

EP/03/14530

RECEIVED
28 JAN 2004

WIPO PCT

PA 1103114

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

December 15, 2003

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/444,778

FILING DATE: February 04, 2003

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

P. Swain

P. SWAIN
Certifying Officer

1042 U.S. PTO
02/04/03

02-05-03 613444778 1042 U.S. PTO
A/PKOR

1000 U.S. PRO
60/44778

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventor(s):

Elias JONSSON et al.

Title of Invention:

Optimal Scaling of RAKE Output Symbols
for WCDMA

Attorney Docket No.:

47253-00064USPL

Box Provisional Patent Application
Commissioner for Patents
Washington, D.C. 20231

CERTIFICATE OF MAILING BY EXPRESS MAIL

"EXPRESS MAIL" Mailing Label No.: EV129655909US
Date of Deposit: February 4, 2003

I hereby certify that this paper, including the documents referred to therein, or fee is being deposited with the U.S. Postal Service "Express Mail Post Office to Addressee" service under 37 CFR § 1.10 on the date indicated above and is addressed to:

Box Provisional Patent Application
Commissioner for Patents
Washington, D.C. 20231

Type or Print Name: Carla Elkins

Signature:

Dear Madam or Sir:

TRANSMITTAL LETTER FOR A PROVISIONAL PATENT APPLICATION UNDER 37 C.F.R. § 1.53(c)

- Transmitted herewith is a Provisional Patent Application under 37 C.F.R. § 1.53(c) as identified above.
- Transmitted herewith is an Assignment to Telefonaktiebolaget LM Ericsson (publ) along with Form PTO-1595 Assignment Recordation Sheet. Please return the recorded assignment to the undersigned.
- The assignment recording fee under 37 C.F.R. § 1.21(h) of \$40.00 is herewith enclosed.
- Applicant(s) claim(s) small entity status under 37 CFR 1.9 and 1.27.
- The filing fee for a Provisional Patent Application under 37 C.F.R. § 1.16(k) in the amount of \$160 is herewith enclosed.
- TOTAL FEE REQUIRED** \$ 160

Dallas2 957491 v 1, 47253.00001

- Please charge our Deposit Account No. 10-0447 in the amount of \$_____.
This document is attached in duplicate.
- A check in the amount of \$160 is attached. Please charge any deficiency or credit any overpayment to Deposit Account No. 10-0447.
- The Commissioner is hereby authorized to charge any underpayment or credit any overpayment of the following fees which may be associated with this communication to Deposit Account No. 10-0447.
- Any additional provisional patent application processing fees or surcharges under 37 C.F.R. §§ 1.16 or 1.17.
- The Commissioner is hereby authorized to charge any underpayment or credit any overpayment of the following fees due during the entire pendency of this application to Deposit Account No. 10-0447.
- Any provisional patent application processing fees under 37 C.F.R. §§ 1.16-1.20.

Date: Feb 4, 2003

JENKENS & GILCHRIST, P.C.
1445 Ross Avenue, Suite 3200
Dallas, Texas 75202-2799
Telephone: (214) 855-4713
Facsimile: (214) 855-4300

Respectfully submitted,

Stanley R. Moore
Registration No. 26,958

23932

PATENT TRADEMARK OFFICE

PROVISIONAL APPLICATION COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION under 37 C.F.R. § 1.53(c).

