Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 8: Case Study: UV - OH

UV absorption of OH: $A^2\Sigma^+ - X^2\Pi$ (~300nm)

- 1. Introduction
- 2. OH energy levels
 - Upper level
 - Lower level
- 3. Allowed radiative transitions
 - Transition notations
 - Allowed transitions
- 4. Working example OH

Allowed rotational transitions from N"=13 in the $A^2\Sigma^+\leftarrow X^2\Pi$ system

1. Introduction

OH, a prominent flame emitter, absorber.
 Useful for T, X_{OH} measurements.

1. Introduction

- Steps in analysis to obtain spectral absorption coefficient
 - 1. Identify/calculate energy levels of upper + lower states
 - 2. Establish allowed transitions
 - 3. Introduce "transition notation"
 - 4. Identify/characterize oscillator strengths using Hönl-London factors
 - 5. Calculate Boltzmann fraction
 - 6. Calculate lineshape function
 - 7. Calculate absorption coefficient

Term energies

Angular momentum energy (nuclei + electrons)

$$E(n,v,J) = T_e(n) + G(v) + F(J)$$
 elec. q. no. $f(v)$ to vib. q. no. $f(v)$ Electronic energy energy

Separation of terms: Born-Oppenheimer approximation

•
$$G(v) = \omega_e(v + 1/2) - \omega_e x_e(v + 1/2)^2$$

- Sources of T_e, ω_e, ω_ex_e → Herzberg
- Overall system : A²Σ⁺←X²Π

in [cm⁻¹]

Α ² Σ+	T _e	$\omega_{ m e}$	$\omega_{\rm e} x_{\rm e}$	Х2П	T _e	$\omega_{ m e}$	$\omega_{\rm e} x_{\rm e}$
	32682.0	3184.28	97.84		0.0	3735.21	82.21

■ Hund's case b (Λ =0, S≠0) – more standard, especially for hydrides

Recall:

- Σ, Ω not rigorously defined
- N = angular momentum without spin
- S = 1/2-integer values
- J = N+S, N+S-1, ..., |N-S|
- i = 1, 2, ...

 $F_i(N)$ = rotational term energy

Now, specifically, for OH?

The upper state is A²Σ⁺

For OH:

- $\Lambda = 0$, $\therefore \Sigma$ not defined \Rightarrow use Hund's case b
- N = 0, 1, 2, ...
- S = 1/2
- $J = N \pm 1/2$
- F_1 denotes J = N + 1/2

$$F_2$$
 denotes $J = N - 1/2$

Common to write either $F_1(N)$ or $F_1(J)$

- The upper state: A²Σ⁺
 - $F_1(N) = B_{\nu}N(N+1) D_{\nu}[N(N+1)]^2 + \gamma_{\nu}N$ $F_2(N) = B_{\nu}N(N+1) D_{\nu}[N(N+1)]^2 \gamma_{\nu}(N+1)$ (splitting constant $\gamma_{\nu} \approx 0.1$ cm⁻¹ for OH $A^2\Sigma^+$)

for pure case b

• \therefore the spin-splitting is $\gamma_{v}(2N+1)$ • function of v; increases with N

- Notes:
- Progression for $A^2\Sigma^+$
- "+" denotes positive"parity" for even N [wave function symmetry]
- Importance? Selection rules require parity change in transition

The ground state: X²Π (Λ=1, S=1/2)

Hund's case a $\Lambda \neq 0$, $S \neq 0$, Σ defined

Hund's case b $\Lambda = 0$, $S \neq 0$, Σ not defined

Note:

- 1. Rules less strong for hydrides
- 2. OH behaves like Hund's a @ low N like Hund's b @ large N
 - \Rightarrow at large N, \vec{L} couples more to N, \land is less defined, S decouples from A-axis
- 3. Result? OH X²Π is termed "intermediate case"

- The ground state: X²Π
 - Notes:
 - 3. For "intermediate/transition cases"

$$F_{1}(N) = B_{v} \left\{ (N+1)^{2} - \Lambda^{2} - \frac{1}{2} \left[4(N+1)^{2} + Y_{v}(Y_{v} - 4)\Lambda^{2} \right]^{1/2} \right\} - D_{v} \left[N(N+1) \right]^{2}$$

$$F_{2}(N) = B_{v} \left\{ N^{2} - \Lambda^{2} + \frac{1}{2} \left[4N^{2} + Y_{v}(Y_{v} - 4)\Lambda^{2} \right]^{1/2} \right\} - D_{v} \left[N(N+1) \right]^{2}$$

where $Y_v \equiv A/B_v$ (< 0 for OH); A is effectively the moment of inertia Note: $F_1(N) < F_2(N)$

For small N

Behaves like Hund's a, i.e., symmetric top, with spin splitting ΛA

For large N

Behaves like Hund's b, with small (declining) effect from spin

$$F_{1} \to B_{\nu} [(N+1)^{2} - \Lambda^{2} - (N+1)]$$

$$F_{2} \to B_{\nu} [N^{2} - \Lambda^{2} + N]$$

$$F_{1} - F_{2} \to B_{\nu} [(N+1)^{2} - N^{2} - (2N+1)] \to 0$$

- The ground state: X²□
 - Notes:
 - 4. Some similarity to symmetric top

J N

7/2

5/2

Hund's a \rightarrow 2|(A-B_V)|

130

3/2

F₁: J = N + 1/2 $\Omega = 3/2$ F₂: J = N - 1/2 $\Omega = 1/2$

Showed earlier that $F_1 < F_2$

$$T_e = T_0 + AΛΣ$$

For OH, A = -140 cm⁻¹

$$T_e = T_0 + (-140)(1)(1/2), \Sigma = 1/2$$

+ (-140)(1)(-1/2), Σ = -1/2

$$\Delta T_e = 140 \text{ cm}^{-1}$$
Not too far off the 130 cm⁻¹ spacing for minimum J

1/2 Recall: Hund's case **a** has constant difference of 2(A-B_v) for same J

$$F(J) = BJ(J+1) + (A-B)Ω2$$

(A-B)Ω² ≈ -158.5Ω²

(A for OH~ -140, B ~ 18.5),
$$\Omega$$
 = 3/2, 1/2

 Ω = 3/2 state lower by 316 cm⁻¹

Actual spacing is only 188 cm⁻¹, reflects that <u>hydrides quickly go to Hund's case b</u>

- The ground state: X²Π
 - Notes:
 - 5. Role of Λ -doubling

$$F_{ic} = F_i(J) + \delta_c J(J+1)$$

$$F_{id} = F_i(J) + \delta_d J(J+1)$$

$$F_{id} < F_{ic}$$

- $F_{ic}(J) F_{id}(J) \approx 0.04 \text{ cm}^{-1} \text{ for typical J in OH}$
- c and d have different parity(p)
- Splitting decreases with increasing N

Showed earlier that $F_1 < F_2$

Now let's proceed to draw transitions, but first let's give a primer on transition notation.

Transition notations

Full description: $A^2\Sigma^+$ (v') $\leftarrow X^2\Pi$ (v") $^YX_{\alpha\beta}$ (N" or J")

$${}^{Y}X_{lphaeta}(N" ext{ or } J")$$

```
where Y – \DeltaN (O, P, Q, R, S for \DeltaN = -2 to +2)

X – \DeltaJ (P, Q, R for \DeltaJ = -1, 0, +1)

\alpha = i in F<sub>i</sub>'; i.e., 1 for F<sub>1</sub>, 2 for F<sub>2</sub>

\beta = i in F<sub>i</sub>"; i.e., 1 for F<sub>1</sub>, 2 for F<sub>2</sub>
```

Notes:

Strongest trans. $\int 1$. Y suppressed when $\Delta N = \Delta J$

e.g., $R_1(7)$ or R_17 2. β suppressed when $\alpha = \beta$

3. Both N" and J" are used

General selection rules

- Parity must change + → or → +
- $\Delta J = 0, \pm 1$
- No Q (J = 0) transitions, $J = 0 \rightarrow J = 0$ not allowed

$$F' = F_2(N')$$

$$\mathsf{F"} = \mathsf{F_1}(\mathsf{N"})$$

Allowed transitions

Allowed rotational transitions from N"=13 in the $A^2\Sigma^+\leftarrow X^2\Pi$ system

- 12 bands possible (3 originating from each lambda-doubled, spin-split X state)
- Main branches: $\alpha = \beta$; Cross-branches: $\alpha \neq \beta$
- Cross-branches weaken as N increases

Allowed transitions

Allowed rotational transitions from N"=13 in the $A^2\Sigma^+\leftarrow X^2\Pi$ system

Notes:

- A given J" (or N") has 12 branches (6 are strong; $\Delta J = \Delta N$)
- + ↔ rule on parity
- $F_{1c}-F_{1d} \approx 0.04N(N+1)$ for OH → for N~10, Λ-doubling is ~ 4cm⁻¹, giving clear separation
- If upper state has Λ-doubling, we get <u>twice</u> as many lines!

