Aufgabe 1 (ca. 20 Min.):

Betrachten Sie einen Rechner, der im Dezimalsystem arbeitet mit einer zehnstelligen Gleitpunktarithmetik (also n=10 für die Mantisse) und einem beliebig grossen Exponenten. Erklären Sie anhand einer kurzen konkreten Berechnung, weshalb für eine positve Zahl $x\neq 0$, die kleiner als die Maschinengenauigkeit eps ist, der Rechner 1+x nicht mehr korrekt berechnen kann (bekanntlich wird er 1+x=1 ausgeben), wohingegen er keine Probleme hat, z.B. \sqrt{x} oder $x/10^9$ richtig zu berechnen.

Tipp: Berechnen Sie eps, nehmen Sie für x eine konkrete Zahl < eps an, berechnen Sie die obigen Grössen und

normieren Sie sie wie in Kap. 2 des Skriptes.

Aufgabe 2 (ca. 20 Min.): Be sonderes: Harjt night van \times ab $= \sqrt[n]{x} = x$

Ist das Potenzieren $(\underline{f}(x) = x^n, n \in \mathbb{N})$ bzw. das Wurzelziehen $(\underline{f}(x) = x^{\frac{1}{n}}, n \in \mathbb{N})$ einer rellen Zahl x gut oder schlecht konditioniert? Begründen Sie! Was hat das für Auswirkungen auf die Auswertung von Polynomen für grosse n?

tur grosse n!	
<u>f'(x)·x</u>	acase? -> Schlerut Kondibionient
$k = \left(\frac{f(x)}{f(x)}\right)$	gross? -> Schecut Kondicioniert Wen? -> Caut Kondicioniert
7 77	
$f_1(x) = x$	$f(x) = x^{\frac{1}{n}}$
	$f_{1}(x) = x^{\frac{1}{n}}$ $f_{2}(x) = \frac{1}{n} x^{\frac{1}{n}-1}$
$f_{\lambda}^{r}(x) = n x^{n-1}$	$f_2(x) = \overline{u} \times$
$u_{x}^{x_{1}} \cdot x$	
Kn= ===================================	$= N \times \times = N$
For grosse Zahle	en ist es scaleant (conditionient, da k = n
$K_2 = \frac{1}{x} \times \frac{1}{x}$	$\frac{1}{1}$ = $\frac{1}{1}$
7= 1	
//	
Fr. 2.10	
For grosse Zahlen	ist es gut (kondificient

