PROBLEME 1: Diffraction et interférence lumineuses

	Partie A: Diffraction lumineuse	T
1.a)	XA AX	0.25
1.b)	Figure de diffraction La figure de diffraction est parallèle à la largeur de la fente diffractante. Elle est constituée d'une tache centrale, centrée sur F', entourée de taches secondaires d'intensités moins	0.5
1.c)	importantes et deux fois moins krges. $(\vec{k}_{a} - \vec{k}) \cdot \overrightarrow{OP} = \vec{k}_{a} \cdot \overrightarrow{OP} = k \times \sin i' \approx k \times i', \text{ tgi}' = X/f \approx i' \Rightarrow \vec{k}_{a} \cdot \overrightarrow{OP} = k \times X/f$ $S(M) = \alpha S_{0}b \int_{a/2}^{a/2} \exp[j(\vec{k}_{a} - \vec{k}) \cdot \overrightarrow{OP}] d\Sigma = \alpha S_{0}b \int_{a/2}^{a/2} e^{j\frac{2\pi X}{\lambda f} x} dx$ $S(M) = \alpha S_{0}ab \operatorname{sinc}(\frac{\pi X a}{\lambda f}) = \alpha S_{0}ab \operatorname{sincu}$ $I(M) = I_{0} \operatorname{sinc}^{2}u$	0.5
1.d)	O.S. O.S. DESTRICT PREPARATION PROPERTY OF THE PROPERTY OF T	0.25
	La largeur de la tache centrale est de diffraction est $L = \frac{2\lambda f}{a}$.	0.25

	2)		T
£	2.a)	Sachant que $\cos(\frac{2\pi x}{a}) = \frac{1}{2} (e^{j\frac{2\pi x}{a}} + e^{-j\frac{2\pi x}{a}})$ et en tenant compte de 1.c), il vient:	
		$\underline{\underline{s}(M)} = \frac{\alpha \underline{s}_0 \underline{b}}{2} \left[a \sin \dot{c} \left(\frac{\pi X \underline{a}}{\lambda f} \right) + \frac{1}{2} \int_{a/2}^{a/2} e^{j\frac{2\pi X}{\lambda f} (1 + \frac{\lambda f}{\underline{a}X}) x} dx + \frac{1}{2} \int_{a/2}^{a/2} e^{j\frac{2\pi X}{\lambda f} (1 - \frac{\lambda f}{\underline{a}X}) x} dx \right]$	
		$\int_{a/2}^{a/2} e^{j\frac{2\pi X}{\lambda f}(1+\frac{\lambda f}{aX})x} dx = a \operatorname{sinc}\left[\frac{\pi aX}{\lambda f}\left(1+\frac{\lambda f}{aX}\right)\right] = a \operatorname{sinc}(u+\pi) = -a\frac{\sin u}{u+\pi}$	
		$\int_{a/2}^{a/2} e^{j\frac{2\pi X}{\lambda f}(1-\frac{\lambda f}{aX})x} dx = a \operatorname{sinc}\left[\frac{\pi a X}{\lambda f}\left(1-\frac{\lambda f}{aX}\right)\right] = a \operatorname{sinc}(u-\pi) = -a\frac{\sin u}{u-\pi}$ D'où:	1.25
		$\underline{s(M)} = \frac{\alpha \underline{s_0} ab}{2} \left[\frac{1}{u} - \frac{1}{2(u+\pi)} - \frac{1}{2(u-\pi)} \right] \sin u = -\frac{\alpha \underline{s_0} ab}{2} \frac{\pi^2}{u^2 - \pi^2} \operatorname{sincu}$	
		$I_{t}(u) = \frac{I_{0}}{4} \frac{\pi^{4}}{(u^{2} - \pi^{2})^{2}} \operatorname{sinc}^{2} u$	
	2.b)	On remarque que: $\lim_{u \to 0} I(u) = I_0 / 4$ et $\lim_{u \to \pi} I_{\tau}(u) = I_0 / 16$	0.5
:		La présence du filtre : *Réduit d'un facteur de 1/4 la valeur du max principal.	0.5
		d'intensité par rapport à celui en l'absence du filtre. *Elargit la tache centrale de diffraction et atténue les max secondaires.	
