where n is the number of state variables.

3- Observability

A continuous time-invariant linear state-space model is **observable** if and only if:

$$\operatorname{rank} \left[egin{array}{c} \mathbf{C} \ \mathbf{CA} \ dots \ \mathbf{CA}^{n-1} \end{array}
ight] = n.$$

- 2- Can be applied to a non-linear system
- 3- Can be applied to time invariant systems

4- Can be applied to multiple input multiple output systems known as (MIMO) systems.

References

- 1-https://www.engbookspdf.com/uploads/pdf-books/ControlSystemsEngineering7thEditionbyNise-1.pdf
- 2-http://www.circuitstoday.com/state-space-analysis
- $3-https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-30-feedback-control-systems-fall-2010/lecture-notes/MIT16_30F10_lec05.pdf$
- $\hbox{$4$-https://www.youtube.com/watch?v=hpeKrMG-WP0\&t=331s}$