LANL CubeSat Reconfigurable Computer (CRC)

CubeSat Summer Workshop 2010 August 8th, 2010 Los Alamos National Laboratory (LANL) Zachary Jacobs - zjacobs@lanl.gov Keith Morgan Michael Caffrey Joseph Palmer Lauren Ho

LANL history in space

Cibola Flight Experiment (CFE)

Project Objectives

- Technology Demonstration: responsive, flexible multi-mission RF payload with continuous data processing
 - Reconfigurable Computing (RCC) technology for super-computer processing speeds at sensor
 - Adaptability: Re-configurable post-launch
- Smart and adaptive computing at sensor for enhanced sensitivity and reduced data downlink

Technical Approach

- On-board data processor using COTS parts
 - Networks of Xilinx Field Programmable Gate Arrays (FPGA)
 - FPGA's allow post-launch reconfiguration to meet new and changing program requirements
 - New digital signal processing applications developed on the ground are uploaded to the payload for execution
 - Tailor processing application to each theater of interest
 - Algorithms swap time <1 min

Payload Description

- 4-Channel Software Radio
 - Tunable 100-500 MHz with 20 MHz bandwidth
- Dual 12-bit ADC @ 100 Msps

Adaptive technology on CubeSats

Prior experience

- Reconfigurable FPGAs: 100 1000x the performance of a microprocessor
- LANL has CFE & other mission experience
- LANL is a leader in SRAM FPGA SEU testing and mitigation
- Miniaturization
- Integration into a SOC & single or few PCBs

Reconfigurable functionality for each satellite

 <u>HW reuse</u> enhances reliability and decreases cost, increases the code base and accelerated development time.

Using CubeSats

- High performance, low power computing in a small form factor
- Data-intensive signal processing is an ideal application
- Upgrade or add functionality after launch
- Simplifies the hardware design for CubeSat constellations

Miniaturization

	Cibola Flight Experiment	CubeSat Reconfigurable Computer
Size	16" x 8" x 12"	4" x 4" x 1"
Weight	20 kg	100 g
Power	100 W	10 W
Logic Density	219K registers	185K registers*
Speed	50 MHz	100MHz
On-chip memory	1Mb	5Mb
System memory	.86 GB	.5 GB
Sample Rate	100 Msps	250 Msps
# bits	12	12
# Channels	2	2

CRC board design

Miniaturization of CFE Satellite Payload

- More capable than all CFE instrument FPGAs
- More capable than the CFE follow-on instrument
- Reduced lifecycle allows more relevant technology to orbit

Xilinx Spartan-6

- More power efficient than Xilinx Virtex-6
- Very little performance loss for smaller chips

Partial Reconfiguration:

"Software Defined Satellite" => Extreme Integration

Science Mission

Measure Total Electron Content (TEC) in Ionosphere

- Wide band RF pulse detection
- TEC tomography using lightning strikes and generated signals
- Test signals generated from the laboratory and transmitted to orbiting satellites
- Joint space and ground observations are combined for generating measurements

http://en.wikipedia.org/wiki/File:IRI TotalElectronContent.png

Built-in Self-Test (BIST) development setup

Testing

- BIST can be ran without a PC, directly from the onboard computer for on orbit testing
- BIST checks CRC board for:
 - Opens
 - Shorts
 - Signal integrity
 - Memory interfaces
 - ADC interfaces
 - ADC performance

Current Status

Hardware

- Received CRC board from manufacturing 7/26/2010
- Powered on and basic functionality verified
- Further testing to be completed before full functionality is verified

Software

- GUI for BIST to verify CRC boards nearing completion
- First FPGA configuration designed to read and report ADC readings nearing completion

Challenge 1: Configuration SEUs / Device Day/ Cell

Challenge 2: Power Consumption (Thermal) = f(algorithm)

- Each RCC board power usage ≈5 28W
- Each FPGA has >500 pins which are susceptible to thermal stresses
 - Maximize lifetime
 - Heat pipes limit max temperatures
 - Column Grid Array package more reliable
 - Matched CTE of thermount PCB to Ceramic Pkg
 - AlBeMet core has superior thermal transfer

ProtoFlight RCC Board

Future Work

Constellations

- Numerous inexpensive satellites replace larger expensive satellites
- Paradigm shift allows new functions to be performed
 - Spatial separation
 - Unit replacement
- True global and persistent observation

Conclusion

Reconfigurable Processing

- Unparalleled performance
- Extreme integration
- Very flexible for various satellite missions and configurations
- Upgradeable after launch
- Serve multiple users with a single platform

CubeSats may allow synchronization between technology nodes and launch schedules

More appropriate technology insertion schedules

Challenges:

- Need a more systematic thermal management design for high power density applications with wild swings in power consumption
- Keep radiation tolerance and SEU management in mind
- Small is not necessarily simple; complexity is still an issue

