Notatki do wykładu "Rozmaitości różniczkowalne"

Prowadzonego przez prof. dr. hab. Jacka Świątkowskiego

W semestrze letnim roku akademickiego 2014/2015

Skład: Maciej Kosicki

"Jakieś motto"

Wykład 1 - 23.02.2015

Rozmaitość topologiczna

 ${f Definicja}$ 1. Przestrzeń topologiczna M jest n-wymiarową ${f rozmaitością}$ topologiczną jeśli

- ① jest przestrzenią Hausdorffa
- 2 ma przeliczalną bazę topologii
- 3 jest lokalnie przestrzenią euklidesową wymiaru n, tzn każdy punkt posiada otoczenie otwarte homeomorficzne z otwartym podzbiorem \mathbb{R}^n .

Uwaga 0.1. Warunek ① wyklucza na przykład

Uwaga 0.2. Własność która nie zachodzi bez T_2 : dla dowolnego zwartego $\overline{K} \subset \overline{U}$ jego odpowiednik w M, czyli $K = \varphi^{-1}(\overline{K})$ jest domknięty, a nawet zwarty.

Warunek ② wyklucza "rozmaitości zbyt duże", na przykład nieprzeliczalna suma parami rozłącznych kopii \mathbb{R}^n nie jest rozmaitością. Warunek przeliczalności bazy implikuje:

- każde pokrycie rozmaitości zbiorami otwartymi zawiera przeliczalne podpokrycie(warunek Lindelöfa)
- każda rozmaitość jest wstępującą sumą otwartych podzbiorów, których domknięcia są zwarte

Uwaga~0.3.

Z teorii wymiaru wiadomo, że dla $n \neq m$ otwarty podzbiór w \mathbb{R}^n nie jest homeomorficzny z otwartym podzbiorem \mathbb{R}^m .

Stad n jest jednoznacznie przypisany rozmaitości, i nazywamy je wymiarem rozmaitości, $n = \dim M$

Definicja~2.~ **Mapą** na rozmaitości topologicznej M nazywamy parę (U,φ) gdzie U jest otwartym podzbiorem M, a $\varphi:U\to \overline{U}=\varphi(U)\subset \mathbb{R}^n$ jest homeomorfizmem na otwarty podzbiór \overline{U} w \mathbb{R}^n .

• U nazywamy zbiorem mapowym

Fakt 0.4. Rozmaitość jest pokryta zbiorami mapowymi.

 (U,φ) jest mapą wokół $p \in M$ jeśli $p \in U$ oraz $\varphi(p) = 0 \in \mathbb{R}^n$

 (U,φ) nazywa się też lokalnymi współrzędnymi na M, lub lokalną parametryzacją(n parametryzacją).

Przykład 1. Sfera
$$S^n = \{(x_1, \dots, x_{n+1} \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i^2 = 1\}.$$

• Warunki ① i ② są dziedziczone z \mathbb{R}^{n+1} .

• Lokalna n-euklidesowość wyniknie z opisania pewnej rodziny map na S^n , których zbiory mapowe pokryja całe S^n .

Dla $i=1,\ldots,n+1$ rozważmy otwarte podzbiory $U_i^+=\{x\in S^n:\ x_i>0\},\ U_i^-=\{x\in S^n:\ x_i<0\}.$ Pokrywają one całe S^n , bo każdy $x \in S^n$ ma którąś współrzędną niezerową.

Odwzorowanie mapowe $\varphi_i^{\pm}:U_i^{\pm}\to\mathbb{R}^n$

 $\varphi_i^\pm(x) = (x_1, \dots, x_{i-1}, \hat{x_i}, x_{i+1}, \dots, x_{n+1}) \text{ jest ciągłe} (\text{obcięcie rzutu } \mathbb{R}^{n+1} \text{ na } \mathbb{R}^n = \{x \in \mathbb{R}^{n+1}: \ x_i = 0\}$ do U_i^{\pm}).

Obraz $\overline{U_i^\pm} = \varphi_i^\pm(U_i^\pm) = \{(x_1,\ldots,x_n) \in \mathbb{R}^n: \sum x_i^2 < 1\}$ jest otwartą kulą w \mathbb{R}^n o promieniu 1. $\varphi_i^\pm:U_i^\pm \to \overline{U_i^\pm}$ jest wzajemnie jednoznaczne. Odw
zorowanie odwrotne przestawione jest wzorem

$$(\varphi_i^{\pm})^{-1}(x_1,\ldots,x_n) = (x_1,\ldots,x_{i-1},\pm\sqrt{1-\sum_{j=1}^n x_j^2},x_i,\ldots,x_n)$$

jest ciągłe. Zatem $\varphi_i^\pm:U_i^\pm \to \overline{U_i^\pm}$ są homeomorfizmami. A więc (U_i^\pm,φ_i^\pm) są mapami pokrywającymi

Rozmaitość różniczkowalna(gładka)

Definicja 3. Mówiac różniczkowalna mamy na myśli gładka.

Motywacja. Dla ciągłej funkcji rzeczywistej $f:M\to\mathbb{R}$ na rozmaitości chcemy rozpoznać, czy jest różniczkowalna.

Możemy chcieć to zrobić wyrażając ta funkcję w mapie(w lokalnych współrzednych)

• funkcja f wyrażona w mapie (U,φ) to złożenie $f\circ\varphi^{-1}:\overline{U}\to\mathbb{R}^n$

"Definicja" $f: M \to \mathbb{R}$ jest gładka jeśli dla każdej mapy (U, φ) na M kiedy $f \circ \varphi^{-1} : \overline{U} \to \mathbb{R}$ jest gładka. Kłopotem z tą "definicją" jest kwestia zgodności pomiędzy mapami.

Związek pomiędzy wyrażeniami funkcji f w mapach (U,φ) i (U,ψ)

 $f\circ\psi^{-1}=\left(f\circ\varphi^{-1}\right)\circ\left(\varphi\psi^{-1}\right)$ gdzie $\varphi\psi^{-1}:\overline{\overline{U}}\to U$ jest homeomorfizmem. Gdy $f\circ\psi^{-1}$ jest gładkie, to zawsze można dobrać φ tak, by $f\circ\varphi^{-1}$ nie było gładkie.

Definicja 4. Mapy $(U,\varphi),(U,\psi)$ nazywamy **zgodnymi**(gładko zgodnymi) jeśli $\varphi\psi^{-1}:\overline{\overline{U}}\to \overline{U}$ oraz $\psi\varphi^{-1}:$ $\overline{U} \to \overline{\overline{U}}$ są gładkie.

 $Uwaga\ 0.5.\ \varphi\psi^{-1}$ oraz $\psi\varphi^{-1}$ nazywamy odwzorowaniami przejścia od jednej mapy do drugiej

 $Uwaga~0.6.~\varphi\psi^{-1}$ oraz $\psi\varphi^{-1}$ są gładkie i wzajemnie odwrotne. Takie odwzorowanie (gładkie i gładko odwracalne) nazywa się **dyfeomorfizmem** pomiędzy otwartymi podzbiorami w \mathbb{R}^n . Wtedy w każdym punkcie Jakobian jest niezerowy.

Definicja 5. Mapy (U,φ) i (V,ψ) na rozmaitości M nazywamy zgodnymi, gdy są zgodne po obcięciu do $U\cap V$. W szczególności, gdy $U \cap V = \emptyset$ to mapy są automatycznie zgodne.

Odwzorowania przejścia pomiędzy mapami $(U, \varphi), (V, \psi)$ nazywamy odwzorowania przejścia pomiędzy obcięciami φ i ψ do $U \cap V$.

 $\psi\big|_{U\cap V} \big(\varphi\big|_{U\cap B}\big)^{-1}$

Równoważnie $(U,\varphi), (V,\psi)$ są zgodne gdy oba odwzorowania przejścia pomiędzy nimi są gładkie.

Definicja 6. Gładkim atlasem A na rozmaitości M nazywamy zbiór map $\{(U_{\alpha}, \varphi_{\alpha})\}$ takich, że

• $\{U_{\alpha}\}$ pokrywa całe M

• każde dwie mapy z tego zbioru są zgodne

Przykład2. Rodzina map $\{(U_i^\pm,\varphi_i^\pm):\ i=1,\dots,n+1\}$ na S^n stanowi atlas gładki. Zbadajmy zgodność map na przykład $(U_i^+,\varphi_i^+),(U_j^+,\varphi_j^+),\ i< j.$

- $U_i^+ \cap U_j^+ = \{x \in S^n : x_i > 0, x_j > 0\}$
- $\varphi_i^+(U_i^+ \cap U_j^+) = \{x \in \mathbb{R}^n : |x| < 1, \ x_{j-1} > 0\}$
- $\varphi_i^+(U_i^+ \cap U_i^+) = \{x \in \mathbb{R}^n : |x| < 1, x_i > 0\}$

$$\{|x| < 1, \ x_i > 0\} \ni (x_1, \dots, x_n) \xrightarrow{(\varphi_j^+)^{-1}} (x_1, \dots, x_{j-1}, \sqrt{1 - |x|^2}, x_j, \dots, x_n)$$

$$\varphi_i^+ \qquad \qquad \varphi_i^+ (\varphi_j^+)^{-1}$$

$$(x_1, \dots, x_{i-1}, \hat{x_i}, x_{i+1}, \dots, x_{j-1}, \sqrt{1 - |x|^2}, x_j, \dots, x_n) \varphi_i^+ (\varphi_j^+)^{-1}$$
 są

gładkie.

Podobnie sprawdza się gładkość $\varphi_j^+(\varphi_i^+)^{-1}$ oraz gładkość pozostałych odwzorowań przejścia pomiędzy wybranymi mapami.

Definicja 7. Rozmaitością gładką nazywamy parę (M,A), gdzie M jest rozmaitością topologiczną, zaś A jest atlasem na M.

 $Definicja~8.~(1)~{
m Mapa}~(U,\varphi)$ na M jest zgodna z atlasem A na M gdy (U,φ) jest zgodna z każdą mapą z A.

(2) Dwa atlasy A_1, A_2 na M są zgodne, gdy każda mapa z A_1 jest zgodna z atlasem A_2 (każda mapa z A_1 jest zgodna z każdą mapą z A_2).

Zgodność atlasów jest symetryczna i przechodnia.

Gdy A_1 jest zgodna z A_2 to rodziny funkcji rzeczywistych gładkich na (M, A_1) oraz na (M, A_2) pokrywają się. Mówimy, że atlasy A_1 i A_2 zadają strukturę tej samej rozmaitości gładkiej na rozmaitości topologicznej M.

Inny występujący w podręcznikach sposób sformalizowania pojęcia rozmaitości gładkiej

Definicja 9. A jest atlasem maksymalnym(gładkim), jeśli każda mapa na M zgodna z A należy do A.

Fakt 0.7. Każdy gładki atlas A na M zawiera się w dokładnie jednym atlasie maksymalnym (złożonym z wszystkich map na M zgodnych A).

Definicja 10. (równoważna poprzedniej definicji).

Rozmaitość gładka to para (M, A) jest M jest rozmaitością topologiczną zaś A to gładki atlas maksymalny.

Definicja 11. Funkcja $f: M \to \mathbb{R}$ jest gładka względem gładkiego atlasu A na M jeśli $\forall_{(U,\varphi)\in A} f \circ \varphi^{-1}: U \to \mathbb{R}$ jest gładka.

Fakt~0.8.

- (1) Jeśli $f: M \to \mathbb{R}$ jest gładka względem A, zaś (U, φ) jest zgodna z A, to $f \circ \varphi : \overline{U} \to \mathbb{R}$ jest gładka.
- (2) jeśli atlasy A_1, A_2 są zgodne, to $f: M \to \mathbb{R}$ jest gładka względem A_1 iff jest gładka względem A_2 iff jest gładka względem atlasu maksymalnego zawierającego A_1 i A_2 .

Warianty pojęcia rozmaitości różniczkowalnej

• mapy $(U,\varphi),(V,\psi)$ mogą być C^k -zgodne jeśli $\varphi\psi^{-1}$ oraz $\psi\varphi^{-1}$ są odwzorowaniami klasy C^k

- C^k -atlas mapy sa C^k -zgodne określa strukture C^k -rozmaitości
- C^0 -rozmaitość = rozmaitość topologiczna
- C^{∞} -rozmaitość = rozmaitość gładka
- rozmaitość analityczna gdy mapy są analitycznie zgodne
- rozmaitości zespolone, konforemne, kawałkami liniowe(PL), inne
- na C^k -rozmaitości nie da się zdefiniować pojęcia funkcji klasy C^m dla m>k, tylko co najwyżej klasy C^k

Dychotomia między C^0 i C^k , k>0

- Z każdego maksymalnego atlasu C^1 rozmaitoci można wybrać atlas złożony z map C^∞ zgodnych
- Istnieją C⁰-rozmaitości nie dopuszczające żadnej zgodnej struktury gładkiej(Quinn '82, Friedman '82)

Definiowanie rozmaitości gładkiej X za pomocą samego atlasu

Lemat 12. Niech X będzie zbiorem, $n \in \mathbb{N}$, $\{U_{\alpha}\}$ kolekcja podzbiorów w X $\forall_{\alpha} \varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$ jest różnowar-tościowe, takie że

- (1) $\forall_{\alpha} \varphi_{\alpha}(U_{\alpha}) = \overline{U_{\alpha}} \subset \mathbb{R}^n \text{ jest otwarty}$
- (2) $\forall_{\alpha,\beta} \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \text{ oraz } \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \text{ otwarte } w \mathbb{R}^n$
- (3) $gdy\ U_{\alpha} \cap U_{\beta} \neq \emptyset$ to $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \rightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ jest $gladkie(a\ nawet\ dyfeomorfizmem,\ bo\ odwrotne\ \varphi_{\alpha} \circ \varphi_{\beta}^{-1}\ tez\ jest\ gladkie)$
- (4) przeliczalnie wiele spośród U_{α} pokrywa X
- (5) $\forall_{p,q\in X},\ p\neq q\ istnieja\ \alpha,\beta\ oraz\ otwarte\ podzbiory\ V_p\subset \overline{U_\alpha},\ V_q\subset \overline{U_\beta}\ takie,\ \dot{z}e\ p\in \varphi_\alpha^{-1}(V_p),\ q\in \varphi_\beta^{-1}(V_q)$ oraz $\varphi_\alpha^{-1}(V_p)\cap \varphi_\beta^{-1}(V_q)=\emptyset$

Wówczas na X istnieje(jedyna) struktura rozmaitości topologicznej dla której zbiory U_{α} są otwarte. Ponadto rodzina $\{(U_{\alpha}, \varphi_{\alpha})\}$ tworzy wtedy gładki atlas na X.

