

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

Facultad de Ingeniería Electrónica y Eléctrica Algebra y Geometría Analítica

Semestre 2023 - I

Tema: Paralelelismo y ortogonalidad de vectores. Proyección ortogonal. Componentes. Aplicaciones.

GUÍA DE PRÁCTICA Nº 10

- 1. Demostrar que si $\overrightarrow{u}//\overrightarrow{w}$, $\overrightarrow{v}//\overrightarrow{w}$ y $\overrightarrow{w}\neq\overrightarrow{0}$, entonces $\overrightarrow{u}//\overrightarrow{v}$
- 2. Demostrar que si \overrightarrow{u} y \overrightarrow{v} tienen la misma dirección y sentido entonces

$$||\overrightarrow{u} + \overrightarrow{v}|| = ||\overrightarrow{u}|| + ||\overrightarrow{v}||$$

- 3. Si $\overrightarrow{u} = (2, 2m 3)$ y $\overrightarrow{v} = (1 m, -5)$, determinar los valores de m de modo que \overrightarrow{u} y \overrightarrow{v} sean paralelos.
- 4. Sean los vectores \overrightarrow{u} y \overrightarrow{v} , tales que $\overrightarrow{u}=(a,2a), \overrightarrow{u}-\overrightarrow{v}=(2a,p), \overrightarrow{u}//\overrightarrow{v}$ y la norma de $\overrightarrow{u}-\overrightarrow{v}$ es $\sqrt{112}$. Hallar la norma de \overrightarrow{v} .
- 5. Si $\overrightarrow{u} = (a,b)$ y $\overrightarrow{v} = (1/2, -4/3)$ son dos vectores en \mathbb{R}^2 , hallar a+b sabiendo que $||\overrightarrow{u}|| = \frac{\sqrt{73}}{3}$ y que \overrightarrow{u} y \overrightarrow{v} tienen sentidos opuestos.
- 6. Demostrar que si \overrightarrow{u} y \overrightarrow{v} son paralelos en \mathbb{R}^2 , entonces

$$|\overrightarrow{u}.\overrightarrow{v}| = ||\overrightarrow{u}|| \, ||\overrightarrow{v}||$$

7. Demostrar que los vectores \overrightarrow{u} y \overrightarrow{v} en \mathbb{R}^2 son ortogonales, si y solo si

$$||\overrightarrow{u} + \overrightarrow{v}||^2 = ||\overrightarrow{u}||^2 + ||\overrightarrow{u}||^2$$

- 8. Dados los vectores \overrightarrow{u} y \overrightarrow{v} demostrar que

 - $a) \ (\overrightarrow{u}^{\perp})^{\perp} = -\overrightarrow{u} \qquad \qquad b) \ \overrightarrow{u}^{\perp}.\overrightarrow{v} = -\overrightarrow{u}.\overrightarrow{v}^{\perp} \qquad c) \ \overrightarrow{u}^{\perp}.\overrightarrow{v}^{\perp} = \overrightarrow{u}.\overrightarrow{v} \qquad d) \ ||\overrightarrow{u}^{\perp}|| = ||\overrightarrow{u}||$

- 9. Dados los vectores \overrightarrow{u} y \overrightarrow{v} en \mathbb{R}^2 demostrar que
 - a) $\overrightarrow{u}.\overrightarrow{v} = -||\overrightarrow{u}||\,||\overrightarrow{v}|| \Leftrightarrow \overrightarrow{u}$ y \overrightarrow{v} tienen sentidos opuestos
 - b) $||\overrightarrow{u} + \overrightarrow{v}|| = ||\overrightarrow{u}|| + ||\overrightarrow{v}|| \Leftrightarrow \overrightarrow{u} \text{ y } \overrightarrow{v} \text{ tienen el mismo sentido.}$
- 10. Demostrar que el vector $\overrightarrow{v} = \overrightarrow{b} \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{||\overrightarrow{a}||^2} \overrightarrow{a}$, es perpendicular al vector \overrightarrow{a} .
- 11. Si $\overrightarrow{d} = (2, -3)$, $\overrightarrow{b} = (-2, 1)$ y $\overrightarrow{c} = (3, 2)$, hallar un vector unitario ortogonal al vector $\overrightarrow{v} = 5\overrightarrow{d} 3(\overrightarrow{b} + \overrightarrow{c})$

- 12. Si $\overrightarrow{u} = (4m, m-3)$ y $\overrightarrow{v} = (2, m+3)$, hallar los valores de m tales que \overrightarrow{u} sea perpendicular a \overrightarrow{v} .
- 13. Si \overrightarrow{u} y \overrightarrow{v} son vectores unitarios y paralelos, hallar la norma de $\overrightarrow{u}^{\perp} + \overrightarrow{v}$
- 14. Sea OAB el triángulo cuyos vértices son O = (0,0), A = (-8,0) y B = (0,6). Si \overrightarrow{OM} es la altura relativa al vértice O, hallar el vector \overrightarrow{OM} .
- 15. Sea el rectángulo ABCD de área $48u^2$ y cuyos dos vértices consecutivos son A = (-2, 5) y B = (2, 1). Si la diagonal \overrightarrow{AC} tiene el mismo sentido del vector $\overrightarrow{v} = (5, 1)$, hallar los vértices C y D.
- 16. Si \overrightarrow{ABC} es un triángulo tal que $\overrightarrow{AC} = (4,1)$, $\overrightarrow{AB} = (-4,-3)$, hallar el coseno del ángulo que forma el vector \overrightarrow{BC} con el vector unitario j = (0,1)
- 17. Sean \overrightarrow{a} , \overrightarrow{b} y \overrightarrow{c} vectores diferentes de $\overrightarrow{0}$, y supuesto que el ángulo entre \overrightarrow{a} y \overrightarrow{c} es igual al ángulo entre \overrightarrow{b} y \overrightarrow{c} , para qué valores de t el vector \overrightarrow{c} es perpendicular al vector $\overrightarrow{d} = ||\overrightarrow{b}||\overrightarrow{a} + t\overrightarrow{b}$
- 18. Dado los vértices B(-6,9) y C(5,7) del rombo ABCD, si la diagonal AC es paralela al vector $\overrightarrow{u} = (3,4)$. Determinar vectorialmente los otros dos vértices del rombo.
- 19. Sea un triángulo rectángulo ABC (sentido antihorario) recto en B, donde A = (2, -1), B = (10, 5) y su área es $25u^2$. Determinar el vector \overrightarrow{BH} donde H es el pie de la altura correspondiente al vértice B.
- 20. Sean los vectores \overrightarrow{u} y \overrightarrow{v} lados de un paralelogramo. Si $||\overrightarrow{u}|| = 6$, $||\overrightarrow{u}|| = 2||\overrightarrow{v}||$ y $Comp_{\overrightarrow{v}}\overrightarrow{u} = \frac{10}{3}$, hallar la longitud de la diagonal $\overrightarrow{u} \overrightarrow{v}$.
- 21. Dados los vectores $\overrightarrow{u} = (\sqrt{3}, -1)$ y $\overrightarrow{v} = (3, \sqrt{3})$, hallar $2Proy_{\overrightarrow{v}}\overrightarrow{u} + Proy_{\overrightarrow{u}}\overrightarrow{v}$.
- 22. Sean \overrightarrow{u} y \overrightarrow{v} dos vectores tales que $\overrightarrow{u}=(5,-2),$ $Comp_{\overrightarrow{u}}\overrightarrow{v}=-58$ y $||\overrightarrow{v}||=29$. Hallar $Comp_{\overrightarrow{v}}\overrightarrow{u}$
- 23. Los lados de un triángulo son los vectores \overrightarrow{a} , \overrightarrow{b} y \overrightarrow{b} $-\overrightarrow{a}$. Si $||\overrightarrow{a}|| = 6$, $||\overrightarrow{b}|| = 5$ y $||\overrightarrow{b} \overrightarrow{a}|| = 5$; hallar $Comp_{\overrightarrow{b}}\overrightarrow{a} Comp_{\overrightarrow{a}}\overrightarrow{b}$.
- 24. Los lados de un triángulo son los vectores \overrightarrow{a} , \overrightarrow{b} y $\overrightarrow{a} \overrightarrow{b}$. Si $||\overrightarrow{a}|| = 10$, $||\overrightarrow{b}|| = 6$ y $Comp_{\overrightarrow{b}}\overrightarrow{a} = -5$. Hallar la longitud de $\overrightarrow{a} \overrightarrow{b}$.
- 25. Sea $||\overrightarrow{u}|| = \sqrt{65}$, $||\overrightarrow{u} + \overrightarrow{v}|| = \sqrt{164}$, $Comp_{\overrightarrow{u}}(\overrightarrow{u} + \overrightarrow{v}) = \frac{102}{||\overrightarrow{u}||}$; hallar $Comp_{\overrightarrow{v}}(\overrightarrow{u} \overrightarrow{v})$.
- 26. Si $\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\overrightarrow{0},$ $\overrightarrow{v}\neq\overrightarrow{0},$ $||\overrightarrow{u}||=a,$ $||\overrightarrow{v}||=b,$ $||\overrightarrow{w}||=c,$ hallar $Comp_{\overrightarrow{v}}\overrightarrow{u}$
- 27. Si $\overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$, $||\overrightarrow{a}|| = p$, $||\overrightarrow{b}|| = q$, $||\overrightarrow{c}|| = r$, $|\overrightarrow{a} \cdot \overrightarrow{b}| = pq$, $|\overrightarrow{a} \cdot \overrightarrow{c}| = pr$ y $Comp_{\overrightarrow{b}} \overrightarrow{c} = r$, hallar la norma de \overrightarrow{d} .
- 28. Hallar el ángulo formado por los vectores \overrightarrow{u} y $Proy_{\overrightarrow{v}^{\perp}}\overrightarrow{u}$, si $\overrightarrow{u}=(1,2)$ y $\overrightarrow{v}=(1,3)$.
- 29. Si $\overrightarrow{u} = (5, -2)$ y $Proy_{\overrightarrow{v}^{\perp}} \overrightarrow{u} = (4, 1)$, hallar $Comp_{\overrightarrow{v}} \overrightarrow{u}$ sabiendo que $Comp_{\overrightarrow{v}^{\perp}} \overrightarrow{u}$ es positivo.
- 30. Dados los vectores $\overrightarrow{u}=(3,-6), \overrightarrow{v}=(3,4)$ y $\overrightarrow{w}=(21,0),$ hallar los valores de r y s tales que $\overrightarrow{w}=rProy_{\overrightarrow{v}}\overrightarrow{u}+sProy_{\overrightarrow{v}^{\perp}}\overrightarrow{u}.$

Ciudad Universitaria, junio del 2023

Los profesores del curso