TRANSFORMASI LAPLACE

Oleh Dessy Irmawati

Transformasi Laplace

- A. Mendefinisikan transformasi laplace
- B. Menentukan fungsi dasar transformasi laplace menggunakan definisi
- C. Menentukan pernyataan tertentu transformasi laplace menggunakan theorema
- D. Menentukan transformasi laplace dari fungsi tertentu
- E. Menentukan inverse transformasi laplace menggunakan formula
- F. Menentukan inverse transformasi laplace dari pernyataan tertentu dan grafik

- G. Menentukan inverse transformasi laplace menggunakan fraksi parsial dan teorema konvolusi
- H. Menggunakan transformasi laplace untuk menyelesaikan masalah nilai awal dan masalah nilai batas

Pendahuluan

Persamaan homogen

$$a\frac{d^2y}{dt^2} + b\frac{dy}{dt} + cy = 0$$

Persamaan nonhomogen

$$a\frac{d^2y}{dt^2} + b\frac{dy}{dt} + cy = f(t)$$

jika
$$f(t) = \begin{cases} t, 0 \le t < 1 \\ 2-t, t \ge 1 \end{cases}$$

Definisi transformasi laplace

• Diberikan f(t) dengan batas [0,∞]. Maka

$$\int_{0}^{\infty} e^{-st} f(t)dt \dots 8.1$$

• Disebut transformasi laplace dari f(t). Transformasi laplace disimbolkan oleh $\mathcal{I}\{f(t)\}$ dimana \mathcal{I} adalah operator

$$\int_{0}^{\infty} e^{-st} f(t)dt = \lim_{T \to \infty} \int_{0}^{T} e^{-st} f(t)dt$$

Jika limit ada maka integral 8.1 adalah fungsi s. Jadi integral ditandai dengan F(s) yang dapat dituliskan sebagai berikut

$$\mathcal{I}\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt = F(s)$$

Secara umum fungsi yang ditransformasikan menggunakan huruf kecil, sedangkan transformasi laplace nya dituliskan dengan huruf besar.

$$\mathcal{I}(f(t))=F(s)$$
, $\mathcal{I}\{g(t)\}=G(s)$, dan $\mathcal{I}\{y(t)\}=Y(s)$

Fungsi dasar Transformasi laplace

Temukan transformasi laplace dari f(t) = 1
 Solusi

$$L\{1\} = \int_{0}^{\infty} e^{-st} 1 dt = \lim_{T \to \infty} \int_{0}^{T} e^{-st} dt$$

1. Ketika s<0. –st positif untuk t>0. maka

$$\lim_{T \to \infty} \int_{0}^{T} e^{-st} dt = \lim_{T \to \infty} \left[\frac{e^{-st}}{-s} \right]_{0}^{T} = \lim_{T \to \infty} \left[-\frac{1}{s} e^{-sT} + \frac{1}{s} \right] = \infty$$

yang mana divergen

2. Ketika s = 0, maka

$$\lim_{T \to \infty} \int_{0}^{T} dt = \lim_{T \to \infty} [t]_{0}^{T} = \lim_{T \to \infty} T = \infty$$

3. Ketika s>0, -st negatif untuk t>0. maka

$$\lim_{T \to \infty} \int_{0}^{T} e^{-st} dt = \lim_{T \to \infty} \left[\frac{e^{-st}}{-s} \right]_{0}^{T} = \lim_{T \to \infty} \left[-\frac{1}{s} e^{-sT} + \frac{1}{s} \right] = \frac{1}{s}$$

