

CAIRO UNIVERSITY - FACULTY OF ENGINEERING

Computer Engineering Department

ADVANCED DATABASE SYSTEMS

Project Phase Two

Mohamed Shawky Zaky

SEC:2, BN:15

Remonda Talaat Eskarous

SEC:1, BN:19

Mohamed Ahmed Mohamed Ahmed

SEC:2, BN:10

Mohamed Ramzy Helmy

SEC:2, BN:13

Contents

1	Que	ery Statistics									
	1.1	Query 1									
		1.1.1 Execution Plan Before Optimization									
		1.1.2 Execution Plan After Optimization									
		1.1.3 Parallel Query Processing									
	1.2	Query 2									
		1.2.1 Execution Plan Before Optimization									
		1.2.2 Execution Plan After Optimization									
		1.2.3 Parallel Query Processing									
	1.3	Query 3									
		1.3.1 Execution Plan Before Optimization									
		1.3.2 Execution Plan After Optimization									
		1.3.3 Parallel Query Processing									
	1.4	Query 4									
		1.4.1 Execution Plan Before Optimization									
		1.4.2 Execution Plan After Optimization									
		1.4.3 Parallel Query Processing									
	1.5	Query 5									
	1.0	1.5.1 Execution Plan Before Optimization									
		1.5.2 Execution Plan After Optimization									
		1.5.3 Parallel Query Processing									
2	Optimization Details										
	2.1	New Database Statistics									
	2.2	Schema Optimization									
	2.3	Memory Optimization									
	2.4	Index Tuning									
	2.5	Query Optimization									
		2.5.1 Query 1									
		2.5.2 Query 2									
		2.5.3 Query 3									
		2.5.4 Query 4									
		2.5.5 Query 5									
		• •									
3	Vali	dation Details 4									
	3.1	Time and Space Analysis									
	3.2	Database Size Effect									
	3.3	Optimized SQL vs. NoSQL									
	3.4	Hardware Effect									
4	Fina	al Remarks 8									
T,	ist.	of Figures									
	1	Database Size Effect Without OS (Disk) Cache									

1 Query Statistics

- 1.1 Query 1
- 1.1.1 Execution Plan Before Optimization
- 1.1.2 Execution Plan After Optimization
- 1.1.3 Parallel Query Processing
- 1.2 Query 2
- 1.2.1 Execution Plan Before Optimization
- 1.2.2 Execution Plan After Optimization
- 1.2.3 Parallel Query Processing
- 1.3 Query 3
- 1.3.1 Execution Plan Before Optimization
- 1.3.2 Execution Plan After Optimization
- 1.3.3 Parallel Query Processing
- 1.4 Query 4
- 1.4.1 Execution Plan Before Optimization
- 1.4.2 Execution Plan After Optimization
- 1.4.3 Parallel Query Processing
- 1.5 Query 5
- 1.5.1 Execution Plan Before Optimization
- 1.5.2 Execution Plan After Optimization
- 1.5.3 Parallel Query Processing

2 Optimization Details

In this section, we show the optimization details done through this work. We discuss the statistics of the new database and the schema changes. Moreover, other optimization techniques related to query, indexes and memory are discussed, as well.

2.1 New Database Statistics

In this subsection, we show the new database statistics after optimization. The record count is extracted from the database filled with 100000 records per table. Other filling sizes are considered through the analysis like 10000 and 1000000.

Table Name	Row Count	Main Key	Indexes	FK
Disaster	100000	YES	4	2
Causes	100000	YES	1	1
Precautions	100000	YES	1	1
Incident	100000	YES	4	3
Descriptions	100000	YES	1	1
Casualty	25000	YES	1	0
Government_Representative	25000	YES	1	0
$Govn_Rep_Credentials$	25000	YES	1	1
Citizen	25000	YES	1	0
${\it Citizen_Credentials}$	25000	YES	1	1
Criminal	25000	YES	1	0
Report	100000	YES	5	4
Report_Content	100000	YES	1	1
Casualty_Incident	100000	YES (Composite)	3	2

Table Name	Identity Column	Max Row Size (Bytes)
Disaster	YES	52
Causes	YES	65538
Precautions	YES	65538
Incident	YES	120
Descriptions	YES	65538
Casualty	YES	105
Government_Representative	YES	116
Govn_Rep_Credentials	YES	103
Citizen	YES	116
Citizen_Credentials	YES	103
Criminal	YES	106
Report	YES	23
Report_Content	YES	65538
Casualty_Incident	NO	6

2.2 Schema Optimization

2.3 Memory Optimization

2.4 Index Tuning

2.5 Query Optimization

- 2.5.1 Query 1
- 2.5.2 Query 2
- 2.5.3 Query 3
- 2.5.4 Query 4
- 2.5.5 Query 5

3 Validation Details

3.1 Time and Space Analysis

In this subsection, we evaluate both time and space improvements of each optimization on each query. We consider both before and after *disk cache*. Moreover, the space improvement is considering the **total size** of the transferred tables between memory and disk. Execution time is measured in *seconds*.

Query 1	Before Cache			After Cache		
Query 1	Time	Time %	Space %	Time	Time %	Space %
Initial Query	16.78	-	-	1.77	-	-
Index Opt.	-	-	-	-	-	-
Query Opt.	10.87	35%	25%	0.39	78%	25%
Schema Opt.	8.8	19%	99.8%	0.33	18%	99.8%
Memory Opt.	7.8	11%	-	0.3	9%	-
Query 2	Before Cache			After Cache		
Query 2	Time	Time %	Space %	Time	Time %	Space %
Initial Query	1535	-	-	1463	-	-
Index Opt.	9.49	99%	-	0.78	99.9%	-
Query Opt.	7.75	18%	-	0.68	13%	-
Schema Opt.	6.8	12%	99.8%	0.65	4%	99.8%
Memory Opt.	5.77	15%	-	0.65	0%	-

Query 3	Before Cache			After Cache			
Query 5	Time	Time %	Space %	Time	Time %	Space %	
Initial Query	0.36	-	-	0.07	-	-	
Index Opt.	0.23	36%	-	0.01	85.7%	-	
Query Opt.	0.19	17%	-	0.01	0%	-	
Schema Opt.	0.14	26%	99.8%	0	100%	99.8%	
Memory Opt.	0.12	14%	-	0	0%	-	
Ought 4	Before Cache			After Cache			
Query 4	Time	Time %	Space %	Time	Time %	Space %	
Initial Query	10.41	-	-	0.27	-	-	
Index Opt.	-	-	-	-	-	-	
Query Opt.	-	-	-	-	-	-	
Schema Opt.	6.37	39%	99.8%	0.15	44%	99.8%	
Memory Opt.	6.01	5.5%	-	0.13	13%	-	

Query 5	Before Cache			After Cache		
Query 5	Time	Time %	Space %	Time	Time %	Space %
Initial Query	6.14	-	-	0.33	-	-
Index Opt.	-	-	-	-	-	-
Query Opt.	4.39	28.5%	-	0.26	21%	-
Schema Opt.	2.94	33%	99.85%	0.21	19%	99.85%
Memory Opt.	2.34	20%	-	0.2	4.7%	-

3.2 Database Size Effect

The following plots show the effect of increasing database sizes on the execution time of our 5 queries. We consider both before and after $disk\ cache$.

Figure 1: Database Size Effect Without OS (Disk) Cache.

Figure 2: Database Size Effect After OS (Disk) Cache.

3.3 Optimized SQL vs. NoSQL

3.4 Hardware Effect

4 Final Remarks