Single Cell RNASeq Application and Analysis

Overview

Bulk RNASeq

- Library preparation
- Analysis methods
 - Normalization strategies
 - Differential gene expression
 - Linear models

Single cell RNASeq

- Library preparation
 - Demux and barcoding
- Analysis methods
 - Clustering
 - Cluster marker identification
 - Differential gene expression

Bulk vs. single cell RNASeq

Bulk RNASeq

- Measures an average snapshot of the population of cells
- Well established methodology
 - Technology
 - Algorithms
- Requires extra work in cell sorting for cell type specific expression
 - Still does not have enough resolution

scRNASeq

- Addresses the inadequacies of bulk RNASeq as regards cell specific expression
- Shares much of the same tooling and methods as bulk RNASeq
 - Library preparation and sequencing
 - Alignment methods
 - Counting
- Introduces its own new problems
 - From its own chemistry
 - From the basic premise of what is asked

How do we define clusters?

Determining clusters of cell types

Identify by prior knowledge

- Manually
 - Label with known biomarkers
 - Requires prior knowledge / expectations of cell populations
- Comparison to labeled single cell data sets
 - e.g. scMatch

de novo clustering

- Methods
 - K-means
 - Parametric
 - Not recommended
 - K-nearest neighbors
 - Variants of KNN
 - Non-parametric
- Assumes all genes are worth the same importance

Using cell markers

Expression of known markers

- Investigator needs to know the genes prior
 - Not always as uniquely expressed as previously thought
 - Does not address subpopulations

Compare to other single cell databases

Whole expression profile

 Requires a well curated database

Classification by reference

Neural nets and machine learning models

- Requires a data set
- Requires training
- Not portable
- Odd performance for a cell types not in the database

Correlation based

- e.g. scMatch
- Rank comparisons to curated database
 - Best correlation is the assignment

de novo clustering

- Clustering methods
 - K-means
 - KNN-based
 - Cell populations based on the data
 - Assume all genes are of same importance
 - Euclidean distance
- Identify markers
 - Differential gene expression
 - Against background (i.e. all other cells)

K-means

Start at random points

 Keep updating to new points to find "center"

K-means

K-means

- Determines clusters by normal distribution of points
 - Clusters determined by minimizing variance from "centers"
- Assumes clusters are about same size
- Variance is same in all dimensions
 - Clusters are "spherical"

K-nearest neighbors

But KNN is a classification method, so how do we

use it if we do not already know the classes.

Shared nearest neighbors

Start with KNN.

Instead of Euclidean, compute "distance" as a number of shared neighbors with k_i neighbor.

Shared nearest neighbors

A shares 2 neighbors with B.

A shares 0 neighbors with C.

Set a threshold for minimum "sharing" to consider breaking cluster.
(Can be algorithmically derived.)

- Finding markers
 - Cluster against background

Comparing clusters

- Finding markers
 - Cluster against background

Comparing clusters

Analogous to bulk RNASeq

- Comparisons
 - Cluster choice
 - Conditional (e.g. KO vs WT)

- Handling sparsity
- Total RNA per cell
 - Is itself a feature
 - i.e. not every cell intrinsically has the same amount of RNA

- Normalize the data
 - Especially when combining data sets
- Differential gene expression
 - Pick clusters
 - MAST

Those zeroes are still a problem

Cannot just use DESeq2, edgeR, voom, etc.

MAST

- Accounts for sparsity in the expression data
 - Simultaneously accounts for:
 - Rate of expression (i.e. does it express)
 - Extent of positive expression
- Preserves each cell's sequencing depth information
 - As a covariate in the model
- Includes gene set enrichment analysis
 - GO terms

MAST: models depth as a factor

$$\hat{\mathbf{y}} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2$$
Gene expression Sequencing depth Condition

Model more effects in experiment

$$\hat{\mathbf{y}} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2$$
Gene expression Sequencing depth Condition

Identify marker genes

- Identify cluster of interest
- Differential gene expression
 - Cluster vs. pool of other cells

