

小米智能 BLE 模组(MHCB12G-B&MHCB12G-IB)规格书

Rev 1.3

CMIIT ID (MHCB12G-B): 2023DP14511

CMIIT ID (MHCB12G-IB): 2023DP14504(M)

小米通讯技术有限公司 智能家居 MIOT iot.mi.com

版本更新说明

日期	版本	更新内容
2023-04-21	1.0	初始版本
2023-05-05	1.1	更新框图
		更新 CMIIT ID 号
2023-11-15	1.2	更新 PN 号
		更新包装规范
2023-11-28	1.3	更新 P0_3 描述
2025-11-20	1.3	更新原理图

景目

版本更新说明	2
1 产品概述	4
1.1 方案概述	4
1.2 功能框图	4
1.3 产品编码	5
2 系统硬件优势	5
3 管脚描述	6
3.1 管脚布局	6
3.2 管脚定义	7
4 电气参数	8
4.1 电气特性	8
4.2 BLE 射频	g
4.2.1 接收器	g
4.2.2 发射器	10
4.2.3 功耗	10
5 回流焊温度曲线	11
6 静电释放电压	11
7 原理图	12
8 外围设计原理图	13
9 板载天线使用建议	14
9.1 模组摆放要求	
9.2 底板铺地的形状和尺寸	
9.3 外壳到天线的距离	15
9.4 其他注意事项	16
10 模组尺寸图	17
11 U.FL 座子尺寸	18
12 包装	
13 MSL 级别/贮存条件	19
14 交付清单	19
档组设计注音 重 币	21

1 产品概述

1.1 方案概述

MHCB12G-B& MHCB12G-IB 是基于 Realtek 的 RTL8762EMF 高性能的 BLE&BLE MESH 模组,内置 ARM Cortex-M0+核,高发射功率。支持小米新一代 MESH2.0 协议,极致接入体验,适于智能穿戴,智能家居等诸多应用场景。该模组提供业界最高的集成度,有显著的系统性能,具备较低功耗和低成本等特点。MHCB12G-B& MHCB12G-IB 分为两个型号,MHCB12G-B 为板载天线模组,MHCB12G-IB 为外接天线模组。

1.2 功能框图

图 1-1 功能框图

1.3 产品编码

根据不同的客户会有不同的 PN 号,规则如下:

产品差异化代码(xx)					
R0	RTL8762E				
产品型号代码(X)					
G	通用型				
天线类	型代码(x)				
0	板载天线				
1	外置天线				

2 系统硬件优势

MHCB12G-B& MHCB12G-IB 具备特性:

- ▶ 模组尺寸: 13.07*23.5*2.7mm
- ▶ 高性能 32-bit 40 MHz ARM Cortex®-M0+
- > 512KB flash, 104KB RAM
- ▶ 发射功率 (TYP): 7.5dBm
- ▶ 接收灵敏度(TYP): -97dBm
- > 5.3 mA current at RX
- > 5.9mA current at TX power 0dBm
- ➤ 6.8mA current at TX power 4dBm

- 13.1mA current at TX power 7.5dBm
- > 3.9uA current at DLSP (Wakeup by GPIO Timer)
- ➤ 1.9uA current at Power down (Wakeup by GPIO)

3 管脚描述

3.1 管脚布局

MHCB12G-B& MHCB12G-IB 贴片式模组的管脚分布如图 3-1 所示

图 3-1 MHCB12G-B& MHCB12G-IB 模组管脚分布

图 3-2 MHCB12G-B& MHCB12G-IB 管脚定义说明

3.2 管脚定义

MHCB12G-B& MHCB12G-IB 共接出 35 个管脚,管脚定义如下表:

序号	管脚	功能描述
1	GND	接地
2	P2_7	GPIO
3	P2_6	GPIO
4	P2_5	GPIO
5	P2_4	GPIO
6	P2_3	GPIO
7	P2_2	GPIO
8	P5_0	GPIO
9	GND	接地
10	32K_X0	晶体输出
11	32K_XI	晶体输入
12	P3_0	通信 TX
13	P3_1	通信 RX
14	VDD	电源 3.3V
15	P3_2	GPIO
16	P3_3	GPIO
17	NC	空

