数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1、係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 3. 1 21 1 13 1 13 1 27
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号), または, 0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。
- 同一の問題文中に A , BC などが繰り返し現れる場合,2度目以降は、 A , BC のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) A \sqrt{B} に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。
- (4) DEx に -x と答える場合は、De-、Ee1 とし、下のようにマークしてください。

【解答用紙】

Α		0	1	0	3	4	6	6	0	8	9	
В	Θ	0	0	2	•	4	6	6	Ø	8	9	
С	θ	0	1	2	3	•	6	6	0	8	9	
D	•	0	1	2	3	4	6	6	0	8	9	
Е	Θ	0	•	2	3	4	9	6	0	8	9	

- 4. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*		
名 前				

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを<u>一つだけ</u>選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。

選択したコースを正しくマークしないと、採点されません。

問 1 a, b は実数であり、a > 0 とする。2 つの 2 次関数

$$f(x) = 2x^2 - 4x + 5$$
, $g(x) = x^2 + ax + b$

を考える。

関数 g(x) が次の 2 つの条件を満たすとき、a, b の値を求めよう。

- (i) g(x) の最小値は f(x) の最小値より 8 だけ小さい
- (ii) f(x) = g(x) を満たす x がただ 1 つ存在する

f(x) の最小値は A であるから,条件 (i) より,等式

$$b = \frac{a^2}{\boxed{\mathbf{B}}} - \boxed{\mathbf{C}}$$

を得る。

よって、f(x) = g(x) を満たす x を求める方程式は

$$x^2 - (a + \boxed{\mathbf{D}})x - \frac{a^2}{\boxed{\mathbf{E}}} + \boxed{\mathbf{FG}} = 0$$

である。

したがって、条件 (ii) とa > 0 より

$$a = \boxed{\mathsf{H}}$$
, $b = \boxed{\mathsf{IJ}}$

を得る。このとき、f(x) = g(x) を満たす x は K である。

- 計算欄 (memo) -

問 2

(1)	次の $lacksymbol{L}$ \sim $lacksymbol{O}$ には,下の $lacksymbol{0}$ \sim $lacksymbol{3}$ の中から適するものを選びなさい。
	n は自然数とする。
	(:) これではステレけ こがりで割り切り又ための

(i) $n \in A$ であることは、n が 2 で割り切れるための \blacksquare

集合 $A = \{4m \mid m \text{ は自然数}\}, B = \{6m \mid m \text{ は自然数}\}$ を考える。

- (ii) $n \in B$ であることは、n が 24 で割り切れるための M 。
- (iii) $n \in A \cup B$ であることは、n が 3 で割り切れるための \square 。
- (iv) $n \in A \cap B$ であることは、n が 12 で割り切れるための \bigcirc 。
 - ⑩ 必要十分条件である
 - ① 必要条件であるが、十分条件ではない
 - ② 十分条件であるが、必要条件ではない
 - ③ 必要条件でも十分条件でもない
- (2) $C = \{m \mid m \text{ id } 1 \leq m \leq 100 \text{ を満たす自然数} \}$ とする。

 $(\overline{A} \cup \overline{B}) \cap C$ の要素の個数は \overline{PQ} であり, $\overline{A} \cap \overline{B} \cap C$ の要素の個数は \overline{RS} である。ただし, \overline{A} , \overline{B} はそれぞれ,全体集合を自然数の全体としたときの A,B の補集合を表す。

注) 全体集合: universal set, 補集合: complement

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{T}$ ~ $oxed{Z}$ はマークしないでください。

II

点 O を中心とし、半径 1 の円の周を S とする。 三角形 ABC は、すべての頂点が S 上にあり、

AB:AC=3:2 を満たすとする。図のように DBC の延長線上に点 DEC をとり

$$BC:CD=2:k$$

とおく。また

$$\overrightarrow{OA} = \overrightarrow{a}$$
, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$

とする。このとき、次の問いに答えなさい。

(1) \overrightarrow{OD} を \overrightarrow{b} , \overrightarrow{c} , k を用いて表すと

$$\overrightarrow{\text{OD}} = \left(\frac{k}{\boxed{\textbf{A}}} + \boxed{\textbf{B}}\right) \overrightarrow{c} - \frac{k}{\boxed{\textbf{C}}} \overrightarrow{b}$$

である。

(2) 等式

$$\left|\overrightarrow{b} - \overrightarrow{a}\right| = \frac{D}{E} \left|\overrightarrow{c} - \overrightarrow{a}\right|$$

が成り立つので、内積 \overrightarrow{a} · \overrightarrow{b} を内積 \overrightarrow{a} · \overrightarrow{c} を用いて表すと

$$\overrightarrow{a} \cdot \overrightarrow{b} = \boxed{ \mathbf{F} } \overrightarrow{a} \cdot \overrightarrow{c} - \boxed{ \mathbf{H} }$$

である。

(3) 点 A における S の接線が点 D を通るとき

$$k = \frac{\boxed{J}}{\boxed{K}}$$

である。

注) 内積: inner product

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{L}$ \sim $oxed{Z}$ はマークしないでください。

Π

p>1, q>1 とする。方程式

$$e^{2x} - ae^x + b = 0 \qquad \cdots \qquad \textcircled{1}$$

において, $t = e^x$ とおくとき, t に関する 2 次方程式

$$t^2 - at + b = 0$$

は解 $\log_{n^2} p$ と $\log_{n^3} q$ をもつとする。

このとき, a の最小値とそのときの方程式 ① の解を求めよう。

(1) まず

$$b = \frac{A}{B}$$

であり

$$a = \begin{array}{|c|c|c|} \hline \textbf{C} \\ \hline \textbf{D} \\ \hline \end{array} \log_q p + \begin{array}{|c|c|c|} \hline \textbf{E} \\ \hline \end{array} \log_p q$$

