Вариант №26

Сигнал, моделируемый стационарным центрированным гауссовским случайным процессом $\xi(t)$ с ковариационной функцией R(t), подается на вход некоторому линейному стационарному преобразованию. СФ $\varepsilon(t)$ задает шум в системе. Выходной сигнал это $\eta(t)$. СФ $\xi(t)$, k(t) и $\varepsilon(t)$ независимые и центрированные. Входной и выходной сигналы связаны уравнением:

$$\frac{d\eta(t)}{dt} + 4 = k(t) \cdot \xi(t) + \varepsilon(t) \tag{1}$$

Входной сигнал $\xi(t)$ имеет ковариационнную функцию

$$R(\tau) = 2e^{-3|\tau|} sh(2|\tau|).$$

Процесс k(t) описывается следующим образом: k(t) = w(t+5) - w(t), где w(t) — стандартный винеровский процесс..

Шум в системе
$$\varepsilon(t)$$
: $S_{\varepsilon}(\lambda) = \begin{cases} 1, & |\lambda| < 1 \\ 0, & \text{в пр. сл.} \end{cases}$

Для выходного сигнала $\eta(t)$ найдите:

- 1. спектральную плонтность;
- 2. ковариационную функцию;
- 3. дисперсию.

Докажите, что правая часть системы (1) представляет собой стацинарный процесс. Также постройте графики, найденных характеристик.