

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170804704

# **FCC REPORT**

# (WIFI)

Applicant: SHENZHEN COOTEL FONE TECHNOLOGY CO.,LTD

No.311, 3rd Floor, Langfeng Building, No.2, Kefa Road, Central

Address of Applicant: Area of Science and Technology Park, Nanshan District,

Shenzhen, China

### **Equipment Under Test (EUT)**

Product Name: smart phone

Model No.: C7

Trade mark: CooTel

FCC ID: 2AHS2-C7

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Jun., 2017

**Date of Test:** 30 Jun., to 08 Jul., 2017

Date of report issued: 09 Jul., 2017

Test Result: PASS\*

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.





### 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 09 Jul., 2017 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Tested by: Zora Lee Date: 09 Jul., 2017

Test Engineer

Reviewed by: Date: 09 Jul., 2017

Project Engineer



## 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | COV   | /ER PAGE                       | 1    |
| 2 | VER   | SION                           | 2    |
| 3 |       | ITENTS                         |      |
|   |       | T SUMMARY                      |      |
| 4 |       |                                |      |
| 5 | GEN   | IERAL INFORMATION              | 5    |
|   | 5.1   | CLIENT INFORMATION             | 5    |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T.  |      |
|   | 5.3   | TEST ENVIRONMENT AND MODE      |      |
|   | 5.4   | MEASUREMENT UNCERTAINTY        | 7    |
|   | 5.5   | LABORATORY FACILITY            | 7    |
|   | 5.6   | LABORATORY LOCATION            | 8    |
|   | 5.7   | TEST INSTRUMENTS LIST          | 8    |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 9    |
|   | 6.1   | ANTENNA REQUIREMENT            | 9    |
|   | 6.2   | CONDUCTED EMISSION             | 10   |
|   | 6.3   | CONDUCTED OUTPUT POWER         | 13   |
|   | 6.4   | OCCUPY BANDWIDTH               | 17   |
|   | 6.5   | POWER SPECTRAL DENSITY         | 24   |
|   | 6.6   | BAND EDGE                      |      |
|   | 6.6.1 |                                |      |
|   | 6.6.2 |                                |      |
|   | 6.7   | Spurious Emission              |      |
|   | 6.7.1 |                                |      |
|   | 6.7.2 | Radiated Emission Method       | 48   |
| 7 | TES   | T SETUP PHOTO                  | 55   |
| R | FUT   | CONSTRUCTIONAL DETAILS         | 56   |





# 4 Test Summary

| Test Item                                     | Section in CFR 47 | Result |
|-----------------------------------------------|-------------------|--------|
| Antenna requirement                           | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission              | 15.207            | Pass   |
| Conducted Peak Output Power                   | 15.247 (b)(3)     | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth | 15.247 (a)(2)     | Pass   |
| Power Spectral Density                        | 15.247 (e)        | Pass   |
| Band Edge                                     | 15.247(d)         | Pass   |
| Conducted and Radiated Spurious Emission      | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.





# 5 General Information

## **5.1 Client Information**

| Applicant:               | SHENZHEN COOTEL FONE TECHNOLOGY CO.,LTD                                                                                               |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address of Applicant:    | No.311, 3rd Floor, Langfeng Building, No.2, Kefa Road, Central Area of Science and Technology Park, Nanshan District, Shenzhen, China |  |  |
| Manufacturer:            | SHENZHEN COOTEL FONE TECHNOLOGY CO.,LTD                                                                                               |  |  |
| Address of Manufacturer: | No.311, 3rd Floor, Langfeng Building, No.2, Kefa Road, Central Area of Science and Technology Park, Nanshan District, Shenzhen, China |  |  |

# 5.2 General Description of E.U.T.

| Product Name:                                    | smart phone                                                 |  |  |
|--------------------------------------------------|-------------------------------------------------------------|--|--|
|                                                  | C7                                                          |  |  |
| Model No.:                                       | OI .                                                        |  |  |
| Operation Frequency:                             | 2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))              |  |  |
| Channel numbers:                                 | 11 for 802.11b/802.11g/802.11(H20)                          |  |  |
| Channel separation:                              | 5MHz                                                        |  |  |
| Modulation technology: (IEEE 802.11b)            | Direct Sequence Spread Spectrum (DSSS)                      |  |  |
| Modulation technology:<br>(IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)            |  |  |
| Data speed (IEEE 802.11b):                       | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                               |  |  |
| Data speed (IEEE 802.11g):                       | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps |  |  |
| Data speed (IEEE 802.11n):                       | Up to 72.2Mbps                                              |  |  |
| Antenna Type:                                    | Internal Antenna                                            |  |  |
| Antenna gain:                                    | 0.37 dBi                                                    |  |  |
| Power supply:                                    | Rechargeable Li-ion Battery DC3.8V-3000mAh                  |  |  |
| AC adapter:                                      | Model: U0D2F0A050150                                        |  |  |
|                                                  | Input: AC100-240V, 50/60Hz, 250mA                           |  |  |
|                                                  | Output: DC 5.0V, 1.5A                                       |  |  |





| Operation Frequency each of channel For 802.11b/g/n(H20)                |         |   |         |   |         |    |         |
|-------------------------------------------------------------------------|---------|---|---------|---|---------|----|---------|
| Channel Frequency Channel Frequency Channel Frequency Channel Frequency |         |   |         |   |         |    |         |
| 1                                                                       | 2412MHz | 4 | 2427MHz | 7 | 2442MHz | 10 | 2457MHz |
| 2                                                                       | 2417MHz | 5 | 2432MHz | 8 | 2447MHz | 11 | 2462MHz |
| 3                                                                       | 2422MHz | 6 | 2437MHz | 9 | 2452MHz |    |         |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

### 802.11b/802.11g/802.11n (H20)

| Channel             | Frequency |  |  |
|---------------------|-----------|--|--|
| The lowest channel  | 2412MHz   |  |  |
| The middle channel  | 2437MHz   |  |  |
| The Highest channel | 2462MHz   |  |  |



5.3 Test environment and mode

| Operating Environment: |                                                         |  |  |
|------------------------|---------------------------------------------------------|--|--|
| Temperature:           | 24.0 °C                                                 |  |  |
| Humidity:              | 54 % RH                                                 |  |  |
| Atmospheric Pressure:  | 1010 mbar                                               |  |  |
| Test mode:             |                                                         |  |  |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |  |  |

Report No: CCISE170704704

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

| Mode         | Data rate |  |  |
|--------------|-----------|--|--|
| 802.11b      | 1Mbps     |  |  |
| 802.11g      | 6Mbps     |  |  |
| 802.11n(H20) | 6.5Mbps   |  |  |

#### **Final Test Mode:**

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

# 5.4 Measurement Uncertainty

| Items                               | Expanded Uncertainty (Confidence of 95%) |  |  |
|-------------------------------------|------------------------------------------|--|--|
| Conducted Emission (9kHz ~ 30MHz)   | 2.14 dB (k=2)                            |  |  |
| Radiated Emission (9kHz ~ 30MHz)    | 4.24 dB (k=2)                            |  |  |
| Radiated Emission (30MHz ~ 1000MHz) | 4.35 dB (k=2)                            |  |  |
| Radiated Emission (1GHz ~ 18GHz)    | 4.44 dB (k=2)                            |  |  |
| Radiated Emission (18GHz ~ 26.5GHz) | 4.56 dB (k=2)                            |  |  |

# 5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

### • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

### • CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 7 of 56



Report No: CCISE170704704

## 5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax: +86-755-23116366 Email: info@ccis-cb.com

### 5.7 Test Instruments list

| Radiated Emission: |                                 |                                   |                             |                  |                         |                             |
|--------------------|---------------------------------|-----------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|
| Item               | Test Equipment                  | Manufacturer                      | Model No.                   | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| 1                  | 3m SAC                          | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | 07-22-2017              | 07-22-2020                  |
| 2                  | BiConiLog Antenna               | SCHWARZBECK                       | VULB9163                    | CCIS0005         | 02-25-2017              | 02-24-2018                  |
| 3                  | Horn Antenna                    | SCHWARZBECK                       | BBHA9120D                   | CCIS0006         | 02-25-2017              | 02-24-2018                  |
| 4                  | Pre-amplifier<br>(10kHz-1.3GHz) | HP                                | 8447D                       | CCIS0003         | 02-25-2017              | 02-24-2018                  |
| 5                  | Pre-amplifier<br>(1GHz-18GHz)   | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | 02-25-2017              | 02-24-2018                  |
| 6                  | Pre-amplifier<br>(18-26GHz)     | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | 02-25-2017              | 02-24-2018                  |
| 7                  | Horn Antenna                    | ETS-LINDGREN                      | 3160                        | GTS217           | 02-25-2017              | 02-24-2018                  |
| 8                  | Spectrum analyzer<br>9k-30GHz   | Rohde & Schwarz                   | FSP30                       | CCIS0023         | 02-25-2017              | 02-24-2018                  |
| 9                  | EMI Test Receiver               | Rohde & Schwarz                   | ESRP7                       | CCIS0167         | 02-25-2017              | 02-24-2018                  |
| 10                 | Loop antenna                    | Laplace instrument                | RF300                       | EMC0701          | 02-25-2017              | 02-24-2018                  |
| 11                 | EMI Test Software               | AUDIX                             | E3                          | N/A              | N/A                     | N/A                         |
| 12                 | Coaxial Cable                   | N/A                               | N/A                         | CCIS0018         | 02-25-2017              | 02-24-2018                  |
| 13                 | Coaxial Cable                   | N/A                               | N/A                         | CCIS0020         | 02-25-2017              | 02-24-2018                  |

