More on Arrays

Contents

Recap: Creating Arrays Examples

2 Data Manipulation Functions

3 Timing in MATLAB

4 Exercises

Recap: Creating Arrays Examples

Arithmetic Progressions

Question

Create the following *periodic* arithmetic progressions using ONE MATLAB statement.

$$(1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0).$$

```
m = 5;
n = 15;
mod([1:n], m)
```

Exercise: Arithmetic Progressions

Question

Create each of the following row vectors using ONE MATLAB statement.

- $\mathbf{v} = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)$
- $\mathbf{w} = (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4)$

Geometric and Other Progressions

Question

Create each of the following column vectors using ONE MATLAB statement.

- $\mathbf{v} = (1, 2, 4, 8, \dots, 1024)^{\mathrm{T}}$
- $\mathbf{w} = (1, 4, 9, 16, \dots, 100)^{\mathrm{T}}$

Using the colon operator:

```
v = (2.^{[0:10]})'

w = ([1:10].^2)'
```

Using the linspace function:

```
v = ( 2.^linspace(0, 10, 11) )'
w = ( linspace(1, 10, 10).^2 )'
```

Function Evaluation

Recall that mathematical functions such as sin, sind, log, exp accept array inputs and return arrays of function evaluation.

Question

Create each of the the following row vectors using ONE MATLAB statement.

- $\mathbf{u} = (1!, 2!, 3!, \dots, n!)$
- $\mathbf{v} = (\sin 0^{\circ}, \sin 30^{\circ}, \sin 60^{\circ}, \dots, \sin 180^{\circ})$
- $\mathbf{w} = (e^1, e^4, e^9, \dots, e^{64})$

```
v = sind(0:30:180)

w = exp([1:8].^2)
```

Matrices with Patterns

Question

Generate each of the following matrices using ONE MATLAB statement.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1^2 & 1^3 & \cdots & 1^{10} \\ 2 & 2^2 & 2^3 & \cdots & 2^{10} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 10 & 10^2 & 10^3 & \cdots & 10^{10} \end{bmatrix}.$$

```
A = reshape(1:16, 4, 4)'
B = ((1:10)').^(1:10)
```

Matrices with Patterns

Question

Suppose n is already stored in MATLAB. Generate each of the following matrices using ONE MATLAB statement. All the elements not shown are 0's.

$$C = \begin{bmatrix} 2 & & & & & \\ & 4 & & & & \\ & & 6 & & & \\ & & & \ddots & & \\ & & & 2n \end{bmatrix}, D = \begin{bmatrix} \cos 1 & -3 & & & & \\ & \cos 2 & -3 & & & \\ & & \cos 3 & -3 & & \\ & & & \ddots & \ddots & \\ & & & & \cos(n-1) & -3 \\ & & & & \cos n \end{bmatrix}.$$

```
C = diag(2:2:2*n)
D = diag(cos(1:n)) - 3*diag(ones(n-1,1), 1)
```

Data Manipulation Functions

Data Manipulation Functions

There are a number of MATLAB functions with *spreadsheet functionalities* that are suitable for data manipulation.

- max and min
- sum and prod
- cumsum and cumprod (cumulative sum and product)
- diff
- mean, std, and var (simple statistics)
- sort

Example 1: Finding the Maximum Value of a Vector

Question

Write a program to find the maximum value of a vector.

• With loops:

```
% input: x
% output: m % DON'T USE max FOR THE VARIABLE NAME
m = x(1); % CODE ABORTS IF THE VECTOR IS EMPTY
for r = 2:length(x)
    if m < x(r)
        m = x(r);
    end
end</pre>
```

```
m = max(x)
```

Example 1: Finding the Maximum Value of a Vector (cont')

Question

Now modify the previous program to find both the maximum value of a vector and the corresponding index.

With loops:

```
% input: x
% output: m, index_m
m = x(1);
index_m = 1;
for r = 2:length(x)
    if m < x(r)
        m = x(r);
    index_m = r;
    end
end</pre>
```

```
[m, index_m] = max(x)
```

Example 2: Summing Elements in a Vector

Question

Sum all elements in a vector.

