

=> d his

(FILE 'HOME' ENTERED AT 10:14:42 ON 10 DEC 2007)
FILE 'CA' ENTERED AT 10:14:50 ON 10 DEC 2007

L1 156 S GALVANODYN? OR GALVANOKINET?
L2 31 S L1 AND GALVANOSTAT?
L3 1 S L1 AND RAMAN
L4 6 S L1 AND AUTOMAT?
L5 36 S L2-4

=> d bib,ab 15 1-36

L5 ANSWER 4 OF 36 CA COPYRIGHT 2007 ACS on STN
AN 134:31175 CA
TI Effect of chemical additives on the performance of Na/NiCl₂ cells
AU Prakash, J.; Redey, L.; Vissers, D. R.
CS Center for Electrochemical Science and Engineering and the Department of
Chemical and Environmental Engineering, Illinois Institute of
Technology, Chicago, IL, 60616, USA
SO Ionics (2000), 6(3 & 4), 210-217
AB The effect of chem. additives on the performance of sodium/nickel
chloride cells was investigated in quasi-sealed lab. research cells.
The performance of these cells was measured by **galvanostatic** and
galvanodynamic methods. It was obsd. that the use of sodium bromide,
sulfur, sodium iodide, and a combination of these additives enhance the
performance of the Na/NiCl₂ cells by reducing the area-specific
impedance of the nickel chloride electrode. Improved morphol. by the
use of the poreformer further improves the nickel utilization and the
electrode impedance. The performance enhancement is attributed to the
chem. and morphol. modifications of the nickel chloride electrode in the
Na/NiCl₂ cells.

L5 ANSWER 6 OF 36 CA COPYRIGHT 2007 ACS on STN
AN 131:339409 CA
TI Reaction kinetics and X-ray absorption spectroscopy studies of Yttrium-
containing metal hydride electrodes
AU Ticianelli, E. A.; Mukerjee, S.; McBreen, J.; Adzic, G. D.; Johnson, J.
R.; Reilly, J. J.
CS Department of Applied Science, Brookhaven National Laboratory, Upton,
NY, 11973, USA
SO Journal of the Electrochemical Society (1999), 146(10), 3582-3590
AB This is a study of electrode degrdn. mechanisms and reaction kinetics of
LaNi_{4.7}Sn_{0.3}, La_(1-x)Y_xNi_{4.7}Sn_{0.3} (x = 0.1, 0.2, and 0.3) and
La_{0.7}Y_{0.3}Ni_{4.6}Sn_{0.3}Co_{0.1} metal hydride electrodes. Alloy
characterization included X-ray diffraction, X-ray absorption (XAS),
hydrogen absorption in a Sieverts app., and electrochem. cycling of
alloy electrodes. The at. vol. of H was detd. for two of the alloys.
Electrochem. kinetic measurements were made using steady-state
galvanostatic measurements, **galvanodynamic** sweep, and electrochem.
impedance techniques. XAS was used to examine the degree of corrosion
of the alloys with cycling. Alloying with Y decreased the corrosion
rate. The results are consistent with corrosion inhibition by a Y-
contg. passive film. The increase in the exchange c.d. of the hydrogen
oxidn. reaction with increasing depth of discharge was much greater on

the Y-contg. alloys. This may be due to the dehydriding of the catalytic species on the surface of the metal hydride particles.

=> log y

STN INTERNATIONAL LOGOFF AT 10:22:02 ON 10 DEC 2007