First-Order Logic: Syntax and Semantics

Yuting Wang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Nov 7, 2022

First-Order Logic

Start reading (to keep up with lecture):

► Enderton, Chapter 2

Example

Question

Premises:

- If it is raining or it is snowing then the sun is not shining.
- It is raining

Conclusion: The sun is not shining

Is the conclusion a semantic consequence of the premises?

Example

Question

Premises:

- If it is raining or it is snowing then the sun is not shining.
- It is raining

Conclusion: The sun is not shining

Is the conclusion a semantic consequence of the premises?

Answer

Yes.

Let A, B, and C represent "it is raining", "it is snowing" and "the sun is shining". We can prove

$${A \lor B \to \neg C, A} \vDash \neg C$$

Another Example

Question

Premises:

- All men are mortal
- Socrates is a man.

Conclusion: Socrates is mortal.

Is the conclusion a semantic consequence of the premises?

Another Example

Question

Premises:

- All men are mortal
- Socrates is a man.

Conclusion: Socrates is mortal.

Is the conclusion a semantic consequence of the premises?

We need a more power logic to handle this kind of reasoning.

Syntax and Semantics of First-Order Logic

Recall that there are two parts to a logic:

Syntax and Semantics of First-Order Logic

Recall that there are two parts to a logic:

- Syntax. It provides
 - A description of the language, and
 - Other syntactic constructs (we will see later)

Syntax and Semantics of First-Order Logic

Recall that there are two parts to a logic:

- Syntax. It provides
 - A description of the language, and
 - Other syntactic constructs (we will see later)
- ► Semantics. It provides
 - A way of assigning meaning to valid expressions
 - ▶ In sentential logic, the meaning will be either TRUE or FALSE
 - In a first-order logic, the meaning may vary significantly

Let's Begin with the Syntax

Syntax of a First-Order Language $\mathbb L$

We start with the symbols of a first-order language $\mathbb{L}.$

Syntax of a First-Order Language $\mathbb L$

We start with the symbols of a first-order language \mathbb{L} .

There are two types of symbols:

- Logical Symbols, and
- ► Non-logical Symbols, also called Parameters

In a first-order language \mathbb{L} , we have the following logic symbols:

1. The two symbols (and), called parentheses;

- 1. The two symbols (and), called parentheses;
- 2. \rightarrow and \neg . These are logical connective symbols;

- 1. The two symbols (and), called parentheses;
- 2. \rightarrow and \neg . These are logical connective symbols;
- 3. $v_1, v_2, \ldots, v_n, \ldots$ An enumerable list of symbols called variables;

- 1. The two symbols (and), called parentheses;
- 2. \rightarrow and \neg . These are logical connective symbols;
- 3. $v_1, v_2, \ldots, v_n, \ldots$ An enumerable list of symbols called variables;
- 4. =. The identity or equality symbol. It may or may not be present in a particular first-order language.

In a first-order language \mathbb{L} , we have the following logic symbols:

- 1. The two symbols (and), called parentheses;
- 2. \rightarrow and \neg . These are logical connective symbols;
- 3. $v_1, v_2, \ldots, v_n, \ldots$ An enumerable list of symbols called variables;
- 4. =. The identity or equality symbol. It may or may not be present in a particular first-order language.

We will sometimes write $\stackrel{.}{=}$ to distinguish the equality symbol from semantic equality.

In a first-order language \mathbb{L} , we have the following logic symbols:

- 1. The two symbols (and), called parentheses;
- 2. \rightarrow and \neg . These are logical connective symbols;
- 3. $v_1, v_2, \ldots, v_n, \ldots$ An enumerable list of symbols called variables;
- 4. =. The identity or equality symbol. It may or may not be present in a particular first-order language.

We will sometimes write $\stackrel{.}{=}$ to distinguish the equality symbol from semantic equality.

Question

Why are the \land , \lor , \leftrightarrow connectives not present?

In a first-order language \mathbb{L} , we have the following parameters:

1. ∀. This is called the universal quantifier;

- 1. ∀. This is called the universal quantifier;
- 2. For each n > 0, there is a set (possibly empty) of objects called n-ary (or n-place) predicate symbols;

- 1. ∀. This is called the universal quantifier;
- For each n > 0, there is a set (possibly empty) of objects called n-ary (or n-place) predicate symbols;
- 3. For each n > 0, there is a set (possibly empty) of objects called n-ary (or n-place) function symbols;

- 1. ∀. This is called the universal quantifier;
- For each n > 0, there is a set (possibly empty) of objects called n-ary (or n-place) predicate symbols;
- For each n > 0, there is a set (possibly empty) of objects called n-ary (or n-place) function symbols;
- 4. A set (possibly empty) of objects called constant symbols.

In a first-order language \mathbb{L} , we have the following parameters:

- 1. ∀. This is called the universal quantifier;
- For each n > 0, there is a set (possibly empty) of objects called n-ary (or n-place) predicate symbols;
- For each n > 0, there is a set (possibly empty) of objects called n-ary (or n-place) function symbols;
- 4. A set (possibly empty) of objects called constant symbols.

By a symbol we mean either a logical symbol or a parameter.

We require that

We require that

▶ = is a 2-ary predicate symbols;

We require that

- $ightharpoonup \dot{=}$ is a 2-ary predicate symbols;
- ► There is at least one predicate symbol;

We require that

- $ightharpoonup \dot{=}$ is a 2-ary predicate symbols;
- ► There is at least one predicate symbol;
- ► The symbols are distinct, and no symbol is equal to a finite sequence of other symbols.

We require that

- $ightharpoonup \dot{=}$ is a 2-ary predicate symbols;
- ► There is at least one predicate symbol;
- ► The symbols are distinct, and no symbol is equal to a finite sequence of other symbols.

The latter means: no 2-ary function symbol is also a 3-ary function symbol, not function symbol is a predicate symbol, etc.

Set theory may be described by the following language:

► Equality: Yes;

- ► Equality: Yes;
- ► Predicate Symbols: a 2-place predicate symbol $\dot{\in}$;

- ► Equality: Yes;
- ► Predicate Symbols: a 2-place predicate symbol $\dot{\in}$;
- ► Constant Symbols: the empty set $\dot{\emptyset}$;

- ► Equality: Yes;
- ► Predicate Symbols: a 2-place predicate symbol $\dot{\in}$;
- ► Constant Symbols: the empty set $\dot{\emptyset}$;
- ► Function Symbols: None.

Example: Elementary Arithmetic

Elementary arithmetic may be described by the following language:

Elementary arithmetic may be described by the following language:

Equality: Yes;

Elementary arithmetic may be described by the following language:

- ► Equality: Yes;
- ► Predicate Symbols: a 2-place predicate symbol <;

Elementary arithmetic may be described by the following language:

- ► Equality: Yes;
- ► Predicate Symbols: a 2-place predicate symbol <;
- ► Constant Symbols: 0 and 1;

Elementary arithmetic may be described by the following language:

- ► Equality: Yes;
- ► Predicate Symbols: a 2-place predicate symbol <;
- ► Constant Symbols: 0 and 1;
- ▶ Function Symbols: 2-ary function symbols \dotplus and $\dot{\times}$.

Remark

We have not put any requirement on the number of function, predicate or constant symbols.

Remark

We have not put any requirement on the number of function, predicate or constant symbols.

Example

For example, it is possible for a given first-order language:

Remark

We have not put any requirement on the number of function, predicate or constant symbols.

Example

For example, it is possible for a given first-order language:

► There are *three* constant symbols;

Remark

We have not put any requirement on the number of function, predicate or constant symbols.

Example

For example, it is possible for a given first-order language:

- ► There are *three* constant symbols;
- ► There are *enumerably many* function symbols;

Remark

We have not put any requirement on the number of function, predicate or constant symbols.

Example

For example, it is possible for a given first-order language:

- ► There are *three* constant symbols;
- ► There are *enumerably many* function symbols;
- ▶ There are *uncountably many* predicate symbols!

Expressions

Like in sentential logic, an expression in a language $\mathbb L$ is a finite sequence of symbols.

Example $\forall \neg \rightarrow v_1 v_2 v_4$ is an expression.

Terms

Definition

Given any *n*-ary function symbol f, the term-building operation \mathcal{F}_f is defined by:

$$\mathcal{F}_f(\sigma_1,\ldots,\sigma_n)=f\ \sigma_1\ldots\sigma_n$$

We call σ_i the arguments to f.

Terms

Definition

Given any *n*-ary function symbol f, the term-building operation \mathcal{F}_f is defined by:

$$\mathcal{F}_f(\sigma_1,\ldots,\sigma_n)=f\ \sigma_1\ldots\sigma_n$$

We call σ_i the arguments to f.

Definition

A term is an expression built up from constant symbols and variables by applying some finite times of term-building operations.

Example

Example

Suppose:

- f is a 2-ary function symbol;
- g is a 3-ary function symbol;
- $ightharpoonup c_1$ and c_2 are constant symbols.

Then $gfc_1c_2v_3c_1$ is a term.

Term Sequences

An alternative way to define terms is to use term sequences.

Term Sequences

An alternative way to define terms is to use term sequences.

Definition

A term sequence is a finite sequence t_1, \ldots, t_n of expressions s.t. each t_i is either

- a variable, or a constant symbol, or
- ▶ is of the form f $\sigma_1 \dots \sigma_k$ where f is a k-ary function symbol and each of $\sigma_1 \dots \sigma_k$ occurs earlier in the sequence.

Term Sequences

An alternative way to define terms is to use term sequences.

Definition

A term sequence is a finite sequence t_1, \ldots, t_n of expressions s.t. each t_i is either

- a variable, or a constant symbol, or
- ▶ is of the form f $\sigma_1 \dots \sigma_k$ where f is a k-ary function symbol and each of $\sigma_1 \dots \sigma_k$ occurs earlier in the sequence.

Proposition

An expression t is a term iff there is a term sequence t_1, \ldots, t_n such that $t = t_n$.

Example

Example

Suppose:

- f is a 2-ary function symbol;
- g is a 3-ary function symbol;
- $ightharpoonup c_1$ and c_2 are constant symbols.

Then $gfc_1c_2v_3c_1$ is a term

Example

Example

Suppose:

- f is a 2-ary function symbol;
- g is a 3-ary function symbol;
- $ightharpoonup c_1$ and c_2 are constant symbols.

Then $gfc_1c_2v_3c_1$ is a term since

$$v_3, c_1, c_2, fc_1c_2, gfc_1c_2v_3c_1$$

is a term sequence.

Atomic Formulas

Definition

An expression is an atomic formula if it is of the form P $t_1 ldots t_n$ where $t_1, ldots, t_n$ are terms, and P is a n-ary predicate symbol.

Atomic Formulas

Definition

An expression is an atomic formula if it is of the form P $t_1 ldots t_n$ where $t_1, ldots, t_n$ are terms, and P is a n-ary predicate symbol.

Example

 $ightharpoonup = v_7 v_3$ is an atomic formula (consisting of 3 symbols);

Atomic Formulas

Definition

An expression is an atomic formula if it is of the form P $t_1 ldots t_n$ where $t_1, ldots, t_n$ are terms, and P is a n-ary predicate symbol.

Example

- $ightharpoonup = v_7 v_3$ is an atomic formula (consisting of 3 symbols);
- ▶ If c_1 and c_3 are constant symbols and f is a 2-ary function symbol, then $= fc_1v_7c_3$ is an atomic formula.

Well-Formed Formulas

Definition

The formula-building operations include the following:

- $\blacktriangleright \ \xi_{\neg}(\alpha) = (\neg \alpha)$
- $\blacktriangleright \ \xi_{\rightarrow}(\alpha,\beta) = (\alpha \rightarrow \beta)$

Well-Formed Formulas

Definition

The formula-building operations include the following:

- $\blacktriangleright \ \xi_{\rightarrow}(\alpha,\beta) = (\alpha \rightarrow \beta)$
- $\triangleright Q_i(\gamma) = \forall v_i \gamma$

Definition

A well-formed formula (wff) is an expression built up from atomic formulas by applying some finite times of term-building operations ξ_{\neg} , ξ_{\rightarrow} and $Q_i (i=0,1,\ldots)$.

Example

Example

The expression $(\neg \forall v_3 = v_1 v_2)$ is a wff.

Example

Example

The expression $(\neg \forall v_3 = v_1 v_2)$ is a wff.

Example

The expression $(\neg(\forall v_3 = v_1 v_2))$ is not a wff.

Well-Formed Sequences

An alternative way to define wffs is to use well-formed sequences.

Well-Formed Sequences

An alternative way to define wffs is to use well-formed sequences.

Definition

A well-formed sequence is a finite sequence $\alpha_1, \ldots, \alpha_n$ of expressions such that each α_i is either

- an atomic formula, or
- ▶ is of the form $(\neg \beta)$ or $(\beta \to \gamma)$ where β and γ occur earlier in the list, or
- ▶ is of the form $\forall v_i \beta$ where β occurs earlier in the list.

Well-Formed Sequences

An alternative way to define wffs is to use well-formed sequences.

Definition

A well-formed sequence is a finite sequence $\alpha_1, \ldots, \alpha_n$ of expressions such that each α_i is either

- an atomic formula, or
- ▶ is of the form $(\neg \beta)$ or $(\beta \to \gamma)$ where β and γ occur earlier in the list, or
- ▶ is of the form $\forall v_i \beta$ where β occurs earlier in the list.

Proposition

The expression α is a wff if there is a well-formed sequence $\alpha_1, \ldots, \alpha_k$ such that $\alpha = \alpha_k$.

Example

Example

The expression $(\neg \forall v_3 = v_1 v_2)$ is a wff

Example

Example

The expression $(\neg \forall v_3 = v_1 v_2)$ is a wff since

$$\doteq v_1v_2, \forall v_3 \dot{=} v_1v_2, (\neg \forall v_3 \dot{=} v_1v_2)$$

is a well-formed sequence.

• $(\alpha \vee \beta)$ abbreviates $((\neg \alpha) \rightarrow \beta)$;

- $(\alpha \vee \beta)$ abbreviates $((\neg \alpha) \rightarrow \beta)$;
- $(\alpha \wedge \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;

- \blacktriangleright $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- \blacktriangleright $(\alpha \land \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;

- \blacktriangleright $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- $(\alpha \wedge \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;

- $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- $(\alpha \wedge \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;
- \triangleright u = t abbreviates = ut;

- $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- $(\alpha \wedge \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;
- $\triangleright u = t$ abbreviates = ut;
- $\triangleright u \neq t$ abbreviates $(\neg = ut)$;

Abbreviations

- $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- $(\alpha \wedge \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;
- $\triangleright u = t$ abbreviates = ut;
- $\triangleright u \neq t$ abbreviates $(\neg = ut)$;

We also often write:

 $\triangleright u + v$ for +uv;

Abbreviations

- $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- $(\alpha \wedge \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;
- $\triangleright u = t$ abbreviates = ut;
- $\triangleright u \neq t$ abbreviates $(\neg = ut)$;

We also often write:

- $\triangleright u + v$ for +uv;
- $\blacktriangleright u \dot{\times} v \text{ for } \dot{\times} uv;$

Abbreviations

- $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- $(\alpha \wedge \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;
- $\triangleright u = t$ abbreviates = ut;
- $\triangleright u \neq t$ abbreviates $(\neg = ut)$;

We also often write:

- $\triangleright u + v$ for +uv;
- $\blacktriangleright u \dot{\times} v \text{ for } \dot{\times} uv;$
- \triangleright $u \dot{<} v$ for $\dot{<} uv$.

More Abbreviations

- (1) We may drop the outermost parentheses;
- (2) \neg , \forall , \exists apply to as little as possible;
- (3) \wedge and \vee apply to as little as possible; subject to (2);
- (4) when one connective is used repeatedly, grouping is to the right.

In set theory, we have the symbols \doteq , $\dot{\emptyset}$ and $\dot{\in}$.

In set theory, we have the symbols $\dot{=}$, $\dot{\emptyset}$ and $\dot{\in}$. Moreover

- ▶ ∀ means "for every set";
- ▶ *\(\)* is a member of";

In set theory, we have the symbols $\dot{=}$, $\dot{\emptyset}$ and $\dot{\in}$. Moreover

- ▶ ∀ means "for every set";
- ▶ ∈ means "is a member of";

Question

How to interpret the sentence "There is no set of which every set is a member" in first-order logic?

In set theory, we have the symbols $\dot{=}$, $\dot{\emptyset}$ and $\dot{\in}$. Moreover

- ▶ ∀ means "for every set";

Question

How to interpret the sentence "There is no set of which every set is a member" in first-order logic?

In set theory, we have the symbols $\dot{=}$, $\dot{\emptyset}$ and $\dot{\in}$. Moreover

- ▶ ∀ means "for every set";
- ▶ ∈ means "is a member of";

Question

How to interpret the sentence "There is no set of which every set is a member" in first-order logic?

Answer

 \blacktriangleright (\neg [There is some set of which every set is a member]);

In set theory, we have the symbols $\dot{=}$, $\dot{\emptyset}$ and $\dot{\in}$. Moreover

- ▶ ∀ means "for every set";

Question

How to interpret the sentence "There is no set of which every set is a member" in first-order logic?

- $ightharpoonup (\neg[There is some set of which every set is a member]);$
- ▶ $(\neg \exists v_1 [Every set is a member of v_1]);$

In set theory, we have the symbols $\dot{=}$, $\dot{\emptyset}$ and $\dot{\in}$. Moreover

- ▶ ∀ means "for every set";

Question

How to interpret the sentence "There is no set of which every set is a member" in first-order logic?

- $ightharpoonup (\neg[There is some set of which every set is a member]);$
- ▶ $(\neg \exists v_1 [Every set is a member of v_1]);$
- $ightharpoonup (\neg \exists v_1 \forall v_2 [v_2 \text{ is a member of } v_1]);$

In set theory, we have the symbols \doteq , \emptyset and $\dot{\in}$. Moreover

- ▶ ∀ means "for every set";
- ▶ ∈ means "is a member of";

Question

How to interpret the sentence "There is no set of which every set is a member" in first-order logic?

- $ightharpoonup (\neg[There is some set of which every set is a member]);$
- ▶ $(\neg \exists v_1 [Every set is a member of v_1]);$
- $ightharpoonup (\neg \exists v_1 \forall v_2 [v_2 \text{ is a member of } v_1]);$
- $ightharpoonup (\neg \exists v_1 \forall v_2, v_2 \in v_1);$

In set theory, we have the symbols \doteq , \emptyset and $\dot{\in}$. Moreover

- ▶ ∀ means "for every set";

Question

How to interpret the sentence "There is no set of which every set is a member" in first-order logic?

- $ightharpoonup (\neg[There is some set of which every set is a member]);$
- ▶ $(\neg \exists v_1 [Every set is a member of v_1]);$
- $(\neg \exists v_1 \forall v_2 [v_2 \text{ is a member of } v_1]);$
- $ightharpoonup (\neg \exists v_1 \forall v_2, v_2 \in v_1);$
- $(\neg(\neg\forall v_1(\neg\forall v_2,\dot{\in}v_2v_1)));$

In elementary arithmetic, we have the symbols $\dot{<}$, $\dot{+}$, $\dot{\times}$, $\dot{0}$ and $\dot{1}.$

In elementary arithmetic, we have the symbols $\dot{<}$, $\dot{+}$, $\dot{\times}$, $\dot{0}$ and $\dot{1}$.

We represent a natural number *n* by

$$\underbrace{1 + \ldots + 1}_{n \text{ times}} + 0$$

In elementary arithmetic, we have the symbols $\dot{<}$, $\dot{+}$, $\dot{\times}$, $\dot{0}$ and $\dot{1}$.

We represent a natural number *n* by

$$\underbrace{1 \dotplus \dots \dotplus 1}_{n \text{ times}} \dotplus 0$$

In elementary arithmetic, we have the symbols $\dot{<}$, $\dot{+}$, $\dot{\times}$, $\dot{0}$ and $\dot{1}$.

We represent a natural number *n* by

$$\underbrace{1 \dotplus \dots \dotplus 1}_{n \text{ times}} \dotplus 0$$

$$(\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})\dot{+}(\dot{1}\dot{+}\dot{0})\dot{=}(\dot{1}\dot{+}\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})$$

In elementary arithmetic, we have the symbols $\dot{<}$, $\dot{+}$, $\dot{\times}$, $\dot{0}$ and $\dot{1}$.

We represent a natural number *n* by

$$\underbrace{1 \dotplus \dots \dotplus 1}_{n \text{ times}} \dotplus 0$$

Therefore, 2 + 1 = 3 is interpreted as

$$(\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})\dot{+}(\dot{1}\dot{+}\dot{0})\dot{=}(\dot{1}\dot{+}\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})$$

▶ We interpret the sentence "any non-zero natural number is the successor of some natural number" as follows:

In elementary arithmetic, we have the symbols $\dot{<}$, $\dot{+}$, $\dot{\times}$, $\dot{0}$ and $\dot{1}$.

We represent a natural number *n* by

$$\underbrace{1 \dotplus \dots \dotplus 1}_{n \text{ times}} \dotplus 0$$

$$(\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})\dot{+}(\dot{1}\dot{+}\dot{0})\dot{=}(\dot{1}\dot{+}\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})$$

- We interpret the sentence "any non-zero natural number is the successor of some natural number" as follows:
 - $ightharpoonup \forall v_1[\text{if } v_1 \text{ is non-zero, then } v_1 \text{ is the successor of some number}]$

In elementary arithmetic, we have the symbols $\dot{<}$, $\dot{+}$, $\dot{\times}$, $\dot{0}$ and $\dot{1}$.

We represent a natural number *n* by

$$\underbrace{\dot{1} \dot{+} \dots \dot{+} \dot{1}}_{n \text{ times}} \dot{+} \dot{0}$$

$$(\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})\dot{+}(\dot{1}\dot{+}\dot{0})\dot{=}(\dot{1}\dot{+}\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})$$

- We interpret the sentence "any non-zero natural number is the successor of some natural number" as follows:
 - $ightharpoonup \forall v_1[\text{if } v_1 \text{ is non-zero, then } v_1 \text{ is the successor of some number}]$

In elementary arithmetic, we have the symbols $\dot{<}$, $\dot{+}$, $\dot{\times}$, $\dot{0}$ and $\dot{1}$.

