Università di Trieste

Laurea in ingegneria elettronica e informatica

Enrico Piccin - Corso di Ricerca Operativa - Prof. Lorenzo Castelli Anno Accademico 2022/2023 - 3 Ottobre 2022

Indice

1	Introduzione	2
	1.1 Definizione di Ricerca Operativa	2
2	Problema di ottimizzazione	3
	2.1 Soluzione ottimale	3
	2.1.1 Classificazione dei problemi di ottimizzazione	3
3	Convessità	6
	3.1 Insieme convesso	7
	3.1.1 Punto estremo di un insieme convesso	7
	3.1.2 Massimo e minimo	7
4	Esempi di modelli	9
	4.1 La composizione ideale	9
	4.2 I treni combinati	10
	4.3 La raffineria	
	4.4 La turnazione degli infermieri	
	4.5 La campagna pubblicitaria	
	4.6 Radioterapia	
5	Programmazione Lineare	14

3 Ottobre 2022

1 Introduzione

Il termine "RICERCA OPERATIVA" sembra sia stato usato per la prima volta nel 1939, ma già precedentemente alcuni scienziati si erano occupati di problemi decisionali.

Fra gli esempi isolati, ma importanti, di anticipazione dei metodi della ricerca operativa, possono essere considerati i seguenti:

- Nel 1776, il matematico G. MONGE ha affrontato un problema di trasporti esaminandone con metodi analitici gli aspetti economici.
- Nel 1885, F. W. TAYLOR ha pubblicato uno studio sui metodi di produzione
- Nel 1908 A. K. ERLANG ha studiato il problema della congestione del traffico telefonico.

Tuttavia il progresso della ricerca operativa non si sarebbe forse verificato se non fosse stato per i suoi sviluppi nelle organizzazioni militari durante la seconda guerra mondiale.

Durante la II Guerra Mondiale, infatti, i responsabili militari inglesi si rivolsero agli scienziati per chiedere il loro aiuto, quando iniziò l'attacco aereo tedesco sulla Gran Bretagna. Piccoli gruppi di scienziati, provenienti da diverse discipline, lavorarono su questi problemi con notevole successo nel periodo 1939-1940 (OR team).

Tali gruppi di scienziati avevano come riferimenti i responsabili delle operazioni militari e quindi il loro lavoro divenne noto come operational research = ricerca delle operazioni (militari).

Dopo la guerra, questi operatori vennero, poco a poco, assorbiti dall'industria, dalle aziende di consulenza, da università e da organizzazioni statali. Oggi la maggior parte delle grandi imprese si serve della ricerca operativa.

1.1 Definizione di Ricerca Operativa

Di seguito si espone la definizione formale di ricerca operativa:

RICERCA OPERATIVA

La ricerca operativa è l'applicazione del metodo scientifico da parte di gruppi interdisciplinari a sistemi complessi e organizzati per fornire al personale dirigente soluzioni utilizzabili nei processi decisionali (Morse e Kimball).

Più specificatamente, la ricerca operativa è la branca della matematica applicata in cui problemi decisionali complessi vengono analizzati e risolti mediante modelli matematici e metodi quantitativi avanzati (ottimizzazione, simulazione, ecc.) come supporto alle decisioni stesse.

Osservazione: Com'è intuibile, all'interno della Ricerca Operativa, un ruolo di fondamentale importanza è svolto dalla Programmazione Matematica, che è la disciplina che ha per oggetto lo studio dei problemi in cui si vuole minimizzare o massimizzare una funzione reale definita su \mathbb{R}^n (lo spazio delle n-uple reali) le cui variabili sono vincolate ad appartenere ad una insieme prefissato.

Si tratta, quindi, di problemi di **ottimizzazione**, cioè problemi nei quali si desidera **minimizzare** o **massimizzare** una quantità che è espressa attraverso una funzione.

