Ciclo 1 Fundamentos de programación

Reto 5

Descripción del problema:

La secretaría de tránsito y movilidad de la ciudad de Barranquilla ha estado ejecutando una series de medidas preventivas para poder mejorar la seguridad vial de la ciudad de Barranquilla, sin embargo, dicho proceso de implementación presenta demoras debido a que los datos obtenidos son procesados uno a uno, por tanto, lo han contratado a usted para que pueda dar un análisis completo de una calle en específico, la calle 30, donde ocurren la mayor partes de los accidentes y poder tomar acciones de la manera más rápida posible.

Usted debe construir una función que reciba como parámetro el DataFrame con los accidentes ocurridos en la ciudad de Barranquilla, observe el archivo "accidentes.csv" y transfórmelo a un DataFrame, tenga en cuenta que no todos los datos están limpios, solo utilice aquellos que tengan el estándar de CALLE_NUMERO..., es decir si una dirección en cualquier lugar de este cumple con ese estándar debe utilizarla, observe el DataFrame para entender mejor el problema, tenga en cuenta que el archivo accidentes.csv incluyen todos los accidentes que ocurren en la ciudad. Su programa debe permitir:

- Calcular la cantidad total de accidentes por gravedad en la calle 30 de Barranquilla
- Calcular la clase de accidente más frecuente en la calle 30 de Barranquilla
- Hallar la máxima cantidad de heridos reportados en un accidente de la calle 30 en Barranquilla

El retorno de la función debe ser un diccionario con las siguientes indicaciones: primera llave "clase_mas_accidente" con una tupla que contenga la clase de accidente más ocurrente y la cantidad de siniestros ocurridos, ejemplo ("Volcamiento", 102), segunda llave "accidentes_gravedad" con el DataFrame calculado por medio de las funciones de agregación convertido en diccionario como valor y por último una llave "cantidad_max_heridos" que contenga como valor una tupla donde el primer valor es la cantidad de heridos hasta la fecha y el segundo valor de la tupla la fecha en formato dd/mm/aaaa ejemplo, (2, "20/02/18)

Nota: no remueva los índices generados en los nuevo DataFrame producto de las funciones de agregación.

Entradas:

Nombre	Tipo	Descripción
data	pandas.DataFrame	DataFrame que contiene los accidentes registrados
		en Barranquilla almacenados en un archivo csv

Salidas:

Tipo del retorno	Descripción
dict	un diccionario con las siguientes indicaciones:
	primera llave "clase_mas_accidente" con una
	tupla que contenga la clase de accidente más
	ocurrente y la cantidad de siniestros ocurridos,
	ejemplo ("Volcamiento", 102), segunda llave
	"accidentes_gravedad" con el DataFrame
	calculado por medio de las funciones de
	agregación convertido en diccionario como
	valor y por último una llave
	"cantidad_max_heridos" que contenga como
	valor una tupla donde el primer valor es la
	cantidad de heridos hasta la fecha y el segundo
	valor de la tupla la fecha en formato
	dd/mm/aaaa ejemplo, (2, "20/02/18).

Esqueleto:

def accidente(data: pd.DataFrame)->dict:

