The Daunting Task of

Real-World Textual Style Transfer Auto-Evaluation

Richard Yuanzhe Pang

New York University Work done at the University of Chicago and TTIC

Task

 X_0, X_1 : Two non-parallel corpora of different "styles"

 $\mathbf{x}_{t}^{(i)}$: ith sentence of style t

 $\widetilde{\mathbf{x}}_0^{(i)}$: sentence with style 1 but the content of $\mathbf{x}_0^{(i)}$

 $\widetilde{\mathbf{x}}_{1}^{(i)}$: sentence with style 0 but the content of $\mathbf{x}_{1}^{(i)}$

Lack of parallel corpora => Need unsup learning criteria and auto-evaluation metrics

Background: "Supervised" Eval Based on Human-Written "Gold-Standards"

Model	BLEU	Acc
Shen et al. (2017)		
CAE	4.9	0.818
CAE	6.8	0.765
Fu et al. (2018)		
Multi-decoder	7.6	0.792
Style embed.	15.4	0.095
Li et al. (2018)		
Template	18.0	0.867
Delete/Retrieve	12.6	0.909

Model	BLEU	Acc
Yang et al. (2018)		
LM	13.4	0.854
LM + classifier	22.3	0.900
Pang and Gimpel (2018)		
CAE + losses (M6)	22.5	0.843
CAE + losses (M6)	16.3	0.897
Untransferred	31.4	0.024

BLEU is between 1000 Yelp transferred sentences and human written gold-standard references (Li et al., 2018)

arXiv: 1910.03747

Acc Post-transfer style classification accuracy (computed by pretrained classifier)

Observation

- (1) BLEU has inverse relationship with Acc
- (2) Untransferred sentences have highest BLEU

Unreliable and costly

Backaround: Existing Auto-Evaluation Metrics

	Pang and Gimpel (2018)	Mir et al. (2019)	
1. Acc (post-transfer accuracy)	How often was a pretrained style-classifier convinced of transfer?		
2. Sim (semantic similarity)	 (i) Embed sentences by avg word embeddings (GloVe, 300d) weighted by idf (ii) Sim is the avg of the cos sim over all original/transferred sentence pairs 	 (i) Remove style words from original sentence and transferred sentence using a style lexicon (by classifier), and then replace those words with <customstyle> labels</customstyle> (ii) Use METEOR and Earth's Mover's Distance to compute Sim 	
3. PP (fluency or naturalness) Perplexity is distinct from fluency, but correlated	Measured by perplexity (by language model trained on concatenation of two corpora)	Measured by perplexity (by language model trained on <u>target</u> <u>corpora</u>)	

Problem 1 (of recent research): Style transfer TASKS

Recent research focuses on *operational* transfer like Yelp sentiment transfer (vocabs of two styles are similar; can use simple classifier to determine style); DOES NOT represent REAL-WORLD style transfer!

REAL-WORLD applications	Examples	
1. Writing assistance	Formality transfer; politeness transfer; dialogue	
2. Author obfuscation and anonymity	so that authors can stay relatively anonymous in heated political discussions	
3. For artistic purposes	Transfer modern article to old literature styles	
4. Adjusting reading difficulty in education	Generating passages of same content, but of different difficulty levels appropriate to different age groups	
5. Data augmentation to fix dataset bias	In sentiment classification, "romantic"=>positive, "horror"=>negative; can generate sentences with flipped sentiment BUT same content; Can also apply to social bias issues (gender, race, nationality, etc.)	

Style transfer task	CONTENT-related words	STYLE-related words
#5 on the left: data augmentation (by sentiment transfer) to fix movie review dataset bias	Positive: "romantic" Negative: "horror"	Positive: "amazing" Negative: "awful"
#3 on the left: Dickens <-> Modern literature transfer	Dickens: "English farm" "horses" Modern: "vampire" "pop music"	Dickens: "devil-may-care" "flummox" Modern: "chill"
	SHOULD BE LEFT UNCHANGED	SHOULD CHANGE

Different styles' original corpora have different vocabs

=> Hard to distinguish content-related words from style-related words

But current research focuses on Yelp sentiment transfer (vocab of two styles are similar); DOES NOT represent REAL-WORLD style transfer!

Problem 2 (of recent research): Metrics

<u>Dickens style</u> → <u>Modern style</u>

Original sentence: Oliver deemed the gathering in York a great success. Real-world style transfer: Oliver thought the gathering was successful. Operational style transfer (recent research): Karl enjoyed the party in LA.

Corpus-specific content proper nouns	"Oliver", "York": Should stay!
Other corpus-specific content words	"English farm", "horses": Should stay!
Style words	"deemed", "gathering": Should change!

- **Problem:** Should not include style words in computing Sim
- Option o (incorrect): Use classifier to determine style lexicon, and mask out style keywords
- Sim Option 1: Manually create a list of style lexicon, and mask out style
 - keywords Option 2: Keep the words as they are, and compute Sim directly
- Problem: Should not include content words in classifier Acc
 - **Problem:** Should not include content words in computing PP
- Another problem: Very low PP does not indicate fluency, need to PP punish very low PP

Problem 3: Tradeoff and Aggregation of Scores

Pang and Gimpel (2018): Negative relationship b/w Sim and Acc; Mostly positive relationship b/w PP and Sim => TRADEOFF

A = Acc, B = Sim, C = PP

Score = f(A,B,C) for ease of model selection and comparison; Can train f with human annotations of pairwise comparison

Bibliography

Juncen Li, Robin Jia, He He, and Percy Liang. 2018. Delete, retrieve, generate: a simple approach to sentiment and style transfer. In Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1865–1874. Association for Computational Linguistics. Yuanzhe Pang and Kevin Gimpel. 2018. Learning criteria and evaluation metrics for textual transfer between non-parallel corpora. arXiv preprint arXiv:1810.11878.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer from non-parallel text by cross-alignment. In Advances in Neural Information Processing Systems 30, pages 6833–6844. Curran Associates, Inc.