

Phase-1 Submission

Student Name: Vignesh V

Register Number: 712523106020

Institution: PPG Institute of technology

Department: Electronics and Communication Engineering

Date of Submission: 28.04.2025

1. Problem Statement

This project aims to solve the problem by developing a personalized recommendation system that accurately matches users with movies they are likely to enjoy and helps them to be connected without any confusions in selecting movies.

2. Objectives of the Project

By the end of this project, we aim to achieve the following:

- Develop a robust AI model capable of predicting user movie preferences based on historical viewing data and other relevant factors.
- Create a personalized movie recommendation system that suggests a ranked list of movies tailored to individual users.
- Gain insights into the key factors that influence user movie choices and identify patterns in viewing behavior.

3. Scope of the Project

This project will focus on:

- Analyzing user-movie interaction data to understand viewing patterns and preferences.
- Evaluating the performance of the chosen recommendation algorithms. Developing a basic prototype to showcase the recommendation functionality.

4. Data Sources

We will utilize the Movie Lens dataset (e.g. Movie Lens 25M Dataset), which is a publicly available dataset from Group Lens.

Source: Group Lens (available on their website and platforms like Kaggle).

Nature: Static

Data Source link:

Movie Lens Dataset: https://www.kaggle.com/datasets/dnyaneshyeole/10000-most-popular-english-movies-2023

IMDb Dataset (Kaggle): https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews

5. High-Level Methodology

Data Collection – Download the chosen Movie Lens dataset (e.g., the 25M version) from its source.

Data Cleaning – Inspect the dataset for missing values in key columns (e.g., user ID, rating). We will decide on a strategy to handle missing values.

Exploratory Data Analysis (EDA) – Visualize the distribution of user ratings to understand the general sentiment. Analyze the number of ratings per user and per movie to identify popular movies and active users.

Feature Engineering — Create user-item interaction matrices, which are fundamental for collaborative filtering. If incorporating content-based filtering, we might preprocess the movie genre information (e.g., one-hot encoding).

Model Building – Collaborative Filtering: Implement memory-based collaborative filtering techniques such as user-based and item-based k-Nearest

Neighbours (k-NN) using similarity metrics like cosine similarity or Pearson correlation.

Model Evaluation – split the dataset into training and testing sets to evaluate the model's ability to generalize to unseen data. Precision@k, Recall@k, and F1-score@k to evaluate the relevance of the top-k recommended movies.

Visualization & Interpretation -Visualize the performance of different models using bar charts or tables to compare their evaluation metrics. Interpret the learned latent factors from matrix factorization.

Deployment – For this project, the "deployment" will likely involve creating a Jupyter Notebook or a simple Python script that takes a user ID as input and outputs a list of recommended movies.

6. Tools and Technologies

- **Programming Language** Python is used.
- Notebook/IDE Jupyter Notebook or Google Colab
- Libraries —pandas: For data manipulation and analysis numpy: For numerical computations. seaborn and matplotlib: For data visualization. scikit-learn: For model building.
- Optional Tools for Deployment: Flask, Stream lit.

7. Team Members and Roles:

S NO	TEAM	ROLE	DESCRIPTION
	<i>MEMBERS</i>		
01.	Sai Mouleeshwar	Project Manager and	A Project Manager oversees project
	<i>S.M.</i>	Documentation Lead.	execution and team coordination,
			while a Documentation Lead ensures
			accurate, organized, and accessible
			project documentation.
02.	Selvam A.	Data Analyst.	A Data Analyst collects, processes,
			and interprets data to help
			organizations make informed business
			decisions.
03.	Madhan Raj R.	Visualisation and	It is the graphical representation of
		Deployment	data and information to make insights
		Specialist.	easier to understand and analyse.
04.	Vignesh V.	Machine Learning	It designs, builds, and deploys
		Engineer and	algorithms and models that enable
		Algorithm Developer.	machines to learn from data and
			make predictions or decisions.