Metaphor Detection with Cross-Lingual Model Transfer

What is a metaphor?

- "A type of conceptual mapping where words or phrases are applied to objects and actions in a way that do not permit a literal interpretation" (Lakoff and Johnson 1980)
- Estimated 5 to 20% of language is used through metaphors
- Two syntactic constructions of metaphors
 - Subject-verb-object (SVO)
 - Adjective-noun (AN)
- Examples
 - The snow is a white blanket
 - He is a shining star
 - The calm lake was a mirror

Motivation

Practical

- Translation between languages
- Dialog systems
- Sentiment Analysis

Scientific

 Hypotheses about language regarding metaphors can be more easily tested at a larger scale

Difficult Problem due to multiple factors (Context-dependent, subjective)

Authors Contributions

- New state-of-the-art English metaphor detection system using conceptual semantic features
 - a. Degree of abstractness (Ability to imagine the word)
 - b. Semantic Supersenses (Semantic categories from WordNet)
- 2. New metaphor-annotated corpora for Russian and English
- Using model transfer to show metaphors are conceptual in nature by detecting metaphors in Spanish, Farsi, and Russian

Methodology

- Each SVO (or AN) metaphor is represented with a triple (or duple in case of AN) where the vector consists of conceptual features
- Three main feature categories
 - Abstractness and imageability
 - Supersenses
 - Unsupervised vector-space word representation
- All features are computed for each word individually and also for pairs of the triple

Abstractness and imageability

- A subject that is more abstract with a verb that is more concrete is indicative of a metaphor
- Imageability is the ability to imagine the word
 - Vengeance brings up emotional images
 - Torture brings up emotional and visual images

Supersenses

- 26 classes of nouns (noun.body, noun.animal)
- 15 classes of verbs (verb.consumption, verb.motion)
- Different classes appear together based on whether it is a metaphor or not
 - "Car drinks gasoline" (verb.consumption + noun.substance)
 - "Kid drinks juice" (verb.consumption + noun.food)
 - Preserved in translation

Vector space word representations

- Words are represented as a vector in some vector space
- Designed to capture lexical semantic properties
- Mikolov et al. (2013) found cross-lingual property of word representations
- Vector space models can be seen as vectors of semantic concepts that preserve meaning across languages

Mikolov et al. (2013) Cross-lingual property of distributed word representations

- Distributed word vector representations projected down to two dimensions using PCA
- Looked across multiple languages using a distance measure
 - Spanish
 - Czech
 - Vietnamese

Model and Feature Extraction

- A random forest classifier

Abstractness and imageability

- MRC psycholinguistic database gives ratings of abstractness and imageability to many words
- Logistic regression to give abstractness and imageability scores to all words in vector space representations

Supersenses

Represented as a feature vector with each supersense representing an element in the vector

Experiments

10-fold cross validation

	SVO		AN	
#	FEAT	ACC	# FEAT	ACC
AbsImg	20	0.73*	16	0.76*
Supersense	67	0.77*	116	0.79*
AbsImg+Sup.	87	0.78*	132	0.80*
VSM	192	0.81	228	0.84*
All	279	0.82	360	0.86

Confirms hypothesis that conceptual features are effective in metaphor classification

Multi-lingual

Metaphors have similar properties across language

Collected and annotated metaphoric and literal sentences in four languages giving each dataset an equal number of metaphors and non-metaphors

0.85

0.77 0.72 0.74

	SVO	AN		SVO	
EN	22.50	200	EN	0.79	
RU	240	200	RU	0.84	
ES	220	120	ES	0.76	
FA	44	320	FA	0.75	

Conclusion

- Show how to identify metaphors across languages
- Established benchmarks of metaphor detection in Spanish, Farsi, and Russian,
- Achieve state-of-the-art performance in English.

Neural Metaphor Detection in Context

Introduction

- Metaphors are pervasive in natural language
- Requires contextual reasoning about whether a specific situation can actually happen
- Metaphors classified into 5 categories: direct metaphor, indirect metaphor, implicit metaphor, personification, and borderline case

Related Work

- Previous approaches solely used SVO triples
- Providing full context supports more accurate prediction

Tasks

 Given a target verb in a sentence, classify whether it is metaphorical or not

Classification of a binary label (metaphoricity of a word)

2) Given a sentence, detecting all of the metaphorical words

Sequence labeling. Given a sentence X_i , predict a sequence of binary labels for each word

Overall, given accurate annotations of all words in a sentence, sequence labeling model outperforms the classification model

Model

- Use of bidirectional LSTM to encode a sentence
- Feedforward neural network for classification

Neural Metaphor Detecting with CNN-LSTM (Wu 2018)

- Does sequential modeling by using CNN to extract local contextual information
- Then, uses a Bi-LSTM layer to extract long-range information from CNN feature maps to combine previous and future context information for prediction.
- Lastly, uses a softmax activation function to predict the metaphor label

Results

Sequence Labeling

- Model mainly improves recall
- Particles difficult to identify ("put down the disturbances")
- Strong performance in dataset where annotations for all words in a sentence indicates predicting metaphor labels of context words helps to predict the target verb

Verb Classification

 Outperforms sequence labeling model where sentences are simple and only verbs are annotated

Error Analysis

- 100 errors sampled
- Sequence model outperforms Verb classification model in detecting personifications, indirect metaphors, and direct metaphors that involve uncommon verbs

CLS	SEQ	Sentence	Metaphor Type
×	X	To throw up an impenetrable Berlin Wall between you and them could be tactless.	-
X	X	In reality you just invent a tale, as if you were sitting round a fire in a cave.	direct metaphor
×	X	So they bought immunity.	indirect metaphor
X	×	During the early states of the phased evacuation the logistical problem facing the police was the street-by-street warning of the population to make ready for evacuation.	indirect metaphor
×	V	There are few things worse than being bludgeoned into reading a book you hate.	indirect metaphor
X	1	He thought of thick, fat, hot motorways carving up that land.	personification

Conclusion

- Use of BiLSTM models with contextualized word representations for metaphor detection
- New state-of-the-art results for detection
- Error analysis unveils remaining challenges
 - Allows for continuing research in metaphor detection

Discussion Questions

- How do the two research papers differ in model?
 - How does that affect the conclusions that the authors are able to make?

 Why do you think it's still difficult to implement a well-functioning chat bot?