拓扑空间

拓扑无需保距,研究形状的连续变形性质.首先定义拓扑空间.

定义 1 (拓扑空间). 设 X 是一非空集合,集类 $T \subset 2^X$,满足以下条件:

- 1. \varnothing , $X \in \mathcal{T}$;
- 2. 对任意并封闭: $\forall U_a \in \mathcal{T}, a \in I$,则 $\bigcup_{a \in I} U_a \in \mathcal{T}$;
- 3. 对有限交封闭: $\bigcap_{a=1}^n U_a \in \mathcal{T}$.

则称 (X,T) 为一个**拓扑空间**,T 为集合 X 上的**拓扑**. T 中的元素 U_a 称为**开集**.

定义 2. 2^X 是 X 上最大的拓扑, 称为离散拓扑.

定义 3. $\{\emptyset, X\}$ 是 X 上最小的拓扑,称为平凡拓扑。

有了开集的定义,自然地定义它的补集为闭集.

定义 4 (闭集). 对 X 的子集 A, 若 $X \setminus A$ 为开集,则称 A 为闭集.

定义 5 (邻域). 设 $x \in X$,如果集合 $N \subset X$ 满足: 存在开集 U,使得 $x \in U \subset N$,则称 N为 x 的邻域,称 $N \setminus \{x\}$ 为 x 的去心邻域.

定义 6 (内核). A 中包含的所有开集的并称为 A 的内核,记作 \mathring{A} .

定理 1. A 是开集当且仅当 $A = \mathring{A}$.

证明. 设 A 是开集, $\forall x \in A$, $\exists U_a \in A$, 使得 $x \in U_a \subset \mathring{A}$, 于是 $A \subset \mathring{A}$; $\mathring{A} = \bigcup_{a \in I} U_a$, $U_a \in A$, 因此 $\mathring{A} \subset A$. 故 $A = \mathring{A}$.

反之,设 $A = \mathring{A} = \bigcup_{a \in I} U_a$,由拓扑空间定义,开集的任意并仍为开集,即A为开集.

定义 7 (极限点). 设 $x \in X$, $A \subset X$. 若 x 的任一去心邻域中均有至少一点属于 A,即包含 x 的任一开集 U 中,有

$$(U\backslash\{x\})\cap A\neq\varnothing,$$

则称 x 为 A 的极限点,又称聚点.

定理 2. A 是闭集当且仅当 A 包含了它的全部极限点.

证明. 设 A 是闭集,则 $X \setminus A$ 是开集,由于开集是它的任意元素的邻域,于是 $X \setminus A$ 的任一点都不是 A 的极限点,于是 A 包含了它的全部极限点.

反之,设 A 包含了它的全部极限点,则对任意 $x \in X \setminus A$,总存在 x 的邻域 N 使得 $N \cap A = \emptyset$,于是 $N \subset X \setminus A$,故 $X \setminus A$ 是它的任意元素的邻域,故 $X \setminus A$ 为开集,A 为闭集.

定义 8 (导集). A 的极限点的集合称为 A 的导集,记作 A'.

定义 9 (闭包). A 中的元素和它的极限点组成的集合,即 A 本身和 A 的导集的并集,称为 A 的**闭包**,记作 \overline{A} .

由定义立即有 $\overline{A} = A \cup A'$.

定理 3. A 的闭包是包含 A 的最小闭集.

证明. 对 $\forall x \in X \setminus \overline{A}$,存在 x 的开邻域 U 不包含 A 的极限点,于是 $x \in U \subset X \setminus \overline{A}$,于是 $X \setminus \overline{A}$ 是开集,故 \overline{A} 是闭集.

对任意闭集 $B \supset A$,由定理2,B 包含 A 的全部极限点以及 B 的极限点,于是 $\overline{A} \subset B$. 故 A 的闭包是包含 A 的最小闭集.

注. 该定理也就是说, A 的闭包是包含 A 的全体闭集的交.

