10 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ РАЗРАБОТКИ И ПРОИЗВОДСТВА ДИСТАНЦИОННО УПРАВЛЯЕМОГО ИСТОЧНИКА ПИТАНИЯ СВЧ МАГНЕ-ТРОНА СРЕДНЕЙ МОЩНОСТИ

10.1 Характеристика устройства

Проектируемый в дипломном проекте дистанционно управляемый источник питания СВЧ магнетрона используется в целях обеспечения и регулировки режима питания СВЧ установок.

Данное устройство может найти свое применение как в промышленных, так и в бытовых целях.

Источник питания обеспечивает высокоточную регулировку напряжения питания, что является необходимым условием при обеспечении нормального режима работы СВЧ магнетрона.; простоту и удобство его использования и настройки. Также устройство имеет относительно компактную конструкцию и приемлемую цену за предлагаемое качество, что обуславливает его коммерческий успех.

10.2 Формирование отпускной цены нового изделия

Формирование отпускной цены нового изделия, производство которого автоматизировано, осуществляется на основе расчета его полной себестоимости.

1. Расчёт затрат по статье «Основные и вспомогательные материалы», в которую включается стоимость необходимых для изготовления изделия основных и вспомогательных материалов в соответствии с представленной в конструкторской документации дипломного проекта номенклатурой, норм расхода на изделие и рыночных цен, осуществляется по формуле:

$$P_{M} = K_{Tp} \cdot \sum_{i=1}^{n} H_{pi} \cdot \coprod_{OT\Pi i}, [p]$$

$$(10.1)$$

где K_{TP} – коэффициент транспортных расходов ($K_{TP} = 1,15$);

n – номенклатура применяемых материалов;

 ${\rm H}_{{
m P}i}$ — норма расхода материала i-го вида на единицу изделия, нат. ед./шт.;

 $\mathbf{U}_{\mathrm{OT\Pi}i}$ – цена за единицу материала i-го вида, р.

Результат расчета затрат на материалы по формуле (10.1) приведен в таблице 10.1.

Таблица 10.1 – Расчёт затрат на основные и вспомогательные материалы

Наименование	Еп пом	Норма	Пана в	Сумма, р.
материала	Ед. изм.	расхода	Цена, р.	
Сталь нержавеющая	тн 0,001833		13 794,50	25,28
08X22H6T	TH	0,001655	13 /94,30	23,26
Прочие материалы	TH			
Итого	25,28			
Всего с учётом транспортных расходов (К _{ТР} = 1,15)				29,1

Расчёт затрат на покупные комплектующие изделия осуществляется по следующей формуле:

$$P_{\kappa} = K_{\mathrm{Tp}} \cdot \sum_{i=1}^{m} N_{i} \cdot \coprod_{\mathrm{OTII}} [p]., \qquad (10.2)$$

где K_{TD} – коэффициент транспортных расходов (K_{TD} = 1,15);

m – номенклатура применяемых комплектующих;

 N_i – количество комплектующих і-го вида на единицу изделия, нат. ед./шт.

 $\coprod_{\mathtt{отп}i}$ — цена за единицу комплектующего i-го вида, р.

Результат расчета затрат на комплектующие изделия по формуле (10.2) приведен в таблице 10.2.

Таблица 10.2 – Расчёт затрат на комплектующие изделия и полуфабрикаты

Наименование комплектующего	Количество на изделие, шт.	Цена за еди- ницу комплек- тующего, р.	Сумма, р.
1	2	3	4
1. Двусторонняя печатная плата	1	3,5	3,5
2. Диодный мост <i>КВРС5010</i>	2	5,2	10,4
3. Реле SRD-05VDC-SL-C "SON- GLE"	2	2,25	2,50
4. Оптрон <i>4N25</i>	2	1,9	3,8
5. Конденсатор <i>X7R 2220</i> 0,1мкФ	1	2,3	2,3

Продолжение таблицы 10.2.

