Discreet Personalized Pricing

Benjamin Shiller Bandels

Presented at: Bates College
(Oct 11, 2022)

Website: BenjaminShiller.com

Twitter: @BenjaminShiller

Motivation/Overview

- New vast consumer tracking datasets:
 - Reveal much more than demographics
 - May enable profitable personalized pricing (Dubé and Misra, 2022; Shiller, 2020)
- Yet, common wisdom suggests goods still sold via posted prices
- Question: Are firms using but hiding personalized pricing
- ► This paper investigates a method for doing so

Discreet Personalized Pricing

Benjamin Shiller

1) Introduction

Model of Discreet Targeted Pricing

Applications

Profits

Extent of Price

Why Disguised?

Consumer backlash concerns

- Notorious example: Amazon in 2000
- Firms discussing how to implement without incurring backlash (Lina Kahn, 2014)

Regulatory concerns

- Consumer protection concerns spawned a White House Report¹
- Europe's GDPR [article 22] may forbid it (Wong, 2021)
- China's new (2021) draft antitrust guidelines explicitly prohibit it

Discreet Personalized Pricing

Benjamin Shiller

2 Introduction

Model of Discreet Targeted Pricing

Profits

Extent of Price

How Disguised?

- Firms exploring ways to hide personalized pricing
 - Personalized search rankings²
 - Framing personalized pricing as coupons or discounts³
- ► However, these strategies are not that effective
- I describe an alternative and provide evidence may already be used

Discreet Personalized Pricing

Benjamin Shiller

3 Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Optimized Sticky Targeted Pricing

Pricing Strategy

► Tailor "posted price" to the arriving consumer

➤ To avoid detection, privately commit to maintaining price for some time after a change

Discreet Personalized Pricing

Benjamin Shiller

4) Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Successfully Disguised?

- Test: are consumers offered different prices at same time?
 - Easy for consumers
 - Existing research used similar method^a
- Optimized sticky targeted pricing disguised
 - Private commitments to infrequently change price implies consumers see the same price at the same point in time
- Long lags between spoofed consumers creates challenges
 - Unclear whether price changes due to personalization or traditional dynamic pricing:
 - Response to demand shocks
 - Exploiting predictable demand changes (e.g., early-bird special)
 - Dynamic price discrimination (periodic sales)

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Pric

^a(Cavallo, 2017; Hannak et al., 2014; Hupperich et al., 2018; Iordanou et al., 2017; Mikians et al., 2012)

Implications

- Pricing determines how markets function
- Overlooking personalized pricing:
 - Biases demand and inflation estimates⁴
 - Changes relationship between competition and firm profits/consumer welfare⁵
 - etc.

Discreet Personalized Pricing

Benjamin Shiller

6 Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Outline

1. Characterize optimal sticky personalized pricing

- 2. Apply to several contexts
 - One empirical
 - Various theoretical distributions of valuations

Discreet Personalized Pricing

Benjamin Shiller

7) Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Table of Contents

Introduction

Model of Discreet Targeted Pricing

Applications

Profits

Extent of Price Discrimination

Conclusions

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications
Profits

Extent of Price

Model Setup

- ► Myopic consumers arrive randomly over time (i.i.d.)
- ► The firm observes type before setting the "posted price"
- ► Following a price change, price locked for length s
- ▶ Time measured in units of s

Discreet Personalized

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Value Function

Value function:

$$V(P, \psi, t) = \max_{P'} \begin{cases} W^{P'=P}(P, \psi, t) & \text{if } P' = P \\ W^{P'\neq P}(P', \psi, t) & \text{if } P' \neq P \end{cases},$$

- $ightharpoonup \gamma$: arriving consumer's type
- ► P: last offered price
- P': new "posted" price offered to the arriving consumer
- $W^{P'=P}(P, \psi, t)$: discounted profits | P' = P
- ▶ $W^{P'\neq P}(P', \psi, t)$: discounted profits | $P'\neq P$

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Application

Extent of Price

$$V(P, \psi, t) = \max_{P'} \begin{cases} W^{P'=P}(P, \psi, t) & \text{if } P' = P \\ W^{P'\neq P}(P', \psi, t) & \text{if } P' \neq P \end{cases},$$

$$W^{P'=P}(P,\psi,t)=$$

$$\pi(P, \psi, t) + \int_{\tau=0}^{\infty} \int_{\mathbb{R}^{t'}} \exp(-r\tau) V(P, \psi', t+\tau) g(\psi'; t+\tau) f(\tau; \lambda, t) d\psi' d\tau,$$

- $\blacktriangleright \pi(P,\psi)$: expected static profits from arriving consumer
- ightharpoonup exp $(-r\tau)$: continuous analogue of discount factor
- \triangleright $V(P, \psi', t + \tau)$: value function

- $ightharpoonup g(\gamma; t+\tau)$: consumer type density
- \triangleright τ : (random) time until next consumer arrival
- r: interest rate
- λ: consumer arrival rate
- \triangleright exp $(-r\tau)$: time discounting

Model of Discreet Targeted Pricing

$$V(P, \psi, t) = \max_{P'} \begin{cases} W^{P'=P}(P, \psi, t) & \text{if } P' = P \\ W^{P'\neq P}(P', \psi, t) & \text{if } P' \neq P \end{cases},$$

$$\begin{split} & \overset{\mathsf{M}}{\mathcal{P}' \neq \mathsf{P}}(P', \psi, t) = \\ & \overbrace{\pi(P', \psi, t)}^{\mathsf{A}} \\ & + \underbrace{\left(\int_{\tau=0}^{s} h(\lambda, t + \tau) \exp(-r\tau) \int_{\psi'} \pi(P', \psi', t + \tau) g(\psi'; t + \tau) d\psi' d\tau\right)}_{\mathsf{B}} \\ & + \underbrace{\int_{\tau=s}^{\infty} \int_{\psi''} \exp(-r\tau) V(P', \psi'', t + \tau) g(\psi''; t + \tau) f(\tau; \lambda, t + s) d\psi'' d\tau}_{\mathsf{G}}. \end{split}$$

- Component A: Expected static profits at price P'
- Component B: Discounted expected profits from consumers arriving while price fixed
- Component C: Expected discounted profits earned after fixed-price period

Discreet Personalized

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applicat

Extent of P

Tradeoff

$$\begin{split} W^{P'\neq P}(P',\psi,t) &= \\ \overbrace{\pi(P',\psi,t)}^{\mathsf{B}} \\ &+ \underbrace{\left(\int_{\tau=0}^{\mathsf{S}} h(\lambda,t+\tau) \exp(-r\tau) \int_{\psi'} \pi(P',\psi',t+\tau) g(\psi';t+\tau) d\psi' d\tau\right)}_{\mathsf{B}} \\ &+ \underbrace{\int_{\tau=\mathsf{S}}^{\infty} \int_{\psi''} \exp\left(-r\tau\right)\right) V(P',\psi'',t+\tau) g(\psi'';t+\tau) f(\tau;\lambda,t+s) d\psi'' d\tau}_{\mathsf{G}} \,. \end{split}$$

Tradeoff:

- Targeting price raises static profits (component A)
- Deviating from optimal uniform price reduces profits later arrivals (component B)

Relevant factors:

- Count of arrivals while price fixed
- Precision of estimated willingness to pay

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Application

Profits

Evtent of P

Extent of Price Discrimination

Table of Contents

Introduction

Model of Discreet Targeted Pricing

Applications

Profits

Extent of Price Discrimination

Conclusions

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications Profits

Extent of Price

Counterfactual Simulations: Setup

Array of different distributional assumptions

- One empirical distribution of valuations (Shiller, 2020)
 - Individual-level demand for Netflix estimated from web-browsing data
- ► Three theoretical (with and without uncertainty)
 - Uniform
 - Normal
 - Exponential

Various consumer arrival rates λ (product popularity)

For each:

- Approximate value functions/policy function, given:
 - Interest rate (per period s) = 0.1/365
- Simulate prices and profits

Discreet Personalized Pricing

Benjamin Shiller

ntroduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Model of Individual Demand (Shiller, 2020)

Standard utility function for 2nd degree PD demand:

$$u_{ij} = \alpha P_i + \nu_i + \delta_j + \epsilon_{ij} = \bar{u}_{ij} + \epsilon_{ij},$$

