Disaster Tweets Prediction Using BERT

Ran Liu

Institute of Information Engineering Chinese Academy of Sciences

November 8, 2022

Overview

Problem Definition

Related Work and Challenges

Dataset

Methodology

Results

Problem Definition

Disaster Tweets Prediction
Problem Description

Related Work and Challenges

Related Work - Text Classification Challenges

Dataset

Data Details
Data Statistics

Methodology

Input Format Model Detils

Disaster Tweets Prediction

Problem Description

Related Work and Challenges

Dataset

Methodology

Results

Problem Definition

Disaster Tweets Prediction

Problem Definition

Disaster Tweets Prediction

Problem Description

Related Work and Challenges

Dataga

Methodology

Results

- Twitter has become an important communication channel in times of emergency.
- But, it's not always clear whether a person's words are actually announcing a disaster.

LOOK AT THE SKY LAST NIGHT IT WAS ABLAZE!

مف

- The author explicitly uses the word "ABLAZE" which is related to disaster.
- But it is an exaggerated expression.

Problem Description

Problem Definition

Disaster Tweets Prediction

Problem Description

Related Work and Challenges

Dataset

Methodology

Results

Given a set of labeled data which we will use to train a classifier and use it to predict whether a tweet is about disaster or not.

- The training set was collected from Twitter
- It has been labeled manually.
- A binary classification problem.
- F1 score is evaluation metric.

Related Work and Challenges

Related Work - Text Classification

Challenges

Dataset

Methodology

Results

Related Work and Challenges

Related Work - Text Classification

Problem Definition

Related Work and Challenges

Related Work - Text Classification

Challenges

Methodology

Results

- Existing Methods Rule-Based Methods
 - Rule-based methods classify text into different categories using a set of pre-defined rules.

Disadvantages

- Require a deep domain knowledge.
- Require a lot of manpower and time.
- When facing a new problem,
 previous rules may become useless.

Advantages

- ◆ Fast
- ◆ Easy
- ◆ Interpretable

Related Work - Text Classification

Problem Definition

Related Work and Challenges

Related Work - Text Classification

Challenges

Dataset

Methodology

Results

- Existing Methods Traditional Machine Learning (Statistical methods)
 - ◆ Naïve Bayes, Support Vector Machines, Hidden Markov Model, Random Forests...

Disadvantages

- Reliance on the handcrafted features.
- Cannot take full advantage of large training data because the features are pre-defined.

Advantages

 More accurate than rule-based methods.

Related Work - Text Classification

Problem Definition

Related Work and Challenges

Related Work - Text Classification

Challenges

Dataset

Methodology

Results

- Existing Methods Deep Learning
 - Convolutional Neural Network, Long Short-Term Memory Network...

Disadvantages

- Reliance on large amount of training data.
- Weak Interpretability.

Advantages

- ◆ Capture deep contexual features.
- ◆ Greatly improve accuracy.

Challenges

Problem Definition

Related Work and Challenges

Related Work - Text Classification

Challenges

Dataset

Methodology

- How to capture deep features?
 - Models should have the ability to capture deep features.
 - ◆ Generalization of models need to be improved.

Challenges

Problem Definition

Related Work and Challenges

Related Work - Text Classification

Challenges

Dataset

Methodology

- Limited dataset.
 - ◆ Cannot train a model from scratch.
 - ◆ Although dataset is small, performance of model still needs to meet the requirements.

Related Work and Challenges

Dataset

Data Details

Data Statistics

Methodology

Results

Dataset

Data Details

Problem Definition

Related Work and Challenges

Dataset

Data Details

Data Statistics

Methodology

Table 1: Data structure

Term	Example
id	210
keyword	airplain accident
location	Eagle Pass, Texas
text	A Cessna airplane accident in Mexico
label	1

Data Statistics

- 1 :		D 0	
Prob.	lem	Defi	nition

Related Work and Challenges

Dataset

Data Details

Data Statistics

Methodology

Results

Number of each label in training set.

Table 2: Number of each label

label	Number
1	3721
0	3892
total	7613

Data Statistics

Problem Definition

Related Work and Challenges

Dataset

Data Details

Data Statistics

Methodology

- Character length of text in training set.
 - ◆ max: 157 min: 7

Figure 1: Distribution of Character Length

Data Statistics

Problem Definition

Related Work and Challenges

Dataset

Data Details

Methodology

- Token length of text in training set.
 - max: 84 min: 3

Figure 2: Distribution of Token Length

Related Work and Challenges

Dataset

Methodology

Input Format

Model Detils

Results

Methodology

Input Format

Problem Definition

Related Work and Challenges

Dataset

Methodology

Input Format

Model Detils

Results

Original text:

Three people died from the heat wave so far.

- Input format:
 - ♦ token vector:

```
[ 101, 2093, 2111, 2351, 2013, 1996, 3684, 4400, 2061, 2521, 102, 0, 0, 0, ... ]
```

• mask vector:

```
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, \dots]
```

• segment vector:

Model Detils

Problem Definition

Related Work and Challenges

Dataset

Methodology

Input Format

Model Detils

Table 3: Model details

Model	Layer	Hidden	Attention	Mask	Do lower
bert-base-cased	12	768	12	Token	False
bert-base-uncased	12	768	12	Token	True
bert-large-cased	24	1024	16	Token	False
bert-large-uncased	24	1024	16	Token	True
bert-large-wwm-cased	24	1024	16	Span	False
bert-large-wwm-uncased	24	1024	16	Span	True

Model Detils

Problem Definition

Related Work and Challenges

Dataset

Methodology

Input Format

Model Detils

Table 4: Training setup

Name	Value	
Token length	256	
Dropout rate	0.1	
Optimizer	Adam	
Learning rate	5e-5, 3e-5, 2e-5	
eta_1	0.9	
eta_2	0.999	
Train: Validation	8: 2	
Batch size	16	
Number of epochs	3	

Related Work and Challenges

Dataset

Methodology

Results

Results

Problem Definition

Related Work and Challenges

Dataset

Methodology

Results

 $F_1 \ score = \frac{2 * precision * recall}{precision + recall}$

Rank: 21/887 (2.3 %)

Table 5: Results

Model	$F_1\ score$
bert-base-cased	0.825
bert-base-uncased	0.831
bert-large-cased	0.830
bert-large-uncased	0.848
bert-large-wwm-cased	0.828
bert-large-wwm-uncased	0.825

Contact Information

Ph.D Student Ran Liu
Institute of Information Engineering
Chinese Academic of Science, Beijing, China

LIURAN@IIE.AC.CN

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING