Project Development Phase Model Performance Test

Date	18 November 2022
Team ID	PNT2022TMID28539
Project Name	A Novel Method For Handwritten Digit Recognition System.
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary		Model: "sequential" Layer (type) Output Shape Param # conv2d (Conv2D) (None, 26, 26, 64) 640 conv2d_1 (Conv2D) (None, 24, 24, 32) 18464 flatten (Flatten) (None, 18432) 0 dense (Dense) (None, 10) 184330 Total params: 203,434 Trainable params: 203,434 Non-trainable params: 0
2.	Accuracy	Training Accuracy - 99% Validation Accuracy - 97%	0.25 - 0.20 - 0.15 - 0.10 - 0.05 - 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.99 - 0.98 - 0.95 - 0.95 - 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

3.	Confusion Matrix		Confusion matrix												
] 3.	Comasion Watrix		0 -	968	1	2	0	0	1	4	0	3	1		
			1-	1	1124	3	1	0	3	2	0	1	0		- 1000
			2 -	2	6	1011	0	2	0	2	6	3	0		
			3 -	0	0	6	982	0	13	0	3	2	4		- 800
			pel 4-	1	0	2	0	957	0	3	1	1	17		- 600
			Frue label	1	0	0	3	0	881	4	0	2	1		
			6 -	7	3	0	0	3	6	938	0	1	0		- 400
			7 -	0	5	16	2	3	1	0	994	0	7		
			8 -	7	1	4	1	1	3	3	5	943	6		- 200
			9 -	4	6	2	2	8	9	0	7	4	967		
				0	>	้	3	b .	5	6	1	8	9		⊥ 0
							Pr	edicte	ed lab	el					
4.	Classification Report					pr	ecisi	on	re	call	f1-	scor	e :	suppo	rt
			ø			0.98 0.9		0.99	99 0.98		3 980		30		
					1 0.		98		0.99		0.9		1135		
				2 3 4			0.	97 99		0.98 0.97		0.9		1032 1010 982	
								98		0.97		0.9			
			5 6			96		0.99		0.9		892			
						0.	98		0.98		0.9	8	958		
					7		Θ.	98		0.97		0.9		10	28
					8			98		0.97		0.9			74
					9		0.	96		0.96		0.9	6	10	99
			accuracy macro avg		racy						0.9	8	100	90	
					100000000000000000000000000000000000000		0.98		0.9	.98 1000		90			
			wei	ghte	d avg		0.	98		0.98		0.9	8	100	90