Data Science – Machine Learning – Naive Bayes Classifier

30. Data Science – Machine Learning – Naïve Bayes Classifier

Contents

1. Naive Bayes Classifier	
2. Why is it called Naïve Bayes?	
3. Bayes theorem	
4. Scenario	
5. Conditional probability	
6. Use case	
7. Math problem and solution	
8. Use cases	12

30. Data Science - Machine Learning - Naïve Bayes Classifier

1. Naive Bayes Classifier

- ✓ Naïve Bayes algorithm is a supervised learning algorithm.
- ✓ This is based on Bayes theorem and used for solving classification problems.
- ✓ It is mainly used in text classification.
 - Examples like spam filtration, Sentimental analysis, and classifying articles etc.

2. Why is it called Naïve Bayes?

✓ Naive:

- It is called Naive because it assumes that the occurrence of a certain feature is independent of the other features.
- Such as if the fruit is identified on the bases of color, shape, and taste, then red, spherical, and sweet fruit is recognized as an apple.
- Hence each feature individually contributes to identify that it is an apple without depending on each other.

✓ Bayes:

 It is called Bayes because it depends on the principle of Bayes' Theorem.

3. Bayes theorem

- √ Bayes' theorem is also known as Bayes' Rule or Bayes' law.
- ✓ It is used to determine the probability of a hypothesis with prior knowledge.
- ✓ It depends on the conditional probability.

4. Scenario

- ✓ When we flip a coin, the probability of getting head or trail is 1/2, because there are two possibilities of outcomes
- ✓ So the chance of getting head or tail is 50%

Pick a random card, what is the probability of getting a queen?

5. Conditional probability

Pick a random card, you know it is a diamond. Now what is the probability of that card being a queen?

Conditional Probability

P(queen/diamond)= 1/13

P(A/B)= Probability of event A knowing that event B has already occurred

$$P(A/B) = rac{P(B/A) * P(A)}{P(B)}$$

$$P(queen/diamond) = \frac{P(diamond/queen) * P(queen)}{P(diamond)}$$
 $P(diamond/queen) = 1/4 = \frac{1/4 * 1/13}{1/4}$
 $P(queen) = 1/13$
 $P(diamond) = 1/4 = 1/13$

6. Use case

Passenger											
Id	Name	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survive
1	Braund, Mr. Owen Harris	3	male	22	1	0	21171	7.25		S	
2	Cumings, Mrs. John Bradley	1	female	38	1	0	17599	71.2833	C85	С	
3	Heikkinen, Miss. Laina	3	female	26	0	0	3101282	7.925		S	
4	Futrelle, Mrs. Jacques Heath	1	female	35	1	0	113803	53.1	C123	S	
5	Allen, Mr. William Henry	3	male	35	0	0	373450	8.05		S	
6	Moran, Mr. James	3	male		0	0	330877	8.4583		Q	
7	McCarthy, Mr. Timothy J	1	male	54	0	0	17463	51.8625	E46	S	
8	Palsson, Master. Gosta Leonard	3	male	2	3	1	349909	21.075		S	
9	Johnson, Mrs. Oscar	3	female	27	0	2	347742	11.1333		S	
10	Nasser, Mrs. Nicholas	2	female	14	1	0	237736	30.0708		С	

Passenger Id	Name	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived
1	Braund, Mr. Owen Harris	3	male	22	1	0	21171	7.25		S	(
2	Cumings, Mrs. John Bradley	1	female	38	1	0	17599	71.2833	C85	С	
3	Heikkinen, Miss. Laina	3	female	26	0	0	3101282	7.925		S	
4 Futrelle, Mrs. Jacques Heath 1 female 35 1 0 113803 53.1 C123 S											
5 Allen, Mr. William Henry 3 male 35 0 0 373450 8.05 S											
6 Moran, Mr. James 3 male 0 0 330877 8.4583 Q 0											
7 McCarthy, Mr. Timothy J 1 male 54 0 0 17463 51.8625 E46 S									1		
8 Palsson, Master. Gosta Leonard 3 male 2 3 1 349909 21.075 S											
9 Johnson, Mrs. Oscar 3 female 27 0 2 347742 11.1333 S									- 8		
10 Nasser, Mrs. Nicholas 2 female 14 1 0 237736 30.0708 C											
	p (Su	rv	iv	ed)	
	$P\left(\overline{Male \& Class \& Age \& Cabin \& Fare}\right)$										

Make a naïve assumption that features such as male, class, age , cabin, fare etc. are independent of each other

7. Math problem and solution

Problem

✓ If the weather is sunny, then the Player should play or not?