Szkic dowodu:

- topologia na X: jako bazę bierzemy przeciwobrazy przez φ_{α} otwartych podzbiorów w $\overline{U_{\alpha}}=\varphi_{\alpha}(U_{\alpha})$
- lokalna n-euklidesowość X: jest wtedy oczywista
- nietrudo wtedy wybrać mniejszą bazę przeliczalną
- Hausdorffość topologi na X wynika z (5)

Przykład 3. Niech $\mathcal L$ będzie zbiorem wszystkich prostych na płaszczyźnie. Nie ma dogodnej topologii na $\mathcal L$

- \bullet dwa podzbiory U_h proste niepionowe, U_v proste niepoziome
- $U_v \ni L = \{y = ax + b\} \xrightarrow{\varphi_v} (a, b) \in \mathbb{R}^2$
- $U_h \ni L = \{x = cy + d\} \xrightarrow{\varphi_h} (c, d) \in \mathbb{R}^2$
- φ_h, φ_v są różnowartościowe
- $\varphi_h(U_h) = \mathbb{R}^2$, $\varphi_v(U_v) = \mathbb{R}^2$
- $U_h \cap U_v = \{ \text{ proste niepionowe i niepoziome} \} = \{ [y = ax + b] : a \neq 0 \}$
- $\varphi_h(U_h \cap U_v) = \{(a,b) \in \mathbb{R}^2 : a \neq 0\}, \ \varphi_v(U_h \cap U_v) = \{(c,d) \in \mathbb{R}^2 : c \neq 0\}$
- prosta $L = \{x = cy + d\} \in U_h \cap U_v$ po przekształceniu na równanie $y = \frac{1}{c} \cdot x \frac{d}{c}$ $(\frac{1}{c}, -\frac{d}{c}) \stackrel{\varphi_h}{\longleftarrow} L \stackrel{\varphi_v}{\longrightarrow} (c, d)$ Zatem $\varphi_h \varphi_v^{-1}(c, d) = (\frac{1}{c}, -\frac{d}{c})$ gładkie.
- $U_v \cup U_h = \mathcal{L}$
- Nietrudno(ale uciążliwie) sprawdza się (5)

Wykład 2 - 02.03.2015

Przykład 4. \mathcal{L} - rozmaitość prostych na płaszczyźnie jest dwuwymiarową rozmaitością gładką (w rzeczywistości \mathcal{L} jest homeomorficzna z wnętrzem wstęgi Möbiusa; nie jest więc homeomorficzna z żadnym podzbiorem \mathbb{R}^2

Rozmaitość gładka z brzegiem

- $\mathbb{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n \ge 0\}$ podprzestrzeń
- $\partial \mathbb{H}^n = \{ x \in \mathbb{H}^n : x_n = 0 \}, int(\mathbb{H}^n) = \{ x \in \mathbb{H}^n : x_n > 0 \}$
- dla $U \subset \mathbb{H}^n$ otwartego określamy

$$\partial U = U \cap \partial \mathbb{H}^n$$
, $intU = U \cap int(\mathbb{H}^n)$

• dla $U \subset \mathbb{H}^n$ otwartego $f: U \to \mathbb{R}$ jest **gładka**, gdy jest obcięciem do U gładkiej funkcji $\tilde{f}: \tilde{U} \to \mathbb{R}$, $\tilde{U} \subset \mathbb{R}^n$ otw $U \subset \tilde{U}$, $f = \tilde{f}|_{U}$.

Fakt 0.9. z analizy: aby rozszerzenie \tilde{f} funkcji f istniało potrzeba i wystarcza aby wszystkie pochodne cząstkowe f w int(U) w sposób ciągły rozszerzają się do ∂U .

Definicja 13. M jest gładką **rozmaitością z brzegiem** jeśli posiada atlas $(U_{\alpha}, \varphi_{\alpha})$, gdzie U_{α} są otwarte w M, $\varphi_{\alpha}: U_{\alpha} \to \mathbb{H}^n$ są homeomorfizmami na otwarty obraz $\varphi_{\alpha}(U_{\alpha}) = \overline{U_{\alpha}} \subset \mathbb{H}^n$ takie, że odwzorowania przejścia $\varphi_{\alpha}\varphi_{\beta}^{-1}$ są gładkie(dokładniej, $\varphi_{\alpha}\varphi_{\beta}^{-1}: \varphi_{\beta}(U_{\alpha}\cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha}\cap U_{\beta})$ jest gładkie, a także gładko odwracalne, czy jest dyfeomorfizmem pomiędzy tymi otwartymi podzbiorami w \mathbb{H}^n).

Fakt 0.10. Niech M będzie rozmaitością z brzegiem, $p \in M$. Jeśli w pewnej mapie $(U_{\alpha}, \varphi_{\alpha}), \ \varphi_{\alpha}(p) \in \partial \mathbb{H}^{n}$ to w każdej innej mapie $(U_{\beta}, \varphi_{\beta})$ zawierającej p mamy $\varphi_{\beta}(p) \in \partial \mathbb{H}^{n}$.

Definicja 14. $\partial M =$ zbiór punktów $p \in M$ takich, że w każdej mapie ich obraz należy do $\partial \mathbb{H}^n$. Analogicznie int(M).

Uwaga0.11. $\partial M,\ int(M)$ - to pojęcia rozmaitościowe, a nie topologiczne. ∂M

Dowód

Gdyby w pewnej mapie $(U_{\beta}, \varphi_{\beta})$, $\varphi_{\beta}(p) \in int(\mathbb{H}^n)$ to z twierdzenia o funkcji odwrotnej (o odwzorowaniu otwartym na UWr¹) obcięcie $\varphi_{\alpha}\varphi_{\beta}^{-1}$ do $int(\varphi_{\beta}(U_{\alpha} \cap U_{\beta}))$ przekształcałoby małe otoczenie otwarte $\varphi_{\beta}(p)$ dyfeomorficzne na otwarte w \mathbb{R}^n małe otoczenie punktu $\varphi_{\alpha}(p)$.

dyfeomorficzne na otwarte w \mathbb{R}^n małe otoczenie punktu $\varphi_{\alpha}(p)$. Ale obraz tego otoczenia przez $\varphi_{\alpha}\varphi_{\beta}^{-1}$ mus być zawarty w \mathbb{H}^n , wiec nie może być otwartym w \mathbb{R}^n otoczenie punktu $\varphi_{\alpha}(p) \in \partial \mathbb{H}^n$.

Uwaga 0.12. Dla rozmaitości topologicznych z brzegiem analogiczny FAKT wymaga w dowodzie twierdzneia Brouwera o niezmienniczości obszaru.

¹Niech $f:U\to W$ będzie gładka, $U,W\subset\mathbb{R}^n$ będą otwarte, $p\in U$ oraz jakobian $|f'(p)|\neq 0$. Wtedy istnieje małe otwarte otoczenie U' punktu $p\le U$ takie, że $f|_{U'}:U'\to W'$ jest dyfeomorfizmem na pewne otwarte otoczenie $f(p)\le W$

Przykład 5. Dysk $D^n = \{x \in \mathbb{R}^n : |x| \le 1\}$ jest n-rozmaitością gładką z brzegiem.

Dowód

Skonstruujemy mapy:

• mapa (U_0, φ_0) : $U_0 = \{x : |x| < 1\}; \varphi_0 : U_0 \to \mathbb{H}^n, \ \varphi_0(x_1, \dots, x_n) = (x_1, \dots, x_{n-1}, x_n + 2)$

• mapy $(U_i^{\pm}, \varphi_i^{\pm})$ $U_i^{+} = \{x \in D^n : x_i > 0\}$ $U_i^{-} = \{x \in D^n : x_i < 0\}$ $\varphi_i^{\pm}(x_1, \dots, x_n) = \{\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}, 1 - \sum_{i=1}^n x_i^2).$ Jest to bijekcja na $\mathbb{R}^{n-1} \times [0, 1) \subset \mathbb{H}^n$

Rozkłąd jednośći na rozmaitości gładkiej(także z brzegiem)

Przykład motywujący problem: jak uzasadnić, że na każdej rozmaitości M z brzegiem istnieje gładka funkcja $f:M\to\mathbb{R}$ taka, że

- ① f(p) = 0 dla $p \in \partial M$
- ② f(p) > 0 dla $p \in int(M)$

Technika pozwalająca sklejać/uzgadniać globalny obiekt z lokalnych mapowych składników.

Definicja 15. Rodzina podzbiorów $\{A_{\alpha}\}$ przestrzeni topologicznej X jest **lokalnie skończona** jeśli każdy $p \in X$ posiada otwarte otoczenie U_p takie, że $U_p \cap A_{\alpha} \neq \emptyset$ tylko dla skończenie wielu spośród A_{α} .

Definicja 16. Pokrycie $\{V_{\beta}\}$ przestrzeni X nazywamy rozdrobnieniem pokrycia $\{U_{\alpha}\}$ jeśli każdy V_{β} zawiera się w pewnym U_{α} .

Uwaga 0.13. Relacja bycia rozdrobnieniem jest przechodnia.

Definicja 17. Przestrzeń topologiczna jest **parazwarta** jeśli każde pokrycie $\{U_{\alpha}\}$ zbiorami otwartymi posiada lokalnie skończone rozdrobnienie $\{V_{\beta}\}$ jest będące pokryciem zbiorami otwartymi.

Lemat 18. Każda rozmaitość topologiczna jest parazwarta[Lee,str 36-37].

Uwaga 0.14. Zawsze można przyjąć, że rozdrobnienie o którym mowa w lemacie(a raczej definicji parazwartości zastosowanej do rozmaitości) składa się ze zbiorów mapowych i prezwartych(ich domknięcia w rozmaitościach są zwarte). Dowód

Niech $\{U_{\alpha}\}$ będzie dowolnym pokryciem M zbiorami otwartymi. Łatwo znaleźć rozdrobnienie $\{U'_{\gamma}\} \prec \{U_{\alpha}\}$ złożone ze zbiorów prezwartych, mapowych. Na przykład $\{U \cap V_{\xi} : U \in \{U_{\alpha}\}, V_{\xi} - \text{mapowy w } M\}$. Stosując lemat do rodziny $\{U'_{\gamma}\}$, dostajemy $\{V_{\beta}\} \prec \{U'_{\gamma}\}$ lokalnie skończone. Ponieważ każdy V_{β} zawiera się w pewnym U'_{γ} mapowym i prezwartym, więc sam jest mapowy i prezwarty. Z przechodniości $\{V_{\beta}\} \prec \{U_{\alpha}\}$ jest jak w tezie.

Uwaga 0.15. Każda lokalnie skończona rodzina $\{A_{\alpha}\}$ podzbiorów prezwartych przestrzeni X ma następującą własność: dla każdego A_{α_0} podrodziny $\{A_{\alpha}: A_{\alpha} \cap A_{\alpha_0} \neq \emptyset\}$ jest skończona. Dowód

Gdyby ta podrodzina była nieskończona, moblibyśmy wybrać ciąg $A_{\alpha_i},\ i\in\mathbb{N}$ z tej podrodziny, oraz ciąg punktów $X_i\in A_{\alpha_i}\cap A_0$.

Ciąg (x_i) ma punkt skupienia w zwartym domknięciu $cl(A_{\alpha_0})$. Oznaczmy go p. Dowolne otocznie U_p punktu

p zawiera nieskończenie wiele x_i , więc przecina niepusto nieskończenie wiele A_{α_i} . Sprzeczność z lokalną skończonością rodziny A_{α} .

Uwaga 0.16. Mając już mapowość i prezwartość zbiorów z rozdrobnienia $\{V_{\beta}\}$ możemy dodatkowo zapewnić sobie istnienie zwartych zbiorów $D_{\beta} \subset V_{\beta}$ takich, że $\bigcup_{\beta} D_{\beta} = M$. Dowód

O każdym V_{β} możemy myśleć jak o otwartym podzbiorze w \mathbb{R}^n (utożsamiając go za pomocą odwzorowania mapowego z odpowiednikiem $\overline{V_{\beta}} \subset \mathbb{R}^n$

- Każdy V_{β} jest wstępującą suma mniejszych zbiorów $V_{\beta,k}: k \in \mathbb{N}$ otwartych w \mathbb{R}^n których domknięcia $cl(V_{\beta,k}) \subset V_{\beta}$ i są zwarte. (na przykład $V_{\beta,k} = B(x_0,k) \cap \{x \in V_{\beta} \ d(x,V_{\beta}^c < \frac{1}{k}\})$
- Niech $V_{\beta_1}, \ldots, V_{\beta_m}$ będą zbiorami z $\{V_{\beta}\}$ niepusto przecinające się z V_{β_0} (jest ich skończenie wiele). Wówczas $V_{\beta_1}, \ldots, V_{\beta_m}$ wraz z $V_{\beta_0,k}: k \in \mathbb{N}$ stanowią pokrycie zwartgo $cl(V_{\beta_1})$. Można z niego wybrać skończone podpokrycie postaci

$$V_{\beta_1},\ldots,V_{\beta_m},V_{\beta_0,k_0}$$

Oznacza to, że zastępując w $\{V_{\beta}\}$ zbiór V_{β_0} przez V_{β,k_0} dostajemy nowe pokrycie M(z tym że $cl(V_{\beta,k_0})$ jest zwarty).

Powtarzamy kolejno dla wszystkich V_{β} i bierzemy $D_{\beta}=cl(V_{\beta,k_{\beta}})$

Wykład 3 - 09.03.2015

Dla dowolnego otwartego pokrycia $\{U_{\alpha}\}$ rozmaitości topologicznej istnieje skończone rozdrobnienie $\{V_{\beta}\} \prec \{U_{\alpha}\}$ składające się ze zbiorów mapowych, prezwartych oraz rodzina $\{D_{\beta}\}$ zwartych podzbiorów $D_{\beta} \subset V_{\beta}$ która dalej jest pokryciem M.

Definicja 19. Dla funkcji rzeczywistej $f: X \to \mathbb{R}$ nośnik f to $supp(f) = cl(\{x \in X: f(x) \neq 0\})$.

Fakt 0.17. Dla dowolnego otwartego $\Omega \subset \mathbb{R}^n$ (a także $\Omega \subset \mathbb{R}^N_+$) i dowolnego zwartego $D \subset \Omega$ istnieje gładka $f: \mathbb{R}^n \to \mathbb{R}$ $(f: \mathbb{R}^n_+ \to \mathbb{R})$. także, że

- ① $f \ge 0$
- ② $supp(f) \subset \Omega$
- (3) f(x) > 0 dla $x \in D$

Twierdzenie 20. Dla każdego otwartego pokrycia $\{U_{\alpha}\}$ rozmaitości gładkiej M istnieje rodzina $\{f_j\}$ gładkich funkcji $f_j: M \to \mathbb{R}$ taka, że

- ① $f_j \ge 0$
- 2 każdy nośnik $supp(f_i)$ zawiera się w pewnym U_{α}
- $\bigoplus_{x \in M} \sum_{j} f_j(x) = 1$

Rodzina $\{f_i\}$ jak wyżej nazywa się rozkładem jedności wpisanym w pokrycie $\{U_{\alpha}\}$. Dowód

- Niech $\{V_j\} \leq \{U_\alpha\}$ będzie lokalnie skończonym pokryciem otwartym prezwartymi zbiorami mapowymi i niech $D_i \subset V_i$ będą zbiorami zwartymi, dalej pokrywającymi M.
- Dzięki faktowi z \mathbb{R}^n dla każdego j istnieje gładka funkcja $h_j: M \to \mathbb{R}$ taka, że
 - (1) $h_j \ge 0$
 - (2) $supp(h_i) \subset V_i$
 - (3) $h_j(x) > 0$ dla $x \in D_j$
- h_i definiujemy następująco:

- $rozważmy mapę \varphi_j : V_j = \overline{V_j} \subset \mathbb{R}^n$
- $\ \textit{Fakt} \ \underline{z} \ \mathbb{R}^n \ \textit{stosujemy do} \ \Omega = \overline{V_j}, \ D = \overline{D_j} \ \textit{otrzymując} \ \overline{h_j} : \mathbb{R}^n \to \mathbb{R}, \ \textit{supp}(\overline{h_j}) \subset \overline{V_j}, \ \overline{h_j}(x) > 0 \ \textit{dla}$

$$- h_j(x) = \begin{cases} \overline{h_j} \circ \varphi_j(x) & dla \ x \in V_j \subset M \\ 0 & dla \ x \in M \backslash V_j \end{cases}$$

- h_i oczywiście spełnia ②, ③ i ④
- $-h_j: M \to \mathbb{R} \ jest \ gladka, \ bo$
 - 1) wystarczy pokazać, że h_j jest gładka na pewnym otoczeniu każdego punktu
 - 2) na otoczeniach punktów z V_j oczywiście jest gładka, bo po wyrażeniu w mapie (V_j, φ_j) jest
 - 3) dla $p \in M \setminus V_i$ istnieje otwarte otoczenie $p \in M$ rozłączne z nośnikiem $supp(h_i)$. Na tym otoczeniu $h_j \equiv 0$, więc jest gładka
- Niech $h(x) = \sum_{i} h_{j}(x)$ co ma sens, bo nośniki $supp(h_{j})$ są rodziną lokalnie skończoną.