продолжение таолицы 10.2.		T	1 .
1	2	3	4
6. Конденсатор	1	0,18	0,18
электролитический <i>X5R</i> 10мкФ	-	0,10	0,10
7. Конденсатор	1	3,8	3,8
электролитический ЕСАР 100мкФ	1	3,0	3,0
8. Конденсатор керамический	1	0,27	0,27
<i>NPO 0805</i> 10пФ	1	0,27	0,27
9. Конденсатор	1	4,70	4,70
электролитический ЕСАР 470мкФ	1	4,70	4,70
10. Конденсатор керамический	1	0,19	0,19
$X7R$ 2,2мк Φ	1	0,19	0,19
11. Конденсатор керамический	1	0.50	0.50
$X7R$ $0,1$ мк Φ	1	0,59	0,59
12. Конденсатор керамический	1	0.00	0.00
<i>X7R</i> 5600πΦ	1	0,09	0,09
13. Конденсатор керамический	1	0.10	Λ 10
<i>X7R</i> 45мкФ	1	0,18	0,18
14. Конденсатор керамический	1	0.50	0.50
$X7R$ $0,1$ мк Φ	1	0,59	0,59
15. Конденсатор керамический	1	0.40	0.40
<i>X7R</i> 0,33мкФ	1	0,49	0,49
16. Конденсатор керамический	1	0.00	0.00
<i>X7R</i> 8200πΦ	1	0,09	0,09
17. Конденсатор керамический	1	0.17	0.17
<i>NPO</i> 150πΦ	1	0,17	0,17
18. Микросхема LD111		1.00	1.00
"STMICROELECTRONICS"	1	1,90	1,90
19. Микросхема TNY265 "All		24.70	24.50
POWERINT"	1	24,50	24,50
20. Микроконтроллер EPS8266		70. 70	7 0.70
"Espressif Systems"	1	50,70	50,70
21. ШИМ генератор XY-LPWM			
"Shenzhen Alisi Electronic Technol-	1	35,00	35,00
ogy"	_	,	,
22. Микросхема ТСА785НКLА1			
"SIEMESNS"	1	25	25
2111110110			1

Продолжение таблицы 10.2.

продолжение гаолицы 10.2.			
1	2	3	4
23. Транзистор 2N7002	1	0,56	0,56
24. Транзистор <i>КТ819А</i>	1	3,40	3,40
25. Транзистор <i>IGBT GT60N321</i>	1	35	35
26. Транзистор 2SC2785	2	1,85	1,85
27. Диод Шотки <i>1N5819</i>	2	0,42	0,84
28. Диод <i>FR207</i>	8	0,42	3,36
29. Диод <i>SB3100</i>	3	2,60	7,8
30. Трансформатор <i>TI-EE16-1534</i> " <i>FERYSTER</i> "	2	31,60	63,20
31. Трансформатор <i>ALT3232M- 151-T001</i> " <i>TDK</i> "	1	5,70	5,70
32. Трансформатор <i>F609ABA00GP</i>	1	173,80	173,80
32. Разъём <i>AS-208 (K2414), 220В IEC320</i>	1	5,00	5,00
33. Антенна <i>RP-SMA 2.4G 2DB</i>	1	31,00	31,00
34. Резистор 0805 10 кОм, 1%	1	0,03	0,03
35. Резистор 0805 3,6 кОм, 1%	1	0,03	0,03
36. Резистор 0805 2 кОм, 5%	1	0,03	0,03
37. Резистор 0805 1 кОм, 1%	1	0,03	0,03
38. Резистор 0402 200 кОм, 1%	1	0,02	0,02
39. Резистор 0805 100 кОм, 5%	1	0,03	0,03
40. Резистор 0805 15 кОм, 5%	1	0,03	0,03
41. Резистор 0805 10 кОм, 5%	1	0,03	0,03
42. Резистор 0805 10 Ом, 1%	1	0,03	0,03
43. Резистор 0805 10 кОм, 5%	1	0,03	0,03
44. Резистор 0805 2 кОм, 5%	1	0,03	0,03
45. Резистор 1206 100 кОм, 5%	2	0,04	0,08
46. Резистор 0805 1.5 кОм, 5%	1	0,03	0,03
47. Резистор 0805 56 кОм, 1%	1	0,03	0,03
48. Резистор 0805 91 кОм, 1%	1	0,03	0,03
49. Резистор 0805 240 Ом, 1%	1	0,03	0,03
50. Резистор 0805 110 кОм, 1%	1	0,03	0,03
51. Резистор 0805 56 кОм, 5%	1	0,03	0,03
52. Резистор 0805 82 кОм, 1%	6	0,03	0,18
			•

