## Replicate

```
library(ggplot2)
library(gridExtra)
library(scales)
library(plyr)
library(reshape2)
library(psych)
set.seed(123457)
data = rnorm(1000000, mean = 0, sd = 1)
data = as.data.frame(data)
library(ggplot2)
library(gridExtra)
ggplot(data, aes(x = data, fill = "red")) +
  geom_histogram(bins=29) +
  geom_vline(xintercept=c(-1.75, 1.75)) +
  annotate("text", label = "Few value are low,", x = -3.5, y = 75000) +
  annotate("text", label = "and few are extremely low", x = -3.4, y = 70000) +
  annotate("text", label = "Few value are high", x = 3.5, y = 75000) +
  annotate("text", label = "and few are extremely high", x = 3.4, y = 70000) +
  annotate("text", label = "The tallest bars are here", x = 0, y = 150000) +
  annotate("text", label = "It means most of the values are average", x = 0, y = 145000) +
  labs(title = "Meet The Normal Distribution", x = "Values", y = "Number Of Values(Frequency)") +
  theme(legend.position = 'none')
```



```
# Values for hists
bad = c(0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5,5,6)
average = c(0,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6)
good = c(0,1,1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6)
uniform = c(0,0,0,0,1,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6)
bad <- as.data.frame(bad)</pre>
average <- as.data.frame(average)</pre>
good <- as.data.frame(good)</pre>
uniform <- as.data.frame(uniform)</pre>
c = ggplot(bad, aes(x = bad, fill = "red")) +
 geom_histogram(bins = 7) +
  annotate("text", label = "Cluster in the Low", x = 4, y = 7.5) +
  annotate("text", label = "Ratings Area(likely)", x = 4, y = 6.7) +
  geom\_segment(aes(x = 2.5, xend = 1.6, y = 7.5, yend = 7.5), arrow = arrow(length = unit(0.2, "cm")))
  theme(legend.position = 'none',
        axis.title = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank())
```

```
b = ggplot(average, aes(x = average, fill = "red")) +
  geom_histogram(bins = 7) +
  annotate("text", label = "Cluster in the", x = 5.4, y = 7.5) +
  annotate("text", label = "Average Ratings", x = 5.4, y = 6.7) +
  annotate("text", label = "Area(Very Likely)", x = 5.4, y = 5.9) +
  geom\_segment(aes(x = 4.3, xend = 3.5, y = 7.5, yend = 7.5), arrow = arrow(length = unit(0.2, "cm")))
  theme(legend.position = 'none',
       axis.title = element blank(),
       axis.text.x = element blank(),
       axis.ticks.x = element_blank(),
       axis.text.y = element_blank(),
        axis.ticks.y = element_blank())
a = ggplot(good, aes(x = good, fill = "red")) +
  geom_histogram(bins = 7) +
  annotate("text", label = "Cluster in the High", x = 2, y = 7.5) +
  annotate("text", label = "Ratings Area(likely)", x = 2, y = 6.7) +
  geom_segment(aes(x = 3.6, xend = 4.5, y = 7.5, yend = 7.5), arrow = arrow(length = unit(0.2, "cm")))
  theme(legend.position = 'none',
       axis.title = element_blank(),
        axis.text.x = element_blank(),
       axis.ticks.x = element_blank(),
       axis.text.y = element_blank(),
        axis.ticks.y = element_blank())
d = ggplot(uniform, aes(x = uniform, fill = "red")) +
  geom_histogram(bins = 7) +
  annotate("text", label = "No Prominent Clusters", x = 3, y = 7.5) +
  annotate("text", label = "Unlikely", x = 3, y = 6.7) +
  theme(legend.position = 'none',
       axis.title = element_blank(),
        axis.text.x = element_blank(),
       axis.ticks.x = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank())
grid.arrange(a, b, c, d, ncol = 2, top="Four Possible Distributions of The Ratings For a Single Movie")
```

Four Possible Distributions of The Ratings For a Single Movie



## IMDB, Rotten Tomatoes, Fandango Or Metacritic?

new\_ds = read.csv("~/Desktop/Opendata/Data\_science/replication/movie\_ratings\_16\_17.csv")
head(new\_ds)

| ## |   | movi                    | e year | metascore  | ${\tt imdb}$ | tmeter   | audience | fandango  |
|----|---|-------------------------|--------|------------|--------------|----------|----------|-----------|
| ## | 1 | 10 Cloverfield Lan      | e 2016 | 76         | 7.2          | 90       | 79       | 3.5       |
| ## | 2 | 13 Hours                | s 2016 | 48         | 7.3          | 50       | 83       | 4.5       |
| ## | 3 | A Cure for Wellnes      | s 2016 | 47         | 6.6          | 40       | 47       | 3.0       |
| ## | 4 | A Dog's Purpos          | e 2017 | 43         | 5.2          | 33       | 76       | 4.5       |
| ## | 5 | A Hologram for the King | g 2016 | 58         | 6.1          | 70       | 57       | 3.0       |
| ## | 6 | A Monster Call          | s 2016 | 76         | 7.5          | 87       | 84       | 4.0       |
| ## |   | n_metascore n_imdb n_tr | neter  | n_audience | nr_me        | etascore | nr_imdb  | nr_tmeter |
| ## | 1 | 3.80 3.60               | 4.50   | 3.95       |              | 4.0      | 3.5      | 4.5       |
| ## | 2 | 2.40 3.65               | 2.50   | 4.15       |              | 2.5      | 3.5      | 2.5       |
| ## | 3 | 2.35 3.30               | 2.00   | 2.35       |              | 2.5      | 3.5      | 2.0       |
| ## | 4 | 2.15 2.60               | 1.65   | 3.80       |              | 2.0      | 2.5      | 1.5       |
| ## | 5 | 2.90 3.05               | 3.50   | 2.85       |              | 3.0      | 3.0      | 3.5       |
| ## | 6 | 3.80 3.75               | 4.35   | 4.20       |              | 4.0      | 4.0      | 4.5       |
| ## |   | nr audience             |        |            |              |          |          |           |

```
## 1
             4.0
## 2
             4.0
## 3
             2.5
## 4
             4.0
## 5
             3.0
## 6
             4.0
a = ggplot(new_ds, aes(x = imdb, fill = "red")) +
 geom histogram(bins = 20) +
 geom_vline(xintercept=c(3, 7)) +
 labs(x = 'IMDB \setminus n(0-10)') +
 theme(legend.position = 'none',
        axis.title.y = element_blank())
b = ggplot(new_ds, aes(x = fandango, fill = "red")) +
  geom_histogram(bins = 7) +
  geom_vline(xintercept=c(1.5, 3.5)) +
  labs(x = 'Fandango \n (0-5 Stars)') +
 theme(legend.position = 'none',
        axis.title.y = element_blank())
c = ggplot(new_ds, aes(x = metascore, fill = "red")) +
  geom_histogram(bins = 20) +
  geom_vline(xintercept=c(30, 75)) +
 labs(x = 'Metascore \n (0-100)') +
 theme(legend.position = 'none',
        axis.title.y = element_blank())
d = ggplot(new_ds, aes(x = tmeter, fill = "red")) +
 geom_histogram(bins = 20) +
  geom_vline(xintercept=c(30, 70)) +
 labs(x = 'Tomatometer n(0-100\%)') +
 theme(legend.position = 'none',
        axis.title.y = element_blank())
grid.arrange(a, b, c, d, ncol = 2, top="Looking For Something Normal")
```



## The Distribution For 4917 IMDB Movie Ratings Mirrors The One Above



fte\_ds = read.csv("~/Desktop/Opendata/Data\_science/replication/fandango\_score\_comparison.csv")
head(fte\_ds)

| ## |   |                       | F       | FILM I | RottenTomatoes  | RottenTomat | oes_User   |
|----|---|-----------------------|---------|--------|-----------------|-------------|------------|
| ## | 1 | Avengers: Age of Ulta | ron (20 | )15)   | 74              |             | 86         |
| ## | 2 | Cindere               | lla (20 | )15)   | 85              |             | 80         |
| ## | 3 | Ant-I                 | Man (20 | )15)   | 80              |             | 90         |
| ## | 4 | Do You Belie          | re? (20 | )15)   | 18              |             | 84         |
| ## | 5 | Hot Tub Time Machine  | e 2 (20 | )15)   | 14              |             | 28         |
| ## | 6 | The Water Divi        | ner (20 | )15)   | 63              |             | 62         |
| ## |   | Metacritic Metacritic | c_User  | IMDB   | Fandango_Stars  | Fandango_R  | atingvalue |
| ## | 1 | 66                    | 7.1     |        | 5.0             | _           | 4.5        |
| ## | 2 | 67                    | 7.5     | 7.1    | 5.0             |             | 4.5        |
| ## | 3 | 64                    | 8.1     | 7.8    | 5.0             |             | 4.5        |
| ## | 4 | 22                    | 4.7     | 5.4    | 5.0             |             | 4.5        |
| ## | 5 | 29                    | 3.4     | 5.1    | 3.5             |             | 3.0        |
| ## | 6 | 50                    | 6.8     | 7.2    | 4.5             |             | 4.0        |
| ## |   | RT_norm RT_user_norm  | Metacr  | ritic  | _norm Metacriti | c_user_nom  | IMDB_norm  |
| ## | 1 | 3.70 4.3              |         |        | 3.30            | 3.55        | 3.90       |
| ## | 2 | 4.25 4.0              |         |        | 3.35            | 3.75        | 3.55       |
| ## | 3 | 4.00 4.5              |         |        | 3.20            | 4.05        | 3.90       |
| ## | 4 | 0.90 4.2              |         |        | 1.10            | 2.35        | 2.70       |
| ## | 5 | 0.70 1.4              |         |        | 1.45            | 1.70        | 2.55       |
| ## | 6 | 3.15 3.1              |         |        | 2.50            | 3.40        | 3.60       |
| ## |   | RT_norm_round RT_use  | r_norm_ | round  | d Metacritic_no | rm_round    |            |
| ## | 1 | 3.5                   |         | 4.5    |                 | 3.5         |            |
| ## | 2 | 4.5                   |         | 4.0    | )               | 3.5         |            |

```
## 3
                4.0
                                    4.5
                                                            3.0
## 4
                1.0
                                    4.0
                                                            1.0
## 5
                0.5
                                    1.5
                                                            1.5
## 6
                3.0
                                    3.0
                                                            2.5
     Metacritic_user_norm_round IMDB_norm_round Metacritic_user_vote_count
##
## 1
                              3.5
                                               4.0
## 2
                              4.0
                                               3.5
                                                                            249
## 3
                              4.0
                                               4.0
                                                                            627
## 4
                              2.5
                                               2.5
                                                                             31
## 5
                              1.5
                                               2.5
                                                                             88
## 6
                              3.5
                                               3.5
                                                                             34
##
     IMDB_user_vote_count Fandango_votes Fandango_Difference
## 1
                    271107
                                     14846
                                                             0.5
## 2
                     65709
                                     12640
                                                             0.5
## 3
                    103660
                                     12055
                                                             0.5
## 4
                      3136
                                      1793
                                                             0.5
## 5
                     19560
                                      1021
                                                             0.5
## 6
                     39373
                                       397
                                                             0.5
a = ggplot(fte_ds, aes(x = fte_ds$IMDB, fill = "red")) +
  geom_histogram(bins = 20) +
  geom_vline(xintercept=c(3, 7)) +
  labs(x = 'IMDB \setminus n(0-10)') +
  theme(legend.position = 'none',
        axis.title.y = element_blank())
a
20 -
15 -
10 -
 5 -
 0 -
                                     5
                                                                               8
                                             IMDB
```

(0-10)





grid.arrange(a, b, c, d, ncol = 2, top="Different Movie, Same Story")

## Different Movie, Same Story





