Reconstructing (labialized-)velar plosives in proto-Pahoturi

Christian Brickhouse* and Kate Lindsey†

June 10, 2021

1 Introduction

1.1 Question under discussion

- The Pahoturi River family (PR) is a Papuan isolate, spoken in the South Fly region of Papua New Guinea (see Figure 1).
- PR has six members with distinct phonological inventories.
- All language varieties have velar stops /k g/ (see Table 1 b,d)
 - Two varieties (Idi and Taeme) have labialized velar stops /k^w g^w/ (see Table 1 a,c).
- Question: Are the varieties with labiovelars conservative or innovative?
 - If innovative, are the labiovelars a result of language contact?

Table 1: Cognate sets for labiovelars preceding vowels

	Table 17 doglare sets for lable versits procedured versits							
	Idi	Taeme	Ende	Kawam	Em	Agob	Gloss	YF^1
a.	k ^w ıt ⁴ or ⁴	k ^w ıt ⁴ or ⁴	kut 👊	kut∫ ⁴	kut 🍕	kut 👊	'bone'	13
b.	tikəp 👊	tikəp 🍕 or 🝕	tikop 🍕	tikop 👊	tikop 🍕	tikop 🍕	'heart'	23
c.	g ^w əg 🍕	g ^w əg 🍕 or 🍕	gogo 🍕	gogo 🍕 or 🝕	gogo 🍕	gogo 🍕	'erect'	324
d.	gəz 🍕	gəz 🍕	gəz 🍕	god͡ʒ 🍕	goz 🍕	goz 🍕	'kill'	318

1.2 Linguistic landscape

- PR languages are spoken in southwest Papua New Guinea south of the Fly River delta.
- Neighboring families include Yam (e.g., Nen and Len to the west and southwest), Trans-New Guinea (e.g., Bitur to the north and Kiwai to the southeast), Eastern Trans-Fly (e.g., Wipi and Bine to the east), and Pama-Nyungan (e.g., Kalau Kawau Ya to the south).

 $[\]hbox{$^*['kxi]t]$in 'bxikaus]; he/they; Stanford University, brickhouse@stanford.edu}\\$

^{†[}keɪt 'lɪnzi]; she/her; Boston University, klindsey@bu.edu

¹YF refers to the lexical item number in the Yamfinder list, a lexical database which includes 338 words that are relevant specifically to the region of Southern New Guinea (Carroll et al., 2016).

- PR is considered a dialect continuum and is divided into two subgroups:
 - Western: Idi and Taeme²
 - Eastern: Agob, Em, Ende, and Kawam³
- The language varieties vary in their phonological inventories:
 - Western varieties contain velar plosives that vary between labialized velar plosives /k $^{\rm w}$ g $^{\rm w}$ / and coarticulated labiovelar plosives /kp g $^{\rm h}$ / (Schokkin et al., 2021).
 - * Compare the realizations of kwak 'moon' by Idi speaker Titi Masa: [kpak] and [kwak]
 - These are in addition to the velar plosives /k g/ that are found in all varieties, such as Ende (Lindsey, 2021).
- Western varieties are in contact with Yam languages, such as Nen,⁴ which have both velar plosives /k g/ and coarticulated labiovelar plosives /kp gb/ (Evans and Miller, 2016).

²[ISO 639-3: idi, glottocode: idii1243]

³[ISO 639-3: kit, glottocode: agob1244]

⁴[ISO 639-3: nqn, glottocode: nenn1238]

Table 2: Phonemic inventories of southern New Guinea languages

Plosive types	Yam (e.g., Nen)	Western PR (e.g., Idi)	Eastern PR (e.g., Ende)
velar plosives	k g	k g	k g
labio-velar plosives	$\widehat{\mathrm{kp}}$ $\widehat{\mathrm{gb}}$	k^w g^w or kp \widehat{gb}	

2 Velars, labialized velars, and labiovelars

- Velar plosives are frequent in all language varieties in initial, medial, and final positions (see Tables 3 and 4 a,b).
- Labialized velars are infrequent in the Western varieties, and only occur in initial and intervocalic positions (see Table 4 c,d).

Table 3: Ende velar phonemes in various syllable positions (Lindsey, 2021)

	Plosive	Initial	Intervocalic	Final
a.	k	/kab/ 'rope' ╡	/kakab/ 'leftover' 🍕	/kak/ 'grandmother' 🖣
b.	g	/gaguma/ 'yamhouse' 🖣	/daga/ 'tree type' 🖣	/ag/ 'morning' 🖣

Table 4: Idi velar phonemes in various syllable positions (Schokkin et al., 2021)

			J 1	, , , , , , , , , , , , , , , , , , , ,
	Plosive	Initial	Intervocalic	Final
a.	k	/kak/ 'grandparent' 🌗	/məkat/ 'rat' 🍕	/kak/ 'grandparent' 🖣
b .	g	/gæd/ 'child' 峰	/age/ 'banana' 🖣	/æg/ 'morning' 🍕
c.	$\mathbf{k}^{\mathbf{w}}$	/k ^w ak/ 'moon' ⁴	/mikwɪt/ 'angry' 🖣	
d.	g^{w}	/g ^w æd͡ʒi/ 'prawn' ╡	/drg ^w ag/ 'chase' ◀	

• Sequences of a velar plosive /k g/ followed by a labiovelar glide /w/ are observed in the Eastern varieties, but are not considered phonemic (Lindsey 2021).

