Требования к оформлению:

- 1. Подпишите работу сверху: id_for_online, фамилию, имя, номер группы.
- 2. Должно быть выписано решение задачи, только ответ не засчитывается.
- 3. Для каждого пункта задания обведите полученный численный ответ или формулу в торжественную рамочку.

Индивидуальные параметры:

1. Исходя из своего индентификатора вычислите три константы:

```
a = (id\_for\_online \mod 2) + 1

b = (id\_for\_online \mod 3) + 1

c = (id\_for\_online \mod 4) + 1
```

Запись \mod означает остаток от деления, например $16 \mod 3 = 1$.

2. Номер вашего варианта равен константе a.

Requirements:

- 1. State your identity at the top of the sheet: id_for_online, first name, last name, group number.
- 2. Full solutions are required, answer without explanations is not graded.
- 3. You should draw a pretty box around every final numeric answer or formula.

Individual parameters:

1. Using your identification number calculate three constants:

$$a = (id_for_online \mod 2) + 1$$

 $b = (id_for_online \mod 3) + 1$
 $c = (id_for_online \mod 4) + 1$

Here mod denotes division remainder, i.e. $16 \mod 3 = 1$.

2. Your variant number is equal to the constant a.

Решите вариант 1, если a = 1:

Случайные величины ξ и η имеют совместное нормальное распределение:

$$\begin{pmatrix} \xi \\ \eta \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} a \\ b \end{pmatrix}; \begin{pmatrix} c & d \\ d & 1 \end{pmatrix} \right).$$

Корреляция между ξ и η равна $\mathrm{Corr}(\xi,\eta)=0.5$.

- 1. Найдите вероятность $\mathbb{P}(\xi > 1 + a)$.
- 2. Выпишите функцию плотности ξ .
- 3. Найдите константу d.
- 4. Вычислите $\mathbb{P}(2\xi 3\eta > 10)$.
- 5. Выпишите функцию плотности случайной величины $2\xi 3\eta$.
- 6. Вычислите $E(\xi | \eta = a)$.
- 7. Вычислите $Var(\xi | \eta = a)$.
- 8. Вычислите $\mathbb{P}(\xi > 1 + a | \eta = a)$.

Решите вариант 2, если a = 2:

Случайные величины ξ и η имеют совместное нормальное распределение:

$$\begin{pmatrix} \xi \\ \eta \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} a \\ b \end{pmatrix}; \begin{pmatrix} c & d \\ d & 1 \end{pmatrix} \right).$$

Корреляция между ξ и η равна $\mathrm{Corr}(\xi,\eta)=-0.5.$

- 1. Найдите вероятность $\mathbb{P}(\xi > b 1)$.
- 2. Выпишите функцию плотности η .
- 3. Найдите константу d.
- 4. Вычислите $\mathbb{P}(3\xi + 2\eta < 10)$.
- 5. Выпишите функцию плотности случайной величины $3\xi + 2\eta$.
- 6. Вычислите $E(\eta | \xi = b)$.
- 7. Вычислите $Var(\eta|\xi=b)$.
- 8. Вычислите $\mathbb{P}(\eta > b 1 | \xi = b)$.

Solve variant 1, if a = 1:

Random variables ξ and η have joint normal distribution:

$$\begin{pmatrix} \xi \\ \eta \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} a \\ b \end{pmatrix}; \begin{pmatrix} c & d \\ d & 1 \end{pmatrix} \right).$$

Correlation between ξ and η is equal to $Corr(\xi, \eta) = 0.5$.

- 1. Find the probability $\mathbb{P}(\xi > 1 + a)$.
- 2. Write down the density function of ξ .
- 3. Find the constant d.
- 4. Calculate $\mathbb{P}(2\xi 3\eta > 10)$.
- 5. Write down the density function of the random variable $2\xi 3\eta$.
- 6. Calculate $E(\xi|\eta=a)$.
- 7. Calculate $Var(\xi|\eta=a)$.
- 8. Calculate $\mathbb{P}(\xi > 1 + a | \eta = a)$.

Solve variant 2, if a = 2:

Random variables ξ and η have joint normal distribution:

$$\begin{pmatrix} \xi \\ \eta \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} a \\ b \end{pmatrix}; \begin{pmatrix} c & d \\ d & 1 \end{pmatrix} \right).$$

Correlation between ξ and η is equal to $Corr(\xi, \eta) = -0.5$.

- 1. Find the probability $\mathbb{P}(\xi > b 1)$.
- 2. Write down the density function of η .
- 3. Find the constant *d*.
- 4. Calculate $\mathbb{P}(3\xi + 2\eta < 10)$.
- 5. Write down the density function of the random variable $3\xi+2\eta$.
- 6. Calculate $E(\eta|\xi=b)$.
- 7. Calculate $Var(\eta | \xi = b)$.
- 8. Calculate $\mathbb{P}(\eta > b 1 | \xi = b)$.