HPC User Environment, Job Management with PBS/Loadleveler

Alexander B. Pacheco

User Services Consultant LSU HPC & LONI sys-help@loni.org

HPC Training Fall 2011 Louisiana State University **Baton Rouge** Sep 14, 2011

Outline

- Hardware Overview
- User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - Queues
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

Outline

- User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - Queues
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

LONI & LSU HPC Clusters

Two major architectures.

Linux Clusters

Vendor: Dell

OS: Red Hat

CPU: Intel Xeon

AIX Clusters

Vendor: IBM

OS: AIX

CPU: Power 5/7

The LONI AIX clusters are on a path to decommissioning.

4/60

Linux Clusters

	Name	Peak TeraFLOPS/s	Location	Status	Login
	QueenBee	50.7	ISB	Production	LONI
	Eric	4.7 LSU Pro		Production	LONI
LONI	Louie	4.7	Tulane Production		LONI
LONI	Oliver	4.7	ULL	Production	LONI
	Painter	4.7	LaTech	Production	LONI
	Poseidon	4.7	UNO	Production	LONI
LSU HPC	Tezpur	15.3	LSU	Production	HPC
LSU HPC	Philip	3.5	LSU	Production	HPC

AIX Clusters

	Name	Peak TF/s	Location	Status	Login
	Bluedawg	0.85	LaTech	Production	LONI
	Ducky	0.85	UNO	9/30/2011	LONI
LONI	Lacumba	0.85	Southern	12/22/2011	LONI
	Neptune	0.85	Tulane	9/30/2011	LONI
	Zeke	0.85	ULL	9/30/2011	LONI
LSU HPC	Pelican	2.6	LSU	Production	HPC
LSU HFC	Pandora	6.8	LSU	Production	HPC

5/60

Account Management

LONI account

https://allocations.loni.org

LSU HPC account

https://accounts.hpc.lsu.edu

- All LONI AIX clusters are being decommissioned.
- Newest cluster at LSU HPC is Pandora.
- The default Login shell is bash
- Supported Shells: bash, tcsh, ksh, csh & sh
- Change Login Shell at the profile page

Cluster Architecture

- A cluster is a group of computers (nodes) that works together closely
- Type of nodes
 - Head node
 - Compute node

LINUX Cluster Hardware

Queen Bee

- 668 nodes: 8 Intel Xeon cores @ 2.33 GHz
 8 GB RAM
- 192 TB storage

Other LONI Linux clusters

- ♦ 128 nodes: 4 Intel Xeons cores @ 2.33 GHz
- 4 GB RAM
- 9 TB storage

Tezpur

- ♦ 360 nodes, 4 Intel Xeon cores @ 2.33 GHz
- 4 GB RAM
- ♦ 32 TB storage

Philip

- 37 nodes, 8 Intel Xeon cores @ 2.93 GHz
- 24/48/96 GB RAM
- Shares storage with Tezpur

AIX Cluster Hardware

LONI AIX clusters

- ♦ 14 Power5 nodes, 8 IBM Power5 processors @ 1.9 GHz per node
- 16 GB RAM
- 280 GB storage

Pelican

- ♦ 16 Power5+ nodes, 16 IBM Power5+ processors @ 1.9 GHz per node
- 32 GB RAM
- 21 TB strorage

Pandora

- ♦ 8 Power7 nodes, 8 IBM Power7 processors @ 7.33 GHz per node
- 128 GB RAM
- 19 TB storage

Why is Cluster Hardware important?

- There are numerous different architectures in the HPC world.
- Choose the software to install or use depending on cluster architecture.
 - Linux: EM64T, AMD64, X86 64
 - AIX: Power5, Power7

Software Downloads

Download NAMD:

NAMD is a parallel, object-oriented molecular dynamics code designed for high-performance visualization package VMD. Visit the NAMD website for complete information and document

Selecting an archive below will lead to a user registration and login page. Your download will of

Version Nightly Build (2011-09-07) Platforms:

- Linux-x86_64 (64-bit Intel/AMD with ethernet)
- Linux-x86 64-CUDA (NVIDIA CUDA acceleration)
- Source Code

Version 2.8 (2011-05-31) Platforms:

- AIX-POWER-lapi (IBM POWER clusters)
- AIX-POWER-multicore (IBM POWER single node)
- Linux-x86 (32-bit Intel/AMD with ethernet)
- Linux-x86-TCP (TCP may be better on gigabit)
- Linux-x86_64-multicore (64-bit Intel/AMD single node)
- Linux-x86_64 (64-bit Intel/AMD with ethernet)
 Linux-x86_64-TCP (TCP may be better on gigabit)
- Linux-x86_64-ibverbs (InfiniBand via OpenFabrics OFED, no MPI needed)
- Linux-x86_64-cups (Infinition of plus shared memory, no MPI neede

Technology Services

- Linux-x86_64-ibverbs-CUDA (NVIDIA CUDA with InfiniBand)
- MacOSX-x86 (Mac OS X for Intel processors, falls on 10.7 "Lion")
- MacOSX-x86_64 (Mac OS X for 64-bit Intel processors)
- MacOSX-PPC (Mac OS X for PowerPC)
- Solaris-x86_64
- Win32 (Windows XP, etc.)
 Win64-MPI (Windows HPC Server)
- Source Code

HPC Training: Fall 2011 Sep 14, 2011 10/60

Usage: Max Memory

- The amount of installed memory less the amount that is used by the operating system and other utilities
- Max amount per node
 - ♦ Linux clusters: ~6 GB for Queen Bee, ~3 GB for others
 - ♦ AIX clusters: ~13 GB
 - ♦ Pandora:~125 GBstorage

11/60

Outline

- User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - Queues
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

Accessing LONI & LSU HPC clusters

- LONI Host name: <cluster name>.loni.org
 - ★ Eric: eric.loni.org
- LSU HPC Host name: <cluster name>.hpc.lsu.edu
 - ★ Tezpur: tezpur.hpc.lsu.edu
- Use ssh to connect
 - * *nix and Mac: ssh <host name>
 - ★ Windows: use Putty, Secure Shell Client or Bitvise Tunnelier
- The default Login shell is bash
- Supported shells: bash, tcsh, ksh, csh & sh
- Change the login shell at the profile page
 - ♦ LONI: https://allocations.loni.org
 - ♦ LSU HPC: https://accounts.hpc.lsu.edu
- Reset your password
 - ♦ LONI: https://allocations.loni.org/user_reset.php
 - ♦ LSU HPC: https://accounts.hpc.lsu.edu/user_reset.php

Connecting to Eric from a Linux box

HPC Training: Fall 2011 Sep 14, 2011

14/60

Connecting to Eric from a Mac box

Connecting to Eric from a Windows box

Download and Install

- X-Server: X-ming
 - http://www.straightrunning.com/XmingNotes/
- SSH Client: Putty
 http://www.chiark.greenend.org.uk/~sgtatham/putty/
- SSH+SFTP/SCP Client: Bitvise Tunnelier

http://www.bitvise.com/tunnelier

Start X-ming

18/60


```
_ D X
eric2.loni.org - PuTTY
login as: etrain00
Access denied
etrain00@eric.loni.org's password:
```


Configure Tunnelier/SSH Client to Tunnel X11 Connections

Configure Tunnelier/SSH Client to Tunnel X11 Connections

19/60

File Systems

	Distributed File System	Throughput	File life time	Best used for	
Home	Yes	Low	Unlimited	Code in develop- ment, compiled exe- cutable	
Work	Yes	High	30 days	Job input/output	
Local Scratch	No		Job Duration	Temporary files	

Tips

- Never write job output to your home directory
- Do not write temporary files to /tmp, use local scratch or work space
- Work space is not for long term storage. Files are purged peridocally
- ♦ Use rmpurge to delete large amount of files.

