Grupuri ciclice, Ordinul unui element – Seminar 10

Definitia 1. Se numeste **grup** o multime G impreuna cu o operatie binara \bullet , o operatie unara \cdot , si un element neutru **e**, notat $(G, \bullet, \cdot, \mathbf{e})$, care satisface proprietatile

- 1. este asociativa,
- 2. $x \bullet e = e \bullet x = x$, $e \in G$ este element neutru pentru operatia \bullet (e este unic cu aceasta proprietate, se mai noteaza cu 1_G)
- 3. pentru orice $x \in G$, exista $x' \in G$ astfel incat $x \cdot x' = x' \cdot x = e$, x' este inversul lui x fata de operatia \cdot (x' este unic cu aceasta proprietate)

Definitia 2. Un grup G este ciclic daca poate fi generat de un element al sau.

Exemple 1. Daca $a \in G$, a genereaza G, unde G este un grup multiplicativ, atunci G este de forma $G = \{a^n \mid n \in Z\}$

 $2.\ Daca\ a\in G\ genereaza\ G,\ unde\ G\ este\ un\ grup\ aditiv,\ atunci\ G\ este\ de\ forma$ $G=\{na\mid n\in Z\}$

3. (Z, +, -,0) este un grup ciclic (aditiv) infinit, generat de 1.

4. $(Z_m, +, -, 0)$ este un grup ciclic (aditiv) finit, generat de 1, pentru m > 1, $Z_m = \{0, 1, 2, ..., m-1\}$

Observatia 1. Grupul multiplicativ, finit, $(Z_m^*, ., ', 1)$ nu este neaparat ciclic.

 $Z_{m}^{*} = \{a \in Z_{m} \mid (a,m) = 1\}$, este format din acele elemente din Z_{m} care admit un invers.

Observatia 2. Daca Φ este functia lui Euler atunci $\Phi(m) = |Z^*_m|$ (cardinalul multimii Z^*_m)

Observatia 3. Cateva proprietati (de neuitat) ale functiei lui Euler:

$$\Phi(1) = 1$$
, $\Phi(p) = p-1$ pt. orice p numar prim,

 $\Phi(ab) = \Phi(a)\Phi(b)$, pt orice a si b prime intre ele, deci aceasta proprietate nu se aplica pentru 2 si 4, sau pt 2 si 6. Atentie! Nu calculati $\Phi(8) = \Phi(2)\Phi(2)\Phi(2) = 1$ (total gresit!)

$$\Phi(p^n) = p^n - p^{n-1}$$
, asadar $\Phi(8) = \Phi(2^3) = 2^3 - 2^2 = 4$ si
 $\Phi(12) = \Phi(4.3) = \Phi(4)\Phi(3) = (2^2 - 2)(3 - 1) = 4$

 $\Phi(n) = \Phi(p_1^{e1}) \ \Phi(\ p_2^{e2}) \ \dots \ \Phi(\ p_n^{en})$ unde $n = p_1^{e1} \ p_2^{e2} \ \dots \ p_n^{en}$ este descompunerea unica a lui n in produs de puteri de factori primi (Teorema fundamentala a aritmeticii).

$$\begin{split} \text{Exemple} \quad Z_5 &= \{0,\,1,\,...,\,4\},\,Z^*_{\,\,5} &= \{1,\,2,\,3,\,4\},\,\,\, \Phi(5) = 5\text{-}1 = 4\,\,=\,|\,Z^*_{\,\,5}\,|\\ Z_6 &= \{0,\,1,\,...,\,5\},\,Z^*_{\,\,6} &= \{1,\,5\},\,\,\, \Phi(6) = \Phi(2)\,\Phi(3) = 2\,\,=\,|\,Z^*_{\,\,6}\,|\\ Z_{14} &= \{0,\,1,\,2,\,...,\,13\},\,Z^*_{\,\,14} &= \{1,\,3,\,5,\,9,\,11,\,13\},\,\,\, \Phi(14) = \Phi(2)\,\Phi(7) = 6\,\,=\,|\,Z^*_{\,\,14}\,| \end{split}$$

Tema Ex. 1 Calculati $\Phi(24)$, $\Phi(29)$, $\Phi(38)$, $\Phi(210)$ folosind proprietatile functiei lui Euler.

