UCL

Université catholique de Louvain

Case study: UCL's computer network

Quentin Hunin Network engineer

About myself

Graduated from UCL in 2011

Network engineer at ING Belgium between 2011 and 2013

Network engineer at UCL since 2013

Agenda

Some design considerations

Some figures

IP plan

Core network

External connections

Data-centers

Campus

DHCP / DNS

Monitoring and management tools

Design considerations

Applications give sense to IT infrastructures

but IT infrastructures make it possible.

Computer networks belong to the foundations.

Design considerations

- Optimal technical solution
- Cost and time
- History
- Existing agreements
- Management
- Compliancy and legal constraints
- Public tender rules
- Maintenance cost

...

Some figures

6 000 staff members

30 000 students

6 geographical sites (LLN, Woluwe, Saint-Gilles, Mons, Tournai, Charleroi)

100+ buildings

Tens of partners depending on our IT (non-profits organizations, hospitals, schools,...)

Some IT figures

- 3 main data-centers / 500 servers / 150 TB of storage
- 10 Gigabit connectivity towards research networks
- 5 Gigabit commercial bandwidth
- 7 core L3 switches
- 500 Ethernet access and distribution switches
- 25.000 network outlets
- 900 WiFi access points supporting up to 12.000 clients
- 30 kms of fiber cables

How we connect

What we connect and power

The big picture

IP prefixes

130.104.0.0/16

192.135.167.0/23

193.191.171.0/24

→ no NAT needed

2001:6a8:3080::/44

IPv4 addressing plan

- No addressing plan at that time
- Started with a first asked first served assignment

IPv6 addressing plan

Encode information inside the prefix to:

have smaller routing tables.

make filtering rules easier and more readable

Core network

- 10 Gbit/s inter router links
- Dual stack IPv4 / IPv6.
- Supports unicast and multicast traffic forwarding

Core network

Cisco 6509-E

Service Général du Système d'Information (SGSI)

CtPythagore# ping FE80::172:31:0:21

Output Interface: Vlan981

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to FE80::172:31:0:21, timeout is 2 seconds:

Packet sent with a source address of FE80::172:31:0:22%Vlan981

11111

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Service Général du Système d'Information (SGSI)

2001:6A8:3081:F000:172:31:0:27/128

Service Général du Système d'Information (SGSI)

Service Général du Système d'Information (SGSI)

Cisco IOS Software, s2t54 Software (s2t54-IPSERVICESK9-M), Version 15.1(2)SY7, RELEASE SOFTWARE (fc4) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2016 by Cisco Systems, Inc. Compiled Sun 13-Mar-16 07:14 by prod_rel_team

Hardware	Cisco 6509 (WS-C6509-E)
Operating system	Cisco IOS 15.1(2)SY7 (IPSERVICESK9)
System name	ctpythagore.sri.ucl.ac.be
Contact	UCL/SRI, +32 (10) 47 2611, sri@sri.ucl.ac.be
Serial	SMC09210001
Uptime	313 days, 52m 17s

Te2/1, Te2/2, Te2/3, Te2/4, Te2/5, Te2/6, Te2/7, Te2/8, Te2/9, Te2/10, Te2/11, Te2/12, Te2/13, Te2/14, Te2/15, Te2/16, Te5/4, Te5/5, NDE_0, Gi1/1, Gi1/2, Gi1/3, Gi1/4, Gi1/5, Gi1/6, Gi1/7, Gi1/8, Gi1/9, Gi1/10, Gi1/11, Gi1/12, Gi1/13, Gi1/14, Gi1/15, Gi1/16, Gi1/17, Gi1/18, Gi1/19, Gi1/10, Gi1/11, Gi1/12, Gi1/13, Gi1/14, Gi1/15, Gi1/16, Gi1/17, Gi1/18, Gi1/19, Gi1/20, Gi1/21, Gi1/22, Gi1/23, Gi1/24, Gi5/1, Gi5/2, Gi5/3, Gi8/1, Gi8/2, Gi8/3, Gi8/4, Gi8/5, Gi8/6, Po24, Vlan1, Vlan134, Vlan196, Vlan200, Vlan201, Vlan203, Vlan207, Vlan208, Vlan209, Vlan211, Vlan212, Vlan213, Vlan214, Vlan216, Vlan217, Vlan218, Vlan219, Vlan220, Vlan221, Vlan223, Vlan223, Vlan224, Vlan225, Vlan226, Vlan227, Vlan230, Vlan231, Vlan232, Vlan233, Vlan234, Vlan235, Vlan236, Vlan237, Vlan238, Vlan239, Vlan240, Vlan241, Vlan242, Vlan243, Vlan244, Vlan245, Vlan246, Vlan247, Vlan248, Vlan249, Vlan250, Vlan252, Vlan253, Vlan255, Vlan256, Vlan257, Vlan258, Vlan259, Vlan260, Vlan261, Vlan262, Vlan264, Vlan265, Vlan266, Vlan267, Vlan268, Vlan269, Vlan270, Vlan271, Vlan272, Vlan273, Vlan274, Vlan275, Vlan276, Vlan277, Vlan298, Vlan299, Vlan303, Vlan307, Vlan308, Vlan309, Vlan310, Vlan484, Vlan814, Vlan815, Vlan816, Vlan817, Vlan818, Vlan819, Vlan820, Vlan821, Vlan842. Vlan844. Vlan844. Vlan848.

