Definition 12.1 Ring.

A ring R is a set with two binary operations, addition (denoted by a + b) and multiplication (denoted by ab), such that for all a, b, c in R:

- 1. a + b = b + a.
- **2.** (a+b)+c=a+(b+c).
- **3.** There is an additive identity 0. That is, there is an element 0 in R such that a+0=a for all a in R.
- **4.** There is an element -a in R such that a + (-a) = 0.
- **5.** a(bc) = (ab)c.
- **6.** a(b+c) = ab + ac and (b+c)a = ba + ca.

Theorem 12.1 Rules of Multiplication.

Let a, b, and c belong to a ring R. Then

- 1. a0 = 0a = 0.
- **2.** a(-b) = (-a)b = -(ab).
- 3. (-a)(-b) = ab.
- **4.** a(b-c) = ab ac and (b-c)a = ba ca.

Furthermore, if R has a unity element 1, then

- 5. (-1)a = -a.
- **6.** (-1)(-1) = 1.

Theorem 12.2 Uniqueness of the Unity and Inverses.

If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.

Definition 12.2 Subring.

A subset S of a ring R is a subring of R if S is itself a ring with the operations of R.

Theorem 12.3 Subring Test.

A nonempty subset S of a ring R is a subring if S is closed under subtraction and multiplication – that is, if a-b and ab are in S whenever a and b are in S.

Definition 13.1 Zero Divisors.

A zero-divisor is a nonzero element a of a commutative ring R such that there is a nonzero element $b \in R$ with ab = 0.

Definition 13.2 Integral Domain.

An *integral domain* is a commutative ring with unity and no zero-divisors.

Theorem 13.1 Cancellation.

Let a, b, and c belong to an integral domain If $a \neq 0$ and ab = ac, then b = c.

Definition 13.3 Field.

A *field* is a commutative ring with unity in which every nonzero element is a unit.

Theorem 13.2 Finite Integral Domains are Fields.

A finite integral domain is a field.

Corollary 13.2.1 \mathbb{Z}_p Is a Field.

For every prime p, \mathbb{Z}_p , the ring of integers modulo p is a field.

Definition 13.4 Characteristic of a Ring.

The *characteristic* of a ring R is the least positive integer n such that nx = 0 for all x in R. If no such integer exists, we say that R has characteristic 0. The characteristic of R is denoted by char R.

Theorem 13.3 Characteristic of a Ring with Unity.

Let R be a ring with unity 1. If 1 has infinite order under addition, then the characteristic of R is 0. If 1 has order n under addition, then the characteristic of R is n.

Theorem 13.4 Characteristic of an Integral Domain.

The characteristic of an integral domain is 0 or prime.

Definition 14.1 Ideal.

A subring A of a ring R is called a (two-sided) ideal of R if for every $r \in R$ and every $a \in A$ both ra and ar are in A.

Theorem 14.1 Ideal Test.

A nonempty subset A of a ring R is an ideal of R if

- **1.** $a b \in A$ whenever $a, b \in A$.
- **2.** ra and ar are in A whenever $a \in A$ and $r \in R$.

Theorem 14.2 Existence of Factor Rings.

Let R be a ring and let A be a subring of R. The set of cosets $\{r + A \mid r \in R\}$ is a ring under the operations (s + A) + (t + A) = s + t + A and (s + A)(t + A) = st + A if and only if A is an ideal of R.

Remark

A proper ideal is an ideal I of some ring R such that it is a proper subset of R; that is, $I \subset R$.

Definition 14.2 Prime Ideal, Maximal Ideal.

A prime ideal A of a commutative ring R is a proper ideal of R such that $a, b \in R$ and $ab \in A$ imply $a \in A$ or $b \in A$. A maximal ideal of a commutative ring R is a proper ideal of R such that, whenever B is an ideal of R and $A \subseteq B \subseteq R$, then B = A or B = R.