3	5.a)	S_1 S_0 S_{0g} S_{1g} S_{1g} S_{1g}	0.5
3	.b) I		0.5
3	2)		0.5
3	.d) §		0.5
		$I_{1}(M) = I_{0} \operatorname{sinc}^{2} \left[\frac{\pi a}{\lambda f} (X + \beta f) \right]$	

3.e)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5
1.a)	B-Cohérences spatiale et temporelle	0.5
	$D = d \sin i = dX/f$ $2\pi Xd$	
	$\underline{s}_1(M) = \underline{s}_0 \text{ et } \underline{s}_2(M) = \underline{s}_1 e^{j\varphi} \text{ avec } \varphi = \frac{2\pi}{\lambda} \frac{Xd}{f}$	
1.b)	$\int_{S_1} (M) = \underline{S}_1 + \underline{S}_2 = \underline{S}_1 (1 + e^{j\varphi}) = \underline{S}_1 e^{j\frac{\varphi}{2}} (e^{-j\frac{\varphi}{2}} + e^{j\frac{\varphi}{2}}) = 2\underline{S}_1 \cos(\frac{\varphi}{2}) e^{j\frac{\varphi}{2}}$	
	$I(M) = 4I_0 \operatorname{sinc}^2 \left(\frac{\pi a X}{\lambda f}\right) \cos^2 \left(\frac{\pi X d}{f}\right)$	
	$I(M) = 2I_0 \operatorname{sinc}^2 \left(\frac{\pi a X}{\lambda f}\right) \left[1 + \cos\left(\frac{2\pi X d}{f}\right)\right]$	1
	$H = sinc^2(\frac{\pi aX}{2f})$: diffraction	0.25
	$G = 4\cos^{2}\left(\frac{\pi Xd}{f}\right) = 2\left[1 + \cos\left(\frac{2\pi Xd}{f}\right)\right]: \text{ interférence}$	0.25
1.c)	$X << \lambda f/a \implies H = sinc^2(\frac{\pi aX}{\lambda f}) \approx 1$	
	$I(M) = 2I_0 \left[1 + \cos \left(\frac{2 \pi Xd}{f} \right) \right]$	0.25
2 =)	C = 1.	0.23
2.a)	Quand e augmente le contraste diminue: brouillage. Pour une certaine valeur de e les franges sombres prennent la place des franges brillantes : inversion du contraste.	0.5
2.b)	$\delta = d(\sin i + \sin \beta) = d\left(\frac{X}{f} + \frac{x}{f}\right) \Rightarrow \delta = \frac{d}{f}(X + x)$	0.5
2.c)	Les éléments dx de la fente source sont incohérents entre eux, il n y a donc pas	
	d'interférence. L'intensité résultante en un point M de (E) est donc la somme des dI. $I_0 \sim 2\pi d$	
	$I = 2 \frac{I_0}{e} \int_{e/2}^{e/2} (1 + \cos(\frac{2\pi d}{\lambda f}(X + x))) dx$	
	$I = 2 I_0 \left[1 + \frac{\lambda f}{2\pi d e} \left(\sin \left(\frac{2\pi d}{\lambda f} (X + \frac{e}{2}) \right) - \sin \left(\frac{2\pi d}{\lambda f} (X - \frac{e}{2}) \right) \right) \right]$	
	$I = 2 I_0 \left[1 + \operatorname{sinc} \left(\frac{\pi d e}{\lambda f} \right) \cos \frac{2\pi d}{\lambda f} X \right]$	1
	$C = \left \operatorname{sinc}(\frac{\pi d e}{\lambda f}) \right $	
	Une première annulation du contraste correspond à $\frac{\pi d e_1}{\lambda f} = \pi \Rightarrow e_1 = \frac{\lambda f}{d}$	0.5

		AN. $e_1 = 0.6 \text{ mm}$.	0.25
		Cette valeur étant très faible, l'inversion du contraste ne pourra pas être observée à l'œil nu.	à 0.5
•	3.a)	En X=0 on a une frange brillante \forall λ. Au voisinage de X=0, on a une irisation des franges d'interférences. Au delà on observe le blanc d'ordre supérieur: brouillage de la figure d'interférence.	5
