Process flow title:	Pt100 Thin-Film RTD Process	Revision:	Rev 0.1
Contact email:	jephin@dtu.dk	Contact name:	Jeppe Hinrichs
Contact phone:	Not applicable		
LabManager group:	Not applicable	Batch name:	TBD
Date of creation:	2025-09-29	Date of revision:	2025-10-03

Process Overview

A process flow for fabricating a Pt100 resistance temperature detector (RTD) on oxidized silicon, using Ti/Pt thin films patterned by lift-off.

Key Specifications

- Substrate: p-type silicon, <100>, with thermal oxide isolation
- Insulating layer: $500 \,\mathrm{nm}$ thermal SiO_2
- Adhesion layer: 10 nm Ti
- Sensing layer: 100 nm Pt, patterned in meander geometry
- Nominal resistance: 100Ω at $0 \,^{\circ}$ C (Pt100)

Critical Safety

- **HF handling:** Apron + gloves, face shield, no lone working, no glass beakers!
- Solvents: Acetone, IPA, resist remover: Use fume hood and PPE.
- Sputter/evaporation: Pt/Ti target change requires care; follow target handling SOP
- Anneal: Use thermal gloves for > 300 °C operations

1 Starting Material

Substrate	Specification	Thickness	Box Name	Qty
Silicon	n-type <100>, 4", $0.025\Omega\mathrm{cm}$	$525\mu\mathrm{m}\pm20\mu\mathrm{m}$	SN608	5

2 Critical Layers

Layer	Material	Thickness
Insulating oxide	Thermal SiO_2	$500\mathrm{nm}$
Adhesion layer	Ti	$10\mathrm{nm}$
Resistive element	Pt	$100\mathrm{nm}$
Optional pad metallization	Ni/Au	$20\mathrm{nm}$ Ni + $200\mathrm{nm}$ Au

3 Core Process Flow

Table 1: Pt100 RTD Process Flow

Step	Process	Equipment	Parameters	Comment	
1	Wafer Prep and Oxide				
1.1	Incoming inspection	4-point probe + thickness tool	Measure resistivity, bow, thickness	Verify starting wafer specs.	
1.2	Pre-oxidation clean	RCA bench	Standard RCA clean	Required prior to oxidation.	
1.3	Thermal oxide growth	Furnace: E1 oxidation	Target: 500 nm Recipe: WET1100 Oxidation time: 50 min Anneal time: 20 min	Provides electrical isolation.	
1.4	Inspection	Ellipsometer		Verify oxide thickness.	
2		Lit	hography		
2.1	Resist coat	Spin Coater: Gamma UV	Resist: AZ 5214E Spin: 3000 rpm, 35 s Target thickness: 2 µm Softbake: 110 °C, 60 s	Provides base resist film.	
2.2	Pattern exposure	Maskless Aligner: MLA2	Mask: RTD layout Dose: $60 \mathrm{mJ/cm^2}$ Wavelength: 375 nm	Expose regions that should remain after lift-off.	
2.3	Image reversal bake	Hotplate	120°C, 60 s	Crosslinks initially exposed resist (becomes insoluble).	
2.4	Flood exposure	Maskless Aligner: MLA2	No mask, blanket exposure Dose: $500\mathrm{mJ/cm^2}$	Reverses tone: unexposed areas become soluble.	
2.5	Develop	TMAH UV- lithography	Developer: AZ 726 MIF Time: 60 s to 75 s, gentle ag- itation Rinse: DI water, 30 s	Creates undercut profile for lift-off.	

Continued on next page

Table 1: Pt100 RTD Process Flow (Continued)

Step	Process	Equipment	Parameters	Comment
3	Metal Deposition			
3.1	Chamber prep	Temescal e-beam evaporator	Base pressure $\leq 1 \times 10^{-6} \mathrm{mbar}$	Lift-off friendly.
3.2	Ti deposition	Temescal	$10\mathrm{nm}$ Ti @ $0.5\mathrm{\AA/s}$ to $1\mathrm{\AA/s}$	Adhesion layer.
3.3	Pt deposition	Temescal	$100\mathrm{nm}$ Pt @ 1 Å/s to 2 Å/s	Resistive layer.
4	Lift-off			
4.1	Lift-off	Solvent bath (acetone)	Soak + ultrasonic assist if needed	Leaves Ti/Pt meander.
4.2	Rinse/Dry	IPA + N2 gun		Inspect for clean edges, no flakes.
5	Post-processing (optional)			
5.1	Optional anneal	C3 Furnace: N_2 ambient	400°C, 1 h	Stabilizes Pt resistance.
5.2	Optional pad metallization	Lithography + evaporator	Ni/Au stack	Improves bondability.
5.3	Final inspection	Optical microscope + 4-point probe	Measure sheet R, continuity	Target $R = 100 \Omega$ at $0 ^{\circ}$ C.

4 Critical Checks

Step	QC Verification
1.3	Oxide thickness: $200 \mathrm{nm} \pm 10 \mathrm{nm}$ (ellipsometer)
2.2	Lithography: line/space \pm 1 μ m (optical inspection)
3.3	Pt thickness: $100 \mathrm{nm} \pm 5 \mathrm{nm}$ (Dektak XTA stylus profiler)
4.1	Lift-off complete, no bridging (microscope)
5.1	Sheet resistance stable within 1% after anneal (4-point probe)

5 Process Flow Diagram

Figure 1: Process flow diagram for Pt100 RTD fabrication.

6 Required Figures

Table 2: Cross-sectional illustrations of key process steps in the Pt100 RTD fabrication flow.

ID	Step	Description	
1	1.3	Thermal oxide isolation	
2	2.2	Lithography defines meander	
3	3.3	Ti/Pt deposition	
4	4.1	Lift-off completed	
5	5.1	Optional anneal / pad metallization	