The Variogram

Introduction

Spatial Interpolation is the domain of geo-statistics, which deals with a random variable that is observed at fixed sample point locations. It aims at estimating a *spatial field* around the sample locations.
 In contrast, spatial statistical analysis deals with lattice/areal data (aggregation of points information within an area).

relationships between individuals

- The variogram focuses on estimating the **second order variation** of a stationary surface based on the observed values at the sampling points.
- A spatial field $Y(\mathbf{s}_i)$ can be decomposed into three components:

$$Y(\mathbf{s}_i) = \begin{array}{c} \text{general trend} \\ \mu(\mathbf{s}_i) + \\ \text{first order} = \\ \text{exogenous trend} \end{array} \begin{array}{c} \text{error term structured model it through individuals} \\ \mathcal{E}'(\mathbf{s}_i) + \\ \mathcal{E}''(\mathbf{s}_i) + \\ \text{evidend} \end{array} \begin{array}{c} \text{white noise} = \\ \text{nugget effect} \end{array}$$

- A regionalized random variable $\varepsilon'(\mathbf{s}_i)$ is continuous from point to point, but the spatial variability with respect to the locations \mathbf{s}_i is too complex that it cannot be described with any tractable deterministic first order function (such as a trend surface). Thus, its spatial variation of the stochastic variable $\varepsilon'(\mathbf{s}_i)$ is best described by a covariance structure (function).
- The *first order* component can be generalized to any expected value of the random variable $E[Y(\mathbf{s}_i)] = \mu(\mathbf{s}_i)$ at an arbitrary location \mathbf{s}_i . For trend surfaces this expectation simply becomes $\mu(\mathbf{s}_i) = \mathbf{x}^T(\mathbf{s}_i) \cdot \boldsymbol{\beta}$

• The concept of stationarity applies to the **covariance** among the pair of random components $\varepsilon'(\mathbf{s}_i) + \varepsilon''(\mathbf{s}_i)$:

$$\circ E\left[\varepsilon'(\mathbf{s}_i) + \varepsilon''(\mathbf{s}_i)\right] = 0 \text{ and } Var\left[\varepsilon'(\mathbf{s}_i) + \varepsilon''(\mathbf{s}_i)\right] = const$$

relative location

$$Cov \bigg[\bigg(\varepsilon'(\mathbf{s}_i) + \varepsilon''(\mathbf{s}_i) \bigg), \bigg(\varepsilon'(\mathbf{s}_j) + \varepsilon''(\mathbf{s}_j) \bigg) \bigg]$$
 does not depend on the absolute locations of \mathbf{s}_i and \mathbf{s}_j , but only on their distance (and perhaps under *anisotropy* on the direction).

• The spatial arrangement of the sample points constitutes the *support* of the regionalized variable. Predictions outside the support become extrapolations.

means applied area, once beyond this area, the discovered rule are not

Historical Background.

- South African mining engineer D.G. Krige. Early 1950 developed optimal core grade estimation from sample points.
- Meaning of "optimal": Interpolation weights $\lambda_i(\mathbf{s})$ are chosen to optimize the interpolation function $\hat{Y}(\mathbf{s}) = \sum_{i=1}^n \lambda_i(\mathbf{s}) \cdot Y(\mathbf{s}_i)$ for any prediction location \mathbf{s} given the sampling locations \mathbf{s}_i , variance of prediction is smallest means best i.e., to provide a Best Linear Unbiased Estimate (BLUE) of the random field $\hat{Y}(\mathbf{s})$ at any location \mathbf{s} .
- Geo-statistics was established by Georges Matheron of the Centre of Morphologie Mathematique in Fontainebleu, France. (early 1960).
- However, similar aspatial estimation approaches are known for a long time in other branches of sciences.
- Due to this origin in the mining industry much of the lingo of geo-statistics is in terms of mining engineering (e.g., *drift*, *sill* and *nugget*)

Basic Kriging models

first order component equal to 0

• For **simply kriging** it is assumed that $E[Y(s_i)] = 0 \ \forall s_i \in \Re$, that is $\mu(s_i) = 0$ is given externally

- For *ordinary kriging* we assume that $E[Y(\mathbf{s}_i)] = c \ \forall s_i \in \mathfrak{R}$ has a constant expectation $\mu(\mathbf{s}_i) = c$ unequal to zero. Thus the expectation does not dependent on the location
- For *universal kriging* we assume that $E[Y(\mathbf{s}_i)] = \mu(\mathbf{s}_i) \ \forall \mathbf{s}_i \in \Re$ has spatially varying expectation, e.g., $\mu(\mathbf{s}_i) = \mathbf{x}^T(\mathbf{s}_i) \cdot \mathbf{\beta}$.
- The ordinary and universal kriging models can always be reduced to the simple kriging model by first estimating the expectation component $\hat{\mu}(\mathbf{s}_i)$ and then transforming the observed spatial field $Y(\mathbf{s}_i)$ by $\left[Y(\mathbf{s}_i) \hat{\mu}(\mathbf{s}_i)\right]$ because $E\left[Y(\mathbf{s}_i) \hat{\mu}(\mathbf{s}_i)\right] = 0$.

The expectation component $\hat{\mu}(\mathbf{s}_i)$ must be estimated by **feasible generalized least squares** with an estimated covariance structure because the observed spatial field $Y(\mathbf{s}_i)$ is autocorrelated, which violates the **OLS** independence assumption.

(Recall *ordinary least squares* requires that the individual observations are independent of each other, i.e., $Cov[Y(\mathbf{s}_i), Y(\mathbf{s}_i)] = 0$ for all $\mathbf{s}_i \neq \mathbf{s}_j$)

Deterministic Inverse Distance Weighted Interpolator

- Inverse distance weighted interpolation is used frequently to obtain a first idea about the spatial variability of a spatial field $Y(\mathbf{s}_i)$.
- Its spatial dependence (i.e., covariation) among the sample points is determined **determistically**.

It is defined as

$$\widehat{Y}(\mathbf{s}) = \frac{\sum_{i=1}^{n} [h(\mathbf{s}_i, \mathbf{s})]^{-\alpha} \cdot Y(\mathbf{s}_i)}{\sum_{i=1}^{n} [h(\mathbf{s}_i, \mathbf{s})]^{-\alpha}}$$

with $h(\mathbf{s}_i, \mathbf{s})$ being the distance between the sample location \mathbf{s}_i and the prediction location \mathbf{s} and $\alpha \geq 0$ a smoothing parameter.

- By convention the smoothing value $\alpha = 2$ is used:
 - For $\alpha=0$ extreme smoothing is achieved with $\hat{Y}(\mathbf{s})=\frac{\sum_{i=1}^{n}Y(\mathbf{s}_{i})}{n}$ at all prediction locations \mathbf{s} .
 - For $\alpha = \infty$ the smoothed pattern resembles that of a Voronoi polygon with each tile having a value equal to $\hat{Y}(\mathbf{s}) = Y(\mathbf{s}_i)$.
- For prediction locations $\mathbf{s}_i = \mathbf{s}$ the predicted value is $\widehat{Y}(\mathbf{s}) = Y(\mathbf{s}_i)$.
- In deterministic smoothing the standard error of the prediction $\hat{Y}(s)$ cannot be evaluated, because no distribution assumptions are made.

Covariance and Semi-variogram

- Most geo-spatial surfaces exhibit some degree of *spatial persistence*. I.e. they exhibit *positive spatial autocorrelation*.
- The auto-covariance $C(\mathbf{s}_i, \mathbf{s}_i)$ between two points is

$$C(\mathbf{s}_i, \mathbf{s}_j) = E\Big[\Big(Y(\mathbf{s}_i) - \mu(\mathbf{s}_i)\Big) \cdot \Big(Y(\mathbf{s}_j) - \mu(\mathbf{s}_j)\Big)\Big] \text{ or in terms of the autocorrelation } \rho(\mathbf{s}_i, \mathbf{s}_j) = \frac{C(\mathbf{s}_i, \mathbf{s}_j)}{\sigma(\mathbf{s}_i) \cdot \sigma(\mathbf{s}_j)}$$
residual

• For an *isotropic stationary* spatial process the covariance $C(\mathbf{s}_i, \mathbf{s}_j)$ reduces to $C(\mathbf{s}_i, \mathbf{s}_j) \Rightarrow C(\mathbf{s}_i - \mathbf{s}_j) \Rightarrow C(h_{ij})$, which depends only on the distance h_{ij} between points $\mathbf{s}_i = (x_i, y_i)^T$ and $\mathbf{s}_j = (x_j, y_j)^T$.

Note: *spherical* distances are better suited for small-scale maps to accommodate the curvature of the earth.

