Parameterized Deep Q-Network Learning: Reinforcement Learning with Discrete-Continuous Hybrid Action Space

백승언

07 Mar, 2022

Contents

- Introduction
 - Reinforcement learning in games
- Parameterized Deep Q-Network Learning(P-DQN)
 - Backgrounds
 - Methodology
- Experiments
 - Environments
 - Results

Introduction

Reinforcement learning in games (I)

Milestones

- Backgammon (1992) \rightarrow TD(λ) algorithm
- Chess (1997) \rightarrow TD(λ) algorithm
- Atari game (2013) → DQN
- Go (2016) → MC Tree search

Reinforcement learning in games (II)

- Recent achievement
 - Dota II (2019) → PPO
 - OpenAl "Five" model defeats world champions
 - Collaboration with Valve for training agent

- StarCraft II (2019) → PPO, UPGO, V-trace, ...
 - DeepMind "AlphaStar" achieves the GrandMaster level
 - Collaboration with Blizzard for training agent

- 이쯤되면 떠오르는... League Of Legend(LOL!)
 - Where are Tencent and Riot Games?

Parameterized Deep Q-Network Learning: RL with Hybrid Action Space

Backgrounds (I)

- Most existing DRL methods require the action space to be either finite and discrete or continuous.
 - The algorithms for discrete action space: DQN family, A3C, PPO, REDQ, ...
 - The algorithms for continuous action space: DDPG, TD3, A3C, PPO, ...
 - The authors consider the RL problem with a discrete-continuous hybrid action space

Discrete control $\{A, B, X, Y, up, down\}$

Backgrounds (II)

Previous approaches for parameterized action space

- Masson et al.(2015): Q-PAMDP
 - Parameterized action $A = \bigcup_{a \in A_d} \{(a, x) \mid x \in \chi_a\}$ and parameterized action space MDPs(PAMDPs) were proposed.
 - They proposed the learning framework that alternately updates the network weights for discrete actions using Q-learning and for continuous parameters using policy search
- Hausknecht and Stone(2016): PA-DDPG
 - To handle such parameterized actions, DDPG algorithm was applied on the relaxed action space directly.
 - They defined parameterized action as follows:
 - $(Dash, p_{dash1}, p_{dash2}) \cup (Turn, p_{turn3}) \cup (Tackle, p_{tackle4}) \cup (Kick, p_{kick5}, p_{kick6}).$
 - The actor network factors the action into one output layer for 4 discrete actions and another for all 6 continuous params.

Three types of action spaces: discrete, continuous, and parameterized

Network architecture(left), Actor update procedure(right)

Methodology (I)

Hybrid action is defined by following hierarchical structure

- High level action k from discrete set [k] was first chosen. \rightarrow [k] denotes $\{1, 2, ..., K\}$
- Upon choosing k, low level parameter $x_k \in \chi_k$ was chosen
 - x_k is associated with the k-th high level action, χ_k is a continuous set for all $k \in [K]$
 - Ex) game내에서 사용할 skill을 고르고, skill을 적중 시킬 위치를 continuous하게 고르는 것
- Therefore, the authors defined discrete-continuous hybrid action space
 - $A = \{(k, x_k) | x_k \in \chi_k \text{ for all } k \in [K]\}$

Bellman equation of P-DQN

- The authors considered MDP with parameterized action space A
 - Action value function is denoted by $Q(s, a) = Q(s, k, x_k)$
- Then, Bellman equation becomes
 - $Q(s_t, k_t, x_k) = \mathbb{E}_{r_t, s_{t+1}} \left[r_t + \gamma \max_{k \in [K]} \sup_{x_k \in \chi_k} Q(s_{t+1}, k, x_k) \mid s_t = s, a_t = (k_t, x_k) \right]$
 - * Problem occurred! supremum over continuous space χ_k is intractable

Methodology (II)

- Approximation of parameterized action value function $Q(s, k, x_k)$
 - Bellman equation with parametrized action $A := (k, x_k)$

•
$$Q(s_t, k_t, x_k) = \mathbb{E}_{r_t, s_{t+1}} \left[r_t + \gamma \max_{k \in [K]} \sup_{x_k \in \chi_k} Q(s_{t+1}, k, x_k) \mid s_t = s, a_t = (k_t, x_k) \right]$$

