Formas y consecuencias

Clase 03

IIC 1253

Prof. Cristian Riveros

Recordatorio: conectivos *n*-arios

_			
-	en	n	\sim
_	CII	ıv	ıv
J			

p_1	p ₂	p ₃	$C(p_1,p_2,p_3)$	p_1	p ₂	p ₃	$\alpha(p_1,p_2,p_3)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
1	0	0	0	1	0	0	0
1	0	1	1	1	0	1	1
1	1	0	0	1	1	0	0
1	1	1	1	1	1	1	1

$$\alpha(p_1,p_2,p_3) \coloneqq (\neg p_1 \wedge \neg p_2 \wedge p_3) \vee (\neg p_1 \wedge p_2 \wedge \neg p_3) \vee (p_1 \wedge \neg p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge p_3)$$

Conectivos *n*-arios

p_1	p_2	•••	p_{n-1}	p_n	$C(p_1, p_2, \ldots, p_{n-1}, p_n)$
0	0	•••	0	0	b_1
0	0		0	1	b_2
÷	÷		:	÷	<u>:</u>
v_{i1}	V_{i2}	 v_{ij}	 $V_{i(n-1)}$	Vin	b _i
÷	÷		÷	÷	i i
1	1		1	1	b_{2^n}

Suponiendo que $v_{i1}, \ldots, v_{ij}, \ldots, v_{in}$ es la valuación correspondiente a la fila i con valor b_i de la tabla de verdad de $C(p_1, \ldots, p_n)$, entonces:

$$C(p_1, p_2, \ldots, p_{n-1}, p_n) \equiv \bigvee_{i:b_i=1} \left(\left(\bigwedge_{j:v_{ij}=1} p_j \right) \wedge \left(\bigwedge_{j:v_{ij}=0} \neg p_j \right) \right)$$

Outline

Formas normales

Consecuencia lógica

Outline

Formas normales

Consecuencia lógica

Formas normales

Un literal es una variable proposicional o la negación de una variable.

Definición

Una formula α está en Forma Normal Disyuntiva (DNF) si es una disyunción de conjunciones de literales, o sea, si es de la forma:

$$\alpha = \beta_1 \vee \beta_2 \vee \ldots \vee \beta_k$$

con $\beta_i = (I_{i1} \wedge ... \wedge I_{ik_i})$ y $I_{i1}, ..., I_{ik_i}$ son literales.

¿cuáles formulas están en DNF?

- $(p \land \neg q) \lor (\neg p \land p \land s) \lor (r \land \neg s)$
- $(s \land (p \lor r)) \lor (\neg q \land r \land s)$
- $(s \wedge r) \vee \neg q \vee r \vee s$

Formas normales

Un literal es una variable proposicional o la negación de una variable.

Definición

Una formula α está en Forma Normal Conjuntiva (CNF) si es una conjunción de disyunciones de literales, o sea, si es de la forma:

$$\alpha = \beta_1 \wedge \beta_2 \wedge \ldots \wedge \beta_k$$

con $\beta_i = (I_{i1} \vee ... \vee I_{ik_i})$ y $I_{i1}, ..., I_{ik_i}$ son literales.

¿cuáles formulas estan en CNF?

- $(p \vee \neg q) \wedge (\neg p \vee p \vee s) \wedge (r \vee \neg s)$
- $(s \wedge r) \wedge (\neg q \vee r \vee s)$

Formas normales y equivalencia lógica

Teorema

- 1. Toda formula α es lógicamente equivalente a una formula en DNF.
- 2. Toda formula α es lógicamente equivalente a una formula en CNF.

Demostración DNF (explicación)

Sea $\alpha(p_1,\ldots,p_n)$ y v_{i1},\ldots,v_{in} la valuación correspondiente a la *i*-ésima fila de la tabla de verdad de α con valor $\alpha(v_{i1},\ldots,v_{in})$, entonces:

$$\alpha(p_1,\ldots,p_n) \equiv \bigvee_{i:\alpha(v_{i1},\ldots,v_{in})=1} \left(\left(\bigwedge_{j:v_{ij}=1} p_j \right) \wedge \left(\bigwedge_{j:v_{ij}=0} \neg p_j \right) \right)$$

Solo por esta vez, daremos la afirmación de DNF como verdadera sin dar una demostración.

Formas normales y equivalencia lógica

Demostración CNF (asumiendo que DNF es verdadera)

Sea $\alpha(p_1, \ldots, p_n)$ una formula cualquiera.

Considere la formula $\neg \alpha(p_1, \dots, p_n)$. Asumiendo DNF, sabemos que:

$$\neg \alpha(p_1, \dots, p_n) \equiv \bigvee_{i: (\neg \alpha)(v_{i1}, \dots, v_{in}) = 1} \left(\left(\bigwedge_{j: v_{ij} = 1} p_j \right) \wedge \left(\bigwedge_{j: v_{ij} = 0} \neg p_j \right) \right)$$

$$\equiv \bigvee_{i: \alpha(v_{i1}, \dots, v_{in}) = 0} \left(\left(\bigwedge_{j: v_{ij} = 1} p_j \right) \wedge \left(\bigwedge_{j: v_{ij} = 0} \neg p_j \right) \right)$$

¿cómo usamos lo anterior para demostrar CNF?

