Transfer Learning with CNN

Mai H. Nguyen, Ph.D.

What is Transfer Learning?

- To overcome challenges of training model from scratch:
 - Insufficient data
 - Very long training time
- Use pre-trained model
 - Trained on another dataset
 - This serves as starting point for model
 - Then train model on current dataset for current task

Transfer Learning Approaches

Feature extraction

- Remove last fully connected layer from pre-trained model
- Treat rest of network as feature extractor
- Use features to train new classifier ("top model")

Fine tuning

- Tune weights in some layers of original model (along with weights of top model)
- Train model for current task using new dataset

CNNs for Transfer Learning

Popular architectures

- AlexNet
- GoogLeNet
- VGGNet
- ResNet

All winners of ILSVRC

- ImageNet Large Scale Visual Recognition Challenge
- Annual competition on vision tasks on ImageNet data

ImageNet

Database

- Developed for computer vision research
- > 14,000,000 images hand-annotated
- > 22,000 categories

ILSVRC History

- Started in 2010
- Image classification task: 1,000 object categories
- Image classification error rate
 - 2011: ~25% (conventional image processing techniques)
 - 2012: 15.3% (AlexNet)
 - 2015: 3.57% (ResNet; better than human performance)
 - 2016: 2.99% (16.7% error reduction)
 - 2017: 2.25% (23.3% error reduction)

Why Does Transfer Learning Work?

Lee et al. 'Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations' ICML 2009

VGG as Pre-Trained Network

Transfer Learning – Feature Extraction

Transfer Learning – Fine Tuning

When & How to Fine Tune

- New dataset is small & similar to original dataset
 - Extract features from higher layer and feed to separate classifier
- New dataset is large & similar to original dataset
 - Fine tune top or all layers
- New dataset is small & different from original dataset
 - Extract features from lower layer and feed to separate classifier
- New dataset is large & different from original dataset
 - Fine tune top or all layers

Other Practical Tips

Learning rate

 Use very small learning rate for fine tuning. Don't want to destroy what was already learned.

Start with properly trained weights

- Train top-level classifier first, then fine tune lower layers.
- Top model with random weights may have negative effects on when fine tuning weights in pre-trained model

Data augmentation

- Simple ways to slightly alter images
 - Horizontal/vertical flips, random crops, translations, rotations, etc.
- Use to artificially expand your dataset

Transfer Learning Hands-On

Data

Cats and dogs images from Kaggle

Exercises

- Feature extraction
 - Use pre-trained CNN to extract features from images
 - Train neural network to classify cats/dogs using extract features
- Fine tune
 - Adjust weights of last few layers of pre-trained CNN through training

Feature Extraction

Data

Cats and dogs images from Kaggle

Method

- Use VGG16 trained on ImageNet data as pre-trained model.
 Remove last fully connected layer.
- Extract features from pre-trained model and save
- Neural network then trained on extracted features to classify cats vs. dogs

Transfer Learning – Feature Extraction

Get Latest from Github Repo

- If haven't cloned Summer Institute repo
 - git clone <URL>
- If already cloned Summer Institute repo
 - git pull <URL>
- <URL>

https://github.com/sdsc/sdsc-summer-institute-2020

Server Setup

Set up server

- In terminal window: start_python_gpu
- Should get something like this:

Your notebook is here:

https://unkind-illicitly-mutt.comet-user-content.sdsc.edu?token=6615bbdb1a8e0fbe3ad948fb52678133 Submitted batch job 35032027

Connect to jupyter notebook

In browser, paste URL of notebook from above step

Check queue

squeue –u \$USER

Data Setup

In terminal window, do the following:

- Create soft link to data
 - In –s ~/ML-data/data data
- Get counts of images
 - Is –I data/train/cats/* | wc -I
 - Is –I data/train/dogs/* | wc -I
 - Is –I data/validation/cats/* | wc -I
 - Is –I data/validation/dogs/* | wc -I

Data Description

- Subset of Kaggle cats and dogs dataset
- Train
 - 1000 cats + 1000 dogs
- Validation
 - 400 cats + 400 dogs

Open features.ipynb Notebook

Import Modules

```
import keras
```

```
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Dropout, Flatten, Dense
from keras import backend as K
from keras import applications
import numpy as np
```


Print Keras & TensorFlow Versions

```
import tensorflow as tf
print (tf.__version__)
print (keras.__version__)
```

Set Data Parameters

- Set image dimensions
 - img_width, img_height = 150, 150
- Set data location
 - train_data_dir = 'data/train'
 - validation data dir = 'data/validation'
- Set number of images
 - nb_train_samples = 2000
 - nb_validation_samples = 800

(150, 150, 3)

Method to Extract Features from Pre-Trained Network

def save_features():

. . .

- 1. Scale pixel values in each image
- 2. Load weights for pre-trained network without top classifier
- 3. Generator reads images from subdir, batch_size number of images at a time.
- 4. Feed images through pre-trained network and extract features
- 5. Save features
- 6. Repeat 3-5 for validation data

Call Method to Extract & Save Features

save_features()

Found 2000 images belonging to 2 classes. Found 800 images belonging to 2 classes.

