# Statistical Arbitrage Using Limit-Order Book Imbalance

Anton Rubisov

University of Toronto

17 September 2015

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Information

Analysis

Maximizing Wealth via Continuous-Time Stochastic Optimal Control

Maximizing Wealth via Discrete-Time Stochastic Optimal Control

Results

Order Imbalance

Anton Rubisov

**Background Information** 

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Optimal Control

Maximizing Wealth via Discrete-Time Stochastic Optimal Control

Results

Future Work

Roadmap

Background Information

Exploratory Data Analysis

> aximizing ealth via ontinuous-Time ochastic Optima ochastic

laximizing Wealt a Discrete-Time tochastic Optima

Results

Background Information

Exploratory Data Analysis

Anton Rubisov

Anton Rubisov

#### Exploratory Data Analysis

## Modelling Imbalance

Arbitrage with Order Imbalance

#### Anton Rubisov

Roadmap

Background

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Optima Control

Maximizing Wealth via Discrete-Time Stochastic Optimal Control

Results

$$\rho(t) \in \{1, 2, \dots, \#_{bins}\}$$

is the bin corresponding to imbalance averaged over the interval  $[t-\Delta t_I,t]$ , and

$$\Delta S(t) = \operatorname{sgn}(S(t + \Delta t_S) - S(t)) \in \{-1, 0, 1\}$$

is the sign of the change in midprice of the future time interval  $\Delta t_5$ .

 $\rho(t)$  is the imbalance bin of the time-weighted average of I(t) over this past interval.

 $\Delta S(t)$  is the sign of the midprice change over this future interval.



Using MLE, we obtain a generator matrix G for the CTMC. The transition matrix over a step of size  $\Delta t_l$  is given by

$$P(\Delta t_I) = [p_{ij}(\Delta t_I)] = e^{G\Delta t_I}$$

called our *one-step transition probability matrix*. Matrix entries give the probability of transition from one (imbalance, price change) pair to another over the time interval  $\Delta t_I$ . This can be written semantically as

$$p_{ij} = \mathbb{P}\left[\varphi(\rho_{\mathsf{curr}}, \Delta S_{\mathsf{future}}) = j \mid \varphi(\rho_{\mathsf{prev}}, \Delta S_{\mathsf{curr}}) = i\right]$$

Using Bayes' Rule, we can transform the **P** matrix to

 $\mathbb{P}\left[\Delta S_{\text{future}} = j \mid B, \rho_{\text{curr}} = i\right] = \frac{\mathbb{P}\left[\rho_{\text{curr}} = i, \Delta S_{\text{future}} = j \mid B\right]}{\mathbb{P}\left[\rho_{\text{curr}} = i \mid B\right]}$ 

This allows us to predict future price moves. We'll call the

collection of these probabilities the Q matrix.

## Predicting Future Price Change

Sample **Q** matrix.

|                                | $\Delta S_{curr} < 0$ |      |      | $\Delta S_{curr} = 0$ |      |      | $\Delta S_{curr} > 0$ |      |      |
|--------------------------------|-----------------------|------|------|-----------------------|------|------|-----------------------|------|------|
|                                | $ ho_{\it curr}=1$    | 2    | 3    | 1                     | 2    | 3    | 1                     | 2    | 3    |
| $\Delta S_{\text{future}} < 0$ |                       |      |      |                       |      |      |                       |      |      |
| $ ho_{prev} = 1$               | 0.53                  | 0.15 | 0.12 | 0.05                  | 0.10 | 0.14 | 0.08                  | 0.13 | 0.14 |
| $ ho_{prev} = 2$               | 0.10                  | 0.58 | 0.14 | 0.07                  | 0.04 | 0.10 | 0.13                  | 0.06 | 0.12 |
| $\rho_{prev} = 3$              | 0.08                  | 0.12 | 0.52 | 0.09                  | 0.06 | 0.03 | 0.11                  | 0.10 | 0.05 |
| $\Delta S_{\text{future}} = 0$ |                       |      |      |                       |      |      |                       |      |      |
| $ ho_{prev} = 1$               | 0.41                  | 0.75 | 0.78 | 0.91                  | 0.84 | 0.79 | 0.42                  | 0.79 | 0.77 |
| $ ho_{prev} = 2$               | 0.79                  | 0.36 | 0.71 | 0.83                  | 0.92 | 0.82 | 0.75                  | 0.37 | 0.78 |
| $\rho_{prev} = 3$              | 0.79                  | 0.74 | 0.40 | 0.81                  | 0.83 | 0.91 | 0.70                  | 0.76 | 0.39 |
| $\Delta S_{\text{future}} > 0$ |                       |      |      |                       |      |      |                       |      |      |
| $ ho_{prev} = 1$               | 0.06                  | 0.10 | 0.09 | 0.04                  | 0.06 | 0.07 | 0.50                  | 0.09 | 0.09 |
| $ ho_{prev} = 2$               | 0.10                  | 0.06 | 0.15 | 0.10                  | 0.04 | 0.08 | 0.12                  | 0.57 | 0.10 |
| $ ho_{ m prev}=3$              | 0.13                  | 0.14 | 0.08 | 0.10                  | 0.11 | 0.05 | 0.19                  | 0.14 | 0.56 |

Anton Rubisov

Sackground nformation exploratory Data analysis

## Trading Strategies Informed by the Q Matrix

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Background Information

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Tochastic Optim

Maximizing Wealvia Discrete-Time Stochastic Optim

Results

Future Work

Naive Use market orders to buy (sell) if price is predicted to move up (down).

