A small asteroid passes between the Earth and the Moon.

The Earth attracts it with a force of 480 N and the moon attracts it with a force of 53.2 N when the asteroid is in position 1. When the asteroid reaches position 2 the forces are 359 N and 13.1 N respectively. Determine the net force on the asteroid in position 1 and 2.

$$\Sigma F = (-480) + (+53.2)$$

$$\Sigma F = -426.8 N$$

 Σ F = 426.8 N towards Earth

Position 2

$\Sigma F = \sqrt{(359^2 + 13.1^2)}$ $\Sigma F = 359.2 N$

 $\tan \theta = 13.1 / 359$.

 $\theta = 2.09^0$

Actual Situation

Resultant

Situation according to $\boldsymbol{\Sigma}$ F

 Σ F = 359 N at 2.09 $^{\rm 0}$ away from the line joining the asteroid to the earth. Angle bends towards the moon.

FORMULE 3581082.09= 35810 to tank $0=380-90-2.09=88^{\circ}$ FORMULE 13.1 cos 88=0-478N to Moon E=359-0.478=358N to Earth E=359-0.478=358N to Earth