

PATENT COOPERATION TREATY

TUESDAY, 19 JAN 1999

PCT

From the INTERNATIONAL BUREAU

EJH

NOTIFICATION OF THE RECORDING
OF A CHANGE(PCT Rule 92bis.1 and
Administrative Instructions, Section 422)

Date of mailing (day/month/year) 08 January 1999 (08.01.99)			
Applicant's or agent's file reference 2049081/EJH	IMPORTANT NOTIFICATION		
International application No. PCT/AU98/00380	International filing date (day/month/year) 22 May 1998 (22.05.98)		

1. The following indications appeared on record concerning:				
<input checked="" type="checkbox"/> the applicant <input type="checkbox"/> the inventor <input type="checkbox"/> the agent <input type="checkbox"/> the common representative				
Name and Address Amrad. THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH 300 Herston Road Brisbane, QLD 4029 Australia		State of Nationality AU	State of Residence AU	
		Telephone No.		
		Facsimile No.		
		Teleprinter No.		

2. The International Bureau hereby notifies the applicant that the following change has been recorded concerning:				
<input checked="" type="checkbox"/> the person <input type="checkbox"/> the name <input type="checkbox"/> the address <input type="checkbox"/> the nationality <input type="checkbox"/> the residence				
Name and Address AMRAD OPERATIONS PTY LTD 576 Swan Street Richmond VIC 3121 Australia		State of Nationality AU	State of Residence AU	
		Telephone No.		
		Facsimile No.		
		Teleprinter No.		

3. Further observations, if necessary:				
4. A copy of this notification has been sent to:				
<input checked="" type="checkbox"/> the receiving Office <input type="checkbox"/> the International Searching Authority <input type="checkbox"/> the International Preliminary Examining Authority		<input checked="" type="checkbox"/> the designated Offices concerned <input type="checkbox"/> the elected Offices concerned <input type="checkbox"/> other:		

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No.: (41-22) 740.14.35	Authorized officer H. Zhou Telephone No.: (41-22) 338.83.38
---	---

THIS PAGE BLANK (USPTO)

PATENT COOPERATION TREATY
TUESDAY, - 8 DEC 1998

From the INTERNATIONAL BUREAU

PCT

NOTICE INFORMING THE APPLICANT OF THE
COMMUNICATION OF THE INTERNATIONAL
APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

Date of mailing (day/month/year)
26 November 1998 (26.11.98)Applicant's or agent's file reference
2049081/EJH

IMPORTANT NOTICE

International application No. PCT/AU98/00380 International filing date (day/month/year) 22 May 1998 (22.05.98) Priority date (day/month/year) 23 May 1997 (23.05.97)

Applicant

THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH et al

1. Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this Notice:

AU, BR, CA, CN, EP, IL, JP, KP, KR, NO, PL, US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:

AL, AM, AP, AT, AZ, BA, BB, BG, BY, CH, CU, CZ, DE, DK, EA, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IS, KE, KG, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NZ, OA, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

3. Enclosed with this Notice is a copy of the international application as published by the International Bureau on 26 November 1998 (26.11.98) under No. WO 98-51081

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland

Facsimile No. (41-22) 740.14.35

Form PCT/IB/308 (July 1996)

Authorized officer

J. Zahra

Telephone No. (41-22) 338.83.38

2357294

THIS PAGE BLANK (USPTO)

PCT/AU99/00784
PATENT COOPERATION TREATY

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

Date of mailing (day/month/year)
07 January 1999 (07.01.99)

International application No.
PCT/AU98/00380

International filing date (day/month/year)
22 May 1998 (22.05.98)

Applicant

HAYWARD, Nicholas et al

To:
United States Patent and Trademark
Office
(Box PCT)
Crystal Plaza 2
Washington, DC 20231
ÉTATS-UNIS D'AMÉRIQUE

In its capacity as elected Office

Applicant's or agent's file reference
2049081/EJH

Priority date (day/month/year)
23 May 1997 (23.05.97)

1. The designated Office is hereby notified of its election made:

in the demand filed with the International Preliminary Examining Authority on:
04 December 1998 (04.12.98)

in a notice effecting later election filed with the International Bureau on:

2. The election

was

was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland

Facsimile No.: (41-22) 740.14.35

Form PCT/I/B/331 (July 1992)

Authorized officer

Lazar Joseph Panakal

Telephone No.: (41-22) 338.83.38

THIS PAGE BLANK (USPTO)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/12, C07K 14/47, 16/18, G01N 33/53		A1	(11) International Publication Number: WO 98/53061 (43) International Publication Date: 26 November 1998 (26.11.98)
(21) International Application Number: PCT/AU98/00380			(74) Agents: HUGHES, E., John, L. et al.; Davies Collison Cave, 1 Little Collins Street, Melbourne, VIC 3000 (AU).
(22) International Filing Date: 22 May 1998 (22.05.98)			
(30) Priority Data:			(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(71) Applicant (for all designated States except US): THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH [AU/AU]; 300 Herston Road, Brisbane, QLD 4029 (AU).			Published <i>With international search report.</i>
(72) Inventors; and (75) Inventors/Applicants (for US only): HAYWARD, Nicholas [AU/AU]; 13 Prince Street, Paddington, QLD 4064 (AU). SILINS, Ginters [AU/AU]; 35 Eppalong Street, The Gap, QLD 4061 (AU). GRIMMOND, Sean [AU/GB]; Medical Research Council, Harwell, Didcot, Oxfordshire OX11 0RD (GB). GARTSIDE, Michael [AU/AU]; 19 Thomas Street, Camp Hill, QLD 4152 (AU). HANCOCK, John [AU/AU]; 141 Airley Road, Pullenvale, QLD 4069 (AU).			

(54) Title: THREE NOVEL GENES ENCODING A ZINC FINGER PROTEIN, A GUANINE NUCLEOTIDE EXCHANGE FACTOR AND A HEAT SHOCK PROTEIN OR HEAT SHOCK BINDING PROTEIN

(57) Abstract

The present invention relates generally to three novel human genes with gene regulatory function. These genes encode a zinc finger protein, a guanine nucleotide exchange protein and a heat shock protein or heat shock binding protein. The invention includes derivatives and mammalian animal, insect, nematodes, avian and microbial homologues of these genes. The present invention further provides pharmaceutical compositions and diagnostic agents as well as genetic molecules useful in gene replacement therapy and recombinant molecules useful in protein replacement therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

THREE NOVEL GENES ENCODING A ZINC FINGER PROTEIN, A GUANINE, NUCLEOTIDE EXCHANGE FACTOR AND A HEAT SHOCK PROTEIN OR HEAT SHOCK BINDING PROTEIN

FIELD OF THE INVENTION

5 The present invention relates generally to a novel human gene and its derivatives and to mammalian, animal, insect, nematodes, avian and microbial homologues thereof. The present invention further provides pharmaceutical compositions and diagnostic agents as well as genetic molecules useful in gene replacement therapy and recombinant molecules useful in protein replacement therapy.

10

BACKGROUND OF THE INVENTION

Bibliographic details of the publications referred to by author in this specification are collected at the end of the description.

15

The increasing sophistication of recombinant DNA technology is greatly facilitating research and development in the medical and allied health fields. There is growing need to develop recombinant and genetic molecules for use in diagnosis and in conventional pharmaceutical preparations as well as in gene and protein replacement therapies.

20

In work leading up to the present invention, the inventors sought to identify and clone human genes which might be useful as potential diagnostic and/or therapeutic agents. Molecules of particular interest targeted by the inventors were gene regulators including regulatory proteins, signal transducters and heat shock proteins.

25

Gene expression generally requires interaction between a regulatory protein and an appropriate recognition sequence of a target gene. Regulatory proteins comprise in many cases a domain or motif which facilitates binding to DNA. One particular motif comprises small sequence units repeated in tandem with each unit folded about a zinc atom to form separate structural domains.

30 This motif is now referred to as a zinc finger domain. Such a domain is generally defined by the number of cysteine (C) and histidine (H) residues.

In addition, knowledge of cellular interaction in the control of cell proliferation is essential in the rational design of specific therapeutic strategies aimed at controlling proliferative disorders. Such proliferative disorders including a range of cancers, inflammatory conditions and atherosclerosis. An important aspect of cellular interaction is in signal transduction *via* receptors 5 to intracellular transducers. One key signal transducer is Ras which couples the receptors for diverse extracellular signals to different effectors. Ras directly activates the downstream kinase Raf which in turn induces the mitogen activated protein kinase (MAPK) cascade.

Another regulatory mechanism involves heat shock proteins. The *Escherichia coli* heat shock 10 protein, DnaJ, is the founding member of a family of proteins which are associated with protein folding, protein complex assembly and transit through subcellular components.

Prokaryotic and eukaryotic DnaJ homologues have a modular organisation consisting of a J domain, a glycine-rich spacer, CXXCXGXG [SEQ ID NO:1] repeats and a C-terminal region 15 with no obvious sequence features, as well as additional sequences for protein targeting. The J domain is anticipated to mediate interaction with heat shock 70 proteins (Hsp70) and consists of some 70 amino acids, frequently located at the N-terminus of the protein.

In accordance with the present invention, a genes have been identified from the human genome 20 which encodes proteins having a regulatory role. One gene, in accordance with the present invention encodes a protein with an N-terminal region resembling a zinc-finger domain of a novel type. Another gene encodes a protein involved in guanine nucleotide exchange factor (GEF) signalling pathways. Yet another gene encodes a protein which is a heat shock protein or heat 25 shock-like protein which may have a role in tumour suppression.

25

SUMMARY OF THE INVENTION

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a 30 stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.

Sequence identity numbers (SEQ ID NOs.) for nucleotide and amino acid sequences referred to in the subject specification are defined after the bibliography. A summary of SEQ ID NOs. is also given in Table 1.

- 5 One aspect of the present invention contemplates an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence having homology to a regulator of gene expression or a derivative of said gene regulator.
- 10 Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a regulator of gene expression wherein said regulator comprises a zinc finger domain of an (HC₃)₂ type.

Yet another aspect of the present invention is directed to an isolated nucleic acid molecule
15 comprising a sequence of nucleotides or a complementary form thereof selected from:

- (i) a nucleotide sequence set forth in SEQ ID NO:2;
- (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:3;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence
20 of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridizing under low stringency conditions at 42°C to the nucleotide sequence set forth in (i), (ii) or (iii).

The nucleotide sequence set forth in SEQ ID NO:2 defines the gene, *mcg4*. This gene encodes
25 a product, MCG4, having an amino acid sequence set forth in SEQ ID NO:3.

Even yet another aspect of the present invention provides a genetic construct comprising a vector portion and an animal, more particularly a mammalian and even more particularly a human *mcg4* gene portion, which *mcg4* gene portion is capable of encoding an MCG4 polypeptide or a
30 functional or immunologically interactive derivative thereof.

Still yet another aspect of the present invention contemplates a method of detecting a condition caused or facilitated by an aberration in *mcg4*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg4* wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or a propensity to develop said condition.

Even still a further aspect of the present invention relates to a method of detecting a condition caused or facilitated by an aberration in *mcg4*, said method comprising screening for a single or multiple amino acid substitution, deletion and/or addition to MCG4 wherein the presence of such a mutation is indicative of or a propensity to develop said condition.

Another aspect of the present invention contemplates a method for detecting MCG4 or a derivative thereof in a biological sample said method comprising contacting said biological sample with an antibody specific for MCG4 or its derivatives or homologues for a time and under conditions sufficient for an antibody-MCG4 complex to form, and then detecting said complex.

A further aspect of the present invention contemplates an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence having homology to a guanine nucleotide exchange factor (GEF) or a derivative thereof.

Yet another aspect of the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides or a complementary form thereof selected from:

25

- (i) a nucleotide sequence set forth in SEQ ID NO:4 or 6;
- (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:5 or 7;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridizing under low stringency conditions to the

nucleotide sequence set forth in (i), (ii) or (iii).

The nucleotide sequence set forth in SEQ ID NO:4 or 6 defines the gene, *mcg7*. This gene encodes a product, MCG7, having an amino acid sequence set forth in SEQ ID NO:5 or 7.

5

Even yet another aspect of the present invention provides a genetic construct comprising a vector portion and an animal, more particularly a mammalian and even more particularly a human *mcg7* gene portion, which *mcg7* gene portion is capable of encoding an MCG7 polypeptide or a functional or immunologically interactive derivative thereof.

10

Still yet another aspect of the present invention contemplates a method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg7* wherein the presence of such a nucleotide substitution, deletion 15 and/or addition or other aberration may be indicative of said condition or a propensity to develop said condition.

Even still a further aspect of the present invention relates to a method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising screening for a single or 20 multiple amino acid substitution, deletion and/or addition to MCG7 wherein the presence of such a mutation is indicative of or a propensity to develop said condition.

Another aspect of the present invention contemplates a method for detecting MCG7 or a derivative thereof in a biological sample said method comprising contacting said biological 25 sample with an antibody specific for MCG7 or its derivatives or homologues for a time and under conditions sufficient for an antibody-MCG7 complex to form, and then detecting said complex.

Yet another aspect of the present invention contemplates an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an 30 amino acid sequence having homology to a heat shock protein or a heat shock binding protein or a derivative thereof.

Another aspect of the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides or a complementary form thereof selected from:

- (i) a nucleotide sequence set forth in SEQ ID NO:8;
- 5 (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:9;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridizing under low stringency conditions at 41°C to the nucleotide sequence set forth in (i), (ii) or (iii).

10

The nucleotide sequence set forth in SEQ ID NO:8 defines the gene, *mcg18*. This gene encodes a product, MCG18, having an amino acid sequence set forth in SEQ ID NO:7.

Even yet another aspect of the present invention provides a genetic construct comprising a vector 15 portion and an animal, more particularly a mammalian and even more particularly a human *mcg18* gene portion, which *mcg18* gene portion is capable of encoding an MCG18 polypeptide or a functional or immunologically interactive derivative thereof.

Still yet another aspect of the present invention contemplates a method of detecting a condition 20 caused or facilitated by an aberration in *mcg18*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg18* wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or a propensity to develop said condition.

25

Even still a further aspect of the present invention relates to a method of detecting a condition caused or facilitated by an aberration in *mcg18*, said method comprising screening for a single or multiple amino acid substitution, deletion and/or addition to MCG18 wherein the presence of such a mutation is indicative of or a propensity to develop said condition.

30

Another aspect of the present invention contemplates a method for detecting MCG18 or a

- 7 -

derivative thereof in a biological sample said method comprising contacting said biological sample with an antibody specific for MCG18 or its derivatives or homologues for a time and under conditions sufficient for an antibody-MCG18 complex to form, and then detecting said complex.

5

A summary of SEQ ID Nos. referred to in the subject specification is shown in Table 1.

- 8 -

TABLE 1
SUMMARY OF SEQ ID Nos.

5	SEQ ID NO.	DESCRIPTION
	1	amino acid repeat sequence in DnaJ homologues
	2	Nucleotide sequence of <i>mcg4</i>
	3	amino acid sequence of MCG4
	4	nucleotide sequence of <i>mcg7</i>
10	5	amino acid sequence of MCG7
	6	nucleotide sequence of <i>mcg7</i> within exon of nucleotides 183-288
	7	amino acid sequence of MCG7 within exon of nucleotide 183-288
	8	nucleotide sequence of <i>mcg18</i>
	9	amino acid sequence of MCG18
15	10-18	amino acid sequence identified using BESTFIT
	19	sequence of pGEX and <i>mcg7</i> junction
	20	sequence of pGEX and <i>mcg7</i> junction
	21	nucleotide sequence of <i>myc-tag/mcg7</i> junction
	22	amino acid sequence corresponding to SEQ ID NO:21
20	23	nucleotide sequence of pGEX and <i>mcg7</i> junction
	24	amino acid sequence corresponding to SEQ ID NO:23
	25-36	<i>mcg7</i> -specific oligonucleotide
	37-45	<i>mcg18</i> -specific oligonucleotide

25 Single and three letter abbreviations for amino acid residues are shown in Table 2.

- 9 -

TABLE 2

Amino Acid	Three-letter Abbreviation	One-letter Symbol
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
5 Cysteine	Cys	C
Glutamine	Gln	Q
Glutamic acid	Glu	E
Glycine	Gly	G
Histidine	His	H
10 Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
15 Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
20 Valine	Val	V
Any residue	Xaa	X

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a representation of the nucleotide sequence [SEQ ID NO:2] and corresponding amino acid sequence [SEQ ID NO:3] of *mcg4*.

5

Figure 2 is a representation of the alignment of the human MCG4 amino acid sequence with a translation of a partial murine expressed sequence tag (EST).

Figure 3 is a representation of the alignment of the human MCG4 amino acid sequence with a 10 translation of a partial nematode EST.

Figure 4 is a diagrammatic representation showing a predicted structure of MCG4 where H and C represent histidine and cysteine residues, respectively and X refers to any amino acid residue. Zn represent zinc atoms.

15

Figure 5 is a representation of sensitive sequence homology search of related cysteine-containing motifs in another *Caenorhabditis elegans* protein.

Figure 6 is a representation showing that a related cysteine containing motif is present in the 20 GATA-binding transcription factor from *Saccharomyces pombe*.

Figure 7 is a Northern blot showing expression of *mcg4* in various cultured human cancer cell lines. Lanes 1-5, respectively, represent the hybridization signal from 15 μ g total RNA derived from various human cancer cell lines. Lanes 1-5, respectively, contain RNA from H69 lung 25 carcinoma cells, JAM ovary carcinoma cells, BT20 breast carcinoma cells, HaCat transformed keratinocytes, T24 bladder carcinoma cells.

Figure 8 is a representation of a partial alignment of *mcg4* with human ESTs AA074703 and AA134788.

30

Figure 9 is a representation of the partial nucleotide sequence alignment between a human

- 11 -

(W32939) and mouse (AA242159) *mcg4*-like EST in the putative 5' UTR of the *mcg4* cDNA. The putative initiation codon is underlined and the region upstream represents 5' UTR.

5 **Figure 10** is a representation showing MacVector alignment of MCG4 with forward translations of ESTs AA134788 and AA074703. The nucleotide sequences are shown in Figure 8.

Figure 11 is a diagrammatic representation of the domains of MCG4

zinc finger consensus: CX₂HX₄CX₂CX₄HX₂CX₁₇CX₂CX₁₈HX₂CX₁₈CX₂C

acidic domain consensus: 9/34 amino acids negatively charged, 0/34 positively charged

10 basic domain consensus: 13/55 amino acids positively charged, 0/55 negatively charged

leucine zipper domain consensus: LX₆LX₆RX₆LX₆L

alternate "novel" leucine zipper-like motif where leucine would not be aligned along the one surface of an alpha helix domain: (aa261) LX₆LX₆RX₆LX₆L (aa 286).

15 **Figure 12** is a representation showing similarity of MCG7 with GEFs of various organisms.

Figure 13(a) is a representation of the nucleotide sequence [SEQ ID NO:4] and corresponding amino acid sequence [SEQ ID NO:5] of *mcg7*. Nucleotides 183-288 are an alternative spliced exon (shown in lower case).

20

Figure 13(b) is a representation of the partial nucleotide sequence [SEQ ID NO:6] and corresponding amino acid sequence [SEQ ID NO:7] of *mcg7* but without the exon shown in Fig. 13(a). Amino acids have been numbered from the first methionine codon (underlined). The cDNA molecules of Fig. 13(a) and Fig. 13(b) differ by the inclusion and exclusion of the exon 25 of nucleotides 183-288.

Figure 14 is a representation showing a comparison between MCG7 and a homologue from *Caenorhabditis elegans* using the BESTFIT algorithm. In the figure, the following sequences are underlined:

30

EF-Hand= PROSITE DATABASE NO. PD0C00018

- 12 -

1a	nematode	DVDEEDEVEDIEF [SEQ ID NO:10]
1b	human	DVDGDGHISQEEF [SEQ ID NO:11]
	nematode	DHDRDGFISQEEF [SEQ ID NO:12]
1c	human	DQNQDGCGISREEM [SEQ ID NO:13]
5	nematode	DVDMGDGQISKDEL [SEQ ID NO:14]

GUANINE NT BINDING REGION = BLOCKS DATABASE NO. BL00720B

2	human	HFVHVAEKLLQLQNFNTLMAVVGGLSHSSISRLKETH [SEQ ID NO:15]
	nematode	KFVHVAKHLRKINNFNTLMSVVGGITHSSVARLAKTY
10		[SEQ ID NO:16]

DaG-PE BINDING DOMAIN = PROSITE DATABASE NO. PD0C00379

3	human	HNFQESNSLRPVACRHCKALILGIYKQGLKCRACGVNCHKQCKDRLSVEC [SEQ ID NO:17]
15	nematode	HNFHETTFLPTTCNHCNKLLWGILRQGFKCKDCGLAVHSCCKSNAVAEC [SEQ ID NO:18]

Figure 15 is a representation of an alignment of human and a partial (5' UTR and partial coding sequence) murine *mcg7* cDNA (GenBank Acc. No. W71787 and AA237373). The putative initiation codon is underlined. The murine sequence represents a composite of 2 partial cDNA sequences from the EST database (accession numbers W71787 and AA237373). Nucleotide differences between human and murine sequences are shown in lower case lettering and identical residues are indicated with asterisks.

25 Figure 16 is a representation of further 5' nucleotide and corresponding amino acid sequence for human *mcg7*. Nucleotide positions 1-321 were derived from GenBank Acc. No. AC000134 and nucleotides 322 onwards from Fig. 13(a). Two in-frame initiation codons are underlined. Asterisks denote in-frame stop codons.

30 Figure 17 is a graphical representation of a GDP release assay. □ Experiment #1 (mean of duplicates). ◇ Experiment #2 (mean of duplicates). The exchange reaction contained 36pmols

of GST-MCG (N-terminally truncated; encoded by Construct B in Fig. 18) and 1.6-12.8 pmols of recombinant GST-N-Ras.GDP. Reaction time 6 mins.

Estimated reaction constants:

$K_m = 2.1 \mu M$, $V_{max} = 37 \text{ pMol/6 min}/36 \text{ pMol}$ [Expt#1]

5 $K_m = 1.5 \mu M$, $V_{max} = 30.3 \text{ pMol/6 min}/36 \text{ pMol}$ [Expt#2]

Figure 18 depicts various recombinant plasmids containing partial or full-length *mcg7*.

Figure 19 is a representation of the nucleotide sequence [SEQ ID NO:8] and corresponding 10 amino acid sequence [SEQ ID NO:9] of *mcg18*.

Figure 20 is a representation showing that MCG18 has partial homology to *E. coli* DnaJ.

Figure 21 is a representation showing that MCG18 has homology to two *Caenorhabditis elegans* 15 proteins.

Figure 22 is a representation showing that MCG18 has homology to a *Saccharomyces pombe* protein.

20 **Figure 23** is a representation showing homology of MCG18 to a *Drosophila virilis* protein.

Figure 24 is a representation showing homology of MCG18 to human DnaJ proteins HDJ-2/HSDJ, HDJ-1/HSP40 and HSJ1.

25 **Figure 25** is a representation of the nucleotide and corresponding amino acid sequence of murine *mcg18*.

Figure 26 is a representation of homology between human and murine MCG18.

30 **Figure 27** depicts nucleotide sequences corresponding to the 5' untranslated region of human *mcg18*.

- 14 -

Figure 28 depicts a Northern blot showing expression of *mcg18* transcripts in total RNA isolated from various human cancer cell lines grown in culture. Lanes 1-5 respectively contain 15 μ g RNA from H69 lung carcinoma cells, JAM ovary carcinoma cells, BT20 breast carcinoma cells, HaCat transformed keratinocytes, T24 bladder carcinoma cells.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence having 5 homology to a regulator of gene expression or a derivative of said gene regulator.

More particularly, the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a regulator of gene expression wherein said regulator comprises a zinc finger domain of an (HC₃)₂ 10 type.

Still more particularly, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides or a complementary form thereof selected from:

15 (i) a nucleotide sequence set forth in SEQ ID NO:2;
(ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:3;
(iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
(iv) a nucleotide sequence capable of hybridizing under low stringency conditions at 42°C
20 to the nucleotide sequence set forth in (i), (ii) or (iii).

The present invention also provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence having homology to a guanine nucleotide exchange factor (GEF) or a derivative thereof.

25 More particularly, the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides or a complementary form thereof selected from:

(i) a nucleotide sequence set forth in SEQ ID NO:4 or 6;
30 (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:5 or 7;

- 16 -

- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridizing under low stringency conditions at 42°C to the nucleotide sequence set forth in (i), (ii) or (iii).

5

Another aspect of the present invention contemplates an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence having homology to a heat shock protein or a heat shock-binding protein or a derivative thereof.

10

More particularly, the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides or a complementary form thereof selected from:

- (i) a nucleotide sequence set forth in SEQ ID NO:8;
- 15 (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:9;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridizing under low stringency conditions at 42°C to the nucleotide sequence set forth in (i), (ii) or (iii).

20

Preferably, the percentage similarity is at least about 50%. More preferably, the percentage similarity is at least about 60%.

Reference herein to a low stringency at 42°C includes and encompasses from at least about 1%
25 v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M
30 to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least

about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions.

The term "similarity" as used herein includes exact identity between compared sequences at the 5 nucleotide or amino acid level. Where there is non-identity at the nucleotide level, "similarity" includes differences between sequences which result in different amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. Where there is non-identity at the amino acid level, "similarity" includes amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational 10 levels.

The present invention extends to nucleic acid molecules with percentage similarities of approximately 65%, 70%, 75%, 80%, 85%, 90% or 95% or above or a percentage in between.

15 The nucleic acid molecule of the present invention defined by SEQ ID NO:2 is hereinafter referred to as constituting the "*mcg4*" gene. The protein encoded by *mcg4* is referred to herein as "MCG4" and has an amino acid sequence set forth in SEQ ID NO:3. The *mcg4* gene is proposed to encode, in accordance with the present invention, a regulator of gene expression and comprises a novel zinc finger domain, (HC₃)₂. A regulator of gene expression includes a 20 transcription factor. Regulation may be at the level of nucleic acid:protein or protein:protein interaction.

The nucleic acid molecule of the present invention defined by SEQ ID NO:4 or 6 is hereinafter referred to as constituting the "*mcg7*" gene. The protein encoded by *mcg7* is referred to herein 25 as "MCG7" and has an amino acid sequence set forth in SEQ ID NO:5 or 7 and is involved in signal transduction. The difference in the nucleotide and amino acid sequence is due to the presence or absence of an exon at nucleotides 183-288.

The nucleic acid molecule of the present invention defined by SEQ ID NO:8 is hereinafter 30 referred to as constituting the "*mcg18*" gene. The protein encoded by *mcg18* is referred to herein as "MCG18" and comprises the amino acid set forth in SEQ ID NO:9.

The present invention extends to the naturally occurring genomic *mcg4*, *mcg7* and *mcg18* nucleotide sequences or corresponding cDNA sequences or to derivatives thereof. Derivatives contemplated in the present invention include fragments, parts, portions, mutants, homologues and analogues of MCG4, MCG7 or MCG8 or the corresponding genetic sequences. Derivatives 5 also include single or multiple amino acid substitutions, deletions and/or additions to MCG4, MCG7 or MCG18 or single or multiple nucleotide substitutions, deletions and/or additions to *mcg4*, *mcg7* or *mcg18*. "Additions" to the amino acid or nucleotide sequences include fusions with other peptides, polypeptides or proteins or fusions to nucleotide sequences. Reference herein to "MCG4" or "*mcg4*", "MCG7" or "*mcg7*" or "MCG8" or "*mcg18*" includes reference to 10 all derivatives thereof including functional derivatives and immunologically interactive derivatives of MCG4, MCG7 or MCG18.

The *mcg4*, *mcg7* and *mcg18* of the present invention are particularly exemplified herein from humans and in particular from human chromosome 11q13.

15

The present invention extends, however, to a range of homologues from, for example, primates, livestock animals (eg. sheep, cows, horses, donkeys, pigs), companion animals (eg. dogs, cats) laboratory test animals (eg. rabbits, mice, rats, guinea pigs), reptiles, birds (eg. chickens, ducks, geese, parrots), insects, nematodes, eukaryotic microorganisms and captive wild animals (eg. 20 deer, foxes, kangaroos). Reference herein to *mcg4* and *mcg18* or their respective proteins MCG4, MCG7 and MCG18 includes reference to these molecules of human origin as well as novel forms of non-human origin.

The nucleic acid molecules of the present invention may be DNA or RNA. When the nucleic 25 acid molecule is in DNA form, it may be genomic DNA or cDNA. RNA forms of the nucleic acid molecules of the present invention are generally mRNA.

Although the nucleic acid molecules of the present invention are generally in isolated form, they may be integrated into or ligated to or otherwise fused or associated with other genetic 30 molecules such as vector molecules and in particular expression vector molecules. Vectors and expression vectors are generally capable of replication and, if applicable, expression in one or

both of a prokaryotic cell or a eukaryotic cell. Preferably, prokaryotic cells include *E. coli*, *Bacillus* sp and *Pseudomonas* sp. Preferred eukaryotic cells include yeast, fungal, mammalian and insect cells.

