Exercice 1.

Montrer que sur toute planète de l'univers contenant au moins deux pays, il existe toujours deux pays ayant le même nombre de voisins.

EXERCICE 2.

Pour $(n, m) \in \mathbb{N}^2$ on note S(n, m) le nombre de surjections de [1, n] sur [1, m].

- **1.** Que vaut S(n, n) pour $n \in \mathbb{N}^*$? Que vaut S(n, m) si n < m?
- **2.** Que vaut S(0,0) ? Et S(n,0) pour $n \in \mathbb{N}^*$?
- **3.** Montrer que pour tout $(n, m) \in \mathbb{N}^2$, S(n+1, m) = m(S(n, m) + S(n, m-1)).

EXERCICE 3.

- **1.** On tire une carte d'un jeu de 32 cartes. Quelle est la probabilité de n'obtenir ni un as, ni un pique ?
 - On tire simultanément deux cartes d'un jeu de 32 cartes. Quelle est la probabilité de n'obtenir ni un as, ni un pique ? Donner le résultat en fraction irréductible.
- **2.** Un digicode est une série de quatre caractères : une lettre A ou B suivie de trois chiffres. Combien existe-t-il de digicodes ? Combien existe-t-il de digicodes où tous les caractères sont distincts ? Combien existe-t-il de digicodes n'ayant pas deux caractères consécutifs identiques ?

EXERCICE 4.

Un digicode est composé de quatre caractères pris parmi dix chiffres et deux lettres. Combien peut-on former de

- 1. digicodes?
- 2. digicodes à caractères distincts?
- 3. digicodes contenant exactement un 7? à caractères distincts et contenant un 7?
- **4.** digicodes contenant au moins un chiffre ? à caractères distincts et contenant au moins un chiffre ?
- 5. digicodes à caractères distincts contenant au moins une lettre?

EXERCICE 5.

On pioche 8 cartes (une « main») dans un jeu de 32 cartes. Combien peut-on former de

- 1. mains?
- 2. mains contenant trois piques exactement?
- **3.** mains contenant au moins trois piques?
- 4. mains contenant au moins un roi et au moins un pique?

EXERCICE 6.

Soient n et k deux entiers naturels non nuls.

- 1. Déterminer le nombre de k-uplets (i_1,i_2,\ldots,i_k) d'entiers tels que $1\leqslant i_1< i_2<\cdots< i_k\leqslant n.$
- **2.** Déterminer le nombre de k-uplets (i_1,i_2,\ldots,i_k) d'entiers tels que $1\leqslant i_1\leqslant i_2\leqslant\ldots\leqslant i_k\leqslant n$.

Exercice 7.

Soient p et n deux entiers strictement positifs. On note $\mathcal{C}_{p,n}$ l'ensemble des applications croissantes de $[\![1,p]\!]$ dans $[\![1,n]\!]$ et $\mathcal{S}_{p,n}$ l'ensemble des applications strictement croissantes de $[\![1,p]\!]$ dans $[\![1,n]\!]$.

- 1. Quel est le cardinal de $S_{p,n}$?
- 2. Pour $f\in\mathcal{C}_{p,n},$ on définit l'application g sur $[\![1,p]\!]$ par :

$$\forall x \in [1, p], q(x) = f(x) + x - 1$$

Montrer que $g \in \mathcal{S}_{p,n+p-1}$.

- **3.** En déduire que card $C_{p,n} = \operatorname{card} S_{p,n+p-1}$.
- 4. Application : déduire des résultats précédents le nombre de p-uplets (u_1,u_2,\dots,u_p) de \mathbb{N}^p tels que :
 - **a.** $u_1 + u_2 + \cdots + u_p \le n$;
 - **b.** $u_1 + u_2 + \cdots + u_p = m$;

EXERCICE 8.

Soit E un ensemble à n éléments ($n \in \mathbb{N}^*$). On va dénombrer des parties de E, (X, Y, Z) sur lesquelles on posera certaines contraintes.

- **1.** Déterminer le nombre de couples (X,Y) tels que $X \cap Y = \emptyset$.
- **2.** Déterminer le nombre de couples (X, Y) tels que $X \cup Y = E$.
- **3.** Déterminer le nombre de couples (X, Y) tels que (X, Y) forment une partition de E.
- **4.** Déterminer le nombre de triplets (X, Y, Z) tels que $X \cup Y = Z$.

EXERCICE 9.

Soit $n \in \mathbb{N}^*$. En utilisant une preuve combinatoire, montrer que $\binom{2n}{n} = \sum_{k=0}^n \binom{n}{k}^2$.

