FPGAs - EPIC Benefits

Philip Leong Director, Computer Engineering Laboratory http://phwl.org/talks

Computer Engineering Laboratory

- Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Research
 - Nanoscale interfaces
 - Machine learning
 - Reconfigurable computing
- Collaborations
 - Consunet, DST Group
 - Intel, Xilinx
- > Ex-students
 - Xilinx, Intel, Waymo

Overview

FPGAs

Applications

Our work

Overview

FPGAs

Applications

Our work

What is an FPGA?

User-customisable integrated circuit

> Dedicated blocks: memory, transceivers and MAC, PLLs, DSPs, ARM cores

Xilinx RFSoc Device

Recent Uptake in Reconfigurable Computing

Source: CTAccel

Speed of Innovation

Motivation for FPGAs (EPIC)

- > FPGAs commercial off-the-shelf
- They offer an opportunity to implement complex algorithms with higher throughput, lower latency and lower power through
 - Exploration— easily try different ideas to arrive at a good solution
 - Parallelism so we can arrive at an answer faster
 - Integration so interfaces are not a bottleneck
 - Customisation problem-specific designs to improve efficiency (power, speed, density)

Unified Environment 2019

Overview

FPGAs

Applications

Our work

CERN Large Hadron Collider

ALICE

Superconducting

ATLAS

SPS

LEP tunnel

- Compact Muon Solenoid
 - Few interesting events ~100 Higgs events/year
 - 1.5Tb/s real-time DSP problem
 - (2014) More than 500 Virtex and Spartan
 FPGAs used in real-time trigger

(2019 doing FPGA-based DNN inference using

Vivado HLS)

LHC-B

Target Commercial Applications

Source: Intel

Microsoft Project Catapult

- Uses FPGAs for DNNs, Bing search, and software defined networking (SDN) acceleration to reduce latency, while freeing CPUs for other tasks
 - 2010: MSR study FPGAs to accelerate Web search
 - 2012: Project Catapult's scale pilot of 1,632 FPGA servers deployed
 - 2013: Bing decision-tree algorithms 40x faster than CPUs
 - 2015: FPGAs deployed at scale in Bing and Azure datacenters (> 1M) enabled 50% ↑ throughput, 25% ↓ latency.

Source: Microsoft

Microsoft Azure Cloud Network

15

World's fastest cloud network

Source: Microsoft

Accelerator for SQL Queries (40% of their data analysis)

Evaluation - real case query

- TPC-DS scale = 10, query3
- Execution time

Key Zynq UltraScale+ RFSoC Benefits:

- Integrated Direct RF data converters for 4x4 TX/RX mobile backhaul architectures
- Multi-Level LDPC codec (SD-FEC) to meet 5G standards and support for custom codes
- Turbo Decode (SD-FEC) for 4G LTE-Advanced and 4G LTE Pro
- DSP48-rich fabric (6,620 GMACs) provides high-performance filtering and encoding/decoding
- 33 Gb/s transceivers for 12.2G CPRI and expansion into 16G & 25G CPRI

Smart City Example

- > Amadeus IT Group S.A adjusted profit €1.27B in 2019
- Accelerated inference of gradient boosted decision trees for search queries and quantified cost

Xilinx Vitis Unified Software Platform

https://github.com/Xilinx/Vitis_Libraries

Vitis Data Analytics Library

#Vitis 2020.1 offers 500+ #FPGA-accelerated #opensource libraries, new Vitis HLS for C/C++ kernel design, improved RTL Kernel integration, better visibility into system performance and more to enable you to leverage the

Xilinx @ @XilinxInc · Jul 1

https://xilinx.github.io/Vitis_Libraries/data_analytics/2020.1/benchmark/result.html

Overview

FPGAs

Applications

Our work

Time domain multiplexing of single photons

Initially expectation: Heralded single photon rate should enhance significantly without degrading

coincidence to accidental ratio (CAR)

Time Multiplexing of Single Photons

Exploration: Kernel Methods

ARC Linkage with Exablaze

- A family of kernel methods that can do simultaneous learning and inference
 - Highest reported throughput 80 Gbps (TRETS'17)
 - Lowest reported latency 80 ns (FPT'15)
 - Higest capacity (FPGA'18)

Parallelism: Binarized Neural Networks

Collaboration with Xilinx

Ours is the most accurate and fastest reported FPGA-based CNN inference implementation CIFAR10: 90.9% acc, 122K fps (TRETS'19)

Integration: Radio Frequency Signals

Next Generation Technology Fund

- > Processing RF signals remains a challenge
 - FPGAs allow integration of radio, machine learning and signal processing

LSTM Spectral prediction: 4.3 µs latency on Ettus X310 XC7K410T (MILCOM'18)

Ternary Modulation classifier: 488K class/s, 8us latency, Xilinx ZCU111 RFSoC (FPT'19)

Customisation: High Dynamic Range Signals

Defence Innovation Hub

- Implementation of a neuromorphic high dynamic range camera-based object detector on FPGAs
- Significantly improved accuracy in high contrast situations

On-FPGA Training

Overview

FPGAs

Applications

Our work

- Industry Trends
 - Cloud/edge unification
 - More Sensors (video and hyperspectral); more nodes (edge devices/servers) generating data; more computation (DNNs, Monte Carlo methods); more bandwidth
 - Real-time AI and data science applied at all levels
- > FPGAs has advantages for these types of problems

Figure: Microsoft