- 5 Accordingly, another aspect of the present invention contemplates a genetic construct comprising a vector portion and an animal, more particularly a mammalian and even more particularly a human *mcg4* gene portion, which *mcg4* gene portion is capable of encoding an MCG4 polypeptide or a functional or immunologically interactive derivative thereof.
- 10 Preferably, the *mcg4* gene portion of the genetic construct is operably linked to a promoter in the vector such that said promoter is capable of directing expression of said *mcg4* gene portion in an appropriate cell.

In addition, the *mcg4* gene portion of the genetic construct may comprise all or part of the gene
15 fused to another genetic sequence such as a nucleotide sequence encoding glutathione-S-transferase or part thereof.

The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells comprising same.

20

It is proposed in accordance with the present invention that MCG4 is a transcription factor involved in gene regulation. Mutations in *mcg4* may result in aberrations in gene regulation leading to the development of or a propensity to develop various types of cancer. In this regard, although not wishing to limit the present invention to any one hypothesis or mode of action, it
25 is proposed that *mcg4* or its expression product may be involved in the tissue-specific or temporal regulation of particular genes.

A deletion or aberration in the *mcg4* gene may also be important in the detection of cancer or a propensity to develop cancer. An aberration may be a homozygous mutation or a
30 heterozygous mutation. The detection may occur at the foetal or post-natal level. Detection may also be at the germline or somatic cell level. Furthermore, a risk of developing cancer may

- 20 -

be determined by assaying for aberrations in the parents and/or proband of a subject under investigation.

According to this aspect of the present invention, there is contemplated a method of detecting 5 a condition caused or facilitated by an aberration in *mcg4*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg4* wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or a propensity to develop said condition.

10

Another aspect of the present invention contemplates a genetic construct comprising a vector portion and an animal, more particularly a mammalian and even more particularly a human *mcg7* gene portion, which *mcg7* gene portion is capable of encoding an *mcg7* polypeptide or a functional or immunologically interactive derivative thereof.

15

Preferably, the *mcg7* gene portion of the genetic construct is operably linked to a promoter on the vector such that said promoter is capable of directing expression of said *mcg7* gene portion in an appropriate cell.

20 In addition, the *mcg7* gene portion of the genetic construct may comprise all or part of the gene fused to another genetic sequence such as a nucleotide sequence encoding glutathione-S-transferase or part thereof.

25 The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells comprising same.

It is proposed in accordance with the present invention that MCG7 is a GEF involved in signal transduction. Mutations in *mcg7* or MCG7 may result in defective control of cell proliferation leading to the development of or a propensity to develop various types of cancer.

30

A deletion or aberration in the *mcg7* gene may also be important in the detection of cancer or

a propensity to develop cancer. An aberration may be a homozygous mutation or a heterozygous mutation. The detection may occur at the foetal or post-natal level. Detection may also be at the germline or somatic cell level. Furthermore, a risk of developing cancer may be determined by assaying for aberrations in the parents of a subject under investigation.

5

According to this aspect of the present invention, there is contemplated a method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg7* wherein the presence of such a nucleotide 10 substitution, deletion and/or addition or other aberration may be indicative of said condition or a propensity to develop said condition.

Yet another aspect of the present invention contemplates a genetic construct comprising a vector portion and an animal, more particularly a mammalian and even more particularly a human 15 *mcg18* gene portion, which *mcg18* gene portion is capable of encoding an MCG18 polypeptide or a functional or immunologically interactive derivative thereof.

Preferably, the *mcg18* gene portion of the genetic construct is operably linked to a promoter on the vector such that said promoter is capable of directing expression of said *mcg18* gene portion 20 in an appropriate cell.

In addition, the *mcg18* gene portion of the genetic construct may comprise all or part of the gene fused to another genetic sequence such as a nucleotide sequence encoding glutathione-S-transferase or part thereof.

25

The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells comprising same.

It is proposed in accordance with the present invention that MCG18 is a transcription factor 30 involved in protein folding, protein complex assembly and transit through subcellular compartments. MCG18 may also have a role in tumour suppression. Thus mutations in *mcg18*

may result in the development of or a propensity to develop various types of cancer.

A deletion or aberration in the *mcg18* gene may also be important in the detection of cancer or a propensity to develop cancer. An aberration may be a homozygous mutation or a 5 heterozygous mutation. The detection may occur at the foetal or post-natal level. Detection may also be at the germline or somatic cell level. Furthermore, a risk of developing cancer may be determined by assaying for aberrations in the parents and/or proband of the subject under investigation.

10 According to this aspect of the present invention, there is contemplated a method of detecting a condition caused or facilitated by an aberration in *mcg18*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg18* wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or 15 a propensity to develop said condition.

The nucleotide substitutions, additions or deletions may be detected by any convenient means including nucleotide sequencing, restriction fragment length polymorphism (RFLP), polymerase chain reaction (PCR), oligonucleotide hybridization and single stranded conformation 20 polymorphism analysis (SSCP) amongst many others. An aberration includes modification to existing nucleotides such as to modify glycosylation signal amongst other effects.

In an alternative method, aberrations in the *mcg4*, *mcg7* and *mcg18* genes are detected by screening for mutations in MCG4, MCG7 and MCG18, respectively.

25

A mutation in MCG4, MCG7 or MCG18 may be a single or multiple amino acid substitution, addition and/or deletion. The mutation in *mcg4*, *mcg7* or *mcg18* may also result in either no translation product being produced or a product in truncated form. A mutant may also be an altered glycosylation pattern or the introduction of side chain modifications to amino acid 30 residues.

According to this aspect of the present invention, there is provided a method of detecting a condition caused or facilitated by an aberration in *mcg4*, *mcg7* or *mcg18* said method comprising screening for a single or multiple amino acid substitution, deletion and/or addition to MCG4, MCG7 or MCG18 wherein the presence of such a mutation is indicative of or a propensity to 5 develop said condition.

A particularly convenient means of detecting a mutation in MCG4, MCG7 or MCG18 is by use of antibodies.

- 10 Accordingly another aspect of the present invention is directed to antibodies to MCG4, MCG7 or MCG18 and its derivatives. Such antibodies may be monoclonal or polyclonal and may be selected from naturally occurring antibodies to MCG4, MCG7 or MCG18 or may be specifically raised to MCG4, MCG7 or MCG18 or derivatives thereof. In the case of the latter, MCG4, MCG7 or MCG18 or their derivatives may first need to be associated with a carrier molecule.
- 15 The antibodies to MCG4, MCG7 or MCG18 of the present invention are particularly useful as diagnostic agents.

For example, antibodies to MCG4, MCG7 or MCG18 and their derivatives can be used to screen for wild-type MCG4, MCG7 or MCG18 or for mutated MCG4, MCG7 or MCG18 molecules.

- 20 The latter may occur, for example, during or prior to certain cancer development. A differential binding assay is also particularly useful. Techniques for such assays are well known in the art and include, for example, sandwich assays and ELISA. Knowledge of normal MCG4, MCG7 or MCG18 levels or the presence of wild-type MCG4, MCG7 or MCG18 may be important for diagnosis of certain cancers or a predisposition for development of cancers or for monitoring 25 certain therapeutic protocols.

As stated above antibodies to MCG4, MCG7 or MCG18 of the present invention may be monoclonal or polyclonal or may be fragments of antibodies such as Fab fragments. Furthermore, the present invention extends to recombinant and synthetic antibodies and to 30 antibody hybrids. A "synthetic antibody" is considered herein to include fragments and hybrids of antibodies.

For example, specific antibodies can be used to screen for wild-type MCG4, MCG7 or MCG18 molecule or specific mutant molecules such as molecules having a certain deletion. This would be important, for example, as a means for screening for levels of MCG4, MCG7 or MCG18 in a cell extract or other biological fluid or purifying MCG4, MCG7 or MCG18 made by 5 recombinant means from culture supernatant fluid or purified from a cell extract. Techniques for the assays contemplated herein are known in the art and include, for example, sandwich assays and ELISA.

It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal 10 or fragments of antibodies or synthetic antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first antibody may be used with a commercially available anti-immunoglobulin antibody. An antibody as contemplated herein includes any antibody specific to any region of wild-type MCG4, MCG7 or MCG18 or to a specific mutant phenotype or to a deleted or otherwise altered region.

15

Both polyclonal and monoclonal antibodies are obtainable by immunization of a suitable animal or bird with MCG4, MCG7 or MCG18 or its derivatives and either type is utilizable for immunoassays. The methods of obtaining both types of sera are well known in the art. Polyclonal sera are less preferred but are relatively easily prepared by injection of a suitable 20 laboratory animal or bird with an effective amount of MCG4, MCG7 or MCG18 or antigenic parts thereof or derivatives thereof, collecting serum from the animal or bird, and isolating specific sera by any of the known immunoabsorbent techniques. Although antibodies produced by this method are utilizable in virtually any type of immunoassay, they are generally less favoured because of the potential heterogeneity of the product.

25

The use of monoclonal antibodies in an immunoassay is particularly preferred because of the ability to produce them in large quantities and the homogeneity of the product. The preparation of hybridoma cell lines for monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques 30 which are well known to those who are skilled in the art.

Another aspect of the present invention contemplates a method for detecting MCG4, MCG7 or MCG18 or a derivative thereof in a biological sample said method comprising contacting said biological sample with an antibody specific for MCG4, MCG7 or MCG18 or its derivatives or homologues for a time and under conditions sufficient for an antibody-MCG4, MCG7 or 5 MCG18 complex to form, and then detecting said complex.

Preferably, the biological sample is a cell extract from a human or other animal or a bird.

The presence of MCG4, MCG7 or MCG18 may be accomplished in a number of ways such as 10 by Western blotting and ELISA procedures. A wide range of immunoassay techniques are available as can be seen by reference to US Patent Nos. 4,016,043, 4,424,279 and 4,018,653. These include both single-site and two-site or "sandwich" assays of the non-competitive types, as well as traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.

15

Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into 20 contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of antibody-antigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is 25 determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of hapten. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled in the 30 art, including any minor variations as will be readily apparent. In accordance with the present invention the sample is one which might contain MCG4, MCG7 or MCG18 including cell extract

or tissue biopsy. The sample is, therefore, generally a biological sample comprising biological fluid but also extends to fermentation fluid and supernatant fluid such as from a cell culture.

In the typical forward sandwich assay, a first antibody having specificity for the MCG4, MCG7 5 or MCG18 or an antigenic part thereof or a derivative thereof or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding 10 processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes or overnight if more convenient) and under suitable 15 conditions (e.g. from room temperature to 37°C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the hapten.

20 An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target- 25 first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

By "reporter molecule" as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen- 30 bound antibody. Detection may be either qualitative or quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionuclide

containing molecules (i.e. radioisotopes) and chemiluminescent molecules.

In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable colour change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present in the sample. "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.

Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic colour visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest. Immunofluorescence and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.

MCG7 or MCG18 or functional derivatives thereof. Such genetic constructs are also contemplated to be useful in modulating expression of specific genes in which *mcg4*, *mcg7* or *mcg18* is involved in tissue-specific or temporal regulation.

5 Accordingly, another aspect of the present invention is directed to a genetic construct comprising a nucleotide sequence encoding a peptide, polypeptide or protein and *mcg4*, *mcg7* or *mcg18* or a functional derivative or homologue thereof capable of modulating the expression of said nucleotide sequence.

10 As stated above, MCG18 is proposed to have a role in tumour suppression. Accordingly, it is further proposed in accordance with the present invention to use recombinant MCG18 in pharmaceutical preparations for treating arresting or otherwise ameliorating the effects of certain cancers.

15 Accordingly, another aspect of the present invention contemplates a method for treating, arresting or otherwise ameliorating the effects of a cancer in an animal or bird, said method comprising administering to said animal or bird an effective amount of MCG18 or a functional derivative thereof for a time and under conditions sufficient to treat, arrest or otherwise ameliorate the effects of said cancer.

20

The present invention, therefore, contemplates a pharmaceutical composition comprising MCG18 or a derivative thereof or a modulator of *mcg18* expression or MCG18 activity and one or more pharmaceutically acceptable carriers and/or diluents. These components are referred to hereinafter as the "active ingredients". The active ingredients may also include anti-cancer

25 agents or agents which facilitate actions of MCG18.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) and sterile powders for the extemporaneous preparation of sterile injectable solutions. It must be stable under the conditions of manufacture and storage and must be
30 preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier may be a solvent medium containing, for example, water, ethanol, polyol (for example,

glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as licithin and by the use of surfactants. The preventions of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, 5 chlorobutanol, phenol, sorbic acid, thimersal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

10 Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired 15 ingredient from previously sterile-filtered solution thereof.

When the active ingredients are suitably protected they may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with 20 the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 25 80% of the weight of the unit. The amount of active compound in such therapeutically useful compositions in such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 0.1 μ g and 2000 mg of active compound.

30 The tablets, troches, pills, capsules and the like may also contain the components as listed hereafter. A binder such as gum, acacia, corn starch or gelatin; excipients such as dicalcium

phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin may be added or a flavouring agent such as peppermint, oil of wintergreen, or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of 5 the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any dosage unit form 10 should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound(s) may be incorporated into sustained-release preparations and formulations.

The present invention also extends to forms suitable for topical application such as creams, 15 lotions and gels.

Pharmaceutically acceptable carriers and/or diluents include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known 20 in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, use thereof in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

It is especially advantageous to formulate parenteral compositions in dosage unit form for ease 25 of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the 30 unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the

treatment of disease in living subjects having a diseased condition in which bodily health is impaired as herein disclosed in detail.

The principal active ingredient is compounded for convenient and effective administration in 5 effective amounts with a suitable pharmaceutically acceptable carrier in dosage unit form as hereinbefore disclosed. A unit dosage form can, for example, contain the principal active compound in amounts ranging from 0.5 μ g to about 2000 mg. Expressed in proportions, the active compound is generally present in from about 0.5 μ g to about 2000 mg/ml of carrier. In the case of compositions containing supplementary active ingredients, the dosages are 10 determined by reference to the usual dose and manner of administration of the said ingredients.

Effective amounts contemplated by the present invention include those amounts effective to ameliorate a condition. For example, it is envisaged that effective amounts would range from about 0.001 μ g/kg body weight to about 100 mg/kg body weight. Alternatively, effective 15 amounts of about 0.01 μ g/kg body weight to about 10 mg/kg body weight or even 0.1 μ g/kg body weight to about 1 mg/kg body weight. Administration may be per minute, hour, day, week, month or year or may only be a once off administration.

The pharmaceutical composition may also comprise genetic molecules such as a vector capable 20 of transfecting target cells where the vector carries a nucleic acid molecule capable of modulating *mcg18* expression or MCG18 activity. The vector may, for example, be a viral vector.

As stated above, the present invention further contemplates a range of derivatives of MCG18. Derivatives include fragments, parts, portions, mutants, homologues and analogues of the 25 MCG18 polypeptide and corresponding genetic sequence. Derivatives also include single or multiple amino acid substitutions, deletions and/or additions to MCG18 or single or multiple nucleotide substitutions, deletions and/or additions to the genetic sequence encoding MCG18. "Additions" to amino acid sequences or nucleotide sequences include fusions with other peptides, polypeptides or proteins or fusions to nucleotide sequences. Reference herein to 30 "MCG18" includes reference to all derivatives thereof including functional derivatives or MCG18 immunologically interactive derivatives.

Analogues of MCG18 contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the proteinaceous molecule or their analogues.

5

Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH_4 ; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylolation of amino groups 10 with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH_4 .

The guanidine group of arginine residues may be modified by the formation of heterocyclic 15 condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

The carboxyl group may be modified by carbodiimide activation *via* O-acylisourea formation followed by subsequent derivitisation, for example, to a corresponding amide.

20 Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and 25 other mercurials; carbamoylation with cyanate at alkaline pH.

Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or 30 alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetrinitromethane to form a 3-nitrotyrosine derivative.

Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate.

Examples of incorporating unnatural amino acids and derivatives during peptide synthesis 5 include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or D-isomers of amino acids. A list of unnatural amino acids, contemplated herein is shown in Table 3.

TABLE 3

Non-conventional amino acid	Code	Non-conventional amino acid	Code
5 <i>α</i> -aminobutyric acid	Abu	L-N-methylalanine	Nmala
<i>α</i> -amino- <i>α</i> -methylbutyrate	Mgabu	L-N-methylarginine	Nmarg
aminocyclopropane- carboxylate	Cpro	L-N-methylasparagine	Nmasn
		L-N-methylaspartic acid	Nmasp
10 aminoisobutyric acid	Aib	L-N-methylcysteine	Nmcys
aminonorbornyl- carboxylate	Norb	L-N-methylglutamine	Nmgln
		L-N-methylglutamic acid	Nmglu
cyclohexylalanine	Chexa	L-N-methylhistidine	Nmhis
cyclopentylalanine	Cpen	L-N-methylisoleucine	Nmile
15 D-alanine	Dal	L-N-methylleucine	Nmleu
D-arginine	Darg	L-N-methyllysine	Nmlys
D-aspartic acid	Dasp	L-N-methylmethionine	Nmmet
D-cysteine	Dcys	L-N-methylnorleucine	Nmnle
D-glutamine	Dgln	L-N-methylnorvaline	Nmnva
20 D-glutamic acid	Dglu	L-N-methylornithine	Nmorn
D-histidine	Dhis	L-N-methylphenylalanine	Nmphe
D-isoleucine	Dile	L-N-methylproline	Nmpro
D-leucine	Dleu	L-N-methylserine	Nmser
D-lysine	Dlys	L-N-methylthreonine	Nmthr
25 D-methionine	Dmet	L-N-methyltryptophan	Nmtrp
D-ornithine	Dorn	L-N-methyltyrosine	Nmtyr
D-phenylalanine	Dphe	L-N-methylvaline	Nmval
D-proline	Dpro	L-N-methylethylglycine	Nmetg
D-serine	Dser	L-N-methyl-t-butylglycine	Nmtbug
30 D-threonine	Dthr	L-norleucine	Nle
D-tryptophan	Dtrp	L-norvaline	Nva

D-tyrosine	Dtyr	α -methyl-aminoisobutyrate	Maib
D-valine	Dval	α -methyl- γ -aminobutyrate	Mgabu
D- α -methylalanine	Dmala	α -methylcyclohexylalanine	Mchexa
D- α -methylarginine	Dmarg	α -methylcyclopentylalanine	Mcpen
5 D- α -methylasparagine	Dmasn	α -methyl- α -naphthylalanine	Manap
D- α -methylaspartate	Dmasp	α -methylpenicillamine	Mpen
D- α -methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
D- α -methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
D- α -methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
10 D- α -methylisoleucine	Dmile	N-amino- α -methylbutyrate	Nmaabu
D- α -methylleucine	Dmleu	α -naphthylalanine	Anap
D- α -methyllysine	Dmlys	N-benzylglycine	Nphe
D- α -methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
D- α -methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
15 D- α -methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
D- α -methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
D- α -methylserine	Dmser	N-cyclobutylglycine	Ncbut
D- α -methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
D- α -methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
20 D- α -methyltyrosine	Dmty	N-cyclodecylglycine	Ncdec
D- α -methylvaline	Dmval	N-cyclododecylglycine	Ncdod
D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Ncpro
D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Ncund
25 D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)glycine	Nbhm
D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)glycine	Nbhe
D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl)glycine	Narg
D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
D-N-methylhistidine	Dnmhis	N-(hydroxyethyl)glycine	Nser
30 D-N-methylisoleucine	Dnmile	N-(imidazolylethyl)glycine	Nhis
D-N-methylleucine	Dnmleu	N-(3-indolylethyl)glycine	Nhtrp

D-N-methyllysine	Dnmlys	N-methyl- γ -aminobutyrate	Nngabu
N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	Nmcpen
N-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe
5 N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
N-(2-methylpropyl)glycine	Nleu	D-N-methylthreonine	Dnmthr
D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
D-N-methyltyrosine	Dnmtyr	N-methyla-naphthylalanine	Nmanap
10 D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
γ -aminobutyric acid	Gabu	N-(p-hydroxyphenyl)glycine	Nhtyr
L-t-butylglycine	Tbug	N-(thiomethyl)glycine	Ncys
L-ethylglycine	Etg	penicillamine	Pen
L-homophenylalanine	Hphe	L- α -methylalanine	Mala
15 L- α -methylarginine	Marg	L- α -methylasparagine	Masn
L- α -methylaspartate	Masp	L- α -methyl-t-butylglycine	Mtbug
L- α -methylcysteine	Mcys	L-methylethylglycine	Metg
L- α -methylglutamine	Mgln	L- α -methylglutamate	Mglu
L- α -methylhistidine	Mhis	L- α -methylhomophenylalanine	Mhphe
20 L- α -methylisoleucine	Mile	N-(2-methylthioethyl)glycine	Nmet
L- α -methylleucine	Mleu	L- α -methyllysine	Mlys
L- α -methylmethionine	Mmet	L- α -methylnorleucine	Mnle
L- α -methylnorvaline	Mnva	L- α -methylornithine	Morn
L- α -methylphenylalanine	Mphe	L- α -methylproline	Mpro
25 L- α -methylserine	Mser	L- α -methylthreonine	Mthr
L- α -methyltryptophan	Mtrp	L- α -methyltyrosine	Mtyr

L- α -methylvaline	Mval	L-N-methylhomophenylalanine	Nmhpe
N-(N-(2,2-diphenylethyl)carbamylmethyl)glycine	Nnbhm	N-(N-(3,3-diphenylpropyl)carbamylmethyl)glycine	Nnbhe
1-carboxy-1-(2,2-diphenyl-	Nmhc		
5 ethylamino)cyclopropane			

Crosslinkers can be used, for example, to stabilise 3D conformations, using homo-bifunctional crosslinkers such as the bifunctional imido esters having $(CH_2)_n$ spacer groups with n=1 to n=6, 10 glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example, incorporation of C_α and N_ϵ -methylamino acids, introduction of double bonds between C_α and C_β atoms of amino acids and 15 the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two side chains or between a side chain and the N or C terminus.

Such analogues also apply in respect of MCG4 and MCG7.

20

The present invention further contemplates chemical analogues of MCG18 capable of acting as antagonists or agonists of MCG18 or which can act as functional analogues of MCG18. Chemical analogues may not necessarily be derived from MCG18 but may share certain conformational similarities. Alternatively, chemical analogues may be specifically designed to 25 mimic certain physiochemical properties of MCG18. Chemical analogues may be chemically synthesised or may be detected following, for example, natural product screening.

The identification of MCG18 permits the generation of a range of therapeutic molecules capable of modulating expression of MCG18 or modulating the activity of MCG18. Modulators 30 contemplated by the present invention includes agonists and antagonists of MCG18 expression. Antagonists of MCG18 expression include antisense molecules, ribozymes and co-suppression

molecules. Agonists include molecules which increase promoter ability or interfere with negative regulatory mechanisms. Agonists of MCG18 include molecules which overcome any negative regulatory mechanism. Antagonists of MCG18 include antibodies and inhibitor peptide fragments.

5

These types of modifications may be important to stabilise MCG18 if administered to an individual or for use as a diagnostic reagent.

Other derivatives contemplated by the present invention include a range of glycosylation variants 10 from a completely unglycosylated molecule to a modified glycosylated molecule. Altered glycosylation patterns may result from expression of recombinant molecules in different host cells.

Another embodiment of the present invention contemplates a method for modulating expression 15 of MCG18 in a human, said method comprising contacting the *mcg18* gene encoding MCG18 with an effective amount of a modulator of *mcg18* expression for a time and under conditions sufficient to up-regulate or down-regulate or otherwise modulate expression of *mcg18*. For example, a nucleic acid molecule encoding MCG18 or a derivative thereof may be introduced into a cell to facilitate protection of that cell from becoming cancerous.

20

Another aspect of the present invention contemplates a method of modulating activity of MCG18 in a human, said method comprising administering to said mammal a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease MCG18 activity. The molecule may be a proteinaceous molecule or a chemical entity and may also be a derivative 25 of MCG18 or a chemical analogue or truncation mutant of MCG18.

The present invention is further described with reference to the following non-limiting Examples.

EXAMPLE 1

A human gene (designated *mcg4*) was identified on chromosome 11q13 that on the basis of sequence homology is predicted to encode a putative transcription factor of 310 amino acids 5 (Fig. 1). *mcg4* is transcribed in several different cell lines (Fig. 7).

EXAMPLE 2

The expressed sequence tag (EST) database contains partial sequence data for the murine (Fig. 10 2) and nematode (Fig. 3) homologues of *mcg4*.

EXAMPLE 3

MCG4 contains a sequence of cysteine residues within the N-terminal region of the protein that 15 resembles zinc-finger binding domains of a novel type, ie. (HC₃)₂ [Fig. 4].

EXAMPLE 4

Sensitive sequence homology searches reveal that related cysteine-containing motifs are present 20 in another *C. elegans* protein (Fig. 5) as well as the GATA-binding transcription factor from *S. pombe* (Fig. 6).

EXAMPLE 5

25 *mcg4* will have commercial value due to its likelihood of encoding a novel transcription factor that is highly conserved amongst organisms, thus suggesting an integral role in gene regulation. *mcg4* may also be involved in some way in tissue-specific or temporal regulation of certain genes, thus making it a potential target for modulating expression of those downstream effectors.

EXAMPLE 6

Nucleotide sequence data generated from cosmid clone cSRL-72c4 with the T7 primer (Promega, and Applied Biosystems Incorporated dye terminator sequencing kit) was aligned to 5 the GenBank Expressed Sequence Tag (EST) database using the program BLASTN (Altschul *et al* 1990) and was found to match numerous human and mouse entries (Table 4 and Figure 2). These matching ESTs were further used to identify overlapping entries in the EST database (Table 5). The nucleotide sequences of these human ESTs were complied using MacVector 4.2.1 software (IBI-Kodak) to produce the cDNA sequence shown in Figure 1. EST entries 10 AA074703 and AA134788 are closely related at the nucleotide level to *mcg4* and it is, therefore, likely that *mcg4* is a member of a newly discovered gene family (Figure 8).

The cDNA sequence of *mcg4* was translated in all possible reading frames and compared to the GenBank non-redundant protein database using the program BLASTX (Altschul *et al*, 1990) at 15 the National Center for Biotechnology Information (<http://www.ncbi.nih.gov.nlm>). As the protein appeared to be novel, a translation of the longest reading frame for the *mcg4* cDNA was aligned to the EST database using the program TBLASTN, which performed a dynamic translation of the EST database in all 6 frames. The search results indicated that the nematode *C. elegans* had an MCG4-like protein (Figure 3), with the matching domains containing a spatial 20 sequence of Cysteine and Histidine residues which resembled a zinc-finger structure (Figure 4). The program BLASTP was used, therefore, to conduct sensitive searches of the protein databases for similar zinc-finger motifs. A weak match to the putative zinc-finger domain was observed for another protein from *C. elegans* (Figure 5) and a poorer match for the GATA-binding transcription factor from *S. pombe* (Figure 6). The putative initiation codon of human 25 *mcg4* is not preceded by an in-frame stop codon and it is therefore possible that the cDNA described in Figure 1 is a truncated form. However, sequence alignment of human and mouse *mcg4* ESTs showed a lower degree of nucleotide conservation prior to the assigned initiation codon, thus supporting the notion that the region represents the 5' UTR (Figure 9). To determine the expression pattern of *mcg4*, 15 μ g of the total cellular RNA (RNeasy Mini Kit, 30 Qiagen) from various human cell lines grown in culture were electrophoresed through 1.2% w/v MOPS/formaldehyde gels and blotted onto nylon membranes (Amersham) by capillary transfer

using 20 x SSC (Sambrook *et al*, 1989). Filters were subsequently UV-fixed and hybridised overnight at 65°C to a radiolabelled (³²P-dCTP) cDNA probe (Church and Gilbert, 1984) for *mcg4*. After washes in 0.1 x SSC/0.1% w/v SDS at 65°C for 1 hour, the filters were air-dried and exposed to X-ray film. This Northern analysis showed that *mcg4* is expressed as a 1.6kb 5 message in numerous tissues including breast, ovary, bladder, lung and keratinocytes (Figure 7).

EXAMPLE 7

A human gene (designated *mcg7*) was identified and isolated from chromosome 11q13 which 10 encodes a protein that bears striking homology with guanine nucleotide exchange factors (GEFs) from a wide variety of organisms (Fig. 12).

EXAMPLE 8

15 The composite *mcg7* cDNA sequence is at least 2.4kb in length and Figure 13(a) shows a predicted translation product of at least 609 amino acids beginning at methionine 120. An alternative start site due to alternate exon splicing (indicated in lower case) may yield a protein of 671 amino acids starting at methionine 58 (Fig. 13a).

20

EXAMPLE 9

An *mcg7* homologue from *C. elegans* has been identified, the product of which is highly conserved with that of MCG7 (Fig. 14). There are several salient features of the protein which have been underlined in Fig. 14 - namely: a guanine nucleotide binding region, a diacylglycerol 25 binding region, and "EF-hand"-calcium binding regions. In addition, there are several potential cAMP, protein kinase C, and casein kinase II phosphorylation sites, as well as a number of potential sites for glycosylation (not indicated).

EXAMPLE 10

30

A number of partial human and murine EST clones exist for *mcg7*. The GenBank database

contains a cDNA (Acc. no. Y12336) encoding a full-length open reading frame (ORF) for human *mcg7* as well as a partial murine *mcg7* ORF (Y12339). In addition, the complete genomic sequence of the human *mcg7* gene is contained within GenBank entry AC000134.

