Práctica 07 Operaciones Aritméticas

Alumnos:

- Alanís Ramírez Damián

- Salgado Gallegos Jesús

Grupo: 2CM3

1) Objetivo general

El alumno diseñará circuitos aritméticos programando en lenguaje VHDL y programando su GAL 22V10 para verificar el resultado.

2) Introducción Teórica

intos de Diseño Digitar	
Funciones	
- E(A, B, C)= & (1,2,4,7) = ABC+	ABC+ ABC+ ABC
AB AB AB AB	
AB AB AB AB	0
C 0 12 6 14	
C 1) 3 (1) s	
= ABC+ ABC+ ABC+ ABC	
A(BC+BE)+A(BC+BC)	
E(A,B,C)=A(BOC)+A(BOC)	
(A/B/C) = A & B & C	
- (out = & (3,5,6,7)	
AB min	
AB AB AB AB	
C 0 2 6 4	
6 0 0 0	
COUT = AB + BC + AC	
(DO) = 110 + BC + MC	

11010[] =015-

3) Materiales empleados

- ✓ 1 Circuito Integrado GAL22V10
- √ 15 LEDS de colores
- ✓ 15 Resistores de 330Ω
- \checkmark 10 Resistores de 1KΩ
- √ 1 Dip switch de 8
- ✓ Alambre telefónico
- √ 1 Tablilla de Prueba (Protoboard)
- √ 1 Pinzas de punta
- √ 1 Pinzas de corte
- ✓ Cables Banana-Caimán (para alimentar el circuito)

4) Equipo empleado

- ✓ Multímetro
- ✓ Fuente de Alimentación de 5 Volts
- ✓ Manual de MOTOROLA, "FAST and LS TTL"
- ✓ Programador Universal

5) Desarrollo Experimental y Actividades

5.1.- Medio Sumador

a) Diseñe y dibuje el siguiente circuito lógico para obtener sus ecuaciones lógicas.

- b) Implemente su solución usando VHDL, coloque su informe de pines RPT.
- c) Arme su circuito y compruebe su tabla de verdad.

#	a	b	Suma	Carry
0	0	0	0	0
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1

5.2.- Sumador Completo

a) Diseñe y dibuje el siguiente circuito lógico para obtener sus ecuaciones lógicas.

- b) Implemente su solución usando VHDL, coloque su informe de pines RPT.
- c) Arme su circuito y compruebe su tabla de verdad.

#	a	b	Cin	Suma	Cout
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	0	1
7	1	1	1	1	1

5.3.- Medio Restador

a) Diseñe y dibuje el siguiente circuito lógico para obtener sus ecuaciones lógicas.

- b) Implemente su solución usando VHDL, coloque su informe de pines RPT.
- c) Arme su circuito y compruebe su tabla de verdad.

#	х	у	Resta	Préstamo
0	0	0	0	0
1	0	1	1	1
2	1	0	1	0
3	1	1	0	0

5.4.- Restador Completo

a) Diseñe y dibuje el siguiente circuito lógico para obtener sus ecuaciones lógicas.

- b) Implemente su solución usando VHDL, coloque su informe de pines RPT.
- c) Arme su circuito y compruebe su tabla de verdad.

#	X	y	Pin	Resta	Pout
0	0	0	0	0	0
1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	0
6	1	1	0	0	0
7	1	1	1	1	1

Código VHDL, RPT y circuito en protoboard (Primera parte)

Código

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY ARITMETICOS IS
       PORT(A, B, C: IN STD_LOGIC;
       SEMISUMA, SUMA, SEMIRESTA, RESTA, MULTI, C1, C2, C3, C4: OUT STD_LOGIC);
END ARITMETICOS;
ARCHITECTURE CIRCUITOS OF ARITMETICOS IS
BEGIN
       SEMISUMA <= A XOR B;
       C1 <= A AND B;
       SUMA <= A XOR B XOR C;
       C2 <= (A AND B) OR (B AND C) OR (A AND C);
       SEMIRESTA <= A XOR B;
       C3 <= (NOT A) AND B;
       RESTA <= A XOR B XOR C;
       C4 \le ((NOT A) AND B) OR (B AND C) OR ((NOT A) AND C);
END CIRCUITOS;
```

RPT

C22V10

