Universität zu Köln

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

B1.4 Photoelektrischer Effekt

CATHERINE TRAN
CARLO KLEEFISCH
OLIVER FILLA

Inhaltsverzeichnis

1	Ein	leitung	3
2	2.1 2.2 2.3 2.4 2.5 2.6	Austrittsarbeit	4 4 4
	2.7	Äußerer Photoeffekt, kinetische Energie	4
3	Dur	chführung	5
	3.1	Bestimmung von h/e	5
		3.1.1 Gegenspannungsmethode	5
		3.1.2 direkte Messmethode	5
	3.2	Photostrom	5
		3.2.1 Photoströme	5
		3.2.2 Intensität	6
	3.3	Untersuchung von LEDs mit der Photozelle	6
4	Aus	swertung	7
5	Fazi	it	8
6	Lite	eratur	9

1 Einleitung

2 Theoretische Grundlagen

- 2.1 Elektrisches Feld und Spannung
- 2.2 Funktionsweise einer Photozelle
- 2.3 Stromfreie Spannungsmessung
- 2.4 Transmissionsgrad, Farbfilter, Graufilter
- 2.5 Austrittsarbeit
- 2.6 Kontaktspannung
- 2.7 Äußerer Photoeffekt, kinetische Energie

3 Durchführung

Zunächst wird das System genullt, d.h. es wird so eingestellt, dass die Gegenspannung U bei Kurzschluss der Photozelle $0\,\mathrm{V}$ ist.

3.1 Bestimmung von h/e

Der Widerstand des Elektrometers wurde auf $10^{13}\,\Omega$ eingestellt.

Filter	Farbe	$\lambda [nm]$
1	UV	366
2	Violett	405
3	Blau	436
4	Grün	546
5	Gelb	578

Tabelle 1: Eigenschaften der Interferenzfilter mit $\Delta \lambda = \pm 7 \text{nm}$

3.1.1 Gegenspannungsmethode

Die Zeitkonstante wurde auf 0.3s und der Messverstärker auf 10 eingestellt.

Filter	Farbe	U_0 $[V]$
1	UV	1.769
2	Violett	1.434
3	Blau	1.232
4	Grün	0.705
5	Gelb	0.645

Tabelle 2: Messergebnisse nach der Gegenspannungsmethode mit $\Delta U_0 = \pm 1 \,\mathrm{mV}$

3.1.2 direkte Messmethode

Schon während der Messung fiel die große Ähnlichkeit der Messwerte mit denen aus der vorherigen Messung auf. Dass die Werte eher minimal kleiner sind liegt vermutlich an einem reduzierten Rauschen aus der Umgebung, da die nicht-abgeschirmten Kabel des Aufbaus noch weiter von der Photozelle entfernt waren.

3.2 Photostrom

3.2.1 Photoströme

Bei der Messung der Photoströme trat ein Nullpunktsfehler von 1 mV auf. Der Messverstärker wurde auf 10^4 gestellt, die Zeitkonstante auf 0.3 s. Der Photostrom wurde indirekt über einen Widerstand $R = 10 \,\mathrm{k}\Omega$ gemessen.

Filter	Farbe	U[V]
1	UV	1.770
2	Violett	1.434
3	Blau	1.232
4	Grün	0.696
5	Gelb	0.635

Tabelle 3: Messergebnisse nach der direkten Methode mit $\Delta U_0 = \pm 1 \,\mathrm{mV}$

$\lambda [\mathrm{nm}]$	Transmissionsgrad T [%]					
	1	2	3	4	5	6
436	68	48	33	28	20	14
546	67	46	31	23	16	11

Tabelle 4: Eigenschaften der Graufilter mit $\Delta T = 1\%$

		Photostrom $U_{\rm Ph}$ [V]						
Filter	Farbe	ohne	1	2	3	4	5	6
3	Blau	1.777	1.486	1.067	0.807	0.655	0.440	0.338
4	Grün	0.608	0.536	0.357	0.265	0.190	0.126	0.090

Tabelle 5: Messungen der Photoströme über mit $\Delta U_{\rm Ph} = 1\,\mathrm{mV}$

3.2.2 Intensität

Ohne den Graufilter wurde eine Photospannung von $U_0=0.688\pm0.001\,\mathrm{V}$ gemessen, mit Graufilter 6 eine von $U_0'=0.693\pm0.001\,\mathrm{V}$. Aufgrund dieser Abweichungen sollte der Fehler auf zumindest $\pm3\,\mathrm{mV}$ erhöht werden.

3.3 Untersuchung von LEDs mit der Photozelle

Bezeichnung	U_0 [V]
blue	1.047
verde	0.891
true green	0.807

Tabelle 6: Messungen der LEDs mit $\Delta U_0 = 1 \,\mathrm{mV}$

4 Auswertung

5 Fazit

6 Literatur

- [1] W. Demtröder, "Experimentalphysik 3", 5. Auflage, Springer Verlag, ISBN 000000000
- [2] D. Meschede, "Gerthsen Physik", 21. Auflage, Springer Verlag, ISBN 000000000
- [3] Universität zu Köln, "B1.4: Photoeffekt: Bestimmung von h/e", Juli 2008, Online verfügbar unter https://teaching.astro.uni-koeln.de/sites/default/file s/praktikum_b/Anleitung_1.4.pdf, Abruf am 10.04.2024