

Current Pivision

Exercises 03

Series and parallel equivalences Voltage and current division

Exercise 1 - Series and parallel connections

- Which elements are connected in series? R₃. R₄
- Which elements are connected in parallel? \nearrow

Exercise 2 - Voltage division

- Determine v_1 and v_2 as a function of v and the resistances.
- The voltage divided over the resistors. Which resistor exhibits the highest voltage knowing that $R_1 > R_2$?

Circuits Page 1 of 2

Current Division

unknown vi 12

$$\frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \frac{1}{2}$$

$$=\frac{\tilde{V}\frac{R_1R_2}{R_1+R_2}}{R_1}=\frac{\tilde{V}\frac{R_2}{R_1+R_2}}{R_1+R_2}$$

V RI+K2 (when there's only town parallel resistors).

M-Rarallel Resistors

$$\frac{1}{2^{k}} = \frac{1}{2^{k}} = \frac{1}{2^{k}} + \frac{1}{2^{k}} + \frac{1}{2^{k}} + \frac{1}{2^{k}} = \frac{1}{2^{k}}$$

Sometime
Current Di vision
Simplify the
analysis.

2402 6052

 $\frac{260}{300} = \hat{\gamma}_3 = 40 \text{ mA}$

3= 12 × 3W

72 = 71 · BV = 2 = 50 m/t

VI= 120 m A. 1360 = 100 mA

not 25 s but 150s

H's current Division.

Exercise 3 - Current division

- \bullet Determine i_1 and i_2 as a function of i and the resistances.
- \bullet The current divided over the resistors. Which resistor exhibits the highest current knowing that $R_1 > R_2$?

Exercise 4 - Current and voltage division - Resistor equivalence

• Determine values for i_1 , i_2 and v_3 . Give the equivalent circuit for each case.

Circuits Page 2 of 2