Z lokalnej skończoności wynika też gładkość $h(bo\ lokalnie\ na\ otoczeniach\ punktów\ h\ jest\ sumą\ skończenie\ wielu\ funkcji\ gładkich).$ Mamy też $\forall_{x\in M}\ h(x)>0,\ bo\ D_j\ pokrywaja\ M$

- Określmy
$$f_j(x) = \frac{h_j(x)}{h(x)}$$
, $f_j: M \to \mathbb{R}$ gładka, $supp(f_i) = supp(h_j) \subset V_j$, $f_j \ge 0$
$$\sum_j f_j(x) = \sum_j \frac{h_j(x)}{h(x)} = \frac{h(x)}{h(x)} = 1$$

Przykład 6. Pytanie o istnienie gładkiej $f:M\to\mathbb{R}$ takiej, że f(0)=0 dla $x\in\partial M$ oraz f(p)>0 dla $p \in int(M)$.

Niech $\{U_{\alpha}\}$ będzie dowolnym pokryciem M zbiorami mapowymi a $f_{\alpha}:U_{\alpha}\to\mathbb{R}$ rodziną funkcji gładkich.

- Jeśli $U_{\alpha} \cap \partial M \neq \emptyset$ to $f_{\alpha} = \overline{f_{\alpha}} \circ \varphi_{\alpha}$ gdzie $\overline{f_{\alpha}} : U_{\alpha} \to \mathbb{R}$, gdzie $\overline{f_{\alpha}}(x_1, \dots, x_n) = x_n$
- Jeśli $U_{\alpha} \cap \partial M = \emptyset$ to $f_{\alpha} \equiv 1$

Niech $\{h_{\beta}\}$ będzie rozkładem jedności wpisanym w $\{U_{\alpha}\}$. Dla każdego β wybieramy $\alpha(\beta)$ takie, że $supp(h_{\beta}) \subset$

$$\bigcup_{\alpha(\beta)}. \text{ Definiujemy } h'_{\beta} = \begin{cases} h_{\beta} \cdot f_{\alpha(\beta)} \\ 0 \end{cases} \text{ poza } \bigcup_{\alpha(\beta)}$$

 $\bigcup_{\alpha(\beta)}. \text{ Definiujemy } h_\beta' = \begin{cases} h_\beta \cdot f_{\alpha(\beta)} \\ 0 & \text{poza} \bigcup_{\alpha(\beta)} \\ h_\beta' : M \to \mathbb{R} \text{ jest gładka, } supp(h_\beta') \subset supp(h_\beta) \text{ więc rodzina } \{supp(h_\beta')\} \text{ jest lokalnie skończona.} \\ \text{Definujemy } f(x) = \sum_\beta h_\beta'(x). \end{cases}$

Dla $p \in \partial M$, $\forall_{\beta} h'_{\beta}(p) = 0$ więc f(p) = 0 Dla $p \in int(M)$, $\exists_{\beta} : h_{\beta}(p) > 0$. Wtedy $h'_{\beta}(p) > 0$ oraz $h'_{\beta'}(p) \ge 0$ dla $\beta' \ne \beta$ więc suma f(p) > 0.

Przykład 7. Niech F_1, F_2 będą rozłącznymi domkniętymi podzbiorami gładkiej rozmaitości M.

Wówczas istnieje gładka funkcja $f: M \to [0,1]$ taka, że $f|_{F_1} \equiv 1$ oraz $f|_{F_2} \equiv 0$ Dowód

Niech $U_i = M \setminus F_i$. $\{U_1, U_2\}$ jest otwartym pokryciem M. Niech $\{f_i\}$ będzie rozkładem jedności wpisanym w $\{U_1, U_2\}$. Określmy $f(x) = \sum_{supp(f_j) \subset U_2} f_j(x)$. Jest ona dobrze określona i gładka, oraz $im(f) \subset [0, 1]$. Dla

 $x \in F_1$ wszystkie nośniki $supp(f_j)$ zawierające x zawierają się w U_2 . Zatem $f(x) = \sum_i f_i(x) = 1$.

Dla $x \in F_2$ nośniki $supp(f_j)$ zawierające x nie zawierają się w U_2 . Stąd f(x) = 0.

Różniczkowalność odwzorowań pomiędzy rozmaitościami

Niech M^m, N^n będą rozmaitościami gładkimi. Niech $f: M \to N$ będzie ciągłe, $p \in M$, $f(p) = q \in N$.

 $Definicja\ 21.\ (1)\ f$ jest C^r – różniczkowalna w punkcie $p(\text{dla }r\in\mathbb{N}\cup\{\infty\})$ jeśli dla dowolnych map (U,φ) wokół p i (V,ψ) wokół q złożenie

$$\psi \circ f \circ \varphi^{-1} : \mathbb{R}^m \to \mathbb{R}^n \ \varphi[U \cap f^{-1}(V)] \to \varphi(V)$$

jest C^r różniczkowalne w punkcie $\varphi(p)$.

(2) f jest klasy C^r na otoczeniu p, jeśli dla dowolnych map (U, φ) wokół p i (V, ψ) wokół q złożenie $\varphi^{-1} \circ f \circ \psi$ posiada pochodne cząstkowe rzędów $\leq r$ na pewnym otoczeniu $\varphi(p)$ i są one tam ciągłe.

 $\hat{f} = \psi f \varphi^{-1}$ nazywamy wyrażeniem odwzorowania f w mapach (U, φ) , (V, ψ) (lub w lokalnych współrzędnych zadanych przez te mapy).

Fakt 0.18. Jeśli f wyrażone w mapach $(U,\varphi), \ (V,\psi)$ jest C^r różniczkowalne w punkcie $\varphi(p)$, to wyrażone w innych gładko zgodnych mapach $(U',\varphi'), \ (V',\psi')$ wokół odpowiednio p i q też jest C^r -różniczkowalna w punkcie $\varphi'(p)$. Zatem C^r różniczkowalność w punkcie p wystarczy sprawdzić dla jednej mapy wokół p i q. Ten sam fakt zachodzi dla C^r -różniczkowalność na otoczeniach punktów $\varphi(p), \ \varphi'(p), \ p$. Dowód

Niech $\hat{f} = \psi \circ f \circ \varphi^{-1}$, $\hat{f} = \psi' \circ f(\varphi')^{-1}$.

Niech $\alpha = \varphi(\varphi')^{-1}$ oraz $\beta = \psi'\psi^{-1}$ będą odwzorowaniami przejścia. Są to gładkie dyfeomorfizmy pomiędzy odpowiednio otwartymi podzbiorami z \mathbb{R}^n i z \mathbb{R}^m odpowiednio. Zachodzi $\hat{f}(f) = \beta \circ \hat{f} \circ \alpha$, bo $\beta \hat{f} \alpha = \psi'\psi^{-1}\psi f \varphi^{-1}\varphi(\varphi')^{-1} = \psi' f(\varphi')^{-1} = \hat{f}$

- obie strony są określone na pewnych otwartych podzbiorach \mathbb{R}^n zawierających punkt $\varphi^{-1}(p)$ zaś równość zachodzi na ich przekroju
- $\alpha(\varphi'(p)) = \varphi(p)$.

Uwaga 0.19. Aby $f:M\to N$ była C^r różniczkowalna potrzeba i wystarcza aby warunek zachodził dla par map z wybranych atlasów na M i N.

Wykład 4 - 16.03.2015

Uwaga~0.20. Odwzorowanie $f:M\to N$ jest gładkie na pewnym otoczeniu $p\in M$ wtedy i tylko wtedy, gdy odwzorowanie między rozmaitościami jest gładkie.

Fakt 0.21. Złożenie gładkich odwzorowań pomiędzy rozmaitościami jest gładkie. Dowód

Niech $f: M \to N$, $g: N \to P$ beda gładkie.

Niech $p \in M$, q = f(p), s = g(q). Rozważmy mapy wokół tych punktów, odpowiednio (U, φ) , (V, ψ) , (W, ξ) . Wiemy, że $\psi f \varphi^{-1}$ oraz $\xi g \psi^{-1}$ są gładkie na swoich dziedzinach. Pytamy, czy $\xi(g \circ f) \varphi^{-1}$ jest gładkie na otoczeniu punktu $\varphi(p)$.

Ale $\xi(g \circ f)\varphi^{-1} = (\xi g \psi^{-1}) \circ (\psi g \varphi^{-1})$. Stąd wynika gładkość na otoczeniu $\varphi(p)$.

Definicja 22. Rzędem odwzorowania $f: M \to N$ C^1 -różniczkowalnego w punkcie $p \in M$ nazywamy rząd macierzy pierwszych pochodnych cząstkowych odwzorowania mapowego w mapie $\psi f \varphi^{-1}$ w punkcie $\varphi(p)$, gdzie (U, φ) , (V, ψ) to mapy odpowiednio wokół p oraz f(p).

Fakt 0.22. Powyższa liczba nie zależy od wyboru map.

Dowód

Porównujemy rząd macierzy $D\hat{f} = D(\psi f \varphi^{-1})$ z rzędem macierzy $D\hat{f} = D(\psi' f (\varphi')^{-1})$. Ale $\hat{f} = \beta \circ \hat{f} \circ \alpha$. Ale $\hat{f} = D\beta \circ D\hat{f} \circ D\alpha$, przy czym $D\beta$, $D\alpha$ są macierzami nieosobliwymi. Z algebry liniowej wiemy, że mnożenie macierzy przez macierz nieosobliwą nie zmienia jej rzędu.

Wniosek 23. Zerowanie się pierwszej pochodnej w punkcie jest dobrze określonym pojęciem(niezależnym od wyboru map) dla odwzorowań pomiędzy rozmaitościami.

Definicja 24. Gładkie odwzorowanie pomiędzy rozmaitościami $f:M\to N$ jest dyfeomorfizmem, gdy jest wzajemnie jednoznaczne i odwrotne $f:^{-1}N\to M$ też jest gładkie.

Uwaga 0.23. Dyfeomorficzne rozmaitości można rozważać jako jednakowe w teorii rozmaitości.

${\bf Dygresja~o~dyfeomorfizmach}$

- 1) C^1 vs C^∞ : każda C^1 rozmaitość posiada zgodną strukturę z C^∞ . Jeśli dwie C^∞ rozmaitości są C^1 —dyfeomorficzne, to są także C^∞ —dyfeomorficzne. Klasyfikacja C^1 —rozmaitości z dokładnością do C^1 —dyfeomorfizmów jest taka sama, jak klasyfikacja C^∞ —rozmaitości z dokładnością do C^∞ —dyfeomorfizmów.
- 2) C^0 vs C^∞ : istnieją C^0 rozmaitości nie posiadające żadnej C^∞ struktury. Istnieją C^0 rozmaitości posiadające wiele C^0 –zgodnych, ale parami nie C^∞ –dyfeomorficznych struktur gładkich.

Naturalne źrógło rozmaitości dłakich: iloraz przez działanie nieciągłej grupy dyfeomorfizmów. Niech M będzie rozmaitością gładką.

Definicja 25. Grupa G dyfeomorfizmów M to zbiór dyfeomorfizmów $g:M\to M$ zamknięty na składanie oraz branie odwrotności.

Definicja 26. Grupa dyfeomorfizmów M jest nieciągła, jeśli każdy punkt $p \in M$ posiada otwarte otoczenie U_p , takie że $\{g(U_p): g \in G\}$ jest rodziną parami rozłącznych zbiorów.

Iloraz M/G - przestrzeń ilorazowa względem relacji równoważności \sim określonych przez $p \sim q \Leftrightarrow \exists_{g \in G}: q = g(p)$ z topologią ilorazową.

 $Uwaga~0.24.~\forall_{p\in M}$ jego klasa abstrakcji to zbiór wszystkich $\{g(p):~g\in G\}$ nazywamy orbitą punktu p względem działania G

Uwaga~0.25. topologia ilorazowa: zbiór klas abstrakcji(orbit) jest otwarty w topologii ilorazowej, gdy zbiór w M będący sumą tych orbit jest otwarty w M.

Lemat 27. Jeśli G jest nieciągłą grupą dyfeomorfizmów gładkiej rozmaitości M to M/G jest gładką rozmaitością(posiada naturalną strukturę gładką) wymiaru tego samego, co M i taką, że odwzorowanie ilorazowe $i: M \to M/G$ jest gładkie, a nawet jest lokalnym dyfeomorfizmem. Dowód

Niech [p] będzie orbitą punktu p i U_p jak w definicji nieciągłości grupy. Bez straty ogólności możemy założyć, że jest ono otoczeniem mapowym, z mapą $\psi_p:U_p\to\mathbb{R}^n$. Rozważmy zbiór $U_{[p]}=\{[q]:\ q\in U_p\}\subset M/G$. Zauważmy, że jest on otwarty w przestrzeni ilorazowej. Ponadto $[p]\in U_{[p]}$. Rozważmy $i_p=i\big|_{U_p}:U_p\to U_{[p]},\ i_p(q)=[q]$. Jest to bijekcja (surjektywność oczywista, injektywność wynika z nieciągłości grupy). Ponadto jest to homeomorfizm (ciągłość wynika z ciągłości i, ciągłość odwrotnego z tego, że dla dowolnego otwartego $V\subset U_p$ jest otwarty w M/G więc i $U_{[p]}$ także). Definujemy mapę $\varphi_p:U_{[p]}\to\mathbb{R}^n$ przez $\varphi_p=\psi_p\circ i_p^{-1}$. Jest ona homeomorfizmem na obraz $\overline{U}_p\subset\mathbb{R}^n$.

