NASA Contractor Report 159628

(NASA-CR-159628) STUDIES OF THE ACOUSTIC TRANSMISSION CHARACTERISTICS OF COAXIAL NOZZLES WITH INVERTED VELOCITY PROFILES: COMPREHENSIVE DATA REPORT Final Report (Lockheed-Georgia Co., Marietta.) 182 p

N79-27933

Unclas G3/71 30058

STUDIES OF THE ACOUSTIC TRANSMISSION CHARACTERISTICS OF COAXIAL NOZZLES WITH INVERTED VELOCITY PROFILES: COMPREHENSIVE DATA REPORT

P. D. Dean, M. Salikuddin, K. K. Ahuja H. E. Plumblee, and P. Mungur

LOCKHEED-GEORGIA COMPANY Marietta, GA 30063

CONTRACT NAS3-20797 MAY 1979

Lewis Research Center Cleveland, Ohio 44135

1. Report No. NASA CR-159628	2. Government Access	ion No.	3. Recip	sient's Catalog No.		
4. Title and Subtitle			5. Repo	rt Date		
STUDIES OF THE ACQUIST!	C TRANSMISSION CHA	RACTERIST	ics	May 1979		
STUDIES OF THE ACOUSTIC TRANSMISSION CHARA OF COAXIAL NOZZLES WITH INVERTED VELOCITY Volume 1				rming Organization Code		
7. Author(s)			8. Perfo	rming Organization Report No.		
P. D. Dean, M. Salikud	din K K Abula	•				
H. E. Plumblee, and P.						
			10. Work	Unit No.		
9. Performing Organization Name and Addr				•		
Lockheed-Georgia Compa	•		11. Contr	ract or Grant No. /		
Marietta, Georgia 3006	3			NAS3-20797		
`						
12 5			13. Туре	13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address	•			Contract Report		
National Aeronautics a Washington, D. C.	nd Space Administra	ation	14. Spon	soring Agency Code		
15. Supplementary Notes						
Final Report. Project	Manager, A. M. Ka	rchmer. V	/STOL and Noise	e Division.		
NASA-Lewis Research Ce						
				·		
16. Abstract				•		
Lockheed Program Manager, H. E. Plumblee, Jr.						
realistically be used to validate this methodolog internal noise source in coannular nozzle system convergence angle, core numbers and temperatures reference 1. Relevant s	examine the effecy. The result was the jet nozzles. were then investigation length to were studied. Mapectral data only	ts of the the choi Noise tr ated. In o annulus in result is presen	lop a test method test parameter ce of an acoustransmission character, the height ratio as of the study ted here in the	hodology which could rs, and (3) to tic impulse as the racteristics of a need flow Mach were described in		
realistically be used to validate this methodolog internal noise source in coannular nozzle system convergence angle, core numbers and temperatures reference 1. Relevant s	examine the effecy. The result was the jet nozzles. were then investigation length to were studied. Mapectral data only	ts of the the choi Noise trated. In o annulus in result is presenonal freq	lop a test method test parameter ce of an acoustransmission character, the height ratio as of the study ted here in the	hodology which could rs, and (3) to tic impulse as the racteristics of a need flow Mach were described in		
realistically be used to validate this methodology internal noise source in coannular nozzle system convergence angle, core numbers and temperatures reference 1. Relevant souzzle transfer function function. 17. Key Words (Suggested by Author(s)) Acoustic Measurements, Aco	examine the effecty. The result was the jet nozzles. were then investigates are studied. Mapectral data only versus nondimensions are studied.	ts of the the choi Noise trated. In o annulus in result is presenonal freq	lop a test method test parameter ce of an acoustansmission character, the height ratio as of the study ted here in the uency.	hodology which could rs, and (3) to tic impulse as the racteristics of a need flow Mach were described in		
realistically be used to validate this methodology internal noise source in coannular nozzle system convergence angle, core numbers and temperatures reference 1. Relevant souzzle transfer function in the composition of the	examine the effecty. The result was the jet nozzles. were then investigates are studied. Mapectral data only versus nondimensions are studied. Were studied are studied are studied are studied. We were studied are studied a	ts of the the choi Noise trated. In o annulus in result is presenonal freq	lop a test method test parameter ce of an acoustansmission character, the height ratio as of the study ted here in the uency.	hodology which could rs, and (3) to tic impulse as the racteristics of a ne effects of fan and flow Mach were described in e form of normalized		
realistically be used to validate this methodology internal noise source in coannular nozzle system convergence angle, core numbers and temperatures reference 1. Relevant souzzle transfer function in the coannular nozzle transfer function. 17. Key Words (Suggested by Author(s)) Acoustic Measurements, Acoustic Measurements, Acoustics, Electric Source, Gun Shot, Internal	examine the effecty. The result was the jet nozzles. Were then investigates are studied. Mapectral data only versus nondimension versus nondimensions, Engine Noise, Inverted	ts of the the choi Noise trated. In o annulus in result is presenonal freq	lop a test method test parameter ce of an acoustansmission characteristic and the result of the study ted here in the uency. Ton Statement Unclassified	hodology which could rs, and (3) to tic impulse as the racteristics of a he effects of fan and flow Mach were described in a form of normalized		
realistically be used to validate this methodology internal noise source in coannular nozzle system convergence angle, core numbers and temperatures reference 1. Relevant souzzle transfer function in the coannular nozzle transfer function. 17. Key Words (Suggested by Author(s)) Acoustic Measurements, Aco Duct Acoustics, Electric Source, Gun Shot, Internal Velocity and Temperature Coannulations.	examine the effecty. The result was the jet nozzles. Were then investigates are studied. Mapectral data only versus nondimension versus nondimensions, Engine Noise, Inverted oaxial Jets,	ts of the the choi Noise trated. In o annulus in result is presenonal freq	lop a test method test parameter ce of an acoustansmission characteristic and the result of the study ted here in the uency.	hodology which could rs, and (3) to tic impulse as the racteristics of a he effects of fan and flow Mach were described in a form of normalized		
realistically be used to validate this methodology internal noise source in coannular nozzle system convergence angle, core numbers and temperatures reference 1. Relevant souzzle transfer function in the coannular nozzle transfer function. 17. Key Words (Suggested by Author(s)) Acoustic Measurements, Acoustic Measurements, Acoustics, Electric Source, Gun Shot, Internal	examine the effecty. The result was the jet nozzles. Were then investigates are studied. Mapectral data only versus nondimension versus nondimensions, Engine Noise, Inverted oaxial Jets, Flow, Nozzle	ts of the the choi Noise trated. In o annulus in result is presenonal freq	lop a test method test parameter ce of an acoustansmission characteristic and the result of the study ted here in the uency. Ton Statement Unclassified	hodology which could rs, and (3) to tic impulse as the racteristics of a he effects of fan and flow Mach were described in a form of normalized		
realistically be used to validate this methodology internal noise source in coannular nozzle system convergence angle, core numbers and temperatures reference 1. Relevant souzzle transfer function nozzle transfer function 17. Key Words (Suggested by Author(s)) Acoustic Measurements, Aco Duct Acoustics, Electric Source, Gun Shot, Internal Velocity and Temperature Compulse Noise, Multilayer	examine the effecty. The result was the jet nozzles. Were then investigates are studied. Mapectral data only versus nondimension versus nondimensions, Engine Noise, Inverted oaxial Jets, Flow, Nozzle	ts of the the choi Noise trated. In o annulus in result is presenonal freq	lop a test method test parameter ce of an acoustansmission characteristic and the result of the study ted here in the uency. Ton Statement Unclassified	hodology which could rs, and (3) to tic impulse as the racteristics of a he effects of fan and flow Mach were described in a form of normalized		

