Note on Advanced Statistical Inference

Zepeng CHEN
The HK PolyU

Date: February 13, 2023

1 Common Families of Distributions

1.1 Exponential Family

Definition 1.1 (Exponential Family)

Given a feature map $\phi: \mathcal{X} \to \mathbb{R}^m$ and an m-dimensional canonical parameter vector $\theta \in \mathbb{R}^m$, an exponential family is defined as the set $\mathcal{P} = \{p_\theta : \theta \in \mathbb{R}^m\}$ where the density function p_θ satisfies the following for a log-partition function $A: \mathbb{R}^m \to \mathbb{R}$:

$$p_{\theta}(\mathbf{x}) = exp\left(\theta^{\top}\phi(\mathbf{x}) - A(\theta)\right).$$

Lemma 1.1

The log-partition function $A: \mathbb{R}^m \to \mathbb{R}$ can be determined as:

$$A(\theta) = \log \left(\sum_{\mathbf{x} \in \mathcal{X}} \exp \left(\theta^{\top} \phi(\mathbf{x}) \right) \right).$$

Proof Because

$$\sum_{\mathbf{x} \in \mathcal{X}} p_{\theta}(\mathbf{x}) = 1.$$

Lemma 1.2

(i) The gradient of the log-partition function A is the mean of random vector $\phi(\mathbf{x})$:

$$\nabla A(\theta) = \mu_{\theta} = \mathbb{E}_{X \sim p_{\theta}}[\phi(\mathbf{x})].$$

(ii) The Hessian of the log-partition function A is the covariance matrix of random vector $\phi(\mathbf{x})$:

$$H_A(\theta) = \operatorname{Cov}_{X \sim p_{\theta}}(\phi(\mathbf{x})).$$

Proof

(i) Because

$$\nabla A(\boldsymbol{\theta}) = \frac{\sum_{\mathbf{x} \in \mathcal{X}} e^{\boldsymbol{\theta}^{\top} \phi(\mathbf{x})} \phi(\mathbf{x})}{\sum_{\mathbf{x} \in \mathcal{X}} e^{\boldsymbol{\theta}^{\top} \phi(\mathbf{x})}} = \sum_{\mathbf{x} \in \mathcal{X}} \frac{e^{\boldsymbol{\theta}^{\top} \phi(\mathbf{x})}}{\sum_{\mathbf{x}' \in \mathcal{X}} e^{\boldsymbol{\theta}^{\top} \phi(\mathbf{x}')}} \phi(\mathbf{x}) = \sum_{\mathbf{x} \in \mathcal{X}} p_{\boldsymbol{\theta}}(\mathbf{x}) \phi(\mathbf{x}).$$

(ii)

Lemma 1.3

The log-partition function A of an exponential family is a convex function.

Proof From probability we know that a covaraince matrix is always positive semi-definte (PSD). Thus, the Hessian of A is a PSD matrix, implying it is a convex function.

Note on *In other words,* $\nabla A(\theta)$ *is a monotone function of the canonical parameters* θ *, i.e.,*

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d : (\theta_2 - \theta_1)^\top (\mu_{\theta_2} - \mu_{\theta_1}) \ge 0.$$

Moreover, under the assumption of invertible map, we have

$$\theta = (\nabla A)^{-1}(\mu).$$

1.2 Location-scale Family

2 Transformation

3 Point Estimation

3.1 Maximum Likelihood Method

Definition 3.1 (Maximum Likelihood Estimator)

Given a parameterized family of distributions $\{p_{\theta}: \theta \in \mathbb{R}^d\}$, the maximum liklihood estimator (MLE) of the model parameters from observed samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ will be

$$\theta^{MLE} := \underset{\theta \in \mathbb{R}^d}{\arg \max} \prod_{i=1}^n p_{\theta}(\mathbf{x}_i)$$

$$\iff \underset{\theta \in \mathbb{R}^d}{\arg \max} \sum_{i=1}^n log p_{\theta}(\mathbf{x}_i) \quad (log \ is \ monotontic.)$$

