Lecture 14

Scribed by: Erik Rosenstrom, Maharshi Parekh, Sichao Yu, Yunxuan Shi

October 9, 2019

Theorem 1 (The Fary). If G is a planar, then there exists a linear embedding of G.

 ${\it Proof.}$ It suffices to consider maximal planar graphs.

[star-shaped polygons]. Polygon P is a star-shaped if there exists

 $x \in int(P)$

Such that

 $\bar{xy} \in Pfor \ all \ y \in P$

Claim: All 5-gons are star-shaped

Since every planar graph has at least one vertex with $deg(v) \leq 5$. Let v be a vertex with $deg(v) \leq 5$. G' is $G \setminus v$ plus 2 edges to make it maximal. By induction, \exists linear embedding of G'.

Figure 1: Remove a vertex and make the graph maximal.

The 3 triangles t1, t2, t3 are faces in the embedding. Their union is a k-gon for k = deg(v). Since the k-gon is star-shaped($k \le 5$), there is a point x such that straight line segments x to the k vertices stay inside the k-gon. Place v at point x to complete the embedding.

Theorem 2 (Steinitz Theorem). A graph is "polytopal" iff it is planar and 3-connected.

Figure 2: Examples of polytopals

Question 1. Minor means that some subgraph of C contracts to A. Contraction is a surjective relationship. Subgraph means that you have to remove some components or remain the graph unchanged. So $|V_A| \le |V_C|$ and $|E_A| \le |E_C|$.

Question 2. A is a minor of B and B is a minor of A. From question 1 we can get

$$|V_A| \leq |V_B| \ |V_B| \leq |V_A|$$

The only case is that

$$|V_A| = |V_B|$$

We can also get that edges are equal too. If we contract or remove any edges, we can't get the same number of vertices and edges. A is a subgraph of B, and B is a subgraph of A. A and B must be isormorphic.

Question 3. Since all subdivisions or contractions are made of single subdivision or contraction, condition in figure 3 is enough. The reverse action of a subdivision is actually a contraction. So the topological minor is also a special case of minor.

Figure 3: Question 3

Figure 4: Examples of question 4

Question 4. Give an example of a pair of trees A and B such that $A \leq B$, but A is not a topological minor of B. One way to think of it is to find a minor that can change the degree of vertices. The examples in figure 4 both have a vertex with degree of 4 by contract vertices.

Question 5. (Question 9 in homework3) If $N(u) \cap N(v) = \emptyset$, there is no common neighbour of u and v. In this way, the contraction of (u,v) can only delete one vertex and one edge, then e(G) = e(H). The only way contraction could cause $e(G) \neq e(H)$ is u and v have at least one neighbour, as shown in figure 5.

Figure 5: Example of question 9