Вычислите определенный интеграл $\int \frac{\lambda d\lambda}{x^4 + 4}$ методом Симпсона, разбив отрезок интегрирования на *5* частей.

 $\int\limits_{a}^{b} f(x) dx \approx \frac{h}{3} \Bigg(f(x_0) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + 2 \sum_{i=1}^{n-1} f(x_{2i}) + f(x_{2n}) \Bigg).$ Для ее применения нам требуется вычислить шаг $h = \frac{b-a}{2n}$, определить узлы

Промежуточные вычисления будем проводить с точностью до четырех знаков

Из условия мы знаем, что $a=0; b=5; n=5; f(x)=\frac{x}{x^4+4}$.

 $x_i = a + i \cdot h, i = 0, 1, ..., 2n$ и вычислить соответствующие значения

Формула метода Симпсона (парабол) имеет вид

подынтегральной функции $f(x_i)$, i = 0, 1, ..., 2n.

(округлять на пятом знаке).

Итак, вычисляем шаг
$$h = \frac{b-a}{2n} = \frac{5-0}{2 \cdot 5} = 0.5$$
.

Переходим к узлам и значениям функции в них:

$$i = 0: \quad x_i = x_0 = a + i \cdot h = 0 + 0 \cdot 0.5 = 0 \implies$$

$$f(x_0) = f(0) = \frac{0}{0^4 + 4} = 0$$

i = 1: $x_i = x_1 = a + i \cdot h = 0 + 1 \cdot 0.5 = 0.5 \implies$

$$f(x_1) = f(0.5) = \frac{0.5}{0.5^4 + 4} \approx 0.12308$$

$$i = 10$$
: $x_i = x_{10} = a + i \cdot h = 0 + 10 \cdot 0.5 = 5 \implies$

$$f(x_{10}) = f(5) = \frac{5}{2} \approx 0.00795$$

$$f(x_{10}) = f(5) = \frac{5}{5^4 + 4} \approx 0.00795$$

Для наглядности и удобства результаты сведем в таблицу:

i	0	1	2	3	4	5
x_i	0	0.5	1	1.5	2	2.5
$f(x_i)$	0	0.12308	0.2	0.16552	0.1	0.05806

i	6	7	8	9	10
x_i	3	3.5	CTILI	4.5	_ 5
$f(x_i)$	0.03529	0.02272	0.01538	0.01087	0.00795

Подставляем полученные результаты в формулу метода парабол:

$$\int_{0}^{5} \frac{x dx}{x^{4} + 4} \approx \frac{h}{3} \left(f(x_{0}) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + 2 \sum_{i=1}^{n-1} f(x_{2i}) + f(x_{2n}) \right) =$$

$$= \frac{0.5}{3} \left(0 + 4 \cdot \begin{pmatrix} 0.12308 + 0.16552 + \\ + 0.05806 + 0.02272 + \\ + 0.01087 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0.2 + 0.1 + \\ + 0.03529 + \\ + 0.01538 \end{pmatrix} + 0.00795 \right) \approx$$

 ≈ 0.37171

Мы специально взяли определенный интеграл, который можно вычислить по формуле Ньютона-Лейбница, чтобы сравнить результаты. $\int_{0}^{5} \frac{x dx}{x^{4} + 4} = \frac{1}{2} \int_{0}^{5} \frac{d(x^{2})}{(x^{2})^{2} + 4} = \left(\frac{1}{4} \operatorname{arctg} \frac{x^{2}}{2}\right) \Big|_{0}^{5} = \frac{1}{4} \operatorname{arctg} \frac{25}{2} \approx 0.37274$

Результаты совпадают с точностью до сотых.