

CHARACTERIZATION OF ℓ_p -LIKE AND c_0 -LIKE EQUIVALENCE RELATIONS

LONGYUN DING

ABSTRACT. Let X be a Polish space, d a pseudo-metric on X . If $\{(u, v) : d(u, v) < \delta\}$ is $\mathbf{\Pi}_1^1$ for each $\delta > 0$, we show that either (X, d) is separable or there are $\delta > 0$ and a perfect set $C \subseteq X$ such that $d(u, v) \geq \delta$ for distinct $u, v \in C$.

Granting this dichotomy, we characterize the positions of ℓ_p -like and c_0 -like equivalence relations in the Borel reducibility hierarchy.

1. INTRODUCTION

Let (X, d) be a pseudo-metric space. If X is not separable, by Zorn's lemma, we can easily prove that, there are $\delta > 0$ and a noncountable set $C \subseteq X$ such that $d(u, v) \geq \delta$ for distinct $u, v \in C$. However, if we do not assume CH, can we find such a C whose cardinal is of $2^{\mathbb{N}}$? J. H. Silver [10] answered a similar problem for equivalence relations under an extra assumption of coanalyticity.

A topological space is called a *Polish space* if it is separable and completely metrizable. As usual, We denote the Borel, analytic and coanalytic sets by Δ_1^1, Σ_1^1 and $\mathbf{\Pi}_1^1$ respectively. For their effective analogues, the Kleene pointclasses and the relativized Kleene pointclasses are denoted by $\Delta_1^1, \Sigma_1^1, \Pi_1^1, \Delta_1^1(\alpha), \Sigma_1^1(\alpha), \Pi_1^1(\alpha)$, etc. For more details in descriptive set theory, one can see [7] and [9].

Theorem 1.1 (Silver). *Let E be a $\mathbf{\Pi}_1^1$ equivalence relation on a Polish space. Then E has either at most countably many or perfectly many equivalence classes.*

In section 2, we use the Gandy-Harrington topology to establish the following dichotomy.

Theorem 1.2. *Let X be a Polish space, d a pseudo-metric on X . If $\{(u, v) : d(u, v) < \delta\}$ is $\mathbf{\Pi}_1^1$ for each $\delta > 0$, then either (X, d) is separable or there are $\delta > 0$ and a perfect set $C \subseteq X$ such that $d(u, v) \geq \delta$ for distinct $u, v \in C$.*

Let X, Y be Polish spaces and E, F equivalence relations on X, Y respectively. A *Borel reduction* of E to F is a Borel function $\theta : X \rightarrow Y$ such

Date: June 24, 2010.

2000 *Mathematics Subject Classification.* Primary 03E15, 54E35, 46A45.

Research partially supported by the National Natural Science Foundation of China (Grant No. 10701044).

that $(x, y) \in E$ iff $(\theta(x), \theta(y)) \in F$, for all $x, y \in X$. We say that E is *Borel reducible* to F , denoted $E \leq_B F$, if there is a Borel reduction of E to F . If $E \leq_B F$ and $F \leq_B E$, we say that E and F are *Borel bireducible* and denote $E \sim_B F$. We refer to [4] for background on Borel reducibility.

In section 3, we will introduce notions of ℓ_p -like and c_0 -like equivalence relations. Granting the dichotomy on pseudo-metric spaces, we answer that when is E_1 Borel reducible to an ℓ_p -like or a c_0 -like equivalence relation. In the end, we compare ℓ_p -like and c_0 -like equivalence relations with some remarkable equivalence relations E_0, E_1, E_0^ω .

- (a) For $x, y \in 2^{\mathbb{N}}$, $(x, y) \in E_0 \Leftrightarrow \exists m \forall n \geq m (x(n) = y(n))$.
- (b) For $x, y \in 2^{\mathbb{N} \times \mathbb{N}}$, $(x, y) \in E_1 \Leftrightarrow \exists m \forall n \geq m \forall k (x(n, k) = y(n, k))$.
- (c) For $x, y \in 2^{\mathbb{N} \times \mathbb{N}}$, $(x, y) \in E_0^\omega \Leftrightarrow \forall k \exists m \forall n \geq m (x(n, k) = y(n, k))$.

The following dichotomies show us why these equivalence relations are so remarkable.

