Chapitre VII - Fonctions polynômes

I - Les fonctions $x \longmapsto a(x-x_1)(x-x_2)$

Exemple : f est la fonction définie sur \mathbb{R} par f(x) = -0, 3(x-1)(x+5). Comme -0, 3 < 0, la parabole représentant cette fonction est tournée vers le bas.

Exemple : f est la fonction définie sur \mathbb{R} par f(x) = -0, 3(x-1)(x+5). Comme -0, 3 < 0, la parabole représentant cette fonction est tournée vers le bas.

De plus, pour déterminer l'intersection de la parabole avec l'axe des abscisses, on résout l'équation f(x)=0 ce qui donne :

Exemple : f est la fonction définie sur \mathbb{R} par f(x) = -0, 3(x-1)(x+5). Comme -0, 3 < 0, la parabole représentant cette fonction est tournée vers le bas.

De plus, pour déterminer l'intersection de la parabole avec l'axe des abscisses, on résout l'équation f(x)=0 ce qui donne :

$$-0,3(x-1)(x+5) = 0$$
 équivaut à :

Exemple : f est la fonction définie sur \mathbb{R} par f(x) = -0, 3(x-1)(x+5). Comme -0, 3 < 0, la parabole représentant cette fonction est tournée vers le bas.

De plus, pour déterminer l'intersection de la parabole avec l'axe des abscisses, on résout l'équation f(x) = 0 ce qui donne :

$$-0,3(x-1)(x+5)=0$$
 équivaut à :

$$x-1=0$$
 ou $x+5=0$ (le facteur $-0,3$ étant non nul, il est omis)

Exemple : f est la fonction définie sur \mathbb{R} par f(x) = -0, 3(x-1)(x+5). Comme -0, 3 < 0, la parabole représentant cette fonction est tournée vers le bas.

De plus, pour déterminer l'intersection de la parabole avec l'axe des abscisses, on résout l'équation f(x)=0 ce qui donne :

$$-0,3(x-1)(x+5)=0$$
 équivaut à : $x-1=0$ ou $x+5=0$ (le facteur $-0,3$ étant non nul, il est omis) $x=1$ ou $x=-5$

Exemple : f est la fonction définie sur \mathbb{R} par f(x) = -0, 3(x-1)(x+5). Comme -0, 3 < 0, la parabole représentant cette fonction est tournée vers le bas.

De plus, pour déterminer l'intersection de la parabole avec l'axe des abscisses, on résout l'équation f(x)=0 ce qui donne :

$$-0,3(x-1)(x+5)=0$$
 équivaut à : $x-1=0$ ou $x+5=0$ (le facteur $-0,3$ étant non nul, il est omis) $x=1$ ou $x=-5$

La parabole représentant f coupe alors l'axe des abscisses en deux points de coordonnées $(1\ ;\ 0)$ et $(-5\ ;\ 0)$.

Exemple : f est la fonction définie sur \mathbb{R} par f(x) = -0, 3(x-1)(x+5).

La parabole représentant f coupe alors l'axe des abscisses en deux points de coordonnées $(1\,;\,0)$ et $(-5\,;\,0)$.

Utilisation de la calculatrice pour construire un tableau de valeurs et ainsi placer des points permettant de tracer la courbe.

Reprendre le modèle présent dans le chapitre V (correction de l'ex 97 p. 121) casio Graph35 casio collège

Remarque : f(x) peut aussi s'écrire sous forme développée : $\overline{f(x) = ax^2 + bx + c}$ où le réel a est **le même** que celui qui est présent dans l'écriture $a(x-x_1)(x-x_2)$.

La détermination de b et c ne peut quant à elle se faire qu'en développant l'expression.

Propriété : f étant une fonction polynôme de degré 2 de la forme $\overline{f(x)=a(x-x_1)(x-x_2)}$, l'équation f(x)=0 admet deux solutions : x_1 et x_2 (une seule lorsque $x_1=x_2$).

 x_1 et x_2 sont appelées racines du polynôme.

La parabole représentant cette fonction coupe l'axe des abscisses en deux points de coordonnées $(x_1\,;\,0)$ et $(x_2\,;\,0)$.

De plus, la parabole admet pour **axe de symétrie** la droite d'équation x=c où $c=\frac{x_1+x_2}{2}$.

I - Les fonctions
$$x \longmapsto a(x-x_1)(x-x_2)$$

Dans l'exemple précédent, $x_1 = 1$ et $x_2 = -5$.

Dans l'exemple précédent, $x_1 = 1$ et $x_2 = -5$.

Or
$$\frac{x_1 + x_2}{2} = \frac{1 + (-5)}{2} = -2$$
.

Dans l'exemple précédent, $x_1 = 1$ et $x_2 = -5$.

Or
$$\frac{x_1 + x_2}{2} = \frac{1 + (-5)}{2} = -2$$
.

Donc la droite d'équation x=-2 est l'axe de symétrie de la parabole représentant la fonction.

Propriété : Dans le cas où on prend $x_1 < x_2$:

Si $a < 0$	Si $a>0$
La fonction est négative sauf	La fonction est positive sauf sur
sur l'intervalle $[x_1;x_2]$	l'intervalle $[x_1\ ;\ x_2]$