Applications linéaires - exercices supplémentaires

Exercice 1 ($^{\circ}$) Soit E un \mathbb{K} -espace-vectoriel, f et g des endomorphismes de E. Montrer que si $f \circ g = g \circ f$, alors $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont stables par g.

Exercice 2 () Soit $E = \mathscr{C}^0(\mathbb{R}, \mathbb{R})$, $\varphi : f \mapsto \int_0^x tf(t) dt$. Montrer que φ est un endomorphisme. Est-il injectif?

Exercice 3 ($^{\infty}$) Montrer que $\{(-1,1,1),(1,-1,1),(1,1,-1)\}$ est une base de \mathbb{R}^3 et déterminer les coordonnées du vecteur (8,4,2) dans cette base.

Exercice 4 ($\stackrel{\triangleright}{\triangleright}$) Soient E un \mathbb{K} -ev et φ et ψ deux formes linéaires sur E non nulles. Montrer qu'il existe $x \in E$ tel que $\varphi(x).\psi(x) \neq 0$.

Exercice 5 ($\stackrel{\triangleright}{\triangleright}$) Soient E un \mathbb{K} -ev et p un projecteur de E. Soit $\lambda \in \mathbb{K}$. (Id $+\lambda p$) est-elle inversible? Si oui, déterminer son inverse.

Exercice 6 ($\stackrel{\triangleright}{\longrightarrow}$) Soit $E = \mathscr{C}^{\infty}([-1,1],\mathbb{R})$. Pour $n \in \mathbb{N}$, on note φ_n la forme linéaire sur E qui à f associe $f^{(n)}(0)$. La famille des $(\varphi_n)_{n \in \mathbb{N}}$ est-elle libre ?