Introduction to predicate Logic - proposition is either took always tome or always false. Ex! 2 is even 2 proposition
2 is odd 7 proposition n is even not a proposition - predicates! predicate logic is a more general type of logic that allows us to write function like logical expressions called predicates. - Informally, predicate is a property that a particular entity may or may not have. Ex'. Being a vowel is a property of some letters (A, E, I, O, U), some letters do not have this property (c, D, F, Q, ---,) - A proposition with a blank ex! The integer — is a prime * Once the blanks of a predicate is tilled, then it becomes a proposition. The integer 57 is a prime. (false)

Def: A predicate P is a function that assigns value True or False to each element of a Set U. (predicate Pis afunction P: U -> ETrue, False}. The Set U is calted the universe, or the domain of discourse, and we say that P is a predicate over U. Ex: I. Is Prime(n) = $\begin{cases}
\text{True } n \text{ is a prime} \\
\text{False } n \text{ is not a prime}
\end{cases}$ $\mathcal{U} = \mathbb{Z}$ is Prime : Z -> { True, false } proposition

2 is Prime (2) = True

2 is Prime (4) = False a. Is $Even(n) = \int Trne$, n is even $U = \mathbb{Z}$

XEQ 3. Is Rational (x) = 5 True X & Q U=IR on its own P(x) P: U -> {True, False} XEU, then PCX) has no value of its own, the neason is x is an arbitrary How can we make a predicate a proposition? 1. Apply the predicate to a specific element of the universe.

Suppose we have the predicate is Even(x), then let X = 5, is Even (5) is a proposition. let x=6is Even (6) is a proposition.

For all intergers in is French) is true
This is a proposition and it is fabre.
There exists an integer n such that is Even(n) is true.
proposition, and it is true.
2. Using quantifiers
a) Universal quantifier V for all
a) Universal quantifier \(\for all "\) [\for \(\mathref{T} \) = \(\mathref{T} \) is \(\mathref{E} \) ven (n) \(\mathref{T} \) = \(\mathref{T} \) proposition
[Yn EZ : Tis Even(n)].
VXEU!POX) is tone
"for all x in U, Par is tone"
11 True if P(x) evaluates to True for all XEN
Remember the claim! Given nEZ
If n² is even then n is even
∀n∈Z:[If n² is even, then n is even]

In natural languages, sometimes we omit the explicit mention of quantifiers.

But from here onwards, we will suse quantifiers along with predicates to write logically sound propositions.

b) Existential quanifier 3 "there exists"

JXEU: P(X)

1) there exists an element x in U, such that P(x) is true.

11 True if P(x) evaluates to true for Some x & U

3x & Z : is Even (x)

JXEZ: Tis Even(x)

- 1. for all integers n, 2n is Even $\forall n \in \mathbb{Z}$ is Even(2n) True
- 2. for all in tegers n, 2n+1 is not even. \(\text{Vn} \in \mathbb{Z} : \tau is \text{Even}(2n+1) \)
- 3. for all integers n, If n^2 is even, then n is even $\forall n \in \mathbb{Z}$: [is $Even(n^2) \Longrightarrow$ is Even(n)] fruc

4. There exists real numbers X, y such that xy is rational and not (both x and y are rational.)

3x, y \in IR: x y \in Q A 7 (x \in Q A y \in Q)