Введение

Представлены задания краткие вспомогательные сведения для выполнения лабораторных работ в рамках курса «Вычислительная математика». Теоретические материалы представлены отдельно в материалах лекций [1] и включают сведения о методах и подходах, применяемых в вычислительной математике: приближение и интерполирование функций, численное дифференцирование, интегрирование, решения СЛАУ и простейших дифференциальных уравнений. Учебное пособие разработано для студентов 3-го курса бакалавриата кафедры РК-6 «Системы автоматизированного проектирования» МГТУ им. Н.Э.Баумана (2018, весна, educmm_lab_CBJ0526).

Инструкция по выполнению [2] лабораторных работ размещена в облачном сервисе кафедры в разделе «70 - Инструкции. Образование».

1 Лабораторные работы

1.1 Лабораторная работа 1

1.1.1 Требования к знаниям для выполнения

Для выполнения лабораторной работы обучающийся должен обладать знаниями:

- владеть навыками разработки программного обеспечения на языке Python (рекомендуется) или C++ на базовом уровне;
- владеть навыками использования программных инструментов: numpy, matplotlib;
- знать понятия: интерполяция, интерполяционный полином Лагранжа, принципы интерполяции кубическими сплайн-функциями;

1.1.6 Интерполяция в условиях измерений с неопределенностью (вариант 5)

Интерполяция, вероятно, является самым простым способом определения недостающих значений некоторой функции при условии, что известны соседние значения. Однако, за кадром зачастую остается вопрос о том, насколько точно мы знаем исходные данные для проведения интерполяции или любой другой аппроксимации. К примеру, исходные данные могут быть получены путем снятия показаний с датчиков, которые всегда обладают определенной погрешностью. В этом случае всегда возникает желание оценить влияние подобных погрешностей и неопределенностей на аппроксимацию. В этом задании на простейшем примере мы познакомимся с интерполяцией в целом (базовая часть) и проанализируем, как неопределенности влияют на ее предсказания (продвинутая часть).

Задача 5 (интерполяция кубическими сплайнами) Требуется (базовая часть):

1. Разработать функцию qubic_spline_coeff(x_nodes, y_nodes), которая посредством решения матричного уравнения вычисляет коэффициенты естественного кубического сплайна. Для простоты,

 $^{^{13} \}Pi$ одсказка: этого легко добиться с помощью перегрузки операторов.

Рис. 1: Поверхность вязкой жидкости (серая кривая), движущейся сквозь некоторую среду (например, пористую). Её значения известны только в нескольких точках (красные узлы).

решение матричного уравнения можно производить с помощью вычисления обратной матрицы с использованием функции $numpy.linalg.inv()^{14,15,16,17}$.

- 2. Написать функции qubic_spline(x, qs_coeff) и d_qubic_spline(x, qs_coeff), которые вычисляют соответственно значение кубического сплайна и его производной в точке x (qs_coeff обозначает матрицу коэффициентов).
- 3. Используя данные в таблице 1, требуется построить аппроксимацию зависимости уровня поверхности жидкости h(x) от коор-

 $^{^{14}}$ Однако, следует помнить, что для реальных приложений это недопустимо.

 $^{^{15}}$ Подсказка: функция должна возвращать $(N-1)\times 3$ -матрицу, где N количество узлов интерполяции.

 $^{^{16}}$ Подсказка: матрицы с несколькими диагоналями удобно создавать с помощью функции numpy.diag(a, v), которая возвращает матрицу с массивом a в качестве v-ой диагонали (главная диагональ имеет индекс v=0). Таким образом, матрицу с любыми диагоналями можно построить через суммирование результатов вызовов функции numpy.diag().

¹⁷Подсказка: конкатенация нескольких матриц (или векторов) производится с помощью функции numpy.c_[a, b, c] (конкатенация вдоль колонок) или функции numpy.r [a, b, c] (конкатенация вдоль строк).

динаты x (см. рисунок 1) с помощью кубического сплайна и продемонстрировать ее на графике вместе с исходными узлами.

Таблица 1: Значения уровня поверхности вязкой жидкости (рис.1).

				J		. T.			r 1	/ I	- /
x_i	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
h_i	3.37	3.95	3.73	3.59	3.15	3.15	3.05	3.86	3.60	3.70	3.02

Требуется (продвинутая часть):

- 1. Разработать функцию $l_i(i, x, x_nodes)$, которая возвращает значение i-го базисного полинома Лагранжа, заданного на узлах c абсиссами x_nodes , e точке e.
- 2. Написать функцию $L(x, x_nodes, y_nodes)$, которая возвращает значение интерполяционного полинома Лагранжа, заданного на узлах с абсииссами x nodes u ординатами y nodes, e точке x.
- 3. Известно, что при измерении координаты x_i всегда возникает погрешность, которая моделируется случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} . Требуется провести следующий анализ¹⁸, позволяющий выявить влияние этой погрешности на интерполяцию:
 - (а) Сгенерировать 1000 векторов значений $[\tilde{x}_1,\ldots,\tilde{x}_{11}]^T$, предполагая, что $\tilde{x}_i=x_i+Z$, где x_i соответствует значению в таблице 1 и Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} .
 - (b) Для каждого из полученных векторов построить интерполянт Лагранжа, предполагая, что в качестве абсцисс узлов используются значения \tilde{x}_i , а ординат h_i из таблицы 1. В результате вы должны иметь 1000 различных интерполянтов.

