For Reference

NOT TO BE TAKEN FROM THIS ROOM

Ex dibris universitates albertaeases

Digitized by the Internet Archive in 2024 with funding from University of Alberta Library

https://archive.org/details/Ng1975

OF THREE PARTY IN

NAME OF AUTHOR

DEGREE FOR MINIST DIALOGUE BAT WITH

LTHESA ...

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR

HENG-JOO NG

TITLE OF THESTS

"THE MEASUREMENT AND PREDICTION OF THE

EFFECT OF PRESSURE ON ENTHALPY"

DEGREE FOR WHICH THESIS WAS PRESENTED

DOCTOR OF PHILOSOPHY

YEAR THIS DEGREE GRANTED

1975

Permission is hereby granted to THE UNIVERSITY OF ALBERTA

LIBRARY to reproduce single copies of this thesis and to lend or sell

such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

THE UNIVERSITY OF ALBERTA

THE MEASUREMENT AND PREDICTION OF THE EFFECT OF PRESSURE ON ENTHALPY

by

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMICAL ENGINEERING
EDMONTON, ALBERTA
SPRING, 1975

ACKESIM BU YTTERRUTKU BHT

THE PERSON NO THE PERSON NO THE THE

м

N COL-DUSH ()

SISSUE V

THE PARTIAL PULLPHANT OF THE REQUIREMENTS FOR THE DEGREE

DEPARTMENT OF CHESTACK ENCIALISMS
EMBORTON, ALBERTA
SERVING, 1975

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled "THE MEASUREMENT AND PREDICTION OF THE EFFECT OF PRESSURE ON ENTHALPY" submitted by HENG-JOO NG in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

TO MY FATHER

ABSTRACT

Accurate enthalpies of fluid mixtures over wide range of pressure and temperature are directly useful in design and provide an improved basis for the theories of fluids, improvement of methods of prediction, and for derivation of other thermodynamic properties. The purposes of this work are:

- 1) To construct a calorimeter for the existing recycle system to allow measurements on the isothermal effect of pressure on enthalpy.
- 2) To obtain accurate data on the effect of pressure on enthalpy for mixtures of methane with carbon dioxide, with carbon dioxide and nitrogen, with carbon dioxide and ethane, and with carbon dioxide, nitrogen and ethane.
- 3) To evaluate the available methods of prediction and to extend and improve the methods of prediction for the enthalpy of fluid mixtures.

An isothermal throttling calorimeter was chosen for measuring the effect of pressure on enthalpy. In common with several other throttling calorimeters, a capillary tube is used to cause the pressure drop. An insulated Nichrome wire which passes inside the capillary for its entire length serves to supply electrical energy. This arrangement makes the expansion essentially isothermal. The pressure drop across the calorimeter is measured by a differential pressure transducer and any temperature difference between the inlet and outlet is indicated by a calibrated thermopile.

Measurements were made with nitrogen as a test gas at four different temperatures from 273.15 to 374.15 K, and at pressures from 14 to 140 bar. The data are in good agreement with values from the literature. Measurements were made on the following six systems at pressures

from 14 to 140 bar: a) 14.5 mole percent of methane in carbon dioxide at temperatures of 0, 10, 20, 40, 60 and 90°C, b) 42.3 mole percent of methane in carbon dioxide at temperatures of 0, 40, 60 and 90°C, c) Equimolal mixture of methane, nitrogen and carbon dioxide at temperatures of -30, -10 and 10°C, d) Equimolal mixture of methane, carbon dioxide and ethane at temperatures of -10, 0, 20, 40, 60 and 90°C, e) methane rich mixture with carbon dioxide and ethane at temperatures of -10, 0, 20, 40, 60 and 90°C and, f) Equimolal mixture of methane, carbon dioxide, nitrogen, and ethane at temperatures of -30, -10, 10, 30 and 60°C.

Two enthalpy tables and diagrams for the two mixtures of methane and carbon dioxide were constructed which are based on this experimental work and that of Bishnoi.

The availability of more accurate enthalpy data based on calorimetric determinations provides an improved basis for comparison of available methods of prediction and the testing of the mixing rules.

Nine enthalpy correlations were evaluated and compared. Three of the correlations used equations of state and six of the correlations used the corresponding states method of Curl and Pitzer with six different mixing rules. The six different mixing rules are: 1) Method of Barner and Quinlan, 2) Proposed Method, 3) Modified Method of Gunn, 4) Method of Prausnitz and Gunn, 5) Method of Joffe-Stewart, Burkhardt and Voo, and 6) Method of Leland and Mueller. The three equations of state are Starling-BWR, Soave-Redlich-Kwong and Mark V correlation. It was found that the equation of state of Starling-BWR, Soave-Redlich-Kwong, Mark V and the corresponding states correlation with pseudocritical parameters estimated by method 2, are the most accurate of the nine enthalpy correlations tested.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation for the assistance of many people during the course of this research:

To Professor A.E. Mather for his advice and encouragement during the supervision of the work.

To Professor D.B. Robinson who was closely involved with this research, for his help, encouragement and serving on the doctoral committee.

To Professors F.D. Otto, G.S.H. Lock and S.E. Wanke for serving on the doctoral committee.

To J.I. Lee for many helpful discussions.

To members of the Workshop and Instrument shop, who made services whenever they were needed.

To Mrs. Kathie Therrien for typing the manuscript.

The author is also indebted to the following organizations:

To The Province of Alberta for a scholarship.

To The National Research Council of Canada for the scholarship and the financial support.

Finally, I would like to thank my parents for all they have given me.

TABLE OF CONTENTS	PAGI
LIST OF FIGURES	x
LIST OF TABLES	xij
INTRODUCTION	1
SECTION I - PRELIMINARY CONSIDERATIONS	
	3
Flow Calorimeters	3
Thermodynamic Relations	4
Previous Experimental Data	7
SECTION II - THE CALORIMETER AND THE FLOW SYSTEM	9
Background on Isothermal Throttling Calorimetry	9
Design of Isothermal Throttling Calorimeter	10
Description of Calorimeter	11
Experimental Equipment	13
Auxiliary Equipment	16
Measuring Instruments	18
SECTION III - EXPERIMENTAL RESULTS AND DISCUSSION	22
Procedure of the Experimental Measurements	22
Materials Used	22
Composition Determination	24
Interpretation of Data	24
Graphical Interpretation	24
Computer Reduction	25
The Extended Spline Fit Method	26
Extension to Low Pressure	27
Experimental Results With Nitrogen	28
Experimental Results With Methane - Carbon Dioxide Mixtures	36
Comparison of Results	36
Enthalpy Tables and Diagrams	42
Nominal 14.5 Percent Methane in Carbon Dioxide Mixture	46
Nominal 42.3 Percent Methane in Carbon Dioxide Mixture	48
Comparison of Methane - Carbon Dioxide Mixtures Enthalpy Dat	a 54
Experimental Results With Equimolal Methane-Carbon Dioxide-	60

	PAGE
Comparison of Experimental Results	63
Experimental Results With Equimolal Methane-Carbon dioxide- Ethane Mixture	64
Comparison of Results	66
Experimental Results With 50 Percent Methane in Carbon Dioxide and Ethane Mixture	66
Experimental Results With Equimolal Methane-Carbon dioxide- Nitrogen-Ethane Mixture	70
SECTION IV - EVALUATION AND EXTENSION OF METHODS OF PREDICTION	76
Method of Prediction Based on Thermodynamic Data	76
Estimation of Partial Enthalpies	77
Equivalent Pure Component Method	78
Application of P-V-T Data	79
Application of Equation of State	80
Generalized Corresponding State Correlation	81
Application of Generalized Corresponding State Correlation to Mixtures	84 84
Method of Pitzer and Hultgren	84
Method of Joffe-Stewart, Burkhardt and Voo	85
Method of Leland and Mueller	86
Method of Prausnitz and Gunn	87
Method of Barner and Quinlan	89
Modified Method of Gunn	90
Proposed Method (Soave-Redlich-Kwong Equation of State)	92
Evaluation of Nine Enthalpy Correlations	95
SUMMARY AND CONCLUSIONS	106
RECOMMENDATIONS FOR FUTURE WORK	108
NOMENCLATURE	109
BIBLIOGRAPHY	112
APPENDICES	117
A - Calibrations and Error Analysis	117
B - Enthalpy Formulae and Loop Checks	122
C - Isothermal Throttling Coefficients at Zero Pressure	130
D - Experimental Data	133

	LIST OF FIGURES	PAGE
FIGURE		
1.	Assembly Drawing for Isothermal Throttling Calorimeter	12
2.	Detail Drawing for the End of the Capillary of the Calorimeter	14
3.	Flow Diagram of the Apparatus	15
4.	Wiring Diagram of Platinum Resistance Thermometer and Calorimeter Heater Circuits	21
5.	Isothermal Data on Nitrogen at 273.15 K	30
6.	Comparison of Isothermal Data of Nitrogen With Other Experimental Data at 273.15 K	31
7.	Comparison of ϕ of Nitrogen With Other Experimental Data at 374.15 K	32
8.	Comparison of ϕ of Nitrogen With Values Predicted From Equations of State at 273.15 K	33
9.	Comparison of ϕ of Nitrogen With Values Predicted From Equations of State at 374.15 K	34
10.	Isothermal Throttling Coefficient for the 14.5 Percent ${ m CH}_4$ in ${ m CO}_2$ Mixture at 40°C	37
11.	Isothermal Throttling Coefficient for the 42.3 Percent CH ₄ in CO ₂ Mixture at Various Constant Pressures	40
12.	Isothermal Throttling Coefficient for the 14.5 Percent CH ₄ in CO ₂ Mixture at Various Constant Pressures	41
13.	φ of 42.3 Percent Mixture at 273.15 K	43
14.	φ of 14.5 Percent Mixture at 363.15 K	44
15.	Enthalpy Departures for Mixtures of Methane and Carbon Dioxide	45
16.	Enthalpy Departure for the 14.5 Percent Mixture	49
17.	Pressure - Temperature - Enthalpy Diagram for 14.5 Percent of Methane in Carbon Dioxide	53
18.	Pressure - Temperature - Enthalpy Diagram for 42.3 Percent of Methane in Carbon Dioxide	57

FIGURE		PAGE
19.	Comparison of Excess Enthalpy for Methane-Carbon Dioxide Mixtures at 40°C	58
20.	Comparison of Excess Enthalpy for Methane-Carbon Dioxide Mixture at 20°C	59
21.	Isothermal Throttling Coefficient of the Equimolal Mixture of Methane, Carbon Dioxide and Nitrogen	62
22.	Enthalpy Departures for Equimolal Mixture of Methane, Carbon Dioxide and Nitrogen at 10°C	65
23.	Isothermal Throttling Coefficient for the Equimolal Mixture of Methane, Carbon Dioxide and Ethane.	68
24.	Enthalpy Departures for the Equimolal Mixture of Methane, Carbon Dioxide and Ethane.	69
25.	Isothermal Throttling Coefficient for the 50 Percent Mixture of Methane in Carbon Dioxide and Ethane	72
26.	Isothermal Throttling Coefficient for the Equimolal Mixture of Methane, Carbon Dioxide, Nitrogen and Enthane	75
27.	Pseudocritical Pressure of 49.4 Precent Mixture of Methane in Propane	101
28.	Pseudocritical Temperature of 49.4 Percent Mixture of Methane in Propane	102
29.	Calibration Curve of Orifice Meter	A-10
30.	Gas Chromatograph Calibration for Methane-Carbon Dioxide Mixture	A-13
31.	Gas Chromatograph Calibration for $\mathrm{CH_4}$ - $\mathrm{CO_2}$ - $\mathrm{C_2H_6}$ Mixture	A-16
32.	Gas Chromatograph Calibration for $\mathrm{CH_4}\text{-CO}_2\text{-N}_2$ Mixture	A-17
33.	Gas Chromatograph Calibration for $\text{CH}_4\text{-CO}_2\text{-N}_2\text{-C}_2\text{H}_6$ Mixture	A-18
34.	Location of Experimental Loops for 14.5 Percent Methane in Carbon Dioxide	A-26
35.	Location of Experimental Loops for 42.3 Percent Methane in Carbon Dioxide	A-27

LIST OF TABLES

TABLE		PAGE
I	Recent References to Isothermal Effect of Pressure on Enthalpy of Fluids Under Pressure	8
II	Materials	23
III	Isothermal Throttling Coefficients for Nitrogen	29
IV	Comparison of Experimental Enthalpy Departures for Nitrogen With Other Experimental Works	35
V	Isothermal Throttling Coefficient for the 42.3 Mole Percent of Methane in Carbon Dioxide	38
VI	Isothermal Throttling Coefficient for the 14.5 Mole Percent of Methane in Carbon Dioxide	39
VII	Tabulated Values of Enthalpy for the 14.5 Percent of Methane in Carbon Dioxide	50
VIII	Tabulated Values of Enthalpy for the 42.3 Percent of Methane in Carbon Dioxide	55
IX	Composition of Equimolal $CH_4-CO_2-N_2$ Mixture	60
X	Isothermal Throttling Coefficients for the Equimolal Mixture of ${\rm CO_2-CH_4-N_2}$	61
XI	Composition of Equimolal $\mathrm{CH_4-CO_2-C_2H_6}$ Mixture	64
XII	Isothermal Throttling Coefficients for the Equimolal $^{\rm CO}_2$ $^{\rm -CH}_4$ $^{\rm C}_2$ $^{\rm H}_6$ Mixture	67
XIII	Composition of 50 Percent CH_4 in $CO_2-C_2H_6$ Mixture	70
XIV	Isothermal Throttling Coefficient for the 50 Percent $^{\rm CH}_4$ in $^{\rm CO}_2$ $^{\rm C}_2$ $^{\rm H}_6$ Mixture	71
XV	Composition of Equimolal $CH_4-CO_2-N_2-C_2H_6$ Mixture	73
XVI	Isothermal Throttling Coefficients for the Equimolal $^{\rm CH}_4$ $^{\rm CO}_2$ $^{\rm N}_2$ $^{\rm C}_2$ $^{\rm H}_6$ Mixture	74
XVII	Correlations Evaluated in This Study	96
XVIII	Data Source of Systems Studied	97
XIX	Summary of Results of Enthalpy Correlation Evaluation	98
XX	Calibration Data for 8163 Model Platinum Resistance Thermometer	A-1

TABLE		PAGE
XXI	Calibration of 3000 psig Heise Gauge	A-3
XXII	Calibration of 250 psi Differential Pressure Transducers	A-4
XXIII	Calibration of 75 psi Differential Pressure Transducers	A-5
XXIV	Calibration of 60 in. of Water Differential Pressure Transducer	A-6
XXV	Flow Meter Calibration (Orifice)	A-7
XXVI	Response Factor Calculated from Calibration	A-14
XXVII	Consistency Checks on the Mixture of 14.5 Mole Percent Methane in Carbon Dioxide	A-28
XXVIII	Consistency Checks on the Mixture of 42.3 Mole Percent Methane in Carbon Dioxide	A-29
XXIX	Second Virial Coefficient	A-31
XXX	φ°From Second Virial Coefficients	A-32
XXXI	Tabulated Experimental Data for Nitrogen	A-34
XXXII	Tabulated Experimental Data for the 14.5 Mole Percent of Methane in Carbon Dioxide Mixture	A-37
XXXIII	Tabulated Experimental Data for the 42.3 Mole Percent of Methane in Carbon Dioxide Mixture	A-43
XXXIV	Tabulated Experimental Data for the Equimolal Mixture of ${\rm CH_4^{-CO}_2^{-N}_2}$	A-47
XXXV	Tabulated Experimental Data for the Equimolal Mixture of ${\rm CH_4-CO_2-C_2H_6}$	A-50
XXXVI	Tabulated Experimental Data for the 50 Percent Mixture of $\mathrm{CH_4}$ in $\mathrm{CO_2^{-C_2}H_6}$	A-56
XXXVII	Tabulated Experimental Data for the Equimolal Mixture of $^{\rm CH}_4{}^{\rm -CO}_2{}^{\rm -N}_2{}^{\rm -C}_2{}^{\rm H}_6$	A-62

A knowledge of the enthalpies of fluid mixtures over a wide range of pressure and temperature is necessary for engineering designs and calculations of thermal processes. In the past, enthalpies used in process design were obtained principally from P-V-T data, either directly using thermodynamic relations or indirectly using equations of state. The process of generating enthalpies from compressibility data involves differentiation with attendant loss in accuracy of at least one order of magnitude. In a region where the derivatives are changing rapidly, such as the critical region, the error may be very large. In addition, accurate volumetric data for mixtures is still rather scarce, and the determination of enthalpy changes across the two-phase region involves the use of not only volumetric data and their derivatives, but also vapor-liquid equilibrium data and derivatives. For this reason it is desirable to have direct experimental determinations of the enthalpy behavior of fluid mixtures under pressure. These data are quite scarce in the literature.

The goal of this work was to construct a flow type calorimeter in a recycle system for the measurement of the isothermal effect of pressure on enthalpy. The isobaric effect of temperature on two binary mixtures of carbon dioxide and methane had been investigated by Bishnoi 9. A specific purpose of the research has been to measure the isothermal effect of pressure on enthalpy of these two mixtures, so that it provides a thermodynamic consistency check and allows the construction of enthalpy tables for these two mixtures based on experimental data. In addition, experimental data of the isothermal effect of pressure on enthalpy were obtained for the following four systems: a) Equimolal carbon

dioxide-methane-nitrogen, (b) Equimolal carbon dioxide-methane-ethane, (c) methane-rich carbon dioxide-methane-ethane and (d) Equimolal carbon dioxide-methane-nitrogen-ethane.

There are many different methods of prediction which have been proposed for enthalpies of fluid mixtures. A comparative study has been made by Natural Gas Processors Association on these numerous enthalpy correlations. The availability of more accurate enthalpy data based on calorimetric determinations provides an improved basis for comparison of available methods of prediction and the testing of the mixing rules.

To reiterate, the specific goals of the present research were (1) to construct a calorimeter for obtaining the isothermal effect of pressure on enthalpy, (2) to make experimental enthalpy determinations on two carbon dioxide-methane mixtures, one carbon dioxide-methane-nitrogen mixture, two carbon dioxide-methane-ethane mixtures and one carbon dioxide-methane-nitrogen-ethane mixture, (3) to evaluate the available methods of prediction and (4) to extend and improve the method of prediction for the enthalpy of fluid mixtures.

SECTION I - PRELIMINARY CONSIDERATIONS

In this section, a discussion of flow calorimetry and the necessary equations for φ which are applied, and a discussion of φ data in the literature are presented.

Flow Calorimeters

Measurements of the enthalpy of fluids at elevated pressures have been made by a number of methods. A review of experimental methods was presented by Barieau ⁴. Flow calorimeters have many advantages and have been used widely. The calorimeter may be designed to operate in a number of differing modes depending upon the type of enthalpy data desired.

The first law of thermodynamics, applied to a flow calorimeter with negligible potential and kinetic energy effects, is

$$\left[\underline{H}_{T_2,P_2} - \underline{H}_{T_1,P_1}\right]_{x} = \frac{\dot{Q} - \dot{W}}{F}$$
 (1)

where \dot{Q} is the rate of the heat transfer, \dot{W} the rate of electrical energy transfer, and F is the mass flow rate. In the isobaric mode of operation, the pressure difference P_2-P_1 is made small and the fluid is heated to change its temperature. Equation (1) becomes:

$$\left[\underline{\mathbf{H}}_{T_2} - \underline{\mathbf{H}}_{T_1}\right]_{P_1, \mathbf{x}} = -\frac{\dot{\mathbf{W}}}{F} - \int_{P_1}^{P_2} (\frac{\partial \underline{\mathbf{H}}}{\partial P})_T dP \Big|_{T_1}$$
(2)

where the integral term is a small correction for the fact that the pressure is not constant, and Q is assumed to be negligible.

In the isenthalpic mode, no energy is added to the system and the heat leak is made negligible. For this case Equation (1) reduces to

$$\left[\underline{H}_{T_2}, P_2 - \underline{H}_{T_1}, P_1\right]_{x} = 0 \tag{3}$$

In the isothermal mode of operation, a pressure drop is imposed on the fluid, and energy is added so that the outlet temperature is equal to the inlet temperature. It is practical to utilize this scheme only when the Joule-Thomson coefficient is positive, i.e. when the fluid cools upon expansion. For an isothermal operation, Equation (1) becomes:

$$\left[\underline{H}_{P_{2}} - \underline{H}_{P_{1}}\right]_{T_{1} = \infty} = -\frac{\dot{W}}{F} - \int_{T_{1}}^{T_{2}} c_{P} dT \Big|_{P_{2}}$$
(4)

where Q is assumed negligible and the integral corrects for any mismatch between the inlet and outlet temperatures. In this operation, a knowledge of the flow rate, the energy input and pressure drop are needed to determine the isothermal effect of pressure on enthalpy.

The enthalpy change on mixing can be determined in a flow calorimeter by mixing two pure gases in a chamber and adding electrical energy to equalize the inlet and outlet temperatures. The first law of thermodynamics for this calorimeter reduces to:

$$\left[\underline{\mathbf{H}}_{\mathbf{mix}}\right]_{\mathbf{T}_{2},\mathbf{P}_{2}} - \left[\mathbf{x}_{1}\underline{\mathbf{H}}_{1} + \mathbf{x}_{2}\underline{\mathbf{H}}_{2}\right]_{\mathbf{T}_{1},\mathbf{P}_{1}} = \frac{\dot{\mathbf{Q}} - \dot{\mathbf{W}}}{\mathbf{F}}$$
(5)

Corrections can be made for the differences in pressure and temperature between the inlet and outlet. The excess enthalpy or heat of mixing can be determined by:

$$\underline{\mathbf{H}}^{E} = \left[\underline{\mathbf{H}}_{\text{mix}} - \mathbf{x}_{1}\underline{\mathbf{H}}_{1} - \mathbf{x}_{2}\underline{\mathbf{H}}_{2}\right]_{P,T} \tag{6}$$

Thermodynamic Relations

The relations presented above involve integral changes in enthalpy. These integral data in a single phase region may be interpreted to yield the derivative properties. Point values of the isothermal

throttling coefficient ϕ are estimated from the integral values by application of the following relation from Equation (4),

$$\phi = \left(\frac{\partial \mathbf{H}}{\partial \mathbf{P}}\right)_{\mathbf{T},\mathbf{x}} = \frac{1 \text{im}}{\mathbf{P}_2} + \mathbf{P}_1 \left[\frac{\mathbf{H}}{\mathbf{P}_2} - \mathbf{H}_{\mathbf{P}_1}\right]_{\mathbf{T},\mathbf{x}}$$
(7)

The isothermal throttling coefficient can be estimated from known values of other thermodynamic properties. Thus, in making use of $P-\underline{V}-T$ data the following identity applies:

$$\phi = \underline{Y} - \underline{T}(\frac{\partial \underline{Y}}{\partial \underline{T}})_{P} \tag{8}$$

The identity involving μ , the Joule-Thomson coefficient and C_p , the isobaric heat capacity, provides another method of calculating ϕ . The functional relations between the enthalpy, the pressure and the temperature are:

$$\left(\frac{\partial \mathbf{H}}{\partial \mathbf{P}}\right)_{\mathbf{T}} \left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}}\right)_{\mathbf{H}} \left(\frac{\partial \mathbf{T}}{\partial \mathbf{H}}\right)_{\mathbf{P}} = -1$$

or

$$\left(\frac{\partial \underline{H}}{\partial P}\right)_{T} = -\left(\frac{\partial T}{\partial P}\right)_{H} \left(\frac{\partial \underline{H}}{\partial T}\right)_{P}$$

or

$$\phi = -\mu \ C_{p} \tag{9}$$

The virial equation of state is a power series in density:

$$\frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \dots$$
 (10)

The terms B, C, ... are known as the second, third, ... virial coefficients and they are related by the statistical theory of imperfect gases to the interactions of molecules in pairs, triplets, etc.

A similar power series is an expansion in pressure:

$$\frac{PY}{RT} = 1 + B'P + C'P^2 + \dots$$
 (11)

The coefficients of the two series are related by

$$B^{\dagger} = \frac{B}{RT}$$

$$C' = \frac{(C - B^2)}{(RT)^2}$$
 (12)

Using Equation (8), (10), (11) and (12), ϕ can be expressed as:

$$\phi = -RT^2 \left[\frac{dB'}{dT} + P \frac{dC'}{dT} + \dots \right]$$

or

$$\phi = (B - T \frac{dB}{dT}) (1 - \frac{2B}{RT} P + \frac{6B^2}{(RT)^2} P^2) + \frac{1}{RT} (2C - T \frac{dC}{dT}) P + \dots (13)$$

The zero-pressure value of the isothermal throttling coefficient is finite and depends only on B:

$$\phi^{\circ} = B - T(\frac{dB}{dT}) \tag{14}$$

Experimental values of ϕ° can be used to derive changes in B upon integration of Equation (14):

$$B_{T_{2}} = T_{2} \left[\int_{\tau_{1}}^{\tau_{2}} \phi^{\circ}(\tau) d\tau + B_{T_{1}} \tau_{1} \right]$$
 (15)

where τ = 1/T. Experimental values of ϕ ° can be compared with values of ϕ ° calculated from virial coefficients obtained from other type of experiments. For mixtures, B is of the form:

$$B_{\text{mix}} = \sum_{i j} \sum_{i j} x_{i} x_{j} B_{ij}$$
 (16)

where B and B are the pure component second virial coefficients and B_{ij} is the interaction second virial coefficient. It follows that the derivative of B is:

$$\frac{dB_{mix}}{dT} = \sum_{i} \sum_{j} x_{i} x_{j} \left(\frac{dB_{ij}}{dT}\right)$$
(17)

Previous Experimental Data for o

All of the above methods have been used to obtain thermal data of fluids at elevated pressures. Most of the results have been for pure components. A recent review of available pure components and mixtures data at elevated pressures have been presented by Mather ⁵⁷ and Yesavage ⁹⁷. Table I presents a listing of the experimental determinations of thermal properties under pressure by isothermal calorimeter, supplementing that of Mather ⁵⁷. Although an increased amount of enthalpy data are available, the need for more data to test methods of prediction and improve correlations remains.

Recent References to Isothermal Effect of

TABLE I

Pressure on Enthalpy of Fluid Under Pressure

Year	System	<u>Author</u>	References
1967	Nitrogen		
	Propane-methane	Mather et al. 57	7, 58, 59
1968	Propane		
	Propane-methane	Yesavage <u>et al</u> . 97	, 98, 99, 100
1968	Methane-propane	Dillard et al.	22
1969,70	Carbon dioxide	Vukalovich <u>et al</u> .	86, 87, 88
1970	Methane-ethane	Alkasab	2
1970	Methane-ethane-propane	Furtado <u>et al</u> .	26
1972	Carbon dioxide-nitrogen	Vukalovich <u>et al</u> .	89
1973	Ethane	Miyazaki	61a
1974	Methane-carbon dioxide		
	Methane-carbon dioxide-ethane		
	Carbon dioxide	Peterson & Wilson	68

SECTION II - THE CALORIMETER AND THE FLOW SYSTEM

A review of the previous work employing isothermal throttling calorimeters is presented here. The design of a new throttling calorimeter and the experimental equipment are discussed in this section.

Background on Isothermal Throttling Calorimetry

All methods for measuring the isothermal effect of pressure on enthalpy involve some device to cause the pressure drop and a source of energy to compensate for the cooling effect resulting from the pressure drop. So, the methods are suitable only when ϕ is negative and no isothermal calorimeters have been designed to extract energy if the fluid warms on expansion.

A review of the development in isothermal throttling calorimetry had been presented by Mather 57 . In general, a porous media, a needle valve or a capillary tube is used to cause the pressure drop, and the electric heating coil is used as a source of energy.

The calorimeter designed by Mather ⁵⁷ consists of a capillary coil to cause the pressure drop and the insulated heating wire is placed inside the capillary. Measurements were made on nitrogen and a mixture of propane and methane in the temperature range from -140°F to 200°F and in the pressure range from 100 to 2000 psia. Yesavage ⁹⁷ used the same equipment to make measurements on propane and propane-methane mixtures.

Vukalovich et al. 86,87 reported the measurements on carbon dioxide by using adjustable needle valve with pressure drop up to 50 atm. Later on, Vukalovich et al. 88 designed a different type of calorimeter in which the throttling unit is pressure-relieved. Again the adjustable needle valve was used as the throttling unit.

Alkasab 1 designed an adjustable needle valve to study the isothermal throttling effect of methane-ethane mixtures.

Peterson and Wilson⁶⁸ constructed an integral isothermal throttling calorimeter by using throttling valve to cause the pressure drop. Measurements were made on pure carbon dioxide, and mixtures of equimolal methanecarbon dioxide, equimolal methanecarbon dioxide.

Eakin and DeVaney 25 designed a calorimeter which permits measurement of the Joule-Thomson coefficient, the isothermal enthalpy change on throttling and the isobaric enthalpy change. The idea of tubing packed with powder was used to cause the pressure drop. This idea was first used for Joule-Thomson experiments by Dawe and Snowdon 21 .

Design of Isothermal Throttling Calorimeter

The first requirement in the design of the calorimeter was that it should operate over a wide range of temperatures from -100°C to 200°C and at any pressure in this temperature range from 100 to 2000 psia. Stainless steel was selected as the material of construction because of anticipated subsequent experimental work with corrosive gases and its strength at low temperature.