Twierdzimy, że rodzina map $(U_{[p]}, \varphi_p)$ zadaje strukturę rozmaitości gładkiej (tworzy atlas gładki). Jest tak, ponieważ

- $[p] \in U_{[p]}$, wiec zbiory $U_{[p]}$ pokrywają całe M/G
- Zachodzi także gładka zgodność:
 - dla innego zbioru mapowego $U_{[q]} \subset M/G$ mamy homeomorfizm $i_q: U_q \to U_{[q]}$ oraz mapę $\varphi_q: U_{[q]} \to \mathbb{R}^n, \ \varphi_q = \psi_q \circ i_1^{-1}$
 - $\begin{array}{l} -\ odwzorowanie\ przejścia\ \varphi_p\circ\varphi_q^{-1}=\psi_p\circ i_p^{-1}i_q\psi_q^{-1}.\ Dla\ y=i_p^{-1}i_q(x)\ mamy\ i_q(x)=i_p(y)\Rightarrow [x]=[y],\\ więc\ y=g_x(x)\ dla\ pewnego\ g_x\in G. \end{array}$
 - Funkcja $f: x \to g_x: U_q \cap i_q^{-1}(U_{[p]}) \to G$. Z ciągłości mamy stałość na komponentach spójnych zbioru $U_q \cap i_q^{-1}(U_{[p]})$) funkcji $p^{-1}i_q: x \to y_x$ (w przeciwnym wypadku obraz spójnej składowej przez odwzorowanie ciągłe $i_p^{-1}i_q$ przecięłoby kilka kopii zbiorów postaci $q(U_p)$, co jest niemożliwe).
 - komponenty spójności $U_q \cap i_q^{-1}(U_{[p]})$ są otwarte w M. Na każdej takiej składowej mamy $i_p^{-1} \circ i_q(x) = g_x \cdot x$ dla ustalonego g. Zatem $\varphi_p \varphi_q^{-1} = \psi_p(i_p^{-1}i_q)\psi_q^{-1}$ jest zadana na $\psi_q(???)$ wzorem $\varphi_p \varphi_q^{-1}(x) = \psi_p \left(g(\psi_q^{-1}(x))\right)$.

Tu nie wiem co dalej jest, nie mogę odczytać. Podrzuci ktoś na kosa@azs.pwrwroc.pl?

Uzupełnienie: i(x) = [x]. Niech $p \in M$. Rozważmy mapy (U_p, ψ_p) w M oraz $(U_{[p]}, \varphi_p)$ w M/G. Wyraźmy i wokół p w tych mapach: $\hat{i} = \varphi_p i_p \psi_p^{-1} = \psi_p i_p^{-1} i \psi_p^{-1} = id$ - jest to odwzorowanie gładkie i lokalnie gładko odwracalne.

Wykład 5 - 23.03.2015

Przypomnienie

G jest nieciągłą grupą dyfeomorfizmów rozmaitości M gdy dla każdego punktu p istnieje otwarte otocznie U_p ,

takie że $\{g(U_p): g \in G\}$ są parami rozłączne.

M/G - $iloraz(przestrzeń\ orbit)\ jest\ rozmaitością\ wymiaru\ dim(M/G)=\dim M\ i\ t.\'ze\ i:M\to G/M\ jest\ lokalnie\ dyfeomorfizmem.$

Struktura gładka na M/G: dla U_p jak wyżej mapowego, z mapą (U_p, ψ_p) tworzymy mapę $(U_{[p]}, \varphi_p)$ na M/G, gdzie $U_{[p]} = \{[x] : x \in U_p\}, \ \varphi_p = \psi_p \circ i_p^{-1}$ $i_p = i\big|_{U_p}: \ U_p \to U_{[p]}.$

 $\operatorname{Przykład} 8. \ \mathbb{Z}^n$ działa na \mathbb{R}^n przez przesunięcia.

 $\mathbb{R}^n/\mathbb{Z}^n=T^n$ - n-wymiarowy torus.

 $Uwaga\ 0.26.\ \mathbb{R}^n/\mathbb{Z}^n\cong (S^1)^n$

Przykład 9. \mathbb{Z} działa na \mathbb{R} działa na $S^1 \times \mathbb{R}$ (współrzędne θ na S^1 , t na \mathbb{R}).

 $k \in \mathbb{Z}$ działa przez $k(\theta, t) = ((-1)^k \theta, t + k)$.

Iloraz $S^1 \times \mathbb{R}/\mathbb{Z}$ jest tak zwaną butelką Kleina.

Uwaga 0.27. Iloraz M/G dla nieciągłego działania grupy dyfeomorfizmów G na rozmaitość M z niepustym brzegiem jest rozmaitością z brzegiem.

Przykład10. $\mathbb Z$ działa na $[-1,1]\times \mathbb R.$

 $k(x,y) = ((-1)^k \cdot x, y + k)$

Iloraz $[-1,1] \times \mathbb{R}/\mathbb{Z}$ to wstęga Möbiusa(gładka 2-wymiarowa rozmaitość z niepustym brzegiem).

 $Conf_n(M)$ - przestrzeń konfiguracyjna n-elementowych podzbiorów gładkiej rozmaitości M (bez brzegu).

Wyrazimy $Conf_n(M)$ jako iloraz pewnej nieciągłej grupy dyfeomorfizmów.

Rozważmy produkt kartezjański $\underbrace{M \times \ldots \times M}_{n,\text{razy}}$ i tak zwaną uogólnioną przekątną $\Delta^n(M)$ taką że $x_i = x_j$ dla

pewnych $i \neq j$

 $\Delta^n(M)$ jest domknięta w $M \times \ldots \times M$ (skończona suma zbiorów zadanych równaniami $x_i = x_j$, z których kazdy jest domknięty).

 $M \times \ldots \times M \setminus \Delta^n(M)$ jest otwartym podzbiorem, składa się z (x_1, \ldots, x_n) o parami różnych x_i - jest to rozmaitość gładka wymiaru $n \cdot \dim M$.

Grupa permutacji S_n działa na $M \times \ldots \times M \setminus \Delta^n(M)$ przez dyfeomorfizmy ($\sigma \in S_n$)

$$\sigma(x_1,\ldots,x_n) = (x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

 $[M \times \ldots \times M \setminus \Delta^n(M)]/S_n = Conf_n(M)$ jako zbiór.

Pokażemy, że to działanie S_n na $M \times \ldots \times M \setminus \Delta^n(M)$ jest nieciągłe.

Niech $p = (x_1, \ldots, x_n) \in M \times \ldots \times \Delta^n(M)$. Niech U_1, \ldots, U_n będą otwartymi, parami rozłącznymi otoczeniami $(x_1, \ldots, x_n \le M)$.

Niech $U_p = U_1 \times \ldots \times U_n$ będzie otwartym otoczeniem $p \le M \times \ldots \times M \setminus \Delta^n(M)$.

 $\sigma(U_p) = U_{\sigma(1)} \times \ldots \times U_{\sigma(n)}$

Stad $\sigma(U_p)$: $\sigma \in S_n$ są parami rozłączne.

Klejenie rozmaitości wzdłuż komponent brzegu

Otoczenie kołnierzowe

Niech M będzie n-wymiarową rozmaitością gładką, B- komponentą brzegu ∂M .

Twierdzenie 28. Istnieje dyfeomorficzne włożenie(czyli dyfeo na obraz) $k: B \times [0,1) \to M$ na otwarte otoczenie U komponenty $B \le M$ takie, że k(x,0) = x dla $x \in B$.

Dowód za kilka wykładów.

Ćwiczenie. Produkt rozmaitości bez brzegu z rozmaitością z brzegiem jest rozmaitością z brzegiem.

 $M_1, B_1 \subset \partial M_1, M_2, B_2 \subset \partial M_2$ jak wyżej. $f: B_1 \to B_2$ - dyfeomorfizm(sklejający).

 $M_1 \sup_f M_2 = M_1 \sqcup M_2 / \sim$

gdzie $M_1 \supset B_1 \ni x \sim f(x) \in B_2 \subset M_2/2$ - elementowe klasy abstrakcji/

oraz poza tym 1-elementowe klasy abstrakcji.

Struktura gładka na przestrzeni $M_1 \cup_f M_2$.

Wybieramy $k_i: B_i \times [0,1) \to M_i$ wybrane otoczenia kołnierzowe. Zbiory $U_i \subset M_i$ utożsamiamy z produktami $B_i \times [0,1)$.

Trzy rodzaje map na $M_1 \cup_f M_2$

- ① Dla dowolnej mapy (U, φ) na M_1 obcinamy ją do $U \setminus B_1$.
- 2 Analogicznie, dla dowolnej mapy (U, φ) na M_2 obcinamy ją do $U \setminus B_2$.
- $\begin{array}{ll} \textcircled{3} & \textit{dla dowolnej mapy } (W, \psi) \ \textit{na} \ B_1, \ \psi : W \rightarrow \overline{W} \subset \mathbb{R}^{n-1} \ \textit{rozważamy otwarty zbiór} \ W \times [0,1) \cup_{f \big|_{W}} f(W) \times \\ [0,1) &= \tilde{W} \subset M_1 \cup_{f} M_2. \\ \tilde{\psi} : \tilde{W} \rightarrow \overline{\tilde{W}} \subset \mathbb{R}^n \\ \psi(x,t) &= \begin{cases} (\psi(x), -t) & \textit{dla } (x,t) \in U_1 \\ (\psi(x)f^{-1}(x),t) & \textit{dla } (x,t) \in U_2 \end{cases} \\ \tilde{\psi}(\tilde{W}) &= W \times (-1,1) \subset \mathbb{R}^n \end{aligned}$

Fakt 0.28. Dla $x \in B_1$ $\tilde{\psi}(x,0) = \tilde{\psi}(f(x),0)$, stąd $\tilde{\psi}$ jest dobrze określone na $M_1 \cup_f M_2$. $\tilde{\psi}: \tilde{W} \to W \times (-1,1)$ jest homeomorfizmem. Zbiory mapowe postaci ①,②,③ pokrywają $M_1 \cup_f M_2$.

Gładka zgodność map postaci ①,②,③ zachodzi(ćwiczenie).

Uwaga 0.29. $M_1 \cup_f M_2$ jako rozmaitość gładka wydaje się zależeć nie tylko od f, ale też od wyboru otoczeń kołnierzowych k_1 i k_2 . W istocie jednak, z dokładnością do dyfeomorfizmu, $M_1 \cup_f M_2$ nie zależy od wyboru k_1, k_2 , bo

latwe ćwiczenie Jeśli k_1, k_1' są podobnie położone w M_1 , tzn istnieje homeomorfizm $h: M_1 \to M_1$ taki, że $k_1'\big|_{B_1 \times [0, \frac{1}{2})} = h \circ k_1\big|_{B_1 \times [0, \frac{1}{2})}$ to $M_1 \cup_{f, k_1, k_2} M_2 \cong M_1 \cup_{f, k_1', k_2} M_2$

TRUDNY Każde 2 otoczenia kołnierzowe komponenty B_1 brzegu ∂M_1 są podobnie położone.

Fakt 0.30. Ustalmy otoczenia kołnierzowe k_1, k_2 . Jeśli $f_0, f_1: B_1 \to B_2$ są izotopijnymi dyfeomorfizmami(tzn istnieje gładkie $F: [0,1] \times B_1 \to B_2$ takie, że oznaczając przez $F_t: B_1 \to B_2$ odwzorowanie $F_t(x) = F(t,x)$ mamy $f_0 - f_0, \ F_1 = f_1 \ F_t$ jest dyfeomorfizmem dla każdego $t \in [0,1]$). to $M_1 \cup_{f_0,k_1,k_2} M_2$ oraz $M_1 \cup_{f_1,k_1,k_2} M_2$ są dyfeomorficzne.

Definicja 29. Niech M_1, M_2 będą rozmaitościami wymiaru n, oraz $D_i \subset M_i$ będą kulami n-wymiarowymi zawartymi w mapowych otoczeniach we wnętrzach $ind(M_i)$.

 $M_i \setminus ind(D_i)$ są rozmaitościmi z brzegiem, oraz $D_i = \partial D_i$ są komponentami brzegu w M_i . Jako że $B_i \cong S^{n-1}$, to istnieje dyfeomorfizm $f: B_1 \to B_2$.

 $[M_1 \setminus ind(D_1)] \cup_f [M_2 \setminus \int (D_2)] = M_1 \# M_2$ nazywamy sumą spójną rozmaitości M_1 i M_2 .

Uwaga~0.31. Jeśli M_i jest spójna, to $M_i \setminus int(D_i)$ z dokładnością do dyfeomorfizmu nie zależy od wyboru D_i . Uwaga~0.32. Istnieją dokładnie dwie klasy izotopii dyfeomorfizmów $f: S^{n-1} \to S^{n-1}$ [zachowujące orientacje, oraz zmieniające orientacje].

Wniosek 30. Dla spójnych M_i są conajwyżej dwie rozmaitości będące sumą spójną $M_1 \# M_2$ W przypadku gdy M_i są orientowalne to istnieje kanoniczny wybór jednej spośród tych dwóch sum spójnych.

Klasyfikacja zamkniętych (zwartych, bez brzegu) powierzchni (2-rozmaitości) spójnych.

2 serie(obie nieskończone): Seria pierwsza(orientowalne): $S^2, T^2 = S^1 \times S^1, T^2 \# T^2, T^2 \# T^2, \dots$ Seria druga(nieorientowalne) $\mathbb{R}P^2 = S^2/\mathbb{Z}_2$ - płaszczyzna rzutowa $\mathbb{R}P^2 \# \mathbb{R}P^2$ - butelka Kleina oraz dalej.

Wykład 7 - 20.04.2015

 $Gladkie\ pole\ wektorowe\ na\ M^n\ to$

$$X: M \to TM \ takie \ \dot{z}e \ \forall_{p \in M} \ X(p) \in TpM \subset TM$$

- $gladkie\ jako\ odwzorowanie\ rozmaitości\ M o TM\ lub\ równoważnie$
- wyrażone w lokalnych mapach (U,φ) jako $X(p)=\sum\limits_{i=1}^n b_i(p) \frac{\partial}{\partial \varphi_i}(p)$ ma gładki współczynnik $b_i:U\to$ \mathbb{R} (jako funkcje rzeczywiste).

 $\textbf{Własności: } Suma \ (X+Y)(p) = X(p) + Y(p) \ gładkich pół wektorowych jest gładkim polem wektorowym.$ Podobnie, iloczyn $(f \cdot X)(p) = f(p)X(p)$ gładkiego pola wektorowego X i gładkiej funkcji $f : M \to \mathbb{R}$ jest qładkim polem wektorowym.

 $Definicja\ 31$. Rodzine wszystkich pól wektorowych na M oznaczamy przez $C^{\infty}(TM)$ lub $\mathcal{X}(M)$. Algebraicznie jest to moduł na pierścieniu $C^{\infty}(M)$ gładkich funkcji rzeczywistych na M.

 $Uwaqa\ 0.33$. Gładkie pola wektorowe na otwartych $U\subset\mathbb{R}^n$ lub H^n maja postać:

$$X(x) = \sum_{i=1}^{n} a_i(x) \frac{\partial}{\partial x_i}(x)$$

dla pewnych gładkich funkcji $a_i: U \to \mathbb{R}$. Będziemy też pisać $X(x) = [a_1(x), \dots, a_n(x)] \in \mathbb{R}^n \cong T_xU$.

Dygresja dla $p \in \partial M$, przestrzeń styczną TpM definiuje się tak samo, dopuszczając krzywe $\gamma: [a,b) \to M$, lub $\gamma:(a,b]\to M$ z punktamy bazowymi a,b odpowiednio.

