RL Homewook 2

> Given p(s'|s,a), we have :-

$$p(x|s',s,a) = p(x,s'|s,a)$$

$$p(s'|s,a)$$

Also,
$$\sigma(s,a,s') = \sum p(s|s,a,s')$$

[Expected Remard]

e) Reword can either be O [when no wan is found] or 1

I when can empty can ine found].

Ab from example 3.3; for (s, a,s') = (high, search, high):-

or (s, a, s) = rsearch = € rp[r|s, a, s') 2 p(s'|s, a) = x [Given]

$$\Rightarrow \text{trseauch} = O p(x=0,5'|s,A) + 1 p(x=1,s'|s,A)$$

p(s/1s,a) p(s/18,a)

Allo, 2 P[r, s'/s,a) = p(s/s, a)

:. x = x 8 search + p (8=0,51/5,a)

(:. p(x=0,s'| S, a) = x-xxsearch

Similar calculations were done for other parts de well.

Final Table :-

S	a	s'	OL	p(s/gels, a)
High	Search	high	O	d- do Sevech
High	Search	High	1	& Florel
high	Search	low	0	(1-x) - (1-x) & search
High	Search	low	1	(1-10) & seasich
LOW	Sparch	low	0	B-B. recercin
Cow	Search	low	1	B: Islanch

Of HAPPY HOMES				Date:
8	OR	S'	A 1	p(s', n/s, va)
Low	Seasich	High	-3	1-β
tigh	Wait	Jugh	0	1- o waste
high	Wait	righ	1	owait
Low	Wort	Low	0	1-Twåt
Low		Low	1	Thait
Low	Recharge	tugh	0	1
Ex 3-15	Ü	Taget	0	

The ligh does not matter. Buly the relative value of one action as compared to the others matter, so it depends on the "Intornals between rewards" rather than the signs.

Signature values of any stales under any policies.

0) Ex 3. 16

In case of an episodic task,

Gt = Rt+1 + YR++2 + Y2R++3+ - + YR++N

Adding a constant to all rewards -

Gt = (Rt+1+c) + r(Rt+2+c) + r2 (Rt+3+c) + ... + rn-2 (Rt+n+c)

=Rt+1+ rRt+2+ r2Rt+3+...+ rn-2 Rt+n+ ch-rn-

 $Vc = C\left[\frac{1-V^{n}}{1-V}\right]$

effect over the expectation. I hence the value function of all stated.

Date:

(5) V*(S) = max qx (S, a)

= max Enx [Ge [St=s, At=a]

= max EAR [Rt+1+rGt+1 St=s, At=a]

= max IE [Rt+1+r'v*(St+1) | St=s, At=a]

= max 2 p(s', 911s, a)[v+ Vv*(s')]

dele, V*(s') = max 2 (s',a')

 $V*(s) = \max_{\alpha} \sum_{\beta \in \mathcal{S}, \beta \in \mathcal{S}} p(s', \beta | s, \alpha) \left[\sigma + V \max_{\alpha'} q * (s', \alpha') \right]$