Report Assignment 1

Submitted by: Prasham Patel

Student ID: 871563809

Fig 1. 2-link system

Generalize co-ordinates

$$q = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \qquad u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

The angles are in radians

$$\begin{split} x_1 &= r_1 sin\theta_1 & y_1 &= r_1 cos\theta_1 \\ \dot{x}_1 &= r_1 \dot{\theta}_1 cos\theta_1 & \dot{y}_1 &= -r_1 \dot{\theta}_1 sin\theta_1 & \omega_1 &= \dot{\theta}_1 \\ \end{split} \\ x_2 &= l_1 sin\theta_1 + r_2 sin(\theta_1 + \theta_2) & y_2 &= l_1 cos\theta_1 + r_2 cos(\theta_1 + \theta_2) \\ \dot{x}_2 &= l_1 \dot{\theta}_1 cos\theta_1 + r_2 (\dot{\theta}_1 + \dot{\theta}_2) cos(\theta_1 + \theta_2) \\ \dot{y}_2 &= -l_1 \dot{\theta}_1 sin\theta_1 - r_2 (\dot{\theta}_1 + \dot{\theta}_2) sin(\theta_1 + \theta_2) \\ \omega_2 &= \dot{\theta}_1 + \dot{\theta}_2 \end{split}$$

Kinetic Energy

K.E for link1 = $0.5(m1(r1\cdot\dot{\theta}1')^2 + l1(\dot{\theta}1')^2)$ K.E for link2 = $0.5\cdot m2[(L1\cdot\dot{\theta}1)^2 + (r2(\dot{\theta}1+\dot{\theta}2))^2 + 2\cdot\dot{\theta}1\cdot L1\cdot r2(\dot{\theta}1+\dot{\theta}2)\cdot \cos(\theta 2)] + 0.5\cdot l2(\dot{\theta}1+\dot{\theta}2)^2$ K.E = $0.5(m1(r1\cdot\dot{\theta}1)^2 + l1(\dot{\theta}1)^2) + 0.5\cdot m2[(L1\cdot\dot{\theta}1)^2 + 0.5\cdot m2[(L1\cdot\dot{\theta}1)^2 + (r2(\dot{\theta}1+\dot{\theta}2))^2 + 2\cdot\dot{\theta}1\cdot L1\cdot r2(\dot{\theta}1+\dot{\theta}2)\cdot \cos(\theta 2)] + l2(\dot{\theta}1+\dot{\theta}2)^2$

Potential Energy

P.E for link 1 =
$$m1 \cdot g \cdot r1 \cdot cos(\theta 1)$$

P.E for link2 = $m2 \cdot g(L1 \cdot cos(\theta 1) + r2 \cdot cos(\theta 1 + \theta 2))$
P.E = $m1 \cdot g \cdot r1 \cdot cos(\theta 1) - m2 \cdot g(L1 \cdot cos(\theta 1) + r2 \cdot cos(\theta 1 + \theta 2))$

Langrangian function

L = K.E - P.E

$$L = 0.5(m1(r1.\dot{\theta}1)^2 + I1(\dot{\theta}1)^2) + 0.5 \cdot m2[(L1.\dot{\theta}1)^2 + 0.5 \cdot m2[(L1.\dot{\theta}1)^2 + (r2(\dot{\theta}1 + \dot{\theta}2))^2 + 2.\dot{\theta}1.L1.r2(\dot{\theta}1 + \dot{\theta}2).cos(\theta2)] + I2(\dot{\theta}1 + \dot{\theta}2)^2 - m1.g.r1.cos(\theta1) - m2.g(L1.cos(\theta1) + r2.cos(\theta1 + \theta2))$$