5

EXAMPLE 11

The best characterised GEFs are members of the family of *ras* oncoproteins, which play a pivotal role in signal transduction and when mutated are responsible for tumour development. A variety of therapeutic regimes for cancer treatment have been designed to specifically interfere with the 10 *ras* signalling pathways. There is potential, therefore that the product of *mcg7* could also be a target for such clinical strategies.

EXAMPLE 12

15 The nucleotide sequence for *mcg7* cDNA was extended 5' with genomic DNA sequence from Genbank accession number AC000134 (positions 1-321) and analysed for additional coding sequence 5' to the putative initiation codon (nt 681-683) (Fig. 16). An additional in-frame ATG occurs at position nt 495-497 when the alternatively splice exon (position nt 504-609) is present (also shown in Fig. 13(a)). This closely matches the Kozak consensus. When this exon is 20 absent, then the ATG is not in-frame and other possible initiation codons are absent (resulting translation shown in lower case lettering) (also shown in Fig. 13(b)). Further evidence that the initiation codon at position nt 681-683 is the true initiation site is given in Figure 15.

25 Alignment of human and a partial murine *mcg7* cDNA sequences is shown in Figure 15. The putative initiation codon is at position nt 360-362. Both murine ESTs appear to have an upstream in-frame stop codon at position nt 326-328, downstream of the differentially spliced exon and the sequence alignment thus suggests that this region represents the 5' UTR of *mcg7*.

Furthermore, similarity with the *C. elegans* homologue strongly suggest that the ATG codon at 30 position nt 360-362 encodes the N-terminus of MCG7.

EXAMPLE 13

Figure 17 shows data from experiments indicating that a truncated version of MCG7 when expressed as a GST fusion protein (construct B in Fig. 18) can function as a Ras-guanine nucleotide exchange factor. In brief, Ras (unprocessed and as a GST fusion protein) is loaded with ³H-GDP then incubated in the presence of excess cold GTP ± GST-MCG7. Full details of this assay can be found in Porfiri *et al.*

EXAMPLE 14

10 Nucleotide sequence data generated from cosmid clone cSRL-20h12 with the T7 primer (Promega, and Applied Biosystems Incorporated dye terminator sequencing kit) were aligned to the GenBank Expressed Sequence Tag (EST) database using the program BLASTN (Altschul *et al.*, 1990) and was found to match GenBank entries T78563 (clone 113434) TO9103 (clone 15 HIBBP12) and AA035643 (clone 471819). EST clones 113434 and 471819 were obtained from Genome Systems Inc. and these DNAs were sequenced on both strands with gene-specific primers (Table 5) to generate the cDNA sequence of *mcg7* shown in Figures 13(a) and (b).

20 The cDNA sequence of *mcg7* was translated in all possible reading frames and compared to the GenBank non-redundant protein database using the program BLASTX (Altschul *et al.*, 1990) and the coding region was assigned on the basis of showing homology to the *C. elegans* protein F25B3.3 (Figure 14). The *mcg7* cDNA composite was suspected to contain a single nucleotide error that originated from clone 471819 and the correct nucleotide sequence was, therefore, sought by reverse transcription-polymerase chain reaction (RT-PCR) of the cDNA fragment 25 from a human cDNA pool. Total RNA was extracted from a human lymphoblastoid cell line using an RNeasy Mini Kit (Qiagen). cDNA synthesis was conducted with the reverse transcriptase Superscript II RNaseH- (GIBCO, BRL) and random hexamers using the procedure recommended by the manufacturer (GIBCO, BRL). One fortieth of the cDNA mix was subjected to 35 cycles of PCR using the following cycling conditions: 94°C for 30 seconds, 58°C 30 for 30 seconds and 72°C for 90 seconds. The 50μl reaction mix consisted of 1x reaction buffer (Dade Scientific), 2mM dNTP mix, 20pmol of primers (see Table 6) MCG7UF (within the

variably spliced exon of Figure 13(b), between nucleotide positions 184-201) and SGCADRV2 (between nucleotide positions 866-846 of Figure 13(a)) and 10 units of Dynazyme (Dade Scientific). The resulting PCR product was cloned into the pGEM-T vector (Promega) using standard methodology and sequenced using gene-specific primers. The correct nucleotide 5 sequence of *mcg7* (as shown in Figure 13(a)) matches that of the recently release GenBank entry Y12336. A partial mouse *mcg7* cDNA sequence can also be found in GenBank entry Y12339.

EXAMPLE 15

10 The coding sequence of *mcg7* was cloned into vectors for expression in both bacterial and mammalian cells. In addition to the full-length constructs, the deletion constructs shown in Figure 18 were designed to retain the guanine nucleotide exchange (GEF) domain. For prokaryotic expression, the *mcg7* coding region was inserted downstream of and in-frame with the Sj26 cassette of the pGEX (Pharmacia) series of vectors (Smith and Johnson, 1988) using 15 standard cloning techniques (Sambrook *et al*, 1989). For mammalian expression, the *mcg7* coding sequence was first *myc*-tagged at the N-terminus and then ligated into the expression vector pc Exv-n using standard cloning techniques. Ligation junctions of the constructs were sequences as the cloning strategies inadvertently changed or introduced additional amino acids as shown below.

20

Construct (A): EST clone 113434 was digested with *Apa*I (Figure 13(a), nucleotide positions 1022 to >2416 (within the vector)), blunt-ended with T4 DNA polymerase according to the specifications of the manufacturer (New England Biolab) and ligated into the *Sma*I site of pGEX-3X.

25

Sequence of the pGEX and *mcg7* (underlined) junction:

pGEX-3X *mcg7* (1022)
Sj26 ... GGG ATC CCC CTG GTC [SEQ ID NO:19]

additional amino acids Gly Ile Pro

30

Construct (B): EST clone 113434 was digested with *Eco*RI (Figure 13(a), nucleotide

positions <695 (within the vector) to 1711) and ligated into the EcoRI site of pGEX-1.

Sequence of the pGEX and *mcg7* (underlined) junction:

5 pGEX-1 *mcg7* (695)
Sj26 ... GAA TTC GGC ACG AGC CGA CGG [SEQ ID NO:20]
additional amino acids Glu Phe Gly Thr Ser

Construct (C): full-length *mcg7*: The pGEM-T clone containing the 5' end of the *mcg7* coding region was digested with *Apa*I (subsequently blunt-ended with T4 DNA polymerase) and *Bst*XI 10 to liberate the fragment between nucleotide positions 336 and 830 of Figure 13(a). Clone 113434 was digested with *Bst*XI and *Hind*III (vector derived) to liberate a fragment between nucleotide positions 830 > and 2416 (vector derived) of Figure 13(a). A pGEM-11zf vector (Promega) containing the *myc*-tag was digested with *Apa*I (subsequently blunt-ended with T4 DNA polymerase) and *Hind*III, and ligated with the 2 inserts described above.

15

Sequence of the *myc-tag/mcg7* junction [SEQ ID NOs:21/22]:

-----myc-tag----- vector *Bam*HI *mcg7* 5' UTR (337) start
 ATGGAGCAGAACGCTGATCTCCGAGGAGGACCTG CCCGGGGCAGCTggatccG CAGCCCACCCCGCGCCGGCGGCCATG
 20 M E Q K L I S E E D L P G A A G S A A H P A P A P A A M
 -----additional amino acids-----

The *myc*-tagged full-length *mcg7* insert in pGEM-11zf was then excised with *SacI* and *HindIII* (both vector derived) and directionally cloned into the mammalian expression vector pEXV 25 (Beranger *et al.*, 1994).

Construct (D): Construct (C) in pGEM-11zf was sequentially digested with *Hind*III (this site was subsequently blunt-ended with T4 DNA polymerase) then *Bam*HI, and ligated into pGEX-2T digested with *Bam*HI and *Sma*I. Digestion with *Bam*HI, and ligated into pGEX-2T digested 30 with *Bam*HI and *Sma*I. Digestion with *Bam*HI removed the *myc*-tag of Construct (C).

Sequence of the pGEX and *mcg7* [SEQ ID NO:23/24] (underlined) junction:

pGEX-2 *Bam*HI *mcg7* (337)
Sj26 ... gga tcc GCA GCC CAC CCC GCG CCG CGG GCC ATG
 Gly Ser Ala Ala His Pro Ala Pro Ala Ala Met
-----additional amino acids-----

5

EXAMPLE 16

Overnight bacterial cultures containing the pGEX plasmid were used to inoculate 500ml of Luria Broth media containing 50 μ g/ml ampicillin. The cultures were grown to an OD of ~0.8 and then 10 induced with 1mM of IPTG for up to 3 hours at 37°C. The bacteria were pelleted and resuspended in 15 ml of STE buffer (10mM Tris pH 8.0, 150 mM NaCl and 1mM EDTA) with 1 mg/ml lysozyme. The mixture was left on ice for more than 1 hour and subsequent steps were performed at 4°C. Protease inhibitors aprotinin, pepstatin and leupeptin were added at final concentrations of 25 μ g/ml, prior to the addition of Triton-X-100 (2% v/v final) and n-lauroyl 15 sarcosine (1.5% w/v final). The lysate was sonicated for ~1 minute and pelleted at 14,000 x g for 15 minutes. 100 μ l of 50% w/v glutathione-sephadex bead slurry (in PBS) was added per ml of supernatant. Following a 30 minute incubation at 4°C, the beads were washed three times with NETN (20mM Tris-HCl pH 8.0, 100mM NaCl, 1mM EDTA, 0.5% NP40), once with NETN-HS (equivalent to NETN but with 1M NaCl), and once in NETN. The bound protein 20 was directly analysed by SDS-polyacrylamide gel electrophoresis (PAGE) as described below or the bound protein was eluted from the beads with the following elution buffer (50mM Tris pH 8.0, 150mM NaCl, 5mM MgCl₂, 1mM DTT, 10mM reduced glutathione) for use in GDP release assays.

25

EXAMPLE 17

Twenty microlitres of GST-sepharose-bound MCG7 were added to an equal volume of 2 x 30 sample loading dye (100mM Tris pH6.8, 2% v/v mercaptoethanol, 4% w/v SDS, 0.2% w/v bromophenol blue, 20% v/v glycerol), boiled for 5 min and loaded onto a 7.5% w/v SDS-PAGE gel (Sambrook *et al*, 1989). The Coomassie brilliant blue stained gel (Sambrook *et al*, 1989)

typically displayed a protein doublet, running between 87-95 kDa consisting of the MCG7-GST fusion and a slightly smaller, co-purified contaminating *E. coli* protein of ~105kDa. The calculated molecular weight of full-length MCG7 is 77.5 kDa (Construct (D)) and the GST component has a molecular weight of 26kDa, hence, the recombinant protein runs slightly 5 smaller than predicted. A Western blot of the same gel probed with anti-GST antibody yields an MCG7-specific band at the same position as that of the stained gel.

EXAMPLE 18

10 Assumptions: (a) GST-Ras molecular weight = 50 kD; (b) Concentration of GST-Ras solution = 1mg/ml = 20 μ M; (c) [³H]-GDP is 1mCi/ml and 13.3Ci/mmol, therefore [³H]-GDP concentration = 75 μ M and 1pmol [³H]-GDP=15,466 cpm; (d) Elution buffer = Buffer E = 20 mM Tris-Cl, pH7.5; 50mM NaCl; 5mM MgCl₂; 1mM DTT (added just before use). Buffer E + BSA= Buffer E+1mg/ml BSA (added just before use).

15

Mix together, in the following order and mix well after each addition:

10 μ l (=10 μ g) GST-Ras (@1mg/ml in Buffer E), 463 μ l Buffer E + BSA, 7 μ l [³H]-GDP, 10ml 490 μ M EDTA. Incubate @ RT for 10 min. Add 10 μ l 0.5 M MgCl₂ and mix well. Incubate @ RT for 10 min. Place on ice. During the first incubation the excess EDTA concentration is 20 5mM, during the second incubation the excess Mg concentration is 5mM. The [³H]-GDP concentration is 1 μ M and the final concentration of GST-Ras is 400nM. Thus 20ml of the final mix will contain 8pmol of GST-Ras protein. Specific activity of GDP is 15,446 cpm/pmol x (1/1.4) = 11,047 cpm/pmol.

25

EXAMPLE 19

Exchange Ras with labelled GDP as above. Add unlabelled GTP (stock = 100mM, pH7) to 1 mM. Adjust Mg concentration by adding 5 μ l 0.5 EDTA to labelled Ras, 5 μ l 0.5M EDTA to 500 μ l MCG7, and 5 μ l 0.5M EDTA to 500 μ l Buffer E + BSA. On ice set up microfuge tubes 30 with 40 μ l Ras-GDP (in triplicate) with 40 μ l MCG7 or Buffer E + BSA (control). Transfer tubes to heat block @ 25°C and incubate for 10, 20 or 30 min. Stop exchange reactions with 1ml of

ice cold buffer E and place on ice. Pre-soak nitrocellulose filters, pore size 45 μ m, in Buffer E. Assemble the vacuum manifold apparatus (Millipore) with wet filters and plug the wells with rubber bungs. Switch on the vacuum pump. Remove the first plug, aliquot the sample and once it has been sucked through, wash the filter with 10ml of ice cold Buffer E. Remove next plug 5 etc and continue round the manifold. Take manifold apart. Pin the filters to a pin board reserved for [3 H]. Air dry. Take up in 4ml scintillation fluid and count. These studies have been carried out with a truncated MCG7-GST fusion protein (amino acids 341 of Figure 13a to stop encoded within construct B).

10

EXAMPLE 20

A human gene was identified from chromosome 11q13 that encodes a new member of the DnaJ family of proteins (designated MCG18). This gene (*mcg18*) is expressed as an ~1.4kb mRNA (Fig. 28) and is predicted to encode a 241 amino acid product (Fig. 19).

15

EXAMPLE 21

MCG18 has partial homology to *E. coli* dnaJ and other human DnaJ family members in that it contains the J domain (Fig. 20).

20

EXAMPLE 22

MCG18 has greatest homology to functionally undefined proteins from *C. elegans* (Fig. 21) and *S. pombe* (Fig. 22) that also feature the J domain but maintain sequence similarity through the 25 central and C-terminal regions of the proteins.

EXAMPLE 23

The J domain is proposed to mediate interaction with heat shock protein (Hsp70) 70 and consist 30 of some 70 amino acids, frequently located at the N-terminus of the protein. One of these proteins, tumorous imaginal discs (Tid58) from *Drosophila virilis* (Fig. 23) functions as a

tumour suppressor.

EXAMPLE 24

5 A comparison of homology between MCG18 and human DnaJ proteins HDJ-2/H5DJ, HDJ-1/HSP40 and HSJ1 is shown in Fig. 24.

EXAMPLE 25

10 During the sequence characterisation of the *VRF/VEGFB* promoter region on cosmid CLGW4 [Grimmond *et al*, 1996], which maps to chromosome 11q13 the inventors identified a sequence that exactly matched numerous human and mouse expressed sequence tags (ESTs) in the EST database from a gene which we designated *mcg18*. EST clones for human (GenBank accession number T69741, clone 108172; accession number H40901, clone 177008) and mouse *mcg18* 15 (accession number W34884, clone 350966; accession number W64183, clone 385535) were obtained from Genome Systems Inc. and sequenced with the gene-specific primers shown in Table 7. The EST clones listed in Table 8 were also utilised in generating the full-length coding sequence for human (Figure 19) and mouse (Figure 25) *mcg18*. The EST database also contained *mcg18* cDNA entries that were alternately (or partially) spliced, and in order to 20 understand their ability to encode new polypeptides, the gene structure of *mcg18* was determined by sequencing human and mouse genomic templates with gene-specific primers.

Genomic fragments containing the human [Grimmond *et al*, 1996] and murine genes [Townson *et al*, 1996] have been previously reported. Cosmid CLGW4 contains the entire human gene 25 and λ 121 contains the entire mouse gene, as determined by direct sequencing of the templates with the oligonucleotides listed in Table 7. Plasmids containing sub-fragments of λ 121 and cosmid CLGW4 were prepared using plasmid purification kits (Qiagen) and sequenced as described previously [Grimmond *et al*, 1996; Townson *et al*, 1996] using primers designed against cDNA and genomic sequences. The BLAST suite of programs [Altschul *et al*, 1990] 30 was used to compare the sequence data against the nucleotide and protein databases at the National Center for Biotechnology Information (<http://www.ncbi.nih.gov.nlm>). The sequence

data were compiled using MacVector 4.2.1 software (IBI-Kodak). ClustalW sequence alignments [Thompson *et al*, 1994] were conducted using the Australian National Genome Information Service computer faculty at the University of Sydney, Australia.

5 The cDNA sequence of human *mcg18* (Figure 19) was translated in all possible reading frames and compared to the GenBank non-redundant protein database using the program BLASTX [Altschul *et al*, 1990] and the coding region was identified on the basis of showing homology to the DnaJ family of proteins (Figure 20). The DnaJ domain is encoded within the longest open reading frame and the assigned initiation codon is preceded by an in-frame stop codon (Figure 10 27). Similar database search results were obtained for the mouse *mcg18* cDNA, and the alignment of human and mouse protein sequences is shown in Figure 26. MCG18 has greatest homology to gene products from *C. elegans* (Figure 21) and *S. pombe* (Figure 22). Although it shares a similar J-domain, MCG18 does not contain other domains described for the tumour suppressor gene from *D. virilis* (Figure 23), nor is it a homologue of other reported human J-15 domain-containing proteins (Figure 24).

To determine the expression pattern of *mcg18*, 15 μ g of total cellular RNA (RNeasy Mini Kit, Qiagen) from various human cell lines grown in culture were electrophoresed through 1.2% MOPS/formaldehyde gels and blotted onto nylon membranes (Amersham) by capillary transfer 20 using 20 x SSC (Sambrook *et al*, 1986). Filters were subsequently UV-fixed and hybridised overnight at 65°C to a radiolabelled (32 P-dCTP) cDNA probe (Church and Gilbert, 1984) for *mcg18*. After washes in 0.1 x SSC/0.1% w/v SDS for 65°C for 1 hour, the filters were air-dried and exposed to X-ray film. This Northern analysis showed that *mcg18* is expressed as a 1.4kb message in numerous tissues including breast, ovary, bladder, lung and keratinocytes (Figure 28).

- 51 -

TABLE 4

ESTs matching *mcg4*

accession number	seq.	run	organism	score	E value	N
gb AA399110 AA399110	zt89e06.	s1	Soares testis NHT Homo sa...	1136	4.0e-168	2
gb N39612 N39612	yy51g06.	s1	Homo sapiens cDNA clone 2...	1521	5.3e-168	4
gb AA514406 AA514406	nf57d01.	s1	NCI_CGAP_Co3 Homo sapiens...	931	5.5e-166	3
gb AA544946 AA544946	vk38e02.	r1	Soares mouse mammary glan...	1207	8.4e-164	2
gb AA450076 AA450076	zx42a04.	s1	Soares total fetus Nb2HF8...	691	2.3e-160	4
gb AA535731 AA535731	nf88f07.	s1	NCI_CGAP_Co3 Homo sapiens...	796	3.5e-158	4
gb W79710 W79710	zd86f01.	r1	Soares fetal heart NbHH19...	1644	1.1e-157	4
gb AA503531 AA503531	ne47e08.	s1	NCI_CGAP_Co3 Homo sapiens...	736	4.0e-156	4
gb AA450132 AA450132	zx42a04.	r1	Soares total fetus Nb2HF8...	1955	3.9e-155	1
gb AA398068 AA398068	zt89f06.	r1	Soares testis NHT Homo sa...	1315	5.4e-148	2
gb W60405 W60405	zd29h08.	r1	Soares fetal heart NbHH19...	1022	1.8e-139	4
gb W81382 W81382	zd86f01.	s1	Soares fetal heart NbHH19...	605	3.5e-125	5
gb AA047617 AA047617	zf13f07.	s1	Soares fetal heart NbHH19...	922	4.6e-125	2
gb AA282175 AA282175	zt02d03.	s1	NCI_CGAP_GCB1 Homo sapien...	1577	2.0e-123	1
gb AA242159 AA242159	my30d04.	r1	Barstead mouse pooled org...	866	7.7e-117	2
gb AA068680 AA068680	mm61a05.	r1	Stratagene mouse embryoni...	1280	1.6e-98	1
gb W46766 W46766	zc36b07.	s1	Soares senescent fibrobla...	506	9.6e-92	3
gb N93704 N93704	zb51c04.	s1	Soares fetal lung NbHL19W...	584	9.0e-91	4
gb AA155210 AA155210	mr98e01.	r1	Stratagene mouse embryoni...	840	7.6e-87	2
gb AA366022 AA366022	EST76915		Pineal gland II Homo sapien...	1077	2.4e-81	1
gb AA037691 AA037691	zk34h12.	s1	Soares pregnant uterus Nb...	949	2.1e-80	2
gb W35374 W35374	zc07h03.	s1	Soares parathyroid tumor ...	1016	3.1e-76	1
dbj C00696 C00696	HUMGS0008251,		Human Gene Signature, ...	1009	1.2e-75	1
gb T98249 T98249	ye59a07.	s1	Homo sapiens cDNA clone 1...	998	6.7e-75	1
gb W21588 W21588	zb51c04.	r1	Soares fetal lung NbHL19W...	484	1.1e-69	4
gb H32171 H32171	EST107015		Rattus sp. cDNA 5' end.	828	1.1e-60	1
gb AA108092 AA108092	nm89e06.	r1	Stratagene mouse embryoni...	782	1.3e-60	2
gb AA017857 AA017857	mh44d10.	r1	Soares mouse placenta 4Nb...	665	2.5e-60	2
gb AA037690 AA037690	zk34h12.	r1	Soares pregnant uterus Nb...	540	9.4e-53	2
gb AA531006 AA531006	nj07b11.	s1	NCI_CGAP_Pr22 Homo sapien...	535	5.4e-48	2
gb N46760 N46760	yy51g06.	r1	Homo sapiens cDNA clone 2...	665	9.5e-47	1
gb W23584 W23584	zc71d03.	s1	Soares fetal heart NbHH19...	457	1.8e-44	2
gb W42214 W42214	mc69h09.	r1	Soares mouse embryo NbME1...	460	1.3e-38	3
gb AA244877 AA244877	mx25a04.	r1	Soares mouse NML Mus musc...	429	2.9e-25	1
gb W32939 W32939	zc07h03.	r1	Soares parathyroid tumor ...	320	4.8e-18	1

- 52 -

TABLE 5

ESTs matching AA074703 (*mcg4*-related cDNA)

Database: Non-redundant Database of GenBank EST Division
 1,222,625 sequences; 449,352,662 total letters.

Sequences producing High-scoring Segment Pairs:				Score	P(N)	N	Smallest
accession number	seq. run	organism		score	E value	N	Sum
gb AA074703 AA074703	zm76g07.rl	Stratagene neuroepitheli...		2071	4.0e-167	1	
gb AA068680 AA068680	mm61a05.rl	Stratagene mouse embryon...		1270	4.4e-145	4	
gb AA134788 AA134788	zm81g02.rl	Stratagene neuroepitheli...		946	1.3e-144	5	
gb AA399110 AA399110	zt89e06.s1	Soares testis NHT Homo s...		520	8.7e-119	6	
gb N39612 N39612	yy51g06.s1	Homo sapiens cDNA clone ...		582	9.6e-110	7	
gb AA282175 AA282175	zt02d03.s1	NCI_CGAP_GCB1 Homo sapie...		771	9.4e-80	3	
gb W81382 W81382	zd86f01.s1	Soares fetal heart NbHH1...		329	1.6e-75	6	
gb AA544946 AA544946	vk38e02.rl	Soares mouse mammary gla...		644	9.6e-63	2	
gb W35374 W35374	zc07h03.s1	Soares parathyroid tumor...		294	4.5e-42	4	
gb W57106 W57106	md57c12.rl	Soares mouse embryo NbME...		394	1.9e-30	2	
gb AA244877 AA244877	mx25a04.rl	Soares mouse NML Mus mus...		162	2.1e-27	4	
gb AA017857 AA017857	mh44d10.rl	Soares mouse placenta 4N...		230	3.7e-23	3	
gb AA531006 AA531006	nj07b11.s1	NCI_CGAP_Pr22 Homo sapie...		139	2.3e-19	3	
gb H32171 H32171	EST107015	Rattus sp. cDNA 5' end.		207	2.6e-10	2	
gb W79710 W79710	zd86f01.rl	Soares fetal heart NbHH1...		157	0.0073	1	

TABLE 6
***mcg7*-specific oligonucleotides**

	name	sequence (5' to 3')	SEQ ID NOs.
5	M1044R	GGA CAA AGT GTG TGA TGA ACC	SEQ ID NO:25
	MCG7-GEF-REV2	CTC ATC CTC CGT CTG ATA CTG	SEQ ID NO:26
	M7R	GTA GAT GTG GAT CAG CTT GG	SEQ ID NO:27
	MCG7 CA FOR	AGG TGG AGA ATG GTC AAGG	SEQ ID NO:28
10	MCG7-GEF-REV	GTC ATA GTC TGT CTC CTA CT	SEQ ID NO:29
	MCG7 GEF FOR	ACA TAG ACA GCG TGC CTA CC	SEQ ID NO:30
	MCG7-PKC-REV	TAC AAC CTT AGG GAC ACC AG	SEQ ID NO:31
	MCG7-PKC-FOR	TGC TGA GCC TGC TCA CGG TG	SEQ ID NO:32
	T09103F	CAA GTG AAC AGC ACG TCC	SEQ ID NO:33
15	M7F	GAC TAT CTC AAG GAC CAG CTG	SEQ ID NO:34
	MCG7UF	GGT TCG GTC CGA GCC CGG	SEQ ID NO:35
	SGCADRV2	GGA GCG ATA CTC CAA GTA GGT	SEQ ID NO:36

TABLE 7
***mcg18*-SPECIFIC OLIGONUCLEOTIDES**

	name	sequence 5' to 3'
5	HVESTF	AGC GGG CCA GGC CCC TTC [SEQ ID NO:37]
	HV195F	CAT CCT GGT CCA ATG CGC TC [SEQ ID NO:38]
	HV387F2	GCA CTG AGG AAG TTA AAC GAG C [SEQ ID NO:39]
	HV408R	GCT CGT TTA ACT TCC TCA GTG C [SEQ ID NO:40]
	EXON1REV	GCT CAG CTC CAC AAA GCG GCT [SEQ ID NO:41]
10	HVEST426F	ACC AGC TCC GCT CAG GTA G [SEQ ID NO:42]
	HVEST623R	TCC AGG AGC TGT GTG TTT GG [SEQ ID NO:43]
	SGVESTF3	CCA GTT TCA CAG CGT GAG G [SEQ ID NO:44]
	HVEST631R	CAG CAT GAG GAG GAG GCA G [SEQ ID NO:45]

TABLE 8
EST CLONE SEQUENCES USED TO GENERATE HUMAN AND MOUSE
***mcg18* cDNA SEQUENCE COMPOSITES**

<u>EST clone number</u>	<u>organism</u>	<u>GenBank accession number</u>
1g2815	human	D45683
001-T2-18	human	F17225
273748	human	N37043
177008	human	H40901 and H40939
258011	human	N30776
276887	human	N44004
108172	human	T69741
307529	human	W21083 and W32579
342027	human	W60283
354288	mouse	W44038
350966	mouse	W348844
426261	mouse	AA002868
368185	mouse	W53911
385535	mouse	W64183
404472	mouse	W82959
406437	mouse	W83482

BIBLIOGRAPHY

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) *J. Mol. Biol.* 215: 403-410.
2. Church, G., and Gilbert, W. (1984) *Proc. Natl. Acad. Sci. USA* 81: 1991-1995.
3. Porfiri *et al.* *J. Biol. Chem.* 269: 22672-22677 (1994).
4. Sambrook, J., Frtisch, E.F., and Maniatis, T. (1989) *Molecular Cloning. A Laboratory Manual.* Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA.
5. Smith, D.B., and Johnson, K.S. (1988) *Gene* 67: 31-40.
6. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) *Nucleic Acids Res.* 22: 4673-4680.
7. Beranger, F., Paterson, H., Powers, S., de Gunzburg, J. and Hancock, J.F. (1994) *Molecular and Cellular Biology* 14: 744-758.
8. Grimmond, S., Lagercrantz, J., Drinkwater, C., Silins, G., Townson, S., Pollock, P., Gotley, D., Carson, E., Rakar, S., Nordenskjöld, M., Ward, L., Hayward, N., and Weber, G (1996) *Genome Res.* 6: 124-131.
9. Townson, S., Lagercrantz, J., Grimmond, S., Silins, G., Nordenskjöld, Weber, G., and Hayward, N. (1996) *Biochem. Biophys. Res. Commun.* 220: 922-928.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: (OTHER THAN US): The Council of The Queensland Institute of Medical Research
(US ONLY): HAYWARD Nicholas, SILINS Ginters, GRIMMOND Sean, GARTSIDE Michael and HANCOCK, John

(ii) TITLE OF INVENTION: A NOVEL GENE AND USES THEREFOR

(iii) NUMBER OF SEQUENCES: 45

(iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: DAVIES COLLISON CAVE
(B) STREET: 1 LITTLE COLLINS STREET
(C) CITY: MELBOURNE
(D) STATE: VICTORIA
(E) COUNTRY: AUSTRALIA
(F) ZIP: 3000