Allowed transitions

Allowed rotational transitions from N"=13 in the $A^2\Sigma^+ \leftarrow X^2\Sigma^+$ system

Note:

- The effect of the parity selection rule in reducing the number of allowed main branches to 4
- 2. The simplification when $\Lambda=0$ in lower state, i.e., no Λ -doubling

4. Working example - OH

- Complete steps to calculate absorption coefficient
- Identify/characterize <u>oscillator</u> <u>strengths</u> using Hönl-London factors
- 2. Calculate Boltzmann fraction
- 3. Calculate <u>lineshape function</u> _(narrow-band vs broad-band)
- 4. Calculate absorption coefficient

Absorption coefficient

#/cm³ of species (OH), =
$$\frac{p_A}{kT}$$

#/cm³ in state 1, = $N_a \frac{N_1}{N_a}$ Fractional pop. in state 1

 k_v , cm⁻¹ = $\left[\frac{\pi e^2}{m_e c}\right] N_1 f_{12} \left(1 - \exp^{-\frac{hv}{kT}}\right) \phi(v - v_0)$
 $\phi[s] = (1/c) \phi[cm]$

0.0265 cm²/s

To do: evaluate
$$f_{12}$$
, N_1/N_a
 \uparrow

Step 1 Step 2

4.1. Oscillator strengths

Absorption oscillator strength

Notes: q_{v"v'} and S_{J"J'} are normalized

$$\sum_{v'} q_{v''v'} = 1$$

$$\sum_{J'} S_{J''J'} = (2J''+1)\underbrace{(2S+1)\delta}_{g''_{el}=4 \text{ for } X^2\Pi}$$
1 for $\Lambda = 0$ (Σ state), 2 otherwise

this sum includes the S values for all states with J"

4.1. Oscillator strengths

Absorption oscillator strength for f_{00} in OH $A^2\Sigma^+$ – $X^2\Pi$

Source	f ₀₀		
Oldenberg, et al. (1938)	0.00095 ± 0.00014		
Dyne (1958)	0.00054 ± 0.0001		
Carrington (1959)	0.00107 ± 0.00043		
Lapp (1961)	0.00100 ± 0.0006		
Bennett, et al. (1963)	0.00078 ± 0.00008		
Golden, et al. (1963)	0.00071 ± 0.00011		
Engleman, et al. (1973)	0.00096		
Bennett, et al. (1964)	0.0008 ± 0.00008		
Anketell, et al. (1967)	0.00148 ± 0.00013		

4.1. Oscillator strengths

Absorption oscillator strength

Transition	S _{J"J'} /(2J"+1)	ΣF ₁ (J)	ΣF ₂ (J)	$\Sigma[F_1(J)+F_2(J)]$
Q ₁₂ (0.5)	0.667	0	2	2
$Q_2(0.5)$	0.667			
$R_{12}(0.5)$	0.333			
$R_2(0.5)$	0.333			
P ₁ (1.5)	0.588	2	2	4
P ₁₂ (1.5)	0.078			
P ₂₁ (1.5)	0.392			
P ₂ (1.5)	0.275			
Q ₁ (1.5)	0.562			
Q ₁₂ (1.5)	0.372			
Q ₂₁ (1.5)	0.246			
$Q_2(1.5)$	0.678			
R₁(1.5)	0.165			
R ₁₂ (1.5)	0.235			
R ₂₁ (1.5)	0.047			
$R_2(1.5)$	0.353			
$P_1(2.5)$	0.530	2	2	4
P ₁₂ (2.5)	0.070			
P ₂₁ (2.5)	0.242			
$P_2(2.5)$	0.358			
Q ₁ (2.5)	0.708			
Q ₁₂ (2.5)	0.263			
Q ₂₁ (2.5)	0.214			
$Q_2(2.5)$	0.757			
$R_1(2.5)$	0.256			
R ₁₂ (2.5)	0.173			
R ₂₁ (2.5)	0.050			
$R_2(2.5)$	0.379			

