Algebra - un'introduzione

Davide Borra* - UniTN

9 novembre 2022

Indice

1	$\mathbf{Un'}$	introduzione formale	-
	1.1	Insiemi e relazioni	
		1.1.1 Relazioni di equivalenza	

1 Un'introduzione formale

1.1 Insiemi e relazioni

DEF (Insieme). Si dice insieme una collezione X di oggetti, detti elementi dell'insieme. Si scrive $x \in X$.

DEF (Prodotto cartesiano). Siano X, Y insiemi. Si definisce prodotto cartesiano di X e Y l'insieme delle coppie ordinate in cui il primo elemento appartiene a X e il secondo appartiene a Y

$$X\times Y:=\{(x,y)\mid x\in X,y\in Y\}$$

DEF (Relazione). Sia X un insieme. Si definisce relazione un insieme $R \subseteq X \times X$

Proprietà delle relazioni Una relazione può soddisfare 4 proprietà:

- (R) Riflessiva: $(x, x) \in R \forall x \in X$
- (S) Simmetrica: $(x, y) \in R \Rightarrow (y, x) \in R$
- (A) Antisimmetrica: $(x,y) \in R, (y,x) \in R \Rightarrow x = y$
- (T) Transitiva: $(x, y) \in R, (y, z) \in R \Rightarrow (x, z) \in R$

1.1.1 Relazioni di equivalenza

DEF (Relazione di equivalenza). Una relazione si dice relazione di equivalenza se soddisfa le proprietà riflessiva, transitiva e simmetrica.

• Notazione: $(x, y) \in R \Leftrightarrow x \sim y$

Una piccola postilla sulla notazione: qui ho specificato come notazione standard il simbolo \sim , ma a volte si usano anche altri simboli \equiv e \simeq . Rimane il fatto che sono simboli, per cui l'utilizzo di un preciso simbolo non comporta automaticamente una specifica relazione, che andrà definita caso per caso.

DEF (Classi di equivalenza). Siano X un insieme, \sim una relazione di equivalenza e $x \in X$. Si definisce classe di equivalenza di x l'insieme

$$[x] = \{ y \in X : y \sim x \}$$

Proprietà:

 $\bullet \ x \sim y \Leftrightarrow [x] = [y]$

Dimostrazione.

1. $x \sim y \Rightarrow [x] = [y]$

Si assume $x \sim y$. Preso $z \in [x]$, allora per definizione $z \sim x$. Per la proprietà transitiva segue che $z \sim y$, da cui $z \in [y]$. Preso $z \in [y]$, allora per definizione $z \sim y$. Per la proprietà simmetrica $y \sim x$. Di conseguenza per la proprietà transitiva $z \sim x$, da cui $z \in [x]$.

Quindi [x] = [y].

 $2. [x] = [y] \Rightarrow x \sim y$

Per definizione di classe di equivalenza $x \in [x]$. Siccome [x] = [y], $x \in [y]$. Allora per definizione di classe, $x \sim y$.

QED

• $x \nsim y \Rightarrow [x] \cap [y] = \emptyset$ (classi di equivalenza disgiunte)

Dimostrazione. Passo alla contronominale $[x] \cap [y] \neq \emptyset \Rightarrow x \sim y$. Affermare che due insiemi non sono disgiunti significa affermare che hanno un elemento z in comune $\exists z \in [x] : z \in [y]$, di conseguenza per definizione $z \sim x$ (per [R] $x \sim z$) e $z \sim y$. Di conseguenza per la proprietà transitiva, la tesi. QED