6 Ottobre 2022

2 Problema di ottimizzazione

Di seguito si espone la definizione di **problema di ottimizzazione**:

PROBLEMA DI OTTIMIZZAZIONE

Un problema di ottimizzazione viene definito specificando:

- Un insieme E, i cui elementi si chiamano **soluzioni** (o decisioni o alternative);
- Un sottoinsieme $F \subset E$ (definito **insieme ammissibile**). I suoi elementi si chiamano **soluzioni ammissibili**. Il suo complementare, E F si chiama **insieme inammissibile**: la relazione $x \in F$ prende il nome di **vincolo**;
- Una funzione

$$f: E \longmapsto \mathbb{R}$$

chiamata **funzione obiettivo**, che deve essere **minimizzata** o **massimizzata** a seconda dello scopo del problema.

2.1 Soluzione ottimale

Di seguito si espone la definizione di soluzione ottimale:

SOLUZIONE OTTIMALE

Ogni elementi $x^* \in F$ tale che

$$f(x^*) \le f(y), \forall y \in F$$

per un **problema di minimizzazione**, oppure $x^* \in F$ tale che

$$f(x^*) \ge f(y), \forall y \in F$$

per un **problema di massimizzazione**, prende iul nome di **optimum**, o **soluzione ottimale**.

Invece, il valore $v = f(x^*)$ della funzione in corrispondenza della soluzione ottimale, prende il nome di **valore ottimale**. Si userà, quindi, la seguente notazione per indicare valori ottimali in corrispondenza di problemi di minimizzazione e massimizzazione:

- $v = \min f(x), x \in F$, per la minimizzazione;
- $v = \max f(x), x \in F$, per la massimizzazione.

Osservazione: Si osservi che un problema di massimizzazione (o minimizzazione) può essere facilmente trasformato in un problema di minimizzazione (o massimizzazione) sostituendo la funzione obiettivo f con il suo opposto -f.

2.1.1 Classificazione dei problemi di ottimizzazione

I problemi di ottimizzazione vengono classificati secondo le tre categorie seguenti

- 1. Problemi di ottimizzazione nel continuo: Le variabili decisionali possono assumere tutti i valori reali $x \in \mathbb{R}^n$. In aggiunta, si distinguono
 - (a) Ottimizzazioni vincolate, quando l'insieme delle soluzioni ammissibili è $F \subset \mathbb{R}^n$

- (b) Ottimizzazioni non vincolate, quando l'insieme delle soluzioni ammissibili è $F = \mathbb{R}^n$
- 2. **Problemi di ottimizzazione nel discreto**: Le variabili sono vincolate ad essere degli interi $x \in \mathbb{Z}^n$. In aggiunta, si distinguono
 - (a) **Programmazione intera**, quando l'insieme delle soluzioni ammissibili è $F \subset \mathbb{Z}^n$
 - (b) Programmazione binaria (o booleana), quando $F \subset \{0,1\}^n$
- 3. **Problemi di ottimizzazione mista**: Solamente alcune variabili decisionali sono vincolate ad essere intere.

Osservazione: Non è possibile risolvere problemi di ottimizzazione discreta se non si è in grado di risolvere problemi di ottimizzazione continua.

Esempio 1: Si consideri un'industria chimica, la quale fabbrica 4 tipi di fertilizzanti: Tipo 1, Tipo 2, Tipo 3 e Tipo 4, la cui lavorazione è affidata a due reparti dell'industria: il reparto produzione e il reparto confezionamento. Per ottenere fertilizzante pronto per la vendita è necessaria, naturalmente, la lavorazione in entrambi i reparti.

La tabella che segue riporta, per ciascun tipo di fertilizzante i tempi (in ore) necessari di lavorazione in ciascuno dei reparti per avere una tonnellata di fertilizzante pronto per la vendita:

	Tipo 1	Tipo 2	Tipo 3	Tipo 4
Reparto produzione	2	1.5	0.5	2.5
Reparto confezionamento	0.5	0.25	0.25	1

Dopo aver dedotto il costo del materiale grezzo, ciascuna tonnellata di fertilizzante dà seguenti profitti (prezzi espressi in Euro per tonnellata):

	Tipo 1	${\rm Tipo}\ 2$	Tipo 3	Tipo 4
Profitti netti	250	230	110	350

Determinare le quantità che si devono produrre settimanalmente di ciascun tipo di fertilizzante, in modo da massimizzare il profitto complessivo, sapendo che ogni settimana, il reparto produzione e il reparto confezionamento, hanno una capacità lavorativa massima rispettivamente di 100 e 50 ore.

