Homework 8

Exercise 2 Let $p \in C$ be a point and let

$$S = \{ \text{ext}(a; b) \mid p \in (a; b) \}.$$

Show that S is an open cover for $C \setminus p$.

Proof. Let $x \in C \setminus p$. Then $x \in C$ and $x \neq p$ and so x < p or p < x. Suppose x < p. Then by Theorem 5.8 there exists $a \in C$ such that x < a < p. And by Axiom 2.3 there exists $b \in C$ such that p < b. But then $p \in (a;b)$ and since x < a, $x \in \text{ext}(a;b)$. Because this is true for some region (a;b), we see $x \in \bigcup_{A \in S} A$. Therefore, $C \setminus p \subseteq \bigcup_{A \in S} A$ and by Exercise 7.12 we know that ext(a;b) is open so S is an open cover for $C \setminus p$. A similar argument holds if p < x.

Exercise 4 Show that the set

$$A = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\}.$$

is closed.

Proof. Let $p \in C$ be point such that $p \notin A$. Then there are three cases.

Case 1: Let p < 0. Then by Axiom 2.3 there exists a point $x \in C$ such that x < p and so the region (x; 0) contains p but no points in A.

Case 2: Let p > 1. Then by Axiom 2.3 there exists a point $y \in C$ such that p < y and so the region (1; y) contains p but no points in A.

Case 3: Let $p \in (0;1)$. Then $p=\frac{a}{b}$ and since $0<\frac{a}{b}<1$, we have a< b. Since $0<\frac{b}{a}$, by the Archimedean Property there exists a natural number k such that $\frac{b}{a}< k$. But since $k\in \mathbb{N}$, by the Well Ordering Principle there exists a least such element n. Since $p\notin A$, $a\neq 1$ and so $\frac{b}{a}\notin \mathbb{N}$. But then $n-1<\frac{b}{a}< n$ and so $\frac{1}{n}< p<\frac{1}{n-1}$. But then $p\in \left(\frac{1}{n};\frac{1}{n-1}\right)$ which doesn't contain any elements of A.

In all three cases there exists a region containing p which contains no elements of A and so p cannot be a limit point of A. Therefore if A has any limit points, they must be in A. Since A contains all its limit points, it is closed.

Exercise 5 Prove that every open cover of A has a finite subcover.

Proof. Let S be a cover of A. Then for every element of A, there exists an open set in S which contains that element. But then there exists an open set B in S containing 0. And so there exists a region $(a;b) \subseteq B$ such that $0 \in (a;b)$. There are two cases.

Case 1: Let $1 \leq b$. Then $A \subseteq B$ and so the set containing B is a finite subcover of S.

Case 2: Let b < 1. Then $b = \frac{p}{q}$ and since $0 < \frac{p}{q} < 1$, we have p < q. Since $0 < \frac{q}{p}$, by the Archimedean Property there exists a natural number k such that $\frac{q}{p} < k$. But since $k \in \mathbb{N}$, by the Well Ordering Principle there exists a least such element n. There are a finite number of natural numbers less than n and since every element of A is a reciprocal of a natural number, there are a finite number of elements a of A such that $\frac{1}{n} < a$. All the other elements of A are less than b so they are contained in (a;b). Then the sets B and the sets of S which contain the elements of A which are greater than $\frac{1}{n}$ form a finite subcover of S.

