

Questions	JEE Main Crash Course
1. $\begin{array}{c} \text{mathongo} \\ \text{Let } A + 2B = \begin{bmatrix} 1 & m_2 & m_2 & m_3 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix} \text{ and } 2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix} \text{ then } tr(A) - tr(A)$	/// mathongo // mathongo /// ma
	(2) 1athongo // mathongo // mathongo // n (4) None of these
2. The trace $T_r(A)$ of a 3×3 matrix $A = (a_{jj})$ is defined by the relation $T_r(A)$	$a = a_{11} + a_{22} + a_{33}$ (i.e, $T_r(A)$ is sum of the main diagonal elements). Which of the
(1) $T_r(kA) = kT_r(A)(k \text{ is a scalar})$	(2) $T_r(A+B) = T_r(A) + T_r(B)$
(3) $T_r(l_3) = 3$	(4) $T_r(A^2) = (T_r(A))^2$
(1) $T_r(kA) = kT_r(A)(k \text{ is a scalar})$ (3) $T_r(l_3) = 3$ 3. Let $A\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ are two matrices such that $AB = BA$ and	$c \neq 0$, then value of $\frac{a-d}{3b-c}$ is
(3) thongo /// mathongo /// mathongo /// mathongo	(2) 2 (4) —1 mathongo /// mathongo /// mathongo /// mathongo /// n
4. If $A = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, then A^8 equals (1) AB	
$(1)^{4}$ $(1)^$	(2) 128B ongo /// mathongo /// mathongo /// mathongo /// n
(3) -128B	(4) - 64B
5. If $A = \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}$ and $f(x) = 1 + x + x^2 + \dots + x^{16}$, then $f(A)$ is equal to	-//. mathongo //. mathongo //. mathongo //. mathongo //. n
(1) 0	$(2) \begin{bmatrix} 1 & 5 \end{bmatrix}$
(3) ° $\begin{bmatrix} 1_0 & 5 \\ 0 & 0 \end{bmatrix}$ ° (4) mathongo (4) mathongo (4) mathongo	(2) $\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$ (4) $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ mathongo /// mathongo /// mathongo /// mathongo
mathongo // matho	the of $n \in N$ for which $P^n = 5I - 8P$ is equal to
7. Which of the following is correct?	
(1) $B'AB$ is symmetric, if A is symmetric	(2) B' AB is skew symmetric, if A is symmetric
(3) B' AB is symmetric, if A is skew symmetric 190 /// mathongo	(4) None of these // mathongo // mathongo // n
8. The number of diagonal matrix A of order n for which $A^3 = A$, is	
8. The number of diagonal matrix A of order n for which $A^3 = A$, is (1) 1	(2) 0
8. The number of diagonal matrix A of order n for which $A^3 = A$, is (1) 1 (3) 2^n ongo	(2) 0 (4) 3 ⁿ thongo ///. mathongo ///. mathongo ///. n
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2ⁿ ongo mathongo mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} such as the set {-1,0,1} such a	(2) 0 (4) 3^n thongo /// mathongo /// mathongo /// mathongo /// mothongo /// n ch that the sum of the diagonal elements of AA^T is 3, is
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2ⁿ ongo (4) mathongo (5) mathongo (6) mathongo (7) mathongo (8) mathongo (9) mathongo (1) mathongo (1) mathongo (2) mathongo (3) mathongo (4) mathongo (5) mathongo (6) mathongo (7) mathongo (8) mathongo (9) mathongo (1) mathongo (1) mathongo (1) mathongo (1) mathongo (2) mathongo (3) mathongo (4) mathongo (5) mathongo (6) mathongo (7) mathongo (8) mathongo (9) mathongo (1) mathongo (1) mathongo (1) mathongo (1) mathongo (2) mathongo (3) mathongo (4) mathongo (5) mathongo (6) mathongo (7) mathongo (8) mathongo (9) mathongo (1) mathongo (1) mathongo (1) mathongo (1) mathongo (2) mathongo (3) mathongo (4) mathongo (5) mathongo (6) mathongo (7) mathongo (8) mathongo (9) mathongo (1) mathongo (1) mathongo (1) mathongo (1) mathongo (2) mathongo (3) mathongo (4) mathongo (5) mathongo (6) mathongo (7) mathongo (8) matho	(2) 0 (4) 3 ⁿ thongo /// mathongo /// mathongo /// n
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2n mathematical matrices A, with entries from the set {-1,0,1} suthematical matrices in A is 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} suthematical matrices in A is 	(2) 0 (4) 3^n though a mathong a mathon a
 8. The number of diagonal matrix A of order n for which A³ = A, is 1 (3) 2n mathona mathona mathona mathona 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} sue matrices in A is 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are either matrices in A is (1) 3 	(2) 0 (4) 3^n thongo // mathongo // mat
 8. The number of diagonal matrix A of order n for which A³ = A, is 1 (3) 2n mathona mathona mathona mathona 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} sue matrices in A is 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are either matrices in A is (1) 3 	(2) 0 (4) 3^n though a mathon with math
 8. The number of diagonal matrix A of order n for which A³ = A, is 1 (3) 2n mathona mathona mathona mathona 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} sue matrices in A is 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are either matrices in A is (1) 3 	(2) 0 (4) 3^n thongo // mathongo // mat
 8. The number of diagonal matrix A of order n for which A³ = A, is 1 3 2n mathongo mathongo mathongo mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} sue that the set of all 3 × 3 symmetric matrices all of whose entries are either matrices in A is 3 9 mathongo mathongo (3) 9 mathongo mathongo mathongo mathongo 	(2) 0 (4) 3^n thongo // mathongo // mathongo // mathongo // mathongo // n ch that the sum of the diagonal elements of AA^T is 3, is her 0 or 1, five of these entries are 1 and four of them are zero. Then the number of (2) 6 (4) 12 thongo // mathongo // mathongo // mathongo // n
 8. The number of diagonal matrix A of order n for which A³ = A, is 1 3 2n mathongo mathongo mathongo mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} sue that the set of all 3 × 3 symmetric matrices all of whose entries are either matrices in A is 3 9 mathongo mathongo (3) 9 mathongo mathongo mathongo mathongo 	(2) 0 (4) 3^n thongo // mathongo // mat
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2ⁿ ongo /// mathongo /// mathongo /// mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} su 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are eit matrices in A is (1) 3 (3) 9 ongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo 	(2) 0 (4) 3^n thongo /// mathongo /// mat
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2ⁿ ongo /// mathongo /// mathongo /// mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} su 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are eit matrices in A is (1) 3 (3) 9 ongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo 	(2) 0 (4) 3^n thongo // mathongo // mathongo // mathongo // mathongo // n ch that the sum of the diagonal elements of AA^T is 3, is her 0 or 1, five of these entries are 1 and four of them are zero. Then the number of (2) 6 (4) 12 thongo // mathongo // mathongo // mathongo // n
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2ⁿ ongo /// mathongo /// mathongo /// mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} su 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are eit matrices in A is (1) 3 (3) 9 ongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo 	(2) 0 (4) 3^n thongo /// mathongo /// mat
 8. The number of diagonal matrix A of order n for which A³ = A, is 1 2n ongo mathongo mathongo mathongo mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} sut matrices in A is 1 a 3 9 nongo mathongo mathongo mathongo mathongo mathongo 	(2) 0 (4) 3^n thongo // mathongo // mathongo // mathongo // mathongo // n ch that the sum of the diagonal elements of AA^T is 3, is her 0 or 1, five of these entries are 1 and four of them are zero. Then the number of (2) 6 (4) 12 thongo // mathongo // mat
 8. The number of diagonal matrix A of order n for which A³ = A, is 1 2n ongo mathongo mathongo mathongo mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} sut matrices in A is 1 a 3 9 nongo mathongo mathongo mathongo mathongo mathongo 	(2) 0 (4) 3^n thongo /// mathongo /// mat
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2n ongo /// mathongo /// mathongo /// mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} su 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are eit matrices in A is (1) 3 (3) 9nongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo 	(2) 0 (4) 3" thongo /// mathongo /// mathong
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2n ongo /// mathongo /// mathongo /// mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} su 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are eit matrices in A is (1) 3 (3) 9nongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo 	(2) 0 (4) 3^n thongo // mathongo // mathongo // mathongo // mathongo // n ch that the sum of the diagonal elements of AA^T is 3, is her 0 or 1, five of these entries are 1 and four of them are zero. Then the number of (2) 6 (4) 12 thongo // mathongo // mat
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2n ongo /// mathongo /// mathongo /// mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} su 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are eit matrices in A is (1) 3 (3) 9nongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo 	(2) 0 (4) 3" thongo /// mathongo /// mathong
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2n ongo	(2) 0 (4) 3^n thongo $1/1$ mathongo $1/1$ mathon
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2n ongo	(2) 0 (4) 3" thongo /// mathongo /// mathong
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2n ongo	(2) 0 (4) 3^n thongo $1/1$ mathongo $1/1$ mathon
 8. The number of diagonal matrix A of order n for which A³ = A, is (1) 1 (3) 2nongo /// mathongo /// mathongo /// mathongo 9. The number of all 3 × 3 matrices A, with entries from the set {-1,0,1} su 10. Let A be the set of all 3 × 3 symmetric matrices all of whose entries are eit matrices in A is (1) 3 (3) 9 ongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo 	(2) 0 (4) 3^n thongo $1/1$ mathongo $1/1$ mathon