$$Q(i)$$
 $H_0: M=21.8$
 $H_1: M \neq 21.8$

$$Q^{2}$$
) $H_{0}: \mu = 40$
 $H_{1}: \mu < 40$

Given:
$$n = 64$$
, $\overline{x} = 38$, $\sigma = 5.8$

Test stadistic $Z = \frac{\overline{x} - 10}{5.8} = \frac{38 - 40}{5.8}$
 $= -2.76$

There is moderate evidence against Ho in favour of H1. Hence there is indication from data that average life span is significantly less than 40 months.

Q3)
$$H_0: U = 20000$$

 $H_1: U > 20000$

Test Statistic
$$Z = \frac{\bar{x} - M_0}{6 \text{fm}}$$

 $= \frac{23500 - 20000}{3900 \text{fm}}$
 $= \frac{3500}{390}$
 $= 8.97$

There is very strong evidence against Ho in favour of HI. Hence we conclude based on the observations that mean distance travelled is significantly more than 20 000 km #

Population 1 (lab)

Mean M_1 Variance G_1^2 $N_1 = 11$ $\overline{X}_1 = 85$ $S_1 = 4.7$ Population 2 (no)

Mean M_2 Variance G_2^2 $N_2 = 17$ $\overline{X}_2 = 79$ $S_2 = 6.1$

Ho: 11,-12=8

H1: 11,-12<8

Assuming equal variances, $S_{p}^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2}$ $= \frac{(10)(4.7^{2}) + (16)(6.1^{2})}{26}$

= 31.395

Test-Statistic
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{S_p \sqrt{n_1 + n_2}}$$

with 26 degrees of freedom

$$= \frac{(85-79)-8}{\sqrt{31.395}\sqrt{\frac{1}{11}+\frac{1}{17}}}$$

From Stadistical table,

where P(T<-0.856)= 0.20 P(T<-1.058)

Since 0.15 < p-value < 0.20

There is no evidence against Ho in favour
of H. We conclude lab course increases the average

grade by at least 8 points.

Pog	HOT	Cold	difference.	
1	5120	8200	-3080	
2	(0 000	8600	1400	
3	10 000	9200	800	
4	10 000	6200	3800	$\frac{1}{d} = \frac{5805}{8}$
5	10 000	10000	0	= 725-625
6	7900	5200	2700	Sd Jn-1 & (d:- J)2
7	510	885	-375	= 2072.2
8	1020	460	560	
			9,=5805	

Test Statistic
$$t = \frac{d-d_0}{syln}$$
 with with freedom
$$= \frac{725.625 - 0}{2072.2}$$
 with $\frac{2072.2}{\sqrt{8}}$ of freedom

2 (0.15) < p-value < 2 (0.20)

That is, 0.30 < p-value < 0.40

There is no evidence against the in favour of H1. Hence there is no indication from data that there is a significant difference in strength between hot and cold incisions.

#

Q6) Given:
$$n = 64$$
, $\bar{\chi} = 24.17$, $s^2 = 4.25$

$$H_0: \sigma^2 = 4.2$$

Test Statistic
$$\chi^2 = \frac{(n-1)s^2}{s_0^2}$$
 with $n-1$ degrees of freedom

$$= \frac{(63)(4.25)}{4.2} \quad \text{with } 63$$

$$= \frac{63}{4.2} \quad \text{degrees of freedom}$$

$$= 63.75$$

no data for Based on Chi-squared distribution table with 60 degrees of freedom, <

63 degrees of freedom

$$0.30 < P(\Re^2 > 63.75) < 0.50$$

60 degrees of freedom So no evidence against Ho in favour of HI. Hence we conclude based on observations that 62 is not significantly different from 4.2 ppm.

Q7) population 1 (Men)
$$N_1 = 11$$

$$S_1 = 6.1$$

population 2 (Women)
$$N_2 = 14$$

$$S_2 = 5.3$$

$$H_0: G_1^2 = G_2^2$$

$$H_1: G_1^2 > G_2^2$$

$$H_0: G_1^2 = G_2^2 \quad \left(\text{ or } \frac{G_1^2}{G_2^2} = 1 \right)$$

$$H_1: G_1^2 > G_2^2 \left(\text{ or } \frac{G_1^2}{G_2^2} > 1 \right)$$

Test Statistic
$$f = \frac{S_1^2}{S_2^2}$$
 with N_1-1 , N_2-1 degrees of freedom

$$=\frac{6.1^2}{5.3^2}$$
 with 10, 13 degrees of freedom

Since the test statistic f = 1.33 is not in critical region, we do not reject to at 0.05 level of significance. We conclude based on our observations that it is not significant that 6,2 > 622

Ho: Die is fair

H,: Die is not fair

$$\frac{\chi}{0i}$$
 | 1 2 3 4 5 6 | $e_i = \frac{1}{6}(180)$ | = 30 | e_i | $e_i = \frac{1}{6}(180)$ | e_i | e_i

Test Statistic
$$\chi^2 = \frac{5(0i-ei)^2}{ei}$$

= $\frac{(28-30)^2}{30} + \frac{(36-30)^2}{30} + \dots + \frac{(23-30)^2}{30}$
= $\frac{(28-30)^2}{30} + \frac{(36-30)^2}{30} + \dots + \frac{(23-30)^2}{30}$
= $\frac{(28-30)^2}{30} + \frac{(36-30)^2}{30} + \dots + \frac{(23-30)^2}{30}$
= $\frac{(28-30)^2}{30} + \frac{(36-30)^2}{30} + \dots + \frac{(23-30)^2}{30}$

Since the test stadistic $\chi^2 = 4.47$ is not in critical negion, we do not reject the at 0.01 level of significance. We conclude based on our observations that it is not significant that die is unfair.

Q9) Ho: The two factors are independent Ho: " " not independent

Given: n=180, x=0.05

	Non-smoker	Moderate Smoker	heavy 8moker	Sum
hypertension	21 (33.35)	36 (29.97)	30 (23-68)	87
No hypertension	48 (35.65)	26 (32·03)	19 (25·32)	93
Column	69	62	49	Grand Total = 180

Figures given in brackets are expected Values.

Test Statistic
$$\chi^2 = \frac{(21-33.4)^2}{33.4} + \cdots + \frac{(19-25.4)^2}{25.4}$$

= 14.60 with $(2-1)(3-1)$
= 2 degrees of freedom.

Since the fest statistic $\chi^2=14.60$ is in the critical region, we reject the at 0.05 level of significance. We conclude based on our observations that the factors are not independent at 0.05 level of significance.

Q10) Let p be the proportion of the public allergic to some cheese products.

 $H_0: p=0.3$ consideration of $p \ge 0.3$

H: P<0.3

(i) Type I error : Rejection of Ho when Ho is true

So in this case it is "Concluding that fewer than 30% of the public is allergic to some cheese products when in fact, 30% or more are allergic."

				9,
(ii) Type II e	ver: Do not	Reject Ho	when t	lo is false
So in this	case it is " c	concluding	that a	t least
309 of the pu	blic are aller	gic to some	. choese pr	roducis
when, in fact	, fewer than	30% are	allergic	
				1
QII)(i)	VI saining ineffec		/	
,	Varing ineffer	tive) when	in fact, f	raing is

.. She is testing Ho: training is effective against

Hi: training is ineffective

(ii) Type II error: " (training effective) when in fact / training ineffective

Ho

 H_{1}

oo She is testing

Ho: training is effective

against

H,: training is ineffective

Ho:
$$\mu = 20$$
against

H,: $\mu > 20$

P(Type I emor) = P(X > 21.4 when
$$\mu = 20$$
)
= $P(\frac{X-20}{3\sqrt{525}} - \frac{21.4-20}{3\sqrt{55}})$

$$= |-P(Z \le 2.33)$$

$$= P(\frac{x-21}{3/525} \le \frac{21\cdot 4-21}{3/525})$$

Variance
$$\frac{3}{\sqrt{25}} = 0.6$$

$$0.05$$

$$20 \quad k$$

$$P(X \le K) = 0.95$$
 where K is to be found

Under H₀:
$$\mu = 20$$
,
 $P(\frac{\bar{X}-20}{0.6} \le \frac{k-20}{0.6}) = 0.95$

$$\Rightarrow P(Z \le \frac{k-20}{0.6}) = 0.95$$

From Statistical take,
$$\frac{k-20}{0.6} = 1.645$$

$$\Rightarrow \ \xi = 20 + (0.6)(1.645)$$

The rejection rule is

(iv)
$$P(\text{Type II enor})$$

= $P(\text{not reject Ho when Ho is false})$
= $P(\overline{X} \le 20.987 \text{ when } \mathcal{U} = 21)$
= $P(\frac{\overline{X} - 21}{0.6} \le \frac{20.987 - 21}{0.6})$
= $P(\overline{Z} \le -0.02)$
= 0.4920 #
= $0.49(\text{fo 2 dec.pl.})$