| Cond | Conducted Emission: |                    |                       |                  |                         |                             |  |  |  |
|------|---------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|--|--|
| Item | Test Equipment      | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |
| 1    | Shielding Room      | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 07-22-2017              | 07-22-2020                  |  |  |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz    | ESCI                  | CCIS0002         | 02-25-2017              | 02-24-2018                  |  |  |  |
| 3    | LISN                | CHASE              | MN2050D               | CCIS0074         | 02-25-2017              | 02-24-2018                  |  |  |  |
| 4    | Coaxial Cable       | CCIS               | N/A                   | CCIS0086         | 02-25-2017              | 02-24-2018                  |  |  |  |
| 5    | EMI Test Software   | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |  |  |



### 6 Test results and Measurement Data

## 6.1 Antenna requirement

### Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.37 dBi.







# 6.2 Conducted Emission

| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|--|--|--|--|
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                  |  |  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                  |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                  |  |  |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>Hz                   |                  |  |  |  |  |
| Limit:                | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (                  | dBuV)            |  |  |  |  |
| Limit.                | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                  |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56 to 46*                |                  |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                       | 46               |  |  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60                       | 50               |  |  |  |  |
|                       | * Decreases with the loga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arithm of the frequency. |                  |  |  |  |  |
| Test procedure        | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.</li> </ol> |                          |                  |  |  |  |  |
| Test setup:           | AUX Equipment  Test table/Insula  Remark: E.U.T: Equipment Under: LISN: Line Impedence State Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E.U.T  EMI Receiver      | ilter — AC power |  |  |  |  |
| Test Instruments:     | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                  |  |  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                  |  |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                  |  |  |  |  |







#### Notes

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.







#### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                       |  |  |  |
|-------------------|---------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.2.2.2 |  |  |  |
| Limit:            | 30dBm                                                                     |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane     |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                          |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                          |  |  |  |
| Test results:     | Passed                                                                    |  |  |  |

### **Measurement Data:**

| Test CH  | Maximum Conducted Output Power (dBm) |         |              | Limit(dBm) | Result |
|----------|--------------------------------------|---------|--------------|------------|--------|
| 1631 011 | 802.11b                              | 802.11g | 802.11n(H20) |            |        |
| Lowest   | 14.83                                | 13.97   | 12.72        |            | Pass   |
| Middle   | 14.28                                | 13.80   | 12.78        | 30.00      |        |
| Highest  | 14.04                                | 13.42   | 12.31        |            |        |







Date: 4.JUL.2017 15:36:35



Highest channel















# 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(2)                                   |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1  |  |  |
| Limit:            | >500kHz                                                               |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 5.6 for details                                      |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |
| Test results:     | Passed                                                                |  |  |

#### **Measurement Data:**

| Test CH  | 6dB Eı  | mission Bandwid | Limit(kHz)   | Result        |        |  |
|----------|---------|-----------------|--------------|---------------|--------|--|
| 1031 011 | 802.11b | 802.11g         | 802.11n(H20) | Ellint(Ki iz) | resuit |  |
| Lowest   | 8.64    | 16.56           | 17.52        |               |        |  |
| Middle   | 8.80    | 16.56           | 17.44        | >500          | Pass   |  |
| Highest  | 9.20    | 16.56           | 17.76        |               |        |  |
| Test CH  | 99% (   | Occupy Bandwid  | Limit(kHz)   | Result        |        |  |
| 1031 011 | 802.11b | 802.11g         | 802.11n(H20) | Ellint(Ki iz) | result |  |
| Lowest   | 12.80   | 16.36           | 17.68        |               | N/A    |  |
| Middle   | 12.72   | 16.80           | 17.84        | N/A           |        |  |
| Highest  | 13.04   | 16.88           | 17.84        |               |        |  |





Date: 5.JUL.2017 18:45:42



Highest channel

































# 6.5 Power Spectral Density

| Test Requirement: | FCC Part 15 C Section 15.247 (e)                                      |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2 |  |  |  |
| Limit:            | 8dBm                                                                  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                      |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |
| Test results:     | Passed                                                                |  |  |  |

