10/517333

DT09 Rec'd PCT/PTO 0 9 NFC 2004

ISPT1011.ST25.txt SEQUENCE LISTING

<110>	Baker, Brenda F. Freier, Susan M. Dobie, Kenneth W.	
<120>	ANTISENSE MODULATION OF IL-1 RECEPTOR-ASSOCIATED KINASE-1 EXPRESSION	
<130>	ISPT-1011	
<150> <151>	PCT/US03/18003 2003-06-09	
<150> <151>	US 10/167,034 2002-06-10	
<160>	143	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	20 DNA	
<220> <223>	Antisense Oligonucleotide	
<400> tccgto	1 catcg ctcctcaggg	20
<210> <211> <212> <213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gtgcgc	2 gcga gcccgaaatc	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	Antisense Oligonucleotide	
<400> atgcat	3 tctg ccccaagga	20
<210> <211> <212> <213>	4 3590 DNA Homo sapiens	
<220> <221> <222>	CDS (80)(2218)	
<400>	4	

Page 1

cgcggacccg gccggccc		PT1011.ST25.txt ccgcggccc tgagaggd	ccc cggcaggtcc 60
cggcccggcg gcggcagc	c atg gcc ggg g Met Ala Gly G 1	gg ccg ggc ccg ggg ly Pro Gly Pro Gly 5	g gag ccc gca 112 / Glu Pro Ala 10
gcc ccc ggc gcc cag Ala Pro Gly Ala Gln 15	cac ttc ttg ta His Phe Leu Ty 20	c gag gtg ccg ccc r Glu Val Pro Pro	tgg gtc atg 160 Trp Val Met 25
tgc cgc ttc tac aaa Cys Arg Phe Tyr Lys 30	gtg atg gac gc Val Met Asp Ala 35	c ctg gag ccc gcc a Leu Glu Pro Ala 40	gac tgg tgc 208 Asp Trp Cys
cag ttc gcc gcc ctg Gln Phe Ala Ala Leu 45	atc gtg cgc ga Ile val Arg As 50	c cag acc gag ctg p Gln Thr Glu Leu 55	cgg ctg tgc 256 Arg Leu Cys
gag cgc tcc ggg cag Glu Arg Ser Gly Gln 60	cgc acg gcc age Arg Thr Ala se 65	c gtc ctg tgg ccc r Val Leu Trp Pro 70	tgg atc aac 304 Trp Ile Asn 75
cgc aac gcc cgt gtg Arg Asn Ala Arg Val 80	gcc gac ctc gt Ala Asp Leu Va	g cac atc ctc acg l His Ile Leu Thr 85	cac ctg cag 352 His Leu Gln 90
ctg ctc cgt gcg cgg Leu Leu Arg Ala Arg 95	gac atc atc acc Asp Ile Ile Th 100	r Ala Trp His Pro	ccc gcc ccg 400 Pro Ala Pro 105
ctt ccg tcc cca ggc Leu Pro Ser Pro Gly 110	Thr Thr Ala Pro 115	o Arg Pro Ser Ser 120	Ile Pro Ala
ccc gcc gag gcc gag Pro Ala Glu Ala Glu 125	Ala Trp Ser Pro 130	o Arg Lys Leu Pro 135	Ser Ser Āla
tcc acc ttc ctc tcc Ser Thr Phe Leu Ser 140	Pro Ala Phe Pro 145	o Gly Ser Gln Thr 150	His Ser Gly 155
cct gag ctc ggc ctg Pro Glu Leu Gly Leu 160	Val Pro Ser Pro	o Ala Ser Leu Trp 165	Pro Pro Pro 170
cca tct cca gcc cct Pro Ser Pro Ala Pro 175	Ser Ser Thr Ly: 180	s Pro Gly Pro Glu)	Ser Ser Val 185
tcc ctc ctg cag gga Ser Leu Leu Gln Gly 190	Ala Arg Pro Sei 195	r Pro Phe Cys Trp 200	Pro Leu Cys
gag att tcc cgg ggc Glu Ile Ser Arg Gly 205	Thr His Asn Phe 210	e Ser Glu Glu Leu 215	Lys Ile Gly
gag ggt ggc ttt ggg Glu Gly Gly Phe Gly 220	Cys Val Tyr Arg 225	g Ala Val Met Arg 230	Asn Thr Val 235
tat gct gtg aag agg Tyr Ala Val Lys Arg 240	Leu Lys Glu Asr	n Ála Ásp Leú Glú 245	Trp Thr Ala 250
gtg aag cag agc ttc Val Lys Gln Ser Phe	ctg acc gag gtg Leu Thr Glu Va	g gag cag ctg tcc l Glu Gln Leu Ser Page 2	agg ttt cgt 880 Arg Phe Arg

cac His	cca Pro	aac Asn 270	att Ile	gtg Val	gac Asp	ttt Phe	gct Ala 275	ggc Gly	tac Tyr	tgt Cys	gct Ala	cag Gln 280	aac Asn	ggc Gly	ttc Phe	928
tac Tyr	tgc Cys 285	ctg Leu	gtg Val	tac Tyr	ggc Gly	ttc Phe 290	ctg Leu	ccc Pro	aac Asn	ggc Gly	tcc ser 295	ctg Leu	gag Glu	gac Asp	cgt Arg	976
ctc Leu 300	cac His	tgc Cys	cag Gln	acc Thr	cag Gln 305	gcc Ala	tgc Cys	cca Pro	cct Pro	ctc Leu 310	tcc Ser	tgg Trp	cct Pro	cag Gln	cga Arg 315	1024
ctg Leu	gac Asp	atc Ile	ctt Leu	ctg Leu 320	ggt Gly	aca Thr	gcc Ala	cgg Arg	gca Ala 325	att Ile	cag Gln	ttt Phe	cta Leu	cat His 330	cag Gln	1072
gac Asp	agc Ser	ccc Pro	agc Ser 335	ctc Leu	atc Ile	cat His	gga Gly	gac Asp 340	atc Ile	aag Lys	agt Ser	tcc ser	aac Asn 345	gtc val	ctt Leu	1120
ctg Leu	gat Asp	gag Glu 350	agg Arg	ctg Leu	aca Thr	ccc Pro	aag Lys 355	ctg Leu	gga Gly	gac Asp	ttt Phe	ggc Gly 360	ctg Leu	gcc Ala	cgg Arg	1168
ttc Phe	agc Ser 365	cgc Arg	ttt Phe	gcc Ala	ggg Gly	tcc ser 370	agc Ser	ccc Pro	agc Ser	cag Gln	agc Ser 375	agc Ser	atg Met	gtg Val	gcc Ala	1216
cgg Arg 380	aca Thr	cag Gln	aca Thr	gtg Val	cgg Arg 385	ggc Gly	acc Thr	ctg Leu	gcc Ala	tac Tyr 390	ctg Leu	ccc Pro	gag Glu	gag Glu	tac Tyr 395	1264
atc Ile	aag Lys	acg Thr	gga Gly	agg Arg 400	ctg Leu	gct Ala	gtg val	gac Asp	acg Thr 405	gac Asp	acc Thr	ttc Phe	agc Ser	ttt Phe 410	ggg Gly	1312
gtg Val	gta Val	gtg Val	cta Leu 415	gag Glu	acc Thr	ttg Leu	gct Ala	ggt Gly 420	cag Gln	agg Arg	gct Ala	gtg Val	aag Lys 425	acg Thr	cac His	1360
ggt Gly	gcc Ala	agg Arg 430	acc Thr	aag Lys	tat Tyr	ctg Leu	aaa Lys 435	gac Asp	ctg Leu	gtg Val	gaa Glu	gag Glu 440	gag Glu	gct Ala	gag Glu	1408
						aga Arg 450										1456
ctg Leu 460	gct Ala	gca Ala	gat Asp	gcc Ala	tgg Trp 465	gct Ala	gct Ala	ccc Pro	atc Ile	gcc Ala 470	atg Met	cag Gln	atc Ile	tac Tyr	aag Lys 475	1504
						ccc Pro										1552
ggc Gly	ctg Leu	ggc Gly	cag Gln 495	ctg Leu	gcc Ala	tgc Cys	tgc Cys	tgc Cys 500	ctg Leu	cac His	cgc Arg	cgg Arg	gcc Ala 505	aaa Lys	agg Arg	1600
agg Arg	cct Pro	cct Pro 510	atg Met	acc Thr	cag Gln	gtg Val	tac Tyr 515	gag Glu	agg Arg	cta Leu	gag Glu	aag Lys 520	ctg Leu	cag Gln	gca Ala	1648
gtg Val	gtg Val	gcg Ala	ggg Gly	gtg Val	ccc Pro	ggg Gly	cat His	ttg Leu	Glu	gcc Ala ge 3	Ala	agc Ser	tgc Cys	atc Ile	ccc Pro	1696

530

cct tcc ccg cag gag aac tcc tac gtg tcc agc act ggc aga gcc cac Pro Ser Pro Gln Glu Asn Ser Tyr Val Ser Ser Thr Gly Arg Ala His 1744 agt ggg gct gct cca tgg cag ccc ctg gca gcg cca tca gga gcc agt Ser Gly Ala Ala Pro Trp Gln Pro Leu Ala Ala Pro Ser Gly Ala Ser 1792 gcc cag gca gca gag cag ctg cag aga ggc ccc aac cag ccc gtg gag Ala Gln Ala Ala Glu Gln Leu Gln Arg Gly Pro Asn Gln Pro Val Glu 1840 agt gac gag agc cta ggc ggc ctc tct gct gcc ctg cgc tcc tgg cac Ser Asp Glu Ser Leu Gly Gly Leu Ser Ala Ala Leu Arg Ser Trp His 1888 ttg act cca agc tgc cct ctg gac cca gca ccc ctc agg gag gcc ggc 1936 Leu Thr Pro Ser Cys Pro Leu Asp Pro Ala Pro Leu Arg Glu Ala Gly tgt cct cag ggg gac acg gca gga gaa tcg agc tgg ggg agt ggc cca Cys Pro Gln Gly Asp Thr Ala Gly Glu Ser Ser Trp Gly Ser Gly Pro 620 635 1984 gga tcc cgg ccc aca gcc gtg gaa gga ctg gcc ctt ggc agc tct gca Gly Ser Arg Pro Thr Ala Val Glu Gly Leu Ala Leu Gly Ser Ser Ala 2032 tca tcg tcg tca gag cca ccg cag att atc atc aac cct gcc cga cag Ser Ser Ser Glu Pro Pro Gln Ile Ile Asn Pro Ala Arg Gln 2080 aag atg gtc cag aag ctg gcc ctg tac gag gat ggg gcc ctg gac agc Lys Met Val Gln Lys Leu Ala Leu Tyr Glu Asp Gly Ala Leu Asp Ser 2128 ctg cag ctg ctg tcc agc tcc ctc cca ggc ttg ggc ctg gaa cag Leu Gln Leu Leu Ser Ser Ser Leu Pro Gly Leu Gly Leu Glu Gln 2176 gac agg cag ggg ccc gaa gaa agt gat gaa ttt cag agc tga Asp Arg Gln Gly Pro Glu Glu Ser Asp Glu Phe Gln Ser 700 705 710 2218 2278 tgtgttcacc tgggcagatc ccccaaatcc ggaagtcaaa gttctcatgg tcagaagttc 2338 tcatggtgca cgagtcctca gcactctgcc ggcagtgggg gtgggggccc atgcccgcgg gggagagaag gaggtggccc tgctgttcta ggctctgtgg gcataggcag gcagagtgga 2398 accetgeete catgecagea tetgggggea aggaaggetg geateateea gtgaggagge 2458 2518 tggcgcatgt tgggaggctg ctggctgcac agacccgtga ggggaggaga ggggctgctg tgcaggggtg tggagtaggg agctggctcc cctgagagcc atgcagggcg tctgcagccc 2578 aggcctctgg cagcagctct ttgcccatct ctttggacag tggccaccct gcacaatggg 2638 gccgacgagg cctagggccc tcctacctgc ttacaatttg gaaaagtgtg gccgggtgcg 2698 gtggctcacg cctgtaatcc cagcactttg ggaggccaag gcaggaggat cgctggagcc 2758 cagtaggtca agaccagcca gggcaacatg atgagaccct gtctctgcca aaaaattttt 2818 taaactatta gcctggcgtg gtagcgcacg cctgtggtcc cagctgctgg ggaggctgaa 2878

ISPT1011.ST25.txt gtaggaggat catttatgct tgggaggtcg aggctgcagt gagtcatgat tgtatgactg cactccagcc tgggtgacag agcaagaccc tgtttcaaaa agaaaaaccc tgggaaaagt gaagtatggc tgtaagtctc atggttcagt cctagcaaga agcgagaatt ctgagatcct ccagaaagtc gagcagcacc cacctccaac ctcgggccag tgtcttcagg ctttactggg gacctgcgag ctggcctaat gtggtggcct gcaagccagg ccatccctgg gcgccacaga cgagctccga gccaggtcag gcttcggagg ccacaagctc agcctcaggc ccaggcactg attgtggcag aggggccact acccaaggtc tagctaggcc caagacctag ttacccagac agtgagaagc ccctggaagg cagaaaagtt gggagcatgg cagacaggga agggaaacat tttcagggaa aagacatgta tcacatgtct tcagaagcaa gtcaggtttc atgtaaccga gtgtcctctt gcgtgtccaa aagtagccca gggctgtagc acaggcttca cagtgatttt gtgttcagcc gtgagtcaca ctacatgccc ccgtgaagct gggcattggt gacgtccagg ttgtccttga gtaataaaaa cgtatgttcc ctaaaaaaaa aaaaaggaat tc 5 712 <210> <211> Homo sapiens <400> Met Ala Gly Gly Pro Gly Pro Gly Glu Pro Ala Ala Pro Gly Ala Gln 10 15 His Phe Leu Tyr Glu Val Pro Pro Trp Val Met Cys Arg Phe Tyr Lys 20 25 30 Val Met Asp Ala Leu Glu Pro Ala Asp Trp Cys Gln Phe Ala Ala Leu 35 40 45 Ile Val Arg Asp Gln Thr Glu Leu Arg Leu Cys Glu Arg Ser Gly Gln 50 55 60 Arg Thr Ala Ser Val Leu Trp Pro Trp Ile Asn Arg Asn Ala Arg Val 65 70 75 80 Ala Asp Leu Val His Ile Leu Thr His Leu Gln Leu Leu Arg Ala Arg 85 90 95 Asp Ile Ile Thr Ala Trp His Pro Pro Ala Pro Leu Pro Ser Pro Gly 100 105 110 Thr Thr Ala Pro Arg Pro Ser Ser Ile Pro Ala Pro Ala Glu Ala Glu 115 120 125

2938

2998

3058 3118

3178

3238

3298

3358

3418 3478

3538 3590

Ala Trp Ser Pro Arg Lys Leu Pro Ser Ser Ala Ser Thr Phe Leu Ser 130 140

ISPT1011.ST25.txt
Pro Ala Phe Pro Gly Ser Gln Thr His Ser Gly Pro Glu Leu Gly Leu
145 150 155 160 Val Pro Ser Pro Ala Ser Leu Trp Pro Pro Pro Pro Ser Pro Ala Pro 165 170 175 Ser Ser Thr Lys Pro Gly Pro Glu Ser Ser Val Ser Leu Leu Gln Gly 180 185 190 Ala Arg Pro Ser Pro Phe Cys Trp Pro Leu Cys Glu Ile Ser Arg Gly 195 200 205 Thr His Asn Phe Ser Glu Glu Leu Lys Ile Gly Glu Gly Gly Phe Gly 210 220 Cys Val Tyr Arg Ala Val Met Arg Asn Thr Val Tyr Ala Val Lys Arg 225 230 235 240 Leu Lys Glu Asn Ala Asp Leu Glu Trp Thr Ala Val Lys Gln Ser Phe 245 250 255 Leu Thr Glu Val Glu Gln Leu Ser Arg Phe Arg His Pro Asn Ile Val 260 265 270 Asp Phe Ala Gly Tyr Cys Ala Gln Asn Gly Phe Tyr Cys Leu Val Tyr 275 280 285 Gly Phe Leu Pro Asn Gly Ser Leu Glu Asp Arg Leu His Cys Gln Thr 290 295 300 Gln Ala Cys Pro Pro Leu Ser Trp Pro Gln Arg Leu Asp Ile Leu Leu 305 310 315 Gly Thr Ala Arg Ala Ile Gln Phe Leu His Gln Asp Ser Pro Ser Leu 325 330 335 Ile His Gly Asp Ile Lys Ser Ser Asn Val Leu Leu Asp Glu Arg Leu 340 345 350Thr Pro Lys Leu Gly Asp Phe Gly Leu Ala Arg Phe Ser Arg Phe Ala 355 360 365 Gly Ser Ser Pro Ser Gln Ser Ser Met Val Ala Arg Thr Gln Thr Val 370 380 Arg Gly Thr Leu Ala Tyr Leu Pro Glu Glu Tyr Ile Lys Thr Gly Arg 385 390 395 400 Leu Ala Val Asp Thr Asp Thr Phe Ser Phe Gly Val Val Leu Glu 405 410 415

Thr Leu Ala Gly Gln Arg Ala Val Lys Thr His Gly Ala Arg Thr Lys
420 425 430 Tyr Leu Lys Asp Leu Val Glu Glu Glu Ala Glu Glu Ala Gly Val Ala 445 445 Leu Arg Ser Thr Gln Ser Thr Leu Gln Ala Gly Leu Ala Ala Asp Ala 450 460 Trp Ala Ala Pro Ile Ala Met Gln Ile Tyr Lys Lys His Leu Asp Pro 465 470 475 480 Arg Pro Gly Pro Cys Pro Pro Glu Leu Gly Leu Gly Leu Gly Gln Leu 485 490 495 Ala Cys Cys Cys Leu His Arg Arg Ala Lys Arg Arg Pro Pro Met Thr 500 505 510 Gln Val Tyr Glu Arg Leu Glu Lys Leu Gln Ala Val Val Ala Gly Val
515 520 525 Pro Gly His Leu Glu Ala Ala Ser Cys Ile Pro Pro Ser Pro Gln Glu 530 540 Asn Ser Tyr Val Ser Ser Thr Gly Arg Ala His Ser Gly Ala Ala Pro 545 550 555 560 Trp Gln Pro Leu Ala Ala Pro Ser Gly Ala Ser Ala Gln Ala Ala Glu 565 570 575 Gln Leu Gln Arg Gly Pro Asn Gln Pro Val Glu Ser Asp Glu Ser Leu 580 585 590 Gly Gly Leu Ser Ala Ala Leu Arg Ser Trp His Leu Thr Pro Ser Cys 595 600 605 Pro Leu Asp Pro Ala Pro Leu Arg Glu Ala Gly Cys Pro Gln Gly Asp 610 615 620 Thr Ala Gly Glu Ser Ser Trp Gly Ser Gly Pro Gly Ser Arg Pro Thr 625 630 635 640 Ala Val Glu Gly Leu Ala Leu Gly Ser Ser Ala Ser Ser Ser Glu 645 650 655 Pro Pro Gln Ile Ile Ile Asn Pro Ala Arg Gln Lys Met Val Gln Lys 660 665 670 Leu Ala Leu Tyr Glu Asp Gly Ala Leu Asp Ser Leu Gln Leu Leu Ser 675 680 685

Ser Ser Ser Leu Pro Gly Leu Gly Leu Glu Gln Asp Arg Gln Gly Pro 690 700 695 Glu Glu Ser Asp Glu Phe Gln Ser <210> 6 <211> 23 <212> DNA <213> Artificial <220> <223> PCR Primer <400> 6 23 acttctcgga ggagctcaag atc <210> 7 <211> 22 <212> DNA <213> Artificial <220> <223> PCR Primer <400> 7 gcatacaccg tgttcctcat ca 22 <210> 8 <211> 20 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 8 cgcccggtac acgcacccaa 20 <210> 9 <211> 19 <212> DNA <213> Artificial <220> <223> PCR Primer <400> 9 gaaggtgaag gtcggagtc 19 <210> 10 <211> 20 <212> DNA <213> Artificial <220> <223> PCR Primer <400> 10 gaagatggtg atgggatttc 20

	ISPT1011.ST25.txt	
<210> 11 <211> 20 <212> DNA <213> Artificial		
<220> <223> PCR Probe		
<400> 11 caagcttccc gttctcagcc		20
<210> 12 <211> 13000 <212> DNA <213> Homo sapiens		
<400> 12 ctcacatgac agcatggtgc	tgcgtttcct cattggatct ggctgtccct ggacacaggt	60
agctgccttc aggcctgcca	cgagcggcca agggaagcct cctccatatg ctggcctcgc	120
	agccagtgct ctccaggcac actgctccag cgtgtgacgg	180
	gcctgcagca caacctccct gctccagacc cgtatggtag	240
	tgtgctgtgg tgcttttgga caccccacc cccgcaggct	300
	ttctggccag gaccctcacg tgccctctgt tgactgctaa	360
	agggcaggct gaggggtttg cccaaagggg gcccccttgt	420
	aggagcagcc tcaccaggtt ggtaaggggc tggaggagac	480
aactgctcaa aggagtccag	cttcacatgc acatgctaga aggtaccctc ggaaggcctg	540
	gggttgaaaa gtcaacttgt atgcattgag catctcgtat	600
gccagccctg ttccgtgagc	tgatgggcct ttgtgtgtaa gtaggaccaa gtgcccccgt	660
ggaggttagc atgggtgtgc	agtcatttca gatacttgag ttggtacatc tcagtaaagt	720
ctgtcccgtg agaagccatg	ggtttcatgg tatggttggc atcttccttg ggagtggcca	780
cagtggtggt ggcttcagga	aagagactcc aacaggggcc agctgtgggc cttgggcact	840
tctcgtttct aggaaaagtc	ctaagtctgt agggctaggg gtggggaacc ccttcgctgt	900
caggatcaag agggcaaggg	gaactgtcgc tggaggagac atccagctgg agaaacaaaa	960
gagtaagtct gcgttgctgc	ttgtggggtc ttccccatct cagggcgggg accgggggtg	1020
gcggtccaga caagtaatca	aggacgatgc ccaggagggg acaggtacgg ggtggcagga	1080
gctctgccgg cgggctcagg	aagccttcac cacagctgcc tgagctcacc cttgccaaat	1140
gagggctggg gcagcagcaa	cgcatacact cacggctgtg gcgggcagcg ttctcggcat	1200
atttcaggac acctaaggag	actgaatggc tcaaggctgc tgccgtgtgc agggggctag	1260
acgtggggcg ggcaggcagg	gctcctggta acagccctgc aggccgcagt ggagagcagg	1320
gttccggcag ggccgcccag	gagctttcgg aaggcccggc cccggcccct ttccgagcag	1380
cccgggcctc cgccctgccc	tctgtcccca acgccgggag ccgccgttcg tcctccagag	1440
ccccgcccgg gcgagcccgg	gaggccgatc gccgctcgcg gaacccgccg ggacccgggc	1500

ISPT1011.ST25.txt cctccccggc gcggggcgcc cccgtgtgac ccagcgcgcg gccgcggcgc gcaagatggc 1560 ggcgggcccg ggcaccgccc cttccgcccc gccgggcgtc gcacgaggcc ggctcgaagg 1620 ggaagtgagt cagtgtccgc ggacccggcc ggcccaggcc cgcgcccgcc gcggccctga 1680 gaggccccgg caggtcccgg cccggcggcg gcagccatgg ccggggggcc gggcccgggg 1740 gagcccgcag cccccggcgc ccagcacttc ttgtacgagg tgccgccctg ggtcatgtgc 1800 1860 cgcttctaca aagtgatgga cgccctggag cccgccgact ggtgccagtt cggtgggtgg 1920 cggcgggctg ccggggggcg ggaggcgcgc gggctcctgg cgccgacgcc tgacgccccc cgccccgcag ccgccctgat cgtgcgcgac cagaccgagc tgcggctgtg cgagcgctcc 1980 gggcagcgca cggccagcgt cctgtggccc tggatcaacc gcaacgcccg tgtggccgac 2040 ctcgtgcaca tcctcacgca cctgcagctg ctccgtgcgc gggacatcat cacagcctgt 2100 gagcgcggga ctccgggcac cccacggctg ggaggccggc gggccccacg gggctccccc 2160 accogggeet caacetteet tteetteett ggegteecag ggeaecetee egeeeegett 2220 ccgtccccag gcaccactgc cccgaggccc agcagcatcc ctgcacccgc cgaggccgag 2280 gcctggagcc cccggaagtt gccatcctca gcctccacct tcctctcccc aggtaagagg 2340 gcccggttgt taggctcggt ggacccaaag aagagcccac cttgaccacg gccacggctg 2400 tagaccctgc tgctggtctc tgcctgcctc tcactggtgt ctttatgaag cttttccagg 2460 2520 ctcccagacc cattcagggc ctgagctcgg cctggtccca agccctgctt ccctgtggcc tccaccgcca tctccagccc cttcttctac caaggtaggt gtcccctgcc ccccagggaa 2580 gattcgagac aaggaggaag gaattcagcc tttgatgtag cgcagagccc cagtcagcca 2640 agctgggtca gctgggaggc agctgtggtg gggagagcct ggagccttgg gcagaaggga 2700 agagacaggg accccacctg atccaggctc tcttcccaca gccaggccca gagagctcag 2760 2820 tgtccctcct gcagggagcc cgccctttc cgttttgctg gcccctctgt gagatttccc ggggcaccca caacttctcg gaggagctca agatcgggga gggtggcttt gggtgcgtgt 2880 accgggcggt gatgaggaac acggtgtatg ctgtgaagag gctgaaggag gtgagtgtcg 2940 caccctggca gggaccctgg aaggccatca gataaccctc accacttctc cagcctttcc 3000 ccctcgcttc cccacacaac tccttcagcc ctcattctgg cgtagggtcc ctggccctt 3060 ggtggttctg ggcctcgggt aggtggcact ggtggcccga aggccttcgc ttcgagagcc 3120 tcacgctgcc cgtcttccct gccccttccc ccaccgcacc ctgggggctg cagaacgctg 3180 acctggagtg gactgcagtg aagcagagct tcctgaccga ggtggagcag ctgtccaggt 3240 gaggccagag ggggagccac accaggtccc gtggggcttc agaccgcaca ccacaggacc 3300 tggctccctt gggcacctga ggcctggcag gcccgggcga gctgaggccc cagccagggc 3360 tgcccaccca gtctggcctg atggaaagtg ctcccctttt tcaaacaggt ttcgtcaccc 3420 aaacattgtg gactttgctg gctactgtgc tcagaacggc ttctactgcc tggtgtacgg 3480

3540

cttcctgccc aacggctccc tggaggaccg tctccactgc caggtaggct cacctggccc

ISPT1011.ST25.txt 3600 ggcacgcttc ccaggaccca aagcactcct gacacctggc tggagccggg cgcggggcct agggctttca gcctgtgtga gtgggtcctg ccagcaggcc aggcctgcac ttccagctcc 3660 ccagcagcac ccggctcagg atttggccca cggtggggtc aattttttt tttttttt 3720 3780 tttttttttt tttgaggtgg agtcttgctc tgtcatccag gctggagtgc agtggtgtga tctcagctca ccacaacctc cacctcccgg gttcaggcga tcctcctgcc gcagcctccc 3840 3900 gagtagctgg gactacaggc atgcaccacc acacctgcct aatttttgta tttttagtag agatgaggtt ttgccacatt ggccaggcta gtctcgaact cctgacccca ggtggtctgc 3960 gcgcctcagc ctcccaaagt gctgggatta caggcgtgag ccaccacgcc tggcccgacc 4020 caatgttttc tatagagctc tttcccaggc ctctcccctt tgcaagcagc gtagctggag 4080 ggtctcatca gcaagccccg gaggcgaggg ggtctggggc taccagctgg accacctaca 4140 gctgagggag ggcccccttg cctcctcctg catgctgcgt ttggggagag cgggaagaat 4200 gccttcaagg acttcccgac caccagggac aaagggatga gccctgggag ccgaagccca 4260 gcagattcta ttgaacgtgt ccccagccat tgcttaagaa gtgcaggtca cggagacttt 4320 gctcctcgtt ttccagaagg gggaaactga ggcctagaga gtgaagtggc tgttccaggc 4380 tgcacggtga caggtagaag gatggttggg atcaaggaac ggccatccag caacctcccc 4440 tgtccccctt tgccaccca gacccaggcc tgcccacctc tctcctggcc tcagcgactg 4500 gacatccttc tgggtacagc ccgggcaatt cagtttctac atcaggacag ccccagcctc 4560 atccatggag acatcaagag gtgaggaggg gcccttgaga actgccgggg cagggcctgc 4620 agcaaggggg gccccgcgtc ctatcaatgt ggggatcagg catggcctgg gacctcaaca 4680 ccccggcatc gcacaggtgt gggaacgggc caaggatggg ccctactgat gagcagaggc 4740 ccccaggcag ctggagcgct cagggcagtg ccagcgcttt ctgtgggcaa ggcaccgggc 4800 tggcagcctc gagtccagcc ttatctaagc cgggcaggtg taggagctag gaccgggctg 4860 acgccactgt cttctcccc caagttccaa cgtccttctg gatgagaggc tgacacccaa 4920 gctgggagac tttggcctgg cccggttcag ccgctttgcc gggtccagcc ccagccagag 4980 cagcatggtg gcccggacac agacagtgcg gggcaccctg gcctacctgc ccgaggagta 5040 catcaagacg ggaaggctgg ctgtggacac ggacaccttc agctttgggg tggtgagcca 5100 ctgacccctc tgctggctca gaggaggaga agccacaggc aggcagaggt gggggctgca 5160 gagtgcactg cgggccaggg gccatctgcc aagaccccag gaggctgcag ctccagggtc 5220 eccetecete egaggeeete etecteacee tgeacetaae tgtgtgtttg taatttgtet 5280 tcaagtgggc tctccgagtt gcccgagctt cagtcccata acatctggct ctgcctttgt 5340 ccacaccett gtcaggccca atccatgtcc acaccagagg cctcttccct gccaaggcca 5400 ctgccatgct ctccctcttc cctctctca ggtagtgcta gagaccttgg ctggtcagag 5460 ggctgtgaag acgcacggtg ccaggaccaa gtatctggtg agccccttga ggcagggcca 5520 ggagggacac acagctgctg gcagccagca ggcacagccc cagtggcggg gataactggg 5580

gcgcagtgcc catggatgcc tctgctgcca cagtggcctc atttttgaaa gtaggcaggg 5640 5700 ctccaaacaa cttcgtttac cttgccgagg acaaacctgt ctgtcctgca gacactatgg gccttgtaca gaccccacct gggctggggg cagggggaag ggcggtccca gggcactgag 5760 acccaagctg cagtggaact cagaggactc tggccggaga aaggcggtgg tagagaagaa 5820 gcaggccccg aggaacctcc tgggccccag caggctgcag ctgagctctc cgcaccgtgc 5880 agggcagcct gagctgcctc acggtcttac tccactcagt ctgcctcacc gtggactgtg 5940 6000 gtggggccag gagactagag acctgggttt tagccccagc ctgacagtgg ccttccagca aattcctgct cccctgtggg cctgttttcc catatgcaaa acagacttca cagaatgtgc 6060 tcagccagta attgcttcac tgcttctcct cttgtttggg gcggttcctg tgtgctgtgg 6120 6180 ggtctccgtc aggattcagc cccgctgaga acccaggagc cgggcttgag ccctccttcc tttcccttcc ccgtccgtcc atccatgcat cctgctgaag aagcgcacca ggctccttgg 6240 gggtccttgg acttccccac ttgctcccca ccctgcagcc aaagtgctct tttcaaaggc 6300 ccctttgcct tttctctgct cttggggtga aggcccagtc ccttatgtgg ttgaccccc 6360 aacgccccag gtccctggga ctcggggcgc tccctgctgc ctgcttcaca gccttagtat 6420 6480 gtgccgttcg ctctgcgaga aaagccaccg cccacccagg tggttcctcc tggtctgtct gatttcagaa ctggagatgg cctccggtcc tgtttccacc ctggggggcgc ctctctgcgg 6540 ggcgcctctc tctctggggt acctctttgt ctgtggggca cctctctgtg gggcgctttc 6600 cttctcggct ctgccctctc aggctacttc ctgccttcag accccagctc catggggctc 6660 tcccccacca ggaagtcagc tctgtcaaac cgggtcccag ggttctgttt gttcctgtat 6720 ccctagggcc cagagcacca ctggcccaca gtaggtgttt aataaatctc tagaagctac 6780 tcgggaatct gaggcaggag gatcgcttga gcctgggagt tggagaccag cctgggcaac 6840 6900 atagcaagat aggcatggtg gtacacacct gtaatcccag ctgctcggga ggccgaggtg ggaggatcac gagcctggga ggttgaggct gcactgagcc atgattgcac cactgcactc 6960 7020 cagcctgggt gacagaatga gtccctgtct cagaaaaaaa gtaagttgta gaaagaccaa gagctgtggc acagtgtctc acacctgtaa caccagcact ttgggaggct gaggcgggag 7080 gatcacttga gcctacttgg agaccagcca ggccaacaaa gcgagacccc atctctttt 7140 tttttttttt tttttttatc aaaacccata cgattgagtg acaaggacct gaggactgca 7200 gctgcaggtg tggccacctg gtagccatac tgacagtatt tatcccacag aaagacctgg 7260 tggaagagga ggctgaggag gctggagtgg ctttgagaag cacccagagc acactgcaag 7320 caggtctggc tgcagatgcc tgggctgctc ccatcgccat gcagatctac aagaagcacc 7380 tggaccccag gcccgggccc tgcccacctg agctgggcct gggcctgggc cagctggcct 7440 gctgctgcct gcaccgccgg gccaaaagga ggcctcctat gacccaggta gccagctgcg 7500 cactgggacg gggtggccag atagaaagcc cgcattccag gccttgctct gtagtgaccc 7560 catctcagca cctgctaggt ctctctggag tctccacaca tttcttgctt gccctttggt 7620

ISPT1011.ST25.txt 7680 tctgtttggg gcagcgcccc tctgaactga ggggccccgg gcagtcctgc tttgcggagc ccagctccga ccccttcac atagagagaa ggaaagagct gctgccgcgc cccctgctgg 7740 gcgcactgca ctactgcatc tgcctttttc tgtcccctcc ctagtacccc acctcttctc 7800 7860 ctctggtgac agttgaaaat ggagaggccc cgtttgaggg cagcggggca gtgagattca 7920 ttttgtagaa aagaacgagg ccattctcag tccttgcttt tggcagccgc gcttctcagc 7980 actccctgtg atgggaacag aggggcgagg ggcagagcgt tcccagctgc agggtatgtc 8040 attttagagc cctggggcag gtcacggacg gcctggagca gccctgtggt ttgcccacgg ggtgaccggc cagggctgcc atctcaccct gagagtccct cttttccact tgcaggtgta 8100 cgagaggcta gagaagctgc aggcagtggt ggcgggggtg cccgggcatt cggaggccgc 8160 8220 cagctgcatc cccccttccc cgcaggagaa ctcctacgtg tccagcactg gcagagccca 8280 cagtggggct gctccatggc agcccctggc agcgccatca ggagccagtg cccaggcagc 8340 agagcagctg cagagaggcc ccaaccagcc cgtggagagt gacgagagcc taggcggcct ctctgctgcc ctgcgctcct ggcacttgac tccaagctgc cctctggacc cagcacccct 8400 cagggaggcc ggctgtcctc agggggacac ggcaggagaa tcgagctggg ggagtggccc 8460 8520 aggatcccgg cccacagccg tggaaggtag ctggggagac gggttcccag gagagggacc 8580 aaggcctctt tgggccaaag cccctgtaag tccccaccc agccttctag aagagaacca 8640 gggccaaatg ttcagctcac tgtgacctta gcaaccctgg tttcccctcc ccaggccaca tccttcccag gtggagcttg ctctccagcc ctcccccac cccattcctg aaggctggga 8700 acaaggaggg ctctgtctgg tagcctgaga gctgggccct gcccttggac ttctctgagg 8760 aattcaggcc tgaggccagg gaggcagggt gctaggctgc gggctgggga gccacagcat 8820 gaggctaagg gagtgccatc tccaccccag gactggccct tggcagctct gcatcatcgt 8880 8940 cgtcagagcc accgcagatt atcatcaacc ctgcccgaca gaagatggtc cagaagctgg ccctgtacga ggatggggcc ctggacagcc tgcagctgct gtcgtccagc tccctcccag 9000 9060 gtgctgccgc ccaggctggc ctctggggtg ctcaggcgca tccgtgtcag ccccaaagag cagagtgtct gtcccgactg cgctgagggc gtggggcagc cgggcaggcc actggctctg 9120 gcgacctcta gaagcccagc cggccccaca tgcctccctt agcaagaccc tggcccactc 9180 cttccctcgc ctcctgacag tagcacctcc tttagcccga gggtgcctgc cccactctgt 9240 9300 gctttcagga aataggaagc cccagcagga attttccatc ccaggtacta tttgaagaac cactgcttag gaaccctcag ctgggcgagg tggctcatgc ctataatacc agcacttttg 9360 gaggccaaga tgggaggatc acttgagccc aggaggtgga ggctacagtg agctgtgatc 9420 9480 aagccactgc actccagcct gggagacagt tagaccctgt ctcaaaaaaca aatgaacaaa caaacaaaaa ccctcaattc ccacgaacgc cccaggagat aagggagcat ggcccaggcc 9540 ttgagccagg gcttctggca gtaggggagc ctcccccatt tgctaagcgg actttcctct 9600 tccttctgta ggcttgggcc tggaacagga caggcagggg cccgaagaaa gtgatgaatt 9660

ISPT1011.ST25.txt tcagagctga tgtgttcacc tgggcagatc ccccaaatcc ggaagtcaaa gttctcatgg 9720 9780 tcagaagttc tcatggtgca cgagtcctca gcactctgcc ggcagtgggg gtgggggccc atgcccgcgg gggagagaag gaggtggccc tgctgttcta ggctctgtgg gcataggcag 9840 9900 gcagagtgga accctgcctc catgccagca tctgggggca aggaaggctg gcatcatcca 9960 gtgaggaggc tggcgcatgt tgggaggctg ctggctgcac agacccgtga ggggaggaga 10020 ggggctgctg tgcaggggtg tggagtaggg agctggctcc cctgagagcc atgcagggcg 10080 tctgcagccc aggcctctgg cagcagctct ttgcccatct ctttggacag tggccaccct gcacaatggg gccgacgagg cctagggccc tcctacctgc ttacaatttg gaaaagtgtg 10140 10200 gccgggtgcg gtggctcacg cctgtaatcc cagcactttg ggaggccaag gcaggaggat cgctggagcc cagtaggtca agaccagcca gggcaacatg atgagaccct gtctctgcca 10260 aaaaattttt taaactatta gcctggcgtg gtagcgcacg cctgtggtcc cagctgctgg 10320 ggaggctgaa gtaggaggat catttatgct tgggaggtcg aggctgcagt gagtcatgat 10380 tgtatgactg cactccagcc tgggtgacag agcaagaccc tgtttcaaaa agaaaaaccc 10440 tgggaaaagt gaagtatggc tgtaagtctc atggttcagt cctagcaaga agcgagaatt 10500 10560 ctgagatcct ccagaaagtc gagcagcacc cacctccaac ctcgggccag tgtcttcagg 10620 ctttactggg gacctgcgag ctggcctaat gtggtggcct gcaagccagg ccatccctgg gcgccacaga cgagctccga gccaggtcag gcttcggagg ccacaagctc agcctcaggc 10680 ccaggcactg attgtggcag aggggccact acccaaggtc tagctaggcc caagacctag 10740 10800 ttacccagac agtgagaagc ccctggaagg cagaaaagtt gggagcatgg cagacaggga agggaaacat tttcagggaa aagacatgta tcacatgtct tcagaagcaa gtcaggtttc 10860 atgtaaccga gtgtcctctt gcgtgtccaa aagtagccca gggctgtagc acaggcttca 10920 10980 cagtgatttt gtgttcagcc gtgagtcaca ctacatgccc ccgtgaagct gggcattggt gacgtccagg ttgtccttga gtaataaaaa cgtatgttgc aatctcgggc tctacttgtg 11040 gactttgttg caccgaaagc cttgagcttt cctgatgcct tacacttcag ggttcttgag 11100 cgtccagggt cttgttacta ctctgggctg gccacaccca gcacttcccg tgtcaggttt 11160 ttcctgatgt agtccatgtt ttttatgcta ttctaaatgg tatctttgat tttctagttc 11220 atcatgatat tatacagaaa tgcaattgat gctgggcacg gtggctcacg cctgtgattc 11280 11340 cagcgctttg ggaagctaag gcgggcagat cacttgaggc caggagtttg agaccagcct gggcaacatg gcgaaacccc gtctctacaa aaagtacaaa aattagccag gcatggtggt 11400 gcatgcctgt agtttgagct actcaggagg ctgacccagg aggatagttt gagcccagga 11460 cgttgaggct gcagtgagcc atgattccac cactgcactc cagcccgggc aacagaggga 11520 gaccttgcct caaaaaaaaa aaaaaaaaaa aaaaaagcgg ttgagttttg catatgaacc 11580 gtatattctg tgaccttgtt taaattcttt tttttttttc tttttttgag atggagtttt 11640 gctcttgttg cccaggctgc agtgcaatgg cgctatctca gctcactgca acctctgcct 11700

ISPT1011.ST25.txt cctaggttca agtgattctc ctgcctcagc ctcccgagta gctgggatta caggtgccca 11760 ccaccacacc cggctaattt ttttgtattt ttaatagaga cagggtttcc acatgttgac 11820 caggctggtc tcgaactcct gacctccagt gatccgcccg cctcggcctc ccaaagtgct 11880 agattacagg tgtgagccac tgcacctgtc cctggctgtc tgtatattta ctttttttt 11940 tgagatggag tttcgctctt gtcacccagg ctgcagtgca atggtgcgat ctcggctcat 12000 tgtaacctct gcctcccagg ttcaggtgat tctcctgcct cagtctcccg agtagctggg 12060 12120 attacaggcg tccgctacca cgcccgactg atttttctat ttttagtaga gacggggttt caacatgttg gccagtctga tctcgaactc ctgacctcag gtgattcacc cacctcagcc 12180 tcccaaagtg ctgggattac aggtatgagg cactgtgccc ggcttttttt tttttttt 12240 12300 ttttcttcag acaagagtct tactctgtca cccaggctga agtgcagtgg tgcaatcttg gctcactgca acctccgcct cccaggttca agcgattctt ctgcctcagc ctccatagta 12360 gctgggacta caggtgtgtg ccaccacgcc cagctaattt ttatattttt atttagtaga 12420 gacaaggttt caccatgttg gccaagctgg tctcgaactc ctgacctcaa gtgatctgcc 12480 cgcctcagcc tcccaaagtg ctgggattac aggtgtgagc cgtggcaccc agcccagcct 12540 tattctttta aacaatctga caatctctgc ctttagttgg tctgtttaat ccatttccat 12600 ttaatggttg gagttaagtc tatcatcttg ttatttgttt tctattaccc catctgtttt 12660 gacttttgga ttaattacat atttctggga ttctgttttt tctctgctat tggcttggtc 12720 gctctagtaa ttcagtgaga ctgctggttc cgctcaggcc cctttgctga accatggtgt 12780 gaaagtgcct ccaggcagaa actcagggta cttgtaaggc tcaccttctt tgttttctct 12840 ctggtcacag ccctgcacag cctattgtcc gatatctaaa aatagttgcc cagtgtttta 12900 ggtgtttaca actggcatca gttattccac tgtggccaga attgcaagtt tctcctcttt 12960 tctgaggact tcttcactca taatgtcacc cgacatgatc 13000 <210> 13 754 <211> <212> DNA <213> Homo sapiens <220> misc_feature (625)..(625) <221> <222> <223> n is a, c, g, or t <400> 13 ggagaccttg gctggtcaga gggctgtgaa gacgcacggt gccaggacca agtatctgaa 60 agacctggtg gaagaggagg ctgaggaggc tggagtggct ttgagaagca cccagagcac 120 actgcaagca ggtctggctg cagatgcctg ggctgctccc atcgccatgc agatctacaa 180

actgcaagca ggtctggctg cagatgcctg ggctgctccc atcgccatgc agatctacaa 180
gaagcgcctg ggccagctgg cctgctgctg cctgcaccgc cgggccaaaa ggaggcctcc 240
tatgacccag gtgtacgaga ggctagagaa gctgcaggca gtggtggcgg gggtgcccgg 300
gcatttggag gccgccagct gcatccccc ttccccgcag gagaactcct acgtgtccag 360
Page 15

cactggcaga gcccacagtg gggctgctcc atggcagccc ctggcagcgc catcaggag	420
cagtgcccag gcagcagagc agctgcagag aggccccaac cagcccgtgg agagtgacga	a 480
gagcctaggc ggcctctctg ctgccctgcg ctcctggcac ttgactccaa gctgccctct	540
ggacccagca cccctcaggc aggccggctg tcctcagggg gacacggcag gagaatcgag	600
ctgggggagt ggcccaggat cccgngccac agccgtggaa ggactggtcc ttggcagct	660
tgcatcatcg tcgtcagagc caccgcagat tatcatcaac cctgcccgac agaagatgg	720
ccagaagctg gccctgtacg aggatggtgc cctg	754
<210> 14 <211> 577 <212> DNA <213> Homo sapiens	
<400> 14 gaggccgagg cctggagccc ccggaagttg ccatcctcag ccyccacctt cctctcccca	a 60
gcttttccag gctcccagac ccattcaggg cctgagctcg gcctggttcc aagccctgct	120
tccctgtggc ctccaccgcc atctccagcc tgggtgacag agcaagaccc tgtttcaaaa	a 180
agaaaaaccc tgggaaaagt gaagtatggc tgtaagtctc atggttcagt cctagcaaga	a 240
agcgagaatt ctgagatcct ccagaaagtc gagcagcacc cacctccaac ctcgggccag	300
tgtcttcagg ctttactggg gacctgcgag ctggcctaat gtggtggcct gcaagccagg	360
ccatccctgg gcgccacaga cgagctccga gccaggtcag gcttcggagg ccacaagctc	420
agcctcaggc ccaggcactg attgtggcag aggggccact acccaaggtc tagctaggcc	480
caagacctag ttacccagac agtgagaagc ccctggaagg cagaaaagtt gggagcatgg	540
cagacaggga agggaaamat tttcagggaa aagacat	577
<210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220>	
<223> Antisense Oligonucleotide	
<400> 15 cctggcttgc aggccaccac	20
<210> 16 <211> 20 <212> DNA <213> Artificial	
<220> <223> Antisense Oligonucleotide	
<400> 16 gatgccagcc ttccttgccc	20

<210> 17

<211> <212>	20 DNA	
<213>	Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cagtgg	17 pagac ggtcctccag	20
<210> <211> <212> <213>	18 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cttgtg	18 gcct ccgaagcctg	20
<210> <211> <212> <213>	19 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ggacga	19 cagc agctgcaggc	20
<210> <211> <212> <213>	20 20 DNA Artificial	
<220> <223>	Antisnese Oligonucleotide	
<400> tctgca	20 gcca gacctgcttg	20
<210> <211> <212> <213>	21 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> agccag	21 acct gcttgcagtg	20
<210> <211> <212> <213>	22 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400>	22	

Page 17

ISPT1011.ST25.txt 20 gtgaagcctg tgctacagcc <210> 23 <211> 20 <212> DNA <213> Artificial <220> <223> Antisense Oligoucleotide <400> 23 20 tggcaccagt cggcgggctc <210> 24 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> Antisense Oligonucleotide <400> 24 gaccatcttc tgtcgggcag 20 <210> 20 <211> <212> DNA <213> Artificial <220> <223> Antisense Oligonucleotide <400> 25 ccagccttcc cgtcttgatg 20 <210> 26 <211> 20 <212> DNA <213> Artificial <220> <223> Antisense Oligonucleotide <400> 26 agccagcagc ctcccaacat 20 <210> <211> 20 <212> DNA <213> Artificial <220> <223> Antisense Oligonucleotide <400> 27 tcagctctga aattcatcac 20 <210> 28 <211> 20 <212> DNA <213> Artificial

<220> <223>	Antisense Oligonucleotide	
	28 ttcc acggctgtgg	20
<210> <211> <212> <213>	29 20 DNA Artificia	
	29 tctc tagcactacc	20
<210> <211> <212> <213>	30 20 DNA Artificial Sequence	
<220> <223>	Antisense Oligonucleotide	
<400> ctaggt	30 cttg ggcctagcta	20
<210> <211> <212> <213>	31 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> acaccg	31 tgtt cctcatcacc	20
<210> <211> <212> <213>	32 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ctctga	32 aatt catcactttc	20
<210> <211> <212> <213>	33 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> tgggtc	33 atag gaggcctcct	20
<210> <211> <212> <213>	34 20 DNA Artificial	

<220> <223>	Antisense Oligonucleotide	
	34 agct cgtctgtggc	20
<210> <211> <212> <213>	35 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> tggcac	35 cgtg cgtcttcaca	20
<210> <211> <212> <213>	36 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cggcac	36 atga cccagggcgg	20
<210> <211> <212> <213>	37 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> tgacca	37 gcca aggtctctag	20
<210> <211> <212> <213>	38 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ctcctc1	38 ttcc accaggtctt	20
<210> <211> <212> <213>	39 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> tgaccat	39 Egag aactttgact	20

<210> <211> <212> <213>	40 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> aagggc	40 cagt ccttccacgg	20
<210> <211> <212> <213>	41 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ctggac	41 acgt aggagttctc	20
<210><211><211><212><213>	42 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> tgctgg	42 acac gtaggagttc	20
<210> <211> <212> <213>	43 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> accatc	43 ttct gtcgggcagg	20
<210><211><211><212><213>	44 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cttgca	44 gtgt gctctgggtg	20
<210> <211> <212> <213>	45 20 DNA Artificial	
<220>	Antisense Oligonucleotide	

<400>	45	20
ctggac	agct gctccacctc	20
<210> <211> <212> <213>	46 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
	46 ctgg gctacttttg	20
<210> <211> <212> <213>	47 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ggaggc	47 aggg ttccactctg	20
<210> <211> <212> <213>	48 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> tgcagc	48 caga cctgcttgca	20
<210> <211> <212> <213>	49 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cttggg	49 tagt ggcccctctg	20
<210> <211> <212> <213>	50 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ggccag	50 tcct tccacggctg	20
<210><211><211><212><213>	51 20 DNA Artificial	

<220> <223>	Antisense Oligonucleotide	
	51 caca gtagccagca	20
cccyay	caca gragecagea	20
<210> <211> <212> <213>	52 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cggagc	52 agct gcaggtgcgt	20
<210> <211> <212> <213>	53 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> aagcag	53 ggct tggaaccagg	20
<210> <211> <212> <213>	54 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cgatct	54 tgag ctcctccgag	20
<210> <211> <212> <213>	55 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cacctc	55 ggtc aggaagctct	20
<210> <211> <212> <213>	56 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> caggaag	56 gccg tacaccaggc	20

<210> <211> <212> <213>	57 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> actgtc	57 tgtg tccgggccac	20
<210> <211> <212> <213>	58 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
	58 gccc aggcccaggc	20
<210> <211> <212> <213>		
<220> <223>	Antisense Oligonucleotide	
<400> gcccgg	59 cggt gcaggcagca	20
<210> <211> <212> <213>	60 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> gcttct	60 ctag cctctcgtac	20
<210> <211> <212> <213>	61 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ggctgc	61 catg gagcagcccc	20
<210> <211> <212> <213>	62 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	

<400> gcagct	62 gctc tgctgcctgg	20
<210> <211> <212> <213>	63 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> agagag	63 gccg cctaggctct	20
<210> <211> <212> <213>	64 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cagagg	64 gcag cttggagtca	20
<210> <211> <212> <213>	65 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> agggcc	65 agct tctggaccat	20
<210> <211> <212> <213>	66 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ggtgaa	66 caca tcagctctga	20
<210> <211> <212> <213>	67 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> agctgc	67 tgcc agaggcctgg	20
<210><211><211><212><213>	68 20 DNA Artificial	

<220> <223>	Antisense Oligonucleotide	
<400> ttacag	68 ccat acttcacttt	20
<210> <211> <212> <213>	69 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> aattct	69 cgct tcttgctagg	20
<210> <211> <212> <213>	70 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ggccag	70 ctcg caggtcccca	20
<210> <211> <212> <213>	71 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ccttcc	71 ctgt ctgccatgct	20
<210> <211> <212> <213>	72 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> acgcaa	72 gagg acactcggtt	20
<210> <211> <212> <213>	73 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ggctgaa	73 acac aaaatcactg	20

-210-	74	
<210> <211> <212> <213>	74 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> tgacto	74 acgg ctgaacacaa	20
<210> <211> <212> <213>	75 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
	75 tttt attactcaag	20
<210> <211> <212> <213>	76 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> agggaa	76 cata cgttttatt	20
<210> <211> <212> <213>	77 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> cctgga	77 aaag cttcataaag	20
<210> <211> <212> <213>	78 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ctggcc	78 tcac ctggacagct	20
<210> <211> <212> <213>	79 20 DNA Artificia	
<400>	79 tcca gctacgctgc	20

<210> <211> <212> <213>	80 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> ggagag	80 ccca cttgaagaca	20
<210> <211> <212> <213>	81 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> agctgg	81 ctac ctgggtcata	20
<210><211><211><212><213>	82 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> tacaga	82 gcaa ggcctggaat	20
<210> <211> <212> <213>	83 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> tccttc	83 tctc tatgtgaagg	20
<210> <211> <212> <213>	84 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> aggccc	84 aagc ctacagaagg	20
<210> <211> <212> <213>	85 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	

Page 28

<400> aggcca	gctg gcccaggcgc	20
<210> <211> <212> <213>	86 20 DNA Artificial	
<220> <223>	Antisense Oligonucleotide	
<400> acccag	86 gctg gagatggcgg	20
<210> <211> <212> <213>	87 20 DNA Homo sapiens	
<400> gtggtg	87 gcct gcaagccagg	20
<210> <211> <212> <213>	88 20 DNA Homo sapiens	
<400> gggcaa	88 ggaa ggctggcatc	20
<210> <211> <212> <213>	89 20 DNA Homo sapiens	
<400> ctggag	89 gacc gtctccactg	20
<210> <211> <212> <213>	90 20 DNA Homo sapiens	
<400> caggct	90 tcgg aggccacaag	20
<210> <211> <212> <213>	91 20 DNA Homo sapiens	
<400> gcctgc	91 agct gctgtcgtcc	20
<210> <211> <212> <213>	92 20 DNA Homo sapiens	
<400>	92	

caagcag	ggtc tggctgcaga	ISPT1011.ST25.txt	20
<210> <211> <212> <213>	93 20 DNA Homo sapiens		
<400> cactgca	93 aagc aggtctggct		20
<210> <211> <212> <213>	94 20 DNA Homo sapiens		
<400> ggctgta	94 agca caggcttcac		20
<210> <211> <212> <213>	95 20 DNA Homo sapiens		
<400> gagcccg	95 gccg actggtgcca		20
<210> <211> <212> <213>	96 20 DNA Homo sapiens		
<400> ctgcccg	96 gaca gaagatggtc		20
<210> <211> <212> <213>	97 20 DNA Homo sapiens		
<400> catcaag	97 pacg ggaaggctgg		20
<210> <211> <212> <213>	98 20 DNA Homo sapiens		
<400> atgttgg	98 gag gctgctggct		20
	99 20 DNA Homo sapiens		
	99 att tcagagctga		20
<210> <211>	100 20	Dago 20	

		15P11011.5125.CXL	
<212> <213>	DNA Homo sapiens		
<400> ccacag	100 ccgt ggaaggactg		20
<210> <211> <212> <213>	101 20 DNA Homo sapiens		
<400> ggtagt	101 gcta gagaccttgg		20
<210> <211> <212> <213>	102 20 DNA Homo sapiens		
<400> tagcta	102 ggcc caagacctag		20
<210> <211> <212> <213>	103 20 DNA Homo sapiens		
	103 gagg aacacggtgt		20
<210> <211> <212> <213>	104 20 DNA Homo sapiens		
<400> aggagg	104 cctc ctatgaccca		20
<210> <211> <212> <213>	105 20 DNA Homo sapiens		
<400> tgtgaa	105 gacg cacggtgcca		20
<210> <211> <212> <213>	106 20 DNA Homo sapiens		
<400> ccgccc	106 tggg tcatgtgccg		20
<210> <211> <212> <213>	107 20 DNA Homo sapiens		
<400> aagacct	107 tggt ggaagaggag	David 24	20

Page 31

<210> <211> <212> <213>	108 20 DNA Homo sapiens	
<400> agtcaa	108 agtt ctcatggtca	2
<210><211><211><212><213>	109 20 DNA Homo sapiens	
<400> gagaac	109 tcct acgtgtccag	2
<210><211><211><212><213>	110 20 DNA Homo sapiens	
<400> gaacto	110 ctac gtgtccagca	2
<210> <211> <212> <213>	111 20 DNA Homo sapiens	
<400> cctgcc	111 cgac agaagatggt	2
<210> <211> <212> <213>	112 20 DNA Homo sapiens	
<400> caccca	112 gagc acactgcaag	2
<210> <211> <212> <213>	113 20 DNA Homo sapiens	
<400>	113 gagc agctgtccag	2
<210> <211> <212> <213>	114 20 DNA Homo sapiens	
<400> caaaag	114 tagc ccagggctgt	2
<210> <211>	115 20	

Page 32

<213>	Homo sapiens	
<400> cagagt	115 ggaa ccctgcctcc	20
<210> <211> <212> <213>	116 20 DNA Homo sapiens	
<400> tgcaag	116 cagg tctggctgca	20
<210> <211> <212> <213>	117 20 DNA Homo sapiens	
<400> cagagg	117 ggcc actacccaag	20
<210> <211> <212> <213>	118 20 DNA Homo sapiens	
<400> cagccg	118 tgga aggactggcc	20
<210> <211> <212> <213>	119 20 DNA Homo sapiens	
<400> tgctgg	119 ctac tgtgctcaga	20
<210> <211> <212> <213>	120 20 DNA Homo sapiens	
<400> acgcac	120 ctgc agctgctccg	20
<210><211><211><212><213>	121 20 DNA Homo sapiens	
<400> cctggt	121 tcca agccctgctt	20
<210> <211> <212> <213>	122 20 DNA Homo sapiens	
<400> ctcgga	122 ggag ctcaagatcg	20

<210> <211> <212> <213>	123 20 DNA Homo sapiens	
<400> agagct	123 tcct gaccgaggtg	20
<210> <211> <212> <213>	124 20 DNA Homo sapiens	
<400> gcctgg	124 tgta cggcttcctg	20
<210> <211> <212> <213>	125 20 DNA Homo sapiens	
<400> gtggcc	125 cgga cacagacagt	20
<210> <211> <212> <213>	126 20 DNA Homo sapiens	
<400> tgctgc	126 ctgc accgccgggc	20
<210> <211> <212> <213>	127 20 DNA Homo sapiens	
<400> gtacga	127 gagg ctagagaagc	20
<210> <211> <212> <213>	128 20 DNA Homo sapiens	
<400> ccaggc	128 agca gagcagctgc	20
<210> <211> <212> <213>	129 20 DNA Homo sapiens	
<400> agagcc	129 tagg cggcctctct	20
<210> <211> <212> <213>	130 20 DNA Homo sapiens	

Page 34

<400> 130 atggtccaga agctggccct	20
<210> 131 <211> 20 <212> DNA <213> Homo sapiens	
<400> 131 ccaggcctct ggcagcagct	20
<210> 132 <211> 20 <212> DNA <213> Homo sapiens	
<400> 132 aaagtgaagt atggctgtaa	20
<210> 133 <211> 20 <212> DNA <213> Homo sapiens	
<400> 133 cctagcaaga agcgagaatt	20
<210> 134 <211> 20 <212> DNA <213> Homo sapiens	
<400> 134 tggggacctg cgagctggcc	20
<210> 135 <211> 20 <212> DNA <213> Homo sapiens	
<400> 135 agcatggcag acagggaagg	20
<210> 136 <211> 20 <212> DNA <213> Homo sapiens	
<400> 136 aaccgagtgt cctcttgcgt	20
<210> 137 <211> 20 <212> DNA <213> Homo sapiens	
<400> 137 cagtgatttt gtgttcagcc	20

<210> <211> <212> <213>	138 20 DNA Homo sapiens	1011.5125. txt
<400>	138 tcag ccgtgagtca	20
<210> <211> <212> <213>	139 20 DNA Homo sapiens	
<400> cttgag	139 taat aaaaacgtat	20
<210> <211> <212> <213>	140 20 DNA Homo sapiens	
<400> tgtctt	140 caag tgggctctcc	20
<210> <211> <212> <213>	141 20 DNA Homo sapiens	
<400> attcca	141 ggcc ttgctctgta	20
<210> <211> <212> <213>	142 20 DNA Homo sapiens	
<400> ccttca	142 cata gagagaagga	20
<210> <211> <212> <213>	143 20 DNA Homo sapiens	
<400> ccgcca	143 tctc cagcctgggt	20