Proyecto M7 -Clasificación de Sentimientos

Camila Acosta

Introducción

Problema:

- La empresa necesita entender la recepción de las aplicaciones e identificar fallos.
- Hacerlo manualmente es poco práctico.

Objetivo:

- Crear un modelo capaz de clasificar los reviews según el tipo de sentimiento (positivo/negativo/neutral) automáticamente.

Presentación

Datos:

- Kaggle: Google Play Store Apps for analysing the Android market.
- 50.000+ reviews clasificadas como positiva, negativa o neutra.

Nuestro dataset contiene un total de 5 columnas. De estas, eliminamos 3 columnas dejando solamente Translated_Review y Sentiment, para poder enfocarnos completamente en el objetivo de este proyecto.

Las columnas eliminadas no nos ofrecen información relevante.

Арр	Translated_Review	Sentiment	Sentiment_Polarity	Sentiment_Subjectivity
0 10 Best Foods for You	I like eat delicious food. That's I'm cooking	Positive	1.00	0.533333
1 10 Best Foods for You	This help eating healthy exercise regular basis	Positive	0.25	0.288462
2 10 Best Foods for You	NaN	NaN	NaN	NaN
3 10 Best Foods for You	Works great especially going grocery store	Positive	0.40	0.875000
4 10 Best Foods for You	Best idea us	Positive	1.00	0.300000

- Se eliminaron todas las filas con valores nulos, pasando de tener 64.295 filas a 37.427
- Se creó un gráfico de barras, mostrando la distribución de sentimientos según el tipo de sentimiento y la cantidad de reviews correspondientes.

Para la limpieza del texto:

- Eliminación de stopwords (una lista específica de palabras que no contemplan relevancia para que el modelo aprenda).
- Se convirtió todo el texto a minúsculas.
- Eliminación de URLs, números y caracteres especiales (como signos de puntuación.
- Se codificó la columna de sentimiento para convertir estos en números.
- Negativo = 0, Neutro = 1, Positivo = 2.

tokens	Sentiment_encoded
like eat delicious food cooking food case best	2
help eating healthy exercise regular basis	2
works great especially going grocery store	2
best idea us	2
best way	2

En este punto, hacemos un split de los datos para tener nuestro conjunto de entrenamiento (70% de los datos) y de prueba (20%), lo que permitirá que el algoritmo (modelo de clasificación) pueda entrenarse y luego hacer una comparación con los datos de prueba.

Por último, vectorizamos el texto ya limpio, para así asignar un número a cada palabra y el modelo sea capaz de interpretar y aprender de los datos que le estamos proporcionando.

Vectorizador utilizado:

- TF-IDF

Modelo de Clasificación

Algoritmos:

- Logistic Regression
- Naive Bayes

Estos algoritmos fueron elegidos ya que tienen un buen desempeño y personalmente han dado los mejores resultados.

Luego de probar cada uno, elegimos definitivamente a Logistic Regression.

Accuracy: 0.9118						
100						
Reporte de Clasificación:						
65.	prec	ision	recall	f1-score	support	
	ø	0.91	0.80	0.85	1653	
	1	0.87	0.84	0.85	1049	
	2	0.92	0.97	0.94	4784	
accuracy	у			0.91	7486	
macro av	g	0.90	0.87	9.89	7486	
weighted av	g	0.91	0.91	0.91	7486	

Accuracy:	0.738	4	Na	nive Bayes		
Reporte d	Reporte de Clasificación:					
·		recision	recall	f1-score	support	
	0	0.90	0.43	0.58	1653	
	1	0.86	0.09	0.17	1049	
	2	0.72	0.99	0.83	4784	
accur	acy			0.74	7486	
macro	avg	0.82	0.50	9.52	7486	
weighted	avg	0.78	0.74	0.68	7486	

Logistic Regression tiene un accuracy de 0.91 sobre naive bayes que tiene un accuracy de 0.74.

Modelo de Clasificación

Modelo de Clasificación

Puntos importantes de los resultados y observaciones:

- Accuracy: 91% en general, es un buen resultado pero podría mejorar.
- F1 Score según sentimiento:

Negativo: 85%

Neutro: 85%

Positivo: 94%

- Se podría ajustar el modelo para obtener mejor resultados en la predicción de los sentimientos negativos y neutros.

Implementación de la API

¿Qué es?

Es una URL (endpoint) que recibe datos, en este vaso texto (reviews), y devuelve una respuesta (para este proyecto, devolvería el resultado de nuestro modelo de clasificación).

El -endpoint- se creó usando Flask.

Para exponerlo al público, utilizamos **ngrok**, una herramienta que crea un túnel seguro HTTPS desde internet a nuestro servidor local.

Con esta API puedes usar el modelo de clasificación de forma remota y con nuevos reviews.

Uso de la API

Para probar el URL usamos Talend API Tester, donde solo ingresas el URL, colocas un texto (formato JSON) y este te devolverá una clasificación de sentimiento.

```
▶ BODY <sup>③</sup>
                                                                                         pretty -
     sentimiento: "POSITIVO ",
     texto: " This app is everything I needed ",
     valor: 2
lines nums @1 copy
                                                                                      length: 94 bytes
```