Exercise 7 Let S be the set of all regions. Show that no finite subset of S covers C. *Proof.* Let T be a finite subset of S. Then $T = \{(a_1; b_1), (a_2; b_2), \dots, (a_n; b_n)\}$. But since there are a finite number of lower boundary points a_i for regions in T, by Theorem 2.3 we can order them so that x is a lower boundary point and $x \leq a_i$ for all regions in T. Then x is less than every point in every region in T. But by Axiom 2.3 there exists a point $p \in C$ such that p < x and so $C \nsubseteq \bigcup_{(a,b) \in T} (a;b)$. **Exercise 8** Let $p \in C$ be a point and let $S = \{ ext(a;b) \mid p \in (a;b) \}$. Show that no finite subset of S covers $C \backslash p$. *Proof.* Let T be a finite subset of S. Then $T = \{ \text{ext}(a_1; b_1), \text{ext}(a_2; b_2), \dots, \text{ext}(a_n; b_n) \}$ such that $p \in (a; b)$ for all $ext(a;b) \in T$. Consider the finite set of values of a_i for exteriors in T. By Theorem 2.3 there exists a last point x so that $x \ge a_i$ for all exteriors in T. By Theorem 5.8 there exists a point $y \in C$ such that x < y < p and so $y \notin \text{ext}(a_i; b_i)$ for any exterior in T. But then $C \setminus p \nsubseteq \bigcup_{A \in T} A$. Exercise 12 Closed intervals are closed *Proof.* Let $a, b, p \in C$ be points such that a < b and $p \notin [a, b]$. Then p < a or p > b. Let p < a. Then by Axiom 2.3 there exists a point $x \in C$ such that x < p. But then the region (x; a) contains x but no points in [a;b]. A similar argument holds for b < p and so p cannot be a limit point of [a;b]. But then any limit points of [a; b] must be in [a; b] and so [a; b] is closed. Lemma If two regions share a common point, then their union is a region which contains every point in either region. *Proof.* Let $A = (a_1, a_2)$ and $B = (b_1, b_2)$ be regions such that $x \in A$ and $x \in B$. Then we see that $x \in A \cup B$. Without loss of generality, let $a_1 \leq b_1$. Then we see that $a_2 > b_1$, otherwise A and B would not both contain x. Thus there are three cases. Case 1: Let $a_1 \leq b_1$ and $a_2 < b_2$ Then we have $a_1 \leq b_1 < a_2 < b_2$ and so every element of A is less than b_2 and every element of B is greater than a_1 . But then every element of A or B is between a_1 and b_2 so $A \cup B = (a_1, b_2).$ Case 2: Let $a_1 \le b_1$ and $a_2 > b_2$. Then we have $a_1 \le b_1 < b_2 < a_2$ and so every element of A is less than a_2 and every element of B is greater than a_1 . But then every element of A or B is between a_1 and a_2 so $A \cup B = (a_1, a_2).$ Case 3: Let $a_1 \le b_1$ and $a_2 = b_2$. Then we have $a_1 \le b_1 < b_2 = a_2$ and so every element of A is less than a_2 and every element of B is greater than a_1 . But then every element of A or B is between a_1 and a_2 so $A \cup B = (a_1, a_2).$ We see that in all cases, $A \cup B$ is a region which contains every element of A and B. **Exercise 14** A chain of regions from a to b covers the the closed interval [a;b]. *Proof.* Let a < b be points in C and let R_1, R_2, \ldots, R_n be a chain of n regions going from a to b. In the case where n=1 we have a region R_1 which contains both a and b. Now use induction on n and suppose that the union of a chain of n regions such that for $1 \le i \le n-1$ we have $R_i \cap R_{i+1} \ne \emptyset$ is a region containing every point in each of the n regions. Consider the case for n+1. We know that $R_1 \cup R_2 \cup \cdots \cup R_n$ is a region containing every element in R_1 through R_n . Because $R_n \cap R_{n+1} \neq \emptyset$, by the previous lemma we know that the union of this region with R_{n+1} is a region containing every element of

the regions $R_1, R_2, \ldots, R_{n+1}$. So for any natural number n regions such that for $1 \le i \le n-1$ we have $R_i \cap R_{i+1} \ne \emptyset$ we see their union is a region containing every element in each of the regions. But if $a \in R_1$ and $b \in R_n$ the union of this chain of regions will contain a, b and every element between a and b. Since

each region is open, the chain covers [a; b].