$$H_d(x) = -\int_{-\infty}^{\infty} w(x) \log_2(x) dx$$
 (4.33)

Пределы интегрирования определяются диапазоном изменения сообщения x(t).

Свойства дифференциальной энтропии.

- 1) $-\infty < H_d(x) < \infty$.
- 2) $H_d(x) = H_{d \max}$, если ФПВ источника гауссовская: $w(x) = \frac{1}{\sqrt{2\pi}\sigma_x}e^{\frac{(x-m_x)^2}{2\sigma_x^2}}$, т.е. если x(t) гауссовский стационарный случайный процесс.

$$H_{d \max} = \frac{1}{2} \log_2(2\pi e \sigma_x^2)$$
 (4.34)

3) Дифференциальная энтропия совместного наступления событий $x_1,...,x_n$ определяется по формуле

$$H_d(x_1,...,x_n) = \sum_{k=1}^n H_d(x_k)$$

4) Если сообщения x_k, x_{k-1} зависимы, то вводится условная энтропия

$$H(x_k / x_{k-1}) = -\int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} w(x_k, x_{k-1}) \log_2(w(x_k / x_{k-1}) dx_k dx_{k-1}).$$
 (4.35)

Тогда совместная дифференциальная энтропия определяется по формуле

$$H_d(x_k, x_{k-1}) = H_d(x_{k-1}) + H(x_k / x_{k-1})$$
(4.36)

Функция скорость-искажение или эпсилон энтропия НИ.

Под искажением понимается некоторая мера разности между отсчетами x_k источника и квантованными отсчетами \tilde{x}_k , k=1,2,... - дискретное время. За меру возьмем

$$\xi_k^2 = (x_k - \widetilde{x}_k)^2 \tag{4.37}$$

Пусть $\vec{x} = (x_1, ..., x_n), \vec{\tilde{x}} = (\tilde{x}_1, ..., \tilde{x}_n)$. Тогда искажение между данными векторами – среднее искажение по n отсчетам:

$$\xi_{n,cp}^2 = \frac{1}{n} \sum_{k=1}^n \xi_k^2 \tag{4.38}$$

(4.38) является случайной величиной с математическим ожиданием $D = M\{\xi_{n,cp}^2\} = M\{\xi_k^2\} = \sigma_\xi^2$, т.к. процесс на выходе источника стационарный.