LINEAR REGRESSION VI

11.16.2020

HOMEWORK 5

* due FRIDAY

LINEAR REGRESSION READINGS

- * Chapter 5 from PDSH, particularly <u>5.6 -</u> "In Depth: Linear Regression"
- * Chapter 16 from Inferential Thinking "Inference for Regression"

RECAP

- * np.linalg.lstsq numpy function that does least squares regression (often bad)
- * R² is a measure of how good a regression model is
- * in-set vs. out-of-set evaluation of a regression model

REGULARIZATION

* we modify the error function to be the sum of a loss term and a penalty term

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \sum_{i=1}^{P} \beta_i^2$$

REGULARIZATION

* it also introduces an extra parameter, λ, which is the regularization coefficient, or, in this case, ridge coefficient

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \sum_{i=1}^{P} \beta_i^2$$

- * this type of regularization (penalizing the sum of squared weights) is called ridge regression
- * and because the ridge error function
 (loss + penalty) is parabolic, it has an
 analytic solution!
- * a nice implementation is in scikit-learn as sklearn.linear_model.Ridge

- * but when doing ridge regression you have a new issue: how do you choose the ridge parameter, λ?
- * if you train and test your regression model on the same piece of data, $\lambda=0$ is always going to be the best
 - * ~bogus~

- * if you train and test on different datasets (as discussed earlier) it's better
 - * but using your test data multiple times
 (to choose a parameter!) creates an
 issue of bias (aka overfitting)

- * the correct solution is cross-validation:
 - * break your dataset into training and test (X -> [X_trn, X_test])
 - * further break up your training set(X_trn
 -> [X_fit, X_val])
 - * fit weights using X_fit, choose λ based on performance on X_val, then finally test on X_test

- * In reality you should understand this process (& its philosophical underpinnings), but you probably won't need to implement it yourself
- * sklearn provides functions that solve these problems already!

THE PROBLEM

- * Load a dataset containing data from 442 diabetes patients
 - * for each patient there are 10 features (e.g. age, sex, bmi, etc.)
 - * and 1 outcome ("disease progression after one year")
- * We'll be using linear regression to predict disease progression from the 10 features

LINEAR REGRESSION LAB

- * If you want to following along, pull the latest version of the ndap-fa2020 repository from github
 - * https://github.com/alexhuth/ndap-fa2020/
- * Then see 35-linear_regression-6/35regression-demos.ipynb

END