Basic IO Interfacing on Firebird-V

e-Yantra Team Embedded Real-Time Systems Lab Indian Institute of Technology-Bombay

> IIT Bombay October 10, 2014

Firebird ATmega2560 Robotics Research Platform

Agenda for Discussion

- 1 Input-Output Ports in ATmega2560
 - Overview of Ports
 - Acessing Ports
 - Examples
- 2 Write Your First Embedded C Program
 - Buzzer Interfacing
 - Programming Tools
 - C-code

• Junctions where peripheral devices are connected.

- Junctions where peripheral devices are connected.
- Peripheral devices can be

- Junctions where peripheral devices are connected.
- Peripheral devices can be
 - Input Device

Example: Switch, Sensors, etc...

- Junctions where peripheral devices are connected.
- Peripheral devices can be
 - Input Device

Example: Switch, Sensors, etc...

Output Device

Example: Buzzer, LCD, Motors, LED, etc...

● ATmega2560 is 100 pin controller

- ATmega2560 is 100 pin controller
- 2 86 pins can be used as Input/Output Pins

- ATmega2560 is 100 pin controller
- 86 pins can be used as Input/Output Pins
- Pins are grouped together and called as PORT

- **1** ATmega2560 is 100 pin controller
- 86 pins can be used as Input/Output Pins
- Pins are grouped together and called as PORT
 - ATmega2560 has Ten 8-bit ports

x = A-to-F and H,J,K,L

- ATmega2560 is 100 pin controller
- 86 pins can be used as Input/Output Pins
- Opening Properties
 Opening
 - ATmega2560 has Ten 8-bit ports

PORTx;

x = A-to-F and H,J,K,L

ATmega2560 has One 6-bit port

PORTG

- 4 ATmega2560 is 100 pin controller
- 86 pins can be used as Input/Output Pins
- Pins are grouped together and called as PORT
 - ATmega2560 has Ten 8-bit ports

PORTx;

x = A-to-F and H,J,K,L

ATmega2560 has One 6-bit port

PORTG

4 All Port pins can be configured individually as input/output.

1 Each Ports has three associated registers with it.

- 1 Each Ports has three associated registers with it.

1 Each Ports has three associated registers with it.

• Each Ports has three associated registers with it.

Data Direction Register

- Data Direction Register
- 2 Purpose: To set PORT Pins as Input or Output

- O Data Direction Register
- Purpose: To set PORT Pins as Input or Output
 - a. DDRx=0 : PORTx is defined as INPUT

- O Data Direction Register
- Purpose: To set PORT Pins as Input or Output
 - a. DDRx=0: PORTx is defined as INPUT
 - b. DDRx=1: PORTx is defined as OUTPUT

- O Data Direction Register
- Purpose: To set PORT Pins as Input or Output
 - a. DDRx=0: PORTx is defined as INPUT
 - b. DDRx=1: PORTx is defined as OUTPUT
- Example: For PortB make lower nibble as input and upper nibble as output

- O Data Direction Register
- Purpose: To set PORT Pins as Input or Output
 - a. DDRx=0: PORTx is defined as INPUT
 - b. DDRx=1: PORTx is defined as OUTPUT
- Example: For PortB make lower nibble as input and upper nibble as output

- O Data Direction Register
- Purpose: To set PORT Pins as Input or Output
 - a. DDRx=0: PORTx is defined as INPUT
 - b. DDRx=1: PORTx is defined as OUTPUT
- Example: For PortB make lower nibble as input and upper nibble as output

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	1	0	0	0	0

- O Data Direction Register
- Purpose: To set PORT Pins as Input or Output
 - a. DDRx=0: PORTx is defined as INPUT
 - b. DDRx=1: PORTx is defined as OUTPUT
- Example: For PortB make lower nibble as input and upper nibble as output

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	1	0	0	0	0

• Purpose: To Read data present on PORTx

- O Purpose: To Read data present on PORTx
- 2 Save value of register in a variable

- Purpose: To Read data present on PORTx
- 2 Save value of register in a variable
- **3** Example:

Read Data from PORTC

- Purpose: To Read data present on PORTx
- 2 Save value of register in a variable
- **6** Example:

Read Data from PORTC

- Purpose: To Read data present on PORTx
- 2 Save value of register in a variable
- **6** Example:

Read Data from PORTC

- Purpose: To Read data present on PORTx
- 2 Save value of register in a variable
- **6** Example:

Read Data from PORTC

x= PINC

- Purpose: To Read data present on PORTx
- 2 Save value of register in a variable
- **6** Example:

Read Data from PORTC

x= PINC

x=0xF0

Case:1 When portx is defined as Output

Case:1 When portx is defined as Output

• Purpose: Output data present on PORTx pin

Case:1 When portx is defined as Output

• Purpose: Output data present on PORTx pin

2 Example:

Case:1 When portx is defined as Output

• Purpose: Output data present on PORTx pin

Case:1 When portx is defined as Output

• Purpose: Output data present on PORTx pin

DDRA =	D7	D6	D5	D4	D3	D2	D1	D0
DDIA —	1	1	1	1	1	1	1	1

Case:1 When portx is defined as Output

• Purpose: Output data present on PORTx pin

② Example:

DDRA —	D7	D6	D5	D4	D3	D2	D1	D0
DDIA —	1	1	1	1	1	1	1	1

DDRA = 0xFF

Case:1 When portx is defined as Output

• Purpose: Output data present on PORTx pin

② Example:

DDRA =	D7	D6	D5	D4	D3	D2	D1	D0
	1	1	1	1	1	1	1	1

PORTA = 0xFF

case:2 When portx is defined as Input

case:2 When portx is defined as Input

• Purpose: Activate/deactivate pull-up resistor

case:2 When portx is defined as Input

• Purpose: Activate/deactivate pull-up resistor

a. PORTx=1: Activate Pull-Up

case:2 When portx is defined as Input

• Purpose: Activate/deactivate pull-up resistor

a. PORTx=1 : Activate Pull-Up

b. PORTx=0 : Deactivate Pull-Up

case:2 When portx is defined as Input

• Purpose: Activate/deactivate pull-up resistor

a. PORTx=1 : Activate Pull-Up

b. PORTx=0 : Deactivate Pull-Up

2 Example:

case:2 When portx is defined as Input

• Purpose: Activate/deactivate pull-up resistor

a. PORTx=1 : Activate Pull-Up

b. PORTx=0 : Deactivate Pull-Up

case:2 When portx is defined as Input

• Purpose: Activate/deactivate pull-up resistor

a. PORTx=1 : Activate Pull-Up

b. PORTx=0 : Deactivate Pull-Up

DDRA —	D7	D6	D5	D4	D3	D2	D1	D0
DDIA —	0	0	0	0	0	0	0	0

case:2 When portx is defined as Input

• Purpose: Activate/deactivate pull-up resistor

a. PORTx=1 : Activate Pull-Up

b. PORTx=0 : Deactivate Pull-Up

DDBV —	D7	D6	D5	D4	D3	D2	D1	D0
DDIXA =	0	0	0	0	0	0	0	0

case:2 When portx is defined as Input

• Purpose: Activate/deactivate pull-up resistor

a. PORTx=1: Activate Pull-Up

b. PORTx=0 : Deactivate Pull-Up

② Example:

DDRA —	D7	D6	D5	D4	D3	D2	D1	D0
DDIA =	0	0	0	0	0	0	0	0

$$DDRA = 0x00$$

PORTA = 0xFF

case:2 When portx is defined as Input

• Purpose: Activate/deactivate pull-up resistor

a. PORTx=1 : Activate Pull-Up

b. PORTx=0 : Deactivate Pull-Up

② Example:

DDBV —	D7	D6	D5	D4	D3	D2	D1	D0
DDIXA =	0	0	0	0	0	0	0	0

$$DDRA = 0x00$$

PORTA = 0xFF

Pull-Up is activated for Pins of PORTA.

• Example 1: Make PORTD as output port and send bit pattern of D5

• Example 1: Make PORTD as output port and send bit pattern of D5

- Example 1: Make PORTD as output port and send bit pattern of D5
- 2 Step 1: Make Port D as Output port

- Example 1: Make PORTD as output port and send bit pattern of D5
- Step 1: Make Port D as Output port

- Example 1: Make PORTD as output port and send bit pattern of D5
- Step 1: Make Port D as Output port

DDRD =

- Example 1: Make PORTD as output port and send bit pattern of D5
- Step 1: Make Port D as Output port

$DDRD = \frac{D}{D}$	D7	D6	D5	D4	D3	D2	D1	D0
	1	1	1	1	1	1	1	1

- Example 1: Make PORTD as output port and send bit pattern of D5
- Step 1: Make Port D as Output port

 $\mathsf{DDRD} = \mathsf{0xFF}$

- Example 1: Make PORTD as output port and send bit pattern of D5
- Step 1: Make Port D as Output port

DDRD = 0xFF

3 Step 2: Put data on the Port D

- Example 1: Make PORTD as output port and send bit pattern of D5
- Step 1: Make Port D as Output port

DDRD = 0xFF

Step 2: Put data on the Port D

- Example 1: Make PORTD as output port and send bit pattern of D5
- Step 1: Make Port D as Output port

DDRD = 0xFF

Step 2: Put data on the Port D

$$PORTD =$$

- Example 1: Make PORTD as output port and send bit pattern of D5
- Step 1: Make Port D as Output port

DDRD = 0xFF

Step 2: Put data on the Port D

- Example 1: Make PORTD as output port and send bit pattern of D5
- Step 1: Make Port D as Output port

DDRD = 0xFF

Step 2: Put data on the Port D

PORTD = 0xD5

■ Example 2: Make PORTA input port with pull-up activated on all pin

Example 2: Make PORTA input port with pull-up activated on all pin

- Example 2: Make PORTA input port with pull-up activated on all pin
- 2 Step 1: Make Port A as Input port

- Example 2: Make PORTA input port with pull-up activated on all pin
- Step 1: Make Port A as Input port

- Example 2: Make PORTA input port with pull-up activated on all pin
- Step 1: Make Port A as Input port

DDRA =

- Example 2: Make PORTA input port with pull-up activated on all pin
- Step 1: Make Port A as Input port

DDRA =	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	0

- Example 2: Make PORTA input port with pull-up activated on all pin
- 2 Step 1: Make Port A as Input port

DDRA = 0x00

- Example 2: Make PORTA input port with pull-up activated on all pin
- 2 Step 1: Make Port A as Input port

DDRA = 0x00

3 Step 2: To activate Pull-up Resistor send data on Port A

- Example 2: Make PORTA input port with pull-up activated on all pin
- 2 Step 1: Make Port A as Input port

DDRA = 0x00

3 Step 2: To activate Pull-up Resistor send data on Port A

- Example 2: Make PORTA input port with pull-up activated on all pin
- 2 Step 1: Make Port A as Input port

DDRA = 0x00

Step 2: To activate Pull-up Resistor send data on Port A

PORTA =

- Example 2: Make PORTA input port with pull-up activated on all pin
- Step 1: Make Port A as Input port

 $DDRA = 0 \times 00$

Step 2: To activate Pull-up Resistor send data on Port A

- Example 2: Make PORTA input port with pull-up activated on all pin
- 2 Step 1: Make Port A as Input port

DDRA = 0x00

3 Step 2: To activate Pull-up Resistor send data on Port A

PORTA = 0xFF

• Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND

Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- 2 Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD =

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD =	D7	D6	D5	D4	D3	D2	D1	D0
	1	1	1	1	0	0	0	0

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD =	D7	D6	D5	D4	D3	D2	D1	D0
	1	1	1	1	0	0	0	0

DDRD = 0xF0

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD = 0xF0

Step 2: Put data on Port Ds Pin7 to Pin4 and enable pullup for Pin3 to Pin0

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- 2 Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD = 0xF0

Step 2: Put data on Port Ds Pin7 to Pin4 and enable pullup for Pin3 to Pin0

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD =	D7	D6	D5	D4	D3	D2	D1	D0
	1	1	1	1	0	0	0	0

