$5.1. T(Jw) = (Jw)^{2} + 9 (Jw)^{2} + Jw\sqrt{2} + 1$
$T(J\omega) = -\omega^2 + Q$ $-\omega^2 + J\omega\sqrt{2} + 1$
$ T(J\omega) = \sqrt{(-\omega^2 + Q)^2}$ $\sqrt{(-\omega^2 + 1)^2 + (\omega\sqrt{2})^{2}}$
$\Delta T(J\omega) = 0 - t9^{-1} \left(\frac{\omega \sqrt{2}}{-\omega^2 + 1} \right)$
5.2. $T(Jw) = (Jw)^2 + VQ$ $(Jw)^2 + Jw/5 + I$
$T(J\omega) = -\omega^2 + VQ - \omega^2 + J\omega/5 + 1$
$ T(yw) = \sqrt{(-w^2 + 1/2)^2 + (w/5)^2}$
$\Delta T = 0 - t0^{-1} \left(-w^2 + 1 \right)$
5.3. $T(j\omega) = (j\omega)^2 + j\omega/5 + 1 = -\omega^2 + j\omega/5 + 1$ $(j\omega)^2 + j\omega/2 + 1 - \omega^2 + j\omega/2 + 1$
$ T(J\omega) = \sqrt{(-\omega^2 + 1)^2 + (\omega/2)^2} + (\omega/2)^2$ $\sqrt{(-\omega^2 + 1)^2 + (\omega/2)^2}$
$\Delta T = tg^{-1}(\omega_{15}) - tg^{-1}(\omega_{15})$