_{ТЫК}

тык

7 Комбинаторика

- Алфавит Σ (или X, Ex. $X = \{a, b, c\}$) множество символов
- Диапазон $[n] = \{1, ..., n\}$ конечное множество последовательных натуральных чисел
- Расстановка последовательность каких-либо элементов (кортеж) *тык* Ex. x = (a, b, c, d, b, b, c) |x| = n

Расстановку можно представить как функцию $f:[n] \to \Sigma$

• Перестановка - $\pi:[n] \to \Sigma$, где $n=|\Sigma|$ Расстановка π - биекция между [n] и Σ *Ex.* $\pi = 2713546$

- ullet k-перестановка расстановка из k различных элементов из Σ Ex. 5-перестановка из $\Sigma = [7] - |31475| = 5$ k-перестановка - это инъекция $\pi: [k] \to \Sigma \ (k \le n = |\Sigma|)$
- P(n,k) множество всех k-перестановок алфавита $\Sigma = [n]$ (если исходный алфавит не состоит из чисел, то мы можем сделать биекцию между ним и [n]) $P(n,k) = \{ f \mid f : [k] \rightarrow [n] \}$
- $S_n = P_n = P(n,n)$ множество всех перестановок. $|S_n| = n!$ - всего существует n! перестановок
- $|P(n,k)| = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$ • Циклические *k*-перестановки
 - $\pi_1, \pi_2 \in P(n,k)$ циклически эквивалентны тогда и только тогда:

 $\exists s \mid \forall i \ \pi_1((i+s)\%k) = \pi_2(i)$ $\overline{P_C(n,k)}$ - множество всех циклических k-перестановок в Σ

$$|P_C(n,k)| \cdot k = |P(n,k)| |P_C(n,k)| = \frac{|P(n,k)|}{k} = \frac{n!}{k(n-k)!}$$

- *Ex.* $\pi_1 = 76123$, $\pi_2 = 12376$
- **Неупорядоченная расстановка** k **элементов** мультимножество Σ^* размера k $Ex. \ \Sigma^* = \{ \triangle, \triangle, \square, \triangle, \circ, \square \}^* = \{ 3 \cdot \triangle, 2 \cdot \square, 1 \cdot \circ \} = (\Sigma, r)$ Неупорядоченную расстановку можно представить как функцию:
- $r:\Sigma \to \mathbb{N}, \quad r(x)$ кол-во повторений объекта xullet k-сочетание - неупорядоченная перестановка из k различных элементов из Σ (еще называют k-подмножеством, k-subset) *_{ТЫК}*

Соответственно C(n,k) - множество всех таких k-сочетаний

$$|C(n,k)| = C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 $|P(n,k)| = C(n,k) \cdot k! = \binom{n}{k} \cdot k!$

• Тh. Биномиальная теорема:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

где $\binom{n}{k}$ - биномиальный коэффициент

тык

• Тh. Мультиномиальная теорема:

$$(x_1 + \dots + x_r)^n = \sum_{\substack{k_i \in 1 \dots n, \\ k_1 + \dots + k_r = n}} {n \choose k_1, \dots, k_r} x_1^{k_1} \cdot \dots \cdot x_r^{k_r}$$

где $\binom{n}{k_1,\ldots,k_r} = \frac{n!}{k_1!\ldots k_r!}$ - мультиномиальный коэффициент

• Перестановка мультимножества Σ^*

 $\Sigma^* = \{ \Delta^1, \Delta^2, \square, \star \} = (\Sigma, r) \quad r : \Sigma \to \mathbb{N}_0 \quad n = |\Sigma^*| = 4 \quad s = |\Sigma| = 3$ Nota. $\begin{cases} \Delta^1, \Delta^2, \square, \star \\ \Delta^2, \Delta^1, \square, \star \end{cases}$ считаются равными перестановками

 $|P^*(\Sigma^*,n)|=rac{n!}{r_1!\dots r_s!}=igg(n\atop r_1,\dots,r_sigg)$ - количество перестановок мультимножества, где r_i количество і-ого элемента в мультимножестве

• *k*-сочетание бесконечного мультимножества - такое подмультимножество размера k, содержащее элементы из исходного мультимножества Σ^* . При этом соблюдается, что количество какого-либо элемента r_i в исходном мультимножестве не больше размера *_{ТЫК}*

 $\frac{(k+s-1)!}{k!(s-1)!} = \binom{k+s-1}{k,s-1} = \binom{k+s-1}{k} = \binom{k+s-1}{s-1},$

