xor Paradise

原案・問題文 itigo

データセット ReiVindicatio, pitsu

解説 tubuann

0.1 解説

0.1.1 解法

 S_1, \dots, S_K を条件をそれぞれ配列 A_i の元によって生成される \mathbb{F}_2^{60} の部分空間とします. この問題の答えは包除原理によって次のように求まります.

$$\sum_{I\subset \{1,\dots,K\},I\neq\emptyset} (-1)^{1+|I|} |\bigcap_{i\in I} S_i|$$

また、一般に \mathbb{F}_2 空間 S に対して

$$|S| = 2^{\dim S}$$

が成り立ちます.

0.1.2 直交補空間

 $X=\mathbb{F}_2^n$ を \mathbb{F}_2 上の有限次元線型空間とします. $v=(v_1,\ldots,v_n), w=(w_1,\ldots,w_n)\in X$ に対して

$$(v,w) = v_1 w_1 + \dots + v_n w_n$$

で X の内積を定めます.

X の部分空間 S に対して

$$S^{\perp} = \{x \in X \mid (x, y) = 0 \ \forall y \in S\}$$

をSの直交補空間といいます。直交補空間は以下の性質を満たします。

$$(S \cap S')^{\perp} = S^{\perp} + S'^{\perp}$$

$$S^{\perp\perp} = S$$

 $\dim X = \dim S + \dim S^{\perp}$

よって部分空間 S_1,\dots,S_m の共通部分の次元は, $\dim X - \dim(S_1^\perp + \dots + S_m^\perp)$ として求まります.

0.1.3 直交補空間の求め方

 $top((a_1,\ldots,a_n)) = \min\{i \mid a_i \neq 0\} \ とします.$

S を X の部分空間, $v_1, \ldots, v_m \in S$ を S の基底で次の条件を満たすものとします.

$$top(v_1) > \dots > top(v_m)$$

このような基底はガウスの消去法によって求めることができます.

このとき S^{\perp} の基底を次のアルゴリズムによって求めることができます.

Algorithm 1

- 1: $W \leftarrow \emptyset$
- 2: **for** i = 1, ..., n **do**
- 3: **if** $i \in \{ top(v_1), \dots, top(v_m) \}$ **then**
- 4: continue
- 5: end if
- 6: $w \leftarrow (0, ..., 0, 1, 0, ..., 0)$ #i 番目の要素だけ 1 のベクトル
- 7: **for** j = 1, ..., m **do**
- 8: $(w)_{top(v_j)} + = (v_j, w)$
- 9: end for
- 10: $W \leftarrow W \cup \{w\}$
- 11: end for