

Vampire, a Novel, Cheap to Verify, zkSNARK

Helger Lipmaa
Simula UiB

Janno Siim Simula UiB

Michał Zając Nethermind

From Count to Vampire

Vampire

Novel zkSNARK for R1CSLite

Universal and updatable

Based on Marlin, but highly optimized

Only **4G + 2F** elements

Communication-vise: very close to Groth16

Only two sumchecks

Count

Univariate sumcheck

Best communication efficiency: 1G

Very good computational complexity:

almost linear

How to make SNARKs shorter?

zkSNARK **building blocks** and efficiency

Relation Sumcheck Lincheck PCS

What relation we are showing?

Arithmetization matters

How many sumchecks do we make?

What sumcheck arguments do we us

Do we even need them?

What do we commit to?

What commitments do we open?

zkSNARK **building blocks** and efficiency

	Marlin	Vampire
Relation	R1CS	R1CSLite
Sumcheck	2x Aurora	1x Count + 1x Aurora
Lincheck	Yes	Not needed :)
Polynomial commitment scheme	KZG, batched	KZG, highly batched

R1CS vs R1CSLite

R1CS

Need to show relation between the matrices **and** about the matrices

$$\underbrace{A \cdot z \circ B \cdot z}_{z_A} = \underbrace{C \cdot z}_{z_C}$$

R1CSLite

1 matrix

$$Wz = 0$$

$$Wz =$$

$$\forall x \sum_{y} W[x, y] z[y] = 0$$

$$\forall x \sum W(x,y)z(y) = 0$$

$$\alpha \leftarrow_{\$} \mathbb{F}$$

$$\sum_{y} W(\alpha, y) z(y) = 0$$

Count - the new sumcheck

Count new sumcheck argument

Aurora:

2G

Needs FFT

Count

1G

Doesn't need FFT

Easy to run in parallel

$$\sum f(h) = v$$

 $h \in H$

Assume that the prover cannot send polynomials with non-zero coefficient next to **X^d**

$$(Y) = a_1 + a_2 Y + a_3 + Y^{d-1} + a_4 + Y^{d+1} + a_5 + Y^{d+1}$$

$$\sum f(y) = f(0) \cdot |H|$$

$$f'(X) = f(X)X^{d} - \frac{1}{|X|}X^{d} - \frac{v}{|X|}X^{d} + f_{1}X^{d+1} + \dots$$

Highly batched KZG

What we can batch?

Batch openings of multiple polynomials evaluated at a single point

$$f_1(z), f_2(z), \ldots, f_k(z)$$

Batch openings of multiple polynomials at multiple points

$$f_1(z_1), f_2(z_2), \ldots, f_k(z_k)$$

michal@nethermind.io

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK* Version 2.0, Thursday 23rd June, 2022, 12:58

Helger Lipmaa¹, Janno Siim¹, and Michał Zając²

¹ Simula UiB, Bergen, Norway

² Nethermind, London, UK

Thank you!

Michał Zając

Nethermind

michal@nethermind.ic