Definition 3.2 (MLE for Exponential Family)

Given a exponential family of distributions $\{p_{\theta}: \theta \in \mathbb{R}^d\}$ with canonical parameters θ and log-partition function $A(\theta)$, the maximum liklihood estimator (MLE) of the model parameters from observed samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ will be

$$\theta^{MLE} := \underset{\theta \in \mathbb{R}^d}{\arg \max} (\frac{1}{n} \sum_{i=1}^n \phi(\mathbf{x}_i))^\top \theta - A(\theta)$$

$$= \underset{\theta \in \mathbb{R}^d}{\arg \max} \hat{\mu}^\top \theta - A(\theta) \qquad (Let \, \hat{\mu} \, denote \, the \, empirical \, mean)$$

Lemma 3.1

The maximum likelihood problem for fitting canonical parameters of an exponential family is a convex optimization problem.

Proof Obviously the objective function regarding θ is concave.

Corollary 3.1

Since the maximum likelihood problem is a convex optimization problem, by the FOC, we have

$$\theta^{MLE} = (\nabla A)^{-1}(\hat{\mu}).$$

In addition, the mean parameter $\mu_{\theta^{MLE}}$ under the maximum likelihood estimator match the empirical mean $\hat{\mu}$:

$$\mu_{\theta^{MLE}} = \nabla A(\theta^{MLE})$$
$$= \hat{\mu}$$

Theorem 3.1 (Central Limit Theorem for Canonical parameter)

Consider a sequence of independent random vectors $(\mathbf{x}_i)_{i=1}^{\infty}$ distributed as p_{θ} . Then, for the Maximum Liklikelihood canonical parameter θ_n^{MLE} from n samples $\mathbf{x}_1, \dots, \mathbf{x}_n$, the following holds

$$\sqrt{n} \left(\theta_n^{MLE} - \theta^* \right) \xrightarrow{dist} \mathcal{N} \left(\mathbf{0}, \operatorname{Cov}_{\theta^*}^{-1}(\phi(\mathbf{x})) \right).$$

3.2 Method of Moments

Definition 3.3 (Method of Moments Estimator)

Given a parameterized family of distributions $\{p_{\theta}: \theta \in \mathbb{R}^d\}$, the method of moments estimator $\hat{\theta}$ of the model parameters from observed samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ matches the empirical mean vector, i.e., $\hat{\theta}$ satisfies

$$\mathbb{E}_{\hat{\theta}}[\phi(\mathbf{x})] = \frac{1}{n} \sum_{i=1}^{n} \phi(\mathbf{x}_i).$$

3.3 Maximum Entropy Principle

Definition 3.4

Given a probability vector $\mathbf{q} = [q_1, \cdots, q_k]$ for a discrete random variable X, the (Shannon) entropy of X is defined as

$$H_{\mathbf{q}}(X) = \sum_{i=1}^{k} q_i \log \frac{1}{q_i}.$$

Note on The entropy value is always non-negative. Moreover, the entropy is upper-bounded by logk (Jensen's Inequality). Particularly, the upper-bound is achieved by the discrete uniform distribution, i.e., $q_1 = \cdots = q_k = \frac{1}{k}$. This can be proved by solving the entropy maximization

problem:

$$\max_{\mathbf{q} \in \mathbb{R}^k} \quad \sum_{i=1}^k q_i \log \frac{1}{q_i}$$
s.t.
$$\sum_{i=1}^k q_i = 1,$$

$$q_i \ge 0, i = 1, \dots, k.$$

Definition 3.5 (Maximum Entropy Principle)

Given a set of probability distributions

$$M_{\phi} := \left\{ q \in \mathcal{P}_{\mathcal{X}} : \mathbb{E}_{\hat{\theta}}[\phi(\mathbf{x})] = \frac{1}{n} \sum_{i=1}^{n} \phi(\mathbf{x}_i) \right\},\,$$

conduct the inference and base the decision on the distribution maximizing the Entropy function:

$$\underset{q \in M_{\phi}}{\operatorname{argmax}} H_{q}(\mathbf{X}) := \sum_{\mathbf{x} \in \mathcal{X}} q(\mathbf{x}) \log \frac{1}{q(\mathbf{x})}.$$

Note on Entropy measures the uncertainty of a distribution, thus, this principle chooses the most uncertain model based on the given set M.

