国家开放大学(中央广播电视大学)2016年秋季学期"开放专科"期末考试

微积分基础 试题

2017年1月

题	号	—	 Ξ	四	总	分
分	数					

附表

导数基本公式:

$$(c)'=0$$

$$\int 0 \mathrm{d}x = c$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c \ (\alpha \neq -1)$$

$$(a^x)' = a^x \ln a (a > 0 \perp a \neq 1)$$

$$(e^x)'=e^x$$

$$\int e^x dx = e^x + c$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(\ln x)' = \frac{1}{x}$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + c$$

$$(\sin x)' = \cos x$$

$$\int \sin x \, \mathrm{d}x = -\cos x + c$$

$$(\cos x)' = -\sin x$$

$$\int \cos x \, \mathrm{d}x = \sin x + c$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + c$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + c$$

一、单项选择题(每小题 4 分,本题共 20 分)

1. 函数
$$f(x) = \frac{1}{\ln(x+1)} + \sqrt{5-x}$$
 的定义域是().

A.
$$(-1,5)$$

B.
$$(-1,0) \cup (0,5]$$

C.
$$(-1,5]$$

D.
$$(-1,0) \cup (0,5)$$

2.
$$y = x(x-1)(x-2)(x-3)$$
, $y'(0) = ()$.

C.
$$-2$$

D.
$$-6$$

3. 若函数
$$f(x) = x + \sqrt{x}(x > 0)$$
 ,则 $\int f'(x) dx = ($).

A.
$$x + \sqrt{x} + c$$

B.
$$\frac{1}{2}x^2 + \frac{2}{3}x^{\frac{3}{2}} + c$$

C.
$$x^2 + x + c$$

D.
$$x^2 + \frac{3}{2}x^{\frac{3}{2}} + c$$

A.
$$\int_{0}^{+\infty} e^{x} dx$$

B.
$$\int_{-\infty}^{0} e^{-x} dx$$

$$C. \int_{1}^{+\infty} \frac{1}{x^2} dx$$

D.
$$\int_{1}^{+\infty} \frac{1}{x} dx$$

5. 微分方程
$$(y'')^3 + 4xy^{(4)} = y^5 \sin x$$
 的阶数为().

得	分	评卷人

二、填空题(每小题 4 分,本题共 20 分)

7.
$$\lim_{x \to \infty} \sin \frac{1}{x} = \underline{\hspace{1cm}}.$$

8. 函数
$$y = 3(x-1)^2$$
 的单调减少区间是_____.

9.
$$\int_{-1}^{1} (5x^3 - 2x + 1) dx = \underline{\hspace{1cm}}.$$

10. 微分方程
$$y' = y$$
,满足条件 $y(0) = 1$ 的解为_____

得	分	评卷人

三、计算题(本题共 44 分,每小题 11 分)

- 11. 计算极限 $\lim_{x\to -1} \frac{x^2-2x-3}{x^2+3x+2}$.
- 12. 设 $y = x\sqrt{x} + \cos^x$,求 dy.
- 13. 计算不定积分 $\int \frac{e^{\frac{1}{x}}}{x^2} dx$.
- 14. 计算定积分 $\int_0^{\frac{\pi}{2}} x \sin x dx$.

得	分	评卷人

四、应用题(本题 16 分)

15. 用钢板焊接一个容积为 4m³ 的底为正方形的无盖水箱,已知钢板每平方米 10 元,焊接费 40 元,问水箱的尺寸如何选择,可使总费最低? 最低总费是多少?

试卷代号:2437

国家开放大学 (中央广播电视大学)2016 年秋季学期"开放专科"期末考试

微积分基础 试题答案及评分标准

(供参考)

2017年1月

一、单项选择题(每小题 4 分,本题共 20 分)

- 1. R
- 2. D
- 3. A
- 4. C
- 5. B

二、填空题(每小题 4 分,本题共 20 分)

6.
$$x^2 - 2$$

- 7.1
- 8. $(-\infty, 1)$
- 9.2
- 10. $y = e^x$

三、计算题(本题共44分,每小题11分)

11.
$$\mathbf{M}: \mathbb{R} \preceq \lim_{x \to -1} \frac{(x+1)(x-3)}{(x+1)(x+2)} = \lim_{x \to -1} \frac{x-3}{x+2} = -4$$

12. $\mathbf{M} : y = x^{\frac{3}{2}} + \cos^x x$

$$y' = \frac{3}{2}\sqrt{x} - \sin^2 \cdot e^x$$
 9 \(\frac{3}{2} \)

13.
$$\mathbf{H}: \int \frac{e^{\frac{1}{x}}}{x^2} dx = -\int e^{\frac{1}{x}} d(\frac{1}{x}) = -e^{\frac{1}{x}} + c$$
 11 \mathcal{L}

14.
$$\mathbf{m}: \int_{0}^{\frac{\pi}{2}} x \sin x \, dx = -x \cos x \Big|_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \, dx = \sin x \Big|_{0}^{\frac{\pi}{2}} = 1$$
 11 \mathcal{L}

911

四、应用题(本题 16 分)

15. 解:设水箱的底边长为x,高为h,表面积为S,则有 $h = \frac{4}{x^2}$

所以
$$S(x) = x^2 + 4xh = x^2 + \frac{16}{x}$$
,

$$S'(x) = 2x - \frac{16}{x^2}$$

令
$$S'(x) = 0$$
,得 $x = 2$, 10 分

因为本问题存在最小值,且函数的驻点唯一,所以,当x=2,h=1时水箱的表面积最小.

此时的费用为 $S(2) \times 10 + 40 = 160(元)$

16 分

国家开放大学(中央广播电视大学)2017年春季学期"开放专科"期末考试

微积分基础 试题

2017年6月

题	号	 =	Ξ	四	总	分
分	数					

附表

导数基本公式:

$$(c)'=0$$

$$\int 0 \, \mathrm{d}x = c$$

$$(x^{a})' = \alpha x^{a-1}$$

$$\int x^{\alpha} dx = \frac{x^{\alpha-1}}{\alpha+1} + c \ (\alpha \neq -1)$$

$$(a^x)' = a^x \ln a (a > 0 \stackrel{\square}{\perp} a \neq 1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + c (a > 0 \perp a \neq 1)$$

$$(e^x)' = e^x$$

$$\int e^x dx = e^x + c$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(\ln x)' = \frac{1}{r}$$

$$\int \frac{1}{\tau} \mathrm{d}x = \ln|x| + c$$

$$(\sin x)' = \cos x$$

$$\int \sin x \, \mathrm{d}x = -\cos x + c$$

$$(\cos x)' = -\sin x$$

$$\int \cos x \, \mathrm{d}x = \sin x + c$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + c$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + c$$

得	分	评卷人

一、单项选择题(每小题 4 分,本题共 20 分)

1. 函数
$$f(x) = x \cdot \frac{e^x + e^{-x}}{2}$$
 的图形是关于()对称的.

A.
$$y = x$$

B. 坐标原点

D. y 轴

2. 当
$$x \rightarrow 0$$
 时,下列变量中为无穷小量的是(

A.
$$\frac{\sin x}{r}$$

B. 2^x

C.
$$ln(1+x)$$

D. $\frac{1}{r}$

A.
$$\sin x$$

B. ex

C.
$$x^2$$

D. 5 - x

A.
$$3^x dx = \frac{d(3^x)}{\ln 3}$$

B. $\ln x \, \mathrm{d}x = \mathrm{d}(\frac{1}{x})$

$$C. \ \frac{1}{\sqrt{x}} dx = d(\sqrt{x})$$

D. $\sin x dx = d(\cos x)$

5. 微分方程
$$y'=0$$
 的通解为().

