Méthodes d'Estimation

Série n°4: Amélioration d'estimateurs

Exercice 1 Soit $X_1, ..., X_n$ un n-échantillon d'une loi admettant une espérance μ et une variance σ^2 , et soit $T(\underline{X}) = \sum_{i=1}^n c_i X_i$:

- 1. Montrer que $T(\underline{X})$ est un estimateur non biaisé pour μ ssi $\sum_{i=1}^{n} c_i = 1$.
- 2. Montrer que \overline{X} est de variance minimale parmi les estimateurs sans biais $T(\underline{X})$.

Exercice 2 Soit $\underline{X} = (X_1, \dots, X_n)$ un échantillon i.i.d selon une loi probabilité de densité

$$f(x,\theta) = \frac{\ln \theta}{\theta - 1} \theta^x \mathbb{1}_{]0,1[}(x), \quad \forall \theta > 1$$

- 1. Vérifier que le modèle appartient à une famille exponentielle à un paramètre (on précisera $T(\underline{X})$, la statistique exhaustive complète).
- 2. Calculer $E(T(\underline{X}))$.
- 3. En déduire un estimateur efficace de

$$\psi(\theta) = \frac{\theta}{\theta - 1} - \frac{1}{\ln \theta}$$

Exercice 3 Soit $X_1, ..., X_n$ un n-échantillon de loi $\mathcal{U}_{[\theta_1, \theta_2]}$, $\theta = (\theta_1, \theta_2) \in \mathbb{R}^2$ tels que $\theta_1 < \theta_2$:

- 1. Montrer que $T(\underline{X}) = (\min(X_1, ..., X_n), \max(X_1, ..., X_n))$ est exhaustive.
- 2. En supposant de plus que cette statistique est complète, trouver un estimateur UVMB de $\frac{1}{2}(\theta_1 + \theta_2)$.

Exercice 4 Soit $X_1, ..., X_n$ un n-échantillon de loi de Bernoulli de probabilité θ :

- 1. Montrer directement que, si Θ a plus de n points, $S = \sum_{i=1}^{n} X_i$ est complète.
- 2. En déduire que \bar{X} est un estimateur UVMB de θ .
- 3. Montrer que $q(\theta) = \theta/(1-\theta)$ n'admet pas d'estimateur sans biais quel que soit n.

Exercice 5 Soit $X_1, ..., X_n$ un n-échantillon de loi $\mathcal{N}(\mu, \sigma^2)$:

- 1. Montrer que \bar{X} est un estimateur UVMB de μ si σ^2 est connu.
- 2. Montrer que $T(\underline{X}) = \frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$ est un estimateur UVMB de σ^2 si μ est connu.

Exercice 6 Soit $X_1, ..., X_n$ un n-échantillon de loi $\gamma(p, \lambda)$, trouver l'estimateur UVMB de p/λ .

Exercice 7 Soit $X \cap \mathcal{B}(n,\theta)$, montrer que $\frac{X(n-X)}{n(n-1)}$ est l'estimateur UVMB de $\theta(1-\theta)$.

Exercice 8 Soit $X_1, ..., X_n$ un n-échantillon de loi de Poisson $\mathcal{P}(\theta)$,

- 1. Déterminer T, l'estimateur par substitution de fréquences de $e^{-\theta}$. Calculer son espérance et sa variance.
- 2. Calculer la borne de Cramer-Rao pour T et montrer que la variance de T est strictement plus grande que cette borne.
- 3. Trouver T^* , l'estimateur UVMB de $P_{\theta}(X_1 = 0) = e^{-\theta}$.

Exercice 9 Soient $X_1, ..., X_n$ un n-échantillon d'une loi à densité $f(x, \theta) = \theta x^{\theta-1}, x \in]0, 1[, \theta \in \Theta = \mathbb{R}_+^* Considérons <math>T(\underline{X}) = -\frac{1}{n} \sum_{i=1}^n \ln X_i.$

- 1. Montrer que $E_{\theta}(T(\underline{X})) = \frac{1}{\theta}$ et $Var_{\theta}(T(\underline{X})) = \frac{1}{n\theta^2}$.
- 2. Montrer que $I_1(\theta) = \frac{1}{\theta^2}$ et que $T(\underline{X})$ est UVMB pour $q(\theta) = \frac{1}{\theta}$.

Exercice 10 Soient $X_1, ..., X_n$ un n-échantillon d'une loi à densité $f(x, \theta) = cx^{c-1}\theta \exp{-\theta x^c}$, $x > 0, \theta \in \Theta = \mathbb{R}^{+*}$, et c constante réelle strictement positive. Considérons $T(\underline{X}) = \frac{1}{n} \sum_{i=1}^{n} X_i^c$.

- 1. Calculer $E_{\theta}(T(\underline{X}))$ et $Var_{\theta}(T(\underline{X}))$.
- 2. Calculer $I_1(\theta)$ et montrer que $T(\underline{X})$ est UVMB pour son espérance.

Exercice 11 Soit $\underline{X} = (X_1, \dots, X_n)$ un n-échantillon issu d'une loi de probabilité de fonction densité

$$f(x,\theta) = \frac{\theta^x}{1+\theta} \, \mathbb{1}_{\{0,1\}}(x) \quad \theta \in]0,1[$$

- 1. Donner une statistique exhaustive S.
- 2. Montrer que S est une statistique complète de deux méthodes différentes.
- 3. Montrer que s'il existe un estimateur $\hat{\theta}$ sans biais, alors on peut construire un autre estimateur sans biais θ_S à partir de $\hat{\theta}$ qui s'écrit en fonction de S.
- 4. En utilisant le fait que S est complète, montrer alors qu'il n'existe pas d'estimateur sans biais de θ .

Exercice 12 Soit $\underline{X} = (X_1, \dots, X_n)$ un échantillon i.i.d issu d'une loi uniforme sur $]\theta, 3\theta[$ où $\theta > 0$.

- 1. Proposer pour θ , un estimateur $\widehat{\theta}_1$ par la méthode des moments et calculer son espérance.
- 2. Montrer que l'estimateur du maximum de vraisemblance est

$$\widehat{\theta}_2 = \frac{1}{3} \max_{1 \le i \le n} X_i$$

- 3. Donner la densité de $\widehat{\theta}_2$.
- 4. En déduire la constante k telle que $E_{\theta}(k\hat{\theta}_2) = \theta$.
- 5. Lequel de ces deux estimateurs peut-être amélioré par Lehmann-Sheffe ?