INF-BIOx121 2017

RNA-seq differential expression analysis

Arvind Sundaram Sep 18-20, 2017

RNA-seq analysis

Transcriptome

Arvind Sundaram Sep 18, 2017

Transcriptome

- * Transcriptome is the total set of transcripts in an organism
- Transcriptome changes across cell types and environmental conditions

So....

- * Transcriptome is a set of (all) RNA molecules in one cell or a population of cells in a given moment
- * 'Constructing' a global transcriptome aims to capture all possible transcripts found across all cell and tissue types.

Assembling a transcriptome

Reference based transcriptome

- Requires good quality (draft) genome
- Splice-aware aligner
- Improves on existing knowledge

Fast
less CPU
prior knowledge

https://doi.org/10.1038/nrg3068

de novo transcriptome

- Requires high coverage sequence data
- Transcript detection based on coverage
- * Multiple gene-copies is difficult to resolve

Mixed approach

- * Identifies novel transcripts
- Polyploidy species

Varies

mixed CPU

prior knowledge

Next-generation transcriptome assembly https://doi.org/10.1038/nrg3068

de novo transcriptome

- * One will choose de novo / mixed approach due to many reasons
 - Non-model species with less genomic resources
 - Improve gene annotation
 - Genes of interest are not well annotated

Trinity assembler

- * Trinity is the best single parameter *de novo* RNA assembly pipeline available
- Good on splice variants, full length transcripts and resolution of lowly expressed transcripts
- Contains tools to help with visualisations

Trinity pipeline -Inchworm

- * Inchworm assembles the data by greedily searching for paths in a k-mer graph, resulting in a collection of linear contigs, with each k-mer present only once in the contigs
- Inchworm does not capture the full complexity of the transcriptome; for example, only one alternatively spliced variant can be reported at full length per locus, with partial sequences reported for unique regions of any alternatively spliced transcripts.

Trinity pipeline -Chrysalis

 Chrysalis clusters minimally-overlapping Inchworm contigs into sets of connected components, and constructs complete de Bruijn graphs for each component

Trinity pipeline - Butterfly

* Butterfly reconstructs plausible full-length, linear transcripts by reconciling the individual de Bruijn graphs generated by Chrysalis with the original reads and paired-ends.

Trinity assembler

- Significantly more transcripts than predicted in the same or closely related species!
- Low coverage over splice junctions, sequencing errors and heterozygosity restricts fulllength transcript reconstruction

- Trinity Wiki Home
- Installing Trinity
 - Trinity Computing Requirements
 - Accessing Trinity on Publicly Available Compute Resources
 - Run Trinity using Docker
- · Running Trinity
 - Genome Guided Trinity
 Transcriptome Assembly
 - Gene Structure
 Annotation of Genomes
- Trinity process and resource monitoring
 - Monitoring Progress
 During a Trinity Run
 - Examining Resource
 Usage at the End of a
 Trinity Run
- Output of Trinity Assembly

- Assembly Quality Assessment
 - Counting Full-length Transcripts
 - RNA-Seq Read Representation
 - Contig Nx and ExN50 stats
 - Examine strandspecificity of reads
- Downstream Analyses
 - Transcript Quantification
 - QC Samples and Bio Replicates
 - o Differential Expression
 - Coding Region
 Identification
 - Functional Annotation of Transcripts
 - Gene Ontology term functional category enrichments
- Trinity Tidbits
- Frequently Asked Questions (FAQ)

Trinity assembler

- Assembly algorithms require large amounts of memory
- 2/3rds of Trinity is parallelised to save computation time
- * Estimate at least 1 week of trial/error/final computation
- Remember to calculate memory / time requirements before starting!
 - → 1Gb RAM / million reads
 - → -30 mins 1 hour / million reads

Transcriptome Assembly Quality Assessment

- * Guide from Trinity
 - https://github.com/trinityrnaseq/trinityrnaseq/wiki/Transcriptome-Assembly-Quality-Assessment
- * BUSCO
- CEGMA (discontinued)

Genome annotation pipeline

- * MAKER2
 - Step-by-step annotation guide
 - https://github.com/sujaikumar/assemblage/blob/master/READMEannotation.md
- * Gene prediction based on ESTs and/or transcriptomes
 - AUGUSTUS, GeneMark-ES, SNAP and more

Genome annotation pipeline

- BLAST against appropriate databases
 - * NCBI blast+ toolkit
- Gene ontology
- KEGG pathways
- blast2go

blast2go