	3.b)	Les radiations éteintes correspondent à $\delta = p\lambda$ où p est un demi entier. $\delta = \frac{dX}{f} = p\lambda \implies \lambda = \frac{dX}{pf} \implies \lambda_1 \leqslant \frac{dX}{pf} \leqslant \lambda_2 \frac{dX}{\lambda_2 f} \leqslant p \leqslant \frac{dX}{\lambda_1 f}$ $3,99 \leqslant p \leqslant 7,5 \implies p \in \left\{4,5;5,5;6,5,7,5\right\} \text{ 4 radiations éteintes.}$	0.5
		C- <u>Diffraction par un réseau</u>	
	1)	$\sin\theta = p \lambda/d$	0.5
	2)	$\delta = d \sin\theta$; Soit une différence de phase : $\varphi = \frac{2\pi}{\lambda} d \sin\theta$	
		$\underline{S}_1(M) = S_0 ab \text{ sincu}$	
		$\underline{S}(M) = S_o ab \text{ sincu } (1 + e^{-j\varphi} + e^{-2j\varphi} + \dots + e^{-j(N-1)\varphi})$ L'amplitude résultante en M diffractée dans une direction donnée est alors :	
		amphitude resultante en wi diffractee dans une direction donnée est alors :	
		$\underline{S}(M) = \underline{S}(M) = S_o ab \text{ sincu } \sum_{1}^{N} e^{-j(n-1)\varphi} = S_o ab \text{ sincu } \frac{1 - e^{-jN\varphi}}{1 - e^{-j\varphi}}$	
		$\underline{S}(M) = S_o ab \ N \text{ sincu } e^{-j(N-1)\varphi/2} \frac{\sin N \frac{\varphi}{2}}{N \sin \frac{\varphi}{2}}$	1.5
		$I(M) = \underline{S}\underline{S}^*$ et en posant $I_0 = (NS_0ab)^2$, on obtient:	
		$I = I_o \left(\sin c \frac{\pi a X}{\lambda f} \right)^2 \left(\frac{\sin \frac{N d \pi X}{\lambda f}}{N \sin \frac{d \pi X}{\lambda f}} \right)^2$	
-	.a)	A l'ordre 0, il n y a pas de dispersion entre les maxima principaux car $\delta = 0 \ \forall \ \lambda$.	0.5
3	.b)	D'après la relation fondamentale des réseaux: $D_{ang} = \frac{d\theta}{d\lambda} = \frac{p}{d}$	0.25
		Pour augmenter la dispersion angulaire, on diminue le pas du réseau. En effet, si l'ordre p est élevé la diffraction limite l'intensité du terme d'interférence avec en plus le problème de chevauchement dès que l'ordre dépasse 2.	0.5
3.	c)	$\delta = \frac{dX}{f} = p \lambda$. Au premier ordre: $X_i = \frac{\lambda_i f}{d}$	0.5
		AN. $X_1 = 9.92$ cm; $X_2 = 10.92$ cm; $X_3 = 11.54$ cm.	0.75
3.	4)	Le pouvoir de résolution est $P_R = p N = p \frac{\ell}{d}$. Pour $p = 1$, $P_R = 4000$.	0.5
		$\lambda_{\text{moy}}/\Delta\lambda = 982, 2 < P_{\text{R}}$. $\Delta\lambda_{\text{min}} = \lambda_{\text{moy}}/P_{\text{R}} = 0,15 \text{ nm}$ or $\Delta\lambda > \Delta\lambda_{\text{min}} \Rightarrow \text{ les deux radiations sont donc résolues.}$	1

·	Partie A: Action d'un champ magnétique permanent sur une spire	· ·
A-I)		
1.a)	Le flux de \vec{B}_e à travers S est: $\Phi_e = \int \int \vec{B}_e . \vec{n} d\Sigma = B_0 \pi a^2 \cos \alpha$	0.5
	$\Phi_e = \Phi_0 \cos \alpha$	
1.b)	La fem induite par \vec{B}_e est: $e = -\frac{d\Phi_e}{dt} = \dot{\alpha} \Phi_0 \sin \alpha$	0.5
2 0)	Le champ électromoteur est défini par: $\vec{E}_m = \vec{v} \wedge \vec{B}_e$.	