 $TM = \bigcup_{p \in M} TpM$ jest rozmaitością z brzegiem $\partial(TM).$

dla map (U,φ) na Mdostajemy mapę $(TU,\tilde{\varphi}$ na $TM,\ TU=\bigcup_{p\in U}TpU.$

 $\tilde{\varphi}: TU \to \varphi(U) \times \mathbb{R}^n \subset H^n \times \mathbb{R}^n \cong H^{2n}$

Jeśli (U, φ) zahacza o ∂M , to $(TU, \tilde{\varphi})$ zahacza o $\partial (TM)$.

Przykład 11. Wyznaczanie pól wektorowych o określonych własnościach za pomocą rozkładu jedności. Niech M będzie rozmaitością z niepustym brzegiem ∂M .

Definicja 32. Wektor $Y \in TpM$, dla $p \in \partial M$ jest skierowany do wewnątrz M jeśli w pewnej mapie $\varphi: U \to Definicja$ 32. Wektor $Y \in TpM$, dla $P \in Definicja$ 32. Wektor $Y \in TpM$, dla $P \in Definicja$ 32. Wektor $Y \in TpM$, dla $P \in Definicja$ 32. $H^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n \ge 0\}$ wyraża się przez $Y = \sum_{i=1}^n \overline{a_i \frac{\partial}{\partial \varphi_i}(p)}$, gdzie $a_n > 0$.

Ćwiczenie. Jeśli tak jest w jednej mapie, to jest też tak w każdej mapie wokół p. Ponadto, suma wektorów skierowanych do wewnątrz jest wektorem skierowanym do wewnątrz oraz iloczyn wektorów skierowanych do wewnątrz i liczby dodatniej też jest skierowany do wewnątrz.

Definicja 33. Pole wektorowe $X: M \to TM$ jest skierowane do wewnątrz M jeśli $\forall_{p \in \partial M} X(p)$ jest skierowany do wewnatrz M.

Fakt 0.34. Na M istnieje gładkie pole wektorowe X skierowane do wewnątrz.

Dowód

Niech $\{(U_{\alpha}, \varphi_{\alpha})\}$ będzie atlasem na M.

Niech $\{f_j\}$ będzie rozkładem jedności wpisanym w $\{U_\alpha\}$ i niech $supp(f_j)\subset U_{\alpha_j}$.

Dla tych U_{α} które zahaczają o brzeg ∂M określmy(lokalne) pole wektorowe $X_{\alpha}:U_{\alpha}\to TU_{\alpha}\subset TM$ wzorem $X_{\alpha}(p) = \frac{\partial}{\partial (\varphi_{\alpha})_n}(p).$

Dla pozostałych U_{α} określmy X_{α} dowolnie. Zdefiniujmy $X = \sum f_j X_{\alpha_j}$.

X jest gładkim polem wektorowym na całym M.

w punktach $p \in \partial M$ powyższa suma to kombinacja liniowa wektorów skierowanych do wewnątrz z dodatnimi współczynnikami, więc jest to wektor skierowany do wewnątrz.

 $Uwaga\ 0.35$. Niech $f: M \to N$ będzie dyfeomorfizmem i niech $X \in \mathcal{X}(M)$.

Przypomnijmy $df:TM \to TN$ odwzorowanie styczne(gładkie).

poszczególne wektory X(p) pola X przenoszone przez df do TN

 $df_p(X(p)) = df(x)_{f(p)} df(X)(q) = df_{f^{-1}(a)}(X(f^{-1}(a)))$

bardziej formalnie, df(x) jako odwzorowanie $N \to TN$ jest złożeniem $df(x) = df \circ X \circ f^{-1}$.

Wniosek 34. df(x) jest gładkim polem wektorowym na rozmaitości N. Będziemy je nazywać **przeniesieniem** pola X przez f na N.

Krzywe całkowe i potoki pól wektorowych

Niech M będzie rozmaitością bez brzegu.

Definicja~35. Krzywa całkowa pola $X \in \mathcal{X}(M)$ to dowolna krzywa $\gamma:(a,b) \to M$ taka, że

$$\forall_{t \in (a,b)} \ d_{\gamma_t} \left(\frac{\partial}{\partial t(t)} = [\gamma, t] = \gamma'(t) = X(\gamma(t)) \right)$$

Lemat 36. pomocniczy: γ jest krzywą całkową pola $x \in \mathcal{X}$ iff dla każdej mapy (U, φ) na M krzywa $\varphi \circ \gamma$ (gdzie γ jest wyrażona w tej mapie) jest krzywą całkową pola $d_{\varphi}(X) \in \mathcal{X}(\varphi(U))$.

Dowód

$$\Rightarrow . Jeśli \ \gamma'(t) = [\gamma, t] = X(\gamma(t)) \ to \ (\varphi \circ \gamma)'(t) = [\varphi \circ \gamma, t] = d_{\varphi_{\gamma(t)}}([\gamma, t]) = d_{\varphi_{\gamma(t)}}(X(\gamma(t))) = d\varphi(X)(\varphi \circ \gamma'(t))$$

$$\Leftarrow . Jeśli \ (\varphi \circ)'(t) = d\varphi(X)(\varphi(\gamma(t))) \ to$$

$$\gamma'(t) = [\varphi^{-1}(\varphi \circ \gamma)]'(t) = d_{\varphi_{\varphi_{\gamma(t)}}^{-1}}[[(\varphi \circ \gamma)'(t)] = d_{\varphi_{\varphi_{\gamma(t)}}^{-1}}[d\varphi(X)\big(\varphi \circ \gamma(t)\big)] = d_{\varphi_{\varphi_{\gamma(t)}}^{-1}}d\varphi_{\gamma(t)}[X\big(\gamma(t)\big)] = X\big(\gamma'(t)\big)$$

Uwaga 0.36. Pole $d\varphi(x) \in \mathcal{X}\big(\varphi(U)\big)$ będziemy nazywać lokalnym wyrażeniem pola $X \in \mathcal{X}(M)$ w mapie (U,φ) na M.

• Istnienie krzywych całkowych:

 $\forall_{p \in M}$ istnieje krzywa całkowa o początku w p tzn $\gamma: (-\varepsilon, \varepsilon) \to M$ taka, że $\gamma(0) = p$.

Niech
$$d\varphi(x) = \sum_{i=1}^{n} a_i(x) \frac{\partial}{\partial x_i}(x), \ \varphi(p) = x_0 \in \varphi(U) \subset \mathbb{R}^n.$$

Wystarczy pokazać, że istnieje krzywa całkowa pola $d_{\varphi}(x)$ o początku x_0 czyli taka krzywa $C: (-\varepsilon, \varepsilon) \to \varphi(U)$ że $\forall_t C'(t) = [a_1(c(t)), a_2(c(t)), \dots, a_n(c(t))]$ z warunkiem początkowym $c(0) = x_0$. Z teorii równań różniczkowych zwyczajnych taka krzywa istnieje.

• Jednoznaczność:

Krzywe całkowe $\gamma_1(t), \gamma_2(t): (a,b) \to M$ pola $X \in \mathcal{X}$ takie, że $\gamma_1(t_0) = \gamma_2(t_0)$ dla pewnego $t_0 \in (a,b)$ są równe.

Dowód

zbiór
$$A = \{t \in (a, b) : \gamma_1(t) = \gamma_2(t)\}$$
 jest:

- domkniety, z ciagłości γ_1 i γ_2
- otwarty, z lokalnej jednoznaczności krzywych całkowych wynikającej z lokalnej jednoznaczności rozwiązać równań różniczkowych zwyczajnych
- niepusty, bo $t_0 \in A$.

Stad
$$A = (a, b)$$

• Gładka zależność od punktu początkowego - lokalnie:

 $\forall_{p \in M} \exists_{U_p \subset M}$ otwarty, $p \in U_p$, $\exists_{\varepsilon > 0}$, $\exists_{\Gamma:(-\varepsilon,\varepsilon) \times U_p \to M}$ gładkie, takie że $\forall_{q \in M} \ \gamma_q: \ (-\varepsilon,\varepsilon) \to M$ zadana przez $\gamma_q(t) = \Gamma(t,q)$ jest krzywą całkową pola X o początku w q.

Zastosowanie gładkiej zależności od warunku początkowego dla rozwiązań równań różniczkowych zwyczajnych.

Definicja 37. Pole wektorowe $X \in \mathcal{X}(M)$ jest zupełne, jeśli $\forall_{p \in M}$ istnieje krzywa całkowa $\gamma : \mathbb{R} \to M$ taka że $\gamma(0) = p$ (tzn każda lokalna krzywa całkowa pola X przedłuża się do całego \mathbb{R} .

Przykład 12. Pole $X(x,y) = -y \cdot \frac{\partial}{\partial x}(x,y) + x \cdot \frac{\partial}{\partial y}(x,y)$ jest zupełne.

Krzywe całkowe pola mają postać $\gamma(t) = (r\cos(t+t_0), r\sin(t+t_0))$, gdzie r, t_0 są parametrami.

To samo pole obcięte do $\mathbb{H}^2 = \{(x,y): y > 0\}$ nie jest zupełne.

 $Fakt\ 0.37$. Jeśli pole $X\in\mathcal{X}(M)$ jest zupełne, oraz $\forall_{p\in M}:\ \gamma_p:\mathbb{R}\to M$ jest (maksymalną) krzywą całkową pola X o początku p, to

$$\Gamma: \mathbb{R} \times M \to M$$
 zadane przez $\Gamma(t, p) = \gamma_p(t)$

jest gładkie.

Ponadto, $\forall_{t \in \mathbb{R}}$ odwzorowanie $\varphi^X_t : M \to M$ zadane przez $\varphi^X_t(p) = \gamma_p(t) = \Gamma(t,p)$ jest dyfeomorfizmem rozmaitości M i przyporządkowanie $t \to \varphi^X_t$ jest homomorfizmem grupy addytywnej \mathbb{R} w grupę dyfeomorfizmów rozmaitości M.

Dowód

Z gładkiej lokalnej zależności od punktu początkowego wynika gładka globalna zależność, w sposób taki sam jak w teorii równań różniczkowych zwyczajnych. Stąd gładkość Γ.

Z powyższego, $\varphi^X_t = \Gamma(t,\cdot)$ jest gładka $M \to M$. Oczywiście $\varphi^X_0 = id_M$. Ponadto zachodzi $\varphi^X_{t+s} = \varphi^X_t \circ \varphi^X_s \ \forall_{t,s \in \mathbb{R}}$, bo

$$\forall_{t \in \mathbb{R}} \frac{d}{dt} \varphi_t^X \left(\varphi_s^X(p) \right) = X \left(\varphi_t \left(\varphi_s^X(p) \right) \right)$$
$$\frac{d}{dt} \varphi_{t+s}^X(p) = X \left(\varphi_{t+s}^X(p) \right)$$

A zatem obie krzywe $t \to \varphi_t^X \left(\varphi_s^X(p) \right)$ oraz $t \to \varphi_{t+s}(p)$ są krzywymi całkowymi pola X o początku w $\varphi_s^X(p)$. Z jednoznaczności krzywych całkowych są one równe.

Z równości $\varphi_{t+s} = \varphi_t \circ \varphi_s$ wynika:

- φ_t jest dyfeomorfizmem, bo $\varphi_t \circ \varphi_{-t} = \varphi_0 = id_M$ więc $\varphi_t^{-1} = \varphi_{-t}$ jest gładką odwrotnością
- $t \to \varphi_t^X$ jest homomorfizmem $\mathbb{R} \to Diff(M)$.

Rodzina $\{\varphi_t = \varphi_t^X\}_{t \in \mathbb{R}}$ jest nazywana potokiem pola X, jednoparametrową grupą dyfeomorfizmów generowaną przez D, potokiem fazowym pola X. Krzywe całkowe $t \to \varphi^X_t(p)$ są nazywane trajektoriami potoku $\{\varphi^X_t\}$, krzywymi fazowymi pola X, trajekto-

riami pola X.

 $Przykład\ 13.\ \text{Dla pola}\ X = -y \cdot \frac{\partial}{\partial x} + x \cdot \frac{\partial}{\partial y} \ \text{na}\ \mathbb{R}^2 \ \text{mamy potok}\ \varphi^X_t(x,y) = (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t) [\varphi^X_t(x,y)] + (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t) [\varphi^X_t(x,y)] + (x \cdot \cos t, x \cdot \sin t) [\varphi^X_t(x,y)] + (x \cdot \cos t, x \cdot \cos t) [\varphi^X_t(x,y$ jest obrotem o kąt t wokół (0,0)].

Definicja 38. Jednoparametrową grupą dyfeomorfizmów rozmaitości M nazywamy każdy homomorfizm $\mathbb{R} \to Diff(M)$ gładko zależny od $t[(t,p) \to \varphi_t(p)$ gładkie na $\mathbb{R} \times M \to M]$.

Fakt 0.38. Każda jednoparametrowa grupa dyfeomorfizmów na M jest potokiem pewnego zupełnego pola wektorowego $X \in \mathcal{X}(M)$.

Dowód

Pojawi się jako szczególny przypadek ogólniejszego kontekstu.

W przypadku, gdy $X \in C^{\infty}(TM)$ jest niekoniecznie zupełna, znajdujemy lokalną jednoparametrową rodzinę dyfeomorfizmów, czyli $\{(U_{\alpha}, \varepsilon_{\alpha}, \Phi^{\alpha})\}_{\alpha}$, gdzie

- ① U_{α} jest otwartym pokryciem M,
- $\varepsilon_{\alpha} > 0$, $\Phi^{\alpha}(-\varepsilon_{\alpha} : \varepsilon_{\alpha}) \times U_{\alpha} \to M$ jest gładkie

(4) Stosujemy oznaczenie $\Phi_t^{\beta}(p) = \Phi^{\beta}(t, p \text{ jeśli } s, s + t \in (-\varepsilon_{\alpha}, \varepsilon_{\alpha}), \ p \in U_{\alpha}, \ \Phi_s^{\alpha}(p) \in U_{\beta}, \ t \in (-\varepsilon_{\beta}, \varepsilon_{\beta}) \text{ to } \Phi_t^{\beta}(\Phi_s^{\alpha}(p)) = \Phi_{t+s}^{\alpha}(p).$

Każdy $(U_{\alpha}, \varepsilon_{\alpha}, \Phi^{\alpha})$ tworzy z lokalnych krzywych całkowych pola X o punktach początkowych w U_{α} , czyli tak że $t \to \Phi^{\alpha}(t, p), \ (-\varepsilon_{\alpha}, \varepsilon_{\alpha}) \to M$ są krzywymi całkowymi pola X.

Twierdzenie 39. Każda abstrakcyjna lokalnie jednoparametrowa rodzina dyfeomorfizmów rozmaitości M jest wyznaczona przez jednoznaczne gładkie pole wektorowe $X \in C^{\infty}(TM)$. Ponadto, jeśli jest to prawdziwa 1-par gpa dyfeo, to pole X jest zupełna.

Rodzinę $\{(U_{\alpha}, \varepsilon_{\alpha}, \Phi^{\alpha})\}_{\alpha}$ nazywamy potokiem pola X.

