COMP 2611, DATA STRUCTURES LECTURE 19

GRAPHS

- Dijkstra's Shortest Path Algorithm
- Minimum-cost Spanning Tree

Dijkstra's Shortest Path Algorithm

- Dijkstra's algorithm can be used to find the shortest path from a source vertex (e.g., A) to every other vertex in the graph.
- The algorithm assumes that the edge weights are non-negative.

vertex	
parent	
cost	

Α	В	С	D	Е	F	G
nil						
0	∞	∞	∞	∞	∞	∞

- V.cost holds the current cost of a path from A to a vertex V
- ➤ V.parent holds the parent of V on the current shortest path from A to V.
- A min-priority queue, Q, will hold vertices based on their current cost. Initially, all the verticles will be placed on Q. Vertex A, with a cost of 0, will be at the top.

vertex
parent
cost

А	В	С	D	Е	F	G
nil						
0	∞	∞	∞	∞	∞	∞

> Take A off the queue.

А

- Consider all the edges leaving A. We will process them in alphabetical order. The edge (A, D) gives us a path to D at a cost of 20. This is lower than the current cost to D (∞) so we update the cost to 20, set the parent of D to A.
- The edge (A, G) gives us a path to G at a cost of 75.
 This is lower than the current cost to G (∞) so we update the cost to 75, set the parent of G to A.

vertex	Α	В	С	D	E	F	G
parent	nil	nil	nil	nil	nil	nil	nil
cost	0	∞	∞	∞	∞	∞	∞
vortov	A	В	C		_	-	<u> </u>
vertex	Α	В	С	D	Е	F	G
vertex parent	A nil	B nil	C nil	D A	E nil	F nil	G A

- > Take D off the queue.
- Consider all the edges leaving D. The edge (D, B) gives us a path to B at a cost of 20 + 40 = 60 (cost to D + weight of (D, B)). This is lower than the current cost to B (∞) so we update the cost to 60, set the parent of B to D.
- The edge (D, E) gives us a path to E at a cost of 20 + 35 = 55 (cost to D + weight of (D, E)). This is lower than the current cost to E (∞) so we update the cost to 55, set the parent of E to D.

vertex	Α	В	C	D	E	F	G
parent	nil	nil	nil	Α	nil	nil	А
cost	0	∞	∞	20	∞	∞	75
vertex	Α	В	С	D	E	F	G
vertex parent	A nil	B D	C nil	D A	E D	F nil	G A

Min-Priority Queue

- (Still processing D)
- The edge (D, F) gives us a path to F at a cost of 20 + 10 = 30 (cost to D + weight of (D, F)). This is lower than the current cost to F (∞) so we update the cost to 30, set the parent of F to D.
- ➤ The edge (D, G) gives us a path to G at a cost of 20 + 45 = 65 (cost to D + weight of (D, G)). This is lower than the current cost to G (75) so we update the cost to 65, set the parent of G to D.

vertex	Α	В	С	D	Е	F	G
parent	nil	D	nil	Α	D	nil	Α
cost	0	60	∞	20	55	∞	75
vertex	Α	В	С	D	Е	F	G
vertex parent	A nil	B D	C nil	D	E D	F D	G D

Min-Priority Queue

F

- ➤ Take F off the queue. Consider all the edges leaving F.
- ➤ The edge (F, B) gives us a path to B at a cost of 30 + 5 = 35 (cost to F + weight of (F, B)). This is lower than the current cost to B (60) so we update the cost to 35, set the parent of B to F.
- The edge (F, C) gives us a path to C at a cost of 30 + 15 = 45 (cost to F + weight of (F, C)). This is lower than the current cost to C (∞) so we update the cost to 45, set the parent of C to F.

vertex	Α	В	С	D	E	F	G
parent	nil	D	nil	А	D	D	D
cost	0	60	∞	20	55	30	65
vertex	Α	В	С	D	Е	F	G
vertex parent	A nil	B F	C F	D	E D	F	G D

(Still processing F)

F

The edge (F, E) gives us a path to E at a cost of 30 + 40 = 70 (cost to F + weight of (F, E)). This is higher than the current cost to E (55) so we leave E as it is.

vertex	Α	В	С	D	E	F	G
parent	nil	F	F	Α	D	D	D
cost	0	35	45	20	55	30	65
vertex	Α	В	С	D	E	F	G
vertex parent	A nil	B F	C F	D	E D	F	G D

> Take B off the queue. Consider all the edges leaving B.

