

LOG1810 STRUCTURES DISCRÈTES

TD 4: ENSEMBLES ET FONCTIONS

A2024

SOLUTIONNAIRE

Exercice 1:

Considérons les ensembles de différentes tonalités majeures (une tonalité comprend 7 notes) :

- $DO = \{do, r\acute{e}, mi, fa, sol, la, si\}$
- SI = {si, do#, ré#, mi, fa#, sol#, la#}
- LA = {la, si, do#, ré, mi, fa#, sol#}
- a) Définissez par énumération l'ensemble $DO \cap SI$.

```
Solution : DO \cap SI = \{si, mi\}
```

b) Définissez par énumération l'ensemble $DO \cup SI \cup LA$.

```
Solution:
```

```
DO \cup SI \cup LA = \{do, do\#, r\acute{e}, r\acute{e}\#, mi, fa, fa\#, sol, sol\#, la, la\#, si\}
```

c) Définissez par énumération l'ensemble $P(LA \cap Si)$.

```
Solution:
```

```
LA \cap SI = \{si, do\#, mi, fa\#, sol\#\}
P(LA \cap SI)
= \{\{\emptyset\}, \{si\}, \{do\#\}, \{mi\}, \{fa\#\}, \{sol\#\}, \{si, do\#\}, \{si, mi\}, \{si, fa\#\}, \{si, sol\#\}, \{do\#, mi\}, \{do\#, fa\#\}, \{do\#, sol\#\}, \{mi, fa\#\}, \{mi, sol\#\}, \{fa\#, sol\#\}, \{si, do\#, mi\}, \{si, do\#, fa\#\}, \{si, do\#, sol\#\}, \{si, mi, sol\#\}, \{si, fa\#, sol\#\}, \{do\#, mi, fa\#\}, \{do\#, mi, fa\#, sol\#\}, \{do\#, mi, fa\#, sol\#\}, \{do\#, fa\#, sol\#\}, \{si, mi, fa\#, sol\}\} \{si, do\#, mi, fa\#, sol\#\}\}
```

d) Définissez par énumération l'ensemble $(DO \cap SI) - (LA \cap Si)$.

Solution:

```
DO \cap SI = \{si, mi\}

LA \cap SI = \{si, do\#, mi, fa\#, sol\#\}

(DO \cap SI) - (LA \cap Si) = \{\}
```

e) Quel serait le nombre d'éléments présents dans l'ensemble P(P(DO)) ?

Solution:

```
|P(DO)| = 2^{|DO|} = 2^7 = 128
|P(P(DO))| = 2^{|P(DO)|} = 2^{128} \approx 3.4 \cdot 10^{38}
```

Plus généralement :

$$|P(P(...P(S))...)| = 2^{2^{|S|}}$$
, où l'on réalise m puissances.

LOG1810-A2024. Travaux dirigés 4 - 2 -

Exercice 2

Déterminez si les affirmations suivantes sont vraies ou fausses. Justifiez vos réponses.

a) $A \subseteq (A \cup B)$.

Vrai: Par définition de l'union, tous les éléments de A sont dans $A \cup B$, donc $A \subseteq (A \cup B)$.

b) Si $A \cap B = \emptyset$ alors A - B = B.

Faux : Si l'intersection de A et B est vide, alors ils n'ont aucuns éléments en commun et donc A-B=A

c) $A \subseteq B \Rightarrow A \cap B = A$.

Vrai : Si A est un sous-ensemble de B, alors tous les éléments de A sont dans B. Ainsi, l'intersection de A et B est simplement A.

d) $A \cup \emptyset = A$.

Vrai : L'union d'un ensemble avec l'ensemble vide est l'ensemble lui-même, car l'ensemble vide n'ajoute aucun élément.

e) A - A = A

Faux : La différence entre un ensemble et lui-même est l'ensemble vide, donc $A-A=\emptyset$.

f) $A \subseteq B \Rightarrow A \cup B = B$.

