Indian Institute of Science Education and Research Mohali

MTH101: Linear Algebra (2023-24)

Tutorial 07 (November 09, 2023)

- 1. Let $(V, *, \bullet)$ be a vector space over real numbers. Let $n \in V$ be the neutral element of (V, *). Show that the following properties hold.
 - (a) $\alpha \bullet n = n$ for every $\alpha \in \mathbb{R}$.
 - (b) $-1 \bullet v$ is equal to the inverse of v in (V, *).
 - (c) If $\alpha \bullet v = n$ for some $\alpha \in \mathbb{R}$ and some $v \in V$, then show that either $\alpha = 0$ or v = n.
 - (d) Show that if $\alpha \neq 0$ and $v, w \in V$ are such that $\alpha v = \alpha w$, then v = w.
- 2. Let $(V, *, \bullet)$ be a vector space over reals. Let S_1 and S_2 be two subspaces of $(V, *, \bullet)$. Show that $S_1 \cap S_2$ is also subspace. What about $S_1 \cup S_2$?
- 3. Which of the following are subspaces of $(\mathbb{R}^3, +, \cdot)$? Here, + is the addition of vectors in \mathbb{R}^3 and \cdot is scaling of elements \mathbb{R}^3 by reals.

(a)
$$S := \left\{ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^3 : a_1 + a_2 = a_3 \right\}.$$

(b)
$$S := \left\{ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^3 : \sin(a_1 + a_2) = \sin(a_1) + \sin(a_2) = \sin(a_3) \right\}.$$

(c)
$$S := \left\{ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^3 : a_1 a_2 + a_2 a_3 + a_3 a_1 = 0 \right\}.$$

- 4. Find all $\lambda \in \mathbb{R}$ such that $S := \left\{ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^3 : a_1 + 2a_2 + 3a_3 + \lambda = 0 \right\}$ is a subspace of $(\mathbb{R}^3, +, \cdot)$.
- 5. Consider the vector space $(M_{n\times n}(\mathbb{R}), +, \cdot)$, where + is the binary operation of matrix addition and \cdot is the entrywise scaling of a matrix. Let $E := \{e_{ij} : 1 \le i, j \le n\}$ denote the set of matrix units in $M_{n\times n}(\mathbb{R})$. Show that $\mathrm{span}(E) = M_{n\times n}(\mathbb{R})$. Further, show that if $A, B \in E$ and $\alpha A + \beta B = 0$, then $\alpha = \beta = 0$.
- 6. Consider the vector space $(\mathbb{R}[x], +, \cdot)$. If $S := \{x^n + x^m : 1 \le n, m \le 2\} \subseteq \mathbb{R}[x]$, then
 - (a) How many elements are there in the set S?
 - (b) What is span(S)?
 - (c) If $S = \{x^n + x^m : n, m \text{ are non-negative integers}\}$, then is it true that span $(S) = \mathbb{R}[x]$?