Heuristic Analysis for Planning Project

June 6, 2017

1. OPTIMAL SOLUTION FOR EACH PROBLEM

Problem 1 initial state and goal:

```
Init(At(C1, SFO) \( \Lambda \) At(C2, JFK)
\( \Lambda \) At(P1, SFO) \( \Lambda \) At(P2, JFK)
\( \Lambda \) Cargo(C1) \( \Lambda \) Cargo(C2)
\( \Lambda \) Plane(P1) \( \Lambda \) Plane(P2)
\( \Lambda \) Airport(JFK) \( \Lambda \) Airport(SFO))

Goal(At(C1, JFK) \( \Lambda \) At(C2, SFO))
```

An optimal plan for Problem 1:

```
Load(C1, P1, SFO)
Fly(P1, SFO, JFK)
Unload(C1, P1, JFK)
Load(C2, P2, JFK)
Fly(P2, JFK, SFO)
Unload(C2, P2, SFO)
```

Problem 2 initial state and goal:

```
Init(At(C1, SFO) Λ At(C2, JFK) Λ At(C3, ATL)

Λ At(P1, SFO) Λ At(P2, JFK) Λ At(P3, ATL)

Λ Cargo(C1) Λ Cargo(C2) Λ Cargo(C3)

Λ Plane(P1) Λ Plane(P2) Λ Plane(P3)

Λ Airport(JFK) Λ Airport(SFO) Λ Airport(ATL))

Goal(At(C1, JFK) Λ At(C2, SFO) Λ At(C3, SFO))
```

An optimal plan for Problem 2:

```
Load(C3, P3, ATL)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

Load(C1, P1, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)

Load(C2, P2, JFK)

Fly(P2, JFK, SFO)

Unload(C2, P2, SFO)
```

Problem 3 initial state and goal:

```
Init(At(C1, SFO) Λ At(C2, JFK) Λ At(C3, ATL) Λ At(C4, ORD)

Λ At(P1, SFO) Λ At(P2, JFK)

Λ Cargo(C1) Λ Cargo(C2) Λ Cargo(C3) Λ Cargo(C4)

Λ Plane(P1) Λ Plane(P2)

Λ Airport(JFK) Λ Airport(SFO) Λ Airport(ATL) Λ Airport(ORD))

Goal(At(C1, JFK) Λ At(C3, JFK) Λ At(C2, SFO) Λ At(C4, SFO))
```

An optimal plan for Problem 3:

```
Load(C2, P2, JFK)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P2, ORD, SFO)

Load(C1, P1, SFO)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Unload(C4, P2, SFO)

Unload(C3, P1, JFK)

Unload(C1, P1, JFK)

Unload(C2, P2, SFO)
```

2. ANALYSIS OF UNINFORMED PLANNING ALGORITHMS

This section compares three uninformed planning algorithms, breadth_first_search, depth_first_graph_search and greedy_best_first_graph_search, for each problem.

As seen in Figure 1a, 1b and 1c, breadth_first_search found the optimal solution for each problem. However, it is more time-consuming and requires much more memory. According to Norvig and Russell's textbook Artificial Intelligence: A Modern Approach (3e) (AIMA), space complexity is a bigger problem for breadth_first_search than is time complexity. Therefore, while I'd recommend this type of search for relatively simple problems like these Air Cargo problems, I would think twice for much more complex problems that have very large branching factors.

depth_first_graph_search is less costly in terms of time and space usage for these three problems, but the plan lengths are extremely long, especially for problems 2 and 3. None of the solutions are optimal, just as the AIMA textbook mentions that depth_first_search is not optimal. I would not recommend using it for these not-so-complicated problems.

greedy_best_first_graph_search appears to be a nice compromise. It is much faster than breadth_first_search. Without any heuristic function, it was able to find an optimal plan for problem 1, and the plan lengths for the other two problems are not so bad compared to depth_first_graph_search. As mentioned in the AIMA textbook, greedy_best_first_graph_search will perform even better with a good heuristic function. Therefore, while I do not recommend greedy_best_first_graph_search for these three problems as it can't find the optimal solution most of the time, it can be used instead of breadth_first_search for much more complex problems to save time and memory while achieving reasonably good results.

Figure 1a – Metrics of breadth_first_search, depth_first_graph_search and greedy_best_first_graph_search for Problem 1

	breadth_first_search	depth_first_graph_searc h	greedy_best_first_graph _search
Node expansions	43	12	7
Goal tests	56	13	9
Time elapsed (seconds)	0.0511	0.0225	0.0099
Plan length	6	12	6
Optimality of solution	Yes	No	Yes

Figure 1b – Metrics of breadth_first_search, depth_first_graph_search and greedy_best_first_graph_search for Problem 2

	breadth_first_search	depth_first_graph_searc h	greedy_best_first_graph _search
Node expansions	3343	582	998
Goal tests	4609	583	1000
Time elapsed (seconds)	14.9	3.5	2.9
Plan length	9	575	21
Optimality of solution	Yes	No	No

Figure 1c – Metrics of breadth_first_search, depth_first_graph_search and greedy_best_first_graph_search for Problem 3

	breadth_first_search	depth_first_graph_searc h	greedy_best_first_graph _search
Node expansions	14663	627	5578
Goal tests	18098	628	5580
Time elapsed (seconds)	104.7	3.6	17.9
Plan length	12	596	22
Optimality of solution	Yes	No	No

3. ANALYSIS OF A* SEARCHES USING HEURISTICS

This section compares two A* planning searches using "ignore-preconditions" and "level-sum" from the Planning Graph. Both searches achieve an optimal solution. However, A* search with "ignore-preconditions" is much faster. Although it has more node expansions than A* search with "level-sum", the space complexity is not so bad. For these problems, I would recommend A* search with "ignore-preconditions".

Figure 2a – Metrics of A^* planning searches using "ignore-preconditions" and "level-sum" for Problem 1

	A* search with "ignore- preconditions"	A* search with "level-sum"
Node expansions	41	11
Goal tests	43	13
Time elapsed (seconds)	0.0597	0.6211
Plan length	6	6
Optimality of solution	Yes	Yes

Figure 2b – Metrics of A^* planning searches using "ignore-preconditions" and "level-sum" for Problem 2

	A* search with "ignore- preconditions"	A* search with "level-sum"
Node expansions	1450	86
Goal tests	1452	88
Time elapsed (seconds)	4.8	39.5
Plan length	9	9
Optimality of solution	Yes	Yes

Figure 2a – Metrics of A^* planning searches using "ignore-preconditions" and "level-sum" for Problem 1

	A* search with "ignore- preconditions"	A* search with "level-sum"
Node expansions	5040	318
Goal tests	5042	320
Time elapsed (seconds)	17.8	196.6
Plan length	12	12
Optimality of solution	Yes	Yes

CONCLUSION: A* searches with heuristics are overall better than the three uninformed searches analyzed in section 1. In particular, A* search with "ignore-preconditions" is faster and requires less memory than breadth_first_search and is able to find the optimal solution. Therefore, A* search with "ignore-preconditions" is the best choice for Air Cargo problems.