Docket Number: 47253-00064USPL			Type a plus sign (+) inside this box →
INVENTOR(S)/APPLICANT(S)			
LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)
JONSSON	Elias		Södra Promenaden 3 SE- 211 29 Malmö, Sweden
BENGSSON	Magnus		Nikolajgatan 16:210 SE- 214 21 Malmö, Sweden
TITLE OF THE INVENTION: Optimal Scaling of RAKE Output Symbols for WCDMA			
CORRESPONDENCE ADDRESS: Stanley R. Moore Jenkins & Gilchrist, P.C. 1445 Ross Avenue, Suite 3200 Dallas			
(STATE) TEXAS	(ZIP CODE) 75202-2799	(COUNTRY) USA	
ENCLOSED APPLICATION PARTS (check all that apply):			
<input checked="" type="checkbox"/> Specification	Number of Pages	8	<input type="checkbox"/> Small Entity Statement
<input checked="" type="checkbox"/> Drawings	Number of Figures	5	<input type="checkbox"/> Other: _____
<input checked="" type="checkbox"/> A check in the amount of \$160 is enclosed to cover the provisional application filing fees.			Filing Fees Due for Provisional Application:
<input type="checkbox"/> The Commissioner is hereby authorized to charge or credit any over or under payments of filing fees to Deposit Account Number: 10-0447			<input checked="" type="checkbox"/> \$160.00
			<input type="checkbox"/> \$80.00

Was the invention made by an agency of the United States Government or under a contract with an agency of the United States government?

- No.
 Yes, and the name of the U.S. Government agency and the government contract number(s) are:

Respectfully submitted,

NAME Stanley R. Moore

DATE February 4, 2003

REGISTRATION NO.

ON NO.
(if appropriate)

26,958

- Additional inventors are being named on separately numbered sheets attached hereto. (if applicable)

PROVISIONAL APPLICATION FILING ONLY

PROVISIONAL APPLICATION FILING ONLY
Applicant(s) herein make claim to a new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof as substantially shown or described herein.

Optimal scaling of RAKE output symbols for WCDMA

5 Technical Field of the Invention

The invention relates to a method of scaling the RAKE output symbols in a WCDMA receiver. The invention also relates to a corresponding receiver system.

10 Description of Related Art

In a WCDMA receiver system, see Figure 1, the radio signal is first down converted to base band by the radio interface, not shown in the figure. Then the analog signal is scaled by the automatic gain control (AGC), Block 101, before being quantized by the analog to digital (A/D) converter, Block 102.

15 The signal from the AGC is scaled to keep the average power of the sum of the I and Q parts as close as possible to a given reference value. The measured power could be taken before or after the A/D converter. Usually, some kind of control algorithm is involved in finding the optimal scale factor for the AGC. We assume that such an algorithm is given.

20

Once the received signal has been quantized it is despread in the RAKE. A radio signal could have travelled through different paths before arriving at the receiver, which causes the signal to be received at different time delays.

Given the time of arrival of each path, we despread the received quantized 25 signal in the RAKE, Block 103, for each path. In the RAKE, we multiply the quantized signal, sampled at chip rate, with its corresponding channelization code and scrambling code and sum over the length of the channelization code.

30 To minimize silicon area, as few bits as possible should be used to represent the output from the truncation and saturation block 104. In Figure 1, we assume that g_I and g_Q are represented with N_g bits. Here, z_I or z_Q is computed from g_I or g_Q by extracting the N_g least significant bits if this still equals g_I or

5 g_Q . Otherwise, we have overflow and t_I or t_Q is set to the maximum or minimum representable value of t_I or t_Q , which depends on the sign of g_I or g_Q . By saturating the signals t_I or t_Q , we partly solve the problem of overflow. However, if only one of t_I or t_Q saturates, we will loose valuable phase information
10 between g_I or g_Q , see Figure 2. If both t_I and t_Q saturates, we loose even more phase information, since only four phases are possible, see Figure 3. In both cases, we loose valuable soft information, which results in a deteriorated performance. In Block 105 the radio channel estimates are calculated and their conjugates are multiplied with the despread data symbols. The
15 products are then summed over the number of paths. Finally, in Block 106 the bit stream is decoded.

15 The problem with the current state-of-the-art solution is that we loose valuable soft information if we want the RAKE output to be represented with a small number of bits. The result is a deteriorated performance.

Summary

20 In the invention, we propose a method to adaptively select the reference power value for the AGC or to scale g_I and g_Q with a reference scale factor before truncation and saturation in Block 204. The reference power level and the reference scale factor depend on the strength of the signal output from the RAKE. In Figure 4, we show an overview of the proposed system. Here Block 207 adjusts either the reference value in the AGC or the truncation and saturation done in Block 204.
25

With the proposed solution, we adjust the average size of the values output from the RAKE to obtain optimal performance.