 $Dow \acute{o}d$

Weźmy pole X na M przez:

- $dla\ p \in U_{\alpha},\ X(p) = \frac{d}{dt}\Big|_{t=0} \Phi^{\alpha}(t,p) \in T_pM\ z\ warunku$ 3
- powyższy wzór określa gładkie pole wektorowe na $U_{\alpha} \subset M$
- dobra określoność:

pokażemy, że jeśli $p \in U_{\alpha} \cap U_{\beta}$ to $\frac{d}{dt}\big|_{t=0} \Phi^{\alpha}(t,p) = \frac{d}{dt}\big|_{t=0} \Phi^{\beta}(t,p)$. Stosując 4 do s=0 (bo wtedy $\Phi^{\alpha}_{s}(p)=\Phi^{\alpha}_{0}(p)=s \in U_{\beta}$) mamy

$$\Phi_t^{\beta}(p) = \Phi_t^{\beta}(\Phi_0^{\alpha}(p)) = \Phi_{t+0}^{\alpha}(p) = \Phi_t^{\alpha}(p) \ dla \ y \in (-\varepsilon, \varepsilon), \ gdzie \ \varepsilon = min\{\varepsilon_{\alpha}, \varepsilon_{\beta}\}$$

stad wymagana równość pochodnych, a wiec X jest dobrze określonym gładkim polem na M.

• Krzywe $t \to \Phi^{\alpha}(t,p)$ są krzywymi całkowymi tak określonego pola X. Mamy pokazać że

$$\frac{d}{dt}\big|_{t=t_0} \Phi^{\alpha}(t,p) = X \Phi^{\alpha}(t_0,p) \quad \forall_{p \in U_{\alpha}}, \ \forall_{t_0 \in (-\varepsilon,\varepsilon)}$$

Z tego $\dot{z}e$ zbiory U_{β} pokrywają M istnieje taka β , $\dot{z}e$ $\Phi^{\alpha}(t_0,p) \in U_{\beta}$.

Wtedy
$$\frac{d}{dt}\Big|_{t=t_0} \Phi^{\alpha}(t,p) = \frac{d}{dt}\Big|_{s=0} \Phi^{\alpha}(t_0+s,p) = \frac{d}{dt}\Big|_{s=0} \Phi^{\beta}_s \left(\Phi^{\alpha}_{t_0}(p)\right) = X\left(\Phi^{\alpha}_{t_0}(p)\right) = X\left(\Phi^{\alpha}(t_0,p)\right)$$

Ostatnia część tezy jest oczywista z przyporządkowania ($U_{\alpha}=M,\ \varepsilon_{\alpha}=\infty,\ \Phi^{\alpha}=\Gamma.$

Lemat 40. (kryterium zupełności).

Jeśli $X \in C^{\infty}(TM)$ ma nośnik zwarty, to X jest zupełnym polem wektorowym.

W szczególności na zamkniętej rozmaitości dowolne pole wektorowe jest zupełne.

 $Dow \acute{o}d$

Nośnik supp(X) możemy pokryć skończoną rodziną zbiorów U_{α_i} dla których istnieją odpowiednie Φ^{α_i} : $(-\varepsilon,\varepsilon)\times U_{\alpha_i}\to M$ takie jak w L1PGD generowanej przez X. Wtedy dla $\varepsilon=\min_i\{\varepsilon_i\}>0$, z każdego $p\in M$ możemy wystawić krzywą całkową o początku w p, określoną na przedziałe $(-\varepsilon,\varepsilon)$. Jednostajność tego ε na całym M oznacza, że krzywe całkowe możemy przedłużać do całego $\mathbb R$.

Wykład 8 - 13.05.2015

Przestrzenie styczne - definicja kinematyczna

Oznaczenia z analizy:

1) Dla gładkiej
$$f:(a,b) \to \mathbb{R}^n, \ t \in (0,1)$$
 pochodna $f(t) = \frac{\partial f}{\partial t} = \begin{bmatrix} f_1'(t) \\ \vdots \\ f_n'(t) \end{bmatrix}$

2) Dla gładkiego $f: U \to \mathbb{R}^m, \ U \subset \mathbb{R}^n, \ p \in U$ oznaczamy $D_p f$ to macierz pierwszych pochodnych cząstkowych, dokładniej:

$$\begin{bmatrix} \frac{\partial f_1}{x_1}(p) & \frac{\partial f_1}{x_2}(p) & \cdots & \frac{\partial f_1}{x_n}(p) \\ \frac{\partial f_2}{x_1}(p) & \ddots & & \vdots \\ \vdots & & & & \\ \frac{\partial f_m}{x_1}(p) & \ddots & \frac{\partial f_m}{x_n}(p) \end{bmatrix}$$

tak samo oznaczamy odwzorowanie liniowe $\mathbb{R}^k \to \mathbb{R}^m$ zadane przez tę macierz.

Definicja 41. Styczność krzywych przechodzących przez ten sam punkt.

Niech M będzie rozmaitością, $p \in M$. Definiujemy C_pM - zbiór par (c, t_0) takich, że $c:(a, b) \to M$ jest gładką krzywą na M taką, że $t_0 \in (a, b)$ i $c(t_0) = p$. Jest to zbiór krzywych na M źbazowanych" (zaczepionych) w punkcie p.

Niech $\varphi: U \to \mathbb{R}^n$ będzie mapą na M wokół p. Krzywe (c_1, t_1) , (c_2, t_2) są styczne w mapie (U, φ) jeżeli $(\varphi \circ c_1)'(t_1) = (\varphi \circ c_2)'(t_2)$.

Lemat 42. Jeżeli $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne w mapie (U, φ) wokół p to są styczne w dowolnej innej mapie (W, ψ) wokół p.

 $Dow \acute{o}d$

$$(\psi \circ c_1)'(t_1) = [(\psi \circ \varphi^{-1}) \circ (\varphi \circ c_1)]'(t_1) = D_{\varphi(p)}(\psi \circ \varphi^{-1})[(\varphi \circ c_1)'(t_1)] = (\varphi \circ c_1)'(t_2)$$

Definicja 43. Krzywe $(c_1,t_1),\ (c_2,t_2)\in C_pM$ są stycznej w pewnej(każdej) mapie wokół p. Styczność elementów z C_pM jest relacją równoważności.

Definicja 44. Przestrzenią styczną do M w punkcie p to zbiór klas abstrakcji

$$T_n M = C_n M / \text{styczność}$$

Klasę abstrakcji krzywej $(c, t_0) \in C_p M$ oznaczamy przez $[c, t_0]$ lub $c'(t_0)$.

Struktura wektorowa na T_pM

Dla mapy $\varphi:U\to\mathbb{R}^n$ wokół $p\in M$ określamy odwzorowania:

- $\varphi_p^*:T_pM \to \mathbb{R}^n \quad \varphi_p^*([c,t_0])=(\varphi\circ c)'(t_0)$ bijekcja, dobrze określona
- $\lambda_{\varphi,p} \mathbb{R}^n \to T_p M$ $\lambda_{\varphi,p}(v) = [c_v, 0]$, gdzie $c_v(t) = \varphi^{-1}(\varphi(p) + tv)$.

Lemat 45. $\varphi_p^* \circ \lambda_{\varphi,p} = id\mathbb{R}^n$ oraz $\lambda_{t,p} \circ \varphi_p^* = id_{T_pM}$, a zatem są one jednoznaczne i wzajemnie do siebie odwrotne.

 $Dow \acute{o}d$

Niech
$$v \in \mathbb{R}^n$$
, $\varphi_p^* \circ \lambda_{\varphi,p}(v) = \varphi_p^*([c_v, 0]) = (\varphi \circ c_b)'(0) = \frac{d}{dt}\varphi\Big(\varphi^{-1}(\varphi(p) + tv)\Big) = c$.

Niech $[c, t_0] \in T_pM$.

$$\lambda_{\varphi,p} \circ \varphi_p^*([c,t_0]) = \lambda_{\varphi,p}[(\varphi \circ c)'(t_0)] = [c_{(\varphi \circ c)'(t_0)}, 0].$$

Sprawdziliśmy, że (c, t_0) i $(c_{(\varphi \circ c)'(t_0)}, 0)$ są styczne w mapie φ . $c'_{(\varphi \circ p)'(t_0)}(0) = \frac{d}{dt}(\varphi(p)t(\varphi \circ c)'(t_0) = (\varphi \circ c)'(t_0)$ czyli styczność w (U, φ) . WTF???

Lemat 46. Na przestrzeni stycznej T_pM istnieje dokładnie jedna struktura przestrzeni wektorowej, dla której odwzorowania φ_p^* , $\lambda_{\varphi,p}$ dla wszystkich map wokół p są odwzorowaniami liniowymi.

 $Dow \acute{o}d$

Aby φ_p^* było liniowe, struktura taka musi być zadana następująco:

- $dla \ x, y \in T_pM, \ x + y = \lambda_{\varphi,p} (\varphi_p^*(x) + \varphi_p^*(y))$
- $dla \ x \in T_pM, \ \alpha \in \mathbb{R}, \ ax = \lambda_{\varphi,p}(\alpha \varphi_n^*(x))$

Pozostaje sprawdzić zgodność tych działań z działaniami zadanymi przy pomocy innej mapy (ψ, V) wokół p:

$$\mathbb{R}^n \stackrel{\lambda_{\psi,p}}{\longleftrightarrow} T_p M \stackrel{\lambda_{\varphi,p}}{\longleftrightarrow} \stackrel{\tau_p}{\longleftrightarrow} T_p M \stackrel{\lambda_{\varphi,p}}{\longleftrightarrow} T_p M \stackrel{\lambda_{\varphi,$$

Wystarczy uzasadnić, że złożenie $\psi_p^* \circ \lambda_{\varphi,p} : \mathbb{R}^n \to \mathbb{R}^n$ jest liniowe

$$\psi_p^* \circ \lambda_{\varphi,p}(v) = \psi_p^*([c_v, 0]) = \frac{d}{dt}\psi\Big(\varphi^{-1}\big(\varphi(p) + tv\big)\Big) = D_{\varphi(p)}(\psi\varphi^{-1})[\frac{d}{dt}\big(\varphi(p) + vt\big] = D_{\varphi(p)}(\psi\varphi^{-1})(v)$$

Ponieważ macierz $D_{\varphi(p)}(\psi\varphi^{-1})$ nie zależy od v mamy liniowość.

Definicja47. Elementy $T_p M$ nazywamy wektorami stycznymi do Mw punkcie p.

Przykład 14. $M=\mathbb{R}^n$. Mamy wyróżnioną mapę $\varphi:M\to\mathbb{R}^n$ $\varphi=id_{\mathbb{R}^n}$ dla każdego $p\in\mathbb{R}^n$ ta mapa, poprzez $\varphi_p^*=(id_{\mathbb{R}^n})_p^*$ kanonicznie utożsamia $T_p\mathbb{R}^n$ z \mathbb{R}^n . Podobnie dla $M=U\subset\mathbb{R}^n$.

Oznaczenia:

- 1. Wektory styczne do $M=\mathbb{R}^n$ lub $M=U\subset\mathbb{R}^n$ odpowiadające wersorom oznaczamy przez $\frac{\partial}{\partial x_i}(p)$. Tworzą one bazę T_pM , więc dla $v\in T_pM$ $v=\sum_{i=1}^n a_i\frac{\partial}{\partial x_i}$
- 2. Przez analogię dla dowolnej $M,\ p\in M,\ (\varphi,U)$ wokół p przeciwobrazy w T_pM przez φ_p^* wersorów w \mathbb{R}^n oznaczamy $(\varphi_p^*)^{-1}e_i=\frac{\partial}{\partial \varphi_i}(p)$

Różniczka:

Niech $f: M \to N$ będzie gładkim odwzorowaniem rozmaitości, $p \in M$, $f(p) = q \in N$, dim M = m, dim N = n. Dla krzywej $(c, t_0) \in C_p M$ mamy $f \circ c, t_0) \in C_q N$.

Lemat 48. Jeżeli $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne, to $(f \circ c_1), (f \circ c_2)$ też są styczne. Dowód Z definicji.

Definicja 49. Różniczką f w punkcie p nazywamy odwzorowanie

$$df_p: T_pM \to T_qN \quad df_p([c,t_0]) = [f \circ c, t_0]$$

Lemat 50. Różniczka df_p jest odwzorowaniem liniowym.

 $Dow \delta a$

 $Wy starczy \ sprawdzić, \ \dot{z}e \ złożenie \ \mathbb{R}^m \xrightarrow[\lambda_{\varphi,p}]{} T_p M \xrightarrow[df_p]{} T_q N \xrightarrow[\psi_q^*]{} \mathbb{R}^n \ jest \ liniowe.$

 $\psi_q^* df_p \lambda_{\varphi,p}(v) = \psi_q^* df_p([c_v,0]) = \psi_q^*([f \circ c_v,0]) = (\psi \circ f \circ c_v)'(0) = (\psi \circ f \circ \varphi^{-1}) \circ (\varphi \circ c_v)(0) = D_{\varphi(p)}(\psi f \varphi^{-1})((\varphi \circ c_v)'(0)) = D_{\varphi(p)}(\psi f \varphi^{-1})(v) \text{ jest liniowe.}$

Dla map φ wokół p w M i ψ wokół q w N złożenie

$$\mathbb{R}^n \xrightarrow[(\varphi_p^*)^{-1}]{} T_p M \xrightarrow{df_p} T_p N \xrightarrow{\psi_q^*} \mathbb{R}^n$$

 $ma \ posta\acute{c} \ \psi_q^* df_p(\varphi_p^*)^{-1}(v) = F_{\varphi(p)}(\psi f \varphi^{-1})[v], \ zatem \ jest \ liniowe. \ Ponadto \ w \ bazach \ \{\frac{\partial}{\partial \varphi(p)}\}, \ \{\frac{\partial}{\partial \psi_i}(q)\} \ df_p$ $jest \ zadane \ macierzq \ D_{\varphi(p)}\big(\psi f \varphi^{-1}\big) \ zatem \ ma \ posta\acute{c} \ df_p[\sum a_i \frac{\partial}{\partial \varphi_i}(p)] = \sum_i \sum_j \frac{\partial (\psi f \varphi^{-1}}{\partial x_j}(\varphi p) a_j] \frac{\partial}{\partial \psi_i}\big(\varphi(p)\big)$

Różniczka funkcji gładkiej $f: M \to \mathbb{R}$

Niech $f: M \to \mathbb{R}$ będzie gładkie, $p \in M$. Wówczas różniczka df_p jest funkcjonałem liniowym na T_pM . Dla $X = [c, t_0] \in T_pM$ zachodzi

$$df_n(x) = df_n[c, t_0] = [f \circ c, t_0] = (f \circ c)'(t_0)$$

Definicja 51. Dla $X \in T_pM$ pochodną z funkcji $f: M \to \mathbb{R}$ w kierunku X nazywamy liczbę $df_p(x)$ i oznaczamy ją $x \cdot f$.

 $Uwaga\ 0.39.\ 1)\ x(f+g) = xf + xg$

- 2) x(fg) = q(p)xf + f(p)xg
- 3) (ax) f = a(x f)
- 4) $x, y \in T_pM \Rightarrow (x+y)f = xf + yf$

Przykład 15. 1) $X = \frac{\partial}{\partial x_i}(p) \in T_p \mathbb{R}^n$ $f: \mathbb{R}^{\mathbb{R}}$ gładka to $xf = \frac{\partial}{\partial x_i} f(p)$

2)
$$x = \frac{\partial}{\partial \varphi_i}(p) \in T_p M \ f : M \to \mathbb{R} \ \text{to} \ xf = \frac{\partial (f \varphi^{-1})}{\partial x_i} (\varphi(p))$$

Wiązka styczna do rozmaitości

$$TM = \bigcup_{p \in M} T_p M.$$

Rzutowanie $\pi TM \to M$ $\pi(v) = p \text{ gdy } v \in T_nM$.

Lemat 52. Niech M będzie m wymiarową rozmaitością klasy C^k , k>1. Wtedy na TM istnieje naturalna struktura 2n-wymiarowa rozmaitości klasy C^{k-1} dla której π jest C^{k-1} różniczkowalne. $Dow \acute{o}d$

Strukturę rozmaitości zadamy za pomocą map. Niech (U,φ) będzie mapą na M. Rozważmy zbiór

$$TU = \pi^{-1}(U) = \bigcup_{p \in U} T_p M$$

oraz odwzorowanie $\tilde{\varphi}$ $TU \to \mathbb{R}^n \times \mathbb{R}^n$ dane wzorem

 $ilde{arphi}(u) = \left(arphi\pi(u), arphi_{\pi(u)}^*(u)
ight) Zauważmy, \ \dot{z}e \ ilde{arphi} \ jest \ r\'oznowartościowa, obraz \ ilde{arphi} \ to \ arphi(U)) imes \mathbb{R}^n$ - jest to zbiór

Odwzorowanie przejścia $\tilde{\psi}\tilde{\varphi}^{-1}: \varphi(U\cap V)\times\mathbb{R}^n \to \psi(U\cap V)\times\mathbb{R}^n$
$$\begin{split} \tilde{\psi}\tilde{\varphi}^{-1}(a,w) &= \left(\psi\varphi(x), \psi_p^*\varphi_p^*(w)\right) = \left(\psi\varphi^{-1}(x), Dx(\psi\varphi^{-1})(w)\right). \\ Współczynniki to funkcje C^{k-1} różniczkowalne względem x. \end{split}$$

Definicja 53. Dla gładkiego $f: M \to N$ odwzorowaniem stycznym $df: TM \to TN$ nazywamy odwzorowanie

$$df(v) = df_{\pi(v)}(v) \in T_{f(p)}N \subset TN$$

Lemat 54. Jeżeli f jest gładkie to df jest gładkie.

 $Dow \acute{o}d$

Niech $v \in T_pM$, (U,φ) będzie mapą w M, (V,ψ) mapą w N. Wyraźmy df lokalnie w mapach $\tilde{\varphi}$ i $\tilde{\psi}$.

$$\mathbb{R}^{2m} \xrightarrow{\tilde{\varphi}^{-1}} TU \xrightarrow{df} TV \xrightarrow{\tilde{\psi}} \mathbb{R}^{2m}$$
$$\tilde{\psi} \circ df \circ \tilde{\varphi}^{-1}(x, w) = \left(\psi f \varphi^{-1}(x), \psi_{f\psi^{-1}(x)}^* df_{\varphi^*(x)} (\varphi_{\varphi^{-1}(x)}^*)^{-1}(w)\right) = Dx(\psi f \varphi^{-1})(w)$$

Pola wektorowe

Definicja55. Gładkim polem wektorowym na M nazywamy gładkie odwzorowanie $X:M\to TM$ takie, że dla każdego $p \in M$ $X(p) \in T_pM \subset TM$ (równoważnie $\pi \circ X = id_M$).

Wyrażenie pola X w mapach (U,φ) na M oraz $(TU,\tilde{\varphi})$ na TM.

 $\tilde{\varphi}\circ x\circ \varphi^{-1}:\mathbb{R}^n\to\mathbb{R}^{2m}$

 $\tilde{\varphi}x\varphi^{-1}=(x,[a_1(x),\ldots,a_n(x)]),$ gdzie $a_i:\ \varphi(U)\to\mathbb{R}$ jest gładką funkcją rzeczywistą

Stąd $x(p) = \sum a_i(\varphi(p)) \frac{\partial}{\partial \varphi_i}(p)$. Funkcje $a_i \circ \varphi$ są gładkie. Oznaczmy je przez $b_i : U \to \mathbb{R}$. $x(p) = \sum b_i(p) \frac{\partial}{\partial a_i}(p)$.

Fakt~0.40.~x:M o TM jest gładkim polem wektorowym wtedy i tylko wtedy, gdy w mapach (U,φ) na Mwyraża się jako $xp = \sum_{i} b_{i}(p) \frac{\partial}{\partial \varphi_{i}}(p)$ dla pewnych gładkich funkcji rzeczywistych $b_{i}: U \to \mathbb{R}$.

Wykład 9 - 18.05.2015

Interpretacja pól wektorowych jako tzw. derywacji

Definicja56. Derywacja(lub różniczkowanie) w punkcie $p \in M$ to liniowy operator L_p : { z funkcji gładkich określonych na otwartych otoczeniach $p \in M$ } $\to \mathbb{R}$ spełniający regułę Leibniza, tj. $L_p(f \cdot g) =$ $f(p) \cdot L_p(g) + g(p) \cdot L_p(f)$.

Przykład 16. Niech $X \in T_pM$. Wówczas pochodna w kierunku $X, f \to X \cdot f$, jest przykładem derywacji w punkcie p.

Kilka własności derywacji w punkcie:

- Niech 0_U będzie funkcją stale równą 0 na otoczeniu U w punkcie p. Wówczas dla dowolnej derywacji L_p zachodzi $L_p(0_U) = 0$. Również $L_p(1_V) = 0$, gdyż $L_p(1_V) = L_p(1_V \cdot 1_V) = 1 \cdot L_p(1_V) + 1 \cdot L_p(1_V)$.
- $f: U \to \mathbb{R}, \ p \in V \subset U, \text{ to } L_p(f|_V) = L_p(f).$
- Jeśli f = g na pewnym otwartym otoczeniu p to $L_p(f) = L_p(g)$.

Uwaga~0.41. Ze względu na ostatni fakt rozważając derywacje w punkcie p można założyć, że f jest określona na otwartym otoczeniu U punktu p = (0, ..., 0) w \mathbb{R}^n .

Lemat 57. Dowolna gładka funkcja określona na kuli wokół punktu $p=(0,\ldots,0)$ w \mathbb{R}^n przedstawia się w postaci

$$f(x_1, \dots, x_n) = f(0, \dots, 0) + \sum_{i=1}^n x_i \cdot h_i(x_1, \dots, x_n)$$

 $gdzie h_i sq gładkimi funkcjami, takimi że$

$$h_i(0,\ldots,0) = \frac{\partial f}{\partial x_i}(0,\ldots,0) \ dla \ i = 1,\ldots,n$$

 $Dow \acute{o} d$

Dla ustalonego $x = (x_1, \ldots, x_n)$

$$f(x) - f(0) = \int_{0}^{1} \frac{d}{dt} f(tx) dt = \int_{0}^{1} \sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}(tx) dt = \sum_{i=1}^{n} x_{i} \int_{0}^{1} \frac{\partial f}{\partial x_{i}}(tx) dt$$

Przyjmując $h_i(x) = \int_{0}^{1} \frac{\partial f}{\partial x_i}(tx)dt$ mamy tezę.

Twierdzenie 58. Każda derywacja L_p w punkcie $p \in M$ jest pochodną w kierunku pewnego wektora $X \in T_pM$. Wektor o tej własności jest jedyny.

Jedyność wynika z tego, że dla różnych $x \in T_pM$ operatory $f : \to X \cdot f$ są różne. Rozważmy w lokalnych współrzędnych wokół p wektor $X \in T_pM$ zadany przez

$$X = \sum_{i=1}^{n} L_p(x_i) \frac{\partial}{\partial x_i}(p)$$

Pokażemy, że $\forall_f \ L_p(f) = Xf$. Rozważmy przedstawienie z lematu $f = f(0) + \sum x_i h_i$.

Wowczas
$$L_p(f) = L_p(f(0) + \sum x_i h_i) = L_p(f(0)) = \sum_{i=1}^n L_p(x_i \cdot h_i) = \sum_{i=1}^n [x_i(p) \cdot L_p(h_i) + h_i(p) \cdot L_p(x_i)] = \sum_{i=1}^n L_p(x_i) \cdot \frac{\partial f}{\partial x_i}(p) = [\sum_{i=1}^n L_p(x_i) \frac{\partial}{\partial x_i}] \cdot f = X \cdot f.$$

Definicja 59. Derywacją na rozmaitości M nazywamy dowolny operator liniowy $L: C^{\infty}M \to C^{\infty}M$ i spełniający regułę Leibniza.

Przykład 17. Gładkie pole wektorowe X na M określa derywacje poprzez L(f) = Xf, lub dokładniej $L(f)(p) = X(p) \cdot f$.

Proste własności:

- $L(0_M) = 0$
- Jeśli f zeruje się na pewnym otoczeniu punktu p to L(f)(p) = 0.

Niech $g \in C^{\infty}M$, $g(p) \neq 0$, $supp(g) \subset int(Z_f)$. Wówczas $f \circ g = 0_M$. Stąd

$$0_M = L(0_M) = L(f \cdot g) = L(f) \cdot g + L(g) \cdot f$$

$$0 = L(f)(p) \cdot g(p) + L(g)(p) \cdot f(p)$$

Z tego, że $g(p), f(p) \neq 0$ mamy L(f)(p) = 0.

• Jeśli $f, g \in C^{\infty}M$, f = q na otoczeniu $p \in M$, to L(f)(p) = L(g)(p).

 $Twierdzenie\ 60.\ Każda\ derywacja\ na\ M\ jest\ jednoznacznie\ zadana(jak\ w\ przykładzie)\ przez\ pewne\ gładkiego\ pole\ wektorowe\ X\ na\ M.$

 $Dow \acute{o}d$

 $Derywacja\ L\ na\ M\ wyznacza\ derywacje\ L_p\ w\ każdym\ punkcie\ p\in M,\ poprzez$

$$L_p(f) = L(\tilde{f})(p)$$

gdzie $\tilde{f} \in C^{\infty}M$ to dowolna funkcja pokrywająca się z f na pewnym otoczeniu p. Istnienie takiej \tilde{f} dowodzi się za pomocą rozkładu jedności.

Niezależnie od wyboru \tilde{f} wynik uzyskamy ten sam(ponieważ każde \tilde{f} i \tilde{f}' pokrywają się na pewnym otoczeniu punktu p, więc $L_p(\tilde{f}) = L_p(\tilde{f}')$.

Niech $X(p) \in T_pM$ będzie taki, że $L_p(f) = X(p) \cdot f$. Wtedy $L(f) = X \cdot f$.

Pozostaje sprawdzić, że tak określone pole wektorowe X jest gładkie.

Jeśli X nie jest gładkie, to w pewnym punkcie $p \in M$, w pewnych lokalnych współrzędnych wokół p, pewne współrzędna x_i pola $X = \sum X_i \frac{\partial}{\partial x_i}$ nie jest funkcją gładką. Wtedy łatwo dobrać gładką f taką że Xf nie jest gładka.

 $Stad\ gladkość\ X.$

Konsekwencją twierdzenia jest przyporządkowanie:

 $\{ derywacje \ na \ M \leftrightarrow \{ gladkie \ pola \ na \ M \} \}$

Komutator pól wektorowych

Fakt 0.42. Niech $X, Y \in C^{\infty}TM$.

Wówczas operator $XY-YX:C^{\infty}M\to C^{\infty}M$ określony przez $f\to XYf-YXf$ jest derywacją na M. Dowód

Liniowość jest oczywista X i Y jako derywacji.

Wystarczy zatem sprawdzić regułe Leibniza:

$$(XY - YX)(f \cdot g) = XY(f \cdot g) - YX(f \cdot g) = X(g \cdot Yf + f \cdot Yg) - Y(f \cdot Xg + g \cdot Xf) =$$

$$= X(g \cdot Yf) + X(f \cdot Yg) - Y(f \cdot Xg) - Y(g \cdot Xf) =$$

$$= Yf \cdot Xg + g \cdot (XYf) + Yg \cdot Xf + f \cdot (XYg) - Yf \cdot Xg - f \cdot (YXg) - Yg \cdot Xf - g \cdot (YXf) =$$

$$= g(XYf - YXf) + f(XYg - YXg) = g \cdot [(XY - YX)f] + f \cdot [(XY - YX)g]$$

Definicja61. Pole wektorowe na Modpowiadające derywacji XY-YXoznaczać będziemy symbolem [X,Y]i nazywać komutatorem pólXi Y.

Własności

- ① Antyprzemienność, tj[X, Y] = -[Y, X]
- ② [X + Y, Z] = [X, Z] + [Y, Z]
- $(f \cdot X, Y) = f \cdot [X, Y] Yf \cdot X$
- $\textcircled{4} [X, f \cdot Y] = f[X, Y] + Xf \cdot Y$
- 5 Tożsamość Jacobiego.

Wykład ??? - 08.06.2015

Definicja 62. $N\subset M^m$ jest podrozmaitością n-wymiarową $(n\leq m)$ jeśli każdy $p\in N$ posiada mapowe otoczenie U_p w M i mapę $\varphi:U_p\to V\subset \mathbb{R}^m$ takie, że

$$\varphi U_n \cap N = \{(x_1, \dots, x_m) \in V : x_{n+1} = \dots = x_m = 0\}$$

Podrozmaitość zadana przez odwzorowanie włożenia

Definicja 63. Odwzorowanie gładkie $f:N\to M$ jest immersją, gdy $n\le m$ oraz rząd f w każdym punkcie jest równy $n,\ rank(f,x)=n=\dim N\ \forall_{x\in N}.$

Immersje f nazywamy (gładkim) włożeniem jeśli jest homeomorfizmem na obraz.

Fakt 0.43. Obraz $f(M) \subset N$ przez włożenie $f: N \to M$ jest podrozmaitością. **Dygresja**. Twierdzenie o rzędzie

• W algebrze liniowej.

Jeśli $F: \mathbb{R}^k \to \mathbb{R}^n$ jest liniowe, $k \leq n$ i rank(F) = k. Niech e_1, \ldots, e_k będzie standardową bazą w \mathbb{R}^k . Wówczas istnieje baza b_1, \ldots, b_n w \mathbb{R}^n taka, że $F(e_i) = b_i$ dla $i = 1, \ldots, k$.

Równoważnie:

Istnieje liniowy automorfizm $\psi: \mathbb{R}^n \to \mathbb{R}^n$ taki, że

$$\psi \circ F(x_1, \dots, x_k) = (x_1, \dots, x_k, 0, \dots, 0)$$

• W analizie:

 $k \leq n, \ f: \mathbb{R}^k \to \mathbb{R}^n$ jest różniczkowalna, $f(0) = 0, \ rank(f,0) = k$. Wówczas istnieje dyfeomorfizm $\psi: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ oraz otoczenie $U \subset \mathbb{R}^k$ zawierające 0, takie że

$$\psi \circ f|_{U}(x_1,\ldots,x_k) = (x_1,\ldots,x_k,0,\ldots,0)$$

Dowód

faktu:

Niech $p = f(q) \in f(N)$ i niech (V, ψ) będzie mapą wokół p w M. Niech (W_q, ϕ) będzie mapą wokół q, taką że $f(W_q) \subset V$.

fwyrażone w mapach $\phi,\psi,$ czyli $\psi f\phi^{-1}:\phi(W_q)\to\psi(V)$

ma rząd n w punkcie $\phi(q)$.

