MATH 15910 - Problem Set 7

Sohini Banerjee

November 15, 2023

1

A set is countable if and only if its elements can be listed one by one.

- The set $\{x\}$ contains a single object, so it is countable because we can list its elements as $\{x\}$. It is important to note that we treat x as a single object, so whether x is a set (finite or infinite) or another element altogether does not matter.
- Since A is countable, we can list out its elements.
 - If A is finite, we can list the elements of A as $\{a_1, a_2, ..., a_n\}$, so $A \cup \{x\}$ can be listed as $\{x, a_1, a_2, ..., a_n\}$, where there are n elements in A.
 - If A is infinite, we can list the elements of A as $\{a_1, a_2, ...\}$, so $A \cup \{x\}$ can be listed as $\{x, a_1, a_2, ...\}$.

In both cases, $A \cup \{x\}$ can have its elements listed out, so $A \cup \{x\}$ is countable. We can also get this result by knowing that the union of countable sets is countable. We know $\{x\}$ is countable (single object x) and A is countable (given in the problem).

$\mathbf{2}$

First, we construct a bijection from \mathbb{Q} to \mathbb{Z} :

- From class, we know that there exists a bijection from \mathbb{Q}_+ to \mathbb{Z}_+ .
- By symmetry, we know that there exists a bijection from \mathbb{Q}_{-} to \mathbb{Z}_{-} since each element of \mathbb{Q}_{+} can be multiplied by -1 and the cardinality will not be changed. The same applies for \mathbb{Z}_{-} . We can map the negative of every element of \mathbb{Q}_{+} to the negative of what it is mapped to in \mathbb{Z}_{+} to get this bijection.
- The only element of \mathbb{Q} not included in either \mathbb{Q}_+ or \mathbb{Q}_- is 0, which we can map to 0 in \mathbb{Z} , which is not in \mathbb{Z}_+ or \mathbb{Z}_- .

Combining these, we get that there exists a bijection from \mathbb{Q} to \mathbb{Z} . We know that \mathbb{Q}_- , $\{0\}$, and \mathbb{Q}_+ are disjoint. Similarly, \mathbb{Z}_- , $\{0\}$, and \mathbb{Z}_+ are disjoint. This means we can construct a bijection from \mathbb{Q} to \mathbb{Z} by combining the bijection from \mathbb{Q}_+ to \mathbb{Z}_+ , \mathbb{Q}_- to \mathbb{Z}_- , and $0\epsilon\mathbb{Q}$ to $0\epsilon\mathbb{Z}$.

Now, we use the fact that exists a bijection from \mathbb{Z} to \mathbb{Z}_+ :

- From class, we know that there exists a bijection from \mathbb{Z} to \mathbb{Z}_+ .
- With a bijection from \mathbb{Q} to \mathbb{Z} and \mathbb{Z} to \mathbb{Z}_+ , transitivity tells us that there exists a bijection from \mathbb{Q} to \mathbb{Z}_+ . If $f: \mathbb{Q} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}_+$, we know that $g \circ f: \mathbb{Q} \to \mathbb{Z}_+$.

- From previous assignments/class, we know that if f is a bijective function and g is a bijective function, then $g \circ f$ is also a bijective function.

Since there exists a bijection from \mathbb{Q} to \mathbb{Z}_+ , $\#\mathbb{Q} = \#\mathbb{Z}_+$, and so, \mathbb{Q} must be countable by definition.

3

3.1

Let $A = \{x \in \mathbb{R} \mid x^2 \in \mathbb{Q}\}$. We know that for all $x \in A$, $x^2 \in \mathbb{Q}$, so x^2 where x is positive can be enumerated using the table from class that traverses all positive rational numbers \mathbb{Q}_+ . We take the square root of the table to get the traversal for x where x is positive. The following demonstrates the bijection for all positive $x \in A$:

Using symmetry, we can construct a bijection for all negative $x \in A$ to \mathbb{Z}_- . So, we have a bijection from positive $x \in A$ to \mathbb{Z}_+ (diagram) and a bijection from negative $x \in A$ to \mathbb{Z}_- . We also do this mapping from $0 \in \mathbb{Q}$ to $0 \in \mathbb{Z}$. Using what we showed in problem 2, we combine these bijections to get a bijection from A to \mathbb{Z}_+ and the bijection from \mathbb{Z} to \mathbb{Z}_+ means there exists a bijection from A to \mathbb{Z}_+ . By definition, if there exists a bijection between a set A and \mathbb{Z}_+ , then A is countable.

3.2

We must show that the set of all finite subsets of \mathbb{Z} is countable. Let $A=\{\text{finite subsets of }\mathbb{Z}\}$. Furthermore, we can let $A(n)=\{S\subset\mathbb{Z}\mid s\epsilon S\implies |s|\leq n\}$. From here, we know that $A=\bigcup_{n=0}^{\infty}A(n)$, which is true because A(n) represents every subset of A. Each $S\epsilon A(n)\subset\{-n,-(n-1),...,0,...,n-1,n\}$, which is a finite set, and any subset of a finite set is also finite, meaning $S\epsilon A(n)$ is finite. Since the subsets are finite, they are countable by definition because we can enumerate the elements from $x_1,...,x_m$ where m is the cardinality of the finite set. From class, we know that the union of countable sets is countable, so since A(n) is countable, then $\bigcup_{n=0}^{\infty}A(n)$ is countable. Thus, we have shown that A is countable, or that the set of all finite subsets of $\mathbb Z$ is countable.