Project - Target SQL dataset Analysis by Gajanan.M

Q.1] Import The Dataset And Do Usual Exploratory Analysis Steps Like Checking The Structure & Characteristics Of The Dataset 1.1] Data Type Of Columns In A Table

SELECT column_name, data_type FROM project1.INFORMATION_SCHEMA.COLUMNS

Output

Row	column_name	data_type
1 "	order_id	STRING
2	customer_id	STRING
3	order_status	STRING
4	order_purchase_timestamp	TIMESTAMP
5	order_approved_at	TIMESTAMP
6	order_delivered_carrier_date	TIMESTAMP
7	order_delivered_customer_date	TIMESTAMP
8	order_estimated_delivery_date	TIMESTAMP

1.2] Time period for which data is given

select min(order_purchase_timestamp) as min_time_period,
max(order_purchase_timestamp) as max_time_period
from `project1.orders`;

Row	min_time_period	,	max_time_period	le
1	2016-09-04 21:15:19 UTC		2018-10-17 17:30:18 UTC	

1.3] Cities and States of customers ordered during the given period

SELECT C.customer_id, C.customer_city, C.customer_state, O.order_purchase_timestamp, FROM `gajanan147.project1.customers` AS C
JOIN `project1.orders` AS O ON C.customer_id = O.customer_id

ORDER BY order_purchase_timestamp limit 10

#Output

Row	customer_id	customer_city	customer_state	order_purchase_timestamp
1	08c5351a6aca1c1589a38f244	boa vista	RR	2016-09-04 21:15:19 UTC
2	683c54fc24d40ee9f8a6fc179f	passo fundo	RS	2016-09-05 00:15:34 UTC
3	622e13439d6b5a0b486c4356	sao jose dos campos	SP	2016-09-13 15:24:19 UTC
4	86dc2ffce2dfff336de2f386a78	sao joaquim da barra	SP	2016-09-15 12:16:38 UTC
5	b106b360fe2ef8849fbbd056f7	sao paulo	SP	2016-10-02 22:07:52 UTC
6	355077684019f7f60a031656b	sao paulo	SP	2016-10-03 09:44:50 UTC
7	7ec40b22510fdbea1b08921dd	panambi	RS	2016-10-03 16:56:50 UTC
8	70fc57eeae292675927697fe0	rio de janeiro	RJ	2016-10-03 21:01:41 UTC
9	6f989332712d3222b6571b1cf	porto alegre	RS	2016-10-03 21:13:36 UTC
10	b8cf418e97ae795672d326288	hortolandia	SP	2016-10-03 22:06:03 UTC

Q.2] In-depth Exploration:

2.1] Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

SELECT X.YEAR, SUM(X.value) as value_per_year FROM (SELECT EXTRACT(year FROM O.order_purchase_timestamp) AS YEAR, p.payment_value as value

FROM `project1..orders` AS O

LEFT JOIN `project1..payments` AS p ON O.order_id = p.order_id) AS X

GROUP BY X.YEAR ORDER BY YEAR desc;

#Output

Row	YEAR	li.	value_per_year
1		2018	8699763.0499998648
2		2017	7249746.7299996857
3		2016	59362.340000000026

2.2] What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT Y.time_of_day,
COUNT(Y.time_of_day) as no_of_purchases
```

FROM (SELECT CASE

WHEN X.HOUR < 12 THEN 'MORNING'

WHEN X.HOUR < 16 THEN 'AFTERNOON'

WHEN X.HOUR < 19 THEN 'EVENING'

ELSE 'NIGHT' END AS time_of_day

FROM (SELECT EXTRACT(HOUR FROM O.order_purchase_timestamp) AS HOUR,

FROM 'project1.orders' AS O) AS X) AS Y

GROUP BY Y.time_of_day;

#Output

BigQuery Custom SQL

	time_of_day	no_of_purchases 🕶
1.	NIGHT	28,331
2.	MORNING	26,980
3.	AFTERNOON	25,536
4.	EVENING	18,594

1-4/4 < >

Row	time_of_day	no_of_purchases
1	MORNING	26980
2	EVENING	18594
3	AFTERNOON	25536
4	NIGHT	28331

Q.3] Evolution of E-commerce orders in the Brazil region:

3.1] Get month on month orders by states

SELECT X.MONTH, X.region,
COUNT(X.MONTH) as orders_per_month
FROM (SELECT EXTRACT(MONTH FROM O.order_purchase_timestamp) AS MON
TH, S.seller_state as region
FROM `project1.orders` AS O
LEFT JOIN `project1.order_items` AS OI ON OI.order_id = O.order_id
LEFT JOIN `project1.sellers` S ON OI.seller_id = S.seller_id) AS X

GROUP BY X.MONTH, X.region ORDER BY X.MONTH, X.region

Row	MONTH /	region	orders_per_month
1	1	null	60
2	1	BA	30
3	1	CE	7
4	1	DF	88
5	1	ES	25
6	1	GO	39
7	1	MA	9
8	1	MG	688
9	1	MS	7
10	1	MT	22

3.2] Distribution of customers across the states in Brazil

SELECT X.state,
COUNT(X.state) as orders_per_state

FROM (SELECT S.seller_state as state FROM `project1.orders` AS O LEFT JOIN `project1.order_items` AS OI ON OI.order_id = O.order_id LEFT JOIN `project1.sellers` S ON OI.seller_id = S.seller_id) AS X

GROUP BY X.state ORDER BY X.state

Row	state //	orders_per_state
1	null	0
2	AC	1
3	AM	3
4	BA	643
5	CE	94
6	DF	899
7	ES	372
8	GO	520
9	MA	405
10	MG	8827

SELECT customer_state, COUNT(customer_id)
FROM `project1.customers`
GROUP BY customer_state

Row	customer_state	f0_
1	RN	485
2	CE	1336
3	RS	5466
4	SC	3637
5	SP	41746
6	MG	11635
7	BA	3380
8	RJ	12852
9	GO	2020
10	MA	747

- Q.4] Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 4.1] Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment value" column in payments table

