Online Computation, Ex 3.

David Ponarovsky

March 11, 2023

the gain of expert i at step t. Hedge updates:

$$P_{i,t+1} = \frac{e^{\eta G_{i,t}}}{\sum_{j} e^{\eta G_{j,t}}}$$

where $G_{i,t} = \sum_{s \leq t} g_{i,t}$. Prove that the regret of Hedge at time T is $O(\sqrt{T \log n})$, for a good choice of the learning rate η , against the adaptive adversary.

Solution. Let us prove the following inequality first:

Lemma. Let $w_0, w_1, ... w_n \in [0, 1]^n$ such that $\sum_i w_i = 1$ then there exists η such that:

$$\sum_{i} w_i e^{\eta x_i} \le e^{\eta} e^{\sum_{i} w_i x_i}$$

Define the potential $\psi(t) = \sum_{i} e^{\eta G_{i,t}}$ and notice that by the fact that e^x is positive function we have that $\psi(t) \geq$ $e^{\eta \max_j G_{i,j}}$. In addition:

$$\frac{\psi(t+1)}{\psi(t)} = \psi(t)^{-1} \sum_{j} e^{\eta G_{j,t} + \eta g_{j,t+1}}$$

$$= \mathbf{E} \left[e^{\eta g_{t}} \right] \leq e^{\mathbf{E} \left[\eta g_{t} \right]} \Rightarrow \psi(T) \leq \psi(0) e^{\eta \mathbf{E} \left[G_{t} \right]}$$

$$\psi(t+1) = \sum_{j} e^{\eta G_{j,t+1}} = \sum_{j} e^{\eta G_{j,t} + \eta g_{j,t+1}}$$

$$\leq \sum_{j} e^{\eta G_{j,t}} \left(1 + c_{1} \eta g_{j,t+1} \right) = \psi(t) + c_{1} \eta \psi(t) \mathbf{E} \left[g_{t+1} \right]$$

$$\leq e^{\eta} \left(1 + c_{2} \right) \psi(t) \mathbf{E} \left[g_{t+1} \right]$$

$$\leq \prod_{t} \left(1 + c_{1} \mathbf{E} \left[g_{t} \right] \right) \left(\psi(0) \right) \leq e^{c_{2} \mathbf{E} \left[\sum g_{t} \right]} \psi(0)$$

$$\leq e^{c_{2} \mathbf{E} \left[G_{t} \right]} \cdot e^{\eta} \eta$$

So after T steps, by taking the logaritm of both sides, we obtain that the regret is bounded by $R_T \leq$.

ex2. Show a lower bound of $\Omega\left(\sqrt{T}\right)$ in the experts setting on the regret of any online algorithm against the oblivious adversary.

Solution. solution.

ex1. Consider the experts setting with gains: $g_{i,t} \in [0,1]$ is ex3. Consider a system of linear inequalities $Ax \ge b$, where $A \in [0,\infty]^{m \times n}, b \in [0,\infty]^m$, and unknown $x \in [0,\infty]^n$. (we are seeking a non-negative solution). An ε -approximate solution $x \geq 0$ satisfies $Ax \geq b - \varepsilon 1$. Suppose we have an efficient procedure for following problem: Given p \in $[0,1]^m, \sum_{i \in [m]} p_i = 1$, decide if exists $x \ge 0, p^\top Ax \ge p^\top b$. Show how to find an ε -approximate solution to $Ax \geq b$. Analyze the run-time.

Solution. solution.

ex4. Recall that we showed, for EXP updates, that w.p.

$$RT \le \beta nT + \gamma T + (1+\beta)\eta + \frac{\ln(\delta^{-1}n)}{\beta} + \frac{\ln n}{\eta}$$

Infer that for the right choice of β, γ, η

$$\mathbf{E}\left[R_T\right] = O\left(\sqrt{Tn\ln n}\right)$$