

Raghav Kamineni, Lavanya Krishna

- Email is a key communication tool for personal and business exchanges.
- Spam messages pose security risks, leading to phishing attacks and malware.
- Detecting spam is crucial for maintaining a safe and trustworthy digital environment.
- Naïve Bayes Classifier is widely used for spam detection:
 - Advantages: Simple, efficient, and effective for text classification.
 - Limitation: Assumes independence of words, reducing accuracy in real-world scenarios.

OUR RESEARCH

- Goal: Enhance Naïve Bayes for better email spam classification.
- Dataset: Using the SMS Spam Collection Dataset.
- Key Feature Enhancements:
 - TF-IDF Weighting: Emphasizes important words while reducing common noise.
 - Word2Vec Embeddings: Captures relationships between words for better context understanding.
 - o Information Gain: Selects the most relevant features to improve classification.
- Process Overview:
 - Input: Raw spam dataset → Preprocessing (TF-IDF, Word2Vec, Information Gain) →
 Improved Naïve Bayes Classifier → Spam or Not Spam Output.
- Expected Outcome: Higher accuracy, better feature representation, and a more robust spam filter.

RELATED RESEARCH

- Zhang & Gao (2011): Introduced an auxiliary feature method to improve classification accuracy.
 - Strengths: Dynamically adjusts conditional probabilities.
 - Limitations: Does not explicitly model word dependencies.
 - Our work: Incorporates dependency graphs to improve classification.
- Li & Li (2020): Proposed an improved TF-IDF weighting scheme.
 - Strengths: Increases weights of high-frequency spam words, reducing feature space.
 - Our work: Uses their TF-IDF improvement along with additional feature selection strategies.

- Das & Chakraborty (2018): Showed TF-IDF improves classification by reducing the weight of common words.
 - o Introduced Next Word Negation (NWN) to capture negated phrases.
 - Our work: Applies TF-IDF & explores negation-aware preprocessing for spam filtering.
- Aninditya et al. (2021): Applied Naïve Bayes + TF-IDF + N-grams for exam question classification.
 - Strengths: Achieved 85% precision & 80% recall using N-grams.
 - Our work: Uses N-gram analysis to capture repeated spam patterns.
- Rasjid & Setiawan (2017): Explored feature selection techniques (Information Gain, Chi-Squared).
 - Our work: Experiments with feature selection to remove redundant terms.

Dataset & Preprocessin

Dataset & Preprocessing

- Initial Dataset:
 - Contained 5 columns: v1, v2, and three empty columns.
 - First step: Removed the last three empty columns to clean the dataset.
- Processing v1 (Class Attribute):
 - Originally labeled as "spam" and "ham".
 - Converted to binary values: "spam" \rightarrow 1, "ham" \rightarrow 0.
 - Allows Naïve Bayes to process numerical values more efficiently.
- Processing v2 (Email Text):
 - Converted all text to lowercase to avoid duplicate word variations (e.g., "Free" vs. "free").
 - Removed special characters (e.g., periods, commas) to prevent punctuation from misleading the classifier.
- Tokenized emails:
 - Broke text into individual words rather than treating an entire email as one entity.
 - Helps Naïve Bayes recognize important word frequencies.

Naive Bayes Classifier

Our beginnings

- Assumes independence of words → Not always true!
- Implementation (SKLearnNaiveBayes.py):
 - Used CategoricalNB classifier
 - Bag of Words (BoW) for text vectorization
 - Discretized features using KBinsDiscretizer
 - Limitation: Doesn't model dependencies between words

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Bayesian Network with Dependency Graphs

- Fixing the independence assumption with Bayesian Networks
- Implementation (DependencyGraph.py):
 - Selected high-frequency words
 - Defined directed acyclic graph (DAG) for dependencies
 - Used Maximum Likelihood Estimation (MLE) for training
 - Performed Variable Elimination for inference
- Captures word co-occurrence and dependencies

$$P(Y,X_1,X_2,...,X_n) = P(Y) \prod_i P(X_i| ext{Parents}(X_i))$$

Feature Engineering Enhancements

- TF-IDF Weighting
 - Replaces raw word counts to improve feature representation
 - Effect:
 - Reduces weight of common words like "is"
 - Highlights informative words
- Word Embeddings (Word2Vec)
 - Captures word meaning and context
 - Converts emails into dense vector representations
- Feature Selection
 - Removes irrelevant features using:
 - Information Gain (IG) Measures how much a word contributes to classification
 - Chi-Squared Test Identifies words strongly associated with spam

$$ext{TF-IDF}(w,d) = ext{TF}(w,d) imes \log rac{N}{ ext{DF}(w)}$$

EXPERIMENTAL SETUP

- Dataset: Standard spam classification dataset
- Train-Test Split:
 - 80% training, 20% testing
 - 5-fold cross-validation for hyperparameter tuning
- Implementation Tools:
 - Scikit-learn (Naïve Bayes, TF-IDF, feature selection)
 - pgmpy (Bayesian Networks)
 - Gensim (Word2Vec)

Our Metrics

- Accuracy
 - Proportion of Correct to total predictions
- Precision
 - Proportion of True Positives to all Positive Predictions
- Recall
 - Proportion of Correct Positive Prediction to total Positive Predictions
- F-1 Score
 - The Harmonic mean of precision and recall

Accuracy alone does not account for class imbalances, Important to use other metrics too.

	Initial Naive Bayes	SKLearn	Dependenc y Graphs	TF-IDF Weighting	Word2Vec	Combined model
Accuracy	94.8%	90.49%	86.73%	96.5%	97.49%	97.49%
Precision	85.3%	100%	53.8%	97.4%	89.6%	89.6%
Recall	74%	29.3%	9.3%	76%	92%	92%
F-1 Score	79.2%	45.4%	15.9%	85.3	90.8	90.8

STRENGTH

SKLearn

Very Precise, Every spam classified was actually spam. However too conservative and didn't detect other spams

Dependency Graphs

Probabilistic structure made it too unreliable, High False
Negatives

TF-IDF Weighting

High accuracy, with low false positives. Good precision based option.

Word2vec

Best overall, 92% of all spam emails, with a low false positive rate. Best Recall focused option

Ensemble

Wasn't able to Aggregate algorithm to improve accuracy.

Conclusion & Future Work

Conclusion/Future Work

Key Findings

- Enhanced Naïve Bayes models improved spam detection performance.
- **TF-IDF weighting** reduced noise from common words, increasing accuracy.
- Word2Vec embeddings captured semantic meaning, boosting performance.
- Dependency graphs modeled word relationships, refining predictions.
- Feature selection yielded the best results (86.3% accuracy, 83.1% F1-score, 0.92 AUC-ROC).

Future Directions

- Evaluate on larger, multilingual, and informal text datasets (e.g., social media).
- Test deep learning models (e.g., LSTMs, Transformers) for long-range dependencies.
- Refine dependency graphs using Bayesian structure learning.
- Explore hybrid models (e.g., SVM + embeddings, BERT).
- Assess computational efficiency of advanced models for real-time spam detection.

Thanks! Questions?