Vrai: Si A est un sous-ensemble de B, alors l'union de A et B est simplement B.

g) $(A \cup B) \cap A = \emptyset$

Faux: L'intersection de $A \cup B$ avec A n'est jamais vide car A est inclus dans $A \cup B$. L'intersection est au minimum A.

h) $A \cup (A \cap B) = A$.

Vrai : L'union d'un ensemble avec l'intersection de cet ensemble et un autre est toujours l'ensemble lui-même.

i) $Si A \cap B = A, alors A \subseteq B$

Vrai: Si l'intersection de A et B est A, cela signifie que tous les éléments de A sont également dans A, donc $A \subseteq B$.

Exercice 3:

Déterminez, dans chacun des cas suivants, si la fonction donnée est une fonction injective, une fonction surjective et/ou une fonction bijective. Justifiez vos réponses.

a) Soit le domaine $S = \{a, b, c, d, e\}$ et le codomaine $T = \{1,2,3,4,5,6\}$. Nous avons la fonction $f = \{(a,3),(b,5),(c,4),(d,2),(e,1)\}$ définie de $S \to T$. Solution :

Fonction Injective : Oui.

Les éléments du domaine **S** ont chacun une image distincte des autres éléments de **S**.

Fonction Surjective : Non

L'élément 6 du codomaine T n'a pas d'antécédent dans S.

Fonction Bijective: Non.

Comme la fonction n'est pas surjective, alors elle n'est pas bijective.

b) $f: \mathbb{R} \to \mathbb{R}, x \mapsto |x^2 - x|$ Solution:

Fonction Injective: Non

Il existe des éléments distincts du domaine qui ont la même image. Effectivement, nous pouvons prendre comme exemple :

$$f(2) = f(-1) = 2$$

La fonction n'est donc pas injective.

Fonction Surjective: Non

La fonction est toujours positive, elle ne couvre donc pas l'ensemble du codomaine.

Fonction Bijective: Non.

Comme la fonction n'est ni injective ni surjective, alors elle n'est pas bijective.

c) $h: RxR \to RxR, h(x, y) \mapsto (x + y, x - y)$ Solution:

Fonction Injective : Oui

Soit (x, y) et (a, b) appartenant à RxR et que h(x,y)=h(a,b). Vérifions si (x,y)=(a,b), soit x=a et y=b:

$$h(x,y) = h(a,b) \rightarrow (x+y,x-y) = (a+b,a-b)$$

 $h(x,y) = h(a,b) \rightarrow (x+y=a+b) \land (x-y=a-b)$

Ainsi, nous avons les deux équations x+y=a+b et x-y=a-b. En résolvant le système d'équation, on obtient :

$$x = a$$

 $y = b$

Donc
$$h(x,y) = h(a,b) \rightarrow (x=a) \land (y=b)$$
.
Ainsi, $h(x,y) = h(a,b) \rightarrow (x,y) = (a,b)$.

Il s'en suit que h est injective.

Fonction Surjective : Oui

Pour que la fonction soit surjective, il faut montrer que l'ensemble du codomaine est couvert par la fonction. Ainsi, montrons qu'il est possible de trouve un couple (x,y)tel que h(x,y)=(a,b) pour tout $(a,b)\in RxR$. Ains, nous avons :

$$h(x, y) = (x + y, x - y) = (a, b)$$

Qui revient au système d'équations suivants :

$$x + y = a$$
$$x - y = b$$

Montrons que le système admet toujours une solution et trouvons cette solution. En utilisant l'élimination de Gauss-Jordan, on obtient :

$$x = \frac{a+b}{2}$$
$$y = \frac{a-b}{2}$$

Ainsi, l'ensemble du codomaine est couvert car pour n'importe quelle couple $(a,b) \in RxR$, il est possible de trouver un couple $(x,y) \in RxR$ tel que h(x,y) = (a,b)

Il s'en suit que h est surjective.

Fonction Bijective : Oui.

Comme la fonction est injective et surjective, alors elle est bijective.

