Student Name: _	
Student ID:	

EE2000 Logic Circuit Design

Mid-Term Test 1 (Semester A 2024/25)

Instructions:

- 1. You are responsible for receiving the exam paper, hand-writing your name and SID and returning it to the examiner in the hall.
- 2. Total time: 60 min
- 3. This paper consists of **5** questions. Answer <u>ALL</u> questions in the space given after each question.
- 4. Please show all steps or else marks will be deducted.
- 5. **Remain seated** until the examiner allows you to leave at the end of the test. You are not allowed to leave the hall earlier.

This is a **closed-book** examination.

No materials or aids are allowed during the whole examination. If any unauthorized materials or aids are found on a student during the examination, the student will be subject to disciplinary action.

Summary of Properties of Boolean Algebra

Commutative	a + b = b + a	ab = ba			
Associative	a + (b+c) = (a+b) + c	a(bc) = (ab)c			
Identity	a + 0 = a	a(1) = a			
Null	a + 1 = 1	a(0) = 0			
Complement	a + a' = 1	a(a')=0			
Idempotency	a + a = a	a(a) = a			
Involution	(a')' = a				
Distributive	a(b+c) = ab + ac	a + bc = (a+b)(a+c)			
Adjacency	ab + ab' = a	(a+b)(a+b')=a			
Simplification	a + a'b = a + b	a(a'+b)=ab			
DeMorgan	(a+b)'=a'b'	(ab)' = a' + b'			
Absorption	a + ab = a	a(a+b)=a			
Consensus	ab + a'c + bc = ab + a'c				

Decimal Numbers	8421	2421	Excess-3	Gray Code	
0	0000	0000	0011	0000	
1	0001	0001	0100	0001	
2	0010	0010	0101	0011	
3	0011	0011	0110	0010	
4	0100	0100	0111	0110	
5	0101	1011	1000	0111	
6	0110	1100	1001	0101	
7	0111	1101	1010	0100	
8	1000	1110	1011	1100	
9	1001	1111	1100	1101	

Simplify the Boolean function of the given logic circuit using Boolean algebra in minimum SOP expression. Please write each step clearly.

```
f(a,b,c) = (b'+ac)'(a'b'+c)(a+b)
= b(ac)'(a'b'+c)(a+b)
= b(a'+c')(a'b'+c)(a+b)
= b(a'+c')(a'b'+c)
= b(a'b'+a'c+a'b'c')
= a'bc
(5 marks)
```

QUESTION 2

Write the architecture declaration (architecture name "Behavior") of the following VHDL code to implement the output function f(a, b, c) = ac + b'd using a minimum number of NAND OPERATOR only and using intermediate signals (s1, s2, etc.) for the output of each NAND OPERATOR.

```
architecture Behavior of logic_c is
signal s1, s2, s3 : std_logic;
begin
s1 <= a NAND c;
s2 <= b NAND b;
s3 <= s2 NAND d;
f <= s1 NAND s3;
end Behavior;
```

Student A wants to design a combinational circuit for a 4-bit Gray code (ABCD) to Excess-3 (WXYZ) converter. Draw the truth table and simplify the Boolean functions of outputs X and Y using K-map and express them in minimum SOP expressions.

(13 marks)

Decimal	Input (Gray code)		Minterm	Out	tput (Exc	ess-3 co	de)		
digit	A	В	С	D	winterm	W	X	Y	Z
0	0	0	0	0	m _o	0	0	1	1
1	0	0	0	1	m ₁	0	1	0	0
2	0	0	1	1	m ₃	0	1	0	1
3	0	0	1	0	m ₂	0	1	1	0
4	0	1	1	0	m ₆	0	1	1	1
5	0	1	1	1	m ₇	1	0	0	0
6	0	1	0	1	m ₅	1	0	0	1
7	0	1	0	0	m ₄	1	0	1	0
8	1	1	0	0	m ₁₂	1	0	1	1
9	1	1	0	1	m ₁₃	1	1	0	0
Unused	Х	Х	Х	Х	m ₈	Х	Х	Х	Х
Unused	Х	Х	Х	Х	m ₉	Х	Х	Х	Х
Unused	Х	Х	Х	Х	m ₁₀	Х	Х	Х	Х
Unused	Х	Х	Х	Х	m ₁₁	Х	Х	х	Х
Unused	Х	Х	Х	Х	m ₁₄	Х	Х	Х	Х
Unused	Х	Х	Х	Х	m ₁₅	Х	Х	Х	Х

$$X(A,B,C,D) = AD + B'D + CD'$$

$$Y(A, B, C, D) = D'$$

Given the following combinational circuit, work out the timing diagram to identify the presence of any timing hazard when the input condition changes from (w, x, y, z) = (1, 0, 0, 1) to (0, 0, 0, 1). Assume that the propagation delay for NOT gate is $\Delta \tau$, and other gates is $2\Delta \tau$.

Static-1 hazard

Consider even parity, if a Hamming code of 110100110 is received, determine whether single error bit is present, work out the correct Hamming code, if any, and the original data code.

(7 marks)

$$c_1 = (H9, H7, H5, H3, H1) = (1, 0, 0, 1, 0) = 0$$

 $c_2 = (H7, H6, H3, H2) = (0, 1, 1, 1) = 1$
 $c_3 = (H7, H6, H5, H4) = (0, 1, 0, 0) = 1$
 $c_4 = (H9, H8) = (1, 1) = 0$
 $c_4c_3c_2c_1 = (0110)_2 = 6$ (error bit)

Correct data code: 110000110 Original data code: 10001