Algoritmos Genéticos com Parâmetros Contínuos

Estéfane G. M. de Lacerda DCA/UFRN Maio/2008

Exemplo extraído de Davis (1991)

Representação Real x Binária

Representação do ponto x = -17,85 e y = 11,04

Cromossomo Real: (-17,85; 11,04) Cromossomo Binário: 011010010010011010000010001110001000011100100110100100100110100000 1000111000100001110010 2328690 1722784 11,04

Representação Binária

- É historicamente importante, foi utilizado nos trabalhos pioneiros de Holland (1975).
- A representação tradicional.
- Fácil de usar e manipular.
- Simples de analisar teoricamente.
- Não há uniformidade nos operadores.
 - Mutação nos primeiros bits do gene afeta mais a aptidão que mutação nos últimos bits do gene

Representação Real

- Para um ser humano é mais natural do que uma cadeia de bits.
- Cromossomos compactos e com precisão numérica padrão (IEEE 754).
- Vários autores tem obtido desempenho melhor com representação real do que com representação binária.
- Permite larga variedade de operadores.

Operadores para Representação Real

- Crossover's convencionais
 - n-Pontos, uniforme
 - Não criam novas informações (i.e. novos números reais).
- Crossover's aritméticos
 - Operadores que realizam operações aritméticas entre os parâmetros.
- Baseados da direção (usam derivadas)

Crossover Média (1/2)

(Davis, 1991)

Dado dois cromossomos

$$\mathbf{p}_1 = (p_{11}, p_{12}, ..., p_{1l})$$

$$\mathbf{p}_2 = (p_{21}, p_{22}, ..., p_{2l})$$

é produzido um cromossomo

$$\mathbf{c} = (\mathbf{p}_1 + \mathbf{p}_2)/2$$

onde c =
$$(c_1, c_2, ..., c_l)$$
.

Crossover Média (2/2)

- Tende a levar os genes para o centro do espaço de busca causando perda de diversidade.
- Não extrapola para além da região da população inicial.
- Este problema é melhorado com o blend crossover (BLX-α).

Blend Crossover (BLX- α) (1/4)

(Eshelman e Shaffer, 1993)

Dado dois cromossomos \mathbf{p}_1 e \mathbf{p}_2 , é produzido um cromossomo \mathbf{c} da seguinte forma:

$$\mathbf{c} = \mathbf{p}_1 + \beta(\mathbf{p}_2 - \mathbf{p}_1)$$

onde $\beta \sim U(-\alpha, 1+\alpha)$.

Onde *U* representa uma distribuição uniforme.

Tipicamente α = 0,5 ou 0,25

Blend Crossover (BLX- α) (2/4)

Exemplo

$$\mathbf{p}_1 = (30,173; 85,342)$$

$$\mathbf{p}_2 = (75,989; 10,162)$$

$$\alpha$$
 = 0,5 e β = 1,262

$$c_1 = 30,173 +1,262(75,989-30,173) = 87,993$$

$$c_2$$
 = 85,342 +1,262(10,162-85,342) = -9,535

assim,
$$\mathbf{C} = (87,993; -9,535)$$
.

Blend Crossover (BLX-α) (3/4)

Usando o mesmo β para cada parâmetro

Blend Crossover (BLX- α) (4/4)

Usando β diferente para cada parâmetro

Crossover Linear

(Wright, 1991)

Gera três filhos:

$$\mathbf{c}_1 = 0.5\mathbf{p}_1 + 0.5\mathbf{p}_2$$
 $\mathbf{c}_2 = 1.5\mathbf{p}_1 - 0.5\mathbf{p}_2$
 $\mathbf{c}_3 = -0.5\mathbf{p}_1 + 1.5\mathbf{p}_2$

Apenas o melhor dos três filhos é escolhido, os outros dois são descartados.

Operadores Genéticos de Michalewicz

(Michalewicz, 1994)

- Crossover Simples
- Crossover Aritimético
- Crossover Heurístico
- Mutação Uniforme
- Mutação de Limite
- Mutação Não-uniforme
- Mutação Não-uniforme Múltipla

Crossover Simples

É uma variação do crossover convencional de 1 ponto adaptado para representação real.

Crossover Aritmético

Este operador difere do crossover BLX-α.
 por não extrapolar o intervalo entre p₁ e p₂

$$\mathbf{c}_1 = \beta \mathbf{p}_1 + (1 - \beta) \mathbf{p}_2$$

$$\mathbf{c}_2 = (1 - \beta)\mathbf{p}_1 + \beta \mathbf{p}_2$$

onde $\beta \in U(0,1)$.

Crossover Heurístico (1/2)

 Extrapolação linear entre os pais usando a informação da aptidão.

$$\mathbf{c} = \mathbf{p}_1 + r(\mathbf{p}_1 - \mathbf{p}_2), \text{ onde } f(\mathbf{p}_1) > f(\mathbf{p}_2)$$

onde $r \sim U(0,1)$.

Caso o *crossover* produza um filho infactível, gera-se outro número aleatório *r*.

 Evita que o crossover aritmético leve os genes para o centro do intervalo.

Crossover Heurístico (2/2)

Mutação Uniforme

- Substitui um gene por um número aleatório.
 - Mutação no j-ésimo gene (aleatoriamente escolhido) do cromossomo p:

$$c_i = \begin{cases} U(a_i, b_i), & \text{se } i = j \\ p_i & \text{caso contrário} \end{cases}$$

onde a_i e b_i representam os limites do intervalo permitido para o gene c_i

Mutação de Limite

 Substitui o gene por um dos limites do intervalo factível [a,b,].

$$c_i = \begin{cases} a_i & \text{se } r < 0,5 \text{ e } i = j \\ b_i & \text{se } r \ge 0,5 \text{ e } i = j \\ p_i & \text{caso contrário} \end{cases}$$

onde $r \in U(0,1)$.

 Evita que o crossover aritmético leve os genes para o centro do intervalo factível [a_i,b_i].

Mutação Não-Uniforme

 Substitui um gene por um número extraído de uma distribuição não-uniforme.

$$c_i = \begin{cases} p_i + (b_i - p_i)f(G) & \text{se } r_1 < 0.5 \text{ e } i = j \\ p_i - (p_i - a_i)f(G) & \text{se } r_1 \ge 0.5 \text{ e } i = j \\ p_i & \text{caso contrário} \end{cases}$$

onde
$$f(G) = \left(r_2 \left(1 - \frac{G}{G_{\text{max}}}\right)\right)^b$$

 r_1 e $r_2 \in U(0,1)$, G é o número da geração.

Mutação Não-Uniforme Múltipla

Aplicação do operador mutação nãouniforme em todos os genes do cromossomo p.

Mutação Gaussiana

 Substitui o gene por um número aleatório de uma distribuição gaussiana.

$$c_i = \begin{cases} N(p_i, \sigma), & \text{se } i = j \\ p_i & \text{caso contrário} \end{cases}$$

onde $N(p_i, \sigma)$ é uma distribuição normal com média p_i e desvio padrão σ .

 Pode-se diminuir o valor de σ, à medida que aumenta a número de gerações (imitando a redução de temperatura no Recozimento Simulado).

Mutação Creep

- Adiciona ao parâmetro pequeno valor aleatório (obtido de uma distribuição uniforme ou normal)
- Provoca uma pequena pertubação nos genes a fim de levá-los mais rapidamente ao máximo local.

- Problema da Unidade de Emergência Médica
 - Qual a melhor localização da Unidade Emergência médica em uma cidade?
 - Cada bairro possui uma frequência de chamadas de emergência diferente.

Cidade

8	4	5	5	3	2	4	4
3	5	9	2	1	4	6	3
1	8	7	8	7	2	3	8
3	5	8	9	1	3	4	5
4	3	5	7	9	3	7	6
2	1	9	3	7	6	9	3
4	7	9	3	7	2	1	8

Legenda

Frequência de chamadas de emergência do bairro.

- Cromossomo (representação real)
 - (x, y)=coordenadas da unidade de emergência
- Função Objetivo

$$f(x,y) = \sum_{i=1}^{56} w_i \sqrt{(a_i - x)^2 + (b_i - y)^2}$$

 (a_i, b_i) = coodernadas (no centro) do bairro i w_i = freqüência de chamadas do bairro i

Adicionando restrições ao problema

