CSCI566 Deep Learning and Its Applications (Fall 2024)

Linear Regression, LR with nonlinear basis, Overfitting

Prof. Yan Liu

University of Southern California

Outline

- Machine Learning Settings
- 2 Linear regression
- Continue of the second statement of the second stat
- Overfitting and Preventing Overfitting

Outline

- Machine Learning Settings
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- 4 Overfitting and Preventing Overfitting

Datasets

Training data

- ullet N samples/instances: $\mathcal{D}^{ ext{TRAIN}} = \{(m{x}_1, y_1), (m{x}_2, y_2), \cdots, (m{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- They are used for learning $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{ ext{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

These three sets should *not* overlap!

S-fold Cross-validation

What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part in turn as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best average performance.

S = 5: 5-fold cross validation

Special case: S = N, called leave-one-out.

Expected risk

For a loss function L(y', y),

- e.g. $L(y',y) = \mathbb{I}[y' \neq y]$, called *0-1 loss*.
- many more other losses as we will see.

the expected risk of f is defined as

$$R(f) = \mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{P}}L(f(\boldsymbol{x}),y)$$

- expectation of test error is the expected risk
- training error can sometimes be a good proxy of expected risk

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

Outline

- Machine Learning Settings
- 2 Linear regression
 - Motivation
 - Setup and Algorithm
 - Discussions
- 3 Linear regression with nonlinear basis
- 4 Overfitting and Preventing Overfitting

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house

•

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- •

Key difference from classification

- continuous vs discrete
- measure prediction errors differently.
- lead to quite different learning algorithms.

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- •

Key difference from classification

- continuous vs discrete
- measure prediction errors differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)

Features used to predict

∋ Property Details for 3620 South BUDLONG, Los Angeles, CA 90007

Details provided by i-Tech MLS and may not match the public record. Learn More.

Interior Features		
Kitchen Information Remodeled Oven, Range	Laundry Information Inside Laundry	Heating & Cooling Wail Cooling Unit(s)
Multi-Unit Information		
Community Features Units in Complex (Total): 5 Multi-Family Information # Leased: 5 # of Buildings: 1 Owner Pays Water Tenant Pays Electricity, Tenant Pays Gas Unit 1 Information # of Beds: 2 # of Baths: 1 Unfurnished Monthly Rent: \$1,700	Unit 2 Information # of Beds: 3 # of Baths: 1 Unfurnished Monthly Rent: \$2,250 Unit 3 Information Unfurnished Unit 4 Information # of Beds: 3 # of Baths: 1 Unfurnished	Monthly Rent: \$2,350 Unit 5 Information # of Beds: 3 Unit of Baths: 2 Unit of Beds: 3 Monthly Rent: \$2,325 Unit 6 Information # of Beds: 3 # of Baths: 1 Monthly Rent: \$2,250
Property / Lot Details		
Property Features Automatic Gate, Card/Code Access Lot Information Lot Size (Sq. Ft.): 9,649 Lot Size (Acres): 0.2215 Lot Size Source: Public Records	Automatic Gate, Lawn, Sidewalks Corner Lot, Near Public Transit Property Information Updated/Remodeled Square Footage Source: Public Records	Tax Parcel Number: 5040017019
Parking / Garage, Exterior Features, Utilities & F	inancing	
Parking Information # of Parking Spaces (Total): 12 Parking Space Gated Building Information Total Floors: 2 Location Details, Misc. Information & Listing Info	Utility Information Green Certification Rating: 0.00 Green Location: Transportation, Walkability Green Walk Score: 0 Green Year Certified: 0	Financial Information Capitalization Rate (%): 6.25 Actual Annual Gross Rent: \$128,331 Gross Rent Multiplier: 11.29
Location Information	Expense Information	Listing Information
Cross Streets: W 36th PI	Operating: \$37,664	Listing Terms: Cash, Cash To Existing Lo.

. Buyer Financing: Cash

Correlation between square footage and sale price

Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense

Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense (slope) (intercept)

How to measure error for one prediction?