Theorem 1.3. *Let E be a Borel equivalence relation. Then*

- (a) (Harrington-Kechris-Louveau [6]) either $E \leq_B \text{id}(\mathbb{R})$ or $E_0 \leq_B E$;
- (b) (Kechris-Louveau [8]) if $E \leq_B E_1$, then $E \leq_B E_0$ or $E \sim_B E_1$;
- (c) (Hjorth-Kechris [5]) if $E \leq_B E_0^\omega$, then $E \leq_B E_0$ or $E \sim_B E_0^\omega$.

2. SEPARABLE OR NOT

For a $\mathbf{\Pi}_1^1$ equivalence relation E on X , let us consider the following pseudo-metric on X :

$$d_E(u, v) = \begin{cases} 0, & (u, v) \in E, \\ 1, & (u, v) \notin E. \end{cases}$$

From Silver's theorem, we can see that either d_E is separable or there is a perfect set $C \subseteq X$ such that $d_E(u, v) = 1$ for distinct $u, v \in C$.

By the same spirit of the Silver dichotomy theorem, we define:

Definition 2.1. Let X be a Polish space, d a pseudo-metric on X . If $\{(u, v) : d(u, v) < \delta\}$ is $\mathbf{\Pi}_1^1$ for each $\delta > 0$, we say d is *lower $\mathbf{\Pi}_1^1$* .

For a pseudo-metric space (X, d) and $\delta > 0$, we say (X, d) is δ -separable if there is a countable set $S \subseteq X$ such that

$$\forall u \in X \exists s \in S (d(u, s) < \delta).$$

Hence (X, d) is separable iff it is δ -separable for arbitrary $\delta > 0$.

Theorem 2.2. *Let X be a Polish space, d a lower $\mathbf{\Pi}_1^1$ pseudo-metric. Then for $\delta > 0$, either (X, d) is δ -separable or there is a perfect set $C \subseteq X$ such that $d(u, v) \geq \delta/2$ for distinct $u, v \in C$.*

Proof. We denote $Q = \{(u, v) : d(u, v) < \delta\}$ and $R = \{(u, v) : d(u, v) < \delta/2\}$. We see that both Q, R are $\mathbf{\Pi}_1^1$.

Then the theorem follows from the next lemma. \square

Lemma 2.3. *Let X be a Polish space, $Q, R \subseteq X^2$. Assume that*

- (i) Q is Π_1^1 and R is $\sigma(\Sigma_1^1)$ (the σ -algebra generated by the Σ_1^1 sets);
- (ii) $\Delta(X) = \{(u, u) : u \in X\}$ contains in Q ;
- (iii) if there exists $v \in X$ such that $(v, u) \in R, (v, w) \in R$, then $(u, w) \in Q$.

Then one of the following holds:

- (a) there is a countable set $S \subseteq X$ such that $\forall u \in X \exists s \in S ((u, s) \in Q)$;
- (b) there is a perfect set $C \subseteq X$ such that $(u, v) \notin R$ for distinct $u, v \in C$.

Proof. We follow the method as in Harrington's proof for Silver's theorem.

Without loss of generality we may assume $X = \mathbb{N}^\mathbb{N}$ and $Q \in \Pi_1^1$. The proof for $Q \in \Pi_1^1(\alpha)$ with $\alpha \in \mathbb{N}^\mathbb{N}$ is similar. Let τ be the Gandy-Harrington topology (the topology generated by all Σ_1^1 sets) on $\mathbb{N}^\mathbb{N}$.

For $u \in X$ we denote $Q(u) = \{v \in X : (u, v) \in Q\}$. First we define

$$V = \{u \in X : \text{there is no } \Delta_1^1 \text{ set } U \text{ such that } u \in U \subseteq Q(u)\}.$$

If $V = \emptyset$, since there are only countably many Δ_1^1 set, we can find a countable subset $S \subseteq X$ which meets every nonempty Δ_1^1 set at least one point. For each $u \in X$ there is a nonempty Δ_1^1 set $U \subseteq Q(u)$. Let $s \in S \cap U$. Then $s \in Q(u)$, i.e. $(u, s) \in Q$.