Solution

✓ To solve this, first consider the below dataset

	Outlook	Play
0	Rainy	Yes
1	Sunny	Yes
2	Overcast	Yes
3	Overcast	Yes
4	Sunny	No
5	Rainy	Yes
6	Sunny	Yes
7	Overcast	Yes
8	Rainy	No
9	Sunny	No
10	Sunny	Yes
11	Rainy	No
12	Overcast	Yes
13	Overcast	Yes

Weather	Yes	No
Overcast	5	0
Rainy	2	2
Sunny	3	2

Data Science – Machine Learning – Naive Bayes Classifier

Likelihood table weather condition:

Weather	No	Yes	
Overcast	0	5	5/14= 0.35
Rainy	2	2	4/14=0.29
Sunny	2	3	5/14=0.35
All	4/14=0.29	10/14=0.71	

Applying Bayes'theorem:

P(Yes|Sunny)= P(Sunny|Yes)*P(Yes)/P(Sunny)

P(Sunny|Yes)= 3/10= 0.3

P(Sunny)= 0.35

P(Yes)=0.71

So P(Yes|Sunny) = 0.3*0.71/0.35 = 0.60

P(No|Sunny)= P(Sunny|No)*P(No)/P(Sunny)

P(Sunny|NO)= 2/4=0.5

P(No)= 0.29

P(Sunny)= 0.35

So P(No|Sunny)= 0.5*0.29/0.35 = **0.41**

So as we can see from the above calculation that P(Yes|Sunny) > P(No|Sunny)

Hence on a Sunny day, Player can play the game.

8. Use cases


```
Program
            Loading the dataset
            demo1.py
Name
            import pandas as pd
            df = pd.read_csv("titanic.csv")
            print(df.head())
Output
                                             Survived
               Pclass
                               Age
                                       Fare
                               22.0
                                     7.2500
                                    71.2833
                      female
                                     7.9250
                       female
                              35.0
                                    53.1000
                         male
                                     8.0500
```

```
Program
           Preparing input
            demo2.py
Name
            import pandas as pd
            df = pd.read_csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
            'Survived'])
            inputs = df.drop('Survived', axis='columns')
            print(inputs.head())
Output
               Pclass
                           Sex
                                 Age
                                          Fare
                                22.0
                                        7.2500
                          male
                     1
                       female
                                38.0
                                      71.2833
                       female
                                26.0
                                        7.9250
                     1
                       female
                                35.0
                                       53.1000
                          male
                                35.0
                                        8.0500
```

```
Program
            Preparing target
Name
             demo3.py
            import pandas as pd
             df = pd.read_csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
             'Survived'])
             inputs = df.drop('Survived', axis='columns')
            target = df.Survived
             print(target)
Output
                    0
                    1
                    0
             886
                    1
             887
             888
                    0
             889
             Name: Survived, Length: 891, dtype: int64
```

Program Name

Concatenating the dataframe

demo5.py

import pandas as pd

df = pd.read_csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
'Survived'])

inputs = df.drop('Survived', axis='columns')

target = df.Survived

dummies = pd.get_dummies(inputs.Sex, dtype = int)

inputs = pd.concat([inputs, dummies], axis = 'columns')

print(inputs.head())

