

# Computergrafik Computer Vision

# Visual and Scientific Computing

Computersimulation

**Maschinelles Lernen** 

**Entwicklung von Modellen!** 

Was denn für Modelle?

Rechnen?

**Numerik? Lineare Algebra?** 

$$Ax = b$$



Bachelor Medieninformatik Wintersemester 2019/20 Computergrafik
Computer Vision
Maschinelles Lernen



Prof. Dr.-Ing. Kristian Hildebrand khildebrand@beuth-hochschule.de



# Programmierung mit Python Rechnen mit Zahlen und Matrizen



## Rechnen mit Bildern als Matrizen













Rechnen mit Matrizen und Gleichungssystemen

#### Rechnen mit 2D Punkten und Lösen komplexerer Systeme





#### Re Gesichtserkennungen















 $\overline{i=1}$ 

# **Seam Carving**

Rechnen mit 2D + 3D Punkten



**Neuronale Netze** 























# Wie setze ich die teilweise mathematisch beschriebenen Sachverhalte in Sourcecode um?











**OpenAl** 





| Broccoli       | 2.7      | 10  | 14   |  |
|----------------|----------|-----|------|--|
| Chicken breast | 26.1     | 110 | 0    |  |
| Banana         | 3.6      | 5.2 | 95.6 |  |
| Raw almonds    | 129.6 24 |     | 9.2  |  |
|                |          |     |      |  |



#### Datenrepräsentation in Vektoren und Matrizen

# Wie repräsentiere ich meine Daten, um mein Problem zu lösen?





Nominal / Ordinal



Metrisch / reelle Werte

| id | firstname | lastname | email                |
|----|-----------|----------|----------------------|
| 1  | Alejandro | Gervasio | alejandro@domain.com |
| 2  | John      | Doe      | john@domain.com      |
| 3  | Susan     | Norton   | susan@domain.com     |
| 4  | Marian    | Wilson   | marian@domain.com    |
| 5  | Mary      | Smith    | mary@domain.com      |
| 6  | Amanda    | Bears    | amanda@domain.com    |
| 7  | Jodie     | Foster   | jodie@domain.com     |
| 8  | Laura     | Linney   | laura@domain.com     |
| 9  | Alice     | Dem      | alice@domain.com     |
| 10 | Jennifer  | Aniston  | jennifer@domain.com  |

| Sample | Category | Numerical |
|--------|----------|-----------|
| 1      | Human    | 1         |
| 2      | Human    | 1         |
| 3      | Penguin  | 2         |
| 4      | Octopus  | 3         |
| 5      | Alien    | 4         |
| 6      | Octopus  | 3         |
| 7      | Alien    | 4         |

| Sample | Human | Penguin | Octopus | Alien |
|--------|-------|---------|---------|-------|
| 1      | 1     | 0       | 0       | 0     |
| 2      | 1     | 0       | 0       | 0     |
| 3      | 0     | 1       | 0       | 0     |
| 4      | 0     | 0       | 1       | 0     |
| 5      | 0     | 0       | 0       | 1     |
| 6      | 0     | 0       | 1       | 0     |
| 7      | 0     | 0       | 0       | 1     |



#### Wie löse ich das effizient?





#### **Buzzword-Bingo**

- Nützlicher Hintergrund in Lineare Algebra
- Einführung in Bildverarbeitung
- Nützliche Einführung in Data Science und Machine Learning
  - Hands-on Lineare Algebra
  - Dimensionality Reduction
  - Clustering
  - (Deep or not) Neural Networks
- Alles in Python und Numpy

#### **Kontakt und Infos**

- Kristian Hildebrand
  - Fachgebiet Grafische und Interaktive Systeme
- Email
  - khildebrand@beuth-hochschule.de
- Webseite
  - http://hildebrand.beuth-hochschule.de
  - Kursmaterial + Neuigkeiten über Moodle
    - → Anmeldung sollte bereits erfolgt sein
- Büro und Sprechzeiten
  - Haus Gauß, Raum B218
  - Sprechzeiten nach Absprache

## Wer bin ich?

| Seit 10/2015 | Professor für Grafische und Interaktive Systeme<br>Beuth Hochschule für Technik Berlin |
|--------------|----------------------------------------------------------------------------------------|
| 2014 – 2015  | Principal Research Engineer, DISDAR GmbH, Berlin                                       |
| 2008 - 2013  | Wissenschaftlicher Mitarbeiter, TU Berlin                                              |
| 2012         | Disney Research, Visiting Researcher, Zürich                                           |
| 2006 – 2008  | Softwareentwickler, art+com AG, Berlin                                                 |
| 1999 – 2005  | Diplom, Max-Planck-Institut für Informatik,<br>Saarbrücken                             |
|              | Computer Science, UBC, Vancouver                                                       |
|              | Studium Mediensysteme, Bauhaus Universität<br>Weimar                                   |











#### Wer sind Sie?

- Name
- Was erwarten Sie von dem Kurs?
- Was wollen Sie lernen?
- Welche Programmiererfahrungen haben Sie?