A.
$$y = 0$$

B. y = cx

C.
$$y = x + c$$

D. y = c

得 分 评卷人

二、填空题(每小题 4分,本题共 20分)

$$7. \lim_{x\to 0} \frac{\sin x}{2x} = \underline{\hspace{1cm}}.$$

8. 若函数
$$f(x) = \begin{cases} x^2 + 1, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $k =$ _______

9. 若
$$\int f(x) dx = F(x) + c$$
,则 $\int f(2x-3) dx =$ ______.

得	分	评卷人

三、计算题(本题共 44 分,每小题 11 分)

11. 计算极限
$$\lim_{x\to -1} \frac{x^2+3x+2}{x^2-1}$$
.

12. 设
$$y = \ln \cos x + x^3$$
,求 dy.

13. 计算不定积分
$$\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx$$
.

14. 计算定积分
$$\int_1^x x \ln x dx$$
.

得	分	评卷人

四、应用题(本题 16 分)

15. 欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省?

试卷代号:2437

国家开放大学 (中央广播电视大学)2017 年春季学期"开放专科"期末考试

微积分基础 试题答案及评分标准

(供参考)

2017年6月

一、单项选择题(每小题 4 分,本题共 20 分)

- 1. B
- 2. C
- 3. D
- 4. A
- 5. D

二、填空题(每小题 4分,本题共 20分)

6.
$$x^2 + 1$$

- 7. $\frac{1}{2}$
- 8.1

9.
$$\frac{1}{2}F(2x-3)+c$$

10.3

三、计算题(本题共44分,每小题11分)

11. 解:原式 =
$$\lim_{x \to 1} \frac{(x+1)(x+2)}{(x+1)(x-1)} = \lim_{x \to 1} \frac{x+2}{x-1} = -\frac{1}{2}$$
 11 分

12.
$$\mathbf{W}: \mathbf{y}' = \frac{1}{\cos x} \cdot (-\sin x) + 3x^2$$
 9 分

$$dy = (3x^2 - \tan x)dx 11$$

13.
$$\mathbf{M}: \int \frac{\sin\sqrt{x}}{\sqrt{x}} dx = 2 \int \sin\sqrt{x} \, d(\sqrt{x}) = -2\cos\sqrt{x} + c$$
 11 \mathcal{A}

14.
$$\Re: \int_{1}^{c} x \ln x \, dx = \frac{1}{2} x^{2} \ln x \Big|_{1}^{c} - \frac{1}{2} \int_{1}^{c} \frac{x^{2}}{x} \, dx = \frac{1}{2} e^{2} - \frac{1}{4} e^{2} + \frac{1}{4} = \frac{1}{4} e^{2} + \frac{1}{4}$$
 11 \Re

四、应用题(本题 16 分)

15. 解:设长方体底的边长为x,高为h,用材料为y,由已知 $x^2h = 108, h = \frac{108}{x^2}$

$$y = x^2 + 4xh = x^2 + 4x \cdot \frac{108}{x^2} = x^2 + \frac{432}{x}$$

令
$$y' = 2x - \frac{432}{x^2} = 0$$
,解得 $x = 6$ 是唯一驻点,

$$\mathbb{E} y'' = 2 + \frac{2 \times 432}{x^3} \Big|_{x=6} > 0,$$

说明 x=6 是函数的极小值点,也就是所求的最小值点. 所以当 x=6, h=3 时用料最省.

16 分

国家开放大学(中央广播电视大学)2017年秋季学期"开放专科"期末考试

微积分基础 试题

2018年1月

题	号	 	Ξ	四	总	分
分	数					

附表

导数基本公式:

$$(c)'=0$$

$$\int 0 \, \mathrm{d}x = c$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c (\alpha \neq -1)$$

$$(a^x)' = a^x \ln a (a > 0 \perp a \neq 1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + c (a > 0 \perp a \neq 1)$$

$$(e^x)' = e^x$$

$$\int e^x dx = e^x + c$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(\ln x)' = \frac{1}{x}$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + c$$

$$(\sin x)' = \cos x$$

$$\int \sin x \, \mathrm{d}x = -\cos x + c$$

$$(\cos x)' = -\sin x$$

$$\int \cos x \, \mathrm{d}x = \sin x + c$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + c$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + c$$

得	分	评卷人

一、单项选择题(每小题4分,本题共20分)

1. 下列函数()为奇函数.

A. $x^2 \cos x$

B. $\sin x + \cos x$

C. $x \sin x$

D. $\frac{e^{x}-e^{-x}}{2}$

2. 当 k = ()时,函数 $f(x) = \begin{cases} x^2 + 1, x \neq 0 \\ k, x = 0 \end{cases}$ 在 x = 0 处连续.

A. 0

B. 1

C. 2

D. -1

3. 函数 $y=(x+1)^2$ 在区间(-2,2)是(

A. 单调增加

B. 单调减少

C. 先增后减

D. 先减后增

A. $2xe^{2x}(1+x)$

B. $2x^2e^{2x}$

C. $2xe^{2x}$

D. $x e^{2x}$

5. 微分方程 y'=0 的通解为().

A. y = 0

B. y = cx

C. y = c

D. y = x + c

得	分	评卷人

二、填空题(每小题 4 分,本题共 20 分)

- 6. 函数 $f(x-1)=x^2-2x+7$,则 f(x)=______.
- 7. $\lim_{x \to 0} \frac{\sin x}{2x} =$ _____.
- 8. 曲线 $y = \sqrt{x}$ 在点(1,1)处的切线方程是
- 9. d $\int e^{-x^2} dx =$ ______.
- 10. 微分方程 $(y'')^3 + 4xy^{(4)} = y^6 \sin x$ 的阶数为 .

得	分	评卷人

三、计算题(每小题 11 分,本题共 44 分)

11. 计算极限
$$\lim_{x\to 3} \frac{x^2+2x-15}{x^2-9}$$
.

12. 设
$$y = \cos\sqrt{x} + \ln x$$
,求 dy.

13. 计算不定积分
$$\int \frac{\cos\frac{1}{x}}{x^2} dx$$
.

得	分	评卷人

四、应用题(本题 16 分)

15. 欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?

试券代号:2437

国家开放大学(中央广播电视大学)2017年秋季学期"开放专科"期末考试

微积分基础 试题答案及评分标准

(供参考)

2018年1月

一、单项选择题(每小题 4 分,本题共 20 分)

- 1. D
- 2. B
- 3. D
- 4. A
- 5. C

二、填空题(每小题 4 分,本题共 20 分)

6.
$$x^2 + 6$$

7.
$$\frac{1}{2}$$

8.
$$y = \frac{1}{2}x + \frac{1}{2}$$

9.
$$e^{-x^2} dx$$

10. 4

三、计算题(每小题 11 分,本题共 44 分)

11.
$$\mathbf{M}: \mathbb{R} \preceq \lim_{x \to 3} \frac{(x+5)(x-3)}{(x-3)(x+3)} = \frac{4}{3}$$
 (11 \mathcal{A})

12.
$$\mathbf{M}: \mathbf{y}' = -\sin\sqrt{x} \cdot \frac{1}{2\sqrt{x}} + \frac{1}{x}$$
 (9 $\mathbf{\mathcal{G}}$)

$$dy = (\frac{1}{x} - \frac{\sin\sqrt{x}}{2\sqrt{x}})dx \tag{11 }$$

13.
$$\mathbf{M}: \int \frac{\cos\frac{1}{x}}{x^2} dx = -\int \cos\frac{1}{x} d\left(\frac{1}{x}\right) = -\sin\frac{1}{x} + c \tag{11 }$$

14.
$$\mathbf{M}: \int_{0}^{1} x e^{x} dx = x e^{x} \Big|_{0}^{1} - \int_{0}^{1} e^{x} dx = e - e^{x} \Big|_{0}^{1} = 1$$
 (11 \mathcal{L})

850

四、应用题(本题 16 分)

15. 解:设底的边长为 x,高为 h,用材料为 y,由已知 $x^2h=32$, $h=\frac{32}{x^2}$,于是

$$y = x^2 + 4xh = x^2 + 4x \cdot \frac{32}{x^2} = x^2 + \frac{128}{x}$$

令 $y'=2x-\frac{128}{x^2}=0$,解得 x=4 是唯一驻点,易知 x=4 是函数的极小值点,也就是所求

的最小值点,此时有
$$h = \frac{32}{4^2} = 2$$
,所以当 $x = 4$, $h = 2$ 时用料最省. (16 分)

国家开放大学(中央广播电视大学)2018年春季学期"开放专科"期末考试

微积分基础 试题

2018年7月

题	号	_	 Ξ	四	总	分
分	数					

附表

导数基本公式:

$$(c)'=0$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$(a^x)' = a^x \ln a (a > 0 \coprod a \neq 1)$$

$$(e^x)'=e^x$$

$$(\log_a x)' = \frac{1}{x \ln a} (a > 0 \perp a \neq 1)$$

$$(\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$\int 0 \mathrm{d}x = c$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c (\alpha \neq -1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + c (a > 0 \perp a \neq 1)$$

$$\int e^x dx = e^x + c$$

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int \sin x \, \mathrm{d}x = -\cos x + c$$

$$\int \cos x \, \mathrm{d}x = \sin x + c$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + c$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + c$$

得	分	评卷人

一、单项选择题(每小题 4 分,本题共 20 分)

1. 下列各函数对中,()中的两个函数相等.

A.
$$f(x) = (\sqrt{x})^2, g(x) = x$$

B.
$$f(x) = \sqrt{x^2}, g(x) = x$$

C.
$$f(x) = \ln x^2, g(x) = 2 \ln x$$

D.
$$f(x) = \sin^2 x + \cos^2 x$$
, $g(x) = 1$

2. 当
$$x \rightarrow 0$$
 时,下列变量中为无穷小量的是().

A.
$$\frac{1}{x}$$

C.
$$ln(1+x)$$

D.
$$\frac{\sin x}{x}$$

3. 满足方程
$$f'(x)=0$$
 的点一定是函数 $y=f(x)$ 的().

4. 若
$$\int f(x) dx = x^2 e^{2x} + c$$
,则 $f(x) = ($).

A.
$$2xe^{2x}(1+x)$$

B.
$$2x^2e^{2x}$$

$$C_{x} = 2 \pi e^{2x}$$

D.
$$x e^{2x}$$

A.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y$$

B.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + xy$$

C.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy + \sin x$$

D.
$$\frac{dy}{dx} = (x+y)y$$

得 分 评卷人

二、填空题(每小题 4 分,本题共 20 分)

- 6. 函数 $f(x+2) = x^2 + 4x + 4$, 则 f(x) =
- 7. $\lim_{x\to 0} \frac{\sin 2x}{kx} = 3$, \emptyset $k = _____.$
- 8. 函数 $y = \frac{x^2 2x 3}{x 1}$ 的间断点是______.
- 9. $\int d(\cos x^2) =$ _____.
- 10. 微分方程 $xy''' + (y')^4 \cos x = e^{x+y}$ 的阶数为______.

得	分	评卷人

三、计算题(每小题 11 分,本题共 44 分)

11. 计算极限
$$\lim_{x\to 3} \frac{x^2-7x+12}{x^2-9}$$
.

12. 设
$$y = e^{\frac{1}{x}} + \sin x$$
,求 dy.

13. 计算不定积分
$$\int \frac{\sin\frac{1}{x}}{x^2} dx$$
.

14. 计算定积分
$$\int_0^{\frac{\pi}{2}} x \sin x \, dx$$
.

得	分	评卷人

四、应用题(本题 16 分)

15. 欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?

试卷代号:2437

国家开放大学(中央广播电视大学)2018年春季学期"开放专科"期末考试

微积分基础 试题答案及评分标准

(供参考)

2018年7月

一、单项选择题(每小题 4 分,本题共 20 分)

- 1. D
- 2. C
- 3. A
- 4. A
- 5. B

二、填空题(每小题 4 分,本题共 20 分)

- 6. x^2
- 7. $\frac{2}{3}$
- 8. x = 1
- 9. $\cos x^2 + c$
- 10. 3

三、计算题(每小题 11 分,本题共 44 分)

11. 计算极限 $\lim_{x\to 3} \frac{x^2-7x+12}{x^2-9}$.

解:原式=
$$\lim_{x\to 3} \frac{(x-4)(x-3)}{(x+3)(x-3)} = \lim_{x\to 3} \frac{x-4}{x+3} = -\frac{1}{6}$$

12. 设 $y = e^{\frac{1}{x}} + \sin x$,求 dy.

$$\mathbf{M}: \mathbf{y}' = \mathbf{e}^{\frac{1}{x}} \left(-\frac{1}{x^2} \right) + \cos x$$
 9 分

$$dy = \left(\cos x - \frac{1}{x^2} e^{\frac{1}{x}}\right) dx$$
 11 \Re

13. 计算不定积分 $\int \frac{\sin \frac{1}{x}}{x^2} dx.$

解:
$$\int \frac{\sin\frac{1}{x}}{x^2} dx = -\int \sin\frac{1}{x} d\left(\frac{1}{x}\right) = \cos\frac{1}{x} + c$$
 11 分

831

14. 计算定积分 $\int_0^{\frac{x}{2}} x \sin x \, dx$.

$$\text{解}: \int_{0}^{\frac{\pi}{2}} x \sin x \, \mathrm{d}x = -x \cos x \, \Big|_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \, \mathrm{d}x = \sin x \, \Big|_{0}^{\frac{\pi}{2}} = 1$$
 11 分

四、应用题(本题 16 分)

15. 欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?

解:设底的边长为 x, 高为 h, 用材料为 y, 由已知 $x^2h = 32$, $h = \frac{32}{x^2}$, 于是

$$y = x^2 + 4xh = x^2 + 4x \cdot \frac{32}{x^2} = x^2 + \frac{128}{x}$$

令 $y'=2x-\frac{128}{x^2}=0$,解得 x=4 是唯一驻点,易知 x=4 是函数的极小值点,也就是所求

的最小值点,此时有 $h = \frac{32}{4^2} = 2$,所以当 x = 4, h = 2 时用料最省.

国家开放大学(中央广播电视大学)2018年秋季学期"开放专科"期末考试

微积分基础 试题

2019年1月

题	号	_	=	Ξ	四	总	分
分	数						

附表

导数基本公式:

$$(c)' = 0$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$(a^x)' = a^x \ln a (a > 0$$
 $\exists a \neq 1)$

$$(e^x)' = e^x$$

$$(\log_a x)' = \frac{1}{x \ln a} (a > 0 \perp a \neq 1)$$

$$(\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$\int 0 \mathrm{d}x = c$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c (\alpha \neq -1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + c(a > 0 \perp a \neq 1)$$

$$\int e^x dx = e^x + c$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + c$$

$$\int \sin x \, \mathrm{d}x = -\cos x + c$$

$$\int \cos x \, \mathrm{d}x = \sin x + c$$

$$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + c$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + c$$

得	分	评卷人

一、单项选择题(每小题 4 分,本题共 20 分)

1. 函数
$$f(x) = \frac{1}{\ln(x-1)}$$
的定义域是().

A.
$$(1,+\infty)$$

B.
$$(0,1) \cup (1,+\infty)$$

C.
$$(1,2) \cup (2,+\infty)$$

D.
$$(0,2) \cup (2,+\infty)$$

2. 当
$$k = ($$
)时,函数 $f(x) = \begin{cases} x \sin \frac{3}{x} + 1, & x \neq 0 \\ k, & x = 0 \end{cases}$ 在 $x = 0$ 处连续.

D.
$$-1$$

A.
$$x_0$$
 是 $f(x)$ 的极值点,则 x_0 必是 $f(x)$ 的驻点

B. 使
$$f'(x)$$
不存在的点 x_0 一定是 $f(x)$ 的极值点

C. 若
$$f'(x_0)=0$$
,则 x_0 必是 $f(x)$ 的极值点

D.
$$x_0$$
 是 $f(x)$ 的极值点,且 $f'(x_0)$ 存在,则必有 $f'(x_0)=0$

4. 若函数
$$f(x) = x + \sqrt{x}(x > 0)$$
,则 $\int f'(x) dx = ($).

A.
$$x + \sqrt{x} + c$$

B.
$$\frac{1}{2}x^2 + \frac{2}{3}x^{\frac{3}{2}} + c$$

C.
$$x^2 + x + c$$

D.
$$x^2 + \frac{3}{2}x^{\frac{3}{2}} + c$$

5. 微分方程
$$y'=0$$
 的通解为().

A.
$$y=0$$

B.
$$v = c$$

C.
$$y = x + c$$

D.
$$y = cx$$

得分评卷人

二、填空题(每小题 4分,本题共 20分)

6. 函数
$$f(x+1)=x^2+2x+7$$
,则 $f(x)=$ ______

7.
$$\lim_{x\to 0} \frac{\sin 3x}{x} =$$
_____.

8. 曲线
$$y=x^{\frac{1}{2}}$$
在点(1,1)处的切线的斜率是

9.
$$\int_{-1}^{1} (\sin x \cos 2x - x^2) dx = \underline{\qquad}.$$

10. 微分方程
$$xy'' + (y')^4 \cos x = e^{x+y}$$
 的阶数为______.

得	分	评卷人

三、计算题(每小题 11 分,本题共 44 分)

11. 计算极限
$$\lim_{x\to 3} \frac{x^2-5x+6}{x^2-9}$$
.

12. 设
$$y=x\sqrt{x}+\cos 3x$$
,求 dy.

13. 计算不定积分
$$\int x \sin x dx$$
.

14. 计算定积分
$$\int_{0}^{\ln 2} e^{x} (1+e^{x})^{2} dx$$
.

得	分	评卷人

四、应用题(本题 16 分)

15. 用钢板焊接一个容积为 4m³ 的底为正方形的无盖水箱,已知钢板每平方米 10 元,焊接费 40 元,问水箱的尺寸如何选择,可使总费用最低?最低总费用是多少?

试卷代号:2437

国家开放大学(中央广播电视大学)2018 年秋季学期"开放专科"期末考试

微积分基础 试题答案及评分标准

(供参考)

2019年1月

一、单项选择题(每小题 4 分,本题共 20 分)

- 1. C
- 2. B
- 3. D
- 4. A
- 5. B

二、填空题(每小题 4 分,本题共 20 分)

- 6. $x^2 + 6$
- 7. 3
- 8. $\frac{1}{2}$
- 9. $-\frac{2}{3}$

10. 2

三、计算题(每小题 11 分,本题共 44 分)

11. 计算极限 $\lim_{x\to 3} \frac{x^2-5x+6}{x^2-9}$.

解:原式=
$$\lim_{x\to 3} \frac{(x-2)(x-3)}{(x+3)(x-3)} = \lim_{x\to 3} \frac{x-2}{x+3} = \frac{1}{6}$$

12. 设 $y=x\sqrt{x}+\cos 3x$,求 dy.

$$\mathbf{W}: \mathbf{y}' = \frac{3}{2}x^{\frac{1}{2}} - 3\sin 3x$$
 9 分

$$dy = \left(\frac{3}{2}x^{\frac{1}{2}} - 3\sin 3x\right)dx \tag{11 }$$

13. 计算不定积分 $\int x \sin x dx$.

$$\mathbf{W}: \int x \sin x \, \mathrm{d}x = -x \cos x + \int \cos x \, \mathrm{d}x = -x \cos x + \sin x + c$$
 11 分

14. 计算定积分 $\int_0^{\ln 2} e^x (1+e^x)^2 dx$.

解:
$$\int_{0}^{\ln 2} e^{x} (1+e^{x})^{2} dx = \int_{0}^{\ln 2} (1+e^{x})^{2} d(1+e^{x}) = \frac{1}{3} (1+e^{x})^{3} \Big|_{0}^{\ln 2} = \frac{19}{3}$$
 11 分

四、应用题(本题 16 分)

15. 用钢板焊接一个容积为 4m³ 的底为正方形的无盖水箱,已知钢板每平方米 10 元,焊接费 40 元,问水箱的尺寸如何选择,可使总费用最低?最低总费用是多少?

解:设水箱的底边长为 x,高为 h,表面积为 S,且有 $h = \frac{4}{x^2}$

所以
$$S = x^2 + 4xh = x^2 + \frac{16}{x}$$
,

$$S' = 2x - \frac{16}{x^2}$$

令
$$S'=0$$
,得 $x=2$, 10 分

因为本问题存在最小值,且函数的驻点唯一,所以,当x=2,h=1时水箱的表面积最小.

此时的费用为
$$S|_{x=2} \times 10 + 40 = 160$$
(元) 16 分

国家开放大学2019年春季学期期末统一考试

微积分基础 试题

2019年7月

题	号	_	=	Ξ	四	总	分
分	数						

附表

导数基本公式:

$$(c)'=0$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$(a^x)' = a^x \ln a (a > 0 \perp a \neq 1)$$

$$(e^x)'=e^x$$

$$(\log_a x)' = \frac{1}{x \ln a} (a > 0 \perp a \neq 1)$$

$$(\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$\int 0 \, \mathrm{d}x = c$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c (\alpha \neq -1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + c (a > 0 \perp a \neq 1)$$

$$\int e^x dx = e^x + c$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + c$$

$$\int \sin x \, \mathrm{d}x = -\cos x + c$$

$$\int \cos x \, \mathrm{d}x = \sin x + c$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + c$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + c$$

一、单项选择题(每小题 4 分,本题共 20 分)

1. 函数
$$f(x) = \frac{1}{\ln(x+1)}$$
 的定义域是()

A.
$$(-1, +\infty)$$

B.
$$(-1,0) \cup (0,+\infty)$$

C.
$$(-1,1) \cup (1,+\infty)$$

D.
$$(0,1) \cup (1,+\infty)$$

2. 当
$$k = ($$
)时,函数 $f(x) = \begin{cases} x^2 + 2, & x \neq 0 \\ k, & x = 0 \end{cases}$ 在 $x = 0$ 处连续.

D.
$$-1$$

3. 下列函数在指定区间
$$(-\infty, +\infty)$$
 上单调递减的是().

A.
$$\sin x$$

B.
$$3 - x$$

$$C. x^2$$

$$D_{\bullet} e^{x}$$

4. 若函数
$$f(x) = x + \sqrt{x}$$
,则 $\int f'(x) dx = ($).

A.
$$x + \sqrt{x} + c$$

B.
$$x^2 + x + c$$

C.
$$\frac{1}{2}x^2 + \frac{2}{3}x^{\frac{3}{2}} + c$$

D.
$$x^2 + \frac{3}{2}x^{\frac{3}{2}} + c$$

5. 微分方程
$$y'=0$$
 的通解为().

A.
$$y = x + c$$

B.
$$y = cx$$

C.
$$y = 0$$

D.
$$y = c$$

得 分 评卷人

二、填空题(每小题4分,本题共20分)

6. 函数
$$f(x-1) = x^2 - 2x + 4$$
, 则 $f(x) =$ _____.

7.
$$\lim_{x \to 0} \frac{\sin 3x}{x} =$$
____.

8. 曲线
$$y = \sqrt{x}$$
 在点 (1,1) 处的切线斜率是 .

$$9. d \int e^{-x^2} dx = \underline{\qquad}.$$

10. 微分方程
$$(y'')^3 + 4xy^{(5)} = y^2 \sin x$$
 的阶数为_____.

得	分	评卷人

三、计算题(本题共44分,每小题11分)

11. 计算极限
$$\lim_{x\to 2} \frac{x^2-x-2}{x^2-4}$$
.

12. 设
$$y = e^{\sqrt{x}} + \frac{1}{x}$$
,求 dy.

13. 计算不定积分
$$\int \frac{\sin\frac{1}{x}}{x^2} dx$$
.

14. 计算定积分
$$\int_{1}^{\epsilon} x \ln x \, dx$$
.

得	分	评卷人

四、应用题(本题 16 分)

15. 欲用围墙围成面积为 216 平方米的一块矩形的土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽选取多大尺寸,才能使所用建筑材料最省?

试卷代号:2437

国家开放大学2019年春季学期期末统一考试

微积分基础 试题答案及评分标准

(供参考)

2019年7月

一、单项选择题(每小题 4 分,本题共 20 分)

1. B

2. C

3. B

4. A

5. D

二、填空题(每小题 4 分,本题共 20 分)

6.
$$x^2 + 3$$

7.3

8. $\frac{1}{2}$

9. $e^{-x^2} dx$

10.5

三、计算题(本题共44分,每小题11分)

11.
$$\mathbf{m}: \mathbf{G} \preceq \lim_{x \to 2} \frac{(x-2)(x+1)}{(x-2)(x+2)} = \frac{3}{4}$$

12.
$$\mathbf{M}: \mathbf{y}' = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} - \frac{1}{x^2}$$

$$dy = \left(\frac{e^{\sqrt{x}}}{2\sqrt{x}} - \frac{1}{x^2}\right)dx$$
11 \mathcal{L}

13.
$$\mathbf{H}: \int \frac{\sin\frac{1}{x}}{x^2} dx = -\int \sin\frac{1}{x} d(\frac{1}{x}) = \cos\frac{1}{x} + c$$
11 \mathcal{L}

14.
$$\mathbf{H}: \int_{1}^{e} x \ln x \, dx = \frac{1}{2} x^{2} \ln x \Big|_{1}^{e} - \frac{1}{2} \int_{1}^{e} x^{2} \cdot \frac{1}{x} \, dx$$

$$= \frac{1}{2}e^{2} - \frac{1}{4}x^{2} \Big|_{1}^{e} = \frac{1}{4}e^{2} + \frac{1}{4}$$
 11 \(\frac{1}{2}\)

805

四、应用题(本题 16 分)

15. 解:设土地一边长为x,另一边长为 $\frac{216}{x}$,共用材料为y

于是
$$y = 3x + 2\frac{216}{x} = 3x + \frac{432}{x}$$

$$y' = 3 - \frac{432}{x^2}$$

令
$$y'=0$$
 得唯一驻点 $x=12(x=-12$ 舍去) 10 分

因为本问题存在最小值,且函数的驻点唯一,所以,当土地一边长为 12,另一边长为 18 时,所用材料最省. 16 分

国家开放大学2019年秋季学期期末统一考试

微积分基础 试题

2020年1月

题	号	_	=	Ξ	四	总	分
分	数						

附表

导数基本公式:

$$(c)' = 0$$

$$(x^a)' = \alpha x^{\alpha-1}$$

$$(a^x)' = a^x \ln a (a > 0$$
且 $a \neq 1)$

$$(e^x)' = e^x$$

$$(\log_a x)' = \frac{1}{x \ln a} (a > 0 \perp a \neq 1)$$

$$(\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$\int 0 \, \mathrm{d}x = c$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c (\alpha \neq -1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + c (a > 0 \text{ } \text{!! } a \neq 1)$$

$$\int e^x dx = e^x + c$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + c$$

$$\int \sin x \, \mathrm{d}x = -\cos x + c$$

$$\int \cos x \, \mathrm{d}x = \sin x + c$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + c$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + c$$

得 分 评卷人

一、单项选择题(每小题 4 分,本题共 20 分)

1. 函数
$$y = x \frac{e^x - e^{-x}}{2}$$
 的图形是关于()对称的.

A.
$$y = x$$

B. x 轴

D. 坐标原点

2. 当
$$k = ($$
)时,函数 $f(x) = \begin{cases} \frac{\sin x}{x} - 1, & x \neq 0 \\ k, & x = 0 \end{cases}$ 在 $x = 0$ 处连续.

B. 1

D. -1

3. 函数
$$y = (x+1)^2$$
 在区间 $(-2,2)$ 是().

B. 单调减少

D. 先减后增

A.
$$2^{x} dx = \frac{d(2^{x})}{\ln 2}$$

B. $\sin x \, dx = d(\cos x)$

C.
$$\frac{1}{\sqrt{x}} dx = d(\sqrt{x})$$

 $D. \ln x \, \mathrm{d}x = \mathrm{d}(\frac{1}{x})$

5. 微分方程
$$y''' + (y'')^5 - (y')^4 = \sin x$$
 的阶数为().

В. 3

D. 5

得	分	评卷人		

二、填空题(每小题 4 分,本题共 20 分)

6. 函数
$$f(x-2) = x^2 - 4x + 7$$
, 则 $f(x) =$ ______.

7.
$$\lim_{x\to 0} x \sin \frac{1}{x} =$$
_____.

9.
$$\Xi \int f(x) dx = F(x) + c$$
, $\iint f(3x - 2) dx =$ ______.

10. 微分方程
$$y' + 3y = 0$$
 的通解为_____.

得	分	评卷人

三、计算题(本题共44分,每小题11分)

11. 计算极限
$$\lim_{x\to 3} \frac{x^2+2x-15}{x^2-4x+3}$$
.

12. 设
$$y = \cos \frac{1}{x} + x^5$$
,求 dy.

13. 计算不定积分
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$$
.

14. 计算定积分
$$\int_0^1 x e^x dx$$
.

得	分	评卷人

四、应用题(本题 16 分)

15. 用钢板焊接一个容积为 4m³ 的底为正方形的无盖水箱,已知钢板每平方米 10 元,焊接费 40 元,问水箱的尺寸如何选择,可使总费用最低?最低总费用是多少?

试卷代号:2437

国家开放大学2019年秋季学期期末统一考试

微积分基础 试题答案及评分标准

(供参考)

2020年1月

一、单项选择题(每小题 4 分,本题共 20 分)

1. C

2. A

3. D

4. A

5. B

二、填空题(每小题4分,本题共20分)

 $6. x^2 + 3$

7.0

8. 2

9.
$$\frac{1}{3}F(3x-2)+c$$

10.
$$v = c e^{-3x}$$

三、计算题(本题共 44 分,每小题 11 分)

11.
$$\mathbf{M}: \mathbb{R} \preceq \lim_{x \to 3} \frac{(x+5)(x-3)}{(x-3)(x-1)} = 4$$

11分

12. **M**:
$$y' = -\sin\frac{1}{x} \cdot (-\frac{1}{x^2}) + 5x^4$$

9分

$$dy = (\frac{\sin\frac{1}{x}}{x^2} + 5x^4)dx$$

11 分

13.
$$\mathbf{M}: \int \frac{\cos\sqrt{x}}{\sqrt{x}} dx = 2 \int \cos\sqrt{x} d(\sqrt{x}) = 2\sin\sqrt{x} + c$$

11分

14. **M**:
$$\int_{0}^{1} x e^{x} dx = x e^{x} \Big|_{0}^{1} - \int_{0}^{1} e^{x} dx = e - e^{x} \Big|_{0}^{1} = 1$$

11分

827

四、应用题(本题 16 分)

15. 解:设水箱的底边长为x,高为h,表面积为S,且有 $h = \frac{4}{x^2}$

所以
$$S(x) = x^2 + 4xh = x^2 + \frac{16}{x}$$
,

$$S'(x) = 2x - \frac{16}{x^2}$$

10分

因为本问题存在最小值,且函数的驻点唯一,所以,当 x=2,h=1 时水箱的表面积最小. 此时的费用为 $S(2) \times 10 + 40 = 160(元)$

试卷代号:2437

座位号

国家开放大学2020年春季学期期末统一考试

微积分基础 试题

2020年7月

题	号	 =	Ξ	四	总	分
分	数					

附表

导数基本公式:

$$(c)' = 0$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$(a^x)' = a^x \ln a (a > 0 \perp a \neq 1)$$

$$(e^x)' = e^x$$

$$(\log_a x)' = \frac{1}{x \ln a} (a > 0 \perp a \neq 1)$$

$$(\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$\int 0 \mathrm{d}x = c$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c (\alpha \neq -1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + c (a > 0 \perp a \neq 1)$$

$$\int e^x dx = e^x + c$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + c$$

$$\int \sin x \, \mathrm{d}x = -\cos x + c$$

$$\int \cos x \, \mathrm{d}x = \sin x + c$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + c$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + c$$

得	分	评卷人

一、单项选择题(每小题 4 分,本题共 20 分)

- 1. 函数 $f(x) = \frac{1}{x+2} + \ln(x+5)$ 的定义域为().
 - A. x > -5

B. x > -5 且 $x \neq -2$

C. $x > -5 \, \text{I} \, x \neq -4$

D. $x \neq -2$

- 2. 当 $x \rightarrow 0$ 时,下列变量中为无穷小量的是()
 - A. $\frac{1}{x}$

B. $\frac{\sin x}{x}$

C. 2^x

D. ln(1+x)

- 3. 下列结论中正确的是().
 - A. x_0 是 f(x) 的极值点,则 x_0 必是 f(x) 的驻点
 - B. 使 f'(x) 不存在的点 x_0 一定是 f(x) 的极值点
 - C. 若 $f'(x_0) = 0$,则 x_0 必是 f(x) 的极值点
 - D. x_0 是 f(x) 的极值点,且 $f'(x_0)$ 存在,则必有 $f'(x_0) = 0$
- 4. 下列等式成立的是()。

A.
$$\frac{\mathrm{d}}{\mathrm{d}x} \int f(x) \, \mathrm{d}x = f(x)$$

B. $d \int f(x) dx = f(x)$

$$C. \int f'(x) dx = f(x)$$

 $D. \int df(x) = f(x)$

- 5. 下列微分方程中为可分离变量方程的是(
 - $A. \frac{\mathrm{d}y}{\mathrm{d}x} = x + y$

B. $\frac{\mathrm{d}y}{\mathrm{d}x} = x(y+x)$

C.
$$\frac{dy}{dx} = xy + y$$

D. $\frac{\mathrm{d}y}{\mathrm{d}x} = xy + \sin x$

得 分 评卷人

二、填空题(每小题 4 分,本题共 20 分)

- 6. 函数 $f(x+2) = x^2 + 4x + 2$, 则 f(x) =_____.
- 8. 函数 $y = \frac{x^2 2x + 3}{x + 1}$ 的间断点是 x =_____.
- 9. $\int_{-1}^{1} (x^3 \cos x + 4x 2) \, \mathrm{d}x = \underline{\hspace{1cm}}.$
- 10. 微分方程 $(y'')^3 + 4xy''' = y^6 \sin x$ 的阶数为_____.

得	分	评卷人

三、计算题(本题共 44 分,每小题 11 分)

- 11. 计算极限 $\lim_{x\to 2} \frac{x^2-6x+8}{x^2-3x+2}$.
- 12. 设 $y = \cos x + \ln x^2$,求 dy.
- 13. 计算不定积分 $\int e^x (1 + e^x)^2 dx$.
- 14. 计算定积分 $\int_0^{\frac{\pi}{2}} x \sin x dx$.

得	分	评卷人

四、应用题(本题 16 分)

15. 欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?

国家开放大学2020年春季学期期末统一考试

微积分基础 试题答案及评分标准

(供参考)

2020年7月

一、单项选择题(每小题 4 分,本题共 20 分)

- 1. B
- 2. D
- 3. D
- 4. A
- 5 (

二、填空题(每小题 4 分,本题共 20 分)

6.
$$x^2 - 2$$

7.6

8. - 1

9. — 4

10.3

三、计算题(本题共44分,每小题11分)

11.
$$\mathbf{M}: \mathbf{M}: \mathbf{M}:$$

11分

12.
$$\mathbf{M}: \mathbf{y}' = -\sin x + \frac{1}{x^2} \cdot 2x$$

9分

$$\mathrm{d}y = (\frac{2}{x} - \sin x) \,\mathrm{d}x$$

11分

13.
$$\mathbf{M}: \int e^x (1+e^x)^2 dx = \int (1+e^x)^2 d(1+e^x) = \frac{1}{3} (1+e^x)^3 + c$$

11 分

14.
$$\mathbf{M}: \int_{0}^{\frac{\pi}{2}} x \sin x \, dx = -x \cos x \Big|_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \, dx$$

$$= \sin x \Big|_{0}^{\frac{\pi}{2}} = 1$$

四、应用题(本题 16 分)

15. 解:设底的边长为 x ,高为 h ,用材料为 y ,由已知 $x^2h = 32$, $h = \frac{32}{x^2}$,于是

$$y = x^2 + 4xh = x^2 + 4x \cdot \frac{32}{x^2} = x^2 + \frac{128}{x}$$

令 $y'=2x-\frac{128}{x^2}=0$,解得x=4是唯一驻点,易知x=4是函数的极小值点,也就是所求的

最小值点,此时有 $h = \frac{32}{4^2} = 2$,所以当 x = 4, h = 2 时用料最省.

座位号

国家开放大学2020年春季学期期末统一考试

微积分基础 试题

2020年9月

题	号	_	=	=	四	总	分
分	数						

附表

导数基本公式:

$$(C)'=0$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$(a^x)' = a^x \ln a (a > 0 \perp a \neq 1)$$

$$(e^x)'=e^x$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

积分基本公式:

$$\int 0 \mathrm{d}x = C$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C(\alpha \neq -1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + C(a > 0 \perp a \neq 1)$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + C$$

$$\int \sin x \, \mathrm{d}x = -\cos x + C$$

$$\int \cos x \, \mathrm{d}x = \sin x + C$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + C$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + C$$

1. 函数
$$f(x) = \frac{1}{\sqrt{4-x}}$$
的定义域是().

A.
$$(4,+\infty)$$

B.
$$[4,+\infty)$$

C.
$$(-\infty,4)$$

D.
$$(-\infty,4]$$

2. 设
$$y = x \sin x$$
,则 $dy = ($).

A.
$$x\cos x dx$$

B.
$$\sin x \, dx$$

C.
$$\cos x \, dx$$

D.
$$(\sin x + x \cos x) dx$$

3. 若函数
$$f(x)$$
在点 x 。处可导,则()是错误的.

A.
$$x_0$$
 是函数 $f(x)$ 的极值点

B. 函数
$$f(x)$$
在 x 。处有定义

C. 函数
$$f(x)$$
在点 x 。 处连续

D. 函数
$$f(x)$$
 在点 x 。处可微

4. 若等式
$$\int f(x) dx = \frac{x-1}{x+1} + C$$
 成立,则 $f(x) = ($).

A.
$$-\frac{x-1}{(x+1)^2}$$

B.
$$\frac{2}{(x+1)^2}$$

C.
$$-\frac{2}{(x+1)^2}$$

D.
$$-\frac{1}{x}$$

A.
$$yx - \ln y = y'$$

B.
$$yy' + xy^2 = e^x$$

C.
$$y' - y \sin x = 2\sin 2x$$

D.
$$xy'-y=x\tan\frac{x}{y}$$

得	分	评卷人
	-	

二、填空题(每小题 4 分,本题共 20 分)

7. 若
$$\lim_{x \to 0} \frac{\sin kx}{x} = 2$$
,则 $k =$ ______.

9.
$$\int_{-\pi}^{\pi} (2\sin x - x + 1) dx =$$
_____.

得	分	评卷人

三、计算题(每小题 11 分,本题共 44 分)

- 11. 计算极限 $\lim_{x\to 4} \frac{x^2-16}{x^2-5x+4}$.
- 12. 设 $y = e^{2x} \sin(2x+1)$,求 dy.
- 13. 计算不定积分 $\int \frac{\ln x}{x} dx$.
- 14. 计算定积分 $\int_0^2 x e^x dx$.

得	分	评卷人

四、应用题(本题 16 分)

15. 欲用围墙围成面积为216平方米的一块矩形的土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽各选取多大尺寸,才能使所用建筑材料最省?

国家开放大学2020年春季学期期末统一考试

微积分基础 试题答案及评分标准

(供参考)

2020年9月

一、单项选择题(每小题 4 分,本题共 20 分)

1. C

2. D

3. A

4. B

5. C

二、填空题(每小题 4 分,本题共 20 分)

6.
$$x^2 + x$$

- 7. 2
- 8. 1
- 9. 2π

10.
$$y = x + C$$

三、计算题(每小题 11 分,本题共 44 分)

11.
$$\mathbf{m}: \mathbb{R} \preceq \lim_{x \to 4} \frac{(x-4)(x+4)}{(x-1)(x-4)} = \lim_{x \to 4} \frac{x+4}{x-1} = \frac{8}{3}$$

11 分

12.
$$\mathbf{m}: \mathbf{y}' = 2e^{2x} - 2\cos(2x+1)$$

9分

$$dv = \lceil 2e^{2x} - 2\cos(2x+1) \rceil dx$$

11 分

13.
$$\mathbf{M}: \int \frac{\ln x}{x} dx = \int \ln x d(\ln x) = \frac{1}{2} (\ln x)^2 + C$$

11分

14.
$$\mathbf{M}: \int_{0}^{2} x e^{x} dx = x e^{x} \Big|_{0}^{2} - \int_{0}^{2} e^{x} dx = 2e^{2} - e^{x} \Big|_{0}^{2} = e^{2} + 1$$

11分

四、应用题(本题16分)

15. 解:设土地一边长为x,另一边长为 $\frac{216}{x}$,共用材料为y

于是
$$y = 3x + 2\frac{216}{x} = 3x + \frac{432}{x}$$

$$y' = 3 - \frac{432}{x^2}$$

令 y'=0 得唯一驻点 x=12(x=-12 舍去)

10分

因为本问题存在最小值,且函数的驻点唯一,所以,当土地一边长为 12,另一边长为 18 时,所用材料最省. 16 分

国家开放大学2020年秋季学期期末统一考试

微积分基础 试题

2021年1月

-	题	号	 	Ξ	四	总	分
	分	数	·				

附表

导数基本公式:

$$(C)'=0$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$(a^x)' = a^x \ln a (a > 0 \perp a \neq 1)$$

$$(e^x)'=e^x$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

积分基本公式:

$$\int 0 \, \mathrm{d}x = C$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C(\alpha \neq -1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + C(a > 0 \perp a \neq 1)$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + C$$

$$\int \sin x \, \mathrm{d}x = -\cos x + C$$

$$\int \cos x \, \mathrm{d}x = \sin x + C$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + C$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + C$$

·、单项选择题(每小题 4 分,本题共 20 分)

國家權政學學學和可以認為學院權權國

1	下列函数()为奇
⊥.	1 7/11 KM 1967 (ノか可

A.
$$x^2 + x$$

B. $\sin x \cos x$ $D. x \sin x$

$$C. x^2$$

2. 当
$$x \rightarrow 0$$
 时,下列变量中为无穷小量的是(

A.
$$\frac{1}{\tau}$$

3. 若 x_0 是函数 f(x) 的极值点,则下列说法正确的是(

A. x_0 是函数 f(x) 的极值大点。

B. x_0 是函数 f(x) 的极值小点

C. x_0 是函数 f(x)的驻点

D. 函数 f(x)在点 x_0 处可能不可导

).

4. 若函数
$$f(x) = x^2 e^x$$
,则 $\int f'(x) dx = ($

A.
$$(2x+x^2)e^x + C$$

B. $x^2 e^x + C$

).

C.
$$2xe^x + C$$

D. $xe^x + C$

5. 下列微分方程中为可分离变量方程的是(

A.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{x+y}$$

B.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y$$

C.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy + 1$$

D.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y}{x-y}$$

分 评卷人

二、填空题(每小题4分,本题共20分)

7. 若 $\lim_{x\to\infty} kx \sin \frac{1}{x} = 1$,则 k =______.

8. 曲线 $y=x+\sin x$ 在点(0,0)处的切线斜率为

9. d $\sin x dx =$ _____.

10. 微分方程 $(y'')^2 + 2xy^{(4)} = y \sin x$ 的阶数为

得	分	评卷人
		4

三、计算题(本题共 44 分,每小题 11 分)

- 11. 计算极限 $\lim_{x\to 0} \frac{\sqrt{1-x-1}}{x}$.
- 12. 设 $y = \sin x^2 \ln \sqrt{x}$,求 dy.
- 13. 计算不定积分 $\int \cos x (1+\sin x)^3 dx$.
- 14. 计算定积分 $\int_{1}^{e} x \ln x dx$.

得	分	评卷人

四、应用题(本题 16 分)

15. 用钢板焊接一个容积为 4m³ 的底为正方形的无盖水箱,已知钢板每平方米 10 元,焊接费 40 元,问水箱的尺寸如何选择,可使总费最低? 最低总费是多少?