Output

	Pclass	Sex	Age	Fare	female	male
0	3	male	22.0	7.2500	0	1
1	1	female	38.0	71.2833	1	0
2	3	female	26.0	7.9250	1	0
3	1	female	35.0	53.1000	1	0
4	3	male	35.0	8.0500	0	1

```
Dropping unnecessary column
Program
Name
            demo6.py
            import pandas as pd
            df = pd.read csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
            'Survived'])
            inputs = df.drop('Survived', axis='columns')
            target = df.Survived
            dummies = pd.get dummies(inputs.Sex, dtype = int)
            inputs = pd.concat([inputs, dummies], axis = 'columns')
            inputs.drop(['Sex', 'male'], axis = 'columns', inplace = True)
            print(inputs.head())
Output
                Pclass
                                            female
                           Age
                                     Fare
                         22.0
                                  7.2500
                                 71.2833
                         38.0
                                                  1
                         26.0
                                  7.9250
                          35.0
                                 53.1000
                          35.0
                                  8.0500
```

```
Program Checking empty values demo7.py

import pandas as pd

df = pd.read_csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare', 'Survived'])

inputs = df.drop('Survived', axis = 'columns')
target = df.Survived
dummies = pd.get_dummies(inputs.Sex, dtype = int)
inputs = pd.concat([inputs, dummies], axis = 'columns')
inputs.drop(['Sex', 'male'],axis='columns', inplace = True)

print(inputs.columns[inputs.isna().any()])

Output

Index(['Age'], dtype='object')
```

```
Checking empty values
Program
Name
            demo8.py
            import pandas as pd
            df = pd.read csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
            'Survived'])
            inputs = df.drop('Survived', axis='columns')
            target = df.Survived
            dummies = pd.get dummies(inputs.Sex, dtype = int)
            inputs = pd.concat([inputs, dummies], axis = 'columns')
            inputs.drop(['Sex', 'male'],axis='columns', inplace=True)
            print(inputs.Age)
Output
                     22.0
                     38.0
                     26.0
                     35.0
                     35.0
            886
                     27.0
                     19.0
             887
            888
                     NaN
            889
                     26.0
            890
                     32.0
            Name: Age, Length: 891, dtype: float64
```

```
Program
            Filling Age Nan values with mean
Name
            demo9.py
            import pandas as pd
            df = pd.read_csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
            'Survived'])
            inputs = df.drop('Survived', axis='columns')
            target = df.Survived
            dummies = pd.get_dummies(inputs.Sex, dtype = int)
            inputs = pd.concat([inputs, dummies], axis = 'columns')
            inputs.drop(['Sex', 'male'],axis='columns', inplace=True)
            inputs.Age = inputs.Age.fillna(inputs.Age.mean())
            print(inputs)
Output
                  Pclass
                                Age
                                         Fare
                                              female
                          22.000000
                                      7.2500
                       1
                          38.000000 71.2833
                                      7.9250
                          26.000000
                          35.000000
                                     53.1000
                          35.000000
                                      8.0500
                         27.000000 13.0000
            886
             887
                          19.000000
                                     30.0000
             888
                       3 29.699118
                                     23.4500
             889
                       1 26.000000
                                     30.0000
            890
                       3
                         32.000000
                                      7.7500
            [891 rows x 4 columns]
```

```
Program
            Splitting the dataset
            demo10.py
Name
            import pandas as pd
            from sklearn.model selection import train test split
            df = pd.read_csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
            'Survived'])
            inputs = df.drop('Survived', axis='columns')
            target = df.Survived
            dummies = pd.get dummies(inputs.Sex, dtype = int)
            inputs = pd.concat([inputs, dummies], axis = 'columns')
            inputs.drop(['Sex', 'male'],axis='columns', inplace=True)
            inputs.Age = inputs.Age.fillna(inputs.Age.mean())
            X_train, X_test, y_train, y_test = train_test_split(inputs, target,
            test_size=0.3)
            print("Splitting the dataset")
Output
            Splitting the dataset
```

```
Program
            Creating model
Name
            demo11.py
            import pandas as pd
            from sklearn.model selection import train test split
            from sklearn.naive_bayes import GaussianNB
            df = pd.read_csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
            'Survived'])
            inputs = df.drop('Survived', axis='columns')
            target = df.Survived
            dummies = pd.get dummies(inputs.Sex, dtype = int)
            inputs = pd.concat([inputs, dummies], axis = 'columns')
            inputs.drop(['Sex', 'male'],axis='columns', inplace=True)
            inputs.Age = inputs.Age.fillna(inputs.Age.mean())
            X_train, X_test, y_train, y_test = train_test_split(inputs, target,
            test_size=0.3)
            model = GaussianNB()
            model.fit(X_train, y_train)
            print("Model got trained")
Output
            Model got trained
```

```
Program
            Prediction
Name
            demo12.py
            import pandas as pd
            from sklearn.model_selection import train_test_split
            from sklearn.naive_bayes import GaussianNB
            df = pd.read csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
            'Survived'])
            inputs = df.drop('Survived', axis='columns')
            target = df.Survived
            dummies = pd.get dummies(inputs.Sex, dtype = int)
            inputs = pd.concat([inputs, dummies], axis = 'columns')
            inputs.drop(['Sex', 'male'],axis='columns', inplace=True)
            inputs.Age = inputs.Age.fillna(inputs.Age.mean())
            X train, X test, y train, y test = train test split(inputs, target,
            test size=0.3)
            model = GaussianNB()
            model.fit(X_train, y_train)
            print(X test[0:5])
            print(model.predict(X test[0:5]))
Output
                  Pclass
                                      Fare
                                            female
                             Age
                       1
                            4.00
                                  81.8583
                       2
                            0.83
                                  18.7500
                                                  0
                       3
                           24.00
                                   7.8958
                          48.00
                                  34.3750
                                   7.7500
                           40.50
             [1 0 0 1 0]
```

```
Program
           Prediction probability
Name
           demo13.py
           import pandas as pd
           from sklearn.model_selection import train_test_split
           from sklearn.naive_bayes import GaussianNB
            df = pd.read csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
            'Survived'])
           inputs = df.drop('Survived', axis='columns')
           target = df.Survived
           dummies = pd.get dummies(inputs.Sex, dtype = int)
           inputs = pd.concat([inputs, dummies], axis = 'columns')
           inputs.drop(['Sex', 'male'],axis='columns', inplace=True)
           inputs.Age = inputs.Age.fillna(inputs.Age.mean())
           X train, X test, y train, y test = train test split(inputs, target,
           test size=0.3)
           model = GaussianNB()
           model.fit(X_train, y_train)
           print(model.predict(X test[0:5]))
            print(model.predict proba(X test[:10]))
Output
            [0 1 1 1 0]
            [[9.36162489e-01 6.38375110e-02]
             [4.15057870e-01 5.84942130e-01]
             [1.59954910e-10 1.00000000e+00]
             [2.61425161e-01 7.38574839e-01]
             [9.38899635e-01 6.11003653e-02]]
```

```
Program
            Cross validation score
Name
            demo14.py
            import pandas as pd
            from sklearn.model selection import train test split
            from sklearn.naive_bayes import GaussianNB
            from sklearn.model selection import cross val score
            df = pd.read csv('titanic.csv', usecols = ['Pclass', 'Sex', 'Age', 'Fare',
            'Survived'])
            inputs = df.drop('Survived', axis='columns')
            target = df.Survived
            dummies = pd.get dummies(inputs.Sex, dtype = int)
            inputs = pd.concat([inputs, dummies], axis = 'columns')
            inputs.drop(['Sex', 'male'],axis='columns', inplace=True)
            inputs.Age = inputs.Age.fillna(inputs.Age.mean())
            X train, X test, y train, y test = train test split(inputs, target,
            test size=0.3)
            model = GaussianNB()
            model.fit(X train, y train)
            model.predict(X_test[0:5])
            print(cross_val_score(GaussianNB(),X_train, y_train, cv=5))
Output
             [0.768
                          0.792
                                       0.776
                                                   0.80645161 0.75806452]
```