

USART

ATMEGA328P

COMUNICAÇÃO: SERIAL X PARALELO

PARALELO

- Maior Velocidade
- Maior Custo
- Mais susceptível a ruídos
- Curtas distâncias

SERIAL

- 🕨 Menor Velocidade 🗸
- Menor Custo
- Menos susceptível a ruídos
- Longas distâncias

USART

USART (Universal **Synchronous** and **Asynchronous** Receiver and Transmitter)

Síncrono

Assíncrono

Full DUPLEX: Capaz de transmitir e receber simultaneamente

FRAME USART

Formato dos Frames

: Opcional

St: Start Bit (Sempre 0)

P: Bit de paridade (Par ou Impar)

Sp: Stop Bit (Sempre 1)

IDLE: Estado de espera (Sempre 1)

FRAME USART

Exemplo A: Transmitir 0x6F, 8bits, sem paridade, 1 Stop bit.

Exemplo B: Transmitir 0x05, 6bits, paridade impar, 2 Stop bits.

USART NO ATMEGA328P

- Operação Full Duplex (registradores independentes de recepção e transmissão).
- Operação síncrona ou assíncrona.
- Operação síncrona com clock mestre ou escravo.
- Gerador de taxa de comunicação de alta resolução (Baud Rate Generator)
- Suporta frames seriais com 5, 6, 7, 8 ou 9 bits de dados e 1 ou 2 bits de parada.
- Gerador de paridade par ou impar e conferência de paridade por hardware.
- Detecção de colisão de dados e erros de frames.
- Filtro para ruído, incluindo bit de início falso e filtro digital passa baixa.
- Três fontes separadas de interrupção (transmissão completa, recepção completa e esvaziamento do registrador de dados).
- Modo de comunicação assíncrono com velocidade duplicável.
- Pode ser utilizada como interface SPI mestre.

USART NO ATMEGA328P

Baud Rate

• A taxa de transmissão deve ser a mesma no transmissor e no receptor

	Modo de operação	Equação para o cálculo da taxa de transmissão	Equação para o cálculo do valor de UBRR0
T	Modo Normal Assíncrono (U2X0 = 0)	$TAXA = \frac{f_{OSC}}{16(UBRR0 + 1)}$	$\underline{UBRR0} = \frac{f_{OSC}}{16.TAXA} - 1$
	Modo de Velocidade Dupla Assíncrono (U2X0 = 1)	$TAXA = \frac{f_{OSC}}{8(UBRR0 + 1)}$	$UBRR0 = \frac{f_{OSC}}{8.TAXA} - 1$
	Modo Mestre Síncrono	$TAXA = \frac{f_{OSC}}{2(UBRR0 + 1)}$	$UBRR0 = \frac{f_{OSC}}{2.TAXA} - 1$

Clock Generator UBRRn [H:L] osc Baud Rate Generator Sync Logic Control Transmitter UDRn (Transmit) Control Parity Generator DATA BUS Control Receiver RX Clock Recovery Control Data Receive Shift Register RxDn Control Recovery Parity · UDRn (Receive) Checker UCSRnA ✓ **UCSRnB** UCSRnC -

DIAGRAMA DE BLOCOS DA USART

UDR0 (USART I/O Data Register)

Os registradores de **envio** e **recepção** compartilham o mesmo endereço. O acesso deles dependerá do contexto, se leitura ou escrita.

UCSROA (USART Control and Status Register A)

- Bit 7 **RXC0** USART Receive Complete
- Bit 6 − **TXC0** − USART Transmit Complete ✓
- Bit 5 − **UDRE0** − USART Data Register Empty ✓
- Bit 4 − **FE0** − Frame Error ✓
- Bit 3 − DOR0 − Data OverRun ✓
- Bit 2 − **UPE0** − USART Parity Error ✓
- Bit I **U2X0** Double the USART transmission speed
- Bit 0 − MPCM0 − Multi-processor Communication Mode ∨

UCSROB (USART Control and Status Register B)

- Bit 7 − **RXCIE0** − RX Complete Interrupt Enable ✓
- Bit 6 − TXCIE0 −TX Complete Interrupt Enable
- Bit 5 **UDRIE0** USART Data Register Empty Interrupt Enable —
- Bit 4 − **RXEN0** − Receiver Enable ✓
- Bit 3 − TXEN0 − Transmitter Enable ✓
- Bit 2 − **UCSZ02** − Character Size ✓
- Bit I − **RXB80** − Receive Data Bit 8 (Nono bit)
- Bit 0 − **TXB80** − Transmit Data Bit 8 (Nono bit)

