Dynamic Oligopoly and Innovation

Hugo Hopenhayn Koki Okumura

UCLA

Motivation & Research Question

- Product market competition shapes incentives for R&D
- Two key externalities of innovation:
 - Business stealing effect
 - + Technology spillover effect

Motivation & Research Question

- Product market competition shapes incentives for R&D
- Two key externalities of innovation:
 - Business stealing effect
 - + Technology spillover effect
- How do inter-firm networks of product market rivalry and technology spillover shape equilibrium and optimal R&D allocation, growth, and welfare?

Framework

- Existing Schumpeterian growth models:
 - Monopolistic competition (no strategic interaction)
 - Very few firms in Markov perfect equilibrium

Framework

- Existing Schumpeterian growth models:
 - Monopolistic competition (no strategic interaction)
 - Very few firms in Markov perfect equilibrium
- This paper:
 - Many oligopolists engage in a dynamic R&D game
 - Two inter-firm networks: (i) product market rivalry and (ii) technology spillovers

Framework

- Existing Schumpeterian growth models:
 - Monopolistic competition (no strategic interaction)
 - Very few firms in Markov perfect equilibrium
- This paper:
 - Many oligopolists engage in a dynamic R&D game
 - Two inter-firm networks: (i) product market rivalry and (ii) technology spillovers
- LQ differential game avoids the curse of dimensionality
- Characterize the existence of BGP, firm distribution, and endogenous growth rate

Quantitative Analysis

- Identify networks using data for \approx 1,000 public & patenting U.S. firms
- Product market rivalry: business descriptions (Hoberg and Phillips, 2016; Pellegrino, 2025)
- Technology spillovers: patent classification (Jaffe, 1986; Bloom et al., 2013)

Proximity: Example

Quantitative Analysis

- Identify networks using data for \approx 1,000 public & patenting U.S. firms
- Product market rivalry: business descriptions (Hoberg and Phillips, 2016; Pellegrino, 2025)
- Technology spillovers: patent classification (Jaffe, 1986; Bloom et al., 2013)

Proximity: Example

	Equilibrium	Optimal R&D Allocation	Optimal Uniform R&D Subsidy (32%)
R&D Share	3.6%	8.0%	8.6%
Growth Rate	1.61%	2.03%	2.07%
CE Welfare Gain	_	+1.29%	+1.17%

Literature

Competition & innovation:

d'Aspremont and Jacquemin (1988); Aghion et al. (2001, 2005); Acemoglu and Akcigit (2012); Aghion et al. (2013); Bloom et al. (2013); Lopez and Vives (2019); Peters (2020); Akcigit and Ates (2021, 2023); Liu et al. (2022); Cavenaile et al. (2023)

Quantitative Schumpeterian growth model matched to firm-(pair-)level data

- Hedonic demand / empirical IO:
 Lancaster (1966); Rosen (1974); Epple (1987); Berry et al. (1995); Nevo (2001); Pellegrino (2025)
 Dynamic GE / endogenous growth
- Oligopoly / market power:
 Neary (2003); Atkeson and Burstein (2008); Gutierrez and Philippon (2017); Autor et al. (2020); Baqaee and Farhi (2020); De Loecker et al. (2020); Azar and Vives (2021); Edmond et al. (2023)

• Firm $i \in \{1, \ldots, n\}$

- Firm $i \in \{1, ..., n\}$
- Final good linear quadratic aggregator (Pellegrino, 2025):

$$Y_t = \boldsymbol{q}_t^T \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^T \boldsymbol{\Sigma} \boldsymbol{q}_t$$

- $\Sigma = [\sigma_{ij}]$: product market rivalry matrix (network)
- Linear inverse demand: $p_{i,t} = b_{i,t} \sum_{j \neq i} \sigma_{ij} q_{j,t} q_{i,t}$

- Firm $i \in \{1, ..., n\}$
- Final good linear quadratic aggregator (Pellegrino, 2025):

$$Y_t = \boldsymbol{q}_t^T \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^T \boldsymbol{\Sigma} \boldsymbol{q}_t$$

- $\Sigma = [\sigma_{ij}]$: product market rivalry matrix (network)
- Linear inverse demand: $p_{i,t} = b_{i,t} \sum_{j \neq i} \sigma_{ij} q_{j,t} q_{i,t}$
- CRS intermediate good production technology:

$$q_{i,t} = a_{i,t} l_{i,t}$$

- Firm $i \in \{1, ..., n\}$
- Final good linear quadratic aggregator (Pellegrino, 2025):

$$Y_t = \boldsymbol{q}_t^T \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^T \boldsymbol{\Sigma} \boldsymbol{q}_t$$

