Analysis and Design of Algorithms

Algorithms C53230

Tutorial

Week 10

Dynamic Programming National University of Singapore algorithm paradigm (Recap)

- Expressing the solution <u>recursively</u>
- Overall there are only <u>small (maybe polynomial) number of subproblems</u>
- But there is a <u>huge overlap</u> among the subproblems. So the recursive algorithm takes exponential time (solving same subproblem multiple times)
- So we compute the recursive solution <u>iteratively in a bottom-up</u> <u>fashion</u>. This avoids wastage of computation and leads to an efficient implementation

A Convex Polygon

Representation:

 $< p_1, ..., p_n >$ Stored in an array.

$$< p_i, ..., p_j > :$$

Polygon consisting of points p_i ,..., p_j

Triangulation of A Convex Polygon

 $\omega(i,j,k)$: Weight of triangle formed by p_i , p_j , p_k .

Assumption: It takes O(1) time to compute $\omega(i,j,k)$

Cost of a triangulation: Sum of the weight of n-2 triangles formed.

Triangulation of A Convex Polygon

 $\omega(i,j,k)$: Weight of triangle formed by p_i , p_j , p_k .

Assumption: It takes O(1) time to compute $\omega(i,j,k)$

Cost of a triangulation: Sum of the weight of n-2 triangles formed.

Problem: Given a convex polygon represented by $p_1, \ldots, p_n >$, the objective is to find a triangulation with minimum cost.

Let $\tau(i,j)$: cost of an optimal triangulation of polygon $(p_i,...,p_j)$

Write down a recursive formula for the above problem, i.e., express $\tau(i,j)$ in terms of $\tau(i',j')$'s where j'-i' < j-i and $j' \le j$, $i' \ge i$.

Consider the following algorithm to find the value of $\tau(i,j)$

```
Find-\tau(i,j)
                                                          What is the running
\{ \mathbf{lf} \ (j=i+1) \}
                                                          time?
     return 0;
                                                           1. 2^{O(j-i)}
Else
                                                          2. O((j-i)^2)
\{t \leftarrow \infty;
                                                          3. O((i-i)^3)
   For (i < k < j)
       temp \leftarrow Find-\tau(i,k) + Find-\tau(k,j) + \omega(i,k,j);
      If (t > temp)
           t \leftarrow temp;
return t;
```


Consider the previous Find $-\tau(1,n)$ algorithm. Which one of the following is/are true.

- 1. Find $\tau(1, n)$ computes 2^n different sub-problems
- 2. Find- $\tau(1,n)$ computes only at most n^2 different subproblems, but to compute each sub-problem (non-recursively) it takes $\Omega(\frac{2^n}{n^2})$ time
- 3. Find- $\tau(1, n)$ computes only at most n^2 different sub-problems, but each sub-problem multiple times.

Consider the following algorithm

 $rac{T}{1,n}$;

```
Iterative-opt-traingulation (1,n)

\{ for (i = 1 \text{ to } n-1) \mid T[i,i+1] \leftarrow 0; \}
```

```
for (k = i + 1 \text{ to } j - 1)
{
```


Fill the blocks so that the following are true:

- 1. This algorithm finds the value of $\tau(i,j)$
- 2. This algorithm runs in time $O(n^3)$ time
- This algorithm computes only at most n² different sub-problems, each exactly once