# Lehrplan

"You can't teach people everything they need to know...

The best you can do is to position them where they can find what they need to know when they need to know it."

Seymour Papert, MIT, Lego Mindstorms Erfinder

#### 0. Projekt – Einführung

- Veranstaltungen:
  - Einführung in Python / Numpy
  - Wiederholung lineare Algebra / Floating-Point Genauigkeiten
  - Lösen von Gleichungssystemen

#### 1. Projekt - Tomographie

- Computer Tomography
  - https://www.youtube.com/watch?v=j3Plfdmg2P8
- Veranstaltungen:
  - Einführung in Least Squares Probleme
  - Rekonstruktion von Bildern aus verschiedenen Ansichten

### 2. Projekt – Inhaltsabhängige Bildskalierung



#### Veranstaltung:

- Einführung in Algorithmen zu Bildverarbeitung
- Optimierung / Dynamisches Programmieren

### 3. Projekt - Gesichtserkennung



### Veranstaltung:

- Principal Component Analyse
- Singular Value Decomposition

# 4. Projekt – Maschinelles Lernen und Neuronale Netze



#### Veranstaltunger

- Einführung in Maschinelles Lernen (supervised / unsupervised), Nearest Neighbor Classifier
- Einführung in Neuronale Netze (feedforward)
- Einführung in Neuronale Netze (backpropagation)

# Übungsaufgaben

- Diese Veranstaltung funktioniert nur, wenn Sie die Übungen selbst implementieren!
- Jede Aufgabe ist mit einem festen Abgabetermin versehen.
   Eine erfolgreiche Abgabe erfolgt zum angegebenen Termin im Moodle und wird mit 10 Punkten vergütet.
- Verspätete Abgabe ist möglich, wird aber nur mit maximal 7
   Punkten vergütet. Danach gilt die Aufgabe als nicht erfolgreich abgegeben.

#### Abnahme:

- jeder einzeln
- jede Abgabe mache ich bei mindestens 2 zufälligen Teilnehmern eine Abnahme (können auch spontan mehr sein)

#### **Allgemeine Informationen**

#### Anwesenheitsempfehlung

- schreibe an die Tafel / iPad und programmiere
- gibt eine Liste von Büchern

#### Bringen Sie bitte Ihren Rechner mit

- wir werden in der Veranstaltung häufiger etwas zusammen ausprobieren
- Unterrichtsmaterialien sind Folien, Notizen (Mini-Skript) und Tafelbilder
  - Es wird immer hilfreich sein, andere Literatur hinzuzuziehen

#### **Note**

- wöchentliche/zweiwöchentliche Übungsaufgaben 70%
- Klausur (Teilnahme ist Pflicht) 30% (bestanden ab einem Punkt)
- Übungsaufgaben und Klausur 100 Punkte

| Punkte >= | 95  | 90  | 85  | 80  | 75  | 70  | 65  | 60  | 55  | 50  | 0   |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Note      | 1.0 | 1.3 | 1.7 | 2.0 | 2.3 | 2.7 | 3.0 | 3.3 | 3.7 | 4.0 | 5.0 |

- Zusatzpunkte möglich durch
  - Zusatzpunkte in den Hausaufgaben
  - Ausgewählten Fragen in der Veranstaltung (Readings + Fragen)

#### **Plagiate**

- Plagiate werden bei erstmaliger Entdeckung für alle Beteiligten mit 10 Strafpunkten geahndet.
- Beim zweiten Mal erfolgt der Ausschluss vom Modul mit der Modulnote 5.0 und die offizielle Meldung des Betrugsversuchs an die relevanten Gremien der Hochschule.

#### Literatur

- einige Bücher sind in der Bibliothek verfügbar
  - falls nicht schreiben Sie mir bitte, dann bestelle ich das
- Nutzen Sie Internetresourcen zu den einzelnen Themen (z.B. Wikipedia)
  - http://www.deeplearningbook.org/
  - http://numerical.recipes/
  - A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing. Cohen-Or, Daniel, Chen Greif, Tao Ju, Niloy J Mitra, Olga Sorkine-Hornung, Hao Zhang. 2015.
  - Introduction to Linear Algebra. Gilbert Strang. 2016.
  - u.v.m.

# Fragen?