DOMAĆI ZADATAK 1

Kalkulator

U VHDL jeziku za opis fizičke arhitekture realizujte 4-bitni digitalni kalkulator koji ima sledeće prolaze:

Ulazi sistema:

- *iA[3:0]* prvi operand, označen u komplement II predstavi
- iB[3:0] drugi operand, označen u komplement II predstavi
- *iOP[4:0]* operacija koju je potrebno izvršiti nad ulaznim operandima

Izlazi sistema:

- oRES[3:0] rezultat
- oZERO statusni bit za indikaciju da li je rezultat jednak nuli
- oSIGN statusni bit za indikaciju da li je rezultat pozitivan ili negativan
- oCARRY statusni bit za indikaciju da li se desio prenos u toku sabiranja
- oSEGM[6:0] signal za prikaz rezultata na 7-segmentnom displeju

Arhitektura sistema kalkulatora je prikazana na slici:

Sistem obuhvata sledeće komponente:

- Prioritetni koder višeg prioriteta za određivanje željene operacije,
- 4-bitna ALU jedinica (Aritmetičko-logička jedinica) za izvršavanje logičke ili aritmetičke operacije,
- Komponente za određivanje statusnih bita za ZNAK, NULU i PRENOS,
- Dekoder za prikaz na 7-segmentni displej.

Korisnik zadaje 4-bitne operande *iA* i *iB*, kao i željenu operaciju preko signala *iOP*. Ulaz *iOP* je 5-bitni signal koji se **prioritetnim koderom višeg prioriteta** pretvara u trobitni selekcioni signal *sOPER*, koji zatim određuje operaciju koju je potrebno izvršiti, u skladu sa pozicijom aktivnog bita signala *iOP*:

Prioritet	iOP[4:0]	Taster	sOPER[2:0]	Operacija
1	"10000"	UP	"100"	Sabiranje
2	"01000"	DOWN	"011"	Oduizimanje
3	"00100"	CENTAR	"010"	Logička AND operacija
4	"00010"	LEVO	"001"	Pomeranje iA ulevo za jedno mesto
5	"00001"	DESNO	"000"	OPERACIJA PO IZBORU
-	"00000"	NIJEDAN TASTER	"111"	BEZ OPERACIJE i sRES = 0

NAPOMENA: Potrebno je realizovati koder višeg prioriteta tako da ukoliko korisnik pritisne više tastera treba da se izvrši operacija najvišeg prioriteta. Prioritet operacija je označen brojevima od 1 do 5, gde najviši prioritet predstavlja taster UP, a najniži taster DESNO.

ALU jedinica prihvata 2 ulazna operanda iA i iB, izvršava operaciju u zavisnosti od vrednosti signala sOPER:

- Sabiranje
- Oduzimanje
- Logička AND operacija
- Pomeranje ulevo za 1 mesto (iA<<1)
- OPERACIJA PO IZBORU (da nije logička operacija OR, NOT, XOR, itd.)

Rezultat iz ALU jedinice je 5-bitni signal sRES, na osnovu kog je potrebno odrediti statusne bite:

- oZERO treba da bude aktivan na vrednosti '1' ukoliko je rezultat jednak 0,
- oSIGN treba da bude aktivan na vrednosti '1' ukoliko je rezultat negativan broj,
- oCARRY treba da bude aktivan na vrednosti '1' ukoliko se desio prenos u toku operacije SABIRANJA.

Rezultat *sRES[3:0]* se takođe šalje i na **dekoder za prikaz na 7-segmentni displej,** koji ne radi u potpunosti kao klasičan dekoder, ali omogućava dekodovanje ulaznog četvorobitnog broja na 7 svetlećih dioda 7-segmentnog displeja. Npr. da bi se prikazao broj 1, potrebno je da svetle segmenti b i c, što znači da se vrednost "0001" treba dekodovati u "0110000" za 7-segmentni displej. Potrebno je omogućiti ispis brojeva od 0 do 9.

Simulacija sistema:

Proveriti ponašanje sistema u simulaciji realizacijom 5 testnih slučajeva po izboru, tako da se pokriju sve operacije ALU jedinice sa različitim ulaznim vrednostima. U okviru test bench datoteke tekstualno opisati u komentaru svaki test slučaj pre zadavanja signala u stimulus procesu.

Primer test slučaja: Simulirati operaciju sabiranja dva broja tako da rezultat na 7-segmentnom displeju bude 1 i da je aktivan statusni bit za prenos *oCARRY*.

Implementacija na ploču MAX1000:

Za implementaciju kalkulatora na platformu MAX1000, potrebno je povezati prolaze na sledeći način:

- Ulaz **iA** povezati na viša 4 prekidača, a ulaz **iB** na niža 4 prekidača (switch)
- Ulaz *iOP* povezati na 5 tastera redom za svaku operaciju kao što je definisano u prioritetnom koderu.
- Statusne bite oSIGN, oZERO, oCARRY povezati na semafor svetla kao što je prikazano na slici.
- Izlaz oRES povezati na 4 led diode.
- Izlaz oSEGM povezati na 7-segmentni displej

NAPOMENE ZA IZRADU ZADATKA:

- Rešenje realizovati u **dobijenoj postavci zadatka** (ne praviti novi projekat).
- Nije dozvoljeno menjati entitet sistema, kao i nazive već definisanih signala!
- Moguće je po potrebi dodati smislene interne signale.
- Na početku svake VHDL datoteke upisati **SVOJE PODATKE**.
- Podesite pinove za svaki ulaz i izlaz sistema na osnovu podataka iz datoteke LPRS1_FPGA_pins.pdf.
- Rešenje možete proveriti na MAX1000 platformi u dodatnim terminima koji će biti objavljeni na SOVI.

NAPOMENE ZA PREDAJU REŠENJA NA SOVU:

- Realizovano rešenje postaviti na SOVU u predviđenom roku za svoju grupu po sledećim pravilima:
 - SAMO VHDL datoteke (*Iprs1_homework1.vhd* i *Iprs1_homework1_tb.vhd*) ZIPOVATI u datoteku sa nazivom LPRS1_Homework1_XX_YYY_QQQQ, gde je
 - XX modul (RA, PSI ili IN),
 - YYY trocifren broj indeksa (npr. 003 ako je indeks 3/2023)
 - QQQQ godina upisa (npr. 2023)
 - o <u>Primer</u> za indeks RA 3/2023 -> LPRS1_Homework1_RA_003_2023
- Predati zadaci sa pogrešnim nazivom neće biti pregledani!!!

NAPOMENE ZA ODBRANU ZADATKA:

- Odbrana zadatka se realizuje na redovnom terminu računarskih vežbi, gde student nakon nekoliko
 teorijskih pitanja i dodatnog zadatka može ostvariti 0, 1, 2 ili 5 poena. Student koji je odgovorio tačno
 na sva pitanja i ispravno uradio dodatni zadatak u predviđenom vremenu može dobiti maksimum
 poena.
- Koraci odbrane domaćeg zadatka:
 - o Student treba da dođe u svoj termin računarskih vežbi po rasporedu.
 - o **Preuzeti** sa SOVE **svoje rešenje** i **postavku** zadatka i **kopirati** svoje vhdl datoteke u postavku.
 - o Pokrenuti **simulaciju** i implementirati rešenje **na ploču**.
 - o Nakon prethodno realizovanih koraka, pozvati asistenta za ispitivanje i dodatni zadatak.
- Ukoliko je rešenje predato na SOVU, a student se nije pojavio na odbrani zadatka, zadatak nosi NULA poena.
- Rešenja se provlače kroz alat za detekciju plagijarizma, gde svako rešenje sa velikim procentom sličnosti dobija NULA poena.