# WiFi coverage range characterization for smart space applications

Presented by: Zayan EL KHALED

On 27 May 2019

SEPR4IoT Montreal 2019

# **Presentation Outlines**

- 1. Introduction
- 2. State of the art
- 3. Scenario of use
- 4. Validation and results
- 5. Consequences for IoT applications
- 6. Threats to validity
- 7. Future researches
- 8. Conclusion

# Introduction

- Ubiquitous computing
- Communication technologies for smart spaces
- Wireless communications
- WiFi

#### **Paper outlines**

- Wireless communication technologies comparison
- WiFi technical characteristics
- Coverage range characterization and discussion for IoT
- Comparison of path loss empirical models with measures

#### Wireless internet service (WIS) of Wireless to the home (WTTH)

- Deployment
- Advantages
- Rural areas
- Healthcare
- Extreme events



# Communication technologies comparison

- Coverage
- Cost
- Number of nodes
- Data rate
- Mobility
- Availability of Smart phones
- Radio signal penetration: frequency
- Radio channel bandwidth
- Power consumption



#### WiFi technical characteristics

- Various frequencies and bandwidth in ISM band
- Many version
- MIMO, penetration and data rates

|                  | 802.11a                         | 802.11b       | 802.11g                         | 802.11n                                  | 802.11ac                                          | 802.11ax                                          |
|------------------|---------------------------------|---------------|---------------------------------|------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Frequency (GHz)  | 3.6, 5                          | 2.4           | 2.4                             | 2.4, 5                                   | 5                                                 | 2.4, 5                                            |
| Bandwidth (MHz)  | 20                              | 22            | 20                              | 20, 40                                   | 20, 40, 80, 160                                   | 20, 40, 80, 160                                   |
| Data rate (Mbps) | 6, 9, 12, 18, 24,<br>36, 48, 54 | 1, 2, 5.5, 11 | 6, 9, 12, 18, 24,<br>36, 48, 54 | Up to 600 for 40<br>MHz and 4<br>Streams | Up to 3466.8 for<br>160 MHz band<br>and 4 Streams | Up to 10,530 for<br>160 MHz band<br>and 4 Streams |
| Modulation       | OFDM-64QAM                      | DSSS          | OFDM-64QAM                      | OFDM-64QAM                               | OFDM-<br>256QAM                                   | OFDM-<br>1024QAM                                  |
| MIMO streams     | -                               | -             | -                               | 4                                        | 8                                                 | 8                                                 |

#### Link quality and coverage range prediction

Link budget:

$$P_{RX}(dBm) = P_{TX}(dBm) + G_{TX}(dB) + G_{RX}(dB) - L(dB)$$

TRANSMIT POWER AND RECEIVER
SENSITIVITIES FOR a commercial devices
USING 802.11N PROTOCOL (2.4 GHZ)
For ONE MIMO STREAM

Free space propagation loss:

$$L_{FS}(dB) = 20 \log \frac{4\pi D}{\lambda}$$

Range estimation:

$$D = \frac{\lambda \times 10^{\frac{P_{TX} + G_{TX} + G_{RX} - P_{SENS}}{20}}}{4\pi}$$

| Data Rate | Avg. TX (dBm) | Sensitivity (dBm) |  |  |
|-----------|---------------|-------------------|--|--|
| MCS0      | 28            | -96               |  |  |
| MCS1      | 28            | -95               |  |  |
| MCS2      | 28            | -92               |  |  |
| MCS3      | 28            | -90               |  |  |
| MCS4      | 27            | -86               |  |  |
| MCS5      | 25            | -83               |  |  |
| MCS6      | 23            | -77               |  |  |
| MCS7      | 22            | -74               |  |  |

# Scenario of use

#### Link quality and coverage

Network components

Configuration

Advantage

Frequency choice possibilities



### Validation and results

#### System components and test procedure

- Smartphone: Samsung Galaxy S5
- AP: Ubiquity Airmax AM-2G16-90
- Radio module Rocket M2
- Power over Ethernet (POE) injector
- Two SMA pigtails
- AC, DC and RJ45 wires
- Power supply



# Validation and results

#### Measured coverage: 0.55 Km

Hata model prediction = 0.258 Km free air loss = 30.78 Km Walfisch-Ikegami = 5.682 Km



Comparison of measured coverage with path losses models

# Validation and results

#### Measured coverage: 0.55 Km



Estimated coverage of most known models over Height of AP

# Consequences for IoT applications

- IoT traffic will double by 2020
- Diversified specs and characteristics
- WiFi connectivity omnipresence
- Ability to support high data rate, with reasonable coverage range, power consumption and cost
- Possibility to raise the coverage through the use of low ISM frequencies
- unlimited number of wireless connections, and many bandwidth frequency configurations
- Adapted for developed countries context



WIFI Access Point

D Area covered by WIFI signal
Diameter of WIFI cell

Wide range deployment model for WiFi

# Threats to validity and future researches

- Test has been done in urban environment
- Interference
- Fading and multipath

- Future researches
- More measures to verify the accuracy path loss models for the context of outdoor WiFi
- Environmental effects: weather, vegetation, etc ...
- Configuration algorithm for multi cell deployment

# Conclusion

- WiFi coverage range characterization
- Consequences on IoT applications
- Technical characteristics are explained
- Deployment scenario is explained
- Important difference between measure and most known empirical path loss models

# Thank you for your attention Questions?