Extending Trace Estimation to Schatten Norm Estimation

The methods outlined in this document follow sections 4.8 through 5.2, and 5.4 and 5.6 of Martinsson & Tropp (2021)¹. Proofs and algorithms for these methods follow. Please find the accompanying code in ².

The Frobenius norm and the Schatten 4-norm

Randomized trace estimators of the form given in the introduction can also be used to estimate some matrix norms, notably the Frobenius or Schatten 2-norm and the Schatten 4-norm, also referred to as the ℓ_2 and ℓ_4 norms.

Consider a rectangular matrix $\mathbf{B} \in \mathbb{R}^{mxn}$, accessed by a matrix-vector product $\mathbf{u} \mapsto \mathbf{B}\mathbf{u}$. Suppose that we extract test vectors from the standard normal distribution. Draw a standard normal matrix $\mathbf{\Omega} \in \mathbb{R}^{nxk}$ with columns $\mathbf{\omega}_i$. Then construct the random variable:

$$\overline{X}_{k} := \frac{1}{k} \| \mathbf{B} \mathbf{\Omega} \|_{F}^{2} = \frac{1}{k} \sum_{i=1}^{k} \omega_{i}^{'} (\mathbf{B}' \mathbf{B}) \omega_{i} =: \frac{1}{k} \sum_{i=1}^{k} X_{i}$$

$$\tag{1}$$

To analyse \overline{X}_k , note that it is an instance of the randomized trace estimator in (1), where $\mathbf{A} = \mathbf{B'B}$.

Proposition 3: \overline{X}_k is an unbiased estimator for $\|\mathbf{B}\|_F^2$, with $\operatorname{Var}(\overline{X}_k) = \frac{2}{k} \|\mathbf{B}\|_4^4$.

Proof:
$$\mathbb{E}[\overline{X}_k] = \mathbb{E}[\frac{1}{k}\sum_{i=1}^k \omega_i'(\mathbf{B'B})\omega_i] = \frac{1}{k}\mathbb{E}[\sum_{i=1}^k \omega_i'(\mathbf{B'B})\omega_i]$$
 $\frac{1}{k}$ can be factored out by linearity;
$$= \frac{1}{k}\sum_{i=1}^k \mathbb{E}[\omega_i'(\mathbf{B'B})\omega_i]$$
 because $X_i = \omega_i'(\mathbf{B'B})\omega_i$ are iid;
$$= \frac{1}{k}\sum_{i=1}^k (\mathbf{B'B})\mathbb{E}[\omega_i'\omega_i]$$
 (B'B) can be factored out by linearity;
$$= \frac{1}{k}k (\mathbf{B'B})\sum_{i=1}^k \mathbb{E}[\omega_i'\omega_i] = (\mathbf{B'B})\sum_{i=1}^k \mathbb{E}[\omega_i'\omega_i]$$
 rewrite (B'B) as:
$$= (\sum_{l=1}^n b_{il}b_{lj})\sum_{i=1}^k \mathbb{E}[\omega_i'\omega_i] = \sum_{i=1}^n \sum_{j=1}^n b_{ij}^2 \sum_{i=1}^k \mathbb{E}[\omega_i'\omega_i]$$
 use the isotropic property of ω_i :
$$= \|\mathbf{B}\|_F^2$$

$$\operatorname{Var}(\overline{X}_{k}) = \operatorname{Var}(\frac{1}{k} \sum_{i=1}^{k} \omega_{i}'(\mathbf{B}'\mathbf{B})\omega_{i})$$

$$= \frac{1}{k^{2}} \operatorname{Var}(\sum_{i=1}^{k} \omega_{i}'(\mathbf{B}'\mathbf{B})\omega_{i})$$

$$= \frac{1}{k^{2}} \sum_{i=1}^{k} \operatorname{Var}(\omega_{i}'(\mathbf{B}'\mathbf{B})\omega_{i})$$

$$= \frac{1}{k^{2}} \sum_{i=1}^{k} \operatorname{Var}(\omega_{i}'(\mathbf{B}'\mathbf{B})\omega_{i})$$
because $X_{i} = \omega_{i}'(\mathbf{B}'\mathbf{B})\omega_{i}$ are iid;

¹ https://arxiv.org/abs/2002.01387v1, last accessed 4/30/21

² https://github.com/ghostpress/comp-stats-sims/tree/final-project/final-project/trace-estim

$$= \frac{1}{k^2} \sum_{i=1}^{K} (\mathbf{B'B}) \operatorname{Var}(\omega_i^{'}\omega_i^{'})(\mathbf{B'B})'$$

$$= \frac{1}{k^2} \sum_{i=1}^{k} (\mathbf{B'B}) \mathbb{E}[(\omega_i^{'}\omega_i^{'} - \mathbb{E}[\omega_i^{'}\omega_i^{'}])(\omega_i^{'}\omega_i^{'} - \mathbb{E}[\omega_i^{'}\omega_i^{'}])'](\mathbf{B'B})$$

$$= \frac{1}{k^2} (\mathbf{B'B})(\mathbf{B'B}) \sum_{i=1}^{k} \mathbb{E}[(\omega_i^{'}\omega_i^{'} - \mathbf{I})(\omega_i^{'}\omega_i^{'} - \mathbf{I})']$$

$$= \frac{1}{k^2} (\mathbf{B'B})(\mathbf{B'B}) \sum_{i=1}^{k} \mathbb{E}[(\omega_i^{'}\omega_i^{'} - \mathbf{I})(\omega_i^{'}\omega_i^{'} - \mathbf{I})]$$

$$= \frac{1}{k^2} (\mathbf{B'B})(\mathbf{B'B}) \sum_{i=1}^{k} \mathbb{E}[(\omega_i^{'}\omega_i^{'}\omega_i^{'}\omega_i^{'} - \omega_i^{'}\omega_i^{'} - \omega_i^{'}\omega_i^{'} - \mathbf{I}]$$

$$= \frac{1}{k^2} (\mathbf{B'B})(\mathbf{B'B}) \sum_{i=1}^{k} (\mathbb{E}[\omega_i^{'}\omega_i^{'}\omega_i^{'}\omega_i^{'}] - 2\mathbb{E}[\omega_i^{'}\omega_i^{'}] - \mathbf{I})$$

$$= \frac{1}{k^2} (\mathbf{B'B})(\mathbf{B'B}) \sum_{i=1}^{k} (\mathbb{E}[\omega_i^{'}\omega_i^{'}]\mathbb{E}[\omega_i^{'}\omega_i^{'}] - \mathbf{I})$$
because ω are independent;
$$= \frac{1}{k^2} (\mathbf{B'B})(\mathbf{B'B}) \sum_{i=1}^{k} (\mathbf{I} - \mathbf{3I})$$

$$= \frac{1}{k^2} (\mathbf{B'B})(\mathbf{B'B}) \sum_{i=1}^{k} (\mathbf{I} - \mathbf{3I})$$

$$= \frac{1}{k^2} (\mathbf{B'B})(\mathbf{B'B}) \sum_{i=1}^{k} 2\mathbf{I}$$

$$= \frac{1}{k^2} (\mathbf{B'B})(\mathbf{B'B}) 2k$$

$$= \frac{2}{k} (\mathbf{B'B})(\mathbf{B'B})$$

$$= \frac{2}{k} \| \mathbf{B} \|_4^4$$

From these results we can also clearly see that rescaling $Var(\overline{X}_k)$ by $\frac{k}{2}$ gives an unbiased estimate for $\|\mathbf{B}\|_4^4$, the Schatten 4-norm of \mathbf{B} .

 \overline{X}_k is computed by simulating nk standard normal variables, taking k matrix-vector products with \mathbf{B} , and performing O(kn) additional arithmetic. Therefore the total runtime of this method is O(2kn + knm).

