Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3.11 з дисципліни «Ігрова фізика»

"ВИВЧЕННЯ ІНТЕРФЕРЕНЦІЇ СВІТЛА"

Виконав(ла)	ІП-15 Мєшков Андрій Ігорович	
	(шифр, прізвище, ім'я, по батькові)	
Перевірив	Скирта Юрій Борисович	
	(прізвище, ім'я, по батькові)	

Лабораторна робота № 3.11

ВИВЧЕННЯ ІНТЕРФЕРЕНЦІЇ СВІТЛА

Теорія методу та опис експериментальної установки

Інтерференція хвиль — явище накладання двох або більше когерентних хвиль, в результаті чого в одних місцях спостерігається підсилення кінцевої хвилі (інтерференційний максимум), а в інших місцях послаблення (інтерференційний мінімум).

Результуюча інтенсивність:

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2 \langle \cos \delta \rangle}, (1)$$

де $<\cos\delta>$ — усереднене у часі значення косинуса різниці початкових фаз коливань, що збуджуються у точці накладання кожним джерелом.

Якщо розглянути випадок когерентних хвиль, а саме коли $I_1 = I_2$, то отримаємо:

$$I = 2I_1 + 2I_1 \cos \varphi_2 - \varphi_1 = 2I_1(1 + \cos \varphi_2 - \varphi_1)$$

Згадавши формулу половинного кута для косинусу:

$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2} \tag{2}$$

Можемо записати результуючу інтенсивність:

$$I = 4I_1 \cos^2 \frac{\varphi_2 - \varphi_1}{2} \tag{3}$$

Різниця фаз δ двох когерентних хвиль від одного джерела:

$$\delta = \frac{2\pi}{\lambda}(L_2 - L_1) = \frac{2\pi}{\lambda}\Delta\tag{4}$$

Добуток геометричної довжини d шляху світлової хвилі на показник заломлення середовища n називається оптичною довжиною шляху L, а $\Delta = L_2 - L_1$ – різниця оптичних довжин пройдених хвилями шляхів, називається оптичною різницею ходу.

Якщо оптична різниця ходу дорівнює числу хвиль у вакуумі:

$$\Delta = \pm m\lambda, \qquad (m = 0, 1, 2, \dots) \tag{5}$$

Тоді з формул (4) та (5) випливає, що $\delta=\pm 2m\pi$ і коливання, що збуджуються у точці М обома хвилями, знаходяться в однаковій фазі. Тому рівняння (10) — умова створення інтерференційного максимуму.

А якщо оптична різниця ходу:

$$\Delta = \pm (2m+1)\frac{\lambda}{2}, \qquad (m=0,1,2,...)$$
 (6)

Тоді з формул (4) та (6) випливає, що $\delta = \pm (2m+1)\pi$ і коливання, що збуджуються у точці М обома хвилями, знаходяться у протифазі. Тому рівняння (6) — умова створення інтерференційного мінімуму.

Опис досліду з біпризмою Френеля.

Прилад складається з двох плоских дзеркал Z1 та Z2, розміщених під кутом одне до одного. Цей кут відрізняється від 180° всього на декілька кутових хвилин. При освітленні дзеркал від джерела S, відображені від дзеркал промені, можна розглядати як два когерентні джерела світла S1 та S2, які є віртуальними зображеннями S. В просторі, де промені перекриваються, виникає інтерференція. Якщо джерело S лінійне (щілина) та паралельне до ребра «пересікання» цих дзеркал, то при їхньому освітленні монохроматичним світлом, виникає інтерференційна картина у вигляді паралельних до щілини еквідистантних світлих та темних смуг. Цю картину можна спостерігати на екрані Е, який може бути встановленим на будь-якій відстані в області перекриття світлових променів. За шириною інтерференційної смуги D визначити довжину хвилі світла. Досліди, проведені із дзеркалами Френеля стали одним із підтверджень хвильової природи світла.

Відстань від центра інтерференційної картини до m-го дифракційного максимуму визначається за формулою:

$$x_m = \frac{a+b}{c}m\lambda,\tag{7}$$

де а – відстань від біпризми до екрану, b – відстань від щілини до біпризми, c – відстань між уявними джерелами світла S_1S_2 , λ – довжина хвилі світла

Логічно, що відстань від центра інтерференційної картини до m+1 інтерференційного максимуму буде:

$$x_{m+1} = \frac{a+b}{c}(m+1)\lambda \tag{8}$$

Тоді з формул (7) та (8), відстань між сусідніми світлими (темними) інтерференційними смугами (інтерференційна ширина):

$$\Delta x = x_{m+1} - x_m = \frac{a+b}{c}\lambda \tag{9}$$

Наявність у реального джерела скінчених лінійних розмірів призводить до загального зниження контрастності інтерференційної картини, тобто до зменшення інтенсивності усіх максимумів і підвищення інтенсивності в усіх мінімумах. Тому при збільшенні лінійних розмірів джерела якість інтерференційної картини погіршується і при розмірах джерела порядку ширини смуги Δx інтерференційна картина зникає. Інша причина, що погіршує умови спостереження інтерференції, полягає у відсутності у природі повністю монохроматичних джерел світла — випромінювання завжди складається з хвиль у певному діапазоні $\Delta \lambda$.

