Automatic Multimeter PM2521

Service Manual

9499 475 01911 820407

PHILIPS

Automatic Multimeter PM2521

Service Manual

9499 475 01911 820407

IMPORTANT

This service manual is based on instruments with a serial number DM 01 1145 and onwards.

In chapter 11, modifications to the PM2521, an overview is given of modifications in the earlier instruments.

PHILIPS

IMPORTANT

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

NOTE:

The design of this instrument is subject to continuous development and improvement. Therefore the instrument may not exactly comply with the information in the manual.

WICHTIG

Bei Schriftwechsel über dieses Gerät wird gebeten, die genaue Typenbezeichnung und die Gerätenummer anzugeben. Diese befinden sich auf dem Leistungsschild.

BEMERKUNG:

Die Konstruktion und Schaltung dieses Geräts wird ständig weiterentwickelt und verbessert. Deswegen kann dieses Gerät von den in dieser Anleitung stehenden Angaben abweichen.

IMPORTANT

Dans votre correspondance se rapportant à cet appareil, veuillez indiquer le numéro de type et le numéro de série qui sont marqués sur la plaquette de caractéristiques.

REMARQUES:

Cet appareil est l'objet de développements et améliorations continuels. En conséquence, certains détails mineurs peuvent différer des informations données dans la présente notice d'emploi et d'entretien.

CC	ONTENTS				Page
1.	CIRCUIT DESCR	RIPTION			1
	1.1.	General			1
	1.2.	Survey of main sections			
	1.2.1.	Analog section			1
	1.2.2.	Control section			6
	1.2.3.	Display section			6
	1.3.	Functional description			6
	1.3.1.	General			6
	1.3.2.	Analog section (standard measurements)			7
	1.3.2.1,				
	1,3,2,2,	Alternating voltage measurements			
	1.3.2.3,				
	1.3.2.4.	Alternating current measurements			9
	1.3.2.5.	Resistance measurements			10
	1.3.2.6.	Diode measurements			
	1,3,2,7,	Temperature measurements			
	1.3.3.	Analog section (extended measurements)			
	1.3.3.1.	Frequency measurements			
	1.3.3.2.	Time measurements			
	1,3,3,3,	Trigger measurements			
	1.3.4.	Analog section (multifunction circuits)			
	1.3.4.1.	R.M.S. convertor			
	1.3.4.2.	Impedance convertor			
	1.3.4.3.	Active filter			
	1.3.4.4.	Analog-to-Digital convertor			
	1.3.5.	Control section			
	1.3.5.1.	Microprocessor 8035			
	1.3.5.1. 1.3.5.2.	Interrupt controller			
		•			
	1.3.5.3.	Counter			
	1.3.5.4.	Analog control			
	1.3.5.5.	ROM's and Address/Data decoding			-
	1.3.6.	Display section	• • • •	• • • •	23
	1.4.	Detailed circuit description			
	1.4.1.	Measuring sequence			26
	1.4.1.1.	Initialisation			27
	1.4.1.2.	Internal test and adjust routine			28
	1.4.1.3.	Set up routine			31
	1.4.1.4.	Measurement routine			31
	1.4.1.5.	Calculation routine			32
	1.4.1.6.	Display output routine			32
	1.4.2.	Analog section (standard measurements)			33
	1.4.2.1.	Direct voltage measurements			33
	1.4.2.2.	Alternating voltage measurements			
	1.4.2.3.	Direct current measurements			35
	1.4.2.4.	Alternating current measurements			36
	1.4.2.5.	Resistance measurements			
	1.4.2.6.	Diode measurements			
	1427	Temperature measurements			38

1.4.3.	Analog section (extended measurements)	39
1.4.3.1.	Frequency measurements	39
1.4.3.2.	Time measurements	40
1.4.3.3.	Trigger measurements	40
1.4.4.	Analog section (multifunction measurements)	41
1.4.4.1.	R.M.S. convertor	41
1.4.4.2.	Impedance convertor	42
1.4.4.3.	Active filter	43
1.4.4.4.	Analog-to-Digital convertor	
1.4.5.	Control section	45
1.4.5.1.	Interrupt controller	45
1.4.5.2.	Counter and Input control	47
1.4.5.3.	Analog control	48
1.4.5.4.	ROM circuit and Address/Data decoding	54
1.4.6.	Display section	56
1.4.7.	Power supply	56

2.	ACCESS		57
	2.1. 2.1.1. 2.1.2. 2.1.3.	Dismantling the PM2521	57 57
	2.2. 2.2.1. 2.2.2. 2.2.3.	Replacing parts Liquid crystal display, display unit N3, interconnection rubber or function knob Function switch Thermal fuse	58 58
3.	CHECKING AND	ADJUSTING	62
	3.1.	DC ranges	63
	3.2.	AC ranges	65
	3.3.	Trigger level ranges	66
	3.4.	Current ranges	
	3.5.	Resistance ranges	68
	3.6.	Temperature ranges	69
	3.7.	Frequency ranges	69
	3.8.	Time ranges	70
4.	FAULT-FINDING		71
	4.1.	General	71
	4.1.1.	Service hints	71
	4.1.2.	Fault-finding procedure	
	4.1.3.	Fault-finding with the signature analyser	
	4.2.	Fault-finding flow-charts	72
	4.2.1.	Basic check	
	4.2.2.	Function part	
	4.2.3.	V part	
	4.2.4.	V ~ part	
	4.2.5.	Trigger level part	76
	4.2.6.	A $\stackrel{\dots}{\dots}$ and A \sim part	78
	4.2.7.	Ω part	79
	4.2.8.	Analog part	
	4.2.9.	ADC part	
	4.2.10.	Digital part	
	4.2.11.	Free-run	
	4.2.12.	Display part	
	4.2.13.	Power supply check	88

5.	PARTS LIST		89
	5.1.	Top cover assembly	89
	5.2.	Bottom cover assembly	89
	5.3.	Front assembly	89
	5.4.	Switch assembly	89
	5.5. 5.5.1. 5.5.2. 5.5.3. 5.5.4. 5.5.5.	Printed circuit board Miscellaneous Resistors Capacitors Semi-conductors Integrated circuits	90 91 94 96
6.	CIRCUIT DIAGRA	AMS AND P.C.B. LAY-OUT	99
7.	MODIFICATIONS	S TO THE PM2521	115
	7.1.	Modifications to circuit diagrams and p.c.b. lay-outs	115
	7.2.	Modifications to components	120
	7.3.	Modifications to the adjusting procedure	120
8.	COMPONENT DA	TA	121
	8.1.	Semi-conductors	121
	8.2.	LOCMOS circuits (HEF)	122
	8.3.	OQ circuits	127
	8.4.	Display interface circuits	133
	8.5.	Operational amplifiers	137
	8.6.	Low power Schottky circuits (LS)	139
	8.7.	Memory and microprocessor	143
	8.8.	Resistors	146

Fig. 1. Basic built-up of PM2521

ST 3007

Fig. 2. Blockdiagram PM2521

Fig. 1. Basic built-up of PM2521

CONTROL SECTION

DISPLAY SECTION

Fig. 2. Blockdiagram PM2521

6

1.2.2. Control Section

The control section comprises the following circuit elements:

- The interrupt controller
- The inputs for the interrupt controller are the mode switches and the trigger level circuit output (timer part)
- The counter with its input control

The inputs for the counter circuit are:

- The ADC output
- The trigger level circuit output (counter part)

The input control is directed from the microcomputer

- The ROM with address/data decoding
- The microcomputer 8035
- The function selector with decoding
- The mode switches
- The relay/FET switch control

1.2.3. Display section

The display section consists of:

- The display interface circuit
- The 5-digit liquid-crystal display

1.3. FUNCTIONAL DESCRIPTION

1.3.1. General

In common with most microcomputer-based measuring instruments, the Automatic Multimeter PM2521 is designed around the microcomputer integrated circuit - an 8035 with a 4K external ROM. The 8035 comprises a microprocessor with an internal 64-byte RAM, one true 8-bit bidirectional port and two quasi-bidirectional ports.

In conjunction with the 4K ROM, the μ P controls the timing and measuring functions of the instrument. It also provides the reading of the display.

In the analog section, all the inputs are converted into d.c. signals, attenuated as necessary under μ P control and supplied to the ADC.

The ADC converts these d.c. analog representations of the input signals into digital logic signals suitable for the μ P.

The measuring sequence from analog section to control and display sections is briefly outlined in the flow-chart, Fig. 3.

LIST OF FIGURES

Fig.	1.	Basic build-up of PM2521	4
Fig.	2.	Block diagram PM2521	4
Fig.	3.	Measurement flow-chart	7
Fig.	4.	DC attenuator	8
Fig.	5.	AC attenuator	8
Fig.	6.	Basic I-V convertor	9
Fig.	7.	Ω measurements	10
Fig.	8.	Thomson bridge	11
Fig.	9.	Block diagram - frequency measurements	12
Fig.	10.	Normal trigger mode	13
Fig.	11.	Special trigger mode	13
Fig.	12.	Basic V-I convertor	14
Fig.	13.	Low-pass active filter	15
Fig.	14.	Switching part ADC	15
Fig.	15.	Basic functional blocks of 8035µP	17
Fig.	16.	Pin allocation and functions of 8035μ P	19
Fig.	17.	Mode switch interrupts	21
Fig.	18.	Block diagram of the control section	24
Fig.	19.	Measuring sequence	26
Fig.	20.	Calibration routine	29
Fig.	21.	Flow-chart internal test and adjust routine	28
Fig.	22.	Flow-chart display output routine	32
Fig.	23.	DC attenuator details	33
Fig.	24.	AC attenuator details	34
Fig.	25.	I-V convertor	35
Fig.	26.	Ω mesusrements details	37
Fig.	27.	Temperature bridge	38
Fig.	28.	Frequency measurements	39
Fig.		R.M.S. convertor	41
Fig.		Impedance convertor	42
Fig.		Active filter	43
Fig.		V-I convertor	44
Fig.		interrupt controller	45
Fig.		Counter input control	47
Fig.		Counter	48
Fig.		Switch decoding	49
Fig.		Relay/FET control	51
Fig.		Address decoding	54
Fig.		Memory	55
Fig.		Display interface	56
Fig.		Removing the top cover	60
Fig.		Removing the bottom cover and front	60
Fig.		Removing the front	60
Fig.		Front assembly	60
Fig.		Removing the thermal fuse	60
-	45a.	Removing the thermal fuse	60
Fig.		Adjusting elements	61
Fig.		Waveforms V~ part	74
Fig.		Waveforms trigger-level part	77
Fig.		Waveform, analog part	80
riy. Fia		Waveform ADC part	81

Fig. 51.	Waveforms, digital part	82
Fig. 52.	Waveforms, free-run	85
Fig. 53.	Switch for high current ranges	90
Fig. 54.	Switch p.c.b. lay-out, front view	99
Fig. 55.	Switch p.c.b. lay-out, rear view	99
Fig. 56.	Display p.c.b. lay-out, component side	100
Fig. 57.	Display p.c.b. lay-out, conductor side	100
Fig. 58.	Adapting the mains transformer	101
Fig. 59.	Main p.c.b. lay-out, component side	102
Fig. 60.	Main p.c.b. lay-out, conductor side	103
Fig. 61.	Additional components on conductor side of main p.c.b	104
Fig. 62.	Power supply circuit diagram	105
Fig. 63.	Analog section circuit diagram	110
Fig. 64.	Digital section circuit diagram	111
Fig. 65.	Modifications in active filter	115
Fig. 66.	Modifications in current source	116
Fig. 67.	Main p.c.b. lay-out, component side former version	117
Fig. 68.	Main p.c.b. lay-out, conductor side former version	118
Fig. 69.	Additional components on conductor side of main p.c.b.	119

Fig. 3. Measurement flow-chart

The various circuit functions are now described together with explanations of basic principles as necessary.

1.3.2. Analog section (standard measurements)

1.3.2.1. Direct voltage measurements

The unknown voltage to be measured is passed to the a.c./d.c. voltage attenuator where by means of resistors switched by relay contacts controlled from the μ P, the attenuation factor is changed from the basic 2V range to give 20V, 200V and 2000V ranges. The 200mV range uses the 2V range attenuator position, but the ADC is switched to the 100mV position to give the necessary x10 gain factor.

From the voltage attenuator the signal is fed to an active filter, which stabilises the voltage passed to the ADC. The ADC converts this analog voltage into digital form for the μ P to measure.

1.3.2.5. Resistance measurements

The unknown resistance is connected between the $V-\Omega$ -mA and 0 input terminals and supplied internally with a constant-current source dependent on the range selected. This current results in a potential difference across the resistor which (by Ohm's Law) is proportional to the resistance value. The resulting voltage signal is applied as for V measurements to the voltage attenuator, the active filter and the ADC. The circuit functions as shown in Fig. 7.

A known constant current supplied by the programmable current source A401 (OQ0063) flows through the unknown resistor Rx.

There are three basic ranges:

Ω			200
k Ω	2	20	200
мΩ	2	20	

Depending on the range selected (manual or automatic selection), the currents are determined by the signals RNGC, RNGD and RNGE:

Irx	RNGC	RNGD	RNGE	RANGE	Vx	INDICATION
1mA 1mA 100μ A 10μ A 1μ A 100n A	-10V -10V -10V 0V -10V	-10V -10V -10V -10V 0V	0V 0V -10V -10V -10V -10V	$200~\Omega$ $2k\Omega$ $20k\Omega$ $200k\Omega$ $2M\Omega$ $20M\Omega$	-0,2V - 2V - 2V - 2V - 2V - 2V	200.00 Ω 2.0000k Ω 20.000k Ω 200.00k Ω 2.0000M Ω 20.000M Ω

Fig. 7. Ω measurements

In practice, the internal resistance of the ADC ($10M\Omega$) also draws a small amount of current, but this is compensated by an equivalent current through the compensation amplifier circuit.

1.3.2.6. Diode meauserements

The measurement of diodes and semiconductor junctions is performed in the same way as for resistance measurements in the $2k\Omega$ range.

The value displayed is the equivalent of the voltage measured in the forward or reverse direction across the diode junction in the 2V range; i.e. the constant current multiplied by the diode resistance.

For diode measurements the constant current derived from the OQ0063 is 1mA (see previous section).

1.3.2.7. Temperature measurements

For temperature measurements, a constant current from the A401 current source flows through the resistance element of the temperature probe to produce a voltage drop across it. This resistance is connected as one of the ratio arms of a Thomson bridge. The voltage drop is an indication of the temperature of the Pt-100 probe $(-50^{\circ}\text{C} ... + 200^{\circ}\text{C})$ and is applied to the ADC for measurement.

circuit element principles:

Thomson bridge:

The temperature probe (resistance thermometer) is included in one arm of a balanced resistive 4-wire bridge. The balancing potentiometer is R708; the slider connects the output of the bridge directly to the ADC.

In this configuration, the small resistances of the connecting leads are counteracted; they are either in series with the current source or in series with the much higher resistance arms of the bridge, so their effect is negligible.

Fig. 8. Thomson bridge

ST3364

1.3.3. Analog section (extended measurements).

1.3.3.1. Frequency measurements

The unknown frequency source to be measured is applied to the V and 0 input terminals. After suitable attenuation as necessary in the a.c. voltage attenuator and impedance conversion (to match the low-impedance comparator) the signal is fed to one input of the comparator A502.

The trigger level input selected by the front-panel thumbwheel control is applied via an impedance convertor to the other input of the comparator.

The trigger level is set to a value lower than the amplitude of the signal to be measured. During counting, each time the amplitude of the signal from the input exceeds the selected trigger level, the compartor gives an output pulse to the counter. The internal counter of the μP is also used as an overflow counter for frequency measurements.

Triggering is also possible on the negative-going pulses of a signal by using the +/— switch to reverse the polarity of the trigger level.

Fig. 9. Block diagram-frequency measurements

1.3.3.2. Time measurements

Time measurements of signals are determined in conjunction with the trigger level function in a similar way to frequency measurements.

The input signal is applied via the voltage attenuator to one input of the comparator A502. The selected trigger level is applied to the other input.

When the amplitude of the signal exceeds that of the selected trigger level, an output pulse from the comparator is applied direct to the microprocessor.

Two trigger modes are possible for the time measurement function:

In the normal trigger mode, signals that are higher or lower than the circuit zero (0 terminal of PM2521) can be triggered with the + or - trigger level respectively.

Fig. 10. Normal trigger mode

In the special trigger mode, using Data Hold Probe PM9263, the PM2521 triggers in the + level mode on positive and negative crossings of the trigger level.

Conversely, in the - level mode it triggers on negative and positive crossings of the trigger level.

Fig. 11. Special trigger mode

1.3.3.3. Trigger measurements

In addition to time and frequency applications, the trigger level function permits other selective measurements to be made.

To measure the peak voltage of an input signal the front-panel trigger level control is rotated until the GATE indicator display is triggered either on or off. At this switch-over point the voltage indicated on the display represents the amplitude or peak voltage of the input signal.

1.3.4. Analog section (multifunction circuits)

1.3.4.1. R.M.S. convertor

Basically, the circuit is an a.c. to d.c. convertor built around the OQ0061 IC, which consists of three parts:

- A voltage-to-current convertor with two selectable input ranges
- A current rectifier with offset cancellation
- A log-antilog calculating R.M.S circuit

Circuit element principles:

As shown in Fig. 12, the basic V-to-I convertor consists of two input devices T1, T2 fed from two equal current sources and a conversion resistor R. The voltage V (= Vin1 - Vin2) developed across R gives a current $I = V \cdot I$ through R. This current increases the emitter current of T1 and decreases the emitter current of T2.

This results in collector output currents of $1 + \Delta 1$ for T1 and $1 - \Delta 1$ for T2.

Then the current is rectified to give a signal proportional to the R.M.S. value of the input signal Vin.

In practice, a more complex circuit is used to compensate for the differences in base-emitter currents.

The two equal currents I are derived from a current bias source.

For electronic range selection, two V-to-I convertors are used with common input and output devices but with separate conversion resistors.

The selection circuit for these has a selection input and a selection reference input that can be connected to various d.c. levels to give more control flexibility.

ST 3366 811126

Fig. 12. Basic V-to-I convertor

1.3.4.2. Impedance convertor

The impedance convertor converts the high input impedance signal to a low impedance to match the input of the R.M.S. convertor.

This impedance matching also applies to the input of the trigger level comparator, as otherwise it would draw current from the signal.

1.3.4.3. Active filter

Filters placed in feedback loops around an amplifier stage are referred to as active filters. They have sharper transition between the pass-band and stop-band than their passive counterparts, inductors are not needed, and small signals are not further attenuated.

In this application, good filtering is necessary especially when measuring small a.c. signals. In this circuit, the basic active filter elements are as shown:

Fig. 13. Low-pass active filter

In the PM2521, the track shielding network on the filter output keeps the two signal lines that are connected to it at the same potential; i.e. prevents tracking across the p.c.b. insulation.

1.3.4.4. Analog-to-digital Convertor

The ADC converts the analog signal into a digital signal by the 'delta-modulation' principle.

Basically, the delta-modulation ADC counts the difference in the time taken to charge and to discharge a capacitor about a fixed level, over a fixed period of time.

The number of charge/discharge cycles within this fixed time depends on the charge/discharge current which is made proportional to the unknown input voltage to the ADC.

Therefore, the number of pulses counted within a fixed measuring period is proportional to the unknown voltage V_x.

Circuit principles:

The capacitor is charged by a constant reference current added to the constant current derived from V to give (1 ref + \triangle 1).

The capacitor is discharged by the constant reference current minus the constant current derived from $V_{\mathbf{x}}$ to give (I ref $-\triangle$ I).

Each value of V_x has a certain number of charge/discharge cycles within the fixed period of a specific number of clock-pulses counted by a timer.

The fixed level between charging and discharging is determined by the voltage between the inputs of a comparator (\approx 0V) a flip-flop and clock signals.

A simple example of the principle is shown in Fig. 14.

When the fixed level is reached, the comparator switches and on receipt of the next clock-pulse the flip-flop changes its state. The flip-flop output is fed back to control the switches that connect the charging current (I + Δ I) and the discharging current (I - Δ I) to the capacitor. The ADC output (DATA) from the flip-flop is a square-wave, the duty-cycle of which is determined by the charge/discharge times. This is routed to a counter together with the clock pulses.

During the logic 1 state of the data signal the clock pulses are counted.

To obtain automatic zero, i.e. to counteract drift and internal offset, one complete measurement consists of two fixed measuring periods. This auto-zero function is carried out with the aid of the AZ and \overline{AZ} signals from the control logic.

When a measurement is started (1st. measuring period), the unknown voltage is supplied to the + input of the OQ0064 while the – input is connected to zero. The signal which is converted will be + Vin + Voff; i.e. $1 + \triangle 1_1 + \triangle 1_2$ ($\triangle 1_1$ is caused by the input voltage. $\triangle 1_2$ is caused by the offset).

In the second measuring period, the input signal is connected to the — input while the + input is now connected to zero. This signal which is converted, will be — Vin + Voff.; i.e. I $-\Delta I_1 + \Delta I_2$ (ΔI_1 is caused by the input voltage, ΔI_2 is caused by the offset).

The results of the two measurements are subtracted and divided by two:

 $2\triangle I_1$ which divided by two = $\triangle I_1$ the counted value for display.

1.3.5. Control section (Refer to Fig. 18.)

1.3.5.1. Microprocessor 8035

The integrated circuit microprocessor 8035, one of the MCS-48 family of single-chip microcomputers forms the basis of the control section of the PM2521 automatic multimeter. The 8035 is the equivalent of the 8048 except that it has no internal program memory.

However, it uses two externally-located read-only memories (2kx8-bit EPROM's) with address/data decoding facilities for program instruction storage.

In addition to the true bidirectional 8-line databus, the 8035 has two quasi-bidirectional 8-bit data ports for extra address lines and communication with the external circuits in the PM2521. Data written to these ports remains unchanged until rewritten. Each line is able to serve as input or output, or both, even though outputs are statically latched.

The internal data memory is a random-access store of 64x8-bits, indirectly addressable through the RAM pointer register.

Fig. 15. Basic functional blocks of 8035µP.

The following part gives an indication of which pins are used in the PM2521.

Fig. 16. Pin allocation & functions of 8035µP

1.3.5.2. Interrupt controller

The interrupt controller activates the microprocessor interrupt input facility to allow certain subroutines to be performed either by manual or automatic control. The control inputs are interrupt pulses applied from either one of the four front-panel mode switches or from timing pulses generated from the comparator output in the timing mode.

a) Mode switch interrupts

The logic 0 required for interrupt is derived from one of the four mode pushbuttons. It provides for: UP and DOWN ranging in the manual mode, AUTO ranging (except in timer function).

- Trigger mode polarity selection
- Selecting relative reference with ZERO SET in V π ., dB, Ω , and ${}^{\rm O}$ C range
- Manual STOP/RESET in timing mode

The functional circuit for interrupts given by the mode switches is shown below:

Fig. 17. Mode switch interrupts

Normally the three inputs to the NAND-gate are at logic 1, and the double inversion of the NAND-gate + the inverter gives a logic 1 at the INT input of the microprocessor; i.e. no interrupt is given.

However, when one of the four pushbuttons is depressed momentarily, a logic 0 pulse is given to the middle input shown, which results in a logic 0 being applied to the $\overline{\text{INT}}$ input, the condition for interrupt.

b) Trigger level interrupts

In the timing measurement mode, interrupts are generated by the trigger level circuit via the comparator for starting and stopping the μ P internal counter during time measuring.

In the normal trigger mode, by the use of delays and exclusive-OR gating, logic 0 outputs are generated on the positive-going crossings of the trigger level; i.e. an interrupt is given at the leading edges of successive comparator output pulses to start and stop the μ P counter.

In the special trigger mode, a logic 0 applied from the data hold probe switch enables timing of the duty-cycle of an input by stopping the timing period at the negative crossings of the trigger level. In this case, the leading edge of the comparator output pulse starts the μ P counter and the trailing edge stops it.

When the negative trigger level is selected, the start/stop polarities will be the reverse.

1.3.5.3. Counter

The counter receives logic input pulses from the ADC ouput, or from the comparator output when measuring in the frequency mode.

Selection between the two inputs is made in the counter input control stage by a control signal from the microprocessor.

The counter itself consists of two high-speed 4-bit binary counters in cascade which give an 8-bit output via buffers to the databus.

When measuring frequency, additional counting capacity is provided by the internal counter of the micro-processor.

a) Counter input control

The data input from the ADC is the varying duty-cycle pulses that represent the charge-discharge cycle of the integrator capacitor. In the counter the result of the first measuring period is obtained; i.e. the number of clock-pulses passed during the charge parts of the cycles. At the end of this period the μ P timer carry signal AZ changes the state of the control logic and also reverses the input voltages to the ADC to compensate for any zero drift. A second measuring period follows and the resultant measurement is the mean of the two periods.

The data input from the comparator consists of logic pulses representing the frequency measurement. These are gated to the counter when a logic 1 is sent from the μ P on the CT/ADC line. In this measuring function, the data input path from the ADC is inhibited.

b) Counter output control

Whatever input is selected, the counter reads in the pulses after it is reset an enabled by the μ P control. The 8-bit output is connected to output buffers and applied to the databus when the counter output is enabled by the microprocessor.

In the frequency measuring mode the most-significant output bit from the counter is routed to the T1 input of the microprocessor to use the internal counter as extra capacity in the event of overflow.

1.3.5.4. Analog control

The analog control section can be divided into two parts:

- The inputs to the microprocessor that indicate the status of the analog section
- The output circuits of the μP that control the analog section according to the settings of the function selector and the inputs from the mode switches and signals to be measured.

a) Control inputs

The various inputs to the control section provide the means for the μ P to sense the control requirements for a particular measurement situation.

These inputs include:

- The function selector switch position
- The manually selected mode switches
- The counter output (display and status condition, e.g. overload)
- The ROM program, or software control inputs

The mode switches and the function selector are scanned under software control, from the μ P and the ROM program, in a multiplexer stage and the output conditions detected are fed serially to the μ P as logic control signals.

b) Control outputs

The microcomputer controls the analog section, in accordance with the input information received, by means of reed relays and FET switches. The output data is clocked into a relay control unit which supplies function and range information to the analog section for switching purposes. Additional outputs are set/reset commands for the timing measurements, trigger level, dB conversion, and ZERO SET command for the relative reference value.

