SCALING GEOMETRIC MONITORING OVER DISTRIBUTED STREAMS

by

Alexandros D. Keros

A thesis submitted in partial fulfillment of the requirements for the degree

of

UNDERGRADUATE

in

Electronic and Computer Engineering

Approved:			
D W '1' (1 1 1	<u> </u>		
Dr. Vasilis Samoladas	first reader		
Major Professor	Committee Member		
second reader	dean		
Committee Member			

Technical University of Crete Chania, Crete, Greece

2015

Copyright © Alexandros D. Keros 2015

All Rights Reserved

Scaling Geometric Monitoring over Distributed Streams

by

Alexandros D. Keros, Undergraduate Technical University of Crete, 2015

Abstract

BLAH BLAH

Thesis Supervisor: Dr. Vasilis Samoladas

Department: Electronic and Computer Engineering

(41 pages)

Public Abstract

BLAH BLAH

Acknowledgments

my mum

Contents

	F	Page
Al	ostract	iii
Pυ	ıblic Abstract	iv
Ac	knowledgments	v
Lis	st of Tables	viii
Lis	st of Figures	ix
Ι	INTRODUCTION AND PRELIMINARIES	1
1	Introduction	2 3 3 3
2	Theoretical Background	
3	Related Work	8
II	PROBLEM DEFINITION AND IMPLEMENTATION	9
4	Problem Statement	10
5	Implementation 5.1 Geometric Monitoring Implementation 5.2 Distance Based Node Matching 5.3 Heuristic Balancing 5.4 Implementation Challenges	11 11 13 17 23
TT	I RESULTS AND CONCLUSIONS	25

6	Exp	erimental Results	26
	6.1	Experimental Setting	26
	6.2	Distance Based Node Matching	26
	6.3	Heuristic Balancing	26
	6.4	Overall Results	26
7	Con	clusions and Future Work	28
	7.1	Conclusions	28
	7.2	Future Work	28
Re	eferen	ces	29
A	ppend	lix	31
	Cha	pter A Geometric Monitoring Python Implementation	32
	A.1	Python	32
	A.2	Numpy and Scipy	32
	A.3	Openopt	32
	A.4	NetworkX	32
	A.5	Putting It All Together	32

List of Tables

Table Page

List of Figures

Figure		P	age
5.1	Hierarchical pairing scheme example for node set $\{n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8\}$		15
5.2	The drift vectors during Geometric Monitoring operation until a Global Violation. Distance based node matching is used on 4 nodes $(\{n_0, n_1, n_2, n_3\})$, with 1-dimensional data vectors, threshold $T = 100$ and $f(x) = x$ as the monitoring function. The $Type-2$ node pairs are $\{n_0, n_3\}$ and $\{n_1, n_2\}$		16
5.3	Detailed depiction of the Geometric Monitoring operation of Figure 5.2. Distance based node matching operating on 4 nodes $(\{n_0, n_1, n_2, n_3\})$, with 1-dimensional data vectors, threshold $T = 100$ and $f(x) = x$ as the monitoring function. Distance d_1 denotes the distance of the data vector mean of the paired nodes n_0 and n_3 from the global mean $(global\ data\ vector)$ at $t = 25$, whereas distance d_2 denotes the in-between distance of data vectors $\vec{v_0}(t)$ and $\vec{v_3}(t)$ of the node pair at time $t = 25$ (before a Local Violation occurs, where $\vec{e} = 0$ and $\vec{u_i}(t) = \vec{v_i}(t) \ \forall i \in [0, 1, 2, 3], t < 30$). Both distances are taking part in the edge weighting process, according to Equation 5.1		16
5.4	Balancing methods		19
5.5	Savitzky-Golay filtering of a signal with added Gaussian noise. The smoothing window is 50 points in length, centered at the far end, as in the real-time smoothing applied to the Geometric Monitoring setting. The polynomial order is 2 for the smoothed signal, 3 for the velocity estimation and 5 for the acceleration estimation of the original signal		23

Part I

INTRODUCTION AND PRELIMINARIES

Chapter 1

Introduction

1.1 Overview

A multitude of recent emergent applications require real-time handling of rapidly incoming data, that may as well be great in size and distributed in nature. Such applications that follow a continuous distributed monitoring model are classified as *Data Stream Systems* [1]. Notable examples include, among others, distributed sensors, ISP network traffic monitoring, telecommunication system management, event monitoring, and real-time analysis tools for financial data.

