First Order Logic

- In propositional logic, we can only represent the facts, which are either true or false. e.g. "It is raining"
- But Propositional logic is not sufficiently expressive to represent the following statements
 - "Some humans are intelligent"
 - "All mangoes are sweet"
- First-order logic is capable of expressing facts about some or all objects in the universe.
- FOL specifies objects, relations and functions.
- First-order logic is also known as **Predicate logic.**

First Order Logic

• Syntax: function (term1,term 2,...,term n)

Predicate (term1, term2,, term n)

Quantifiers

FOL-Example

• Sam is tall

tall(Sam)

• John likes cricket.

likes(John, cricket).

• Everyone likes cricket.

 \forall x likes(x, cricket)

All students like cricket.

 $\forall x \ (student(x) \rightarrow like(x, cricket))$

Some boys are intelligent

 $\exists x (boys(x) \land intelligent(x))$

Some integers are even and some are odd

 $\exists x \text{ even}(x) \land \exists x \text{ odd}(x)$

Not all students like both Mathematics and Science.

 $\neg \forall$ (x) (student(x) \rightarrow like(x, Mathematics) \land like(x, Science))

^	AND
V	OR
~	NOT
\rightarrow	IFTHEN
\Leftrightarrow	IF AND ONLY IF

A	→
3	^

Elements of FOL

Constant	1, 2, A, John, Mumbai, cat
Variables	x, y, z, a, b, etc.,
Predicates	Greater(5,3), Student(boy, girl).
Function	Mother-of(John), Colour-of (Basket)
Connectives	$\land, \lor, \lnot, \Rightarrow, \Leftrightarrow$
Equality	==
Quantifier	∀,(universal quantifier) ∃,(existential quantifier)

FOL-Example

• Sam is tall

tall(Sam)

John likes cricket.

likes(John, cricket).

Everyone likes cricket.

 \forall x likes(x, cricket)

All students like cricket.

 $\forall x \ (student(x) \rightarrow like(x, cricket))$

Some boys are intelligent

 $\exists x (boys(x) \land intelligent(x))$

Some integers are even and some are odd

 $\exists x \text{ even}(x) \land \exists x \text{ odd}(x)$

Not all students like both Mathematics and Science.

 $\neg \forall$ (x) (student(x) \rightarrow like(x, Mathematics) \land like(x, Science))

۸	AND
V	OR
~	NOT
\rightarrow	IFTHEN
\Leftrightarrow	IF AND ONLY IF

A	→
3	۸