1.3.5.5. ROM's and address/data decoding

The program memory for the microprocessor is stored in two 2k ROM memories.

During an instruction cycle, data is fetched from the ROM's by the μ P.

This requires that the ROM locations are first addressed whereupon the ROM responds by sending the instruction or data to the μ P.

The addresses for the ROM's are decoded from data sent out on the 8-bit databus lines and the high-order program lines from port 2 of the microprocessor. These additional program lines are used to extend the address capability of the bus.

The decoding is achieved by bistable latches controlled by the ALE (address latch enable) output of the µP.

The data output from the ROM's is controlled by the \overline{PSEN} (program store enable) signal from the μP , which is gated to give a chip select signal to either ROM depending on the stated of the signal line P23.

1.3.6. Display section

The display section of the PM2521 contains three LCD (Liquid Crystal Display) interface integrated circuits that accept serially clocked output data from the μP to drive the display.

FROM COMPARATOR (S) INTERRUPT CONTROLLER (TIMER MODE) ANALOG CONTRO X-TAL 4,8MHz D1916 FROM COMPARATOR (Hz) RESET DATA HOLD HLD COUNTER DATA FROM ADC MR D1902/D1907 PORT P2 BUFFER OUTPUT ADDRESS µP8035 OVERFLOW T1 CT/ADC DATA ADDRESS BUS TIMER ST/SP PORT P1 DATA DISPL/ LATCHES D1906/D1905 ROMS PSEN D1920/D1909 --- DB0 - DB7 OUT

ance with the input information received, by s clocked into a relay control unit which supplies witching purposes. Additional outputs are evel, dB conversion, and ZERO SET command

ightarrow 2k ROM memories. by the μ P. reupon the ROM responds by sending the

on the 8-bit databus lines and the high-order tional program lines are used to extend the

e ALE (address latch enable) output of the μ P.

(program store enable) signal from the μ P, which on the stated of the signal line P23.

uid Crystal Display) interface integrated circuits the display.

26

1.4. DETAILED CIRCUIT DESCRIPTION

1.4.1. Measuring sequence

After POWER ON, the PM2521 carries out some routines to measure and evaluate the input signals applied. The software applications are briefly indicated by the following sequence.

Fig. 19. Measuring sequence

1.4.1.1. Initialisation

In this phase the μ P fills the internal RAM locations as an instruction reference for the μ P. For example, if the AUTO bit is set, then the μ P knows that AUTO-RANGING is selected.

The values of a measurement or a calibration measurement are also saved in these registers.

PROGRAM MEMORY CONTENTS (for example)

ADDRESS		BIT	POSITIO)N					
DECIMAL	7	6	5	4	3	2	1	0	
20				ΙΤ	OUT	CALC	MEAS	SUP	ZMON
21	~	°С	Ω	· V	A	s	Hz	Trigger level	YFU
22						RM2	RM1	RM0	YRM
23									
24						Mauto	Rdown	Rup	YRSC
25	M7	M6	M5	M4	М3	M2	M1	MO	YMN
26							1		
27									
28		dB	gate	Zero S	Lobat	CAL	OL		YDM
29									
2A	B7**	*****	**BINA	RY RESU	LT******	******	******	***B0	
2B	B15*	*****	****	******	*******	******	******	***B8	
2C				POS				***B16	

ZMON = Monitor (which routine?) IT = initialisation OUT = display output routine CALC = calculation routine **MEAS** = measurement routine SUP = set up routine YFU = Function (which function?) YRM = Range meter (which range?) YRSC = Range control status (up,down or auto ranging) YMN = Measurement number YDM = Display mode (which symbol to the display?)

1.4.1.2. Internal Test and Adjust Routine

After initialisation, the PM2521 performs two series of measurements as shown in the following flow-chart.

Fig. 21. Flow-chart internal test and adjust routine

- a) An AUTO CAL 0,1V measurement
- b) An AUTO CAL 1V measurement

When making the AUTO CAL 0,1V measurement the μP programs the OQ0063 so that a current of $100\mu A$ flows through R606, which causes a voltage drop of 100mV across it ($100\mu A \times 1k\Omega$). This voltage is supplied to the ADC and is counted by the μP , stored in a RAM location and used as reference for a normal measurement.

When making the AUTO CAL 1V measurement, the μ P programs the OQ0063 to give a current of 1mA through R606. The resulting 1V across R606 is also counted and stored in a RAM as a reference for further measurements. In this case, a different sensitivity of the ADC is chosen (i.e. 1V).

Fig. 20. Calibration routine

In the function selector positions A \dots or A \sim two offset measurements are performed.

- a) A 200mA | zero measurement (offset)
- b) A 2 A I zero measurement (offset)

The PM2521 measures the offset in the I to V convertor and this is subtracted from the result of a normal measurement in these two ranges.

All the above measurements are completely controlled by the microprocessor software. The following subroutines are used for internal test and adjust routines:

- Comparison routine
- Fetch adjustment number routine
- Fetch calibration value routine

Also used as subroutines:

- The set-up routine
- The measuring routine
- The calculation routine
- The display output routine

Comparison routine:

Here the contents of a calibration measurement are compared with a normal measurement. If the contents of both are equal then an internal bit is set.

Fetch adjustment number routine:

The μ P scans port P11 and reads the number of the adjust mode.

k = adjust mode 1

* blinks

Z = adjust mode 2

S = adjust mode 3

Fetch calibration value routine:

Fetches the calibration value (i.e. the measuring time) from the low calibration value register and the high calibration value register and transfers it to the binary result register.

1.4.1.3. Set up routine

The set up routine uses the following subroutines:

Start-up routine:

This routine checks if the POWER ON bit is set and if so, it sets the relays for the internal calibration.

Refresh routine:

This routine reads the function switch until a function is located an then updates the function register. Then it reads the A-bus switch, the automatic bit, the LO BAT input and the DATA HOLD input. It also checks if the function switch has been changed and if so, it makes the necessary calibration measurements.

Range routine:

When an UP or DOWN ranging button is depressed a bit is set in the range control status register. This routine checks this bit and performs the required ranging.

Set up execution routine:

This routine shifts the data for the relay settings in the D1908 (SAA1060) and also controls the timing for shifting.

Check routine:

The check routine examines the Rdown and Rup bits in the range control status register.

If the range > range max. then the instrument must range up.

If the range < range min, then the instrument must range down.

It also ensures that in the TRIGGER LEVEL function only manual ranging is allowed.

1.4.1.4. Measurement routine

The measurement routine uses the following subroutines:

ADC measuring time routine:

This routine is responsible for the whole timing of the ADC (see OQ0060 and OQ0064).

Counter measurement routine:

The frequency measurements are performed without the ADC. This routine controls the circuits that in turn control the frequency functions.

Timer routine:

For timing measurements in position s, this routine controls the timing functions. It checks for the SET/RESET pulse and the STOP bit.

BCD conversion routine:

The value counted is converted to BCD information by this routine.

1.4.1.5. Calculation routine

The calculation routine uses the following subroutines:

Fast measurement calculation routine:

After a fast measurement, the PM2521 performs a fast calculation for the purpose of ranging.

Slow measurement calculation routine:

This routine converts a slow measurement result into display data and calibration data. The calibration data is made to compare two results. The display data is made to shift the data into the SAA1060.

1.4.1.6. Display output routine

Fig. 22. Flow-chart display output routine

1.4.2. Analog section

1.4.2.1. Direct voltage measurements (V ...)

The input circuit for the d.c. voltage measurements is shown in Fig. 23.

The various ranges are selected by reed relay switches, which connect resistors in parallel with the basic attenuator. The table indicates for each range the attenuation factor, the ADC input sensitivity and the range relays.

The basic x 2 attenuation is given by the network comprising the series R101 section, and the shunt path R101, R103, R106.

Adjustment of the basic x 2 attenuation is made by the preset potentiometer R103.

Preset R108 across the +10V and -10V supply provides d.c. balance.

The 200mV sensitivity is achieved by using the 100mV range of the ADC, which is activated by the RNGB input from the relay control D1908.

Fig. 23. D.C. attenuator detailed

ATTENUATION	ADC in. RANGE	RELAY
2 (RNGB)	100mV	
2	1 V	
20	1 V	K101 ReA
200	1 V	K102 ReB
2000	1 V	K103 ReC
	2 (RNGB) 2 20 200	2 (RNGB) 100mV 2 1 V 20 1 V 200 1 V

1.4.2.2. Alternating voltage measurements (V~)

a) Input a.c. attenuator

The input circuit for the a.c. voltage measurements is shown in Fig. 24.

The table indicates the attenuation factor ADC sensitivity, and range relays and components.

The basic x 2 attenuation is given by the voltage division of the series components R101//C101, C102 and the shunt components R101, R103, R106//C103, C104, C105. Any d.c. component at the input is blocked by C100.

- x 20 attenuation is provided by R101//C106, C107, C108 switched by relay K101;
- x 200 attenuation by R101//C109, C110, C111, C112, C113, switched by relay K102;
- x 2000 attenuation by R101//C115, C116, switched by K103.

The preset capacity trimmers allow calibration of the different ranges.

RANGE	ATTENUATION	AC INPUT RANGE	RELAY
200mV	2	100mV (RNGA)	
2 V	2	1 V	
20 V	20	1 V	K101 ReA
200 V	200	1 V	K102 ReB
2000 V*	2000	1 V	K103 ReC

* max. input = 600V R.M.S.

Fig. 24. A.C. attenuator detailed

1.4.2.3. Direct current measurements (A ...)

Currents less than 20mA applied to BU2 are routed via the A ... function switch contact direct to the I-V convertor.

Any differences in polarity for zero input in the low current range can be offset by the preset R227. In the 0.2A to 10A ranges, the unknown current source applied to BU3 is shunted by R1 and routed via FET switch V201 and the resistors R203, R204//R205 to the input of the I-V convertor amplifier A201.

The initial offset routine for the high current ranges is performed by software, controlling the RNG C input. During this routine the input current on BU3 is isolated by a logic 1 in RNG C which switches off V205 and consequently FET switch V201. The logic 1 is also applied to the gate of FET V202 to earth the input to the I-V convertor for the zero offset routine.

The high current input is protected against overloads by the diodes V259, V260.

The BU3 input connector, when inserted, links the input socket with the base of transistor V206, which sends a logic 0 to the A-bus of the switch decoding multiplexer, to signal that the high current ranges have been selected.

Fig. 25. I-V convertor

The principle of the I-V convertor is explained in the functional description.

The operational amplifier A201 is a shunt feedback amplifier that converts the input currents into output voltages between 0 to 0.1V and 0 to 1V.

RANGES	ADC SENSITIVITY	RELAYS	MODE SIGNAL
2 μΑ 20 μΑ 200 μΑ 2mA 20mA	1V 0,1V 1V 0,1V	K202 K202 K201 + K202 K201 + K202	
200mA 2 A 20 A	0,1V 1V 0,1V		A BUS

The feedback resistors are selected according to the table by reed relay switches K201 and K202. The two transistors V203, V204 take over the extra current from the operational amplifier A201, when the voltage across R220 exceeds 600mV.

The protection circuits for the I-V convertor are:

- Transistors V209, V210, which provide overload protection.
 Normally the input of A201 is at virtual earth, but excessive negative inputs are prevented by V208, and excessive positive inputs are prevented by V207.
- Zener diodes V257, V258 wich provide current protection.
- Protection diodes V253, V254 for the shunt feedback path in series with V251, V252, which are included to block the leakage current of the protection diodes.

The output from the I-V convertor is passed via the A ... 2 function selector switch to the active filter and the ADC.

1.4.2.4. Alternating current measurements (A~)

For alternating current measurements, the voltage output of I-V convertor is applied via the function selector switch A^{\sim} 2 to the impedance convertor and the R.M.S convertor before being passed by reed relay switch contact to the active filter and ADC.

1.4.2.5. Resistance measurements (Ω)

The unknown resistance connected to the BU2 input is fed via the Ω 1 function selector switch contact to the voltage attenuator and is supplied with a constant current IRx, via contact Ω 2, from the constant current source A401 (OQ0063).

CURRENT SOURCE

Fig. 26. Ω measurement details

The measuring currents in the OQ0063 are derived from a reference current source I REF adjusted by R418 in series with potentiometer R411. The output current I_{rc} of the reference current source feeds the current multipliers $\frac{1}{n}$ to give the currents I_{rx} shown in the table, depending on the selected signals RNGC, RNGD or RNGE.

As stated, the voltage Vx developed across Rx is applied to the ADC for measurement. However , the ADC input resistance is finite ($10M\Omega$) and the small input current drawn by the ADC has to be compensated to avoid incorrect readings.

This is achieved as follows:

The voltage Vx across Rx is amplified by a factor of 2 in the compensation amplifier (+Vin), the gain being determined by the equal resistors R404, R406.

The output voltage of 2Vx appears at one end of R403 and Vx is present at the other end. The voltage across R403 is therefore:

2Vx - Vx = Vx As R403 = the input resistance of the ADC (10M Ω) the input current of the ADC is compensated.

In this way, the load imposed by the ADC is compensated as $I_{comp} = I_{adc}$

$$IRx' = IRx + I_{adc} - I_{comp}$$

so $IRx' = IRx$.

Protection for the current source is afforded by the PTC resistor R401 and zener diodes V450, V451, V452 and diode-connected transistor V403.

In the event of a high voltage/current on the input terminals R401 goes high resistance. To prevent part of IRx leaking through the protection diodes, the emitter of V403 and the cathode of zener diode V450 are connected to Vx and the electrodes are routed back to the -Vin input of the compensation amplifier. The leakage current through the diodes is therefore balanced out in the same way as compensation is achieved for the ADC input current.

1.4.2.6. Diode measurements

Diode measurements, and measurement of semicondúctor junctions are performed in the same way as for resistance measurements in the $2k\Omega$ range. The value displayed is the voltage in forward or reverse direction across the diode in the 2V range.

In the diode measuring range, the constant current derived from the OQ0063 is 1mA (see previous section).

1.4.2.7. Temperature measurements (^OC)

When the OC function is selected, the constant current IRx is routed from pin 2 of the probe connector BU4, which is connected via the probe lead to one end of the PT100 resistance thermometer.

The output of the Thomson bridge is applied to the ADC via function switch contact ^oC2.

The earth return to the ADC is routed to the common sources of V607 and V607'. This point is now raised above earth by the potential drop across the bridge caused by the measuring current source; i.e. 100mV for OOC.

The Data Hold switch output is derived from pin 5 of BU4.

TEMPERATURE BRIDGE

Fig. 27. Temperature bridge

1.4.3. Analog section (extended measurements)

1.4.3.1. Frequency measurements (Hz)

The Hz1 function switch connects the input signal to be measured to the voltage attenuator. After attenuation it is applied via function switch contact Hz2 to the impedance convertor. The low impedance output is applied to the + input of the comparator A502.

When positive triggering is selected, the +10V is applied via R502 to one end of the TRIGGER LEVEL potentiometer R502 and the resulting + signal selected is fed via the + input of the buffer amplifier A501 to impedance convertor V302, which gives a + input to pin 3 of the comparator A502.

When the signal pulse peaks cross the trigger level threshold, the comparator produces output pulses via the grounded base transistor V501.

On comparator output pulses, V502 conducts and the resistor R512 results in a drop in output of 50mV approx. This is done to prevent unwanted oscillation.

When the negative triggering is selected, control relay ReM causes V507 to conduct (logic 1) which means that -10V is applied via R505 to the end of the TRIGGER LEVEL control. Although the +10V is still applied via R504, the smaller value of R505 makes the input negative. Diode V551 also conducts to give a negative polarity signal to invert the comparator output in the digital section.

In the negative trigger mode, V502 is already conducting, so V503 and V504 act as a level shifter to compensate for the difference in levels between logic 0 and logic 1.

TRIGGER LEVEL

Fig. 28. Frequency measurements

1.4.3.2. Time measurements (s)

When the time function is selected, the S1 contact connects the source to the voltage attenuator. After attenuation, it is connected to the + input of the comparator.

In the same way, as for frequency measurements the comparator produces output pulses when the signal peaks cross the trigger level selected.

These are passed direct to the microprocessor and also to the selection gates of the interrupt controller.

1.4.3.3. Trigger level measurements

When trigger level is selected, TL1 function switch contact routes the input signal to the voltage attenuator as for voltage measurements.

Contact TL3 connects the attenuated output via the impedance convertor to the + input of the comparator as for frequency measurements.

Switch K301 is open in the trigger level function.

1.4.4. Analog section (multifunction measurements)

1.4.4.1. R.M.S. convertor

In the R.M.S. convertor the difference in voltage between the Vin2 and Vin1 is converted into current in a dual V-I convertor.

The current is determined by $\frac{V \text{ in}}{R}$ and the state of the RNGA signal, (where R is either R305 or R306 + R307). This relay signal from D1908 selects the input sensitivity of the R.M.S. convertor.

The current in the a.c. to d.c. convertor is rectified and then converted into a current again by the R.M.S. section. This current is proportional to the r.m.s. value of the input signal V.

Capacitor C302 is the integrating capacitor for the R.M.S. section. Capacitors C303 and C304 provide the automatic zero (AZ) compensation for the R.M.S. convertor.

The output of the R.M.S. convertor is converted into a voltage by resistor network R309-R312. The output voltage can be adjusted by R310 and is filtered by R314/C306. It is supplied via relay contact K301 to the active filter.

RMS CONVERTOR

Fig. 29. R.M.S. convertor

1.4.4.2. Impedance convertor

The output signal from the a.c. attenuator is passed via switch contact $V \sim 3$ to an impedance convertor which converts the high input impedance signal to a low impedance to match the input of the R.M.S. convertor A302, which would otherwise draw current from the signal.

The gate of FET V302 gives the high impedance input to the stage, which is fed from a current source supplied by V306.

In other measuring functions than a.c., control signal RE P switches on FET switch V301, which short-circuits the a.c. path to earth.

The impedance convertor input is protected against excessive input voltages by:

- Diode-connected V350 which acts as a zener diode for negative voltages
- R304 and the gate-drain junction of V302 for positive voltages.

For the input range from -1V to +1V on the gate of V302, the output at V305 collector lies between 0V and 2V; i.e. it is always positive.

IMPEDANCE CONVERTOR (TRIGGER LEVEL RMS/CONV.)

1.4.4.3. Active filter

The input to the active filter is via the FET switch V603, activated by a signal from the anode of diode V657 in the relay control D1908 (in all functions except Hz and s).

Filtering is obtained basically by the frequency-dependent feedback network R601, C601 R602, R603, C602, C603 around the operational amplifier A601. The loop coupling to the operational amplifier inputs is achieved via high impedance FET switches V605.

Trimmer R624 provides the offset adjustment.

The output from the active filter is coupled via the FET switches V606, V606', (depending on whether AZ on \overline{AZ} is selected) to the +Vin (FET V608) or the -Vin (FET V608) of the voltage-to-current convertor A602. The output of the operational amplifier A601-6 is also routed via zener diode V654 to a potential divider circuit R609, R610 derived from the +10V supply.

This drops the supply to +8.5V to equalise the conduction points of the V-I convertor FET's caused by the differential inputs.

ACTIVE FILTER

Fig. 31. Active filter

1.4.4.4. Analog-to-digital convertor

The A602 integrated circuit converts the unknown input voltage to a constant current value depending on the magnitude of the input voltage.

Two sensitivities can be selected by the relay control input RNGB, to give either 1V or 0,1V (used in the 200mV measuring range).

The voltage converted to a constant current is the difference between the two inputs of the OQ0064.

The auto zero circuit is designed to compensate for any internal offset which could influence the measuring result of the ADC. This is done by logic signals AZ and \overline{AZ} .

During the first period of a measurement the unknown voltage is supplied via V606' and V608 to the + input (pins 3 and 5) of the OQ0064 while the - input (pins 12 and 10) is connected to zero via V610 and V607, controlled by the \overline{AZ} logic to the gate of V608'.

At the same time, the \overline{AZ} signal via V610 switches the signal path via V606' to V608 and the + input. In the second period of a measurement the situation is reversed. The AZ logic pulse switches the input signal to the — input, and the + input is now connected to zero via the gate of FET V608 and FET V607'. The source of V607' is normally at 0V except in the temperature measuring function.

In the μp these two signals are subtracted, so any internal offset is compensated.

AZ = 1 for the first measuring period

 \overline{AZ} = 1 for the second measuring period.

Fig. 32, V-I convertor

1.4.5. Control section

1.4.5.1. Interrupt controller

Mode switch interrupts

The four mode switches SK1, SK2, SK3, SK4, when selected, each give a logic 0 pulse via C1919 to input 11 of the 3-input NAND-gate D1918.

Input 12 is held at logic 1 by the pull-up resistor from input 6 (\overline{INT}) of the μP .

When there is no input from the trigger level circuit, input 13 is also at logic 1.

Consequently, a logic 0 pulse from one of the mode switches results in a 0 pulse on the interrupt input $\overline{\text{INT}}$. During a timing measurement, the S'contact when switched gives a logic 1 to the pin 1 of Schmitt trigger D1917, which gives a logic 0 pulse via C1912 to reset the time measurements.

Trigger level interrupts

Interrupts are also generated by the trigger level circuit in the timer mode, for starting and stopping the μP internal counter during measuring.

The functional circuit is shown in Fig. 33.

Fig. 33. Interrupt controller

Permanent non-interrupt condition:

Without the timer selected there is no output from the comparator even if Hz is selected because P16 inhibits the flip-flop and gives a '0' on NAND input 2.

Interrupt conditions:

There are two modes of trigger level interrupt:

- The normal trigger-mode, where the signal is triggered on successive positive crossings (or successive negative crossings) of the trigger level.
- The special trigger mode, using the data hold input, where the signal is triggered on successive positive and negative (or negative and positive) crossings of the trigger level.

Considering first, the normal trigger mode; i.e. with the data hold switch open.

As explained, the condition for interrupt is a logic '0' on the INT pin; i.e. all the three inputs of NAND-gate D1918 at logic 1 simultaneously.

Path 1 takes the comparator output waveform to the NAND-gate input 2 of D1911 via a two-input exclusive-OR gate.

A logic '1' is passed only when a '1' input appears on either one or the other of the inputs.

Two small RC delays are applied to the inputs so that the inputs arrive at slightly different times after the start of the comparator output waveform. This means that for a short period, i.e. the difference in the delay times, one of the inputs, the one with the shorter delay is at logic '1'. Consequently, a logic '1' appears at the output of the gate for this short period until the other input is at logic '1'; i.e. the condition for '0' output.

At the end of the comparator pulse, the input with the shorter delay returns to logic '0' after its delay time. However, the other input remains at logic '0' for its delay period and gives a corresponding logic '1' pulse to the gate output as shown.

Path 2 inverts the comparator output waveform and applies it via a NAND-gate to input 8 of D1918 in its original form.

Path 3 applies the comparator output via the clock input of the flip-flop to the output, which is applied to the third input 2 of the NAND-gate.

All three inputs of NAND-gate D1918 are at logic '1' during the positive-going crossings of the trigger-level. As path 2 changes polarity at the end of the positive-going comparator pulse, no intermediate interrupt pulse occurs in the normal trigger mode.

Considering the special trigger mode the circuit functions are identical, except that the data hold input puts a logic '0' on to the input of the NAND-gate in path 2. This means that the output, and consequently input 8 of NAND-gate D1918, are permanently at logic '1'.

The intermediate pulse from the exclusive-OR gate now forces the output of NAND-gate D1918 to logic '0' for its duration.

The outcome is that the μ P counter is stopped at the negative crossing of the trigger level in the special trigger mode. The foregoing explanation has assumed that positive trigger has been selected. When negative trigger is selected, the start point is a negative-crossing of the trigger level and the stop point, a positive crossing of the trigger level.

1.4.5.2. Counter and input control

Counter input control

The counter accepts the data pulses from the ADC output and, in the frequency mode (Hz) from the comparator output.

The CT/ADC input (P10) from the \(\mu \)P enables either the ADC input (CT/ADC = 0) or the comparator input (CT/ADC = 1).

Data from the ADC is routed to exclusive-OR gate D1910 pin 1 where the varying duty-cycle is compared with a '0' (applied from the AZ output of flip-flop D1903) for the first measuring period and with a '1' for the second measuring period. This inverts the data for the second measuring period. The output on pin 3 is applied to NAND-gate input D1914-9. The clock ADC pulses are applied to the other input (8), which produce a number of output pulses during the first period corresponding with the pos. time of the duty cycles. The output on D1914-10 is applied to another exclusive-OR gate. D1909-9, one input of which is tied to logic '1'. The resultant output for the complete measurement is equal to the mean value of the two measuring periods. The output on D1910-10 is presented to two NAND-gates, which in the ADC selected mode act as inverters only because of a permanent logic '1' on the other inputs (D1914-5 and D1913-2.3). The output feeds the counters D1902 and D1907 in cascade,

In the frequency mode, the CT/ADC input is at logic '1'.

The NAND-gate D1914 (12, 13, 11) wired as an inverter gives an output '0' to NAND-gate D1914-5 feeding the ADC input of the counter. This applies a permanent '1' to final NAND-gate D1913 input 1. This means that the pulses from the comparator output are fed, via two NAND-gates acting as inverters, into the counter.

Fig. 34. Counter input control

Counter output control

The counter consists of two high-speed 4-bit binary counters in cascade giving an 8-bit output via buffers to the databus. Low to high transitions of the input (2) result in synchronous changes of the outputs to the buffers.

The master reset input MR when at logic '0' resets all outputs regardless of inputs.

The hold $\overline{\text{HLD}}$ pulse is a logic '0' from the μP ; logic '1' enables counting operations.

The 8-bit output is routed to an integrated circuit D1901 containing eight 3-state buffers.

The outputs from the counter are directly routed to the databus by logic '0' on the ECO (OE) input. This condition requires a RD pulse ('0') and a P17 and A7 signal applied together.

