Problem-4

$$E(x) = rac{e^{-x}}{x}$$
 $S(z) = rac{sin(z)}{x^2}$
 $E'(x) = -rac{1+x}{x^2}e^{-x}$
 $S'(z) = rac{zcos(z)-sin(z)}{z^2}$
 $E''(x) = e^{-x}rac{x^2+2x+2}{x^3}$
 $S''(z) = -rac{(z^2-2)sin(z)+2zcos(z)}{z^3}$
 $E'''(x) = -e^{-x}rac{x^3+3x^2+6x+6}{x^4}$
 $S'''(z) = rac{3(z^2-20sin(z)-z(z^2-6)cos(z))}{z^4}$
 $E''''(x) = e^{-x}rac{x^4+4x^3+12x^2+24x+24}{x^5}$
 $S''''(z) = rac{4z(z^2-6)cos(z)+(z^4-12z^2+24)sin(z)}{z^5}$

Computing Sections

Trapezoid Method

$$E_a = -rac{(b-a)^3}{12n^2}ar{f}'' \ ext{Given, } E_a < tol \ \Rightarrow n^2 > -rac{(b-a)^3}{12*tol}ar{f}''$$

Here, we can keep the max value of double derivative instead of average to get the max possible error.

Simpson's Rule

$$E_a = -rac{(b-a)^5}{180n^4}ar{f^4} \Rightarrow n^4 > -rac{(b-a)^5}{12*tol}ar{f^4}$$

Now we apply the integral formulae as given in the book.

Approximations

$$S(z) = \int_0^z rac{sin(z)}{z} pprox \int_{0.1}^z rac{sin(z)}{z}$$

Code Notation

Eit \rightarrow Trapezoidal answer for E(x)

Eis \rightarrow Simpson's Rule over E(x)

Sit \rightarrow Trapezoidal Answer for S(z)

Sis \rightarrow Simpson's Rule over S(z)

TrapezoidE \rightarrow Trapezoidal Function Applied over E(x)

Funcx(x) \rightarrow E(x)

DoubleDerx \rightarrow Double derivative of E(x)

Maxix \rightarrow Finds maximum of E(x)

SimpsonE \rightarrow Simpson Applied over E(x)

Output

```
>> [Eit, Eis, Sit, Sis] = T4_20110065(5, 10, 10e-3)
Eit =
     0.001278390340290

Eis =
     0.001159687491527

Sit =
     1.558220820129614

Sis =
     1.558417737396075
```

Problem-4 2