Disk Quota

٠.						
	Cluster	Home		Work		Scratch
	Olusiei	Access Point	Quota	Access Point	Quota	Access Point
ĺ	LONI Linux	/home/\$USER	5GB	/scratch/\$USER	100GB	/var/scratch
ĺ	LONI AIX	/home/\$USER	500MB	/work/default/\$USER	20GB	/var/scratch
Ì	HPC Linux	/home/\$USER	5GB	/work/\$USER	NA	/var/scratch
	HPC AIX	/home/\$USER	5GB	/work/\$USER	50GB	/scratch/local

- No quota is enforced on the work space of QueenBee
- Work directory is created within an hour of first login
- Check current disk usage

Linux: showquota

AIX: quota

Exercise 1

- Log in to any cluster
- Check your disk quota
 - Linux: showquota
 - AIX: quota
- Copy the traininglab directory

```
cp -r /home/apacheco/traininglab .
```

- If you are not familiar with working on a Linux/Unix system
 - Loni Moodle course @
 https://docs.loni.org/moodle: HPC104 or
 HPC105

Managing User Environment

- Environment variables
 - ◆ PATH: where to look for executables
 - ♦ LD LIBRARY PATH: where to look for shared libraries
 - Other custom environment variables needed by various software
- SOFTENV is a software that is used to set up these environment variables on all the clusters
 - More convenient than setting numerous environment variables in .bashrc or .cshrc

Listing All packages

 Command softenv lists all packages that are managed by SOFTENV

```
[apacheco@eric2 ~]$ softenv
SoftEnv version 1 6 2
These are the macros available:
  @default
These are the keywords explicitly available:
    +ImageMagick-6.4.6.9-intel-11.1
                                   Otypes: Applications Visualization Oname:
    +NAMD-2.6-intel-11.1-myapich-1.1
                                   @types: Applications @name: NAMD @version:
    +NAMD-2.7b2-intel-11.1-mvapich-1.1
                                   @types: Applications @name: NAMD @version:
```


24/60

Searching for a Specific Package

• Use -k option with softenv

```
[apacheco@eric2 ~]$ softenv -k gaussian
SoftEnv version 1.6.2
Search Regexp: gaussian
These are the macros available:
These are the keywords explicitly available:
    +gaussian-03
                                   @types: Applications Chemistry @name:
                                     Gaussian @version: 03 @build: @internal:
    +gaussian-09
                                   @types: Applications Chemistry @name:
                                     Gaussian @version: 09 @build: @internal:
    +gaussview-4.1.2
                                   @types: Applications Chemistry @name:
                                     GaussView @version: 4.1.2 @build: - @about:
These are the keywords that are part of the software tree,
however, it is not suggested that you use these:
```


25/60

Setting up Environment via Softenv: One Time Change

- Setting up environment variables to use a certain package in the current session only.
 - ♦ Remove a package: soft add <key>
 - ♦ Add a package: soft add <key>

```
[apacheco@eric2 ~]$ which g09
/usr/local/packages/gaussian09/g09/g09
[apacheco@eric2 ~]$ soft delete +gaussian-09
[apacheco@eric2 ~]$ which g09
/usr/bin/which: no g09 in (/home/apacheco/bin:...
[apacheco@eric2 ~]$ soft add +gaussian-03
[apacheco@eric2 ~]$ which g03
/usr/local/packages/gaussian03/g03/g03
```


Setting up Environment via Softeny: Permanent Change

- Setting up the environment variables to use a certain software package(s).
 - First add the key to \$HOME/.soft.
 - Execute resoft at the command line.

```
[apacheco@eric2 ~]$ cat .soft
# This is the .soft file.
+mvapich-1.1-intel-11.1
+intel-fc-11.1
+intel-cc-11.1
+espresso-4.3.1-intel-11.1-mvapich-1.1
+gaussian-09
+lmto-intel-11.1
+nciplot-intel-11.1
+gaussview-4.1.2
+jmol-12
+vmd-1.8.6
+xcrysden-1.5.24-gcc-4.3.2
+tcl-8.5.8-intel-11.1
+gamess-12Jan2009R1-intel-11.1
+nwchem-5.1.1-intel-11.1-mvapich-1.1
+cpmd-3.11.1-intel-11.1-mvapich-1.1
@default
[apacheco@eric2 ~]$ resoft
```