```
24 * not used
       c = | 1|
       b = 2
                                                 23 = c4
                                                 |22|= semisuma
       a = 3
not used * 4
                                                 |21|= resta
not used * 5
                                                 20 = c1
not used * 6
                                                 19 * not used
                                                 18 * not used
not used * | 7|
not used * | 8
                                                 |17|= c3
not used * 9
                                                 |16| = semiresta
not used * 10
                                                 15 = c2
not used * |11|
                                                 |14|= suma
not used * 12
                                                 13 * not used
```

Fundamentos de Diseño Digital Circuito en protoboard

5.5.- Sumador Completo

- a) Diseñe en VHDL y arme el siguiente circuito.
- b) Compruebe su tabla de verdad.

Verifique algunas sumas que usted establezca y confirme sus resultados

#	Cin	А3	A2	A1	Α0	В3	B2	B1	В0	Cout	Σ3	Σ2	Σ1	Σ0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	1	0	0	0	1	0
2	0	0	0	1	0	0	0	1	0	0	0	1	0	0
3	0	0	0	0	1	0	0	0	0	0	0	0	0	1
4	0	1	0	0	1	0	1	0	0	0	1	1	0	1
5	0	0	1	1	1	1	0	0	0	0	1	1	1	1
6	0	1	0	0	0	1	0	0	0	1	0	0	0	0
7	0	1	1	1	0	1	0	0	0	1	0	1	1	0
8	0	1	1	0	0	0	0	1	0	0	1	1	1	0
9	0	0	1	0	0	0	1	1	1	0	1	0	1	1
10	0	0	0	1	0	1	0	0	0	0	1	0	1	0

Código VHDL, RPT y circuito en protoboard (Segunda parte)

Código

```
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY SUMA IS
       PORT(A,B:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
                S:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
                COUT: OUT STD_LOGIC);
END SUMA;
ARCHITECTURE PARALELA OF SUMA IS
SIGNAL C: STD_LOGIC_VECTOR(2 DOWNTO 0);
ATTRIBUTE SYNTHESIS_OFF OF C: SIGNAL IS TRUE;
BEGIN
       S(0) \le A(0) XOR B(0);
       C(0) \le A(0) \text{ AND } B(0);
       S(1) \le (A(1) XOR B(1)) XOR C(0);
       C(1) \le (A(1) AND B(1)) OR (C(0) AND (A(1) XOR B(1)));
       S(2) \le (A(2) XOR B(2)) XOR C(1);
       C(2) \le (A(2) \text{ AND } B(2)) \text{ OR } (C(1) \text{ AND } (A(2) \text{ XOR } B(2)));
       S(3) \le (A(3) XOR B(3)) XOR C(2);
```

 $\mathsf{COUT} \mathrel{<=} (\mathsf{A}(3) \; \mathsf{AND} \; \mathsf{B}(3)) \; \mathsf{OR} \; (\mathsf{C}(2) \; \mathsf{AND} \; (\mathsf{A}(3) \; \mathsf{XOR} \; \mathsf{B}(3)));$

END PARALELA;

RPT

C22V10

b(3) = 1 1 b(2) = 2	24 * not used 23 = s(2)
b(1) = 3 b(0) = 4 a(3) = 5	22 = cout 21 = (c_1) 20 = (c_0)
a(2) = 6 a(1) = 7	19 * not used 18 * not used
a(0) = 8 not used * 9 not used * 10	17 = s(0) 16 = (c_2) 15 = s(1)
not used * 11 not used * 12	14 = s(3) 13 * not used

Circuito en protoboard

6) Conclusiones Individuales.

Con esta práctica cumplimos el objetivo, pues diseñamos circuitos aritméticos en VHDL y logramos programarlos exitosamente en la GAL, pudiendo observar y comprobar su funcionamiento en un circuito real. Entender los circuitos aritméticos es sumamente importante para nosotros, pues nos da nociones de como una computadora efectúa operaciones que nosotros consideramos muy simples, como la suma y la resta.

- 7) Bibliografía.
- 8) ANEXOS.

