DISEÑO ACÚSTICO DE RECINTOS

Andrés Barrera A aibarrera@hotmail.com 2005

ESTRATEGIAS BÁSICAS DE DISEÑO

- 1) Definir las dimensiones del recinto (ancho largo alto) adecuadas para minimizar la influencia de las resonancias del aire en la sala (M.N.V.).
- 2) Entregar un grado adecuado de aislamiento acústico a las paredes, piso y cielo del recinto para asegurar:
 - Ruido de fondo al interior que asegure un cierto grado de confort acústico (NPS por bandas de frecuencia).
 - Mínima molestia por ruido en vecinos colindantes a la sala (NPS dBA)
- 3) Entregar la cantidad adecuada de reverberación a la sala instalando materiales absorbentes acústicos (asegurar un tiempo de reverberación óptimo en cada banda de frecuencia).

CRITERIOS DE RUIDO DE FONDO

• Curvas de valorización de ruido

- Asignan un número único a un espectro de ruido.
- El espectro del ruido de fondo es clasificado con un tipo de curva, correspondiendo a la curva que queda por sobre los puntos que representan los niveles de ruido.
- Más usado: Curvas NC (Noise Criteria).

Ejemplo

• Clasificar el siguiente espectro de ruido según criterio NC:

NPS = 65dB a 125Hz

 $NPS = 62dB \ a \ 250Hz$

NPS = 60dB a 500Hz

NPS = 56 dB a 1kHz

 $NPS = 55dB \ a \ 2kHz$

NPS = 52dB a 4kHz

Solución: NC-56

Máximos NPS por banda adecuados para cada tipo de recinto según Criterio NC

Tipo de recinto		
	NC	dBA
Estudios de radio, televisión	20	25
Salas de música, auditorios	25	25
Teatros	30	40
Hospitales	35	45
Iglesias	30	45
Viviendas, hoteles	35	45
Salas lectura, aulas	35	45
Salas de conferencia pequeñas	30	50
Oficinas, restaurantes	45	50
Juzgados	35	45
Oficinas medias	50	50
Bibliotecas	35	45
Bancos, tiendas, oficinas grandes	45	55
Gimnasios, salas deporte y piscinas	45	60
Cines	35	45

CRITERIO DE BOLT

- Establece las proporciones de la sala que minimizan el efecto de los M.N.V. del recinto.
- Par ordenado (X, Y)
- Si (X,Y) está dentro de la curva cerrada, los primeros 25 modos normales del recinto estarán uniformemente espaciados.

$$X = \frac{L_X}{L_Z}$$
 $Y = \frac{L_Y}{L_Z}$ $Z = \frac{L_Z}{L_Z} = 1$

Sala de 5 x 7 x 3m

Ejemplo: Verificar si se cumple con el criterio de Bolt para una sala de 5m de ancho, 7m de largo y 3m de altura.

$$X = \frac{5}{3} = 1,66$$
$$Y = \frac{7}{3} = 2,3$$

CRITERIO DE BONELLO

- Evalúa la distribución de los modos de una sala, asegurando mínimos efectos de coloración de sonido.
- Se basa en el cálculo de la cantidad de modos en cada una de las bandas de 1/3 octava inferiores a 200Hz.

Bonello – Criterios de Aceptabilidad

- La sala debe cumplir dos condiciones:
 - La cantidad de M.N.V. debe ser una serie numérica monótona creciente (mayor a lo más igual) a medida que aumenta la frecuencia.
 - No deben existir modos degenerados, salvo si la cantidad de modos en la banda de frecuencia correspondiente es mayor a 5.

Propuesta: Planilla de Cálculo de **Modos Normales**

Cálculo de M.N.V.

Dimensiones de la sala Ancho Largo L Alto Lz

isiones de la s	ala	
Lx	3,2	m
_y	3,2	m
	2,7	m
CALCULAR	l	

	nx	ny	nz	F	Tipo	dB
1	0	1	0	53,75	Α	0
2	1	0	0	53,75	Α	0
3	0	0	1	63,704	Α	0
4	1	1	0	76,014	Т	-3
- 5	0	1	1	83,35	Т	-3
- 6	1	0	1	83,35	Т	-3
- 7	1	1	1	99,178	0	-6
- 8	0	2	0	107,5	Α	0
9	2	0	0	107,5	Α	0
10	1	2	0	120,19	Τ	-3
11	2	1	0	120,19	Т	-3
12	0	2	1	124,96	Т	-3
13	2	0	1	124,96	Τ	-3
14	0	0	2	127,41	Α	0
15	1	2	1	136,03	0	-6
16	2	1	1	136,03	0	-6
17	0	1	2	138,28	Т	-3 -3
18	1	0		138,28	Т	-3
19	1	1	2	148,36	0	-6
20	2	2	0	152,03	Т	-3

	ASHRAE1	ASHRAE 2	Bolt	IAC	Regla de oro	Sepmeyer
Х	1,17	1,45	1,28	1,25	1,26	1,14
Υ	1,47	2,1	1,54	1,6	1,41	1,41
Ζ	1	1	1	1	1	1

Dimensiones óptimas						
Criterio	Bolt					
X	1,28	3,5				
Υ	1,54	4,2				
Ζ	1	2,7				

Car	ntidad de mo	dos	
f	f1	f2	N
16	14,3	18,0	0
20			0
25 22,3		28,1	0
31,5	28,1	35,3	0
40	35,7	44,9	0
50	44,6	56,1	2
63	56,1	70,7	1
80	71,3	89,8	3
100	89,1	112,2	3
125	111,4	140,3	9
160	142,6	179,5	13
200	178,3	224,4	23

TIEMPO DE REVERBERACIÓN ÓPTIMO

- Tiempos óptimos para asegurar una correcta calidad acústica de la sala.
- T60 optimo = Tiempo de reverberación a 500Hz ó tiempo de reverberación en frecuencias medias (500Hz 1kHz)

TIPO DE SALA	RT _{mid} , sala ocupada (en s)
Sala de conferencias	0,7 – 1,0
Cine	1,0 – 1,2
Sala polivalente	1,2 – 1,5
Teatro de ópera	1,2 – 1,5
Sala de conciertos (música de cámara)	1,3 – 1,7
Sala de conciertos (música sinfónica)	1,8 – 2,0
Iglesia/catedral (órgano y canto coral)	2,0 – 3,0
Locutorio de radio	0,2 – 0,4

Tabla 1.5 Márgenes de valores recomendados de RT_{mid} en función del tipo de sala (recintos ocupados)

Fuente: Carrión, "Diseño Acústico de Espacios Arquitectónicos"

Spaces designed for speech and music recording require shorter reverberation times.

Fuente: Everest, "The Master Handbook of Acoustics"

Sala de conferencias 10 x 12 x 8m

Fuente: Recuero, "Acústica Arquitectónica"

Tiempo de Reverberación Óptimo por Bandas de Frecuencia

- En salas de uso musical, los tiempos óptimos en otras bandas distintas a 500Hz, deben favorecer el "calor" (presencia de bajos) de la sala.
- En el caso de estudio de grabación, el tiempo de reverberación debe ser constante con la frecuencia.
- Límite: alrededor de 30% superior (125Hz) y 80% (63Hz) respecto a 500Hz.

Permissible bass rise of reverberation time for voice studios derived by subjective evaluation in controlled tests by BBC researchers. (After Spring and Randall.¹¹)

Fuente: Everest, "The Master Handbook of Acoustics"

Propuesta: Planilla de Cálculo de Tiempo de Reverberación

	Cálculo	de Tiemp	o de Re	verbera	ción									
Dimensiones del	Ancho	10	m		Volu	nen	14	0	m3					
recinto	Largo	5	m		Supe	rficie	18	4	m2					
	Alto	2,8	m	· '										
Superficies límites			1											
-		<i>i</i> 6	12	25	2:	50	50	0	100	00	200	00	400	
Nombre superficie	Material	Área S	α	S·α	α	S·α	α	S·α	α	S·α	α	S·α	α	S·α
Superficie 1	Fibra de vidrio 22kg/m2 30mm	50	0,1	5	0,32	16	0,55	27,5	0,66	33	0,79	39,5	0,77	38,
Superficie 2	Bloque de hormigón pintado	134	0,1	13,4	0,05	6,7	0,06	8,04	0,07	9,38	0,09	12,06	80,0	10,7
Superficie 3			0	0	0	0	0	0	0	0	0	0	0	
Superficie 4			0	0	0	0	0	0	0	0	0	0	0	
Superficie 5			0	0	0	0	0	0	0	0	0	0	0	
Superficie 6			0	0	0	0	0	0	0	0	0	0	0	
Personas y objetos														
Nombre		N°	Α	N°∙A	Α	N°∙A	Α	N°∙A	Α	N°∙A	Α	N°∙A	Α	N°∙A
Persona adulta		10	0,23	2,3	0,33	3,3	0,39	3,9	0,42	4,2	0,47	4,7	0,47	4,
			0	0)	0	0	0	0	0	0	0	0	
			0	0	0	0	0	0	0	0	0	0	0	
Superficie total intern	a	184												
		12	25	250 5		500 1000		10	2000		4000			
Absorción sonora total (superficies y personas/objetos)			20	1,7	2	6	39,	44	46,5	58	56,3	26	53,	32
Coeficiente de absorción promedio al interior			0,1	13	0,1	41	1 0,214		,214 0,253		0,306		0,293	
			4	25	25	in I	EU	n I	400	ın l	201	nn T	400	10
	Tiempe de reverberació		12				500		1000		2000		4000	

DISEÑO ACÚSTICO DE RECINTOS

Andrés Barrera A.

aibarrera@hotmail.com 2005