Appare naturale, in questo caso, introdurre quattro variabili decisionali reali x_1, x_2, x_3, x_4 , rappresentative delle quantità di ciascun prodotto di Tipo 1, Tipo 2, Tipo 3 e Tipo 4, rispettivamente, da produrre in una settimana.

Giacché ciascuna tonnellata di ognuno dei 4 fertilizzanti contribuisce al profitto totale, la funzione obiettivo può essere espressa come

$$f(x_1, x_2, x_3, x_4) = 250x_1 + 230x_2 + 110x_3 + 350x_4$$

in quanto l'obiettivo dell'industria chimica è quello di scegliere in modo idoneo i valori delle quattro quantità x_1, x_2, x_3, x_4 in modo tale da massimizzare il profitto.

Ovviamente, però, la capacità produttiva dell'industria limita il valore che le variabili x_1, x_2, x_3, x_4 potranno assumere, in quanto vi è un limite settimanale in termini di ore in cui i diversi stabilimenti potranno operare. Più precisamente, vi è un limite di 100 ore settimanali per il reparto di produzione e, siccome ogni tonnellata di fertilizzante di Tipo 1 impiega lo stabilimento produttivo per 2 ore, ogni tonnellata di fertilizzante di Tipo 2 impiega lo stabilimento produttivo per 1.5 ore e così via per gli altri tipo, si dovrà considerare il vincolo

$$2x_1 + 1.5x_2 + 0.5x_3 + 2.5x_4 \le 100$$

Ragionando in modo analogo per lo stabilimento di confezionamento, si ottiene un secondo vincolo:

$$0.5x_1 + 0.25x_2 + 0.25x_3 + x_4 \le 50$$

Per essere coerenti, bisogna anche specificare un vincolo esplicito relativo al fatto che le variabili x_1, x_2, x_3, x_4 rappresentano quantità di prodotto che non possono essere negative, per cui si deve imporre anche che $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$.

Ciò porta, naturalmente, a considerare il seguente insieme ammissibile F:

$$F = \left\{ x \in \mathbb{R}^4 \middle| \begin{array}{l} 2x_1 + 1.5x_2 + 0.5x_3 + 2.5x_4 \le 100 \\ 0.5x_1 + 0.25x_2 + 0.25x_3 + x_4 \le 50 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{array} \right\}$$

Appare, quindi, evidente che vi sono dei vincoli, in quanto non si sta lavorando su tutto \mathbb{R}^4 , ma ci sono delle limitazioni dettate dal tempo di lavorazione e confezionamento dei diversi fertilizzanti.

Esempio 2: Si supponga di essere un investitore, il quale possiede €1000 da investire nel mercato finanziario, avente a disposizione 3 opzioni di investimento (non divisibili), ciascuno caratterizzato da un costo di acquisto e da un rendimento riassunti nella tabella seguente:

	A	В	\mathbf{C}
Costo di acquisto	750	200	800
Rendimento	20	5	10

Procedendo sempre in modo naturalmente intuitivo, si possono introdurre 3 variabili x_A, x_B, x_C tali che

$$x_i = \begin{cases} 0 & \text{se l'investimento i-esimo non viene scelto} \\ 1 & \text{se l'investimento i-esimo viene scelto} \end{cases}$$

La funzione obiettivo da massimizzare è, ovviamente,

$$f = 20x_A + 5x_B + 10x_C$$

sempre tenendo in considerazione il vincolo per cui

$$750x_A + 200x_B + 800x_C \le 1000$$

ottenendo, quindi, l'insieme ammissibile seguente

$$F = \{x \in \{0, 1\}^3 | 750x_A + 200x_B + 800x_C \le 1000\}$$

3 Convessità

Di seguito si espone il significato di convessità:

CONVESSITÀ DI UNA FUNZIONE

Una funzione f(x) di una variabile è una **funzione convessa** se, per ogni coppia x' e x'' di valori di x (con x' < x'') si ha

$$f(\lambda x'' + (1 - \lambda)x') \le \lambda f(x'') + (1 - \lambda)f(x')$$

per ogni valore di λ tale che $0 < \lambda < 1$.

- Una funzione è strettamente convessa se si può sostituire \leq con <.
- Una funzione è concava se la condizione di cui sopra vale quando si sostituisce ≤ con ≥.
- Una funzione è strettamente concava se si può sostituire \geq con >.

Osservazione 1: Ovviamente, in modo analogo, la funzione f(x) è convessa se per ogni coppia di punti del grafico f(x), il segmento che li congiunge sta interamente al di sopra del grafico di f(x) o coincide con esso.

In modo inverso, la funzione f(x) è concava se per ogni coppia di punti del grafico f(x), il segmento che li congiunge sta interamente al di sotto del grafico di f(x) o coincide con esso. Una funzione lineare (ossia una retta) è una funzione che è sia concava che convessa.

Osservazione 2: Sia f(x) una funzione di una sola variabile che ammette derivata seconda per tutti i possibili valori di x. Allora f(x) è:

• convessa se e solo se

$$\frac{d^2f(x)}{dx^2} \ge 0$$

per ogni possibile valore di x;

• strettamente convessa se e solo se

$$\frac{d^2f(x)}{dx^2} > 0$$

per ogni possibile valore di x;

• concava se e solo se

$$\frac{d^2f(x)}{dx^2} \le 0$$

per ogni possibile valore di x;

 \bullet strettamente concava se e solo se

$$\frac{d^2f(x)}{dx^2} < 0$$

per ogni possibile valore di x.

Ovviamente, però, una funzione strettamente convessa è anche convessa, ma una funzione convessa non è strettamente convessa se la sua derivata seconda è uguale a zero per alcuni valori di x. Analogamente una funzione strettamente concava è concava, ma non è vero il viceversa.

3.1 Insieme convesso

Di seguito si espone la definizione di insieme convesso:

INSIEME CONVESSO

Un insieme convesso è un insieme di punti tale che, per ogni coppia di punti dell'insieme, il segmento che li congiunge è interamente contenuto nell'insieme stesso.

Osservazione: È facile risolvere problemi di carattere continuo in quanto la regione ammissibile è un insieme convesso, mentre nel caso di problemi discreti o binari ciò non accade. Non solo, ma è vero che l'intersezione di insiemi convessi è un insieme convesso.

3.1.1 Punto estremo di un insieme convesso

Di seguito si espone la definizione di punto estremo di un insieme convesso:

PUNTO ESTREMO DI UN INSIEME CONVESSO

Un punto estremo di un insieme convesso è punto dell'insieme che non appartiene ad alcun segmento congiungente altri due punti distinti dell'insieme stesso.

Osservazione: Si osservi che non tutti gli insiemi convessi hanno punti estremi, come nel caso dell'insieme dei numeri reali \mathbb{R} .

3.1.2 Massimo e minimo

Data una funzione di una sola variabile e derivabile, è **condizione necessaria** affinché una particolare soluzione $x = x^*$ sia un minimo o un massimo è che

$$\frac{df(x)}{dx} = 0 \quad \text{in} \quad x = x^*$$

Tuttavia, per avere maggiori informazioni sui punti critici (punti di minimo, di massimo o di flesso) è necessario esaminare la derivata seconda; ovviamente, se la funzione non è derivabile in tutto il dominio, la proprietà sopra enunciata non vale.

Pertanto, se

$$\frac{d^2 f(x)}{dx^2} > 0 \quad \text{in} \quad x = x^*$$

allora x^* è almeno un **minimo locale** (ossia $f(x^*) \leq f(x)$ per ogni x sufficientemente vicino a x^*); in altre parole, x^* è un minimo se f(x) è strettamente convessa in un intorno di x^* .

Analogamente, una condizione sufficiente affinché x^* sia un **massimo locale** (supponendo che soddisfi la condizione necessaria) è che f(x) sia strettamente concava in un intorno di x^* (cioè la derivata seconda è negativa in x^*).

Se la derivata seconda è nulla, è necessario esaminare le derivate di ordine superiore (in questo caso il punto potrebbe anche essere un punto di flesso); per individuare eventuali punti critici, se il dominio è limitato, è necessario controllare gli estremi dell'intervallo.

Per determinare un **minimo globale** (cioè una soluzione x^* tale che $f(x^*) \leq f(x), \forall x$) è necessario confrontare i minimi locali e identificare quello per il quale si ha il più piccolo valore di f(x): se tale valore è minore di f(x) per $x \to -\infty$ e per $x \to +\infty$ (o agli estremi del suo dominio, se essa è definita in un intervallo limitato), allora questo punto è un minimo globale; Il massimo globale è determinato in modo analogo.

Osservazione: Si osservi, in particolare, che se f(x) è una funzione convessa, allora una qualunque soluzione x^* tale che

$$\frac{df(x)}{dx} = 0 \quad \text{in} \quad x = x^*$$

è automaticamente un minimo globale; in altre parole ,questa condizione è non solo necessaria, ma anche sufficiente per un minimo globale di una funzione convessa.

Tuttavia, tale soluzione non deve necessariamente essere unica, in quanto la funzione potrebbe rimanere costante in un certo intervallo nel quale la sua derivata è nulla; d'altra parte, se f(x) è strettamente convessa, allora tale soluzione deve essere l'unico minimo globale.

Analogamente se f(x) è una funzione concava, allora la condizione

$$\frac{df(x)}{dx} = 0 \quad \text{in} \quad x = x^*$$

è sia necessaria che sufficiente affinché x^{\ast} sia un massimo globale.

Se la funzione, invece, non è strettamente concava o strettamente convessa ci possono essere infinite soluzioni ottime, rispettivamente massimi e minimi globali.

4 Esempi di modelli

Di seguito si espongono alcuni esempi di problemi da risolvere, impiegando differenti modelli matematici:

4.1 La composizione ideale

Si vuole realizzare una compilation ideale avendo a disposizione dei file musicali e un CD-ROM dalla capacità di 800 MB. L'indice di gradimento (in una scala da 1 a 10) e l'ingombro in MB di ogni file sono riportati nella tabella seguente:

Canzone	Gradimento	Ingombro
Light my fire	8	210
Fame	7	190
I will survive	8,5	235
Imagine	9	250
Let it be	7,5	200
I feel good	8	220

Si vuole decidere quali file inserire nel CD in modo tale da massimizzare il gradimento complessivo, senza eccedere la capacità del CD.

Il problema può essere modellato per mezzo di variabili decisionali binarie $x_1, x_2, x_3, x_4, x_5, x_6$ associate a ogni file musicale in modo tale che assumano valore 1 se il file in questione è inserito nel CD, il valore 0 in caso contrario. La funzione che bisogna massimizzare è

$$f = 8x_1 + 7x_2 + 8.5x_3 + 9x_4 + 7.5x_5 + 8x_6$$

rispettando il vincolo seguente

$$210x_1 + 190x_2 + 235x_3 + 250x_4 + 200x_5 + 220x_6 \le 800$$

Generalizzando, indicato con g_i il gradimento della canzone i-esima, con w_i il suo ingombro e con C la capacità del CD, il problema può essere formulato per mezzo delle seguenti parametrizzazioni

$$f = \sum_{i=1}^{n} g_i \cdot x_i$$

con i vincoli seguenti

$$\sum_{i=1}^{n} w_i \cdot x_i \le C \quad \text{e} \quad x_i \in \{0,1\} \quad \forall i = 1, \dots, n$$

dove n=6 è il numero di file musicali. L'unico vincolo del problema consiste nel fatto che l'ingombro dei file inseriti non deve eccedere la capacità del CD.

