

Planning

ME 2984
"Failing to plan is planning to fail."
— Alan Lakein

SYSTEM REVIEW

- System Design
- Act
 - Closed-loop Control
 - Kinematics
- Sense
 - Sensing
 - Perception
- · Think?

PLANNING

- For some space, find a path that goes from an initial point (start) to and end point (goal)
- Space can be n-dimensional
- Planner is complete if it finds a solution in finite time
 - Or returns a failure if no there is no path

1 DIMENSIONAL SEARCH

- From current position
 - Test if a step in one direction reduces distance to goal
 - If yes, add step to path, step current position
 - Otherwise, add step in opposite direction
- Is this planner complete?
 - Without obstacles?
 - With obstacles?

2D PATH PLANNING

- Can we use the algorithm in 2D?
- Introduces issue of ties
 - How can we resolve them?
- Known as gradient descent or potential field planning

POTENTIAL FIELDS

- Cul-de-sac still causes problems
- Always taking best immediate action
- Need to be less greedy
- Note: these algorithms assume ability to measure distance to goal

- Assume
 - Can always measure direction to goal
 - Can sense obstacle immediately adjacent to robot
 - Finite number of obstacles with finite size
- Can extend previous algorithm to handle obstacles

- Head towards goal
- When obstacles encountered, drive along boundary until path to goal is clear again
- Is this planner complete?

BUG 0 BUGS

- Algorithm can loop forever
- · How to solve this?
 - Coin flipping can help
 - Memory solves it

- Assume measuring distance to goal
- Head towards goal
- When obstacles encountered, circumnavigate obstacles
 - Record point on obstacle where goal was closest
 - Once circumnavigation complete, return to recorded point and start over
 - If obstacle is re-encountered, fail
- Is this complete?

- Bug 1 is provably complete
- Proof by contradiction. Assume path exists, if:
 - Never terminates
 - Algorithm leaves every obstacle close than it arrives
 - Finite obstacles in world
 - Assume incorrect termination
 - Leaving an obstacle must cause hitting the same obstacle
 - Line from start to goal must enter an obstacle an even number of times
 - Every entrance to an obstacle has a corresponding point closer than entrance if a path exists

- Bug 1 is complete
- Can also say something about the length of the solution found
- Concept of bounds

BOUNDS

- Estimate range of some function as inputs scale
 - Provable equations
- Provide worst and best case estimates

- If straight line from start to goal is D
- Solution intersects N obstacles
- Lower bound?

- If straight line from start to goal is D
- Solution intersects N obstacles
- Lower bound?
 - D
- Upper bound?

- If straight line from start to goal is D
- Solution intersects N obstacles
- Lower bound?
 - D
- Upper bound?

$$D + \sum_{i=0}^{N} \frac{3}{2} P(O_i)$$

IS THERE BETTER?

- Bug 1 samples entire object perimeter
- Reasonable criteria for leaving obstacle early?
 - Need some heuristic for leaving obstacle early

IS THERE BETTER?

- Bug 1 samples entire object perimeter
- Reasonable criteria for leaving obstacle early?
 - Need some heuristic for leaving obstacle early
 - Straight Line Path

- Head towards goal
- Navigate around obstacles
 - If a point on the straight line to the goal is encountered closer than original point, start over
- Is this always a better algorithm?

- Empirically, often performs better
- Depends on the environment
- What's the upper bound?

- Empirically, often performs better
- Depends on the environment
- What's the upper bound?

$$D + \sum_{i=1}^{N} \frac{X_i}{2} P(O_i)$$

LOCAL PLANNER REVIEWS

- Potential fields are fast
 - Can't handle complex obstacles
- Bug 0 is more robust, but not complete
- Bug 1 is complete
 - Requires some memory
 - Tests full perimeter of every obstacle encountered
- Bug 2 can be better
 - Can suffer from pathological cases

VirginiaTech Invent the Future CAL PLANNER PROBLEMS

- These algorithms rely on local sensing
- Integrate action with planning
- How to use ranged sensing?
- Deliberative planning?