Regresja liniowa

Komentarz do wykładu z 16. kwietnia

Dla zmiennej losowej (X,Y) znamy niezależne wartości $(x_1,y_1),\ldots,(x_n,y_n)$. Można też przyjąć, że rozważamy n niezależnych zmiennych $(X_1,Y_1),\ldots,(X_n,Y_n)$ o tym samym rozkładzie każda. Szukamy liczb β_0,β_1 minimalizujących wartość funkcji

$$f(\beta_0, \beta_1) = \sum_{i=1}^{n} (\beta_0 + \beta_1 x_i - y_i)^2.$$
 (1)

Innymi słowy, chcemy znaleźć prostą o równaniu $y = \beta_0 + \beta_1 x$, dla której suma odległości (kwadratów odległości) od punktów (x_i, y_i) jest minimalna. Odległość jest tutaj rozumiana jako odległość punktu od jego rzutu pionowego na prostą.

Metoda analityczna

Obliczmy pochodne cząstkowe funkcji $f(\beta_0, \beta_1)$ względem zmiennych β_0, β_1 . Jest

$$\begin{cases} \frac{\partial f}{\partial \beta_0} = 2 \cdot \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i) = 0, \\ \frac{\partial f}{\partial \beta_1} = 2 \cdot \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i) \cdot x_i = 0. \end{cases}$$

Po uporzadkowaniu otrzymamy równania

$$\begin{cases}
 n \cdot \beta_0 + n \cdot \bar{x} \, \beta_1 = n \cdot \bar{y}, \\
 n \cdot \bar{x} \, \beta_0 + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i.
\end{cases}$$
(2)

Z pierwszego z równań (2) znajdujemy zależność $\beta_0 = \bar{y} - \beta_1 \bar{x}$, i po podstawieniu do równania drugiego $\beta_1 = \frac{\sum_{i=1}^n x_i y_i - n \cdot \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 - n \cdot \bar{x}^2}$. Korzystając zadania 1.7 stwierdzamy, że $\beta_1 = \frac{\sum_{i=1}^n (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$.

Zmienna (X,Y) ma rozkład określony następująco:

Y	x_1	x_2		x_n	
y_1	1/n	0		0	. Przy takim
y_2	0	1/n		0	. 112y takiiii
:	:	÷	٠.	÷	
y_n	0	0		1/n	

interpretowaniu obserwacji otrzymujemy wzory

$$\beta_0 = \bar{y} - \beta_1 \bar{x}, \quad \beta_1 = \frac{\text{Cov}(X, Y)}{\text{V}(X)}. \tag{3}$$

Definicja 1. Prostą o równaniu $Y = \beta_0 + \beta_1 \cdot X$, gdzie β_0, β_1 określone są wzorem (3), nazywamy prostą regresji zmiennej Y względem zmiennej X.

Uwaga:

W dotychczasowych rozważaniach znaleźliśmy ekstremum funkcji f we wzorze (1). Intuicyjnie: szukamy ekstremum wielowymiarowej paraboli o ramionach skierowanych ku górze. Formalnie, powinniśmy sprawdzić, że

$$\frac{\partial^2 f}{\partial \beta_0^2} > 0, \quad \begin{vmatrix} \frac{\partial^2 f}{\partial \beta_0^2} & \frac{\partial^2 f}{\partial \beta_0 \partial \beta_1} \\ \frac{\partial^2 f}{\partial \beta_1 \partial \beta_0} & \frac{\partial^2 f}{\partial \beta_1^2} \end{vmatrix} > 0.$$

Obliczając pochodne czastkowe drugiego rzędu otrzymujemy nierówności

$$\frac{\partial^2 f}{\partial \beta_0^2} = n > 0, \quad \left| \begin{array}{cc} n & \bar{x} \\ n & \bar{x} \end{array} \right| = n \cdot \sum_i x_i^2 - n^2 \, \bar{x}^2 = n \sum_i (x_i - \bar{x})^2 > 0.$$

Regresja zapisana macierzowo.

