

# Calculation Sheet



| Project Title IPL Steam Boiler Study FEL1 |                | Project No.     | 24177             |
|-------------------------------------------|----------------|-----------------|-------------------|
| Client IPL Phosphate Hill                 |                | Calculation No. | 24177-ST-CAL-0001 |
| Calculation Title                         | Donkey Boiler  | Revision        | В                 |
| Project Phase                             | Concept Design | Date            | 25/01/25          |

# Calculation Objective / Scope

- Assumption 1
- Assumption 2
- ..

# Calculation Assumptions

- assumption 1
- assumption 2

## Software Used

- Space Gass
- RFEM
- ...

## Holds

• n/a



# Calculation Sheet



| Project Title     | IPL Steam Boiler Study FEL1 Project No. |                 | 24177             |  |
|-------------------|-----------------------------------------|-----------------|-------------------|--|
| Client            | IPL Phosphate Hill                      | Calculation No. | 24177-ST-CAL-0001 |  |
| Calculation Title | Donkey Boiler                           | Revision        | В                 |  |
| Project Phase     | Concept Design                          | Date            | 25/01/25          |  |

# Table of contents

| 1 | Intro | oduction                      | 3  |
|---|-------|-------------------------------|----|
|   | 1.1   | Calculation Objective / Scope | 3  |
|   | 1.2   | Exclusions                    | 3  |
|   | 1.3   | Basis of Design               | 3  |
|   |       | Design Standards and Codes    |    |
|   | 1.5   | Other Reference Documents     | 3  |
| 2 | Assı  | umptions                      | 4  |
|   | 2.1   | Holds                         | 4  |
|   |       | Assumptions                   |    |
|   | 2.3   | Relied on Information         | 4  |
| 3 | Met   | thodology                     | 5  |
| 4 | RFE   | M MODEL OF JACKING PLATES     | 5  |
|   | 4.1   | Load - Self weight            | 5  |
|   | 4.2   | Chem anchor/base plate design | 6  |
| 5 | App   | pendix A                      | 14 |

| RESOURCES RESOURCES | Calculation Sheet                      |          | Incitec Pivot Fertilisers |
|---------------------|----------------------------------------|----------|---------------------------|
| Project Title       | ject Title IPL Steam Boiler Study FEL1 |          | 24177                     |
| Client              | nt IPL Phosphate Hill                  |          | 24177-ST-CAL-0001         |
| Calculation Title   | Donkey Boiler                          | Revision | В                         |
| Project Phase       | Concept Design                         | Date     | 25/01/25                  |

#### 1 Introduction

#### 1.1 Calculation Objective / Scope

The existing boiler is to be removed by lifting it and inserting a skate so it can be rolled out.

This calculation presents the FEA of the jacking plates added to the boiler frame, and design of piping supports

#### 1.2 Exclusions

This calculation excludes the following: - design of rollers and supporting mechanisms

#### 1.3 Basis of Design

In general, design is in accordance with AS 4100 for steel.

#### 1.4 Design Standards and Codes

Unless specifically noted, the design complies with Australian Standards and selected international standards as listed in the Design Criteria. The following summarizes the key standards used in producing this calculation:

- AS 1170.0 2002 Structural design actions Part 0: General principles
- AS 1170.1 2002 Structural design actions Part 1: Permanent, imposed and other actions
- AS 1170.2 2021 Structural design actions Part 2: Wind actions
- AS 3600 2018 Concrete structures
- AS 4100 1998 Steel structures

#### 1.5 Other Reference Documents

Other reference documents used in this design include:

• 3D laser scan data

| BG<br>RESOURCES   | Calculation Shee            |             | Incitec Pivot Fertilisers |
|-------------------|-----------------------------|-------------|---------------------------|
| Project Title     | IPL Steam Boiler Study FEL1 | Project No. | 24177                     |
| Client            | IPL Phosphate Hill          |             | 24177-ST-CAL-0001         |
| Calculation Title | Donkey Boiler               | Revision    | В                         |
| Project Phase     | Concept Design              | Date        | 25/01/25                  |

