Полумодулярные решетки

Условие Жордана-Дедекинда

Решеткой называется алгебра L с двумя бинарными операциями Λ и V такими, что для выполняется любых $a, b, c \in L$

1)
$$a \wedge a = a$$
,

1')
$$a \vee a = a$$
,

2)
$$a \wedge b = b \wedge a$$
,

2')
$$a \lor b = b \lor a$$
,

3)
$$a \wedge (b \wedge c) = (a \wedge b) \wedge c$$
,

$$3') a \lor (b \lor c) = (a \lor b) \lor c,$$

4)
$$a \wedge (a \vee b) = a$$
,

4')
$$a \lor (a \land b) = a$$
.

В решетке L можно ввести отношение частичного порядка \leq , полагая для $a, b \in L$

$$a \leq b \Leftrightarrow a \wedge b = a$$
.

Отметим, что $a \land b$ и $a \lor b$ являются соответственно точной нижней и точной верхней границами для элементов a и b относительно \leqslant , т.е. L, \leqslant - решеточно упорядоченное множество.

Решетка L, \land , \lor *дистрибутивна*, если для любых $a, b, c \in L$ выполняется

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

или, что эквивалентно, для любых $a, b, c \in L$ выполняется

$$a \lor (b \land c) = (a \lor b) \land (a \lor c).$$

Решетка L, A, V дистрибутивна iff, когда она не содержит бриллиантов и пентагонов

в качестве подрешеток.

Решетка L, \land , \lor *модулярна*, если для любых $a, b, c \in L$ выполняется $a \ge b \to a \land (b \lor c) = b \lor (a \land c)$.

Решетка L, A, V модулярна iff, когда она не содержит пентагонов в качестве подрешеток.

Модулярность — это ослабленная дистрибутивность: для любых $a, b, c \in L$ выполняется

$$a \circ b \rightarrow a \odot (b \odot c) = (a \odot b) \odot (a \odot c),$$

где σ — отношение сравнимости в L, \odot - любая из операций \wedge или V, \odot - операция \wedge или V, отличная от \odot .

Для произвольного векторного пространства V над телом F решетка Sub V модулярна.

Пусть L – решетка, $a,b\in L$ и $a\leq b$. Подрешетка $[a,b]\stackrel{\mathrm{def}}{=} \{\mathbf{x}\in L|\ a\leq \mathbf{x}\leq b\}$

называется *интервалом* решетки L.

Лемма 1. Для любых элементов a и b модулярной решетки L интервалы $[a \land b, a]$ и $[b, a \lor b]$

изоморфны.

Доказательство. Определим отображение ϕ

из $[a \land b, a]$ в $[b, a \lor b]$

и отображение ψ

из $[b, a \lor b]$ в $[a \land b, a]$,

полагая

$$\phi(x) = x \lor b \ (x \in [a \land b, a]),$$

$$\psi(y) = y \land a \ (y \in [b, a \lor b]).$$

Заметим, что

$$a \land b \leqslant x \leqslant a \Rightarrow b = (a \land b) \lor b \leqslant \phi(x) \leqslant a \lor b$$

И

$$b \leqslant y \leqslant a \lor b \Rightarrow a \land b \leqslant \psi(y) \leqslant a \land (a \lor b) = a.$$

Далее, для любого $x \in [a \land b, a]$ выполняется

$$\psi \phi(x) = (x \lor b) \land a = x \lor (a \land b) = x,$$

т. е. $\psi \phi$ тождественно на $[a \land b, a]$ и, аналогично, $\phi \psi$ тождественно на $[b, a \lor b]$.

Следовательно, ϕ и ψ — две взаимно обратные биекции.

Кроме того, ϕ и ψ сохраняют отношение \leqslant :

$$x_1 \leqslant x_2 \Rightarrow \phi(x_1) \leqslant \phi(x_2),$$

$$y_1 \leqslant y_2 \Rightarrow \psi(y_1) \leqslant \psi(y_2)$$

Для любых $x_1, x_2 \in [a \land b, a]$ и $y_1, y_2 \in [b, a \lor b]$.

Отсюда следует, что ϕ — изоморфизм подрешетки [$a \land b, a$] на подрешетку [$b, a \lor b$].

Лемма 1 доказана.

Через <- будем обозначать отношение покрытия в решетке L , т.е. мы полагаем $a <\!\!\!\!- b,$

если a < b и интервал [a, b] двухэлементен.

Решетка L называется *полумодулярной (вверх)*, если $a \wedge b <\cdot a \Rightarrow b <\cdot a \vee b$ для любых $a,b \in L$.

В силу леммы 1 любая модулярная решетка полумодулярна. В частности решетка Sub *V* подпространств любого векторного пространства *V* над

телом F полумодулярна.

Будем говорить, что решетка L, в которой все цепи конечны, удовлетворяет **условию Жордана**—Дедекинда, если для любых элементов $a, b \in L$ таких, что a < b, все максимальные (a, b)-цепи в L имеют одинаковую длину, т. е. всегда из условий $a = u_0 < v_1 < \dots < v_n = b$ и $a = v_0 < v_1 < \dots < v_n = b$

вытекает m = n.

