

Digital Systems Design ELEG378/47e3 Exam Help

https://tutorcs.com

WeChat: cstutorcs ASMD charts

(Algorithmic State Machine and Datapath)

Prof J.S. Smith Room A515;

E-mail: j.s.smith@liv.ac.uk

ASMD charts (Algorithmic State Machine and Datapath)

ASM charts can be used to control register operations on a datapath in a sequential machine that has been partitioned into a controller and a datapath.

- Assignment Project Exam Help

 A modified ASM chart is linked to the datapath by annotating each of its paths to indicate the concurrent register operations that occur in the associated datapath unit.
- ASM charts that have been linked to the datapath in this manner are called Algorithmic State Machine and Datapath (ASMD) charts.
- ASMD charts separates the design of a datapath from the design of its controller.
- An ASMD is different from an ASM in that each of the transition paths of an ASM is annotated with the associated concurrent register operations of the datapath.

ASMD Chart

- Differences between Algorithmic State Machine and Datapath (ASMD) charts & ASM charts.
 - An ASMD chart does not list registe Eggenations within a state box.
 - The edges of an ASMPschartsrarecannotated with register operations that are concurrent with the state transition indicated by the edge Chat: cstutorcs
 - An ASMD chart includes conditional boxes identifying the signals which control the register operations that annotate the edges of the chart.
 - An ASMD chart associates register operations with state transitions rather than with the state.

Designing ASMD Charts

- Designing an ASMD chart has three steps:
 - Form an ASM spart displaying only howethe inputs to the controller determine its state transitions.
 - Convert the ASM chart to an ASMD chart by annotating the edges of ASM to indicate the concurrent register operations of the datapath unit.
 - Modify the ASMD chart to identify the control signals that are generated by the controller and cause the indicated register operations in the datapath unit.

ASM vs. ASMD charts for a counter with enable

An ASMD chart for an up-down counter

Up-down counter with asynchronous reset

Up-down counter with synchronous reset

ASMD Example Two-stage Pipeline Register

- The above architecture shows a two-stage pipeline that acts as a 2:1 decimator with parallel input and output.
- Decimators are used in digital signal processors to move data from a high-clock-rate datapath to a lower-clock-rate datapath.

The conditional and unconditional output signals that interface the controller with the datapath and cause the indicated operations must be added to complete the chart.

Complete ASMD Chart

Datapath Controller Design Steps

- 1) Understanding of the sequential register operations that must execute on a given datapath architecture.
- 2) Designing agrass that the santitude by the primary input signals and/or status signals from the datapath. https://tutorcs.com
- 3) Form an ASMD chart by annotating the arcs of the ASM chart with the data bath operations associated with the state transitions of the controller.
- 4) Generate unconditional and conditional outputs to control the datapath.

from: "Advanced Digital Design with Verilog HDL" by M. D. Ciletti

Design Example: Specifications

- The datapath unit is to consist of two JK flip-flops 'E' and 'F', and one 4-bit binary counter A[3:0]. A[3] holds the most significant bit.
- A signal, Start, initiates the system spoperation by clearing the counter 'A' and flip-flop 'F'.

Datapath

- At each subsequent clockney be, the counter is incremented by 1 until the operations stop.
- Counter bits A2 and A3 detentions:
 Counter bits A2 and A3 detentions
 - If A2 = 0, 'E' is cleared to 0 and the count continues.
 - If A2 = 1, 'E' is set to 1; then if A3 = 0, the count continues, but if A3 = 1, F is set to 1 on the next clock pulse and the system stops counting.
 - Then, if Start = 0, the system remains in the initial state, but if Start = 1, the operation cycle repeats.

Block Diagram of the System's Architecture

Notes: A3 denotes A[3] and A2 denotes A[2] reset_b denotes active-low reset condition

Datapath - Controller

ASMD chart for controller state transition

Asynchronous reset

Synchronous reset

ASMD chart for a completely specified reset_b

controller

In practise, designers use the ASMD chart to write Verilog models of the contighen and Pheject Exam Help datapath and then synthesise a circuit directly from https://eriblercs.com description.


```
module DatapathControl ( A, E, F, Start, clock, reset b);
 2
          output reg [3:0] A;
 3
          output reg
                            E, F;
                                                                                                         reset b
 4
                            Start, clock, reset b;
 5
 6
               [1:0]
                            state, next state;
              clr E, set E, clr F, set F, clr A F, incr A;
 8
         parameter S idle = 2'b00, S 1 = 2'b01, S 2 = 2'b11;
                                                                                                          S_idle
         wire A2 = A[2], A3 = A[3];
 9
10
11
          // control unit - registers
                                                                                                          Start
12
          always @ (posedge clock, negedge reset b)
                                                                                             A \le 0
13
            if (reset b ==0) state <= S idle;
                                                                                             F \le 0
14
            else state <= next state;</pre>
15
16
          // control unit - combinational
                                                                                                        clr\_A\_F
17
         always @ (state, Start, A2, A3)
               next_state = state, ssign haten by Projectay Einam Help
18
19
                                            same state unless told to
20
                clr E = 0;
                                                                                                         S_1
21
                set E = 0;
                                        https://tutorcs.com
                                                                                             clr\_E
                                                                                                         incr_A
22
                clr A F = 0;
                set F = 0;
23
                incr A = 0;
25
                case (state)
26
                  S_idle: if (Start) back next state = S 1; clr A F = 1; end S_1: begin incr_A = V Cf A = 0CS LEGICS
27
                                                                                       A \le A + 1
28
                                               else begin
29
                                                        set E = 1;
                                                                                             E \leq 1 \leq
30
                                                        if (A3) next state = S 2;
                                                                                                          set\_E
31
                                                     end
32
                         end
33
                   S 2: begin set F = 1; next state = S idle; end
34
                endcase
35
                                                                                                           A3
             end
36
          // datapath unit
         always @ (posedge clock)
37
38
            begin
39
               if (clr E) E <= 0;
                                                                                               F \le 1
40
               if (set E) E <= 1;</pre>
41
                if (clr A F) begin A <= 0; F <= 0; end
42
                if (set F) F <= 1;</pre>
43
               if (incr A) A <= A +1;
44
             end
      endmodule
```

Simulation

