

3. Análise de Projetos de Investimento

3.1 Como calcular valores atuais e futuros:

Capitalização e atualização; Inflação e taxas reais; Anuidades e perpetuidades.

3.2 Análise da rentabilidade de projetos de investimento:

Cash-Flows;

Taxa de atualização;

O Valor Atual Líquido (VAL);

A Taxa Interna de Rendibilidade (TIR);

O Período de Recuperação do Investimento (Payback);

Índice de Rendibilidade (IR).

u.c. Gestão

3.1. Como calcular valores atuais e futuros

Suponha que tem 1.000€ e pretende depositá-los no banco. O que vai acontecer?

Ao depositar os 1.000€ no banco, estes ficam a render a uma dada taxa de juro.

Ao fim de 1 ano há 2 hipóteses:

- a) <u>Levantar o juro</u> ficando apenas o capital inicial deixar nessa conta só o montante inicial, levantando os juros todos os anos (juros simples)
- b) <u>Acumular o juro</u> ao capital depositá-los numa conta a prazo em que os juros vencidos ficam a acumular nessa conta gerando mais juros (juros compostos)

Capital ou depósito inicial = 1000 €; r = taxa de juro (anual) = 5%

Fluxo < 0 = pagamento ; Fluxo > 0 = recebimento

Juros Simples

Período	0	1	2	3	 n
Fluxos	-1 000 €	+50 €	+50 €	+50 €	 +1 050 €
Fórmula	-C _o	r × C _o	r × C _o	r × C _o	 $r C_0 + C_0 = (1+r)C_0$

Juros Compostos - Neste caso há capitalização

Período	0	1	2	3	n
Fluxos	-1.000 €	0	0	0	 1.000(1+0,05) ⁿ
Fórmula	-C _o	0	0	0	 $C_n = C_0 (1+r)^n$

u.c. Gestão

Capitalização versus Atualização

Questão para fazer na aula:

Um capital aplicado à taxa anual de 2% em regime de juros compostos gerou ao fim de quatro anos o valor acumulado de 108 243,216€. Qual o valor do capital inicialmente aplicado?

u.c. Gestão

<u>Análise a preços correntes e constantes – Ex:</u>

Suponha que lhe prometem 1.000 € para daqui a um ano, mas que os preços sobem durante esse ano, ou seja, há inflação. Os 1 000 € daqui a um ano são 1 000 € a preços correntes do ano 1.

Se a taxa de inflação anual for de 1,5%, o valor real desses 1000€, i.e. o valor a preços constantes (preços de hoje, ano 0) será igual a :

O que significa o valor obtido? Significa que um bem que custe hoje 985,22€ custa daqui a um ano: 985,22 × 1,015 = 1.000 €

Taxas de Juro: Nominal e Real

- **Taxa de juro nominal (r**_n) usa-se em avaliação de projetos a preços correntes, não é corrigida do efeito da inflação (i).
- O Taxa de juro real (r_r) usa-se em avaliação de projetos a preços constantes = Taxa nominal expurgada do efeito da inflação.

Exemplo:

Se a taxa de juro nominal (r_n) = 2% e a a taxa de inflação (i) for 1,5%, qual será a taxa de juro real (r_r)?

Resposta:

- Se $(1+r_n) = (1+i) \times (1+r_r) => (1+2\%) = (1+1,5\%) \times (1+r_r)$
- => $\mathbf{r}_r = (1+r_n)/(1+i)-1 = (1,02/1,015)-1 = 0,492\%$.

Cálculo aproximado da taxa de juro real: $r_r = r_n - i = 2\% - 1.5\% = 0.5\%$

u.c. Gestão

Períodos inferiores a um ano: Taxas Anuais Nominais (TAN) e Anuais Efetivas (TAE)

Nas taxas há ainda a considerar a equivalência entre taxas de diferentes períodos inferiores ao ano.

Na banca portuguesa usa-se também a designação <u>nominal</u> noutro contexto, para significar que os juros de pagamentos ou recebimentos infra-anuais são calculados <u>proporcionalmente</u> à taxa anual nominal.

Por exemplo, a taxa mensal correspondente à taxa anual nominal (TAN) de 12% é: $r_m = 12\%/12 = 1\%$

Pela lógica da capitalização que estudámos, a taxa mensal equivalente não se obtém daquela maneira, mas considerando a taxa anual efetiva (**TAE**): $(1+r_a) = (1+r_m)^{12} = r_m = (1+r_a)^{1/12} - 1 = 1,12^{1/12} - 1 = 0,95\%$.