We represent a natural number *n* by

$$\underbrace{1 + \ldots + 1}_{n \text{ times}} + 0$$

$$(\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})\dot{+}(\dot{1}\dot{+}\dot{0})\dot{=}(\dot{1}\dot{+}\dot{1}\dot{+}\dot{1}\dot{+}\dot{0})$$

- We interpret the sentence "any non-zero natural number is the successor of some natural number" as follows:
 - \lor $\forall v_1[\text{if } v_1 \text{ is non-zero, then } v_1 \text{ is the successor of some number}]$

Example: Mortality of Men

Assume the language $\mathbb L$ contains the following symbols:

- \triangleright \dot{P} : 1-ary predicate symbol for asserting whether a being is a man;
- \triangleright \dot{Q} : 1-ary predicate symbol for asserting whether a being is a mortal;

Example: Mortality of Men

Assume the language $\mathbb L$ contains the following symbols:

- \triangleright \dot{P} : 1-ary predicate symbol for asserting whether a being is a man;
- \triangleright \dot{Q} : 1-ary predicate symbol for asserting whether a being is a mortal;

Question

How to interpret the sentence "All men are mortal"?

Example: Mortality of Men

Assume the language $\mathbb L$ contains the following symbols:

- \triangleright \dot{P} : 1-ary predicate symbol for asserting whether a being is a man;
- \triangleright \dot{Q} : 1-ary predicate symbol for asserting whether a being is a mortal;

Question

How to interpret the sentence "All men are mortal"?

- $\triangleright \forall v_1 \text{ [if } v_1 \text{ is a man then } v_1 \text{ is mortal]};$
- $ightharpoonup \forall v_1 \ [v_1 \ \text{is a man}] \rightarrow [v_1 \ \text{is mortal}];$
- $\blacktriangleright \forall v_1 \ (\dot{P}v_1 \rightarrow \dot{Q}v_1).$

Summary of Syntax

We introduced the symbols of a first-order language \mathbb{L} , and definitions of:

- ► Terms
- ► Atomic Formulas
- ► Well-Formed Formulas (wffs)

What about Semantics of First-Order Logic?

Let $\mathbb L$ be a first-order language.

Let \mathbb{L} be a first-order language.

Definition

A structure \mathfrak{A} for \mathbb{L} consists of:

▶ a non-empty set called the universe (or domain) of the structure and usually written as $|\mathfrak{A}|$;

Let \mathbb{L} be a first-order language.

Definition

- ▶ a non-empty set called the universe (or domain) of the structure and usually written as $|\mathfrak{A}|$;
- ▶ for each *n*-ary predicate symbol P of \mathbb{L} , other than $\dot{=}$, an *n*-ary relation $P^{\mathfrak{A}}$ on $|\mathfrak{A}|$;

Let \mathbb{L} be a first-order language.

Definition

- ▶ a non-empty set called the universe (or domain) of the structure and usually written as $|\mathfrak{A}|$;
- ▶ for each *n*-ary predicate symbol P of \mathbb{L} , other than $\dot{=}$, an *n*-ary relation $P^{\mathfrak{A}}$ on $|\mathfrak{A}|$;
- $\stackrel{\stackrel{\cdot}{=}}{=} \stackrel{\mathfrak{A}}{\text{ is the identity relation on }} |\mathfrak{A}|, \text{ i.e.,} \\ \stackrel{\stackrel{\cdot}{=}}{=} \{(a,b) \mid a,b \in |\mathfrak{A}| \text{ and } a=b\};$

Let \mathbb{L} be a first-order language.

Definition

- ▶ a non-empty set called the universe (or domain) of the structure and usually written as $|\mathfrak{A}|$;
- ▶ for each *n*-ary predicate symbol P of \mathbb{L} , other than $\dot{=}$, an *n*-ary relation $P^{\mathfrak{A}}$ on $|\mathfrak{A}|$;
- $\stackrel{\dot{=}}{=}^{\mathfrak{A}} \text{ is the identity relation on } |\mathfrak{A}|, \text{ i.e.,}$ $\stackrel{\dot{=}}{=}^{\mathfrak{A}} = \{(a,b) \mid a,b \in |\mathfrak{A}| \text{ and } a = b\};$
- for each *n*-ary function symbol f of \mathbb{L} , an *n*-ary operation on the universe, i.e., an *n*-ary function $f^{\mathfrak{A}}: \underbrace{|\mathfrak{A}| \times \ldots \times |\mathfrak{A}|} \to |\mathfrak{A}|;$

Let \mathbb{L} be a first-order language.

Definition

- ▶ a non-empty set called the universe (or domain) of the structure and usually written as $|\mathfrak{A}|$;
- ▶ for each *n*-ary predicate symbol P of \mathbb{L} , other than $\dot{=}$, an *n*-ary relation $P^{\mathfrak{A}}$ on $|\mathfrak{A}|$;
- $\stackrel{\dot{=}}{=}^{\mathfrak{A}} \text{ is the identity relation on } |\mathfrak{A}|, \text{ i.e.,} \\ \stackrel{\dot{=}}{=}^{\mathfrak{A}} = \{(a,b) \mid a,b \in |\mathfrak{A}| \text{ and } a = b\};$
- ▶ for each *n*-ary function symbol f of \mathbb{L} , an *n*-ary operation on the universe, i.e., an *n*-ary function $f^{\mathfrak{A}}: [\underline{\mathfrak{A}| \times \ldots \times |\mathfrak{A}|} \to |\mathfrak{A}|;$
- ▶ for each constant symbol c of \mathbb{L} , $c^{\mathfrak{A}} \in |\mathfrak{A}|$.

Notation and Terminology

 \triangleright \mathfrak{A} , \mathfrak{B} , \mathfrak{C} , \mathfrak{M} , \mathfrak{N} , \mathfrak{Q} , \mathfrak{R} and \mathfrak{Z} , are the usual names we will use for structures. These are the *fraktur* (Gothic) fonts.

Notation and Terminology

- ▶ \mathfrak{A} , \mathfrak{B} , \mathfrak{C} , \mathfrak{M} , \mathfrak{N} , \mathfrak{Q} , \mathfrak{R} and \mathfrak{Z} , are the usual names we will use for structures. These are the *fraktur* (Gothic) fonts.
- ▶ What $P^{\mathfrak{A}}$ (where $P \neq \dot{=}$) is changes with the structure, but $\dot{=}^{\mathfrak{A}}$ is always the identity relation on $|\mathfrak{A}|$.

Notation and Terminology

- ▶ \mathfrak{A} , \mathfrak{B} , \mathfrak{C} , \mathfrak{M} , \mathfrak{N} , \mathfrak{Q} , \mathfrak{R} and \mathfrak{Z} , are the usual names we will use for structures. These are the *fraktur* (Gothic) fonts.
- ▶ What $P^{\mathfrak{A}}$ (where $P \neq \dot{=}$) is changes with the structure, but $\dot{=}^{\mathfrak{A}}$ is always the identity relation on $|\mathfrak{A}|$.
- ▶ We say P denotes (or stands for) $P^{\mathfrak{A}}$ in the structure \mathfrak{A} . Similar terminology is used for function symbols and constant symbols.

Example

Let \mathbb{L} be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- \(\display \) (a 2-ary predicate symbol);
- ▶ 0 and 1 (constant symbols), and
- **▶** =

Let $\mathbb L$ be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- ▶ 0 and 1 (constant symbols), and
- **▶** =.

Let $\mathbb L$ be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- \(\display \) (a 2-ary predicate symbol);
- ▶ 0 and 1 (constant symbols), and
- **>** =

Let \mathfrak{N}_1 be the structure for \mathbb{L} such that:

 $\blacktriangleright |\mathfrak{N}_1| = \mathbb{N};$

Let $\ensuremath{\mathbb{L}}$ be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- ▶ 0 and 1 (constant symbols), and
- **▶** =.

- $\blacktriangleright |\mathfrak{N}_1| = \mathbb{N};$
- $\dot{+}^{\mathfrak{N}_1} = +$ (the addition function on \mathbb{N});

Let $\ensuremath{\mathbb{L}}$ be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- ▶ 0 and 1 (constant symbols), and
- **>** =

- $\blacktriangleright |\mathfrak{N}_1| = \mathbb{N};$
- $\dot{+}^{\mathfrak{N}_1} = +$ (the addition function on \mathbb{N});
- $\dot{\mathbf{x}}^{\mathfrak{N}_1} = \mathbf{x}$ (the multiplication function on \mathbb{N});

Let $\ensuremath{\mathbb{L}}$ be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- \(\display \) (a 2-ary predicate symbol);
- ▶ 0 and 1 (constant symbols), and
- **>** =

- $\blacktriangleright |\mathfrak{N}_1| = \mathbb{N};$
- $\dot{+}^{\mathfrak{N}_1} = + \text{(the addition function on } \mathbb{N}\text{)};$
- $\dot{\mathbf{x}}^{\mathfrak{N}_1} = \mathbf{x}$ (the multiplication function on \mathbb{N});
- $ightharpoonup \dot{\mathfrak{I}}^{\mathfrak{N}_1} = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a < b\};$

Let $\ensuremath{\mathbb{L}}$ be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- \(\display \) (a 2-ary predicate symbol);
- ▶ 0 and 1 (constant symbols), and
- **>** =

- $\blacktriangleright |\mathfrak{N}_1| = \mathbb{N};$
- $\dot{+}^{\mathfrak{N}_1} = +$ (the addition function on \mathbb{N});
- $\triangleright \dot{x}^{\mathfrak{N}_1} = \times \text{(the multiplication function on } \mathbb{N}\text{)};$
- $ightharpoonup \dot{\mathfrak{I}}^{\mathfrak{N}_1} = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a < b\};$
- $ightharpoonup \dot{0}^{\mathfrak{N}_1} = 0;$

Let $\ensuremath{\mathbb{L}}$ be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- \(\display \) (a 2-ary predicate symbol);
- ▶ 0 and 1 (constant symbols), and
- **>** =

- $\blacktriangleright |\mathfrak{N}_1| = \mathbb{N};$
- $\dot{}$ $\dot{}$
- $\triangleright \dot{x}^{\mathfrak{N}_1} = \times \text{(the multiplication function on } \mathbb{N}\text{)};$
- $ightharpoonup \dot{\mathfrak{N}}_1 = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a < b\};$
- $ightharpoonup \dot{0}^{\mathfrak{N}_1} = 0;$
- $ightharpoonup 1^{\mathfrak{N}_1} = 1.$

Let $\mathbb L$ be the first-order language that has:

- \blacktriangleright \dotplus and $\dot{\times}$ (2-ary function symbols);
- \(\display \) (a 2-ary predicate symbol);
- ▶ 0 and 1 (constant symbols), and
- **>** =

Let \mathfrak{N}_1 be the structure for \mathbb{L} such that:

- $\blacktriangleright |\mathfrak{N}_1| = \mathbb{N};$
- $\dot{+}^{\mathfrak{N}_1} = +$ (the addition function on \mathbb{N});
- $\triangleright \dot{x}^{\mathfrak{N}_1} = \times \text{(the multiplication function on } \mathbb{N}\text{)};$
- $ightharpoonup \dot{\mathfrak{I}}^{\mathfrak{N}_1} = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a < b\};$
- $ightharpoonup \dot{0}^{\mathfrak{N}_{1}}=0;$
- $\mathbf{i}^{\mathfrak{N}_1} = 1.$