External connections

- Connects the internal network to the Internet through a ISP
 - → BGP is used for this.

- Connects remote sites
 - → L2 and L3 VPNs provided by ISP or directly over the Internet
- No DMZ in our case

Internet connectivity

Service Général du Système d'Information (SGSI)

Internet connectivity

- Default route ::/0 announced by ISP on both BGP sessions
- UCL's prefix announced on both BGP session to ISP
- Local pref on both side decide which link is active
- Filters on both side protects from incorrect announcements

CtCarnoy# show ip bgp ipv6 unicast

BGP table version is 3, local router ID is 193.191.X.Y

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,

x best-external, a additional-path, c RIB-compressed,

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

r ::/0 2001:6A8:3000:8002::1

100 0 2611 i

r>i ::/0 2001:6A8:A00:8015::1

0 **200** 0 2611 i

CtPythagore# show ipv6 route

IPv6 Routing Table - default - 82 entries

Codes: C - Connected, L - Local, S - Static, U - Per-user Static route

B - BGP, R - RIP, I1 - ISIS L1, I2 - ISIS L2

IA - ISIS interarea, IS - ISIS summary, D - EIGRP, EX - EIGRP external

ND - ND Default, NDp - ND Prefix, DCE - Destination, NDr - Redirect

O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2

ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2

B ::/0 [20/0]

via FE80::327C:5EFF:FE9F:3428, TenGigabitEthernet2/13

CtPythagore# ping 2001:4860:4860::8888 source Loopback 0

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 2001:4860:4860::8888, timeout is 2 seconds:

Packet sent with a source address of 2001:6A8:3081:F000:172:31:0:22

!!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/7/8 ms

Internet connectivity

- Other routers need to learn the default route
- Can be achieved by configuring BGP on each router or

ask OSPF to generate and announce a default route

Service Général du Système d'Information (SGSI)

fe80::172:31:0:27 fe80::172:31:0:27

CtStevin

Security considerations

Make it robust by inserting static routes to null 0 on each router

```
ipv6 route 100::/8 null 0
```

ipv6 route 2001:db8::/32 null 0

ipv6 route 2001:6a8:3080::/44 null 0

(...)

Security considerations (2)

- A big part of the IT threats come from the Internet
- ACLs are currently protecting the edge of the network mainly L3 and L4 filtering rules stateless filtering

catholique

Security considerations (3)

Packet Filter Firewall

Security considerations (4)

IPv6 access list belnet-in-ipv6-acl (snapshot)

deny ipv6 2001:6A8:3080::/44 any (24 matches)

permit udp any host 2001:6A8:3081:1::53 eq domain (1 match)

permit udp any host 2001:6A8:3081:2::53 eq domain

permit udp any host 2001:6A8:3082:1::53 eq domain (2 matches)

deny udp any any eq domain (111 matches)

Security considerations (4)