- For an *isotropic* stationary spatial process we get for the dissimilarity $Y(\mathbf{s} + \mathbf{h}) Y(\mathbf{s})$:
 - o $E[Y(\mathbf{s}+\mathbf{h})-Y(\mathbf{s})] = E[Y(\mathbf{s}+\mathbf{h})] E[Y(\mathbf{s})] = 0$ for the individual expectations being **zero** or **constant** over space
 - => Works for **simple** and **ordinary** kriging because any constant mean surface in the difference cancels out.
 - => Consequently, we do not need to know the mean as long as it is constant at all locations
 - Otherwise we need to work with regression residuals, because their expectations are supposed to be identical within the study area: $E\left[\left(\varepsilon'(\mathbf{s}_i) + \varepsilon''(\mathbf{s}_i)\right) \left(\varepsilon'(\mathbf{s}_j) + \varepsilon''(\mathbf{s}_j)\right)\right] = 0$
 - => Works for *universal* kriging.
 - O The variance of the distance at a distance $h = |\mathbf{h}|$ between two locations $Y(\mathbf{s} + \mathbf{h}) Y(\mathbf{s})$ can be expressed as semi-variogram $\gamma(h)$ for simple and ordinary kriging:

$$\underbrace{Var\big[Y(\mathbf{s}+\mathbf{h})-Y(\mathbf{s})\big]}_{=2\cdot\gamma(h)} = \underbrace{Var\big[Y(\mathbf{s}+\mathbf{h})\big]}_{=\sigma^2} + \underbrace{Var\big[Y(\mathbf{s})\big]}_{=\sigma^2} - 2\cdot\underbrace{C\big[Y(\mathbf{s}+\mathbf{h}),Y(\mathbf{s})\big]}_{=C(h)}$$

$$2\cdot\gamma(h) = 2\cdot\sigma^2 - 2\cdot C(h)$$

$$\gamma(h) = \sigma^2 - C(h)$$

because $Var(X \pm Z) = Var(X) + Var(Z) \pm 2 \cdot C(X, Z)$.

The term *intrinsic stationarity* refers to the stationarity of spatial difference $[Y(\mathbf{s}+\mathbf{h})-Y(\mathbf{s})]$ of regionalized random variable $Y(\mathbf{s})$ at two locations and not to the random variable $Y(\mathbf{s})$ itself. If the random field $Y(\mathbf{s})$ is weakly stationary then $[Y(\mathbf{s}+\mathbf{h})-Y(\mathbf{s})]$ must be also intrinsic stationary.

- The semi-variogram is defined as $\gamma(h) = \sigma^2 C(h) \Leftrightarrow C(h) = \sigma^2 \gamma(h)$, thus the covariance can be directly calculated from the semi-variogram. It only depends on the distance h between the locations $\mathbf{s} + \mathbf{h}$ and \mathbf{s} .
- o Relationship between the covariance, correlation and the semi-variogram

FIGURE 4.43 Relationship between semivariance γ and autocovariance σ^2 for a stationary regionalized variable. σ_0^2 is the variance of the observations, or the autocovariance at lag 0. For values of h beyond the range, $\gamma_h = \sigma_0^2$.

• Theoretical *properties* of the semi-variogram for intrinsic stationarity fields:

o At
$$h \to \infty \Rightarrow \gamma(\infty) = \sigma^2 - C(\infty) = \sigma^2$$
. This is the *sill*.

- The **threshold distance** h where the sill is reached is called **range**.
- o If at some distance range the sample data exhibit *negative* spatial autocorrelation then the semi-variogram overshoots the sill.

FIGURE 4.44 Relationship between semivariance γ_h and autocorrelation ρ_h for a stationary regionalized variable.

if the semi variance keep increasing, then would violate the stationary assumption (sill is variance.)

- o If a semi-variogram is equal to the sill at all distances $h \ge 0$ then there is
 - lacktriangledown no spatial autocorrelation in the underlying stochastic component $arepsilon'(\mathbf{s}_i)$ and
 - $\gamma(h) = Var(\varepsilon''(\mathbf{s}_i))$ for all distances h.

 Consequently, spatial interpolation becomes meaningless because $\varepsilon''(\mathbf{s}_i) \sim i.i.d.$, thus it does not exhibit a spatial relationship.
- How fast the semi-variogram approaches the sill, if at all, for large hs is an indication of the presence
 of non-stationarities.

- One expects that spatial dependencies are fading out at some threshold distance h.
- If this is not the case then non-stationarities are present.
- For non-stationary spatial fields the *ergodasticity* assumption is violated because effects of a regionalized random variable will not be forgotten even at very high distances.
- o In theory, $\gamma(0+\delta)$ must almost equal zero for any incremental small distance value δ . If this is not the case we observe a nugget effect.
- The *nugget effect* arises because the regionalized variable is

 [a] so erratic over a short distance that the semi-variogram goes from zero to the level of the nugget effect in a distance less than the smallest sampling interval h_{min} between two points s + h and s.
 [b] or the spatial process exhibits a discontinuity over a short distances (e.g. moving from inside a nugget to the surrounding environment).
 - [c] or our measurements $Y(\mathbf{s})$ at locations \mathbf{s} are impacted by some error $Var[\varepsilon''(\mathbf{s}_i)] \neq 0$.
 - => Implication: A *predicted surface* $\hat{Y}(\mathbf{s})$ does not need to go exactly through the observed value $Y(\mathbf{s}_i)$ at the sampling locations \mathbf{s}_i .

Estimation of the semi-variogram

• Distribution of inter-sample point distances within a bound study area

Notes:

- for higher distances the number of point pairs is decreasing again.
- For the normal distributed locations from the map center the squared distances h^2 are $h^2 \sim \chi_{df=2}^2$.

• Steps of variogram estimation:

Figure 4.2: Plot of the dissimilarities γ^* against the spatial separation **h** of sample pairs: a variogram cloud.

Figure 4.3: The experimental variogram is obtained by averaging the dissimilarities γ^* for given classes \mathfrak{H}_k .

Figure 4.4: The sequence of average dissimilarities is fitted with a theoretical variogram function.

- 1. Plot pairwise squared semi-dissimilarities $(Y(\mathbf{s} + \mathbf{h}) Y(\mathbf{s}))^2/2$ for distances from zero to approx. half the *diameter* (spatial extend in either direction) of the study region.
- 2. Take the averages of $(Y(s+h)-Y(s))^2/2$ in **distance bands**, which are also called **bins**.
- 3. Fit a *theoretical semi-variogram functional form* to the mean levels in each bin:
 - => Elementary textbooks suggest fitting it by visual inspection of the sill, range and nugget effect
 - => Advanced methods use non-linear weighted statistical curve fitting techniques
 - The number of squared dissimilarities in each bin determines the weights.
 - A large number of pair-wise dissimilarities in a bin indicate higher precision of the estimate mean of the particular bin.
 - => There are also approaches which do not require binning and use the pairwise squared semidissimilarities directly (see Bivand et al. p 228)
- What do we gain by estimating the semi-variogram instead of the covariance structure directly?

O Discrete intervals $[h_k - h_{k+1}]$ are replaced by a function in the continuous distances h between two points.

- The semi-variogram is a simple function in just a few parameters.
- We do not need to know the mean of the spatial field as long as it is constant.
- We are not bound to the set of observed distances among observed sample point pairs.
 This gives us the flexibility to estimate the co-variation between any two points as long as we know their distance.
 - Thus we can add *prediction points* and immediately calculate the covariation of these points with the given sample points.
- The semi-variogram is a smooth function and eliminates sampling variations from an empirically observed covariance matrix.
- The covariance matrix between the spatial objects can be derived from the theoretical forms of semi-variogram function $\gamma(h)$: $C(h) = \sigma^2 \gamma(h)$
- However, only *specific functional specifications* for a semi-variogram function are permitted because the covariance matrix C(h) has to satisfy the specific conditions:
 - [a] **symmetry** and all its eigenvalues are positive
 - [b] **positive definiteness** for any value of h.
- This leads to a selected number of *feasible* functional semi-variogram model specifications. For instance:

Spherical model:

$$\gamma(h) = \begin{cases} 0 & h = 0 \\ a + (\sigma^2 - a) \cdot \left(\frac{3 \cdot h}{2 \cdot r} - \frac{h^3}{2 \cdot r^3}\right) & 0 < h \le r \\ \sigma^2 & otherwise \end{cases}$$

a is the nugget effect, σ^2 the sill and r is the range.

Discuss function's behavior at h = 0, h = r and beyond.

Exponential model:

$$\gamma(h) = \begin{cases} 0 & h = 0 \\ a + (\sigma^2 - a) \cdot [1 - \exp(-3h/r)] & h > 0 \end{cases}$$

FIGURE 4.47 Exponential and spherical models of semivariogram. Both models have same initial slope and sill. After Clark (1979).

The exponential model will never exactly reach the sill, however, for large *h* it will come extremely close to it. It can model mild non-stationarities.

o For more models and a discussion of their properties see Waller & Gotway pp277-280.

Extensions:

• The semi-variogram model can be relaxed to *accommodate simple forms anisotropy* (beyond the scope of this lecture). Here the sill or the range may differ depending on the direction of the distance measurement (see the Geo-Statistical Analyst in ArcGIS)

• The semi-variogram can be **generalized to a linear combination** of several semi-variogram functions such as one for shorter ranges and one for longer ranges, e.g., $\gamma(h) = \lambda \cdot \gamma_1(h) + (1 - \lambda) \cdot \gamma_2(h)$ (see Bivand et al. p 224 and **gstat::vgm(..., add.to=vgmComponent)**) divided data into two sets(short distance and long distance)

• One needs to question, however, if the more complex semi-variogram models add sufficiently new information and what their underlying theoretical justification is?