Name: Solutions

To receive any credit, you must show your work!

1. Find bases for the four fundamental subspaces of the matrix

Find bases for the four fundamental subspaces of the matrix
$$A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 2 & 0 \end{bmatrix} \quad \text{Recall} \quad N(A) = \underbrace{\begin{cases} \chi \in \mathbb{R}^3 \mid A\chi = 0 \end{cases}}_{X \in \mathbb{R}^3} \quad A\chi = \underbrace{\begin{cases} 1 & 3 & 4 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad A\chi = \underbrace{\begin{cases} 1 & 3 & 4 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad A\chi = \underbrace{\begin{cases} 1 & 0 & 4 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad A\chi = \underbrace{\begin{cases} 1 & 0 & 4 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad A\chi = \underbrace{\begin{cases} 1 & 0 & 4 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 1 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 & 0 \end{cases}}_{X \in \mathbb{R}^3} \quad X\chi = \underbrace{\begin{cases} 1 & 0 \\ 0 &$$

(Note, however, that in this example the col space is all of R2, so any pair of linearly indep vectors of length 2 is also a basis

for the column space. So a basis for R(A) is $\{\binom{1}{0},\binom{3}{2}\}$.

(d) $R(A^T)$: $A^T = \begin{pmatrix} 1 & 0 \\ 3 & 2 \\ 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{ as in gart (b), so a basis}$
Powerks: for the column space of AT is {(3),(0)}.
Remarks: Note that here we can say use the RREF of A to identify
which columns of AT serve as basis vectors for the colum
space & AT. It is incorrect to conclude that
a basis for R(AT) is {(b),(b)}. Notice that the vector (3)
is not in span {(0)(0)}, so certainly {(0),(0)} cannot be a basis
for R(AT).
2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that
T(1,0,0) = (1,2,4), T(0,1,0) = (3,2,1), T(0,0,1) = (0,2,2).
Compute $T(1,0,3)$. (Hint: First write $(-1,0,3)$ as a linear combination of basis vectors.)
typs:
Write $\binom{1}{3} = i \binom{1}{0} + o \binom{0}{0} + 3 \binom{0}{0}$, as suggested in the hint.
Then, since T is linear, $T(\frac{1}{3}) = 1.T(\frac{1}{3}) + 0.T(\frac{1}{3}) + 3.T(\frac{0}{3})$
$= 1 \cdot {1 \choose 2} + 0 \cdot {3 \choose 2} + 3 \cdot {0 \choose 2} = {1 \choose 3}$
Answer: $T(1,0,3) = \begin{pmatrix} 1 \\ 3 \\ 10 \end{pmatrix}$ or $(1,3,10)$
"On my honor as a student I,, have neither given nor received unauthorized aid on this quiz." (print name clearly)
Signature: Date:
Score: