Gedächtnisprotokoll Algoklausur 2020/21 (Hauptklausur)

Aufgabe 1: Rekursion

$$T(n) = \sqrt{2} T(\frac{n}{2}) + \sqrt{n}$$

a)

Zeige die Laufzeit mir dem Mastertheorem.

b)

Finde die geschlossene Form und beweise diese mit Induktion ohne das Mastertheorem zu nutzen. $(n=2^k)$

Aufgabe 2: Sortieren Mergesort

a)

Zeige, dass Mergesort in $\mathcal{O}(nlog(n))$ ein Liste mit n Elementen sortieren kann.

b)

Angenommen man kann parallel zwei Prozesse mit derselben Laufzeit berechnen. Beweise, dass Mergesort dann nur noch $\mathcal{O}(n)$ benötigt.

Aufgabe 3: Single-Choice Fragen

Jede Frage (insg. 6) hatte genau eine richtige Antwort unter 4 Antwortmöglichkeiten. Es gab keinen Abzug für falsche Antworten.

z.B. Wieso werden oft Adjazenzlisten statt Adjazenzmatrizen genutzt (was ist bei Adjazenlisten effizienter)? Antwortmöglichkeiten: Speicher; Löschen und Einfügen von Elementen; Herausfinden, ob es keine Kante zwischen zwei Knoten gibt

Wie viele Kanten hat ein vollständiger Graph mit
n Knoten? Antwortmöglichkeiten: n, $n\frac{(n-1)}{n}...$

Was ist die Höchstgrenze von Kanten in einem Bipariten Graphen mit den Teilmengen A und B? Antwortmöglichkeiten: |A|+|B|,|A||B|...

Was ist die obere Schranke beim finden der SZK? Antwortmöglichkeiten: $\mathcal{O}(n)$, $\mathcal{O}(n+m)$, $\mathcal{O}(n^2)$

Kann man einen ungerichteten Graphen G_1 in einen gerichteten Graphen G_2 umwandeln, sodass die SZK von G_1 auch die SZK von G_2 sind? Antwortmöglichkeiten: immer, nie, manchmal

Aufgabe 4: Manhatten MST

Manhatten MST wurde erklärt.

a)

Man musste bei einem Beispiel mit gegebenen Knoten, in einem karierten Feld, den Manhatten MST einzeichnen.

b)

Zeige wieso in dem Recchteck, das die Knoten q und v aufspannen, kein Knoten r liegt.

Aufgabe 5: Dynamisches Programmieren

Variante des Rucksackproblems: Ein Rucksack, der höchstens das Gewicht W tragen kann, soll so mit i Gegenständen gefüllt werden, dass er besonders schwer wird, aber W nicht übersteigt.

a)

Es waren 4 Gegenstände mit Gewicht 2, 3, 5, 6 angegeben und man sollte in einer Tabelle markieren, welche Gewichte man mit diesen 4 Genständen von 1 bis 12 erreichen kann.

Gewicht	1	2	3	4	5	6	7	8	9	10	11	12
erreichbar?												

b)

Gebe einen Pseudoalgorithmus zur Lösung des Problems mit dynamischer Programmierung an.

c)

Begründe die Laufzeit und Korrektheit deines Algorithmus.

Anmerkungen zur Lösung der Aufgaben

zur 1

Anm.: geschlossene Form ist: $k \sqrt{2}^k + \sqrt{2}^k$

zur 2

```
Anm. zur a): beweise mit Mastertheorem T(n)=2\cdot T(\frac{n}{2})+n Anm. zur b): beweise mit Mastertheorem T(n)=T(\frac{n}{2})+n
```

Eine Aufgabe konnte gestrichen bzw. musste werden. Ansonsten wird zufällig bei der Korrektur gestrichen. Jede Aufgabe gab 6 Punkte.