

南开大学

计算机学院和密码与网络空间安全学院

《并行程序设计》实验报告

作业一: 并行体系结构调研

姓名:梁景铭

学号:2312632

专业:计算机科学与技术

指导教师:王刚

2025年3月20日

目录

1	作业要求							
2	基础要求							
	2.1	我国超算的发展历史	2					
	2.2	阶段发展详述	2					
	2.3	技术路线演进图谱	3					
	2.4	神威太湖之光超算并行体系结构分析	4					
		2.4.1 处理器架构与性能对比	4					
		2.4.2 SW26010 处理器架构	4					
		2.4.3 内存层次与通信机制	4					
		2.4.4 MPI+X 并行编程模型	5					
		2.4.5 编译器扩展	5					
		2.4.6 2.5D 线程分块	5					
		2.4.7 稀疏计算优化	6					
		2.4.8 Beacon 监控系统	6					
3	进阶		6					
	3.1	- 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	6					
	3.2							
		3.2.1 实际性能与理论峰值	7					
		3.2.2 性能对比表	7					
	3.3	能效比分析	7					
		3.3.1 各系统能效数据	7					
		3.3.2 能效对比表	7					
	3.4	硬件架构与系统设计	8					
	3.5 应用领域与排名趋势							
		3.5.1 应用领域	8					
		3.5.2 排名趋势	8					
4	实验	· · · · · · · · · · · · · · · · · · ·	8					

1 作业要求

以上是我对作业要求的概述及我将具体调研的方向,下面我将具体阐述。

2 基础要求

2.1 我国超算的发展历史

我把中国超算的发展历史用了一张时间轴图理顺出来,这张图非常直观地说明了超算的发展过程。

图 2.1: 中国超算发展史时间线

2.2 阶段发展详述

1980 年代: 国产化破冰 国防科技大学于 1983 年研制成功的银河-I (峰值性能 1 亿次/秒),采用自主向量处理器架构,主频 20MHz,内存容量 8MB。尽管存储模块依赖进口,但其成功运行标志着我国突破西方技术封锁,支撑核武器模拟等战略需求。同期美国 Cray X-MP (1982 年)性能达 1.5 亿次/秒,技术差距约为 3-5 年。

1990 年代: 并行化转型 技术路线向大规模并行处理 (MPP) 演进: 1992 年银河-II 实现 10 亿次/秒性能,采用 16 节点并行架构,使中石油地震数据处理效率提升 5 倍; 1997 年银河-III 通过分布式共享存储 (DSM) 架构达到 130 亿次/秒,但操作系统仍依赖进口。中科院计算所于 1993 年推出**曙光一号** (6.4 亿次/秒),采用 Intel i860 处理器,开启超算商业化探索。

表 1: 关键超算系统技术参数对比

系统(年份)	峰值性能	处理器架构	能效比
银河-I (1983)	1 亿次/秒	向量处理器	0.1 MFLOPS/W
曙光 4000A (2004)	11 TFlops	AMD Opteron 集群	180 MFLOPS/W
天河二号 (2013)	54.9 PFlops	Xeon Phi 加速	1.9 GFLOPS/W
神威·太湖之光 (2016)	125 PFlops	申威 26010 众核	6.0 GFLOPS/W

2000 年代: 跻身国际前列 国家 863 计划推动技术跨越: 2004 年**曙光 4000A** 以 11TFlops 性能 首人 TOP500 前十,采用 2560 颗 AMD 处理器; 2009 年**天河一号**创新性引入 CPU+GPU 异构架构 (Intel Xeon + AMD GPU), 1.2PFlops 性能于 2010 年登顶全球。此阶段国产龙芯处理器开始试验性应用,但主要计算单元仍依赖进口。

2010 年代: 自主生态重构 美国 2015 年对华禁售 Xeon Phi 加速器,倒逼中国加速自主化进程。2016 年部署于国家超算无锡中心的**神威·太湖之光**,完全采用申威 26010 众核处理器 (260 核/片, SW64 指令集),以 125PFlops 性能蝉联 TOP500 四连冠。其凭借气候模拟应用首获"戈登·贝尔奖",标志应用水平进入国际第一梯队。

2020 年代: E 级计算时代 中美竞逐百亿亿次算力高地: 2021 年神威 E 级原型机通过申威 SW39000 处理器 (390 核/片) 实现 1.3EFlops 理论峰值,支撑百万神经元脑模拟; 天河三号融合 AI 加速器, 实现新冠药物虚拟筛选效率提升 20 倍。尽管美国"Frontier" 系统于 2022 年率先实现 1.1EFlops Linpack性能, 但中国通过**神威**(全自主)与**天河**(开放架构)双路线保持技术领先优势。

技术启示:中国超算发展呈现"需求牵引—技术突破—生态重构"的螺旋上升路径,从初期的技术引进到完全自主可控,其经验为后发国家突破高技术封锁提供了重要范式参考。

2.3 技术路线演进图谱

表 2: TOP500 系统关键指标对比

系统名称	峰值性能 (PF)	持续性能 (PF)	能效比 (MF/W)	总核数 (百万)	总内存 (PB)	架构类型
神威·太湖之光	125.436	93.015	6051.13	10.6	1.3	异构众核
天河二号	54.90	33.86	1901.54	3.12	1.0	异构众核
代恩特峰	25.33	19.59	8622.36	0.36	0.34	GPU 加速

2.4 神威太湖之光超算并行体系结构分析

2.4.1 处理器架构与性能对比

2.4.2 SW26010 处理器架构

SW26010 处理器采用异构众核架构,集成 4 个主控核心 (MPE) 和 64 个计算核心 (CPE) 组成的 8×8 阵列,通过核间共享缓存与分布式内存层次实现高效并行计算,专为大规模 HPC 场景优化。

图 2.2: SW26010 处理器架构示意图

2.4.3 内存层次与通信机制

- ▶ **DDR 主存**: 32GB/节点, 136.5GB/s 带宽
- ▶ SPM(LDM): 64KB/CPE, 手动管理 (PDF 第 10 页 DMA 带宽测试)
- ▶ **寄存器通信**: 延迟 <11 周期, 集合带宽 600+GB/s

OpenACC* 扩展内存模型通过划分主从核独立内存区域,提供显式数据分配/传输指令与核间共享缓存抽象,支持细粒度内存访问控制,优化申威架构异构内存层次下的数据移动效率。

图 2.3: OpenACC* 扩展内存模型

2.4.4 MPI+X 并行编程模型

MPI+X 并行编程模型通过结合消息传递接口 (MPI) 的跨节点通信与 OpenMP/OpenACC 等多 线程/异构计算框架,实现跨节点与节点内并行的协同优化。

Listing 1: 计算通信重叠示例

```
#pragma acc data copyin(A[0:N]) copyout(B[0:N])

{
    #pragma acc parallel loop gang vector
    for (int i=0; i<N; i++) { // CPE计算
        B[i] = A[i] * 2;
    }

    // MPE在此阶段执行通信
}
```

2.4.5 编译器扩展

SWACC 编译器通过解析 OpenACC 并行指令,自动将计算任务划分为主核 (PE) 控制流和从核 (CPE) 并行计算单元,实现异构众核间的任务分发、数据通信优化与代码生成,最终生成适配申威架构的 SIMD 向量化指令与主从核协同执行代码。

图 2.4: SWACC 编译器工作流程(含数据自动分配机制)

2.4.6 2.5D 线程分块

2.5D 线程分块通过在传统二维数据划分基础上引入层次化通信策略,结合部分数据复制机制,在 计算节点间动态平衡通信开销与计算负载,实现大规模并行计算中数据局部性与通信效率的协同优化。

Listing 2: 局部性感知分块

```
#pragma acc parallel local_block_size(64)
{
#pragma acc loop tile(32,32) independent
```

```
for (int i=0; i<M; i++) {
    _dma_get(&LDM[i][j], &Global[i][j], sizeof(float)*32); // DMA预取
}
</pre>
```

2.4.7 稀疏计算优化

稀疏计算优化通过层次化分块存储、数据压缩和局部性感知的 DMA 预取策略,在神威太湖之光 异构众核架构中实现稀疏数据的高效访存与并行计算,典型场景的 DMA 带宽利用率可提升至 93.8%。

图 2.5: 稀疏层次块存储结构 (提升 DMA 效率)

2.4.8 Beacon 监控系统

表 3: 性能计数器事件分类

计数器	监测事件
PCR0	LDM 访问冲突、分支预测失败
PCR1	Cache Miss、同步阻塞周期
PCR2	DMA 请求、网络通信事件

3 进阶要求

3.1 国际超算 vs 我国超算

高性能计算是衡量一个国家科技实力的重要指标,各国超算系统在性能、能效和应用方面均处于不断突破的状态。本文选取国际超算的代表系统 Frontier 与中国部分代表性超算(如神威·太湖之光、天河二号 A)为例,通过数字化性能基准测试和能效比分析,对比各系统的核心指标,探讨不同架构设计和技术实现所带来的差异。主要对比指标包括实际测量性能(Rmax)、理论峰值(Rpeak)、LINPACK效率、能效比以及系统功耗等。

