444 Lecture 5.6 - Best Responses

Brian Weatherson

Discuss how to think about best responses work once mixed strategies are on the table.

Bonanno, Section 6.4.

An example

	Left	Right
Up	3,0	0,0
Middle	2,0	2,0
Down	0,0	3,0

- Up is the best response to Left.
- Down is the best response to Right.
- Is Middle the best response to anything?

Best Responses

	Left	Right
Up	3,0	0,0
Middle	2,0	2,0
Down	0,0	3,0

Yes!

- Middle is the best response to the mixed strategy Left with probability 0.5, Right with probability 0.5.
- It gets 2, the other options have an expected return of 1.5.

Varieties of Mixed Strategies

	Left	Right
Up	3,0	0,0
Middle	2,0	2,0
Down	0,0	3,0

 Middle is the best thing to do if you know Column is going to flip a coin to decide what to do.

Varieties of Mixed Strategies

	Left	Right
Up	3,0	0,0
Middle	2,0	2,0
Down	0,0	3,0

- Middle is the best thing to do if you know Column is going to flip a coin to decide what to do.
- But it's also the best thing to do if you have no idea what Column is going to do, and the best you can do is say it's 50/50 what they are going to do.
- So it's actually pretty easy to think of situations where Middle is the smart play.

Best Response

- A strategy S is a best response just in case...
- There is some probability distribution over the other player's strategies and ...
- No strategy has a higher expected return than S given that probability distribution.

Best Response

- A strategy S is a **best response** just in case...
- There is some probability distribution over the other player's strategies and ...
- No strategy has a higher expected return than S given that probability distribution.
- Note that this allows for ties.
- Weakly dominated strategies can even be best responses in this sense.

Best Response

- A strategy S is a **best response** just in case...
- There is some probability distribution over the other player's strategies and ...
- No strategy has a higher expected return than S given that probability distribution.
- · Note that this allows for ties.
- Weakly dominated strategies can even be best responses in this sense.
- This definition also covers mixed strategies; they can also be best responses.

A Surprising Theorem

 Say a strategy is undominated if no other strategy, pure or mixed, strongly dominates it.

A Surprising Theorem

- Say a strategy is undominated if no other strategy, pure or mixed, strongly dominates it.
- And it is a best response if it does as well as anything, given at least one probability distribution.

A Surprising Theorem

- Say a strategy is undominated if no other strategy, pure or mixed, strongly dominates it.
- And it is a best response if it does as well as anything, given at least one probability distribution.
- · Here's the surprising theorem:

The strategies that are best responses are just the same strategies as those that are undominated.

Best Reponses

- This relates back to something I was saying in the last lecture.
- The strategies that are dominated by mixtures didn't seem to make sense - you could just play the mixtures.
- But here's another property that they have they are never best responses.
- And if they are not best responses, no one can play them while maximising expected utility.
- Whatever probability you give to the other player's play, if you maximise expected utility you will play a best response.
- · And you should maximise expected utility.

 I'll introduce a new solution concept, one that say playing a best response is not just necessary for rationality, it is also sufficient.