Classificazione firme statiche utilizzando i Hidden Markov Models

Alexandru PRIGOREANU

Università degli studi di Padova

Dipartimento di Matematica Corso di laurea in Informatica

Relatore

Prof. Tullio VARDANEGA

Dicembre 13, 2013

Contenuti

- Analisi
 - Classificazione di firme statiche
 - Processi generali
 - Metodi di classificazione
 - Casi d'uso
- Progettazione
 - Scelte effettuate
 - Hidden Markov Models
- Implementazione/VV
 - TITLE OF SUBSECTION 2.1
- Consuntivo
 - Consuntivo

Analisi Progettazione Implementazione/VV Consuntivo Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Classificazione di firme statiche Obiettivo e difficoltà

Obiettivo: Decidere se una firma è autentica/falsa

Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Classificazione di firme statiche Obiettivo e difficoltà

- Obiettivo: Decidere se una firma è autentica/falsa
- Variazioni intrapersonali: Le firme personali possiedono grande variabilità, dovuta allo stato emotivo dei sottoscrittori, alla posizione di raccolta, ecc...

Alex Prigoriano Alex Prigoriano Alex Prigoriano

Classificazione di firme statiche

- Objettivo: Decidere se una firma è autentica/falsa.
- Variazioni intrapersonali: Le firme personali possiedono grande variabilità, dovuta allo stato emotivo dei sottoscrittori, alla posizione di raccolta, ecc...
- Differenze interpersonali: Le firme di persone diverse possiedono caratteristiche elementari distinte

Davida Levi san

Towners Cortellous

Analisi Progettazione nplementazione/VV Consuntivo Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Terminologia

Tipi di falsificazione

(a) genuine

Analisi Progettazione mplementazione/VV Consuntivo Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Terminologia

Tipi di falsificazione

Falsificazioni Casuali

full factories

Lufem Sula-

(b) random forgery

Analisi Progettazione nplementazione/VV Consuntivo

Classificazione di firme statiche Processi generali Metodi di classificazione

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici

(a) genuine

Lutem Sula-

(b) random forgery

(c) simple forgery

face bol Rank Jaic

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici
- Falsificazioni Accurate

full fauto for

(a) genuine

Lutem Sula-

(b) random forgery

(c) simple forgery

Ade bol Rank Jaic

(d) skilled forgery

D + 4 A + 4 = + = + 000

Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici
- Falsificazioni Accurate

full fulles

(a) genuine

LutemSula

(b) random forgery

Aderbol Ranho Faic

(c) simple forgery

bull fame for

(d) skilled forgery

Valutazione della performance

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici
- Falsificazioni Accurate

full factors-

(a) genuine

Lutem Sula-

(b) random forgery

Aderbol Ranha Foric

(c) simple forgery

all faile for

(d) skilled forgery

Valutazione della performance

False Acceptance Rate (FAR)

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici
- Falsificazioni Accurate

full faite

(a) genuine

Lutem Sula-

(b) random forgery

Aderbol Rank Faic

(c) simple forgery

all faile for

(d) skilled forgery

Valutazione della performance

- False Acceptance Rate (FAR)
- False Rejection Rate (FRR)

Processi generali

Processi generali

Preprocessings

- Cropping
- Resizing
- Binarization
- Thinning

Processi generali

Preprocessings

- Cropping
- Resizing
- Binarization
- Thinning

Features

- Calibre
- Spacing
- Distribution of pixels
- Slant

Metodi di classificazione

Metodi di classificazione

Metodi di classificazione

Casi d'uso

Casi d'uso

Requisito di qualità

Garantire un'accuracy media del 80%

Analisi

Scelte effettuate

Modello di ciclo di vita

Modello incrementale

Scelte effettuate

Modello di ciclo di vita

Modello incrementale

Strumenti

- Java
- Eclipse
- Hidden Markov Models

Scelte effettuate

Modello di ciclo di vita

Modello incrementale

Librerie Java

- ImageJ
- Jahmm
- JScience
- jhmm

Strumenti

- Java
- Eclipse
- Hidden Markov Models

Scelte effettuate

Modello di ciclo di vita

Modello incrementale

Librerie Java

- ImageJ
- Jahmm
- JScience
- jhmm

Strumenti

- Java
- Eclipse
- Hidden Markov Models

Design Pattern

- Model View Controller
- Composite

```
\lambda = (A, B, \pi)
```

$$\lambda = (A, B, \pi)$$

• un insieme S = {S₁,S₂,...,S_N} di stati nascosti

- un insieme S = {S₁,S₂,...,S_N} di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i)$