On pourra utiliser une partition d'un ensemble à 2n éléments en deux parties de n éléments.

Exercice 10.

On trace les cordes d'un cercle $\mathcal C$ joignant deux à deux $\mathfrak n$ points distincts $A_1,\ldots,A_{\mathfrak n}$ de $\mathcal C$. On suppose que trois de ces cordes ne sont jamais concourantes. En combien de points intérieurs au cercle se coupent-elles ?

Exercice 11.

Soient $(n,p)\in\mathbb{N}^2$ tel que $n\geqslant p^2+1$ et $(x_1,\ldots,x_n)\in\mathbb{N}^n$. Montrer que l'une au moins des propositions suivantes est vraie :

- $\diamond \ \text{au moins} \ p+1 \ \text{des nombres} \ x_1, \dots, x_n \ \text{sont \'egaux} \ ;$
- \diamond au moins p + 1 des nombres x_1, \dots, x_n sont deux à deux distincts.

Exercice 12.

Dans cet exercice, le mot *entier* désignera un entier naturel supérieur ou égal à 1 et le mot *ensemble* désignera un ensemble de tels entiers. Pour un ensemble A et un entier n, on définit :

- ▶ le nombre $\nu_n(A)$ d'éléments de A compris entre 1 et n i.e. $\nu_n(A) = card(A \cap \llbracket 1, n \rrbracket$;
- ▶ la proportion $\delta_n(A)$ d'entiers de A parmi ceux compris entre 1 et n i.e. $\delta_n(A) = \frac{\nu_n(A)}{n}$.

La limite de la suite $(\delta_n(A))$, si elle existe, est appelée *densité* de A dans B et est notée $\delta(A)$.

Déterminer, si elles existent les densités de

- **1.** N*;
- 2. d'un ensemble fini E;
- 3. de l'ensemble $2\mathbb{N}$ des entiers pairs ;
- 4. de l'ensemble C des carrés d'entiers ;

5. de
$$A = \bigcup_{k \in \mathbb{N}} [2^{2k}, 2^{2k+1}]$$
;

6. de l'ensemble D des entiers dont l'écriture décimale ne comporte pas de 0.

EXERCICE 13.

Soit E un ensemble fini. Pour $A \in \mathcal{P}(E)$, on note $\mathbb{1}_A$ la fonction indicatrice de A.

- 1. Soit $A \in \mathcal{P}(E)$. Justifier que $card(A) = \sum_{x \in E} \mathbb{1}_A(x)$.
- **2.** Soit $A_1, \ldots, A_n \in \mathcal{P}(E)$. On pose $A = \bigcap_{i=1}^n A_i$. Justifier que $\prod_{i=1}^n (\mathbb{1}_A \mathbb{1}_{A_i}) = 0$.
- $\textbf{3. En d\'eduire que } \operatorname{card}(A) = \sum_{k=1}^n (-1)^{k-1} \sum_{1\leqslant i_1 < i_2 < \dots < i_k \leqslant n} \operatorname{card}\left(\bigcap_{j=1}^k A_{i_j}\right).$

Exercice 14.

Quel est le nombre de relations d'ordre total sur un ensemble de cardinal $n \in \mathbb{N}^*$?

Exercice 15.

Soient r, m, n des entiers naturels. Montrer que

$$\sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k} = \binom{n+m}{r}$$

Exercice 16.

Soit $n \in \mathbb{N}^*$. On se donne n entiers relatifs. Montrer que l'on peut former un multiple de n en additionnant certains de ces n entiers.

Exercice 17.

- $\begin{array}{l} \textbf{1.} \ \text{Soit} \ x \in \mathbb{R} \ \text{et} \ n \in \mathbb{N}^*. \ \text{En considérant les réels} \ \delta_k = kx \lfloor kx \rfloor \ \text{pour} \ k \in \llbracket 0, n \rrbracket, \\ \text{montrer qu'il existe un couple} \ (p,q) \in \mathbb{Z} \times \mathbb{N}^* \ \text{tel que} \ q \leqslant n \ \text{et} \ \left| x \frac{p}{q} \right| < \frac{1}{nq}. \end{aligned}$
- **2.** Soit $x \in \mathbb{R} \setminus \mathbb{Q}$.
 - a. Montrer qu'il existe une infinité de couples $(p,q)\in\mathbb{Z}\times\mathbb{N}^*$ tels que $\left|x-\frac{p}{q}\right|<\frac{1}{q^2}.$
 - **b.** Montrer qu'il existe une infinité d'entiers $p\in\mathbb{Z}$ tels qu'il existe $q\in\mathbb{N}^*$ tel que $\left|x-\frac{p}{q}\right|<\frac{1}{q^2}$.
- 3. On admet l'irrationalité de π . En particulier, $\sin n \neq 0$ pour tout $n \in \mathbb{N}^*$. On pose alors $u_n = \frac{1}{n \sin n}$ pour tout $n \in \mathbb{N}^*$. On suppose que la suite (u_n) admet une limite $l \in \overline{\mathbb{R}}$.
 - **a.** Montrer que l = 0.
 - **b.** Aboutir à une contradiction en appliquant le résultat de la question **2.b** à π .

