CSE4110-01 Database System

Project1. E-R design and Relational Schema design

20161663 **허재성**

1. E-R design

전체 E-R diagram

draw.io를 이용하여 그린 E-R diagram

(weak entity의 discriminator를 dashed underline 처리해야 했지만 방법이 없어서 부득이하게 밑줄로 처리했습니다. double rectangle로 구분은 가능합니다.)

1.1. Entity Sets

1.1.1. shipping_company

배송 업체를 표현한 entity set으로 배송 업체 이름인 company_name을 primary key로 가진다. 배송 업체 주소인 address를 attribute로 가진다.

1.1.2. deliverer

deliverer

d id
deliverer_name

배송업자를 표현한 entity set으로 업자 id인 d_id(deliverer_id의 약어)를 primary key로 가지며, 이름인 deliverer_name을 attribute로 가진다.

1.1.3. order

order order number

온라인 주문을 표현한 entity set으로 주문번호인 order_number를 primary key로 가진다.

1.1.4. manufacturer

manufacturer
man_name
address

제품 제조업체(ex. SAMSUNG, Apple 등)를 나타내는 entity set으로 업체명인 man_name을 primary key로 가지며, 업체 본사 주소인 address를 attribute로 가진다.

1.1.5. product

product

p_id

p_type

price

release_date

제품(ex. Galaxy 20, MacBook Pro 2018 등)을 나타내는 entity set으로 제품 모델 번호(같은 제품은 같은 번호)인 p_id를 primary key로 가진다. 제품 유형(ex. laptop, smartphone 등)을 나타내는 p_type, 제품 가격을 나타내는 price, 출시일을 나타내는 release_date를 attribute로 가진다.

1.1.6. warehouse

제품 재고를 보관하는 창고를 표현한 entity set이다. 창고마다 할당된 번호인 w_id(warehouse_id)를 primary key로 가지며, 창고가 위치한 지역인 location을 attribute 로 가진다.

1.1.7. store

store	
s id location	

오프라인 상에서 제품을 직접 판매하는 매장을 표현한 entity set이다. 매장마다 할당된 번호인 s_id(store_id)를 primary key로 가지며, 매장이 위치한 지역인 location을 attribute 로 가진다.

1.1.8. customer

제품을 구매한 고객을 표현한 entity set이다. 고객 id인 c_id(customer_id)를 primary key로 가지며, 고객 이름인 name과 가입한 날짜인 signed_date를 attribute로 가진다.

1.1.9. contract

고객이 electronic vendor와 맺은 계약을 표현한 entity set으로 customer가 identifying entity set인 weak entity set이다. 계약 일자인 contract_date와 매달 비용이 청구될 고객계좌번호인 account_number가 discriminator로(부득이하게 dashed underline 대신 underline함) customer entity set의 c_id와 함께 primary key를 이루어 primary key는 {c_id, contract_date, account_number}이다..

1.1.10. online_visit_order

online으로 매장을 방문한 고객의 방문 정보를 나타내는 weak entity set이다. identifying entity set은 1.1.8.에서 설명한 customer, 1.1.3.에서 설명한 order, 1.1.6.에서 설명한 warehouse이다. online 구매하는 고객, 주문, 그리고 제품이 출고될 창고를 identifying entity set으로 설정하였다. discriminator는 online 매장을 방문한 날짜인 online_visit_date, 제품을 받을 장소인 order_location이며 이들과 identifying entity set의 primary key를 모두 포함하여 primary key는 {c_id, online_visit_date, order_location, w_id, order_number}이다.

1.1.11. offline_visit

offline 매장을 방문한 고객의 방문 정보를 나타내는 weak entity set이다. identifying entity set은 1.1.7.에서 설명한 store, 1.1.8.에서 설명한 customer이다. offline 구매하는 고객, 방문 매장을 identifying entity set으로 설정하였다. discriminator는 offline 매장을 방문한 날짜인 offline_visit_date이며 primary key는 {c_id, offline_visit_date, s_id}이다.

1.2. Relationship Sets

1.2.1. warehouse_man_request

online 주문 시 창고에 특정 제품의 재고가 부족할 경우 제조업체에 재고를 요청하는 relationship set이다. 한 warehouse에서 여러 manufacturer에 여러 product 재고를 요청할 수 있고 manufacturer, product도 여러 warehouse에서 요청을 받을 수 있으므로 L:M:N, 즉 Many-to-Many-Many cardinality를 적용했다. 따라서 warehouse_man_request의 primary key는 warehouse, manufacturer, product의 primary key의 합집합인 {w_id, man_name, p_id}이다. 그 외에도 재고 요청할 재품 수량인 quantity를 attribute로 가진다.