Для реального джерела максимальний порядок k_{max} смуг, що спостерігаються, не перевищує значення:

$$k_{max} = \frac{\lambda}{\Delta \lambda} \tag{10}$$

 $k_{max} = \frac{\lambda}{\Delta \lambda}$ а загальна кількість смуг, які можна спостерігати на екрані:

$$N = 2k_{max} = \frac{2\lambda}{\Delta\lambda} \tag{11}$$

Якщо ми виразимо з формули (9) λ , то отримаємо:

$$\lambda = \frac{\Delta xc}{a+b} \tag{12}$$

Також виведемо Δλ з формули (11):

$$\Delta \lambda = \frac{2\lambda}{N} \tag{13}$$

Експериментальна установка.

Збиральна властивість фокальної площини: будь–які паралельні між собою промені після проходження крізь лінзу перетинаються (самі або їхні продовження) в одній точці фокальної площини.

Положення предмета АВ та його зображення А'В' у лінзі (рис. 5) пов'язані формулою тонкої лінзи:

$$\frac{1}{d} + \frac{1}{f} = \frac{1}{F},\tag{14}$$

де d = AO — відстань від предмета до лінзи; f = OA' — відстань від лінзи до зображення; F = OF — фокусна відстань лінзи.

Величини d, f, F розглядаються як алгебраїчні відповідно до правила знаків: відстані між центром лінзи і дійсними точками беруть із знаком "+", а відстані між центром лінзи і уявними точками беруть із знаком "-".

Відношення розміру зображення H = A'B' до розміру предмета h = AB: $\Gamma = H/h$ називається поперечним збільшенням. Воно визначається формулою:

$$\Gamma = \frac{f}{d} = \frac{H}{h} \eqno(15)$$
 Визначивши відстань f з формули лінзи (19), одержимо ще один вираз для збільшення:

$$\Gamma = \frac{F}{d - F} \tag{16}$$

 $\Gamma = \frac{F}{d - F}$ Також з співвідношень (19) та (20), маємо:

$$\frac{h}{L} = \frac{(d-F)^2}{d^2F}H$$

$$\Delta x = \frac{x}{n}$$
(17)

$$\Delta x = \frac{x}{n} \tag{18}$$

Якщо ми підставимо отриманий вираз (18) та (17) у формулу (12), де c = h, a + b = L, то отримаємо формулу для визначення довжини світлової хвилі:

$$\lambda = \frac{xH(d-F)^2}{nd^2F} \tag{19}$$

Порядок виконання роботи

n = 10

Світлофільтр	Червоний	Зелений	Синій
N	16	11	13
	2,47	1,93	1,81
X, MM	2,3	1,92	1,79
	2,32	2,02	1,74
< <i>X</i> >, <i>м</i> м	2,363	1,957	1,780
	0,6	0,64	0,62
h, мм	0,62	0,61	0,62
	0,58	0,63	0,63
< <i>h</i> >, <i>мм</i>	0,600	0,627	0,623
F, мм	145	145	145
d, мм	747,82	747,82	747,82
λ, нм	635,462	549,499	497,226
dl, нм	79,433	99,909	76,496

Середнє значення для х та h ми обраховували за формулою:

$$\langle x \rangle = \frac{\sum_{i=1}^{n} x_i}{n} \tag{20}$$

Значення λ обрахували за формулою (19), а $\Delta\lambda$ – за формулою (13).

Для оцінки відхилення вибіркового середнього $\langle x \rangle$ від істинного значення вимірюваної величини, вводиться середня квадратична похибка середнього $S_{(x)}$, яка обчислюється за формулою:

$$S_{\langle x \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta x_i^2} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \langle x \rangle)^2}$$
 (21)

У нашому випадку вимірів було по 3, тому n = 3.

