Math Cheat Sheet

Funktionen

Eine Funktion ist eine Vorschrift, die jedem Element x aus eine Menge D genau ein Element u aus einer Menge W zuordnet.

$$f \colon D \to W, \ x \mapsto y.$$

Darstellungen:

- 1. Analytisch (y = f(x) (explizit), F(x; y) = 0 (implizit)),
- 2. Wertetabelle, 3. Graphisch, 4. Parametrisch (x = x(t), y = y(t),Wertetabelle beginnt mit t)

Funktionseigenschaften

Symmetrie

gerade:
$$f(-x) = f(x)$$
 ungerade: $f(-x) = -f(x)$

Monotonie

$$\begin{array}{ll} \text{Monoton wachsend} & f(x_1) \leq f(x_2) \; (x_1 < x_2) \\ \text{Streng monoton wachsend} & f(x_1) < f(x_2) \; (x_1 < x_2) \\ \text{Monoton fallend} & f(x_1) \geq f(x_2) \; (x_1 < x_2) \\ \text{Streng monoton fallend} & f(x_1) > f(x_2) \; (x_1 < x_2) \\ \end{array}$$

Umkehrbarkeit

Umkehrbar: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ (streng monton) Bestimmen der Umkehrfunktion (Spiegelung an y = x): 1. y = f(x) nach x auflösen. Ergebnis: $x = f^{-1}(y)$. 2. Vertauschen von x und y im Ergebnis: $y = f^{-1}(x)$. Definitions- und Wertebereich sind vertauscht.

$$x \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} f(x)$$

Periodizität

Periodisch mit Periode: $p: f(x \pm p) = f(x)$

Stetigkeit

Eine Funktion f(x) heisst an der Stelle x_0 stetig, wenn der Grenzwert vorhanden ist und mit dem Funktionswert übereinstimmt:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Eine Funktion ist an der Stelle x_0 unstetig, wenn:

- 1. f(x) an der Stelle x_0 nicht definiert ist (Definitionslücke).
- 2. An der Stelle x_0 kein Grenzwert vorhanden ist.
- 3. Funktions- und Grenzwert zwar vorhanden, aber verschieden sind.

Grenzwert

Die Funktion f(x) hat an der Stelle x_0 einen Grenzwert q, wenn gilt

$$\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = \lim_{x \to x_0} f(x) = g$$

konvergent = hat Grenzwert, divergent hat keinen Grenzwert.

Lösungsschema zur Bestimmung des Grenzwerts $q = \lim_{x \to x_0} f(x)$: 1. Grundsätzlich x_0 in f(x) einsetzen. Wenn $f(x_0)$ definiert ist:

- $g = \lim_{x \to x_0} f(x) = f(x_0).$
- 2. Falls $f(x_0)$ nicht definiert ist, f(x) vereinfachen.
- 3. Falls das nicht geht, den links und rechtsseitigen Grenzwert durch annähern von links und rechts ermitteln.

Polstelle: Der Grenzwert ist $+\infty$ oder $-\infty$.

Rechenregeln

$$\begin{split} &\lim_{x\to x_0} \left(k\cdot f(x)\right) = k(\lim_{x\to x_0} f(x))\\ &\lim_{x\to x_0} \left(f(x)\pm g(x)\right) = (\lim_{x\to x_0} f(x)) \pm (\lim_{x\to x_0} g(x))\\ &\lim_{x\to x_0} \left(f(x)\cdot g(x)\right) = (\lim_{x\to x_0} f(x))\cdot (\lim_{x\to x_0} g(x))\\ &\lim_{x\to x_0} \left(\frac{f(x)}{g(x)}\right) = \frac{\lim_{x\to x_0} f(x)}{\lim_{x\to x_0} g(x)} \end{split}$$

Polynomfunktionen

Allgemein: $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x^1 + a_0$ Der Grad des Polynoms ist n. Es gibt n Nullstellen.

Nullstellen-Formeln

Linear
$$ax + b = 0$$
 $x = -\frac{b}{a}$ Quadratisch $ax^2 + bx + c = 0$ $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Kubisch $ax^3 + bx^2 + cx = 0$ $x_1 = 0$ Biquadratisch $ax^4 + bx^2 + c = 0$ $x_1 = 0$ $x_2 = 0$ $x_3 = 0$ $x_4 = 0$ x_4

Geraden (erster Grad)

Es sei m die Steigung, a der x- und b der y-Achsenabschnitt.

y-Achse, Steigung u = mx + bAchsenabschnittsform $\frac{x}{a} + \frac{y}{b} = 1$ Potenzen-, Wurzel- und Logarithmus Punkt-Steigung $\frac{y-y_1}{y-x_1} = m$ Durch $P(x_1; y_1)$ Zwei-Punkte-Form $\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$ Durch $P_1(x_1; y_1), P_2(x_2; y_2)$ Terminologie: Basis Exponent $\mathbb{D} := (a, b, u, v \in \mathbb{R})$

Parabeln (zweiter Grad)

Es sei S der Scheitelpunkt.

 $y = ax^2 + bx + c$ $S = (-\frac{b}{2a}; \frac{4ac - b^2}{4a})$ $y = a(x - x_1)(x - x_2)$ x_1, x_2 sind Nullstellen Hauptform Produktform Scheitelpunktsform $y - y_0 = a(x - x_0)^2$ $S = (x_0; y_0)$

Höhere Grade

Besitzt eine Polynomfunktion f(x) vom Grad n an der Stelle x_n eine Nullstelle, so lässt sie sich schreiben als: $f(x) = (x - x_n) \cdot f_1(x)$. $(x-x_n)$ heisst Linearfaktor, $f_1(x)$ heisst reduziertes Polynom vom Grad n-1.

Besitzt eine Polynom vom Grad n genau n Nullstellen, so lässt es sich schreiben als:

$$f(x) = a_n(x - x_1)(x - x_2) \dots (x - x_n)$$

- 1. Das reduzierte Polynom erhält man durch das Horner-Schema.
- 2. Polynome solange reduzieren (raten weiterer Nullstellen) bis man auf eine Polynomfunktion zweiten Grades stösst, deren Nullstellen sich durch lösen der quadratischen Gleichung ergeben.

Horner-Schema

Gegeben: $y = 3x^3 + 18x^2 + 9x - 30 = 3(x^3 + 6x^2 + 3x - 10)$ Durch raten findet man eine Nullstelle bei x = 1 (1+6+3-10=0)

	$a_3 = 1$	$a_2 = 6$	$a_1 = 3$	$a_0 = -10$
$x_0 = 1$		$a_3 \cdot x_0 = 1$	$7 \cdot x_0 = 7$	$10 \cdot x_0 = 15$
	$a_3 = 1$	6+1=7	3 + 7 = 10	-10 + 10 = 0

Umgeformt: $y = 3(x-1)(x^2+7x+10) \Rightarrow y = 3(x-1)(x+2)(x+5)$. Spezialfälle: Logarithmusfunktion $f(x) = \ln x$ $f'(x) = \frac{1}{x}$

Gebrochenrationale Funktionen

Funktionen, die sich als Quotient zweier Polynomfunktionen q(x)und h(x) darstellen lassen heissen gebrochenrationale Funktionen: $f(x) = \frac{g(x)}{h(x)}$ Diese Funktionen sind echt gebrochen, wenn der Grad von q(x) kleiner ist als der Grad von h(x). Sie werden mit Hilfe der Polynom-Division gelöst.

Nullstellen: $x_0: g(x_0) = 0$ und $h(x_0) \neq 0$. Definitionslücke: Alle Stellen wo $h(x_0) = 0$.

Bestimmen der Null- und Polstellen:

- 1. Zähler- und Nennerpolynom in Linearfaktoren zerlegen.
- 2. die Zähler Linearfaktoren sind die Nullstellen,
- 3. die Nenner Linearfaktoren sind die Polstellen.

