Финальный тур

Всероссийской студенческой олимпиады по механике и математическому моделированию

(1 октября 2011 г.)

Задача 1. Удивительный маятник

- 1. Составьте уравнение движения математического маятника длины l в однородном поле тяжести g. В качестве координаты выберите угол отклонения от положения равновесия.
- 2. Обезразмерьте получившееся уравнение.

Задача 2. Мэр-велосипедист

Друзья подарили мэру города Новомеханска велосипед с квадратными колесами (длина стороны квадрата — 2a). Определите, каким станет профиль велосипедных дорожек Новомеханска после соответствующих распоряжений мэра в дорожный департамент города. При движении велосипеда высота и

Рис. 1.

ориентация седла должны оставаться неизменными. Ответ сопроводите качественным графиком профиля.

Задача 3. Самурай и цилиндр

На абсолютно шероховатой горизонтальной плоскости лежит цилиндр радиуса $r=10~{\rm cm}.~{\rm B}$ начальный момент самурай перерубает цилиндр пополам по вертикальной плоскости проходящей через его ось.

- 1. Запишите уравнения движения половинок цилиндра.
- 2. Определите наибольшую угловую скорость, которую приобретёт половинка цилиндра за время движения.
- 3. Определите через какое время половинки цилиндра снова сойдутся.

4. Определите значение угла φ между плоскостью разреза и горизонтом в следующие моменты времени: $t=0,1,0,2,\ldots 1,0$ с. Ускорение свободного падения g=10 м/с². Приведите ответы с относительной погрешностью не более 0,1%.

Задача 4. Пренеприятнейшее известие

Губернатор уездного города N был застигнут пренеприятнейшим известием во время мытья рук. Кусок мыла (однородный куб с ребром а) выскользнул из рук губернатора и упал в раковину полусферической формы. Мыло движется так, что четыре вершины куба скользят по поверхности раковины без отрыва, а трение пренебрежимо мало.

Рис. 2.

Начальная угловая скорость куска мыла представляется в виде суммы $\vec{\omega}_1$ и $\vec{\omega}_2$, как показано на рисунке.

Сторона куба $a=\sqrt{2}/16$ м, $\omega_1=2\omega_2=40/3$ рад/с, g=10 м/ c^2 , R=OC=5a/2. В начальный момент $\alpha=45^\circ$.

- 1. Сколько степеней свободы имеет упавшее мыло?
- 2. Найдите координаты (x, y, z) центра масс мыла через $t = 1, 2, \dots 10$ с.
- 3. Найдите угол, на который повернётся мыло относительно оси OC, в те же моменты времени.

Приведите численные ответы с относительной погрешностью не более $0.1\,\%$.

Задача 5. Торможение спутника

Спутник выведен на круговую орбиту Земли в разреженные слои атмосферы. Вследствие торможения атмосферой спутник начинает снижаться и двигаться по спиралевидной кривой, близкой к круговой. Сила сопротивления воздуха рассчитывается по формуле:

$$\vec{F} = -\rho(h)S\,v\vec{v}$$

где S — площадь поперечного сечения спутника; $\rho(h)$ — плотность атмосферы как функция высоты, которая аппроксимируется формулой $\rho(h) = \rho_0 \exp(-h/h_0)$, где $\rho_0 = 0.001750$ г/см³ — условная плотность атмосферы у поверхности Земли, а $h_0 = 7.7$ км.

Определите отношение $(v_0-v_T)/v_0$, где v_0 и v_T — начальная скорость и скорость спутника через один виток соответственно. Приведите ответ с относительной погрешностью не более $0,1\,\%$. Радиус Земли равен $r_E=6400$ км. Спутник считайте шаром радиуса 30 см со средней плотностью $\rho_s=7,8$ г/см³. Начальная высота орбиты равна:

- 1. $H_1 = 150$ km;
- 2. $H_2 = 130$ km.

Задача 6. Волки целы, овцы сыты

Рассмотрите модель межвидовой конкуренции:

$$\dot{p} = \alpha(p)p - \beta pq,$$

$$\dot{q} = \gamma pq - \mu q,$$

где $\alpha(p)=\gamma(2p-\varepsilon\,p^2)$ — коэффициент, характеризующий «мальтузианский» рост жертвы, $\beta=0.37,\ \gamma=0.06,\ \varepsilon=0.14,\ {\rm a}\ 0.3<\mu<0.6$ — параметр, выражающий скорость вымирания хищника.