1.4.5.3. Analog control

Control inputs

The ten function switches when selected, provide a -10V supply to one of ten independent inputs of D1916, D1918. These integrated circuits are two 8-channel analog multiplexers, scanned by three address inputs P20', P21', P22' and a chip select pulse P23'.

Internally, the analog switches have one side connected to a common output line (pin 3) that is connected via a diode V901 to P24 of the μ P (logic '0' output).

The mode switches are also connected to four of the independent inputs of D1919.

The multiplexers act as switch decoders. At the start of a measuring program, the address lines scan the two 1-of-8 decoders under software control and detect the function and any mode conditions.

The control address signals are derived from the μ P part 2 outputs P20, P21, P22, P23, clocked via the bistable flip-flop circuit D1912.

When trigger level is selected, the -10V on pin 4 of D1916 is applied to the NAND-gate D1918, input 3 to give a logic '1' at the data input (12) of the GATE control flip-flop D1915.

Fig. 36. Switch decoding

Fig. 37. Relay/Fet control

Control outputs

Control of the reed relays used for range changing, function switching, etc. is achieved by the RELAY FET CONTROL interface circuit D1908 (SAA1060). The circuit is software controlled from the µP by the DATA signal P20', the CLOCK input P21' and the enable signal P11 (DLEN4).

In the bus control circuit of D1908, the data is checked for word length (17 bits + leading zero) to establish whether it is valid data and not interference. The serial data is fed to a 17-bit shift register where it is loaded into a 16-bit latch B (there are two latches, A is not used in this application). From here it is switched directly in parallel form to the appropriate outputs for relay control. See Fig. 37.

OUTPUTS SAA1060

BIT NO	В7	В6	B5	B4	B3_	B2	B1	во	В7	В6	B5	В4	В3	B2	B1	В0
PIN NO	1	3	11	12	10	2	22	18	13	16	20	23	24	21	17	14
SIGNALS	REA	REC	REN	RED	RNGD	REB	RED		RNGB	RNGE	REE	REP	REM	RNGC	RNGA	REQ
RANGE			-													
200mV	1	1	0	1	0	1	0	1	0	0	0	1	0	0	1	1
2 V. 	1	1	0	1	0	1	0	1	. 1	0	0	1	0 .	0	1	1
20 V	0	1	0	1	0	1	0	1	1	0	0	1	0	0	1	1
200 V	1	1	0	1	0	0	0	1	1	0	0	1	0	0	1	1
2000 V	1	0	0	1	0	1	1	1	1	0	0	1	0	0	1	1
200mV~	1	1	0	1	0	1	0	1	1	0 -	0	0	0	0	0	0
2 V~	1	1	0	1	0	1	0	1	1	0	0	0	0	0	1	0
20 V~	0	1	0	1	0	1	0	1	1 .	0	0	0	0	0	1	0
200 V~	1	1	0	1	0	0	0	1	1	0	0	0	0	0	1	0
2000 V~	1	0	0	1	0	1	1	1	1	0	0	0	0	0	1	0
200 Ω	1	1	1	1	0	1	0	1	0	1	0	1	0	0	1	1
2ΚΩ	1	1	1	1	0	1	0	1	1	1	0	1	o o	0	1	1
20ΚΩ	1	1	1	1	0	1	0	1	1	0	0	1	0	0	1	1
200ΚΩ	1	1	1	1	0	1	0	1	1	0	0	1	0	1	1	1
2МΩ	1	1	1	0	1	1	0	1	1	0	0	1	0	0	1	1
20мΩ	1	1	1	0	1	1	0	1	1	0	0	1	0	1	1	1
2 μΑ	1	1	0	1	0	0	1	0	1	0	0	1	0	0	1	1
20 μΑ	1	0	0	1	0	1	1	1	0	0	0	1	0	0	1	1
200 μΑ	1	0	0	1	0	1	1	1	1	0	0	1	0	0	1	1
2mA	1	1	0	1	0	0	0	1	0	0	0	1	0	0	1	1
20mA	1	1	0	1	0	0	0	1	1	0	0	1	0	0	1	1
200mA. 	1	1	0	1	0	0	1	0	0	0	0	1	0	0	1	1
2 A	1	1	0	1	0	0	1	0	1	0	0	1	0	0	1	1
20 A. 	1	0	0	1	0	1	1	1	0	0	0	1	0	0	1	1
2 440-	1	1	_	1			4	_	1	0					4	
2 μA~ 20 μA~	1	0	0	1	0	0	1	0	1	0	0	0	0	0	1	0
20 μA~	1	0	0	1	0	1	1	1	1	0	0	0	0	0	0	0
200 μΑ~ 2mA~	1	1	0	1	0	0	0	1	1	0	0	0	0 0	0	1	0
20mA~	1	1	0		0	0	0	1	1	0	0	0	0	0	0	0
2011/4	1	'		'	U	U	U	1	ı	U	U	U	U	U	1	U
200mA~	1	1	0	1	0	0	1	0	1	0	0	0	0	0	0	0
2 A~	1	1	0	1	0	0	1 .	0	1	0	0	0	0	0	1	0
20 A~	1	0	0	1	0	1	1	1	1	0	0	0	0	0	0	0

BITNO	B7	В6	B 5	B4	В3	B2	В1	во	В7	В6	В5	B4	В3	B 2	B1	В0
PIN NO	1	3	11	12	10	2	22	18	13	16	20	23	24	21	17	14
SIGNALS	REA	REC	REN	RED	RNGD	REB	RED		RNGB	RNGE	REE	REP	REM	RNGC	RNGA	REQ
2 VTL	1	1	0	1	0	1	0	1	1	0	1	0	0	0	1	0
20 VTL	0	. 1	0	1	0	1	0	1	1	0	1	0	0	0	1	0
200 VTL	1	1	0	1	0	0	0	1	1	0	1	0	0	0	1	0
2000 VTL	1	0	0	1	0	1	1	1	. 1	0	1	- 0	0	0	1	0
j <u>1</u>																
2 V s	1	1	0	0	0	1	0	1	1	0	1	0	0	0	1	0
20 V s	0	1	0	0	0	1	0	1	1	0	1	0	0	0	1	0
200 V s	1	1	0	0	0	0	0	1	1	0	1	0	0	0	1	0
2000 V s	1	0	0	0	0	1	1	1	1	0	1	0	0	0	1	0
														<i>'</i>		
2 VHz	1	1	0	0	0	1	0	1	1	0	1	0	0	0	1	0
20 VHz	0	1	0	0	0	1	0	1	1	0	1	0	0	0	1	0
200 VHz	1	1	0	0	0	0	0	1	1	0	1	0	0	0	1	0
2000 VHz	1	0	0	0	0	1	1	1	1	0	1	0	0	0	1	0
_																
°C	1	0	0	1	0	1	0	1	0	1	0	1	0	0	1	1
									•							
→	1	1	0	1	0	1	0	1	1	1	0	1	0	0	1	1
Calibration	meası	ıreme	nts			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										
!	1 1															
AUTOCAL	_	_	1	0	0			_	0	0	-	_		0		-
0,1V																
														·		
AUTOCAL	_	·—	1	0	0	- 1	_	-	1	1	_	_	-	0	_	-
1V						ĺ										
1 ZERO	1	1	1	1	0	1	1	0	0	0	1			1	1	1
200mA																
IZERO	1	1	1	1	0	1	1	0	1	0	1			1	1	1
2A																

NOTE:

0 = high imp.

1 = low imp.

relay or FET is in () relay or FET is out ()

-- = no change

1.4.5.4. ROM circuits and address/data decoding

The program memory stores for the μ P use two 2K 8-bit UV erasable PROM (programmable read-only) memories with fast single address location programming. These are addressed by two 6-bit latches from the μ P.

Address/data decoding

The instrument addressing is achieved by the 8 lines of the data bus DB0 to DB7 and four high-order program lines from part 2 of the μ P; P20, P21, P22. P23. These lines are presented to two flip-flop latches D1905 and D1906.

These are D-type flip-flops, each with six data inputs, a clock input (CP), a master reset input \overline{MR} and six buffered outputs.

The ROM/address outpus are transferred on logic '1' pulses of the clock if MR is at logic '1' (permanently held at 1).

When at logic '0', $\overline{\text{MR}}$ resets all the flip-flops independently of the CP state and the data inputs. The addresses are clocked by the negative-going edge of the ALE pulse from the μ P, via an exclusive OR gate D1911.

Fig. 38. Address decoding

ROMs

The two ROMs are each addressed by the eight address lines A0 to A7 and three of the program control lines P20, P21, P22.

When addressed, the ROM responds by sending the instruction or data in the location addressed on the eight lines of the databus.

This data output function is controlled by the \overline{PSEN} (program store enable) signal (pin 9) sent by the μP . This is applied to NAND-gate D1921, wired as an inverter and gives a logic "1" on NAND-gate inputs D1921-12 and D1921-5.

Signal P23 is a chip select input via inverter D1921, which is used to select either D1909 or D1920 via input pin 20.

Fig. 39. Memory

1.4.6. Display section

The display section of the PM2521 contains three L.C.D. interface circuits.

Each chip is driven by the common serial data input signal and synchronised clock signal, but is separately enabled.

Internally, a bus control circuit verifies and accepts these inputs, decodes them and sets the data in a shift register. After acceptance, the data is latched and the 20 bits are transferred to the display segment outputs. The 58 segments that comprise the total display capability are distributed between the three interface chips.

Fig. 40. Display interface

1.4.7. Power supply

The power supply unit consists of a transformer, rectifiers and a stabilizing section for the rectified voltages. The voltages used are:

The +10V, +10'V is made with a +5V regulator A801 and a zener diode V855 in series.

NOTE: It is also possible that a +10V regulator may be used and instead of the zener diode V855 is then replaced by a wire link.

By means of an operational amplifier A802 the +10V is converted into -10V.

The -5V is made with the stabilization circuit V801, V802 and V852. Because of the high current which flows to the components a Darlington transistor V803 is used. Unwanted oscillation is prevented by C809 and L801.

2. ACCESS

WARNING:

The opening of covers or removal of parts, except those to which access can be gained by hand is likely to expose live parts, and accessible terminals may also be live.

The instrument shall be disconnected from all voltage sources before any replacement or maintenance and repair during which the instrument will be opened.

If afterwards, any adjustment, maintenance or repair of the opened instrument under voltage conditions is inevitable, it shall be carried out only by a skilled person who is aware of the hazard involved.

Bear in mind that capacitors inside the instrument may still be charged even if the instrument is separated from all voltage sources.

2.1. DISMANTLING THE PM2521

2.1.1. Removing the top cover. (fig. 41)

- Place the handle in its bottom position.
- Remove the two fixing screws at the rear which attach the top cover to the bottom cover.
- Lever the top cover and pull it backwards.
- Disconnect the tranformer plug which is connected to X802.

2.1.2. Removing the bottom cover. (fig. 42)

- Remove the top cover.
- Remove the handle.
- Remove the two fixing screws which attach the printed-circuit board to the bottom cover. (fig. 42 item 1).
- Bend out the two hooks of the front plate. (fig. 42 item 2).
- Remove the bottom cover.

2.1.3. Removing the front assembly

- Remove top and bottom cover.
- Disconnect the flexible print from the connector X1901. (fig. 42 item 3).
- Bend out the two hooks of the front plate at the bottom of the printed-circuit board. (fig. 43 item 1).
- Disconnect the front from the printed-circuit board.

NOTE: The potentiometer R502 is still connected with the printed circuit board.

2.2. REPLACING PARTS

- 2.2.1. Liquid crystal display (fig. 44 item 1), display unit N3 (fig. 44 item 2), interconnection rubber (fig. 44 item 3) or function knob (fig. 44 item 4).
 - Remove the front assembly.
 - Remove the six screws and the screening plate of the front assembly. (fig. 44 item 6).

NOTE: The potentiometer R502 can now be removed.

- Remove the function knob by bending out the four hooks of the front plate. (only for replacing the function knob) (fig. 44 item 8).
- Remove the three screws from the display unit cover and the cover itself. (fig. 44 item 5).
- Replace the defective component and mount the L.C.D. unit again as described above.
- NOTE 1: Make sure that the L.C.D., the display unit cover and the interconnection rubber are placed in the most right hand position. (fig. 44 item 7).
- NOTE 2: Do not touch the contacts of the L.C.D., the interconnection rubber and the display unit N3 with the fingers.

2.2.2. Function switch, (fig. 42)

- Remove the top- and bottom cover. Remove also the front assembly.
- Bend out the two hooks and remove the printed-circuit board. (fig. 42 item 4).
- The function switch consist of:
 - 2 slide bodies
 - 4 springs
 - 4 switch contacts
- Remove the screws and nuts from the slide bodies. The bodies can now be lifted from the printed-circuit board.

NOTE: The slide body is stocked complete with springs and switch contacts.

2.2.3. Thermal fuse

- Remove the bottom cover.
- Remove the four screws which attach the screening plate of the transformer to the bottom cover. (fig. 45 item 1).
- Unsolder the black wire connecting the transformer with the screening. (fig. 45 item 2).
- Unsolder the connections of the thermal fuse. (fig. 45a. item 1).
- Replace the thermal fuse as shown in fig. 45a.

NOTE: Do not replace the thermal fuse with a piece of wire as this gives the danger of a fire hazard.

Fig. 41. Removing the top cover

Fig. 43. Removing the front

Fig. 45. Removing the thermal fuse

Fig. 42. Removing the bottom cover and front

Fig. 44. Front assembly

Fig. 45a. Removing the thermal fuse

Fig. 46. Adjusting elements

3. CHECKING AND ADJUSTING

WARNING: Before switching-on, ensure that the instrument has been installed in accordance with the instructions outlined in Section 5 of the Operating Manual.

> The opening of covers or removal of parts, except those to which access can be gained by hand is likely to expose live parts, and accessible terminals may also be live.

The instrument shall be disconnected from all voltage sources before any replacement or maintenance and repair during which the instrument will be opened.

If afterwards, any adjustment, maintenance or repair of the opened instrument under voltage conditions is inevitable, it shall be carried out only by a skilled person who is aware of the hazard involved.

Bear in mind that capacitors inside the instrument may still be charged even if the instrument is separated from all voltage sources.

The tolerances in this chapter correspond to the factory data, which only apply to a completely re-adjusted instrument. These tolerances may deviate from those mentioned in the Technical Data. (Chapter 2. of the Operating Manual).

For a complete re-adjustment of the instrument the sequence in this chapter should be adhered too. When individual components, especially semi-conductors are replaced, the relevant section should be completely readjusted.

To calibrate this measuring instrument only reference voltages and measuring equipment with the required accuracy should be applied. If such equipment is not available, comparative measurements can be made with another calibrated PM2521. However, theoretically in extreme cases, the tolerances may leave some room for doubt.

The measuring arrangement should be such that the measurement cannot be affected by external influences. Protect the circuit against temperature variations (fans, sun).

With all the measurement the cables should be kept as short as possible; at higher frequencies co-axial leads should be used.

Non screened measuring cables may act as serials so that the measuring instrument will measure LF voltage values or hum. voltage.

Before checking and adjusting, remove the top-cover. Make sure that the cable from the power supply is connected with X802.

In the software there are two subroutines which are used for adjusting the PM2521. To call these subroutines short circuit TP10 and TP11 for one second (first subroutine) and repeat it for the next subroutine. After using these subroutines the PM2521 should be reset. (Switch the PM2521 off and on).

3.1. DC RANGES

N	Adinstmont	Adjusting alament	Prenarations	Innut signals	Adjusting data	Measuring points
	mamagnav					
	DC ranges					
	Active filter	Potentiometer R624	Set instrument in position V Select: MAN ranging : 1000V range	Short circuit the V M mA and the 0 socket	OmV ± 1mV measured with a DC meter ± 0,5%	A601 point 6 and 0 socket
2.	Zero setting	Potentiometer R108	Set instrument in position V Select: MAN ranging : 200mV range	Short circuit the V Ω mA and the 0 socket	± 000,00mV ± 1 dig.	Display
છ	Reference current for the ADC	Resistor R412; coarse (MR25,1% E96 series)	Set instrument in position V		−1V or as close as possible to the −1V measured with a DC meter ±0,5%	R606 (front panel side) and the 0 socket
4.	CAL mode	Potentiometer R411	Set instrument in position V Select: second subroutine (Short circuit TP10 and TP11 for one second; Z is displayed;* is blinking)	+20V \pm 0,005% supplied to V Ω mA and 0 socket	+20.000 ± 1 dig	Display
က်	Check		Switch the instrument off and on Set instrument in position V Select: MAN ranging : 20V range	+20V ±0,005% supplied to V ΩmA and 0 socket	+20.000V ± 2 dig	Display

No.	Adjustment	Adjusting element	Preparations	Input signals	Adjusting data	Measuring points
ဖ်	2V range	Potentiometer R103	Set instrument in position V . Select: MAN ranging : 2V range	+2V ±0,005% supplied to V Ω mA and 0 socket	+2,0000V ± 1 dig	Display
7.	Check		Set instrument in position V Select: MAN ranging : 20V range	+20V \pm 0,005% supplied to V Ω mA and 0 socket	+20.000V ± 6 dig	Display
		NOTE: If the tolerance is $>$	NOTE: If the tolerance is > 6 dig then repeat adjustment 3, 4, 5 and 6.	, 4, 5 and 6.		
ω	Check		Set instrument in position V Select: MAN ranging : 200mV range	a. +200mV \pm 0,005% b200mV \pm 0,005% c. +100mV \pm 0,005% supplied to V Ω mA and 0 socket	a. +200.00mV ± 6 dig b. —200.00mV ± 6 dig c. +100.00mV ± 4 dig	Display
တ်	Check		Set instrument in position V Select: MAN ranging : 200V range	a. $+200V\pm0.005\%$ b. $-200V\pm0.005\%$ c. $+100V\pm0.005\%$ supplied to V Ω mA and 0 socket	a. +200.00V ± 6 dig b200.00V ± 6 dig c. +100.00V ± 4 dig	Display
10.	Check		Set instrument in position V .:: Select: MAN ranging : 2000V range	+1000V \pm 0,005% supplied to V Ω mA and 0 socket	+1000.0V ± 4 dig	Display

3.2. AC RANGES

No.	Adjustment	Adjusting element	Preparations	Input signals	Adjusting data	Measuring points
	AC ranges					-
11a	20V ∼ range	Resistor R312, coarse (MR25,1% E96 signal Potentiometer R310, fine	Set instrument in position V ~ Select: MAN ranging : 20V range	20V \sim 60Hz \pm 0,01% supplied to V Ω mA and 0 socket	~ 20.000V ± 2 dig	Display
11b.	2V ∼ range	Trimming capacitor C103	Set instrument in position V ~ Select: MAN ranging : 2V range	$2V \sim 1 \text{kHz} \pm 0.01\%$ supplied to V Ω mA and 0 socket	~ 2.0000V ± 5 dig	Display
		 NOTE: If the adjustment can adjustment 11,	 not be made then cut away cap	NOTE: If the adjustment cannot be made then cut away capacitor C105 (= 3,9pF) or replace it and repeat adjustment 11.	ce it and repeat	
12.	20V ∼ range	Trimming capacitor C106	Set instrument in position V ∼ Select: MAN ranging : 20V range	20V \sim 1kHz \pm 0,01% supplied to V Ω mA and 0 socket	~ 20.000V ± 5 dig	Display
		NOTE: If the adjustment can adjustment can adjustment 12.	not be made then cut away ca	NOTE: If the adjustment cannot be made then cut away capacitor C108 (= 18pF) or replace it and repeat adjustment 12.	ce it and repeat	
13.	200V ∼ range	Trimming capacitor C109	Set instrument in position V ~ Select: MAN ranging : 200V range	$200V\sim 1kHz\pm 0,01\%$ supplied to V Ω mA and 0 socket	~ 200.00V ± 5 dig	Display
		NOTE: If the adjustment cannot be made then cu or replace them and repeat adjustment 13.	not be made then cut away cal epeat adjustment 13.	NOTE: If the adjustment cannot be made then cut away capacitor 111 to 113 (C111= 82pF C112 = 150pF C113 = 270pF) or replace them and repeat adjustment 13.	F C112 = 150pF C113 = 270p	oF)
14.	Check		Set instrument in position V ∼ Select: MAN ranging : 200mV range	a. 200mV 60Hz \pm 0,01% b. 20mV 60Hz \pm 0,01% supplied to V Ω mA and 0 socket	~ 200.00mV ± 150 dig ~ 020.00mV ± 20 dig	Display

3.3. TRIGGER LEVEL RANGES

No.	Adjustment	Adjusting element	Preparations	Input signals	Adjusting data	Measuring points
	Trigger level ranges					
.5.	Comparator	Potentiometer R502	Set instrument in position TRIGGER LEVEL Select: +2V range	~ 1,414V 10kHz±0,01%	Adjust potentiometer R502 so that the word "gate" lights up Note down the reading of the display without polarity (value 1)	Display
16.	Comparator	Potentiometer R502	Set instrument in position TRIGGER LEVEL Select: —2V range	~ 1,414V 10kHz ± 0,01%	Adjust potentiometer R502 so that the word "gate" lights up Note down the reading of the display without polarity (value 2)	Display
17.	Comparator	Potentiometer R521	Set instrument in position TRIGGER LEVEL Select: +2V range Adjust the display with R502 on: value 1 + value 2 ± 3 dig	~ 1,414V 10kHz±0,01%	Adjust potentiometer R521 so that the word "gate" lights ups	Display

3.4. CURRENT RANGES

No.	Adjustment	Adjusting element	Preparations	Input signals	Adjusting data	Measuring points
	Current ranges					
18.	I-V convertor	Potentiometer R213	Set instrument in position A Select: MAN ranging : 2 mA range		± 0.000mA ± 1 dig	Display
		Potentiometer R227	Select: MAN ranging : 2μ A range		± 0.000µA ± 1 dig	Display
	Shunt	Resistor R202; coarse (MR25,1%, E96 series) Potentiometer R203, fine	Select: MAN ranging : 2A range	+ 2A \pm 0,1% supplied to 0,2-10A and 0 socket	+ 2.000A ± 1 dig	Display
		NOTE: Light on the diodes V	251, and V252 can influence	NOTE: Light on the diodes V251, and V252 can influence the adjustment. Protect the diodes against light.	des against light.	
		NOTE: The high current ranges (0,2-10A, socket and the up/down buttons.	es (0,2-10A) are selected by co wn buttons.	NOTE: The high current ranges (0,2-10A) are selected by connecting the leads between the 0 socket and the 0,2-10A socket and the up/down buttons.	0 socket and the 0,2-10A	
19.	Checks current		Set instrument in	+ 2µA ± 0,1%	+ 2.000µA ± 7 dig	Display
			Select: MAN ranging			
			Select: MAN ranging : 20µA range	+ 20µA ± 0,1%	+ 20.00µA ± 4 dig	Display
			Select: MAN ranging : 200µA range	+ 200µA ± 0,1%	+ 200.00 μ A ± 4 dig	Display
,			Select: MAN ranging : 2mA range	+ 2mA± 0,1%	+ 2.000mA ± 4 dig	Display
			Select: MAN ranging : 20mA range	+ 20mA ± 0,1%	+ 20.00mA ± 4 dig	Display
			Select: MAN ranging : 20mA range	– 20mA ± 0,1%	– 20.00mA ± 4 dig	Display
			Set instrument in position A ~	~ 20mA 60Hz ± 0,2%	~ 20.00 mA $^\pm$ 7 dig	Display
			Select: MAN ranging : 20mA range	supplied to V Ω mA and 0 socket		

3.5. RESISTANCE RANGES

No.	Adjustment	Adjusting element	Preparations	Input signals	Adjusting data	Measuring points
	Resistance ranges					
20.	20MΩ range	Potentiometer R405	Set instrument in position Ω Select: MAN ranging	20MΩ ± 0,1%	20.000MΩ ± 10 dig	Display
21.	Checks resistance ranges		Set instrument in position Ω	200Ω ± 0,1%	200.00 Ω ± 35 dig	Display
			Select: MAN ranging : 200\(\Omega\) range			
			Select: MAN ranging : 2kΩ range	2kΩ ± 0,1%	2.0000 k Ω \pm 35 dig	Display
			Select: MAN ranging : 20k Ω range	20kΩ ± 0,1%	20,000kΩ ± 35 dig	Display
			Select: MAN ranging : $200 \mathrm{k}\Omega$ range	200kΩ ± 0,1%	200.00 k Ω \pm 35 dig	Display
			Select: MAN ranging : 2M Ω range	2MΩ ± 0,1%	2.0000MΩ ± 80 dig	Display

3.6. TEMPERATURE RANGES

No.	Adjustment	Adjusting element	Preparations	Input signals	Adjusting data	Measuring points
	Temperature ranges					
22.	0 ⁰ C calibration	Potentiometer R708	Set instrument in oC	$100\Omega \pm 0.1\%$ to the PROBE input	± 0000,0 ± 1 dig	Display
		NOTE: The resistor should be	be connected as shown	3006		
			· .	2000		
				100 ST3418 82 0125		

3.7. FREQUENCY RANGES

Hz ranges Set instrument in position TRIGGER LEVEL Select: + 2V range and adjust it to: ±50mV + 0.000V Set instrument in position Hz Select: MAN ranging : 10kHz range	J./.	rne	-UUE	WC			<u> </u>	
Check 10kHz range Check 10kHz range Check 10kHz range Set instrument in position TRIGGER LEVEL Select: + 2V range and adjust it to: ± 50mV + 0.000V Set instrument in position Hz Select: MAN ranging : 10kHz range		GATE 9.0000kHz ± 300 dig Display					•	
Hz range Check 10kHz range		100mV, 9kHz ± 0,01%						
Hz ranges 23. Check 10kHz range		Set instrument in position TRIGGER LEVEL	Select: + 2V range and adjust it to: ± 50mV	+ 0.000V	Set instrument in	position Hz	Select: MAN ranging	: 10kHz range
Hz ranges 23. Check 10kHz range								
23	Hz ranges	Check 10kHz range						
		23.	·				-	

3.8. TIME RANGES

No.	Adjustment	Adjusting element	Preparations	Input signals	Adjusting data	Measuring points
	s ranges					
24a.	Check s range		Set instrument in position TRIGGER LEVEL Select: + 2V range and adjust it to + 0.000V ± 50mV	(e.g.)	3.0000 s	Display
			Set instrument in position s Press stop reset button to reset the PM2521.	15 2s ST3419 820125		
24b.			Set instrument in position TRIGGER LEVEL Select: — 2V range and adjust it to 0.000V ± 50mV Set instrument in	0mv to 1s 2s	2.0000 s	Display
			position s Press stop reset button to reset the PM2521 Connect point 5 and point 7 from the PROBE input together	3 0 6 0 1 2 2 2 3 3 4 2 0 8 2 0 1 2 5 6 0 1 2		
24c.			Set instrument in position TRIGGER LEVEL Select: + 2V range and adjust it to: ± 50mV + 0.000V	(e.g.) omv 1s 2s	1.0000 s	Display
			Set intrument in position s Press stop reset button to reset the PM2521 Connect point 5 and point 7 from the PROBE input together.	3 0 6 0 1 5 13420 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		NOTE: Adjustment 24b. and	 24c. are special TRIGGER MO 	 24c. are special TRIGGER MODES. Refer to chapter 6 of the OPERATING MANUAL. 	OPERATING MANUAL.	

