Cyclicity of \mathbb{Z}_p^*

Daochen Wang

October 31, 2025

Definition 1 (Group). A group $G = (S, \alpha)$ is defined by a set S and a function $\alpha : S \times S \to S$ with the following conditions. (For $g, h \in S$, we write $g \cdot h$ or simply gh as shorthand for $\alpha(g, h)$.)

- 1. Identity. There exists an $e \in S$ such that $\forall g \in S$, ge = eg = g.
- 2. Inverse. For all $g \in S$, there exists $h \in S$ such that gh = hg = e.
- 3. Associativity. For all $g, h, k \in S$, (gh)k = g(hk). (That is, $\alpha(\alpha(g,h),k) = \alpha(g,\alpha(h,k))$.)

The set S is known as the underlying set of G and the function α is known as the group operation of G. If we additionally have that for all $g, h \in S$, gh = hg, then the group is called abelian.

Remark 1. The definition implies: (i) the identity element e is unique, (ii) for a given $g \in S$, there is a unique element h such that gh = hg = e and we can denote it without ambiguity by g^{-1} . Good exercise to check.

Example 1. Our main working example is the group \mathbb{Z}_p^* , where p is prime. The underlying set is $\{1, \ldots, p-1\}$ and the group operation is *multiplication* modulo p. Consider \mathbb{Z}_5^* : the set is $\{1, 2, 3, 4\}$ and $3 \cdot 4 = 2, 2 \cdot 3 = 1, 3^{-1} = 2$, etc. Note that it's not obvious that the existence-of-inverse requirement of a group is satisfied, but it can be shown using Bézout's identity. The group is also abelian, since multiplication (modulo p) commutes.

The *size* of G or the *order* of G is the size of the set underlying G and is denoted |G|. We say G is a finite group if its size is finite.

Definition 2. Let $G = (S, \alpha)$ be a group. We say $T \subseteq S$ forms a subgroup of G if:

- 1. T contains the identity element of G.
- 2. T is closed under α , i.e., $g, h \in T \implies gh \in T$.
- 3. T contains inverses, i.e., $g \in T \implies g^{-1} \in T$.

This definition means that $(T, \alpha|_T)$ is a group, where $\alpha|_T: T \times T \to T$ is the natural restriction of α to T defined by $\alpha|_T(x,y) = \alpha(x,y)$ for all $x,y \in T$. We say $(T,\alpha|_T)$ is a subgroup of G. Often the function α is implicit in which case it's common to abuse language and identify the set S with the group G and the set T with the subgroup $(T,\alpha|_T)$. We write $H \leq G$ to mean H is a subgroup of G.

Definition 3 (Coset). Let G be a group and H be a subgroup. A coset of H in G is a set of the form $gH := \{gh \mid h \in H\}$.

Proposition 1 (Lagrange's theorem.). Let G be a finite group and H be a subgroup. Then the order of H divides the order of G.

Proof. The cosets of H partition G and each have size |H|.

Definition 4. Let G be a finite group and $g \in G$. The order of g in G, denoted o(g) or ord(g), is the minimum positive integer r such that $g^r = e$. The subgroup generated by g, denoted $\langle g \rangle$, is the subgroup formed by the subset $\{e, g^1, \ldots, g^{o(g)-1}\}$

Exercise: check o(g) is well-defined and that $\langle g \rangle$ indeed forms a subgroup.

Corollary 1. Let G be a finite group and $g \in G$, then o(g) divides |G|, written $o(g) \mid |G|$.

Proof. Follows from Lagrange's theorem because $\langle g \rangle$ is a subgroup of G of size o(g).

An immediate corollary of the above is:

Corollary 2. Let G be a finite group and $g \in G$, then $g^{|G|} = e$. In particular, this implies Fermat's Little Theorem that for all $a \in \mathbb{Z}_p^*$, where p is prime, we have $a^{p-1} = 1$.

Definition 5. Let n be a positive integer. We write $\mathbb{Z}_n := \{0, 1, \dots, n-1\}$, We write $\mathbb{Z}_n[X]$ for the set of polynomials with coefficients in \mathbb{Z}_n . Given $0 \neq P \in \mathbb{Z}_n[X]$, the degree of P is defined to be the exponent of the largest power of X that has non-zero coefficient. We say $x \in \mathbb{Z}_n$ is a root of P if $P(x) = 0 \mod n$.

Example 2. The set $\mathbb{Z}_4[X]$ contains polynomials like 2X, X^3 , and $3X^{100} + X^{42} + 1$, which are of degrees 1, 3, 100, respectively. Note that 2 is a root of 2X and X^3 ; while $3X^{100} + X^{42} + 1$ has no roots in \mathbb{Z}_4 . Why?

Proposition 2. Let p be prime. Let d be a positive integer. A degree d polynomial P with coefficients in \mathbb{Z}_p has at most d distinct roots in \mathbb{Z}_p .

