SRAM Design

Chapter Overview

- Memory Classification
- Memory Architectures
- The Memory Core
- Periphery
- Reliability

Semiconductor Memory Classification

RWM		NVRWM	ROM
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
SRAM DRAM	FIFO LIFO Shift Register CAM	FLASH	

Memory Architecture: Decoders

N words => N select signals
Too many select signals

Decoder reduces # of select signals $K = log_2N$

Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Hierarchical Memory Architecture

Advantages:

- 1. Shorter wires within blocks
- 2. Block address activates only 1 block => power savings

Memory Timing: Definitions

Memory Timing: Approaches

DRAM Timing Multiplexed Adressing SRAM Timing Self-timed

Read-Write Memories (RAM)

• STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell)

Fast

Differential

DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended

6-transistor CMOS SRAM Cell

CMOS SRAM Analysis (Write)

$$k_{n,\,M6}\!\!\left((V_{DD}-V_{Tn})\frac{V_{DD}}{2}-\frac{V_{DD}^{\,2}}{8}\right) \,=\, k_{p,\,M4}\!\!\left((V_{DD}-|V_{Tp}|)\frac{V_{DD}}{2}-\frac{V_{DD}^{\,2}}{8}\right)$$

$$\frac{c_{n,\,M5}}{2} \left(\frac{V_{DD}}{2} - V_{Tn} \left(\frac{V_{DD}}{2} \right) \right)^2 \; = \; k_{n,\,M1} \left((V_{DD} - \left| V_{Tn} \right|) \frac{V_{\,DD}}{2} - \frac{V_{\,DD}^{\,2}}{8} \right)$$

$$(W/L)_{n,M6} \ge 0.33 \ (W/L)_{p,M4}$$

$$(W/L)_{n,M5} \ge 10 \ (W/L)_{n,M1}$$

CMOS SRAM Analysis (Read)

$$\frac{k_{n,\,M5}}{2} \left(\frac{V_{DD}}{2} - V_{Tn} \left(\frac{V_{DD}}{2} \right) \right)^2 \, = \, k_{n,\,M1} \left((V_{DD} - \left| V_{Tn} \right|) \frac{V_{DD}}{2} - \frac{V_{DD}^{\,2}}{8} \right)$$

 $(W/L)_{n,M5} \le 10 (W/L)_{n,M1}$

(supercedes read constraint)

6T-SRAM — Layout

Resistance-load SRAM Cell

Static power dissipation -- Want R_L large Bit lines precharged to V_{DD} to address t_p problem

Periphery

Decoders

- Sense Amplifiers
- Input/Output Buffers
- Control / Timing Circuitry

Row Decoders

Collection of 2^M complex logic gates Organized in regular and dense fashion

(N)AND Decoder

$$WL_0 = A_0A_1A_2A_3A_4A_5A_6A_7A_8A_9$$

$$WL_{511} = A_0A_1A_2A_3A_4A_5A_6A_7A_8A_9$$

NOR Decoder

$$WL_{0} = \overline{A_{0} + A_{1} + A_{2} + A_{3} + A_{4} + A_{5} + A_{6} + A_{7} + A_{8} + A_{9}}$$

$$WL_{511} = \overline{A_{0} + \overline{A_{1} + \overline{A_{2} + \overline{A_{3} + \overline{A_{4} + \overline{A_{5} + \overline{A_{6} + \overline{A_{7} + \overline{A_{8} + \overline{A_{9}}}}}}}$$

Dynamic Decoders

Dynamic 2-to-4 NOR decoder

2-to-4 MOS dynamic NAND Decoder

Propagation delay is primary concern

A NAND decoder using 2-input predecoders

Splitting decoder into two or more logic layers produces a faster and cheaper implementation

4 input pass-transistor based column decoder

 $\begin{array}{c} \text{lvantage: speed (t}_{pd} \text{ does not add to overall memory access time)} \\ \text{only 1 extra transistor in signal path} \end{array}$

sadvantage: large transistor count

4-to-1 tree based column decoder

Number of devices drastically reduced

Delay increases quadratically with # of sections; prohibitive for large decoders

Solutions: buffers

progressive sizing

combination of tree and pass transistor approaches

Decoder for circular shift-register

Sense Amplifiers

Idea: Use Sense Amplifer

Differential Sensing - SRAM

(a) SRAM sensing scheme.

(b) Doubled-ended Current Mirror Amplifier

(c) Cross-Coupled Amplifier

Latch-Based Sense Amplifier

Initialized in its meta-stable point with EQ Once adequate voltage gap created, sense amp enabled with SE Positive feedback quickly forces output to a stable operating point.

Single-to-Differential Conversion

How to make good V_{ref}?

Address Transition Detection

Reliability and Yield

 Semiconductor memories trade off noise-margin for density and performance

Highly Sensitive to Noise (Crosstalk, Supply Noise)

• High Density and Large Die size cause Yield Problems

$$\mathbf{Y} = \left[\frac{1 - e^{-AD}}{AD}\right]^2$$

Increase Yield using Error Correction and Redundancy

Open Bit-line Architecture — Cross Coupling

Folded-Bitline Architecture

Transposed-Bitline Architecture

(a) Straightforward bitline routing.

(b) Transposed bitline architecture.

Alpha-particles

1 particle ~ 1 million carriers

Yield

Yield curves at different stages of process maturity (from [Veendrick92])

Redundancy

Semiconductor Memory Trends

Memory Size as a function of time: x 4 every three years

Semiconductor Memory Trends

factor 1.5 per generation
Combined with reducing cell size
factor 2.6 per generation

Semiconductor Memory Trends

Technology feature size for different SRAM generations