Позначимо через β_1 і β_2 інтервал значень, до якого із заданою ймовірністю довіри α потрапляє вимірювана величина х.

$$\beta_1 = \langle x \rangle - \Delta x_{\text{випалкове}},\tag{22}$$

$$\beta_2 = \langle x \rangle + \Delta x_{\text{випалкове}},\tag{23}$$

 $\beta_1 = \langle x \rangle - \Delta x_{\text{випадкове}},$ $\beta_2 = \langle x \rangle + \Delta x_{\text{випадкове}},$ де $\Delta x_{\text{випадкове}}$ – напівширина інтервалу довіри, що визначається за формулою:

$$\Delta x_{\text{випадкове}} = t_{a,n} \cdot S_{\langle x \rangle},\tag{24}$$

де $t_{a.n}$ – коефіцієнт Стьюдента, який залежить від імовірності довіри α та числа вимірів n. По умові $\alpha = 0,9$.

Використавши дані у формулах (22) – (24), можемо записати:

$$\langle x \rangle - t_{a,n} \cdot S_{\langle x \rangle} \le x \le \langle x \rangle + t_{a,n} \cdot S_{\langle x \rangle} \tag{25}$$

або з імовірністю α:

$$x = \langle x \rangle \pm t_{a,n} \cdot \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \langle x \rangle)^2}$$
 (26)

За допомогою формули (26) знайдемо ширину інтервалу, в якому шукана величина х буде знаходитись з імовірністю 90%. Приймаючи до уваги, що коефіцієнт Стьюдента $t_{a,n}=t_{0,9;3}=2,92.$

Беручи значення з попередньої таблиці, та використовуючи формули (21), (24) та (26), обрахуємо значення похибки.

Світлофільтр	Червоний	Зелений	Синій
$t_{0,9;3}$	2,92		
$(x_i - \langle x \rangle)^2$, mm ²	0,011378	0,000711	0,000900
	0,004011	0,001344	0,000100
	0,001878	0,004011	0,001600
$S_{\langle x \rangle}$, MM	0,054	0,032	0,021
Δх, мм	0,15768	0,09344	0,06132
$(H_i - \langle H \rangle)^2$, mm ²	0	0,0001778	0,0000111
	0,0004000	0,0002778	0,0000111
	0,0004000	0,0000111	0,0000444
$S_{\langle H \rangle},$ мм	0,0115	0,0088	0,0033
ΔΗ, мм	0,03358	0,0257	0,0096

Похибка для x , $мм$	$2,363 \pm 0,15768$	1,957±0,09344	1,780±0,06132
Похибка для Н, мм	$0,600 \pm 0,03358$	$0,627\pm0,0257$	$0,623\pm0,0096$

Контрольні запитання

1. Що називається інтерференцією світла? Виведіть формули (1.1) та (1.2).

Розглянемо умови утворення максимуму і мінімуму інтерференції світла.

Нехай дві когерентні монохроматичні світлові хвилі накладаються одна на одну в деякій точці простору. Перша хвиля викличе в цій точці гармонічні коливання:

$$E_1 = E_{01} \cos \omega t + \varphi_1$$

Тоді друга:

$$E_2 = E_{02}\cos\omega t + \varphi_2$$

Ми можемо скласти рівняння (1) та (2), оскільки це коливання однакового періоду, що відбуваються в однаковому напрямку, то результуюче коливання буде також гармонічним коливанням, яке здійснюється з тим самим періодом і в тому самому напрямку, тобто

$$E = E_0 \cos \omega t + \varphi$$

Варто зазначити, що амплітуда цього коливання описується по формулі:

$$E_0^2 = E_{01}^2 + E_{02}^2 + 2E_{01}E_{02}\cos\varphi_2 - \varphi_1$$

 $E_0^2 = E_{01}^2 + E_{02}^2 + 2E_{01}E_{02}\cos\varphi_2 - \varphi_1$ Так як хвилі когерентні, то $\cos\varphi_2 - \varphi_1$ має постійне, але своє для кожної точки простору, значення в часі, тому інтенсивність І результуючої хвилі визначається квадратом амплітуди $I = E_0^2$:

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \varphi_2 - \varphi_1$$

2. Які хвилі називаються когерентними? Чому світлові хвилі, що випромінюються незалежними джерелами, некогерентні?

Необхідною умовою інтерференції хвиль ϵ їх когерентність (узгодженість у часі). Когерентними називаються джерела, що випромінюють хвилі однакової частоти зі стабільною різницею фаз і площинами коливань світлового вектора Е, що збігаються (остання вимога не ϵ істотною при інтерференції природного світла).

Природні джерела світла не ϵ когерентними. Їх випромінювання ϵ накладенням величезної кількості не узгоджених між собою хвильових пакетів (цугів хвиль) окремих атомів. Для спостереження інтерференції від таких джерел, необхідно світло від одного і того ж самого джерела розділити на два пучки (або на кілька пучків), а потім звести ці пучки разом. Якщо розглянути випадок когерентних хвиль, а саме коли $I_1 = I_2$, то отримаємо I = $4I_1 \cos^2 \varphi_2 - \varphi_1/2$

3. Поясніть принцип отримання когерентних світлових хвиль та наведіть конкретні приклади (окрім біпризми Френеля).