3.2 性能基准测试分析

3.2.1 实际性能与理论峰值

超算性能常以 LINPACK 基准测试结果来衡量。下面列出主要系统的关键指标:

▶ Frontier:

▶ 实测性能 (Rmax): 约 1.02 × 10¹⁸ FLOPS

▶ 理论峰值 (Rpeak): 约 1.5 × 10¹⁸ FLOPS

▶ LINPACK 效率: 约 68% – 70%

▶ 神威·太湖之光:

▶ 实测性能 (Rmax): 约 9.3 × 10¹⁷ FLOPS

▶ 理论峰值 (Rpeak): 约 1.25 × 10¹⁸ FLOPS (数据存在一定差异)

▶ LINPACK 效率: 约 70% – 75%

▶ 天河二号 A:

▶ 实测性能 (Rmax): 约 6.1 × 10¹⁶ FLOPS

这些数据表明, Frontier 已经跨入 exascale 时代, 而中国系统在绝对性能上仍略有差距, 但 LIN-PACK 效率均保持在较高水平, 说明系统在实际应用中能够较好地发挥理论性能。

3.2.2 性能对比表

下面的表格直观展示了各系统的性能对比数据:

系统	Rmax (FLOPS)	Rpeak (FLOPS)
Frontier	1.02×10^{18}	1.5×10^{18}
神威·太湖之光	9.3×10^{17}	1.25×10^{18}
天河二号 A	6.1×10^{16}	1.25×10^{17}

表 4: 主要超算系统的性能对比(数据来源: TOP500 及公开资料)

3.3 能效比分析

能效比是指每瓦电能所能完成的浮点运算次数,反映超算在绿色计算方面的表现。系统能效越高,则单位能耗下的计算能力越强。

3.3.1 各系统能效数据

- ▶ **Frontier**:能效约为 55.23 GFLOPS/W,综合采用高效异构架构、先进散热技术与电源管理,实现高性能与绿色节能的平衡。
- ▶ 神威·太湖之光: 能效约为 6.05 GFLOPS/W, 虽然在绝对性能上接近 Frontier, 但在能效上仍存在较大差距,主要原因在于架构设计与工艺水平不同。

3.3.2 能效对比表

下表对比了各系统的能效数据及其对应的功耗范围(参考部分数据):

系统	能效 (GFLOPS/W)	功耗 (MW)
Frontier	55.23	20 - 25
神威·太湖之光	6.05	约 10
天河二号 A	7.20	17

表 5: 部分超算系统的能效与功耗对比

3.4 硬件架构与系统设计

在硬件架构方面,国际超算与中国超算体现了不同的技术实现和设计思路。Frontier 采用 AMD EPYC CPU 与 AMD Instinct MI250X GPU 的异构架构,通过多级缓存和高速互联网络(Cray Slingshot)实现节点间高效通信;而神威·太湖之光则完全依靠自主研发的 SW26010 多核处理器,其设计理念侧重于大规模并行处理与国产化自主可控。在存储与网络系统上,Frontier 采用了 Lustre 分布式文件系统,支持上万个节点的高效数据传输,而中国超算系统则更多地采用国产高速互联技术,力求在系统整体集成和应用领域实现最佳平衡。

3.5 应用领域与排名趋势

3.5.1 应用领域

Frontier 在气候模拟、基因组学、材料科学及高能物理等前沿科研领域取得了显著成果;中国超算则广泛应用于天气预报、地震模拟、工业仿真、航空航天以及国防安全等工程领域。各系统均根据应用需求进行了针对性的优化,充分体现了各自技术路线的优势。

3.5.2 排名趋势

根据 TOP500 排名,Frontier 自上榜以来一直位居榜首,代表了国际超算的最高水平;而中国超 算虽然在某些关键指标上尚未达到同样水平,但近年来在自主研发和应用优化方面持续发力,有望在 未来实现突破。下表为部分系统的排名数据及相关性能指标:

系统	Rmax (FLOPS)	能效 (GFLOPS/W)	TOP500 排名
Frontier	1.02×10^{18}	55.23	1
神威·太湖之光	9.3×10^{17}	6.05	7
天河二号 A	6.1×10^{16}	7.20	10

表 6: 全球部分超算系统的数字化性能对比

4 实验总结

本实验通过数字化对比我国与国际超算在性能、能效、架构设计及应用趋势等多个维度的关键指标,详细阐述了中国超算从起步到自主可控再到E级计算时代的发展历程与技术演进,同时与Frontier等国际系统进行了深入对比分析,通过此实验我更加清楚了并行程序在超算中的重要程度。