4. FAULT-FINDING

4.1. GENERAL

4.1.1. Service hints

If servicing is necessary the following points should be taken into account in order to avoid damaging the instrument.

- Take care to avoid short-circuits with measuring clips and hooks if the instrument is switched-on, especially near the input terminals when high-voltages are present.
- Use a miniature soldering iron (35W max.) with a thin cleaner or a vacuum soldering iron.
- Use an acid-free solder.
- When fault-finding, remove top and bottom covers and make sure that the POWER SUPPLY is connected with the main board.
- After repair, the instrument should be recalibrated.

4.1.2. Fault-finding procedure

This chapter gives a fault-finding procedure to locate the faulty section in the instrument. From this procedure the faulty parts can often be found by using the detailed flow charts.

NOTE: The procedure is only intended as an aid to fault-finding, and abviously that the faulty component will not be found in every case.

Measuring instruments used:

- Digital multimeter.
- Oscilloscope.
- Counter.

4.1.3. Fault-finding with the signature analyser

When the normal fault-finding does not find the fault, then it is possible to use a test-ROM. The testrom with several tests for the PM2521 is based on signature analysis. It can trace faults at component level for the controller section, display section and even a part of the analog section. The signature analysis fault-finding consists of a:

- Testrom with the following tests:
 - Free run tests
 - RAM and I/O test
 - Visual L.C.D. test
- (no S.A.)
- Switch decoding test
- Relay/FET test
- Static relay/FET test (no S.A.)
- Counter test
- Interrupt controller test
- Test service note which includes:
 - Description of how to use the signature analyser
 - Circuit diagrams with signatures

The test-ROM and the service note can be ordered from Concern Service under code nr. 5322 694 54013.

4.2. FAULT-FINDING FLOW-CHARTS

4.2.1. Basic check

4.2.2. Function part

ST3423 820128

4.2.3. V ... part

4.2.4. $V \sim part$

ST3426 820209

Fig. 47. Waveforms V ~ part

4.2.5. Trigger level part

Fig. 48 Waveforms, trigger level part

4.2.6. A \dots and A \sim part

4.2.7. Ω part

4.2.8. Analog part

Fig. 49. Waveform, analog part

4.2.9. ADC part

Fig. 50. Waveform, ADC part

4.2.10. Digital part

ST3438 820126

Fig. 51 Waveforms, digital part

4.2.11. Free run

ST3439 820129

Fig. 52. Waveforms, free run

4.2.12. Display part

CONNECTION TABLE

CONNECTION D2901 D2901		D2901	LX-display	D2902	LX-display	D2903	LX-display
Output no.	Pin no.	Char.	Pin no.	Char.	Pin no.	Char.	Pin no.
Q1	9		2	.3	22	a5	42
Q2	10		3	d3	23	. b5	43
0.3	11	+	4	e3	24	g5	44
Q4	12	GATE	5	f3	25	c5	45
Q5	13	.1	6	a3	26	M (Hz)	46
Ω6	14	d1	7	b3	27	k (Hz)	47
Ω7	15	e1	. 8	g3	28	Hz	48
Q8	16	f1	9	c3	29	Z	49
Q9	17	a1	10	.4	30	s	50
Q10	18	b1	11	d4	31	V	51
Q11	19	g1	12	e4	32	Α	52
Q12	20	c1	13	f4	33	*	53
Q13	21	.2	.14	a4	34	m .	54
Q14	22	d2	15	b4	35	μ	55
Q15	23	e2	16	g4	36	°c	56
Q16	24	f2	17	c4	37	Ω	57
Q17	25	a2	18	.5	38	k (Ω)	58
Q18	26	b2	19	dB	39	M (Ω)	59
Q19	27	g2	20	e5	40	n.c.	_
Ω20	28	c2	- 21	f5	41	n.c.	

4.2.13. Power supply check

 $\widetilde{k}_{-i}\widetilde{d}$

5. PARTS LIST

5.1. TOP COVER ASSEMBLY

		Ordering number	Oty.	Item	Fig.
	Cover with screening	5322 694 54012	1	4	45
	Transformer	5322 146 24485	1		45
	Mains connector	5322 267 44135	1		45
	Fuse 125mA	4822 253 20007	1		
	Thermal fuse	5322 252 20088	1 .		45
5.2.	BOTTOM COVER ASSEMBLY				
	Cover with screening and feet	5322 447 70045	1	5	42
	Rubber foot	5322 462 44484	1		
	Carrying handle	5322 498 50126	1		
5.3.	FRONT ASSEMBLY				
	Front	5322 447 74009	1	9	44
	T.L. potentiometer knob	5322 414 34269	1	10	44
	Function selector	5322 414 44088	1	4	44
	Window	5322 381 10562	1	. 11	44
	L.C. display	5322 130 94033	1	1	44
	Interconnection rubber	5322 290 84029	1 .	3	44
	Display unit N3	5322 216 74066	1	2	44
	Ball	4822 520 40044	1	12	44
5.4.	SWITCH ASSEMBLY				
	N2 printed circuit board	5322 466 10315	1	6	42
	Function switch complete	5322 278 80175	2	7	42
	VRPP connector X101	5322 267 74125	1	8	42

5.5. PRINTED CIRCUIT BOARD

5.5.1. Miscellaneous

	Ordering number	er Oty.	Item	Fig.
Power switch	5322 276 8407	7 1	13	44
Knob power switch	5322 414 2641	5 1	13	44
+/- switch SK1	5322 276 1441	7 1	14	44
Auto switch SK2	5322 276 1441	7 1	14	44
Down switch SK3	5322 276 1441	7 1	14	44
Up switch SK4	5322 276 1441	7 1	14	44
Switch for high current	ranges 5322 492 6240	5 1		53
Push button knobs	5322 414 2641	6 4	14	44
10p connector male X8	5322 264 5406	1 1	15	42
5p connector male X8	5322 264 4406	4 1	16	42
10p connector female	K1901 5322 266 4402	8 1	17	42
8p DIN connector BU		7 1	15	44
Input sockets	5322 532 1470	9 3	16	44
Coil L801	5322 158 1005	2 . 1	18	42
Crystal B1901	5322 242 7440	4 1	19	42
Reed relay K101	5322 280 2414	6 1		
Reed relay K102	5322 280 2414	6 1		
Reed relay K201	5322 280 2414			
Reed relay K301	5322 280 2414	6 1		
Reed relay K602	5322 280 2414	6 1		

Fig. 53. Switch for high current range

5.5.2. Resistors

POSNR	DESCRIPTION	ORDERING	CODE
R 101 R 102 R 103 R 105	10A SHUNT THIN FILM RESISTANCE 71K5 1% 0,4W 100K CARB LIN 0,05W 11K5 1% 0,4W	5322 115 5322 209 5322 116 4822 100 5322 116	84046 86478 54685 10052 55358
R 106	215E 1% 0,4W	5322 116	55274
R 107	681K 1% 0,4W	5322 116	55284
R 108	47K CARB LIN 0,1W	5322 101	34037
R 201	18E7 1% 0,4W	5322 116	50895
R 203	1K CARB LIN 0,1W	4822 100	10037
R 204	38,3K 0,5% 0,5W 38K3 0,5% 0,5W 590K 1% 0,5W 590E 1% 0,4W 1M 5% CR25	5322 116	55576
R 205		5322 116	55576
R 206		5322 116	55567
R 207		5322 116	50561
R 208		4822 110	73187
R 209	40K2 1% 0,4W	5322 116	54665
R 210	59K0 1% 0,4W	5322 116	54678
R 211	162E 1% 0,4W	5322 116	50417
R 212	649K 1% 0,4W	5322 116	55331
R 213	100K CARB LIN 0,05W	4822 100	10052
R 214	100E 0,1% 0,125W	5322 116	50268
R 215	100E 0,1% 0,125W	5322 116	50268
R 216	4K81 0,1% 0,1W	5322 116	55578
R 217	140E 0,5% 0,4W	5322 116	55568
R 218	481K 0,1% 0,125W	5322 116	55565
R 219	14K 0,5% 0,4W	5322 116	55571
R 220	10K 1% 0,4W	4822 116	51253
R 221	100E 20% 265VR	4822 116	40006
R 222	51K1 0,5% 0,5W	5322 116	55577
R 223	750-1K5 245VR	5322 116	44006
R 224	422K 1% 0,4W	5322 116	55247
R 225	100K 1% 0,4W	4822 116	51268
R 226	100K 1% 0,4W	4822 116	51268
R 227	100K CARB LIN 0,05W	4822 100	10052
R 228	110E 1% 0,4W	5322 116	54474
R 229	110E 1% 0,4W 1MOHM 1% 0,4W 1MOHM 1% 0,4W 100K 1% 0,4W 1K 1% 0,4W 866E 1% 0,4W 10K 1% 0,4W	5322 116	54474
R 231		5322 116	55535
R 232		5322 116	55535
R 301		4822 116	51268
R 302		5322 116	54549
R 303		5322 116	54543
R 304		4822 116	51253
R 305	3K01 0,1% MR24E 0,1W	5322 116	54218
R 306	30K1 0,1% 0,1W	5322 116	51392
R 307	33E2 1% 0,4W	5322 116	50527
R 308	100K 1% 0,4W	4822 116	51268
R 309	44E2 1% 0,4W	5322 116	50818
R 310	220E CARB LIN 0,05W	4822 100	10019
R 311	8K25 1% 0,4W	5322 116	54558
R 313	1K 1% 0,4W	5322 116	54549
R 314	31K6 1% 0,4W	5322 116	54657
R 315	100K 1% 0,4W	4822 116	51268
R 317	590E 1% 0,4W	5322 116	50561
R 318	1K 1% 0,4W	5322 116	54549
R 319	100K 1% 0,4W	4822 116	51268
R 320	10K 1% 0,4W	4822 116	51253
R 401	100E 20% 256VR	4822 116	40006
R 402	1K 1% 0,4W	5322 116	54549
R 403	19,6M 1% VR37R	5322 116	64131
R 404	2K87 1% 0,4W	5322 116	50414
R 405	100E CARB LIN 0,05W	4822 100	10075

POSNR	DESCRIPTION	ORDERING	CODE
R 405	2K87 1% 0,4W	5322 116	50414
R 407	1K 1% 0,4W	5322 116	54549
R 408	121K 0,1% 0,125W	5322 116	55245
R 409	590E 1% 0,4W	5322 116	50561
R 410	16K9 0,1% 0,1W	5322 116	54833
R 411	47K CARB LIN 0,05W 100K 1% 0,4W 100K 1% 0,4W 33K2 1% 0,4W 100K 1% 0,4W	4822 100	10036
R 413		4822 116	51268
R 414		4822 116	51268
R 415		4822 116	51259
R 416		4822 116	51268
R 417	10K 1% 0,4W 215K 1% 0,4W 47K 20% 0,1W 4K64 1% 0,4W 30K1 1% 0,4W 13K3 1% 0,4W	4822 116	51253
R 418		5322 116	54728
R 502		5322 101	34036
R 503		5322 116	50484
R 504		5322 116	54655
R 505		5322 116	55276
R 506	51E1 1% 0,4W	5322 116	54442
R 507	10K 0,5% 0,4W	4822 116	51253
R 508	51E1 1% 0,4W	5322 116	54442
R 509	10K 1% 0,4W	4822 116	51253
R 510	2K05 1% 0,4W	5322 116	50664
R 511	10K 1% 0,4W	4822 116	51253
R 512	10K 1% 0,4W	4822 116	51253
R 513	511E 1% 0,4W	4822 116	51282
R 514	1K 1% 0,4W	5322 116	54549
R 515	3K01 1% 0,4W	4822 116	51246
R 516	1K 1% 0,4W	5322 116	54549
R 517	10K 1% 0,4W	4822 116	51253
R 518	23K7 1% 0,4W	5322 116	54646
R 519	121K 1% 0,4W	5322 116	54704
R 520	619E 1% 0,4W	5322 116	54529
R 521	470E CARB LIN 0,05W	4822 100	10038
R 522	590E 0,5% 0,4W	5322 116	50561
R 523	51E1 1% 0,4W	5322 116	54442
R 600	10K 0,5% 0,4W	4822 116	51253
R 601	332K 1% 0,4W	4822 116	51184
R 602 R 603 R 604 R 605 R 606	332K 1% 0,4W	4822 116 4822 116 4822 116 4822 116 5322 116	51264
R 607	681K 1% 0,4W	5322 116	55284
R 608	100K 1% 0,4W	4822 116	51268
R 609	681E 1% 0,4W	4822 116	51233
R 610	681E 1% 0.4W	4822 116	51233
R 611	86K6 1% 0,4W	5322 116	54692
R 612	86K6 1% 0,4W	5322 116	54692
R 613	6E81 1% 0,4W	5322 116	54013
R 614	100K 1% 0,4W	4822 116	51268
R 615	10K2 1% 0,4W	5322 116	54621
R 616	1K24 1% 0,4W	5322 116	54559
R 617	681K 1% 0,4W 20K5 1% 0,4W 681K 1% 0,4W 20K5 1% 0,4W 100K 1% 0,4W	5322 116	55284
R 618		5322 116	54643
R 619		5322 116	55284
R 620		5322 116	54643
R 621		4822 116	51268

POSHR	DESCRIPTION		ORDERING	CODE
R 622 R 623 R 624 R 625 R 626		05W ,4W ,4W	5322 116 5322 116 4822 100 5322 116 4822 116	54554 54619 10019 55284 51253
R 627 R 628 R 629 R 701 R 702 R 703	100K 1% 0 110E 1% 0 9K53 0,5% 0 9K53 0,5% 0	,4W ,4W),4W ,4W ,4W	5322 116 4822 116 5322 116 5322 116 5322 116 5322 116	55258 51268 54619 55575 55572
R 704 R 705 R 707 R 708 R 801	1K4 0,5% 0 619E 1% 0 100E CARB LIN 0	, 4W , 4W , 4W , 05 , 4W	5322 116 5322 116 5322 116 4822 100 5322 116	55573 55569 54529 10075 50581
R 802 R 803 R 804 R 805 R 806	7K5 1% 0 464E 1% 0 100E 1% 1	, 4W , 4W , 4W / 8W , 4W	5322 116 5322 116 5322 116 5322 116 5322 116	50728 54608 50536 54469 50536
R 807 R 808 R 809 R 810 R 811		, 4W , 4W , 4W	4822 116 5322 116 4822 116 4822 116 4822 116	51179 50675 51268 51268 51179
R 1901 R 1902 R 1903 R 1904 R 1905	27K4 1% 0 27K4 1% 0 27K4 1% 0	, 4W , 4W , 4W , 4W	5322 116 5322 116 5322 116 5322 116 5322 116	50559 50559 50559 50559 50559
R 1906 R 1907 R 1908 R 1909 R 1910	27K4 1% 0 27K4 1% 0 27K4 1% 0	, 4W , 4W , 4W , 4W	5322 116 5322 116 5322 116 5322 116 5322 116 5322 116	50559 50559 50559 50559 50559
R 1911 R 1912 R 1913 R 1914 R 1915	27K4 1% 0 4K22 1% 0 27K4 1% 0	, 4W , 4W , 4W , 4W	5322 116 5322 116 5322 116 5322 116 5322 116	50729 50559
R 1916 R 1917 R 1918 R 1919 R 1920	27K4 1% 0 27K4 1% 0 27K4 1% 0	,4N ,4N ,4N ,4N ,4N	5322 116 5322 116 5322 116 5322 116 5322 116	50559 50559 50559 50559 50559
R 1921 R 1922 R 1923 R 1924 R 1925	22K6 1% 0 27K4 1% 0 1M1 5% 0,	,4日 ,4日 ,4日 25日 ,4日	4822 116 5322 116 5322 116 5322 111 5322 116	51253 50481 50559 44178 50481
R 1926 R 1927 R 1928 R 1929 R 1930	2K74 1% 0 2K74 1% 0	W4, W4, W4, W4,	4822 116 5322 116 5322 116 5322 116 5322 116	51253 50559 50636 50636 50559

5.5.3. Capacitors

Pos	SNR	DESCRIPTION	И		ORDER	ING	CODE
00000	100 101 102 103 104	33NF 100PF 100PF 5,5PF 33PF	10% 1% 1% 2%	400V 630V 630V 400V 100V	5322 4822 4822 5322 5322	121 121 121 125 122	44025 50562 50562 54027 31574
00000	105 106 107 108 109	3,9PF 2/30PF 1NF 18PF 5/105PF	1% 2%	100V 250V 630V 100V 250V	5322 4822 4822 5322 5322	122 125 121 122 125	34162 50088 50591 34064 54082
00000	110 111 112 113 115	11NF 82PF 150PF 270PF 100NF	1% 2% 2% 2% 10%	63V 100V 63V 100V 100V	5322 4822 4822 4822 5322	121 122 122 122 122	54147 31237 31308 31168 40323
00000	116 151 152 153 201	10NF 22NF 22NF 22NF 33NF	80% 80% 80% 80% 10%	40V 40V 40V 40V 40V	4822 4822 4822 4822 5322	122 122 122 122 122	30043 30103 30103 30103 44025
00000	202 203 204 205 251	33PF 22NF 220PF 10NF 22NF	2% 80% 2% 50% 80%	100V 40V 100V 100V 40V	5322 4822 4822 4822 4822	122 122 122 122 122	34139 30103 31173 31414 30103
00000	253 301 302 303 304	22NF 22UF 1UF 15UF 47PF	80% 20% 10% 20% 2%	63V 10V 100V 10V	4822 4822 5322 5322 4822	122 124 121 124 122	30103 20943 40197 14036 31072
00000	305 306 307 308 309	470NF 680NF 22NF 22NF 22NF	20% 10% 80% 80% 80%	40V 100V 40V 40V 40V	5322 5322 4822 4822 4822	124 121 122 122 122	14123 40233 30103 30103 30103
c	311 312	22NF 3,3UF	80% 20%	40V 16V	4822 4822	122 124	30103 20947
00000	351 352 401 402 403	22NF 22NF 22NF 1UF 1NF	80% 80% 10% 20% 10%	40V 40V 400V 25V 100V	4822 5322 4822	124	30103 30103 40308 20944 31175
00000	404 405 406 407 408	4,7NF 33NF 1NF 22NF 22NF	10% 10% 10% 80% 80%	100V 400V 630V 40V 40V	5322 5322 4822	122 121 121 122 122	30128 44025 44286 30103 30103
00000	409 410 411 501 502	22NF 22NF 22NF 56PF 100PF	80% 80% 80% 2% 2%	40V 40V 40V 100V	4822 4822 4822	122 122 122 122 122	30103 30103 30103 31074 31081
00000	503 504 505 506 507	22NF 22NF 22PF 22NF 22NF 22NF	80% 80% 5% 80% 80%	40V 40V 100V 40V 40V	4822 4822 4822	122 122 122 122 122	30103 30103 31063 30103 30103
00000	508 509 601 602 603	100PF 100PF 4.7NF 220NF 22NF	2% 2% 16% 10% 10%	630V 100V	4822 5322 4822	121	31504 31316 44225 40232 40308

POSNR	DESCRIPTIO	И		ORDERING	CODE
C 604 C 605 C 606 C 607 C 608	22NF 470PF 2% 3 680NF 470PF 47PF		40V 100V 100V 100V	4822 122 5322 122 5322 121 5322 122 4822 122	34159 40233 34159
C 609 C 610 C 611 C 612 C 613	10NF 10NF 10NF 22NF 22NF	50% 50% 50% 80% 80%	100V 100V 100V 40V 40V	4822 122 4822 122 4822 122 4822 122 4822 122	31414 31414 30103
C 614 C 615 C 616 C 651 C 652	22NF 22NF 1NF 22NF 22NF	80% 80% 10% 80% 80%	40V 40V 630V 40V 40V	4822 122 4822 122 5322 121 4822 122 4822 122	30103 44286 30103
C 653 C 654 C 655 C 801 C 802	10NF 100PF 22NF 3300UF 330UF	50% 2% 80% 50% 50%	100V 100V 40V 10V	4822 122 4822 122 4822 123 4822 124 4822 124	31504 30103 20772
C 803 C 804 C 806 C 807 C 808	470UF 470UF 2,2UF 2,2UF 22UF	50% 50% 20% 20% 20%	25V 25V 16V 16V	4822 124 4822 124 4822 124 4822 124 4822 124	20784 10204 10204
C 809 C 1901 C 1902 C 1903 C 1904	100PF 22NF 1NF 100PF 22NF	2% 80% 10% 2% 80%	100V 40V 100V 100V 40V	4822 122 4822 122 4822 122 4822 122 4822 122	30103 30027 31504
C 1905 C 1906 C 1907 C 1908 C 1909 C 1910	22NF 22NF 22 PF 47PF 22NF 22PF	80% 80% 2% 2% 80% 2%	40V 40V 100V 100V 40V 100V	4822 122 4822 122 5322 122 4822 122 4822 122 5322 122	30103 34067 31244 30103
C 1911 C 1912 C 1913 C 1914 C 1915	22PF 1HF 22NF 22HF 1UF	2% 10% 80% 80% 20%	100V 100V 40V 40V 25V	5322 122 4822 122 4822 122 4822 122 4822 124	30027 30103 30103
C 1916 C 1917 C 1918 C 1919 C 1920	22NF 22NF 1NF 22NF 22NF	80% 80% 10% 80% 80%	40V 40V 100V 40V 40V	4822 122 4822 122 4822 122 4822 122 4822 122	30103 30027 30103
C 1921 C 1922 C 1923 C 1924 C 1925	10NF 10NF 10NF 10NF 10NF	80% 80% 80% 80% 80%	40V 40V 40V 40V 40V	4822 122 4822 122 4822 123 4822 123 4822 123	30043 30043 30043
C 1926 C 1927 C 1928 C 1929 C 1930	10NF 10NF 10NF 10NF 10NF	80% 80% 80% 80% 80%	40V 40V 40V 40V	4822 122 4822 122 4822 122 4822 122 4822 122	30043 30043 30043
C 1931 C 1932	10NF 10NF	80% 80%	40V 40V	4822 122 4822 122	

5.5.4. Semi conductors

P0:	SNR	DESCRIPTION	ORDERING	CODE
A A A	151 152 153 201	B AW6 2 B AW6 2 B AW6 2 B F 2 5 6 B	4822 130 4822 130 4822 130 5322 130	30613 30613 30613 44744
V V V	202 203 204 205 206	BF256B BC 547B BC558 BC558 BC 547B	5322 130 4822 130 4822 130 4822 130 4822 130	44744 40959 40941 40941 40959
V V V V	207 208 209 210 251	BC 547B BC558	4822 130 4822 130 4822 130 4822 130 4822 130	
V V V V	252 253 254 257 258	BY527 BY527 BZX70-C7V5 BZX70-C7V5 BZX70-C12 BZX70-C12	4822 130 5322 130 5322 130 5322 130 5322 130	31509 34981 34981 30753 30753
A A A A	259 260 261 263 264	B AW6 2 B AW6 2 B AW6 2 B AW6 2 O A 95	4822 130 4822 130 4822 130 4822 130 4822 130	30613 30613 30613 30613 30191
V V V	265 301 302 303 304	0A 95 BF256A ON528 BC 547B BC 547B	4822 130 5322 130 5322 130 4822 130 4822 130	30191 44418 44405 40959 40959
V V V	305 306 350 351 401	BF324 BC 547B BC558 BAN62 BF256A	4822 130 4822 130 4822 130 4822 130 5322 130	41448 40959 40941 30613 44418
V V V V	403 450 451 452 453	BC 547B BZX70-C10 BZX70-C10 BZX79-B13 BAW62	4822 130 5322 130 5322 130 4822 130 4822 130	40959 34299 34299 34195 30613
V V	454 501 502	BZV46-C2V0 BF324 BSX20	4822 130 4822 130 5322 130	

POSNR	DESCRIPTION	ORDERING CODE	
V 503	BSX20	5322 130 40417	3
V 504	BF324	4822 130 41448	
V 505	BF324	4822 130 41448	
V 506	BC 547B	4822 130 40959	
V 507	BC 547B	4822 130 40959	
V 550	BAW62	4822 130 30613	3
V 551	BAW62	4822 130 30613	
V 601	BC 547B	4822 130 40959	
V 602	BC 547B	4822 130 40959	
V 603	BF256A	5322 130 44418	
V 604	BF256A	5322 130 44418	5
V 605	ON528	5322 130 44405	
V 606	ON528	5322 130 44405	
V 607	ON528	5322 130 44405	
V 608	ON 527	5322 130 44528	
V 609	BC 547B	4822 130 40959	9
V 610	BC 547B	4822 130 40959	
V 611	BC 547B	4822 130 40959	
V 612	BC 547B	4822 130 40959	
V 613	BC 547B	4822 130 40959	
V 614 V 652 V 654 V 655 V 656	BFW12 BAW62 BZX79-B7V5 BZV46-C1V5 BZV46-C1V5	5322 130 41785 4822 130 30613 4822 130 30861 5322 130 34865 5322 130 34865	3 1 5
V 657	BZV46C2V0	4822 130 31248	9
V 801	BC 547B	4822 130 40959	
V 802	BC 547B	4822 130 40959	
V 803	BD675	5322 130 44788	
V 804	BC558	4822 130 4094	
V 805 V 851 V 852 V 853 V 855 V 1901	BZX79-B9V1 BY164 BZX79-B5V1 BY164 BZX79-B5V1 OA95	4822 130 30862 4822 130 30416 4822 130 3423 4822 130 30416 4822 130 3423 4822 130 30193	4 3 4 3

5.5.5. Integrated circuit

POSNR	DESCRIPTION	ORDERING	CODE
A 501 A 502	UA714HC 0Q0061 0Q0063 UA741TC UA710HC	5322 209 5322 209 5322 209 4822 209 5322 209	85885 80989 80617 86414
A 601	UA741TC	4822 209	80617
A 602	OQ0064	5322 209	85887
A 603	OQ0060	5322 209	85884
A 801	LM78L05ACZ	5322 209	80903
A 802	UA741TC	4822 209	80617
D 1901	N74LS244N	5322 209	86017
D 1902	SN74LS161AN	5322 209	85915
D 1903	HEF4027BP	5322 209	14055
D 1904	P8035	5322 209	86479
D 1905	HEF40174BP	5322 209	14444
D 1906	HEF40174BP	5322 209	14444
D 1907	SN74LS161AN	5322 209	85915
D 1908	SAA1060	4822 209	80512
D 1909	2716	5322 209	54696
D 1910	HEF4070BP	5322 209	14073
D 1911	SN74LS86N	5322 209	84997
D 1913 D 1914 D 1915 D 1916		5322 209 5322 209 5322 209 4822 209 5322 209	
D 1917	HEF40106BP	5322 209	14549
D 1918	HEF4023BP	5322 209	14065
D 1919	HEF4051P	5322 209	14212
D 1920	2716	5322 209	54697
D 1921	N74LS00N	5322 209	84823

6. CIRCUIT DIAGRAMS AND P.C.B. LAY-OUTS

• SLIDER DRAWN IN FUNCTION V....

