# Das Wetter als Risikofaktor in der Wirtschaft: Wie lassen sich Wetterrisiken von Unternehmen absichern und wie kann Python dabei behilflich sein?

Thomas Robert Holy

# **Vortrag**

Im Rahmen der AG Finance & Risk

29. August 2020

 Wetterphänomene beeinflussen die Wirtschaft (u.a. Aktienkurse, Umsätze, Gewinne)

### Beispiel:

- (I) Oktober 2010: Einführung gesetzlicher Winterreifenpflicht
- (II) November 2010: Kräftiger Wintereinbruch
  - $\rightarrow$  Hohe Nachfrage nach Winterreifen
  - ightarrow Aktienkurs von Delticom stieg im Vergleich zum Gesamtmarkt stark an
- Aber: Entwicklungen nicht immer vorteilhaft
  - $\rightarrow$  Risikoabsicherung notwendig

Abbildung: Aktienkurs der Delticom AG v.s. DAX (normiert auf 100 am 04.10.2010), eigene Darstellung.



Tabelle: Wetterabhängige Branchen und deren Risiken, eigene Darstellung in Anlehnung an Cui/Swishchuk, S. 2, (2015).

| Branche          | Meteorologische Elemente             | Risiko                                 |  |  |  |  |  |
|------------------|--------------------------------------|----------------------------------------|--|--|--|--|--|
| Energieversorger | Temperatur, Niederschlag, Wind       | Übermäßige oder verringerte Versorgung |  |  |  |  |  |
| Landwirtschaft   | Niederschlag, Temperatur             | Ernteertrag, Lagerung, Schädlinge      |  |  |  |  |  |
| Bauwirtschaft    | Temperatur, Niederschlag, Schneefall | Verzögerungen, höhere Baukosten        |  |  |  |  |  |
| Reisebranche     | Temperatur, Niederschlag, Schneefall | Stornierungen, geringere Einnahmen     |  |  |  |  |  |

Abbildung: Das Wetter als Fluch und Segen zugleich? Quelle: https://mediaO.faz.net/ppmedia/aktuell/gesellschaft/ 735499708/1.5824294/format\_top1\_breit/ausnahmejahrgang-traubenernte.jpg; https://www.spektrum.de/fm/912/thumbnails/iStock-177506643.jpg.4654334.jpg.

- Fehlender Niederschlag, hohe Temperaturen im Sommer 2018
  - ightarrow Dürreschäden in der Landwirtschaft
  - $\rightarrow$  Weinbauern hoffen auf einen guten Jahrgang

Thomas Robert Holy



### Fragestellung dieses Vortrags:

- 1) Wie können sich betroffene Unternehmen vor Wetterrisiken absichern?
- 2) Wie kann Python dabei als Hilfsmittel eingesetzt werden?

### Inhaltsverzeichnis

- 1) Einleitung
- 2) Absicherung von Wetterrisiken mit Wetterderivaten: Grundlagen
- 3) Python als Hilfsmittel zur Datenanalyse und zur Bewertung von Wetterderivaten
  - 3.1) Einblick in das Programm
  - 3.2) Eine Programmdemonstration
- 4) Betrachtung der Ergebnisse anhand des Beispiels Jena-Sternwarte
  - 4.1) Datenherkunft und Datensatz
  - 4.2) Datenauswertung und Berechnungen
  - 4.3) Problem Basisrisiko
- 5) Fazit

### Inhaltsverzeichnis

- 1) Einleitung
- 2) Absicherung von Wetterrisiken mit Wetterderivaten: Grundlagen
- 3) Python als Hilfsmittel zur Datenanalyse und zur Bewertung von Wetterderivaten
  - 3.1) Einblick in das Programm
  - 3.2) Eine Programmdemonstration
- 4) Betrachtung der Ergebnisse anhand des Beispiels Jena-Sternwarte
  - 4.1) Datenherkunft und Datensatz
  - 4.2) Datenauswertung und Berechnungen
  - 4.3) Problem Basisrisiko
- 5) Fazit