Technology Services

Querying a Softenv Key

 soft-dbq shows which variables are set by a SOFTENV key

```
[apacheco@eric2 ~]$ soft-dbg +espresso-4.3.1-intel-11.1-myapich-1.1
This is all the information associated with
the key or macro +espresso-4.3.1-intel-11.1-mvapich-1.1.
Name: +espresso-4.3.1-intel-11.1-mvapich-1.1
Description: @types: Applications @name: Quantum Espresso @version: 4.3.1 @build: ...
Flags: none
Groups: none
Exists on: Linux
On the Linux architecture,
the following will be done to the environment:
 The following environment changes will be made:
    ESPRESSO PSEUDO = /usr/local/packages/espresso/4.3.1/intel-11.1-mvapich-1.1/pseudo
    ESPRESSO ROOT = /usr/local/packages/espresso/4.3.1/intel-11.1-myapich-1.1
    ESPRESSO TMPDIR = /work/${USER}
    PATH = ${PATH}:/usr/local/packages/espresso/4.3.1/intel-11.1-myapich-1.1/bin
```


mation

28/60

Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package).
- Check what variables are set through the key.
- Set up your environment to use VISIT.
- Check if the variables are correctly set by using which visit.

29/60

Exercise 2: Use Softenv

• Find the key for VISIT (a visualization package).

```
softenv -k visit
```

Check what variables are set through the key.

```
soft-dbq +visit
```

Set up your environment to use VISIT.

```
soft add +visit
```

 Check if the variables are correctly set by using which visit.

```
/usr/local/packages/visit/bin/visit
```


Compilers

Language		Linux Cluste	AIX Clusters		
	Intel	PGI	GNU	XL	
Fortran	ifort	pgf77,pgf90	gfortran	xlf,xlf90	
С	icc	pgcc	gcc	xlc	
C++	icpc	pgCC	g++	xIC	

- Usage: <compiler> <options> <your_code>
 - ♦ Example: icc -O3 -o myexec mycode.c
- Some compilers options are architecture specific
 - ♦ Linux: EM64T, AMD64 or X86_64
 - AIX: power5,power7 or powerpc

Compilers for MPI programs I

Language	Linux Cluster	AIX Clusters
Fortran	mpif77,mpif90	mpxlf,mpxlf90
С	mpicc	mpcc
C++	mpiCC	mpCC

- Usage: <compiler> <options> <your_code>
 - ♦ Example: mpif90 -O2 -o myexec mycode.f90
- On Linux clusters
 - Only one compiler for each language
 - ♦ There is no intel_mpicc or pg_mpicc
- There are many different versions of MPI compilers on Linux clusters
 - Each of them is built around a specific compiler
 - Intel, PGI or GNU

31/60

Compilers for MPI programs II

- It is extremely important to compile and run you code with the same version!!!
- Use the default version if possible
- These MPI compilers are actually wrappers
 - They still use the compilers we've seen on the previous slide
 - ★ Intel, PGI or GNU
 - They take care of everything we need to build MPI codes
 - ★ Head files, libraries etc.
 - ♦ What they actually do can be reveal by the -show option

32/60

Application Packages

- Installed under /usr/local/packages
- Most of them managed by SOFTENV
 - ♦ Numerical and utility libraries
 - FFTW, HDF5, NetCDF, PetSc, Intel MKL
 - Computational Chemistry
 - Amber, CPMD, Gaussian, GAMESS, Gromacs, LAMMPS, NAMD, NWCHEM
 - Visualization
 - GaussView, VisIt, VMD
 - Profiling/debugging tools
 - DDT, Tau, TotalView
 - **•** ...

