Game Theory and Applications (博弈论及其应用)

Chapter 3: Dominant Strategy Equilibrium and Rationality

南京大学

高尉

Recap on Previous Chapter

Mixed strategy game

-
$$G = \{N, \{A_1, A_2, ..., A_N\}, \{u_1, u_1, ..., u_N\}\}$$

$$- G = \{N, \{\Delta(A_1), \Delta(A_2), \dots, \Delta(A_N)\}, \{U_1, U_2, \dots, U_N\}\}$$

Mixed strategy Nash equilibrium

$$-p = (p_1 \dots p_N)$$
 is a MNE if and only if $p_i \in B_i(p_{-i})$

- Nash Theorem
 - Every finite strategic game has a mixed strategy Nash equilibrium

Recap on Previous Chapter

- How to find mixed strategy Nash equilibria
 - If p_i is a best response to p_{-i} and $p_i(a_{ij}) > 0$ then a_{ij} is a best response to p_{-i}

Example A police and a chief are in a town. A bank and bar are required for protection in different direction. There are 2 and 1 million in bank and bar, respectively.

What's the strategy for police?

Dominant Strategy

- In most strategy games, one player's optimal choice depends on others' choice
- For some special cases, however, there is a optimal strategy independent of others' choice, e.g., dominant strategy

Prisoner 2 will select c whatever Prisoner 1 how to choose

Formal Definition

- $a_{-i} = (a_1, ..., a_{i-1}, a_{i+1}, ..., a_N)$ outcome of strategy taken by all player other than i
- ullet A_{-i} denotes the set of all such outcomes

A pure strategy a_i strictly dominates a_i' if $u_i(a_i, a_{-i}) > u_i(a_i', a_{-i})$ for all $a_{-i} \in A_{-i}$

A pure strategy a_i weakly dominates a'_i if

$$u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i})$$
 for all $a_{-i} \in A_{-i}$
while $u_i(a_i, a_{-i}) > u_i(a_i', a_{-i})$ for some $a_{-i} \in A_{-i}$

 a_i is **strictly dominant** if it strictly dominates all other strategies in A_i , and it is called **weak dominant** if it weakly dominates all other strategy in A_i

Dominant Strategy Equilibrium

If every player has a (strictly and weakly) dominant strategy, then the corresponding outcome is a (strictly and weakly) dominant strategy equilibrium.

Dominant strategy equilibrium is belong to NE.

	Prisone:		Player 2 1 r				
— с	-6 -6	0 -12	u u	3	3	3	0
Prisone p	-12 0	-1 -1	Play.	0	3	3	3

It is very simple
It may not exist in many games

Second Price Auction

N: players bid a building

 $v_i \ge 0$: the true value for player i

 $b_i \geq 0$: the bid price for player i

 $v_i - b_i$: the payoff for player i

The rule of **second-price auction** is given as follow:

- \triangleright Players make bids $b = (b_1, b_2, ..., b_N)$ simultaneously
- The higher player wins the building, yet pays the second highest bid price
- ➤ If there are more than one highest players, then randomly select one player and pay his own bid price

Theorem In second price auction, the strategy $b_i = v_i$ is a weakly dominant strategy for each player i.

 $(v_1, v_2, ..., v_N)$ is a weakly dominant strategy equilibrium.

Pf. It suffice to show $u_i(v_i, b_{-i}) \ge u_i(b_i, b_{-i})$ for all b_i, b_{-i}

- Figure 1 If someone's bid $b_k \ge v_i$, then player i has to pay $b_i > b_k \ge v_i$ by winning. Payoff is $v_i \max_{k \ne i} b_k \le 0$. It is optimal to select $b_i = v_i$.
- Figure If each bid prize $b_k < v_i$, then payoff is $v_i \max_{k \neq i} b_k > 0$, since the payoff is always the same when winning. It is optimal to select $b_i = v_i$.

Second Price Auction

- Honesty strategy is the best strategy
- Many internet auctions can be regarded as variants of second price auction.

• How about the first price auction. Is it a dominant strategy to bid your true value?

A pure strategy a_i strictly dominates a'_i \Longrightarrow a'_i is strictly dominated by a_i if

$$u_i(a_i, a_{-i}) > u_i(a'_i, a_{-i}) \text{ for all } a_{-i} \in A_{-i};$$

 a_i weakly dominates $a'_i \longrightarrow a'_i$ is weakly dominated by a_i if

$$u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i})$$
 for all $a_{-i} \in A_{-i}$
while $u_i(a_i, a_{-i}) > u_i(a_i', a_{-i})$ for some $a_{-i} \in A_{-i}$

Iterated Elimination of Dominated Strategies

How to find Dominant strategy equilibrium?

- Iterated Elimination of Dominated Strategies

If every strategy eliminated is a strictly dominated strategy

➤ Iterated elimination of strictly dominated strategy

If at least one strategy eliminated is a weakly DS

> Iterated elimination of weakly dominated strategy

Iterated Elimination and Pure Dominate Strategy

		Player 2					
			1		m		r
Player 1	u	10	10	2	15	10	10
	m	15	2	5	5	5	5
	d	10	10	5	5	10	10

- For player 1, the strategy 'u' is weakly dominated by 'd'
- For player 2, the strategy 'l' is weakly dominated by 'r'

Iterated Elimination and Pure DS (cont.)

Therefore, we have the game Player 2 m r

| The image of the content of the conte

- For player 1, the strategy 'm' is weakly dominated by 'd'
- For player 2, the strategy 'm' is weakly dominated by 'r'

 Divitorated alimination of weakly dominated strategy

By iterated elimination of weakly dominated strategy

(d,r) is a weakly dominant strategy Equilibrium

Mixed Strategy and Dominant Strategy

• A strategy may be not dominated by other strategies, yet can be dominated by a mixed strategy

		Player 2			
		1			r
Player 1	u	1	1	1	0
	m	3	0	0	3
	d	0	1	4	0

- For player 1, no strategy dominates 'u'
- The mixed strategy $p_1 = (0, 0.5, 0.5)$ dominates 'u'

Mixed Strategy and Dominant Strategy

Figure out the dominated strategy for expected payoff

Let $p_2 = (p, 1 - p)$ be the mixed strategy for player 2

Player 1	u	1	1	1	0
	m	3	0	0	3
	d	0	1	4	0

$$U_1(u, p_2) = 1$$

 $U_1(m, p_2) = 3p$
 $U_1(d, p_2) = 4(1 - p)$

- The mixed strategy $p_1 = (0, 0.5, 0.5)$ dominates 'u'
- 'u' is a never best strategy

Mixed Strategy and Dominant Strategy

Theorem A strictly dominated strategy is never used with positive probability in a mixed strategy Nash equilibrium

Let $p = (p_1, ..., p_N)$ be a mixed strategy NE.

For player $i, a_i, a_i' \in A_i$ s.t. a_i is strictly dominated by a_i' , $U_i(a_i, p_{-i}) < U_i(a_i', p_{-i})$

$$p_i(a_i) = 0$$

Proof. See board.

Find Mixed Strategy Nash Equilibria

Step 1: eliminate all **strictly** dominated strategies (**mixed**)

Step 2: use our previous methods introduced in Chapter 2

Find Mixed Strategy Nash Equilibria

Exercise on Class

Find all pure and mixed strategy NE

Given a strategy game $G = \{N, \{A_i\}, \{u_i\}\}$

- A mixed strategy outcome $p = (p_1, p_2, ... p_N)$
- $\bullet \ p = (p_i, p_{-i})$
- p_{-i} is called a belief

A belief p_{-i} of player i is a probability over A_{-i}

A strategy $a_i \in A_i$ is a best response to belief p_{-i} if $U_i(a_i, p_{-i}) \ge U_i(a, p_{-i})$ for all $a \in A_i$

A pure strategy $a_i \in A_i$ is rational if there is a belief p_{-i} s.t. a_i is a best response to belief p_{-i}

The relationship between NE and rationality:

Theorem Every pure strategy with positive probability in a mixed strategy Nash equilibrium is rational.

Pf. Assume $p = (p_1, p_2, ..., p_N)$ is a mixed strategy NE. Then, p_i is a best response to p_{-i} , and every strategy with positive probability in p_i is also a best response to p_{-i} .

