

Agenda

- Interpret ML with Python
- Power BI for Data Science interpretability

Loan Application Decisions

Interpretability

Understand and debug your model

Interpret

Glassbox and blackbox interpretability methods for tabular data

Blackbox models:

Model formats:

Python models using scickit predict convention, Scikit, Tensorflow, Pytorch, Keras

Explainers:

SHAP, LIME, Global Surrogate,

Feature Permutation

Interpretcommunity

Additional interpretability techniques for tabular data

Glassbox Models:

Model types:

Linear Models, Decision Trees, Decision Rules, **Explainable Boosting Machines**

Interpret-text

Interpretability methods for text data

DiCE

Diverse Counterfactual Explanations

AzurML-interpret

AzureML SDK wrapper for Interpret and Interpret-community

Models designed to be interpretable. Lossless explainability.

Decision trees

Rule lists

Linear models

Explainable Boosting Machines

Explain *any*ML system. Approximate explainability.

Shap

Lime

Partial dependence

Sensitivity analysis

Black-box explainers analyze the relationship between input features and output predictions to interpret models

InterpretML

• Feature importance across the global model

Local point of view

 The marginal contribution of each feature in the data on that instance of prediction

Local point of view

- SHapley Additive exPlanation
 - Model agnostic
 - Data agnostic

$$y = f(x_1, x_2) = 2x_1 + 3x_2$$

label	X1	X2	IX1	IX	IX2	
	1	-1	1	-2	3	
	14	1	4	2	12	
	1	2	-1	4	-3	
	11	4	1	8	3	
	4	-1	2	-2	6	
	-1	1	-1	2	-3	

Contribution of X1 to label is 2 times Contribution of X1 to label is 3 times

Demo Interpretability

SHAP importance of 'Hours Per Week' against actual age

The importance of hours per week is less if the age is young or old

SHAP importance of 'Sex' against actual age

A person's gender is influencing this model showing bias

 This female was denied a loan primarily because of her relationship and gender

- Capital Gain can have a big impact on not getting a loan
- 'Sex' is influencing loans

View for experiments

Power BI for model explainablity and key influencers

http://aka.ms/powerbiaiworkshop

Microsoft