Bilgisayar Programcılığı Uzaktan Eğitim Programı

e-BİLG 121 AĞ TEKNOLOJİLERİNİN TEMELLERİ

Öğr. Gör. Bekir Güler

E-mail: bguler@fatih.edu.tr

Hafta 5: Ağ (Network) katmanı I

- □ 4. 1 Giriş
- 4.2 Sanal devre (virtual circuit) ve datagram ağ
- □ 4.3 Yönlendirici (Router)
 mimarisine genel bakış
- □ 4.4 İnternet ağ katmanı fonksiyonları
 - IP datagram formati

4.1 Ağ katmanı giriş

- Gönderenden, alıcıya segment taşınır
- Gönderen tarafında segment'leri datagram içine koyar
- □ Alıcı tarafında ağ katmanında, datagram'dan çıkartılan segment'ler üst katman olan taşıma (transport) katmanına iletir
- Ağ katmanı protokolleri her bilgisayar ve yönlendiricide (router) bulunur
- Yönlendirici (router) üzerinden geçen IP datagram'ların başlık alanlarını inceler

Ağ katmanının 2 önemli fonksiyonu

□ İletme (forwarding):

Paketleri yönlendiricinin çıkışından uygun başka bir yönlendiricinin girişine taşır

☐ Yönlendirme (routing):
Yönlendiricide,
kaynaktan gelen
paketler için hedef yol
belirlemek

Benzetme:

■ Yönlendirme: bulunulan bir yerden seçilen bir yere gezi planlama

☐ İletme: seçilen yere uygun yoldan gitme işlemi

Yönlendirme algoritmaları

Yönlendirme ve iletme

<u>Bağlantının kurulması</u>

- □ Bazı ağ mimarilerinde önemli bir konudur:
 - ATM, frame relay, X.25
- Datagram akışından önce, iki son kullanıcı bilgisayar aralarındaki yönlendiriciler üzerinden sanal bir bağlantı kurar
- □ Ağ katmanı bağlantısı ve taşıma katmanı bağlantısı:
 - Ağ Kat. Bağ.: 2 bilgisayar(hosts) arasında kurulur
 - Taşıma Kat. Bağ. : 2 işlem (process) arasında kurulur

4.2 Sanal devre (virtual circuit) ve datagram ağ

- Sanal devre (VC), ağ katmanında bağlantılı hizmet sağlar
- Datagram ağ, ağ katmanı bağlantısız hizmet sağlar

Sanal devreler (Virtual circuits)

Telefon devresi benzer

O Kaynaktan hedefe yol üzerinde, ağ işlemleri gerçekleşir

- 🗖 Arama kurulumu, her veri akışından önce arama kurulur
- ☐ Her paket VC numara (tanımlayıcı) taşır
- Kaynaktan hedefe yol üzerinde, her yönlendirici (router) her geçen bağlantı için durum bilgisi tutar
- Yönlendirici (router) kaynakları (bant genişliği, arabellekler)
 VC için tahsis edilebilir

VC uygulaması

Bir VC aşağıdakilerden oluşur:

- 1. Kaynaktan hedefe yol
- 2. VC numaraları, yol üzerindeki her bağlantıya bir numara atanır
- 3. Yol üzerindeki yönlendiricilerde, yönlendirme tablolarında bulunan girdiler
- Bir VC ağına ait bir pakette, hedef adresi yerine VC numarası taşınır
- VC numaraları her bir bağlantıda değişebilir.
 - Yeni VC numaraları yönlendirme tablosundan gelir

Yönlendirme tablosu VC numarası

Yönlendirme tablosu:

Gelen arabirim	Gelen VC #	Giden arabirim	Giden VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87

Yönlendirici bağlantı durum bilgilerini korur!

Sanal devreler kullanım alanları ve veri iletimi

- □ ATM, frame-relay ve X.25 ağlarda kullanılır
- Günümüzde internet ortamında kullanılmaz. Şirketler yüksek hız ve esnek bant genişliği gereken uygulamalarda kullanılır.

Datagram ağlar

- Ağ katmanında bağlantı kurulumu yok
- □ Yönlendiriciler: Kaynaktan hedefe bağlantılarda durum bilgisi tutulmaz
- Paketler, hedef bilgisayarın adresi kullanılarak iletilir
 - Aynı kaynak ve hedef arasındaki paketler farklı yollardan iletilebilir

Datagram ağda yönlendirme tablosu

4 milyar girdi olabilir

Hedef adres aralığı Bağlantı arabirim i

11001000 00010111 00010000 00000000 11001000 00010111 00010111 11111111 11001000 00010111 00011000 00000000 11001000 00010111 00011000 11111111 11001000 00010111 00011001 00000000 11001000 00010111 00011111 111111111 diğerleri 3

Datagram ağ ve VC ağın karşılaştırılması

Internet (datagram)

- Bilgisayarlar arasında veri alışverişi
 - Beli bir zaman kısıtlaması yok
- Akıllı son kullanıcı sistemler (bilgisayarlar)
 - Hata kurtarma, kontrol yapma
 - Ağ merkezi basit, son kullanıcı sistemi karmaşık

ATM (VC)

- Telefon sisteminden geliştirildi
- İnsan konuşması:
 - Zamanlama ve güvenlik önemli
 - Garantili hizmet ihtiyacı
- Basit son kullanıcı sistemleri
 - Telefonlar
 - Ağ merkezi karmaşık

4.3 Yönlendirici (Router) mimarisine genel bakış

Yönlendiricinin 2 önemli görevi:

- □ Yönlendirme algoritmaları ve protokollerin çalıştırılması (RIP, OSPF, BGP)
- 🗖 Datagram'ların gelen porttan giden porta yönlendirilmesi

Giriş portu fonksiyonları

- Datagram'ı, hedef IP'sine uygun çıkış portuna yönlendirmek için yönlendirme tablosu kullanılır
- Eğer datagram'lar yönlendirme hızından daha hızlı gelirse kuyruk bekletilir.

3 tür geçiş yapısı

Bellek ile geçiş yapmak

İlk nesil yönlendiriciler:

- □ İşlemcinin doğrudan denetimi altında geçiş yapan ilk bilgisayarlar
- □Paketler sistem belleğine kopyalanır
- □ Hız bellek bant genişliği ile sınırlıdır

Veri yolu (Bus) ile geçiş yapmak

- □ Datagram, giriş bellek portundan çıkış bellek portuna paylaşılan bir veri yolu ile kopyalanır
- Geçiş bant genişliği: Geçiş hızı, veri yolunun bant genişliğine bağlıdır
- 32 Gbps veri yolu, Cisco 5600:
 yönlendirici kurumsal bir ağ için uygundur

İç bağlantı ağı (çaprazlayıcı geçiş) ile geçiş yapmak

- Veri yolu bant genişliği sınırlarını aşmak için
- □ Banyan ve diğer üreticiler işlemcileri birleştirdiler
- Gelişmiş tasarım: Datagramlar sabit uzunlukta parçalara ayrılıyor. Parçaların işlemciler üzerinden geçişi sağlanıyor
- □ Cisco 12000: Yönlendiriciler iç bağlantıları üzerinden 60 Gbps geçiş sağlarlar

Çıkış portları

- Arabelleğe alma (Buffering): Yönlendirici yapısından gelen datagramların hızı iletim hızından fazla ise arabelleğe alınır
- □ Arabellekte bekleyen datagram'lar sırası gelince iletilmek için fiziksel hatta gönderilir

Çıkış portunda kuyruk

- Çıkışa gelenlerin hızı, hattın hızından büyükse arabelleğe alınır
- Kuyrukta gecikme ve arabelleğin dolu olmasından dolayı kayıp olur!

Giriş portundaki kuyruk

- □ Yönlendiriciye bağlı hat, yönlendiriciden daha hızlı ise girişte kuyruk olabilir
- Kuyrukta önde bulunan datagramlar diğerlerinin kuyrukta ilerlemesini engeller
- Gecikme ve giriş arabelleğinde yer kalmaz ise kayıp oluşabilir!

4.4 İnternet ağ katmanı fonksiyonları

4.1. IP datagram formati

IP protokol versiyon numarası Başlık uzunluğu (bytes) Veri türü

Kalan yönlendiricinin maksimum sayısı (her yönlendiricide bir azaltılır)

Veriyi teslim edeceği üst katman

IP datagram parçalanması & birleştirilmesi

- Ağ bağlantılarının bir maksimum aktarım boyutu (MTU - Max. Transfer Size) vardır
 - Farklı bağlantı türleri, farklı aktarım boyutu
- Büyük IP datagram'lar ağ içinde parçalanır
 - 1 datagram'dan birkaç datagram oluşur
 - Hedef noktada tekrar birleştirilir

IP parçalanması & birleştirilmesi

<u>Örnek</u>

- 4000 byte datagram
- MTU = 1500 bytes

offset =

1480/8

Veri alanı 1480 bytes

Büyük bir datagram birkaç küçük datagrams oluşur

•	length	ID	fragflag	offset	
	=1500	=x	=1	· * =185	

length	ID	fragflag	offset	
=1040	=x	=0	=370	