

Manaranjan Pradhan U Dinesh Kumar

WILEY

Chapter 10: Text Analytics

Learning Objectives

- Understand the challenges associated with the handling of text data.
- Learn various pre-processing steps to prepare text data for modelling.
- Learn Naïve—Bayes classification algorithm.
- Learn to develop model for sentiment classification.

SENTIMENT CLASSIFICATION

Dataset - https://www.kaggle.com/c/si650winter11/ data (the original data was contributed by the University of Michigan). The data consists of sentiments expressed by users on various movies

```
import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings('ignore')

train_ds = pd.read_csv("sentiment_train", delimiter="\t")
train_ds.head(5)
```

	Sentiment	Text
0	1	The Da Vinci Code book is just awesome.
1	1	this was the first clive cussler i've ever read, but even books like Relic, and Da Vinci code were more plausible than this.
2	1	i liked the Da Vinci Code a lot.
3	1	i liked the Da Vinci Code a lot.
4	1	I liked the Da Vinci Code but it ultimatly didn't seem to hold it's own.

EXPLORING THE DATASET

Annotate

for p in ax.patches:

p.get height()+50))

```
train ds.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6918 entries, 0 to 6917
Data columns (total 2 columns):
sentiment 6918 non-null int64
text 6918 non-null object
dtypes: int64(1), object(1)
memory usage: 108.2+ KB
 import matplotlib.pyplot as plt
                                                           4000
 import seaborn as sn
                                                           3500
 %matplotlib inline
                                                                 2975
                                                           3000
 plt.figure(figsize=(6,5))
                                                           2500
 # Create count plot
                                                          2000
ax = sn.countplot(x='sentiment', data=train ds)
                                                           1500
```

ax.annotate(p.get height(), (p.get x()+0.1,

1000

500

0

sentiment

3943

BAG-OF-WORDS (BOW) MODEL

Count Vector Model

- 1. Document 1 (positive sentiment): I really really like IPL.
- 2. Document 2 (negative sentiment): I never like IPL.

Documents	х1	х2	х3	х4	х5	у
	- 1	really	never	like	ipl	
I really really like ipl	1	2	0	1	1	1
I never like ipl	1	0	1	1	1	0

BAG-OF-WORDS (BOW) MODEL

Term Frequency Vector Model

- 1. Document 1 (positive sentiment): I really really like IPL.
- 2. Document 2 (negative sentiment): I never like IPL.

Term Frequency
$$(TF_i) = \frac{\text{Number of occurrences of word } i \text{ in the document}}{\text{Total number of words in the document}}$$

	х1	х2	х3	х4	х5	у
	I	really	never	like	ipl	
I really really like ipl	0.2	0.4	0	0.2	0.2	1
I never like ipl	0.25	0	0.25	0.25	0.25	0

BAG-OF-WORDS (BOW) MODEL

Term Frequency-Inverse Document Frequency (TF-IDF)

- 1. Document 1 (positive sentiment): I really really like IPL.
- 2. Document 2 (negative sentiment): I never like IPL.

COUNT VECTORS - SENTIMENT_TRAIN DATASET

```
from sklearn.feature extraction.text import CountVectorizer
# Initialize the CountVectorizer
count vectorizer = CountVectorizer()
# Create the dictionary from the corpus
feature vector = count vectorizer.fit(train ds.text)
# Get the feature names features = feature vector.get feature names()
print("Total number of features: ", len(features))
Total number of features: 2132
train ds features = count vectorizer.transform(train ds.text)
train ds features.shape
(6918, 2132)
train ds features.getnnz()
```

65398

DISPLAY DOCUMENT VECTORS

```
# Converting the matrix to a dataframe
train_ds_df = pd.DataFrame(train_ds_features.todense())
# Setting the column names to the features i.e. words
train_ds_df.columns = features
train_ds[0:1]
```

	Sentiment	Text
0	1	The Da Vinci Code book is just awesome.

