Γ Ц Φ О. 9 КЛАСС. 2014/15.

	т д т о. в титто с. 2011/10.				
13	Два одинаковых бруса скрепили за середины торцов одинаковыми нерастяжимыми нитями и положили на угол стола (см. рис.). Торцы выступают за края столешницы так, что нити не касаются стола. Коэффициент трения о вертикальную поверхность стола в 3 раза больше, чем о горизонтальную. Известно, что если поставить систему с начальным углом нити к горизонтали $\alpha < 45^\circ$ (см. рис.), то бруски начнут двигаться, тогда как если в начальный момент $\alpha \geqslant 45^\circ$, то система остается неподвижной. Найдите коэффициент трения о горизонтальную поверхность.				
15	 На гладкой наклонной плоскости, составляющей с горизонтом угол α = 30°, расположен массивный клин (см. рис.). На верхней горизонтальной поверхности клина лежит маленькая легкая шайба. Клин отпускают, и он начинает свободно соскальзывать вниз. 1. Определите величину и направление ускорения движения шайбы относительно наклонной плоскости. 2. Как выглядит движение шайбы в системе отсчета, связанной с клином? Масса шайбы много меньше массы клина. Трением пренебречь. 				
16	Три одинаковых бревна, имеющих форму цилиндра, сложены так, как показано на рисунке. Какие минимальные коэффициенты трения бревен друг по другу и бревен по земле необходимы для того, чтобы система оставалась в покое?				
18	На примусе, расходующем $\mu=0.1$ кг бензина в час, стоит котелок, в котором находится $m=1$ кг воды. График зависимости тепловой мощности P , выделяемой в окружающую среду, от времени приведен на рисунке. Постройте график зависимости температуры воды в котелке от времени. Теплоемкость котелка $C=800~\rm{Дж/(кг\cdot °C)}$. Удельная теплота сгорания бензина $q=43~\rm{M/m}/\rm{kr}$. Начальная температура воды $T=20~\rm{C}$. Принять, что в любой момент времени температура котелка и воды совпадают.				
19	В морозильной камере, потребляющей из сети мощность 100 Вт, находится 20 кг воды при температуре 0°С. За 1 час вся вода замерзла. Какое количество теплоты за это время выделилось в окружающую среду? Теплота плавления льда 330 кДж/кг. Считать, что в процессе замерзания температура льда остается постоянной, равной 0°С.				
20	Любознательный школьник разобрал нагревательный прибор. Оказалось, что схема прибора очень проста (см. рисунок). Школьник вынул все резисторы из схемы и обнаружил, что их сопротивления составляют $R_1=1$ Ом, $R_2=1$ Ом, $R_3=2$ Ом, $R_4=3$ Ом, $R_5=5$ Ом. Но он забыл, какой резистор на каком месте располагается в схеме. Помогите ему собрать прибор по старой схеме таким образом, чтобы его мощность была максимальной. Нагреватель работает от постоянного напряжения.				