YSU Statistical ML, Fall 2019 Lecture 03

Michael Poghosyan YSU, AUA michael@ysu.am, mpoghosyan@aua.am

19 November 2019

Contents

▶ Bayes Predictor for the Regression Problem

Recall that in the case of LS Regression Problem,

 $ightharpoonup \mathcal{X}$ is arbitrary, $\mathcal{Y} \subset \mathbb{R}$;

Recall that in the case of LS Regression Problem,

- $ightharpoonup \mathcal{X}$ is arbitrary, $\mathcal{Y} \subset \mathbb{R}$;
- ▶ Loss Function is the Quadratic Loss: $\ell(y_1, y_2) = (y_1 y_2)^2$

Recall that in the case of LS Regression Problem,

- $ightharpoonup \mathcal{X}$ is arbitrary, $\mathcal{Y} \subset \mathbb{R}$;
- ▶ Loss Function is the Quadratic Loss: $\ell(y_1, y_2) = (y_1 y_2)^2$

And, if g is any Predictor, then

$$Risk(g) = \mathbb{E}(\ell(Y, g(\mathbf{X}))) = \mathbb{E}((Y - g(\mathbf{X}))^2).$$

Recall that in the case of LS Regression Problem,

- $ightharpoonup \mathcal{X}$ is arbitrary, $\mathcal{Y} \subset \mathbb{R}$;
- ▶ Loss Function is the Quadratic Loss: $\ell(y_1, y_2) = (y_1 y_2)^2$

And, if g is any Predictor, then

$$Risk(g) = \mathbb{E}(\ell(Y, g(\mathbf{X}))) = \mathbb{E}((Y - g(\mathbf{X}))^2).$$

The Problem to find the Bayes Predictor in this case is:

$$g^* \in \mathop{argmin}\limits_{g} \mathbb{E} \Big((Y - g(\mathbf{X}))^2 \Big).$$

Recall that in the case of LS Regression Problem,

- $ightharpoonup \mathcal{X}$ is arbitrary, $\mathcal{Y} \subset \mathbb{R}$;
- ▶ Loss Function is the Quadratic Loss: $\ell(y_1, y_2) = (y_1 y_2)^2$

And, if g is any Predictor, then

$$Risk(g) = \mathbb{E}(\ell(Y, g(\mathbf{X}))) = \mathbb{E}((Y - g(\mathbf{X}))^2).$$

The Problem to find the Bayes Predictor in this case is:

$$g^* \in \mathop{argmin}_{g} \mathbb{E} \Big((Y - g(\mathbf{X}))^2 \Big).$$

Now, let us find a Bayes Predictor in this case.

Let us fix x, the value of X, and find $g^*(x)$.

Let us fix x, the value of X, and find $g^*(x)$. This means that we need to minimize

$$\mathbb{E}\big((Y-g(x))^2\mid X=x\big)$$

over g(x), i.e., find the value g(x), minimizing this Expectation.

Let us fix x, the value of X, and find $g^*(x)$. This means that we need to minimize

$$\mathbb{E}\big((Y-g(x))^2\mid X=x\big)$$

over g(x), i.e., find the value g(x), minimizing this Expectation. Let us use the notation a = g(x):

Let us fix x, the value of X, and find $g^*(x)$. This means that we need to minimize

$$\mathbb{E}\big((Y-g(x))^2\mid X=x\big)$$

over g(x), i.e., find the value g(x), minimizing this Expectation. Let us use the notation a=g(x): we want to minimize

$$\varphi(a) = \mathbb{E}((Y-a)^2 \mid X=x),$$
 a \in

Let us fix x, the value of X, and find $g^*(x)$. This means that we need to minimize

$$\mathbb{E}\big((Y-g(x))^2\mid X=x\big)$$

over g(x), i.e., find the value g(x), minimizing this Expectation. Let us use the notation a=g(x): we want to minimize

$$\varphi(a) = \mathbb{E}((Y-a)^2 \mid X=x), \qquad a \in \mathbb{R}.$$

Let us fix x, the value of X, and find $g^*(x)$. This means that we need to minimize

$$\mathbb{E}\big((Y-g(x))^2\mid X=x\big)$$

over g(x), i.e., find the value g(x), minimizing this Expectation. Let us use the notation a=g(x): we want to minimize

$$\varphi(a) = \mathbb{E}((Y-a)^2 \mid X=x), \qquad a \in \mathbb{R}.$$

We write φ in the expanded form:

$$\varphi(a) =$$

Let us fix x, the value of X, and find $g^*(x)$. This means that we need to minimize

$$\mathbb{E}\big((Y-g(x))^2\mid X=x\big)$$

over g(x), i.e., find the value g(x), minimizing this Expectation. Let us use the notation a = g(x): we want to minimize

$$\varphi(a) = \mathbb{E}((Y-a)^2 \mid X=x), \qquad a \in \mathbb{R}.$$

We write φ in the expanded form:

$$\varphi(a) = \mathbb{E}(Y^2 \mid X = x) - 2 \cdot a \cdot \mathbb{E}(Y \mid X = x) + a^2.$$

