Max Marks: 70

BVRAJU INSTITUTE OF TECHNOLOGY, NARSAPUR (UGC - AUTONOMOUS)

III B.Tech II Semester Supplementary Examinations, Feb 2022 CONTROL SYSTEMS

(Electronics and Communication Engineering)

Time: 3 Hours

Note: This Question Paper contains two Parts A and B

- Part A is compulsory which carries 10 marks. Five questions from six units. Answer all questions in Part A at one place only.
- Part-B consists of 6 Questions (numbered from 2 to 13) carrying 10 marks each. Each of these questions is from one unit and may contain a, b, c as sub-questions. For each question there will be an either/or choice (that means there will be two questions from each unit and the student should answer only one question).

	PART – A	(5)	x2 = 10 Marks	
1.		Marks	Bloom Level	CO
a	Define translational mechanical system.	2	1	1
b	Write the rule for moving summing point a head of a block.	2	1	2
c	Find the type and order of the system $G(S)=40/s(s+4)(s+5)(s+2)$.	2	1	3
d	Discuss Critically stable system.	2	1	4
e	Give the definition of controllability as per Kalman's Test	2	1	6
	PART – B	(6x10 = 60)	Marks)	

Marks Bloom Level CO

Write the differential equations governing the Mechanical rotational system 10 shown in fig.1 Draw the Torque-voltage and Torque-current electrical analogous circuits

fig.1

OR

- a) Differentiate between open loop and closed loop system.

 5 1 1 1 b) Explain the temperature control system using open loop as well as closed 5 2 1 loop.
- Determine the transfer function Y(S)/R(S) for the signal flow 10 2 graph shown below.

OR

- 5 a) What is the basis for framing the rules of block diagram reduction 5 3 technique? Mention its drawbacks.
 - b) Draw a signal flow graph and evaluate the closed loop transfer function of a 5 4 2 system whose block is shown in fig.2

6	Derive the expression for time domain specification of a under damped second order system to a step input.	10	3	3
	OR			
7	A unity feed-back system is characterized by the open-loop transferfunction:	10	3	3
	$G(s) = \frac{1}{(1+0.5S)(1+0.2S)}$. Determine the steady-state of unity-step, unit-			
	ramp and unit-acceleration input. Also find the damping ration and natural frequency of the dominant roots.			

8	a) Explain the necessary conditions for stability.	4	2	4
O	b) Using the R-H criterion determine the stability of the system represented by characteristic equation is $S^7+9S^6+24S^5+24S^3+24S^2+23S+15=0$.	6	2 3	4
	0R			
9	a) State and explain the advantages and limitations of Routh Hurwitz criteria.	4	2 2	4
	b) Give the important rules for construction of root locus. ***	6	2	4
10	Plot the Bode diagram for the following transfer function and obtain the gain and phase cross over frequencies. $G(S) = 10/S(1+0.4S)$ (1+0.1S)	10	3	5
	OR			
11	Sketch the polar plot for the following transfer function and find Gain cross over frequency, Phase cross over frequency, Gain margin and Phase margin. $G(S) = 10(S+2)(S+4)/S$ (S^2 -3S+10)	10	3	5
	(5) - 10(5+2)(5+4)/ 5 (5 -55+10) ***			
12	Given the state equation $\dot{X} = AX$, where	10	2	6
12	Γ 1 0 1	10	2	O
	$A = \begin{bmatrix} -3 & 1 & \bar{0} \\ 0 & -3 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$			
	Determine the state transition matrix.			
	OR			
13	a) Enumerate the concept of controllability and observability with an example.	5	3	6
	b) What is a state model? List the steps involved in deriving state model from	5	3	6
	block diagram.			
