

Self-supervised pretraining for phoneme recognition, and generalization on foreign languages

Algorithms for speech and natural language processing Project Presentation

20/04/2022

Introduction

Recent advances in self-supervised learning for speech processing

Can we use the learned features for phoneme recognition on various languages?

Goals / Problematics

What hypothesis would we like to confirm?

Which languages are close to English?

Our Phoneme Recognition pipeline with CTC

- + How well can we perform phoneme recognition on other languages using pre-trained features on English?
- + Is there a correlation between closeness to English and the model's performances?
- + Which method allows to extract the best features for phoneme recognition?
- + What is the influence of the abundance of training data on the performance of models?

Methods

Pretrained models used

Wav2Vec2 HuBERT WavLM

SoTA models on speech processing

- 1- Wav2vec2
- 2- HuBERT
- 3- WavLM

Pretrained models:

- Wav2vec2 Base, WavLM Base and HuBERT Large: 960 hours of Librispeech
- WavLM Large: MIX-94K (60K Libri-Light, 10K Gigaspeech and 24K VoxPopuli)

Models available on:

Datasets

Common Voice

Make use of Mozilla Common Voice on **5** languages:

1- Italian	Language	number of phonemes 40	
i-italiali	Swedish		
2- Dutch	Turkish	47	
	Russian	49	
3- Swedish	Dutch	52	
1 B :	Italian	60	

4- Russian 5- Turkish

Table 1. Number of phonemes of the 5 studied languages. We add 5 special tokens in addition to these phonemes: < s >, < /s >, < unk >, < pad > and |

Dataset available on:

Converting transcripts to sequences of phonemes and tokenization:

- Phonemizer and espeak-ng backend
- Wav2Vec2PhonemeCTCTokenizer

Main Experiments

Fine-tune, frozen features and training data

- + Comparing fine-tuning HuBERT, WavLM and Wav2vec2 on our 5 languages
- Comparing the features learned by HuBERT, WavLM and Wav2vec2 on our 5 languages (i.e., freezing the network and training only the Linear head)
- + Comparing the impact of the amount of training data across the 3 models on Swedish

Fine-tuning

English closeness and training data

Main observations

- 1. Larger models are better
- Closeness to English seems to be correlated to the PER of the models
 - a. Except for Turkish
- The amount of data seems to impact the performances as well

Language	Language Family	Proximity with English
Swedish	North Germanic	26.7
Dutch	West Germanic	27.2
Italian	Romance	47.8
Russian	Est Slavic	60.3
Turkish	Turkic	92.0

Table reporting closeness to English

1	To de Colonia	M. I.I	DED 11 L	DED	
Language	Training data (in hours)	Model	PER validation	PER test	Runs
Italian 62.34		Wav2Vec2 Base	19.05	17.95	Wav2Vec2_it
	62.34	HuBERT Large	14.05	12.67	Hubert_it
		WavLM Base	19.83	25.60	WavLM_it
Russian 15.55		Wav2Vec2 Base	32.16	31.66	Wav2Vec2_ru
	15.55	HuBERT Large	25.10	24.09	Hubert_ru
		WavLM Base	20.25	18.88	WavLM_ru
		Wav2Vec2 Base	16.18	20.83	Wav2Vec2_nl
Dutch 12.78	12.78	HuBERT Large	12.77	16.49	Hubert_nl
		WavLM Base	15.96	19.91	WavLM_nl
Swedish 3.22		Wav2Vec2 Base	26.50	24.16	Wav2Vec2_sv
	3.22	HuBERT Large	21.77	19.38	Hubert_sv
		WavLM Base	26.86	24.61	WavLM_sv
Turkish 2.52		Wav2Vec2 Base	19.62	19.03	Wav2Vec2_tr
	2.52	HuBERT Large	15.51	14.19	Hubert_tr
		WavLM Base	19.85	18.95	WavLM_tr
Average	1-0	Wav2Vec2 Base	22.70	22.73	
		HuBERT Large	17.84	17.36	-
		WavLM Base	20.55	21.59	

Table of experiments when models are fine tuned.

