1

I. (10 points). Les parties A et B sont indépendantes.

à la rentrée scolaire, on fait une enquête dans une classe de sixième comprenant 25 élèves.

Partie A: On sait que, dans cette classe, 48 % des élèves ont 11 ans, $\frac{1}{5}$ ont 13 ans et les autres ont 12 ans.

Ces élèves utilisent deux types de sacs de cours : le sac à dos ou le cartable classique.

- 15 élèves, dont les $\frac{2}{3}$ ont 11 ans, ont acheté un cartable classique ;
- Les autres, dont la moitié ont 12 ans, ont acheté un sac à dos.
- 1. Recopier le tableau suivant sur votre copie et le compléter à l'aide des données de l'énoncé :

	Sac à dos	Cartable	Total
11 ans	2	10	12
12 ans	5	3	8
13 ans	3	2	5
Total	10	15	25

2. On interroge au hasard un élève de cette classe.

On note : S l'événement : « l'élève a un sac à dos ». C l'événement : « l'élève a un cartable ». T l'événement : « l'élève a treize ans »

a) Montrer que P(S) = 0,4.

Comme il y a équiprobabilité, $P(S) = \frac{10}{25} = 0.4$

b) Calculer $P(C \cap T)$

$$P(C \cap T) = \frac{2}{25} = 0.08$$

3. On interroge successivement et de manière indépendante trois élèves de cette classe ; quelle est la probabilité qu'exactement deux d'entre eux aient un sac à dos ?

A la répétition 3 fois (n=3) de façon indépendante d'une épreuve à 2 issues S ou \overline{S} je peux associer une variable aléatoire X qui comptabilise le nombre de succès X suit une loi binomiale B(3; 0,4) la probabilité de succès étant p=p(S)=0,4

Traduisons la situation à l'aide d'un arbre :

La probabilité qu'exactement deux d'entre eux aient un sac à dos est égale à 0,288.

TES - Contrôle 4

Chapitres: probabilités + révisions.

Partie B: A leur inscription, ces élèves doivent souscrire une assurance scolaire;

deux types de contrats annuels sont proposés. D'après les études statistiques, le contrat $\bf A$ dont le coût est de 20 € est choisi avec une probabilité de 0,7 et le contrat $\bf B$ dont le coût est de 30 €est choisi avec une probabilité de 0,3 .

De plus le collège propose une adhésion facultative au foyer coopératif, d'un montant de 15 €.

Indépendamment du contrat d'assurance choisi, 40 % des élèves prennent une carte d'adhérent au foyer.

On note : A l'é vénement : « l'élève a choisi le contrat **A** ». B l'événement : « l'élève a choisi le contrat **B** ».

F l'événement : « l'élève est adhérent au foyer ».

1. Recopier et compléter l'arbre des probabilités associé à la situation décrite ci-dessus.

2. Quelle est la probabilité qu'un élève est pris le contrat **B** et qu'il soit adhérent au foyer?

$$P(B \cap F) = P_B(F) \times P(B) = 0.4 \times 0.3 = 0.12$$

- 3. A chaque élève pris au hasard, on associe le coût X de son inscription (assurance scolaire plus adhésion éventuelle au foyer).
 - a) Quelles sont les valeurs possibles de ce coût?

L'ensemble des valeurs de la variable X est $\{20; 30; 35; 45\}$ (voir l'arbre ci-dessus)

b) Etablir la loi de probabilité de ce coût et présenter le résultat dans un tableau.

la loi de probabilité associée au coût X:

coût X	20	30	35	45
probabilité p	0,42	0,18	0,28	0,12

c) Calculer l'espérance mathématique de cette loi. Quelle interprétation peut-on en donner?

L'espérance mathématique de cette loi est : $E(X) = 0,42 \times 20 + 0,18 \times 30 + 0,28 \times 35 + 0,12 \times 45 = 29$

On peut dire qu'en moyenne une inscription coûte 29 €

II. (10 points). Pour chacune des propositions ci-dessous, indiquer si la proposition est vraie ou fausse en justifiant votre réponse.

