

planetmath.org

Math for the people, by the people.

decomposition of a module using orthogonal idempotents

 ${\bf Canonical\ name} \quad {\bf Decomposition Of A Module Using Orthogonal Idempotents}$

Date of creation 2013-03-22 15:12:22 Last modified on 2013-03-22 15:12:22

Owner alozano (2414) Last modified by alozano (2414)

Numerical id 9

Author alozano (2414)
Entry type Application
Classification msc 13C05
Classification msc 16S34

Let K be a field and let G be a finite abelian group. For simplicity, we will assume that the characteristic of K does not divide the order of G. Let $\varphi_1, \ldots, \varphi_n$ be a complete set (up to equivalence) of distinct http://planetmath.org/GroupRepresentationirreducible (linear) representations of G over K, so that φ_i is a homomorphism:

$$\varphi_i \colon G \longrightarrow \mathrm{GL}(n_i, K)$$

where n_i is the degree of the representation φ_i and $\sum_i n_i = |G|$. Let χ_1, \ldots, χ_n be the irreducible characters attached to the φ_i , i.e. the function $\chi_i \colon G \to K$ is defined by

$$\chi_i(g) = \operatorname{Trace}(\varphi_i(g)).$$

Notice, however, that in general the map χ_i is not a homomorphism from the group into either the additive or multiplicative group of K. We define a system of primitive orthogonal idempotents of the group ring K[G], one for each χ_i , by:

$$\mathbf{1}_{\chi_i} = \frac{1}{|G|} \sum_{g \in G} \chi_i(g^{-1})g \in K[G]$$

so that $\sum_{i} \mathbf{1}_{\chi_{i}} = 1 \in K$ and $\mathbf{1}_{\chi_{i}} \cdot \mathbf{1}_{\chi_{j}} = \delta_{ij}$ where δ_{ij} is the Kronecker delta function. We define the χ_{i} component of K[G] to be the ideal $K[G]_{\chi_{i}} = \mathbf{1}_{\chi_{i}} \cdot K[G]$. Notice that $V_{i} = K[G]_{\chi_{i}}$ is a finite dimensional K-vector space, on which G acts. Thus, the representation of G afforded by the K[G]-module V_{i} , call it φ , must be one of the representations φ_{j} defined above. Comparing the trace, one concludes that $\varphi = \varphi_{i}$ and $V_{i} = K[G]_{\chi_{i}}$ is a vector space of dimension n_{i} . In particular, there is a decomposition:

$$K[G] = \bigoplus_{\chi} K[G]_{\chi}.$$

If $k \in K[G]$ then by the previous decomposition, we can write:

$$k = \sum_{\chi} k_{\chi}$$

where $k_{\chi} \in K[G]_{\chi}$. Notice that the representations φ_i can be retrieved as:

$$\varphi_i \colon G \longrightarrow \mathrm{GL}(\mathrm{K}[\mathrm{G}]_{\chi_i}).$$

Lemma. Let M be a K[G]-module and define submodules $M_{\chi} = \mathbf{1}_{\chi} \cdot M$, for each irreducible character χ . Then:

- 1. There is a decomposition $M = \bigoplus_{\chi} M_{\chi}$.
- 2. The group K[G] acts on M_{χ} via $K[G]_{\chi}$. In other words, if $k \in K[G]$, with $k = \sum_{\chi} k_{\chi}$ then:

$$k \cdot m = k_{\chi} \cdot m$$
, for all $m \in M_{\chi}$.

3. The representation φ of G afforded by the K-vector space M_{χ_i} is, up to equivalence, a number of copies of φ_i , i.e.

$$\varphi = \varphi_i \oplus \ldots \oplus \varphi_i = \varphi_i^{\oplus r}$$

for some integer $r \geq 0$. In other words, M_{χ_i} is the submodule consisting of the sum of all K[G]-submodules of M isomorphic to $K[G]_{\chi_i}$.

4. Suppose that M, N and R are K[G]-modules which fit in the short exact sequence:

$$0 \longrightarrow R \longrightarrow M \longrightarrow N \longrightarrow 0$$

where every map above is a K[G]-module homomorphism, i.e. each map is a K-homomorphism which is compatible with the action of G. Then, the exact sequence above yields an exact sequence of χ components:

$$0 \longrightarrow R_\chi \longrightarrow M_\chi \longrightarrow N_\chi \longrightarrow 0$$

for every irreducible character χ .