- The authors first solve $x_k^* = argsup_{x_k \in K} Q(s_{t+1}, k, x_k)$ for each $k \in [K]$ and take the largest $Q(s_{t+1}, k, x_k^*)$
 - When the function Q is fixed, for any $s \in S$ and $k \in [K]$, $argsup_{x_k \in \chi_k}Q(s,k,x_k)$ as function $x_k^Q: S \to \chi_k$.
- Then, Bellman equation can be rewritten
 - $Q(s_t, k_t, x_{k_t}) = \mathbb{E}_{r_t, s_{t+1}} \left[r_t + \gamma \max_{k \in [K]} Q(s_{t+1}, k, x_k^Q(s_{t+1}) | s_t = s \right]$
 - It resembles the classical Bellman equation with A := (k)
- Similar to the DQN, they used neural network for action value function
 - First, deep neural network $Q(s, k, x_k; \omega)$ used to approximate $Q(s, k, x_k)$
 - Moreover, for such a $Q(s, k, x_k; \omega)$, they approximate $x_k^Q(s_{t+1})$ with a deterministic policy network $x_k(s; \theta): S \to \chi_k$
 - That is, when ω is fixed, θ is found such that $Q(s,k,x_k(s;\theta);\omega) \approx \sup_{x_k \in \chi_k} Q(s,k,x_k;\omega)$ for each $k \in [K]$

Methodology (III)

• Loss function of ω and θ

- Bellman equation with parametrized action $A := (k, x_k)$
 - $Q(s_t, k_t, x_k) = \mathbb{E}_{r_t, s_{t+1}} \left[r_t + \gamma \max_{k \in [K]} \sup_{x_k \in \chi_k} Q(s_{t+1}, k, x_k) \mid s_t = s, a_t = (k_t, x_k) \right]$
- Approximation of parameterized action value function $Q(s, k, x_k)$ with deep neural networks
 - $Q(s,k,x_k) \approx Q(s,k,x_k(s;\theta);\omega) \approx \sup_{x_k \in \chi_k} Q(s,k,x_k;\omega)$ for each $k \in [K]$
- Like DQN, ω could be estimated by minimizing the TD error via gradient descent

•
$$y_t = r_{t+1} + \gamma \max_{k \in [K]} Q(s_{t+1}, k, x_k(s_{t+1}, \theta_t); \omega_t), \quad Loss_t^Q(\omega) = \frac{1}{2} [Q(s_t, k_t, x_k; \omega) - y_t]^2$$

- Like DDPG, θ could be estimated by maximizing the deterministic policy gradient via gradient descent
 - $Loss_t^{\Theta}(\theta) = -\sum_{k=1}^k Q(s_k, k, x_k(s_t; \theta); \omega_t)$
- In the ideal case, ω_t is fixed when $Loss_t^{\Theta}(\theta)$ is minimized.
 - But the authors could approximately achieve such a goal in an online fashion via two-timescale update rule.
 - In specific, they update ω with stepsize α_t that is asymptotically negligible compered with the stepsize β_t for θ

Methodology (IV)

Architecture of P-DQN

- Continuous action $x_k(s;\theta)$ was first outputted
- After that, discrete action k was selected
- Finally, parameterized action $A = (k, x_k)$ was combined

Network architecture of P-DQN

Total training sequence of P-DQN

- Both *ϵ*-greedy(DQN) and action noise(DDPG) was used for exploration
- Experience replay was applied
- n-step TD error was used

Algorithm 1 Parametrized Deep Q-Network (P-DQN) with Experience Replay

Input: Stepsizes $\{\alpha_t, \beta_t\}_{t\geq 0}$, exploration parameter ϵ , minibatch size B, a probability distribution ξ . Initialize network weights ω_1 and θ_1 .

for
$$t = 1, 2, ..., T$$
 do

Compute action parameters $x_k \leftarrow x_k(s_t, \theta_t)$.

Select action $a_t = (k_t, x_{k_t})$ according to the ϵ -greedy policy

$$a_t = \begin{cases} \text{a sample from distribution } \xi & \text{with probability } \epsilon, \\ (k_t, x_{k_t}) & \text{such that } k_t = \arg\max_{k \in [K]} Q(s_t, k, x_k; \omega_t) & \text{with probability } 1 - \epsilon. \end{cases}$$

Take action a_t , observe reward r_t and the next state s_{t+1} .

