Un calcul combinatoire de $\sum_{k=1}^{n} k$

Alex6oko

18/05/25

Préambule-cadre: Je me suis toujours demandé pourquoi $\frac{n(n+1)}{2}$ s'écrivait $\binom{n+1}{2}$. Puis par hasard, en cherchant l'exo 5 des exos RMS (voir mes documents), j'ai été amené à trouver ce résultat.

Considérons un ensemble E de cardinal n, que l'on note $E = \{a_1, a_2, \ldots, a_n\}$. On munit E d'une opération *, supposée commutative, i.e que pour tous $x, y \in E$, on a x * y = y * x.

On souhaite dénombrer le nombre de produits potentiellement distincts possibles de deux éléments de E, en tenant compte de la commutativité.

- Tout d'abord, les **carrés** $a_i * a_i = a_i^2$ pour chaque i de 1 à n donnent n produits distincts.
- Ensuite, pour chaque paire d'éléments distincts (a_i, a_j) avec i < j, on a un produit $a_i * a_j$ (qui est égal à $a_j * a_i$ par commutativité). Le nombre de telles paires est $\binom{n}{2}$.

Ainsi, le nombre total de produits distincts est :

$$n + \binom{n}{2} = \binom{n}{1} + \binom{n}{2} = \binom{n+1}{2}$$

(d'après la formule de Pascal : $\binom{n}{1} + \binom{n}{2} = \binom{n+1}{2}$).

On peut également raisonner autrement :

- En partant de a_1 , on peut former un produit avec chacun des n éléments de E (y compris lui-même).
- Pour a_2 , on a n-1 nouveaux produits (on exclut $a_1 * a_2$ qui a déjà été compté).
- \bullet Et ainsi de suite, jusqu'à a_n , qui n'a plus de nouveaux produits à former.

Cela revient à compter :

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} = \binom{n+1}{2}$$