Devoir à la maison n° 6

À rendre le 15 novembre

Ensembles transitifs.

Première partie : un cas particulier, les ensembles d'ensembles.

Soit E un ensemble éventuellement vide, dont les éléments sont des ensembles. On dit que E est transitif si :

$$\forall x, x \in E \Rightarrow x \subset E$$
.

On remarquera que cette dernière phrase peut aussi s'écrire : $\forall x \in E, x \subset E$.

- 1) Déterminer si chacun des ensembles suivants est transitif.
 - a) $E_1 = \emptyset$
- b) $E_2 = \{\emptyset\}$ c) $E_3 = \{\emptyset, \{\emptyset\}\}$ d) $E_4 = \{\{\emptyset\}\}$
- 2) Déterminer tous les ensembles d'ensembles E tels que $\{E\}$ est transitif.
- 3) Soit X un ensemble quelconque. On note $\mathscr{P}_0(X) = X$, et $\mathscr{P}_1(X) = \mathscr{P}(X)$ l'ensemble des parties de X. On définit alors par récurrence : pour tout $n \in \mathbb{N}^*$, $\mathscr{P}_{n+1}(X) = \mathscr{P}(\mathscr{P}_n(X)).$
 - a) Soit $X = \{1, 2\}$. Déterminer $\mathcal{P}_2(X)$.
 - **b)** Déterminer $\mathscr{P}_1(\varnothing)$, $\mathscr{P}_2(\varnothing)$ et $\mathscr{P}_3(\varnothing)$.
 - c) Montrer que si X est un ensemble transitif d'ensembles, alors $\mathscr{P}(X)$ l'est
 - d) Montrer que si X est un ensemble transitif d'ensembles, alors pour tout $n \in \mathbb{N}$, $\mathscr{P}_n(X)$ l'est aussi.
- 4) Montrer que si un ensemble d'ensembles E est transitif, alors $E \cup \{E\}$ l'est également.
- 5) Soit $(E_i)_{i\in I}$ une famille (finie ou infinie) d'ensembles transitifs d'ensembles. Montrer que les ensembles $\bigcup_{i \in I} E_i$ et $\bigcap_{i \in I} E_i$ sont transitifs.

Remarque culturelle : en théorie des ensembles, dans la constuction de \mathbb{N} par Von Neumann, l'entier 0 est défini comme étant l'ensemble vide, et si n est un entier, on définit son successeur $n+1=n\cup\{n\}$. Ainsi $0=\varnothing,\ 1=\{\varnothing\},\ 2=\{\varnothing,\{\varnothing\}\},\ 3=\{\varnothing,\{\varnothing\},\{\varnothing\},\{\varnothing\},\{\varnothing\}\}\}$, etc. Les entiers sont donc des ensembles transitifs.

Seconde partie : le cas général.

Soit X un ensemble quelconque. On note $\bigvee X$ la réunion des éléments de X qui sont des ensembles. Ainsi, on a

$$\bigvee X = \{ y \mid \exists x \in X, \ y \in x \}.$$

On dit alors que X est transitif si $\bigvee X \subset X$.

- 6) a) Déterminer $\bigvee \emptyset$.
 - **b)** Soit $X = \{\{\emptyset\}\}$. Déterminer $\bigvee X$ et $\bigvee \bigvee X$.
 - c) Soit $X = \{\{1\}, \{2,3\}, \{1,2,\{4\}\}\}\}$. Donner $\forall X, \forall X \text{ et } \forall X \text{ ot } X \text{ ot$
- 7) Vérifier que si E est un ensemble d'ensembles, alors E est transitif au sens de la première partie si et seulement si E est transitif au sens de la seconde partie.
- 8) Soit X un ensemble. On pose $X_0 = X$ et on définit par récurrence : pour tout $n \in \mathbb{N}, X_{n+1} = \bigvee X_n$. On pose alors

$$TC(X) = \bigcup_{n \in \mathbb{N}} X_n,$$

appelée clôture transitive de X.

- a) Déterminer $TC(\emptyset)$.
- **b)** Déterminer $TC(\{\{\emptyset\}\})$.
- c) Déterminer $TC(\{\{1\}, \{2,3\}, \{1,2,\{4\}\}\}).$
- d) Montrer que TC(X) est un ensemble transitif.
- e) Question facultative: Montrer que c'est le plus petit (au sens de l'inclusion) ensemble transitif contenant X.

— FIN —