#### ECE 424 Design of Microprocessor-Based Systems

#### Hardware Detail of Intel 8088

Haibo Wang ECE Department Southern Illinois University Carbondale, IL 62901

## 8088 Pin Configuration



| Pin Name | Pin Number | Direction | Description                                                                                                                                                     |
|----------|------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GND:     | 1 & 20     |           | Both need to be connected to ground                                                                                                                             |
| VCC:     | 21         |           | VCC = 5V                                                                                                                                                        |
| CLK:     | 19         | Input     | 33% duty cycle                                                                                                                                                  |
| MN/MX:   | 33         | Input     | High → Minimum mode<br>Low → Maximum mode                                                                                                                       |
| RESET:   | 21         | Input     | Reset 8088                                                                                                                                                      |
|          |            |           | <ul> <li>Duration of logic high must be greater<br/>than 4*T</li> <li>After reset, 8088 fetches instructions<br/>starting from memory address FFFF0H</li> </ul> |

| Pin Name | Pin Number | Direction | Description                                                                               |
|----------|------------|-----------|-------------------------------------------------------------------------------------------|
| READY    | 22         | Input     | Informs the processor that the selected memory or I/O device is ready for a data transfer |



| Pin Name | Pin Number | Direction | Description                                                         |
|----------|------------|-----------|---------------------------------------------------------------------|
| HOLD     | 31         | Input     | The execution of the processor is suspended as long as HOLD is high |
| HLDA     | 30         | Output    | Acknowledges that the processor is suspended                        |



- ➤ Procedure for Device 2 to use bus
  - Drive the HOLD signal of 8088 high
  - Wait for the HLDA signal of 8088 becoming high
  - Now, Device2 can send data to bus

| Pin Name | Pin Number | Direction | Description                                                                                     |
|----------|------------|-----------|-------------------------------------------------------------------------------------------------|
| NMI      | 17         | Input     | Causes a non-maskable type-2 interrupt                                                          |
| INTR     | 18         | Input     | Indicates a maskable interrupt request                                                          |
| INTA     | 24         | Output    | Indicates that the processor has received an INTR request and is beginning interrupt processing |

- **NMI (non-maskable interrupt):** a rising edge on NMI causes a type-2 interrupt
- ➤ **INTR:** logic high on INTR poses an interrupt request. However, this request can be masked by IF **(Interrupt enable Flag)**. The type of interrupt caused by INTR is read from data bus
- ➤ **INTA**: control when the interrupt type should be loaded onto the data bus



| Pin Name | Pin Number | Direction | Description                                                     |
|----------|------------|-----------|-----------------------------------------------------------------|
| ALE      | 25         | Output    | Indicates the current data on 8088 address/data bus are address |



| Pin Name            | Pin Number | Direction | Description                              |
|---------------------|------------|-----------|------------------------------------------|
| DEN                 | 26         | Output    | Disconnects data bus connection          |
| $DT / \overline{R}$ | 27         | Output    | Indicates the direction of data transfer |



| Pin Name | Pin Number | Direction | Description                                                                                                             |
|----------|------------|-----------|-------------------------------------------------------------------------------------------------------------------------|
| WR       | 29         | Output    | Indicates that the processor is writing to memory or I/O devices                                                        |
| RD       | 32         | Output    | Indicates that the processor is reading from memory or I/O devices                                                      |
| IO/ M    | 28         | Output    | Indicates that the processor is accessing whether memory (IO/ $\overline{M}$ =0) or I/O devices (IO/ $\overline{M}$ =1) |



| Pin Name | Pin Number | Direction | Description                                      |
|----------|------------|-----------|--------------------------------------------------|
| AD[7:0]  | 9-16       | I/O       | Address / Data bus                               |
| A[19:8]  | 2-8, 35-39 | Input     | Address bus                                      |
| $SS_0$   | 34         | Output    | Status Output                                    |
| TEST     | 23         | Input     | It is examined by processor testing instructions |

#### 8284 Clock Generator



## System Timing Diagrams

- ☐ T-State:
  - One clock period is referred to as a T-State



- An operation takes an integer number of T-States
- ☐ CPU Bus Cycle:
  - A bus cycle consists of 4 or more T-States



## Memory Read Timing Diagrams



## Memory Write Timing Diagrams



#### Interrupt Acknowledge Timing Diagrams



- ☐ It takes one bus cycle to perform an interrupt acknowledge
- ☐ During T1, the process tri-states the address bus
- ☐ During T2, INTA is pulled low and remains low until it becomes inactive in T4
- ☐ The interrupting devices places an 8-bit interrupt type during INTA is active

#### **HOLD/HLDA** Timing Diagrams



- ☐ The processor will examine HOLD signal at every rising clock edge
- ☐ If HOLD=1, the processor will pull HLDA high at the end of T4 state (end of the execution of the current instruction) and suspend its normal operation
- ☐ If HOLD=0, the processor will pull down HLDA at the falling clock edge and resume its normal operation