Espais Vectorials.

Examen Final. Grau Enginyeria de Dades

Curs 2018-2019

- 1. Espais Vectorials(4 punts).
 - (a) Considera l'espai vectorial \mathbb{R}^4 . Escrivim $A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \end{pmatrix} \in M_4(\mathbb{R})$. Considerem els subespais vectorials de \mathbb{R}^4 :

$$\begin{split} F = & < (1,1,1,1), (2,3,4,5), (3,4,5,6), (4,5,6,7) > \\ G = & \{ (x,y,z,t) \in \mathbb{R}^4 | x+y+z+t = 0 \} \\ H = & < (1,-1,1,-1) > \end{split}$$

- i. Calculeu la forma normal de Gauss-Jordan GJ associada a A i \overline{P} invertible on $\overline{P}A = GJ$. Doneu el rang de A. Escriviu les files de A com a combinació lineal de les files de la matriu GJ.
- ii. Decideix si H és us subespai vectorial de G o no.
- iii. Trobeu una base de G i escriviu les coordenades del vector de G: (2, -2, 2, -2) en la base de G.
- iv. Calculeu la dimensió de F + G i $F \cap G$ i doneu una base de F + G.
- (b) Considera l'espai vectorial $\mathbb{R}_3[x]$ dels polinomis de grau ≤ 3 a coefficients a \mathbb{R} i consida l'espai vectorial

$$\tilde{G} = \{p(x) = a1 + bx + cx^2 + dx^3 | p(1) = 0\}$$

- i. Calculeu una base i la dimensió de \tilde{G} .
- ii. Estudieu si (x-2) és de \tilde{G} o no.
- iii. Justifica que $1-x, 1-x^2$ són vectors linealment independent de $\mathbb{R}_3[x]$ que pertanyen a \tilde{G} i amplia'ls a una base de \tilde{G} .
- 2. Diagonalització(3 punts). Considera la matriu $c = \begin{pmatrix} 2 & 2 & -4 \\ 2 & 2 & -4 \\ -4 & -4 & 8 \end{pmatrix}$ amb polinomi característic $p_C(x) = -x^3 + 12x^2 = -x^2(x-12)$.
 - (a) Per cada valor propi de C, calculeu els vectors propis de C.
 - (b) Justifica que C diagonalitza a \mathbb{R} .
 - (c) Trobeu P invertible i D diagonal on $A = PDP^{-1}$.
 - (d) Pot existir Q invertible on $Q^{-1}CQ$ sigui igual a la matriu $\begin{pmatrix} 12 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$?
- 3. Aplicacions Lineals entre espais normats (3 punts).

Considerem les aplicacions lineals $f: \mathbb{R}^3 \to \mathbb{R}^2$, $q: \mathbb{R}^2 \to \mathbb{R}^3$ donada per

$$f(x, y, z) = (x + y - 2z, -x - y + 2z)$$
$$g(x, y) = (x + y, x - y, -2x + 2y)$$

- (a) Doneu \overline{A} on $f = T_{\overline{A}}$, B on $f = T_B$ i $C \in M_3(\mathbb{R})$ on $g \circ f = T_C$.
- (b) Decidiu si f és injectiva, exhaustiva i/o bijectiva.
- (c) Considera la base de \mathbb{R}^2 $\mathcal{C} = ((1,2),(1,3))$. Calculeu la matriu associada a f de la base canònica de \mathbb{R}^3 a la base \mathcal{C} i calculeu f(1,1,1) en coordenades en la base \mathcal{C} .
- (d) Calculeu un base ortonormal pel $Ker(g \circ f)$.
- (e) Trobeu la projecció ortogonal del vector (1,1,2) en la base ortonormal de $Ker(g \circ f)$.
- (f) Trobeu els valors singulars de $f = T_{\overline{A}}$.
- (g) Trobeu la descomposició SVD per la matriu \overline{A} .
- (h) Trobeu una base ortonormal de \mathbb{R}^3 (v_1, v_2, v_3) on $f(v_1), f(v_2), f(v_3)$ són vectors ortogonals dos a dos.
- 4. Teoria (1 punt)
 - (a) Demostreu que si u* és una solució de minims-quadrats pel sistema lineal $A\vec{x} = \vec{b}$ llavors u* és una solució del sistema lineal compatible $A^tA\vec{x} = A^t\vec{b}$.
 - (b) Definiu que vol dir el concepte de base d'un subespai vectorial.
 - (c) Definiu el concepte d'espai de Hilbert.