Série 4: Détermination des structures cristallines par diffraction des rayons X

Exercice 5 : Influence du facteur de forme atomique

1

1. Cad du KBr

Raies N°	$2\theta_{i}^{\circ}$	θ_i°	$d_i(hkl)$ (Å)	$\left(\frac{d_1}{d_i}\right)^2$	(h k l)	a(Å)
1	23,40	11,70	3,7995	1	(111)	6,581
2	27,05	13,525	3,2946	4/3	(200)	6,589
3	38,6	19,3	2,3312	8/3	(220)	6,594
4	45,6	22,8	1,9883	11/3	(311)	6,594
5	47,75	23,875	1,9037	4	(222)	6,595
6	55,75	27,875	1,6480	16/3	(400)	6,592
7	61,3	30,65	1,5114	19/3	(331)	6,588
8	63,05	31,525	1,4736	20/3	(420)	6,590

Le réseau est cubique à faces centrées.

Les résultats sont identiques à ceux de NaCl.

2

2. Cas du KCl

Raies N°	2θ _i °	θ _i °	$d_i(hkl)$ (Å)	$\left(\frac{d_1}{d_i}\right)^2$	(h k l)	a(Å)
1	28,40	14,20	3,141	1	(100)	3,141
2	40,60	20,30	2,221	2	(110)	3,141
3	50,30	25,15	1,813	3	(111)	3,140
4	58,75	29,375	1,571	4	(200)	3,142
5	66,50	33,25	1,405	5	(210)	3,142
6	73,85	36,925	1,283	6	(211)	3,142
7	87,85	43,925	1,111	8	(220)	3,141

3

Les réflexions observées sont caractéristiques d'un réseau cubique simple. Ceci semble indiquer que le chlorure de potassium cristallise dans le réseau de Bravais cubique primitif (P).

- 3. Ce résultat est surprenant vu que dans ce composé on a changé l'halogène Br par un autre halogène qui est le chlore. A priori les deux composés devraient avoir la même structure.
- **4.** On sait que le facteur de forme f dépend uniquement de la structure électronique car les noyaux sont lourds pour réagir aux photons des rayonnements X. Les structures électroniques des ions K^+ et Cl^- sont données par:
 - $K^+: 1s^2 2s^2 2p^6 3s^2 3p^6$
 - $Cl^-: 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6$

Puisque les deux ions ont la même structure électronique les facteurs de forme des ions K^+ et Cl^- seront identiques, donc $f_{K^+} = f_{Cl^-}$.

Dans l'expression de l'amplitude de l'onde diffusée pour une structure cristallisant dans un réseau C.F.C (TP 4):

-Pour les $h \ k \ l$ tous impairs, l'intensité diffusée A_i est telle que:

$$A_i \propto (f_{K^+} - f_{Cl^-})^2 = \mathbf{0}$$

-Pour les *h k l* tous pairs, l'intensité diffusée est telle que:

$$A_p \propto (f_{K^+} + f_{Cl^-})^2 = 4f^2$$

Pour les hkl tous impairs on voit que A_i est nul, ce qui explique l'extinction des rais d'indices impairs pour un réseau CF.C. En réalité le réseau associé à KCl est un cubique faces centrées de paramètre du réseau double de celui calculé précédemment.

5

Donc on peut écrire le tableau des réflexions permises :

Raies N°	$(\boldsymbol{h} \ \boldsymbol{k} \ \boldsymbol{l})_{\mathrm{observ\acute{e}}}$	$(h k l)_{réel}$	
		s	
1	$(1\ 0\ 0)$	(200)	
2	(110)	(220)	
3	(111)	(2 2 2)	
4	(200)	(400)	
5	(2 1 0)	(420)	
6	(2 1 1)	(422)	
7	(2 2 0)	(440)	

6