# 2 Assumptions

#### 2.1 Holds

• n/a

#### 2.2 Assumptions

- Jacking cylinder dimension, refer Appendix A, Section 5
- Differential displacement between adjacent jacking point is must be < L/600
- $\bullet\,$  centerline of jack is no more than 195mm from edge of bottom frame

#### 2.3 Relied on Information

• 3D scan, site photos

| RESOURCES RESOURCES | Calculation Sheet                      |          | Incitec Pivot Fertilisers |
|---------------------|----------------------------------------|----------|---------------------------|
| Project Title       | ject Title IPL Steam Boiler Study FEL1 |          | 24177                     |
| Client              | nt IPL Phosphate Hill                  |          | 24177-ST-CAL-0001         |
| Calculation Title   | Donkey Boiler                          | Revision | В                         |
| Project Phase       | Concept Design                         | Date     | 25/01/25                  |

# 3 Methodology

- $\bullet$  Perform member check using Space Gass model, to get sanity check of the member capacity, design load ratio must be less than 1.0
- Perform FEA of the jacking point and check for limiting stresses and strains, where applicable. Acceptance criteria as follows
  - design stress < 0.9Fy, for regions away from geometric discontinuities.
  - plastic equivalent strain (VM strains) < 5%

### **4 RFEM MODEL OF JACKING PLATES**

## 4.1 Load - Self weight

| RESOURCES         | Calculation Shee            |                 | Incitec Pivot Fertilisers |
|-------------------|-----------------------------|-----------------|---------------------------|
| Project Title     | IPL Steam Boiler Study FEL1 | Project No.     | 24177                     |
| Client            | IPL Phosphate Hill          | Calculation No. | 24177-ST-CAL-0001         |
| Calculation Title | Donkey Boiler               | Revision        | В                         |
| Project Phase     | Concept Design              | Date            | 25/01/25                  |

# 4.2 Chem anchor/base plate design



# **Project data**

Project name

Project number

Author

Description

Date 2/6/2025 Code AS

### **Material**

Steel STEEL\_1\_440\_320, STEEL\_1\_320\_250, 3678-250

Concrete N25



# **Project item Node 1**

# Design

Name Node 1

Description 4-m20/125 hilti re500

Analysis Stress, strain/ loads in equilibrium

#### Members

#### Geometry

| Name     | Cross-section   | β – Direction<br>[°] | γ - Pitch<br>[°] | $\alpha$ - Rotation $[\mathring{\ }]$ | Offset ex<br>[mm] | Offset ey<br>[mm] | Offset ez<br>[mm] |
|----------|-----------------|----------------------|------------------|---------------------------------------|-------------------|-------------------|-------------------|
| Member 1 | 6 - 150 UC 30.0 | 0.0                  | 90.0             | -90.0                                 | 0.0               | 0.0               | 0.0               |

#### Supports and forces

| Name           | Support Forces in |          | X<br>[mm] |
|----------------|-------------------|----------|-----------|
| Member 1 / end |                   | Position | 0.0       |



#### **Cross-sections**

| Name            | Material        |
|-----------------|-----------------|
| 6 - 150 UC 30.0 | STEEL_1_440_320 |

#### **Anchors**

| Name    | Diameter | <b>f<sub>y</sub></b> | <b>f<sub>u</sub></b> | Gross area         |  |
|---------|----------|----------------------|----------------------|--------------------|--|
|         | [mm]     | [MPa]                | [MPa]                | [mm <sup>2</sup> ] |  |
| M20 4.6 | 20.0     | 240.0                | 400.0                | 314.0              |  |



# Load effects (forces in equilibrium)

| Name                         | Member         | <b>N</b><br>[kN] | <b>Vy</b><br>[kN] | <b>Vz</b><br>[kN] | <b>Mx</b><br>[kNm] | <b>My</b><br>[kNm] | <b>Mz</b><br>[kNm] |
|------------------------------|----------------|------------------|-------------------|-------------------|--------------------|--------------------|--------------------|
| Ult Services Extreme(1)      | Member 1 / End | -12.0            | 14.8              | 2.2               | -0.1               | 0.0                | 0.0                |
| Service - No Crane + Wsx+(2) | Member 1 / End | -4.7             | 5.9               | 0.9               | 0.0                | 0.0                | 0.0                |

#### **Unbalanced forces**

| Name                         | X<br>[kN] | Y<br>[kN] | <b>Z</b><br>[kN] | <b>Mx</b><br>[kNm] | <b>My</b><br>[kNm] | <b>Mz</b><br>[kNm] |
|------------------------------|-----------|-----------|------------------|--------------------|--------------------|--------------------|
| Ult Services Extreme(1)      | 14.8      | 2.2       | -12.0            | 0.0                | 0.0                | -0.1               |
| Service - No Crane + Wsx+(2) | 5.9       | 0.9       | -4.7             | 0.0                | 0.0                | 0.0                |

#### Foundation block

| Item                 | Value         | Unit |
|----------------------|---------------|------|
| CB 1                 |               |      |
| Dimensions           | 703.0 x 708.0 | mm   |
| Depth                | 200.0         | mm   |
| Anchor               | M20 4.6       |      |
| Anchoring length     | 100.0         | mm   |
| Shear force transfer | Anchors       |      |
| Mortar joint         | 50.0          | mm   |

## Check

### Summary

| Name           | Value          | Check status |
|----------------|----------------|--------------|
| Analysis       | 100.0%         | OK           |
| Plates         | 0.0 < 5.0%     | OK           |
| Anchors        | 83.2 < 100%    | OK           |
| Welds          | 7.5 < 100%     | OK           |
| Concrete block | 0.6 < 100%     | OK           |
| Buckling       | Not calculated |              |

#### **Plates**

| Name           | Material        | <b>F<sub>y</sub></b><br>[MPa] | t <sub>p</sub><br>[mm] | Loads                   | σ <sub>Ed</sub><br>[MPa] | ε <sub>ΡΙ</sub><br>[%] | σ <sub>c,Ed</sub><br>[MPa] | Status |
|----------------|-----------------|-------------------------------|------------------------|-------------------------|--------------------------|------------------------|----------------------------|--------|
| Member 1-bfl 1 | STEEL_1_440_320 | 320.0                         | 9.40                   | Ult Services Extreme(1) | 43.7                     | 0.0                    | 0.0                        | OK     |
| Member 1-tfl 1 | STEEL_1_440_320 | 320.0                         | 9.40                   | Ult Services Extreme(1) | 37.2                     | 0.0                    | 0.0                        | OK     |
| Member 1-w 1   | STEEL_1_440_320 | 320.0                         | 6.60                   | Ult Services Extreme(1) | 8.0                      | 0.0                    | 0.0                        | OK     |
| BP1            | 3678-250        | 250.0                         | 15.00                  | Ult Services Extreme(1) | 12.5                     | 0.0                    | 0.0                        | OK     |

#### Design data

| Material        | F <sub>y</sub><br>[MPa] | ε <sub>lim</sub><br>[%] |
|-----------------|-------------------------|-------------------------|
| STEEL_1_440_320 | 320.0                   | 5.0                     |
| 3678-250        | 250.0                   | 5.0                     |



## Symbol explanation

| F <sub>y</sub>         | Yield strength          |
|------------------------|-------------------------|
| $t_p$                  | Plate thickness         |
| $\sigma_{\text{Ed}}$   | Equivalent stress       |
| $\epsilon_{\text{Pl}}$ | Plastic strain          |
| $\sigma_{c,Ed}$        | Contact stress          |
| ε <sub>lim</sub>       | Limit of plastic strain |



Overall check, Ult Services Extreme(1)





Strain check, Ult Services Extreme(1)



Equivalent stress, Ult Services Extreme(1)



