Macroeconomía I

El Modelo Neoclásico de Crecimiento

Mauricio M. Tejada

Magister en Economía Universidad Alberto Hurtado

Contenidos

Introducción

Asignación Centralizada

Equilibrio Competitivo

Equilibrio de Estado Estacionario

Dinámica de Transición

Método Simple de Solución: Shooting Algorithm

Programación Dinámica

Más allá de la Senda de Crecimiento Balanceado

Introducción

Introducción

- El modelo neoclásico de crecimiento es el modelo más importante en la macroeconomía moderna.
- Es la base de una serie de modelos utilizado tanto para estudiar temas de crecimiento como de ciclos económicos.
- En este curso estudiaremos una versión en tiempo discreto de este modelo.
- ¿En que nos concentraremos?
 - El Modelo de crecimiento (equilibrio competitivo y asignación centralizada)
 - Control óptimo
 - Programación dinámica.

Los Hechos Estilizados de Kaldor (1957)

El modelo de crecimiento debe ser consistente con los datos. Nicholas Kaldor en 1957 resumió las propiedades estadísticas del proceso de crecimiento de EEUU.

- La participación en el ingreso del capital y del trabajo es más o menos constante.
- La tasa de crecimiento del capital por trabajador es más o menos constante.
- La tasa de crecimiento del producto por trabajador es más o menos constante.
- El ratio capital-producto es más o menos constante
- La tasa de retorno a la inversión es más o menos constante.
- Los salarios reales crecen en el tiempo.

Estructura Básica del Modelo

Existen muchas versiones del modelo neoclásico de crecimiento. La versión básica tiene los siguiente ingredientes:

- 1. La economía esta poblada por familias son idénticas que viven para siempre.
- 2. Las empresas producen un único bien utilizado capital y trabajo.
- 3. Todos los agentes son tomadores de precios.
- 4. Los precios son completamente flexibles y los mercados se clarean en todo momento.

Iniciamos el análisis suponiendo que existe un Planificador Central que asigna los recursos

Asignación Centralizada

Demografía

- La economía está poblada por un continuo (número muy grande) de familias.
- Todas las familias son idénticas (supuesto fuerte, quizá más de lo que necesitamos. Veremos más adelante algo sobre agregación).
- Como consecuencia podemos pensar en una familia representativa tomadora de precios.
- Las famílias están situadas en el intervalo [0,1], por tanto las variables medidas en términos per cápita son idénticas a los agregados.
- El número de personas en cada hogar crece a tasa n. Entonces $L_t = (1+n)L_{t-1} = (1+n)^t L_0$. Normalizamos $L_0 = 1$.

Preferencias

- Las preferencias están definidas sobre flujos de consumo y pueden ser representadas por una función de utilidad.
- Función de utilidad de la familia representativa:

$$U_{0}\left(c_{0},c_{1},...,c_{T}
ight)=\sum_{t=0}^{T}eta^{t}L_{t}u\left(c_{t}
ight)$$

donde T en principio puede ser finito (mas adelante continuaremos con T infinito), $c_t = \frac{C_t}{L_t}$ es el consumo per cápita y $\beta = \frac{1}{1+\rho} \in (0,1)$ es el factor de descuento (ρ la tasa).

- Propiedades de la función de utilidad $U_0\left(\cdot\right) = \sum_{t=0}^T \beta^t L_t u\left(c_t\right)$
 - $U_0(\cdot)$ es separable aditivamente.
 - $U_0(\cdot)$ tiene tasa de descuento constante.

Supuestos aseguran recursividad y un comportamiento temporalmente consistente

Preferencias

- Propiedades de la función de utilidad instantánea $u(c_t)$: $\mathbb{R}_+ \to \mathbb{R}$:
 - Estrictamente creciente u'(c) > 0 y estrictamente cóncava u''(c) < 0.
 - $u'(0) = +\infty$.
- Algunos Ejemplos:
 - Si $U_0(\cdot) = \left(\alpha_0 c_0^{1-\sigma} + \alpha_1 c_1^{1-\sigma} + ... + \alpha_T c_T^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$ (función de utilidad CES), entonces:

$$u(c_t) = \frac{c_t^{1-\sigma}-1}{1-\sigma}, \quad \sigma \neq 1$$

• Si $U_0(\cdot) = (c_0^{\alpha_0} c_1^{\alpha_1} ... c_T^{\alpha_T})$ (función de utilidad Cobb-Douglas), entonces:

$$u\left(c_{t}\right)=\log\left(c_{t}\right)$$

• Cada la familia esta dotada de una unidad de trabajo y k_0 unidades del bien en t=0.

• La tecnología de producción es neoclásica y está dada por:

$$Y_t = F(K_t, L_t, A_t)$$

donde $F: \mathbb{R}^3_+ \to \mathbb{R}_+$ is una función de producción estacionaria, continua y dos veces diferenciable.

- $F(\cdot)$ satisface las siguientes propiedades:
 - 1. Retornos constantes a escala en K_t y L_t :

$$F(\mu K, \mu L, A) = \mu F(K, L, A), \quad \forall \mu > 0$$

2. Productos marginales positivos pero decrecientes:

$$F_K(K, L, A) > 0$$
, $F_L(K, L, A) > 0$,
 $F_{KK}(K, L, A) < 0$, $F_{LL}(K, L, A) < 0$.

- $F(\cdot)$ satisface las siguientes propiedades:
 - 3. Condiciones de Inada:

$$\lim_{K \to 0} F_K\left(\cdot\right) = \infty \quad y \quad \lim_{K \to \infty} F_K\left(\cdot\right) = 0 \text{ para todo } L > 0 \text{ y todo } A$$

$$\lim_{L \to 0} F_L\left(\cdot\right) = \infty \quad y \quad \lim_{L \to \infty} F_L\left(\cdot\right) = 0 \text{ para todo } K > 0 \text{ y todo } A.$$

- Implicaciones:
 - 1. $F(\cdot)$ satisface (Teorema de Euler):

$$F(K, L, A) = F_K(K, L, A) \times K + F_L(K, L, A) \times L$$

$$\operatorname{con}\, \epsilon_X = \tfrac{\partial F}{\partial X} \tfrac{X}{F}.$$

- 2. $F_K(\cdot)$ y $F_L(\cdot)$ son homogéneas de grado cero (sólo dependen del ratio $\frac{K}{L}$).
- 3. Todos los insumos son esenciales: F(0, L, A) = F(K, 0, A) = 0.
- 4. $F_{KL}(\cdot) > 0$, capital y trabajo son complementos.

Progreso Tecnológico:

- Neutral a la Hicks: $A_t F(K_t, L_t)$
- Neutral a la Solow (aumentador de capital): $F(A_tK_t, L_t)$
- Neutral a la Harrod (aumentador de trabajo): $F(K_t, A_t L_t)$

 A_t es un proceso tecnológico aumentador de trabajo (neutral a la Harrod). Es el único que garantiza K_t/Y_t constante (Hechos estilizados de Kaldor)

uah/Universidad

• Forma intensiva (trabajo-efectivo): $\hat{k}_t = K_t/A_tL_t$, $\hat{y}_t = Y_t/A_tL_t$, etc.

$$\hat{y}_t = f(\hat{k}_t) = F(\hat{k}_t)$$

• Productividades marginales:

$$F_K(K_t, A_t L_t) = f_k(\hat{k}_t)$$

$$F_L(K_t, A_t L_t) = A \left[f(\hat{k}_t) - f_k(\hat{k}_t) \hat{k}_t \right]$$

• Propiedades de la función de producción en su forma intensiva:

$$\begin{split} f(0) &= 0, \quad f_k(\hat{k}_t) > 0 > f_{kk}(\hat{k}_t) \\ &\lim_{\hat{k} \to 0} f_k\left(\hat{k}_t\right) = \infty, \quad \lim_{\hat{k} \to \infty} f_k\left(\hat{k}_t\right) = 0 \end{split}$$

- Algunos ejemplos:
 - Función de producción CES:

$$F(K_t, A_t L_t) = \left(\alpha K_t^{1-\theta} + (1-\alpha) \left(A_t L_t\right)^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

y en su forma intensiva:

$$f(\hat{k}_t) = \left(\alpha \hat{k}_t^{1-\theta} + (1-\alpha)\right)^{\frac{1}{1-\theta}}$$

• Función de Producción Cobb-Douglas:

$$F(K_t, A_t L_t) = K_t^{\alpha} (A_t L_t)^{1-\alpha}$$

y en su forma intensiva:

$$f(\hat{k}_t) = \hat{k}_t^{\alpha}$$

• La tecnología crece a una tasa g: $A_t = (1+x)A_{t-1} = (1+x)^tA_0$. Normalizamos $A_0 = 1$.

• Restricción de Recursos:

$$C_t + I_t \leq Y_t$$

En forma intensiva:

$$\hat{c}_t + \hat{i}_t \leq \hat{y}_t$$

• El capital se deprecia a una tasa constante $\delta \in [0,1]$. La ley de movimiento de capital es:

$$K_{t+1} = (1 - \delta)K_t + I_t$$

En forma intensiva:

$$(1+n)(1+x)\hat{k}_{t+1} = (1-\delta)\hat{k}_t + \hat{l}_t$$
$$g_L g_A \hat{k}_{t+1} = (1-\delta)\hat{k}_t + \hat{l}_t$$

El Problema del Planificador Central

- Consideremos el plan óptimo que elegiría un planificador central benevolente (también se puede pensar en una economía Robinson Crusoe).
- El problema de optimización de Ramsey;

$$\begin{split} \max_{\left\{\hat{\mathbf{c}}_{t}, \hat{k}_{t+1}\right\}_{t=0}^{T}} & & \sum_{t=0}^{T} \left[\beta g_{L}\right]^{t} \boldsymbol{u\left(\boldsymbol{c}_{t}\right)} \\ s.t. & & \\ & c_{t}g_{A}^{-t} + g_{L}g_{A}\hat{k}_{t+1} \leq f\left(\hat{k}_{t}\right) + (1-\delta)\hat{\boldsymbol{k}}_{t}, \\ & c_{t} \geq 0, \hat{\boldsymbol{k}}_{t+1} \geq 0, \\ & \hat{k}_{0} \quad \mathsf{dado}. \end{split}$$

donde de nuevo T puede ser finito o ∞ .

• Este es un ejemplo de un *problema secuencial* ya que la solución es una secuencia de números $\left\{c_t^*, \hat{k}_{t+1}^*\right\}_{t=0}^T$.

El Problema del Planificador Central

- Solución para T finito: Problema de programación cóncava de dimensión finita (\mathbb{R}^T) caracterizado por el teorema de Kuhn-Tucker.
- Solución para *T* infinito: Podemos usar al menos dos métodos para resolver este problema:
 - Método 1: Método de Lagrange (basado en una versión generalizada de teorema de Kuhn-Tucker)
 - Método 2: Programación Dinámica.

• El Lagrangiano es:

$$\ell_0 = \sum_{t=0}^{T} \beta^t \left[u(c_t) g_L^t + \lambda_t \left(f\left(\hat{k}_t\right) + (1-\delta)\hat{k}_t - c_t g_A^{-t} - g_L g_A \hat{k}_{t+1} \right) \right.$$
$$\left. + \mu_t c_t + \omega_{t+1} \hat{k}_{t+1} \right]$$

• Las CPO:

$$\begin{aligned} u'\left(c_{t}\right)g_{L}^{t}-\lambda_{t}g_{A}^{-t}+\mu_{t}&=0 & t=0,...,T\\ -\lambda_{t}g_{L}g_{A}+\beta\lambda_{t+1}\left[f'(\hat{k}_{t+1})+1-\delta\right]+\omega_{t+1}&=0 & t=0,...,T-1\\ -\lambda_{T}g_{L}g_{A}+\omega_{T+1}&=0 & t=T\\ \lambda_{t}\left[f\left(\hat{k}_{t}\right)+(1-\delta)\hat{k}_{t}-c_{t}g_{A}^{-t}-g_{L}g_{A}\hat{k}_{t+1}\right]&=0 & t=0,...,T\\ \mu_{t}c_{t}&=0 & t=0,...,T\\ \omega_{t+1}\hat{k}_{t+1}&=0 & t=0,...,T \end{aligned}$$

Proposición

Suponga que $F(K_t, A_t L_t)$ es neoclásica y que $u(c_t)$ es estrictamente creciente, estrictamente cóncava y satisface $u'(0) = +\infty$. Entonces, las condiciones necesarias para alcanzar el máximo en el problema de Ramsey son:

$$rac{u'\left(c_{t}
ight)}{eta u'\left(c_{t+1}
ight)} = f'(\hat{k}_{t+1}) + 1 - \delta \qquad t = 0, ..., T - 1$$
 $g_{L}g_{A}\hat{k}_{t+1} = f\left(\hat{k}_{t}
ight) + (1 - \delta)\hat{k}_{t} - c_{t}g_{A}^{-t} \qquad t = 0, ..., T$
 $eta^{T}u'(c_{T})k_{T+1} = 0$

con k_0 dado. La solución es interior $(\lambda_t > 0, \mu_t = 0 \text{ y } \omega_{t+1} = 0)$.

• *Interpretación* de la ecuación de Euler: suponga que reducimos consumo hoy para destinar a la inversión:

$$\underbrace{u'\left(c_{t}\right)}_{\text{utilidad marginal}} = \beta \qquad \underbrace{u'\left(c_{t+1}\right)}_{\text{incremento en la}} \qquad \underbrace{\left(f'\left(\hat{k}_{t+1}\right) + 1 - \delta\right)}_{\text{Retorno de la inversión:}}$$
 costo del ahorro
$$\text{utilidad en } t + 1$$
 por unidad de c_{t+1}

• Interpretación del multiplicador: suponga que aumentamos el stock de capital en t.

$$\lambda_t = u'(c_t) g_L^t g_A^t$$

• La condición terminal es $k_{T+1} = 0$. De manera equivalente, el valor presente del capital debe ser cero en el período final

$$\beta^T u'(c_T) k_{T+1} = 0$$

Resolvemos un sistema de 2T + 1 ecuaciones con dos condiciones sobre el capital (una inicial k_0 y una final $k_{T+1} = 0$).

- Condiciones para la generalización de las condiciones de Kuhn-Tucker: (1) la utilidad debe ser recursiva y (2) el problema debe estar acotado por arriba.
- Utilidad recursiva:

$$U_t = u(c_t) + \beta U_{t+1}, \quad \beta \in (0,1)$$

En cada período la utilidad sólo depende del flujo de consumo en ese período.

• Problema acotado por arriba:

$$U_t < \infty$$
 para cada posible $\{c_t\}_{t=0}^{\infty}$

Esto se cumple si $\frac{u(c_{t+s+1})}{u(c_{t+s})} < \frac{1}{\beta g_L}$ para s=0,1,...

 En el modelo neoclásico de crecimiento el problema está acotado dada la característica limitada de los recursos (k₀ finito).

• El Lagrangiano es:

$$\ell_0 = \sum_{t=0}^{T} \beta^t \left[u(c_t) g_L^t + \lambda_t \left(f\left(\hat{k}_t\right) + (1 - \delta) \hat{k}_t - c_t g_A^{-t} - g_L g_A \hat{k}_{t+1} \right) \right.$$
$$\left. + \mu_t c_t + \omega_{t+1} \hat{k}_{t+1} \right]$$

Note que:

$$H_t = u(c_t)g_L^t + \lambda_t \left(f\left(\hat{k}_t\right) + (1-\delta)\hat{k}_t - c_tg_A^{-t} - g_Lg_A\hat{k}_{t+1}\right) + \mu_t c_t + \omega_{t+1}\hat{k}_{t+1}$$

Entonces:

$$\ell_o = \sum_{t=0}^{\infty} \beta^t H_t$$

y por tanto también tiene una estructura recursiva:

$$\ell_t = H_t + \beta \ell_{t+1}$$

Lema

 $Si~\{c_t,\hat{k}_{t+1}\}_{t=0}^{\infty}$ es óptima y $(\lambda_t,\mu_t,\omega_{t+1})$ son los multiplicadores asociados a las restricciones, entonces:

$$c_t = argmax_{c_t}H_t$$

tomando $(\hat{k}_t, \hat{k}_{t+1})$ como dado y,

$$\hat{k}_{t+1} = argmax_{k_{t+1}}H_t + \beta H_{t+1}$$

tomando $(\hat{k}_t, \hat{k}_{t+2})$ como dado.