3 Comparative data

- To aid in the reconstruction of proto-PR (see other efforts by Lindsey 2017 and Evans et al., 2019), Lindsey and Schokkin collected lexical data for each variety using the Yamfinder word list (Carroll et al., 2016).
- The Yamfinder word list is a list of 338 words that are relevant specifically to the region of Southern New Guinea.
- There were 89 items that contained velars /k g/.
- We identified seven correspondence sets and predict to find an eighth (Set #2) if we had access to more cognate sets (see Table 5).
- The sets are distinguished by:
 - the presence of a following rounded or unrounded vowel (cf. Set 1 v. 3, Set 2 v. 4)
 - the presence of unrounded vowels in the west and rounded vowels in the east (see Sets 5 and 6)
 - and the co-ocurrence of unrounded vowels in the west with labialized velars which correspond to rounded vowels in the east with non-labialized velars (see Sets 7 and 8).

Table 5: Eight correspondence sets

Set	Western PR	Eastern PR	Idi (W)	Em (E)	Gloss
1	k V [+labial]	k V [+labial]	mə ko	mo ko	'sweet'
2	g V [+labial]	g V [+labial]	non-cognate	gurem	'snake'
3	k V [-labial]	k V [-labial]	bər ke	bor ke	'parrot'
4	g V [-labial]	g V [-labial]	gəb	gə ba	'shade'
5	k V [-labial]	k V [+labial]	ti kə p	ti ko p	'heart'
6	g V [-labial]	g V [+labial]	$\mathbf{g}\mathbf{e}\widehat{\mathrm{d}_3}$	goz	'kill'
7	k ^w V [-labial]	k V [+labial]	k ^w ak	ko k	'moon'
8	g ^w V [-labial]	g V [+labial]	g ^w əg	go go	'build'

4 Reconstruction analysis

- We suggest a reconstruction of four velar plosives for proto-PR: /*k *k* *g *g*/
- Each of the four proto-PR plosives were followed by rounded and unrounded vowels.
- The eight synchronic correspondence sets can be explained by positing different resolutions of four diachronic patterns.
 - Pattern 1: A labialized velar followed by an unrounded vowel (e.g., /ə/) resulted in a sequence
 of [+labial][-labial].
 - * Both varieties: reanalyzed ${C \ V \ V \ [+labial][-labial]}$ to ${C \ V \ [-labial][+labial]}$ (rule (1)).
 - * This rule would result in rounded vowels such as $/\theta$ /, a rounded schwa, which are not currently observed in any of the languages. We propose that the Western and Eastern varieties used different strategies to resolve this conflict:
 - · Western: reanalyze the vowel segment to eliminate the rounding (rule (3))
 - · Eastern: merge the vowel with the nearest back rounded vowel (rule (5))
 - * This resulted in correspondence sets 5 and 6 (above).
 - Pattern 2: A labialized velar followed by a rounded vowel resulted in a sequence of two [+ labial] features.
 - * Western: reanalyzed $\begin{bmatrix} C & V \\ [+labial][+labial] \end{bmatrix}$ as $\begin{bmatrix} C & V \\ [+labial][-labial] \end{bmatrix}$ (rule (2)).
 - * Eastern: reanalyzed $\begin{bmatrix} C & V \\ [+labial][+labial] \end{bmatrix}$ as $\begin{bmatrix} C & V \\ [-labial][+labial] \end{bmatrix}$ (rule (4)).
 - * This resulted in correspondence sets 7 and 8 (above).
 - Patterns 3 and 4 are straightforward:
 - * A sequence of a non-labialized velar and a rounded vowel is retained as such in all varieties.
 - * A sequence of a non-labialized velar and an unrounded vowel is retained as such in all varieties.

- * These patterns resulted in correspondence sets 1-4 (above).
- Labialized velars are only retained in one of the two patterns (pattern 2) where labialized velar plosives are reconstructed. This is consistent with the relative rarity of labialized velars synchronically.
- The four patterns are enumerated in Tables 6 and 7 below, for the voiceless and voiced plosives, respectively.

