1

UNIT 10 Sequences

Teaching Notes

Historical Background and Introduction

Please refer to the information given in Year 7A, Unit 7. Points which should be stressed are:

- 1. Sequences covered in this unit are always defined by a rule.
- 2. When given 3 or 4 terms of a sequence, it is not always possible to determine the actual rule (there could, for example, be more than one possible rule that fits with the given members of the sequence).
- 3. If the first differences are constant and non-zero, then the general term is of the form $u_n = an + b$; if the second differences are constant and non-zero, then it is a quadratic of the form $u_n = an^2 + bn + c$, etc.

Point 2 can be illustrated with a sequence such as

which can be extended as

$$(1, 2, 4,) 7, 11, 16, \dots, (i.e. $u_n = \frac{1}{2}(n^2 - n + 2))$$$

or as

$$(1, 2, 4,)$$
 8, 16, 32, ..., (i.e. $u_n = 2^{n-1}$)

It is important that students realise that there is not always a unique answer when given only a few terms of a sequence. In fact, given, say, the sequence

the next term can be any number. For example, suppose $u_5 = c$, then

$$u_n = n + (n-1)(n-2)(n-3)(n-4) \times \frac{(c-5)}{24}$$
 $(n = 1, 2, 3, 4, ...)$

will give the sequence

Routes		Standard Academic	
10.1 Sequences: Constant Differences	✓	✓	✓
10.2 Finding the Formula for a Linear Sequence	(✓)	✓	\checkmark
10.3 Second Differences and Quadratic Sequences	×	(✓)	\checkmark
10.4 Special Sequences	×	✓	\checkmark

UNIT 10 Sequences

Teaching Notes

Language	Standard	Standard Academic Express		
Linear sequence	✓	✓	✓	
Second difference	X	(\checkmark)	✓	
Quadratic sequence	X	(\checkmark)	✓	
Exponential sequence	X	✓	✓	
Fibonacci sequence	X	✓	✓	

Misconceptions

• pupils must realise that there can be more than one rule giving rise to the same starting values, e.g. 5, 10, 15, ..., ... can be generated by

 $u_n = 5n$ (in which the next numbers in the sequence are 20, 25, 30, etc.)

and also by

 $u_n = n^3 - 6n^2 + 16n - 6$ (in which case the next numbers in the sequence are 26, 49, 90, etc.)

• it must be realised that many sequences are neither linear nor quadratic,

Challenging Questions

The following questions are more challenging than others in the same section:

		Section	Question No.	Page
Practic	e Book Y9B	10.1	12	32
"	"	10.2	10, 11	39
"	"	10.3	11	46
"	"	10.4	12	54