Today: Outline

- Pre-lecture Material
- Recurrent Neural Networks

Reminders:

Problem Set 1, due: Oct 12 by midnight Midterm Exam, in class, Oct 20 (Practice problems will be posted)

Announcement:

No class on Oct 13 per BU Calendar (Substitute Mon Schedule of Classes)

Neural Networks V

Pre-lecture Material

Al Generated Trailer

How did Watson generate a movie trailer?

- Using human expertise only
- Using tools humans use to generate trailers.
- By identifying salient regions in the movie
- By detecting times where actions and emotions are predicted

Al Generated Trailer

Analyze a movie and generate a trailer automatically

How?
 Detecting salient moments
 e.g. action/emotions

Detecting Salient Regions

• Two sample actions:

Handstand Walking

Ice Dancing

Al Generated Match Highlights

• IBM produces the official match highlights of Wimbledon and US Open tennis tournaments.

 https://www.usopen.org/en_US/video/2017-08-31/1504233424.html

Multi-modal System

Bias Considerations

Network architectures

Feed-forward

Fully connected

Convolutional

Neural Networks V

Recurrent Neural Networks

Sequential Data

- Sequences in our world:
 - Audio
 - Text
 - Video
 - Weather
 - Stock market

RNNs are tools for making predictions about sequences.

Recurrent Neural Networks

One-to-one

Vanilla mode of processing without RNN

Example: Image classification

Example: One-to-one

Vanilla mode of processing without RNN

Example: Image classification

Recurrent Neural Networks

One-to-many

Sequence output

Example: Image captioning

Example: One-to-many

Sequence output

Example: Image Captioning

Bus driving down a snowy road next to trees <EOS>

Many-to-one

Sequence input

Examples: Sentiment analysis
Action recognition

Example: Many-to-one

Sequence input

Example: Sentiment analysis

Many-to-many

Sequence input and sequence output

Example: Machine translation

Example: Many-to-many

Sequence input and sequence output

Example: Machine translation

French Translation

English Sentence

Synced Many-to-many

Synced sequence input and output

Examples: Tracking

Early action detection

RNNs

• In a standard RNN the repeating module has a simple structure. Example:

LSTMs

LSTM Memory / Cell State

Gate

 Composed of a sigmoid neural net layer and a pointwise multiplication operation.

Gate

- sigmoid: outputs numbers between:
 - zero "let nothing through," and
 - one, "let everything through!"
- Example:

Gate

- sigmoid: outputs numbers between:
 - zero "let nothing through," and
 - one, "let everything through!"
- Example:

Neural Networks VI

Applications of Recurrent Networks

Application 1: Video Classification

- CP: conditional class probability
- $\underbrace{frame i}$ could be a feature describing frame \underline{i} , example: CNN feature

Application 1: Video Classification

Application 2: Self-Driving Cars

- SA: steering angle
- frame i could be a feature describing frame i, example: 3D-CNN feature

Application 2: Self-Driving Cars

DeepTesla

Application 2: Self-Driving Cars

- Udacity winning team: Team Komanda
 - x_t : 3D convolution of image sequence
 - h_t : steering angle, speed, torque

Character-level language model example

Vocabulary: [h,e,l,o]

Character-level language model example

Vocabulary: [h,e,l,o]

Character-level language model example

Vocabulary: [h,e,l,o]

Character-level language model example

Vocabulary: [h,e,l,o]

Application 4:Reading cursive

handwriting

- This is a natural task for an RNN.
- The input is a sequence of (x,y,p) coordinates of the tip of the pen, where p indicates whether the pen is up or down.
- The output is a sequence of characters.

- Graves & Schmidhuber (2009) showed that RNNs with LSTM are currently the best systems for reading cursive writing.
 - They used a sequence of small images as input rather than pen coordinates.

Application 5: StyleText Generation

Training text: William Shakespeare

Application 5: StyleText Generation

at first:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund Keushey. Thom here sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him.

Pierre aking his soul came to the packs and drove up his father-in-law women.

Application 6: Code Generation

Train on C code

Application 6: Code Generation

```
static void do command(struct seq file *m, void *v)
 int column = 32 \ll (cmd[2] \& 0x80);
 if (state)
    cmd = (int)(int state ^ (in 8(&ch->ch flags) & Cmd) ? 2 : 1);
 else
    seq = 1;
 for (i = 0; i < 16; i++) {
    if (k & (1 << 1))
     pipe = (in use & UMXTHREAD UNCCA) +
        ((count & 0x0000000ffffffff8) & 0x000000f) << 8;
    if (count == 0)
      sub(pid, ppc md.kexec handle, 0x20000000);
    pipe set bytes(i, 0);
  }
  /* Free our user pages pointer to place camera if all dash */
 subsystem info = &of changes[PAGE SIZE];
 rek controls(offset, idx, &soffset);
 /* Now we want to deliberately put it to device */
 control check polarity(&context, val, 0);
 for (i = 0; i < COUNTER; i++)
    seq puts(s, "policy ");
}
```

Generated C code

Application 7: Writing a Movie Script

https://arstechnica.com/the-multiverse/2016/06/an-ai-wrote-this-movie-and-its-strangely-moving/