We can describe this structure simply as $\mathfrak{N}_1 = \{\mathbb{N}, +, \times, 0, 1\}$.

$$ightharpoonup |\mathfrak{N}_2| = \mathbb{N};$$

- $ightharpoonup |\mathfrak{N}_2| = \mathbb{N};$
- $ightharpoonup \dot{+}^{\mathfrak{N}_2} = \times;$

- $\blacktriangleright |\mathfrak{N}_2| = \mathbb{N};$
- $\rightarrow \dot{+}^{\mathfrak{N}_2} = \times;$
- $\triangleright \dot{\times}^{\mathfrak{N}_2} = +;$

- $\blacktriangleright |\mathfrak{N}_2| = \mathbb{N};$
- $\dot{+}^{\mathfrak{N}_2} = \times;$
- $\dot{\times}^{\mathfrak{N}_2} = +$:
- $ightharpoonup \dot{\mathfrak{I}}^{\mathfrak{N}_2} = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a > b\};$

- $\blacktriangleright |\mathfrak{N}_2| = \mathbb{N};$
- $\dot{+}^{\mathfrak{N}_2} = \times$:
- $\dot{\times}^{\mathfrak{N}_2} = +$:
- $ightharpoonup \dot{\mathfrak{I}}^{\mathfrak{N}_2} = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a > b\};$
- $ightharpoonup \dot{0}^{\mathfrak{N}_2} = 1;$

- $\blacktriangleright |\mathfrak{N}_2| = \mathbb{N};$
- $\dot{+}^{\mathfrak{N}_2} = \times;$
- $\dot{\times}^{\mathfrak{N}_2} = +:$
- $ightharpoonup \dot{\mathfrak{I}}^{\mathfrak{N}_2} = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } a > b\};$
- $ightharpoonup \dot{0}^{\mathfrak{N}_2} = 1;$
- $i_{\mathfrak{n}_2} = 0.$

Let $\mathfrak R$ be the structure for the same language:

 $ightharpoonup |\mathfrak{R}| = \mathbb{R};$

- $ightharpoonup |\mathfrak{R}| = \mathbb{R};$
- $ightharpoonup \dot{\dagger}^{\mathfrak{R}} = +(addition on the real numbers);$

- $ightharpoonup |\mathfrak{R}| = \mathbb{R};$
- $ightharpoonup \dot{+}^{\mathfrak{R}} = +(addition on the real numbers);$
- $\dot{\times}^{\mathfrak{R}} = \times (\text{multiplication on the real numbers});$

- $ightharpoonup |\mathfrak{R}| = \mathbb{R};$
- $ightharpoonup \dot{+}^{\mathfrak{R}} = +(addition on the real numbers);$
- $\triangleright \dot{x}^{\mathfrak{R}} = \times (\text{multiplication on the real numbers});$
- $\triangleright \dot{<}^{\mathfrak{R}} = <$ (on the real numbers);

- $ightharpoonup |\mathfrak{R}| = \mathbb{R};$
- $ightharpoonup \dot{+}^{\mathfrak{R}} = +(addition on the real numbers);$
- $\triangleright \dot{x}^{\mathfrak{R}} = \times (\text{multiplication on the real numbers});$
- $\triangleright \dot{<}^{\mathfrak{R}} = <$ (on the real numbers);
- $ightharpoonup \dot{0}^{\mathfrak{R}}=0;$

- $ightharpoonup |\mathfrak{R}| = \mathbb{R};$
- $ightharpoonup \dot{+}^{\mathfrak{R}} = +(addition on the real numbers);$
- $\dot{\times}^{\mathfrak{R}} = \times (\text{multiplication on the real numbers});$
- $\triangleright \dot{<}^{\mathfrak{R}} = <$ (on the real numbers);
- $ightharpoonup \dot{0}^{\mathfrak{R}} = 0;$
- ightharpoonup $\dot{1}^{\mathfrak{R}}=1.$

An Example of a Very Big Language

Let \mathbb{L} have

- ightharpoonup \doteq , and
- ▶ for each $r \in \mathbb{R}$ a constant symbol c_r .

An Example of a Very Big Language

Let \mathbb{L} have

- $\triangleright \doteq$, and
- ▶ for each $r \in \mathbb{R}$ a constant symbol c_r .

This language has uncountably many constant symbols.

An Example of a Very Big Language

Let I, have

- ▶ ≐, and
- ▶ for each $r \in \mathbb{R}$ a constant symbol c_r .

This language has uncountably many constant symbols.

A structure for this language is \Re , where

- $ightharpoonup |\mathfrak{R}| = \mathbb{R}$, and
- $ightharpoonup c_r^{\mathfrak{R}} = r \text{ for every } r \in \mathbb{R}.$

Special Status of *≐*

We have been very careful in distinguishing between things in the language $\mathbb L$ and things outside of $\mathbb L$.

Special Status of *≐*

We have been very careful in distinguishing between things in the language $\mathbb L$ and things outside of $\mathbb L$.

For example, \doteq is a symbol in the language, while = is not.

Special Status of \doteq

We have been very careful in distinguishing between things in the language $\mathbb L$ and things outside of $\mathbb L$.

For example, \doteq is a symbol in the language, while = is not.

Question

Why does Enderton no distinguish between the two?

Let \mathbb{L} be the first-order language that (in addition to the symbols required in every first-order language) only has a 2-ary predicate symbol \dot{E} .

Let \mathbb{L} be the first-order language that (in addition to the symbols required in every first-order language) only has a 2-ary predicate symbol \dot{E} .

Let $\mathfrak B$ be the structure for $\mathbb L$ such that:

- ▶ $|\mathfrak{B}| = \{a, b, c, d\};$
- $\blacktriangleright \dot{E}^{\mathfrak{B}} = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, c \rangle\}.$

This denotes a directed graph (See Enderton, page 82)

Let \mathbb{L} be the first-order language that (in addition to the symbols required in every first-order language) only has a 2-ary predicate symbol \dot{E} .

Let \mathfrak{B} be the structure for \mathbb{L} such that:

- ▶ $|\mathfrak{B}| = \{a, b, c, d\};$
- $\blacktriangleright \dot{E}^{\mathfrak{B}} = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, c \rangle\}.$

This denotes a directed graph (See Enderton, page 82)

Example

The wff $\exists x \forall y, \neg \dot{E} yx$ denotes

There is a vertex x such that for any vertex y, no edge points from y to x.

Let \mathbb{L} be the first-order language that (in addition to the symbols required in every first-order language) only has a 2-ary predicate symbol \dot{E} .

Let $\mathfrak B$ be the structure for $\mathbb L$ such that:

- ▶ $|\mathfrak{B}| = \{a, b, c, d\};$
- $\qquad \qquad \dot{E}^{\mathfrak{B}} = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, c \rangle\}.$

This denotes a directed graph (See Enderton, page 82)

Example

The wff $\exists x \forall y, \neg \dot{E} yx$ denotes

There is a vertex x such that for any vertex y, no edge points from y to x.

Question

How do we show define $\exists x \forall y, \neg \dot{E} yx$ is true in \mathfrak{B} ?

Given a formula φ and a structure $\mathfrak A$, how do we define " φ is true in $\mathfrak A$ ", Or equally speaking, " $\mathfrak A$ satisfies φ "?

Assignment of Values to Terms

Let $\mathfrak A$ be a structure for the language $\mathbb L$. Let V be the set of variables, and T be the set of terms of $\mathbb L$.

Definition (Assignment Functions)

An assignment for \mathfrak{A} is a function $s: V \to |\mathfrak{A}|$.

Assignment of Values to Terms

Let $\mathfrak A$ be a structure for the language $\mathbb L$. Let V be the set of variables, and T be the set of terms of $\mathbb L$.

Definition (Assignment Functions)

An assignment for $\mathfrak A$ is a function $s:V\to |\mathfrak A|$.

Definition (Assignment to Terms)

An assignment $s:V\to |\mathfrak{A}|$ is extended to a function $\bar{s}:T\to |\mathfrak{A}|$ as follows:

- $ightharpoonup \overline{s}(v) = s(v)$ if v is a variable;
- $ightharpoonup \overline{s}(c) = c^{\mathfrak{A}}$ if c is a constant symbol;
- $ightharpoonup \overline{s}(ft_1 \dots t_n) = f^{\mathfrak{A}}(\overline{s}(t_1), \dots, \overline{s}(t_n))$ if f is an n-ary function symbol and t_1, \dots, t_n are terms.

Look the language \mathbb{L} of the earlier example. Let s be an assignment function for the structure \mathfrak{N}_1 such that $s(v_3) = 5$. Then

Look the language $\mathbb L$ of the earlier example. Let s be an assignment function for the structure $\mathfrak N_1$ such that $s(v_3)=5$. Then

$$ightharpoonup \overline{s}(\dot{+}\dot{\times}\dot{0}v_3\dot{1}) =$$

Look the language $\mathbb L$ of the earlier example. Let s be an assignment function for the structure $\mathfrak N_1$ such that $s(v_3)=5$. Then

$$ightharpoonup \overline{s}(\dot{+}\dot{\times}\dot{0}v_3\dot{1})=1$$

Look the language \mathbb{L} of the earlier example. Let s be an assignment function for the structure \mathfrak{N}_1 such that $s(v_3)=5$. Then

- $ightharpoonup \overline{s}(\dot{+}\dot{\times}\dot{0}v_3\dot{1})=1$
- $ightharpoonup \overline{s}(\dot{+}\dot{\times}\dot{1}\dot{1}v_3) =$

Look the language \mathbb{L} of the earlier example. Let s be an assignment function for the structure \mathfrak{N}_1 such that $s(v_3)=5$. Then

- $ightharpoonup \overline{s}(\dot{+}\dot{\times}\dot{0}v_3\dot{1})=1$
- $ightharpoonup \overline{s}(\dot{+}\dot{\times}\dot{1}\dot{1}v_3)=6$

Changing the Assignment Function

Let:

- ▶ s be an assignment function,
- x be a variable, and
- ightharpoonup $a \in |\mathfrak{A}|$.

s(x|a) is the new assignment, where for every variable y,

$$s(x|a)(y) = \begin{cases} s(y) & \text{if } y \neq x \\ a & \text{if } y = x \end{cases}$$

$$ightharpoonup s(x|a)(y|b)(x) =$$

$$ightharpoonup s(x|a)(y|b)(x) = a$$

- ightharpoonup s(x|a)(y|b)(x) = a
- ightharpoonup s(x|a)(y|b)(y) =

- ightharpoonup s(x|a)(y|b)(x) = a
- ightharpoonup s(x|a)(y|b)(y) = b

- ightharpoonup s(x|a)(y|b)(x) = a
- ightharpoonup s(x|a)(y|b)(y) = b
- \triangleright s(x|a)(x|b)(x) =

- ightharpoonup s(x|a)(y|b)(x) = a
- ightharpoonup s(x|a)(y|b)(y) = b
- ightharpoonup s(x|a)(x|b)(x) = b

Satisfaction in First-Order Logic

Given a first-order language \mathbb{L} :

- \triangleright let \mathfrak{A} be a structure for \mathbb{L} ,
- \triangleright let s be an assignment for \mathfrak{A} , and
- ightharpoonup let φ be a wff in \mathbb{L} .