• Las CPO de la solución interior son:

$$\begin{aligned} u'\left(c_{t}\right)g_{L}^{t}-\lambda_{t}g_{A}^{-t}&=0\\ -\lambda_{t}g_{L}g_{A}+\beta\lambda_{t+1}\left[f'(\hat{k}_{t+1})+1-\delta\right]&=0\\ f\left(\hat{k}_{t}\right)+(1-\delta)\hat{k}_{t}-c_{t}g_{A}^{-t}-g_{L}g_{A}\hat{k}_{t+1}&=0 \end{aligned}$$

• Cuando $T = \infty$ la condición terminal $\beta^T u'(c_T) k_{T+1} = 0$ es reemplazada por la condición de transversalidad (CTV):

- Interpretación de la CTV: el valor total descontado del capital al infinito debe tender a cero a medida que se aproxima el final de los tiempos.
- Comparando con el problema en horizonte finito:
 - Forma funcional idéntica.
 - Diferente condición terminal.

Proposición

Suponga que la función de utilidad es recursiva, que $u(c_t)$ es estrictamente creciente, estrictamente cóncava y satisface $u'(0) = +\infty$, y que $F(K_t, A_t L_t)$ es neoclásica. Entonces, las codiciones necesarias para alcanzar el máximo en el problema de Ramsey con horizonte infinito son:

$$\begin{aligned} \frac{u'\left(c_{t}\right)}{u'\left(c_{t+1}\right)} &= \beta \left[f'(\hat{k}_{t+1}) + 1 - \delta\right] \\ g_{L}g_{A}\hat{k}_{t+1} &= f\left(\hat{k}_{t}\right) + (1 - \delta)\hat{k}_{t} - c_{t}g_{A}^{-t} \\ \lim_{t \to \infty} \beta^{t}u'(c_{t})k_{t+1} &= 0 \end{aligned}$$

con \hat{k}_0 dado.

Equilibrio Competitivo

Equilibrio Competitivo

- Familias y empresas interactúan de manera descentralizada.
- La estructura del modelo es:
 - Preferencias, dotaciones y tecnología son las mismas que en el modelo anterior.
 - Agregamos mercados: mercados de bienes y mercados de factores (donde se arrienda trabajo y capital).
- Caracterizamos ahora la asignación en un contexto de mercados competitivos (tanto en el mercado de bienes como el de factores).
- Mostraremos que la asignación del equilibrio competitivo coincide con la del planificador central (pareto optimalidad).

- Existen muchas dinastías que viven al infinito: $j \in [0, 1]$. Normalizamos $L_0 = 1$.
- El número de personas en cada hogar crece a tasa n. Entonces $L_t^j = (1+n)^t = g_L^t$.
- Definamos c_t^j , k_t^j , e i_t^j como variables por persona en cada familia.
- Cada persona en la familia esta dotada de una unidad de trabajo y la ofrece inelásticamente a w_t.
- Cada miembro de la familia j esta dotado de un capital inicial de k_0^j y acumula capital de acuerdo a:

$$g_L k_{t+1}^j = (1-\delta)k_t^j + i_t^j$$

Cada familia recibe una renta (bruta) q_t por arrendar el capital.

- La familia j tiene participación en la propiedad de las empresas. Definamos como π_t^j a los dividendos recibidos (por persona).
 - Las acciones no se intercambian y por tanto la familia j tiene una fracción constante α^j de las empresas: $\pi_t^j = \alpha^j \Pi_t / L_t$ y $\int \alpha^j dj = 1$.
- Ingreso por persona de la familia j (usos y fuentes) es:

$$c_t^j + i_t^j = y_t^j = w_t + q_t k_t^j + \pi_t^j$$

Las familias toman los precios w_t y q_t como dados.

• Por tanto (tomando RCE $\Pi_t = 0$):

$$c_t^j + g_L k_{t+1}^j = (1 + q_t - \delta) k_t^j + w_t$$

• El problema de las familias es elegir la secuencia $\{c_t^j, k_{t+1}^j\}_{t=0}^{\infty}$ dada la secuencia $\{q_t, w_t\}_{t=0}^{\infty}$ y las restricciones de recursos y no negatividad.

$$egin{aligned} \max_{\{c_t,k_{t+1}\}_{t=0}^\infty} \sum_{t=0}^\infty eta^t g_L^t u(c_t^j) \ s.ac_t^j + g_L k_{t+1}^j = (1+q_t-\delta)k_t^j + w_t \ k_0^j \ dado \end{aligned}$$

• El Lagrangiano (para la solución interior) es:

$$\ell_0^j = \sum_{t=0}^\infty eta^t \left[g_L^t u(c_t^j) + \lambda_t^j ((1+q_t-\delta)k_t^j + w_t - c_t^j - g_L k_{t+1}^j)
ight]$$

• Las CPO para la solución interior son:

$$\frac{u'(c_t^j)}{\beta u'(c_{t+1}^j)} = (1 + q_{t+1} - \delta)$$

$$c_t^j + g_L k_{t+1}^j = (1 + q_t - \delta)k_t^j + w_t$$

• La condición de transversalidad:

$$\lim_{t\to\infty}\beta^t u'(c_t^j)k_{t+1}^j=0$$

Firmas

- En cada período t existe un numero arbitrariamente grande de firmas M_t . Cada firma es indexada con $m \in [0, M_t]$.
- El bien es homogéneo, los mercados son competitivos (de bienes y de factores) y la tecnología es neoclásica.
- La tecnología es aumentadora de trabajo: $A_t = (1+x)^t = g_A$.
- El beneficio de la firma m es:

$$\Pi_t^m = F(K_t^m, A_t L_t^m) - q_t K_t^m - w_t L_t^m$$

• La inversión es reversible y no existen costos de ajuste: optimización estática. C.P.O.

$$F_K(K_t^m, A_t L_t^m) = q_t$$

$$F_L(K_t^m, A_t L_t^m) A_t = w_t$$

Firmas

• Homogeneidad de grado cero en los productos marginales implica que w_t y q_t son consistentes (i.e. tienen el mismo ratio $X_t = K_t^m / A_t L_t^m$).

$$q_t = f'(X_t)$$

$$w_t = (f(X_t) - f'(X_t)X_t)A_t$$

Entonces, C.P.O. solo identifica X_t (mientras $K_t^m y A_t L_t^m$ están indeterminados).

• Combinado ambas condiciones de primer orden:

$$q_t X_t + \frac{w_t}{A_t} = f(X_t)$$

Lo que implica:

$$\Pi_t^m = A_t L_t^m \left[f(X_t) - q_t X_t - \frac{w_t}{A_t} \right] = 0$$

Clareo de Mercado

• Mercado de capital:

$$\int_0^{M_t} K_t^m dm = \int_0^1 g_L^t k_t^j dj = K_t$$

• Mercado de trabajo:

$$\int_0^{M_t} L_t^m dm = \int_0^1 g_L^t dj = L_t$$

Equilibrio

Definición (Equilibrio Competitivo)

El equilibrio de la economía es la asignación $\left\{ (k_{t+1}^j, c_t^j)_{j \in [0,1]}, (K_t^m, L_t^m)_{m \in [0,M_t]} \right\}_{t=0}^{\infty}$ y la trayectoria de precios $\{q_t, w_t\}_{t=0}^{\infty}$ tal que:

- 1. Dado $\{q_t, w_t\}_{t=0}^{\infty}$, la trayectoria $\{(k_{t+1}^j, c_t^j)_{j \in [0,1]}\}_{t=0}^{\infty}$ maximiza la utilidad de la familia j (para todo j).
- 2. $\{(K_t^{\overline{m}}, L_t^{\overline{m}})_{m \in [0, M_t]}\}_{t=0}^{\infty}$ maximizan beneficios para cada m y t.
- 3. Los mercados de capital y trabajo se clarean.

Equilibrio

• Note que $X_t = \hat{k}_t$ y por tanto

$$q_t = f'(\hat{k}_t)$$

$$w_t = \left[f(\hat{k}_t) - f'(\hat{k}_t) \hat{k}_t \right] g_A^t$$

• Dados los precios, se satisfacen $c_t^j = c_t$ para todo j:

$$\frac{u'(c_t)}{u'(c_{t+1})} = \beta(f'(\hat{k}_{t+1}) + 1 - \delta)$$

Integrando la restricción presupuestaria de las familias y reemplazando precios de factores:

$$c_t + g_L k_{t+1} = (1 + f'(\hat{k}_t) - \delta) k_t + \left[f(\hat{k}_t) - f'(\hat{k}_t) \hat{k}_t \right] g_A^t$$
 $c_t g_A^{-t} + g_L g_A \hat{k}_{t+1} = f(\hat{k}_t) + (1 - \delta) \hat{k}_t$

Equilibrio

Proposición

El conjunto de asignaciones del equilibrio competitivo coincide con aquellas encontradas para el Planificador Central. Luego, el equilibrio competitivo es Pareto óptimo.