Transition	S _{J"J'} /(2J"+1)	$\Sigma F_1(J)$	$\Sigma F_2(J)$	$\Sigma[F_1(J)+F_2(J)]$
P ₁ (3.5)	0.515	2	2	4
P ₁₂ (3.5)	0.056			
P ₂₁ (3.5)	0.167			
P ₂ (3.5)	0.405			
Q ₁ (3.5)	0.790			
Q ₁₂ (3.5)	0.195			
Q ₂₁ (3.5)	0.170			
$Q_2(3.5)$	0.814			
R ₁ (3.5)	0.316			
R ₁₂ (3.5)	0.131			
$R_{21}(3.5)$	0.044			
$R_2(3.5)$	0.402			
P₁(9.5)	0.511	2	2	4
P ₁₂ (9.5)	0.016			
P ₂₁ (9.5)	0.038			
P ₂ (9.5)	0.488			
Q ₁ (9.5)	0.947			
Q ₁₂ (9.5)	0.050			
Q ₂₁ (9.5)	0.048			
$Q_2(9.5)$	0.950			
R ₁ (9.5)	0.441			
R ₁₂ (9.5)	0.035			
R ₂₁ (9.5)	0.014			
R ₂ (9.5)	0.462			

Hönl-London factors for selected OH transitions

4.2. Boltzmann fraction

1. We seek the fraction of molecules in a single state for which

$$\sum_{J'} S_{J''J'} = 2J'' + 1$$

2. In general,

$$N_i / N = g_i e^{-\varepsilon_i / kT} / Q$$
$$Q = Q_e \cdot Q_v \cdot Q_r$$

3. Electronic mode

$$g_e = (2S+1) \phi \leftarrow \phi = 1, \Lambda = 0$$

$$\phi = 2, \Lambda \neq 0$$

$$g_e = 4 \quad {}^{2}\Pi$$

$$g_e = 2 \quad {}^{2}\Sigma$$
OH

of rot. levels produced by spin splitting & Λ -doubling = 4 for $^2\Pi$

the sum of this over all levels is 1

Elec. level
$$\frac{N(n)}{N} = (2S+1)\phi \exp(-hcT_e(n)/kT)/Q_e$$
 Note:

$$Q_e = \sum (2S+1)\phi \exp(-hcT_e(n)/kT)$$
 hund's (a) includes $A\Omega^2$

4.2. Boltzmann fraction

4. Vibrational mode

$$\frac{N(n, \mathbf{v})}{N(n)} = \exp(-hcG(\mathbf{v})/kT)/Q_{\mathbf{v}}$$

$$Q_{\mathbf{v}} = \sum_{\mathbf{v}} \exp(-hcG(\mathbf{v})/kT) \qquad \text{Again, each of these}$$

$$(\text{hund's (b)}) \qquad \text{Ayain, each of these}$$

- 5. Rotational mode (hund's (b))
 - $\frac{N(n, \mathbf{v}, N)}{N(n, \mathbf{v})} = (2N+1)\exp(-hcF(N)/kT)/Q_r$ $Q_r = \sum_{N=\Lambda}^{\infty} (2N+1)\exp(-hcF(N)/kT) \qquad \Longrightarrow \qquad Q_r = \frac{T}{\theta_r} \text{ for } T >>> \theta_r$
 - Note: don't use $F_1+F_2(N)$ here; until we add spin splitting Now what about fraction of those with N in a given J?
 - $\frac{N(n, \mathbf{v}, N, J)}{N(n, \mathbf{v}, N)} = \frac{(2J+1)}{(2N+1)(2S+1)}$ Since # of states in N is (2N+1)(2S+1) ϕ , while # of states in J is (2J+1) ϕ

≈ ½ for OH as expected

• $\frac{N(n, v, N, J, p)}{N(n, v, N, J)} = \frac{1}{\phi}$ (fraction with spectral parity)

4.2. Boltzmann fraction

6. Combining

$$\frac{N(n, \mathbf{v}, N, J, p)}{N} = \frac{N_1}{N} \quad \text{(i.e., the Boltzmann fraction in state 1)}$$

$$= \frac{N(n)}{N} \frac{N(n, \mathbf{v})}{N(n)} \frac{N(n, \mathbf{v}, N)}{N(n, \mathbf{v})} \frac{N(n, \mathbf{v}, N, J)}{N(n, \mathbf{v}, N)} \frac{N(n, \mathbf{v}, N, J, p)}{N(n, \mathbf{v}, N, J)}$$

$$= \frac{(2J+1) \exp\left(-\frac{hc}{kT} \left[T_e(n) + G(\mathbf{v}) + F_i(N)\right]\right)}{Q_e Q_v Q_r}$$
Proper F_i now!

Note:

- 1. The fraction in a given state is 1/4 of that given by rigid rotor!
- 2. Always know $\Sigma(N_i/N) = 1$, both in total and for each mode separately.

We have 1 loose end to deal with: <u>narrow-band</u> and <u>broadband</u> absorption measurement.

4.3. Narrow-band vs broad-band absorption measurement

Narrow-band absorption

Measured quantity

We assured quantity
$$T_{v} = \left(I/I_{0}\right)_{v} = \exp\left(-S_{12}\phi_{v}L\right) \text{ with } S_{12} = \left[\frac{\pi e^{2}}{m_{e}c}\right]N_{1}f_{12}\left(1-\exp^{-\frac{hv}{kT}}\right) \\ \text{Oscillator strength for transition} \\ \left(\frac{N_{1}}{N_{l}}\right)\left(N_{l} = \text{tot. no. dens. of } l = \frac{p_{l}}{kT}\right) \\ \text{Boltzmann fraction of species } l = F_{v'',J'',...}(T)$$

thus, if T_{$$\nu$$} (e.g. T _{ν_0}) is measured, and if L, p, 2 γ , T, f₁₂ are known

$$\uparrow = \sum_{i} 2\gamma_i X_i$$
bd. species

then can solve for $N_l \leftarrow Quantity usually sought$

4.3. Narrow-band vs broad-band absorption measurement

Let's look at the classical (old-time) approach, pre 1975

Broadband absorption

Integrated area is called: integrated absorbance, or eq. width

$$(\text{for 1 line from 1 state}) \ \ W_{line} = W_{J"J'} = \int A_{\overline{v}} d\,\overline{v} = \int (1-T_{\overline{v}}) d\,\overline{v} \\ = \int_{line} \{1-\exp(-K_{J"J'}\phi(\overline{v})L)\} d\,\overline{v} \\ \text{Transform variables} \qquad \overline{v} = \frac{\Delta\,\overline{v}_D}{2\sqrt{\ln 2}} x \\ W_{J"J'} = \frac{\Delta\,\overline{v}_D}{\sqrt{\ln 2}} \int_0^\infty \left\{1-\exp\left[-K_{J"J'}L\frac{2\sqrt{\ln 2}}{\sqrt{\pi}\Delta\,\overline{v}_D}V(x,a)\right]\right\} dx$$

4.3. Narrow-band vs broad-band absorption measurement

Let's look at the classical (old-time) approach, pre 1975

■ Broadband absorption ⇒ Requires use of "curves of growth"

- $W_{J''J'} = \frac{\Delta \overline{\nu}_D}{\sqrt{\ln 2}} \int_0^\infty \left\{ 1 \exp \left[-K_{J''J'} L \frac{2\sqrt{\ln 2}}{\sqrt{\pi} \Delta \overline{\nu}_D} V(x, a) \right] \right\} dx$
 - Procedure: measure $W_{J''J'}$, calculate Δv_D and a, infer $K_{J''J'}$, convert $K_{J''J'}$ to N_{species} Note:
 - 1. Simple interpretation only in optically thin limit,

$$W_{J"J'} = \int \left[1 - \left(1 - K_{J"J'}\phi(\overline{\nu})L\right)\right] d\overline{\nu}$$

$$W_{J"J'} = K_{J"J'} L = \frac{\pi e^2}{mc^2} N_1 f_{12} L$$

- 2. Measured eq. width is indep. of instrument broadening!
- 3. Before lasers, use of absorption spectroscopy for species measurements require use of Curves of Growth!

