《Latex 编程基础课程实习》 实习报告

学	院:	遥感信息工程学院
班	级:	21XX
学	号:	2021302131XXX
姓	名:	QHD
实习	地点:	宿舍
指导	教师:	CSDN, ChatGPT

2024年5月22日

目 录

一、模板介绍	1
二、文件目录说明	1
三、参考文献的使用	1
四、图片的使用	1
五、并排的两张图片	2
六、三线表的使用	2
七、公式的使用	2
八、插人代码块	2
九、使用枚举	3
参考文献	3

一、 模板介绍

根据武汉大学遥感信息工程学院课程实习 Word 模板排版而成的 Latex 模板。

二、 文件目录说明

- 1. content/ 放置正文
- 2. figure/ 放置图片
- 3. main.tex 主文件(在这里修改基本信息)
- 4. refs.bib 参考文献
- 5. rs.cls Latex 样式文件(不要轻易改动,除非知道自己在做什么)

三、 参考文献的使用

使用 cite 语句链接 bib 文件中的参考文献。[1]

四、 图片的使用

图 1: 示例图片

五、 并排的两张图片

图 2: 示例图片 1

图 3: 示例图片 2

六、 三线表的使用

耒 1.	双对数需求模型回归结果
1X 1.	

	$\ln Q1$	lnQ2	$\ln Q3$	lnQ4	lnQ5	$\ln Q6$
lnP1	-0.186***	-0.08***	-0.058***	0.035***	-0.103***	-0.088***
lnP2	0.044	-0.076***	-0.241***	-0.397***	-0.661***	-0.032
lnP3	0.03**	-0.217***	-0.221***	-0.074***	-0.108**	-0.012
lnP4	0.193***	0	-0.075***	-0.168***	-0.072***	-0.07***
lnP5	-0.007	-0.159***	-0.036**	0.139***	-0.43***	-0.272***
lnP6	0.023	-0.433***	-0.078***	-0.142***	-0.042***	-0.381***
PQ	-0.032	0.956***	0.678***	0.605***	1441***	0.951***
F 显著性水平	***	***	***	***	***	***

^{1、***、**} 分别表示 1%, 5% 的显著性水平

七、 公式的使用

$$Q_j = v \frac{S_j - S^*}{S^- - S^*} + (1 - v) \frac{R_j - R^*}{R^- - R^*} \ i = 1, 2, \cdots, m \eqno(1)$$

八、 插人代码块

```
def readTiff(filePath):

"""

读取 tif 文件

:param filePath: tif 文件路径

:return: data, width, height, geotransform

"""

dataset:gdal.Dataset = gdal.Open(filePath)
```

^{2、1}至6分别为:水生根茎类、花叶类、花菜类、茄类、辣椒类、食用菌

```
# 获取影像数据和信息
width = dataset.RasterYSize
height = dataset.RasterYSize
geotransform = dataset.GetGeoTransform()
band:gdal.Band = dataset.GetRasterBand(1)
data = band.ReadAsArray(0, 0, width, height)
# 数据预处理
data[data == band.GetNoDataValue()] = 0

return data, width, height, geotransform
```

九、 使用枚举

- 1. 设置一个全为 0 的空矩阵, 该矩阵的范围要比测区大, 称其为"画板";
- 2. 根据观测站编码计算观测站坐标,按照坐标将对应的足迹矩阵偏移到指定位置,并将值记录到"画板"上,每个足迹矩阵对应"画板"上的一个波段;
- 3. 对上述 5 个波段按照取最大值原则进行叠置,得到只 1 个波段的"画板",即为 5 个观测站共同的观测能力矩阵;
- 4. 将上述观测能力矩阵与甲烷通量场矩阵进行叠加, 计算哈达玛积并将元素求和, 得到最 终的个体适应值。

参考文献

[1] 李德仁. 论可量测实景影像的概念与应用——从 4D 产品到 5D 产品[C]//中国测绘学会九届三次理事会暨 2007 年"信息化测绘论坛"学术年会论文集. 2007.