• Nota sobre la condición de transversalidad:

$$\lim_{t\to\infty}\beta^t u'(c_t)k_{t+1}=0$$

Definimos como $Q_{t+1} = f'(\hat{k}_{t+1}) + 1 - \delta$ al retorno bruto del capital. Se puede mostrar (usando la ecuación de Euler) que:

$$eta^t u'(c_t) = rac{u'(c_0)}{\prod_{s=1}^t Q_s}$$

Luego:

$$\lim_{t\to\infty}\frac{k_{t+1}}{\prod_{s=1}^t Q_s}=0$$

Equilibrio de Estado Estacionario

Estado Estacionario

Definición (Estado Estacionario)

Definimos estado estacionario como una situación (de equilibrio de largo plazo) en la cual varias cantidades crecen a tasa constante (incluida tasa cero).

• Usemos $u(c_t) = \frac{c_t^{1-\sigma}-1}{1-\sigma}$. Con esto las CPO son:

$$\frac{g_A^{\sigma} u'\left(\hat{c}_t\right)}{\beta u'\left(\hat{c}_{t+1}\right)} = \left[f'(\hat{k}_{t+1}) + 1 - \delta\right]$$

$$g_L g_A \hat{k}_{t+1} = f\left(\hat{k}_t\right) + (1 - \delta)\hat{k}_t - \hat{c}_t$$

• El estado estacionario se define como el nivel \hat{k}^* tal que, si $\hat{k}_0 = \hat{k}^*$ entonces $\hat{k}_t = \hat{k}^*$ para todo $t \ge 1$.

$$\hat{c}^* = f\left(\hat{k}^*\right) + (1 - \delta - g_L g_A)\hat{k}^*$$

Esto implica que:

$$f'(\hat{k}^*) = g_A^{\sigma}/\beta + \delta - 1$$
$$\hat{y}^* = f(\hat{k}^*)$$

Estado Estacionario

 En estado estacionario las variables expresadas en términos de trabajo efectivo no crecen. Las variables expresadas en términos per cápita crecen a tasa constante (senda de crecimiento balanceado):

$$c_t^* = \hat{c}_t^* g_A^t = \hat{c}^* (1+x)^t$$

$$k_t^* = \hat{k}_t^* g_A^t = \hat{k}^* (1+x)^t$$

$$y_t^* = \hat{y}_t^* g_A^t = \hat{y}^* (1+x)^t$$

El retorno del capital es constante y el salario crece a tasa constante.

$$q^* = f'(\hat{k}^*)$$

 $w_t^* = [f(\hat{k}^*) - f'(\hat{k}^*)\hat{k}^*](1+x)^t$

• Finalmente, el ratio capital-producto es constante:

$$\frac{k_t^*}{y_t^*} = \frac{\hat{k}^* (1+x)^t}{\hat{y}^* (1+x)^t} = \frac{\hat{k}^*}{\hat{y}^*}$$

Estado Estacionario

• Finalmente, recodemos que:

$$q_t \hat{k}_t + \frac{w_t}{A_t} = f(\hat{k}_t)$$

y por tanto, en estado estacionario:

$$%IngCapital^* = rac{f'(\hat{k}^*)\hat{k}^*}{f(\hat{k}^*)}$$
 $%IngTrabajo^* = rac{\left[f(\hat{k}^*) - f'(\hat{k}^*)\hat{k}^*
ight]}{f(\hat{k}^*)}$

son constantes.

• La senda de crecimiento balanceado es consistente con los hechos estilizados de Kaldor.

- En el corto (mediano) plazo, la transición al equilibrio de largo plazo tiene que ser también óptima.
- Para analizar la dinámica de la transición definimos:

$$\hat{c}_t = \hat{c}_{t+1}$$
 : $\beta g_A^{-\sigma} \left[f'(\hat{k}_{t+1}) + 1 - \delta \right] = 1$
 $\hat{k}_t = \hat{k}_{t+1}$: $\hat{c}_t = f(\hat{k}_t) + (1 - \delta - g_A g_L) \hat{k}_t$
 $\hat{k}_{t+1} = 0$: $\hat{c}_t = f(\hat{k}_t) + (1 - \delta) \hat{k}_t$

- Nota:
 - La primera ecuación se satisface en el estado estacionario del consumo.
 - La segunda ecuación se satisface en el estado estacionario del capital.
 - La tercera ecuación representa el máximo consumo posible.
- Estamos buscando la analogía a un diagrama de fase.

• En A_1 y A_2 : fijemos $\hat{k} > \hat{k}^*$

$$rac{u'(\hat{c}_t)}{u'(\hat{c}_{t+1})} = eta g_A^{-\sigma} ig(1 + f'(ar{\hat{k}}) - \deltaig) < 1 ig(ssig) \Rightarrow u'(\hat{c}_{t+1}ig) > u'(\hat{c}_t) \Rightarrow \hat{c} \downarrow$$

• En A_3 y A_4 : fijemos $\bar{\hat{k}} < \hat{k}^*$

$$rac{u'(\hat{c}_t)}{u'(\hat{c}_{t+1})} = eta g_A^{-\sigma}(1+f'(ar{k})-\delta) > 1 \, (ss) \Rightarrow u'(\hat{c}_{t+1}) < u'(\hat{c}_t) \Rightarrow \hat{c} \uparrow$$

• En A_3 y A_2 : fijemos $\overline{\hat{c}} < \hat{c}^*$

$$\hat{k}_{t+1} - \hat{k}_t = f(\hat{k}_t) + (1 - \delta - g_A g_L) \, \hat{k}_t - \bar{\hat{c}} > 0 \, (ss) \Rightarrow \hat{k} \uparrow$$

• En A_4 y A_1 : fijemos $\overline{\hat{c}} > \hat{c}^*$

$$\hat{k}_{t+1} - \hat{k}_t = f(\hat{k}_t) + (1 - \delta - g_A g_L) \, \hat{k}_t - \bar{\hat{c}} < 0 \, (ss) \Rightarrow \hat{k} \downarrow$$

Método Simple de Solución: Shooting

Algorithm

Shooting Algorithm

• Recuerde que la solución del problema de optimización es una secuencia $\left\{\hat{c}_t, \hat{k}_{t+1}\right\}_{t=0}^{\infty}$ que satisface:

$$\begin{aligned} & \frac{g_A^{\sigma} u'\left(\hat{c}_t\right)}{\beta u'\left(\hat{c}_{t+1}\right)} & - & \left[f'(\hat{k}_{t+1}) + 1 - \delta\right] = 0 \\ & g_L g_A \hat{k}_{t+1} & - & f\left(\hat{k}_t\right) - (1 - \delta)\hat{k}_t + \hat{c}_t = 0 \end{aligned}$$

• Recuerde además que el sistema converge al estado estacionario cuando $t \to \infty$. En estado estacionario se cumple:

$$\begin{split} \frac{g_A^{\sigma}}{\beta} & - & \left[f'(\hat{k}^*) + 1 - \delta \right] = 0 \\ \hat{c}^* & - & f\left(\hat{k}^*\right) - (1 - \delta - g_L g_A) \hat{k}^* = 0 \end{split}$$

• Finalmente, del diagrama de fase sabemos que existe una trayectoria estable si se cumple la CTV. En esta trayectoria, a cada k_0 le corresponde un c_0 en esta trayectoria.

Shooting Algorithm

Algoritmo:

- 1. Dado \hat{k}_0 , conjeturar \hat{c}_0
- 2. Calcular $\hat{k}_1, \hat{k}_2, ..., \hat{k}_t$ y $\hat{c}_1, \hat{c}_2, ..., \hat{c}_t$ usando las CPO y para un t grande.
 - En este paso se requiere resolver el sistema (no lineal) para hallar \hat{k}_{t+1} y \hat{c}_{t+1} dados \hat{k}_t y \hat{c}_t .
- 3. \hat{k}_t converge a \hat{k}^* ? Si esto se cumple tenemos la solución, caso contrario es necesario actualizar \hat{c}_0 :
 - Si $\hat{k}_t \to \infty$, existe sobre-ahorro y por tanto es necesario incrementar \hat{c}_0 .
 - ullet Si $\hat{k}_t o 0$, existe sub-ahorro y por tanto es necesario incrementar \hat{c}_0 .

Programación Dinámica

Introducción

- Desarrollado por Richard Bellman (1957) y David Blackwell (1965)
- Para los economistas, las contribuciones de Sargent (1987) y Stokey y Lucas (1989) proporcionan el puente.
- Herramienta moderna para el análisis de economías dinámicas: aplicaciones en:
 - Macroeconomía, Economía Laboral, Finanzas, Organización Industrial, Teoría de Juegos, etc.
- Aplicable a modelos:
 - En tiempo discreto y tiempo continuo.
 - Deterministicos y estocásticos.
 - Horizonte finito e infinito.
- Fundamentos del Método de Programación Dinámica:
 - El principio de optimalidad.
 - La ecuación de Bellman.

Introducción

- Hemos resuelto el modelo neoclásico de crecimiento usando un enfoque de secuencias.
 - La solución es un secuencia de objetos que satisfacen un conjunto de ecuaciones en diferencias.
- Un enfoque alternativo es utilizar un enfoque recursivo:
 - Programación dinámica,
- La idea básica de la programación dinámica es transformar un problema de optimización de muchos periodos en uno de optimización en dos periodos.
 - Para hacer esto resumiremos el futuro en la función valor (función de utilidad indirecta).
 - Intuición: La función valor es la máxima utilidad obtenida desde hoy dado el estado de la economía.

El Problema del Planificador Central en PD

• El modelo neoclásico de crecimiento corresponde al siguiente problema secuencial general, PS (suponemos $g_L = g_A = 1$ por simplicidad):

$$v(k_0) = \max_{\substack{\{c_t, k_{t+1}\}_{t=0}^{\infty} \\ s.t. \ k_{t+1} = f(k_t) + (1-\delta)k_t - c_t, \ t = 0, 1, 2, ...}} \sum_{k_0 > 0 \text{ dado.}}^{\infty} \beta^t u(c_t)$$

Principio de Optimalidad

Teorema (Principio de Optimalidad)

Sea $f(x,y): X \times X^T \to \mathbb{R}$. Entonces (x^*,y^*) es solución del problema

$$\max_{x,y} f(x,y)$$

si y solo si (x^*, y^*) es solución del problema

$$\max_{x} \left(\max_{y} f(x, y) \right)$$

Descripción verbal: Bellman (1957)

Una decisión óptima tiene la propiedad, sin importar el estado inicial y la decisión, de que las decisiones siguientes son también óptimas en relación al estado resultante en la primera decisión.

Del Principio de Optimalidad a la Ecuación de Bellman

Apliquemos el principio de optimalidad al problema secuencial:

$$v(k_{0}) = \max_{\{c_{t}, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u(c_{t})$$

$$= \max_{c_{0}, k_{1}, \{c_{t}, x_{t+1}\}_{t=1}^{\infty}} \left\{ u(c_{0}) + \sum_{t=1}^{\infty} \beta^{t} u(c_{t}) \right\}$$

$$= \max_{c_{0}, k_{1}} \left\{ u(c_{0}) + \max_{\{c_{t}, k_{t+1}\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t} u(c_{t}) \right\} \text{ usando PO}$$

$$= \max_{c_{0}, k_{1}} \left\{ u(c_{0}) + \beta \max_{\{c_{t}, k_{t+1}\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} u(c_{t}) \right\}$$

Nota: por un tema de espacio la restricción no fue escrita explícitamente.

Del Principio de Optimalidad a la Ecuación de Bellman

Definiendo:

$$(v(k_1)) = \max_{\{c_t, k_{t+1}\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} u(c_t),$$

obtenemos la Ecuación de Bellman para t = 0

$$v(k_0) = \max_{c_0, k_1} \{u(c_0) + \beta v(k_1)\}$$

• Aplicando el PO a $v(k_1)$, la ecuación de Bellman para t=1 es:

$$(v(k_1)) = \max_{c_1, k_2} \{u(c_1) + \beta v(k_2)\}$$

• Repitiendo el proceso, la ecuación de Bellman para cada t es

$$v\left(k_{t}\right) = \max_{c_{t}, k_{t+1}} \left\{u\left(c_{t}\right) + \beta v\left(k_{t+1}\right)\right\}$$

El Problema del Planificador Central en PD: Resumen

• Empezamos con un problema secuencial:

$$v(k_0) = \max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t. $k_{t+1} = f(k_t) + (1 - \delta)k_t - c_t, \ t = 0, 1, 2, ..., T$

• Entonces lo expresamos en su forma equivalente en la ecuación Bellman:

$$v(k_t) = \max_{c_t, k_{t+1}} \{ u(c_t) + \beta \underbrace{v(k_{t+1})} \}$$

s.t. $k_{t+1} = f(k_t) + (1 - \delta)k_t - c_t$

y ahora es un problema de decisión de dos períodos para cada t.

- Terminología:
 - k_t se denomina variable de estado y c_t variable de control
 - La solución $v(k_t)$ se denomina función valor para el período t
 - Las soluciones $k_{t+1} = g(k_t)$ y $c_t = h(k_t)$ se denominan funciones de política o reglas de decisión para el período t
- Ahora tenemos un problema funcional en lugar de uno de secuencias.

Aspectos Prácticos de la Formulación del Problema

- La formulación de Problema de programación dinámica tiene ciencia y arte.
- La parte más difícil es distinguir e identificar las variables de estado y de control.
- ¿Cómo distinguirlas?
 - Ambos tipos de variables afectan directa o indirectamente (a través del set factible) el payoff corriente.
 - Las variables de estado son aquellas que NO se pueden cambiar en el período corriente.
 - Las variables de control son aquellas que SI se pueden cambiar en el período corriente.

Teorema (Teorema de la Envolvente)

Suponga que para cada x la función $f(x,\cdot): \mathbb{R} \to \mathbb{R}$ es derivable y que alcanza un máximo único en g(x) que es una función derivable de x. Entonces, la función

$$v(x) = \max_{y \in \Gamma(x)} f(x, y)$$

es derivable y tenemos que:

$$v'(x) = f_x(x, y^*) = f_x(x, g(x))$$

Regla del teorema de la envolvente: tratar las variables de elección en el óptimo como constantes al tomar las derivadas.

• Partimos de la ecuación de Bellman

$$v(k_t) = \max_{k_{t+1}} \{ u(f(k_t) + (1 - \delta)k_t - k_{t+1}) + \beta v(k_{t+1}) \}$$

• CPO de la ecuación de Bellman

$$-u'(f(k_t) + (1-\delta)k_t - k_{t+1}) + \beta v'(k_{t+1}) = 0$$

Teorema de la envolvente:

$$v'(k_t) = u'(f(k_t) + (1 - \delta)k_t - k_{t+1})[f'(k_t) + (1 - \delta)]$$

$$v'(k_{t+1}) = u'(f(k_{t+1}) + (1 - \delta)k_{t+1} - k_{t+2})[f'(k_{t+1}) + (1 - \delta)] \leftarrow \textit{Iterar adelante}$$

Remplazar en la CPO para obtener la Ecuación de Euler

$$u'(f(k_t) - k_{t+1}) = \beta u'(f(k_{t+1}) + (1 - \delta)k_{t+1} - k_{t+2})[f'(k_{t+1}) + (1 - \delta)]$$

Es una ecuación en diferencias de 2do orden (típicamente no lineal) con dos valores límite: k_0 dado y (CTV) $\lim_{t\to\infty} \beta^t u'(c_t) k_{t+1} = 0$.

 Alternativamente podemos usar la siguiente representación recursiva del problema (con variables de estad y de control):

$$v(k_t) = \max_{\{c_t, k_{t+1}\}} \{u(c_t) + \beta v(k_{t+1})\}$$

$$s.t. c_t + k_{t+1} = f(k_t) + (1 - \delta) k_t$$

Como tenemos un problema de optimización restringida utilizamos el método de Lagrange:

$$\ell = u(c_t) + \beta v(k_{t+1}) + \lambda [f(k_t) + (1 - \delta) k_t - c_t - k_{t+1}]$$

• Las CPO:

$$u'(c_t) - \lambda = 0$$

 $\beta v'(k_{t+1}) - \lambda = 0$
 $f(k_t) + (1 - \delta) k_t - c_t - k_{t+1} = 0$

• Usamos el teorema de la envolvente:

$$v'(k_t) = \frac{\partial \ell}{\partial k_t} = \lambda [f'(k_t) + (1 - \delta)] = u'(c_t)[f'(k_t) + (1 - \delta)]$$

• Combinamos las CPO y la condición envolvente:

$$u'(c_t) = \beta v'(k_{t+1})$$

$$u'(c_t) = \beta u'(c_{t+1})[f'(k_{t+1}) + (1 - \delta)]$$

• Completamos esta condición de equilibrio con la restricción de recursos y la CTV:

$$\begin{aligned} c_t + k_{t+1} &= f\left(k_t\right) + \left(1 - \delta\right) k_t \\ \lim_{t \to \infty} \beta^t u'(c_t) k_{t+1} &= 0 \end{aligned}$$

Métodos de Solución

Dos métodos generales de solución:

- Métodos basados en la Función Valor (funcionan en general)
 - Adivinar y Verificar la Función Valor.
 - Iteración de la Función Valor.
- Métodos basados en la Ecuación de Euler (funcionan sólo con problemas diferenciales)
 - Adivinar y Verificar la Función de Política.
 - Iteración de la función de política.

