ASSIGNMENT DATE	22 SEPTEMBER 2022
STUDENT NAME	MADALA MANU VARDHAN
STUDENT ROLL NO	110719104029
MAXIMUM MARKS	2 MARKS

ASSIGNMENT: 2

Data Visualization and Pre-processing

```
liver_data_train['HasDisease'].value_counts()
yes 416
no 167
Name: HasDisease, dtype: int64
```

Plotting some columns to gain insights from the data

!conda install -c anaconda seaborn -y
First, the relationship between gender and age

import seaborn as sns

plt.show()

```
bins = np.linspace(liver_data_train.Age.min(), liver_data_train.Age.max(),10) grids = sns.FacetGrid(liver_data_train, col="Gender", hue="HasDisease", palette="Set1", col_wrap=2) grids.map(plt.hist, 'Age', bins=bins, ec="k") grids.axes[-1].legend()
```


Amount of bilirubin based on gender

bins = np.linspace(liver_data_train.Total_Bilirubin.min(), liver_data_train.Total_Bilirubin.max(),10) grids = sns.FacetGrid(liver_data_train, col="Gender", hue="HasDisease", palette="Set1", col_wrap=2) grids.map(plt.hist, 'Total_Bilirubin', bins=bins, ec="k")

grids.axes[-1].legend()
plt.show()

Total protiens play a major role in liver disease. So plotting it gender wise bins = np.linspace(liver_data_train.Total_Protiens.min(), liver_data_train.Total_Protiens.max(),10) grids = sns.FacetGrid(liver_data_train, col="Gender", hue="HasDisease", palette="Set1", col_wrap=2) grids.map(plt.hist, 'Total_Protiens', bins=bins, ec="k")

grids.axes[-1].legend()
plt.show()

convert males and females to 0 and 1

liver_data_train['Gender'].replace(to_replace=['Male','Female'], value=[0,1],inplace=**True**)

Check if any column has null values and replace with mean

liver_data_train.isna().sum()

0 Age Gender 0 Total Bilirubin 0 Direct_Bilirubin 0 Alkaline Phosphotase Alamine_Aminotransferase 0 Aspartate_Aminotransferase Total_Protiens 0 Albumin 0 Albumin_and_Globulin_Ratio 4 0 Dataset HasDisease 0 dtype: int64

liver_data_train['Albumin_and_Globulin_Ratio'].fillna((liver_data_train['Albumin_and_Globulin_Ratio'].mean()), inplace=**True**)