HW PDE

September 30, 2024

1 Homework 2

James Larsen

PHYSICS 514 – Emmanuel Gull

```
[81]: import numpy as np
from matplotlib import pyplot as plt
from time import time
```

1.1 Finite Difference

Discretizing the Poisson equation in two space dimensions yields the following system of linear equations:

$$\Phi(x_{n+1},y_m) + \Phi(x_{n-1},y_m) + \Phi(x_n,y_{m+1}) + \Phi(x_n,y_{m-1}) - 4\Phi(x_n,y_m) = -4\pi\rho(x_n,y_m)\Delta x^2. \quad (1)$$

Manipulating this equation gives us the following iterative method:

$$\Phi_{k+1}(x_n, y_m) \leftarrow \frac{1}{4} \left[\Phi(x_{n+1}, y_m) + \Phi(x_{n-1}, y_m) + \Phi(x_n, y_{m+1}) + \Phi(x_n, y_{m-1}) + 4\pi \rho(x_n, y_m) \Delta x^2 \right]. \tag{2}$$

```
[139]: def finite_diff(dx, Phi_j, tol, s):
           Solve Poisson equation using finite difference iteration
           dx:
                   discretization step size
           Phi_j: initial guess
                   error tolerance
           tol:
                  charge density
           s:
           returns solution (Phi_j) and number of iterations to solution (j)
           # iterate until converged
            = 1
           j = 0
           while > tol:
               Phi_next = np.copy(Phi_j)
               for n in range(1, Phi_j.shape[0]-1):
                   for m in range(1, Phi_j.shape[1]-1):
```

```
Phi_next[n,m] = (Phi_j[n+1,m] + Phi_j[n-1,m] + Phi_j[n,m+1] +
Phi_j[n,m-1] + 4*np.pi*s[n,m]*dx**2) / 4

= np.linalg.norm(Phi_next - Phi_j)
Phi_j = Phi_next
j += 1

# return desired values
return Phi_j, j
```

```
[149]: def iteration():
           111
           repeat iterative method for specified value of
           # initialize global values
           ks = np.arange(2,6)
           dxs = 1 / (2**ks)
           numiters fd = np.zeros(len(dxs))
           times_fd = np.zeros(len(dxs))
           # loop over discretizations
           for i, dx in enumerate(dxs):
               x = np.arange(0, 1+dx, dx)
               y = np.arange(0, 1+dx, dx)
               xs, ys = np.meshgrid(x, y, sparse=True)
               s = np.exp(-((xs-0.25)**2 + (ys-0.75)**2) / (2***2)) / ( * np.

¬sqrt(2*np.pi))
               tol = 1e-8
               # initialize Phi to satisfy boundary conditions
               Phi_j = np.zeros(s.shape)
               Phi_j[:,0] = x
               Phi_j[:,-1] = x
               Phi_j[-1] = np.ones(len(x))
               # solve via finite difference iteration
               start = time()
               Phi_j, numiters_fd[i] = finite_diff(dx, Phi_j, tol, s)
               end = time()
               times_fd[i] = end-start
           # return values
           return s, Phi_j, numiters_fd, times_fd
```

```
[144]: # get values
s, Phi_j, numiters_fd, times_fd = iteration(0.1)
# plot result
```

```
plt.contourf(x, y, s, levels=500, cmap="magma")
plt.axis('scaled')
plt.title(r"\r" with \sigma = 0.1")
plt.colorbar()
plt.show()
# plot result
plt.contourf(x, y, Phi_j, levels=500)
plt.axis('scaled')
plt.title(r"Converged Solution for \Delta x = 1/32")
plt.colorbar()
plt.show()
# plot number of iterations to convergence
plt.scatter(dxs, numiters_fd)
plt.xscale("log")
plt.xlabel(r"$\Delta x$ (logscale)")
plt.ylabel("number of iterations to convergence (logscale)")
plt.yscale("log")
plt.title("Iterations to Convergence Increase as Discretization Error is \Box
 →Reduced")
plt.grid()
plt.show()
# plot time to convergence
plt.scatter(dxs, times_fd)
plt.xscale("log")
plt.xlabel(r"$\Delta x$ (logscale)")
plt.ylabel("time to convergence (secs, logscale)")
plt.yscale("log")
plt.title("Time to Convergence Increases as Discretization Error is Reduced")
plt.grid()
plt.show()
```


1.2 Over-relaxation

To speed up convergence, we can use multi-grid methods. The general method is given by the following steps:

- 1. Solve the Poisson equation on a grid with spacing Δx .
- 2. Refine the grid $\Delta x \leftarrow \Delta x/2$.
- 3. Interpolate the potential at the new grid points.
- 4. Repeat until the desired final fine grid spacing is reached.

```
# loop over discretizations
           for i, dx in enumerate(dxs):
               # initialize very coarse mesh
              dx_curr = 1 / 2
               # loop until desired grid spacing reached
              start = time()
              while dx curr != dx:
                   dx_curr /= 2
                   # initialize grid and charge density
                   x = np.arange(0, 1+dx_curr, dx_curr)
                   y = np.arange(0, 1+dx_curr, dx_curr)
                   xs, ys = np.meshgrid(x, y, sparse=True)
                   s = np.exp(-((xs-0.25)**2 + (ys-0.75)**2) / (2***2)) / ( * np.
        ⇔sqrt(2*np.pi))
                   # initialize Phi to satisfy boundary conditions
                   Phi_new = np.zeros(s.shape)
                   Phi new[:,0] = x
                   Phi new[:,-1] = x
                   Phi_new[-1] = np.ones(len(x))
                   # interpolate potential if not first iteration
                   if dx_curr != 1/4:
                       Phi_new[::2,::2] = Phi_j
                       Phi_new[::2,1::2] = (Phi_j[:,:-1:] + Phi_j[:,1::]) / 2
                       Phi_new[1::2,::2] = (Phi_j[:-1:,:] + Phi_j[1::,:]) / 2
                       Phi_new[1::2, 1::2] = (Phi_new[1::2,:-1:2] + Phi_new[1::2,2::
        →2]) / 2
                   # solve via finite difference iteration
                   Phi_j, numiters_fd_curr = finite_diff(dx, Phi_new, tol, s)
                   numiters_mg[i] += numiters_fd_curr
               # add times
               end = time()
               times_mg[i] = end-start
           # return values
           return s, Phi_j, numiters_mg, times_mg
[148]: # get values
       s, Phi_j, numiters_mg, times_mg = multigrid(0.1)
```

plot result

```
plt.contourf(x, y, s, levels=500, cmap="magma")
plt.axis('scaled')
plt.title(r"\r" with \sigma = 0.1")
plt.colorbar()
plt.show()
# plot result
plt.contourf(x, y, Phi_j, levels=500)
plt.axis('scaled')
plt.title(r"Converged Solution for \Delta x = 1/32")
plt.colorbar()
plt.show()
# plot number of iterations to convergence
plt.scatter(dxs, numiters_fd, marker="x", color="green", label="finite_"

difference iteration")
plt.scatter(dxs, numiters_mg, marker="x", color="red", label="multi-grid")
plt.xscale("log")
plt.xlabel(r"$\Delta x$ (logscale)")
plt.ylabel("number of iterations to convergence (logscale)")
plt.yscale("log")
plt.title("Iterations to Convergence Increase as Discretization Error is_{\sqcup}
 →Reduced")
plt.grid()
plt.legend(loc="best")
plt.show()
# plot time to convergence
plt.scatter(dxs, times_fd, marker="x", color="green", label="finite difference_
 ⇔iteration")
plt.scatter(dxs, times mg, marker="x", color="red", label="multi-grid")
plt.xscale("log")
plt.xlabel(r"$\Delta x$ (logscale)")
plt.ylabel("time to convergence (secs, logscale)")
plt.yscale("log")
plt.title("Time to Convergence Increases as Discretization Error is Reduced")
plt.grid()
plt.legend(loc="best")
plt.show()
```


Iterations to Convergence Increase as Discretization Error is Reduced

Note that while the overall number of iterations increases for the multi-grid methods in comparison to the standard finite difference with iteration, the wall clock time for smaller Δx decreases. This result reflects the fact that more iterations are performed on easier coarse grids with fewer points. The convergence criterion for this iterative method is chosen to be $||\Phi_{k-1} - \Phi_k|| < 10^{-8}$, thus the method does not require a known solution a priori.

1.3 Comparative Results

```
plt.yscale("log")
plt.title(f"Comparing Multigrid to Standard for ={ }")
plt.grid()
plt.legend(loc="best")
plt.show()
```

Comparing Multigrid to Standard for σ =0.1

In the above plots, we see that the advantage of multi-grid is more evident for larger choices of σ . This fact makes sense: smaller σ requires a finer grid to refine the tightly concentrated potential, hence the coarse grid steps in the multi-grid method will not alleviate as much computational work for the later finer iterations.