2.a)	avec $\vec{v} = \vec{\omega} \wedge \overrightarrow{OM} = \dot{\alpha} \vec{u}_y \wedge (x \vec{u}_x + y \vec{u}_y + z \vec{u}_z) = \dot{\alpha} (z \vec{u}_x - x \vec{u}_z)$	
	$\vec{E}_m = -\alpha z \vec{u}_y$	0.5
	$e = \oint \vec{E}_m . \vec{d\ell} = \iint \vec{rot} \vec{E}_m . \vec{n} d\Sigma = \alpha B_0 \pi \alpha^2 \sin \alpha \Rightarrow \underline{e = \alpha \Phi_0 \sin \alpha}$	
2.b)	$e = \oint \vec{E}_m . \vec{d\ell} = \iint \vec{rot} \vec{E}_m . \vec{n} d\Sigma \Rightarrow \qquad \underbrace{e = \alpha \Phi_0 \sin \alpha}$	0.5
3)	La spire, en mouvement, est soumise à l'action d'un champ magnétique extérieur permanent; elle est donc le siège d'une fem induite et par conséquent elle sera parcourue par un courant i(t).	
4 ->	$e = -\frac{d\Phi}{dt} = \dot{\alpha} \Phi_0 \sin \alpha - L \frac{di}{dt} = Ri$. Si on immobilise S, alors $\dot{\alpha} = 0$.	
4.a)	$i(t) = I_1 \exp(-\frac{t - t_1}{\tau})$	0.5
	τ = L/R représente la constante de temps et s'exprime en seconde.	0.25
4.b)	Si à $t = t_2$, I_1 est réduit de moitié, alors $I_1 \exp(-\frac{t - t_1}{\tau}) = \frac{I_1}{2}$	
	$\Delta t = t_2 - t_1 = \tau \log 2 = L \log(2)/R.$	0.25
A-II 1.a)	$\frac{d\Phi}{dt} = -Ri = 0 \text{puisque } R = 0 \Rightarrow \Phi = \Phi_0 \cos \alpha + Li = Cste$ $\Phi = \Phi_0 \cos \alpha + Li = Cste = \Phi(t = 0) = \Phi_0$	0.5
	$\Phi = \Phi_0 \cos \alpha + Li = Cste = \Phi(t = 0) = \Phi_0$	
	$i(t) = \frac{\Phi_0}{L} (1 - \cos \alpha)$	0.5
1.b)	Au cours de cette opération i(t) augmente et il en est de même pour le champ magnétique induit.	0.25
	Loi de Lenz: cours.	0.5
	Au cours de l'opération, le flux de \vec{B}_e extérieur Φ_e diminue. Un courant induit i(t) est ainsi créé dans S engendrant ainsi un champ magnétique dont le flux à travers S augmente de façon a s'opposer à la diminution de Φ_e .	0.5

. 2)	$W_{m} = \frac{1}{2} L i_{\text{max}}^{2} = \frac{1}{2} \frac{\Phi_{0}^{2}}{L}$	0.5
. (3)	Mouvement quasistatique: $\vec{\Gamma}_L + \vec{\Gamma}_{Op} = \vec{0} \Rightarrow \vec{\Gamma}_{Op} = -\vec{\Gamma}_L = -\vec{m} \wedge \vec{B} = -i\pi a^2 \vec{n} \wedge \vec{B}$	0.75
	$\vec{\Gamma}_{Op} = \frac{\Phi_0^2}{L} \sin \alpha (1 - \cos \alpha) \vec{u}_y$	0.73
4)	$dW_{op} = \Gamma_{op} \ d\alpha$, au cours de l'opération α passe de 0 à $\pi/2$. Après intégration, on a: $W_{op} = \frac{1}{2} \frac{\Phi_0^2}{L}$	0.5
	$W_m = W_{op}$: le travail fourni par l'opérateur se trouve totalement sous forme d'énergie magnétique. Ce résultat était prévisible car il est conforme avec l'hypothèse négligeant toute forme de dissipation d'énergie.	0.25
	Partie B: Action d'un champ magnétique variable sur une spire fixe	
1.a)	RFD appliquée a D: $\vec{P} + \vec{T} = M z \vec{u}_z$	
-	Projection sur (Oz): $k(d-z-\ell_0)-Mg=Mz$	0.5
	A l'équilibre $z = z_0$, $Mg = k(d - z_0 - \ell_0)$	
1 6	L'équation du mouvement devient alors: $\frac{d^2z}{dt^2} + \frac{k}{M}(z - z_0) = 0$ On pose $Z = z - z_0$ et $\omega_0 = \sqrt{k/M}$	0.25
1.b)	$\frac{d^2Z}{dt^2} + \omega_0^2 Z = 0$	
	qui admet comme solution: $Z = z - z_0 = A \cos(\omega_0 t + \varphi)$ A et φ sont des constantes. Ainsi, D effectue indéfiniment, autour de sa position d'équilibre, des oscillations sinusoïdales de pulsation $\omega_0 = \sqrt{k/M}$.	0.25
2)	$\Phi_{d} = \int \int_{\Sigma} \vec{B}_{d} \cdot \vec{d\Sigma} = \oint_{S} \vec{A}_{d} \cdot \vec{d\ell} = 2 \pi a A_{\varphi}$ $\Phi_{d} = \frac{\mu_{0} m}{2a} (1 + z^{2} / a^{2})^{-3/2}$	0.5
3.a)	$\Phi = \frac{\sqrt{3}}{2a} \left(1 + z^2 / a^2\right)^{-1} + Li$	0.25
3.b)	La loi de Faraday: $e = -\frac{d\Phi}{dt}$ et la loi des mailles: $Ri = -\frac{d\Phi}{dt} = -\frac{d\Phi_e}{dz} \frac{dz}{dt} - L\frac{di}{dt}$ $Ri = -L\frac{di}{dt} - \frac{dz}{dt}h(z) \qquad (E1)$	0.5

_	avec: $h(z) = -\frac{3}{2} \frac{\mu_0 m}{a^3} \frac{z}{(1+z^2/a^2)^{5/2}}$	
4.a)	La spire conductrice S est soumise à l'action d'un champ magnétique variable dans le temps et est donc le siège d'un phénomène d'induction électromagnétique. Le couran induit dans S est la source d'un champ magnétique variable qui exerce sur D une force \vec{F} .	t 0.5
4.b)	$F = (\vec{m} \cdot grad)B = grad(\vec{m} \cdot B) = m \frac{\vec{n} \cdot \vec{u}_z}{\partial z} \vec{u}_z$ $\vec{F} = -\frac{3}{2} \frac{\mu_0 m}{a^3} \frac{z}{(1+z^2/a^2)^{5/2}} i \vec{u}_z = ih(z) \vec{u}_z$ En utilisant la même démarche que dans 1) et en tenant compte de la force \vec{F} "qu'exerce" S sur D, on obtient:	0.5
	$M \frac{d^2 Z}{dt^2} = -k Z + i h(z) $ (M1)	0.25
	En multiplions (E1) par i et (M1) par $\frac{dZ}{dt}$ et en faisant la somme, on obtient: $\frac{d}{dt} \left(\frac{1}{2} M \dot{Z}^2 + \frac{1}{2} L i^2 + \frac{1}{2} k Z^2 \right) = -R i^2$	0.5
. 5)	• $\frac{1}{2}M\dot{Z}^2$: énergie cinétique	0.25
	• $\frac{1}{2}Li^2$: énergie magnétique	0.25
	• $\frac{1}{2}$ k Z^2 : énergie élastique	0.25
	Le bilan est de la forme: $\frac{dE}{dt} = -Ri^2$ Le taux de variation de l'énergie du système se trouve dissipée par effet Joule.	0.25
6)	L'effet Joule dans S introduit un effet dissipatif; l'énergie totale du système va alors décroître au cours du temps. On peut donc raisonnablement penser qu'il y aurait une relaxation du système vers la situation d'équilibre où $z = z_0$ (Z=0), donc D va s'arrêter et par conséquent il n' y aura plus de courant dans S.	0.5
7.a)	$h(z) = h_0 \text{ et } L = 0 \text{ dans (E1) donne } i = -\frac{h(z)}{R} \frac{dz}{dt} = -\frac{h_0}{R} \frac{dz}{dt} = -\frac{h_0}{R} \frac{dZ}{dt}. i \text{ dans (M1)}:$ $M \frac{d^2Z}{dt^2} + \frac{h_0^2}{R} \frac{dZ}{dt} + k Z = 0$ (E)	0.5
	En posant $\rho = \frac{h_0^2}{2MR} = \text{et } \omega_0^2 = \frac{k}{M}$; l'équation caractéristique de (E) $r^2 + 2\rho r + \omega_0^2 = 0$	
	Comme le discriminant, $\Delta' = \rho^2 - \omega_0^2$, peut être positif, négatif ou nul on aura trois régimes différents.	