UCSROC (USART Control and Status Register C)

- Bit 7:6 UMSEL01:0 USART Mode Select
- Bits 5:4 **UPM01:0** Parity Mode
- Bit 3 **USBS0** Stop Bit Select

UMSEL01	UMSEL00	Modo de operação	
0	0	assíncrono	
0	I	síncrono 🗸	
I	0	reservado	
I	I	SPI mestre	

USBS0	Stop Bit			
0	I Stop bit	\ \		
I	2 Stop bit	V		

UPM01	UPM00	Modo de Paridade
0	0	Desabilitado 🗸
0	ı	Reservado
I	0	Habilitado, paridade par 🗸
1	ı	Habilitado, paridade ímpar 🕌

• Bits 2:1 – UCSZ01:0 – Character Size

UCSZ02	UCSZ01	UCSZ00	Tamanho do Caractere
0	0	0	5 bits
0	0	1	6 bits
0	1	0	7 bits
0	I	I	8 bits
I	0	0	reservado
I	0	I	reservado
I	1	0	reservado
	I	I	9 bits

• Bit 0 – **UCPOL0** – Clock Polarity

UCPO L0	Mudança do Dado Transmitido (saída do pino TxD0)	Amostragem do Dado Recebido (entrada do pino RxD0)		
0	borda de subida de XCK	borda de descida de XCK		
I	borda de descida de XCK	borda de subida de XCK		

UBRROL e UBRROH (USART Baud Rate Register)

	15	14	13	12	11	10	9	8
UBRR0H	-	-	-	-		UBRI	R[11:8]	
UBRR0L UBRR[7:0]								
	7	6	5	4	3	2	1	0

9600 bps

MAPA DE PINOS DO ATMEGA328P

Pinos da USART


```
#define F CPU 16000000UL //Frequência de trabalho da CPU
#define BAUD 9600 - \S
#define MYUBRR F_CPU/16/BAUD-1
#include <avr/io.h>
#include <util/delay.h>
// ||Função para inicialização da USART||
void USART Init(unsigned int ubrr)
      UBRROH = (unsigned char)(ubrr>>8); //Ajusta a taxa de transmissão
     UBRROL = (unsigned char)ubrr;
     VCSROB = (1<<RXENO) | (1<<TXENO); //Habilita o transmissor e o receptor
     UCSROC = (1<<USBSO) | (3k<UCSZOO); //Ajusta o formato do frame: ,8 bits de dados e 2 de parada
// ||Função para envio de um frame de 5 a 8bits||
void USART Transmit(unsigned char data)
     While(!( UCSR0A & (1<<UDRE0)));//Espera a limpeza do registr. de transmissão
     UDR0 = data; //Coloca o dado no registrador e o envia
// ||Função para recepção de um frame de 5 a 8bits||
unsigned char USART Receive(void)
     while(!(UCSR0A & (1<<RXC0))); //Espera o dado ser recebido</pre>
      return UDR0; //Lê o dado recebido e retorna
void main(void)
     USART Init(MYUBRR);
      while(1)
     USART Transmit('u');
     _delay_ms(200);
      . . .
```

EXEMPLO: USART POLLING

EXEMPLO: USART INTERRUPÇÃO

```
#include <avr/interrupt.h>

// ||Função de tratamento de interrupção - Recepção USART||
ISR(USART_RX_vect)
{
    char recebido;
    recebido = UDR0; //UDR0 contém o dado recebido via USART
    USART_Transmit(recebido);
}

UCSR0B |= (1<<RXCIE0); //Habilita a interrupção de recepção da USART
sei(); //Habilita as interrupções globais</pre>
```


REFERÊNCIAS

IDE

Atmel Studio 7 (gratuito) https://www.microchip.com/mplab/avr-support/atmel-studio-7

Simuladores

- https://www.simulide.com/p/blog-page.html
- https://github.com/lcgamboa/picsimlab/releases
- https://www.labcenter.com/downloads/

Material de referência:

- Datasheet do Atmega 328p: https://www.microchip.com/wwwproducts/en/ATmega328p#datasheet-toggle
- Livro texto: http://borgescorporation.blogspot.com/2012/05/avr-e-arduino-tecnicas-de-projeto.html

