Inhalt

- Inhalt
- Wellen
 - Terminologie
 - * Oszillator
 - Formelzeichen
 - * Ausbreitungsgeschwindigkeit
 - * Wellenlänge
 - * Erreger-Frequenz
 - * Schnelle
 - Formeln
 - Inteferenz
 - * Gangunterschied
 - * Konstruktive Interferenz
 - * Destruktive Inteferenz
 - Diagramme zeichnen
 - * t s_y Diagramm an Ort x_0

Wellen

Terminologie

Oszillator

Viele Wellen bestehen aus Oszillatoren die Schwingen, und dann andere anstoßen und zum Schwingen bringt. Ein Oszillator ist also ein Schwingendes Teilchen.

Formelzeichen

Ausbreitungsgeschwindigkeit

$$c = \left[1\frac{m}{s}\right]$$

Wellenlänge

$$\lambda = [1m]$$

Die Wellenlänge ist der x-Abstand eines Teilchens zum nächsten Teilchen im gleichen Schwingungszustand. Es ist vergleichbar mit der Schwingungsdauer T einer Schwingung.

Erreger-Frequenz

$$f=\left[1Hz=1s^{-1}\right]$$

Die Erregerfrequenz sagt aus mit Welcher Frequenz die Oszillatoren Schwingen. Folglich gibt es auch ein Erregerwellenlänge.

Schnelle

$$v = \left[\frac{m}{s}\right]$$

Die Schnelle beschreibt lediglich die Geschwindigkeit der Oszillatoren

Querwelle/Transversalwelle	Längswelle/Longitudinalwelle
v und c sind senkrecht	v und c sind parallel

Formeln

Die Wellenlänge, Erreger-Frequenz und Ausbreitungsgeschwindigkeit sind abhängig voneinander:

$$c = \lambda \cdot f$$
 $\lambda = \frac{c}{f}$ $f = \frac{c}{\lambda}$

Inteferenz

Bei der Inteferenz zweier Wellen schauen wir uns haupsächlich die Inteferenz zweier Wellen mit gleicher Frequenz an.

Gangunterschied

Die Verschiebung auf der x-Achse zweier Wellen nennt man Phasenunterschied.

Eine **Phase** ist einmal hin und her Schwingen, und entspricht $\phi = 2\pi$

Der Gangunterschied bzw. Phasesnunterschied beschreibt die Strecke, um die die zweite Welle von der ersten Verschoben ist. Das heißt man mus sowohl die Phase, als auch die Wellenlänge mit einberechnen

$$\delta = \lambda \cdot \frac{\Delta \phi}{2\pi}$$

Konstruktive Interferenz

Da man die Resultierende Welle bei einer Überlagerung von zweien durch einfache Addition beider Funktionen errechnet, addieren sich einfach die Amplituden der beiden Wellen, wenn der Gangunterschied δ ein ganzzahliges Vielfaches der Wellenlänge λ ist.

$$\delta = k \cdot \lambda \qquad k \in \mathbb{N}$$

Destruktive Inteferenz

Genauso subtrahieren sich beide Amplituden der Wellen, bei einer Phasendifferenz halb so groß wie die Wellenlänge.

$$\delta = (2k-1) \cdot \frac{1}{2}\lambda \qquad k \in \mathbb{N}$$

Diagramme zeichnen

t - $s_{\boldsymbol{y}}$ - Diagramm an Ort \boldsymbol{x}_0

- 1. Berechne die Zeit t, welche die Störung auf dem Wellenträger benötigt, um den Ort x_0 zu erreichen: $c = \frac{s_x}{t}$ $t = \frac{s_x}{c}$
- 2. an diesem Ort beginnt der Oszillator die Schwingung auszuführen, welche am Ort x = 0 begonnen hat. **Achtung**: Anfangsbedingung beachten (Auslenkung nach oben oder unten)
- 3. benötigt wird jetzt zusätzlich die Schwingungsdauer T oder die Frequenz f und die Amplitude $\hat{s_y}$.