Dynamic Programming-2

Department of Computer Science, Tsinghua University

Outline

- Challenge I: what are the subproblems in DP?
 - ▶ Take one choice of the optimal solution away!
 - Maximum subarray (Ch4.1), Knapsack
- Challenge II: establish recurrences
 - Optimal substructure (Ch15.3)
 - Knapsack, Matrix Chain Multiplication (Ch I 5.2)
- Challenge III: implementations
 - Bottom-up vs.Top-down
 - Matrix Chain Multiplication, Knapsack, All-pairs shortest paths (Ch 25.2)

DP Solution Maximum Subarray

- Given an array A of n numbers, find the nonempty, contiguous subarray of A whose values have the largest sum.
- Make a choice to split the problem into one or more subproblems;

The maximum subarray contains A[n] or not?

2 Just assume you are given the choice that leads to an optimal solution S;

Yes / No

③ Given this choice, try to characterize the remaining subproblems? $Maxending[n] / Max_{sub[n-1]}$

Define $Max_sub[i]$ is an opt. solution for the subproblem of finding maximum subarray from A[1..i]; Maxending[i] is an opt. solution for the subproblem of finding maximum subarray from A[1..i]; that ends at A[i].

DP Solution Knapsack

- ▶ Given n items: $a_1, a_2, ..., a_n$, and their weights: $w_1, w_2, ..., w_n$, and values: $v_1, v_2, ..., v_n$. A knapsack of capacity w. Find a subset of items of total weight $\leq w$ and of maximum value.
- Make a choice to split the problem into one or more subproblems;

The optimal subset contains a_n or not?

② Just assume you are given the choice that leads to an optimal solution S;

Yes/No

3 Given this choice, try to characterize the remaining subproblems? $KS_{n-1,w-w_n}$ / $KS_{n-1,w}$

Define $KS_{i,u}$ is the subproblem of selecting from $a_1, ..., a_i$ with a total weight $\leq u$

Optimal Substructure

- An optimal solution to a problem (instance) contains optimal solutions to subproblems.
 - In other words, we can build an optimal solution to the problem from optimal solutions to subproblems.
 - Is the foundation to build the recursive relationship
 - Reduces time complexity by safely ignoring non-optimal solutions to subproblems in the recursive relationship.
- Verify it by "cut and paste" technique!
 - We suppose that the subproblem solution is not optimal and then deriving a contradiction.
 - By "cutting out" the nonoptimal subproblem solution and "pasting in" the optimal one, you show you can get a better solution for the original problem, contradicting the fact that you already have an optimal solution for the original problem.

Optimal Substructure

- Characterizing the resulting space of subproblem.
 - ▶ Given an optimal choice, identify the resulting subproblems
- Not all problems exhibit optimal substructure property.

For example, when subproblems are not independent, i.e., longest simple path problem:

Optimal Substructure in Knapsack

- How to discover optimal substructure?
 - Make a choice to split the problem into one or more subproblems;

Including item a_n or not?

② Just assume you are given the choice that leads to an optimal solution;

The optimal solution contains a_n .

Given this choice, try to best characterize the resulting space of subproblems;

The subproblem becomes finding the opt. solution from $a_1, a_2, ..., a_{n-1}$ with knapsack capacity of $w - w_n$.

a Prove optimal substructure by using a "cut-and-paste" technique. We need to prove if we take away a_n , then the remaining solution is opt. for the subproblem described in step 3.

Optimal Substructure in Knapsack

Prove optimal substructure by using a "cut-and-paste" technique.

We need to prove if we take away a_n , then the remaining solution is opt. for the following subproblem: finding the opt. solution from $a_1, a_2, ..., a_{n-1}$ with knapsack capacity of $w - w_n$.

Optimal Substructure in Knapsack

- How to discover optimal substructure?
 - Make a choice to split the problem into one or more subproblems;

Including item a_n or not?

② Just assume you are given the choice that leads to an optimal solution;

The optimal solution does not contain a_n .

Given this choice, try to best characterize the resulting space of subproblems;

The sub-problem becomes finding the opt. solution from a_1, a_2, \dots, a_{n-1} with knapsack capacity of w.

Prove optimal substructure by using a "cut-and-paste" technique.
We need to prove the optimal solution is opt. for the subproblem described in step 3.

Recurrence of Knapsack

- Theorem (optimal substructure property): Define $z_{i,u}$ is an opt. profit for the subproblem of selecting from a_1, \ldots, a_i with a total weight $\leq u$. Then,
 - If a_i belongs to the opt. solution, then $z_{i,u} = z_{i-1,u-w_i} + v_i$
 - If a_i does not belong to the opt. solution, then $z_{i,u} = z_{i-1,u}$ So we compare both cases, and take the larger one.