- 1. Рассчитайте динамику популяций хищников и жертв в течение $\tau_0=450$ при $\mu_1=0.5$. Начальные условия $p_0=9$, $q_0=2$. Нарисуйте качественный график динамики хищников q. Определите η отношение среднего количества жертв к среднему количеству хищников на участке $\tau=(300,450)$. Приведите ответ с относительной погрешностью не более $0.1\,\%$
- 2. Выполните задание предыдущего пункта при $\mu_2 = 0.4$.
- 3. Выполните задание предыдущего пункта с начальными условиями $p_0=8,\,q_0=1.$
- 4. Нарисуйте качественные графики динамики системы на фазовой плоскости p, q для предыдущих заданий.
- 5. Опишите возможные варианты поведения системы через продолжительное время при различных значениях μ .

- 6. Как зависит поведение системы через продолжительное время от начальных условий.
- 7. Определите граничные значения μ , при которых наблюдается смена качественного поведения системы через продолжительное время.

Задача 7. «Одномерная конвекция»

Мензурка радиуса $r\ll 1$ заполнена до уровня H=1 жидкостью, плотность ρ которой не зависит от давления и практически не зависит от температуры T. В начальный момент времени зависимость температуры жидкости от высоты z имеет вид

$$T_0(z) = \frac{3z}{2}.$$

Температура окружающей среды поддерживается равной

$$T_e(z) = 1 + \frac{1}{2}\sin\frac{5\pi z}{2}.$$

Известно, что жидкость имеет удельную теплоёмкость c и обменивается с окружающей средой теплом только через стенки мензурки, коэффициент теплоотдачи которых $\alpha = \rho cr/2$.

В результате теплообмена с окружающей средой в жидкости происходит конвекция, то есть тёплые слои жидкости расширяются и всплывают вверх под действием силы Архимеда; холодные слои, соответственно, погружаются вниз. Считая, что во время таких передвижений температуры слоёв не изменяются, постройте таблицу значений температуры жидкости T=T(z,t) в точках $z=0,\ 0.1,\ 0.2,\dots 1$ в момент времени t=0.7 с относительной погрешностью не более $0.1\,\%$.

Значения всех величин указаны в системе СИ.

Примечание. Поток тепла в единицу времени через единицу площади стенки мензурки равен произведению коэффициента теплоотдачи α на разность температур жидкости и окружающей среды.

Решения

Задача 1. Удивительный маятник

1. Для ответа на первый вопрос запишем закон сохранения энергии и продифференцируем его:

$$ml^2 \frac{\dot{\varphi}^2}{2} - mgl\cos\varphi = \text{const}, \qquad \ddot{\varphi} = -\frac{g}{l}\sin\varphi.$$

2. Чтобы обезразмерить получившееся уравнение, сделаем замену $t \to \tau \sqrt{l/g}$, тогда

$$\frac{d^2\varphi}{d\tau^2} = -\sin\varphi.$$

Задача 2. Мэр-велосипедист

Введём оси x и y как показано на рисунке 3, и пусть изначально колесо располагалось параллельно осям. Тогда середина стороны M будет точкой касания колеса с дорогой и совпадать с точкой A. Пусть колесо проехало некоторое расстояние и повернулось на угол φ . Поскольку проскальзывание отсутствует, длина дуги кривой AP = MP = s, где P— новая точка касания. Если

Рис. 3.

x, y — координаты точки P, то высота центра колеса O найдётся как:

$$h = y + s\sin\varphi + a\cos\varphi.$$

Найдём смещение dh при небольшом повороте колеса.

$$dh = dy + ds\sin\varphi + s \,d\varphi\cos\varphi - a \,d\varphi\sin\varphi.$$

Приращение $dy = -|PP'|\sin\varphi = -ds\sin\varphi$. Поскольку по условию задачи dh = 0, то получим

$$dh = s \, d\varphi \cos \varphi - a \, d\varphi \sin \varphi = 0, \qquad s = a \operatorname{tg} \varphi.$$

