Devoir Vacances

Lundi 25/10/2021

Exercice 1. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = x^2 e^{-\frac{1}{x}}$$

2. Calculer

$$\prod_{k=3}^{n} \sqrt{k}$$

3. Calculer

$$\sum_{k=1}^{n+2} (k+1)$$

4. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \ge 0, u_{n+1} = \frac{1}{2}u_n + 1 \end{cases}$$

5. Résoudre le système suivant

$$\begin{cases} x+y = 3\\ 2x+y = 1 \end{cases}$$

Mardi 26/10/2021

Exercice 2. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln(e^x + x^2)$$

2. Calculer

$$\sum_{i=2}^{n} \binom{n}{i-1} \frac{1}{2^i}$$

3. Résoudre le système suivant

$$\begin{cases} x+y+z &= 3\\ 2x+y+z &= 1\\ x+z &= 0 \end{cases}$$

- 4. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{(2n+1)^3}{(\sqrt{n}+2)^6}$
- 5. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1, & u_1 = 1 \\ \forall n \ge 0, u_{n+2} = 2u_{n+1} - 4u_n \end{cases}$$

Mercredi 27/10/2021

Exercice 3. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = e^{x\cos(x)}$$

2. Soit $x \in \mathbb{R}$. Calculer

$$\sum_{i=0}^{n} (2x)^{2i}$$

3. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \ge 1, u_{n+1} = 2u_n + 1 \end{cases}$$

- 4. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{n\cos(n)}{(1+n^2)}$
- 5. Résoudre pour $x \in \mathbb{R}$:

$$x^4 - 4x^2 + 4 = 0$$

Jeudi 28/10/2021

Exercice 4. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \frac{\sin^3(2x)}{2 + \cos(5x)}$$

(l'expression finale n'est pas "jolie")

2. Montrer (avec une étude de fonction) que pour tout $x \in \mathbb{R}$:

$$e^x > x + 1$$

3. Calculer

$$\sum_{k=2}^{n} (k^2 + 1)$$

4. Résoudre le système suivant

$$\begin{cases} y+z &= 1\\ x+y &= 0\\ x+z &= 1 \end{cases}$$

5. Ecrire un script Python qui permet calculer

$$\sum_{k=1}^{n} \frac{1}{k}$$

$Vendredi\ 29/10/2021$

Exercice 5. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \left(\frac{\sqrt{x^2 + 3x}}{3^x}\right)^4$$

2. Simplifier pour x > 0

$$\ln\left(\frac{(x+1)^2}{x^3}\right) + \ln(x) - \ln\left(\left(1 + \frac{1}{x}\right)^2\right)$$

3. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1, & u_1 = 1 \\ \forall n \ge 0, u_{n+2} = -u_{n+1} + 2u_n \end{cases}$$

- 4. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{n!^2}{n^{2n}}$
- 5. Ecrire une fonction Python qui simule le lancer d'un dé à 6 faces et retourne la valeur du lancer.

Samedi 30/10/2021

Exercice 6. 1. Montrer à l'aide d'une étude de fonction que pour tout $x \in \mathbb{R}$:

$$\ln(1+x^2) \le x^2$$

2. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln\left(\sqrt{x^2 - 1} + x\right)$$

3. Calculer

$$\sum_{j=0}^{2n} \binom{2n}{j} (-2)^j$$

4. Résoudre le système suivant

$$\begin{cases} x+y+z = 1\\ x+y+2z = 0 \end{cases}$$

5. Ecrire une fonction Python qui prend en argument 3 nombres (x,y,z) et retourne 'True' si ils sont solutions du système $\begin{cases} \pi^2x & +1,4y & +z & =120 \\ \ln(2)x & +1,7y & +2^4z & =0 \end{cases}$ et 'False' sinon.

Dimanche 31/10/2021

REPOS!