We shall talk about what it means for $\mathfrak A$ to satisfy φ with s, written as

$$\models_{\mathfrak{A}} \varphi[s]$$

Satisfaction in First-Order Logic

Given a first-order language L:

- \triangleright let \mathfrak{A} be a structure for \mathbb{L} ,
- \triangleright let s be an assignment for \mathfrak{A} , and
- ightharpoonup let φ be a wff in \mathbb{L} .

We shall talk about what it means for $\mathfrak A$ to satisfy φ with s, written as

$$\models_{\mathfrak{A}} \varphi[s]$$

Informally, it means:

The translation of φ determined by \mathfrak{A} , where a variable x is translated as s(x), is true.

Satisfaction for Atomic Formula

Definition

Let:

- \triangleright \mathfrak{A} be a structure for \mathbb{L} .
- \triangleright s be an assignment for \mathfrak{A} , and
- $ightharpoonup Pt_1 \dots t_n$ be an atomic wff.

Then

Satisfaction for Atomic Formula

Definition

Let:

- \triangleright \mathfrak{A} be a structure for \mathbb{L} .
- \triangleright s be an assignment for \mathfrak{A} , and
- $ightharpoonup Pt_1 \dots t_n$ be an atomic wff.

Then

ightharpoonup $\models_{\mathfrak{A}} Pt_1 \dots t_n[s] \text{ iff } (\overline{s}(t_1), \dots, \overline{s}(t_n)) \in P^{\mathfrak{A}} \text{ (when } P \neq \dot{=});$

Satisfaction for Atomic Formula

Definition

Let:

- \triangleright \mathfrak{A} be a structure for \mathbb{L} .
- \triangleright s be an assignment for \mathfrak{A} , and
- $ightharpoonup Pt_1 \dots t_n$ be an atomic wff.

Then

- $ightharpoonup \models_{\mathfrak{A}} Pt_1 \dots t_n[s] \text{ iff } (\overline{s}(t_1), \dots, \overline{s}(t_n)) \in P^{\mathfrak{A}} \text{ (when } P \neq \dot{=});$
- ightharpoonup $\models_{\mathfrak{A}} \dot{=} t_1 t_2[s]$ iff $\overline{s}(t_1) = \overline{s}(t_2)$.

Definition

For an atomic formula, we have already given its definition;

- For an atomic formula, we have already given its definition;
- ▶ Suppose $\vDash_{\mathfrak{A}} \alpha[s]$ and $\vDash_{\mathfrak{A}} \beta[s]$ have been defined. Then

- For an atomic formula, we have already given its definition;
- ▶ Suppose $\vDash_{\mathfrak{A}} \alpha[s]$ and $\vDash_{\mathfrak{A}} \beta[s]$ have been defined. Then
 - $\blacktriangleright \models_{\mathfrak{A}} \neg \alpha[s] \text{ iff not } \models_{\mathfrak{A}} \alpha[s];$

- For an atomic formula, we have already given its definition;
- ▶ Suppose $\vDash_{\mathfrak{A}} \alpha[s]$ and $\vDash_{\mathfrak{A}} \beta[s]$ have been defined. Then
 - $\blacktriangleright \models_{\mathfrak{A}} \neg \alpha[s] \text{ iff not } \models_{\mathfrak{A}} \alpha[s];$
 - $\blacktriangleright \models_{\mathfrak{A}} \alpha \to \beta[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \Longrightarrow \models_{\mathfrak{A}} \beta[s];$

- For an atomic formula, we have already given its definition;
- ▶ Suppose $\vDash_{\mathfrak{A}} \alpha[s]$ and $\vDash_{\mathfrak{A}} \beta[s]$ have been defined. Then
 - $\blacktriangleright \models_{\mathfrak{A}} \neg \alpha[s] \text{ iff not } \models_{\mathfrak{A}} \alpha[s];$
 - $\blacktriangleright \models_{\mathfrak{A}} \alpha \to \beta[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \Longrightarrow \models_{\mathfrak{A}} \beta[s];$
 - $\blacktriangleright_{\mathfrak{A}} \ \forall x \ \alpha[s] \ \text{iff} \ \forall a \in |\mathfrak{A}|, \vdash_{\mathfrak{A}} \alpha[s(x|a)].$

Definition

- For an atomic formula, we have already given its definition;
- ▶ Suppose $\vDash_{\mathfrak{A}} \alpha[s]$ and $\vDash_{\mathfrak{A}} \beta[s]$ have been defined. Then
 - $\blacktriangleright \models_{\mathfrak{A}} \neg \alpha[s] \text{ iff not } \models_{\mathfrak{A}} \alpha[s];$
 - $\blacktriangleright \models_{\mathfrak{A}} \alpha \to \beta[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \Longrightarrow \models_{\mathfrak{A}} \beta[s];$
 - $\blacktriangleright_{\mathfrak{A}} \ \forall x \ \alpha[s] \ \text{iff} \ \forall a \in |\mathfrak{A}|, \models_{\mathfrak{A}} \alpha[s(x|a)].$

If $\models_{\mathfrak{A}} \varphi[s]$, we say

- \triangleright \mathfrak{A} satisfies φ with s, or
- \triangleright s satisfies φ in the structure \mathfrak{A} .

Let $\mathfrak{N}=\big(\mathbb{N},<,+,\times,0,1\big).$ This is our abbreviated way of saying:

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$. This is our abbreviated way of saying:

▶ \mathbb{L} has a binary predicate symbol $\dot{<}$, 2-ary function symbols $\dot{+}$ and $\dot{\times}$, constant symbols $\dot{0}$ and $\dot{1}$, but no other predicate symbols (except for $\dot{=}$), functions symbols or constant symbols;

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$. This is our abbreviated way of saying:

- ightharpoonup has a binary predicate symbol $\dot{<}$, 2-ary function symbols $\dot{+}$ and $\dot{\times}$, constant symbols 0 and 1, but no other predicate symbols (except for \doteq), functions symbols or constant symbols;
- \triangleright \mathfrak{N} is the structure for \mathbb{L} :
 - ▶ whose universe is N;

 - \triangleright $\dot{0}^{\mathfrak{N}} = 0$ and $\dot{1}^{\mathfrak{N}} = 1$

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$. This is our abbreviated way of saying:

- ightharpoonup has a binary predicate symbol $\dot{\lt}$, 2-ary function symbols $\dot{+}$ and $\dot{\times}$, constant symbols 0 and 1, but no other predicate symbols (except for \doteq), functions symbols or constant symbols;
- \triangleright \mathfrak{N} is the structure for \mathbb{L} :
 - ▶ whose universe is N;

 - > < n =<; > + n = +;
 - $\rightarrow x^{\mathfrak{N}} = x$
 - \triangleright $\dot{0}^{\mathfrak{N}} = 0$ and $\dot{1}^{\mathfrak{N}} = 1$

Similarly, let $\mathfrak{Z} = (\mathbb{Z}, <, +, \times, 0, 1)$. Note both \mathfrak{N} and \mathfrak{Z} are structures for the same language \mathbb{L} .

Example (Cont'd)

Question

Let φ be the wff

$$\forall x(\neg x \dot{<} \dot{0})$$

Which of the following judgments holds?

- ▶ For every $s: V \to \mathbb{N}$, $\vDash_{\mathfrak{N}} \varphi[s]$;
- ▶ For every $s: V \to \mathbb{N}$, $\vDash_3 \varphi[s]$.

More Examples

Let
$$\mathfrak{R} = (\mathbb{R}, <, +, \times, 0, 1)$$
.

Question

Let φ be the wff

$$\forall x \forall y (x \dot{<} y \rightarrow \exists z \ x \dot{<} z \land z \dot{<} y)$$

Then which of the following is true?

- ▶ For every $s: V \to \mathbb{Z}$, $\vDash_{\mathfrak{Z}} \varphi[s]$
- ▶ For every $s: V \to \mathbb{R}$, $\models_{\mathfrak{R}} \varphi[s]$

Recall the following abbreviations:

• $(\alpha \vee \beta)$ abbreviates $((\neg \alpha) \rightarrow \beta)$;

Recall the following abbreviations:

- \blacktriangleright $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- $(\alpha \wedge \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;

Recall the following abbreviations:

- \blacktriangleright $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- \blacktriangleright $(\alpha \land \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;

Recall the following abbreviations:

- $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- \blacktriangleright $(\alpha \land \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- $ightharpoonup \exists x \alpha \text{ abbreviates } (\neg \forall x (\neg \alpha));$

Recall the following abbreviations:

- \blacktriangleright $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- \blacktriangleright $(\alpha \land \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;

For every structure $\mathfrak A$ and every $s:V\to |\mathfrak A|$, show the following:

Recall the following abbreviations:

- \blacktriangleright $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- \blacktriangleright $(\alpha \land \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;

For every structure $\mathfrak A$ and every $s:V\to |\mathfrak A|$, show the following:

 $\blacktriangleright \models_{\mathfrak{A}} (\alpha \vee \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ or } \models_{\mathfrak{A}} \beta[s];$

Recall the following abbreviations:

- $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- \blacktriangleright $(\alpha \land \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;

For every structure $\mathfrak A$ and every $s:V\to |\mathfrak A|$, show the following:

- $\blacktriangleright \models_{\mathfrak{A}} (\alpha \vee \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ or } \models_{\mathfrak{A}} \beta[s];$
- $\blacktriangleright \models_{\mathfrak{A}} (\alpha \wedge \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ and } \models_{\mathfrak{A}} \beta[s];$

Soundness of Abbreviations

Recall the following abbreviations:

- \blacktriangleright $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- \blacktriangleright $(\alpha \land \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;

For every structure $\mathfrak A$ and every $s:V\to |\mathfrak A|$, show the following:

- $\blacktriangleright \models_{\mathfrak{A}} (\alpha \vee \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ or } \models_{\mathfrak{A}} \beta[s];$
- $\blacktriangleright \models_{\mathfrak{A}} (\alpha \wedge \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ and } \models_{\mathfrak{A}} \beta[s];$
- $\blacktriangleright \models_{\mathfrak{A}} (\alpha \leftrightarrow \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \Longleftrightarrow \models_{\mathfrak{A}} \beta[s];$

Soundness of Abbreviations

Recall the following abbreviations:

- \blacktriangleright $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- \blacktriangleright $(\alpha \land \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$;

For every structure $\mathfrak A$ and every $s:V\to |\mathfrak A|$, show the following:

- $\blacktriangleright \models_{\mathfrak{A}} (\alpha \vee \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ or } \models_{\mathfrak{A}} \beta[s];$
- $\blacktriangleright \models_{\mathfrak{A}} (\alpha \wedge \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ and } \models_{\mathfrak{A}} \beta[s];$
- $\blacktriangleright \models_{\mathfrak{A}} (\alpha \leftrightarrow \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \Longleftrightarrow \models_{\mathfrak{A}} \beta[s];$
- ightharpoonup $\models_{\mathfrak{A}} \exists x \alpha[s] \text{ iff } \exists a \in |\mathfrak{A}|, \models_{\mathfrak{A}} \alpha[s(x|a)]$

Example: Directed Graph

Let \mathbb{L} be the first-order language that (in addition to the symbols required in every first-order language) only has a 2-ary predicate symbol \dot{E} .

