

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

ELECTRÓNICA RÁPIDA

Projecto e Simulação de Amplificadores Lineares para Altas Frequências

Guilherme Branco Teixeira n.º 70214 Maria Margarida Dias dos Reis n.º 73099 Nuno Miguel Rodrigues Machado n.º 74236

Grupo n.º 2 de quarta-feira das 11h00 - 12h30

Índice

Intr	roduçã	o	1	
Pla	lano de Trabalhos			
2.1	Projec	eto de um amplificador uniandar	1	
	2.1.1	a) Projecto do amplificador com linhas ideais	1	
	2.1.2	b) Projecto do amplificador utilizando tecnologia microfita	3	
2.2	Concr	etização do amplificador em tecnologia de microfita	3	
	2.2.1	a) Introdução de elementos que simulam descontinuidades nas linhas	3	
	2.2.2	b) Substituição do transístor e condensadores	3	
Cor	nclusõe	es	3	
	Pla 2.1 2.2	Plano de 2.1 Projec 2.1.1 2.1.2 2.2 Concr 2.2.1 2.2.2	2.1.1 a) Projecto do amplificador com linhas ideais	

1 Introdução

O objectivo deste laboratório é estudar técnicas de projecto de amplificadores lineares de alta frequência, análise das suas características (estabilidade, ganho, adaptação e factor de ruído) e comportamentos. A caracterização dos dispositivos do amplificador será realizada através dos pârametros distribuídos - parâmetros S.

Utiliza-se um transístor da Hewlett-Packard (HP) ATF-35176, um transístor que utiliza tecnologia PHEMT (*Pseudomorphic High Mobility Transistor*), preparado para trabalhar em altas frequências.

2 Plano de Trabalhos

As especificações do amplificador a construir podem ser consultadas na tabela seguinte, tal como as características do substrato plástico para alta-frequência da Taconic (TLY -3-0310-CH/CH), sobre qual o transístor irá ser implantado.

Símbolo Valor Especificação Ganho de Transdução G_{Tmax} Gт 1.5 V Tensão drain-source V_{DS} Corrente drain -source 20 mA los Resistência da fonte e da carga Rg e Rc 50 Ω 2.3 Constante dieléctrica 0.78 mm Espessura do substrato h Espessura da metalização 0.018 mm t Tangente de perdas 0.001 σ Frequência central fo1 22 GHz

Tabela 1: Características do amplificador a projectar.

Numa primeira fase do trabalho laboratorial é projectado e simulado o amplificador uniandar com linhas simétricas. Na segunda fase o amplificador é projectado com tecnologia de microfita.

2.1 Projecto de um amplificador uniandar

2.1.1 a) Projecto do amplificador com linhas ideais

Nesta primeira fase, o amplificador irá ser constituido pelo transistor descrito anteriormente, no entanto, todos os dispositivos utilizados no seu projecto e simulação serão dispositivos ideais, esta fase inicial tem como objectivo definir os parâmetros do amplificador que permitem obter as especificações pedidas.

PFR Pretendido. Em primeiro lugar, é feita uma análise DC ao transístor que tem em vista obter o ponto de funcionamento em repouso (PFR) especificado. O circuito que nos permitiu alcançar essa análise é o que se vê na Figura 1.

Figura 1: Circuito utilizado para obter o PFR desejado.

A análise DC serve para descobrir o valor de V_{GS} correspondente ao PFR desejado. No circuito da Figura 1 existe um componente denominado de I_Probe que tem como objectivo controlar o valor de I_D à medida que o valor de V_{GS} varia. Um excerto dos resultados desta análise pode ser consultados na Figura 2, onde se pode concluir que o valor da tensão V_{GS} que melhor corresponde a uma corrente I_D de 20 mA (20.03 mA) é de -0.277 V.

Vgs	I_Probe1.i
-0.290	19.06 mA
-0.289	19.13 mA
-0.288	19.21 mA
-0.287	19.28 mA
-0.286	19.35 mA
-0.285	19.43 mA
-0.284	19.50 mA
-0.283	19.58 mA
-0.281	19.65 mA
-0.280	19.80 mA
-0.279	19.88 mA
-0.279	19.95 mA
-0.278	20.03 mA
-0.276	20.11 mA

Figura 2: Valores de V_{GS} correspondentes à corrente de I_Probe.

Podemos agora continuar a projectar o amplificador, visto que temos agora todos os dados relevantes do ponto de funcionamento em repouso.

Análise de alta-frequência Com o transistor no PFR desejado, é preciso construir um novo circuito que contenha condensadores e bobines ideais, DC_Block e DC_Feed respectivamente, para que seja possível realizar a simulação dos Parametros S.

3.

4.

- 2.1.2 b) Projecto do amplificador utilizando tecnologia microfita
- 2.2 Concretização do amplificador em tecnologia de microfita
- 2.2.1 a) Introdução de elementos que simulam descontinuidades nas linhas
- 2.2.2 b) Substituição do transístor e condensadores
- 3 Conclusões