01.112/50.007 Machine Learning

Lecture 7 Support Vector Machines (Part 1)

Recap

Linear Classifiers

• Given training data $S_n = \{(x^{(t)}, y^{(t)}) \mid t = 1, ..., n\}$, we define **linear** classifier as below:

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^{\mathsf{T}} x + \theta_0)$$

• We estimate, model parameters, $\theta \in \mathbb{R}^d$, $\theta_0 \in \mathbb{R}$, by minimizing **empirical** risk:

$$\mathcal{R}(\theta, \theta_0) = \frac{1}{n} \sum_{t=1}^n Loss(y^{(t)}(\theta, x^{(t)} + \theta_0))$$

Loss Functions

Empirical risk:

$$\mathcal{R}(\theta, \theta_0) = \frac{1}{n} \sum_{t=1}^n Loss(y^{(t)}(\theta, x^{(t)} + \theta_0))$$

• Zero-one loss: $Loss_{0|1}(z) = [z \le 0]$

CONVEX!

Penalize larger mistakes more. Penalize near-mistakes, i.e. $0 \le z \le 1$.

Linear Classifiers: Which Hyperplane?

- Empirical risk does not constrain the parameters. Lots of possible solutions for *a, b, c.*
- Constrain it using **regularization term** (similar to linear regression)

$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{t=1}^n \operatorname{Loss}_h \left(y^{(t)} (\theta \cdot x^{(t)} + \theta_0) \right)$$
Using regularization term as part of the objective function.

This line represents the decision boundary: ax + by - c = 0

Support Vector Machine

Support Vector Machine (SVM)

- SVM finds an optimal* solution.
 - Maximizes the distance between the hyperplane and the "difficult points" close to decision boundary.
 - One intuition: if there are no points near the decision surface, then there are no uncertain classification decisions.

Another intuition

 If you have to place a fat separator between classes, you have fewer choices.

Support Vector Machine (SVM)

- SVMs maximize the margin around the separating hyperplane. A.k.a. large margin classifiers.
- The decision function is fully specified by a subset of training samples, *the support vectors*.
- Solving SVMs is a quadratic programming problem.
- Seen by many as the most successful current text classification method*

^{*}but other discriminative methods often perform very similarly 9

Support Vector Machine (SVM)

Distance of each point from decision boundary

$$\gamma^{(t)}(\theta, \theta_0) = \frac{y^{(t)}(\theta \cdot x^{(t)} + \theta_0)}{\|\theta\|}$$

Goal: Maximize minimum distance to the boundary

$$\min_{t=1,\dots,n} \gamma^{(t)}(\theta,\theta_0)$$

Formulate the goal as quadratic programming problem (SVM)

$$\min \frac{1}{2} \|\theta\|^2$$
 subject to $y^{(t)}(\theta \cdot x^{(t)} + \theta_0) \ge 1, t = 1, \dots, n$

Lagrange Multipliers

Background

Constrained Optimization

Want to minimize some function f(x), but there are some *constraints* on the values of x.

Method 1 (Dual Problem)

Solve a *dual optimization problem* where the constraints are nicer, and where it is easier to implement gradient descent.

Method 2 (Exact Solution)

Solve the *Lagrangian* system of equations.

Equality Constraints

Problem.

minimize f(x)subject to $h_1(x) = 0, ..., h_l(x) = 0$

Lagrangian.

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Example.

minimize
$$f(x) = n_1 \log x_1 + \dots + n_d \log x_d$$

subject to $h(x) = x_1 + \dots + x_d - 1 = 0$
 $L(x, \lambda) = n_1 \log x_1 + \dots + n_d \log x_d + \lambda(x_1 + \dots + x_d - 1)$

Two-Player Game

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Rules.

- You get to choose the value of x. Your goal is to minimize $L(x, \lambda)$.
- Your adversary gets to choose the value of λ . His goal is to maximize $L(x, \lambda)$.

Primal Game

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Primal Game. You go first.

Your Strategy.

- Ensure that $h_1(x) = 0, ..., h_l(x) = 0$.
- Find x that minimizes f(x).

Final Score.
$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

The optimal x^*, λ^* are saddle points of $L(x, \lambda)$.

Dual Game

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Dual Game. You go second.

Adversary's Strategy.

- For each λ , compute $\ell(\lambda) = \min_{x} L(x, \lambda)$
- Find λ that maximizes $\ell(\lambda)$.

Final Score.
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

Max-Min Inequality

Primal.
$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

Dual. $d^* = \max_{\lambda} \min_{x} L(x, \lambda)$

"you do better if you have the last say"

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

$$\geq \max_{\lambda} \min_{x} L(x, \lambda) = d^*$$

If $p^* = d^*$, we can solve the primal by solving the dual.

Max-Min Inequality

Example.

	x = 1	x = 2
$\lambda = 1$	1	4
$\lambda = 2$	3	2

Primal.
$$p^* = \min_{x} \max_{x}$$

Primal.
$$p^* = \min_{x} \max_{\lambda} L(x, \lambda) = 3$$

Dual. $d^* = \max_{\lambda} \min_{x} L(x, \lambda) = 2$

Exact Solution

Problem.

minimize
$$f(x)$$

subject to $h_1(x) = 0, ..., h_l(x) = 0$

Lagrange multipliers.