#### **Definition Wetterderivat**

- Geschäft auf dem Terminmarkt zur Absicherung von Wetterrisiken
- Stützt sich auf meteorologische Variablen wie z.B. die Temperatur
- Konstruktion eines Index, welcher die Ausprägungen der Variable innerhalb einer Periode notiert bspw.
   Degree-Day-Indizes
  - - HDDs: Ermittlung i.d.R. vom 1. November bis zum 28/29. Februar
    - CDDs: Ermittlung i.d.R. vom 1. Mai bis 30. September
- Messung der relativen "Kälte"/ "Wärme", welche sich aus der Unterschreitung/ Überschreitung des Referenzwertes i.H.v. 18°C ergibt

#### Ermittlung der Indizes

Berechnung des HDD/ CDD-Index durch

$$\mathsf{HDD}(T_1,T_2) = \sum_{t=T_1}^{T_2} \mathsf{max} \{18 - Y_t, \ 0\} \text{ für kumulierte HDDs in den Wintermonaten;} \tag{1}$$

$$CDD(T_1, T_2) = \sum_{t=T_1}^{T_2} \max\{Y_t - 18, 0\} \text{ für kumulierte CDDs in den Sommermonaten},$$
 (2)

wobei  $T_1 < T_2$  gilt und  $Y_t$  die Tagesdurchschnittstemperatur repräsentiert

### Long-Call Wetter-Option

- Absicherung eines kalten Winters
- Mit dem Kauf des Calls wird eine Options-Prämie fällig.

#### Payoff einer HDD-Option

- Options-Payoff:  $P_{HDD}^{LC}(T_1, T_2) = V \cdot \max\{HDD(T_1, T_2) - K, 0\} - P_L$
- Strike-Level K: z.B. Ø HDD-Index
- Tick-Size V: Auszahlungsbetrag pro Indexpunkt
- Optionsprämie: Pl

Abbildung: Payoff-Struktur einer HDD-Option, eigene Darstellung in Anlehnung an Berg et al., S. 160, (2005).



#### Bewertungsmöglichkeit Burn-Analysis

- Grundannahme: Aktuelle Verteilung der Wetter-Indizes gleicht der zukünftigen Verteilung
- Empfehlung: Betrachtung einer Periode im Umfang von 20-30 Jahren (Normalperiode)
- Ermittlung des "Fair-Values" (Optionsprämie, bei dem der erwartete Gewinn des Kontraktes Null beträgt)
- Bestimmung des Fair-Values F einer Call-Option durch

$$F = e^{-r\tau} \cdot \left[ \frac{1}{n} \sum_{t=1}^{n} P_t \right], \tag{3}$$

mit Diskontfaktor  $e^{-r\tau}$ , risikolosem Zinssatz r, Fälligkeitszeitpunkt  $\tau$ , n Payoffs  $P_t$  im Zeitpunkt t

## 3.1) Grundlagen von Derivaten und Wetterderivaten und deren Bewertung

#### Vorgehen bei Anwendung der Burn-Analysis

- 1) Bereinigung des Datensatzes
- 2) Errechnung historischer Wetter-Indizes
- 3) Bildung des arithmetischen Mittels aus der Gesamtheit dieser Indizes (Strike-Level der Option)
- 4) Bestimmung des historischen Payoffs für jedes Jahr im Betrachtungszeitraum
- 5) Ermittlung des "Schadensdurchschnittes"
- 6) Diskontierung auf den Zeitpunkt der Fälligkeit

### Inhaltsverzeichnis

- 1) Einleitung
- 2) Absicherung von Wetterrisiken mit Wetterderivaten: Grundlagen
- 3) Python als Hilfsmittel zur Datenanalyse und zur Bewertung von Wetterderivaten
  - 3.1) Einblick in das Programm
  - 3.2) Eine Programmdemonstration
- 4) Betrachtung der Ergebnisse anhand des Beispiels Jena-Sternwarte
  - 4.1) Datenherkunft und Datensatz
  - 4.2) Datenauswertung und Berechnungen
  - 4.3) Problem Basisrisiko
- 5) Fazit

Abbildung: Programm-Überblick, eigene Darstellung.



#### Datensatz einlesen

```
def read_in_raw_dataset(self, raw_data_):
    raw_data = read_csv(str(raw_data_) + '.csv', sep=";", decimal=".")
    raw_data.columns = [column.replace(' ', '') for column in raw_data.columns]
    return raw_data
```

- Verwendung des Moduls "Pandas" (Vgl. Excel)
  - → Lies den gewünschten Datensatz ein!
  - → Trenne bei ":"!
  - → Interpretierte "." als Zeichen für die Dezimaltrennung!
  - → Benenne die Spalten um und gib den "DataFrame" zurück!

