Student Data Hackaton

MLewandowska

November 2020

Contents

1	Basics Look into data	1
	1.1 Look Into Data	
	1.2 Data preprocessing	
	1.3 Regression	
	1.4 Decision trees	
	1.5 Conclusion	2
2	Simple models	3
3	Ensemble models	4
4	Interesting data correlations	5

1 Basics Look into data

1.1 Look Into Data

- read data from csv files
- group data in three tables: guests, restaurants, stars
- merge tables guests with stars into "stars-guests" table
- remove records with "?" from "stars-guests" table
- in "stars-guests" table create dummy columns for categorical variables (one-hot-encoding)
- merge tables restaurants with stars into "stars-restaurants" table
- in "stars-restaurants" table create dummy columns for categorical variables (one-hot-encoding)
- in "stars-restaurants" table create dummy columns for haurs
- check correlations (pearson coefficients) within tables
- remove columns, that are not correlated with Target (number of stars)

1.2 Data preprocessing

- 1. create one data set "data.csv" based on information from "Look into data".
- 2. create normalized data set "data-normalized.csv" where columns: weight, heitht, age, closing hour are whitened:

 $X \rightarrow \frac{X - X.mean()}{X.std()}$

3. "data.csv" has 2936 records (rows) with 142 features (columns) each

1.3 Regression

- 1. read data from "data-normalized.csv" file
- 2. split data into training, validation and testing set
- 3. train linear regression model on training set and check on validation set
- 4. train regularized linear regression model on training set and check on validation set (grid search for best parameters)
- 5. train logistic regression model on training set and check on validation set
- 6. for logistic regression model check which features have the biggest and weights (coefficients)
- 7. for logistic regression model check which features have the smallest and weights (coefficients)

Conclusion:

- Linear regression and regularized linear regression are not suitable for this data
- From analysis of coefficients in logistic regression the following seems to be not important: cuisine-x-Bar, cuisine-x-Italian, cuisine-y-Pizzeria. Status "widow" is highly correlated with 0 and 1 star. Guest with Activity professional will rather give 2 stars whereas unemployment 0 stars. Guest who has eaten cuisine Turkish will rather give 0 stars (negative coefficient for 2 stars and positive coefficient for 0 star). Restaurant Bakery is most likely to get 0 stars (negative coefficient for 2 stars and positive coefficient for 0 star)

1.4 Decision trees

- 1. read data from "data-normalized.csv" file
- 2. split data into training, validation and testing set
- 3. train linear decision tree classifier on training set and check on validation set
- 4. grid search for the best "max deepth" parameter (get max deepth =13)
- 5. evaluate decision tree classifier with max deepth =13, show whole tree model
- 6. check, which features were used for splitting

The following features have not been used for splitting:

- budget-high do nit occur
- payments other than cash
- parking-lot-valet parking
- marital-status-widow
- marital-status-single
- marital-status-married
- religion other than catholic
- cuisine-x-Bar
- cuisine-x-Italian
- open-16-18

1.5 Conclusion

Based on results from Logistic regression and decision trees, I decided to remove fro future data sets columns: martial status single, martial status married, guest cuisine Bar, guest cuisine Italian. Final data set has 2936 records (rows) with 135 features (columns) each.

2 Simple models

The following model were trained on data sets [2936 rows x 135 columns].

- 1. Logistic regression
- 2. support vector machines (with kernel poly, linear, rbf, sigmoid)
- 3. decision tree
- 4. feed forward neural network

Decision trees were trained on "data.csv", the other three models on "data-normalized.csv". In each case the best hyperparameters were found by using grid search method. The results are shown in Table:

	accuracy on training set	accuracy on training set	accuracy on training set
Logistic regression	79%	72%	72%
Decision tree	94%	89%	87%
SVN	99%	99%	95%
Neural network	97%	96%	96%

- For Support vector machines the best accuracy model achieved for kernel = 'rbf', C=10, gamma = 0.1 and coef0 = -10.
- For DecisionTreeClassifier I set parameter max-depth to 12, as further increasing max-depth didn't increase model's accuracy and cause over-fitting.
- For Neural Network model I use Feed Forward neural network model with two hidden layers: (135,40,40,3) and hiperbolic tangens activation function. The model was train using stochastic gradient descent with learning rate lr = 0.05 and momentum = 0.9.

3 Ensemble models

- 1. Bagging method on decision trees
- 2. Bagging method on decision trees, SVM and neural networks
- 3. XGBoost

	training set	validation set	testing set
Ensemble DT only	98%	91%	88%
Ensemble SVN / NN/ DT	98%	90%	90%
XGBoost	99%	92%	92%

- Bagging model on decision trees consists of ensemble of m=100 decision trees classifiers with max depth = 12
- Bagging model on decision trees, SVM and neural networks consists of ensemble of m=5 decision trees classifiers with max depth = 12, one SVM and one (already trained) Neural Network. SVN and Neural network aare taken with weight 5, each of decision trees classifiers have weight = 1.
- XGBClassifier is was implemented as XGBClassifier from xgboost library.

	score	name_features		score	name_features
f0	998	drinker_abstemious	f0	998	drinker_abstemious
f1	991	age	f1	991	age
f2	914	cuisine_x_Chinese	f2	914	cuisine_x_Chinese
f135	542	religion_Christian	f135	542	religion_Christian
f130	317	height	f130	317	height
f7	309	color_green	f7	309	color_green
f133	283	parking_lot_yes	f133	283	parking_lot_yes
f131	279	cuisine_x_Burgers	f131	279	cuisine_x_Burgers
f125	251	color_white	f125	251	color_white
f8	205	dress_preference_elegant	f8	205	dress_preference_elegant
f88	175	color_black	f88	175	color_black
f9	174	cuisine_y_Seafood	f9	174	cuisine_y_Seafood
f22	169	open_08_10	f22	169	open_08_10
f35	169	parking_lot_none	f35	169	parking_lot_none
f19	166	cuisine_y_Mexican	f19	166	cuisine_y_Mexican
		(a)			(b)

Figure 1: Feature importance sorted by weight (left) and gain (right) for XGBClassifier

4 Interesting data correlations

- Unemployment guests give 0 stars, students tend to give 1 or 2 stars (86%) and professionals 2 stars (in 64%)
- guests with no religion tend to give 2 stars, Jewish 1 star and Catolics and Mormons 1 or 2 stars.
- people with Pre-obesity $(BMI \in (25,30))$ do not give 0 stars (in 93%),
- Very Young (born after 1991) people and old people (born before 1971) tend to give 2 stars
- Guests, who do not pay by cash tend to not give 0 stars

•