For the rest of the proof we assume $V \neq \emptyset$. Note that

$$u \in V \iff \forall U \in \Delta_1^1 (u \in U \rightarrow \exists v \in U (v \notin Q(u))).$$

With the coding of Δ_1^1 sets (see [4] Theorem 1.7.4), there are Π_1^1 subsets $P^+, P^- \subseteq \mathbb{N} \times \mathbb{N}^\mathbb{N}$ and $D \subseteq \mathbb{N}$ such that

- (1) $\forall n \in D \forall u ((n, u) \in P^+ \Leftrightarrow (n, u) \notin P^-)$;
- (2) for any Δ_1^1 set A there is $n \in D$ such that $\forall u (u \in A \Leftrightarrow (n, u) \in P^+)$.

Thus we have

$$u \in V \iff \forall n ((n \in D, (n, u) \in P^+) \rightarrow \exists v ((n, v) \notin P^-, (u, v) \notin Q)).$$

So V is Σ_1^1 .

By a theorem of Nikodym (see [7] Corollary 29.14), the class of sets with the Baire property in any topological space is closed under the Suslin operation. It is well known that all Σ_1^1 sets are results of the Suslin operation applied on closed sets in the usual topology (see [7] Theorem 25.7). Note that all closed sets in usual topology are also closed in τ , we see that every $\sigma(\Sigma_1^1)$ subset of $\mathbb{N}^\mathbb{N}$ (or $\mathbb{N}^\mathbb{N} \times \mathbb{N}^\mathbb{N}$) has Baire property in τ (or $\tau \times \tau$).

Toward a contradiction assume that for some $v \in V$, $R(v)$ is not τ -meager in V . Since $R(v)$ has Baire property in τ , there is a nonempty Σ_1^1 set $U \subseteq V$ such that $R(v)$ is τ -comeager in U . By Louveau's lemma (see [9] Lemma 9.3.2), $R(v) \times R(v)$ meets any nonempty Σ_1^1 set in $U \times U$. We denote $\neg Q = (\mathbb{N}^\mathbb{N} \times \mathbb{N}^\mathbb{N}) \setminus Q$. If $\neg Q \cap (U \times U) \neq \emptyset$, since it is Σ_1^1 , we have

$$(R(v) \times R(v)) \cap \neg Q \cap (U \times U) \neq \emptyset,$$

which contradicts to clause (iii). Thus we have $U \times U \subseteq Q$. We define W by

$$w \in W \iff \forall u(u \in U \rightarrow (u, w) \in Q).$$

Fix a $u_0 \in U$. We can see that W is Π_1^1 and $U \subseteq W \subseteq Q(u_0)$. By the separation property for Σ_1^1 sets there is $U_0 \in \Delta_1^1$ such that $U \subseteq U_0 \subseteq W$. Then we have $u_0 \in U_0 \subseteq Q(u_0)$, which contradicts $u_0 \in U \subseteq V$. Therefore, $R(v)$ is τ -meager in V for each $v \in V$.

Since R has Baire property in $\tau \times \tau$, by the Kuratowski-Ulam theorem (see [7] Theorem 8.41), R is $\tau \times \tau$ -meager in $V \times V$. By the definition of V and clause (ii), we see that V contains no Δ_1^1 real, i.e. V has no isolate point in τ . Since the space $\mathbb{N}^\mathbb{N}$ with τ is strong Choquet (see [4] Theorem 4.1.5), V is a perfect Choquet space. From [7] Exercise 19.5, we can find a perfect set $C \subseteq V$ such that $(u, v) \notin R$ for distinct $u, v \in C$. \square

3. CHARACTERIZATION

The notion of ℓ_p -like equivalence relation was introduced in [2].

Definition 3.1. Let (X_n, d_n) , $n \in \mathbb{N}$ be a sequence of pseudo-metric spaces, $p \geq 1$. We define an equivalence relation $E((X_n, d_n)_{n \in \mathbb{N}}; p)$ on $\prod_{n \in \mathbb{N}} X_n$ by

$$(x, y) \in E((X_n, d_n)_{n \in \mathbb{N}}; p) \iff \sum_{n \in \mathbb{N}} d_n(x(n), y(n))^p < +\infty$$

for $x, y \in \prod_{n \in \mathbb{N}} X_n$. We call it an ℓ_p -like equivalence relation. If $(X_n, d_n) = (X, d)$ for every $n \in \mathbb{N}$, we write $E((X, d); p) = E((X_n, d_n)_{n \in \mathbb{N}}; p)$ for the sake of brevity.

