Package 'surveyIndex'

March 29, 2019

anova.SI

Index																			1
	getSurveyIdxSt internalCons . surveyIdxPlots													 					9

AIC.surveyIdx

Akaike Information Criterion (or BIC) for survey index models

Description

Akaike Information Criterion (or BIC) for survey index models

Usage

```
## S3 method for class 'surveyIdx'
AIC(x, BIC = FALSE)
```

Arguments

x survey index as return from getSurveyIdx
BIC if TRUE compute BIC instead of AIC

Value

numeric value

anova.SI

Likelihood ratio test for comparing two survey indices.

Description

Likelihood ratio test for comparing two survey indices.

Usage

```
## S3 method for class 'SI'
anova(m1, m2)
```

Arguments

m1

m2

Value

A p-value.

concTransform 3

 ${\tt concTransform}$

Helper function for plotting survey indices.

Description

Concentration transform

Usage

```
concTransform(x)
```

Arguments

Χ

a vector of log-responses

Value

vector of transformed responses

exportSI

Write survey index to file in standard XSA/SAM format

Description

Write survey index to file in standard XSA/SAM format

Usage

```
exportSI(x, ages, years, toy, file, nam = "")
```

Arguments

x matrix with survey indices

ages vector of ages years vector of years

toy fraction of year the survey is conducted (between 0 and 1)

file filename to write to nam file description header

Value

nothing

fixAgeGroup

externalCons Calculate external consistencies between two survey indices.	
---	--

Description

Calculate external consistencies between two survey indices.

Usage

```
externalCons(tt, tt2, do.plot = FALSE)
```

Arguments

tt A matrix with survey indices (rows=years, cols=ages)
tt2 A matrix with survey indices (rows=years, cols=ages)
do.plot plot it?

Details

Proper alignment of years and ages must be ensured by the user.

Value

A vector of correlations (consistencies)

fixAgeGroup	Helper function to "borrow" missing age groups from other	ier years
•		•

Description

Helper function to "borrow" missing age groups from other years

Usage

```
fixAgeGroup(x, age = 0, n = 3, fun = "mean")
```

Arguments

X	DATRASraw object
age	age to impute
n	at least this many individuals in each year
fun	A function such as 'mean', 'median', 'min', or 'max'.

getEffect 5

Details

In years where there are less than 'n' individuals of age 'age', add fake individuals of that age such that there are 'n'. The length of the individuals are set to the mean (or whatever 'fun' specifies) of all other individuals of the same age. For the minimum and maximum age groups fun it is reasonable to replace 'mean' with 'min' and 'max' respectively. Note, that you might need to call 'addSpectrum' on the object again.

Value

a DATRASraw object

getEffect	
geterrect	Calculate confidence intervals for a named parameter in a survey in-
	dex model.

Description

Calculate confidence intervals for a named parameter in a survey index model.

Usage

```
getEffect(x, dat, parName = "Gear", cutOff, nboot = 1000,
   pOnly = FALSE)
```

Arguments

x	survey index
dat	DATRASraw object
parName	name of the parameter, e.g. "Gear"
cut0ff	see getSurveyIndex()
nboot	see getSurveyIndex()
pOnly	only calculate for positive part of model, defaults to FALSE.

Value

list of estimates + ci bounds for each age group.

6 getSurveyIdx

getGrid

Create a grid of haul positions from a DATRASraw object.

Description

Create a grid of haul positions from a DATRASraw object.

Usage

```
getGrid(dd, nLon = 20)
```

Arguments

dd DATRASraw object

nLon number of grid cells in the longitude direction.

Value

a list of coordinates and haul.ids.

getSurveyIdx

Calculate survey indices by age.

Description

Calculate survey indices by age.

