Magnetometry with a nanometric-thin K vapor cell

R. Momier^{1,2,*}, A. Sargsyan², A. Tonoyan², M. Auzinsh³, D. Sarkisyan², A. Papoyan² and C. Leroy¹

¹Laboratoire ICB, UMR CNRS 6303, Université Bourgogne Franche-Comté, 21000 Dijon, France ²Institute for Physical Research, NAS of Armenia, Ashtarak-2, 0203 Armenia ³Department of Physics, University of Latvia, Rainis boulevard 19, LV-1586, Riga, Latvia *rodolphe.momier@u-bourgogne.fr

International Conference - Laser Physics 2022 (LP-2022)

Table of Contents

1 Theoretical background

Magnetic Hamiltonian Energy shifts and Transition Probabilities Nanometric thin cell spectroscopy

2 Experiment

Experimental setup - Nanometric-thin cell Experimental results - Nanometric-thin cell

Table of Contents

- Theoretical background
- Experiment
- Conclusion

The magnetic Hamiltonian (from Dirac equation) reads

$$H_m = \frac{e}{2m_e c} \left(\mathbf{p} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{p} \right) + \frac{e}{m_e c} \mathbf{S} \cdot \nabla \times \mathbf{A}$$

The magnetic Hamiltonian (from Dirac equation) reads

$$H_m = \frac{e}{2m_e c} \left(\mathbf{p} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{p} \right) + \frac{e}{m_e c} \mathbf{S} \cdot \nabla \times \mathbf{A} = \boxed{\frac{\mu_B}{\hbar} \mathbf{B} \cdot (\mathbf{L} + 2\mathbf{S})}.$$

Remark

This is valid in the case of a static magnetic field such that

$$\mathbf{A} = \frac{1}{2} \left(\mathbf{B} \times \mathbf{r} \right) .$$

Including the nuclear spin yields

$$\mathcal{H}_m = \frac{\mu_B}{\hbar} B_z (g_L L_z + g_S S_z + g_I I_z) \,.$$

R. Momier (ICB, IPR)

Thin cell magnetometry

P. Tremblay et al. "Absorption profiles of alkali-metal D lines in the presence of a static magnetic field". Phys. Rev. A 42 (1990), p. 2766.

Including the nuclear spin yields

$$\mathcal{H}_m = \frac{\mu_B}{\hbar} B_z (g_L L_z + g_S S_z + g_I I_z) .$$

The matrix elements of \mathcal{H} are:

$$\langle F, m_F | \mathcal{H} | F, m_F \rangle = E_0(F) - \mu_B g_F m_F B_z$$

P. Tremblay et al. "Absorption profiles of alkali-metal *D* lines in the presence of a static magnetic field". *Phys. Rev.* A 42 (1990), p. 2766.

Including the nuclear spin yields

$$\mathcal{H}_m = \frac{\mu_B}{\hbar} B_z (g_L L_z + g_S S_z + g_I I_z) \,.$$

The matrix elements of \mathcal{H} are:

$$\langle F, m_F | \mathcal{H} | F, m_F \rangle = E_0(F) - \mu_B g_F m_F B_z$$

$$\langle F - 1, m_F | \mathcal{H} | F, m_F \rangle = -\frac{\mu_B}{2} (g_J - g_I) B_z \left(\frac{[(J + I + 1)^2 - F^2][F^2 - (J - I)^2]}{F} \right)^{1/2} \times \left(\frac{F^2 - m_F^2}{F(2F + 1)(2F - 1)} \right)^{1/2}.$$

With $|J-I| \le F \le J+I$ and $-F \le m_F \le F$.

P. Tremblay et al. "Absorption profiles of alkali-metal *D* lines in the presence of a static magnetic field". *Phys. Rev.* A 42 (1990), p. 2766.

Remark

The Hamiltonian is m_F -block diagonal. The off-diagonal elements obey $\Delta F=\pm 1$, $\Delta m_F=0$.

A. Aleksanyan et al. "Transition cancellations of ⁸⁷Rb and ⁸⁵Rb atoms in magnetic field". *J. Opt. Soc. Am. B* 37 (2020), pp. 3504–3514.

Remark

The Hamiltonian is m_F -block diagonal. The off-diagonal elements obey $\Delta F=\pm 1$, $\Delta m_F=0$.

Figure: Hamiltonian of the ground state of 87 Rb. g_g is a condensed notation for a combination of Landé factors.

A. Aleksanyan et al. "Transition cancellations of ⁸⁷Rb and ⁸⁵Rb atoms in magnetic field". *J. Opt. Soc. Am. B* **37** (2020), pp. 3504–3514.