#### Datensatz Manipulieren

```
1 def create data df(self, raw data):
       measurement_date = to_datetime(raw_data_.MESS_DATUM, format='%Y%m%d')
       temperature = self.replace missing value(raw values = raw data .TMK, values to replace = [-999.0, -999],
                                                                new value =nan)
      rainfall = self.replace_missing_value(raw_values_=raw_data_.RSK, values_to_replace_=[-999.0, -999],
                                                                new_value_=nan)
       HDD = self.calculate HDD(temperature =temperature)
       CDD = self.calculate CDD(temperature =temperature)
       create_data_df_dict = {'TMK': temperature,
                              'RSK': rainfall.
                              'HDD': HDD.
10
11
                              'CDD': CDD}
12
      data_df = DataFrame(create_data_df_dict, index=measurement_date)
      data df.index.name = 'MESS DATUM'
14
      return data df
15
```

- Erzeugung eines DataFrames mit den benötigten Informationen
  - $\rightarrow \ \mathsf{Erstelle} \ \mathsf{eine} \ \mathsf{interpretierbare} \ \mathsf{Datumsspalte!}$
  - → Ersetze fehlende Temperatur-/ Niederschlagswerte usw.!
  - → Gib den DataFrame zurück!

#### Datensatz analysieren - Prüfe auf fehlende Messwerte

```
1 def get should date range(self, first last year, mode):
      observated years = list(range(first last year [0], (first last year [1] + 1)))
      if str(mode) = "CDD"; start end date = [(str(year) + "-05-01", str(year) + "-09-30")]
                                                 for year in observated years]
      elif str(mode_) == 'HDD':
          leap years = self.get leap years(observations = observated years)
           start end date = [(str(vear - 1) + '-11-01', str(vear) + '-02-29')]
                             if year in leap years else (str(year - 1) + '-11-01', str(year) + '-02-28')
                             for year in observated years]
      else: start_end_date = [(str(year) + '-01-01', str(year) + '-12-31') for year in observated_years]
10
      mask = [date range(date[0], date[1], freq='1D') for date in start end date]
      whole mask = [mask for sub list in mask for mask in sub list]
      return to_datetime(whole_mask)
14
  def compare date range(self. first last vear , mode , data df ):
16
      should_date_range = self.get_should_date_range(first_last_year_=first_last_year_, mode_=str(mode_))
17
      return setdiff1d(should date range, data df .index)
18
```

- Ermittle alle im Datensatz vorhandenen Aufzeichnungen und vergleiche diese mit einer generierten Zeitspanne!
- Gib ggf. anfallende Differenzen zurück!

#### Datensatz analysieren - Messwerte kumulieren

```
1 def calculate observation sum(self, first last year, data df, mode):
       observated years = list(range(first_last_year_[0], (first_last_year_[1] + 1)))
      if str(mode) = "CDD"; start end date = [(str(vear) + "-05-01", str(vear) + "-09-30")]
                                                 for year in observated years]
       elif str(mode ) == 'HDD':
           leap years = self.get leap years(observations = observated years)
           start end date = [(str(year) + '-11-01', str(year + 1) + '-02-29')]
                             if year in leap_years else (str(year) + '-11-01', str(year + 1) + '-02-28')
                             for vear in observated vears[:-1]]
10
           observated years = observated years[:-1]
11
       else: start end date = [(str(year) + '-01-01', str(year) + '-12-31') for year in observated years]
12
       mask = [date range(date[0], date[1], freq='1D') for date in start end date]
       if str(mode) in ['HDD', 'CDD']: observation sum = [round(data df .loc[mask . str(mode)].sum(), 2)
14
                                                           for mask in maskl
       else: observation_sum = [round((data_df_.loc[mask_, str(mode_)].sum() /
15
16
                                       len(data df .loc[mask . str(mode )])). 2) for mask in mask]
17
18
       observation sum df = DataFrame({'observation sum': observation sum}, index=observated years)
19
       observation sum df.index.name = 'observated years'
20
       return observation sum df
```

• Erzeuge iterativ Akkumulationsperioden in Abhängigkeit vom Modus und summiere Messwerte auf!

