Tipos de dados Armazenamento

Prof. Tiago Massoni Prof. Fernando Buarque

Engenharia da Computação

Poli - UPE

Informações

- Computador: máquina que manipula informações (dados)
 - Dado vs informação
- A unidade básica da informação é o bit
 - Cada um: duas possibilidades
- n chaves representam 2ⁿ valores possíveis

2

Tipos de dados

- Objetos do mundo real representam algum tipo específico
 - Números, letras, frações
- Computadores processam dados conforme seu tipo
 - Operadores e operandos
 - Processamento e dados

3

Tipos de dados

- Primitivos (básicos)
 - Inteiros
 - Regis
 - Caracteres
- Compostos (agregados)
 - Estruturas (objetos)
 - Strings
 - Arrays (Vetores)

4

Inteiros

- Representação de números inteiros:
 decimal
- Representação em bits: binário
- · Binário simples
 - 10 = 2 (0*1 + 1*2)
 - 100110 = 38 (1*0+2*1+4*1+8*0+16*0+32*1)
- toda string de bits de tamanho n representa um inteiro não-negativo único, entre 0 e 2ⁿ-1
- E números negativos?

5

Inteiros negativos

- · Dois métodos podem ser usados
- · Complemento de 1
 - número negativo é representado mudando cada bit para a definição do bit oposto
 - Ex: 00100110 representa 38, 11011001 é usado para representar -38
- Complemento de 2 (C, Java)
 - 1 é somado à representação de complemento de um de um número negativo
 - Ex: 11011010 é usado para representar -38

Reais

- · Notação ponto flutuante
 - Mantissa x base elevada a uma potência de inteiro Ex: 387,53 (= 38753 * 10-2)
- Em computadores digitais de 32 bits de endereçamento tem mantissa 24 bits, 8 para expoente e base fixa 10
 - Ex: a representação binária de 24 bits de 38753 é 000000010010110110100001,
 - Representação binária de complemento de dois de oito bits de -2 é 11111110
 - Representação de 387,53 é 00000001001001111111110
- Vantagem: números muito grandes

Caracteres

- · Representação de valores nãonuméricos (letras)
- Número pré-determinado de bits determinam um código (ASCII, Unicode)
 - 8 bits (byte)
 - 16 bits (2 bytes)

Гіро	Descrição	Tamanho
	(inteiros)	
byte	Inteiro de 8 bits	1 byte
short	Inteiro de 16 bits	2 bytes
int	Inteiro de 32 bits	4 bytes
long	Inteiro de 64 bits	8 bytes
	(Números Reais)	1
float	Ponto flutuante precisão simples	4 bytes IEEE 754
double	Ponto flutuante precisão dupla	8 bytes IEEE 754
	(Outros Tipos)	
char	Caracter	16 bits - Unicode
boolean	true ou false	true ou false (1 bit)

Valores dos tipos: exemplos

Tipo	Exemplo
	(inteiros)
byte	100
short	350
int	2873, 034, 0xF
long	8864L
	(Números Reais)
float	23.746F
double	23.746
	(Outros Tipos)
char	'c', '\u4567'
boolean	true, false

Variáveis

- Guarda um valor
 - de um tipo específico
 - Declaração deve possuir um nome e um tipo
- Será reservado espaço uma posição de memória referenciada pelo identificador a
- Um identificador é usado no lugar de um endereço numérico para citar determinada posição de memória - conveniente para o programador
- Conteúdo interpretado como inteiro (próximos 32 bits)

identificador int a;

Java é orientada a objetos

- Uso de abstrações bem mais próximas do mundo do problema
 - Objetos, não funções
- · Em um programa, "tudo" é objeto
- Um programa é um monte de objetos dizendo aos outros o que fazer
 - Mensagens

13

Atributos em Java (estrutura)

```
public class Conta {
    private int numero;
    private double saldo;
    ...
}
```

- Cada atributo tem um tipo específico que caracteriza as propriedades dos objetos da classe
- int e double denotam os tipos cujos elementos são inteiros e strings
- · Atributos privados

Strings

- · Sequências de caracteres
- · Não existe tipo primitivo string em Java
- · API de Java possue classe chamada String

```
Cria um novo objeto
do tipo String e o
armazena ref. em
saudacoes

String saudacoes = "Ola";
String saudacoes = new String("Ola");
```

```
Public class Conta {
    private String numero;
    private double saldo;
    ...
}

Números podem
    conter traços,
    barras
```

Comparação de Strings

- Comparar variáveis String não tem resultado desejado (referências)
- Usar método equals() da classe String

22

Comparação e tamanho

- boolean equals(umString)
- boolean equalsIgnoreCase(umString)
- int length()

StringBuffer

· Podem ser manipuladas (mutáveis)

```
StringBuffer dest = new StringBuffer("Hello!");
dest.insert(0, "Hey ");
System.out.println(dest);
```

Hey Hello!

Arrays (Vetores)

- · São objetos especiais de Java
- Armazenam dados de um determinado tipo (homogêneo)
- Tipo[] é a classe
- Cada componente é identificado por um índice
- O primeiro elemento do array tem índice 0 e o último tem índice tamanho - 1

25

```
Declaração, criação,
inicialização

int[] a;
double[] x;

a = new int[100];
x = {10.0, 15.0, 20.0};

double[] salarios = new double[5];

for (int i = 0; i < salarios.length; i++) {
    salarios[i] = i * 1000;
}

Inicialização com laço
```

Acesso a elementos do array

variável[expressão_inteira]

 Escrita e leitura a elementos do array é feito através de índices

```
double [] salarios = {20.0,30.0,50.0};
salarios[0] = salarios[0] * 1000;
System.out.println(salarios[2]);
```

2

Arrays de objetos

 Aliasing garante modificação dos objetos do array

```
Conta c = contas[2];
c.creditar(20);

contas

O1 2 3 4 5

realizado
nesta contal

c
```

Estruturas de dados

- · Estudo tem duas metas
 - Identificar entidades e operações para resolver problemas
 - Determinar representações concretas para entidades abstratas do mundo real
- Estruturas de dados para resolver problemas – montagem de estruturas usando estruturas mais simples
- Motivações
 - Utilidade
 - Raciocínio