Sériový přenos dat - USART

ATmega328P

Sériový a paralelní přenos

Paralelní přenos dat

- data jsou přenášena najednou po více bitech (obvykle podle šířky sběrnice)
- příslušný počet souběžných (paralelních) vodičů (a zemnicí vodič)
- vhodný na krátké vzdálenosti, přeslechy, časová neshoda jednotlivých signálů

Sériový přenos dat

- data přenášena postupně bit po bitu po vysílacím (Tx) a přijímacím (Rx) vodiči, nebo symetrických párech
- vhodné na dlouhé vzdálenosti

Synchronní přenos

Synchronní přenos

- Má jeden generátor hodinových impulsů (na straně Data communication equipment – DCE) a signál je přenášen na druhou stranu, kde je detekován (na straně Data terminal equipment – DTE).
- Dávky datových bitů následují těsně po sobě bez jakýchkoli časových odstupů a nejsou prokládány žádnými start- či stop-bity

Synchronní spojení dvou posuvných registrů T_X a R_X

Asynchronní přenos

Asynchronní přenos

- Má na obou stranách vlastní generátor hodinových impulsů nastavený na stejnou hodnotu rychlosti.
- Hodinový signál se nepřenáší.
- Jednotlivé datové bity jedné dávky jsou zapouzdřeny do rámce a jsou přenášeny s libovolnými časovými odstupy mezi sebou.

Příklad sériové asynchronní komunikace

LSB se odesílá jako první po start bitu (data se čtou zprava)

Rychlost přenosu baudrate - bitrate

- Baud (Bd) jednotka modulační rychlosti (také symbolová nebo znaková rychlost, anglicky baud rate)
- Vztah mezi bitrate (počtem přenesených bitů za sekundu) a modulační rychlostí baudrate je dán způsobem kódování.
- Linkový kód způsob reprezentace digitálního signálu pro přenos médiem v základním pásmu bez použití modulace, kde platí 1 baud = 1 bit/s
- USART používá pro signály TX a RX linkový kód bez návratu k nule (Non Return to Zero NRZ) LL = 0V a $\log 1 = +U_{CC}$ kde 1 baud = 1 bit/s

Různá délka dat, parita, počet stopbitů

- bílá 5bit, Žádná parita,
 1 stop bit, data 0x05
- zelená 6bit, Žádná parita,
 1 stop bit, data 0x05
- modrá 8bit, Žádná parita,
 1 stop bit, data 0x09
- červená 8bit, Sudá parita, 1 stop bit, data 0x09 (dvě zprávy)
- azurová 8bit, Žádná parita, 2 stop bity, data 0x09 (dvě zprávy)
- Při datové rychlosti 9600Bd/s by měl jeden bit odpovídat 1/9600 = 104us.

Logické úrovně signálů rozhraní UART

 sériový port (COM Port) – nutno změnit logické úrovně z mikrokontroléru (LL-0V, HL-U_{CC} např. 5V) na logické úrovně RS232C (negativní logika, LL je +15V, HL je -15V). Např. obvod MAX232

PC může komunikovat přes USB využítím virtuálního sériového portu (VCP, např. FTDI)
 <u>UART U_{CC} = 3,3V</u> (LL = 0V, HL = 3,3V)
 <u>UART U_{CC} = 5V</u> (LL = 0V, HL = 5V)

Obousměrný převodník logických signálů

HV1	LV1
HV2	LV2
HV	LV
GND	GND
HV3	LV3
HV4	LV4

- např. <u>4 kanálové</u> propojení Arduino UNO s NodeMCU
- obousměrný převodník
- logické úrovně 5V a 3.3V

USART ATmega328P

- Plně duplexní provoz (nezávislé sériové registry příjmu a vysílání)
- Synchronní provoz s taktováním Master nebo Slave
- Asynchronní provoz sériové rámce start bit, dále 5, až 8 nebo 9 datových bitů, (parita) a 1 nebo 2 stop bity
- Generování liché nebo sudé parity a kontrola parity podporovaná hardwarem
- Tři samostatná přerušení na TX kompletní,
 TX datový registr prázdný a RX kompletní
- Další výklad zaměřen na USART 0 (n = 0)