Brief Description of the Drawings

30 The invention will now be described more fully below with reference to the drawings, in which

Figure 1 shows an overview of the receiver,

Figure 2 shows in a dotted box the maximum values of t_i or t_Q . In the figure the coordinate (g_i, g_Q) fall outside the box and will thus be truncated. The result of the truncation and saturation is shown as the coordinate (t_i, t_Q) . It is
5 immediately seen that the truncation and saturation introduces a phase error,

Figure 3 shows in a dotted box the maximum values of t_i or t_Q . In the figure both g_i and g_Q fall outside the box and will thus be truncated. The result of the truncation and saturation is shown as the coordinate (t_i, t_Q) , which will be located at one of the corners of the box. It is immediately seen that the truncation and saturation introduces a phase error,
10

- Figure 4 shows the proposed modified receiver structure, and
15 Figure 5 shows a flow diagram of Block 207.

Detailed Description of Embodiments

Let $|x|$ mean the absolute value of x . Let x be a number represented by an integer number of bits N_x . Define M_x and m_x to be the maximum and minimum
20 achievable number using the bit representation of x . Let y be represented with N_y integer bits. Define the truncation of x using saturation as

$$y = sat(x) = \begin{cases} M_y, & x \geq M_y, \\ x, & m_y < x < M_y, \\ m_y, & x \leq m_y. \end{cases}$$

Let the integer part of the number x be represented as $\text{floor}(x)$.

25 Description of Block 207.

In Figure 4, we present the proposed solution. A flow chart of Block 207 is shown in Figure 5. Below, we go through in detail the boxes in Figure 5.

Block 301: Sample the $I_i^{(CH)}$ and $I_Q^{(CH)}$ according to a predetermined pattern for physical channel CH . A given number of physical channels can be studied in parallel. We are interested in if either the I or Q part has saturated. We therefore compute the measurement quantity

$$5 \quad \Omega^{(CH)} = \max(|I_i^{(CH)}|, |I_Q^{(CH)}|)$$

for each physical channel.

Block 302: Compute the expectation value of $\Omega^{(CH)}$. This can, for example, be done by filtering

$$10 \quad \Omega_{n+1}^{(CH)} = (1 - \alpha)\Omega_n^{(CH)} + \alpha\Omega^{(CH)}$$

Here, the time constant for α , that is, the time it takes to compute the corresponding moving average, should be much larger than the time constant for the AGC loop. Furthermore, the time constant for α should be large enough to filter over a number of fading peaks and dips.

15 Block 303: This block is the core of the invention. We present four different methods for computing the reference value,

Algorithm I (Adjusts the reference value for Block 201): Let $\Omega_{ref}^{(CH)}$ be the reference value for $\Omega_n^{(CH)}$. Compute the new reference power value $P_{ref}^{(CH)}$ for the AGC using a PI controller, that is, calculate

$$\epsilon_n^{(CH)} = \Omega_{ref}^{(CH)} - \Omega_n^{(CH)},$$

$$I_{n+1}^{(CH)} = I_n^{(CH)} + \frac{1}{T_i} \epsilon_n^{(CH)}$$

25 Here $I_n^{(CH)}$ is stored from the last activation of the block and T_i is an integration constant. Take the new reference power for the AGC for channel CH as

$$P_{ref}^{(CH)} = K(e_n^{(CH)} + I_n^{(CH)})$$

for some constant K .