Kreis und Ellipse

Kreisgleichung (Mittelpunkt $M = (x_0; y_0)$, Radius r): $(x-x_0)^2 + (y-y_0)^2 = r^2$ oder $y = y_0 \pm \sqrt{r^2 - (x-x_0)^2}$ Ellipsengleichung (Mittelunkt $M = (x_0; y_0)$, x-Halbachse a, $\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$ oder $y = y_0 \pm \frac{b}{a} \sqrt{a^2 - (x-x_0)^2}$

Potenzen-, Wurzel- und Logarithmusfunktionen

$\begin{array}{lll} & \operatorname{Potentenzen} & \operatorname{Wurzeln} & \operatorname{Logarithmen} \\ \hline a^0 = 1 \; (a \neq 0) & \sqrt[u]{0} = 0 & \log_0 a; \log_a 0 \; \text{sind undefiniert.} \\ a^{-u} = \frac{1}{a^u} & \sqrt[u]{a} = \frac{1}{a^u} & \log_a a = 1 \\ a^u \cdot a^v = a^{u+v} & \sqrt[u]{a} \cdot \sqrt[v]{a} = \sqrt[uv]{a^{u+v}} & \log_a (u \cdot v) = \log_a u + \log_a v \\ \frac{a^u}{a^v} = a^{u-v} & \frac{\sqrt[u]{a}}{\sqrt[v]{a}} = \sqrt[uv]{a^{u-v}} & \log_a \frac{u}{v} = \log_a u - \log_a v \\ (a^u)^v = a^{uv} & \sqrt[u]{\sqrt[v]{a}} = \sqrt[uv]{a} & \log_a u^v = v \cdot \log_a u \\ a^u \cdot b^u = (a \cdot b)^u \sqrt[u]{a} \cdot \sqrt[u]{b} = \sqrt[u]{a} \cdot b & \log_a u \cdot \log_b u = \frac{(\log_a u)^2}{\log_a b} \\ \frac{a^u}{b^u} = (\frac{a}{b})^u & \frac{\sqrt[u]{a}}{\sqrt[u]{b}} = \sqrt[u]{\frac{a}{b}} & \frac{\log_a u}{\log_b u} = \log_a b \end{array}$	Terminologie, D	asis $\mathbf{L} = (a$	$, v, u, v \in \mathbb{R}$
$a^{-u} = \frac{1}{a^u} \qquad v \sqrt{a} = \frac{1}{a^u} \qquad \log_a a = 1$ $a^u \cdot a^v = a^{u+v} \qquad v \sqrt{a} \cdot \sqrt[v]{a} = \sqrt[uv]{a^{u+v}} \qquad \log_a (u \cdot v) = \log_a u + \log_a v$ $\frac{a^u}{a^v} = a^{u-v} \qquad \frac{\sqrt[u]{a}}{\sqrt[v]{a}} = \sqrt[uv]{a^{u-v}} \qquad \log_a \frac{u}{v} = \log_a u - \log_a v$ $(a^u)^v = a^{uv} \qquad v \sqrt[uv]{a} = \sqrt[uv]{a} \qquad \log_a u^v = v \cdot \log_a u$ $a^u \cdot b^u = (a \cdot b)^u \sqrt[u]{a} \cdot \sqrt[u]{b} = \sqrt[u]{a \cdot b} \qquad \log_a u \cdot \log_b u = \frac{(\log_a u)^2}{\log_b b}$	Potentenzen	Wurzeln	Logarithmen
