Slide Set 2 **Distribuzioni Univariate**

Pietro Coretto

pcoretto@unisa.it

Corso di Analisi e Visualizzazione dei Dati (Parte I)

Corso di Laurea in "Statistica per i Big Data" (L-41) Università degli Studi di Salerno

Versione: 14 marzo 2022 (h08:37)

Pietro Coretto ©

Distribuzioni Univariate

Notes

Il punto di partenza dell'analisi è sempre un data set più o meno complesso. Nella maggior parte dei casi esso ha la forma di un 2D-array, detta anche *matrice dei dati*:

faminc	cigtax	cigprice	bwght	fatheduc	motheduc	parity	male	white	cigs	lbwght	bwghtlbs	packs	Ifaminc
13.5	16.5	122.3	109	12	12	1	1	1	C	4.6913481	6.8125	0	2.60269
7.5	16.5	122.3	133	6	12	2	1	0	C	4.8903489	8.3125	0	2.0149031
0.5	16.5	122.3	129		12	2	0	0	C	4.8598118	8.0625	0	-0.693147
15.5	16.5	122.3	126	12		2	1	0	C	4.8362818	7.875	0	2.74084
27.5	16.5	122.3	134	14	12	2	1	1	C	4.89784	8.375	0	3.3141861
7.5	16.5	122.3	118	12	14	6	1	0	C	4.7706852	7.375	0	2.0149031
65	16.5	122.3	140	16	14	2	0	1	C	4.9416418		0	4.174387
27.5	16.5	122.3	86	12		2	0	0	C	4.4543471	5.375	0	3.3141861
27.5	16.5	122.3	121	12		2	0	1	C	4.7957911	7.5625	0	3.3141861
37.5	16.5	122.3	129	16		2	0	1	C	4.8598118	8.0625	0	3.624341
27.5	16.5	122.3	101	12		2	1	0	C	4.6151199	6.3125	0	3.3141861
27.5	16.5	122.3	133	16		1	1	1		4.8903489	8.3125	0	3.3141861
6.5	16.5	122.3	61		12	3	1	0	C	4.1108742	3.8125	0	1.871802
10.5	16.5	122.3	104	12	12	1	1	1		4.6443911	6.5	0	2.3513751
12.5	16.5	122.3	92	7	12	1	1	0	C	4.5217891	5.75	0	2.5257289
17.5	16.5	122.3	122	13	13	1	1	1	C	4.8040209	7.625	0	2.862201
42.5	16.5	122.3	159	18		1	1	1	C	5.0689039	9.9375	0	3.7495041
4.5	16.5	122.3	154		11	1	0	0	C	5.036952	9.625	0	1.504077
32.5	16.5	122.3	120	16		1	1	0	C	4.7874918	7.5	0	3.48124
6.5	16.5	122.3	138		11	2	0	0	C	4.9272542	8.625	0	1.871802
47.5	16.5	122.3	127	16		1	0	1	- 0	4.8441868	7.9375	0	3.8607299
22.5	16.5	122.3	107	12		2	1	1	- 0	4.6728292	6.6875	0	3.1135149
15.5	16.5	122.3	129	8		2	1	1	6	4.8598118	8.0625	0.3	2.74084
13.5	16.5	122.3	129	12	12	1	0	0	C	4.8598118	8.0625	0	2.60269
27 E	100	122.2	156	11	11	- 1	0	1	-	E DADDEGO	0.75	0	2 62/2/1

Descrizione "bw" data set:

https://pietro-coretto.github.io/datasets/bw/readme.txt

Notes		

Analisi dei dati univariata

Analisi univariata

studia le proprietà statistiche dei dati analizzando una variabile/feature alla volta. Essa non prende in considerazione le relazioni tra le variabili.

Domande:

- Esiste un valore di bw tale da sintetizzare il complesso dei dati osservati?
- Se esiste questo valore, quanto è rappresentativo per tutte le unità nel campione?
- Vi sono campioni con valori "anomali" rispetto alla maggioranza?
-

Pietro Coretto ©

Distribuzioni Univariate

૧૧୯ 3 / 19

Nozione intuitiva di distribuzione

L'oggetto "atomico" dell'analisi dei dati, e della statistica, è la nozione di distribuzione

Prima di tutto impareremo a caratterizzare distribuzioni univariate (DU), ovvero iniziamo a guardare il data set studiano le variabili singolarmente

Dal punto di vista matematico la nozione di DU sarà formalizzata in corsi successivi. Qui lavoreremo sulla nozione intuitiva/operativa

Una DU è un oggetto complesso determinato da una collezione di dati osservati. Per DU si intende il modo in cui questi dati si *posizionano* lungo l'intervallo/range dei valori osservati

Distribuzioni Univariate

୬**५**℃ 4/19

Votes			
Notes			

Notazione

- lacktriangleright n: dimensione campionaria, numero di unità statistiche osservate (n è il numero di righe del data set in forma matriciale)
- X: variabile di interesse osservata. Solitamente una colonna del data set (in forma matriciale)
- $i=1,2,\ldots,n$: indice che identifica le unità statistiche (righe della matrice dei dati)
- lacksquare x_i : è il livello/label di X sulla i-ma unità statistica
- Per raw data intendiamo il set di dati osservati

$$\{x_1,x_2,\ldots,x_n\}$$

essi corrispondono ai valori lungo la colonna \boldsymbol{X} della matrice dei dati

■ Indichiamo con

$$x_{\min} = \min\{x_1, x_2, \dots, x_n\}$$
$$x_{\max} = \max\{x_1, x_2, \dots, x_n\}$$

Il range dei dati (se numerici) è l'intervallo $[x_{\min}, x_{\max}]$

Pietro Coretto ©

Distribuzioni Univariate

જિલ્૯ 5 / 19

Notes

Iniziamo dalla nozione intuitiva di DU. Per adesso si assume che \boldsymbol{X} sia numerica

Per DU di X intendiamo il modo in cui questi n livelli/labels osservati della X si distribuiscono lungo il range dei dati osservati

Una prima e semplicissima visualizzazione della distribuzione di X è lo stripchart:

- determino il range dei dati
- lacktriangleright rappresento ogni punto osservato x_i su un segmento che copre il range dei dati

Votes		

Notes

Pietro Coretto © Distribuzioni Univariate

©	0000 (30)(3 6 3)	™™™™	330 (33 5) (3 0 5)	0000000000	0000
	1	1	1		
0	20	40	60	80	100

Notes			

Notes ______

Pietro Coretto © Distribuzioni Univariate 9 9 / 1

Notes		

Aspetti rilevanti di una DU

- Locazione/posizione/centralità: esiste un valore *rappresentativo*? Se questo valore esiste abbiamo identificato la *parte centrale* della distribuzione. I dati lontano dal centro li chiamiamo *code della distribuzione*
- Dispersione/scatter: quanto sono dispersi i dati?
- Simmetria: esiste un punto all'interno del range rispetto al quale la massa di dati si dispone in modo speculare?
- Curtosi: vi sono molti dati osservati lontano dalla parte centrale (ovvero nelle code)?
- Densità: se concentriamo l'attenzione localmente in un punto x₀ del range, la massa di dati in quel punto quanto è densa di valori osservati?
- Outliers: esistono valori atipici/anomali? Esistono valori molto diversi dalla maggioranza dei punti osservati?

Pietro Coretto ©

Distribuzioni Univariate

୬९^२ 11 / 1

Notes

Frequenze relative ed assolute

Sia X una variabile che rileviamo nel campione con K livelli/labels distinti $\{x_1, x_2, \ldots, x_K\}$, definiamo:

 n_k è frequenza assoluta del livello/label x_k

questo è il numero di volte che $X=x_k$ compare nei dati osservati

 $f_k = \frac{n_k}{n}$ è frequenza relativa del livello/label x_k

questo è un numero in [0,1] che esprime la porzione di campioni osservati per i quali $X=x_k$.

Nota: posso esprimere le frequenze relative in termini percentuali come $f_k = \frac{n_k}{n} \times 100$

Per costruzione

Notes		

Esempio 1

Su n=5 unità si osserva X=sesso, i dati osservati sono

$$\{F, F, M, F, F\}$$

In questo caso abbiamo K=2 labels distinti: $x_1={\tt F}, x_2={\tt M}.$ Le frequenze assolute sono

$$n_1 = 4$$
, $n_2 = 1$, $f_1 = \frac{4}{5} = 0.8$, $f_2 = \frac{1}{5} = 0.2$

Esempio 2

Su n=6 unità si osserva Y=numero di scarpe, i dati osservati sono

$$\{38, 40, 40, 39, 38, 40\}$$

In questo caso abbiamo K=3 livelli distinti: $x_1=38, x_2=39, x_3=40.$ Le frequenze assolute sono

$$n_1 = 2$$
, $n_2 = 1$, $n_3 = 3$
 $f_1 = \frac{2}{6} = 0.33$, $f_2 = \frac{1}{6} = 0.17$, $f_3 = \frac{3}{6} = 0.5$

Pietro Coretto ©

Distribuzioni Univariate

り�� 13 / 19

Possiamo calcolare le frequenze in questo modo per qualsiasi tipo di variabile? Pensiamo al caso in cui X è continua

Consideriamo la variabile $X=\mathtt{lfaminc}$ nel data set bw. ci sono 27 diversi livelli osservati, molti di essi estremamente simili tra di loro. I primi valori osservati sono

 $2.6026900, \quad 2.0149031, \quad -0.6931472, \quad 2.7408400, \quad 3.3141861, \dots$

Dividiamo il range in K intervalli di livelli (anche detti classi di livelli o bins), e calcolo le frequenze rispetto al numero di osservazioni in ogni classe di livello.

Questo metodo appartiene ad una classe più generale di *metodi di* windowing: i dati vengono divisi e analizzati in tante piccole *finestre*.

Notes			

Notes			

Problema: come determino queste classi di valori? Approcci:

- Scelgo gli intervalli in modo discrezionale
- \blacksquare Fisso Δ , l'ampiezza dell'intervallo, e determino K di conseguenza
- lacktriangle Fisso K e determino l'ampiezza Δ

Esistono regole *ottimali* per ottenere classi di ampiezza uniforme. Ad esempio il metodo di *Sturge*:

- $K = 1 + \left\lceil \log_2(n) \right\rceil$
- $\Delta = \frac{x_{\max} x_{\min}}{K}$
- Primo intervallo \rightarrow $[x_{\min} , x_{\min} + \Delta]$ Secondo intervallo \rightarrow $(x_{\min} + \Delta , x_{\min} + 2\Delta]$

. . .

k-esimo intervallo \rightarrow ($x_{\min} + (k-1)\Delta$, $x_{\min} + k\Delta$]

Esempi/Applicazioni $\longrightarrow \mathbb{R}$ script file

Pietro Coretto ©

Distribuzioni Univariate

クQで 15 / 19

Se K non è troppo grande, le frequenze consentono di ottenere una presentazione compatta della distribuzione dei dati

Distribuzione semplice

X	n_i	f_i
x_1	n_1	f_1
x_2	n_2	f_2
:	:	:
x_K	n_K	f_K
	n	1

Distribuzione in classi

X	n_i	f_i
$x_0 \mid - \mid x_1$	n_1	f_1
$x_1 - x_2$	n_2	f_2
:	:	:
x_{K-1} - x_K	n_K	f_K
	n	1

- lacksquare X è quantitativo, discreto, ed espresso con troppi livelli distinti: potrebbe avere senso a costruire le classi
- ▲ la suddivisione in classi produce perdita di informazione

Notes			
-			

Notes		

Esempio: consideriamo la variabile (continua) famino dal data set bw. Prendiamo K=3 classi uniformi:

$\mathrm{famic} \; [10^3 \times \; \mathrm{USD}]$	n_i	$f_i(\%)$
[0.435, 22]	526	37.9
(22, 43.5]	602	43.4
(43.5, 65.1]	260	18.7
	1388	100

Pietro Coretto © Distribuzioni Univariate

Esempio: consideriamo la variabile (categoriale/nominale) male dal data set bw.

male	n_i	$f_i(\%)$
Femmina (=0)	665	47.9
Maschio $(=1)$	723	52.1
	1388	100

Esempi/Applicazioni $\longrightarrow R$ script file

-		
Notes		

Notes

Rappresentazioni grafiche di DU

Grafico	Tipo di variabile				
	Continua	In Classi(*)	Discreta(*)	Ordinale	Nominale
stripchart	+	no	no	no	no
barplot	no	no	+	+	+
piechart	no	no	ni	+	+
istogramma	no	+	no	no	no

Nota (*):

- "In Classi" include il caso delle variabili continue trasformate in classi, e le variabili discrete che sono espresse con troppi livelli distinti.
- "Discreta" include il caso di variabili discrete con un numero ragionevole di livelli distinti.

Esempi/Applicazioni → R **script file** (stripchart, barplot, piechart)

o Coretto (C)	Distribuzioni Univariate	り ぬで・

Notes	
NI .	
Notes	