CONTENTS

		Page
1.	Introduction	1
2.	Nozzle Transfer Function Amplitudes	1
3.	Nozzle Configurations	3
4.	List of Test Points and Data Plots	3
5• ·	Data Plots	8
6.	List of Symbols	178
7.	References	179

1. INTRODUCTION

The present report complements Volume I (ref. 1) by presenting the acoustic data for all the coaxial nozzle configurations tested and described in reference 1. The data is presented in the form of plots of normalized nozzle transfer function as a function of kR for 'source in core' case and as a function of kh for 'source in fan' case. Nozzle configurations, test plan, methods of data acquisition and other details relevant to this report have already been given at length in Section 3 of Volume I. However, in order to minimize cross reference between the two reports, a few details presented in Volume I may be repeated here.

NOZZLE TRANSFER FUNCTION AMPLITUDES

The power spectra of edited in-duct and far-field signals are obtained by the Fourier transform of each pulse using the digital FFT signal analyzer. These data (512 spectral points of constant bandwidth) are recorded on cassettes and then transferred to a mini-computer for frequency response and atmospheric corrections. Each corrected record is then individually smoothed to remove fine detail of little practical interest. The transfer function spectra between the far-field and in-duct signals are then computed from these smoothed in-duct and far-field spectra.

The transfer function spectra between in-duct and far-field signals are also noisy in nature particularly in the higher frequency range. With this situation it is difficult to distinguish between the effect of any nozzle operating parameter, such as flow velocity, flow temperature, nozzle shape, etc. on the transfer functions. Therefore, to obtain a more meaningful comparison, an averaging procedure has also been used to smooth the transfer function spectra which is computed from the smoothed power spectra of individual signals. The smoothing technique used in this study can be illustrated as follows. The smoothed value of the function (or power spectra), at the Ith frequency point is given by

$$\vec{F}(1) = \frac{F_1(1)}{X_{1+m} - X_{1-m}} \tag{1}$$

where

$$F_{1}(1) = \frac{H}{3} \left\{ F(1-m) + 4F(1-m+1) + 2F(1-m+2) + 4F(1-m+3) + \cdots + 2F(1+m-2) + 4F(1+m-1) + F(1+m) \right\}$$
(2)

(Simpson rule for integrating 2m+1 points)

 $X_I = coordinate of Ith point$

H = difference between the coordinates of two successive
points

2m+1 = number of points used for averaging

Let n = 2m+1.

In the smoothing procedure, the number of points n has been varied with respect to frequency. The number n is chosen such that it becomes equal to the composed band for a given frequency, up to a maximum of 31 points. (The difference between two successive points is the bandwidth which is 200 Hz in this case.) The smoothing process is repeated three times to obtain a more uniform variation. The number of points, n used in smoothing is given by

$$n = 1/\sqrt{2}$$
 (rounded up) ≤ 31 .

(If n comes out to be even, then it is increased by one.)

Nozzle transfer function $\tilde{F}(I)$ at a given frequency is further normalized by a procedure which relates the measured sound pressures at any fixed polar angle to that which would be given from a point source of equivalent power in free space. The standard normalization distance is one meter.

The basic assumption is that the measured incident pressure spectrum in the duct is uniform over the cross-section.

The in-duct power is then given by $(1+M_D)^2~p_D^2 \cdot A_D/\rho_D c_D$ where M_D is duct mean flow Mach number, A_D is duct cross-section, $\rho_D c_D$ is the characteristic in-duct acoustic impedance and p_D^2 is the mean square pressure of the outgoing acoustic wave measured in-duct.

The intensity at one meter from the equivalent in-duct source is

$$I_{D} = \frac{P_{D}^{2} A_{D} (1 + M_{D})^{2}}{\rho_{D} C_{D} 4\pi}$$
 (4)

and the intensity at one meter transformed from far-field measurements at radius R_{m} meters is given by

$$I_{\text{rad}} = \frac{p_{\text{rad}}^2(\theta) R_{\text{m}}^2}{\rho_0 C_0} \qquad (5)$$

where $p_{\rm rad}^2(\theta)$ is the mean square pressure of the acoustic wave measured in the far field and ρ_0c_0 is the characteristic free-field acoustic impedance.

