International Institute of Information Technology, Hyderabad (Deemed to be University)

EC2.101 - Digital Systems and Microcontrollers

End Semester Examination

Max. Time: 3 Hr

Max. Marks: 70

CALCULATORS ARE NOT ALLOWED

Numbers in square brackets [x] after a statement show the marks for that question. Numbers in {} brackets are for administrative use. Please ignore.

Q1. Let's say we are working in the ternary system (radix = 3). However, we need to create circuits using Boolean logic for the operations. A simple operation is to add two numbers. Given two 1-digit ternary numbers, design a circuit that produces their sum. [Hint: you will require 2 wires to represent 1-digit of ternary].

[12 marks]{CO-1}

Q2. We are given a serial stream of bits. Within this bit stream, we want to see if there is a 4-bit prime number. Design a circuit that outputs '1' if there is a 4-bit prime number in a given bit stream. The output should be active for one clock cycle upon detection of the prime number. If the next combination of 4 bits is also prime, the output should remain '1'. For example, bit stream 10111 will produce output '1' for two cycles, because 0111 and 1011 are both prime.

[12 marks]{CO-3}

Q3. Most of the arithmetic happens in a computer using 2's complement notation. Suppose we are given two 4-bit numbers in signed 2's complement representation (A and B). Design a circuit to compare them and output (A>B), (A<B), and (A=B).

[12 marks]{CO-2}

Q4. Perform the following conversions:

 $(978)_{10} = (?)_{16}$ $(73)_8 + (5BC)_{16} = (57)_8 + (?)_{16}$ $(1011)_8 = (?)_{10}$ $(110)_2 \times (11011)_2 = (?)_{16}$ $(3.78)_{10} = (?)_2$

 $[2x5 = 10 \text{ marks}]\{CO-1\}$

Q5. What is the behaviour of the following circuit if clock pulses are applied from a reset state (when all FFs are at zero) [4]? Draw the complete state diagram for the 16 distinct states (including starting in any other state) [4]. In general, if there are k flip-flops in this chain and any arbitrary starting state is chosen, how many clock cycles does it take to make sure we return to the original state [4]?

 $[4+4+4 = 12 \text{ marks}]\{\text{CO-3}\}$

Q6. We are required to find the sum of a set of N numbers located in a block of memory starting from location "0x200". The number N itself is stored in location "0x220" (assume N<0x20). Write an assembly level program that computes this sum using our simple 8-bit microcontroller. (Concise instruction set is provided below). Assume your own code starts at memory location "0x000". Provide reasoning for your code.

[12 marks]{CO-4}

Instruction	Opcode	Clk	Control Signals	Select Signals
adi xx	01	3	E _{PC} , L _{MR} , I _{PC}	-
		4	RD, L _{OR}	- ,- M
		5	EAR, LAR, End	$S_{ALU} \leftarrow ADD$
sbi xx	02	3	Epc, LMR, Ipc	-
		4	RD, LOR	- 4
		5	EAR, LAR, End	S _{ALU} ← SUB
xri xx	03	3	Epc, LMR, Ipc	-
		4	RD, LOR	
		5	E _{AR} , L _{AR} , End	$S_{ALU} \leftarrow XOR$
ani xx	04	3	Epc, LMR, Ipc	- 10 mm / 62
		4	RD, L _{OR}	- 1 5
		5	E _{AR} , L _{AR} , End	$S_{ALU} \leftarrow AND$
movs <r></r>	70-7F	3	E _{RG} , L _{AR} , End	$S_{RG} \leftarrow \langle R \rangle$, $S_{ALU} \leftarrow PASSO$
movd <r></r>	80-8F	3	EAR, LRG, End	$S_{RG} \leftarrow \langle R \rangle$
movi <r> xx</r>	90-9F	3	Epc, LMR, Ipc	-
		4	RD, LRG, End	$S_{RG} \leftarrow \langle R \rangle$
stor <r></r>	AO-AF	3	EAR, LMR	- (
		4	E _{RG} , WR, End	$S_{RG} \leftarrow \langle R \rangle$
load <r></r>	BO-BF	3	E _{AR} , L _{MR}	1. Ha or 11.
		4	RD, L _{RG} , End	$S_{RG} \leftarrow \langle R \rangle$
jumpd <fl> xx</fl>	E0-E7	3	Epc, LMR, Ipc, Epl, End if <fl>'</fl>	$S_{FL} \leftarrow \langle FL \rangle$
		4	RD, Lpc, End	- N
jmpr <fl></fl>	E8-EF	3	EFL, End if <fl>'</fl>	$S_{FL} \leftarrow \langle FL \rangle$
		4	EAR, Lpc, End	-