Різниця фаз δ двох когерентних хвиль від одного джерела:

$$\delta = \frac{2\pi}{\lambda}(L_2 - L_1) = \frac{2\pi}{\lambda}\Delta$$

Добуток геометричної довжини d шляху світлової хвилі на показник заломлення середовища п називається оптичною довжиною шляху L, а

$$\Delta = L_2 - L_1 = n_2 r_2 - n_1 r_1$$

 $\Delta = L_2 - L_1 = n_2 r_2 - n_1 r_1,$ це різниця оптичних довжин пройдених хвилями шляхів, називається оптичною різницею ходу.

Геометрична різниця ходу променів – це різниця геометричних шляхів променів в середовищі з n = 1 (вакуумі). Якщо геометричну різницю ходу позначити через Δ , геометричну довжину шляхів променів позначити через r_1 і r_2 , то геометрична різниця ходу виразиться так:

$$\Delta = r_2 - r_1$$

7. Виведіть умову (1.4).

Приймаючи до уваги відповідь на попереднє запитання, якщо оптична різниця ходу дорівнює числу хвиль у вакуумі:

$$\Delta = \pm m\lambda$$
, $(m = 0,1,2,...)$

Тоді з попередніх формул випливає, що $\delta=\pm 2m\pi$ і коливання, що збуджуються у точці М обома хвилями, знаходяться в однаковій фазі. Тому рівняння (10) – умова створення інтерференційного максимуму.

А якщо оптична різниця ходу:

$$\Delta = \pm (2m+1)\frac{\lambda}{2}, \qquad (m = 0,1,2,...)$$

Тоді з попередніх формул випливає, що $\delta = \pm 2m\pi$ і коливання, що збуджуються у точці М обома хвилями, знаходяться) випливає, що $\delta = \pm (2m+1)\pi$ і коливання, що збуджуються у точці М обома хвилями, знаходяться у протифазі. Тому рівняння (11) — умова створення інтерференційного мінімуму.

Інтерференційна картина являє собою послідовність світлих і темних інтерференційних смуг – максимумів і мінімумів.

8. Виведіть формули (1.5) і (1.6). Чому заломлюючі кути біпризми повинні бути дуже малими?

Біпризма Френеля складається з двох склеєних основами призм з малими заломлюючими кутами. Світловий пучок від джерела (щілина діафрагми S) (рис. 2) після заломлення у біпризмі поділяється на два когерентних пучки з вершинами в уявних зображеннях S_1 і S_2 . Оскільки джерела когерентні, у будь-якій точці області перекриття пучків буде спостерігатись інтерференційна картина.

На екрані MN, розташованому на відстані CK = a від біпризми, можна спостерігати інтерференційну картину, яка має вигляд тонких світлих і темних смуг, що чергуються, колір яких залежить від довжини хвилі, яку пропускає світлофільтр. Оскільки інтерференційні смуги дуже вузькі і розташовані дуже близько одна до одної, то для їх спостереження зазвичай використовують окулярний мікрометр.

Відстань від центра інтерференційної картини до m-го дифракційного максимуму визначається за формулою:

$$x_m = \frac{a+b}{c} m \lambda,$$

де а – відстань від біпризми до екрану, b – відстань від щілини до біпризми, c – відстань між уявними джерелами світла S_1S_2 , λ – довжина хвилі світла

Логічно, що відстань від центра інтерференційної картини до m+1 інтерференційного максимуму буде:

$$x_{m+1} = \frac{a+b}{c}(m+1)\lambda$$

Тоді з формул (12) та (13), відстань між сусідніми світлими (темними) інтерференційними смугами (інтерференційна ширина):

$$\Delta x = x_{m+1} - x_m = \frac{a+b}{c} \lambda$$

Наявність у реального джерела скінчених лінійних розмірів призводить до загального зниження контрастності інтерференційної картини, тобто до зменшення інтенсивності усіх максимумів і підвищення інтенсивності в усіх мінімумах. Тому при збільшенні лінійних розмірів джерела якість інтерференційної картини погіршується і при розмірах джерела порядку ширини смуги Δx інтерференційна картина зникає.

Висновок: під час виконання лабораторної роботи, ми більше дізналися про інтерференцію, когерентні та некогерентні хвилі, та їх природу, їх різновиди. Розглянули умови утворення максимуму і мінімуму інтерференції світла. Вивели рівняння інтенсивності результуючої хвилі та різниць ходу. Вивчили навіщо потрібна біпризма Френеля та визначили формули для роботи з нею. Повторили властивості збиральної лінзи та розрахували довжини хвиль. Визначили для них похибку.