である。

(2) p,q が p>1, q>1 を満たしながら動くとき, $\log_p q>$ \mathbf{G} である。 したがって,a は最小値 $\frac{\sqrt{\mathbf{H}}}{\mathbf{I}}$ を $\log_p q=\frac{\sqrt{\mathbf{J}}}{\mathbf{K}}$ のときにとる。 そのときの方程式 ① の解は

$$x = -\frac{\boxed{\textbf{L}}}{\boxed{\textbf{M}}} \log_e \boxed{\textbf{N}}$$

である。

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{O}$ ~ $oxed{Z}$ はマークしないでください。

IV

間 1 a,t は共に正の実数とする。関数 $y=ax^3$ のグラフ C の点 $P(t,at^3)$ における接線 ℓ が C と再び交わる点を Q とする。さらに、点 P を通って x 軸に平行な直線 p と点 Q を通って y 軸に平行な直線 q が交わる点を R とする。

いま、曲線 C と直線 p、直線 q によって囲まれる部分の面積を S_1 、曲線 C と接線 ℓ によって囲まれる部分の面積を S_2 で表すとき、 $\frac{S_1}{S_2}$ の値を求めよう。

まず、接線 ℓ の方程式は

$$y = \begin{bmatrix} \mathbf{A} \\ at \end{bmatrix} at \begin{bmatrix} \mathbf{B} \\ x - \begin{bmatrix} \mathbf{C} \\ at \end{bmatrix} at \begin{bmatrix} \mathbf{D} \\ at \end{bmatrix}$$

であるから、点 Q の x 座標は - E t である。

したがって、 S_1 を求めると

$$S_1 = \frac{\boxed{\textbf{FG}}}{\boxed{\textbf{H}}} at^{\boxed{1}}$$

となる。また、 S_2 は三角形 PQR の面積から S_1 を引いたものであるから

$$S_2 = \frac{\boxed{\mathsf{JK}}}{\boxed{\mathsf{L}}} at^{\boxed{\mathsf{M}}}$$

である。

よって、 $\frac{S_1}{S_2}$ の値は a,t の値に関係なく、常に

$$\frac{S_1}{S_2} = \boxed{\mathbf{N}}$$

である。

数学-26

問2 xの関数

$$f_n(x) = \sin^n x \quad (n = 1, 2, 3, \cdots)$$

について次の問いに答えなさい。

(1) 次の等式が成り立つ場合を考える。ただし、a, b, c は実数である。

$$\lim_{x \to 0} \frac{a - x^2 - (b - x^2)^2}{f_n(x)} = c$$

- (i) a=b である。
- (ii) n=2 のとき, c=6 ならば $b=\frac{P}{Q}$ である。
- (iii) n=4 のとき, $b= {\color{red} | {\bf R} \choose {\bf S}}$, $c=-{\color{red} | {\bf T} \choose {\bf S}}$ である。

(問2は次ページに続く)

(2) この $f_n(x)$ を用いて、定積分

$$I_n = \int_0^{\frac{\pi}{2}} f_n(x) \sin 2x \, dx \quad (n = 1, 2, 3, \dots)$$

を考える。

積分の計算をすると

$$I_n = \frac{\mathsf{U}}{n + \mathsf{V}}$$

である。したがって

$$\lim_{n \to \infty} (I_{n-1} + I_n + I_{n+1} + \cdots + I_{2n-2}) = \int_0^{\mathbf{W}} \frac{\mathbf{X}}{\mathbf{Y} + x} dx$$

$$= \log \mathbf{Z}$$

である。

IV の問題はこれで終わりです。

コース2の問題はこれですべて終わりです。解答用紙の V はマークしないでください。

解答用紙の解答コース欄に「コース 2」が正しくマークしてあるか、 もう一度確かめてください。

この問題冊子を持ち帰ることはできません。

〈数 学〉Mathematics

	コー	ス 1 Course 1			
問 Q.		解答番号 row	正解 A.		
		А	3		
		BC	45		
	問 1	DEFG	4410		
		Н	2		
		IJ	-4		
т		K	3		
Ι		L	2		
		M	1		
	88.0	N	3		
	問 2	0	0		
		PQ	92		
		RS	67		
		ABC	720		
		DEF	120		
		GHI	360		
	問 1	J	6		
		KL	24		
		MNO	288		
I		PQR	247		
		STU	115		
		V	4		
	問 2	W	1		
		X	7		
		YZ	52		
		A	4		
Ш		В	0		
		С	2		
		D	4		
IV		ABC	843		
		DE	88		
		FG	90		
		HI	22		
		JK	45		
		LM	30		
		NO	13		
			2314		
		PQRS	223		
		TUV	223		

コース 2 Course 2					
門	引 Q.	解答番号 row	正解 A.		
		А	3		
		BC	45		
	問 1	DEFG	4410		
		Н	2		
		IJ	-4		
I		K	3		
1		L	3 2 1		
		М			
	BB O	N	3		
	問 2	0	0		
		PQ	92		
		RS	67		
		ABC	212		
т		DE	32		
I		FGHI	9454		
		JK	85		
		AB	16		
		CDEF	1213		
TIT		G	0		
II		HI	63		
		JK	62		
		LMN	126		
		ABCD	3223		
		Е	2		
V	問 1	FGHI	2744		
		JKLM	2744		
		N	1		
		0	2		
		PQ	72		
	問 2	RS	12		
		T	72 12 1		
		UV	22		
		WXY	121		
		Z	4		