If X is a separable Banach space, we have $E(X; p) = X^\mathbb{N}/\ell_p(X)$ where $\ell_p(X)$ is the Banach space whose underlying space is $\{x \in X^\mathbb{N} : \sum_{n \in \mathbb{N}} \|x(n)\|^p < +\infty\}$ with the norm $\|x\| = (\sum_{n \in \mathbb{N}} \|x(n)\|^p)^{\frac{1}{p}}$. Then $E(X; p)$ is an orbit equivalence relation induced by a Polish group action, thus $E_1 \not\leq_B E(X; p)$ (see [4] Theorem 10.6.1).

Let (X, d) be a pseudo-metric space, we denote

$$\delta(X) = \inf\{\delta : X \text{ is } \delta\text{-separable}\}.$$

Theorem 3.2. Let X_n , $n \in \mathbb{N}$ be a sequence of Polish spaces, d_n a Borel pseudo-metric on X_n for each n and $p \geq 1$. Denote $E = E((X_n, d_n)_{n \in \mathbb{N}}; p)$. We have

- (i) $\sum_{n \in \mathbb{N}} \delta(X_n)^p < +\infty \iff E \leq_B E(c_0; p);$
- (ii) $\sum_{n \in \mathbb{N}} \delta(X_n)^p = +\infty \iff E_1 \leq_B E.$

Proof. Because $E_1 \not\leq_B E(c_0; p)$, we only need to prove (\Rightarrow) for (i) and (ii).

(i) By the definition of $\delta(X_n)$, we see that X_n is $(\delta(X_n) + 2^{-n})$ -separable, i.e. there is a countable set $S_n \subseteq X_n$ such that

$$\forall u \in X_n \exists s \in S_n (d_n(u, s) < \delta(X_n) + 2^{-n}).$$

Let $S_n = \{s_m^n : m \in \mathbb{N}\}$. Without loss of generality, we assume that $d_n(s_k^n, s_l^n) > 0$ for $k \neq l$, i.e. d_n is a metric on S_n . For $u \in X$ we denote $m(u)$ the least m such that $d(u, s_m^n) < \delta(X_n) + 2^{-n}$. Then we define $h_n : X_n \rightarrow S_n$ by $h_n(u) = s_{m(u)}^n$ for $u \in X$. It is easy to see that h_n is Borel. Define $\theta : \prod_{n \in \mathbb{N}} X_n \rightarrow \prod_{n \in \mathbb{N}} S_n$ by

$$\theta(x)(n) = h_n(x(n))$$

for $x \in \prod_{n \in \mathbb{N}} X_n$. Note that for each x we have

$$\sum_{n \in \mathbb{N}} d_n(x(n), \theta(x)(n))^p < \sum_{n \in \mathbb{N}} (\delta(X_n) + 2^{-n})^p \leq 2^{p-1} \sum_{n \in \mathbb{N}} (\delta(X_n)^p + 2^{-np}) < +\infty,$$

i.e. $(x, \theta(x)) \in E$. It follows that $(x, y) \in E \Leftrightarrow (\theta(x), \theta(y)) \in E$. Hence $E \leq_B E((S_n, d_n)_{n \in \mathbb{N}}; p)$.

Note that each (S_n, d_n) is a separable metric space. From Aharoni's theorem [1], there are $K > 0$ and $T_n : S_n \rightarrow c_0$ satisfying

$$d_n(u, v) \leq \|T_n(u) - T_n(v)\|_{c_0} \leq K d_n(u, v)$$

for every $u, v \in S_n$. Define $\theta_1 : \prod_{n \in \mathbb{N}} S_n \rightarrow c_0^\mathbb{N}$ by

$$\theta_1(x)(n) = T_n(x(n))$$

for $x \in \prod_{n \in \mathbb{N}} S_n$. It is easy to check that θ_1 is a Borel reduction of $E((S_n, d_n)_{n \in \mathbb{N}}; p)$ to $E(c_0; p)$.