Let $\mathfrak B$ be the structure for $\mathbb L$ such that:

- ▶ $|\mathfrak{B}| = \{a, b, c, d\};$
- $\qquad \qquad \dot{\mathcal{E}}^{\mathfrak{B}} = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, c \rangle\}.$

Example: Directed Graph

Let \mathbb{L} be the first-order language that (in addition to the symbols required in every first-order language) only has a 2-ary predicate symbol \dot{E} .

Let $\mathfrak B$ be the structure for $\mathbb L$ such that:

- ▶ $|\mathfrak{B}| = \{a, b, c, d\};$
- $\blacktriangleright \ \dot{E}^{\mathfrak{B}} = \{\langle a,b\rangle, \langle b,a\rangle, \langle b,c\rangle, \langle c,c\rangle\}.$

Question

Let $\sigma = \exists x \forall y, \neg \dot{E} y x$. For every assignment $s: V \to |\mathfrak{B}|$, does $\models_{\mathfrak{B}} \sigma[s]$ hold?

Let

- $ightharpoonup \varphi_1$ be $\forall x(\neg x \dot{<} y)$, and
- $ightharpoonup \varphi_2$ be $\forall x(\neg x \dot{<} \dot{0})$.

Then

Let

- $ightharpoonup \varphi_1$ be $\forall x(\neg x \dot{<} y)$, and
- $ightharpoonup \varphi_2$ be $\forall x(\neg x \dot{<} \dot{0})$.

Then

(1) $\vDash_{\mathfrak{N}} \varphi_1[s]$ iff

Let

- $ightharpoonup \varphi_1$ be $\forall x(\neg x \dot{<} y)$, and
- $ightharpoonup \varphi_2$ be $\forall x(\neg x \dot{<} \dot{0})$.

Then

(1) $\vDash_{\mathfrak{N}} \varphi_1[s]$ iff $\forall a \in \mathbb{N}, s(y) \leq a$;

Let

- $ightharpoonup \varphi_1$ be $\forall x(\neg x \dot{<} y)$, and
- $ightharpoonup \varphi_2$ be $\forall x(\neg x \dot{<} \dot{0})$.

Then

- (1) $\vDash_{\mathfrak{N}} \varphi_1[s]$ iff $\forall a \in \mathbb{N}, s(y) \leq a$;
- (2) $\vDash_{\mathfrak{N}} \varphi_2[s]$ iff

Let

- $ightharpoonup \varphi_1$ be $\forall x(\neg x \dot{<} y)$, and
- $ightharpoonup \varphi_2$ be $\forall x(\neg x \dot{<} \dot{0})$.

Then

- (1) $\vDash_{\mathfrak{N}} \varphi_1[s]$ iff $\forall a \in \mathbb{N}, s(y) \leq a$;
- (2) $\vDash_{\mathfrak{N}} \varphi_2[s]$ iff $\forall a \in \mathbb{N}, 0 \leq a$;

Let

- $ightharpoonup \varphi_1$ be $\forall x(\neg x \dot{<} y)$, and
- $ightharpoonup \varphi_2$ be $\forall x(\neg x \dot{<} \dot{0})$.

Then

- (1) $\vDash_{\mathfrak{N}} \varphi_1[s]$ iff $\forall a \in \mathbb{N}, s(y) \leq a$;
- (2) $\vDash_{\mathfrak{N}} \varphi_2[s]$ iff $\forall a \in \mathbb{N}, 0 \leq a$;

Note that

- ▶ (1) is true iff s(y) = 0, so whether it is true or not depend on s, whereas
- \triangleright (2) is true for all s.

Let

- $ightharpoonup \varphi_1$ be $\forall x(\neg x \dot{<} y)$, and
- $ightharpoonup \varphi_2$ be $\forall x(\neg x \dot{<} \dot{0})$.

Then

- (1) $\vDash_{\mathfrak{N}} \varphi_1[s]$ iff $\forall a \in \mathbb{N}, s(y) \leq a$;
- (2) $\vDash_{\mathfrak{N}} \varphi_2[s]$ iff $\forall a \in \mathbb{N}, 0 \leq a$;

Note that

- ▶ (1) is true iff s(y) = 0, so whether it is true or not depend on s, whereas
- \triangleright (2) is true for all s.

What is the difference between φ_1 and φ_2 account for this?

Let's go back to talk about an important syntactic concept: Free Occurrences of Variables

Definition

▶ The variable x occurs free in an atomic wff φ iff it occurs in φ ;

Definition

- ▶ The variable x occurs free in an atomic wff φ iff it occurs in φ ;
- \triangleright x occurs free in $\neg \alpha$ iff x occurs free in α ;

Definition

- ▶ The variable x occurs free in an atomic wff φ iff it occurs in φ ;
- \triangleright x occurs free in $\neg \alpha$ iff x occurs free in α ;
- ightharpoonup x occurs free in $\alpha \to \beta$ iff x occurs free in α or in β ;

Definition

- ▶ The variable x occurs free in an atomic wff φ iff it occurs in φ ;
- \triangleright x occurs free in $\neg \alpha$ iff x occurs free in α ;
- \blacktriangleright x occurs free in $\alpha \rightarrow \beta$ iff x occurs free in α or in β ;
- ightharpoonup x occurs free in $\forall y \ \alpha$ iff x occurs free in α and $x \neq y$.

Sentences

Definition (Sentences)

 φ is a sentence iff no variable occurs free in φ .

Sentences

Definition (Sentences)

 φ is a sentence iff no variable occurs free in φ .

Remark

We often use σ or τ to stand for sentences.

Question

Question

Which variables occur free in the following?

Question

Which variables occur free in the following?

None, so this is a sentence.

Question

- **▶** 0ं<1
 - None, so this is a sentence.
- $ightharpoonup \forall x(\neg x \dot{<} y)$

Question

- 0<1None, so this is a sentence.
- $\forall x(\neg x \dot{<} y)$ y occurs free, but x does not.

Question

- $\dot{0} < \dot{1}$ None, so this is a sentence.
- $\forall x (\neg x \dot{<} y)$ y occurs free, but x does not.
- $\rightarrow \forall x(\neg x \dot{<} \dot{0})$

Question

- 0<1None, so this is a sentence.
- $\forall x (\neg x \dot{<} y)$ y occurs free, but x does not.
- ▶ $\forall x(\neg x \dot{<} \dot{0})$ No variable occurs free, so this is a sentence.

Question

- $\dot{0} < \dot{1}$ None, so this is a sentence.
- $\forall x (\neg x \dot{<} y)$ y occurs free, but x does not.
- ▶ $\forall x(\neg x \dot{<} \dot{0})$ No variable occurs free, so this is a sentence.
- $\forall x \forall y (x \dot{<} y \rightarrow \exists z \ x \dot{<} z \land z \dot{<} y)$

Question

- $\dot{0} < \dot{1}$ None, so this is a sentence.
- $\forall x (\neg x \dot{<} y)$ y occurs free, but x does not.
- ▶ $\forall x(\neg x \dot{<} \dot{0})$ No variable occurs free, so this is a sentence.
- $\forall x \forall y (x \dot{<} y \rightarrow \exists z \ x \dot{<} z \land z \dot{<} y)$ None, so this is a sentence.

How do free occurrences of variables affect satisfiability?

Satisfaction Depends Only on Variables that Occur Free

Theorem

Let $\mathfrak A$ be a structure for $\mathbb L$, s_1 and s_2 be two assignment for $\mathfrak A$ and φ be a wff of $\mathbb L$.

If $s_1(x) = s_2(x)$ for every x that occurs free in φ , then

$$\models_{\mathfrak{A}} \varphi[s_1] \iff \models_{\mathfrak{A}} \varphi[s_2]$$

Satisfaction Depends Only on Variables that Occur Free

Theorem

Let $\mathfrak A$ be a structure for $\mathbb L$, s_1 and s_2 be two assignment for $\mathfrak A$ and φ be a wff of $\mathbb L$.

If $s_1(x) = s_2(x)$ for every x that occurs free in φ , then

$$\models_{\mathfrak{A}} \varphi[s_1] \iff \models_{\mathfrak{A}} \varphi[s_2]$$

Lemma

Let $\mathfrak A$ be a structure for $\mathbb L$, s_1 and s_2 be two assignment for $\mathfrak A$ and t be a term of $\mathbb L$.

If $s_1(x) = s_2(x)$ for every x that occurs in t, then

$$\overline{s_1}(t) = \overline{s_2}(t)$$

Definition

Let φ be a wff such that all variables occurring free in φ are included among v_1, \ldots, v_k . Given $a_1, \ldots, a_k \in |\mathfrak{A}|$,

$$\models_{\mathfrak{A}} \varphi \llbracket a_1, \ldots, a_k \rrbracket$$

means $\vDash_{\mathfrak{A}} \varphi[s]$ for some $s: V \to |\mathfrak{A}|$ such that $s(v_i) = a_i (1 \le i \le k)$.

Definition

Let φ be a wff such that all variables occurring free in φ are included among v_1, \ldots, v_k . Given $a_1, \ldots, a_k \in |\mathfrak{A}|$,

$$\models_{\mathfrak{A}} \varphi \llbracket a_1, \ldots, a_k \rrbracket$$

means $\vDash_{\mathfrak{A}} \varphi[s]$ for some $s: V \to |\mathfrak{A}|$ such that $s(v_i) = a_i (1 \le i \le k)$.

Example

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$. We have

Definition

Let φ be a wff such that all variables occurring free in φ are included among v_1,\ldots,v_k . Given $a_1,\ldots,a_k\in |\mathfrak{A}|$,

$$\models_{\mathfrak{A}} \varphi \llbracket a_1, \ldots, a_k \rrbracket$$

means $\vDash_{\mathfrak{A}} \varphi[s]$ for some $s: V \to |\mathfrak{A}|$ such that $s(v_i) = a_i (1 \le i \le k)$.

Example

Let
$$\mathfrak{N}=(\mathbb{N},<,+,\times,0,1)$$
. We have $\models_{\mathfrak{N}} \forall v_2, (\neg v_2 \dot{<} v_1)[0];$

Definition

Let φ be a wff such that all variables occurring free in φ are included among v_1, \ldots, v_k . Given $a_1, \ldots, a_k \in |\mathfrak{A}|$,

$$\models_{\mathfrak{A}} \varphi \llbracket a_1, \ldots, a_k \rrbracket$$

means $\vDash_{\mathfrak{A}} \varphi[s]$ for some $s: V \to |\mathfrak{A}|$ such that $s(v_i) = a_i (1 \le i \le k)$.

Example

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$. We have

- $\blacktriangleright \models_{\mathfrak{N}} \forall v_2, (\neg v_2 \dot{<} v_1) \llbracket 0 \rrbracket;$
- $\blacktriangleright \not\models_{\mathfrak{N}} \forall v_2, (\neg v_2 \dot{<} v_1) \llbracket 2 \rrbracket.$

Satisfaction for Sentences

Corollary

If σ is a sentence then either:

- (1) $\models_{\mathfrak{A}} \sigma[s]$ for every assignment s, or
- (2) $\not\models_{\mathfrak{A}} \sigma[s]$ for every assignment s.

In case (1), we say σ is true in $\mathfrak A$, and in case (2), we say σ is false in $\mathfrak A$.

