I. Постройте интерполяционные многочлены Ньютона и Лагранжа для функции заданных таблично.

1		
J	L	

i	0	1	2	3	4	5
X_{i}	-1.0	0.0	1.0	2.0	3.0	4.0
y_i	0.86603	1.0	0.86603	0.50	0.0	-0.50

2.

i	0	1	2	3	4	5
X_{i}	-0.9	0.0	0.9	1.8	2.7	3.6
y_i	-0.36892	0.0	0.36892	0.85408	1.7856	6.3138

3.

i	0	1	2	3	4	5
x_i	1.0	1.9	2.8	3.7	4.6	5.5
y_i	2.4142	1.0818	0.50953	0.11836	-0.24008	-0.66818

II. На отрезке [A; B] заданы функций:

1.
$$y = x^3 - 6.5x^2 + 11x - 4$$
;

2.
$$y = 3 \cos \frac{\pi x}{8}$$
;

3.
$$y = e^{-\frac{x}{4}} \sin\left(\frac{x}{3}\right)$$
;

$$4. \ y = 8xe^{-\frac{x^2}{12}}$$

- 1. На заданном отрезке задайте сетку из N узлов и для каждой функций сгенерируйте таблицу значений в этих узлах сетки. Для каждой сгенерированной табличной функции постройте интерполяционный полином. Постройте графики исходных функции и построенного интерполяционного полинома.
- 2. Для каждой табличной функции из предыдущего пункта реализуйте нахождение значения функции в точке, которая не является узлом сетки. Вычисления организуйте «на лету» без прямого вычисления финального интерполяционного полинома. Вычислите разницу между найденным значением и реальным значением функции в точке. Выполните вычисления для интерполяционных полиномов в форме Лагранжа и Ньютона.

Задайте N = 3, 4, 8, 10, 16, 32, 64, 256.

A	В
2	4
0.5	3
4	10
0	12

- III. Для поиска приближенного решения в каждом задании используйте явную схему Эйлера и схему Рунге-Кутты 4-го порядка. Сравните полученные результаты.
 - 1. А) Постройте график x = x(t) приближенного решения задачи Коши:

$$\begin{cases} \frac{dx(t)}{dt} = 0.1 - \frac{3x(t)}{1000 + t}.\\ x(0) = 50 \end{cases}$$

В) Для T>0 с точностью $\varepsilon=10^{-n}, n=2,3,4,$ методом прямоугольников вычислите определенный интеграл:

$$\int_{0}^{T} x(t) dt,$$

где x(t) — решение задачи из пункта А. Для определения шага используйте правило Рунге. Сравните численное значение с точным значением интеграла при некотором T.

2. А) Постройте график y = y(t) и z(t) = m - y(t) для приближенного решения задачи Коши:

$$\begin{cases} y'(t) = k(m - y(t))y(t) \\ y(0) = 1000 \end{cases}, \quad m = 100000, \quad k = 2 \times 10^{-6}.$$

В) Для T>0 с точностью $\varepsilon=10^{-n}, n=2,3,4,$ методом трапеций вычислите определенный интеграл:

$$\int_{0}^{T} y(t) dt,$$

где y(t) — решение задачи из пункта А. Для определения шага используйте правило Рунге. Сравните численное значение с точным значением интеграла при некотором T.

3. А) Постройте график v = v(t) для $t \in [0; 1]$ приближенного решения задачи Коши:

$$\begin{cases} mv'(t) = -mg - kv(t)|v(t)| \\ v(0) = 8 \end{cases}, \quad g = 9.8, \quad k = 0.002.$$

В) Для T > 0 с точностью $\varepsilon = 10^{-n}, n = 2, 3, 4, 5, 6, 7, 8, 9$, методами прямоугольников и трапеций вычислите определенный интеграл:

$$\int_{0}^{T} v(t) dt,$$

где v(t) — решение задачи из пункта А. Для определения шага используйте правило Рунге.

4. Постройте график x = x(t) для $t \in [0; 0.5]$ приближенного решения задачи Коши:

женного решения задачи коши:
$$\begin{cases} \frac{dx}{dt} = k \left(n_1 - \frac{x}{2} \right)^2 \left(n_2 - \frac{x}{2} \right)^2 \left(n_3 - \frac{3x}{4} \right)^3, & k = 6.22 \times 10^{-19}, & n_1 = n_2 = 2 \times 10^3, \\ x(0) = 0 & n_3 = 3 \times 10^3. \end{cases}$$

5. Найдите приближенное решение задачи Коши для системы обыкновенных дифференциальных уравнений:

$$\begin{cases} x_1'(t) = k_1 x_1(t) - k_2 x_1(t) x_2(t) \\ x_2'(t) = k_3 x_1(t) x_2(t) - k_4 x_2(t)' \end{cases} x_1(0) = x_2(0) = 500, \quad k_1 = 3, \quad k_2 = 0.002, \\ k_3 = 0.0006, \quad k_4 = 0.5.$$

Постройте графики функции $x_1(t)$ и $x_2(t)$, а также график на плоскости x_1Ox_2 . Попробуйте подбирать параметры таким образом, чтобы получать качественно новые графики.

6. Сравните приближенные решения двух задач Коши с одинаковыми начальными условиями $\theta(0) = \frac{\pi}{6}$, $\theta'(0) = 0$:

1.
$$\theta'' + \frac{g}{L}\sin\theta = 0$$
,

2.
$$\theta^{\prime\prime} + \frac{g}{L}\theta = 0$$
,

при g=32.17. Постройте графики $\theta=\theta(t)$ и (θ,θ') .