Observatia 4. Teorema lui Euler: $a^{\Phi(m)} \equiv 1 \mod m$, pentru orice $m \ge 1$ si (a,m) = 1.

Definitia 3. Se numeste **ordinul lui a modulo m**, notat $ord_m(a) = min\{k \ge 1 | a^k \equiv 1 \mod m\}$

Observatia 5. $\operatorname{ord}_{m}(a) = \operatorname{ord}_{Z^{*_{m}}}(a)$

Observatia 6. (Z_m^* , ., ', 1) nu este intotdeauna ciclic, dar atunci cand este ciclic generatorii lui Z_m^* se numesc radacini primitive modulo m.

Teorema 1. $a \in Z_m^*$ este radacina primitiva mod m daca si numai daca $ord_m(a) = \Phi(m)$.

Exemple 1. Calculati ord₇(3)

Rezolvare: $3^1 \equiv 3 \mod 7$, $3^2 \equiv 2 \mod 7$, $3^3 \equiv 6 \mod 7$, $3^4 \equiv 4 \mod 7$, $3^5 \equiv 2 \mod 7$, $3^6 \equiv 1 \mod 7$ In concluzie $\operatorname{ord}_7(3) = 6 = \Phi(7)$ (6 este valoarea minima pentru care $3^6 \equiv 1 \mod 7$), Asadar, **3 este radacina primitiva modulo 7**.

Exemple 2. Calculati ord₇(2)

Rezolvare: $2^1 \equiv 2 \mod 7$, $2^2 \equiv 4 \mod 7$, $2^3 \equiv 1 \mod 7$, asadar $\operatorname{ord}_7(2) = 3$ (3 este valoarea minima pentru care $2^3 \equiv 1 \mod 7$) **2 nu este radacina primitiva modulo 7.**

Observatie Daca exista radacini primitive mod m, atunci numarul acestora este $\Phi(\Phi(m))$.

Tema Ex. 2 Demonstrati ca 3 si 5 sunt radacini primitive modulo 14.

Teorema 2. (Gauss) Z_m^* este ciclic daca si numai daca $m \in \{1, 2, 4, p^k, 2p^k\}$ unde $k \ge 1$ si $p \ge 3$ este un numar prim.

Teorema 3. Fie $m \ge 1$, astfel incat Z^*_m este ciclic, atunci ecuatia $x^n \equiv 1 \mod m$ are $(n, \Phi(m))$ solutii in Z^*_m de forma $\alpha^i \mod m$, unde α este radacina primitiva modulo m si i este solutie a ecuatiei in $\equiv 0 \mod \Phi(m)$.

Observatie Rezolvand ecuatia liniara congruentiala in $\equiv 0 \mod \Phi(m)$, cu necunoscuta i se gasesc solutiile de forma $i \in \{ k \Phi(m)/(n, \Phi(m)) \mid 0 \le k < (n, \Phi(m)) \}$ (A se vedea rezolvarea ecuatiei congruentiale liniare de forma ax \equiv b mod m!)

Exemple 1. Rezolvati ecuatia $x^4 \equiv 1 \mod 50$

Solutiile ec. sunt de forma $\alpha^i \mod 50$, unde α este radacina primitiva mod 50, si $i \in \{k \Phi(50)/(4, \Phi(50)) \mid 0 \le k \le (4, \Phi(50))\}, \Phi(50) = \Phi(2) \Phi(25) = 20$

Asadar, $i \in \{k 20/4 \mid 0 \le k < 4\} = \{5k \mid 0 \le k < 4\} = \{0, 5, 10, 15\}.$

Radacinile primitive modulo 50 sunt in numar de $\Phi(\Phi(50)) = \Phi(20) = 8$ si anume $\{3, 13, 17, 23, 27, 33, 37, 47\}$ deci α poate fi orice valoare din aceasta multime.

