- 5.5. (Sec. 5.2.2) Let $T^2 = N\bar{x}'S^{-1}\bar{x}$, where \bar{x} and S are the mean vector and covariance matrix of a sample of N from $N(\mu, \Sigma)$. Show that T^2 is distributed the same when μ is replaced by $\lambda = (\tau, 0, \dots, 0)'$, where $\tau^2 = \mu' \Sigma^{-1} \mu$, and Σ is replaced by I.
- 5.19. (Sec. 5.3) Let \bar{x} and S be based on N observations from $N(\mu, \Sigma)$, and let x be an additional observation from $N(\mu, \Sigma)$. Show that $x \bar{x}$ is distributed according to

$$N[0,(1+1/N)\Sigma].$$

Verify that $[N/(N+1)](x-\bar{x})'S^{-1}(x-\bar{x})$ has the T^2 -distribution with N-1 degrees of freedom. Show how this statistic can be used to give a prediction region for x based on \bar{x} and S (i.e., a region such that one has a given confidence that the next observation will fall into it).

5.20. (Sec. 5.3) Let $x_{\alpha}^{(i)}$ be observations from $N(\mu^{(i)}, \Sigma_i)$, $\alpha = 1, ..., N_i$, i = 1, 2. Find the likelihood ratio criterion for testing the hypothesis $\mu^{(1)} = \mu^{(2)}$.

1 of 1 13/02/23, 19:26