Física 2 (Físicos) ©DF, FCEyN, UBA

REDES DE DIFRACCIÓN

Los ejercicios con (*) entrañan una dificultad adicional. Son para investigar después de resolver los demás.

Redes de difracción de surcos ultrafinos (diffraction gratings)

- 1. Se dispone de dos redes de difracción cuadradas de 2 cm de lado. La densidad de líneas de una es 600 mm⁻¹ y la de otra 1200 mm⁻¹. Calcule:
 - a) El poder resolvente de cada red en el primer orden.
 - b) El máximo orden observable con una fuente de 5000 Å. ¿Es importante tener en cuenta el ángulo de incidencia?
 - c) El máximo poder resolvente de cada una.
 - d) Si alguna de ellas resuelve entre $\lambda_1 = 5000 \,\text{Å}$ y $\lambda_2 = 5000,07 \,\text{Å}$.

Redes por reflexión

- 2. (*) Se desea estudiar la estructura de una banda en la proximidad de 4300 Å, utilizando una red plana de reflexión de 10 cm y una densidad de líneas de 1200 mm⁻¹. Hallar:
 - a) El máximo orden observable.
 - b) El mínimo ángulo de incidencia para el cual se observa.
 - c) El mínimo intervalo de longitudes de onda resueltas.
 - d) El orden intensificado. ¿Es ventajoso? Justifique su respuesta.

Redes con patrón (blazed grating)

- 3. (*)
- a) Escriba la función transmisión para una red de rendijas de ancho b y período d.
- d-b b
- b) Ídem (a para una red formada por prismas delgados de alto b y base a, con índice de refracción n, y separados por tramos obstruidos de alto d-b (ver figura).
- 4. (*) Una red de fase por reflexión tiene una densidad de facetas de $4800\,\mathrm{cm}^{-1}$ y ha sido construida para intensificar el primer orden, en $\lambda = 0.6\,\mathrm{\mu m}$.
 - a) Hallar el ángulo que forman las caras facetadas con el plano de la red.
 - b) Suponiendo incidencia normal, calcular la dispersión angular para esa λ .
 - c) Si se iluminase la red con $\lambda = 0.48 \,\mu\text{m}$, ¿qué órdenes se verían?
- 5. (*) Se tiene una red de difracción de N períodos con una distribución de pares de prismas delgados de índices n_1 , y n_2 y ángulos δ_1 y δ_2 , respectivamente, como muestra la figura. Se la ilumina en forma normal. Suponiendo que la teoría fuese exacta:
 - a) Halle la irradiancia en la pantalla como función del ángulo θ .
 - b) Elija parámetros de la red $(n_1, n_2, \delta_1, \delta_2, a, b, N)$, para los cuales se intensifique el orden -2 en el que se busca resolver las longitudes de onda de 5000 Å y 5001 Å.
- 6. (*) Una red de transmisión de ancho 2 cm está formada por 50 prismas delgados. Sabiendo que intensifica el segundo orden de interferencia, para $\lambda = 5000\,\text{Å}$ calcule:

- a) El ángulo del blaze.
- b) La posición angular del orden intensificado y de la imagen geométrica.
- c) Discuta, en este caso, qué sucede con los otros órdenes de interferencia para la longitud de onda λ dada.
- d) Calcule el poder resolvente para el segundo orden.