Code & Output

Final Project

Code:

```
# Julia Cuellar
# DSC 550
# Final project
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
from statsmodels.formula.api import ols
# Display pizza place data
def read file():
   pizza = pd.read csv('pizzaplace.csv')
   print('Original pizza data:\n', pizza)
# Display described, summarized, and length of pizza place data
def des sum len():
   pizza = pd.read csv('pizzaplace.csv')
   print('Described pizza data:\n', pizza.describe())
   print('Summarized pizza data:\n', pizza.describe(include=['O']))
    print('Length of pizza data:\n', len(pizza))
# Display bar chart of pizza name
def showBar Pname():
   pizza = pd.read csv('pizzaplace.csv')
   pizza['name'].value counts().plot(kind='barh').invert yaxis()
   plt.title('Pizza name')
    plt.show()
# Display bar chart of pizza size
def showBar Psize():
    pizza = pd.read csv('pizzaplace.csv')
    pizza['size'].value_counts().plot(kind='barh')
   plt.title('Pizza size')
   plt.show()
# Display pie chart of pizza type
def showPie Ptype():
   pizza = pd.read csv('pizzaplace.csv')
    plt.pie(pizza['type'].value counts(), autopct=lambda p: f'{p:.2f}%',
labels=['classic', 'supreme', 'veggie',
'chicken'])
   plt.title('Pizza type')
   plt.show()
```

```
# Display boxplot of pizza price
def showBoxplot Pprice():
    pizza = pd.read csv('pizzaplace.csv')
    sns.boxplot(pizza['price'])
    plt.title('Pizza price')
   plt.show()
# Check the nulls from pizza file
def check null():
   pizza = pd.read csv('pizzaplace.csv')
   print("Display pizza data with null:\n", pizza.isnull())
   print("Display counts of null from pizza data:\n", pizza.isnull().sum())
# Rename unname column then drop along with id and date
def rename drop():
   pizza = pd.read csv('pizzaplace.csv')
   pizza.rename(columns={'Unnamed: 0': 'num'}, inplace=True)
   pizza.drop(['num', 'id', 'date'], axis=1, inplace=True)
   print('Pizza data updated:\n', pizza.head(5))
# Check for outlier in pizza size column by counts
def size count():
   pizza = pd.read csv('pizzaplace.csv')
   pizza.rename(columns={'Unnamed: 0': 'num'}, inplace=True)
   pizza.drop(['num', 'id', 'date'], axis=1, inplace=True)
    print('Pizza size count:\n', pizza['size'].value counts())
# Check for outlier in pizza price column by describe then remove and update
def price out r up():
   pizza = pd.read csv('pizzaplace.csv')
    pizza.rename(columns={'Unnamed: 0': 'num'}, inplace=True)
    pizza.drop(['num', 'id', 'date'], axis=1, inplace=True)
   print('Pizza price:\n', pizza['price'].describe())
   p price = pizza[pizza['price'] >= 35].index
   pizza.drop(p price, inplace=True)
   print('Described pizza price:\n', pizza['price'].describe())
    sns.boxplot(pizza['price'])
   plt.title('Pizza price updated')
   plt.show()
# Redisplay pizza place data with described, summarized, and length
def pizza up():
   pizza = pd.read csv('pizzaplace.csv')
    pizza.rename(columns={'Unnamed: 0': 'num'}, inplace=True)
   pizza.drop(['num', 'id', 'date'], axis=1, inplace=True)
    p price = pizza[pizza['price'] >= 35].index
   pizza.drop(p price, inplace=True)
   pizza.to csv('pizza.csv')
   print('Pizza data updated:\n', pizza)
    print('Described pizza data updated:\n', pizza.describe())
```

```
print('Summarized pizza data updated:\n', pizza.describe(include=['0']))
   print('Length of pizza data updated:\n', len(pizza))
# Create a multiple linear regression model for size of pizza vs type of
pizza purchased
def reg model svt():
   pizza = pd.read csv('pizzaplace.csv')
    pizza.rename(columns={'Unnamed: 0': 'num'}, inplace=True)
    pizza.drop(['num', 'id', 'date'], axis=1, inplace=True)
    p price = pizza[pizza['price'] >= 35].index
    pizza.drop(p price, inplace=True)
    fit = ols('price ~ C(size) + C(type)', data=pizza).fit()
    print("Multiple linear regression model for size of pizza vs type of
pizza purchased:\n", fit.summary())
    res = fit.resid
    fig = sm.qqplot(res, fit=True, line="45")
    plt.title('Multiple linear regression plot')
    plt.show()
# Display frequency table for size of pizza vs type of pizza purchased
def showFT svt():
    pizza = pd.read csv('pizzaplace.csv')
   pizza.rename(columns={'Unnamed: 0': 'num'}, inplace=True)
    pizza.drop(['num', 'id', 'date'], axis=1, inplace=True)
   p price = pizza[pizza['price'] >= 35].index
   pizza.drop(p price, inplace=True)
   pizza svt = pd.crosstab(pizza['size'], pizza['type'])
    print("Cross table of size of pizza vs type of pizza purchased:\n",
pizza svt)
# Create a simple linear regression model for name of pizza vs price of pizza
purchased
def reg model nvp():
    pizza = pd.read csv('pizzaplace.csv')
    pizza.rename(columns={'Unnamed: 0': 'num'}, inplace=True)
   pizza.drop(['num', 'id', 'date'], axis=1, inplace=True)
    p price = pizza[pizza['price'] >= 35].index
   pizza.drop(p price, inplace=True)
   fit = ols('price ~ C(name)', data=pizza).fit()
    print("Simple linear regression model for name of pizza vs price of pizza
purchased:\n", fit.summary())
    res = fit.resid
    fig = sm.qqplot(res, fit=True, line="45")
    plt.title('Simple linear regression plot')
   plt.show()
# Display plot for name of pizza vs type of pizza purchased
def showPlot nvp():
   pizza = pd.read csv('pizzaplace.csv')
   pizza.rename(columns={'Unnamed: 0': 'num'}, inplace=True)
   pizza.drop(['num', 'id', 'date'], axis=1, inplace=True)
   p price = pizza[pizza['price'] >= 35].index
   pizza.drop(p price, inplace=True)
```

```
sns.catplot(x='price', y='name', data=pizza)
    plt.title('Price vs Name')
    plt.show()
    pizza nvp = pd.crosstab(pizza['price'], pizza['name'])
    print("Cross table of price of pizza vs name of pizza purchased:\n",
pizza nvp)
    pizza name = pizza.groupby('name').count()
    print("Display count of pizza name:\n", pizza name)
    pizza price = pizza.groupby('price').count()
    print("Display count of pizza price:\n", pizza price)
if name == " main ":
    read_file()
    des sum len()
    showBar Pname()
    showBar Psize()
    showPie Ptype()
    showBoxplot Pprice()
    check null()
    rename drop()
    size count()
    price_out_r_up()
    pizza up()
    reg model svt()
    showFT svt()
    reg model nvp()
    showPlot nvp()
```

Output:

Original pizza data:

```
Unnamed: 0
                    id
                          date ... size
                                       type price
0
         1 2015-000001 2015-01-01 ... M classic 13.25
1
         2 2015-000002 2015-01-01 ... M classic 16.00
2
         3 2015-000002 2015-01-01 ... M veggie 16.00
3
         4 2015-000002 2015-01-01 ... L chicken 20.75
4
         5 2015-000002 2015-01-01 ... L veggie 18.50
         49570 2015-021348 2015-12-31 ... L veggie 17.95
49569
49570
         49571 2015-021348 2015-12-31 ...
                                          S classic 12.00
49571
         49572 2015-021348 2015-12-31 ...
                                          M chicken 16.75
49572
         49573 2015-021349 2015-12-31 ... L veggie 20.25
         49574 2015-021350 2015-12-31 ... S chicken 12.75
49573
```

[49574 rows x 8 columns]

Described pizza data:

Unnamed: 0 price count 49574.000000 49574.000000 mean 24787.500000 16.497762 14310.925459 3.621954 std min 1.000000 9.750000 25% 12394.250000 12.750000 50% 24787.500000 16.500000 20.250000 75% 37180.750000 49574.000000 35.950000

Summarized pizza data:

max

id date time name size type count 49574 49574 49574 49574 49574 49574

unique 21350 358 16382 32 5 4

top 2015-018845 2015-11-26 12:25:12 classic_dlx L classic

freq 28 266 28 2453 18956 14888

Length of pizza data:

49574

Pizza price

Display pizza data with null:

Unnamed: 0 id date time name size type price

1 False False False False False False False False

1 False False False False False False False False

2 False False False False False False False False

3 False False False False False False False False

4 False False False False False False False False

5 False False False False False False False False

6 False False False False False False False False

6 False False False False False False False False

False False

[49574 rows x 8 columns]

Display counts of null from pizza data:

Unnamed: 0 0

id 0

date 0

time 0

name 0

size 0

type 0

price 0

dtype: int64

Pizza data updated:

time name size type price

0 11:38:36 hawaiian M classic 13.25

1 11:57:40 classic_dlx M classic 16.00

2 11:57:40 mexicana M veggie 16.00

3 11:57:40 thai_ckn L chicken 20.75

4 11:57:40 five_cheese L veggie 18.50

Pizza size count:

L 18956

M 15635

S 14403

XL 552

XXL 28

Name: size, dtype: int64

Pizza price:

count 49574.000000

mean 16.497762 std 3.621954 min 9.750000 25% 12.750000 50% 16.500000 75% 20.250000 max 35.950000

Name: price, dtype: float64

Described pizza price:

count 49546.000000

mean 16.486769

std 3.593327

min 9.750000

25% 12.750000

50% 16.500000

75% 20.250000

max 25.500000

Name: price, dtype: float64

Pizza price updated

Pizza data updated:

49573 23:02:05

type price time name size 0 11:38:36 hawaiian M classic 13.25 11:57:40 classic_dlx M classic 16.00 1 mexicana M veggie 16.00 2 11:57:40 3 11:57:40 thai_ckn L chicken 20.75 11:57:40 five_cheese L veggie 18.50 4 49569 21:23:10 four_cheese L veggie 17.95 49570 21:23:10 napolitana S classic 12.00 49571 21:23:10 ckn_alfredo M chicken 16.75 mexicana L veggie 20.25 49572 22:09:54

bbq_ckn S chicken 12.75

[49546 rows x 5 columns]

Described pizza data updated:

price

count 49546.000000

mean 16.486769

std 3.593327

min 9.750000

25% 12.750000

50% 16.500000

75% 20.250000

max 25.500000

Summarized pizza data updated:

time name size type

count 49546 49546 49546 49546

unique 16378 32 4 4

top 12:25:12 classic_dlx L classic

freq 28 2453 18956 14860

Length of pizza data updated:

49546

Multiple linear regression model for size of pizza vs type of pizza purchased:

OLS Regression Results

Dep. Variable: price R-squared: 0.847

Model: OLS Adj. R-squared: 0.847

Method: Least Squares F-statistic: 4.570e+04

Date: Sat, 06 Mar 2021 Prob (F-statistic): 0.00

Time: 15:24:58 Log-Likelihood: -87171.

No. Observations: 49546 AIC: 1.744e+05

Df Residuals: 49539 BIC: 1.744e+05

Df Model: 6

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 20.5052 0.015 1343.493 0.000 20.475 20.535 C(size)[T.M] -3.8127 0.015 -250.543 0.000 -3.843 -3.783C(size)[T.S] -7.1114 0.016 -448.156 0.000 -7.143 -7.080 C(size)[T.XL] 7.0274 0.062 113.857 0.000 6.906 7.148 C(type)[T.classic] -2.03260.018 -112.266 0.000 -2.068 -1.997 C(type)[T.supreme] 0.1538 0.019 8.277 0.000 0.117 0.190

0.019 -57.800

0.000

-1.116

-1.043

=======

C(type)[T.veggie] -1.0795

Omnibus: 38426.463 Durbin-Watson: 2.006

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1319807.442

Skew: 3.452 Prob(JB): 0.00

Kurtosis: 27.324 Cond. No. 11.7

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cross table of size of pizza vs type of pizza purchased:

type chicken classic supreme veggie

size

Simple linear regression model for name of pizza vs price of pizza purchased:

OLS Regression Results

Dep. Variable: price R-squared: 0.315

Model: OLS Adj. R-squared: 0.314

Method: Least Squares F-statistic: 733.8

Date: Sat, 06 Mar 2021 Prob (F-statistic): 0.00

Time: 15:25:02 Log-Likelihood: -1.2431e+05

No. Observations: 49546 AIC: 2.487e+05

Df Residuals: 49514 BIC: 2.490e+05

Df Model: 31

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept	17.5855	0.060	291.4	68 0.0	00 17.4	167 17.	704
C(name)[T.big_me	at] -5.	5855	0.091	-61.436	0.000	-5.764	-5.407
C(name)[T.brie_ca	rre] 6.0)645 (0.147	41.161	0.000	5.776	6.353
C(name)[T.calabres	se] -0.5	5799	0.114	-5.069	0.000	-0.804	-0.356
C(name)[T.cali_cki	n] -0.1	132	0.086	-1.318	0.188	-0.281	0.055
C(name)[T.ckn_alf	redo] -0	.4627	0.112	-4.120	0.000	-0.683	-0.243
C(name)[T.ckn_pes	sto] -0.	4203	0.113	-3.724	0.000	-0.642	-0.199
C(name)[T.classic_	_dlx] -2.	0207	0.085	-23.733	0.000	-2.188	-1.854
C(name)[T.five_ch	eese] 0.	9145	0.100	9.180	0.000	0.719	1.110
C(name)[T.four_ch	eese] -0	.6214	0.091	-6.823	0.000	-0.800	-0.443
C(name)[T.green_g	garden] -	3.5878	0.112	-32.065	5 0.000	-3.807	-3.368
C(name)[T.hawaiia	n] -4.2	2605	0.085	-49.881	0.000	-4.428	-4.093
C(name)[T.ital_cpc	ello] -0.1	349	0.099	-1.363	0.173	-0.329	0.059
C(name)[T.ital_sup	or] 0.13	834 0	0.091	2.009	0.045	0.004	0.362
C(name)[T.ital_veg	ggie] -1.	2560	0.113	-11.161	0.000	-1.477	-1.035
C(name)[T.mediter	raneo] -1	1.1396	0.115	-9.950	0.000	-1.364	-0.915
C(name)[T.mexican	na] 0.	4608	0.098	4.702	0.000	0.269	0.653
C(name)[T.napolita	ana] -1.	1327	0.098	-11.508	0.000	-1.326	-0.940

C(name)[T.pep_msh_pep]	-3.7264	0.101	1 -36.98	0.00	0 -3.92	4 -3.529
C(name)[T.pepperoni]	-5.1117	0.085	-59.821	0.000	-5.279	-4.944
$C(name)[T.peppr_salami]$	0.0694	0.099	0.702	0.483	-0.124	0.263
C(name)[T.prsc_argla]	-0.9807	0.099	-9.949	0.000	-1.174	-0.787
C(name)[T.sicilian] -	1.6204 (0.091 -1	7.885	0.000	-1.798	-1.443
C(name)[T.soppressata]	-0.4932	0.113	-4.350	0.000	-0.715	-0.271
C(name)[T.southw_ckn]	0.5187	0.091	5.707	0.000	0.341	0.697
C(name)[T.spicy_ital]	0.5180	0.091	5.706	0.000	0.340	0.696
C(name)[T.spin_pesto]	-1.5072	0.113	-13.339	0.000	-1.729	-1.286
C(name)[T.spinach_fet]	-1.4920	0.099	-15.100	0.000	-1.686	-1.298
C(name)[T.spinach_supr]	-1.5037	0.114	-13.209	0.000	-1.727	-1.281
C(name)[T.thai_ckn]	0.7334	0.086	8.541	0.000	0.565	0.902
C(name)[T.the_greek]	2.1325	0.100	21.325	0.000	1.937	2.329
C(name)[T.veggie_veg]	-1.6126	0.097	-16.596	0.000	-1.803	-1.422

Omnibus: 4627.087 Durbin-Watson: 1.993

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1698.323

Skew: -0.211 Prob(JB): 0.00

Kurtosis: 2.197 Cond. No. 26.7

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cross table of price of pizza vs name of pizza purchased:

name bbq_ckn big_meat brie_carre ... thai_ckn the_greek veggie_veg

price						
9.75	0	0	0	0	0	0
10.50	0	0	0	0	0	0
11.00	0	0	0	0	0	0
12.00	0	1914	0	0	304	464
12.25	0	0	0	0	0	0
12.50	0	0	0	0	0	0
12.75	484	0	0	480	0	0
13.25	0	0	0	0	0	0
14.50	0	0	0	0	0	0
14.75	0	0	0	0	0	0
15.25	0	0	0	0	0	0
16.00	0	0	0	0	281	635
16.25	0	0	0	0	0	0
16.50	0	0	0	0	0	0
16.75	956	0	0	481	0	0
17.50	0	0	0	0	0	0
17.95	0	0	0	0	0	0
18.50	0	0	0	0	0	0
20.25	0	0	0	0	0	427
20.50	0	0	0	0	255	0
20.75	992	0	0	1410	0	0
21.00	0	0	0	0	0	0
23.65	0	0	490	0	0	0
25.50	0	0	0	0	552	0

[24 rows x 32 columns]

Display count of pizza name:

time size type price

name

spin_pesto 970 970 970 970 spinach_fet 1446 1446 1446 1446

spinach_supr 950 950 950 950

thai_ckn 2371 2371 2371 2371

the_greek 1392 1392 1392 1392

veggie_veg 1526 1526 1526 1526

Display count of pizza price:

time name size type

price

- 9.75 751 751 751 751
- 10.50 1020 1020 1020 1020
- 11.00 578 578 578 578
- 12.00 5744 5744 5744 5744
- 12.25 850 850 850 850
- 12.50 3380 3380 3380 3380
- 12.75 2529 2529 2529 2529
- 13.25 483 483 483 483
- 14.50 397 397 397 397
- 14.75 586 586 586 586
- 15.25 728 728 728 728
- 16.00 4522 4522 4522 4522
- 16.25 1136 1136 1136 1136
- 16.50 4111 4111 4111 4111
- 16.75 4380 4380 4380 4380
- 17.50 384 384 384 384
- 17.95 1316 1316 1316 1316
- 18.50 1409 1409 1409 1409
- 20.25 3093 3093 3093 3093

20.50 2026 2026 2026 2026

20.75 8891 8891 8891 8891

21.00 190 190 190 190

23.65 490 490 490 490

25.50 552 552 552 552