Homework 1

Due Sep 23 2021

1. State one scientific or engineering problem that is suitable or unsuitable for the continuum approach. Articulate your reasons.

2. Let δ_{ij} and ε_{ijk} be the Kronecker delta and permutation symbols, respectively. Show the following.

- (a) $\delta_{ii} = 3$.
- (b) $\delta_{im}T_{mj}=T_{ij}$.
- (c) $\varepsilon_{ijk}\varepsilon_{pjk}=2\delta_{pi}$.
- (d) $\varepsilon_{ijk}\varepsilon_{ijk}=6$.

3. The Cartesian components of a tensor and a vector are given as

$$[\mathbf{A}] = \begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & 2 \\ 3 & -2 & 3 \end{bmatrix}, \quad [\mathbf{a}] = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}.$$

(a) Calculate A_{ii} , $A_{ij}A_{ji}$, and $A_{ij}a_ia_j$.

(b) Decompose the tensor into a symmetric S^A and an antisymmetric part W^A .

(c) Find the dual vector $\boldsymbol{\omega}^A$ for the antisymmetric part \boldsymbol{W}^A .

(d) Verify that $W^A a = \omega^A \times a$.

4. Show that the contraction of a symmetric tensor S and an antisymmetric tensor W is zero, that is, S: W = 0.

5. Let a tensor A be given by

$$\mathbf{A} = 2\left(\mathbf{I} - \mathbf{e}_1 \otimes \mathbf{e}_1\right) + 3\left(\mathbf{e}_1 \otimes \mathbf{e}_2 + \mathbf{e}_2 \otimes \mathbf{e}_1\right).$$

Determine the eigenvalues and eigenvectors of it.

6. $u(x) = x_1x_2x_3e_1 + x_1x_2e_2 + x_1e_3$,

(a) Determine $\operatorname{div} \boldsymbol{u}$, $\operatorname{curl} \boldsymbol{u}$, $\operatorname{grad} \boldsymbol{u}$, and $\nabla^2 \boldsymbol{u}$.

(b) Verify that $\nabla^2 \mathbf{u} = \operatorname{grad} (\operatorname{div} \mathbf{u}) - \operatorname{curl} (\operatorname{curl} \mathbf{u})$.