```
WITH orders payments AS (
 SELECT o.order_id, o.order_purchase_timestamp, p.payment_value
 FROM 'project1.orders' o
 JOIN `project1.payments` p ON o.order_id = p.order_id
),
order_payments_2017 AS(
 SELECT SUM(payment_value) as total_cost_2017
 FROM orders_payments
WHERE EXTRACT(YEAR FROM order_purchase_timestamp) = 2017
 AND EXTRACT(MONTH FROM order_purchase_timestamp) >=1
 AND EXTRACT(MONTH FROM order_purchase_timestamp) <=8
),
order_payments_2018 AS(
 SELECT SUM(payment_value) as total_cost_2018
 FROM orders_payments
 WHERE EXTRACT(YEAR FROM order_purchase_timestamp) = 2018
 AND EXTRACT(MONTH FROM order_purchase_timestamp) >=1
 AND EXTRACT(MONTH FROM order_purchase_timestamp) <=8
)
SELECT (total_cost_2018
total_cost_2017) / total_cost_2017 * 100 AS percentage_increases
FROM order_payments_2017, order_payments_2018;
```

Row	percentage_increases	11
1	136.97687164665447	

4.2] Mean & Sum of price and freight value by customer state

WITH value AS (
SELECT c.customer_state AS customer_state,
SUM(oi.price) as price_sum, AVG(oi.price) as price_avg,
SUM(oi.freight_value) as freight_sum, AVG(oi.freight_value) as freight_avg

FROM `project1.order_items` oi

JOIN `project1.orders` o ON oi.order_id = o.order_id

JOIN `project1.customers` c ON o.customer_id = c.customer_id

GROUP BY customer_state)

SELECT

customer_state, price_sum, price_avg, freight_sum, freight_avg FROM value;

Quer	Query results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH
Row	customer_state	li.	price_sum	price_avg	freight_sum	freight_avg
1	SP		5202955.05	109.653629	718723.069	15.1472753
2	RJ		1824092.66	125.117818	305589.310	20.9609239
3	PR		683083.760	119.004139	117851.680	20.5316515
4	SC		520553.340	124.653577	89660.2600	21.4703687
5	DF		302603.939	125.770548	50625.4999	21.0413549
6	MG		1585308.02	120.748574	270853.460	20.6301668
7	PA		178947.809	165.692416	38699.3000	35.8326851
8	BA		511349.990	134.601208	100156.679	26.3639589
9	GO		294591.949	126.271731	53114.9799	22.7668152
10	RS		750304.020	120.337453	135522.740	21.7358043

Q.5] Analysis on sales, freight and delivery time

5.1] Calculate days between purchasing, delivering and estimated delivery

SELECT

TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS Days_between_purchase_delivery,

TIMESTAMP_DIFF(order_delivered_customer_date, order_estimated_delivery_date, DAY)
AS Days_between_estimated_delivery,

FROM `project1.orders`

Row	Days_between_purchase_delivery	Days_between_estimated_delivery_delivery
11		
1	30	12
2	30	-28
3	35	-16
4	30	-1
5	32	0
6	29	-1
7	43	4
8	40	4
9	37	1
10	33	5

5.2] Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

- time_to_delivery = order_purchase_timestamporder_delivered_customer_date
- diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

SELECT

TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, HOUR) AS time_to_delivery,

TIMESTAMP_DIFF(order_delivered_customer_date, order_estimated_delivery_date, HOUR) AS diff_estimated_delivery

FROM `project1.orders`

Row	time_to_delivery	diff_estimated_delivery
1	168	-1088
2	722	310
3	743	-681
4	181	-1065
5	262	-989
6	853	-397
7	565	-228
8	311	133
9	309	-298
10	173	-24

5.3] Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

SELECT AVG(X.time_to_delivery) AS mean_delivery_time, AVG(X.diff_estimated_delivery) AS mean_diff_estimated_delivery, AVG(X.freight_value) AS mean_freight_value, X.customer_state

FROM (SELECT TIMESTAMP_DIFF(O.order_delivered_customer_date, O. order_purchase_timestamp, HOUR) AS time_to_delivery,

TIMESTAMP_DIFF(O.order_delivered_customer_date, O.order_estimated_delivery_date, HOUR) AS diff_estimated_delivery, OI.freight_value, C.customer_state

FROM `project1.order_items` AS OI

FULL OUTER JOIN `project1.orders` AS O ON OI.order_id = O.order_id FULL OUTER JOIN `project1.customers` C ON C.customer_id=O.order_id) AS X

