

Università degli Studi di L'Aquila

Seconda Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Mercoledì 15 Febbraio 2012 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti. Se tale somma è negativa, verrà assegnato 0.

- 1. In un albero AVL di n elementi, l'inserimento di un elemento nel caso migliore induce un numero di rotazioni pari a: *a) 0 b) 2 c) $\Theta(\log n)$ d) 1
- 2. Sia $h(\cdot)$ una funzione hash. Quale delle seguenti funzioni descrive il metodo di scansione lineare in una tabella hash di dimensione m per l'inserimento di un elemento con chiave k dopo l'i-esima collisione:
 - a) $c(k,i) = (h(k) + m) \mod i$ b) $c(k,i) = h(k) \mod m$ *c) $c(k,i) = (h(k) + i) \mod m$ d) $c(k,i) = i \mod m$
- 3. In un grafo completo e non pesato con n vertici, il cammino semplice di lunghezza massima tra due vertici fissati è lungo:
- 5. Si consideri il grafo di cui alla domanda (4) e si orientino gli archi dal nodo con lettera minore al nodo con lettera maggiore secondo l'ordine alfabetico. Quanti rilassamenti esegue in totale l'algoritmo di Bellman e Ford con sorgente c e con l'ipotesi che gli archi vengano considerati in ordine lessicografico?
 - *a) 0 b) 1 c) 2 d) 3
- 6. Dato un grafo pesato e completo con n vertici, l'algoritmo di Dijkstra realizzato con un heap binario costa: *a) $\Theta(n^2 \log n)$ b) $\Theta(m+n \log n)$ c) $\Theta(n^2)$ d) $O(n \log n)$
- 7. Sia d_{xy}^k il costo di un cammino minimo k-vincolato da x a y, secondo la definizione di Floyd e Warshall. Risulta:
 - a) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_kx}^{k-1}\}$ *b) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_ky}^{k-1}\}$ c) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_ky}^{k-1}\}$ d) $d_{xy}^k = \min\{d_{xy}^k, d_{xv_k}^{k-1} + d_{v_ky}^{k-1}\}$
- 8. Usando gli alberi QuickUnion e l'euristica dell'unione pesata by size, il problema della gestione di n insiemi disgiunti sottoposti ad n-1 Union ed m Find può essere risolto in: a) $\Theta(n)$ b) $\Theta(m)$ c) $\Theta(m^2)$ *d) $O(m+n\log n)$
- 9. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Kruskal esegue un numero di operazioni Union(u,v) pari a: a) $\Theta(m)$ *b) $\Theta(n)$ c) $\Theta(m \log n)$ d) $\Theta(\log n)$
- 10. Dato un grafo pesato con n vertici ed m = O(n) archi, l'algoritmo di Prim realizzato con heap di Fibonacci costa: a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) O(m) *d) $O(n \log n)$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										
d										