Partial differentiations

Equations are calculated with help of following command in MATLAB commands

```
dl dtheta1 = jacobian(L, theta1);
>>
                                                 \frac{\partial L}{\partial g_1} = g^*m2^*(r2^*sin(theta1 + theta2) + l1^*sin(theta1)) + g^*m1^*r1^*sin(theta1)
                                                  dl dtheta2 = jacobian(L, theta2);
>>
                                                 \frac{\partial L}{\partial \theta_2} = g*m2*r2*sin(theta1 + theta2) - l1*m2*r2*theta_dot1*sin(theta2)*(theta_dot1 + theta_dot2)
                                                  dl dtheta dot1 = jacobian(L, theta dot1);
>>
                                                  2*theta dot2) + 2*l1^2*theta dot1 + 2*l1*r2*cos(theta2) * (theta dot1 + theta dot2) +
                                                  2*I1*r2*theta dot1*cos(theta2)))/2
                                                  dl dtheta dot2 = jacobian(L, theta dot2);
>>
                                                                                   = (I2*(2*theta_dot1 + 2*theta_dot2))/2 + (m2*((2*theta_dot1 + 2*theta_dot2)*r2^2 + (m2*((2*theta_dot1 + 2*theta_dot2))*r2^2 + (m2*((2*theta_dot1 + 2*theta_dot1 + 2*theta_dot2))*r2^2 + (m2*((2*theta_dot1 + 2*theta_dot1 + 2*theta_dot1 + 2*theta_dot1 + 2*theta_dot1 + 2*theta_dot1 + (m2*((2*theta_dot1 + 2*theta_dot1 + 2*t
                                                   2*l1*theta dot1*cos(theta2)*r2))/2
                                                  ddl dtheta dot1 dt = jacobian(dl dtheta dot1, [theta1; theta dot1]) *
>>
                                                     [theta_dot1; theta_ddot1] + jacobian(dl_dtheta_dot1, [theta2;
                                                   theta dot2]) * [theta dot2; theta ddot2];
                                                  \frac{d\frac{\partial L}{\partial \theta_1}}{dt} = \text{theta\_ddot1*(I1^2 + m1*r1^2 + I2 + (m2*(2*I1^2 + 4*cos(theta2)*I1*r2 + 2*r2^2))/2)} + \text{theta\_ddot2*(I2 + dot2)} + theta\_ddot2*(I2 + dot2) + theta_ddot2*(I2 + dot2) + theta
                                                  (m2*(2*r2^2 + 2*l1*cos(theta2)*r2))/2) - (m2*theta_dot2*(2*l1*r2*sin(theta2) *(theta_dot1 + theta_dot2) + (theta_dot1 + theta_dot2) + (theta_dot2 + theta_dot2) + (theta_dot2 + theta_dot2) + (theta_dot2 + theta_dot2) + (theta_dot2 + theta_dot2 + theta_dot2) + (theta_dot2 + theta_dot2 + theta_
                                                  2*I1*r2*theta dot1*sin(theta2)))/2
                                                                                                                                                                                                                                                            =
                                                                                                                                                                                                                                                                                                                                                             jacobian(dl_dtheta dot2,
                                                  ddl dtheta dot2 dt
>>
                                                  theta_dot1]) * [theta_dot1; theta_ddot1] + jacobian(dl_dtheta_dot2,
                                                    [theta2; theta dot2]) * [theta dot2; theta ddot2];
                                                  \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} = \text{theta\_ddot2*(m2*r2^2 + I2)} + \text{theta\_ddot1*(I2} + (m2*(2*r2^2 + 2*I1*cos(theta2)*r2))/2)} - \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} = \text{theta\_ddot2*(m2*r2^2 + I2)} + \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} = \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} = \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} + \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} + \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} = \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} + \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} + \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} = \frac{d\frac{\partial L}{\partial \dot{\theta}_{1}}}{dt} + \frac{d
                                                  l1*m2*r2*theta_dot1*theta_ dot2*sin(theta2)
```

Euler langrange Equation

$$u1 = \frac{d\frac{\partial L}{\partial \dot{\theta_1}}}{dt} - \frac{\partial L}{\partial \theta_1}$$

u1 is calculated with help of following MATLAB command

>> u1 = ddl_dtheta_dot1_dt - dl_dtheta1;
u1 = theta_ddot1*(I1^2 + m1*r1^2 + I2 + (m2*(2*I1^2 + 4*cos(theta2)*I1*r2 + 2*r2^2))/2) + theta_ddot2*(I2 + (m2*(2*r2^2 + 2*I1*cos(theta2)*r2))/2) - (m2*theta_dot2*(2*I1*r2*sin(theta2) *(theta_dot1 + theta_dot2) + 2*I1*r2*theta_dot1*sin(theta2)))/2 - g*m2*(r2*sin(theta1 + theta2) + I1*sin(theta1)) - g*m1*r1*sin(theta1)
u2 =
$$\frac{d\frac{\partial L}{\partial \theta 2}}{dt} - \frac{\partial L}{\partial \theta 2}$$

u2 is calculated with help of following MATLAB command

>> u2 = ddl_dtheta_dot2_dt - dl_dtheta2; u2 = theta ddot2*(m2*r2^2 + I2) + theta ddot1*(I2 + (m2*(2*r2^2 + 2*I1*cos(theta2)*r2))/2) - g*m2*r2*sin(theta1 +

theta2) + $l1*m2*r2*theta_dot1*sin(theta2)*(theta_dot1 + theta_dot2) - <math>l1*m2*r2*theta_dot1*theta_dot2*sin(theta2)$