Exercice 18.

Une classe comporte 30 élèves. De combien de façons peut-on constituer répartir les élèves en trinômes ?

Exercice 19.

Combien existe-t-il d'anagrammes des mots suivants : «MATHS», «MOTO», «DODO», «ANAGRAMME», «ANTICONSTITUTIONNELLEMENT» ?

EXERCICE 20.

Dénombrer le nombre

- 1. d'applications d'un ensemble à m éléments dans un ensemble à n éléments ;
- 2. de bijections entre deux ensembles à n éléments ;
- 3. d'injections d'un ensemble à n-1 éléments dans un ensemble à n éléments ;
- 4. de surjections d'un ensemble à n éléments sur un ensemble à n-1 éléments.

Exercice 21.

Soit \mathcal{R} une relation d'équivalence sur un ensemble E de cardinal n. On suppose qu'il existe k classes d'équivalence pour \mathcal{R} et on note p le cardinal de

$$G = \{(x, y) \in E^2, xRy\}$$

 $\text{Montrer que } n^2 \leqslant kp.$

EXERCICE 22.

On dispose de 9 jetons numérotés de 1 à 9. On considère une matrice carrée de taille 3 composée de ces 9 jetons. On cherche à déterminer la probabilité p pour que le déterminant de la matrice soit impair.

1. Question préliminaire.

Soit
$$A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{Z}), n \geq 2.$$

Montrer que le déterminant de A est congru modulo 2 au déterminant de la matrice dont les coefficients sont les restes $r_{i,j}$ de la division euclidienne des $a_{i,j}$ par 2.

- 2. On note $\mathcal M$ l'ensemble des matrices carrées d'ordre 3 composées des 9 jetons. Déterminer $\mathrm{card}(\mathcal M)$.
- 3. On définit $\Omega = \{M \in \mathcal{M}, \det(M) \text{ impair}\}$ et Δ l'ensemble des matrices carrées d'ordre 3 dont cinq coefficients sont égaux à 1, quatre coefficients sont nuls et de déterminant impair.

Donner une relation entre $card(\Omega)$ et $card(\Delta)$.

- **4.** Détermination de card(Δ).
 - **a.** On considère une matrice de Δ dont une colonne possède trois coefficients égaux à 1.

Déterminer le nombre K₁ de ces matrices.

- **b.** On considère une matrice de Δ dont 2 colonnes possèdent exactement un coefficient nul. Déterminer le nombre K_2 de ces matrices.
- **c.** Calculer card(Δ).
- **d.** En déduire $card(\Omega)$.
- **5.** Déterminer la probabilité p.

Exercice 23.

Soit $n \in \mathbb{N}^*$. On pose $E_n = [\![1,n]\!]$ et on note \mathfrak{S}_n l'ensemble des permutations de E_n . On appelle foint fixe de $\sigma \in \mathfrak{S}_n$ tout élément α de E_n tel que $\sigma(\alpha) = \alpha$. Pour $p \in [\![0,n]\!]$, on note $S_{n,p}$ le nombre de permutations de E_n ayant exactement p points fixes.

- 1. a. Montrer que $S_{n,n} = 1$ et que $S_{n,n-1} = 0$.
 - **b.** Montrer que $\sum_{k=0}^{n} S_{n,k} = n!.$
- **2.** On pose $\omega_n = S_{n,0}$. On convient que $\omega_0 = 1$.
 - a. Montrer que pour tout $k\in[\![0,n]\!],$ $S_{n,k}=\binom{n}{k}\omega_{n-k}.$
 - **b.** En déduire que $\sum_{k=0}^{n} \frac{\omega_{n-k}}{k!(n-k)!} = 1.$
 - **c.** En raisonnant par récurrence, montrer que $\frac{\omega_n}{n!} = \sum_{k=0}^n \frac{(-1)^k}{k!}$.
 - **d.** En déduire $\lim_{n\to+\infty} \frac{\omega_n}{n!}$.

Exercice 24.

Soient $n\in\mathbb{N}^*$ et $k\in[\![1,n]\!].$ Déterminer le nombre de k-cycles de $\mathfrak{S}_n.$