train_ds_df[['the', 'da', "vinci", "code", "book", 'is', 'just', 'awesome']][0:1]

	the	da	vinci	code	book	is	Just	awesome
0	1	1	1	1	1	1	1	1

REMOVING LOW-FREQUENCY WORDS

Count Number of features by count equal to 1

1228

Restrict features by setting max_features = 1000

	Counts	Features
866	3306	The
37	2154	And
358	2093	Harry
675	2093	potter
138	2002	Code
934	2001	Vinci
178	2001	Da
528	2000	mountain
104	2000	brokeback
488	1624	Love
423	1520	ls
941	1176	Was
60	1127	awesome
521	1094	mission
413	1093	impossible

REMOVING STOP WORDS

from sklearn.feature extraction import

text my_stop_words = text.ENGLISH_STOP_WORDS

Adding custom words to the list of stop words

```
my_stop_words =
text.ENGLISH_STOP_WORDS.union(['harry',
   'potter', 'code', 'vinci', 'da','harry',
   'mountain', 'movie', 'movies'])
```

Setting stop words list

count_vectorizer = CountVectorizer(stop_words
= my_stop_words, max_features = 1000)

	Counts	Features
73	2000	brokeback
408	1624	love
39	1127	awesome
436	1094	mission
341	1093	impossible
390	974	like
745	602	sucks
743	600	sucked
297	578	hate
652	374	really
741	365	stupid
362	287	just
374	276	know
742	276	suck
409	256	loved

STEMMING & LEMMATIZATION

- Stemming: Remove the differences between inflected forms of a word to reduce each word to its root form
 - PorterStemmer
 - LancasterStemmer

WordNetLemmatizer

	Counts	Features
80	1930	brokeback
297	1916	harri
407	1837	love
803	1378	suck
922	1142	wa
43	1116	awesom
345	1090	imposs
433	1090	mission
439	1052	movi
393	823	like
299	636	hate
54	524	becaus
604	370	realli
796	364	stupid
379	354	know

DISTRIBUTION OF WORDS ACROSS DIFFERENT SENTIMENT

NAIVE—BAYES MODEL FOR SENTIMENT CLASSIFICATION

```
P(doc = +ve \mid word = awesome) \propto P(word = awesome \mid doc = +ve) * P(doc = +ve) P(doc = +ve \mid word = W_1, W_2, \dots W_N) \propto \prod_{i=1}^N P_i(word = W_i \mid doc = +ve) * P(doc = +ve) from sklearn.model_selection import train_test_split train_X, test_X, train_y, test_y = train_test_split(train_ds_features, train_ds.sentiment, test_size = 0.3, random_state = 42) from sklearn.naive_bayes import BernoulliNB nb_clf = BernoulliNB() test_ds_predicted = nb_clf.predict(test_X.toarray())
```

MODEL ACCURACY

from sklearn import metrics print (metrics.classification report (test y, test ds predicted))

Dinesh Kumar

USING TF-IDF VECTORIZER

```
tfidf_vectorizer = TfidfVectorizer(analyzer=stemmed_words, max_features = 1000)
feature_vector = tfidf_vectorizer.fit(train_ds.text)
train_ds_features = tfidf_vectorizer.transform(train_ds.text)
features = feature_vector.get_feature_names()

from sklearn.naive_bayes import GaussianNB
train_X, test_X, train_y, test_y = train_test_split(train_ds_features,
train_ds.sentiment,
test_size = 0.3, random_state = 42)
```

	Precision	Recall	f1-score	support
0	0.96	0.96	0.96	873
1	0.97	0.97	0.97	1203
avg/total	0.97	0.97	0.97	2076

CHALLENGES OF TEXT ANALYTICS

Building model using N-Grams

```
tfidf_vectorizer = TfidfVectorizer(max_features=500,
stop_words='english', tokenizer=get_stemmed_okens, ngram_range=(1,2))
train_X, test_X, train_y, test_y = train_test_split(train_ds_features,
train_ds.sentiment, test_size = 0.3, random_state = 42)
nb_clf = BernoulliNB()
nb_clf.fit(train_X.toarray(), train_y)
test_ds_predicted = nb_clf.predict(test_X.toarray())
```

	precision	recall	f1-score	support
0	1.00	0.94	0.97	873
1	0.96	1.00	0.98	1203
avg/total	0.97	0.97	0.97	2076

Thank You!