- un insieme $S = \{S_1, S_2, ..., S_N\}$ di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i)$
- una matrice $\Pi = {\pi_i}: \pi_i = P(q_1 = s_i)$

- un insieme $S = \{S_1, S_2, ..., S_N\}$ di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i)$
- una matrice $\Pi = {\pi_i}: \pi_i = P(q_1 = s_i)$
- un insieme $V = \{V_1, V_2, ..., V_M\}$ di simboli di osservazione

- un insieme $S = \{S_1, S_2, ..., S_N\}$ di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i)$
- una matrice $\Pi = {\pi_i}: \pi_i = P(q_1 = s_i)$
- un insieme $V = \{V_1, V_2, ..., V_M\}$ di simboli di osservazione
- al t-esimo istante il processo emette uno fra i simboli a disposizione: $o_t \in \{V_1, V_2, ..., V_M\}$

- un insieme S = {S₁,S₂,...,S_N} di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i)$
- una matrice $\Pi = {\pi_i}: \pi_i = P(q_1 = s_i)$
- un insieme $V = \{V_1, V_2, ..., V_M\}$ di simboli di osservazione
- al t-esimo istante il processo emette uno fra i simboli a disposizione: o_t ∈ {V₁,V₂,...,V_M}
- una matrice $B = \{b_i(k)\} : b_i(k) = P(o_t = k | q_t = j)$

- un insieme S = {S₁,S₂,...,S_N} di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$
- una matrice $\Pi = \{\pi_i\}$: $\pi_i = P(q_1 = s_i)$
- un insieme $V = \{V_1, V_2, ..., V_M\}$ di simboli di osservazione
- al t-esimo istante il processo emette uno fra i simboli a disposizione: $o_t \in \{V_1, V_2, ..., V_M\}$
- una matrice $B = \{b_i(k)\} : b_i(k) = P(o_t = k | q_t = j)$
- vale la proprietà di Markov:

$$P(q_{t+1} = s_i \mid q_t = s_i, q_{t-1} = s_k, ..., q_1 = s_1) = P(q_{t+1} = s_i \mid q_t = s_i)$$

Tre problemi (in genere intrattabili)

Evaluation problem

Tre problemi (in genere intrattabili)

- Evaluation problem
- ② Decoding problem

Tre problemi (in genere intrattabili)

- Evaluation problem
- ② Decoding problem
- Learning problem

Tre problemi (in genere intrattabili)

- Evaluation problem
- 2 Decoding problem
- Learning problem

Tre soluzioni (utilizzando la Programmazione Dinamica)

Forward algorithm

Utilizzo dei HMM

Tre problemi (in genere intrattabili)

- Evaluation problem
- 2 Decoding problem
- Learning problem

Tre soluzioni (utilizzando la Programmazione Dinamica)

- Forward algorithm
- Viterbi's algorithm

Degli esempi a destra?

Utilizzo dei HMM

Tre problemi (in genere intrattabili)

- Evaluation problem
- 2 Decoding problem
- Learning problem

Tre soluzioni (utilizzando la Programmazione Dinamica)

- Forward algorithm
- Viterbi's algorithm
- Baum-Welch algorithm

Degli esempi a destra?

Preprocessings

- Cropping
- Binarization
- Skeletonization
- Segmentation

Preprocessings

- Cropping
- Binarization
- Skeletonization
- Segmentation

Preprocessings

- Cropping
- Binarization
- Skeletonization
- Segmentation

Preprocessings

- Cropping
- Binarization
- Skeletonization
- Segmentation

Features

- Slant
- DCT

Preprocessings

- Cropping
- Binarization
- Skeletonization
- Segmentation

Features

- Slant
- DCT

v51 v52

v59 v60

Ov2

v53 v54

v61 v62

Ov3

v49 v50

v57 v58

Ov1

v55 v56

v63 v64

Ov4

Inizializzazione HMM

Feature Extraction Output

Grazie per l'attenzione

Grazie per l'attenzione