Since the design was to allow for the possibility of measuring isothermal enthalpy changes across a two-phase region, the use of throttling valve was abandoned because the instability of two-phase flow through a valve caused by alternate slugs of liquid and vapor prevents accurate thermodynamic measurements.

A capillary was considered to be the best configuration for the throttle because the expansion is smooth and if energy is added to the fluid during expansion, the process will be almost isothermal. Since

enthalpy is a point function, it is not necessary for the expansion to be isothermal. However, by making the path as nearly isothermal as possible, heat leakage from the surroundings to the system is minimized.

The disadvantage of capillary throttle is that it is not possible to vary flow rate and pressure drop independently. The disadvantage can be overcome by making the capillary removable so that various combinations of pressure drop and flow rate may be obtained.

The heater of the present calorimeter is an insulated Nichrome wire which passes inside the capillary for its entire length. Two copper power leads are connected to the heater wire at the ends of the capillary. In order to minimize the power losses through the leads the current must be kept low. The combination of heater size and capillary size allows different pressure drop and power input relations. With this arrangement, currents were kept below two amperes.

Description of the Calorimeter

The isothermal throttling calorimeter of this work is shown in Figure 1. The fluid enters the vacuum jacket from the constant temperature bath. The pressure tap at the inlet portion of the calorimeter serves to measure the inlet pressure and a differential thermocouple is used to check the temperature between the inlet portion of the calorimeter and the bath. Then the fluid passes through the throttling portion. A removable capillary coil at the throttling portion causes the pressure drop. The outlet temperature of the fluid is brought back to the inlet temperature by applying power to the Nichrome wire, which is placed inside the capillary. In this work, three different capillary sizes are employed of 15 BWG, 16 BWG and 17 BWG hypodermic tubing, all about ten feet in

FIGURE 1. Assembly Drawing for Isothermal Throttling Calorimeter

length. Two different sizes of Nichrome wire, 36 and 40 gauge, are used. A five junction differential thermopile is used to determine the equality of inlet and outlet temperature. The pressure drop is determined by the differential pressure transducer. As shown in Figure 1, all the pressure and temperature measurements are at the same elevation. The lead wires of the heater and the thermopile are wrapped around a massive aluminum thermal equalization block. The heater wire leads are brought from the vacuum jacket into both ends of the capillary by Conax connectors. The detail drawing of this portion is shown in Figure 2.

Other efforts were made to reduce heat transfer to the surroundings. A radiation shield completely enclosed the capillary coil. The power leads and thermopile leads are brought into contact with the vacuum jacket. The entire jacket is evacuated to less than five microns through the vacuum line.

Experimental Equipment

The calorimeter is part of a recycle system, the evolution of which can be traced in the thesis of Bishnoi ⁹. The recycle system serves to bring the fluid under investigation to the desired conditions of pressure and temperature for measurements. A schematic diagram of the flow system is shown in Figure 3. The fluid delivered by the compressor goes to the high pressure storage tanks, one of which is connected to the low pressure surge tank through the by-pass control valve BPCV. The fluid leaving the surge tanks goes to a hand valve and the high pressure control valve HPCV. The fluid passes through a long cooling coil before it enters the calorimeter. The cooling coil and the calorimeter are in the same bath. The pressure at the inlet of the calorimeter is governed

FIGURE 2. Detail Drawing for the Ends of the Capillary of the Calorimeter

LEGEND

- 1. Inlet tubing for the Calorimeter
- 2. Isothermal Calorimeter
- 3. Capillary Tubing
- 4. Liquid Nitrogen Cooling
- 5. Controlled Heat Input
- 6. Stirrer
- 7. Platinum Thermometer
- 8. Sensor for Heat Input Controller
- 9. Temperature Bath for the Calorimeter
- 10. Joule Thomson Control Valve
- 11. Water Cooling

- 12. Hand Valve
- 13. Orifice Meter
- 14. Temperature Bath for the Flow Meter
- 15. Low Pressure Tank
- 16. Storage Tank
- 17. Corblin Diaphragm Compressor
- 18. By-pass Control Valve
- 19. High Pressure Tank
- 20. High Pressure Control Valve
- 21. Feed Valve
- 22. Discharge Valve

FIGURE 3. Flow Diagram of the Apparatus

by the set point of the high pressure controller. The outlet stream of the calorimeter goes through a hand valve and the control valve JTCV. The opening of JTCV, manipulated manually, gives the desired mass flow rate of the fluid through the calorimeter. The fluid is then passed through the flow meter. The constant inlet pressure of the flow meter is controlled by the BPCV valve which is governed by the set point of the controller. Then the fluid passes through a low pressure storage tank before returning to the intake of the compressor.

Auxiliary Equipment

1. Control Valves and Pressure Control

It was necessary to control the pressure of fluid entering the calorimeter and the flow meter. For flexibility, the low pressure control scheme should be such that it could maintain the pressure anywhere in the range of 10 to 50 psig. The high pressure control scheme was required to maintain any pressure up to about 3000 psig. Both the schemes should also be able to handle flow rates ranging from one to four standard cubic feet per minute for different gases such as methane, nitrogen, carbon dioxide, ethane or their mixtures.

Figure 3 gives the location of HPCV, the high pressure control valve, JTCV, the pressure reducing control valve and BPCV, the by-pass control valve. These valves were sized by the standard method of $^{\rm C}_{\rm V}$ (valve flow coefficient) calculations. The valves used are:

- HPCV Annin valve model 9460, trim size 0.02, air-to-close, can handle fluids from -400 to 750°F.
- JTCV Annin valve model 9460, trim size 0.003, air-to-open, can handle fluids from -400 to 750°F.

BPCV - Annin valve model 5061 "Wee-Willie", trim size "A" - $_{
m V}^{
m C}$ range 0.0001 to 0.01, field reversible, can handle fluids from -200 to 465°F.

The valves had pneumatic positioners and stainless steel type 316 bodies.

For both HPCV and BPCV, single feed back control loops having a controller with a proportional constant and an integral constant were used. Foxboro controllers with built-in power supplies were used for the high and low pressure controls. High and low pressures were measured, at the locations shown in Figure 3, by Foxboro pressure transmitters model 611 GH and 611 GM respectively. The current to pressure converters used in the pressure control loop are Fisher type 546 electro-pneumatic transducers.

The resistance of the valve JTCV was adjusted to give the desired flow rate by manually setting a potentiometer which supplied a current signal to the current-to-pressure converter, giving an air pressure to the valve positioner. Since the upstream pressure of JTCV and its resistance remained constant and the flow through the valve was sonic, this scheme gives constant mass flow rate through the calorimeter.

2. Material Recirculating Device

A two-stage diaphragm compressor was used to develop the necessary pressure and to circulate the fluids. It was a Corblin A2CV250 which was rated for a discharge pressure of up to 3700 psig with a flow capacity of 3.5 scfm at a suction pressure of 14.7 psia. The inlet and delivery lines of the compressor were connected to the tanks by means of flexible pipes.

3. Gas Heaters

In order to maintain the steady-state operation, the control valves HPCV, BPCV and JTCV were maintained at constant opening. The pressure drop across the "HPCV" valve ranged from 50 to 400 psi and a strip heater was used to compensate the cooling effect due to the pressure drop. Since cooling effect is large because of pressure drop across the BPCV and JTCV ranged from 300 to 2000 psi, steam heaters were used to heat the fluid before it passed through the valves.

4. Temperature Controller

The calorimeter bath temperatures were controlled within $\pm 0.01^{\circ}\text{C}$ by a Hallikainen Thermotrol temperature controller, model 1053.

Measuring Instruments

- 1. The temperature of the bath was determined by using a Leeds and Northrup platinum resistance thermometer, model number 8163 and it was calibrated for use in the range 90.188 K < T < 773.15 K on the International practical temperature scale of 1968 by National Research Council of Canada.
- 2. The inlet temperature of the fluid to the calorimeter was assumed to be equal to the bath temperature and a one-junction copper-constantan differential thermocouple was used to check the measurement. The temperature difference between inlet and outlet was measured by a five-junction copper-constantan differential thermopile. Both the one-junction thermocouple and the five-junction thermopile were calibrated for the zero reading at boiling and ice temperatures of water, and the melting temperature of dry ice. A d-c null voltmeter was used to read

the null point for the thermopile. The accuracy of the temperature measurement is about $\pm 0.01^{\circ}\text{C}$.

- 3. The inlet pressure was measured by a Heise gauge and the pressure drop across the calorimeter was determined by a Validyne differential pressure transducer. Both Heise gauge and pressure transducer were calibrated by the Ruska dead weight tester. The accuracy of the gauge is 0.1 percent of full scale, and the accuracy of the pressure transducer is 0.5 percent of the full scale.
- 4. The electrical energy input to the calorimeter was supplied by Kepco DC power supply and was measured by a Hewlett-Packard model 3450 multifunction meter with the six-digit display.
- 5. In the early stage of this work a Nupro "F" inline filter was used as a flow meter. The mass flow rate for nitrogen and 42.3% methane in carbon dioxide mixture was determined from the inlet pressure and the pressure drop across the filter together with the constant temperature at the element. These data were used to solve the calibration equation:

$$\frac{P_1^2 - P_2^2}{Zu'F} = A + B\left[\frac{FM}{u'}\right]$$
 (18)

for the mass flow rate F. The constants A and B were obtained from a least square fit of the calibration data obtained by the gasometer, where P_1 and P_2 are the inlet and outlet pressure of the flow meter which are given by pressure transducers. μ , Z and M are the viscosity, compressibility and molecular weight of the gas respectively.

During the data taking of the 42.3% methane in carbon dioxide mixture, it was found that the solid contamination in the flow meter element causes the changing of the calibration curve. The flow meter was recalibrated and after obtaining the experimental data of the mixture,

the flow meter was recalibrated again. It was found that the two calibration curves disagreed by 0.8 percent. So, the filter was abandoned as device for the flow measurement.

A square-edged orifice was then used for the flow measurement. The orifice had a diameter of 0.16 in. and it was located in a 1/2 in. tube with an inside diameter of 0.429 in. The inlet pressure was maintained constant by the BPCV control valve, and was determined by a Validyne pressure transducer. The pressure drop across the orifice was measured by a Foxboro d/p cell transmitter type 613 M. The accuracy of the pressure transducer and d/p cell is 0.5 percent of the full scale. The orifice was calibrated using pure nitrogen, methane, ethane and carbon dioxide and argon by the gasometer. The orifice was calibrated at the completion of the experiments on every mixture using the gas mixture itself. The overall standard deviation of the flow rate is about 0.5 percent. The calibration of the orifice is given in Appendix A.

All the output signals of the pressure transducers, d/p cell transmitter, platinum resistance thermometer, power to the calorimeter and thermopile were connected to a Hewlett-Packard model 3450 multi-function meter by a multi-junction selection switch.

Figure 4 shows the electric circuits of platinum resistance thermometer and the calorimeter heater.

Figure 4: Wiring Diagram of Platinum Resistance Thermometer and Calorimeter Heater Circuits

SECTION III - EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the experimental procedure, the materials used, and a summary of the techniques used in interpreting the experimental data obtained in this investigation are presented. The experimental results of ϕ of nitrogen, two mixtures of methane and carbon dioxide, two mixtures of methane, carbon dioxide and ethane, one mixture of methane, carbon dioxide and nitrogen, and a mixture of methane, carbon dioxide, nitrogen and ethane at various temperatures are also presented.

Procedure of the Experimental Measurements

The fluid under study was brought to the desired state of pressure and temperature at the inlet to the calorimeter with the recycle system shown in Figure 3. A pressure drop of 60 to 250 psi was obtained by adjustment of the flow of fluid through the calorimeter section. The flow rate was adjusted by control valve JTCV, manipulated manually. The voltage supplied to the calorimeter heater wire was adjusted manually until the temperature difference between the inlet and outlet of the calorimeter, indicated by the differential thermopiles was less than two microvolts (0.01°C). When steady state was reached, as indicated by the constancy of the pressure drop and the zero temperature difference across the calorimeter, the values of the variables were recorded. The time of approach to steady state was of the order of half to one hour.

Materials Used

The source and purity of the gases used in this work are given in Table II. The gases were used without further purification.

TABLE II

Materials

Component	Supplier	Purity
Nitrogen	Consumer's Welding Co.	99.993%
Methane	Matheson Gas Products	99.97 %
Carbon dioxide	Canadian Liquid Air Co. Ltd.	99.95 %
Ethane	Matheson Gas Products	99.96 %

Composition Determination

The composition of the mixtures in this study was determined chromatographically. The calibrations for the gas chromatograph are presented in Appendix A. The precision of the composition determinations was approximately ± 0.2 mole percent as was checked by making several runs for each isotherm.

Interpretation of Data

The basic data were recorded in terms of quantities that can be readily measured, such as microvolts and height of a fluid. These quantities were converted to temperature, pressure, pressure drop, power input and flow rate. In the single phase region, the isothermal throttling coefficient ϕ which is shown in Equation (7) is obtained from the integral data by several techniques. Both graphical and computer reduction methods were used.

Graphical Interpretation

One may consider determining ϕ at constant temperature as a function of pressure. The experimental data were reported as sets of T, P_1 , P_2 and $(\underline{H}_{P_2} - \underline{H}_{P_1})$ over a wide range of temperature. For any one data point,

$$\underline{\underline{H}}_{P_2,T} - \underline{\underline{H}}_{P_1,T} = \int_{P_1}^{P_2} \phi dP$$
 (19)

or

$$\frac{\underline{H}_{P_2,T} - \underline{H}_{P_1,T}}{\underline{P}_2 - \underline{P}_1} = \phi_{T_m} = \int_{\underline{P}_2 - \underline{P}_1}^{\underline{P}_2} \phi dP$$
(20)

where ϕ_{T_m} is the mean isothermal throttling coefficient between P_1 and P_2 . Values of ϕ_{T_m} were plotted as horizontal lines are shown in Figures 5 and 10. The smooth ϕ_{T_m} curve was obtained by satisfying Equation (19): the area under the horizontal line segments, ϕ_{T_m} *(P_2 - P_1), should equal the area under the smooth isothermal throttling coefficient curve.

Computer Reduction

The above graphical procedures are extremely time consuming and in addition the equal area construction can easily lead to errors.

Therefore, a computer program was developed for interpretation of integral data. The true isothermal throttling coefficient is given by,

$$\varphi \equiv \Delta P \xrightarrow{\text{lim}} 0 \frac{q}{\Delta P} \equiv (\frac{\partial \underline{H}}{\partial P})_T$$

where $q=\frac{\dot{W}}{F}$ is the rate of electrical energy transfer per unit mass flow rate. The result of actual measurements is the mean ϕ , $\phi_m=\frac{q}{(P_2-P_1)}$, associated with the mean pressure of the interval, $P_m=(P_1+P_2)/2$. Deviation from linearity of the ϕ versus P curve will therefore require adjustment of the mean isothermal throttling coefficient by a curvature correction to yield the true isothermal throttling coefficient at P_m .

The curvature correction can be determined by considering the isothermal throttling coefficient to be represented by a cubic equation in pressure over a limited range

$$\phi = a_0 + a_1 P + a_2 P^2 + a_3 P^3 \tag{21}$$

then

$$q = \int_{P_1}^{P_2} \phi dP$$

$$= a_0(P_2 - P_1) + \frac{a_1}{2}(P_2^2 - P_1^2) + \frac{a_2}{3}(P_2^3 - P_1^3) + \frac{a_3}{4}(P_2^4 - P_1^4)$$
 (22)

and the mean ϕ is,

$$\phi_{m} = \frac{q}{P_{2} - P_{1}}$$

$$= a_{0} + \frac{a_{1}}{2}(P_{2} + P_{1}) + \frac{a_{2}}{3}(P_{2}^{2} + P_{2}P_{1} + P_{1}^{2})$$

$$+ \frac{a_{3}}{4}(P_{2}^{3} + P_{2}^{2}P_{1} + P_{2}P_{1}^{2} + P_{1}^{3})$$
(23)

The difference between the true φ and the mean $\varphi_{\,m}$ at P $_{m}$ is,

$$\phi - \phi_{m} = \frac{-(P_{2} - P_{1})^{2}}{24} [2a_{2} + 3a_{3}(P_{2} + P_{1})]$$
 (24)

Since at the mean pressure,

$$\left(\frac{\frac{2}{\partial \phi}}{\partial P^2}\right) = 2a_2 + 3a_3(P_1 + P_2) \tag{25}$$

the true isothermal throttling coefficient is,

$$\phi = \phi_{m} - \frac{(P_{2} - P_{1})^{2}}{24} \left(\frac{\partial \phi}{\partial P^{2}}\right)_{T}$$
 (26)

values of $(\frac{\partial \phi}{\partial P}^2)_T$ were obtained by considering the mean isothermal to be sufficiently close to the true isothermal throttling coefficient and differentiating the smooth mean isothermal throttling coefficient.

The extended spline fit technique was used to obtain a smooth mean isothermal throttling coefficient and its second derivative with respect to P.

The Extended Spline Fit Method

The spline fit technique has been discussed by Landis and Nilson 41 . This method puts a different cubic between every two

successive data points such that the curve passes exactly through each data point and that the first two derivatives of the curve on the right hand side of the data point are equal, respectively, to the first two derivatives of the curve on the left hand side of the data point, all derivatives evaluated at the data point.

If, instead of defining the interval boundaries to pass through every data point, interval boundaries are determined arbitrarily such that each interval may contain a number of data points, the method can be extended to provide smoothing of the data. The details of this method are discussed by Klaus and Van Ness 39 .

Extension to Low Pressure

Since the lower limit in pressure of the recycle flow system is 200 psia, data from the literature are used in extending the enthalpy results to zero pressure. The experimental isothermal throttling coefficients obtained at elevated pressures should extrapolate to the zero pressure values derived from the experimental second virial coefficients using Equation (14). The resulting curve was integrated to determine the effect of pressure on enthalpy at low pressures.

Experimental Results With Nitrogen

The experimental data were taken for nitrogen on the isothermal throttling calorimeter at four different temperatures from 273.15 to 374.15 K, and the pressure up to 2400 psia. Figure 5 shows the isothermal throttling coefficient, ϕ at 273.15 K plotted as a function of pressure. An equal area curve passing through the bars obtained point values of ϕ . The agreement between this work and Mather 57 is less than 1.0%. Figure 6 and 7 show the comparison of two different temperatures with other experimental results. The experimental band indicates the precision of about $\pm 1/2\%$ for this experiment. The data of Ishkin and Kaganer 33 are believed to be high by as much as 5% (see Mather 58).

The values of ϕ can be calculated from an equation of state using Equation (8). The Benedict-Webb-Rubin⁶ equation is frequently used for calculation of thermodynamic properties. For nitrogen, two sets of constants for this equation are available, those of Stotler and Benedict⁸³ and those of Bloomer and Rao¹². Isothermal throttling coefficients were also calculated from the equation of state for nitrogen from the U.S. Bureau of Mines⁹³. The results of equation of state calculation were compared with the experimental data in Figure 8 and 9.

Table III presents the smoothed experimental measurements of $\boldsymbol{\varphi}$ by this work.

Enthalpy departures were calculated from the experimental data by integration of ϕ with respect to pressure. The results for the three isotherms of this work were compared with other experimental calorimetric results in Table IV. The present data were in very good agreement with the most recent experimental values in the literature.

TABLE III

ISOTHERMAL THROTTLING COEFFICIENTS FOR

NITROGEN

$$-\phi$$
 (J mol⁻¹ bar⁻¹)

Temperature, °C

PRESSURE				
(bar)	0	30	70.3	101
0*	7.48	5.93	4.58	3.62
10	7.33	5.83	4.44	3.51
20	7.17	5.69	4.30	3.40
30	7.03	5.54	4.16	3.29
40	6.86	5.39	4.01	3.17
50	6.66	5.21	3.87	3.04
60	6.46	5.04	3.72	2.92
70	6.26	4.89	3.58	2.81
80	6.06	4.73	3.43	2.71
90	5.85	4.55	3.31	2.60
100	5.63	4.37	3.18	2.48
110	5.39	4.20	3.05	2.37
120	5.14	4.01	2.91	2.26
130	4.88	3.83	2.79	2.14
140	4.75	3.65	2.67	2.04
150	4.34	3.46	2.55	1.93
160	4.07	3.27	2.42	1.82

* B -
$$T\frac{dB}{dT}$$

FIGURE 5. Isothermal Data on Nitrogen at 273.15 K

FIGURE 6. Comparison of Isothermal Data of Nitrogen With Other Experimental Data at 273.15 K

FIGURE 7. Comparison of ϕ of Nitrogen With Other Experimental Data at 374.15 K

FIGURE 8. Comparison of Isothermal Data of Nitrogen with Values Predicted from Equations of State

FIGURE 9. Comparison of Isothermal Data of Nitrogen with Values Predicted from Equations of State

TABLE IV

COMPARISON OF EXPERIMENTAL ENTHALPY DEPARTURES

FOR NITROGEN WITH OTHER EXPERIMENTAL WORKS

EMPERATURE	PRESSURE	$(H_o-H_p)_T$,	J mol ⁻¹	
(K)	(bar)	This Work	Mather ⁵⁷	Dawe & Snowdon ²¹
273.15	20	146.6	147	148
	40	287.0	290	291
	60	420.2	422	428
	80	545.4	543	558
	100	662.4	660	679
303.15	20	116.4	-	117
	40.	227.2	-	230
	60	331.5	-	338
	80	429.2	600	439
	100	520.2	-	532
374.15	20	70.2	_	67
37,1123	40	136.0	600	132
	60	196.8	-	194
	80	253.1	em:	252
	100	305.0	-	305

Experimental Results With Methane - Carbon Dioxide Mixtures

The measurements of the isothermal throttling coefficient were made on 42.3 mole percent of methane in carbon dioxide at four isotherms, 0, 40, 60 and 90°C. The pressure ranged from 400 to 2000 psia. Measurements were also made at six isotherms and the same pressure range for 14.5 mole percent of methane in carbon dioxide. The six isotherms were 0, 10, 20, 40, 60 and 90°C.

Typical isothermal data are presented in Figure 10. Average values of ϕ_m = $(\Delta H/\Delta P)_T$ were plotted as horizontal lines and the computer reduction method was used to determine point values of ϕ = f(P) as illustrated by the solid curve. In extrapolating the results of the experimental investigation to zero pressure, it was necessary to use Equation (14) for ϕ ° in terms of second virial coefficient. Values of ϕ ° were calculated from the virial coefficients given by Dymond and Smith²⁴ and Ng⁶³. The calculation of ϕ ° is shown in Appendix C.

Tables of ϕ values of all of the experimental isotherms are presented in Table V and VI. Figure 11 and 12 present the plot of ϕ as a function of temperature at different isobars for the two mixtures.

Comparison of Results

Since the isothermal experimental data on the carbon dioxidemethane mixtures with same compositions are not available in the literature, comparison cannot be made. However, the isothermal throttling coefficients of two mixtures at each isotherm and at a pressure up to 2000 psia can be calculated by using BWR equation of state and Bishnoi and Robinson 11 mixing rules. The parameters of carbon dioxide and methane, reported by Bishnoi and Robinson 00 were utilized in the above calculations.

FIGURE 10. Isothermal Throttling Coefficient for the 14.5 percent ${\rm CH_4}$ in ${\rm CO_2~Mixture~at~40^{\circ}C}$

TABLE V ISOTHERMAL THROTTLING COEFFICIENTS FOR THE 42.3 MOLE PERCENT METHANE IN CARBON DIOXIDE $-\phi$ (J mol $^{-1}$ bar $^{-1}$)

Temperature °C

PRESSURE (bar)	0	40	60	90
0*	32.46	24.10	21.30	18.20
10	34.42	24.95	21.92	18.48
20	37.10	25.95	22.58	18.78
30	40.70	27.09	23.28	19.05
40	45.41	28.27	23.95	19.32
50	52.15	29.48	24.60	19.58
60	62.04	30.76	25.20	19.83
70	74.71	32.05	25.76	20.01
80	87.75	33.24	26.27	20.13
90	85.77	34.23	26.69	20.17
100	63.71	34.90	26.95	20.17
110	43.52	34.97	27.00	20.12
120	30.04	34.11	26.76	20.00
130	21.55	32.27	26.17	19.74
137	17.75	31.19	25.53	19.43

^{*} B - $T\frac{dB}{dT}$

TABLE VI

ISOTHERMAL THROTTLING COEFFICIENTS FOR

THE 14.5 MOLE PERCENT METHANE IN CARBON DIOXIDE $-\phi$ (J mol⁻¹ bar⁻¹)

Temperature, °C

PRESSURE (bar)	0	10	20	40	60	90
0*	44.23	40.92	36.79	31.91	27.78	23.81
10	49.61	45.64	39.89	33.48	29.18	24.35
20	57.46	51.80	43.82	35.55	30.67	24.97
30	69.86	60.15	48.57	38.28	32.19	25.67
40	-	73.79	54.82	42.13	33.97	26.54
50	- !	96.73	67.63	46.32	36.04	27.42
60	-	-	90.03	51.54	38.37	28.30
70		-	129.5	58.39	40.92	29.16
80	9.99	~	241.8	67.48	43.66	30.00
90	7.61	20.90	99.40	78.06	46.53	30.80
100	6.10	14.21	44.51	85.15	49.17	31.48
110	5.02	10.78	25.76	80.53	50.91	31.94
120	3.98	8.43	17.96	63.06	51.07	32.16
130		7.06	14.65	46.30	49.11	32.18
137	-	6.38	11.54	37.00	46.37	32.11

^{*} B - $T\frac{dB}{dT}$

FIGURE 11. Isothermal Throttling Coefficient for the 42.3 percent CH₄ in CO₂ Mixture at Various Constant Pressures

FIGURE 12. Isothermal Throttling Coefficient for the 14.5 percent CH₄ in CO₂
Mixture at Various Constant Pressures

In general, the deviations are larger at the lower pressures of the lower temperature. The comparison of the experimental data and the calculated values from BWR equation of state for 42.3 percent methane in carbon dioxide at 0°C and 14.5% mixture at 90°C are shown in Figure 13 and 14 respectively.

Peterson and Wilson⁶⁸ reported results of isothermal enthalpy departure from isothermal throttling experiments for equimolal methanecarbon dioxide mixture at pressure from 20 to 2000 psia and temperature from -50°F to 300°F. Isothermal enthalpy departures of the two mixtures of this work were calculated by integration with respect to pressure. The results were then interpolated to 100°F and 150°F at pressure of 800, 1200, 1600 and 2000 psia. The final results were plotted at constant pressure and temperature as a function of mole fraction. Enthalpy departure of pure methane and carbon dioxide were obtained from modified BWR equation proposed by Starling (BWRS)^{50,78} with the parameters from Starling⁸⁰. Figure 15 shows the comparison of the results between this work and that of Peterson and Wilson⁶⁸ at 100°F. The comparison at 150°F is also in good agreement.

Enthalpy Tables and Diagrams

The experimental data on the effect of pressure on enthalpy by this work and the effect of temperature on enthalpy by Bishnoi⁹ for the methane - carbon dioxide mixtures have been used to prepare skeleton enthalpy tables and diagrams. Tables and diagrams are presented for 14.5 and 42.3 mole percent methane in carbon dioxide mixtures. Comparisons were made with excess enthalpy data from the literature.

FIGURE 13. ϕ of 42.3 Mole Percent Mixture at 273.15 K

FIGURE 14. ϕ of 14.5 Mole Percent Mixture at 363.15 K

FIGURE 15. Enthalpy Departures for Mixtures of Methane and Carbon Dioxide

Nominal 14.5 Percent Methane in Carbon Dioxide Mixture

A skeleton enthalpy table and a pressure-enthalpy-temperature diagram for this mixture have been prepared which are based entirely on experimental calorimetric data. The following procedure was used in preparing the diagram and table:

- 1. Reference state of 0 J/mole were taken to be the pure components as perfect crystals under zero pressure at absolute zero temperature.
- 2. The enthalpy of pure methane as a gas at zero pressure and 0 K was calculated using the enthalpy of methane (saturated vapor) at 100 K reported by Din²³, the B-W-R equation of state with parameters from Bishnoi and Robinson¹⁰ to correct from 0.344 atm to zero pressure, and value of the ideal gas enthalpies from McBride et al., the following results were obtained:

	kJ mol ⁻¹
Enthalpy of methane at 100 K and 0.344 atm	+12.4775
Corrected to ideal gas (0.344 to 0 atm)	+ 0.05535
Ideal gas enthalpy change from 100 to 0 K	- 3.3126
	9,22025

so, the enthalpy of pure methane from perfect crystal at 0 K to any temperature at zero pressure is,

$$H_{T} = 9.22025 + (H_{T}^{\circ} - H_{O}^{\circ}) \text{ kJ mol}^{-1}$$

where $(H_{\mathrm{T}}^{\circ} - H_{\mathrm{O}}^{\circ})$ is the ideal gas enthalpy change reported by

McBride et al.61.

3. The enthalpy of pure carbon dioxide as a gas at zero pressure and any temperature is reported by Vukalovich and Altunin 85 as follows:

$$H_{T} = 26.2235 + (H_{T}^{\circ} - H_{O}^{\circ}) \text{ kJ mol}^{-1}$$

where $(H_T^{\circ} - H_O^{\circ})$ is the ideal gas enthalpy change reported by McBride et al.⁶¹.

4. The enthalpy of methane-carbon dioxide mixture at zero pressure and any temperature T K was calculated assuming zero heat of mixing under these conditions.

$$H_{T,mix} = \sum_{i} x_{i} H_{T,i}$$

$$= 23.7580 + 0.145(H_{T}^{\circ} - H_{O}^{\circ})_{CH_{4}} + 0.855(H_{T}^{\circ} - H_{O}^{\circ})_{CO_{2}} \text{ kJ mol}^{-1}$$

- The isothermal effect of pressure on enthalpy at 293.15, 313.15, 333.15 and 363.15 K was obtained from the integral ϕ data of this work from 0 to 138 bar. For temperatures at 283.15 and 273.15 K, the isothermal effect of pressure on enthalpy was obtained from 0 to 35 bar. The enthalpy departures for this mixture are presented as function of temperature in Figure 16 and comparison is made with values calculated from equations of state. BWR equation with Bishnoi and Robinson 11 mixing rules predicts higher departures, while Soave-Redlich-Kwong 76 equation with the interaction constant k_{ij} from Peng 66 is seen to predict lower departures. BWRS equation with parameters of Hopke and Lin 32 gives better predictions.
- 6. The isobaric heat capacity data of Bishnoi⁹, at 312.86, 333.71, 363.6 and 423.75 K was used to determine the isobaric effect of

temperature on enthalpy. Since enthalpy is a property, changes in enthalpy are independent of the path chosen and the consistency of the experimental data can be tested by making loop checks. A grid consisting of 8 loops which is shown in Figure 34 was constructed and the enthalpy change around each loop evaluated. The actual sum divided by the sum of the absolute values of the enthalpy differences in the loop,

% deviation
$$\equiv \frac{\sum_{i}^{\Sigma} \Delta H_{i}}{\sum_{i} |\Delta H_{i}|} \times 100$$
 (27)

provides a good measure of the consistency of the data 8 . The maximum percentage deviation of each loop is less than 0.37 percent and the percentage deviation of each loop is shown in Table XXVII.

Adjustments were made on individual values of ΔH_i as required to make Σ ΔH_i = 0 for all loops. These adjustments were made within the limits of precision of the basic data. The accuracy of the heat capacity data is within $\pm 0.5\%^{10}$. Error analysis of this work is presented in Appendix A. The accuracy of the isothermal throttling coefficient is within $\pm 1.0\%$. The amount of the adjustments are presented in Figure 34.

7. A smooth plot of the results was prepared and is shown in Figure 17. The values of enthalpy are given in Table VII.

Nominal 42.3 Percent Methane in Carbon Dioxide Mixture

A skeleton enthalpy table and a pressure-enthalpy diagram for this mixture have been prepared.

FIGURE 16. Enthalpy Departures for the 14.5 Percent Mixture

Tabulated Values of Enthalpy for the 14.5 Percent of Methane in Carbon Dioxide

E			HP,	Datur T - H		Pure crystal of CH_4 + CO_2 at $mol-1$)		0 K and zero	o pressure
bar	273.15	283.15	290	293.15	300	310	313.15	320	330
00.00	32.313	32.673	32.920	33.038	33.290	33.660	33.781	34.035	34.415
10.00	31.865	32.245	32.505	32.645	32.915	33.320	33.435	33.725	34.120
20.00	31.315	31.735	32.060	32.225	32.525	32.965	33.100	33.390	33.815
30.00	30.690	31.175	32.585	31.770	32.095	32.580	32.725	33.040	33.495
40.00	29.800	30.545	31.060	31.255	31.625	32.170	32.325	32.675	33.155
50.00		29.550	30.445	30.655	31.100	31.720	31.895	32.280	32.805
00.09			29.650	29.905	30.475	31.210	31.415	31.845	32.420
70.00			28.440	28.830	29.670	30.620	30.870	31.365	32.050
80.00			25.790	26.850	28.510	29.910	30.230	30.830	31.555
00.06			23.915	25.135	27.290	29.095	29.500	30.210	31.070
100.00			23.360	24.465	26.375	28.220	28.675	29.510	30.560
110.00				24.130	25.560	27,355	27.830	28.825	30.045
120.00				23.915	24.975	26.660	27.115	28.200	29.525
130.00				23.750	24.615	26.130	26.585	27.650	29.000
137.89				23.650	24.470	25.800	26.260	27.250	28.575
									5(

TABLE VII (continued) CH_4 (14.5%) - CO_2

	T-	T															
	390	36 805	36.620	36.410	36.095	35.970	35.740	35,510	35.280	35.055	34.830	34.610	34.375	34.140	33.900	33.700	
	380	36.400	36.190	35.970	35.750	35,515	35.275	35.030	34.780	34.525	34.270	34.015	33,755	33,495	33.230	33.020	
	370	35.990	35.770	35.540	35.300	35.050	34.795	34.530	34.265	33.985	33,705	33.415	33.130	32.830	32.530	32.300	
(kJ mol-1)	363.15	35.715	35.480	35.230	34.985	34.725	34.460	34.190	33.895	33.595	33.300	32.980	32.665	32.345	32.025	31.770	
- H	1	35.590	35.355	35.110	34.850	34.580	34.300	34.020	33.725	33.415	33.095	32.770	32.450	32.120	31.780	31.510	
HP, T	350	35.200	34.945	34.680	34.400	34.110	33.815	33.505	33.180	32.835	32.485	32.120	31.755	31.370	30.975	30.650	
	340	34.810	34.530	34.245	33.950	33.645	33.320	32.970	32.605	32.215	31.820	31.410	30,995	30.550	30.090	29.710	
	333.15	34.542	34.260	33.960	33.645	33.310	32.960	32.595	32.205	31.780	31.330	30.850	30.365	29.865	29.360	28.950	
E d	bar	0	10.00	20.00	30.00	40.00	50.00	00.09	70.00	80.00	00.06	100.00	110.00	120.00	130.00	137.89	

TABLE VII (continued)

38.030 37.860 37.685 37.515 37.170 36.995 36.815	37.620 38.030 37.460 37.860 37.285 37.685 37.095 37.515 36.900 37.345 36.710 37.170 36.510 36.995 36.120 36.630
37.860 37.685 37.515 37.170 36.995 36.895	
37.685 37.515 37.345 37.170 36.995 36.815	
37.515 37.345 37.170 36.995 36.815	
37.345 37.170 36.995 36.815	
37.170 36.995 36.815 36.630	
36.995 36.815 36.630	
36.815	
36.630	
36.450	35.930 36.450
36.270	35.735 36.270
36.090	35.540 36.090
35.910	35.335 35.910
35.720	35.135 35.720
35.560	34.965 35.560

FIGURE 17. Pressure - Temperature - Enthalpy Diagram for 14.5 per cent of Methane in Carbon Dioxide

The isothermal effect of pressure on enthalpy at 273.15, 313.15 and 333.15K was obtained from the integrated ϕ data of this work from 0 to 138 bar.

The isobaric heat capacity data of Bishnoi 9 at 313.07, 333.63 and 363.45K was used to determine the isobaric effect of temperature on enthalpy.

A grid consisting of 8 loops was constructed and enthalpy change around each loop evaluated. Figure 35 shows the location and enthalpy changes of the loops. In all closure the percentage deviation is less than 0.3 percent and the percentage deviation of each loop is shown in Table XXVIII.

Adjustments were made to make Σ ΔH = 0 for all loops and the i amount of adjustment is presented in Figure 35.

A smooth plot of the results was prepared and is shown in Figure 18. The values of enthalpy are given in Table VIII.

Comparison of Methane - Carbon Dioxide Mixtures Enthalpy Data

The heat of mixing or excess enthalpy for the two mixtures was calculated at various pressures from the data of Table VII and VIII together with the methane data of Din^{23} and carbon dioxide data of Vukolovich et al. The results were compared with the excess enthalpy data of Lee and Mather directly determined using a flow calorimeter. The comparison is shown in Figure 19 and 20. The agreement is generally good.

TABLE VIII

Tabulated Values of Enthalpy for the 42.3 Percent of Methane in Carbon Dioxide

co pressure	320	29.490	29.255	29,010	28.750	28.485	28.205	27.930	27.635	27.335	27.030	26.720	26.415	26.105	25.790	25.535
of CH4 + CO2 at O K and zero pressure	313.15	29.227	28,980	28.720	28.450	28.180	27.890	27.590	27.265	26.930	26.595	26.260	25.920	25.595	25.260	24.989
of CH4 + CO ₂	310	29.110	28.855	28.590	28.315	28.040	27.745	27.430	27.105	26.755	26.400	26.030	25.670	25.325	24.990	24.730
Pure crystal (kJ mol-1)	300	28.735	28.460	28.175	27.885	27.570	27.230	26.875	26.495	26.050	25.550	25.050	24.670	24.360	24.055	23.815
Datum: Pur HP,T - Ho,o	290	28.375	28.080	27.770	27.445	27.090	26.705	26.290	25.815	25.265	24.700	24.170	23.690	23.280	22.970	22.805
	280	28.015	27.690	27.360	27.000	26.610	26.170	25.675	25.090	24.380	23.610	22.985	22.470	22.070	21.780	21.650
	273.15	27.776	27.445	27.085	26.690	26.250	25.750	25.180	24.510	23.700	22.820	22.065	21.550	21.195	20.920	20.770
	270	27.665	27.325	26.950	26.545	26.090	25.570	24.965	24.250	23.400	22.480	21.630	21.065	20.770	20.620	20.550
i. i.	bar	0	10.00	20.00	30.00	40.00	20.00	00.09	70.00	80.00	90.00	100.00	110.00	120.00	130.00	137.89

TABLE VIII(continued) CH_4 (42.3%) - CO_2

	370	31.405	31,230	31.050	30.880	30.695	30,510	30,330	30 . 145	29.965	29.780	29.590	29.405	29.230	29.050	28.915
	363.15	31,142	30.955	30.770	30.580	30,390	30,195	30.005	29.805	29.605	29.405	29.210	29.015	28.830	28.640	28.440
(kJ mol-1)	360	31.025	30.830	30.640	30.445	30.250	30.060	29.870	29.665	29.450	29.245	29.040	28.840	28.650	28.450	28.305
0,0	350	30.645	30.440	30.235	30.025	29.810	29.605	29.395	29.180	28.945	28.710	28.485	28.265	28.050	27.830	27.665
T,q"	340	30.255	30.030	29.815	29.600	29.380	29.150	28.910	28.670	28.415	28.160	27.915	27.670	27.425	27.180	26.995
	333.15	29.980	29.770	29.550	29.320	29.080	28.830	28.575	28.320	28.055	27.790	27.530	27.260	26.995	26.730	26.521
	330	29.875	29.645	29.410	29.175	28.930	28.680	28.420	28.150	27.880	27.610	27.345	27.070	26.795	26.515	26.290
P T K	bar	0	10.00	20.00	30.00	40.00	50.00	00.09	70.00	80.00	90.00	100.00	110.00	120.00	130.00	137.89

FIGURE 18. Pressure - Temperature - Enthalpy Diagram for 42.3 per cent of Methane in Carbon Dioxide

FIGURE 19. Comparison of Excess Enthalpy for Methane — Carbon Dioxide Mixtures

FIGURE 20. Comparison of Excess Enthalpy for Methane

— Carbon Dioxide Mixture

Experimental Results With Equimolal Methane - Carbon Dioxide - Nitrogen Mixture

The measurements of the isothermal throttling coefficient were made on an equimolal mixture of methane, carbon dioxide and nitrogen. The pressure range of the measurements was from 300 to 2000 psia and the three temperatures were 10, -10 and -30°C. The composition of the mixture was determined by the gas chromatograph and is given in Table IX.

The smoothed isothermal data is tabulated at Table X and is shown in Figure 21. Values of ϕ at zero pressure were calculated from the virial coefficients given by Dymond and Smith 24 and Ng 63 . The calculation of ϕ ° is shown in Appendix C.

TABLE IX

Composition of Equimolal Methane
Carbon Dioxide - Nitrogen Mixture

Composition	Mole Fraction
Methane	0.333
Nitrogen	0.333
Carbon dioxide	0.334

TABLE X ISOTHERMAL THROTTLING COEFFICIENTS FOR THE EQUIMOLAL MIXTURE OF CO_2 - CH_4 - N_2 - ϕ (J mol⁻¹ bar⁻¹)

Temperature, °C

PRESSURE (bar)	10	-10	-30
0*	19.04	22.80	26.03
10	19.50	23.62	27.55
20	19.98	24.45	29.22
30	20.65	25.31	31.30
40	21.17	26.17	33.72
50	21.60	27.06	36.59
60	21.95	28.03	39.56
70	22.21	28.88	41.97
80	22.34	29.33	43.01
90	22.27	29.20	41.73
100	21.93	28.50	37.68
110	21.34	27.28	32.15
120	20.54	25.54	26.72
130	19.50	23.19	22.00
137	18.63	21.14	19.19

^{*} B - $T\frac{dB}{dT}$

FIGURE 21. Isothermal Throttling Coefficient of the Equimolal Mixture of Methane, Carbon Dioxide and Nitrogen

Comparison of Experimental Results

Isothermal enthalpy departures for the mixture were calculated by integration of isothermal throttling coefficients with respect to pressure. The results were used to study the possibility of predicting ternary or multicomponent mixtures by using the binary experimental data. The experimental binary excess enthalpy data are from Lee and Mather 44,45 for carbon dioxide-methane system and nitrogen-carbon dioxide system. The experimental excess enthalpy data of nitrogen-methane system are from Klein et al. Pure component enthalpy data of nitrogen and methane are from Din 23 and carbon dioxide is from Vukalovich and Altunin 85.

Due to the limitation of the experimental excess enthalpy data available, the comparison is made only on isotherm of 10°C. The enthalpy departure of each equimolal binary system at 10°C and several different pressures was calculated from data of experimental excess enthalpy of the binary system and enthalpy of the pure component by the following relation,

$$\Delta \underline{\mathbf{H}}_{\mathbf{i}\mathbf{j}} = \underline{\mathbf{H}}_{\mathbf{i}\mathbf{j}}^{\mathbf{E}} + \frac{1}{2}(\underline{\mathbf{H}}_{\mathbf{i}} + \underline{\mathbf{H}}_{\mathbf{j}}) - \frac{1}{2}(\underline{\mathbf{H}}_{\mathbf{i}}^{\circ} + \underline{\mathbf{H}}_{\mathbf{j}}^{\circ})$$
(28)

where $\Delta \underline{H}_{ij}$ is molal enthalpy departure of equimolal mixture of i and j \underline{H}_{ij}^E is molal excess enthalpy of equimolal mixture of i and j \underline{H}_{i} , \underline{H}_{j} are molal enthalpy of i and j respectively and $\underline{H}_{i}^{\circ}$, $\underline{H}_{j}^{\circ}$ are molal enthalpy at zero pressure of i and j respectively. The molal enthalpy departure of the equimolal ternary mixture can be calculated as follows:

$$\Delta \underline{H}_{m,T,P} = \frac{1}{3} (\Delta \underline{H}_{12} + \Delta \underline{H}_{23} + \Delta \underline{H}_{13})_{T,P}$$
(29)

The molal enthalpy departure of the equimolal ternary mixture of methane, carbon dioxide and nitrogen was also calculated by using BWR equation of

state with Bishnoi and Robinson mixing rules and parameters 11.

The comparison between experimental results of this work and values calculated from binary data is shown in Figure 22. The prediction by BWR equation of state is seen to be in excellent agreement with these experimental results. The lack of agreement between this experimental data and the values calculated from binary data may be due to not taking account of ternary interactions.

Experimental Results With Equimolal Methane - Carbon Dioxide - Ethane Mixture

Data of isothermal throttling coefficients were obtained at six isotherms for the equimolal mixture. The composition of the mixture which was determined by gas chromatograph is given in Table XI. The pressure range was from 250 to 2000 psia and the six isotherms are -10, 0, 20, 40, 60 and 90°C.

TABLE XI

Composition of Equimolal Methane
Carbon Dioxide - Ethane Mixture

Composition	Mole Fraction		
Methane	0.340		
Ethane	0.325		
Carbon dioxide	0.335		

The raw experimental data was treated by computer reduction method and the smooth isothermal throttling coefficients are tabulated in

FIGURE 22. Enthalpy Departures for Equimolal Mixture of Methane, Carbon Dioxide and Nitrogen at 10°C

Table XII. The smooth isothermal throttling coefficient at constant temperature is plotted as function of pressure and it is shown in Figure 23. The zero pressure isothermal throttling coefficients were determined from second virial coefficient 20,24,27,31,63,101 by using Equation (14). The calculation of ϕ° is shown in Appendix C.

Comparison of Results

Peterson and Wilson reported isothermal enthalpy departure from 20 to 2000 psia for this mixture at temperature from -50°F to 300°F. Enthalpy departures were calculated from the experimental isothermal throttling data which are listed in Table XII by integration with respect to pressure. The values obtained were plotted as function of temperature at constant pressure. Figure 24 shows the comparison between experimental data of Peterson and Wilson and this work. The agreement is seen to be very good.

Experimental Results with 50 Percent Methane in Carbon Dioxide and Ethane Mixture

Isothermal throttling coefficient determinations of this mixture were obtained in the gaseous region at temperatures from -10 to 90°C, at pressure from 250 to 2000 psia. The composition of this mixture was determined by gas chromatograph and the compositions are given in Table XIII.

TABLE XII

ISOTHERMAL THROTTLING COEFFICIENTS FOR THE

EQUIMOLAL CO_2 - CH_4 - C_2H_6 MIXTURE - ϕ (J mol⁻¹ bar⁻¹)

Temperature, °C

PRESSURE (bar)	-10.0	0	20	40	60	90
0*	41.80	40.20	34.60	30.40	26.80	22.60
10	46.83	42.87	36.39	31.39	27.55	22.92
20	52.83	47.40	38.99	32.96	28.46	23.41
30	63.32	54.16	42.18	34.74	29.55	23.93
38	77.29	-	-	-	-	-
40	-	64.55	46.22	36.66	30.67	24.42
50	, (80.96	51.50	39.01	31.82	24.86
60		114.5	58.09	41.64	32.97	25.25
70	-	142.2	65.04	44.16	34.06	25.59
80		99.01	70.61	46.13	34.91	25.83
90	-	48.30	70.55	47.17	35.34	25.90
100	1004	29.57	60.75	46.76	35.19	25.77
110	-	19.19	46.50	44.34	34.46	25.43
120	-	14.30	34.92	39.75	33.29	24.89
130	Anna	10.94	26.25	34.36	31.38	24.15
137	-	8.86	21.67	30.83	29.31	23.52

^{*} B - $T\frac{dB}{dT}$

FIGURE 23. Isothermal Throttling Coefficient for the Equimolal Mixture of Methane, Carbon Dioxide and Ethane

FIGURE 24. Enthalpy Departures for the Equimolal Mixture of Methane,
Carbon Dioxide and Ethane

TABLE XIII

Composition of 50 Percent Methane in Carbon Dioxide and Ethane Mixture

Composition	Mole Fraction
Methane	0.514
Ethane	0.242
Carbon Dioxide	0.244

Isothermal throttling coefficients derived from the experimental data by computer reduction method are tabulated in Table XIV. A plot of the isothermal throttling coefficient at constant pressure as a function of temperature is shown in Figure 25.

Experimental Results with Equimolal Methane - Carbon Dioxide - Nitrogen - Ethane Mixture

Isothermal throttling coefficient determinations of this mixture were obtained in the gaseous region at temperatures from -30 to 60°C, at pressure from 250 to 2000 psia. The composition of this mixture was determined by the gas chromatograph and the compositions are given in Table XV.

TABLE XIV

ISOTHERMAL THROTTLING COEFFICIENTS FOR THE

50 PERCENT $_{\cdot,4}^{\text{CH}}$ IN $_{\cdot,4}^{\text{CO}}$ - $_{\cdot,4}^{\text{C}}$ MIXTURE - $_{\cdot,4}^{\text{C}}$ (J mol⁻¹ bar⁻¹)

Temperature, °C

PRESSURE (bar)	-10	0	20	40	60	90
0*	36.20	32.80	28.80	25.20	22.30	18.68
10	38.62	35.15	30.25	26.18	22.86	19.12
20	41.83	37.85	31.67	27.21	23.52	19.39
30	46.46	41.24	33.26	28.11	24.10	19.67
40	53.62	45.52	35.31	29.09	24.66	19.95
50	64.00	51.01	37.77	30.13	25.20	20.21
60	79.37	58.01	40.32	31.18	25.71	20.40
70	94.67	66.39	42.60	32.12	26.14	20.49
80	90.73	70.53	44.28	32.80	26.43	20.48
90	61.32	64.61	44.89	33.09	26.51	20.37
100	37.81	52.58	43.74	32.85	26.32	20.19
110	26.03	39.36	40.45	31.96	25.86	19.95
120	18.30	27.82	35.70	30.34	25.12	19.62
130	13.35	20.13	30.33	28.15	24.05	19.14
137	11.45	17.41	26.67	26.47	23.08	18.68

^{*} B - $T\frac{dB}{dT}$

FIGURE 25. Isothermal Throttling Coefficient for the 50 Percent Mixture of Methane in Carbon Dioxide and Ethane

TABLE XV

Composition of Equimolal Methane - Carbon

Dioxide - Nitrogen - Ethane Mixture

Composition	Mole Fraction
Methane	0.2535
Carbon Dioxide	0.2555
Ethane	0.2365
Nitrogen	0.2545

Smooth isothermal throttling coefficient of this mixture by this experiment are tabulated at Table XVI. A plot of the isothermal throttling coefficients at constant temperature as function of pressure is shown in Figure 26. Zero pressure isothermal throttling coefficients were calculated from second virial coefficients 20,24,27,31,64,70,101 by Equation (14) and the calculation of ϕ° is shown in Appendix C.

TABLE XVI ISOTHERMAL THROTTLING COEFFICIENTS FOR THE EQUIMOLAL ${\rm CO_2-CH_4-N_2-C_2H_6~MIXTURE}$ $-\phi~({\rm J~mol}^{-1}~{\rm bar}^{-1})$

Temperature, °C PRESSURE -30 -10 10 30 60 (bar) 0* 35.90 31.40 27.20 23.60 19.50 10 38.00 32.50 27.96 24.08 19.62 20 43.52 34.40 28.92 24.78 19.87 27 47.50 30 37.47 30.29 25.47 20.12 40 41.35 31.81 26.26 20.43 50 45.46 33.38 26.93 20.70 60 49.27 34.90 27.47 20.84 70 52.03 36.13 27.91 20.88 80 52.72 36.73 28.07 20.80 90 50.28 36.41 28.07 20.60 93 35.77 100 27.77 43.96 35.08 27.51 20.28 110 19.47 35.30 32.75 26.54 19.85 120 14.34 26.88 29.50 25.25 19.29 130 11.05 21.19 25.86 23.69 18.54 137 9.39 19.42 23.55 22.13 17.88

^{*} B - $T\frac{dB}{dT}$

FIGURE 26. Isothermal Throttling Coefficient for the Equimolal Mixture of Methane, Carbon Dioxide, Nitrogen and Ethane

SECTION IV - EVALUATION AND EXTENSION OF METHODS OF PREDICTION

This section presents a review of the methods of prediction of thermodynamic properties and particularly enthalpy of mixtures. Two new methods are proposed for the enthalpy prediction.

To calculate the thermodynamic properties of a fluid or fluid mixture from a knowledge of molecular parameters by directly solving the equations of statistical mechanics, requires very detailed mathematical calculations as well as knowledge of the interactions between many particles. For this reason, no satisfactory solution has been achieved for all regions of enthalpy prediction. Statistical mechanics has been applied with some success in this endeavor especially with respect to the behavior of gases containing relatively simple molecules.

Although advances have been made in the area of predicting macroscopic properties, it appears that for some time to come less sophisticated methods of prediction must play an important role. To obtain quantitative representation of thermodynamic properties, assumptions are required which make use of experimental data and certain parameters or functional forms having no direct fundamental significance. These approaches and other methods developed from correlating thermodynamic data will be discussed.

Method of Prediction Based on Thermodynamic Data

A recent review of the available methods of prediction of enthalpies of fluid mixture at elevated pressure was made by Nathan 62 , Mather 57 and Yesavage 97 . The main groups into which the methods can be divided are:

1. Estimation of partial enthalpies

- 2. Equivalent pure component method
- 3. Application of PVT data
- 4. Application of equations of state
- 5. Generalized corresponding states correlations

1. Estimation of Partial Enthalpies

The enthalpy per mole of a mixture, $\frac{H}{m}$, can be determined exactly from a knowledge of the partial molal enthalpies of the individual components \overline{H}_i , by application of the expression

$$\underline{\underline{H}}_{m} = \sum_{i} \underline{x}_{i} \underline{\overline{H}}_{i}$$
 (30)

The partial molal enthalpy of a component is generally a function of composition. For gases at zero pressure, the assumption that the enthalpy of a component in a mixture is the same as the enthalpy of the pure component is an accurate one. Therefore Equation (30) can be applied rigorously to establish the enthalpy of gaseous mixtures at zero pressure. In general, however, partial molal data are not abundant, and therefore, several methods of estimation have been suggested.

Very often the assumption is made that since hydrocarbons in a homologous series, are chemically similar, their solutions are ideal. Hence to compute a mixture properties, the sum of the property of each of the pure components (at the same temperature and total pressure) is taken in proportion to the quantity of the components present. This assumption may give good results at moderate pressures and relatively high temperatures. However, extreme care must be taken when applying this procedure since as Mather ⁵⁷ has shown extreme values of the heat of mixing do exist, especially in critical regions. Charts for the pure

component enthalpies are given by Maxwell⁶⁰, Peters⁶⁷ and Scheibel and Jenny⁷⁵. A difficulty arises in using these charts because it is not always possible to obtain the enthalpy data for the pure component for the conditions of temperature and pressure under which the mixture exists. Peters has derived auxiliary curves for estimation of partial enthalpies under those conditions and Maxwell used an extension of the vapor pressure curve for the partial enthalpy of a low-boiling component in a liquid mixture. In general, the plots presented by Peters were limited to a temperature range between -260 to +420°F at pressure up to 600 psia. Similarily, Maxwell's plots extend between -200 and +200°F at pressure below 150 atm.

A major drawback of this method is the fact that an enthalpy diagram must be available for every component present in a mixture.

2. Equivalent Pure Component Method

Several methods have been developed in which a new parameter is introduced to allow for the effect of composition. The data are usually presented as a series of enthalpy-temperature plots, there being a separate one for each pressure, with lines of this constant parameter. The forms that this parameter takes are most commonly the molal average boiling point, the average molecular weight or the mixture specific gravity.

Scheibel and $Jenny^{75}$ presented monographs based on the average molecular weight of a hydrocarbon mixture.

Papadopoulos et al. 65 showed that the molal average boiling point of a mixture defined as

$$M.A.B.P. = \sum_{i} x_{i}(B.P.)_{i}$$
 (31)

where the (B.P.) are the pure component boiling points, for lighter hydrocarbons served to correlate values of a partial molal enthalpies calculated from an equation of state. At the same time Canjar and Edmister amployed the same correlation using the fugacity coefficients, employing a numerical technique for differentiation, and derived partial molal enthalpies for lighter hydrocarbons. Canjar and Peterka prepared plots of the isothermal enthalpy departure as a function of temperature at pressure for mixtures with different molal average boiling points. The plots of Canjar and Peterka are restricted to the temperature range 200 to 500°F at pressures below 1500 psia for mixtures with molal average boiling points from -270 to 190°F.

3. Application of P-Y-T Data

Accurate P-Y-T data can be used to calculate the effect of pressure on enthalpy of fluids and fluid mixtures. If the volumetric data are available, the enthalpy can be calculated by use of the relation,

$$\underline{H}(T,P) = \underline{H}(T,0) + \int_{0}^{P} \left[\underline{V} - T(\frac{\partial \underline{V}}{\partial T})_{P}\right] dP_{T}$$
(32)

where $\underline{H}(T,0)$, the enthalpy at zero pressure, can be determined for most simple fluids. This is evaluated from ideal gas enthalpies of pure fluids either from statistical mechanics or from measured data. The ideal mixture enthalpy is determined by applying Equation (30).

The term in brackets of Equation (32) under the integral sign involves the difference between two terms, one of which includes a derivative. As a result, extremely accurate volumetric data are required to yield reliable estimates of the effect of pressure on enthalpy. A reduction of accuracy of one order of magnitude is to be expected.

Volumetric data for mixtures of the required accuracy are available but very rare.

4. Application of Equation of State

A large number of equations of state have been proposed but only a few have been used for extensive calculations of enthalpies. In general, most equations of state serve to relate pressure P as the dependent variable to temperature, T, and specific volume \underline{V} as independent variables. As a result, it is convenient to transform Equation (32) to,

$$\underline{\mathbf{H}}(\mathbf{T}, \infty) - \underline{\mathbf{H}}(\mathbf{T}, \underline{\mathbf{V}}) = \mathbf{R}\mathbf{T} - \mathbf{P}\underline{\mathbf{V}} + \int_{\infty}^{\underline{\mathbf{V}}} (\mathbf{P} - \mathbf{T}(\frac{\partial \mathbf{P}}{\partial \mathbf{T}})_{\underline{\mathbf{V}}}] d\underline{\mathbf{V}}_{\mathbf{T}}$$
(33)

The virial equation of state has a sound theoretical foundation and is free of arbitrary assumptions. The relations between virial coefficients and intermolecular potential functions can be derived from statistical mechanics and the composition dependence of the coefficients is known exactly. This equation is restricted to vapors since the power series relation tends to diverge at densities approaching those of liquids.