18	P0_0	GPIO
19	P0_1	GPIO
20	P0_2	GPIO
21	P1_1	JTAG (SWDLCK)
22	P1_0	JTAG(SWDIO)
23	P0_3	GPIO, Boot 管脚
24	GND	接地
25	VDD_IO	电源 3.3V
26	GND	接地
27	P0_4	GPIO
28	P0_5	GPIO
29	P0_6	GPIO
30	P4_0	JTAG(SWO)
31	P4_1	GPIO
32	P4_2	GPIO
33	P4_3	GPIO
34	RESET	复位管脚
35	GND	接地

说明:

- 建议 PO_3 使用时为 NC 或者上拉处理,如果上电瞬间为低电平,芯片将进入 bypass flash 模式;
- PIN12, PIN13(UARTO)产测通信使用,不建议用户使用;
- 需要 UART 串口通信时,建议使用 UART1,其他 GPIO 可配,参考芯片数据手册。

4 电气参数

说明:如无特殊说明,测试条件为: VDD=3.3V,温度为 25℃。

4.1 电气特性

表 4-1: 极限参数					
参数	名称	最小值	典型值	最大值	单位
供电电压	VDD	1.8	3.3	3.6	V
存储温度范围	TST R	-55	-	125	°C
工作温度范围	TOP R	-40	-	85	°C

4.2 BLE 射频

4.2.1 接收器

Parameter	Condition	Minimum	Typical	Maximum	
Sensitivity (dBm)					
(LE 1M/LE	$PER \leq 30.8\%$	-98/-95/-101/-107 ^{*1}	-97/-94/-100/-106	-92/-89/-95/-100*3	
2M/LR2*4/LR8*4)					
Maximum Input Level					
(dBm)	$PER \leq 30.8\%$	-	-1/-1/-1	-	
(LE 1M/LE 2M/LR2/LR8)	A (7) Y				
	$C/I_{co-channel}(dB)$	21/17/12	-	-	
	C/I _{+1MHz} (dB)	15/11/6	-	-	
	C/L _{1MHz} (dB)	15/11/6	-	-	
C/I	C/I _{+2MHz} (dB)	-17/-21/-26	-	-	
(LE 1M/LR2/LR8)	C/L _{2MHz} (dB)	-15/-19/-24	-	-	
	C/I_{+3MHz} (dB)	-27/-31/-36	-	-	
	C/I_{Image} (dB)	-9/-13/-18	-	-	
	$C/I_{Image+1MHz}$ (dB)	-15/-19/-24	-	-	
	$C/I_{Image-1MHz}$ (dB)	-15/-19/-24	-	-	
	$C/I_{co-channel}(dB)$	21	-	-	
	C/I_{+2MHz} (dB)	15	-	-	
C/I	C/L _{2MHz} (dB)	15	-	-	
LE 2M	C/I_{+4MHz} (dB)	-17	-	-	
LL 2141	C/I _{-4MHz} (dB)	-15	-	-	
	C/I _{+6MHz} (dB)	-27	-	-	
	C/I_{Image} (dB)	-9	-	-	

Parameter	Condition	Minimum	Typical	Maximum
	C/I _{Image+2MHz} (dB)	-15	-	-
	C/I _{Image-2MHz} (dB)	-15	-	-
	30~2000MHz, Wanted signal level =-67dBm	-30	-	-
Plactor Power (dPm)	2003~2399MHz, Wanted signal level =-67dBm	-35	-	_
Blocker Power (dBm)	2484~2997MHz, Wanted signal level =-67dBm	-35	-	<u>-</u>
	3000MHz~12.75GHz, Wanted signal level =-67dBm	-30	-	
Max PER Report Integrity	Wanted signal: -30dBm	-	50%	-
Max Intermodulation level (dBm)	Wanted signal (f0): -64dBm Worst intermodulation level @2f1-f2=f0, f1-f2 =n MHz, n=3, 4, 5	-50		-

^{*}Note 1: Measured with 10pcs RTK EVB at 2442MHz.

^{*}Note 2: Depends on PCB design and registers setting.

^{*}Note 3: Spur channels may have extra degradation due to clock interference at 2420, 2440, 2460 and 2480MHz.

^{*}Note 4: LR2 is the abbreviation of LE Coded (S=2). LR8 is the abbreviation of LE Coded (S=8).

