Thm Closed-NC Error Thm.

Suppose $R(f) = \sum_{i=1}^{m} w_i f(x_i)$ denotes the (n+1)-closed NC rule with $x_0 = a$, $x_n = b$, $h = \frac{b-a}{n}$.

Then there exists 3Ela, b) such that:

when n is even and
$$f \in C^{(n+2)}(a,b)$$

$$\int_{a}^{b} f(x) dx = R(f) + \frac{h^{n+3} f^{(n+2)!}(s)}{(n+2)!} \int_{0}^{n} t^{3} (t-1) \cdots (t-n) dt$$

when n is odd and
$$f \in C^{(n+1)}[a,b]$$

$$\int_{a}^{b} f(x) dx = R(f) + \frac{h^{n+2} f^{(n+1)}(s)}{(n+1)!} \int_{0}^{n} t(t-1) \cdots (t-n) dt$$

Rmk. · n even \Rightarrow error is $O(h^{n+3})$ · n odd \Rightarrow error is $O(h^{n+2})$

From thm. above, we can derive error bounds for common closed-NC rules.

Ex. Compute error bound for trap. rule $R_{\tau}(f) = \frac{h}{2}(f(x_0) + f(x_0))$

Sol. N=1:

$$E_{\tau}(f) = \frac{h^{3} \cdot f^{(2)}(5)}{2} = \int_{0}^{1} t(t-1) dt$$

$$= \frac{h^{3} \cdot f''(5)}{2} \cdot (-\frac{1}{6})$$

$$= \frac{-h^{3} \cdot f''(5)}{12} \quad x.<5 < x_{1}$$

In the same manner, we can derive the following bounds:

n	rule	formula	error	DOP
	trapezoid	$\frac{h}{2}(f(x_0)+f(x_1))-\frac{h^3\cdot f''(5)}{12}$	O(h3)	
2	Simpson's 1/3	$\frac{h}{3}(f(x_0) + 4f(x_1) + f(x_2)) - \frac{h^5}{90}f'(S)$	0(h ^s)	
3	Simpson's 3/8	$\frac{3h}{8}(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)) - \frac{3h^2}{80}f''(S)$	0(h ^s)	3

Rmk. In even \Rightarrow error term depends on $f^{(n+2)}(S)$

- \Rightarrow exactly integrate functions whose n+2-devivative is 0 (poly of deg. n+1)
- ⇒ DOP = n+1
- 2 This is NOT the case for n odd!
 e.g. trap rule w/ n=1: DOP=1

Similar case holds for open NC formulas. Let $a = x_{-1} < x_0 < ... < x_n < x_{n+1} = b$ and $h = \frac{b-a}{n+2}$. Then $x_i = x_0 + ih$ for i = -1, 0, 1, ... n+1

Thm. Open-NC Error Thm.

Suppose $R(f) = \sum_{i=1}^{\infty} w_i f(x_i)$ denotes the (n+1)-open NC rule with $x_{-1} = a$, $x_{n+1} = b$, $h = \frac{b-a}{n+2}$.

Then there exists SELa, b) such that:

when n is even and
$$f \in C^{(n+2)}(a,b)$$

$$\int_{a}^{b} f(x) dx = R(f) + \frac{h^{n+3} f^{(n+2)}(3)}{(n+2)!} \int_{-1}^{n+1} t^{1}(t-1) \cdots (t-n) dt$$

when n is odd and
$$f \in C^{(n+1)}[a,b]$$

$$\int_{a}^{b} f(x) dx = R(f) + \frac{h^{n+2} f^{(n+1)}(s)}{(n+1)!} \int_{-1}^{n+1} t(t-1) \cdots (t-n) dt$$

from thm. above, we can derive error bounds for common open-NC rules.

n	rule	formula	error	DOP
0	midpoint	2hf(x ₀)+ ^{h³} f"(S)	O(h3)	
ı	open trap.	$\frac{3h}{2}[f(x_0)+f(x_1)]+\frac{3h^3}{4}f''(S)$	0(h3)	1
2	Milne's	4h [2f(x3)-f(x1)+2f(x2)]+14h3 f(4)(3)	0(h ^s)	3

- Rmk. I. Both NC rules are not suitable when integrating over large intervals using high-deg. polys due to oscillations.
 - -One remedy: use piecewisepolynomial interpolation, i.e.

composite numerical interpolation