Modelarea unei funcții necunoscute

Studenți: Enescu Ruxandra, Hegheș Antonia, Niculiță Roxana

Grupa: 30134

Număr identificare: 40

CUPRINS

1. Parte introductivă

- 1.1. Motivație
- 1.2. Descrierea problemei

2. Algoritm și proces

- 2.1. Prezentare date
- 2.2. Descriere aproximator
- 2.3. Descriere sistem
- 2.4. Găsire parametri θ

3. Rezultate

- 3.1. Calcul ieșiri aproximate
- 3.2. Grafice și observații

4. Discuții ale problemei

- 4.1. Optimizare soluție
- 4.2. Concluzii

PARTE INTRODUCTIVĂ – Motivație

Ce este o funcție necunoscută?

• O funcție necunoscută este descrisă de o intrare și o ieșire dată, dar a cărei formă nu este specificată.

Ce este aproximarea?

- Aproximarea este o metodă care ne permite să construim modele matematice plecând de la un set de date reale al unei funcții necunoscute.
- Aceasta este o metodă fundamentală care stă la baza mai multor concepte esențiale în identificarea sistemelor: predicție, simulare, simplificare, control.

PARTE INTRODUCTIVĂ – Descrierea problemei

- Se dau urmatoarele date (#40): un set de date de intrare și ieșire.
- Ieșirea este generată de o funcție necunoscută neliniară, afectată de zgomot de medie zero.
- Comportamentul funcției necunoscute se poate observa cu ajutorul regresiei liniare, care descrie modul în care variabilele independente (i.e. X{1}, X{2}) influențează variabila dependentă (i.e. Y).
- Scopul problemei este găsirea vectorului de parametri θ ce minimizează media erorilor pătratice, pentru care aproximarea funcției este cât se poate de exactă.

ALGORITM ȘI PROCES – Prezentare date

- Identificarea sistemelor se bazează pe separarea setului de date în identificare și validare.
- Astfel, se utilizează vectorii X1_id şi X2_id pentru construirea matricei de regresori phi_id şi matricea Y_id pentru datele de identificare, respectiv X1_val, X2_val şi matricea Y_val pentru datele de validare.

ALGORITM ŞI PROCES – Descriere aproximator

- Aproximatorul polinomial are formă variabilă în funcție de gradul m ales.
- Exemplu: pentru gradul m=3 și două variabile de intrare, aproximatorul are forma:

$$\hat{g}(x) = [1, x_1, x_2, x_1^2, x_2^2, x_1^3, x_2^3, x_1x_2, x_1^2x_2, x_1x_2^2] \cdot \theta$$

Dimensiunea polinomului este:

$$C_{m+2}^m$$

ALGORITM ŞI PROCES – Descriere sistem

• Pentru m=2, sistemul arată astfel:

$$\begin{vmatrix} y(x_1\{1\}, x_2\{1\}) \\ y(x_1\{2\}, x_2\{1\}) \\ y(x_1\{3\}, x_2\{1\}) \\ y(x_1\{3\}, x_2\{1\}) \\ \vdots \\ y(x_1\{41\}, x_2\{1\}) \\ y(x_1\{41\}, x_2\{2\}) \\ \vdots \\ y(x_1\{41\}, x_2\{41\}) \end{vmatrix} = \begin{vmatrix} 1 & x_1\{1\} & x_2\{1\} & x_1\{1\}x_2\{1\} & x_1\{2\}^2 & x_2\{1\}^2 \\ 1 & x_1\{2\} & x_2\{1\} & x_1\{2\}x_2\{1\} & x_1\{3\}^2 & x_2\{1\}^2 \\ 1 & x_1\{3\} & x_2\{1\} & x_1\{2\}x_2\{1\} & x_1\{3\}^2 & x_2\{1\}^2 \\ \vdots \\ 1 & x_1\{41\} & x_2\{1\} & x_1\{41\}x_2\{1\} & x_1\{41\}^2 & x_2\{1\}^2 \\ 1 & x_1\{1\} & x_2\{2\} & x_1\{1\}x_2\{2\} & x_1\{1\}^2 & x_2\{2\}^2 \\ \vdots \\ 0 & \vdots \\ 0 &$$

ALGORITM ŞI PROCES – Găsire parametri θ

Este cunoscut că ieşirea dată Y_id a sistemului este rezultatul
 înmulțirii dintre matricea phi_id și vectorul θ, momentan necunoscut.

$$Y = \Phi \theta$$

• Astfel, aplicând metoda regresiei liniare, vectorul θ va rezulta din expresia:

$$\theta = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}Y$$

• **Observație**: programul MATLAB folosit în elaborarea soluției ne pune la dispoziție operatorul "\" – left division, care substituie algoritmul regresiei liniare.

REZULTATE – Calcul ieşiri aproximate

 Ieșirea aproximată este rezultatul înmulțirii dintre matricea phi_id, respectiv phi_val și vectorul de parametri θ.

$$\widehat{\mathsf{Y}} = \mathsf{\Phi} \theta$$

• Exemplu: m=5

Fig. 3.1.1

REZULTATE – Grafice și observații

Subantrenare

m=2

Supraantrenare

$$m = 40$$

Fig. 3.2.1

Fig. 3.2.2

REZULTATE – Grafice și observații

- Se observă conform fig. 3.2.1 și fig. 3.2.2, două fenomene ce apar atunci când modelul este prea simplu, respectiv prea complex: subantrenare și supraantrenare.
- Ce este subantrenarea?

Subantrenarea intervine atunci când un model nu reușește să captureze suficient de bine relațiile din datele de identificare.

Ce este supraantrenarea?

Supraantrenarea intervine atunci când un model se adaptează foarte bine la datele de identificare, dar interpreteaza și zgomotul.

DISCUŢII ALE PROBLEMEI – Optimizare soluție

- De remarcat este că o valoare mai mare a lui m nu înseamnă o soluție mai bună.
- Pentru alegerea acestei valori nu există o regulă prestabilită, variind de la model la model, iar acest proces implică multiple încercări și mai ales erori.
- Astfel, găsirea unui m optim se poate face calculând "mean squared error" (MSE) pe măsură ce acesta creşte.

DISCUŢII ALE PROBLEMEI – Optimizare soluție

MSE se calculează cu formula:

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- Obiectivul principal este găsirea unei valori MSE minime corespunzătoare gradului m optim.
- În figura următoare se poate observa că pentru valori mari ale lui m rezultatele încep să nu mai fie relevante. Creșterea bruscă a erorii sugerează antrenarea sistemului până la o valoare maximă m din intervalul [25, 30].

DISCUȚII ALE PROBLEMEI – Concluzii

- Subantrenare: Performanța slabă atât pe setul de identificare cât și pe setul de validare.
- Supraantrenare: Performanță excelentă pe setul de identificare, dar performanță slabă pe setul de validare.

Fig. 4.2.1

Vă mulțumim!

```
ANEXA COD (#40)
clear all
close all
clc
% CITIREA DATELOR
load('proj_fit_40.mat');
X1_id = id.X\{1\};
X2_{id} = id.X\{2\};
Y_id = id.Y;
X1_val = val.X{1};
X2_{val} = val.X\{2\};
Y_val = val.Y;
% GENERAREA MATRICEI DE REGRESORI PT IDENTIFICARE
grad = 30;
mse_id = ones(1 , grad);
mse_val = ones(1, grad);
for m=1:grad
phi_id = zeros(length(X1_id)*length(X2_id), nchoosek(m+2 , m));
y_v = zeros(length(X1_id)^2 , 1); % vectorul matricei Y_id
j=1;
while (j<=length(X2_id))</pre>
    for i = 1:length(X1_id)^2 % for asta e pt parcurgere X1_id (am pus la patrat
pentru ca nr de linii din phi este 1681)
        k = 1;
        for a = 0:m
            for b = 0:m-a
                if a+b<=m && a <= m && b <= m
                     if mod(i,41) == 0
                         phi_id(i, k) = (X1_id(41)^a)*(X2_id(j)^b);
                        y_v(i, 1) = Y_id(41, j);
                     else
                         phi_id(i, k) = (X1_id(mod(i,41))^a)*(X2_id(j)^b);
                        y_v(i, 1) = Y_id(mod(i, 41), j);
                    end
                end
                k = k+1;
            end
        end
        if mod(i, 41) == 0
            j=j+1;
        end
    end
end
```

```
theta = ones(nchoosek(m+2, m) , 1);
theta = phi_id\y_v ;
% GENERAREA MATRICEI DE REGRESORI PT VALIDARE
phi_val = zeros( length(X1_val)*length(X1_val), nchoosek(m+2 , m));
j=1;
while (j<=length(X2_val))</pre>
    for i = 1:length(X1_val)^2 % for asta e pt parcurgere X1_val (am pus la patrat
pentru ca nr de linii din phi este 961)
        k = 1;
        for a = 0:m
            for b = 0:m-a
                if a+b<=m && a <= m && b <= m
                     if \mod(i,31) == 0
                        phi_val(i, k) = (X1_val(31)^a)*(X2_val(j)^b);
                    else
                         phi_val(i, k) = (X1_val(mod(i,31))^a)*(X2_val(j)^b);
                    end
                end
                k = k+1;
            end
        end
        if mod(i, 31) == 0
            j=j+1;
        end
    end
end
% GENERARE APROXIMARE YHAT_VALIDARE
Yhat_val_v = ones(length(X1_val)^2 , 1);
Yhat val = ones(length(X1 val) , length(X2 val));
Yhat_val_v = phi_val * theta;
j =1;
while(j<= length(X1_val))</pre>
for i = 1:length(X1_val)^2
    if mod(i,31) == 0
        Yhat_val(31 , j) = Yhat_val_v(i ,1);
        j= j+1;
    else
        Yhat_val(mod(i, 31), j) = Yhat_val_v(i, 1);
    end
end
end
% GENERARE APROXIMARE YHAT_IDENTIFICARE
Yhat_id_v = ones(length(X1_id)^2 , 1);
Yhat_id = ones(length(X1_id) , length(X2_id));
Yhat_id_v = phi_id * theta;
j =1;
while(j<= length(X1_id))</pre>
```

```
for i = 1:length(X1_id)^2
    if mod(i,41) == 0
        Yhat_id(41 , j) = Yhat_id_v(i ,1);
        j= j+1;
    else
        Yhat_id(mod(i , 41) , j) = Yhat_id_v(i ,1);
    end
end
end
% MSE IDENTIFICARE
MSE_id=0;
for p=1:41
    for q=1:41
        MSE_id = MSE_id + (Y_id(p, q)-Yhat_id(p, q))*(Y_id(p, q)-Yhat_id(p, q));
    end
end
MSE_id = MSE_id/(41*41);
% MSE VALIDARE
MSE_val=0;
for p=1:31
    for q=1:31
        MSE\_val = MSE\_val + (Y\_val(p, q)-Yhat\_val(p, q))*(Y\_val(p, q)-Yhat\_val(p, q))
q));
    end
end
MSE val = MSE val/(31*31);
mse_id(1, m) = MSE_id;
mse_val(1 , m) = MSE_val;
end
stem(mse_id, 'b');
hold on
stem(mse_val, 'r');
grid;
xlabel('m');
ylabel('MSE');
title ('EVOLUTIA MSE');
legend('MSE id' , 'MSE val');
% GRADELE MSE MINIME
mse_min_id = min(mse_id);
for i = 1:m
    if mse_min_id == mse_id(1, i)
        grad_mse_min_id = i;
    \quad \text{end} \quad
end
```

```
mse min val = min(mse val);
for i = 1:m
    if mse_min_val == mse_val(1, i)
        grad_mse_min_val = i;
    end
end
% PENTRU GRADUL MINIM AL VALIDARII =>
m = grad_mse_min_val;
phi_id = zeros( length(X1_id)*length(X1_id), nchoosek(m+2 , m));
y_v = zeros(length(X1_id)^2 , 1); % vectorul matricei Y_id
j=1;
while (j<=length(X2_id))</pre>
    for i = 1:length(X1_id)^2 % for asta e pt parcurgere X1 (am pus la patrat
pentru ca nr de linii din phi este 1681)
        k = 1;
        for a = 0:m
            for b = 0:m-a
                if a+b<=m && a <= m && b <= m
                     if \mod(i,41) == 0
                        phi_id(i, k) = (X1_id(41)^a)*(X2_id(j)^b);
                        y_v(i, 1) = Y_id(41, j);
                    else
                         phi_i(i, k) = (X1_id(mod(i,41))^a)*(X2_id(j)^b);
                        y_v(i, 1) = Y_id(mod(i, 41), j);
                    end
                end
                k = k+1;
            end
        end
        if mod(i, 41) == 0
            j=j+1;
        end
    end
end
% IDENTIFICARE COEFICIENTI THETA
theta = ones(nchoosek(m+2, m) , 1);
theta = phi_id\y_v ;
% GENERAREA MATRICEI DE REGRESORI PT VALIDARE
phi_val = zeros( length(X1_val)*length(X1_val) , nchoosek(m+2 , m));
j=1;
while (j<=length(X2_val))</pre>
    for i = 1:length(X1_val)^2 % for asta e pt parcurgere X1 (am pus la patrat
pentru ca nr de linii din phi este 1681)
        k = 1;
        for a = 0:m
            for b = 0:m-a
                if a+b \le m && a \le m && b \le m
                     if mod(i,31) == 0
                         phi_val(i, k) = (X1_val(31)^a)*(X2_val(j)^b);
```

```
else
                         phi_val(i, k) = (X1_val(mod(i,31))^a)*(X2_val(j)^b);
                    end
                end
                k = k+1;
            end
        end
        if mod(i, 31) == 0
           j=j+1;
        end
    end
end
% GENERARE APROXIMARE YHAT VALIDARE
Yhat_val_v = ones(length(X1_val)^2 , 1);
Yhat_val = ones(length(X1_val) , length(X2_val));
Yhat_val_v = phi_val * theta;
j =1;
while(j<= length(X1_val))</pre>
for i = 1:length(X1_val)^2
    if mod(i,31) == 0
        Yhat_val(31 , j) = Yhat_val_v(i ,1);
        j= j+1;
    else
        Yhat_val(mod(i, 31), j) = Yhat_val_v(i, 1);
    end
end
end
% GENERARE APROXIMARE YHAT_IDENTIFICARE
Yhat_id_v = ones(length(X1_id)^2 , 1);
Yhat_id = ones(length(X1_id) , length(X2_id));
Yhat_id_v = phi_id * theta;
j =1;
while (j<= length(X1_id))</pre>
for i = 1:length(X1_id)^2
    if \mod(i,41) == 0
        Yhat_id(41 , j) = Yhat_id_v(i ,1);
        j= j+1;
    else
        Yhat_id(mod(i, 41), j) = Yhat_id_v(i, 1);
    end
end
end
% AFISARI APROXIMARI
figure;
subplot(121);
mesh(X1_val , X2_val, Yhat_val);
%hold on
```

```
%mesh(X1_val , X2_val, Y_val);
xlabel('X1 val');
ylabel('X2 val');
zlabel('Yhat val');
title('APROXIMARE VALIDARE');
subplot(122);
mesh(val.X{1}, val.X{2}, val.Y);
xlabel('X1 val');
ylabel('X2 val');
zlabel('Y val');
title('DATE VALIDARE');
figure;
subplot(121);
mesh(X1_id , X2_id, Yhat_id);
%hold on
%mesh(X1_id , X2_id, Y_id);
xlabel('X1 id');
ylabel('X2 id');
zlabel('Yhat id');
title('APROXIMARE IDENTIFICARE');
subplot(122);
mesh(id.X{1}, id.X{2}, id.Y);
xlabel('X1 id');
ylabel('X2 id');
zlabel('Y id');
title('DATE IDENTIFICARE');
```