Formulas

Throughout, let z = f(x, y) and let (a, b), (a_1, b_1) , and (a_2, b_2) be points in \mathbb{R}^2 . In addition, let Δx be the change from $x = a_1$ to $x = a_2$ (i.e. $\Delta x = a_2 - a_1$) and let Δy be the change from $y = b_1$ to $y = b_2$ (i.e. $\Delta y = b_2 - b_1$).

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+y) - f(x,y)}{h}$$

$$\Delta z = f(a_1 + \Delta x, b_1 + \Delta y) - f(a_1, b_1)$$

$$dz = f_x(a_1, b_1) dx + f_y(a_1, b_1) dy$$

$$= \frac{\partial z}{\partial x} (a_1, b_1) dx + \frac{\partial z}{\partial y} (a_1, b_1) dy$$