

Análise Multivariada

Mestrado em Matemática e Aplicações

1º semestre – 2014/2015 13/01/2015 – 11:30

Duração: 3 horas

1º Exame

Justifique convenientemente todas as respostas!

Grupo I	7.5 valores

- 1. Seja X um vetor aleatório de dimensão p, com distribuição normal multivariada de vector de valor esperado μ e matriz de covariâncias Σ . Dadas duas matrizes de coeficientes A e B de dimensão $q \times p$ ($q \le p$) prove que AX e BX são vetores aleatórios independentes se e somente se $A\Sigma B^t = 0$.
- **2.** Seja $X = (X_1, X_2, X_3)^t$ um vetor aleatório com distribuição normal multivariada e $X_2 = (X_2, X_3)^t$, tais que:

$$X_1 \sim \mathcal{N}(0,1)$$
 e $(X_2|X_1 = x_1) \sim \mathcal{N}_2\left(\left(\begin{array}{c} 2x_1 \\ x_1 + 1 \end{array}\right), \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array}\right)\right)$

(a) Determine a distribuição de X.

(2.0)

(b) Determine a distribuição de X_2 .

- (1.0)
- 3. Um campo de trigo foi dividido em 30 parcelas iguais, às quais foram aplicadas um de 3 possíveis fertilizantes, escolhidos aleatoriamente e representados por A, B e C. O volume de trigo colhido em cada parcela conduziu aos seguintes resultados:

Parcela	Tipo	de fert	ilizante				
	A	В	С				
1	4	·6	2				
2	3	7	1				
3	2	7	1				
4	5	5	1	1	498.848	141.613	74.344
5	4	5	3	$S_{n-1} = $	141.613	352.777	-1.163
6	4	5	4	(74.344	-1.163	187.054
7	3	8	3				
8	3	9	3				
9	3	9	2		·		
10	1	6	2				
Média	3.8	4.2	4.1				

Admita as condições que achar necessárias para testar a hipótese de os três fertilizantes, em média, conduzirem a iguais volumes de produção de trigo.

Grupo II	•	2.5 valores

1. Seja U uma variável aleatória com distribuição uniforme no intervalo [0,1], $a \in \mathcal{R}^2 \setminus \{0\}$ um vetor de constantes e X = Ua. Determina as componentes principais associadas a X. Comente os resultados obtidos.

1. Considere que tem os seguintes 5 objetos caracterizados por duas variáveis:

Objeto	x_1	x_2
1	1	1
2	2	1
3	4	5
4	7	7
5	5	7

(a) Calcule a matriz de distâncias City-Block entre os objectos.

(1.0)

(b) Mostre que a distância $d_{k(ij)}$ (entre clusters) usada pelos métodos da ligação média ($group\ average$) (1.5)satisfaz a relação: $d_{k(ij)} = \frac{n_i}{n_i + n_j} d_{ki} + \frac{n_j}{n_i + n_j} d_{kj},$

onde n_i representa o número de observações do *cluster i*.

- (c) Faça a análise de clusters usando o método da ligação média, recorrendo à relação anterior e à matriz de distâncias obtida na alínea 1(a). Desenhe o respectivo dendrograma e diga em quantos clusters sugere dividir os dados.
 - Sugestão: Se não resolveu 1(a), use a matriz de distâncias Euclideanas para resolver esta questão.

Grupo IV

5.0 valores

- 1. Uma variável aleatória tem distribuição normal de valor esperado zero e variância unitária se é observada num item dito regular e tem distribuição normal de valor esperado 7 e variância também unitária se for observada num item anómalo. Sabe-se que 10% dos item produzidos são anómalos.
 - (a) Apresente a regra de classificação baseada no critério que consiste em minimizar a probabilidade total (2.0) de má classificação e calcule essa probabilidade.
 - (1.0)

(2.0)

- (b) Mostre que esta regra é equivalente a maximizar a probabilidade à posteriori. (c) Admita que desconhece os parâmetros da distribuição dos item regulares e anómalos, mas que con-
- tinua a saber que as populações são normais com iguais variâncias. Sabe-se ainda que o custo de classificar erradamente um item anómalo como regular é 5 vezes mais elevado do que classificar erradamente um item regular como anómalo. Considerando que dispoe de 80 observações de itens regulares e 20 anómalos que conduziram aos seguintes valores amostrais:

Classe	Média	Desvio-Padrão
Regulares	-0.11	1.11
Anómalos	6.87	1.22

Calcule a regra de classificação estimada associada a estes dados. Classifique um item caracterizado pelo valor 2.1.

FORMULÁRIO:

- Se $X \sim \mathcal{N}_p(\mu, \Sigma)$ então $E(X_1|X_2 = x_2) = \mu_1 \Sigma_{12}\Sigma_{22}^{-1}(x_2 \mu_2)$ e $Var(X_1|X_2 = x_2) = \Sigma_{11} \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$.
- Se $U \sim Unif(a, b)$ então E(U) = (a + b)/2 e $Var(U) = (b a)^2/12$.
- $T^2(p,n) = \frac{np}{n-p+1}F(p,n-p+1).$
- $(n-1)(\bar{X}-\mu)^t S_n^{-1}(\bar{X}-\mu) \sim T^2(p,n-1).$