Operations Research: 1. Hausaufgabe

Ranjit sah, 836261

Mukaddes karadeniz,808788

Ekrem Tokgöz,841530

1.1) Der Optimale Lösung

Model	Variable	Optimal(wert)
p02	01110	51
p05	10111100	898
p07	101010111000011	1458
p08	110111000110100100000111	13549094

1.3) Das Rucksackproblem mit Hilfe der Branch-and-Bound- Methode

Absteigendes Sortieren der Objekte nach ci/ai ergibt.

i	3	1	4	2	5
ci	23	24	15	13	16
ai	11	12	8	7	9
ci/ai	2.09	2	1.87	1.85	1.77

Die gebrochen-rationale Losung des LP ist damit: $x_3 = x_1 = 1$, $x_4 = 3$ /8 = 0.375, $x_2 = x_5 = 0$. Der zugehörige Zielfunktionswert ist: 52.625.

Die obere Schranke o = 52.625, die untere Schranke ist 47.

Die Branchen erfolgt nach $x_4 = 0.375$.

Teilproblem 1: Aus $x_4 = 0$, so ergibt sich: $x_3 = x_1 = 1$, $x_{4=} = x_5 = 0$ und $x_2 = 3$ /7 = 0.429 mit Zielfunktionswert 52.571

Teilproblem 2: Ist $x_4 = 1$, so ergibt sich: $x_3 = x_4 = 1$, $x_2=x_5=0$ und $x_1 = 7 / 12 = 0.583$ mit Zielfunktionswert 52.Damit ist die neue obere Schranke 52.571.

Branchen in Teilproblem 1 nach x_2 .

Teilproblem 1.1: Ist $x_2 = 0$, so ist $x_3 = x_1 = 1$ und $x_5 = 0.33$ mit Zielfunktionswert 52.33

Teilproblem 1.2: Ist $x_2 = 1$, so ist $x_4 = x_5 = 0$ und $x_3 = 01$ und $x_1 = 0.66$ mit Zielfunktionswert 52. Branchen in Teilproblem 2 nach x_1

Teilproblem 2.1: Ist $x_1 = 0$, so ergibt sich $x_2 = x_3 = x_4 = 1$ und $x_5 = 0$ mit Zielfunktionswert 51, ganzzahlige Losung, neue untere Schranke 51.

Teilproblem 2.2: Ist $x_1 = 1$, so ergibt sich mit $x_4 = 1$, $x_3 = 6 / 11 = 0.5454$ und $x_2 = 0$ mit Zielfunktionswert 51.54, neue obere Schranke 51.54.

Die optimale Lösung ist damit $x_1 = 0$, $x_2 = x_3 = x_4 = 1$, $x_5 = 0$ mit Zielfunktionswert 51