Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has five (5) pages, including this one.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	30	
3	25	
4	25	
5	20	
Total	100	

Problem 1 (15 pts). Find the distance d from the point (3, 7, -5) to the z-axis.

$$d =$$

Problem 2 (15 pts). Find an exact expression for the angle θ between the vectors $\mathbf{v} = \langle 3, -1, 5 \rangle$ and $\mathbf{w} = \langle -2, 4, 3 \rangle$.

$$\theta =$$

Problem 3 (15 pts). Find the length ℓ of the curve $r(t) = i + t^2 j + t^3 k$ for $0 \le t \le 1$.

$$\ell =$$

Problem 4 (10 pts). At what points does the helix $r(t) = \langle \sin t, \cos t, t \rangle$ intersect the sphere $x^2 + y^2 + z^2 = 5$?

points:

Problem 5 (15 pts). Find a unit vector v that is orthogonal to both i + j and i + k.

$$oldsymbol{v} =$$

Problem 6 (10 pts). Determine whether the points A = (0, -5, 5), B = (1, -2, 4) and C = (3, 4, 2) lie on a straight line.

Problem 7 (20 pts). Find parametric equations for the line of intersections of the planes x+y+z=1 and x+2y+2z=1. Find the angle θ between the two planes.

 $\theta =$