Proof. Proof by induction on d. For d=1, the polynomial must be of the form $P=\alpha X+\beta$ for some $\alpha,\beta\in\mathbb{Z}_p$ with $\alpha\neq 0$. Since p is prime, this means α is invertible and the only root to P(x)=0 is $-\alpha^{-1}\beta$. For d>1, suppose x is a root of P, then use polynomial division to write P=(X-x)Q+r, where $Q\in\mathbb{Z}_p[X]$ has degree d-1 and $r\in\mathbb{Z}_p$. Evaluating P at X=x shows r=0. Thus P=(X-x)Q. Suppose $y\in\mathbb{Z}_p$ is a root of P, then (y-x)Q(y)=0, so y=x or Q(y)=0 as p is prime. (This uses the fact that if a prime divides a product of two integers, then it must divide at least one of them.) Therefore, by the inductive hypothesis, y can take one of at most 1+(d-1)=d possible values since Q has degree d-1. This completes the proof.

Remark 2. Proposition 2 can be false if p is not prime:

- 1. 2x has two distinct roots in \mathbb{Z}_4 , namely, 0 and 2.
- 2. $x^2 1$ has four distinct roots in \mathbb{Z}_8 , namely, 1, 3, 5, 7.

Definition 6. For positive integers a, b, we write lcm(a, b) for the least common multiple of a and b.

Example 3. lcm(6,21) = 42. lcm(7,5) = 35. lcm(35,7) = 35.

Lemma 1. Let G be a finite abelian group. Let $g, h \in G$. Suppose o(g), o(h) are coprime, then $o(gh) = \text{lcm}(o(g), o(h)) = o(g) \cdot o(h)$.

Proof. Since o(g) and o(h) are coprime, it directly follows that $lcm(o(g), o(h)) = o(g) \cdot o(h)$. Thus, it suffices to show o(gh) = lcm(o(g), o(h)). Write k := o(gh) and $\ell := lcm(o(g), o(h))$.

For $k \leq \ell$: we have

$$(gh)^{\ell} = g^{\ell}h^{\ell}$$
 G abelian
= $e \cdot e = e$ ℓ is a multiple of $o(g)$ and $o(h)$

so $k \leq \ell$ by the definition of k.

For $\ell \leq k$: as above, we have

$$(gh)^k = g^k h^k = e (1)$$

and so

$$x := g^k = (h^{-1})^k \in \langle g \rangle \cap \langle h \rangle \tag{2}$$

Thus, Corollary 1 implies $o(x) \mid o(g)$ and $o(x) \mid o(h)$. But o(g) and o(h) are coprime so o(x) = 1, so x = e. Therefore, the definition of x means $g^k = e = h^k$. Therefore, $o(g) \mid k$ and $o(h) \mid k$ (to see this, list powers of g, h in a sequence) so k is a common multiple of o(g) and o(h) so $k \ge \ell$ by the definition of ℓ as the least common multiple.

From the preceding lemma, we deduce the next proposition. (Based on this StackExchange answer.)

Proposition 3. Every finite abelian group G has an lcm-closed order set. That is, for all $x, y \in G$, there exists $z \in G$ such that

$$o(z) = \operatorname{lcm}(o(x), o(y)). \tag{3}$$

Proof. Proof by induction on o(x)o(y). If o(x)o(y)=1, then we can choose z=e. Otherwise, we can wlog factorize

$$o(x) = AP, \quad o(y) = BP', \tag{4}$$

where $P = p^m > 1$ for some prime p coprime to A, B; and $P' \mid P$.

Then

$$o(x^P) = A \quad \text{and} \quad o(y^{P'}) = B \tag{5}$$

By induction there exists z with o(z) = lcm(A, B).

Now note that $o(x^A) = P$ and P is coprime to $o(z) = \operatorname{lcm}(A, B)$. Therefore,

$$o(x^A z) = P \cdot \text{lcm}(A, B)$$
 Lemma 1
= $\text{lcm}(AP, BP')$ $P' \mid P$
= $\text{lcm}(o(x), o(y)),$

as required.

Definition 7. Let G be a finite group, we say G is cyclic if there exists $g \in G$, such that o(g) = |G|. In which case, we call g a generator of G.

Theorem 1. For p prime, \mathbb{Z}_p^* is a cyclic group.

Example 4. In \mathbb{Z}_5^* , we have o(1) = 1, o(2) = 4, o(3) = 4, o(4) = 2. So 2 and 3 are the only generators.

Proof. Let ℓ be the least common multiple of the orders of the elements of \mathbb{Z}_p^* . By Proposition 3, ℓ must be the order of some $x \in G$. Thus it suffices to show $\ell = p - 1$.

By Corollary 1, p-1 is a common multiple of the orders of the elements of \mathbb{Z}_p^* , so $\ell \leq p-1$.

Moreover, the definition of ℓ implies that every element of \mathbb{Z}_p^* is a root of $X^{\ell} - 1$. This is a degree ℓ polynomial, so $p-1 \leq \ell$ by Proposition 2 Hence the theorem.