- $\Sigma = [\sigma_{ij}]$: product market rivalry matrix (network)
- Linear inverse demand: $p_{i,t} = b_{i,t} \sum_{j \neq i} \sigma_{ij} q_{j,t} q_{i,t}$
- CRS intermediate good production technology:

$$q_{i,t} = a_{i,t} l_{i,t}$$

• Each firm has knowledge capital (state variable): $z_{i,t}$

- Firm $i \in \{1, ..., n\}$
- Final good linear quadratic aggregator (Pellegrino, 2025):

$$Y_t = \boldsymbol{q}_t^T \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^T \boldsymbol{\Sigma} \boldsymbol{q}_t$$

- $\Sigma = [\sigma_{ij}]$: product market rivalry matrix (network)
- Linear inverse demand: $p_{i,t} = b_{i,t} \sum_{j \neq i} \sigma_{ij} q_{j,t} q_{i,t}$
- CRS intermediate good production technology:

$$q_{i,t} = a_{i,t} l_{i,t}$$

- Each firm has knowledge capital (state variable): $z_{i,t}$
- Each firm allocates knowledge capital to improve labor productivity and product quality:

$$\zeta a_{i,t} + b_{i,t} = z_{i,t}$$

Law of Motion of Knowledge Capital

$$\dot{z}_t = \Omega z_t + \mu x_t$$
Tech Spillover RD

- $\Omega = [\omega_{ij}]$: technology spillover matrix (network)
- $\bullet \ x_{i,t} = \sqrt{d_{i,t}}$
 - d_{i,t}: R&D input in terms of final good
 - Innovation elasticity is 0.5
- μ: positive scalar
- Can incorporate shocks (not today)

Market Clearing and Preference

Inelastic labor supply:

$$\sum_{i} l_{i,t} = L$$

Final good market clearing:

$$C_t + \sum_{i} d_{i,t} = Y_t$$
R&D input

Risk neutral representative household:

$$U_t = \int_t^{\infty} \exp\left(-\rho s\right) C_s ds$$

Static Cournot-Nash Equilibrium

• Firm i's gross profit before subtracting dynamic R&D cost:

$$\pi_{i,t} \left(a_{i,t}, b_{i,t}, q_t \right) = p_{i,t} q_{i,t} - w_t l_{i,t} = \left(b_{i,t} - \sum_{j \neq i} \sigma_{ij} q_{j,t} - q_{i,t} - \frac{w_t}{a_{i,t}} \right) q_{i,t} \quad \text{where} \quad \zeta a_{i,t} + b_{i,t} = z_{i,t}$$

• Given w_t , $z_{i,t}$, and $\{q_{j,t}\}_{i\neq i}$, firm i simultaneously chooses $a_{i,t}$, $b_{i,t}$, and $q_{i,t}$ to maximize $\pi_{i,t}$

Static Cournot-Nash Equilibrium

• Firm i's gross profit before subtracting dynamic R&D cost:

$$\pi_{i,t} \left(a_{i,t}, b_{i,t}, q_t \right) = p_{i,t} q_{i,t} - w_t l_{i,t} = \left(b_{i,t} - \sum_{j \neq i} \sigma_{ij} q_{j,t} - q_{i,t} - \frac{w_t}{a_{i,t}} \right) q_{i,t} \quad \text{where} \quad \zeta a_{i,t} + b_{i,t} = z_{i,t}$$

- Given $w_t, z_{i,t}$, and $\{q_{j,t}\}_{j\neq i}$, firm i simultaneously chooses $a_{i,t}, b_{i,t}$, and $q_{i,t}$ to maximize $\pi_{i,t}$
- Quantity is a linear function of knowledge capital:

$$q(z_t) = \left\{ \underbrace{2\frac{\zeta}{L} \mathbf{1}_{n \times n} + \underbrace{I}_{\text{diminishing demand substitutability}}^{-1} + \underbrace{\Sigma}_{\text{label socit}} \right\}^{-1} z_t$$

• Gross profits are expressed in quadratic form: $\pi_{i,t} = q_{i,t}^2 = z_t^T Q^i z_t$

Linear-Quadratic Differential Game

• Given other firms' R&D $\left\{x_{j,t}\right\}_{i\neq i,t\geq 0}$, firm i chooses R&D $\left\{x_{i,t}\right\}_{t\geq 0}$ to maximize

$$\max_{\left\{x_{i,t}\right\}_{t\geq0}}\ V^{i}\left(z_{0}\right)\equiv\int_{0}^{\infty}\exp\left(-\rho t\right)\left\{\pi_{i,t}-x_{i,t}^{2}\right\}dt$$

subject to
$$\dot{z}_t = \Omega z_t + \mu x_t$$

Linear-Quadratic Differential Game

• Given other firms' R&D $\left\{x_{j,t}\right\}_{i \neq i,t \geq 0}$, firm i chooses R&D $\left\{x_{i,t}\right\}_{t \geq 0}$ to maximize

$$\max_{\left\{x_{i,t}\right\}_{t\geq0}}\ V^{i}\left(z_{0}\right)\equiv\int_{0}^{\infty}\exp\left(-\rho t\right)\left\{\pi_{i,t}-x_{i,t}^{2}\right\}dt$$

subject to $\dot{z}_t = \Omega z_t + \mu x_t$

Firm i's HJB equation:

$$\rho V^{i}(z) = \max_{x_{i}} \left\{ z^{T} \mathbf{Q}^{i} z - x_{i}^{2} + V_{z}^{i}(z) \left[\mathbf{\Omega} z + \mu x \right] \right\}$$