Продолжение таблицы 10.2.

1	2	3	4
53. Резистор подстроечный 3006P-1-501LF, 500 Ом	1	2,85	2,85
54. Винт М4×6	12	1,14	4,56
55. ВинтМ4×30	4	0,13	0,52
56. Провод <i>LiY</i> 1*0.14	1	0,35	0,35
Итого			481,57
Всего с учетом транспортных расходов ($K_{\rm Tp} = 1,15$)			553,8

Расчёт себестоимости проводится укрупнённым методом из-за того, что количество деталей и узлов, используемых в производстве изделия, велико.

Расчет накладных расходов проводится по формуле:

$$P_{\text{накл}} = \frac{(P_{\text{M}} + P_{\text{K}}) \cdot H_{\text{накл}}}{100} [p]. \tag{10.3}$$

где P_{M} , P_{K} – расходы на материалы и комплектующие изделия, р.;

 $H_{\text{накл}}$ — норматив накладных расходов, % ($H_{\text{накл}}$ = 54 % для радиоэлектронной техники).

Полная себестоимость рассчитывается по формуле:

$$C_{\Pi} = P_{M} + P_{K} + P_{HAKJ}[p].$$
 (10.4)

Расчет плановой прибыли проводится по формуле:

$$\Pi_{\rm e,d} = \frac{C_{\rm n} \cdot P_{\rm np}}{100} [p]. \tag{10.5}$$

где $P_{\pi p}$ – рентабельность продукции, ($P_{\pi p}=25~\%$).

Отпускная цена нового изделия рассчитывается по формуле:

$$\coprod_{\text{отп}} = C_{\Pi} + \Pi_{\text{ед}} [p].$$
(10.6)

Формирование отпускной цены нового изделия представлено в таблице 10.3.

Таблица 10.3. – Формирование отпускной цены нового изделия на основе полной себестоимости

Показатель	Формула/таблица для расчёта	Сумма, р.
1. Материалы	Таблица 10.1	29,1
2. Покупные комплектующие изделия	Таблица 10.2	553,8
3. Накладные расходы	$P_{\text{накл}} = \frac{(29,1+553,8)\cdot 54}{100}$	314,8
4. Полная себестоимость	$C_{\pi} = 29.1 + 553.8 + 314.8$	897,7
5. Плановая прибыль	$\Pi_{\rm eg} = \frac{897,7 \cdot 25}{100}$	224,4
6. Отпускная цена изделия	Ц _{отп} = 897,7 + 224,4	1122,1

По итогу расчетов отпускная цена изделия составляет 1122,1 руб.

10.3 Расчет экономического эффекта от производства и реализации новых изделий

Экономическим эффектом от производства и реализации новых изделий является прирост чистой прибыли, полученной от их реализации.

Расчет прироста чистой прибыли у предприятия—производителя от реализации новых изделий (при формировании цены на основе полных затрат) осуществляется по формуле:

$$\Delta\Pi_{\rm q} = N_{\rm n} \cdot \Pi_{\rm eg} \left(1 - \frac{H_{\rm n}}{100} \right) [p].$$
 (10.7)

где N_{Π} – прогнозируемый годовой объём производства и реализации, шт.

