九点圆与欧拉线 一、知识要点

定理 1. (欧拉线) $\triangle ABC$ 的重心 G , 垂心 H 和外心 O 三点共线, G 在 O , H 之间且 GH=2GO 。

定理 2. (九点圆) 三角形三条高的垂足, 三条边的中点, 以及垂心与顶点连接的三条线段的中点, 这九点共圆。九点圆的圆心在三角形的欧拉线上, 它是三角形外心和垂心的中点。

性质 1. 设 $\triangle ABC$ 的九点圆为 $\bigcirc N$,外接圆为 $\bigcirc O$,则有: (1) $\bigcirc N$ 半径是 $\bigcirc O$ 半径的一半。 (2) $\triangle ABC$ 的垂心 H 是 $\bigcirc N$ 与 $\bigcirc O$ 的外位似中心,它也是 $\triangle PQR$ 与 $\triangle ABC$ 的外位似中心,位似比为 $\frac{HP}{HA} = \frac{1}{2}$ 。 (3) $\triangle ABC$ 的重心 G 是 $\bigcirc N$ 与 $\bigcirc O$ 的内位似中心,它也是 $\triangle DEF$ 与 $\triangle ABC$ 的内位似中心,位似比为 $\frac{GD}{GA} = \frac{1}{2}$ 。

九点圆与欧拉线

性质 2. 以垂心四点组 (A,B,C,H) 为顶点构成的四个三角形 $\triangle ABC$, $\triangle ABH$, $\triangle ACH$, $\triangle BCH$ 有一个公共的九点圆。

性质 3. (1)设 $\triangle ABC$ 的外心为 O ,内心为 I ,点 A,B,C 所对的三个旁心分别为 I_A,I_B,I_C 。 则 $\bigcirc O$ 是垂心四点组 (I,I_A,I_B,I_C) 公共的九点圆。(2)直线 OI 是 $\triangle I_AI_BI_C$ 的欧拉线。

二、例题精讲

例 1. 设锐角 $\triangle ABC$ 的外心和垂心分别为 O, H,求证: $\triangle AOH, \triangle BOH, \triangle COH$ 中有一个的面积等于另外两个面积之和。

例 2. 设 $\triangle ABC$ 的外心,垂心分别为 O, H 。 (1) 求证: $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$ 。

(2) 设 $\odot O$ 半径为R, 求证: OH < 3R, 并证明右边的 3 不能改成更小的常数。

九点圆与欧拉线

例 3. O, N 分别为 $\triangle ABC$ 的外心与九点圆圆心,S 为 $\triangle BOC$ 的外心。求证: AS, AN 关于 $\angle A$ 的平分线对称。

例 4. 设 H 为 $\triangle ABC$ 的垂心, L 为 BC 边的中点, P 为 AH 的中点。过 L 作 PL 的垂线交 AB 于 G , 交 AC 的延长线于 K 。 求证: G , B , C 四点共圆。

例 5. 点 H 是 $\triangle ABC$ 的垂心,点 X,Y,Z 分别在线段 BC,CA,AB 上, $\triangle XYZ$ $\backsim \triangle ABC$ 。 点 P,S 分别是 $\triangle XYZ$ 的垂心和外心。求证: PS=SH 。

例 6. 点O是 $\triangle ABC$ 的外心, $\triangle ABC$ 的两条高BE和CF相交于H,直线OH与EF相交于P。线段OK是 $\bigcirc(OEF)$ 的直径。求证: A,K,P三点共线。

例 7.(费尔巴哈定理)设 $\triangle ABC$ 的九点圆为 $\bigcirc N$,内切圆为 $\bigcirc I$ 。求证:(1) $\bigcirc N$ 与 $\bigcirc I$ 内切。(2) 类似地,设 $\triangle ABC$ 三个顶点 A,B,C 所对的旁切圆分别为 $\bigcirc I_A$, $\bigcirc I_B$, $\bigcirc I_C$,则 $\bigcirc N$ 分别与 $\bigcirc I_A$, $\bigcirc I_B$, $\bigcirc I_C$ 外切。

