Bayesian Networks for Obesity Predictions

In this section, we will use two methods to construct Bayesian Networks for predicting obesity: the **Hillclimb search method** and the **Chow-Liu method**. We will use data related to eating habits, physical activity, and family history to model the likelihood of obesity using these methods.

Dataset Import and Preparation

We start by importing the dataset that contains information about over 2000 individuals, including details about their eating habits, physical activity, and family history of obesity from **OB.csv**.

```
import pandas as pd
import bnlearn
from pgmpy.factors.discrete import TabularCPD

# Load the dataset
df = pd.read_csv("OB.csv")
```

Building Bayesian Networks

1. Hillclimb Search Method The **Hillclimb** search method is used to find a Directed Acyclic Graph (DAG) structure that best fits the data, using the Bayesian Information Criterion (BIC) score.

```
In [30]: # Build a DAG using Hillclimb search method
    model_hc = bnlearn.structure_learning.fit(df, methodtype='hc', scoretype='bic')
    print(bnlearn.plot(model_hc))

[bnlearn] >Computing best DAG using [hc]
    [bnlearn] >Set scoring type at [bic]
    [bnlearn] >Compute structure scores for model comparison (higher is better).
    [bnlearn] >Set node properties.
    [bnlearn] >Set edge properties.
    [bnlearn] >Plot based on Bayesian model
```


 ${'fig': < Figure size 1500x1000 with 1 Axes>, 'ax': < Figure siz$ Axes>, 'pos': {'Gender': array([-0.35494438, 0.11336168]), 'FAVC': array([-0.578 51942, -0.53830546]), 'FCVC': array([-0.18512953, 0.73271637]), 'family_history_ 0.10955103]), 'NCP': array([-0.57851942, -0.53830546]), 'NObeyesdad': array([-0.0 1135245, -0.16952972]), 'CH20': array([0.06395021, 0.86533774])}, 'G': <networkx. classes.digraph.DiGraph object at 0x000000217B4E2C2F0>, 'node_properties': {'Gende r': {'node_color': '#1f456e', 'node_size': 800}, 'family_history_with_overweigh t': {'node_color': '#1f456e', 'node_size': 800}, 'FAVC': {'node_color': '#1f456 e', 'node_size': 800}, 'FCVC': {'node_color': '#1f456e', 'node_size': 800}, 'NC P': {'node color': '#1f456e', 'node size': 800}, 'CAEC': {'node color': '#1f456 e', 'node_size': 800}, 'CH20': {'node_color': '#1f456e', 'node_size': 800}, 'NObe er', 'FAVC'): {'color': '#000000', 'weight': 1}, ('Gender', 'FCVC'): {'color': '# 000000', 'weight': 1}, ('family_history_with_overweight', 'CAEC'): {'color': '#00 0000', 'weight': 1}, ('NCP', 'Gender'): {'color': '#000000', 'weight': 1}, ('NC P', 'NObeyesdad'): {'color': '#000000', 'weight': 1}, ('CAEC', 'CH20'): {'color': '#000000', 'weight': 1}, ('CH2O', 'Gender'): {'color': '#000000', 'weight': 1}, ('CH2O', 'FCVC'): {'color': '#000000', 'weight': 1}, ('NObeyesdad', 'Gender'): {'color': '#000000', 'weight': 1}, ('NObeyesdad', 'family_history_with_overweigh t'): {'color': '#000000', 'weight': 1}, ('NObeyesdad', 'FAVC'): {'color': '#00000 0', 'weight': 1}, ('NObeyesdad', 'FCVC'): {'color': '#000000', 'weight': 1}, ('NO beyesdad', 'CAEC'): {'color': '#000000', 'weight': 1}}}

2. Chow-Liu Method The **Chow-Liu** method is another approach for structure learning, where we first convert the data into one-hot encoding and then build a tree-structured Bayesian Network.

```
In [32]: # Build a DAG using Chow-Liu method
    df_hot, df_num = bnlearn.df2onehot(df)
    model_cl = bnlearn.structure_learning.fit(
         df_num, methodtype='cl', root_node='Gender'
    )
```

```
print(bnlearn.plot(model_cl))

[df2onehot] >Auto detecting dtypes.

100%| | 8/8 [00:00<00:00, 140.35it/s]

[df2onehot] >Set dtypes in dataframe..

[df2onehot]: 100%| | 8/8 [00:00<00:00, 235.56it/s]

[df2onehot] >Total onehot features: 22

[bnlearn] >Computing best DAG using [chow-liu]

Building tree: 0%| | 0/28.0 [00:00<?, ?it/s]

[bnlearn] >Compute structure scores for model comparison (higher is better).

[bnlearn] >Set node properties.

[bnlearn] >Plot based on Bayesian model

| bnlearn Directed Acyclic Graph (DAG)
```

NObeverlad.

(AEG)

(A1204

Gender

{'fig': <Figure size 1500x1000 with 1 Axes>, 'ax': <Figure size 1500x1000 with 1</pre> Axes>, 'pos': {'Gender': array([0.69037849, 0.04918033]), 'FCVC': array([5.507448 32e-01, 1.33667646e-17]), 'CH20': array([0.29971936, -0.04918033]), 'CAEC': arra y([-0.01192635, -0.04918033]), 'NObeyesdad': array([-3.21159882e-01, -5.88264149e -17]), 'family_history_with_overweight': array([-0.40258548, 1.]), 'FAV C': array([-0.40258548, -0.47540984]), 'NCP': array([-0.40258548, -0.47540984])}, 'G': <networkx.classes.digraph.DiGraph object at 0x00000217B4EB6F90>, 'node_prope rties': {'Gender': {'node_color': '#1f456e', 'node_size': 800}, 'FCVC': {'node_co lor': '#1f456e', 'node_size': 800}, 'CH20': {'node_color': '#1f456e', 'node_siz e': 800}, 'CAEC': {'node_color': '#1f456e', 'node_size': 800}, 'NObeyesdad': {'no de_color': '#1f456e', 'node_size': 800}, 'family_history_with_overweight': {'node _color': '#1f456e', 'node_size': 800}, 'FAVC': {'node_color': '#1f456e', 'node_si ze': 800}, 'NCP': {'node_color': '#1f456e', 'node_size': 800}}, 'edge_propertie s': {('Gender', 'FCVC'): {'color': '#000000', 'weight': 1}, ('FCVC', 'CH20'): {'c olor': '#000000', 'weight': 1}, ('CH20', 'CAEC'): {'color': '#000000', 'weight': 1}, ('CAEC', 'NObeyesdad'): {'color': '#000000', 'weight': 1}, ('NObeyesdad', 'fa mily_history_with_overweight'): {'color': '#000000', 'weight': 1}, ('NObeyesdad', 'FAVC'): {'color': '#000000', 'weight': 1}, ('NObeyesdad', 'NCP'): {'color': '#00 0000', 'weight': 1}}}

Learning Conditional Probability Distributions (CPDs)

Once the DAG structures are built using both methods, we learn the Conditional Probability Distributions (CPDs) for each network using the **Maximum Likelihood Estimation** method.

Queries for obesity predictions

Hillclimbing method

Chow-Liu method

Representation of results in a DataFrame

```
In [39]: import pandas as pd
         cl_results = {
             'Scenario': [
                  'Male with family history of obesity',
                  'Doesn\'t eat high-calorie food, eats vegetables',
                  'Eats few meals, family history of obesity',
                  'Eats many meals, no snacking, drinks water',
                  'Eats few meals, snacks often'
              'Chow-Liu Model (Obesity Probability)': [query_cl_1.values[1],
                                                       query_cl_2.values[1],
                                                       query_cl_3.values[1],
                                                       query_cl_4.values[1],
                                                       query_cl_5.values[1]]
         }
         hc_results = {
             'Hillclimb Model (Obesity Probability)': [query_hc_1.values[1],
                                                        query_hc_2.values[1],
                                                        query_hc_3.values[1],
                                                        query_hc_4.values[1],
                                                        query_hc_5.values[1]]
         }
         # Create dataframes
         df_cl = pd.DataFrame(cl_results)
         df_hc = pd.DataFrame(hc_results)
         # Combine both results into one dataframe
         df_combined = pd.concat([df_cl, df_hc], axis=1)
         # Display the dataframe
         df_combined
```

Out[39]:

	Scenario	Chow-Liu Model (Obesity Probability)	Hillclimb Model (Obesity Probability)
0	Male with family history of obesity	0.558862	0.556131
1	Doesn't eat high-calorie food, eats vegetables	0.077031	0.072766
2	Eats few meals, family history of obesity	0.033150	0.066146
3	Eats many meals, no snacking, drinks water	0.022606	0.022606
4	Eats few meals, snacks often	0.019004	0.019004