

Sistemas Operativos

Operating System Operation

- These slides and notes are based on the contents of the books:
 - Abraham Silberschatz, "Operating System Concepts", 10th Edition, Wiley, 2018;
 - William Stallings, "Operating Systems: Internals and Design Principles", 9th Edition, Pearson, 2017;
 - Andrew S. Tanenbaum, "Modern Operating Systems", 4th Edition, Pearson Education, 2014;
- The respective copyrights belong to their owners.

- Operating System Definition
- Computer System Components
- Operating System Operation
 - Fetch-Execute Cycle
 - Interrupts
 - I/O Operation
 - Programmed Driven I/O
 - Interrupted Driven I/O
 - Modes of Operation
 - user mode
 - kernel mode
 - Multiprogramming
 - Time sharing

- An Operating System (O.S.) is
 - a program that acts as an intermediary between a user of a computer and the computer hardware:
 - manages the computer hardware, deciding how to allocate the resources between users and programs
 - controls execution of programs to prevent errors and improper use of the computer.

William Stallings, "Operating Systems: Internals and Design Principles"

- Operating System Definition
- Computer System Components
- Operating System Operation
 - Fetch-Execute Cycle
 - Interrupts
 - I/O Operation
 - Programmed Driven I/O
 - Interrupted Driven I/O
 - Modes of Operation
 - user mode
 - kernel mode
 - Multiprogramming
 - Time sharing

Computer System Components

Instituto Politécnico de Coimbra

• a computer system can be divided into four components:

Computer System Components

- a computer system can be divided into four components:
 - Hardware:
 - von Neumann architecture: CPU, memory, I/O devices
 - provides basic computing resources
 - Operating System:
 - controls and <u>coordinates the use of hardware</u> among the various applications and users
 - Application Programs:
 - define the <u>ways in which the system resources are used</u> to solve the computing problems of the users
 - Users
 - people, machines, other computers

- a computer system can be divided into four components:
 - Hardware:

von Neumann architecture: CPU, memory, I/O devices

Computer System Components

Instituto Politécnico de Coimbra

- a computer system can be divided into four components:
 - Hardware:
 - von Neumann architecture: CPU, memory, I/O devices

O Little Man Computer (LMC) consiste num modelo simplificado de um computador, que modela a arquitetura von Neumann, podendo ser programado em linguagem máquina (decimal em vez de binário), ou linguagem assembly (com somente 11 instruções). A sua implementação encontra-se disponível em diversas plataformas, nomeadamente em versão web.

http://www.peterhigginson.co.uk/LMC/

- Operating System Definition
- Computer System Components
- Operating System Operation
 - Fetch-Execute Cycle
 - Interrupts
 - I/O Operation
 - Programmed Driven I/O
 - Interrupted Driven I/O
 - Modes of Operation
 - user mode
 - kernel mode
 - Multiprogramming
 - Time sharing

Fetch-Execute Cycle

William Stallings, "Operating Systems: Internals and Design Principles"

1) Processor reads (fetches) instructions from memory

The processor fetches the instruction from memory. The register *Program Counter (PC)* holds the address of the instruction to be fetched next. PC is incremented after each fetch.

Fetch-Execute Cycle

2) Processor executes each instruction

- The fetched instruction is loaded into the register called *Instruction Register* (IR), and it specifies the action required by the processor. Categories:
 - <u>Processor-memory</u>: data transferred from memory to processor or vice versa.
 - <u>Processor-I/O</u>: data exchanged between the external device through an I/O module.
 - <u>Data Processing</u>: the processor may perform some arithmetic or logical action on the data.
 - <u>Control</u>: an instruction may alter the execution by specifying a different location, which is normally done by loading PC register with that particular address.

- Fetch-Execute Cycle
- Example:
 - add two numbers and store the result at some place in the memory

Program counter (PC) = Address of instruction Instruction register (IR) = Instruction being executed Accumulator (AC) = Temporary storage

0001 = Load AC from memory 0010 = Store AC to memory 0101 = Add to AC from memory

Instituto Politécnico de ^

Next instruction is at 300 address. The contents are loaded in to the IR.

Next instruction is fetched.

Next instruction is fetched.

PC is incremented.
The contents at 300 location: first four bits are the Op-code (0001 = 1) and the remaining 12 bits indicate the address (9 4 0). The contents of the 940 location are loaded into the AC.

PC is incremented. Instruction according to the Op-code (0101 = 5) says to add the contents of AC (0 0 0 3) with the given address (9 4 1) contents (0 0 0 2).

PC is incremented. Next instructions Opcode (0010 = 2) says store the contents of AC to location (9 4 1).

- Operating System Definition
- Computer System Components
- Operating System Operation
 - Fetch-Execute Cycle
 - Interrupts
 - I/O Operation
 - Programmed Driven I/O
 - Interrupted Driven I/O
 - Modes of Operation
 - user mode
 - kernel mode
 - Multiprogramming
 - Time sharing

Interrupts

- Modern operating systems are interrupt driven.
- For each type of interrupt, separate segments of code in the operating system determine what action should be taken.
- An **interrupt service routine** is provided that is responsible for dealing with the interrupt.

Instituto Politécnico de Coimbr

Interrupts

Hardware failure

- Classes of Interrupts

Program	Generated by some condition that occurs as a result of an instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, and reference outside a user's allowed memory space.
Timer	Generated by a timer within the processor. This allows the operating system to perform certain functions on a regular basis.
I/O	Generated by an I/O controller, to signal normal completion of an operation or to signal a variety of error conditions.

William Stallings, "Operating Systems: Internals and Design Principles"

Generated by a failure, such as power failure or memory parity error.

Interrupts

- When the CPU is interrupted, it stops what is doing and immediately transfers execution to a fixed location.
- The fixed location usually contains the starting address where the service routine for the interrupt is located.
- on completion of the interrupt service routine the CPU resumes the interrupted computation.

William Stallings, "Operating Systems: Internals and Design Principles"

Interrupts

- Interrupt Vector Table
- The type of interrupt is specified by a number called interrupt number.
- <u>CPU has to transfer execution to some procedure in</u> memory to handle that interrupt. <u>CPU has to find that procedure:</u>
 - a) <u>having one procedure for all interrupts</u> and specifying interrupt vector number as a parameter
 - b) having a table of pointers (interrupt vector table) to various procedures (interrupt routines) that correspond to different interrupt vectors.
 - Intel x86 and x64 CPUs use the latter approach
- the interrupt routine needs explicitly save the current state and then restore that state before returning

Operating

Instituto Politécnico de Coimbra

Interrupts

Keyboard

HD

Mouse

The Interrupt
Descriptor
Table (IDT) is
a data
structure used
by the x86
architecture to
implement an
interrupt vector
table.

- Operating System Definition
- Computer System Components
- Operating System Operation
 - Fetch-Execute Cycle
 - Interrupts
 - I/O Operation
 - Programmed Driven I/O
 - Interrupted Driven I/O
 - Modes of Operation
 - user mode
 - kernel mode
 - Multiprogramming
 - Time sharing

Instituto Politécnico de Coimbra

Programmed I/O

- the processor executes an instruction relating an I/O module by issuing command to the appropriate I/O module.
- The I/O module will interpret the action asked by the processor and set the required bits in the status register.
 - That is the only action performed by the I/O module in the programmed I/O type of communication mode.
- It does not perform any action further, therefore, it is the duty of the processor to check the status of the I/O module periodically unless the operation is complete.

Programmed I/O

Instituto Politécnico de Coimbra

Interrupted Driven I/O

- programmed I/O mode is not efficient since while data is being transferred between the processor (memory) and the I/O module, the CPU is taking no action but to waiting and also repeatedly checking the status of the device for further transmission between the two.
- The efficiency can be improved if, during data transmit ion between memory and the I/O module, processor may go some where else and perform certain task and the I/O module interrupt the processor when it needs its services.