 $\mathsf{DDRD} = \mathsf{0xF0}$

Step 2: Put data on Port Ds Pin7 to Pin4 and enable pullup for Pin3 to Pin0

PORTD =

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD = 0xF0

Step 2: Put data on Port Ds Pin7 to Pin4 and enable pullup for Pin3 to Pin0

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- 2 Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD = 0xF0

Step 2: Put data on Port Ds Pin7 to Pin4 and enable pullup for Pin3 to Pin0

PORTD = 0x3F

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD = 0xF0

Step 2: Put data on Port Ds Pin7 to Pin4 and enable pullup for Pin3 to Pin0

PORTD = 0x3F

Step 3: Read the data from Port D

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD = 0xF0

Step 2: Put data on Port Ds Pin7 to Pin4 and enable pullup for Pin3 to Pin0

PORTD = 0x3F

4 Step 3: Read the data from Port D

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD = 0xF0

Step 2: Put data on Port Ds Pin7 to Pin4 and enable pullup for Pin3 to Pin0

PORTD = 0x3F

Step 3: Read the data from Port D

x = PIND;

- Example 3: Make upper nibble of PORTD as output and lower nibble as input. Out 3 on upper nibble and read back data using PIND
- Step 1: Make Port Ds Pin7 to Pin4 as output pins and Pin3 to Pin0 as input pins

DDRD = 0xF0

Step 2: Put data on Port Ds Pin7 to Pin4 and enable pullup for Pin3 to Pin0

PORTD = 0x3F

Step 3: Read the data from Port D

$$x = PIND;$$

Therefore value of x will be 0x3F

Buzzer Connected to PortC pin 3

• Buzzer Connected to PortC pin 3

• Buzzer Connected to PortC pin 3

• Buzzer Connected to PortC pin 3

2 To Turn on buzzer:

• Buzzer Connected to PortC pin 3

O To Turn on buzzer:

• Buzzer Connected to PortC pin 3

O To Turn on buzzer: send logic HIGH on pin3 of PortC

Buzzer Connected to PortC pin 3

- To Turn on buzzer: send logic HIGH on pin3 of PortC
- To Turn off buzzer:

Buzzer Connected to PortC pin 3

- 2 To Turn on buzzer: send logic HIGH on pin3 of PortC
- To Turn off buzzer:

• Buzzer Connected to PortC pin 3

- 2 To Turn on buzzer: send logic HIGH on pin3 of PortC
- 3 To Turn off buzzer: send logic LOW on pin3 of PortC

Buzzer Program

Buzzer Program

• Configure PORTC3,pin as output.

Buzzer Program

Configure PORTC3,pin as output.

Configure PORTC3,pin as output.

DDRC=

Onfigure PORTC3,pin as output.

DDRC= 0x08; //0000 1000

Configure PORTC3,pin as output.

DDRC= 0x08; //0000 1000

2 To turn ON the buzzer set PC3 output high

Onfigure PORTC3, pin as output.

DDRC= 0x08; //0000 1000

2 To turn ON the buzzer set PC3 output high

• Configure PORTC3,pin as output.

DDRC= 0x08; //0000 1000

2 To turn ON the buzzer set PC3 output high

PORTC =

Configure PORTC3,pin as output.

DDRC= 0x08; //0000 1000

2 To turn ON the buzzer set PC3 output high

 $PORTC = 0 \times 08; //0000 \ 1000$

Configure PORTC3,pin as output.

DDRC= 0x08; //0000 1000

2 To turn ON the buzzer set PC3 output high

 $PORTC = 0 \times 08; //0000 \ 1000$

3 To turn OFF the buzzer set PC3 output low

Configure PORTC3,pin as output.

DDRC= 0x08; //0000 1000

2 To turn ON the buzzer set PC3 output high

$$PORTC = 0x08; //0000 1000$$

To turn OFF the buzzer set PC3 output low

Configure PORTC3,pin as output.

DDRC= 0x08; //0000 1000

2 To turn ON the buzzer set PC3 output high

$$PORTC = 0 \times 08; //0000 \ 1000$$

To turn OFF the buzzer set PC3 output low

Configure PORTC3,pin as output.

2 To turn ON the buzzer set PC3 output high

$$PORTC = 0 \times 08; //0000 \ 1000$$

To turn OFF the buzzer set PC3 output low

$$PORTC = 0 \times 00; //0000 0000$$

Configure PORTC3,pin as output.

2 To turn ON the buzzer set PC3 output high

$$PORTC = 0 \times 08; //0000 \ 1000$$

To turn OFF the buzzer set PC3 output low

$$PORTC = 0 \times 00; //0000 0000$$

Software Required.

Software Required.

Software Required.

ATMEL STUDIO 6

Software Required.

- Integrated Development Environment (IDE)
- Supports Developing and Debugging of AVR and ARM based microcontroller application
- Download Link: www.atmel.com/Microsite/atmel_studio6/default.aspx

Software Required.

ATMEL STUDIO 6

- Integrated Development Environment (IDE)
- Supports Developing and Debugging of AVR and ARM based microcontroller application
- Download Link: www.atmel.com/Microsite/atmel_studio6/default.aspx
- 2 Hardware Required

Software Required.

- Integrated Development Environment (IDE)
- Supports Developing and Debugging of AVR and ARM based microcontroller application
- Download Link: www.atmel.com/Microsite/atmel_studio6/default.aspx
- 4 Hardware Required

Software Required.

- Integrated Development Environment (IDE)
- Supports Developing and Debugging of AVR and ARM based microcontroller application
- Download Link: www.atmel.com/Microsite/atmel_studio6/default.aspx
- 4 Hardware Required
 - hex file can be loaded into microcontroller using

Software Required.

- Integrated Development Environment (IDE)
- Supports Developing and Debugging of AVR and ARM based microcontroller application
- Download Link: www.atmel.com/Microsite/atmel_studio6/default.aspx
- 4 Hardware Required
 - hex file can be loaded into microcontroller using
 - a. Bootloader

Software Required.

- Integrated Development Environment (IDE)
- Supports Developing and Debugging of AVR and ARM based microcontroller application
- Download Link: www.atmel.com/Microsite/atmel_studio6/default.aspx
- 4 Hardware Required
- hex file can be loaded into microcontroller using
 - a. Bootloader

Software Required.

- Integrated Development Environment (IDE)
- Supports Developing and Debugging of AVR and ARM based microcontroller application
- Download Link: www.atmel.com/Microsite/atmel_studio6/default.aspx
- 4 Hardware Required
 - hex file can be loaded into microcontroller using
 - a. Bootloader
 - b. AVR Programmers viz. AVR MKII, AVRDude, Pony-Programmer, etc.


```
#include
```


#include

```
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
```


#include

```
#include <avr/io.h>
#include <avr/interrupt.h>
```

#include <util/delay.h>

Pin Configuration

#include

```
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
```

Pin Configuration

```
void buzzer_pin_config (void)
{
     DDRC =
     PORTC =
}
```



```
Main-Program
```



```
Main-Program
int main (void)
{
   buzzer_pin_config ();
   while(1)
   {
     buzzer_on();
     _delay_ms();
     buzzer_off();
     _delay_ms();
}
```



```
Main-Program
int main (void)
{
   buzzer_pin_config ();
   while(1)
      {
      buzzer_on();
      _delay_ms();
      buzzer_off();
      _delay_ms();
   }
}
```

```
Functions
```



```
Main-Program
int main (void)
   buzzer_pin_config ();
   while(1)
      buzzer on():
      _delay_ms();
      buzzer_off();
      _delay_ms();
```

```
Functions
void buzzer_on (void)
     PORTC =
```



```
Main-Program
int main (void)
   buzzer_pin_config ();
   while(1)
      buzzer on():
      _delay_ms();
      buzzer_off();
      _delay_ms();
```

```
Functions
void buzzer_on (void)
     PORTC =
void buzzer_off (void)
     PORTC =
```


C-code

Thank You!

Post your queries on: http://qa.e-yantra.org/