Satisfaction for Sentences

Corollary

If σ is a sentence then either:

- (1) $\models_{\mathfrak{A}} \sigma[s]$ for every assignment s, or
- (2) $\not\models_{\mathfrak{A}} \sigma[s]$ for every assignment s.

In case (1), we say σ is true in $\mathfrak A$, and in case (2), we say σ is false in $\mathfrak A$.

Thus if σ is a sentence then whether or note $\vDash_{\mathfrak{A}} \sigma[s]$ does not depend on s. So we can just write $\vDash_{\mathfrak{A}} \sigma$ or $\not\vDash_{\mathfrak{A}} \sigma$.

Earlier Example

Let σ be the sentence $\forall x \forall y (x \dot{<} y \to \exists z \ x \dot{<} z \land z \dot{<} y)$. Then σ is true in \Re but false in \Im .

Sentences that Distinguish Between Structures

Let:

- $ightharpoonup \mathfrak{N} = (\mathbb{N}, <);$
- $ightharpoonup 3 = (\mathbb{Z}, <);$
- $ightharpoonup \mathfrak{Q} = (\mathbb{Q}, <);$
- $ightharpoonup \mathfrak{R} = (\mathbb{R}, <).$

Sentences that Distinguish Between Structures

Let:

- $ightharpoonup \mathfrak{N} = (\mathbb{N}, <);$
- ▶ $\mathfrak{Z} = (\mathbb{Z}, <);$
- $\triangleright \mathfrak{Q} = (\mathbb{Q}, <);$
- $ightharpoonup \mathfrak{R} = (\mathbb{R}, <).$

Question

For each pair of these structures, can you find a sentence in this language that is true in one and false in the other?

Elementary Equivalence

Definition

Let $\mathfrak A$ and $\mathfrak B$ be structures for the same language $\mathbb L$. $\mathfrak A$ and $\mathfrak B$ are elementarily equivalent (written $\mathfrak A\equiv\mathfrak B$) if for every sentence σ of $\mathbb L$

$$\models_{\mathfrak{A}} \sigma \iff \models_{\mathfrak{B}} \sigma.$$

Elementary Equivalence

Definition

Let $\mathfrak A$ and $\mathfrak B$ be structures for the same language $\mathbb L$. $\mathfrak A$ and $\mathfrak B$ are elementarily equivalent (written $\mathfrak A\equiv\mathfrak B$) if for every sentence σ of $\mathbb L$

$$\models_{\mathfrak{A}} \sigma \iff \models_{\mathfrak{B}} \sigma.$$

Remark

We have just seen that:

- $\mathfrak{N} \not\equiv \mathfrak{Z};$
- **▶** 3 ≢ Ω;
- **>** 3 ≠ ℜ.

Comparing $\mathfrak Q$ and $\mathfrak R$

Question

Is is true that $\mathfrak Q$ and $\mathfrak R$ are elementarily equivalent?

Comparing $\mathfrak Q$ and $\mathfrak R$

Question

Is is true that $\mathfrak Q$ and $\mathfrak R$ are elementarily equivalent?

Answer

Perhaps the answer is not so easy!

Definition

 \blacktriangleright $\mathfrak A$ is a model of the sentence σ if $\models_{\mathfrak A} \sigma$, i.e., if σ is true in $\mathfrak A$;

Definition

- \triangleright \mathfrak{A} is a model of the sentence σ if $\models_{\mathfrak{A}} \sigma$, i.e., if σ is true in \mathfrak{A} ;
- $ightharpoonup \mathfrak{A}$ is a model of a set Σ of sentences if \mathfrak{A} is a model of every member of Σ , i.e., every sentence in Σ is true in \mathfrak{A} .

Definition

- \triangleright \mathfrak{A} is a model of the sentence σ if $\models_{\mathfrak{A}} \sigma$, i.e., if σ is true in \mathfrak{A} ;
- $ightharpoonup \mathfrak A$ is a model of a set Σ of sentences if $\mathfrak A$ is a model of every member of Σ , i.e., every sentence in Σ is true in $\mathfrak A$.

Question

Let $\mathfrak{R} = (\mathbb{R}, <, +, \times, 0, 1)$ and $\mathfrak{Q} = (\mathbb{Q}, <, +, \times, 0, 1)$. Is there a sentence that is true in \mathfrak{R} , but not in \mathfrak{Q} ?

Definition

- \triangleright \mathfrak{A} is a model of the sentence σ if $\models_{\mathfrak{A}} \sigma$, i.e., if σ is true in \mathfrak{A} ;
- $ightharpoonup \mathfrak A$ is a model of a set Σ of sentences if $\mathfrak A$ is a model of every member of Σ , i.e., every sentence in Σ is true in $\mathfrak A$.

Question

Let $\mathfrak{R} = (\mathbb{R}, <, +, \times, 0, 1)$ and $\mathfrak{Q} = (\mathbb{Q}, <, +, \times, 0, 1)$. Is there a sentence that is true in \mathfrak{R} , but not in \mathfrak{Q} ?

Answer

Yes. Let σ be $\exists x \ x \dot{\times} x \doteq \dot{1} + \dot{1}$.

Let $\mathbb L$ be a first-order language with 2-ary predicate symbols \dot{P} and $\dot{=}$. Given a structure for $\mathbb L$, we have:

 $ightharpoonup \mathfrak{A}$ is a model of $\forall x \forall y \ x = y$ iff

Let $\mathbb L$ be a first-order language with 2-ary predicate symbols \dot{P} and $\dot{=}$. Given a structure for $\mathbb L$, we have:

 $ightharpoonup \mathfrak{A}$ is a model of $\forall x \forall y \ x \doteq y \ \text{iff} \ |\mathfrak{A}|$ contains exactly one element;

- $ightharpoonup \mathfrak{A}$ is a model of $\forall x \forall y \ x \doteq y \ \text{iff} \ |\mathfrak{A}|$ contains exactly one element;
- $ightharpoonup \mathfrak{A}$ is a model of $\forall x \forall y \ \dot{P}xy$ iff

- ▶ \mathfrak{A} is a model of $\forall x \forall y \ x = y$ iff $|\mathfrak{A}|$ contains exactly one element;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \ \dot{P}xy$ iff $\dot{P}^{\mathfrak{A}} = |\mathfrak{A}| \times |\mathfrak{A}|$;

- $ightharpoonup \mathfrak{A}$ is a model of $\forall x \forall y \ x \doteq y \ \text{iff} \ |\mathfrak{A}|$ contains exactly one element;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \ \dot{P}xy$ iff $\dot{P}^{\mathfrak{A}} = |\mathfrak{A}| \times |\mathfrak{A}|$;
- $ightharpoonup \mathfrak{A}$ is a model of $\forall x \forall y \ \neg \dot{P}xy$ iff

- $ightharpoonup \mathfrak{A}$ is a model of $\forall x \forall y \ x \doteq y \ \text{iff} \ |\mathfrak{A}|$ contains exactly one element;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \ \dot{P}xy$ iff $\dot{P}^{\mathfrak{A}} = |\mathfrak{A}| \times |\mathfrak{A}|$;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \neg \dot{P}xy$ iff $\dot{P}^{\mathfrak{A}} = \emptyset$;

- $ightharpoonup \mathfrak{A}$ is a model of $\forall x \forall y \ x \doteq y \ \text{iff} \ |\mathfrak{A}|$ contains exactly one element;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \ \dot{P}xy$ iff $\dot{P}^{\mathfrak{A}} = |\mathfrak{A}| \times |\mathfrak{A}|$;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \neg \dot{P}xy$ iff $\dot{P}^{\mathfrak{A}} = \emptyset$;
- $ightharpoonup \mathfrak{A}$ is a model of $\forall x \exists y \ \dot{P}xy$ iff

- ▶ \mathfrak{A} is a model of $\forall x \forall y \ x = y$ iff $|\mathfrak{A}|$ contains exactly one element;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \ \dot{P}xy$ iff $\dot{P}^{\mathfrak{A}} = |\mathfrak{A}| \times |\mathfrak{A}|$;
- ▶ \mathfrak{A} is a model of $\forall x \forall y \neg \dot{P}xy$ iff $\dot{P}^{\mathfrak{A}} = \emptyset$;
- ▶ \mathfrak{A} is a model of $\forall x \exists y \ \dot{P}xy$ iff the domain of $\dot{P}^{\mathfrak{A}}$ is $|\mathfrak{A}|$.

We notice that a sentence may denote a class of structures (i.e., its models).

We notice that a sentence may denote a class of structures (i.e., its models).

We shall devle into this point in detail. However, let us first revisit some basic concepts in set theory.

Definition

Let R be a binary relation.

Definition

Let R be a binary relation.

R is symmetric if for every a and b,

$$(a,b) \in R \Longrightarrow (b,a) \in R$$

Definition

Let R be a binary relation.

► *R* is symmetric if for every *a* and *b*,

$$(a,b) \in R \Longrightarrow (b,a) \in R$$

R is transitive if for every a, b, and c,

$$(a,b) \in R \Longrightarrow (b,c) \in R \Longrightarrow (a,c) \in R$$

Definition

Let R be a binary relation.

► *R* is symmetric if for every *a* and *b*,

$$(a,b) \in R \Longrightarrow (b,a) \in R$$

R is transitive if for every a, b, and c,

$$(a,b) \in R \Longrightarrow (b,c) \in R \Longrightarrow (a,c) \in R$$

ightharpoonup R is reflexive on the set A if for all $a \in A$,

$$(a, a) \in R$$

Definition

Let R be a binary relation.

R is symmetric if for every a and b,

$$(a,b) \in R \Longrightarrow (b,a) \in R$$

R is transitive if for every a, b, and c,

$$(a,b) \in R \Longrightarrow (b,c) \in R \Longrightarrow (a,c) \in R$$

ightharpoonup R is reflexive on the set A if for all $a \in A$,

$$(a, a) \in R$$

▶ R satisfies trichotomy on A if for all $a, b, c \in A$, exactly one of the following is true:

$$(a,b) \in R, \qquad (b,a) \in R, \qquad a=b$$

Definition

A binary relation R is a linear ordering on A if R is transitive and satisfies trichotomy on A.

Definition

A binary relation R is a linear ordering on A if R is transitive and satisfies trichotomy on A.

Definition

Let $\mathbb L$ be the language with a binary relation symbol $\dot R$ and $\dot =$ (and no other symbols). Let $\mathfrak A=(A,R)$, i.e., $(A=|\mathfrak A|$ and $R=\dot R^{\mathfrak A})$.

Definition

A binary relation R is a linear ordering on A if R is transitive and satisfies trichotomy on A.

Definition

Let \mathbb{L} be the language with a binary relation symbol R and $\dot{=}$ (and no other symbols). Let $\mathfrak{A}=(A,R)$, i.e., $(A=|\mathfrak{A}|$ and $R=\dot{R}^{\mathfrak{A}})$.

 \triangleright \mathfrak{A} is *transitive* if R is transitive;

Definition

A binary relation R is a linear ordering on A if R is transitive and satisfies trichotomy on A.

Definition

Let \mathbb{L} be the language with a binary relation symbol \dot{R} and $\dot{=}$ (and no other symbols). Let $\mathfrak{A}=(A,R)$, i.e., $(A=|\mathfrak{A}|$ and $R=\dot{R}^{\mathfrak{A}})$.