1.2.2. store_man_request

offline 매장 방문 시 매장에 특정 제품의 재고가 부족할 경우 제조업체에 재고를 요청하는 relationship set이다. 한 store에서 여러 manufacturer에 여러 product 재고를 요청할수 있고 manufacturer, product도 여러 store에서 요청을 받을 수 있으므로 L:M:N, 즉

Many-to-Many-Many cardinality를 적용했다. 따라서 store_man_request의 primary key는 store, manufacturer, product의 primary key의 합집합인 {s_id, man_name, p_id}이다. 그 외에도 재고 요청할 재품 수량인 quantity를 attribute로 가진다.

1.2.3. warehouse_inventory

창고의 제품 별 재고 보유 현황을 나타내는 relationship set이다. warehouse 하나에 대하여 여러 product를 보유할 수도, 하나의 product가 여러 warehouse에 존재할 수 있으므로 M:N cardinality를 적용해서 primary key는 {w_id, p_id}이다. 해당 창고의 해당 제품의 재고 양을 나타내는 inventory가 attribute이다.

1.2.4. store_inventory

매장의 제품 별 재고 보유 현황을 나타내는 relationship set이다. store 하나에 대하여 여러 product를 보유할 수도, 하나의 product가 여러 store에 존재할 수 있으므로 M:N cardinality를 적용해서 primary key는 {s_id, p_id}이다. 해당 매장의 해당 제품의 재고 양을 나타내는 inventory가 attribute이다.

1.2.5. online_purchase

online 구매를 나타내는 relationship set이다. online_visit_order는 반드시 구매에 필수적이므로 total로 설정하였다. 반대로 모든 product가 구매될 필요는 없으므로 total이 아니다. 한 번 구매에 많은 product를 구매 가능하고 한 product도 많은 구매에 의해 구매될수 있으므로 N:M cardinality로 설정하였으며 따라서 primary key는 online_visit_order와 product의 primary key의 합집합인 {c_id, online_visit_date, order_location, w_id, order_number, p_id}이다. 그 외에도 product 구매양을 나타내는 quantity, 구매양에 따라총 지불해야 하는 값 amount_paid, 지불할 카드 번호 card_number attribute가 존재한다.

1.2.6. offline_purchase

offline 구매를 나타내는 relationship set이다. offline_visit은 반드시 구매에 필수적이므로 total로 설정하였다. 반대로 모든 product가 구매될 필요는 없으므로 total이 아니다. 한 번 구매에 많은 product를 구매 가능하고 한 product도 많은 구매에 의해 구매될 수 있으므로 N:M cardinality로 설정하였으며 따라서 primary key는 offline_visit과 product의 primary key의 합집합인 {c_id, offline_visit_date, s_id, p_id}이다. 그 외에도 product 구매양을 나타내는 quantity, 구매양에 따라 총 지불해야 하는 값 amount_paid attribute가 있으며 offline 고객은 저장하지 않으므로 card_number는 따로 존재하지 않는다.

1.2.7. contract_purchase

계약 구매를 나타내는 relationship set이다. contract는 구매에 필수적이므로 total로 설정하였다. 반대로 모든 product가 구매될 필요는 없으므로 total이 아니다. 한 번 구매에 많은 product를 구매 가능하고 한 product도 많은 구매에 의해 구매될 수 있으므로 N:M cardinality로 설정하였으며 따라서 primary key는 contract과 product의 primary key의

합집합인 {c_id, contract_date, account_number, p_id}이다. 그 외에도 product 구매양을 나타내는 quantity, 구매양에 따라 매달 청구되는 금액 billing_amount, 청구되는 날짜 payment_date가 attribute로 존재한다.

위의 세 purchase relationship set을 통해 구매일, 지역에 따라 구매 내역을 확인할 수 있고 구매 제품 번호를 통해 제품 유형별 구매 내역을 확인 가능하다.

이상의 entity set, relationship set은 모두 relational schema diagram으로 변환되는 entity set, relationship set이다. 이하의 relationship set은 모두 redundancy의 이유로 schema diagram으로 변환되지 않는다.

1.2.8. comp deliverer

어떤 deliverer는 반드시 shipping_company에 포함되야 하며 한 shipping_company에는 많은 deliverer가 속할 수 있으므로 1:N cardinality(total)로 설정하였다. 따라서 schema diagram으로 변환되지 않는다.

1.2.9. deliverer order

어떤 배송 주문은 반드시 deliverer에 포함되어야 하며 한 deliverer에 많은 order가 있을 수 있으므로 1:N cardinality(total)로 설정하였다. 따라서 schema diagram으로 변환되지 않는다.

1.2.10. online order

order는 weak entity set인 online_visit_order의 identifying entity set이므로 online_order는 identifying relationship set이다. 따라서 schema diagram으로 변환되지 않는다.

1.2.11. online_visit_warehouse

warehouse는 weak entity set인 online_visit_order의 identifying entity set이므로 online_visit_warehouse는 identifying relationship set이다. 따라서 schema diagram으로 변환되지 않는다.

1.2.12. store_visit

store는 weak entity set인 online_visit의 identifying entity set이므로 store_visit은 identifying relationship set이다. 따라서 schema diagram으로 변환되지 않는다.

1.2.13. make_contract

customer는 weak entity set인 contract의 identifying entity set이므로 make_contract은 identifying relationship set이다. 따라서 schema diagram으로 변환되지 않는다.

1.2.14. customer_online_vist

customer는 weak entity set인 online_visit_order의 identifying entity set이므로 customer_online_visit은 identifying relationship set이다. 따라서 schema diagram으로 변환되지 않는다.

1.2.15. customer_offline_visit

customer는 weak entity set인 offline_visit의 identifying entity set이므로 customer_offine_visit은 identifying relationship set이다. 따라서 schema diagram으로 변환되지 않는다.

2. Relational Schema Diagram

E-R diagram에서 설명한 entity set, relationship set을 relational schema로 변환하면 다음과 같다. primary key는 밑줄과 볼드체로 표기한다.

- 2-1. shipping_company(company_name, address)
- 2-2. deliverer(**d_id**, deliverer_name, company_name)
- 2-3. order(order_number, d_id)
- 2-4. manufacturer(**man_name**, address)
- 2-5. product(**p_id**, p_type, price, release_date, man_name)
- 2-6. warehouse(**w_id**, location)
- 2-7. store(**s_id**, location)
- 2-8. customer(**c_id**, name, signed_date)
- 2-9.. contract(**c_id, contract_date, account_number**)
- 2-10. online_visit_order(c_id, online_visit_date, order_location, w_id, order_number)
- 2-11. offline_visit(**c_id, offline_visit_date, s_id**)
- 2-12. warehouse_man_request(w_id, man_name, p_id, quantity)
- 2-13. store_man_request(**s_id, man_name, p_id**, quantity)
- 2-14. warehouse_inventory(**w_id**, **p_id**, inventory)
- 2-15. store_inventory(**s_id**, **p_id**, inventory)
- 2-16. online_purchase(**c_id, online_visit_date, order_location, w_id, order_number, p_id**, quantity, amount_paid, card_number)
- 2-17. offline_purchase(**c_id**, **offline_visit_date**, **s_id**, **p_id**, quantity, amount_paid)
- 2-18. contract_purchase(**c_id, contract_date, account_number, p_id**, quantity, billed_amount, payment_date)

위에서 언급했듯이 identifying relationship set은 relational schema로 만들어지지 않는다. 1:N(total) relationship set의 경우 cardinality가 N인 entity set에 1의 entity set의 primary key가 foreign key로 추가된다. 2-2. deliverer의 경우 2-1. shipping_company의 primary

key인 company_name이 attribute로 추가된 것을 알 수 있다. 이 때 company_name은 deliverer의 foreign key가 된다. 비슷한 이유로 2-3. order에는 deliverer의 primary key인 d_id가 foreign key로 추가되며, 2-5. product의 경우 2-4. manufacturer의 primary key인 man_name이 foreign key로 추가된 것을 알 수 있다. 위의 schema를 토대로 ERwin을 이용하여 relational schema diagram을 그려보면 다음과 같다.

1, 1 / 1, 1 -- 오전 3:33:02 , 2022-04-28

E-R diagram 의 N:M relationship set 이 relational schema diagram 으로 변하면서 모두 1:N 관계로 변한 것을 알 수 있다. foreign key 는 FK로 표시되었다. 또한 null 을 허용하지 않아서 null 값이 들어갔을 때의 논리적인 오류를 방지하였다. online_purchase 의 경우 primary_key 를 이루는 모든 attribute 가 FK 인데 이 중 p_id 는 product 를 참조하는 foreign key 이고 나머지 {c_id, online_visit_date, order_location, w_id, order_number}는 해당 attribute 집합을 primary key 로 하는 online_visit_order 를 참조하는 FK 이다. 비슷하게 offline_purchase 의 경우 p_id 는 product 를 참조하는 FK 이고 {c_id, offline_visit_date, s_id}는 offline_visit 을 참조하는 FK 이다.