Construcción de software y toma de decisiones

TC2005B

Dr. Esteban Castillo Juarez

ITESM, Campus Santa Fe

Agenda

Algebra relacional

- Producto cartesiano
- Obtener valor máximo de una columna
- Obtener valores únicos de una columna

• $R \times S$ Define una nueva tabla compuesta por la concatenación de cada una de las filas de una tabla R con cada una de las filas de la tabla S.

$$R \times S = \{ (T_1, T_2) | T_1 \in R \land T_2 \in S \}$$

• El numero de elementos en la tabla resultante será dado:

$$|R \times S| = |R| * |S|$$

Ejemplo 1

A

Parte	Nombre	Material
P5	Perno	Acero
P6	Cáncamo	Bronce

В

Mercado	País
M1	USA
M2	UE
M3	China

 $A \times B$

Parte	Nombre	Material	Mercado	País
P5	Perno	Acero	M1	USA
P5	Perno	Acero	M2	UE
P5	Perno	Acero	M3	China
P6	Cáncamo	Bronce	M1	USA
P6	Cáncamo	Bronce	M2	UE
P6	Cáncamo	Bronce	МЗ	China

Ejemplo 2

A B

n c x

1 x

2 y

3 z

Ejemplo 3

 $A \times B$

Primero Creamos una copia de la tabla para trabajar con ella, para ellos utilizamos la operación renombrar y la asignación de algebra relacional.

R3 (Tabla $1 \times \text{Tabla } 2$)

Tabla 1 Tabla 2

Producto cartesiano (×)

Después aplicamos el producto cartesiano sobre las nuevas tablas.

n	С
1	1
1	2
1	3
2	1
2	2
2	3
3	1
3	2
3	3

R3 (Tabla 1 x Tabla 2)

n	С
1	1
1	2
1	3
2	1
2	2
2	3
3	1
3	2
3	3

R1 =	$\rho_{tabla1}(A)$

$$R3 = R1 \times R2$$

$$R4 = \sigma_{n < c} (R3)$$
Selección (σ)

El siguiente paso es filtrar los elementos menores (selección).

R4

n	С
1	2
1	3
2	1
2	3

R4

n	С
1	2
1	3
2	1
2	3

R5
n
1
2

El penúltimo paso es proyectar la columna n.

El ultimo paso involucra substraer usando teoría de conjuntos y así obtenemos el mayor.

Tomemos la siguiente tabla como ejemplo:

Employee			
Emp_id	Emp_name	Emp_office	
1001	Bob	10	
1002	Alice	11	
1003	Sandy	10	
1004	Larry	11	
1005	Susan	11	

Tomemos la siguiente tabla como ejemplo:

Employee			
Emp_id	Emp_name	Emp_office	
1001	Bob	10	
1002	Alice	11	
1003	Sandy	10	
1004	Larry	11	
1005	Susan	11	

Emp_id
1001
1002
1003
1004
1005

La operación básicamente dice: "Cree una nueva tabla que consista solo en los identificadores de empleados de la tabla original (Empleado).

Si la operación hubiera sido así, la relación resultante se vería así:

Employee			
Emp_id	Emp_name	Emp_office	
1001	Bob	10	
1002	Alice	11	
1003	Sandy	10	
1004	Larry	11	
1005	Susan	11	

Emp_id	Emp_name
1001	Bob
1002	Alice
1003	Sandy
1004	Larry
1005	Susan

Una cosa para recordar acerca de las tablas es que cada conjunto de filas es único, es decir, no hay duplicados. en los anteriores dos ejemplos, esto no es un problema; sin embargo, si tuviéramos que ejecutar lo siguiente:

Employee		
Emp_id	Emp_name	Emp_office
1001	Bob	10
1002	Alice	11
1003	Sandy	10
1004	Larry	11
1005	Susan	11

Emp_office]	
10		
11		

Referencias

- Sommerville, I., Software Engineering, 10th Edition, Pearson, 2016, IN, 1292096144, 9781292096148.
- Connolly Thomas M, Database systems: a practical approach to design, implementation and management, 5thed., London: Addison-Wesley, 2010, 9780321523068.
- Perez, C., MySQL para windows y Linux, España, Alfaomega, 2004.
- https://www.becas-santander.com/es/blog/metodologias-desarrollosoftware.html

Gracias!

Preguntas...

Dr. Esteban Castillo Juarez

Google academics:

https://scholar.google.com/citations?user=JfZpVO8AAAAJ&hl=enhttps://dblp.uni-trier.de/pers/hd/c/Castillo:Estebanhttps://db

