Overview Parallel data reorganisation Collective communication in MPI Summary and next lecture

Assignment Project Exam Help

https://eduassistpro.github.

Add We Chat edu_assist_producture 10: Parallel data reorg

Peter Jimack and David Head

XJCO3221 Parallel Computation

Previous lectures

Assignment Project Exam Help communication in a distributed memory system:

- https://eduassistpro.github.i
 - Sending process calls MPI_Send
- A Conting to the safety modified.

 A Conting to the safety modified.

 A Conting to the safety modified to the safety modified to the safety modified.
- Can result in **deadlock**, e.g. cyclic communication pattern.

Peter Jimack and David Head

This lecture

Assignment on troject of the Xeam de at the performance of distributed memory systems: Data reor

- https://eduassistpro.github.
- For distributed systems, data reorganisa
- significant parallel overhead.

 Improve performance using a tile edu_assist_province using a tile e routines.
- Will go through a worked example of a simple distributed counting algorithm.

Data reorganisation

Assignment Project Exam Help Many algorithms require some form of large-scale data

reor

- https://eduassistpro.girthub.stack, queue etc.) or a database.
- Numerical algorithms, i.e. regrd edu_assist_pr
- Compression (e.g. bzip, gzip e
- . . .

Generalised scatter and gather

General gather is similar, but indices give read locations.

¹McCool et al., Structured parallel programming (Morgan-Kaufman, 2012).

Shared versus distributed

A signification of the property of the propert

a

• https://eduassistpro.github.

Although data reorganisation is very important __assist_pr

The primary overhead in distributed systems is **communication**, which is a form of data reorganisation

Data reorganisation on shared and distributed system Performance of distributed parallel programs Reducing communication times

rming

Communication performance

A Systems, one typically dominates. The communication time. Telp

If the s

https://eduassistpro.github.

For communication to not adversely affe the racial dd WeChat edu_assist_pr

to be as small as possible.

¹Recall from Lecture 4 that t_p is the parallel execution time.

Analysis of t_{comm}

Assignment siprojector kingtion the lp $t_{\text{comm}} = t_{\text{startup}} + mt_{\text{data}}$

https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

Number of data items m

¹Wilkinson and Allen, *Parallel programming* 2nd ed. (Pearson, 2005).

Measurement of t_{comm} from SoC lab machines (in Leeds)

Code on Minerva: measure_tComm.c

For faster interconnects both $t_{\rm startup}$ and $t_{\rm data}$ about 10 times smaller, but **communication remains the primary overhead**.

Intra- versus inter-node communication

Process 3 sends data to process 1, it SSI INTO 1 CC machine's memory (blue arrows) F https://eduassistpro.github. If process 3 now sends the same data network (Park of Charles State of Charle Slow

¹Could be removed by using one *multi-threaded* process per node [Lecture 8].

Strategies to reduce communication times

Assignment spine spine spine specific safes wants silter lp For two messages of size m and n:

https://eduassistpro.github.i

• For **one** message of size m + n:

Add WeChat edu_assist_pr

So we have **saved** $t_{\rm startup}$ in total communication time.

We will see another strategy in Lecture 12.

Collective communication

Assilonation Pipove cetuc Expaniatio Help

*https://eduassistpro.github.

Distributed programming APIs include

Add Weethattedu_assist_pr

- Can drastically reduce the communication overhead.
- Implementation varies, but typically **overlap** communications to reduce t_{comm} .

Point-to-point communication:

Common forms of collective communication

Other variants (i.e. many-to-many such as multi-broadcast) exist but are less commonly used and not considered here.

We will consider reduction next lecture.

Worked example: Distributed count

Collective communication in MPI

Code on Minerva: distributedCount.c

Assignmentive complete tin ExamusHelp simple worked example: A distributed count algorithm.

- https://eduassistpro.github.
- Each rank (including rank 0) counts how ma
- data are below-some threshold.

 All bank 0 sent the contact eduni assist pr total.

Note we assume only rank 0 knows the total data size.

• e.g. if rank 0 had loaded the data from a file.

Step 1: Broadcasting: MPI_Bcast()

A Sending pharage has been perfectly the sending property of the sending prope

```
if( rank
fo
lsehttps://eduassistpro.github.
MPI_Recv(&localSize,1,MPI_INT,0,...);
```

The same think carble actieved using edu assist_property with the comment of the

- First 3 arguments same as MPI_Send()/MPI_Recv().
- Fourth argument is the rank on which localSize is defined.

Broadcasting: Schematic

Note that using '&variable' for the data argument 'fools' MPI into thinking the variable count is an array of size 1.

Common pitfall - careful!

A syning spanner to the control of t

This https://eduassistpro.github.

```
if( rank == 0 ) MPI_Bcast(...);
```

- MAT Boast (West of Meturn until Calle U assist programme and the last of the

 - Rank 0 will wait forever deadlock.

The name broadcast is misleading as it suggests only sending is involved, whereas in fact it also includes the receiving.

Step 2: Scattering: MPI_Scatter()

```
Need to break up an array into equal sized chunks and send one SSI gramment of vice pool at Atten Help

if ( rank == 0 )

fo

else https://eduassistpro.github.
```

This cape law with a simulative edu_assist_property of the simulation of the simulat

```
globalData,localSize,MPI_INT, // Sent from
localData,localSize,MPI_INT, // Received to
0, MPI_COMM_WORLD // Source rank 0
5);
```

Worked example: Distributed count Broadcasting: MPI_Bcast() Scattering: MPI_Scatter() Gathering: MPI_Gather()

Scattering: Schematic

Note also copies to recvData[] on rank 0.

Step 4: Gathering: MPI_Gather()

from which the total can be counted. As with scatter

- · Add We hat edu_assist_pr
- There is no tag.
- The data size is the local size, both times.
- Can in principle use different data sizes or types for sending and receiving, but not recommended.

Worked example: Distributed count Broadcasting: MPI_Bcast() Scattering: MPI_Scatter() Gathering: MPI_Gather()

Gathering: Schematic

Assignment Project Exam Help

Summary and next lecture

Astonomication Projectivities adaptivitelp

- https://eduassistpro.github.
 - Broadcasting (e.g. MPI_Bcast

A Cobering (e. Chr. datal) edu_assist_pr

In fact, the last stage of our example involved data reorganisation and calculation.

• This **reduction** is the subject of the next lecture.