Theorem 14.3 R/A Is an Integral Domain If and Only If A Is Prime.

Let R be a commutative ring with unity and let A be an ideal of R. Then R/A is an integral domain if and only if A is prime.

Theorem 14.4 R/A Is a Field If and Only If A Is Maximal.

Let R be a commutative ring with unity and let A be an ideal of R. Then R/A is a field if and only if A is maximal.

Definition 15.1 Ring Homomorphism, Ring Isomorphism.

A ring homomorphism ϕ from a ring R to a ring S is a mapping from R to S that preserves the two ring operations; that is, for all a, b in R,

$$\phi(a+b) = \phi(a) + \phi(b)$$
 and $\phi(ab) = \phi(a)\phi(b)$

A ring homomorphism that is both one-to-one and onto is called a ring isomorphism.

Theorem 15.1 Properties of Ring Homomorphisms.

Let ϕ be a ring homomorphism from a ring R to a ring S. Let A be a subring of R and let B be an ideal of S.

- **1.** For any $r \in R$ and any positive integer n, $\phi(nr) = n\phi(r)$ and $\phi(r^n) = (\phi(r))^n$.
- **2.** $\phi(A) = {\phi(a) \mid a \in A}$ is a subring of S.
- **3.** If A is an ideal and ϕ is onto S, then $\phi(A)$ is an ideal.
- **4.** $\phi^{-1}(B) = \{r \in R \mid \phi(r) \in B\}$ is an ideal of R.

- **5.** If R is commutative, then $\phi(R)$ is commutative.
- **6.** If R has a unity 1, $S \neq \{0\}$, and ϕ is onto, then $\phi(1)$ is the unity of S.
- 7. ϕ is an isomorphism if and only if ϕ is onto and $\ker \phi = \{r \in R \mid \phi(r) = 0\} = \{0\}.$

Theorem 15.2 Kernels Are Ideals.

Let ϕ be a ring homomorphism from a ring R to a ring S. Then $\ker \phi = \{r \in R \mid \phi(r) = 0\}$ is an ideal of R.

Theorem 15.3 First Isomorphism Theorem for Rings.

Let ϕ be a ring homomorphism from R to S. Then the mapping from $R/\ker \phi$ to $\phi(R)$, given by $r+\ker \phi \to \phi(r)$, is an isomorphism. In symbols, $R/\ker \phi \approx \phi(R)$. This theorem is often referred to as the Fundamental Theorem of Ring Homomorphisms.

Theorem 15.4 Ideals Are Kernels.

Every ideal of a ring R is the kernel of a ring homomorphism of R. In particular, an idea A is the kernel of the mapping $r \to r + A$ from R to R/A. This mapping is known as the natural homomorphism from R to R/A.

Theorem 15.5 Homomorphism from \mathbb{Z} to a Ring with Unity.

Let R be a ring with unity 1. The mapping $\phi: \mathbb{Z} \to R$ given by $n \to n \cdot 1$ is a ring homomorphism.

Corollary 15.5.1 A Ring with Unity Contains \mathbb{Z}_n or \mathbb{Z} .

If R is a ring with unity and the characteristic of R is n > 0, then R contains a subring isomorphic to \mathbb{Z}_n . If the characteristic of R is 0, then R contains a subring isomorphic to \mathbb{Z} .

Corollary 15.5.2 \mathbb{Z}_m Is a Homomorphic Image of \mathbb{Z} .

For any positive integer m, the mapping of $\phi: \mathbb{Z} \to \mathbb{Z}_m$ given by $x \to x \mod m$ is a ring homomorphism.

Corollary 15.5.3 A Field Contains \mathbb{Z}_p or \mathbb{Q} .

If \mathbb{F} is a field of characteristic p, then \mathbb{F} contains a subfield isomorphic to \mathbb{Z}_p . If \mathbb{F} is a field of characteristic 0, then \mathbb{F} contains a subfield isomorphic to the rational numbers.

Theorem 15.6 Field of Quotients.

Let D be an integral domain. Then there exists a field \mathbb{F} (called the field of quotients in D) that contains a subring isomorphic to D.

Definition 16.1 Ring of Polynomials over R.

Let R be a commutative ring. The set of formal symbols

$$R[x] = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid a_i \in R, n \in \mathbb{Z}^+\}$$

is called the ring of polynomials over R in the indeterminate x.

Two elements

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

and

$$b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

of R[x] are considered equal if and only if $a_i = b_i$ for all nonnegative integers i. (Define $a_i = 0$ when i > n and $b_i = 0$ when i > m.)

Definition 16.2 Addition and Multiplication in R[x].

Let R be a commutative ring and let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

and

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

belong to R[x]. Then

$$f(x) + g(x) = (a_s + b_s)x^s + (a_{s-1} + b_{s-1})x^{s-1} + \dots + (a_1 + b_1)x + a_0 + b_0$$

where s is the maximum of m and n, $a_i = 0$ for i > n, and $b_i = 0$ for i > m. Also,

$$f(x)g(x) = c_{m+n}x^{m+n} + c_{m+n-1}x^{m+n-1} + \dots + c_1x + c_0$$

where

$$c_k = a_k b_0 + a_{k-1} b_1 + \dots + a_1 b_{k-1} + a_0 b_k$$

for k = 0, ..., m + n.

Theorem 16.1 D an Integral Domain Implies D[x] an Integral Domain.

If D is an integral domain, then D[x] is an integral domain.

Theorem 16.2 Division Algorithm for $\mathbb{F}[x]$.

Let \mathbb{F} be a field and let $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$. Then there exist unique polynomials q(x) and r(x) in $\mathbb{F}[x]$ such that f(x) = g(x)q(x) + r(x) and either r(x) = 0 or $\deg r(x) < \deg g(x)$.

Corollary 16.2.1 Remainder Theorem.

Let \mathbb{F} be a field, $a \in \mathbb{F}$, and $f(x) \in \mathbb{F}[x]$. Then f(a) is the remainder in the division of f(x) by x - a.

Corollary 16.2.2 Factor Theorem.

Let \mathbb{F} be a field, $a \in \mathbb{F}$, and $f(x) \in \mathbb{F}[x]$. Then a is a zero of f(x) if and only if x - a is a factor of f(x).

Corollary 16.2.3 Polynomials of Degree n Have at Most n Zeros.

A polynomial of degree n over a field has at most n zeros, counting multiplicity.

Definition 16.3 Principal Ideal Domain (PID).

A principal ideal domain is an integral domain R in which every ideal has the form $\langle a \rangle = \{ra \mid r \in R\}$ for some a in R.

Theorem 16.3 $\mathbb{F}[x]$ Is a PID.

Let \mathbb{F} be a field. Then $\mathbb{F}[x]$ is a principal ideal domain.

Theorem 16.4 Criterion for $I = \langle g(x) \rangle$.

Let \mathbb{F} be a field, I a nonzero ideal in $\mathbb{F}[x]$, and g(x) an element of $\mathbb{F}[x]$. Then, $I = \langle g(x) \rangle$ if and only if g(x) is a nonzero polynomial of minimum degree in I.

Definition 17.1 Irreducible Polynomial, Reducible Polynomial.

Let D be an integral domain. A polynomial f(x) from D[x] that is neither the zero polynomial nor a unit in D[x] is said to be *irreducible over* D, whenever f(x) is expressed as a product f(x) = g(x)h(x), with g(x) and h(x) from D[x], then g(x) or h(x) is a unit in D[x]. A nonzero, nonunit element of D[x] that is not irreducible over D is called *reducible over* D.

Theorem 17.1 Reducibility Test for Degrees 2 and 3.

