ESTUDIO PREVIO 9

a) Montamos el circuito con el transistor NPN y la resistencia RC de 100Ω .

b) Simulamos variando V1 (V1 == Vbb) desde 0V hasta 5V. Representamos Ib sobre Vbe en el eje x. Es la curva característica de entrada del transistor.

C) Cambiamos la resistencia RC de 100Ω por una de 0.01Ω .

Estudio Previo 9

C) No has diferencies oprecioles. La Tomorto distritas volores de VCE se puede oprecior ane el comportamiento de la mión BE es similar alde un troto, y que cosi no depende de VCE, por ese al voirar RC combiola VCE, y no dependo operos.

d) Simulamos variando V2 (V2 == Vcc) desde 0V hasta 15V. Representamos Ic sobre Vce en el eje x. Es la curva característica de salida del transistor.

Cuando Vce es 2.22V la corriente Ic se mantiene estable a un valor de 18.85mA, y esa es la tensión en la que el transistor conmuta entre la fase de saturación y la activa.

e) Se simula con el Punto de Operación. Hemos probado a poner la resistencia RC a 0.01Ω y a 100Ω (La foto es la de 0.01Ω) porque no estaba bien especificado cuál de las dos usar, pero la Ib y la Ic nos ha dado la misma.

Operating Point		
V(n002):	5	voltage
V(n001):	15	voltage
V(b):	0.850202	voltage
V(c):	14.9998	voltage
Ic(Q1):	0.0188627	device_current
Ib(Q1):	0.000188627	device_current
Ie(Q1):	-0.0190514	device current
I(Rc):	0.0188627	device current
I(Rb):	-0.000188627	device current
I(V2):	-0.0188627	device current
I(V1):	-0.000188627	device current

 $Ic/Ib = 0.0188627A/0.000188627 A = 100 = \beta.$

 $\beta = 100.$