

# Design the FOC of BLDC (PMSM)

MathWorks Japan
Application Engineering Group (CDA)
Senior Application Engineer
Keiichi Fukui

### **Terminology**

- FOC: Field Oriented Control (or Vector Control)
- BLDC: Brush-less DC Motor
- PMSM: Permanent Magnet Synchronous Motor
   In this material, we suppose that BLDC is almost equal to PMSM.



# Ex) Velocity control system of BLDC (PMSM)

### Purpose:

Construct FOC control logic and tune velocity control parameters to satisfy the following control specification.

| <b>Control Specification</b> | Response for step signal of target velocity 1,000[rpm] |
|------------------------------|--------------------------------------------------------|
| Rise time                    | 20[msec]                                               |
| Overshoot                    | 5[%] (=1,000 + 50[rpm])                                |









# Model ① Electrical: Simple

## **Test Conditions**

- Check the behavior of velocity control system during 1[sec].
- Input the step signal of target velocity 1,000[rpm] at t=0.05[sec].
- Input the step signal of load torque 0.2[Nm] at t=0.5[sec].



#### Procedure to run the sample model

- #1) Execute the m-file ("foc\_controlsystem\_param.m").
- #2) Open the slx-file ("foc\_controlsystem\_average.slx"), and click "Start Values" and simulate it. Then, check that the result of p.6 is got.



## Controller





## **Plant**





# Result (Electrical: Simple / Before tuning the PI gains of velocity control)



The velocity has overshoot, but it tracks to the target velocity. And, when the disturbance of the load torque at t=0.5[sec] is caused, the velocity behaves similarly to the above.





# Tune the PI gains of velocity control





#### Procedure to run the sample model

- #1) Click the "Tune" in the PID Controller block, and open the specific UI ("PID Tuner").
- #2) Click the "Show Parameters", and display the PI gains and control performance items.
- #3) Select the "Domain: Frequency", and tune the gauges of "Bandwidth" and "Phase Margin".
- #4) After tuning of the PI gains, click the "Update Block".





## Result (Electrical: Simple / After tuning the PI gains of velocity control)



The velocity doesn't have overshoot, and it tracks to the target velocity. And, when the disturbance of the load torque at t=0.5[sec] is caused, the velocity behaves similarly to the above.



#### Procedure to run the sample model

#1) After tuning the PI gains of velocity control, simulate the model of p.3. Then, check that the result of this slide is got.



# Model 2 Electrical: Detailed



#### Procedure to run the sample model

#1) Open the slx-file ("foc\_controlsystem\_pwm.slx"), and simulate it.

(If we click the "Final Values", we can set the PI gains that have been tuned in p.7.)

Check that the result of p.11 is got.



## **Plant**





## Result (Electrical: Detailed / After tuning the PI gains of velocity control)



The velocity doesn't have overshoot, and it tracks to the target velocity. And, when the disturbance of the load torque at t=0.5[sec] is caused, the velocity behaves similarly to the above.





# **Appendix**

- Auto-tuning of control parameters in model including switching control
- Two types of libraries of Simscape Power Systems™
  - Specialized Technology (Simulink based library)
  - Simscape Components (Simscape Language based library)

<Notes>

From R2018b, Simscape Power Systems™ and Simscape Electronics™ are integrated as one electrical modeling tool. The new tool's name is Simscape Electrical™.



## Model



### Procedure to run the sample model

- #1) Execute the m-file ("foc\_controlsystem\_param.m").
- #2) Open the slx-file ("foc\_controlsystem\_pwm\_Plopt.slx"), and click "Start Values" and "Optimize". Then, open the specific UI of parameter optimization.
- #3) For the subsequent procedures, please see the pages of p.14-17.



# Set the constraints about the time response of motor velocity





# Set and check the parameters to be tuned, and check the time response of motor velocity before tuning





# Display the graphs about the time response of motor velocity (left side) and the tuned parameters (right side)





# **Optimize the tuning parameters**

- #1) Now, set "Fast Restart" to "Enable" in order to accelerate to tune the parameters.
- #2) When we want to edit the model, set "Fast Restart" to "Disable".









# **Appendix**

- Auto-tuning of control parameters in model including switching control
- Two types of libraries of Simscape Power Systems™
  - Specialized Technology (Simulink based library)
  - Simscape Components (Simscape Language based library)

<Notes>

From R2018b, Simscape Power Systems™ and Simscape Electronics™ are integrated as one electrical modeling tool. The new tool's name is Simscape Electrical™.