(ii) Without loss of generality, we may assume that $\delta(X_n) > 0$ for each n . Select a sequence $0 < \delta_n < \delta(X_n)$, $n \in \mathbb{N}$ such that $\sum_{n \in \mathbb{N}} \delta_n^p = +\infty$. Thus we can find a strictly increasing sequence of natural numbers $(n_j)_{j \in \mathbb{N}}$ such that $n_0 = 0$ and

$$\sum_{n=n_j}^{n_{j+1}-1} \delta_n^p \geq 2^p, \quad j = 0, 1, 2, \dots.$$

Since (X_n, d_n) is not δ_n -separable, from Theorem 2.2, there is a Borel injection $g_n : 2^\mathbb{N} \rightarrow X_n$ such that $d_n(g_n(\alpha), g_n(\beta)) \geq \delta_n/2$ for distinct $\alpha, \beta \in 2^\mathbb{N}$. Define $\vartheta : (2^\mathbb{N})^\mathbb{N} \rightarrow \prod_{n \in \mathbb{N}} X_n$ by

$$\vartheta(x)(n) = g_n(x(j)), \quad n_j \leq n < n_{j+1}.$$

For each $x, y \in (2^\mathbb{N})^\mathbb{N}$, if $x(j) \neq y(j)$ for some $j \in \mathbb{N}$, we have

$$\sum_{n=n_j}^{n_{j+1}-1} d_n(\vartheta(x)(n), \vartheta(y)(n))^p = \sum_{n=n_j}^{n_{j+1}-1} d_n(g_n(x(j)), g_n(y(j)))^p \geq \sum_{n=n_j}^{n_{j+1}-1} (\delta_n/2)^p \geq 1.$$

Therefore

$$\begin{aligned} & (\vartheta(x), \vartheta(y)) \in E \\ \iff & \sum_{j \in \mathbb{N}} \sum_{n=n_j}^{n_{j+1}-1} d_n(\vartheta(x)(n), \vartheta(y)(n))^p < +\infty \\ \iff & \exists k \forall j > k (x(j) = y(j)) \\ \iff & (x, y) \in E_1. \end{aligned}$$

Thus ϑ witnesses that $E_1 \leq_B E$. \square

c_0 -like equivalence relations were first studied by I. Farah [3].

Definition 3.3. Let (X_n, d_n) , $n \in \mathbb{N}$ be a sequence of pseudo-metric spaces. We define an equivalence relation $E((X_n, d_n)_{n \in \mathbb{N}}; 0)$ on $\prod_{n \in \mathbb{N}} X_n$ by

$$(x, y) \in E((X_n, d_n)_{n \in \mathbb{N}}; 0) \iff \lim_{n \rightarrow \infty} d_n(x(n), y(n)) = 0$$

for $x, y \in \prod_{n \in \mathbb{N}} X_n$. We call it a c_0 -like equivalence relation. If $(X_n, d_n) = (X, d)$ for every $n \in \mathbb{N}$, we write $E((X, d); 0) = E((X_n, d_n)_{n \in \mathbb{N}}; 0)$ for the sake of brevity.

Farah mainly investigated the case named c_0 -equalities that all (X_n, d_n) 's are finite metric spaces and denoted it by $D(\langle X_n, d_n \rangle)$.

Theorem 3.4. Let X_n , $n \in \mathbb{N}$ be a sequence of Polish spaces, d_n a Borel pseudo-metric on X_n for each n . Denote $E = E((X_n, d_n)_{n \in \mathbb{N}}; 0)$. We have

- (i) $\lim_{n \rightarrow \infty} \delta(X_n) = 0 \iff E \leq_B \mathbb{R}^{\mathbb{N}}/c_0$;
- (ii) $(\delta(X_n))_{n \in \mathbb{N}}$ does not converge to 0 $\iff E_1 \leq_B E$.

Proof. We closely follows the proof of Theorem 3.2. Some conclusions will be made without proofs for brevity, since they follow by similar arguments.

(i) Note that for each x we have

$$\lim_{n \rightarrow \infty} d_n(x(n), \theta(x)(n)) = \lim_{n \rightarrow \infty} (\delta(X_n) + 2^{-n}) = 0,$$

i.e. $(x, \theta(x)) \in E$. It follows that $(x, y) \in E \Leftrightarrow (\theta(x), \theta(y)) \in E$. Hence $E \leq_B E((S_n, d_n)_{n \in \mathbb{N}}; 0)$.

Fix a bijection $\langle \cdot, \cdot \rangle : \mathbb{N}^2 \rightarrow \mathbb{N}$. We define $\theta_2 : \prod_{n \in \mathbb{N}} S_n \rightarrow \mathbb{R}^{\mathbb{N}}$ by

$$\theta_2(x)(\langle n, m \rangle) = T_n(x(n))(m)$$

for $x \in \prod_{n \in \mathbb{N}} S_n$ and $n, m \in \mathbb{N}$. It is easy to see that θ_2 is Borel.

