Homework 05 (07Nov22)

Name: your name

Rubric for each assignment:

Context	Points
Precision of the answer	80%
Answer Markdown readability	10%
Code readability	10%

Guidance:

- This is an individual homework.
- Upload your answers in the Blackboard submission portal as:

lastname-firstname-homework-xx.pdf or lastname-firstname-homework-xx.ipynb

Table of Problems

- Problem 1 (10 pts) Natural urania decrement.
- Problem 2 (10 pts) Water macroscopic cross section.
- Problem 3 (10 pts) Resonance.
- Problem 4 (10 pts) Iron resonance.
- Problem 5 (10 pts) Oxygen resonance.
- Problem 6 (10 pts) Collision with oxygen in water.
- Problem 7 (10 pts) Head-on elastic scattering energy ratio.
- Problem 8 (10 pts) Average fractional energy loss.
- Problem 9 (10 pts) Lethargy.
- Problem 10 (10 pts) Neutron slowing down decrement

Problem 1 (10 pts)

Calculate the neutron slowing down decrement for natural UO_2 . Does the presence of oxygen have a significant effect on the slowing down decrement?

Answer:

Problem 2 (10 pts)

Calculate Σ_a for:

- 1. Water of unit density at 25.3 meV
- 2. Water of 0.7 g/cc at 25.3 meV
- 3. Water of 0.7 g/cc at 25.3 1 eV

Answer:

Problem 3 (10 pts)

The first resonance in the scattering cross section of the nuclide ${}^{A}Z$ occurs at 1.24 MeV. The separation energies of nuclides ${}^{A-1}Z$, ${}^{A}Z$, ${}^{A+1}Z$ are 7.00, 7.50, and 8.00 MeV, respectively. Which nucleus and at what energy above the ground state is the level that gives rise to this resonance?

Answer:

Problem 4 (10 pts)

There is a prominent resonance in the total cross section of ⁵⁶Fe at 646.4 keV. At what energy, measured from the ground state, is the energy level in ⁵⁷Fe that corresponds to this resonance?

Answer:

Problem 5 (10 pts)

The excited states of ¹⁷O occur at the following energies (in MeV) measured from the ground state: 0.871, 3.06, 3.85, 4.55, 5.08, 5.38, 5.70, 5.94, etc. At roughly what energies would resonances be expected to appear in the neutron cross section of ¹⁶O?

Answer:

Problem 6 (10 pts)

A 2-MeV neutron traveling in water has a head-on collision with an ¹⁶O nucleus.

- 1. What are the energies of the neutron and nucleus after the collision?
- 2. Would you expect the water molecule involved in the collision to remain intact after the event? Why or why not?

Answer:

Problem 7 (10 pts)

Derive the head-on elastic scattering energy ratio $\frac{E'}{E} = \left(\frac{A-1}{A+1}\right)^2$ covered in the classroom.

Answer:

Problem 8 (10 pts)

The average fractional energy loss of elastic scattering is defined as $\frac{\overline{E-E'}}{E}$. Show it is equal to $\frac{(1-\alpha)}{2}$ where α is the head-on elastic scattering energy ratio (Problem 7). Compute and plot the result as a function of the mass number A of the target nucleus. Evaluate the average fractional energy loss of elastic scattering for ordinary water.

Answer:

Problem 9 (10 pts)

A 1.5-MeV neutron in a heavy water reactor collides with an 2H nucleus. The lethargy is defined as $\ln \frac{E}{E'}$ where E is the incoming neutron energy and E' is the scattered neutron energy. Calculate the maximum and average values of lethargy in the collision.

Answer:

Problem 10 (10 pts)

A power reactor is cooled by heavy water (D_2O) but a leak causes a 1 atom % contamination of the coolant with light water (H_2O) . Determine the resulting percentage increase or decrease in the following characteristics of the coolant:

- 1. Slowing down decrement
- 2. Slowing down power
- 3. Slowing down ratio

Answer: