EE1101 Signals and Systems JAN—MAY 2018 Tutorial 10

April 23, 2018

1. Sketch the pole-zero plot corresponding to the following causal system functions:

(a)
$$\frac{s-2}{s^2+8s+15}$$

(b)
$$\frac{s+1}{(s+2)^2(s+3)}$$

(c)
$$\frac{2s^2+s+1}{s(s+2)}$$

(d)
$$\frac{2s+1}{(s+2)(s^2+1)^2}$$

Which of the above system functions correspond to BIBO stable systems?

2. Determine the BIBO stability and causality for the following Laplace transforms:

(a)
$$\frac{2s+5}{(s+2)(s+3)}$$
; $-3 < Re(s) < -2$

(b)
$$\frac{2s-5}{(s-2)(s-3)}$$
; $2 < Re(s) < 3$

(c)
$$\frac{2s+3}{(s+1)(s+2)}$$
; $Re(s) > -1$

(d)
$$\frac{2s+3}{(s+1)(s+2)}$$
; $Re(s) < -2$

- 3. A causal LTI system is described by the system function $H(s) = \frac{s+3}{(s+2)^3}$.
 - (a) Find the impulse response of the system.
 - (b) For the input signal x(t) = 10u(t), calculate the final value of the output y(t) of the above system without explicitly evaluating y(t).
- 4. Consider a continuous time LTI system for which the input x(t) and output y(t) are related by the differential equation

$$\frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} - \frac{\mathrm{d}y(t)}{\mathrm{d}t} - 2y(t) = x(t).$$

Let X(s) and Y(s) denote Laplace transforms of x(t) and y(t), respectively, and let H(s) denote the Laplace transform of h(t), the system impulse response.

- (a) Determine H(s) as a ratio of two polynomials in s. Sketch the polezero pattern of H(s).
- (b) Determine h(t) for each of the following cases:
 - (a) The system is stable.
 - (b) The system is causal.
 - (c) The system is neither stable nor causal.
- 5. The system function of a causal LTI system is

$$H(s) = \frac{s+1}{s^2 + 2s + 2}.$$

Determine the response y(t) when the input is

$$x(t) = e^{-|t|}, \quad -\infty < t < \infty.$$

- 6. Suppose we are given the following information about a causal and stable LTI system with impulse response h(t) and a rational system function H(s):
 - (a) H(1) = 0.2.
 - (b) When the input is u(t), the output is absolutely integrable.
 - (c) When the input is tu(t), the output is not absolutely integrable.
 - (d) The signal $\frac{d^2h(t)}{dt^2} + 2\frac{dh(t)}{dt} + 2h(t)$ is of finite duration.
 - (e) H(s) has exactly one zero at infinity. Determine H(s) and its region of convergence.

7. The autocorrelation function of a signal x(t) is defined as

$$\phi_{xx}(\tau) = \int_{-\infty}^{\infty} x(t)x(t+\tau)dt$$

(a) Determine, in terms of x(t), the impulse response h(t) of an LTI system for which, when the input is x(t), the output is $\phi_{xx}(t)$.

- (b) From your answer in part (a), determine $\Phi_{xx}(s)$, the Laplace transform of $\phi_{xx}(\tau)$ in terms of X(s). Also express $\Phi_{xx}(j\omega)$, the Fourier transform of $\phi_{xx}(\tau)$ in terms of $X(j\omega)$.
- (c) If x(t) has the pole zero pattern and ROC as shown in figure, sketch the pole-zero pattern and indicate the ROC for $\phi_{xx}(\tau)$.

8. For each of the following signals x(t) given below, calculate the unilateral Laplace transform using direct integration.

(a)
$$x(t) = u(t-2)$$

(b)
$$x(t) = u(t+2)$$

(c)
$$x(t) = e^{3t}u(t)$$

(d)
$$x(t) = te^t u(t)$$

(e)
$$x(t) = \sin t \cdot u(t)$$

9. (a) Determine the differential equation relating $v_i(t)$ and $v_o(t)$ for the RLC circuit shown below.

(b) Suppose that $v_i(t) = e^{-3t}u(t)$. Using the unilateral Laplace transform, determine $v_o(t)$ for t > 0.

—— END ——