• The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or squared error: (prediction sale price) 2 (most common)

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error,

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price) 2 (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

• test set, ideal but we cannot use test set while training

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

- test set, ideal but we cannot use test set while training
- training set?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

- test set, ideal but we cannot use test set while training
- training set? (for now)

Example

Predicted price = $price_per_sqft \times square_footage + fixed_expense$ one model: $price_per_sqft = 0.3K$, $fixed_expense = 210K$

sqft	sale price (K)	prediction (K)	squared error
2000	810	810	0
2100	907	840	67^2
1100	312	540	228^{2}
5500	2,600	1,860	740^2
• • •	• • •	• • •	• • •
Total			$0 + 67^2 + 228^2 + 740^2 + \cdots$

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_0 + \sum_{d=1}^D w_d x_d$

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(\mathbf{x}) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$ (superscript T stands for transpose),

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(\mathbf{x}) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $w = [w_1 \ w_2 \ \cdots \ w_D]^T$ (weights, weight vector, parameter vector, etc)
- bias w_0

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(\mathbf{x}) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\mathbf{w} = [w_1 \ w_2 \ \cdots \ w_D]^T$ (weights, weight vector, parameter vector, etc)
- ullet bias w_0

NOTE: for notation convenience, very often we

• append 1 to each x as the first feature: $\tilde{\boldsymbol{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathsf{T}}$

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(\mathbf{x}) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\mathbf{w} = [w_1 \ w_2 \ \cdots \ w_D]^T$ (weights, weight vector, parameter vector, etc)
- ullet bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathsf{T}}$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathsf{T}}$, a concise representation of all D+1 parameters

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(\mathbf{x}) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\mathbf{w} = [w_1 \ w_2 \ \cdots \ w_D]^T$ (weights, weight vector, parameter vector, etc)
- ullet bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathsf{T}}$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathsf{T}}$, a concise representation of all D+1 parameters
- the model becomes simply $f(x) = \tilde{w}^T \tilde{x}$

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\mathbf{w} = [w_1 \ w_2 \ \cdots \ w_D]^T$ (weights, weight vector, parameter vector, etc)
- ullet bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}} = [1 \ x_1 \ x_2 \ \dots \ x_D]^T$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathsf{T}}$, a concise representation of all D+1 parameters
- ullet the model becomes simply $f(oldsymbol{x}) = ilde{oldsymbol{w}}^{\mathbf{T}} ilde{oldsymbol{x}}$
- sometimes just use w, x, D for $\tilde{w}, \tilde{x}, D+1!$

Goal

Minimize total squared error

$$\sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

Goal

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{oldsymbol{w}}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^T \tilde{\boldsymbol{w}} - y_n)^2$$

Goal

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{oldsymbol{w}}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^T \tilde{\boldsymbol{w}} - y_n)^2$$

 $m{ ilde{w}}^* = rgmin_{m{W} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}(m{ ilde{w}})$, i.e. least (mean) squares solution (more generally called empirical risk minimizer)

Goal

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{oldsymbol{w}}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^T \tilde{\boldsymbol{w}} - y_n)^2$$

- ullet find $ar{m{w}}^* = rgmin_{m{w} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}(ar{m{w}})$, i.e. least (mean) squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization

Goal

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{oldsymbol{w}}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^T \tilde{\boldsymbol{w}} - y_n)^2$$

- find $\tilde{w}^* = \operatorname*{argmin} \mathrm{RSS}(\tilde{w})$, i.e. least (mean) squares solution $\tilde{w} \in \mathbb{R}^{\mathsf{D}+1}$ (more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a *closed-form solution*

Only one parameter w_0 : constant prediction $f(x) = w_0$

f is a horizontal line, where should it be?

$$RSS(w_0) = \sum_{n} (w_0 - y_n)^2 \qquad \text{(it's a quadratic } aw_0^2 + bw_0 + c\text{)}$$

$$RSS(w_0) = \sum_n (w_0 - y_n)^2 \qquad \text{(it's a quadratic } aw_0^2 + bw_0 + c\text{)}$$

$$= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}$$

$$ext{RSS}(w_0) = \sum_n (w_0 - y_n)^2$$
 (it's a quadratic $aw_0^2 + bw_0 + c$)
$$= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}$$

$$= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \text{cnt.}$$

Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c) \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c) \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Exercise: what if we use absolute error instead of squared error?

