Sabbir Ahmed DATE: May 2, 2018 **MATH 407:** HW 13

4.2 1 Use the division algorithm to find the quotient and remainder when f(x) is divided by g(x) over the field of rational numbers \mathbb{Q} .

c
$$f(x) = x^5 + 1$$
, $g(x) = x + 1$
Pf.

2 Use the division algorithm to find the quotient and remainder when f(x) is divided by g(x) over the indicated field.

c
$$f(x) = x^5 + 2x^3 + 3x^2 + x - 1$$
, $g(x) = x^2 + 5$ over \mathbb{Z}_5
Pf.

3 Find the greatest common divisor of f(x) and f', over \mathbb{Q} .

d
$$f(x) = x^4 + 2x^3 + 3x^2 + 2x + 1$$

$$Pf.$$

5 Find the greatest common divisor of the given polynomials, over the given field.

c
$$f(x) = x^5 + 4x^4 + 6x^3 + 6x^2 + 5x + 2$$
, $x^4 + 3x^2 + 3x + 6$ over \mathbb{Z}_7
Pf.

9 Let $a \in \mathbb{R}$, and let $f(x) \in \mathbb{R}[x]$, with derivative f'(x). Show that the remainder when f(x) is divided by $(x-a)^2$ is f'(a)(x-a)+f(a).

$$\Box$$

11 Find the irreducible factors of $x^6 - 1$ over \mathbb{R} .

$$\Box$$

18 Compute the following products.

b
$$(a+bx)(c+dx) \equiv ??? \pmod{x^2-2}$$
 over \mathbb{Q} . \square