3. Reacting Masses

1.25

Balancing equations

Balancing Equations

$$C + 2H_2 \longrightarrow CH_4$$

 $C=1$
 $H=4$

1.26

Calculate relative formula mass (Mr) from relative atomic mass (Ar)

1.27

Mol is the unit for the amount of substance

Mol = mass (g)/Ar

1.28

Understand carrying out calculations involving amount of substance, relative atomic mass (Ar) and relative formula mass (Mr)

% element =
$$\frac{\text{r.a.m. of element x number of atoms}}{\text{r.f.m of compound}} \times 100$$

Calculate reacting masses using experimental data and chemical equations

If you have 48 grams of magnesium, what mass of oxygen will react with this?

$$\begin{array}{ccc} \text{magnesium + oxygen} \rightarrow \text{magnesium oxide} \\ \text{2Mg} & \text{+} & \text{O}_2 & \rightarrow & \text{2MgO} \end{array}$$

- The balanced equation shows the ratio of Mg: O₂ is 2: '
- The relative atomic mass of Mg = 24 and the relative formula mass of O₂ = 32.
- Combining these two sets of information gives the ratio of reacting masses.

$$Mg : O_2 = (2 \times 24) : (1 \times 32) = 48 g : 32 g$$

So, 48 g of magnesium will react with 32 g of oxygen.

If you have 48 grams of magnesium, what mass of magnesium oxide will be produced?

$$\begin{array}{ccc} \text{magnesium + oxygen} \rightarrow \text{magnesium oxide} \\ \text{2Mg} & \text{+} & \text{O}_2 & \rightarrow & \text{2MgO} \end{array}$$

- The balanced equation shows the ratio of Mg: MgO is 2:2
- The relative atomic mass of Mg = 24
 and the relative formula mass of MgO = 24 + 16 = 40.
- Combining these two sets of information gives the ratio of reacting masses.

```
Mg : MgO = (2 \times 24) : (2 \times 40) = 48g : 80g
```

So, 48g of magnesium will produce 80g of magnesium oxide

If you have 480 grams of magnesium, what mass of magnesium oxide will be produced?

magnesium + oxygen
$$\rightarrow$$
 magnesium oxide 2Mg + O₂ \rightarrow 2MgO

- From previous calculations, the ratio of reacting massifor Mg: MgO = (2 x 24): (2 x 40) = 48 g: 80 g.
- Starting with 480 g of magnesium, means you have to work out the scale factor for the ratio of reacting mass scale factor = 480 g ÷ 48 g = 10
- Applying this scale factor to the amount of magnesium oxide in the ratio of reacting masses gives the answer mass of MgO to be produced = 80 g x 10 = 800g
- Step 1. Write down the balanced symbol equation.
- Step 2. Write down the relative atomic/formula masses of the reactants and products.
- Step 3. Use the balanced equation to write down the ratios of reactants and products.
- Step 4. Convert to ratio of reacting masses.
- Step 5. Calculate the scale factor and apply this to the ratio of reacting masses.

If 28 g of iron reacts with copper sulphate solution, what mass of copper will be made?

• Step 1. Write down the balanced symbol equation.

Fe + CuSO₄
$$\rightarrow$$
 Cu + FeSO₄

Step 2. Write down the relative atomic/formula masses.

Step 3. Write down the ratio of reactants and products.

Step 4. Convert to ratio of reacting masses.

Fe:
$$Cu = 1:1 = 56g:64g$$

 Step 5. Calculate the scale factor and apply this to the ratio of reacting masses.

scale factor =
$$38 g / 56 g = 0.5$$

mass of Cu made = $64 g \times 0.5 = 32 g$

1.30

percentage yield = actual yield I theoretical yield x 100

1.31

Formulae of simple compounds can be obtained experimentally, including metal oxides, water and salts containing water or crystallization

1.32

Empirical Formula - formula that shows the ratio of elements present in the compound, but not the actual numbers of atoms found in the molecule

Molecular Formula - shows the number of atoms of different elements

1.33

Calculate empirical and molecular formulae from experimental data

1.34

Carry out calculations involving amount of substance, volume and concentration (in mol/dm^3) of solution

concentration =
$$\frac{\text{mass dissolved (g)}}{\text{volume of solution (dm}^3)}$$

1.36

Determine the formula of a metal oxide by combustion or by reduction

Rf values	Distance traveled by Compound (Solute)
(Chromatography)	Distance traveled by Liquid (Solvent)
Relative Atomic Mass	\sum (Isotope abundance \times Isotope mass number)
	\sum Isotope Abundance
Moles	Mass
	Molar Mass
	Concentration $\left(\frac{mol}{dm^3}\right) \times Volume (dm^3)$
Percentage Mass	$\frac{(Mr\ of\ Element)}{(Total\ Mr)}\times\ 100(\%)$
Percentage Yield	$\% Yield = \frac{Actual Yield}{Theoretical Yield} \times 100(\%)$
Concentration	Cocentration $\left(\frac{mol}{dm^3}\right) = \frac{\text{\# of mol (mol)}}{\text{volume (dm^3)}}$
Volume (cm ³)	$Volume~(dm^3)~\times~1000$