Cluster gene markers

Cluster gene markers

	p_val	avg_logFC	pct.1	pct.2	p_val_adj
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
GZMH	9.426403e-226	1.5682342	0.844	0.056	1.185087e-221
CST7	1.309391e-134	1.1541437	0.932	0.149	1.646167e-130
NKG7	3.165255e-113	1.7630286	0.986	0.245	3.979358e-109
CCL5	6.265650e-109	1.7284013	0.980	0.263	7.877175e-105
GZMA	1.273585e-103	0.9897355	0.871	0.157	1.601150e-99
CD8A	1.032106e-79	0.6895288	0.592	0.090	1.297564e-75
FGFBP2	9.419610e-76	0.7265348	0.565	0.080	1.184233e-71
GZMB	4.960955e-67	0.5494578	0.578	0.090	6.236913e-63
CCL4	2.695426e-57	0.5785962	0.510	0.089	3.388690e-53
PRF1	3.241766e-57	0.4888278	0.626	0.126	4.075548e-53

- Between different clusters in same sample
 - Analysis of sub-populations

- Between two samples
 - Within a select cluster
 - Throughout all cells

What is the difference between these two clusters expressing CD8?

What is the difference between these two clusters expressing CD8?

	p_val	avg_logFC	pct.1	pct.2	p_val_adj
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
NKG7	3.440816e-41	2.7713124	0.986	0.101	4.325793e-37
CCL5	8.985582e-40	2.4149434	0.980	0.131	1.129667e-35
CST7	2.420658e-36	1.3702444	0.932	0.040	3.043252e-32
GZMH	8.840700e-33	1.6928407	0.844	0.010	1.111453e-28
RPL32	1.317788e-32	-0.6928248	1.000	1.000	1.656723e-28
GZMA	1.964161e-32	1.3102846	0.871	0.081	2.469344e-28
B2M	6.059841e-32	0.6447030	1.000	1.000	7.618432e-28
RPL13	1.488546e-31	-0.6168589	1.000	1.000	1.871400e-27
HLA-C	2.226557e-31	0.9193346	1.000	1.000	2.799228e-27
RPS12	2.337630e-30	-0.5904889	1.000	1.000	2.938868e-26

- Between different clusters in same sample
 - Analysis of sub-populations

- Between two samples
 - Within a select cluster
 - Throughout all cells

Do we see a difference in expression between CTRL and STIM in selected cluster?

CTRL STIM

CTRL STIM

Identity

- Between different clusters in same sample
 - Analysis of sub-populations

- Between two samples
 - Within a select cluster
 - Throughout all cells

Lineage / Differentiation

Identify the expression changes involved in:

- Cell cycle changes
- Cell type differentiation
- Cellular activation

Analysis of lineage

Manually

- Pick out clusters along presumed lineage
- Differential expression analysis between all the clusters

Algorithmically

- Auto detects related cells
- Predicts direction of lineage
- Test for the pattern of differential expression

Algorithmic lineage analysis

- Automatically identifies lineage progression
 - Some can predict multiple branching points
- Identifies "clusters" as pseduotime along lineage
 - Tracks gene expression changes along axis of lineage
- Differential expression tests

Algorithmic lineage analysis

- Automatically identifies lineage progression
 - Some can predict multiple branching points
- Identifies "clusters" as pseduotime along lineage
 - Tracks gene expression changes along axis of lineage
- Differential expression tests

Algorithmic lineage analysis

- Automatically identifies lineage progression
 - Some can predict multiple branching points
- Identifies "clusters" as pseduotime along lineage
 - Tracks gene expression changes along axis of lineage
- Differential expression tests

	Within the or	ange lineage	Between the orange and blue lineages		
Lineages	association Test	startVsEnd Test	diffEnd Test	pattern Test	earlyDE Test
Opt. 10 1	DE	DE	Not DE	Not DE	Not DE
Confidence of the second of th	Not DE	Not DE	DE	DE	DE
10 mm 1 m	DE	Not DE	Not DE	Not DE	Not DE
STORY OF THE PROPERTY OF THE P	DE	DE	DE	DE	Not DE
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DE	DE	Not DE	DE	DE
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DE	DE	Not DE	DE	Not DE

Markers for lineage progression

Markers for lineage progression

Markers between lineages

Marker as a pattern for lineage progression

Expression at end of differentiation is not statistically significant.

Marker as a pattern for lineage progression

While end result is the same, there is a transient expression profile change to differentiation.

Summary

- Normalization
 - Concerns in scRNASeq not present in bulk RNASeq
- Visualization
 - Careful not to read into "clusters" too deeply
- Identifying populations of cell types
 - Clustering
 - Identification of cluster's cell type
 - With a priori biological knowledge
 - Automatically with curated databases
 - Determination of cell type markers

- Differential expression
 - Between cell populations
 - Between conditions
 - Stimulated versus control
 - Time
 - For lineage / differentiation
 - Identification of lineage
 - Differential gene expression between states
 - Identification of transient expression profile changes