Sistemas integrables y caóticos

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

1 de marzo de 2025

Agenda

• Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde $C_k =$ constante, y k = 1, ..., n, son primeras integrales del movimiento de un sistema.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde $C_k =$ constante, y $k = 1, \ldots, n$, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde $C_k =$ constante, y $k = 1, \ldots, n$, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.
- A partir de esa integración las demás coordenadas pueden, en principio, ser integradas.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde $C_k =$ constante, y $k = 1, \ldots, n$, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.
- A partir de esa integración las demás coordenadas pueden, en principio, ser integradas.
- Un sistema para el cual existen más cantidades conservadas que grados de libertad (n > s) se llama superintegrable.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde C_k = constante, y k = 1, ..., n, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.
- A partir de esa integración las demás coordenadas pueden, en principio, ser integradas.
- Un sistema para el cual existen más cantidades conservadas que grados de libertad (n > s) se llama superintegrable.
- El ejemplo más simple de sistema superintegrable es una partícula libre. Otro ejemplo es el problema de dos cuerpos sujetos a interacción gravitacional.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde $C_k =$ constante, y k = 1, ..., n, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.
- A partir de esa integración las demás coordenadas pueden, en principio, ser integradas.
- Un sistema para el cual existen más cantidades conservadas que grados de libertad (n > s) se llama superintegrable.
- El ejemplo más simple de sistema superintegrable es una partícula libre. Otro ejemplo es el problema de dos cuerpos sujetos a interacción gravitacional.
- Si un sistema con s grados de libertad tiene menos de s cantidades conservadas (n < s), se denomina no integrable.

Sistemas Integrables

- Ejemplos de sistemas integrables
 - Oscilador armónico simple: s = 1; $C_1 = E = \text{cte}$, n = 1; es integrable.
 - Péndulo simple: s = 1; $C_1 = E = \text{cte}$, n = 1; es integrable.
 - Partícula sobre un cono: s = 2, $C_1 = I_z = \text{cte}$, $C_2 = E = \text{cte}$, n = 2; es integrable.
 - Péndulo doble: s = 2; $C_1 = E = \text{cte}$, n = 1; no es integrable.
 - Péndulo cuyo soporte gira en un círculo en plano vertical con velocidad angular constante: s = 1, n = 0; no es integrable.
 - Péndulo de resorte: s = 2; $C_1 = E = \text{cte}$, n = 1; no es integrable.
 - Péndulo paramétrico cuya longitud varía en el tiempo: s=1, n=0; no es integrable.
 - Partícula libre es superintegrable: s = 3; n = 4: $C_1 = E =$ cte, $C_2 = p_x =$ cte, $C_2 = p_y =$ cte, $C_2 = p_z =$ cte.

Sistemas Integrables

- Ejemplos de sistemas integrables
 - Oscilador armónico simple: s = 1; $C_1 = E = \text{cte}$, n = 1; es integrable.
 - Péndulo simple: s = 1; $C_1 = E = \text{cte}$, n = 1; es integrable.
 - Partícula sobre un cono: s = 2, $C_1 = I_z = \text{cte}$, $C_2 = E = \text{cte}$, n = 2; es integrable.
 - Péndulo doble: s = 2; $C_1 = E = \text{cte}$, n = 1; no es integrable.
 - Péndulo cuyo soporte gira en un círculo en plano vertical con velocidad angular constante: s = 1, n = 0; no es integrable.
 - Péndulo de resorte: s = 2; $C_1 = E = \text{cte}$, n = 1; no es integrable.
 - Péndulo paramétrico cuya longitud varía en el tiempo: s=1, n=0; no es integrable.
 - Partícula libre es superintegrable: s = 3; n = 4: $C_1 = E = \text{cte}$, $C_2 = p_x = \text{cte}$, $C_2 = p_y = \text{cte}$, $C_2 = p_z = \text{cte}$.
- La integrabilidad es un tipo de simetría presente en varios sistemas dinámicos, y que conduce a una evolución regular (periódica o estacionaria) de las variables del sistema en el tiempo

• El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{\rm ef}(q)=\frac{1}{2}a\dot{q}^2-V_{\rm ef}(q)$, donde a representa masa, longitud, etc., y $V_{\rm ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.
- Como E = cte, se determina t(q) en términos de una integral explícita,

$$\dot{q}=rac{\mathrm{d}q}{\mathrm{d}t}=\sqrt{rac{2}{a}\left(E-V_{\mathrm{ef}}(q)
ight)}\Rightarrow t(q)=\int\sqrt{rac{a}{2}}rac{\mathrm{d}q}{\sqrt{E-V_{\mathrm{ef}}(q)}}+\;\mathrm{cte}.$$

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.
- Como E = cte, se determina t(q) en términos de una integral explícita,

$$\dot{q} = rac{\mathrm{d}q}{\mathrm{d}t} = \sqrt{rac{2}{a}\left(E - V_{\mathrm{ef}}(q)\right)} \Rightarrow t(q) = \int \sqrt{rac{a}{2}} rac{\mathrm{d}q}{\sqrt{E - V_{\mathrm{ef}}(q)}} + \mathrm{cte}.$$

• En principio, se puede invertir t(q) para obtener q(t).

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.
- Como E = cte, se determina t(q) en términos de una integral explícita,

$$\dot{q} = rac{\mathrm{d}q}{\mathrm{d}t} = \sqrt{rac{2}{a}}\left(E - V_{\mathrm{ef}}(q)\right) \Rightarrow t(q) = \int \sqrt{rac{a}{2}} rac{\mathrm{d}q}{\sqrt{E - V_{\mathrm{ef}}(q)}} + \mathrm{cte}.$$

- En principio, se puede invertir t(q) para obtener q(t).
- Para que la solución q(t) sea real, el movimiento puede ocurrir solamente para valores de q tales que $E \ge V_{\rm ef}(q)$.

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.
- Como E = cte, se determina t(q) en términos de una integral explícita,

$$\dot{q} = rac{\mathrm{d}q}{\mathrm{d}t} = \sqrt{rac{2}{a}\left(E - V_{\mathrm{ef}}(q)\right)} \Rightarrow t(q) = \int \sqrt{rac{a}{2}} rac{\mathrm{d}q}{\sqrt{E - V_{\mathrm{ef}}(q)}} + \mathrm{cte}.$$

- En principio, se puede invertir t(q) para obtener q(t).
- Para que la solución q(t) sea real, el movimiento puede ocurrir solamente para valores de q tales que $E \ge V_{\rm ef}(q)$.
- La condición de integrabilidad de sistemas unidimensionales permite calcular el período de movimientos oscilatorios en esos sistemas.

• Consideremos un sistema descrito por el Lagrangiano $L=T-V=\frac{1}{2}m\dot{x}^2-V(x)$, con la ecuación de movimiento $m\ddot{x}=-\frac{\mathrm{d}V}{\mathrm{d}x}$

- Consideremos un sistema descrito por el Lagrangiano $L=T-V=\frac{1}{2}m\dot{x}^2-V(x)$, con la ecuación de movimiento $m\ddot{x}=-\frac{\mathrm{d}V}{\mathrm{d}x}$
- La energía total constante es $E=\frac{1}{2}m\dot{x}^2+V(x)$ y podemos integrar $\frac{\mathrm{d}x}{\mathrm{d}t}=\sqrt{\frac{2}{m}}\sqrt{E-V(x)}\Rightarrow t(x)=\sqrt{\frac{m}{2}}\int\frac{\mathrm{d}x}{\sqrt{E-V(x)}}$

- Consideremos un sistema descrito por el Lagrangiano $L=T-V=\frac{1}{2}m\dot{x}^2-V(x)$, con la ecuación de movimiento $m\ddot{x}=-\frac{\mathrm{d}V}{\mathrm{d}x}$
- La energía total constante es $E = \frac{1}{2}m\dot{x}^2 + V(x)$ y podemos integrar $\frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{\frac{2}{m}}\sqrt{E V(x)} \Rightarrow t(x) = \sqrt{\frac{m}{2}}\int \frac{\mathrm{d}x}{\sqrt{E V(x)}}$
- Como $\frac{1}{2}m\dot{x}^2 = E V(x) \ge 0$, el movimiento sólo puede ocurrir para $E \ge V(x)$.