The normalized nozzle transfer function is the ratio of I_{rad}/I_D , i.e.

$$NTF = \left(\frac{p_{rad}^2(\theta)}{p_D^2}\right) \left(\frac{4\pi R_m^2}{A_D}\right) \frac{\rho_D c_D}{\rho_O c_O} \frac{1}{(1+M_D)^2}.$$
 (6)

Note that the first term in brackets on the right-hand side of equation (6) is the measured transfer function obtained from the spectra of edited far-field and in-duct outgoing signals and is taken to be equal to $\tilde{F}(I)$ of equation (1) above for plotting purposes.

It is important to point out that the values of NTF at a given value of nondimensional frequency in the NTF spectra shown here are different from those plotted in directivity plots of Volume I. The reason for this is that the values used in directivity plots at the Ith frequency were obtained by averaging the smoothed transfer function data \vec{F} between the frequency points $1/\sqrt{2}$ to $1 \times \sqrt{2}$ [see equation 3-3 of Volume I (ref. 1)] and normalized. Such averaging was not performed to the data presented here.

3. NOZZLE CONFIGURATIONS

The relevant geometric parameters for the coaxial nozzle system are given in Table 1. The convergence angle α , of nozzles 1, 2, and 3 was 20° and that of nozzles 4, 5 and 6 was 40°.

Test Plan

The nozzle system consists of a primary and secondary (fan) nozzle, each with its own nozzle transmission coefficient. Two sets of measurements were thus required for primary and fan nozzle, respectively. As shown in Table 2, each of the outer nozzles was tested for the unheated conditions with the source located in the fan. With the source located in the primary (or core), only the outer nozzles designated 1, 2 and 3 were used.

The heated-jet tests were, however, limited to the measurement of the fan nozzle transmission coefficient only. Only two nozzles (#1 and #2) were tested.

The figures where the corresponding data appears are also listed in this table.

4. LIST OF TEST POINTS AND DATA PLOTS

The test points and the figure numbers where the corresponding data appear are given in Tables 3, 4 and 5.

TABLE 1 RELEVANT GEOMETRIC PARAMETERS FOR COAXIAL NOZZLE SYSTEM

Nozzle	Number				, ,		Annulus Area	Area Ratio*
$\alpha = 20^{\circ}$	α = 40°	L/h	h (cm)	L (cm)	r _i (cm)	r ₂	A ₂ (cm ²)	A ₂ /A ₁
1	4	1	1.37	1.37	4.12	5.49	41.45	0.91
2	5	3	1.71	5.12	5.12	6.83	64.14	1.41
3	6	5	2.26	11.30	6.78	9.04	112.21	2.46

 $A_1 = Primary Exit Area = 45.60 cm^2$.

TABLE 2 NOZZLE TEST SUMMARY

Outer Nozzle No.	Location of Source	Jet Condition	Figures Where the Data Appears
- 1,2 and 3	Primary	Unheated	1 - 19
1,2,3,4,5 and 6	Fan	Unheated	20 - 49
1 and 2	Fan	Heated	50 - 65