Naive+ Post at-the-touch limit orders when zero price change is predicted.

ive++ Post a limit order to buy (sell) is price is predicted to move up (down).

### Calibration of Naive Trading Strategies

Anton Rubisov

Need to select:

- price change observation period  $\Delta t_S$
- $\triangleright$  imbalance averaging period  $\Delta t_I$
- number of imbalance bins #bins

Calibration done on the first day of the trading year, same parameters used for all days.

Brute-force search of parameter space, using max Sharpe ratio criterion, found that  $\Delta t_S = \Delta t_I = 1$ sec, and  $\#_{bins} = 4$ 

## Results of Naive Trading Strategies

#### Anton Rubisov





Normalized Profit and Loss (P&L)







Time (h)

## Conclusions from Naive Trading Strategies

Anton Rubisov

## Why is the Naive strategy producing, on average, normalized losses?

- ► Backtest is out-of-sample; evidence to reject time-homogeneity
- Calibration is done on first trading day; likely nonrepresentative of trading activity
- Price change probability matrix Q obtained using midprices, ignoring bid-ask spread;  $\operatorname{sgn}(\Delta S)$  may be insufficient for create profit, especially on FARO

### Conclusions from Naive Trading Strategies

Anton Rubisov

## Why do the Naive+ and Naive++ strategies outperform the Naive strategy?

- ► LOs vs MOs means different transaction price is being used (only MO loses value)
- Naive only executes when predicting non-zero price change
  - Only sign, not magnitude
  - Only if one was already seen

Anton Rubisov

15 / 36

Exploratory Data Analysis

#### Maximizing Wealth via Continuous-Time Stochastic Optimal Control

- Price Change Time Δt<sub>S</sub>
   A constant, specifying the time window over which price changes will be computed.
- Number of Imbalance Bins #<sub>bins</sub> A constant, specifying the number of bins (spaced by percentiles, symmetric around zero) into which I(t) will be sorted.
- Imbalance  $\rho_t$  The finite, discrete stochastic process that results from sorting I(t) into the imbalance bins  $\{1,\ldots,\#_{bins}\}$ , and which evolves in accordance with the CTMC Z.

- ▶ Midprice Change  $\Delta S_t = \operatorname{sgn}(S_t S_{t-\Lambda t_c})$
- ▶ Imbalance & Midprice Change  $Z_t = (\rho_t, \Delta S_t)$ Continuous-time Markov chain with generator  $\boldsymbol{G}$ .
- Bid-Ask Half-Spread ξ Assumed constant.  $2\xi$  is equal to the bid-ask spread.
- ▶ Midprice Change  $\{\eta_{0,z}, \eta_{1,z}, \dots\} \sim F_z$ i.i.d. RVs, with distribution dependent on the Markov chain state.

- Our Limit Order Posting Depth  $\delta_t^{\pm}$ One of our controlled  $\mathcal{F}$ -predictable processes.  $\delta^+$  dictates how deep on the buy side we will post our buy limit order;  $\delta^+=0$  implies at-the-touch.
- Our Limit Order Fill Count L<sup>±</sup><sub>t</sub>
   Counting processes (not Poisson), satisfying

$$\mathbb{P}[\,\mathrm{d}L_t^{\pm} = 1\,|\,\,\mathrm{d}K_t^{\mp} = 1] = e^{-\kappa\delta_t^{\pm}}$$

Fill Probability Constant κ

Fitted to satisfy the above relation, by considering the avg vol available at the first few depths relative to distribution of volumes of incoming market orders

- ▶ Our Market Orders  $M_t^{\pm}$  $M^+$  represents our buy market order. Assume we achieve the best bid/ask price.
- Our Market Order Execution Times  $oldsymbol{ au}^{\pm} = \{ au_k^{\pm}: k=1,\dots\}$ An increasing sequence of  $\mathcal{F}$ -stopping times.

ightharpoonup Cash  $X_t^{\tau,\delta}$ 

A stochastic variable representing our cash, initially zero, that evolves according to

$$\mathrm{d}X_t^{\tau,\delta} = \underbrace{(S_t + \xi + \delta_t^-)\,\mathrm{d}L_t^-}_{\text{sell limit order}} - \underbrace{(S_t - \xi - \delta_t^+)\,\mathrm{d}L_t^+}_{\text{buy limit order}} + \underbrace{(S_t - \xi)\,\mathrm{d}M_t^-}_{\text{sell market order}} - \underbrace{(S_t + \xi)\,\mathrm{d}M_t^+}_{\text{buy market order}}$$

▶ Inventory  $Q_t^{\tau,\delta}$ A stochastic process representing our assets, initially zero, that satisfies

$$Q_0^{\tau,\delta} = 0,$$
  $Q_t^{\tau,\delta} = L_t^+ + M_t^+ - L_t^- - M_t^-$ 

Call  $W_t^{\tau,\delta}$  our net present value (NPV) at time t. Hence  $W_{\tau}^{\tau,\delta}$  at terminal time T is our 'terminal wealth.' At T. we:

- finish each trading day with zero inventory (avoid overnight positional risk)
- submit a market order (of a possibly large volume) to liquidate remaining stock
- price achieved will be  $S \xi \operatorname{sgn} Q \alpha Q$ 
  - $\xi \operatorname{sgn} Q$  represents crossing the spread
  - $ightharpoonup \alpha$  is a penalty constant
  - $ightharpoonup \alpha Q$  represents receiving a worse price linearly in Q due to walking the book

Hence,  $W_t^{\tau,\delta}$  satisfies:

$$W_t^{\tau,\delta} = \underbrace{X_t^{\tau,\delta}}_{\text{cash}} + \underbrace{Q_t^{\tau,\delta}\left(S_t - \xi\operatorname{sgn}(Q_t^{\tau,\delta})\right)}_{\text{book value of assets}} - \underbrace{\alpha\left(Q_t^{\tau,\delta}\right)^2}_{\text{liquidation penalty}}$$

wealth:

Our performance criterion will be to maximize terminal

 $H^{ au,\delta}(t,x,s,oldsymbol{z},q)=\mathbb{E}_{t,x,s,oldsymbol{z},q}\left\lceil W_{T}^{ au,\delta}
ight
ceil$ 

 $H(t, x, s, \mathbf{z}, q) = \sup_{\boldsymbol{\tau} \in \mathcal{T}_{[t,T]}} \sup_{\delta \in \mathcal{A}_{[t,T]}} H^{\boldsymbol{\tau}, \delta}(t, x, s, \mathbf{z}, q)$ 

Admissible trading strategies is the product of the set  $\mathcal{T}$  of all  $\mathcal{F}$ -stopping times, with the set  $\mathcal{A}$  of all  $\mathcal{F}$ -predictable,

bounded-from-below depths  $\delta > 0$ . ightharpoonup recognizing au does not require knowledge of the future

- $\triangleright$   $\delta$  cannot 'see into the future'; measurable with respect
  - to information at an earlier time

The value function is given by

#### Anton Rubisov

Roadmag

Background Information

Exploratory Data

Maximizing Wealth via Continuous-Time

aximizing Wealth a Discrete-Time ochastic Optimal

D . . . . . l . . .

#### Anton Rubisov

Roadmap

Background nformation

Exploratory Data

Maximizing Wealth via Continuous-Time

Maximizing Wealth ia Discrete-Time tochastic Optimal

D . . . . . l . . .

#### Anton Rubisov

Roadmap

Background nformation

Exploratory Data

Maximizing Wealth via Continuous-Time Stochastic Optima

Maximizing Wealth ia Discrete-Time tochastic Optimal

D ----.la

#### Anton Rubisov

Roadmar

Background Information

Exploratory Data

Maximizing Wealth via Continuous-Time Stochastic Optima

Maximizing Wealth ia Discrete-Time tochastic Optimal

#### Anton Rubisov

Roadmar

Background Information

Exploratory Data

Maximizing Wealth via Continuous-Time Stochastic Optima

Maximizing Wealth ia Discrete-Time tochastic Optimal

D - - . . la

#### Anton Rubisov

Roadmag

Background Information

Exploratory Data

Maximizing Wealth via Continuous-Time

aximizing Wealth a Discrete-Time ochastic Optimal

D . . . . . l . . .

#### Anton Rubisov

Roadmag

Background nformation

Exploratory Data

Maximizing Wealth via Continuous-Time Stochastic Optima

aximizing Wealth a Discrete-Time cochastic Optimal

D . . . . . l . . .

#### Anton Rubisov

Roadmag

Background Information

Exploratory Data

Maximizing Wealth via Continuous-Time Stochastic Optima

> aximizing Wealth a Discrete-Time cochastic Optimal

D .....la.

#### Anton Rubisov

Roadmap

Background Information

Exploratory Data

Maximizing Wealth via Continuous-Time

laximizing Wealth a Discrete-Time cochastic Optimal

D . . . . . l . . .

#### Anton Rubisov

Roadmar

Background Information

Exploratory Data

Maximizing Wealth via Continuous-Time

aximizing Wealth a Discrete-Time ochastic Optimal

D - - . . la

#### Anton Rubisov

Roadmag

Background nformation

Exploratory Data

Maximizing Wealth via Continuous-Time Cochastic Optima

> aximizing Wealth a Discrete-Time cochastic Optimal

D - - . . la

Anton Rubisov

Maximizing Wealth via Discrete-Time Stochastic Optimal Control

Exploratory Data Analysis

Anton Rubisov

## Results

Anton Rubisov

Exploratory Data Analysis