Recursive solution:

$$z_{1,u} = \begin{cases} 0 & if \ u < w_1 \\ v_1 & otherwise \end{cases}$$

$$z_{i,u} = \begin{cases} 0 & if \ u \leq 0 \\ z_{i-1,u} & if \ u \leq wi \\ \max(z_{i-1,u}, z_{i-1,u-w_i} + v_i) & otherwise \end{cases}$$

Recurrence of Knapsack

Example: Knapsack of capacity W = 5

<u>item</u>	<u>weight</u>	<u>value</u>	
1	2	\$12	
2	1	\$10	$z_{i,u} = \langle$
3	3	\$20	
4	2	\$15	

$$z_{i,u} = \begin{cases} 0 & if \ u \leq 0 \\ z_{i-1,u} & if \ u < w_i \\ \max(z_{i-1,u}, z_{i-1,u-w_i} + v_i) & otherwise \end{cases}$$

capacity *u*

$w_1 = 2$, $v_1 = 12$	1
$w_2 = 1$, $v_2 = 10$	2
$w_3 = 3$, $v_3 = 20$	3
$w_4 = 2$, $v_4 = 15$	4

capacity w								
0	1	2	3	4	5			
0	0	12	12	12	12			
0								
	0	0 0	0 1 2 0 0 12	0 1 2 3 0 0 12 12	0 1 2 3 4 0 0 12 12 12	0 1 2 3 4 5 0 0 12 12 12 12 12		

Matrix Chain Multiplication

Problem:

- Given a sequence $\langle A_1, A_2, ..., A_n \rangle$ of n matrices to be multiplied, and we wish to compute the product: $A_1A_2 ... A_n$, we want to determine the order of this multiplication such that the total cost is minimized.
- Matrix multiplication is associative, so all orders yield the same product.
- Cost defined by the number of scalar multiplications.

For example:

- $A_{10\times100}B_{100\times5}C_{5\times50}$
- $A_{10\times100}(B_{100\times5}C_{5\times50}):10\times100\times50+100\times5\times50=75000$
- $(A_{10\times100}B_{100\times5})C_{5\times50}:10\times100\times5+10\times5\times50=7500$

Matrix Chain Multiplication

- Use parentheses to represent order.
- Fully parenthesized
 - A product of matrices is **fully parenthesized** if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses.
- Example
 - $\rightarrow A_1A_2A_3A_4$
 - $(A_1(A_2(A_3A_4))), (A_1((A_2A_3)A_4)), ((A_1A_2)(A_3A_4)), ((A_1(A_2A_3))A_4), (((A_1A_2)A_3)A_4)$

Solution Space

- Counting the number of ways of parenthesization
 - Denote the number of alternative ways of parenthesization for a sequence of n matrices by P(n).
- The first split can happen between the kth and k+1th matrices ($k=1,2,\cdots,n-1$), then parenthesize the two resulting subsequences independently.

$$P(n) = \begin{cases} 1 & n = 1 \\ \sum_{k=1}^{n-1} P(k)P(n-k) & n > 1 \end{cases}$$

- ▶ In-class exercise: P(5) = ?
- P(n) is the sequence of Catalan number
- $P(n) = \Omega(4^n/n^{3/2})$

Optimization Problems

Matrix Chain Multiplication:

- Instance: a possible input, e.g. a matric chain.
- Solutions for an instance: Each instance has an exponentially large set of feasible solutions (space of solutions), e.g. orders
- Cost of Solution: Each solution has an easy-to-compute cost or value, e.g. the number of scalar multiplications.
- Optimal Solution: determine the order of this multiplication such that the total cost is minimized.

Steps of DP

- Steps of dynamic programming
 - ▶ Step I: Characterize the structure of an optimal solution

Step 1: the structure of an optimal solution

- $A_1A_2A_3 | A_4A_5$
- $A_1A_2A_3$ has two alternative orders $(A_1A_2)A_3$ and $A_1(A_2A_3)$
- ▶ Brute force will check both $((A_1A_2)A_3)(A_4A_5)$, $((A_1A_2)A_3)(A_4A_5)$
- ▶ DP will only check one of them (by optimal substructure).
- In stead of all combinations, DP only checks the combination of optimal solutions to subproblems.

Step 1: the structure of an optimal solution

Make a choice to split the problem into one or more subproblems;

Split the matrix chain

② Just assume you are given the choice that leads to an optimal solution S;

Split the matrix chain between A_k and A_{k+1} in S

Given this choice, try to best characterize the resulting space of subproblems;

Two remaining subproblems: subchains $A_1A_2 \dots A_k$ and $A_{k+1}A_{k+2} \dots A_n$

Step 1: the structure of an optimal solution

Prove optimal substructure by using a "cut-and-paste" technique.

The order of multiplications of $A_1A_2 \dots A_k$ in S must be an optimal order for multiplying $A_1A_2 \dots A_k$; The order of $A_{k+1}A_{k+2} \dots A_n$ in S must be an optimal order for $A_{k+1}A_{k+2} \dots A_n$.

e.g. if $((A_1A_2)A_3)A_4$ is the optimal solution, $(A_1A_2)A_3$ must be optimal for $A_1A_2A_3$.

Steps of DP

- Steps of dynamic programming
 - Step I: Characterize the structure of an optimal solution
 - ▶ Step2: Recursively define the value of an optimal solution

Step2: Recurrence

- Let m[i,j] be the minimum number of scalar multiplications needed to computer the matrix chain $A_{i...j}$
- **Setup a recurrence for** m[i,j], then the original problem: a cheapest way would thus be m[1,n]
- If the optimal solution of $A_{i...j}$ cuts at k
 - $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$
- \blacktriangleright Try all possible k and choose the minimum

