Propositional Logic

Logic in AI

- Logic can be defined as the proof or validation behind any reason provided.
- It is simply the 'dialectics behind reasoning'.
- It was important to include logic in Artificial Intelligence because <u>agent</u> (system) to think and act humanly, and for doing so, it should be capable of taking any decision based on the various available options.
- There are reasons behind selecting or rejecting an option.

Types of logics in Artificial Intelligence

- Two **types of logics**: Deductive logic and Inductive logic
- In deductive logic, the complete evidence is provided about the truth of the conclusion made.
- Here, the agent uses specific and accurate premises that lead to a specific conclusion.
- Example: An expert system designed to suggest medicines to the patient because the person has so and so symptoms.
- In Inductive logic, the reasoning is done through a 'bottom-up' approach.
- The agent here takes specific information and then generalizes it for the sake of complete understanding.
- Example: In the natural language processing, an agent sums up the words according to their category, i.e. verb, noun article, etc., and then infers the meaning of that sentence.

Propositional Logic

- A proposition is a declarative statement which is either true or false.
- It is a technique of knowledge representation in logical and mathematical form.
- (a) The Sun rises from West
- (b) 5 is a prime number.
- In PL, symbolic variables are used to represent the logic.
- PL consists of an object, relations or function, and **logical connectives**, called logical operators.
- A proposition formula which is always true is called **tautology**, and it is also called a valid sentence.
- A proposition formula which is always false is called **Contradiction**.

Syntax of propositional logic

• There are two types of Propositions:

Atomic Propositions Compound propositions

- **Atomic Proposition:** Atomic propositions are the sentences which must be either true or false.
- Compound proposition: Compound propositions are constructed by combining simpler or atomic propositions, using parenthesis and logical connectives (It is raining today, and street is wet)

Logical Connectives

- **Negation:** A sentence such as $\neg P$ (negation of P) is a literal can be either Positive literal or negative literal.
- Conjunction: A sentence which has Λ connective such as, $\mathbf{P} \wedge \mathbf{Q}$ is called a conjunction.
- **Disjunction:** A sentence which has V connective, such as **P** V **Q**. is called disjunction, where P and Q are the propositions.
- Implication: A sentence such as $P \rightarrow Q$, is called an implication. Implications are also known as if-then rules. It can be represented as If it is raining (P), then the street is wet (Q), represented as $P \rightarrow Q$
- Biconditional: A sentence such as $P \Leftrightarrow Q$ is a Biconditional sentence,
 - **If** I am breathing (P), **then** I am alive (Q)

For Implication:

P	Q	P→ Q
True	True	True
True	False	False
False	True	True
False	False	True

For Biconditional:

P	Q	P⇔Q
True	True	True
True	False	False
False	True	False
False	False	True

Deduction using Propositional Logic

If I am the President then I am well-known. I am the President. So I am well-known

Coding: Variables

a: I am the President

b: I am well-known

Coding the sentences:

F1: $a \rightarrow b$

F2: a

G: b

а	b	a → b	(a → b) ∧ a	$((a \to b) \land a) \to b$
Т	Т	Т	T	Т
Т	F	F	F	Т
F	Т	Т	F	T
F	F	Т	F	Т

The final formula for deduction: (F1 \wedge F2) \rightarrow G,

that is:

$$((a \rightarrow b) \land a) \rightarrow b$$

<u>Limitations of Propositional logic:</u>

Cannot represent relations like ALL, some, or none with propositional logic.

Example: All the girls are intelligent, Some apples are sweet.