MIPS Reference Data

CORE INSTRUCTI					OPCODE
NAME, MNEMO		FOR- MAT			/ FUNCT (Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0/21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c _{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	lbne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30 _{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f _{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23 _{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d _{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1: 0	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		$0/02_{\rm hex}$
Store Byte	sb	Ι	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
	(2) Sign (3) Zer (4) Bra (5) Jun (6) Ope	nExtli oExtli nchAo npAdd erands	we overflow exception mm = { 16{immediate[15]}, imme mm = { 16{1b'0}, immediate } ddr = { 14{immediate[15]}, imme tr = { PC+4[31:28], address, 2'b t considered unsigned numbers (vs. est&set pair, R[rt] = 1 if pair atomi	diate, 2 0 } a. 2's c	2'b0 } omp.)
BASIC INSTRUCTI					

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 1	1 10 6 5	5 0
I	opcode	rs	rt		immediate	
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				n

ARITHMETIC CORE INSTRUCTION SET OPCODE / FMT /FT / FUNCT

			/ FMT /FT
	FOR-		/ FUNCT
NAME, MNEMONIC	MAT		(Hex)
Branch On FP True belt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False belf	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double		{F[ft],F[ft+1]}	
FP Compare Single c.x.s*	FR	FPcond = (F[fs] op F[ft])? 1:0	11/10//y
FP Compare	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//v
Double		{F[ft],F[ft+1]})?1:0	11/11/19
		=, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
FP Divide Single div.s	FK	F[fd] = F[fs] / F[ft]	11/10//3
Double div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
FP Multiply Single mul.s	FR	{F[ft],F[ft+1]}	11/10//2
FP Multiply Single mul.s	FK	F[fd] = F[fs] * F[ft]	11/10//2
Double mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
FP Subtract Single sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract		$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\}$	
Double sub.d	FR	{F[ft],F[ft+1]}	11/11//1
Load FP Single 1wc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP		F[rt]=M[R[rs]+SignExtImm]; (2)	
Double ldc1	I	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi mfhi	R	R[rd] = Hi	0 ///10
Move From Lo mflo	R	R[rd] = Lo	0 ///12
Move From Control mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith. sra	R	R[rd] = R[rt] >> shamt	0//-3
Store FP Single swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP		M[R[rs]+SignExtImm] = F[rt]; (2)	21/ / /
Double sdc1	I	M[R[rs]+SignExtImm+4] = F[rt+1]	3d//

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 .11	10 6	5 0
FI	opcode	fmt	ft		immediat	е
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
Sra	31	Return Address	Yes

© 2014 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 5th ed.