Questão para fazer na aula:

Se a taxa de juro anual nominal (r_n) for 2% e a a taxa de inflação (i) for 1,5%, e tendo calculado anteriormente a taxa de juro real como 0,492%, 1.000€ recebidos hoje capitalizam ao fim de 1 ano:

- a) em termos nominais (ou seja, a preços correntes)?
- b) em termos reais (ou seja, a preços constantes do ano 0) ?

u.c. Gestão

Anuidades e perpetuidades

Numa situação em que se concede/obtém um empréstimo num período e temos: Rendas (+) ou Pagamentos (-) em prestações constantes a iniciar no período seguinte, temos uma chamada **Anuidade**

- => Durante n períodos (n é o nº de anos, trimestres, meses ...)
- => Com r taxa atualização (anual, trimestral, mensal,)

Como se atualizam as rendas ou pagamentos?

Valor Atual (VA) = $\sum_{t=1...n} A_t/(1+r)^t$

Т	0	1	2	 n
Empréstimo	Е			
Pagamentos		A /(1+r)¹	A/(1+r) ²	A/(1+r) ⁿ

Série em Progressão Geométrica com razão [1/(1+r)]

Soma=	1ºtermo-último termo x razão
Soma	1-razão

Ex: Aquisição de um automóvel ou de uma habitação

$$VA = A \frac{\frac{1}{1+r} - \frac{1}{(1+r)^{n}} \times \frac{1}{1+r}}{1 - \frac{1}{1+r}} = A \frac{\frac{(1+r)^{n} - 1}{(1+r)^{n+1}}}{\frac{1+r-1}{1+r}} =$$

Valor Atual de uma anuidade

de prestações constantes

$$= A \frac{(1+r)^{n}-1}{(1+r)^{n+1}} \times \frac{1+r}{r} = A \frac{(1+r)^{n}-1}{(1+r)^{n} \times r}$$

Factor de anuidade: a (r, n)

C= Valor atual de uma perpetuidade

de prestações constantes

$$C = A \frac{\frac{1}{1+r} - \frac{1}{\infty} \times \frac{1}{1+r}}{1 - \frac{1}{1+r}} = A \frac{1}{1+r} \times \frac{1+r}{r} = A \times \frac{1}{r}$$

Factor de perpetuidade: $a(r, \infty) = 1 / r$,

Com o crescimento da prestação ou da renda a g % por período, a fórmula é: a $(r, \infty) = 1 / (r-g)$, desde que g<r.

u.c. Gestão

Questões:

1. Quer comprar um apartamento e para isso necessita de um empréstimo de 250 000 €. Se as mensalidades de pagamento forem constantes, a taxa de juro média for de 1% ao mês (TAN=12%) e o prazo for de 30 anos, qual o valor de cada mensalidade a pagar ao banco?

3.2 Análise da rentabilidade de projetos de investimento

Cash Flows

Um investimento é ...

 Uma sequência de fluxos financeiros (cash flows) distribuídos por diversos períodos:

Período	0	1	2	3	 n
	CF ₀	CF_1	CF ₂		 CF_n

- O primeiro ou primeiros cash flows são normalmente negativos:
 - despesas de investimento em terrenos, edifícios, equipamentos, licenças e patentes ou, até, em fundo de maneio, como a constituição e reforço de stocks de matérias primas ou mercadorias.
- No final do tempo de vida do projeto, o valor destas despesas que seja recuperável dará origem ao valor residual do investimento.

13

Valor Residual do Investimento

- A venda no fim do seu tempo de vida de um dado ativo fixo origina geralmente um ganho ou uma perda extraordinários (uma mais ou uma menos-valia).
- Se a empresa for lucrativa este valor vai ter impacto fiscal, pagandose mais ou menos imposto.
- Assim, calcula-se O VALOR RESIDUAL LÍQUIDO DE IMPOSTOS (VR) = Valor Mercado_n - (Valor Mercado_n – Valor Contabilístico_n) * Taxa imposto

em que:

Valor Mercado_n = Valor esperado de venda do ativo no ano n Valor Contabilístico = Valor de compra – Amortizações Acumuladas