Fig. 54. Switch p.c.b. lay-out, front view

Fig. 55. Switch p.c.b. lay-out, rear view

Fig. 56. Display p.c.b. lay-out, component side

Fig. 57. Display p.c.b. lay-out, conductor side

ST3231 810402

to the state of th

Fig. 59. Main p.c.b. lay-out, component side

Fig. 61. Additional components conductor side of main p.c.b.

ST3444 820208

Fig. 62. Power supply circuit diagram

Fig. 63. Analog section diagram

tend collemnatelia

to a second

Company of the Compan

Rijania a toda 64

Section and the section of the secti

Manager on partie

manufacture and the second

Mary Control of the C

ř.

Fig. 64. Digital section circuit diagram

7. MODIFICATIONS TO THE PM2521

This service manual is based on the instrument numbers DM 01 1145 and onwards. For instruments with a lower number the following modifications are given.

7.1. Modifications to circuit diagrams and p.c.b. lay-out.

The following diagrams must be used:

ACTIVE FILTER

Fig. 65. Modifications to active filter

Fig. 66. Modifications to current source

Fig. 67. Main p.c.b.lay-out, component side former version

Fig. 68. Main p.c.b. lay-out, conductor side former version

Fig. 69. Additional components on conductor side of main p.c.b.

ST 3243 81 1127

7.2. MODIFICATION TO COMPONENTS

DM 01 635	upto DM 01 1145	From DM 01 1	1145 onwards
R600	56k2 (5322 116 54676)	10k	(5322 116 54619)
R624	10k potm. (4822 100 10035)	220 Ω potm.	(4822 100 10019)
R629	<u> </u>	110Ω	(5322 116 54474)
R626	68k1 (5322 116 54683)	10k	(5322 116 54619)
R411	4k7 potm. (4822 100 10036)	47k potm.	(4822 100 10079)
R418	<u> </u>	215k	(5322 116 54728)
R304	5k9 (5322 116 50583)	10k	(5322 116 54619)
R317	1k27 (5322 116 50555)	Ω 095	(5322 116 50561)
R507	5k9 (5322 116 50583)	10k	(5322 116 54619)
R522	1k27 (5322 116 50555)	Ω 095	(5322 116 50561)
		•	
R707	887Ω or 619Ω (887 = 5322 116 54544) 619 Ω	(5322 116 54529)
R622	1k21 or 1k1 (1k21 = 5322 116 5455	1k1	(5322 116 54554)
R623	12k1 or 11k0 (12k1 = 5322 116 5057	•	(5322 116 54619)
R231	1M or no resistor placed (5322 116 555	•	(5322 116 55535)
R232	1M or no resistor placed (5322 116 555	535) 1M	(5322 116 55535)
V251	BYX10 (4822 130 30195)	BY527	(4822 130 31509)
V252	BYX10 (4822 130 30195)	BY527	(4822 130 31509)
V657	BAW62 (4822 130 30613)	BZV46 C2V0	(4822 130 31248)

7.3. MODIFICATIONS TO THE ADJUSTING PROCEDURE (refer to chapter 3.1).

Adjustment 1: Active filter.

If adjustment is not possible because the potentiometer R624 is turned fully anti-clockwise then solder a resistor of $1M\Omega$ (MR 25,1% E48 series) in parallel accross R604 and repeat adjustment 1. If the potentiometer R624 is turned fully clockwise, then solder a resistor of $1M\Omega$ (MR25,1% E48 series) in parallel across R605 and repeat adjustment 1.

8. COMPONENT DATA

8.1. SEMI CONDUCTORS

ABSOLUTE MAXIMUM RATINGS 78L05ACS

PARAMETER	RATING	UNIT
Input voltage Internal power dissipation Storage temperature range	30 Internally limited	٧
Metal can (TO-39 type) Moulded TO-92 Operating junction temperature range Lead temperatures	65 to +150 55 to +150 0 to + 150	°C °C
Metal can (soldering, 60s time limit) Moulded TO-92 (soldering, 10s time limit)	300 260	°c °c

8.2. LOCMOS CIRCUITS (HEF)

HEF4011B QUADRUPLE 2-INPUT NAND GATE

Functional diagram

Logic diagram (one gate)

HEF4023B TRIPLE 3-INPUT NAND GATE

Functional diagram

Logic diagram (one gate)

HEF4027B DUAL JK FLIP-FLOP

Functional diagram

FUNCTION TABLES

inputs					outp	outs	
S _D	СД	СР	J	К	0	ō	
Н	L	х	Х	X	Н	L,	
L	Н	Х	- X	X	L	Н	
Н	Н	Χ	Х	X	Н	H	

inputs					outputs	
s _D	СD	СР	J	К	O _n + 1	O _n + 1
	L L L	, 1 , 1	L H L H	L H H	no d H L O n	change L H O

H= HIGH state (the more positive voltage)

L= LOW state (the less positive voltage)

X= state is immaterial

 \int = positive-going transition

 $O_n + 1 = \text{state after clock positive transition}$

16	15	14	13	12	11	10	9
V _{DD}	01	Ō1	CP ₁	C _{D1}	κ_1	J ₁	S _{D1}
\triangleright				27 B			
02	Ō2	CP ₂	C _{D2}	К2	J ₂	S _{D2}	V _{SS}
	2	3	4	5	6	7	8

Pinning diagram

PINNING

J, K synchronous inputs

CP clock input (L to H edge-triggered)

S_D C_D O asynchronous set-direct input (active HIGH)

asynchronous clear-direct input (active HIGH)

true output

complement output

Hef4051B 8-CHANNEL ANALOGUE MULTIPLEXER/DEMULTIPLEXER

16	15	14	13	12	11	10	9
v _{DD}	^Y 2	Υ1	Y ₀	Y ₃	A ₀	A ₁	Α2
\bigcap		HE	F 40	51 B			
Y4	^Y 6	Z	Υ7	Y ₅	Ē	V _{EE}	V _{SS}
1	2	3	4	5	6	7	8
	_						

Pinning diagram

PINNING

Y₀ to Y₇ independent inputs/outputs
A₀ to A₂ address inputs
E enable input (active LOW)
Z common input/output

Functional diagram

FUNCTION TABLE

		channel		
Ē	A ₂	A ₁	A ₀	ON
	LLLH	L H H L	L H L H	Y ₀ -Z Y ₁ -Z Y ₂ -Z Y ₃ -Z Y ₄ -Z
L L H	H H H X	H H X	H L H X	Y ₅ -2 Y ₆ -Z Y ₇ -Z none

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state in immaterial

HEF4070B QUADRUPLE EXCLUSIVE-OR GATE

14 13	12	11	10	9	8
V _{DD} I ₈	I 7	04	03	16	15
\triangleright	HE	F 40	70 B		
I ₁ I ₂	01	02	Ι3	14	V 55
1 2	3	4	5	6	7

Pinning diagram

TRUTH TABLE

1 ₁	¹ 2	01
Г	L	L
T L	L	Н
L	Н	Н
Н	·H	L

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

Logic diagram (one gate)

HEF40106B HEX SCHMITT TRIGGER

Functional diagram

Logic diagram (one inverter)

HEF40174B HEX D-TYPE FLIP-FLOP

Functional diagram

16 15	14 13	12 11	10 9
V _{DD} O ₅	D ₅ D ₄	0 ₄ D ₃	0 ₃ CP
\triangleright	HEF 40	174 B	
MR OO	D ₀ D ₁	0 ₁ D ₂	0 ₂ V _{SS}
1 2	3 4	5 6	7 8

Pinning diagram

PINNING

 D_0 to D_5 data inputs

CP clock input (LOW to HIGH edge triggered)

MR master reset input (active LOW)

 O_0 to O_5 buffered outputs

FUNCTION TABLE

	iı	output	
СР	D	MR	0
J	H	Τ	Н
1	L	Н	L
12	Х	Н	no change
Х	Х	L	L se

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

∫ = positive-going transition

l = negative going transition

8.3. OQ CIRCUITS

OQ0060 SWITCHING PART OF THE ADC

Specification of inputs and outputs

Pin nr.	Name	Description	
1	Vss	Supply	Negative supply voltage
2	сьоск	Clock output	
3	nc	no connection	
4	clock	clock input	
5	clock	clock input	
6	C comp	Capacitor for compensation	Capacitor compensates internal active parts
7	GND	Ground	Supply zero 🗸
8	n.c.	no connection	
9 ,	n.c.	no connection	
10	I + ∆I	Current input	Input from V-I convertor
11	n.c.	no connection	
12	Ι — ΔΙ	Current input	Input from V-I convertor
13	Vdd	Supply	Positive supply voltage
14	n.c.	no connection	
15	DATA	Data output	Outgoing data with a duty-cycle depending on input voltage of the ADC
16	n.c.	no connection	

OQ0061 AC TO DC CONVERTOR

OQ 0061				
Rb C	1	16 Ra		
Rb⊏	2	15 Vin 2		
V:n1	3	14 D So		
Ra⊏	4	13 Sin		
Vss □	5	12 vaa		
AZc [6	110 0 011		
AZc 🗆	7	103Crms		
GND 🕁 🗆	8	9 PROT		

Specifications of inputs and outputs

Pin no.	Name	Description					
1 2	Rb Rb	Range b, conversion resistor	The conversion resistor b is connected between inputs 1 and 2. The resistor determines the basic current of the V-I convertor. Rb is selected dependent on the code of Sin and So.				
3	Vin 1	Voltage input 1	Input of the V to I convertor in the OQ0061.				
4	Ra	Range a, conversion resistor	The conversion resistor a is connected between inputs 4 and 16. The resistor determines the basic current of the V to I convertor. Ra is selected dependent on the code of Sin and So.				
5	Vss	SUPPLY	Negative supply voltage.				
6 7	AZc AZc	Auto Zero Decoupling capacitor	The auto zero decoupling capacitor C is alternately charged and discharged. When no DC offset is present, the voltage across the capacitor is zero. A DC offset causing a voltage across C, is compensated so no influence is seen upon the output signal.				
8	GND	GROUND	Supply zero $\sqrt{}$				
9	PROT	PROTECTION	Protection input.				
10	Crms	R.M.S. averaging: capacitor					
11	lout	Current output:	Output current of the R.M.S. convertor. The current flowing through a known resistor gives the R.M.S. voltage of the unknown input voltage.				
12	Vdd	SUPPLY	Positive supply.				
13	Sin	Range selecting;	By means of the Sin and So a selection can be made Ra or Rb. which determine the input sensitivity of the AD/DC conv.				
14	So	Range selecting: reference input	Sin So Ra Rb Range Sensitivity 0 1 X 200mV 0,1V 1 1 X 2V, 20V, 200V 1V and 2000V NOTE: Above mentioned table is valid for PM2521.				
- 15	Vin 2	Voltage input 2;	Input of the V to I convertor in the OQ0061.				
16	Ra	Range a, conversion; resistor	The conversion resistor a is connected between inputs 4 and 16. The resistor determines the basic current of the V to I convertor. Ra is selected dependent on the code of Sin and So.				

OQ0063 PROGRAMMABLE CURRENT SOURCE

irs⊏	1 00 006	18	blrp .
Cs		-	DCs
I rc ⊏	3	16	PIRX
Vss	4	15	GND
C.clock	5	14	⊃ V d d
C.clock	6	13	RNG A
RNG B	7	12	RNG C
v out	8 .	11	⊐-Vin
C COMP.	9	10	⊒+Vin

Specification of the inputs and outputs of the OQ0063

Pin no.	Name	Description	:	***************************************				
1	Irs	Ref. current adjustment	With Rs the output current can be adjusted.					
2	Cs	Smoothing Capacitor	Smoothin	g capacitor for the sw	ritched curr	ents.		
3	Irc	I Ref. Common	Common	connection of Rs and	Rp.			
4	Vss	Supply	Negative s	supply voltage.				
5 6	C clock C clock		Capacitor	for the clock-oscillate	or.			
7	RNG B	Range B	Range inf	ormation (see 12, 13)	•			
8	V out	Output voltage	Output of	the compensation an	nplifier.			
9	C comp	C. Compensation	Compensa	tion capacitor for the	compensa	tion amplifi	er.	
10 11	+Vin –Vin	+ input — input	+ and — input of the compensation/protection amplifier. Compensation: With the amplfier the current consumption of the ADC is compensated during Ω measurements. Protection: With the amplifier also the leak current through the protection diodes during Ω measurements is compensated.					
12 13	RNG C RNG A	Range C Range A	Together with signal RNG B the signals determine the digital range information from the $\mu\text{P}.$			digital		
			Range	Measuring current	RNG A	RNG B	RNG C	
			1 kΩ 10 kΩ 100 kΩ 1MΩ 10MΩ	1mA 100 μ A 10 μ A 1 μ A 100 nA	1 0 1 0	1 0 0 1 1	1 0 0 0 0	
14	Vdd	Supply	Positive su	pply voltage.	-			
15	GND	GROUND 🗸	Supply zero					
16	l out		Output current.					
17	Cs		Smoothing capacitor.					
18	Irp		With Rp tl determine	ne temperature-coeffi d.	cient of the	reference o	current is	

OQ0064 V-I CONVERTOR (ADC)

PROT	4	1	00.0	0064	24	s _o	
N.C.	4	2	00 0	7004	23	Sin	
D1	4	3			22	Ь ВИР	,
Rα	4	4			21	₽ N.C.	
S 1	4	5			20	D Vaa	
RЬ	4	6			19	N.C.	
i-∆i	디	7			18	N.C. '	
i+∆i	4	8			17	□ Rp	
Ŕb	4	9			16	□iref	
52	4	10			15	□Rs	
Ra	d	11			14	∄ I in	
Ð 2	d	12			13	□ Vss	
	, •					'	

Specification of inputs and outputs

Pin no.	Name	Description						
1	PROT	Protection input.						
2	n.c.	no connection						
3	D1	Drain input for device 1.						
4	Ra	Range a conversion resistor (input sensitivity 0,1V).						
5	S1	Source input for device 1.						
6	Rb	Range b conversion resistor (input sensitivity 1V).						
7	1	Current output.						
8	1	Current output						
9	Rb	Range b conversion resistor (input sensitivity 1V).						
10	S2	Source input for device 2.						
11	Ra	Range a conversion resistor (input sensitivity 0,1V).						
12	D2	Drain input for device 2.						
13	Vss	Negative supply voltage.						
14	l in	Current input.						
15	Rs	Current setting resistor. Adjustment reference current.						
16	I ref	Current reference output.						
17	Rp	Tc setting resistor. Rp determines temperature coefficient.						
18	n.c.	no connection						
19	n.c.	no connection						
20	Vdd	Positive supply voltage.						
21	n.c.	no connection.						
22	GND	Supply Zero 🗸						
23	Sin	Range selecting input (a or b). Sin So Ra Rb Sensitivity ADC						
24	So	Range selecting reference input. 0 1 X 0,1V 1 1 X 1V						

132

8.3. OQ CIRCUITS

OQ0060 SWITCHING PART OF THE ADC

Specification of inputs and outputs

Pin nr.	Name	Description	
1	Vss	Supply	Negative supply voltage
2	сьоск	Clock output	
3	nc	no connection	
4	clock	clock input	
5	clock	clock input	
6	C comp	Capacitor for compensation	Capacitor compensates internal active parts
7	GND	Ground	Supply zero
8	n.c.	no connection	
9 ,	n.c.	no connection	
10	Ι+ΔΙ	Current input	Input from V-I convertor
11	n.c.	no connection	
12	Ι — ΔΙ	Current input	Input from V-I convertor
13	Vdd	Supply	Positive supply voltage
14	n.c.	no connection	
15	DATA	Data output	Outgoing data with a duty-cycle depending on input voltage of the ADC
16	n.c.	no connection	

OQ0061 AC TO DC CONVERTOR

OQ 0061				
Rb C	1	16.	Ra	
Rb □	2	15	⊒ Vin 2	
Vin1	3	14	⊒ So	
Ra⊏	4	13	⊒ Sin	
۷ss⊏	5	12	D Vdd	
AZc 🗆	6	11	DOUT	
AZ¢ 🗆	7	10	Crms	
сир∱⊏	8	9	PROT	

Specifications of inputs and outputs

Pin no.	Name	Description					
1 2	Rb Rb	Range b, conversion resistor	The conversion resistor b is connected between inputs 1 and 2. The resistor determines the basic current of the V-I convertor. Rb is selected dependent on the code of Sin and So.				
3	Vin 1	Voltage input 1	Input of the V to I convertor in the OQ0061.				
4	Ra	Range a, conversion resistor	The conversion resistor a is connected between inputs 4 and 16. The resistor determines the basic current of the V to I convertor. Ra is selected dependent on the code of Sin and So.				
5	Vss	SUPPLY	Negative supply voltage.				
6 7	AZc AZc	Auto Zero Decoupling capacitor	The auto zero decoupling capacitor C is alternately charged and discharged. When no DC offset is present, the voltage across the capacitor is zero. A DC offset causing a voltage across C, is compensated so no influence is seen upon the output signal.				
8	GND	GROUND	Supply zero √				
9	PROT	PROTECTION	Protection input.				
10	Crms	R.M.S. averaging: capacitor					
11	I out	Current output:	Output current of the R.M.S. convertor. The current flowing through a known resistor gives the R.M.S. voltage of the unknown input voltage.				
12	Vdd	SUPPLY	Positive supply.				
13	Sin	Range selecting; input	By means of the Sin and So a selection can be made Ra or Rb. which determine the input sensitivity of the AD/DC conv.				
14	So	Range selecting: reference input	Sin So Ra Rb Range Sensitivity 0 1 X 200mV 0,1V 1 1 X 2V, 20V, 200V 1V and 2000V NOTE: Above mentioned table is valid for PM2521.				
15	Vin 2	Voltage input 2;	Input of the V to I convertor in the OQ0061.				
16	Ra	Range a, conversion; resistor	The conversion resistor a is connected between inputs 4 and 16. The resistor determines the basic current of the V to I convertor. Ra is selected dependent on the code of Sin and So.				

OQ0063 PROGRAMMABLE CURRENT SOURCE

!rs⊏	1 00 006	1801rp
Csc		17 D C s
[rc [3	16 DIR×
۷ss	4	15 GND
C.clock	5	14 vad
C.clock⊏	6	13 RNG A
RNG B	7	12 RNG C
v outc	8	11 - Vin
C COMP.	9 -	10 - +Vin

Specification of the inputs and outputs of the OQ0063

Pin no.	Name	Description					
1	Irs	Ref. current adjustment	With Rs the output current can be adjusted.				
2	Cs	Smoothing Capacitor	Smoothing capacitor for the switched currents.				
3	Irc	I Ref. Common	Common connection of Rs and Rp.				
4	Vss	Supply	Negative supply voltage.				
5 6	C clock C clock		Capacitor for the clock-oscillator.				
7	RNG B	Range B	Range information (see 12, 13).				
8	V out	Output voltage	Output of the compensation amplifier.				
9	C comp	C. Compensation	Compensation capacitor for the compensation amplifier.				
10 11	+Vin —Vin	+ input — input	+ and $-$ input of the compensation/protection amplifier. Compensation: With the amplifier the current consumption of the ADC is compensated during Ω measurements. Protection: With the amplifier also the leak current through the protection diodes during Ω measurements is compensated.				
12 13	RNG C RNG A	Range C Range A	Together with signal RNG B the signals determine the digital range information from the μP .				
	<u> </u> -		Range Measuring current RNG A RNG B RNG C				
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
14	Vdd	Supply	Positive supply voltage.				
15	GND	GROUND 🗸	Supply zero				
16	lout		Output current.				
17	Cs		Smoothing capacitor.				
18	Irp		With Rp the temperature-coefficient of the reference current is determined.				

OQ0064 V-I CONVERTOR (ADC)

PROT E	1	00 0064	24	50 50
N.C.	2	00 0004	23	Sin
D1 🗆	3		22	□ GND 🕁
Ra 🗆	4		21	N.C.
S1 [5		20	□ vaa
Rb □	6		19	Ь N.C.
i-∆i ⊏	7		18	ы.с. [.]
i+∆i ⊏	8		17	Rp
Ŕb⊏	9		16	□iref
52 E	10		15	P _. Rs
Ra 🗆	11		14	D-I in
D2 🗖	12		13	□ Vss
- '				'

Specification of inputs and outputs

Pin no.	Name	Description
1	PROT	Protection input.
2	n.c.	no connection
3	D1	Drain input for device 1.
4	Ra	Range a conversion resistor (input sensitivity 0,1V).
5	S1	Source input for device 1.
6	Rb	Range b conversion resistor (input sensitivity 1V).
7	1	Current output.
8	1	Current output
9	Rb	Range b conversion resistor (input sensitivity 1V).
10	S2	Source input for device 2.
11	Ra	Range a conversion resistor (input sensitivity 0,1V).
12	D2	Drain input for device 2.
13	Vss	Negative supply voltage.
14	l in	Current input.
15	Rs	Current setting resistor. Adjustment reference current.
16	l ref	Current reference output.
. 17	Rp	Tc setting resistor. Rp determines temperature coefficient.
18	n.c.	no connection
19	n.c.	no connection
20	Vdd	Positive supply voltage.
21	n.c.	no connection.
22	GND	Supply Zero 🗸
23	Sin	Range selecting input (a or b). Sin So Ra Rb Sensitivity ADC
24	So	Range selecting reference input. 0 1 X 0,1V 1 1 X 1V

8.4. DISPLAY INTERFACE CIRCUITS

SAA1060 LED DISPLAY/INTERFACE CIRCUIT

Block diagram

GENERAL DESCRIPTION

Data transmission is initiated by means of a burst of clock pulses (CLB), a data line enable signal (DLEN) and the data signal (DATA). The bus control circuit distinguishes between interference and valid data by checking word length (17 bits) and the leading zero. This allows different bus information to be supplied on the same bus lines for other circuits (e.g. SAA1056 with 16 bits).

The last bit (bit 17) of the data word contains the information which of the two internal latches will be loaded. The input LOEX determines if the latched data of the selected latches is presented directly to the outputs, or synchronized with the data select signal DUP.

The output stages are n-p-n transistors with open collectors. The current capability is designed for the requirements of duplex operation. Two of the outputs (Q_8 and Q_{16}) are arranged for double current, so that 2 x 2 segments can be connected in parallel.

OPERATION DESCRITPION

Data inputs (DLEN, DATA)

The SAA1060 processes serially the 18-bit data words synchronized with the clock burst (CLB) and applied to the data input DATA. A command will be accepted only when the data line enable input (DLEN) is HIGH.

16 th	bit													•		1 st	bit
load bit	P Q ₁₆	0 0 ₁₅	N Q ₁₄	М О ₁₃	L Օ ₁₂	κ ^Q 11	J Q ₁₀	ι Ω ₉	О ₈	G Q ₇	F Q ₆	Е О ₅	D Ω ₄	о ³ с	В О ₂	A Q ₁	
		, ,					-							lead	ding z	ero -	

Organization of a data word

Condition for 17th bit:

0 = load data latch B

1 = load data latch A

The loading of the accepted information in one of the data latches is done by the 19th clock pulse, when DLEN is LOW.

Pulse diagram of the 16-bit data transmission

Each data word must start with a leading zero. The SAA1060 checks the data word for the correct length (18 bits) and also for the leading zero.

The actual data is switched directly to the appropriate outputs. For switching on a segment, a "0" (LOW) is necessary at the appropriate data bit.

Data selection input (DUP)

The logic states at input DUP determine which of the two latch contents can be found on the output.

0 = latch A contents

1 = latch B contents

Load control input (LOEX)

Input LOEX determines the operation mode in which the device is able to work.

0 = duplex mode, i.e. output synchronized with the duplex signal

1 = d.c. mode, i.e. output direct from the DUP selected data latch.

When operating in duplex mode at 50Hz, the time between two data words to be transmitted must be > 21ms.

Pinning diagram

RATINGS ($V_{EE} = 0$)

Limiting values in accordance with the Absolute Maximum System (IE	EC134)	
Supply voltage range	v_{cc}	0.3 to +7V
Total power dissipation	P _{tot}	max. 900mW
Operating ambient temperature range	Tamb	-20 to +80°C
Storage temperature range	T _{sta}	-25 to +125°C

SAA1062 LCD DISPLAY/INTERFACE CIRCUIT

GENERAL DESCRIPTION

The SAA1062 is designed to drive a Liquid Crystal Display (LCD) of a digital tuning system. It contains a shift register with programmable length (18 or 21 bits), latches, both synchronized or static, exclusive-OR segment drivers (17 or 20 bits), an l.f. oscillator and a backplane driver for the LCD. The circuit is designed to be driven by a 3 bus structure from a microprocessor and can also be used as a programmable 17 or 20 bits serial-to parallel decoder. It is also capable of storing 60 bits of information.

Organization of 18 and 21 bits words; DATA - LOW means segment 'on'

		-
CLB 1		28 020
DLEN 2		27 Q ₁₉
DATA 3		26 Q ₁₈
V _{CC} 4		25 Q ₁₇
V _{EE} 5		24 016
C _{ext} 6		23 Q ₁₅
BLS 7	SAA1062	22 014
AC/EL 8		21 Q 13
Q ₁ 9		20 Q ₁₂
Q ₂ 10		19 Q ₁₁
03 11		18 Q ₁₀
Q ₄ 12		17 Qg
Q ₅ 13		16 Q8
Q ₆ 12		15 Q 7
		1

Pinning diagram

8.5. OPERATIONAL AMPLIFIERS

DIFFERENTIAL VOLTAGE COMPARATOR µA710

PIN CONFIGURATION (TOP VIEW)

TPACKAGE

PRECISION OPERATIONAL AMPLIFIER μ A714

GENERAL PURPOSE OPERATIONAL AMPLIFIER μ A741

PIN CONFIGURATIONS (TOP VIEW)

A PACKAGE

T PACKAGE

- 1 OFFSET NUL
- 2 INVERTING INPUT
- 3 NON-INVERTING INPUT
- 4 V-
- 5 OFFSET NULL
- 6 OUTPUT
- 7 V+
- 8 NC

V PACKAGE

8.6. LOW POWER SCHOTTKY CIRCUITS (LS)

LOW POWER SCHOTTKY 54LS/74LS FAMILY CHARACTERISTICS DC CHARACTERISTICS OVER OPERATING TEMPERATURES

	Parameter	Test conditions	Min	Typ ¹	Max	Unit	
V _{IH}	Input HIGH voltage	Guaranteed input HIGH voltage for all inputs		2.0			٧
V _{IL}	Input LOW voltage	Guaranteed input LOW voltage for inputs	Mil Com			0.7 0.8	V V
v _{cD}	Input clamp diode voltage	V _{CC} = Min. I _{IN} = -18	mA		-0.65	-1.5	٧
v _{oL}	Output LOW voltage	V _{CC} = Min. 1 _{OL} = 4.0)mA		0.25	0.4	٧
		V _{CC} = Min. I _{OL} = 8.0m	A (Com. only)		0.35	0.5	٧
V _{ОН}	Output HIGH voltage	V _{CC} = Min.	Mil	2.5	3.4		٧
ОH		I _{OH} = -400μΑ	Com	2.7	3.4		٧
1 _{OH}	Output HIGH current (open collector)	V _{CC} = Min. V _{OUT} =	5.5V			100	μΑ
^l ozн	Output "off" current HIGH (3-state)	$V_{CC} = Max. V_{OUT} = V_{OE} = 2.0V$	= 2.4V			20	μΑ
lozL	Output "off" current LOW (3-state)	$V_{CC} = Max. V_{OUT} = V_{OE} = 2.0V$	0.4V			-20	μΑ
I _{IH}	Input HIGH current ²	V _{CC} = Max. V _{IN} = 2.	7V			20	μΑ
1,	Input HIGH current at Max input voltage	V _{CC} = Max. V _{IN} = 10	ov ³			0.1	mΑ
1 _{IL}	Input LOW current ²	V _{CC} = Max. V _{IN} = 0.	4V			0.4	mΑ
I os	Output short circuit current	V _{CC} = Max. V _{OUT} =	0V	-15		-100	mA

NOTES:

1. Typical limits are at 25° C and V_{CC} =5.0V

- 2. The specified limits reflect one unit load for the family. When more than one load is connected internally, the limits must be multiplied by the number of connected loads. See the INPUT AND OUTPUT LOADING AND FAN-OUT TABLE on the data sheets for the guaranteed limit for each input.
- 3. The following LS devices are limited to a 5.5V input breakdown voltage. All inputs of the LS181; clock inputs of LS90, LS92, LS93, LS196, LS197, LS290, LS293, LS390, LS393 and LS490.

QUAD 2-INPUT NAND GATE PIN CONFIGURATIONS

TRIPLE 3-INPUT NAND GATE PIN CONFIGURATIONS

QUAD 2-INPUT EXCLUSIVE-OR GATE PIN CONFIGURATIONS

TRUTH TABLE

in	puts	output
Α	В	Υ
L	L	L
L,	Н	Н
Н	L	H
Н	Н	L

L = LOW voltage level.H = HIGH voltage level.

74LS244 OCTAL BUFFERS (3-STATE) PIN CONFIGURATIONS

TRUTH TABLE

	Input	,	Outputs		
OE _a	l _a	OE _b	l _b	Ya	Y _b
L	L	L	L	L	L
L	Н	L	Н	Н	Н
Н	Х	Н	X	(Z)	(Z)

H = HIGH voltage level

L = LOW voltage level

X = Don't care

(Z) = High impedance (off) state

74LS74 DUAL D-TYPE FLIP FLOP PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

MODE SELECT-TRUTH TABLE

OPERATING MODE		in	outputs			
	Ī _D	R _D	СР	D	0	ā
Asynchronous Set Asynchronous Reset (Clear)	L H	H L	X	X X	H L	L H
Undetermined (c) Load "1" (Set) Load "0" (Reset)	L H H	L H H	X ↑	X h I	H H L	H L H

- H = HIGH voltage level steady state.
- h = HIGH voltage level one setup time prior to the LOW to HIGH clock transition.
- L = LOW voltage level steady state.
- I = LOW voltage level one setup time prior to the LOW to HIGH clock transition.
- X = Don't care.

74LS161 4-BIT BINARY COUTER PIN CONFIGURATION

LOGIC SYMBOL

MODE SELECT-FUNCTION TABLE

OPERATING			Outputs					
MODE	MR	СР	CEP	CET	PE	D _n	Q _n	тс
Reset (Clear)	L	Х	X	×	×	Х	L	L
Parallel Load	H	↑ ·	X	X	. l	l h	L H	L (b)
Count	Н	1	h	h	h(d)	Х	count	(b)
Hold (do nothing)	H	×	I(c) X	X I(c)	h (d) h (d)	×	O _n	(b) L

H = HIGH voltage level steady state

L = LOW voltage level steady state

h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition

I = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition

X = Don't care

Q = Lower case letters indicate the state of the referenced output prior to the LOW-to-HIGH clock transition

↑ = LOW-to-HIGH clock transition

8.7. MEMORY AND MICROPROCESSOR

2716 16k (2kx8) UV ERASABLE PROM

PIN CONFIGURATION

PIN NAMES

A ₀ -A ₁₀	ADDRESSES
PD/PGM	POWER DOWN/PROGRAM
CS	CHIP SELECT
O ₀ -O ₇	OUTPUTS

MODE SELECTION

Pins Mode	CE/PGM (18)	OE (20)	Vpp (21)	V _{CC} (24)	Outputs (9-11, 13-17)
Read	V _{IL}	V _{IL}	+5	+5	D _{OUT}
Standby	V _{IL}	Don't care	+5	+5	High Z
Program	Pulsed V _{IL} to V _{IH}	V _{IH}	+25	+5	D _{IN}
Program Verify	V _{IL}	V _{IL}	+25	+5	D _{OUT}
Program Inhibit	V _{IL}	V _{IH}	+25	+5	High Z

MCS-48 PIN CONFIGURATIONS

r	(r
то 1		40 Vcc
XTAL 1 2		39 T1
XTAL 2 3		38 P27
RESET 4		37 P26
SS <u>5</u>		36 P25
INT 6		35 P24
EA 7		34 P17
RD 8		33 P16
PSEN 9		32 P15
WR 10	8035	31 P14
ALE 11		30 P13
DB ₀ 12		29 P12
DB ₁ 13		28 P11
DB ₂ 14		27 P10
DB ₃ 15		26 V DD
DB ₄ 16		25 PROG
DB ₅ 17	· .	24 P23
DB ₆ 18		23 P22
DB ₇ 19	·	22 P21
^V SS 20		21 P.20

Designation	Pin number	Function
V _{SS}	20	Circuit GND potential
V _{DD}	. 26	Programming power supply; +25V during program, +5V during operation for both ROM and PROM. Low power standby pin in 8048 ROM version.
V _{CC}	40	Main power supply; +5V during operation and 8748 programming.
PROG	25	Program pulse (+25V) input pin during 8748 programming. Output strobe for 8232 I/O expander.
P10-P17 (Port 1)	27-34	8-bit quasi-bidirectional port. Internal Pullup $pprox$ 50K Ω)
P20-P27 (Port 2)	21-24 35-38	8-bit quasi-bidirectional port. (Internal Pullup $pprox$ 50K Ω)
		P20-P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit I/O expander bus for 8243.
D0-D7	12-19	True bidirectional part which can be written or read synchronously using the RD, WR strobes. The port can also be statically latched.
		Contains the 8 low order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of PSEN. Also contains the address and data during an external RAM data store instruction, under control of ALE, RD, and WR.
Т0	1	Input pin testable using the conditional transfer instructions JTO and JNTO. TO can be designated as a clock output using ENTO CLK instruction. TO is also used during programming.
Т1	39	Input pin testable using the JT1, and JNT1 instructions. Can be designated the event counter input using the STRT CNT instruction.
INT	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. (Active low)
RD	8	Output strobe activated during a BUS read. Can be used to enable data onto the BUS from an external device. (Active low). Used as a Read Strobe to External Data Memory.
RESET	4	Input which is used to initialize the processor. Also used during PROM programming and verification. (Active low). (Internal pullup \approx 200 K Ω).
WR	10	Output strobe during a BUS write. (Active low). Used as write strobe to external data memory.
ALE	11 	Address Latch Enable. This signal occurs once during each cycle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory.
PSEN	9	Program Store Enable. This output occurs only during a fetch to external program memory. (Active Low).
SS	5	Single step input can be used in conjunction with ALE to "single step" the processor through each instruction. (Active Low) (Internally pullup \approx 300 K Ω).
EA	7	External Access input which forces all program memory fetches to reference external memory. Useful for emulation and debug, and essential for testing and program verification. (Active High) Internal pullup \approx 10M Ω) on 8048/8049, 8035L, 8039 only).
XTAL1	2	One side of crystal input for internal oscillator. Also input for external source.
XTAL2	3	Other side of crystal input.

8.8. RESISTORS

INTEGRATED RESISTOR OM530

R1 10 M R2 9 M 96 R3 555 k 555 R4 50 k 505 R5 5k005

> ST 3445 820208

CODING SYSTEM OF FAILURE REPORTING FOR QUALITY ASSESSMENT OF T & M INSTRUMENTS

(excl. potentiometric recorders)

The information contents of the coded failure description is necessary for our computerized processing of quality data.

Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

① ②	3	4							
Country - Day Month Year	Typenumber /Version	Factory/Serial no.							
3 2 1 5 0 4 7 5	0 P M 3 2 6 0 0 2	D O 0 0 7 8 3							
CODED FAILURE DESCRIPTION 6									
⑤									
Nature of call Location	Component/sequence no. Ca	tegory							
Installation Pre sale repair Preventive	T S 0 6 0 7 R 0 0 6 3 1 9 9 0 0 0 1	 							
Detailed description of the information \bigcirc Country: $\boxed{3 \ 2} = \text{Switzerland}$	on to be entered in the various boxes:								
②Day Month Year 1 5 0 4 7 5	5] = 15 April 1975								
③Type number/Version O P M 3		3260, version 02 (in later is placed in front of							
⊕ Factory/Serial number D 0 0 0 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0 7 8 3 = DO 783 These data are r the instrument	mentioned on the type plate of							
⑤ Nature of call: Enter a cross in the ⑥ Coded failure description	e relevant box								
Location	Component/sequence no.	Category							
These four boxes are used to isolate the problem area. Write the code of the part in which the fault occurs, e.g. unit no or mechanical item no of this part (refer to 'PARTS LISTS' in the manual). Example: 0001 for Unit 1 000A for Unit A 0075 for item 75 If units are not numbered, do not fill in the four boxes; see Example Job sheet.	These six boxes are intended to pinpoint the faulty component. A. Enter the component designation as used in the circuit diagram. If the designation is alfa-numeric, the letters must be written (starting from the left) in the two left-hand boxes and the figures must be written (in such a way that the last digit occupies the right-most box) in the four right-hand boxes. B. Parts not identified in the circuit diagram: 990000 Unknown/Not applicable 990001 Cabinet or rack (text plate, emblem, grip, rail, graticule, etc.) 990002 Knob (incl. dial knob, cap, etc.) 990003 Probe (only if attached to instrument) 990004 Leads and associated plugs 990005 Holder (valve, transistor, fuse, board, etc.) 990006 Complete unit (p.w. board, h.t. unit, etc.) 990007 Accessory (only those without type number) 990008 Documentation (manual, supplement, etc.)	O Unknown, not applicable (fault not present, intermittent or disappeared) Software error Readjustment Electrical repair (wiring, solder joint, etc.) Mechanical repair (polishing, filing, remachining, etc.) Replacement (of transistor, resistor, etc.) Cleaning and/or lubrication Operator error Missing items (on pre-sale test) Environmental requirements are not met							

① Job completed: Enter a cross when the job has been completed.

(3) Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.

	1	2	_	1 2	working	hours	(1	h	12	min	١
1 1		4	_	1,2	WOLKING	Hours	١,	11	12		. ,

Sales and service all over the world

Alger: Bureau de Liaison Philips, 24 bis Rue Bougainville, El Mouradia, Alger; tel.: 565672

Argentina: Philips Argentina S.A., Cassila de Correo 3479, (Central), 1430 Buenos Aires; tel. (1)70-12421/70-2325/2905/6488

Australia: Philips Scientific & Industrial Equipment Division, Centre Court, 25 - 27 Paul Street, P.O. Box 119, North Ryde/NSW 2113; tel. (2)888-8222

Bangla Desh: Philips Bangla Desh Ltd., P.O. Box 62; Ramna, Dacca; tel. 283332

België/Belgique: Philips and MBLE associates, Philips Scientific and Industrial Equipment Division; 80 Rue des Deux Gares; 1070 Bruxelles, tel. (2) 523.00.00

Bolivia: Industrias Bolivianas Philips S.A., Cajón Postal 2964. La Paz; tel.: 50029/55270/55604

Brasil: Philips Do Brasil Ltda,
Avenida 9 de Julho 5229; Caixa Postal 8681;
CEP 01407 - Sao Paulo (S.P.);
tel. 2825722
Service Centre:
Sistemas Profissionais
Rua Amador Bueno, 474,
Caixa Postal 3159 - S. Amaro
CEP 04752 - Sto Amara (S.P.);
tel. (11) 2476522

Canada: Philips Test and Measuring Instruments Inc., 6 Leswyn Road, Toronto (Ontario) M6A-1K2; tel. (416) 789-7188

Chile: Philips Chiléna S.A., Division Professional, Avda. Santa Maria 0760; Casilla Postal 2687, Santiago de Chile; tel. 770038

Colombia: Industrias Philips de Columbia S.A., Calle 13 no. 51–39, Apartado Aereo 4282, Bogota; tel. 2600600

Danmark: Philips Elektronik Systemer A/S, Afd. for industri og Forskning; Strandlodsvej 4, P.O. Box 1919, 2300 København S, tel. (1) 572222

Deutschland (Bundesrepublik): Philips GmbH, Unternehmensbereich Elektronik für Wissenschaft und Industrie, Miramstrasse 87, Postfach 310 320; 35 Kassel-Bettenhausen; tel. (561) 5010

Ecuador: Philips Ecuador S.A., Casilla 343, Quito; tel. 239080

Egypt: Resident Delegate Office of Philips Industries, 5 Sherif Street, Corner Eloui. P.O. Box 1687, Cairo; tel. 754118/754259/754077.

Eire: Philips Electrical (Ireland) Ltd. Newstead, Clonskeagh, Dublin 14; tel. (1) 693355

España: Philips Ibérica S.A.E.,
Dpto Aparatos de Medida, Martinez Villergas 2,
Apartado 2065, Madrid 27;
tel (1) 4042200
Service Centre:
Dpto Too. de Instrumentación,
Calle de Albasanz 75, Madrid 17;
tel. (1) 2047100

Ethiopia: Philips Ethiopia (Priv. Ltd. Co.), Ras Abebe Areguay Avenue, P.O.B. 2565, Addis Ababa; tel. 448300

Finland: See Suomi

France: S.A. Philips Industrielle et Commerciale, Division S&I, 105 Rue de Paris, 93 002 Bobigny; tel. (1) 8301111

Great Britain: Pye Unicam Ltd., York Street, Cambridge CB1-2PX, tel. (223) 358866 Service Centre: Beddington Lane, Croydon, Surrey CR9-4EN; tel. (1) 6843670

Greece: See Hellas

Hellas: Philips S.A. Hellénique, 54 Avenue Syngrou, P.O. Box 153, Athens 403; tel. (1) 9215311

Hong Kong: Philips Hong Kong Ltd., P.O.B. 2108, St. George's Building, 21st floor, Hong Kong city; tel. (5) 249246 Service Centre: Hopewell Centre, 16th floor, No. 17, Kennedy Road, Wanchai, Hong Kong; tel. (5) 283575 India: Peico Electronics & Electricals Ltd., S&I Equipment, Shivsagar Estate, Block "A", Dr. Annie Besant Road, P.O.B. 6598, Worli, Bombay 4000 18 (WB); tel. 391431

Indonesia: P.T. Philips Development Corporation, Jalan Let. Jen Haryone M.T. Kav. 17, P.O.B. 2287, Jakarta-Selatan; tel. (21) 820808

Iran: Philips Iran Ltd., P.O.B. 1297, Teheran; tel. 662281/5

Iraq: Philips Iraq W.L.L., Munir Abbas Building, 4th floor; South Gate, P.O. box 5749, Baghdad; tel. 8880409

Island: Heimilisteaki SF, Saetún 8, Reykjavík; tel. 24000

Islas Canarias: Philips Ibérica S.A.E., Triana 132, Las Palmas, Casilla 39-41, Santa Cruz de Tenerife

Italia: Philips S.p.A., Sezione S&I/T&M; Viale Elvezia 2, 20052 Monza; tel. (39) 36351

Japan: See Nippon

Jordan: Philips Delegate Office, P.O. Box 35268, Amman; tel. 43998

Kenya: Philips (Kenya) Ltd., 01 Kalou Road, Industrial Area, P.O.B. 30554, Nairobi; tel. 557999

Kuwait: Delegate Office of Philips Industries, P.O. Box 3801, Safat, Kuwait; tel. 428678

Lebanon: Philips Middle East S.A.R.L.; P.O. Box 11670, Beirut, tel. 382300

Malaysia: Philips Malaysia Sdn Bhd., Lot 2, Jalan 222, Section 14, P.O. Box 2163, Petaling Jaya, Selangor; tel. 574411

México: Philips Mexicana S.A. de C.V., Div. Cientifico Industrial, Calle Durango 167, Apartado Postal 24–328, Mexico 7 (D.F.); tel. 544-91-99

Morocco: S.A.M.T.E.L., Casa Bandoeng, B.P. 10896, Casabianca; tel. 303192

Nederland: Philips Nederland B.V., Hoofdgroep PPS, Boschdijk 525, Gebouw VB, 5600 VB Eindhoven; tel. 793333 Service centre: Technische Service Prof. Aktiviteiten

Hurksestraat 42, Gebouw HBK, 5600 MC Eindhoven; tel. 723094

Ned. Antillen: Philips Antillana N.V., Postbus 523, Willemstad, Curaçao; tel. 37575/37475

New Zealand: Philips Electrical Industries of N.Z. Ltd., Scientific and Industrial Equipment Division; Horlor Street, P.O. Box 2097, Naenae, Wellington; tel. 678639

Nigeria: Associated Electronic Products (Nigeria) Ltd., Ikorodu Road, P.O.B. 1921, Lagos; tel. 900160/61

Nippon: NF Trading Co. Ltd., Kirimoto Bldg. 11-2, Tsunashima Higashi 1 - Chome, Kohoku-ku, Yokohama

Norge: Norsk A.S. Philips, Industri og Forskning, Essendrops gate 5, Postboks 5040, Oslo 3; tel. (2) 463890 Service Centre: Postboks 1 Manglerud, Oslo 6; tel. (2) 336270

Oesterreich: Oesterreichische Philips Industrie GmbH, Abteilung Industrie Elektronik, Breitenfurterstrasse 219, A-1230 Wien; †el. (222).841611/15

Pakistan: Philips Electrical Co. of Pakistan Ltd., El-Markz, M.A. Jinnach Road, P.O.B. 7101, Karachi 3; tel. 70071

Paraguay: Philips del Paraguay S.A., Casilla de Correo 605, Asunción; tel. 48045/46919

Perú: Philips Peruana S.A., Av. Alfonso Ugarte 1268 Apartado Aereo 1841, Lima 100, tel. 326070

Philippines: Philips Industrial Development Inc., 2246 Pasong Tamo, P.O.B. 911, Makati Rizal, 3116, Manila; tel. 868951/868959

Portugal: Philips Portuguesa S.A.R.L., Av. Eng. Duarte Pacheco 6, Apartado 1331, Lisboa 1000; tel. (19) 683121/9 <u>Service Centre:</u> Services Técnicos Profissionais, Outurela, 2795 Linda-a-Velha; tel. (19) 2180071

Saoudi Arabia: Delegate Office Philips Industries, Sabreen Blgd., Airport Road, P.O. Box 9844, Riyadh; tel. 4777808/4778463 Schweiz-Suisse-Svizzera: Phillips A.G., Allmendstrasse 140, Postfach, CH-8027 Zürich; tel. (1) 4882211/4882629

Singapore: Philips Singapore Private Ltd., Lorong 1, Tao Payoh, 1st floor, P.O. Box 340, Toa Payoh Central Post Office, Singapore 1231; tel. (2) 538811 Service Centre: 403 Delta House, 4th floor, No. 2 Alexandra Road, Singapore 0315; tel. 2712555

South Africa: South African Philips (Pty) Ltd., 2 Herb Street, New Doornfontein, P.O.B. 7703, Johannesburg 2000; tel. (11) 6140411

South-Korea: Philips Electronics (Korea) Ltd., P.O. Box 3680, Seoul; tel. 794 4202

Suomi: Oy Philips Ab., Kaivokatu 8, P.O. Box 10255, 00101 Helsinki 10; tel. 17271 <u>Service Centre:</u> P.O. Box 11, SF-02631 Espoo 63; tel. (0) 523122

Sverige: Svenska A.B. Philips, Philips Industrielektronik, Lidingövägen 50, Fack, S11584 Stockholm; tel. (8) 635000

Syria: Philips Moyen-Orient S.A., Rue Fardoss 79, Immeuble Kassas and Sadate, B.P. 2442, Damas, tel. 118605/221650/228003

Taiwan: Philips Taiwan Ltd., San Min Building, P.O. Box 22978, Taipei; tel. (2) 5631717

Tanzania: Philips (Tanzania) Ltd., Box. 20104, Dar es Salaam; tel. 29571/4

Thailand: Philips Electrical Co. of Thailand Ltd., 283 Silom Road, P.O. Box 961, Bangkok 5; tel. 233-6330/9

Tunisia: S.T.I.E.T., 32 bis, Rue Ben Ghedhahem, Tunis; tel. 244268/243025

Türkiye: Türk Philips Ticaret A.S., Posta Kutusu 504, Beyoglu, Istanbul 1; tel. 435910

United Arab Emirates: Philips Delegate Office, P.O. Box 2567, Dubai; tel. 220641/220642

Uruguay: Industrias Philips del Uruguay S.A., Avda Uruguay 1287, Casilla de Correo 294, Montevideo; tel. 915641/44

U.S.A.:
Philips Test and Measuring Instruments Inc.,
California, Garden Grove 92645
12882 Valley View Street, Suite 9;
tel.: (213) 594-8741/ (714) 898-5000
California, Milpitas 95035
489 Valley Way;
tel. (408) 946-6722
Florida, Orlanda 32805
750 S Orange Blossom Trail, Suite 206;
tel. (305) 422-8131
Georgia, Norcross 30071
7094 Peachtree Industrial Blvd., Suite 220;
tel. (404) 586-0238
Illinois, Elk Grove Village 60007
175 Scott Street;
tel. (312) 640-7860
Massachusetts, Woburn 01801
21 Olympia Avenue;
tel. (617) 935-3972
Minnesota, Minneapolis 55420
7801 Metro Parkway, Suite 109;
tel. (612) 854-2426

Venezuela: Industrias Venezolanas Philips S.A., Apartado Aereo 1167, Caracas 107; tel. (2) 393811/353533

tel. (201) 529-3800, Toll-free (800) 631-7172

New Jersey, Mahwah 07430 85 McKee Drive;

Zaire:S.A.M.E./S.Z.A.R.L., B.P. 16636, Kinshasa, tel. 31887/8

Zambia: Philips Electrical Zambia Ltd., Mwenbeshi Road, P.O.B. 31878, Lusaka; tel. 218511/218701

Zimbabwe: Philips Electrical (PVT) Ltd., 62, Umtali Road, P.O. Box 994, Beverley/Salisbury; tel. 47211

For information on change of address: N.V. Philips' Gloeilampenfabrieken, Test and Measuring Instruments, Building TQ III-4, 5600 MD Eindhoven - The Netherlands

For countries not listed:

N.V. Philips' Gioeilampenfabrieken, S&I Export; Test and Measuring Instruments , Building TQIII-3, 5600 MD Eindhoven - The Netherlands

PHILIPS

Scientific & Analytical Equipment Test & Measuring Instruments Industrial Automation Advanced Automation Systems Scientific & Industrial Equipment Division

820607

PM2521/22

SME94

Already issued

: SME93

Re

: Service documentation for the battery power supply

The service manual of the PM2521 together with this information sheet comprise the service manual for the PM2521/22.

CONTENTS

1. CIRCUIT DESCRIPTION

- 1.1. General
- 1.2. Charging circuit
- 1.3. Level convertors
- 1.4. Schmitt trigger
- 2. ACCESS
- 3. FAULT-FINDING
- 4. CHECKING AND ADJUSTING

5. PARTS LIST

- 5.1. Resistors
- 5.2. Capacitors
- 5.3. Semiconductors
- 5.4. Integrated circuits
- 5.5. Miscellaneous

6. CIRCUIT DIAGRAMS

1. CIRCUIT DESCRIPTION

1.1. GENERAL

The PM2521/22 version is a standard PM2521 that includes a built-in battery power supply. The battery power supply part consists of one Pb cell and a circuit that converts the battery voltage into +5V, +13V and -13V.

The circuit of the battery power supply can be subdivided into three main parts:

- Charging circuit
- Two level convertors
- Schmitt trigger

Fig. 1. Block diagram-battery power supply

1.2. CHARGING CIRCUIT (refer to the overall circuit Fig. 6.).

If the battery is charged, by the power supply (power switch in position "OFF", PM2521 connected to the mains) the voltage on point 2 of X101 is stabilized by A101. The output voltage of A101 is the charging voltage for the battery.

When the temperature changes, the output voltage is compensated by V101, so the required charging voltage is always available.

In the position "OFF" the convertors are disabled by means of two diodes V202 and V203. By this means, the battery is prevented from discharging via the convertors.

1.3. LEVEL CONVERTORS

When the battery is being discharged, (power switch in position "ON", PM2521 disconnected from the mains) the battery voltage is supplied to V501. Due to this the circuit which is made by T501, A401 (Q3), R502 begins to oscillate. This oscillation produces a positive voltage (+13V) on point 3 of X101 and a negative voltage (-13V) on point 6 of X101 (with respect to pin 4 of X101).

The centre pin of T501 is fed to the base of Q1 (A401) and this provides a base current for V401 and V402. The result is a voltage of +5V on pin 5 of X101 (with respect to pin 8 of X101).

1.4. SCHMITT TRIGGER

The Schmitt trigger circuit consists of two transistors Q4 and Q5 (A401). When the voltage of the battery drops below 5,5V, the Schmitt trigger switches the output (pin 7 of X101) from +5V to OV (with respect to pin 8 of X101).

2 ACCESS

Dismantling the battery power supply:

- Remove the top cover as described in Chapter 2 of the PM2521 Service Manual.
- Disconnect the connector X101. (Fig. 2, item 1.).
- Remove the two screws from the battery power supply cover. (Fig. 2, item 2.).
- Lever up the cover and remove it.
- Remove the two screws. (Fig. 2, item 3.).
- The battery and the printed-circuit board can now be removed.

Fig. 2. Dismantling the battery power supply

3. FAULT-FINDING

The following flow-chart offers a simple method of locating faults in the PM2521/22.

Fig. 3. Waveform-collector V501

4. CHECKING AND ADJUSTING

- Disconnect the battery power supply from the PM2521/22.
- · Remove the battery.
- In its place, fit a 1k Ω resistor across the battery terminals of the power supply unit.
- Connect a voltage of + 10V (20mA) across points 10 (+) and 8 (-) of the printed-circuit board.
- \bullet With preset R105, adjust the voltage across the external 1k Ω resistor to 6,9V.
- Remove the $1k\Omega$ resistor and connect a voltage of +7V (1A) between the battery terminals (red= +). Fit the connector X101 of the battery unit to X101 of the PM2521/22.
- Switch on the PM2521 and adjust the voltage between points 5 (+) and 8 (-) to +5,0V.
- Connect a voltage of 5,5V across the battery terminals.
 With preset R301, adjust the voltage on point 14 of A401 so that the voltage goes from -5V to -10V (not reverse).
- Remove the voltage from the battery terminals and refit the battery.
- Check the discharge current ($\approx 700 \text{mA}$).
- Check the voltage across C503 is between +12V and +15,5V.
- Check the voltage across C504 is between −12V and −15,5V.
- Connect the PM2521/22 to the mains and check the charging current is between 5mA and 400mA.

5. PARTS LIST

5.1. RESISTORS

Ordering number	Value (Ω)	Tol. (%)	Item
5322 116 55615	20	5%	R101
5322 116 55614	6,49	0,5%	R102
5322 116 55614	6,49	0,5%	R103
5322 116 54502	216	1%	R104
4822 100 10019	220	20%	R105
5322 116 54541	825	1%	R106
5322 116 54696	100K	1%	R201
4822 100 10029	2K2	20%	R301
4822 116 51253	10K	1%	R302
5322 116 50729	4K22	1%	R303
5322 116 54696	100K	1%	R 304 .
4822 116 51253	10K	1%	R305
4822 116 51253	10K	1%	R306
5322 116 54651	26K1	1%	R401
5322 116 50506	154	1%	R402
5322 116 50608	6K19	1%	R403
5322 116 50593	16K2	1%	R404
4822 100 10036	4K7	1%	R405
5322 116 54597	5K36	1%	R4 0 6
5322 116 50536	464	1%	R501
5322 116 54632	14K7	1%	R 502

5.2. CAPACITORS

Ordering number	Value (F)	Tol. (%)	V	Item
4822 124 20777	1000 μ	10+50	16	C101
4822 124 20977	15 μ	20	16	C201
4822 124 10204	2,2 μ	20	16	C401
4822 124 20945	33 μ	20	10	C402
4822 124 20679	100 μ	-10+50	10	C501
4822 122 31439	270 P	2	100	C502
4822 124 20699	47 μ	-10+50	25	C503
4822 124 20699	47 μ	-10+50	25	C504

5.3. SEMICONDUCTORS

Ordering number	Description		Item
4822 130 31248	BZV46C2\	/0	V101
4822 130 30195	BYX10	RECT	V102
4822 130 30195	BYX10	RECT	V201
4822 130 30613	BAW62		V202
4822 130 30613	BAW62		V203
4822 130 44568	BC557B		V301
4822 130 40824	BD140		V401
4822 130 44568	BC557B		V402
5322 130 34916	BZX79-C3V	9	V403
5322 130 44593	BC369		V501
4822 130 30613	BAW62		V502
4822 130 34398	BZX79-C24	*	V503
4822 130 30613	BAW62		V504
4822 130 30613	BAW62		V505
5322 130 34605	BAX12A		V506
5322 130 34605	BAX12A		V507

5.4. INTEGRATED CIRCUITS

Ordering number	Description		I tem
4822 209 80591	LM317T VOLT REG	NS	A101
5322 209 84111	CA3086		A401

5.5. MISCELLANEOUS

Ordering number	Description	Item
5322 148 84061	TRAFO TFU15	T501
4822 253 20018	FUSE 1A FAST	F101
5322 158 10052	HF CHOKE 38W-band	L501
5322 158 10052	HF CHOKE 38W-band	L502

6. CIRCUIT DIAGRAMS

Fig. 4. Main p.c.b. lay-out, component side

RD 3468 82 05 07

Fig. 5. Main p.c.b. lay-out, conductor side

ST 3469 8205 07

Fig. 6. Circuit diagram

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Measuring / Radiation Measuring Equipment / Test and Measuring Equipment / Welding Equipment / X-Ray Analytical Equipment

equipment for science and industry

811110

PM 2521

SME 90

Already issued : -

Re

: Erratum of the technical data

This erratum gives the complete specification of:

Alternating voltage measurements (section 2.1.2.)

Alternating current measurements (section 2.1.4.)

dB measurements

(section 2.1.5.) and

Counter measurements

(section 2.1.9.)

By this information, the given specification in the mentioned sections of the operating manual (9499 470 15901) are no longer valid.

2.1.2. Alternating voltage measurements

Ranges

Maximum input voltage in range 2000 V

Resolution

Number of representation units

Accuracy

(valid between 3 % and 100 % of range)

mV	20	0		
٧	2	20	200	2000

600 V

10 μV in range 200 mV

Measured value less than 0,5 % of range is displayed as zero

21000

Range 200 mV up to and including 200 V			
40 Hz - 500 Hz	± (0,3 % of reading +0.15 % of range)		
at 20 kHz	± (1 % of reading +0.15 % of range)		
at 100 kHz	± (5 % of reading +1 % of range)		

ST 3354

Temperature coefficient

Input impedance

Common Mode Rejection Ration (CMRR)

AC detector

Crest factor

Response time

Maximum input voltage

Range 2000 V	·
40 Hz - 60 Hz	± (0.3 % of reading +0.15 % of range)

 \pm (0.03 % of reading /OC + 0.01 % of range /OC)

Range	Input impedance
200 mV	20 MΩ/60 pF
20 V	11 MΩ/85 pF
200 V	10 MΩ/95 pF
2000 V	

100 dB for dc signals

80 dB for ac signals 50 Hz or 60 Hz \pm 1 %

RMS convertor, ac coupled

2 at range end

1.5 s without ranging

3 s including ranging

In all ranges:

Between Hi and Lo Between Hi and earth

Between Hi and earth 1000 V rms Between Lo and earth 400 V rms

Maximum dc voltage

400 V

600 V rms

Maximum VHz product

107

Alternating current measurements 2.1.4.

Ranges

μΑ	2	20	200
mA	2	20	200
Α	2	20	

Maximum input current in range 20 A

Resolution

1 nA in range 2 μ A

Measured value less than $0.5\ \%$ of range is displayed as zero

2100

10 A

40 Hz - 200 Hz \pm (0.4 % of reading +0.15 % of range)

Number of representation units

(valid between 3 % and 100 % of range)

Temperature coefficient

Voltage drop over shunt

\pm (0.03 % of reading / $^{\circ}$ C + 0.0	1 of range /OC)
---	-----------------

Range	Voltage drop	Frequency
2 μA 20 μA 200 μA 2 mA	< 2.5 mV	
20 mA 200 mA	< 25 mV	50 Hz
2 A 20 A	< 250 mV	

AC detector

Crest factor

Response time

Protection

Maximum Common Mode voltage

Maximum input voltage

RMS convertor, ac coupled

2 at range end

1 s without ranging

3 s including ranging

Range 2 μ A - 20 mA; 250 V rms

Range 200 mA - 20 A are not protected

Imax. = 20 A for 20 seconds

400 V rms, 560 V peak

In all ranges:

Between Hi and Lo

250 V rms

Between Hi and earth

400 V rms

Between Lo and earth

400 V rms

dB measurements (valid in function V^{\sim} rms) 2.1.5.

Range

0 dB reference

-57,7 dB . . . +57,7 dB

1 mW in 600 $\Omega,\,0.775$ V or when selecting the relative reference function with pushbutton ZERO SET at the

front of the PM 2521

Resolution

Number of representation units

Measured value less than $-57.7~\mathrm{dB}$ is displayed as $-99.9~\mathrm{dB}$

999

Signals	Frequency	Accuracy
-31,7 dB +47 dB	40 Hz - 20 kHz 20 kHz - 100 kHz	± 0.2 dB ± 1 dB
−50 dB −31,7 dB	40 Hz - 20 kHz	± 2 dB
57,7 dB −50 dB	40 Hz - 20 kHz	±3 dB
>+47 dB	40 Hz - 500 Hz	± 1,5 dB

Accuracy

Temperature coefficient

0.02 dB/°C

Signals	Impedance
0 V - 1.8 V	20 MΩ//60 pF
1.8 V - 18 V	11 MΩ//85 pF
18 V 600 V	10 MΩ//95 pF

Common Mode Rejection Ratio (CMRR)

AC detector

Crest factor

Response time

Relative reference setting

Maximum input voltages

100 dB for dc signals

80 dB ac signals 50 Hz or 60 Hz \pm 1 %

RMS convertor, ac coupled

2 at range end

3 s

With pushbutton ZERO SET at the front of the PM 2521

In all ranges:

Between Hi and Lo

600 V rms

Between Hi and earth

1000 V rms

Between Lo and earth

400 V rms

Maximum dc voltage

400 V

Maximum VHz product

107

Range 100 kHz, 1 MHz and 10 MHz; Manual or automatic

2.1.9. Counter measurements (Hz)

Ranges

kHz 100 10 MHz 10

Range selection

Resolution

Number of representation units

Range 10 kHz; Manual only

0.1 Hz in range 10 kHz

99999

Accuracy for counter measurements

Range	Accuracy
10 kHz 100 kHz 1 MHz	± (0.005 % of reading +0.001 % of range)
10 MHz	± (0.01 % of reading +0.001 % of range)

Gate time

Range	Gate time
10 kHz	10 s
100 kHz	1 s
1 MHz	100 ms
10 MHz	10 ms

Conversion rate

Range	Rate	
10 kHz	1 conv./10 s	
100 kHz		
1 MHz	1 conv./s	
10 MHz		

Trigger mode

Counter sensitivity

On negative going crossings of the - trigger level

DC to 1 MHz

150 mV peak 300 mV peak

1 MHz to 10 MHz Resolution

1 mV

Trigger level adjustment

With thumbwheel at the front of the PM 2521

On positive going crossings of the + trigger level

Bereits veröffentlicht

Betrifft

: Erratum for Technische Daten

Dieses Korrekturblatt enthält die vollständige technische Beschreibung von:

Wechselspannungsmessungen

(Abschnitt 2.1.2.)

Wechselstrommessungen

(Abschnitt 2.1.4.)

dB-Messungen

(Abschnitt 2.1.5.) und

Zählermessungen (Abschnitt 2.1.9.)

Hierdurch werden die Angaben in den genannten Abschnitten der Bedienungsanleitung 9499 470 15901 ungültig.

2.1.2. Wechselspannungsmessungen

Bereiche

1	mV	200
	V	2 - 20 - 200 - 2000

Maximale Eingangsspannung im 2000 V Bereich

Auflösung

600 V

 $10 \,\mu\text{V}$ im 200 mV Bereich

Gemessener Wert kleiner als 0,5% des Bereichs wird als

Null angezeigt.

Anzahl der Anzeigeeinheiten

21000

Fehlergrenze

(geltend zwischen 3 % und 100 % des Bereichs)

Bereich 200 mV bis einschliesslich 200 V			
40 Hz - 500 Hz	± (0,3 % der Ablesung +0,15 % des Bereichs)		
bei 20 kHz	± (1 % der Ablesung +0,15 % des Bereichs)		
bei 100 kHz	± (5 % der Ablesung +1 % des Bereichs)		

ST 3355

2000 V Bereich	
40 Hz - 60 Hz	± (0,3 % der Ablesung +0,15 % des Bereichs)

Temperaturkoeffizient

 \pm (0,03 % der Ablesung /°C + 0,01 % des Bereichs /°C)

Eingangsimpedanz

Bereich	Eingangsimpedanz	
200 mV 2 V	$20~\mathrm{M}\Omega//60~\mathrm{pF}$	
20 V	11 MΩ//85 pF	
200 V	11 MΩ//95 pF	
2000 V		

Gleichtaktunterdrückung (CMRR)

100 dB für Gleichspannungssignale

80 dB für Wechselspannungssignale 50 oder 60 Hz \pm 1 %

Effektivwertkonverter, wechselspannungsgekoppelt.

Wechselspannungsdetektor

Maximale Eingangsspannungen

2 bei Bereichsende

Scheitelfaktor

1.5 s ohne Bereichsumschaltung

Ansprechzeit

3 s einschliesslich Bereichsumschaltung

In allen Bereichen:

Zwischen Hi und Lo

600 Veff

Zwischen Hi und Erde

1000 Veff

Zwischen Lo und Erde

400 Veff

Maximale Gleichspannung 400 V

Maximales VHz-Produkt 10⁷

2.1.4. Wechselstrommessungen

Bereiche

μΑ	2	20	200
mA	2	20	200
А	2	20	

Maximaler Eingangsstrom im 20 A Bereich

10 A

Auflösung

1 nA im 2 µA Bereich

Gemessener Wert kleiner als 0,5 % des Bereichs wird als

Null angezeigt

Anzahl der Anzeigeeinheiten

2100

Fehlergrenze

(geltend zwischen 3 % und 100 % des Bereichs)

40 Hz - 200 Hz ± (0,4 % der Ablesung +0,15 % des Bereichs)

Temperaturkoeffizient

 \pm (0,03 % der Ablesung /OC + 0,01 % des Bereichs /OC)

Spannungsabfall über Shunt

Bereich	Spannungsabfall	Frequenz
2 μΑ 20 μΑ 200 μΑ 2 mA	< 2,5 mV	50 Hz
20 mA 200 mA	< 25 mV	50 HZ
2 A 20 A	< 250 mV	

Wechselspannungsdetektor

Effektivwert-Konverter, wechselspannungsgekoppelt

Scheitelfaktor

2 bei Bereichsende

Ansprechzeit

1 s ohne Bereichsumschaltung

3 s einschliesslich Bereichsumschaltung

Überlastungsschutz

Bereich $2 \mu A - 20 \text{ mA}$; 250 V_{eff}

Bereiche 200 mA - 20 A sind nicht geschützt

Imax. = 20 A über 20 Sekunden

Maximale Gleichtaktspannung

Maximale Eingangsspannung

400 V_{eff}, 560 V_{Spitze}

In allen Bereichen:

Zwischen Lo und Erde 400 Veff

2.1.5. dB-Messungen (geltend in Funktion V~)

Bereich

dB-Nullreferenz

-57,7 dB ... +57,7 dB

1 mW in 600 Ω $\,$ 0,775 V oder bei Wahl der relativen Referenzfunktion mit Drucktaste ZERO SET auf der

Frontplatte des PM 2521.

Auflösung

0,1 dB

Gemessener Wert kleiner als -57,7 dB wird als -99,9 dB

angezeigt

Anzahl der Anzeigeeinheiten

999

Fehlergrenze

Signale	Frequenz	Genauigkeit
-31,7 dB +47 dB	40 Hz - 20 kHz 20 kHz - 100 kHz	± 0,2 dB ± 1 dB
−50 dB −31,7 dB	40 Hz - 20 kHz	±2 dB
−57,7 dB −50 dB	40 Hz - 20 kHz	± 3 dB
>+47 dB	40 Hz - 500 Hz	± 1,5 dB

Temperaturkoeffizient

Eingangsimpedanz

0,02 dB/OC

Signale	Impedanz
0 - 1,8 V	$20~\mathrm{M}\Omega//60~\mathrm{pF}$
1,8 - 18 V	11 MΩ//85 pF
18 - 600 V	11 MΩ//95 pF

Gleichtaktunterdrückung (CMRR)

Wechselspannungsdetektor

Scheitelfaktor Ansprechzeit 100 dB für Gleichspannungssignale

80 dB Wechselspannungssignale 50 Hz oder 60 Hz ± 1 %

Effektivwert-Konverter, wechselspannungsgekoppelt

2 bei Bereichsende

٦,

Mit Drucktaste ZERO SET auf der Frontplatte des PM 2521

In allen Bereichen:

Zwischen Hi und Lo 600 V_{eff}
Zwischen Hi und Erde 1000 V_{eff}
Zwischen Lo und Erde 400 V_{eff}

Maximale Gleichspannung 400 V Maximales VHz Produkt 10⁷

Maximale Eingangsspannungen

Relative Referenzeinstellung

2.1.9. Frequenzmessungen (Hz)

Bereiche

kHz	1	0	100
MHz		1	10

Bereichswahl

Bereich 100 kHz, 1 MHz und 10 MHz: manuell oder

automatisch

Bereich 10 kHz: nur manuell

Αu	f	lösu	no

Anzahl der Anzeigeeinheiten

Fehlergrenze für Zählermessungen

Torzeit

Umsetzrate

Triggerart

Zählerempfindlichkeit

Triggerpegeljustierung

0,1 Hz im 100 kHz Bereich

99999

Bereich	Fehler
10 kHz 100 kHz 1 MHz	± (0,005 % der Anzeige + 0,001 % des Bereichs)
10 MHz	± (0,01 % der Anzeige +0,001 % des Bereichs)

Bereich	Torzeit	
10 kHz	10 s	
100 kHz	1 s	
1 MHz	100 ms	
10.MHz	10 ms	

Bereich	Rate
10 kHz	1 Um./10 s
100 kHz	
1 MHz	1 Um./s
10 MHz	

Auf positiv gehende Überschreitungen des "+" Triggerpegels Auf negativ gehende Überschreitungen des "-" Triggerpegels

DC bis 1 MHz; 150 mV_{peak} 10 MHz bis 10 MHz; 300 mV_{peak}

Auflösung: 1 mV

Mittels Daumenrad auf der Frontplatte des PM 2521

Déjà publié

: -

Concerne

: Erratum caractéristiques techniques

Le présent erratum donne les spécifications complètes de:

Mesures de tensions alternatives

(section 2.1.2.)

Mesures de courants alternatifs

(section 2.1.4.)

Mesures de dB

(section 2.1.5.) et

Mesures par compteur

(section 2.1.9.)

Conformément à la présente information, les spécifications données dans les sections mentionnées du mode d'emploi 9499 470 15901 ne sont plus valables.

2.1.2. Mesures de tension alternative

Gammes

r	nV	20	00		
	V	2	20	200	2000

Tension maximale d'entrée dans la gamme

2000 V

Résolution

600 V

 $10\,\mu V$ dans la gamme $200\,m V$

Une valeur mesurée inférieure à 0,5 ! de gamme est affichée comme zéro

21000

Nombre d'unités de représentation Précision (valable entre 3 % et 100 % de gamme)

21000		
Gamme 200 mV à 200 V inclus		
40 Hz - 500 a 20 kHz a 100 kHz	Hz	± (0,3 % d'affichage +0,15 % de gamme) ± (1 % d'affichage +0,15 % de gamme) ± (5 % d'affichage +1 % de gamme)

Gamme 2000 V	
40 Hz à 60 Hz	± (0,3 % d'affichage +0,15 % de gamme)

Coefficient de température

Impédance d'entrée

± (0,03 % de l'affichage /°C + 0,01 % de gamme /°C)

Gamme	Impédance d'entrée
200 mV 2 V	20 MΩ//60 pF
20 V	11 MΩ//85 pF
200 V 2000 V	10 MΩ//95 pF

Réjection en mode commun (CMRR)

Détecteur alternatif Facteur de crête Temps de réponse

Tensions maximale d'entrée

100 dB pour signaux continus

80 dB pour signaux alternatifs ou 50 ou 60 Hz \pm 1 %

Convertisseur efficace, couplage capacitif

2 en fin de gamme

1,5 s sans sélection automatique de gamme3 s avec sélection automatique de gamme

Dans toutes les gammes:

entre Hi et Lo

600 V_{eff}

entre Hi et terre

1000 V_{eff}

entre Lo et terre

400 Veff

Tension maximale continu: 400 V

Produit VHz maxi: 10⁷

2.1.4. Mesures de courant alternatif

Gammes

μΑ	2	20	200
mA	2	20	200
Α	2	20	

Courant maximal d'entrée dans la gamme 20 A

Résolution

10 A

1 nA dans la gamme 2 μ A

Valeur mesurée inférieure à 0,5 % de la gamme est affichée comme zéro

Nombre d'unités de représentation

Précision

Coefficient de température

Perte de tension par le shunt

2100

40 Hz - 200 Hz \pm 0,4 % de l'affichage +0,15 % de la gamme)

± (0,03 % de l'affichage / °C + 0,01 % / °C de gamme)

Gamme	Perte de tension	Fréquence
2 μA 20 μA 200 μA 2 mA	< 2,5 mV	· · ·
20 mA 200 mA	< 25 mV	50 Hz
2 A 20 A	< 250 mV	

Détecteur alternatif

Facteur de crête

Temps de réponse

Convertisseur efficace, couplage capacitif

2 en fin de gamme

0,7 s sans sélection automatique de gamme

3 s avec sélection automatique de gamme

Protection

Gamme $2 \mu A$ - 20 mA; 250 V_{eff}

Gamme 200 mA - 20 A; n'est pas protégée

Imax. = 20 A pendant 20 secondes

Tension maxi en mode commun

400 V_{eff}, 560 V crête dans toutes les gammes:

Tension maxi d'entrée

entre Hi en Lo

entre Hi en Lo

250 Veff

entre Hi et terre

400 V_{eff}

entre Lo et terre

400 Veff

2.1.5. Mesures dB (valables en fonction V~ rms)

Gamme

-57,7 dB à +57,7 dB

0 dB référence

1 mW pour 600 Ω 0,775 V ou en sélectionnant la référence relative à l'aide du bouton-poussoir ZERO SET

à l'avant du PM 2521

Résolution

0.1 dB

Valeur mesurée inférieure à -57,7 dB est affichée comme

-99,9 dB

Nombre d'unités de représentation

999

Précision

Signaux	Frequence	Précision
-31,7 dB +47 dB	40 Hz - 20 kHz 20 kHz - 100 kHz	± 0,2 dB ± 1 dB
-50 dB31,7 dB	40 Hz - 20 kHz	± 2 dB
-57,7 dB −50 dB	40 Hz - 20 kHz	± 3 dB
>+47 dB	40 Hz - 500 Hz	± 1,5 dB

Coefficient de température

0,02 dB/°C

Impédance d'entrée

Signaux	Impédance
0 - 1,8 V	20 MΩ//60 pF
1,8 - 18 V	11 MΩ//85 pF
18 - 600 V	10 MΩ//95 pF

Réjection en mode commun (CMRR)

100 dB pour signaux continus

80 dB pour signaux alternatifs 50 ou 60 Hz \pm 1 %

Détecteur alternatif

Convertisseur efficace, couplage capacitif

Facteur de crête

2 en fin de gamme

Temps de réponse

3 s

Réglage de référence relative Tensions maximales d'entrée Avec bouton-poussoir ZERO SET à l'avant du PM 2521

Dans toutes les gammes:

entre Hi et Lo

600 Veff

entre Hi et terre

1000 V_{eff}

entre Lo et terre

400 V_{eff}

Tension maximale en continu: 400 V

ension maximale en continu

Produit VHz maxi: 10⁷

2.1.9. Mesures de fréquence (Hz)

Gammes

 kHz
 10
 100

 MHz
 1
 10

Sélection de gamme

Gamme 100 kHz, 1 MHz et 10 MHz; manuelle ou

automatique

Gamme 10 kHz; manuelle 0,1 Hz dans la gamme 10 kHz

Résolution

, Fiz dans la gamme 10

Nombre d'unités de représentation

99999

Précision pour les mesures de fréquence

Gamme	Précision				
10 kHz					
100 kHz	± (0,005 % d'affichage + 0,001 % de gamme				
1 MHz					
10 MHz	± (0,01 % d'affichage + 0,001 % de gamme)				

Temps de porte

Gamme	Temps de porte					
10 kHz	10 s					
100 kHz	1 s					
1 MHz	100 ms					
10 MHz	10 ms					

Taux de conversion

Gamme	Taux
10 kHz	1 conv./10 s
100 kHz 1 MHz	1 conv./s
10 MHz	1 00117.73

Mode de déclenchement

Sensibilité de compteur

continu à 1 MHz; 150 mV_{crête} 10 MHz à 100 MHz; 300 mV_{crête}

Par dépassement positif du niveau de déclenchement + Par dépassement négatif du niveau de déclenchement –

Résolution: 1 mV

Réglage du niveau de déclenchement

Avec bouton moleté à l'avant

Scientific & Analytical Equipment Test & Measuring Instruments Industrial Automation Advanced Automation Systems

Scientific & Industrial **Equipment Division**

820607

PM2521

SME95

Already issued : SME93, SME94

: Modifications to the PM2521

From serial number DM 01 3010 on, the PM2521 complies with the VDE safety specifications.

This modifies the safety input sockets, safety mains cord, etc.

The service manual of the PM2521 (9499 475 01911), SME93, SME94 and this information sheet should be used.

1. Modification to the part list

Chapter	Part	Old code number	New code number
			498 45 105
5.2.	Carrying handle	5322 498 50126	5322 532 14709 49854105
5.3.	Front	5322 447 74009	5322 447 700 83 <i>5</i> 3
5.3.	TL Potentiometer knob	5322 414 34269	5322 414 30035
5.5.1.	Input sockets	5322 532 14709	5322 267 30435
5.5.1.	Switch for high current ranges	5322 492 62405	deleted
5.5.2.	10A shunt	5322 115 84046	5322 115 80115
	Netzbuchre ohne Ends	chilt	5322 267 30 434

Additions to the part list.

Test prod. black	5322 264 20045
Test prod. red	5322 264 20064
Lead black	5322 321 20572
Lead red	5322 321 20573

2. Modifications to circuit diagrams

The following diagram must be used to adapt the transformer (refer to fig. 58. of the service manual).

SERVICE

Scientific & Analytical Equipment Test & Measuring Instruments Industrial Automation Advanced Automation Systems Welding Scientific & Industrial Equipment Division

820214

PM 2521

SME101

Already issued

:SME 93, SME 94, SME 95.

:1. Erratum of SME 95

2. Replacement of ROM's (2x2k--->1x4k)

As documentation for the PM 2521 the service manual 9499 475 01911, SME 93, SME 94, SME 95 and this information sheet should be used.

1. Erratum of SME 95

The following code numbers should be added and modified.

Chapter	Part	Old code number	New code number
5.1	Mains connector	5322 267 44135	5322 267 30434
5.2	Carrying handle	5322 498 50126	5322 498 54105
5.3	Front	5322 447 74009	5322 447 70053
	Test prod. red	5322 264 20064	5322 264 20046

2. ROM's (2x2k--->1x4k)

From serial number DY 02 6611 onwards, the PM 2521/02... is supplied with one 4k ROM.

POS.NR.	Description	Ordering code	Replaced by	Description
D1909	ROM (2k)	5322 209 54696	obsolete	ROM (4k)
D1920	ROM (2k)	5322 209 54699	5322 209 81665	

If an instrument, with 2x2k ROM's, has to be modified to an instrument with a 4k ROM, proceed as follows:

- Unsolder the two soldering spots (see fig 1 and fig 2 item 1)
- Repair the track interruption (see fig 1 item 2)
- Place a jumper. Ordering code 5322 263 64007 (see fig 1 item 3)

Fig. 1. Main p.c.b. lay-out, component side

Fig. 2. Main p.c.b. lay-out, conductor side

Scientific & Analytical Equipment Test & Measuring Instruments Industrial Automation Advanced Automation Systems Welding Scientific & Industrial Equipment Division

830916

PM 2521

SME 107

- 1. Review of the service publications already issued.
- 2. Review of the existing versions.
- 1. Review of service publications.
 - standard service manual
 - service informations SME 93, SME 94, SME 107.

Attention: This service information (SME 107) replaces SME 95 and SME 101.

- Existing versions.
- 2.1 PM 2521/01 up to serialnumber DY 3010. This is the standard version, see the service manual.
- 2.2 PM 2521/02 from serial number DY 3010 onwards. The instruments comply with the VDE safety specifications.

Modifications with respect to version PM 2521/01:

- Service parts list

Part	Code number
Mains connector Front TL Potetiometer knob	5322 267 30434 5322 447 70053 5322 414 30035
Input sockets Switch for high current ranges 10 A shunt	5322 267 30435 deleted 5322 115 80115
Test prod. black Test prod. red Lead black Lead red	5322 264 20045 5322 264 20046 5322 321 20572 5322 321 20573

- Circuit diagrams

The following diagram must be used to adapt the transformer (refer to fig. 58 of the service manual).

2.3 PM 2521/02 from serial number DY 6611 onwards. These instruments are provided with a 4K ROM.

 Pos.no
 Descripton
 Ordering code
 Replaced by
 Description

 D1909
 ROM (2K)
 5322 209 54696
 obsolete

 D1920
 ROM (2K)
 5322 209 54697
 5322 209 81665
 ROM (4K)

If an instrument, with 2x2K ROM's, has to be modified to an instrument with a 4K ROM, proceed as follows:

- Unsolder the two soldering spots (see fig. 1 and 2 item 1)
- Repair the track interruption (see fig. 1 item 2)
- Place a jumper. Ordering code 5322 263 64007 (see fig. 1 item 3)

Fig. 1. Main p.c.b. lay-out, component side

Fig. 2. Main p.c.b. lay-out, conductor side

2.4 PM 2521/03 from serial number DY 7611 onwards.

The instruments are deliverd in the new colours. (brown)

Modifications with respect to version PM 2521/02

- service parts list

Part	Codenumber					
Input sockets	5322	267	30487			
Top cover assy.	5322	694	54017			
Bottom cover assy.	5322	447	70069			
Front	5322	447	70071			
Function selector	5322	414	40016			
Adjust knob	5322	414	40019			
Knob for mains switch	5322	414	20034			
Knobs for range selection	5322	414	60037			
Handle	5322	498	54105			

2.5 PM 2521/22 and PM 2521/23 (battery versions of the PM 2521)

The difference between the PM 2521/22 and the PM 2521/23 is that the PM 2521/22 is delivered in the old colours and the PM 2521/23 in the new colours.

Therefore the service manual for the PM 2521/22 version has to be used for the PM 2521/23 as well.

1. CIRCUIT DESCRIPTION

1.1. GENERAL

The circuit of the Automatic Multimeter PM2521 can be subdivided into three main functional sections as shown in Fig. 1.:

- Analog section
- Control section
- Display section

Each of the sections is described separately in conjunction with the overall circuit diagrams (Fig. 62, 63 and 64).

However, basic circuit diagrams of the various stages are included, within the text, where considered necessary to assist in a better understanding of the more complex parts of the overall circuit. For the principles of operation of the instrument, the reader is referred to the PM2521 Operating Manual.

1.2. SURVEY OF MAIN SECTIONS

The functional circuit blocks within the three main sections, analog, control and display and the basic signal paths are shown in block diagram Fig. 2.

1.2.1. Analog section

The analog section comprises the following input measuring signal facilities:

- a) A voltage measuring path consisting of:
 - A.C./D.C. voltage attenuator
 - R.M.S. convertor (OQ 0061)
 - Active filter
 - ADC (OQ 0064/OQ 0060)
- b) A current measuring path consisting of:
 - A.C./D.C. active I-V convertor
 - R.M.S. convertor
 - Active filter
 - ADC
- c) A resistance/diode measuring path consisting of:
 - Current source (OQ 0063)
 - Active filter
 - ADC
- d) A temperature measuring path consisting of:
 - Thomson bridge
 - Current source
 - ADC
- e) A timer/counter path consisting of:
 - A.C./D.C. voltage attenuator
 - Trigger level circuit

NOTE: The OQ integrated circuits used in this instrument are specially designed LSI circuits for multimeter applications to ensure high accuracy and stability.

Automatic Multimeter PM2521

Repair by Signature Analysis

Instruction Manual

9499 473 00111 820701

PHILIPS

Automatic Multimeter PM2521

Repair by Signature Analysis

Instruction Manual

9499 473 00111 820701

PHILIPS

CONTENTS

Page

1.	General														 	1
2.	Why use a signature analyser?											 			 	1
3.	Check with a signature analyser											 			 	1
4.	Type of signature analyser to be used											 		 	 •	1
5.	Settings and connection of the signature ar	nalyser .										 	 	 	 	2
6.	Brief description of the tests											 	 	 	 	2
7.	How to use the documentation and the tes	strom?										 	 	 	 	3
8.	Fault-finding hints							• •				 	 	 	 	3
9.	How to order the signature analysis testror	n and th	e do	ocu	ıme	enta	atio	n.	? .			 	 	 	 	3
10.	Testing the PM2521											 	 	 		4
10.1.	General			٠,٠								 	 ٠.	 	 	4
10.2.	Free Run test											 	 	 	 	5
10.3.	Ram and I/O test	test 0										 	 	 	 	7
10.4	Visual LCD test	test 1										 	 	 		9
10.5	Switch decoding test	test 2										 		 		10
10.6	Relay and FET test	test 3														
10.7	Static relay and FET test	test 4									٠, .		 	 		12
10.8	Counter and counter input control test	test 5										 		 		14
10.9	Interrupt controller test	test 6										 	 	 		15

REPAIR BY SIGNATURE ANALYSIS

1. GENERAL

For repair by signature analysis a testrom has been developed.

This testrom enables the user to test the digital part of the PM2521 by means of signature analysis. It also enables troubleshooting at component level in the circuit under test, by comparing the actual signature to the correct one. So the trouble-shooter can trace back the faulty node. In total there are 8 tests. In the testrom 7 tests have been implemented and one test is made with the

2. WHY USE A SIGNATURE ANALYSER?

help of the free run facility of the PM2521.

Thanks to the microcomputer in the digital part of the PM2521, the instrument can be very small. Due to this the bus structure is very complex. Data flow on the bus becomes complex and cannot be analysed with an oscilloscope and voltmeter any longer. Therefore the need to test and service the digital part is acute. The trouble-shooting involves the detection of circuit failure and the localization of faults at the source. Finding the fault source in a bus system, such as the bus in the PM2521, with complex feedbacks can be difficult. But opening the feedbacks paths and using the signature analyser makes fault-finding easy.

3. CHECK WITH A SIGNATURE ANALYSER

The signature analyser checks the digital part of the PM2521 by detecting the bit stream at various circuits nodes, and displaying them as hexadecimal signatures.

To do this the PM2521 supplies the signature analyser with three gating signals, or in some cases four: START, STOP, CLOCK and QUALIFIER.

START signals the beginning of a measurement and prepares the signature analyser to recieve information from the data probe. STOP closes this measurement. In cases of measuring signatures with RC delays, a QUALIFIER has to be used to stop the incomming information for a short period of time. The CLOCK is the system clock of the PM2521 under test to accept the data synchronously.

NOTE: The active edge of each of these gating signals must be selectable.

4. TYPE OF SIGNATURE ANALYSER TO BE USED?

The signature analyser to be used in combination with the PM2521 should have the following capabilities:

- Selectable edges of; START, STOP and CLOCK
- A QUALIFIER
- Signatures in the following sequence:

DIGIT	DISPLAY	DIGIT	DISPLAY
0000	0	1000	8
0001	1	1001	9
0010	2	1010	Α
0011	3	1011	С
0100	4	1100	F
0101	5	1101	н
0110	6	1110	Р
0111	. 7	1111	U

5. SETTINGS AND CONNECTION OF THE SIGNATURE ANALYSER.

SETTING SIG	SETTING SIGNATURE ANALYSER		CONNECTION SIGNATURE ANALYSER	
NAME	EDGE	NAME	TESTPOINT	SIGNAL NAME
START STOP CLOCK GROUND	□ (neg) ・ (pos) ・ (pos) □ (neg) ・ (pos)	START STOP CLOCK GROUND	TP 14 TP 14 TP 15 TP 1 D1903 pin 7 D1903 pin 2	P17 (D1904 pin 34) P17 (D1904 pin 34) ALE (D1911 pin 11) Logic 0 AZC/P AZ

NOTE: 1. The qualifier is only necessary for test 3 and 5.

2. The testrom must be placed in the D1909 socket.

6. BRIEF DESCRIPTION OF THE TESTS

Free run test

With this test it is possible to measure signatures on the address latches and the databus of the processor. This is necessary to check if the data can be taken from the testrom.

Test 0 (ram and I/0 test)

This test checks the internal RAM of the microcomputer.

When the RAM is good it will also test the I/O ports of the microcomputer.

Only then can signatures be measured on the I/O ports, databus and ROMs.

It also activates the connections of the L.C.D. unit.

Test 1 (visual L.C.D. test, no S.A.)

The test fills the display, segment after segment.

When a connection to a segment is broken, that segment will not light. When two connections are short circuit, then two segments will be lit simultaneously.

In this test signature analysis is not provided.

Test 2 (switch decoding test)

Test 2 activates the circuit necessary for reading the function switch, and the +/--, AUTO, DOWN, UP, 10 Amp. input bus, and the battery low input.

Signatures can be measured on IC's D1912, D1916, D1919 and on I/0 port 2.

(P20, P21, P22, P23 and P25)

The signatures on P25 depends on the position of the function switch and keys, pressed or not pressed.

Test 3 (relay/fet switch test)

This test activates the circuit for relay/fet switch control.

Signatures can be measured on the inputs of D1908, and the outputs driving the relays.

The outputs of D1908 are activated sequentially.

Outputs driving the fet's will give stable signatures, but with an oscilloscope it is also possible to see if the fet's are switching.

Test 4 (static relay/fet switch test, no S.A.)

This test is not intended for signature analysis.

It sets the relay/fet's in the state, according to the selected function and range. It can also change the internal program status.

With the button +/-, the polarity can be changed if the V_{--} , A_{--} , or the function trigger level is selected. With the button AUTO/MAN*, the internal program status can be changed. (normal measurements,

AUTOCAL 0,1V or 1V, IZERO 200mA or 2A).

So it is possible to make measurements in the analog part of the PM2521.

Test 5 (counter test)

Test 5 activates the counter and counter input control circuit, and the AZC flip-flop D1903. Signature analysis is possible.

Test 6 (interrupt controller test)

Test 6 activates the interrupt control circuit. Signature analysis in this test is also possible.

NOTE: All the signatures are given in circuit diagrams.

The signatures signed with a * seem to be logic 0 or logic 1 signatures, but the difference is that they have activity at that point. (blinking lamp) (e.g. only logic 0 or logic 1 between start and stop).

7. HOW TO USE THE DOCUMENTATION AND THE TESTROM

This service manual should be used in combination with the service manual of the PM2521. The user of the fault-finding procedure in the PM2521 service manual will be directed to a certain part of the PM2521. If the fault-finding procedure does not solve the problem, then select a signature analysis test which is associated with the part of the PM2521.

Begin always with the microcomputer, or with the inputs of the integrated circuits, and try to find the faulty node. Bear in mind that when the faulty node has been found, more than one circuit can cause the faulty signature.

8. FAULT-FINDING HINTS

The first thing to do is to get an analysis of what is wrong. If this is not possible (e.g. continuously —cal—), get the PM2521 in the free run mode by breaking the bus system between the microcomputer and the ROMs. This is done by removing the ROMs.

The microcomputer is now forcing—in some instruction that will cause a repeated increment of the address lines. So at this point the microcomputer is scanning the whole address field.

With START and STOP lines from the signature analyser, both connected to the most significant address bit and triggering on different edges, a measurement will be defined. Connecting the CLOCK line of the signature analyser to the ALE signal of the microcomputer and selecting the edge at which the address is valid, the input probe will get a signature at every address line.

By touching the probe in every test to a logic 1 level, a characteristic signature is obtained. This is the result of shifting ones (logic 1) in for every cycle that occurs while the gate is open. So the characteristic signature can be used to diagnose this condition elsewhere. The logic 0 is always a signature of "0000". Assume there are no bad signatures in the free-run test, then the TESTROM can be placed in the D1909 socket and it is possible to start measuring with test 0.

If an incorrect part can be located with the fault-finding procedure it is recommended to start with the test which is responsible for that fixed part of the PM2521.

To do this, short circuit TP10 and TP11 for a short period.

9. HOW TO ORDER THE SIGNATURE ANALYSIS TESTROM AND THE DOCUMENTATION

Under ordering number 5322 694 54013 the testrom and the documentation can be ordered from Concern Service.

10. TESTING THE PM2521

10.1. General

10.2. Free-run test.

Settings signature analyser

Setting	Edge	Testpoint	Signalname
start stop clock ground	고 (neg) 고 (pos) 그 (pos)	D1905 pin 12 D1905 pin 12 TP15 TP1	A10 A10 ALE logic 0

NOTE: 1. Remove D1909 and D1920 (ROMs).

- Signals with a* seem to be logic 0 or logic 1 but still show activity. (blinking led.)
- 3. Reference logic 0 = 0000 logic 1 = 8P54

Test O (RAM and I/O test)

Settings signature analyser

Setting	Edge	Testpoint	Signalname
start stop clock ground	근 (neg) 를 (pos) 를 (pos)	TP14 TP14 TP15 TP1	P17 (D1904 pin 34) P17 (D1904 pin 34) ALE (D1911 pin 11) Logic 0

NOTE: 1. The testrom placed in the D1909 socket.

2. Reference logic 0 = 0000. logic 1 = HCH5

3. Reading display: L []

September 1989 September 1980 Septem

And the second s

10.4. Test 1 (visual L.C.D. test, no S.A.)

This test is a visual L.C.D. test which fills the display, segment after segment. If all segments are lit the display becomes empty and the whole measuring sequence starts again.

Only when all segments are lit can the test be stopped by short circuiting TP10 and TP11.

When a connections are short circuited then the segments will light simultaneously.

- NOTE: 1. Testrom placed in D1909 socket (Both ROMs removed)
 - 2. Short circuit TP10 and TP11
 - 3. Reading on display: All segments will be filled.

CONNECTION TABLE

CONNECTION D2901 D2901		D2901	LX-display	D2902	LX-display	D2903	LX-display
Output no.	Pin no.	Char.	Pin no.	Char.	Pin no.	Char.	Pin∙no.
Q1	9		2	.3	22	a5	42
Q2	10		3	d3	23	b5	43
03	11	+	4	e3	24	g5	44
Q4	12	GATE	5	f3	25	c5	45
0.5	13	.1	6	a3	26	M (Hz)	46
Ω6	14	d1	7	b3	27	k (Hz)	47
Ω7	15	e1	8	g3	28	Hz	48
Ω8	16	f1	9	c3	29	Z	49
Ω9	17	a1	- 10	.4	30	s	50
Q10	18	b1	11	d4	31	V	51
Q11	19	g1	12	e4	32	. A	52
012	20	c1	13	f4	33	*	53
Q13	21	.2	14	a4	34	m	54
014	22	d2	15	b4	35	μ	55
Q15	23	e2	. 16	g4	36	°C	56
Q16	24	f2	17	c4	37	Ω	57
Q17	25	a2	18	.5	38	k (Ω)	58
Q18	26	b2	19	dB	39	M (Ω)	59
Q19	27	g2	20	e5	40	n.c.	
Ω20	28	. c2	21	f5	41	n.c.	_

10.5. Test 2 Switch decoding test

Due to the capacitors in the circuit which read-out the function switch, the signatures on point 3 of D1916 and D1919 (P24). are unstable. Therefore the microcomputer reads the signatures on P24 and sends them to P25. This gives a stable signature which can be measured by the signature analyser.

Settings signature analyser

Setting	Edge	Testpoint	Signalname
start	飞 (neg)	TP14	P17 (D1904 pin 34)
stop	」「(pos)	TP14	P17 (D1904 pin 34)
clock	ゴ (pos)	TP15	ALE (D1911 pin 11)
ground	·	TP1	Logic 0

NOTE: 1. The testrom placed in the D1909

socket. (Both ROMs removed).

2. Short circuit TP10 and TP11.

3. Reading on display £2

4. Reference logic 0 = 0000

logic 1 = C66C

10.6. Test 3 (Relay and FET test).

Setting	Edge	Testpoint	Signalname
start stop clock qualifier qualifier ground	그 (neg) 그 (pos) 그 (pos) 그 (pos) 그 (pos)	TP14 TP14 TP15 D1903 pin 7 D1903 pin 2 TP1	P17 P17 ALE AZC/P AZ Logic 0

10.7. Test 4 (Static relay and FET test, no. S.A.)

This test sets all the RELAYS/FETS corresponding to the selected function and range. With the +/- button the AZ status can be changed, and also in the functions V_{\dots} , A_{\dots} , and trigger level, the polarity can be changed.

Pushing the AUTO/MAN* button starts another measurement.

POSSIBLE READINGS BY PRESSING THE UP, DOWN AND +/-BUTTONS.

Position	Readings	Position	Readings
V= V~	+/ POt4 mV +/ P.Ot4 V +/ POt4 V +/ POt4 V +/ POt4 V	A=	+/- P.O-t4 uA +/- POt4 uA +/- POt4 uA +/- P.O-t4 mA +/- POt4 mA With lead in the A-bus +/- POt4 mA +/- P.O-t4 mA
	~ P.O-t4 V ~ POt4 V ~ PO-t.4 V		+/ POt4 mA +/ POt4 mA
Hz	P.O—t4 KHz PO.—t4 KHz .PO—t4 MHz P.O—t4 MHz	A~	~ P.O-t4 μA ~ POt4 μA ~ POt4 μA ~ P.O-t4 mA ~ POt4 mA
Trigger level	gate +/- P.O-t4 V gate +/- PO -t4 V gate +/- PO-t4 V gate +/- PO-t.4 V		With lead in the A-bus POt4 mA POt4 mA POt4 mA POt4 mA
S	P.O-t4 s POt4 s	°С	+/ POt.4 °C
	POt4 s PO-t.4 s	Diode	P.O-t4 V
	POt4 s	Ω	POt4 Ω P.O-t4 ΚΩ POt4 ΚΩ POt4 ΚΩ P.O-t4 ΜΩ POt4 ΜΩ

NOTE: In these ranges the relays are also set.

By pressing the auto/man* button the measurementnumber can be changed.

NUMBER OF PRESSINGS	RELAYS SETTING	DISPLAY
0	normal measurement	PO
1	AUTOCAL 0.1V	P1
2	normal measurement	P2
3	IZERO 200mA	P3
4	normal measurement	P4
5	AUTOCAL 1V	P5
6	normal measurement	P6
7	IZERO 2A	P7

DESCRIPTION

When making a normal measurement (...PO...) the microcomputer sets all the relays and FET's which are necessary to make a measurement. For instance: Select the V... function and the range 200mV. The relays and FET's which are now set can be found in the relay table. So it is possible to determine if the relays are really set.

When making an AUTOCAL 0,1V (..P1...) the microcomputer programs the 0Q 0063 so that a current of 100 μ A flows through R606, which causes a voltage drop of 100mV across it. With this test it is possible to measure this voltage.

In the position AUTOCAL 1V (..P5...) the microcomputer programs the 0Q 0063 to give a current of 1mA through R606. The result is 1V across R606.

With the I ZERO measurements, normally the offset is measured in the I-V convertor. (current offset). In the ..P3... and the ..P7... tests these IZERO measurements are simulated. (see relay table on page 52 and page 53 of the PM2521 service manual).

In all these tests (..P0... to ..P7...) the AZ status can be changed. This means that the input of the ADC can be selected. To do this push the +/— button.

Thanks to this it is possible to measure the input voltage, or the voltage across the R606 resistance, on the input of the ADC (pin 5 and pin 10 of the OQ 0064)

Example

When there is no input signal, the voltage on pin 5 and pin 10 of the ADC is 0,460V. (with respect tot the 0 input socket)

Set 200mV on the input terminals. After attenuation the voltage on point 6 of A601 is 100mV. This voltage of 100mV causes either a voltage of 0.360V on pin 5 of A602 or a voltage of 0.360V on pin 10 of A602, depending on the state of the AZ flip-flop. (0.460V-0.1V = 0.360V). So the input voltage after attenuation degrees the voltage on pin 5 or pin 10 corresponding to the input signal.

10.8. Test 5 (Counter and counter input control test).

Settings signature analyser

Setting	Edge	Testpoint	Signalname
start	간 (neg)	TP14	P17
stop	⊥ (pos)	TP14	P17
clock	ு (pos)	TP15	ALE
ground		TP1	logic 0

- NOTE: 1. Testrom placed in D1909 socket (Both ROMs removed)
 - 2. Short circuit TP10 and TP11
 - 3. Reading on display: £5
 - 4. Connect point 1 of D1910 to logic 0
 - 5. Adjust with R502 the signature on D1911 point 2 to 0000
 - 6. Select the signature on point 15 of D1903 with the +/- button: 154H
 - 7. Reference logic 0 = 0000

logic 1 = 3UH7

10.9. Test 6 (Interrupt controller test).

Settings signature analyser

Setting	Edge	Testpoint	Signalname
start stop clock qualifier qualifier ground	근 (pos) 그 (pos) 그 (bos) 그 (bos) 그 (pos)	TP14 TP14 TP15 D1903 pin D1903 pin TP1	

NOTE: 1. Testrom placed in D1909 socket (Both ROMs removed)

- 2. Short circuit TP10 and TP11
- 3. Reading on display: E.F.
- 4. Adjust with R502 the signature on D1911 point 2 to 0000
- 5. Set the PM2521 in the function V
- 6. Reference logic 0 = 0000

logic 1 = A4A7