4.2 I treni combinati

Una compagnia ferroviaria deve decidere quanti treni combinati realizzare potendo scegliere tra due diversi modelli: DeLuxe e FarWest. La composizione dei due treni è schematizzata nella tabella seguente.

Tipo di vagone	DeLuxe	FarWest	Disponibilità
Merci	1	3	12
WLit	1	0	9
Ristorante	1	0	10
II Classe	2	3	21
I Classe	1	2	10
Motrice	1	1	9
Guadagno	€3000	€8000	-

Si vuole massimizzare il guadagno totale.

Poiché bisogna decidere quanti treni di ciascun tipo realizzare, il problema può essere formulato per mezzo di due variabili decisionali discrete x_D e x_F , che rappresentano rispettivamente il numero di treni Deluxe e il numero di treni Far West da realizzare: ovviamente tali variabili dovranno risultare intere e non negative.

Si dovrà, quindi, massimizzare la funzione obiettivo seguente

$$f = 3000x_D + 8000x_F$$

rispettando, però, i seguenti vincoli

$$x_D + 3x_F \le 12$$

 $x_D \le 9$
 $x_D \le 10$
 $2x_D + 3x_f \le 21$
 $x_D + 2x_F \le 10$
 $x_D + x_F \le 0$
 $x_D \ge 0, x_F \ge 0$

In cui la soluzione ottima è $x_D=6, x_F=2$ che consente di ottenere un profitto di 24000

4.3 La raffineria

Una raffineria miscela quattro tipi di petrolio greggio in diverse proporzioni per ottenere tre diversi tipi di benzina: normale, blu super e V-power. La massima quantità disponibile di ciascun componente greggio e il corrispondente costo di acquisto sono indicati nella seguente tabella.

Componente	Disponibilità massima (barili)	Costo (€)
P1	500	9
P2	2400	7
Р3	4000	12
P4	1500	6

Per poter soddisfare le specifiche qualitative dei diversi tipi di benzina è necessario rispettare dei limiti assegnati circa la percentuale di ciascun componente impiegato. Tali limiti, insieme ai prezzi di vendita dei diversi tipi di benzina, sono indicati nella tabella che segue:

Benzina	Specifiche qualitative	Prezzo (€ barile)
Normale	almeno 20% di P2 e al massimo il 30% di P3	12
Blu super	almeno il 40% di P3	18
V-power	al massimo il 50% di P2	10

Si vuole determinare la miscela ottimale dei quattro componenti che massimizza il guadagno totale derivante dalla vendita delle benzine.

Poiché bisogna decidere quale quantità di ogni componente greggio usare nella produzione di ciascun tipo di benzina, nella formulazione sono necessarie delle variabili a due indici: $x_{i,j}$ = barili di componente greggio j usati nella produzione di benzina di tipo i.

Ecco, quindi, che la funzione da massimizzare è

$$f = \sum_{i=1}^{3} p_i \cdot \sum_{j=1}^{4} x_{i,j} - \sum_{i=1}^{3} \sum_{j=1}^{4} c_j \cdot x_{i,j}$$

Rispettando, tuttavia, i seguenti vincoli

$$x_{1,2} \ge 0.2 \cdot \sum_{j=1}^{4} x_{1,j}$$

$$x_{1,3} \le 0, 3 \cdot \sum_{j=1}^{4} x_{1,j}$$

$$x_{2,3} \ge 0.4 \cdot \sum_{j=1}^{4} x_{2,j}$$

$$x_{3,2} \le 0, 5 \cdot \sum_{j=1}^{4} x_{3,j}$$

$$\sum_{i=1}^{3} x_{i,j} \le d_j \text{ con } j = 1, \dots, 4$$

$$x_{i,j} \ge 0 \text{ con } i = 1, \dots, 3 \text{ e } j = 1, \dots, 4$$

Dove c_j e d_j indicano rispettivamente il costo e la disponibilità del componente greggio j e p_i indica il prezzo di vendita della benzina i.