- Consideremos un sistema descrito por el Lagrangiano $L=T-V=\frac{1}{2}m\dot{x}^2-V(x)$, con la ecuación de movimiento $m\ddot{x}=-\frac{\mathrm{d}V}{\mathrm{d}x}$
- La energía total constante es $E = \frac{1}{2}m\dot{x}^2 + V(x)$ y podemos integrar $\frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{\frac{2}{m}}\sqrt{E V(x)} \Rightarrow t(x) = \sqrt{\frac{m}{2}}\int \frac{\mathrm{d}x}{\sqrt{E V(x)}}$
- Como $\frac{1}{2}m\dot{x}^2 = E V(x) \ge 0$, el movimiento sólo puede ocurrir para $E \ge V(x)$.
- Los puntos de retorno son aquellos para V(x) = E. Es decir, x_1, x_2 y x_3 son puntos de retorno $V(x_1) = E$, $V(x_2) = E$, $V(x_3) = E$

• Los puntos de equilibrio $x = x_0$ son aquellos donde la fuerza instantánea se anula: $f(x_0) = 0 \Rightarrow \frac{dV}{dx}|_{x_0} = 0$

- Los puntos de equilibrio $x=x_0$ son aquellos donde la fuerza instantánea se anula: $f(x_0)=0\Rightarrow \frac{\mathrm{d} V}{\mathrm{d} x}\Big|_{x_0}=0$
- Un punto estático: velocidad y aceleración se anulan, $\ddot{x}=0, \dot{x}=0.$

- Los puntos de equilibrio $x = x_0$ son aquellos donde la fuerza instantánea se anula: $f(x_0) = 0 \Rightarrow \frac{dV}{dx}\Big|_{x_0} = 0$
- Un punto estático: velocidad y aceleración se anulan, $\ddot{x} = 0, \dot{x} = 0$.
- Un punto de equilibrio x_0 es estable si $x=x_0+\eta$, donde η es un pequeño desplazamiento, tiende a $x=x_0$ al aumentar el tiempo y corresponde a un mímino del potencial V(x). Es decir $\frac{\mathrm{d}^2 V}{\mathrm{d} x^2}\Big|_{x_0} > 0$, x_0 es un punto de equilibrio estable

- Los puntos de equilibrio $x = x_0$ son aquellos donde la fuerza instantánea se anula: $f(x_0) = 0 \Rightarrow \frac{dV}{dx}\Big|_{x_0} = 0$
- Un punto estático: velocidad y aceleración se anulan, $\ddot{x}=0, \dot{x}=0.$
- Un punto de equilibrio x_0 es estable si $x=x_0+\eta$, donde η es un pequeño desplazamiento, tiende a $x=x_0$ al aumentar el tiempo y corresponde a un mímino del potencial V(x). Es decir $\frac{\mathrm{d}^2 V}{\mathrm{d} x^2}\Big|_{x_0}>0$, x_0 es un punto de equilibrio estable
- Un punto de equilibrio es inestable si el potencial V(x) presenta un máximo en ese punto. Entonces $\frac{\mathrm{d}^2 V}{\mathrm{d} x^2}\Big|_{x_0} < 0, \quad x_0$ es un punto de equilibrio inestable.

- Los puntos de equilibrio $x = x_0$ son aquellos donde la fuerza instantánea se anula: $f(x_0) = 0 \Rightarrow \frac{dV}{dx}|_{x_0} = 0$
- Un punto estático: velocidad y aceleración se anulan, $\ddot{x}=0, \dot{x}=0.$
- Un punto de equilibrio x_0 es estable si $x=x_0+\eta$, donde η es un pequeño desplazamiento, tiende a $x=x_0$ al aumentar el tiempo y corresponde a un mímino del potencial V(x). Es decir $\frac{\mathrm{d}^2 V}{\mathrm{d} x^2}\Big|_{x_0} > 0$, x_0 es un punto de equilibrio estable
- Un punto de equilibrio es inestable si el potencial V(x) presenta un máximo en ese punto. Entonces $\frac{\mathrm{d}^2 V}{\mathrm{d}x^2}\Big|_{x_0} < 0$, x_0 es un punto de equilibrio inestable.
- El período de oscilación entre los puntos de retorno x_1 y x_2 es dos veces el intervalo de tiempo del movimiento entre esos puntos, $\tau_p(E) = 2\sqrt{\frac{m}{2}} \int_{x_1}^{x_2} \frac{\mathrm{d}x}{\sqrt{E-V(x)}}$

• Para un valor de x cerca de un punto de equilibrio estable x_0 , el potencial V(x) puede expresarse mediante una expansión de Taylor alrededor de $x=x_0$. Esto es

$$V(x) = V(x_0) + \frac{dV}{dx}\Big|_{x_0} (x - x_0) + \frac{1}{2} \frac{d^2V}{dx^2}\Big|_{x_0} (x - x_0)^2 + \cdots$$
, donde

• Para un valor de x cerca de un punto de equilibrio estable x_0 , el potencial V(x) puede expresarse mediante una expansión de Taylor alrededor de $x=x_0$. Esto es

$$V(x) = V(x_0) + \frac{dV}{dx}\Big|_{x_0} (x - x_0) + \frac{1}{2} \frac{d^2V}{dx^2}\Big|_{x_0} (x - x_0)^2 + \cdots$$
, donde

 $V(x_0)$ es un valor constante y el segundo término se anula debido a la condición de equilibrio.

