ESE 406 / ESE 505 / MEAM 513 Midterm Exam Cheat Sheet

Function	Time domain $f(t) = \mathcal{L}^{-1}\left\{F(s) ight\}$	Laplace s-domain $F(s) = \mathcal{L}\left\{f(t)\right\}$
nth power (for integer n)	$\frac{t^n}{n!} \cdot u(t)$	$\frac{1}{s^{n+1}}$
qth power (for complex q)	$\frac{t^q}{\Gamma(q+1)} \cdot u(t)$	$\frac{1}{s^{q+1}}$
unit step	u(t)	$\frac{\frac{1}{s}}{e^{-\tau s}}$
delayed unit step	u(t- au)	
ramp	$t \cdot u(t)$	$\frac{s}{\frac{1}{s^2}}$
nth power with frequency shift	$\frac{t^n}{n!}e^{-\alpha t}\cdot u(t)$	$\frac{1}{(s+\alpha)^{n+1}}$
exponential decay	$e^{-\alpha t} \cdot u(t)$	$\frac{1}{s+\alpha}$
exponential approach	$(1 - e^{-\alpha t}) \cdot u(t)$	$\frac{\alpha}{s(s+\alpha)}$
sine	$\sin(\omega t) \cdot u(t)$	$\frac{\omega}{s^2 + \omega^2}$
cosine	$\cos(\omega t) \cdot u(t)$	$\frac{s}{s^2 + \omega^2}$
hyperbolic sine	$\sinh(\alpha t) \cdot u(t)$	$\frac{\alpha}{s^2 - \alpha^2}$
hyperbolic cosine	$\cosh(\alpha t) \cdot u(t)$	$\frac{s}{s^2 - \alpha^2}$
Exponentially-decaying sine wave	$e^{-\alpha t}\sin(\omega t)\cdot u(t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
Exponentially-decaying cosine wave	$e^{-\alpha t}\cos(\omega t)\cdot u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

$$F(s) = \mathcal{L}\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt.$$

$$t_{r} \approx \frac{2.0}{\omega_{n}} \qquad t_{s} \approx \frac{4.0}{\sigma}$$

$$v_{s} \approx \frac{4.0}{\sigma}$$

NOTE: u(t) in table is unit step

BDK: 2013 Midterm Cheat Sheet