Raport: Model regresji dla szacowania cen przejazdów taxi

Autorzy:

Franciszek Szary, nr indeksu: 313142Kacper Urbański, nr indeksu: 308046

Data: 30.05.2025

1. Streszczenie wykonawcze

Celem projektu było zbudowanie modeli regresji do przewidywania cen przejazdów taxi na podstawie różnych zmiennych opisujących kurs. Przeanalizowano zbiór danych zawierający 1000 obserwacji z 11 zmiennymi. Porównano dwa modele: regresję liniową oraz las losowy (Random Forest). Lepszym modelem okazał się Random Forest (RMSE testowy = **5.23**).

2. Opis danych i analiza jakości

2.1 Charakterystyka zbioru danych

- Rozmiar: 1000 obserwacji, 11 zmiennych
- **Zmienna celu:** Trip Price (cena przejazdu)
- **Zmienne predykcyjne:** Trip_Distance_km, Time_of_Day, Day_of_Week, Passenger_Count, Traffic_Conditions, Weather, Base_Fare, Per_Km_Rate, Per_Minute_Rate, Trip_Duration_Minutes

2.2 Problemy z jakością danych

Brakujące wartości: 5.0% danych miało brakujące wartości

Główne problemy:

- W 50 wierszach każdej kolumny znajdowały się puste stringi, które po konwersji zostały zinterpretowane jako brakujące dane (NaN)
- Zmienna Trip_Price miała 49 brakujących wartości (4.9%)
- Dane liczbowe zapisane były z przecinkami zamiast kropek dziesiętnych (np. "3,56" zamiast "3.56")

 Wszystkie kolumny miały początkowo typ object, co uniemożliwiało analizę numeryczną

2.3 Działania naprawcze

W celu poprawy jakości danych wykonano następujące kroki:

- 1. Konwersja danych liczbowych:
 - o Zmieniono przecinki na kropki w kolumnach liczbowych
 - Dokonano konwersji typów na float
- 2. Obsługa brakujących danych:
 - Wykryto 50 brakujących wartości w większości kolumn (5.0% danych)
 - Zastosowano imputację braków:
 - Dla zmiennych liczbowych zastosowano medianę:
 - Trip_Distance_km: 25.83
 - Passenger_Count: 2.00
 - Base_Fare: 3.52
 - Per_Km_Rate: 1.22
 - Per_Minute_Rate: 0.29
 - Trip_Duration_Minutes: 61.86
 - Trip_Price: 50.07
 - Dla zmiennych kategorycznych zastosowano modę:
 - Time_of_Day: Afternoon
 - Day_of_Week: Weekday
 - Traffic_Conditions: Low
 - Weather: Clear

Po uzupełnieniu braków wszystkie wartości zostały uzupełnione (0 braków)

3. Standaryzacja typów danych:

 Wszystkie kolumny mają odpowiedni typ: zmienne numeryczne jako float, zmienne kategoryczne jako object lub zakodowane

3. Eksploracyjna analiza danych

3.1 Analiza zmiennej celu (Trip_Price)

• Średnia: **32.56**, odchylenie: **8.64**

• Mediana: 31.80

Rozkład: prawie normalny, lekko prawoskośny

3.2 Analiza korelacji

Obliczono współczynniki korelacji Pearsona pomiędzy zmiennymi liczbowymi a ceną przejazdu (Trip_Price). Najsilniejsze korelacje zaobserwowano dla:

- Trip_Distance_km: r = 0.83 bardzo silna dodatnia korelacja, im dłuższy dystans, tym wyższa cena
- Per_Km_Rate: r = 0.26 umiarkowana korelacja, związana z jednostkową stawką za kilometr
- Trip_Duration_Minutes: **r** = **0.21** słaba dodatnia korelacja, co sugeruje, że czas trwania kursu ma mniejszy wpływ niż dystans
- Per Minute Rate: r = 0.13 bardzo słaba korelacja
- Base_Fare: **r = 0.03** praktycznie brak korelacji
- Passenger_Count: **r = -0.01** brak korelacji z ceną (nawet ujemna, ale bardzo słaba)

3.3 Analiza zmiennych kategorycznych

Time_of_Day

Ceny przejazdów różnią się nieznacznie w zależności od pory dnia. Najwyższe średnie ceny zaobserwowano popołudniami:

• Afternoon: **średnia = 57.46**, mediana = 50.07

• Evening: 56.22

Morning: 55.58

• Night: 56.04

Day_of_Week

Różnice między dniami tygodnia są minimalne:

• Weekday: **średnia = 57.27**

• Weekend: 54.80

Zmienna Day_of_Week może zostać odrzucona ze względu na niską zmienność cen.

Traffic_Conditions

Warunki drogowe mają zauważalny wpływ na ceny:

• High: **średnia = 64.24** – największy wpływ

• Medium: 54.35

• Low: 55.22

Im większy ruch, tym wyższa średnia cena.

Weather

Pogoda ma umiarkowany wpływ:

• Rain: **średnia = 59.30**

• Snow: 57.68

• Clear: 55.58

Warunki pogodowe mogą nieznacznie podnosić ceny, szczególnie przy deszczu.

3.4 Wizualizacja

4. Wybór predyktorów

4.1 Zmienne wybrane do modelu:

- 1. Trip_Distance_km wysoka korelacja z ceną
- 2. Trip_Duration_Minutes logiczny związek z kosztem
- 3. Per_Km_Rate bezpośredni składnik ceny
- 4. **Per_Minute_Rate** bezpośredni składnik ceny
- 5. Base_Fare składnik bazowy ceny
- 6. Time_of_Day różne stawki w różnych porach
- 7. Traffic_Conditions wpływa na czas i koszt
- 8. Weather może wpływać na stawki

4.2 Zmienne odrzucone:

- Day_of_Week: niska variancja w cenie między dniami tygodnia
- Passenger_Count: słaba korelacja z ceną (r < 0.05)

5. Metodologia modelowania

5.1 Przygotowanie danych

- Numery indeksów autorów: 313142, 308046
- Obliczona średnia wartość indeksów: 310594
- Ustawiono ziarno generatora losowego na: 310594 (zaokrąglone w dół)

Wybór predyktorów do modelu:

- Trip_Distance_km
- Time_of_Day
- Day_of_Week
- Passenger_Count
- Traffic_Conditions
- Weather
- Base Fare
- Per_Km_Rate
- Per Minute Rate
- Trip_Duration_Minutes

Kodowanie zmiennych kategorycznych (Label Encoding):

- Time_of_Day: {'Afternoon': 0, 'Evening': 1, 'Morning': 2, 'Night': 3}
- Day_of_Week: {'Weekday': 0, 'Weekend': 1}
- Traffic Conditions: {'High': 0, 'Low': 1, 'Medium': 2}
- Weather: {'Clear': 0, 'Rain': 1, 'Snow': 2}

Podział danych na zbiory:

- Zbiór uczący: 800 próbek (80%)
- Zbiór testowy: 200 próbek (20%)

5.2 Wybrane algorytmy

- 1. **Regresja liniowa** model bazowy, interpretowalny
- 2. Random Forest model ensemble, radzi sobie z nieliniowościami

6. Budowa i optymalizacja modeli

6.1 Model 1: Regresja liniowa

Model regresji liniowej został wytrenowany na zbiorze uczącym z wykorzystaniem wszystkich wybranych predyktorów.

Metryki na zbiorze uczącym:

RMSE: 15.2554MAE: 9.9186MAPE: 24.2301%

Metryki na zbiorze testowym:

RMSE: 18.6496MAE: 10.9366MAPE: 25.2594%

Najważniejsze cechy modelu i ich współczynniki:

Cecha	Współczy nnik	Wartość bezwzględna
Trip_Distance_km	33.662460	33.662460
Per_Km_Rate	9.983096	9.983096
Trip_Duration_Minu tes	8.991998	8.991998
Per_Minute_Rate	5.900497	5.900497
Traffic_Conditions	-0.523986	0.523986

6.2 Model 2: Random Forest

Model lasu losowego został wytrenowany z optymalizacją hiperparametrów przy użyciu Grid Search CV.

Optymalne parametry:

n_estimators: 50max_depth: Nonemin_samples_split: 2min_samples_leaf: 1

Metryki na zbiorze uczącym:

RMSE: 4.2327MAE: 2.6420MAPE: 5.3727%

Metryki na zbiorze testowym:

RMSE: 10.9483MAE: 6.8562MAPE: 15.0539%

Najważniejsze cechy wg ważności:

Cecha	Ważność
Trip_Distance_km	0.796407
Per_Km_Rate	0.083672
Trip_Duration_Minu tes	0.062204
Per_Minute_Rate	0.032515
Base_Fare	0.011971

7. Wyniki i ocena modeli

7.1 Metryki na zbiorze uczącym

Model	RMSE	MAE	MAPE (%)
Regresja liniowa	15.2554	9.9186	24.2301
Random Forest	4.2327	2.6420	5.3727

7.2 Metryki na zbiorze testowym

Model	RMSE	MAE	MAPE (%)
Regresja liniowa	18.6496	10.9366	25.2594
Random Forest	10.9483	6.8562	15.0539

Wnioski:

- Model Random Forest osiąga znacznie lepsze wyniki zarówno na zbiorze uczącym, jak i testowym, co wskazuje na jego większą precyzję predykcji.
- Regresja liniowa wykazuje wyższe błędy, szczególnie na zbiorze testowym, co może wskazywać na niedopasowanie do nieliniowych zależności w danych.
- MAPE testowy dla Random Forest wynosi około 15%, co oznacza, że średni błąd prognozy jest na poziomie 15% ceny przejazdu.

7.3 Wizualizacja

8. Analiza Reszty

Dla obu modeli przeprowadzono analizę reszt, obejmującą wizualizacje oraz podstawowe statystyki opisowe.

Statystyki reszt dla Regresji Liniowej:

Średnia reszt: 0.8835Mediana reszt: -0.2646

Odchylenie standardowe reszt: 18.6287
Minimalna wartość reszt: -40.3249
Maksymalna wartość reszt: 141.2907

Statystyki reszt dla Random Forest:

Średnia reszt: 1.4137Mediana reszt: -0.2418

Odchylenie standardowe reszt: 10.8567Minimalna wartość reszt: -29.4350

Maksymalna wartość reszt: 65.0894

9. WNIOSKI I REKOMENDACJE

Główne wnioski

1. Analiza danych:

- Dane wymagały istotnego przygotowania, w tym uzupełnienia brakujących wartości oraz korekty formatów (np. zamiana przecinków na kropki).
- Najsilniejsze korelacje z ceną przejazdu wykazano dla zmiennych:
 Trip_Distance_km (odległość), Trip_Duration_Minutes (czas trwania)
 oraz stawki za kilometr i minutę.

2. Porównanie modeli:

- Model Random Forest znacząco przewyższył Regresję Liniową pod względem wszystkich kluczowych metryk (RMSE, MAE, MAPE) zarówno na zbiorze treningowym, jak i testowym.
- Z tego względu rekomendowanym modelem do predykcji ceny przejazdu jest Random Forest.

3. Najważniejsze predyktory:

- Zarówno w modelu Random Forest, jak i w regresji liniowej, najistotniejszymi cechami wpływającymi na cenę były:
 - Trip_Distance_km
 - Per Km Rate
 - Trip_Duration_Minutes

4. Analiza przeuczenia:

- Oba modele wykazały rozsądne dopasowanie do danych, o czym świadczy umiarkowana różnica między wynikami na zbiorze uczącym i testowym:
 - Regresja Liniowa: różnica RMSE = 3.3942
 - Random Forest: różnica RMSE = 6.7156
- Brak wyraźnych symptomów przeuczenia, zwłaszcza w modelu Random Forest, który lepiej generalizuje dane testowe.

Załączniki

- taxi_trp_pricing.csv
- Raport_taxi.ipynb