Tuning joint priors

Stat 340: Bayesian Statistics

Example: Comparing proportions

- Yen et al. (2009) studied breast cancer survivors to consider possible risk factors for lymphedema (LE)
- Condition caused by a blockage of lymph vessels that drain fluids from body tissues
- n=1211 women were followed for 4 years
- Tracked LE status and number of lymph nodes examined during surgery

Research question:

Does the probability of LE vary according to the of nodes examined?

Observed data

Nodes	Lymphedema		
examined	Yes	No	
High (>5)	126	351	477
Low (≤5)	53	681	734

- We're conditioning on the number of nodes
- Assume the number of LE cases in the high and low categories are independent binomial random variables

LE model

 $heta_1 = extstyle{\mathsf{probability}}$ of LE for high node counts

 $heta_2=$ probability of LE for low node counts

Likelihood: $Y_1| heta_1 \sim \mathrm{Binom}(n_1, heta_1)$, $Y_2| heta_2 \sim \mathrm{Binom}(n_2, heta_2)$

 $Y_1| heta_1$, $Y_2| heta_2$ independent

Priors: $heta_1 \sim \mathrm{Beta}(a_1,b_1)$,

 $heta_2 \sim ext{Beta}(a_2,b_2)$

 θ_1 , θ_2 independent

Tuning beta priors

We're assuming θ_1 , θ_2 are independent, so we can tune the two beta priors separately

Prior information from literature:

- Indicates reasonable ranges for LE probability after surgery
- Risk is about 2% per year, continues for many years
- For 4 year period
 - set prior mode to 0.08
 - $P(\theta_i < 0.3) = 0.95$

Other priors

- In the absence of prior information, using independent reference priors is justified
- If we prior studies had been conducted, then we could use data augmentation priors
- We're not constrained to the beta family of priors, but it is convenient!

Example: Comparing rates

- Colditz et al. (1990) studied rates of breast cancer for 50-59-year-old postmenopausal women
- Two cohorts studied
 - estrogen replacement therapy
 - no estrogen replacement therapy

Research question:

Does estrogen replacement therapy impact the rate of breast cancer?

Observed data

Group	Cancer cases	Person-years
Hormone therapy	123	46,524
None	288	145,159

Person-years:

"The product of the number of years times the number of members of a population"

We'll assume the number of cancer cases in the two cohorts are independent

Cancer model

 $heta_1 =$ rate of occurrence of cancer per person-year in hormone therapy cohort

 $heta_2=$ rate of occurrence of cancer per person-year in no-therapy cohort

Likelihood:
$$Y_1| heta_1 \sim \mathrm{Poisson}(heta_1 M_1)$$
, $Y_2| heta_2 \sim \mathrm{Poisson}(heta_2 M_2)$

$$Y_1|\theta_1$$
, $Y_2|\theta_2$ independent

Priors:
$$heta_1 \sim \operatorname{Gamma}(a_1,b_1)$$
, $heta_2 \sim \operatorname{Gamma}(a_2,b_2)$

$$\theta_1$$
, θ_2 independent

Tuning gamma priors

1. Informative priors

Ask experts to think about θ_i independently, use this information to tune the prior parameters

2. Non-informative/vague priors

Use reference or diffuse priors

Reference priors

• A reference prior for a rate parameter of a Poisson distribution is

$$\pi(heta) \propto 1/\sqrt{ heta}$$

- Equivalent to Gamma(0.5, 0), which is **improper**
- You can approximate it with Gamma(0.5, 0.001) in JAGS