#### **Anchors**

| Shape | Item | Loads                         | N* <sub>tf</sub><br>[kN] | <b>V</b> *<br>[kN] | φΝ <sub>Rk,c</sub><br>[kN] | φV <sub>Rk,s,M</sub><br>[kN] | φV <sub>Rk,c</sub><br>[kN] | φV <sub>Rk,cp</sub><br>[kN] | Ut <sub>t</sub><br>[%] | Ut <sub>s</sub><br>[%] | Ut <sub>ts</sub><br>[%] | Detailing | Status |
|-------|------|-------------------------------|--------------------------|--------------------|----------------------------|------------------------------|----------------------------|-----------------------------|------------------------|------------------------|-------------------------|-----------|--------|
|       | A1   | Ult<br>Services<br>Extreme(1) | 0.1                      | 3.8                | 39.7                       | 4.6                          | 25.2                       | 161.0                       | 0.4                    | 82.3                   | 17.0                    | OK        | ОК     |
| 4 4   | A2   | Ult<br>Services<br>Extreme(1) | 0.0                      | 3.8                | 0.0                        | 4.6                          | 26.5                       | 161.0                       | 0.0                    | 83.2                   | 42.2                    | OK        | ОК     |
| 4 4   | A3   | Ult<br>Services<br>Extreme(1) | 0.0                      | 3.7                | 0.0                        | 4.6                          | 0.0                        | 161.0                       | 0.1                    | 80.0                   | 2.8                     | OK        | OK     |
|       | A4   | Ult<br>Services<br>Extreme(1) | 0.0                      | 3.7                | 0.0                        | 4.6                          | 26.5                       | 161.0                       | 0.0                    | 80.1                   | 42.2                    | OK        | OK     |

#### Design data

| Grade       | <b>ΦN</b> <sub>tf</sub><br>[kN] |
|-------------|---------------------------------|
| M20 4.6 - 1 | 49.0                            |

#### Symbol explanation

 $N_{tf}^{*}$  Tension force

V\* Resultant of bolt shear forces Vy and Vz in shear planes

 $\begin{array}{lll} \phi N_{Rk,c} & \text{Concrete cone resistance - AS 5216:2018} - 6.2.3 \\ \phi V_{Rk,s,M} & \text{Anchor shear resistance - AS 5216:2018} - 7.2.2.3 \\ \phi V_{Rk,c} & \text{Concrete edge resistance - AS 5216:2018} - 7.2.3 \\ \phi V_{Rk,cp} & \text{Concrete pry-out resistance - AS 5216:2018} - 7.2.4 \\ \end{array}$ 

 $\operatorname{Ut}_{\mathsf{t}}$  Utilization in tension  $\operatorname{Ut}_{\mathsf{s}}$  Utilization in shear

Ut<sub>ts</sub> Utilization in tension and shear

 $\phi N_{tf}$  Anchor tensile resistance - AS 5216:2018 – 6.2.2

#### Welds

| Item | Edge           | Loads                   | f <sub>uw</sub><br>[MPa] | <b>t<sub>t</sub></b><br>[mm] | t <sub>w</sub><br>[mm] | v* <sub>w</sub><br>[kN/m] | <b>φν<sub>w</sub></b><br>[kN/m] | <b>U</b> <sub>t</sub><br>[%] | Detailing | Status |
|------|----------------|-------------------------|--------------------------|------------------------------|------------------------|---------------------------|---------------------------------|------------------------------|-----------|--------|
| BP1  | Member 1-bfl 1 | Ult Services Extreme(1) | 490.0                    | <b>4</b> .00 <b>▶</b>        | <b>4</b> 5.66 <b>▶</b> | 59.0                      | 940.8                           | 6.3                          | OK        | OK     |
|      |                | Ult Services Extreme(1) | 490.0                    | <b>4</b> .00 <b>▶</b>        | <b>⊿</b> 5.66 <b>⊾</b> | 54.5                      | 940.8                           | 5.8                          | OK        | OK     |
| BP1  | Member 1-tfl 1 | Ult Services Extreme(1) | 490.0                    | <b>4</b> .00 <b>▶</b>        | <b>⊿</b> 5.66 <b>⊾</b> | 68.3                      | 940.8                           | 7.3                          | OK        | OK     |
|      |                | Ult Services Extreme(1) | 490.0                    | <b>⊿</b> 4.00 <b>⊾</b>       | <b>4</b> 5.66 <b>▶</b> | 70.9                      | 940.8                           | 7.5                          | OK        | OK     |
| BP1  | Member 1-w 1   | Ult Services Extreme(1) | 490.0                    | <b>⊿</b> 4.00 <b>⊾</b>       | <b>4</b> 5.66 <b>▶</b> | 16.2                      | 940.8                           | 1.7                          | OK        | OK     |
|      |                | Ult Services Extreme(1) | 490.0                    | <b>4</b> 4.00 <b>▶</b>       | <b>4</b> 5.66 <b>▶</b> | 16.9                      | 940.8                           | 1.8                          | OK        | OK     |