• Consideremos un pequeño desplazamiento η alrededor de x_0 , entonces $x=x_0+\eta$ donde $\eta\to 0$ ($\eta/x_0\ll 1$).

• Para un valor de x cerca de un punto de equilibrio estable x_0 , el potencial V(x) puede expresarse mediante una expansión de Taylor alrededor de $x=x_0$. Esto es

$$V(x) = V(x_0) + \frac{dV}{dx}\Big|_{x_0} (x - x_0) + \frac{1}{2} \frac{d^2V}{dx^2}\Big|_{x_0} (x - x_0)^2 + \cdots$$
, donde

- Consideremos un pequeño desplazamiento η alrededor de x_0 , entonces $x=x_0+\eta$ donde $\eta\to 0$ ($\eta/x_0\ll 1$).
- Despreciando términos en potencias de η de orden superior al cuadrático, tendremos $V(x) = \frac{1}{2} \frac{\mathrm{d}^2 V}{\mathrm{d} x^2} \Big|_{x_0} (x x_0)^2 = \frac{1}{2} K (x x_0)^2$, donde $K \equiv \frac{\mathrm{d}^2 V}{\mathrm{d} x^2} \Big|_{x_0} = \text{constante} > 0$

- Para un valor de x cerca de un punto de equilibrio estable x_0 , el potencial V(x) puede expresarse mediante una expansión de Taylor alrededor de $x=x_0$. Esto es
 - $V(x) = V(x_0) + \frac{dV}{dx}\Big|_{x_0} (x x_0) + \frac{1}{2} \frac{d^2V}{dx^2}\Big|_{x_0} (x x_0)^2 + \cdots$, donde

- Consideremos un pequeño desplazamiento η alrededor de x_0 , entonces $x=x_0+\eta$ donde $\eta\to 0$ ($\eta/x_0\ll 1$).
- Despreciando términos en potencias de η de orden superior al cuadrático, tendremos $V(x) = \frac{1}{2} \frac{\mathrm{d}^2 V}{\mathrm{d} x^2} \Big|_{x_0} (x x_0)^2 = \frac{1}{2} K (x x_0)^2$, donde $K \equiv \frac{\mathrm{d}^2 V}{\mathrm{d} x^2} \Big|_{x_0} = \text{constante} > 0$
- V(x) posee la misma forma funcional del oscilador armónico.

• Para un valor de x cerca de un punto de equilibrio estable x_0 , el potencial V(x) puede expresarse mediante una expansión de Taylor alrededor de $x=x_0$. Esto es

$$V(x) = V(x_0) + \frac{dV}{dx}\Big|_{x_0} (x - x_0) + \frac{1}{2} \frac{d^2V}{dx^2}\Big|_{x_0} (x - x_0)^2 + \cdots$$
, donde

- Consideremos un pequeño desplazamiento η alrededor de x_0 , entonces $x = x_0 + \eta$ donde $\eta \to 0$ ($\eta/x_0 \ll 1$).
- Despreciando términos en potencias de η de orden superior al cuadrático, tendremos $V(x) = \frac{1}{2} \frac{\mathrm{d}^2 V}{\mathrm{d} x^2} \Big|_{x_0} (x x_0)^2 = \frac{1}{2} K (x x_0)^2$, donde $K \equiv \frac{\mathrm{d}^2 V}{\mathrm{d} x^2} \Big|_{x_0} = \text{constante} > 0$
- V(x) posee la misma forma funcional del oscilador armónico.
- Su ecuación de movimiento $m\ddot{\eta} = -K(x x_0) = -K\eta$, entonces $\Rightarrow \ddot{\eta} + \omega^2 \eta = 0 \Rightarrow \omega^2 \equiv \frac{K}{m} = \frac{1}{m} \frac{d^2V}{dx^2} \Big|_{x_0} \Leftrightarrow \omega^2 = \frac{1}{a} \frac{\partial^2 V_{\text{ef}}}{\partial q^2} \Big|_{q_0}$

 Esta presentación explora los conceptos de sistemas integrables, no integrables, superintegrables y sus implicaciones en la dinámica de sistemas físicos.