$a^{u} \cdot a^{v} = a^{u+v} \sqrt[v]{a} \cdot \sqrt[v]{a} = \sqrt[uv]{a^{u+v}} \log_{a}\left(u \cdot v\right) = \log_{a}u + \log_{a}v$ $\frac{a^{u}}{a^{v}} = a^{u-v} \frac{\sqrt[u]{a}}{\sqrt[v]{a}} = \sqrt[uv]{a^{u-v}} \log_{a}\frac{u}{v} = \log_{a}u - \log_{a}v$ $(a^{u})^{v} = a^{uv} \sqrt[u]{\sqrt[v]{a}} = \sqrt[uv]{a} \log_{a}u^{v} = v \cdot \log_{a}u$ $a^{u} \cdot b^{u} = (a \cdot b)^{u} \sqrt[u]{a} \cdot \sqrt[u]{b} = \sqrt[u]{a \cdot b} \log_{a}u \cdot \log_{b}u = \frac{(\log_{a}u)^{2}}{\log_{b}b}$	$\overline{a^0 = 1 \ (a \neq 0)}$		$\log_0 a; \log_a 0$ sind undefiniert.
$\frac{a^{u}}{a^{v}} = a^{u-v} \qquad \frac{\sqrt[4]{a}}{\sqrt[4]{a}} = \sqrt[4]{a^{u-v}} \qquad \log_{a} \frac{u}{v} = \log_{a} u - \log_{a} v$ $(a^{u})^{v} = a^{uv} \qquad \sqrt[4]{\sqrt[4]{a}} = \sqrt[4]{a} \qquad \log_{a} u^{v} = v \cdot \log_{a} u$ $a^{u} \cdot b^{u} = (a \cdot b)^{u} \sqrt[4]{a} \cdot \sqrt[4]{b} = \sqrt[4]{a \cdot b} \qquad \log_{a} u \cdot \log_{b} u = \frac{(\log_{a} u)^{2}}{\log_{b} b}$	$a^{-u} = \frac{1}{a^u}$		$\log_a a = 1$
$(a^{u})^{v} = a^{uv} \sqrt[v]{\sqrt[v]{a}} = \sqrt[u \cdot \sqrt[v]{a} $ $\log_{a} u^{v} = v \cdot \log_{a} u$ $a^{u} \cdot b^{u} = (a \cdot b)^{u} \sqrt[v]{a} \cdot \sqrt[u]{b} = \sqrt[u]{a \cdot b} $ $\log_{a} u \cdot \log_{b} u = \frac{(\log_{a} u)^{2}}{\log_{b} b}$			$\log_a (u \cdot v) = \log_a u + \log_a v$
$a^{u} \cdot b^{u} = (a \cdot b)^{u} \sqrt[u]{a} \cdot \sqrt[u]{b} = \sqrt[u]{a \cdot b} \qquad \log_{a} u \cdot \log_{b} u = \frac{(\log_{a} u)^{2}}{\log_{b} b}$	$\frac{a^u}{a^v} = a^{u-v}$	$\frac{\sqrt[u]{a}}{\sqrt[v]{a}} = \sqrt[uv]{a^{u-v}}$	$\log_a \frac{u}{v} = \log_a u - \log_a v$
$a^{u} \cdot b^{u} = (a \cdot b)^{u} \sqrt[u]{a} \cdot \sqrt[u]{b} = \sqrt[u]{a \cdot b} \qquad \log_{a} u \cdot \log_{b} u = \frac{(\log_{a} u)^{2}}{\log_{a} b}$ $\frac{a^{u}}{b^{u}} = (\frac{a}{b})^{u} \qquad \frac{\sqrt[u]{a}}{\sqrt[u]{b}} = \sqrt[u]{\frac{a}{b}} \qquad \frac{\log_{a} u}{\log_{b} u} = \log_{a} b$	$(a^u)^v = a^{uv}$	$\sqrt[u]{\sqrt[v]{a}} = \sqrt[u \cdot v]{a}$	$\log_a u^v = v \cdot log_a u$
$\frac{a^u}{b^u} = (\frac{a}{b})^u \qquad \frac{\sqrt[u]{a}}{\sqrt[u]{b}} = \sqrt[u]{\frac{a}{b}} \qquad \frac{\log_a u}{\log_b u} = \log_a b$	(/	v · ·	$\log_a u \cdot \log_b u = \frac{(\log_a u)^2}{\log_a b}$
	$\frac{a^u}{b^u} = (\frac{a}{b})^u$	$\frac{\sqrt[u]{a}}{\sqrt[u]{b}} = \sqrt[u]{\frac{a}{b}}$	$\frac{\log_a u}{\log_b u} = \log_a b$

