EMSE 6035: Marketing Analytics for Design Decisions

Uncertainty

John Paul Helveston, Ph.D.

Assistant Professor

Engineering Management & Systems Engineering

The George Washington University

Background: Estimating Utility Model Coefficients Using Maximum Likelihood Estimation

$$\tilde{u}_{j} = \boldsymbol{\beta}' \mathbf{x}_{j} + \tilde{\varepsilon}_{j}$$

$$= \beta_{1} x_{j1} + \beta_{2} x_{j2} + \dots + \tilde{\varepsilon}_{j}$$

Weights that denote the *relative* value of attributes

$$x_{j1}, x_{j2}, \dots$$

Estimate β_1 , β_2 , ..., by minimizing the negative log-likelihood function:

minimize
$$-\ln(\mathcal{L}) = -\sum_{j=1}^{J} y_j \ln[P_j(\boldsymbol{\beta}|\mathbf{x})]$$

with respect to β

 $y_j = 1$ if alternative j was chosen $y_j = 0$ if alternative j was not chosen

 \rightarrow Produces point estimates: $\widehat{\beta}$...but these estimates are not precisely known

The certainty of $\widehat{\beta}$ is inversely related to the curvature of the log-likelihood function

Greater variance in $ln(\mathcal{L})$, Less certainty in $\hat{\beta}$

Less variance in $ln(\mathcal{L})$, Greater certainty in $\hat{\beta}$

The certainty of $\widehat{\beta}$ is inversely related to the curvature of the log-likelihood function

It is common to report $\widehat{\beta}$ with its standard errors:

Covariance of $\widehat{\boldsymbol{\beta}}$

Est.	Std. Err.	
\hat{eta}_1	σ_1	
\hat{eta}_2	σ_2	
:	:	
\hat{eta}_m	σ_m	

We use standard errors to report uncertainty about $\widehat{oldsymbol{eta}}$

Est.	Std. Err.	
\hat{eta}_1	σ_1	
\hat{eta}_2	σ_2	
•	•	
\hat{eta}_m	σ_m	

A 95% confidence interval is approximately $[\hat{\beta} - 2\sigma, \hat{\beta} + 2\sigma]$

Practice Question 1

Suppose we estimate a model and get the following results:

$$\widehat{\beta} = [-0.4, 0.5]$$
 $\nabla_{\beta}^2 \ln(\mathcal{L}) = \begin{bmatrix} -6000 & 60 \\ 60 & -700 \end{bmatrix}$

- a) Use the hessian to compute the standard errors for $\widehat{\beta}$.
- b) Use the standard errors to compute a 95% confidence interval around $\widehat{\beta}$.

Hints:

- 1. The covariance matrix is computed as $-\left[\nabla_{\beta}^{2}\ln(\mathcal{L})\right]^{-1}$
- 2. Use the matrix() function to construct a matrix in R.
- 3. Use the solve() function to compute the inverse of a matrix in R.
- 4. Use the diag() function to get the numbers along the diagonal of a matrix in R.

Computing uncertainty via simulation

Use \hat{eta} and σ to generate samples of $N(\hat{eta},\sigma)$

Take sample draws of $\hat{\beta}$ to simulate uncertainty

Example in *R*:

```
> beta = 0.5
> sigma = 0.1
> draws = rnorm(10^5, beta, sigma)
> mean(draws)
Γ1 0.4996797
> sd(draws)
[1] 0.1001574
> c(beta - 2*sigma, beta + 2*sigma)
Γ17 0.3 0.7
> quantile(draws, c(0.025, 0.975))
     2.5% 97.5%
0.3044208 0.6964306
```

Sampling $\widehat{\boldsymbol{\beta}}$

Example in *R*:

```
> library(MASS)
> beta = c(price = -0.7, mpg = 0.1, elec=-4.0)
> hessian = matrix(c(
      -6000, 50,
                     60,
         50, -700,
         60, 50, -300),
      ncol=3, byrow=T)
> covariance = -1*(solve(hessian))
> draws = mvrnorm(10^5, beta, covariance)
> head(draws)
          price
                                elec
                       mpg
     -0.7184210 0.18428285 -3.951629
     -0.6999711 0.16873388 -3.918036
     -0.7192076 0.11657494 -3.971442
     -0.6851790 0.10707172 -4.039762
     -0.7048889 0.14175661 -4.050028
     -0.6917784 0.09615243 -4.083626
```

Practice Question 2

Suppose we estimate the following utility model describing preferences for cars:

$$\tilde{u}_j = \alpha p_j + \beta_1 x_j^{\text{mpg}} + \beta_2 x_j^{\text{elec}} + \varepsilon_j$$

The estimated model produces the following coefficients:

Parameter	Coef.
α	-0.7
eta_1	0.1
eta_2	-4.0

Hessian			
-6000	50	60	
50	-700	50	
60	50	-300	

- a) Generate 10,000 draws of the model coefficients using the estimated coefficients and hessian. Use the mvrnorm() function from the MASS library.
- b) Use the draws to compute the mean and 95% confidence intervals of the parameter estimates.