NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 2 EXAMINATION 2020-2021

EE3001 – ENGINEERING ELECTROMAGNETICS

April / May 2021 Time Allowed: 2½ hours

INSTRUCTIONS

- 1. This paper contains 4 questions and comprises 7 pages.
- 2. Answer all 4 questions.
- 3. All questions carry equal marks.
- 4. This is a closed book examination.
- 5. Unless specifically stated, all symbols have their usual meanings.
- 6. A list of formulae and physical constants is provided in Appendix A on pages 5 to 7.
- 7. The Smith Chart may be used in the solution of Question 4. Please put the Smith Chart inside the answer script and tie it with a thread.
- 1. (a) A line charge of uniform charge density ρ_l is located in free space along the z axis from z = a to z = b > a.
 - (i) Using Coulomb's law, determine the electric field intensity \vec{E} at the point (x, y, 0) due to the line charge.
 - (ii) Simplify your expression of \vec{E} above for the case of $a = -\infty$ and $b = \infty$. Give your answers for both Cartesian and cylindrical coordinate systems.

Note:
$$\int \frac{1}{\left(x^2 + u^2\right)^{3/2}} dx = \frac{x}{u^2 \sqrt{x^2 + u^2}}$$

(15 Marks)

Note: Question No. 1 continues on page 2.

(b) Assume that the charges in part (a)(ii) are moving in the +z direction to form an infinitely long direct current I. Determine the magnetic field intensity \vec{H} at the point (x, y, 0) due to the line current. Give your answers for both Cartesian and cylindrical coordinate systems.

(10 Marks)

2. (a) Consider a square loop of area a^2 in the xy-plane in free space. At time t = 0, the loop has its center position at the origin, and is moving at constant velocity v along the +x axis. The loop region is subjected to a spatially uniform but time-varying magnetic flux density of the form (for time $t \ge 0$)

$$\vec{B} = (C_1 t^2 + C_2 t) \vec{a}_z T$$
,

where C_1 and C_2 are arbitrary constants.

- (i) Find the magnetic flux Φ_m passing through the loop and the induced voltage V_{emf} at time $t \ge 0$. State any assumption made.
- (ii) Assume that the loop has a uniform per-unit-length resistance of R_l (in Ω/m), determine the induced current I_{ind} at time $t \ge 0$.

(11 Marks)

- (b) A lossy medium is characterized by dielectric constant $\varepsilon_r = 10$, loss tangent $\tan \delta = 8$, and relative permeability $\mu_r = 1$ at 500 MHz.
 - (i) Comment whether the medium is a good conductor. Find the conductivity of the medium.
 - (ii) Assume that a 500 MHz plane wave is propagating along +z direction in the medium, calculate the complex intrinsic impedance η_c , the attenuation constant α and the phase constant β .

(14 Marks)

3. (a) The magnetic field of a uniform plane wave (UPW) travelling in a lossless non-magnetic medium occupying the region $z \le 0$ is given as

$$\tilde{H}_i(z,t) = -\vec{a}_y 50 \cos(6 \times 10^9 t - 24.5z + 40^\circ)$$
 mA/m.

The UPW is incident normally on a plane interface at z=0 with a lossy medium having complex intrinsic impedance $\eta_c = 10 \angle 45^\circ \Omega$ and occupying the region $z \ge 0$.

Determine the following and state any assumption(s) made:

- (i) The phase velocity u_p of the UPW in the lossless medium.
- (ii) The permittivity of the lossless medium.
- (iii) The time-domain expression of the incident electric field $\tilde{E}_i(z,t)$.
- (iv) The percentage of average incident power reflected at the planar interface at z = 0.

(12 Marks)

(b) A uniform plane wave (UPW) in free space occupying the region $z \le 0$ is incident at a plane interface with a lossless dielectric medium having $\mu_r = 1$ and $\varepsilon_r = 2.25$, occupying the region $z \ge 0$. The incident electric field of the UPW is given by

$$\vec{E}_i(x,z) = (20\vec{a}_x - 40\vec{a}_z) e^{-j(8x+4z)} \text{ V/m}.$$

Find the following:

- (i) The angle of incidence θ_i and the angle of transmission θ_t . Give both angles in degrees.
- (ii) The amplitude of the transmitted electric field at z = 0, i.e., E_{ot} .
- (iii) The time-average power transmitted through a $2-m^2$ area at z=0.

(13 Marks)

- 4. (a) A generator having an open-circuit voltage $V_g(t) = 96\cos(2.5\pi \times 10^8 t)$ V and an internal impedance $Z_g = 100~\Omega$ is connected to a $Z_o = 100~\Omega$ lossless air-filled transmission line of length $\ell = 0.64$ m. The phase velocity on the line is $u_p = 3 \times 10^8$ m/s and the line is terminated in a complex load $Z_L = 140 j64~\Omega$. Assuming that the load end is at z = 0 and the source end is at $z = -\ell$, find the following and state any assumption(s) made:
 - (i) The electrical length $\frac{\ell}{\lambda}$ of the transmission line.
 - (ii) The reflection coefficient $\Gamma(z)$ in polar form, i.e., $|\Gamma| \angle \theta_{\Gamma}$ at z = 0.
 - (iii) The input impedance $Z_{in}(z)$ in polar form at $z = -\ell$.
 - (iv) The amplitude of the incident voltage wave at z = 0, i.e., V_o^+ .
 - (v) The time-domain expression for the voltage at z = 0, i.e., V(z = 0, t).

(20 Marks)

(b) Find the position z of maximum voltage for the transmission line in part (a).

(5 Marks)

Note: The Smith chart may be used in the solution of one or both parts of this question. Please put the Smith chart inside the answer script and tie it with a thread.

<u>Appendix A</u>

Physical Constants

Permittivity of free space $\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \text{ F/m}$ Permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$

∇ Operator

$$\nabla V = \vec{a}_{x} \frac{\partial V}{\partial x} + \vec{a}_{y} \frac{\partial V}{\partial y} + \vec{a}_{z} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \vec{A} = \begin{vmatrix} \vec{a}_{x} & \vec{a}_{y} & \vec{a}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix}$$

$$\nabla V = \vec{a}_{r} \frac{\partial V}{\partial r} + \vec{a}_{\phi} \frac{\partial V}{r \partial \phi} + \vec{a}_{z} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{\partial (rA_{r})}{r \partial r} + \frac{\partial A_{\phi}}{r \partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \vec{A} = \frac{1}{r} \begin{vmatrix} \vec{a}_{r} & r\vec{a}_{\phi} & \vec{a}_{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{r} & rA_{\phi} & A_{z} \end{vmatrix}$$

Appendix A (continued)

Electric and Magnetic Fields

$$\vec{E} = \frac{1}{4\pi\varepsilon} \iiint_{V} \frac{\rho_{v} \vec{a}_{R}}{R^{2}} dv = \frac{1}{4\pi\varepsilon} \iiint_{V} \frac{\rho_{v} \vec{R}}{R^{3}} dv$$

$$V = \frac{1}{4\pi\varepsilon} \iiint_{V} \frac{\rho_{v}}{R} dv$$

$$\vec{H} = \frac{1}{4\pi} \int_{C} \frac{I \vec{dl} \times \vec{a}_{R}}{R^{2}} = \frac{1}{4\pi} \int_{C} \frac{I \vec{dl} \times \vec{R}}{R^{3}}$$

$$\oint_C \vec{H} \cdot \vec{dl} = I = \iint_S \vec{J} \cdot \vec{ds}$$

$$emf = \oint_C \tilde{E} \cdot \vec{dl} = -\frac{d\Phi_m}{dt} = -\frac{d}{dt} \iint_S \tilde{B} \cdot \vec{ds}$$

Maxwell's Equations

$$\nabla \times \tilde{E} = -\frac{\partial \tilde{B}}{\partial t}$$

$$\nabla \times \tilde{H} = \frac{\partial \tilde{D}}{\partial t} + \tilde{J}$$

$$\nabla \cdot \tilde{D} = \rho$$

$$\nabla \cdot \tilde{B} = 0$$

Complex Propagation Constant

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\varepsilon_c} = j\omega\sqrt{\mu(\varepsilon - j\sigma/\omega)}$$

Complex Intrinsic Impedance

$$\eta_c = \sqrt{\frac{\mu}{\varepsilon_c}} = \sqrt{\frac{\mu}{\varepsilon - j\,\sigma/\omega}}$$

Appendix A (continued)

Reflection and Transmission of Electromagnetic Wave

$$\begin{split} \frac{\sin\theta_t}{\sin\theta_i} &= \sqrt{\frac{\mu_1 \varepsilon_1}{\mu_2 \varepsilon_2}} & \tan\theta_{B||} &= \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} \\ \Gamma_{\perp} &= \frac{\eta_2 \cos(\theta_i) - \eta_1 \cos(\theta_t)}{\eta_2 \cos(\theta_i) + \eta_1 \cos(\theta_t)} \\ \end{split} \qquad \qquad \tau_{\perp} &= \frac{2\eta_2 \cos(\theta_i)}{\eta_2 \cos(\theta_i) + \eta_1 \cos(\theta_t)} \end{split}$$

$$\Gamma_{\parallel} = \frac{\eta_2 \cos(\theta_t) - \eta_1 \cos(\theta_t)}{\eta_2 \cos(\theta_t) + \eta_1 \cos(\theta_t)} \qquad \tau_{\parallel} = \frac{2\eta_2 \cos(\theta_t)}{\eta_2 \cos(\theta_t) + \eta_1 \cos(\theta_t)}$$

Transmission Line

$$V(z) = V_o^+ e^{-j\beta z} + V_o^- e^{+j\beta z}$$

$$I(z) = \frac{1}{Z_o} \{ V_o^+ e^{-j\beta z} - V_o^- e^{+j\beta z} \}$$

$$\beta = \frac{2\pi}{\lambda}$$

$$\Gamma_L = \frac{V_o^-}{V_o^+} = \frac{Z_L - Z_o}{Z_L + Z_o}$$

$$\Gamma(z) = \Gamma_L e^{+j2\beta z}$$
 $-\ell \le z \le 0$

$$Z_{in}(-\ell) = \frac{Z_L + jZ_o \tan(\beta \ell)}{Z_o + jZ_L \tan(\beta \ell)} Z_o$$

END OF PAPER

EE3001 ENGINEERING ELECTROMAGNETICS

Please read the following instructions carefully	lly:
--	------

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.