These systems differ from the traditional Database Management Systems (DBMS), in the sense that they are following a *pull paradigm*, where large scale event monitoring is required or continuous queries are issued, instead of the *push paradigm*, where one-shot queries normally take place. Data Stream Systems are required to efficiently process, in real-time, data streams that are of high volume, continuous, size unbound, and most likely violative, in the sense that it would be inefficient to store them in memory. Additionally, the distributed nature of some applications incur an additional challenge to such systems, for they are required to communicate via a bandwidth-limited and possibly delay-inducing network in order to synchronize, reorganize, and provide a real-time overview of the results.

Consequently, intelligent algorithms must be devised that are able to guarantee high accuracy standards while limiting the communication overhead induced to the distributed setting.

application examples: threshold monitoring [2] value monitoring (which can be reduced to threshold monitoring [error threshold monitoring] - paper: sketch-based geometric monitoring of distributed stream queries - garofalakis, keren, samoladas [3])

complexity: monitoring value or threshold monitoring over the whole set of observations, in real time monitoring an arbitrary function (non linear function example), arbitrary number of

features

possible solutions:

1.centralize

- suffers from network overload, storage overload

2.poll

- not real time, update frequency-accuracy trade-off

3.GM monitoring

-apply convex opt theory in order to reduce communication while retaining accuracy bounds

1.2 Motivation

A lot of work towards this direction, based on GM. We believe that there is still room for improvements regarding the way the method handles and represents data streams

1.3 Contributions

1.4 Thesis Outline

Chapter 2

Theoretical Background

The present chapter contains the background knowledge required throughout the length of this thesis. Section 2.1 describes the framework of the *Geometric Monitoring method*. Section 2.2 presents multi-objective optimization and dives into the algorithms used in our implementation. Section 2.4 discusses graph maximum weight matching, and, finally, in Section 2.3 we explain the Savitzky-Golay filtering used for smoothing, velocity and acceleration approximation.

2.1 Geometric Monitoring of Distributed Streams

The Geometric Monitoring method [2] was initially devised as a way to monitor threshold crossings of arbitrary functions over distributed data streams, i.e. be able to determine whether an arbitrary monitoring function $f(\cdot)$ over the data streams violated a predetermined threshold $(f(\cdot) > T \text{ or } f(\cdot) < T)$. By mapping data streams to a feature space defined by the dimensionality of each data stream update and monitoring the convex hull surrounding the value of the monitoring function, Sharfman et al. were able to decompose the monitoring task into local constraints and apply distributed threshold monitoring, while reducing or eliminating the costs required by central data processing.

In the current section a detailed presentation of this method is taking place. In Subsection 2.1.1 two system architectures are shown, a fully distributed scenario and a coordinator based one, where Geometric Monitoring can be applied. Subsection 2.1.2 explains the computational model, followed by the method's geometric interpretation in Subsection 2.1.3. Finally, in Subsection 2.1.4 the application's monitoring protocol implementing the Geometric Method is described.

2.1.1 System Architecture

2.1.2 Computational Model

stream and node notation

weights

statistics vectors

global statistics vector

monitored function

threshold

estimate vector

drift vector

general operation of distributed algorithm

drift vector definition

general operation of coordinator based algorithm

*balancing process

slack vector

drift vector definition

2.1.3 Geometric Interpretation

node local constraints make sure global violation is accurately monitored how?

convexity property of drift vectors

theorem of bounded convex hull by local constraints (balls) monochromaticity of balls balls monochromatic means threshold upheld

2.1.4 Protocol

decentralized algorithm (in short, for completeness) centralized algorithm (in detail)

2.2 Multiobjective Optimization

what is mop

use examples

kinds:

a.numerical

b.evolutionary

2.2.1 SLSQP

2.2.2 Sohr's algorithm a.k.a. ralg

algorithm description

2.3 Savitzky-Golay Filtering

filtering generals

examples of uses of filters

filters:

Kalman

+,- Moving Average

+,- Savitzky-Golay a.k.a. ???? +,- algorithm description

^{*}we will focus on that

2.4 Maximum Weight Matching in Graphs

general graph theory (introductory) what is max weight matching algorithm description

Chapter 3

Related Work

```
cite papers working on the original metioned above
function specific stuff
bounding ellipsoids
reference vector change (estimate vector)
safe zones
prediction
matching
```

^{*}no work on slack vector distribution during balancing, we do!

