

EP 867458

Patents Cited by Inventor: 0
Patents Cited by Examiner: 9

Citing Patents: 2

Articles Cited by Inventor: 0
Articles Cited by Examiner: 3

Patent Number(s):

EP867458-A ; EP867458-A2 ; JP2854834-B2; DE69034193-E

Title:

Polyethylene terephthalate chip used for containers for storing beverages - obtained by esterifying terephthalic acid with ethylene glycol, liquid phase polycondensing, optionally moulding into granules, preparing PET and contacting with hot water

Inventor Name(s):

SHIRAKI S, TANAKA Y, SAKAI M

Patent Assignee Name(s) and Code(s):

mitsui CHEM INC (MITA)

Derwent Primary Accession Number:

1998-497821 [45]

Abstract:

A polyethylene terephthalate chip is obtained by: (i) esterifying terephthalic acid or its ester-forming derivative with ethylene glycol or its ester-forming derivative; (ii) liquid phase polycondensing by heating to melt in the presence of a polycondensation catalyst selected from germanium, antimony or titanium compounds; (iii) optionally moulding the polyethylene terephthalate into granules having an average diameter of 2-5 mm, or precrystallising it by heating to a temperature lower than that of the subsequent solid phase polycondensation step; (iv) preparing a polyethylene terephthalate; and (v) subsequently bringing the product of the solid phase polycondensation for 5 minutes to 10 hours into contact with hot water having a

temperature of 40-100C, or passing through the particulate product for 5 minutes to 14 days through water vapour containing gas or water vapour containing air kept at 40-150C in an amount of 0.5 g.

The polyethylene terephthalate prepared in step (iv) has an intrinsic viscosity of at least 0.54 dg/l determined at 25 C by measuring the viscosity of a solution of polyethylene terephthalate in o-chlorophenol, a density of more than 1.38 g/cm³ and contains less than 0.5 wt.% a cyclic trimer of formula (I) in a solid phase polycondensation step, where the product of (ii) or (iii) is heated in an inert atmosphere to a temperature below the m.pt. of the product.

The above polyethylene terephthalate, used in the chip, has: (a) a rate of polycondensation of less than 0.004 dl/g.hour (215C in inert atmosphere); (b) a content of the cyclic trimer of formula (I) of a stepped square plate satisfying equation: $Y = -0.20X + 0.16$, where Y = increased amount (wt.%) of (I) in the stepped square plate; and X = the cyclic trimer content (wt.%) of the polyethylene terephthalate before moulding to the stepped square plate (when the polyethylene terephthalate is injection moulded at a cylinder temperature of 290 C to a stepped square plate and the residence time at this temperature is 72 seconds); (c) a polycondensation rate ratio V_1 / V_{10} of 0.2-1.0, where V_0 = rate of solid phase polycondensation when subjected to solid phase polycondensation treatment by heating at 215C in inert atmosphere; and V_1 = rate of solid phase polycondensation at 215 C in an inert atmosphere of polyethylene terephthalate immersed in hot water of 95C for 8 hours and dried; and (d) a difference $W_0 - W_1$ in content of (I) of 0-0.12 wt.% (cyclic trimer content of article obtained by injection moulding polyethylene terephthalate immersed in hot water of 95C for 8 hours and dried, being taken as W_1 (wt.%)).

USE - Used for forming containers to be filled particularly beverages such as fruit juices, cooling drinks and carbonated drinks.

ADVANTAGE - The material has excellent mechanical strength, heat resistance, transparency and gas barrier properties.

Drawing:

International Patent Classification:

C08G-063/183; C08G-063/78; C08G-063/80; C08G-063/90; C08G-063/88; C08G-063/85

Derwent Class:

A23 (Polyamides, polyesters, polycarbonates, alkyds); A92 (Packaging and containers, ropes, nets)

Derwent Manual Code(s):

A05-E04E; A12-P01B

Patent Number	Publ. Date	Main IPC	Week	Page Count	Language
EP867458-A					
EP867458-A2	30 Sep 1998	C08G-063/90	199843	Pages: 22	English
JP2854834-B2	10 Feb 1999	C08G-063/88	199911	Pages: 9	
DE69034193-E	30 Jun 2005	C08G-063/90	200545		

Application Details and Date:

EP867458-A2	EP110419	21 Mar 1990
DE69034193-E	DE634193	21 Mar 1990
JP2854834-B2	JP066407	29 Mar 1990

Further Application Details:

EP867458-A2	Div ex	Patent	EP389948
EP867458-A2	Div ex	Application	EP105337
JP2854834-B2	Previous Publ.	Patent	JP8231689
JP2854834-B2	Div ex	Application	JP082350
DE69034193-E	Based on	Patent	EP867458
DE69034193-E	EP application	Application	EP110419

Priority Application Information and Date:

JP083353	31 Mar 1989
JP083354	31 Mar 1989
JP083355	31 Mar 1989
JP083356	31 Mar 1989
JP094596	14 Apr 1989
JP094597	14 Apr 1989
JP138179	31 May 1989
JP138180	31 May 1989

Designated States

EP867458-A2

(Regional): AT; BE; CH; DE; DK; ES; FR; GB; GR; IT; LI; LU; NL; SE

Field of Search:

X