Schatten p-norm Estimation by Sampling

We now extend the discussion of approximating Schatten 2- and 4-norms by sampling to the 2p-norm for each $p \in \mathbb{N}$. Consider the general matrix $\mathbf{B} \in \mathbb{R}^{mxn}$, accessed via the matrix-vector product $\mathbf{u} \mapsto \mathbf{B}\mathbf{u}$. For a sample size k, let $\mathbf{\Omega} \in \mathbb{R}^{nxk}$ be a (random) test matrix that does not depend on \mathbf{B} . For a natural number $p \geq 3$, the problem is to estimate the Schatten 2p-norm $\|\mathbf{B}\|_{2p}$ from the sample matrix $\mathbf{Y} = \mathbf{B}\mathbf{\Omega}$ such that \mathbf{Y} is an unbiased estimator of the norm. Moreover, the methods used should ideally be less expensive than the $O(\min\{mn^2, nm^2\})$ cost of computing the Singular Value Decomposition (SVD) of \mathbf{B} , as in the classical algorithm.

The authors remark that the sample size k needed to estimate $\|\mathbf{B}\|_{2p}$ up to a fixed constant factor with 75% probability is unfortunately $k \ge \min\{m, n\}^{1-2/p}$. In other words, the sample size must grow polynomially with the dimensions of the matrix for p > 2. Nevertheless, as shown below, the algorithm used is still faster than the SVD method.

Assume that the random test matrix $\Omega \in \mathbb{R}^{nxk}$ has isotropic columns ω_i that are iid. Form the sample matrix $\mathbf{Y} = \mathbf{B}\Omega$. Abbreviate $\mathbf{A} = \mathbf{B'B}$ and $\mathbf{X} = \mathbf{Y'Y}$. Then:

$$(\mathbf{X})_{ij} = (\mathbf{Y}'\mathbf{Y})_{ij} = \omega_i^{'} \mathbf{A} \omega_i$$
 (2)

For any natural numbers that satisfy $1 \le i_1, ..., i_p \le k$,

$$(\mathbf{X})_{i_1 i_2} (\mathbf{X})_{i_2 i_3} \dots (\mathbf{X})_{i_p i_1} = trace(\omega_{i_1} \omega_{i_1}^{'} \mathbf{A} \dots \omega_{i_p} \omega_{i_p}^{'} \mathbf{A})$$

Under the assumption that $i_1, ..., i_p$ are distinct, by independence and isotropy the expectation becomes:

$$\mathbb{E}[(\mathbf{X})_{i_1 i_2} (\mathbf{X})_{i_2 i_3} \dots (\mathbf{X})_{i_p i_1}] = trace(\mathbf{A}^p) = \| \mathbf{B} \|_{2p}^{2p}$$

And now define the estimator as below, where C(k, p) is the binomial coefficient with k and p:

$$V_p = C(k, p)^{-1} \sum_{1 \le i_1 \le i_p \le k} (\mathbf{X})_{i_1 i_2} (\mathbf{X})_{i_2 i_3} \dots (\mathbf{X})_{i_p i_1}$$

Finally, we can reformulate V_p . Let $T: \mathbb{H}_k \to \mathbb{R}^{kxk}$ be the linear map that reports the strict upper triangle of a symmetric matrix. Then:

$$V_p = C(k, p)^{-1} \operatorname{trace}(T(\mathbf{X})^{p-1}\mathbf{X})$$
(3)

The algorithm to compute V_p follows.

Algorithm 2: Schatten 2p-norm estimation by random sampling

Input: Matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$, the order p of the norm to estimate, and the number k of samples to take **Output:** Schatten 2p-norm estimate V_p

- 1. Draw the test matrix $\Omega \in \mathbb{R}^{nxk}$ with iid isotropic columns
- 2. Compute the sample matrix $Y = B\Omega$
- 3. Form the Gram matrix $\mathbf{X} = \mathbf{Y'Y} \in \mathbb{R}^{kxk}$
- 4. Extract the strict upper triangle T = T(X)
- 5. Compute T^{p-1} by repeated squaring
- 6. Return $V_p = trace(\mathbf{T}^{p-1}\mathbf{X})$

The runtime of this algorithm is dominated by the $O(k^2n)$ arithmetic required to form **X** given **Y**.