Store transition $[s_t, a_t, r_t, s_{t+1}]$ into \mathcal{D} .

Sample B transitions $\{s_b, a_b, r_b, s_{b+1}\}_{b \in [B]}$ randomly from \mathcal{D} .

Define the target y_b by

$$y_b = \begin{cases} r_b & \text{if } s_{b+1} \text{ is the terminal state,} \\ r_b + \max_{k \in [K]} \gamma Q(s_{b+1}, k, x_k(s_{b+1}, \theta_t); \omega_t) & \text{if otherwise.} \end{cases}$$

Use data $\{y_b, s_b, a_b\}_{b \in [B]}$ to compute the stochastic gradient $\nabla_{\omega} \ell_t^Q(\omega)$ and $\nabla_{\theta} \ell_t^{\Theta}(\theta)$. Update the weights by $\omega_{t+1} \leftarrow \omega_t - \alpha_t \nabla_{\omega} \ell_t^Q(\omega_t)$ and $\theta_{t+1} \leftarrow \theta_t - \beta_t \nabla_{\theta} \ell_t^{\Theta}(\theta_t)$. end for

Pseudo code of P-DQN

Experiments

Environments

P-DQN was validated in several simulation environments

- Half Field Offense domain in RoboCup soccer(HFO)
 - State: 58 continuously-valued features
 - Action: {Dash(power, direction), Kick(power, direction), Stop}
 - Direction ∈ [-180, 180], power ∈ [0, 100]
 - Reward: hand-crafted intensive reward
 - $r_t = \Delta d_t(a, b) + 3\Delta d_t(b, g) + \mathbb{I}_{t+1}^{kick} + 5\mathbb{I}_{t+1}^{goal}$
 - $d_t(a,b)$: dist to agent & ball, $d_t(b,g)$: dist to goal & ball
- The solo mode in game King Of Glory(KOG)
 - **State:** 179-dimensional feature vector
 - Action: {Move(direction), Attack, skill1(x, y), skill2(direction), skill3(direction), retreat}
 - Reward: shaped reward
 - Gold difference, HP difference, Kill/Death, Tower HP difference, Tower destroyed, Winning game, Moving forward reward 등 고려

Results (I) – HFO environment

Comparison with PA-DDPG model

- Results in left column of table quoted from the Hausknecht and Stone(2016)
- 실험군의 경우, 10개의 P-DQN에 대해, 각각 실험을 100번 수행하여 평균 낸 결과를 도시함
 - 실험 결과, 대조군인 PA-DDPG model이 안정적인 최적화 결과를 얻지 못하는 반면, P-DQN의 경우 대부분의 모델이 안정적으로 높은 점수를 학습하는 것을 확인
 - Hand-crafted agent인 Helios' Campion에 비해서도 모든 모델이 높은 점수를 얻은 것을 확인
 - Youtube를 통해 실험 결과 공개, https://www.youtube.com/watch?v=fwJGR-QJ9TE

	Scoring Percent	Avg. Step to Goal		Scoring Percent	Avg. Step to Goal
Helios' Champion	.962	72.0	P-DQN ₁	.997	78.1
SARSA	.81	70.7	$P-DQN_2$.997	78.1
DDPG_1	1	108.0	$P-DQN_3$.996	78.1
$DDPG_2$.99	107.1	$P-DQN_4$.994	81.5
DDPG_3	.98	104.8	P-DQN ₅	.992	78.7
$\mathrm{DDPG_4}$.96	112.3	$P-DQN_6$.991	79.9
DDPG_{5}	.94	119.1	P-DQN ₇	.985	82.2
DDPG_{6}	.84	113.2	$P-DQN_8$.984	87.9
DDPG_{7}	.80	118.2	P - DQN_9	.979	78.5

Evaluation performance comparison with different methods

Results (II) – KOG environment

Comparison with PA-DDPG model

- 위 실험과 동일하게, 대조군으로써 PA-DDPG model을 선정
- 실험 결과, 제안된 P-DQN model로 학습한 결과가, PA-DDPG model에 비해 더욱 빠른 시간에 적을 무찌르는 것을 확인(a1, b1)
- 또한, 더욱 빠른 시간 안에 agent의 학습이 이뤄진다는 것을 확인(a2, b2)

Thank you!

Q&A

Implementation of P-DQN