Sharpening Filters

Sharpening (change detection)

- First derivative
 - a) must be zero in areas of constant intensity
 - b) must be nonzero at the onset of an intensity step or ramp
 - c) must be nonzero along ramps
- 2. Second derivative
 - a) must be zero in constant areas
 - b) must be nonzero at the onset and end of an intensity step or ramp
 - c) must be zero along ramps of constant slope

Sharpening (change detection)

1. First derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

2. Second derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Performance of derivatives

a b c

FIGURE 3.36

Illustration of the first and second derivatives of a 1-D digital function representing a section of a horizontal intensity profile from an image. In (a) and (c) data points are joined by dashed lines as a visualization aid.

Gradient (first derivative)

$$\nabla f \equiv \operatorname{grad}(f) \equiv \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$M(x, y) = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

$$M(x, y) \approx |g_x| + |g_y|$$

$$\alpha(x, y) = \tan^{-1} \left[\frac{g_y}{g_x} \right]$$

$$g_x = \frac{\partial f(x, y)}{\partial x} = f(x + 1, y) - f(x, y)$$

$$g_y = \frac{\partial f(x, y)}{\partial y} = f(x, y + 1) - f(x, y)$$

-1	0	()	-1
0	1	1	L	0

Roberts

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Prewitt

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel

a b c d e f g

FIGURE 10.14

A 3×3 region of an image (the z's are intensity values) and various masks used to compute the gradient at the point labeled

0	1	1
-1	0	1
-1	-1	0

-1	-1	0
-1	0	1
0	1	1

Prewitt

0	1	2
-1	0	1
-2	-1	0

a b c d

edges.

Prewitt and Sobel masks for detecting diagonal

-2	-1	0
-1	0	1
0	1	2

Sobel

a b c d

FIGURE 10.16

(a) Original image of size 834×1114 pixels, with intensity values scaled to the range [0, 1]. (b) $|g_x|$, the component of the gradient in the *x*-direction, obtained using the Sobel mask in Fig. 10.14(f) to filter the image. (c) $|g_y|$, obtained using the mask in Fig. 10.14(g). (d) The gradient image, $|g_x| + |g_y|$.

FIGURE 10.17

Gradient angle image computed using Eq. (10.2-11). Areas of constant intensity in this image indicate that the direction of the gradient vector is the same at all the pixel locations in those regions.

a b

FIGURE 3.42

(a) Optical image of contact lens (note defects on the boundary at 4 and 5 o'clock). (b) Sobel gradient. (Original image courtesy of Pete Sites, Perceptics Corporation.)

Sobel Gradient operator in OpenCV

```
Sobel(src, dst, ddepth, dx, dy)
```

Sobel(input, horizontal_derivative, CV_32F, 1, 0);

Sobel(input, vertical_derivative, CV_32F, 0, 1);