#### Symbol explanation

f<sub>uw</sub> Nominal tensile strength of weld metal

 $t_{\rm t}$  Throat thickness of weld

 $t_{\rm w}$  Leg size

 $v_{w}^{*}$  Design force per unit length of weld

 $\phi v_w$  Nominal capacity of a fillet weld per unit length

U<sub>t</sub> Utilization

✓ Fillet weld

#### **Concrete block**

| Item | Loads                   | <b>A<sub>1</sub></b> [mm <sup>2</sup> ] | <b>A<sub>2</sub></b><br>[mm <sup>2</sup> ] | σ<br>[MPa] | φf <sub>b</sub><br>[MPa] | <b>Ut</b><br>[%] | Status |
|------|-------------------------|-----------------------------------------|--------------------------------------------|------------|--------------------------|------------------|--------|
| CB 1 | Ult Services Extreme(1) | 71711.7                                 | 418351.0                                   | 0.2        | 27.0                     | 0.6              | OK     |

#### Symbol explanation

A<sub>1</sub> Loaded areaA<sub>2</sub> Supporting area

 $\sigma$  Average stress in concrete

 $\phi f_b$  Concrete block bearing resistance – AS 3600, Cl.12.6

Ut Utilization

#### **Buckling**

Buckling analysis was not calculated.

## **Code settings**

| Item                                               | Value | Unit | Reference                                                  |
|----------------------------------------------------|-------|------|------------------------------------------------------------|
| Coefficient of friction between steel and concrete | 0.55  | -    |                                                            |
| Slip factor in friction-type connections           | 0.35  | -    | AS 4100:2020 – 9.2.3.2                                     |
| Limit plastic strain                               | 0.05  | -    |                                                            |
| Detailing                                          | Yes   |      |                                                            |
| Minimum bolt pitch [d]                             | 2.50  | -    | AS 4100:2020 – 9.5.1                                       |
| Minimum edge distance to a bolt [d]                | 1.25  | -    | AS 4100:2020 – 9.5.2                                       |
| Concrete breakout resistance check                 | Both  |      |                                                            |
| Cracked concrete                                   | Yes   |      |                                                            |
| Local deformation check                            | Yes   |      |                                                            |
| Local deformation limit                            | 0.03  | -    | CIDECT DG 1, 3 – 1.1                                       |
| Geometrical nonlinearity (GMNA)                    | Yes   |      | Analysis with large deformations for hollow section joints |

| RESOURCES RESOURCES | Calculation                 | Incitec Pivot Fertilisers |                   |
|---------------------|-----------------------------|---------------------------|-------------------|
| Project Title       | IPL Steam Boiler Study FEL1 | Project No.               | 24177             |
| Client              | IPL Phosphate Hill          | Calculation No.           | 24177-ST-CAL-0001 |
| Calculation Title   | Donkey Boiler               | Revision                  | В                 |
| Project Phase       | Concept Design              | Date                      | 25/01/25          |

# 5 Appendix A