Facit: Repetitionsuppgifter – Matematik 2b

Fabian Tingstrand

12 juni 2025

1 Analys av andragradsfunktioner

- 1. För funktionen $f(x) = x^2 6x + 5$:
 - a) Nollställen: $f(x)=0\Rightarrow x^2-6x+5=0.$ Använd pq-formeln: $x=\frac{6\pm\sqrt{36-20}}{2}=\frac{6\pm\sqrt{16}}{2}=\frac{6\pm4}{2}$ Nollställena är x=5 och x=1.
 - b) Symmetrilinjen: $x = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = \frac{6}{2} = 3$
 - c) Extrempunkten: (3, f(3)) = (3, 9 18 + 5) = (3, -4)Eftersom a = 1 > 0 är detta ett minimum.
- 2. Grafen till andragradsfunktionen:
 - a) Nollställen: Från grafen kan vi avläsa att funktionen skär x-axeln i ungefär $x \approx -1, 3$ och $x \approx 3, 3$.
 - b) Symmetrilinjen: Eftersom grafen har sitt maximum ungefär vid x=1, är symmetrilinjen x=1.
 - c) Funktionsuttrycket: Vi kan se att grafen har formen av en nedåtvänd parabel, så a<0.

Symmetrilinjen är x=1, vilket ger $\frac{-b}{2a}=1 \Rightarrow b=-2a$.

Grafen går genom punkten (0,3), så f(0) = c = 3.

Grafen går också genom punkten (1,4), så f(1)=a+b+c=4. Med b=-2a och c=3 får vi:

$$a - 2a + 3 = 4 \Rightarrow -a = 1 \Rightarrow a = -1$$

Därmed är $b = -2a = -2 \cdot (-1) = 2$ och c = 3.

Funktionsuttrycket är $f(x) = -x^2 + 2x + 3$.

- **3.** För funktionen $f(x) = 3x^2 + 6x 2$:
 - a) Nollställen: $f(x) = 0 \Rightarrow 3x^2 + 6x 2 = 0$ Dividera med 3: $x^2 + 2x - \frac{2}{3} = 0$ Använd pq-formeln: $x = \frac{-2 \pm \sqrt{4 + \frac{8}{3}}}{2} = \frac{-2 \pm \sqrt{\frac{12 + 8}{3}}}{2} = \frac{-2 \pm \sqrt{\frac{20}{3}}}{2}$ $x \approx -1,63$ eller $x \approx 0,41$

b) Symmetrilinjen: $x = \frac{-b}{2a} = \frac{-6}{2 \cdot 3} = \frac{-6}{6} = -1$

c) Extrempunkten: (-1, f(-1)) = (-1, 3 - 6 - 2) = (-1, -5)Eftersom a = 3 > 0 är detta ett minimum.

1

4. För funktionen $f(x) = -x^2 + 4x + 5$:

- a) Nollställen: $f(x)=0\Rightarrow -x^2+4x+5=0\Rightarrow x^2-4x-5=0$ Använd pq-formeln: $x=\frac{4\pm\sqrt{16+20}}{2}=\frac{4\pm\sqrt{36}}{2}=\frac{4\pm6}{2}$ Nollställena är x=5 och x=-1
- b) Symmetrilinjen: $x = \frac{-b}{2a} = \frac{-4}{2 \cdot (-1)} = \frac{-4}{-2} = 2$
- c) Extrempunkten: (2, f(2)) = (2, -4 + 8 + 5) = (2, 9)Eftersom a = -1 < 0 är detta ett maximum.

5. Grafen till andragradsfunktionen:

- a) Nollställen: Från grafen kan vi avläsa att funktionen skär x-axeln i ungefär x=1 och x=3.
- b) Symmetrilinjen: Eftersom grafen har sitt minimum ungefär vid x=2, är symmetrilinjen x=2.
- c) Funktionsuttrycket: Vi kan se att grafen har formen av en uppåtvänd parabel, så a>0.

Symmetrilinjen är x=2, vilket ger $\frac{-b}{2a}=2 \Rightarrow b=-4a$.

Grafen går genom punkten (0,3), så f(0)=c=3.

Grafen går också genom punkten (1,0), så $f(1)=a-4a+3=0 \Rightarrow -3a+3=0 \Rightarrow a=1$.

Därmed är b = -4a = -4 och c = 3.

Funktionsuttrycket är $f(x) = x^2 - 4x + 3$.

- **6.** För andragradsfunktionen med nollställena x = -2 och x = 3 samt f(0) = -6:
 - a) Funktion suttrycket: Vi vet att f(x)=a(x-(-2))(x-3)=a(x+2)(x-3)

Utveckla: $f(x) = a(x^2 - 3x + 2x - 6) = a(x^2 - x - 6)$

Vi vet att f(0) = -6, så $f(0) = a(0^2 - 0 - 6) = -6a = -6 \Rightarrow a = 1$

Funktionsuttrycket är $f(x) = x^2 - x - 6$

- b) Symmetrilinjen: $x = \frac{-b}{2a} = \frac{-(-1)}{2 \cdot 1} = \frac{1}{2} = 0, 5$
- c) Extrempunkten: (0, 5, f(0, 5)) = (0, 5, 0, 25 0, 5 6) = (0, 5, -6, 25)Eftersom a = 1 > 0 är detta ett minimum.

7. För andragradsfunktionen med extrempunkt i (1, -4) och f(0) = 2:

a) Funktionsuttrycket: Eftersom extrempunkten är (1, -4) är symmetrilinjen x = 1.

Detta ger
$$\frac{-b}{2a} = 1 \Rightarrow b = -2a$$

Vi vet att f(1) = -4, så $f(1) = a \cdot 1^2 + b \cdot 1 + c = a + b + c = -4$

Vi vet också att f(0) = 2, så f(0) = c = 2

Från a+b+c=-4 och b=-2a får vi
: $a-2a+2=-4\Rightarrow -a=-6\Rightarrow a=6$

Därmed är b = -2a = -12 och c = 2

Funktionsuttrycket är $f(x) = 6x^2 - 12x + 2$

b) Nollställen: $f(x) = 0 \Rightarrow 6x^2 - 12x + 2 = 0 \Rightarrow 3x^2 - 6x + 1 = 0$

Använd pq-formeln: $x=\frac{6\pm\sqrt{36-12}}{6}=\frac{6\pm\sqrt{24}}{6}=\frac{6\pm2\sqrt{6}}{6}=1\pm\frac{\sqrt{6}}{3}$

Nollställena är $x \approx 0, 18$ och $x \approx 1, 82$

c) Symmetrilinjen: x = 1 (som vi redan bestämt)

2 Problemlösning med andragradsfunktioner

- 1. För bollen som kastas uppåt med funktionen $h(t) = 20t 5t^2$:
 - a) Bollen når sin högsta höjd när $h'(t) = 0 \Rightarrow 20 10t = 0 \Rightarrow t = 2$ sekunder.
 - b) Höjden blir då $h(2) = 20 \cdot 2 5 \cdot 2^2 = 40 20 = 20$ meter.
 - c) Bollen träffar marken när $h(t) = 0 \Rightarrow 20t 5t^2 = 0 \Rightarrow 5t(4 t) = 0$ Detta ger t = 0 eller t = 4. Eftersom t = 0 är starttiden, träffar bollen marken efter t = 4 sekunder.
- 2. För rektangeln med omkrets 24 cm:
 - a) Omkretsen är 2x+2y=24, där x är bredden och y är längden. Löser ut $y\colon y=\frac{24-2x}{2}=12-x$
 - b) Arean är $A(x) = x \cdot y = x(12 x) = 12x x^2$
 - c) Eftersom både x och y måste vara positiva, gäller x>0 och $12-x>0 \Rightarrow x<12$. Alltså kan x anta värdena 0< x<12.
 - d) Arean är maximal när $A'(x) = 0 \Rightarrow 12 2x = 0 \Rightarrow x = 6$ cm.
 - e) Den maximala arean är $A(6) = 12 \cdot 6 6^2 = 72 36 = 36 \text{ cm}^2$.