Usually, we have only one AGC and we set the final reference value as

$$5 \quad P_{ref} = \min_{CH}(P_{ref}^{(CH)}).$$

Algorithm II (Adjusts the reference value for Block 204): Let $\Omega_{ref}^{(CH)}$ be the reference value for $\Omega_n^{(CH)}$. Compute the new reference scale value for Block 204, $S_{ref}^{(CH)}$, using a PI controller, that is, calculate

$$10 \quad e_n^{(CH)} = \Omega_{ref}^{(CH)} - \Omega_n^{(CH)},$$

$$I_{n+1}^{(CH)} = I_n^{(CH)} + \frac{1}{T_i} e_n^{(CH)}$$

Here $I_n^{(CH)}$ is stored from the last activation of the block and T_i is an integration constant. Take the new reference scale value for Block 204 for channel CH as

$$15 \quad S_{ref}^{(CH)} = K(e_n^{(CH)} + I_n^{(CH)})$$

for some constant K .

The truncation and saturation in Block 204 is then done as follows,

$$20 \quad \begin{aligned} t_I^{(CH)} &= \text{sat}(\text{floor}(g_I^{(CH)} \cdot S_{ref}^{(CH)})), \\ t_Q^{(CH)} &= \text{sat}(\text{floor}(g_Q^{(CH)} \cdot S_{ref}^{(CH)})). \end{aligned}$$

In algorithm I and II more general controllers can be used, but for ease of presentation we chose the simple PI controller.

Algorithm III (Adjusts the reference value for Block 201): The following algorithm is a simplified version of algorithm I. We assume that we have two reference power levels, P_1 and P_2 . Do the following

```

5      if  $\Omega_n^{(CH)} > M_{I_1} (1 - \gamma_1)$ 
       $P_{ref}^{(CH)} = P_1$ 
      elseif  $\Omega_n^{(CH)} < M_{I_1} (1 - \gamma_2)$ 
       $P_{ref}^{(CH)} = P_2$ 
      end

```

10 Here, M_1 , denotes the maximum value represented by t_1 , which is the same for t_0 . This algorithm toggles between two states. Here, $\gamma_1 < \gamma_2$ and $P_1 < P_2$. Having $\gamma_1 < \gamma_2$ introduces a viscosity to the system, which prevents us from toggling between the two reference values P_1 and P_2 from one activation of the block to the other.

15 Algorithm IV (Adjusts the reference value for Block 204): The following algorithm is a simplified version of algorithm II, similar in style to algorithm II. We assume that we have two reference scale levels, S_1 and S_2 . Do the following

```

20      if  $\Omega_n^{(CH)} > M_{t_0}(1 - \gamma_1)$ 
           $S_{ref}^{(CH)} = S_1$ 
      elseif  $\Omega_n^{(CH)} < M_{t_0}(1 - \gamma_2)$ 
           $S_{ref}^{(CH)} = S_2$ 
      end

```

Here, M_{t_f} denotes the maximum value represented by t_f , which is the same for t_g . This algorithm toggles between two states. Here, $\gamma_1 < \gamma_2$ and $P_1 < P_2$. Having $\gamma_1 < \gamma_2$ introduces a viscosity to the system, which prevents us from toggling between the two reference values P_1 and P_2 from one activation of
5 the block to the other.

The truncation and saturation in Block 204 is then done as follows,

$$t_I^{(CH)} = \text{sat}(\text{floor}(g_I^{(CH)} \cdot S_{ref}^{(CH)})),$$

$$t_Q^{(CH)} = \text{sat}(\text{floor}(g_Q^{(CH)} \cdot S_{ref}^{(CH)})).$$

- 10 It is straight forward to generalize algorithm III and IV to include more power reference value levels.

- 15 Although a preferred embodiment of the present invention has been described and shown, the invention is not restricted to it, but may also be embodied in other ways within the scope of the subject-matter defined in the following claims.

Optimal scaling of RAKE output symbols for WCDMA

ABSTRACT

In a WCDMA receiver, we propose a method to adaptively select the reference power value for the AGC or to scale the despread data symbols provided from the RAKE unit with a reference scale factor before truncation and saturation. The reference power level and the reference scale factor depend on the strength of the signal output from the RAKE. With the proposed solution, we adjust the average size of the values output from the RAKE to obtain optimal performance.

Fig. 4 should be published.

1/5

Fig. 1

2/5

Fig. 2

3/5

Fig. 3

4/5

Fig. 4

5/5

Fig. 5