推论 1. A 是闭集当且仅当 $A = \overline{A}$.

定义 10 (稠密性). 设 X 为拓扑空间, $A \subset X$,若 $\overline{A} = X$,即对任意 $x \in U \subset X$, $U \setminus \{x\} \cap A \neq \emptyset$,则称 A 是稠密的.

定义 11 (边界). A 的闭包与 $X \setminus A$ 的交称为 A 的边界,记作 ∂A .

用数学语言描述,即 $\partial A = \overline{A} \cap \overline{X \setminus A}$.

定义 12 (拓扑子空间). 设 (X,T) 为拓扑空间, $Y \subset X$, 定义 Y 上的子空间拓扑:

$$\mathcal{T}_Y = \{ O \cap Y | O \in \mathcal{T} \}.$$

称 (Y, \mathcal{T}_Y) 为 X 的拓扑子空间.

定义 13 (有限补拓扑). 设集合 $X = \mathbb{R}$,赋予**有限补拓扑**,对任意开集 $U \subset \mathbb{R}$, $X \setminus U$ 是有限的或者为整个空间 X.

对任一无限集 $A \subset X$, X 中的任意元素 x 都是 A 的极限点. 反之,在这一拓扑下,有限集没有极限点.

定义 14 (拓扑基). 设拓扑空间 (X, \mathcal{T}) ,若一族开集 β 通过任意的一些并可以得到 X 中的任一开集,则称 β 为拓扑基, β 中的元素称为基础开集,也称 \mathcal{T} 为 β 生成的拓扑.

等价地,我们可以说对任意 $x \in X$ 及其邻域为 N,都存在开集 $O \subset \beta$,使得 $x \in O \subset N$.

定理 4. 设 β 是 X 的一个非空子集族,若 β 中元素的有限交仍在 β 中, $\bigcup \beta \in \beta$,则 β 给 出 X 上的拓扑,且为其拓扑基.

证明. 设 $U, V \in \beta$, 令

$$\mathcal{T} = \left\{ U = \bigcup_{V \in \beta'} V \middle| \beta' \subset \beta \right\},\,$$

下面证明 T 是 X 上的拓扑.

- 1. \emptyset , $X \in \mathcal{T}$. $\diamondsuit \beta' = \emptyset$, $f \emptyset = \bigcup_{V \in \beta'} V \in \mathcal{T}$. $\diamondsuit \beta' = X$, $f X = \bigcup_{V \in \beta'} V \in \mathcal{T}$.
- 2. 设 $U_a \in \mathcal{T}, a \in I$. 设 $U_a = \bigcup_{V \in \beta_a} V$,其中 $\beta_a \subset \beta$. 则

$$\bigcup_{a \in I} U_a = \bigcup_{a \in I} \left(\bigcup_{V \in \beta_a} V \right) = \bigcup_{V \in \beta_a, a \in I} V = \bigcup_{V \in \bigcup_{a \in I} \beta_a} V \in \mathcal{T}.$$

3. 设 $U_1 = \bigcup_{V \in \beta_1} V$, $U_2 = \bigcup_{V \in \beta_2} V$, 这里 $\beta_1, \beta_2 \in \beta$. 有

$$U_1 \cap U_2 = \bigcup_{V_1 \in \beta_1, V_2 \in \beta_2} V_1 \cap V_2.$$

对任意 $x \in V_1 \cap V_2$, 存在 $W_x \in \beta$, 使得 $X \in W_x \subset V_1 \cap V_2$. 于是有

$$V_1 \cap V_2 \subset \bigcup_{x \in V_1 \cap V_2} W_x \subset V_1 \cap V_2,$$

于是

$$V_1 \cap V_2 = \bigcup_{x \in V_1 \cap V_2} W_x \in \mathcal{T}.$$

所以 T 是 X 上的拓扑, 并且由 T 的构造, β 是 T 的拓扑基.