Classical Stokes Theorems

Def: A vector field on \mathbb{R}^n is a vector-valued function $F: \mathbb{R}^n \to \mathbb{R}^m$. If x_1, \ldots, x_n are coordinates for \mathbb{R}^n , then the vector field F will be described by m real-valued functions $f_k: \mathbb{R}^n \to \mathbb{R}$ as follows

$$F(x_1, \dots, x_n) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix}$$

Def: A vector field is *continuous* if each real-valued function f_k is continuous.

Def: A vector field is *differentiable* if each real-valued function f_k is differentiable.

Note: A vector field is essentially a function that you plug a vector in and get a vector out. There is no connection to the abstract algebra idea of a field. (Stupid physicists, always ruining perfectly good math)

Def: A differentiable manifold M of dimension k in \mathbb{R}^n is a set of points in \mathbb{R}^n such that for any point $p \in M$, there is a small open neighborhood U of p, a vector-valued differentiable function $F: \mathbb{R}^k \to \mathbb{R}^n$ and an open set V in \mathbb{R}^k with

- 1. $F(V) = U \cap M$
- 2. The Jacobian of F has rank k at every point in V

The function F is called the *parametrization* of the manifold.

Note: The reason why the Jacobian needs to have rank equal to the dimension of the manifold is so the Jacobian will have a $k \times k$ minor.

Examples: A circle is a 1-dimensional manifold in 2-space. A cone is a 2-dimensional manifold in 3-space.

Def: The *closure* of M, denoted \overline{M} , is the set of all points x in \mathbb{R}^n such that there is a sequence of points $\{x_n\}$ in the manifold M with

$$\lim_{n \to \infty} x_n = x$$

The boundary of M, denoted ∂M , is:

$$\partial M = \bar{M} - M$$

Note: The boundary of an n-dimensional manifold is usually either empty or is a (n-1)-dimensional manifold.