Problem Set 8

Parvesh Adi Lachman

November 2023

1 Problem 1

Claim: Let G = (V, E) be any undirected graph, and let $f : V \to \{1, 2, ..., k\}$ be a k-colouring of G, where $k = \chi(G)$. The binary relation \equiv_f on V defined by

$$u \equiv_f v$$
 if and only if $f(u) = f(v)$

(a)

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
	$\forall v \in V : v \equiv_f v$	By def of reflexive
WTS		
Consider	$v \equiv_f v$	By rephrasing
any		
$v \in V$.		
WTS		
	f(v) = f(v)	Since = is reflexive
\Rightarrow	$v \equiv_f v$	By definition \equiv_f

(b)

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
	$\forall v, u \in V, if \ u \equiv_f v \text{ then } v \equiv_f u$	By def of symmetric
WTS		
Consider	$u \equiv_f v$	By this is the antecedent
any		
$u,v \in V$.		
Suppose		
WTS	$v \equiv_f u$	This is the consequent
\Rightarrow	f(u) = f(v)	By definition of $u \equiv_f v$
\Rightarrow	f(v) = f(u)	Since = is symmetric
\Rightarrow	$v \equiv_f u$	By def of \equiv_f

(c)

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
WTS	$\forall v, u, w \in V, \text{ if } u \equiv_f v \land v \equiv_f w \Rightarrow u \equiv_f w$	By def of transitive
Consider	$u \equiv_f v \land v \equiv_f w$	By this is the antecedent
any		
$u, v, w \in$		
V. Sup-		
pose		
WTS	$u \equiv_f w$	This is the consequent
\Rightarrow	$f(u) = f(v) \land f(v) = f(w)$	By def of $u \equiv_f v \land v \equiv_f w$
\Rightarrow	f(u) = f(w)	By transivity of =
\Rightarrow	$u \equiv_f w$	By definition of \equiv_f

(d)

There are c equivalence classes of \equiv_f .

Informally, the equivalence classes are: the sets of vertices that have the same colour.

In precise mathematical language, the equivalence classes of \equiv_f are:

$$\{v \in V: f(v) = 1\}, \{v \in V: f(v) = 2\}, ..., \{v \in V: f(v) = c\}$$

The proof that these are the equivalence classes is as follows:

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
		By def of equivalence class
\Rightarrow		
\Rightarrow		

2 Problem 2

Claim: Suppose a graph G = (V, E) is 2-colourable using the colouring $f: V \to \{0, 1\}$. Then for any path Q, the length of Q has a parity |f(u) - f(v)|, where u and v are the endpoints of Q.

Step 0: For all $len(Q) \ge 0$, we want to show that len(Q) has a parity of |f(u) - f(v)|, where u and v are the endpoints of Q.

Step 1: For any $n \ge 0$, let P(n) be the property that for all paths of length n, parity(n) = |f(u) - f(v)|, where u and v are the path's endpoints.

Step 2: As a base case, consider when n = 0. We will show that P(0) is true: that is, that parity(0) = |f(u) - f(v)|. Consider any path of length 0. We want to show parity(0) = |f(u) - f(v)|. Fortunately, since this path has no edges, the endpoints are the same node. Therefore, parity(0) = |f(u) - f(v)| is true.

Step 3: Let $k \geq 0$. For the induction hypothesis, suppose P(k) is true. That is, suppose that for all paths of length k, parity(k) = |f(u) - f(v)|, where u and v are the path's endpoints.

Step 4: Now we prove that P(k+1) is true, using the (hypothetical) induction assumption that P(k) is true. That is, we prove for all paths of length k+1, parity(k+1) = |f(u) - f(v)|, where u and v are the path's endpoints.

Step 5: The proof that P(k+1) is true (given that P(k) is true) is as follows:

Consider any path of length k+1. We want to show that $\operatorname{parity}(k+1) = |f(u) - f(v)|$. This path can be split into two paths: one of length k and one of length 1.

There are two cases:

```
|f(u) - f(v)| = 1:
             parity(k+1)
                                   LHS of P(k+1)
        \Rightarrow
              parity(k) + 1
                                   By def of parity
             |f(u) - f(v)| + 1
                                   By IH
                                   By def of |f(u)-f(v)|
        \Rightarrow
              2
                                   By algebra
             even
                                   By def of even
|f(u) - f(v)| = 0
                                   LHS of P(k+1)
        \Rightarrow
             parity(k+1)
             parity(k) + 1
                                   By def of parity
             |f(u) - f(v)| + 1
                                   By IH
                                   By def of |f(u) - f(v)|
             0 + 1
        \Rightarrow
              1
                                   By algebra
                                   By def of odd
             odd
```

Therefore we have shown that if P(k) is true, then P(k+1) is true, for all $k \ge 0$.

Step 6: The steps above have shown that for any $k \geq 0$, if P(k) is true, then P(k+1) is also true. Combined with the base case, which shows that P(0) is true, we have shown that for all $n \geq 0$, P(n) is true, as desired.

3 Problem 3

Consider the algorithm below, which takes as input a connected graph G = (V, E) and tries to colour it with two colours T, F (for "true" and "false").

```
Algorithm 1: two-colour(G = (V, E)):

// Initialization

1 Pick an arbitrary element u_0 \in V, label it T (i.e. set f(u_0) = T);

2 Set i \leftarrow 1;

// Colouring Process

3 while there is an unlabeled v \in V with a labeled neighbor w do

4 | Label v with \neg f(w) (i.e. set f(u) = \neg f(w)) and set u_i = v;

5 | Update i \leftarrow i + 1;

// Output

6 return f;
```

Claim: For any connected graph G=(V,E), if G has no odd-length cycles, then G is bipartite.

Contrapositive: For any connected graph G=(V,E), if G is not bipartite, then G has an odd-length cycle.

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
We want	For any connected graph, if G is not bipar-	Since this is the contrapositive of
to show	tite, the G has an odd-length cycle	our claim
Suppose	G is a connected graph that is not bipartite	By assumption
\Rightarrow		