# Simscape Power Systems<sup>™</sup> - Two types of libraries



- 1 The library released from R2013b
- 2 The traditional existing powerful library

# **1** Simscape Components

- Provide electrical components based Simscape Language
- Recommend to analyze power electronics system by mixing various kinds and fidelities of electrical components of <u>Simscape™</u> and <u>Simscape Electronics™</u> (Multi-domain analysis such as electrical, thermal, and mechanical)

  R2013b

# 2 Specialized Technology

- Provide electrical components based Simulink
- Recommend to analyze power electronics and power network speedily
- #1) Various calculation methods of power electronics (Ideal switching mode, Continuous mode, Discrete mode)
- #2) Calculation method and analysis of power network (By phasor method, initialization, load flow, and long period simulation of power network.)





# Simscape Electrical<sup>™</sup> - Two types of libraries



- 1 The library released from R2013b
- 2 The traditional existing powerful library

- 1 Simscape Components
- Provide electrical components based Simscape Language
- Recommend to analyze power electronics system by mixing various kinds and fidelities of electrical components (Multi-domain analysis such as electrical, thermal, and mechanical)

**R2013b** 

- 2 Specialized Power Systems
- Provide electrical components based Simulink
- Recommend to analyze power electronics and power network speedily
- **#1) Various calculation methods of power electronics** (Ideal switching mode, Continuous mode, Discrete mode)
- #2) Calculation method and analysis of power network (By phasor method, initialization, load flow, and long period simulation of power network.)



# Simscape Electrical<sup>™</sup> - Two types of libraries



- 1 The library released from R2013b
- 2 The traditional existing powerful library

- 1 Simscape Components
- Provide electrical components based Simscape Language
- Recommend to analyze power electronics system by mixing various kinds and fidelities of electrical components (Multi-domain analysis such as electrical, thermal, and mechanical)

R2013b

- 2 Specialized Power Systems
- Provide electrical components based Simulink
- Recommend to analyze power electronics and power network speedily
- **#1) Various calculation methods of power electronics** (Ideal switching mode, Continuous mode, Discrete mode)
- #2) Calculation method and analysis of power network (By phasor method, initialization, load flow, and long period simulation of power network.)



# **Simscape Electrical** - Guideline for proper use of two types of libraries

### **Specialized Technology (Specialized Power Systems)**

- Analyze power electronics and power network speedily
- Analyze large scale power electronics system
- Analyze initialization, load flow and long period of power network

### **Simscape Components**

- Analyze multi domain system (Ex: Electrical, Thermal, Mechanical)
- Analyze various fidelity levels of electrical components
- Analyze power loss and heat of motors and semiconductors



Discrete 1.5e-05 s. This example shows a 12 MVA, 34.5 kV Static Synchronous Compensator using 22 power modules per phase.

Learn more about this example.

STATCOM (Detailed MMC Model with 22 Power Modules per Phase)

https://www.mathworks.com/help/physmod/sps/examples/statcom-detailed-mmc-model-with-22-power-modules-per-phase.html



Simscape Electrical has the following high detailed electrical components.

- Semiconductor devices (Ex: N-Channel MOSFET)
- Motors (Ex: FEM-Parameterized PMSM)

IPMSM Torque Control

https://www.mathworks.com/help/physmod/sps/examples/ipmsm-torque-control.html



# "foc\_controlsystem" folder

There are two folders. "English" folder and "Japanese" folder. Original version is Japanese, and I translated it to English.

- A set of sample models created with Simscape Components.
   Please see the files in the "sps\_sc" folder.
   Save the sample models of the contents of p.2-17.
- A set of sampel models created with Specialized Technology (Specialized Power Systems).
   Please see the files in the "sps\_st" folder.
   Save the sample models of the almost equal contents of p.2-17.



# MATLAB products used in this material

- Basic environment
  - MATLAB®, Simulink®
- Plant modeling
  - Simscape<sup>™</sup>, Simscape Power Systems<sup>™</sup>
- Control design
  - Simulink Control Design™, Control System Toolbox™
- Parameter optimization
  - Simulink Design Optimization<sup>™</sup>, Optimization Toolbox<sup>™</sup>

<Notes>

From R2018b, Simscape Power Systems™ and Simscape Electronics™ are integrated as one electrical modeling tool. The new tool's name is Simscape Electrical™.





© 2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See <a href="https://www.mathworks.com/trademarks">www.mathworks.com/trademarks</a> for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.