CRYPTOGRAPHY

МЕТОДИ ТА ЗАСОБИ КРИПТОГРАФІЧНОГО ЗАХИСТУ ІНФОРМАЦІЇ

ПРАКТИКА

«МОДУЛЬНАЯ АРИФМЕТИКА»

Напоминание: Инверсные операции в \mathbb{Z}_n

```
Аддитивная инверсия в \mathbb{Z}_n . Два числа аддитивны, если: a+b\equiv 0 (mod\ n) Или b=n-a\ (mod\ n)
```

```
Например: в \mathbb{Z}_{10} a = 3 b = 10-3 = 7 
!! пары взаимно аддитивных в \mathbb{Z}_{10} (0,0) (1,9) (2,8) (3,7) (4,6) (5,5)
```

 $B \, \mathbb{Z}_n$ каждое целое имеет ОДНУ аддитивную инверсию (м.б. само число)

Примеры: Найти аддитивную инверсию a в \mathbb{Z}_n

	a	N	-a
1	180	37	?
2	86	31	?
3	97	23	?

Напоминание: Инверсные операции в \mathbb{Z}_n

Мультипликативная инверсия в \mathbb{Z}_n . Два числа мультипликативные, если: $a * b \equiv 1 \pmod{n}$ Расширенный алгоритм Эвклида может найти мультипликативную инверсию для заданного b в \mathbb{Z}_n s*n+t*b=gcd(n,b)=1(t*b) mod n = 1T.e. t мультипликативная инверсия b, при gcd(n,b)=1

Напоминание: Инверсные операции в \mathbb{Z}_n (Эвклид)

Здесь q=r1//r2, r=r1-q*r2, t=t1-q*t2, Если R1=1 то $b^{-1}=t1$

Напоминание: Инверсные операции в \mathbb{Z}_n (Эвклид)

Найти b^{-1} для b = 11 в \mathbb{Z}_{26}

r1	r2	r	q	t1	t2	t
26	11	4	2	0	1	-2
11	4	3	2	1	-2	5
4	3	1	1	-2	5	-7
3	1	0	3	5	-7	26
1	0			-7		

$$t1 = -7 \notin \mathbb{Z}_{26}.(-7) \mod 26 = 19$$

$$11^{-1} = 19 in \mathbb{Z}_{26}$$

Напоминание: Инверсные операции в \mathbb{Z}_n (Эвклид)

Пример: Найти
$$b^{-1}$$
 для $b = 23$ в \mathbb{Z}_{100} $t1 = -13 \notin \mathbb{Z}_{100}$. $(-13) mod \ 100 = 87$ Проверка: $(23 * 87) mod \ 100 = 2001 mod \ 100 = 1$

Примеры: Найти мультипликативную инверсию a в \mathbb{Z}_n

	A	n	a ⁻¹
1	38	101	?
2	86	47	?
3	24	97	?

Напоминание: Линейное уравнение

```
Уравнение вида a x \equiv b \pmod{n} a, b, n - заданные целые! Может: а) не иметь решения б) ограниченное число решений.
```

```
Пусть d = gcd(a, n)
Тогда
а) если d \ddagger b - нет решения
б) если d \mid b - есть d решений
```

Напоминание: Линейное уравнение

Уравнение вида

$$a x \equiv b \pmod{n}$$

Алгоритм решения:

а) сокращаем уравнение – делим на d б) умножаем обе стороны на $(a)^{-1}$ мультипликативную инверсию $\left(\frac{a}{d}\right)^{-1}$ – нахолим решение $\frac{a}{d}$ находим решение x_0 .

Общее решение имеет вид

$$x = x_0 + k * \frac{n}{d},$$
 $k = 0, 1, ..., (d - 1)$

Напоминание: Линейное уравнение

Пример.

$$14\ x\equiv 12\ (mod\ 18)$$
 Находим $d=gcd(14,18)=2$ Сокращаем на $d=2$ $7\ x\equiv 6\ (mod\ 9)$ Или $x_0\equiv 6*7^{-1}\ (mod\ 9)$, $\to 7^{-1}\ (mod\ 9)=4$ То есть $x_0\equiv 6*4\ (mod\ 9)=6$ Общее решение имеет вид

$$x = 6 + k * 9, \qquad k = 0, 1$$

Примеры: Найти все решения уравнения $a*x \equiv b \pmod{n}$

	a	b	n	X =
1	38	38	180	?
2	37	38	130	?
3	24	41	97	?

Напоминание: Система линейных уравнений

Уравнение вида

$$A * X \equiv B \pmod{n}$$

ИЛИ

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} * \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \equiv \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \pmod{n}$$

Если (?) есть A^{-1} мультипликативная инверсия матрицы A, то

$$X \equiv A^{-1}B \ (mod \ n)$$

Напоминание: Система линейных уравнений

Особенность:

Мультипликативная инверсия матриц Матрица A , где все $a_{i,j} \in \mathbb{Z}_n$, имеет мультипликативную инверсию, только если $\det(A)$ имеет мультипликативную инверсию в \mathbb{Z}_n .

Напоминание: Система линейных уравнений

Последовательность поиска инверсной матрицы.

Пусть $[\det(A)]^{-1}$ в \mathbb{Z}_n есть! и найдены все алгебраические дополнения $a_{j,i}^*$.

Для каждого i,j решаем линейное уравнение $det(A) * a_{j,i}^{-1} \equiv a_{j,i}^* (mod n)$

Таким образом формируется матрица $(A)^{-1}$

Найти инверсную матрицу A^{-1} в \mathbb{Z}_n

$$A = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}, \qquad n = 10$$
 $A = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix}, \qquad n = 10$

Решить систему линейных уравнений

$$3x + 5y \equiv 4 \pmod{5}$$
$$2x + 1y \equiv 3 \pmod{5}$$

$$3x + 2y \equiv 5 \pmod{7}$$
$$4x + 6y \equiv 4 \pmod{7}$$

$$2x + 5y \equiv 4 \pmod{8}$$
$$1x + 6y \equiv 3 \pmod{8}$$

END # 2