P2 Find and plot all $z \in \mathbb{C}$ such that $z^3 = -1$.

Answer: We have $z^3 = -1 \implies z^3 = \cos \pi + i \sin \pi$, so by the *n*th roots formula, the roots are:

$$z_1 = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$z_2 = \cos\left(\frac{\pi}{3} + \frac{2\pi}{3}\right) + i\sin\left(\frac{\pi}{3} + \frac{2\pi}{3}\right) = -1$$

$$z_3 = \cos\left(\frac{\pi}{3} + \frac{4\pi}{3}\right) + i\sin\left(\frac{\pi}{3} + \frac{4\pi}{3}\right) = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

P4 Define $u: \mathbb{R}^2 \to \mathbb{R}$ by $u(x,y) = 4x^3y - 4y^3x - 2x$.

(a) Show that u is a harmonic function.

Answer: We have $u_x = 12x^2y - 4y^3 - 2$ and $u_y = 4x^3 - 12xy^2$, then $u_{xx} = 24xy$ and $u_{yy} = -24xy$. Then $\Delta u = u_{xx} + u_{yy} = 0$ and therefore u is harmonic.

(b) Find a harmonic conjugate v for u.

Answer: By Cauchy-Riemann, v must satisfy $u_x = v_y \implies v = \int 12x^2y - 4y^3 - 2dy = -y^4 + 6y^2x^2 - 2y + C(x) \implies v_x = 12xy^2 + C'(x)$. Again by Cauchy-Riemann, v must also satisfy $u_y = -v_x \implies v_x = -4x^3 + 12xy^2$. Then we have $C'(x) = -4x^3 \implies C(x) = -x^4$ and therefore $v(x,y) = -y^4 + 6y^2x^2 - 2y - x^4$ by substitution.

P6 (a) Find
$$\frac{1}{2\pi i} \int_{C_2(0)} \frac{[\text{Re}(z)]^2}{z} dz$$
.

Answer: We have
$$\gamma(t) = 2e^{it}$$
 for $t \in [0, 2\pi]$, then $\int_{C_2(0)} \frac{[\text{Re}(z)]^2}{z} dz = \int_0^{2\pi} f(\gamma(t))\gamma'(t)dt = \int_0^{2\pi} \frac{[\text{Re}(2e^{it})]^2}{2e^{it}} \cdot 2ie^{it}dt = 4i\int_0^{2\pi} \cos^2(t)dt = 4\pi i$, so $\frac{1}{2\pi i}\int_{C_2(0)} \frac{[\text{Re}(z)]^2}{z}dz = \frac{4\pi i}{2\pi i} = 2$.

(b) Find
$$\int_{\gamma} \frac{2z+1}{e^{\pi z}-1} dz$$
, where γ is the pictured path.

Answer: Let $f = \frac{2z+1}{e^{\pi z}-1}$. We can start by finding the singularities f by solving $e^{\pi z}-1=0 \implies z_0=0,2i$. Then, by Proposition \bigstar , we have simple poles at both 0 and 2i. We can now find their residues as follows:

$$\begin{aligned} & \operatorname{Res}(f,0) = \lim_{z \to 0} z f(z) = \lim_{z \to 0} \frac{z(2z+1)}{e^{\pi z} - 1} = \frac{1}{\pi} \\ & \operatorname{Res}(f,2i) = \lim_{z \to 2i} (z-2i) f(z) = \lim_{z \to 2i} \frac{(z-2i)(2z+1)}{e^{\pi z} - 1} = \frac{1}{\pi} + \frac{4i}{\pi} \end{aligned}$$

$$\int_{\gamma} f(z)dz = 2\pi i \left(\frac{1}{\pi} + \frac{1}{\pi} + \frac{4i}{\pi}\right) = \frac{2\pi i (2+4i)}{\pi} = -8 + 4i.$$

P8 Use residue theory to show that $\int_{-\infty}^{\infty} \frac{\cos(2x)}{x^2 + 1} dx = \pi e^{-2}.$

Answer: For R > 0, let σ_R be the part of $C_R(0)$ in the upper half plane and let $\gamma_R = [[-R, R], \sigma_R]$. Note that $\cos(2z)$ is unbounded, but we have $\cos(2x) = \text{Re}(e^{2ix})$, meaning that we can first evaluate $\int_{-\infty}^{\infty} \frac{e^{2ix}}{x^2 + 1} dx \text{ and take the real part. Let } f(z) = \frac{e^{2iz}}{z^2 + 1}, \text{ then we have } \int_{\gamma_R} f(z) dz = \int_{[-R,R]} f(z) dz + \int_{\sigma_R} f(z) dz.$

We want to first show that $\int_{\sigma_R} f(z)dz \to 0$. Let $L = \operatorname{length}(\sigma_R) = \pi R$. For z on σ_R , we have $|f(z)| = \left|\frac{e^{2iz}}{z^2+1}\right| = \frac{|e^{2iz}|}{|z^2+1|} \le \frac{e^{\operatorname{Re}(2iz)}}{||z|^2-1|} \le \frac{e^0}{|R^2-1|} = \frac{1}{R^2-1} = M$ for R large enough. Then by ML-estimate, we have $\left|\int_{\sigma_R} f(z)dz\right| \le ML = \frac{\pi R}{R^2-1} \to 0$ as $R \to \infty$. Therefore $\lim_{R \to \infty} \int_{\sigma_R} f(z)dz = 0$. We will now find $\int_{\gamma_R} f(z)dz$ using Residue Theorem. We have $f(z) = \frac{e^{2iz}}{z^2+1} = \frac{e^{2iz}}{(z-i)(z+i)}$; since -i is not in γ_R , we only need to examine $z_0 = i$, which is a simple pole by Proposition \bigstar . Then $\operatorname{Res}(f,i) = \lim_{z \to i} (z-i)f(z) = \lim_{z \to i} \frac{e^{2iz}}{(z+i)} = \frac{e^{-2}}{2i}$. By Residue Theorem, $\int_{\gamma_R} f(z)dz = 2\pi i\operatorname{Res}(f,i) = \frac{2\pi i e^{-2}}{2i} = \pi e^{-2}$.