Now we check that θ_2 is a reduction.

For every $x, y \in \prod_{n \in \mathbb{N}} S_n$, if $(x, y) \in E((S_n, d_n)_{n \in \mathbb{N}}; 0)$, then

$$\lim_{n \rightarrow \infty} d_n(x(n), y(n)) \rightarrow 0.$$

So $\forall \varepsilon > 0 \exists N \forall n > N (d_n(x(n), y(n)) < \varepsilon)$. Since $\|T_n(x(n)) - T_n(y(n))\|_{c_0} \leq K d_n(x(n), y(n)) < K\varepsilon$, we have

$$\forall n > N \forall m (|T_n(x(n))(m) - T_n(y(n))(m)| < K\varepsilon).$$

For $n \leq N$, since $T_n(x(n)), T_n(y(n)) \in c_0$, we have

$$\lim_{m \rightarrow \infty} |T_n(x(n))(m) - T_n(y(n))(m)| = 0.$$

Therefore, for all but finitely many (n, m) 's, we have

$$|\theta_2(x)(\langle n, m \rangle) - \theta_2(y)(\langle n, m \rangle)| = |T_n(x(n))(m) - T_n(y(n))(m)| < K\varepsilon.$$

Thus

$$\lim_{\langle n, m \rangle \rightarrow \infty} |\theta_2(x)(\langle n, m \rangle) - \theta_2(y)(\langle n, m \rangle)| = 0.$$

It follows that $\theta_2(x) - \theta_2(y) \in c_0$.

On the other hand, for every $x, y \in \prod_{n \in \mathbb{N}} S_n$, if $\theta_2(x) - \theta_2(y) \in c_0$, then

$$\forall \varepsilon > 0 \exists N \forall n > N \forall m (|\theta_2(x)(\langle n, m \rangle) - \theta_2(y)(\langle n, m \rangle)| < \varepsilon).$$

Therefore, for $n > N$ we have

$$\begin{aligned} d_n(x(n), y(n)) &\leq \|T_n(x(n)) - T_n(y(n))\|_{c_0} \\ &= \sup_{m \in \mathbb{N}} |T_n(x(n))(m) - T_n(y(n))(m)| \\ &= \sup_{m \in \mathbb{N}} |\theta_2(x)(\langle n, m \rangle) - \theta_2(y)(\langle n, m \rangle)| \leq \varepsilon. \end{aligned}$$

It follows that $(x, y) \in E((S_n, d_n)_{n \in \mathbb{N}}; 0)$.

To sum up, we have $E \leq_B E((S_n, d_n)_{n \in \mathbb{N}}; 0) \leq_B \mathbb{R}^{\mathbb{N}}/c_0$.

(ii) Assume that $(\delta(X_n))_{n \in \mathbb{N}}$ does not converge to 0. Then there are $c > 0$ and a strictly increasing sequence of natural numbers $(n_j)_{j \in \mathbb{N}}$ such that $\delta(X_{n_j}) > c$ for each j . From Theorem 2.2, there is a Borel injection $g'_j : 2^{\mathbb{N}} \rightarrow X_{n_j}$ such that $d_{n_j}(g'_j(\alpha), g'_j(\beta)) \geq c/2$ for distinct $\alpha, \beta \in 2^{\mathbb{N}}$. Fix an element $a_n \in X_n$ for every $n \in \mathbb{N}$. Define $\vartheta' : (2^{\mathbb{N}})^{\mathbb{N}} \rightarrow \prod_{n \in \mathbb{N}} X_n$ by

$$\vartheta'(x)(n) = \begin{cases} g'_j(x(j)), & n = n_j, \\ a_n, & \text{otherwise.} \end{cases}$$

Then ϑ' witnesses that $E_1 \leq_B E$. \square

4. FURTHER REMARKS

The following condition was introduced in [2] to investigate the position of ℓ_p -like equivalence relations.

