CS 181: Formal Languages and Automata Theory

Spring 2021

Homework 8 Solution

Assigned: Thursday 20 May

Due: Thursday 27 May 3:00pm PDT

Problem 1

Let $\Sigma = \{a, b\}$. Show two different left-most reductions of the string "baabba" in the following context-free grammar:

$$S \longrightarrow AB \mid BA$$

$$A \longrightarrow AS \mid BC \mid a$$

$$B \longrightarrow BS \mid AD \mid b$$

$$C \longrightarrow AA$$

$$D \longrightarrow BB$$

Here, the variable set is $\{S, A, B, C, D\}$, and the start variable is S.

Solution:

For instructional purpose, we first show six parse trees for the string baabba in Figure 1:

Figure 1: Parse trees for the string baabba

Next, we show the left-most reduction for each parse tree, as follows:

- 1. The left-most reduction for the parse tree 1 in Figure 1(a):
 - $\underline{b}aabba \longrightarrow B\underline{a}abba$
 - $\longrightarrow BAabba$
 - $\longrightarrow BAA\underline{b}ba$
 - $\longrightarrow BAAB\underline{b}a$
 - $\longrightarrow BAABB\underline{a}$
 - $\longrightarrow BAAB\underline{BA}$
 - $\longrightarrow BAABS$
 - $\longrightarrow BA\underline{AB}$
 - $\longrightarrow B\underline{AS}$
 - $\longrightarrow \underline{BA}$
 - $\longrightarrow S$
- 2. The left-most reduction for the parse tree 2 in Figure 1(b):
 - $\underline{b}aabba \longrightarrow B\underline{a}abba$
 - $\longrightarrow BAabba$
 - $\longrightarrow BAA\underline{b}ba$
 - $\longrightarrow BAAB\underline{b}a$
 - $\longrightarrow BAA\underline{BB}a$
 - $\longrightarrow BA\underline{AD}a$
 - $\longrightarrow BAB\underline{a}$
 - $\longrightarrow BABA$
 - $\longrightarrow B\underline{AS}$
 - $\longrightarrow \underline{BA}$
 - $\longrightarrow S$

3. The left-most reduction for the parse tree 3 in Figure 1(c):

 $\underline{baabba} \longrightarrow B\underline{aabba}$

 $\longrightarrow BA\underline{a}bba$

 $\longrightarrow BAA\underline{b}ba$

 $\longrightarrow BA\underline{AB}ba$

 $\longrightarrow BASba$

 $\longrightarrow BA\underline{b}a$

 $\longrightarrow BAB\underline{a}$

 $\longrightarrow BA\underline{BA}$

 $\longrightarrow B\underline{AS}$

 $\longrightarrow \underline{BA}$

 $\longrightarrow S$

4. The left-most reduction for the parse tree 4 in Figure 1(d):

 $\underline{b}aabba \longrightarrow B\underline{a}abba$

 $\longrightarrow BA\underline{a}bba$

 $\longrightarrow BAA\underline{b}ba$

 $\longrightarrow BAAB\underline{b}a$

 $\longrightarrow BAA\underline{BB}a$

 $\longrightarrow BA\underline{AD}a$

 $\longrightarrow B\underline{AB}a$

 $\longrightarrow \underline{BS}a$

 $\longrightarrow B\underline{a}$

 $\longrightarrow \underline{BA}$

 $\longrightarrow S$

5. The left-most reduction for the parse tree 5 in Figure 1(e):

 $\underline{b}aabba \longrightarrow B\underline{a}abba$

 $\longrightarrow BA\underline{a}bba$

 $\longrightarrow BAAbba$

 $\longrightarrow BA\underline{AB}ba$

 $\longrightarrow B\underline{AS}ba$

 $\longrightarrow BA\underline{b}a$

 $\longrightarrow B\underline{AB}a$

 $\longrightarrow \underline{BS}a$

 $\longrightarrow B\underline{a}$

 $\longrightarrow BA$

 $\longrightarrow S$

6. The left-most reduction for the parse tree 6 in Figure 1(f):

$$\underline{b}aabba \longrightarrow B\underline{a}abba$$

$$\longrightarrow B\underline{A}\underline{a}bba$$

$$\longrightarrow B\underline{C}bba$$

$$\longrightarrow A\underline{b}ba$$

$$\longrightarrow AB\underline{b}a$$

$$\longrightarrow A\underline{B}Ba$$

$$\longrightarrow A\underline{D}a$$

$$\longrightarrow B\underline{a}$$

$$\longrightarrow B\underline{A}$$

$$\longrightarrow S$$

Problem 2

Let L_P be a Recursively Enumerable (R.E.) language, and let L_A be a Recursive language.

- a. Prove that $L_P \cup L_A$ is R.E. by showing a construction using the Universal TM (UTM) for a TM procedure that recognizes the union.
- b. *Briefly* explain why we cannot say that the union is Recursive. You may use the style of argument discussed in class. You do *not* have to prove it.

Solution:

- a. Pseudo-code for TM procedure, M, using UTM to simulate M_A and then M_P :
- 0. On input string w, M will:
- 1. Use UTM to simulate M_A on input w.
- 2. If simulation of M_A halts and accepts, then M halts and accepts.
- 3. If simulation of M_A halts and rejects, then continue to next step.
- 4. Use UTM to simulate M_P on input w.
- 5. If simulation of M_P halts and accepts, then M halts and accepts.
- 6. If simulation of M_P halts and rejects, then M halts and rejects.

If the second simulation never halts, then M will correctly not accept input w.

b. Brief explanation: Since we are given only that L_P is R.E., we do not know whether it is Recursive. If L_P is R.E & Not Recursive, then M_P can only be a procedure, not an

algorithm. On inputs which are not in L_A and not in L_P , the simulation of M_A will halt and reject; so M will try simulating M_P . It is possible that M_P will never halt, since it is a procedure. Thus, M will go into an infinite loop. This cannot be avoided because there is no way, in general, to turn a procedure into an algorithm.