UNIVERSIDADE FEDERAL DE UBERLÂNDIA

GSI011 – Estrutura de Dados 2

Profa: Christiane Regina Soares Brasil

Análise Matemática (revisando...)

```
for(i = 0; i<n; i++)
for(j = 0; j<n; j++)
if(A[i][j] == 0) A[i][j] = 1;
```

```
Pior caso (todos são zero):

F(n) = 1 + 1 + n(1 + 1 + n + n + n + n) + n + n
= 2 + n(2 + 4n) + 2n
= 2 + 2n + 4n^{2} + 2n
F(n) = 4n^{2} + 4n + 2
```

Assintoticamente temos para n suficientemente grande:

$$F(n) = n^2$$

Considerando o termo de maior grau, temos uma função de ordem quadrática.

Por exemplo: Um algoritmo com análise matemática $F(n) = 2n^3 + 5n$ assintoticamente tem custo cúbico, ou seja, $F(n) = n^3$.

O que é um comportamento assintótico?

O comportamento assintótico de f(n) representa o limite do comportamento do custo quando n cresce, ou seja, quando n tende a infinito.

Exemplos:

Função Custo	Comportamento Assintótico	
F(n) = 587	1	
F(n) = 29	1	
F(n) = 20n + 7	n	
$F(n) = 4n^4 + 3n^2 + 3n + 5$	n ⁴	

Ordem de crescimento:

Logarítmica: log₂ n

Linear: n

Quadrática: n²

Cúbica: n³

Polinomial: nk

Exponencial: a^n , a > 1.

n	log ₂ n	n	nlog ₂ n	n ²	n ³	2 ⁿ
2	1	2	2	4	8	4
8	3	8	24	64	512	256
16	4	16	64	256	4096	65536
1024	10	1024	10 240	1 048 576 > 10 ⁶	1 073 741 824 > 10 ⁹	no. com 309 dígitos > 10 ³⁰⁸

- Diferentes tipos de análise assintótica:
 - Notação grande-O, O
 - Notação grande-Ômega, Ω
 - Notação grande-Theta, O
 - Notação pequeno-o, o
 - Notação pequeno-omega, ω

- Notação grande-O
 - Custo do algoritmo no pior caso possível
 - Analise o limite assintótico superior
 - O que O(n²) significa para um algoritmo?
 - O custo dele n\u00e3o pode ser assintoticamente pior do que n\u00e2.
 - Pode ser melhor, mas nunca pior que n².

- Notação grande-O
 - Matematicamente:
 - f(n) está em O(g(n)) se existem c e m
 (ambos > 0) tais que f(n) <= c g(n)
 para n>=m (limite superior).

f(n) e g(n) são não negativas

Exemplo 1:

Prove que $n^2 - 100n$ está em $O(n^2)$, ou seja, tem um limite superior de n^2 .

$$n^2 - 100n \le c n^2$$

Dividindo por n²

$$1 - 100/n \le c$$

$$1 - c \le 100/n$$

Considerando c = 1, temos: $0 \le 100/n$, ou seja, $100/n \ge 0$

Logo, quando c = 1 e n>=1 (ou seja, m = 1) temos que $n^2 - 100n$ está em $O(n^2)$.

Exemplo 2:

Prove que 2n + 10 está em O(n³).

$$2n + 10 \le c n^3$$

 $2/n^2 + 10/n^3 \le c$

Considerando c = 12, temos: $2/n^2 + 10/n^3 \le 12$

Logo, quando c = 12 e n>=1 (ou seja, m = 1) temos que 2n + 10 está em $O(n^3)$.

Exemplo 3:

Prove que 4n + 7 está em O(n).

```
Considerando c = 11, temos:

7/n <= 11 - 4

7/n <= 7

7/7 <= n

1 <= n, ou seja, n>=1
```

Logo, quando c = 11 e n > = 1 (ou seja, m = 1) temos que 4n + 7 está em O(n).

- Notação grande-Ômega
 - Custo do algoritmo no melhor caso possível
 - Analise o limite assintótico inferior
 - O que Ω(n²) significa que o custo do algoritmo é assintoticamente maior ou igual a n², ou seja, não pode ser melhor que n².

- Notação grande-Ômega
 - Matematicamente:
 - f(n) está em Ω(g(n)) se existem \mathbf{c} e \mathbf{m} (ambos > 0) tais que f(n) >= c g(n) para n>=m (limite inferior).

f(n) e g(n) são não negativas

Exemplo 1:

– Prove que n³ + 100 está em Ω (n³).

$$n^3 + 100 >= c n^3$$

1 +100/ $n^3 >= c$

```
Considerando c = 1, temos:

1 + 100/n^3 >= 1

100/n^3 >= 0
```

Logo, quando c = 1 e n>=1 (ou seja, m = 1) temos que $n^3 + 100$ está em $\Omega(n^3)$

Exemplo 2:

– Prove que $3n^2 + n$ está em Ω(n).

$$3n^{2} + n >= c n$$

 $3n + 1 >= c$
 $3n >= c - 1$

Considerando c = 4, temos:

$$3n + 1 >= 4$$

 $3n >= 3$
 $n >= 1$

Logo, quando c = 4 e n>=1 (ou seja, m = 1) temos que $3n^2 + n$ está em $\Omega(n)$.

Exemplo 3:

– Prove que n^2 - 2n está em $\Omega(n^2)$.

$$n^2 - 2n >= c n^2$$

1 -2/n >= c
(1 - c) >= 2/n

Considerando c = 1/2, temos: $1/2 \ge 2/n$ $1/4 \ge 1/n$, ou seja, $n \ge 4$

Logo, quando c = 1/2 e n>=4 (ou seja, m = 4) temos que n^2 - 2n está em $\Omega(n^2)$.