TABLE OF CONTENTS

Basic Trig Functions

$$\begin{split} \sin(\theta) &= \frac{opp}{hyp} & & \csc(\theta) &= \frac{1}{\sin(\theta)} \\ \cos(\theta) &= \frac{adj}{hyp} & & \sec(\theta) &= \frac{1}{\cos(\theta)} \\ \tan(\theta) &= \frac{opp}{adj} & & \cot(\theta) &= \frac{1}{\tan(\theta)} \end{split}$$

COMMONLY USED FACTS

- ► Graphs of sine, cosine, tangent
- ► Sine, cosine, and tangent of reference angles: 0, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$
- ► How to use reference angles to find sine, cosine and tangent of other angles
- ► Identities: $\sin^2 x + \cos^2 x = 1$; $\tan^2 x + 1 \sec^2 x$; $\sin^2 x = \frac{1 \cos(2x)}{2}$; $\cos^2 x = \frac{1 + \cos 2x}{2}$
- ► Conversion between radians and degrees

CLP-1 has an appendix on high school trigonometry that you should be familiar with.

REFERENCE ANGLES

DERIVATIVE OF SINE

Consider the derivative of $f(x) = \sin(x)$.

$$\frac{d}{dx}\{\sin x\} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$=\lim_{h\to 0}\frac{\sin(x)\cos(h)+\cos(x)\sin(h)-\sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1)}{h} + \lim_{h \to 0} \frac{\cos(x)\sin(h)}{h}$$

$$= \sin(x) \lim_{h \to 0} \frac{\cos(0+h) - \cos(0)}{h} + \cos(x) \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \sin(x) \frac{d}{dx} \{\cos(x)\} \Big|_{x=0} + \cos(x) \lim_{h \to 0} \frac{\sin(h)}{h} =$$

$$\cos(x)\lim_{h\to 0}\frac{\sin(h)}{h}$$

since cos(x) has a horizontal tangent, and hence has derivative zero, at x = 0.

DERIVATIVES OF SINE AND COSINE

¿From before,

$$\frac{d}{dx}\{\sin(x)\} = \cos(x) \cdot \lim_{h \to 0} \frac{\sin(h)}{h} = \cos(x)$$

DERIVATIVE OF COSINE

Now for the derivative of \cos . We already know the derivative of \sin , and it is easy to convert between \sin and \cos using trig identities.

$$\sin x = \frac{b}{c} = \cos\left(\frac{\pi}{2} - x\right)$$
$$\cos x = \frac{a}{c} = \sin\left(\frac{\pi}{2} - x\right)$$

When we use radians:

Derivatives of Trig Functions

$$\frac{d}{dx}\{\sin(x)\} = \cos(x)$$

$$\frac{d}{dx}\{\cos(x)\} = -\sin(x)$$

$$\frac{d}{dx}\{\cos(x)\} = \frac{d}{dx}\{\csc(x)\} = \frac{d}{dx}\{\cot(x)\} = \frac{d}{dx}\{\cot(x)\} = \frac{d}{dx}(\cot(x)) = \frac{d}{d$$

Honorable Mention

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

 $y = \sin x$, radians

 $y = \sin x$, degrees

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\sec(x) = \frac{1}{\cos(x)}$$

$$\frac{d}{dx}[\sec(x)] = \frac{d}{dx} \left[\frac{1}{\cos(x)} \right]$$

$$= \frac{\cos(x)(0) - (1)(-\sin(x))}{\cos^2(x)}$$

$$= \frac{\sin(x)}{\cos^2(x)}$$

$$= \frac{1}{\cos(x)} \frac{\sin(x)}{\cos(x)}$$

$$= \sec(x) \tan(x)$$

$$\csc(x) = \frac{1}{\sin(x)}$$

$$\frac{d}{dx}[\csc(x)] = \frac{d}{dx} \left[\frac{1}{\sin(x)} \right]$$

$$= \frac{\sin(x)(0) - (1)\cos(x)}{\sin^2(x)}$$

$$= \frac{-\cos(x)}{\sin^2(x)}$$

$$= \frac{-1}{\sin(x)} \frac{\cos(x)}{\sin(x)}$$

$$= -\csc(x) \cot(x)$$

$$\cot(x) = \frac{\cos(x)}{\sin(x)}$$

$$\frac{d}{dx}[\cot(x)] = \frac{d}{dx} \left[\frac{\cos(x)}{\sin(x)} \right]$$

$$= \frac{\sin(x)(-\sin(x)) - \cos(x)\cos(x)}{\sin^2(x)}$$

$$= \frac{-1}{\sin^2(x)}$$

$$= -\csc^2(x)$$

MEMORIZE

$$\frac{d}{dx}\{\sin(x)\} = \cos(x) \qquad \qquad \frac{d}{dx}\{\sec(x)\} = \sec(x)\tan(x)$$

$$\frac{d}{dx}\{\cos(x)\} = -\sin(x) \qquad \qquad \frac{d}{dx}\{\csc(x)\} = -\csc(x)\cot(x)$$

$$\frac{d}{dx}\{\tan(x)\} = \sec^2(x) \qquad \qquad \frac{d}{dx}\{\cot(x)\} = -\csc^2(x)$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Let
$$f(x) = \frac{x \tan(x^2 + 7)}{15e^x}$$
. Use the definition of the derivative to find $f'(0)$.