Part II

PROBLEM DEFINITION AND IMPLEMENTATION

Chapter 4

Problem Statement

```
papers in chapter 3 do not scale well why? where exactly?
```

we try our luck at it, how? (one liner)

Chapter 5

Implementation

This chapter provides a detailed description of the implemented system. In Section 5.1, the Geometric Monitoring method implementation is described, along with the necessary simplifying assumptions to aid experimentation. Following that, in Section 5.2 an algorithm for node matching is proposed, inspired by the violation recovery method found in [4]. In Section 5.3, the heuristic based balancing method for local violation resolution is presented, along with the necessary data stream tracking scheme. Finally, the main implementation challenges are discussed.

5.1 Geometric Monitoring Implementation

The initial Geometric Monitoring method [2], which is described in detail in Section 2.1, provides two algorithms for threshold monitoring of distributed data streams. These algorithms operate on different network structures and implement a somewhat different handling of threshold violations.

The decentralized algorithm operates on a coordinator-less environment, where nodes are allowed to communicate with each other, whereas the coordinator-based algorithm has a Star network topology, where the coordinator node is the central node (the *hub*) and the Monitoring nodes reside on the edges of the network. The algorithm operating on the decentralized setting does not provide a balancing process for local violation resolution. On the other hand, the coordinator based algorithm implements a violation resolution operation every time a local violation occurs, which aims to minimize the communication overhead induced by false violation reports.

Our focus is centered towards a simplified **coordinator-based algorithm** (Algorithm ??), described in Section 2.1, as it provides a framework for the heuristic balancing process, as well as the node matching operation presented in detail in Sections 5.3 and 5.2 respectively.

To aid method formulation and experimentation, the following simplifying assumptions have been made regarding the coordinator-based algorithm:

- Communication between nodes is considered instantaneous. There is no delay when passing messages through the network. The problem of message handling in a real-world Geometric Monitoring method implementation, where message delays are induced by the underlying network, has been studied in detail in [5].
- Communication between nodes is considered loss-less and reliable. In case network reliability can not be guaranteed appropriate methods should be considered.
- The system operates in an iterative fashion, as described in Algorithm 1. This simplification of the real-time distributed monitoring process to an iterative process provides a more manageable setting for experimentation without distorting the results of the proposed methods, which can be applied directly to the original real-time distributed setting.
- The system pauses at each violation, until the violation is resolved. During violation resolution Monitoring nodes do not receive updates from their respective data streams.
- The Coordinator node does not participate in the monitoring operation. The Coordinator node does not receive updates from a data stream, it only receives messages from the Monitoring nodes in case of threshold violation.

Algorithm 1: Iterative network operation

Data: monitoring Nodes: a list of Monitoring nodes, coordinator: the Coordinator node 1 begin 2 initialization; repeat 3 foreach $node \in monitoringNodes$ do 4 node.DataVectorUpdate();5 node.ComputeDriftVector(); 6 end foreach $node \in monitoringNodes$ do 8 node.CheckForViolation(): if localViolation then 10 node.Report();11 coordinator. Balance();12 end 13 end 14 until globalViolation; **15** 16 end

5.2 Distance Based Node Matching

The balancing method of the coordinator-based algorithm, as described in Section 2.1 [2,6], aims at resolving local violations that do not result in a global violation (false alarms) by balancing the violating node's drift vector with the respective vectors of randomly chosen nodes. Consider the violating node n_i with weight $w_i = 1$, so that the bounding ball $B(\vec{e}(t), \vec{u_i}(t))$ is not monochromatic, and the randomly requested node n_j with weight $w_j = 1$, so that the newly formed bounding ball is $B(\vec{e}(t), \frac{\vec{u_i}(t) + \vec{u_j}(t)}{2})$, where $\vec{e}(t)$ the estimate vector at time t and $\vec{u_i}(t)$, $\vec{u_j}(t)$ the drift vectors of nodes n_i , n_j at time t, respectively. If the resulting bounding ball is monochromatic the violation is resolved, otherwise another node is randomly requested for balancing.