Cash Flows de Exploração

- Os Cash Flows durante a fase de exploração (passada a fase inicial de investimento) serão habitualmente positivos se o projeto for lucrativo.
- Os Cash Flows de exploração correspondem a:
 - = Resultados Antes de Juros e Impostos × (1 tx. imposto) + Amortizações e Depreciações

Com

Resultados Antes de Juros e Impostos (RAJI)= EBIT (Earnings before interest and tax)

= RESULTADOS OPERACIONAIS

Considera-se aqui o EBIT x (1-t), resultado operacional líquido de impostos, em vez de EBT x (1-t) = Resultado Líquido do Período, para não deduzir os custos financeiros de financiamento que aparecem como taxa de juro na taxa de atualização dos cash flows. Isso é coerente com o facto de se considerar o montante total do investimento e não só a parte financiada por capitais próprios

Exercício - Mapa de Cash-Flows (unidade: 1000 €)

- 1.Uma empresa investiu 100 mil € numa nova máquina para os próximos 4 anos
- 2. Esta é depreciável em 5 anos e pode ser vendida ao fim de 4 anos por 10 mil € (valor comercial).
- 3. Sabe-se que as vendas anuais adicionais serão de 150 mil € durante todo o projeto.
- 4. Os custos operacionais anuais adicionais com pessoal, fse e matéria prima serão de 100 mil €, acrescidos dos custos com amortizações (depreciações).
- 6. A taxa de imposto a pagar pela empresa é de 25%.

Rubrica / Período	0	1	2	3	4
1. Despesas de Investimento	-100				
2. Valor Residual do Investimento					12,5
3. Cash Flow do Investimento (=1+2)	-100	0	C	0	12,5
4. Vendas		150	150	150	150
5. Custos Operacionais (RH, fse, m.pr)		-100	-100	-100	-100
6. Amortizações (Depreciações)		-20	-20	-20	-20
7. Resultado Operacional (EBIT)		30	30	30	30
8. EBIT x (1 - 0,25)		22,5	22,5	22,5	22,5
9. CF Exploração (=-6+8)		42,5	42,5	42,5	42,5
10. CFlow Total = CF Inv. + CF Expl.	-100	42,5	42,5	42,5	55

Quando temos um EBIT negativo, e vamos calcular EBIT x (1 - t) como procedemos?

Exemplo: Para t=25% e EBIT = -30 000

R:

- a) Tratando-se de uma **empresa, o pressuposto geral é que com resultado (EBIT) negativo não há imposto**, ou seja ele é ZERO => EBIT \times (1-t) = -30 000 (é também a situação de um projeto desligado de qualquer empresa já existente).
- b) Se o EBIT é negativo, mas se trata de um projeto implementado por uma **empresa lucrativa** apesar do projeto, então para calcular o EBIT líquido e o seu cash flow, o imposto tem que ser calculado e neste caso ele é negativo. EBIT x $(1-t) = -30\ 000x(1-25\%) =$

 \Rightarrow =-30 000+7 500 = -22 500 que é melhor do que -30 000

A empresa pagará menos impostos. Há obviamente um contributo positivo para o cash flow do projeto porque essa diferença corresponde a um benefício fiscal que contará assim positivamente no projeto.

u.c. Gestão

Taxa de atualização

Na Avaliação de Projetos de Investimento estamos confrontados com a necessidade de comparar Fluxos financeiros aplicados numa fase inicial (hip. ano 0), com Fluxos gerados nos anos seguintes (anos 1, 2, 3, 4, ..)

A solução é ATUALIZÁ-LOS, dividindo cada CF_j (cash flow do período j) por $(1+r)^j$, sendo r a taxa de atualização.

Avaliação de Projetos e Atualização

Exemplo

Ano	0	1	2	3	4				
Cash Flows C _t	-100	40	50	60	80				
Fator de atualização <mark>F</mark> _t (r = 5%)	valor atual de u	valor atual de uma unidade obtido no ano t com a taxa de atualização r => $F_t = 1/(1+r)^t$							
1/(1+r) ^t	1/(1,05)0	1/(1,05)1	1/(1,05)2	1/(1,05)3	1/(1,05)4				
1/1,05 ^t	1	0,952381	0,907029	0,863838	0,822702				
Valor Atual (t)= C _t ×F _t	-100	38,09524	45,35147	51,83026	65,8162				
Valor Atual VA	Soma dos ca	Soma dos cash flows futuros atualizados sem incluir o investimento inicial							
Valor Atual Líquido	Soi	ma de $C_0 + VA = \sum_{i=1}^{n} C_i$	C _t atualizados		101,0932				

