(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 June 2002 (13.06.2002)

PCT

(10) International Publication Number WO 02/45485 A1

(51) International Patent Classification7: A01H 5/00, C12N 15/11, 15/29, 15/54

Rosella Street, Nicholls, Australian Capital Territory 2913 (AU).

- (21) International Application Number: PCT/AU01/01580
- (22) International Filing Date: 7 December 2001 (07.12.2001)

English

(26) Publication Language:

English

(30) Priority Data:

(25) Filing Language:

PR 1975 60/251,852 8 December 2000 (08.12.2000) AU 8 December 2000 (08.12.2000) US

- (71) Applicant (for all designated States except US): COM-MONWEALTH SCIENCTIFIC AND INDUSTRIAL RESEARCH ORGANISATION [AU/AU]; Limestone Avenue, Campbell, Australian Capital Territory 2601 (AU).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): LLWELLYN, Danny [AU/AU]; 6 Myall Street, O'Connor, Australian Capital Territory 2602 (AU). FURBANK, Robert [AU/AU]; 35 Gillespie Street, Weetangara, Australian Capital Territory 2614 (AU). RUAN, Yong-Ling [AU/AU]; 9

(74) Agents: OLIVE, Mark, R. et al.; FB RICE & CO. 139

Rathdowne Street, Carlton, Victoria 3053 (AU).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

45485 A1

(54) Title: MODIFICATION OF SUCROSE SYNTHASE GENE EXPRESSION IN PLANT TISSUE AND USES THEREFOR

(57) Abstract: Methods and means are provided to modulate fibre quality in fibre-producing plants, such as cotton by modulating sucrose synthase activity and/or expression in such plants. The methods and means may also be used to obtain plants with seedless fruits or male-sterile plants.

1

Modification of sucrose synthase gene expression in plant tissue and uses therefor

Technical Field

The present invention relates to modifying targeted gene expression in plants to obtain a desired effect in the plant.

5

10

15

20

30

Background Art

Sucrose synthase (SuSy) is a key enzyme in the breakdown of sucrose in all plant sink tissue, including grain and fruit and has been extensively studied in many plants. Only relatively recently, however, has this protein and gene been characterised from cotton. The full length (2625 bp) of cotton sucrose synthase (SuSy) was isolated by Perez-Grau, L and Delmer, D in UC, Davis (accession number U73588) in May 1996. A 2030 bp fragment of the same cDNA with 595 bp missing at the 5' end was isolated by the same group in 1994 and was given to Prem Chourey in USDA/ARS for collaborative research. However, no evidence was available at that time regarding the role of this SuSy gene in cotton fibre/seed development, although it had been speculated (Amor *et al.*, 1995) that part of the fibre localised SuSy could associate with cellulose synthase playing a role to channel carbon to this enzyme.

Evidence has been obtained that the expression of the SuSy gene could be important not only for cellulose synthesis but also for fibre cell initiation (thus may control fuzz) and a model on how sucrose is partitioned and competed for between fibre, seed coat and embryos of the cotton seed was proposed (Ruan et al 1997 Plant Physiol. 115, 375-385; Ruan and Chourey 1998 Plant Physiol. 118, 399-406). More recently, the present inventors obtained further evidence supporting the hypothesis that SuSy plays a key role in mobilising sucrose into initiating fibre cells (Ruan et al., 2000 Aust. J. Plant Physiol. 27, 795-800).

The art is thus deficient in providing methods and means for altering the fibre development and properties in plants, particularly cotton, through alteration of

2

sucrose synthase levels in cells of the plants. The present inventors have now shown that it is possible to modify one or more fibre characteristics and/or fibre content by modifying SuSy gene expression, particularly by modifying SuSy expression in transgenic cotton.

5

10

20

25

30

These and other problems are solved as described hereinafter in the different embodiments and claims.

Throughout this specification, unless the context requires otherwise the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps but not the exclusion of any other element, integer or step or group of elements, integers or steps.

15 Summary of the invention.

The invention provides a method for altering fibre development or properties of a fibre producing plant, preferably a cotton plant, such as, for example, a cotton plant of the variety fribremax and particularly the FibermaxTM variety, said method comprising the steps of providing cells of said plants with a chimeric gene comprising the following operably linked DNA fragments: a plant operable promoter, preferably a subterranean clover stunt virus promoter; a coding region which when transcribed yields an RNA said RNA being capable of reducing the expression of an endogenous sucrose synthase gene, preferably an endogenous sucrose synthase gene expressed in fibre cells, preferably fibre initial cells, or capable of being translated into an active sucrose synthase protein; and transcription termination and polyadenylation signals that function in the plant cells.

In the embodiments where the RNA is capable of being translated into an active sucrose synthase protein preferred coding regions comprise a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2;

3

(b) a nucleotide sequence comprising the nucleotide sequence of SEQ ID NO: 1; (c) a nucleotide sequence having at least 70% sequence identity with the nucleotide sequence of (a) or (b); and (d) a nucleotide sequence hybridizing under stringent conditions with the complement of (a) or (b); and (e) a fragment of any one of (a) through (d) encoding an active sucrose synthase.

In the embodiments where the RNA is capable of reducing the expression of an endogenous sucrose synthase gene, preferred coding regions comprise a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence comprising at least about 19 or 25 contiguous nucleotides having at least 70% sequence identity to a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2 or the complement thereof; and (b) a nucleotide sequence comprising at least about 19 or 25 contiguous nucleotides having at least 70% sequence identity from a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 1 or the complement thereof. More particularly, the coding region comprises the nucleotide sequence of SEQ ID NO: 1 from the nucleotide at about position 2208 to the nucleotide at about position 2598, or the complement thereof. The coding region may comprise simultaneously both sense and antisense nucleotide sequences capable of forming a double stranded RNA molecule.

10

15

20

- 25

30

It is another objective of the invention to provide a method for improving fibre yield in a fibre producing plant, comprising the steps of providing cells of said plant with a chimeric gene comprising the following operably linked DNA fragments: (a) a plant operable promoter; (b) a DNA region capable of being translated into an active sucrose synthase protein; and (c) transcription termination and polyadenylation signals that function in said plant cells.

The invention also provides a method for improving fibre quality in a fibre producing plant, comprising the steps of providing cells of said plant with a

4

chimeric gene comprising the following operably linked DNA fragments: (a) a plant operable promoter; (b) a DNA region capable of being translated into an active sucrose synthase protein; and (c) transcription termination and polyadenylation signals that function in said plant cells.

5

10

15

20

In yet another embodiment of the invention a method is provided for increasing seed size in a fibre producing plant, comprising the steps of providing cells of said plant with a chimeric gene comprising the following operably linked DNA fragments: (a) a seed-specific promoter; (b) a DNA region capable of being translated into an active sucrose synthase protein; and (c) transcription termination and polyadenylation signals that function in said plant cells.

The invention also relates to fibre producing plants, particularly cotton plants, comprising in their genome a chimeric DNA comprising the following operably linked DNA fragments: (a) a plant operable promoter; (b) a coding region which when transcribed yields an RNA, said RNA being capable of reducing the expression of an endogenous sucrose synthase gene, preferably an endogenous sucrose synthase gene expressed in fibre cells, preferably fibre initial cells, or alternatively, which is capable of being translated into an active sucrose synthase protein; and (c) transcription termination and polyadenylation signals that function in said plant cells.

25

Yet another objective of the invention is to provide a fibre producing plant comprising a chimeric DNA according to the invention wherein said DNA is transcribed to yield RNA that is capable of increasing the expression of an endogenous sucrose synthase gene, preferably an endogenous sucrose synthase gene expressed in fibre cells, preferably fibre initial cells and said fibre cells have an increased sucrose synthase activity compared to fibre cells of plant cells which do not comprise said chimeric DNA.

5

Yet another objective of the invention is to provide a fibre producing plant comprising a chimeric DNA according to the invention, wherein said chimeric DNA is transcribed to yield RNA that is capable of being translated into an active sucrose synthase protein, thereby increasing the level of sucrose synthase in the plant relative to a plant that does not comprise said chimeric DNA. Preferably, the active sucrose synthase is expressed in fibre cells, more preferably fibre initial cells, wherein said fibre cells preferably have higher sucrose synthase activity compared to the fibre cells of a plant which does not comprise the chimeric DNA.

10

15

20

30

In yet another embodiment of the invention fibre producing plants are provided comprising a chimeric DNA according to the invention, wherein said coding region comprises a nucleotide sequence selected from the group consisting of:

(a) a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2; (b) a nucleotide sequence comprising the nucleotide sequence of SEQ ID NO: 1; (c) a nucleotide sequence having at least 70% sequence identity with the nucleotide sequence of (a) or (b); (d) a nucleotide sequence hybridizing under stringent conditions with the nucleotide sequence of (a) or (b); and (e) a fragment of any one of (a) through (d) encoding an active sucrose synthase.

The invention also provides a fibre producing plant comprising the chimeric DNA of the invention wherein said chimeric DNA encodes an RNA capable of reducing an endogenous sucrose synthase gene expression, such that said fibre cells have a reduced sucrose synthase activity compared to fibre cells of plant cells that do not comprise said chimeric DNA, particularly wherein the coding region comprises a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence comprising at least about 19 or 25 contiguous nucleotides having at least 70% sequence identity to a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2, or the complement thereof; and (b) a nucleotide sequence

6

comprising at least about 19 or 25 contiguous nucleotides having at least 70% sequence identity from a nucleotide sequence encoding a polypeptide comprising the nucleotide sequence of SEQ ID NO: 1 or the complement thereof; and (c) the nucleotide sequence of SEQ ID NO: 1 from the nucleotide at about position 2208 to the nucleotide at about position 2598 or the complement thereof.

Also provided are seeds of a fibre producing plant, preferably the seed of a cotton plant comprising the chimeric DNA or genes according the invention, as well as fibres with altered development or properties, isolated from such plants.

The invention also relates to the use of a sucrose synthase encoding nucleotide sequence for altering fibre yield or fibre quality or fibre properties.

15 Brief Description of Drawings

10

20

25

30

Figure 1 is a photographic representation showing that down regulation of SuSy in the fibre causes a decrease in fibre elongation in transgenic plants. Transverse sections of cotton bolls and seeds of wild type (WT) and transgenic cotton carrying an antisense SuSy gene construct (SuSy/A) are shown. Three developmental stages are shown: 0, 2 and 6 days after anthesis. Data indicate reduced fibre in transgenic lines, particularly in samples 2 days post anthesis (DAA) or older.

Figure 2 is a photographic representation of an immunohistochemical stain showing localisation of SuSy protein in wild type (WT) cotton (panel A), and the transgenic lines 291-147 (panel B) and 295-82 (panel C). Black coloration in developing fibre cells on the surface of the ovule, and in the ovule epidermis, of the wild type (WT) plants indicates SuSy protein. Transgenic lines show reduced amount of SuSy protein (reduced black coloration). No SuSy protein was detectable in line 295-82. This reduced SuSy protein correlates with lack of fibre development in the transgenic lines.

Figure 3 is a photographic representation of cotton bolls (left) and seed (right) from wild type (WT) cotton and the transgenic line 294-147 carrying an antisense SuSy gene construct, which has reduced SuSy protein in the embryo (upper boll and seeds). Seeds from the transgenic line are fibreless, but there is also a great reduction in seed size in seeds labeled III. Some seeds did not form at all.

Figure 4 is a photographic representation of wild type cotton plants (left of the figure) and two transformed cotton lines (plants at the middle and right of the figure). Data show that there was no detectable phentotypic effect of the transgene with respect to vegetative growth of plants.

