Q1. Un état final et un état qui n'est pas final ne peuvent pas être équivalents.

A : vrai **B** : faux

Q6. Pour obtenir un automate qui reconnaît l'union de deux langages par un automate produit il faut que les deux automates utilisés soient complets.

A : vrai **B** : faux

Q11. Si M est un langage rationnel et $L \cup M$ est rationnel alors L est rationnel.

A: vrai **B**: faux

98%

Q2. Le nombre de relations d'équivalences différentes successives qu'on obtient à partir de \approx_0 peut être supérieur ou égal au nombre d'états.

A: vrai **B**: faux 0/10/6

Q7. L'ensemble des automates finis n'est pas dénombrable.

A: vrai **B**: faux 98%

Q12. Si toute substitution d'un langage L par des langages rationnels est un langage rationnel alors le langage L est rationnel.

A : vrai **B** : faux

96%

Q3. L'algorithme de minimisation se termine dès que deux équivalences successives sont égales.

A : vrai **B** : faux

94%

Q8. L'ensemble des langages rationnels est dénombrable.

A : vrais **B** : faux

88%

Q13. Si une substitution d'un langage L par des langages rationnels est un langage rationnel alors le langage L est rationnel.

A: vrai **B**: faux

92%

Q4. La partition initiale dans l'algorithme de minimisation consiste à séparer l'état initial des autres états.

A: vrai **B**: faux 92%

Q9. Le nombre de quotients gauches du langage

$$L=\{0^n1^n \mid n \ge 0\}$$

est fini. **A**: vrai **B**: faux

79%

Q14. Si $L_1 \subset L_2$ et L_2 est rationnel alors L_1 est aussi rationnel.

A: vrai **B**: faux

98%

Q5. Si l'état final q n'appartient pas à la classe d'équivalence de l'état final p ($q \notin [p]$), alors il existe une lettre a de Σ telle que $\delta(q,a) \notin [\delta(p,a)]$.

A : vrai B : faux 96%

Q10. Le lemme de la pompe permet de prouver qu'un langage est rationnel.

A : vrai **B** : faux

96%

Q15. Si $L_1 \subset L_2$ et L_2 est fini alors L_1 est rationnel.

A : vrai **B** : faux

85%

98%

85%