На правах рукописи

Пенской Александр Владимирович

РАЗРАБОТКА И ИССЛЕДОВАНИЕ АРХИТЕКТУРНЫХ СТИЛЕЙ ПРОЕКТИРОВАНИЯ УРОВНЕВОЙ ОРГАНИЗАЦИИ ВСТРОЕННЫХ СИСТЕМ

Специальность 05.13.12 — Системы автоматизации проектирования (приборостроение)

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Санкт-Петербургском национальном исследовательском университете информационных технологий, механики и оптики.

Научный руководитель: кандидат технических наук

Ключев Аркадий Олегович

Официальные оппоненты: Фахми Шакиб Субхиевич

доктор технических наук, доцент

кафедра систем автоматизированного проектирования ФГАОУ ВО «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)» (СПбГЭТУ «ЛЭТИ»),

профессор

Филатова Наталья Николаевна

доктор технических наук, профессор

кафедра автоматизации технологических процессов ФГБОУ ВО «Тверской государственный технический университет»,

профессор

Ведущая организация: ФГБОУ ВО «Поволжский государственный

технологический университет»

Защита состоится 26 декабря 2016 г. в 15 часов 20 минут на заседании диссертационного совета Д.212.227.05 при Санкт-Петербургском национальном исследовательском университете информационных технологий, механики и оптики по адресу: 197101, Санкт-Петербург, Кронверский пр., 49, ауд. 285.

С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики по адресу: 197101, Санкт-Петербург, Кронверкский пр., д.49 и на сайте: http://fppo.ifmo.ru/?page1=16&page2=52&page_d=1&page_d2=142415.

Автореферат разослан «___» _____ 2016 года.

Учёный секретарь диссертационного совета Д.212.227.05 кандидат технических наук, доцент

Поляков В.И.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы.</u> При разработке сложных вычислительных систем широко зарекомендовало себя многоуровневое иерархическое проектирование (A. Sangiovanni-Vincentelli, Непейвода Н.Н.). Оно заключается в описании единого вычислительного процесса на нескольких уровнях организации, где одни уровни формируют необходимые условия для реализации других в соответствии с заданным контрактом. На части из них задаётся решение прикладной задачи. Примеры уровней: фреймворки (framework), языки программирования специального и общего назначения, операционные системы, системы команд процессоров (ISA), программируемые логические интегральные схемы (ПЛИС), СБИС и т.д.

Совокупность уровней и их взаимосвязей в вычислительной системе называется уровневой организацией. Она позволяет снизить общую сложность системы и затраты на её разработку, а также способствует разделению и уровней Выделение обуславливается специализации труда. задач, моделью вычислений, технологическими вычислительных причинами. Наиболее успешные организационными И перспективные вычислительными платформами становятся самостоятельными собственными «экосистемами».

Многоуровневое иерархическое проектирование занимает особое место во встроенных и кибер-физических системах (ВСС и КФС; S. Seshia) ввиду характера разработки, использования специализированной заказного ограниченных распределённой организации аппаратуры, ресурсов, требований реального времени. Использование таких понятий, как уровень и ВПЛ имеет ключевое значение во многих перспективных методиках платформно-ориентированное проектирования BCC. Среди них: проектирование (Platform-Based Design), модель-ориентированная инженерия Engineering), (Model-Driven контрактно-ориентированное проектирование R. Passerone) (Contract-Based Design; язык-ориентированное И программирование (Language-Oriented Programming; С. Дмитриев, М. Voelter). Вопросы проектирования уровневой организации поднимаются в HLDметодологии (Платунов А.Е.) и методологическом направлении совместного проектирования (CoDesign; E.A. Lee, J. Teich, Терехов А.Н.).

Требования рынка к характеристикам систем и срокам их разработки растут. Это вынуждает проектировщиков отказываться от традиционных решений в пользу более сложных, основанных на принципах реконфигурации и виртуализации. Они позволяют адаптивности повысить уровень эффективности использования вычислительных ресурсов (R. Hartenstein, L. Jóźwiak, Каляев А.В., Каляев И.А.). Это требует детальной проработки уровневой организации ВСС и серьёзной поддержки со стороны САПР.

Формирование уровневой организации слабо относится К автоматизируемой области архитектурного проектирования (M. Shaw, F.H. Cardoso, Топорков В.В.). Основные инструменты здесь языки архитектурного описания (Architecture Description Language) и архитектурные стили (Architecture Style). Первые определяют синтаксис архитектурных спецификаций, а вторые — семантику, методы анализа и проектирования архитектуры ВСС, онтологические модели и систему понятий.