10

15

20

25

30

Figure 5 is a schematic representation of an antisense gene construct (top) and a cosuppression gene construct (below) used to suppress SuSy gene expression *in planta*. Gene construct components are as follows: nptII, neomycin phosphotransferase marker gene for selection of transformants; S1 and S7, subclover stunt virus promoters 1 and 7, respectively (see Australian Patent No 689311); S3 and S5, subclover stunt virus gene terminator sequences 3 and 5, respectively (see Australian Patent No 689311); SuSy, a 390 bp nucleotide sequence of a sucrose synthase-encoding cDNA (Genbank Accession number U73588) from CTGGGAT to TGACTT (ie. 211 bp coding region upstream of the stop codon plus 179 bp 3'-untrnaslated (UTR) region; nucleotide position 2208 to nucleotide position 2598 of SEQ ID NO: 1). Arrows indicate the orientation of fragments relative to their native orientation in the genes from which they were derived.

Figure 6 is a copy of a photographic representation of a Southern blot hybridization, showing SuSy gene copy in wild type cotton plants and transgenic cotton lines. DNAs were isolated from T0 generation plants (panel A), and a segregating population of T1 generation plants from the primary

10

15

20

25

30

transformed lines designated 14 and 4 (panel B). The arrows indicate lines 14, 8, and 4 in the T0 generation having a fibre-less or reduced fibre phenotype (panel A), and lines 14-1, 14-2, 14-3, 4-1, and 4-3 in the segregating population of T1 plants having a fibre-less or reduced fibre phenotype (panel B). The numbers indicate the transgenic cotton line from which the individual plants were derived.

Figure 7 is a photographic representation of a scanning electron microscopy (SEM) profile of the ovule epidermis of wild type cotton (panel A) and line 294-147 shown in Fig. 2B (panels B and C). Many fibre cells are collapsed and/or shrunken in the transgenic line, compared to the wild type plants. Whilst some fibre cells appeared in the transgenic lines, these were much smaller in size and fewer in number than in the wild type ovule (compare panels A and B). The shrunken and/or collapsed phenotype of the transgenic line was clearly demonstrated under high magnification (panel C).

Figures 8, 9 and 10 shows the correlation between changes of SuSy activity (Fig. 8) and reduction of fibre length (Fig. 9) in 3 day old seeds from 10 segregating individuals of three T1 generation lines (lines 147, 43 and 101), together with line 82 and wild type (WT). Figure 10 represents the regression analysis between SuSy activity and fibre length.

Figure 8 is a graphical representation showing modified SuSy activity (abscissa) in transgenic lines compared to wild type plants. Plant lines are indicated on the x-axis. Error bars represent the SEM for assays of 3-day old seeds from 10 segregating individuals of the T1 generation lines.

Figure 9 is a graphical representation showing modified fibre length (abscissa) in transgenic lines compared to wild type plants. Plant lines are indicated on the x-axis. Error bars represent the SEM for assays of 3-day old seeds from 10 segregating individuals of the T1 generation lines.

9

Figure 10 is a graphical representation of a regression analysis between SuSy activity data rpesented in Figure 8 (x-axis) and fibre length data presented in Figure 9 (abscissa). Data show a strong correlation (R²=0.98) between SuSy activity and fibre length over the range shown.

Figure 11 is a photographic representation showing fuzz fibre length in seeds of wild type cotton (panel A) and the transgenic line 147#2 (panel B), and showing reduced fuzz in the transgenic line. Data demonstrate that a reduction in SuSy gene expression reduces fuzz. Seed were delinted by hand. The oval represents the chalazal end of the mature seeds. Seed from the transgenic line are more brown in appearance than wild type seeds, because the underlying brown seed coat is covered by shorter fuzz fiber than in wild type seed.

15

10

Detailed Description of the Invention

In a first aspect, the present invention provides a plant having altered expression of an iso-form of sucrose synthase (SuSy) resulting in an altered fibre, fruit or seed production ability.

20

Preferably, the plant is a transgenic plant having an under- or overexpression of an iso-form of SuSy involved in fruit/seed production. In a preferred form, the plant retains expression of SuSy in developing vegetative tissue such that growth and development of the plant is not adversely affected.

25

30

When the expression of an isoform of SuSy that is involved in fruit/seed production is reduced in the plant, preferably in the seed, more preferably in the fibre producing cells, even more preferably in fibre initial cells, the plant has a reduced fibre and/or seed production. When the expression of an isoform of SuSy that is involved in fruit/seed production is enhanced (i.e. SuSy is over-expressed) in the plant, preferably in the seed, more preferably in the fibre

cells, even more preferably in fibre initial cells, the plant has enhanced fibre and/or seed production.

The ability to cause underexpression of an iso-form of SuSy involved in fruit/seed production can be used to develop plants which produce few or no seeds but are still able to grow and produce fruit normally. The ability to cause overexpression of an iso-form of SuSy involved in fruit/seed production in a tissue specific manner can be used to develop plants which produce greater amounts of fibre or longer fibre or having altered fibre structure but are still able to grow and develop normally. The plant can be any plant in which the expression of an iso-form of SuSy is involved in fruit/seed production. The present invention is applicable for modifying a wide range of horticultural crops such as grape, peach, pear, and apple. More preferably, the plant is a cotton plant.

15

20

25

30

10

In a preferred embodiment, plants, particularly cotton plants, are provided comprising a chimeric gene, preferably stably integrated in their genome, the chimeric gene comprising the following operably linked DNA fragments:

- a) a plant operable promoter
- b) a coding region which when transcribed yields an RNA which is either
 - i) capable of reducing the expression of an endogenous sucrose synthase gene, preferably an endogenous sucrose synthase gene expressed in fibre initial cells; or
 - ii) capable of being translated into an active sucrose synthase protein; and

c) transcription termination and polyadenylation signals that function in

plant cells.

A particularly preferred embodiment of the coding region as defined sub ii) is a coding region comprising a nucleotide sequence which encodes a protein comprising the amino acid of SEQ ID NO: 2, particularly the nucleotide

sequence of SEQ ID NO: 1, or a fragment of such a nucleotide sequence capable of being translated into a functional sucrose synthase. The coding region encoding the sucrose synthase activity may be derived from other plant species or other species (as indicated elsewhere in this application), such as, for example, from potato (cDNA sequence is available from Genbank library, accession number M18745).

A particularly preferred embodiment of the coding region as defined sub i) is a coding region comprising the complement of a nucleotide sequence ("antisense") encoding a polypeptide encoded by the nucleotide sequence of SEQ ID NO: 1 from the nucleotide at about position 2208 to the nucleotide at about position 2598, particularly the coding region comprises the nucleotide sequence of SEQ ID NO: 1 from the nucleotide at position 2208 to the nucleotide at position 2598.

15

20

25

10

As used herein, the term "coding region" shall be taken to mean a DNA sequence which is capable of being transcribed into a biologically active RNA, irrespective of whether or not said DNA sequence encodes an amino acid sequence. In the present context, a biologically active RNA includes RNA which is capable of inducing a biological effect in the target cell, such as antisense or sense RNA capable of triggering post transcriptional gene silencing, or a ribozyme etc.

Biologically active RNA also includes RNA which is capable of being translated into a polypeptide or protein.

Having read these preferred embodiments, the person skilled in the art will immediately realize that functional equivalents of the mentioned coding regions may be used to similar effect.

Functional equivalents of a coding region capable of being transcribed into RNA which is capable of reducing the expression of an endogenous sucrose synthase gene, include e.g. shorter antisense fragments compared to the above-mentioned nucleotide sequences.

5

10

15

The length of the antisense nucleotide sequence may vary from about 10 nucleotides (nt) or 19 nt, up to a length equaling the length (in nucleotides) of the target nucleic acid (i.e. the full-length sucrose synthase gene). Preferably, the total length of the antisense nucleotide sequence is at least 10 nt, preferably 15 nt or 19 nt, more preferably at least about 50 nt, more preferably at least about 50 nt, more preferably at least about 50 nt, more preferably at least about 200 nt, and even more preferably at least about 500 nt. It is expected that there is no upper limit to the total length of the antisense nucleotide sequence, other than the total length of the target nucleic acid. However for practical reasons (such as e.g. stability of the chimeric genes) it is expected that the length of the antisense nucleotide sequence should not exceed 5000 nt, and preferably should not exceed 2500 nt. Conveniently, the length of an antisense nucleic acid is limited to about 1000 nt.

20

It will be appreciated that the longer the total length of the antisense nucleotide sequence is, the less stringent the requirements for sequence identity between the total antisense nucleotide sequence and the complement of the corresponding sequence in the target sucrose synthase gene become.

25

30

Preferably, the total antisense nucleotide sequence should have a sequence identity of at least about 75% with the complement corresponding target sequence, particularly at least about 80 %, more particularly at least about 85%, quite particularly about 90%, especially about 95%, more especially about 100%, quite especially be identical to complement of the corresponding part of the target nucleic acid. However, it is preferred that the antisense nucleotide sequence always includes a sequence of about 10 consecutive nucleotides,

15

20

25

30

particularly about 19 or 20 nt, more particularly about 50 nt, especially about 100 nt, quite especially about 150 nt with 100% sequence identity to the complement of the corresponding part of the target nucleic acid. Preferably, for calculating the sequence identity and designing the corresponding antisense sequence, the number of gaps should be minimized, particularly for the shorter antisense sequences.

Particularly preferred are antisense nucleotide sequences having a sequence identity of at least about 75%, preferably at least about 80%; particularly at least about 85%; quite particularly about 90%, especially about 95% with the complement of the corresponding part of the nucleotide sequence of SEQ ID NO: 1.

For the purpose of this invention, the "sequence identity" of two related nucleotide or amino acid sequences, expressed as a percentage, refers to the number of positions in the two optimally aligned sequences which have identical residues (x100) divided by the number of positions compared. A gap, i.e. a position in an alignment where a residue is present in one sequence but not in the other is regarded as a position with non-identical residues. The alignment of the two sequences is performed by the Needleman and Wunsch algorithm (Needleman and Wunsch 1970) Computer-assisted sequence alignment, can be conveniently performed using standard software program such as GAP which is part of the Wisconsin Package Version 10.1 (Genetics Computer Group, Madison, Wisconsin, USA) using the default scoring matrix with a gap creation penalty of 50 and a gap extension penalty of 3.

It goes without saying that sense fragments may also be used for reducing the expression of an endogenous sucrose synthase gene, and the same embodiments of length and sequence homology as herein described for antisense molecules, apply mutatis mutandis to the sense molecules.

10

15

20

25

30

Particularly suited for reducing the expression of an endogenous sucrose synthase genes are DNA regions, preferably under the control of a plantoperable promoter, which when transcribed result in so-called double stranded RNA molecules, comprising both sense and antisense sequences which are capable of forming a double stranded RNA molecule as described in WO 99/53050 (incorporated herein in its entirety by reference). In this particular case, a chimeric gene may thus be introduced into a plant cell comprising a plant operable promoter operably linked to a DNA region, whereby that DNA region comprises a part of coding region comprising at least 10 or 19 consecutive nucleotides from the coding region of a nucleic acid encoding a sucrose synthase protein, such as but not limited to, a sucrose synthase protein with the amino acid sequence of SEQ ID NO: 1 (the so-called sense part) as well as a DNA sequence which comprises at least the complementary DNA sequence of at least 10 or 19 nucleotides of the sense part, but which may be completely complementary to the sense part (the so-called antisense part). The chimeric gene may comprise additional regions, such as a transcription termination and polyadenylation region functional in plants. When transcribed an RNA can be produced which may form a double stranded RNA stem between the complementary parts of the sense and antisense region. A spacer region may be present between the sense and antisense nucleotide sequence. The chimeric gene may further comprise an intron sequence, preferably located in the spacer region.

Functional equivalents of coding regions capable of being transcribed into RNA which can be translated into an active sucrose synthase comprise mutant or allelic forms derived from sucrose synthase genes, particularly from sucrose synthase gene with active expression in fibre initials.

Methods to derive mutants e.g. of a sucrose synthase gene, particularly of sucrose synthase genes encoding a protein as represented in SEQ ID NO: 2, quite particularly of sucrose synthase gene comprising the nucleotide sequence

of SEQ ID NO: 1, such a site-specific mutagenesis methods are well known in the art, as well as assays to identify active sucrose synthase enzymes encoded by the mutant sequences.

Allelic variants of the nucleotide sequences encoding sucrose synthase may be identified by hybridization of libraries, under stringent conditions, such as cDNA or genomic libraries of a different varieties or plant lines, particularly cotton varieties and plant lines. Nucleotide sequences which hybridize under stringent conditions to nucleotide sequences encoding the amino acid sequence of SEQ ID NO: 2 or to the nucleotide sequence of SEQ ID NO: 1, or a sufficiently large part thereof (preferably about 25 contiguous nucleotides, particularly at least about 50 contiguous nucleotides, more particularly at least about 100 contiguous nucleotides) and which encode a functional protein with sucrose synthase activity are functional equivalents of the above mentioned preferred coding regions. Such nucleotides may also be identified and isolated using e.g. polymerase chain reaction amplification using an appropriate pair of oligonucleotides having at least about 25 contiguous nucleotides, particularly at least about 50 contiguous nucleotides, more particularly at least about 100 contiguous nucleotides of the nucleotide of SEQ ID NO: 1.

20

25

30

5

10

15

"Stringent hybridization conditions" as used herein mean that hybridization will generally occur if there is at least 95% and preferably at least 97% sequence identity between the probe and the target sequence. Examples of stringent hybridization conditions are overnight incubation in a solution comprising 50% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared carrier DNA such as salmon sperm DNA, followed by washing the hybridization support in 0.1 x SSC at approximately 65 °C. Other hybridization and wash conditions are well known and are exemplified in Sambrook *et al*, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, NY (1989), particularly chapter 11.

15

20

25

30

PCT/AU01/01580

16

The following are accession numbers of nucleotide sequences in the Genbank library which are plant sucrose synthase genes, parts thereof or nucleotide sequences having sequence similarity to sucrose synthase genes which could be used according to the methods herein described: BM094593 (Glycine max), BM093753 (Glycine max) BM093158 (Glycine max) BM092695(Glycine max) BM092443(Glycine max) BM092322(Glycine max) BM085310(Glycine max) BM085020 (Glycine max) AY059416 (Zea mays) AF273253(Beta vulgaris) L39940 (Oryza sativa) AJ316590 (Nostoc punctiforme) AJ316589 (Nostoc punctiforme) AJ316596 (Anabaena sp) AJ316595(Anabaena sp) AJ316584 (Anabaena sp) BM005654 (Crocus sativus) BI973032 (Glycine max) BI971794 (Glycine max) AF367450 (Prunus persica) BI945506 (Glycine max) BI944973 (Glycine max) AF420224 (Carica papaya) BI788449 (Glycine max) BI788359 (Glycine max) BI787127 (Glycine max) BI787033(Glycine max) BI787000 (Glycine max) BI786823(Glycine max) BI784933 (Glycine max) BI784627 (Glycine max) BI700214 (Glycine max) BI699934 (Glycine max) BI699923 (Glycine max) BI699585(Glycine max) BI543240 (Sugar beet) BI498340 (Glycine max) BI471463 (Glycine max) BI427241(Glycine max) BI427174 (Glycine max) BI427022 (Glycine max) BI426915 (Glycine max)AF393809 (Apium graveolens) BI321173 (Glycine max) BI320832(Glycine max) BI316894 (Glycine max) BI316826 (Glycine max) BI316405 (Glycine max) BI315949 (Glycine max) Bl203222 (Lycopersicon esculentum) Bl176503 (Solanum tuberosum) BG273882 (Grape berries) AY034958 (Arabidopsis thaliana) AF378187(Oryza sativa) BG790580 (Glycine max) BG790079 (Glycine max) BG726150 (Glycine max) BG654021 (Glycine max) BG653916 (Glycine max) BG653624 (Glycine max) BG652711(Glycine max) BG652507 (Glycine max) BG649914 (Glycine max) BG649831 (Glycine max) AJ309093 (Pinus pinaster) BG507656 (Glycine max) BG405632 (Glycine max) BG405474 (Glycine max) BG405204 (Glycine max) BG405017 (Glycine max) BG363730 (Glycine max) BG362638 (Glycine max) BG359764 (Glycine max) BG359452 (Glycine max) BG359307 (Glycine max) AJ311496 (Pisum sativum) BG239317 (Glycine max)

10

15

20

25

BG237287 (Glycine max) BG157592 (Glycine max) BG155900 (Glycine max) BG047402 (Glycine max) BG046717 (Glycine max) BG046686 (Glycine max) BG046043 (Glycine max) BG043243 (Glycine max) BG042159 (Glycine max) BG041814 (Glycine max) AB045710 (Pyrus pyrifolia) BF597682 (Glycine max) BF597330 (Glycine max) BF597258 (Glycine max) BF595837 (Glycine max) BF595646 (Glycine max) BF425609 (Glycine max) BF423725 (Glycine max) BF324657 (Glycine max) BF154308 (Solanum tuberosum) BF154187 (Solanum tuberosum) BF154037 (Solanum tuberosum) BF153500 (Solanum tuberosum) BF153341 (Solanum tuberosum) BF153335 (Solanum tuberosum) BF153307 (Solanum tuberosum) BF097021 (Lycopersicon esculentum) BF070782 (Glycine max) BF070666 (Glycine max) BF070277 (Glycine max) BF070188 (Glycine max) BF068815 (Glycine max) BF071174 (Glycine max) BF067110 (Glycine max) BF009756 (Glycine max) BE806119 (Glycine max) BE805996 (Glycine max) BE805178 (Glycine max) BE800976 (Glycine max) BE800941(Glycine max) BE800227 (Glycine max) BE611805 (Glycine max) BE611493 (Glycine max) BE610447 (Glycine max) BE610325 (Glycine max) BE609887(Glycine max) BE609881 (Glycine max) BE607382 (Oryza sativa) BE607326 (Oryza sativa) BE607323 (Oryza sativa) BE556484 (Glycine max) BE556306 (Glycine max) BE555319 (Glycine max) AJ001117 (Triticum aestivum) AJ292758 (Anabaena variabilis) BE474178 (Glycine max) BE440931 (Glycine max) BE440323 (Glycine max) BE347277 (Glycine max) AF263384 (Saccharum officinarum) BE330345 (Glycine max) BE211050 (Glycine max) BE209707 (Glycine max) AW561929 (Gossypium hirsutum) BE040389 (Oryza sativa) BE040121 (Oryza sativa) BE039563 (Arabidopsis thaliana) BE034387 (Mesembryanthemum BE033387 (Mesembryanthemum crystallinum) crystallinum) BE023957 (Glycine max) BE023630 (Glycine max) BE022760 (Glycine max) BE021167 (Glycine max) BE020760 (Glycine max) BE020591 (Glycine max) BE020550 (Glycine max) AW990923 (Euphorbia esula) AW832022 (Glycine max) AW760552 (Glycine max) AW756812 (Glycine max) AW756072 (Glycine max) AW756065 (Glycine max) AW734901(Glycine max) 30 AW707163 (Glycine max) AW706660 (Glycine max) AW706520 (Glycine max)

AW706203 (Glycine max) AW705595 (Glycine max) AW704619 (Glycine max) AB025778 (Citrus unshiu) AB021745 (Citrus unshiu) AW666333 (Glycine max) AW666277 (Glycine max) AW666250 (Glycine max) AW620859 (Glycine max) AW598476 (Glycine max) AW598473 (Glycine max) AW597690 (Glycine max) AW597373 (Glycine max) AW597332 (Glycine max) AW596993 (Glycine max) AW570615 (Glycine max) AW570577 (Glycine max) AW570566 (Glycine max) AW570513 (Glycine max) AW569822 (Glycine max) AW568526 (Glycine max) AW568333 (Glycine max) AW509231 (Glycine max) AW472408 (Glycine max) AW459606 (Glycine max) AW458318 (Glycine max) X82504 (C.rubrum) AW432731(Glycine max) AW432392 (Glycine max) AW432192 (Glycine max) AW397142 (Glycine max) AW397071 (Glycine max) AW309503 (Glycine max) AW307502 (Glycine max) AW307391 (Glycine max)AW307001(Glycine max) AW306834 (Glycine max) AB018561 (Citrullus Ianatus) AB029401 (Citrus unshiu) AB022092 (Citrus unshiu) AB022091 (Citrus unshiu) AW279073 (Glycine max) AW279053 (Glycine max) AW278487 (Glycine max) AJ388994 (Medicago truncatula) AJ388888 (Medicago truncatula) AW234887 (Glycine max) AJ238219 (Triticum aestivum) AJ238218 (Triticum aestivum) AJ238217 (Triticum speltoides) AW201670 (Glycine max) AW185801(Glycine max) AW185627 (Glycine max) AJ249624 (Triticum aestivum) AJ249623 (Triticum aestivum) AW164630 (Glycine max) AW164393 (Glycine max) AW133248 (Glycine max) AW101578 (Glycine max) AW100191 (Glycine max) AW100069 (Glycine max) AW099557 (Glycine max) X96938 (T.gesneriana) X96939 AW033439 (Lycopersicon esculentum) AW035186 (T.gesneriana) (Lycopersicon esculentum) AW032339 (Lycopersicon esculentum) AJ132002 (Craterostigma plantagineum) AJ132001 (Craterostigma plantagineum) AJ131999 (Craterostigma plantagineum) AJ132000 (Craterostigma plantagineum) Al973811 (Glycine max) Al973710 (Glycine max) Al973540 (Glycine max) Al967739 (Lotus japonicus) Al965972 (Glycine max) Al960742 (Glycine max) Al960703 (Glycine max) Al930917 (Glycine max) Al900130 (Glycine max) Al900087 (Glycine max) Al855470 (Glycine max) AA080634 (Saccharum sp.) AA080610 (Saccharum sp.) AA269294 (Saccharum sp.)

10

15

20

25

30

15

.20

25

30

AA080580 (Saccharum sp.) Al736370 (Glycine max) Al731292 (Gossypium hirsutum) Al731115 (Gossypium hirsutum) Al729201 (Gossypium hirsutum) AI728436 (Gossypium hirsutum) AI727966 (Gossypium hirsutum) AI726092 (Gossypium hirsutum) U73588 (Gossypium hirsutum) U73587 (Gossypium hirsutum) AJ012080 (Pisum sativum) AJ131964 (Medicago truncatula) AJ131943 (Medicago truncatula) AJ133726 (Lotus japonicus) Y16091 (Daucus carota) Y16090 (Daucus carota) AJ011319 (Lycopersicum esculentum) Al496671 (Glycine max) Al496540 (Glycine max) Al496532 (Glycine max) Al495774 (Glycine max) Al495135 (Glycine max) Al495023 (Glycine max) Al494833 (Glycine max) AJ011534 (Lycopersicon esculentum) Y15802 (Hordeum vulgare) Al461126(Glycine max) Al460757 (Glycine max) Al460629 (Glycine max) Al444096 (Glycine max) Al444083 (Glycine max) Al444054 (Glycine max) Al443620 (Glycine max) Al443476 (Glycine max) Al443231 (Glycine max) Al442789 (Glycine max) Al442411 (Glycine max) Al441989 (Glycine max) Al441004 (Glycine max) Al437923 (Glycine max) Al437907 (Glycine max) Al437840 (Glycine max) AJ010639 (Anabaena sp.) AJ011535 (Lycopersicon esculentum) D10266 (Vigna radiata) L03366 (Oryza sativa) AF030231 (Glycine max) M97551 (Vicia faba) AJ000153 (Triticum aestivum) AF079523 (Musa acuminata) AF079851 (Pisum sativum) AJ001071 (Pisum sativum) AF049487 (Medicago sativa) AF054446 (Mesembryanthemum crystallinum) AA753339 (Oryza sativa) AA752298 (Oryza sativa) AA752293 (Oryza sativa) AA753445 (Oryza sativa) AA753437 (Oryza sativa) AA753297 (Oryza sativa) AA752123 (Oryza sativa) AA751990 (Oryza sativa) AA750692 (Oryza sativa) AA750079 (Oryza sativa)AA749692 (Oryza sativa) AA749554 (Oryza sativa) AA720478 (Mesembryanthemum crystallinum) AA661050 (Medicago truncatula) AA661041 (Medicago truncatula) AA660686 (Medicago truncatula) D88412 (Cotton) D10418 (Rice) D21308 (Rice) D29733 (Rice) X81974 (B.vulgaris) X92378 (A.glutinosa) Z56278 (V.faba) Z48640 (V.faba) X98598 (P.sativum) T25261 (Zea mays) T23326 (Zea mays) T14713 (Zea mays) T14662 (Zea mays) T14661 (Zea mays) X75332 (D.carota) X02382 (Zea mays) X02400 (Zea mays) X70990 (A.thaliana) X60987 (A.thaliana)

X69773 (V.faba) X73477 (S.tuberosum) Z11532 (S.officinarum) Z15028 (O.sativa) X64770 (O.sativa) X59046 (O.sativa) X66728 (H.vulgare) X65871 (H.vulgare) X69931(H.vulgare) A27685 (O.sativa) W21612 (Zea mays) U24088 (Solanum tuberosum) U24087 (Solanum tuberosum) X73221 (H.vulgare) L32898 (Zea mays) F13913 (Arabidopsis thaliana) F13912 (Arabidopsis thaliana) U21129 (Solanum tuberosum) M26672 (Triticum aestivum) M26671 (Triticum aestivum) L19762 (Lycopersicon esculentum) M18745 (Potato) L33244 (Zea mays) L22296 (Zea mays) Z17959 (Arabidopsis thaliana). These sequences are incorporated by reference.

10

In a second aspect, the present invention provides a method of altering the production of fibre, fruit or seeds in a plant, the method comprising causing under- or overexpression of an iso-form of SuSy involved in fruit/seed production in the plant.

15

Preferably, for underexpression, the method involves providing a genetic construct which targets the 3' end of the SuSy gene when transformed in a plant. By "3'-end" is meant a sequence encoding the C-terminal portion of a SuSy polypeptide with or without the 3' non-coding sequence, or a sequence that is complementary thereto. The construct can be a co-suppression antisense or combined sense/antisense (inverted repeat) SuSy construct.

In a third aspect, the present invention provides a plant having an altered ability to produce fibre, fruit or seeds produced by the method according to the second aspect of the present invention.

25

20

In a fourth aspect, the present invention provides a genetic construct targeting the 3' end of the SuSy gene which, when expressed in a plant, reduces the expression of an iso-form of SuSy involved in fruit/seed production.

Preferred embodiments of the chimeric genes, particularly of the coding regions used for these methods are as described elsewhere in this specification.

Preferably, the construct is selected from the constructs shown in Figure 5, a combination of parts of both constructs to generate an inverted repeat gene suppression construct, with or without a tissue specific promoter region.

One preferred method of developing constructs is by using the "pPLEX" technology involving subclover stunt virus promoters and terminators described in AU 689311.

In a fifth aspect, the present invention provides use for of the construct according to the fourth aspect of the present invention to produce a plant having reduced ability to produce fibre, fruit or seeds.

15

20

25

30

10

The present invention is suitable for the following applications:-

A) Use of SuSy to enhance or otherwise improve fibre yield

-SuSy may be used to enhance or otherwise improve fibre synthesis by increasing SuSy expression or activity in such plant cells e.g. a fibre specific or fibre enhanced promoter (such as but not limited to a cotton expansion promoter, or the promoter of the SuSy gene having the nucleotide sequence of SEQ ID NO: 1) or a constitutive promoter (such as CaMV 35S) can be used to express the SuSy gene in cotton cells.

-Cotton fibre yield can be improved by reducing or suppressing cotton fuzz fibre. Fuzz fibre specific or enhanced promoter or constitutive promoter to reduce sucrose synthase selectively in cotton fuzz fibre cells. Reduced expression can be achieved by gene silencing technologies (antisense, cosuppression, dominant negative etc). Dominant negative mutant alleles of sucrose synthase genes may be obtained e.g. through mutation (insertion, substitution, or deletion of the phosphorylation site(s) of the sucrose synthase protein coding region)

- Cotton fibre yield can be improved by modifying fuzz fibres into lint fibres e.g. by expression of SuSy coding region or a functional equivalent thereof by fibre specific or fibre enhanced promoter, primary or secondary cell wall promoter or a constitutive promoter.

5

- B) Use of SuSy gene to improve fibre quality
- -Fibre length is an example of fibre quality. Expression of SuSy by a fibre specific or fibre enhanced promoter, primary cell wall promoter or a constitutive promoter.

10

- C) Use of SuSy to improve fibre properties (e.g. fibre strength, length and number)
- -Fibre strength is an example of a fibre property. Fibre strength is significantly effected by the cellulose content in the secondary cell wall of fibre cells. This may be achieved by expression of SuSy by a fibre specific or fibre enhanced promoter, secondary cell wall promoter or a constitutive promoter.
- D) Overexpression of SuSy specifically in seeds to increase sucrose utilisation in seeds for increased seed size and storage product content.

20

25

15

- E) Overexpression in the maternal tissue of a fruit (such as cotton fibre, horticultural fruit) for increased carbohydrate or fibre content.
- F) Suppression of SuSy in seed with over expression of SuSy in fruit/fibre for increased fibre/fruit yield.

Preferred plant-operable promoters include the fibre specific and/or secondary cell wall specific promoters which can be isolated according to the teaching of WO 98/18949, WO98/00549 or US5932713.

The correlation of sucrose synthase activity in the ovule epidermis of cotton with fibre length also allows the use of sucrose synthase proteins (or antibodies or aptamers recognizing the same) or sucrose synthase coding regions as a diagnostic tool in cotton breeding. These may be used to identify cotton lines or varieties, including wild sources, which have enhanced sucrose synthase activity and increased potential to form longer fibres, particularly when crossed in a breeding program with other cotton lines and/or varieties having good fibre characteristics. Nucleic acids derived from sucrose synthase coding regions may be used to determine the amount of sucrose synthase RNA in the ovule epidermis. Also, polymorphism, including single nucleotide polymorphism between sucrose synthase genes may be used to identify lines with superior sucrose synthase alleles.

10

15

20

25

30

The methods and means of the invention are particularly suited for use in cotton plants, (both Gossypium hirsutum and Gossypium barbadense) particularly for Coker 312, Coker310, Coker 5Acala SJ-5, GSC25110, FiberMax 819, Siokra 1-3, T25, GSA75, Acala SJ2, Acala SJ4, Acala SJ5, Acala SJ-C1, Acala B1644, Acala B1654-26, Acala B1654-43, Acala B3991, Acala GC356, Acala GC510, Acala GAM1, Acala C1, Acala Royale, Acala Maxxa, Acala Prema, Acala B638, Acala B1810, Acala B2724, Acala B4894, Acala B5002, non Acala "picker" Siokra, "stripper" variety FC2017, Coker 315, STONEVILLE 506, STONEVILLE 825, DP50, DP61, DP90, DP77, DES119, McN235, HBX87, HBX191, HBX107, FC 3027, CHEMBRED A1, CHEMBRED A2, CHEMBRED A3, CHEMBRED A4, CHEMBRED B1, CHEMBRED B2, CHEMBRED B3, CHEMBRED C1, CHEMBRED C2, CHEMBRED C3, CHEMBRED C4, PAYMASTER 145, HS26, HS46, SICALA, PIMA S6 and ORO BLANCO PIMA.

Any description of prior art documents herein is not an admission that the documents form part of the common general knowledge of the relevant art in Australia.

In order that the present invention may be more clearly understood preferred forms will be described with reference to the following examples and accompanying drawings.

5 Modes for Carrying Out the Invention

General molecular biology

Unless otherwise indicated, the recombinant DNA techniques utilised in the present invention are standard procedures, well known to those skilled in the art. Such techniques are described and explained throughout the literature in sources such as, J. Perbal, A Practical Guide to Molecular Cloning, John Wiley and Sons (1984), J. Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory Press (1989), T.A. Brown (editor), Essential Molecular Biology: A Practical Approach, Volumes 1 and 2, IRL Press (1991), D.M. Glover and B.D. Hames (editors), DNA Cloning: A Practical Approach, Volumes 1-4, IRL Press (1995 and 1996), and F.M. Ausubel *et al.* (Editors), Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience (1988, including all updates until present) and are incorporated herein by reference.

Analysis for presence of the transgene by Southern blotting was carried out as described in Sambrook *et al.* (1989) and immunolocalisation of the SuSy protein was carried out on tissue sections as described in Ruan and Chourey (1998).

25 Gene/DNA isolation

The DNA encoding a protein may be obtained from any cDNA library prepared from tissue or organisms believed to express the gene mRNA and to express it at a detectable level. The gene sequences can also be obtained from a genomic library or genomic DNA.

10

15

WO 02/45485

10

20

25

30

Libraries are screened with probes or analytical tools designed to identify the gene of interest or the protein encoded by it. For cDNA expression libraries, suitable probes include monoclonal or polyclonal antibodies that recognise and specifically bind the protein; oligonucleotides of about 20-80 bases in length 5 that encode known or suspected portions of cDNA from the same or different species; and/or complementary or homologous cDNAs or fragments thereof that encode the same or a hybridising gene. Appropriate probes for screening genomic DNA libraries include, but are not limited to, oligonucleotides; cDNAs or fragments thereof that encode the same or hybridising DNA including expressed sequence tags and the like; and/or homologous genomic DNAs or fragments thereof. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures as described in chapters 10-12 of Sambrook et al.

An alternative means to isolate a gene encoding is to use polymerase chain 15 reaction (PCR) methodology as described in section 14 of Sambrook et al. This method requires the use of oligonucleotide probes that will hybridise to the gene.

The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimised. The actual nucleotide sequence(s) is usually based on conserved or highly homologous nucleotide sequences or regions of the gene. The oligonucleotides may be degenerate at one or more positions. The use of degenerate oligonucleotides may be of particular importance where a library is screened from a species in which preferential codon usage in that species is known. The oligonucleotide must be labelled such that it can be detected upon hybridisation to DNA in the library being screened. The preferred method of labelling is to use 32P-labelled dATP with polynucleotide kinase, as is well known in the art, to radiolabel the oligonucleotide. However, other methods

may be used to label the oligonucleotide, including, but not limited to, biotinylation or enzyme labelling.

Nucleic acid having all the protein coding sequence is obtained by screening selected cDNA or genomic libraries, and if necessary, using conventional primer extension procedures as described in section 7.79 of Sambrook *et al.*, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

Another alternative method for obtaining the gene of interest is to chemically synthesise it using one of the methods described in Fingels *et al.* (Agnew Chem. Int. Ed. Engl. 28: 716-734, 1989). These methods include triester, phosphite, phosphoramidite and H-Phosphonate methods, PCR and other autoprimer methods, and oligonucleotide syntheses on solid supports. These methods may be used if the entire nucleic acid sequence of the gene is known, or the sequence of the nucleic acid complementary to the coding strand is available, or alternatively, if the target amino acid sequence is known, one may infer potential nucleic acid sequences using known and preferred coding residues for each amino acid residue.

20

25

30

15

5

10

Cotton Transformation

Cotton was transformed using an Agrobacterium mediated transformation technique as described in F. Murray *et al.* 1999 (Molec. Breeding 5: 219-232). Transformed plants were grown in a glasshouse under natural illumination at day/night temperatures of approximately 30°C / 22°C.

Example 1: Suppression of SuSy expression in cotton.

To provide evidence regarding the role of SuSy in fibre development, the present inventors transformed cotton with co-suppression and antisense SuSy constructs, targeting the 3' end of the seed SuSy cDNA driven by a constitutive subclover stunt seven virus promoter (see Figure 5 for a schematic

representation). The presence of the transgene in 11 transgenic lines so far was confirmed by Southern analysis (see Figure 6). Among them two antisense lines (294-147, 292-43) and one co-suppression line (295-82) showed dramatic reductions in fibre and seed development with the remaining lines showing various degrees of inhibition of fibre growth.

Immunolocalization analysis on 0-d ovule sections (Figure 2) revealed that, compared to wild type fibre initials, SuSy protein was reduced to less than 20% wild type levels in fibres of line 294-147 and to undetectable levels in 295-82. Furthermore, the number and size of initiating fibres was reduced by at least 50% in these two lines as compared that in the wild type ovules. Indeed, by 6 days after anthesis (DAA), these transgenic seeds were virtually fibre-less (see Figure 1). Sucrose synthase activity was determined biochemically. Whereas WT plants show a SuSy activity of 22.5 nmol/min/seed, line 147 showed a SuSy activity of 5.8 nmol/min/seed and line 82 showed no detectable activity. This led to a dramatic reduction of normal fibre initial cells in the ovule epidermis. It is clear from these results that the degree of fibre initiation depends on the level of SuSy expression in the ovule epidermis.

10

15

20

25

30

The impact of SuSy expression on fibre initiation is further demonstrated by scanning electron microscopy analysis of the ovule epidermis of line 147 (see figure 7) revealed that many fibre cells are collapsed and shrunk (see figure 7B). Some fibre cells appeared, but these were much smaller in size, and were reduced in number when compared to wild type ovule (figure 7A). The shrunk and collapsed phenotype was clearly visible under high magnification (figure 7C).

These results demonstrate that some iso-forms of SuSy play a critical role in fibre initiation and elongation. Suppression of an iso-form of SuSy can thus be used to prevent or reduce fibre initiation and elongation while overexpression can thus be used to enhance fibre initiation and elongation.

20

25

While all the bolls in line 295-82 and 292-43 dropped off prematurely by 10 DAA, some bolls of line 294-147 were retained to maturity. In those mature bolls, most seeds were stunted, shrunken and fibre-less. About 15% of the seeds, however, showed 30% of the wild type fibre length (loose fibre as well) and wild type embryo and seed size, most likely due to segregation of the transgene.

This demonstrates that suppression of iso-forms of SuSy in the maternal tissue (seed coat/ fibre) alone can inhibit fibre development by ~70% in length, while additional repression of SuSy in the embryo can arrest seed development entirely.

Gene suppression of iso-forms of SuSy in the embryo specifically to give a seedless phenotype (in a wide range of horticultural crops such as grape, peach, pear, apple).

Line 292-43 and 295-82 were male-sterile (no pollen) and the seed set can be recovered by pollination with wild-type pollen. This shows SuSy plays a role in male sterility of cotton.

Gene suppression of SuSy in male floral parts was found to cause sterility. Sucrose synthase activity, the fresh weight of pollen and viability of the pollen were tested on developing anthers 2 days before flowering in different lines. The viability assay was conducted by staining with 2,3,5-triphenyltetrazolium chloride (TTC). The results are summarized in Table 1.

15

20

Table 1. Suppression of SuSy in anthers leads to male sterility by pollen formation inhibition.

Line	SuSy activity	Pollen fresh weight	Viable pollen
	(nmol min ⁻¹ mg ⁻¹)	(% of WT pollen per	(% of 100 grains)
		anther)	
WT	44.1 ± 1.1	100.0	85.2
147#1	29.5 ± 6.9	30.0	52
147#2	14.7 ± 0.9	0.0	0.0
82	18.2 ± 1.5	0.0	0.0

A reduction of SuSy activity in anthers by about 33% results in an about 70% reduction of total pollen weight, largely due to the reduction of the number of pollen produced. Of the residual 30%, only half of the pollen was viable. When SuSy was reduced by about 60% no pollen was any longer formed. Pollen development is thus very sensitive to changes in SuSy activity. Pollen formation can thus be influenced (inhibited or promoted) by suppressing or overexpressing SuSy in anthers.

Suppression of SuSy activity in the maternal seed coat tissue in the transgenic cotton plants, also led to reduced fuzz length in the SuSy suppressed transgenic plants when compared to a wild type plant (see Figure 9). Fuzz fibre length was measured from the chalazal end of the mature seeds and the measurement was done by gently stretching the fuzz of seeds, delinted by hand, and measuring the length from the seed coat epidermis to the tip. The brown color visible in the transgenic line, is due to the fact that fuzz is shorter in transgenic lines than in WT, where the brown seed coat is well covered by relatively long fuzz. SuSy activity was also determined. The results can be summarized as follows:

- the wild type plant had a fuzz length of 2.2 mm (and a SuSy activity measurement set at 100%)

15

20

25

30

- transgenic line 147#2 had a fuzz length of 1.4 mm (and a SuSy activity measurement of 36% of the WT).

From the general correlation detected between SuSy expression and fibre content and/or quality described herein, it will be understood that overexpression of SuSy gene will have potential beneficial effects on fibre, fruit and seed production in plants.

Example 2. Analysis of progeny of cotton lines 82, 147 and 43 with suppressed SuSy activity.

To confirm the correlation between the presence of the SuSy suppression transgene and the reduced fibre initiation in cotton, further analysis was conducted on the T1 generation. About 24 T1 seeds were sown from 6 T0 lines. All germinated seedlings were screened by PCR for presence or absence of the transgenes (nptII; S7 promoter and SuSy suppression transgene). Six PCR positive and one PCR negative segregating individuals from each of the 6 lines were further analysed on molecular biochemical and cellular level. Line 82 was propagated vegetatively as a reference point. The fibre-less phenotype in the different lines of the T0 generation (indicated by arrows in figure 6A) was still preserved in respectively 3 and 2 segregating individuals of the T1 generation for line 147 and 43 respectively (arrows in Figure 6B). The remaining individuals show various degree of fibre/ seed suppression. The vegetatively-kept line 82 continues to produced fibreless seeds. These results demonstrated that the fibreless/ or seed suppressed phenotype described was indeed due to the presence of SuSy transgene.

A positive strong correlation could be found between the degree of sucrose activity in the seed epidermis and the fibre length in segregating T1 generation plants of lines 147, 43 and 101 (see Figures 8, 9 and 10). When fibre length was plotted against sucrose synthase activity for the different plants of the different lines as well as the wild type line, a linear regression could be derived

 $(Y=2.634X-50; R^2=0.98)$. The linear nature of the correlation up to the wild-type level, indicates that overexpression of the sucrose synthase activity above wild type level will lead to fibre length greater than fibre length in wild type plants.

A similar strong correlation exists between the reduction in SuSy activity and mature cotton fibre length and dry weight. SuSy activity in seed coat epidermis has been reduced to 28.8%, 42.5% and 53.9% of the wild type level in segregating individuals #1, #2 and #3 of line 43 T1 generation plants respectively. Lint fibre dry weight per boll was 11.1%, 51.6%, and 70.9% respectively.

Cellulose content in cotton fibre is also closely correlated to the level of SuSy expression. Cellulose content was analysed by labelling cotton fibre at day 25 (peak of cellulose synthesis in vivo) with Calcofluor white, a fluorescent dye specifically binding to cellulose. The fluorescent intensity of the labelled fibres, indicating cellulose content, was significantly reduced in the SuSy suppressed transgenic lines when compared to fluorescence in the wild type. The degree of fluorescence reduction correlated to the degree of suppression of SuSy activity.

Example 3. Overexpression of sucrose synthase in cotton plants.

The coding sequence of a potato sucrose synthase cDNA (Genbank Accession number M18745) is operably linked to a subterranean clover stunt virus promoter (S7; WO9606932) and a 3' transcription termination and polyadenylation signal functional in plants. This chimeric gene is operably linked to a selectable marker gene and introduced into a T-DNA vector. Cotton plants are transformed using the above mentioned Agrobacterium mediated transformation technique. Transgenic cotton lines are identified, sucrose synthase activity, fibre length, fuzz fibre length, cellulose content, and dry weight of the lint is analyzed. A positive correlation is found between SuSy activity and increased fibre length cellulose content, and dry weight of the lint.

SUMMARY OF THE EXAMPLES

10

15

20

25

30

The single-cell cotton fibres initiate from ovule epidermis at anthesis, elongate to 2.5 ~ 3.0 cm in about 16 days and then synthesize massive amounts of cellulose. Thus, cotton fibre is an excellent system for the study of cell differentiation, elongation and cellulose synthesis in higher plants with significant industry implications for improving fibre yield and quality.

To provide definitive evidence regarding the role of SuSy in fibre and seed development, the present inventors transformed cotton with co-suppression and antisense SuSy constructs, targeting the 3' end of the seed SuSy cDNA driven by subclover stunt seven virus promoter. The presence of the transgene in 9 transgenic lines so far was confirmed by Southern analysis. Among them one antisense line (294-147) and one co-suppression line (295-82) showed dramatic reductions in fibre and seed development with the remaining lines Immunolocalization showing various degrees of inhibition of fibre growth. analysis on 0-d ovule sections revealed that, compared to wild type fibre initials, SuSy protein was reduced to only about 20% wild type levels in fibres of line 294-147 and to undetectable levels in 295-82. Furthermore, the number and size of initiating fibres was reduced by at least 50% in these two lines as compared that in the wild type ovules. Indeed, by 2 d after anthesis (DAA), these transgenic seeds were virtually fibre-less. This is in contrast to a fibrecovered seed phenotype seen in the wild type plants at this stage. While all the bolls in line 295-82 dropped off prematurely by 10 DAA, some bolls of line 294-147 were retained to maturity. In those mature bolls, most seeds were stunted, shrunken and fibre-less. About 15% of the seeds, however, showed 30% of the wild type fibre length and wild type embryo and seed size, most likely due to segregation of the transgene. These results demonstrate (a) that SuSy plays a critical role in fibre initiation and elongation, (b) that suppression of SuSy in the maternal tissue (seed coat/fibre) alone can inhibit fibre development while additional repression of SuSy in the embryo can arrest seed development entirely. The influence of SuSy suppression on the reduction of

fibre length has been confirmed by analysis of progeny of the transgenic cotton lines. Further, a linear correlation was found between the level of SuSy activity and the increase in fibre length. The linear nature of this correlation indicates that in wild type cotton, the level of sucrose synthase is limiting.

5

25

Overexpression of sucrose synthase at least in maternal ovule tissue increases fibre length in fibre producing plants.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

References:

- Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M. and Delmer, D.P. (1995) A membrane associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. *Proc Nat Acad Science USA 92*, 9353-9357.
- 20 Ruan, Y.-L., Llewellyn, D.J, Furbank, R.T. (2000) Pathway and control of sucrose import into initiating fibre cells. *Australian Journal of Plant Physiology* 27, 795-800.
 - Ruan, Y.-L. and Chourey, P.S. (1998) A fibreless seed (fls) mutation in cotton is associated with lack of fibre cell initiation in ovule epidermis, alteration in sucrose synthase expression and carbon partitioning in developing seed. Plant Physiology 118: 399-406
- Ruan, Y.-L., Chourey, P.S., Delmer, D.P. and Luis, P.G. (1997) The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiology 115: 375-385

We claim:

- A method for altering fibre development or properties of a fibre producing plant comprising the steps of
 - a) providing cells of said plants with a chimeric gene comprising the following operably linked DNA fragments:
 - (i) a plant operable promoter;
 - (ii) a coding region as hereinbefore defined which when transcribed yields an RNA said RNA being capable of reducing the expression of an endogenous sucrose synthase gene or capable of being translated into an active sucrose synthase protein; and
 - (iii) transcription termination and polyadenylation signals that function in said plant cells.
- 2. The method of claim 1 wherein the endogenous sucrose synthase gene is a gene that is expressed in fibre cells.
- 3. The method of claim 2 wherein the fibre cells are fibre initial cells.
- 4. The method according to any one of claims 1 to 3, wherein said RNA is capable of being translated into an active sucrose synthase protein.
- 5. The method according to claim 4, wherein said coding region comprises a nucleotide sequence selected from the group consisting of:
 - a) a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2 or a fragment of said nucleotide sequence encoding an active sucrose synthase;

- b) the nucleotide sequence of SEQ ID NO: 1 or a fragment of said nucleotide sequence encoding an active sucrose synthase;
- a nucleotide sequence having at least 70% sequence identity to
 a) or b);
- d) a nucleotide sequence that hybridizes under stringent conditions with a) or b) or a complementary sequence thereto or a part thereof encoding an active sucrose synthase.
- 6. The method according to any one of claims 1 to 3, wherein said coding region is transcribed to produce RNA that is capable of reducing the expression of an endogenous sucrose synthase gene.
- 7. The method according to claim 6, wherein said coding region comprises a nucleotide sequence selected from the group consisting of:
 - a) a nucleotide sequence comprising at least about 19 contiguous nucleotides of a sequence that has at least 70% sequence identity to a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2;
 - b) a nucleotide sequence comprising at least about 25 contiguous nucleotides of a sequence having at least 70% sequence identity to the nucleotide sequence of SEQ ID NO: 1;
 - c) the complement of a) or b);
- 8. The method of claim 7 wherein the nucleotide sequence at a) comprises at least about 25 contiguous nucleotides of a sequence that has at least 70% sequence identity to a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2.
- 9. The method according to any one of claims 6 to 8, wherein said coding region comprises the nucleotide sequence of SEQ ID NO: 1 from the

- nucleotide at about position 2208 to the nucleotide at about position 2598 or the complement thereof.
- 10. The method according to any one of claims 6 to 9, wherein said coding region comprises both sense and antisense nucleotide sequences capable of forming a double stranded RNA molecule.
- 11. The method according to any one of claims 1 to 10, wherein said promoter is a subterranean clover stunt virus promoter.
- 12. The method according to any one of claims 1 to 11, wherein said fibre producing plant is a cotton plant.
- 13. The method according to claim 12, wherein said cotton plant is a Fibermax[™] variety.
- 14. A method for enhancing fibre yield in a fibre producing plant comprising the steps of:
 - a) providing cells of said plant with a chimeric gene comprising the following operably linked DNA fragments:
 - i) a plant operable promoter;
 - ii) a DNA region capable of being translated into an active sucrose synthase protein; and
 - iii) transcription termination and polyadenylation signals that function in said plant cells.

- 15. A method for enhancing fibre quality in a fibre producing plant, comprising the steps of
 - b) providing cells of said plant with a chimeric gene comprising the following operably linked DNA fragments
 - i) a plant operable promoter;
 - ii) a DNA region capable of being translated into an active sucrose synthase protein
 - iii) transcription termination and polyadenylation signals that function in said plant cells.
- 16. A method for increasing seed size in a fibre producing plant, comprising the steps of:
 - a) providing cells of said plant with a chimeric gene comprising the following operably linked DNA fragments
 - b) a seed-specific promoter;
 - a DNA region capable of being translated into an active sucrose synthase protein; and
 - transcription termination and polyadenylation signals that function in said plant cells.
- 17. A fibre producing plant comprising in its genome a chimeric DNA comprising the following operably linked DNA fragments:
 - i) a plant operable promoter;
 - ii) a coding region which when transcribed yields an RNA said RNA being capable of reducing the expression of an endogenous

- sucrose synthase gene or capable of being translated into an active sucrose synthase protein; and
- iii) transcription termination and polyadenylation signals that function in said plant cells.
- 18. The fibre producing plant of claim 17 wherein the coding region is transcribed to yield RNA that is capable of reducing the expression of an endogenous sucrose synthase gene in fibre cells.
- 19. The fibre producing plant of claim 18 wherein the fibre cells are fibre initial cells.
- 20. The fibre producing plant according to claim 17, wherein said RNA is translated into an active sucrose synthase protein.
- 21. The fibre producing plant of claim 20 wherein the active sucrose synthase protein is expressed in fibre cells and wherein said fibre cells have an increased sucrose synthase activity compared to fibre cells of plant cells which do not comprise said chimeric DNA.
- 22. The fibre producing plant of claim 21 wherein the fibre cells are fibre initial cells.

- 23. The fibre producing plant according to any one of claims 17 to 22, wherein that coding region comprises a nucleotide sequence selected from the group consisting of:
 - a) a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2 or a fragment of said nucleotide sequence encoding an active sucrose synthase;
 - b) the nucleotide sequence of SEQ ID NO: 1 or a fragment of said nucleotide sequence encoding an active sucrose synthase;
 - a nucleotide sequence having at least 70% sequence identity to
 a) or b); and
 - a nucleotide sequence that hybridizes under stringent conditions with a) or b) or a complementary sequence thereto or a part thereof encoding an active sucrose synthase.
- 24. The fibre producing plant according to claim 23, wherein said coding region comprises a nucleotide sequence selected from the group consisting of
 - a) a nucleotide sequence comprising at least about 19 contiguous nucleotides of a sequence that has at least 70% sequence identity to a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2;
 - b) a nucleotide sequence comprising at least about 25 contiguous nucleotides of a sequence having at least 70% sequence identity to the nucleotide sequence of SEQ ID NO: 1;
 - c) the complement of a) or b);
- 25. The fibre producing plant of claim 24 wherein the nucleotide sequence at a) comprises at least about 25 contiguous nucleotides of a sequence that

- has at least 70% sequence identity to a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 2.
- 26. The fibre producing plant according to any one of claims 17 to 25, wherein said coding region comprises the nucleotide sequence of SEQ ID No: 1 from the nucleotide at about position 2208 to the nucleotide at about position 2598 or the complement thereof.
- 27. The fibre producing plant according to any one of claims 17 to 26, wherein said plant is a cotton plant.
- 28. Seeds of the plant according to any one of claims 17 to 27.
- 29. Fibre is olated from the plant according to any one of claims 17 to 27 or the seed of claim 28, wherein said fibre has altered development or an altered property relative to the fibre from a plant that does not comprise the chimeric DNA.
- 30. A plant obtained by performing the method according to any one of claims 1 to 15.

FIGURE 3

FIGURE 5

FIGURE 7

FIGURE 9

WO 02/45485 PCT/AU01/01580

11/11

FIGURE 11

1

SEQUENCE LISTING

5	<110>	C	ommo	nwea	lth	Scie	ntif	ic I	ndus	tria	ıl an	d Re	sear	ch O	rgar	nisati	ion	
	<120> uses				ion	of s	ucro	se s	ynth	ase	gene	ехр	ress	ion	in p	plant	tissue	and
10	<130>	5	0015	9/MR	0													
	<150> <151>				8													
15	<150> <151>																	
	<160>	2																
20	<170>	P	aten	tIn	vers	ion	3.1											
25	<210> <211> <212> <213>	2 D	625 NA	pium	hir	sutu	ım											
30	<220><221><222><222><223>	- m	1240) (1240		ide											
35	<220><221><222><222><223>	• е • ((241	8)													
40	<400> atg g Met a	rct	σaσ	cgt Arg	gct Ala 5	ctc Leu	act Thr	cgc Arg	gtc Val	cac His 10	agt Ser	ctc Leu	cgt Arg	gag Glu	cgt Arg 15	ttg Leu	4	8
45	gat g Asp G	gag Slu	acc Thr	ctt Leu 20	ctt Leu	gct Ala	cac His	agg Arg	aac Asn 25	gag Glu	att Ile	ttg Leu	gcc Ala	ttg Leu 30	ctc Leu	tca Ser	9	6
50	agg a Arg I	[le	gag Glu 35	ggc Gly	aaa Lys	gga Gly	aaa Lys	gga Gly 40	att Ile	ctg Leu	caa Gln	cac His	cat His 45	caa Gln	att Ile	att Ile	14	4
	cta c	gag Slu 50	ttt Phe	gaa Glu	gct Ala	atc Ile	cct Pro 55	gaa Glu	gag Glu	aac Asn	aga Arg	aag Lys 60	aag Lys	ctc Leu	gct Ala	aat Asn	19	2
55	ggt g Gly F 65	gca Ala	ttt Phe	ttt Phe	gaa Glu	gta Val 70	ttg Leu	aag Lys	gct Ala	agt Ser	cag Gln 75	gaa Glu	gcg Ala	atc Ile	gtg Val	ttg Leu 80	24	0
60	cct (Pro I	cca Pro	tgg Trp	gtt Val	gca Ala 85	ctt Leu	gct Ala	gtt Val	cgt Arg	cca Pro 90	agg Arg	cct Pro	ggt Gly	gtt Val	tgg Trp 95	gag Glu	28	8
	tac a	att	aga	gtg	aat	gtt	cac	gcc	ctt	gtt	gtt	gag	gaa	ctc	act	gtt	33	6

	Tyr	Ile	Arg	Val 100	Asn	Val	His	Ala	Leu 105	Val	Va1	Glu	Glu	Leu 110	Thr	Val	
5	gct Ala	gag Glu	tat Tyr 115	ctc Leu	cac His	ttc Phe	aag Lys	gaa Glu 120	gag Glu	ctt Leu	gtt Val	gat Asp	gga Gly 125	agt Ser	tca Ser	aat Asn	384
10	gga Gly	aac Asn 130	ttt Phe	gtt Val	ttg Leu	gaa Glu	ttg Leu 135	gat Asp	ttt Phe	gag Glu	ccc Pro	ttc Phe 140	aac Asn	tca Ser	tca Ser	ttc Phe	432
15	ccc Pro 145	cgc Arg	cca Pro	act Thr	ctt Leu	tca Ser 150	aaa Lys	tcc Ser	att Ile	ggt Gly	aat Asn 155	ggt Gly	gtg Val	gag Glu	ttc Phe	cta Leu 160	480
15	aat Asn	cgt Arg	cac His	ctt Leu	tcg Ser 165	gca Ala	aaa Lys	ttg Leu	ttc Phe	cat His 170	gac Asp	aag Lys	gag Glu	agc Ser	atg Met 175	cac His	528
20	cct Pro	ttg Leu	ctc Leu	gaa Glu 180	ttc Phe	ctc Leu	aga Arg	gtc Val	cat His 185	tgt Cys	cac His	aag Lys	Gly Ggc	aag Lys 190	aac Asn	atg Met	576
25	atg Met	ttg Leu	aat Asn 195	gac Asp	aga Arg	att Ile	cag Gln	aac Asn 200	ttg Leu	aat Asn	gct Ala	ctt Leu	caa Gln 205	cat His	gtt Val	ttg Leu	624
30	agg Arg	aaa Lys 210	gca Ala	gag Glu	gag Glu	tat Tyr	ctt Leu 215	ggt Gly	acc Thr	cta Leu	cct Pro	cct Pro 220	gag Glu	aca Thr	cca Pro	tgt Cys	672
35	gcc Ala 225	gaa Glu	ttc Phe	gaa Glu	cac His	cgg Arg 230	ttc Phe	cag Gln	gaa Glu	atc Ile	ggt Gly 235	ttg Leu	gaa Glu	aga Arg	ggt Gly	tgg Trp 240	720
	ggt Gly	gac Asp	acc Thr	gca Ala	gaa Glu 245	cgc Arg	gtg Val	ctc Leu	gag Glu	atg Met 250	atc Ile	caa Gln	ctc Leu	ctt Leu	ttg Leu 255	gat Asp	768
40	ctt Leu	ctt Leu	gag Glu	gca Ala 260	act Thr	gat Asp	cct Pro	tgc Cys	acc Thr 265	ctt Leu	gag Glu	aag Lys	ttc Phe	ctt Leu 270	GŢ Å âââ	aga Arg	816
45	atc Ile	ccc Pro	atg Met 275	gtg Val	ttc Phe	aat Asn	gtt Val	gtg Val 280	att Ile	ctc Leu	act Thr	ccc Pro	cac His 285	Gly Gly	tac Tyr	ttc Phe	864
50	gct Ala	caa Gln 290	gac Asp	aat Asn	gtt Val	ttg Leu	ggg Gly 295	tat Tyr	ccc Pro	gac Asp	acc Thr	ggt Gly 300	ej A aaa	cag Gln	gtt Val	gtt Val	912
55	tac Tyr 305	atc Ile	ttg Leu	gat Asp	caa Gln	gtc Val 310	cga Arg	gct Ala	ttg Leu	gag Glu	aat Asn 315	gag Glu	atg Met	ctc Leu	ctc Leu	cgt Arg 320	960
55	ata Ile	aag Lys	caa Gln	caa Gln	gga Gly 325	ctc Leu	aac Asn	atc Ile	acc Thr	cct Pro 330	cga Arg	atc Ile	ctc Leu	att Ile	att Ile 335	act Thr	1008
60	aga Arg	ctt Leu	ctt Leu	cct Pro 340	Asp	gct Ala	gtc Val	gga Gly	aca Thr 345	aca Thr	tgc Cys	ggt Gly	caa Gln	cga Arg 350	ctt Leu	gag Glu	1056
	aaa	gta	tac	gga	aca	gag	cac	tcg	gat	att	ctt	cga	gta	ccc	ttc	aga	1104