Lundi 01/11/2021

Exercice 7. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln\left(\ln x\right)$$

2. Etudier (donner les variations et les limites aux bornes) la fonction

$$f(x) = x^x$$

3. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \ge 0, u_{n+1} = 2u_n^2 \end{cases}$$

(on pourra regarder $v_n = \ln(u_n)$)

4. Résoudre le système suivant

$$\begin{cases} x + 2y + z &= 1\\ x + y + z &= 0\\ x + 3y + 2z &= 2 \end{cases}$$

5. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{\ln(n)}{\ln(1+n^2)}$

Mardi 02/11/2021

Exercice 8. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln\left(\frac{x+2}{\sqrt{9x^2 - 4}}\right)$$

2. Calculer

$$\sum_{k=0}^{n-1} e^{\frac{ik\pi}{n}} \quad \text{et} \quad \prod_{k=0}^{n} e^{\frac{ik\pi}{n}}$$

3. Calculer

$$\sum_{\ell=1}^{n} \sum_{i=1}^{\ell^2} \frac{i}{\ell^2}$$

- 4. Ecrire une fonction Python qui prend en argument un entier n qui simule n lancers de dé à 6 faces et retourne la somme des valeurs des lancers.
- 5. Résoudre dans \mathbb{R}

$$\sqrt{x+1} \le x$$

Mercredi 03/11/2021

Exercice 9. 1. Montrer par récurrence que pour tout $n \ge 1$:

$$\prod_{k=1}^{n} k! = \prod_{k=1}^{n} k^{n+1-k}$$

2. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = (e^{2x} - 1)^{\pi}$$

3. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1, & u_1 = 2 \\ \forall n \ge 0, u_{n+2} = \frac{u_{n+1}^2}{u_n} \end{cases}$$

(On pourra regarder $v_n = \ln(u_n)$)

4.

$$\begin{cases} x + 2y + z = 1\\ x + y + z = 0\\ 3x + 5y + 2z = 2 \end{cases}$$

5. Ecrire un script Python qui permet calculer

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\sqrt{j}}{k}$$

Jeudi 04/11/2021

Exercice 10. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \exp\left(\frac{1}{x} + \ln(x)\right)$$

2. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \sqrt{\exp(-x^2) + 1}$$

3. Résoudre en fonction du paramètre $\lambda \in \mathbb{R}$, le système

$$\begin{cases} x + 2y = 1 \\ \lambda x + y = 0 \end{cases}$$

- 4. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{(\ln(n))^2}{\ln(1+n^2)}$
- 5. Ecrire une fonction Python qui prend en argument deux nombres et retourne le minimum de ces deux nombres. (Sans utiliser la foncton min de Python)

Vendredi 05/11/2021

Exercice 11. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln(-x)$$

2. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \frac{2\exp(x)}{\ln(x^2)}$$

3. Ecrire une fonction Python qui prend en argument un entier n et retourne la valeur de

$$\sum_{j=1}^{n} \sum_{i=1}^{n} \min(i, j)$$

4. Résoudre dans \mathbb{R} :

$$\frac{1}{x+1} \le x$$

5. Montrer que la suite suivante est majorée par 2 :

$$u_n = \frac{1}{n!} \sum_{k=0}^{n} k!$$

(On pourra prendre 0! = 1, mais ca n'importe peu sur la preuve) (La majoration est un peu plus dur que le reste, il faut sortir le dernier terme et majorer le reste de la somme) (Pour les courageux, vous pouvez montrer qu'elle converge vers 1.)

Samedi 06/11/2021

Exercice 12. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \frac{1}{\tan(x)}$$

2. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln(|\cos(x)|)$$

3. Calculer

$$\sum_{k=1}^{3} \sum_{a=0}^{n} a^k$$

- 4. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{1}{n^4} \sqrt{\sum_{k=1}^{n^2} k^3}$
- 5. Sans utiliser la fonction floor de Python, ecrire une fonction Python qui prend en argument un réel x et retourne sa partie entière.

Dimanche 07/11/2021

Exercice 13. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = x^2 (1 + \exp(x))^3$$

2. Donner la limite en $+\infty$ de

$$f(x) = \left(1 + \frac{1}{x}\right)^x$$

(Ce n'est ni 1, ni 0, ni $+\infty$)

3. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1, & u_1 = 2 \\ \forall n \ge 0, & u_{n+2} = u_{n+1} - \frac{1}{4}u_n \end{cases}$$

4. Résoudre en fonction du paramètre $\lambda \in \mathbb{R},$ le système

$$\begin{cases} \lambda x + y = 1\\ \lambda x + (1 - \lambda)y = 0 \end{cases}$$

5. Résoudre dans $\mathbb R$:

$$\frac{1}{e^x + 1} \le \frac{e^x}{e^x + 2}$$