18.404 Recitation 7

Oct 23, 2020

Today's Topics

- Formal Definition: P, NP
- Review: PATH
 - \circ PATH \in P
- Review: HAMPATH
- Polynomial Time Reducibility
- Example Reductions Proving NP-Complete
 - \circ 3-SAT \leq_p SUBSET-SUM
 - \circ HAMPATH \leq_{p} UHAMPATH

Formal Definition: P

TIME

- Let $t: \mathbb{N} \to \mathbb{N}$
- Say M runs in time t if TM M always halts within t(n) steps on all inputs of length n

Formal Definition: P (cont.)

 $TIME(n^k) = \{ B \mid some 1-tape deterministic TM decides B in O(t(n^k)) steps \}$

 $P = \bigcup_{k} TIME(n^{k})$

= polynomial time decidable languages

Corresponds roughly to realistically solvable problems

Formal Definition: NP

NTIME

- Let $t: \mathbb{N} \to \mathbb{N}$
- A <u>NTM</u> M runs in time t(n) if all branches halt within t(n) steps on all inputs
 of length n
- NTIME $(t(n)) = \{ B \mid \text{ some 1-tape NTM decides B and runs in } O(t(n)) \text{ steps } \}$

Formal Definition: NP (cont.)

 $NP = \bigcup_{k} NTIME(n^k)$

= nondeterministic polynomial time decidable languages

Corresponds roughly to easily verifiable problems

Intuitions: P vs. NP

P - All languages where one can test membership quickly

Problem presented to nondet. TM solvable in polynomial time

NP - All languages where one can <u>verify</u> membership quickly

• Problem + solution presented to nondet. TM verified in polynomial time

 $P \subseteq NP$, but unknown whether P = NP or $P \neq NP$

Review: PATH

PATH = {<G, s, t> | G is a directed graph with path from s to t }

Thm: $PATH \in P$

Proof: M = "On input <G, s, t>

- 1. Run BFS on G starting at s
- 2. Accept if t is reached. Reject otherwise"

Review: HAMPATH

HAMPATH = {<G, s, t> | G is a directed graph with path from s to t and path goes through every node of G without repeats }

Thm: HAMPATH ∈ NP

Proof: M = "On input <G, s, t> (G has m nodes)

- 1. Nondeterministically pick sequence $v_1, v_2, ..., v_m$ of m nodes
- 2. Accept if $v_1 = s$, $v_m = t$ each (v_i, v_{i+1}) is an edge and v_i does not repeat
- Reject if any condition fails"

Polynomial Time Reducibility

Definition: A is <u>polynomial time reducible</u> to B ($A \le_p B$) if $A \le_m B$ by a reduction function m that is computable in polynomial time

Thm: If $A \leq_{D} B$ and $B \in P$, then $A \in P$

f is computable in polynomial time

Polynomial Time Reducibility (cont.)

Corollary: If SAT \in P, then P = NP

Define: SUBSET-SUM

Language definition

Given a collection of numbers $x_1, ..., x_k$ and a target number t

Does the collection contain a subcollection of numbers which sum up to *t*?

ex) $\{1, 2, 3, 5, 7\}$, $t=13 \in SUBSET-SUM$

$$t = 20 \notin \text{SUBSET-SUM}$$

Example Reduction: 3-SAT ≤_p **SUBSET-SUM**

Proving SUBSET-SUM is NP-Complete

- 2. NP-Complete Language (3-SAT) ≤_p SUBSET-SUM

Simpler Question First: Is SUBSET-SUM \in NP?

Example Reduction: 3-SAT ≤_p SUBSET-SUM (cont.)

Proving SUBSET-SUM is NP-Complete: 3-SAT ≤_p SUBSET-SUM

Idea:

- Find way to convert *any* 3-SAT problem to a SUBSET-SUM problem
- SUBSET-SUM problem should somehow simulate solving 3-SAT formula
- Make sure conversion is polynomial in time!

Therefore, solving SUBSET-SUM problem, basically also solving 3-SAT problem

Example Reduction: 3-SAT ≤_p SUBSET-SUM (cont.)

Construction: Assume I variable $x_1 \dots x_{l'}$, assume k clauses $c_1 \dots c_k$

For every variable x_i produce two digits y_i , z_i (for SUBSET-SUM problem)

For every clause c_i produce two digits g_i , h_i (for SUBSET-SUM problem)

Example Reduction: 3-SAT ≤_p SUBSET-SUM (cont.)

Construction: $(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \cdots) \wedge \cdots \wedge (\overline{x_3} \vee \cdots \vee \cdots)$

Represents variables

Represents clauses

	1	2	3	4	 l	c_1	c_2		c_k
y_1	1	0	0	0	 0	1	0		0
z_1	1	0	0	0	 0	0	0		0
y_2		1	0	0	 0	0	1		0
z_2		1	0	0	 0	1	0		0
y_3			1	0	 0	1	1		0
z_3			1	0	 0	0	0		1
i					:	:		÷	:
y_l					1	0	0		0
z_l					1	0	0		0
g_1						1	0		0
h_1						1	0		0
g_2							1		0
h_2							1		0
÷								•	:
									0.00
g_k									1
h_k									1
\overline{t}	1	1	1	1	 1	3	3		3

Define: UHAMPATH

Recall:

HAMPATH = {<G, s, t> | G is a directed graph with path from s to t and path goes through every node of G without repeats }

UHAMPATH = {<G, s, t> | G is a <u>undirected</u> graph with path from s to t and path goes through every node of G without repeats }

Proving UHAMPATH is NP-Complete

- UHAMPATH ∈ NP
- 2. NP-Complete Language (HAMPATH) \leq_{p} UHAMPATH

Simpler Question First: Is UHAMPATH ∈ NP?

Proving UHAMPATH is NP-Complete: HAMPATH \leq_p UHAMPATH

Idea:

- Convert HAMPATH directed graph G to UHAMPATH undirected graph G' where:
 - $\langle G, s, t \rangle \in HAMPATH iff \langle G', s', t' \rangle \in UHAMPATH$
 - \circ <G,s,t> € HAMPATH *iff* <G', s', t'> € UHAMPATH
- Make sure conversion is polynomial in time!

Construction: Convert every node *u* in HAMPATH G, to three nodes in G'

- $U \rightarrow U^{in}$, U^{mid} , U^{out}
- $S \rightarrow S^{out}$
- $t \rightarrow t^{in}$

HAMPATH path: $s, u_1, u_2, \ldots, u_k, t$,

gets converted to

UHAMPATH path: s^{out} , u_1^{in} , u_1^{mid} , u_1^{out} , u_2^{in} , u_2^{mid} , u_2^{out} , ..., t^{in}

Construction by example:

Construction by example:

