8CD Meanithm:

$$\vec{W}^{(0)} \leftarrow \vec{O}$$
;

for $t \leftarrow 0$ to $T-1$ do t

pich i uniformly at roudom from $t_1,...,m_t$;

 $\vec{W}^{(t+1)} \leftarrow \vec{W}^{(t)} - \eta \nabla L(\vec{w}^{(t)}, (\vec{x}_1, \vec{y}_1))$;

return $\overline{w} = \frac{1}{T} \sum_{t=1}^{T} \vec{w}^{(t)}$;

To simplify the notation, we are poing to compute
$$\nabla \mathcal{C}(\vec{w}^{(t)}, (\vec{x_i}, \vec{y_i}))$$
:
$$\nabla \mathcal{C}(\vec{w}^{(t)}, (\vec{x_i}, \vec{y_i})) = \begin{cases} 0 & \text{if } Y_i < \vec{w_i}, \vec{x_i} > 0 \longrightarrow Y_i \text{ correctly close five} \\ \nabla (-Y_i < \vec{w_i}, \vec{x_i} >) & \text{otherwise} \end{cases}$$

 $\Delta\left(-\lambda^{2}\langle\underline{m}'\underline{x}'_{2}\rangle\right) = \begin{bmatrix} 9m^{4} \\ 9\overline{(-\lambda^{2}\langle\underline{m}'\underline{x}'_{2}\rangle)} \end{bmatrix}$ $Aemur \text{ High } \lambda^{2}\langle\underline{m}'\underline{x}'_{2}\rangle < 0:$

$$\frac{\partial w_{1}}{\partial w_{2}} = -\lambda^{2} \times \lambda^{2}$$

$$\frac{\partial (-\lambda^{2}(\vec{w}, \vec{x}_{1}))}{\partial w_{2}} = -\lambda^{2} \times \lambda^{2}$$

$$\frac{\partial (-\lambda^{2}(\vec{w}, \vec{x}_{2}))}{\partial w_{2}} = -\lambda^{2} \times \lambda^{2}$$

$$\nabla \mathcal{L}(\omega_{i}(\vec{x}_{i},\vec{y}_{i})) = \begin{bmatrix} -Y_{i}X_{i+1}, \dots, -Y_{i}X_{id} \end{bmatrix}^{T}$$
$$= -Y_{i}\vec{x}_{i}^{T}$$

Then we can rewrite the pseudo code:

SCID Algorithm:

$$\vec{W}^{(0)} = \vec{O}$$
;

for $t = 0$ to $T = t$ do t

pick i uniformly at random from $t_1, \dots, t_n \neq t$
 $\vec{W}^{(n)} \neq \vec{W}^{(n)}, \vec{X}_n > 0$ then t
 $\vec{W}^{(n)} \neq \vec{W}^{(n)} \neq \vec{W}$

Comparison: perception sco perception			
_	1) Choose a missdomified point	doore a paint et voudom	- the main difference
	2) $\eta = 0$	of is a parameter of just a querolization	
	s) returu "bes+" ѿН	return w huplementation choice	
(ourage/best/)			
We can speed up the SGO paraptron, of each iteration, by picking a			
missolossified point at rough m			
♥			
SCD perception is the perception			

Linear Regression

$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{Y} = \mathbb{R}$

Regression with linear models (wow!)

Hypothesis class:

is class:
$$\mathcal{H}_{reg} = L_d = \{\mathbf{x} \to \langle \mathbf{w}, \mathbf{x} \rangle + b : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}\}$$

Note: $h \in \mathcal{H}_{reg} : \mathbb{R}^d \to \mathbb{R}$

Commonly used loss function: squared-loss

$$\ell(h, (\mathbf{x}, y)) \stackrel{\text{def}}{=} (h(\mathbf{x}) - y)^2$$

⇒ empirical risk function (training error): Mean Squared Error

$$S = \{(\vec{x}_1, y_2), ..., (\vec{x}_{w_i}, y_{w_i})\} L_S(h) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}_i) - y_i)^2$$

Linear Regression - Example

Least Squares

How to find a ERM hypothesis? Least Squares algorithm

Best hypothesis:

$$\arg\min_{\mathbf{w}} L_S(h_{\mathbf{w}}) = \arg\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

Equivalent formulation: w minimizing Residual Sum of Squares (RSS), i.e.

$$\underset{\mathbf{w}}{\operatorname{arg \, min}} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

$$\underset{\mathbf{w}}{\overset{}{=}} [\mathbf{t}, \mathbf{w}_i, \dots, \mathbf{w}_d]^T$$

RSS: Matrix Form

Let

$$\mathbf{X} = \begin{bmatrix} \cdots & \mathbf{x}_1 & \cdots \\ \cdots & \mathbf{x}_2 & \cdots \\ \vdots & \vdots & \cdots \\ \cdots & \mathbf{x}_m & \cdots \end{bmatrix} \rightarrow \begin{array}{c} \operatorname{each} \ \operatorname{row} \ it \ \operatorname{out} \\ \operatorname{in} \ \operatorname{strong} \ \operatorname{in} \ \operatorname{thu} \\ \operatorname{troubulg} \ \operatorname{vet} \end{array}$$

X: design matrix

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
 observations from the

⇒ we have that RSS is

$$\sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Want to find **w** that minimizes RSS (=objective function):

$$\arg\min_{\mathbf{w}} RSS(\mathbf{w}) = \arg\min_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$\downarrow_{\mathbf{b}} \text{ pore-bole} \left(\chi^2 w^2 - 2\gamma \chi_{\mathbf{w}} + \gamma^2 \right)$$

How?

