EE160 Introduction to Control: Homework 3

Prof. Boris Houska

Deadline: Mar 18, 2022

1. Set points. Consider the linear control system

$$\dot{x}(t) = 3x(t) + 4u(t)$$

Design an affine feedback law of the form $\mu(x) = k(x - x_s) + u_s$ such that the closed-loop system state converges to $x_s = 5$. How would you choose k and u_s ? Write out the expression of $\dot{x}(t)$ in dependence on $(x - x_s)$?

2. Uncertain control system with bounded noise. Consider a linear control system with time-varying bounded noise w(t), $|w(t)| \leq \bar{w}$

$$\dot{x}(t) = ax(t) + bu(t) + cw(t)$$
$$x(0) = x_0 + w_0$$

Show that if we apply suitable feedback law $\mu(x) = k(x - x_s) + u_s$, the trajectory of x(t) is bounded.

3. Proportional control of an RC-circuit. Let us revisit the standard RC-circuit with input voltage V(t) recalling that the voltage $V_C(t)$ at the capacitor satisfies

$$\dot{V}_C(t) = \frac{V(t) - V_C(t)}{RC}$$

Assume that $R = 10\Omega$ and $C = 10^{-3}$ F. Find a steady-state voltage u_s such that $V_C(t)$ converges to 10V for $t \to \infty$. Also discuss how to design a proportional feedback law, which ensures that $V_C(t)$ converges to 10V as quickly as possible while satisfying the control input constraints

$$-220V \le V(t) \le 220V.$$