7 4	• $\Delta' < 0$, $Z(t) = A e^{-\rho t} \cos(\Omega t + \phi)$; A et ϕ sont des constantes	0.25
7.b)	• $\Delta' > 0$, $Z(t) = e^{-\rho t}$ (B $e^{\sqrt{\Delta'}t} + C e^{-\sqrt{\Delta'}t}$), B et C sont des constantes	0.25

_			
		 Δ' = 0, Z(t) = e^{-ρt} (D₁t + D₂); D₁ et D₂ sont des constantes Quel que soit le régime, à l'état final D s'immobilise et le courant dans S devient nul. En l'absence de S et de tout frottement, D effectue indéfiniment des oscillations 	0.25
		autour de sa position d'équilibre. En présence de S, l'effet Joule dans S introduit un effet dissipatif; l'énergie totale du système va alors décroître au cours du temps ce qui se traduit par l'immobilisation de D et par conséquent l'annulation du courant induit dans S.	0.5
		Si $\rho < \omega_0$ et en tenant compte des conditions initiales (Z = 0 et dZ/dt= V_0), alors la solution sera de la forme:	
		$Z(t) = \frac{V_0}{\sqrt{-\Delta'}} e^{-\rho t} \sin(\sqrt{-\Delta'} t)$	0.25
		Partie C- <u>Transfert thermique</u>	
		Régime permanent: $j_Q(z) = j_Q(z+dz) \Rightarrow d^2T/dz^2 = 0$	0.25
1	.a)	$T(z) = \frac{T_L - T_0}{L} z + T_0$	0.5
		La résistance thermique est $R = \frac{T_0 - T_L}{P}$, où P est la puissance thermique traversant la	
		section $S = \pi r^2$. $P = j_Q S = \lambda S \frac{T_0 - T_L}{L}$	
		$R = \frac{L}{\lambda S} = \frac{L}{\lambda \pi r^2}$	0.5
		Le fil est parcouru par I, on a donc une source thermique (effet Joule) à l'intérieur du conducteur dont la puissance est : $P = R_e I^2$, où R_e est la résistance électrique du conducteur de longueur dz et de section $S = \pi r^2$. Soit: $R_e = \frac{dz}{z^2}$	
1.	b) j	$ \frac{\gamma \pi r}{Q(z) S + R_e I^2 = j_Q(z+dz) S} \Rightarrow -\frac{dj_Q(z)}{r} + \frac{I^2}{r^2 + \frac{I^2}{r^2 + \frac{I^2}{r^2}}} = 0 $	1.25
		$\left[\frac{\mathrm{d}^2 \mathrm{T}(z)}{\mathrm{d}z^2} + \frac{\mathrm{I}^2}{\lambda \gamma (\pi r^2)^2} = 0\right]$	
2)		Si on tient compte en plus du rayonnement thermique, il faudrait rajouter au bilan récédent, la puissance rayonnée par la surface latérale du conducteur. Soit: $P_r = \sigma T^4 2\pi r dz$	
	jo	$Q(z) \pi r^{2} + R_{e} I^{2} = j_{Q}(z+dz) \pi r^{2} + \sigma T^{4} 2\pi r dz \Rightarrow -\frac{dj_{Q}(z)}{dz} + \frac{I^{2}}{\gamma (\pi r^{2})^{2}} = \frac{2\sigma}{r} T^{4}$	
		$\frac{\mathrm{d}^2 \mathrm{T}(z)}{\mathrm{d}z^2} - \frac{2\sigma}{\lambdar}\mathrm{T}^4 + \frac{\mathrm{I}^2}{\lambda\gamma(\pir^2)^2} = 0$	1.5