BHARAT ACHARYA EDUCATION

Cell: 98204 08217 BharatSir@hotmail.com

Page No: 15

Eg: SPHL ; SP ← HL

Addr. Mode	Flags Affected	Cycles	T-States
Register	None	1	6

15) XCHG

This instruction exchanges the contents of HL pair and DE pair.

Eg: XCHG ; HL ←→ DE

#Please refer Bharat Sir's Lecture Notes for this ...

Addr. Mode	Flags Affected	Cycles	T-States
Register	None	1	4

16) XTHL

This instruction exchanges the DE pair with the contents of location pointed by the SP and SP+1.

Eg: XTHL ; $HL \leftarrow \rightarrow$ [[SP]] and [[SP]+1]

; i.e. if [SP]=2000 then L $\leftarrow \rightarrow$ [2000] and H $\leftarrow \rightarrow$ [2001]

#Please refer Bharat Sir's Lecture Notes for this ...

Addr. Mode	Flags Affected	Cycles	T-States
Register	None	5	16

Arithmetic Group

Addition

1) ADD R

This instruction adds the contents of register R with the accumulator, stores result in the accumulator.

Eg: ADD B ; $A \leftarrow A + B$

Addr. Mode	Flags Affected	Cycles	T-States
Register	All	1	4

2) ADD M

This instruction adds the contents of the memory location pointed by HL, with the accumulator, and stores the result in the accumulator.

Eg: ADD M ; $A \leftarrow A + [[HL]]$

Addr. Mode	Flags Affected	Cycles	T-States
Indirect	All	2	7

3) ADI 8-bit data

This instruction adds the immidiate data with the accumulator, and stores the result in the accumulator.

Eg: ADI 25 ; $A \leftarrow A + 25$

Addr. Mode	Flags Affected	Cycles	T-States
Immediate	All	2	7

4) ADC R

This instruction adds the contents of the register R with the accumulator, and also adds the carry flag, and stores the result in the accumulator. It is used while adding large numbers.

Eg: ADD B ; $A \leftarrow A + B + Cy$

Addr. Mode	Flags Affected	Cycles	T-States
Register	All	1	4

5) ADC M

Cell: 98204 08217 BharatSir@hotmail.com

This instruction adds the contents of the memory location pointed by HL, with the accumulator, and also adds the carry flag, and stores the result in the accumulator.

Eg: ADD M ; A ← A + [[HL]] + Cy

Addr. Mode	Flags Affected	Cycles	T-States
Indirect	All	2	7

6) ACI 8-bit data

This instruction adds the immidiate data with the accumulator, and also adds the carry flag, and stores the result in the accumulator.

Eg: ACI 25 ; A ← A + 25 +Cy

Addr. Mode	Flags Affected	Cycles	T-States
Immediate	All	2	7

Subtraction

Simillarly subtraction is also done as above.

- 7) SUB R
- 8) SUB M
- 9) SUI 8-bit data
- 10) SBB R
- 11) SBB M
- 12) SBI 8-bit data

Increment

13) INR R

This instruction increments the contents of the specified register.

The incremented value is stored back in the same register.

Eg: INR B ; $B \leftarrow B + 1$

Addr. Mode	Flags Affected	Cycles	T-States
Register	All except carry	1	4

14) INR M

This instruction increments the contents of memory location pointed by HL pair.

The incremented value is stored back at the same location.

Eg: INR M ; $M \leftarrow M + 1$ i.e. [[HL]] \leftarrow [[HL]] +1

Addr. Mode	Flags Affected	Cycles	T-States
Indirect	All except carry	3	10

15) INX Rp

This instruction increments the contents of the specified register pair.

The incremented value is stored back in the same register **pair**.

Eg: INX BC; BC \leftarrow BC + 1 i.e. if [BC]=3000 then [BC] becomes 3001.

Addr. Mode	Flags Affected	Cycles	T-States
Register	NONE	1	6

Decrement

16) DCR R

This instruction decrements the contents of the specified register.

The decremented value is stored back in the same register.

Eg: DCR B ; B \leftarrow B + 1

BHARAT ACHARYA EDUCATION

Cell: 98204 08217 BharatSir@hotmail.com

Register	All except carry	1	4
----------	------------------	---	---

17) DCR M

This instruction decrements the contents of memory location pointed by HL pair.

The decremented value is stored back at the same location.

Eg: DCR M; $M \leftarrow M - 1$ i.e. [[HL]] \leftarrow [[HL]] - 1

Addr. Mode	Flags Affected	Cycles	T-States
Indirect	All except carry	3	10

18) DCX Rp

This instruction decrements the contents of the specified register **pair**.

The decremented value is stored back in the same register **pair**.

Eg: DCX BC; BC \leftarrow BC - 1 i.e. if [BC]=3001 then [BC] becomes 3000.

Addr. Mode	Flags Affected	Cycles	T-States
Register	NONE	1	6

Others

19) DAD Rp

This instruction adds the contents of the given register pair with HL pair.

The result is stored in the HL pair.

Eg: DAD B ; HL ← HL + BC

Addr. Mode	Flags Affected	Cycles	T-States
Register	Only Carry	3	10

20) DAA

This instruction is used to get the answer in BCD form.

This instruction does the Following actions:

#Please refer Bharat Sir's Lecture Notes for this ...

Addr. Mode	Flags Affected	Cycles	T-States
Implied	ALL	1	4