Teorema 4. Fie p un numar prim atunci ecuatia $x^n \equiv -1 \mod p$ are solutii daca si numai daca (n, p-1) divide (p-1)/2. In caz afirmativ ecuatia are exact (n, p-1) solutii de forma $\alpha^i \mod p$, unde α este radacina primitiva modulo p si i este solutie a ecuatiei in $\equiv (p-1)/2 \mod (p-1)$.

Observatie Rezolvand ecuatia liniara congruentiala in \equiv (p-1)/2 mod (p-1), de necunoscuta i, se gasesc solutiile de forma $i \in \{ (p-1)/2(n, p-1) + k (p-1)/(n, p-1) | 0 \le k < (n, p-1) \}$.

Exemple 2. Rezolvati ecuatia $x^4 \equiv -1 \mod 17$.

Solutiile ec. sunt de forma α^i mod 17, unde α este radacina primitiva mod 17, si $i \in \{ (17-1)/(2(4, 17-1)) + k(17-1)/(4, 17-1) | 0 \le k < (4, 17-1) \} = \{ 16/8 + k16/4 | 0 \le k < 4 \}$

Asadar, $i \in \{2 + 4k \mid 0 \le k < 4\} = \{2, 6, 10, 14\}.$

Radacinile primitive modulo 17 sunt in numar de $\Phi(\Phi(17)) = \Phi(16) = 8$ si anume $\{3, 5, 6, 7, 10, 11, 12, 14\}$ deci α poate fi orice valoare din aceasta multime.

Tema Ex. 3 Rezolvati ecuatiile congruentiale

- 1. $x^6 \equiv 1 \mod 38$,
- 2. $x^5 \equiv 1 \mod 22$,
- 3. $x^7 \equiv -1 \mod 29$,
- 4. $x^3 \equiv -1 \mod 31$.

Grupuri ciclice, Ordinul unui element

Alte exemple de ecuatii (rezolvate)

Exemplul 3. Rezolvati ecuatia $x^4 \equiv 1 \mod 17$

Solutiile ec. sunt de forma α^i mod 17, unde α este radacina primitiva mod 17, si

$$i \in \{ k \Phi(17)/(4, \Phi(17)) \mid 0 \le k < (4, \Phi(17)) \}, \Phi(17) = 16 \}$$

Asadar,
$$i \in \{16k/4 \mid 0 \le k < 4\} = \{4k \mid 0 \le k < 4\} = \{0, 4, 8, 12\}.$$

Radacinile primitive modulo 17 sunt in numar de $\Phi(\Phi(17)) = \Phi(16) = 8$ si anume $\{3, 5, 6, 7, 10, 11, 12, 14\}$, α poate fi orice valoare din aceasta multime.

Exemplul 4. Rezolvati ecuatia $x^{11} \equiv -1 \mod 23$.

Solutiile ec. sunt de forma $\alpha^i \mod 23$, unde α este radacina primitiva mod 23, si $i \in \{ (23-1)/2(11, 23-1) + k (23-1)/(11, 23-1) | 0 \le k < (11, 22) \} = \{ 22/22 + 22k/11 | 0 \le k < 11 \} = \{ 1 + 2k | 0 \le k < 11 \} = \{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 \}$

Radacinile primitive mod 23 sunt in numar de $\Phi(\Phi(23)) = \Phi(22) = 10$ si anume $\{5, 7, 10, 11, 14, 15, 17, 19, 20, 21\}$, α poate fi orice valoare din aceasta multime.

Observatie Radacini primitive modulo m

Pentru tema data nu va cer sa determinati toate radacinile primitive modulo m, este destul de laborios. Este suficient sa "ghiciti" doar o singura radacina.

