

planetmath.org

Math for the people, by the people.

proof of injective images of Baire space

 ${\bf Canonical\ name} \quad {\bf ProofOfInjective ImagesOfBaire Space}$

Date of creation 2013-03-22 18:47:15 Last modified on 2013-03-22 18:47:15

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282) Entry type Proof Classification msc 54E50 We show that, for an uncountable Polish space X, there exists a continuous and one-to-one function $f: \mathcal{N} \to X$ such that $X \setminus f(\mathcal{N})$ is countable. Furthermore, the inverse of f defined on $f(\mathcal{N})$ is Borel measurable.

The construction of the function relies on the following result. We let d be a complete metric on X with respect to which the diameter of any subset is defined.

Lemma. Let S be an uncountable subset of X which can be written as the difference of two closed sets, and choose any $\epsilon > 0$.

Then, there exists a sequence S_1, S_2, \ldots of pairwise disjoint and uncountable subsets of S with diameter no more than ϵ and such that,

- 1. for each n > 0, $\bigcup_{k \le n} S_k$ is closed.
- 2. $S \setminus \bigcup_n S_n$ is countable.

Proof. As $S = A \setminus B$ is the difference of closed sets, it is a Polish space under the subspace topology. In fact, if B is nonempty, the topology is generated by the complete metric

$$d_S(x,y) = d(x,y) + \sup \{ |d(x,z)^{-1} - d(y,z)^{-1}| \colon z \in B \},\,$$

otherwise we may take $d_S = d$. In either case, $d_S \ge d$, so it is enough to choose the sets S_n to have diameter no more than 2^{-n} with respect to d_S . Note also that any bounded and closed set with respect to this metric is also closed as a subset of X.

Let S^c be the condensation points of S, which are the points whose neighborhoods all contain uncountably many points of S. Then, $S \setminus S^c$ is a union of countably many countable and open subsets of S, so is countable and open. Hence, S^c is uncountable and closed in S, and every open subset is uncountable. Choosing any $p \in S^c$ then $S^c \setminus p$ will not be a closed subset of X. So, replacing S by $S \setminus \{p\}$ if necessary, we may suppose that S^c is not closed as a subset of X and, therefore is not compact.

So, for some $\delta > 0$, S^c cannot be covered by finitely many sets with d_S -diameter no more than δ (see http://planetmath.org/ProofThatAMetricSpaceIsCompactIfAndOBy separability, there is a sequence T_1, T_2, \ldots of open balls in S^c with diameter less than $\min(\epsilon, \delta)$, and covering S^c . Writing \bar{T}_n for the d_S -closure of T_n and eliminating any terms such that $T_n \subseteq \bigcup_{k < n} \bar{T}_k$, then $S_n \equiv \bar{T}_n \setminus \bigcup_{k < n} \bar{T}_k$ have nonempty interior and hence are uncountable, and

$$S \setminus \bigcup_n S_n = S \setminus S^c$$

is countable, as required.

Note that $S_n = \bigcup_{k \le n} S_k \setminus \bigcup_{k \le n-1} S_k$ is also a difference of closed sets. So, the lemma allows us to inductively choose sets $C(n_1, \ldots, n_k) \subseteq X$ for integers $k \ge 0$ and $n_1, \ldots, n_k \ge 1$ such that C() = X and the following are satisfied.

- 1. $C(n_1, \ldots, n_k, m)$ are uncountable, contained in $C(n_1, \ldots, n_k)$, and pairwise disjoint as m runs through the positive integers.
- 2. $\bigcup_{j \le m} C(n_1, \ldots, n_k, j)$ is closed for all $m \ge 1$.
- 3. $C(n_1, \ldots, n_k) \setminus \bigcup_m C(n_1, \ldots, n_k, m)$ is countable and, for $k \geq 1$, has diameter no more than 2^{-k} .

For any $n \in \mathcal{N}$ we may choose a sequence $x_k \in C(n_1, \ldots, n_k)$. Since, for $k \geq 1$, this set has diameter no more than 2^{-k} , then $d(x_j, x_k) \leq 2^{-k}$ whenever $j \geq k \geq 1$. So, the sequence is http://planetmath.org/CauchySequenceCauchy and hence has a limit x. Furthermore, as x_j is contained in the closed set

$$\bigcup_{m \le n_{k+1}} C(n_1, \dots, n_k, m)$$

for j > k, then x must also be contained in it and hence is in $C(n_1, \ldots, n_k)$. So

$$C(n) \equiv \bigcap_{k=0}^{\infty} C(n_1, \dots, n_k)$$

contains x and is nonempty. Furthermore, as it has zero diameter, it is a singleton. So $f: \mathcal{N} \to X$ is uniquely defined by $f(n) \in C(n)$.

Given any $m, n \in \mathcal{N}$ such that $m_j = n_j$ for $j \leq k$, then f(m) and f(n) are both in the set $C(m_1, \ldots, m_k)$, which has diameter no more than 2^{-k} . So, $d(f(m), f(n)) \leq 2^{-k}$ and f is continuous.

If m and n are distinct elements of \mathcal{N} and k is the smallest integer such that $m_k \neq n_k$, then f(m) and f(n) are in the disjoint sets $C(m_1, \ldots, m_k)$ and $C(n_1, \ldots, n_k)$ respectively. So $f(m) \neq f(n)$, and f is one-to-one.

Now let A be the countable set

$$A = \bigcup_{k} \bigcup_{n_1, \dots, n_k} \left(C(n_1, \dots, n_k) \setminus \bigcup_{m} C(n_1, \dots, n_k, m) \right) \subseteq X.$$

Also define

$$\mathcal{N}(n_1,\ldots,n_k) \equiv \{m \in \mathcal{N} : m_j = n_j \text{ for } j \leq k\}.$$

These sets form a basis for the topology on \mathcal{N} . Clearly,

$$f(\mathcal{N}(n_1,\ldots,n_k))\subseteq C(n_1,\ldots,n_k)\setminus A.$$

Choosing any $x \in C(n_1, \ldots, n_k) \setminus A$ then we can inductively find n_j for j > k such that $x \in C(n_1, \ldots, n_j)$. Then, setting $n = (n_1, n_2, \ldots)$ gives f(n) = x. This shows that

$$f\left(\mathcal{N}(n_1,\ldots,n_k)\right) = C(n_1,\ldots,n_k) \setminus A. \tag{1}$$

In particular, $f(\mathcal{N}) = X \setminus A$ and, therefore $X \setminus f(\mathcal{N})$ is countable. Finally, as $C(n_1, \ldots, n_k)$ is a difference of closed sets, it is Borel, and equation (??) shows that the inverse of f is Borel measurable.