Usage

```
getSurveyIdx(x, ages, myids, kvecP = rep(12 * 12, length(ages)),
  kvecZ = rep(8 * 8, length(ages)), gamma = 1.4, cutOff = 1,
  fam = "Gamma", useBIC = FALSE, nBoot = 1000, mc.cores = 2,
  method = "ML", predD = NULL,
  modelZ = rep("Year+s(lon,lat,k=kvecZ[a],bs='ts')+s(Ship,bs='re',by=dum)+s(Depth,bs='ts')+s(TimeShorlength(ages)),
  modelP = rep("Year+s(lon,lat,k=kvecP[a],bs='ts')+s(Ship,bs='re',by=dum)+s(Depth,bs='ts')+s(TimeShorlength(ages)), knotsP = NULL, knotsZ = NULL)
```

Arguments

X	DATRASraw object
ages	vector of ages
myids	haul.ids for grid
kvecP	vector with spatial smoother max. basis dimension for each age group, strictly positive part of model

getSurveyIdx 7

kvecZ	vector with spatial smoother max. basis dimension for each age group, presence/absence part of model (ignored for Tweedie models)
gamma	model degress of freedom inflation factor (see 'gamma' argument to gam())
cut0ff	treat observations below this value as zero
fam	distribution, either "Gamma", "LogNormal", or "Tweedie".
useBIC	use BIC for smoothness selection (overrides 'gamma' argument)
nBoot	number of bootstrap samples used for calculating index confidence intervals
mc.cores	number of cores for parallel processing
method	smoothness selection method used by 'gam'
predD	optional DATRASraw object, defaults to NULL. If not null this is used as grid.
modelZ	vector of model formulae for presence/absence part, one pr. age group (ignored for Tweedie models)
modelP	vector of model formulae for strictly positive repsonses, one pr. age group
knotsP	optional list of knots to gam, strictly positive repsonses
knotsZ	optional list of knots to gam, presence/absence

Details

This is based on the methods described in Berg et al. (2014): "Evaluation of alternative age-based methods for estimating relative abundance from survey data in relation to assessment models", Fisheries Research 151(2014) 91-99.

Value

A survey index (list)

Author(s)

Casper W. Berg

Examples

```
## Not run:
library(surveyIndex)
##downloadExchange("NS-IBTS",1994:2014)
dAll<-readExchangeDir(".",strict=FALSE)
mc.cores<-2; library(parallel)
d<-subset(dAll, Species=="Pollachius virens",Quarter==1,HaulVal=="V",StdSpecRecCode==1, Gear=="GOV")
dAll<-NULL; gc(); ## lose dAll because it takes up a lot of memory
d<-addSpectrum(d,by=1)
## get idea about number of age groups to include
agetab<-xtabs(NoAtALK~Year+Age,data=d[[1]])
agetab.df<-as.data.frame(agetab)
ages<-1:8
## require at least 1 aged individual in each year
for(a in ages){
    if(any(agetab.df$Freq[agetab.df$Age==a]<1))</pre>
```

```
d<-fixAgeGroup(d,age=a,fun=ifelse(a==min(ages),"min","mean"))</pre>
d<-subset(d,Age>=min(ages))
 ###################################
 ## Convert to numbers-at-age
 ###################################
 d.ysplit <- split(d, d$Year)</pre>
ALK<-mclapply(d.ysplit,fitALK,minAge=min(ages),maxAge=max(ages),autoChooseK=TRUE,useBIC=TRUE,varCof=FALSE,maxK
Nage<-mclapply(ALK,predict,mc.cores=mc.cores)</pre>
 for(i in 1:length(ALK)) d.ysplit[[i]]$Nage=Nage[[i]];
dd <- do.call("c",d.ysplit)</pre>
 ##############
 ## Fit model
 ###############
grid <- getGrid(dd, nLon=40)</pre>
## set max basis dim for spatial smooths by age, P=positive and Z=zero/absence.
## These are set relatively low here to speed up the example
kvP \leftarrow c(50,50,50,40,30,rep(10,length(ages)-5))
kvZ \leftarrow kvP / 2;
mP <- rep("Year+s(lon,lat,k=kvecP[a],bs='ts')+s(Depth,bs='ts',k=6)+offset(log(HaulDur))",length(ages) );
mZ <- rep("Year+s(lon,lat,k=kvecZ[a],bs='ts')+s(Depth,bs='ts',k=6)+offset(log(HaulDur))",length(ages) ); \\
SIQ1 \leftarrow getSurveyIdx(dd,ages=ages,myids=grid[[3]],cutOff=0.1,kvecP=kvP,kvecZ=kvZ,modelZ=mZ,modelP=mP,mc.cores=nZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,modelZ=mZ,mo
 strat.mean<-getSurveyIdxStratMean(dd,ages)</pre>
 ## plot indices, distribution map, and estimated depth effects
 survey Idx Plots (SIQ1, dd, cols=ages, alt.idx=strat.mean, grid \cite{Minimum}, par=list (mfrow=c(3,3)), legend=FALSE, select="index-right"), legend=FALSE, select="index-right", par=list(mfrow=c(3,3)), legend=FALSE, select="index
 surveyIdxPlots(SIQ1,dd,cols=ages,alt.idx=NULL,grid[[3]],par=list(mfrow=c(3,3)),legend=FALSE,colors=rev(heat.co
 surveyIdxPlots(SIQ1,dd,cols=ages,alt.idx=NULL,grid[[3]],par=list(mfrow=c(3,3)),legend=FALSE,select="2",plotByA
 ## Calculate internal concistency and export to file
 internalCons(SIQ1$idx)
 exportSI(SIQ1$idx,ages=ages,years=levels(dd$Year),toy=mean(dd$timeOfYear),file="out.dat",nam="Survey index demo
 ## End(Not run)
```