Temukan transformasi laplace dimana a adalah konstanta dan n non negatif integer

(a)
$$f(t) = a$$

$$(b) f(t) = t$$

(c)
$$f(t) = t^n$$

(d)
$$f(t) = e^{at}$$

solusi

(a)
$$L\{a\} = \int_{0}^{\infty} e^{-st} a dt = a \int_{0}^{\infty} e^{-st} dt = a \left[\frac{e^{-st}}{-s} \right]_{0}^{\infty} = \frac{a}{s}, s > 0$$
 oleh karena itu

$$L\{a\} = \frac{a}{s}, s > 0$$
(b)
$$L\{t\} = \int_{0}^{\infty} e^{-st} t dt = \left[\frac{te^{-st}}{-s}\right]_{0}^{\infty} + \frac{1}{s} \int_{0}^{\infty} e^{-st} dt = \frac{1}{s} \left[\frac{e^{-st}}{-s}\right]_{0}^{\infty} = \frac{1}{s^{2}}$$

$$L\{t\} = \frac{1}{s^2}, s > 0$$

(C)
$$L\{t^n\} = \int_0^\infty e^{-st} t^n dt = \left[-\frac{t^n e^{-st}}{s} \right]_0^\infty + \frac{n}{s} \int_0^\infty e^{-st} t^{n-1} dt$$
$$= \frac{n}{s} \int_0^\infty e^{-st} t^{n-1} dt$$
$$= \left(\frac{n}{s} \right) L\{t^{n-1}\}$$

$$L\{t^n\} = \left(\frac{n}{s}\right)L\{t^{n-1}\}$$

$$L\{t^{n-1}\} = \left(\frac{n-1}{s}\right)L\{t^{n-2}\},\,$$

$$L\{t^{n-2}\} = \left(\frac{n-2}{s}\right)L\{t^{n-3}\}$$

•

•

•

$$L\{t^2\} = \left(\frac{2}{s}\right)L\{t\}$$

$$L\{t\} = \left(\frac{1}{s}\right)L\{1\}$$

$$L\{1\} = \frac{1}{s}$$

$$L\{t^n\}n-1=\left(\frac{n}{s}\right)L\{t^{n-1}\},\,$$

$$= \left(\frac{n}{s}\right)\left(\frac{n-1}{s}\right)L\{t^{n-2}\}$$

$$= \left(\frac{n}{s}\right) \left(\frac{n-1}{s}\right) \left(\frac{n-2}{s}\right) L\{t^{n-3}\}$$

•

•

$$= \left(\frac{n!}{s^n}\right) L\{1\}$$

$$= \left(\frac{n!}{s^n}\right)\left(\frac{1}{s}\right)$$

$$=\frac{n!}{s^{n+1}}$$

$$L\{t^n\} = \left(\frac{n!}{s^{n+1}}\right), n = 0,1,2,...$$

$L\{f(t)\} = F(s)$		
f(t)	F(s)	Kondisi s
а	a/s	s>0
t ⁿ , n = 0,1,2,	N!/s ⁿ⁺¹	s>0
e ^{at}	1/(s-a)	s>a
Sin at	a/(s²+a²)	s>0
Cos at	s/(s ² +a ²)	s>0
Sinh at	a/(s²-a²)	s> a
Cosh at	s/s²-a²)	s> a

soal

1) Cari L{f(t)} untuk setiap f(t):

(a)
$$f(t) = 2$$

(b)
$$f(t) = e^{-2t}$$

(c)
$$f(t) = t$$

(d)
$$f(t) = t^3$$

(e)
$$f(t) = \cos 4t$$

(f)
$$f(t) = \sinh(2/3)t$$

- 2) Gunakan tabel sebelumnya untuk menemukan transformasi laplace
 - (a) $L\{1/2\}$
 - (b) $L\{t^2\}$
 - (c) $L\{e^{(1/2)t}\}$
 - (d) L{cos t}
 - (e) L{sin 2t}
 - (f) L{cosh 3t}

3) Temukan transformasi laplace dari fungsi berikut:

a.
$$f(t) = 3t + 4$$

b.
$$f(t) = 2\cos \omega t$$

c.
$$f(t) = \cos 2(t-\pi)$$

$$d. f(t) = \sin 3t \cos 3t$$