Melhorando o Erro em Regime Permanente e a Resposta Transitória

Fundamentos de Controle

Projeto de Controlador PID

$$G_c(s) = K_1 + \frac{K_2}{s} + K_3 s = \frac{K_1 s + K_2 + K_3 s^2}{s} = \frac{K_3 \left(s^2 + \frac{K_1}{K_3} s + \frac{K_2}{K_3}\right)}{s}$$

- 1. Avalie o desempenho do sistema sem compensação para determinar quanta melhoria na resposta transitória é requerida.
- 2. Projete o controlador PD para atender às especificações de resposta transitória. O projeto inclui a posição do zero e o ganho de malha.
- Simule o sistema para ter certeza de que todos os requisitos foram atendidos.
- 4. Projete novamente se a simulação mostrar que os requisitos não foram atendidos.
- 5. Projete o controlador PI para resultar no erro em regime permanente desejado.
- 6. Determine os ganhos K1, K2 e K3.
- 7. Simule o sistema para ter certeza de que todos os requisitos foram atendidos.
- 8. Projete novamente se a simulação mostrar que os requisitos não foram atendidos.

Exemplo 9.5

Projeto de Controlador PID

PROBLEMA: Dado o sistema da Figura 9.31, projete um controlador PID de modo que o sistema possa operar com um instante de pico que é dois terços do instante de pico do sistema sem compensação com 20 % de ultrapassagem e com erro em regime permanente nulo para uma entrada em degrau.

X = Closed-loop poleX = Open-loop pole

$$\omega_d = \frac{\pi}{T_p} = \frac{\pi}{(2/3)(0.297)} = 15.87$$

$$\sigma = \frac{\omega_d}{\tan 117.13^\circ} = -8.13$$

$$\frac{15.87}{z_c - 8.13} = \tan 18.37^\circ$$

$$z_c = 55.92$$

$$G_{PD}(s) = (s + 55.92)$$

X = Closed-loop pole

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d}$$

$$T_s = \frac{4}{\omega_d} = \frac{\pi}{\omega_d}$$

$$G_{\rm PI}(s) = \frac{s + 0.5}{s}$$

$$G_{\text{PID}}(s) = \frac{K(s + 55.92)(s + 0.5)}{s} = \frac{4.6(s + 55.92)(s + 0.5)}{s}$$
$$= \frac{4.6(s^2 + 56.42s + 27.96)}{s}$$

	Uncompensated	PD-compensated	PID-compensated
	K(s+8)	K(s+8)(s+55.92)	K(s+8)(s+55.92)(s+0.5)
Plant and compensator	(s+3)(s+6)(s+10)	(s+3)(s+6)(s+10)	(s+3)(s+6)(s+10)s
Dominant poles	$-5.415 \pm j10.57$	$-8.13 \pm j15.87$	$-7.516 \pm j14.67$
K	121.5	5.34	4.6
ζ	0.456	0.456	0.456
ω_n	11.88	17.83	16.49
%OS	20	20	20
T_s	0.739	0.492	0.532
T_p	0.297	0.198	0.214
K_p	5.4	13.27	∞
$e(\infty)$	0.156	0.070	0
Other poles	-8.169	-8.079	-8.099, -0.468
Zeros	-8	-8, -55.92	-8, -55.92, -0.5
Comments	Second-order approx. OK	Second-order approx. OK	Zeros at -55.92 and -0.5 not canceled

Projeto de Compensador de Avanço e Atraso de Fase

- 1. Avalie o desempenho do sistema sem compensação para determinar a melhoria necessária na resposta transitória.
- 2. Projete o compensador de avanço de fase para atender às especificações de resposta transitória. O projeto inclui a posição do zero, a posição do polo e o ganho de malha.
- 3. Simule o sistema para ter certeza de que todos os requisitos foram atendidos.
- 4. Projete novamente se a simulação mostrar que os requisitos não foram atendidos.
- 5. Avalie o desempenho do erro em regime permanente do sistema compensado com avanço de fase para determinar a melhoria adicional requerida no erro em regime permanente.
- 6. Projete o compensador de atraso de fase para resultar no erro em regime permanente requerido.
- 7. Simule o sistema para ter certeza de que todos os requisitos foram atendidos.
- 8. Projete novamente se a simulação mostrar que os requisitos não foram atendidos.

Exemplo 9.6

Projeto de Compensador de Avanço e Atraso de Fase

PROBLEMA: Projete um compensador de avanço e atraso de fase para o sistema da Figura 9.37, de modo que o sistema opere com 20 % de ultrapassagem e uma redução de duas vezes no tempo de acomodação. Além disso, o sistema compensado deve apresentar melhoria de dez vezes no erro em regime permanente para uma entrada em rampa.

FIGURA 9.37 Sistema sem compensação para o Exemplo 9.6.

$$-\zeta\omega_n = -2(1.794) = -3.588$$

$$\omega_d = \zeta \omega_n \tan 117.13^\circ = 3.588 \tan 117.13^\circ = 7.003$$

$$\frac{7.003}{p_c - 3.588} = \tan 15.35^{\circ}$$

$$G(s) = \frac{192.1}{s(s+6)(s+10)}$$

$$G_{LC}(s) = \frac{1977}{s(s+10)(s+29.1)}$$

$$G_{\text{lag}}(s) = \frac{(s + 0.04713)}{(s + 0.01)}$$

$$G_{LLC}(s) = \frac{K(s + 0.04713)}{s(s + 10)(s + 29.1)(s + 0.01)}$$

TABLE 9.6 Predicted characteristics of uncompensated, lead-compensated, and lag-lead-compensated systems of Example 9.6

<u> </u>	Uncompensated	Lead-compensated	Lag-lead-compensated
DI . 1	K	K	K(s + 0.04713)
Plant and compensator	s(s+6)(s+10)	s(s+10)(s+29.1)	s(s+10)(s+29.1)(s+0.01)
Dominant poles	$-1.794 \pm j3.501$	$-3.588 \pm j7.003$	$-3.574 \pm j6.976$
K	192.1	1977	1971
5	0.456	0.456	0.456
ω_n	3.934	7.869	7.838
%OS	20	20	20
T_s	2.230	1.115	1.119
T_p	0.897	0.449	0.450
K_{ν}	3.202	6.794	31.92
$e(\infty)$	0.312	0.147	0.0313
Third pole	-12.41	-31.92	-31.91, -0.0474
Zero	None	None	-0.04713
Comments	Second-order approx. OK	Second-order approx. OK	Second-order approx. OK