两级交流放大电路

一. 实验目的

- 1. 学习两级交流放大电路静态工作点的调整方法。
- 2. 学习两级交流放大电路电压放大倍数的测量方法。
- 3. 学习放大电路频率特性的测量方法。

二. 电路原理简述

其中: R_{w_1} =100k Ω , R_{w_2} =10k Ω , R_{B_1} =10k Ω , $R_{B_{21}}$ =1k Ω , R'_{c_2} =120 Ω , R_{c_1} =100 Ω /2W, R_{c_2} = R_E =51 Ω , $R_{B_{22}}$ =680 Ω , C_1 = C_2 = C_3 =10 μ F/25V, C_E =470 μ F/25V, C_4 =2.2 μ F/25V

三. 实验设备

	- · · · · · · · ·		
	名称	数量	型号
1.	直流稳压电源	1台	MC1095
2.	低频信号发生器	1台	
3.	示波器	1台	
4.	电阻	1 只	510 Ω *1
5.	电位器	1 只	1kΩ*1
6.	两级交流放大电路模块	1块	ST2001
7.	短接桥和连接导线	若干	P8-1 和 5014
8.	实验用 9 孔插件方板		$297 \text{mm} \times 300 \text{mm}$

四. 实验内容与步骤

- 1. 按电源原理图检查实验电路及外部接线无误后方可合上电源。
- 2. 调整静态工作点

接通稳压电源,调整 R_{v1} 使 V_{c1} =5V 左右,确定第一级静态工作点 Q_{10} ,调节 R_{v2} 使第二级静态工作点 Q_2 大致在交流负载线的中点(按电路参数,实验前用图解法求出 V_{CE2} 的数值)

3. 测两级放大电路的放大倍数。

1) 加输入信号 V_{11} =2mv, f=1kHz. 用示波器观察第一,第二的输出电压波形有无失真? 若有失真现象,则应加输入信号之后,用示波器观察输出波形有寄生振荡时,首先采取措施消除振荡方可进行实验,消除寄生振荡方法如下:

将信号发生器,稳压电源等仪器的接线重新整理一下,应使这些线尽可能短些。假如振荡仍不能消除时,可在适当位置(如 T_2 的 b、c 级之间)加一个容量电容(几个到几千皮法)。具体接入位置和电容数值可由实验确定,此法消振的效果较为显著。另外由信号发生器至两级放大器输入端的接线要使用屏蔽线,以防止干扰信号进入放大器。

2)在输出不失真的情况下,测量并计入第一,第二输出电压 V_{02} 和 V_{01} 分别计算第一,二级的 A_{V1} ,A_{V2}和两级放大电路的 A_{V} ,测量并计入第一,二的静态工作点 Q_1 (V_{B1} 和 V_{C1}), Q_2 (V_{B2} , V_{C2} 和 V_{E2}),填入表格 5–1

#	_	1
\rightarrow	n-	- 1

静态工作点					<i>松)</i> 松山市厅		电压放大倍数			
第一	第一级 第二级 输入,输出电压			第一级	第二级	两级				
V _{B1} (V)	V _{C1} (V)	V _{B2} (V)	V _{C2} (V)	V _{E2} (V)	V _i (mV)	V ₀₁ (mV)	V ₀₂ (mV)	A_{v_1}	A_{v2}	A_{v}
0. 55	5.00	00 4.41 7.6	3. 76	2	70	2250	35	32. 14	1125	
0. 55					57	1960	28. 5	34. 39	980	

- 3)接入负载电阻 RL,其他条件同上,测量并记录 V_{01} 和 V_{02} ,计算 A_{v_1} , A_{v_2} 和 A_{v_3} 与上项结果相比较。
- 4)将放大电路第一级的输出与第二级的输入断开,此时两级放大电路变成两个彼此独立的单级放大电路,分别测量输入输出电压,并计算每级的放大倍数,填入表 5-2 中。此时的静态工作点同前,输出端皆为空载。

表 5-2

	第一级		第二级			
输入电压	输出电压	放大倍数	输入电 压	输出电压	放大倍数	
V _{i1} (mV)	V ₀₁ (mV)	A_{v_1}	V _{i2} (mV)	V ₀₂ (mV)	A_{v2}	
2	113	56. 5	2	53	26. 5	

5) 测量两级交流放大电路的频率特性

改变输入信号频率(由低到高),先大致观察在哪一个上限频率在下限频率 时输出幅度下降

五. 分析与讨论

- 1. 总结两级放大静态工作点对放大倍数及输出波形的影响。
- 2. 总结两级放大电路级与级之间的相互影响。
- 3. 各级静态工作点应如何选择?每一级的静态工作点在连成两级放大电路
- 时,是否会发生变化。