 $\Pi_{E\!A\!J}$ – плановая прибыль, приходящаяся на единицу изделия, р.;

 H_Π — ставка налога на прибыль согласно действующему законодательству, % (H $_\Pi$ = 18 %).

В первый год реализации проекта запланирована разработка и производство первой партии в объеме 500 шт. дистанционно управляемого источника питания СВЧ магнетрона и их реализация.

Используя данные из (табл. 10.3) получим следующее значение для прироста чистой прибыли за первый год реализации проекта:

$$\Delta\Pi_{\text{H}_1} = 500 \cdot 224,4 \cdot \left(1 - \frac{18}{100}\right) = 92004 \text{ p.,}$$

В последующие годы реализации проекта запланирована производство и реализация партий в объеме 1000 шт, ввиду отсутствия затрат на разработку и тестирование.

Тогда прирост чистой прибыли за следующий год по формуле (10.7) составит:

$$\Delta\Pi_{4_{2-3}} = 1000 \cdot 224,4 \cdot \left(1 - \frac{18}{100}\right) = 184008 \text{ p.,}$$

10.4 Расчет инвестиций в производство нового изделия

Инвестиции в разработку нового изделия будем оценивать исходя из затрат на разработку нового изделия инженерами следующим образом:

1. Расчет основной заработной платы по следующей формуле:

$$3_{o} = K_{np} \sum_{i=1}^{n} 3_{Hi} \cdot T_{i} [p].,$$
 (10.8)

где $K_{\Pi P}$ – коэффициент премий ($K_{\Pi P}=1,3$);

n – категории исполнителей, занятых разработкой усовершенствованного изделия;

 $3_{днi}$ – дневная заработная плата исполнителя і-й категории, р.;

 ${\rm T}_i$ – продолжительность участия в разработке исполнителя і-й категории, д.

Расчет основной заработной платы по формуле (10.8) приведен в табличной форме (табл. 10.4).

Таблица 10.4 – Расчет заработной платы разработчиков нового изделия

Категория исполни-теля	Числен- ность исполни- телей, чел.	Месяч- ный оклад, р.	Дневной оклад, р.	Продолжи- тель-ность участия в раз- работке, д.	Сумма, р.
1 Руководитель проекта	1	1900	90,47	21	2000,00
2 Инженер- конструктор	1	1570	74,76	15	1121,40
3 Инженер- технолог	1	1500	71,43	10	571,40
4 Нормо- контролёр	1	1200	57,14	7	571,40
5 Сборщик	1	900	42,85	3	219,05
Итого	5	7070	336,66	56	4264,25
Премия и иные стимулирующие выплаты ($K_{np} = 1,3$)				1279,28	
Всего основная заработная плата				5543,53	

2. Расчет дополнительной заработной платы разработчиков по формуле:

$$3_{\rm g} = \frac{3_{\rm o} \cdot H_{\rm g}}{100}, [p]. \tag{10.9}$$

где $H_{\text{д}}$ – норматив дополнительной заработной платы, ($H_{\text{д}}$ = 10%).

3. Отчисления на социальные нужды рассчитываются по формуле:

$$P_{\text{cou}} = \frac{(3_0 + 3_{\text{д}}) \cdot H_{\text{cou}}}{100} [p]. \tag{10.10}$$

где $H_{\text{СОЦ}}$ – ставка отчислений в ΦC3H и Белгосстрах, % ($H_{\text{СОЦ}}$ = 34,6 %).

Расчет инвестиций на разработку нового изделия проводится по формуле:

$$\mathsf{M}_{\mathsf{p}} = \, \mathsf{3}_{\mathsf{o}} + \, \mathsf{3}_{\mathsf{d}} + \, \mathsf{P}_{\mathsf{cou}}[\mathsf{p}]. \tag{10.11}$$

Результат расчета затрат на разработку нового изделия приведен в таблице 10.5.