Несмотря на широкое распространение многоуровневого проектирования, существует ряд проблем, большинство из которых связаны с «удержанием целого» (D. Densmore, C. Baldwin, P. Clements, M. West, Левенчук А.И.):

- 1) Излишне шаблонное проектирование, подменяющее осознанное принятие решений на следование традиции. Это приводит к вырождению процесса исследования пространства проектных решений (Design Space Exploration).
- 2) Недостаточное развитие методов и средств проектирования уровневой организации. Это препятствует полноте и точности анализа вариантов; снижает качество принимаемых архитектурных решений и затрудняет прогнозирование последствий их принятия; приводит к смешению интересов при проектировании и росту сложности.
- 3) Потеря концептуальной информации при документировании проектного опыта. Наличие неоднозначности в спецификациях ВСС, в терминологии и в онтологических моделях уровневой организации.
- 4) Высокая сложность и стоимость создания САПР для заказных элементов уровневой организации. Эта проблема особенно актуальна для совместного проектирования, «сквозных» (cross-level) решений и реконфигурируемых вычислительных архитектур.

Стремительно растущий рынок ВСС и КФС сталкивается с серьёзными ограничениями существующих методов и инструментов проектирования уровневой организации, препятствующими разработке и внедрению новых вычислительных архитектур. Это формирует следующую актуальную научную задачу: развитие методов и инструментов архитектурного уровня для разработки встроенных систем с многоуровневой организацией, что определило направление диссертационного исследования.

<u>Объект исследования</u> – процессы проектирования и разработки встроенных систем, архитектура встроенных систем в части уровневой организации.

<u>Предмет исследования</u> — архитектурные стили для проектирования и документирования уровневой организации встроенных систем, методики проектирования встроенных систем и методики моделирования элементов встроенных систем в САПР.

В соответствии с целью, в работе ставятся и решаются следующие задачи:

- 1) Исследование архитектурных стилей, предназначенных для работы с уровневой организацией встроенных систем. Определение структуры пространства проектных решений в части уровневой организации и формирование требований к более эффективным архитектурным стилям.
- 2) Разработка архитектурных стилей и языков архитектурного описания для проектирования и документирования уровневой организации встроенных систем.
- 3) Формализация разработанных архитектурных стилей с целью создания методики моделирования многоуровневых встроенных систем и их элементов для САПР.
- 4) Развитие системы архитектурных абстракций для работы с уровневой организацией в соответствии с актуальными тенденциями в проектировании встроенных систем.
- 5) Модификация традиционной методики проектирования встроенных систем на основе предложенных архитектурных стилей, языков архитектурного описания, методик моделирования и архитектурных абстракций.

<u>Методы исследования.</u> При решении поставленных задач использовались методы системного, аспектного и архитектурного анализа; функционального и объектно-ориентированного программирования; теория категорий; методы моделирования высших онтологий; метод структурирования функции качества.

Основные положения, выносимые на защиту:

- 1) Архитектурные стили *«модифицированный граф актуализации»*, *«системно-иерархический»* и *«модель-процесс-вычислитель»* для проектирования и документирования уровневой организации. Они расширяют пространство проектных решений, повышают качество документации архитектурного уровня и выделяют соответствующие вопросы организации встроенных систем.
- 2) Методика моделирования многоуровневых встроенных систем и их элементов. Она предназначена для проектирования компонентов САПР в составе заказных элементов уровневой организации и сокращает затраты на их разработку.
- 3) Расширение системы архитектурных абстракций для работы с уровневой организацией встроенных систем И методика проектирования многоуровневых встроенных систем. Они уровневой предназначены ДЛЯ унификации рассмотрения организации, формализации объектов повторного использования и повышения качества проектирования.

Результаты, характеризующиеся *научной новизной*:

- 1) Стили *«модифицированный граф актуализации»* и *«системно-иерархический»*. Являются модификациями существующих. Первый отличается от своего прототипа принципом декомпозиции систем, второй средствами представления стадий жизненного цикла встроенных систем.
- 2) Стиль *«модель-процесс-вычислитель»*, разработанный с использованием методов моделирования высших онтологий. Отличается абстрагированием от способа реализации, высокой детализацией уровневой организации, отсутствием избыточности и однозначностью системы понятий.
- 3) Методика моделирования многоуровневых встроенных систем и их элементов, являющаяся формализацией архитектурного стиля «модель-процесс-вычислитель» с использованием теории категорий. Отличается полнотой представления уровней встроенных систем и межуровневых взаимосвязей.
- 4) Расширение системы архитектурных абстракций, включающее:
 - уточнённые понятия вычислительной и системной платформы, понятия уровня и уровневой организации;
 - понятие многоуровневого вычислительного агрегата;
 - онтологические модели [ре]конфигурации и иерархической организации.
- 5) Методика проектирования многоуровневых встроенных систем. Отличается использованием предложенных архитектурных стилей, разработанной методики моделирования, расширенной системы архитектурных абстракций.

Практической ценностью характеризуются следующие результаты:

- 1) Языки архитектурного описания для предложенных архитектурных стилей. Применяются для документирования и передачи проектного опыта в области уровневой организации встроенных систем.
- 2) Набор формальных моделей элементов уровневой организации встроенных систем для применения в САПР. Включает в себя модели: языка макроассемблера, языка структурных схем, вычислительного процесса фон Неймановского процессора в разных режимах работы, тактовые модели актуализации и виртуализации, модели специализированного сигнального процессора.
- 3) САПР сигнального процессора реального времени NL3 и САПР с элементами сквозного моделирования и отладки для работы со специализированным реконфигурируемым фон Неймановским процессором.

<u>Обоснованность и достоверность</u> научных положений обеспечены полнотой анализа теоретических и практических исследований, положительной

оценкой на конференциях, семинарах и научных конгрессах, практической проверкой и внедрением полученных результатов исследований в производственную деятельность.

<u>Реализация и внедрение результатов работы.</u> Результаты работы были успешно использованы в следующих НИР и ОКР:

- 1) Разработка и исследование аспектно-ориентированных технологий проектирования на базе унифицированных элементов информационно-коммуникационной инфраструктуры активноадаптивных энергосетей (ГК № 07.514.11.4073 от «13» октября 2011 г., Шифр: 2011-1.4-514-120-048).
- 2) Исследование механизмов обеспечения надежности аппаратнорезервированных информационно-измерительных систем на базе ПЛИС (Университет ИТМО, № 214434).
- 3) Создание бесшовных технологий проектирования встраиваемых систем и систем на кристалле на основе реконфигурируемых архитектур (Университет ИТМО, № 713564).
- 4) Разработка методов и средств системотехнического проектирования информационных и управляющих вычислительных систем с распределенной архитектурой (Университет ИТМО, № 610481).
- 5) Нелинейное и адаптивное управление сложными системами (Университет ИТМО, № 713546).
- 6) Система коммерческого учёта электроэнергии «ИИС Луч-ТС М» (свидетельство об утверждение типа: RU.C.34.033.A № 57631).

Также, положения работы были успешно применены при разработке: редактора архитектурных спецификаций информационно-управляющих систем (свидетельство № 2012618605 от 21.09.2012), редактора спецификаций технических и программных средств информационно-управляющих систем (свидетельство № 2012618606 от 21.09.2012), библиотеки для анализа слабо формализованных текстовых данных (свидетельство № 2015615882 от 26.05.2015), библиотеки для разработки программных интерфейсов управления мобильным оборудованием (свидетельство № 2015614306 от 14.04.2015), виртуальной машины для задач управления беспилотным летательным аппаратом.

Результаты работы использованы на кафедре вычислительной техники Университета ИТМО в учебном процессе по курсам: «Программное обеспечение встраиваемых вычислительных систем», «Информационно-управляющие системы», «Организация ЭВМ и систем», «Интерфейсы периферийных устройств», «Управление программными проектами».

<u>Апробация работы.</u> Научные результаты и положения диссертационной работы докладывались и обсуждались на 15 конференциях в 18 докладах: научная и учебно-методическая конференция Университета ИТМО (2011, 2012, 2013, 2014, 2015 гг.); научно-практическая конференция молодых ученых «Вычислительные системы и сети, Майоровские чтения» (2010, 2011, 2012,

2013 гг.); II Всероссийский конгресс (2013 r.);молодых ученых II Международная научно-практическая конференция «Sensorica – 2014» (2014 г.); Международная конференция Mediterranean Conference on Embedded Computing – MECO (2012, 2014 гг.); Международная конференция ICUMT 2014 - the 6th International Congress on Ultra Modern Telecommunications and Control 14th конференция **Systems** (2014 r.);Международная international multidisciplinary scientific geoconference – SGEM2014 (2014 Γ.).

<u>Публикации.</u> По теме работы опубликовано 8 печатных работ, в том числе 6 работ в изданиях ВАК или входящих в список Scopus, а также 2 учебнометодические работы. Зарегистрировано 4 программных продукта.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

<u>Во введении</u> обоснована актуальность темы, сформулированы цели и задачи, определено направление исследования.

<u>В первой главе</u> рассматривается понятие встроенной вычислительной системы (ВСС). Анализируются особенности, затрудняющие разработку ВСС: заказной характер разработки, использование специализированной аппаратуры, гетерогенность, ответственное применение, распределённая организация, ограниченные ресурсы в условиях реального времени.

Проектирование ВСС рассматривается как процесс исследования пространства проектных решений (ППР — многомерное пространство, осями которого являются технические вопросы, точками — комплексные технические решения). Выделяются и обосновываются следующие свойства ППР: (1) ситуативность и субъективность; (2) сегментированность.

Анализируются следующие проблемы проектирования, приводящие к снижению качества принимаемых архитектурных решений:

- излишне шаблонное проектирование и суженное ППР;
- потеря информации при сохранении и передаче проектного опыта;
- взаимодействие разработчиков разных специальностей, совместное проектирование и уровень его автоматизации.

