Advanced Topics in Algebra

Summer 2019

Scribe: Olaf Kowalski

Lecture 3 - 13.03, 2019

dr Krzysztof Majcher

1 Overview

In the last lecture we talked about matrices nad linear functions).

In this lecture we covered:

- kernel and image of function,
- injection (as a type of function),
- matrix of a function,
- rank of matrix.

2 Reminder

Definition 2.1. Linear map

Let V, W - lin. spaces/K. A function $f: V \to W$ is a **linear map**, if:

- 1. $\forall v_1, v_2 \in V : f(v_1 + v_2) = f(v_1) + f(v_2)$
- 2. $\forall k \in K, \forall v \in V : f(k * v) = k * f(v)$

Example 1 $f(x,y,z) = (2x+3y+5z, x-y-7z): \mathbb{R}^3 \to \mathbb{R}^2$

3 Kernel and image

Definition 3.1. Kernel and Image

Let $f: V \to W$ a lin. map.

- 1. A **kernel** of f is $ker(f) = \{v \in V : f(v) = 0\}$
- 2. An **image** of f is $im(f) = \{w \in W : (\exists v \in V : f(v) = w)\}$

Example 2
$$f(x,y,x) = (x,y,0) : \mathbb{R}^3 \to \mathbb{R}^3$$

 $ker(f) = \{v \in V : f(v) = \mathbb{O}\} = \{(x,y,z) \in \mathbb{R}^3 : (x,y,0) = (0,0,0)\} = \{(x,y,z) : x = y = 0\} \ "OZ"$
 $im(f) = \{w \in W : \exists v \in V f(v) = w\}$
 $= \{(x,y,z) \in \mathbb{R}^3 : \exists (a,b,c) \in \mathbb{R}^3 : f(a,b,c) = (x,y,z)\}$
 $= \{(x,y,z) \in \mathbb{R}^3 : \exists (a,b,c) \in \mathbb{R}^3 : (a,b,0) = (x,y,z)\}$
 $= \{(x,y,z) \in \mathbb{R}^3 : z = 0\} - \text{"plane OXY"}$

4 Injection

Definition 4.1. Injection

A function $f: A \to B$ is **injection**, if:

$$\forall a_1, a_2 \in A : f(a_1) = f(a_2) \implies a_1 = a_2$$

Fact 1. A linear map $f: V \to W$ is an injection $\iff ker(f) = \{0\}$

Proof. $\bullet \longrightarrow$

Supposee that f is an injection.

We know: $f(\mathbb{O}_V) = \mathbb{O}_w$

Let $v \in ker(f)$, $f(v) = \mathbb{O}_w$

//note here

• \leftarrow (by contradiction)

f is not an injection:

$$\exists v_1 \neq v_2 \in V : f(v_1) = f(v_2)$$

$$\exists v_1, v_2 \in V : f(v_1) - f(v_2) = \mathbb{O}_w$$

(by linearity) $f(v_1 - v_2) = \mathbb{O}_w$

$$v_1 - v_2 \neq \mathbb{O}_w$$

$$v_1 - v_2 \in ker(f)$$

$$ker(f) \neq \{\mathbb{O}_v\}$$

Fact 2. Let $f: V \to W$ a lin. map.

- 1. $ker(f) \leq V$ (ker(f) is a subspace of V)
- 2. $im(f) \leq W$
- 3. dim(V) = dim(ker(f)) + dim(im(f))

Proof. We have to show:

• $v_1, v_2 \in ker(f)$: $v_1 + v_2 \in ker(f)$:

$$\begin{array}{c} v_1 \in ker(f) \Leftrightarrow f(v_1) = \mathbb{O} \\ v_2 \in ker(f) \Leftrightarrow f(v_2) = \mathbb{O} \end{array} \right\} \quad \Rightarrow \quad \begin{array}{c} f(v_1 + v_2) \stackrel{\text{lin.}}{=} f(v_1) + f(v_2) = \mathbb{O} + \mathbb{O} = \mathbb{O} \\ f(v_1 + v_2) = \mathbb{O} \Leftrightarrow v_1 + v_2 \in ker(f) \end{array}$$