Compute gradient $\frac{\partial RSS(\mathbf{w})}{\partial \mathbf{w}}$ of objective function w.r.t \mathbf{w} and compare it to 0.

$$\frac{\partial RSS(\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\mathbf{w})$$

Then we need to find w such that

$$-2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$

$$-2\mathbf{X}^{T}(\mathbf{y}-\mathbf{X}\mathbf{w})=0$$

is equivalent to

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

If X^TX is invertible \Rightarrow solution to ERM problem is:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Complexity Considerations

We need to compute

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Algorithm:

- ① compute $\mathbf{X}^T \mathbf{X}$: product of $(d+1) \times m$ matrix and $m \times (d+1)$ matrix
- 2 compute $(\mathbf{X}^T\mathbf{X})^{-1}$ inversion of $(d+1)\times(d+1)$ matrix
- 3 compute $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$: product of $(d+1)\times(d+1)$ matrix and $(d+1)\times m$ matrix
- **4** compute $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$: product of $(d+1)\times m$ matrix and $m\times 1$ matrix

Most expensive operation? Inversion! - Cood since d is small

$$\Rightarrow$$
 done for $(d+1) \times (d+1)$ matrix

$$\mathbf{X}^T\mathbf{X}$$
 not invertible?

How do we get w such that

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

if $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is not invertible? Let

$$\mathbf{A} = \mathbf{X}^T \mathbf{X}$$

Let A⁺ be the generalized inverse of A, i.e.:

$$AA^+A=A$$

Proposition

If $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ is not invertible, then $\hat{w} = \mathbf{A}^T \mathbf{X}^T \mathbf{y}$ is a solution to $\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$.

Computing the Generalized Inverse of A

Note $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ is symmetric \Rightarrow eigenvalue decomposition of \mathbf{A} :

$$\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{\mathsf{T}}$$

with

- D: diagonal matrix (entries = eigenvalues of A)
- V: orthonormal matrix $(\mathbf{V}^T\mathbf{V} = \mathbf{I}_{d \times d})$

Define D⁺ diagonal matrix such that:

$$\mathbf{D}_{i,i}^{+} = \begin{cases} 0 & \text{if } \mathbf{D}_{i,i} = 0 \\ \frac{1}{\mathbf{D}_{i,i}} & \text{otherwise} \end{cases} = \begin{bmatrix} \frac{1}{\mathbf{D}_{i,i}} & \bigcirc \\ \bigcirc & \bigcirc & \bigcirc \end{bmatrix}$$

$$\mathbf{D} \mathbf{D}^{+} = \begin{bmatrix} \mathbf{A}_{i,i} & \bigcirc \\ \bigcirc & \bigcirc & \bigcirc \end{bmatrix}$$

Let
$$A^+ = VD^+V^T$$

Then

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}_{\mathbf{D}}^{T}\mathbf{V}\mathbf{D}^{+}\mathbf{V}^{T}\mathbf{V}\mathbf{D}\mathbf{V}^{T}$$

$$= \mathbf{V}\mathbf{D}\mathbf{D}^{+}\mathbf{D}\mathbf{V}^{T}$$

$$= \mathbf{V}\mathbf{D}\mathbf{V}^{T}$$

$$= \mathbf{A}$$

 \Rightarrow **A**⁺ is <u>a</u> generalized inverse of **A**.

In practice: the Moore-Penrose generalized inverse \mathbf{A}^{\dagger} of \mathbf{A} is used, since it can be efficiently computed from the Singular Value Decomposition of \mathbf{A} .

Exercise

Consider a linear regression problem, where $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \mathbb{R}$, with mean squared loss. The hypothesis set is the set of *constant* functions, that is $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$, where $h_a(\mathbf{x}) = a$. Let $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$ denote the training set.

- Derive the hypothesis $h \in \mathcal{H}$ that minimizes the training error.
- Use the result above to explain why, for a given hypothesis \hat{h} from the set of all linear models, the coefficient of determination $R^2 = 1 \frac{\sum_{i=1}^{m} (\hat{h}(x_i) y_i)^2}{\sum_{i=1}^{m} (y_i \bar{y})^2}$ where \bar{y} is the average of the $y_i, i = 1, \ldots, m$ is a measure of how well \hat{h} performs (on the training set).

Cerco di oltri es su stem.