4.4 La turnazione degli infermieri

Un ospedale deve organizzare i turni settimanali degli infermieri in modo da minimizzare il numero totale di persone coinvolte. Per soddisfare le esigenze di servizio occorre garantire ogni giorno la presenza di un numero minimo di infermieri, esposto nella tabella seguente:

	LUN	MAR	MER	GIO	VEN	SAB	DOM
Infermieri	17	13	15	19	14	16	11

I turni degli infermieri consistono in cinque giorni consecutivi di lavoro seguiti da due giorni di riposo (per esempio venerdì, sabato, domenica, lunedì, e martedì lavoro; mercoledì e giovedì riposo). Il problema può essere modellato mediante le variabili decisionali x_i che rappresentano il numero di persone che iniziano il turno di lavoro il giorno i per $i=1,\ldots,7$, in modo tale da minimizzare

$$f = \sum_{i=7} x_i$$

rispettando i seguenti vincoli:

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ge 17 \tag{1}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 > 13$$
 (2)

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ge 15 \tag{3}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ge 19 \tag{4}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ge 14 \tag{5}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ge 16 \tag{6}$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ge 11 \tag{7}$$

4.5 La campagna pubblicitaria

Un'agenzia di pubblicità deve realizzare una campagna promozionale avendo a disposizione due mezzi: gli annunci radiofonici e quelli su carta stampata.

Sono ammessi annunci radiofonici con durata di frazione di minuto e annunci sul giornale di frazione di pagina. Le stazioni radiofoniche private praticano sconti in base alla quantità di minuti richiesti: il costo al minuto è di €100 meno €2 per ogni minuto utilizzato (in questo modo, il costo al minuto qualora se ne richiedono tre è di €94). Inoltre, le emittenti possono fornire al massimo 30 minuti di annunci in totale.

I giornali, invece, richiedono un prezzo standard di €200 per pagina. Per vincoli contrattuali almeno un terzo della spesa deve consistere in annunci sui giornali. In base ai risultati statistici, si stima che tramite un minuto di annunci radiofonici si raggiungono 100.000 persone e tramite un annuncio su una pagina di giornale 15.000 persone. L'agenzia deve raggiungere almeno 3 milioni di persone minimizzando i costi della campagna.

In questo caso è sufficiente introdurre due variabili decisionali x_1 e x_2 che rappresentano il numeri di minuti e il numero di pagine di giornale utilizzati nella campagna, andando a minimizzare la funzione

$$f = (100 - 2x_1) \cdot x_1 + 200x_2$$

rispettando i vincoli seguenti:

$$100x_1 + 15x_2 \ge 3000\tag{8}$$

$$100x_1 + 15x_2 \ge 3000$$

$$200x_2 \ge \frac{1}{3} \cdot ((100 - x_1) \cdot x_1 + 200x_2)$$
(8)

$$0 \le x_1 \le 30, x_2 \ge 0 \tag{10}$$

In cui appare evidente che non si tratta di un problema di programmazione lineare.

4.6 Radioterapia

La radioterapia prevede l'utilizzo di un raggio esterno per far passare le radiazioni ionizzanti attraverso il corpo del paziente, danneggiando sia i tessuti cancerosi che quelli sani.

Normalmente, diversi fasci vengono amministrati con precisione da diverse angolazioni in un piano

bidimensionale. A causa dell'attenuazione, ogni raggio fornisce più radiazioni al tessuto vicino al punto di ingresso rispetto al tessuto vicino al punto di uscita. La dispersione causa anche una certa quantità di radiazione al tessuto al di fuori del percorso diretto del raggio.

Poiché le cellule tumorali sono tipicamente microscopicamente intervallate tra cellule sane, il dosaggio di radiazioni in tutto la regione del tumore deve essere abbastanza grande da uccidere le cellule maligne, che sono leggermente più radiosensibili, ma abbastanza piccolo da risparmiare le cellule sane.

Allo stesso tempo, la dose che colpisce i tessuti critici non deve superare i livelli di tolleranza stabiliti, al fine di prevenire complicazioni che possono essere più gravi della malattia stessa. Per la stessa ragione, la dose totale all'intera parte sana deve essere ridotta al minimo.