Relatively simple equations like the Redlich-Kwong⁷³ equation of state have been used for enthalpy predictions. Several modifications had been attempted to improve the prediction, such as those by Wilson⁹¹, Soave⁷⁶ and Chaudron, Asselineau and Renon¹⁷. More complex equations such as the Benedict-Webb-Rubin⁶ and Martin-Hou⁵⁶ have also been used to predict thermodynamic properties, including enthalpy. New mixing rules which were proposed by Bishnoi and Robinson¹¹ for the BWR parameters are claimed to improve the accuracy of such predictions. The modification of BWR equation by Starling^{32,50,77,78} is claimed to improve the prediction especially at lower temperature regions. Other modifications of BWR type

of equations of state, such as that Bender⁷ and McCarty⁵³ have also been proposed. Recently parameters for BWR^{7,9,32,50,53,77} have been determined by multiproperties regressing on volumetric data, vapor pressure data, enthalpy and k-value data. This ensures thermodynamic consistency of all type of data.

Unfortunately neither accurate thermodynamic data nor parameters for equation of state such as BWR which need large amounts of experimental data are available for many components.

5. Generalized Corresponding States Correlations

Recently reviews of the application of the corresponding states principle have been presented by ${\rm Stiel}^{81}$ and Leland and Chappelear 47 . These methods are based on the theory of corresponding states first put forward by van der Waals 62 in which he stated that all pure gases would have the same compressibility factor when measured at the same (reduced condition of) temperature and pressure. The law of corresponding states can be stated mathematically

$$\psi_{i}(T_{R_{i}}, P_{R_{i}}) = \psi_{j}(T_{R_{i}} = T_{R_{i}}, P_{R_{i}} = P_{R_{i}})$$
 (34)

where the symbols ψ_i , and ψ_j represent corresponding dimensionless group properties of two fluids "i" and "j" given as function of their respective reduced temperature $T_{R_i} = T_i/T_{C_i}$ and reduced pressure $P_{R_i} = P_i/P_{C_i}$.

This statement of principle has become known as Two-Parameter Law of corresponding state because one must have knowledge of the two parameters (T_C and P_C) in order to apply it and must assume that there are only two adjustable parameters in the intermolecular potential in order to derive it from statistical mechanics.

Lydersen, Greenkorn and Hougen (LGH) 51 correlated the thermodynamic properties of pure compounds based on a modified corresponding states principle. This principle states that pure compound with the same critical compressibility $Z_{\rm C}$ values, the dimensionless groups of properties of two pure compounds have the same numerical values at corresponding reduced condition. The correlation of LGH has the form

$$\frac{\underline{H}(T,0) - \underline{H}(T,P)}{T_{C}} = \left[\frac{\underline{H}^{0} - \underline{H}}{T_{C}}\right] + (Z_{C} - 0.27)[D]$$
(35)

where the bracketed terms are presented as generalized functions in tabular form by the authors. The condition covered include $P_R \leq 30$ for $0.5 \leq T_R \leq 15$. Yen and Alexander 95 and Yen and Garcia-Rangel 96 improved the correlation of the isothermal effects on enthalpies for pure compounds with the aid of reliable literature data.

Pitzer et al. employed the acentric factor ω , which is related to the shape of the reduced vapor pressure curve as the third parameter. The correlation of Curl and Pitzer is given in the form,

$$\frac{\underline{\mathbf{H}}(\mathbf{T},0) - \underline{\mathbf{H}}(\mathbf{T},\mathbf{P})}{\mathbf{RT}_{\mathbf{C}}} = \left[\underline{\underline{\mathbf{H}}^{0} - \underline{\mathbf{H}}}\right]^{(0)} + \omega \left[\underline{\underline{\mathbf{H}}^{0} - \underline{\mathbf{H}}}\right]^{(1)}$$
(36)

where the bracketed terms are somewhat different generalized function presented in tabular form by the authors. These tables cover the range of pressure for $P_R \leq 9$ for $0.8 \leq T_R \leq 4$. Revision of the original correlations which incorporated enthalpy data at elevated pressure in addition to PVT data have been presented recently (Yarborough 94). Chao and Greenkorn 15 recently extended the Curl and Pitzer correlation tempera-

ture range down to $T_R = 0.35$. The extended enthalpy correlation was obtained upon differentiation of the generalized fugacity function previously developed by Chao et al. and upon combining with calorimetric data in the literature.

Leach and Leland 42,43 extended the two parameter law of corresponding states to include fluids which have structural dissimilarity. Molecular shape factors were introduced which modified the critical temperature and critical volume of fluids whose molecular structures were dissimilar to those of a fluid for which thermodynamic data were available.

Molecular shape factors (θ_{ij} and v_{ij}) of a fluid "i" relative to fluid "i" are defined mathematically by the equations

$$Z_{i} = Z_{i} \tag{37}$$

$$\left(\frac{\Delta \underline{H}}{RT_C}\right)_{i} = \left(\frac{\Delta \underline{H}}{RT_C}\right)_{j} \tag{38}$$

at corresponding modified reduced conditions,

$$\frac{\mathbf{T_i}}{\theta_{ij}} \mathbf{T_{C_i}} = \frac{\mathbf{T_j}}{\mathbf{T_{C_j}}}$$
 (39)

$$\frac{V_{i}}{v_{ij}} V_{C_{i}} = \frac{V_{j}}{V_{C_{j}}}$$
(40)

where Z is the compressibility factor of the two fluids.

In general, the molecular shape factors of a fluid are functions of its temperature, density and intermolecular parameters. Leach 43 correlated the shape factor for isomeric and paraffin hydrocarbon using

methane as a reference. Watson and Rowlinson⁹⁰ and Gunning and Rowlinson²⁹ used the same correlation for non-hydrocarbon systems. The molecular shape factor can be extended to predict thermodynamic properties of the mixtures. The mixing rules have been suggested by Leach⁴³.

Application of Generalized Corresponding States Correlations to Mixtures

In applying the above correlation to mixtures, it is assumed that the reduced functions for a mixture behave in the same manner as those for a pure component. It is necessary to establish values of the three parameters for mixture. The concept of pseudocritical properties was first suggested by Kay³⁸. The suggested linear form are:

$${}^{T}C_{m} = \sum_{i} x_{i} {}^{T}C_{i}$$

$$(41)$$

$$P_{C_{m}} = \sum_{i} x_{i} P_{C_{i}}$$
 (42)

and

$$\omega_{\mathbf{m}} = \sum_{i} \mathbf{x}_{i} \omega_{i} \tag{43}$$

There are several other mixing rules which have been proposed in the literature. The procedure and the original background of the derivation of the mixing rules is presented.

i) Method of Pitzer and Hultgren 69

Pitzer and Hultgren had extended the three parameter acentric factor corresponding state theory to binary gas mixtures, using the pseudocritical concept. By studying the experimental volumetric data,

it was found that simple quadratic formulas could be used to represent the composition dependence of the three pseudoproperties of each mixture. Applied to the multicomponent mixture, the equations of the mixing rule are:

$${}^{T}C_{m} = \sum_{i} \sum_{j} {}^{x}i^{x}j^{T}C_{ij}$$

$$(44)$$

$$P_{C_{m}} = \sum_{i,j} \sum_{j} x_{i} x_{j}^{p} C_{ij}$$

$$(45)$$

$$\omega_{m} = \sum_{i j} \sum_{i j} x_{i} x_{j} \omega_{ij}$$
(46)

The constants $T_{C_{ij}}$, $P_{C_{ij}}$ and ω_{ij} (i \neq j), must be evaluated from data on binary mixtures. These mixing rules reduces to Kay's rules when the constants $\mathbf{T_{C_{ii}}},~\mathbf{P_{C_{ii}}}$ and $\boldsymbol{\omega_{ij}}$ are taken as arithmetric average of the pure constants.

Method of Joffe-Stewart, Burkhardt and Voo 34,35,82

The equations of the mixing rules are given as,

$$T_{C_{m}} = \frac{K^{2}}{J} \tag{47}$$

$$P_{C_{m}} = \frac{T_{C}^{2}}{J}$$

$$T_{C}^{2} \qquad T_{C}$$

$$T_{C}^{2} \qquad T_{C}$$
(48)

$$K^{2} = \frac{T_{C}^{2}}{P_{C}} = \left[\sum_{i} y_{i} \left(\frac{T_{C_{i}}}{P_{C}}\right)\right]^{2}$$
(49)

$$K^{2} = \frac{T_{C_{m}}^{2}}{P_{C_{m}}} = \left[\sum_{i} y_{i} \left(\frac{T_{C_{i}}}{P_{C_{i}}}\right)\right]^{2}$$

$$J = \frac{T_{C_{m}}}{P_{C_{m}}} = \frac{1}{8} \sum_{i} \sum_{j} y_{j} y_{j} \left[\left(\frac{T_{C_{i}}}{P_{C_{i}}}\right)^{1/3} + \left(\frac{T_{C_{i}}}{P_{C_{j}}}\right)^{1/3}\right]^{3}$$
(50)

These rules were originally suggested by the mixing rules for the constants

in van der Waals equation where,

$$a_{m} = \sum_{i} y_{i} a_{i}$$
 (51)

$$b_{m} = \sum_{i j} y_{i} y_{j} b_{ij}$$
(52)

Since the van der Waals equation is a two parameter equation, the strict development is limited to mutually conformal substances. However, the rules can be applied to other mixtures by assuming a linear variation in the third parameter.

iii) Method of Leland and Mueller 46

The problem of defining pseudocritical values for a multicomponent phase is analogous to the problem of writing the virial coefficients for the pure components. The second virial coefficient for an m-component mixture is related to the pure component virials by:

$$B_{m} = \sum_{i j} y_{i} y_{j}^{B} B_{ij}$$
 (53)

Leland and Mueller obtained the mixing rules by equating terms of a second virial coefficient expression for mixtures with those of a pure component and making appropriate simplifying assumptions. The pseudocritical constants are given as

$$T_{C_{m}} = \begin{bmatrix} \sum_{i j} y_{i} y_{j} & \left(\frac{Z_{C}^{T} C}{P_{C}}\right)^{1/\alpha} & \left(\frac{Z_{C}^{T} C}{P_{C}}\right)^{1/\alpha} & \left(\frac{Z_{C}^{T} C}{P_{C}}\right)^{1/\alpha} \\ \sum_{i j} y_{i} y_{j} & \left[\frac{1}{2} \left(\frac{Z_{C}^{T} C}{P_{C}}\right)^{1/3} + \frac{1}{2} \left(\frac{Z_{C}^{T} C}{P_{C}}\right)^{1/3} \right]^{3} \end{bmatrix}$$

$$(54)$$

$$P_{C_{m}} = \frac{T_{C_{m}} \sum_{i} y_{i} Z_{C_{i}}}{\sum_{i} \sum_{j} y_{i} y_{j} \left[\frac{1}{2} \left(\frac{Z_{C}^{T} C}{P_{C}} \right)_{i}^{1/3} + \frac{1}{2} \left(\frac{Z_{C}^{T} C}{P_{C}} \right)_{j}^{1/3} \right]^{3}}$$
(55)

where α is a function of

$$\begin{array}{ccc}
T & \Sigma & y_i^P C_i \\
\hline
P & \Sigma & y_i^T C_i \\
i & i & C_i
\end{array}$$

and is tabulated by the authors. The pseudocritical constant obtained by this method is not only function of components of mixture but also function of temperature and pressure. Again the third, parameter is assumed to be linear variation for the mixture.

iv) Method of Prausnitz and Gunn 71

The mixing rules of Prausnitz and Gunn are also suggested from relations for the second virial coefficient of conformal substances.

These rules are given as:

$$T_{C_{m}} = \frac{\beta + \sqrt{\beta^{2} + rV_{C_{m}}\gamma}}{2sV_{C_{m}}}$$
(56)

$$V_{C_{m}} = \sum_{i j} V_{ij} V_{C_{ij}}$$
(57)

$$P_{C_{m}} = \frac{RT_{C_{m}}}{V_{C_{m}}} \sum_{i} y_{i} Z_{C_{i}}$$
(58)

$$\omega_{\rm m} = \sum_{\rm i} y_{\rm i} \omega_{\rm i} \tag{59}$$

where $Z_{C_{\underline{i}}}$ can be obtained from

$$Z_{C_{i}} = 0.291 - 0.08 \omega_{i}$$
 (60)

The quantities β and γ are computed,

$$\beta = \sum_{i j} y_{i} y_{j} \left(T_{C} V_{C} \right)_{ij}$$
 (61)

$$\gamma = \sum_{i j} y_{i} y_{j} \left(v_{C}^{T} c^{2} \right)_{ij}$$

$$(62)$$

where

$$T_{C_{ij}} = (T_{C_i} T_{C_j})^{1/2} - \Delta T_{C_{ij}}$$
(63)

$$V_{C_{ij}} = \frac{1}{2}(V_{C_i} + V_{C_j}) - \Delta V_{C_{ij}}$$

$$(64)$$

where the Δ terms are small correction terms depending on the nature of the binary pairs. The quantities r and s are functions of $T_{\rm R}$ and ω tabulated by the authors.

Prausnitz and Gunn also recommended the following simplified rules,

$$\omega_{m} = \sum_{i} y_{i} \omega_{i}$$
 (59)

$$T_{C_{m}} = \sum_{i} y_{i} T_{C_{i}}$$

$$(41)$$

$$P_{C_{m}} = \frac{RT_{C_{m}}}{\sum_{i} y_{i} V_{C_{i}}} \sum_{i} y_{i} Z_{C_{i}}$$
(65)

where again $Z_{C_{\hat{1}}}$ is given by Equation (60).

v) Method of Barner and Quinlan⁵

Barner and Quinlan suggested the mixing rules based on a modified form of Redlich-Kwong equation of state (Chueh and Prausnitz 18). The mixing rules for the two constants of the equation of state is given by Joffe and Zudkevitch 36 as,

$$a_{m} = \sum_{i} \sum_{j} y_{i} y_{j} a_{ij}$$

$$(66)$$

$$b_{m} = \sum_{i \neq j} \sum_{i \neq j} y_{i} y_{j} b_{ij}$$
(52)

The suggested pseudocritical constant of the mixture is given by

$$T_{C_{m}} = \sum_{i,j} y_{i} y_{j} T_{C_{ij}}$$

$$(44)$$

$$V_{C_{m}} = \sum_{i,j} V_{i}y_{j}V_{C_{ij}}$$
(67)

$$\omega_{m} = \sum_{i} y_{i} \omega_{i}$$
 (59)

$$Z_{C} = 0.291 - 0.08 \omega$$
 (60)

$$P_{C_{m}} = \frac{RZ_{C_{m}}^{T_{C_{m}}}}{V_{C_{m}}}$$
(68)

$$T_{C_{ij}} = (T_{C_i} + T_{C_j})(K_{ij}/2)$$
 (69)

$$V_{C_{ij}} = \frac{1}{8} \left[V_{C_i}^{1/3} + V_{C_j}^{1/3} \right]^3$$
 (70)

The interaction constants K are tabulated by the authors. K have been generalized as a function of V_{C_i}/V_{C_j} and are also given by the authors.

vi) Modified Method of Gunn

 ${\sf Gunn}^{28}$ developed a corresponding states theory for fluid mixture. The pseudocritical temperature is obtained by using generalized equation for second virial coefficient of Curl and Pitzer 70 and the mixing rule for second virial coefficient.

$$B_{m} = \sum_{i} \sum_{j} y_{i} y_{j} B_{ij}$$
(53)

$$B_{R_{m}} = \frac{B_{m}}{V_{C_{m}}} = B_{R_{m}}^{(0)} + \omega_{m} B_{R_{m}}^{(1)}$$
(71)

The rigorous expression for the scaling temperature is obtained by equating Equation (53) and (71).

$$V_{C_{m}}[B_{R_{m}}^{(0)}(\frac{T}{T_{C_{m}}}) + \omega_{m}B_{R_{m}}^{(1)}(\frac{T}{T_{C_{m}}})] = \sum_{i,j} \sum_{R_{i,j}} \left(\frac{T}{T_{C_{i,j}}}\right) + \omega_{i,j}B_{R_{i,j}}^{(1)}(\frac{T}{T_{C_{i,j}}})]V_{C_{i,j}}$$
(72)

$$\omega_{\mathbf{m}} = \begin{bmatrix} \sum \sum y_{\mathbf{i}} y_{\mathbf{j}} V_{\mathbf{C}_{\mathbf{i}\mathbf{j}}} \omega_{\mathbf{i}\mathbf{j}} \end{bmatrix} V_{\mathbf{C}_{\mathbf{m}}}^{-1}$$
(73)

$$V_{C_{m}} = \sum_{i,j} V_{ij} V_{C_{ij}}$$
(67)

A new correlation of second virial coefficient of both polar and non-polar system presented by Tsonopoulos 84 replaced that of Curl and Pitzer 70 . The new correlation for non-polar system is given by,

$$\frac{BP_C}{RT_C} = f^{(0)} \left(\frac{T}{T_C}\right) + \omega f^{(1)} \left(\frac{T}{T_C}\right)$$
 (74)

where

$$f^{(0)} \left(\frac{T}{T_C}\right) = 0.1445 - \frac{0.330}{T_R} - \frac{0.1385}{T_R^2} - \frac{0.0121}{T_R^3} - \frac{0.000607}{T_R^8}$$
(75)

$$f^{(1)}(\frac{T}{T_C}) = 0.0637 + \frac{0.331}{T_R^2} - \frac{0.423}{T_R^3} - \frac{0.008}{T_R^8}$$
 (76)

Replace Equation (71) by (74),

$$B_{m} = (\frac{RT_{C_{m}}}{P_{C_{m}}}) [f^{(0)}(\frac{T}{T_{C_{m}}}) + \omega_{m} f^{(1)}(\frac{T}{T_{C_{ij}}})]$$

$$= \sum_{i,j} y_{i} y_{j} \left[\frac{R^{T} c_{ij}}{P_{C_{ij}}}\right] \left[f^{(0)} \left(\frac{T}{T_{C_{ij}}}\right) + \omega_{ij} f^{(1)} \left(\frac{T}{T_{C_{ij}}}\right)\right]$$
(77)

$$\omega_{ij} = \frac{1}{2}(\omega_i + \omega_j) \tag{78}$$

$$V_{C_{ij}} = \frac{1}{8} (V_{C_i}^{1/3} + V_{C_j}^{1/3})^3$$
 (70)

$$T_{C_{ij}} = (T_{C_i} T_{C_j})^{1/2} (1 - k_{ij})$$
 (79)

$$P_{C_{ij}} = \frac{T_{C_{ij}} \left[\frac{P_{c}V_{C}}{T_{C_{ij}}} + \frac{P_{c}V_{C}}{T_{C_{j}}} \right]}{2V_{C_{ij}}}$$
(80)

$$V_{C_{m}} = \sum_{i j} Y_{i} Y_{j} V_{C_{ij}}$$
(67)

$$Z_{C_{m}} = 0.291 - 0.08 \omega_{m}$$
 (60)

$$\omega_{m} = \left[\sum_{i,j} \nabla_{i,j} \nabla_{C_{i,j}} \omega_{i,j}\right] / \nabla_{C_{m}}$$
(73)

$$P_{C_{m}} = Z_{C_{m}} RT_{C_{m}} / V_{C_{m}}$$
(68)

The interaction constant k_{ij} is given by Prausnitz⁷² or by fitting the experimental B_{ij} with Equation (74). The pseudocritical constant T_{C_m} and P_{C_m} is obtained by solving Equation (77) and (68) simultaneously.

vii) Proposed Method (Soave-Redlich-Kwong Equation of State)

A modified Redlich-Kwong equation of state has been proposed by 76 . The parameter a in the original equation is suggested to be temperature dependent. The modified equation is,

$$P = \frac{RT}{\underline{V} - b} - \frac{a(T)}{\underline{V}(\underline{V} + b)}$$
 (81)

$$a_{i}(T) = a_{C_{i}} \alpha_{i}(T)$$
 (82)

$$a_{C_{i}} = 0.42747 \frac{R^{2}T_{C_{i}}^{2}}{P_{C_{i}}}$$
 (83)

$$b_{i} = 0.08664 \frac{RT_{C_{i}}}{P_{C_{i}}}$$
 (84)

$$\alpha_{i}^{0.5}(T) = 1 + m_{i}[1 - (\frac{T}{T_{C_{i}}})^{0.5}]$$
 (85)

$$m_{i} = 0.480 + 1.574 \omega_{i} - 0.176 \omega_{i}^{2}$$
 (86)

Applying the equation of state to the mixture, the mixing rules for the two parameters are,

$$a_{m} = \sum_{i} \sum_{j} y_{i} y_{j} a_{ij}$$

$$(66)$$

$$b_{m} = \sum_{i} y_{i} b_{i}$$
 (87)

$$a_{ij} = (1 - k_{ij})(a_i a_j)^{1/2}$$
 (88)

where k_{ij} is an empirical correlation factor to be determined from the experimental vapor-liquid equilibrium data, for each binary component present in the mixture. Generalization of k_{ij} has been attempted 66 .

Starting by substituting Equation (82), (84) and (88) into Equation (66) and (87) respectively,

$$\alpha_{m} \left(\frac{T}{T_{C_{m}}}\right)^{T_{C_{m}}} = \sum_{i,j} \sum_{j} y_{i} y_{j} \left[\frac{\alpha^{1/2} \left(\frac{T}{T_{C_{i}}}\right) \alpha^{1/2} \left(\frac{T}{T_{C_{i}}}\right) T_{C_{i}} T_{C_{i}} (1-k_{ij})}{\frac{1}{C_{i}} T_{C_{i}} T_{C_{i}} (1-k_{ij})} \right]$$
(89)

$$\frac{{}^{T}C_{m}}{{}^{P}C_{m}} = \sum_{i} y_{i} \frac{{}^{T}C_{i}}{{}^{P}C_{i}}$$

$$(90)$$

From Equation (90) to Equation (89),

$$\alpha_{m} T_{C_{m}} = \frac{\sum_{i j} \sum_{j} y_{i} y_{j}}{\sum_{i j} \frac{\alpha_{i}^{1/2} \alpha_{j}^{1/2} T_{C_{i}} T_{C_{j}} (1-k_{ij})}{P_{C_{i}^{1/2}} P_{C_{j}^{1/2}}}}{\sum_{i j} \frac{T_{C_{i}}}{P_{C_{i}}}}$$
(91)

$$P_{C_{m}} = \frac{{}^{T}C_{m}}{{}^{T}C_{i}}$$

$$\sum_{i} y_{i} \frac{{}^{C}C_{i}}{{}^{P}C_{i}}$$
(92)

 $^T_{C_m}$ and $^P_{C_m}$ are obtained by solving Equation (91) and (92) simultaneously. Here the linear variation for ω_m is assumed.

Evaluation of Nine Enthalpy Correlations

The nine correlations evaluated and compared in this study are shown in Table XVII. Six of the correlations used corresponding states method of Curl and Pitzer¹⁹ with six different mixing rules and three of the correlations used equations of state. The following six mixing rules for mixtures which have been discussed above to estimate the pseudocritical parameters for the Curl and Pitzer generalized correlation are:

1) method of Barner and Quinlan, 2) proposed method (Soave-Redlich-Kwong equation of state), 3) modified method of Gunn, 4) method of Prausnitz and Gunn, 5) method of Joffe-Stewart, Burkhardt and Voo, and
6) method of Leland and Mueller. The equation of state correlations are Starling-BWR^{32,77}, Soave-Redlich-Kwong⁷⁶ equation and Mark V⁹² correlation.

In this study, the Curl and Pitzer 19 generalized correlation tables for enthalpy departure and the extended correlation temperature range of Chao and Greenkorn 15 were used. The linear interpolation, performed by computer was utilized in the calculation of the enthalpy departure.

Presented in Table XVIII are the data sources, number of data point, and temperature and pressure regions of the data for the sixteen fluid compositions studied in this evaluation.

Presented in Table XIX for each correlation are the average absolute deviations between predicted enthalpy departures and experimental enthalpy departures for each of the sixteen fluid compositions used in this study. The overall average absolute deviation for the total data points is given for each correlation in Table XIX. It is to be noted that the BWRS yields the lowest average absolute deviations. Results

TABLE XVII

CORRELATIONS EVALUATED IN THIS STUDY

Correlation	Abbreviation	Developers	References
Starling-BWR	BWRS	Starling	32, 77, 79
Soave-Redlich-Kwong	SRK	Soave	76
Mark V	Mark V	Wilson	92
Corresponding State +		Curl, Pitzer	19
Method of Barner & Quinlan	СРВО	Barner, Quinlan	5
Proposed Method	CPNM	This work	-
Method of Prausnitz & Gunn	CPPG	Prausnitz, Gunn	71
Method of Joff-Stewart Burkhardt & Voo	, CPSV	Joffe,Stewart, Burkhardt, Voo	34, 35, 82
Method of Leland &	CPLM	Leland, Mueller	46
Modified Method of	CP MG	Gunn	28

TABLE XVIII

DATA SOURCE OF SYSTEMS STUDIED

System	References	No Data Points	Lowest T°F	Highest T °F	Highest P psia
42.3% N ₂ -56.6 CH ₄	54,57	54	-250	250	2000
100% CH ₄	37,97	35	-250	50	2000
94.8% CH ₄ -5.2% C ₃ H ₈	55,57	47	- 250	250	2000
88.3% CH ₄ -11.7% C ₃ H ₈	57	47	- 250	250	2000
72% CH ₄ -28% C ₃ H ₈	57	45	- 250	250	2000
49.4% CH ₄ -50.6% C ₃ H ₈	97	45	- 250	250	2000
23.4% CH ₄ -76.6% C ₃ H ₈	97	50	-250	250	2000
36.6% CH ₄ -31.1% C ₂ H ₆ 32.3% C ₃ H ₈	- 26	31	-240	240	2000
38.5% C ₅ H ₁₂ -61.5% C ₆	H ₁₂ 48	36	540	600	1400
59.7% C ₅ H ₁₂ -40.3% C ₈	H ₁₈ 49	66	75	600	1400
42.3% CH ₄ -57.7% CO ₂	This work	20	32	194	2000
14.5% CH ₄ -85.5% CO ₂	This work	22	50	194	2000
Equimolal CH ₄ -CO ₂ -N ₂	This work	15	-22	50	2000
Equimolal CH ₄ -CO ₂ -C ₂	H ₆ This work	25	32	194	2000
$CH_4(\frac{1}{2}) - CO_2(\frac{1}{4}) - C_2H_6(\frac{1}{4})$) This work	30	14	194	2000
Equimolal $CH_4-CO_2-C_2H_6-N_2$	This work	20	14	140	2000

SUMMARY OF RESULTS OF ENTHALPY CORRELATION EVALUATION Average $|\Delta| = (\Delta H_{exp} - \Delta H_{cal})$, Btu lb⁻¹ TABLE XIX

Mark V	3.2	2.3	1.7	1.6	1.4	1.5	1.4	1.2	0.5	1.9
SRK	2.5	2.2	1.4	1.2	1.0	1.1	8.0	1.0	0.5	0.8
CPMG	1.6	7.9	*	*	*	*	1.1	1.1	0.7	0.9
CPLM	1.6	2.0	2.1	2.8	2.5	1.6	1.8	1.3	1.6	5.5
CPSV	1.6	1.7	2.5	4.1	5.6	3.2	0.7	1.1	2.6	3.3
CPPG	1.6	2.2	2.4	2.6	3.9	4.4	9.0	1.1	1.4	1.1
CPNM	1.6	1.6	1.7	2.0	3.0	1.7	1.1	1.3	1.7	6.0
CP BQ	1.6	1.7	1.9	2.4	3.2	1.6	1.8	1.9	3.0	1.5
BWRS	*9.0	0.7*	0.7*	*6.0	1.3*	*6.0	7.0	8.0	0.2	0.7
Rules	Methane	c ₁ (0.95) c ₃ (0.05)	c ₁ (0.883) c ₃ (0.117)	C ₁ (0.72) C ₃ (0.28)	C ₁ (0.494) C ₃ (0.506)	C ₁ (0.234) C ₃ (0.766)	CO ₂ (0.577) CH ₄ (0.423)	CO ₂ (0.855) CH ₄ (0.145)	$N_2(1/3) - CH_4(1/3)$	CO ₂ (1/3)-CH ₄ (1/3)- C ₂ H ₆ (1/3)

SUPPLIARY OF RESULTS OF ENTHALPY CORRELATION EVALUATION TABLE XIX

Average $|\Delta| = (\Delta H_{exp} - \Delta H_{cal})$, Btu lb⁻¹

(continued)

Mark V	1.5	0.4	1.0	1.3	* *	3.0	1.60
			80	6	e.	0	1.21
SRK	0.8	0.4	0.8	6.0	1.3	4.0	1.
CPMG	0.7	0.7	*	*	*	*	
СРГМ	3.5	4.0	1.6	6.3	1.0	2.4	2.6
CPSV	1.4	6.0	1.1	2.1	6.0	4.3	2.32
CPPG	0.7	0.7	1.3	2.9	1.4	2.3	1.91
CPNM	1.4	6.0	1.0	3.9	1.2	2.4	1.70
CP BQ	2.1	1.3	6.0	3.9	6.0	2.4	2.0
BWRS	7.0	0.7	0.5*	4.0*	1.8*	2.8*	6.0
Rules	CO ₂ (1/4)-CH ₄ (1/2)- C ₂ H ₆ (1/3)	$C_{02}(1/4)-CH_{4}(1/4) N_{2}(1/4)-C_{2}H_{6}(1/4)$	CH ₄ (0.566) -N ₂ (0.434)	CH4-C2H6-C3H8 0.366-0.311-0.323	n-C ₅ (0.385) ECH ₁₂ (0.615)	n-C5-n-C8 (0.597-0.403)	Overall Average

* From Starling et al.

^{**} Poor prediction for liquid region

^{***} Not available for cyclehexane

obtained using method two listed above, gives the lowest average absolute deviations among the six methods.

The pseudocritical parameters (temperature and pressure) which were obtained by the five different methods for the mixtures of 49.4 mole percent methane in propane plot as function of temperature are shown in Figure 27 and 28. Pseudocritical temperature and pressure obtained by modified method of Gunn shows very large deviation from others. Pseudocritical temperature and pressure obtained by method of Leland and Mueller are the function of temperature and pressure. They can not be shown in Figure 27 and 28.

Conclusions

The conclusion of this study is the finding that the equations of state BWRS, Soave-RK, Mark V and the corresponding states with the proposed mixing rule which is derived from Soave-RK, are the most accurate of the nine enthalpy correlations tested. Conclusions relating to each correlation individually are given below.

Starling-BWR

The average absolute deviation for this correlation is 0.9 Btu/lb. This method is not a generalized correlation and therefore can be applied only when the parameters of this equation of state have been determined for each component in a mixture. Also binary data are needed to determine interaction constants.

Soave-Redlich-Kwong Equation of State

The average absolute deviation for this correlation is 1.21

FIGURE 27. Pseudocritical Pressure at 49.4 percent Mixture of Methane in Propane

FIGURE 28. Pseudocritical Temperature of 49.4 percent Mixture of Methane in Propane

Btu/lb. This method can be considered as a generalized correlation because only critical properties and acentric factor of each component in mixture are required for the prediction. The only additional information is the interaction constant k_{ij} which has to be determined from the binary vapor-liquid equilibrium data. Generalization of k_{ij} for some system has been attempted 66 . This method requires very little computation time.

Mark V Computer Program

The average absolute deviation for this correlation is 1.60 Btu/lb. This correlation always predicts too high at low pressure and predicts too low at high pressure.

Corresponding State of Curl and Pitzer With Different Mixing Rules Proposed Method

The average absolute deviation for this correlation is 1.70 Btu/lb. The interaction constant k_{ij} for the Soave-Redlich-Kwong equation of state has to be determined from the binary vapor-liquid equilibrium data. The generalization of k_{ij} has been attempted.

Method of Barner and Quinlan

The average absolute deviation for this correlation is 2.0 Btu/lb. The mixing rules is derived from modified Redlich-Kwong equation of state (Chueh and Prausnitz 18). Barner and Quinlan had generalized the binary interaction constant K_{ij} for most of the system. The pseudocritical temperature and pressure of the mixture are independent of the temperature of the system.

Method of Joffe, Stewart, Burkhardt and Voo

This correlation gives average absolute deviation of 2.32 Btu/
1b. The mixing rules are derived based on van der Waals equation of
state. No binary interaction constant is needed. It is not surprising
that the prediction is less accurate than other methods which have one
more adjustable parameter.

Method of Leland and Mueller

The average absolute deviation for this correlation is 2.6 Btu/lb. The pseudocritical temperature and pressure obtained by this method are both functions of the temperature and pressure of the system. This correlation gives very good prediction for some systems but gives very poor prediction for some other systems.

Modified Method of Gunn

This correlation gives very poor prediction in liquid region, but gives good prediction in gas region. The experimental data of this work are in gas region. It is shown in Table XIX that this correlation gives the lowest average absolute deviation among the corresponding states methods.

Method of Prausnitz and Gunn

The average absolute deviation for this correlation is 1.91 Btu/lb. Equation of the form $B_m = \sum \sum x_i x_j B_i$ forms the theoretical

basis on which the prediction of pseudocritical constants is based. The two empirical constants ΔT_{C} and ΔV_{C} for each binary had been generalized by the authors. Two more empirical constants s and r for each mixture are needed to obtain the pseudocritical constants for the mixture.

Summary and Conclusions

- An isothermal throttling calorimeter for direct determination of the effect of pressure on enthalpy was designed, fabricated, and tested. The recycle flow facility, as described by Bishnoi, was used to recycle the material for this study.
- 2. The effect of pressure on enthalpy was determined experimentally for nitrogen at temperatures from 0 to 100° C and pressures from 300 psia to 2000 psia. The data are in good agreement (within \pm 1%) with other direct determinations in recent literature.
- 3. Measurement of the effect of pressure on enthalpy were made on 14.5 mole percent and 42.3 mole percent of methane in carbon dioxide at gas region at pressure from 300 to 2000 psia.
- 4. Skeleton enthalpy tables and enthalpy-pressure-temperature diagrams for those two mixtures were prepared, using isothermal enthalpy data of this work and isobaric heat capacity data of Bishnoi.
- on equimolal mixture of methane, carbon dioxide and nitrogen,
 equimolal mixture of methane, carbon dioxide and ethane, methane rich
 mixture of methane, carbon dioxide and ethane, and equimolal mixture
 of methane, carbon dioxide and ethane, and equimolal mixture
 of methane, carbon dioxide, nitrogen and ethane. The measurements are
 in gas region and pressure up to 2000 psia.
- 6. The data obtained in the course of this investigation plus data in the literature were used to compare several of the available methods of prediction. This comparative study indicates that corresponding states principle would be a most fruitful approach for extending methods of prediction.
- 7. A new recipe for obtaining pseudocritical parameters for the

mixture of the three parameter corresponding states correlation of Curl and Pitzer was developed to predict the isothermal enthalpy departure of mixture. In comparison with sixteen fluid compositions of experimental data in the literature, this new method gives lowest average absolute deviation among other methods of obtaining pseudocritical parameters.

- The pressure transducer for measuring the pressure drop across the calorimeter should be replaced by a more accurate and wider range pressure transducer.
- The new device of flow meter should be developed in order to obtain more accurate experimental data.
- 3. The calorimeter should be modified in such a way that it would be easier to interchange the throttling coil.
- 4. A higher pressure drop throttling coil should be constructed in order to study the effect of pressure on enthalpy in liquid region and region across the two phases.
- of the compressor in order to prevent the solid formation of oil or water which will plug the throttling unit of the calorimeter when operated at low temperature.

NOMENCLATURE

a ₀ ,a ₁ ,a ₂ ,a ₃	Constant in Equation (21)
a,b,c,d	Constant in BWR or BWRS equation of state
a,b	Constant in RK or SRK equation of state
A ₀ ,B ₀ ,C ₀ ,D ₀ ,E ₀	Constant in BWR or BWRS equation of state
A, B	Calibration constants (flow meter)
В	Second virial coefficient in volume expansion
В†	Second virial coefficient in pressure expansion
B _R	Reduced second virial coefficient
В.Р.	Normal boiling point
С	Third virial coefficient in volume expansion
C'	Third virial coefficient in pressure expansion
C _p	Isobaric heat capacity
D	Correlation term of Lydersen, Greenkorn, Hougen correlation
е	Base of natural logarithm
F	Mass flow rate
<u>H</u>	Specific enthalpy
Ħ	Partial molal enthalpy
J,K	Expression in mixing rule of Joffe-Stewart, Burkhardt,
K	Interaction constant for Barner and Quinlan mixing rule
k	Interaction constant
М	Molecular weight
m	Slope of $\alpha^{0.5}$ against $T_R^{0.5}$, Equation (85)
P	Pressure

Critical pressure

 $^{\rm P}$ C

P_{R}	Reduced pressure P/P _C
ΔΡ	Pressure drop
ġ	Rate of heat transfer
q	Work per unit mass W/F
R	Gas constant
r,s	Correction factor in mixing rule of Prausnitz and Gunn
Т	Temperature
T _C	Critical temperature
T_{R}	Reduced temperature T/T _C
<u>V</u>	Specific yolume
Ŵ	Rate of transfer of work
x	Mole fraction
у	Mole fraction
Z	Compressibility factor
α	Constant in mixing rule of Leland and Mueller
α,γ	Constant in BWR or BWRS equation of state
β,γ	Expression in mixing rule of Prausnitz and Gunn
Δ	Difference
μ	Joule-Thomson coefficient
μ [†]	Viscosity
ρ	Density
ψ	Dimensionless group of a thermodynamic property
θ,ν	Molecular shape factors
τ	Reciprocal of temperature 1/T
ω	Acentric factor
Ω _a ,Ω b	Parameter in RK or SRK equation of state
ф	Isothermal throttling coefficient

Subscripts

ad Adiabatic condition

C Critical point property

i,j Component in a mixture

m Mean value

m,mix Mixture property

o Zero pressure value

O Reference substance property

1 Component 1

1 Inlet condition

11 Component 1

12 Interaction between component 1 and component 2

2,22 Component 2

2 Outlet condition

Superscripts

• Zero pressure value

E Excess property

Bibliography

- 1. Alkasab, K.A., Ph.D. Thesis, Illinois Institute of Technology (1970).
- 2. Alkasab, K.A., Shah, J.M., Laverman, R.J. and Budenholzer, R.A., Ind. Eng. Chem. Fundam., 10 (2), 237 (1971).
- 3. Altunin, V.V., Kuznetsov, D.O. and Bondarenko, V.F., <u>Teploenergetika</u>, 20, (4), 61 (1973).
- 4. Barieau, R.E., U.S. Bur. Mines Information Circular 8245 (1965).
- 5. Barner, H.E. and Quinlan, C.W., <u>I. & EC., Proc. Des. and Devel.</u> 8, 407 (1969).
- 6. Benedict, M., Webb, G.B. and Rubin, L.C., J. Chem. Phys., 8, 334 (1940).
- 7. Bender, E., "Proc. of the 5th Symp. on Thermophysical Prop.", (ASME, NY, 1970) Page 227.
- 8. Bhird, V.L. and Powers, J.E. "Thermod. Prop. of a 5 mole percent Propane in Methane Mixture", Report to NGPA, 1969.
- 9. Bishnoi, P.R., Ph.D. Thesis, University of Alberta (1970).
- 10. Bishnoi, P.R. and Robinson, D.B., Can. J. Chem. Eng., 49, 642 (1971).
- 11. Bishnoi, P.R. and Robinson, D.B., Can. J. Chem. Eng., 50, 101 (1972).
- 12. Bloomer, O.T. and Rao, K.N., IGT Res. Bull., <u>18</u> (1952).
- 13. Canjar, L.N. and Edmister, W.C., <u>Chem. Eng. Prog. Symp. Ser.</u>, <u>49</u> (7), 73 (1953).
- 14. Canjar, L.N. and Peterka, V.J., AIChE J., 2, 343 (1956).
- 15. Chao, K.C. and Greenkorn, R.A., Pro. 50th NGPA Ann. Conv., 42 (1971).
- 16. Chao, K.C., Greenkorn, R.A., Olabisi, O. and Hensel, B.H., <u>AICHE J.</u> 17, 353 (1971).
- 17. Chaudron, J., Asselineau, L. and Renon, H., Chem. Eng. Sci., 28, 839 (1973).
- 18. Chueh, P.L. and Prausnitz, J.M., <u>Ind. Eng. Chem. Fundam.</u>, <u>6</u>, 492 (1967).
- 19. Curl, R.F. and Pitzer, K.S., Ind. Eng. Chem., 50, 265 (1958).
- 20. Dantzler, E.M., Knobler, C.M. and Windsor, M.L., J. Phys. Chem., 72, 676 (1968).
- 21. Dawe, R.A. and Snowdon, P.N., J. Chem. Therm., 6, 65 & 293 (1974).

- 22. Dillard, D.D., Edmister, W.C., Erbar, J.H. and Robinson, R.L. Jr., AIChE J., 14, 923 (1968).
- 23. Din, F. in Thermodynamic Functions of Gases, ed. F. Din, Vol. 3, 72 (1961).
- 24. Dymond, J.H. and Smith E.B., "The Virial Coefficient of Gases", Clarendon Press, Oxford (1969).
- 25. Eakin, B.E. and DeVaney, W.E., <u>Proc 53rd Ann. Conv.</u>, <u>NGPA Tech. Papers</u>, 72 (1974).
- 26. Furtado, A.W., Katz, D.L. and Powers, J.E., Proc. 49th NGPA Ann. Conv., 1 (1970).
- 27. Gunn, R.D., M.Sc. Thesis, University of California, Berkeley (1958).
- 28. Gunn, R.D., AICHE J., 18, 183 (1972).
- 29. Gunning, A.J. and Rowlinson, J.S., Chem. Eng. Sci., 28, 521 (1973).
- 30. Gusak, I.M., Phys. Z. Sowjet., 11, 60 (1937).
- 31. Hoover, A., Nagata, I., Leland, T.W. Jr. and Kobayashi, R., <u>J. Chem.</u> Phys., <u>48</u>, 2633 (1968).
- 32. Hopke, S.W. and Lin, C-J., Paper presented at 76th National AIChE Meeting, March 10-13, Tulsa, Oklahoma (1974).
- 33. Ishkin, I.P. and Kaganer, M.G., Zhur. Tekh. Fiz., 26, 2329 (1956).
- 34. Joffe, J., Ind. Eng. Chem., 39, 837 (1947).
- 35. Joffe, J., Ind. Eng. Chem., 40, 1738 (1948).
- 36. Joffe, J. and Zudkevitch, D., Chem. Eng. Prog. Symp. Ser., 63 (81), 43 (1967).
- 37. Jones, M.L., Ph.D. Thesis, University of Michigan (1961).
- 38. Kay, W.B., Ind. Eng. Chem., 28, 1014 (1936).
- 39. Klaus, R.L. and Van Ness, H.C., AIChE J., 13, 1132 (1967).
- 40. Klein, R.R., Bennett, C.O. and Dodge, B.F., AIChE J., 17, 958 (1971).
- 41. Landis, F. and Nilson, E.N., "Progress in International Research on Thermodynamic and Transport Properties", p. 218, Academic Press, New York (1962).
- 42. Leach, J.W., Chappelear, P.S., and Leland, T.W., AICHE J., 14, 568 (1968).
- 43. Leach, J.W., Ph.D. Thesis, Rice University (1967).

- 44. Lee, J.I. and Mather, A.E., J. Chem. Therm., 2, 881 (1970).
- 45. Lee, J.I. and Mather, A.E., Can. J. Chem. Eng., 50, 95 (1972).
- 46. Leland, T.W. and Mueller, W.H., Ind. Eng. Chem., 51, 597 (1959).
- 47. Leland, T.W. and Chappelear, P.S., Ind. Eng. Chem., 60 (7), 17 (1968).
- 48. Lenoir, J.M., Robinson, D.R. and Hipkin, H.G., Paper presented at 33rd Midyear Meeting of API Division of Refining, Philadelphia, May 1968.
- 49. Lenoir, J.M., Kuravila, G.K. and Hipkin, H.G., Paper presented at 34th Midyear Meeting of API Division of Refining, Philadelphia, May 1969.
- 50. Lin, C.J., Kwok, Y.C. and Starling, K.E., <u>Can. J. Chem. Eng.</u>, <u>50</u>, 644 (1972).
- 51. Lydersen, A.L. Greenkorn, R.A. and Hougen, O.A., University of Wisconsin Eng. Exp. Sta. Rept., 4 (1955).
- 52. Mackey, B.H. and Krase, N.W., Ind. Eng. Chem., 22, 1060 (1930).
- 53. McCarty, R.D., Cryogenics, 276 (1974).
- 54. Mage, D.T., Jones, M.L. Jr., Katz, D.L. and Roebuck, J.R., Chem. Eng. Prog. Symp. Ser. <u>59</u>, (44), 61 (1963).
- 55. Manker, E.A., Ph.D. Thesis, University of Michigan (1964).
- 56. Martin, J.J. and Hou, Y.C., <u>AIChE J.</u>, <u>1</u>, 142 (1955).
- 57. Mather, A.E., Ph.D. Thesis, University of Michigan (1967).
- 58. Mather, A.E., Katz, D.L. and Powers, J.E., <u>Trans. Faraday. Soc.</u> 64, 2939 (1968).
- 59. Mather, A.E., Powers, J.E. and Katz, D.L., AICHE J., 15, 111 (1969).
- 60. Maxwell, J.B., "Data Book on Hydrocarbon", D. Van Nostrand, Princeton, N.J. (1950).
- 61. McBride, B.J., Heimel, S., Ehlers, J.G. and Gordon, S., "Thermodynamic Properties to 6000°K for 210 Substances Involving the First 18 Elements", NASA N63-23715, Washington, D.C. (1963).
- 61a. Miyazaki, T., Ph.D. Thesis, University of Michigan (1973).
- 62. Nathan, D.I., Brit. Chem. Eng., 12, 223 (1967).
- 63. Ng, H.J., M.Sc. Thesis, University of Alberta (1971).
- 64. Ng, H.J. and Mather, A.E., Unpublished Experimental Data (1971).

- 65. Papadopoulos, A., Pigford, R.L. and Friend, L., Chem. Eng. Prog. Symp. Ser., 49 (7), 119 (1953).
- 66. Peng, D.Y., Personal Communication (1974).
- 67. Peters, H.F., Petroleum Refiner, 28 (15), 109 (1949).
- 68. Peterson, J.M. and Wilson, G.M., Proc. 53rd NGPA Ann. Conv., Tech. Papers, 57 (1974).
- 69. Pitzer, K.S. and Hultgren, G.O., J. Am. Chem. Soc., 80, 4788 (1958).
- 70. Pitzer, K.S. and Curl, R.F. Jr., J. Am. Chem. Soc., 79, 3869 (1957).
- 71. Prausnitz, J.M. and Gunn, R.D., AICHE J., 4, 430 (1958).
- 72. Prausnitz, J.M., "Molecular Thermodynamics of Fluid-Phase Equilibria", Prentice-Hall, p. 158 (1969).
- 73. Redlich, O. and Kwong, J.N.S., Chem. Rev., 44, 233 (1949).
- 74. Roebuck, J.R. and Ostenberg, H., Phys. Rev., 48, 450 (1935).
- 75. Scheibel, E.G. and Jenny, F.J., Ind. Eng. Chem., 37, 990 (1945).
- 76. Soave, G., Chem. Eng. Sci., 27, 1197 (1972).
- 77. Starling, K.E., Proc. NGPA Ann. Conv., 49, 9 (1970).
- 78. Starling, K.E. and Powers, J.E., <u>IEC Fundam.</u>, <u>9</u>, 531 (1970).
- 79. Starling, K.E., Johnson, D.W. and Colver, C.P., NGPA Research Report RR4 (1971).
- 80. Starling, K.E., "Fluid Thermodynamic Properties for Light Petroleum Systems", Gulf Publishing Co., Houston, 1973.
- 81. Steil, L.I., Ind. Eng. Chem., 60 (5), 50 (1968).
- 82. Stewart, W.E., Burkhardt, S.F. and Voo, D., Paper presented at National AIChE Meeting, Kansas City, May 18, 1959.
- 83. Stotler, H.H. and Benedict, M., <u>Chem. Eng. Prog. Symp. Ser.</u>, <u>49</u> (6), 25 (1953).
- 84. Tsonopoulos, C., <u>AICHE J.</u>, <u>20</u>, 263 (1974).
- 85. Vukalovich, M.P. and Altumin, V.V., "Thermophysical Properties of Carbon Dioxide", Collet's (Publishers) Ltd., London, 1968.
- 86. Vukalovich, M.P., Altunin, V.V., Bulle, Kh., Rasskazov, D.S. and Ertel, D., Teploenergetika 16, (11), 70 (1969).

- 87. <u>Idem</u>, ibid., 17 (5), 60 (1970).
- 88. Vukalovich, M.P., Bulle, Kh., Rasskazov, D.S. and Ertel, D., <u>ibid.</u>, <u>17</u> (6), 63 (1970).
- 89. Vukalovich, M.P., Bulle, H., and Ertel, D., Russ. J. Phys. Chem., 46 (10), 1475 (1972).
- 90. Watson, I.D. and Rowlinson, J.S., <u>Chem. Eng. Sci.</u>, <u>24</u> 1565 & 1575 (1969).
- 91. Wilson, G.M., Paper presented at 65th National AIChE Meeting, May 4-7, 1969.
- 92. Wilson, G.M. and DeVaney, W.E., "Mark V Computer Program", Available From P-V-T Inc. or the Gas Processors Assn.
- 93. Wood, R.E., U.S. Bureau of Mines, Rept. Inv., 7190 (1968).
- 94. Yarborough, L. in Engineering Data Book, NGPA, 8th Edition (1966), p. 203.
- 95. Yen, L.C. and Alexander, R.E., AIChE J., 11, 334 (1965).
- 96. Yen, L.C. and Garcia -Rangel, S., Paper presented at 159th Am. Chem. Soc. National Meeting. Symp. on Enthalpy of Mixtures, Houston, Texas, Feb. 1970.
- 97. Yesavage, V.F., Ph.D. Thesis, University of Michigan (1968).
- 98. Yesavage, V.F., Katz, D.L. and Powers, J.E., "4th Symposium on Thermophysical Properties", ASME, N.Y., 45 (1968).
- 99. Yesavage, V.F., Katz, D.L. and Powers, J.E., <u>J. of Chem. Eng. Data</u>, <u>14</u> (2), 137 (1969).
- 100. Yesavage, V.F., Katz, D.L. and Powers, J.E., <u>AIChE J.</u>, <u>16</u> (5), 867 (1970).
- 101. Zaalishvili, Sh.D., Zhur. Fiz. Khim., 30, 1891 (1956).

APPENDIX A

CALIBRATIONS AND ERROR ANALYSIS

CALIBRATION DATA FOR 8163 MODEL PLATINUM RESISTANCE THERMOMETER

This thermometer was calibrated for use in the range 90.188~K < T < 773.15~K~(-182.962°C < t < 500.60°C)~on~the~International practical temperature scale of 1968.

$$W = Wcct + dw$$

where $W = R/R(0^{\circ}C)$ and Wcct is a reference function, independent of any particular thermometer.

$$dw = A4 t + C4 (t - 100) t^3$$

For
$$0^{\circ}C < t < 630.74^{\circ}C$$

$$t = t' + dt$$

where t' is determined by

$$w = 1 + At' + B(t')^2$$

and

$$dt' = 0.45(t'/100)(\frac{t'}{100} - 1)(\frac{t'}{419.58} - 1)(\frac{t'}{630.74} - 1)$$

The coefficient in the above relations were found by fixed-point calibrations, i.e. triple point of water, the steam of tin point and the zinc point using continuous thermometer currents of 1 and 2 mA.

TABLE XX (continued)

O mA 2 mA

 $A = 3.985566 \times 10^{-3} \quad 3.985539 \times 10^{-3}$

 $B = -5.87663 \times 10^{-7} -5.87773 \times 10^{-7}$

 $A4 = 8.3280 \times 10^{-7} 7.9460 \times 10^{-7}$

 $C4 = 2.2020 \times 10^{-14} 2.4150 \times 10^{-14}$

 $R(0^{\circ}C) = 25.5145 \text{ ohm}$

TABLE XXI

CALIBRATION OF HIGH PRESSURE GAUGE

Manufacturer: Heise

Serial No.: H39686

Actual Pressure	Heise Gauge		
(psi)	up	down	
0	0	0	
200	200	200	
400	400	400	
600	596	600	
800	796	800	
1000	996	1000	
1200	1200	1200	
1400	1400	1400	
1600	1600	1600	
1800	1800	1806	
2000	2000	2005	
2200	2200	2205	
2400	2400	2405	
2600	2600	2605	
2800	2800	2804	
3000	3000	3000	

TABLE XXII

CALIBRATION OF 250 PSI DIFFERENTIAL PRESSURE TRANSDUCER

Manufacturer: Validyne

psi		Voltage	
	up	down	
0	0.001	0.004	
30	1.169	1.191	
50	1.956	1.976	
70	2.741	2.760	
80	3.135	3.161	
100	3.925	3.951	
120	4.717	4.743	
140	5.514	5.541	
160	6.316	6.339	
180	7.122	7.144	
200	7.936	7.952	
220	8.752	8.766	
240	9.577	9.582	
250	9.992	9.992	

TABLE XXIII

CALIBRATION OF 75 PSI DIFFERENTIAL PRESSURE TRANSDUCER Manufacturer: Validyne

psi	Voltage (Volt)
0	0.001
10	0.654
20	1.311
30	1.971
40	2.635
50	3.303
60	3.976
70	4.656
75	4.999
70	4.657
60	3.980
50	3.310
40	2.642
30	1.979
20	1.318
10	0.658
0	0.001

TABLE XXIV

CALIBRATION OF 60 INS, OF WATER DIFFERENTIAL

PRESSURE TRANSDUCER

Manufacturer: Foxboro

Inches of Water	Voltage (mV)
0	0.983
4.293	1.275
8.945	1.597
12.541	1.841
17.752	2.184
20.209	2.352
25.041	2.676
30.70	3.059
35.70	3.399
40.37	3.713
45.45	4.057
50.05	4.363
60.27	5.055
54.60	4.671
48.55	4.263
31.39	3.105
22.043	2.477
18.354	2.225
14.150	1.194
11.310	1.747
7.313	1.476

TABLE XXV

FLOW METER CALIBRATION

(Orifice)

EQUATION:
$$F = A + BY\sqrt{\frac{P \cdot \Delta P}{Z \cdot M}}$$

where $F: gm-mol min^{-1}$

A, B: Calibration Constant

Y:
$$\sqrt{\gamma^{2/k}} \left(\frac{k}{k-1}\right) \left(\frac{1-\gamma^{(k-1)/k}}{1-\gamma}\right) \left(\frac{1-\beta^4}{1-\beta^4\gamma^{2/k}}\right)$$

 $k: \quad C_p/C_v$

 γ : 1 - $\Delta P/P$

 β : Ratio of orifice I.D. to tube I.D.