Then by substitution we have $\int_{\gamma_R} f(z)dz = \int_{[-R,R]} f(z)dz + \int_{\sigma_R} f(z)dz \implies \pi e^{-2} = \int_{[-R,R]} f(z)dz + 0$ $0 \implies \int_{[-R,R]} f(z)dz = \pi e^{-2} \implies \int_{-\infty}^{\infty} \frac{e^{2iz}}{z^2 + 1}dz = \pi e^{-2}.$ Now we can take the real part, which gives $\operatorname{us} \int_{-\infty}^{\infty} \frac{\cos(2x)}{x^2 + 1}dx = \operatorname{Re} \left(\int_{-\infty}^{\infty} \frac{e^{2iz}}{z^2 + 1}dz \right) = \operatorname{Re}(\pi e^{-2}) = \pi e^{-2}.$

P9 Use the argument principle to find the number of zeroes of $f(z) = z^5 + z^4 + 4z^3 + 10z^2 + 9$ in the first quadrant.

Answer: Let R be sufficiently large such that all zeroes of f(z) is enclosed by the curve $\gamma_R = [[0, R], \sigma_R, [iR, 0]]$ as shown below:

Then, we have

1.
$$f([0,R])$$
: $f(x) = x^5 + x^4 + 4x^3 + 10x^2 + 9$ for $x \in [0,R]$

2.
$$f(\sigma_R)$$
: $f(Re^{it}) = R^5 e^{5it} + R^4 e^{4it} + 4R^3 e^{3it} + 10R^2 e^{2it} + 9 \approx R^5 e^{5it}$ for $t \in [0, \frac{\pi}{2}]$

3.
$$f([iR, 0])$$
: $f(iy) = iy^5 + y^4 - 4iy^3 - 10y^2 + 9 = (y^4 - 10y^2 + 9) + (y^5 - 4y^3)i$ for $y \in [0, R]$

Note that $f(z) \neq 0$ on $\gamma_R = [[0, R], \sigma_R, [iR, 0]]$ since

- 1. $f(z) \ge 9$ on [0, R]
- 2. R was chosen sufficiently large such that $f(z) \neq 0$ on σ_R

3.
$$f(iy) = (y^4 - 10y^2 + 9) + (y^5 - 4y^3)i = (y - 3)(y - 1)(y + 1)(y + 3) + y^3(y - 2)(y + 2)$$
; since Re $f(iy)$ and Im $f(iy)$ have no common zeroes, $f(z) \neq 0$ on $[iR, 0]$

Now we can begin to sketch $f(\sigma_R)$. Since f(x) always returns a real value for $x \in [0, R]$, [0, R] maps to [9, N] on the real axis where N is some large number. Then, since $f(iR) = (R^4 - 10R^2 + 9) + (R^5 - 4R^3)i \approx R^4 + R^5i \approx R^5i$, we also know that σ_R ends at some point in the first quadrant, near the positive imaginary axis. Then since $f(Re^{it}) \approx R^5e^{i(5t)}$, $t \in [0, \frac{\pi}{2}] \implies 5t \in [0, \frac{5\pi}{2}]$, σ_R is mapped to a circular path that wraps around the origin once and ends near the positive imaginary axis as shown below:

We can now use a sign chart to find the map of [iR, 0]:

y =	(0,1)	(1, 2)	(2,3)	(3,R)
Quadrant	IV	III	II	I
$\operatorname{Re} f(iy)$	+	-	-	+
y-3	-	-	-	+
y-1	-	+	+	+
y+1	+	+	+	+
y+3	+	+	+	+
$\operatorname{Im} f(iy)$	-	-	+	+
y^3	+	+	+	+
y-2	_	-	+	+
y+2	+	+	+	+

Therefore our $f(\gamma_R)$ looks like:

So by the argument principle, since $f(\gamma_R)$ wraps counterclockwise around the origin twice, we have $N_0 - N_\infty = 2$. Since f(z) is analytic, it has no poles, i.e. $N_\infty = 0$. Therefore $N_0 = 2$, i.e. f(z) has two zeroes in the first quadrant.

- P11 Suppose that $f: A_{0,2}(0) \to \mathbb{C}$ is analytic and satisfies $f\left(\frac{1}{n}\right) = \frac{(-1)^n}{n^4}$ for $n=1,2,3,\ldots$ Show that there is a sequence $(z_n)_{n=1}^{\infty}$ with $z_n \to 0$ as $n \to \infty$ such that $f(z_n) \to 2020i$ as $n \to \infty$.

 Answer: Let $g(z) = |z|^4$; since $f\left(\frac{1}{n}\right) = \frac{(-1)^n}{n^4} = \left(\frac{1}{n}\right)^4 = g\left(\frac{1}{n}\right)$, we can define $z_n = e^{\ln \sqrt[4]{2020i} i\pi n}$. Then clearly $z_n \to 0$ as $n \to \infty$ and we also have $g(z_n) \to 2020i$ as $n \to \infty$.

I certify on my honor that I have neither given nor received any help, or used any non-permitted resources, while completing this evaluation.

Signature:

Date: 12/13/2020