getSurveyIdxStratMean Survey index using the stratified mean method using ICES statistical rectangles as strata.

Description

Survey index using the stratified mean method using ICES statistical rectangles as strata.

internalCons 9

Usage

```
getSurveyIdxStratMean(x, ageCols, doLog = FALSE)
```

Arguments

x DATRASraw object. Must contain a matrix: x[[2]]\$Nage.

ageCols which columns of the Nage matrix should be included?

doLog log-transform?

Value

a matrix with survey indices

internalCons

Calculate internal consistency of a survey index.

Description

Calculate internal consistency of a survey index.

Usage

```
internalCons(tt, do.plot = FALSE)
```

Arguments

tt A matrix with survey indices (rows=years, cols=ages)

do.plot Plot it?

Value

a vector of consistencies

10 surveyIdxPlots

~	rvev	, T a	1	٦.	a+ a
Su	rvev	/ T (ıxr	Ή.	OLS

Visualize results from a survey index model fitted with getSurveyIdx().

Description

Visualize results from a survey index model fitted with getSurveyIdx().

Usage

```
surveyIdxPlots(x, dat, alt.idx = NULL, myids,
  cols = 1:length(x$pModels), select = c("index", "map", "residuals",
  "fitVsRes"), par = list(mfrow = c(3, 3)),
  colors = rev(gray.colors(5)), map.cex = 1, plotByAge = TRUE,
  legend = TRUE, predD = NULL, year = NULL, ...)
```

Arguments

Х	Survey index as produced by getSurveyIndex()
dat	DATRASraw object
alt.idx	optional matrix with alternative index
myids	vector of haul ids that constitute the grid
cols	which age columns to consider?
select	character vector of chosen plots. Either one of "index", "map", "residuals", or "fitVsRes" or a number. Numbers refer to smooths in the order they appear in the formula.
par	'par' settings for plotting (a named list).
colors	colors for spatial effect.
map.cex	size of grid points on maps
plotByAge	boolean (default=TRUE). If true, par(par) is called for each age group.
legend	boolean (default=TRUE). add legends to plot?
predD	DATRASraw object with grid (optional). Overrides 'myids' if supplied.
year	numeric (default=NULL). If 'select' equals 'map' a specific year can be chosen (only meaningful for time-varying spatial effects).
	Additional parameters for plot()

Value

nothing

Index

```
AIC.surveyIdx, 2
anova.SI, 2

concTransform, 3

exportSI, 3
externalCons, 4

fixAgeGroup, 4

getEffect, 5
getGrid, 6
getSurveyIdx, 6
getSurveyIdxStratMean, 8
internalCons, 9

surveyIdxPlots, 10
```