(v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER: PCT INTERNATIONAL
(B) FILING DATE: 22-MAY-1998
(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: PO6973
(B) FILING DATE: 23-MAY-1997
(C) CLASSIFICATION:

(viii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: PO6974
(B) FILING DATE: 23-MAY-1997
(C) CLASSIFICATION:

(ix) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: PO6972
(B) FILING DATE: 23-MAY-1997

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: PP1459

(B) FILING DATE: 22-JAN-1998

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: PP1460

(B) FILING DATE: 22-JAN-1998

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: PP1458

(B) FILING DATE: 22-JAN-1998

(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: HUGHES, DR E JOHN L

(C) REFERENCE/DOCKET NUMBER: EJH/AF

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: +61 3 9254 2777

(B) TELEFAX: +61 3 9254 2770

(C) TELEX: AA 31787

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Cys Xaa Xaa Cys Xaa Gly Xaa Gly
5

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1242 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 30..959

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TCAGTAAACA CAGAGACTGG GGATCGATC ATG GGG CTT TGT AAG TGC CCC AAG Met Gly Leu Cys Lys Cys Pro Lys	53
1 5	
AGA AAG GTG ACC AAC CTG TTC TGC TTC GAA CAT CGG GTC AAC GTC TGC Arg Lys Val Thr Asn Leu Phe Cys Phe Glu His Arg Val Asn Val Cys	101
10 15 20	
GAG CAC TGC CTG GTA GCC AAT CAC GCC AAG TGC ATC GTC CAG TCC TAC Glu His Cys Leu Val Ala Asn His Ala Lys Cys Ile Val Gln Ser Tyr	149
25 30 35 40	
CTG CAA TGG CTC CAA GAT AGC GAC TAC AAC CCC AAT TGC CGC CTG TGC Leu Gln Trp Leu Gln Asp Ser Asp Tyr Asn Pro Asn Cys Arg Leu Cys	197
45 50 55	
AAC ATA CCC CTG GCC AGC CGA GAG ACG ACC CGC CTT GTC TGC TAT GAT Asn Ile Pro Leu Ala Ser Arg Glu Thr Thr Arg Leu Val Cys Tyr Asp	245
60 65 70	
CTC TTT CAC TGG GCC TGC CTC AAT GAA CGT GCT GCC CAG CTA CCC CGA Leu Phe His Trp Ala Cys Leu Asn Glu Arg Ala Ala Gln Leu Pro Arg	293
75 80 85	
AAC ACG GCA CCT GCC GGC TAT CAG TGC CCC AGC TGC AAT GGC CCC ATC Asn Thr Ala Pro Ala Gly Tyr Gln Cys Pro Ser Cys Asn Gly Pro Ile	341
90 95 100	
TTC CCC CCA ACC AAC CTG GCT GGC CCC GTG GCC TCC GCA CTG AGA GAG Phe Pro Pro Thr Asn Leu Ala Gly Pro Val Ala Ser Ala Leu Arg Glu	389
105 110 115 120	

- 60 -

AAG CTG GCC ACA GTC AAC TGG GCC CGG GCA GGA CTG GGC CTC CCT CTG Lys Leu Ala Thr Val Asn Trp Ala Arg Ala Gly Leu Gly Leu Pro Leu 125 130 135	437
ATC GAT GAG GTG GTG AGC CCA GAG CCC GAG CCC CTC AAC ACG TCT GAC Ile Asp Glu Val Val Ser Pro Glu Pro Glu Pro Leu Asn Thr Ser Asp 140 145 150	485
TTC TCT GAC TGG TCT AGT TTT AAT GCC AGC AGT ACC CCT GGA CCA GAG Phe Ser Asp Trp Ser Ser Phe Asn Ala Ser Ser Thr Pro Gly Pro Glu 155 160 165	533
GAG GTA GAC AGC GCC TCT GCT GCC CCA GCC TTC TAC AGC CGA GCC CCC Glu Val Asp Ser Ala Ser Ala Ala Pro Ala Phe Tyr Ser Arg Ala Pro 170 175 180	581
CGG CCC CCA GCT TCC CCA GGC CGG CCC GAG CAG CAC ACA GTG ATC CAC Arg Pro Pro Ala Ser Pro Gly Arg Pro Glu Gln His Thr Val Ile His 185 190 195 200	629
ATG GGC AAT CCT GAG CCC TTG ACT CAC GCC CCT AGG AAG GTG TAT GAT Met Gly Asn Pro Glu Pro Leu Thr His Ala Pro Arg Lys Val Tyr Asp 205 210 215	677
ACG CGG GAT GAT GAC CGG ACA CCA GGC CTC CAT GGA GAC TGT GAC GAT Thr Arg Asp Asp Arg Thr Pro Gly Leu His Gly Asp Cys Asp Asp 220 225 230	725
GAC AAG TAC CGA CGT CGG CCG GCC TTG GGT TGG CTG GCC CGG CTG CTA Asp Lys Tyr Arg Arg Pro Ala Leu Gly Trp Leu Ala Arg Leu Leu 235 240 245	773
AGG AGC CGG GCT GGG TCT CGG AAG CGG CCG CTG ACC CTG CTC CAG CGG Arg Ser Arg Ala Gly Ser Arg Lys Arg Pro Leu Thr Leu Leu Gln Arg 250 255 260	821
GCG GGG CTG CTG CTA CTC TTG GGA CTG CTG GGC TTC CTG GCC CTC CTT Ala Gly Leu Leu Leu Leu Gly Leu Leu Gly Phe Leu Ala Leu Leu 265 270 275 280	869
GCC CTC ATG TCT CGC CTA GGC CGG GCC GCA GCT GAC AGC GAT CCC AAC Ala Leu Met Ser Arg Leu Gly Arg Ala Ala Ala Asp Ser Asp Pro Asn 285 290 295	917
CTG GAC CCA CTC ATG AAC CCT CAC ATC CGC GTG GGC CCC TCC TGA Leu Asp Pro Leu Met Asn Pro His Ile Arg Val Gly Pro Ser * 300 305 310	962
GCCCCCTTGC TTGTGGCTAG GCCAGCCTAG GATGTGGTT CTGTGGAGGA GAGGCAGGGT AATGGGGAGG CTGAGGGCAC CTCTTCACTG CCCCTCTCCC TCAAGCCTAA GACACTAAGA CCCCAGACCC AAAGCCAAGT CCACCAGAGT GGCTCGCAGG CCAGGCCTGG AGTCCCCGTG GGTCAAGCAT TTGTCTTGAC TTGCTTCTC CCAGGTCTCC AGCCTCCGAC CCCTCGCCCC ATGAAGGAGC TGGCAGGTGG AAATAAACAA CAACTTTATT	1022 1082 1142 1202 1242

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 310 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

- 61 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Gly Leu Cys Lys Cys Pro Lys Arg Lys Val Thr Asn Leu Phe Cys
 1 5 10 15

Phe Glu His Arg Val Asn Val Cys Glu His Cys Leu Val Ala Asn His
 20 25 30

Ala Lys Cys Ile Val Gln Ser Tyr Leu Gln Trp Leu Gln Asp Ser Asp
 35 40 45

Tyr Asn Pro Asn Cys Arg Leu Cys Asn Ile Pro Leu Ala Ser Arg Glu
 50 55 60

Thr Thr Arg Leu Val Cys Tyr Asp Leu Phe His Trp Ala Cys Leu Asn
 65 70 75 80

Glu Arg Ala Ala Gln Leu Pro Arg Asn Thr Ala Pro Ala Gly Tyr Gln
 85 90 95

Cys Pro Ser Cys Asn Gly Pro Ile Phe Pro Pro Thr Asn Leu Ala Gly
 100 105 110

Pro Val Ala Ser Ala Leu Arg Glu Lys Leu Ala Thr Val Asn Trp Ala
 115 120 125

Arg Ala Gly Leu Gly Leu Pro Leu Ile Asp Glu Val Val Ser Pro Glu
 130 135 140

Pro Glu Pro Leu Asn Thr Ser Asp Phe Ser Asp Trp Ser Ser Phe Asn
 145 150 155 160

Ala Ser Ser Thr Pro Gly Pro Glu Glu Val Asp Ser Ala Ser Ala Ala
 165 170 175

Pro Ala Phe Tyr Ser Arg Ala Pro Arg Pro Pro Ala Ser Pro Gly Arg
 180 185 190

Pro Glu Gln His Thr Val Ile His Met Gly Asn Pro Glu Pro Leu Thr
 195 200 205

His Ala Pro Arg Lys Val Tyr Asp Thr Arg Asp Asp Asp Arg Thr Pro
 210 215 220

Gly Leu His Gly Asp Cys Asp Asp Asp Lys Tyr Arg Arg Arg Pro Ala
 225 230 235 240

Leu Gly Trp Leu Ala Arg Leu Leu Arg Ser Arg Ala Gly Ser Arg Lys
 245 250 255

Arg Pro Leu Thr Leu Leu Gln Arg Ala Gly Leu Leu Leu Leu Leu Gly
 260 265 270

Leu Leu Gly Phe Leu Ala Leu Leu Ala Leu Met Ser Arg Leu Gly Arg
 275 280 285

Ala Ala Ala Asp Ser Asp Pro Asn Leu Asp Pro Leu Met Asn Pro His
 290 295 300

Ile Arg Val Gly Pro Ser
 305 310

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- 62 -

- (A) LENGTH: 2415 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 3..2188

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CG ATT TCA TTC CTC GCT CCC CAC AGG TCC CTC TCC CCA AAA TAT TCC Ile Ser Phe Leu Ala Pro His Arg Ser Leu Ser Pro Lys Tyr Ser 1 5 10 15	47
CAT CTT GTC CTA GCC CAT CCC CCA GAC TAT CTC AAG GAC CAG CTG TCC His Leu Val Leu Ala His Pro Pro Asp Tyr Leu Lys Asp Gln Leu Ser 20 25 30	95
CCA CGC CCC CGA CCT CCA CTA GGC CTG TGC CAC CCG CTG CCT GCA GGA Pro Arg Pro Arg Pro Pro Leu Gly Leu Cys His Pro Leu Pro Ala Gly 35 40 45	143
AGA CGC CCG GTC CCG GGC CGG GTT AGC CCC ATG GGA ACG CAG CGC CTG Arg Arg Pro Val Pro Gly Arg Val Ser Pro Met Gly Thr Gln Arg Leu 50 55 60	191
TGT GGC CGC GGG ACT CAA GGC TGG CCT GGC TCA AGT GAA CAG CAC GTC Cys Gly Arg Gly Thr Gln Gly Trp Pro Gly Ser Ser Glu Gln His Val 65 70 75	239
CAG GAG GCG ACC TCG TCC GCG GGT TTG CAT TCT GGG GTG GAC GAG CTG Gln Glu Ala Thr Ser Ser Ala Gly Leu His Ser Gly Val Asp Glu Leu 80 85 90 95	287
GGG GTT CGG TCC GAG CCC GGT GGG AGG CTC CCG GAG CGC AGC CTG GGC Gly Val Arg Ser Glu Pro Gly Gly Arg Leu Pro Glu Arg Ser Leu Gly 100 105 110	335
CCA GCC CAC CCC GCG CCG GCG GCC ATG GCA GGC ACC CTG GAC CTG GAC Pro Ala His Pro Ala Pro Ala Met Ala Gly Thr Leu Asp Leu Asp 115 120 125	383
AAG GGC TGC ACG GTG GAG GAG CTG CTC CGC GGG TGC ATC GAA GCC TTC Lys Gly Cys Thr Val Glu Glu Leu Leu Arg Gly Cys Ile Glu Ala Phe 130 135 140	431
GAT GAC TCC GGG AAG GTG CGG GAC CCG CAG CTG GTG CGC ATG TTC CTC Asp Asp Ser Gly Lys Val Arg Asp Pro Gln Leu Val Arg Met Phe Leu 145 150 155	479
ATG ATG CAC CCC TGG TAC ATC CCC TCC TCT CAG CTG GCG GCC AAG CTG Met Met His Pro Trp Tyr Ile Pro Ser Ser Gln Leu Ala Ala Lys Leu 160 165 170 175	527
CTC CAC ATC TAC CAA CAA TCC CGG AAG GAC AAC TCC AAT TCC CTG CAG Leu His Ile Tyr Gln Gln Ser Arg Lys Asp Asn Ser Asn Ser Leu Gln 180 185 190	575
GTG AAA ACG TGC CAC CTG GTC AGG TAC TGG ATC TCC GCC TTC CCA GCG Val Lys Thr Cys His Leu Val Arg Tyr Trp Ile Ser Ala Phe Pro Ala 195 200 205	623

- 63 -

GAG TTT GAC TTG AAC CCG GAG TTG GCT GAG CAG ATC AAG GAG CTG AAG	671
Glu Phe Asp Leu Asn Pro Glu Leu Ala Glu Gln Ile Lys Glu Leu Lys	
210 215 220	
GCT CTG CTA GAC CAA GAA GGG AAC CGA CGG CAC AGC AGC CTA ATC GAC	719
Ala Leu Leu Asp Gln Glu Gly Asn Arg Arg His Ser Ser Leu Ile Asp	
225 230 235	
ATA GAC AGC GTC CCT ACC TAC AAG TGG AAG CGG CAG GTG ACT CAG CGG	767
Ile Asp Ser Val Pro Thr Tyr Lys Trp Lys Arg Gln Val Thr Gln Arg	
240 245 250 255	
AAC CCT GTG GGA CAG AAA AAG CGC AAG ATG TCC CTG TTG TTT GAC CAC	815
Asn Pro Val Gly Gln Lys Lys Arg Lys Met Ser Leu Leu Phe Asp His	
260 265 270	
CTG GAG CCC ATG GAG CTG GCG GAG CAT CTC ACC TAC TTG GAG TAT CGC	863
Leu Glu Pro Met Glu Leu Ala Glu His Leu Thr Tyr Leu Glu Tyr Arg	
275 280 285	
TCC TTC TGC AAG ATC CTG TTT CAG GAC TAT CAC AGT TTC GTG ACT CAT	911
Ser Phe Cys Lys Ile Leu Phe Gln Asp Tyr His Ser Phe Val Thr His	
290 295 300	
GGC TGC ACT GTG GAC AAC CCC GTC CTG GAG CGG TTC ATC TCC CTC TTC	959
Gly Cys Thr Val Asp Asn Pro Val Leu Glu Arg Phe Ile Ser Leu Phe	
305 310 315	
AAC AGC GTC TCA CAG TGG GTG CAG CTC ATG ATC CTC AGC AAA CCC ACA	1007
Asn Ser Val Ser Gln Trp Val Gln Leu Met Ile Leu Ser Lys Pro Thr	
320 325 330 335	
GCC CCG CAG CGG GCC CTG GTC ATC ACA CAC TTT GTC CAC GTG GCG GAG	1055
Ala Pro Gln Arg Ala Leu Val Ile Thr His Phe Val His Val Ala Glu	
340 345 350	
AAG CTG CTA CAG CTG CAG AAC TTC AAC ACG CTG ATG GCA GTG GTC GGG	1103
Lys Leu Leu Gln Leu Gln Asn Phe Asn Thr Leu Met Ala Val Val Gly	
355 360 365	
GGC CTG AGC CAC AGC TCC ATC TCC CGC CTC AAG GAG ACC CAC AGC CAC	1151
Gly Leu Ser His Ser Ser Ile Ser Arg Leu Lys Glu Thr His Ser His	
370 375 380	
GTT AGC CCT GAG ACC ATC AAG CTC TGG GAG GGT CTC ACG GAA CTA GTG	1199
Val Ser Pro Glu Thr Ile Lys Leu Trp Glu Gly Leu Thr Glu Leu Val	
385 390 395	
ACG GCG ACA GGC AAC TAT GGC AAC TAC CGG CGT CGG CTG GCA GCC TGT	1247
Thr Ala Thr Gly Asn Tyr Gly Asn Tyr Arg Arg Arg Leu Ala Ala Cys	
400 405 410 415	
G TG GGC TTC CGC TTC CCG ATC CTG GGT GTG CAC CTC AAG GAC CTG GTG	1295
Val Gly Phe Arg Phe Pro Ile Leu Gly Val His Leu Lys Asp Leu Val	
420 425 430	
GCC CTG CAG CTG GCA CTG CCT GAC TGG CTG GAC CCA GCC CGG ACC CGG	1343
Ala Leu Gln Leu Ala Leu Pro Asp Trp Leu Asp Pro Ala Arg Thr Arg	
435 440 445	
CTC AAC GGG GCC AAG ATG AAG CAG CTC TTT AGC ATC CTG GAG GAG CTG	1391
Leu Asn Gly Ala Lys Met Lys Gln Leu Phe Ser Ile Leu Glu Glu Leu	
450 455 460	
GCC ATG GTG ACC AGC CTG CGG CCA CCA GTA CAG GCC AAC CCC GAC CTG	1439
Ala Met Val Thr Ser Leu Arg Pro Pro Val Gln Ala Asn Pro Asp Leu	
465 470 475	

CTG AGC CTG CTC ACG GTG TCT CTG GAT CAG TAT CAG ACG GAG GAT GAG Leu Ser Leu Leu Thr Val Ser Leu Asp Gln Tyr Gln Thr Glu Asp Glu 480 485 490 495	1487
CTG TAC CAG CTG TCC CTG CAG CGG GAG CCG CGC TCC AAG TCC TCG CCA Leu Tyr Gln Leu Ser Leu Gln Arg Glu Pro Arg Ser Lys Ser Ser Pro 500 505 510	1535
ACC AGC CCC ACG AGT TGC ACC CCA CCA CCC CGG CCC CCG GTA CTG GAG Thr Ser Pro Thr Ser Cys Thr Pro Pro Pro Arg Pro Pro Val Leu Glu 515 520 525	1583
GAG TGG ACC TCG GCT GCC AAA CCC AAG CTG GAT CAG GCC CTC GTG GTG Glu Trp Thr Ser Ala Ala Lys Pro Lys Leu Asp Gln Ala Leu Val Val 530 535 540	1631
GAG CAC ATC GAG AAG ATG GTG GAG TCT GTG TTC CGG AAC TTT GAC GTC Glu His Ile Glu Lys Met Val Glu Ser Val Phe Arg Asn Phe Asp Val 545 550 555	1679
GAT GGG GAT GGC CAC ATC TCA CAG GAA GAA TTC CAG ATC ATC CGT GGG Asp Gly Asp Gly His Ile Ser Gln Glu Glu Phe Gln Ile Ile Arg Gly 560 565 570 575	1727
AAC TTC CCT TAC CTC AGC GCC TTT GGG GAC CTC GAC CAG AAC CAG GAT Asn Phe Pro Tyr Leu Ser Ala Phe Gly Asp Leu Asp Gln Asn Gln Asp 580 585 590	1775
GGC TGC ATC AGC AGG GAG GAG ATG GTT TCC TAT TTC CTG CGC TCC AGC Gly Cys Ile Ser Arg Glu Glu Met Val Ser Tyr Phe Leu Arg Ser Ser 595 600 605	1823
TCT GTG TTG GGG GGG CGC ATG GGC TTC GTA CAC AAC TTC CAG GAG AGC Ser Val Leu Gly Gly Arg Met Gly Phe Val His Asn Phe Gln Glu Ser 610 615 620	1871
AAC TCC TTG CGC CCC GTC GCC TGC CGC CAC TGC AAA GCC CTG ATC CTG Asn Ser Leu Arg Pro Val Ala Cys Arg His Cys Lys Ala Leu Ile Leu 625 630 635	1919
GGC ATC TAC AAG CAG GGC CTC AAA TGC CGA GCC TGT GGA GTG AAC TGC Gly Ile Tyr Lys Gln Gly Leu Lys Cys Arg Ala Cys Gly Val Asn Cys 640 645 650 655	1967
CAC AAG CAG TGC AAG GAT CGC CTG TCA GTT GAG TGT CGG CGC AGG GCC His Lys Gln Cys Lys Asp Arg Leu Ser Val Glu Cys Arg Arg Arg Ala 660 665 670	2015
CAG AGT GTG AGC CTG GAG GGG TCT GCA CCC TCA CCC TCA CCC ATG CAC Gln Ser Val Ser Leu Glu Gly Ser Ala Pro Ser Pro Ser Pro Met His 675 680 685	2063
AGC CAC CAT CAC CGC GCC TTC AGC TTC TCT CTG CCC CGC CCT GGC AGG Ser His His Arg Ala Phe Ser Phe Ser Leu Pro Arg Pro Gly Arg 690 695 700	2111
CGA GGC TCC AGG CCT CCA GAG ATC CGT GAG GAG GAG GTA CAG ACG GTG Arg Gly Ser Arg Pro Pro Glu Ile Arg Glu Glu Glu Val Gln Thr Val 705 710 715	2159
GAG GAT GGG GTG TTT GAC ATC CAC TTG TA ATAGATGCTG TGGTTGGATC Glu Asp Gly Val Phe Asp Ile His Leu 720 725	2208
AAGGACTCAT TCCTGCCTTG GAGAAAATAC TTCAACCAGA GCAGGGAGCC TGGGGGTGTC GGGGCAGGAG GCTGGGGATG GGGGTGGGAT ATGAGGGTGG CATGCAGCTG AGGGCAGGGC	2268
	2328

CAGGGCTGGT GTCCCTAAGG TTGTACAGAC TCTTGTGAAT ATTTGTATTT TCCAGATGGA	2388
ATAAAAAGGC CCGTGTAAATT AACCTTC	2415

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 728 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Ile Ser Phe Leu Ala Pro His Arg Ser Leu Ser Pro Lys Tyr Ser His	
1 5 10 15	
Leu Val Leu Ala His Pro Pro Asp Tyr Leu Lys Asp Gln Leu Ser Pro	
20 25 30	
Arg Pro Arg Pro Pro Leu Gly Leu Cys His Pro Leu Pro Ala Gly Arg	
35 40 45	
Arg Pro Val Pro Gly Arg Val Ser Pro Met Gly Thr Gln Arg Leu Cys	
50 55 60	
Gly Arg Gly Thr Gln Gly Trp Pro Gly Ser Ser Glu Gln His Val Gln	
65 70 75 80	
Glu Ala Thr Ser Ser Ala Gly Leu His Ser Gly Val Asp Glu Leu Gly	
85 90 95	
Val Arg Ser Glu Pro Gly Gly Arg Leu Pro Glu Arg Ser Leu Gly Pro	
100 105 110	
Ala His Pro Ala Pro Ala Ala Met Ala Gly Thr Leu Asp Leu Asp Lys	
115 120 125	
Gly Cys Thr Val Glu Glu Leu Leu Arg Gly Cys Ile Glu Ala Phe Asp	
130 135 140	
Asp Ser Gly Lys Val Arg Asp Pro Gln Leu Val Arg Met Phe Leu Met	
145 150 155 160	
Met His Pro Trp Tyr Ile Pro Ser Ser Gln Leu Ala Ala Lys Leu Leu	
165 170 175	
His Ile Tyr Gln Gln Ser Arg Lys Asp Asn Ser Asn Ser Leu Gln Val	
180 185 190	
Lys Thr Cys His Leu Val Arg Tyr Trp Ile Ser Ala Phe Pro Ala Glu	
195 200 205	
Phe Asp Leu Asn Pro Glu Leu Ala Glu Gln Ile Lys Glu Leu Lys Ala	
210 215 220	
Leu Leu Asp Gln Glu Gly Asn Arg Arg His Ser Ser Leu Ile Asp Ile	
225 230 235 240	
Asp Ser Val Pro Thr Tyr Lys Trp Lys Arg Gln Val Thr Gln Arg Asn	
245 250 255	
Pro Val Gly Gln Lys Lys Arg Lys Met Ser Leu Leu Phe Asp His Leu	
260 265 270	

Glu Pro Met Glu Leu Ala Glu His Leu Thr Tyr Leu Glu Tyr Arg Ser
 275 280 285
 Phe Cys Lys Ile Leu Phe Gln Asp Tyr His Ser Phe Val Thr His Gly
 290 295 300
 Cys Thr Val Asp Asn Pro Val Leu Glu Arg Phe Ile Ser Leu Phe Asn
 305 310 315 320
 Ser Val Ser Gln Trp Val Gln Leu Met Ile Leu Ser Lys Pro Thr Ala
 325 330 335
 Pro Gln Arg Ala Leu Val Ile Thr His Phe Val His Val Ala Glu Lys
 340 345 350
 Leu Leu Gln Leu Gln Asn Phe Asn Thr Leu Met Ala Val Val Gly Gly
 355 360 365
 Leu Ser His Ser Ser Ile Ser Arg Leu Lys Glu Thr His Ser His Val
 370 375 380
 Ser Pro Glu Thr Ile Lys Leu Trp Glu Gly Leu Thr Glu Leu Val Thr
 385 390 395 400
 Ala Thr Gly Asn Tyr Gly Asn Tyr Arg Arg Arg Leu Ala Ala Cys Val
 405 410 415
 Gly Phe Arg Phe Pro Ile Leu Gly Val His Leu Lys Asp Leu Val Ala
 420 425 430
 Leu Gln Leu Ala Leu Pro Asp Trp Leu Asp Pro Ala Arg Thr Arg Leu
 435 440 445
 Asn Gly Ala Lys Met Lys Gln Leu Phe Ser Ile Leu Glu Glu Leu Ala
 450 455 460
 Met Val Thr Ser Leu Arg Pro Pro Val Gln Ala Asn Pro Asp Leu Leu
 465 470 475 480
 Ser Leu Leu Thr Val Ser Leu Asp Gln Tyr Gln Thr Glu Asp Glu Leu
 485 490 495
 Tyr Gln Leu Ser Leu Gln Arg Glu Pro Arg Ser Lys Ser Ser Pro Thr
 500 505 510
 Ser Pro Thr Ser Cys Thr Pro Pro Pro Arg Pro Pro Val Leu Glu Glu
 515 520 525
 Trp Thr Ser Ala Ala Lys Pro Lys Leu Asp Gln Ala Leu Val Val Glu
 530 535 540
 His Ile Glu Lys Met Val Glu Ser Val Phe Arg Asn Phe Asp Val Asp
 545 550 555 560
 Gly Asp Gly His Ile Ser Gln Glu Glu Phe Gln Ile Ile Arg Gly Asn
 565 570 575
 Phe Pro Tyr Leu Ser Ala Phe Gly Asp Leu Asp Gln Asn Gln Asp Gly
 580 585 590
 Cys Ile Ser Arg Glu Glu Met Val Ser Tyr Phe Leu Arg Ser Ser Ser
 595 600 605
 Val Leu Gly Gly Arg Met Gly Phe Val His Asn Phe Gln Glu Ser Asn
 610 615 620
 Ser Leu Arg Pro Val Ala Cys Arg His Cys Lys Ala Leu Ile Leu Gly

625	630	635	640
Ile Tyr Lys Gln Gly Leu Lys Cys Arg Ala Cys Gly Val Asn Cys His			
645	650	655	
Lys Gln Cys Lys Asp Arg Leu Ser Val Glu Cys Arg Arg Arg Ala Gln			
660	665	670	
Ser Val Ser Leu Glu Gly Ser Ala Pro Ser Pro Ser Pro Met His Ser			
675	680	685	
His His His Arg Ala Phe Ser Phe Ser Leu Pro Arg Pro Gly Arg Arg			
690	695	700	
Gly Ser Arg Pro Pro Glu Ile Arg Glu Glu Glu Val Gln Thr Val Glu			
705	710	715	720
Asp Gly Val Phe Asp Ile His Leu			
725			

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2309 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 254..2083

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CGATTTCATT CCTCGCTCCC CACAGGTCCC TCTCCCCAAA ATATTCCCAT CTTGTCCTAG	60
CCCATCCCCC AGACTATCTC AAGGACCAGC TGTCCCCACG CCCCCGACCT CCACTAGGCC	120
TGTGCCACCC GCTGCCTGCA GGAAGACGCC CGGTCCCCGGG CCGGGTTAGC CCCATGGAA	180
CGGGGTTTCGG TCCGAGCCCG GTGGGAGGCT CCCGGAGCGC AGCCTGGGCC CAGCCCACCC	240
CGCGCCGGCG GCC ATG GCA GGC ACC CTG GAC CTG GAC AAG GGC TGC ACG	289
Met Ala Gly Thr Leu Asp Leu Asp Lys Gly Cys Thr	
1 5 10	
GTG GAG GAG CTG CTC CGC GGG TGC ATC GAA GCC TTC GAT GAC TCC GGG	337
Val Glu Glu Leu Leu Arg Gly Cys Ile Glu Ala Phe Asp Asp Ser Gly	
15 20 25	
AAG GTG CGG GAC CCG CAG CTG GTG CGC ATG TTC CTC ATG ATG CAC CCC	385
Lys Val Arg Asp Pro Gln Leu Val Arg Met Phe Leu Met Met His Pro	
30 35 40	
TGG TAC ATC CCC TCC TCT CAG CTG GCG GCC AAG CTG CTC CAC ATC TAC	433
Trp Tyr Ile Pro Ser Ser Gln Leu Ala Ala Lys Leu Leu His Ile Tyr	
45 50 55 60	
CAA CAA TCC CGG AAG GAC AAC TCC AAT TCC CTG CAG GTG AAA ACG TGC	481
Gln Gln Ser Arg Lys Asp Asn Ser Asn Ser Leu Gln Val Lys Thr Cys	
65 70 75	
CAC CTG GTC AGG TAC TGG ATC TCC GCC TTC CCA GCG GAG TTT GAC TTG	529