State Space representation

u1 and u2 are solved using the following MATLAB Command

```
sol = solve([u1==0, u2==0], [theta ddot1, theta ddot2]);
>>
>>
                                theta ddot1 = sol.theta ddot1;
                                θΊ
                                                                                           (l1*m2^2*r2^3*theta dot1^2*sin(theta2) +
                                                                                                                                                                                                                                                                                                 l1*m2^2*r2^3*theta dot2^2*sin(theta2)
                                g*l1*m2^2*r2^2*sin(theta1)
                                                                                                                                                                                                     I2*g*l1*m2*sin(theta1)
                                                                                                                                                                                                                                                                                                                                                         I2*g*m1*r1*sin(theta1)
                                                                                                                                                                                                                                                                                                                      +
                                2*l1*m2^2*r2^3*theta_dot1*theta_dot2*sin(theta2) + l1^2*m2^2*r2^2*theta_dot1^2*cos(theta2)*sin(theta2)
                                g*l1*m2^2*r2^2*sin(theta1
                                                                                                                                                                                  theta2)*cos(theta2) +
                                                                                                                                                                                                                                                                                                  I2*I1*m2*r2*theta dot1^2*sin(theta2)
                                I2*I1*m2*r2*theta_dot2^2*sin(theta2)
                                                                                                                                                                                                                                                                                                   g*m1*m2*r1*r2^2*sin(theta1)
                                2*12*11*m2*r2*theta_dot1*theta_dot2*sin(theta2))/(11^2*12 + 11^2*m2*r2^2 + 11^2*m2^2*r2^2 + 12*11^2*m2 + 12*11^2*m2^2 + 11^2*m2^2*r2^2 + 12*11^2*m2^2 + 12*11^2*m2^2 + 11^2*m2^2*r2^2 + 11^2*m2^2 + 11^2*m2
                                I2*m1*r1^2 - I1^2*m2^2*r2^2*cos(theta2)^2 + m1*m2*r1^2*r2^2)
>>
                               theta_ddot2 = sol.theta ddot2 ;
                                \theta^2
                                                                                      -(l1*m2^2*r2^3*theta_dot1^2*sin(theta2)

    I1^2*g*m2*r2*sin(theta1

                                11^3 m^2^2 r^2 theta_dot1^2 sin(theta2) + 11^2 m^2^2 r^2^3 theta_dot2^2 sin(theta2) - g^11^2 m^2^2 r^2 sin(theta1) + 11^2 m^2^2 r^2 theta_dot2^2 sin(theta2) - g^11^2 m^2^2 r^2 sin(theta2) + 11^2 m^2 r^2 sin(theta2) + 11^2 m^
                                                                                             g*l1*m2^2*r2^2*sin(theta1) +
                                                                                                                                                                                                                                          12*g*l1*m2*sin(theta1)
                                                                                                                                                                                                                                                                                                                                         +
                                                                                                                                                                                                                                                                                                                                                             I2*g*m1*r1*sin(theta1)
                                I1^2*I1*m2*r2*theta dot1^2*sin(theta2)
                                                                                                                                                                                                                +
                                                                                                                                                                                                                                              2*l1*m2^2*r2^3*theta dot1*theta dot2*sin(theta2)
                                2*I1^2*m2^2*r2^2*theta_dot1^2*cos(theta2)*sin(theta2) + I1^2*m2^2*r2^2*theta_dot2^2*cos(theta2)*sin(theta2) -
                                g*l1*m2^2*r2^2*sin(theta1
                                                                                                                                                                                theta2)*cos(theta2)
                                                                                                                                                                                                                                                                                                   g*I1^2*m2^2*r2*cos(theta2)*sin(theta1)
                                                                                                                                                                                                                                                                 +
                                g*m1*m2*r1^2*r2*sin(theta1
                                                                                                                                                                                                          theta2)
                                                                                                                                                                                                                                                                                                I2*I1*m2*r2*theta_dot1^2*sin(theta2)
                                I2*I1*m2*r2*theta dot2^2*sin(theta2)
                                                                                                                                                                                                                                                                                                   g*m1*m2*r1*r2^2*sin(theta1)
                                2*l1^2*m2^2*r2^2*theta_dot1*theta_dot2*cos(theta2)*sin(theta2) + l1*m1*m2*r1^2*r2*theta_dot1^2*sin(theta2) + l1*m1*m2*r1^2*theta_dot1^2*sin(theta2) + l1*m1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r1*m2*r
```

Plotting state trajectory

The ode function for getting the state space values and used state space representation derived above in the function. The command to simulate in ODE45 and plot is as below:

```
>> [t, y] = ode45(@ode_2link, [0, 10], [pi/6, p1/4, 0, 0]);
>> plot(t, y);
```


Fig 2. State space trajectory plot