유클리드 호제법 -> 최대 공약수 구하기

```
public static int getGCD(int num1, int num2) { // 최대 공약수 리턴
if (num1 % num2 == 0) {
    return num2;
}
return getGCD(num2, num1 % num2);
}
```

아이디어

- a > b 에 대하여 a = bq + r 이라고 하면 a, b의 최대공약수와 b, r의 최대공약수는 같다
- r = 0 이라면 a, b의 최대공약수는 b가 된다

$$a = 10$$
 > $b = 6$ $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $5[xa] \frac{30}{4} \frac{3}{2} \frac{2}{2}$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $b = 6$
 $\Rightarrow a = 6 \cdot 1 + 4$ $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1 + 4$
 $\Rightarrow a = 6 \cdot 1$

$$e_{\times 1}$$
) num $1 = 10$ num $z = 6$
 \Rightarrow return $G(1)$ $(6,4)$
 \Rightarrow return $G(1)$ $(4,2)$
 \Rightarrow return $G(1)$