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{cases} \sum_n (w_0 + w_1 x_n - y_n) = 0 \\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{cases} \sum_n (w_0 + w_1 x_n - y_n) = 0 \\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad \text{(a linear system)}$$

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{cases} \sum_n (w_0 + w_1 x_n - y_n) = 0 \\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad \text{(a linear system)}$$

$$\Rightarrow \begin{pmatrix} N & \sum_{n} x_{n} \\ \sum_{n} x_{n} & \sum_{n} x_{n}^{2} \end{pmatrix} \begin{pmatrix} w_{0} \\ w_{1} \end{pmatrix} = \begin{pmatrix} \sum_{n} y_{n} \\ \sum_{n} x_{n} y_{n} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

ullet yes for **convex** objectives (RSS is convex in $ilde{w}$)

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- ullet yes for **convex** objectives (RSS is convex in $ilde{w}$)
- not true in general

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n})$$

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$abla ext{RSS}(ilde{m{w}}) = 2 \sum_n ilde{m{x}}_n (ilde{m{x}}_n^{ ext{T}} ilde{m{w}} - y_n) \propto \left(\sum_n ilde{m{x}}_n ilde{m{x}}_n^{ ext{T}}
ight) ilde{m{w}} - \sum_n ilde{m{x}}_n y_n$$

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y}$$

where

$$oldsymbol{ ilde{X}} = \left(egin{array}{c} ilde{oldsymbol{x}}_1^{\mathrm{T}} \ ilde{oldsymbol{x}}_2^{\mathrm{T}} \ dots \ ilde{oldsymbol{x}}_{\mathsf{N}}^{\mathrm{T}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N} imes (D+1)}, \quad oldsymbol{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_{\mathsf{N}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N}}$$

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y} = \boldsymbol{0}$$

where

$$oldsymbol{ ilde{X}} = \left(egin{array}{c} ilde{oldsymbol{x}}_1^{\mathrm{T}} \ ilde{oldsymbol{x}}_2^{\mathrm{T}} \ dots \ ilde{oldsymbol{x}}_{\mathsf{N}}^{\mathrm{T}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N} imes (D+1)}, \quad oldsymbol{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_{\mathsf{N}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N}}$$

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

$$(\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})\tilde{m{w}}-\tilde{m{X}}^{\mathrm{T}}m{y}=m{0}\quad\Rightarrow\quad \tilde{m{w}}^*=(\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})^{-1}\tilde{m{X}}^{\mathrm{T}}m{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

$$(\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})\tilde{m{w}} - \tilde{m{X}}^{\mathrm{T}}m{y} = m{0} \quad \Rightarrow \quad \tilde{m{w}}^* = (\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})^{-1}\tilde{m{X}}^{\mathrm{T}}m{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{m{w}}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \\ 1 & x_{\mathsf{N}} \end{pmatrix}$$

$$(\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})\tilde{m{w}} - \tilde{m{X}}^{\mathrm{T}}m{y} = m{0} \quad \Rightarrow \quad \tilde{m{w}}^* = (\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})^{-1}\tilde{m{X}}^{\mathrm{T}}m{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{m{w}}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_{n} x_n \\ \sum_{n} x_n & \sum_{n} x_n^2 \\ 1 & x_{\mathsf{N}} \end{pmatrix}$$

when
$$\mathsf{D}=0$$
: $(\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})^{-1}=\frac{1}{N}$, $\tilde{m{X}}^{\mathrm{T}}m{y}=\sum_{n}y_{n}$

RSS is a quadratic:

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{T} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = ||\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}||_{2}^{2}$$

RSS is a quadratic:

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{T} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = ||\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}||_{2}^{2}$$
$$= (\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y})^{T} (\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y})$$

RSS is a quadratic:

$$ext{RSS}(ilde{oldsymbol{w}}) = \sum_n (ilde{oldsymbol{w}}^{ ext{T}} ilde{oldsymbol{x}}_n - y_n)^2 = \| ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y}\|_2^2 \ = \left(ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y} \right)^{ ext{T}} \left(ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y} \right) \ = ilde{oldsymbol{w}}^{ ext{T}} ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y}^{ ext{T}} ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y}^{ ext{T}} ilde{oldsymbol{X}}^{ ext{T}} oldsymbol{y} + ext{cnt.}$$

RSS is a quadratic

$$\begin{aligned} & \operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{w}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \operatorname{cnt.} \end{aligned}$$

RSS is a quadratic

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \mathrm{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \mathrm{cnt.} \end{aligned}$$

Note:
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u}=\left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u}=\|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2}\geq0$$
 and is 0 if $\boldsymbol{u}=0$.

