【实验目的】

- 1. 了解分光计时结构:
- 2. 学会正确的分光计调节和使用方法;
- 3.利用分光计测量三棱镜所顶角。

【实验原理】(电学、光学画出原理图)

1. 反射右测量三棱镜,梭角 楼用: 三楼道相邻两光学平面 ROOK R 之间的夹角环为核角。

如图,平行光PQ、P'Q'分割经AB、

AC雨反射,有入射角=反射角=%°-4A

因此 Lpar = Lp'0'R' = 180° - LA

: 射成 QR、Q'R'来自为 >60°-2(180°-4A)=2(A

即 a = 2/A, a 可通过两次望远镜的夹面测得,即测得三棱镜棱面/A.

为消除仪器偏差,取 α = 01+01,因此

$$\angle_{A} = \frac{|\angle_{EI} - \angle_{EI}| + |\angle_{EI} - \angle_{EI}|}{4}$$

在载初平台上放一镜面垂直于望远镜光轴所 平面区射镜。调节亮十字与物镜间附距离。如果 亮十字恰好处于初镜们底平面上,则亮十字上任 意一点经初税变为平圻光。该平行光均反射税反 射回来,经韧镜后所成图亮+字像应准确地处 在亮十字所在平面上(如图3所示。可利用光路可 逆验证)。此时望远镜已调焦无容远了。这种调 焦方去环为自住在法。

0 3

3

6

6

【实验内容】(重点说明)

1、分光计附调整

(1) 粗调。

在载初台上放一境、面垂直于望远镜光轴的平面反射镜,通过目测法初步凋整,便重远镜光轴、载初台平面与分光计中心轴大致垂直,

(2) 望远镜惘底至无穷远。

将平面竟置于我切平台上;调节目镜滚轮使清晰看到"丰"形叉丝;调节望远镜倾科螺钉、微微左右移动至找到亮十字像;调节望远镜十字凋焦螺钉,至看到情断时亮十字像;调节望远镜倾斜螺钉使亮十字像与"丰"形叉丝重合。

- (3)调整望远镜光轴、载刊台平面与分光计中心转轴垂直。
 - ① 在载初台任两个调节螺打间垂直放置反射镜面,微调型远镜倾斜螺钉、将载彻台旋转180°,逐为逼近使亮十字像与"丰"形义丝附上刻纸重合。
 - ② 将反射镜 改在与上述两螺钉平近的平台直经上,调节第三个螺钉,使得高于字像与"丰"形义丝的上刻线重合
- (4)调整平行管光轴与分光计中心转轴垂直
- 2. 测量三棱镜酸雨

参见[实验原理]1.

【实验器材及注意事项】

- 1、实验器材
- (1) 望立镜

(2)平行光管

若狭後器恰位于透镜焦平面处 则由映缝入射图光束经透镜即为平行光

两种故量方法

• 为调节螺钉

(4)读数装置

袁数璐桥窗有I窗和Ⅱ窗两 个,读数取平对值,可稍除中心 轴函配存在附偏心。

2.注意事项

分光计在实验中通常用来 测量光通过各种光学之 件后的偏转角度,因此必 须保证:

- (1)入射光线是平行光(平 介光官);
- (2) 望远镜施接收平近光(调焦至无焓远);
- (3) 平行光管与望远镜 听光轴和分光计中心轴垂直。

【数据处理与结果】

实验	左		左		- 1/- / 1	./ / .	,
次数	I衡	16	工值	正法	[4左1-4左1	1左正一左正	ZA
1	71°2'	251°2′	311°7'	131°1'	22°911	120°1′	192.62
2	98°51′	278°50	338°58'	158821	119°53'	119.59,	'82°°
3	127°71	307010	7012	187°9′	119"55"	120°1'	19.59'
4	105°12′	≥85°13'	345°14'	162.8,	119°58'	Z°0≤1	60°1'
5	67°53'	247°52′	7°7°57'	127°51'	119°56'	120°1′	29°29'
6	86°31'	266°32'	326°32'	146°25′	119°59′	120°71	60° 2'

取 6 次数据平均:

$$\overline{\angle_{A}} = \frac{\sum_{i=1}^{6} \angle_{A_i}}{6} = 60^{\circ}0'$$

计算不确定度:

$$U_{A} = \sqrt{\frac{1}{6x5}} \frac{5}{12} (L_{Ai} - \overline{L_{A}})^{2} = 0.7$$
 $U_{B} = \frac{\Delta Q}{\sqrt{3}} = \frac{1'}{\sqrt{3}} = 0.6'$
合成标准不确定度 $U = \sqrt{U_{A} + U_{B}} = 1.0'$

故对 LA 的测量结果

$$\angle A = 60^{\circ}0^{1} \pm 1.0^{1}$$

【误差分析】

1. 偏心误差(已由1、11两窗读数取平对指除):

由于望远镜、平疗光管的光轴不一定通过分光叶的中心轴,因此复数可吃存在误差。但我们使用I、I两窗底数即平均,可以循际可吃存在的偏心差,从仰消除这一误差。

- 2. 仪器可能存在旳误差,如仪器老化、刻度不准、仪器热胀冷缩等。
- 3. 读数时可能导致人为误差,如不能很好地分辨与雨游标刻纸对齐的刻线。

如[数据处理]显示,不确定度仪1′,表示本次实验较为精准。

【实验心得及思考题】

嗯考题 1.

思考题工

应调节平台倾斜度. 理由如石图所亦。

(1)如果三核镜顶角太靠两侧,则平于先只在一个面上反射,另一侧观测不到反射光(2)如果三棱镜顶角太靠前/靠后,则反射光战轻准在望远镜中观测

因此,三核竟顶角应接近平台中心停上一点的位置,保证可以正确观测达果:

