Class-sourcing data: A simple strategy for impactful classroom research projects

Thomas J. Faulkenberry, Ph.D.

Department of Psychological Sciences

My goals when teaching undergraduate experimental methods:

- Students get some experience:
 - designing experiments
 - collecting data
 - writing up manuscript

My goals when teaching undergraduate experimental methods:

- Students get some experience:
 - designing experiments
 - collecting data
 - writing up manuscript

Theorem

Let N=# of these goals that can be fully realized in one course. Then $N\leq 2$

My goals when teaching undergraduate experimental methods:

- Students get some experience:
 - designing experiments
 - collecting data
 - writing up manuscript

Theorem

Let N=# of these goals that can be fully realized in one course. Then $N\leq 2$

Proof.

(due to S. Lang) This proof is left as an exercise for the interested listener.

My goals when teaching undergraduate experimental methods:

- Students get some experience:
 - designing experiments
 - collecting data
 - writing up manuscript

My goals when teaching undergraduate experimental methods:

- Students get some experience:
 - designing experiments
 - collecting data
 - writing up manuscript

My goals with mentoring undergraduate research:

- Get them involved in my research area
- Replication studies

Combine the two!

Basic idea: how could I replicate a common paradigm in mathematical cognition (e.g., response time measurements) that tests the effects of problem format and problem size on arithmetic performance?

Classroom implementation:

- Each PSYC 3435 student administers the experiment to 4 different participants
- lacktriangle Minimal time investment for each student ightarrow large data set!

Basic idea: how could I replicate a common paradigm in mathematical cognition (e.g., response time measurements) that tests the effects of problem format and problem size on arithmetic performance?

Why do this?

- Quick and easy data collection
- Students get to play detective and try to solve a puzzle
- Beginners get practice with technical aspects of experimental methods without worrying about the design

Basic idea: how could I replicate a common paradigm in mathematical cognition (e.g., response time measurements) that tests the effects of problem format and problem size on arithmetic performance?

Problem: Don't response time studies require computer software for precise timing?

- Yes and No
- Solution: shift from measuring time per problem to measuring # problems in a given time period

6 + 2		8 + 3			
2 + 9		6 + 4		7 + 7	9 + 8
5 + 2		2 + 7		6 + 9	9 + 6
3 + 8		7 + 3		8 + 7	9 + 3
3 + 3		2 + 5		8 + 8	5 + 6
2 + 2		3 + 6		6 + 8	6 + 7
3 + 2		4 + 4		8 + 6	5 + 8
2 + 8		4 + 3	一	3 + 9	8 + 9
7 + 2		9 + 2	一	9 + 9	4 + 7
3 + 4		6 + 3	一	6 + 5	7 + 4
3 + 7		4 + 6	一	7 + 8	9 + 4
5 + 4		5 + 5	一	9 + 7	8 + 5
3 + 5		4 + 2		5 + 9	8 + 4
4 + 5		8 + 2		4 + 9	7 + 5
3 + 3		5 + 3		4 + 8	9 + 5
2 + 3	Ħ	2 + 4	一	7 + 9	6 + 6
				7 + 6	5 + 7

Form A Form

two + two	four + three	seven + nine	four + seven
seven + two	four + five	seven + eight	six + six
eight + two	four + four	seven + seven	six + eight
eight + three	three + four	four + eight	nine + nine
three + three	two + three	five + seven	eight + six
two + six	two + eight	five + six	eight + five
three + six	six + two	nine + six	six + seven
two + five	six + four	six + nine	nine + seven
three + five	seven + three	four + nine	eight + four
three + seven	four + two	seven + four	five + eight
five + three	three + eight	five + nine	seven + five
two + four	five + four	nine + five	eight + seven
six + three	two + nine	eight + nine	nine + eight
two + seven	nine + two	three + nine	nine + four
three + three	four + six	six + five	seven + six
five + five	three + two	eight + eight	nine + three

rm A Form E

Procedure

Class mental arithmetic experiment:

- Each student administers the experiment to 4 different participants
- Independent variables:
 - Problem size (small vs. large)
 - Small (product less than or equal to 25)
 - Large (product greater than 25)
 - Form A = small, Form B = large
 - within-subjects manipulation
 - Format (digits vs. words)
 - between-subjects manipulation

Procedure

Class mental arithmetic experiment:

- Each student administered the experiment to 4 different participants
- Dependent variables (measures):
 - Number of problems completed
 - directly related to reaction time (i.e., as reaction time decreases, number of problems completed increases)
 - Number of errors

Procedure

Data sheet:

			For	m A	Form B		
Participant	Format	Order	Completed	Errors	Completed	Errors	
1	Digits	A – B					
2	Digits	B – A					
3	Words	A – B					
4	Words	B – A					

Previous research

Many studies have investigated mental arithmetic in the past 20 years. Here's what they always find:

- The problem-size effect
 - Participants complete more small problems than large problems
 - Participants make fewer errors on small problems than large problems
- The problem-format effect
 - Participants complete more digit problems than word problems
 - Participants make fewer errors on digit problems than word problems

Our Present Study

The point of our class experiment is to examine whether there is an interaction between problem-size and problem-format.

Stages of arithmetic processing:

Dehaene & Cohen (1995) - additive model of mental arithmetic

Dehaene & Cohen (1995) - additive model of mental arithmetic

Campbell (1999) – interactive model of mental arithmetic

Campbell (1999) - interactive model of mental arithmetic

Now it's the students' turn

Task: decide which model is best supported by our data!

Steps:

- Run a 2x2 factorial analysis of variance (ANOVA) using JASP (jasp-stats.org)
- 2 Test for the following effects:
 - Main effect of problem size
 - Main effect of problem format
 - Interaction effect between size and format
- Write a short APA manuscript explaining what we did and what we found

Results

Table 1
Mean number of problems completed by problem size and format

	Small	oroblems	Large problems			
Format	М	SD	M	SD		
Digits	17.6	4.9	10.6	4.5		
Words	13.2	3.6	8.6	3.7		

Note. Overall n=176 with n=88 in each format condition

Results

Results

The mean number of problems completed was analyzed via a 2×2 factorial analysis of variance (ANOVA), with factors of problems size (small vs. large; within-subjects) and format (digits vs. words; between-subjects).

Source	Df	Sum Sq	Mean Sq	F	p	η_p^2
Problem size	2921.0	1	2921.0	451.6	< 0.001	0.72
Format	890.9	1	890.9	30.7	< 0.001	0.15
Format * Problem size	120.6	1	120.6	18.6	< 0.001	0.10
Error (problem size)	1125.4	174	6.5			
Error (format)	5042.1	174	29.0			

Bonus!

With JASP, we can easily do a Bayesian analysis of variance (Rouder et al., 2012)

Bayesian Repeated Measures ANOVA ▼

Model Comparison

Models	P(M)	P(M data)	BFM	BF10	error %
Null model (incl. subject)	0.200	8.588e -53	3.435e -52	1.000	
problemSize	0.200	1.544e -8	6.175e -8	1.798e +44	0.969
format	0.200	4.408e -48	1.763e -47	51330.217	1.108
problemSize + format	0.200	0.002	0.007	1.929e +49	2.373
problemSize + format + problemSize * format	0.200	0.998	2411.216	1.163e +52	2.070

Note. All models include subject.

Model including interaction is favored by a factor $\sim 600\,$

Pragmatics

- Easier to grade since everyone is writing up the same results.
- Writing seems better overall.
- Students "buy into" the overall reason for doing the research

Contact info:

- Thomas J. Faulkenberry, Ph.D.
- Department of Psychological Sciences
- Tarleton State University
- Email: faulkenberry@tarleton.edu
- Twitter: @tomfaulkenberry