### **Measurement Data:**

| Test CH  | Power   | Spectral Dens | Limit(dBm)   | Result        |        |  |  |
|----------|---------|---------------|--------------|---------------|--------|--|--|
| 1031 011 | 802.11b | 802.11g       | 802.11n(H20) | Ziriit(GBiri) | resuit |  |  |
| Lowest   | 5.68    | 1.47          | 0.61         |               |        |  |  |
| Middle   | 4.11    | 1.34          | 1.47         | 8.00          | Pass   |  |  |
| Highest  | 3.37    | 0.76          | 0.56         |               |        |  |  |









Highest channel















# 6.6 Band Edge

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

















### 6.6.2 Radiated Emission Method

| <br>Nadiated Lillission Method |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                    |        |               |                              |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|--------|---------------|------------------------------|--|
| Test Requirement:              | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                    |        |               |                              |  |
| Test Method:                   | ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |        |               |                              |  |
| Test Frequency Range:          | 2.3GHz to 2.5GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                    |        |               |                              |  |
| Test site:                     | Measurement Distance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                    |        |               |                              |  |
| Receiver setup:                | Frequency Detector RBW VBW Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                    |        |               |                              |  |
| reconver octup.                | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Peak | 1MF                |        | MHz           | Peak Value                   |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RMS  | 1MF                | 1MHz 3 |               | Average Value                |  |
| Limit:                         | Frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | у    | Limit (dBuV/m @3m) |        | Remark        |                              |  |
|                                | Above 1GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hz   | 54.0               |        | Average Value |                              |  |
| Test Procedure:                | 1. The EUT w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 74.0               |        |               | Peak Value<br>5 meters above |  |
| Toot setup:                    | <ol> <li>the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data</li> </ol> |      |                    |        |               |                              |  |
| Test setup:                    | Horn Anlenna Tower  AE EUT  Horn Anlenna Tower  Ground Reference Plane  Test Receiver  Areptier  Controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                    |        |               | er                           |  |
| Test Instruments:              | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                    |        |               |                              |  |
| Test mode:                     | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                    |        |               |                              |  |
| Test results:                  | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |        |               |                              |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                    |        |               |                              |  |







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

: smart phone

Model : C7
Test mode : 802.11g-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Zora
REMARK :

|   |          | Read  | Antenna | Cable     | Preamp    |        | Limit  | Over   |         |
|---|----------|-------|---------|-----------|-----------|--------|--------|--------|---------|
|   | Freq     |       | Factor  |           |           |        |        |        | Remark  |
| - | MHz      | dBu∜  | dB/m    | <u>dB</u> | <u>dB</u> | dBuV/m | dBu√/m | dB     |         |
| 1 | 2483.500 | 20.97 | 25.66   | 4.81      | 0.00      | 51.44  | 74.00  | -22.56 | Peak    |
| 2 | 2483.500 | 9.35  | 25.66   | 4.81      | 0.00      | 39.82  | 54.00  | -14.18 | Average |

## Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.







- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |





Test plot as follows:





