Выполняется обзор тенденций в области ВСС, в том числе:

- 1) Рост уровня адаптивности ВСС. Популяризация вычислительных архитектур, основанных на принципах реконфигурации.
- 2) Развитие методов и средств высокоуровневого и архитектурного проектирования, модель-ориентированной инженерии.
- 3) Развитие методов и средств совместного проектирования ВСС, в том числе, её инструментальной и целевой составляющей.
- 4) Развитие и внедрение методов интеграции и моделирования данных высших онтологий (BORO, ISO 15926, DoDAF IDEAS). Развитие бесшовных технологий и междисциплинарных взаимодействий.

Эти тенденции связаны с вопросами представления и разработки гетерогенных, многоуровневых ВСС. Рассматриваются ключевые понятия и определения, связанные с уровневой организацией ВСС.

Уточняется понятие «вычислительной платформы» (ВПЛ) — объекта повторного использования для решения заданного класса вычислительных задач, включающего языковые, методологические, инструментальные и технологические средства. Предлагается классификация ВПЛ:

- по классу решаемых задач (общего и специального назначения);
- по распространённости (узкий или широкий круг пользователей);
- по возможности к адаптации;
- по назначению (заказные, стандартные);
- по способу реализации (конструктивные, программируемые, языковые, смешанные).

Уточняются следующие определения:

- 1) Уровень ВСС один из вариантов рассмотрения вычислительного процесса целевой системы, адресованный заданной группе интересов и ориентированный на конкретную ВПЛ.
- 2) *Уровневая организация* совокупность уровней ВСС, организованных в иерархическую структуру, определяющую методику разработки и принципы функционирования системы (Рисунок 1).

Определяется структура ППР уровневой организации. Для этого выделяются следующие оси: ось языковых средств и моделей вычислений, ось стадий конфигурирования, ось способа реализации ВПЛ.

Рисунок 1 – Схематическое изображение фрагмента уровневой организации ВСС с пользовательским программированием сигнального процессора, реализованного на ПЛИС

Делается обзор архитектурных стилей для проектирования уровневой организации, включающий: (1) диаграммы предметной области, (2) диаграммы развёртки, (3) AADL, (4) уровневые диаграммы, (5) «Бургер-диаграммы», (6) граф актуализации. Показаны следующие типовые недостатки:

- ограниченное представление стадий жизненного цикла ВСС;
- избыточность или излишняя общность системы понятий;
- косвенное описание элементов уровневой организации.

Обзор средств разработки многоуровневых ВСС показал, что индустриальные инструменты ориентируются на конкретные ВПЛ или их классы, а академические решения на исследовательские задачи.

Обозначенные проблемы и ограничения существующих методов и инструментов для разработки ВСС с многоуровневой организацией позволили определить цели и задачи работы.

Во второй главе формулируются требования к архитектурным стилям для работы с уровневой организацией:

- 1) Непосредственное и унифицированное представление уровней ВСС.
- 2) Представление ВСС на всём жизненном цикле.
- 3) Абстрагирование от деталей реализации уровней ВСС.
- 4) Представление методологической составляющей.
- 5) Целостное представление вычислительного процесса.

Предлагаются следующие архитектурные стили:

- 1) «Системно-иерархический», основанный на подходе системной инженерии, «Бургер-диаграммах» и элементах стандарта ISO 15926. Полностью покрывает ППР. Использование столь общего понятия как затрудняет практическое использование. «система», Позволил уровневую организацию исследовать c позиции системной организации и процесса конфигурирования.
- 2) «Модифицированный граф актуализации», основанный на модели актуализации вычислительного процесса (ВП). Рассматривает целевой ВП и процесс его определения (разработки ВСС) как единое целое, описываемое группой спецификаций, связанных отношением трансляции. Позволил выделить структуру уровневой организации и определить принципы формирования уровней.
- 3) Оригинальный стиль *«модель-процесс-вычислитель»* (МПВ), полностью отвечающий сформулированным требованиям. Разработан с применением методов моделирования данных высших онтологий. Отличается последовательным следованием принципу разделения интересов, специализированной системой понятий и представлением системы вне конкретного момента времени.

МПВ является наиболее значимым из предложенных архитектурных стилей с научной и практической точки зрения. С его помощью анализируются ВПЛ с разными способами реализации и связанные с ними проблемы. Демонстрируется решение следующих практических задач:

- проектирование и документирование вариантов реализации мемоизации рекурсивных функций;
- замена системной платформы BCC с сохранением прикладного ПО и пользовательской инструментальной цепочки.

Отличительной особенностью стиля МПВ является рассмотрение уровня ВСС как совокупности объектов. Каждому уровню соответствует один

вычислитель (ВПЛ, подготовленная к работе) и неограниченное количество пар вычислительный процесс (ВП) — модель, соответствующих друг другу. Примеры моделей: исходный код, схема электрическая принципиальная, архитектурная спецификация, описание алгоритма и др.

Целостность описания уровня обеспечивается тройственным *отношением актуализации* (вычислитель актуализирует ВП, соответствующий модели).

Межуровневые взаимосвязи описываются *отношением трансляции* (формальное соответствие двух моделей друг другу по заданному критерию) и *отношением виртуализации* (взаимосвязь между ВП и вычислителем вышележащего уровня).

Отсутствие привязки к моменту времени позволяет описать все уровни ВСС, включая диагностические (журнал событий), архитектурные (диаграмма классов) и т.д. Возможность описать только часть ВП позволяет фиксировать методологический аспект через модели отдельных модулей или подпрограмм.

Описание функциональных возможностей вычислителей и ВПЛ осуществляется с использованием понятия вычислительного механизма (ВМХ), где ВМХ — абстрактный элемент вычислителя, определённый на основании структуры ВП без учёта принципов функционирования и организации вычислителя. Примерами ВМХ являются: сумматор, механизм выборки команд, сторожевой таймер (как совокупность централизованной аппаратной и распределённой программной составляющей). Такой подход позволяет документировать возможности ВПЛ и расширяет возможности их анализа и профилирования.

На рисунке 2 продемонстрирована нотация для МПВ на базе UML.

Рисунок 2 — Нотация архитектурного стиля «модель-процесс-вычислитель»

В третьей главе предлагается методика моделирования многоуровневых ВСС и их элементов на основе архитектурного стиля МПВ. Методика позволяет разрабатывать модели отдельных уровней ВСС, а также их взаимосвязей. Создаваемые модели могут использоваться при разработке САПР для систем с дискретным временем. Модели позволяют реализовать:

- сквозную симуляцию, верификацию, отладку и профилирование;

- работу со структурированным представлением конфигураций и ВП;
- трассировку межуровневых взаимосвязей.

Методика включает процедуры для моделирования конфигураций (модели ВП), ВП (последовательности смены состояний вычислителя), а также для отношений актуализации, трансляции и виртуализации.

В качестве инструмента для формализации МПВ была выбрана теория категорий ввиду высокой гибкости, наличия средств описания отношений между разными «мирами» (уровнями) и широкой распространённостью в области вычислительной техники. В качестве альтернатив рассматривались объектное моделирование, языковое моделирование, теория множеств и системное моделирование.

Моделирование конфигурации производится в рамках двух категорий: \mathcal{ML}_i — лексическое представление конфигурации; \mathcal{M}_i — семантическое представление конфигурации (формулы 1, 2). Объектами \mathcal{ML}_i и \mathcal{M}_i являются конфигурации, морфизмами — возможные пути их модификаций. Категории связаны функтором вложения Verif (формулы 3, 4), отсеивающим семантически некорректные конфигурации.

$$Obj(\mathcal{M}_i) := \{ A \in Obj(\mathcal{ML}_i) | Verif(A) \}$$
 (1)

$$Mor(\mathcal{M}_i) := \{ m \in Mor(\mathcal{ML}_i) | Verif(dom(m)), Verif(cod(m)) \}$$
 (2)

$$Verif: \mathcal{M}_i \to \mathcal{ML}_i \tag{3}$$

$$Verif(m) \circ Verif(h) \leftrightarrow Verif(m \circ h)$$
 (4)

Целостный ВП представляется категорией \mathcal{P} (Рисунок 3). Часть объектов представляют состояния вычислителей отдельных уровней (A_i , B_j , C_k), связанных морфизмами (шагами ВП). Другие объекты, обозначенные как A_i х B_j и A_i х B_j х C_k , являются произведениями состояний отдельных уровней и описывают целостное состояние ВСС, а морфизмы между ними – реалистичные шаги ВП. Связанность различных представлений ВП обеспечивается морфизмами-проекциями, извлекающими из произведений составные части (тонкие стрелки).

Рисунок 3 – Диаграмма вычислительного процесса

Отношение актуализации (формула 5) описывается соответствием между морфизмами категорий \mathcal{ML}_i и \mathcal{P} . Оно может строиться непосредственно (в случае симуляции) или косвенно (через отношение виртуализации). Использование функции Р (взятие множества всех подмножеств) необходимо

для актуализации ВП, описываемого несколькими выражениями в спецификации (объявление и использование переменной).

$$Obj(\mathcal{A}) := \{ (M, H): M \in P(Mor(\mathcal{M}_i)), H \in P(Mor(\mathcal{P}_i)), Actualize(m, h) \}$$
 (5)

Моделирование отношения трансляции производится через функтор, связывающий категории \mathcal{M}_i и \mathcal{M}_j (формула 6). Предлагается и доказывается теорема о минимально полной реализации отношения трансляции.

$$T: \mathcal{M}_i \to \mathcal{M}_i$$
 (6)

Отношение виртуализации описывается дополнительными морфизмами категории \mathcal{P} , связующими состояния отдельных уровней ВСС. Описываются следующие способы реализации отношения виртуализации в САПР: (1) в рамках процесса симуляции нижележащего ВП; (2) через анализ состояний ВП; (3) через поиск шаблонных последовательностей ВП.

Применимость для практических задач демонстрируется на разработанных моделях: (1) языка макроассемблера, (2) языка описания структурных схем, (3) ВП фон Неймановского процессора в разных режимах работы, (6) тактовых моделях отношения актуализации и виртуализации.