Theory - Transfer coefficients

Figure: Two-level system (two Zeeman states) of resonant frequency ν and lifetime $1/\Gamma_e$.

P. Tremblay et al. "Absorption profiles of alkali-metal D lines in the presence of a static magnetic field". Phys. Rev. A 42 (1990), p. 2766.

E. De Clercq et al. "Laser diode optically pumped caesium beam". Journal de Physique (France) 45.2 (1984), pp. 239–247.

Theory - Transfer coefficients

The matrix elements of the electric dipole components are

$$|\langle e|D_q|g\rangle|^2 = \frac{3\epsilon_0\hbar\lambda^3}{8\pi^2}A_{eg},$$

Figure: Two-level system (two Zeeman states) of resonant frequency ν and lifetime $1/\Gamma_e$.

P. Tremblay et al. "Absorption profiles of alkali-metal D lines in the presence of a static magnetic field". Phys. Rev. A 42 (1990), p. 2766.

E. De Clercq et al. "Laser diode optically pumped caesium beam". Journal de Physique (France) 45.2 (1984), pp. 239–247.

Theory - Transfer coefficients

Figure: Two-level system (two Zeeman states) of resonant frequency ν and lifetime $1/\Gamma_e$.

The matrix elements of the electric dipole components are

$$|\langle e|D_q|g\rangle|^2 = \frac{3\epsilon_0\hbar\lambda^3}{8\pi^2}A_{eg},$$

where the spontaneous emission rate is

$$A_{eg} = \Gamma_e a^2 [\psi(F_e, m_e); \psi(F_g, m_g); q].$$

P. Tremblay et al. "Absorption profiles of alkali-metal D lines in the presence of a static magnetic field". *Phys. Rev.* A 42 (1990), p. 2766.

E. De Clercq et al. "Laser diode optically pumped caesium beam". Journal de Physique (France) 45.2 (1984), pp. 239–247.

Theory - Energy shifts and Transition Probabilities

As an example, we obtain for 39 K, D_1 line, σ -polarization:

Figure: Left: energy shift of 39 K 4^2 P $_{1/2}$ Zeeman states. Middle and right: A_{eg}/Γ_e of all possible Zeeman transitions as a function of B for σ^\mp excitation, respectively.

Theory - Energy shifts and Transition Probabilities

As an example, we obtain for 39 K, D_1 line, σ -polarization:

Figure: Left: energy shift of 39 K 42 P $_{1/2}$ Zeeman states. Middle and right: A_{eg}/Γ_e of all possible Zeeman transitions as a function of B for σ^{\mp} excitation, respectively.

 $B_0 = A_{hf}/\mu_B$ (~ 170 G) is the magnetic field value characterizing establishment of HPB regime. This value is much smaller for K than for Rb or Cs: the range of measurement is increased.

Figure: Scheme of the cell with the laser beam (not to scale).

Figure: Scheme of the cell with the laser beam (not to scale).

Time of flight of an atom flying orthogonally to the laser:

$$t_D = \frac{D}{v} = \frac{10^{-3}}{300} \approx \boxed{3 \ \mu s}.$$

Figure: Scheme of the cell with the laser beam (not to scale).

Time of flight of an atom flying orthogonally to the laser:

$$t_D = \frac{D}{v} = \frac{10^{-3}}{300} \approx \boxed{3 \ \mu s}.$$

Time of flight of an atom flying parallel to the laser:

$$t_L = \frac{L}{v} = \frac{400 \cdot 10^{-9}}{300} \approx \boxed{1.3 \text{ ns}}.$$

Figure: Scheme of the cell with the laser beam (not to scale).

Time of flight of an atom flying orthogonally to the laser:

$$t_D = \frac{D}{v} = \frac{10^{-3}}{300} \approx \boxed{3 \ \mu \text{s}}.$$

Time of flight of an atom flying parallel to the laser:

$$t_L = \frac{L}{v} = \frac{400 \cdot 10^{-9}}{300} \approx \boxed{1.3 \text{ ns}}.$$

Important remark

The geometry of the cell virtually kills all the Doppler broadening! Only atoms flying orthogonally to the laser have time to participate to the signal ($t_L \ll \tau$) but $\mathbf{k} \cdot \mathbf{v} = 0$ for those atoms.

The cell behaves like a (bad) FP cavity.

Figure: Scheme of the system with reflected and transmitted beams.

G. Dutier et al. "Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect". J. Opt. Soc. Am. B 20 (2003), pp. 793-800.

The cell behaves like a (bad) FP cavity.

Figure: Scheme of the system with reflected and transmitted beams.

It has been shown that the transmitted and reflected signals read:

$$S_t \approx 2t_{10}t_{02}^2 E_i \Re \{I_f - r_1 I_b\} / |F|^2$$
,

G. Dutier et al. "Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry–Perot microcavity effect". J. Opt. Soc. Am. B 20 (2003), pp. 793–800.

The cell behaves like a (bad) FP cavity.

Figure: Scheme of the system with reflected and transmitted beams.

It has been shown that the transmitted and reflected signals read:

$$S_t \approx 2t_{10}t_{02}^2 E_i \Re \{I_f - r_1 I_b\} / |F|^2$$
,

where I_f and I_b are forward and backward integrals of the atomic polarization:

$$I_f = \frac{ik}{2\epsilon_0} \int_0^L P_0(z) \mathrm{d}z$$

$$I_b = \frac{ik}{2\epsilon_0} \int_0^L P_0(z) \exp(2ikz) dz.$$

G. Dutier et al. "Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry–Perot microcavity effect". J. Opt. Soc. Am. B 20 (2003), pp. 793–800.

Figure: Theoretical transmission lineshape for two identical sapphire windows ($r_w \approx 0.28$) and $\Gamma/kv_p \approx 0.025$. The thickness varies from $\lambda/4$ to $9\lambda/8$ with a step of $\lambda/8$.

G. Dutier et al. "Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry–Perot microcavity effect". J. Opt. Soc. Am. B 20 (2003), pp. 793–800.

Figure: Theoretical transmission lineshape for two identical sapphire windows ($r_w \approx 0.28$) and $\Gamma/kv_p \approx 0.025$. The thickness varies from $\lambda/4$ to $9\lambda/8$ with a step of $\lambda/8$.

Looping this model over all possible Zeeman transitions allows to obtain sub-Doppler spectra.

G. Dutier et al. "Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry–Perot microcavity effect". J. Opt. Soc. Am. B 20 (2003), pp. 793–800.

Table of Contents

- Theoretical background
- 2 Experiment
- Conclusion

Recently published in Applied Optics

Wide range linear magnetometer based on a sub-microsized K vapor cell

M. AUZINSH,¹ A. SARGSYAN,² A. TONOYAN,² C. LEROY,³ R. MOMIER,^{2,3,*} D. SARKISYAN,² AND A. PAPOYAN² AND A. PAPOYAN² O

Department of Physics, University of Latvia, Rainis Boulevard 19, LV-1586 Riga, Latvia Institute for Physical Research, NAS of Armenia, Ashtarak-2, 0203, Armenia

³Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, 21000 Dijon, France *Corresponding author: podolphe momier@u-hourgogne.fr

Received 23 March 2022: revised 19 May 2022: accepted 14 June 2022: posted 17 June 2022: published 27 June 2022

 39 K atoms have the smallest ground state (2 $S_{1/2}$) hyperfine splitting of all the most naturally abundant alkali isotopes and, consequently, the smallest characteristic magnetic field value $B_0 = A_1 \frac{1}{S_{1/2}} I_p \approx 170$ G, where $A_1 \frac{1}{S_{1/2}}$ between $A_2 \frac{1}{S_{1/2}} I_p \approx 170$ G, where $A_2 \frac{1}{S_{1/2}} I_p \approx 170$ G, where $A_3 \frac{1}{S_{1/2}} I_p \approx 170$ G, where $A_3 \frac{1}{S_{1/2}} I_p \approx 170$ G, where $A_3 \frac{1}{S_{1/2}} I_p \approx 170$ G. Where $A_3 \frac{1}{S_{1/2}} I_p \approx 170$ G and the atoms), only eight Zeeman transitions are visible in the absorption spectrum of the D_1 line of 39 K, while the probabilities of the remaining 16 Zeeman transitions the atom to zero. In the case of 39 K, this behavior is reached already at relatively low magnetic field $B > B_0$. For each circular polarization (σ^-, σ^+) , four spectrally resolved atomic transitions having sub-Doppler widths are recorded using a sub-microsized vapor cell of thickness L = 120 - 390 nm. We present a method that allows to measure the magnetic field in the range of 0.1 - 10 KG with micrometer spatial resolution, which is relevant in particular for the determination of magnetic fields with large gradients (up to 3 G/ μ m). The theoretical model describes well the experimentaresults. Q = 0202 2001ca Publishing Group

https://doi.org/10.1364/AO.459251

Experimental setup

Figure: Experimental setup. Left inset: Hyperfine states of 39 K with oscillator strengths. Right inset: Zeeman transition remaining in the HPB regime.

M. Auzinsh et al. "Wide range linear magnetometer based on a sub-microsized K vapor cell". Appl. Opt. 61 (2022), pp. 5749–5754.