u.c. Gestão

Rubrica / Período	0	1	2	3	4
1. Despesas de Investimento	-100				
2. Valor Residual do Investimento					12,5
3. Cash Flow do Investimento (=1+2)	-100	0	0	0	12,5
4. Vendas		150	150	150	150
5. Custos Operacionais (RH, fse, m.pr)		-100	-100	-100	-100
6. Amortizações(Depreciações)		-20	-20	-20	-20
7. Resultado Operacional (EBIT)		30	30	30	30
8. EBIT x (1 - 0,25)		22,5	22,5	22,5	22,5
9. CF Exploração (=-6+8)		42,5	42,5	42,5	42,5
10. CFlow Total = CF Inv. + CF Expl.	-100	42,5	42,5	42,5	55
C.F. Atualizados=10/(1+tx atualiz.)^i	-100	38,636364	35,12	31,93	37,56574
Σ C. F. Atualiz.	-100	-61,36364	-26,24	5,69	43,26

Taxas de Atualização (1)

- As taxas de atualização são em geral NOMINAIS, aplicadas a CASH FLOWS a preços correntes
- Quando os Cash Flows são reais ou a preços constantes, utilizam-se taxas de atualização reais

u.c. Gestão

Taxas de atualização (2)

- A determinação das taxas de atualização deve ter em conta o risco associado ao investimento .
- As taxas de atualização exprimem o custo de oportunidade do capital ou seja o rendimento que o investidor pretende tendo em conta o risco do investimento. O investidor exige receber pelo menos a taxa que obteria em investimentos alternativos com o mesmo grau de risco.
- Se:
 - A taxa de juro sem risco (obrigações do tesouro) = 2%
 - Se o risco inerente a um projeto x = 5%
 - Então a taxa de atualização deveria ser r = j_{sr} + Pr = 7%
 - J_{sr} taxa de juro sem risco (obrigações do tesouro)
 - Pr prémio de risco

Taxas de atualização (3)

A taxas de atualização de um projeto financiado exclusivamente por capital próprio deve corresponder à soma de:

- + rendimento esperado de activos sem risco (rendimentos previsíveis a priori com precisão, como a remuneração dos títulos de dívida do Estado, geralmente mais elevada que a dos depósitos bancários)
- + com um prémio de risco inerente à atividade económica em causa e ao risco financeiro associado ao grau de endividamento da empresa.

u.c. Gestão

Taxas de atualização (4)

Quando houver financiamento também com capital alheio, dívida, a taxa de atualização deve incorporar também a taxa de juro da dívida líquida de impostos, uma vez que as empresas podem deduzir aos resultados os juros pagos e com isso pagar menos impostos.

Nesse caso a taxa de atualização deve ser igual ao custo médio ponderado do capital, sendo a ponderação dada pelas percentagens dos dois tipos de capital, calculadas ao valor de mercado:

(CMPC ou WACC – Weighted Average Cost of Capital) = $r_{CP} \times % CP + r_{D} \times (1-t) \times % D$

(taxa de remuneração do capital próprio x % capital próprio + taxa de juro dos empréstimos líquida de impostos x % capital alheio)

CMPC – WACC. Exercício:

- a) Qual a taxa de atualização a utilizar num projeto de investimento por uma empresa que se financia em valores de mercado a 70% de capital próprio (Equity) e 30% em capital alheio (Debt), sendo o custo médio da dívida (juros) de 6% e a rentabilidade esperada pelos acionistas (custo do capital próprio) de 7%? (Nota: assuma que a empresa é lucrativa e paga uma taxa de imposto de 30%).
- b) E se o risco deste novo projeto for maior que o da atividade principal da empresa, situando-se em 10 p.p. (pontos percentuais) acima da taxa de juro sem risco dos títulos do Estado, que paga um juro de 2% ?

u.c. Gestão

Critérios de análise da rentabilidade dos projetos

VAL - Valor Atual Líquido

VAL (r) =
$$\sum_{k=0}^{n} \frac{CF_k}{(1+r)^k}$$

Se VAL (r) > 0 => **PROJECTO RENTÁVEL** a essa taxa de atualização r

Entre dois projetos A e B Se $VAL_A > VAL_B$ $P_A \text{ preferível a } P_B$

Questão:

Que tipo de juros sugere o projeto abaixo?

