1. ¿Qué es la Calidad de Servicio (QoS) en redes?
A) Conjunto de técnicas para garantizar ciertos niveles de rendimiento*
B) Protocolo de seguridad
C) Método de compresión de datos
2. ¿Cuáles son los principales parámetros de QoS?
A) Ancho de banda, retardo, jitter y pérdida de paquetes*
B) Solo el ancho de banda
C) Velocidad del procesador y memoria
3. ¿Qué es el jitter en el contexto de QoS?
A) Variación en el retardo de los paquetes*
B) Pérdida de paquetes
C) Ancho de banda disponible
4. ¿Cuál es la diferencia entre servicios Best Effort e Integrated Services?
A) Best Effort no garantiza QoS, Integrated Services sí*
B) No hay diferencia
C) Best Effort es más rápido
5. ¿Qué es RSVP (Resource Reservation Protocol)?
A) Protocolo para reservar recursos en la red*
B) Protocolo de enrutamiento
C) Protocolo de seguridad

A) Falta de escalabilidad*
B) Baja velocidad
C) Alta complejidad de configuración
7. ¿Qué son los Differentiated Services (DiffServ)?
A) Arquitectura escalable para QoS basada en clases de tráfico*
B) Protocolo de enrutamiento avanzado
C) Método de encriptación
8. ¿Qué es el campo DSCP en el encabezado IP?
A) Campo usado para marcar la clase de servicio del paquete*
B) Campo de dirección de destino
C) Campo de control de errores
9. ¿Cuántos bits tiene el campo DSCP?
A) 6 bits*
B) 8 bits
C) 4 bits
10. ¿Qué es un PHB (Per-Hop Behavior) en DiffServ?
A) Comportamiento de reenvío aplicado a una clase de tráfico*
B) Protocolo de enrutamiento
C) Algoritmo de compresión
11. ¿Cuáles son los principales PHBs definidos en DiffServ?
A) Default, Assured Forwarding (AF) y Expedited Forwarding (EF)*

B) Solo Best Effort
C) TCP y UDP
12. ¿Qué caracteriza al PHB Expedited Forwarding (EF)?
A) Baja latencia y baja pérdida para tráfico premium*
B) Alto throughput para transferencias masivas
C) Servicio básico sin garantías
13. ¿Qué es el traffic shaping?
A) Técnica para controlar la velocidad de envío de tráfico*
B) Método de compresión
C) Protocolo de seguridad
14. ¿Qué es el traffic policing?
A) Técnica para monitorear y limitar el tráfico que excede ciertos límites*
B) Método de enrutamiento
C) Protocolo de autenticación
15. ¿Cuál es la diferencia entre traffic shaping y traffic policing?
A) Shaping suaviza el tráfico, policing lo descarta o marca*
B) No hay diferencia
C) Policing es más eficiente
16. ¿Qué es un algoritmo de scheduling en QoS?
A) Algoritmo que determina el orden de transmisión de paquetes*
B) Algoritmo de enrutamiento

C) Algoritmo de compresión
17. ¿Qué es FIFO (First In, First Out) en el contexto de scheduling?
A) Algoritmo que transmite paquetes en orden de llegada*
B) Protocolo de control de flujo
C) Método de almacenamiento
18. ¿Qué es Priority Queuing?
A) Algoritmo que da prioridad absoluta a ciertas clases de tráfico*
B) Método de compresión prioritaria
C) Protocolo de seguridad
19. ¿Cuál es el problema principal del Priority Queuing?
A) Puede causar inanición de tráfico de baja prioridad*
B) Es muy lento
C) Consume mucha memoria
20. ¿Qué es Weighted Fair Queuing (WFQ)?
A) Algoritmo que asigna ancho de banda proporcionalmente a los pesos*
B) Protocolo de enrutamiento
C) Método de encriptación
21. ¿Qué ventaja tiene WFQ sobre FIFO?
A) Proporciona fairness entre diferentes flujos*
B) Es más simple de implementar
C) Consume menos recursos

22. ¿Qué es Class-Based Weighted Fair Queuing (CBWFQ)?
A) Extensión de WFQ que permite definir clases de tráfico*
B) Protocolo de control de congestión
C) Método de compresión
23. ¿Qué es el algoritmo Token Bucket?
A) Algoritmo para controlar la velocidad de tráfico usando tokens*
B) Algoritmo de enrutamiento
C) Protocolo de autenticación
24. ¿Cómo funciona el algoritmo Token Bucket?
A) Los tokens se generan a velocidad constante y se consumen al enviar paquetes*
B) Los paquetes se almacenan en buckets
C) Se asignan tokens aleatoriamente
25. ¿Qué es el algoritmo Leaky Bucket?
A) Algoritmo que suaviza el tráfico a velocidad constante*
B) Método de detección de errores
C) Protocolo de seguridad
26. ¿Cuál es la diferencia entre Token Bucket y Leaky Bucket?
A) Token Bucket permite ráfagas, Leaky Bucket las suaviza*
B) No hay diferencia
C) Leaky Bucket es más eficiente

27. ¿Qué es la admisión de control en QoS?
A) Proceso de decidir si aceptar nuevas conexiones basado en recursos*
B) Control de acceso de usuarios
C) Método de encriptación
28. ¿Por qué es importante la admisión de control?
A) Para evitar degradar la QoS de conexiones existentes*
B) Para aumentar la velocidad
C) Para reducir costos
29. ¿Qué es el SLA (Service Level Agreement)?
A) Acuerdo que define los niveles de servicio garantizados*
B) Protocolo de red
C) Algoritmo de enrutamiento
30. ¿Qué parámetros típicamente incluye un SLA?
A) Disponibilidad, latencia, throughput y pérdida de paquetes*
B) Solo el precio del servicio
C) Información de contacto
31. ¿Qué es el traffic engineering?
A) Optimización del uso de recursos de red para mejorar rendimiento*
B) Diseño físico de redes
C) Programación de aplicaciones

A) Load balancing, path optimization y resource allocation*
B) Solo compresión de datos
C) Únicamente encriptación
33. ¿Qué es MPLS (Multiprotocol Label Switching) en el contexto de QoS?
A) Tecnología que permite traffic engineering y QoS mediante etiquetas*
B) Protocolo de enrutamiento básico
C) Método de compresión
34. ¿Cómo contribuye MPLS a la QoS?
A) Permite establecer caminos con garantías de QoS*
B) Solo mejora la velocidad
C) Reduce el costo
35. ¿Qué es la clasificación de tráfico en QoS?
A) Proceso de identificar y categorizar diferentes tipos de tráfico*
B) Ordenamiento de paquetes por tamaño
C) Compresión de datos
36. ¿Qué criterios se usan para clasificar tráfico?
A) Direcciones IP, puertos, protocolos y contenido de aplicación*
B) Solo el tamaño del paquete
C) Únicamente la hora de envío
37. ¿Qué es el marcado de paquetes en QoS?
A) Proceso de etiquetar paquetes con información de QoS*

- B) Añadir checksums C) Comprimir encabezados 38. ¿Dónde se puede realizar el marcado de paquetes? A) En hosts, switches, routers o dispositivos de red* B) Solo en el destino C) Únicamente en servidores 39. ¿Qué es la gestión de colas en QoS? A) Administración de buffers y algoritmos de scheduling* B) Ordenamiento de usuarios C) Gestión de archivos 40. ¿Por qué es importante la gestión de colas? A) Para controlar latencia, jitter y pérdida de paquetes* B) Para ahorrar espacio C) Para mejorar la seguridad 41. ¿Qué es el concepto de 'fairness' en QoS? A) Distribución equitativa de recursos entre usuarios o aplicaciones* B) Velocidad de transmisión C) Nivel de seguridad
- A) Naturaleza best-effort de IP y falta de estado en routers*

42. ¿Qué desafíos presenta la implementación de QoS en redes IP?

B) Solo problemas de velocidad

C) Únicamente cuestiones de costo
43. ¿Qué es el over-provisioning como alternativa a QoS?
A) Proporcionar más ancho de banda del necesario*
B) Usar múltiples protocolos
C) Implementar redundancia
44. ¿Cuáles son las ventajas y desventajas del over-provisioning?
A) Simple pero costoso e ineficiente*
B) Complejo pero barato
C) No tiene desventajas
45. ¿Qué aplicaciones requieren típicamente QoS?
A) VoIP, video streaming, aplicaciones en tiempo real*
B) Solo navegación web
C) Únicamente email
46. ¿Cómo afecta la QoS al diseño de protocolos de aplicación?
A) Deben ser conscientes de QoS y adaptarse a condiciones de red*
B) No afecta al diseño
C) Solo afecta la interfaz de usuario
47. ¿Qué es la medición y monitoreo de QoS?
A) Proceso de evaluar si se cumplen los objetivos de QoS*
B) Contar paquetes enviados
C) Medir el consumo eléctrico

- 48. ¿Qué herramientas se usan para monitorear QoS?
- A) SNMP, NetFlow, sondas de red y herramientas de análisis*
- B) Solo calculadoras
- C) Únicamente editores de texto
- 49. ¿Qué es la QoS end-to-end?
- A) Garantizar QoS desde el origen hasta el destino final*
- B) QoS solo en un enlace
- C) QoS solo en el router
- 50. ¿Qué desafíos presenta la QoS end-to-end?
- A) Coordinación entre múltiples dominios y tecnologías*
- B) Solo problemas técnicos simples
- C) No presenta desafíos