- 68 -

His	Leu	Val	Arg	Tyr	Trp	Ile	Ser	Ala	Phe	Pro	Ala	Glu	Phe	Asp	Leu		
								80			85				90		
AAC	CCG	GAG	TTG	GCT	GAG	CAG	ATC	AAG	GAG	CTG	AAG	GCT	CTG	CTA	GAC		577
Asn	Pro	Glu	Leu	Ala	Glu	Gln	Ile	Lys	Glu	Leu	Lys	Ala	Leu	Leu	Asp		
								95			100				105		
CAA	GAA	GGG	AAC	CGA	CGG	CAC	AGC	AGC	CTA	ATC	GAC	ATA	GAC	AGC	GTC		625
Gln	Glu	Gly	Asn	Arg	Arg	His	Ser	Ser	Leu	Ile	Asp	Ile	Asp	Ser	Val		
								110			115				120		
CCT	ACC	TAC	AAG	TGG	AAG	CGG	CAG	GTG	ACT	CAG	CGG	AAC	CCT	GTG	GGA		673
Pro	Thr	Tyr	Lys	Trp	Lys	Arg	Gln	Val	Thr	Gln	Arg	Asn	Pro	Val	Gly		
								125			130				135		140
CAG	AAA	AAG	CGC	AAG	ATG	TCC	CTG	TTG	TTT	GAC	CAC	CTG	GAG	CCC	ATG		721
Gln	Lys	Lys	Arg	Lys	Met	Ser	Leu	Leu	Phe	Asp	His	Leu	Glu	Pro	Met		
								145			150				155		
GAG	CTG	GCG	GAG	CAT	CTC	ACC	TAC	TTG	GAG	TAT	CGC	TCC	TTC	TGC	AAG		769
Glu	Leu	Ala	Glu	His	Leu	Thr	Tyr	Leu	Glu	Tyr	Arg	Ser	Phe	Cys	Lys		
								160			165				170		
ATC	CTG	TTT	CAG	GAC	TAT	CAC	AGT	TTC	GTG	ACT	CAT	GGC	TGC	ACT	GTG		817
Ile	Leu	Phe	Gln	Asp	Tyr	His	Ser	Phe	Val	Thr	His	Gly	Cys	Thr	Val		
								175			180				185		
GAC	AAC	CCC	GTC	CTG	GAG	CGG	TTC	ATC	TCC	CTC	TTC	AAC	AGC	GTC	TCA		865
Asp	Asn	Pro	Val	Leu	Glu	Arg	Phe	Ile	Ser	Leu	Phe	Asn	Ser	Val	Ser		
								190			195				200		
CAG	TGG	GTG	CAG	CTC	ATG	ATC	CTC	AGC	AAA	CCC	ACA	GCC	CCG	CAG	CGG		913
Gln	Trp	Val	Gln	Leu	Met	Ile	Leu	Ser	Lys	Pro	Thr	Ala	Pro	Gln	Arg		
								205			210				215		220
GCC	CTG	GTC	ATC	ACA	CAC	TTT	GTC	CAC	GTG	GCG	GAG	AAG	CTG	CTA	CAG		961
Ala	Leu	Val	Ile	Thr	His	Phe	Val	His	Val	Ala	Glu	Lys	Leu	Leu	Gln		
								225			230				235		
CTG	CAG	AAC	TTC	AAC	ACG	CTG	ATG	GCA	GTG	GTC	GGG	GGC	CTG	AGC	CAC		1009
Leu	Gln	Asn	Phe	Asn	Thr	Leu	Met	Ala	Val	Val	Gly	Gly	Leu	Ser	His		
								240			245				250		
AGC	TCC	ATC	TCC	CGC	CTC	AAG	GAG	ACC	CAC	AGC	CAC	GTT	AGC	CCT	GAG		1057
Ser	Ser	Ile	Ser	Arg	Leu	Lys	Glu	Thr	His	Ser	His	Val	Ser	Pro	Glu		
								255			260				265		
ACC	ATC	AAG	CTC	TGG	GAG	GGT	CTC	ACG	GAA	CTA	GTG	ACG	GCG	ACA	GGC		1105
Thr	Ile	Lys	Leu	Trp	Glu	Gly	Leu	Thr	Glu	Leu	Val	Thr	Ala	Thr	Gly		
								270			275				280		
AAC	TAT	GGC	AAC	TAC	CGG	CGT	CGG	CTG	GCA	GCC	TGT	GTG	GGC	TTC	CGC		1153
Asn	Tyr	Gly	Asn	Tyr	Arg	Arg	Arg	Leu	Ala	Ala	Cys	Val	Gly	Phe	Arg		
								285			290				295		300
TTC	CCG	ATC	CTG	GGT	GTG	CAC	CTC	AAG	GAC	CTG	GTG	GCC	CTG	CAG	CTG		1201
Phe	Pro	Ile	Leu	Gly	Val	His	Leu	Lys	Asp	Leu	Val	Ala	Leu	Gln	Leu		
								305			310				315		
GCA	CTG	CCT	GAC	TGG	CTG	GAC	CCA	GCC	CGG	ACC	CGG	CTC	AAC	GGG	GCC		1249
Ala	Leu	Pro	Asp	Trp	Leu	Asp	Pro	Ala	Arg	Thr	Arg	Leu	Asn	Gly	Ala		
								320			325				330		
AAG	ATG	AAG	CAG	CTC	TTT	AGC	ATC	CTG	GAG	GAG	CTG	GCC	ATG	GTG	ACC		1297
Lys	Met	Lys	Gln	Leu	Phe	Ser	Ile	Leu	Glu	Glu	Leu	Ala	Met	Val	Thr		
								335			340				345		

AGC CTG CGG CCA CCA GTA CAG GCC AAC CCC GAC CTG CTG AGC CTG CTC Ser Leu Arg Pro Pro Val Gln Ala Asn Pro Asp Leu Leu Ser Leu Leu 350 355 360	1345
ACG GTG TCT CTG GAT CAG TAT CAG ACG GAG GAT GAG CTG TAC CAG CTG Thr Val Ser Leu Asp Gln Tyr Gln Thr Glu Asp Glu Leu Tyr Gln Leu 365 370 375 380	1393
TCC CTG CAG CGG GAG CCG CGC TCC AAG TCC TCG CCA ACC AGC CCC ACG Ser Leu Gln Arg Glu Pro Arg Ser Lys Ser Ser Pro Thr Ser Pro Thr 385 390 395	1441
AGT TGC ACC CCA CCA CCC CGG CCC CCG GTA CTG GAG GAG TGG ACC TCG Ser Cys Thr Pro Pro Pro Arg Pro Pro Val Leu Glu Trp Thr Ser 400 405 410	1489
GCT GCC AAA CCC AAG CTG GAT CAG GCC CTC GTG GTG GAG CAC ATC GAG Ala Ala Lys Pro Lys Leu Asp Gln Ala Leu Val Val Glu His Ile Glu 415 420 425	1537
AAG ATG GTG GAG TCT GTG TTC CGG AAC TTT GAC GTC GAT GGG GAT GGC Lys Met Val Glu Ser Val Phe Arg Asn Phe Asp Val Asp Gly Asp Gly 430 435 440	1585
CAC ATC TCA CAG GAA GAA TTC CAG ATC ATC CGT GGG AAC TTC CCT TAC His Ile Ser Gln Glu Glu Phe Gln Ile Ile Arg Gly Asn Phe Pro Tyr 445 450 455 460	1633
CTC AGC GCC TTT GGG GAC CTC GAC CAG AAC CAG GAT GGC TGC ATC AGC Leu Ser Ala Phe Gly Asp Leu Asp Gln Asn Gln Asp Gly Cys Ile Ser 465 470 475	1681
AGG GAG GAG ATG GTT TCC TAT TTC CTG CGC TCC AGC TCT GTG TTG GGG Arg Glu Glu Met Val Ser Tyr Phe Leu Arg Ser Ser Ser Val Leu Gly 480 485 490	1729
GGG CGC ATG GGC TTC GTA CAC AAC TTC CAG GAG AGC AAC TCC TTG CGC Gly Arg Met Gly Phe Val His Asn Phe Gln Glu Ser Asn Ser Leu Arg 495 500 505	1777
CCC GTC GCC TGC CGC CAC TGC AAA GCC CTG ATC CTG GGC ATC TAC AAG Pro Val Ala Cys Arg His Cys Lys Ala Leu Ile Leu Gly Ile Tyr Lys 510 515 520	1825
CAG GGC CTC AAA TGC CGA GCC TGT GGA GTG AAC TGC CAC AAG CAG TGC Gln Gly Leu Lys Cys Arg Ala Cys Gly Val Asn Cys His Lys Gln Cys 525 530 535 540	1873
AAG GAT CGC CTG TCA GTT GAG TGT CGG CGC AGG GCC CAG AGT GTG AGC Lys Asp Arg Leu Ser Val Glu Cys Arg Arg Arg Ala Gln Ser Val Ser 545 550 555	1921
CTG GAG GGG TCT GCA CCC TCA CCC TCA CCC ATG CAC AGC CAC CAT CAC Leu Glu Gly Ser Ala Pro Ser Pro Ser Pro Met His Ser His His His 560 565 570	1969
CGC GCC TTC AGC TTC TCT CTG CCC CGC CCT GGC AGG CGA GGC TCC AGG Arg Ala Phe Ser Phe Ser Leu Pro Arg Pro Gly Arg Arg Gly Ser Arg 575 580 585	2017
CCT CCA GAG ATC CGT GAG GAG GAG GTA CAG ACG GTG GAG GAT GGG GTG Pro Pro Glu Ile Arg Glu Glu Glu Val Gln Thr Val Glu Asp Gly Val 590 595 600	2065
TTT GAC ATC CAC TTG TAATAGATGC TGTGGTTGGA TCAAGGACTC ATTCCCTGCCT Phe Asp Ile His Leu 605 610	2120

- 70 -

TGGAGAAAAT ACTTCAACCA GAGCAGGGAG CCTGGGGGTG TCGGGGCAGG AGGCTGGGA	2180
TGGGGGTGGG ATATGAGGGT GGCATGCAGC TGAGGGCAGG GCCAGGGCTG GTGTCCCTAA	2240
GGTTGTACAG ACTCTTGTGA ATATTTGTAT TTTCCAGATG GAATAAAAAG GCCCGTGTAA	2300
TTAACCTTC	2309

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 609 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Met Ala Gly Thr Leu Asp Leu Asp Lys Gly Cys Thr Val Val Glu Glu Leu	
1 5 10 15	
Leu Arg Gly Cys Ile Glu Ala Phe Asp Asp Ser Gly Lys Val Arg Asp	
20 25 30	
Pro Gln Leu Val Arg Met Phe Leu Met Met His Pro Trp Tyr Ile Pro	
35 40 45	
Ser Ser Gln Leu Ala Ala Lys Leu Leu His Ile Tyr Gln Gln Ser Arg	
50 55 60	
Lys Asp Asn Ser Asn Ser Leu Gln Val Lys Thr Cys His Leu Val Arg	
65 70 75 80	
Tyr Trp Ile Ser Ala Phe Pro Ala Glu Phe Asp Leu Asn Pro Glu Leu	
85 90 95	
Ala Glu Gln Ile Lys Glu Leu Lys Ala Leu Leu Asp Gln Glu Gly Asn	
100 105 110	
Arg Arg His Ser Ser Leu Ile Asp Ile Asp Ser Val Pro Thr Tyr Lys	
115 120 125	
Trp Lys Arg Gln Val Thr Gln Arg Asn Pro Val Gly Gln Lys Lys Arg	
130 135 140	
Lys Met Ser Leu Leu Phe Asp His Leu Glu Pro Met Glu Leu Ala Glu	
145 150 155 160	
His Leu Thr Tyr Leu Glu Tyr Arg Ser Phe Cys Lys Ile Leu Phe Gln	
165 170 175	
Asp Tyr His Ser Phe Val Thr His Gly Cys Thr Val Asp Asn Pro Val	
180 185 190	
Leu Glu Arg Phe Ile Ser Leu Phe Asn Ser Val Ser Gln Trp Val Gln	
195 200 205	
Leu Met Ile Leu Ser Lys Pro Thr Ala Pro Gln Arg Ala Leu Val Ile	
210 215 220	
Thr His Phe Val His Val Ala Glu Lys Leu Leu Gln Leu Gln Asn Phe	
225 230 235 240	
Asn Thr Leu Met Ala Val Val Gly Gly Leu Ser His Ser Ser Ile Ser	
245 250 255	

- 71 -

Arg Leu Lys Glu Thr His Ser His Val Ser Pro Glu Thr Ile Lys Leu
 260 265 270
 Trp Glu Gly Leu Thr Glu Leu Val Thr Ala Thr Gly Asn Tyr Gly Asn
 275 280 285
 Tyr Arg Arg Arg Leu Ala Ala Cys Val Gly Phe Arg Phe Pro Ile Leu
 290 295 300
 Gly Val His Leu Lys Asp Leu Val Ala Leu Gln Leu Ala Leu Pro Asp
 305 310 315 320
 Trp Leu Asp Pro Ala Arg Thr Arg Leu Asn Gly Ala Lys Met Lys Gln
 325 330 335
 Leu Phe Ser Ile Leu Glu Glu Leu Ala Met Val Thr Ser Leu Arg Pro
 340 345 350
 Pro Val Gln Ala Asn Pro Asp Leu Leu Ser Leu Leu Thr Val Ser Leu
 355 360 365
 Asp Gln Tyr Gln Thr Glu Asp Glu Leu Tyr Gln Leu Ser Leu Gln Arg
 370 375 380
 Glu Pro Arg Ser Lys Ser Ser Pro Thr Ser Pro Thr Ser Cys Thr Pro
 385 390 395 400
 Pro Pro Arg Pro Pro Val Leu Glu Glu Trp Thr Ser Ala Ala Lys Pro
 405 410 415
 Lys Leu Asp Gln Ala Leu Val Val Glu His Ile Glu Lys Met Val Glu
 420 425 430
 Ser Val Phe Arg Asn Phe Asp Val Asp Gly Asp Gly His Ile Ser Gln
 435 440 445
 Glu Glu Phe Gln Ile Ile Arg Gly Asn Phe Pro Tyr Leu Ser Ala Phe
 450 455 460
 Gly Asp Leu Asp Gln Asn Gln Asp Gly Cys Ile Ser Arg Glu Glu Met
 465 470 475 480
 Val Ser Tyr Phe Leu Arg Ser Ser Ser Val Leu Gly Gly Arg Met Gly
 485 490 495
 Phe Val His Asn Phe Gln Glu Ser Asn Ser Leu Arg Pro Val Ala Cys
 500 505 510
 Arg His Cys Lys Ala Leu Ile Leu Gly Ile Tyr Lys Gln Gly Leu Lys
 515 520 525
 Cys Arg Ala Cys Gly Val Asn Cys His Lys Gln Cys Lys Asp Arg Leu
 530 535 540
 Ser Val Glu Cys Arg Arg Arg Ala Gln Ser Val Ser Leu Glu Gly Ser
 545 550 555 560
 Ala Pro Ser Pro Ser Pro Met His Ser His His His Arg Ala Phe Ser
 565 570 575
 Phe Ser Leu Pro Arg Pro Gly Arg Arg Gly Ser Arg Pro Pro Glu Ile
 580 585 590
 Arg Glu Glu Glu Val Gln Thr Val Glu Asp Gly Val Phe Asp Ile His
 595 600 605
 Leu

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 832 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 11..733

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GCCCCGCCGCC	ATG CCG CCC TTA CTG CCC CTG CGC CTG TGC CGG CTG TGG	49
	Met Pro Pro Leu Leu Pro Leu Arg Leu Cys Arg Leu Trp	
1	5	10
CCC CGC AAC CCT CCC TCC CGG CTC CTC GGA GCG GCC	GCC GGG CAG CGG	97
Pro Arg Asn Pro Pro Ser Arg Leu Leu Gly Ala Ala	Gly Gln Arg	
15	20	25
TCC AGA CCC AGT ACT TAT TAT GAA CTG TTG GGG GTG CAT CCT GGT GCC		145
Ser Arg Pro Ser Thr Tyr Tyr Glu Leu Leu Gly Val His Pro Gly Ala		
30	35	40
AGC ACT GAG GAA GTT AAA CGA GCT TTC TTC TCC AAG TCC AAA GAG CTG		193
Ser Thr Glu Glu Val Lys Arg Ala Phe Phe Ser Lys Ser Lys Glu Leu		
50	55	60
CAC CCA GAC CGG GAC CCT GGG AAC CCA AGC CTG CAC AGC CGC TTT GTG		241
His Pro Asp Arg Asp Pro Gly Asn Pro Ser Leu His Ser Arg Phe Val		
65	70	75
GAG CTG AGC GAG GCA TAC CGT GTG CTC AGC CGT GAG CAG AGC CGC CGC		289
Glu Leu Ser Glu Ala Tyr Arg Val Leu Ser Arg Glu Gln Ser Arg Arg		
80	85	90
AGC TAT GAT GAC CAG CTC CGC TCA GGT AGT CCC CCA AAG TCT CCA CGA		337
Ser Tyr Asp Asp Gln Leu Arg Ser Gly Ser Pro Pro Lys Ser Pro Arg		
95	100	105
ACC ACA GTC CAT GAC AAG TCT GCC CAC CAA ACA CAC AGC TCC TGG ACA		385
Thr Thr Val His Asp Lys Ser Ala His Gln Thr His Ser Ser Trp Thr		
110	115	120
125		
CCC CCC AAC GCA CAG TAC TGG TCC CAG TTT CAC AGC GTG AGG CCA CAG		433
Pro Pro Asn Ala Gln Tyr Trp Ser Gln Phe His Ser Val Arg Pro Gln		
130	135	140
GGG CCC CAG TTG AGG CAG CAG CAA CAC AAA CAA AAC AAA CAA GTG CTG		481
Gly Pro Gln Leu Arg Gln Gln His Lys Gln Asn Lys Gln Val Leu		
145	150	155
GGG TAC TGC CTC CTC ATG CTG GCG GGC ATG GGC CTG CAC TAC ATT		529
Gly Tyr Cys Leu Leu Leu Met Leu Ala Gly Met Gly Leu His Tyr Ile		
160	165	170
GCC TTC AGG AAG GTG AAG CAG ATG CAC CTT AAC TTC ATG GAT GAA AAG		577
Ala Phe Arg Lys Val Lys Gln Met His Leu Asn Phe Met Asp Glu Lys		
175	180	185

- 73 -

GAT CGG ATC ATC ACA GCC TTC TAC AAC GAA GCC CGG GCA CGG GCC AGG	625
Asp Arg Ile Ile Thr Ala Phe Tyr Asn Glu Ala Arg Ala Arg Ala Arg	
190 195 200 205	
GCC AAC AGA GGC ATC CTT CAG CAG GAG CGA CAA CGG CTA GGG CAG CGG	673
Ala Asn Arg Gly Ile Leu Gln Gln Glu Arg Gln Arg Leu Gly Gln Arg	
210 215 220	
CAG CCG CCA CCA TCC GAG CCA ACC CAA GGC CCC GAG ATC GTG CCC CGG	721
Gln Pro Pro Pro Ser Glu Pro Thr Gln Gly Pro Glu Ile Val Pro Arg	
225 230 235	
GGC GCC GGC CCC TGA GGGGCTC ACCTGGATGG GGCCTGCAGT GCGTTCCCGC	773
Gly Ala Gly Pro *	
240	
TTTGCTTCCT TCCCTGGACG GCCCGCTCCC CGAAACGCGC GCAATAAAAGT GATTGCGCAG	832

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 amino acids
 - (B) TYPE: amino acid
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Pro Pro Leu Leu Pro Leu Arg Leu Cys Arg Leu Trp Pro Arg Asn	
1 5 10 15	
Pro Pro Ser Arg Leu Leu Gly Ala Ala Ala Gly Gln Arg Ser Arg Pro	
20 25 30	
Ser Thr Tyr Tyr Glu Leu Leu Gly Val His Pro Gly Ala Ser Thr Glu	
35 40 45	
Glu Val Lys Arg Ala Phe Phe Ser Lys Ser Lys Glu Leu His Pro Asp	
50 55 60	
Arg Asp Pro Gly Asn Pro Ser Leu His Ser Arg Phe Val Glu Leu Ser	
65 70 75 80	
Glu Ala Tyr Arg Val Leu Ser Arg Glu Gln Ser Arg Arg Ser Tyr Asp	
85 90 95	
Asp Gln Leu Arg Ser Gly Ser Pro Pro Lys Ser Pro Arg Thr Thr Val	
100 105 110	
His Asp Lys Ser Ala His Gln Thr His Ser Ser Trp Thr Pro Pro Asn	
115 120 125	
Ala Gln Tyr Trp Ser Gln Phe His Ser Val Arg Pro Gln Gly Pro Gln	
130 135 140	
Leu Arg Gln Gln Gln His Lys Gln Asn Lys Gln Val Leu Gly Tyr Cys	
145 150 155 160	
Leu Leu Leu Met Leu Ala Gly Met Gly Leu His Tyr Ile Ala Phe Arg	
165 170 175	
Lys Val Lys Gln Met His Leu Asn Phe Met Asp Glu Lys Asp Arg Ile	
180 185 190	
Ile Thr Ala Phe Tyr Asn Glu Ala Arg Ala Arg Ala Asn Arg	

195

200

205

Gly Ile Leu Gln Gln Glu Arg Gln Arg Leu Gly Gln Arg Gln Pro Pro
210 215 220

Pro Ser Glu Pro Thr Gln Gly Pro Glu Ile Val Pro Arg Gly Ala Gly
225 230 235 240

Pro

SEQ ID Nos: 10-18 25-36

(2) INFORMATION FOR SEO ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 300 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

- 75 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Pro His Gly Asn Gly Val Arg Ser Glu Pro Gly Gly Arg Leu Pro Glu
1 5 10 15
Arg Ser Leu Gly Pro Ala His Pro Ala Pro Ala Ala Met Ala Gly Thr
20 25 30
Leu Asp Leu Asp Lys Gly Cys Thr Val Glu Glu Leu
35 40

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 15 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GGGATCCCCC TGGTC 15

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 13 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Asp Val Asp Glu Glu Asp Glu Val Glu Asp Ile Glu Phe
1 5 10

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 13 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Asp Val Asp Gly Asp Gly His Ile Ser Gln Glu Glu Phe
1 5 10

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 13 amino acids

- 76 -

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Asp His Asp Arg Asp Gly Phe Ile Ser Gln Glu Glu Phe
1 5 10

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 13 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Asp Gln Asn Gln Asp Gly Cys Ile Ser Arg Glu Glu Met
1 5 10

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 13 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Asp Val Asp Met Asp Gly Gln Ile Ser Lys Asp Glu Leu
1 5 10

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 37 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

His Phe Val His Val Ala Glu Lys Leu Leu Gln Leu Gln Asn Phe Asn
1 5 10 15

Thr Leu Met Ala Val Val Gly Gly Leu Ser His Ser Ser Ile Ser Arg
20 25 30

- 77 -

Leu Lys Glu Thr His
35

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 37 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Lys Phe Val His Val Ala Lys His Leu Arg Lys Ile Asn Asn Phe Asn
1 5 10 15

Thr Leu Met Ser Val Val Gly Gly Ile Thr His Ser Ser Val Ala Arg
20 25 30

Leu Ala Lys Thr Tyr
35

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 50 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

His Asn Phe Gln Glu Ser Asn Ser Leu Arg Pro Val Ala Cys Arg His
1 5 10 15

Cys Lys Ala Leu Ile Leu Gly Ile Tyr Lys Gln Gly Leu Lys Cys Arg
20 25 30

Ala Cys Gly Val Asn Cys His Lys Gln Cys Lys Asp Arg Leu Ser Val
35 40 45

Glu Cys
50

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 50 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

His Asn Phe His Glu Thr Thr Phe Leu Thr Pro Thr Cys Asn His

- 78 -

1	5	10	15
Cys Asn Lys Leu Leu Trp Gly Ile Leu Arg Gln Gly Phe Lys Cys Lys			
	20	25	30
Asp Cys Gly Leu Ala Val His Ser Cys Cys Lys Ser Asn Ala Val Ala			
	35	40	45
Glu Cys			
	50		

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GGGATCCCCC TGGTC

15

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GAATTCTGGCA CGAGCCGACG G

21

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 78 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATGGAGCAGA AGCTGATCTC CGAGGAGGAC CTGCCCGGGG CAGCTGGATC CGCAGCCAC

60

CCCGCGCCGG CGGCCATG

78

(2) INFORMATION FOR SEQ ID NO:22:

- 79 -

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Met Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Pro Gly Ala Ala Gly
1 5 10 15
Ser Ala Ala His Pro Ala Pro Ala Ala Met
20 25

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 33 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GGATCCGCAG CCCACCCCGC GCCGGCGGCC ATG

33

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 11 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Gly Ser Ala Ala His Pro Ala Pro Ala Ala Met
5 10

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

- 80 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GGACAAAGTG TGTGATGAAC C

21

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

CTCATCCTCC GTCTGATACT G

21

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GTAGATGTGG ATCAGCTTGG

20

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

AGGTGGAGAA TGGTCAAGG

19

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GTCATAGTCT GTCTCCTACT

20

- 81 -

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

ACATAGACAG CGTGCCTACC

20

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TACAACCTTA GGGACACCAG

20

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TGCTGAGCCT GCTCACGGTG

20

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CAAGTGAACA GCACGTCC

18

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

- 82 -

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GAATATCTCA AGGACCAGCT G

21

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GGTCGGTCC GAGCCCGG

18

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GGAGCGATAAC TCCAAGTAGG T

21

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

AGCGGGCCAG GCCCCTTC

18

(2) INFORMATION FOR SEQ ID NO:38:

- 83 -

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

CATCCTGGTC CAATGCGCTC

20

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

GCACTGAGGA AGTTAACGGA GC

22

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GCTCGTTAA CTTCCTCAGT GC

22

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GCTCAGCTCC ACAAAGCGGC T

21

(2) INFORMATION FOR SEQ ID NO:42:

- 84 -

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

ACCAAGCTCCG CTCAGGTAG

19

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

TCCAGGAGCT GTGTGTTGG

20

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

CCAGTTTCAC AGCGTGAGG

19

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CAGCATGAGG AGGAGGCAG

19

CLAIMS:

1. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence having homology to a regulator of gene expression or a derivative of said gene regulator.
2. An isolated nucleic acid molecule according to claim 1 wherein the regulator comprises a zinc finger domain of an (HC₃)₂ type.
3. An isolated nucleic acid molecule according to claim 2 wherein the sequence of nucleotides or complementary sequence of nucleotides is selected from:
 - (i) a nucleotide sequence set forth in SEQ ID NO:2;
 - (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:3;
 - (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
 - (iv) a nucleotide sequence capable of hybridising under low stringency conditions to the nucleotide sequence set forth in (i), (ii) or (iii).
4. An isolated nucleic acid molecule according to claim 1 wherein said gene regulator is a guanine nucleotide exchange factor (GEF) or a derivative thereof.
5. An isolated nucleic acid molecule according to claim 4 wherein the sequence of nucleotides is selected from:
 - (i) a nucleotide sequence set forth in SEQ ID NO:4 or 6;
 - (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:5 or 7;
 - (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
 - (iv) a nucleotide sequence capable of hybridising under low stringency conditions to the

nucleotide sequence set forth in (i), (ii) or (iii).

6. An isolated nucleic acid molecule according to claim 1, wherein said gene regulator is a heat shock protein or is a heat shock binding protein or a derivative thereof.

7. An isolated nucleic acid molecule according to claim 6, wherein the sequence of nucleotides is selected from:

- (i) a nucleotide sequence set forth in SEQ ID NO:8;
- (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:9;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridising under low stringency conditions to the nucleotide sequence set forth in (i), (ii) or (iii).

8. A genetic construct comprising a vector portion and a gene portion comprising a regulator of gene expression or a derivative thereof.

9. A genetic construct according to claim 8 wherein the gene portion comprises a zinc finger domain of $(HC_3)_2$ type.

10. A genetic construct according to claim 9 wherein the gene portion comprises a nucleotide sequence selected from:

- (i) a nucleotide sequence set forth in SEQ ID NO:2;
- (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:3;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridising under low stringency conditions to the nucleotide sequence set forth in (i), (ii) or (iii).

11. A genetic construct according to claim 8 wherein said gene portion is a nucleotide exchange factor (GEF) or derivative thereof.

12. A genetic construct according to claim 11 wherein the gene portion comprises a nucleotide sequence selected from:

- (i) a nucleotide sequence set forth in SEQ ID NO:4 or 6;
- (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:5 or 7;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridising under low stringency conditions to the nucleotide sequence set forth in (i), (ii) or (iii).

13. A genetic construct according to claim 8 wherein the gene portion is a heat shock protein or a derivative thereof or a heat shock binding protein or derivative thereof.

14. A genetic construct according to claim 13 wherein the gene portion comprises a nucleotide sequence selected from:

- (i) a nucleotide sequence set forth in SEQ ID NO:8;
- (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:9;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridising under low stringency conditions to the nucleotide sequence set forth in (i), (ii) or (iii).

15. A nucleic acid molecule encoding a gene regulator having the identifying characteristics of a molecule selected from MCG4, MCG7 and MCG18 having respective amino acid sequences of SEQ ID NO:3, SEQ ID NO: 5 or 7 and SEQ ID NO:9.