Rationality and Strictly Dominant Strategy

 $a_i \in A_i$ is rational if a_i is a best response to some belief p_{-i}

$$U_i(a_i, p_{-i}) \ge U_i(a, p_{-i})$$
 for all $a \in A_i$

A mixed strategy $p_i \in \Delta(A_i)$ strictly dominates $a_i \in A_i$

$$U_i(p_i, p_{-i}) > U_i(a_i, p_{-i})$$
 for all $p_{-i} \in \Delta(A_{-i})$

The relationship between rationality and strict domination

Theorem A strategy $a_i \in A_i$ is rational if and only if a_i is not strictly dominated.

Rationality and Strictly Dominant Strategy

Theorem A strategy $a_i \in A_i$ is rational if and only if a_i is not strictly dominated.

Proof. \rightarrow [By contradiction] If a_i is rational, then there exists p_{-i} such that a_i is a best response to p_{-i}

 a'_i strictly dominates a_i : $U_i(a'_i, p_{-i}) > U_i(a_i, p_{-i})$

← [By contradiction] if $a_i \in A_i$ is rational, then $\exists p_{-i}$, $\forall a' \in A_i$ such that $U_i(a', p_{-i}) \leq U_i(a_i, p_{-i})$

If $a_i \in A_i$ is not rational, then $\forall p_{-i}, \exists a' \in A_i$ such that $U_i(a', p_{-i}) > U_i(a_i, p_{-i})$; thus a_i is strictly dominated

Rationalizability

Notice

- 1) Eliminate all strictly DS and keep weakly DS
- 2) Eliminate all strictly DS by pure and mixed strategy

An Example

Player 1 is rational

Player 2 is rational and

knows that Player 1 is rational

Player 1 is rational, and knows that player 2 is rational and knows that 2 knows that 1 is rational

Beauty Contest (选美竞赛游戏)

- There are *n* players
- Each player selects a number $a_i \in [0,50]$
- The payoff for each player is $50 \left(a_i \frac{2}{3} \frac{\sum_i a_i}{n}\right)^2$

Given a_{-i} , the best strategy for player i is

$$a_i^* = \frac{2\sum_{j,j\neq i} a_i}{3n - 2/3}$$

$$a_i^* \in \left[0, \frac{2n - 1}{3n - 2/3} 50\right]$$

Beauty Contest (cont)

• After round 1:
$$\left[0, \frac{2}{3} \frac{n-1}{n-2/3} 50\right]$$

• After round 2:
$$\left[0, \left(\frac{2}{3} \frac{n-1}{n-2/3}\right)^2 50\right]$$

. . .

• After round k:
$$\left[0, \left(\frac{2}{3} \frac{n-1}{n-2/3}\right)^k 50\right]$$

. . .

Rational = {0}

Symmetric Game

A game is symmetric if any player's payoff $u_i(a_i, a_j, a_{-i,j})$ can be converted into any other player's payoff $u_j(a_j, a_i, a_{-i,j})$ simply by re-arranging the player's "names"

Theorem. Any symmetric game has a symmetric NE, where each player uses the same strategy

Continuous Game

A game $G = \{N, \{A_i\}, \{u_i\}\}$ with complete information is **continuous** if each A_i is non-empty and compact, and $u_i: A \to R$ are continuous.

- Many quantities are essentially continuous: If we're considering how many fish to catch in a season, where the measurement is in millions of tons
- Cournot game ...

Existence of Equilibria for Infinite Games

(Nash) Every finite game has a mixed strategy NE

(**Debreu, Glicksberg, Fan**) Consider a strategic form game $\{N, \{A_i\}, \{u_i\}\}$ such that for each player

- A_i is compact and convex
- $u_i(a_i, a_{-i})$ is continuous in a_{-i}
- $u_i(a_i, a_{-i})$ is continuous and concave in a_i

There exists a pure strategy Nash equilibrium

More Powerful Theorem

(Glicksberg) Consider a strategic form game $\{N, \{A_i\}, \{u_i\}\}$ such that for each player

- A_i is compact and convex
- $u_i(a)$ is continuous in a

There exists a mixed strategy Nash equilibrium

For continuous pure strategy space, the space of mixed strategy has infinite dimension

Summary

- Strictly/weakly Dominant Strategy
- Dominant Strategy Equilibrium
- Dominated strategy and Nash Equilibrium
- How to find NE
- Rational
- Rationalizability
- Continuous Game