L'obiettivo del progetto è selezionare la combinazione di raggi da utilizzare, e l'intensità di ciascuno, per generare la migliore distribuzione possibile della dose. (L'intensità della dose in qualsiasi punto del corpo viene misurata in unità chiamate Kilorad.)

Pertanto si ha la seguente schematizzazione

Area	Raggio 1	Raggio 2	Restrizioni (Kilorad)
Anatomia sana	0.4	0.5	minimizzare
Tessuti critici	0.3	0.1	≤ 2.7
Regione tumorale	0.5	0.5	= 6.0
Nucleo del tumore	0.6	0.4	≥ 0.6

Le due variabili decisionali x_1 e x_2 rappresentano la dose (in Kilorad) al punto di ingresso per il Raggio 1 e il Raggio 2, rispettivamente, per cui la funzione f da minimizzare è

$$f = 0.4x_1 + 0.5x_2$$

con i vincoli che

$$0.3x_1 + 0.1x_2 \le 2.7\tag{11}$$

$$0.5x_1 + 0.5x_2 = 6 (12)$$

$$0.6x_1 + 0.4x_2 \ge 0.6 \tag{13}$$

$$x_1 \ge 0, x_2 \ge 0 \tag{14}$$

5 Programmazione Lineare

Di seguito si espone la definizione di problema di programmazione lineare:

PROBLEMA DI PROGRAMMAZIONE LINEARE

Un problema di programmazione lineare (LP) è un problema di ottimizzazione del tipo

$$z = \max\{c(x) : x \in X \subseteq \mathbb{R}^n\}$$
 oppure $z = \min\{c(x) : x \in X \subseteq \mathbb{R}^n\}$

in cui

• la funzione obiettivo

$$c(x): \mathbb{R}^n \longmapsto \mathbb{R}$$

è lineare, in cui

$$-c(0) = 0$$
$$-c(\alpha x + \beta y) = \alpha c(x) + \beta c(y)$$

Ciò comporta che c(x) = cx sia un vettore in \mathbb{R}^n .

• L'insieme X delle soluzioni ammissibili è definito tramite dei vincoli lineare come, ad esempio $h(x) = \gamma$, oppure $h(x) \leq \gamma$, oppure $h(x) \geq \gamma$ in cui

$$h(x): \mathbb{R}^n \longmapsto \mathbb{R}$$

è una funzione lineare, mentre γ è uno scalare in \mathbb{R} .

Esempio: Un problema di programmazione lineare può essere formulato in forma sintetica:

$$\max c^t x \tag{15}$$

$$Ax \le b \tag{16}$$

$$x \ge 0 \tag{17}$$

in cui c^t indica la trasposta del vettore della funzione obiettivo, in modo tale da disporre di un prodotto righe per colonne. Altrimenti, in modo più esteso si ha

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \tag{18}$$

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n \le b_1 \tag{19}$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n \le b_2 \tag{20}$$

$$\dots$$
 (21)

$$a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n \le b_m$$
 (22)

$$x_1, x_2, \dots, x_n \ge 0 \tag{23}$$

 c^Tx è la funzione obiettivo Dove b si chiama vettore dei termini noti X= regione ammissibile - Proporzionalità - Additività - Divisibilità (o continuità) - Correttezza

Esempio 1: La funzione

$$\max z = c_1 x_1 + c_2^2 x_2 + c_3 x_3$$

è una funzione lineare che non viola la proporzionalità.

Esempio 2: Tutti i coefficienti sono costanti reali note a priori.

Esempio 3: Un esempio in cui le soluzione ottime sono infinite è quando voglio ottenere il minimo di una delle variabili decisionali: da (0,0) a (0,5) sono soluzioni ottime.

Esempio 4: Una soluzione ottima unica è il minimo di $x_1 + x_2$, che produce l'origine.

Esempio 4: Un esempio in cui ci sono infinite soluzioni ottime è quando la funzione obiettivo è parallela ad uno dei vincoli.