Так как $\operatorname{tg} \varphi = -y'(x)$, где y(x) — уравнение профиля дороги, можно записать:

$$\frac{dy}{dx} = -\frac{s}{a}, \qquad dx^2 + dy^2 = ds^2,$$

Откуда, выбирая знаки согласно рисунку, найдём:

$$dx = \frac{ds}{\sqrt{(s/a)^2 + 1}}, \qquad dy = -\frac{ds}{\sqrt{(a/s)^2 + 1}}.$$

Проинтегрировав полученные выражения придём к выражениям

$$x = x_0 + a \operatorname{arsh} \frac{s}{a}$$
, $y = y_0 - \sqrt{s^2 + a^2} = y_0 - a \operatorname{ch} \frac{x - x_0}{a}$.

Значения x_0 и y_0 зависят от выбора начала координат. Можно их выбрать так, что начало координат будет располагаться в точке касания колеса углом. График такой функции

$$y = a\left(\sqrt{2} - \operatorname{ch}\frac{x - \Delta x}{a}\right), \qquad \Delta x = a \operatorname{arsh} 1 = a \ln(1 + \sqrt{2})$$

при a=1 представлен на рисунке 4. Перепад высот на дороге составляет $a(\sqrt{2}-1)$, элементы дороги длиной $2\Delta x$ повторяются.

Рис. 4.

Задача 3. Самурай и цилиндр

1. Для составления уравнений движения полуцилиндра достаточно использовать закон сохранения энергии.

Для нахождения потенциальной энергии потребуется расстояние δ от центра масс C до линии сечения (рис. 5).

$$\delta = \frac{1}{\pi r^2/2} \iint_D y dx dy = \frac{2}{\pi r^2} \iint_0^{\pi} r^2 \sin \varphi dr d\varphi = \frac{4}{3\pi} r.$$

Потенциальная энергия фигуры равна

$$\Pi = -mg\delta\cos\varphi,$$

где m — масса.

Для нахождения кинетической энергии системы удобно воспользоваться наличием мгновенного центра скоростей P.

$$T = \frac{1}{2} J_P \dot{\varphi}^2$$

Определим J_P , используя теорему Гюйгенса-Штейнера:

$$J_P = J_C + mPC^2.$$

Момент инерции J_C удобно связать с моментом инерции J_O относительно середины сечения (рис. 5), который нетрудно вычислить:

$$J_O = \frac{1}{2}mr^2$$
, $J_O = J_C + m\delta^2$ \Rightarrow $J_C = J_O - m\delta^2$.

Подстановка этого выражения и формулы

$$PC^2 = \delta^2 \sin^2 \varphi + (r - \delta \cos \varphi)^2$$

в выражение для J_P приводит к следующему результату:

$$J_P = \frac{3}{2}mr^2 - 2mr\delta\cos\varphi.$$

Таким образом, закон сохранения энергии примет вид

$$\left(\frac{3}{2}mr^2 - 2mr\delta\cos\varphi\right)\dot{\varphi}^2 = 2mg\delta\cos\varphi,\tag{1}$$

откуда можно выразить $\dot{\varphi}$:

$$\dot{\varphi} = 2\sqrt{\frac{g\delta\cos\varphi}{3r^2 - 4r\delta\cos\varphi}} = 4\sqrt{\frac{\cos\varphi}{9\pi - 16\cos\varphi} \cdot \frac{g}{r}},\tag{2}$$

а можно, продифференцировав (1), получить классическое уравнение движения:

$$\ddot{\varphi} = -\left(\frac{9\pi}{8} - 2\cos\varphi\right)^{-1} \left(\frac{g}{r} + \dot{\varphi}^2\right) \sin\varphi. \tag{3}$$

2. Максимальная угловая скорость, очевидно, соответствует минимуму потенциальной энергии, который достигается при $\varphi = 0$. Подставляя эту величину в выражение для угловой скорости $\dot{\varphi}$, получим:

$$\dot{\varphi}_{\text{max}} = 4\sqrt{\frac{1}{9\pi - 16} \cdot \frac{g}{r}} = 11.4 \text{ c}^{-1}.$$

3. Для того, чтобы найти период получившихся колебаний, можно либо проинтегрировать дифференциальное уравнение (2), либо записать:

$$\frac{dt}{d\varphi} = \sqrt{\frac{3r^2 - 4r\delta\cos\varphi}{4g\delta\cos\varphi}} = \sqrt{\frac{9\pi - 16\cos\varphi}{16\cos\varphi} \cdot \frac{r}{g}}.$$
 (4)

Проинтегрировав (4) от начального положения до положения равновесия, получим значение четверти периода. Таким образом, период:

$$\tau = 4\sqrt{\frac{r}{g}} \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{9\pi}{16\cos\varphi} - 1} \, d\varphi = 1{,}19 \text{ c.}$$

4. Интегрирование (3) даёт:

Значения φ приведены в таблице по абсолютной величине. График $\varphi(t)$ приведён на рис. 6.