Frozen features

Comparison of pretrained methods

Language	Training data (in hours)	Model	PER validation	PER test	Runs
Italian 62.34		Wav2Vec2 Base	38.94	36.84	Wav2Vec2_it_tf_freezed
	62.24	WavLM Base	27.29	25.98	WavLM_it_tf_freezed
	02.34	HuBERT Large	23.85	21.15	Hubert_it_tf_freezed
		WavLM Large	21.02	18.80	WavLM_it_tf_freezed
Russian		Wav2Vec2 Base	50.11	48.69	Wav2Vec2_ru_tf_freezed
	15.55	WavLM Base	40.66	38.76	WavLM_ru_tf_freezed
Russian	13.33	HuBERT Large	38.36	36.18	Hubert_ru_tf_freezed
		WavLM Large	34.48	32.26	WavLM_ru_tf_freezed
		Wav2Vec2 Base	40.15	39.23	Wav2Vec2_nl_tf_freezed
Dutah	12.78	WavLM Base	34.94	35.67	WavLM_nl_tf_freezed
Dutch 12.78	12.78	HuBERT Large	27.62	26.68	Hubert_nl_tf_freezed
		WavLM Large	27.71	27.19	WavLM_nl_tf_freezed
Swedish 3.22		Wav2Vec2 Base	50.30	45.23	Wav2Vec2_sv_tf_freezed
	2 22	WavLM Base	43.65	40.55	WavLM_sv_tf_freezed
	3.22	HuBERT Large	37.34	32.68	Hubert_sv_tf_freezed
		WavLM Large	37.25	33.14	WavLM_sv_tf_freezed
Turkish		Wav2Vec2 Base	53.92	52.08	Wav2Vec2_tr_tf_freezed
	2.52	WavLM Base	47.18	45.53	WavLM_tr_tf_freezed
	2.52	HuBERT Large	39.55	37.08	Hubert_tr_tf_freezed
		WavLM Large	30.66	30.14	WavLM_tr_tf_freezed
Average	4	Wav2Vec2 Base	46.68	44.41	
		WavLM Base	38.74	37.30	-
		HuBERT Large	33.34	30.75	
		WavLM Large	30.22	28.31	

Table of experiments using frozen features.

Main observations

- PER higher than fine tune results
 - Best: 30.22% vs 17.84%
- Closeness to English definitely impacts the performance of the models
 - o eg. Dutch > Russian > Turkish
- Wav2vec2 vs WavLM vs HuBERT
 - Base: Wayl M > Way2vec2
 - Large: WavLM > HuBERT
 - WavLM > Wav2vec2 and HuBERT

Training data

More is better but not so much

PER on the validation and test sets vs Training data for the Swedish language using frozen features.

amount of training data seems to be logarithmically correlated to the performance of the models => but not need a large amount of data to obtain decent results

Conclusions

Main conclusions

We have successfully built a framework for evaluating various pretrained models on phoneme recognition.

Main conclusions:

- **Closeness to English** impacts the performance of the model
- Overall **WavLM** seems to be **better than other pretrained methods**
 - The **amount of training data** does not impact that much

Possible future works:

- What about other languages? Japanese, Chinese, Hindi...
 - What about other new methods? e.g. data2vec

Code publicly available on github - Logs available on wandb

https://github.com/ASR-project/Multilingual-PR

https://wandb.ai/asr-project/test-asr?workspace=user-clementapa

THANKS FOR LISTENING!

Références

wav2vec 2.0 (2020): https://arxiv.org/abs/2006.11477, Baevski et al.

HuBERT (2021): https://arxiv.org/abs/2106.07447, Hsu et al.

WavLM (2022): https://arxiv.org/abs/2110.13900, Chen et al.

