Theorems

Theorem (Principle of Mathematical Induction). Let P(n) be a statement for each integer $n \geq m$. Suppose the following conditions are satisfied,

- 1. P(m) is true, and
- 2. $P(k) \Rightarrow P(k+1)$ for every k > m.

Then P(n) is true for every $n \geq m$.

Theorem (Another Induction Principle). Let P(n) be a statement for each integer $n \ge m$. Suppose the following conditions are satisfied,

- 1. P(m) and P(m+1) are true, and
- **2.** If $k \ge m$ and both P(k) and P(k+1) are true then P(k+2) is true.

Then P(n) is true for every $n \geq m$.

Theorem 1.2.1 (The Division Algorithm). Let $n \in \mathbb{Z}$ and $d \geq 1$ be an integer. Then there exists uniquely determined $q, r \in \mathbb{Z}$ such that

$$n = qd + r \ and \ 0 \le r < d.$$

Theorem 1.2.2. Let m, n and d denote integers.

- **1.** $n \mid n$ for all n.
- **2.** If $d \mid m$ and $m \mid n$, then $d \mid n$.
- 3. If $d \mid n$ and $n \mid d$, then $d = \pm n$.
- **4.** If $d \mid n$ and $d \mid m$, then $d \mid (xn + ym)$ for all $x, y \in \mathbb{Z}$.

Theorem 1.2.3 (Bézout's Identity). Let a and b be integers, not both zero. Then there exist $r, s \in \mathbb{Z}$ such that gcd(a, b) = ra + sb.

Theorem 1.2.4. Let $m, n \in \mathbb{Z}$ not both zero. Then

$$m, n$$
 relatively prime $\Leftrightarrow \exists r, s \in \mathbb{Z}$ such that $1 = rm + sn$

Theorem 1.2.5. Let $m, n \in \mathbb{Z}$ be relatively prime integers.

- **1.** If $m \mid k$ and $n \mid k$ for some integer k, then $mn \mid k$.
- **2.** If $m \mid kn$ for some integer k, then $m \mid k$.

Theorem 1.2.6 (Euclid's Lemma). Let p be a prime number.

- **1.** If $p \mid mn$ where $m, n \in \mathbb{Z}$, then $p \mid m$ or $p \mid n$.
- **2.** If $p \mid m_1 m_2 \cdots m_r$ where $m_i \in \mathbb{Z}$ for all i, then $p \mid m_i \exists i$.

Theorem 1.2.7 (Prime Factorization Theorem). 1. Every integer $n \geq 2$ is a product of (one or more) primes.

2. This factorization is unique (up to order of the factors).

That is, if

$$n = p_1 p_2 \cdots p_r$$
 and $n = q_1 q_2 \cdots q_2$,

then r = s and the q_j can be relabeled so that $p_i = q_i$ for i = 1, 2, ..., r.

Corollary. Two integers are relatively prime if there exists no prime that divides them both.

Corollary. Every $n \in \mathbb{Z}_{\geq 2}$ can be written uniquely as

$$n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

where the p_i are distinct primes and $n_i \geq 1$ for all i.

Theorem 1.2.8. Let $n \geq 2$ be an integer with prime factorization

$$n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r},$$

where the p_i are all distinct primes and $n_i \ge 1$ for all i. Then

$$d \mid n \Rightarrow d = p_1^{d_1} p_2^{d_2} \cdots p_r^{d_r} \text{ where } 0 \le d_i \le n_i \ \forall i.$$

Theorem 1.2.9. Let $\{a, b, c, ...\}$ be a finite set of positive integers and write

$$a = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$

$$b = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r}$$

$$c = p_1^{c_1} p_2^{c_2} \cdots p_r^{c_r}$$

where there is an exponent of zero if the prime is not a factor.

Then

$$\gcd(a, b, c, \dots) = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r},$$

where $k_i = \min(a_i, b_i, c_i, \dots)$ for each i, and

$$lcm(a, b, c, ...) = p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r},$$

where $m_i = \max(a_i, b_i, c_i, \dots)$ for each i.

Theorem 1.2.10 (Euclid's Theorem). There are infinitely many primes.

Theorem 1.3.1. Congruence modulo n is an equivalence relation on \mathbb{Z} .

Theorem 1.3.2. Given $n \geq 2$, $\overline{a} = \overline{b} \Leftrightarrow a \equiv b \pmod{n}$.

Theorem 1.3.3. Let $n \geq 2$ be an integer.

- **1.** If $a \in \mathbb{Z}$, then $\overline{a} = \overline{r}$ for some r where $0 \le r \le n-1$.
- **2.** The residue classes $\overline{0}, \overline{1}, \dots, \overline{n-1}$ modulo n are distinct.

Theorem 1.3.4. Let $n \geq 2$ be a fixed modulus and let a, b and c denote arbitrary integers. Then the following hold in \mathbb{Z}_n .

- 1. $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ and $\overline{a}\overline{b} = \overline{b}\overline{a}$.
- **2.** $\overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c} \text{ and } \overline{a}(\overline{b}\overline{c}) = (\overline{a}\overline{b})\overline{c}.$
- 3. $\overline{a} + \overline{0} = \overline{a}$ and $\overline{a}\overline{1} = \overline{a}$.
- 4. $\overline{a} + \overline{-a} = \overline{0}$.
- 5. $\overline{a}(\overline{b} + \overline{c}) = \overline{a}\overline{b} + \overline{a}\overline{c}$.

Theorem 1.3.5. Let $a, n \in \mathbb{Z}$ with $n \geq 2$. Then \overline{a} has a multiplicative inverse in \mathbb{Z}_n if and only if a and n are relatively prime.