Project ongoing to install next generation firewalls at the edge

Data-centers

- Hosts business critical applications and data
- Security and high availability are very important
- Virtualization is a key component for efficiency, scalability and elasticity but imposes constraints to the network


```
Device Status
      Name: PORTAIL UCL
   DNS Name: uclouvain.be.
   Address: 130.104.5.100
    Status: UP (Reachable since 04 Feb, 19:50:52)
     Probe: Probe Group
Recent Outages:
  04/02 19:49:52: DOWN for 1 minute, 0 seconds
 20/12 13:25:07: DOWN for 9 minutes, 0 seconds
 09/12 05:01:05: DOWN for 2 hours, 19 minutes
 08/12 10:36:54: DOWN for 7 minutes, 2 seconds
 07/12 22:36:45: DOWN for 10 hours, 5 minutes
 05/12 06:52:03: DOWN for 1 minute, 0 seconds
 03/12 11:44:19: DOWN for 1 minute, 0 seconds
 01/12 13:09:33: DOWN for 9 minutes, 0 seconds
 01/12 08:57:29: DOWN for 11 minutes, 0 seconds
 10/11 16:37:21: DOWN for 1 minute, 0 seconds
Last updated 08 Feb, 13:42:09
Member Probes
    OK: HTTP
               PORTAIL UCL
Device Status
     Status: UP (Reachable since 01 Dec, 09:02:36)
     Probe: HTTP (port 80)
   Up Time: n/a
                          100 % (of 518 days, 5 hours, 58 minutes)
 Availability:
  TCP Failures:
                          0.01 % (of 745933 total attempts)
  Short-term Packet Loss: 0.0 % (of 100 last attempts)
  Recent Failure: 1 attempts at 01 Dec, 09:02:06
  Response time: 75 msec
```

Data-centers

- Redundant connection to electrical grid
- UPS / diesel power generator
- Redundant servers / switches / connections
- Redundant power supplies
- Strict access-control
- Advanced fire protections
- Strict temperature and humidity conditions
- Dust control
- Disaster recovery plan

Data-centers layers

- Security layer (ACLs, network firewall, server firewall, application firewall)
- Load-balancing
- Application servers
- Load-balancing
- Database servers

Data-centers: load-balancer

- Shares the load between a pool of servers
- Servers can be removed or added to the pool on the fly
 - for maintenance purposes
 - due to an outage
 - to increase or decrease capacity
- Can provide SSL offloading

Data-centers: load-balancer

- -Different load-spread techniques:
 - round robin
 - number of active connections
 - response time
- Servers inside pool are monitored using probes
 - ping
 - tcp connection
 - application call

Data-centers

Campus

The wide part of UCL's network

Switches are located in patchrooms

How patching is done

Example of a badly managed patchroom

properly managed patchroom

properly managed patchroom

Distribution and access layer

Each building is based on the same design

- 1 building switch:
 - connected using fiber to the core network connected using copper to access layer switches
- Several access switches:
 hold device connections
- STP used to avoid loops at L2
- L3 routing done on core switch

Distribution and access layer

VLANs used to separate traffic from different groups at L2

Desktops used by students

Desktops used by staff members

Printers

IP phones

. . .

QoS

- Prioritization needed because of the wide range of devices and applications using the network
- Different RTT, jitter and bandwidth constraints
- Kicks in only when congestion occurs
- Packets are tagged with a priority
- Voice calls get the highest priority but at low bandwidth
- Security cameras flows get higher priority
- Other flows get normal priority
- Access ports with more than 50Mbits/s traffic get low priority

Security considerations

- Enforce security rules as close as possible to the source.
- Switches inspect user traffic to:
 - drop unauthorized router advertisements (RA)
 - deny unauthorized DHCP servers
 - allow traffic only if DHCP transaction completed
 - avoid address spoofing
- -Routers check if source IP correspond to the defined network
- ACLs are applied on specific networks

Service Général du Système d'Information (SGSI)

01-16-012#sh ipv6 neighbors binding

Binding Table has 79 entries, 79 dynamic

Codes: L - Local, S - Static, ND - Neighbor Discovery, DH - DHCP, PKT - Other Packet, API - API created

IPv6 address Link-Layer addr Interface vlan prlvl age state Time left

ND FE80::FAB1:56FF:FECB:10A5 F8B1.56CB.10A5 Gi1/0/2 238 0005 4mn REACHABLE 24 s try 0

ND 2001:6A8:3081:4160:F803:99A6:37CA:53DF E8EA.6A00.159B Gi1/0/38 225 0005 237mn STALE 73544 s

Address assignment

- Avoid manually assigned addresses:
 - generates a lot of configuration burden
 - prone to human error
- Unable to dynamically renumber a network
- Exceptions exist for network devices and specific servers

DHCP

- One global redundant DHCP infrastructure hosted in the DC
- Routers act as a DHCP relay agent

catholique de Louvain

DHCP monitoring

Adr. IP utilises: 712 adresse(s) 291 adresse(s) 538 adresse(s)

Number of distributed IPs on a DHCP pool used for WiFi

DNS

Service Général du Système d'Information (SGSI)

-qhunin@vps73519:~\$ dig @130.104.1.1 uclouvain.be NS

-(...)

-;; QUESTION SECTION:

-;uclouvain.be. IN NS

-;; ANSWER SECTION:

-uclouvain ha

-uclouvain.be.

-uciouvairi.be.	004000	IIN	INO	1133.311.001.80.06.
-uclouvain.be.	604800	IN	NS	ns2.belnet.be.
-uclouvain.be.	604800	IN	NS	ns1.sri.ucl.ac.be.
-uclouvain.be.	604800	IN	NS	ns2.sri.ucl.ac.be.

INI

IN

NIS

NS

ne3 eri ucl ac ha

ns1.belnet.be.

604800

604800

-;; ADDITIONAL SECTION:

-ns1.sri.ucl.ac.be.	604800	IN	Α	130.104.1.1
-ns2.sri.ucl.ac.be.	604800	IN	Α	130.104.1.2
-ns3.sri.ucl.ac.be.	604800	IN	Α	130.104.254.1
-ns1.sri.ucl.ac.be.	604800	IN	AAAA	2001:6a8:3081:1::53
-ns2.sri.ucl.ac.be.	604800	IN	AAAA	2001:6a8:3081:2::53
-ns3.sri.ucl.ac.be.	604800	IN	AAAA	2001:6a8:3082:1::53

DNS

- Two different views:

one for the external world

DNS servers respond only for UCL's domains

one for the internal network

DNS servers respond for all domains

recursive DNS

DNS - security

- DNSSec: DNS responses are signed using cryptography
- Hidden master: holds the authoritative DB
 does not serve client queries

Service Général du Système d'Information (SGSI)

67

catholique de Louvain

DNS monitoring

Nbr of incoming DNS requests per second on NS1

Monitoring tools

- Essential to see, detect and understand

what happened

what's happening

what will happen

- Used for proactive and reactive action during:

incidents

capacity planning

design

- Uses SNMP, netflows, syslog and/or CLI to collect data 69

Management tools

- Essential to be able to scale
- Examples:

configuration backup automation
software update automation
automated configuration deployment

. . .

Graphique hebdomadaire (sur 30 minutes : Moyenne)

Max Moyenne Actuel
Clients: 10 kClients 1715 Clients 9652 Clients
Sortie 10 kClients 1715 Clients 9652 Clients

Total number of simultaneous WiFi clients

Graphique hebdomadaire (sur 30 minutes : Moyenne)

 Max
 Moyenne
 Actuel

 Entrée
 185.8 Mb/s (1.9%)
 14.3 Mb/s (0.1%)
 105.5 Mb/s (1.1%)

 Sortie
 949.8 Mb/s (9.5%)
 126.0 Mb/s (1.3%)
 627.7 Mb/s (6.3%)

Student's bandwidth usage on WiFi

Graphique quotidien (sur 5 minutes : Moyenne)

Max Moyenne Actuel
2.4Ghz: 91 Clients 20 Clients 53 Clients
5Ghz: 104 Clients 19 Clients 32 Clients

Number of connected clients on one of the WiFi access points in the SC10 auditorium

Graphique quotidien (sur 5 minutes : Moyenne)

Max Moyenne Actuel

2.4Ghz: 64 % 9 % 13 % **5Ghz:** 55 % 2 % 1 %

Medium usage on one of the WiFi access points in the SC10 auditorium

WiFi is slow

-Is it due to:

user's computer

a coverage issue

interference issue

saturated WiFi access point

saturated uplink on the wired part

WiFi controller issue

Limit of available commercial bandwidth reached

Service provider issue

Destination website issue

Infrastructures des réseaux du Système d'information (SRI) Service Général du Système d'Information (SGSI)

UCL

Université catholique de Louvain