16. A method of detecting a condition caused or facilitated by an aberration in *mcg4*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg4* wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or a propensity to develop said condition.
17. A method of detecting a condition caused or facilitated by an aberration in *mcg4*, said method comprising screening for a single or multiple amino acid substitution, deletion and/or addition to MCG4 wherein the presence of such a mutation is indicative of or a propensity to develop said condition.
18. A method for detecting MCG4 or a derivative thereof in a biological sample said method comprising contacting said biological sample with an antibody specific for MCG4 or its derivatives or homologues for a time and under conditions sufficient for an antibody-MCG4 complex to form, and then detecting said complex.
19. A method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg7* wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or a propensity to develop said condition.
20. A method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising screening for a single or multiple amino acid substitution, deletion and/or addition to MCG7 wherein the presence of such a mutation is indicative of or a propensity to develop said condition.
21. A method for detecting MCG7 or a derivative thereof in a biological sample said method comprising contacting said biological sample with an antibody specific for MCG7 or its derivatives or homologues for a time and under conditions sufficient for an antibody-MCG7 complex to form, and then detecting said complex.

22. A method of detecting a condition caused or facilitated by an aberration in *mcg18*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg18* wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or a propensity to develop said condition.

23. A method of detecting a condition caused or facilitated by an aberration in *mcg18*, said method comprising screening for a single or multiple amino acid substitution, deletion and/or addition to MCG18 wherein the presence of such a mutation is indicative of or a propensity to develop said condition.

24. A method for detecting MCG18 or a derivative thereof in a biological sample said method comprising contacting said biological sample with an antibody specific for MCG18 or its derivatives or homologues for a time and under conditions sufficient for an antibody-MCG18 complex to form, and then detecting said complex.

THIS PAGE BLANK (USPTO)

1/85

FIG 1

THIS PAGE BLANK (USPTO)

2/85

FIGURE 1 (I)

TCAGTAAACA	CAGAGACTGG	GGATCGATC	ATG	GGG	CTT	TGT	AAG	TGC	CCC	50
			Met	Gly	Leu	Cys	Lys	Cys	Pro	
			1				5			
AAG	AGA	AAG	GTG	ACC	AAC	CTG	TTC	TTC	GAA	95
Lys	Arg	Lys	Val	Thr	Asn	Leu	Phe	Cys	Phe	
			10			15			Gl	
									His	
									Arg	
									Val	
GTC	TGC	GAG	CAC	TGC	CTG	GTA	GCC	AAT	CAC	140
Val	Cys	Glu	His	Cys	Leu	Val	Ala	Asn	His	
						25			Ala	
									Lys	
									Cys	
									Ile	
									Val	
CAG	TCC	TAC	CTG	CAA	TGG	CTC	CAA	GAT	AGC	185
Gln	Ser	Tyr	Leu	Gln	Trp	Leu	Gln	Asp	Ser	
						40			Asp	
									Tyr	
									Asn	
									Pro	
									Asn	
TGC	CGC	CTG	TGC	AAC	ATA	CCC	CTG	GCC	AGC	230
Cys	Arg	Leu	Cys	Asn	Ile	Pro	Leu	Ala	Ser	
						55			Arg	
									Thr	
									Arg	
CTT	GTC	TGC	TAT	GAT	CTC	TTT	CAC	TGG	GCC	275
Leu	Val	Cys	Tyr	Asp	Leu	Phe	His	Trp	Ala	
						70			Cys	
									Leu	
									Asn	
									Glu	
									Arg	

THIS PAGE BLANK (USPTO)

3/85

FIGURE 1 (II)

GCT	GCC	CAG	CTA	CCC	CGA	AAC	ACG	GCA	CCT	GCC	GGC	TAT	CAG	TGC	320
Ala	Ala	Gln	Leu	Pro	Arg	Asn	Thr	Ala	Pro	Ala	Gly	Tyr	Gln	Cys	
85															95
CCC	AGC	TGC	AAT	GGC	CCC	ATC	TTC	CCC	CCA	ACC	AAC	CTG	GCT	GGC	365
Pro	Ser	Cys	Asn	Gly	Pro	Ile	Phe	Pro	Pro	Thr	Asn	Leu	Ala	Gly	
100												110			
CCC	GTG	GCC	TCC	GCA	CTG	AGA	GAG	AAG	CTG	GCC	ACA	GTC	AAC	TGG	410
Pro	Val	Ala	Ser	Ala	Leu	Arg	Glu	Lys	Leu	Ala	Thr	Val	Asn	Trp	
115												125			
GCC	CGG	GCA	GGA	CTG	GGC	CTC	CCT	CTG	ATC	GAT	GAG	GTG	GTG	AGC	455
Ala	Arg	Ala	Gly	Leu	Gly	Leu	Pro	Leu	Ile	Asp	Glu	Val	Val	Ser	
130												140			
CCA	GAG	CCC	GAG	CCC	CTC	AAC	ACG	TCT	GAC	TTC	TCT	GAC	TGG	TCT	500
Pro	Glu	Pro	Glu	Pro	Leu	Asn	Thr	Ser	Asp	Phe	Ser	Asp	Trp	Ser	
145												155			
AGT	TTT	AAT	GCC	AGC	AGT	ACC	CCT	GGA	CCA	GAG	GAG	GTA	GAC	AGC	545
Ser	Phe	Asn	Ala	Ser	Ser	Thr	Pro	Gly	Pro	Glu	Glu	Val	Asp	Ser	
160												170			

THIS PAGE BLANK (USPTO)

4/85

FIGURE 1 (III)

GCC	TCT	GCT	GCC	CCA	GCC	TTC	TAC	AGC	CGA	GCC	CCC	CGG	CCC	CCA	590
Ala	Ser	Ala	Ala	Pro	Ala	Phe	Tyr	Ser	Arg	Ala	Pro	Arg	Pro	Pro	185
															175
GCT	TCC	CCA	GGC	CGG	CCC	GAG	CAG	CAC	ACA	GTG	ATC	CAC	ATG	GGC	635
Ala	Ser	Pro	Gly	Arg	Pro	Glu	Gln	His	Thr	Val	Ile	His	Met	Gly	
															190
AAT	CCT	CAG	CCC	TTG	ACT	CAC	GCC	CCT	AGG	AAG	GTG	TAT	GAT	ACG	680
Asn	Pro	Glu	Pro	Leu	Thr	His	Ala	Pro	Arg	Lys	Val	Tyr	Asp	Thr	
															205
CGG	GAT	GAC	CGG	ACA	CCA	GGC	CTC	CAT	GGA	GAC	TGT	GAC	GAT	725	
Arg	Asp	Asp	Asp	Arg	Thr	Pro	Gly	Leu	His	Gly	Asp	Cys	Asp	Asp	
															220
GAC	AAG	TAC	CGA	CGT	CGG	CCC	TTC	GGT	TGG	CTG	GCC	CGG	CTG	770	
Asp	Lys	Tyr	Arg	Arg	Arg	Pro	Ala	Leu	Gly	Trp	Leu	Ala	Arg	Leu	
															235
CTA	AGG	AGC	CGG	GCT	GGG	TCT	CGG	AAG	CGG	CCG	CTG	ACC	CTG	CTC	815
Leu	Arg	Ser	Arg	Ala	Gly	Ser	Arg	Lys	Arg	Pro	Leu	Thr	Leu	Leu	
															250
															260
															255

THIS PAGE BLANK (USPTO)

5/85

FIGURE 1 (IV)

CAG CGG GCG GGG CTG CTG CTA CTC TTC GGA CTG CTG GGC TTC CTG 860
 Gln Arg Ala Gly Leu Leu Leu Leu Gly Leu Leu Gly Phe Leu
 265 270 275

GCC CTC CTT GCC CTC ATG TCT CGC CTA CGC CGG GCA GCT GAC 905
 Ala Leu Leu Ala Leu Met Ser Arg Leu Gly Arg Ala Ala Asp
 280 285 290

AGC GAT CCC AAC CTG GAC CCA CTC ATG AAC CCT CAC ATC CGC GTG 950
 Ser Asp Pro Asn Leu Asp Pro Leu Met Asn Pro His Ile Arg Val
 295 300 305

GGC CCC TCC TGA GCC CTC TTGTGGCTAG GCCAGCCTAG GATGTGGTT 1002
 Gly Pro Ser *
 310

CTGTGGAGA GAGGGGGGT AATGGGGAGG CTGAGGGCAC CTCTTCACTG 1052
 CCCCTCTCCC TCAAGCCTAA GACACTAAGA CCCCAGACCC AAAGCCAAGT 1102
 CCACCAAGT GGCTCGCAGG CCAGGCCTGG AGTCCCCGTG GGTCAAAGCAT 1152

THIS PAGE BLANK (USPTO)

6/85

FIGURE 1 (v)

TTGTCTTGAC	TTGCTTTCTC	CCGGGTCTCC	AGCCTCCGAC	CCCTCGCCCC	1202
ATGAAGGAGC	TGGCAGGTGG	AAATAACAA	CAACTTTATT		1242

THIS PAGE BLANK (USPTO)

7/85

FIGURE 2
gb|AA155210|AA155210 mr98e01.r1 Stratagene mouse embryonic carcinoma
(#937317) *Mus musculus* cDNA clone 605496 5'

Query: 1 MGLCKCPKRKVTVNLFCFEHRYVNVCCEHCLVANHAKCIVQSYLQWLNQDSDYNNPNCRLCNPL 60
MGLCKCPKRKVTVNLFCFEHRYVNVCCEHCLVANHAKCIVQSYLQWLNQDSDYNNPNCRLCN PL
Sbjct: 98 MGLCKCPKRKVTVNLFCFEHRYVNVCCEHCLVANHAKCIVQSYLQWLNQDSDYNNPNCRLCNPL 277

THIS PAGE BLANK (USPTO)

FIGURE 3

dbj |D75913 | CELK11G3F C. elegans cDNA clone yk111g3:5' end, single read.

Query:	7	PKRKVTNLFCFEHRVNVCEHCLVANHAKCIVQSYLQWLDQSDYNPNCRLCNIPLASRETT	66
PKRKVTNLF +EHRVNVCE	LV NH	C+VQSYL WL D DY+PNC LC L +T	
Sbjct:	1	PKRKVTNLFXXYEHRVNVCEXLVDNHPNCVVQSYLTWLTQDYDPNCSLCKTTLXEGDTI	180
8/85			
Query:	67	RLVCYDLFWACLNERRAAQLPRNTAPAGYQCP	98
RL C L HW C +E	P	TAP GY+CP	
Sbjct:	181	RLNCLHLLHWKCFDEWXGNFPDTTAPXGYRCP	276
		PCCSSQEVFPPDQ	310

THIS PAGE BLANK (USPTO)

9/85

FIG 4

THIS PAGE BLANK (USPTO)

10/85

FIGURE 5

sp | P46580 | YLBS_CAEEL HYPOTHETICAL 146.8 KD PROTEIN C34E10.5 IN
CHROMOSOME III gi|5000728 (U10402) C34E10.5 gene product
[Caenorhabditis elegans]

Query: 56 CNIPLASRETTRLVCYDLFWACLNERAAQLPRNTAPAGYQCPSC 100
C+I L ++ + L C LF W C+ E A + + + +CP C
Sbjct:1222 CSICLENKNPSALFCGHLFCWTCTIQEHAVVATSSA
STSSARCPQC 1266

THIS PAGE BLANK (USPTO)

11/85

FIGURE 6

gi | 703468 | (L29051) homologous to GATA-binding transcription factor
 [Schizosaccharomyces pombe]

Query:	35	CIVQSYLQWLQDSDYNNPNCRLCNI	58	
	C	+	+W	+D
Sbjct:	175	CATTNTPKWRRDESGNPKICMACGL	198	
Query:	162	SSTPGPEEVDSASAAAPAFYSQAPRPPASPGRPEQHTVIHMGNPEPLTHAPRKVYDTRDDD	221	
	+S	PEE	S	S
Sbjct:	441	ASLLNPEEPPSNSDKQPSMSNGPKSEVSPSQSQQAPLIIQSSTSPPVSLQFPPPEVQGSNVDK	500	
Query:	222	RTPGLH	227	
	R	L+		
Sbjct:	501	RNYA1N	506	

THIS PAGE BLANK (USPTO)

12/85

FIG 7

THIS PAGE BLANK (USPTO)

13/85

FIG 8 (I)

FIG 8 (II)

FIG 8 (III)

FIG 8 (IV)

FIG 8 (V)

FIG 8 (VI)

FIG 8 (VII)

FIG 8

THIS PAGE BLANK (USPTO)

14/85

FIGURE 8 (I)

gb | AA074703 | AA074703 zm76g07.rl Stratagene neuroepithelium (#937231)
 Homo sapiens cDNA clone 531612 5'
 Length = 417

Plus Strand HSps:

Score = 818 (226.0 bits), Expect = 6.1e-103, Sum P(5) = 6.1e-103
 Identities = 206/259 (79%), Positives = 206/259 (79%), Strand = Plus/Plus

Query: 446 GGCTCCCTCTGATCGATGAGGTGGTGAGCCAGAGCCGGGCCCTCAACACGTCTGAC 505
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Sbjct: 49 GGGCTCCCTCTGATCGATGAGGTGATAAGCCAGAGCCGGGCCCTCAATTCTCAGAC 108

Query: 506 TTCTCTGACTGGTCTAGTTAAATGCCAGCAGTACCCCTGGACAGGGTAGACAGC 565
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Sbjct: 109 TTCTCTGATTGGTCCAGCTTAATGCCACCCACCTCTGTGCAAGAGGAGGCCAGC 168

THIS PAGE BLANK (USPTO)

15/85

Query: 566 GCCTCTGCTGCCAGCCTTACAGGCCAGGGCCCCAGCTTCCCCAGGGCGG 625
 Sbjct: 169 ACTCCATCTGCACCTGCTTCTATGCCAGGCTCCCTCCAAAGCCGT 228

Query: 626 CCCGAGCAGCACAGTGATCCACATGGCAATCCTGAGCCCTGACTCACGCCCTAGG 685
 Sbjct: 229 CCCGAGCAGCACAGTCATACACATGGGAGTACTGAAGCCCTGGCACACGCCCAAGG 288

Query: 686 AAGGTGTATGATAACGGGG 704
 Sbjct: 289 AAAGTATATGACACACCGG 307

FIGURE 8 (III)

THIS PAGE BLANK (USPTO)

16/85

FIGURE 8 (III)

Query: 398 GCACTGAGAGAAGCTGGCCACAGTCAACTGGGCCAGGACTGGCTCC 452
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Sbjct: 2 GCACTGAGAGAAAAGCTAGCCACAGTCAACTGGCCAGGACTGGCTCC 56

Score = 175 (48.4 bits), Expect = 6.1e-103, Sum P(5) = 6.1e-103
 Identities = 39/44 (88%), Positives = 39/44 (88%), Strand = Plus/Plus

Query: 767 GCCTTGTTGGCTGGCCGGCTAAGGAGCCGGCTGGTC 810
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Sbjct: 373 GCTCTGGCTGGCTGGCCAGCTCAGGAGCCGGCTGGTC 416

Score = 139 (38.4 bits), Expect = 6.1e-103, Sum P(5) = 6.1e-103
 Identities = 31/35 (88%), Positives = 31/35 (88%), Strand = Plus/Plus

THIS PAGE BLANK (USPTO)

17/85

FIGURE 8 (IV)

Query: 731 GGAGACTGTGACGGATGACAAGTACCGACCGTCCGCC 765
Sbjct: 336 GGAGACTGTGATGACAATAACCGCCGCCGCC 370

Score = 133 (36.8 bits), Expect = 6.1e-103, Sum P(5) = 5.1e-103
Identities = 29/32 (90%), Positives = 29/32 (90%), Strand = Plus/Plus

Query: 701 CGGGATGATGACCGGACACCCAGGCCATGG 732
Sbjct: 305 CGGGATGATGACCGGACAGCAGGCATTCATGG 336

THIS PAGE BLANK (USPTO)

18/85

FIGURE 8 (V)

gb | AA134788 | AA134788 zm81g02.r1 Stratagene neuroepithelium (#937231)
Homo sapiens cDNA clone 532082 5'
Length = 368

Plus Strand HSPs:

Score = 563 (155.6 bits), Expect = 3.8e-87, Sum P(3) = 3.8e-87
Identities = 147/190 (77%), Positives = 147/190 (77%), Strand = Plus/Plus

Query: 498 CGTCTGACTTCCTGACTGGTCTAGTTTAATGCCAGCAGTACCCCTGGACCAAGGAGG 557
Sbjct: 103 CCTCAGACTTCCTGATTGGTCCAGCTTTAATGCCACCAAGGAGA 162

THIS PAGE BLANK (USPTO)

FIGURE 8 (VI)

Query: 558 TAGACAGGGCCCTCTGGCCAGGCCATACAGCCAGGCCCCAGGCTTCCCC 617
 Sbjct: 163 GAGCCAGGCACCTCCATCTGGCCTGCTTCTATAAGCCAGGCTCCCTCCCC 222

Query: 618 CAGGCCGGCCGAGGCAGCACAGTGATCCACATGGGCAATCCTGAGCCCTTGACTCACG 677
 Sbjct: 223 CAAGCCGTCCCGAGCAGCACACATGGGAGTACTGAAGCCCTGGCACACAG 282

Query: 678 CCCCTAGGAA 687
 Sbjct: 283 CCCCAAGGAA 292

Score = 454 (125.4 bits), Expect = 3.8e-87, Sum P(3) = 3.8e-87
 Identities = 94/98 (95%), Positives = 94/98 (95%), Strand = Plus/Plus

THIS PAGE BLANK (USPTO)

20/85

FIGURE 8 (VII)

Query: 398 GCACTGAGAGAAGCTGGCCACAGTCAACTGGCCCCGGCAGGACTGGGCCTCCCTCTG 457
 Sbjct: 2 GCACTGAGAGACAAGCTAGCCACAGTCAACTGGCCCCGGCAGGACTGGGCCTCCCTCTG 61

Query: 458 ATCGATGAGGTGGTGGCCAGAGCCCCGAGCCCTCAA 495
 Sbjct: 62 ATCGATGAGGTGATAAGCCAGAGCCCCGAGCCCTCAA 99

Score = 219 (60.5 bits), Expect = 3.8e-87, Sum P(3) = 3.8e-87

Identities = 51/60 (85%), Positives = 51/60 (85%), Strand = Plus/Plus

Query: 702 GGGATGATGACCGGACACCAGGCCTCCATGGAGACTGTGACGATGACAAGTACCGACGTC 761
 Sbjct: 309 GGATTGATGACCGGACAGCAGGCATTCACTGGAGACTGTGATGACAATAACGCCGCC 368

THIS PAGE BLANK (USPTO)

21/85

FIGURE 9

W32939 human

TACCGCCCTTCGGAACCACTGCAAGCGGCCGATCAGTAAACACAGAGACTGGGGATCGATCATGGGGCTTGTAAAG

AA242159 mouse

CTTCCGGCGCTTTCATTACCGTACGCACCGGTCA-CGATCGGCATCGGGAGGATCGGTCAATGGGACTTGGCAAG

THIS PAGE BLANK (USPTO)

22/85

FIG 10

THIS PAGE BLANK (USPTO)

FIGURE 10 (I)

MCG4	MGLCKCPKRK	VTNLFCFEHR	VNVCEHCLVA	NHAKCIVQSY	LQWLQDSDDN	PNCRLCNIPPL	60
MCG4	ASRETTIRLVC	YDLFHWACLN	ERAAQLPRNT	APAGYQCPSC	NGPIFPPTNL	AGPVASALRE	120

3. [229] * * * X >

5. [74]

Substitute Sheet (Rule 26)

THIS PAGE BLANK (USPTO)

FIGURE 10 (II)

THIS PAGE BLANK (USPTO)

25/85

FIGURE 10 (III)

THIS PAGE BLANK (USPTO)

26 /85

FIGURE 10 (IV)

Search Analysis for Sequence: MCG4

Search from 1 to 310

Date: September 22, 1997

Matrix: pam250 matrix
Score Region from 1 to 310
Maximum possible score: 1598

Aligned sequences:

1. = EST AA074703 phase 1 translation
2. = EST AA134788 phase 3 translation
3. = EST AA134788 phase 2 translation
4. = EST AA074703 phase 3 translation
5. = EST AA074703 phase 2 translation
6. = EST AA134788 phase 1 translation

THIS PAGE BLANK (USPTO)

FIGURE 11
Domains of MCC4

zinc finger consensus: CX₂HX₄CX₂CX₄HX₂CX₁₇CX₂CX₁₈HX₂CX₁₈CX₂C

acidic domain consensus: 9/34 negatively charged amino acids, 0/34 positively charged

basic domain consensus: 13/55 positively charged amino acids, 0/55 negatively charged

27/85

leucine zipper domain consensus: LX₆LX₆RX₆LX₆L

alternate "novel" leucine zipper-like motif where leucine would not be aligned along the one surface of an alpha helix domain: (aa 261) LX₆LX₆LX₆L (aa 286)

THIS PAGE BLANK (USPTO)

28/85

<u>FIG 12 (I)</u>	<u>FIG 12 (II)</u>
<u>FIG 12 (III)</u>	<u>FIG 12 (IV)</u>

FIG 12

THIS PAGE BLANK (USPTO)

29/85

FIG 12 (I)

Sequences producing High-scoring Segment Pairs:

gn1| PID| e236178
 gi| 1293099
 gi| 1655941
 pir| s30356
 sp| P43069| CC25_CANAL
 sp| P28818| GNRP_RAT
 prf| 1814463A
 pir| B46199
 gn1| PID| e238680
 pir| s22693
 sp| P14771| SC25_YEAST
 sp| P26674| STE6_SCHPO
 pir| s28407
 sp| P27671| GNRP_MOUSE
 gi| 386047
 sp| Q02342| CC25_SACKL
 pir| s14177
 gi| 433720
 gn1| PID| e241744
 gi| 3484

(Z70752 F25B3.3 [Caenorhabditis ele...
 (U53884) aimless RasGEF [Dictyosteli...
 (U67326) Ras-GRF2 [Mus musculus]
 CDC25 protein homolog - yeast (Cand...
 CELL DIVISION CONTROL PROTEIN 25
 GUANINE NUCLEOTIDE RELEASING PROTEIN...
 guanine nucleotide-releasing factor ...
 nucleotide-exchange-factor homolog c...
 (X97560) hypothetical protein L1309 ...
 CDC25 protein homolog - mouse/gi 50...
 SCD25 PROTEIN /gi 457494 (M26647) SD...
 STE6 PROTEIN /pir s28098 ste6 prote...
 CDC25 protein homolog - mouse
 GUANINE NUCLEOTIDE RELEASING PROTEIN...
 (S62035) Ras-specific guanine nucleo...
 CELL DIVISION CONTROL PROTEIN 25 /pi...
 SCD25 protein - yeast (Saccharomyces...
 (L26584) CDC25 [Homo sapiens]
 (Z68880) T14G10.2 [Caenorhabditis el...
 (X03579) CDC25 protein (aa 1-1588) [...]

THIS PAGE BLANK (USPTO)

30/85

High Score	smallest Sum Probability P(N)
307	3.0e-124
202	7.8e-22
152	3.6e-16
150	2.2e-15
150	2.2e-15
166	2.6e-15
166	2.6e-15
167	1.1e-14
158	3.0e-14
167	3.7e-14
158	4.6e-14
160	5.2e-14
167	1.2e-13
167	1.2e-13
153	2.0e-13
142	4.5e-13
152	5.7e-13
153	6.0e-13

FIG 12 (II)

THIS PAGE BLANK (USPTO)

31/85

sp P04821 CC25_YEAST	CELL DIVISION CONTROL PROTEIN 25 /pi...
gi 915328	(U24070) Munc13-1 [Rattus norvegicus]
pir A46199	nucleotide-exchange-factor homolog c...
pdb 1PTR	Molecule: Protein Kinase C Delta Ty...
gi 915330	(U24071) Munc13-2 [Rattus norvegicus]
gi 474982	(D21239) 'C3G protein' [Homo sapiens...]
gi 1763306	(U75361) Munc13-3 [Rattus norvegicus]
gi 806957	guanine-nucleotide exchange factor C...
sp Q03385 GNDS_MOUSE	GUANINE NUCLEOTIDE DISSOCIATION STIM...
pir BVBYL1	LTE1 protein - Yeast (Saccharomyces...
gi 452242	(D21354) a putative guanine nucleoti...
sp P07866 LTE1_YEAST	LOW TEMPERATURE ESSENTIAL PROTEIN /P...
gi 509050	(Z22521) protein kinase C delta [Hom...]
gi 520587	(D10495) protein kinase C delta-type...
sp P05130 KPC1_DROME	PROTEIN KINASE C, BRAIN ISOZYME (PKC...)
pir S35704	protein kinase C (EC 2.7.1.-) delta...
sp Q05655 KPCD_HUMAN	PROTEIN KINASE C, DELTA TYPE (NPKC-D...)
pir S40279	protein kinase C mu - human /pir A5...
sp P09215 KPCD_RAT	PROTEIN KINASE C, DELTA TYPE (NPKC-D...)
gi 520878	(Z34524) serine/threonine protein ki...
gi 1519719	(U68142) RalGDS-like [Homo sapiens]

THIS PAGE BLANK (USPTO)

32/85

FIG 12 IV

157	7.2e-13	1
136	3.4e-12	3
136	3.4e-12	3
151	5.5e-12	1
149	5.6e-12	1
136	1.5e-11	1
150	1.6e-11	2
131	3.3e-11	3
153	6.4e-11	2
128	7.8e-11	3
133	1.0e-10	2
139	1.9e-10	1
139	2.7e-10	1
133	2.7e-10	1
139	4.0e-10	1
137	4.6e-10	1
137	4.7e-10	1
137	4.7e-10	1
137	4.7e-10	1
137	4.9e-10	1
135	9.0e-10	1
133	1.8e-09	1
115	3.8e-09	3

THIS PAGE BLANK (USPTO)

33/85

FIG 13a (I)

FIG 13a (II)

FIG 13a (III)

FIG 13a (IV)

FIG 13a (V)

FIG 13a (VI)

FIG 13a (VII)

FIG 13a (VIII)

FIG 13a (IX)

FIG 13a (X)

FIG 13a

THIS PAGE BLANK (USPTO)

34/85

CG	ATT	TCA	TTC	CTC	GCT	CCC	CAC	AGG	TCC	CTC	TCC	CCA	AAA	TAT	44
Ile	Ser	Phe	Leu	Ala	Pro	His	Arg	Ser	Leu	Ser	Pro	Lys	Tyr		
1															10
TCC	CAT	CTT	GTC	CTA	GCC	CAT	CCC	CCA	GAC	TAT	CTC	AAG	GAC	CAG	89
Ser	His	Leu	Val	Leu	Ala	His	Pro	Pro	Asp	Tyr	Leu	Lys	Asp	Gln	
15															25
CTG	TCC	CCA	CGC	CCC	CGA	CCT	CCA	CTA	GGC	CTG	TGC	CAC	CCG	CTG	134
Leu	Ser	Pro	Arg	Pro	Arg	Pro	Pro	Leu	Gly	Leu	Cys	His	Pro	Leu	
30															40
CCT	GCA	GGA	AGA	CGC	GTC	CCG	GGC	CGG	GTT	AGC	CCC	ATG	GGA	179	
Pro	Ala	Gly	Arg	Arg	Pro	Val	Pro	Gly	Arg	Val	Ser	Pro	Met	Gly	
45															55
ACG	CAG	CGC	CTG	TGT	GGC	CGC	GGG	ACT	CAA	GGC	TGG	CCT	GGC	TCA	224
Thr	Gln	Arg	Leu	Cys	G1Y	Arg	Gly	Thr	Gln	Gly	Trp	Pro	Gly	Ser	
60															70
AGT	GAA	CAG	CAC	GTC	CAG	GAG	GCG	ACC	TCC	TCC	GCG	GGT	TTG	CAT	269
Ser	Glu	Gln	His	Val	Gln	Glu	Ala	Thr	Ser	Ser	Ala	Gly	Leu	His	
75															80

THIS PAGE BLANK (USPTO)

35/85

FIGURE 13 (a) (II)

TCT	GGG	GTG	GAC	GAG	CTG	GGG	GTG	CGG	TCC	GAG	CCC	GGT	GGG	AGG	314
Ser	Gly	Val	Asp	Glu	Leu	Gly	Val	Arg	Ser	Glu	Pro	Gly	Gly	Arg	
90															
95															100
CTC	CCG	GAG	CGC	AGC	CTG	GGC	CCA	GCC	CAC	CCC	GCG	CCG	GCG	GCC	359
Leu	Pro	Glu	Arg	Ser	Leu	Gly	Pro	Ala	His	Pro	Ala	Pro	Ala	Ala	
105															115
<u>ATG</u>	GCA	GGC	ACC	CTG	GAC	CTG	GAC	AAG	GGC	TGC	ACG	GTG	GAG	GAG	404
Met	Ala	Gly	Thr	Leu	Asp	Leu	Asp	Lys	Gly	Cys	Thr	Val	Glu	Glu	
120															125
CTG	CTC	CGC	GGG	TGC	ATC	GAA	GCC	TTC	GAT	GAC	TCC	GGG	AAG	GTG	449
Leu	Leu	Leu	Arg	Cys	Ile	Glu	Ala	Phe	Asp	Asp	Ser	Gly	Lys	Val	
135															140
CGG	GAC	CCG	CAG	CTG	GTG	CGC	ATG	TTC	CTC	ATG	ATG	CAC	CCC	TGG	494
Arg	Asp	Pro	Gln	Leu	Val	Arg	Met	Phe	Leu	Met	Met	His	Pro	Trp	
150															155
TAC	ATC	CCC	TCC	TCT	CAG	CTG	GCG	GCC	AAG	CTG	CTC	CAC	ATC	TAC	539
Tyr	Ile	Pro	Ser	Ser	Gln	Leu	Ala	Ala	Lys	Leu	Leu	His	Ile	Tyr	
165															170

