Math 295: Take Home Test 3

Carter Rhea

April 10, 2014

1. Let $A = \mathbb{R}$. Define $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^{3n} \text{ for some } n \in \mathbb{Q}\}$

Prove that R is symmetric and transitive.

Symmetric: Suppose $(x, y) \in R$. By the definition of R, this means $\exists n \in \mathbb{Q}(y = x^{3n})$. Then $\exists n \in \mathbb{Q}(x = y^{3n})$, thus $(y, x) \in R$ since there exists an n which satisfies the relation. Since (x, y) was an arbitrary element of R, R is symmetric.

Transitive: Suppose $(x,y) \in R$ and $(y,x) \in R$. Then $\exists n \in \mathbb{Q}(y=x^{3n})$ and $\exists m \in \mathbb{Q}(z=y^{3m})$. Thus, $\exists n \in \mathbb{Q} \exists m \in \mathbb{Q}(x^{3n}=z^{\frac{m}{3}})$. Then, $\exists n \in \mathbb{Q} \exists m \in \mathbb{Q}(z=x^{3(m+n)})$. Substituting $s=m+n, \exists s \in \mathbb{Q}(z=x^{3s})$, so $(x,z) \in R$, as required. Q.E.D.

2. Suppose that R_1 and R_2 are equivalence relations on a set A. Prove that $R_1 \cap R_2$ is also an equivalence relation on A.

$$R_1 = \{(x, y) \in A \times A \mid xR_1y\}$$

$$R_2 = \{(x, y) \in A \times A \mid xR_2y\}$$

$$R_1 \cap R_2 = \{(x, y) \in A \times A \mid xR_1y \cap xR_2y\}$$

Proof: Reflexive: Let $a \in A$. Then $(a, a) \in R_1$ because R_1 is reflexive, and $(a, a) \in R_2$ because R_2 is reflexive. So $(a, a) \in R_1 \cap R_2$. Thus $R_1 \cap R_2$ is reflexive, as required.

Symmetric: Let $(a,b) \in R_1$. Since R_1 is symmetric, $(b,a) \in R_1$. Also let $(a,b) \in R_2$. Since R_2 is symmetric, $(b,a) \in R_2$. So $(b,a) \in R_1 \cap R_2$. Thus, $R_1 \cap R_2$ is symmetric, as required.

Transitive: Let $(a,b) \in R_1$ and $(b,c) \in R_1$. Since R_1 is transitive, $(a,c) \in R_1$. Also, let $(a,b) \in R_2$ and $(b,c) \in R_2$. Since R_2 is transitive, $(a,c) \in R_2$. So $(a,c) \in R_1 \cap R_2$. Thus $R_1 \cap R_2$ is transitive, as required. Therefore, $R_1 \cap R_2$ has been shown to be an equivalence class on A. Quod Erat Demonstratum.

3. Let $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Find:

(a)
$$f([-1,2]) = [1,4]$$
.

(b)
$$f^{-1}(9)$$

$$f^{-1}(x) = \pm x^{1/2}$$
.

So
$$f^{-1}(x) = \pm \{3\}$$

(c)
$$f^{-1}(\{x \mid x > 9\}) = (-\infty, -3) \cup (3, \infty)$$