9: Resampling Methods (The Bootstrap)

\$ echo "Data Science Institute"

Activity (15 minutes)

Watch this video up tp Bootstrapping part: https://www.youtube.com/watch?v=uGsf3spCM3Y

The Bootstrap

Suppose we wish to find the average age of the population of Toronto μ and we have a sample of size n. We can find the mean of the sample μ_s but this does not give any indication for how this compares to the true population mean μ .

The Bootstrap

- ◆ The bootstrap can be used to quantify the uncertainty of an estimate ◆ in the following way:
 - ullet Randomly sample n observations from the original sample to acquire a new sample of the same size (repeat observations are allowed).
 - Compute the desired statistic (i.e. average age) of this new sample.
 - Repeat steps 1-2 many times.
 - Compute the standard error (SE) of the estimates.

This method is able to give us an estimate of the variability associated with our sample mean μ_s .

Breakout Room

When should you use Bootstrapping over Cross Validation methods?

Exercises: The Bootstrap

Open the The Bootstrap Jupyter Notebook file.

• Go over the "The Bootstrap" section together as a class.

Portfolio data in the ISLP package

Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of X and Y respectively, where X and Y are random quantities. We will invest a fraction α of our money in X, and will invest the remaining $1-\alpha$ in Y. Since there is variability associated with the returns on these two assets, we wish to choose α to minimize the total risk, or variance, of our investment. In other words, we want to minimize $\mathrm{Var}(\alpha X + (1-\alpha)Y)$. One can show that the value that minimizes the risk is given by:

$$lpha = rac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

where
$$\sigma_Y^2 = \mathrm{Var}(Y), \sigma_X^2 = \mathrm{Var}(X), \sigma_{XY} = \mathrm{Cov}(X,Y)$$

Portfolio data in the ISLP package

We can compute estimates for these quantities, $\hat{\sigma}_X^2$, $\hat{\sigma}_Y^2$, $\hat{\sigma}_{XY}^2$ using a data set that contains past measurements for X and Y. We can then estimate the value of α that minimizes the variance of our investment using:

$$\hat{lpha} = rac{\hat{\sigma}_Y^2 - \hat{\sigma}_{XY}}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\hat{\sigma}_{XY}}$$

Our goal in this exercise is to estimate the sampling variance of the parameter α given in the formula above.

References

Chapter 5 of the ISLP book:

James, Gareth, et al. "Resampling Methods." An Introduction to Statistical Learning: with Applications in Python, Springer, 2023.