# 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205  ANSI C63.10:2013                                                                                                                                                                                                                       |                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Test Method:          | ANSI C63.10:201                                                                                                                                                                                                                                                                 | 13                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |  |  |  |
| Test Frequency Range: | 9kHz to 25GHz                                                                                                                                                                                                                                                                   |                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |  |  |  |
| Test site:            | Measurement Dis                                                                                                                                                                                                                                                                 | stance: 3n                                                                                                                                                                     | m                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |  |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                       | Detecto                                                                                                                                                                        | tor                                                                                                                                                                                        | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                              | BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remark                                                                                       |  |  |  |
| ·                     | 30MHz-1GHz                                                                                                                                                                                                                                                                      | Quasi-pe                                                                                                                                                                       | eak                                                                                                                                                                                        | 120KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300KHz                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                             |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                      | Peak                                                                                                                                                                           |                                                                                                                                                                                            | 1MHz 3i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | ИHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Peak Value                                                                                   |  |  |  |
|                       |                                                                                                                                                                                                                                                                                 | RMS                                                                                                                                                                            |                                                                                                                                                                                            | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                | ЛHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Average Value                                                                                |  |  |  |
| Limit:                | Frequency                                                                                                                                                                                                                                                                       |                                                                                                                                                                                | Limit                                                                                                                                                                                      | (dBuV/m @3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m)                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remark                                                                                       |  |  |  |
|                       | 30MHz-88MH                                                                                                                                                                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                                            | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uasi-peak Value                                                                              |  |  |  |
|                       | 88MHz-216MH                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                                            | 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uasi-peak Value                                                                              |  |  |  |
|                       | 216MHz-960M                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                                            | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uasi-peak Value                                                                              |  |  |  |
|                       | 960MHz-1GH                                                                                                                                                                                                                                                                      | Z                                                                                                                                                                              |                                                                                                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uasi-peak Value                                                                              |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                       |                                                                                                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average Value                                                                                |  |  |  |
| Test Procedure:       | 1. The EUT wa                                                                                                                                                                                                                                                                   |                                                                                                                                                                                | a.a. 4la.a.                                                                                                                                                                                | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 4i                                                                           | tabla 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak Value                                                                                   |  |  |  |
|                       | The table was highest radia 2. The EUT was antenna, who tower.  3. The antennathe ground to Both horizon make the med.  4. For each suscase and the meters and to find the med.  5. The test-reconspecified Base.  6. If the emission the limit spend the EUT we have 10dB med. | as rotated ation. Its set 3 miles set 3 miles was many a height is to determine the and verse spected elements aximum reiver system on level of cified, the vould be margin wo | d 360 d<br>neters a<br>mounte<br>s varied<br>ine the<br>rertical<br>ent.<br>emissic<br>tenna value<br>able wa<br>reading<br>tem wa<br>with M<br>of the E<br>en testi<br>reporte<br>buld be | degrees to degrees to degrees to degrees to degree degrees to degree deg | he into of a meter value s of the was a being om 0 of a mode stopped the ne by | erferent variable to four of the fine ante arrange that from the from the fine arrange that from the fine arrange that from the fine arrange that from the fine arrange of the fine arrange that from the fine arrange of the fine arrange from th | meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees |  |  |  |





















#### **Above 1GHz**

|                              | Test mode: 802.11b      |                             |                       |                          |                   |                        |                       |            |  |  |  |  |
|------------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|--|--|--|
| Test channel: Lowest channel |                         |                             |                       |                          |                   |                        |                       |            |  |  |  |  |
| Peak Value                   |                         |                             |                       |                          |                   |                        |                       |            |  |  |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |
| 4824.00                      | 47.21                   | 36.06                       | 6.81                  | 41.82                    | 48.26             | 74.00                  | -25.74                | Vertical   |  |  |  |  |
| 4824.00                      | 46.24                   | 36.06                       | 6.81                  | 41.82                    | 47.29             | 74.00                  | -26.71                | Horizontal |  |  |  |  |
|                              |                         |                             | А                     | verage Value             | )                 |                        |                       |            |  |  |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |
| 4824.00                      | 38.56                   | 36.06                       | 6.81                  | 41.82                    | 39.61             | 54.00                  | -14.39                | Vertical   |  |  |  |  |
| 4824.00                      | 37.83                   | 36.06                       | 6.81                  | 41.82                    | 38.88             | 54.00                  | -15.12                | Horizontal |  |  |  |  |
|                              |                         |                             |                       |                          |                   |                        |                       |            |  |  |  |  |

|                    | Test channel: Middle channel |                             |                       |                          |                   |                        |                       |            |  |  |  |  |  |
|--------------------|------------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|--|--|--|--|
| Peak Value         |                              |                             |                       |                          |                   |                        |                       |            |  |  |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |  |
| 4874.00            | 46.07                        | 36.32                       | 6.85                  | 41.84                    | 47.40             | 74.00                  | -26.60                | Vertical   |  |  |  |  |  |
| 4874.00            | 46.16                        | 36.32                       | 6.85                  | 41.84                    | 47.49             | 74.00                  | -26.51                | Horizontal |  |  |  |  |  |
|                    |                              |                             | А                     | verage Value             | )                 |                        |                       |            |  |  |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |  |
| 4874.00            | 37.87                        | 36.32                       | 6.85                  | 41.84                    | 39.20             | 54.00                  | -14.80                | Vertical   |  |  |  |  |  |
| 4874.00            | 37.74                        | 36.32                       | 6.85                  | 41.84                    | 39.07             | 54.00                  | -14.93                | Horizontal |  |  |  |  |  |

| Test channel: Highest channel |                         |                             |                       |                          |                   |                        |                       |            |  |  |  |  |  |
|-------------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|--|--|--|--|
| Peak Value                    |                         |                             |                       |                          |                   |                        |                       |            |  |  |  |  |  |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |  |
| 4924.00                       | 45.86                   | 36.58                       | 6.89                  | 41.86                    | 47.47             | 74.00                  | -26.53                | Vertical   |  |  |  |  |  |
| 4924.00                       | 45.93                   | 36.58                       | 6.89                  | 41.86                    | 47.54             | 74.00                  | -26.46                | Horizontal |  |  |  |  |  |
|                               |                         |                             | А                     | verage Value             | )                 |                        |                       |            |  |  |  |  |  |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |  |
| 4924.00                       | 37.09                   | 36.58                       | 6.89                  | 41.86                    | 38.70             | 54.00                  | -15.30                | Vertical   |  |  |  |  |  |
| 4924.00                       | 37.14                   | 36.58                       | 6.89                  | 41.86                    | 38.75             | 54.00                  | -15.25                | Horizontal |  |  |  |  |  |

# Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



|                    | Test mode: 802.11g           |                             |                       |                          |                  |                        |                       |            |  |  |  |  |  |
|--------------------|------------------------------|-----------------------------|-----------------------|--------------------------|------------------|------------------------|-----------------------|------------|--|--|--|--|--|
|                    | Test channel: Lowest channel |                             |                       |                          |                  |                        |                       |            |  |  |  |  |  |
| Peak Value         |                              |                             |                       |                          |                  |                        |                       |            |  |  |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |  |
| 4824.00            | 47.52                        | 36.06                       | 6.81                  | 41.82                    | 48.57            | 74.00                  | -25.43                | Vertical   |  |  |  |  |  |
| 4824.00            | 47.23                        | 36.06                       | 6.81                  | 41.82                    | 48.28            | 74.00                  | -25.72                | Horizontal |  |  |  |  |  |
|                    |                              |                             | Av                    | erage Value              |                  |                        |                       |            |  |  |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |  |
| 4824.00            | 38.75                        | 36.06                       | 6.81                  | 41.82                    | 39.80            | 54.00                  | -14.20                | Vertical   |  |  |  |  |  |
| 4824.00            | 37.94                        | 36.06                       | 6.81                  | 41.82                    | 38.99            | 54.00                  | -15.01                | Horizontal |  |  |  |  |  |
|                    |                              |                             |                       |                          |                  |                        |                       |            |  |  |  |  |  |

|                    | Test channel: Middle channel |                             |                       |                          |                  |                        |                       |            |  |  |  |  |  |
|--------------------|------------------------------|-----------------------------|-----------------------|--------------------------|------------------|------------------------|-----------------------|------------|--|--|--|--|--|
| Peak Value         |                              |                             |                       |                          |                  |                        |                       |            |  |  |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |  |
| 4874.00            | 46.87                        | 36.32                       | 6.85                  | 41.84                    | 48.20            | 74.00                  | -25.80                | Vertical   |  |  |  |  |  |
| 4874.00            | 46.59                        | 36.32                       | 6.85                  | 41.84                    | 47.92            | 74.00                  | -26.08                | Horizontal |  |  |  |  |  |
|                    |                              |                             | A۱                    | verage Value             |                  |                        |                       |            |  |  |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |  |  |  |  |
| 4874.00            | 37.92                        | 36.32                       | 6.85                  | 41.84                    | 39.25            | 54.00                  | -14.75                | Vertical   |  |  |  |  |  |
| 4874.00            | 37.42                        | 36.32                       | 6.85                  | 41.84                    | 38.75            | 54.00                  | -15.25                | Horizontal |  |  |  |  |  |

|            | Test channel: Highest channel |         |       |             |          |            |        |            |  |  |  |  |  |
|------------|-------------------------------|---------|-------|-------------|----------|------------|--------|------------|--|--|--|--|--|
| Peak Value |                               |         |       |             |          |            |        |            |  |  |  |  |  |
| Fraguesay  | Read                          | Antenna | Cable | Preamp      | Lovel    | Limit Line | Over   |            |  |  |  |  |  |
| Frequency  | Level                         | Factor  | Loss  | Factor      | Level    |            | Limit  | Polar.     |  |  |  |  |  |
| (MHz)      | (dBuV)                        | (dB/m)  | (dB)  | (dB)        | (dBuV/m) | (dBuV/m)   | (dB)   |            |  |  |  |  |  |
| 4924.00    | 46.35                         | 36.58   | 6.89  | 41.86       | 47.96    | 74.00      | -26.04 | Vertical   |  |  |  |  |  |
| 4924.00    | 46.55                         | 36.58   | 6.89  | 41.86       | 48.16    | 74.00      | -25.84 | Horizontal |  |  |  |  |  |
|            |                               |         | A۱    | erage Value |          |            |        |            |  |  |  |  |  |
| Fraguanay  | Read                          | Antenna | Cable | Preamp      | Lovel    | Limit Line | Over   |            |  |  |  |  |  |
| Frequency  | Level                         | Factor  | Loss  | Factor      | Level    |            | Limit  | Polar.     |  |  |  |  |  |
| (MHz)      | (dBuV)                        | (dB/m)  | (dB)  | (dB)        | (dBuV/m) | (dBuV/m)   | (dB)   |            |  |  |  |  |  |
| 4924.00    | 37.42                         | 36.58   | 6.89  | 41.86       | 39.03    | 54.00      | -14.97 | Vertical   |  |  |  |  |  |
| 4924.00    | 37.56                         | 36.58   | 6.89  | 41.86       | 39.17    | 54.00      | -14.83 | Horizontal |  |  |  |  |  |

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



|                                                                  |                                                                              |                                                        | Test m                             | ode: 802.11r                                                                      | (H20)                                                   |                                            |                                                            | Test mode: 802.11n(H20)  Test channel: Lowest channel |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|                                                                  |                                                                              |                                                        | Test cha                           | nnel: Lowest                                                                      | channel                                                 |                                            |                                                            |                                                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |                                                                              |                                                        |                                    | Peak Value                                                                        |                                                         |                                            |                                                            |                                                       |  |  |  |  |  |  |  |  |  |  |  |
| Frequency<br>(MHz)                                               | Read<br>Level<br>(dBuV)                                                      | Antenna<br>Factor<br>(dB/m)                            | Cable<br>Loss<br>(dB)              | Preamp<br>Factor<br>(dB)                                                          | Level<br>(dBuV/m)                                       | Limit Line<br>(dBuV/m)                     | Over<br>Limit<br>(dB)                                      | Polar.                                                |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00                                                          | 47.45                                                                        | 36.06                                                  | 6.81                               | 41.82                                                                             | 48.50                                                   | 74.00                                      | -25.50                                                     | Vertical                                              |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00                                                          | 47.21                                                                        | 36.06                                                  | 6.81                               | 41.82                                                                             | 48.26                                                   | 74.00                                      | -25.74                                                     | Horizonta                                             |  |  |  |  |  |  |  |  |  |  |  |
|                                                                  |                                                                              |                                                        | А                                  | verage Value                                                                      | )                                                       |                                            |                                                            |                                                       |  |  |  |  |  |  |  |  |  |  |  |
| Frequency<br>(MHz)                                               | Read<br>Level<br>(dBuV)                                                      | Antenna<br>Factor<br>(dB/m)                            | Cable<br>Loss<br>(dB)              | Preamp<br>Factor<br>(dB)                                                          | Level<br>(dBuV/m)                                       | Limit Line<br>(dBuV/m)                     | Over<br>Limit<br>(dB)                                      | Polar.                                                |  |  |  |  |  |  |  |  |  |  |  |
| ,                                                                | (abav)                                                                       | (42,)                                                  |                                    |                                                                                   |                                                         |                                            | 45.07                                                      | Vertical                                              |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00                                                          | 37.88                                                                        | 36.06                                                  | 6.81                               | 41.82                                                                             | 38.93                                                   | 54.00                                      | -15.07                                                     | Vertical                                              |  |  |  |  |  |  |  |  |  |  |  |
| , ,                                                              |                                                                              |                                                        | 6.81<br>6.81                       | 41.82                                                                             | 38.61                                                   | 54.00<br>54.00                             | -15.07<br>-15.39                                           | 1                                                     |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00                                                          | 37.88                                                                        | 36.06                                                  | 6.81<br>6.81                       | 41.82                                                                             | 38.61                                                   |                                            |                                                            |                                                       |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00                                                          | 37.88                                                                        | 36.06                                                  | 6.81<br>6.81                       | 41.82                                                                             | 38.61                                                   |                                            |                                                            |                                                       |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00                                                          | 37.88                                                                        | 36.06                                                  | 6.81<br>6.81                       | 41.82                                                                             | 38.61                                                   |                                            |                                                            |                                                       |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00<br>4824.00<br>Frequency                                  | 37.88<br>37.56<br>Read<br>Level                                              | 36.06<br>36.06<br>Antenna<br>Factor                    | 6.81 6.81 Test cha                 | nnel: Middle Peak Value Preamp Factor                                             | 38.61  channel  Level                                   | 54.00  Limit Line                          | -15.39<br>Over<br>Limit                                    | Horizontal                                            |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00<br>4824.00<br>Frequency<br>(MHz)                         | 37.88<br>37.56<br>Read<br>Level<br>(dBuV)                                    | 36.06<br>36.06<br>Antenna<br>Factor<br>(dB/m)          | 6.81 6.81 Test cha Cable Loss (dB) | nnel: Middle Peak Value Preamp Factor (dB)                                        | channel  Level (dBuV/m)                                 | Limit Line (dBuV/m)                        | Over<br>Limit<br>(dB)                                      | Horizontal                                            |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00<br>4824.00<br>Frequency<br>(MHz)<br>4874.00              | 37.88<br>37.56<br>Read<br>Level<br>(dBuV)<br>46.27                           | 36.06<br>36.06<br>Antenna<br>Factor<br>(dB/m)<br>36.32 | Cable Loss (dB) 6.85 6.85          | nnel: Middle Peak Value Preamp Factor (dB) 41.84                                  | 28.61<br>channel<br>Level<br>(dBuV/m)<br>47.60<br>47.89 | Limit Line (dBuV/m)                        | Over<br>Limit<br>(dB)<br>-26.40                            | Polar.                                                |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00<br>4824.00<br>Frequency<br>(MHz)<br>4874.00              | 37.88<br>37.56<br>Read<br>Level<br>(dBuV)<br>46.27                           | 36.06<br>36.06<br>Antenna<br>Factor<br>(dB/m)<br>36.32 | Cable Loss (dB) 6.85 6.85          | nnel: Middle Peak Value Preamp Factor (dB) 41.84 41.84                            | 28.61<br>channel<br>Level<br>(dBuV/m)<br>47.60<br>47.89 | Limit Line (dBuV/m)                        | Over<br>Limit<br>(dB)<br>-26.40                            | Polar.                                                |  |  |  |  |  |  |  |  |  |  |  |
| 4824.00<br>4824.00<br>Frequency<br>(MHz)<br>4874.00<br>Frequency | 37.88<br>37.56<br>Read<br>Level<br>(dBuV)<br>46.27<br>46.56<br>Read<br>Level | Antenna Factor (dB/m) 36.32 36.32 Antenna Factor       | Cable Loss (dB) 6.85 Cable Loss    | nnel: Middle Peak Value Preamp Factor (dB) 41.84 41.84 verage Value Preamp Factor | 28.61<br>Channel  Level (dBuV/m)  47.60 47.89  Level    | Limit Line (dBuV/m) 74.00 74.00 Limit Line | Over<br>Limit<br>(dB)<br>-26.40<br>-26.11<br>Over<br>Limit | Polar.  Vertical Horizontal                           |  |  |  |  |  |  |  |  |  |  |  |