Разрабатываемые при помощи предложенной методики модели естественно реализуются в исходном коде, процедурах и структурах данных, что сокращает затраты на создание САПР в составе заказных элементов уровневой организации. Математический базис позволяет осуществлять проверку формальную корректности моделей при использовании соответствующего инструментария (к примеру, Coq).

<u>В четвёртой главе</u> расширяется система архитектурных абстракций для работы с уровневой организацией ВСС.

Уточняется понятие *системной платформы* (СПЛ) – совокупности ВПЛ, используемой при разработке и эксплуатации заданного класса ВСС, а также включающей методологические и инструментальные средства разработки. От одноимённого понятия из платформно-ориентированного проектирования, уточнённое понятие СПЛ отличается сохранением уровневой организации в явном виде, против её «вырождения» в плоскую структуру.

На основе понятия архитектурного агрегата HLD-методологии вводится термин «многоуровневого вычислительного агрегата» (MBA) – целостного объекта повторного использования для решения фиксированного класса СПЛ требующего вычислительных задач, включаемого В состав И конфигурирования нескольких ВПЛ. Примерами МВА являются многие вычислительные архитектуры, построенные на принципах реконфигурации и виртуализации: совместные виртуальные машины, системы высокоуровневого совместной разработки. Выделение синтеза **MBA** позволило проанализировать их структуру и унифицировать их представление.

С целью унификации рассмотрения уровневой организации и связанных процессов, предлагаются следующие онтологические модели:

- онтологическая модель [ре]конфигурации (Рисунок 4), обобщающая понятия программирования, конфигурирования и реконфигурирования;
- онтологическая модель иерархической организации, описывающая уровневую организацию во времени и демонстрирующая целостность вычислительного процесса.

Рисунок 4 – Унифицированная модель [ре]конфигурации

В предлагаемой методике проектирования ВСС обобщаются результаты диссертационного исследования (Рисунок 5). Она является расширением традиционного маршрута проектирования ВСС заключающимся в следующем:

- 1) Выделен этап проектирования уровневой организации.
- 2) Сделан акцент на разработке МВА с применением предложенной методики моделирования ВСС и их элементов.
- 3) Предложен метод грубой оценки ВПЛ, основанный на методе структурирования функции качества (Quality Function Deployment).

Рисунок 5 – Расширенная методика проектирования встроенных систем

В полном объёме применение методики целесообразно для ВСС с нетривиальной уровневой организацией, где необходима [ре]конфигурация минимум двух ВПЛ. Эффект от применения методики обусловлен использованием результатов исследования и заключается в следующем:

расширение ППР и повышение качества принимаемых архитектурных решений;

- снижение сложности проектирования уровневой организации;
- повышение качества документации и передачи проектного опыта;
- снижение затрат на разработку САПР в составе СПЛ, ВПЛ, и МВА.

<u>Пятая глава</u> посвящена аналитической и опытной оценке результатов.

Анализ литературы показал, что аналитическая оценка архитектурных стилей является открытой научной проблемой, также, как и задачи оценки методик проектирования, языков программирования и др. Это обусловлено:

- огромным числом характеристик, взаимосвязей и точек зрения;
- преобладанием косвенных критериев;
- сложностью установления корреляций;
- высокой стоимостью и сложностью сбора статистических данных (связано с социальными и экономическими факторами).

Поэтому анализ был ограничен попарной сравнительной характеристикой архитектурных стилей по частным критериям. Критерии выбирались исходя из значимости для проектирования и документирования с уровневой организации, а также из возможности получения доверительного результата сравнения. При этом общие выводы нуждаются в опытной проверке, так как нельзя доказать полноту набора критериев и устранить субъективность и ситуативность.

Были выбраны следующие критерии: (1) покрытие ППР; (2) соответствие абстракций предметной области; (3) избыточность; (4) возможность отображения [ре]конфигурации; (5) возможность документирования методологического аспекта; (6) возможность документирования функциональных возможностей ВПЛ; (7) сложность. Анализ показал:

- 1) МПВ характеризуется полнотой покрытия ППР, высокой детализацией и минимальной избыточностью, но при этом обладает относительно высокой сложностью.
- 2) AADL характеризуется хорошим покрытием ППР и высоким уровнем детализации. Является крайне мощным и универсальным инструментом, поэтому сложен, избыточен и провоцирует смешение интересов при проектировании.
- 3) «Уровневые диаграммы» ограниченно представляют ППР с низким уровнем детализации, но при этом крайне просты в использовании.
- 4) «Граф актуализации», «модифицированный граф актуализации» и «системно-иерархический» плохо применимы к решению практических задач из-за «отвлечённости» систем понятий.
- 5) Другие архитектурные стили не имеют выраженных свойств.

Сделаны следующие выводы:

1) Для эскизного проектирования в случае разработки простых (шаблонных) ВСС следует использовать архитектурный стиль «уровневых диаграмм», как наиболее простой и распространённый.

- 2) Для проектирования ВСС с нетривиальной уровневой организацией следует использовать архитектурный стиль МПВ, так как он позволяет рассмотреть всё многообразие вариантов уровневой организации с низкими затратами на документирование промежуточных и конечных результатов.
- 3) В случае, если основные вопросы уровневой организации решены и требуется организовать совместную работу большого коллектива, то для документирования следует использовать AADL.

Наиболее проектом, апробация крупным на котором проведена автоматизированная система результатов исследования, является коммерческого учёта электроэнергии (АСКУЭ) ИИС Луч-ТС М (свидетельство об утверждении типа: RU.C.34.033.A № 57631). Основную сложность при разработке представляют: большое количество оборудования с различными протоколами; большое количество функций; высокая вероятность сбоев. Как показал опыт разработки ПТК Луч-ТС (предыдущая версия системы), реализация «в лоб» приводит к взрыву сложности и неприемлемой стоимости её развития и поддержки. При разработке новой системы была применена предложенная методика проектирования и архитектурный стиль МПВ. Это позволило путём добавления новых уровней организации ВП прозрачно для разработчика решить следующие задачи: (1) автоматическое восстановление после сбоев; (2) унификация доступа к разнотипному оборудованию; (3) унификация элементов пользовательского интерфейса; (4) верификация конфигураций и др.

По сравнению с ПТК Луч-ТС, это позволило сократить стоимость подключения нового оборудования на 2/3, а количество дефектов на 1/3. На основе предложенных решений были созданы библиотеки для работы с удалённым нестабильным оборудованием (свидетельство № 2015614306 от 14.04.2015) и для верификации иерархических структур данных.

Наиболее показательным проектом является САПР для сигнального процессора реального времени NL3. NL3 является реконфигурируемым вычислителем со смешанной TTA / NISC архитектурой (Transport Triggered Architecture / Not Instruction Set Controller). Основную сложность при разработке представляют: (1) отсутствие ограничений внутреннее на устройство блоков обработки данных и на реализуемые ими функции; (2) вычислительная сложность организации ВП. При проектировании САПР применялась предложенная методика проектирования, включая методику моделирования многоуровневых ВСС и их элементов. Результатом стал итеративный эвристический подход к организации ВП, а также оригинальная уровневая организация, в которой вычислитель NL3 представляется как совокупность независимых ВМХ (блоков обработки данных), где каждый ВМХ может обладать полнотой по Тьюрингу. Применение методики моделирования позволило сократить затраты на разработку и обеспечило высокое качество архитектуры САПР.

Другими рассмотренными проектами являются:

- 1) МВА виртуальной машины для задач управления (применение МПВ и методики проектирования снизили затраты на системное проектирование и разработку в целом на 1/3).
- 2) САПР специализированного реконфигурируемого фон Неймановского процессора (применение методики моделирования позволило сократить затраты на проектирование и отладку на 1/5).

Апробация показала, что применение предложенной методики проектирования и архитектурного стиля МПВ расширяет ППР уровневой организации, что повышает качество принимаемых архитектурных решений. При этом специализация МПВ на задачах уровневой организации позволила повысить эффективность проектирования и документирования. Использование методики сквозного моделирования ВСС при разработке САПР позволяет сократить этап проектирования, одновременно снизив его риски за счёт использования проверенных и теоретически-обоснованных решений.

В заключении представлены основные результаты работы.

ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ

диссертационной работы Центральным результатом является «модель-процесс-вычислитель», архитектурный основанный стиль онтологий. принципах моделирования высших Он характеризуется специализацией на вопросах проектирования и документирования уровневой организации встроенных систем, полнотой представления пространства проектных решений и высоким уровнем детализации при минимальной избыточности. В совокупности с предложенной системой архитектурных абстракций и методикой проектирования, он позволяет повысить качество принимаемых архитектурных решений, степень формализации проектного опыта, эффективность и скорость проектирования. Его формализация в рамках методики моделирования многоуровневых встроенных систем и их элементов позволяет сократить затраты на разработку САПР в составе заказных элементов уровневой организации за счёт готовых процедур моделирования, снижения рисков архитектурного проектирования и повторного использования.

Также были получены следующие результаты:

- 1) Определена структура пространства проектных решений в части уровневой организации встроенных систем. Сформированы требования к архитектурному стилю для проектирования и документирования уровневой организации.
- 2) Предложены архитектурные стили для проектирования и документирования уровневой организации встроенных систем: «модифицированный граф актуализации», «системно-иерархический» и «модель-процесс-вычислитель».
- 3) Разработана методика моделирования многоуровневых встроенных систем и их элементов.