Results - Spectra

With this simple setup, we track the evolution of the Zeeman transitions while the magnet is brought farther from the cell.

Figure: Theoretical and experimental spectra for B=267 G, σ^{\pm} excitation, L=385 nm, $P=30~\mu W$.

M. Auzinsh et al. "Wide range linear magnetometer based on a sub-microsized K vapor cell". Appl. Opt. 61 (2022),

Results - Magnetic field measurement

Let us compare D and D/d with the theory:

Figure: Frequency distance D between transitions 4^+ and 4^- as a function of B. Solid red line: theory. Dots with error bars: experimental measurements. The inacurracy is around 5%. b) Ratio D/d as a function of B.

M. Auzinsh et al. "Wide range linear magnetometer based on a sub-microsized K vapor cell". Appl. Opt. 61 (2022), pp. 5749–5754.

Results - Gradient measurement

The spectral resolution allows to measures fields with a gradient of up to $3~{\rm G}/\mu{\rm m}$.

Figure: Spectra recorded for $L=120\pm 5$ nm. a) Spectra for B increasing from B=440 to 1110 G. b) Red curve: calculated for $B_1=2000$ G, Blue curve: calculated for $B_2=2007$ G. Black dashes: experimental measurement obtained by shifting the cell of 2 μ m relative to its initial position. This causes a shifts of 12.3 MHz, which is easily measurable.

M. Auzinsh et al. "Wide range linear magnetometer based on a sub-microsized K vapor cell". Appl. Opt. 61 (2022),

Table of Contents

- Theoretical background
- 2 Experiment
- Conclusion

• The small characteristic field value B_0 of $^{39}{\rm K}$ makes its convenient to use in atomic magnetometry.

- The small characteristic field value B_0 of $^{39}{\rm K}$ makes its convenient to use in atomic magnetometry.
- The thickness of the cell allows to obtain sub-Doppler resolution and track the behavior of the Zeeman transitions.

- The small characteristic field value B_0 of $^{39}{\rm K}$ makes its convenient to use in atomic magnetometry.
- The thickness of the cell allows to obtain sub-Doppler resolution and track the behavior of the Zeeman transitions.
- At small cell thickness (120 nm), it becomes possible to measure fields with strong gradient (3 G/ μ m). Lower thickness will result in line broadening due to atom-atom and atom-surface interactions.

- The small characteristic field value B_0 of $^{39}{\rm K}$ makes its convenient to use in atomic magnetometry.
- The thickness of the cell allows to obtain sub-Doppler resolution and track the behavior of the Zeeman transitions.
- At small cell thickness (120 nm), it becomes possible to measure fields with strong gradient (3 G/ μ m). Lower thickness will result in line broadening due to atom-atom and atom-surface interactions.
- This atomic magnetometry scheme allows to measure a wide range (from $200~{\rm G}$ to more than $10~{\rm kG}$) of both uniform and strongly inhomogeneous fields.

- The small characteristic field value B_0 of $^{39}{\rm K}$ makes its convenient to use in atomic magnetometry.
- The thickness of the cell allows to obtain sub-Doppler resolution and track the behavior of the Zeeman transitions.
- At small cell thickness (120 nm), it becomes possible to measure fields with strong gradient (3 G/ μ m). Lower thickness will result in line broadening due to atom-atom and atom-surface interactions.
- This atomic magnetometry scheme allows to measure a wide range (from 200 G to more than 10 kG) of both uniform and strongly inhomogeneous fields.
- Wide range magnetometry is also possible using saturated absorption in a 30 μ m cell where cross over resonances are absent. Micrometric cells are much easier to produce than nanocells.

Thank you for your attention.

Prof. M. Auzinsh Prof. D. Sarkisyan Prof. A. Papoyan

Prof. C. Leroy

Part of the NATO Science for Peace and Security project G5794 team.

References

- [1] P. Tremblay et al. "Absorption profiles of alkali-metal D lines in the presence of a static magnetic field". *Phys. Rev. A* **42** (1990), p. 2766.
- [2] A. Aleksanyan et al. "Transition cancellations of ⁸⁷Rb and ⁸⁵Rb atoms in magnetic field". J. Opt. Soc. Am. B **37** (2020), pp. 3504–3514.
- [3] E. De Clercq et al. "Laser diode optically pumped caesium beam". *Journal de Physique* (*France*) **45**.2 (1984), pp. 239–247.
- [4] G. Dutier et al. "Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry–Perot microcavity effect". *J. Opt. Soc. Am. B* **20** (2003), pp. 793–800.
- [5] M. Auzinsh et al. "Wide range linear magnetometer based on a sub-microsized K vapor cell". *Appl. Opt.* **61** (2022), pp. 5749–5754.