($\ell 1$) $\forall c > 0 \exists x, y \in \prod_{n \in \mathbb{N}} X_n$ such that $\forall n (d_n(x(n), y(n))^p < c)$ and

$$\sum_{n \in \mathbb{N}} d_n(x(n), y(n))^p = +\infty.$$

Let X_n , $n \in \mathbb{N}$ be a sequence of Polish spaces, d_n a Borel pseudo-metric on X_n for each n and $p \geq 1$. Denote $E = E((X_n, d_n)_{n \in \mathbb{N}}; p)$. It was proved in [2] that

- (i) if ($\ell 1$) holds, then $\mathbb{R}^{\mathbb{N}}/\ell_1 \leq_B E$;
- (ii) if ($\ell 1$) fails, then either $E_1 \leq_B E$, $E \sim_B E_0$ or E is trivial, i.e. all elements in $\prod_{n \in \mathbb{N}} X_n$ are equivalent.

Thus we have a corollary of Theorem 3.2.

Corollary 4.1. *Denote $E = E((X_n, d_n)_{n \in \mathbb{N}}; p)$. We have*

- (a) $\sum_{n \in \mathbb{N}} \delta(X_n)^p < +\infty$ and ($\ell 1$) fails $\iff E \sim_B E_0$ or E is trivial;
- (b) $\sum_{n \in \mathbb{N}} \delta(X_n)^p < +\infty$ and ($\ell 1$) holds $\iff \mathbb{R}^{\mathbb{N}}/\ell_1 \leq_B E \leq_B E(c_0; p)$;
- (c) $\sum_{n \in \mathbb{N}} \delta(X_n)^p = +\infty \iff E_1 \leq_B E$.

Another condition was introduced by I. Farah [3] for investigating c_0 -equalities.

(*) $\forall c > 0 \exists \varepsilon < c (\varepsilon > 0 \text{ and } \exists^\infty i \exists u_i, v_i \in X_i (\varepsilon < d_i(u_i, v_i) < c))$.

It is easy to check that (*) holds iff for arbitrary $c > 0$, there exist $x, y \in \prod_{n \in \mathbb{N}} X_n$ such that $\forall n (d_n(x(n), y(n)) < c)$ and $(d_n(x(n), y(n)))_{n \in \mathbb{N}}$ does not converge to 0.

With similar arguments, we get a corollary of Theorem 3.4.

Corollary 4.2. Denote $E = E((X_n, d_n)_{n \in \mathbb{N}}; 0)$. We have

- (a) $\lim_{n \rightarrow \infty} \delta(X_n) = 0$ and $(*)$ fails $\iff E \sim_B E_0$ or E is trivial;
- (b) $\lim_{n \rightarrow \infty} \delta(X_n) = 0$ and $(*)$ holds $\iff E_0^\omega \leq_B E \leq_B \mathbb{R}^\mathbb{N}/c_0$;
- (c) $(\delta(X_n))_{n \in \mathbb{N}}$ does not converge to 0 $\iff E_1 \leq_B E$.

REFERENCES

- [1] I. Aharoni, *Every separable metric space is Lipschitz equivalent to a subset of c_0^+* , Isreal J. Math. 19 (1974), 284–291.
- [2] L. Ding, *A trichotomy for a class of equivalence relations*, preprint, available at <http://arxiv.org/abs/1001.0834>.
- [3] I. Farah, *Basis problem for turbulent actions II: c_0 -equalities*, Proc. London Math. Soc. 82 (2001), no. 3, 1–30.
- [4] S. Gao, *Invariant Descriptive Set Theory*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 293, CRC Press, 2008.
- [5] G. Hjorth and A. S. Kechris, *New dichotomies for Borel equivalence relations*, Bull. Symbolic Logic 3 (1997), no. 3, 329–346.
- [6] L. A. Harrington, A. S. Kechris, and A. Louveau, *A Glimm-Effros dichotomy for Borel equivalence relations*, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928.
- [7] A. S. Kechris, *Classical Descriptive Set Theory*, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, 1995.
- [8] A. S. Kechris and A. Louveau, *The classification of hypersmooth Borel equivalence relations*, J. Amer. Math. Soc. 10 (1997), no. 1, 215–242.
- [9] D. A. Martin and A. S. Kechris, *Infinite games and effective descriptive set theory*, in Analytic Sets, 403–470. Academic Press, 1980.
- [10] J. H. Silver, *Counting the number of equivalence classes of Borel and coanalytic equivalence relations*, Ann. Math. Logic 18 (1980), no. 1, 1–28.

SCHOOL OF MATHEMATICAL SCIENCES AND LPMC, NANKAI UNIVERSITY, TIANJIN,
300071, P.R.CHINA

E-mail address: dinglongyun@gmail.com