Language Identification Using Acoustic Features

Research and Development Project (EE 691)

Kalpesh Patil (130040019)

Guide: Prof. Preeti Rao

Outline

- Introduction
- Dataset Description
- Feature Extraction
- GPPS
- DNN
 - Context-free DNN
 - Context DNN
- Bottleneck Features
 - BNF and Fine Tuning
 - o BNF and GPPS
- Other Approaches
 - LSTM
 - o 1D-CNN
- Conclusion and Future Work

Introduction

Preprocessing
 Noise removal, silence removal

Feature Extraction

- Acoustic features
 MFCC, MFBE, SDC etc.
- Phonotactic
 Discriminate language based on phones
 e.g. N-grams, C-V features
- Prosodic featuresF0 contours, Stress, Intonation

Introduction

- Feature Accumulation
 Sequence of features to single representation
- Decision Layer
 Top end classifier
 e.g. Neural network, SVM

Dataset Description

- CallFriend datasets: half an hour long telephone conversations
- Data preprocessing
 - Silence removal
 Energy based thresholding
 - Speaker Independent splitting
 No common speakers in train and test splits
 - Small chunks of 10sec as a unit utterance

Language	Train	Test
Hindi	3388	813
Tamil	2356	767
Total	5744	1580

Feature Extraction

- MFCC features with delta and delta-delta coefficients
- CMVN normalization to remove bias due to local environmental conditions

Vector Quantization

- Codebook generation for each language
 - MFCC features of each frame of each language as input
 - MiniBatchKMeans for clustering
- A test utterance is classified based on the average distance of its frames from the nearest clusters of each genre
- Performance improves as number of clusters increases

Cluster size	200	300	400	500
Accuracy	75.57	76.77	77.08	77.91

GPPS

Gaussian Posterior Probability Supervector

- GMM-UBM training
 - GMM trained on MFCC features of entire training data
 - o Diagonal covariance matrices for reduced no. of parameters
- GPPS extraction

$$Pr(o_t|\lambda) = \sum_{j=1}^{J} w_j Pr(o_t|\mu_j, \Sigma_j)$$

$$\lambda = \{w_j, \mu_j, \Sigma_j\}, j = 1, 2..J$$

$$\kappa_j = \frac{1}{T} \sum_{t=1}^{T} \frac{w_j Pr(o_t|\mu_j, \Sigma_j)}{\sum_{j=1}^{J} w_j Pr(o_t|\mu_j, \Sigma_j)}$$

$$\kappa = [\kappa_1, \kappa_2, ... \kappa_J]$$

GPPS

Classifier

NN with architecture InputLayer(J), Dense(100,relu), Dropout(0.5), Dense(10,relu), Dropout(0.5), Dense(2)

Performance improves as number of GMM components increase

GMM components	64	128	256	512
Accuracy	83.35	84.81	88.10	90.06

DNN

- Context-free DNN
- Input: MFCC feature vectors of entire training data
 Output: Language id
- Final decision making
 - Majority rule
 - Maximum Likelihood

$$\hat{L} = \underset{i}{argmax} \prod_{n=1}^{N} Pr(y_n = i | x_n)$$

$$\therefore \hat{L} = \underset{i}{argmax} \sum_{n=1}^{N} log(Pr(y_n = i | x_n))$$

Drawbacks

Didn't consider temporal connections across frames

DNN

Context DNN

- Input: a frame with Nc left and right context frames
 Output: Language id
- Final decision making
 Majority rule
 Maximum likelihood

	Majority vote	Maximum total likelihood
Context-free DNN	64.34	65.21
Context DNN	78.57	80.12

Representational image for network topology of context-DNN

Source: I. Lopez-Moreno, et al, "Automatic language identification using deep neural networks"

Bottleneck Features

- Drawbacks of traditional features
 - Hand-crafted features
 - Fixed method of extraction without considering end-goal
 - Language information is latent
- Deep Bottleneck Features
 - Restricted Boltzman Machines
 - Autoencoders
 - Stacked Autoencoders

Bottleneck Features

Autoencoders

- Reconstruct input at the output layer
- Encoder
- Decoder
- Features at the bottleneck layer

BNF and Fine Tuning

Input: (39(2Nc+1)) dimensional context frames

Output: same as input

Objective: Minimize mean squared loss

Architecture

InputLayer(429), Dense(1000,relu), Dropout(0.5), Dense(200,relu), Dropout(0.5), Dense(50,relu)(also the bottleneck layer), Dense(200,relu), Dropout(0.5), Dense(1000,relu), OutputLayer(429)

Fine Tuning

- Cut decoder part and add softmax layer
- Fine tune network with small learning rate

	Majority vote	Maximum total likelihood
Context DNN	80.27	82.46

Results after pretraining with autoencoder

BNF and GPPS

- BNF
 - Better representation of data
 - More discriminative power than MFCC
- GPPS
 - Better classifier
- Best of both worlds
 - GPPS with BNF instead of MFCC
 - Accuracy 92.39% (best so far)

RNN-LSTM

Sequence classifier

RNN

- Unrolling network in time
- Suffer from vanishing gradients

LSTM

- Memory cells (analogous to conveyer belt)
- Input gate, forget gate
- Cell state are expected to contain information related to language
- Accuracy: 70%*

Representational figure for LSTM

Source: "Understanding Istm networks," http://colah.github.io/posts/2015-08- Understanding-LSTMs

^{*}preliminary result, more experimentation required

CNN

Local connectivity
 Weight sharing

 2D-CNN has been explored for language classification Representational diagram of 2D-CNN

Source: G. Montavon, "Deep learning for spoken language identification", NIPS

- 1D-CNN more intuitive than 2D-CNN because local connectivity in temporal dimension only (and not along MFCC feature dimension)
- Accuracy: 78.32%*

Mandi Dataset

- Dialects identification for Marathi language
- Coastal vs Eastern dialects

Accent	Train	Test
Coastal	567	170
Eastern	568	180
Total	1135	350

- GPPS with 512 clusters
 - Accuaracy: **66.57%**
- Possible reasons for low performance
 - High background noise
 - Not enough discrimination in dialect captured in MFCC features

Conclusion and Future Work

- BNF found to be better features than MFCC
- BNF + GPPS performed better than all other techniques in terms of accuracy
- Future Work
 - Transfer learning
 Exploit well trained model trained on larger datasets like CallFriend to be able to use them on smaller datasets like Mandi
 - Dwelling more into advanced methods like LSTM, 1D-CNN etc.

Thanks

Questions?