## 3.2) Eine Programmdemonstration

# Beispiel Programmdurchlauf

Stadt: Nürnberg München Nürnberg-Netzstall Brocken Berlin-Tempelhof Berlin-Schönfeld

Betrachtungsperiode: 20 - 30 Jahre

Modus: HDD CDD

Kapitalmarktzins: 1-15%

Tick-Size: 10-100 \$

### Inhaltsverzeichnis

- 1) Einleitung
- 2) Absicherung von Wetterrisiken mit Wetterderivaten: Grundlagen
- 3) Python als Hilfsmittel zur Datenanalyse und zur Bewertung von Wetterderivaten
  - 3.1) Einblick in das Programm
  - 3.2) Eine Programmdemonstration
- 4) Betrachtung der Ergebnisse anhand des Beispiels Jena-Sternwarte
  - 4.1) Datenherkunft und Datensatz
  - 4.2) Datenauswertung und Berechnungen
  - 4.3) Problem Basisrisiko
- 5) Fazit

## 4.1) Datenherkunft und Datensatz

#### Datenherkunft

- Der DWD stellt Wetteraufzeichnungen für über 600 deutsche Wetterstationen zur Verfügung<sup>1</sup>
- Beispiel: Messstation 2444 (Jena-Sternwarte)
- Der Datensatz umfasst den 01.01.1824 31.12.2019
  - → ca. 70.000 Einträge, wobei einige Einträge fehlen (z.B. Mai 1945)

### Datensatzauszug

 $<sup>^{1}</sup> Siehe\ https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/siehe https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/siehe https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/siehe https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/siehe https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/siehe https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/siehe https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/siehe https://opendata.dwd.de/climate/daily/kl/historical/siehe https://opendata.dwd.de/climate/daily/kl/historical/siehe https://opendata.dwd.de/climate/siehe https://opendata.$ 

Abbildung: HDD-Werte innerhalb der jeweiligen Akkumulationsperiode im Betrachtungszeitraum (30 Jahre; Jena-Sternwarte), eigene Darstellung.

- Blau: Kumulierte HDDs für 1989 - 2019
- Rot: Mittelwert
   (≜ Strike/ 1795.1
   HDDs)
- Schwarz: Trendlinie (-2,88 HDDs p.a.)

#### Bspw.:

- 2016/17: 1871.7 HDDs
- 2017/18: 1732.0 HDDs
- 2018/19: 1658.7 HDDs



 $\rightarrow$  Ticksize: \$ 10  $\rightarrow$  KM-Zins: 5%

Abbildung: Fair-Values der HDD-Wetter-Option für die jeweiligen Laufzeiten (bis zu 30 Jahre; Jena-Sternwarte), eigene Darstellung.

### Trendbereinigt:

• 2049: \$ 156.04

· ...

• 2021: \$ 632.76

• 2020: \$ 665.20

#### Nicht trendbreinigt:

2049: \$ 158.62

• ..

2021: \$ 643.24

• 2020: \$ 676.22

 $\Rightarrow \Delta$ \$ 2020: 11.02 ( $\hat{=}$ 1.66%)



 Kumulierte CDDs für 1989 - 2019

#### Trendbereinigt:

• 2017: 162.75 CDDs

• 2018: 288.09 CDDs

• 2019: 231.03 CDDs

#### Nicht Trendbereinigt:

• 2017: 209.0 CDDs

• 2018: 337.9 CDDs

• 2019: 284.4 CDDs

 $\Rightarrow$   $\triangle$ CDD 2019: 23.10%  $\hookrightarrow$   $\triangle$ \$ 2020: 15.32%

#### Abbildung: Vergleich (nicht)-trendbereinigte CDD-Werte, eigene Darstellung.





#### Zeitreihenanalyse - Trendkomponente berechnen:

| Jahr | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| CDD  | 120  | 164  | 233  | 150  | 169  | 138  | 194  | 141  | 186  | 192  | 167  | 271  | 240  | 209  | 337  | 284  |

Formeln zur Berechnung der Trendgeraden:

$$a = \overline{y} - b \cdot \overline{t},$$

$$b = \frac{\sum_{t=1}^{T} t \cdot y_t - T \cdot \overline{y} \cdot \overline{t}}{\sum_{t=1}^{T} t^2 - T \cdot (\overline{t})^2}$$

