Álgebra Linear

Mestrado Integrado em Engenharia Informática

Universidade do Minho Escola de Ciências Departamento de Matemática

(continua)

Teste 2 - A	e Aplicações
7 janeiro 2017	Duração: 2 horas
Nome:	Número:
I	
Relativamente às questões deste grupo, indique, para cada alínea, se a afirmaçã assinalando a opção conveniente.	ão é verdadeira (V) ou falsa (F),
As respostas incorretamente assinaladas têm cotação	o negativa.
Questão 1.	V F
a) O subespaço $\mathcal{S}=\langle (1,0,-1,0),(2,0,-1,1),(1,0,0,1),(0,0,1,1)\rangle$ t b) $\langle (1,1,1),(1,2,0)\rangle=\langle (0,1,-1),(2,1,0),(2,3,1)\rangle.$ c) As coordenadas do vetor $(1,-1,3)$ na base $((1,1,1),(0,-1,1))$ são	○ ⊗
d) O vetor $x^2-x+5\in\mathcal{P}_2$ é combinação linear dos vetores x^2+x+t e) $((1,0,0,0),(0,1,0,0))$ é uma base do subespaço $\mathcal{S}=\{(x,y,z,t)\in\mathcal{S}_{+}\}$	1 e $x-2$.
Questão 2. Seja f uma aplicação linear de \mathbb{R}^2 em \mathbb{R}^3 tal que	
f(1,-2)=(1,1,0) e $f(-1,1)=(1,0,-1)$	-1). V F
a) $f(1,0)=(-3,-1,2).$ b) $f(0,0)=(1,-1,1).$ c) A matriz da aplicação f é de ordem $3\times 2.$ d) f é uma aplicação sobrejetiva. e) dim Nuc $f\leq 1.$	⊗○⊗○○⊗○○○
Questão 3. Seja $A=\left(\begin{array}{ccc}1&1&1\\0&1&-1\\0&-1&1\end{array}\right) {\rm e} b=\left(\begin{array}{ccc}1\\1\\1\end{array}\right)$	V F
 a) O polinómio característico de A é p(λ) = λ(λ – 1)(2 – λ). b) A matriz A é diagonalizável. c) A matriz A² – 4I é invertível. d) O sistema (A – 3I)x = b é um sistema de Cramer. e) (-2,1,1) é um vetor próprio de A. 	

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{array}\right).$$

/ F

a) A matriz adj A tem duas linhas nulas.

 \bigcirc

b) $(1,0,1) \in C(A)$.

- \bigcirc
- c) A matriz A é a matriz da aplicação linear f(x, y, z) = (x + 2y + 3z, 4x + 5y + 6z, 0) relativamente à base canónica de \mathbb{R}^3 .
- \otimes \bigcirc

d) As colunas de A são vetores linearmente independentes de \mathbb{R}^3 .

 \bigcirc \otimes

e) $\mathcal{L}(A) = \mathbb{R}^2$.

 \bigcirc \otimes

П

Responda às questões deste grupo numa folha de teste.

Questão 1. Considere as matrizes

$$A_k = \left(egin{array}{ccc} 2 & 0 & 1 \ k & 1+k & 0 \ 1 & 0 & 2 \end{array}
ight), \; k \in \mathbb{R}.$$

a) Discuta, em função de k, a dimensão de $\mathcal{C}(A_k)$ e indique uma base de $\mathcal{C}(A_{-1})$ e $\mathcal{L}(A_{-1})$.

$$\begin{pmatrix}2&0&1\\k&1+k&0\\1&0&2\end{pmatrix}\rightarrow\begin{pmatrix}1&0&2\\0&1+k&-2k\\0&0&-3\end{pmatrix}; \text{se }k\neq-1 \text{ a matriz está em escada e } \operatorname{car}(A_k)=3.$$

Se
$$k=-1$$
, tem-se $A_{-1}=\left(\begin{array}{ccc} 2 & 0 & 1 \\ -1 & 0 & 0 \\ 1 & 0 & 2 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)\Longrightarrow {\sf car}(A_{-1})=2.$

$$\mathsf{Logo}\;\mathsf{dim}\,\mathcal{C}(A_k) = \mathsf{car}(A_k) = \begin{cases} 3,\;\mathsf{se}\;k \neq -1\\ 2,\;\mathsf{se}\;k = -1 \end{cases}$$

base
$$C(A_{-1}) = ((2, -1, 1), (1, 0, 2))$$
 base $L(A_{-1}) = ((1, 0, 2), (0, 0, 1))$

b) Determine os valores próprios de A_0 e o subespaço próprio associado ao menor valor próprio desta matriz.

$$p(\lambda) = \det(A_0 - \lambda I) = (1 - \lambda)^2 (3 - \lambda).$$

Logo a matriz tem como valores próprios: 1 (duplo) e 3 (simples).

$$V_{\lambda=1} = \{x \in \mathbb{R}^3 : (A_0 - I) | x = 0\} = \langle (1, 0, -1), (0, 1, 0) \rangle$$

c) Diga, justificando, se existe algum número real α para o qual a matriz A_0 é semelhante à matriz

$$\left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & \alpha - 2 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Como dim $V_{\lambda=1}=2$, as multiplicidades geométricas e algébricas de cada valor próprio coincidem. A matriz é, por isso, diagonalizável, isto é, é semelhante a uma matriz diagonal, com os valores próprios dispostos na diagonal. Facilmente se vê que a matriz dada está nesta condições se $\alpha=3$.

- d) Considere, para cada k, a aplicação linear ϕ_k definida pela matriz A_k .
 - i. Determine $\text{Nuc}(\phi_{-1})$. $\text{Nuc}(\phi_{-1}) = \mathcal{N}(A_{-1}) = \{x \in \mathbb{R}^3 : A_{-1}x = 0\} = \langle (0, 1, 0) \rangle$
 - ii. Diga, justificando, se $(1,2,3) \in \operatorname{Im}(\phi_2)$; Como dim $\operatorname{Im}(\phi_2) = \operatorname{car} A_2 = 3$, conclui-se que $\operatorname{Im}(\phi_2) = \mathbb{R}^3$ e a afirmação é, por isso, verdadeira.
 - iii. Existe algum valor de k para o qual ϕ_k é bijetiva? Justifique. Como a matriz da aplicação é quadrada, dizer que a aplicação é bijetiva é equivalente a dizer que é sobrejetiva, ou ainda que car $A_k=3$. Pela alínea a), isto acontece quando $k\neq -1$.

Questão 2. Para cada uma das alíneas seguintes, diga, justificando, se a afirmação é verdadeira ou falsa.

a) O conjunto das matrizes reais simétricas de ordem 2 com traço nulo não é um subespaço vetorial de $\mathbb{R}^{2\times 2}$. Seja \mathcal{S} conjunto das matrizes reais simétricas de ordem 2 com traço nulo, i.e.

$$\mathcal{S} = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathbb{R}^{2 \times 2} : \alpha + \delta = 0 \text{ e } \gamma = \beta \right\} = \left\{ \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix} : \alpha, \beta \in \mathbb{R} \right\}.$$

Vamos mostrar que este conjunto é um subespaço vetorial de $\mathbb{R}^{2\times 2}$:

1. A matriz nula pertence a S, logo este conjunto é não vazio.

2. Sejam
$$A_1 = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & -\alpha_1 \end{pmatrix}$$
 e $A_2 = \begin{pmatrix} \alpha_2 & \beta_2 \\ \beta_2 & -\alpha_2 \end{pmatrix}$ matrizes de \mathcal{S} . Então

$$A_1 + A_2 = \begin{pmatrix} \alpha_1 + \alpha_2 & \beta_1 + \beta_2 \\ \beta_1 + \beta_2 & -\alpha_1 - \alpha_2 \end{pmatrix} \Longrightarrow A_1 + A_2 \in \mathcal{S}.$$

3. Seja $A=egin{pmatrix} lpha & eta \ eta & -lpha \end{pmatrix}$ uma matriz de $\mathcal S$ e seja $k\in\mathbb R$. Então

$$kA = \begin{pmatrix} k\alpha & k\beta \\ k\beta & -k\alpha \end{pmatrix} \Longrightarrow kA \in \mathcal{S}.$$

A afirmação é falsa.

b) Se P é uma matriz invertível de ordem n, a aplicação $\phi: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ definida por $\phi(A) = P^{-1}AP$ é uma aplicação linear.

Sejam A e B matrizes reais de ordem n e seja $\alpha \in \mathbb{R}.$

1.
$$\phi(A+B) = P^{-1}(A+B)P = (P^{-1}A+P^{-1}B)P = P^{-1}AP + P^{-1}BP = \phi(A) + \phi(B);$$

2.
$$\phi(\alpha A) = P^{-1}(\alpha A)P = \alpha(P^{-1}AP) = \alpha\phi(A)$$
.

A afirmação é verdadeira.

c) Seja A uma matriz diagonalizável cujos valores próprios são 0 e 1. A matriz A é uma matriz idempotente, isto é, $A^2 = A$.

Se A é diagonalizável, então é semelhante a uma matriz diagonal D, isto é, existe uma matriz invertível P tal que $A=P^{-1}DP$. A matriz diagonal D tem na diagonal os elementos 0 e 1, donde resulta de imediato que $D^2=D$. Logo

$$A^{2} = (P^{-1}DP)^{2} = (P^{-1}DP)(P^{-1}DP) = P^{-1}D(PP^{-1})DP = P^{-1}D^{2}P = P^{-1}DP = A.$$

A afirmação é verdadeira.