ΔP: Pressure drop across the orifice

P: Inlet-pressure of the orifice

Z: Compressibility factor of the gas (gas mixture)

TABLE XXV

P	ΔΡ	Υ Ρ·ΔΡ			
psia	psi	NZ·M	F	Fcal	F-F _{cal}
44.0600	1.8476	1.3873	4.8095	4.8107	-0.0012
44.1100	1.5086	1.2603	4.3566	4.3697	-0.0131
44.1100	1.2735	1.1616	4.0145	4.0275	-0.0130
44.1100	1.1880	1.1233	3.8783	3.8943	-0.0160
44.0100	0.7536	0.8989	3.0989	3.1156	-0.0167
44.1100	1.0314	1.0489	3.6234	3.6362	-0.0128
44.0100	0.3266	0.5952	2.0726	2.0618	0.0107
44.1400	0.7712	0.9105	3.1324	3.1559	-0.0235
44.1400	1.5615	1.2817	4.4199	4.4441	-0.0242
44.1900	1.2612	1.1573	4.0049	4.0124	-0.0075
44.1600	1.0469	1.0571	3.6544	3.6648	-0.0104
44.1600	0.5788	0.7910	2.7370	2.7414	-0.0044
44.1400	0.4266	0.6803	2.3446	2.3570 1.7474	-0.0124 0.0053
44.0 100	0.2342	0.5046	1.7528 2.2939	2.2892	0.0046
43.8700	0.2860	0.6607	2.6288	2.6289	-0.0001
43.8700	0.3779	0.7586	2.9967	2.9950	0.0016
43.8700	0.4917	0.8641 0.9675	3.3570	3.3538	0.0031
43.8700	0.6184	1.0577	3.6774	3.6667	0.0106
43.8700	0.7413	1.1782	4.0825	4.0849	-0.0024
43.8700	0.9240 1.0988	1.2819	4.4605	4.4450	0.0154
43.8700	1.5861	1.5315	5.3041	5.3109	-0.0068
43.9100	1.7790	1.6179	5.5864	5.6110	-0.0246
43.9100	1.5407	1.5102	5.2467	5.2373	0.0093
43.9100	0.9288	1.1817	4.0697	4.0972	-0.0275
43.9100	0.4239	0.8033	2.7951	2.7841	0.0109
43.9100 43.9100	0.4426	0.8207	2.8506	2.8443	0.0062
43.9100	0.6237	0.9721	3.3938	3.3696	0.0241
43.9100	0.8364	1.1227	3.9297	3.8923	0.0373
43.9100	1.0149	1.2339	4.3044	4.2783	0.0260
43.9100	1.1971	1.3370	4.6666	4.6362	0.0303
43.9100	1.3558	1.4201	4.9209	4.9243	-0.0034
43.9100	1.5428	1.5112	5.2716	5.2407	0.0308
43.9100	1.5834	1.5302	5.3535	5.3066	0.0468
43.9100	0.1011	0.3940	1.3637	1.3636	0.0000
43.9100	0.1343	0.4538	1.5852	1.5710	0.0233
43.9100	0.2459	0.6133	2.1479	2.1245	0.0253
43.9100	0.1909	0.5407	1.8980	1.8726 2.4917	0.0261
43.9100	0.3389	0.7191	2.5179	2.0686	0.0186
43.9100	0.2331	0.5972	2.0873 2.0941	2.0757	0.0183
43.9100	0.2347	0.5992	1.7229	1.7166	0.0062
43.9100	0.2492	0.4957	1.9351	1.9252	0.0098
43.9100	0.3138	0.5559	2.2029	2.2011	0.0017
43.9100	0.4111	0.6353 1.4474	5.0162	5.0191	-0.0029
43.9700	2.2406	T • of of 1 or	7.0102		

TABLE XXV (continued)

P psia	∆P psi	$Y\sqrt{\frac{P \cdot \Delta P}{Z \cdot M}}$	F	F _{cal}	F-F _{cal}
43.9700 43.9700 43.9700 43.9700 43.9700 43.9700 43.9700 43.9700 43.9700 43.9700 43.9700 43.9700 43.9700 43.9700 43.9700	2.2460 2.0846 1.8618 1.6395 1.4188 1.2644 1.0811 0.9208 0.7589 0.6184 0.5174 0.4453 0.4490	1.4490 1.3991 1.3264 1.2486 1.1651 1.10 22 1.0 217 0.9450 0.8598 0.7776 0.7123 0.6614 0.6637	5.0162 4.8654 4.5785 4.3140 4.0276 3.8065 3.5360 3.2599 2.9649 2.6850 2.4418 2.2784 2.3055	5.0247 4.8517 4.5993 4.3291 4.0393 3.8211 3.5420 3.2758 2.9801 2.6948 2.4681 2.2915 2.2994	-0.0085 0.0136 -0.0208 -0.0151 -0.0117 -0.0146 -0.0060 -0.0159 -0.0152 -0.0098 -0.0263 -0.0131 0.0060
43.9100 43.9100 43.9100 43.9100 43.9100 43.9100 43.9100 43.9100 43.7800 43.7800 43.7800 43.7800 43.7800 43.7800 43.7800 43.7800 43.7800 43.7800 43.7800 43.7800	0.6750 0.8610 1.0768 1.2778 1.6475 1.9275 2.1274 0.3945 1.7865 1.3953 0.8893 0.5265 0.3854 0.2433 0.1663	0.8113 0.9139 1.0190 1.1070 1.2506 1.3474 1.4115 0.7602 1.5696 1.3950 1.1217 0.8675 0.7437 0.5920 0.4901	2.7892 3.1566 3.5360 3.8289 4.3140 4.6891 4.9146 2.6380 5.4560 4.8305 3.8984 2.9951 2.5586 2.0415 1.6862	2.8116 3.1677 3.5327 3.8378 4.3361 4.6721 4.8947 2.6345 5.4433 4.8373 3.8889 3.0067 2.5771 2.0508 1.6970	-0.0224 -0.0111 0.0032 -0.0089 -0.0221 0.0169 0.0198 0.0034 0.0126 -0.0068 0.0094 -0.0116 -0.0185 -0.0093 -0.0108

TOTAL SUM OF SQUARE = 0.97146E 03

SUM OF RESIDUAL = 0.28237E-05

SUM OF RESIDUAL SQUARE = 0.20049E-01

PERCENT STANDARD DEVIATION = 0.48473

STANDARD DEVIATION = 0.16804E-01

Y = A+ B * X

A= -0.00391 B= 3.47033

Calibration of Gas Chromatograph

1) Methane - Carbon Dioxide Mixtures

The binary mixtures of carbon dioxide and methane were analysed on a Burrell K-2 Kromo-tog Chromatograph using a three foot column of one-quarter inch diameter and packed with silica gel (40-100 mesh). A thermal conductivity detector was employed and helium was used as a carrier gas. Other variables were maintained at the following conditions:

Carrier gas flow rate - 50 ml/min

Column temperature - 80°F

Detector Current - 150 mA

Sample size - 2 ml

Excellent separations, with sharp well-defined peaks were obtained and the area under a peak was determined by a disc integrator. Standard sample mixtures of carbon dioxide and mixture were prepared by weighing small sample bottles and the amounts of methane and carbon dioxide charged. The weights of the empty bottle and the mixtures sample charged were approximately 155 g. and 1.75 g. respectively. The weighings could be reproduced to within ± 0.1 mg. The error in a mixture composition thus prepared should not exceed ± 0.2 percent. The standards were then analysed on the chromatograph and the area fraction of methane (area under a methane peak divided by the sum of the area under the carbon dioxide and methane peaks) was correlated to the known mole fraction of methane in the standards by the following functional relationship:

$$y = AX + BX^2$$

where A, B are constants

X = area fraction of methane

Y = mole fraction of methane

The constants, A and B, in the above relationship were determined by a least square fit and were found to be as follows:

A = 0.73451

B = 0.25721

The percent standard deviation of the fit was found to be \pm 0.4%. A plot of Y versus X is shown in Figure 30.

2. Methane, Carbon Dioxide and Ethane Mixture

The mixtures were analysed on the same chromatograph using a one meter column of one-quarter inch diameter packed with porapak Type Q (80-100 mesh). The gas chromatograph was operated under the following conditions:

Carrier Gas - Helium

Carrier gas flowrate - 40 ml/min

Column temperature - 80°F

Detector current - 170 mA

Sample size - 2 ml

Standard mixtures of methane - carbon dioxide - ethane were prepared in the same method as for binary mixtures. The standards were then analysed on the gas chromatograph and the area fraction of each component were plotted against its more fraction as shown in Figure 31. A straight line was drawn through each component. The response factors of each component were then determined from the calibration curve by

Figure 30: Gas Chromatograph Calibration for Methane-Carbon Dioxide Mixture

TABLE XXVI

RESPONSE FACTOR CALCULATED FROM CALIBRATION

Methane - Carbon Dioxide - Ethane System:

CH₄ : 36

co₂ : 49

с₂н₆ : 53.5

Methane - Carbon Dioxide - Nitrogen System:

CH₄ : 36

N₂ : 41.8

co₂ : 49

Methane - Carbon Dioxide - Nitrogen - Ethane System:

CH₄ : 36

N₂ : 41.7

co₂ : 48.6

 $C_2^{H_6}$: 54.5

assigning the response factor of methane equal 36. The calibrated response factors were listed in Table XXVI.

3. Methane - Carbon Dioxide - Nitrogen Mixture

The same gas chromatograph with same conditions and same procedure of the previous ternary system were used to calibrate mixture of this system. Figure 32 shows the area fractions of each component plotted as function of its mole fraction, and the calibrated response factors are listed in Table XXVI.

4. Methane - Carbon Dioxide - Nitrogen - Ethane Mixtures

The same gas chromatograph with same operating conditions and same procedure of the previous ternary system were used to calibrate mixture of methane - carbon dioxide - nitrogen - ethane system. Figure 33 shows the calibration curve and the response factors are listed in Table XXVI

Figure 31: Gas Chromatograph Calibration for $CH_4-CO_2-C_2H_6$ Mixture

Figure 32: Gas Chromatograph Calibration for $\mathrm{CO_2-CH_4-N_2}$ Mixture

Figure 33: Gas Chromatograph Calibration for $\mathrm{CH_4^{-CO}_2^{-N}_2^{-C}_2H_6}$ Mixture

Error Analysis

The desired values of the isothermal throttling coefficient is determined from the results of measurement:

$$\phi_{\rm m} = \left(\frac{\Delta H}{\Delta P}\right)_{\rm T} = -\frac{\dot{W}}{\Delta P \cdot F} \tag{A1}$$

where \dot{W} = power supply

F = mass flow rate

 ΔP = pressure drop across the throttling unit The maximum relative error of φ_m in the experiment is

$$\frac{\Delta \phi}{\phi} = \frac{\Delta \dot{W}}{\dot{W}} + \frac{\Delta (\Delta P)}{\Delta P} + \frac{\Delta F}{F} + \frac{1}{\phi} \left[\left(\frac{\partial \phi}{\partial P} \right)_{T,x} \Delta P_{m} \right] + \left(\frac{\partial \phi}{\partial T} \right)_{P,x} \Delta T_{m} + \left(\frac{\partial \phi}{\partial x} \right)_{P,T} \Delta x \right]$$
(A2)

where ΔT_{m} = error in the measurement of inlet temperature of the gas in the calorimeter

 ΔP_{m} = error in the measurement of the system pressure P_{m} Δx = error in the measurement of composition in the mixture Clearly,

$$\frac{\Delta \dot{\dot{W}}}{\dot{W}} = \frac{\Delta \dot{\dot{W}}_{H}}{\dot{\dot{W}}_{H}} + \left(\frac{\Delta \dot{\dot{W}}}{\dot{\dot{W}}}\right)_{rel} + \frac{\dot{\dot{W}}_{loss}}{\dot{\dot{W}}}$$
(A3)

where $\Delta \dot{W}_H / \dot{W}_H = \text{calculated error of measurement of the compensating power}$ of the calorimeter heater; $(\Delta \dot{W} / \dot{W})_{\text{rel}} = \text{error in the value of the compensating power}$, due to the non-zero value of the temperature difference between the inlet and outlet; $\Delta \dot{W}_{\text{loss}} / \dot{W} = \text{error connected with spurious}$ heat transfer between the calorimeter and the thermostat.

In this experiment, a Hewlett-Packard Model 3450 multifunction meter is used for all electrical measurements. For \dot{W} = IV, the measurement of current I is by means of measuring the voltage drop across a standard resistor, the uncertainty of voltage is about ± 5 microvolt. So the term $(\Delta \dot{W}/\dot{W})_{H} = \pm (0.005 - 0.002)$ %. The term $(\Delta \dot{W}/\dot{W})_{rel}$ can be replaced by the ratio $\Delta T_i/\Delta T_{ad}$, where ΔT_i = the degree of non-isothermal state of the inlet and outlet of the gas when the calorimeter is in operation; ΔT_{ad} = degree of non-isothermal state when no heat is added. The deviation of null meter which is used for the measurement of the output of the five junction thermopile is about $\pm \ 2 \ \mu V$ which is equivalent to 0.01°C, then

$$\frac{\Delta T_{i}}{\Delta T_{ad}} = \frac{\pm 0.01}{\Delta T_{ad}} = \frac{\pm 1}{\Delta T_{ad}} \%$$

For nitrogen:

$$0.1\% < (\Delta \dot{W}/\dot{W})_{rel} < 0.35\%$$

For
$$CH_4(43.3\%)-CO_2$$
: $0.03\% < (\Delta \dot{W}/\dot{W})_{rel} < 0.1\%$

For Equimolal
$$CO_2 - CH_4 - C_2H_6$$
: 0.03% < $(\Delta \dot{W}/\dot{W})_{rel}$ < 0.1%

The term $(\dot{W}_{\rm loss}/\dot{W})$ is minimized by using the radiation shield surrounding the throttling unit and the calorimeter is evacuated to about 5 microns. This term can be neglected. The error in determining ΔP and F are:

for
$$\frac{\Delta(\Delta P)}{\Delta P} = \pm 0.5\%$$

and for $(\Delta F/F)$:

$$(\Delta F/F) \leq \pm 0.8\%$$
 for nitrogen
$$\leq \pm 1.0\%$$
 for 42.3% CH₄ in CO₂ mixture
$$< \pm 0.5\%$$
 for other mixtures

so, the maximum systematic error without the related error i.e. without allowing for the last term in Equation (A2) is

$$\pm 0.5 \le \epsilon \le \pm 1.4$$
 for nitrogen
$$\pm 0.5 \le \epsilon \le \pm 1.6$$
 for 42.3% methane in CO₂ mixture
$$\pm 0.5 \le \epsilon \le \pm 1.1$$
 for other systems

The temperature of the gas in the calorimeter is measured with an error of less than $\pm 0.01^{\circ}\text{C}$, i.e. $\Delta T_{\text{m}} = 0.01^{\circ}\text{C}$. The test value ϕ are related to the pressure $P_{\text{m}} = P_{1} - (\Delta P/2)$ and the inaccuracy of determining the pressure is taken as ± 1.0 psi (the resolution of the Heise gauge). The term $\frac{1}{\phi} \left[\left(\frac{\partial \phi}{\partial P} \right)_{T,x} \Delta P_{\text{m}} \right] = \varepsilon_{1}$ will be,

$$\pm 0.0003 \le \epsilon_1 \le 0.002\%$$
 for nitrogen

and $\pm 0.0005 \le \varepsilon_1 \le 0.15\%$ for 42.3% CH₄ in CO₂ mixture. The term $\frac{1}{\phi} \left[\left(\frac{\partial \phi}{\partial T} \right)_{P,x} \Delta T_m \right] = \varepsilon_2$, will be less 0.1% for methane-carbon dioxide mixtures.

APPENDIX B

ENTHALPY FORMULAE AND LOOP CHECKS

- I. FORMULAE USED IN CALCULATION OF PROPERTIES FROM EQUATIONS OF STATE
- 1. Benedict-Webb-Rubin Equation
- a) Enthalpy Departure

$$(\underline{H}_{p} - \underline{H}_{o})_{T} = (B_{0}RT - 2A_{0} - \frac{4C_{0}}{T^{2}})_{\rho} + (bRT - \frac{3a}{2})_{\rho}^{2} + \frac{6a\alpha\rho^{5}}{5}$$

$$+ \frac{c\rho^{2}}{T^{2}} \left[\frac{3(1 - e^{-\gamma\rho^{2}})}{\gamma\rho^{2}} - \frac{e^{-\gamma\rho^{2}}}{2} + \gamma\rho^{2}e^{-\gamma\rho^{2}} \right]$$

b) Isothermal Throttling Coefficient

$$\phi = \frac{(B_0 RT - 2A_0 - \frac{4C_0}{T^2}) + (2bRT - 3a)\rho + 6a\alpha\rho^4 + \frac{ce^{-\gamma\rho^2}}{T^2} [5\rho + 5\gamma\rho^3 - 2\gamma^2\rho^5]}{RT + 2\rho (B_0 RT - A_0 - \frac{C_0}{T^2}) + 3\rho^2 (bRT - a) + 6a\alpha\rho^5 + \frac{ce^{-\gamma\rho^2}}{T^2} [3\rho^2 (1 + \gamma\rho^2) - 2\gamma^2\rho^6]}$$

- 2. Soave-Redlich-Kwong Equation
- a) Enthalpy Departure

$$\left(\underline{\underline{H}}_{P} - \underline{\underline{H}}_{O}\right)_{T} = \underline{P}\underline{V} - \underline{R}\underline{T} + \frac{\underline{T} \frac{d\underline{a}}{dT} - \underline{a}}{\underline{b}} \underline{1}\underline{n} \frac{\underline{V} + \underline{b}}{\underline{V}}$$

b) Isothermal Throttling Coefficient

$$\phi = \underline{V} - T \frac{\begin{bmatrix} \underline{R} & -\frac{(\frac{da}{dT})}{\underline{V}(\underline{V} + b)} \end{bmatrix}}{\begin{bmatrix} \underline{RT} & -\frac{a(2\underline{V} + b)}{\underline{V}^2(\underline{V} + b)^2} \end{bmatrix}}$$

3. Starling Benedict-Webb-Rubin Equation

a) Enthalpy Departure

 $(\overline{H_P} - \overline{H_O})_{T_c} = (B_0RT - 2A_0 - \frac{4C_0}{T^2} + \frac{5D_0}{T^3} - \frac{6E_0}{T^4})_{\rho} + \frac{1}{2} (2bRT - 3a - \frac{4d}{T})_{\rho}^2 + \frac{1}{5} \alpha(6a + \frac{7d}{T})_{\rho}^3 + \frac{c\rho^2}{T^2} [3 - (3 + \frac{1}{2}\gamma\rho^2 - \gamma^2\rho^4) \exp(-\gamma\rho^2)]$

b) Isothermal Throttling Coefficient

 $\rho^{2} T \left[R + \rho \left(2B_{0}R - \frac{2A_{0}}{T} - \frac{2C_{0}}{T^{3}} + \frac{2D_{0}}{T^{4}} - \frac{2E_{0}}{T^{5}} \right) + 3\rho^{2} \left(bR - \frac{a}{T} - \frac{d}{T} \right) + 6\alpha\rho^{5} \left(\frac{a}{T} + \frac{d}{T^{2}} \right) + \frac{(3c\rho^{2} + 3c\gamma\rho^{4} - 2c\gamma^{2}\rho^{6})}{T^{3}} + \frac{1}{2} \rho^{2} \left(\frac{a}{T} + \frac{d}{T^{2}} \right) + \frac{1}{2} \rho^{$ $\rho \left[R + (B_0 R + \frac{2C_0}{T^3} - \frac{3D_0}{T^4} + \frac{4E_0}{T^5}) \rho \right. \\ \left. + (bR - \frac{d}{T^2}) \rho^2 - \frac{\alpha d\rho^5}{T^2} - \frac{2c\rho^2}{T^3} \left(1 + \gamma \rho^2 \right) \right. \\ \left. - \gamma \rho^2 \right]$

II. THERMODYNAMIC CONSISTENCY CHECKS

The isothermal data of two mixtures of methane and carbon dioxide of this work were used in conjunction with isobaric data of Bishnoi to test the consistency of the experimental data. The location of the loops is shown in Figure 34 and 35. The enthalpy change along different paths are given in Table XXVIII and XXVIII. The maximum deviation was 0.37 percent.

Figure 34: Location of Experimental Loops for 14.5 Percent Methane in Carbon Dioxide

Figure 35: Location of Experimental Loops for 42.3 Percent Methane in Carbon Dioxide

TABLE XXVII

CONSISTENCY CHECKS ON THE MIXTURE OF 14.5 MOLE PERCENT METHANE IN CARBON DIOXIDE

Loops	∆H J mol ⁻¹	% Deviation
1- 2- 9	+2464.3	
1-10- 9	-2446.3	+0.37
2- 3- 8	+2440.7	
2- 9- 8	-2451.3	-0.21
3- 4- 7	+3252.1	
3- 8- 7	-3243.5	+0.13
4- 5- 6	+3938.5	
4- 7- 6	-3924.7	+0.18
10- 9-12	+2264.6	
10-11-12	-2261.9	+0.06
9- 8-13	+2327.4	
9-12-13	-2336.6	-0.20
8- 7-14	+3867.3	
8-13-14	-3839.3	+0.36

TABLE XXVIII

CONSISTENCY CHECKS ON THE MIXTURE OF 42.3 MOLE PERCENT METHANE IN CARBON DIOXIDE

Loops	$\Delta H J mol^{-1}$	% Deviation
1- 2- 9	+1943.9	
1-10- 9	-1935.5	+0.22
2- 3- 8	+2160.3	
2- 9- 8	-2150.4	+0.23
3- 4- 7	+2389.8	
3- 8- 7	-2404.4	-0.30
4- 5- 6	+2617.1	
4- 7- 6	-2611.3	+0.11
10- 9-12	+1654.6	
10-11-12	-1646.4	+0.25
9- 8-13	+1902.1	
9-12-13	-1905.4	-0.09
8- 7-14	+2214.7	
8-13-14	-2214.4	+0.007
7- 6-15	+2450.1	
7-14-15	-2453.0	-0.005

APPENDIX C

ISOTHERMAL THROTTLING COEFFICIENT AT ZERO PRESSURE

TABLE XXIX

SECOND VIRIAL COEFFICIENT

	N2-C2H6	ı	- 80	99 -	- 54.8	- 45.2	- 37.0	- 29.9	- 23.8
	CH4-C2H6	1	-136	-113	- 97	78 -	- 73	- 64	- 56
mo1-1	CH_4-N_2	-53.9	-33.4	-26.7	-19.6	-15.1	-10.6	- 7.14	- 5.14
B ₁₂ , cm ³ mol ⁻¹	${\rm co_2-c_2H_6}$ ${\rm cH_4-N_2}$	1	-175	-155	-133	-113	96 -	- 83	- 73
	CO ₂ -N ₂	-95.1	-68.9	-57.3	-45.7	-37.3	-30.5	-25.1	-20.7
	CO ₂ -CH ₄	-136.7	9.76 -	- 81.2	- 67.3	- 57.3	- 48.5	- 43.1	- 36.6
	$c_2^{H_6}$	ı	-254	-220	-192	-166	-145	-127	-112
B, cm ³ mol ⁻¹	N_2	-29.0	-15.5	-10.5	- 5.8	- 2.0	1.0	3.8	0.9
	CH ⁴	-94.5	-65	-54	-45	-37.5	-31.5	-26	-21
	c0 ₂	-262	-180	-150	-127	-110	- 95	- 83.5	- 73
	T (X)	233.15	253.15	273.15	293.15	313.15	333.15	353.15	373.15

 $_{\rm H_2}$ for $_{\rm CH_4}\text{--}_{\rm C_2H_6}$ is from Hoover $^{\rm 31},$ $_{\rm Gunn}^{\rm 27}$ and Dantzler et $_{\rm al}^{\rm 20}$ $\rm B_{12}$ for $\rm CO_2-C_2H_6$ is from Ng and Mather 64 and Zaalishvili 101 $\rm B_{12}$ for $\rm N_2\text{--}C_2H_6$ is from Pitzer and Curl Correlation 70 $\rm B_{12}$ for $\rm CO_2-N_2$, $\rm CO_2-CH_4$, and $\rm CH_4-N_2$ are from $\rm Ng^{63}$ Pure B are from Dymond and Smith 24

SOURCES:

TABLE XXX

		0	From Second Vir	Virial Coefficient	ent	
			$\phi^{\circ} = B_{m}$	T TD		
	B B B B	B dB dT / -1, / -1, -1, -1, -1,	ф - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	B m 3	dB dT dT -1-1,-1,	φ φ φ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ
5	7 7 7	Com mol A	Out out	Com mor	1/, 5% CH 1n CO	TOHICA
	47.3	42.3% CH 4 111 CO 2			74.0% 6114 +11 605	61
	-99.3	0.825	-32.46	-127.8	1.15	-44.23
	ı	ŧ	í	-118.2	1.02	-40.92
	ı	ı	ı	-108.1	0.890	-36.79
	-71.5	0.542	-24.10	- 93.38	0.72	-31.91
	-61.	0.452	-21.30	- 80.37	0.59	-27.78
	-4925	0.364	-18.20	- 65.5	0.474	-23.81
	Equimola	CH4 - CO2 -	N2	163	Equimolal CH, - CO2 -	_ C ₂ H ₆ _ N ₂
	-80.91	0.738	-26.03	-115.5	1.00	-35.90
	96.99-	0.609	-22.8	- 97.0	0.825	-31.40
	-54.88		-19.04	- 82.0	0.67	-27.20
	1	ı	ı	- 69.5	0.55	-23.60
	ı	i	1	- 53.5	0.425	-19,87
	Equimolal	1 CH ₄ = CO ₂ = C ₂ H ₆	2 ^H 6	00	$CO_2(0.25) - CH_4(0.5)$	- C ₂ H ₆ (0.25)
	-134.5	1.08	-41.8	-111.5	0.95	-36.2
	-124.0	1.02	-40.2	-103.0	0.825	-32.8
	-106.0	0.82	-34.6	- 88.0	0.683	-28.8
	- 90.5	0.68	-30.4	- 75.0	0.567	-25.2
	- 77.5	0.57	-26.8	64.0	0.48	-22.3
	- 63.0	0.447	-22.6	- 51.5	0.373	-18.68

APPENDIX D

EXPERIMENTAL DATA

TABLE XXXI

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR NITROGEN TEMPERATURE (K) = 273.15

ΡI	ΔΡ	POWER	FLOW	. ФН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
426.5	176.6	190.115	2.1936	86.666	7.117 6.865
607.5	201.4	282.256	2.9607	95.334 97.400	6.945
613.4	20 3 • 4	290.666	2.9842	93.936	6.646
813.4	205.0	339.198	3.6109	92.419	6.586
813.5	203.5	331.240	3.5841	91.625	6.253
1112.0	212.5	401.705	4.3842	89.445	6.252
1117.0	207.5	393.090	4.3947 5.0767	85.272	5.847
1415.0	211.5	432.904	4.9977	82.520	5.773
1416.0	207.3	412.422	5.0208	81.743	5.755
1416.0	206.0	410.424	5.2161	65.607	5.339
1713.0	178.2	342.220		65.119	5.321
1713.0	177.5	338.782	5.2024	64.473	5.307
1713.0	176.2	333.636	5.1748	48.241	4.740
20 20 • 0	147.6	249.642	5.1748	48.227	4.774
20 20 .0	146.5	248.226	5.1470	47.455	4.746
20 20 • 0	145.0	242.927	5.1190	38.297	4.192
2317.0	132.5	198.180	5.1748	86.276	7.233
431.5	173.0	189.505	2.1964 2.2049	85.133	7.141
431.5	172.9	187.716	2.1964	85.836	7.208
431.5	172.7	188.537		86.620	7.278
431.5	172.6	191.484	2.2106 2.2021	84.856	7.130
431.5	172.6	186.866	2.9374	88 • 403	6.820
618.5	188.0	259.678	2.9327	87.127	6.757
618.5	187.0	255.522	2.9163	86.483	6.783
618.5	184.9	252.217	3.4953	84.085	6.539
813.5	186.5	293.902	3.4748	83.385	6.547
813.5	184.7	289.751	4.1731	78.675	6.168
1107.0	185.0	328.327	4.1731	78.155	6.167
1107.0	183.8	326.156	4.8055	73.938	5.756
1414.0	186.3	355.320	5.3453	104.214	8.117
1714.0	186.2	557.066		66.599	5.198
1714.0	185.8	356.000	5.3453	66 .833	5.219
1714.0	185.7	357.251	5.3453	66.163	5.173
1714.0	185.5	352.784	5.3320	53.689	4.722
20 14.0	164.9	293.360	5.4640		4.697
20 14.0	164.0	289.930	5.4588	53.112 52.963	4.724
20 14.0	162.6	287.597	5.4301		4.172
2304.0	143.7	225.535	5.4562	41.335 40.846	4.142
2304.0	143.0	222.120	5.4379	40.583	4.136
230 4.0	142.3	220.159	5.4248	TU - JUJ	18100

TABLE XXXI (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR NITROGEN TEMPERATURE (K) = 303.15

ΡI	ΔΡ	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
415.3 425.3 463.5 463.5 815.3 615.3 616.0 619.5 619.5 815.0 817.0 1115.0 1117.3 1412.0 1415.3 1715.3 1719.4 2018.4 2021.3	178.0 182.0 198.1 197.0 215.1 208.0 249.0 211.5 207.0 206.9 229.5 232.2 204.8 212.5 223.5 206.4 198.7 183.5 149.2 152.3	139.891 149.643 178.370 175.081 273.546 225.506 292.125 230.857 223.696 222.568 301.703 305.814 287.775 304.097 348.631 308.324 299.385 264.414 192.258 197.369	2.0399 2.0838 2.2331 2.2998 3.5260 2.8728 3.1245 2.9280 2.8093 2.8093 3.6452 3.6784 4.1685 4.2306 4.9740 4.7696 5.2362 5.0426 4.9691 4.9897	68.576 71.810 79.874 76.127 77.578 78.496 93.493 78.842 79.626 79.224 82.766 83.137 69.034 71.879 70.089 64.642 57.175 52.436 38.690 39.554	5.587 5.722 5.845 5.604 5.229 5.473 5.445 5.406 5.579 5.553 5.230 5.191 4.887 4.906 4.548 4.542 4.172 4.144 3.759 3.766
2353.3	122.7	135.247 108.010	4.8283 4.5983	28.011 23.489	3.309 3.161

TABLE XXXI (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR NITROGEN TEMPERATURE (K) = 343.45

PI	ΔP	POWER	FLOW	ΔΗ	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
433.6 437.7 437.7 437.8 618.6 618.8 619.7 619.7 619.7 814.8 821.7 818.6 821.7	195.2 194.2 193.7 197.2 205.4 213.5 213.0 212.5 212.7 212.7 212.2 215.2 225.6 214.7 219.0	116.445 115.902 115.608 119.322 153.454 163.650 161.977 160.043 160.764 161.977 184.680 189.234 201.634 187.693 215.542 185.521	2.0103 2.0282 2.0282 2.0521 2.6657 2.7233 2.7095 2.7095 2.7095 3.2676 3.3061 3.3716 3.2954 4.0098 4.2858	57.923 57.143 56.998 58.145 57.564 60.092 59.780 59.066 59.332 59.780 56.517 57.236 59.803 56.955 53.753 43.287 45.355	4.302 4.266 4.266 4.276 4.064 4.082 4.070 4.031 4.045 4.076 3.862 3.856 3.843 3.846 3.558 3.299 3.042
1723.5 20 15.5	216.2 170.0	230.575 157.410	5.0837 4.9053 5.0421	32.089 26.523	2.737
2330.5	154.0 116.8	133.733 85.158	4.4146	19.289	2.394

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR NITROGEN TEMPERATURE (K) = 374.15

ΡI	ΔP	POWER	FLOW	ΔН	-(ΔH/ΔP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
437.8 438.8 438.8 438.8 623.8 819.8 1117.8 1427.8 1717.8 1717.8 2013.8 2243.8	206.3 200.0 199.5 199.5 210.5 210.0 198.8 204.1 210.8 199.3 194.5 162.1	97.202 91.735 90.746 89.227 120.692 136.690 140.176 153.367 163.650 161.677 141.971 104.853	1.9710 1.9557 1.9557 1.9557 2.5715 3.0971 3.6508 4.2426 4.7643 4.7519 5.0038 4.8254	49.315 46.904 46.398 45.622 46.933 44.133 38.395 36.149 34.349 34.023 28.372 21.729	3.467 3.401 3.373 3.316 3.233 3.047 2.800 2.568 2.363 2.475 2.115 1.944