 $^{^{18}}$ Предложенный подход является типичным примером метода Монте–Карло.

- (c) Предполагая, что все интерполянты представляют собой равновероятные события, построить такие функции $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$, где $\tilde{h}_l(x) < \tilde{h}_u(x)$ для любого $x \in [0;1]$, что вероятность того, что значение интерполянта в точке x будет лежать в интервале $[\tilde{h}_l(x); \tilde{h}_u(x)]$ равна 0.9^{19} .
- (d) Отобразить на едином графике функции $\tilde{h}_l(x), \tilde{h}_u(x), ycped$ ненный интерполянт и узлы из таблицы 1.
- (e) Какие участки интерполянта и почему являются наиболее чувствительными к погрешностям?
- 4. Повторить анализ, описанный в предыдущем пункте, в предположении, что координаты x_i вам известны точно, в то время как измерения уровня поверхности h_i имеют ту же погрешность, что и в предыдущем пункте. Изменились ли выводы вашего анализа?
- 5. Повторить два предыдущие пункта для случая интерполяции кубическим сплайном. Какие выводы вы можете сделать, сравнив результаты анализа для интерполяции Лагранжа и интерполяции кубическим сплайном?
- 6. Опциональное задание. Изложенный выше анализ позволяет строшть доверительные интервалы исключительно для интерполянтов, не оценивая доверительные интервалы с точки зрения предсказаний значений между узлами. Интересным методом интерполяции, позволяющим получить именно такие вероятностные оценки, является регрессия на основе гауссовских процессов, известная также как кригинг. В этом опциональном задании предлагается провести интерполяцию по данным из таблицы 1, используя кригинг²⁰

 $^{^{19} \}mbox{Область между } \tilde{h}_l(x)$ и $\tilde{h}_u(x)$ называется доверительной полосой, по аналогии с доверительным интервалом.

 $^{^{20}}$ Кригинг реализован, например, в python пакете scikit-learn.

2 Вопросы и ответы

Вопрос 1 Какой должен быть размер шрифта текстовых подписей, включенных в состав иллюстрации?

Omeem

Шрифт текста на иллюстрациях должен быть сравним со шрифтом подписи к иллюстрации и может быть немногим меньше шрифта основного текста документа.

Комментарий

Разрешение иллюстраций не должно быть ниже 300dpi, что позволит осуществлять некоторое масштабирование без потери качества текстовых подписей.

Вопрос 2 Могут ли использоваться различные шрифты в одном документе (в части размера, курсива, полужирного, типа)?

Omeem

Hem.

Комментарий

Применение различных шрифтов в одном документе для подготовки основного текста недопустимо и является признаком некомпетентности. Каждый шрифт используется для решения специальный задач: выделение заголовков и подзаголовков (увеличенный, полужирный), написание основного текста (обычный), выделение терминов (курсив), подписи к рисункам, таблицам и листингам (уменьшенный, обычный).

Вопрос 3 Какого размера должна быть одна иллюстрация на страниие?

Omeem

Субъективно с точки зрения автора: для определения размера одной иллюстрации по ширине текста на странице следует использовать правило золотого сечения.

Комментарий

В дополнение следует отметить, что размер иллюстрации должен быть минимально возможным, но достаточным для представления необходимой информации. Не следует оставлять на иллюстрациях лишние поля и непропроционально большие пустые пространства.

Вопрос 4 Каким форматам следует отдавать предпочтение при подготовке иллюстраций?

Omeem

Векторным (например, EPS) и лишь затем растровым (JPG, PNG) с расширением не ниже 300dpi.

Комментарий

Векторные форматы не зависят от размера области представления, позволяют масштабировать изображение с сохранением качества.

Вопрос 5 Насколько допустима вставка чужих иллюстраций в свои документы?

Omeem

Крайне нежелательна.

Комментарий

Если осуществляется вставка чужих иллюстраций, то это следует делать с обязательной ссылкой на первоисточник. В противном случае такое заимствование может расцениваться как максимум как плагиат, и как минимум – некомпетентность. Если же иллюстрация растровая и является простой схемой или качественным графиком функции, то такую иллюстрацию лучше подготовить заново.

Список литературы

- [1] Першин, А.Ю. Лекции по вычислительной математике. Першин А.Ю., Москва, 2018.
- [2] Соколов, А.П., Першин, А.Ю. Инструкция по выполнению лабораторной работы (общая). Соколов, А.П., Першин, А.Ю., Москва, 2018.