Exercise 3: Compiling a code

- Serial Code
 - On Linux cluster, add the soft keys for either Intel (+intel-fc-11.1) or GCC (+gcc-4.3.2)
 - Compile hello.f90 with a compiler of your choice
 - Run the executable from the command line
- Parallel Code
 - On Linux cluster, find the appropriate key for mpi implementation of the above compiler
 - Compile hello_mpi.f90
 - Do Not run the parallel code, we'll use a script to submit to a job manager

Exercise 3: Compiling a code

- Serial Code
 - On Linux cluster, add the soft keys for either Intel (+intel-fc-11.1) or GCC (+gcc-4.3.2)
 - Compile hello.f90 with a compiler of your choice ifort -o hello hello.f90 xlf90 -o hello hello.f90
 - Run the executable from the command line ./hello
- Parallel Code
 - On Linux cluster, find the appropriate key for mpi implementation of the above compiler
 - Compile hello_mpi.f90
 mpif90 -o hellompi hello_mpi.f90
 - Do Not run the parallel code, we'll use a script to submit to a job manager

Outline

- Hardware Overview
- User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - Queues
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

The Cluster Environment

- A cluster is a group of computers (nodes) that works together closely
- Type of nodes
 - Head node
 - Multiple Compute nodes
- Multi User
 Environment
- Each user may have multiple jobs running simultaneously.

Batch Queuing System

- A software that manages resources (CPU time, memory, etc) and schedules job execution
 - Linux Clusters: Portable Batch System (PBS)
 - AIX Clusters: Loadleveler
- A job can be considered as a user's request to use a certain amount of resources for a certain amount of time
- The batch queuing system determines
 - The order jobs are executed
 - On which node(s) jobs are executed

A Simplified View of Job Scheduling

- Map jobs onto the node-time space
 - Assuming CPU time is the only resource
- Need to find a balance between
 - Honoring the order in which jobs are received
 - Maximizing resource utilization

Backfilling

- A strategy to improve utilization
 - Allow a job to jump ahead of others when there are enough idle nodes
 - Must not affect the estimated start time of the job with the highest priority
- Enabled on all LONI and LSU HPC clusters

How much time Should I request?

- Ask for an amount of time that is
 - Long enough for your job to complete
 - As short as possible to increase the chance of backfilling

Information Technology Services

Job Queues

- There are more than one job queue
- Each job queue differs in
 - Number of available nodes
 - Maximum run time
 - Maximum running jobs per user
- The main purpose is to maximize utilization

41/60

Queue Characteristics: LONI Linux Clusters

QueenBee

Queue	Max Run- time	Total number of nodes	Max run- ning jobs per user	Max nodes per job	Use	
workq		530	8	128	Unpreemptable	
checkpt	2 days	668		256	preemptable	
preempt		668	N/	1	Requires permission	
priority	668		N/	1	Requires permission	

Other Clusters

Queue	Max Run- time	Total Max run- number ning jobs of nodes per user		Max nodes per job	Use		
single	14 days	16	64	1	Single processor jobs		
workq	3 days	96	8	40	Unpreemptable		
checkpt		128		64	preemptable		
preempt	o days	64	N/	1	Requires permission		
priority	ority 64		N/	1	Requires permission		

Queue Characteristics: LSU HPC Linux Clusters

Tezpur

Queue	Max Run- time	Total number of nodes	Max run- ning jobs per user	Max nodes per job	Use
single		16	64	1	Single processor jobs
workq		180	8	90	Unpreemptable
checkpt	3 days	344		180	preemptable
preempt			NA	Requires permission	
priority			NA		Requires permission

Philip

Queue	Max Run- time	Total number of nodes	Max run- ning jobs per user	Max nodes per job	Use
single		24		1	Single processor jobs
workq		28	12		Unpreemptable
checkpt	3 days	28	'2	5	preemptable
bigmem	o days	5			
preempt			NA	Requires permission	
priority			NA	Requires permission	

Information Technology Services

43/60

Queue Characteristics: LSU HPC AIX Clusters

Pelican

Queue	Max Run- time	Total number of pro- cessors	Max run- ning jobs per user	Max pro- cessors per job	Use
SP5L	4 hours		8	256	Short Jobs
MP5L	5 days	256	0	128	Medium Jobs
LP5L	7 days		4	64	Long Jobs