Theorem 3.2

The distribution that maximizes the entropy is an exponential family model with feature function ϕ .

Proof Consider the maximum entropy problem

$$\begin{aligned} \max_{\mathbf{q} \in \mathbb{R}^{|\mathcal{X}|}} \quad & \sum_{\mathbf{x} \in \mathcal{X}} q_{\mathbf{x}} log \frac{1}{q_{\mathbf{x}}} = -\sum_{\mathbf{x} \in \mathcal{X}} q_{\mathbf{x}} log q_{\mathbf{x}} \\ \text{s.t.} \quad & \sum_{\mathbf{x} \in \mathcal{X}} q_{\mathbf{x}} \phi(\mathbf{x}) = \hat{\mu}, \\ & \sum_{\mathbf{x} \in \mathcal{X}} q_{\mathbf{x}} = 1, \\ & q_{\mathbf{x}} \geq 0, \mathbf{x} \in \mathcal{X}, \end{aligned}$$

as a problem without inequality constraints, i.e.,

$$\begin{aligned} \max_{\mathbf{q} \in \mathbb{R}^{|\mathcal{X}|}} & & -\sum_{\mathbf{x} \in \mathcal{X}} q_{\mathbf{x}} log q_{\mathbf{x}} \\ \text{s.t.} & & & \sum_{\mathbf{x} \in \mathcal{X}} q_{\mathbf{x}} \begin{bmatrix} \phi(\mathbf{x}) \\ 1 \end{bmatrix} = \begin{bmatrix} \hat{\mu} \\ 1 \end{bmatrix}. \end{aligned}$$

Next we consider its Lagrangian problem

$$\mathcal{L}(\mathbf{q}, \gamma) = \sum_{\mathbf{x} \in \mathcal{X}} q_{\mathbf{x}} \left(-log q_{\mathbf{x}} - \phi(\mathbf{x})^{\top} \gamma_{1:k} - \gamma_{k+1} \right) + \hat{\mu}^{\top} \gamma_{1:k} + \gamma_{k+1},$$

the stationary KKT condition

$$\nabla_{q_{\mathbf{x}}} \mathcal{L}(\mathbf{q}, \gamma) = -log q_{\mathbf{x}}^* - \phi(\mathbf{x})^\top \gamma_{1:k} - \gamma_{k+1} + 1 = 0$$

leads to

$$q_{\mathbf{x}}^* = exp\left(-\phi(\mathbf{x})^\top \gamma_{1:k} - \gamma_{k+1} + 1\right) \ge 0.$$

Thus, $q_{\mathbf{x}}^*$ is also the optimal solution to the original problem. Moreover,

$$q_{\mathbf{x}}^* \propto exp\left(-\phi(\mathbf{x})^\top \gamma_{1:k}\right)$$

leads to

$$q_{\mathbf{x}}^* = \frac{exp\left(-\phi(\mathbf{x})^\top \gamma_{1:k}\right)}{exp\left(-\phi(\mathbf{x})^\top \gamma_{1:k} - \gamma_{k+1} + 1\right)}$$

due to the constraint that probability q_x 's add up to 1.

3.4 Connections

Proposition 3.1 (Equivalence of Method of Moments and MLE)

Given a parameterized family of distributions $\{p_{\theta}: \theta \in \mathbb{R}^d\}$ with feature function ϕ , the method of moments estimator with ϕ -based moments results in the same estimator as maximum likelihood estimator.

Proof Note that $\mu_{\theta^{\text{MLE}}} = \hat{\mu}$ by Corollary 3.1, and this coincides with the definition of the method of moments estimator.