一体化基坑水位计 规格书

深圳威惠智能科技有限公司

一、简介

随着高层建筑的发展以及城市地下空间的开发利用,深基坑工程越来越多。由于基坑开挖所造成的基坑安全问题,以及对周边环境的影响问题也越来越引起参建方、政府和社会的普遍关注。对基坑工程实施现场实时监测,是保证基坑及周边环境安全行之有效的手段。

为加强地下工程和深基坑安全监测工作,实现地下工程和深基坑监测工作的 动态管理,保障工程施工安全,深圳的开挖基坑已于 2020 年 6 月份已经全面铺 开自动化监测,系统可以实现监测数据的自动采集、实时传输,并建立信息管理 平台,通过数据分析,形成各类变化曲线和图形,使监测成果"形象化"。由于 这套系统实现了检测数据自动采集,并利用无线传输技术或网络传输方式实现实 时传输功能,减少人为因素对监测数据的干扰,同时提升了采集效率,减少了事故隐患。

二、现有产品

水位监测目前已有的思路是 8 通道 GPRS 节点+水位计的方式。此种方式的存在需要人工开槽,人力投入大,线缆容易被碾压,从而导致数据丢失或者传感器损坏,以及维护成本过大等问题。如下图:

三、威惠新一代基坑水位监测产品

威惠 NB-IoT 基坑监测水位计,采用压力式传感器检测基坑地下水位,内置 威惠 Bore OS 物联网操作系统及 NB-IoT 物联网通信模块,系统检测到传感器的信号,会通过 NB-IoT 网络把消息传输至威惠智能后台系统中心。

本产品具有高可靠性、超长待机、无线传输、安装简易等特点,无需开槽布线工程,极大降低了因线缆被碾压导致数据丢失或者传感器损坏的故障概率,大大提高了系统的可靠性。同时施工和维护工程大幅度减少,也具有较高的经济效益。

- 1) 具备实时时钟功能,可以进行周期自检上报。
- 2) 支持上报周期可设置。
- 3) 具备上传电池电压的功能。
- 4) 支持通讯模组无线侧基本数据读取功能。
- 5) 支持远程配置联网 IP 和端口号。
- 6) 支持配接电信平台,移动平台,联通平台,直推客户平台等多种接入方式。

四、技术参数及指标

项目	参数	备注
量程	0~200 米	支持定制
精度	0.5%	
外观尺寸	上下两个圆柱体结构, 下圆柱体小于 50mm	能放进 50mm 的水位管里, 采集仪能够卡在水位管的 顶部
材料	304 不锈钢	采集仪顶部存在受车辆碾 压的风险,能够承受大型车 辆的压力
供电	最高采集频率,可到 5min/次,正常使用 2H/次,能够续航半年以上	可以通过平台控制采集的频率
协议	485 协议	按照深圳检测中心提供的 协议进行开发,无缝对接
传输	内置 NB 模块	能够接入知物云平台,深圳 检测中心平台
充电	不支持充电	内置锂亚电池, 电池可更换

项目参数名称		内容	
产品名称		基坑水位监测计	
	标准工作电压	3. 6V DC	
电池	极限工作电压	2.8V DC	
	电池容量	不低于 19000mAH	
整机功耗	休眠电流	≤15uA	
	最大功耗	≤2W @3.6V	
	工作年限	≥6 月(最高采集频率 5min/次,上报 2H/次)	
通讯接口	无线通信	NB-IoT(远程) (B3/B5/B8 全网通)	
测量功能	检测周期	可设置	
	电池电压	测量范围为 2.8-3.6V,误差为±0.2V	
报警次数	可配置	1-10 次或连续报警至手工解除	
指示功能	LED 灯	在设备顶端,代表运行或联网的情况	
外观和尺寸	尺寸	感应头尺寸 φ 42*220mm	
	天线	内置 FPC 天线	
	材质及抗压	304不锈钢	
	防护	防护等级 IP68,防潮,防凝露	

表 1 技术指标要求表

五、环境指标

指标名称	详细参数		
工作温度(℃)	正常工作温度	-10℃~60℃	
贮存温度(℃)	-20°C ~70°C		
工作湿度		00%	
大气压 kPa	63.0~ 106.0 (海拔 4000m 及以下)		

表2环境指标要求表

六、设备性能及安全

通信响应时间	<10s
平均无故障时间	≥15000 小时
报警数据误报率	≤0.1%
报警数据漏报率	≤0.1%
电磁兼容性	符合 IEC 61000-4-2、3、4、5
常态下绝缘电阻	≥100M Ω
湿热下绝缘电阻	≥2M Ω
泄漏电流	<5mA

表 3 安全指标要求表

七、设备外观

基坑监测水位计

监测终端

八、安装说明

1) 安装方式:

- ▶ 将传感器及线缆顺着监测孔缓慢垂下到底部
- ▶ 连接传感器线缆与采集器接口
- ▶ 将采集器放入监测孔,放置平整
- ▶ 在后台查看水位计监测数据,确定工作正常

2) 注意事项:

水位计直接安放在地面监测孔中,地面安装孔上部直径要比下部水管直径大,不小于 60mm,保证采集器安装后顶部天线低于地面 20mm,避免被车辆直接碾压。

水位高度= H0+H1

H0:探测器底部水位高度;在监测孔的挖掘和水管安装前,请准备测量和记录以确保此距离的正确性。

H1: 探测器监测出来的水位高度,此水位高度是通过探头所承受的的水压而换算出来的高度。