|                               |        |         | Toot obor | analı Highaat | channal           |             |        |            |  |  |  |  |
|-------------------------------|--------|---------|-----------|---------------|-------------------|-------------|--------|------------|--|--|--|--|
| Test channel: Highest channel |        |         |           |               |                   |             |        |            |  |  |  |  |
| Peak Value                    |        |         |           |               |                   |             |        |            |  |  |  |  |
| Fraguenay                     | Read   | Antenna | Cable     | Preamp        | Level             | Limit Line  | Over   |            |  |  |  |  |
| Frequency<br>(MHz)            | Level  | Factor  | Loss      | Factor        | (dBuV/m)          | (dBuV/m)    | Limit  | Polar.     |  |  |  |  |
| (1711-12)                     | (dBuV) | (dB/m)  | (dB)      | (dB)          | (ubu v/III)       | (ubu v/III) | (dB)   |            |  |  |  |  |
| 4924.00                       | 46.38  | 36.58   | 6.89      | 41.86         | 47.99             | 74.00       | -26.01 | Vertical   |  |  |  |  |
| 4924.00                       | 46.51  | 36.58   | 6.89      | 41.86         | 48.12             | 74.00       | -25.88 | Horizontal |  |  |  |  |
|                               |        |         | А         | verage Value  | )                 |             |        |            |  |  |  |  |
| - Croquenou                   | Read   | Antenna | Cable     | Preamp        | Lovel             | Limit Line  | Over   |            |  |  |  |  |
| Frequency                     | Level  | Factor  | Loss      | Factor        | Level<br>(dBuV/m) |             | Limit  | Polar.     |  |  |  |  |
| (MHz)                         | (dBuV) | (dB/m)  | (dB)      | (dB)          | (ubu v/III)       | (dBuV/m)    | (dB)   |            |  |  |  |  |
| 4924.00                       | 37.25  | 36.58   | 6.89      | 41.86         | 38.86             | 54.00       | -15.14 | Vertical   |  |  |  |  |
| 4924.00                       | 37.33  | 36.58   | 6.89      | 41.86         | 38.94             | 54.00       | -15.06 | Horizontal |  |  |  |  |

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





7 Test Setup Photo









# 8 EUT Constructional Details

Reference to the test report No. CCISE170804701

-----End of report-----