Let us fix x, the value of X, and find $g^*(x)$. This means that we need to minimize

$$\mathbb{E}\big((Y-g(x))^2\mid X=x\big)$$

over g(x), i.e., find the value g(x), minimizing this Expectation. Let us use the notation a = g(x): we want to minimize

$$\varphi(a) = \mathbb{E}((Y-a)^2 \mid X=x), \qquad a \in \mathbb{R}.$$

We write φ in the expanded form:

$$\varphi(a) = \mathbb{E}(Y^2 \mid X = x) - 2 \cdot a \cdot \mathbb{E}(Y \mid X = x) + a^2.$$

Now, we can calculate the min point of $\varphi(a)$ pretty easily, by solving $\varphi'(a)=0$:

Let us fix x, the value of X, and find $g^*(x)$. This means that we need to minimize

$$\mathbb{E}\big((Y-g(x))^2\mid X=x\big)$$

over g(x), i.e., find the value g(x), minimizing this Expectation. Let us use the notation a = g(x): we want to minimize

$$\varphi(a) = \mathbb{E}((Y-a)^2 \mid X=x), \qquad a \in \mathbb{R}.$$

We write φ in the expanded form:

$$\varphi(a) = \mathbb{E}(Y^2 \mid X = x) - 2 \cdot a \cdot \mathbb{E}(Y \mid X = x) + a^2.$$

Now, we can calculate the min point of $\varphi(a)$ pretty easily, by solving $\varphi'(a)=0$:

$$a = \mathbb{E}(Y \mid X = x)$$
 is the only minimum point.

Let us fix x, the value of X, and find $g^*(x)$. This means that we need to minimize

$$\mathbb{E}\big((Y-g(x))^2\mid X=x\big)$$

over g(x), i.e., find the value g(x), minimizing this Expectation. Let us use the notation a = g(x): we want to minimize

$$\varphi(a) = \mathbb{E}((Y-a)^2 \mid X=x), \qquad a \in \mathbb{R}.$$

We write φ in the expanded form:

$$\varphi(a) = \mathbb{E}(Y^2 \mid X = x) - 2 \cdot a \cdot \mathbb{E}(Y \mid X = x) + a^2.$$

Now, we can calculate the min point of $\varphi(a)$ pretty easily, by solving $\varphi'(a)=0$:

$$a = \mathbb{E}(Y \mid X = x)$$
 is the only minimum point.

So, finally, we have the Bayes Predictor in the LS Regression Problem:

$$g^*(x) = \mathbb{E}(Y \mid X = x), \quad \forall x.$$

Note: Recall the minimization property of the Conditional Expectation: for any g,

$$\mathbb{E}((Y - \mathbb{E}(Y|X))^2) \leq \mathbb{E}((Y - g(X))^2).$$

Note: Recall the minimization property of the Conditional Expectation: for any g,

$$\mathbb{E}\Big((Y - \mathbb{E}(Y|X))^2\Big) \leq \mathbb{E}\Big((Y - g(X))^2\Big).$$

So we could use this: the Bayes Predictor for the Regression Problem is

Note: Recall the minimization property of the Conditional Expectation: for any g,

$$\mathbb{E}\Big((Y - \mathbb{E}(Y|X))^2\Big) \leq \mathbb{E}\Big((Y - g(X))^2\Big).$$

So we could use this: the Bayes Predictor for the Regression Problem is $g^*(X) = \mathbb{E}(Y|X)$, i.e.,

$$g^*(x) = \mathbb{E}(Y|X=x).$$

Note: Recall the minimization property of the Conditional Expectation: for any g,

$$\mathbb{E}\Big((Y - \mathbb{E}(Y|X))^2\Big) \leq \mathbb{E}\Big((Y - g(X))^2\Big).$$

So we could use this: the Bayes Predictor for the Regression Problem is $g^*(X) = \mathbb{E}(Y|X)$, i.e.,

$$g^*(x) = \mathbb{E}(Y|X=x).$$

Note: The function $g^*(x) = \mathbb{E}(Y|X=x)$ is called the Regression Function.