В

There are no edges leaving B. So, we take the next element off the queue.

vertex	Α	В	С	D	Е	F	G
parent	nil	F	F	Α	D	D	D
cost	0	35	45	20	55	30	65
vertex	Α	В	С	D	Е	F	G
vertex parent	A nil	B F	C F	D A	E D	F D	G D

> Take C off the queue. Consider all the edges leaving C.

С

- ➤ The edge (C, E) gives us a path to E at a cost of 45 + 5 = 50 (cost to C + weight of (C, E). This is lower than the current cost to E (55) so we update the cost to 50, set the parent of E to C.
- The edge (C, G) gives us a path to G at a cost of 45 + 25 = 70 (cost to C + weight of (C, G). This is higher than the current cost to G (65) so we leave G as it is.

vertex	Α	В	С	D	E	F	G
parent	nil	F	F	А	D	D	D
cost	0	35	45	20	55	30	65
vertex	Α	В	С	D	Е	F	G
vertex parent	A nil	B F	C F	D	E C	F	G D

> Take E off the queue. Consider all the edges leaving E.

E

The edge (E, G) gives us a path to G at a cost of 50 + 10 = 60 (cost to E + weight of (E, G). This is lower than the current cost to G (65) so we update the cost to 60, set the parent of G to E.

vertex	Α	В	С	D	E	F	G
parent	nil	F	F	А	С	D	D
cost	0	35	45	20	50	30	65
vertex	Α	В	С	D	E	F	G
vertex parent	A nil	B F	C F	D	E	F	G E

- Take G off the queue. Consider all the edges leaving G.
- There are no edges leaving G.
- The queue is now empty, so the algorithm terminates. The results are:

```
Cost to B: 35, Path: A \rightarrow D \rightarrow F \rightarrow B

Cost to C: 45, Path: A \rightarrow D \rightarrow F \rightarrow C

Cost to D: 20, Path: A \rightarrow D

Cost to E: 50, Path: A \rightarrow D \rightarrow F \rightarrow C \rightarrow E

Cost to F: 30, Path: A \rightarrow D \rightarrow F

Cost to G: 60, Path: A \rightarrow D \rightarrow F \rightarrow C \rightarrow E \rightarrow G
```

40	20 A 75 D 45 G
B 5	35 10 E 10 40 5
	F C

parent	
cost	
vertex	
parent	
cost	

vertex

nil	F	F	А	С	D	E
0	35	45	20	50	30	60
Α	В	С	D	Е	F	G
nil	F	F	А	С	D	E
0	35	45	20	50	30	60

Given table, how to get paths?

```
Cost to B: 35, Path: A \rightarrow D \rightarrow F \rightarrow B

Cost to C: 45, Path: A \rightarrow D \rightarrow F \rightarrow C

Cost to D: 20, Path: A \rightarrow D

Cost to E: 50, Path: A \rightarrow D \rightarrow F \rightarrow C \rightarrow E

Cost to F: 30, Path: A \rightarrow D \rightarrow F

Cost to G: 60, Path: A \rightarrow D \rightarrow F \rightarrow C \rightarrow E \rightarrow G
```


vertex	
parent	
cost	

Α	В	С	D	E	F	G
nil	F	F	А	С	D	E
0	35	45	20	50	30	60

Dijkstra's Shortest Path Algorithm

Dijkstra's Algorithm is an example of a *single-source shortest path algorithm* which finds the shortest path from a source node to a destination node.

There are others such as the Bellman-Ford Algorithm.

Minimum-Cost Spanning Tree

A minimum-cost spanning tree (MST) is a subset of the edges of a connected, undirected, edge-weighted graph that connects all the vertices together without any cycles and with the minimum possible total edge weight.

➤ It is a way of finding the most economical way to connect a set of vertices.

A minimum-cost spanning tree has precisely *n*-1 edges, where *n* is the number of vertices in the graph.

- \triangleright For each v in V, create a tree consisting of v only.
- > Sort the edges of E by non-decreasing weight.
- For each edge (u, v) in E, if u and v belong to different trees, connect them with the edge (u, v).

(A, B, 1) (D, E, 2) (B, C, 3) (C, D, 4) (A, E, 5) (A, C, 7) (A, D, 10)

