

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 7 по дисциплине «Теория Систем и Системный Анализ»

Тема: «Исследование генетических алгоритмов в задачах поиска экстремумов»

Вариант 5

Выполнил: Куликова А. В., студент группы ИУ8-11М

Проверил: Строганов. И.С.

1. Цель работы

Изучить основные принципы многокритериальной оптимизации в комбинации с методами случайного и прямого пассивного поиска применительно к задаче фильтрации дискретного сигнала методом взвешенного скользящего среднего.

2. Постановка задачи

На интервале [xmin, xmax] задан сигнал fk = f(xk), где дискретная последовательность отсчетов xk = xmin + k (xmax - xmin) K, k = 0, K, где K - количество отсчетов. На сигнал наложен дискретный равномерный шум $\sigma = (\sigma 0, \ldots, \sigma K)$ с нулевым средним и амплитудой, равномерно распределённой на интервале [-a, a]: $f\tilde{k} = fk + \sigma k$, $\sigma k = rnd(-a, a)$. В зависимости от варианта работы необходимо осуществить фильтрацию сигнала $f\tilde{k}$ одним из методов взвешенного скользящего среднего.

Метод фильтрации: Среднее арифметическое

Метрика близости: «Манхеттенская»

Исходный сигнал: $f_k = sinx_k + 0.5$

Размер скользящего окна:

$$-r = 3$$

$$-r = 5$$

Рисунок 1 — график функции при r = 3

Рисунок 1 — график функции при r = 5

3. Ход работы

***** FOR SLIDING WINDOW R = 3 ***** ****************************							
h	dis alp	oha	w	d			
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	4.18214 2.96513 2.96365 2.96153 2.96165 2.96173 2.96167 2.96177 2.96181	[0.000350,0.99 [0.000468,0.99 [0.298045,0.44 [0.299596,0.44 [0.304206,0.39 [0.307210,0.38 [0.308209,0.38 [0.308452,0.38 [0.308452,0.38 [0.308434,0.38	99064,0.00 03911,0.29 00809,0.29 91589,0.30 85581,0.30 83582,0.30 84843,0.30 83097,0.3	00468] 98045] 99596] 04206] 07210] 08209] 07579] 08452]	4.07022 2.65973 2.65756 2.6534 2.6522 2.65184 2.65206 2.65178 2.65172	0.111771 0.111914 0.305408 0.306096 0.30813 0.309449 0.309886 0.30961 0.309992 0.310087 0.309985	
h*] w	d					
0.4	1.24624	2.6534 0.3	30813				

h	dis alp	oha 		w	d		
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	2.69905 2.57413 2.44614 2.36529 2.44348 2.4571 2.40592 2.44018 2.44023	[0.157764,0.1 [0.147230,0.1 [0.129062,0.1 [0.099068,0.1 [0.113224,0.2 [0.142324,0.16 [0.106392,0.1 [0.058244,0.2 [0.136239,0.1	75000,0.3 55293,0.3 57625,0.2 23716,0.1 26117,0.1 6329,0.10 52961,0.2 06705,0.1	70197,0. 206231,0. 27704,0. 20072,0. 59541,0. 3622,0. 12094,0. 50959,0.	175000,0. 165293,0. 157625,0. 123716,0. 226117,0. 166329,0.1 162961,0. 206705,0. 148626,0.	1.003771 4.01034 157764 2.3807 147230 2.23692 129062 2.07567 099068 1.95106 113224 2.05439 142324 2.05595 106392 2.01591 058244 2.00075 136239 2.06175 17425 1.99602	0.318348 0.337207 0.370467
h*] M	d					
0.4	1.02896	1.95106 0.	 414231	l			

4. Выводы

В данной лабораторной работе были выполнено исследование стохастической фильтрации сигналов как задачи двухкритериальной оптимизации с использованием методов прямого пассивного поиска. В итоге, применяя случайный и прямой пассивный поиск, был получен сигнал, который, визуально, является отфильтрованной версией исходного сигнала с наложенным дискретным шумом.

5. Контрольный вопрос

1. Объясните принцип линейной свертки критериев.

Линейная свертка критериев - это метод, который позволяет объединить несколько критериев в один общий критерий. Этот метод заключается в том, что каждый из критериев умножается на свой весовой коэффициент, а затем все произведения суммируются. Весовые коэффициенты выбираются таким образом, чтобы в сумме они давали 1. Чем важнее критерий, тем больше его весовой коэффициент. ша

2. Что такое идеальная точка?

Идеальная точка - это точка, в которой достигается оптимальное решение задачи. Например, в задаче о рюкзаке идеальная точка - это такой набор предметов, который имеет максимальную стоимость при условии, что их вес не превышает заданный предел.

3. Дайте классификацию методов поиска.

Существует несколько классификаций методов поиска. Одна из них делит методы поиска на две большие группы: последовательные и параллельные.

Последовательные методы поиска включают в себя:

- Прямой поиск
- Бинарный (двоичный) поиск
- Интерполяционный поиск
- Метод деления пополам
- Метод Фибоначчиев

Параллельные методы поиска включают:

Продолжи

- Параллельный бинарный поиск
- Параллельно-последовательный бинарный поиск
- Разделение пространства ключей
- Разбиение задачи

– Распределенный поиск

4. Объясните принцип простейшего случайного поиска на отрезке.

Простейший случайный поиск заключается в выборе случайного элемента в массиве и сравнении его с искомым значением. Если элементы массива упорядочены, то можно просто выбрать случайный элемент и сравнить его с правым и левым соседями, если они существуют. Если элемент меньше искомого, то возвращаемся к его левому соседу, иначе переходим к правому.

Если элемента с таким ключом нет в массиве, то алгоритм возвращает специальное значение, например, -1.

Такой алгоритм работает за O(n) в среднем, однако, в худшем случае он может работать за $O(n^2)$. Это связано с тем, что если искомый элемент находится в конце массива, то алгоритм будет вынужден проверить все элементы массива.

5. Объясните принцип прямого пассивного поиска на отрезке.

Прямой пассивный поиск на отрезке - это алгоритм, используемый для нахождения всех элементов в отсортированном массиве, которые находятся в заданном диапазоне (отрезке). Этот алгоритм имеет сложность O(n), то есть его время выполнения пропорционально размеру массива.

Принцип прямого пассивного поиска заключается в следующем:

- 1. Берем два указателя: левый (L) и правый (R), которые указывают на первый и последний элемент в массиве соответственно.
- 2. Сравниваем значение элемента, на который указывает L, с левой границей заданного отрезка. Если оно меньше, перемещаем L вправо до тех пор, пока не найдем элемент, который больше или равен левой границе отрезка.
- 3. Аналогично сравниваем элемент, на который указывает R, с правой границей отрезка. Если он больше, перемещаем R влево до тех пор, пока не найдем элемент, который меньше или равен правой границе отрезка.

- 4. Если R находится левее L (то есть между ними есть элементы), то они оба указывают на элементы, которые содержатся в заданном отрезке.
- 5. Повторяем шаги 2-4 до тех пор, пока L и R не достигнут концов массива. В результате мы получим все элементы, находящиеся в заданном отрезке.

Этот алгоритм эффективен, когда массив отсортирован, поскольку он использует бинарный поиск для определения границ отрезка.

ПРИЛОЖЕНИЕ А. Исходный код

Ссылка на git-репозиторий: https://github.com/Kulikova-A18/TSiSa_lab_7