Рис. 6.

Задача 4. Пренеприятнейшее известие

Движущееся в раковине мыло фактически представляет собой твёрдое тело с неподвижной точкой O, у которого, как известно, три степени свободы. В качестве обобщённых координат можно выбрать углы Эйлера φ , ψ , θ . Тогда координаты центра масс куба могут быть представлены следующим образом:

$$x = R \sin \theta \cos \psi,$$

$$y = R \sin \theta \sin \psi,$$

$$z = R \cos \theta.$$

Для угловых скоростей ω_1 и ω_2 в начальный момент времени справедливо:

$$\omega_1 = \dot{\varphi} - \frac{\dot{\psi}}{\sqrt{2}}, \qquad \omega_2 = \frac{\dot{\psi}}{\sqrt{2}}.$$

Выразив $\dot{\varphi}$ и $\dot{\psi}$ через известные данные, получим:

$$\dot{\psi} = \omega_2 \sqrt{2}, \qquad \dot{\varphi} = \omega_1 + \omega_2.$$

Угол нутации между угловыми скоростями $\vec{\dot{\varphi}}$ и $\vec{\dot{\psi}}$ равен $\theta=3\pi/4.$

Момент инерции куба относительно оси OC:

$$C = \frac{ma^2}{6}.$$

Момент инерции относительно оси Ox для начального положения по теореме Γ юйгенса—Штейнера

$$A = \frac{ma^2}{6} + mR^2.$$

Момент внешних сил относительно точки O создаётся силой тяжести $M_O = mgR/\sqrt{2}$.

Подставим полученные данные в основную формулу гироскопии:

$$M_O = \vec{\psi} \times \vec{\varphi} \left(C + (C - A) \frac{\dot{\psi}}{\dot{\varphi}} \cos \theta \right).$$

В проекции на ось x получим

$$\frac{mgR}{\sqrt{2}} = \omega_2(\omega_1 + \omega_2) \left(\frac{ma^2}{6} + mR^2 \frac{\omega_2}{\omega_1 + \omega_2} \right).$$

Разделив получившееся равенство на ma^2 и подставив численные значения, получим верное равенство.

Таким образом, начальные условия движения куска мыла удовлетворяют основному уравнению гироскопии. Следовательно, движение будет регулярной прецессией. Во все время движения остаются неизменными величины $\theta=3\pi/4$, а также $\dot{\psi}=20\sqrt{2}/3$ рад/с и $\dot{\varphi}=20$ рад/с.

Пусть в начальный момент $\varphi=0,\ \psi=0,$ тогда координаты центра масс меняются по закону:

$$x = \frac{1}{\sqrt{2}}R\cos\dot{\psi}t,$$

$$y = \frac{1}{\sqrt{2}}R\sin\dot{\psi}t,$$

$$z = \frac{1}{\sqrt{2}}R = \text{const}.$$

Поворот вокруг собственной оси происходит с постоянной по модулю угловой скоростью $\dot{\varphi}$. Угол поворота

$$\varphi(t) = \dot{\varphi}t$$

Приведём численные ответы в виде таблицы:

t	x	y	z	φ
1	$0,\!000518$	$0,\!156$	-0,156	20
2	-0,00104	-0,156	-0,156	40
3	$0,\!00155$	$0,\!156$	-0,156	60
4	$-0,\!00207$	-0,156	-0,156	80
5	$0,\!00259$	0,156	-0,156	100
6	-0,00311	-0,156	-0,156	120
7	$0,\!00362$	0,156	-0,156	140
8	$-0,\!00414$	-0,156	-0,156	160
9	$0,\!00466$	0,156	-0,156	180
10	-0,00517	-0,156	-0,156	200