Differentiate $(e^x + \cot x) (5x^6 - \csc x)$.

$$\text{Let } h(x) = \left\{ \begin{array}{ll} \frac{\sin x}{x} &, & x < 0 \\ \frac{ax+b}{\cos x} &, & x \geq 0 \end{array} \right.$$
 Which values of a and b make $h(x)$ continuous at $x = 0$?

Practice and Review

$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right) &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$$

Is f(x) differentiable at x = 0?

$$g(x) = \begin{cases} e^{\frac{\sin x}{x}}, & x < 0\\ (x - a)^2, & x \ge 0 \end{cases}$$

What value(s) of *a* makes g(x) continuous at x = 0?

A ladder 3 meters long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall, measured in radians, and let y be the height of the top of the ladder. If the ladder slides away from the wall, how fast does y change with respect to θ ? When is the top of the ladder sinking the fastest? The slowest?

Suppose a point in the plane that is r centimetres from the origin, at an angle of θ ($0 \le \theta \le \frac{\pi}{2}$), is rotated $\pi/2$ radians. What is its new coordinate (x, y)? If the point rotates at a constant rate of a radians per second, when is the x coordinate changing fastest and slowest with respect to θ ?

TABLE OF CONTENTS

INTUITION: $\sin x$ VERSUS $\sin(2x)$

COMPOUND FUNCTIONS

Video: 2:27-3:50

Morton, Jennifer. (2014). Balancing Act: Otters, Urchins and Kelp. Available from https://www.kqed.org/quest/67124/balancing-act-otters-urchins-and-kelp

KELP POPULATION

```
\begin{array}{ccc} & k & \text{kelp population} \\ & u & \text{urchin population} \\ & o & \text{otter population} \\ & p & \text{public policy} \\ & k(u) & k(u(o)) & k(u(o(p))) \end{array}
```

These are examples of compound functions.

Should $\frac{\mathrm{d}}{\mathrm{d}o}k\big(u(o)\big)$ be positive or negative? A. positive B. negative C. I'm not sure

Should k'(u) be positive or negative? A. positive B. negative C. I'm not sure

DIFFERENTIATING COMPOUND FUNCTIONS

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} \{ f(g(x)) \} &= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h} \\ &= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h} \left(\frac{g(x+h) - g(x)}{g(x+h) - g(x)} \right) \\ &= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \cdot \frac{g(x+h) - g(x)}{h} \\ &= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \\ &= \lim_{h \to 0} \frac{f\left(g(x+h) \right) - f\left(g(x) \right)}{g(x+h) - g(x)} \cdot g'(x) \end{split}$$

Set H = g(x + h) - g(x). As $h \to 0$, we also have $H \to 0$. So

$$= \lim_{H \to 0} \frac{f(g(x) + H) - f(g(x))}{H} \cdot g'(x)$$

= $f'(g(x)) \cdot g'(x)$

CHAIN RULE

Chain Rule – Theorem 2.9.3

Suppose f and g are differentiable functions. Then

$$\frac{\mathrm{d}}{\mathrm{d}x} \{ f(g(x)) \} = f'(g(x)) g'(x) = \frac{\mathrm{d}f}{\mathrm{d}g} (g(x)) \frac{\mathrm{d}g}{\mathrm{d}x} (x)$$

In the case of kelp,
$$\frac{d}{do}k(u(o)) = \frac{dk}{du}(u(o))\frac{du}{do}(o)$$

Chain Rule

Suppose f and g are differentiable functions. Then

$$\frac{\mathrm{d}}{\mathrm{d}x} \{ f(g(x)) \} = f'(g(x)) g'(x) = \frac{\mathrm{d}f}{\mathrm{d}g} (g(x)) \frac{\mathrm{d}g}{\mathrm{d}x} (x)$$

Example: suppose $F(x) = \sin(e^x + x^2)$.

$$F(v) = \left(\frac{v}{v^3 + 1}\right)^6$$

Let $f(x) = (10^x + \csc x)^{1/2}$. Find f'(x).

Suppose
$$o(t) = e^t$$
, $u(o) = \frac{1}{o + \sin(o)}$, and $t \ge 10$ (so all

these functions are defined). Using the chain rule, find $\frac{\mathrm{d}}{\mathrm{d}t}u\big(o(t)\big)$. *Note:* your answer should depend only on t: not o.

Evaluate
$$\frac{d}{dx} \left\{ x^2 + \sec\left(x^2 + \frac{1}{x}\right) \right\}$$

Evaluate
$$\frac{d}{dx} \left\{ \frac{1}{x + \frac{1}{x + \frac{1}{x}}} \right\}$$

Included Work

'Brain' by Eucalyp is licensed under CC BY 3.0 (accessed 8 June 2021), 32, 33