Pandora

Queue	Max Run- time	Total number of pro- cessors	Max run- ning jobs per user	Max pro- cessors per job	Use	
interactive	30mins	8		8	Interactive Jobs	
workq	3 days	224	6	128	Standard Queue	
single	7 days	64		32	Single Node Jobs	

Basic Job Manager Commands

- Queue querying
 - Check how busy the cluster is
- Job submission
- Job monitoring
 - Check job status (estimated start time, remaining run time, etc)
- Job manipulation
 - Cancel/Hold jobs

45/60

Queue Querving: Linux Clusters

- gfree: show number of free, busy and gueued nodes
- gfreeloni: run gfree on all LONI Linux clusters

```
[apacheco@eric2 ~]$ gfree
PBS total nodes: 128, free: 49, busy: 79, down: 0, use: 61\%
PBS workg nodes: 96, free: 40, busy: 28, queued: 0
PBS checkpt nodes: 104, free: 40, busy: 35, queued: 0
PBS single nodes: 32, free: 9 *36, busy: 16, gueued: 366
[apacheco@eric2 ~]$ qfreeloni
----- ab -----
PBS total nodes: 668, free: 3, busy: 647, down: 18, use: 96\%
PBS workg nodes: 530, free: 0, busy: 278, queued: 367
PBS checkpt nodes: 668, free: 1, busy: 369, queued: 770
----- eric -
PBS total nodes: 128, free: 49, busy: 79, down: 0, use: 61\%
PBS workg nodes: 96, free: 40, busy: 28, queued: 0
PBS checkpt nodes: 104, free: 40, busy: 35, queued: 0
PBS single nodes: 32, free: 9 *36, busy: 16, queued: 366
----- louie --
PBS total nodes: 128, free: 44, busy: 83 *2, down: 1, use: 64\%
PBS worka nodes: 104, free: 40, busy: 0, aueued: 0
PBS checkpt nodes: 128, free: 44, busy: 82, queued: 50
PBS single nodes: 32, free: 7 *26, busy: 2, queued: 0
---- oliver
PBS total nodes: 128, free: 74, busy: 52, down: 2, use: 40\%
PBS workq nodes: 62, free: 8, busy: 11, queued: 0
```

Queue Querying: AIX Clusters

• Command: llclass

apacheco@peg304\$	llclass				
Name	MaxJobCPU	MaxProcCPU	Free	Max	Description
	d+hh:mm:ss	d+hh:mm:ss	Slots	Slots	
interactive	undefined	undefined	4	4	Interactive Parallel jobs running on i
SP5L	unlimited	unlimited	154	256	Short (4 hours) Parallel queue on Powe
MP5L	unlimited	unlimited	154	256	Middle (5 days) Parallel queue on Powe
LP5L	unlimited	unlimited	154	256	Long (7 days) Parallel queue on Powers
"Free Slots" valu	es of the classes	s "SP5L", "MF	P5L", '	"LP5L"	are constrained by the MAX_STARTERS lin
pandoral:~ apache	co\$ llclass				
Name	MaxJobCPU	MaxProcCPU	Free	Max	Description
	d+hh:mm:ss	d+hh:mm:ss	Slots	Slots	
interactive	unlimited	unlimited	8	8	Queue for interactive jobs; maximum rur
workq	unlimited	unlimited	80	224	Standard queue for job submissions; max
single	unlimited	unlimited	32	64	Queue for single-node job submissions;

"Free Slots" values of the classes "workq", "single" are constrained by the MAX_STARTERS limit(s).

