$G - \Gamma$ series for U = 2

February 10, 2015

1 Fitting table

Table 1: $G - \Gamma$ series for U = 2, T = 0.5

				- , -	-
\overline{n}	1.0	0.875	0.8	0.6	0.3
\overline{E}	-	-1.1478(6)	-1.1802(6)	-1.1676(4)	-0.8191(2)
\overline{K}	-	-1.4221(10)	-1.4017(7)	-1.2832(5)	-0.8452(2)
$\overline{n_d}$	-	0.1372(6)	0.1107(4)	0.0578(3)	0.01304(6)
$\overline{\mu}$	-	0.482(2)	0.173(2)	-0.6804(8)	-2.1908(1)

Table 2: $G - \Gamma$ series for U = 2, T = 0.25

				/	
\underline{n}	1.0	0.875	0.8	0.6	0.3
\overline{E}	-	-1.2325(6)	-1.2667(6)	-1.2548(4)	-0.8812(2)
\overline{K}	-	-1.5144(8)	-1.4963(7)	-1.3763(6)	-0.9089(3)
n_d	-	0.1410(5)	0.1148(3)	0.0607(3)	0.01387(6)
μ	-	0.527(3)	0.245(2)	-0.5755(8)	-2.1045(1)

Table 3: $G - \Gamma$ series for U = 2, T = 0.125

\overline{n}	1.0	0.875	0.8	0.6	0.3
\overline{E}	-	-1.2600(6)	-1.2951(6)	-1.2790(4)	-0.8975(2)
\overline{K}	-	-1.5464(7)	-1.529(1)	-1.4025(6)	-0.9257(2)
n_d	-	0.1431(5)	0.1169(3)	0.0617(2)	0.01410(5)
μ	-	0.558(3)	0.2897(7)	-0.5423(5)	-2.0874(1)

Table 4: $G^{(0)}-U$ and $G^{(0)}-\Gamma^{(0)}$ series for $U=2,\ n=1.0$

T	0.5	0.25	0.125
\overline{E}	-1.0500(1)	-1.1339(3)	-1.1613(5)
\overline{K}	-1.4355(6)	-1.5248(6)	-1.554(1)
n_d	0.1928(3)	0.1955(4)	0.1961(9)

2 T = 0.5

2.1 T = 0.5, n = 0.3

2.2 T = 0.5, n = 0.6

1/N

2.3 T = 0.5, n = 0.8

2.4 T = 0.5, n = 0.875

2.5 T = 0.5, n = 1.0

3 T = 0.25

3.1 T = 0.25, n = 0.3

3.2 T = 0.25, n = 0.6

3.3 T = 0.25, n = 0.8

3.4 T = 0.25, n = 0.875

3.5 T = 0.25, n = 1.0

4 T = 0.125

4.1 T = 0.125, n = 0.3

4.2 T = 0.125, n = 0.6

4.3 T = 0.125, n = 0.8

4.4 T = 0.125, n = 0.875

G-Gam,n=0.875

1/3

4.5 T = 0.125, n = 1.0