TABLE 3 DATA FOR UNHEATED JET WITH SOURCE IN CORE

TABLE 3 DATA FOR UNHEATED SET WITH SOURCE IN CORE							
Figure No.	МJ	MJ ₂	т _{R₁} (к)	т _{R2} (к)	T _{amb} (k)		
	NOZZLE 1, $\alpha = 20^{\circ}$, L/h = 1 · (P _{amb} = 9.79 × 10 ⁴ N/m ²)						
1 . 2 3 4 5 6 7	0.0 0.4 0.8 0.8 0.8 1.2	0.0 0.6 0.9 1.2 1.4 1.4	299.4 293.9 291.1 292.8 293.3 294.4 295.6	299.4 290.0 290.6 292.2 293.9 295.6 293.3	296.0 296.0 291.7 291.7 291.7 291.7		
	N	0ZZLE 2, 0 (P _{amb} = 9	α = 20°, L/h .85 × 10 ⁴ N/m	= 3 ²)			
8 9 10 11 12 13	0.0 0.4 0.8 0.8 0.8 1.2	0.0 0.6 0.9 1.2 1.4 1.4	296.7 293.3 294.4 293.3 294.4 293.9 295.6	292.2 293.3 290.6 293.3 291.1 290.0 292.8	295.4 290.4 290.1 290.8 289.9 290.0 290.6		
NOZZLE 3, $\alpha = 20^{\circ}$, L/h = 5 (P _{amb} = 9.79 x 10 ⁴ N/m ²)							
15 16 17 18 19	0.0 0.4 0.8 1.2 0.0	0.0 0.6 0.9 1.2	300.0 287.8 287.2 287.8 288.3	292.8 285.0 285.6 285.6 285.0	294.6 287.0 284.5 281.2 281.6		

TABLE 4 DATA FOR UNHEATED JET WITH SOURCE IN FAN

Figure No.	M_{J_1}	MJ ₂	Т _{R1} (к)	т _{R2} (к)	T _{amb} (K)	
NOZZLE 1, $\alpha = 20^{\circ}$, L/h = 1 $(P_{amb} = 9.83 \times 10^{4} \text{ N/m}^{2})$						
20 21 22 23 24	0.0 0.4 0.8 0.8	0.0 0.6 0.9 1.2	296.7 295.6 294.4 295.0 296.7	295.6 297.6 295.6 295.6 296.7	294.8 296.2 294.8 294.8 294.8	
	N	0ZZLE 2, (P _{amb} = 9.	$\alpha = 20^{\circ}, L/h = 90 \times 10^{4} N/m^{2})$	3		
25 26 27	0.0 0.4 0.8	0.0 0.6 0.9	298.3 291.7 291.1	291.7 290.0 289.4	294.1 287.9 286.5	
	N	OZZLE 3, (P _{amb} = 9.	$\alpha = 20^{\circ}, L/h = 83 \times 10^{4} N/m^{2})$	5	•	
28 29 30 31 32 33	0.0 0.4 0.8 0.8 1.2	0.0 0.6 0.9 1.2 1.2	287.2 285.6 287.2 287.2 287.2 286.7	285.0 284.4 286.7 285.6 285.6 285.0	288.2 288.5 286.5 284.8 283.1 282.2	
	N		$\alpha = 40^{\circ}, L/h = .91 \times 10^{4} N/m^{2}$	1		
34 35 36 37 38	0.0 0.4 0.8 1.2 0.0	0.0 0.6 0.9 1.4 1.2	297.8 289.4 290.0 287.2 295.6	292.2 288.9 289.4 285.0 290.6	286.3 284.4 285.0 288.6 288.6	
NOZZLE 5, $\alpha = 40^{\circ}$, L/h = 3 $(P_{amb} = 9.70 \times 10^{4} \text{ N/m}^{2})$						
39 40 41 42 43	0.0 0.4 0.8 0.8	0.0 0.6 0.9 1.2	300.0 290.6 291.1 288.9 299.4	295.0 289.4 291.1 286.1 290.1	294.2 293.3 295.0 293.7 289.5	
NOZZLE 6, $\alpha = 40^{\circ}$, L/h = 5 $(P_{amb} = 9.70 \times 10^{4} \text{ N/m}^{2})$						
44 45 46 47 48 49	0.0 0.4 0.8 0.8 1.2 0.0	0.0 0.6 0.9 1.2 1.2	293.3 288.3 288.3 287.8 287.8 287.8	292.2 288.3 288.3 287.2 287.2 287.2	294.5 289.5 287.1 286.1 286.1 286.1	

