Generative Adversial Network

Balsan Thibault, Carvaillo Thomas, L'archevêque Valentin

Résumé

Intro ici

Partie? - Modélisation mathématique

Dans cette partie, nous allons apporter les divers éléments mathématiques de la méthode; en modélisant les perceptrons multicouches comme des distributions de probabilité, et en explicitant une méthode de construction optimale des perceptrons.

Le perceptron multicouche générateur G (resp. le discriminateur D) sera ici modélisé par une fonction différentiable $G_{\theta g}(z)$ (resp. $D_{\theta d}(x)$); où $z \sim p(z)$ est le bruit donné en entrée du générateur et $x = G_{\theta g}(z)$. Nous dénoterons par p_{data} la distribution de probabilité de l'échantillon originel, et p_g la distribution de probabilité de l'échantillon généré par G. Le but de ce GAN étant ainsi la convergence de p_{data} vers p_g . Ici, $D_{\theta d}(x)$ ne retournera pas une valeur binaire, mais un scalaire compris entre 0 et 1, représentant la probabilité que x soit $(D_{\theta d}(x) = 1)$ ou non $(D_{\theta d}(x) = 0)$ généré par le générateur.

Avant de présenter la formalisation du problème, nous allons évoquer un cas élémentaire, en émettant l'hypothèse forte que la distribution p_{data} est connue.

Proposition 1 (Optimalité de D) Soit G_{θ_g} un générateur <u>fixe</u>, alors le discriminateur optimal $D_{\theta_d}^*(x)$ est définit par

$$D_{\theta_d}^*(x) = \frac{p_{data(x)}}{p_{data(x)} + p_g(x)}$$

Une démonstration est présentée en annexe.

Comme nous l'avons vu, il s'agit de maximiser la probabilité que D ait raison, <u>i.e.</u> maximiser $D_{\theta_d}(x)$, et, dans un même temps, que G trompe D, <u>i.e.</u> de minimiser $D_{\theta_d}(G_{\theta_q})$. Ceci peut se réécrire sous le problème d'optimisation suivant :

$$\min_{G_{\theta_g}} \left(\max_{D_{\theta_d}} \left(\mathbb{E}_{X \sim p_{data}} \left[log \left(D_{\theta_d}(x) \right) \right] + \mathbb{E}_{Z \sim p_Z} \left[log \left(1 - D_{\theta_d}(G_{\theta_g}(z)) \right) \right] \right) \right)$$

Ce problème ce résout de manière computationnelle, à l'aide d'une descente de gradient pour le problème de minimisation et d'une ascension de gradient pour celui de maximisation.

Algorithm 1 text

1