Experimentelle Übungen I

Versuchsprotokoll M3

Elastizität

Hauke Hawighorst, Jörn Sieveneck

Gruppe 9

 $\verb|h.hawighorst@uni-muenster.de|$

j_siev11@uni-muenster.de

betreut von

Christian Thiede

6. Dezember 2017

Inhaltsverzeichnis

1.	Zusammenfassung	1
2.	Torsionsschwingung	1
	2.1. Methoden	1
	2.2. Daten und Analyse	1
	2.3. Diskussion	1
3.	Schlussfolgerung	1
Α.	. Anhang	2
	A.1. Verwendete Gleichungen	2

1. Zusammenfassung

2. Torsionsschwingung

2.1. Methoden

Zylinder

Hantel

2.2. Daten und Analyse

Tabelle 1: Messdaten des Torsionspendels mit Zylinder

Messgröße	Messwert
Länge des Drahtes L	$(1.8150 \pm 0.0004) \mathrm{m}$
Masse des Zylinders m_z	$2,648\mathrm{kg}$
Radius des Zylinders R_z	$(0.0735 \pm 0.0004) \mathrm{m}$
Radius des Drahtes	$(2,500 \pm 0,002) \cdot 10^{-4} \mathrm{m}$
Gemittelte Schwingungsdauer T	$(97,74 \pm 0,11) \mathrm{s}$

2.3. Diskussion

3. Schlussfolgerung

A. Anhang

A.1. Verwendete Gleichungen

Standardunsicherheit der Rechteckverteilung u für die Intervallbreite a:

$$u = \frac{a}{2\sqrt{3}} \tag{A.1}$$

Standardunsicherheit der Dreieckverteilung u:

$$u = \frac{a}{2\sqrt{6}} \tag{A.2}$$

Standardunsicherheit des Mittelwertes der Normalverteilung u für die Messwerte x_i und den Mittelwert \bar{x} :

$$u(\bar{x}) = t_p \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}}$$
(A.3)

Kominierte Standartunsicherheit der Messgröße $g(x_i)$

$$u(g(x_i)) = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial g}{\partial x_i} u(x_i)\right)^2}$$
(A.4)