TABLE 5 DATA FOR HEATED JET WITH SOURCE IN FAN

Figure No.	MJ ₁	MJ ₂	τ _{R1} (κ)	т _{R2} (к)	T _{amb} (K)			
<u>-</u>	NOZZLE 1, = 20° , L/h = 1 $(P_{amb} = 9.76 \times 10^{4} \text{ N/m}^{2})$							
50 51 52 53 54 55 56 57 58 59 60	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.9 0.9 0.9 0.9 0.9 1.2 1.2 1.2	316.7 291.1 450.0 450.0 563.0 675.0 300.6 450.0 450.0 563.0 675.0	750.0 900.0 750.0 900.0 750.0 900.0 750.0 900.0 750.0	292.0 294.1 298.9 301.7 299.6 303.0 300.0 296.6 301.2 300.5 303.6			
	NOZZLE 2, $\alpha = 20^{\circ}$, L/h = 3 $(P_{amb} = 9.88 \times 10^{4} \text{ N/m}^{2})$							
61 62 63 64 65	0.8 0.8 0.8 0.8	0.9 0.9 0.9 1.2	290.0 450.0 450.0 296.1 450.0	750.0 600.0 750.0 750.0 750.0	300.9 299.1 298.1 296.6 298.5			

Figure 1 (a) Nozzlo N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Core

Figure 1(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 1 (c)

Figure 2(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 2(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 2(a) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Core

Figure 3(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 3(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 3(c) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 4(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 4(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 5 (a) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Core

Figure 5(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 6 Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Core

Figure 7(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Core

Figure 7 (b) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Core

Figure 8(a) Nozzle N 2 (L/h = 3 Convergence Angle = 20 Deg.); Source At Core

Figure 8(b)

Figure 8(c) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Core

Figure 9 (a) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Core

Figure 9 (b) Deg.): Source At Core

Figure 9(c) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Core

Figure10(a)

Figure10(b)

Figure 10(c) Nozzle N 2 (L/h = 3, Convergence Angle = 20 Deg.); Source At Core

Figure 11(a) Deg.);Source At Core

Figure 11(b) Deg.); Source At Core

Figure 12(a) Nozzle N 2 (L/h = 3, Convergence Angle = 20 Deg.); Source At Core

Figure 12(b) Deg.);Source At Core

Figure 13(a) Nozzle N 2 (L/h = 3. Convergence Angle = 20 Deg.); Source At Core

Figure 13(b) Nozzle N 2 (L/h = 3, Convergence Angle = 20 Deg.); Source At Core

Figure 14(a) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Core

Figure 14(b) Nozzle N 2 (L/h = 3, Convergence Angle = 20 Deg.); Source At Core

Figure 15(a) Nozzle N 3 (L/h = 5 , Convergence Angle = 20 Deg.); Source At Core

NONDIMENSIONAL FREQUENCY, KR
Figure 15(b) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 15(c) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 16(a) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 16(b) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 16(c) Nozzle N 3 (L/h = 5 , Convergence Angle = 20 Deg.); Source At Core

Figure 17(a) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 17(b)

Figure 17(c) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 18 Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 19(a) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 19(b) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 19(c) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Core

Figure 20(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 20(b)

Figure 20(c) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 21(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 21(b) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 21(c) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 22(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 22(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 22(c) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 23(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 23(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 23(c) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 24(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 24(b) Nozzle N 1 (L/h = 1. Convergence Angle = 20 Deg.); Source At Fan

Figure 24(c)

Figure 25(a) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 25(b) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 25(c) Nozzle N 2 (L/h = 3, Convergence Angle = 20 Deg.); Source At Fan

Figure 26(a) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 26(b) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Figure 26(c)

Figure 27(a) Nozzle N 2 (L/h = 3, Convergence Angle = 20 Deg.); Source At Fan

Figure 27(b) Nozzle N 2 (L/h = 3, Convergence Angle = 20 Deg.); Source At Fan

Figure 27(c) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 28(a) Nozzle N 3 (L/h = 5 , Convergence Angle = 20 Deg.); Source At Fan

Figure 28(b) Nozzle N 3 (L/h = 5 Convergence Angle = 20 Deg.);Source At Fan

Figure 28(c) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Fan

Figure 29(a)

Figure 29(b) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Fan

Figure 29(c) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Fan

Figure 30(a) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Fan

Figure 30(b)

Figure 30(c)

Figure 31(a)

Figure 31(b) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Fan

Figure 31(c)

Figure 32(a)

Figure 32(b) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Fan

Figure 32(c) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Fan

Figure 33(a) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Fan

Figure 33(b) Deg.);Source At Fan

Figure 33(c) Nozzle N 3 (L/h = 5, Convergence Angle = 20 Deg.); Source At Fan

Figure 34(a) Nozzle N 4 (L/h = 1, Convergence Angle = 40 Deg.); Source At Fan

Figure 34(b) Nozzle N 4 (L/h = 1 , Convergence Angle = 40 Deg.); Source At Fan

Figure 34(c) Nozzle N 4 (L/h = 1 , Convergence Angle = 40 Deg.); Source At Fan

Figure 35(a) Nozzle N 4 (L/h = 1 , Convergence Angle = 40 Deg.); Source At Fan

Figure 35(b) Nozzle N 4 (L/h = 1, Convergence Angle = 40 Deg.); Source At Fan

Figure 35(c) Nozzle N 4 (L/h = 1 , Convergence Angle = 40 Deg.); Source At Fan

Figure 36 (a)

Figure 36(b) Nozzle N 4 (L/h = 1 , Convergence Angle = 40 Deg.); Source At Fan

Figure 36(c) Nozzle N 4 (L/h = 1 , Convergence Angle = 40 Deg.); Source At Fan

Figure 37(a) Nozzle N 4 (L/h = 1 Convergence Angle = 40 Deg.); Source At Fan

Figure 37(b) Nozzle N 4 (L/h = 1, Convergence Angle = 40 Deg.); Source At Fan

107

Figure 37(c) Nozzle N 4 (L/h = 1 , Convergence Angle = 40 Deg.); Source At Fan

Figure 38(a) Nozzle N 4 (L/h = 1, Convergence Angle = 40 Deg.); Source At Fan

NONDIMENSIONAL FREQUENCY, Kh Figure 38(b) Nozzle N 4 (L/h = 1 , Convergence Angle = 40 Deg.); Source At Fan

Figure 38(c) Nozzle N 4 (L/h = 1, Convergence Angle = 40 Deg.); Source At Fan

Figure 39(a) Deg.);Source At Fan

Figure 39(b) Nozzle N 5 (L/h = 3 , Convergence Angle = 40 Deg.); Source At Fan

Figure 39(c) Nozzle N 5 (L/h = 3, Convergence Angle = 40 Deg.); Source At Fan

Figure 40 (a)

Figure 40(b)

Figure 40(c) Nozzle N 4 (L/h = 1, Convergence Angle = 40 Deg.); Source At Fan

Figure 41(a)

Figure 41(b) Nozzle N 5 (L/h = 3, Convergence Angle = 40 Deg.); Source At Fan

Figure 42(a) Nozzle N 5 (L/h = 3 , Convergence Angle = 40 Deg.); Source At Fan

Figure 42(b) Nozzle N 5 (L/h = 3, Convergence Angle = 40 Deg.); Source At Fan

Figure 42(c) Nozzle N 5 (L/h = 3 Convergence Angle = 40 Deg.):Source At Fan

Figure 43(a) Nozzle N 5 (L/h = 3, Convergence Angle = 40 Deg.); Source At Fan

Deg.); Source At Fan Figure 43(b)

Figure 44(a) Nozzle N 6 (L/h = 5, Convergence Angle = 40 Deg.); Source At Fan

Figure 44(b) Nozzle N 6 (L/h = 5 , Convergence Angle = 40 Deg.); Source At Fan

Figure 44(c) Nozzle N 6 (L/h = 5 , Convergence Angle = 40 Deg.); Source At Fan

Figure 45(a) Deg.):Source At Fan

Figure 45(b)

Figure 45(c) Nozzle N 6 (L/h = 5 , Convergence Angle = 40 Deg.); Source At Fan

Figure 46 (a)

Figure 46(b) Nozzle N 6 (L/h = 5 , Convergence Angle = 40 Deg.); Source At Fan

Figure 46(c) Nozzle N 6 (L/h = 5, Convergence Angle = 40 Deg.); Source At Fan

Figure 47(a) Nozzle N 6 (L/h = 5 , Convergence Angle = 40 Deg.); Source At Fan

Figure 47(b) Nozzle N 6 (L/h = 5, Convergence Angle = 40 Deg.); Source At Fan

NONDIMENSIONAL FREQUENCY, Kh Figure 47(c) Nozzle N 6 (L/h = 5 , Convergence Angle = 40 Deg.); Source At Fan

Figure 48(a) Nozzle N 6 (L/h = 5 , Convergence Angle = 40 Deg.); Source At Fan

Figure 48(b) Nozzle N 6 (L/h = 5, Convergence Angle = 40 Deg.); Source At Fan

Figure 48(c) Nozzle N 6 (L/h = 5, Convergence Angle = 40 Deg.); Source At Fan

Figure 49(a)

Figure 49(b) Nozzle N 6 (L/h = 5, Convergence Angle = 40 Deg.); Source At Fan

Figure 49(c) Nozzle N 6 (L/h = 5 , Convergence Angle = 40 Deg.); Source At Fan

Figure 50(a)

Figure 50(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 51(a) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 51(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 51 (c)

Figure 52(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 52(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 53(a) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 53(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 54(a) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 54(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 54(c) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 55(a) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 55(b) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 56(a) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 56(b) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 57

Figure 58(a) Nozzle N 1 (L/h = 1 Convergence Angle = 20Deg.); Source At Fan

Figure 58(b) Nozzle N 1(L/h = 1 Convergence Angle = 20Deg.); Source At Fan

Figure 59(a) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 59(b) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 59(c) Nozzle N 1 (L/h = 1, Convergence Angle = 20 Deg.); Source At Fan

Figure 60(a) Nozzle N 1 (L/h = 1 , Convergence Angle = 20 Deg.); Source At Fan

Figure 60(b) Nozzle N 1 (L/h = 1 Convergence Angle = 20 Deg.); Source At Fan

Figure 61 (a)

Figure 61(b) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 62(a) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 62(b) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 62(c) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 63(a) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 63(b) Nozzle N 2 (L/h = 3, Convergence Angle = 20 Deg.); Source At Fan

Figure 64(a) Nozzle N 2 (L/h = 3, Convergence Angle = 20 Deg.); Source At Fan

Figure 64(b)

Figure 65(a) Nozzle N 2 (L/h = 3 , Convergence Angle = 20 Deg.); Source At Fan

Figure 65(b)

6. LIST OF SYMBOLS

A_D duct area

Cp. speed of sound in the duct

Co ambient speed of sound

h annulus height

K wave number

L protrusion of primary nozzle exit beyond that

of the secondary nozzle

 M_{D} Mach number in the duct

 ${\rm MJ}_{\rm T}$ primary jet Mach number

 M_{J_2} secondary jet Mach number

P_{amb} ambient pressure

R primary nozzle radius

T_{amb} ambient temperature

 T_{R_1} primary reservoir temperature

 T_{R_2} secondary reservoir temperature

 α convergence angle of the secondary nozzle

REFERENCES

1. Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; and Mungur, P.: Studies of the Acoustic Transmission Characteristics of Coaxial Nozzles with Inverted Velocity Profiles. NASA Contract NAS3-20797, NASA CR-(to be assigned).