47/60

Interactive Jobs

- Set up an interactive environment on compute nodes for users
 - Advantage: can run programs interactively
 - Disadvantage: must be present when job starts
- Purpose: testing and debugging code. Do not run jobs on head node!!!

```
qsub -I -V -l walltime=<hh:mm:ss>,nodes=<#
of nodes>:ppn=cpu -A <your allocation> -q
<queue name>
```

- On QueenBee, cpu=8
- Other LONI Clusters: cpu=4 (parallel jobs) or cpu=1 (single queue)
- To enable X-forwarding: add -X

Sep 14, 2011

Job Types

Batch Jobs

- Executed using a batch script without user intervention
 - Advantage: system takes care of running the job
 - Disadvantage: can change sequence of commands after submission
- Useful for Production runs

```
qsub <job script>
llsubmit <job script>
```


48/60

PBS Job Script: Parallel Jobs

```
#!/bin/bash
#PBS -1 nodes=4:ppn=4
#PBS -1 walltime=24:00:00
#PBS -N myjob
#PBS -o <file name>
#PBS -e <file name>
#PBS -q checkpt
#PBS -A <loni_allocation>
#PBS -m e
#PBS -M <email address>
<shell commands>
mpirun -machinefile $PBS_NODEFILE \
 -np 16 <path_to_executable> <options>
<shell commands>
```

Shell being used # of nodes & processors Maximum walltime Job name standard output standard error Oueue name Allocation name Send mail when job ends to this address shell commands

shell commands

run parallel job

PBS Job Script: Serial Jobs

```
#!/bin/bash
#PBS -1 nodes=1:ppn=1
#PBS -1 walltime=24:00:00
#PBS -N myjob
#PBS -o <file name>
#PBS -e <file name>
#PBS -q single
#PBS -A <loni_allocation>
#PBS -m e
#PBS -M <email address>
<shell commands>
<path_to_executable> <options>
<shell commands>
```

Shell being used # of nodes & processors Maximum walltime Job name standard output standard error Use single queue Allocation name Send mail when job ends to this address

shell commands run parallel job shell commands

Loadleveler Job Script I

```
#!/bin/sh
#@ job_type = parallel
#@ output = $(jobid).out
#@ error = $(jobid).err
#@ notification = error
#@ notify_user = youremail@domain
#@ class = checkpt
#@ wall_clock_limit = 24:00:00
#@ node usage = shared
#0 node = 2.2
#@ total_tasks = 16
#@ requirements = (Arch == "POWER5")
#@ environment = COPY_ALL
#@ queue
<shell commands>
poe <path_to_executable> <options>
<shell commands>
```

Shell being used Job Type standard output standard error notify on error to mail address job queue max walltime node usage # of nodes total processors job requirements environment

shell commands run parallel job shell commands

HPC Training: Fall 2011

```
#!/bin/sh
  #@ job type = serial
 #@ output = $(jobid).out
  #@ error = $(jobid).err
  #@ notification = error
 #@ notify_user = youremail@domain
  #@ class = checkpt
 #@ wall_clock_limit = 24:00:00
 #@ node_usage = shared
  \#0 node = 1
 \#@ total_tasks = 1
  #@ requirements = (Arch == "POWER5")
  #@ environment = COPY ALL
 #@ queue
 <shell commands>
 <path_to_executable> <options>
<shell commands>
```

Shell being used Job Type standard output standard error notify on error to mail address job queue max walltime node usage # of nodes total processors job requirements environment.

shell commands run parallel job shell commands

> Information Technology Services

> > 52/60

Loadleveler Job Script III

On Pandora:

- #@ resources = ConsumableMem(512 mb) ConsumableCPUS(1) is required
- #@ requirements = (Arch == "POWER7")
- #@ network.MPI LAPI = sn all, shared, US, HIGH

Exercise 4: Job Submission

- Write a job submission script to execute the hello_mpi program.
- Submit the script to the job manager.