Table 6: Reconstruction of voiceless (labialized) velars

Pattern	Proto-PR	Western PR	Eastern PR
1.	*k ^w u	k ^w ı	ku
2.	*k ^w ə	kə	ko
3.	*ku	ku	ku
4.	*kə	kə	kə

Table 7: Reconstruction of voiced (labialized) velars

		(
attern	Proto-PR	Western PR	Eastern PR
1.	*g ^w u	g ^w ı	gu
2.	*g ^w ə	gə	go
3.	*gu	gu	gu
4.	*gə	gə	gə

4.1 Western PR varieties

$$(1) \quad \mathrm{k^w} \overset{V}{\text{[-labial]}} \rightarrow \mathrm{k} \overset{V}{\text{[+labial]}}$$

$$(2) \quad \begin{tabular}{l} V \\ \hbox{$[+$labial]} \end{tabular} \rightarrow \hbox{$[-$labial]} \end{tabular} / \hbox{$[+$labial]} _$$

$$(3) \begin{bmatrix} V \\ +labial \\ +central \end{bmatrix} \rightarrow [-labial]$$

4.2 Eastern PR varieties

$$(1) \quad k^{\mathrm{w}} \overset{V}{\text{[-labial]}} \rightarrow k \overset{V}{\text{[+labial]}}$$

$$(4) \quad \begin{tabular}{l} V \\ $[+labial]$ $\to [-labial]$ / $_[+labial]$$$

(5)
$$\begin{bmatrix} V \\ +labial \\ +central \end{bmatrix} \rightarrow [+back]$$

5 Further directions

• Rule (1) implies an intermediate stage where proto-PR has /o/ which is then lost in every language. Independent evidence for this hypothesis may be found through further reconstruction of the proto-PR vowel system.

5

- The precise quality of this intermediate-stage vowel is not known, and reconstruction of the vowel system may suggest better candidates than $/\Theta$ /.

- An OT analysis might obviate this problem. Assuming highly ranked rule like *Θ, changes in the underlying form might not commit us to this intermediate-stage.
- While we predict Western and Eastern PR varieties to have correspondences between $g_{[+labial]}^{V}$ and $g_{[+labial]}^{V}$, our current data do not contain cognates in this environment (see Table 5, set 2). Further work may find cognates showing the predicted correspondence.
- The relative chronology of these changes should be investigated further. While we motivate an East-West distinction, independent evidence from other consonants can further refine this division and suggest subdivisions within them.
- · Alternative analyses include:
 - k^w and g^w are innovative in the Western PR varieties potentially via contact with the Yam languages to the west.
 - * More comparative work is needed to understand the relationships between the two language families.
 - * (Follow active work by Eri Kashima, Dineke Schokkin, and Nick Evans who are filling this gap.)
 - Evidence from Idi (as spoken in Sibidiri; Volker Gast, p.c.) indicates that the labial glide /w/ and the rounded vowels /o/ and /u/ may be in complementary distribution.
 - * A phoneme W is realized as /w/ when parsed in the onset of the syllable and as a /u/ or /o/ when parsed in the nucleus of the syllable (Gast, p.c.).
 - * Could this be an innovative reanalysis of the distribution of the [+labial] feature in the syllable, or a clue to the phonology of proto-PR?
 - * (Follow active work by Volker Gast and Adam Tallman who are investigating these issues.)

References

Carroll, Matthew J, Nicholas Evans, I Wayan Arka, Christian Döhler, Eri Kashima, Volker Gast, Tina Gregor, Kate L Lindsey, Julia Miller, Emil Mittag, Bruno Olsson, Dineke Schokkin, Jeff Siegel, Charlotte van Tongeren & Kyla Quinn. 2016. Yamfinder: Southern New Guinea Lexical Database.

Evans, Nicholas. 2017. Quantification in Nen. In *Handbook of quantifiers in natural language. vol. 2*, 573–607. Springer Studies in Linguistics and Philosophy, vol 97.

Evans, Nicholas, Kate L Lindsey & Dineke Schokkin. 2019. Reconstructing liquids in proto-Pahoturi. Paper presented at the International Conference on Historical Linguistics (ICHL).

Evans, Nicholas & Julia Miller. 2016. Nen. *Journal of the International Phonetic Association* 46(3). 331–349. doi:10.1017/S0025100315000365.

Lindsey, Kate L. 2017. A first look at the Pahoturi River family. Paper presented at the Austronesian and Papuan Languages and Linguistics Conference.

Lindsey, Kate L. 2021. Ende. *Journal of the International Phonetic Association* 1–21. doi: 10.1017/S0025100320000389.

Schokkin, Dineke, Volker Gast, Nicholas Evans & Christian Döhler. 2021. Phonetics and phonology of Idi. In Kate Lindsey & Dineke Schokkin (eds.), *Phonetic fieldwork in Southern New Guinea* Language Documentation & Conservation Special Publication No. 24, chap. 5, 76–107. University of Hawai'i Press.