Cum se "ghiceste" o radacina primitiva modulo m?

Raspuns

Radacinile primitive modulo m se gasesc printre elementele multimii $Z_m^* = \{a \in Z_m \mid (a,m) = 1\}$. Asadar se incepe cu cel mai mic element al multimii Z_m^* .

1 nu are nici o sansa, decat daca m=2. Presupunem ca ${\bf a}$ este urmatorul element (dupa 1 in ordine crescatoare). Se calculeaza ${\rm ord}_m(a)$ asa cum am aratat in Exemplele 1 si 2, pt. ${\rm ord}_7(3)$ si ${\rm ord}_7(2)$, sau Exercitiul 2 din Tema (este foarte simplu).

Daca $ord_m(a) = \Phi(m)$ atunci a este radacina primitiva modulo m, daca nu continuati procedeul cu urmatorul element din Z_m^* . Va opriti la primul **a** care este radacina primitiva modulo m.

Daca vreti neaparat sa determinati toate radacinile primitiva modulo m atunci calculati $ord_m(a)$ pentru orice $a \in Z_m^*$. Radacinile primitive vor fi doar acelea pentru care $ord_m(a) = \Phi(m)$ si vor fi in numar de $\Phi(\Phi(m))$ (in cazul in care Z_m^* admite radacini primitive, adica atunci cand Z_m^* este grup ciclic, a se vedea Teorema lui Gauss pt. cazurile in care Z_m^* este grup ciclic).

Grupuri ciclice, Ordinul unui element – Aplicatii

Exercitiul 1. a) Calculati ord₁₇(5)

Rezolvare ord₁₇(5) $|\Phi(17)|$, conform cu Coralarul 2.1.2 (Grupuri ciclice III)

Deoarece $\Phi(17) = 16$ avem $\text{ord}_{17}(5) \in \{1, 2, 4, 8, 16\}$ (divizorii lui 16).

Se calculeaza $5^1 = 5 \mod 17$, $5^2 = 8 \mod 17$, $5^4 = 13 \mod 17$, $5^8 = 16 \mod 17$, $5^{16} = 1 \mod 17$,

Asadar ord₁₇(5) = 16.

b) Calculati ord₂₂ (9)

Rezolvare $ord_{22}(9) \mid \Phi(22)$, conform cu Coralarul 2.1.2 (Grupuri ciclice III)

Deoarece $\Phi(22) = 10$ avem $\text{ord}_{22}(9) \in \{1, 2, 5, 10\}$ (divizorii lui 10).

Se calculeaza $9^1 = 9 \mod 22$, $9^2 = 15 \mod 22$, $9^5 = 7 \bullet 7 \bullet 9 \mod 22 = 5 \bullet 9 \mod 22 = 1 \mod 22$ Asadar ord₂₂ (9) = 5.

Exercitiul 2. Calculati un element de ordinul d in Z_{m}^{*} pentru

a)
$$d = 2$$
, $m = 23$ b) $d = 4$, $m = 17$.

Rezolvare a) Conform cu Teorema 2.1.4 (Grupuri ciclice III) avem

ord₂₃ (α^i) = $\Phi(22)$ / (i, $\Phi(23)$) = 22 / (i, 22) = 2 asadar i = 11 , unde α este oricare din radacinile primitive modulo 23. Daca se considera α = 5 atunci un element de ordinul 2 al lui Z^*_{23}

este
$$a = 5^{11} \mod 23 = 22$$
.

Rezolvare b) Conform cu Teorema 2.1.4 (Grupuri ciclice III) avem

$$Ord_{17}(\alpha^{i}) = \Phi(17) / (i, \Phi(17)) = 16 / (i, 16) = 4 \text{ asadar } i = 4$$
.

unde α este oricare din radacinile primitive modulo 17.

Daca se considera $\alpha = 3$ atunci un element de ordinul 4 al lui Z_{17}^* este a = 3^4 mod 17 = 13.