Exercice 4:

Soit A, B et C, trois ensembles. On définit les fonctions f de A vers B, G de G vers G et G de G vers G de G vers

$$\forall x \in A, h(x) = (f(x), g(x))$$

Montrez que si f est injective **et g est injective***, alors h est injective.

Solution:

Utilisons la technique de la preuve directe. Supposons que f est injective. Soit a et b deux éléments de A tel que h(a) = h(b) et montrons que a = b:

$$h(a) = h(b) \rightarrow (f(a), g(a)) = (f(b), g(b))$$

 $h(a) = h(b) \rightarrow (f(a) = f(b)) \land (g(a) = g(b))$

f et g étant injectives, $(f(a)=f(b)) \land (g(a)=g(b)) \rightarrow a=b$ Donc $h(a)=h(b) \rightarrow a=b$ Il s'en suit que h est injective. CQFD.

^{*}Il n'était pas possible de conclure sans supposer que g était injective aussi.

LOG1810-A2024 Travaux dirigés 4 - 7 -

Exercice 5:

Démontrez les deux propriétés des ensembles suivants.

a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributivité). Solution :

```
x \in [A \cap (B \cup C)] \qquad \Leftrightarrow [x \in A] \land [x \in (B \cup C)] \qquad \text{D\'ef. Intersection} \Leftrightarrow [x \in A] \land [(x \in B) \lor (x \in C)] \qquad \text{D\'ef. Union} \Leftrightarrow [(x \in A) \land (x \in B)] \lor [(x \in A) \land (x \in C)] \qquad \text{D\'ef. Intersection} \Leftrightarrow [x \in (A \cap B)] \lor [x \in (A \cap C)] \qquad \text{D\'ef. Intersection} \Leftrightarrow x \in (A \cap B) \cup (A \cap C) \qquad \text{D\'ef. Union}
```

Nous obtenons bien $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

b) $(A \cup B) - C = (A - C) \cup (B - C)$ Solution:

$$x \in [(A \cup B) - C]$$
 $\Leftrightarrow [x \in (A \cup B)] \land [x \notin C]$ Déf. Différence $\Leftrightarrow [(x \in A) \lor (x \in B)] \land [x \notin C]$ Déf. Union $\Leftrightarrow [(x \in A) \land (x \notin C)] \lor [(x \in B) \land (x \notin C)]$ Distributivité $\Leftrightarrow [x \in (A - C)] \lor [x \in (B - C)]$ Déf. Différence $\Leftrightarrow x \in (A - C) \cup (B - C)$ Déf. Union

Nous obtenons bien $(A \cup B) - C = (A - C) \cup (B - C)$

Exercice 6

Considérons les ensembles suivants :

- $A = \{x \in R \mid |x| < 5\}$
- $B = \{x \in Z \mid x^2 \le 9\}$
- $C = \{x \in N \mid |x 2| \le 3\}$
- $D = \{x \in R \mid -2 < x \le 6\}$

Déterminez le résultat des opérations suivantes :

a) $A \cap B$

Solution:

On a
$$A =]-5,5[$$
 et $B = \{-3, -2, ..., 2,3\}$

On obtient donc : $A \cap B = -3, -2, -1, 0, 1, 2, 3 = B$

b) $A \cup D$

Solution:

On a
$$A =]-5,5[$$
 et $D =]-2,6]$

On obtient donc : $A \cup D =]-5,6]$

c) $(B \cap C) \cup D$

Solution:

On a
$$B = \{-3, -2, ..., 2, 3\}, C = \{0, ..., 5\} \text{ et } D =] - 2, 6]$$

Nous avons : $B \cap C = \{-1,0,1,2,3\}$

On obtient finalement : $(B \cap C) \cup D =]-2,6] = D$

d) $A \cap (C \cup D)$

Solution:

On a
$$A =]-5,5[$$
, $C = \{-1,0,...,5\}$ et $D =]-2,6[$

Nous avons : $C \cup D =]-2,6] = D$

On obtient finalement : $A \cap (C \cup D) =]-2,5[$