RSS is a quadratic

$$\begin{aligned} & \operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{w}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \operatorname{cnt.} \end{aligned}$$

Note: $\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \geq 0$ and is 0 if $\boldsymbol{u} = 0$. So $\tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$ is the minimizer.

Computational complexity

Bottleneck of computing

$$ilde{m{w}}^* = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)^{-1} ilde{m{X}}^{ ext{T}}m{y}$$

is to invert the matrix $ilde{m{X}}^{\mathrm{T}} ilde{m{X}} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

• naively need $O(\mathsf{D}^3)$ time

Computational complexity

Bottleneck of computing

$$ilde{m{w}}^* = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)^{-1} ilde{m{X}}^{ ext{T}}m{y}$$

is to invert the matrix $ilde{m{X}}^{\mathrm{T}} ilde{m{X}} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

- naively need $O(\mathsf{D}^3)$ time
- there are many faster approaches (such as conjugate gradient)

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why would that happen?

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft	sale price
1000	500K

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft	sale price
1000	500K

Any line passing this single point is a minimizer of RSS.

$$\mathsf{D}=1, \mathsf{N}=2$$

sqft	sale price
1000	500K
1000	600K

$$\mathsf{D}=1, \mathsf{N}=2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$\mathsf{D}=1, \mathsf{N}=2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

$$\mathsf{D}=1, \mathsf{N}=2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

Again infinitely many minimizers.

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ do?

eigendecomposition:
$$\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} = m{U}^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} \end{bmatrix} m{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are eigenvalues.

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ do?

eigendecomposition:
$$ilde{m{X}}^{\mathrm{T}} ilde{m{X}} = m{U}^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} \end{bmatrix} m{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are eigenvalues.

inverse:
$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1} = \boldsymbol{U}^{\mathrm{T}}$$

$$\begin{bmatrix} \frac{1}{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}} \end{bmatrix} \boldsymbol{U}$$

i.e. just inverse the eigenvalues

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix. Now it is invertible:

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1} + \lambda} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2} + \lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}} + \lambda} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1} + \lambda} \end{bmatrix} \boldsymbol{U}$$

Fix the problem

The solution becomes

$$ilde{m{w}}^* = \left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}} + \lambda m{I}
ight)^{-1} ilde{m{X}}^{\mathrm{T}} m{y}$$

not a minimizer of the original RSS

Fix the problem

The solution becomes

$$ilde{m{w}}^* = \left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}} + \lambda m{I}
ight)^{-1} ilde{m{X}}^{\mathrm{T}} m{y}$$

not a minimizer of the original RSS

 λ is a *hyper-parameter*, can be tuned by cross-validation.

Comparison to NNC

Parametric versus non-parametric

- Parametric methods: the size of the model does not grow with the size of the training set N.
 - \bullet e.g. linear regression, D + 1 parameters, independent of N.
- Non-parametric methods: the size of the model grows with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.

Outline

- Machine Learning Settings
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- 4 Overfitting and Preventing Overfitting

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Regression with nonlinear basis

Model: $f({m x}) = {m w}^{\mathrm{T}} {m \phi}({m x})$ where ${m w} \in \mathbb{R}^M$

Regression with nonlinear basis

Model: $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$

Objective:

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Regression with nonlinear basis

Model: $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$

Objective:

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Similar least square solution:

$$m{w}^* = \left(m{\Phi}^{
m T}m{\Phi}
ight)^{-1}m{\Phi}^{
m T}m{y}$$
 where $m{\Phi} = \left(egin{array}{c} m{\phi}(m{x}_1)^{
m T} \ m{\phi}(m{x}_2)^{
m T} \ dots \ m{\phi}(m{x}_N)^{
m T} \end{array}
ight) \in \mathbb{R}^{N imes M}$

Example

Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^{M} w_m x^m$$

Example

Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Learning a linear model in the new space

= learning an M-degree polynomial model in the original space

Example

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

Why nonlinear?

Can I use a fancy linear feature map?

$$\phi(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{ for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$\phi(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{ for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

No, it basically *does nothing* since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w'} \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w'}^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$\phi(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{ for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

No, it basically *does nothing* since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w'} \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w'}^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

We will see more nonlinear mappings soon.

Outline

- Machine Learning Settings
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and Preventing Overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is *overfitting* the data

- small training error
- large test error

Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is *overfitting* the data

- small training error
- large test error

More complicated models ⇒ larger gap between training and test error

Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is *overfitting* the data

- small training error
- large test error

More complicated models ⇒ larger gap between training and test error

How to prevent overfitting?

Method 1: use more training data

The more, the merrier

Method 1: use more training data

The more, the merrier

Method 1: use more training data

The more, the merrier

Method 1: use more training data

The more, the merrier

More data ⇒ smaller gap between training and test error

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

Magnitude of weights

Least square solution for the polynomial example:

	M = 0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Magnitude of weights

Least square solution for the polynomial example:

	M=0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Intuitively, large weights \Rightarrow more complex model

How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $\boldsymbol{w}^* = \operatorname{argmin}_{\boldsymbol{w}} \mathcal{E}(\boldsymbol{w})$

How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $\boldsymbol{w}^* = \operatorname{argmin}_{\boldsymbol{w}} \mathcal{E}(\boldsymbol{w})$

- $R: \mathbb{R}^{D} \to \mathbb{R}^{+}$ is the *regularizer*
 - ullet measure how complex the model $oldsymbol{w}$ is
 - common choices: $\| \boldsymbol{w} \|_2^2$, $\| \boldsymbol{w} \|_1$, etc.

How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $\boldsymbol{w}^* = \operatorname{argmin}_{\boldsymbol{w}} \mathcal{E}(\boldsymbol{w})$

- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model $oldsymbol{w}$ is
 - common choices: $\|oldsymbol{w}\|_2^2$, $\|oldsymbol{w}\|_1$, etc.
- $\lambda > 0$ is the regularization coefficient
 - $\lambda = 0$, no regularization
 - $\lambda \to +\infty$, $\boldsymbol{w} \to \operatorname{argmin}_{\boldsymbol{w}} R(\boldsymbol{w})$
 - i.e. control trade-off between training error and complexity

The effect of λ

when we increase regularization coefficient λ

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0}$	0.35	0.35	0.13
w_1	232.37	4.74	-0.05
w_2	-5321.83	-0.77	-0.06
w_3	48568.31	-31.97	-0.06
w_4	-231639.30	-3.89	-0.03
w_5	640042.26	55.28	-0.02
w_6	-1061800.52	41.32	-0.01
w_7	1042400.18	-45.95	-0.00
w_8	-557682.99	-91.53	0.00
w_9	125201.43	72.68	0.01

The trade-off

when we increase regularization coefficient λ

The trade-off

when we increase regularization coefficient λ

$$|\mathcal{E}(w) = RSS(w) + \lambda ||w||_2^2 = ||\Phi w - y||_2^2 + \lambda ||w||_2^2$$

$$\mathcal{E}(w) = \text{RSS}(w) + \lambda ||w||_2^2 = ||\Phi w - y||_2^2 + \lambda ||w||_2^2$$

$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Note the same form as in the fix when X^TX is not invertible!

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$

$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Note the same form as in the fix when X^TX is not invertible!

For other regularizers, as long as it's **convex**, standard optimization algorithms can be applied.

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

Choosing either λ or β can be done by cross-validation.

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

Important to understand the derivation than remembering the formula

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

- 1. Pick a set of models \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$

- 1. Pick a set of models \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)

- 1. Pick a set of models \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

- 1. Pick a set of models \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

- 1. Pick a set of models \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization

