

Machine Learning with Graphs (MLG)

RecSys: Matrix Factorization

Latent Factor Models

Cheng-Te Li (李政德)

Institute of Data Science
National Cheng Kung University

chengte@mail.ncku.edu.tw

 $Y \approx X\Theta^T$

factors

.1	4	.2
5	.6	.5
2	.3	.5
1.1	2.1	.3
7	2.1	-2
-1	.7	.3
	-	

users

l						-						
	1.1											
ł	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

 $\mathbf{\Theta}^T$

- For now let's assume we can approximate the rating matrix Y as a product of "thin" $X \cdot \Theta^T$
 - Y has missing entries but let's ignore that for now!
 - Basically, we want the reconstruction error to be small
 on known ratings and don't care about the missing ones

Ratings as Products of Factors

• How to estimate the missing rating of user u for item i?

$$\hat{y}_{ui} = x_i \cdot \theta_u = \sum_{k} x_{ik} \cdot \theta_{uk} \qquad \begin{array}{l} x_i = \text{row } i \text{ of } X \\ \theta_u = \text{column } u \text{ of } \Theta^T \end{array}$$

2023/4/11 Prof. Cheng-Te Li @ NCKU

Predicting Movie Ratings

User rates movies using zero to five stars

Movie	Alice	Bob	Carol	Dave
我的少女時代	5	5	0	0
派特的幸福劇本	5	?	?	0
你的名字	?	4	0	?
黑暗騎士	0	0	5	4
神力女超人	0	0	5	?

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & ? \end{bmatrix}$$

$$R = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & ? & ? & 1 \\ ? & 1 & 1 & ? \\ 1 & 1 & 1 & ? \end{bmatrix}$$

 $r^{(i,j)}$: 1 if user j rates movie i (0 otherwise)

 $y^{(i,j)}$: rating given by user j to movie 1 (defined only if r(i,j) = 1)

 n_u : number of users

 n_m : number of movies

Predicting Movie Ratings

	$\theta^{(1)}$	$\theta^{(2)}$	$\theta^{(3)}$	$\theta^{(4)}$	real	ures/ra	CLOIS
	σ	σ	σ	σ	$x_0 = 1$	x_1	x_2
Movie	Alice	Bob	Carol	Dave	virtual	romanc	e action
x ⁽¹⁾ 我的少女時代	5	5	0	0	1	0.99	0
$x^{(2)}$ 派特的幸福劇本	5	?	?	0	1	1.0	0.01
$x^{(3)}$ 你的名字	? 4.95	4	0	?	1	0.99	0
x ⁽⁴⁾ 黑暗騎士	0	0	5	4	1	0.1	1.0
$x^{(5)}$ 神力女超人	0	0	5	?	1	0	0.9

Let $x^{(i)}$ be the feature vector of movie iLet $\theta^{(j)}$ be the parameter for user j

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^{n+1}$ $(\theta^{(1)})^T x^{(3)} = 5 \times 0.99 = 4.95$

Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars

n: number of features

 $x^{(1)} = \begin{bmatrix} 1 \\ 0.99 \end{bmatrix} \quad \theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$

Egaturos/Eactors

Problem Formulation

- $x^{(i)}$: feature vector of movie i
- $\theta^{(j)}$: parameter vector for user j $\theta^{(j)} \in \mathbb{R}^{n+1}$
- $r^{(i,j)}$: 1 if user j rates movie i (0 otherwise)
- $y^{(i,j)}$: rating given by user j to movie 1 (defined only if r(i,j) = 1)
- $m^{(j)}$: number of movies rated by user j
- For each user j and movie i, predicted rating $(\theta^{(j)})^T x^{(i)}$
- Given that $x^{(i)}$ is known, the goal is to learn $\theta^{(j)}$
- Apply "Linear Regression with Regularization" X: movie ratings, y: $x^{(i)}$

$$\min_{\theta^{(j)}} \frac{1}{2m^{(j)}} \sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2m^{(j)}} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2$$

Optimization Objective

Given that $x^{(1)}, x^{(2)}, \dots, x^{(n_m)}$ is known

To learn $\theta^{(j)}$ (parameter for user j):

$$\min_{\theta(j)} \frac{1}{2} \sum_{i: r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2$$

To learn $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(n_u)}$ (parameters for all users):

$$\min_{\theta^{(1)},\theta^{(2)},\dots,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1}^{n_u} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} \left(\theta_k^{(j)} \right)^2$$

Gradient Descent

$$\min_{\theta^{(1)},\theta^{(2)},\dots,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1}^{n_u} \left(\left(\theta^{(j)}\right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} \left(\theta_k^{(j)} \right)^2$$

 $\downarrow J(\theta^{(1)}, \theta^{(2)}, ..., \theta^{(n_u)})$: loss function

Gradient descent update:

$$\theta_k^{(j)} \coloneqq \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)} \qquad \text{(for } k = 0)$$

$$\theta_k^{(j)} \coloneqq \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

$$\frac{\partial}{\partial \theta_k^{(j)}} J(\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)})$$

From User to Movie Vectors

• However, cannot know each movie i's feature vector $x^{(i)}$

					Feat	:ures/Fa	ctors
	$\theta^{(1)}$	$\theta^{(2)}$	$\theta^{(3)}$	$\theta^{(4)}$		unkr	nown
	U	O	U		$x_0 = 1$	x_1	x_2
Movie	Alice	Bob	Carol	Dave	virtual	romanc	ce action
x ⁽¹⁾ 我的少女時代	5	5	0	0	1	0.99	0
$x^{(2)}$ 派特的幸福劇本	5	?	?	0	1	1.0	0.01
$x^{(3)}$ 你的名字	?	4	0	?	1	0.99	0
x ⁽⁴⁾ 黑暗騎士	0	0	5	4	1	0.1	1.0
$x^{(5)}$ 神力女超人	0	0	5	?	1	0	0.9

• If we can know each user's preference vector $\theta^{(j)}$, we will be able to estimate each movie i's feature vector $x^{(i)}$

$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix} \theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix} \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{pmatrix} \theta^{(1)} \end{pmatrix}^T x^{(1)} \approx 5 & \left(\theta^{(2)} \right)^T x^{(1)} \approx 5 \\ \left(\theta^{(2)} \right)^T x^{(1)} \approx 0 & \left(\theta^{(4)} \right)^T x^{(1)} \approx 0 \end{bmatrix}$$

Optimization Objective

Given that $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(n_u)}$ is known

To learn $x^{(i)}$ (parameter for user j):

$$\min_{\theta(j)} \frac{1}{2} \sum_{j:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2$$

To learn $x^{(1)}, x^{(2)}, ..., x^{(n_m)}$ (parameters for all movies):

$$\min_{x^{(1)}, x^{(2)}, \dots, x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1}^{n_m} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} \left(x_k^{(i)} \right)^2$$

Latent Factor (LF) Model

To learn $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(n_u)}$ (parameters for all users):

$$\min_{\theta^{(1)},\theta^{(2)},\dots,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1}^{n_u} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} \left(\frac{\theta_k^{(j)}}{n_k} \right)^2$$

To learn $x^{(1)}, x^{(2)}, ..., x^{(n_m)}$ (parameters for all movies):

$$\min_{x^{(1)}, x^{(2)}, \dots, x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1}^{n_m} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} \left(x_k^{(i)} \right)^2$$

Guess:

$$\theta^{(j)} \to \chi^{(i)} \to \theta^{(j)} \to \chi^{(i)} \to \theta^{(j)} \to \chi^{(i)} \to \cdots$$

2023/4/11 Prof. Cheng-Te Li @ NCKU

11

Latent Factor Optimization Objective

Given $x^{(1)}, x^{(2)}, ..., x^{(n_m)}$, estimate $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(n_u)}$:

$$\min_{\theta^{(1)},\theta^{(2)},\dots,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1}^{n_u} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} \left(\theta_k^{(j)} \right)^2$$

Given $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(n_u)}$, estimate $x^{(1)}$, $x^{(2)}$, ..., $x^{(n_m)}$:

$$\min_{x^{(1)},x^{(2)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1}^{n_m} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n_m} \left(x_k^{(i)} \right)^2$$

Minimizing $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(n_u)}$ and $x^{(1)}$, $x^{(2)}$, ..., $x^{(n_m)}$ simultaneously:

$$J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)})$$
 Final Loss Function

$$= \frac{1}{2} \sum_{(i,j): r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2$$

$$\min_{\substack{\chi^{(1)}, \dots, \chi^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} J(\chi^{(1)}, \dots, \chi^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$$

Latent Factor Model Algorithm

- (1) Initialize $x^{(1)}, ..., x^{(n_m)} \& \theta^{(1)}, ..., \theta^{(n_u)}$ to small random values
- (2) Minimize $J(x^{(1)}, ..., x^{(n_m)}, \theta^{(1)}, ..., \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm)

for every $j=1,\ldots,n_u$ and $i=1,\ldots,n_m$:

$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

(3) For a user with parameters θ and a movie with (learned) features x, predict a star rating of $\theta^T x$

$$\hat{y}^{(i,j)} = \left(\theta^{(j)}\right)^T \left(x^{(i)}\right)$$

Latent Factor Model: Matrix Factorization

Movie	Alice	Bob	Carol	Dave	$y^{(i,j)}$	(MF)
我的少女時代	5	5	0	0	y	
派特的幸福劇本	5	?	?	0	Γ 5 5	0 07
你的名字	?	4	0	?	$V = \begin{bmatrix} 5 & ? \\ 2 & 4 \end{bmatrix}$? 0
黑暗騎士	0	0	5	4	$\begin{vmatrix} 1 & - & 2 & 4 \\ 0 & 0 & 0 \end{vmatrix}$	5 4
神力女超人	0	0	5	?	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	5 ?
	Í	$\hat{\sigma}^{(i,j)} =$	$= (\theta^{(j)})$	$)^{T}(x^{(i)})$		$V \cap T$
$\left[(\theta^{(1)})^T (x^{(1)}) \right]$	$(\theta^{(2)})$	$T(x^{(1)})$)	$(\theta^{(n_u)})$	$(x^{(1)})^T(x^{(1)})$	$\approx X\Theta^T$
$\widehat{Y} = \left[(\theta^{(1)})^T (x^{(2)}) \right]$		$\int_{0}^{T} \left(x^{(2)} \right)^{2}$		-	$T(\chi(2))$	$X \mathbf{\Theta}^T$
$\left[\left(\theta^{(1)}\right)^T \left(x^{(n_m)}\right)\right]$: $(\theta^{(2)})$	$T(x^{(n_m)})$	(n)	$(\theta^{(n_u)})$	$: \\ T(x^{(n_m)})$	

Low-Rank Matrix Factorization
$$X = \begin{bmatrix} \begin{pmatrix} x^{(1)} \end{pmatrix}^T \\ \begin{pmatrix} x^{(2)} \end{pmatrix}^T \\ \vdots \\ \begin{pmatrix} x^{(n_m)} \end{pmatrix}^T \end{bmatrix} \quad \Theta = \begin{bmatrix} \begin{pmatrix} \theta^{(1)} \end{pmatrix}^T \\ \begin{pmatrix} \theta^{(2)} \end{pmatrix}^T \\ \vdots \\ \begin{pmatrix} \theta^{(n_u)} \end{pmatrix}^T \end{bmatrix}$$

$$\Theta = egin{bmatrix} \left(heta^{(1)}
ight)^T \\ \left(heta^{(2)}
ight)^T \\ dots \\ \left(heta^{(n_u)}
ight)^T \end{bmatrix}$$

Find Relevant Movies by MF

When a user just views an item, how to recommend relevant items to her?

- For each movie i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$
 - E.g. x_1 : romance, x_2 : action, x_3 : comedy, x_4 :
 - Jointly learn X and Θ using Gradient Descent
- Euclidean: $\sqrt{\sum_{k=1}^{n} x_k^{(i)} x_k^{(j)}}$ Cosine: $\frac{x^{(i)} \cdot x^{(j)}}{\sqrt{x^{(i)} \cdot x^{(i)}} \sqrt{x^{(j)} \cdot x^{(j)}}}$
- How to find movies j related to movie i?

Small
$$||x^{(i)} - x^{(j)}|| \Rightarrow$$
 movie j and i are similar

■ → Find the top movies j with the smallest $||x^{(i)} - x^{(j)}||$

	$ heta^{(1)}$	$\theta^{(2)}$	$\theta^{(3)}$	$ heta^{(4)}$	$x_0 = 1$	x_1	x_2
Movie	Alice	Bob	Carol		virtual		e action
x ⁽¹⁾ 我的少女時代	5	5	0	0	1	0.99	0
$x^{(2)}$ 派特的幸福劇本	5	?	?	0	1	1.0	0.01
$x^{(3)}$ 你的名字	?	4	0	?	1	0.99	0
x ⁽⁴⁾ 黑暗騎士	0	0	5	4	1	0.1	1.0
x ⁽⁵⁾ 神力女超人	0	0	5	?	1	. 0	0.9

How about New Users? The Cold-Start Problem

	No Rat			<i>n</i> =	= 2				
		$ heta^{(1)}$	$\theta^{(2)}$	$\theta^{(3)}$	$ heta^{(4)}$	$\theta^{(5)}$	x_0	x_1	x_2
	Movie	Alice	Bob	Carol	Dave	Eva	virtual	romanc	e action
$\chi^{(1)}$	我的少女時代	5	5	0	0	? →	0 1	0.99	0
$\chi^{(2)}$	派特的幸福劇本	5	?	?	0	? →	0 1	1.0	0.01
$\chi^{(3)}$	你的名字	?	4	0	?	? →	0 1	0.99	0
$x^{(4)}$	黑暗騎士	0	0	5	4	? →	0 1	0.1	1.0
$x^{(5)}$	神力女超人	0	0	5	?	$\mathbf{\dot{s}} ightarrow$	0 1	. 0	0.9

$$\min_{\substack{\chi^{(1)}, \dots, \chi^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{(i,j): r(i,j)=1} \left(\left(\theta^{(j)} \right)^T \chi^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(\chi_k^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & ? & ? \end{bmatrix} \quad \theta^{(5)} \in \mathbb{R}^{2+1} \qquad \frac{\lambda}{2} \left[\left(\theta_0^{(5)} \right)^2 + \left(\theta_1^{(5)} \right)^2 + \left(\theta_2^{(5)} \right)^2 \right] \\ \theta^{(5)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \left(\theta^{(5)} \right)^T \left(x^{(i)} \right) = 0$$

$$\theta^{(5)} \in \mathbb{R}^{2+1}$$

$$\theta^{(5)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\frac{\lambda}{2} \left[\left(\theta_0^{(5)} \right)^2 + \left(\theta_1^{(5)} \right)^2 + \left(\theta_2^{(5)} \right)^2 \right]$$

$$\left(\theta^{(5)}\right)^T \left(x^{(i)}\right) = 0$$

Solve Cold-Start by Mean Normalization

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix} \mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

Step 1. Find mean values μ for each movie

Step 2. Subtract
$$Y = [y^{(i,j)}]$$
 by $\mu^{(i)}$ (for (i,j) : $r(i,j) = 1$)

Step 3. Use the new Y to learn $\theta^{(j)}$ and $x^{(i)}$

Step 4. Make prediction by

$$\hat{y}^{(i,j)} = (\theta^{(j)})^T (x^{(i)}) + \mu^{(i)}$$

Assume
$$\theta^{(5)} \approx \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow (\theta^{(j)})^T (x^{(i)}) \approx 0 \rightarrow \hat{y}^{(i,j)} \approx \mu^{(i)}$$

Recommendation Systems by MF

- For recommender systems, we can represent the relationships between users and items
 - Items: Movies, Songs, Projects, Business, Uses, etc.

Then the goal is to predict user-item ratings

User	Item	Ratings
1	5	3
1	10	?
1	13	5
•••	•••	•••
u	v	r_{uv}
•••	•••	•••

Number of users

 $m \times n$

Number of items

Matrix Factorization

K: number of latent dimensions/factors (e.g. topics, categories)

$$\hat{r}_{ui} = \boldsymbol{p}_u^T \boldsymbol{q}_i \qquad \hat{r}_{22} = \boldsymbol{p}_2^T \boldsymbol{q}_2$$

$$\hat{r}_{22} = oldsymbol{p}_2^T oldsymbol{q}_2$$

Matrix Factorization

MF solves the following equation:

$$\min_{P,Q} \frac{1}{2} \sum_{(u,i) \in R} (r_{ui} - \boldsymbol{p}_u^T \boldsymbol{q}_i)^2 + \frac{\lambda}{2} (\|\boldsymbol{p}_u\|^2 + \|\boldsymbol{q}_i\|^2)$$

$$\operatorname{or:} + \frac{\lambda_1}{2} \|\boldsymbol{p}_u\|^2 + \frac{\lambda_2}{2} \|\boldsymbol{q}_i\|^2$$

$$\hat{r}_{ui} = \boldsymbol{p}_u^T \boldsymbol{q}_i \qquad \hat{R} = P^T Q$$

 λ : Regularization Parameter

- Stochastic Gradient Descent (SGD) is the most popular optimization method for MF
 - □ SGD loops over ratings in the training data (existing ratings)

MF with SGD: Example

• Hyperparameters: K=2, $\alpha=0.1$, $\lambda=0.15$, #iteration=150, initialization $\sim \mathcal{N}(0,0.01)$

$$R = \begin{bmatrix} 1 & 4 & 5 & 3 \\ 5 & 1 & 5 & 2 \\ 4 & 1 & 2 & 5 \\ \hline & 3 & 4 & 4 \end{bmatrix}$$

$$P = \begin{bmatrix} 1.1995242 & 1.1637173 \\ 1.8714619 & -0.02266505 \\ 2.3267753 & 0.27602595 \\ 2.033842 & 0.539499 \end{bmatrix}$$

Adding Biases

- Subtract global mean μ
 - Deal with cold-start users
 - Consider only preference
- Item or user specific rating variations are called biases
 - E.g. Alice rates no movie with more than 2 (out of 5)
 - E.g. Movie X is hyped and rated with 5 only
 - → Some items are significantly higher/lower rated
 - → Some users rate substantially lower/higher
- Matrix factorization needs to allow bias correction
 - Offset per user
 - Offset per movie

22

New Objective Function with Biases

Rating = 4

Apply SGD to find the latent factors

 λ can be selected by grid-search

Recap: previously in CF

- μ = mean value over all user-item ratings
- $b_x = (average\ rating\ of\ user\ x) \mu$
- $b_i = (average\ rating\ of\ item\ i) \mu$