Job Monitoring

Linux Clusters

- showstart <job id>
 - Check estimated time when job can start
- When can the estimated time change
 - ♦ Higher priority job gets submitted
 - Running jobs terminate earlier than time requested
 - System has trouble starting your job
- qstat <options> <job id>
 - Show information on job status
 - ♦ All jobs displayed if < job id> is omitted
 - qstat -u <username>: Show jobs belonging to <username>
 - ♦ qstat -a <job id>: Displat in an alternative format
- qshow <job id>
 - ♦ Show information of running job <job id>: node running on and CPU load

mnormation Technology Services

Job Monitoring

AIX Clusters

- llq <options> <job id>
 - ♦ All jobs are displayed if < job id> is omitted
 - ◆ Display detailed information: llq -l <job id>
 - Check estimated start time: llq -s <job id>
 - Show jobs from a specific user: 11q -u <username>

apacheco@l3f1n03\$ llq Id	Owner	Submitted	ST PRI	Class	Running on
13f1n03.14904.0	huiwu	7/16 15:45	R 50	checkpt	13f1n09
13f1n03.14908.0	srick	7/18 10:15	R 50	checkpt	13f1n13
13f1n03.14909.0	srick	7/18 10:18	R 50	checkpt	13f1n04
13f1n03.14911.0	huiwu	7/19 13:48	R 50	checkpt	13f1n11
13f1n03.14910.0	srick	7/18 10:18	R 50	checkpt	13f1n06
5 job step(s) in queue,	0 waiting,	0 pending, 5	runnin	a, 0 held, 0	preempted

AIX Clusters

• showllstatus.py: Show job status and node running on

ĺ	apachecol	@peq304:	\$ showllsta	tus.pv							
	Node	Status	Load		Node	Status	Load	Arc	h		
	ian1	Idle	1.02	Power4	pen09	Busy	16.28	Power	5		
	pen01	Run	4.08	Power5	pen10	Busy	16.33	Power	5		
	pen02	Run	2.01	Power5	pen11	Idle	0.00	Power	5		
	pen03	Run	4.50	Power5	pen12	Idle	0.00	Power	5		
	pen04	Run	7.04	Power5	pen13	Busy	16.21	Power	5		
	pen05	Run	3.99	Power5	pen14	Run	2.50	Power	5		
	pen06	Busy	16.30	Power5	pen15	Idle	0.00	Power	5		
	pen07	Run	2.00	Power5	pen16	Idle	0.00	Power	5		
	pen08	Run	4.07	Power5							
	Step ID		Owner	Stati	us Cla	ss Host	s Queue	Date	Disp.	Date	
	ian1.976	78.0	nserno	R	MP 5	L 1	07/19	11:19	07/19	11:19	
	ian1.976	77.0	nserno	R	MP 5		07/19	11:16	07/19	11:16	
	ian1.976	72.0	cmcfer1	R	MP 5	L 1	07/19	08:38	07/19	08:38	
	ian1.976	50.0	nserno	R	MP 5	L 1	07/18	13:30	07/18	13:30	
	ian1.976	47.0	yuzhiyi	R	MP 5		07/18	10:27	07/18	10:27	
	ian1.976	46.0	jgibs22	R	MP 5		07/18	10:09	07/18	10:09	
	ian1.976	45.0	nserno	R	MP 5	L 1	07/17	13:20		21:40	
	ian1.976	44.0	nserno	R	MP 5	L 1	07/17	13:20	07/17	17:20	

07/17 13:20 07/17 16:51

HPC Training: Fall 2011 Sep 14, 2011

MP5L

Job Manipulation

Linux Clusters

- qdel <job id>
 - Cancel a running or queued job
- qhold <job id>
 - Put a queued job on hold
- qrls <job id>
 - Resume a held job

AIX Clusters

- llcancel <job id>
 - ♦ Cancel a running or queued job
- llhold <job id>
 - Put a gueued job on hold
- llhold -r <job id>
 - Resume a held job

Outline

- Hardware Overview
- User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - Queues
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

Additional Help

- User's Guide
 - ♦ HPC: http://www.hpc.lsu.edu/help
 - LONI: https://docs.loni.org/wiki/Main_Page
- Contact us
 - Email ticket system: sys-help@loni.org
 - Telephone Help Desk: 225-578-0900
 - Walk-in consulting session at Middleton Library
 - ★ Tuesdays and Thursdays only
 - Instant Messenger (AIM, Yahoo Messenger, Google Talk)
 - ★ Add "Isuhpchelp"

