Лекция 10: Трансформеры

Напомним: Convolutional Neural Networks

Components of CNNs

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Архитектуры СНС

Трансформеры определение

Трансформер — нейросетевая архитектура, для обработки связанных наборов элементов, таких, как токены в последовательности пикселей изображения или слов в предложении, где эти элементы взаимодействуют только посредством **механизма внутреннего внимания**.

Ashish Vaswani ... Illia Polosukhin, Attention Is All You Need, NIPS 2017

https://lilianweng.github.io/posts/2018-06-24-attention/

https://peterbloem.nl/blog/transformers

https://habr.com/ru/company/wunderfund/blog/592231/

Как работает внутреннее внимание/ self attention?

На примере рекомендательной системы фильмов:

Как работает внутреннее внимание/ self attention?

Найдем выход **у** взвесив по всем входам **х**:

$$y_{i} = \sum_{j} w_{ij} x_{j}.$$

Простейший вариант весов - скалярное произведение:

$$w_{ij}' = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j.$$

Но хорошо бы его отнормировать при помощи Softmax:

$$w_{ij} = \frac{\exp w'_{ij}}{\sum_{j} \exp w'_{ij}}.$$

Иллюстрация, для простоты без softmax):

Как внимание выглядит в torch?

 \mathbf{x} — вход, \mathbf{y} — выход

```
import torch
import torch.nn.functional as F

# представим, что имеется тензор x размера (b, t, k)
x = ...

raw_weights = torch.bmm(x, x.transpose(1, 2))
# - torch.bmm - это команда пакетного умножения матриц. Она
# выполняет операции умножения над пакетами
# матриц.
```

```
weights = F.softmax(raw_weights, dim=2)
```

```
y = torch.bmm(weights, x)
```

Терминология и параметризация

Вход **х** может быть использован как

- Запрос, **query**, в сравнении с другими векторами входа для получения его выходного вектора **y**
- Ключ, **key**, в сравнении с другими векторами входа для формирования весов

- Значение, **value**, для формирования взвешенной суммы для каждого из выходных векторов y_1 y_2 y_3

Многоглавое внимание / multi-head attention

Внимание эквивариативно – перестановка входов дает перестановку выходов.

Как различить – Аргентина победила Ямайку, 5:0 или

Ямайка победила Аргентину, 5:0?

Решение – несколько блоков внимания, проще всего их понимать как несколько параллельных блоков.

ЯМАЙКА

Блок трансформера

Трансформер — нейросетевая архитектура, для обработки связанных наборов элементов, таких, как токены в последовательности пикселей изображения или слов в предложении, где эти элементы взаимодействуют только посредством **механизма внутреннего внимания**.

Блок трансформера - pytorch

```
class TransformerBlock(nn.Module):
  def init (self, k, heads):
    super(). init ()
    self.attention = SelfAttention(k, heads=heads)
    self.norm1 = nn.LayerNorm(k)
    self.norm2 = nn.LayerNorm(k)
    self.ff = nn.Sequential(
     nn.Linear(k, 4 * k),
     nn.ReLU(),
      nn.Linear(4 * k, k))
  def forward(self, x):
    attended = self.attention(x)
   x = self.norm1(attended + x)
    fedforward = self.ff(x)
    return self.norm2(fedforward + x)
```

Нормализация – LayerNorm

LAYERNORM

CLASS torch.nn.LayerNorm(normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None) [SOURCE]

Applies Layer Normalization over a mini-batch of inputs as described in the paper Layer Normalization

$$y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta$$

The mean and standard-deviation are calculated over the last D dimensions, where D is the dimension of normalized_shape. For example, if normalized_shape is (3, 5) (a 2-dimensional shape), the mean and standard-deviation are computed over the last 2 dimensions of the input (i.e. input.mean((-2, -1))). γ and β are learnable affine transform parameters of normalized_shape if elementwise_affine is True. The standard-deviation is calculated via the biased estimator, equivalent to torch.var(input, unbiased=False).

NOTE

Unlike Batch Normalization and Instance Normalization, which applies scalar scale and bias for each entire channel/plane with the affine option, Layer Normalization applies per-element scale and bias with elementwise affine.

Замена FC – Global Average Pooling (GAP)

- GAP заменяет полносвязные слои, приэтом сеть становится полносвязной.

NIN

- GAP необучаемый!

CNN

- Активации сверточных слоев становятся картами конфидентности.

Fully Connected Layers Global Average Pooling feature maps output nodes feature maps output nodes fully connected layers averaging concatenation Explicitly confidence map of each category

Трансформер для классификации

- Выход применяем GAP к выходу блока трансформера.
- Вход добавляем позицию, т.к. сеть инвариантна к перестановкам. Используем позиционный эмбединг или позиционная кодировка.