Let \mathbb{F} be a field. If $f(x) \in \mathbb{F}[x]$ and deg f(x) is 2 or 3, then f(x) is reducible over \mathbb{F} if and only if f(x) has a zero in \mathbb{F} .

Definition 17.2 Content of a Polynomial, Primitive Polynomial.

The *content* of a nonzero polynomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, where the a'a are integers, is the greatest common divisor of the integers $a_n, a_{n-1}, \ldots, a_0$. A *primitive polynomial* is an element of $\mathbb{Z}[x]$ with content 1.

Lemma 17.2 Gauss's Lemma.

The product of two primitive polynomials is primitive.

Theorem 17.3 Reducibility over \mathbb{Q} Implies Reducibility over \mathbb{Z} .

Let $f(x) \in \mathbb{Z}[x]$. If f(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z} .

Theorem 17.4 Mod p Irreducibility Test.

Let p be a prime and suppose that $f(x) \in \mathbb{Z}[x]$ with $\deg f(x) \geq 1$. Let $\overline{f}(x)$ be the polynomial in $\mathbb{Z}_p[x]$ obtained from f(x) by reducing all the coefficients of f(x) modulo p. If $\overline{f}(x)$ is irreducible over \mathbb{Z}_p and $\deg \overline{f}(x) = \deg f(x)$, then f(x) is irreducible over \mathbb{Q} .

Theorem 17.5 Eisenstein's Criterion.

Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$$

If there is a prime p such that $p \nmid a_n, p \mid a_{n-1}, \ldots, p \mid a_0 \text{ and } p^2 \nmid a_0, \text{ then } f(x) \text{ is irreducible over } \mathbb{Q}$.

Corollary 17.5.1 Irreducibility of pth Cyclotomic Polynomial.

For any prime p, the pth cyclotomic polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible over \mathbb{Q} .

Theorem 17.6 $\langle p(x) \rangle$ Is Maximal If and Only If p(x) Is Irreducible.

Let \mathbb{F} be a field and let $p(x) \in \mathbb{F}[x]$. Then $\langle p(x) \rangle$ is a maximal ideal in $\mathbb{F}[x]$ if and only if p(x) is irreducible over \mathbb{F} .

Corollary 17.6.1 $\mathbb{F}[\mathbf{x}]/\langle \mathbf{p}(\mathbf{x}) \rangle$ Is a Field.

Let \mathbb{F} be a field and p(x) be an irreducible polynomial over \mathbb{F} . Then $\mathbb{F}[x]/\langle p(x)\rangle$ is a field.

Corollary 17.6.2 $p(x) \mid a(x)b(x)$ Implies $p(x) \mid a(x)$ or $p(x) \mid b(x)$.

Let \mathbb{F} be a field and let $p(x), a(x), b(x) \in \mathbb{F}[x]$. If p(x) is irreducible over \mathbb{F} and $p(x) \mid a(x)b(x)$, then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.

Theorem 17.7 Unique Factorization in $\mathbb{Z}[x]$.

Every polynomial in $\mathbb{Z}[x]$ that is not the zero polynomial or a unit in $\mathbb{Z}[x]$ can be written in the form $b_1b_2 \dots b_sp_1(x)p_2(x)\dots p_m(x)$, where the b_i 's are irreducible polynomials of degree 0 and the $p_i(x)$'s are irreducible polynomials of positive degree. Furthermore, if

$$b_1b_2...b_sp_1(x)p_2(x)...p_m(x) = c_1c_2...c_tq_1(x)q_2(x)...q_n(x)$$

where the b_i 's and the c_i 's are irreducible polynomials of degree 0 and the $p_i(x)$'s and $q_i(x)$'s are irreducible polynomials of positive degree, then s=t, m=n, and, after renumbering the c's and q(x)'s, we have $b_i=\pm c_i$, for $i=1,\ldots,s$, and $p_i(x)=\pm q_i(x)$, for $i=1,\ldots,m$.