- $ightharpoonup \alpha$ "mean" price sensitivity
- \triangleright P_i Price of product i
- \triangleright ν_i consumer i's specific valuation for Netflix generally
- \triangleright δ_i "mean" utility for product j
- $ightharpoonup \epsilon_{ii}$ iid logit error term

$$s_{ij}\left(\nu_{i},\alpha,\delta,P\right) = \frac{exp\left(\alpha P_{j} + \nu_{i} + \delta_{j}\right)}{1 + \sum_{k \in J} exp\left(\alpha P_{k} + \nu_{i} + \delta_{k}\right)},$$

$$s_{ij\neq 0}\left(\nu_{i},\alpha,\delta,P\right)=1-s_{i0}\left(\nu_{i},\alpha,\delta,P\right)=1-\frac{1}{1+\sum_{k\in J}\exp\left(\alpha P_{k}+\nu_{i}+\delta_{k}\right)}.$$

Discreet Personalized

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Key Parameters

$$u_{ij} = \alpha P_j + \nu_i + \delta_j + \epsilon_{ij} = \bar{u}_{ij} + \epsilon_{ij},$$

- $ightharpoonup \alpha$ "mean" price sensitivity
- $\triangleright \nu_i$ consumer *i*'s specific valuation for Netflix generally
- $ightharpoonup \delta_j$ "mean" utility for product j
- If knew these parameters, can calculate probability any consumer i buys at any price
- ► Can predict profits under personalized pricing

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Extent of Price

Discrimination

Identification (1)

Suppose we knew values of α and δ_j

$$u_{ij} = \alpha P_j + \frac{\mathbf{v}_i}{\mathbf{v}_i} + \delta_j + \epsilon_{ij} = \bar{u}_{ij} + \epsilon_{ij},$$

Also suppose have estimate individual i subscribes

Can then find value of ν_i that implies this probability (only one specific value does)

$$s_{ij\neq 0}\left(\nu_{i},\alpha,\delta,P\right)=1-s_{i0}\left(\nu_{i},\alpha,\delta,P\right)=1-\frac{1}{1+\sum_{k\in J}\exp\left(\alpha P_{k}+\nu_{i}+\delta_{k}\right)}.$$

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications Profits

Extent of Price

Identification (2)

Suppose only didn't know value of $\boldsymbol{\alpha}$

- \blacktriangleright Larger values of α imply consumers more price sensitive
 - ► Hence price change alters completed sales by more
- lacktriangle Only one value of lpha implies that observed markup (price) is the markup that maximizes profits (assuming marginal costs are known)
 - \triangleright Larger α imply firm should reduce price
 - ▶ Smaller α imply firm should increase price

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Prio

Identification (3)

Suppose only didn't know value of δ_j

- Can find values which imply predicted aggregate share of consumers buying each tier of service matches empirical observations
- Note that not all three values of δ_j separately identified from ν_i
 - ▶ So *normalize* δ_1 to equal 0.

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Estimation Routine

Find values of ν_i , α , and δ_j which satisfy *moment conditions* implied above.

$$\min_{\substack{\alpha,\delta_{1},...,\delta_{J},\nu_{1},...,\nu_{N}\\ \alpha,\delta_{1},...,\delta_{J},\nu_{1},...,\nu_{N}}} \begin{pmatrix} \sum_{i=1}^{N} \left(\hat{s}_{ij\neq0}(X_{i}) - s_{ij\neq0}(\nu_{i},\alpha,\delta,P)\right)^{2} \\ + \sum_{j\in J} \left(\hat{s}_{j} - \int s_{ij}\left(\nu_{i},\alpha,\delta,P(\theta)\right) f\left(\nu_{i}\right) d\nu_{i}\right)^{2} \\ + \left(\sum_{j\in J} c_{j}\left(s_{j} + \theta \frac{ds_{j}}{d\theta}\right)\right)^{2} \end{pmatrix}$$