HJB Equations ⇒ Riccati Equations

- Guess and verify $V^{i}(z) = z^{T}X^{i}z$ (for any z)
- X^i is the solution of stacked algebraic Riccati equations

HJB Equations ⇒ Riccati Equations

- Guess and verify $V^{i}(z) = z^{T}X^{i}z$ (for any z)
- ullet X^i is the solution of stacked algebraic Riccati equations
- All public & patenting firms in the U.S. in our dataset \approx 1000 firms \Longrightarrow $1000^3 = 1$ billion undetermined coefficients (< 1 min on my laptop)

Oligopolistic Schumpeterian	Computation time	# of firms	Productivity space
Cavenaile et al. (2023) Our model	$O(2^n)$ $O(n^4)$	4 ≈1000	6 grid Continuous
	. ,		

BGP

- Linear R&D strategy: $x_t = \mu \widetilde{X} z_t$ where $\widetilde{X} = \begin{bmatrix} X_1^1 & \cdots & X_n^n \end{bmatrix}^T$ and X_i^i is the i th column of X^i
- The law of motion is rewritten as $\dot{z}_t = \Phi z_t$ where

$$\Phi \equiv \underbrace{\Omega}_{\text{Tech Spillover}} + \underbrace{\mu^2 X}_{\text{R&D}}$$

BGP

- Linear R&D strategy: $x_t = \mu \widetilde{X} z_t$ where $\widetilde{X} = \begin{bmatrix} X_1^1 & \cdots & X_n^n \end{bmatrix}^T$ and X_i^i is the i th column of X^i
- The law of motion is rewritten as $\dot{z}_t = \Phi z_t$ where

$$\Phi \equiv \underbrace{\Omega}_{\text{Tech Spillover}} + \underbrace{\mu^2 X}_{\text{R\&D}}$$

Theorem

If **Φ** is irreducible, then:

- (i) There exists largest positive eigenvalue of Φ , g, and associated positive eigenvector, z^* .
- (ii) There exists a globally stable BGP such that the knowledge capital growth rate of all firms is g, and the knowledge capital distribution is a scalar multiple of z^* .
 - Proof: Perron–Frobenius Theorem

Intuition Behind BGP

• On the BGP, a_t , b_t , z_t , and q_t grow at the same rate

Technological Choice: $\zeta a_{i,t} + b_{i,t} = z_{i,t}$

Linear Production Technology: $q_{i,t} = a_{i,t}l_{i,t}$

Inelastic Labor Supply: $L = \sum_i l_{i,t}$

• Linear and quadratic terms in q_t of output grow at the same rate:

$$Y_t = \boldsymbol{q}_t^T \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^T \boldsymbol{\Sigma} \boldsymbol{q}_t$$

Partial Equilibrium Diagram: CES on BGP despite non-CES

- $a_i, b_i, q_i (= a_i l_i), p_i$, and w/a_i grow at the same rate g
- Price elasticity stays the same
- (i) (consumer surplus / producer surplus) and (ii) (cost / revenue) stay the same

Lifetime Utility

Lifetime utility is expressed in quadratic form:

$$\int_{t}^{\infty} \exp(-\rho s) C_{s} ds = z_{t}^{T} X z_{t}$$

- X
- ullet Solve the equilibrium once \Longrightarrow Can compute lifetime utility for any initial z_t

Growth Decomposition

•
$$dz_t/dt = \Phi z_t$$
 where $\Phi = \Omega + \mu^2 \widetilde{X}$

$$\frac{d\log Y_t}{dt} = \underbrace{\frac{\boldsymbol{z}_t^T \left(\boldsymbol{Q}\boldsymbol{\Omega} + \boldsymbol{\Omega}\boldsymbol{Q}\right) \boldsymbol{z}_t}{Y_t}}_{\text{Tech Spillover}} + \underbrace{\frac{\mu^2 \boldsymbol{z}_t^T \left(\boldsymbol{Q}\widetilde{\boldsymbol{X}} + \widetilde{\boldsymbol{X}}^T \boldsymbol{Q}\right) \boldsymbol{z}_t}{Y_t}}_{\text{R&D}}$$

