http://www.rgpvonline.com

http://www.rgpvonline.com

http://www.rgpvonline.com

Figure 10

Determine the Z-parameters for the network shown in figure 11.

Determine the Y-parameters of the network shown in figure 12.

Figure 12

- 8. Write short notes on any two of the following:
 - Series and parallel resonance
 - Tie set schedule

EC-305

Hybrid parameters

http://www.rgpvonline.com

http://www.rgpvonline.com

Total No. of Questions :8]

EC-305

B.E. III Semester

Examination, December 2016

Network Analysis

Time: Three Hours

Maximum Marks: 70

http://www.rgpvonline.com

Note: i) Attempt any five questions.

ii) All questions carry equal marks.

http://www.rgpvonline.com

Draw the dual network of following circuit figure 1.

Figure 1

Write the loop equations of magnetically coupled circuit shown in figure 2.

Figure 2

By superposition theorem calculate current I in the circuit shown in figure 3.

PTO

http://www.rgpvonline.com

[2]

b) Find the Norton equivalent circuit across the terminal AB of the circuit shown in figure 4.

Calculate the current in the 6Ω resistor of the circui shown in figure 5 using Thevenine theorem.

- State and prove maximum power transfer theorem.
- In the circuit shown in figure 6 the switch S is closed at t = 0 connecting a source e^{-t} to the RC circuit. At t = 0, it is observed that the capacitor voltage has the value $v_c(0) = 0.5$ V. Determine $v_2(t)$.

Figure 6

http://www.rgpvonline.com

[3]

b) In the circuit of figure 7, after the switch has been in the open position for a long time, it is closed at t = 0. Find the voltage across the capacitor.

In the circuit of figure 8 at time to after the switch S was closed, it is found that $v_2 = +5V$. It is required to determine the value of $i_2(t_0)$ and $\frac{di_2(t_0)}{dt}$.

In the circuit of figure 9 the switch S is in position 'a' for a long time. At t = 0 the switch is moved from 'a' to 'b'. Find $v_2(t)$ using numerical values given in the circuit. Assume that the initial current in 2H inductor is zero.

http://www.rgpvonline.com

Contd... EC-305

http://www.rgpvonline.com

http://www.rgpvonline.com

http://www.rgpvonline.com