Programming Lab

Parte 10

Lavorare veramente 3: valutiamo un modello

Laura Nenzi

- C'è una differenza tra aderire ai dati e fare buone previsioni
- Per valutare quanto bene un modello aderisca ai dati calcolo direttamente l'errore medio sui dati
- Per valutare un modello predittivo invece si adotta un approccio che prevede la divisione dei dati in due parti:
 - o una parte per fittare il modello, <u>fit (training) dataset</u> *, circa 70-80% dei dati
 - o una parte per testarlo, evaluation (test) dataset, circa 20-30% dei dati

^{*}a volte si usa anche un ulteriore validation set per fittare i dati rispetto all'errore ma non ne parliamo qui

Figura 7. Possibili risultati di un fit

- N.B.: anche se noi abbiamo visto come esempio un modello che non richiedeva un fit, nella realtà praticamente tutti i modelli richiedono il fit e quindi ha senso dividere il dataset in questo modo
- Per esempio, se ho 36 mesi di dati di vendite di shampoo, ne userò solo i primi 24 per il fit* mentre ne estrarrò gli ultimi 12 per valutare il modello.
- Quindi per "vedere come va" il modello sul test set vado a confrontare le sue predizioni con i dati veri.

 Il confronto fra le predizioni del modello ed i dati veri sul dataset di test lo si fa calcolando la differenza fra la predizione stessa ed il dato, ovvero calcolando l'errore.

- Infine si fa la media degli errori per avere un'idea di come va genericamente il modello su tutto il dataset di test.
- Nota: esistono metodi molto più sofisticati per valutare i modelli, questa è la base.

dati veri

	Mese	Valore reale	Predizione	Errore
Esempio	Maggio	8	-	-
Lacinpio	Giugno	19	-	-
	Luglio	31	-	-
fit dataset \prec	Agosto	41	-	-
	Settembre	50	-	-
	Ottobre	52	-	-
	Novembre	60	-	-
	Dicembre	67	-	-
	Gennaio	72	-	-
evaluation dataset	Febbraio	72	-	-
	Marzo	67	?	?
	Aprile	72	?	?

	Mese	Valore reale	Predizione	Errore
Esempio	Maggio	8	-	-
	Giugno	19	-	-
	Luglio	31	-	-
fit dataset	Agosto	41	-	-
	Settembre	50	-	-
	Ottobre	52	-	-
	Novembre	60	-	-
	Dicembre	67	-	-
evaluation dataset	Gennaio	72	-	-
	Febbraio	72	-	-
	Marzo	67	65	2
	Aprile	72	?	?

	Mese	Valore reale	Predizione	Errore
Esempio	Maggio	8	-	-
	Giugno	19	-	-
	Luglio	31	-	-
fit dataset \prec	Agosto	41	-	-
	Settembre	50	-	-
	Ottobre	52	-	-
	Novembre	60	-	-
	Dicembre	67	-	-
evaluation dataset	Gennaio	72	-	-
	Febbraio	72	-	-
	Marzo	67	65	2
	Aprile	72	76	4

Esercizio (1)

Valutate i due modelli **TrendModel** e **FitTrendModel** sui dati delle vendite dello shampoo.

Dovete implementare il metodo *evaluate()* e modificare i modelli aggiungendo la lunghezza della finestra come parametro dei loro __init__(), per poi utilizzarla dalla *evaluate()*.

Dove posizionare il metodo *evaluate()* e come questo deve comportarsi è descritto nella slide successiva.

Esercizio (2)

Il metodo *evaluate()* va aggiunto alla classe **TrendMode1** o direttamente nella classe base **Mode1**, e deve:

- accettare in input i dati su cui effettuare la valutazione del modello
- fare il fit del modello sul 70% dei dati, se questo lo provede
- chiamare opportunamente la predict() per generare le predizioni su cui fare i confronti
- tornare l'errore medio (un numero).

Nota: per vedere se il modello supporta il fit, si può semplicemente "provare" con un try-except.