Note, to do this, need estimates of probability each consumer subscribes

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Discrimination

Predicting Subscription Probabilities

 Use penalized logistic regression to relate consumer characteristics to probability of subscribing (after normalizing all variables)

$$L = \sum_{i} \ln \left(s_{ij \neq 0}(X_i) \times I(buy) + \left(1 - s_{ij \neq 0}(X_i) \right) \times \left(1 - I(buy) \right) \right) - \lambda \sum_{k=1}^{K} |\beta_k|,$$

$$s_{ij\neq 0}(X_i) = \frac{exp(\phi + X_i\beta)}{1 + exp(\phi + X_i\beta)}.$$

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price

Table: Estimation Results: Prediction Whether Individual Subscribes

			Δ Pr(Subscribe)
Order	Visits to:	Coef. Value	(w. One Standard Deviation Increase in Visits)
1	gamefly.com	0.78	11.78
2	ameblo.jp	-0.48	-5.03
3	slysoft.com	0.36	4.80
4	audible.com	0.33	4.40
5	dvdfab.com	0.30	4.01
6	sutterhealth.org	0.30	3.96
7	4chan.org	0.29	3.84
8	jambase.com	0.29	3.83
9	imdb.com	0.28	3.72
10	houstonpress.com	0.27	3.49
11	kw.com	-0.26	-2.90
12	somethingawful.com	-0.25	-2.83
13	jacksonville.com	-0.24	-2.72
14	lacity.org	-0.24	-2.65
15	jalopyjournal.com	0.23	3.03
16	uhaul.com	0.23	2.99
17	smackjeeves.com	0.23	2.98
18	dailypress.com	-0.23	-2.58
19	sonlight-email.com	-0.22	-2.54
20	fairfaxcounty.gov	0.22	2.89
21	ganeshaspeaks.com	0.22	2.89
22	onstation.com	-0.22	-2.49
23	whig.com	0.21	2.74
24	techdirt.com	0.21	2.68
25	zylom.com	-0.21	-2.36
26	npr.org	0.20	2.64
27	baseballamerica.com	0.20	2.63
28	apunkachoice.com	0.20	2.63
29	elpais.com	0.20	2.61
30	amazon.com	0.20	2.56

Discreet Personalized Pricing Beniamin Shiller

itroduction

Model of Discreet Targeted Pricing

23 Applications

Extent of Price

Profit Gain from OSTP (vs. Uniform Pricing)

Pricina

Brandeis

Impact of Uncertainty

Figure: Counterfactual Profits and the Impact of Uncertainty

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet

Applicati Profits

Extent of Price

Prices Across Consumer Types: Empirical

Figure: Simulated Price Range: Across Consumers

Notes: The left panel shows the range of percent markups across consumer types for the empirical application, assuming the previous markup was the optimal uniform markup. Each line on the graph shows the range of markups across consumers for a specific arrival rate (\lambda). The right panel shows the density of consumer types.

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price Discrimination

Prices Across Consumer Types: Theoretical

Figure: Price Range Across Consumers: Theoretical Distributions

Notes: This figure shows the interdecile range of simulated prices offered across different consumer types when the firm can freely change price—against the consumer arrival rate, for the three theoretical distributions.

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price Discrimination

Prices Over Time

Figure: Simulated Price Range: Time-Normalized

(a) Empirical: Netflix

(b) Theoretical Distributions

Notes: This figure shows the expected range of markups and prices offered over a time interval of length $30 \times s$ against the consumer arrival rate, for the empirical distribution (on the left) and the theoretical distributions (on the right).

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications

Extent of Price Discrimination

Prices Over Time: Robustness

Figure: Simulated Price Range: Time-Normalized—Various Period Lengths

Notes: This figure shows the expected range of prices offered over

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet

Applications

Extent of Price Discrimination

Table of Contents

Introduction

Model of Discreet Targeted Pricing

Applications

Profits

Extent of Price Discrimination

Conclusions

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Applications
Profits

Extent of Price Discrimination

Conclusions (1)

- Big data enables profitable personalized pricing
- But, firms concerned about backlash/policy

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Application

Extent of Price Discrimination

Conclusions

If firms can raise profits through targeted pricing while keeping consumers, regulators, and competitors unaware, why would they not?

Conclusions (2)

Absent regulations, why assume firms are not using personalized pricing?

Discreet Personalized Pricing

Benjamin Shiller

Introduction

Model of Discreet Targeted Pricing

Application

Extent of Price

Thank you!

Website:

BenjaminShiller.com

Twitter:

@BenjaminShiller