	Lys	Val	Туr 355	Gly	Thr	Glu	His	Ser 360	Asp	Ile	Leu	Arg	Val 365	Pro	Phe	Arg	
5	aca Thr	gaa Glu 370	aag Lys	gga Gly	att Ile	gtt Val	cga Arg 375	aaa Lys	tgg Trp	atc Ile	tca Ser	aga Arg 380	ttt Phe	gaa Glu	aaa Lys	gtc Val	1152
10	tgg Trp 385	cca Pro	tac Tyr	ttg Leu	gaa Glu	acc Thr 390	tac Tyr	aca Thr	gag Glu	gat Asp	gtt Val 395	gct Ala	cat His	gaa Glu	atc Ile	tcc Ser 400	1200
4.5	aaa Lys	gag Glu	ttg Leu	cac His	ggc Gly 405	acg Thr	cca Pro	gat Asp	ctg Leu	atc Ile 410	atc Ile	gga Gly	aac Asn	nac Xaa	agc Ser 415	gac Asp	1248
15	Gly Ggc	aat Asn	atc Ile	gtc Val 420	gcc Ala	tcc Ser	ttg Leu	ctc Leu	gca Ala 425	cat His	aaa Lys	tta Leu	ggt Gly	gtc Val 430	aca Thr	cag Gln	1296
20	tgc Cys	acc Thr	atc Ile 435	gcc Ala	cat His	gct Ala	ttg Leu	gag Glu 440	aag Lys	aca Thr	aaa Lys	tat Tyr	cca Pro 445	gat Asp	tca Ser	gat Asp	1344
25	atc Ile	tat Tyr 450	tgg Trp	aag Lys	aag Lys	ctt Leu	gaa Glu 455	gac Asp	aaa Lys	tac Tyr	cat His	ttc Phe 460	tct Ser	tgc Cys	caa Gln	ttt Phe	1392
30	aca Thr 465	gct Ala	gat Asp	ctt Leu	; ttt Phe	gca Ala 470	atg Met	aac Asn	cat His	aca Thr	gat Asp 475	ttc Phe	atc Ile	atc Ile	acc Thr	agt Ser 480	1440
0=	act Thr	ttc Phe	cag Gln	gaa Glu	att Ile 485	gca Ala	gga Gly	agc Ser	aag Lys	gac Asp 490	act Thr	gtt Val	ggt Gly	caa Gln	tac Tyr 495	gag Glu	1488
35	agc Ser	cac His	act Thr	gct Ala 500	ttc Phe	act Thr	ctt Leu	cct Pro	ggt Gly 505	ctc Leu	tac Tyr	cgt Arg	gtt Val	gta Val 510	cat His	ggt Gly	1536
40	atc Ile	gat Asp	gtg Val 515	ttt Phe	gat Asp	ccc Pro	aaa Lys	ttc Phe 520	aac Asn	att Ile	gtt Val	tcc Ser	cct Pro 525	ggt Gly	gct Ala	gat Asp	1584
45	atg Met	gag Glu 530	ata Ile	tac Tyr	ttc Phe	cct Pro	tac Tyr 535	acc Thr	gaa Glu	gag Glu	aag Lys	cgg Arg 540	agg Arg	ttg Leu	aag Lys	cat His	1632
50	ttc Phe 545	cat His	cct Pro	gag Glu	atc Ile	gaa Glu 550	gac Asp	ctt Leu	ctt Leu	tac Tyr	acc Thr 555	aaa Lys	gtt Val	gag Glu	aat Asn	gaa Glu 560	1680
	gaa Glu	cac His	tta Leu	tgt Cys	gtg Val 565	ctc Leu	aat Asn	gac Asp	cgc Arg	aac Asn 570	aag Lys	cca Pro	att Ile	ctg Leu	ttc Phe 575	aca Thr	1728
55	atg Met	cca Pro	agg Arg	ctt Leu 580	gat Asp	cgt Arg	gtc Val	aag Lys	aac Asn 585	tta Leu	acc Thr	gga Gly	ctc Leu	gtc Val 590	gag Glu	tgg Trp	1776
60	tgc Cys	ggc Gly	aag Lys 595	aac Asn	cca Pro	aag Lys	ttg Leu	cgt Arg 600	gag Glu	ttg Leu	gct Ala	aac Asn	ctc Leu 605	gta Val	gtt Val	gta Val	1824
	ggt	ggt	gat	agg	cga	aag	gaa	tct	aaa	gat	ttg	gaa	gag	aag	gct	gaa	1872

	Gly	Gly 610	Asp	Arg	Arg	ГÀЗ	Glu 615	Ser	ГÀЗ	ĄzĄ	Leu	Glu 620	Glu	Lys	Ala	Glu	
5	atg Met 625	aag Lys	aaa Lys	atg Met	ttt Phe	gag Glu 630	ctg Leu	atc Ile	gac Asp	Lys Lys	tac Tyr 635	aac Asn	ttg Leu	aac Asn	Gly ggc	caa Gln 640	1920
10	ttc Phe	aga Arg	tgg Trp	ata Ile	tca Ser 645	tct Ser	caa Gln	atg Met	aac Asn	aga Arg 650	atc Ile	cga Arg	aat Asn	gtt Val	gaa Glu 655	ctt Leu	1968
15	tac Tyr	cga Arg	tac Tyr	att Ile 660	tgc Cys	gac Asp	acg Thr	aaa Lys	ggt Gly 665	gcc Ala	ttt Phe	gta Val	cag Gln	cct Pro 670	gca Ala	ttg Leu	2016
10	tat Tyr	gaa Glu	gcc Ala 675	ttt Phe	gga Gly	ttg Leu	aca Thr	gtt Val 680	gtg Val	gag Glu	gca Ala	atg Met	act Thr 685	tgc Cys	ggt Gly	ttg Leu	2064
20	cca Pro	aca Thr 690	ttc Phe	gca Ala	acc Thr	tgt Cys	aac Asn 695	ggt Gly	gga Gly	cca Pro	gcc Ala	gag Glu 700	att Ile	att Ile	gtc Val	cat His	2112
25	ggg Gly 705	aaa Lys	tct Ser	ggt Gly	ttc Phe	aac Asn 710	att Ile	gat Asp	cct Pro	tac Tyr	cat His 715	ggt Gly	gat Asp	caa Gln	gct Ala	gct Ala 720	2160
30	gac Asp	ata Ile	ctc Leu	gtc Val	gat Asp 725	ttc Phe	ttt Phe	gaa Glu	aag Lys	tgt Cys 730	aag Lys	aaa Lys	gat Asp	cca Pro	tct Ser 735	cac His	2208
0.5	tgg Trp	gat Asp	aag Lys	atc Ile 740	tcc Ser	caa Gln	gga Gly	Gly ggc	ttg Leu 745	Lys Laaa	cga Arg	ata Ile	gag Glu	gag Glu 750	aag Lys	tat Tyr	2256
35	aca Thr	tgg Trp	aag Lys 755	att Ile	tac Tyr	tcg Ser	gag Glu	aga Arg 760	cta Leu	ttg Leu	acc Thr	ctg Leu	aca Thr 765	gga Gly	gtg Val	tat Tyr	2304
40	gga Gly	ttc Phe 770	Trp	aag Lys	cat His	gtt Val	tcc Ser 775	aac Asn	ctt Leu	gaa Glu	cgc Arg	cgt Arg 780	gag Glu	agt Ser	cgt Arg	cgt Arg	2352
45	tac Tyr 785	ctt Leu	gag Glu	atg Met	ttt Phe	tat Tyr 790	gct Ala	ctt Leu	aag Lys	tac Tyr	cgt Arg 795	Lys	ctg Leu	gct Ala	gaa Glu	tca Ser 800	2400
50						gag Glu		attg	aac	ctgt	taaa	ta a	catt	gggc	c		2448
	ggt	tttt	ctt	ggag	aata	at a	ttct	gttt	t gt	aatt	tcaa	ttg	gaga	agc	tcct	ttgtat	2508
	ttc	atct	tgt	cttt	tcct	tt t	cctt	tttt	c gc	cggc	attg	ttt	gaac	atg	gggt	tgtgcg	2568
55	ccc	gtca	att	ccag	ttaa	at a	tggt	gact	t tt	gttt	ttca	aaa	aaaa	aaa	aaaa	aaa	2625
60	<21 <21 <21 <21	1> 2>	2 806 PRT Goss	ypiu	m hi	rsut	um										
	<22	0>															

	<221 <222 <223	2>	nisc_ (414) {aa i	(4	114)	Asp,	His,	or	Tyr							
5	<400)> 2	2													
10	Met 1	<i>al</i> a	Glu	Arg	Ala 5	Leu	Thr	Arg	Val	His 10	Ser	Leu	Arg	Glu	Arg 15	Leu
	Asp	Glu	Thr	Leu 20	Leu	Ala	His	Arg	Asn 25	Glu	Ile	Leu	Ala	Leu 30	Leu	Ser
15	Arg	Ile	Glu 35	Gly	Lys	Gly	Lys	Gly 40	Ile	Leu	Gln	His	His 45	Gln	Ile	Ile
20	Leu	Glu 50	Phe	Glu	Ala	Ile	Pro 55	Glu	Glu	Asn	Arg	Lys 60	Lys	Leu	Ala	Asn
25	Gly 65	Ala	Phe	Phe	Glu	Val 70	Leu	Lys	Ala	Ser	Gln 75	Glu	Ala	Ile	Val	Leu 80
30	Pro	Pro	Trp	Val	Ala 85	Leu	Ala	Val	Arg	Pro 90	Arg	Pro	Gly	Val	Trp 95	Glu
	Tyr	Ile	Arg	Val 100	Asn	Val	His	Ala	Leu 105	Val	Val	Glu	Glu	Leu 110	Thr	Val
35	Ala	Glu	Tyr 115	Leu	His	Phe	Lys	Glu 120	Glu	Leu	Val	Asp	Gly 125	Ser	Ser	Asn
40	Gly	Asn 130	Phe	Val	Leu	Glu	Leu 135	Asp	Phe	Glu	Pro	Phe 140	Asn	Ser	Ser	Phe
45	Pro 145	Arg	Pro	Thr	Leu	ser 150	ГЛа	Ser	Ile	Gly	Asn 155	Gly	Val	Glu	Phe	Leu 160
50	Asn	Arg	His	Leu	Ser 165	Ala	Lуз	Leu	Phe	His 170	Ąsp	Lys	Glu	Ser	Met 175	His
30	Pro	Leu	Leu	Glu 180		Leu	Arg	Val	His 185		His	Lys	Gly	Lys 190	Asn	Met
55	Met	Leu	Asn 195	Asp	Arg	Ile	Gln	Asn 200	Leu	Asn	Ala	Leu	Gln 205	His	Val	Leu
60	Arg	Lys 210	Ala	Glu	Glu	Tyr	Leu 215	Gly	Thr	Leu	Pro	Pro 220	Glu	Thr	Pro	Cys
	Ala	Glu	Phe	Glu	His	Arg	Phe	Gln	Glu	Ile	Gly	Leu	Glu	Arg	Glу	Trp

6

	225					230					235					240
5	Gly	Asp	Thr	Ala	Glu 245	Arg	Val	Leu	Glu	Met 250	Ile	Gln	Leu	Leu	Leu 255	qeA
10	Leu	Leu	Glu	Ala 260	Thr	Asp	Pro	Cys	Thr 265	Leu	Glu	Lys	Phe	Leu 270	Gly	Arg
	Ile	Pro	Met 275	Val	Phe	Asn	Val	Val 280	Ile	Leu	Thr	Pro	His 285	Gly	Tyr	Phe
15	Ala	Gln 290	Asp	Asn	Val	Leu	Gly 295	Tyr	Pro	Asp	Thr	Gly 300	Gly	Gln	Val	Val
20	Tyr 305	Ile	Leu	Asp	Gln	Val 310	Arg	Ala	Leu	Glu	Asn 315	Glu	Met	Leu	Leu	Arg 320
25	Ile	Lys	Gln	Gln	Gly 325	Leu	Asn	Ile	Thr	Pro 330	Arg	Ile	Leu	Ile	Ile 335	Thr
30	Arg	Leu	Leu	Pro 340	Asp	Ala	Val	Gly	Thr 345	Thr	Cys	Gly	Gln	Arg 350	Leu	Glu
	Lys	Val	Tyr 355	Gly	Thr	Glu	His	Ser 360	Asp	Ile	Leu	Arg	Val 365	Pro	Phe	Arg
35	Thr	Glu 370	Lys	Gly	Ile	Val	Arg 375	ГÀЗ	Trp	Ile	Ser	Arg 380	Phe	Glu	Lys	Val
1 0	Trp 385	Pro	Tyr	Leu	Glu	Thr 390	Tyr	Thr	Glu	Asp	Val 395	Ala	His	Glu	Ile	Ser 400
4 5	ГАЗ	Glu	Leu	His	Gly 405	Thr	Pro	Asp	Leu	Ile 410	Ile	Gly	Asn	Xaa	Ser 415	Asp
50	Gly	Asn	Ile	Val 420	Ala	Ser	Leu	Leu	Ala 425	His	Lys	Leu	Gly	Val 430	Thr	Gln
	Суз	Thr	Ile 435	Ala	His	Ala	Leu	Glu 440	Lys	Thr	Lys	Tyr	Pro 445	Asp	Ser	Asp
55	Ile	Tyr 450	Trp	ГЛа	Lys	Leu	Glu 455	Asp	Lys	Tyr	His	Phe 460	Ser	Cys	Gln	Phe
60	Thr 465	Ala	Asp	Leu	Phe	Ala 470	Met	Asn	His	Thr	Asp 475	Phe	Ile	Ile	Thr	Ser 480
	Thr	Phe	Gln	Glu	Ile	Ala	Gly	Ser	ГЛа	Asp	Thr	Val	Gly	Gln	Tyr	Glu

7

					485					490					495	
5	Ser	His	Thr	Ala 500	Phe	Thr	Leu	Pro	Gly 505	Leu	Tyr	Arg	Val	Val 510	His	Gly
10	Ile	Asp	Val 515	Phe	Asp	Pro	Lys	Phe 520	Asn	Ile	Val	Ser	Pro 525	Gly	Ala	Asp
	Met	Glu 530	Ile	Tyr	Phe	Pro	Tyr 535	Thr	Glu	Glu	Lys	Arg 540	Arg	Leu	Ьys	His
15	Phe 545	His	Pro	Glu	Ile	Glu 550	Asp	Leu	Leu	Туг	Thr 555	ГÀа	Val	Glu	Asn	Glu 560
20	Glu	His	Leu	Суз	Val 565	Leu	Asn	Asp	Arg	Asn 570	Lys	Pro	Ile	Leu	Phe 575	Thr
25	Met	Pro	Arg	Leu 580	Asp	Arg	Val	ГÀЗ	Asn 585	Leu	Thr	Gly	Leu	Val 590	Glu	Trp
30	Суз	Gly	Lys 595	Asn	Pro	ГÅз	Leu	Arg 600	Glu	Leu	Ala	Asn	Leu 605	Val	Val	Val
	Gly	Gly 610		Arg	Arg	Lys	Glu 615	Ser	Lys	Asp	Leu	Glu 620	Glu	Lys	Ala	Glu
35	Met 625	Lys	Lys	Met	Phe	Glu 630	Leu	Ile	Asp	ГÀЗ	Tyr 635	Asn	Leu	Asn	Gly	Gln 640
40	Phe	Arg	Trp	Ile	Ser 645	Ser	Gln	Met	Asn	Arg 650	Ile	Arg	Asn	Val	Glu 655	Leu
45	Tyr	Arg	Туг	Ile 660	Cys	Asp	Thr	Lys	Gly 665	Ala	Phe	Val	Gln	Pro 670	Ala	Leu
50	Tyr	Glu	Ala 675		Gly	Leu	Thr	Val 680		Glu	Ala	Met	Thr 685	Cys	Gly	Leu
	Pro	Thr 690		Ala	Thr	Суз	Asn 695		Gly	Pro	Ala	Glu 700	lle	Ile	Val	His
55	Gly 705		Ser	Gly	Phe	Asn 710		Asp	Pro	Туг	His 715	Gly	Asp	Gln	Ala	Ala 720
60	Asp	Ile	Leu	ı Val	Asp 725		Phe	Glu	Lys	Cys 730	Lys	ГÀЗ	Asp	Pro	Ser 735	His
	Trp	Asp	Lys	Ile	Ser	Gln	Gly	Gly	Leu	Lys	Arg	Ile	Glu	Glu	Lys	Tyr

PCT/AU01/01580 WO 02/45485

745

8

750

Thr Trp Lys Ile Tyr Ser Glu Arg Leu Leu Thr Leu Thr Gly Val Tyr 755 760 765

5

Gly Phe Trp Lys His Val Ser Asn Leu Glu Arg Arg Glu Ser Arg Arg 770 775 780 10

Tyr Leu Glu Met Phe Tyr Ala Leu Lys Tyr Arg Lys Leu Ala Glu Ser 785 790 795 800

15 Val Pro Leu Ala Glu Glu 805

740

INTERNATIONAL SEARCH REPORT

International application.No. PCT/AU01/01580

A.	CLASSIFICATION OF SUBJECT MATTER		
Int. Cl. 7:	A01H 5/00 C12N 15/11 C12N 15/29 C12N	15/54	
According to	International Patent Classification (IPC) or to both	national classification and IPC	
В.	FIELDS SEARCHED		
Minimum docu	mentation searched (classification system followed by c	lassification symbols)	
WPIDS, CA			
Documentation	searched other than minimum documentation to the ext	ent that such documents are included in t	he fields searched
	RONIC DATABASES		·
	base consulted during the international search (name of		
WPIDS (A0) recombinant,	1H + keywords); CA, AGRICOLA, MEDLINE plant, cotton, fibre, fiber, seed)	E (sucrose synthase, susy, transgen	?, transform?,
C.	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app		Relevant to claim No.
	Ruan, Y-L. et al. 2000. Pathway and control cotton fiber cells. Australian Journal of Plant	of sucrose import into initiating Physiology. 27:795-800.	
X	See whole document, in particular "Results as	nd discussion" pp797-800.	1-30
	Ruan, Y-L. and Chourey, P.S. 1998. A fiberly associated with lack of fiber cell initiation in	ess seed mutation in cotton is	
	in sucrose synthase expression and carbon pa	rtitioning in developing seeds.	
	Plant Physiology, 118:399-406.		
X	See whole document, in particular "Results"	and "Discussion" pp400-405.	1-13, 17-30
i i	Chengappa, S. et al. 1999. Transgenic tomat	o plants with decreased sucrose	
	synthase are unaltered in starch and sugar act Molecular Biology. 40:213-221.	cumulation in the fruit. Flant	
A	See "Abstract" and "Results and Discussion"		1-13, 17-30
X	Further documents are listed in the continuation	n of Box C See patent fam	ily annex
* Specia	al categories of cited documents:	later document published after the ir	ternational filing date or
"A" docum	nent defining the general state of the art which is	priority date and not in conflict with	the application but cited to
not co	nsidered to be of particular relevance	understand the principle or theory undocument of particular relevance; the	e claimed invention cannot
	r application or patent but published on or after "X ternational filing date	be considered novel or cannot be con	isidered to involve an
"L" docum	nent which may throw doubts on priority claim(s)	inventive step when the document is document of particular relevance; the	taken alone e claimed invention cannot
or wh	ich is cited to establish the publication date of "Y er citation or other special reason (as specified)	be considered to involve an inventive	e step when the document is
"O" docum	nent referring to an oral disclosure, use,	combined with one or more other su- combination being obvious to a person	ch documents, such
"P" docum	ition or other means nent published prior to the international filing "&		at family
date b	out later than the priority date claimed		31 JAN 2002
Date of the act	ual completion of the international search	Date of mailing of the international sear	ch report
15 January 2		Authorized officer	- <u> </u>
1	ling address of the ISA/AU		
AUSTRALIAN	V PATENT OFFICE WODEN ACT 2606, AUSTRALIA	Town Moore	
E-mail address	s: pct@ipaustralia.gov.au	Terry Moore	• •
Facsimile No.	(02) 6285 3929	Telephone No : (02) 6283 2632	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU01/01580

Cottogowi*	citation of document, with indication, where appropriate, of the relevant passages	Relevant to
Category*		claim No.
	D'Aoust, M-A. et al. 1999. Antisense inhibition of tomato fruit sucrose synthase	
	decreases fruit setting and the sucrose unloading capacity of young fruit. The Plant Cell.	
A	11:2407-2418. See "Abstract" and "Discussion".	1-13, 17-30
	Ruan, Y-L. et al. 1997. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiology.	
	115:375-385.	
Α	See "Introduction" and "Discussion".	1-30
	Shimizu, Y. et al. 1997. Changes in levels of mRNAs for cell wall-related enzymes in	
	growing cotton fiber cells. Plant and Cell Physiology. 38(3):375-378.	
A	See whole document.	1-30
	Haigler, C.H. et al. 2001. Carbon partitioning to cellulose synthesis. Plant Molecular	
	Biology. 47:29-51.	
T	See whole document.	1-13, 17-30
	·	
		}
		<u> </u>
		_