OPCOD	DES, BASI	E CONVER	RSI	ON. A	SCII	SYMB	OLS		3	
MIPS	(1) MIPS						ASCII	D	Hexa-	ASCII
opcode	funct	funct	Bi	nary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)			mal	mal	acter	mal	mal	acter
(1)	sll	add.f		0000	0	0	NUL	64	40	(a)
		$\mathrm{sub}.f$		0001	1	1	SOH	65	41	A
j	srl	mul.f		0010	2	2	STX	66	42	В
jal	sra	div.f		0011	3	3	ETX	67	43	C
beq	sllv	sqrt.f		0100	4	4	EOT	68	44	D
bne		abs.f		0101	5	5	ENQ	69	45	E
blez	srlv	mov.f	1	0110	6	6	ACK	70	46	F
bgtz	srav	neg.f		0111	7	7	BEL	71	47	G
addi	jr			1000	8	8	BS	72	48	H
addiu slti	jalr movz			1001	10		HT LF	73 74	49 4a	I J
sltiu	movn			1010	11	a b	VT	75	4a 4b	K
andi	syscall	round.w.f		1100	12	C	FF	76	4c	L
ori	break	trunc.w.f		1101	13	d	CR	77	4d	M
xori	DICAR	ceil.w.f		1110	14	e	SO	78	4e	N
lui	sync	floor.w.f		1111	15	f	SI	79	4f	0
	mfhi	11001.4.5		0000	16	10	DLE	80	50	P
(2)	mthi			0001	17	11	DC1	81	51	Q
	mflo	movz.f		0010	18	12	DC2	82	52	R
	mtlo	movn.f		0011	19	13	DC3	83	53	S
		,		0100	20	14	DC4	84	54	T
				0101	21	15	NAK	85	55	U
			01	0110	22	16	SYN	86	56	V
			01	0111	23	17	ETB	87	57	W
	mult			1000	24	18	CAN	88	58	X
	multu			1001	25	19	EM	89	59	Y
	div			1010	26	1a	SUB	90	5a	Z
	divu		01	1011	27	16	ESC	91	5b	
				1100	28	1c	FS	92	5c	1
				1101	29	1d	GS	93	5d]
				1110	30	le	RS	94	5e	^
21				1111	31	1f	US	95	5f	-
1b	add	cvt.s.f		0000	32	20	Space	96	60	
lh lwl	addu sub	cvt.d.f		0001	33 34	21 22	!	97 98	61	a
lwi	subu			0010	35	23	#	98	62	b c
lbu	and	cvt.w.f		0100	36	24	\$	100	64	d
lhu	or	CVL.W.		0101	37	25	%	101	65	e
lwr	xor			0110	38	26	&	102	66	f
1	nor			0111	39	27	,	103	67	g
sb				1000	40	28	(104	68	h
sh				1001	41	29		105	69	i
swl	slt		10	1010	42	2a) *	106	6a	j
SW	sltu		10	1011	43	2b	+	107	6b	k
			10	1100	44	2c	,	108	6c	1
			10	1101	45	2d	-	109	6d	m
swr				1110	46	2e		110	6e	n
cache				1111	47	2f	1	111	6f	0
11	tge	c.f.f		0000	48	30	0	112	70	p
lwc1	tgeu	c.un.f		0001	49	31	1	113	71	q
lwc2	tlt	c.eq.f		0010	50	32	2	114	72	r
pref	tltu	c.ueq.f		0011	51	33	3	115	73	S
2.1.5	teq	c.olt.f		0100	52	34	4	116	74	t
ldc1		c.ult.f		0101	53	35	5	117	75	u
ldc2	tne	c.ole.f		0110	54	36	6	118	76	V
sc		c.ule.f		$\frac{0111}{1000}$	55 56	37	7	119	77 78	W
sc swc1		c.sf.f		1000	57	39	9	120	79	X
swc1		c.ngle.f		1010	58	39 3a	:	121	7a	y z
SWCZ		c.seq.f		1010	59	3b		122	7b	{
		c.lt.f		1100	60	3c	, <	123	7c	
sdc1		c.nge.f		1101	61	3d	=	125	7d	}
sdc2		c.le.f		1110	62	3e	>	126	7e	~
							COLUMN TWO IS NOT THE OWNER.			

if fmt(25:21)= $17_{\text{ten}} (11_{\text{hex}}) f = d \text{ (double)}$

9 4

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Fo

(4) IEEE 754 Symbols Object ± Denorm ≠0 1 to MAX - 1 anything ± Fl. Pt. Num. 0 MAX MAX ≠0 NaN S.P. MAX = 255, D.P. MAX = 2047

_	FIE	Cision i Ormais.	500, 500, 500, 500, 500
	S	Exponent	Fraction
	31	30 23 2	2 0
	S	Exponent	Fraction
	63	62	52 51

MEMORY ALLOCATION \$sp → 7fff fffc_{hex} Dynamic Data \$gp→1000 8000_{hex} Static Data 1000 0000_{hex} Text pc →0040 0000_{hex} Reserved

DATA ALIGNMENT

			Doub	ole Word	d			
	Wo	ord		Word				
Halfy	word	Half	word	Halt	fword	Half	word	
Byte Byte		Byte	Byte	Byte	Byte	Byte	Byte	

Value of three least significant bits of byte address (Big Endian)

EXCE

B D	Interrupt Mask		Exception Code	
31	15	8	6	2
	Pending	THE STATE OF THE S	U	EI
	Interrupt		M	LE
	15	8	4	1 0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

CLFII					
Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception (load or instruction fetch)	10	RI	Reserved Instruction Exception
5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Trap
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES

	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
103	Kilo-	К	210	Kibi-	Ki	1015	Peta-	P	250	Pebi-	Pi
106	Mega-	М	220	Mebi-	Mi	1018	Exa-	E	260	Exbi-	Ei
109	Giga-	G	230	Gibi-	Gi	1021	Zetta-	Z	270	Zebi-	Zi
1012	Tera-	T	240	Tebi-	Ti	1024	Yotta-	Y	200	Yohi-	Yi

© 2014 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 5th ed.

7f DEL