GROUP BY X.customer_state;

Row	mean_delivery_time	mean_diff_estimated_delivery	mean_freight_value	customer_state
1	298.84265309085	-271.58727177029994	19.9903199289	null
2	nuli	nuli	nuli	SP
3	nuli	nuli	nuli	RS
4	nuli	nuli	nuli	RJ
5	nuli	nuli	nuli	PB
6	nuli	nuli	nuli	MG
7	nuli	nuli	nuli	PA
8	nuli	nuli	nuli	BA
9	nuli	nuli	nuli	SC
10	nuli	nuli	nuli	ES

5.4] Sort the data to get the following:

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

SELECT X.city,
COUNT(X.city) as orders_per_city

FROM (SELECT S.seller_city as city FROM `project1.orders` AS O LEFT JOIN `project1.order_items` AS OI ON OI.order_id = O.order_id LEFT JOIN `project1.sellers` S ON OI.seller_id = S.seller_id) AS X

GROUP BY X.city
ORDER BY COUNT(X.city)
DESC LIMIT 5

Row	city	orders_per_city_
1	sao paulo	27983
2	ibitinga	7750
3	curitiba	3016
4	santo andre	2964
5	belo horizonte	2593

Q.6] Payment type analysis:

6.1] Month over Month count of orders for different payment types

SELECT COUNT(O.order_id) AS no_of_orders, EXTRACT(MONTH FROM order_purchase_timestamp) AS purchase_month, P. payment_type,

FROM `project1.orders` AS O

LEFT JOIN `project1.payments` AS P ON O.order_id = P.order_id

GROUP BY purchase_month, P.payment_type ORDER BY purchase_month,P.payment_type

Output

Row	no_of_orders	purchase_month	payment_type
1	1715	1	UPI
2	6103	1	credit_card
3	118	1	debit_card
4	477	1	voucher
5	1723	2	UPI
6	6609	2	credit_card
7	82	2	debit_card
8	424	2	voucher
9	1942	3	UPI
10	7707	3	credit_card

Count of orders for different payment types

SELECT COUNT(O.order_id) no_of_orders, p.payment_type FROM `project1.orders` AS O LEFT JOIN `project1.payments` AS P ON O.order_id = P.order_id GROUP BY P.payment_type

Output

Row	no_of_orders	payment_type
1	19784	UPI
2	76795	credit_card
3	5775	voucher
4	1529	debit_card
5	3	not_defined
6	1	null

6.2] Count of orders based on the no. of payment instalments

SELECT COUNT(O.order_id) no_of_orders, P.payment_installments FROM `project1.orders` AS O

LEFT JOIN `project1.payments` AS P ON O.order_id = P.order_id

GROUP BY P.payment_installment

Row	no_of_orders	payment_installments
1	52546	1
2	1626	7
3	5328	10
4	3920	6
5	12413	2
6	7098	4
7	10461	3
8	4268	8
9	644	9
10	5239	5

A] Number of cities in our dataset

SELECT COUNT (DISTINCT customer_city) as No_Of_Cities FROM `project1.customers`;

Output

B] Number of states in our dataset

SELECT
COUNT (DISTINCT customer_state) as no_of_states
FROM `project1.customers`;

BUSINESS INSIGHTS:

- 1. There are 4119 Cities
- 2. There are 29 States
- 3. There is clear growth in sales in 2017 and 2018 when compared with 2016
- 4. There are more purchases made in NIGHT, MORNING and AFTERNOON when compared with EVENING.
- 5. State SP has highest orders
- 6. City Sao Pulao has highest sales
- 7. There are more customers in state SP
- 8. % increase in sales from 2017 to 2018 is 136.97% increase
- 9. Customers Tend to buy from credit card.

BUSINESS RECOMMENDATIONS:

- 1. Customers are spread across Brazil in various cities, so business has great reach.
- 2. There is steady growth in sales from 2016 to 2018 so business can think of expanding their reach and market.
- 3. There are less no of purchases made in evening so we should not launch any deal of the product during evening as there will be less customers.
- 4. There are more customers in SP state so we can plan in opening more stores in that state.
- 5. There are more customers located in Sao Pulao city so we can have branches in various places to increase the sales.
- 6. There is increase of sales of 136.97% from 2017 to 2018 so business is running in profit so we can expand the market to reach more people.
- 7. More customers tend to buy with credit card so we can target those customers for special offer.