Compressed sensing

The Group 20 July 2015

High dimensional spaces

Curse of dimensionality:

- Undersampling (M << N)
- Difficult to do statistics
- Counter-intuitive

For an entertaining illustration, see Bushdid, Science (2014) M Meister, eLife (2015)

Sparsity

How to take advantage of sparsity?

Want to:

- Extract relevant dimensions
- Reduce measurement redundancy

Random projections

N dimensions
K-sparse signal

Project along
M random directions

M > O(K log(N/K)) random projections guarantee perfect signal reconstruction

Take measurements:

$$x_{\mu} = \mathbf{b}^{\mu} \cdot \mathbf{u}^{0}$$
$$\mu = 1, \dots, M$$

B must be incoherent with respect to C (random will do)

Given the short measurement vector **x** how can we reconstruct **s**⁰?

 $\mathbf{x} = \mathbf{A}\mathbf{s}^{0}$ (N unknowns, M equations, N>>M)

Basis space **A** N = 2 dimensions

Sparse signal **s**⁰ lives on axes

One random measurement M = 1 dimension

Measurement **x**: Projection of 2-D signal onto 1-D measurement vector (M × N matrix **B**)

x = As⁰
is under-constrained
(N=2 unknowns, M=1
equations)

→ Need to solve optimization problem:

$$\hat{\mathbf{s}} = \arg\min_{\mathbf{s}} \sum_{i=1}^{N} V(s_i)$$
 subject to $\mathbf{x} = \mathbf{A}\mathbf{s}$

where V(s) is a penalty for non-sparsity.

$$L_p$$
-norm: $||x||_p = (|x_1|^p + |x_2|^p + ... + |x_n|^p)^{1/p}$

L_p -norm: $||x||_p = (|x_1|^p + |x_2|^p + ... + |x_n|^p)^{1/p}$

Matlab: $s = A \setminus x$

Approximate sparsity and noise

Exact:
$$\hat{\mathbf{s}} = \arg\min_{\mathbf{s}} \sum_{i=1}^{N} |s_i|$$
 subject to $\mathbf{x} = \mathbf{A}\mathbf{s}$

With noise:
$$\hat{\mathbf{s}} = \arg\min_{\mathbf{s}} \left\{ \|\mathbf{x} - \mathbf{A}\mathbf{s}\|^2 + \lambda \sum_{i=1}^{N} |s_i| \right\}$$
 absolute shrinkage and operator

Matlab: s = lasso(A, x, 'lambda', lambda)

Least

How many measurements?

Johnson-Lindenstrauss lemma:

Given $0 < \varepsilon < 1$ and a set **s** of K points in \mathbb{R}^N , there is a linear map $f: \mathbb{R}^N \to \mathbb{R}^M$ such that

 $(1 - \epsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \epsilon) \|u - v\|^2$ for all $u, v \in \mathbf{s}$, if $\mathbf{M} > 8 \ln(\mathbf{K}) / \varepsilon^2$.

→ M > O(K log(N/K))
random projections ~guarantee perfect signal reconstruction

Phase transition to perfect reconstruction

How is this useful?

- Reconstruction of inaccessible high-D signal (break Nyquist bound)
- Statistics easier in dense low-D that sparse high-D
 - Regression
 - Classification
 - Clustering/Nearest-neighbor-finding
 - (Everything that relies on point distances)