Berechnung der notwendigen Größen:

$$b = \frac{30.234 - 16 \cdot 199.69 \cdot 8.5}{1496 - 16 \cdot 72.25} = 9.05,$$
  
mit  $t \cdot y_t = 30.234$ ,  $T = 16$ ,  $t^2 = 1.496$ ,  $(\overline{t})^2 = 72.25$ 

$$a = 199.69 - 9.05 \cdot 8.5 = 122.78,$$
  
mit  $\overline{y} = 199.69$ ,  $\overline{t} = \frac{16+1}{2} = 8.5$ 

Anwendung und Schätzung:

$$\hat{m}_t = 122.78 + 9.05 \cdot t$$

$$\hat{m}_{16} = 122.78 + 9.05 \cdot 16 = 267.55$$

$$\hat{m}_{17} = 122.78 + 9.05 \cdot 17 = 276.60$$

Trend laut Programm: 9.05 CDDs/Jahr

#### Messwerte transformieren - Trendbereinigung

- Verwende ein lineares Regressionsmodell zur In-Sample Prognose!
- Bilde Residuen (Wahrer Wert Prognosewert) und addiere Mittelwert zur Berechnung trendbereinigter Messwerte!

#### Definition

- "Restrisiko", welches beim Halter des Derivates verbleibt
- Ursachen:
  - → Geringe Korrelation zwischen Wetter- und Produktionsvariable
  - ightarrow Geographisches Basisrisiko

#### Berlin-Dahlem

- Relativ viele Grünflächen
- Anstieg der Trendgeraden: 1.68 CDDs p.a.

Abbildung: Lage der Wetterstation Berlin-Dahlem, Quelle: Google Maps.



Abbildung: CDD-Werte innerhalb der jeweiligen Akkumulationsperiode im Betrachtungszeitraum (30 Jahre; Berlin-Dahlem), eigene Darstellung.

#### Berlin-Dahlem

- Relativ viele Grünflächen
- Anstieg der Trendgeraden: 1.68 CDDs p.a.



#### Berlin-Schönefeld

- Verhältnismäßig stark bebautes Gebiet, Nähe Flughafen
- Entfernung zu Berlin-Dahlem: ca.
   20km Luftlinie
- Anstieg der Trendgeraden: 3.2 CDDs p.a.

#### Beobachtung:

- Relativ starke Abweichung des Trends
- U.a. verursacht durch Urbanisierungseffekt

Abbildung: Lage der Wetterstation Berlin-Schönefeld, Quelle: Google Maps.



#### Berlin-Schönefeld

- Recht stark bebautes Gebiet, nähe Flughafen
- Entfernung zu Berlin-Dahlem: ca.
   20km Luftlinie
- Anstieg der Trendgeraden: 3.2 CDDs p.a.

#### Beobachtung:

- Relativ starke Abweichung des Trends
- U.a. verursacht durch Urbanisierungseffekt

Abbildung: CDD-Werte innerhalb der jeweiligen Akkumulationsperiode im Betrachtungszeitraum (30 Jahre; Berlin-Schönefeld), eigene Darstellung.



#### Wetterstation Hohenpeißenberg

- Südwestlich von München
- Nahe Waldgebiet und Feldern
- Wetteraufzeichnungen seit 1781
- Lückenlos seit 1812
  - $\rightarrow$  205 Jahre

Abbildung: Lage Wetterstation Hohenpeißenberg, Quelle: Google Maps.



Abbildung: Lage Hohenpeißenberg, Quelle: Google Maps.



#### Jahresdurchschnittstemperatur

- Anstieg Trendgerade:  $0.02~^{\circ}\text{C/Jahr}$   $\rightarrow \Delta \text{ seit } 1920: \text{ ca. } 2,0^{\circ}\text{C}$
- Laut DWD in 136 Jahren: 1,4°C (Mittelwert mehrerer Stationen)
- Moving-Average seit ca. 30 Jahren über langjährigem Durchschnitt (deutschlandweit)
- Wetterrisiken in Zukunft evtl. von größerer Bedeutung für Unternehmen

Abbildung: Entwicklung der Jahresdurchschnittstemperatur (TMK) Hohenpeißenberg (100 Jahre), eigene Darstellung.



### Inhaltsverzeichnis

- 1) Einleitung
- 2) Absicherung von Wetterrisiken mit Wetterderivaten: Grundlagen
- 3) Python als Hilfsmittel zur Datenanalyse und zur Bewertung von Wetterderivaten
  - 3.1) Einblick in das Programm
  - 3.2) Eine Programmdemonstration
- 4) Betrachtung der Ergebnisse anhand des Beispiels Jena-Sternwarte
  - 4.1) Datenherkunft und Datensatz
  - 4.2) Datenauswertung und Berechnungen
  - 4.3) Problem Basisrisiko
- 5) Fazit

## 5) Fazit

- Wetterphänomene haben einen Einfluss auf die Wirtschaft
- Für einige Brachen ist es vorteilhaft sich gegen Wetterrisiken abzusichern
- Python ist zur Analyse von großen Datensätzen geeignet
- Fehlerhafte/ unvollständige Datensätze stellen den Analysten vor Probleme
- Potenzielle Einflussfaktoren müssen in Erfahrung gebracht und ggf. berücksichtigt werden
- Änderung des Klimas erkennbar

Vielen Dank für Ihre Aufmerksamkeit!

- Berg, E., Schmitz, B., Starp, M., & Trenkel, H. (2005): Wetterderivate: Ein Instrument im Risikomanagement für die Landwirtschaft?. In: German Journal of Agricultural Economics, 54(3), S. 158-170.
- Bösch, M. (2014): Derivate: verstehen, anwenden und bewerten, 3. Auflage. Vahlen, München.
- Bloss, M., & Ernst, D. (2008): Derivate: Handbuch für Finanzintermediäre und Investoren: Handbuch für Finanzintermediäre und Investoren. Oldenbourg, München [u.a.].
- Brockett, P. L., Wang, M., & Yang, C. (2005): Weather derivatives and weather risk management. In: Risk Management and Insurance Review, 8(1), S. 127-140.
- Cao, M., Li, A., & Wei, J. Z. (2003): Weather derivatives: A new class of financial instruments. URL: https://papers.ssrn.com/sol3/Delivery.cfm/SSRN\_ID1016123\_code16402.pdf?abstractid=1016123&mirid=1, 27.08.2020.
- Cao, M., & Wei, J. (2004): Weather derivatives valuation and market price of weather risk. In: Journal of Futures Markets, 24(11), S. 1065-1089.
- Cui, K., & Swishchuk, A. V. (2015): Applications of weather derivatives in the energy market, University of Calgary, Calgary, S. 1-16.
- Delticom AG (2011): Geschäftsbericht 2010, URL: https://www.delti.com/Investor\_Relations/Delticom\_Geschaeftsbericht\_2010.pdf, 27.08.2020.

- DWD (o.J.)a: Messdaten für der Messstation Jena-Sternwarte, URL: https://opendata.dwd.de/climate environment/CDC/observations germany/climate/daily/kl/ historical/tageswerte KL 02444 18240101 20191231 hist.zip, 27.08.2020.
- DWD (o.J.)b: "Klima" im Wetterlexikon, URL: https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?nn=103346&lv2=101334&lv3=101462, 27 08 2020
- DWD (2017): Nationaler Klimareport, URL: https://www.dwd.de/DE/leistungen/klimastatusbericht/ publikationen/ksb\_2017.pdf?\_\_blob=publicationFile&v=2, 07.08.2020.
- Ellithorpe, D., & Putnam, S. (2000). Weather derivatives and their implications for power markets. The Journal of risk finance, 1(2), 19-28.
- Google (2020)a: Dahlem, Berlin, URL: https://www.google.com/maps/place/Dahlem,+Berlin/@52.4561088,13.2611936,5560m/data=!3m2!1e3! 4b1!4m5!3m4!1s0x47a85a130a2917e5:0x52120465b5facc0!8m2!3d52.4582353!4d13.2870827.27.08.2020.
- Google (2020)b: Schönefeld, Berlin, URL: https://www.google.com/maps/search/sch%C3%B6nefeld, +Berlin/@52. 3657605, 13.4420915, 22285m/data=!3m2!1e3!4b1, 27.08.2020.
- Google (2020)c: Wetterstation, Albin-Schwaiger-Weg, Hohenpeißenberg, URL: https://www.google.com/maps/search/Wetterstation,+Albin-Schwaiger-Weg,+Hohenpei%C3%9Fenberg/ @47.7915893.11.0034547.9482m/data=!3m1!1e3.27.08.2020. Thomas Robert Holy Datenanalyse mit Python - Absicherung von Wetterrisiken 37 / 40

- Geman, H., & Leonardi, M. P. (2005): Alternative approaches to weather derivatives pricing. In: Managerial Finance, 31(6), S. 46-72.
- Hull, J., Mader, W., & Wagner, M. (2015): Optionen, Futures und andere Derivate, 9. Auflage. Pearson, Hallbergmoos.
- Jewson, S., & Brix, A. (2005): Weather derivative valuation: the meteorological, statistical, financial and mathematical foundations. Cambridge University Press, Cambridge.
- Kriener, M. (2018): Der 2018er wird der perfekte Wein für den knausrigen Deutschen, tagesspiegel.de. URL: https://www.tagesspiegel.de/wirtschaft/ rekord-weinlese-der-2018er-wird-der-perfekte-wein-fuer-den-knausrigen-deutschen/23149446. html, 27.08.2020.
- Koers, M. (o.D.): Abkühlung mit der Höhe, URL: http://www.belecke-wetter.de/index.php/83-wetter/aktuell/51-abkuehlung-mit-der-hoehe, 27.08.2020.
- Lee, Y., & Oren, S. S. (2009): An equilibrium pricing model for weather derivatives in a multi-commodity setting. In: Energy Economics, 31(5), S. 702-713.
- Mußhoff, O, "Odening, M & Xu, W. (2007): Management klimabedingter Risiken in der Landwirtschaft-Zum Anwendungspotenzial von Wetterderivaten. In: Agrarwirtschaft und Agrarsoziologie, 1, 07, S. 27-48.

- Nelken, I. (2000): Weather derivatives pricing and hedging. Super Computer Consulting Inc. Mundelein, Illinois, URL: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=
  2ahUKEwj23Y2x5rrrAhWmNOwKHSTWBRcQFjAAegQIAxAB&url=http%3A%2F%2Fquantlabs.net%2Facademy%
  2Fdownload%2Ffree\_quant\_instituitional\_books\_%2F%5BSuper%2520Computer%2520Consulting%2C%
  2520Nelken%5D%2520Weather%2520Derivatives%2520-%2520Pricing%2520and%2520Hedging.pdf&usg=
  AOvVaw1Nlq\_EFGghNMzrYK\_yd0m6, 27.08.2020.
- Odening, M., Mußhoff, O., & Xu, W. (2007): Analysis of rainfall derivatives using daily precipitation models: Opportunities and pitfalls. In: Agricultural Finance Review, 67(1), S. 135-156.
- Odening, M., & Xu, W. (2007). Management klimabedingter Risiken in der Landwirtschaft-Zum Anwendungspotenzial von Wetterderivaten. Agrarwirtschaft und Agrarsoziologie, 1, 07.
- Richards, T. J., Manfredo, M. R., & Sanders, D. R. (2004). Pricing weather derivatives. American Journal of Agricultural Economics, 86(4), 1005-1017.
- Riedler, D. W. I. J., Voll, S. S., & Philipps, F. (2013): Wetter-und Katastrophenderivate, Bundesministerium für Bildung und Forschung, Mannheim. URL: http: //www.cfi21.org/fileadmin/user\_upload/pdfs/Berichte/2013\_Wetter-\_und\_Katastrophenderivate.pdf.
- Rudolph, B., & Schäfer, K. (2010): Derivative Finanzmarktinstrumente: eine anwendungsbezogene Einführung in Märkte, Strategien und Bewertung, 2. Auflage. Springer, Berlin [u.a.].

- Roustant, O., Laurent, J. P., Bay, X., & Carraro, L. (2003): Model risk in the pricing of weather derivatives. Banque and Marche, S. 1-25.
- Schirm, A. (2000): Wetterderivate–Finanzmarktprodukte für das Management wetterbedingter Geschäftsrisiken. In: Finanz Betrieb, 2(11), S. 722-730.
- Schirm, A. (2001): Wetterderivate–Einsatzmöglichkeiten und Bewertung. Research in Capital Markets and Finance. 2001, 2, Universität Mannheim, Mannheim.
- Torró, H., Meneu, V., & Valor, E. (2003): Single factor stochastic models with seasonality applied to underlying weather derivatives variables. In: The Journal of Risk Finance, 4(4), S. 6-17.