Assignment 3 Lab Report

Regression:

For our regression testing, we used the Computer Hardware dataset from https://archive.ics.uci.edu/ml/datasets/Computer+Hardware.

Number of Features	7
Names of the features	MYCT, MMIN, MMAX, CACH, CHMIN, CHMAX, PRP
Name of target	ERP
Number of samples	209
Description of data	(209, 8)

First five rows of data:

Row#	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
3	29	8000	32000	32	8	32	220
4	29	8000	32000	32	8	32	172
5	29	8000	32000	32	8	16	132

Correlation between the features:

	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP
MYCT	1.000000	-0.335642	-0.378561	-0.321000	-0.301090	-0.250502	-0.307099
MMIN	-0.335642	1.000000	0.758157	0.534729	0.517189	0.266907	0.794931
MMAX	-0.378561	0.758157	1.000000	0.537990	0.560513	0.527246	0.863004
CACH	-0.321000	0.534729	0.537990	1.000000	0.582245	0.487846	0.662641
CHMIN	-0.301090	0.517189	0.560513	0.582245	1.000000	0.548281	0.608903
CHMAX	-0.250502	0.266907	0.527246	0.487846	0.548281	1.000000	0.605209
PRP	-0.307099	0.794931	0.863004	0.662641	0.608903	0.605209	1.000000

Best Parameters:

Using the GridSearchCV function of sklearn, we able to automatically try multiple parameters of alpha. We were able to deduce the optimal alpha for both Lasso and Ridge Regression.

Random_state = 43

Ridge	100
Lasso	20

After finding the optimal parameter alpha, we used that parameter to predict the target data. We used R^2 and RMSE as our scoring methods to measure the accuracy of our methods.

Method	R^2	RMSE
Lasso	0.8821	5.2389
Ridge	0.8821	5.2389
Linear	0.8820	5.2399

Comparison of Ridge, Lasso, and Linear Regression Models:

Using the optimal parameter that we found earlier, we made a linear model with calculated coefficients. The following figures show those coefficients and how they change with the parameter alpha.

Classification

For our classification testing, we used Haberman's Survival dataset from https://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival.

Number of Features	3
Names of the features	Age. Year of Operation, Nodes
Name of target	Survival Status
Number of samples	306
Description of data	(306, 4)

Correlation between features:

	age	year_of_operation	nodes
age	1.000000	0.089529	-0.063176
year_of_operation	0.089529	1.000000	-0.003764
nodes	-0.063176	-0.003764	1.000000

After training our Logistic Regression model, we calculated the accuracy of our model to be 75.8%.

Accuracy of the Logistic Regression: 0.75806

With our model, we ran a prediction of the test target data using the test data. With the predictions, we were able to create a confusion matrix and solve for precision, recall, sensitivity, and accuracy, as seen below.

Model Performance:

Precision	0.9347
Recall	0.7818
Sensitivity	0.7818
Accuracy	0.7580

ROC Curve:

To determine the effectiveness of the model, we plotted a ROC Curve. From our data, we can see our model is not performing the best it could. There could be a model better suited to this

data.