1. La fonction $x \mapsto e + \frac{1}{5}$ est la fonction dérivée de la fonction $x \mapsto e + \ln 5$

Faux, le nombre $\ln 5$ est une constante, la fonction $x \mapsto e$ est la fonction dérivée de la fonction $x \mapsto e x + \ln 5$

2.
$$Si \left(1 - \frac{1}{100}\right)^n \le 0,7$$
 alors $n \ge \frac{\ln 0,7}{\ln 0,99}$

Vrai,

si
$$\left(1 - \frac{1}{100}\right)^n \le 0.7$$

 $0.99^n \le 0.7$
 $\ln(0.99^n) \le \ln(0.7)$
 $n\ln(0.99) \le \ln(0.7)$
 $n \ge \frac{\ln 0.7}{\ln 0.99}$ (**attention** $\ln(0.99)$ est un nombre négatif)

3. L'ensemble des solutions sur \mathbb{R} de l'équation $\ln(x^2+4x+3) = \ln(5x+9)$ est : $S = \{-2, 3\}$

Faux, le nombre -2 ne peut pas être dans l'ensemble solution car $5 \times (-2) + 9 = -1$ et la fonction ln n'est pas définie en -1

4. La limite quand x tend vers 1, x < 1, de la fonction $x \mapsto \ln\left(\frac{\sqrt{1-x}}{2}\right)$ est 0

Faux, car $\lim_{\substack{x \to 1 \\ x < l}} \frac{\sqrt{1-x}}{2} = 0$ donc par composition de limites, $\lim_{\substack{x \to 1 \\ x < l}} \ln \left(\frac{\sqrt{1-x}}{2} \right) = \lim_{x \to 0} \ln x = -\infty$

5. La valeur moyenne sur l'intervalle [0; 4] de la fonction qui à x associe e^{-x} est $\frac{1-e^{-4}}{4}$

Vrai, $\mu = \frac{1}{4-0} \int_{0}^{4} e^{-x} dx = \frac{1}{4} \left[-e^{-x} \right]_{0}^{4} = \frac{1}{4} \left(-e^{-4} - (-1) \right) = \frac{1-e^{-4}}{4}$

6. f est une fonction définie sur]-2; $+\infty[$ par $f(x)=3+\frac{1}{x+2}$ alors $\int_0^2 f(x) dx = 6+\ln 2$

Vrai, $\int_0^2 f(x) dx = \int_0^2 3 + \frac{1}{x+2} dx = \left[3x + \ln(x+2) \right]_0^2 = 6 + \ln 4 - \ln 2 = 6 + \ln 2$

Une maladie atteint 1 % d'une population. Un test de dépistage de cette maladie a les caractéristiques suivantes :

Chez les individus malades, 99 % des tests sont positifs et 1 % sont négatifs,

et chez les individus sains 98 % des tests sont négatifs et 2 % sont positifs.

On prend un individu au hasard dans la population et on lui applique le test.

On appelle M l'événement « l'individu est malade » et T l'événement « le test est positif », \overline{M} et \overline{T} les événements contraires .Alors :

7.
$$P_{\rm M}(T) + P_{\overline{\rm M}}(T) = 1,01$$

Vrai, car $P_{\rm M}(T) + P_{\overline{\rm M}}(T) = 0.99 + 0.02 = 1.01$

8.
$$P_{\rm M}(T) + P_{\overline{\rm M}}(T) = P(T)$$

Faux, car $P(T) = P_{M}(T) \times P(M) + P_{\overline{M}}(T) \times P(\overline{M}) = 0.99 \times 0.01 + 0.02 \times 0.99 = 0.0297$

9.
$$P(T) = 2.97 \times 10^{-2}$$

Vrai, car $P(T) = P_M(T) \times P(M) + P_{\overline{M}}(T) \times P(\overline{M}) = 0.99 \times 0.01 + 0.02 \times 0.99 = 0.0297 = 2.97 \times 10^{-2}$

10. Sachant que le test est positif, il y a deux chances sur trois pour que l'individu ne soit pas malade.

Vrai, car $P_T(\overline{M}) = \frac{P(\overline{M} \cap T)}{P(T)} = \frac{0.02 \times 0.99}{0.03 \times 0.99} = \frac{2}{3}$