Product Market Rivalry Σ

- Hoberg and Phillips (2016) estimates product proximity using business descriptions in 10-K
- Pellegrino (2025) estimates α to align with the cross-price elasticity of demand

$$\underbrace{\sigma_{ij}}_{\text{substitutability}} = \alpha \times \text{product proximity b/w } i \text{ and } j \quad \left(i \neq j\right)$$

micro estimates

Technological Proximity $\widetilde{\Omega}$

- Technological profile of firm i
 - ullet The vector of the share of patents held by firm i in each patent class
 - Baseline: group-level patent classifications (≈ 4000)
- Jaffe (1986) technological proximity measure $\tilde{\omega}_{ij}$:
 - \bullet Cosine similarity of the technological profiles b/w firm i and j

Distribution of Knowledge Capital z_t

Variables	Identification
$\pi_{i,t}$	Gross profit (before R&D cost) = Revenue - Cost of goods sold
\boldsymbol{q}_t	$\pi_{i,t} = q_{i,t}^2$
ζ/L	Matches sample firms' cost share (average markup)
z_t	$\boldsymbol{z}_t = \left\{ 2\frac{\zeta}{L} 1_{n \times n} + \boldsymbol{I} + \boldsymbol{\Sigma} \right\} \boldsymbol{q}_t$

Technology Spillover $\Omega = \beta \times \text{Technological Proximity } \widetilde{\Omega}$

$$z_{i,t+1} - z_{i,t} = \beta \sum_{j \neq i} \tilde{\omega}_{ij,t} z_{j,t} + \text{Year FE}_t + \epsilon_{i,t}$$

	(1)	(2)	(3)
$\sum_{i=1}^{n} \widetilde{\alpha}_{i} \cdots \widetilde{\alpha}_{i+1}$	0.000178***	0.000120***	0.000148***
$\sum_{j\neq i} \tilde{\omega}_{ij,t} z_{j,t}$	(0.000032)	(0.000033)	(0.000035)
DSD Evenorediture		0.051598***	
√R&D Expenditure		(0.018485)	
Year Fixed Effects	√	✓	√
IV			✓
IV 1st Stage F-statistics			4176
No. observations	21,825	21,825	21,825

SEs clustered by years and 4-digit NAICS industries are reported in parentheses. * p < 0.1, *** p < 0.05, *** p < 0.01.

• IV: Tax price of R&D from state-specific rules (Bloom et al., 2013)

Identification Summary

Publicly available data + Compustat

Notation	Description	Value	Source
Σ	Product proximity		Form 10-K, Hoberg and Phillips (2016)
$\widetilde{\Omega}$	Technological proximity		USPTO, Patent classification
α	Product proximity → Substitutability	0.12	Pellegrino (2025)
β	Technological proximity → Spillover	0.00015	Estimate the law of motion
ζ/L	Labor augmentation efficiency	0.0038	Compustat, Cost of goods sold
ρ	Discount rate	0.10	> risk-free rates, < private R&D returns
μ	R&D efficiency	0.06	1.6% economic growth rate

Fit b/w Model and Data: Profit, Sales, and R&D

• Comparison of firm-level model-generated values (x-axis) with observed data (y-axis)

Fit b/w Model and Data: Firm-level Growth Rates

• Data: Average growth rate of z_{it} b/w 2010 and 2019

Variable Definitions

Variable	Definition
Total Output	(competitive equilibrium = 100)
R&D Share	Total R&D / Total output (%)
Growth Rate	(%)
R&D Contribution	Growth due to R&D / Growth rate (%)
Social Welfare	(competitive equilibrium = 100)
Firm Value Share	Total firm value / Social welfare (%)
<u> </u>	<u> </u>

Counterfactuals: R&D (Given Static Cournot Competition)

	Total Output	R&D Share	Growth Rate	R&D Contribution	Social Welfare	Firm Value Share
Competitive						
Equilibrium	100.00	3.61%	1.61%	52.85%	100.00	31.07%

Counterfactuals: R&D (Given Static Cournot Competition)

	Total Output	R&D Share	Growth Rate	R&D Contribution	Social Welfare	Firm Value Share
Competitive						
Equilibrium	100.00	3.61%	1.61%	52.85%	100.00	31.07%
Social Optimum	100.00	8.02%	2.03%	62.55%	101.29	28.69%

ullet Social optimum: Internalize the impact of innovation on consumer surplus \Longrightarrow R&D \uparrow

Counterfactuals: R&D (Given Static Cournot Competition)

	Total Output	R&D Share	Growth Rate	R&D Contribution	Social Welfare	Firm Value Share
Competitive						
Equilibrium	100.00	3.61%	1.61%	52.85%	100.00	31.07%
Social Optimum	100.00	8.02%	2.03%	62.55%	101.29	28.69%
Monopoly						
	100.00	2.18%	1.40%	45.74%	98.92	32.13%

