Box-Behnken vs. Central Composite Design

Cameron, Amanda, Torstein, Aria, Chinmay

Summary

- 1. Factorial Design Chinmay
- 2. Central Composite Design Cameron
- 3. Box-Behnken Design Aria
- 4. Method comparison Amanda
- 5. Code comparison Amanda
- 6. When to use Aria / Torstein

Two categories of DOE

Classical Designs

Better as an introduction

Examples: Factorial Designs, Taguchi Array Designs, etc

Modern Designs

More useful in real applications

Examples: Definitive Screening Designs, Custom Designs

Factorial Design - Recap

Central Composite Design (CCD)

- Goal: second order model for the response
- Components:
 - o Factorial or fractional factorial design points
 - Center design point
 - Axial or star design points

Central Composite Design (CCD)

- Axial design points
 - Circumscribed (CCC)
 - Star points lie outside of the factorial design space and represent the new extreme values
 - Face Centered (CCF)
 - Star points at the centers of the factorial design faces
 - Inscribed (CCI)
 - Star points become the factorial design points

Central Composite Design (CCD)

- Rotatability
 - Design can be rotated around center point without impacting the reponse's variance
 - All points equal distance from center point
- Determining value of α:
 - $\alpha = (2^k)^0.25$

Box-Behnken Design (BBD)

- At least 3 levels per factor
 - E.g. [+1, -1, 0]

- Num points per input param = 2k(k-1) +1
 - 2*3(3-1) +1 = 13

Box-Behnken Design (BBD)

- No extreme points
- No axial points
 - No points that might be outside safe operating zone
- Assumes all features are significant
- No factorial or fractional factorial design embedded in it
- Efficiently estimates 1st and 2nd order effects
- Fewer design points

- Points should be randomized
 - Except for center points
 - To check againts process instability
 - Center points are at start, end, and center of process

Comparison between BBD and CCD

Visual

Box-Behnken Design (3 Factors)

Central Composite Design (3 Factors)

Comparison between BBD and CCD

Theoretical

- P Limited boundary exploration

- Gomprehensive design space
- Resource intensive, more tuning needed

Data overview

- Physical Exercise dataset with 3 variables, 20 samples (Linnerud dataset)

	Chins	Situps	Jumps	Weight
0	5.0	162.0	60.0	191.0
1	2.0	110.0	60.0	189.0
2	12.0	101.0	101.0	193.0
3	12.0	105.0	37.0	162.0
4	13.0	155.0	58.0	189.0

Example 1

Let both designs have one center point

- → BBD: Run 13 experiments
- → CCD: Run 15 experiments

Combined Design Plot

Prediction results

	BBD	CCD
MSE	60.9	144
R ²	0.784	0.526

Prediction results

Central Composite Design

Adjust the number experiments

Example 2

Let us do both designs with <u>14 runs</u>

→ BBD: Two center points

→ CCD: Zero center points

	BBD	CCD
MSE	62.4	238
R ²	0.763	0.266

Box-Behnken Design

Central Composite Design

Summarized

Box-Behnken

- Requires fewer experiments
- No experiments outside operating conditions
- X Requires more precise control of experiment variables

Central Composite

- Easy to create from exploratory factorial experiments
- Robust to missing/failing experiments
- Better predictions for edge of parameter space

When to use

Box-Behnken

- When experiment parameters have strict boundaries
- When experiments are expensive

Central Composite

- When partially factorial designed experiment results exists
- When the edges of the design space are relevant

Sources

- https://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.ht
 m
- https://www.itl.nist.gov/div898/handbook/pri/section3/pri3362.ht
 m
- Lecture71 (Data2Decision) Response Surface Modeling YouTube
- What are response surface designs, central composite designs, and Box-Behnken designs? Minitab
- https://develve.net/Rotatable.html