THIS PAGE BLANK (USPTO)

36/85

FIGURE 13 (a) (III)

CAA	CAA	TCC	CGG	AAG	GAC	AAC	TCC	AAT	TCC	CTG	CAG	GTG	AAA	ACG	584
Gln	Gln	Ser	Arg	Lys	Asp	Asn	Ser	Asn	Ser	Leu	Gln	Val	Lys	Thr	
180					185					190					
TGC	CAC	CTG	GTC	AGG	TAC	TGG	ATC	TCC	GCC	TTC	CCA	GCG	GAG	TTT	629
Cys	His	Leu	Val	Arg	Tyr	Trp	Ile	Ser	Ala	Phe	Pro	Ala	Glu	Phe	
195					200					205					
GAC	TTG	AAC	CCG	GAG	TTG	GCT	GAG	CAG	ATC	AAG	GAG	CTG	AAG	GCT	674
Asp	Leu	Asn	Pro	Glu	Leu	Ala	Glu	Gln	Ile	Lys	Glu	Leu	Lys	Ala	
210					215					220					
CTG	CTA	GAC	CAA	GAA	GGG	AAC	CGA	CGG	CAC	AGC	AGC	CTA	ATC	GAC	719
Leu	Leu	Asp	Gln	Glu	Gly	Asn	Arg	Arg	His	Ser	Ser	Leu	Ile	Asp	
225					230					235					
ATA	GAC	AGC	GTC	CCT	ACC	TAC	AAG	TGG	AAG	CGG	CAG	GTG	ACT	CAG	764
Ile	Asp	Ser	Val	Pro	Thr	Tyr	Lys	Trp	Lys	Arg	Gln	Val	Thr	Gln	
240					245					250					
CGG	AAC	CCT	GTG	GGA	CAG	AAA	AAG	CGC	AAG	ATG	TCC	CTG	TTG	TTT	809
Arg	Asn	Pro	Val	Gly	Gln	Lys	Lys	Arg	Arg	Lys	Met	Ser	Leu	Ile	Phe
255					260					265					

THIS PAGE BLANK (USPTO)

37/85

FIGURE 13 (a) (IV)

GAC	CAC	CTG	GAG	CCC	ATG	GAG	CTG	GCG	GAG	CAT	CTC	ACC	TAC	TTG	854
Asp	His	Leu	Glu	Pro	Met	Glu	Leu	Ala	Glu	His	Leu	Thr	Tyr	Tyr	Leu
270															275
GAG	TAT	CGC	TCC	TTC	TGC	AAG	ATC	CTG	TTT	CAG	GAC	TAT	CAC	AGT	899
Glu	Tyr	Arg	Ser	Phe	Cys	Lys	Ile	Leu	Phe	Gln	Asp	Tyr	His	Ser	
285															290
TTC	GTG	ACT	CAT	GGC	TGC	ACT	GTG	GAC	AAC	CCC	GTC	CTG	GAG	CGG	944
Phe	Val	Thr	His	Gly	Cys	Thr	Val	Asp	Asn	Pro	Val	Leu	Glu	Arg	
300															305
TTC	ATC	TCC	CTC	TTC	AAC	AGC	GTC	TCA	CAG	TGG	GTG	CAG	CTC	ATG	989
Phe	Ile	Ser	Leu	Phe	Asn	Ser	Val	Ser	Gln	Trp	Val	Gln	Leu	Met	
315															320
ATC	CTC	AGC	AAA	CCC	ACA	GCC	CCG	CAG	CGG	GCC	CTG	GTC	ATC	ACA	1034
Ile	Leu	Ser	Lys	Pro	Thr	Ala	Pro	Gln	Arg	Ala	Leu	Val	Ile	Thr	
330															335

THIS PAGE BLANK (USPTO)

38/85

FIGURE 13 (a) (v)

CAC	TTT	GTC	CAC	GTG	GCG	GAG	AAG	CTG	CTA	CAG	CTG	CAG	AAC	TTC	1079
His	Phe	Val	His	Val	Ala	Glu	Lys	Leu	Leu	Gln	Leu	Gln	Asn	Phe	
345															355
AAC	ACG	CTG	ATG	GCA	GTG	GTC	GGG	GGC	CTG	AGC	CAC	AGC	TCC	ATC	1124
Asn	Thr	Leu	Met	Ala	Val	Val	Gly	Gly	Leu	Ser	His	Ser	Ser	Ile	
360															370
TCC	CGC	CTC	AAG	GAG	ACC	CAC	AGC	CAC	GTT	AGC	CCT	GAG	ACC	ATC	1169
Ser	Arg	Leu	Lys	Glu	Thr	His	Ser	His	Val	Ser	Pro	Glu	Thr	Ile	
375															385
AAG	CTC	TGG	GAG	GGT	CTC	ACG	GAA	CTA	GTG	ACG	GCG	ACA	GGC	AAC	1214
Lys	Leu	Trp	Glu	Gly	Leu	Thr	Glu	Leu	Val	Thr	Ala	Thr	Gly	Asn	
390															400
TAT	GGC	AAC	TAC	CGG	CGT	CGG	CTG	GCA	GCC	TGT	GGC	TTC	CGC	1259	
Tyr	Gly	Asn	Tyr	Arg	Arg	Arg	Leu	Ala	Ala	Cys	Val	Gly	Phe	Arg	
405															415
TTC	CCG	ATC	CTG	GGT	GTG	CAC	CTC	AAG	GAC	CTG	GTG	GCC	CTG	CAG	1304
Phe	Pro	Ile	Leu	Gly	Val	His	Leu	Lys	Asp	Leu	Val	Ala	Leu	Gln	
420															430

THIS PAGE BLANK (USPTO)

39/85

FIGURE 13 (a) (VI)

CTG GCA CTG CCT GAC TGG CTG GAC CCA GCC CGG ACC CGG CTC AAC 1349
 Leu Ala Leu Pro Asp Trp Leu Asp Pro Ala Arg Thr Arg Leu Asn
 435 440 445

GGG GCC AAG ATG AAG CAG CTC TTT AGC ATC CTG GAG GAG CTG GCC 1394
 Gly Ala Lys Met Lys Gln Leu Phe Ser Ile Leu Glu Glu Leu Ala
 450 455 460

ATG GTG ACC AGC CTG CGG CCA CCA GTC CAG GCC AAC CCC GAC CTG 1439
 Met Val Thr Ser Leu Arg Pro Pro Val Gln Ala Asn Pro Asp Leu
 465 470 475

CTG AGC CTG CTC ACG GTG TCT CTG GAT CAG TAT CAG ACG GAG GAT 1484
 Leu Ser Leu Leu Thr Val Ser Leu Asp Gln Tyr Gln Thr Glu Asp
 480 485 490

GAG CTG TAC CAG CTG TCC CTG CAG CGG GAG CCG CGC TCC AAG TCC 1529
 Glu Leu Tyr Gln Leu Ser Leu Gln Arg Glu Pro Arg Ser Lys Ser
 495 500 505

THIS PAGE BLANK (USPTO)

40/85

FIGURE 13 (a) (VII)

TCG	CCA	ACC	AGC	CCC	ACG	AGT	TGC	ACC	CCA	CCC	CCG	CCC	CCG	1574	
Ser	Pro	Thr	Ser	Pro	Thr	Ser	Cys	Thr	Pro	Pro	Pro	Arg	Pro	Pro	
510															
GTA	CTG	GAG	TGG	ACC	TCG	GCT	GCC	AAA	CCC	AAG	CTG	GAT	CAG	1619	
Val	Leu	Glu	Glu	Trp	Trp	Ser	Ala	Ala	Lys	Pro	Lys	Leu	Asp	Gln	
525															
GCC	CTC	GTG	GTG	GAG	CAC	ATC	GAG	AAG	ATG	GTG	GAG	TCT	GTG	TTC	1664
Ala	Leu	Val	Val	Glu	His	Ile	Glu	Ile	Glu	Met	Val	Glu	Ser	Val	Phe
540															
CGG	AAC	TTT	GAC	GTC	GAT	GGG	GAT	GGC	CAC	ATC	TCA	CAG	GAA	GAA	1709
Arg	Asn	Phe	Asp	Val	Asp	Gly	Asp	Gly	Gly	His	Ile	Ser	Gln	Glu	Glu
555															
TTC	CAG	ATC	ATC	CGT	GGG	AAC	TTC	CCT	TAC	CTC	AGC	GCC	TTT	GGG	1754
Phe	Gln	Ile	Ile	Arg	Gly	Asn	Phe	Pro	Tyr	Leu	Ser	Ala	Phe	Gly	
570															
GAC	CTC	GAC	CAG	AAC	CAG	GAT	GGC	TGC	ATC	AGC	AGG	GAG	GAG	ATG	1799
Asp	Leu	Asp	Gln	Asn	Gln	Asp	Gly	Cys	Ile	Ser	Arg	Glu	Glu	Met	
585															

THIS PAGE BLANK (USPTO)

41/85

FIGURE 13 (a) (VIII)

GTT TCC TAT TTC CTG CGC TCC AGC TCT GTG TTG GGG GGG CGC ATG 1844
 Val Ser Tyr Phe Leu Arg Ser Ser Val Leu Gly Gly Arg Met
 600 605 610

GCC TTC GTA CAC AAC TTC CAG GAG AGC AAC TCC TTG CGC CCC GTC 1889
 G1y Phe Val His Asn Phe Gln Glu Ser Asn Ser Leu Arg Pro Val
 615 620 625

GCC TGC CGC CAC TGC AAA GCC CTG ATC CTG GGC ATC TAC AAG CAG 1934
 Ala Cys Arg His Cys Lys Ala Leu Ile Leu Gly Ile Tyr Lys Gln
 630 635 640

GCC CTC AAA TGC CGA CGC TGT GGA GTG AAC TGC CAC AAG CAG TGC 1979
 G1y Leu Lys Cys Arg Ala Cys Gly Val Asn Cys His Lys Gln Cys
 645 650 655

AAG GAT CGC CTG TCA GTT GAG TGT CGG CGC AGG GCC CAG AGT GTG 2024
 Lys Asp Arg Leu Ser Val Glu Cys Arg Arg Ala Gln Ser Val
 660 665 670

THIS PAGE BLANK (USPTO)

42/85

FIGURE 13 (a) (IX)

AGC CTG GAG GGG TCT GCA CCC TCA CCC TCA CCC ATG CAC AGC CAC 2069
 Ser Leu Glu Gly Ser Ala Pro Ser Pro Ser Pro Met His Ser His
 675 680 685

CAT CAC CGC GCC TTC AGC TTC TCT CTG CCC CGC CCT GGC AGG CGA 2114
 His His Arg Ala Phe Ser Phe Ser Leu Pro Arg Pro Gly Arg Arg
 690 695 700

GGC TCC AGG CCT CCA GAG ATC CGT GAG GAG GTA CAG ACG GTG 2159
 Gly Ser Arg Pro Pro Glu Ile Arg Glu Glu Val Gln Thr Val
 705 710 715

GAG GAT GGG GTG TTT GAC ATC CAC TTG TA ATAGATGCTG 2198
 Glu Asp Gly Val Phe Asp Ile His Leu *
 720 725

TGGTTGGATC AAGGACTCAT TCCTGCCTTG GAGAAATAC TTCAACCAGA 2248
 GCAGGGAGCC TGGGGTGTG GGGGCAGGAG GCTGGGGATG GGGGTGGGAT 2293
 ATGAGGGTGG CATGCAGCTG AGGGCAGGGC CAGGGCTGGT GTCCCTAAGG 2348

THIS PAGE BLANK (USPTO)

43/85

FIGURE 13 (a) (x)
TTGTACAGAC TCTTGTGAAT ATTGTATT TCCAGATGGA ATAAAAAGGC
2398
CCGTGTAATT AACCTTC (A) n
2416

THIS PAGE BLANK (USPTO)

44/85

FIGURE 13 (b)

CGATTTCATT	CCTCGCTCCC	CACAGGTCCC	TCTCCCCAAA	ATATTCCCCAT	50
CTTGTCCCTAG	CCCATCCCCC	AGACTATCTC	AAGGACCCAGC	TGTCCCCACG	100
CCCCCGACCT	CCACTAGGCC	TGTGCCACCC	GCTGCCCTGCA	GGAAAGACGCC	150
CGTCCCGGG	CGGGGTAG	CCC CAT	GGG AAC	GGG GTT CGG TCC GAG	196
* Pro His Gly Asn Gly Val Arg Ser Glu					
			1	5	
CCC	GGT	GGG	AGG	CTG	238
Pro	Gly	Gly	Arg	Leu	
				Pro	
				Glu	
				Arg	
				Ser	
				Leu	
				Gly	
				Pro	
				Ala	
				His	
10					
			15	20	
CCC	GGG	CCG	GCC	ATG	280
Pro	Ala	Pro	Ala	Ala	
				Met	
				Gly	
				Thr	
				Leu	
				Asp	
				Leu	
				Asp	
				Lys	
25				30	
GGC	TGC	ACG	GTG	GAG	300
Gly	Cys	Thr	Val	Glu	
				Glu	
				Leu	
40					

THIS PAGE BLANK (USPTO)

45/85

FIG 14

THIS PAGE BLANK (USPTO)

46/85

FIGURE 14 (I)

1	MAGTLDLDKGCG...	TVEELLRGCGIEAF...	DDSGKVRDPQLVRMFLMMHPW	45
1	MSSKVEEDQHQELLTDQLVARCVEC	FDVDEEDEDIEFVDALFLFLSHQW		50
46	YIPSSQLAAKLLHIYQQSRKDNNSNLSLQVQKTC	CHLVRVWISAFPAEFDLNPE		95
51	LSDSLSLITHEVNFYQETRNVEQRE...	AVCRAVSEFWIEKFPFMHFDAAQPQ		97
96	LAEQIKELKALLDQEGNRRHSSLIDIDSVPTYK	WKRQVTQRQNPVGQKK...		143
98	VCAQVVRLIKTIADINENIRNGL.DVSALPSFAWLRAVSVRNPLAKQTIV			146
144	RKMSLILFDHLEPMELAEHLTYLEYR	168
147	RVDFETILPTPGTPPPFPIASKKFSLTAFSLSFVQASPSDI	STSLSHIDYR		196
169	SFCKILFQDYHSFVTHGCTVDNPVLERFISLNFNSV	SQWVQLMILSKPTAP		218
197	VLSTISITELKQYVKDGHLRSCPMLERSISVFNNL	SNWVQCLILNKTTTPK		246
219	QRALVITHFVHVAEKLLOLONFNTLMAVYGGI	SHSSISRLKETHSHVSPE		268
247	ERAEIFLVKEVHVAKHLRKINNENTLMSVVG	GITHSSVARLAKTYAVLSND		296
269	TIKLIWEGLTTELVTATGNYGNYRRRLAAC.	VGFRFPILGVHLKDLVALQLA		317
297	IKKELTQLTNLLSAQHNFC	CEYRKALGACCNKKFRIPITIGVHLKDLVAINCS		346

THIS PAGE BLANK (USPTO)

47 / 85

FIGURE 14 (II)

318	LPDWLDPARTRLNGAKMKQLFSILEELAMVTSRPPV.QANPDILLSSLLTV	366
347	GANFEKT.KCISSDKLVLKLSKLLSNFLVFNQKGHNLPENMNDLINTLKV	394
367	SLDQYQTEDELYQLSLQREPRSKSSPSTSCTPPPRPPVLEEWTSAAKP	416
395	SLDIRYNDDDIYELSLRREPKTFMN.....FEPSSRGLVFAEWASGVTV	437
417	KLDQALVVVEHIEKMWESVFRNFDVGDGHIISOEEFQIIRGNFPYLYSAFGD	466
438	APDNATVSKHISAMVDAVFKHYDHDRDGFIISOEEFQLIAGNFPFIDAFVN	487
467	LDONODGCISREEMVSYFLRSS.SVLGGRMGFVHINFOESNSLRRPVACRHC	515
488	IPDVDMDDGOISKDELKTYFMAANKNTKDLRRGFKHNEHETTELTPTTCNHC	537
516	KALILGLYKOGLKCRACGVNCHKOCKDRLSVCCRRAQSVSLEGSAPS	565
538	NKLLWGLLROGEKCKDCGLAVHSCKSNAVAECRKSSSNLTRAEMWFA	587
566	PMHSHIHRAFSFSLPRPGRRGSRPPEIREEEVQTVEDGVFDIHL	609
588	PRGSWRSRIINTC...NNSGSTPDDEEIGLVSACEEVFEDDDL	627

THIS PAGE BLANK (USPTO)

48/85

FIG 15

THIS PAGE BLANK (USPTO)

FIGURE 15 (I)

human CGATTTCATT CCTCGCTCCC CACAGGTCCC TCTCCCCAA ATATTCCAT CTTGTCCTAG 60
 human CCCATCCCC AGACTATCTC AAGGACCAGC TGTCCCCACG CCCCCGACCT CCACTAGGCC 120
 human TGTGCCACCC GCTGCCCTGCA GGAAGACGCC CGGTCCCCGG CCGGGTTAGC CCCATGGGAA 180
 human CGCAGCGCT GTGTGGCCGC GGGACTCAAG GCTGGCCTGG CTCAAGTGAA CAGCACGTCC 240
 mouse * * * tcag * * * * * ag * * * * * t * * * * * * * * * * * a * g * * * t >
 human AGGAGGGAC CTCGTCCGGC GGTTTGCAT CTGGGGTGGA CGAGCTGGGG GTTCGGTCCG 300
 mouse * * * t * * a * - * catt * * * * * * * * * * aa * * aa * g * * ct * * * * * a * * aat * * >
 human AGCCCGGTGG GAGGCTCCCG GAGGCCAGCC TGGGCCAGC CCACCCCGCG CCGGGGCCA 360
 mouse * * * a * t * * * * * * * * * tga * * * t * a * t * * * t * t * * * * * - * tg * * a * * * * a * * * >
 human TGGCAGGCAC CCTGGACCTG GACAAGGGCT GCACGGTGGA GGAGCTGCTC CGCGGGTGC 420
 mouse * * * ga * * * * t * >
 human TCGAAGCCCT CGATGACTCC GGGAAAGGTGC GGGACCCGCA GCTGGTGGC GCTGGTCCG 480

SUBSTITUTE SHEET (RULE 26)

49/85
acagg

THIS PAGE BLANK (USPTO)

FIGURE 15 (II)

730

Substitute Sheet (Rule 26)

THIS PAGE BLANK (USPTO)

51/85

FIG 16

THIS PAGE BLANK (USPTO)

52/85

GTG	GGG	ACC	CCA	ACC	GCC	TGC	GGC	TGC	CCC	TCC	CAA	GTT	CCT	50
Val	Gly	Thr	Pro	Thr	Ala	Cys	Gly	Cys	Pro	Ser	Gln	Val	Pro	98
5														
CCC	TGT	TGG	CCA	GGC	ATC	CAG	GTC	TCC	AGT	CTC	CGA	GCT	GCG	140
Pro	Cys	Trp	Pro	Gly	Ile	Gln	Val	Ser	Ser	Leu	Arg	Ala	Ala	140
GAG	AAC	CCA	CCG	CCA	CAT	GCG	GCC	CCT	TTC	CAT	TCG	ACC	182	
Glu	Asn	Pro	Pro	Pro	His	Ala	Ala	Ala	Pro	Phe	His	Ser	Thr	182
CTG	TGG	GGA	GCC	AGG	CTT	CCG	GGG	CCC	CGT	TCC	TCC	TGT	GTG	266
Leu	Trp	Gly	Ala	Arg	Leu	Pro	Gly	Pro	Arg	Ser	Ser	Cys	Val	266
AAC	TGG	GCC	CCC	CGC	CCC	CAT	TCC	CAG	ACA	TCA	AGG	CCG	CGT	308
Asn	Trp	Ala	Pro	Arg	Pro	His	Ser	Gln	Thr	Ser	Arg	Pro	Arg	308
60														

THIS PAGE BLANK (USPTO)

53/85

CTC	CAG	ATA	GCC	ACG	ATT	TCA	TTC	CTC	GCT	CCC	CAC	AGG	TCC	350
Leu	Gln	Ile	Ala	Thr	Ile	Ser	Phe	Leu	Ala	Pro	His	Arg	Ser	
75														
80														
CTC	TCC	CCA	AAA	TAT	TCC	CAT	CTT	GTC	CTA	GCC	CAT	CCC	CCA	392
Leu	Ser	Pro	Lys	Tyr	Ser	His	Leu	Val	Leu	Ala	His	Pro	Pro	
90														
95														
GAC	TAT	CTC	AAG	GAC	CAG	CTG	TCC	CCA	CGC	CCC	CGA	CCT	CCA	434
Asp	Tyr	Leu	Lys	Asp	Gln	Ileu	Ser	Pro	Arg	Pro	Arg	Pro	Pro	
105														
110														
CTA	GGC	CTG	TGC	CAC	CCG	CTG	CCT	GCA	GGA	AGA	CGC	CCG	GTC	476
Leu	Gly	Leu	Cys	His	Pro	Leu	Pro	Ala	Gly	Arg	Arg	Pro	Val	
120														
125														
CCG	GGC	CGG	GTT	AGC	CCC	ATG	GGA	ACG	CAG	CGC	CTG	TGT	GGC	518
Pro	Gly	Arg	Val	Ser	Pro	*	Pro	His	Gly	Asn				
130														
135														
140														

THIS PAGE BLANK (USPTO)

54/85

FIGURE 16 (III)

CGC	GGG	ACT	CAA	GGC	TGG	CCT	GGC	TCA	AGT	GAA	CAG	CAC	GTC	560
Arg	Gly	Thr	Gln	Gly	Trp	Pro	Gly	Ser	Ser	Glu	Gln	His	Val	
145					150						155			
CAG	GAG	GCC	ACC	TCG	TCC	GCG	GGT	TTG	CAT	TCT	GGG	GTG	GAC	602
Gln	Glu	Glu	Ala	Thr	Ser	Ala	Gly	Leu	His	Ser	Gly	Val	Asp	
								160			165			
GAG	CTG	GGG	GTT	CGG	TCC	GAG	CCC	GGT	GGG	AGG	CTC	CCG	GAG	644
Glu	Leu	Gly	Val	Arg	Ser	Glu	Pro	Gly	Gly	Arg	Leu	Pro	Glu	
								175			170		180	
CGC	AGC	CTG	GGC	CCA	GCC	CAC	CCC	GGG	GGG	ATG	GCA			686
Arg	Ser	Leu	Gly	Pro	Ala	His	Pro	Ala	Pro	Ala	Ala	Met	Ala	
											190			
GGC	ACC	CTG	GAC	CTG	GAC	AAG	GGC	TGC	ACG	GTG	G			720
Gly	Thr	Leu	Asp	Leu	Asp	Lys	Gly	Cys	Thr	Val				
195					200						205			

THIS PAGE BLANK (USPTO)

55/85

FIGURE 17

THIS PAGE BLANK (USPTO)

56/85

FIGURE 18 (Cont. I)

Plasmid name: clone 16 in pGEX-3X
Plasmid size: 6.00 kb

FIGURE 18 (Cont. II)

Plasmid name: clone 19 in pGEX-1
Plasmid size: 6.00 Kb

THIS PAGE BLANK (USPTO)

57/85
FIGURE 18 (Cont. III)

Plasmid name: clone 5 in pGEM-11zf
Plasmid size: 5.50 kb

Plasmid name: clone 27 in pGEX-2T
Plasmid size: 7.50 kb

FIGURE 18 (Cont. IV)

SUBSTITUTE SHEET (RULE 26)

THIS PAGE BLANK (USPTO)

58/85

FIG 19

THIS PAGE BLANK (USPTO)

59/85

43	CGG	CTG	CGC	CTG	CCC	CTG	CGC	CTG	TGC	TGC	CGG
	Met	Pro	Pro	Leu	Leu	Pro	Leu	Arg	Leu	Cys	Arg
1					5						
CTG	TGG	CCC	CGC	AAC	CCT	CCC	CGG	CTC	CTC	GCG	GCC
Leu	Trp	Pro	Arg	Asn	Pro	Pro	Ser	Arg	Leu	Gly	Ala
					15				20		25
GCC	GGG	CAG	CAG	CGG	TCC	AGA	CCC	AGT	ACT	TAT	GAA
Ala	Gly	Gln	Arg	Ser	Arg	Pro	Ser	Thr	Tyr	Tyr	Glu
					30				35		
GGG	GTG	CAT	CCT	GGT	GCC	AGC	ACT	GAG	GAA	GTT	AAA
Gly	Val	Val	His	Pro	Gly	Ala	Ser	Thr	Glu	Glu	Val
					40				50		
TTC	TTC	TCC	AAG	TCC	AAA	GAG	CTG	CAC	CCA	GAC	CGG
Phe	Phe	Ser	Lys	Ser	Lys	Glu	Leu	His	Pro	Asp	Arg
					55				60		65
GGG	AAC	CCA	AGC	CTG	CAC	AGC	CGC	TTT	GTG	GAG	CTG
Gly	Asn	Pro	Ser	Leu	His	Ser	Arg	Phe	Val	Glu	Leu
					70				75		80

THIS PAGE BLANK (USPTO)

60/85

FIGURE 19 (II)

GCA	TAC	CGT	GTG	CTC	AGC	CGT	GAG	CAG	AGC	CGC	CGC	AGC	TAT	295
Ala	Tyr	Arg	Val	Leu	Ser	Arg	Glu	Gln	Ser	Arg	Arg	Ser	Tyr	85
								90					95	
GAT	GAC	CAG	CTC	CGC	TCA	GGT	AGT	CCC	CCA	AAG	TCT	CCA	CGA	337
Asp	Asp	Gln	Leu	Arg	Ser	Gly	Ser	Pro	Pro	Pro	Lys	Ser	Pro	Arg
									105					
ACC	ACA	GTC	CAT	GAC	AAG	TCT	GCC	CAC	CAA	ACA	CAC	AGC	TCC	379
Thr	Thr	Val	His	Asp	Lys	Ser	Ala	His	Gln	Thr	His	Ser	Ser	
									115					
TGG	ACA	CCC	CCC	AAC	GCA	CAG	TAC	TGG	TCC	CAG	TTT	CAC	AGC	421
Trp	Thr	Pro	Pro	Asn	Ala	Gln	Tyr	Tyr	Trp	Ser	Gln	Phe	His	Ser
									120					
GTG	AGG	CCA	CAG	GGG	CCC	CAG	TTG	AGG	CAG	CAA	CAC	AAA		463
Val	Arg	Pro	Gln	Gly	Pro	Gln	Leu	Arg	Gln	Gln	Gln	His	Lys	
									125					
CAA	AAC	AAA	CAA	GTG	CTG	GGG	TAC	TGC	CTC	CTC	CTC	ATG	CTG	505
Gln	Asn	Lys	Gln	Val	Leu	Gly	Tyr	Cys	Leu	Leu	Leu	Met	Leu	
									130					
									140					
									145					
									150					
									155					
									160					
									165					

THIS PAGE BLANK (USPTO)

61/85

FIGURE 19 (III)						
GGC GGC ATG GGC	CTG CAC TAC ATT GCC TTC AGG AAG GTG AAG	547				
Ala Gly Met Gly	Leu His Tyr Ile Ala Phe Arg Lys Val Lys					
170	175					
CAG ATG CAC CTT AAC TTC ATG GAT GAA AAG GAT CGG ATC ATC	180	185	190	195	200	205
Gln Met His Leu Asn Phe Met Asp Glu Lys Asp Arg Ile Ile						
ACA GCC TTC TAC AAC GAA GCC CGG GCA CGG GCC AGG GCC AAC	631					
Thr Ala Phe Tyr Asn Glu Ala Arg Ala Arg Ala Asn						
195	200	205				
AGA GGC ATC CTT CAG CAG GAG CGA CAA CGG CTA GGG CAG CGG	673					
Arg Gly Ile Leu Gln Gln Glu Arg Gln Arg Leu Gly Gln Arg						
210	215	220				
CAG CCG CCA TCC GAG CCA ACC CAA GGC CCC GAG ATC GTG	715					
Gln Pro Pro Ser Glu Pro Thr Gln Gly Pro Glu Ile Val						
225	230	235				
CCC CGG GGC GCC CCC TGA GGGCTC ACCCTGGATGG GGCCTGCAGT	763					
Pro Arg Gly Ala Gly Pro *						
240						

THIS PAGE BLANK (USPTO)

62/85

FIGURE 19 (IV)
GGGTTCCCGC TTTGCTTCCT TCCCTGGACG GCCCGCTCCCC CGAAACGGGC
813
GCAATAAAGT GATTGGCAG
832

THIS PAGE BLANK (USPTO)