- 4) Расширена система архитектурных абстракций. Введено понятие многоуровневого вычислительного агрегата; уточнены понятия вычислительной и системной платформы, уровня и уровневой организации; разработаны онтологические модели [pe]конфигурации и иерархической организации.
- 5) Предложена *методика проектирования встроенных систем*, выделяющая этап проектирования уровневой организации и обобщающая результаты диссертационного исследования.
- 6) Показано превосходство архитектурного стиля «модель-процессвычислитель» над аналогами в задачах проектирования встроенных систем с нетривиальной уровневой организацией малыми и средними коллективами, а также влияние архитектурного стиля на качество принимаемых архитектурных решений.

Проведена успешная апробация результатов работы в следующих проектах: автоматизированная система коммерческого учёта электроэнергии ИИС «Луч-ТС М», САПР сигнального процессора реального времени NL3, виртуальная машина для управления беспилотным летательным аппаратом, САПР для реконфигурируемого фон Неймановского процессора, редактор для документирования архитектуры информационно-управляющих систем, библиотека для ввода слабо формализованных данных в компонентах САПР. Это подтвердило теоретические выводы работы.

Перспективным направлением для развития работ по теме диссертации является создание полномасштабной САПР для моделирования и разработки многоуровневых встроенных систем и их элементов на основе предложенных архитектурных стилей и методики моделирования.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ В изданиях из перечня ВАК или индексируемых SCOPUS:

- 1) Platunov A. Expanding Design Space for Complex Embedded Systems with HLD-methodology / A. Platunov, A. Kluchev, *A. Penskoi* // International Congress on Ultra Modern Telecommunications and Control Systems and Workshops 2015. P. 157-164.
- 2) **Пенской А.В.** Архитектурное документирование встроенных систем с многоуровневой конфигурацией / А.В. Пенской // Изв. вузов. Приборостроение. 2015. Т 58, № 7. С. 527-532.
- 3) Kluchev A. HLD methodology in embedded systems design with a multilevel reconfiguration / A. Kluchev, A. Platunov, A. Penskoi // Proceedings 2014 3rd Mediterranean Conference on Embedded Computing, MECO 2014 Including ECyPS 2014. 2014. P. 36-39.
- 4) Platunov A. The Architectural Specification of Embedded Systems / A. Platunov, **A. Penskoi**, A. Kluchev // Proceedings 2014 3rd Mediterranean Conference on Embedded Computing, MECO 2014 Including ECyPS 2014. 2014. P. 48-51.

- 5) Platunov A. HLD Methodology: The Role of Architectural Abstractions in Embedded Systems Design / A. Platunov, A. Kluchev, **A. Penskoi** // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 2014. P. 209-218.
- 6) Platunov A. Architectural representation of embedded systems / A. Platunov, A. Nickolaenkov, **A. Penskoy** // 2012 Mediterranean Conference on Embedded Computing, MECO 2012 2012. P. 80-83.

Публикации в прочих издания:

- 7) Ключев А.О. Использование HLD-методологии для проектирования сенсорных сетей / А.О. Ключев, П.В. Кустарев, **А.В. Пенской**, А.Е. Платунов // Сборник трудов II Международной научнопрактической конференции «Sensorica-2014». СПб: Университет ИТМО. 2014. С. 35-36.
- 8) **Пенской А.В.** Поведенческое описание аппаратных блоков обработки данных в не фон Неймановских процессорах / Пенской А.В. // Сборник трудов молодых ученых и сотрудников кафедры ВТ. Вып. 3. 2012. С. 30-33.

Учебно-методические публикации:

- 9) Быковский С.В. Сопряжённое проектирование встраиваемых систем (Hardware/Software Co-Design). Часть 1. / Быковский С.В., Горбачев Я.Г., Ключев А.О., **Пенской А.В.**, Платунов А. Е. // Учебное пособие СПб: Университет ИТМО. 2016. 108 с.
- 10) Быковский С.В. Сопряжённое проектирование встраиваемых систем (Hardware/Software Co-Design). Часть 2. / Быковский С.В., Горбачев Я.Г., Ключев А.О., **Пенской А.В.**, Платунов А.Е. // Учебное пособие СПб: Университет ИТМО. 2016. 105 с.

Объекты интеллектуальной собственности:

- 11) Библиотека для анализа слабо формализованных текстовых данных / Ключев А.О., **Пенской А.В.**, Пинкевич В.Ю. Свидетельство о государственной регистрации программы для ЭВМ № 2015615882 от 26.05.2015.
- 12) Библиотека для разработки программных интерфейсов управления мобильным оборудованием / Ключев А.О., **Пенской А.В.**, Пинкевич В.Ю. Свидетельство о государственной регистрации программы для ЭВМ № 2015614306 от 14.04.2015.
- 13) Редактор архитектурных спецификаций информационноуправляющих систем. Ключев А.О., Кустарев П.В., Николаенков А.В., **Пенской А.В.** – Свидетельство о государственной регистрации программы для ЭВМ № 2012618605 от 21.09.2012.
- 14) Редактор спецификаций технических и программных средств информационно-управляющих систем / Николаенков А.В., Пенской А.В., Платунов А.Е. Свидетельство о государственной регистрации программы для ЭВМ № 2012618606 от 21.09.2012.