Nastavení režimu USART

Synchronní režim:

- USART může pracovat jako "Master" (generuje clock na pinu XCK) nebo jako "Slave" (přijímá clock z pinu XCK). Zapíná se nastavením bitu UMSEL v registru UCSRC
- Rychlost přenosu (baudrate) se nastavuje v registru UBRR (části UBRRH a UBRRL). Do nich je možné zapsat maximálně 12ti bitovou hodnotu (0 4095) dělícího poměru hodinového signálu. Dělení probíhá celočíselně (chyba by měla být max 1 %)
- V asynchronním režimu (bit UMSEL v registru UCSRC vynulován) je možné pomocí bitu U2X v registru UCSRA nastavit tzv. "Double speed"

Asynchronní režim

- Jednotku USART tvoří tři bloky: generátor hodin, vysílač a přijímač
- Vysílač tvoří jeden buffer, sériový posuvný registr, generátor parity a řídící logiku pro různé formáty sériových rámců. Zapisovací buffer umožňuje kontinuální přenos rámců bez jakéhokoliv zpoždění mezi rámci.
- Přijímač obsahuje navíc jednotku pro obnovu hodin a dat, dále detektor parity, řídící logiku, posuvný registr a dvouúrovňový přijímací kruhový buffer (UDR), který pracuje jako kruhový FIFO ("First In – First Out").
- **Příznakové bity** chyb FE (**chyba rámce**), DOR (**ztráta znaku**) a devátý přijatý bit **RXB8** jsou ukládány s daty v přijímacím dvouúrovňovém bufferu UDR. Proto musí být vždy příznakové bity **přečteny dříve** než přenášená data.
- Přijímač podporuje ve stejném čase **stejné formáty rámců** jako vysílač, ale navíc může **detekovat chybu** rámce, ztráty znaku a **chybu parity**.

Blokový diagram USART ATmega328P

Registr UDR – datový buffer

- Je společný jak pro přijímač, tak pro vysílač.
- Abychom mohli do bufferu vysílače zapisovat, musí být bit UDRE v registru UCSRA nastaven (signalizuje, že vysílací buffer (UDR) je prázdný a připravený pro zápis).

SBRS r17, UDRE0 ; čekej na vyprázdnění vysílacího bufferu

rjmp empty ; repeat loop

STS UDRO, r16 ; vyšli hodnotu uloženou v r16

Registr UCSRA – bity RXC, TXC, UDRE

Bit	7	6	5	4	3	2	1	0	_
	RXCn	TXCn	UDREn	FEn	DORn	UPEn	U2Xn	MPCMn	UCSRnA
Read/Write	R	R/W	R	R	R	R	R/W	R/W	
Initial Value	0	0	1	0	0	0	0	0	

- Bity RXC a TXC slouží k informaci o ukončení akce příjmu, nebo vyslání znaku, po vyprázdnění bufferu dojde k automatickému vynulování bitu.
- RXC, TXC může generovat přerušení
- TXC nastaví se, pokud došlo k odeslání všech dat a již nejsou žádné data v bufferu vysílače.
- UDRE nastaví se, když vysílací buffer (UDR) je prázdný a připravený pro zápis.
- Bit MPCM nastavuje víceprocesorový režim, (výklad se tímto režimem nezabývá).

Registr UCSRA – chybové stavy FE, DOR, PE

- Příznakové bity jsou platné pouze do doby přečtení registru UDR
- Při zápisu do registru UCSRA musí být vždy tyto bity nastaveny do stavu log. 0
- Bit FE indikace chyby rámce, nastaví se, pokud nebyl indikován platný stop bit. K vynulování dojde po příjmu platného "stop bitu".
- Bit DOR ztráta dat, nastaví se, když je již přijímací buffer plný, tzn.
 obsahuje dva znaky, nový znak je v posuvném registru a je detekován
 nový "start bit".
- Bit UPE chyba parity, nastaví se, když nesouhlasí přijatá a vypočítaná parita.

Časování přenosu - generátor hodin

txclk - hodiny vysílače

rxclk - hodiny přijímače

xcki - vstup z pinu XCK, synchronní slave

xcko - výstup hodin na pin XCK. synchronní master

fosc XTAL - systémové hodiny

U2X - dvojnásobná asynchronní přenosová rychlost

DDR_XCK - data direction register XCK

UMSEL - USART Mode Select (syn/asyn/SPI mód)

UCPOL - USART Clock Polarity (s UCPHA - časování SPI)

UBRR - USART baud rate register

Logika obnovy hodinového signálu

- Po sestupné hraně v bodě 1 použije logika obnovy hodin vzorky 8, 9 a 10 pro normální režim a vzorky 4, 5 a 6 pro režim dvojnásobné rychlosti k rozhodnutí, zda je přijat platný počáteční bit .
- Pokud dva nebo více z těchto tří vzorků (většina) mají HL, je startovací bit odmítnut (považováno za šum) a přijímač začne hledat další přechod z HL na LL.

 Bit U2X registru UCSRA - nastavuje dvojnásobnou přenosovou rychlost asynchronního režimu. Nastavením změníme dělicí poměr pro přenosovou rychlost z 16 na 8.

Výpočet přenosové rychlosti dané v UBRR

Operating Mode	Equation for Calculating Baud Rate ⁽¹⁾	Equation for Calculating UBRR Value
Asynchronous Normal Mode (U2X = 0)	$BAUD = \frac{f_{OSC}}{16(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{16BAUD} - 1$
Asynchronous Double Speed Mode (U2X = 1)	$BAUD = \frac{f_{OSC}}{8(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{8BAUD} - 1$
Synchronous Master Mode	$BAUD = \frac{f_{OSC}}{2(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{2BAUD} - 1$

Nastavení předděliče pro používané hodnoty

	f _{osc} = 16.0000MHz						
	U2Xn =	= 0	U2Xn =	:1			
Baud Rate (bps)	UBRRn	Error	UBRRn	Error			
2400	416	-0.1%	832	0.0%			
4800	207	0.2%	416	-0.1%			
9600	103	0.2%	207	0.2%			
14.4k	68	0.6%	138	-0.1%			
19.2k	51	0.2%	103	0.2%			
28.8k	34	-0.8%	68	0.6%			
38.4k	25	0.2%	51	0.2%			
57.6k	16	2.1%	34	-0.8%			
76.8k	12	0.2%	25	0.2%			
115.2k	8	-3.5%	16	2.1%			
230.4k	3	8.5%	8	-3.5%			
250k	3	0.0%	7	0.0%			
0.5M	1	0.0%	3	0.0%			
1M	0	0.0%	1	0.0%			
Max. ⁽¹⁾	1Mbp	s	2Mbp	s			

Note: 1. UBRRn = 0, error = 0.0%

Registr UCSRB – povolení RX, TX, přerušení

Bit	7	6	5	4	3	2	1	0	_
	RXCIEn	TXCIEn	UDRIEn	RXENn	TXENn	UCSZn2	RXB8n	TXB8n	UCSRnB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	ı
Initial Value	0	0	0	0	0	0	0	0	

- RXCIE přerušení po příjmu dat (pokud je nastaven RXC v registru UCSRA)
- TXCIE přerušení po dokončení vysílání dat (pokud dojde k nastavení TXC v registru UCSRA)
- UDRIE přerušení po vyprázdnění registru UDR (pokud dojde k nastavení UDRE v registru UCSRA).
- RXEN nastavením dojde k povolení přijímače jednotky USART.
- TXEN nastavením dojde k povolení vysílače jednotky USART.
- UCSZ2 určuje délku datového znaku (společně s UCSZ1 a UCSZ0 z registru UCSRC)
- RXB8, TXB8 devátý bit datového přenosu, nutno číst a zapsat před čtením a zápisem do UDRL. Ve výkladu neuvažujeme.