Znalezienie współczynników regresji polega na wyznaczeniu współczynników β_0, β_1 takich, że

$$y_i \approx \beta_0 + \beta_1 x_i, \quad (i = 1, \dots, n). \tag{4}$$

Macierzowo, można równania (4) zapisać w postaci

$$\begin{bmatrix}
X & \beta & \approx & Y \\
1 & x_1 \\
1 & x_2 \\
\vdots & \vdots \\
1 & x_n
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1
\end{bmatrix}
\approx
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}.$$
(5)

Na ogół układ równań (5) możemy rozwiązać tylko w sposób przybliżony. Wynika to z postawienia zadania regresji. Szukamy prostej położonej **blisko** punktów (x_k, y_k) , nie istnieje prosta przechodząca **przez** te punkty (chyba, że wszystkie y_k to jakaś wielokrotność x_k).

Po pomnożeniu równości (5) prawostronnie przez macierz X^T otrzymujemy zależność w której można postawić już znak =, a mianowicie $X_{2\times 2}^T X \cdot \beta = X_{2\times 1}^T Y$. Przy założeniu, że macierz $X^T X$ jest nieosobliwa daje to wzór

$$\beta = \left(X^T X\right)^{-1} X^T Y. \tag{6}$$

Jeżeli rk (X^TX) = 1, to stąd wynika, że rk(X) = 1.¹ Dla wartości x_i jest zatem x_1 = ... = x_n , czyli można pominąć zmienną X, a więc poszukujemy zależności o postaci Y = β_0 . Drugi ze wzorów (3) miałby postać $\frac{0}{0}$.

Aproksymacja średniokwadratowa.

Elementami macierzy X^TX są iloczyny skalarne wierszy macierzy X^T i kolumn macierzy X, czyli iloczyny skalarne kolumn macierzy X (to znaczy $\{1,X\}$). Układ równań (2) można zatem przepisać w postaci macierzowej jako

$$\begin{bmatrix} \langle \mathbb{1}, \mathbb{1} \rangle & \langle \mathbb{1}, X \rangle \\ \langle X, \mathbb{1} \rangle & \langle X, X \rangle \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \langle \mathbb{1}, Y \rangle \\ \langle X, Y \rangle \end{bmatrix}. \tag{7}$$

Ostatni wzór to współczynniki elementu najlepszej aproksymacji dla funkcji Y(X) z podprzestrzeni rozpiętej przez $\{1, X\}$.². Układ równań (7) to układ równań normalnych.

Regresja (względem) wielu zmiennych.

ZADANIE: Dane są niezależne obserwacje $(x_{i1}, x_{i2}, \dots, x_{ik}, y_i)$, dla $i = 1, \dots, n$. Znaleźć wektor $\beta = [\beta_0, \beta_1, \dots, \beta_k]$ minimalizujący wartość funkcji

$$f(\beta) = \sum_{i=1}^{n} (\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k - y_i)^2.$$
 (8)

¹Notatki z algebry – lemat 4.20

²Analiza numeryczna: n-ty wielomian optymalny dla funkcji f(x) to wielomian z przestrzeni rozpiętej przez funkcje $\{x^0, x^1, \dots, x^n\}$

W podejściu analitycznym należy rozwiązać układ równań

$$\frac{\partial f}{\partial \beta_0} = \frac{\partial f}{\partial \beta_1} = \dots = \frac{\partial f}{\partial \beta_k} = 0,$$

niezbyt skomplikowany, ale trudno poddający się zwięzłej notacji. Przejdźmy zatem do notacji macierzowej, podobnej do wzoru (5).

$$\begin{bmatrix}
1 & x_{11} & x_{12} & \dots & x_{1k} \\
1 & x_{21} & x_{22} & \dots & x_{2k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & \dots & x_{nk}
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\vdots \\
\beta_k
\end{bmatrix}
\approx
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}.$$
(9)

Mnożąc powyższą równość, lewostronnie przez X^T otrzymujemy **równość** $X^T X \beta = X^T Y$, identyczną z równością (6). Podobnie też, – jak poprzednio – spełnienie warunku $\operatorname{rk}(X^T X) < k+1$ oznacza iż [któraś/któreś] ze zmiennych X_1, \ldots, X_k [jest/są] [zbędna/zbędne], jako kombinacja liniowa pozostałych.³

Nawiązując do aproksymacji średniokwadratowej – szukamy elementu najlepszej aproksymacji dla funkcji Y z przestrzeni (podprzestrzeni "regularnych" funkcji) rozpiętej przez funkcje $\{1, X_1, \ldots, X_k\}$.