A taxa de atualização como limiar de rentabilidade: exemplo de cálculo do VAL com três taxas diferentes

				3.11 C. C. 11		
Taxa e período	r	0	1	2	3	Σ = VAL
CF's		-1000	100	100	1100	
CF's/(1+r) ^j	10%	-1000	90.91	82.64	826.45	0.00
CF's/(1+r) ^j	5%	-1000	95.24	90.70	950.22	136.16
CF's/(1+r) ^j	15%	-1000	86.96	75.61	723.27	-114.16

u.c. Gestão

Critérios de análise da rentabilidade dos projetos

TIR - Taxa Interna de Rentabilidade

$$\sum_{k=0}^{n} \frac{CF_k}{(1+r)^k} = 0$$

- TIR \rightarrow é a taxa \mathbf{r} de atualização para a qual o VAL = 0
- Calcula-se iterativamente.
- Aceitar um projeto com VAL(r)>0 é equivalente a aceitá-lo quando TIR>r.

Problemas no cálculo e na utilização da TIR

1º Pode existir mais do que uma TIR. É o caso, p. ex., da existência de cashflows negativos intermédios ou finais (investimentos não convencionais).

Ex: C_o

 C_1

 C_2

TIR's

-4.000 25.000

-25.00

25% e 400%

$$-4.000+25.000/(1+0.25)-25.000/(1+0.25)^2=0$$

$$-4.000+25.000/(1+4)-25.000/(1+4)^2 = 0$$

u.c. Gestão

2º Pode não existir TIR

Ex: C_0 C_1 C_2 1.000 -3.000 2.500

3º A TIR é inadequada para projetos mutuamente exclusivos (i.e., em que só podemos fazer um deles)

EXEMPLO:

	CF ₀	CF _{1 a 10}	VAL _{5%}	
CF _A	-40.000	8.000	21.774	$TIR_A = 15\%$
CF _B	-20.000	5.000	18.608	$TIR_B=21\%$
CF _{A-B}	-20.000	3.000	3.165	$TIR_{A-B}=8\%$

→VAL_A > VAL_B
→A melhor que B a menos que se consiga aplicar o dinheiro excedente A-B num projeto com rentabilidade maior do que 8%

PRI - Período de Recuperação do Investimento atualizado (Payback period)

Tempo necessário para que os cash flows atualizados gerados pelo projeto igualem (recuperem) o capital investido inicialmente.

$$\sum_{i=0}^{PB} CF_{i}/(1+r)^{i} = 0$$

CF_i = cash flow do período i PB = nº de períodos do "Payback" r = taxa de atualização

Período(anos)	0	1	2	3	4	5	6
Cash Flows							
atualizados	-1000	200	300	400	420	500	700
C.F. acumulados até t	-1000	-800	-500	-100	320	820	1520

Payback=
$$\frac{3}{4}$$
 + $\frac{100}{420}$ = $\frac{3}{238}$ anos ≈ 3 anos e 3 meses (0,238×12 meses ≈ 3 meses)

u.c. Gestão

Critérios de análise da rentabilidade dos projetos

IR - Índice de Rendibilidade

$$IR = \frac{VA \left(= \sum_{1}^{n} CF_{k} / (1+r)^{k}\right)}{Inv. inicial} = \frac{VAL + Inv. Inicial}{Inv. Inicial}$$

(critério de aceitação: ser >1)

Problema idêntico ao da TIR: Investimentos Mutuamente Exclusivos

Projeto de Investimento	C _o	C ₁	r	VAL	IR VA/C ₀
Α	-1	3,3	10%	2 = -1 + 3,3/1,1	3,00
В	-10	22	10%	10 = -10 +22/1,1	2,00
B-A	-9	18,7	10%	8 = -9 + 18,7/1,1	1,89

Exercício: Suponha dois investimentos A e B de carácter idêntico, mas dimensão diferente. O A proporciona um VAL(12%) de 15.000 u.m. para 10.000 u.m. de investimento e o B um VAL(12%) de 120.000 para 150.000 de investimento.

- a)Calcule os índices de rendibilidade dos dois investimentos e diga se aconselha ou não a sua realização;
- b)Diga justificadamente qual dos investimentos acha preferível.