4.2.2 发射器

Parameter	Condition	Minimum	Typical	Maximum
Maximum Output Power (dBm)	-	5	7.5	10.5
	+2MHz	-	-	-20
Adjacent Channel Power Ratio (dBm)	-2MHz	-	-	-20
LE 1M	>=+3MHz	-	-	-30
	<=-3MHz	-	-	-30
	+4MHz	1	-	-20
Adjacent Channel Power Ratio (dBm)	-4MHz	1	-	-20
LE 2M	>=+6MHz	•	-	-30
ED ZIVI	<=-6MHz	1	-	-30
Α'	Δfl _{avg} (kHz)	-	250/500/250	-
Modulation Characteristics	Δf2max (kHz)	185/370/185	-	-
(LE 1M/LE 2M/LR8*2)	Δf2 _{max} Pass Rate (%)	-	100	-
	$\Delta f2_{avg}/\Delta f1_{avg}$	-	0.88	-
	Average Fn (kHz)	-	12.5/12.5/12.5	-
Carrier Frequency Offset and Drift	Drift Rate (kHz/50µs)	-	10/10/10	-
(LE 1M/LE 2M/LR8)	Avg Drift (kHz/50µs)	-	10/10/10	-
(EB INDEL ZINDERO)	Max Drift (kHz/50μs)	-	20/20/19.2	-
Output power of second harmonic (dBm)	-	-	-50*1	-
Output power of third harmonic (dBm)	-	-	-50*1	-

^{*}Note 1: Tested by EVB with RF PI network.

4.2.3 功耗

Low Power Mode Power Consumption

Parameter	Always on Registers	32kHz RCOSC	Retention SRAM	CPU	Wake-up Method	Current Consumption (Typical)
Power Down	On	Off	Off	Off	Wake-up by GPIO	1.9 uA
Deep LPS	On	On	Retention	Off	Wake-up by GPIO, Timer	3.9 uA

Active Mode Power Consumption

Power Mode	Current Consumption (Typical)
Active RX mode	5.3 mA
Active TX mode (TX power: -20 dBm)	4.1 mA
Active TX mode (TX power: 0 dBm)	5.9 mA
Active TX mode (TX power: 4 dBm)	6.8 mA
Active TX mode (TX power: 7.5 dBm)	13.1 mA
Advertising (adv_interval: 1s, payload: 23Bytes, 0dBm)	16.5 uA

^{*}Note 2: LR8 is the abbreviation of LE Coded (S=8).

5 回流焊温度曲线

图 5-1. MHCB12G-B& MHCB12G-IB 回流焊温度曲线图

焊接说明:在双面 SMT 时,T 面($top\ side$)元器件第一次回流后,需要将电路板翻转,进行另一面的回流焊接,在第二次回流时,原已焊好的 T 面元器件会被锡膏的表面张力所固定,防止元器件在重力的作用下掉件。

母板设计阴阳板拼板过炉(炉温 240-260°) 验证无不良,为保证其稳定性,建议点胶。

6 静电释放电压

表 6-1: 静电释放参数					
名称	符号	参照	等级	最大值	单位
静电释放电压 (人体模型)	VESD (HBM)	温度: 23±5℃ 遵守 IEC 61000-4-2:2008	2	2000	٧

7 原理图

图 7-1 MHCB12G-B& MHCB12G-IB 模组原理图

备注: MHCB12G-B 为板载天线, C15 需要焊接, 去掉 C6; MHCB12G-IB 为外接天线, C15 去掉, C6、CON1 焊接

8 外围设计原理图

图 8-1 MHCB12G-B& MHCB12G-IB 模组外围设计原理图

说明:

- P0_3 上电瞬间应保持低电平,会进入下载模式,正常使用时建议悬空或增加上拉处理。建议 调试阶段预留下拉的管脚,方便后面调试使用。
- 上电时序要求:

Figure 3. Power on Sequence-SWR Mode

Table 1. Power on Sequence Timing-SWR Mode

Parameter	Minimum	Typical	Maximum	Unit
T _{por}	-	0.2	0.5	ms
Tpor2vddcore	7 -	20	40	ms
Tpor2vxta1	-	40	80	ms

*Note:

- 1. HW RST N power on time should be equal or slower than VBAT/HVD/VDDIO.
- 2. When booting, the initial voltage of VBAT/VDDIO/HVD would be less than 0.1V.
- 模组的供电电源,需要注意在**任何使用条件下都不要有超过 3.6V 的瞬间电压**,否则有 EOS 损坏 芯片的风险;
- 模组供电电源在上/下电过程中,需满足单调线性上升/下降条件,**避免上/下电过程中出现电压** 上下抖动或台阶的情况。

9 板载天线使用建议

9.1 模组摆放要求

模组建议居中放置在底板边缘,模组 GND 与底板 GND 平齐,并且充分连接,天线区域(含模组天 线净空区)下方净空,禁止有 PCB 基材,禁止布线,禁止任何结构干涉天线。

9.2 底板铺地的形状和尺寸

模组下方主板要布完整的 GND,不要被走线割断,主 GND 建议尺寸 W≥30 厘米, L≥40 厘米。双层板多打 GND 过孔。

9.3 外壳到天线的距离

塑料外壳到天线顶部距离 H≥1 厘米:

塑料上下壳到天线的距离 H≥2 厘米:

9.4 其他注意事项

- 1、模组天线区域,远离喇叭、电池、电源开关、Camera、LCD、网口、HDMI、USB 或其他高速信号传输口 30mm 以上,避免干扰。
 - 2、模组天线区域的产品外壳不能为金属材质。
 - 3、天线区域下方 GND 净空,禁止布线,禁止有其他介质层,禁止任何结构干涉天线。
 - 4、天线附近 30mm 内禁止其他同频率或相近频率的信号干扰。
 - 5、天线辐射区域附近禁止金属遮挡。
 - 6、由于模组板载天线性能有限,建议在条件允许下,优先选用外接天线。

以上为推荐设计,如有无法满足要求,建议提交工单咨询。实际产品性能以整机 OTA 数据为准。

10 模组尺寸图

UNIT:mm

说明: 以上模组外形尺寸公差为 PCB 制板公差,模组成品需增加±0.1mm 毛边公差。

图 10-1 MHCB12G-B&MHCB12G-IB 模组尺寸图

图 10-2 MHCB12G-B&MHCB12G-IB 模组尺寸图

11 U.FL 座子尺寸

12 包装

图 12-1: 包装流程图

13 MSL 级别/贮存条件

- MSL 级别: 3 级 小于或等于 30°C/60% RH 168 小时车间寿命。
- 贮存条件:产品在运输过程中应小心轻放,不能相互挤压,避免受到冲击,强烈振动。贮存环境 应保持通风干燥,环境温度宜在5℃~35℃之间,并不应与能产生腐蚀性气体的物品存放在一起。

14 交付清单

- 包装齐全
- 评估工具(SPI/UART/JTAG 接口)

- 软件支持客户集成,性能测试认证。
- 单元测试/资格报告
- 产品规格
- 标识齐全,清晰,例如生产序列号、MAC等
- 机构认证报告

模组设计注意事项

- ▶ 模组天线部分布局,参见《xiaomi 模组选用与应用环境建议》。
- ▶ 模组建议放在底板角落处,并且天线朝外,天线需远离金属器件、传感器、传输高频信号的器件及高频信号走线;从位置上增加距离使得干扰源能量随距离的增加而衰减,继而减小噪声的耦合,提高天线的整体性能。
- ▶ 模组供电的电源芯片的选型,建议输出电流至少500mA。
- ▶ 模组供电建议独立电源供电。
- ▶ 禁止任何物体与天线产生干涉。
- ▶ PCB 天线下方禁止走线,并做净空处理。
- ▶ 模组所有需要供电的电源接口及上拉电源,请使用同一个电源网络,保证模组电源接口上电时序一致。
- ▶ 给模组供电电源纹波要求:发送数据的包时,电源纹波必须小于100mV。
- ▶ 模组与 CPU 之间通过 SDIO 和 UART 进行通信时,最好在信号线上串联一个 200 欧姆电阻(阻值可以根据实际需要调整),减小驱动电流,减小干扰,同时也可以消除走线长度不一致引起的时序问题。
- ▶ 模组周围及下方避免走高速信号,如果避开不了,建议严格按照高频信号处理规则走线,尽量做到对高速信号进行包地处理,牵扯到 data 或 addr 线时成组进行包地处理。
- ▶ 如果在系统设计时牵扯到电机等高功率器件,则务必要把模组的电路返回路径(GND)与其它高功率器件的返回路径(GND)分离开来,通过导线把 2 个返回路径(GND)连接起来。
- ➤ 模组选型时,尽量不使用 PCB 板载天线,因为 PCB 板载天线受到的干扰比较大,容易把干扰源耦合进来影响天线的性能,最好使用外置天线,可以通过电缆线引出 PCB 板,这样板子上高频干扰信号对模组的天线性能的影响会减弱。
- ▶ 建议产品设计完成后,对整机天线性能根据产品定义进行测试,确认天线性能是否符合整机要求。
- ▶ 模组参考设计电路,请参考模组原理图。