Réduction des endomorphismes

1 Prérequis

Exercice 1 Soit E un K-espace vectoriel de dimension finie.

1. Soient F_1, \ldots, F_k des sous-espaces vectoriels de E. On dit que la somme $F_1 + \cdots + F_k$ est directe si $\forall v_1 \in F_1, \ldots, \forall v_k \in F_k, v_1 + \cdots + v_k = 0 \Rightarrow v_1 = \cdots = v_k = 0$. Montrer que dans ce cas, tout vecteur $v \in F_1 + \cdots + F_k$ s'écrit de manière unique comme combinaison linéaire de vecteurs de F_1, \ldots, F_k .

- 2. Montrer par récurrence sur k qu'une somme de k espaces vectoriels est directe si, et seulement si, $(F_1 + \cdots + F_{i-1}) \cap F_i = \{0\}, \forall i \in \{2, \dots k\}$
- 3. Soit $u \in \mathcal{L}(E)$, et $\lambda_1, \ldots, \lambda_k \in K$ des valeurs propres de u. On note $E_{\lambda_1}, \ldots, E_{\lambda_k}$ les espaces propres associés. Montrer que la somme $E_{\lambda_1} + \cdots + E_{\lambda_k}$ est directe.

Exercice 2 Sans effectuer aucun calcul,

a. Citez toutes les valeurs propres des matrice réelles suivantes :

$$A = \begin{pmatrix} 5 & 7 & 14 & -8 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 7 \end{pmatrix} B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}$$

Citez également un vecteur propre de ces matrices et déterminez si elles sont diagonalisables.

b. Citez une valeur propre et un vecteur propre des matrices complexes suivantes;

$$A = \begin{pmatrix} 4i & 9 & 0 \\ 0 & -2 & 8+4i \\ 0 & i & 7 \end{pmatrix} B = \begin{pmatrix} 0 & 1 & 0 \\ -i & 1+i & 0 \\ 2 & 2i & 2+3i \end{pmatrix}$$

Exercice 3 On considère l'endomorphisme u représenté dans la base canonique par

$$A = \begin{pmatrix} 3 & 6 & -4 \\ 0 & -1 & 1 \\ 3 & 5 & -3 \end{pmatrix}.$$

- 1. Calculer le polynôme caractéristique de u.
- 2. Montrer que les sous-espaces Ker (u), Ker (u-Id) et Ker (u+2Id) sont stables par u.
- 3. Déterminer une base de chacun de ces sous-espaces.
- 4. Montrer que la réunion de ces bases forme une base de \mathbb{R}^3 et donner la matrice de u dans cette base.

Exercice 4 Trouver une matrice de $\mathcal{M}_n(\mathbb{C})$ non diagonalisable.

2 Diagonalisation

Exercice 5 La matrice
$$A = \begin{pmatrix} 3 & 4 & -2 \\ 1 & 5 & -1 \\ 0 & 4 & 1 \end{pmatrix}$$
 est-elle diagonalisable?

Exercice 6 Trouvez les valeurs propres et vecteurs propres des endomorphismes suivants sur \mathbb{R}^3 . Déterminez lesquels sont diagonalisables (on effectuera explicitement la réduction quand cela est possible).

a.
$$f(x, y, z) = (2x + y + z, 2x + 3y + 4z, -x - y - 2z)$$

b.
$$f(x, y, z) = (2x - y + z, 3y - z, 2x + y + 3z)$$

$$c. f(x, y, z) = (2x + y + z, 2x + 3y + 2z, 3x + 3y + 4z)$$

Exercice 7 Pour chacune des matrices A suivantes, trouvez les valeurs propres réelles, une base de chaque sous-espace propre, et, lorsque cela est possible, une matrice réelle P telle que $P^{-1}AP$ soit diagonale.

$$\begin{pmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{pmatrix} \qquad \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -6 & 17 & -17 & 7 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2-i & 0 & i \\ 0 & 1+i & 0 \\ i & 0 & 2-i \end{pmatrix}$$

Exercice 8 Soit
$$A = \begin{pmatrix} 0 & -1 & -1 & 1 \\ 1 & 2 & 1 & -1 \\ 1 & 2 & 3 & -1 \\ 2 & 3 & 3 & -1 \end{pmatrix}$$
. Montrer que A est diagonalisable et en déduire A^n

pour tout $n \geqslant 1$.

Exercice 9 Soit
$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & -\sqrt{3}/2 \\ 0 & -\sqrt{3}/2 & -1/2 \end{pmatrix}$$

- 1. Quelles sont les valeurs propres de M?
- 2. Expliquer pourquoi Mn'est pas diagonalisable sur $\mathbb{R}.$
- 3. Diagonaliser M dans \mathbb{C} .

Exercice 10 On considère la matrice
$$A = \begin{pmatrix} 3 & -2 & -1 \\ 2 & -1 & 1 \\ 6 & 3 & -2 \end{pmatrix}$$
.

Calculer son polynôme caractéristique, calculer A^2 et déduire de ces calculs et du théorème de Cayley-Hamilton l'inverse de A.

Exercice 11 Soit $A_{\alpha}\begin{pmatrix} 2 & \alpha & 1 \\ 0 & 2 & 0 \\ 0 & 0 & \alpha \end{pmatrix}$ où α est un paramètre réel.

1. En discutant sur la valeur de α , trouvez les valeurs propres de A_{α} et leur multiplicité algébrique, et une base des sous-especs propres.

2

2. Trouvez l'ensemble des valeurs de α pour lesquelles A_{α} est diagonalisable.

Exercice 12 Soient $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et la matrice par blocs à coefficients réels suivante :

$$M = \begin{pmatrix} O & \frac{1}{2}J \\ \frac{1}{2}J & O \end{pmatrix}.$$

On note u l'endomorphisme de \mathbb{R}^4 de matrice M dans la base canonique.

- 1. Déterminer le polynôme caracteristique de u.
- 2. Déterminer les valeurs propres et les espaces propres de u.
- 3. En déduire une base de \mathbb{R}^4 dans laquelle la matrice de u est diagonale.

Exercice 13 Soit $A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 2 & -3 \\ -2 & 2 & 1 \end{pmatrix}$, et φ l'endomorphisme de \mathbb{R}^3 canoniquement associé à

A.

- 1. Déterminer les valeurs propres de A.
- 2. Déterminer les sous-espaces propres de A.
- 3. Vérifier que A n'est pas diagonalisable.
- 4. Chercher deux vecteurs propres de A linéairement indépendants.
- 5. Compléter ces vecteurs en une base de \mathbb{R}^3 .
- 6. Écrire la matrice de φ dans cette base.

7. Soit
$$X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$
. Résoudre le système différentiel $\frac{dX}{dt} = AX$.

Exercice 14 On note u l'endomorphisme de $E=\mathbb{R}^3$ défini par la matrice A dans la base canonique, où $A=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. On note λ (resp μ) la valeur propre simple (resp. double) de A.
- 2. Calculer $Ker(A \mu I)$ et en déduire que que A n'est pas diagonalisable.
- 3. Calculer $Ker(A \mu I)^2$. Montrer que $\mathbb{R}^3 = Ker(A \mu I)^2 \oplus Ker(A \lambda I)$.
- 4. En déduire une base de \mathbb{R}^3 dans laquelle la matrice de u est triangulaire supérieure.

Polynômes annulateurs et théorème de Cayley-Hamilton

Exercice 15 1. Soit $B \in \mathcal{M}_2(\mathbb{C})$. Calculer explicitement $P(B) = B^2 - \operatorname{tr}(B)B + \det(B)I_2$.

2. Posons $B = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$. Déduire de la question précédente un polynôme P annulateur de B.

Exercice 16 Soit $A \in \mathcal{M}_n(K)$, et $\chi_A : K[X] \to K[X], X \mapsto det(A - XI_n)$. Montrer que :

- 1. $deg(\chi_A) = n$;
- 2. Le terme constant de $\chi_A(X)$ est det(A);
- 3. Si A et B sont semblables alors $\chi_A = \chi_B$;
- 4. A est inversible si, et seulement si $\chi_A(0) \neq 0$.

Calculer
$$\chi_A(X)$$
 et $\chi_A(A)$ pour $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ et $A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & -1 & 2 \\ -1 & 1 & 0 \end{pmatrix}$. Que remarque-t-on?

Exercice 17 (Une démonstration du théorème de Cayley-Hamilton) Soit A une matrice carrée d'ordre $n \ge 2$. On pose B la transposée de la comatrice de $A - xI_n$, et $c(x) = det(A - xI_n)$.

- 1. Montrer que $(A xI_n)B = c(x)I_n$.
- 2. Montrer que les coefficients de la matrice B sont des polynômes en x de degré au plus n-1.
- 3. On pose $B = B_0 + B_1 x + \cdots + B_{n-1} x^{n-1}$, avec pour tout $i, B_i \in \mathcal{M}_n(K)$, et $c(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + a_n x^n$. Montrer qu'alors on a :

$$AB_0 = a_0 I_n$$

$$AB_1 - B_0 = a_1 I_n$$

$$AB_2 - B_1 = a_2 I_n$$

$$\vdots \vdots \vdots$$

$$AB_{n-1} - B_{n-2} = a_{n-1} I_n$$

$$-B_{n-1} = a_n I_n$$

4. En déduire que c(A) = 0. (On pourra multiplier les n+1 égalités précédentes respectivement par $I_n, A, A^2, \ldots A^n$ et ajouter membre à membre).

Exercice 18 On se place dans $E = \mathbb{C}^4$ muni de sa base canonique $b = (e_1, e_2, e_3, e_4)$. On désigne par j l'endomorphisme de E dont la matrice dans b est la matrice suivante

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \in M_4(\mathbb{C}).$$

On appelle polynôme minimal associé à une matrice M le polynôme P unitaire et de plus petit degré tel que P(A) = 0.

- 1. Déterminer l'image de b par j, j^2 , j^3 , et j^4 .
- 2. En déduire J^2 , J^3 et J^4 .
- 3. Déterminer un polynôme annulateur non nul de J.
- 4. Montrer que si $P \in \mathbb{C}[X]$ avec $\deg(P) \leq 3$ vérifie P(J) = 0 alors P = 0.
- 5. En déduire le polynôme minimal de J.
- 6. Montrer que ce polynôme est égal au polynôme caractéristique de J.
- 7. Déterminer les valeurs propres et les sous-espaces propres de J.
- 8. Montrer que la réunion des sous-espaces propres est E.
- 9. Donner une base de E dans laquelle la matrice de j est diagonale.

3 Réduction de Jordan

Exercice 19 Montrer que les matrices suivantes sont nipotentes et les réduire sous forme de Jordan :

$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & -1 & 1 & -7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4 \end{pmatrix}.$$

Exercice 20 Donner toutes les réduites de Jordan des endomorphismes nilpotents de $\mathcal{M}_n(\mathbb{C})$ pour $1 \leq n \leq 4$.

Exercice 21 Soit f l'endomorphisme de l'espace vectoriel canonique \mathbb{R}^3 dont la matrice dans la base canonique \mathcal{B} est $A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -3 \\ -2 & 2 & -2 \end{pmatrix}$.

- 1. Montrer que $\mathbb{R}^3 = \ker f^2 \oplus \ker (f 2\operatorname{Id})$.
- 2. Trouver une base \mathcal{B}' de \mathbb{R}^3 telle que $\operatorname{mat}(f, \mathcal{B}') = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Exercice 22 Soit E un espace vectoriel réel de dimension 4. Soit :

$$U = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ -1 & 4 & 1 & -2 \\ 2 & 1 & 2 & -1 \\ 1 & 2 & 1 & 0 \end{array}\right)$$

la matrice d'un endomorphisme u de E dans la base canonique de E.

- 1. Calculer le polynôme caractéristique de u, et montrer que u admet les valeurs propres 1 et 2.
- 2. Déterminer les sous-espaces propres E_1 et E_2 . Pourquoi u est-il non diagonalisable? Est-il trigonalisable?
- 3. Déterminer les sous-espaces caractéristiques F_1 et F_2 associés respectivement aux valeurs propres 1 et 2.
- 4. Quel est l'ordre β_1 du nilpotent $(u-Id)|_{F_1}$? Quel est l'ordre β_2 du nilpotent $(u-2Id)|_{F_2}$?
- 5. Calculer une base de Jordan de E. On notera T la matrice de u dans cette base.
- 6. Décomposer T sous la forme D+N, où D est diagonale, N est nilpotente, et DN=ND. Calculer T^5 .

Exercice 23 Mettre sous forme de Jordan les matrices :

$$\begin{pmatrix} 3 & -2 & -1 & -4 \\ 1 & 0 & 0 & -2 \\ 1 & -1 & 0 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

5

Exercice 24 Soit *J* la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

Les matrices par blocs suivantes sont-elles semblables? $A = \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix}, B = \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix}$