1. Write down the Lagrangian.

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

2. Solve for critical points x, λ .

$$\nabla_{x}L(x,\lambda) = 0, h_{1}(x) = 0, ..., h_{l}(x) = 0$$

3. Pick critical point which gives global minimum.

Example

minimize
$$f(x) = n_1 \log x_1 + \dots + n_d \log x_d$$

subject to $h(x) = x_1 + \dots + x_d - 1 = 0$

Lagrangian

$$L(x, \lambda) = n_1 \log x_1 + \dots + n_d \log x_d + \lambda (x_1 + \dots + x_d - 1)$$

Critical points

$$0 = n_i/x_i + \lambda$$

$$0 = x_1 + \dots + x_d - 1$$

$$x_i = n_i/(-\lambda)$$

$$(-\lambda) = n_1 + \dots + n_d$$

Inequality Constraints (Primal-Dual)

Primal Problem.

minimize
$$f(x)$$

subject to $g_1(x) \le 0, ..., g_m(x) \le 0$

Lagrangian.

$$L(x,\alpha) = f(x) + \alpha_1 g_1(x) + \dots + \alpha_m g_m(x)$$

Dual Problem.

maximize
$$\ell(\alpha)$$
 subject to $\alpha_1 \ge 0, ..., \alpha_m \ge 0$

where
$$\ell(\alpha) = \min_{x \in \mathbb{R}^d} L(x, \alpha)$$

Box constraints are easier to work with!

Inequality Constraints (Exact Solution)

minimize
$$f(x)$$

subject to $g_1(x) \le 0, ..., g_m(x) \le 0$

Lagrangian.

$$L(x,\alpha) = f(x) + \alpha_1 g_1(x) + \dots + \alpha_m g_m(x)$$

Solve for x, α satisfying

- 1. $\nabla_{x}L(x,\alpha)=0$
- 2. $g_1(x) \leq 0, ..., g_m(x) \leq 0$
- 3. $\alpha_1 \geq 0, ..., \alpha_m \geq 0$
- 4. $\alpha_1 g_1(x) = 0, \dots, \alpha_m g_m(x) = 0$ Complementary Slackness

SVM: Maximum Margins

Computing the margin

Computing the margin

Maximum Margin

Our goal is to

maximize $1/\|\theta\|$ subject to $y(\theta^{T}x + \theta_0) \ge 1$ for all data (x, y)

Or equivalently,

minimize $\frac{1}{2} \|\theta\|^2$ subject to $y(\theta^T x + \theta_0) \ge 1$ for all data (x, y)

Lagrangian

Primal.

minimize
$$\frac{1}{2} \|\theta\|^2$$

subject to $y(\theta^T x) \ge 1$ for all data (x, y)

Lagrangian.

$$L(\theta, \alpha) = \frac{1}{2} \|\theta\|^2 + \sum_{(x,y)} \alpha_{x,y} (1 - y(\theta^{\mathsf{T}}x))$$

To find $\ell(\alpha) = \min_{\theta} L(\theta, \alpha)$, we solve

$$0 = \nabla_{\theta} L(\theta, \alpha) = \theta - \sum_{(x,y)} \alpha_{x,y} yx$$

to get $\theta = \sum_{(x,y)} \alpha_{x,y} yx$. Substituting into $L(\theta,\alpha)$ gives

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy'(x^{\mathsf{T}}x').$$

Primal-Dual

Primal.

minimize $\frac{1}{2} \|\theta\|^2$

subject to $y(\theta^T x) \ge 1$ for all data (x, y)

Dual.

maximize $\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y'(x^{\mathsf{T}} x')$ subject to $\alpha_{x,y} \geq 0 \text{ for all } (x,y)$

It can be shown that the primal

and dual problems are

equivalent (strong duality).

After solving the dual to get the optimal $\alpha_{x,y}$'s, we obtain the optimal θ using $\theta = \sum_{(x,y)} \alpha_{x,y} yx$.

Support Vectors

Complementary Slackness.

$$\hat{\alpha}_{x,y} > 0$$
: $y(\hat{\theta}^{\mathsf{T}}x) = 1$

$$\hat{\alpha}_{x,y} > 0$$
: $y(\hat{\theta}^{T}x) = 1$
 $\hat{\alpha}_{x,y} = 0$: $y(\hat{\theta}^{T}x) > 1$

Sparsity

Since very few data points are support vectors, most of the $\hat{\alpha}_{\chi,\nu}$ will be zero.

Support Vectors Non-Support Vectors

Summary

Lagrange Multipliers

- Lagrangian
- o Primal-Dual Problems
- Inequality Constraints
- Complementary Slackness

Support Vector Machines

- Maximum Margins
- Dual Problem
- Support Vectors

Intended Learning Outcomes

Support Vector Machines

- Write down the primal problem, and explain how it is derived from the maximum margin problem.
- Write down the dual problem. Describe how the optimal θ is derived from the $\alpha_{x,y}$'s. Describe in terms of the $\alpha_{x,y}$'s, how to do prediction.
- Define support vectors, both geometrically and in terms of the $\alpha_{x,y}$'s. Recognize that most of the $\alpha_{x,y}$'s are zero.