Z twierdzenia o rzędzie istnieje mniejsze otoczenie $W' \subset \phi(W_q)$ punktu $\phi(q)$ oraz dyfeomorfizm $\xi: \psi(V) \to V' \subset \mathbb{R}^m$ taki ,że

$$\xi \psi f \phi^{-1}|_{W'}(x_1, \dots, x_n) = (x_1, \dots, x_n, 0, \dots, 0)$$

Ponieważ f jest homeomorfizmem na obraz, to istnieje otwarte $V_0 \subset V$ taki że $f\phi^{-1}(W') = V_0 \cap f(N)$. Wtedy $\xi\psi(V_0 \cap f(N)) = \{(x_1, \dots, x_n) \in \xi\psi(V_0) : x_{n+1} = \dots = x_m = 0\}$.

Podrozmaitości zadane równaniami

Definicja 64. Dla gładkiego $f: M^m \to N^n, m \ge n$. Wtedy $x \in M$ jest punktem regularnym f gdy rank(f,x) = n.

 $y \in N$ jest wartością regularną f, gdy każdy $x \in f^{-1}(y)$ jest punktem regularnym.

Fakt 0.44. Jeśli $y_0 \in N$ jest wartością regularną dla $f: N^n \to M^m, m \ge n$ to zbiór $f^{-1}(y_0) = \{x \in M : f(x) = y_0\}$ jest podrozmaitością w M wymiaru m - n.

Przykład 18. $S^n \subset \mathbb{R}^{n+1}$.

 $f: \mathbb{R}^{n+1} \to \mathbb{R}, \ f(x_1, \dots, x_{n+1}) = x_1^2 + \dots + x_{n+1}^2 = 1$ jest wartością regularną f. $S^n = f^{-1}(1)$ jest n wymiarową podrozmaitością w \mathbb{R}^{n+1} .

Twierdzenie 65. o rzędzie - wariant 2

• W algebrze liniowej.

 $F: \mathbb{R}^k \to \mathbb{R}^n$ liniowe, $k \geq n$, rank(F) = n. Niech e_1, \ldots, e_n będzie standardową bazą $w \mathbb{R}^n$. Wówczas istnieje baza b_1, \ldots, b_k $w \mathbb{R}^k$ taka że $F(b_i) = e_1$ dla $i = 1, \ldots, n$, oraz $F(b_k) = 0$ dla $j = n + 1, \ldots, m$. Równoważnie:

Istnieje liniowy automorfizm $\varphi : \mathbb{R}^k \to \mathbb{R}^k$ taki, że

$$F \circ \varphi^{-1}(x_1, \dots, x_n, x_{n+1}, \dots, x_k) = (x_1, \dots, x_n)$$

 $Uwaga\ 0.45.\ W\'owczas\ \varphi(ker F) = ker(F\circ\varphi^{-1}) = \{x\in\mathbb{R}^k:\ x_1=\ldots=x_n=0\} = \{(0,\ldots,0,x_{n+1},\ldots,x_k)\}.$

 $k \geq n, \ f\mathbb{R}^k \to \mathbb{R}^n$ różniczkowalne, $f(0)=0, \ rank(f,0)=n.$ Wówczas istnieje dyfeomorfizm $\varphi: (\mathbb{R}^k,0) \to (\mathbb{R}^k,0)$ oraz otoczenie $U \subset \mathbb{R}^k, \ 0 \in U$ takie że

$$f \circ \varphi^{-1}|_{\varphi(U)}(x_1, \dots, x_n, x_{n+1}, \dots, x_n) = (x_1, \dots, x_n)$$

Uwaga 0.46. Wówczas $\varphi[f^{-1}(0) \cap U] = \{x \in \varphi(U) : x_1 = \dots = x_n = 0\}.$

Fakt 0.47. Jeśli $y_0 \in N$ jest wartością regularną dla $f: M^m \to N^n, \ m \ge n$, to zbiór $f^{-1}(y_0) = \{x \in M: x \in M : x$ $f(x) = y_0$ jest podrozmaitością w M wymiaru m - n.

Dowód

Niech $p \in f^{-1}(y_0)$.

Zastąpimy M przez otoczenie mapowe U punktu y_0 , które od razu utożsamiamy z otwartym podzbiorem w \mathbb{R}^n . Zastąpimy M przez $f^{-1}(U)$. Możemy przyjąć, że $N = \mathbb{R}^n$, $y_0 = 0 \in \mathbb{R}^n$.

Z twierdzenia o rzędzie, istnieje otoczenie V punktu $p \le f^{-1}(U)$ oraz mapa $\varphi: V \to \mathbb{R}^m$ taka że $f\varphi^{-1}(x_1, \dots, x_n, x_{n+1}, \dots, x_m) =$ (x_1,\ldots,x_n) .

Wtedy $\varphi(V \cap f^{-1}(0)) = \{(x_1, \dots, x_m) \in \varphi(V) : x_1 = \dots = x_m = 0\}.$

Pokazaliśmy, że $f^{-1}(y_0)$ jest podrozmaitością w $f^{-1}(U)$.

Korzystając z tego, że $X \subset M$ jest podrozmaitością $\Leftrightarrow X \cap U$ jest podrozmaitością w U dla U z pewnego pokrycia zbiorami otwartymi w M.

Korzystamy z prostszego faktu, tj.

 $X\subset M$ jest podrozmaitością w $M\Leftrightarrow X\subset U$ jest podrozmaitością w U dla pewnego otwartego $U\subset M$ takiego, że $X \subset U$.

Fakt 0.48. Ogólniejszy. Niech $f:M^m\to N^n,\ m\ge n$ i niech $P^p\subset N^n$ będzie podrozmaitością złożoną z samych wartości regularnych f. Wówczas $f^{-1}(P)$ jest podrozmaitością w M wymiaru m-n+p. Dowód

Przedstawimy lokalnie $P \subset N$ jako $\{(x_1, \ldots, x_n) : x_{p+1} = \ldots = x_n = 0\}$ i rozważmy rzut $\pi : (x_1, \ldots, x_n) = x_n = 0$

 (x_{p+1}, \dots, x_n) . Otrzymujemy lokalnie $f^{-1}(P) = (\pi \circ f)^{-1}(\underbrace{0, \dots, 0})$.

Zauważmy, że $(0,\ldots,0)$ jest wartością regularną $\pi\circ f$, tzn $\forall_{x\in f^{-1}(p)}\ rank(\pi\circ f,x)=n-p$. Tak jest, bo

 $D_x\pi\circ f=D_{f(x)}\pi\circ D_xf$ ma rząd maksymalny
(złożenie dwóch macierzy o rzędach maksymalnych ma rząd

Stąd $\forall_{x \in f^{-1}(P)} \exists_{U \ni x} f^{-1}(P) \cap U$ jest podrozmaitością w U, skąd $f^{-1}(P)$ jest podrozmaitością w M.

Przykład 19. $M_{2\times 2}(\mathbb{R})\cong \mathbb{R}^4$. Rozważmy $det:M_{2\times 2}(\mathbb{R})\to \mathbb{R}$. $det \begin{vmatrix} x & y \\ z & t \end{vmatrix} = xt - yx$ jest gładkie.

Fakt 0.49. Dowolna niezerowa macierz jest punktem regularnym odwzorowania det.

Dowód
$$Ddet \begin{bmatrix} x & y \\ z & t \end{bmatrix} = \left(\frac{ddrt}{dx}, \frac{ddet}{dy}, \frac{ddet}{dt}, \frac{ddet}{dt} \right) = (t, -z, -y, x) \neq (0, 0, 0, 0) \text{ dla } \begin{bmatrix} x & y \\ z & t \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}. \text{ Stąd } rank D_{(x, y, z, t)} dt = 1 \text{ dla } \begin{bmatrix} x & y \\ z & t \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Wniosek 66. Dowolna liczba $a \in \mathbb{R}$, $a \neq 0$ jest wartością regularną odwzorowania det. $SL_2\mathbb{R} = \{A \in A_{2\times 2}(\mathbb{R}) : \det A = 1\} = \det^{-1}(1).$

- $SL_2\mathbb{R}$ jest grupa
- $SL_2\mathbb{R}$ jest podrozmaitością w $M_{2\times 2}(\mathbb{R})\cong \mathbb{R}^4$ gładka 3 wymiarowa rozmaitość.
- Dodatkowo(dd na ćwiczeniach), operacje grupowe: mnożenia: $SL_2\mathbb{R} \times SL_2\mathbb{R} \to SL_2\mathbb{R}$ odwrotności: $SL_2\mathbb{R} \to SL_2\mathbb{R}$ sa odwzorowaniami aładkimi.

Jest to przykład grupy Liego

Wykład XV - 25.06.2015

Orientacja i orientowalność

Orientacja w przestrzeni wektorowej V wymiaru n

- B(V) zbiór wszystkich baz $[v_1, \ldots, v_n]$ w V.
- dla baz $b_1, b_2 \in B(V)$, $b_1 = [v_1, \dots, v_n]$, $b_2 = [w_1, \dots, w_n]$ macierz przejścia $M_{b_1, b_2} = (a_{ij})_{n \times n}$ taka, że $w_k = \sum_{i=1}^n a_{ik} v_i$.

Równoważnie jest to macierz przekształcenia $V \to W$, $v_i \to w_i$ wyrażona w bazie b_i .

Fakt 0.50. M_{b_1,b_2} jest nieosobliwa.

relacja
$$b_1 \sim b_2 \Leftrightarrow \det(M_{b_1,b_2}) > 0$$

Fakt 0.51. Jest to relacja równoważności, ma dokładnie dwie klasy abstrakcji.

Dowód

zwrotność -
$$det(I_{n\times n}) = 1 > 0$$

symetryczność - $M_{b_2,b_1} = M_{b_1,b_2}^{-1} \quad det(M_{b_2,b_1} = \frac{1}{det(M_{b_1,b_2})})$
przechodniość - $M_{b_1,b_3} = M_{b_1,b_2} \cdot M_{b_2,b_3}$
 $det(M_{b_1,b_3}) = det(M_{b_1,b_2}) \cdot det(M_{b_2,b_3})$
 $b \in B(V), \ [b]$ - klasa abstrakcji
 $b_1, b_2, \ b_1 \not\sim b, \ b_2 \not\sim b \Rightarrow b_1 \sim b_2, \ [b_1] = [b_2]$

Definicja 67. Orientacja na V nazywamy dowolną spośród powyższych dwóch klas abstrakcji.

Uwaga~0.52. • Następujące modyfikacje bazy $b=[v_1,\ldots,v_n]$ dają bazy z tej samej klasy abstrakcji

- parzysta permutacja wektorów bazowych
- mnożenie wektorów bazy przez dodatnie współczynniki
- zmiana jednego z wektorów v_k na wektor

$$v_k' = v_k + \sum_{i \neq k} a_i v_i$$

- dowolna kombinacja powyższych
- ciągła deformacja w przestrzeni baz
- Wyprowadzają(zmieniają orientacje)
 - nieparzysta permutacja
 - pomnożenie jednego z wektorów bazy przez ujemny współczynnik
- w \mathbb{R}^2 klasy orientacji baz zadane są przez kierunki obrotu(o kąt $< \pi$) prowadzące od pierwszego do drugiego wektora bazowego.

Orientacja na rozmaitościach

- Każda mapa (U,φ) zadaje, dla każdego $p\in U$, orientacje w przestrzeni stycznej T_pM , wyznaczoną przez bazę $[\frac{\partial}{\partial \varphi_1}(p),\ldots,\frac{\partial}{\partial \varphi_n}(p)]$
- Dwie mapy (U, φ) , (W, ψ) zadają w powyższy sposób tą samą orientacje w T_pM dla $p \in U \cap W$ dokładnie wtedy, gdy $\left[\frac{\partial (\varphi \psi^{-1})_k}{\partial x_i} \left(\psi(p)\right)\right]$ ma dodatni wyznacznik, bo jest to macierz przejścia.

Definicja 68. (1) Orientacją na rozmaitości M nazywamy wybór atlasu $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha}$ na M, takiego że każde dwie mapy z \mathcal{A} mają dodatni wyznacznik jakobianu odwzorowania przejścia w każdym punkcie.

- (2) Rozmaitość jest orientowalna, jeśli posiada taki atlas jak w (1).
- (3) Dwa atlasy $\mathcal{A}_1, \mathcal{A}_2$ jak w
 (1) zadają tą samą orientacje na M jeśli $\forall_{(U,\varphi)\in\mathcal{A}_1}$ $\forall_{(W,\psi)\in\mathcal{A}_2}$ jakobian odw
zorowania przejścia $\varphi\psi^{-1}$ ma dodatni wyznacznik w każdym punkcie $p\in U\cap W$.

Uwaga~0.53. Wybór orientacji na M oznacza w szczególności wybór orientacji w każdej przestrzeni stycznej T_pM [w sposób zgodny].

(bez dowodu).

$$B(M) = \bigcup_{p \in M} B(T_p M) \subset (TM)^n$$
 z topologią indukowaną.

B(M) jest przestrzenią reperów bazowych na rozmaitości M.

Dla orientowalnej rozmaitośći, ciągła deformacja w B(M) nie wyprowadza poza orientacje w przestrzeniach T_pM indukowane z orientacji na M.

Jeśli M jest spójna i orientowalna, to można na niej zadać dokładnie dwie orientacje.

[bez dowodu] Rozmaitość M jest nieorientowalna wtedy i tylko wtedy, gdy istnieje ciągła krzywa $b(t):t\in[0,1]$ w przestrzeni reperów B(M) taka, że $\exists_{p\in M}\ b(0), b(1)\in T_pM$ oraz $b(1)\not\sim b(0)$.

Przykład 20. • \mathbb{R}^n jest rozmaitością orientowalną

- S^n jest rozmaitością orientowalną
- produkt zachowuje orientowalność[ćw] np. torusy $T^n = S^1 \times \ldots \times S^1$ są orientowalne
- jeśli choć jeden składnik produktu jest nieorientowalny, to produkt także.

•

Definicja 69. Dyfeomorfizm $f: M \to M$ spójnej, orientowalnej rozmaitości M zachowuje orientacje, gdy zachodzi dowolny spośród poniższych warunków:

- $-dfp: T_pM \to T_{f(p)}M$ przenosi bazę z T_pM pochodzącą od tej samej orientacji na M
- po wyrażeniu f w mapach (U,φ) , (W,ψ) z atlasu na M wyznaczającego orientacje, zachodiz

$$det[D\varphi f\psi^{-1}\big(\psi(p)\big)]>0$$

iloraz orientowalnej spójnej rozmaitości M przez nieciągłą grupę dyfeomorfizmów zachowujących orientacje jest rozmaitością orientowalną.

Jeśli któryś z dyfeomorfizmów zmienia orientacje M to M/G nie jest rozmaitością orientowalną.

 $\mathbb{R}P^n=S^n/_{\mathbb{Z}_2}$ dla nnie
parzystych są orientowalne, dla n parzystych są nie
orientowalne

Möbius= $\mathbb{R} \times [0,1]/\mathbb{Z}$ - jest nieorientowalny

Fakt 0.54. Jeśli M, N, P są orientowalne, $P \subset N$ jest podrozmaitością[np. $P = \{x_0\}$] i jeśli $f: M \to N$ jest gładkim odwzorowaniem takim, że P składa się samych wartości regularnych f to wówczas podrozmaitość $f^{-1}(P) \subset M$ jest orientowalna.