Computer Simulation of Communication Systems—Homework 1

Due date: 3/2

- 1. Given a signal $x(t) = \operatorname{sinc}^2(t/T)$
 - (a) Assume T=1/100 and sampling frequency $f_s=350$, plot the signal x(t) in the time interval [-5,5] and the magnitude and phase spectrum of the signal x(t).
 - (b) Change T = 1/150 and repeat (a).
 - (c) Repeat (a) but change $f_s = 50$.

Explain the results of (a), (b) and (c).

Hint: To compute the phase spectrum, use MATLAB command "phase" or "angle". If you have no idea how to use them, you can search them in "help".

2. A signal x(t) with period $T_0=12$ is defined by $x(t)=\Pi\left(t\left/6\right)$ for $|t|\leq 6$. The rectangular signal $\Pi\left(t\right)$ is defined by

$$\Pi(t) = \begin{cases} 1, & |t| < \frac{1}{2} \\ \frac{1}{2}, & t = \pm \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

This signal passes through an LTI system with an impulse response given by

$$h(t) = \begin{cases} e^{-10t} + e^{-t^2/2}, & 0 \le t \le 4\\ 0, & \text{otherwise} \end{cases}$$

Numerically determine and plot the discrete spectrum of the output signal.