Podsumowanie w jednym zdaniu: $\beta = (X^T X)^{-1} X^T Y$.

Regresja kwadratowa i wielomianowa.

ZADANIE: Dane są niezależne obserwacje (x_i, y_i) , dla i = 1, ..., n. Znaleźć wektor $\beta = [\beta_0, \beta_1, \beta_2]^T$ minimalizujący wartość funkcji

$$f(\beta) = \sum_{i=1}^{n} (\beta_0 + \beta_1 x_i + \beta_2 x_i^2 - y_i)^2.$$
 (10)

Sposób analityczny to rozwiązanie układu trzech równań z trzema niewiadomymi $\beta_1, \beta_1, \beta_2$:

$$\frac{\partial f}{\partial \beta_0} = \frac{\partial f}{\partial \beta_1} = \frac{\partial f}{\partial \beta_2} = 0.$$

Prostszym sposobem jest notacja macierzowa. Zamiast zmiennej X wprowadźmy dwie zmienne $X_1 = X$, $X_2 = X^2$. Oznacza to iż mamy do czynienia z zadaniem regresji zmiennej Y względem zmiennych X_1, X_2 . Niech $x_{i1} \leftrightarrow x_i$ oraz $x_{i2} \leftrightarrow x_i^2$. Równanie macierzowe (9) można przepisać w postaci

$$\begin{bmatrix}
1 & x_{11} & x_{12} \\
1 & x_{21} & x_{22} \\
\vdots & \vdots & \vdots \\
1 & x_{n1} & x_{n2}
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{bmatrix}
\approx
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}.$$
(11)

Stąd, ponownie, podsumowanie w jednym zdaniu: $\beta = (X^T X)^{-1} X^T Y$.

Zadanie regresji wielomianowej jest określone następująco:

ZADANIE: Dane są niezależne obserwacje (x_i, y_i) , dla i = 1, ..., n. Znaleźć wektor $\beta = [\beta_0, ..., \beta_k]^T$

 $^{^{3}} Dodanie nawiasów \left[\right] oznacza utworzenie wektora, \\ ^{algebra \ raz \ jeszcze.} \left[\begin{array}{c} któraś \\ któreś \\ \end{array}\right] \sim \left[\begin{array}{c} jest \\ sa \\ \end{array}\right] + \left[\begin{array}{c} zbędna \\ zbędne \\ \end{array}\right]$

minimalizujący wartość funkcji

$$f(\beta) = \sum_{i=1}^{n} (\beta_0 + \beta_1 x_i + \dots + \beta_k x_i^k - y_i)^2.$$
 (12)

Równanie macierzowe (9) ponownie okazuje się najbardziej intuicyjne. Jest mianowicie

$$\begin{bmatrix}
1 & x_1 & x_1^2 & \dots & x_1^k \\
1 & x_2 & x_2^2 & \dots & x_2^k \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \dots & x_n^k
\end{bmatrix}
\begin{bmatrix}
\beta & \approx & Y \\
\beta_0 \\
\vdots \\
\beta_k
\end{bmatrix}
\approx
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}.$$
(13)

Ponownie, po raz kolejny, podsumowanie w jednym zdaniu: $\beta = (X^T X)^{-1} X^T Y$. Zauważmy również, że oprócz potęg wartości x_k można dołączyć do równania regresji zmienne $\log(x_k)$, $\exp(x_k)$, $\sin(x_k)$ i różne inne przekształcenia x_k . W efekcie – regresje: wielomianowa, logarytmiczna, wykładnicza, trygonometryczna i nie_wiadomo_jaka sprowadzają się do regresji wielu zmiennych.

 \leftarrow

Z poważaniem, Witold Karczewski