Pontificia Universidad Católica de Chile Bastián Mora - bmor@uc.cl Matías Fernández - matias.fernandez@uc.cl

MAT1107 - Introducción al Cálculo

Ayudantía 13 - Jueves 16 de junio del 2022

Problema 1. Consideremos la sucesión (s_n) definida por la recurrencia

$$s_1 = \sqrt{2}$$
 y $s_{n+1} = \sqrt{2 + s_n}$.

- a) demuestre que s_n es acotada
- b) demuestre que s_n es creciente
- c) demuestre que s_n converge y halle su límite

Solución:

a) Veamos que es acotada superiormente por 2, probando que

$$\forall n \in \mathbb{N}, s_n \leq 2$$

Para n=1 es cierto ya que $s_1=\sqrt{2}$. Suponiendo que $s_n\leq 2$ tenemos que $2+s_n\leq 4$ lo que permite concluir que

$$s_{n+1} = \sqrt{2 + s_n} \le \sqrt{4} = 2$$

b) Probemos que

$$\forall n \in \mathbb{N}, s_{n+1} \ge s_n$$

De la definición de s_{n+1} se tiene que

$$s_{n+1}^2 - s_n^2 = 2 + s_n - s_n^2$$

Entonces,

$$s_{n+1}^2 - s_n^2 = (2 - s_n)(1 + s_n).$$

El lado derecho de la última igualdad es mayor o igual a cero, ya que $0 \le s_n \le 2$. Concluimos que $s_{n+1}^2 - s_n^2 \ge 0$ Esto último demuestra que $s_{n+1} \ge s_n$.

c) Dado que s_n es creciente y acotada superiormente. En virtud del Teorema de las Sucesiones Monótonas se concluye que (s_n) es convergente. Veremos que en este caso, la recurrencia

$$s_{n+1} = \sqrt{2 + s_n},$$

permite calcular $L = \lim s_n$.

Sabemos que si $(s_n) \to L$ entonces $(s_{n+1}) \to L$. De este modo, se tiene la siguiente ecuación para L.

$$L = \sqrt{2 + L}$$

Esta ecuación tiene como única solución a L=2. Se concluye que $s_n\to 2$.

Problema 2. Calcule los siguientes límites

a)
$$\lim_{x\to\infty} \sqrt{x^2 - x} - x$$

c)
$$\lim_{n\to\infty} \frac{1+\frac{1}{n}}{n+\frac{1}{n}}$$

b)
$$\lim_{x\to+\infty} \frac{\sqrt{x-1}}{\sqrt[4]{x^2+1}}$$

d)
$$\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n})\sqrt{n+2}$$
.

Solución:

d)

a)
$$\lim_{x \to \infty} \sqrt{x^2 - x} - x = \lim_{x \to \infty} \frac{-x}{\sqrt{x^2 - x} + x} = \lim_{x \to \infty} \frac{-1}{\sqrt{1 - \frac{1}{x}} + 1} = -\frac{1}{2}$$

b)
$$\lim_{x \to +\infty} \frac{\sqrt{x-1}}{\sqrt[4]{x^2+1}} = \lim_{x \to +\infty} \frac{\sqrt{1-\frac{1}{x}}}{\sqrt[4]{1+\frac{1}{x^2}}} = \frac{\sqrt{1-0}}{\sqrt[4]{1+0}} = 1$$

c)
$$\lim_{n \to \infty} \frac{1 + \frac{1}{n}}{n + \frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n} + \frac{1}{n^2}}{1 + \frac{1}{n^2}} = \frac{0 + 0}{1 + 0} = 0$$

$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) \sqrt{n+2} = \lim_{n \to \infty} \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} \sqrt{n+2} = \lim_{n \to \infty} \frac{\sqrt{n+2}}{\sqrt{n+1} + \sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{1+\frac{2}{n}}}{\sqrt{1+\frac{1}{n}} + 1} = \frac{\sqrt{1+0}}{\sqrt{1+0} + 1} = \frac{1}{2}$$

Problema 3. Considere la sucesión $\{a_n\}$ definida mediante la recurrencia

$$a_0 > 0$$
, $\forall n \in \mathbb{N}, a_{n+1} = \frac{a_n}{1 + na_n^2}$

- a) Demuestre que la sucesión es decreciente
- b) Concluya que la sucesión es covergente, y calcule su límite

Solución:

- a) Como $na_n^2 \ge 0$ entonces el denominador $1 + na_n^2 \ge 1$. Para concluir, basta con verificar que se trata de una sucesión de términos no negativos, lo cual se hace por inducción. $a_0 > 0$ por dato. Si $a_n > 0$ entonces $a_{n+1} = \frac{a_n}{1 + na_n^2} > 0$. Por lo tanto es positiva y decreciente.
- b) Al ser decreciente y acotada inferiormente por cero, es una sucesión convergente a $L \ge 0$ De la recurrencia, se tiene que:

$$a_{n+1} \le \frac{a_n}{1 + a_n^2}$$

Por lo tanto, el límite L satisface la designaldad $L \leq \frac{L}{1+L^2}$, de donde se concluye L = 0. Otra forma de observar lo anterior es viendo que $a_{n+1} = \frac{\frac{a_n}{n}}{\frac{1}{n} + a_n^2} \to \frac{0}{L^2} = 0$. Problema 4. Usando el Teorema del Sándwich, calcule el límite

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}$$

Solución: Acotando se tiene que

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} \le \sum_{k=1}^{n} \frac{1}{\sqrt{n^2}} = \frac{n}{\sqrt{n^2}} = 1$$

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} \ge \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + n}} = \frac{n}{\sqrt{n^2 + n}}$$

Luego, usando el teorema del Sandwich se concluye que

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} \to 1$$

Problema 5. Usando el Teorema del Sandwich, calcule el límite de la sucesión $\frac{n!}{n^n}$.

Solución:

Primero es claro que $0 \le \frac{n!}{n^n}$ y por otro lado

$$\frac{n!}{n^n} = \frac{1 \times 2 \times \dots \times n}{n \times n \times \dots \times n} = \frac{1}{n} \times \frac{2}{n} \times \dots \times \frac{n}{n} < \frac{1}{n}$$

como $\frac{1}{n} \to 0,$ entonces por teorema del Sandwich $\frac{n!}{n^n} \to 0.$

Problema 6. Calcula el límite de

$$\lim_{n \to \infty} \sqrt[n]{a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0}$$

para $a_0, a_1, \dots, a_k > 1$.

Solución:

Sea a' el máximo entre todos los a_i entonces

$$\lim_{n \to \infty} \sqrt[n]{a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0} \le \lim_{n \to \infty} \sqrt[n]{(k+1) \cdot a' n^k}$$

y por el otro lado

$$\lim_{n \to \infty} \sqrt[n]{a_k n^k} \le \lim_{n \to \infty} \sqrt[n]{a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0}$$

Como

$$\lim_{n \to \infty} n^{1/n} = 1$$

entonces $\sqrt[n]{(k+1)\cdot a'n^k}\to 1$ y $\sqrt[n]{a_kn^k}\to 1.$ Por teorema del Sandwich

$$\lim_{n \to \infty} \sqrt[n]{a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0} = 1$$