Теорема 1. Любая полумодулярная решетка, в которой все цепи конечны, удовлетворяет условию Жордана—Дедекинда.

Камилл Жордан (1838 - 1922), Рихард Дедекинд (1831 - 1916)

Доказательство. Будем доказывать следующее утверждение:

Для любых $a, b \in L$ таких, что a < b, если какая-либо максимальная (a, b)-цепь имеет длину m, то любая максимальная (a, b)-цепь имеет длину m.

При m=1 имеем $a < \cdot b$ и утверждение очевидно.

Пусть утверждение верно для любого интервала, имеющего максимальную цепь длины меньшей m, и $m \geqslant 2$. Рассмотрим две максимальные (a, b)-цепи:

$$a = u_0 \lt \cdot u_1 \lt \cdot \ldots \lt \cdot u_m = b \bowtie a = v_0 \lt \cdot v_1 \lt \cdot \ldots \lt \cdot v_n = b.$$

В силу предположения индукции мы можем считать, что $n \ge m$. Если $u_1 = v_1$, то, применяя предположение индукции к интервалу $[u_1, b]$, получаем m-1=n-1, т.е. m=n. Пусть $u_1 \ne v_1$. В силу полумодулярности выполняется $u_1, v_1 < u_1 \lor v_1$. Любая максимальная (u_1, b) -цепь по предположению индукции имеет длину m-1. Следовательно, любая максимальная $(u_1 \lor v_1, b)$ -цепь имеет длину m-2. Отсюда следует, что любая максимальная (v_1, b) -цепь имеет длину m-1. Тогда m-1=n-1, т. е. опять имеем m=n и **теорема доказана**.

Далее под отношением $\leq \cdot$ на решетке L будем понимать объединение отношения покрытия $< \cdot$ и отношения равенства =.

В дальнейшем мы будем рассматривать решетки, обладающие наименьшим элементом, который будем называть *нулем* и будем обозначать через 0. *Атомом* будем называть элемент решетки, покрывающий ее наименьший элемент 0.

Лемма 2. Пусть L — полумодулярная решетка с нулем 0. Тогда 1) для любых $u, v, w \in L$ выполняется

$$u \leq v \rightarrow u \vee w \leqslant v \vee w$$

2) для любого $a \in L$ и атома p, не лежащего под a, выполняется $a < \cdot a \lor p$.

Доказательство. Если $v \le u \lor w$, то $u \lor w = (u \lor w) \lor v = v \lor w$.

Пусть v не лежит под $u \lor w$. Тогда $u = v \land (u \lor w)$, так как $u \lessdot v$, и $v \lor (u \lor w) = v \lor w$. Отсюда в силу полумодулярности получаем $u \lor w \lessdot v \lor w$.

Лемма доказана.

Пусть L — полумодулярная решетка с нулем 0, в которой все цепи конечны.

Через dim a будем обозначать длину максимальной (0, a)-цепи. Это определение корректно в силу теоремы 1. Функцию dim x будем называть ϕ ункцией размерности на решетке L.

Теорема 2. Пусть L — полумодулярная решетка с нулем 0, в которой все цепи конечны. Тогда

- 1) для любых $a, b \in L$ выполняется $\dim(a \land b) + \dim(a \lor b) \leqslant \dim a + \dim b;$
- 2) решетка L модулярна в том и только в том случае, когда для любых $a,b\in L$ выполняется $\dim(a\wedge b)+\dim(a\vee b)=\dim a+\dim b.$

Доказательство. 1) Пусть $a \land b = u_0 < \cdot u_1 < \cdot ... < \cdot u_m = a$. Объединяя все элементы этой цепи с b, в силу леммы 2 получаем $b = u_0 \lor b \leqslant \cdot u_1 \lor b \leqslant \cdot ... \leqslant \cdot u_m \lor b = a \lor b$. Отсюда следует $\dim a - \dim(a \land b) = m \geqslant \dim(a \lor b) - \dim b$, т. е. $\dim a + \dim b \geqslant \dim(a \land b) + \dim(a \lor b)$.

2) Если решетка модулярна, то интервалы $[a \land b, a]$ и $[b, a \lor b]$ изоморфны по лемме 1. Следовательно,

 $\dim a - \dim(a \wedge b) = \dim(a \vee b) - \dim b$.

Обратно, предположим, что для любых $a, b \in L$ выполняется равенство $\dim(a \land b) + \dim(a \lor b) = \dim a + \dim b$.

Пусть, от противного, L - не модулярная решетка. Тогда, как известно, она содержит пентагон в качестве подрешетки. Для элементов пентагона в силу нашего предположения получаем

$$\dim u + \dim v = \dim c + \dim e$$
,
 $\dim u + \dim v = \dim c + \dim d$,

т. е. dim e = dim d, что невозможно, **теорема доказана**.

Неравенство из 1) называют неравенством полумодулярности.

Пример. Пусть V — конечномерное векторное пространство над телом F. Тогда решетка Sub V — модулярная решетка с нулем, в которой все цепи конечны, и dim U — обычная размерностью подпространства U. Sub V удовлетворяет условию Жордана—Дедекинда, а равенство из 2) — формула для размерности суммы и пересечения подпространств.