• With loops:

```
% input: x
% output: s  % DON'T USE sum FOR THE VARIABLE NAME
s = 0;  % s begins before the first iteration
for el = 1:length(x)
    s = s + x(el);
end
```

```
s = sum(x)
```

FIND Function

Basic Usage of FIND

Let ∇ be an array of numbers (can be a vector or a matrix). Then

```
find(<condition>)
```

returns the (linear) indices of v satisfying <condition>.

Some examples of <condition>:

$$v > k$$
, $v >= k$, $v < k$, $v <= k$, $v == k$, $v \sim= k$

To combine more than two conditions: Use & (and) or | (or)

Example 3: Comparing Elements in Vectors

Question

Compare two real vectors of the same length, say x and y, elementwise and determine how many elements of the former are larger than the latter.

• With loops:

```
% input: x, y
% output: nr_gt
nr_gt = 0;
for k = 1:length(x)
    if x(k) > y(k)
        nr_gt = nr_gt + 1;
    end
end
```

```
nr_gt = length(find(x > y))
```

Timing in MATLAB

CPU Time

cputime reads total CPU time used by MATLAB from the time it was started.

• Single measurement:

Average CPU time:

Elapsed Time

At the execution of tic, MATLAB records the internal time (in seconds); at toc command, MATLAB displays the elapsed time.

Single measurement:

Average elapse time:

What Do You Think It Does?

Below is a modified version of an example code from MATLAB's Help documentation for tic. What do you think it's doing?

```
REPS = 1000; minTime = Inf; nSum = 10;
tic:
for i = 1:REPS
    tStart = tic;
    s = 0;
    for j = 1:nsum
        s = s + besseli(i, REPS);
    end
    tElpased = toc(tStart);
    minTime = min(tElapsed, minTime);
end
t_avg = toc/REPS;
```

Example 4: Timing Elementwise Operations

Question

Generate a $10^7 \times 1$ random vector and measure the internal time and CPU time when computing elementwise squares.

```
n = 1e7;
x = rand(n, 1);
t = cputime;
x1 = x.^2;
time1 = cputime - t;

tic
x2 = x.^2;
time2 = toc();
disp([time1, time2])
```

Exercises

Pythagorean Triples

Question

Given $n \in \mathbb{N}$, find all triples $(a, b, c)\mathbb{N}^3$, with $a, b \leq n$, satisfying

$$a^2 + b^2 = c^2.$$

Notation.

- \mathbb{N} : the set of all natural numbers, $1, 2, 3, \dots$
- $\mathbb{N}[1, n] = \{1, 2, \dots, n\}.$
- $\bullet \ \mathbb{N}^3 = \{(a,b,c) \ | \ a,b,c \in \mathbb{N}\}.$

Pythagorean Triples - Solution Using Loops

```
% input: n
% output: M
iM = 0;
M = [];
for a = 1:n
    for b = 1:n
        c = sqrt(a^2 + b^2);
        if mod(c, 1) == 0
            iM = iM + 1;
            M(iM, :) = [a, b, c];
        end
    end
end
```

Pythagorean Triples - Solution Without Loops

```
% input: x
% output: M
A = repmat([1:n], n, 1);
B = repmat([1:n]', 1, n);
C = sqrt(A.^2 + B.^2);
M = [A(:), B(:), C(:)];
lM = ( mod(M(:, 3), 1) ~= 0 );
M(lM, :) = [];
```

Birthday Problem

Question

In a group of n randomly chosen people, what is the probability that everyone has a different birthday?

- 1 Find this probability by hand.
- **2** Let n = 30. Write a script that generates a group of n people randomly and determines if there are any matches.
- $\textbf{ Modify the script above to run a number of simulations and numerically calculate the sought-after probability. Try <math>1000, 10000, \text{ and } 100000$ simulations. Compare the result with the analytical calculation done in 1.

Birthday Problem (Hints)

- For simplicity, ignore leap years.
- Create a random (column) vector whose elements represent birthdays of individuals (denoted by integers between 1 and 365).
- Line up the birthdays in order and take the difference of successive pairs. What does the resulting vector tell you?
- For 3, to run simulation multiple times, consider creating a random matrix whose rows represent birthdays of individuals and the columns correspond to different simulations.