где k - размер сочетания, $s=|\Sigma|$ - количество уникальных элементов в множестве

- ullet Слабая композиция неотрицательного целого числа n в k частей это решение (b_1,\ldots,b_k) уравнение $b_1+\cdots+b_k=n,$ где $b_i\geq 0$ $|\{$ слабая композиция n в k частей $\}|=egin{pmatrix} n+k-1 \\ n,k-1 \end{pmatrix}$
- Композиция решение для $b_1 + \dots + b_k = n$, где $b_i > 0$ $|\{\text{композиция } n \text{ в } k \text{ частей}\}| = \binom{n-k+k-1}{n-k,k-1}$
- Число всех композиций *п* в некоторой число частей:

$$\sum_{k=1}^{n} \binom{n-1}{k-1} = 2^{n-1}$$

 \bullet Разбиения множества - множество размера k непересекающихся непустых подмножеств

 $|\{$ разбиение n элементов в k частей $\}|={n\brace k}=S_k^{II}(n)=S(n,k)$ - число Стирлинга второго *_{ТЫК}*

 Формула Паскаля: *_{ТЫК}*

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

• Рекуррентное отношение для чисел Стирлинга:

$$\binom{n}{k} = \binom{n-1}{k-1} + k \cdot \binom{n-1}{k}$$

 \bullet Число Белла - количество всех неупорядоченных разбиений множества размера n*тык*

Число Белла вычисляется по формуле: $B_n = \sum_{i=1}^{n} S(n, m)$

• Целочисленное разбиение - решение для $a_1+\cdots+a_k=n$, где $a_1\geq a_2\geq \cdots \geq a_k\geq 1$ p(n,k) - число целочисленных разбиений n в k частей

$$p(n) = \sum_{k=1}^{n} p(n,k)$$
 - число всех разбиений для n $Ex. \ 5 = 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1$

• Принцип включений/исключений:

тык

- X начальное множество элементов
- $-P_1,\ldots,P_m$ свойства
- Пусть $X_i = \{x \in X \mid P_i$ свойство для $x\}$
- Пусть $S \in [m]$ множество свойств
- Пусть $N(S) = \bigcap X_i = \{x \in X \mid x$ имеет все свойства $P_1, \dots, P_m\}$

 $Ex. \ N(\emptyset) = X \quad |N(\emptyset)| = |X| = n$

• Формула включений/исключений:

_{ТЫК}

$$|X\setminus (X_1\cup X_2\cup\ldots\cup X_m)|=\sum\limits_{S\subseteq [m]}(-1)^{|S|}|N(S)|$$
 - количество элементов множества X , не

имеющих никакое из свойств

• Следствие:

$$|\bigcup_{i \in [m]} X_i| = |X| - \sum_{S \subseteq [m]} (-1)^{|S|} |N(S)| = \sum_{S \subseteq [m], S \neq \emptyset} (-1)^{|S|-1} |N(S)|$$

- - * Определяем «плохие» свойства P_1,\ldots,P_m
 - * Посчитываем N(S)
 - * Применяем ПВ/И
- Количество сюръекций (правототальных функций):
 - * $X = \{ \text{функция } f : [k] \rightarrow [n] \}$

 - * Плохое свойство $P_i: X_i = \{f: [k] \to [n] \mid \nexists j \in [k]: f(j) = i\}$ * $|\{$ сюръекции $f: [k] \to [n]\}| = |X \setminus (X_1 \cup \ldots \cup X_m)| = \sum_{S \subseteq [m]} (-1)^{|S|} |N(S)| =$

$$\sum_{S\subseteq [m]} (-1)^{|S|} (n-|S|)^k = \boxed{\sum_{i=0}^k (-1)^i \binom{k}{i} (k-i)^n} = n! S_n^{(II)}(k)$$
- число Стирлинга второго рода

• Количество биекций:

$$n! = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{n}$$

• Беспорядки - перестановка без фиксированных точек

тык

Если f(i) = i, то i - фиксированная точка

- *X = все n! перестановок
- * Плохие свойства $P_1,\ldots,P_m:\pi\in X$ имеет свойство $P_i\Longleftrightarrow\pi(i)=i$
- * Посчитаем N(S): N(S) = (n |S|)!
- * Применяем ПВ/И: $X \setminus (X_1 \cup \ldots \cup X_n) = \sum_{S \subseteq [n]} (-1)^{|S|} N(S) = \sum_{S \subseteq [n]} (-1)^{|S|} (n |S|)! =$

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)!$$