

# Distribución de Caramelos

La tía Khong está preparando n cajas de caramelos para los alumnos de una escuela cercana. Las cajas están numeradas de 0 a n-1 y están inicialmente vacías. La caja i ( $0 \le i \le n-1$ ) tiene una capacidad de c[i] caramelos.

La tía Khong dedica q días a preparar las cajas. El día j (  $0 \le j \le q-1$ ), realiza una acción especificada por tres enteros  $l[j],\ r[j]$  y v[j] donde  $0 \le l[j] \le r[j] \le n-1$  y  $v[j] \ne 0$ . Para cada caja k que satisfaga  $l[j] \le k \le r[j]$ :

- Si v[j]>0, la tía Khong añade caramelos a la caja k, uno a uno, hasta que haya añadido exactamente v[j] caramelos o la caja se llene. En otras palabras, si la caja tenía p caramelos antes de la acción, tendrá  $\min(c[k], p+v[j])$  caramelos después de la acción.
- Si v[j] < 0, la tía Khong retira caramelos de la caja k, uno a uno, hasta que haya retirado exactamente -v[j] caramelos o la caja quede vacía. En otras palabras, si la caja tenía p caramelos antes de la acción, tendrá  $\max(0, p + v[j])$  caramelos después de la acción.

Tu tarea es determinar el número de caramelos en cada caja después de los q días.

### Implementation Details

Debes implementar el siguiente procedimiento:

```
int[] distribuir_caramelos (int[] c, int[] l, int[] r, int[] v)
```

- c: una matriz de longitud n. Para  $0 \le i \le n-1$ , c[i] denota la capacidad de la caja i.
- $l,\ r$  y v: tres matrices de longitud q. El día j, para  $0 \le j \le q-1$ , la tía Khong realiza una acción especificada por los enteros  $l[j],\ r[j]$  y v[j], como se ha descrito anteriormente.
- Este procedimiento debe devolver una matriz de longitud n. Denotemos la matriz por s. Para  $0 \le i \le n-1$ , s[i] debe ser el número de caramelos en la caja i después de los q días.

### **Ejemplos**

#### Ejemplo 1

Considere la siguiente llamada:

```
distribuir_caramelos ([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Esto significa que la caja  $\,0\,$  tiene una capacidad de  $\,10\,$  caramelos, la caja  $\,1\,$  tiene una capacidad de  $\,15\,$  caramelos, y la caja  $\,2\,$  tiene una capacidad de  $\,13\,$  caramelos.

Al final del día 0, la caja 0 tiene  $\min(c[0], 0 + v[0]) = 10$  caramelos, la caja 1 tiene  $\min(c[1], 0 + v[0]) = 15$  caramelos y la caja 2 tiene  $\min(c[2], 0 + v[0]) = 13$  caramelos.

Al final del día 1, la caja 0 tiene  $\max(0, 10 + v[1]) = 0$  caramelos, la caja 1 tiene  $\max(0, 15 + v[1]) = 4$  caramelos. Como 2 > r[1], el número de caramelos de la caja 2 no cambia. El número de caramelos al final de cada día se resume a continuación:

| Día | Caja 0 | Caja 1 | Caja 2 |
|-----|--------|--------|--------|
| 0   | 10     | 15     | 13     |
| 1   | 0      | 4      | 13     |

Como tal, el procedimiento debería devolver [0,4,13].

### Restricciones

- $1 \le n \le 200\,000$
- $1 \le q \le 200\,000$
- $1 \leq c[i] \leq 10^9$  (for all  $0 \leq i \leq n-1$ )
- $0 \le l[j] \le r[j] \le n-1$  (for all  $0 \le j \le q-1$ )
- ullet  $-10^9 \le v[j] \le 10^9, v[j] 
  eq 0 ext{ (for all } 0 \le j \le q-1)$

### Subtareas

- 1. (3 puntos)  $n, q \leq 2000$
- 2. (8 puntos) v[j]>0 (para todo  $0\leq j\leq q-1$ )
- 3. (27 puntos)  $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 puntos) l[j]=0 y r[j]=n-1 (para todo  $0\leq j\leq q-1$ )
- 5. (33 puntos) No hay restricciones adicionales.

## Ejemplo de calificador

El calificador de ejemplos lee la entrada en el siguiente formato:

- línea 1: \$\;\N; n\$
- Iínea 2:  $c[0] \ c[1] \ \dots \ c[n-1]$
- línea 3: \$\;\; q\$
- Iínea 4+j (  $0 \leq j \leq q-1$ ):  $\$ ,;  $[j]\$ ,  $[j]\$

El calificador de ejemplos imprime sus respuestas en el siguiente formato:

• Iínea 1: s[0] s[1] ... s[n-1]