Theorem 1.3.6 (The Chinese Remainder Theorem). Let m and n be relatively prime integers. If s and t are arbitrary integers, then there is an integer b for which

$$b \equiv s \pmod{m}$$
 and $b \equiv t \pmod{n}$.

Theorem 1.3.7. The following are equivalent for any integer $n \geq 2$.

- 1. Every element $\overline{a} \neq \overline{0}$ in \mathbb{Z}_n has a multiplicative inverse.
- **2.** If $\overline{a}\overline{b} = \overline{0}$ in \mathbb{Z}_n , then either $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$.
- 3. The integer n is prime.

Theorem (Wilson's Theorem). If p is prime then $(p-1)! \equiv -1 \pmod{p}$.

Theorem 1.3.8 (Fermat's Theorem). If p is prime then $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$. Moreover, if gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Theorem 1.4.1. The set S_n of permutations on $T_n = \{1, 2, ..., n\}$ has $|S_n| = n!$ elements.

Theorem 1.4.2. Let σ, τ and μ denote permutations in S_n .

- 1. the composition $\sigma\tau$ is in S_n
- **2.** $\sigma \varepsilon = \sigma = \varepsilon \sigma$
- 3. $\sigma(\tau\mu) = (\sigma\tau)\mu$
- 4. $\sigma\sigma^{-1} = \varepsilon = \sigma^{-1}\sigma$

Theorem 1.4.3 (Disjoint cycles commute). That is if σ and τ are disjoint cycles then $\sigma \tau = \tau \sigma$.

Theorem 1.4.4. If σ is an r-cycle, then σ^{-1} is also an r-cycle. More precisely, if

$$\sigma = (k_1 \ k_2 \ \cdots \ k_{r-1} \ k_r),$$

then

$$\sigma^{-1} = (k_r \ k_{r-1} \ \cdots \ k_2 \ k_1),$$

Theorem 1.4.5 (Cycle Decomposition Theorem). Every $\sigma \in S_n$ with $\sigma \neq \varepsilon$ can be written as a product of disjoint cycles.

Theorem 1.4.6. If $n \geq 2$, then every cycle in S_n can be written as a product of transpositions.

Theorem 1.4.7 (The Parity Theorem). If a permutation has two factorizations

$$\sigma = \gamma_n \cdots \gamma_2 \gamma_1 = \mu_m \cdots \mu_s \mu_1,$$

where each of γ_i and μ_j are transpositions, then $m \equiv n \pmod{2}$ (m and n have the same parity).

Theorem 1.4.8. If $n \geq 2$, the set A_n has the following properties:

- **1.** ε is in A_n and if $\sigma, \tau \in A_n$, then both $\sigma^- 1 \in A_n$ and $\sigma \tau \in A_n$.
- **2.** $|A_n| = \frac{1}{2}n!$.

Definitions

Definition. For $a, b, d \in \mathbb{Z}$:

• We write $a \mid b$ to mean a divides b, which is defined formally as

$$a \mid b \Leftrightarrow b = ak \text{ for some } k \in \mathbb{Z}.$$

- We say d is a common divisor of a and b if $d \mid a$ and $d \mid b$.
- The greatest common divisor of a and b is the largest integer that is a common divisor of a and b. Denote this value by gcd(a, b).

Definition. Let $a, b, n \in \mathbb{Z}$ with $n \geq 2$. We say that a and b are congruent modulo n if

$$n \mid (a-b)$$
.

In that case, we write $a \equiv b \pmod{n}$.

Definition. If $a \in \mathbb{Z}$, then its equivalence class, [a], with respect to congruence modulo n is called its *residue class modulo* n and we write \overline{a} for convenience.

$$\overline{a} = \{x \in \mathbb{Z} | x \equiv a \pmod{n}\}.$$

Definition. The set of integers modulo n is denoted \mathbb{Z}_n and is given by

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}.$$

Definition. We call an element $\overline{a} \in \mathbb{Z}_n$ invertible if there is some $\overline{b} \in \mathbb{Z}_n$ for which $\overline{ab} = \overline{1}$. We call such a \overline{b} an inverse of \overline{a} .

We call the set of all units, \mathbb{Z}_n^{\times} the group of units in \mathbb{Z}_n .

Definition. A permutation of $T_n = \{1, 2, ..., n\}$ is a mapping $\sigma : T_n \to T_n$ that is both one-to-one and onto (a bijection).

We call the collection of all permutations of T_n the symmetric group of order n, and we write

$$S_n := \{ \sigma : T_n \to T_n \mid \sigma \text{ is a permutation} \}.$$

Definition. A permutation matrix A is an $n \times n$ matrix that has exactly one 1 in each row and column and every other entry is 0.

Definition. The r-cycle $(x_1 \ x_2 \ \dots \ x_r)$ in S_n is the permutation that sends

$$\begin{array}{cccc} x_1 & \mapsto & x_2 \\ x_2 & \mapsto & x_3 \\ x_3 & \mapsto & x_4 \\ & \vdots & \\ x_{r-1} & \mapsto & x_r \\ x_r & \mapsto & x_1. \end{array}$$

Definition. Two cycles $(x_1 \ x_2 \ \dots \ x_r)$ and $(y_1 \ y_2 \ \dots \ y_s)$ are disjoint if

$$\{x_1, x_2, \dots, x_r\} \cap \{y_1, y_2, \dots, y_s\} = \emptyset.$$

Definition. A transposition is a cycle of length 2.

Definition. A permutation $\sigma \in S_n$ is called *even* if it can be written as a product of an even number of transpositions.

Similarly, permutations can be called *odd*.

Definition. The alternation group of degree n is the set of even permutations in S_n . We call it A_n .

Definition. The *order* of a permutation, $\sigma \in S_n$ is the smallest positive integer k such that $\sigma^k = \varepsilon$.