Note: Recall the minimization property of the Conditional Expectation: for any g,

$$\mathbb{E}\Big((Y - \mathbb{E}(Y|X))^2\Big) \leq \mathbb{E}\Big((Y - g(X))^2\Big).$$

So we could use this: the Bayes Predictor for the Regression Problem is $g^*(X) = \mathbb{E}(Y|X)$, i.e.,

$$g^*(x) = \mathbb{E}(Y|X=x).$$

Note: The function $g^*(x) = \mathbb{E}(Y|X=x)$ is called the Regression Function. It is solving the Minimization Problem:

$$g^* \in \mathop{argmin}\limits_{g} \mathbb{E}\Big((Y - g(\mathbf{X}))^2\Big)$$

Note: Geometric Interpretation:

Now, a slight modification of our Regression Problem: here we consider the following Loss function:

$$\ell(y_1,y_2) = |y_1 - y_2|.$$

Bayes Predictor in the L¹ Loss Regression Problem

Now, a slight modification of our Regression Problem: here we consider the following Loss function:

$$\ell(y_1,y_2) = |y_1 - y_2|.$$

Then, our Problem becomes

$$g^* \in \mathop{argmin}\limits_{g} \mathbb{E}ig(ig|Y - g(\mathbf{X})ig)$$

Now, a slight modification of our Regression Problem: here we consider the following Loss function:

$$\ell(y_1,y_2) = |y_1 - y_2|.$$

Then, our Problem becomes

$$g^* \in \mathop{argmin}\limits_{g} \mathbb{E}ig(ig|Y - g(\mathbf{X})ig)$$

Again we fix x, and think about finding $g^*(x)$, i.e. about solving the problem of minimizing

$$\varphi(a) =$$

Now, a slight modification of our Regression Problem: here we consider the following Loss function:

$$\ell(y_1,y_2) = |y_1 - y_2|.$$

Then, our Problem becomes

$$g^* \in \mathop{argmin}\limits_{g} \mathbb{E}ig(ig|Y - g(\mathbf{X})ig)$$

Again we fix x, and think about finding $g^*(x)$, i.e. about solving the problem of minimizing

$$\varphi(a) = \mathbb{E}(|Y - a| | X = x), \quad a \in \mathbb{R}.$$

Now, a slight modification of our Regression Problem: here we consider the following Loss function:

$$\ell(y_1,y_2) = |y_1 - y_2|.$$

Then, our Problem becomes

$$g^* \in \mathop{argmin}\limits_{g} \mathbb{E} \Big(ig| Y - g(\mathbf{X}) ig| \Big)$$

Again we fix x, and think about finding $g^*(x)$, i.e. about solving the problem of minimizing

$$\varphi(a) = \mathbb{E}(|Y - a| | X = x), \qquad a \in \mathbb{R}.$$

It can be proven that the solution will be:

$$g^{*}(x) =$$

Now, a slight modification of our Regression Problem: here we consider the following Loss function:

$$\ell(y_1,y_2) = |y_1 - y_2|.$$

Then, our Problem becomes

$$g^* \in \mathop{argmin}\limits_{g} \mathbb{E} \Big(ig| Y - g(\mathbf{X}) ig| \Big)$$

Again we fix x, and think about finding $g^*(x)$, i.e. about solving the problem of minimizing

$$\varphi(a) = \mathbb{E}(|Y - a| | X = x), \qquad a \in \mathbb{R}.$$

It can be proven that the solution will be:

$$g^*(x) = Median(Y|X = x).$$

- ▶ For the L^2 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;

- ▶ For the L^2 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;
 - ▶ the Problem was $g^* \in \operatorname{argmin}_g \mathbb{E}((Y g(\mathbf{X}))^2)$;

- ▶ For the L^2 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;
 - ▶ the Problem was $g^* \in \operatorname{argmin}_g \mathbb{E}((Y g(\mathbf{X}))^2)$;
 - the solution was $g^*(x) = \mathbb{E}(Y|X=x)$;

- ► For the L² Regression Problem,
 - the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;
 - ▶ the Problem was $g^* \in \operatorname{argmin}_g \mathbb{E} \Big((Y g(\mathbf{X}))^2 \Big);$
 - the solution was $g^*(x) = \mathbb{E}(Y|X=x)$;
- ► For the L¹ Regression Problem,
 - the Loss was $\ell(y_1, y_2) = |y_1 y_2|$;

- \triangleright For the L^2 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;
 - ▶ the Problem was $g^* \in \operatorname{argmin}_g \mathbb{E}((Y g(\mathbf{X}))^2)$;
 - the solution was $g^*(x) = \mathbb{E}(Y|X=x)$;
- \triangleright For the L^1 Regression Problem,
 - ▶ the Loss was $\ell(y_1, y_2) = |y_1 y_2|$;
 - ▶ the Problem was $g^* \in argmin_g \mathbb{E}(|Y g(\mathbf{X})|)$;

- ▶ For the L^2 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;
 - ▶ the Problem was $g^* \in \operatorname{argmin}_g \mathbb{E}((Y g(\mathbf{X}))^2)$;
 - the solution was $g^*(x) = \mathbb{E}(Y|X=x)$;
- ▶ For the L^1 Regression Problem,
 - ▶ the Loss was $\ell(y_1, y_2) = |y_1 y_2|$;
 - lacktriangle the Problem was $g^* \in \operatorname{argmin}_g \mathbb{E} \Big(ig| Y g(\mathbf{X}) ig| \Big);$
 - the solution was $g^*(x) = Median(Y|X = x)$;

- \triangleright For the L^2 Regression Problem,
 - \blacktriangleright the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;
 - ▶ the Problem was $g^* \in argmin_g \mathbb{E}((Y g(\mathbf{X}))^2)$;
 - ▶ the solution was $g^*(x) = \mathbb{E}(Y|X=x)$;
- ▶ For the L^1 Regression Problem,
 - ▶ the Loss was $\ell(y_1, y_2) = |y_1 y_2|$;
 - ▶ the Problem was $g^* \in argmin_g \mathbb{E}(|Y g(\mathbf{X})|)$;
 - the solution was $g^*(x) = Median(Y|X = x)$;
- ▶ For the 0-1 Loss Classification Problem,
 - the Loss was $\ell(y_1, y_2) = \mathbf{1}(y_1 \neq y_2)$;

- \triangleright For the L^2 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;
 - ▶ the Problem was $g^* \in argmin_g \mathbb{E}((Y g(\mathbf{X}))^2)$;
 - the solution was $g^*(x) = \mathbb{E}(Y|X=x)$;
- \triangleright For the L^1 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = |y_1 y_2|$;
 - ▶ the Problem was $g^* \in argmin_g \mathbb{E}(|Y g(\mathbf{X})|)$;
 - ▶ the solution was $g^*(x) = Median(Y|X = x)$:
- \triangleright For the 0-1 Loss Classification Problem.
 - the Loss was $\ell(v_1, v_2) = \mathbf{1}(v_1 \neq v_2)$:

▶ the Problem was
$$g^* \in \operatorname{argmin}_g \mathbb{E} \Big(\mathbf{1}(Y \neq g(\mathbf{X})) \Big) = \operatorname{argmin}_g \mathbb{P}(Y \neq g(X));$$

Summary

Let us summarize what we have obtained:

- \triangleright For the L^2 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;
 - ▶ the Problem was $g^* \in argmin_g \mathbb{E}((Y g(\mathbf{X}))^2)$;
 - ▶ the solution was $g^*(x) = \mathbb{E}(Y|X=x)$;
- ▶ For the L^1 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = |y_1 y_2|$;
 - ▶ the Problem was $g^* \in argmin_g \mathbb{E}(|Y g(\mathbf{X})|)$;
 - the solution was $g^*(x) = Median(Y|X = x)$;
- \triangleright For the 0 1 Loss Classification Problem,
 - the Loss was $\ell(y_1, y_2) = \mathbf{1}(y_1 \neq y_2)$;
 - ▶ the Problem was $g^* \in \operatorname{argmin}_g \mathbb{E} (\mathbf{1}(Y \neq g(\mathbf{X}))) = \operatorname{argmin}_g \mathbb{P}(Y \neq g(X));$
 - ightharpoonup the solution was $g^*(x) =$

Summary

Let us summarize what we have obtained:

- \triangleright For the L^2 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = (y_1 y_2)^2$;
 - ▶ the Problem was $g^* \in argmin_g \mathbb{E}((Y g(\mathbf{X}))^2)$;
 - ▶ the solution was $g^*(x) = \mathbb{E}(Y|X=x)$;
- \triangleright For the L^1 Regression Problem,
 - the Loss was $\ell(y_1, y_2) = |y_1 y_2|$;
 - lacktriangle the Problem was $g^* \in \operatorname{argmin}_g \mathbb{E} \Big(ig| Y g(\mathbf{X}) ig| \Big);$
 - ▶ the solution was $g^*(x) = Median(Y|X = x)$;
- \triangleright For the 0 1 Loss Classification Problem,
 - the Loss was $\ell(y_1, y_2) = \mathbf{1}(y_1 \neq y_2)$;
 - ▶ the Problem was $g^* \in \operatorname{argmin}_g \mathbb{E} (\mathbf{1}(Y \neq g(\mathbf{X}))) = \operatorname{argmin}_g \mathbb{P}(Y \neq g(X));$
 - the solution was $g^*(x) = Mode(Y|X=x)$;

So far we were constructing Bayes Predictors. But, usually we can find Bayes Predictors if we know the Joint Distribution of X and Y (or, at least, Conditional Distribution of Y|X=x).

So far we were constructing Bayes Predictors. But, usually we can find Bayes Predictors if we know the Joint Distribution of X and Y (or, at least, Conditional Distribution of Y|X=x). Unfortunately, usually we do not know this Distribution, and what we have is just a realization of a Random Sample (Training Data) from that Distribution:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n).$$

So far we were constructing Bayes Predictors. But, usually we can find Bayes Predictors if we know the Joint Distribution of X and Y (or, at least, Conditional Distribution of Y|X=x). Unfortunately, usually we do not know this Distribution, and what we have is just a realization of a Random Sample (Training Data) from that Distribution:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n).$$

Now, what is the idea of having a good Prediction Algorithm?

So far we were constructing Bayes Predictors. But, usually we can find Bayes Predictors if we know the Joint Distribution of X and Y (or, at least, Conditional Distribution of Y|X=x). Unfortunately, usually we do not know this Distribution, and what we have is just a realization of a Random Sample (Training Data) from that Distribution:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n).$$

Now, what is the idea of having a good Prediction Algorithm? Good Algorithm will give, based on the Observations, a Predictor, the Risk of which is very close to the Ideal one: to the Bayes Risk.

So far we were constructing Bayes Predictors. But, usually we can find Bayes Predictors if we know the Joint Distribution of X and Y (or, at least, Conditional Distribution of Y|X=x). Unfortunately, usually we do not know this Distribution, and what we have is just a realization of a Random Sample (Training Data) from that Distribution:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n).$$

Now, what is the idea of having a good Prediction Algorithm? Good Algorithm will give, based on the Observations, a Predictor, the Risk of which is very close to the Ideal one: to the Bayes Risk. I.e., based on these Observations, we want to have a Predictor g_n (or, a Method to find that Predictor) such that

$$Risk(g_n) \approx Risk(g^*) = Bayes Risk.$$

So far we were constructing Bayes Predictors. But, usually we can find Bayes Predictors if we know the Joint Distribution of X and Y (or, at least, Conditional Distribution of Y|X=x). Unfortunately, usually we do not know this Distribution, and what we have is just a realization of a Random Sample (Training Data) from that Distribution:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n).$$

Now, what is the idea of having a good Prediction Algorithm? Good Algorithm will give, based on the Observations, a Predictor, the Risk of which is very close to the Ideal one: to the Bayes Risk. I.e., based on these Observations, we want to have a Predictor g_n (or, a Method to find that Predictor) such that

$$Risk(g_n) \approx Risk(g^*) = Bayes Risk.$$

Of course, we will always have

$$Risk(g_n) \geq Risk(g^*).$$

So far we were constructing Bayes Predictors. But, usually we can find Bayes Predictors if we know the Joint Distribution of X and Y (or, at least, Conditional Distribution of Y|X=x). Unfortunately, usually we do not know this Distribution, and what we have is just a realization of a Random Sample (Training Data) from that Distribution:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n).$$

Now, what is the idea of having a good Prediction Algorithm? Good Algorithm will give, based on the Observations, a Predictor, the Risk of which is very close to the Ideal one: to the Bayes Risk. I.e., based on these Observations, we want to have a Predictor g_n (or, a Method to find that Predictor) such that

$$Risk(g_n) \approx Risk(g^*) = Bayes Risk.$$

Of course, we will always have

$$Risk(g_n) > Risk(g^*).$$

Now note that $Risk(g_n)$ is Radnom, since we construct g_n using

To define a good Learning Algorithms, let us assume that we have an infinite sequence of IID Observations from the Distribution behind X and Y:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n),$$

To define a good Learning Algorithms, let us assume that we have an infinite sequence of IID Observations from the Distribution behind X and Y:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n),$$

Assume we have an Algorithm A, producing a Predictor g_n , when applied to the first n Observations.

To define a good Learning Algorithms, let us assume that we have an infinite sequence of IID Observations from the Distribution behind X and Y:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n),$$

Assume we have an Algorithm A, producing a Predictor g_n , when applied to the first n Observations. Then we say:

 \triangleright \mathcal{A} is **Consistent**, if

To define a good Learning Algorithms, let us assume that we have an infinite sequence of IID Observations from the Distribution behind X and Y:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n),$$

Assume we have an Algorithm A, producing a Predictor g_n , when applied to the first n Observations. Then we say:

 \triangleright \mathcal{A} is **Consistent**, if

$$Risk(g_n) \stackrel{\mathbb{P}}{\longrightarrow} Risk(g^*), \quad as \quad n \to +\infty.$$

To define a good Learning Algorithms, let us assume that we have an infinite sequence of IID Observations from the Distribution behind X and Y:

$$(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n),$$

Assume we have an Algorithm A, producing a Predictor g_n , when applied to the first n Observations. Then we say:

 \triangleright \mathcal{A} is **Consistent**, if

$$Risk(g_n) \stackrel{\mathbb{P}}{\longrightarrow} Risk(g^*), \quad as \quad n \to +\infty.$$

 $ightharpoonup \mathcal{A}$ is **Universally Consistent**, if it is Consistent for all Probability Distributions over $\mathcal{X} \times \mathcal{Y}$, i.e., for all Possible Distributions of (X, Y).

We consider the Binary Classification Problem here.

We consider the Binary Classification Problem here.

Theorem (Stone): The k-NN Classifier is Universally Consistent, if $k \to \infty$ and $n \to \infty$ in such a way that $\frac{k}{n} \to 0$.

We consider the Binary Classification Problem here.

Theorem (Stone): The k-NN Classifier is Universally Consistent, if $k \to \infty$ and $n \to \infty$ in such a way that $\frac{k}{n} \to 0$.

Theorem (Steinwart): Under some conditions, SVM is Universally Consistent.

We consider the Binary Classification Problem here.

Theorem (Stone): The k-NN Classifier is Universally Consistent, if $k \to \infty$ and $n \to \infty$ in such a way that $\frac{k}{n} \to 0$.

Theorem (Steinwart): Under some conditions, SVM is Universally Consistent.

We will talk about k-NN and SVM soon.

Consider again the 0-1 Binary Classification Algorithm.

Methods to obtain some (good?) Algorithms, BC Problem

Consider again the 0-1 Binary Classification Algorithm. The Problem was to minimize

$$\mathbb{E}(\mathbf{1}(Y \neq g(\mathbf{X}))) = \mathbb{P}(Y \neq g(X)).$$

Methods to obtain some (good?) Algorithms, BC Problem

Consider again the 0-1 Binary Classification Algorithm. The Problem was to minimize

$$\mathbb{E}\big(\mathbf{1}(Y\neq g(\mathbf{X}))\big)=\mathbb{P}(Y\neq g(X)).$$

Several Approaches to approximate this problem using the Dataset (\mathbf{X}_k, Y_k) , k = 1, ..., n.

We consider the Empirical Risk:

ERM(g) =

We consider the Empirical Risk:

$$ERM(g) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbf{1}(Y_k \neq g(\mathbf{X_k})) =$$

We consider the Empirical Risk:

$$ERM(g) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbf{1}(Y_k \neq g(\mathbf{X_k})) = \frac{\#\{Y_k \neq g(\mathbf{X_k}) : k = 1, ..., n\}}{n}.$$

We consider the Empirical Risk:

$$ERM(g) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbf{1}(Y_k \neq g(\mathbf{X_k})) = \frac{\#\{Y_k \neq g(\mathbf{X_k}) : k = 1, ..., n\}}{n}.$$

By the LLN, we know that, for large n,

$$ERM(g) \approx \mathbb{E}(\mathbf{1}(Y \neq g(\mathbf{X}))).$$

We consider the Empirical Risk:

$$ERM(g) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbf{1}(Y_k \neq g(\mathbf{X_k})) = \frac{\#\{Y_k \neq g(\mathbf{X_k}) : k = 1, ..., n\}}{n}.$$

By the LLN, we know that, for large n,

$$ERM(g) \approx \mathbb{E} (\mathbf{1}(Y \neq g(\mathbf{X}))).$$

Then the ERM strategy is, instead of Minimizing $\mathbb{E}(\mathbf{1}(Y \neq g(\mathbf{X})))$, minimize the ERM(g). Here we can fix some class of functions \mathcal{G} and minimize ERM(g) over $g \in \mathcal{G}$.

We know the solution of the BinClass Classification Problem, the Bayes Predictor:

$$g^{*}(x) =$$

We know the solution of the BinClass Classification Problem, the Bayes Predictor:

$$g^*(x) = \mathbf{1}\left(\eta(x) \geq \frac{1}{2}\right).$$

We know the solution of the BinClass Classification Problem, the Bayes Predictor:

$$g^*(x) = \mathbf{1}\left(\eta(x) \geq \frac{1}{2}\right).$$

Here

$$\eta(x) =$$

We know the solution of the BinClass Classification Problem, the Bayes Predictor:

$$g^*(x) = \mathbf{1}\left(\eta(x) \geq \frac{1}{2}\right).$$

Here

$$\eta(x) = \mathbb{E}(Y|X=x) =$$

We know the solution of the BinClass Classification Problem, the Bayes Predictor:

$$g^*(x) = \mathbf{1}\left(\eta(x) \geq \frac{1}{2}\right).$$

Here

$$\eta(x) = \mathbb{E}(Y|X=x) = \mathbb{P}(Y=1|X=x)$$

is the **Regression Function** (in the Classification setting).

We know the solution of the BinClass Classification Problem, the Bayes Predictor:

$$g^*(x) = \mathbf{1}\left(\eta(x) \geq \frac{1}{2}\right).$$

Here

$$\eta(x) = \mathbb{E}(Y|X=x) = \mathbb{P}(Y=1|X=x)$$

is the **Regression Function** (in the Classification setting).

Now, the Regression Function Approximation strategy is to approximate the Regression Function $\eta(x)$ by some Estimate $\hat{\eta}(x)$, and take

$$g(x) =$$

We know the solution of the BinClass Classification Problem, the Bayes Predictor:

$$g^*(x) = \mathbf{1}\left(\eta(x) \ge \frac{1}{2}\right).$$

Here

$$\eta(x) = \mathbb{E}(Y|X=x) = \mathbb{P}(Y=1|X=x)$$

is the Regression Function (in the Classification setting).

Now, the Regression Function Approximation strategy is to approximate the Regression Function $\eta(x)$ by some Estimate $\hat{\eta}(x)$, and take

$$g(x) = \mathbf{1}\left(\hat{\eta}(x) \geq \frac{1}{2}\right).$$

Regression Function Approximation, cont'd

Some possible (standard) ways to take $\hat{\eta}(x)$:

Regression Function Approximation, cont'd

Some possible (standard) ways to take $\hat{\eta}(x)$:

Regression Function Approximation, cont'd

Some possible (standard) ways to take $\hat{\eta}(x)$:

Some possible (standard) ways to take $\hat{\eta}(x)$:

The Algorithm: In this case the Algorithm will be: OTB

Another standard way to appoximate $\eta(x)$:

Another standard way to appoximate $\eta(x)$:

► Recall that

$$\eta(x) = \mathbb{E}(Y|X=x),$$

Another standard way to appoximate $\eta(x)$:

Recall that

$$\eta(x) = \mathbb{E}(Y|X=x),$$

so $\eta(x)$ is the Average of all Y-s with X = x.

Another standard way to appoximate $\eta(x)$:

Recall that

$$\eta(x) = \mathbb{E}(Y|X=x),$$

so $\eta(x)$ is the Average of all Y-s with X=x. In practice, when we have a Dataset (X_k,Y_k) , we can have 0 or small number of points with $X_k=x$ (say, if our new observation X will have different value than all X_k -s), then the previous approach will not work.

Another standard way to appoximate $\eta(x)$:

Recall that

$$\eta(x) = \mathbb{E}(Y|X=x),$$

so $\eta(x)$ is the Average of all Y-s with X=x. In practice, when we have a Dataset (X_k,Y_k) , we can have 0 or small number of points with $X_k=x$ (say, if our new observation X will have different value than all X_k -s), then the previous approach will not work. So we take some $k\in\mathbb{N}$, denote

$$NN_k(x)$$
 = The set of k Nearest Points X_k from x ,

and we take

$$\hat{\eta}(x) = Average(Y_i \mid X_i \in NN_k(x))$$

Another standard way to appoximate $\eta(x)$:

► Recall that

$$\eta(x) = \mathbb{E}(Y|X=x),$$

so $\eta(x)$ is the Average of all Y-s with X=x. In practice, when we have a Dataset (X_k,Y_k) , we can have 0 or small number of points with $X_k=x$ (say, if our new observation X will have different value than all X_k -s), then the previous approach will not work. So we take some $k\in\mathbb{N}$, denote

$$NN_k(x)$$
 = The set of k Nearest Points X_k from x ,

and we take

$$\hat{\eta}(x) = Average(Y_i \mid X_i \in NN_k(x))$$

This is the idea of the k-NN.

Another standard way to appoximate $\eta(x)$:

▶ Recall that

$$\eta(x) = \mathbb{E}(Y|X=x),$$

so $\eta(x)$ is the Average of all Y-s with X=x. In practice, when we have a Dataset (X_k,Y_k) , we can have 0 or small number of points with $X_k=x$ (say, if our new observation X will have different value than all X_k -s), then the previous approach will not work. So we take some $k\in\mathbb{N}$, denote

$$NN_k(x)$$
 = The set of k Nearest Points X_k from x ,

and we take

$$\hat{\eta}(x) = Average(Y_i \mid X_i \in NN_k(x))$$

This is the idea of the k-NN. Of course, we need to define a distance to calculate the Nearest Points to x.

Another standard way to appoximate $\eta(x)$:

Recall that

$$\eta(x) = \mathbb{E}(Y|X=x),$$

so $\eta(x)$ is the Average of all Y-s with X=x. In practice, when we have a Dataset (X_k,Y_k) , we can have 0 or small number of points with $X_k=x$ (say, if our new observation X will have different value than all X_k -s), then the previous approach will not work. So we take some $k \in \mathbb{N}$, denote

$$NN_k(x)$$
 = The set of k Nearest Points X_k from x ,

and we take

$$\hat{\eta}(x) = Average(Y_i \mid X_i \in NN_k(x))$$

This is the idea of the k-NN. Of course, we need to define a distance to calculate the Nearest Points to x.

The Algorithm: In this case the Algorithm will be: OTB

Recall the other representation for the Binary Classification Bayes Classifier, obtained using the Bayes Rule:

Recall the other representation for the Binary Classification Bayes Classifier, obtained using the Bayes Rule: we take $g^*(x) = 1$ iff

$$\mathbb{P}(X=x|Y=1)\cdot\mathbb{P}(Y=1)\geq\mathbb{P}(X=x|Y=0)\cdot\mathbb{P}(Y=0).$$

Recall the other representation for the Binary Classification Bayes Classifier, obtained using the Bayes Rule: we take $g^*(x) = 1$ iff

$$\mathbb{P}(X=x|Y=1)\cdot\mathbb{P}(Y=1)\geq\mathbb{P}(X=x|Y=0)\cdot\mathbb{P}(Y=0).$$

Now, in the Density Estimation approach,

lacktriangle we Estimate $\mathbb{P}(Y=1)$ by

Recall the other representation for the Binary Classification Bayes Classifier, obtained using the Bayes Rule: we take $g^*(x) = 1$ iff

$$\mathbb{P}(X=x|Y=1)\cdot\mathbb{P}(Y=1)\geq\mathbb{P}(X=x|Y=0)\cdot\mathbb{P}(Y=0).$$

Now, in the Density Estimation approach,

• we Estimate
$$\mathbb{P}(Y=1)$$
 by $\frac{\sum_{k=1}^{n} Y_k}{n}$,

Recall the other representation for the Binary Classification Bayes Classifier, obtained using the Bayes Rule: we take $g^*(x) = 1$ iff

$$\mathbb{P}(X=x|Y=1)\cdot\mathbb{P}(Y=1)\geq\mathbb{P}(X=x|Y=0)\cdot\mathbb{P}(Y=0).$$

Now, in the Density Estimation approach,

we Estimate $\mathbb{P}(Y=1)$ by $\frac{\sum_{k=1}^{n}Y_{k}}{n}$, and, of course, then we will take $\left(1-\frac{\sum_{k=1}^{n}Y_{k}}{n}\right)$ for $\mathbb{P}(Y=0)$;

Recall the other representation for the Binary Classification Bayes Classifier, obtained using the Bayes Rule: we take $g^*(x) = 1$ iff

$$\mathbb{P}(X=x|Y=1)\cdot\mathbb{P}(Y=1)\geq\mathbb{P}(X=x|Y=0)\cdot\mathbb{P}(Y=0).$$

Now, in the Density Estimation approach,

- we Estimate $\mathbb{P}(Y=1)$ by $\frac{\sum_{k=1}^{n} Y_k}{n}$, and, of course, then we will take $\left(1 \frac{\sum_{k=1}^{n} Y_k}{n}\right)$ for $\mathbb{P}(Y=0)$;
- we assume some (say, Parametric) Model behind the Distributions

$$X|Y=1$$
 and $X|Y=0$,

Estimate these Distributions, and calculate/approximate $\mathbb{P}(X=x|Y=1)$ and $\mathbb{P}(X=x|Y=0)$ by densities of X|Y=1 and X|Y=0, respectively.

c. Density Estimation, cont'd

So, if $f_1(x)$ and $f_0(x)$ are Estimated Densities for

$$X|Y=1$$
 and $X|Y=0$,

c. Density Estimation, cont'd

So, if $f_1(x)$ and $f_0(x)$ are Estimated Densities for

$$X|Y=1$$
 and $X|Y=0$,

then we will take g(x) = 1 iff

$$f_1(x) \cdot \frac{\sum_{k=1}^n Y_k}{n} \geq f_0(x) \cdot \left(1 - \frac{\sum_{k=1}^n Y_k}{n}\right).$$

c. Density Estimation, cont'd

So, if $f_1(x)$ and $f_0(x)$ are Estimated Densities for

$$X|Y=1$$
 and $X|Y=0$,

then we will take g(x) = 1 iff

$$f_1(x)\cdot \frac{\sum_{k=1}^n Y_k}{n}\geq f_0(x)\cdot \left(1-\frac{\sum_{k=1}^n Y_k}{n}\right).$$

This approach is giving the LDA, QDA.