- Esta presentación explora los conceptos de sistemas integrables, no integrables, superintegrables y sus implicaciones en la dinámica de sistemas físicos.
- Sistemas integrables permiten una evolución predecible con soluciones exactas.
 - Oscilador armónico simple (s = 1, n = 1).
 - Péndulo simple (s = 1, n = 1).
 - Partícula sobre un cono (s = 2, n = 2, momento angular y energía).

- Esta presentación explora los conceptos de sistemas integrables, no integrables, superintegrables y sus implicaciones en la dinámica de sistemas físicos.
- Sistemas integrables permiten una evolución predecible con soluciones exactas.
 - Oscilador armónico simple (s = 1, n = 1).
 - Péndulo simple (s = 1, n = 1).
 - Partícula sobre un cono (s = 2, n = 2, momento angular y energía).
- Sistemas no integrables pueden mostrar caos dinámico.
 - Péndulo doble (s = 2, n = 1).
 - Péndulo de resorte (s = 2, n = 1).
 - Péndulo paramétrico con longitud variable (s = 1, n = 0).

- Esta presentación explora los conceptos de sistemas integrables, no integrables, superintegrables y sus implicaciones en la dinámica de sistemas físicos.
- Sistemas integrables permiten una evolución predecible con soluciones exactas.
 - Oscilador armónico simple (s = 1, n = 1).
 - Péndulo simple (s = 1, n = 1).
 - Partícula sobre un cono (s = 2, n = 2, momento angular y energía).
- Sistemas no integrables pueden mostrar caos dinámico.
 - Péndulo doble (s = 2, n = 1).
 - Péndulo de resorte (s = 2, n = 1).
 - Péndulo paramétrico con longitud variable (s = 1, n = 0).
- La **superintegrabilidad** es una propiedad especial de ciertos sistemas con más constantes de movimiento que grados de libertad. La partícula libre (s = 3, n = 4, energía y 3 momentos lineales).

- Esta presentación explora los conceptos de sistemas integrables, no integrables, superintegrables y sus implicaciones en la dinámica de sistemas físicos.
- Sistemas integrables permiten una evolución predecible con soluciones exactas.
 - Oscilador armónico simple (s = 1, n = 1).
 - Péndulo simple (s = 1, n = 1).
 - Partícula sobre un cono (s = 2, n = 2, momento angular y energía).
- Sistemas no integrables pueden mostrar caos dinámico.
 - Péndulo doble (s = 2, n = 1).
 - Péndulo de resorte (s = 2, n = 1).
 - Péndulo paramétrico con longitud variable (s = 1, n = 0).
- La **superintegrabilidad** es una propiedad especial de ciertos sistemas con más constantes de movimiento que grados de libertad. La partícula libre (s = 3, n = 4, energía y 3 momentos lineales).
- Movimiento en un Potencial V(x): Puntos de equilibrio $\frac{dV}{dx}\Big|_{x_0} = 0$. Estables: Si $\frac{d^2V}{dx^2} > 0$; Inestables: Si $\frac{d^2V}{dx^2} < 0$; Cálculo del período.

Para la discusión

- Considere el oscilador armónico para una energía E conocida.
 - ¿El sistema es integrable? ¿Por qué?
 - Encuentre el punto de equilibrio, los puntos de retorno y el período.

Para la discusión

- Considere el oscilador armónico para una energía E conocida.
 - ¿El sistema es integrable? ¿Por qué?
 - Encuentre el punto de equilibrio, los puntos de retorno y el período.
- ullet Considere el péndulo simple para una energía E conocida y arbitraria.
 - ¿El sistema es integrable? ¿Por qué? Encuentre el punto de equilibrio, los puntos de retorno y el período.
 - ¿depende el período de la masa? ¿Depende el período de la energía?

Para la discusión

- Considere el oscilador armónico para una energía E conocida.
 - ¿El sistema es integrable? ¿Por qué?
 - Encuentre el punto de equilibrio, los puntos de retorno y el período.
- ullet Considere el péndulo simple para una energía E conocida y arbitraria.
 - ¿El sistema es integrable? ¿Por qué? Encuentre el punto de equilibrio, los puntos de retorno y el período.
 - ¿depende el período de la masa? ¿Depende el período de la energía?
- Considere una partícula de masa m moviéndose sobre la superficie de un cono vertical con ángulo de vértice α .
 - ¿El sistema es integrable? ¿Por qué? Encuentre el Lagrangeano y las primeras integrales
 - Encuentre los puntos de equilibrio, retorno y frecuencia para pequeñas oscilaciones