• $k \in K, v \in ker(f)$: $k * v \in ker(f)$:

$$k \in K, v \in ker(f)$$

$$v \in ker(f) \leftrightarrow f(v) = 0$$

$$f(k * v) \stackrel{\text{lin.}}{=} k * f(v) = k * \mathbb{O} = \mathbb{O}$$

$$f(k*v) \Leftrightarrow k*v \in ker(f)$$

Example 3 $dim(A) = dim(\{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0, x + 2y + 3z + 4t = 0\})$

Consider a function f(x,y,z,t) = (x+y+z+t,x+2y+3z+4t) - this is a lin map $f: \mathbb{R}^4 \Rightarrow \mathbb{R}^2$.

$$ker(f) = A$$

$$im(f) = \mathbb{R}^2$$

$$\forall a, b \in \mathbb{R} = \begin{cases} x + y + z + t = a \\ x + 2y + 3z + 4t = b \end{cases}$$

$$f(x, y, z, t) = (a, b)$$

$$dim(A)=dim(ker(f))=dim(V)-dim(im(f))=dim(\mathbb{R}^4)-dim(\mathbb{R}^2)=4-2=2$$

5 Matrix of a function

Let:

- V, W lin spaces over K
- \bullet B, A a basis of V, W
- $f: V \to W$

(for $v \in V$, $v_B = (k_1, k_2, ..., k_n)$ where $v = k_1b_1 + k_2b_2 + ... + k_nb_n$; $b_i \in B$)

Definition 5.1. Matrix of function

A matrix of function f with respect basis B, A is such matrix M:

$$\forall v \in V : (f(v))_A = M * v_b$$

Figure 1: Definition 5.1 visualization

Example 4

$$V = W = \mathbb{R}^2, f(x, y) = (2x + 3y, 5x + 7y)$$
$$B = A = \{(1, 0), (0, 1)\}$$

$$M = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$
 is a matrix of f in B, A

$$v \in V, (x, y) \in \mathbb{R}^2$$

$$(f(v))_B = (f(x,y))_B = (2x+3y,5x+7y)_B = (2x+3y,5x+7y)(*)$$

since

$$(2x + 3y) * (1,0) + (5x + 7y) * (0,1)$$

$$v = (x, y), v_B = (x, y) : (x, y) = x(1, 0) + y(0, 1)$$
$$M * V_B = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} * \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 2x + 3y \\ 5x + 7y \end{bmatrix} (= (*))$$

Example 5

$$f(x, y, z) = (3x + 5y + 7z, 11x + 13z)$$

In standard basis $\{(1,0,0),(0,1,0),(0,0,1)\} \subseteq \mathbb{R}^3, \{(10),(0,1)\} \subseteq \mathbb{R}^2$

$$M = \begin{bmatrix} 3 & 5 & 7 \\ 11 & 0 & 13 \end{bmatrix}$$

Example 6

$$V = W = \mathbb{R}^2[x] = \{ f \in \mathbb{R}[x] : deg(f) \le 2 \}$$

 $A = B = \{1, x, x^2\}$ base of $\mathbb{R}_2[x]$

$$L(f) = f'$$

$$M : (L(f))_A = M * f_B$$

$$f = ax^2 + bx + c, L(f) = f' = 0x^2 + 2ax + b$$

$$f_B = (c, b, a), (L(F))_A = (b, 2a, 0)$$

$$M : M * f_B = (L(f))_A$$

$$M * \begin{pmatrix} c \\ b \\ a \end{pmatrix} = \begin{pmatrix} b \\ 2a \\ 0 \end{pmatrix} = \begin{pmatrix} 0c + 1b + 0a \\ 0c + 0b + 2a \\ 0c + 0b + 0a \end{pmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} c \\ b \\ a \end{pmatrix}$$

$$M = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

6 Rank of matrix

Definition 6.1. Rank of matrix

A rank of matrix $A \in K^{n \times m}$: rk(A) is a maximal number of lineary independent rows (columns) of A.

Example 7

$$rk \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 7 & 9 \end{bmatrix} = 2$$

$$rk \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} = 1$$

Fact 3. Let $A \in K^{n \times m}$ a matrix, $R = \{\overline{r_1}, \overline{r_2}, \dots, \overline{r_n}\}, \overline{r_i} - i = th \text{ row of } A.$

Then rk(A) = dim(Span(R))

Fact 4. Let $f: V \to W$ linear map, M a matrix of f in basis A, B. Then

$$dim(im(f)) = rk(M)$$