FCAI fcai.fi

 $J(\pi; f) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} = f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t) \right]$

RL objective:

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

How should we use this?

 $J(\pi; f) = \mathbb{E}_{???} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{t+1} = f(s_{t}, a_{t}) + \epsilon_{t}, a_{t} = \pi(s_{t}) \right]$

Sources of Uncertainty

Decision-making Under Uncertainty

Return = discounted sum of rewards

Deterministic policy

What is the expectation over?

Sources of Uncertainty

Decision-making Under Uncertainty

RL objective:

$$J(\pi; f) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_{t+1} = f(s_t, a_t) + \epsilon_t, a_t = \pi(s_t) \right]$$

Expectation is over transition noise, i.e. aleatoric uncertainty

Posterior over dynamics models:

$$p(f \mid \mathcal{D})$$

How should we use this?

Model Bias

