Escuela de Ciencias Físicas y Matemáticas

Métodos Matemáticos para Física Hoja de Ejercicios No.2

I. NORMAS, SECUENCIAS DE CAUCHY Y ESPACIOS COMPLETOS

1. Probar que las reglas

$$||x||_{\infty} := max\{|x_1|, \cdots, |x_n|\}, \qquad ||x||_1 := \sum_{i=1}^n |x_i|$$
 (1)

son normas sobre \mathbb{R}^n .

- 2. Sea $\{x_n\}$ una secuencia de Cauchy en un espacio métrico (X, ρ) . Supongamos que la secuencia $\{y_n\} \subset X$ satisface $\rho(x_n, y_n) < |a_n|$ donde $\{a_n\}$ es una secuencia en $\mathbb R$ convergente a cero. Demuestre que $\{y_n\}$ es una secuencia de Cauchy.
- 3. Demuestre que si $\{x_n\}_{n=1}^{\infty}$ es una secuencia de Cauchy en un espacio normado, entonces las secuencia de normas $\{\|x_n\|\}_{n=1}^{\infty}$ converge.
- 4. Demuestre la continuidad del producto escalar mostrando que si $S_1 = \{f_n \text{ tal que } f_n \in C(a,b)\}$ converge a f y $S_2 = \{g_n \text{ tal que } g_n \in C(a,b)\}$ converge a g, con $f,g \in C(a,b)$, entonces

$$\lim_{n \to \infty} (f_n, g_n) \longrightarrow (f, g) \tag{2}$$

- 5. Demuestre que el espacio de secuencias $l_1 := \{x = \{x_n\}_1^{\infty} \text{tal que } \sum_{i=1}^{\infty} |x_i| < \infty \}$ es un espacio vectorial completo.
- 6. Considere la secuencia de funciones continuas $f_n:(0,1)\to\mathbb{R}$ definidas por

$$f_n(x) = \begin{cases} 0 & \text{si } x \in [0, 1/2 - 1/n] \\ \frac{n}{2}x - \frac{n}{4} + \frac{1}{2} & \text{si } x \in [1/2 - 1/n, 1/2 + 1/n] \\ 1 & \text{si } x \in [1/2 + 1/n, 1] \end{cases}$$
(3)

demuestre que es una secuencia de Cauchy en la norma $\|.\|_2$ pero no es convergente.

- 7. Para todo par de vectores x y $y \in \mathbb{R}^n$, derivar la desigualdad de Minkowski a partir de la desigualdad de Hölder.
- 8. Demostrar que todo espacio euclideo de dimensión finita es completo con la métrica euclídea.