Definición de Solución

• El problema de programación dinámica:

$$v\left(k_{t}\right) = \max_{c_{t}, k_{t+1}} \left\{u\left(c_{t}\right) + \beta v\left(k_{t+1}\right)\right\}$$

es un problema funcional y por tanto su solución son las funciones:

$$[v(k),g(k),h(k)]$$

- Estas funciones resuelven la ecuación de Bellman en el siguiente sentido:
 - Dado v(k), g(k) y h(k) resuelven el operador máx de la ecuación de Bellman.
 - Dado g(x) y h(k), v(x) resuelve:

$$v(k_t) = u(h(k_t)) + \beta v(g(k_t))$$

Métodos Basados en la Función Valor

- Pregunta 1: ¿Cómo resolver la ecuación de Bellman para horizonte infinito?
- Pregunta 2: ¿Qué hace lo anterior posible?
- Restricción en horizonte infinito:
 - v LIE y LDE deben ser iguales:
 - Definición de punto fijo del operador T: v = T(v) (mapeo en el espacio de funciones).
 - Buscamos el punto fijo del operador:

$$Tv = \max_{c_t, k_{t+1}} \left\{ u\left(c_t,\right) + \beta v\left(k_{t+1}\right) \right\}$$

- Dos Métodos:
 - Conjeturar y Verificar la Función Valor (one shot method): Encontrar $g(x_t)$ y $h(k_t)$ que resuelven la ecuación de Bellman dada la conjetura sobre $v(\cdot)$.
 - Iteración de la Función Valor (*iteration method*): $v_{j+1}\left(k_{t}\right) = \max_{c,k_{t+1}} \left\{u\left(c_{t}\right) + \beta v_{j}\left(k_{t+1}\right)\right\}.$

Métodos Basados en la Ecuación de Euler

• Partimos de ecuación de Euler:

$$u'(f(k_t) - k_{t+1}) = \beta u'(f(k_{t+1}) + (1 - \delta)k_{t+1} - k_{t+2})[f'(k_{t+1}) + (1 - \delta)]$$

• La función de política es:

$$k_{t+1} = g(k_t)$$

- Dos Métodos:
 - Conjeturar y Verificar la Ecuación de Euler (one shot method): Encontrar $k_{t+1} = g_0(k_t)$ que resuelve la ecuación de Euler:

$$u'\left(f\left(k_{t}\right)-k_{t+1}\right)=\beta u'\left(f\left(k_{t+1}\right)+(1-\delta)k_{t+1}-g_{0}(k_{t+1})\right)\left[f'\left(k_{t+1}\right)+(1-\delta)\right]\to x_{t+1}=g_{1}(x_{t})$$

 Iteración de la Ecuación de Euler (iteration method): Iterar la ecuación anterior usando como conjetura la solución de la iteración anterior.

Solución I: Conjeturar y Verificar la Función Valor

• Ejemplo: Modelo con utilidad logarítmica y depreciación completa:

$$u(c) = \ln c$$

 $f(k) = Ak^{\alpha},$

• Ecuación de Bellman:

$$v(k) = \max_{0 < k' < Ak^{\alpha}} \left\{ \ln \left(Ak^{\alpha} - k' \right) + \beta v(k') \right\}$$

• Conjetura sobre la solución:

$$v(k) = E + F \ln k$$

• Reemplazando en la ecuación de Bellman:

$$v(k) = \max_{0 < k' < Ak^{\alpha}} \left\{ \ln \left(Ak^{\alpha} - k' \right) + \beta \left(E + F \ln k' \right) \right\}$$

Solución:

$$k' = \frac{\beta F}{1 + \beta F} A k^{\alpha}$$

Solución I: Conjeturar y Verificar la Función Valor

• La ecuación de Bellman se convierte en:

$$v(k) = \ln (Ak^{\alpha} - k') + \beta (E + F \ln k')$$

$$\implies E + F \ln k = \ln \left(\frac{1}{1 + \beta F} Ak^{\alpha}\right) + \beta \left(E + F \ln \left(\frac{\beta F}{1 + \beta F} Ak^{\alpha}\right)\right)$$

$$\implies E + F \ln k = \left[\ln \left(\frac{1}{1 + \beta F} A\right) + \beta E + \beta F \ln \left(\frac{\beta F}{1 + \beta F} A\right)\right]$$

$$+ \alpha (1 + \beta F) \ln k$$

La solución satisface:

$$E = \ln\left(\frac{1}{1+\beta F}A\right) + \beta E + \beta F \ln\left(\frac{\beta F}{1+\beta F}A\right), F = \alpha (1+\beta F)$$

$$\implies E = \frac{1}{1-\beta} \left[\ln\left(A(1-\alpha\beta)\right) + \frac{\alpha\beta}{1-\alpha\beta}\ln\left(Aa\beta\right)\right], F = \frac{\alpha}{1-\alpha\beta}$$

• Note que $k' = \frac{\beta F}{1 + \beta F} A k^{\alpha} = \alpha \beta A k^{\alpha}$.

Solución II: Iterar la Función Valor

• Empezar con una conjetura arbitraria. La más sencilla es:

$$v_0(k)=0, \forall k\in X$$

y por tanto la ecuación de Bellman sería:

$$v_{1}\left(k\right) = \max_{0 < k' < Ak^{\alpha}} \ln\left(Ak^{\alpha} - k'\right) + \beta v_{0}\left(k'\right) = \max_{0 < k' < Ak^{\alpha}} \ln\left(Ak^{\alpha} - k'\right)$$

• Solución:

$$v_1(k) = \ln A + \alpha \ln k$$

Iterar

$$v_{2}\left(k\right) = \max_{0 < k' < Ak^{\alpha}} \ln\left(Ak^{\alpha} - k'\right) + \beta v_{1}\left(k'\right)$$

• Continuar hasta obtener convergencia.

Nota: Si el problema tiene solución analítica, después de dos iteraciones se debería tener la conjetura adecuada, ahí cambiar al método Conjeturar y Verificar.

Solución III: Conjeturar y Verificar la Función de Política

• Para cualquier función de política dada $k_{t+2} = g(k_{t+1})$, es posible encontrar la función de política:

$$k_{t+1} = \widehat{g}(k_t)$$

como solución de la ecuación de Euler:

$$u'(f(k_t) - k_{t+1}) = \beta u'(f(k_{t+1}) - g(k_{t+1})) f'(k_{t+1})$$

• Como en el caso del método basado en la Función Valor, la solución es un punto fijo:

$$\widehat{g}(k) = g(k).$$

• La ecuación de Euler del problema es:

$$EE: \frac{1}{Ak_t^{\alpha} - k_{t+1}} = \beta \frac{\alpha A k_{t+1}^{\alpha-1}}{Ak_{t+1}^{\alpha} - k_{t+2}}$$

Solución III: Conjeturar y Verificar la Función de Política

• Conjetura de solución:

$$g(k) = sAk^{\alpha}$$

• Reemplazamos en la ecuación de Euler:

$$\frac{1}{Ak_t^{\alpha} - k_{t+1}} = \beta \frac{\alpha Ak_{t+1}^{\alpha-1}}{Ak_{t+1}^{\alpha} - sAk_{t+1}^{\alpha}}$$

$$\implies k_{t+1} = \frac{\alpha \beta}{1 - s + \alpha \beta} Ak_t^{\alpha}$$

• El punto fijo requiere de

$$\frac{\alpha\beta}{1-s+\alpha\beta}=s$$

de tal manera que $s=\alpha\beta$ (ignorando la solución alternativa s=1).

Solución IV: Iterar la Función de Política

• Empezar con cualquier función, digamos,

$$k'=g_0(k)=0,$$

• En general, para j = 0, 1, 2..., resolver $k_{t+1} = g_{j+1}(k_t)$ como en el método *Conjeturar y Verificar*.

$$\frac{1}{Ak_t^{\alpha}-k_{t+1}}=\beta\frac{\alpha Ak_{t+1}^{\alpha-1}}{Ak_{t+1}^{\alpha}-g_j(k_{t+1})}.$$

• Si $g_{j+1}(k) = g_j(k)$ la solución fue encontrada; caso contrario continuar la iteración.

