Αρ. Μητρώου:

Ονοματεπώνυμο:

Εξέταση στο Μεταπτυχιακό Μάθημα: Στατιστική Μοντελοποίηση (11/2/2021)

Επιλέξτε ΔΥΟ από τα 4 Ζητήματα ***** Διάρκεια Εξέτασης : 1.30 ώρες *****

ZHTHMA 1

Ερευνάται η σχέση μεταξύ y (ρυθμός φωτοσύνθεσης) και x_1 (ηλιακή ακτινοβολία) και έστω δείκτρια μεταβλητή x_2 (διαθεσιμότητα του νερού, x_2 =0 - αν χαμηλή, x_2 =1 - αν υψηλή). Αφού συμπληρώσετε τα κενά στα ακόλουθα αποτελέσματα, εξηγήστε πώς μέσω του μοντέλου $E(y_x) = \beta_0 + \beta x_1 + \beta_2 x_2 + \beta_3 x_3$, μπορούμε να ελέγξουμε αν χρειάζεται να προσαρμοστούν (I) δύο διαφορετικές ευθείες, (II) δύο παράλληλες ευθείες, ή (III) μια κοινή ευθεία και για τις δύο κατηγορίες διαθεσιμότητας του νερού, όπου $x_3 = x_1 x_2$, η μεταβλητή που εκφράζει την αλληλεπίδραση μεταξύ των μεταβλητών x_1 και x_2 .

Να δοθούν ερμηνείες για το τελικό μοντέλο (βλ. και σχετικό διάγραμμα πιο κάτω).

Regression Analysis: y versus x1; x2; x3

The regression equation is $y = 114 + 43.5 \times 1 - 25.9 \times 2 - 20.6 \times 3$

Predictor	Coef	SE Coef	T	P
Constant	113.88	29.47	3.86	0.003
x 1	43.480	3.213	13.53	<0.001
x 2	-25.94	44.62		
A-3	-20 616	4 199	_4 92	

R-Sq = 96.8% R-Sq(adj) = R-Sq(pred) = 93.93%

Analysis of Variance

Regression Analysis: y versus x1; x2

The regression equation is $y = 214 + 31.3 \times 1 - 224 \times 2$

Predictor	Coef	SE Coef	T	P
Constant	214.40	37.49	5.72	0.000
x 1	31.348	3.636	8.62	0.000
x 2	-224.39	33.71		

R-Sq = 89.0% R-Sq(adj) = 87.0% R-Sq(pred) = 81.17%

Analysis of Variance

Regression Analysis: y versus x1

The regression equation is $y = 186 + 22.8 \times 1$

PRESS = 255010 R-Sq(pred) =

Analysis of Variance

Source DF SS MS F P
Regression 1 157098 157098 9.78
Residual Error 12 192844 16070
Total 13 349942

ZHTHMA 2

Εξετάζεται η γραμμική παλινδρόμηση μιας μεταβλητής y, σε σχέση με 5 επεξηγηματικές μεταβλητές x_1, x_2, \ldots, x_5 . Ακολουθούν τα βασικά σημεία της ανάλυσης.

<u>Α ανάλυση</u>: περιλαμβάνει όλες τις επεξηγηματικές μεταβλητές. Συμπληρώστε τον παρακάτω πίνακα και σχολιάστε σύντομα τα αποτελέσματα της ανάλυσης αυτής.

Regression Analysis: y versus x1; x2; x3; x4; x5

The regression equation is $Y = -324751 + 6.4 \times 1 + 5.64 \times 2 + 62.3 \times 3 + 0.520 \times 4 - 30614 \times 5$

Predictor	COEI SE CO	er T	Р	VIF.
Constant -3	324751 97097	3 -0.33	0.740	
X1 6	19.3	4 0.33	0.741	1.7
X2 5	5.637 1.92	1 2.93	0.005	2.3
X3 62	2.33 42.0	2 1.48		1.6
X4 0.	.52006 .0229	1 22.70	<0.001	L 2.6
X5 -3	30614 1547	5 -1.98		1.1

$$R-Sq = \frac{}{}$$
 R-Sq(adj) = 96.9% R-Sq(pred) = 95.51%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	5	3.53751E+14	7.07503E+13	317.16	
Residual Error	45	1.00382E+13	2.23072E+11		
Total	50	3.63790E+14			

Β ανάλυση:

Δίνονται αποτελέσματα προσαρμογών διαφόρων μοντέλων με επιλεγμένες μεταβλητές. Ο παρακάτω πίνακας παρουσιάζει μερικούς δείκτες για την προσαρμογή των μοντέλων αυτών.

- (i) Επιλέξτε δύο εμφωλευμένα μοντέλα που με βάση τα κριτήρια θεωρείτε ότι είναι τα καλύτερα.
- (ii) Στη συνέχεια αξιοποιώντας τον έλεγχο F για τη σύγκριση **δύο** <u>εμφωλευμένων</u> μοντέλων, να βρεθεί το βέλτιστο μοντέλο από τα παραπάνω δύο.

Δίνεται:
$$S = \left(\frac{SSE}{(n-k-1)}\right)^{1/2}$$

Μοντέλο	Μεταβλητές	Υ με	\overline{R}^2 (x100%)	R ² πρόβλεψη	C_p	S	AIC
			(διορθ.)	(x100%)			
1	1	X_4	95.8	94.9	19.9	551858	1497.238
2	1	X_2	51.5	47.0	728.3	1878743	1622.195
3	2	$X_2 X_4$	96.6	95.3	8.6	499000	1487.907
4	2	X_3 X_4	96.4	95.3	11.6	512956	1490.730
5	3	$X_2 X_4 X_5$	96.9	95.5	4.3	473969	1483.594
6	3	$X_2 X_3 X_4$	96.8	95.5	6.1	482953	1485.509
7	4	$X_2 X_3 X_4 X_5$	97.0	95.6	4.1	467719	1483.143
8	4	$X_1 X_2 X_4 X_5$	96.9	95.4	6.2	478429	1485.452
9	5	$X_1 X_2 X_3 X_4 X_5$	96.9	95.5	6.0	472305	1485.017

(iii) Σχολιάστε τις παρακάτω γραφικές παραστάσεις των υπολοίπων, των h_{ii} , των DFFITS, καθώς και των μερικών υπολοίπων για τις μεταβλητές X_2 και X_4 του **τελικού μοντέλου**.

(iv) <u>Αν υποθέσουμε</u> ότι το Μοντέλο 3 είναι το καλύτερο, να βρεθεί το πάνω άκρο

του 0.95 – Δ.Ε. (-920677, ______) της πρόβλεψης **μιας νέας παρατήρησης** $Y_{\mathbf{x_0}}$, όταν η σημειακή πρόβλεψη είναι $\hat{Y}_{\mathbf{x_0}} = 110976$ και $\mathbf{x_0'(X'X)^{-1}x_0} = 0.0377$.

ZHTHMA 3

Έστω μοντέλο παλινδρόμησης Poisson $f(y)=\frac{\exp(-\mu_x)~\mu_x^y}{y!},~y=0,1,2,...$, με συνάρτηση σύνδεσης $g(\mu_x)=\ln\mu_x=\beta'x$ και ελεχγοσυνάρτηση Deviance $D_M(\hat{\pmb{\beta}})=-2\left(\hat{\ell}_M-\hat{\ell}_{\kappa o \rho}\right)=2\sum_{i=1}^n \left[y_i \ln(y_i/\hat{\mu}_i)\right],$ όπου $\hat{\ell}_M$ η μεγιστοποιημένη λογαριθμοποιημένη συνάρτηση πιθανοφάνειας του μοντέλου Μ που μας ενδιαφέρει και κριτήριο AIC=- $2\hat{\ell}_M$ +2d, όπου d ο συνολικός αριθμός παραμέτρων στο μοντέλο.

Μέσω μοντέλων παλινδρόμησης Poisson εξετάζεται αν ο αριθμός ειδών φυτών (Υ) ανά νησί, σε n=30 νησιά, σχετίζεται με τις συμμεταβλητές X_1 (εμβαδόν του νησιού) και X_2 (απόσταση από το πιο κοντινό νησί), καθώς και με τη X_3 (εμβαδόν του πιο κοντινού νησιού).

- (i) Να συμπληρωθούν οι παρακάτω πίνακες .
- (ii) Επιλέξτε το καλύτερο μοντέλο με βάση τους ελέγχους Deviance και Wald, καθώς και με το κριτήριο AlC. Γράψτε το προσαρμοσμένο <u>τελικό μοντέλο</u>.
- (iii) Βρείτε και ερμηνεύστε την εκτιμημένη ποσότητα $\exp(\hat{\beta}_2)$ του **τελικού μοντέλου** .
- (iv) Αξιολογήστε τις πιο κάτω γραφικές παραστάσεις του **τελικού μοντέλου**.

_ <u>ΜΟΝΤΕΛΟ: 3</u> Μεταβλητές	$\hat{\beta}_{j}$	$se(\hat{\beta}_j)$	z _j	ρ-τιμή
Σταθερά	4.180e+00	2.918e-02	143.283	<0.001
X_1	4.302e-04	1.199e-05	35.879	<0.001
X_2	5.889e-03	1.434e-03	4.106	<0.001
X_3	-8.064e-05	2.793e-05	-2.887	
	AIC	= 2756.1		

<u>ΜΟΝΤΕΛΟ: 2</u> Μεταβλητές	$\hat{\beta}_{j}$	$se(\hat{\beta}_j)$	z _j	ρ-τιμή
Σταθερά	4.44600	0.0255200	174.219	<2e-16
X_2	-0.00108	0.0014400	-0.751	
X_3	0.00004	0.0000218	1.644	0.100
	AIC ₂ = 3	674.1		

<u>ΜΟΝΤΕΛΟ: 1</u> Μεταβλητές	$\hat{\beta}_{j}$	$se(\hat{\beta}_j)$	z _j	ρ-τιμή
Σταθερά	4.45877	0.024234	183.987	<2e-16
X_2	-0.00135	0.001430	-0.942	
$\hat{\ell}_1 = $	_ και τιμή του	κριτηρίου ΑΙ (C ₁ =	<u>_</u>
	έλο <u>χωρίς καμμ</u> μόνο με το 5.78 και τιμή	ο σταθερό όρα	0,	έλο 0),

Μοντέλο	Deviance β.ε.	Deviance	Διαφορά στους β.ε.	Διαφορά Deviance	Pr(>Chi)	Deviance Ψευδο- R_D^2 R_D^2 =1- $\frac{D(\hat{\beta})}{D_0}$ (×100%)
						$R_{D} = 1 - \frac{1}{D_0} \times 100\%$
0	29	3510.73				
1	28	3509.8	1	0.93		0.03 %
2	27	3507.3	1	2.5		
3	26	2587.2	1	920.1	<0.001	26.3 %

(iv) Γραφικές παραστάσεις των υπολοίπων deviance και των υπολοίπων πιθανοφάνειας του τελικού μοντέλου

ZHTHMA 4

(4A) Έστω Y τ.μ. της Διωνυμικής κατανομής $f(y) = \binom{n}{y} p^y (1-p)^{n-y}, \ y=0,1,2,...,n, \ με \ παραμέτρους p και n.$

Γράψτε το μοντέλο της λογιστικής παλινδρόμησης για k συμμεταβλητές.

- (4B) Σε μελέτη m πελατών, τμήμα τράπεζας θέλει να εξετάσει αν πελάτης θα αποπληρώσει την πιστωτική του κάρτα Y (ναι=1, όχι=0), σε σχέση με τη X_1 (μηνιαίο υπόλοιπο πιστωτικής κάρτας του), με το ετήσιο εισόδημά του X_2 και με το αν είναι ο πελάτης φοιτητής (X_3 =1 αν ναι και X_3 =0 αν όχι).
- (i) Να συμπληρωθεί ο παρακάτω πίνακας (τα $\exp(\hat{\beta}_j)$ υπολογίζονται <u>μόνο</u> για το <u>τελικό μοντέλο</u>). Κάνοντας χρήση του ελέγχου Wald, των ελέγχων deviance και του κριτηρίου AIC, επιλέξτε το καλύτερο μοντέλο.
- (ii) Να κατασκευαστεί ένα 95% διάστημα εμπιστοσύνης για την ποσότητα του e^{β_3} του <u>τελικού μοντέλου</u>.
- (iii) Υπολογίστε τις εκτιμημένες ποσότητες $\exp(\hat{\beta}_i)$ του $\underline{\text{τελικού μοντέλου}}$.

Με τη βοήθεια της ποσότητας $e^{\hat{\beta}_3}$, εκφράστε κατά πόσο η ιδιότητα του φοιτητή επιδρά στη σχετική πιθανότητα αποπληρωμής της πιστωτικής κάρτας $\frac{p_x}{1-p_x}$ για το $\frac{\mathbf{r}$ για το $\frac{\mathbf{r}}{\mathbf{r}}$ για το $\frac{\mathbf{r}}{\mathbf{r}}$ για το $\frac{\mathbf{r}}{\mathbf{r}}$

<u>ΜΟΝΤΕΛΟ: 1</u> Μεταβλητές	$\hat{eta}_{_{ m j}}$	$se(\hat{\beta}_j)$	z _j	ρ-τιμή	$exp(\hat{\beta}_j)$
Σταθερά	-11.5800	0.583900	-19.831	<0.001	XXXX
X_1	5.973e-03	2.760e-04	21.641	<0.001	
X_2	1.181e-05	9.397e-06	1.257		
X_3	-4.106e-01	2.758e-01	-1.489		
Ελεγχοσυνάρτηση (deviance δίνετ	αιως D₁=117	1.2 και η τι	μή του κριτηρίου Α	AIC ₁ =1179.2
ΜΟΝΤΕΛΟ: 2 Μεταβλητές	$\hat{eta}_{_{\mathrm{j}}}$	$se(\hat{\beta}_j)$	\mathbf{z}_{j}	ρ-τιμή	$exp \Big(\hat{\beta}_j \Big)$
Σταθερά	-1.111e+01	4.413e-01	-25.183	<0.001	XXXX
X_1	5.982e-03	2.759e-04	21.681	<0.001	
X_3	-6.814e-01	1.700e-01	-4.009		
	Ελεγχοσυνά	ι ρτηση devian	ι ce δίνεται α	ως D ₂ = 1172.8	
με	αντίστοιχη τιμ	ιή $\hat{\ell}_2 =$	και τιμ	μή του κριτηρίου Α	IC ₂ = 1178.8
<u>ΜΟΝΤΕΛΟ: 3</u> Μεταβλητές	$\hat{\beta}_{j}$	$se(\hat{\beta}_{j})$	z _j	ρ-τιμή	$exp \Big(\hat{\beta}_j \Big)$
Σταθερά	-3.47429	0.08027	-43.281	<0.001	XXXX
X_3	0.45170	0.12972			
		·	•		

AUC =Area under the curve

ΜΟΝΤΕΛΟ 1 AUC=0.9538

ΜΟΝΤΕΛΟ 3 AUC=0.5502

ΜΟΝΤΕΛΟ 2 AUC=0.9538