As observed in [4], the original balancing method's node choosing scheme can be inefficient, so a more efficient and deterministic approach should be adopted. Optimal pairing of nodes and the construction of a hierarchical structure (Figure 5.1) reduces the communication overhead of false alarms, with the vast majority of violation resolutions requiring only the assigned node pair to be successful. The criterion by which nodes are paired attempts to maximize the probability

of a successful balance by maximizing "the percentage of pairs of data vectors from both nodes whose sum is in the Minkowski sum of the nodes' safe-zones" [4], or, in this case, whose resulting bounding ball is monochromatic.

Here, the same node pairing scheme is followed, but with a different, distance based, criterion for grouping nodes into disjoint pairs and creating the hierarchical structure depicted in Figure 5.1. The method proceeds as follows (Algorithm 2):

- 1. Monitoring nodes are visualized as the nodes of a complete graph G = (V, E), where $V = \{n_1, n_2, ..., n_k\}$ vertex set consists of the initial Monitoring nodes ("Type-1 nodes") and $E = \{(n_i, n_j) \ \forall i, j \in [1, ..., k], i \neq j\}$ edge set contains an edge for every pair of vertices.
- 2. Weights are assigned to all edges E. The weight of each edge is defined as the cumulative distance of the value of the monitoring function on the mean of each pair of data vectors from the value of the monitoring function on the global mean of all Monitoring nodes' data vectors, plus the cumulative distance of each pair of data vectors:

$$w_{i,j} = \sum_{t=t_0}^{t_{end}} \left[\left(f(\vec{v}_{global}(t)) - f(\frac{\vec{v}_i(t) + \vec{v}_j(t)}{2}) \right) + \left(|\vec{v}_i(t) - \vec{v}_j(t)| \right) \right]$$
 (5.1)

, where $\vec{v_i}(t)$ the data update of node n_i at time t, $\vec{v_{global}}(t)$ the global mean of all Monitoring nodes at time t and $f(\cdot)$ the monitoring function.

- 3. Maximum weighted matching is performed on the resulting graph, so that nodes are partitioned into disjointed sets M_i , $|M_i| = 2 \ \forall i \in [1, ..., \frac{k}{2}]$.
- 4. Each set $M_i, i \in [1, ..., \frac{k}{2}]$ is considered a single node, so that a new complete graph G' = (V', E') is created, where $V' = \{M_1, ..., M_{\frac{k}{2}}\}$ ("Type-2 nodes") the new vertex set and $E' = \{(M_i, M_j) \ \forall i, j \in [1, ..., \frac{k}{2}]\}$ the new edge set. Weights are assigned to the new edges and the process repeats until the resulting graph contains only a single vertex ("Type-k node"), which incorporates all the initial Monitoring nodes.
- 5. Vertices not matched with any other vertex during the matching process are ignored in future iterations. During the balancing process such unmatched vertices are handled by the traditional random selection balancing algorithm found in [2](also, Section 5.1).

14

Figure 5.1: Hierarchical pairing scheme example for node set $\{n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8\}$.

Algorithm 2: Recursively create Monitoring node pairs and hierarchy

```
1 Function DistancePairer(nodes,i)
        Data: nodes = [(n_1, [\vec{v_1}(t_0), ..., \vec{v_1}(t_{end})]), ..., (n_k, [\vec{v_k}(t_0), ..., \vec{v_k}(t_{end})])]: list of nodes
                with their respective data vectors, i: pair type, initial=1
        Result: nodeHierarchy: dictionary of Type-k pairs
        if length(nodes) = 1 then
                                                                  // recursion stopping condition
 \mathbf{2}
           return nodeHierarchy;
 3
        end
 4
        g = CreateCompleteGraph(nodes); // complete graph with nodes as vertices
 5
        foreach (n_i, n_j) \in g.Edges() do
                                                                         // assign weights to edges
 6
           w_{i,j} = \sum_{t=t_0}^{t_{end}} \left[ (f(\vec{v}_{global}(t)) - f(\frac{\vec{v_i}(t) + \vec{v_j}(t)}{2})) + (|\vec{v_i}(t) - \vec{v_j}(t)|) \right];
 7
           g.edge(n_i, n_j).weight = w_{i,j};
 8
        end
 9
        nodeHierarchy(Type-i) = q.maximalWeightMatching(); // node pairs of Type-i
10
        DistancePairer(nodeHierarchy(Type-i), i * 2);
11
12 end
```

The incentive behind the distance based node pairing scheme comes from the need to track the global data vector as closely as possible, with only a subset of the total node population's data vectors at each balancing attempt. By considering the distance of the mean of a pair of data vectors from the global data vector (distance d_1 in Figure 5.3) the "quality" and "accuracy" of the tracking ability of each pair is evaluated. Additionally, by taking into account the in-between distance of data vectors of each node pair (distance d_2 in Figure 5.3), pairs from the limits of the data vector velocity spectrum that manage to "cancel each other out" more effectively are encouraged.

Figure 5.2: The drift vectors during Geometric Monitoring operation until a Global Violation. Distance based node matching is used on 4 nodes ($\{n_0, n_1, n_2, n_3\}$), with 1-dimensional data vectors, threshold T = 100 and f(x) = x as the monitoring function. The *Type-2* node pairs are $\{n_0, n_3\}$ and $\{n_1, n_2\}$.

Figure 5.3: Detailed depiction of the Geometric Monitoring operation of Figure 5.2. Distance based node matching operating on 4 nodes ($\{n_0, n_1, n_2, n_3\}$), with 1-dimensional data vectors, threshold T=100 and f(x)=x as the monitoring function. Distance d_1 denotes the distance of the data vector mean of the paired nodes n_0 and n_3 from the global mean (global data vector) at t=25, whereas distance d_2 denotes the in-between distance of data vectors $\vec{v_0}(t)$ and $\vec{v_3}(t)$ of the node pair at time t=25 (before a Local Violation occurs, where $\vec{e}=0$ and $\vec{u_i}(t)=\vec{v_i}(t) \ \forall i \in [0,1,2,3], t < 30$). Both distances are taking part in the edge weighting process, according to Equation 5.1.

5.3 Heuristic Balancing

The balancing method incorporated into the coordinator based algorithm of the Geometric Monitoring method [2] (Section 2.1) attempts to minimize the communication overhead of local violations by computing the, so called, balancing vector. The balancing vector is defined as the weighted mean of the drift vectors of the nodes contained in the balancing set, and, in case of a successful balance, it is guaranteed that $B(\vec{e}, \vec{b})$ is monochromatic. Consequently, by setting the drift vectors of the nodes in the balancing set to be equal to the balance vector, all local constraints are fulfilled and the convexity property of the drift vectors is satisfied.

While this method partially succeeds in reducing the communication burden of false alarms either by requesting only a subset of the total node set each time a Local Violation occurs or by setting the drift vectors to a safe point (represented by the balance vector), major drawbacks can be noted regarding vector positioning and bounding ball construction. Updated vector assignment as a result of the "optimization" procedure does not take into account the idiosyncrasies of the monitoring function and the admissible region it produces. Additionally, all nodes taking part in the balancing process are handled identically, without taking advantage of the differences in the behavior of each node.

Previous work proposed selecting an optimal reference vector, instead of the estimate vector for bounding ball construction, along with shape customization of the local constraints at the nodes according to the node's needs [6]. Local constraint customization served as the basis for the now popular Safe-Zone framework [4,7], which diverges from the traditional bounding sphere setting, while maintaining the same fundamental idea of distance computation of a point from a set of support vectors [8], preserving the essence of the admissible region and retaining the balancing process of the coordinator based scenario.

This thesis proposes a novel heuristic approach for optimal positioning of drift vectors, which takes into account both the temporal behavior of each node's data stream, as well as the peculiarities of the monitoring function over said data streams. Aim of the heuristic optimization is the maximization of the estimated time until the following Local Violation occurs, which, expressed as

an optimization formula, receives the following form:

$$\max \min \frac{2 * (T - x_i)}{vel_i(t_{lv}) \sqrt{2 * (T - x_i) * accel_i(t_{lv}) + vel_i^2(t_{lv})}}, \forall n_i \in P'$$
(5.2)

where:

T: monitoring threshold

 x_i : the maximum value of the monitoring function $f(\cdot)$ over the bounding ball $B(\vec{e}(t_{lv}), \vec{u_i}(t_{lv}))$, where t_{lv} is the time a Local Violation occurred and i the index of node n_i

 $vel_i(t_{lv})$: the estimated velocity of the maximum value of the monitoring function $f(\cdot)$ when applied to the bounding ball created by the data stream update of node n_i and the estimate vector \vec{e} at time t_{lv}

 $accel_i(t_{lv})$: the estimated acceleration of the maximum value of the monitoring function $f(\cdot)$ when applied to the bounding ball created by the data stream update of node n_i and the estimate vector \vec{e} at time t_{lv}

 $t_{lv}: {\it time}$ of Local Violation occurrence

P': the balancing set

The Equation 5.2 originates from the combination of elementary kinematic equations, as such:

Assume a moving object i at point x_i , with acceleration a_i and current velocity v_i . Let v_f be the object's final velocity when it reaches a threshold point T at time t, from which it deviates by $d = T - x_i$. Let current time be t = 0.

Distance (or *Displacement*) is described by:

$$d = \frac{v_i + v_f}{2} * t \tag{5.3}$$

(a) The classic balancing method. As long as (b) The heuristic balancing method. dated drift vectors are set to $\vec{u_1}' = \vec{v_2}' = \vec{b}$.

 $B(\vec{e}, \vec{b})$ is monochromatic (i.e. within the Admis- depict the velocities of each drift vector. Afsible region), balance is successful and the up- ter a successful balance is achieved $(B(\vec{e}, \vec{b}))$ is monochromatic), the optimal points in which the updated drift vectors $(\vec{u_1}', \vec{u_2}')$ should be positioned are computed by maximizing the estimated time until the next Local Violation, based on the current drift vector positions and the estimated velocities. Balance vector \vec{b} remains unchanged.

Figure 5.4: Balancing methods

Final velocity is defined as:

$$v_f^2 = v_i^2 + 2 * a * d (5.4)$$

By solving Equation 5.4 for v_f , plugging it into Equation 5.3 and solving the resulting Equation for t, we extract the desired result (Equation 5.2).

The newly defined heuristic optimization formula (5.2) aims to maximize the time until the next Local Violation concerning any of the nodes belonging in the balancing set. By taking into account the maximum value of the monitoring function $f(\cdot)$ inside the bounding ball created by each data stream update and the estimate vector, and by computing acceleration and velocity measures of this value over time, an approximate mapping of the data stream space to the one dimensional space of the arbitrary monitoring function is achieved. This permits the computation of the optimal positions the balanced drift vectors should take in order to maximize the time they reach the monitoring threshold, as depicted in Figure 5.4b.

5.3.1 Implementation of the Heuristic Balancing

In order transform the heuristic optimization formula (5.2) into an applicable setting, multiobjective optimization (Section 2.2) is used. The optimization function is now defined as such:

$$\begin{aligned} & \min -z \\ & \text{s.t.} \quad z \leq g(h(\vec{e}, \vec{u_0}), vel_0, accel_0, T) \\ & z \leq g(h(\vec{e}, \vec{u_1}), vel_1, accel_1, T) \\ & \vdots \\ & z \leq g(h(\vec{e}, \vec{u_n}), vel_n, accel_n, T) \\ & \vec{b} = \frac{1}{\sum_{i=0}^n w_i} \sum_{i=0}^n \left(w_i * \vec{u_i} \right) \\ & , \forall n_i \in P' \end{aligned}$$

$$(5.5)$$

where:

 $g:\mathbb{R}^4\to\mathbb{R}$, the heuristic optimization function as defined in Equation 5.2

 $h: \mathbb{R}^d \to \mathbb{R}$, the function computing the maximum value of the monitoring function $f(\cdot)$ in $B(\vec{e}, \vec{u_i})$, which is an optimization problem by itself

d: the data vector dimensionality

T: the monitoring threshold

 $\vec{u_i}$: the drift vector of node n_i

 w_i : the weight of node n_i

 vel_i : the velocity of the maximum value of the monitoring function when applied to the ball defined by node's n_i drift vector $\vec{u_i}$ and the estimate vector \vec{e}

 $accel_i$: the acceleration of the maximum value of the monitoring function when applied to the ball defined by node's n_i drift vector $\vec{u_i}$ and the estimate vector \vec{e}

 \vec{b} : the balancing vector

P': the balancing set

Solution to the above optimization problem (5.5) is given by the Sequential Least Squares Programming (SLSQP) solver, which is described in Subsection 2.2.1. The problem is decomposed and formulated using an additional helping parameter z in order to avoid non-differentiable functions (such as min and max) and to aid computation by the solver.