TABLE XXXII

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 14.5 MOLE PERCENT OF CH4 IN CO2 TEMPERATURE (K) = 363.15

463.6 194.5 599.291 1.7574 340.996 25.427 515.6 203.2 670.778 1.8832 356.175 25.416 611.6 197.0 768.228 2.1577 356.024 26.211 611.6 196.2 762.697 2.1497 354.778 26.219 613.6 181.7 664.204 2.0273 327.616 26.144 80.9.6 175.6 825.870 2.4907 331.578 27.386 813.6 182.5 845.143 2.4602 343.519 27.300 1012.0 174.2 994.177 2.8914 343.837 28.619 1012.0 172.5 946.085 2.7823 340.035 28.590 1212.0 162.6 10.57.043 3.1641 334.067 29.798 1216.0 157.5 979.680 3.0210 324.286 29.862 1412.0 158.2 1165.951 3.4688 336.118 30.815 1406.0 138.7 928.892 3.1363 296.173 30.959 1406.0 130.4 847.899 3.0333 279.527 31.090 1612.0 145.2 1158.108 3.6477 317.483 31.712 1612.0 91.5 567.449 2.7933 203.146 32.201	PΙ	ΔΡ	POWER	FLOW	ΔН	-(AH/AP)
515.6 203.2 670.778 1.8832 356.175 25.416 611.6 197.0 768.228 2.1577 356.024 26.211 611.6 196.2 762.697 2.1497 354.778 26.219 613.6 181.7 664.204 2.0273 327.616 26.144 809.6 175.6 825.870 2.4907 331.578 27.386 813.6 182.5 845.143 2.4602 343.519 27.300 1012.0 174.2 994.177 2.8914 343.837 28.619 1012.0 172.5 946.085 2.7823 340.035 28.590 1212.0 162.6 1057.043 3.1641 334.067 29.798 1216.0 157.5 979.680 3.0210 324.286 29.862 1412.0 158.2 1165.951 3.4688 336.118 30.815 1406.0 130.4 847.899 3.0333 279.527 31.090 1612.0 145.2 1158.108 3.6477 317.483 31.712 1612.0 91.5	PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
1818.0 140.0 1211.007 3.8234 261.961 32.198	515.6 611.6 611.6 613.6 809.6 813.6 1012.0 1012.0 1212.0 1212.0 1406.0 1406.0 1612.0 1612.0 1818.0 1994.0	20 3.2 197.0 196.2 181.7 175.6 182.5 174.2 172.5 162.6 157.5 158.2 138.7 130.4 145.2 141.0 91.5 140.0 118.0	670.778 768.228 762.697 664.204 825.870 845.143 994.177 946.085 1057.043 979.680 1165.951 928.892 847.899 1158.108 1109.409 567.449 1211.007 1001.584	1.8832 2.1577 2.1497 2.0273 2.4907 2.4602 2.8914 2.7823 3.1641 3.0210 3.4688 3.1363 3.0333 3.6477 3.5917 2.7933 3.9045 3.8234	356.175 356.024 354.778 327.616 331.578 343.519 343.837 340.035 334.067 324.286 336.118 296.173 279.527 317.483 308.880 203.146 310.154 261.961	25.416 26.211 26.219 26.144 27.386 27.300 28.619 28.590 29.798 29.862 30.815 30.959 31.090 31.712 31.772

TABLE XXXII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 14.5 MOLE PERCENT OF CH4 IN CO2 TEMPERATURE (K) = 313.15

PI	ΔP	POWER	FLOW	ΔΗ	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
415.6	169.8	692.946	1.6171	428.501	36.601
605.6	184.5	1134.688	2.2090	513.666	40.380
605.6	184.0	1130.029	2.2066	512.100	40.366
813.6	163.5	1368.037	2.6132	523.509	46.439
10 10 .0	143.4	1578.056	2.9236	539.746	54.591
10 10 .0	142.5	1567.262	2.9155	537.552	54.712
1214.0	134.0	2047.897	3.3280	615.335	66.602
1214.0	133.2	20 31.559	3.3210	611.727	66.584
1310.0	128.8	2295.553	3.5142	653.212	73.556
1412.0	127.3	2671.699	3.7815	706.508	80.495
1412.0	126.5	2647.914	3.7736	701.683	80.451
1415.0	83.0	1450.356	3.0791	471.026	82.309
1524.0	106.1	2314.756	3.7154	623.000	85.163
1524.0	104.9	2279.477	3.7003	616.013	85.171
1611.0	115.6	2776.365	4.1741	665.140	83.452
1701.0	109.2	2422.618	4.3113	561.915	74.632
170 1.0	108.2	2378.256	4.2854	554.960	74.390
1814.0	96.0	1699.500	4.2540	399.502	60.357
1915.0	102.9	1577.787	4.5818	344.354	48.536
1915.0	10 2 • 5	1570.591	4.5735	343.410	48.592
1915.0	101.2	1536.208	4.5553	337.233	48.331
20 13.0	86.0	981.341	4.2963	228.412	38.521

TABLE XXXII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 14.5 MOLE PERCENT OF CH4 IN CO2 TEMPERATURE (K) = 333.15

ΔΡ	POWER	FLOW	ΔН	-(AH/AP)
PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
215.5 177.5 157.4 156.5 159.2 158.9 154.4 154.0 153.5 136.5 144.0 142.4 127.0 128.0 125.0 10 2.8	931.854 981.050 1073.432 1065.170 1376.845 1372.038 1639.549 1635.234 1626.892 1660.767 1798.145 1769.884 1770.634 1802.599 1730.858 1329.178	1.9674 2.3166 2.6157 2.6118 3.0448 3.0414 3.4118 3.4099 3.4010 3.5912 3.7095 3.6826 3.9594 3.9817 3.9369 3.9817	473.635 423.471 410.375 407.829 452.192 451.107 480.538 479.550 478.345 462.452 484.729 480.600 447.197 452.714 439.649 333.816	31.877 34.602 37.814 37.796 41.196 41.175 45.140 45.164 45.197 49.137 48.822 48.950 51.071 51.297 51.012 47.097
100.7	1290.213	3.9427	321.230	47.131
	PSI 215.5 177.5 157.4 156.5 159.2 158.9 154.4 154.0 153.5 136.5 144.0 142.4 127.0 128.0 125.0 102.8	PSI J/MIN 215.5 931.854 177.5 981.050 157.4 1073.432 156.5 10.65.170 159.2 1376.845 158.9 1372.038 154.4 1639.549 154.0 1635.234 153.5 1626.892 136.5 1660.767 144.0 1798.145 142.4 1769.884 127.0 1770.634 128.0 1802.599 125.0 1730.858 102.8 1329.178	PSI J/MIN MOL/MIN 215.5 931.854 1.9674 177.5 981.050 2.3166 157.4 1073.432 2.6157 156.5 10.65.170 2.6118 159.2 1376.845 3.0448 158.9 1372.038 3.0414 154.4 1639.549 3.4118 154.0 1635.234 3.4099 153.5 1626.892 3.4010 136.5 1660.767 3.5912 144.0 1798.145 3.7095 142.4 1769.884 3.6826 127.0 1770.634 3.9594 128.0 1802.599 3.9817 125.0 1730.858 3.9369 102.8 1329.178 3.9817	PSI J/MIN MOL/MIN J/MOL 215.5 931.854 1.9674 473.635 177.5 981.050 2.3166 423.471 157.4 1073.432 2.6157 410.375 156.5 10.65.170 2.6118 407.829 159.2 1376.845 3.0448 452.192 158.9 1372.038 3.0414 451.107 154.4 1639.549 3.4118 480.538 154.0 1635.234 3.4099 479.550 153.5 1626.892 3.4010 478.345 136.5 1660.767 3.5912 462.452 144.0 1798.145 3.7095 484.729 142.4 1769.884 3.6826 480.600 127.0 1770.634 3.9594 447.197 128.0 1802.599 3.9817 452.714 125.0 1730.858 3.9369 439.649 102.8 1329.178 3.9817 333.816

TABLE XXXII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 14.5 MOLE PERCENT OF CH4 IN CO2 TEMPERATURE (K) = 293.15

ΡI	ΔP	POWER	FLOW	ΔΗ	-(AH/ AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
418.5	156.8	830.148	1.7112	485.108	44.871
418.5	156.2	825.384	1.7067	483.607	44.904
419.5	159.0	823.012	1.6562	496.904	45.327
420.5	160.8	840.886	1.6770	501.398	45.224
517.5	157.5	1036.280	1.9754	524.579	48.307
517.5	156.1	10 27 . 045	1.9631	523.157	48.608
555.5	142.5	1028.620	2.0659	497.883	50.675
609.5	140.0	1142.614	2.1992	519.543	53.823
613.5	145.5	1158.057	2.1467	539.437	53.772
708.5	142.5	1470.338	2.4938	589.575	60.007
807.5	142.5	1807.548	2.6698	677.030	68.908
957.6	168.5	1827.272	1.7617	1037.166	89.275
959.5	143.9	2817.071	3.0885	912.089	91.930
959.5	141.3	2779.054	3.1005	896.305	92.001
959.5	139.9	2753.518	3.1081	885.899	91.843
1009.6	165.0	2243.140	1.9000	1180.577	103.774
10 14.0	102.2	2359.670	2.9580	797.721	113.209
1054.0	128.0	2302.114	2.0906	1101.130	124.770
1052.0	101.6	2267.335	2.4770	915.342	130.668
1054.0	10 2 • 2	2250.984	2.4568	916.193	130.022
1108.0	102.4	3348.740	2.8421	1178.242	166.884
1108.0	101.5	3375.931	2.8942	1166.423	166.675
1108.0	101.2	3362.466	2.8777	1168.420	167.455
1156.0	93.5	4276.152	3.0768	1389.764	215.581
120 4.0	87.1	4685.280	3.2941	1422.285	236.837
1204.0	84.4	4551.967	3.2967	1380.748	237.276
1234.0	86.0	50 17.247	3.8250	1311.665	221.210
1262.0	80.5	40 43 • 094	3.8155	1059.625	190.914
1262.0	0.08	400 9.822	3.8311	1046.641	189.753
1298.0	84.6	3654.539	4.1202	886.974	152.062 128.955
1318.0	82.5	30 54 . 063	4.1635	733.520 725.776	128.372
1318.0	82.0	30 13 . 848	4.1525	724.667	128.646
1318.0	81.7	3000.119	4.1399	714.607	128.751
1318.0	80.5	2933.559	4.1051	543.137	93.115
1362.0	84.6	2367.385	4.3587	188.941	28.634
1614.0	95.7	951.568	5.0363 5.0300	186.682	28.441
1614.0	95.2	939.028		184.144	28.412
1614.0	94.0	920.727	5.0000 4.5320	286.509	50.065
1464.0	83.0	1298.474	5.0858	111.298	17.451
1813.0	92.5	566.047	5.0889	111.231	17.440
1813.0	92.5	566.047	4.7829	65.105	11.952
2008.0	79.0	311.398	4.6643	62.916	12.102
2009.0	75.4	293.467	T 00073	02.0710	200

TABLE XXXII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 14.5 MOLE PERCENT OF CH4 IN CO2 TEMPERATURE (K) = 283.15

ΡI	ΔΡ	POWER	FLOW	ΔΗ	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
419.5 419.5	145.8 145.6	889.046 887.201	1.6090 1.6107	552.526 550.815	54.963 54.868
483.5	143.6	10 36 . 845	1.7854	580.727	58.654
553.5	138.5	1191.556	1.9573	608.755	63.749
628.5	131.0	1366.217	2.1245	643.058	71.196
629.5	131.0	1367.535	2.1245	643.679	71.265
695.5	123.0	1529.424	2.2476	680.442	80.235
745.5	121.1	1772.513	2.3803	744.628	89.182
773.5	119.8	1955.877	2.4638	793.815	96.104
773.5	119.3	1944.557	2.4596	790.571	96.113
810.5	112.7	2129.922	2.5219	844.541	108.687
1246.5	100.5	1219.439	5.4257	224.750	32.435 31.226
1246.5	90.0	993.305	5.1261	193.771 178.276	28.666
1265.5	90 • 2	919.281	5.1564	168.967	28.331
1265.5	86.5	852.661	5.0463 5.0833	165.149	27.343
1275.5	87.6	839.516	5.1534	159.347	25.822
1293.5	89.5	821.191	5.1504	156.528	25.508
1293.5	89.0	80 6.192 739.603	5.1017	144.969	24.112
1308.5	87.2	591.679	5.0245	117.758	20.454
1355.5	83.5	506.595	5.0864	99.597	17.196
1414.5	84.0 81.8	421.487	5.0419	83.596	14.822
1473.5	80.5	410.706	5.0026	82.098	14.791
1473.5 1529.5	82.0	380.994	5.0864	74.903	13.248
1595.5	79.8	320 . 825	5.0431	63.615	11.562
1595.5	79.2	317.986	5.0214	63.326	11.596
1655.5	76.0	266.851	4.9362	54.060	10.316
1705.5	77.7	254.394	5.0182	50.693	9.462
1705.5	76.4	250.192	4.9806	50.233	9.536
1815.5	78.7	223.091	5.0956	43.780	8.068
1815.5	78.2	218.274	5.0772	42.991	7.973
1909.5	70.1	166.816	4.8295	34.541	7.146
2009.5	64.5	126.672	4.6552	27.210	6.118

TABLE XXXII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 14.5 MOLE PERCENT OF CH4 IN CO2 TEMPERATURE (K) = 273.15

PI	ZΔP	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
413.5 413.5	138.0 137.5	952.758 941.973	1.6319 1.6254	583.803 579.509	61.357 61.127
478.5	141.6	1214.074	1.8465	657.495	67.345
525.5	132.5	1302.969	1.9452	669.829	73.321
571.5	125.3	1424.137	2.0389	698.477	80.850
585.8	122.6 89.5	1464.387 1278.791	2.0733 5.2261	706.282 244.688	83.554 39.652
1051.0 1051.0	82.7	997.855	5.0250	198.575	34.825
1100.0	80.5	343.843	5.0062	68.682	12.374
1198.0	80.9	282.580	5.0623	55.819	10.007
1228.0	79.4	256.801	5.0125	51.231	9.358
1256.0	82.5	266.048	5.1299 4.9365	51.862 43.903	9.117 8.080
1311.0 1354.0	78.8 80.7	216.733 219.255	5.0932	43.048	7.736
1398.0	77.5	185.859	4.9999	37.172	6.956
1398.0	77.9	188.255	5.0125	37.556	6.992
1442.0	73.5	161.808	4.8786	33.166	6.544
1526.0	78.8	156.197	4.9873	31.318	5.764 5.369
1594.0	81.5	156.197	5.1771 5.0809	30.170 26.296	4.877
1657.0	78.2 77.5	133.611 132.084	5.0561	26.123	4.888
1657.0 1711.0	76.5	118.586	5.0281	23.584	4.471
1711.0	75.9	117.876	5.0094	23.530	4.496
1711.0	74.6	112.882	4.9684	22.719	4.417
1759.0	73.6	103.790	4.9410	21.005	4.139
1759.0	73.0	10 1.763	4.69173 4.6995	20.694 16.671	4.111 3.652
1816.0	66.2	78.350	400777	10.011	5 9 0 3 6

TABLE XXXIII

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 42.3 MOLE PERCENT OF CH4 IN CO2

TEMPERATURE (K) = 363.15

ΡI	ΔP	POWER	FLOW	ΔН	-(ΔH/ΔP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
431.4 431.4 429.4 619.4 815.4 1017.0 1017.0 1217.0 1217.0 1217.0 1415.0 1613.0 1613.0 1811.0 2017.0 2017.0	183.8 183.2 183.0 195.0 176.8 176.2 167.5 166.8 168.2 167.5 167.0 161.4 164.5 164.0 148.8 148.0 126.9 121.8 119.6	434.626 431.792 429.602 616.525 653.316 649.560 70 9.719 705.380 812.023 806.890 80 1.588 842.537 939.909 936.676 859.777 857.203 70 7.543 668.143 649.549	1.8047 1.7982 1.8017 2.3833 2.7407 2.7356 3.0831 3.0761 3.4885 3.4760 3.4677 3.7612 4.1129 4.1094 4.2041 4.1971 4.1517 4.0738 4.0197	240.829 240.114 238.442 258.683 238.370 237.442 230.192 229.302 232.768 232.128 231.157 224.007 228.522 227.932 204.508 204.233 170.418 164.009 161.589	19.004 19.009 18.897 19.240 19.554 19.554 19.932 19.938 20.071 20.099 20.075 20.129 20.148 20.157 19.933 20.014 19.477 19.530 19.595

TABLE XXXIII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 42.3 MOLE PERCENT OF CH4 IN CO2 TEMPERATURE (K) = 333.15

PΙ	ΔP	POWER	FLOW	ΔΗ	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
426.5 619.5 820.5 820.5 1015.0 1215.0 1215.0 1215.0 1415.0 1415.0 1613.0 1813.0	173.2 190.5 184.2 183.6 170.8 169.7 169.2 168.3 167.2 167.0 166.0 150.2 149.5	50 6.400 781.843 936.376 931.765 100 4.805 1154.349 1150.465 1140.957 1129.555 1276.662 1265.803 1202.488 1190.880 1309.613	1.8583 2.5147 2.9990 2.9956 3.3490 3.7777 3.7661 3.7622 3.7544 4.1448 4.1360 4.2988 4.2886 4.6685	272.492 310.903 312.228 311.035 300.031 305.565 305.476 303.264 300.854 308.008 306.040 279.724 277.683 280.517	22.818 23.670 24.584 24.570 25.477 26.115 26.185 26.134 26.097 26.750 26.739 27.011 26.939 26.714
1813.0 2015.0 2015.0	150.5 128.0 117.4	1288.312 1045.762 913.316	4.6405 4.5934 4.4027	277.620 227.663 207.443	26.754 25.796 25.627

TABLE XXXIII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 42.3 MOLE PERCENT OF CH4 IN CO2 TEMPERATURE (K) = 313.15

PI	ΔP	POWER	FLOW	ΔΗ	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
PSIA 427.4 427.4 427.4 615.4 615.4 615.4 813.4 813.4 1017.0 1217.0 1417.0 1617.0 1715.0 1715.0 1715.0 1815.0 1815.0	166.5 166.0 165.8 165.2 183.0 182.6 182.5 161.6 161.4 148.0 145.9 144.3 134.0 132.2 126.8 126.0 124.5 127.4 126.8	583.498 579.139 577.903 574.705 906.149 902.768 899.968 979.234 978.313 1070.568 1253.064 1431.353 1435.355 1402.092 1367.427 1356.272 1330.150 1403.239 1392.201	1.9290 1.9224 1.9158 2.5860 2.5807 2.5754 2.9702 2.9702 3.3488 3.7766 4.1623 4.4429 4.4023 4.5110 4.4917 4.4658 4.7025 4.6902	302.479 301.248 300.605 299.971 350.395 349.807 349.442 329.680 329.370 319.677 331.791 343.884 323.060 318.488 303.128 301.949 297.852 298.399 296.828	26.348 26.320 26.296 26.336 27.770 27.784 27.771 29.589 29.598 31.327 32.983 34.564 34.967 34.967 34.672 34.757 34.698 33.971 33.952
1815.0 1815.0 2021.0 2021.0 2021.0	126.4 124.3 103.7 102.7 102.0	1383.312 1352.728 1028.901 1010.614 1003.029	4.6871 4.6500 4.5874 4.5621 4.5440	295.126 290.904 224.285 221.521 220.733	33.864 33.943 31.369 31.284 31.387

TABLE XXXIII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE 42.3 MOLE PERCENT OF CH4 IN CO2 TEMPERATURE (K) = 273.15

ΡI	ΔΡ	POWER	FLOW	ΔΗ	-(AH/ AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
424.6	147.5	791.026	2.0285	389.938	38.342
424.6	147.3	789.374	2.0285	389.124	38.314 43.886
615.6	157.2	1307.205	2.7481	475.668 573.713	53.000
815.6	157.0	1960.814	3.4177		53.051
815.6	157.5	1968.975	3.4177	576.100	67.204
10 16 .0	148.5	2782.203	4.0433	688.090	67.604
10 16 .0	147.7	2772.157	4.0266	688.457	67.463
10 16 .0	147.5	2760.099	4.0229	686.083	78.056
1118.0	134.4	30 26 . 130	4.1836	723.315	77.994
1118.0	133.3	2993.958	4.1766	716.826	
1118.0	132.5	2971.018	4.1766	711.333	77.864 86.981
1214.0	126.5	3331.837	4.3918	758.640	86.979
1214.0	124.5	3266.655	4.3751	746.632	
1214.0	125.4	3290.013	4.3751	751.971	86.973
1322.0	114.8	3158.507	4.5260	697.853	88.166
1322.0	113.5	3128.260	4.5356	689.700	88.134
1322.0	113.0	3111.921	4.5356	686.098	88.062
1416.0	110.0	2795.069	4.7454	588.997	77.660
1418.0	109.3	2777.665	4.7454	585.330	77.671
1418.0	108.7	2757.898	4.7485	580.791	77.494
1514.0	101.5	2117.643	4.8746	434.415	62.075
1514.0	101.2	2106.894	4.8717	432.473	61.981
1612.0	111.0	1998.708	5.3951	370.462	48.406
1612.0	110.3	1972.888	5.3714	367.289	48.296
1714.0	99.0	1325.974	5.3501	247.836	36.308
1812.0	92.6	973.487	5.3736	181.159	28.374
1812.0	92.1	959.989	5.3603	179.092	28.203
1812.0	90 • 4	930.153	5.2828	176.068	28.248
1914.0	85.8	696.325	5.2867	131.710	22.264
1914.0	80.0	617.927	5.0575	122.178	22.150
20 16.0	76.6	477.233	5.0143	95.173	18.020

TABLE XXXIV

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-N2 TEMPERATURE (K) = 283.15

ΡI	ΔP	POWER	FLOW	ΔН	-(△H/△P)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
416.4 419.4 522.4 607.4 721.4 806.4 1009.4 1009.4 1208.4 1410.4 1410.4 1410.4 1558.4 1715.4 1715.4 1858.4	199.5 200.0 209.0 212.5 192.0 182.5 172.7 171.5 170.4 163.5 163.2 162.5 163.2 165.5 165.0 164.0	441.619 450.868 574.881 667.732 661.506 672.763 740.144 731.693 826.584 858.777 855.692 849.331 897.053 890.252 943.792 938.749 938.985	1.6133 1.6249 1.9451 2.1783 2.3471 2.4837 2.8157 2.8108 3.1564 3.4302 3.4235 3.4182 3.6563 3.6451 3.9134 3.9111 4.1022	273.720 277.459 295.553 306.529 281.835 270.866 262.857 260.311 261.869 250.355 249.941 248.470 245.341 244.229 241.163 240.016 228.897	19.899 20.121 20.510 20.921 21.290 21.526 22.075 22.014 22.289 22.208 22.212 22.177 21.803 21.838 21.134 21.097 20.243 20.315
1858.4 2029.4	163.2 146.1	935.717 777.128	4.0934 4.0857	228.589 190.204	18.882

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-N2 TEMPERATURE (K) = 263.15

ΡĪ	ΔP	POWER	FLOW	ΔH	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
415.6 563.6 759.6 908.6 908.6 1017.6 1017.6 1059.6 1205.6 1205.6 1309.6 1309.6 1363.6 1506.6 1506.6 1506.6 1658.3 1658.3	194.2 216.0 208.0 206.0 193.7 191.4 176.6 175.6 194.8 192.0 195.5 190.8 170.0 169.2 183.0 181.0 152.5 149.6 146.3 149.6 148.8 139.9 132.5	541.518 799.529 950.825 945.096 985.308 975.728 1056.383 1051.193 1123.240 1107.195 1222.936 1194.714 1244.736 129.464 1200.628 1183.325 1036.447 1108.530 1016.572 1128.871 1118.598 1009.040 918.665	1.6735 2.1121 2.4959 2.4997 2.6657 2.6657 2.6657 2.6761 3.0580 3.0550 2.9281 2.9312 3.1178 3.1223 3.6045 3.5931 3.2596 3.2610 3.4354 3.7498 3.5172 4.0108 3.9995 4.0602 4.1688	323.575 378.546 380.944 378.083 369.619 364.595 345.445 344.088 383.604 377.716 392.231 382.634 345.319 342.167 368.331 362.866 301.693 295.621 289.028 281.452 279.679 248.518 220.363	24.166 25.418 26.563 26.619 27.676 27.628 28.370 28.420 28.561 28.532 29.098 29.086 29.461 29.330 29.192 29.077 28.693 28.660 28.653 27.286 27.260 25.764 24.121 22.070
20 13 • 6 20 13 • 6	136.3 135.1	896.962 882.717	4.3246	207.407 204.754	21.981

TABLE XXXIV (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-N2 TEMPERATURE (K) = 243.15

PΙ	ΔP	POWER	FLOW	ΔΗ	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
418.3 513.3 604.3 712.3 712.3 863.3 863.3 1004.3 1109.3 1109.3 1109.3 1208.3 1208.3 1208.3 1707.3 1865.3 1865.3	185.5 192.4 174.5 179.4 179.2 152.5 151.7 156.0 155.5 158.1 157.0 156.3 159.1 156.7 142.3 143.5 142.5 133.5	665.239 855.550 881.086 110 3.229 110 3.721 110 3.743 10 94.312 1372.523 1365.143 1562.947 1552.092 1537.906 1689.764 1665.987 1642.378 1418.202 1282.090 1276.394 972.058 963.597	1.7545 2.0720 2.2571 2.5796 2.5796 2.7731 2.7664 3.1506 3.1474 3.4032 3.4112 3.3898 3.5957 3.5970 3.8253 3.9931 4.2377 4.2377 4.2619 4.2755	379.149 412.899 390.353 427.667 427.857 398.009 395.560 435.632 433.731 459.249 454.986 453.682 469.929 463.154 429.343 355.160 302.538 301.194 228.077 225.373	29.644 31.125 32.444 34.575 34.629 37.853 37.818 40.502 40.454 42.130 42.032 42.099 42.868 41.597 36.199 30.578 30.655 24.778 24.669 20.241

TABLE XXXV

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-C2H6 TEMPERATURE (K) = • 363.15

ΡI	ΔΡ	POWER	FLOW	ΔΗ	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
270 · 4 372 · 4 426 · 4 520 · 4 613 · 4 713 · 4 718 · 6 903 · 6 1107 · 6 1214 · 6 1214 · 6 1214 · 6 1413 · 6 1413 · 6 1413 · 6 1413 · 6 1611 · 6 1618 · 6 1613 · 6 1657 · 6	146.3 196.5 211.2 219.0 215.6 218.2 195.2 214.0 215.8 177.2 175.7 201.0 191.0 191.0 191.0 172.7 165.5 164.6 172.2 150.8 186.6	216.171 417.219 515.212 635.649 70 8.807 812.725 699.629 948.509 1125.895 905.836 895.723 1101.612 1026.381 1071.682 1123.714 1122.845 968.771 925.215 968.889 1045.663 854.476 1182.802	0.9227 1.3179 1.5023 1.7711 1.9757 2.2088 2.1125 2.5710 2.9639 2.8686 2.8591 3.0901 3.0397 3.2446 3.2943 3.3011 3.1396 3.1432 3.3434 3.4323 3.2039 3.6150	234.268 316.572 342.932 358.885 358.758 367.935 331.184 368.917 379.858 315.767 313.285 356.493 337.653 330.288 341.105 340.135 308.558 294.347 289.785 304.645 266.698 327.184	23.224 23.366 23.550 23.768 24.134 24.456 24.607 25.003 25.530 25.845 25.861 25.723 25.640 25.810 25.902 25.828 25.913 25.795 25.659 25.659 25.650 25.430
1814.6 2031.6	129.4 111.6	70 8 • 324 577 • 409	3.2053 3.1826	220.979 181.424	24.768 23.578

TABLE XXXV (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-C2H6 TEMPERATURE (K) = 333.15

0.5					4.114.51
PI	ΔP	POWER	FLOW	ΔH	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
273.7	142.3	265.675	0.9754	272.357	27.759
322.7	164.6	375.110	1.1702	320.533	28.243
417.7	187.5	558.244	1.5061	370.651	28.671
515.7	189.8	677.809	1.7642	384.183	29.357
515.7	189.6	679.617	1.7616	385.785	29.511
715.7	196.0	942.049	2.2560	417.573	30.899
715.7	196.0	944.165	2.2566	418.396	30.960
912.7	199.1	1207.128	2.7070	445.912	32.483
912.7	197.3	1192.003	2.6935	442.548	32.532
1113.7	173.6	1193.501	2.9265	407.816	34.071
1319.7	164.6	1289.414	3.2200	400.431	35.284
1459.7	154.5	1263.842	3.3633	375.771	35.275
1459.7	153.2	1248.582	3.3525	372.428	35.258
1459.7	149.5	1202.081	3.3131	362.824	35.199
1459.7	142.8	1124.295	3.2355	347.483	35.292
1607.7	138.4	1131.518	3.4114	331.686	34.759
1607.7	139.5	1144:366	3.4285	333.770	34.702
1709.7	169.1	1573.905	3.9348	399.991	34.307
1709.7	164.2	1503.814	3.8719	388.389	34.306
1709.7	160.5	1447.880	3.8371	377.336	34.098
1815.7	142.8	1228.598	3.7628	326.506	33.162
20 19.7	119.5	90 9.537	3.6942	246.202	29.881
20 19.7	117.1	880.115	3.6551	240.788	29.823
20 19.7	117.1	880.115	3.6526	240.950	29.843
た リエフ・コ	77.47				

TABLE XXXV (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-C2H6 TEMPERATURE (K) = 313.15

PI	ΔP	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
273.3 319.3 420.3 521.3 521.3 713.3 918.3 1113.3 1215.3 1313.3 1413.3 1413.3 1414.3 1511.3 1511.3 1511.3 1661.3 1795.3 1915.3	129.4 149.9 171.6 195.5 195.1 193.0 194.0 191.1 180.2 168.0 167.0 157.2 155.5 154.2 146.5 142.3 143.0 141.7 141.4 133.1 145.4 139.3 135.4	278.467 390.678 603.941 873.902 872.234 1174.692 1557.478 1904.919 1945.115 1910.388 1892.159 1859.563 1826.869 1803.783 1672.413 1607.940 1688.840 1668.011 1652.738 1559.186 1534.189 1696.760 1478.298 1412.976	0.9723 1.1670 1.5211 1.8788 1.8788 2.3573 2.8598 3.2926 3.4353 3.5354 3.5253 3.6338 3.6153 3.6017 3.5075 3.4613 3.6558 3.6411 3.6356 3.8199 3.7954 4.1944 4.2869 4.2277	286.385 334.763 397.033 465.115 464.227 498.316 544.593 578.532 566.204 540.348 536.729 511.736 505.305 500.802 476.803 464.544 461.957 458.096 454.589 408.166 404.212 404.526 344.835 334.212	32.099 32.390 33.557 34.506 34.510 37.448 40.714 43.908 45.572 46.649 46.614 47.214 47.130 47.104 47.204 47.348 46.854 46.888 46.628 44.047 44.046 40.351 35.903 35.800
20 28 . 3	126.3	1160.603	4.2225	274.855	31.563

TABLE XXXV (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-C2H6 TEMPERATURE (K) = 293.15

ΡĮ	ΔP	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
269.5 315.5 365.5 365.5 419.5 419.5 613.5 613.5 815.5 1017.5 1112.5 1112.5 1112.5 1112.5 1215.5 1315.5 1613.5 1613.5 1613.5 1817.5 2021.5	131.6 152.2 175.6 175.0 179.3 178.6 181.6 181.0 184.5 186.1 185.2 178.0 176.5 174.5 152.7 146.1 127.6 126.3 123.4 119.4 120.2 117.8	344.346 483.661 676.531 673.792 799.318 789.560 1222.887 1214.028 1801.682 2589.961 2576.171 2790.391 2768.562 2741.524 2587.446 2657.803 2258.605 1870.031 1869.417 1796.158 1223.165 1232.599 839.696	1.0122 1.2128 1.4485 1.4437 1.6193 1.6164 2.1853 2.1810 2.7519 3.3324 3.3310 3.4779 3.4870 3.4857 3.5088 3.6956 3.7911 4.2168 4.2157 4.1620 4.3916 4.4036 4.5627	340.171 398.765 467.051 466.712 493.601 488.439 559.593 556.614 654.700 777.203 773.379 802.302 793.962 786.499 737.400 719.171 595.754 443.469 443.433 431.559 278.520 279.905 184.033	37.490 38.000 38.576 38.680 39.928 39.665 44.692 44.602 51.466 60.571 60.566 65.373 65.243 65.370 70.040 71.394 67.717 50.845 50.922 50.723 33.832 33.774 22.658
20 21.5	110.4	761.704	4.4145	172.543	22.667

TABLE XXXV (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-C2H6 TEMPERATURE (K) = 273.15

		0.04455	51.011	A 1-1	-(AH/AP)
PΙ	ΔP	POWER	FLOW	ΔH	-(Δ11/Δ1/
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
267.4	124.3	392.552	1.0333	379.889	44.326
275.6	129.0	422.358	1.0719	394.015	44.300
275.6	129.0	422.761	1.0719	394.391	44.342
314.4	144.3	565.733	1.2486	453.084	45.540
347.6	160.0	725.265	1.4099	514.380	46.627
368.4	166.0	805.086	1.4949	538.537	47.053
406.4	167.6	936.895	1.6590	564.712	48.869
406.4	167.1	929.545	1.6534	562.172	48.794
419.6	175.1	1006.886	1.6905	595.606	49.335
419.6	175.0	10 11.034	1.6891	598.547	49.606
420.7	158.6	881.820	1.6309	540.666	49.443
614.6	179.0	1714.355	2.3176	739.700	59.935
614.6	178.1	1695.904	2.3076	734.900	59.847
613.4	165.5	1591.088	2.2501	707.108	61.968
715.4	160.1	1950.160	2.5297	770.889	69.836
718.6	163.9	2005.081	2.5502	786.221	69.574 69.740
718.6	163.5	200 4. 983	2.5502	786.182	83.988
814.6	148.4	2354.089	2.7393	859.354	83.829
814.6	147.7	2328.537	2.7276	853.682	84.654
819.4	144.6	2310.429	2.7375	843.988 914.387	91.779
853.6	144.5	2558.524	2.7980	908.468	91.820
853.6	143.5	2538 • 246	2.7939	835.663	93.520
856.4	129.6	2263.890	2.7090	1475.921	121.974
987.4	175.5	5111.978	3.4635	1466.150	122.351
987.4	173.8	50 81. 935	3.4661 3.4778	1460.053	122.548
987.4	172.8	50 77 . 787	3.4752	1452.386	122.828
987.4	171.5	50 47 . 374	3.2918	1361.814	124.223
987.4	159.0	4482.825	3.2794	1355.261	124.407
987.4	158.0	4444.522	3.0717	1216.434	127.385
987.4	138.5	3736.590	3.0761	1212.257	127.593
987.4	137.8	3729.116	3.5492	1547.132	139.808
1057.4	160.5	5491.198	3.3541	1350.136	141.899
1057.4	138.0	4528.551	3.5555	1130.686	133.980
1121.4	122.4	40 20 • 247	3.5404	1131.756	134.217
1121.4	122.3	3271.451	4.0363	810.487	99.032
1216.4	118.7	3211.285	4.0560	791.722	98.651
1216.4	116.4	2581.864	4.5573	566 • 525	64.445
1315.4	127.5	2563.598	4.5516	563.226	64.170
1315.4	127.3	2303,070			

TABLE XXXV (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-C2H6 TEMPERATURE (K) = 273.15

PΙ	ΔP	POWER	FLOW	ΔH	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
1412.4 1412.4 1613.4 1613.4 1613.4 1817.4	125.0 124.8 119.0 117.2 116.6 120.2	1674.845 1668.690 851.603 827.367 825.183 567.961	4.7000 4.6935 4.7993 4.7622 4.7486 4.9660 4.9312	356.348 355.527 177.442 173.734 173.773 114.369 115.175	41.347 41.318 21.626 21.500 21.615 13.800 13.955
20 33 . 6	106.1 105.8	323.877 323.877	4.9231 4.9055	65.786 66.022	8.992 9.050

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-C2H6 TEMPERATURE (K) = 263.15

ΡI	ΔP	POWER	FLOW	ΔΗ	-(△H/△P)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
269.6 269.6 348.6 349.6 420.6 420.6 517.6 517.6 517.6 620.6 620.6 620.6	122.5 122.1 154.2 155.7 185.0 184.7 137.8 173.4 172.8 172.5 209.4 209.4	442.983 437.882 789.237 808.389 1256.314 1249.514 859.040 1574.284 1561.740 1551.990 2750.847 2750.005 1719.275	1.0631 1.0587 1.4263 1.4426 1.7814 1.7801 1.5899 2.0747 2.0668 2.0635 2.6055 2.6055 2.2386	416.653 413.566 553.309 560.359 705.210 701.906 540.304 758.797 755.599 752.105 1055.779 1055.456 767.998	49.331 49.125 52.043 52.198 55.287 55.118 56.868 63.468 63.420 63.236 73.127 73.104 77.353

TABLE XXXVI

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR MIXTURE OF CO2(.25)-CH4(.5)-C2H6(.25)
TEMPERATURE (K) = 363.15

317.5 172.0 275.140 1.1996 229.342 19 317.5 171.0 271.279 1.1952 226.963 19 317.5 170.0 268.864 1.1907 225.784 19 422.5 185.1 378.732 1.5232 248.635 19 614.5 203.8 574.947 2.0673 278.103 19 614.5 203.2 572.480 2.0661 277.080 19 614.5 202.7 569.316 2.0571 276.746 19 817.5 204.3 708.245 2.4847 285.036 20 1009.5 196.0 771.254 2.7998 275.461 20 1215.5 196.3 875.964 3.1595 277.242 20 1215.5 196.0 874.591 3.1595 276.807 20 1215.5 195.5 869.678 3.1579 275.395 20 1415.5 184.1 871.225 3.3760 258.063 20 1415.5 182.5 861.078 3.3607 256.218 <th>/ ∆P)</th>	/ ∆P)
317.5 171.0 271.279 1.1952 226.963 19 317.5 170.0 268.864 1.1907 225.784 19 422.5 185.1 378.732 1.5232 248.635 19 614.5 203.8 574.947 2.0673 278.103 19 614.5 203.2 572.480 2.0661 277.080 19 614.5 202.7 569.316 2.0571 276.746 19 817.5 204.3 708.245 2.4847 285.036 20 1009.5 196.0 771.254 2.7998 275.461 20 1215.5 196.3 875.964 3.1595 277.242 20 1215.5 196.0 874.591 3.1595 276.807 20 1215.5 195.5 869.678 3.1579 275.395 20 1415.5 184.1 871.225 3.3760 258.063 20 1415.5 182.5 861.078 3.3607 256.218 20 1617.5 187.8 966.356 3.3221 290.883 <td>L-BAR</td>	L-BAR
1815.5 165.7 842.595 3.7504 224.665 19 1815.5 164.5 829.216 3.7354 221.986 19 2049.5 155.5 783.325 3.8998 200.860 18 2049.5 154.9 778.882 3.8933 200.056 18	.339 .250 .263 .482 .791 .777 .802 .235 .383 .484 .483 .431 .330 .362 .464 .043 .665 .572 .734 .731 .723

TABLE XXXVI (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR MIXTURE OF CO2(.25)-CH4(.5)-C2H6(.25) TEMPERATURE (K) = 333.15

PΙ	ΔP	POWER	FLOW	ΔН	-(∆H/∆P)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
269.5	141.8	230.901	1.0221	225.904	23.106
320.5	166.8	333.096	1.2385	268.948	23.385
428.5	192.6	512.868	1.6301	314.617	23.692
608.5	193.9	689.526	2.1132	326.290	24.406
608.5	193.1	685.149	2.1094	324.793	24.395
608.5	193.0	682.959	2.1119	323.373	24.301
819.5	193.0	867.583	2.5889	335.108	25.183
819.5	192.4	863.495	2.5869	333.789	25.162
1009.5	187.9	988.240	2.9498	335.013	25.859
1009.5	187.7	986.245	2.9472	334.636	25.857
1009.5	187.7	984.511	2.9463	334.148	25.820
1212.5	185.3	1112.773	3.3127	335.905	26.291
1315.5	163.0	977.478	3.2866	297.407	26.463
1315.5	162.4	970.033	3.2827	295.495	26.390
1415.5	166.0	1057.050	3.4798	303.760	26.540
1415.5	165.5	1047.206	3.4754	301.314	26.406
1565.5	161.0	1070.825	3.6664	292.062	26.310
1565.5	160.0	1056.108	3.6538	289.040	26.201
1565.5	158.6	10 44 . 875	3.6398	287.069	26.252
1715.5	159.5	1095.808	3.8893	281.746	25.620
1715.5	159.4	1091.680	3.8919	280.497	25.522
1871.5	149.5	1013.855	3.9836	254.504	24.690
1871.5	148.0	1004.240	3.9631	253.392	24.832
1871.5	146.5	982.897	3.9413	249.383	24.689
1871.5	140.0	916.900	3.8524	238.001	24.656
20 37 • 5	132.5	836.259	3.9498	211.720	23.175
20 37 • 5	132.4	837.429	3.9490	212.058	23.230
20 37 • 5	131.8	832.146	3.9426	211.065	23.226
20 37 • 5	131.0	823.312	3.9309	209.442	23.188

TABLE XXXVI (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR MIXTURE OF CO2(.25)-CH4(.5)-C2H6(.25) TEMPERATURE (K) = 313.15

ΡI	ΔΡ	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
321.4 415.4 421.4 421.4 616.4 813.4 1007.4 1007.4 1109.4 1109.4 1109.4 1216.4 1316.4 1413.4 1563.4 1717.4 1717.4 1867.4 1867.4	162.3 184.7 187.4 187.0 186.6 190.7 195.5 190.8 190.0 166.1 165.6 158.7 159.0 154.1 160.1 159.8 145.8 145.2 136.0 132.7 129.4 119.4	383.445 568.778 588.981 586.830 582.791 831.712 110 3.845 1303.296 1296.973 1288.975 1162.725 1153.219 1178.006 1259.920 1270.359 1429.210 1421.867 1270.973 1267.520 1138.564 1100.317 1056.330 891.980	1.2766 1.6322 1.6579 1.6579 1.6547 2.2109 2.7243 3.1434 3.1401 3.1335 3.1582 3.1524 3.2958 3.4855 3.6156 3.9560 3.9534 4.0355 4.0266 4.1200 4.0767 4.0254 4.0829	300.342 348.454 355.252 353.955 352.195 376.185 405.181 414.606 413.027 411.344 368.158 365.812 357.425 361.469 351.355 361.272 359.650 314.947 314.779 276.346 269.898 262.414 218.462	26.839 27.362 27.494 27.452 27.374 28.610 30.059 31.516 31.479 31.400 32.147 32.039 32.665 32.972 33.069 32.728 32.642 31.330 31.442 29.471 29.499 29.412 26.537
20 39 • 4	117.8 116.9	876.605 863.854	4.0593 4.0342	215.948 214.130	26.588 26.567

TABLE XXXVI (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR MIXTURE OF CO2(.25)-CH4(.5)-C2H6(.25) TEMPERATURE (K) = 293.15

PI	ΔP	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
267.4 327.4 419.4 419.4 613.4 812.4 10 10.4 10 10.4 1212.4 1312.4 1312.4 1312.4 1413.2 1512.4 1663.4 1663.4 1815.4 1815.4 1815.4	132.8 159.0 182.9 182.7 207.5 201.3 185.0 184.4 174.7 173.9 161.0 160.7 156.8 150.5 150.0 133.1 132.7 132.8 131.3 127.8 111.0	299.416 456.306 690.714 719.774 1184.079 1526.031 1743.273 1734.217 1982.531 1971.079 1909.207 1900.309 1947.715 1892.049 1881.796 1556.252 1547.683 1450.446 1422.072 1420.996 1362.375 905.988	1.0623 1.3377 1.7116 1.7086 2.4013 2.9312 3.3389 3.3342 3.7502 3.7421 3.8391 3.8364 4.0255 4.1667 4.1582 4.2150 4.2066 4.4636 4.4433 4.4365 4.3598	281.839 341.091 403.527 421.263 493.087 520.607 522.105 520.115 528.633 526.729 497.302 495.327 483.834 454.084 452.548 369.215 367.915 324.948 320.048 320.296 310.677 207.803	30.781 31.114 31.999 33.442 34.465 37.510 40.932 40.909 43.887 43.930 44.799 44.705 44.754 43.760 43.757 40.233 40.212 35.489 35.353 35.353 35.258 27.152
20 28 • 4	110.0	893.769	4.3413	205.875	27.145

TABLE XXXVI (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR MIXTURE OF CO2(.25)-CH4(.5)-C2H6(.25) TEMPERATURE (K) = 273.15

PI	ΔP	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
273.5 337.5 337.5 420.5 420.5 613.5 811.5 1013.5 1013.5 1115.5 1215.5 1215.5 1215.5 1411.5 1411.5 1508.5 1508.5 1659.5 1821.5 1821.5 2030.5	129.8 157.2 156.6 190.6 190.5 179.8 185.9 185.2 182.7 171.5 170.8 147.4 147.0 154.2 151.3 150.7 142.2 141.3 143.9 123.5 122.5 119.1 117.1	367.182 579.779 572.060 922.269 928.260 1315.568 2010.733 1997.355 2857.021 2843.097 3063.815 3048.990 2805.575 2792.617 3179.131 3028.045 3011.289 2486.370 2462.425 1976.639 1140.630 1125.146 1071.676 720.952	1.1326 1.4409 1.4336 1.8427 1.8456 2.4195 3.0739 3.0672 3.6938 3.9089 3.8984 3.9607 3.9562 4.3694 4.6403 4.6263 4.7646 4.7488 5.1159 4.9633 4.9448 4.8740 5.0297	324.177 402.352 399.031 500.473 502.944 543.721 654.110 651.189 772.295 769.685 783.796 782.094 708.346 705.877 727.581 652.546 650.904 521.840 518.525 386.369 229.808 227.537 219.871 143.336	36.223 37.122 36.957 38.083 38.291 43.859 51.033 50.997 61.142 61.102 66.285 66.412 69.699 69.645 68.435 62.553 62.644 53.225 53.224 38.942 26.988 26.940 26.775 17.753
20 30 • 5	116.5 116.0	717.082 713.062	5.0204 4.9986	142.833 142.649	17.782 17.835

TABLE XXXVI (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR MIXTURE OF CO2(.25)-CH4(.5)-C2H6(.25) TEMPERATURE (K) = 263.15

PI	ΔΡ	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
267.7	124.5	381.051	1.1260	338.381	39.420
324.7	148.0	580.372	1.4111	411.287	40.305
423.7	158.3	841.294	1.7772	473.361	43.370
423.7	158.1	841.294	1.7811	472.332	43.330
615.7	170.1	1477.360	2.4644	599.478	51.115
615.7	170.0	1476.989	2.4644	599.327	51.132
815.7	170.2	2375.540	3.1337	758.048	64.598
815.7	171.0	2387.989	3.1370	761.214	64.564
912.7	151.7	2602.301	3.3041	787.589	75.300
912.7	151.0	2590.558	3.3017	784.595	75.361
1009.7	161.0	3600.626	3.7550	958.881	86.381
1009.7	159.7	3563.855	3.7509	950.129	86.289
1009.7	159.5	3559.091	3.7419	951.122	86.488
1081.7	144.6	3578.233	3.8275	934.861	93.769
1139.7	151.6	4144.944	4.1463	999.665	95.639
1221.7	157.5	4489.967	4.5638	983.820	90.597
1221.7	156.7	4455.537	4.5505	979.126	90.625
1317.7	147.3	3653.621	4.8373	755.291	74.369
1413.7	140.0	2650.769	5.0314	526.837	54.579
1615.7	132.5	140 1.536	5.2578	266.560	29.178
1818.7	125.3	815.006	5.3184	153.240	17.737
20 21.7	112.2	468.467	5.1552	90.871	11.746
20 24 . 7	111.0	458.927	5.1340	89.388	11.679
20 24 • 7	110.0	454.335	5.1035	89.023	11.738
CU 6401	T TO 90	121000			

TABLE XXXVII

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-N2-C2H6 TEMPERATURE (K) = 333.15

ΡI	ΔP	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
415.5 415.5 415.5 415.5 517.5 617.5 810.5 810.5 1015.6 1215.6 1414.6 1414.6 1414.6 1614.6 1614.6 1614.6 1813.6 1813.6 1813.6 1813.6	20 5 · 6 20 4 · 1 20 1 · 4 197 · 7 188 · 2 195 · 8 200 · 5 200 · 4 196 · 8 193 · 1 188 · 9 187 · 2 186 · 5 177 · 6 177 · 2 155 · 7 147 · 2 146 · 4 146 · 3 145 · 0 143 · 7	429.245 425.893 417.151 406.962 449.715 543.574 623.311 622.585 705.873 765.084 798.078 789.815 780.994 784.009 777.186 770.474 693.393 680.825 659.660 673.077 664.880 648.452	1.5222 1.5191 1.5191 1.5004 1.7275 1.9835 2.1822 2.1800 2.4982 2.7631 2.9775 2.9768 2.9666 3.1571 3.1658 3.1484 3.3456 3.4837 3.3714 3.4674 3.4542 3.4144	281.983 280.352 274.597 271.229 260.319 274.039 285.631 285.578 282.543 276.890 268.035 265.315 263.255 248.328 245.491 244.717 207.252 195.427 195.660 194.115 192.481 189.913	19.892 19.922 19.775 19.898 20.061 20.299 20.662 20.668 20.822 20.797 20.555 20.472 20.098 20.048 20.030 19.306 19.255 19.384 19.244 19.253 19.168
20 23 • 6 20 23 • 6 20 23 • 6	139.9 138.5 133.1	632.434 623.708 587.434	3.6306 3.6086 3.5323	174.194 172.835 166.299	18.059 18.099 18.121

TABLE XXXVII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-N2-C2H6 TEMPERATURE (K) = 303.15

PΙ	ΔP	POWER	FLOW	ΔН	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
415.4 416.4 614.4 813.4 813.4 1013.4 1211.4 1211.4 1211.4 1413.4	190 · 1 190 · 3 191 · 0 190 · 1 183 · 2 182 · 2 189 · 5 190 · 1 189 · 6 189 · 1 180 · 5 180 · 2 167 · 2 166 · 2 161 · 8 160 · 3 158 · 5 146 · 8 145 · 5 143 · 7	480.721 482.089 663.794 660.030 786.361 780.798 986.420 1131.069 1127.485 1127.482 1158.717 1152.062 10 70.390 10 63.394 10 20.516 10 10.123 997.124 868.417 858.415 787.175	1.4711 1.9433 1.9457 2.3147 2.3127 2.7327 3.0777 3.0747 3.0747 3.3275 3.3187 3.3899 3.3925 3.4877 3.4877 3.4851 3.4864 3.4550 3.5163	326.776 327.706 341.578 339.222 339.711 337.600 360.960 367.501 366.692 366.691 348.224 347.140 315.758 313.445 292.597 289.617 286.104 249.081 248.452 223.863 220.128	24.931 24.976 25.938 25.881 26.894 26.874 27.626 28.038 28.050 28.124 27.981 27.940 27.390 27.353 26.228 26.204 26.180 24.609 24.766 22.594 22.643
20 27 • 4 20 27 • 4 20 27 • 4 20 27 • 4	141.0 140.8 139.5 136.7	769.763 769.763 757.690 738.706	3.4968 3.5072 3.4968 3.4753	219.476 216.675 212.553	22.608 22.527 22.551

TABLE XXXVII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-N2-C2H6 TEMPERATURE (K) = 283.15

PI	ΔP	POWER	FLOW	ΔΗ	-(A H/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
223.4 223.4 273.4 321.4 425.4 466.4 562.4 713.4 859.4 1012.5 1163.5 1260.5 1413.5 1558.5 1711.5 1865.5	111.6 111.0 133.0 150.7 188.2 200.6 192.7 192.1 195.9 181.2 173.3 163.1 153.5 161.0 146.7 147.5 137.4	174.517 173.952 264.477 359.380 606.380 693.282 804.377 798.748 1021.434 1101.316 1210.317 1263.216 1231.207 1413.769 1252.298 1228.014 1010.529	0.8110 0.8052 1.0117 1.2139 1.5922 1.7002 1.9747 1.9699 2.3521 2.6018 2.8683 3.0843 3.1722 3.5158 3.5848 3.7993 3.7993	215.176 216.024 261.401 296.033 380.843 407.761 407.338 405.459 434.260 423.289 421.961 409.551 388.119 402.114 349.327 323.220 265.977	27.964 28.226 28.506 28.481 29.350 29.482 30.658 30.612 32.151 33.881 35.314 36.419 36.672 36.224 34.537 31.782 28.076 28.040
1865.5 2011.5	134.6 140.9	988.668 945.761	3.7993 3.9640	260.223 238.586	24.559

TABLE XXXVII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-N2-C2H6 TEMPERATURE (K) = 263.15

ΔP	POWER	FLOW	ΔΗ	-(AH/AP)
PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
109.4	214.927	0.8664	248.052	32.885
128.0	312.493	1.0551	296.156	33.557
149.7	453.404	1.2808	353.989	34.296
150.6	458.225	1.2881	355.729	34.259
189.8	796.971	1.7158	464.481	35.493
196.0	798.788	1.6800	475.448	35.182
195.4	1072.526	2.1017	510.301	37.877
179.2	1064.553	2.1778	488.818	39.563
183.2	1410.298	2.5827	546.039	43.229
169.5	1615.325	2.8861	559.678	47.890
134.9	1379.476	2.9538	467.014	50.211
144.8	1833.884	3.4423	532.736	53.361
157.2	2202.372	3.8259	575.647	53.111
155.2	2162.717	3.8081	567.911	53.072
150.5	20 58 . 315	3.7364	550.873	53.088
146.1	1966.599	4.0306	487.915	48.436
	1700.205	4.2212	402.774	40.204
144.8	1694.263	4.2180	401.668	40.232
142.0	1395.804	4.3458	321.179	32.805
140.0	1373.656	4.3458		32.745
132.2	10 18 . 697	4.3264		25.832
131.4	1006.008	4.3310		25.638
118.8	681.711	4.1915		19.855
119.2	686.333	4.2433		19.680
118.7	684.337	4.2106	162.524	19.858
	PSI 109.4 128.0 149.7 150.6 189.8 196.0 195.4 179.2 183.2 169.5 134.9 144.8 157.2 155.2 150.5 146.1 145.3 144.8 142.0 140.0 132.2 131.4 118.8 119.2	PSI J/MIN 109.4 214.927 128.0 312.493 149.7 453.404 150.6 458.225 189.8 796.971 196.0 798.788 195.4 1072.526 179.2 1064.553 183.2 1410.298 169.5 1615.325 134.9 1379.476 144.8 1833.884 157.2 2202.372 155.2 2162.717 150.5 2058.315 146.1 1966.599 145.3 1700.205 144.8 1694.263 142.0 1373.656 132.2 1018.697 131.4 1006.008 118.8 681.711 119.2 686.333	PSI J/MIN MOL/MIN 109.4 214.927 0.8664 128.0 312.493 1.0551 149.7 453.404 1.2808 150.6 458.225 1.2881 189.8 796.971 1.7158 196.0 798.788 1.6800 195.4 1072.526 2.1017 179.2 1064.553 2.1778 183.2 1410.298 2.5827 169.5 1615.325 2.8861 134.9 1379.476 2.9538 144.8 1833.884 3.4423 157.2 2202.372 3.8259 155.2 2162.717 3.8081 150.5 2058.315 3.7364 146.1 1966.599 4.0306 145.3 1700.205 4.2212 144.8 1694.263 4.2180 142.0 1395.804 4.3458 140.0 1373.656 4.3458 140.0 1373.656 4.3458 132.2 1018.697 4.3264 131.4 1006.008 4.3310 118.8 681.711 4.1915 119.2 686.333 4.2433	PSI J/MIN MOL/MIN J/MOL 109.4 214.927 0.8664 248.052 128.0 312.493 1.0551 296.156 149.7 453.404 1.2808 353.989 150.6 458.225 1.2881 355.729 189.8 796.971 1.7158 464.481 196.0 798.788 1.6800 475.448 195.4 1072.526 2.1017 510.301 179.2 10.64.553 2.1778 488.818 183.2 1410.298 2.5827 546.039 169.5 1615.325 2.8861 559.678 134.9 1379.476 2.9538 467.014 144.8 1833.884 3.4423 532.736 157.2 2202.372 3.8259 575.647 155.2 2162.717 3.8081 567.911 150.5 2058.315 3.7364 550.873 146.1 1966.599 4.0306 487.915 145.3 1700.205 4.2212 402.774 144.8 1694.263 4.2180 401.668 142.0 1395.804 4.3458 321.179 140.0 1373.656 4.3458 316.083 132.2 1018.697 4.3264 235.460 131.4 100.6.008 4.3310 232.279 118.8 681.711 4.1915 162.639 119.2 686.333 4.2433 161.743

TABLE XXXVII (continued)

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR EQUIMOLAL MIXTURE OF CO2-CH4-N2-C2H6 TEMPERATURE (K) = 243.15

PI	ΔP	POWER	FLOW	ΔΗ	-(AH/AP)
PSIA	PSI	J/MIN	MOL/MIN	J/MOL	J/MOL-BAR
223.4 269.4 319.4 365.4 439.4 439.4 1310.8 1310.8 1413.8 1413.8 1563.8 1714.8 1863.8	10 4.0 122.0 143.2 161.0 176.3 121.0 135.0 133.3 127.0 124.2 131.7 127.0 145.0	255.639 377.421 548.625 751.365 10 37.230 623.234 1159.172 1127.835 1000.310 976.829 756.385 522.315 483.065 480.100	0.9013 1.1046 1.3351 1.5612 1.8588 1.5938 3.2608 3.2622 3.2009 3.1994 3.3628 3.4583 3.7040 3.7101	283.622 341.653 410.917 481.252 557.999 391.021 355.487 345.727 312.505 305.307 224.924 151.030 130.416 129.401	39.553 40.616 41.619 43.353 45.905 46.870 38.191 37.617 35.689 35.653 24.770 17.248 13.045 13.124 9.863
20 15 • 8 20 15 • 8	133.0 131.8	321.090 317.981	3.5498 3.5063	90.452 90.687	9.979

B30120