МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МГТУ им Н.Э.Баумана

Факультет ФН

Кафедра вычислительной математики и математической физики

Соколов Арсений Андреевич

Домашнее задание №5 по математической статистике

3 курс, группа ФН11-53Б Вариант 6

Преподаватель		
		Т.В. Облакова
«	»	2019 г.

Задание 1

По данной выборке из нормально распределенной генеральной совокупности построить критерий S_2 уровня $\alpha=0.1$ и проверить гипотезу H_0 : $a=a_0=7.5$ против односторонней альтернативы $H_2: a>a_0$, если σ неизвестно.

Решение.

Рассмотрим выборку, предложенную нам в условии:

```
> df
Г17
    0.653 13.884 11.088
                       7.409 8.827 5.582
                                            9.747 8.023
                                                         8.396
                  5.251 12.462 9.350 9.770
                                                   6.740 10.759
[10]
     6.535
           6.036
                                            5.517
[19] 10.718
           0.840
                  8.737
                         2.278 8.447
                                      2.267
                                             8.656 9.460
                                                         9.385
[28]
           9.215 10.360 7.239 8.399 7.962
    7.924
                                            6.712 5.626 7.737
[37]
    9.671 13.497 10.708 6.189 10.516
                                      8.845 10.926 8.755
                                                         7.728
[46] 12.783
           5.300 9.802 5.133 8.534
                                      5.855
                                            5.777 10.128 10.662
[55]
     8.307
           5.644 10.632 6.060 6.989
                                      5.183 9.587 7.891 15.015
[64]
    8.106
           9.898 10.504 8.307 10.680 6.788 9.904 6.918 4.250
[73]
    8.908
           9.837 5.805 6.018 7.735 8.206 5.502 8.473 4.870
[82] 10.159
            6.639 7.936 8.149 10.462 12.296 3.403 10.631
                                                         7.802
[91]
     5.580
            8.325 10.687
                                      5.668
                         9.843
                                9.509
                                            8.511
                                                   8.657
                                                          8.835
Γ1007
      9.484
```

Предположим, что H_0 верна и выберем в качестве статистики:

$$t = \frac{\bar{x} - a_0}{s} \sqrt{n},$$

где \bar{x} – выборочное среднее,

а n – объем выборки.

Статистика t имеет t-распределение с n-1 степенями свободы. Соответственно, критическая область для проверки гипотезы $H_0: a=a_0$ против односторонней альтернативы $H_2: a>a_0$ будет состоять из одного полуинтервала $[t_{n-1,1-\alpha};+\infty]$, где $t_{n-1,1-\alpha}$ обозначает квантиль t-распределения с n-1 степенью свободы и уровня значимости $1-\alpha$.

Рассчитаем нашу статистику:

```
> df_mean <- mean(df)
> df_sd <- sd(df)
> df_len <- length(df)
> df_mean
[1] 8.17393
> df_sd
[1] 2.577009
> df_len
```

```
[1] 100
> t_stat <- (mean(df) - a0)/(sd(df)) * sqrt(df_len)
> t_stat
[1] 2.615164
```

Это значение должно быть сравнено с 10%-ным односторонним критическим пределом, равным $t_{99.0.9}=1.290161$.

Выборочное значение статистики выходит за этот предел, следовательно, с уровнем значимости 10% нет оснований принять гипотезу о равенстве математического ожидания значению 7.5.

Задание 2

По данной выборке из нормально распределенной генеральной совокупности построить критерий S_3 уровня $\alpha=0.1$ и проверить гипотезу H_{01} : $\sigma=\sigma_0=2.4$ против односторонней альтернативы $H_3:\sigma>\sigma_0$, если a неизвестно.

Решение.

Для проверки гипотезы H_{01} : $\sigma = \sigma_0$ о равенстве дисперсии нормально распределенной случайной величины заданному числу σ_0 рассмотрим статистику:

$$\chi^2 = (n-1)\frac{s^2}{\sigma_0^2}$$

При условии, что верна гипотеза H_{01} , распределена по закону χ^2 с n-1 степенью свободы. Критическая область уровня α при односторонней альтернативе $H_3: \sigma > \sigma_0$ имеет вид $[\chi^2_{n-1,1-\alpha}]$. Рассчитаем нашу статистику:

```
> df_var <- var(df)
> df_var
[1] 6.640973
> chi_stat <- df_df * (df_var)/(sigma0^2)
> chi_stat
[1] 114.1417
```

Это значение должно быть сравнено с 10%-ным односторонним критическим пределом, равным $\chi_{99,0.9}=117.4069$.

Выборочное значение статистики не выходит за этот предел, следовательно, с уровнем значимости 10% нет оснований отвергать гипотезу о равенстве среднеквадратического отклонения значению 2.4.

Задание 3

По данной выборке из нормально распределенной генеральной совокупности построить оптимальный критерий S_1 уровня $\alpha=0.1$ и проверить H_0 против простой альтернативы $H_1: a=a_1=8,$ если $\sigma=\sigma_1=2.5$ известно.

Решение.

Критическое множество для среднего при известном среднеквадратическом отклонении запишется в данном случае как $\bar{x} > c_1$, где

$$c_1 = a_0 - \frac{qnrom(1 - \alpha, 0, 1)}{\sqrt{n}}\sigma_1$$

Имеем:

Так как $\bar{x}>c_1$ (8.17393 > 7.820388), то делаем вывод, что у нас нет оснований принять гипотезу H_0 .

Задание 4

Найти ошибку второго рода $\beta = P(\bar{S}_1|H_1)$ критерия S_1 .

Решение.

Ошибка второго рода критерия S_1 имеет вид:

$$\beta(c_1) = \Phi(\frac{c_1 - a_1}{\sigma_1} \sqrt{n})$$

Имеем:

```
> beta <- pnorm((c1-a1)/sigma1 * sqrt(df_len))
> beta
[1] 0.2362404
```

Задание 5

Найти такие значения a_1 , для которых ошибка второго рода критерия S_1 не превосходит $\varepsilon = 0.1$.

Решение.

Ошибка второго рода критерия S_1 не будет превосходить значение $\varepsilon=0.01$ при данном значении параметра a_1 :

$$a_1 = c_1 - \frac{\sigma_1}{\sqrt{n}}qnorm(1 - \varepsilon, 0, 1)$$

Рассчитаем:

```
> a1_new <- c1 - sigma1/sqrt(df_len) * qnorm(1-eps) 
> a1_new 
[1] 7.5
```

Задание 6

Построить совмещённые графики гистограммы относительных частот данной выборки и плотностей нормального распределения с параметрами (a_0, σ_1) и (a_1, σ_1)

Решение.

```
x1 <- rnorm(n = 1e5, mean = a0, sd = sigma1)
x2 <- rnorm(n = 1e5, mean = a1, sd = sigma1)
hist(df,prob=T, xlab = "Data", main = "Histogram")
lines(sort(x1),dnorm(sort(x1),a0,sigma1), col='blue', lwd = 2)
lines(sort(x2),dnorm(sort(x2),a1,sigma1), col='red', lwd = 2)
legend("topright", c("a0 = 7.5", "a1 = 8.0"), lty=c(1,1),lwd = c(2,2),
fill=c("blue", "red"))</pre>
```


Рис. 1: Гистограмма частот и плотностей.

По графику видно, что кривая плотности нормального закона для альтернативы H_1 ($a=a_1=8.0$) лучше ложится на гистограмму, чем в случае основной гипотезы H_0 ($a=a_2=7.5$), что согласуется с выводом в пункте 3.