Assignment-3

Automata and compiler design lab

- 1) Find the nfa's for the following languages on $\Sigma = \{a,b\}$
 - a) L={strings start with 'ab'}
 - b) L={contain 'ab' as substring}
 - c) L={string end with 'ab'}
- 2) Design an nfa with no more than five states for set $\{abab^n : n \ge 0\}$ U $\{aba^n : n \ge 0\}$
- 3) Contruct an nfa with three states that accepts the languages {ab,abc}*
- 4) Find an nfa with four states for L= $\{a^n : n \ge 0\}$ U $\{b^n a : n \ge 1\}$
- 5) Find an nfa without λ -transitions and with a single final state that accepts the set $\{a\}$ U $\{b^na:n\ge 1\}$
- 6) Find an nfa with three states that accept the language $L=\{a^n: n\geq 1\}$ U $\{b^ma^k: m\geq 0, k\geq 0\}$
- 7) Convert the following nfa's into dfa's over languages on $\Sigma = \{a,b\}$
 - a) L={strings start with 'a'}
 - b) L={strings end with 'a'}
 - c) All strings in which second symbol from RHS is 'a'
 - d) All strings in which third symbol from RHS is 'a'