- Consider spectral absorption coefficient of the (0,0)Q₁(9) line in the OH A²Σ⁺–X²Π system, at line center.
 - $\lambda \sim 309.6$ nm, $\nu \sim 32300$ cm⁻¹, T = 2000K, $\Delta \nu_C = 0.05$ cm⁻¹

Express k, as a function of OH partial pressure

$$k_{v} [\text{cm}^{-1}] = 2.651 \times 10^{-2} \frac{\text{cm}^{2}}{\text{s}} \frac{P_{a}}{kT} \frac{N_{(n,v,\Sigma,J,\Lambda)"}}{N_{a}} \frac{f_{J"J} \phi(v_{0})}{2}$$
 $N_{a} = P_{a} / kT$

Oscillator strength (using tables)

$$f_{Q_1(9)} = f_{v"v'} \frac{S_{J"J'}}{2J"+1} = 0.00096 \times 0.947 = 9.09 \times 10^{-4}$$

Lineshape factor (narrow-band)

$$\frac{\Delta \overline{\nu}_D(2000\text{K}) = 0.25\text{cm}^{-1}}{\Delta \overline{\nu}_C(2000\text{K}) = 0.05\text{cm}^{-1}} a = 0.17 \Rightarrow \phi(\nu_0) = 3.13\text{cm or } 1.04 \times 10^{-10}\text{s}$$

- Consider spectral absorption coefficient of the (0,0)Q₁(9) line in the OH A²Σ⁺–X²Π system, at line center.
 - $\lambda \sim 309.6$ nm, $\nu \sim 32300$ cm⁻¹, T = 2000K, $\Delta \nu_C = 0.05$ cm⁻¹

Express k_{ν} as a function of OH partial pressure

$$k_{\nu} \left[\text{cm}^{-1} \right] = 2.651 \times 10^{-2} \frac{\text{cm}^2}{\text{s}} \frac{P_a}{kT} \frac{N_{(n,v,\Sigma,J,\Lambda)"}}{N_a} \frac{f_{J"J} \phi(v_0)}{2}$$
 $N_a = P_a / kT$

Oppulation fraction in the absorbing state

$$\frac{N_{f_{1c}(0.5)}}{N_a} = \frac{\exp[-hcT_e(0)/kT]}{Q_e} \cdot \frac{\exp[-hcG(0)/kT]}{Q_v} \cdot \frac{(2J''+1)\exp[-hcF_1(9.5)/kT]}{Q_r}$$

$$= \frac{\exp(0)}{4} \cdot \frac{\exp[-2660K/T]}{0.287} \cdot \frac{20\exp[-2313K/T]}{T/26.66K}$$

$$= \frac{1}{4} \cdot \frac{0.264}{0.287} \cdot \frac{6.29}{75.0}$$

$$= 0.25 \cdot 0.920 \cdot 0.0839$$

$$= 0.0193$$

- Consider spectral absorption coefficient of the (0,0)Q₁(9) line in the OH A²Σ⁺–X²Π system, at line center.
 - $\lambda \sim 309.6$ nm, $\nu \sim 32300$ cm⁻¹, T = 2000K, $\Delta \nu_C = 0.05$ cm⁻¹

Express k_{ν} as a function of OH partial pressure

$$k_{\nu} \left[\text{cm}^{-1} \right] = 2.651 \times 10^{-2} \frac{\text{cm}^2}{\text{s}} \frac{P_a}{kT} \frac{N_{(n,\nu,\Sigma,J,\Lambda)"}}{N_a} \frac{f_{J"J} \phi(\nu_0)}{\mathbf{1}}$$

$$N_a = P_a / kT$$

$$k_{\nu} \left[\text{cm}^{-1} \right] = \left(2.651 \times 10^{-2} \, \frac{\text{cm}^2}{\text{s}} \right) \left(P_a \left[\text{atm} \right] \right) \left(3.66 \times 10^{18} \, \frac{\text{cm}^{-3}}{\text{atm}} \right) \left(1.93\% \right) \left(9.09 \times 10^{-4} \right) \left(1.04 \times 10^{-10} \, \text{s} \right)$$

$$= 177 \, \frac{\text{cm}^{-1}}{\text{atm}} \left(P_a \left[\text{atm} \right] \right)$$

Beer's Law $I_{\nu} = I_{\nu}^{0} \exp(-k_{\nu}L)$

 \Rightarrow 59% absorption for L = 5cm, X_{OH} = 1000ppm, T = 2000K, P = 1atm

Selected region of OH $A^2\Sigma^+\leftarrow X^2\Pi$ (0,0) band at 2000K

Notes:

- Lines belonging to a specific branch are connected with dashed or dotted curve
- Thicker dashed lines –
 main branches; thin dotted
 lines cross branches
- Bandhead in R branches if B_{v'}<B_{v"}; Bandhead in P branches if B_{v'}>B_{v"}
- Note bandhead in ^RQ₂₁
 branch

Next: TDLAS, Lasers and Fibers

- Fundamentals
- Applications to Aeropropulsion