Model evaluation under Non-constant Class Imbalance: Supplementary Material

Jan Brabec^{1,2}, Tomáš Komárek^{1,2}, Vojtěch Franc², and Lukáš Machlica³

¹ Cisco Systems, Inc., Karlovo Namesti 10 Street, Prague, Czech Republic {janbrabe,tomkomar}@cisco.com

² Czech Technical University in Prague, Faculty of Electrical Engineering, Czech Rep. xfrancv@cmp.felk.cvut.cz

³ Bulletproof.ai, Prague, Czech Republic lukas.machlica@bulletproof.ai

Theorem 1. Let $TPR \in (\widehat{TPR} - \sigma_{TPR}, \widehat{TPR} + \sigma_{TPR})$ and $FPR \in (\widehat{FPR} - \sigma_{FPR}, \widehat{FPR} + \sigma_{FPR})$. Let further $\widehat{TPR} > \sigma_{TPR}$ and $\widehat{FPR} > \sigma_{FPR}$. Then

$$\Delta \leq \max\{CV_{TPR}, CV_{FPR}\}$$

and the equality is attain iff $CV_{TPR} = CV_{FPR}$.

PROOF: The value of Δ is defined as the maximal width of the interval $(LB(\eta), UB(\eta))$ w.r.t. η , that is,

$$\Delta = \max_{\eta \in (0,1)} (UB(\eta) - LB(\eta)),$$

where

$$\begin{split} \mathrm{LB}(\eta) &= \min_{\substack{\mathrm{TPR} \in \mathcal{I}_{\mathrm{TPR}} \\ \mathrm{FPR} \in \mathcal{I}_{\mathrm{FPR}}}} \mathrm{Prec}(\eta, \mathrm{TPR}, \mathrm{FPR}) \,, \\ \mathrm{UB}(\eta) &= \max_{\substack{\mathrm{TPR} \in \mathcal{I}_{\mathrm{TPR}} \\ \mathrm{FPR} \in \mathcal{I}_{\mathrm{FPR}}}} \mathrm{Prec}(\eta, \mathrm{TPR}, \mathrm{FPR}) \,, \end{split}$$

and

$$\operatorname{Prec}(\eta, \operatorname{TPR}, \operatorname{FPR}) = \frac{\eta \cdot \operatorname{TPR}}{\eta \cdot \operatorname{TPR} + (1 - \eta) \cdot \operatorname{FPR}} = \frac{1}{1 + \frac{(1 - \eta)}{\eta} \frac{\operatorname{FPR}}{\operatorname{TPR}}}.$$
 (1)

The equation (1) shows that $\operatorname{Prec}(\eta, \operatorname{TPR}, \operatorname{FPR})$ is a monotonically decreasing function of the ratio $\frac{\operatorname{FPR}}{\operatorname{TPR}}$ which together with $\operatorname{FPR} \in (\widehat{\operatorname{FPR}} - \sigma_{\operatorname{FPR}}, \widehat{\operatorname{FPR}} + \sigma_{\operatorname{FPR}})$ and $\operatorname{TPR} \in (\widehat{\operatorname{TPR}} - \sigma_{\operatorname{TPR}}, \widehat{\operatorname{TPR}} + \sigma_{\operatorname{TPR}})$ implies that

$$UB(\eta) = \frac{1}{1 + \frac{(1-\eta)}{\eta} \frac{\widehat{FPR} - \sigma_{FPR}}{\widehat{TPR} + \sigma_{TPR}}} \quad \text{and} \quad LB(\eta) = \frac{1}{1 + \frac{(1-\eta)}{\eta} \frac{\widehat{FPR} + \sigma_{FPR}}{\widehat{TPR} - \sigma_{TPR}}}.$$

Using $x = \frac{1-\nu}{\nu} \in (0, \infty)$, we can re-parametrize $UB(\eta)$ and $LB(\eta)$ as

$$UB(x) = \frac{1}{1 + x \cdot r_1}$$
 and $LB(x) = \frac{1}{1 + x \cdot r_2}$

where $r_1=\widehat{\widehat{\text{TPR}}}-\sigma_{\text{FPR}}\over\widehat{\text{TPR}}+\sigma_{\text{TPR}}$ and $r_2=\widehat{\widehat{\text{TPR}}}+\sigma_{\text{TPR}}$. The value of Δ can be then equivalently defined as

$$\Delta = \max_{x \in (0,\infty)} f(x) \quad \text{and} \quad f(x) = \mathrm{UB}(x) - \mathrm{LB}(x) = \frac{1}{1 + x \cdot r_1} - \frac{1}{1 + x \cdot r_2} \;.$$

The maximum of f(x) can be found analytically by solving f'(x) = 0 for x which yields

$$x^* = \frac{1}{\sqrt{r_1 \cdot r_2}} \,,$$

and hence

$$\Delta = f(x^*) = \frac{1}{1 + \frac{r_1}{\sqrt{r_1 \cdot r_2}}} - \frac{1}{1 + \frac{r_2}{\sqrt{r_1 \cdot r_2}}} = \frac{1 - \sqrt{\frac{r_1}{r_2}}}{1 + \sqrt{\frac{r_1}{r_2}}}.$$

It is seen that Δ is monotonically decreasing with the ratio

$$\frac{r_1}{r_2} = \frac{\widehat{\text{FPR}} - \sigma_{\text{FPR}}}{\widehat{\text{TPR}} + \sigma_{\text{TPR}}} \cdot \frac{\widehat{\text{TPR}} - \sigma_{\text{TPR}}}{\widehat{\text{FPR}} + \sigma_{\text{FPR}}} = \frac{1 - \text{CV}_{\text{FPR}}}{1 + \text{CV}_{\text{FPR}}} \cdot \frac{1 - \text{CV}_{\text{TPR}}}{1 + \text{CV}_{\text{TPR}}}$$

If $CV_{TPR} = CV_{FPR} = C$ then

$$\Delta = \frac{1 - \sqrt{\frac{(1 - C)^2}{(1 + C)^2}}}{1 + \sqrt{\frac{(1 - C)^2}{(1 + C)^2}}} = C = \max\{\text{CV}_{\text{TPR}}, \text{CV}_{\text{FPR}}\}.$$

Decreasing either CV_{TPR} or CV_{FPR} increases the ratio $\frac{r_1}{r_2}$ resulting in the decrease of Δ . Hence $\Delta \leq \max\{CV_{TPR}, CV_{FPR}\}$ and $\Delta = \max\{CV_{TPR}, CV_{FPR}\}$ iff $CV_{TPR} = CV_{FPR}$.