Es gibt keine Logarithmen von negativen Zahlen. Generell löst der Logarithmus folgendes Problem: $a^x = b \rightarrow x = \log_b a$

Basiswechsel: $\log_b x = \frac{\log_a x}{\log_a b}$, es gilt auch: $a^b = e^{b \cdot \ln a}$ (a > 0)

Übersicht Eigenschaften

Angaben für D und W gelten allgemein. Im Einzelfall genauer prüfen.

f(x)	x^n	a^x
\overline{D}	\mathbb{R}	\mathbb{R}
W	\mathbb{R}	$(0,\infty)$
Monotonie		$a < 1 \setminus, a > 1, \nearrow$
f'(x)	nx^{n-1}	$(\ln a) \cdot a^x$
$f^{-1}(x)$	$\sqrt[n]{x}$	$\log_a x$
$f^{-1}(x)$ $f^{-1'}(x)$	$\frac{1}{n} \sqrt[n]{x^{1-n}}$	$\frac{1}{(\ln a) \cdot x}$
Spozialfällo	Exponentialfunktion	$f(x) = e^x$ $f'(x) = e^x$

Trigonometrie

Winkel in griechischen Buchstaben (α, β, \ldots) werden in \circ Grad, Winkel mit lateinischen Buchstaben (x, y, ...) in Radian ausgedrückt. Für Radian (= Bogenmass) gilt: der Winkel x ist die Länge des Bogens b im Verhältnis zum Radius r. Die Beziehung zwischen Grad und Radian ist:

$$\frac{\alpha}{360^{\circ}} = \frac{x}{2\pi}$$

In einem rechtwinkligem Dreieck mit der Hypotenuse c, der Gegenkathete a und der Ankathete b gilt:

 $\sin\alpha = \frac{\omega}{c} \qquad \cos\alpha = \frac{b}{c} \qquad \tan\alpha = \frac{a}{b} = \frac{\sin\alpha}{\cos\alpha}$ Die weiteren trigonometrischen Funktionen ($\csc\alpha = \frac{1}{\sin\alpha}$,

 $\sec \alpha = \frac{1}{\cos \alpha}$ und $\cot \alpha = \frac{1}{\tan \alpha}$) werden hier nicht weiter betrachtet.

Einheitskreis

Der Winkel α ist im Beispiel 30°:

 $\sin \alpha = 1/2$.

Gemäss Pythagoras:

 $\cos^2\alpha + \sin^2\alpha = 1$

Also:

$$\cos\alpha = \sqrt{1-\frac{1}{4}} = \tfrac{1}{2}\sqrt{3} Logarithmisch$$

Und:

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{1}{\sqrt{3}}.$$

Rechenregeln

$$\sin x = \cos x + \frac{\pi}{2}$$

$$\cos x = \sin x - \frac{\pi}{2}$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}$$

Übersicht Eigenschaften

f(x)	$\sin x$	$\cos x$	$\tan x$
\mathbb{D}	\mathbb{R}	\mathbb{R}	$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi\}$
\mathbb{W}	[-1, +1]	[-1, +1]	$\mathbb{R}\backslash\{\frac{\pi}{2}+k\pi\}\ (-\infty,+\infty)$
Peri	2π	2π	π
Symm.	ungerade	gerade	ungerade
Null	$x_k = k \cdot \pi$	$x_k = \frac{\pi}{2} + k \cdot \pi$	$x_k = k \cdot \pi$
f'(x)	$\cos x$	$-\sin x$	$\frac{1}{\cos^2 x}$
$f^{-1}(x)$	$\arcsin x$	$\arccos x$	$\arctan x$
$f^{-1}(x)$ $f^{-1'}(x)$	$\frac{1}{\sqrt{1-x^2}}$	$-\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$

Differentialrechnung

Berechnet die Steigung der Kurventangente an der Stelle x_0 . Voraussetzungen:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

und linksseitiger Grenzwert = rechtsseitiger Grenzwert. Dann:

$$m = \tan \alpha = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

 $\alpha = \arctan m = \arctan \frac{\Delta y}{\Delta x}$

Eine Funktion ist differenzierbar wenn: Stetigkeit ⇒ diff.-bar, $diff.-bar \Rightarrow Stetigkeit$, unstetig \Rightarrow undiff.-bar

Ableitungsregeln

Ableitungen zusammengesetzter Funktionen, z.B. $y = \sin(2x)$ oder $y = x^2 \cdot e^{-x^2}$ auf elementare Ableitungen zurückführen. Seien f(x), g(x) und h(x) (im Definitionsbereich) differenzierbare, reelle Funktionen, und a, b reelle Zahlen, dann gelten:

Konstante Funktion (a)' = 0Faktorregel $(a \cdot f(x))' = a \cdot f'(x)$ Summenregel $(f(x) \pm g(x))' = f'(x) \pm g'(x)$ $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ Produktregel $(\frac{f(x)}{g(x)})' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$ $(x^n)' = nx^{n-1}$ Quotientenregel Potenzregel $(f(g(x)))' = (f \circ g)'(x) = f'(g(x)) \cdot g'(x)$ Kettenregel

 $f'(x) = (g(x)^{h(x)}) = f(x) \cdot (h'(x) \cdot \ln(g(x)) +$

Die Kettenregel ist im wesentlichen äussere Ableitung mal innere Ableitung. Beispiel:

$$f: x \to f(x) = (x^2 + 4)^3$$

$$u: x \to u(x) = x^2 + 4 \to u'(x) = 2x$$

$$v: u \to v(u) = u^3 \to v'(u) = 3u^2$$

$$f(x) = (v \circ u)(x) = v(u(x)) \to f'(x) = 3(x^2 + 4)^2 \cdot 2x$$

Ableitung Umkehrfunktion

- 1. Umkehrfunktion bestimmen: $y = f(x) \Rightarrow x = g(y)$
- 2. $g'(y) = \frac{1}{f'(x)}$
- 3. Mit Hilfe von y = f(x) g'(y) als Funktion von y schreiben
- 4. x und y in g'(y) vertauschhen

Ableitung in Parameterform

$$(x = x(t), y = y(t))' \Rightarrow y' = \frac{y'(t)}{x'(t)} = \frac{\dot{y}}{\dot{x}}$$

Differential

 $dy = df = f'(x_0) \cdot dx$: Zuwachs der Ordinate an der Stelle x_0 bei Änderung von x um dx.

Tangente und Normale

$$y_T = f'(x_0)(x - x_0) + y_0$$
 Tangente $y_N = \frac{1}{f'(x)} \cdot (x - x_0) + y_0$ Normale

Linearisierung

In der Umgebung von $P(x_0, y_0)$ gilt $\Delta y = f'(x_0) \Delta x$.

Monotonie

 $y' = f'(x) > 0 \Rightarrow$ streng monoton wachsend $y' = f'(x) < 0 \Rightarrow$ streng monoton fallend

Krümmung

Linkskrümmung: $y'' = f''(x_0) > 0$ Rechtskrümmung: $y'' = f''(x_0) < 0$

Kurvendiskussion

Definitionsbereich und Definitionslücken

Definitionslücken liegen vor bei nicht-definierten Werten: Division durch 0, negative Wurzeln, Logarithmus von 0,

Symmetrie

$$f(x)=f(-x)\Rightarrow$$
 gerade, gespiegelt y-Achse
$$f(-x)=-f(x)\Rightarrow$$
 ungerade, gespiegelt 0-Punkt

Nullstellen

$$f(x) = 0$$

Pole

 x_0 sei eine Definitionslücke, dann Pol, wenn $\lim_{x_0\to 0} f(x_0) = \pm \infty$

Ableitungen

f'(x), f''(x), f'''(x) berechnen

Extremwerte

Extremwerte: f'(x) = 0, $f''(x) < 0 \Rightarrow \max$, $f''(x) > 0 \Rightarrow \min$. $f^{(n)}(x_0) \neq 0 \Rightarrow (n = \text{gerade} \Rightarrow \text{Extremwert}) \land (n = \text{ungerade} \Rightarrow \text{Extremwert})$ Sattelpunkt)

Wende- und Sattelpunkte

Wendepunkt: $f''(x) = 0, f'''(x) \neq 0$ Sattelpunkt: $f'(x) = 0, f''(x) = 0, f'''(x) \neq 0$

Asymptoten

 $\lim_{x\to\infty} f(x), \lim_{x\to-\infty} f(x)$

Wertebereich

Entweder aus der Zeichnung oder aus Definitionlücken der Umkehrfunktion.

Copyright © 2012 Constantin Lazari Revision: 1.0, Datum: 17. November 2012