CausalEngine™: Rethinking Machine Learning

From Statistical Correlation to Causal Understanding

Heyang Gong

2025年8月17日

Outline

- Why Do We Need Causal Inference?
- ② CausalEngine™ Four-Stage Architecture
- Five Inference Modes
- Performance Comparison
- Quick Start
- **6** Theoretical Foundation
- Application Scenarios
- Summary and Outlook

Limitations of Traditional Machine Learning

Traditional ML

- Learns conditional expectations: E[Y|X]
- Relies on statistical correlations
- Performance degrades rapidly in noisy environments
- Treats individual differences as "noise"

Real-world Challenges

- Label noise is ubiquitous
- Individual differences are important information
- Need to understand "why", not just "what"
- Robustness is a key requirement

Core Question

How to build a machine learning system that can both predict accurately and understand causal relationships?

从相关性到因果性

传统机器学习

- 学习统计相关性
- 黑盒预测
- 缺乏可解释性

因果机器学习

- 学习因果结构方程
- 理解内在机制
- 捕捉个体差异

核心创新

引入个体因果表示 U, 实现个性化洞察和鲁棒预测

CausalEngine[™] Four-Stage Architecture

PerceptionFeature extraction via MLP layers

AbductionInfer causal representations

Action
Transform to decision scores

Decision Task-specific output head

Why Choose Cauchy Distribution?

Linear Stability Property

- If $X \sim \mathsf{Cauchy}(\mu, \gamma)$
- Then $aX + b \sim \mathsf{Cauchy}(a\mu + b, |a|\gamma)$
- Allows analytical computation without sampling

Heavy-tail Property

- Better models extreme individuals
- More robust to outliers

Heyang Gong

Matches real-world data distributions

柯西分布具有更重的尾部

Key Advantages

- Mathematical elegance: Linear stability enables analytical computation
- Practical robustness: Heavy tails handle extreme cases better

Inference Modes Overview

Mode	Formula	Characteristics	Use Cases
deterministic		Traditional ML baseline	Clean data
exogenous	$U' \sim Cauchy(\mu_U, b_{noise})$	Environmental randomness	Measurement noise
endogenous	$U' \sim Cauchy(\mu_U, \gamma_U)$	Cognitive uncertainty	Individual differences
standard	$U' \sim Cauchy(\mu_U, \gamma_U + b_{noise})$	Both combined	General best
sampling	$U' \sim Cauchy(\mu_U + b_{noise} \cdot arepsilon, \gamma_U)$	Location perturbation	Special research

Recommendation

Standard mode typically performs best in noisy environments, combining cognitive and environmental uncertainties

Uncertainty Decomposition

Total Uncertainty

$$\gamma_{total} = \gamma_U + |b_{noise}|$$

- Epistemic uncertainty: From insufficient understanding of individuals
- Aleatoric uncertainty: From inherent environmental randomness
- **Standard mode**: Combines both sources of uncertainty

Noise Robustness: Regression Task

MAE at 30% Label Noise

- sklearn MLP: 47.60
- PyTorch MLP: 45.32
- CausalEngine (deterministic): 38.25
- CausalEngine (standard): 11.41

Performance Improvement: 76%

Key Finding

CausalEngine excels in noisy environments while traditional methods degrade rapidly

Noise Robustness: Classification Task

Accuracy at 30% Label Noise

- sklearn MLP: 0.8850
- PyTorch MLP: 0.8875
- CausalEngine (deterministic): 0.9125
- CausalEngine (standard): 0.9225

Error Rate Reduction: 31%

Practical Significance

In real-world noisy data, CausalEngine provides more reliable predictions

Installation and Basic Usage

Installation

```
pip install causal-sklearn
```

Basic Usage Example

```
from causal_sklearn import MLPCausalRegressor
from sklearn.datasets import make_regression
from sklearn.model selection import train test split
# Generate data
X, y = make_regression(n_samples=1000, n_features=10, noise=20)
X_train, X_test, y_train, y_test = train_test_split(X, y)
# Create and train model
model = MLPCausalRegressor(
    hidden laver sizes=(100, 50).
    inference_mode='standard', # Recommended mode
    max_iter=200
```

Advanced Configuration

Custom Network Architecture

```
model = MLPCausalRegressor(
    # Perception layer configuration
    perception hidden sizes=(128, 64),
    perception_activation='relu',
    perception dropout=0.2,
    # Abduction layer configuration
    abduction_hidden_sizes=(32,),
    # Inference mode
    inference mode='standard'.
    # Training configuration
    learning_rate_init=0.001,
    batch_size=32,
    early_stopping=True,
    validation_fraction=0.2
```

Dual Identity of Individual Selection Variable U

As Individual Selector

- Each individual has a unique U value
- U encodes individual causal characteristics
- Enables personalized predictions

As Causal Representation

- U connects inputs and outputs
- Through structural equation $Y = f(U, \varepsilon)$
- Captures causal mechanisms

Unified Framework

$$P(Y|X) = \int P(Y|U) \cdot P(U|X) dU$$

where:

- ullet P(U|X): Abductive inference (infer causes from observations)
- P(Y|U): Causal prediction (predict effects from causes)

Why Does This Approach Work?

- Correct Inductive Bias
 - Individual differences are information, not noise
 - Learn universal causal laws, not memorize patterns
- Uncertainty Quantification
 - Explicitly separate epistemic and aleatoric uncertainty
 - Allow models to "know what they don't know"
- Mathematical Elegance
 - Linear stability of Cauchy distribution
 - Analytical computation without Monte Carlo sampling
- Practical Effectiveness
 - Validated on multiple real datasets
 - Significantly outperforms traditional methods in noisy environments

Use Cases

Particularly Suitable

- ✓ Data with severe label noise
- ✓ Need to understand individual differences
- ✓ Medical diagnosis (personalized)
- ✓ Financial risk assessment
- ✓ Recommendation systems
- ✓ Anomaly detection

Limited Advantage

- × Extremely clean data
- × Pure image classification
- X Scenarios not requiring interpretability
- ullet \times Extremely limited computational resources

Rule of Thumb

When data quality is uncertain or robustness is needed, CausalEngine is the ideal choice

Real-world Case Studies

Dataset	Traditional MLP	CausalEngine	Improvement
California Housing	0.65	0.78	+20%
Wine Quality	0.55	0.71	+29%
Boston Housing	0.62	0.74	+19%
Diabetes	0.41	0.52	+27%

^{*}R² scores under 20% label noise

Key Insight

Even at moderate noise levels, CausalEngine provides significant performance improvements

Core Contributions

New Machine Learning Paradigm

- From learning correlations to learning causal relationships
- Treat individual differences as features, not noise

Practical Implementation

- Fully compatible with scikit-learn API
- Efficient analytical computation
- Easy integration into existing workflows

Exceptional Robustness

- Superior performance in noisy environments
- Suitable for real-world messy data

One-sentence Summary

CausalEngine brings new possibilities to machine learning by understanding "why" rather than just "what"

Future Directions

Theoretical Extensions

- Extend to other probability distributions
- Multi-task causal learning
- Temporal causal inference

Application Expansion

- Large-scale dataset optimization
- Integration with deep learning architectures
- Domain-specific customization

Tool Ecosystem

- Visualization tools
- Automatic hyperparameter tuning
- Cloud deployment support

Thank You!

Questions & Discussion