Задача 5. Торможение спутника

Введем обозначения: M, R, ρ_s , v — масса, радиус, плотность и скорость спутника соответственно, m — масса Земли. Масса и поперечная площадь спутника равны:

$$M = \frac{4}{3}\rho_s \pi R^3,$$
$$S = \pi R^2.$$

Запишем уравнения движения спутника в полярной системе координат (r, φ) с началом отсчёта в центре Земли.

$$\ddot{r} = r\dot{\varphi}^2 - \frac{Gm}{r^2} + f\dot{r},$$

$$r\ddot{\varphi} = -2\dot{r}\dot{\varphi} + fr\dot{\varphi}.$$

Мы ввели обозначение

$$f = -\rho(h)v\frac{S}{M},$$

где скорость спутника равна $v=\sqrt{\dot{r}^2+(r\dot{\varphi})^2}$ Обезразмерим систему. Для этого отнормируем расстояния на r_E , а время на $\omega_0=Gm/r_0^3$

$$t \to t' = t\omega_0,$$

 $r \to r' = \frac{r}{r_E}.$

В новых переменных уравнения движения имеют вид

$$\ddot{r} = r\dot{\varphi}^2 - \frac{1}{r^2} + f\dot{r},$$

$$\ddot{\varphi} = -\frac{2\dot{r}\dot{\varphi}}{r} + f\dot{\varphi}.$$

Теперь уже

$$f = -\frac{3}{4} \frac{\rho(h)}{\rho_s} \frac{r_E}{R} v.$$

а скорость спутника v вычисляется по прежней формуле. Начальные условия для нашей системы таковы:

$$\begin{split} r(0) &= 1 + \frac{H_0}{r_E}, \\ \varphi(0) &= 0, \\ \dot{r}(0) &= 0, \\ \dot{\varphi}(0) &= r(0)^{-3/2}. \end{split}$$

Численно решив систему уравнений, находим момент времени T, когда спутник завершит первый оборот: $\varphi(T)=2\pi$, и искомое отношение скоростей. В первом случае численный расчет дает T=6.50456 и

$$\frac{v(0) - v(T)}{v(0)} = -8,557 \cdot 10^{-5}.$$

При падении спутника его скорость возрастает.

Во втором случае спутник упадет на Землю уже на первом витке (точнее, еще раньше сгорит в плотных слоях атмосферы), поскольку в момент времени $t_1=6{,}41$:

$$r(t_1) = 1,000,$$

 $\varphi(t_1) = 6,062 < 2\pi.$

Задача 6. Волки целы, овцы сыты

Поскольку первые 4 пункта задачи сводятся к численному интегрированию предложенной системы, приведём здесь полученные графики (рис. 7).

Выражение для η :

$$\eta = \frac{\int_{300}^{450} p(\tau)d\tau}{\int_{300}^{450} q(\tau)d\tau}, \qquad \eta_1 = 7,40, \qquad \eta_2 = 6,63, \qquad \eta_3 = 6,80.$$

Графики полученных траекторий движения представлены на рисунке ??.

По фазовым траекториям можно описать эволюцию системы. Видно, что при $\mu = \mu_1$ количество хищников и жертв стремятся к некоторым фиксированным значениям, а при $\mu = \mu_2$ система меняется по закону, асимптотически близкому к периодическому (стремится к предельному циклу).

Прежде чем перейти к детальному анализу системы избавимся от большинства коэффициентов перенормировкой. Положим:

$$p \to x/\varepsilon$$
, $q \to y\beta\gamma/\varepsilon$, $\tau \to t\varepsilon/\gamma$, $\mu \to m\gamma/\varepsilon$.

Тогда уравнения движения приобретут вид

$$\dot{x} = (2x - x^2)x - xy,$$

$$\dot{y} = xy - my,$$

где параметр 0.7 < m < 1.4.

Найдём особые точки системы $(\dot{x}=\dot{y}=0)$. Такими точками будут

$$O = (0,0),$$
 $A = (2,0),$ $Q = (m, 2m - m^2).$

Для того, чтобы проанализировать поведение системы запишем матрицу Якоби системы:

$$J = \begin{pmatrix} 4x - 3x^2 - y & -x \\ y & -m + x \end{pmatrix}$$

Для точки O собственными значениями матрицы J являются $\lambda=0,\ -m$. Заметим, что вдоль оси x вблизи точки O $\dot{x}=2x^2-x^3>0$, таким образом точка O— седло (так как в разных направлениях есть как притягивающие, так и отталкивающие векторы).