国家开放大学2020年秋季学期期末统一考试

微积分基础 试题答案及评分标准

(供参考)

一、单项选择题(每小题 4 分,本题共 20 分)

1. B

2. C

3. D

4. B

二、填空题(每小题 4 分,本题共 20 分)

6. x^2-6

7. 1

9. $\sin x \, \mathrm{d}x$

10. 4

三、计算题(每小题 11 分,本题共 44 分)

11.
$$\#: \mathbb{R} : \mathbb{R} : \mathbb{R} = \lim_{x \to 0} \frac{(\sqrt{1-x}-1)(\sqrt{1-x}+1)}{x(\sqrt{1-x}+1)} = \lim_{x \to 0} \frac{-x}{x(\sqrt{1-x}+1)}$$

$$= \lim_{x \to 0} \frac{-1}{(\sqrt{1-x}+1)} = -\frac{1}{2}$$

- 11 分

12. $\mathbf{m}: \mathbf{y}' = 2x \cos x^2 - \frac{1}{2x}$

9分

$$\mathrm{d}y = (2x\cos x^2 - \frac{1}{2x})\,\mathrm{d}x$$

11 分

13.
$$\Re : \int \cos x (1+\sin x)^3 dx = \int (1+\sin x)^3 d\sin x = \frac{1}{4} (1+\sin x)^4 + C$$

14.
$$\Re: \int_{1}^{e} x \ln x \, dx = \frac{1}{2} x^{2} \ln x \Big|_{1}^{e} - \frac{1}{2} \int_{1}^{e} \frac{x^{2}}{x} \, dx = \frac{1}{2} e^{2} - \frac{1}{4} e^{2} + \frac{1}{4} = \frac{1}{4} e^{2} + \frac{1}{4}$$

四、应用题(本题 16 分)

15. 解:设水箱的底边长为x,高为h,表面积为S,则有 $h=\frac{4}{x^2}$

所以
$$S(x) = x^2 + 4xh = x^2 + \frac{16}{x}$$

$$S'(x) = 2x - \frac{16}{x^2}$$

令
$$S'(x)=0$$
,得 $x=2$, 10 分

因为本问题存在最小值,且函数的驻点唯一,所以,当 x=2,h=1 时水箱的表面积最小. 此时的费用为 $S(2)\times 10+40=160$ (元).

站) 3

呂

0-

试卷代号:2437

座位号

国家开放大学2021年春季学期期末统一考试

微积分基础 试题

2021年7月

题	号	_	=	Ξ	四	总	分
分	数						

附表

导数基本公式:

积分基本公式:

$$(C)'=0$$

$$\int 0 \mathrm{d}x = C$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C(\alpha \neq -1)$$

$$(a^x)' = a^x \ln a (a > 0 \perp a \neq 1)$$

$$\int a^x dx = \frac{a^x}{\ln a} + C(a > 0 \coprod a \neq 1)$$

$$(e^x)' = e^x$$

$$\int e^x \, \mathrm{d}x = e^x + C$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(\ln x)' = \frac{1}{x}$$

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + C$$

$$(\sin x)' = \cos x$$

$$\int \sin x \, \mathrm{d}x = -\cos x + C$$

$$(\cos x)' = -\sin x$$

$$\int \cos x \, \mathrm{d}x = \sin x + C$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$$

$$(\cos x)' = -\frac{1}{\sin^2 x}$$

$$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + C$$

(2437号)微积分基础试题第1页(共6页)

得 分 评卷人

一、单项选择题(每小题 4 分,本题共 20 分)

- 1. 函数 $f(x) = \frac{x}{\ln(x-2)} + \sqrt{5-x}$ 的定义域是().
 - A. $(2,+\infty)$

B. (2,5]

C. $(2,3) \cup (3,5)$

- D. $(2,3) \cup (3,5]$
- 2. 当 k=()时,函数 $f(x)=\begin{cases} x^2-1, x\neq 0 \\ k, x=0 \end{cases}$,在 x=0 处连续.
 - A. 0

В. —

C. 1

- D. 2
- 3. 若 $\int_{0}^{1} (2x+k) dx = 2$,则 k=().
 - A. 1

B. -1

C. 0

- D. $\frac{1}{2}$
- 4. 函数 $y=x^2+4x+7$ 在区间(-5,5)是().
 - A. 单调增加

B. 单调减少

C. 先减后增

- D. 先增后减
- 5. 微分方程 y'=y,y(0)=1 的特解为(
 - A. $y = 0.5x^2$

B. $y = e^{-x}$

C. $y = e^x$

D. $y = e^x + 1$

得 分 评卷人

二、填空题(每小题4分,本题共20分)

- 6. 函数 $f(x+1)=x^2+2x-3$,则 f(x)=
- 7. $\lim_{x \to 0} x \sin \frac{1}{x} = \underline{\hspace{1cm}}.$
- 8. 曲线 $y=x^{-\frac{1}{2}}$ 在点(1,1)处的切线的斜率是 .
- 9. $\int (\ln x)' dx = \underline{\qquad}.$
- 10. 微分方程 $(y'')^2 + 4xy''' = y^5 \sin x$ 的阶数为______.
- (2437号)微积分基础试题第2页(共6页)

得	分	评卷人

三、计算题(本题共 44 分,每小题 11 分)

11. 计算极限
$$\lim_{x\to 3} \frac{x^2-2x-3}{x^2-x-6}$$
.

12. 设
$$y = e^{\sqrt{x}} + \frac{1}{x}$$
,求 dy.

13. 计算不定积分
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$
.

得	分	评卷人

四、应用题(本题 16 分)

15. 欲用围墙围成面积为216平方米的一块矩形的土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽各选取多大尺寸,才能使所用建筑材料最省?

题

答

展文

K

. 1

K)

国家开放大学2021年春季学期期末统一考试

微积分基础 试题答案及评分标准

(供参考)

2021年7月

一、单项选择题(每小题 4 分,本题共 20 分)

- 1. D
- 2. B
- 3. A
- 4. C
- 5. C

二、填空题(每小题 4 分,本题共 20 分)

- 6. x^2-4
- 7. 0
- 8. $-\frac{1}{2}$
- 9. $\ln x + C$
- 10. 三 (或 3)

三、计算题(本题共 44 分,每小题 11 分)

11.
$$\mathbf{M}: \mathbb{R} \stackrel{!}{\underset{x \to 3}{\text{lim}}} \frac{(x+1)(x-3)}{(x+2)(x-3)} = \lim_{x \to 3} \frac{x+1}{x+2} = \frac{4}{5}$$

12. 解:
$$y' = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} - \frac{1}{x^2}$$
 9 分

$$dy = \left(\frac{e^{\sqrt{x}}}{2\sqrt{x}} - \frac{1}{x^2}\right) dx$$
 11 $\frac{2}{3}$

13. 解:
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = 2 \int e^{\sqrt{x}} d\sqrt{x} = 2e^{\sqrt{x}} + C$$
 11 分

14.
$$\mathbf{M}: \int_{0}^{1} 2x e^{x} dx = 2x e^{x} \Big|_{0}^{1} - 2 \int_{0}^{1} e^{x} dx = 2e - 2e + 2 = 2$$
 11 \mathbf{A}

(2437号)微积分基础答案第1页(共2页)

四、应用题(本题 16 分)

15. 解:设土地一边长为x,另一边长为 $\frac{216}{x}$,共用材料为y

于是
$$y=3x+2\frac{216}{x}=3x+\frac{432}{x}$$
 6 分

$$y' = 3 - \frac{432}{x^2}$$

令 y'=0 得唯一驻点 x=12(x=-12 舍去)

10 分

因为本问题存在最小值,且函数的驻点唯一,所以,当土地一边长为 12,另一边长为 18 时,所用材料最省.

(2437号)微积分基础答案第2页(共2页)