Formas normales y equivalencia lógica

Demostración (CNF)

Por el teorema de composición de formulas y De Morgan:

$$\alpha(p_1, \dots, p_n) \equiv \neg(\neg \alpha(p_1, \dots, p_n))$$

$$\equiv \neg\left(\bigvee_{i: \alpha(v_{i1}, \dots, v_{in}) = 0} \left(\bigwedge_{j: v_{ij} = 1} p_j\right) \land \left(\bigwedge_{j: v_{ij} = 0} \neg p_j\right)\right)$$

$$\equiv \bigwedge_{i: \alpha(v_{i1}, \dots, v_{in}) = 0} \neg\left(\left(\bigwedge_{j: v_{ij} = 1} p_j\right) \land \left(\bigwedge_{j: v_{ij} = 0} \neg p_j\right)\right)$$

$$\equiv \bigwedge_{i: \alpha(v_{i1}, \dots, v_{in}) = 0} \left(\bigvee_{j: v_{ij} = 1} \neg p_j\right) \lor \left(\bigvee_{j: v_{ij} = 0} p_j\right)$$

□ (significa "queda esto demostrado")

Outline

Formas normales

Consecuencia lógica

Modelación en lógica proposicional

Si Pedro estudia para la I1, entonces obtendrá un buena nota.

Pedro y Sofía estudiaron para la I1.

Por lo tanto, Pedro obtendrá una buena nota.

¿cómo formalizamos esta deducción en lógica proposicional?

¿Cuáles son nuestras proposiciones básicas?

PE := Pedro estudia para la l1

SE := Sofía estudia para la I1

BN := Pedro obtiene una buena nota.

¿Cuáles son nuestras proposiciones compuestas?

PE → BN := Si Pedro estudia para la I1, entonces obtendrá un buena nota.

PE ∧ SE := Pedro y Sofía estudiaron para la I1

Modelación en lógica proposicional

¿por qué decimos que esta deducción es válida?

PE	SE	BN	$PE \rightarrow BN$	$PE \wedge SE$	BN
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	1	1	1	1

Modelación en lógica proposicional (otro ejemplo)

$$PE \lor SE$$
 $PE :=$ Pedro estudia para la I1 $\neg PE \lor SE$ $SE :=$ Sofía estudia para la I1 SE $BN :=$ Pedro obtiene una buena nota.

¿por qué decimos que esta deducción es válida?

PE	SE	PE ∨ SE	$\neg PE \lor SE$	SE
0	0	0	1	0
0	1	1	1	1
1	0	1	0	0
1	1	1	1	1

Modelación en lógica proposicional (anti-ejemplo)

 $PE \rightarrow BN$ PE := Pedro estudia para la l1 $<math>PE \lor SE$ SE := Sofía estudia para la l1<math>BN := Pedro obtiene una buena nota.

¿por qué decimos que esta deducción es inválida?

PE	SE	BN	PE → BN	$PE \vee SE$	BN	
0	0	0	1	0	0	
0	0	1	1	0	1	
0	1	0	1	1	0	×
0	1	1	1	1	1	
1	0	0	0	1	0	
1	0	1	1	1	1	
1	1	0	0	1	0	
1	1	1	1	1	1	

Consecuencia lógica

Sea $\Sigma = \{\alpha_1, \ldots, \alpha_m\}$ un conjunto de formulas con variables p_1, \ldots, p_n .

Definición

■ Diremos que α es consecuencia lógica de Σ si, y solo si, para toda valuación v_1, \ldots, v_n se tiene que:

si
$$\left[\bigwedge_{i=1}^{m} \alpha_i\right](v_1,\ldots,v_n) = 1$$
, entonces $\alpha(v_1,\ldots,v_n) = 1$.

■ Si α es consecuencia lógica de Σ , entonces escribiremos $\Sigma \models \alpha$.

Ejemplo

Consecuencia lógica

Sea $\Sigma = \{\alpha_1, \dots, \alpha_m\}$ un conjunto de formulas con variables p_1, \dots, p_n .

Definición

■ Diremos que α es consecuencia lógica de Σ si, y solo si, para toda valuación v_1, \ldots, v_n se tiene que:

si
$$\left[\bigwedge_{i=1}^{m} \alpha_i\right](v_1,\ldots,v_n) = 1$$
, entonces $\alpha(v_1,\ldots,v_n) = 1$.

■ Si α es consecuencia lógica de Σ , entonces escribiremos $\Sigma \models \alpha$.

Notación

- Diremos que $\alpha_1, \ldots, \alpha_m$ son premisas y α la conclusión.
- Si $\Sigma = \{\alpha_1, \ldots, \alpha_n\}$ y $\Sigma' = \{\beta_1, \ldots, \beta_m\}$, entonces:

$$\Sigma \cup \Sigma' = \{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m\}$$

(unión de conjuntos)

Algunas consecuencias lógicas clásicas

Consecuencias lógicas

1. Modus ponens: $\{p, p \rightarrow q\} \models q$

p	q	р	$p \rightarrow q$	q
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

2. Modus tollens: $\{\neg q, p \rightarrow q\} \vDash \neg p$

р	q	$\neg q$	$p \rightarrow q$	$\neg p$
0	0	1	1	1
0	1	0	1	1
1	0	1	0	0
1	1	0	1	0

Algunas consecuencias lógicas clásicas

Consecuencias lógicas

3. Resolución: $\{p \lor q, \neg q \lor r\} \models p \lor r$

р	q	r	$p \lor q$	$\neg q \lor r$	$p \vee r$
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Sobre consecuencia lógica

¿cuáles de las siguientes afirmaciones son verdaderas?

- 1. $\{1\} \models \alpha$ entonces α es una tautología.
- 2. Si α es una contradicción, entonces $\{\alpha\} \models \beta$ para toda formula β .
- 3. Si $\Sigma \vDash \alpha$, entonces $\Sigma \cup \{\beta\} \vDash \alpha$ para todo β .
- 4. Si $\Sigma \cup \{\alpha\} \models \beta$ y $\Sigma \models \alpha$, entonces $\Sigma \models \beta$.

¿cuál es la relación entre $\models y \rightarrow ?$