In the heuristic optimization problem defined previously (5.5) the nested optimization of detecting the maximum value of an arbitrary monitoring function inside the bounding ball $B(\vec{e}, \vec{u_i})$ is existent. This optimization problem is formed as follows:

$$\max f \tag{5.6}$$

s.t.
$$\sum_{i=1}^{d} (x_i - c_i)^2 = r^2$$
 (5.7)

where:

f: the monitoring function $f(\cdot)$

 x_i : element i of d-dimensional vector \vec{x}

 c_i : element i of d-dimensional vector \vec{c} , which represents the center of the sphere

r: the radius of the sphere

d: the space dimensionality

Eq. 5.7 : a (d+1) dimensional sphere in \mathbb{R}^d

The optimization problem of detecting the maximum value of a function inside a sphere (5.6) is solved using *Constrained Function Minimization (CONMIN)*, which implements the method of feasible directions, as described in Subsection 2.2.2.

The resulting heuristic balancing algorithmic implementation is summarized in the following Algorithm:

Algorithm 3: Heuristic Balancing

```
1 Function RepMessageReceived(\langle n_i, v_i, u_i, vel_i, accel_i \rangle)
       add n_i to balancing set P';
       Balance();
 3
 4 end
 5 Function Balance (P')
       if length(P') = 1 then
           RequestNode();
                                   // request node based on respective gathering scheme
 7
       end
 8
       \vec{b} = \sum_{P'} \frac{w_i * \vec{u_i}}{w_i};
 9
       if B(\vec{e}, \vec{b}) is monochromatic then
10
           /* heuristic optimization procedure,
                                                                                                       */
11
           /st returns the optimal drift vector positions in set O
12
                                                                                                       */
           O = DriftVectorOptimizationProblem();
13
           foreach n_i \in P' do
14
               \Delta \delta_i = w_i * ec{u_i}' - w_i * ec{u_i}; // ec{u_i}' denotes the optimal drift vector position
15
               Send(\langle ADJSLK, n_i, \Delta \delta_i \rangle);
           end
17
       end
18
19 end
```

5.3.2 Smoothing, Velocity and Acceleration Estimation via Savitzky-Golay

The heuristic balancing method proposed previously (Section 5.3) requires an efficient estimation of the velocity and the acceleration of the output of the monitoring function over the maximum value of the bounding ball. Additionally, a smoothing operation over the data stream series would be beneficial, in order to grasp the trend (increasing or decreasing) of the data stream without letting noisy updates and extreme fluctuations misguide the optimization operation.

The Savitzky-Golay smoothing filter [9] (Section 2.3) is ideal in the heuristic Geometric Monitoring setting, for it smooths and derivates the signal without much additional computational burden, allowing it to be applied directly at the Monitoring Nodes' data streams. By assuming equidistant data points the precomputation of convolution coefficients becomes trivial when specifying the window size, the window center, the order of the polynomial and the desired derivative. Following that, the precomputed coefficients are applied to the desired signal by a simple convo-

Figure 5.5: Savitzky-Golay filtering of a signal with added Gaussian noise. The smoothing window is 50 points in length, centered at the far end, as in the real-time smoothing applied to the Geometric Monitoring setting. The polynomial order is 2 for the smoothed signal, 3 for the velocity estimation and 5 for the acceleration estimation of the original signal.

lution, which is both fast and, if required, on-line. The application of the filter on a noisy signal, along with the velocity and the acceleration computation of this signal, is shown in Figure 5.5.

5.4 Implementation Challenges

The proposed methods and algorithms incur some implementation challenges, which, on the greater part, can be managed.

Regarding the distance based node matching presented in Section 5.2:

• In order to extract the optimal node pairs training data must be available. This situation can be handled in two ways. One way is to initiate execution of the Geometric Monitoring task using the original method of randomly requesting nodes during balancing, until the necessary amount of data to train the model has been cumulated. Then the model can be trained and

the operation can be switched to the distance based node matching scheme. A more appropriate solution could be to incrementally update the node pairs using the data provided by message passing in the standard Geometric Monitoring execution, or by occasionally polling the monitoring nodes during low network activity until a satisfiable amount of data has been gathered.

Regarding the *heuristic balancing* method presented in Section 5.3:

- The bi-level multi-objective optimization incorporated into the method can become computationally expensive when dealing with a large balancing set or with highly dimensional data streams. Attention must be paid to the selected solvers responsible for the optimization task, for some solvers can be more effective than others in different settings and different monitoring function applications. Additionally, some solvers provide customization parameters, such as tolerance and iteration count, among others, that greatly influence the execution time of the optimization routine, as well as the precision of the results.
- The Savitzky-Golay smoothing filter, responsible for smoothing and differentiating the signals representing the maximum value of the monitoring function over the bounding spheres, is directly affected by the selected window length and the polynomial order. That being the case, care must be taken to select appropriate values that effectively track the general trends without compromising detail important to the optimization routine.

Part III

RESULTS AND CONCLUSIONS

Chapter 6

Experimental Results

experimental result showcase

6.1 Experimental Setting

dataset used

reference appendix for tools, mention in short

6.2 Distance Based Node Matching

comparison with random matching

comparison with distribution node matching deligiannakis

!use same balancing, both classic and heuristic! (i.e. 1st all with classic, then all with heuristic) explain

6.3 Heuristic Balancing

comparison with classic balancing

!random matching!

explain

how S-G affects results

6.4 Overall Results

summarise results

compare classic random and classic distribution optpair with heuristic distance optpair

observe how S-G affects results again

 ${\rm explain}$

Chapter 7

Conclusions and Future Work

 ${\rm conclusions}$

7.1 Conclusions

problem statement in short what has been done in short our contributions short explanation of contributions

7.2 Future Work

References

- [1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, "Models and issues in data stream systems," in *Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems*, ser. PODS '02. New York, NY, USA: ACM, 2002, pp. 1–16. [Online]. Available: http://doi.acm.org/10.1145/543613.543615
- [2] I. Sharfman, A. Schuster, and D. Keren, "A geometric approach to monitoring threshold functions over distributed data streams," in *Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data*, ser. SIGMOD '06. New York, NY, USA: ACM, 2006, pp. 301–312. [Online]. Available: http://doi.acm.org/10.1145/1142473.1142508
- [3] M. N. Garofalakis, D. Keren, and V. Samoladas, "Sketch-based geometric monitoring of distributed stream queries." PVLDB, vol. 6, no. 10, pp. 937–948, 2013. [Online]. Available: http://dblp.uni-trier.de/db/journals/pvldb/pvldb6.html#GarofalakisKS13
- [4] D. Keren, G. Sagy, A. Abboud, D. Ben-David, A. Schuster, I. Sharfman, and A. Deligiannakis, "Geometric monitoring of heterogeneous streams." *IEEE Trans. Knowl. Data Eng.*, vol. 26, no. 8, pp. 1890–1903, 2014. [Online]. Available: http://dblp.uni-trier.de/db/journals/tkde/tkde26.html#KerenSABSSD14
- [5] B. Babalis, "A simulator for monitoring data streams," Master's thesis, Technical University of Crete, Chania, Greece, 2013.
- [6] D. Keren, I. Sharfman, A. Schuster, and A. Livne, "Shape sensitive geometric monitoring," IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 8, pp. 1520–1535, Aug 2012.
- [7] D. Keren, G. Sagy, A. Abboud, D. Ben-David, I. Sharfman, and A. Schuster, "Safe-zones for monitoring distributed streams," in *Proceedings of the First International Workshop on Big*

- Dynamic Distributed Data, Riva del Garda, Italy, August 30, 2013, 2013, pp. 7–12. [Online]. Available: http://ceur-ws.org/Vol-1018/paper11.pdf
- [8] V. Samoladas, "Unification fo safe zones and the geometric method with application to generalized median monitoring," October 2013.
- [9] A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures." *Analytical Chemistry*, vol. 36, no. 8, pp. 1627–1639, 1964. [Online]. Available: http://dx.doi.org/10.1021/ac60214a047

Appendix

Chapter A

Geometric Monitoring Python Implementation

A.1 Python

what is python

why python

A.2 Numpy and Scipy

what are they

why use them and how

A.3 Openopt

what is it

details about framework

A.4 NetworkX

what is it

details about framework

A.5 Putting It All Together

code description

UML

how to run