Layer (type)	Output Shape Param #
input_2 (InputLayer)	(None, None, None, 3) 0
block1_conv1 (Conv2D)	(None, None, None, 64) 1792
block1_conv2 (Conv2D)	(None, None, None, 64) 36928
block1_pool (MaxPooling2D)	(None, None, None, 64) 0
block2_conv1 (Conv2D)	(None, None, None, 128) 73856
block2_conv2 (Conv2D)	(None, None, None, 128) 147584
block2_pool (MaxPooling2D)	(None, None, None, 128) 0

Load Saved Features

- Add name of file containing saved features
 - For train data
 train_data = np.load ('features_train.npy')
 - For validation data
 validation_data = np.load ('features_validation.npy')

(2000,) (800,)

Create Top Model to Classify Extracted Features

Model

- Fully connected layer from input to hidden
 - 256 nodes in hidden layer
 - Rectified linear activation function
- Fully connected layer from hidden to output
 - 1 node in output layer (cat or dog)
 - Sigmoid activation function

Train Top Model

- Set number of training iterations
 - epochs = 50
- Train model, keeping track of history

Save Model and Weights

- Add name for model files
 - top_model_file = 'features_model'
- Save model and weights

```
# Save model & weights to HDF5 file
top_model_file = 'features_model'
top_model.save(top_model_file + '.h5')

# Save model to JSON file & weights to HDF5 file
top_model_json = top_model.to_json()
with open(top_model_file + '.json','w') as json_file:
    json_file.write(top_model_json)
top_model.save_weights(top_model_file+'-wts.h5')
```

Test Model on Validation Data

Get prediction results on validation data

- Load model again and re-test
 - Results should be the same
- Validation accuracy on CNN trained from scratch
 - ~80%

Print History & Plot Performance Measures

Print training history

```
print (hist.history)
{'val_loss': [0.28850417032837866, 0.24813641868531705,
7, 0.2573309687711298, 0.3192743479809724, 0.3218871263
5471637994, 0.47818609615555036, 0.5811367122687807, 0.
5, 0.4588139251829125, 0.45057276758830994, 0.595243040
```

Plot accuracy

Exit Notebook

Fine Tuning Hands-On

Data

Cats and dogs images from Kaggle

Method

- Use VGG16 trained on ImageNet data as pre-trained model.
- Replace last fully connected layer with neural network trained from Feature Extraction hands-on.
- Fine tune last convolution block and fully connected layer.

Transfer Learning – Fine Tuning

Open fine-tune.ipynb Notebook

Set Data Parameters

- Set image dimensions
 - img_width, img_height = 150, 150
- Set data location
 - train_data_dir = 'data/train'
 - validation data dir = 'data/validation'
- Set number of images
 - nb_train_samples = 2000
 - nb_validation_samples = 800

(150, 150, 3)

Load Pre-Trained CNN

Load pre-trained model without last fully connected layer

Print out base model summary

```
base_model.summary()
```

Transfer Learning – Fine Tuning

Create Top Model

- Create top model
 - Create fully connected layer as top model and connect to pre-trained base model
- Load top model's weights
 - Weights are in 'features_model_wts.h5'
- Add top model to base CNN to create model
- Freeze weights

```
for layer in model.layers[:15]

layer.trainable = False
```

- Compile model
- Print out model summary

```
model.summary()
```

Model

Original Model

Total params: 14,714,688

Trainable params: 14,714,688

Non-trainable params: 0

Freeze some weights

```
# Freeze weights in CNN up to last Conv block
for layer in model.layers[:15]:
    layer.trainable = False
```

Total params: 16,812,353

Trainable params: 9,177,089

Non-trainable params: 7,635,264

Prepare Data

Set batch size

Set batch size for train generator

```
train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary',
    seed=seed)
```

Fine Tune Model

Set number of training epochs

```
epochs = 5
```

Set batch size for train_generator

```
from keras.callbacks import History
hist = model.fit _generator(
  train generator,
  steps per epoch = nb train samples // batch size,
  epochs = epochs,
  validation_data = validation_generator,
  validation steps = nb validation samples // batch size,
  initial epoch=0,
  verbose = 2)
```

Get Classification Results

Get classification results after fine tuning

```
results = model.evaluate generator(
        train generator,
        steps=nb train samples // batch size)
print (results)
results = model.evaluate generator(
        validation generator,
        steps=nb validation samples // batch size)
print (results)
```

Save Model and Weights

Save model & weights
 model file = 'finetune'

Get results on validation set

```
print (model.metrics_names)
results = model.evaluate_generator(
     validation_generator,
     steps = nb_validationsamaples // batch_size)
print (results)
```

Print Training History

Print historyprint (hist.history)

Predict Class of Image

Use model to predict class of image

```
result = model.predict(x) 
print ("Prediction probability: ", result)
```

Clean Up

- Exit notebook
 - File -> Close and Halt
- Exit Jupyter Notebook
 - Click on 'Logout'

References

- F. Chollet. The Keras Blog.
 - https://blog.keras.io/building-powerful-image-classificationmodels-using-very-little-data.html
- ImageNet
 - http://www.image-net.org/
- Transfer Learning
 - http://cs231n.github.io/transfer-learning/
- Satellite Image Analysis Use Case
 - https://ieeexplore.ieee.org/abstract/document/8109118?casa_token=TCdQ0a SgBjgAAAAA:fQUwcByPhSuByj_8u2iTII_kLh9BPKISq6akqSK04SwBKKV1Yp rcVoezhcjpWcpIDxIXdtlF