63/85

FIGURE 20
>sp|P08622|DNAJ_ECOLI DNAJ PROTEIN >pir || HHECDJ heat shock protein

dnaJ -
Escherichia coli >gi | 145769 (M12565) -heat shock protein dnaJ
[Escherichia coli] >gi | 216441 (D10483) dnaJ protein
[Escherichia coli]

Length = 376

Score = 138 (63.7 bits), Expect = 1.2e-10, P = 1.2e-10

Identities = 25 / 62 (40%), Positives = 39 / 62 (62%)

Query: 35 YYELLGVHPGASTEEVKRAFFSKSKELHPDRDPGNPSLHSRFLVLSREQSRRS 94

YYE+LGV A E++A+ + + HPDR+ G+ + +F E+ EAY VL+ Q R +

Sbjct: 6 YYEILGVSKTAAEREIRKAYKRLAMKYHPDRNQGIDKEAAKFKEIKEAYEVLTDSQKRAA 65

Query: 95 YD 96

YD

Sbjct: 66 YD 67

THIS PAGE BLANK (USPTO)

64/85

FIG 21

THIS PAGE BLANK (USPTO)

65/85

FIGURE 21 (I)

>gi | 1703590 (U80439) contains similarity to a DNAJ-like domain
(*Caenorhabditis elegans*)

Length = 345

Score = 98 (45.2 bits), Expect = 5.2e-12, Sum P(3) = 5.2e-12
Identities = 17/37 (45%), Positives = 28/37 (75%)

Query: 28 QRSRPSTYYELLGVHPGASTEEVKRAFFSKSKELHPD 64

++ R T+YE+LGV A+ E+K AF++SK++HPD

Sbjct: 22 KKIRQRTHYEVLGVESTATLSEIKAQSKYAAQSKKKVHPD 58

Score = 74 (34.1 bits), Expect: = 5.2e-12, Sum P(3) = 5.2e-12
Identities = 17/32 (53%), Positives = 19/32 (59%)

THIS PAGE BLANK (USPTO)

66/85

FIGURE 21 (II)

Query: 71 SLHSRFFVELSEAYRVLSREQSRRSYDDQLRSG 102

S + F+EL AY VL R RR YD QLR G

Sbjct: 64 SATASFILELKNAVDVLRRPADRRRLYDQLRGG 95

Score = 39 (18.0 bits), Expect = 5.2e-12, Sum P(3) = 5.2e-12
Identities = 10/42 (23%), Positives = 19/42 (45%)

Query: 162 LLMLAGMGLHYIAFRKVKQMHLNFMDEKDRITTAFYNEARAR 203

L++AG Y+ Q L+ + ++D I F + R

Sbjct: 158 LVLVAGYNGGYLYLLAYNQKQLDKLIDEDEIAKCFRLRQKEFR 199

THIS PAGE BLANK (USPTO)

67/85

FIGURE 21 (III)

>gnl | PID | e281266 (Z81030) COLG10.12 [Caenorhabditis elegans]

Length = 191

Score = 96 (44.3 bits), Expect = 1.8e-09, Sum P(3) = 1.8e-09

Identities = 17/41 (41%), Positives = 27/41 (65%)

Query: 35 YYELLGVHPGASTEEVKRAFFSKSKELHPDRDPGNPSLHSR 75

YYE++GV A+ +E++ AF K+K+LHPD+ + SR

Sbjct: 19 YYEIIIGVSSASATRQEIRDAFLKKTKQLHPDQSRKSSKSDSR 59

Score = 54 (24.9 bits), Expect = 1.8e-09, Sum P(3) = 1.8e-09

Identities = 10/22 (45%), Positives = 15/22 (68%)

Query: 75 RFVELSEAYRVLSREQSRRSYD 96

+F+ + EAY VL E+ R+ YD

THIS PAGE BLANK (USPTO)

68/85

FIGURE 21 (IV)
Sbjct: 71 QEMILVKKEAYDVLRNEEKRKEYD 92

Score = 35 (16.1 bits), Expect = 1.8e-09, Sum P(3) = 1.8e-09
Identities = 9/44 (20%), Positives = 22/44 (50%)

Query: 141 QGPOLRQQQHKQNKKQVLGYCLLMLAGMGLHYIAFRKVQMHLN 184
+ P+ + KQ ++L + +A +G + + RK++ L+
Sbjct: 145 RNPEDEYLREKQKNRMLVVLAATVMALIGANIVYIRKLQADRLS 188

THIS PAGE BLANK (USPTO)

69/85

FIG 22

THIS PAGE BLANK (USPTO)

70/85

FIGURE 22 (I)

```
>sp|Q10209|YAY1_SCHPO HYPOTHETICAL 44.8 KD PROTEIN C4H3.01 IN
CHROMOSOME I
>gi|1184014 (Z69380) unknown [Schizosaccharomyces pombe]
Length = 392
```

Score = 84 (38.8 bits), Expect = 4.1e-08, Sum P(3) = 4.1e-08
Identities = 13/36 (36%), Positives = 25,36 (69%)

Query: 35 YYELLGVHPGASTEEVKRAFFSKSKELHPDRDPGNP 70
YY+LLG+ A+ ++K+A+ + + HPD+P + P
Sbjct: 9 YYDLLGISTDATAVDIKKAYRKLAVKYHPDKNPDDP 44

Score = 64 (29.5 bits), Expect = 4.1e-08, Sum P(3) = 4.1e-08
Identities = 14/40 (35%), Positives = 23/40 (57%)

THIS PAGE BLANK (USPTO)

71/85

FIGURE 22 (II)

Query: 75 RFVELSEAYRVLSREQSRRSYDDQLRSGSPKSPRTTVHD 114

+F ++SEAY+VL E+ R YD + + P+ T +D

Subject: 50 KFQKISEAYQVLGDEKLRSQYDQFGKEKAVPEQGFRTDAYD 89

Score = 37 (17.1 bits), Expect = 4.1e-08, Sum P(3) = 4.1e-08

Identities = 9/29 (31%), Positives = 15/29 (51%)

Query: 190 DRIITAFYNEARARARANRGILQQERQRL 218

DR A E A A+ + +++ RQR+

Subject: 149 DRKKNAQIRERREALAKREQEMIEDRRQRI 177

Score = 33 (15.2 bits), Expect = 0.00081, Sum P(3) = 0.00081

Identities = 8/19 (42%), Positives = 11/19 (57%)

THIS PAGE BLANK (USPTO)

72/85

FIGURE 22 (III)

Query: 140 PQGPQLRQQQHKQNKQVLG 158
PQG + Q+ + QVLG
Sbjct: 44 PQGASEKFQKISEAYQVLG 62

THIS PAGE BLANK (USPTO)

FIGURE 23

>gn1|PID|e253406 (X77635) tumorous imaginal discs [Drosophila virilis]
>gn1|PID|e263866 (Y07700) Tid58 protein [Drosophila virilis]
Length = 529

73/85

Score = 153 (70.6 bits), Expect = 9.7e-13, P = 9.7e-13
Identities = 27/71 (38%), Positives = 44/71 (61%)

Query: 26

AGQRSRPSTYYELLGVHPGASTEEVKRAFFSSKSKELEHPDRDPGNPSLHSRFVELSEAYRV 85
+ R + YY LGV A+ +++K+A++ +K+ HPD + +P +F ++SEAY V

Sbjct: 72

SSSRMQAKDYYATLGVAKNANAKDIKKAYYELAKKYHPDTNKDDPDASKKFQDVSEAYEV 131

Query: 86 LSREQSRRSYD 96

LS +Q RR YD

Sbjct: 132 LSDDQKRREYD 142

THIS PAGE BLANK (USPTO)

74/85

FIG 24

THIS PAGE BLANK (USPTO)

75/85

FIGURE 24 (I)

MCG18	-----MPPLLPLRLCRLWP-RN--PP-----	SRLLGAA
HDJ-2	MVKETTYDVLGVKPNATQEEELKKAYRKLALKYHSDKN--PN---	EGEKFQIISQAYEV
HDJ-1	MGKD--YYQTTLGLARGASDEEIKRAYRRQALRYHSDKNKEPG---	AEEKFKEIAEAYDV
HSJ1	M-AS--YYEILDVPRSAASADDIKKAYRRKALQWHPDKN--PDNKEFAEKKFKEVAEAYEV	.*.*.*
.		
MCG18	AGQRSRPSTY--YELLOWVH-----	ST-EEVKRAFFS-
HDJ-2	LSDAKKRELYDKGGEQAIK-----	EGGAGGG-----
HDJ-1	LSDPRKREIIFDRYGEEGLKGSGP-----	SGGSGGGANGTSFSYTFHGDPHAMFAEFFG--
HSJ1	LSDKHKREIYDRYGREGLTGTGSPRAEGSGGP--G--FTFT-FRSPEEVFREFFG--	**
.		
MCG18	KSKELEHPDRDPGNP-----	YDDQLRSGSPPKSPRT
HDJ-2	GRMQRERRGKNVHQLSVTLEDLYNGATRKLAQKNNVICDKCEGRGGKKGAVECCPNCRG	
HDJ-1	GRNPFDTFFGQRNGEEGMDIDDPFSGFPMGMGGFTNVNFGRS--RSAQEPAKQDPPV	
HSJ1	SGDPFAELFDDLGP--FSELQNRGSRHSGPFFTSFSPGHSDFSSSSFSFSPGAGAFRS	..
.		

THIS PAGE BLANK (USPTO)

76 / 85

FIGURE 24 (II)

MCG18	TVHDKSAHQTHSSWTPPNAQY---WSQFHSVRPQ---	GP-----QLRQQQHKQN
HDJ-2	TGMQIRIHQIGPGMVQQIQSVCMECQGHGERISPK	-DRCKSCNGRKIVREKKILEVHIDK
HDJ-1	HDLRVSLEIYSGCTKKMK---	ISH-KRLNP---D-----GKSIRNEDKILTIEVKK
HSJ-1	VSTSTTFVQGRRITTRRIME---	NGQ-ERVEVEED---GQ---LKSVTINGVPD
	.	*
MCG18	KQVILGYCLL---	MLAGMGLHYIAFRKVQHMHLNFMDE-KDRITITAFYNEARARARAN
HDJ-2	GMKDGQKITTfhGEQDQEPGLEPGDIIIVLDQKDHAVFTRRGEDLFMCMCDIQLVEALCGFQ	
HDJ-1	GWKEGTKITFPKEGDQTSNNI PADIVFVLKDKPHNIFKRDGSDVITYPARISLREALCGCT	
HSJ1	DLARGELESR-RE---QQP-SVTSRSGGTQVQQT PASCPLD-SDLSEDEDLQLAMAYSLSE	*
	.	*
MCG18	RGIIQQERQRIGQRQPP-PSEPTQGPEIVPRGAGP-----	
HDJ-2	KPISTLDNRTIVITSHPGQIVKHGDIKCVLNEGMPIYRRPYEKGRLLIEFKVNFPENGFL	
HDJ-1	VNVPTLDGRTIPVVFK--DVIRPGMRRKVPGEGLPLPKTPEKRGDLIIEFEVIFPER--I	
HSJ1	MEAAGKKPAGGREAQHR-RQGRPRPSTKIQAWGGP--RR--VRG--VKQPNNAVHPQQR-RR	*

THIS PAGE BLANK (USPTO)

77/85

FIGURE 24 (III)

MCG18	-----
HDJ-2	SPDKLSSLKLLPERKEYEETDEMDQVELVDFDPNQERRRHYN GEAYEDDEHHPRGGVQC
HDJ-1	PQTTSRTVLEQVLPI
HSJ1	PLAASSSEFHRAQPD-----LIQILITGGSDSIIWEEKRGVS-----
MCG18	---
HDJ-2	QTS
HDJ-1	---
HSJ1	---

* = amino acid identity in all 4 proteins

- = conservative substitution

THIS PAGE BLANK (USPTO)

78/85

FIG 25

THIS PAGE BLANK (USPTO)

79/85

CAG	CTG	CCC	CTG	CGC	CTA	TGC	CGG	CTG	TGG	CCG	TCC	CTG	TTG	CTC	47
Gln	Leu	Pro	Leu	Arg	Leu	Cys	Arg	Leu	Trp	Pro	His	Ser	Leu	Leu	
	10							15							89
TCC	ATC	CGA	CTT	CTC	ACA	GCC	GCA	GGG	CAG	CGG	TCT	GTC			
Ser	Ile	Arg	Leu	Leu	Thr	Ala	Ala	Thr	Gly	Gln	Arg	Ser	Val		131
								30							
CCT	ACT	AAT	TAC	TAT	GAA	TTG	TTG	GGC	GTG	CAT	CCG	GGT	GCC		173
Pro	Thr	Asn	Tyr	Tyr	Glu	Leu	Leu	Gly	Val	His	Pro	Gly	Ala		
	35				40					45					
AGC	GCT	GAA	GAG	ATT	AAA	CGT	GCT	TTT	TTC	ACC	AAG	TCA	AAA		215
Ser	Ala	Glu	Glu	Ile	Lys	Arg	Ala	Phe	Phe	Thr	Lys	Ser	Lys		
	50				55					60					
GAG	CTA	CAC	CCT	GAT	CGA	GAC	CCT	GGG	AAC	CCA	GCC	CTG	CAT		257
Glu	Leu	His	Pro	Asp	Arg	Asp	Pro	Gly	Asn	Pro	Ala	Leu	His		75
	65				70										

THIS PAGE BLANK (USPTO)

80/85

FIGURE 25 (II)

AGC	CGC	TTT	GTG	GAG	CTG	AAT	GAG	GCA	TAT	CGA	GTG	CTC	AGT	2.99
Ser	Arg	Phe	Val	Glu	Leu	Asn	Glu	Ala	Tyr	Arg	Val	Leu	Ser	
80														90
CGT	GAG	GAA	AGT	CGT	CGT	AAC	TAT	GAC	CAC	CAG	CTG	CAT	TCA	341
Arg	Glu	Glu	Ser	Arg	Arg	Arg	Asn	Tyr	Asp	His	Gln	Leu	His	Ser
95														
GCC	AGT	CCT	CCA	AAG	TCT	TCA	GGG	AGC	ACA	GCC	GAG	CCT	AAG	383
Ala	Ser	Pro	Pro	Lys	Ser	Ser	Gly	Ser	Thr	Ala	Glu	Pro	Lys	
105														
TAT	ACG	CAA	CAG	ACA	CAC	AGC	TCC	TGG	GAA	CCC	CCC	AAC	425	
Tyr	Thr	Gln	Gln	Thr	His	Ser	Ser	Ser	Trp	Glu	Pro	Pro	Asn	
120														
GCT	CAA	TAC	TGG	GCC	CAG	TTC	CAC	AGT	GTG	AGG	CCG	CAG	GGG	467
Ala	Gln	Tyr	Trp	Ala	Gln	Phe	His	Ser	Val	Arg	Pro	Gln	Gly	
135														145
CCG	GAG	TCA	AGG	AAG	CAG	CAG	CGT	AAA	CAC	AAC	CAG	CGG	GTC	509
Pro	Glu	Ser	Arg	Lys	Gln	Gln	Arg	Lys	His	Asn	Gln	Arg	Val	
150														160
155														

THIS PAGE BLANK (USPTO)

81/85

CTG	GGG	TAC	TGC	CTC	CTG	CTC	ATG	GTG	GCA	GGC	ATG	GGC	CTG	551
Leu	Gly	Tyr	Cys	Leu	Leu	Leu	Met	Val	Ala	Gly	Met	Gly	Leu	
165														
CAC	TAT	GTT	GCC	TTC	AGG	AAG	CTG	GAG	CAG	GTG	CAT	CGC	AGC	593
His	Tyr	Val	Ala	Phe	Arg	Lys	Leu	Glu	Gln	Val	His	Arg	Ser	
175														
TTC	ATG	GAT	GAA	AAG	GAC	CGG	ATC	ATT	ACA	GCC	ATC	TAC	AAT	635
Phe	Met	Asp	Glu	Lys	Asp	Arg	Ile	Ile	Thr	Ala	Ile	Tyr	Asn	
190														
GAC	ACT	CGG	GCC	AGG	GCC	AAC	AGA	GCC	AGG	ATT	CAG		677	
Asp	Thr	Arg	Ala	Arg	Ala	Arg	Ala	Asn	Arg	Ala	Arg	Ile	Gln	
205														
CAG	GAG	CGC	CAC	GAG	AGG	CAG	CCT	CGG	GCA	GAA	CCC	TCC	719	
Gln	Glu	Glu	Arg	His	Glu	Arg	Gln	Gln	Pro	Arg	Ala	Glu	Pro	Ser
220														
225														
230														

THIS PAGE BLANK (USPTO)

82/85

FIGURE 25 (IV)

CCC TGAGAGGCTT AACTAAATGG GACCTTCATT GGTCCCTCTCC CTGGCTGCCTG
Pro * 245

849 TCCAGAACTA CACGTGCAAT AAACTCAT'T TCAG (A)n

THIS PAGE BLANK (USPTO)

83/85

FIGURE 26

human	MCG18	MPPLL---PLRLCRLWPRNPPSRLLGAAGQSRPSTYYELLGVHPGASTEEVKRAFFSK	***** . ***** . ***** . ***** . ***** . ***** . ***** . ***** .
mouse	MCG18	MPSLLLQPLRLCRLWPHSLSIRLLTAATGQRSVPTNYYELLGVHPGASAEEIKRAFFTK	***** . ***** . ***** . ***** . ***** . ***** . ***** . ***** .

human	MCG18	SKELHPDRDPGNPSLHSRFLVELSEAYRVILSREQSRRSYDDQLRSGSPPKSSPRTTVHDKSA
mouse	MCG18	SKELHPDRDPGNPALHSRFLVELNEAYRVILSREESSRRNYDHQLHSASPPKSSGSTAEPKYT

human	MCG18	HQTHSS-WTPPNAAQYMSQFHSVRPQGPQLRQQQHKQNKKQVLGYCLLMLAGMGLHYIAFR
mouse	MCG18	QQTHSSSWEPNAAQYWAQFHSVRPQGPESRKQQRKHNNQRVLRGYCLLMMVAGMGLHYVAFR

human	MCG18	KVKQMHLNFMDEKDRITITAFYNEARARARANRGILQQERQRLGQRQPPPSEPTQGPE---	*****	*****	*****
mouse	MCG18	KLEQVHRSFMDEKDRITITAIYNDRARARANRARIQQER--HERQQPRAEPSLPPESSR	*****	*****	*****

human	MCG18	IVPRGAGP	*
mouse	MCG18	IMPQDTSP	*

THIS PAGE BLANK (USPTO)

84/85

FIGURE 27

TTGA	AGT	CTA	GCC	CCA	TCC	TGG	TCC	AAT	GCC	CTC	TTG	GTA	40
*	Ser	Leu	Ala	Pro	Ser	Trp	Ser	Asn	Ala	Leu	Leu	Val	
1													
GCC	TCC	CCC	AGC	TGC	CCG	CCC	GCC	GCC	ATG	CCG	CCC	TTA	82
Ala	Ser	Phe	Pro	Ser	Cys	Pro	Pro	Ala	Ala	Met	Pro	Pro	Leu
15													
CTG	CCC	CTG	CGC	CTG	TGG	CGG	CTG	TGG	CCC	CGC	AAC	CC	120
Leu	Pro	Leu	Arg	Leu	Cys	Arg	Leu	Trp	Pro	Arg	Asn	Pro	
30													
													35

THIS PAGE BLANK (USPTO)

85/85

FIG 28

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/AU 98/00380

A. CLASSIFICATION OF SUBJECT MATTER		
Int Cl ⁶ : C12N 15/12; C07K 14/47; C07K 16/18; G01N 33/53		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) I/C: WPAT (D gene) Sequences provided by Applicant		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EMBL, Genebank, Swiss Prot and PIR: Sequences provided by applicant		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	Kedra D, Seroussi E, Fransson I, Trifunovic J, Clark M, Lagercrantz J, Blennow E, Mehlin H, Dumanski J, Human Genetics, October 1997 100(5-6) 611-619 The germinal centre kinase gene and a novel CDC25-like gene are located in the vicinity of the PYGM gene on 11q13 EMBL AC Y12339	1-3,8-10,15-18
P,X	Guru S C, Agarwal S K, Manickain P, Olufemi S E, et al Genome Research, July 1997 7(7) 725-735. A transcript map for the 2.8-Mb region containing the multiple endocrine neoplasia type I locus TREMBL AC 014616	1, 4-5, 8, 11-12, 15, 19-21
<input checked="" type="checkbox"/>	Further documents are listed in the continuation of Box C	<input type="checkbox"/> See patent family annex
<p>* Special categories of cited documents:</p> <p>"A" document defining the general state of the art which is not considered to be of particular relevance</p> <p>"E" earlier document but published on or after the international filing date</p> <p>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</p> <p>"O" document referring to an oral disclosure, use, exhibition or other means</p> <p>"P" document published prior to the international filing date but later than the priority date claimed</p> <p>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</p> <p>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</p> <p>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</p> <p>"&" document member of the same patent family</p>		
Date of the actual completion of the international search 16 July 1998	Date of mailing of the international search report 20 JUL 1998	
Name and mailing address of the ISA/AU AUSTRALIAN PATENT OFFICE PO BOX 200 WODEN ACT 2606 AUSTRALIA Facsimile No.: (02) 6285 3929	Authorized officer GILLIAN ALLEN <i>[Signature]</i> Telephone No.: (02) 6283 2266	

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/AU 98/00380

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 1, 2, 4, 6
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
They are to known groups of proteins and lack distinguishing features which would enable a meaningful search.

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Invention 1, defined by claims 2, 3, 9, 10, 16-18, is to nucleotide sequences, amino acid sequences and proteins with a zinc finger domain.
Invention 2, defined by claims 4, 5, 11, 12, 19-21, is to nucleotide sequences and amino acid sequences and proteins which are guanine exchange factors.
Invention 3, defined by claims 6, 7, 13, 14, 22-24, is to nucleotide sequences and amino acid sequences and proteins which are heat shock proteins or heat shock binding proteins.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORTinternational Application No.
PCT/AU 98/00380

C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	EMBL AC AF012106 DT 6 November 1997 Lloyd S E and Thakker R V DE Homo Sapiens DnaJ protein (HSPF ₂)mRNA, complete cds	1,6-8,13-15,22-24
P,X	EMBL AC AF 036875 DT 20 May 1998 Silins G, Grimmond S, Hayward N DE Mus musculus multiple endocrine neoplasia type I candidate protein number 18 mRNA, complete cds	1,6-8,13-15,22-24

THIS PAGE BLANK (USPTO)

19

PATENT COOPERATION TREATY
PCT
INTERNATIONAL PRELIMINARY EXAMINATION REPORT 13 JUL 1999
(PCT Article 36 and Rule 70)

WIPO PCT

Applicant's or agent's file reference 2049081/EJH	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416).
International application No. PCT/AU 98/00380	International filing date (day/month/year) 22 May 1998	Priority Date (day/month/year) 23 May 1997
International Patent Classification (IPC) or national classification and IPC Int. Cl. ⁶ C12N 15/12; C07K 14/47		
Applicant AMRAD Operations Pty Ltd		

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.
2. This REPORT consists of a total of 5 sheets, including this cover sheet.

This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of sheet(s).

3. This report contains indications relating to the following items:

I	<input checked="" type="checkbox"/> Basis of the report
II	<input type="checkbox"/> Priority
III	<input type="checkbox"/> Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
IV	<input checked="" type="checkbox"/> Lack of unity of invention
V	<input checked="" type="checkbox"/> Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
VI	<input type="checkbox"/> Certain documents cited
VII	<input type="checkbox"/> Certain defects in the international application
VIII	<input checked="" type="checkbox"/> Certain observations on the international application

Date of submission of the demand 17 December 1998	Date of completion of the report 6 July 1998
Name and mailing address of the IPEA/AU AUSTRALIAN PATENT OFFICE PO BOX 200 WODEN ACT 2606 AUSTRALIA Facsimile No. (02) 6285 3929	Authorized Officer GILLIAN ALLEN Telephone No. (02) 6283 2266

THIS PAGE BLANK (USPTO)

L Basis of the report

1. With regard to the elements of the international application:*

the international application as originally filed.

the description, pages , as originally filed,
 pages , filed with the demand,
 pages , filed with the letter of .

the claims, pages , as originally filed,
 pages , as amended (together with any statement) under Article 19,
 pages , filed with the demand,
 pages , filed with the letter of .

the drawings, pages , as originally filed,
 pages , filed with the demand,
 pages , filed with the letter of .

the sequence listing part of the description:
 pages , as originally filed
 pages , filed with the demand
 pages , filed with the letter of

2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.

These elements were available or furnished to this Authority in the following language which is:

the language of a translation furnished for the purposes of international search (under Rule 23.1(b)).

the language of publication of the international application (under Rule 48.3(b)).

the language of the translation furnished for the purposes of international preliminary examination (under Rules 55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, was on the basis of the sequence listing:

contained in the international application in written form.

filed together with the international application in computer readable form.

furnished subsequently to this Authority in written form.

furnished subsequently to this Authority in computer readable form.

The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.

The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished

4. The amendments have resulted in the cancellation of:

the description, pages

the claims, Nos.

the drawings, sheets/fig

5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**

* Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to this report since they do not contain amendments (Rules 70.16 and 70.17).

** Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report

THIS PAGE BLANK (USPTO)

IV. Lack of unity of invention

1. In response to the invitation to restrict or pay additional fees the applicant has:
 - restricted the claims.
 - paid additional fees.
 - paid additional fees under protest.
 - neither restricted nor paid additional fees.
2. This Authority found that the requirement of unity of invention is not complied with and chose, according to Rule 68.1, not to invite the applicant to restrict or pay additional fees.
3. This Authority considers that the requirement of unity of invention in accordance with Rules 13.1, 13.2 and 13.3 is
 - complied with.
 - not complied with for the following reasons:

The Application is to three separate proteins or groups of proteins.

Claims 2, 3, 9, 10, 16-18 are to zinc finger proteins or their encoding nucleic acid sequences.

Claims 4, 5, 11, 13, 19-21 are to guanine exchange factor proteins or their encoding nucleic acid sequences.

Claims 6, 7, 13, 14, 22-24 are to heat shock or heat shock binding proteins.

There is no sequence homology between the three protein types

The only unifying feature is their function as gene regulatory proteins. However, gene regulatory proteins of all three types are known. It is also known that gene regulatory proteins can exert their effects via a variety of mechanisms. Therefore, this feature does not provide unity according to Rule 13.2 of the PCT

4. Consequently, the following parts of the international application were the subject of international preliminary examination in establishing this report:
 - all parts.
 - the parts relating to claims Nos.

THIS PAGE BLANK (USPTO)

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Claims 3, 5, 7, 10, 12, 14-24 Claims 1, 2, 4, 6, 8, 9, 11, 13	YES NO
Inventive step (IS)	Claims 3, 5, 7, 10, 12, 14-24 Claims 1, 2, 4, 6, 8, 9, 11, 13	YES NO
Industrial applicability (IA)	Claims 1-24 Claims	YES NO

2. Citations and explanations (Rule 70.7)

Citations

There was no close prior art found in the International Search to the claims searched. However, claims 1, 2, 4, and 6 were not searched

Novelty and Inventive Step

Claims 1, 2, 4, 6, 8, 9, 11, 13 lack novelty and inventive step over the common general knowledge of the art and the disclosures of the description.

Claims 1 and 8 are to any protein regulator of gene expression. It is well known to anyone skilled in the art that gene expression can be regulated by proteins, and very many such proteins are known and have been sequenced. Therefore these claims lack novelty over the common general knowledge of the art.

Claims 2 and 9 are to $(HC_3)_2$ type zinc finger proteins. Zinc fingers are well known structural domains or motifs which bind to DNA. Figs 4-6 of the description disclose the structure of the zinc finger motif and zinc finger proteins, homologous to MCG4, from *C. elegans* and *Saccharomyces pombe*. Therefor claims 1, 2, 8 and 9 lack novelty over these disclosures

Claims 4 and 11 are to guanine exchange factors (GEFs). This is a well known group of proteins which include the Ras oncogene.

Fig 12 discloses a number of known GEFs. Thus claims 1, 4, 8 and 11 lack novelty over these disclosures.

Claims 6 and 13 are to heat shock or heatshock binding proteins. Once again these are an extremely well known group of proteins. Figures 20 and 24 disclose DnaJ proteins, a type of heat shock protein. Thus claims 1, 6, 8 and 13 are not novel over these disclosures.

There is no close prior art which discloses the nucleic or amino acid sequences of the proteins designated MCG4, MCG7 or MCG18. Therefore claims 3, 5, 7, 10, 12 and 14-24 are considered novel and inventive.

THIS PAGE BLANK (USPTO)

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

Claims 3, 5, 7, 10, 12 and 14, parts (iii) and (iv) of each, are to nucleic acid sequences with at least 40% homology to, or which hybridise at low stringency with the nucleic acid sequences specified in the claims. It is considered that the description does not fully support claims to sequences having such low homology to those disclosed in the description. Nor does it support nucleic acid sequences which encode proteins of different functions to MCG4, MCG7 or MCG18, or which do not encode any polypeptide.

Claims 3, 5, 7, 10, 12 and 14, part (iv) are not clear. They place no limit on the length of the hybridising sequences, so the scope of the claims is indeterminate.

THIS PAGE BLANK (USPTO)