Příklad povolení RX, TX, přerušení po příjmu

Bit	7	6	5	4	3	2	1	0	
	RXCIEn	TXCIEn	UDRIEn	RXENn	TXENn	UCSZn2	RXB8n	TXB8n	UCSRnB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Nastavení:									
•	.org 0x0024 ; adresa vektoru přerušení 0x0024 (USART, Rx Complete, lze také zapsat .org URXCaddr) rjmp int_rxc								
	6, (1< <rxcie< td=""><td>E0) (1<<rx< td=""><td>ENO) (1<<t< td=""><td>XENO)</td><td>; enable I</td><td>Rx interrupt,</td><td>transmitte</td><td>er and rece</td><td>iver</td></t<></td></rx<></td></rxcie<>	E0) (1< <rx< td=""><td>ENO) (1<<t< td=""><td>XENO)</td><td>; enable I</td><td>Rx interrupt,</td><td>transmitte</td><td>er and rece</td><td>iver</td></t<></td></rx<>	ENO) (1< <t< td=""><td>XENO)</td><td>; enable I</td><td>Rx interrupt,</td><td>transmitte</td><td>er and rece</td><td>iver</td></t<>	XENO)	; enable I	Rx interrupt,	transmitte	er and rece	iver
STS U SEI	CSR0B, r16				; enable ${\mathfrak g}$	global interr	upt		
Obsluha:									
int_rxc:									
	obsluha čten popsáno u re		•	ého poslán	í zpět Tx)				
reti									

UCSRC – kontrolní a stavový registr C

Bit	7	6	5	4	3	2	1	0	_
	UMSELn1	UMSELn0	UPMn1	UPMn0	USBSn	UCSZn1	UCSZn0	UCPOLn	UCSRnC
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	1	1	0	

UCSZn2	UCSZn1	UCSZn0	Character Size
0	0	0	5-bit
0	0	1	6-bit
0	1	0	7-bit
0	1	1	8-bit
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9-bit

Registr UCSRC - režim komunikace

- UMSEL režim komunikace, nastavením je vybrán synchronní režim a vynulováním asynchronní režim. Pro zápis do registru UCSRC musí být bit URSEL nastaven.
- **UPM1** a **UPM0** parita (even-sudá, odd-lichá) $P_{even} = d_{n-1} \oplus ... \oplus d_3 \oplus d_2 \oplus d_1 \oplus d_0 \oplus 0$ $P_{odd} = d_{n-1} \oplus ... \oplus d_3 \oplus d_2 \oplus d_1 \oplus d_0 \oplus 1$
- USBS počet "stop bitů", nastavením použije dva "stop bity", vynulováním pouze jeden "stop bit".
- UCPOL nastavení pouze v synchronním režimu definuje vztah mezi datovým výstupem, vzorkováním vstupního signálu a hodinovým signálem na XCK. Při použití asynchronního režimu je tento bit vynulován.

UCSRC – mód USARTu, parita

Bit	7	6	5	4	3	2	1	0	_
	UMSELn1	UMSELn0	UPMn1	UPMn0	USBSn	UCSZn1	UCSZn0	UCPOLn	UCSRnC
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	1	1	0	

UMSELn1	UMSELn0	Mode				
0	0	Asynchronous USART				
0	1	Synchronous USART				
1	0	(Reserved)				
1	1	Master SPI (MSPIM) ⁽¹⁾				

UPMn1	UPMn0	Parity Mode					
0	0	Disabled					
0	1	Reserved					
1	0	Enabled, even parity					
1	1	Enabled, odd parity					

UCSRC – stop bit, polarita XCK

Bit	7	6	5	4	3	2	1	0	_
	UMSELn1	UMSELn0	UPMn1	UPMn0	USBSn	UCSZn1	UCSZn0	UCPOLn	UCSRnC
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	1	1	0	

USBSn	Stop Bit(s)
0	1-bit
1	2-bit

UCPOLn	Transmitted Data Changed (Output of TxDn Pin)	Received Data Sampled (Input on RxDn Pin)
0	Rising XCKn edge	Falling XCKn edge
1	Falling XCKn edge	Rising XCKn edge

Registry UBBRH a UBRRL - baudrate

 USART Baud Rate Register - nastavení přenosové rychlosti (12 bitů – 8bitů UBRRL + 4 nižší UBRRH)

```
    .equ ubp= (F_CPU/16/baud) – 1 ; USART baud předdělič (registr UBRR)
    LDI r16, LOW(ubp) ; nižší bity ubp do registru r16
    LDI r17, HIGH(ubp) ; vyšší bity ubp do registru r16
    STS UBRROL, r16 ; ulož baud předdělič do UBRRO
    STS UBRROH, r17
```