Interrupted Driven I/O

- Operating System Definition
- Computer System Components
- Operating System Operation
 - Fetch-Execute Cycle
 - Interrupts
 - I/O Operation
 - Programmed Driven I/O
 - Interrupted Driven I/O
 - Modes of Operation
 - user mode
 - kernel mode
 - Multiprogramming
 - Time sharing

Modes of Operation

- most computer systems provide <u>hardware support</u> that allows to differentiate among modes of execution:
 - user mode:
 - the executing code has no ability to directly access hardware or reference memory. <u>It must delegate to system</u> <u>APIs to access hardware or memory</u>
 - crashes are always recoverable.
 - Most of the code running on a PC will execute in user mode
 - kernel mode (aka supervisor, system, or privileged mode):
 - the executing code has complete and <u>unrestricted access to</u> the <u>underlying hardware</u>. It can execute any CPU instruction and reference any memory address.
 - generally <u>reserved</u> for the lowest-level, most trusted functions of the operating system.
 - crashes are catastrophic; they will halt the entire PC

Instituto Politécnico de Coimbra

Modes of Operation

Modes of Operation

- A bit, called the **mode bit** is added to the hardware of the computer to indicate the current mode: **kernel (0) or user (1).**
 - At system boot time, the hardware starts in kernel mode.
 - The operating system is then loaded and starts user applications in user mode:
 - whenever a trap or interrupt occurs, the hardware switches from user mode to kernel mode (i.e. changes the state of the mode bit to 0).
 - the system always switches to user mode (by setting the mode bit to 1) before passing control to a user program.
- The CPU's strict segregation of code between User and Kernel mode is completely transparent to most of us.

Modes of Operation

• Example: Windows 10

Instituto Politécnico de Coimbra **POSIX** OS/2 Application Application Modes of Operation Work-Server Security Win32 POSIX OS/2 station service service user mode Integral subsystems Environment subsystems User mode **Executive Services** Virtual Memory Memory Process Pnr Manager Manager Window Manager Security I/O IPC Power Reference Manager Manager Monitor GDI Object Manager kernel mode Executive Kernel mode drivers Microkernel Hardware Abstraction Layer (HAL) Kernel mode https://en.wikipedia.org/wiki/Block_diagram

Hardware

Instituto Politécnico de Coimbra

Unix Components

- Operating System Definition
- Computer System Components
- Operating System Operation
 - Fetch-Execute Cycle
 - Interrupts
 - I/O Operation
 - Programmed Driven I/O
 - Interrupted Driven I/O
 - Modes of Operation
 - user mode
 - kernel mode
 - Multiprogramming
 - Time sharing

Instituto Politécnico de Coimbra

Multiprogramming

- increases CPU utilization by organizing processes in a way that the <u>CPU always has one to execute</u>:

Multiprogramming

William Stallings, "Operating Systems: Internals and Design Principles"

Need disk?

Need terminal?

Need printer?

Instituto Politécnico de Coimbra Uniprogramming Multiprogramming 100% 100% CPU CPU 0% 100% 100% Memory Memory 0% 0% -100% 100% Disk Disk 0% -100% 100% Terminal Terminal 0% 0% -100%100% Printer Printer 0% 0% JOB1 Job History Job History TOB1 JOB₂ JOB3 JOB2 15 25 30 5 10 20 **ЈОВ**3 minutes 10 15 time minutes time JOB1 JOB2 JOB3 Type of job Heavy I/O Heavy I/O Heavy compute William Stallings, "Operating Systems: Duration 5 min 15 min 10 min Internals and Design Memory required 50 M 100 M 75 M Principles"

No

No

No

No

Yes

No

Yes

No

Yes

- Operating System Definition
- Computer System Components
- Operating System Operation
 - Fetch-Execute Cycle
 - Interrupts
 - I/O Operation
 - Programmed Driven I/O
 - Interrupted Driven I/O
 - Modes of Operation
 - user mode
 - kernel mode
 - Multiprogramming
 - Time sharing

Time sharing (or multitasking)

- the CPU executes multiple processes from different users by switching among them so rapidly that users can interact with each program while it is running.
- allows many users to share the computer simultaneously.
- each user is given the impression that the entire computer system is dedicated to his use, even though it is being shared among many users.

- Abraham Silberschatz, "Operating System Concepts",
 10th Edition, Wiley, 2018;
- William Stallings, "Operating Systems: Internals and Design Principles", 9th Edition, Pearson, 2017;
- Andrew S. Tanenbaum, "Modern Operating Systems", 4th Edition, Pearson Education, 2014;