Таблица 10.5 – Расчет инвестиций на разработку нового изделия

Наименование статьи затрат	Формула/таблица для расчёта	Сумма, р.
1. Основная заработная плата разработчиков	Таблица 10.4	5543,53
2. Дополнительная заработная плата разработчиков	$3д = \frac{5543,53 \cdot 10}{100}$	554,35
3. Отчисления на социальные нужды	$P_{\text{cou}} = \frac{(5543,53 + 554,35) \cdot 34,6}{100}$	2109,87
4. Инвестиции на разработку нового изделия	$M_p = 5543,53 + 554,35 + 2109,87$	8207,75

Инвестиции в прирост основного капитала не требуются, т. к. производство нового изделия планируется осуществлять на действующем оборудовании в связи с наличием на предприятии—производителе свободных производственных мощностей.

Расчёт инвестиций в прирост собственного оборотного капитала приведен ниже.

Годовая потребность в материалах определяется по формуле:

$$\Pi_{\rm M} = P_{\rm M} \cdot N_{\rm \Pi} = 29.1 \cdot 1000 = 29100 \,\mathrm{p}.$$
 (10.12)

Годовая потребность в комплектующих изделиях рассчитывается по формуле:

$$\Pi_{K} = P_{K} \cdot N_{\Pi} = 553.8 \cdot 1000 = 553800 \text{ p.}$$
 (10.13)

Инвестиции в прирост собственного оборотного капитала в процентах от годовой потребности в материалах и комплектующих изделиях (исходя из среднего уровня по экономике: 20–30 %) рассчитываются по формуле:

$$M_{\text{cok}} = (0.25) \cdot (\Pi_{\text{M}} + \Pi_{\text{K}}) = 0.25 \cdot (29100 + 553800) = 145725 \text{ p.}$$
 (10.14)

Общая сумма инвестиций рассчитывается по следующей формуле:

$$\mathsf{M}_{\mathsf{o}\mathsf{6}\mathsf{i}\mathsf{i}\mathsf{i}\mathsf{j}} = \mathsf{M}_{\mathsf{p}} + \mathsf{M}_{\mathsf{c}\mathsf{o}\mathsf{k}} = 8207,75 + 145725 = 153932,75 \,\mathsf{p}.$$
(10.15)

Оценка экономической эффективности инвестиций в производство нового изделия осуществляется на основе расчета простой нормы прибыли (рентабельности инвестиций (затрат)) по формуле:

$$P_{\mu} = \frac{\Pi_{\nu} - M_{000000}}{\Pi_{\nu}} \cdot 100 \%$$
 (10.16)

где $\rm {\it H}_{\rm oбщ}$ – общая сумма инвестиций в производство нового изделия, р.

 $\Pi_{\rm q}$ — чистая прибыль, получаемая от производства нового изделия, р.

Найдем среднюю норму рентабельности инвестиций по следующей формуле (10.16):

$$P_{_{\mathrm{H}}} = \frac{184008 - 153932,75}{153932,75} \cdot 100 \% = 19,54\%,$$

Средняя норма рентабельности инвестиций превысила ставку рефинансирования, равную 15%, откуда можно сделать вывод об экономической эффективности инвестиций в производство дистанционно управляемого источника питания СВЧ магнетрона.

По итогу проведения технико-экономического обоснования инвестиций в разработку дистанционно управляемого источника питания СВЧ магнетрона были получены следующие результаты:

- 1. Проектируемое устройство конкурентоспособно на рынке среди аналогов;
 - 2. Общие инвестиции в разработку составили 153932,75 руб.;
- 3. Себестоимость единицы изделия 897,7 руб., а отпускная цена составила 1122,1 руб.;
- 4. При производстве партии устройств в 1000 шт. предприятие-производитель получит экономический эффект в виде чистой прибыли 184008 руб.;

Средняя норма рентабельности инвестиций P_u =19,54 % превысила ставку рефинансирования, равную 15%, следовательно, разработка в производство дистанционно управляемого источника питания СВЧ магнетрона экономически целесообразны.