Dr. Tushar Sandhan

Introduction

Mantis shrimp

Tarsier

Introduction

Mantis shrimp

Tarsier

Rober fly

Introduction

Mantis shrimp

Tarsier

Great ape species

Chimpanzee (Pan troglodytes)

Bornean orangutan (*Pongo pigmaeus*)

Mountain gorilla (Gorilla beringei)

Sumatran orangutan (Pongo abelii)

Lowland gorilla (Gorilla gorilla)

Human (Homo sapiens)

Rober fly

Eye-opening area Sclera area

Longest width

Sclera Area Index = Sclera area / Eye-opening area

credit: F. Kano et al.

- EYE
 - Cornea
 - Sclera
 - Choroid (blood vessel network)
 - ciliary body
 - o iris (light controller)
 - · central opening pupil
 - Lens (concentric fibrous cells)
 - o higher proteins absorb UV, IR
 - cataract
 - F.L. = 14~17mm
 - Retina
 - cones (photopic vision bright light)
 - o rods (scotopic vision dim light)

- Distribution of Rods & Cones
 - blind spot

- Distribution of Rods & Cones
 - blind spot

Anatomic pathways

visual signals

Why two eyes?

Why two eyes?

Range

Range

- Image formation
 - o inverted over retina

Fly's vision

- Compound eyes
 - o different from HVS
 - hexagonal lens
 - 1 ommatidium → 8 photoreceptors
 - \circ R7, R8 (inner) \rightarrow color
 - 4 spectral filters: Red to Yellow
 - o R1~R6 (outer) → motion
 - \circ $\Delta\phi$ varies along eye
 - small frontal regions flowers, prey detection
 - lens diffraction Gaussian angular sensitivity
 - spatial LPF necessary for motion detection
 - $\Delta \phi \approx \Delta \rho$ ensuring no aliasing without oversampling the visual data

Fly's vision

- Compound eyes
 - Focal apposition
 - day
 - Refracting superposition
 - night
 - Compactness
 - Visual processing immediate beneath ommatidia
 - HVS: wide gap between lens and retina

General visual systems

- Light adaption
 - o night, cloudy ($\sim 10^{-2}$ Lux)
 - \circ sunshine (~10⁵ Lux)
 - VS need to auto-adapt for maintaining good contrast sensitivity
 - Temporal contrast changes
 - Spatial contrast fluctuations

General visual systems

- Light adaption
 - o night, cloudy ($\sim 10^{-2}$ Lux)
 - \circ sunshine (~10⁵ Lux)
 - VS need to auto-adapt for maintaining good contrast sensitivity
 - Temporal contrast changes
 - Spatial contrast fluctuations
- Michaelis-Menten eq

$$V = V_m \frac{I^n}{I^n + \sigma^n},$$

V – photoreceptor's response

 V_m – max value

I – light intensity

 $n - \text{order} (0.7 \sim 1.0)$

 σ – adaptation parameter

General visual systems

Light adaption

- o BG lighting change cause entire 'S' curve to shift along light intensity
- i.e. change in sensitivity of photoreceptor
- slope at operating point: contrast sensitivity

$$V = V_m \frac{I^n}{I^n + \sigma^n},$$

- Brightness adaption
 - system dynamics change
 - o to achieve large dynamic range
 - by changing its overall sensitivity

Mach band effect

- Human perception
 - Characteristics of HVS

Mach band effect

- Human perception
 - Characteristics of HVS

Mach band effect

- Human perception
 - Characteristics of HVS

- Human perception
 - Characteristics of HVS

- Human perception
 - Characteristics of HVS

- Human perception
 - Characteristics of HVS

- Human perception
 - Characteristics of HVS

- Human perception
 - Characteristics of HVS

- Human perception
 - Characteristics of HVS

- Human perception
 - Characteristics of HVS

Spatial frequency response

- Human perception
 - characteristics of HVS
 - o daily life application?

Contrast variation

Frequency variation

Vision system

- HVS vs other vision systems
 - HVS: 3 modality of cones (red, green, blue)
 - Sensing
 - Interpretation

Perception

Vision system

- HVS vs other vision systems
 - HVS: 3 modality of cones (red, green, blue)
 - Sensing
 - Interpretation

Perception

Conclusion

- General visual systems
- Human visual system

Conclusion

- General visual systems
- Human visual system

- ☐ Visual system comprised of
 - Sensors (specialized cells: rods, cones)
 - Light controllers (lens, supporting muscles and fluids)
 - Interpreters (brain)
- Visual system
 - Perception
- Compound lens
- HVS components

EE604: IMAGE PROCESSING