Трансформер для классификации - pytorch

```
class Transformer(nn.Module):
    def init (self, k, heads, depth, seq length, num tokens, num classes):
       super(). init ()
        self.num tokens = num tokens
        self.token emb = nn.Embedding(num tokens, k)
        self.pos emb = nn.Embedding(seq length, k)
       # Последовательность блоков трансформера, на которую
       # возлагается обязанность решения сложных задач
       tblocks = []
       for i in range(depth):
           tblocks.append(TransformerBlock(k=k, heads=heads))
        self.tblocks = nn.Sequential(*tblocks)
        # Настраиваем соответствие итоговой выходной последовательности ненормализованным :
        self.toprobs = nn.Linear(k, num classes)
```

Трансформер для классификации - pytorch

```
def forward(self, x):
    :param x: A (b, t) тензор целочисленных значений, представляющий
              слова (в некоем заранее заданном словаре).
    :return: A (b, c) тензор логарифмических вероятностей по
             классам (где с - это количество классов).
    ....
    # генерируем эмбеддинги токенов
    tokens = self.token emb(x)
    b, t, k = tokens.size()
    # генерируем позиционные эмбеддинги
    positions = torch.arange(t)
    positions = self.pos_emb(positions)[None, :, :].expand(b, t, k)
    x = tokens + positions
   x = self.tblocks(x)
    # Выполняем операцию усредняющего пуллинга по t измерениям и проецируем
    # на вероятности, соответствующие классам
    x = self.toprobs(x.mean(dim=1))
    return F.log softmax(x, dim=1)
```

Трансформер для генерации текста

Маска не дает вниманию смотреть в будущее!

Meжду CONV и RNN

Рекуррентность это слабость RNN – для того, чтобы посчитать x(n), нужно посчитать x(n-1)

Сверточная сеть позволяет считать все параллельно, но с малым полем зрения.

Трансформеры – решают обе проблемы!

Применение: GPT

Для работы с трансформерами используем Hugging Face! https://huggingface.co/

```
# Сначала установим библиотеку transformers
!pip install transformers

from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Для наглядности будем работать с русскоязычной GPT от Сбера.
# Ниже команды для загрузки и инициализации модели и токенизатора.
model_name_or_path = "sberbank-ai/rugpt3large_based_on_gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path)
model = GPT2LMHeadModel.from_pretrained(model_name_or_path).to(DEVICE)
```

Пример кода для ruGPT3

Исходный трансформер

Языковое моделирование


```
# prompt engineering for QA
text = "Bonpoc: 'Сколько будет 2+2?'\nOтвет:"
input_ids = tokenizer.encode(text, return_tensors="pt").to(DEVICE)
out = model.generate(input_ids, do_sample=False)

generated_text = list(map(tokenizer.decode, out))[0]
print(generated_text)

#>>> Вопрос: 'Сколько будет 2+2?'
#>>> Ответ: '2+2=4'
# prompt en
text = "По-
```

Пример: 2+2=4

```
# prompt engineering for Translation
text = "По-русски: 'кот', по-английски:"
input_ids = tokenizer.encode(text, return_tensors="pt").to(DEVICE)
out = model.generate(input_ids, do_sample=False)

generated_text = list(map(tokenizer.decode, out))[0]
print(generated_text)

#>>>> По-русски: 'кот', по-английски: 'cat'
```

Пример: кот -> cat

Токенизация


```
# Изначальные текст
text = "Токенизируй меня"
# Процесс токенизации с помощьюю токенайзера ruGPT-3
tokens = tokenizer.encode(text, add_special_tokens=False)
# Обратная поэлементая токенизация
decoded tokens = [tokenizer.decode([token]) for token in tokens]
print("text:", text)
print("tokens: ", tokens)
print("decoded tokens: ", decoded tokens)
#>>> text:
                   Токенизируй меня
#>>> tokens:
                      [789, 368, 337, 848, 28306, 703]
#>>> decoded tokens: ['T', 'ок', 'ени', 'зи', 'руй', ' меня']
```


Код

Иллюстрация

Архитектура GPT

Последовательность шагов GPT

- 1. Токенизация
- 2. Получение эмбедингов (похоже на word2vec)
- 3. Добавляем эмбединг позиции
- 4. Пропускаем через последовательность Transformer Decoding Blocks
- 5. Умножаем выход на вход? берем softmax получаем вероятности следующего токена
- 6. Делаем семплинг из распределения

Позиционные эмбеденги

Transformer Decoder Block

Получение результата - argmax

Получение результата – beam search

Пример дерева beam-search. Числа — это вероятности токенов.

Получение результата – семплинг