数理最適化×機械学習を用いたダイナミックプライシング

中川海智

June 11, 2025

兵庫県立大学

背景と目的

背景:

■ 数理最適化ソルバーの進化により、機械学習(ML)と数理最適化(MO)の融合、いわゆる MOAI の研究が活発化

本プロジェクトの位置づけ:

- MOAI の中でも、ML → MO の流れに着目
- 機械学習により需要などを予測し、その結果をもとに価格最適化を実行

目的:

- Gurobi を活用し、ML → MO の統合プロセスが手軽に実現できることを示す
- 実務的な価格戦略問題における MOAI の実用性 を提示する

ダイナミックプライシングとは?

- 商品やサービスの価格を需要・供給・時期・在庫状況などに応じてリアルタイム に変化させる戦略
- 目的:利益最大化、在庫調整、顧客セグメンテーション

大ナミックプライシングとは?

- 経験や勘に基づく価格設定から、データドリブンな意思決定へ。
- ML で需要予測 → Gurobi で価格最適化
- 売上最大化・現実的な価格制約を同時に満たす

活用事例

- Amazon:過去の購買履歴や需要予測に基づき価格を動的変更
- Uber:サージプライシングにより需要ピーク時に価格上昇
- 航空会社: 搭乗日や残席数に応じて価格変動

使用技術と概要

- Python, pandas, scikit-learn, Gurobi 10.0, gurobi-machinelearning
- モデル:重回帰分析(Rš: 0.294)
- ソルバー:非線形連続最適化(非凸)

データの概要

- サンプル数: 676件、特徴量: 30項目
- 商品 ID、月別販売数量、価格、送料、競合価格など
- 欠損値なし、カテゴリ・時系列・数値混合データ

	product_id	product_category_name	month_year	qty	total_price	freight_price	unit_price
0	bed1	bed_bath_table	01-05-2017	1	45.95	15.100000	45.950000
1	bed1	bed_bath_table	01-06-2017	3	137.85	12.933333	45.950000
2	bed1	bed_bath_table	01-07-2017	6	275.70	14.840000	45.950000
3	bed1	bed_bath_table	01-08-2017	4	183.80	14.287500	45.950000
4	bed1	bed_bath_table	01-09-2017	2	91.90	15.100000	45.950000
5	bed1	bed_bath_table	01-10-2017	3	137.85	15.100000	45.950000
6	bed1	bed_bath_table	01-11-2017	11	445.85	15.832727	40.531818
7	bed1	bed_bath_table	01-12-2017	6	239.94	15.230000	39.990000
8	bed1	bed_bath_table	01-01-2018	19	759.81	16.533684	39.990000
9	bed1	bed_bath_table	01-02-2018	18	719.82	13.749444	39.990000
10 rows × 30 columns							

単価と売上数量の関係

横軸に単価、縦軸に売上数量をプロットした図 商品 health5 の例

単価を変更すると売上数量も変動

 \rightarrow

これは価格が需要に影響を与えている

最適化問題:

単価 × 売上数量 を最大化

今後の方針

最終目標:

単価 × 売上数量 を最大化する単価を決定する

今後のステップ:

- ${f 1}$. 単価などの特徴量から売上数量を予測する機械学習モデル f(x) を構築
- **2.** f(x) によって予測された売上数量 imes 単価=(利益)を最大化する最適化問題を定式化

今後の方針

最終目標:

単価 × 売上数量 を最大化する単価を決定する

今後のステップ:

- ${f 1.}$ 単価などの特徴量から売上数量を予測する機械学習モデル f(x) を構築
- **2.** f(x) によって予測された売上数量 imes 単価=(利益)を最大化する最適化問題を定式化

需要予測の設定

- 目的:年、月ごとの売上数量(需要)を予測する
- モデル:重回帰分析(Linear Regression)
- 備考:相関の高い特徴量間(特に価格と相関が高い)などは除去済み
- 詳細は同フォルダの .ipynb ファイルを参照

特徴量(説明変数)

- 使用した主な特徴量:
 - **商品単 (unit**_price)曜日情報(週末・平日)

			unit_price_x	customers_y	weekend	weekday
year	month	product_id				
2017	7 1	health5	349.900000	1775.0	9.0	6.0
		health7	64.990000	1775.0	9.0	6.0
		bed2	89.900000	968.0	8.0	2.0
		computers4	159.990000	968.0	8.0	2.0
		cool1	85.704286	551.0	8.0	2.0
2018	8 8	watches2	138.000000	1343.0	8.0	2.0
		watches3	77.821429	1295.0	8.0	2.0
		watches4	105.000000	1152.0	8.0	2.0
		watches6	112.000000	1284.0	8.0	2.0
		watches8	157.945455	1060.0	8.0	2.0

11

目的変数(予測ターゲット)

- 目的変数:売上数量(qty)
- 顧客数、価格、競合分析の影響を受ける

			qty			
year	month	product_id				
2017	1	health5	160			
		health7	20			
	2	bed2	38			
		computers4	54			
		cool1	105			
2018	8	watches2	45			
		watches3	420			
		watches4	70			
		watches6	14			
		watches8	110			
676 rows × 1 columns						

予測結果(予測值 vs 実測值)

- $R^2 = 0.294$, MAE = 6.263
- 単純モデルながらも一定の予測精度あり

今後の方針

最終目標:

単価 × 売上数量 を最大化する単価を決定する

今後のステップ:

- 1. 単価などの特徴量から売上数量を予測する機械学習モデル f(x) を構築
- **2.** f(x) によって予測された売上数量 imes 単価=(利益)を最大化する最適化問題を定式化

最適化モデルの定式化

定式化

入力

月:m, 商品:p, モデル:f, S: 在庫量, F: 商品 p の価格を含めた特徴量, 変更前価格:x_{herore} 変数

変更後価格:x. 売上量:a 定式化 (自然言語 ver)

> maximize. \sum (各月の売上×各月の価格) subject to.

(1)(2)

各商品の売上モデル(価格を含む商品の特徴量) = 売上量

(3)

(4)

(5)

在庫量 = > 売上量 変更後価格 ← 価格を含む商品の特徴量

最適化モデルの定式化

定式化

maximize.
$$\sum_{m=1}^{12} q_m * x_m$$
 (1)
subject to. (2)
 $f(F_m) = q_m \ (m = 1, 2, \dots 12)$ (3)
 $S = \sum_{m=1}^{12} q_i$ (4)
 $x_m \in F_m$ (5)

最適化モデルの定式化

このままではソルバーに投げても価格が非現実的な解を出力したため制約式(6)を追 加した下記のような定式化にする

定式化 (solver.ver)

$$maximize. \sum_{m=0}^{12} q_m * x_m$$
 (1)

subject to. (2)

subject to. (2)
$$f(F_m) = q_m \ (m = 1, 2, \dots 12) \tag{3}$$

(5)

(6)

 $S = \sum^{12} q_i$ (4)

 $0.8x_{before} \leq x \leq 1.2x_{before}$

 $x_m \in F_m$

結果

注意:本結果は一つの商品のみの結果だけ可視化している。 在庫量の個数制約と最適化後の利益変化

図 1: 在庫量と売上量

図 2: 最適化前後の売上高 (目的間数値)

結果

最適後の単価と売上量

図 3: 最適化前後の単価

図 4: 最適化前後の売上量

考察と今後の展望

本研究の成果:

- 重回帰分析に基づき、すべての制約条件を満たしつつ売上向上を実現
- 単価に制約を設けることで、現実的な価格設定が可能に

課題と改善点:

- データ数が少なく、モデルの汎化に限界
- 価格・売上数量を連続値で扱う → 整数制約が現実的
- 競合の戦略、人の感情(価格感度)を考慮できていない

今後の展望:

- 動的価格最適化:時間とともに変化する価格・需要に対応
- 消費者の心理・行動要因を取り入れたモデル構築
- 機械学習と数理最適化の融合による意思決定支援の高度化

参考文献

 Pierre Bonami, Using Trained Machine Learning Predictors in Gurobi, Gurobi Optimization, LLC (2023).

https://github.com/Gurobi/gurobi-machinelearning

- Gurobi Optimization, Slides: Using Trained ML Predictors in Gurobi, (2023).
 https://cdn.gurobi.com/wp-content/uploads/
 Using-Trained-Machine-Learning-Predictors-in-Gurobi-slides.pdf
- NearMe Tech, Gurobi Œ Machine Learning 第二弾:機械学習と数理最適化の統合, (2024).
 https://speakerdeck.com/nearme_tech/gurobi-machine-learning-2-ji-jie-xue-xi-toshu-li-zui-shi-hua-notong-he
- MOAI Lab, 「機械学習 Œ 数理最適化 (*MOAI*)」の実務的アプローチ, note, (2024). https://note.com/moai_lab/n/nb28898e99919
- Suddharshan, Retail Price Optimization Dataset, Kaggle, (2021).
 https://www.kaggle.com/datasets/suddharshan/retail-price-optimization/data