Nota: El proceso iterativo puede proveer una buena conjetura respecto de la forma funcional en el método Conjeturar y Verificar.

Casos con Solución Analítica

• Tres casos con solución analítica exacta:

$$u(c_t) = \ln(c_t), \ f(k_t) = A_t k_t^{\alpha},$$
 $u(c_t) = \frac{c_t^{1-\sigma} - 1}{1-\sigma}, \ f(k_t) = A_t k_t + (1-\delta) k_t,$ $u(c_t) = -\frac{1}{2} (c_t - \overline{c})^2, \ f(k_t) = A_t k_t + (1-\delta) k_t,$

- Todos estos casos pueden ser resueltos mediante Conjeturar y Verificar.
- Si el problema no admite solución analítica, los métodos iterativos proveen un procedimiento general para hallar la aproximación numérica.
- Métodos de linealización representan un punto medio con solución también aproximada.

El Equilibrio Competitivo Recursivo

- El equilibrio competitivo recursivo es una forma alternativa de representar el equilibiro competitivo de forma consistente con el enfoque de programación dinámica.
 - En PD todo el problema es escrito como función de variables de estado.
 - No existen secuencias, el problema de optimización es de dos periodos.
- Este enfoque es particularmente útil en los siguientes contextos:
 - Modelo con incertidumbre donde no podemos asumir que los agentes toman los precios futuros como dados.
 - Modelos con agentes heterogéneos donde la distribución de familias es una variable de estado.
- Ingredientes en la representación recursiva:
 - Todo en la economía depende de las variables de estado.
 - Los agentes necesitan conocer las **leyes** de **movimiento** de las variables de estado para formarse una idea del futuro (ejemplo, para el retorno del capital usan q = f'(k)).
 - Las **funciones de política** dependen de dichas leyes de movimiento.
 - Las leyes de movimiento son consistentes (dependen) con las funciones de política de los agentes.

El Equilibrio Competitivo Recursivo

- **Notación**: ahora vamos a usar mayúsculas para denotar variables agregadas y minúsculas para denotar variables individuales.
- La variables de estado de la economía es κ (el stock agregado de capital per capita).
- La ley de movimiento del capital agregado es

$$\kappa'=\varphi(\kappa)$$

que es una función desconocida y es determinada como parte del equilibrio.

• La solución del problema de optimización de las familias es

$$k'=h(k,\kappa)$$

$$c = g(k, \kappa)$$

y depende del estado individual (privado) k y del estado agregado κ .

• La solución del problema de las firmas son los precios:

$$q(\kappa) \ y \ w(\kappa)$$

• Note que en el modelo de agente representativo la distinción entre k y κ es irrelevante.

El Equilibrio Competitivo Recursivo: Familias

• El problema de optimización de las familias es elegir la secuencia $\{c_t, k_{t+1}\}_{t=0}^{\infty}$ dada la secuencia $\{q_t(\kappa_t), w_t(\kappa_t)\}_{t=0}^{\infty}$ y las restricciones de recursos.

$$egin{aligned} \max_{\{c_t,k_{t+1}\}_{t=0}^\infty} \sum_{t=0}^\infty eta^t u(c_t) \ s.a \ c_t + k_{t+1} &= (1 + q_t(\kappa_t) - \delta)k_t + w_t(\kappa_t) \ k_0 \ dado \end{aligned}$$

Note que el problema de las familias tiene un estado individual k_t y uno agregado κ_t .

• Representación recursiva: Las familias eligen c y k^{ℓ} dadas las funciones de precios $q(\kappa)$ y $w(\kappa)$ y la restricción de recursos.

$$v(k,\kappa) = \max_{c,k'} \left\{ u(c) + \beta v(k',\kappa') \right\}$$

s.a $c + k' = (1 + q(\kappa) - \delta)k + w(\kappa)$

con $\kappa' = \varphi(\kappa)$. La solución de este problema es $k' = h(k, \kappa)$ y $c = g(k, \kappa)$.

El Equilibrio Competitivo Recursivo: Firmas

- Las firmas arriendan capital y servicios laborales de las familias, tomando los precios de arriendo (q, w) como dados.
- Las firmas maximizan los beneficios corrientes:

$$\max F(K, L) - wL - qK$$

Recordemos que las condiciones de este problema son:

$$F_{K}(K, L) = f'(\kappa) = q(\kappa)$$

$$F_{L}(K, L) = f(\kappa) - f'(\kappa)\kappa = w(\kappa)$$

El Equilibrio Competitivo Recursivo: Equilibrio

Objetos:

- Funciones de precios $[q(\kappa), w(\kappa)]$
- Ley de movimiento del capital agregado: $\kappa' = \varphi(\kappa)$
- Funciones de política $k' = h(k, \kappa)$ y $c = g(k, \kappa)$ y función valor $v(k, \kappa)$.

Condiciones de equilibrio:

- Dados $\varphi(\kappa)$, $q(\kappa)$, $w(\kappa)$, las funciones de política resuelven el problema de PD de las familias.
- Las funciones de precios $q(\kappa)$ y $w(\kappa)$ satisfacen las condiciones de primer orden de las firmas.
- Los mercados se clarea: relación entre k y κ (agregación).
- Lo que esperan las familias es consistente con su comportamiento:

$$h(\kappa,\kappa)=\varphi(\kappa)$$

Más allá de la Senda de Crecimiento Balanceado

Motivación

- Los modelos de crecimiento neoclásico se utilizan ampliamente en macroeconomía porque son consistentes con los hechos de Kaldor con respecto al crecimiento económico.
- No obstante, la reasignación masiva de mano de obra de la agricultura a la manufactura y los servicios que acompaña al proceso de crecimiento es también importante. Las regularidades empíricas de reasignación de recursos observada en procesos de crecimiento se denominan hechos estilizados de Kuznet.
- Presentamos un modelo de crecimiento neoclásico que muestra crecimiento balanceado, y por tanto consistente con los hechos estilizados de Kaldor, pero que también es coherente con la dinámica del cambio estructural en la asignación sectorial de los recursos.

De los hechos estilizados de Kaldor a los de Kuznet

- Recordemos los conocidos hechos estilizados de Kaldor:
 - 1. La producción per cápita crece a una tasa aproximadamente constante.
 - 2. El ratio capital-producto es aproximadamente constante.
 - 3. El retorno real del capital es aproximadamente constante.
 - 4. El salario real crece a tasa aproximadamente constante.
 - 5. La participación del trabajo y el capital en el ingreso total es aproximadamente constante.
- Ahora agreguemos los hechos estilizados de Kuznet:
 - Con el proceso de desarrollo observamos una disminución de la mano de obra agrícola y un aumento de la del sector servicios.
 - La parte de los gastos dedicados al consumo de servicios aumenta, mientras que la parte dedicada a los productos agrícolas disminuye a medida que aumentan los ingresos.
- En resumen, el crecimiento del ingreso per cápita suele ir acompañado de un aumento de los servicios y una caída del sector agrícola, tanto en términos de empleo laboral como en el peso relativo en el PIB.

Preferencias:

 Existe un continuo de familias idénticas de tamaño L = 1. La familia representativa tiene las siguiente función de utilidad:

$$\max_{\left\{\textit{M}_{t},\textit{A}_{t},\textit{S}_{t},\textit{K}_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} \left(\frac{\left[\left(\textit{A}_{t}-\bar{\textit{A}}\right)^{\beta} \textit{M}_{t}^{\gamma} \left(\textit{S}_{t}+\bar{\textit{S}}\right)^{\theta}\right]^{1-\sigma}-1}{1-\sigma} \right)$$

- Definiciones:
 - At es el consumo de bienes agrícolas
 - M_t es el consumo de manufacturas
 - S_t es el consumo de servicios
 - ullet as el nivel de subsistencia de bienes agrícolas
 - \bar{S} es el nivel de servicios producidos en el hogar
 - $\sigma, \beta, \gamma, \theta$ son todos positivos y $\beta + \gamma + \theta = 1$

Tecnología de producción:

- Factores productivos: capital K_t y trabajo $L_t = 1$ para todo t (normalización).
- Función de producción del sector agrícola:

$$A_t = B_A F(\phi_t^A K_t, X_t N_t^A)$$

con $F(\cdot)$ una función de producción neoclásica, ϕ_t^A la promoción del capital total destinado a la agricultura, N_t^A el trabajo en el sector agrícola y X_t un proceso tecnológico aumentador de trabajo.

• Función de producción del sector servicios:

$$S_t = B_S F(\phi_t^S K_t, X_t N_t^S)$$

donde las mismas definiciones aplican pero para el sector servicios.

• Función de producción del sector manufacturero:

$$M_t + I_t = B_M F(\phi_t^M K_t, X_t N_t^M)$$

donde de nuevo las mismas definiciones aplican. La producción manufacturera se usa para consumo y para acumulación de bienes de capital.

$$K_{t+1} = I_t + (1 - \delta)K_t$$
; K_0 dado.

Tecnología de producción:

Restricciones:

$$\phi_t^A + \phi_t^S + \phi_t^M = 1$$

$$N_t^A + N_t^S + N_t^M = L = 1$$

- El proceso tecnológico es aumentador de trabajo $X_t = (1 + \varphi)X_{t-1} = g_X X_{t-1}$ con X_0 dado.
- Suponemos que el capital y el trabajo son perfectamente móviles, por lo que la economía opera con la combinación de ellos que la sitúa en la frontera de posibilidades de producción y por tanto:

$$rac{\phi_t^{\mathcal{S}}}{\mathcal{N}_t^{\mathcal{S}}} = rac{\phi_t^{\mathcal{M}}}{\mathcal{N}_t^{\mathcal{M}}} = rac{\phi_t^{\mathcal{A}}}{\mathcal{N}_t^{\mathcal{A}}} = 1$$

 Dado que las funciones de producción de los diferentes sectores son proporcionales, los precios relativos de la agricultura y los servicios en términos de bienes manufacturados están dados por

$$P^S = \frac{B_M}{B_S} \ y \ P^A = \frac{B_M}{B_A}$$

Restricción agregada de recursos:

 La producción total de la economía (medida en unidades del bien manufacturero) se puede escribir como:

$$Y_t = B_M F(\phi_t^M K_t, X_t N_t^M) + P_t^A B_A F(\phi_t^A K_t, X_t N_t^A) + P_t^S B_S F(\phi_t^S K_t, X_t N_t^S)$$

= $B_M F(K_t, X_t)$

donde hemos usado homogeneidad de grado 1 en $F(\cdot)$, que $\frac{\phi_t'}{N_t'}=1$ para todo i y que $N_t^A+N_t^S+N_t^M=1$.

Por tanto, la restricción agregada de recursos de la economía es:

$$M_t + K_{t+1} - (1 - \delta)K_t + P^A A_t + P^S S_t = B_M F(K_t, X_t)$$

El problema del planificador central:

• El problema del planificador central es:

$$\begin{split} \max_{\{M_t,A_t,S_t,K_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \left(\frac{\left[\left(A_t - \bar{A}\right)^{\beta} M_t^{\gamma} \left(S_t + \bar{S}\right)^{\theta} \right]^{1-\sigma} - 1}{1-\sigma} \right) \\ s.a \\ M_t + K_{t+1} - (1-\delta)K_t + P^A A_t + P^S S_t = B_M F\left(K_t, X_t\right) \\ X_0, K_0 \ dados. \end{split}$$

• La forma recursiva está dada por:

$$v(K) = \max_{M,A,S,K'} \left\{ \frac{\left[\left(A - \bar{A} \right)^{\beta} M^{\gamma} \left(S + \bar{S} \right)^{\theta} \right]^{1-\sigma} - 1}{1-\sigma} + \beta v(K') \right\}$$
s.a. $M + K' - (1-\delta)K + P^{A}A + P^{S}S = B_{M}F(K,X)$

El problema del planificador central:

• Condiciones de primer orden:

$$M : \gamma \left[(A - \bar{A})^{\beta} M^{\gamma} (S + \bar{S})^{\theta} \right]^{1-\sigma} M^{-1} - \lambda = 0$$

$$A : \beta \left[(A - \bar{A})^{\beta} M^{\gamma} (S + \bar{S})^{\theta} \right]^{1-\sigma} (A - \bar{A})^{-1} - \lambda P^{A} = 0$$

$$S : \theta \left[(A - \bar{A})^{\beta} M^{\gamma} (S + \bar{S})^{\theta} \right]^{1-\sigma} (S + \bar{S})^{-1} - \lambda P^{S} = 0$$

$$K' : \beta v'(K') - \lambda = 0 \to v'(K) = \lambda (B_{M}F_{1}(K, X) + 1 - \delta)$$

• La asignación óptima de consumo entre sectores satisface:

$$\frac{P^{A}\left(A-\bar{A}\right)}{\beta}=\frac{M}{\gamma}\qquad\frac{P^{S}\left(S+\bar{S}\right)}{\theta}=\frac{M}{\gamma}$$

• Crecimiento de la producción manufacturera:

$$\frac{M'}{M} = \left[\beta \left(B_M F_1 \left(K', X'\right) + 1 - \delta\right)\right]^{\frac{1}{\sigma}}$$

Senda de crecimiento balanceado generalizada:

- La senda de crecimiento balanceado generalizada existe siempre que $\bar{A}B_S = \bar{S}B_A$.
- Dadas las definiciones de precios, podemos reescribir la restricción de recursos como:

$$M + K' - (1 - \delta)K + P^{A}(A - \bar{A}) + P^{S}(S + \bar{S}) = B_{M}F(K, X)$$
$$M + K' - (1 - \delta)K + P^{A}\tilde{A} + P^{S}\tilde{S} = B_{M}F(K, X)$$

• La senda de crecimiento balanceado generalizada, esto es el estado estacionario de las variable medidas en unidades intensivas de trabajo $(\tilde{a}, \tilde{s}, m, k)$, resuelve el siguiente sistema de ecuaciones:

$$m + (g_X - 1 + \delta)k + P^A \tilde{s} + P^S \tilde{s} = B_M F(k, 1)$$

$$\frac{P^A \tilde{s}}{\beta} = \frac{m}{\gamma}$$

$$\frac{P^S \tilde{s}}{\theta} = \frac{m}{\gamma}$$

$$[\beta (B_M F_1(k, 1) + 1 - \delta)] = 1$$

Senda de crecimiento balanceado generalizada:

• En tanto, las variables $(\tilde{A}, \tilde{S}, M, K)$ todas crecen a la tasa φ , y como

$$\frac{A'}{A} = \frac{\bar{A} + g_X (A - \bar{A})}{A} = 1 + \varphi \frac{A - \bar{A}}{A}$$
$$\frac{S'}{S} = \frac{-\bar{S} + g_X (S + \bar{S})}{S} = 1 + \varphi \frac{S + \bar{S}}{S}$$

las variables A y S crecen a tasas $\varphi^{A-\bar{A}}_{A}$ y $\varphi^{S+\bar{S}}_{S}$ respectivamente.

• Como $N^A = \frac{A}{XB_AF(k,1)}$ y $N^S = \frac{S}{XB_SF(k,1)}$, entonces en la senda de crecimiento balanceado tenemos:

$$\frac{N^{A'}}{N^{A}} = \frac{A'X}{AX'} = \frac{1 + \varphi \left[1 - \frac{\bar{A}}{\bar{A}}\right]}{1 + \varphi}$$
$$\frac{N^{S'}}{N^{S}} = \frac{S'X}{SX'} = \frac{1 + \varphi \left[1 + \frac{\bar{S}}{\bar{S}}\right]}{1 + \varphi}$$

• Las variables N^A y N^S crecen a tasas $-\frac{\varphi}{1+\varphi}\frac{\bar{A}}{A}$ y $\frac{\varphi}{1+\varphi}\frac{\bar{S}}{S}$ respectivamente.

Senda de crecimiento balanceado generalizada:

Dinámica de transición:

• Reemplazando las condiciones de primer orden $\frac{P^A(A-\bar{A})}{\beta} = \frac{M}{\gamma}$ y $\frac{P^S(S+\bar{S})}{\theta} = \frac{M}{\gamma}$ en el problema del planificador central tenemos:

$$\begin{split} \max_{\{M_t, K_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \left(\frac{\psi M_t^{1-\sigma} - 1}{1-\sigma} \right) \\ s.a \\ \frac{M_t}{\gamma} + K_{t+1} - (1-\delta)K_t + = B_M F\left(K_t, X_t\right) \\ X_0, K_0 \ dados. \end{split}$$

con $\psi = \left[\left(\frac{B_A \beta}{B_M \gamma} \right)^\beta \left(\frac{B_S \theta}{B_M \gamma} \right)^\theta \right]^{1-\sigma}$. Note que este es el mismo problema del modelo neoclásico estándar y por tanto las propiedades en la dinámica de transición aplican a este caso también.

