Национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Задача №3 «Синтез и моделирование унифицированного контура регулирования момента» по дисциплине «Системы управления в электроприводе» Вариант №14

Подготовили: Марухленко Д.С

Группа: R34352

Преподаватель: Демидова Г.Л.

1 Цель работы

- 1. Рассчитать коэффициент датчика момента из условия поддержания номинального момента при величине напряжения задания 10В.
- 2. Параметры ПИ-регулятора момента из условия настройки системы на технический оптимум.
- 3. Реализовать математическую модель контура в пакете MATLAB.
- 4. Снять реакции M(t), $U_y(t)$, $\varepsilon(t)$ на скачкообразное изменение задающего воздействия при нулевых начальных условиях, исключив влияние эл. /мех. связи. Определить параметры M(t): время первого согласования $t_{\rm p1}$, перерегулирование, время переходного процесса $t_{\rm n}$ и сравнить с параметрами эталонной кривой.
- 5. Выполнить программу п.4 с учетом эл./мех. связи.

2 Данные варианта

- Nππ: 14
- $\omega_{0\text{HOM}}$: 706 (1/c)
- M_{HOM}: 13.7 (H_M)
- M_{π} : 24.7 (H_M)
- J_1 : 0.008 (KГМ²)
- J_2 : 0.0025 (KГМ²)
- C_{12} : 300
- T_a : 50 (мс)
- $T_{\rm np}$: 10 (мс)
- $K_{\rm np}$: 15
- M_{c1}: 10 (H_M)
- M_{c2}: 3.7 (H_M)

3 Марериалы работы

Рассчитаем коэффициент датчика момента:

$$K_M = \frac{U_{\text{зад}}}{_{\text{зал}}} = \frac{U_{\text{зад}}}{_{\text{ном}}} = 0.7299$$

Передаточная функция объекта управления:

$$W = \frac{K_M K_{\rm np} \beta}{(T_{\rm s}s + 1)(T_{\rm np}s + 1)}$$

Передаточная функция системы, выполняющей условие технического оптимума:

$$W_{MO} = \frac{1}{2T_{\mu}s(T_{\mu}s+1)}$$

Передаточная функция ПИ регулятора и ее параметры:

$$\begin{split} W_{\Pi \mathrm{M}} &= \frac{K_p(T_{\mathrm{m}} s + 1)}{T_{\mathrm{m}} s} \\ T_{\mu} &= T_{\mathrm{np}} \\ T &= T_{\mathrm{e}} \\ K_p &= \frac{T_e}{2T_{\mathrm{np}} K_{\mathrm{np}} K_{\mathrm{M}} \beta} \end{split}$$

Соберем схему моделирования MATLAB Simulink

Рис. 1: Схема моделирования системы

Проведем моделирование системы без учета электромеханических связей

Рис. 2: График M(t) без электромеханиче-Рис. 3: График u(t) без электромеханической связи связи

Рис. 4: График $\varepsilon(t)$ без электромеханической связи

Время переходного процесса: 0.041434 с

Перерегулирование: 4.3214%

Проведем моделирование системы с учетом электромеханических связей

Рис. 5: График M(t) с учетом электромеха-Рис. 6: График u(t) с учетом электромеханинической связи

Рис. 7: График $\varepsilon(t)$ с учетом электромеханической связи

Время переходного процесса: 0.080375 с

Перерегулирование: 8.3481%

4 Вывод

В ходе работы был синтезирован унифицированный контур регулирования момента. Результат моделирования показал, что моделирование без электромеханической связи установившаяся ошибка регулирования пренебрежительно мала и, возможно, связано с неточностями компьютерных вычислений чисел с плавающей точкой. При моделировании с учетом влияния электромеханических связей существует малая установившаяся ошибка, которая же вызывает неограниченный рост управления.