- \triangleright \mathfrak{A} is *transitive* if R is transitive;
- $ightharpoonup \mathfrak{A}$ is a linearly ordered structure if R is a linear ordering on A.

Definition

A binary relation R is a linear ordering on A if R is transitive and satisfies trichotomy on A.

Definition

Let \mathbb{L} be the language with a binary relation symbol \dot{R} and $\dot{=}$ (and no other symbols). Let $\mathfrak{A}=(A,R)$, i.e., $(A=|\mathfrak{A}|$ and $R=\dot{R}^{\mathfrak{A}})$.

- \triangleright \mathfrak{A} is *transitive* if R is transitive;
- $ightharpoonup \mathfrak{A}$ is a linearly ordered structure if R is a linear ordering on A.

See the discussion on Page 93 of Enderton's.

Each of the following is a linearly ordered structure:

- **▶** (N, <);
- **▶** (ℤ, <);
- ightharpoonup ($\mathbb{R},<$).

Each of the following is a linearly ordered structure:

- **▶** (N, <);
- $ightharpoonup (\mathbb{Z},<);$
- ightharpoonup ($\mathbb{R},<$).

Also, each of the following is linearly ordered structure:

- **▶** (N, >);
- ightharpoonup ($\mathbb{Z}, >$);
- ightharpoonup ($\mathbb{R}, >$).

Each of the following is a linearly ordered structure:

- **▶** (N, <);
- $ightharpoonup (\mathbb{Z},<);$
- ightharpoonup ($\mathbb{R},<$).

Also, each of the following is linearly ordered structure:

- **▶** (N, >);
- ightharpoonup ($\mathbb{Z}, >$);
- ightharpoonup ($\mathbb{R}, >$).

Question

Is (\mathbb{N}, \leq) a linearly ordered structure?

What Can Sentences Say About Structures

Question

Let $\mathfrak{A} = (A, R)$.

Question

Let $\mathfrak{A} = (A, R)$.

▶ \mathfrak{A} is transitive iff $\vDash_{\mathfrak{A}} \sigma$, where $\sigma = ?$;

Question

- ▶ \mathfrak{A} is transitive iff $\vDash_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- ▶ \mathfrak{A} is linearly ordered iff $\models_{\mathfrak{A}} \sigma$, where $\sigma = ?$;

Question

- ▶ \mathfrak{A} is transitive iff $\vDash_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- ▶ \mathfrak{A} is linearly ordered iff $\models_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- ▶ dom(R) = A iff $\models_{\mathfrak{A}} \sigma$, where $\sigma = ?$;

Question

- ▶ \mathfrak{A} is transitive iff $\vDash_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- ▶ \mathfrak{A} is linearly ordered iff $\models_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- ▶ dom(R) = A iff $\models_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- rng(R) = A iff $\models_{\mathfrak{A}} \sigma$, where $\sigma = ?$;

Question

- ▶ \mathfrak{A} is transitive iff $\vDash_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- ▶ \mathfrak{A} is linearly ordered iff $\models_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- ▶ dom(R) = A iff $\models_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- rng(R) = A iff $\models_{\mathfrak{A}} \sigma$, where $\sigma = ?$;
- ightharpoonup R is a function iff $\vDash_{\mathfrak{A}} \sigma$, where $\sigma = ?$.

```
Question
Let \mathfrak{A} = (A, R).

\mathfrak{A} is transitive iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?;

\mathfrak{A} is linearly ordered iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?;

dom(R) = A iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?;

mg(R) = A iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?;

mg(R) = A iff \vDash_{\mathfrak{A}} \sigma, where \sigma = ?;
```

See the discussion on Page 93 of Enderton's for some of the answers.

Models of a Single Sentence

Definition

A set of structures $\mathcal K$ is an elementary class (EC) if there is a sentence σ such that

$$\mathcal{K} = \{ \mathfrak{A} \mid \mathfrak{A} \text{ is a model of } \sigma \},$$

i.e.,

$$\mathcal{K} = \{ \mathfrak{A} \mid \vDash_{\mathfrak{A}} \sigma \}.$$

Question

Let $\mathbb L$ be the language with a binary predicate symbol $\dot E$ and $\dot =$, but no other symbols. A structure $\mathfrak G=(G,E)$ for $\mathbb L$ (where $G=|\mathfrak G|$ and $E=\dot E^{\mathfrak G}$ is a *graph* if

- E is symmetric, and
- ▶ for every $a \in G$, $(a, a) \notin E$ Is the set of graphs an elementary class?

Question

Let $\mathbb L$ be the language with a binary predicate symbol $\dot E$ and $\dot =$, but no other symbols. A structure $\mathfrak G=(G,E)$ for $\mathbb L$ (where $G=|\mathfrak G|$ and $E=\dot E^{\mathfrak G}$ is a *graph* if

- E is symmetric, and
- ▶ for every $a \in G$, $(a, a) \notin E$ Is the set of graphs an elementary class?

Answer

Yes. For every structure \mathfrak{G} , it is a graph iff $\vDash_{\mathfrak{G}} \sigma$ where σ is the conjunction of

Question

Let $\mathbb L$ be the language with a binary predicate symbol $\dot E$ and $\dot =$, but no other symbols. A structure $\mathfrak G=(G,E)$ for $\mathbb L$ (where $G=|\mathfrak G|$ and $E=\dot E^{\mathfrak G}$ is a *graph* if

- E is symmetric, and
- for every $a \in G$, $(a, a) \notin E$

Is the set of graphs an elementary class?

Answer

Yes. For every structure \mathfrak{G} , it is a graph iff $\vDash_{\mathfrak{G}} \sigma$ where σ is the conjunction of

 $\forall x \forall y (\dot{E}xy \rightarrow \dot{E}yx)$, and

Question

Let $\mathbb L$ be the language with a binary predicate symbol \dot{E} and $\dot{=}$, but no other symbols. A structure $\mathfrak{G}=(G,E)$ for $\mathbb L$ (where $G=|\mathfrak{G}|$ and $E=\dot{E}^{\mathfrak{G}}$ is a *graph* if

- E is symmetric, and
- ▶ for every $a \in G$, $(a, a) \notin E$ Is the set of graphs an elementary class?

Answer

Yes. For every structure \mathfrak{G} , it is a graph iff $\vDash_{\mathfrak{G}} \sigma$ where σ is the conjunction of

- $\blacktriangleright \forall x \forall y (\dot{E}xy \rightarrow \dot{E}yx)$, and
- $\blacktriangleright \forall x(\neg \dot{E}xx).$

Models of a Set of Sentences

Definition

A set of structures $\mathcal K$ is an elementary class in the wider sense (EC_Δ) if there is a set Σ of sentences such that

$$\mathcal{K} = \{ \mathfrak{A} \mid \mathfrak{A} \text{ is a model of } \Sigma \},$$

i.e.,

$$\mathcal{K} = \{\mathfrak{A} \mid \vDash_{\mathfrak{A}} \sigma \text{ for every } \sigma \in \Sigma\}.$$

Question

▶ \mathfrak{A} has at least two elements iff $\models_{\mathfrak{A}} \lambda_2$ where $\lambda_2 = ?$;

Question

- ▶ \mathfrak{A} has at least two elements iff $\models_{\mathfrak{A}} \lambda_2$ where $\lambda_2 = ?$;
- ▶ \mathfrak{A} has at least three elements iff $\models_{\mathfrak{A}} \lambda_3$ where $\lambda_3 = ?$;

Question

- ▶ \mathfrak{A} has at least two elements iff $\models_{\mathfrak{A}} \lambda_2$ where $\lambda_2 = ?$;
- ▶ \mathfrak{A} has at least three elements iff $\models_{\mathfrak{A}} \lambda_3$ where $\lambda_3 = ?$;
- In general, for each positive integer n there is a sentence λ_n such that
 - \mathfrak{A} has at least n elements iff $\models_{\mathfrak{A}} \lambda_n$;

Question

- ▶ \mathfrak{A} has at least two elements iff $\models_{\mathfrak{A}} \lambda_2$ where $\lambda_2 = ?$;
- ▶ \mathfrak{A} has at least three elements iff $\vDash_{\mathfrak{A}} \lambda_3$ where $\lambda_3 = ?$;
- In general, for each positive integer n there is a sentence λ_n such that
 - \mathfrak{A} has at least *n* elements iff $\models_{\mathfrak{A}} \lambda_n$;
- ▶ \mathfrak{A} has exactly *n* elements iff $\models_{\mathfrak{A}} \sigma_n$ where $\sigma_n = ?$.

Question

- ▶ \mathfrak{A} has at least two elements iff $\models_{\mathfrak{A}} \lambda_2$ where $\lambda_2 = ?$;
- ▶ \mathfrak{A} has at least three elements iff $\models_{\mathfrak{A}} \lambda_3$ where $\lambda_3 = ?$;
- In general, for each positive integer n there is a sentence λ_n such that
 - \mathfrak{A} has at least *n* elements iff $\models_{\mathfrak{A}} \lambda_n$;
- ▶ \mathfrak{A} has exactly *n* elements iff $\models_{\mathfrak{A}} \sigma_n$ where $\sigma_n = ?$.

See the discussion on Page 93 of Enderton's for some of the answers.

Easy and Hard Questions

Question

Is there a set Σ of sentences such that for every $\mathfrak A,\,\mathfrak A$ is a model of Σ iff $|\mathfrak A|$ is infinite?

Easy and Hard Questions

Question

Is there a set Σ of sentences such that for every $\mathfrak A,\, \mathfrak A$ is a model of Σ iff $|\mathfrak A|$ is infinite?

Answer

Yes. Let
$$\Sigma = {\lambda_2, \lambda_3, \ldots}$$
.

Easy and Hard Questions

Question

Is there a set Σ of sentences such that for every $\mathfrak A,\, \mathfrak A$ is a model of Σ iff $|\mathfrak A|$ is infinite?

Answer

Yes. Let
$$\Sigma = {\lambda_2, \lambda_3, \ldots}$$
.

Now, ask the following question:

Question

Is there a single sentence σ such that $\mathfrak A$ is a model of σ iff $|\mathfrak A|$ is infinite?

Some Hard and Very Hard Questions

▶ Is there a set Σ of sentences such that for every \mathfrak{A} , \mathfrak{A} is a model of Σ iff $|\mathfrak{A}|$ is finite?

Some Hard and Very Hard Questions

- ▶ Is there a set Σ of sentences such that for every \mathfrak{A} , \mathfrak{A} is a model of Σ iff $|\mathfrak{A}|$ is finite?
- ▶ Is there a set Σ of sentences such that for every \mathfrak{A} , \mathfrak{A} is a model of Σ iff $|\mathfrak{A}|$ is enumerable?

Some Hard and Very Hard Questions

- ▶ Is there a set Σ of sentences such that for every \mathfrak{A} , \mathfrak{A} is a model of Σ iff $|\mathfrak{A}|$ is finite?
- ▶ Is there a set Σ of sentences such that for every \mathfrak{A} , \mathfrak{A} is a model of Σ iff $|\mathfrak{A}|$ is enumerable?
- ▶ Is there a set Σ of sentences such that for every \mathfrak{A} , \mathfrak{A} is a model of Σ iff $|\mathfrak{A}|$ is uncountable?