TEMA NR.8: ÎNMULȚIREA NUMERELOR BINARE

1. Operația de înmulțire a numerelor binere în dispozitivele se realizează prin intermediul operației de adunare: X*Y=X+X+X+...+X

de Y ori

sunt testate succesiv cifrele înmulțitorului și se sumează produsul intermediar cu deînmulțitul, deoarece cifrele pot avea atât valoarea 0 cât și 1, respectiv la fiecare pas în dependență de valoarea cifrei examinate sau se va aduna deînmulțitul la produsul intermediar sau se va aduna 0 (dacă valoarea cifrei 0), adica produsul intermediar va rămâne neschimbat. Se deosebesc 4 metode de înmulțire:

I. Metoda de înmulțire a numerelor binare începând cu biții mai puțin semnificativi ai înmulțitorului.

Există două metode de înmulțire a numerelor binare începând cu biții mai puțin semnificativi ai înmulțitorului:

- Metoda de înmulțire a numerelor binare începând cu biții mai puțin semnificativi ai înmulțitorului cu deplasarea deînmulțitului la stânga;
- Metoda de înmulțire a numerelor binare începând cu biții mai puțin semnificativi ai înmulțitorului cu deplasarea la dreapta a produsului intermediar.

II. Metodele de înmulțire a numerelor binare începând cu biții mai semnificativi ai înmulțitorului:

- Metoda de înmulțire a numerelor binare începând cu biții mai semnificativi ai înmulțitorului cu deplasarea deînmulțitului la dreapta;
- Metoda de înmulțire a numerelor binare începând cu biții mai semnificativi ai înmulțitorului cu deplasarea **la stânga** a produsului intermediar.

Metoda de înmulțire a numerelor binare începând cu cifrele mai puțin semnificativi ai înmulțitorului cu deplasarea deînmulțitului la stânga.

Se examinează biții înmulțitorului începînd cu cei mai puțin semnificativ:

- dacă acesta este =1 atunci deînmulțitul de adună cu produsul intermediar după ce se deplasează la stînga;
- dacă acesta este =0 atunci deînmulțitul se deplasează la stînga fără a se adună cu produsul intermediar;

Notă: Primul produs intemediar este =0

Exemplu: X= 0.10011; Y = 0.10111

```
.10011 d
       <u>.1 <mark>0</mark> 1</u> 1
                     – produs intermediar (suma parțială)PI
        10011
      10011
                     - +x deplasat cu o poziție la stînga
      111001
                      - produs intermediar
                    - <mark>+x</mark> deplasat cu două poziții la <u>stînga</u>
 + 10011
                      - produs intermediar
  10000101
                      _- <mark>+x</mark> deplasat cu trei poziții la <u>stînga</u> (<mark>0</mark>)
+ 00000
   10000101
+10011
                       - +x deplasat cu patru poziții la stînga
.110110101
```


	Sg	512	256	128	64	32	16	8	4	2	1
19	0						1	0	0	1	1
23	0						1	0	1	1	1
437			1	1	0	1	1	0	1	0	1

Notă: Dacă rangul operanzilor este n + 1 bitul semnului, numărul obținut în rezultat trebuie să fie 2n+1 bitul semnului, iar în cazul în care rangul rezultatului este mai mic de 2n+1 atunci acesta este suplinit pînă la rangul necesar adăugînd zerouri în stînga numărului.

Deoarece operanzii constau din 5 biți (+1 bitul semnului) – rezultatul trebuie să conțină 10 biți +1 bitul semnului, iar noi am obținut 9 biți, respectiv adăugăm 1 zerou în față, deci rezultatul va fi următorul:

Z = 0.0110110101

II. Metoda de înmulțire a numerelor binare începând cu biții mai semnificativi ai înmulțitorului cu deplasarea deînmulțitului la dreapta.

Se examinează biții înmulțitorului începînd cu cei mai semnificativi:

- dacă acesta este =1 atunci deînmulțitul de adună cu produsul intermediar după ce se deplasează la dreapta;
- dacă acesta este =0 atunci deînmulțitul se deplasează la dreapta fără a se adună cu produsul intermediar;

Notă: Primul produs intemediar este = 0

Exemplu:X= 0.10011; Y= 0.10111

<u>deînm</u>	10011
<u>înmult</u>	<u>10<mark>1</mark>11</u>
PI	10011
+x deplasat cu o poziție dreapta(0)	00000
PI	100110
+X deplasat cu 2 poziții la dreapta	10011
PI	1011111
<mark>+X</mark> deplasat cu 3 poziții la dreapta	10011
PI	11010001
+X deplasat cu 4 poziții la dreapta	10011
	.0110110101

	<u>deînm</u> .	.10011
	<u>înmulț.</u>	.10111
	PI	10011
+X deplasat cu 2 poziții la dre	10011	
PI		1011111
+X deplasat cu 3 poziții la dre	apta	10011
	PI	11010001
+X deplasat cu 4 poziții la drea	pta	10011
		.0110110101

Z = 0. 0 1 1 0 1 1 0 1 0 1

	Sg	512	256	128	64	32	16	8	4	2	1
19	0						1	0	0	1	1
23	0						1	0	1	1	1
437			1	1	0	1	1	0	1	0	1

Înmulțirea numerelor binare cu semn

Pentru a efectua înmulțirea numerelor binare luând în considerație semnul, în calcule numerice se utilizează doua metode:

I – după modul: pentru ambii operanzi se determină modulul, apoi acești moduli se înmulțesc după regulile deja cunoscute, iar în calitate de produs se ia rezultatul obținut a înmulțirii daca semnele operanzilor coincid, și cazul cînd semnele sunt opuse, atunci rezultatul obținut se transforma conform regulilor de obținere a codului complementar a numerelor negative.

II – cu corecție: se înmulțesc numerele reprezentate în cod complementar fără a fi transformate inițial. În acest caz rezultatul obținut trebuie corectat în dependență de semnele operanzilor. Această metodă duce la cheltuieli mari de aparataj de aceia nu se folosește în ultima perioadă.

I. Pentru a realiza înmulțirea numerelor binare cu semn în virgula fixă după modul, se vor parcurge următoarele etape:

- 1. Se calculează semnul produsului prin adunarea modulo-doi a semnelor operanzilor. $SqX \oplus SqY = SqZ$
 - dacă rezultatul este 0- produsul va fi pozitiv; dacă rezultatul acestei operații este egal cu 1- produsul va fi negativ.
 - 2. Se stabilesc modulele operanzilor conform regulei codului complementar:
- 3. Se calculează modulul rezultatului prin înmulțirea modulelor operanzilor ca 2 numere fără semn: $|X| \cdot |Y| = |Z|$
- 4. Se determină codul rezultatului în dependență de semnul obținut la prima etapă:
- dacă semnul produsului este pozitiv, atunci codul obținut al produsului în urma înmulțirii modulelor rămâne neschimbat;
- daca însă semnul produsului este negativ, atunci codul produsului obținut în urma înmulțirii modulelor se modifică conform regulei CC.

Y=1.00010

1.
$$Sq_x \oplus Sq_y=0 \oplus 1=1$$
 - produsul va fi negativ

+X deplasat cu 3 poziții la stînga 10100 100011000

+X deplasat cu 4 poziții la stînga 10100

.1001011000

4. |Z|=0.001001011000

Z = 1.110110101000

	Sg	512	256	128	64	32	16	8	4	2	1
20	0						1	0	1	0	0
30	0						1	1	1	1	0
600		1	0	0	1	0	1	1	0	0	0

Vă mulţumesc pentru atenție!