- Social optimum: Internalize the impact of innovation on consumer surplus \Longrightarrow R&D \uparrow
- ullet Monopoly: Internalize business stealing > technological spillover $\Longrightarrow \mathsf{R\&D} \downarrow$

Counterfactuals: Both R&D and Product Market Competition

	Total Output	R&D Share	Growth Rate	R&D Contribution	Social Welfare	Firm Value Share
Competitive Equilibrium	100.00	3.61%	1.61%	52.85%	100.00	31.07%
Social Optimum	109.68	13.57%	2.73%	71.71%	117.79	-25.59%
Monopoly	96.17	2.54%	1.45%	48.50%	95.46	46.86%

R&D Subsidy

- Optimal subsidy rate: 32%
 - Growth rate increases by 0.46 p.p
 - Welfare increases by 1.17%

Conclusion

- Quantitative Schumpeterian growth model with inter-firm networks
 - Product market rivalry network (Σ)
 - Technology spillover network (Ω)
- LQ differential game avoids curse of dimensionality
 - Can solve with thousands of oligopolistic firms
 - Utilize recently available micro data and computational power
- Potential applications:
 - Trade liberalization (war) and international technology spillovers

Technology & Product Proximity: Example

Tesla vs. Ford				
Technology Proximity Product Proximity	0.11 0.15			

Apple vs. Intel	
Technology Proximity Product Proximity	0.57 0.00

Generalized Hedonic-Linear Demand (Pellegrino, 2025) (1/2)

- $i \in \{1, 2, ..., n\}$: firms / products
- 1 unit of product i provides
 - 1 unit of idiosyncratic characteristic $k \in \{1, 2, ..., n\}$
 - $\psi_{k,i}$ unit of shared characteristic $k \in \{n+1, n+2, ..., n+n_k\}$ where $\sum_k \psi_{k,i}^2 = 1$
- Aggregate each characteristic:

$$y_{k,t} = \begin{cases} q_{k,t} & k = 1, 2, ..., n \\ \sum_{i} \psi_{k,i} q_{i,t} & k = n + 1, n + 2, ..., n + n_k \end{cases}$$

Linear quadratic aggregator over characteristics:

$$Y_t = (1 - \alpha) \sum_{k=1}^n \left(\underbrace{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}_{\text{idiosyncratic characteristic}} \right) + \alpha \sum_{k=n+1}^{n+n_k} \left(\underbrace{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}_{\text{shared characteristic}} \right)$$

Generalized Hedonic-Linear Demand (Pellegrino, 2025) (2/2)

Quality:

$$b_i = (1 - \alpha)\hat{b}_i + \alpha \sum_{k=n+1}^{n+n_k} \psi_k \hat{b}_k$$

Inverse demand:

$$p=b-\Sigma q$$

Inverse cross price elasticity of demand:

$$\frac{\partial \log p_i}{\partial \log q_j} = -\frac{q_j}{p_i} \cdot \sigma_{ij}$$

Cross price elasticity of demand:

$$\frac{\partial \log q_i}{\partial \log p_j} = -\frac{p_j}{q_i} (\mathbf{\Sigma}^{-1})_{ij}$$

Static Profits

- Gross profit: $\pi_{i,t} = q_{i,t}^2$
- Firms choose labor productivity and product quality: $\zeta a_{i,t} = \sqrt{\zeta w_t}$, $b_{i,t} = z_{i,t} \sqrt{\zeta w_t}$
- Labor market clearing: $L = \sum_i \frac{q_{i,t}}{a_{i,t}} \Longrightarrow \sqrt{\zeta w_t} = \frac{\zeta}{L} \sum_i q_{i,t}$
- $q_t = Nz_t$ where $N \equiv \left\{2\frac{\zeta}{L}\mathbf{1}_{n\times n} + I + \Sigma\right\}^{-1}$
- N_i : the i th row of N
- Profit:

$$\pi_{i,t} = q_{i,t}^2 = z_t^T Q^i z_t$$

where $Q^i \equiv N_i^T N_i$

Riccati Equations

Stochastic law of motion:

$$dz_{t} = (\Omega z_{t} + \operatorname{diag}(\mu) x_{t}) dt + \operatorname{diag}(\gamma) z_{t} dW_{t}$$

• $V^{i}(z) = z^{T}X^{i}z$ where X^{i} is the solution of the stacked Riccati equation

$$0 = \mathbf{Q}^{i} - \mu^{2} \mathbf{X}_{i}^{i} \left(\mathbf{X}_{i}^{i} \right)^{T} + \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^{2} \right) \mathbf{I} \right)^{T} \mathbf{X}^{i} + \mathbf{X}^{i} \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^{2} \right) \mathbf{I} \right)$$

- $X_i^i \equiv \text{the } i \text{ th column of } X^i$
- $\Phi \equiv \Omega + \mu^2 \begin{bmatrix} X_1^1 & \cdots & X_n^n \end{bmatrix}^T$
- Algorithm: Given $\left[\begin{array}{ccc} X^1_{\tau} & \cdots & X^n_{\tau} \end{array}
 ight]$, update $\left[\begin{array}{ccc} X^1_{\tau-\Delta} & \cdots & X^n_{\tau-\Delta} \end{array}
 ight]$ by

$$-\frac{\boldsymbol{X}_{\tau}^{i}-\boldsymbol{X}_{\tau-\Delta}^{i}}{\Delta}=\boldsymbol{Q}^{i}-\mu^{2}\boldsymbol{X}_{i,\tau}^{i}\left(\boldsymbol{X}_{i,\tau}^{i}\right)^{T}+\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\boldsymbol{\rho}-\boldsymbol{\gamma}^{2}\right)\boldsymbol{I}\right)^{T}\boldsymbol{X}_{\tau}^{i}+\boldsymbol{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\boldsymbol{\rho}-\boldsymbol{\gamma}^{2}\right)\boldsymbol{I}\right)$$

Output and Lifetime Utility

Stochastic law of motion:

$$dz_{t} = (\Omega z_{t} + \operatorname{diag}(\mu) x_{t}) dt + \operatorname{diag}(\gamma) z_{t} dW_{t}$$

• Output: $Y_t = q_t^T Q q_t$ where

$$Q = \frac{\zeta}{L} \mathbf{1}_{n \times n} + I + \frac{1}{2} \mathbf{\Sigma}$$

Expected utility:

$$V(z_t) \equiv E_t \left[\int_t^{\infty} \exp(-\rho s) C_s ds \middle| z_t \right] = z_t^T X z_t$$

where X is the solution of the Lyapunov equation (obtained from households' HJB equation):

$$0 = \mathbf{Q} - \mu^2 \tilde{\mathbf{X}}^T \tilde{\mathbf{X}} + \mathbf{X} \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^2 \right) \mathbf{I} \right) + \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^2 \right) \mathbf{I} \right)^T \mathbf{X}$$

Equilibrium Summary

Description	Expression
Production strategy	$q_t = Nz_t$
R&D strategy	$x_t = \mu \tilde{X} z_t$
Profit of final producers	$\Pi_t^F = oldsymbol{q}_t^T \left(rac{1}{2} oldsymbol{\Sigma} ight) oldsymbol{q}_t$
Total operating profit of firms	$\Pi_t = \boldsymbol{q}_t^T \boldsymbol{q}_t$
Labor income	$w_t L = \boldsymbol{q}_t^T \left(\frac{\zeta}{L} 1_{n \times n} \right) \boldsymbol{q}_t$
Output	$Y_t = \boldsymbol{q}_t^T \left(\frac{\zeta}{L} 1_{n \times n} + \boldsymbol{I} + \frac{1}{2} \boldsymbol{\Sigma} \right) \boldsymbol{q}_t$
Consumption	$C_t = Y_t - \boldsymbol{x}_t^T \boldsymbol{x}_t$

Example: Symmetric Equilibrium

Assumption

- Symmetric product substitutability and technology spillover: $\sigma_{ij} = \sigma$, $\omega_{ij} = \omega$ $\forall i \neq j$
- R&D strategy: $x_{i,t}^* = \mu \left(\tilde{x}_1 z_{i,t} + \tilde{x}_2 \sum_{j \neq i} z_j \right)$
 - \tilde{x}_1 : market size effect (> 0)
 - \tilde{x}_2 : strategic substitutability (< 0) / complementarity (> 0)

• Growth rate:
$$g = \underbrace{(n-1)\omega}_{\text{Tech Spillover}} + \underbrace{\mu^2 \left(\tilde{x}_1 + (n-1)\tilde{x}_2\right)}_{\text{R&D}}$$

- Stability (irreducibility) requires $\omega + \mu^2 \tilde{x}_2 > 0$
 - Tech spillover (ω) must be strong relative to strategic substitutability ($\tilde{x}_2 < 0$)

Social Optimum

- Static optimal allocation: $q_t^* = N^* z_t$ where $N^* \equiv \left\{ 2\frac{\zeta}{L} \mathbf{1}_{n \times n} + \Sigma \right\}^{-1}$
- Optimal output: $Y_t^* = z_t^T Q^* z_t$ where $Q^* = \frac{1}{2} N^*$
- Optimal expected utility:

$$V^*(z_t) \equiv E_t \left[\int_t^{\infty} \exp(-\rho s) C_s ds \middle| z_t \right] = z_t^T X^* z_t,$$

where X^* is the solution of the Riccati equation (obtained from planner's HJB equation):

$$0 = \mathbf{Q}^* - \mu^2 (\mathbf{X}^*)^T \mathbf{X}^* + \mathbf{X}^* \left(\mathbf{\Phi}^* - \frac{1}{2} \left(\rho - \gamma^2 \right) \mathbf{I} \right) + \left(\mathbf{\Phi}^* - \frac{1}{2} \left(\rho - \gamma^2 \right) \mathbf{I} \right) \mathbf{X}^*$$

- Optimal R&D: $x_t^* = \mu X^* z_t$
- Optimal technology transition matrix: $\Phi^* = \Omega + \mu^2 X^*$

Stochastic Growth

· Applying Itô's lemma,

$$d\log Y_t = \left[\frac{z_t^T \left(Q\boldsymbol{\Phi} + \boldsymbol{\Phi}^T Q\right) z_t}{Y_t} + \gamma^2 \left\{\frac{\sum_i z_{i,t}^2 Q_{ii}}{Y_t} - \frac{2z_t^T Q \mathrm{diag}\left(z_t^2\right) Q z_t}{Y_t^2}\right\}\right] dt + \frac{2\gamma z_t^T Q \mathrm{diag}\left(z_t\right)}{Y_t} dW_t$$

where
$$Y_t = z_t^T Q z_t$$
 and $\Phi = \Omega + \mu^2 \widetilde{X}$

$$\begin{array}{ll} \text{Tech Spillover} & \frac{\boldsymbol{z}_{t}^{T}\left(\boldsymbol{Q}\boldsymbol{\Omega}+\boldsymbol{\Omega}^{T}\boldsymbol{Q}\right)\boldsymbol{z}_{t}}{Y_{t}} \\ \text{R\&D Contribution} & \frac{\mu^{2}\boldsymbol{z}_{t}^{T}\left(\boldsymbol{Q}\widetilde{\boldsymbol{X}}+\widetilde{\boldsymbol{X}}^{T}\boldsymbol{Q}\right)\boldsymbol{z}_{t}}{Y_{t}} \\ \text{Itô Correction} & \gamma^{2}\left\{\frac{\sum_{i}z_{i,t}^{2}\boldsymbol{Q}_{ii}}{Y_{t}}-\frac{2\boldsymbol{z}_{t}^{T}\boldsymbol{Q}\operatorname{diag}\left(\boldsymbol{z}_{t}^{2}\right)\boldsymbol{Q}\boldsymbol{z}_{t}}{Y_{t}^{2}}\right\} \\ \text{Total} & \boldsymbol{E}\left[d\log Y_{t}\right] \end{array}$$

Trend of Number of Sample Firms

Trend of Product Substitutability

Trend of Technological Proximity

- Merge USPTO data with Compustat firms using DISCERN 2 dataset (Arora et al., 2024)
- Jaffe measure, Group-level patent classification, Stack for 5 years

Microeconometric Estimates vs. GHL (Pellegrino, 2025) (1/2)

Market	Firm i	Firm j	Micro Estimate	GHL
Auto	Ford	Ford	-4.320	-5.197
Auto	Ford	General Motors	0.034	0.056
Auto	Ford	Toyota	0.007	0.017
Auto	General Motors	Ford	0.065	0.052
Auto	General Motors	General Motors	-6.433	-4.685
Auto	General Motors	Toyota	0.008	0.005
Auto	Toyota	Ford	0.018	0.025
Auto	Toyota	General Motors	0.008	0.008
Auto	Toyota	Toyota	-3.085	-4.851

Microeconometric Estimates vs. GHL (Pellegrino, 2025) (2/2)

Market	Firm i	Firm j	Micro Estimate	GHL
Cereals	Kellogg's	Kellogg's	-3.231	-1.770
Cereals	Kellogg's	Quaker Oats	0.033	0.023
Cereals	Quaker Oats	Kellogg's	0.046	0.031
Cereals	Quaker Oats	Quaker Oats	-3.031	-1.941
Computers	Apple	Apple	-11.979	-8.945
Computers	Apple	Dell	0.018	0.025
Computers	Dell	Apple	0.027	0.047
Computers	Dell	Dell	-5.570	-5.110

First Stage

	(1)
Dependent Variable:	$z_{i,t}$
User cost of R&D	-48.15^{***} (4.25)
Year Fixed Effects	√
No. observations	20,665

SEs clustered by years and 4-digit NAICS industries are reported in parentheses.

• IV: User cost of R&D, driven by state-level tax variations (Wilson, 2009; Bloom et al., 2013)

- **Acemoglu, Daron, and Ufuk Akcigit.** 2012. "Intellectual Property Rights Policy, Competition and Innovation." *Journal of the European Economic Association* 10 (1): 1–42.
- **Aghion, P, N Bloom, R Blundell, R Griffith, and P Howitt.** 2005. "Competition and Innovation: An Inverted-U Relationship." *The Quarterly Journal of Economics* 120 (2): 701–728.
- **Aghion, Philippe, Christopher Harris, Peter Howitt, and John Vickers.** 2001. "Competition, Imitation and Growth with Step-by-Step Innovation." *The Review of Economic Studies* 68 (3): 467–492.
- **Aghion, Philippe, John Van Reenen, and Luigi Zingales.** 2013. "Innovation and Institutional Ownership." *American Economic Review* 103 (1): 277–304.
- **Akcigit, Ufuk, and Sina T Ates.** 2021. "Ten Facts On Declining Business Dynamism and Lessons From Endogenous Growth Theory." *American Economic Journal: Macroeconomics* 13 (1): 257–298.
- Akcigit, Ufuk, and Sina T Ates. 2023. "What Happened to US Business Dynamism?" *The Journal of Political Economy* 131 (8): 2059–2124.
- Arora, Ashish, Sharon Belenzon, Larisa Cioaca, Lia Sheer, Hyun Moh (john) Shin, and Dror Shvadron. 2024. "DISCERN 2: Duke innovation & SCientific Enterprises Research Network."
- **Atkeson, Andrew, and Ariel Burstein.** 2008. "Pricing-to-Market, Trade Costs, and International Relative Prices." *The American Economic Review* 98 (5): 1998–2031.

- Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John Van Reenen. 2020. "The Fall of The Labor Share and The Rise of Superstar Firms." *The Quarterly Journal of Economics* 135 (2): 645–709.
- **Azar, Jose, and Xavier Vives.** 2021. "General Equilibrium Oligopoly and Ownership Structure." *Econometrica* 89 (3): 999–1048.
- **Baqaee**, **David Rezza**, **and Emmanuel Farhi**. 2020. "Productivity and Misallocation in General Equilibrium." *The Quarterly Journal of Economics* 135 (1): 105–163.
- Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. "Automobile Prices in Market Equilibrium." *Econometrica* 63 (4): 841.
- **Bloom, Nicholas, Mark Schankerman, and John VAN Reenen.** 2013. "Identifying Technology Spillovers and Product Market Rivalry." *Econometrica* 81 (4): 1347–1393.
- Cavenaile, Laurent, Murat Alp Celik, and Xu Tian. 2023. "Are Markups Too High? Competition, Strategic Innovation, and Industry Dynamics."
- **d'Aspremont, Claude, and A Jacquemin.** 1988. "Cooperative and noncooperative R&D in duopoly with spillovers." *The American Economic Review* 78 (5): 1133–1137.
- **De Loecker, Jan, Jan Eeckhout, and Gabriel Unger.** 2020. "The Rise of Market Power and The Macroeconomic Implications." *The Quarterly Journal of Economics* 135 (2): 561–644.

- **Edmond, Chris, Virgiliu Midrigan, and Daniel Yi Xu.** 2023. "How Costly Are Markups?" *The Journal of Political Economy* 000–000.
- **Epple, Dennis.** 1987. "Hedonic Prices and Implicit Markets: Estimating Demand and Supply Functions for Differentiated Products." *The Journal of Political Economy* 95 (1): 59–80.
- **Gutierrez, German, and Thomas Philippon.** 2017. "An Empirical Investigation." *Brookings Papers on Economic Activity* 89–169.
- **Hoberg, Gerard, and Gordon Phillips.** 2016. "Text-Based Network Industries and Endogenous Product Differentiation." *The Journal of Political Economy* 124 (5): 1423–1465.
- **Jaffe, Adam B.** 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value." *The American economic review* 76 (5): 984–1001.
- **Lancaster, Kelvin J.** 1966. "A New Approach to Consumer Theory." *The Journal of Political Economy* 74 (2): 132–157.
- **Liu, Ernest, Atif Mian, and Amir Sufi.** 2022. "Low Interest Rates, Market Power, and Productivity Growth." *Econometrica* 90 (1): 193–221.
- **Lopez, Angel L, and Xavier Vives.** 2019. "Overlapping Ownership, R&D Spillovers, and Antitrust Policy." *The Journal of Political Economy* 127 (5): 2394–2437.
- **Neary, J Peter.** 2003. "Globalization and market structure." *Journal of the European Economic Association* 1 (2-3): 245–271.

- **Nevo, Aviv.** 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry." *Econometrica* 69 (2): 307–342.
- **Pellegrino**, **Bruno**. 2025. "Product Differentiation and Oligopoly: A Network Approach." *The American Economic Review*.
- **Peters, Michael.** 2020. "Heterogeneous Markups, Growth, and Endogenous Misallocation." *Econometrica* 88 (5): 2037–2073.
- **Rosen, Sherwin.** 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition." *The Journal of Political Economy* 82 (1): 34–55.
- **Wilson, Daniel J.** 2009. "Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of R&D tax credits." *The Review of Economics and Statistics* 91 (2): 431–436.