Для точки $A \lambda = -4, 2-m$. Поскольку при заданных значениях параметра собственные значения имеют разные знаки, то заключаем, что и эта точка является седлом.

Собственные значения матрицы J для точки Q в заданном диапазоне параметра m являются комплексными $\lambda = m - m^2 \pm im\sqrt{1+m-m^2}$. Откуда следует, что при m>1 ($\mu>\gamma/\varepsilon=0,429$) точка Q является устойчивым (притягивающим) фокусом, причём, используя результаты численных вычислений можно показать, что при этом не существует предельных циклов. Таким образом, при любых начальных условиях система через некоторое время окажется в точке Q (пункт 1).

Рис. 9.

При m<1 точка Q является неустойчивым (отталкивающим) фокусом. Проинтегрировав систему при нескольких значениях параметра, можно прийти к выводу, что для этого случая существует предельный цикл, к которому стремится система либо

снаружи (как в пункте 2), либо изнутри (как в пункте 3).

Из тех же соображений можно показать, что при m=1 точка Q является притягивающим фокусом.

Результаты анализа продемонстрированы на фазовых диаграммах (рис. ??).

Таким образом, при $\mu \geqslant \gamma/\varepsilon = 0.429$ система совершает затухающие колебания вокруг устойчивого фокуса, а при $\mu < \gamma/\varepsilon$ стремится к предельному циклу, причём от начальных условий может зависеть только фаза предельных популяционных волн, но никак не амплитуда или форма.

Задача 7. «Одномерная конвекция»

Построим модель, описывающую зависимость T=T(z,t) температуры жидкости от времени t и высоты z.

Тепловая энергия слоя жидкости высотой h, где $r \ll h \ll H$, находящегося на уровне z, равна $Q \approx cT(z,t)\pi r^2h\rho$. Если конвекция отсутствует, то Q может измениться только за счёт теплообмена с окружающей средой:

$$\partial Q/\partial t = \alpha (T_e - T)2\pi rh.$$

(Вертикальными тепловыми потоками в жидкости здесь можно пренебречь, так как $r \ll h$.) Раскрыв скобки и учитывая соотношение $2\alpha = \rho cr$ мы получим уравнение

$$\partial T/\partial t = T_e - T. \tag{5}$$

Для учёта конвекции разобъём весь столб жидкости на n ячеек высотой H/n, где $n \in \mathbb{N}$ таково, что $r \ll H/n \ll H$. Тогда дискретный аналог уравнения (??) имеет вид

$$T_k^{s+1} = T_k^s + (T_e(z_k) - T_k^s)\tau,$$

где $\tau>0$ — шаг по времени, $s\in\mathbb{N}$ — номер шага по времени, $z_k=kH/n$ и T_k^s — температура k-той ячейки при $t=s\tau$.

Если в некоторый момент времени окажется, что $T_k^s < T_l^s$ при l < k, ячейка $\mathbb{N}l$ начнёт всплывать под действием силы Архимеда, а ячейка $\mathbb{N}k$ будет погружаться под действием силы тяжести. Этот процесс будет продолжаться до тех пор, пока числа

 $\{T_k^s\}_{k=1,2,\dots n}$ не станут упорядочены по возрастанию. По условию конвекция происходит значительно быстрее, чем теплообмен, поэтому длительность данного процесса можно считать малой по сравнению с τ . В связи с этим модель конвекции рассматриваемой жидкости принимает вид

$$T_k^{s+1/2} = T_k^s + (T_e(z_k) - T_k^s) \tau,$$

 $T_k^{s+1} = (T_k^{s+1/2})^{\sharp},$

где $(\cdot)^{\sharp}$ означает сортировку по возрастанию (по индексу k).

Применив численные расчёты при n=100 и $\tau=0{,}001$, получим зависимость температуры от высоты при $t=0{,}7$, график которой представлен на рисунке $\ref{eq:total_substitution}$? Требуемые значения представлены в таблице.

Рис. 10.