

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Ecuaciones diferenciales parciales

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	221502ED	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante el conocimiento de las ecuaciones diferenciales parciales, para utilizarlas en la elaboración de modelos relacionados con problemas de calor, onda, y potencial. Desarrollar la habilidad y aptitud del estudiante para dar solución analítica a estos problemas, haciendo énfasis en la interpretación de los resultados en forma geométrica y física.

TEMAS Y SUBTEMAS

1. Introducción a las ecuaciones diferenciales parciales

- 1.1. Problemas clásicos que se modelan mediante ecuaciones diferenciales parciales.
- 1.2. Clasificación de las EDPs.
- 1.3. Concepto de solución de una EDP.

2. Ecuaciones en derivadas parciales de primer orden

- 2.1. Interpretación geométrica de la solución general y particular.
- 2.2. El problema de Cauchy para ecuaciones de primer orden.
- 2.3. Ecuaciones homogéneas.
- 2.4. Ecuaciones lineales y casilineales.
- 2.5. Superficies integrales. Superficies que pasan por una curva dada.
- 2.6. El método de las características.

3. Ecuaciones diferenciales de segundo orden

- 3.1. Clasificación de las EDPs de segundo orden.
- 3.2. Problemas de Sturm-Liouville: reducción a la forma normal.
- 3.3. Ecuaciones lineales con coeficientes constantes.
- 3.4. Curvas características de las ecuaciones de segundo orden.
- 3.5. El método de separación de variables.
- 3.6. El método de transformadas integrales.
- 3.7. Funciones de Green.

4. Ecuaciones elípticas

- 4.1. Problemas que se reducen a la ecuación de Laplace.
- 4.2. El problema de valores en la frontera: condiciones tipo Dirichlet y tipo Neumann.
- 4.3. Resolución de problemas de contorno para las regiones simples por el método de separación de variables.
- 4.4 La ecuación de Laplace en tres dimensiones y en diferentes sistemas coordenados.
- 4.5. Fórmulas de Green.
- 4.6. Representación integral de la solución y funciones de Green para regiones simples.
- 4.7. La ecuación de Poisson.

5. Ecuaciones parabólicas

- 5.1. Problemas simples que se reducen a ecuaciones de tipo parabólico. Planteamiento de problemas de contorno.
- 5.2. La ecuación del calor unidimensional.
- 5.3. La ecuación del calor bidimensional.
- 5.4. Dominios acotados: solución por medio de separación de variables.
- 5.5. Problemas no homogéneos: expansión en eigenfunciones.

- 5.6. Solución por medio de funciones de Green.
- 5.7. El principio de Duhamel.

6. Ecuaciones hiperbólicas

- 6.1. Problemas simples que se reducen a ecuaciones de tipo hiperbólico
- 6.2. Método de separación de variables
- 6.3. Solución general de la ecuación de onda: el caso acotado y no acotado.
- 6.4. La solución de D'Alembert: ondas estacionarias.
- 6.5. La función de Green para la ecuación de onda.
- 6.6. La ecuación de onda bidimensional.
- 6.7. Problemas tridimensionales.
- 6.8. El problema no homogéneo.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis en los resultados y en las aplicaciones de los mismos. Los estudiantes acudirán a asesorías extra clase, resolverán proyectos en equipo para presentarlos como requisito para el examen final.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase, asistencias a clases y cumplimiento de tareas.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Applied partial differential equations, with Fourier series and boundary value problems, Richar Haberman, PEARSON, 2012.
- 2. Ecuaciones de la física matemática, A. N. Tijonov y A. A. Samarsky, Editorial MIR, 1983.
- An introduction to partial differential equations, Y. Pinchover and J. Rubistein, CAMBRIDGE UNIVERSITY PRESS, 2005

Consulta:

- 1. Primer curso de ecuaciones en derivadas parciales, Ireneo Peral Alonso, Addison Wesley, Boston-Madrid-Mexico, 1995.
- Ecuaciones diferenciales y problemas con valores en la frontera; William E. Boyce, Richard C. Di prima, editorial Limusa, 1998.
- 3. Ecuaciones diferenciales en derivadas parciales; H.F Weinberger, editorial Reverté, 1996.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Maestría en Matemáticas o en Matemáticas Aplicadas.

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR COSCRADO

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTORACADEMICOCA