Model for The Bulk free radical polymerisation of Methyl Methacrylate.

- Semi-batch reactor.
- Non-Isothermal conditions
- Bulk free radical polymerisation scheme

Nomenclature

 A_{i1} , A_{i2} : empirical parameters (i =1-4)

 B_{i1} , B_{i2} : empirical parameters (i =1-4)

 C_m , C_R $\left[rac{mol}{m^3}
ight]$: concentration of monomer and free radical

D: diffusivity of monomer in the monomer-polymer mixture

 ${\it D}_n$: dead polymer molecule having n repeated units

f: initiator efficiency in the limiting case of zero diffusional resistance

I: initiator

 $[I]_0$ $\left(\frac{mol}{m^3}\right)$: concentration of initiator at t=0

 $k_d \ [s^{-1}]$: rate constant of for initiation in the presence of gel and glass effects

 k_p , k_t , k_{tm} $\left[\frac{m^3}{mol\times s}\right]$: rate constants for propagation, termination and chain

transfer to monomer in presence of gel and glass effects

 k_{tc} , k_{td} $\left[rac{m^3}{mol imes s}
ight]$: rate constants for termination by combination and

disproportion in presence of gel effects

$$k_{td}^{0}$$
 , k_{p}^{0} , k_{tm}^{0} $\left[\frac{m^{3}}{mol \times s}\right]$: in absence of gel effects

$$k_{td,o}$$
 , k_{po}^0 , $k_{tm,o}^0$ $\left[s^{-1} \ or \frac{m^3}{mol \times s}\right]$: frequency factors for the intrinsic rate constants

 $l_{\it chr}$: length of chromosome

 $l_{\it str}$: length of substring

 $M\ [mol]$: monomer, moles of monomer in the liquid phase

 $M_{W}\left[rac{Kg}{Kmol}
ight]$: weight average molecular weight [$\equiv rac{(MW_{m})(\lambda_{2}+\mu_{2})}{\lambda_{1}+\mu_{1}}$

 $MW_m\left[rac{kg}{\kappa_{mol}}
ight]$: molecular weight of the monomer

n: number of parameters in the Simple Genetic Algorithm (SGA)

 N_p : population size

 P_c : probability of crossover

 P_m : probability of mutation

 ${\it P}_n$: growing polymer radical having n repeat units

 r_m : radius of reaction sphere

R: primary radical

 R_{li} , R_{lm} $\left[rac{mol}{s}
ight]$: rate of continuous addition of initiator and monomer

 R_{vm} $\left[\frac{mol}{s}\right]$: rate of evaporation of monomer

T(t) [K or ${}^{\circ}$ C]: temperature of the reaction mixture at time t t: time (min)

 $V_l \ [m^3]$: volume of the liquid at time t

$$x_m(t)$$
: monomer conversion (molar) at time t $[\equiv 1-\left(rac{M}{arsigma_{m1}}
ight)]$

lpha : fraction of monomer molecule undergoing chain transfer

 $\dot{\gamma} [s^{-1}]$: shear rate

 ς , ς_{m1} : net monomer added to the reactor

 $\eta \; [pa\; s]$: viscosity of the reaction mass

 $\lambda_k \ [mol]: k^{th}$ (k= 0, 1, 2...) moment of the live (P_n) polymer radicals [$\equiv \sum_{n=1}^{\infty} \, n^k P_n$]

 μ_k [mol] : k^{th} (k=0,1,2..)moment of the dead (D_n) polymer chains $[\equiv \sum_{n=1}^{\infty} n^k D_n]$

 μ_n [mol] : number average of chain length at time t $[\equiv \frac{\lambda_1 + \mu_1}{\lambda_0 + \mu_0}]$

 ho_m , ho_p $\left[rac{kg}{m^3}
ight]$: density of pure (liquid) monomer and polymer at temperature T

 ϕ_m , ϕ_p : volume fractions of monomer and polymer in liquid at time t

Model Equations

$$1. \frac{dI}{dt} = -k_d I + R_{li}(t)$$

2.
$$\frac{dM}{dt} = -\left(k_p + k_{tm}\right)\left(\frac{\lambda_0 M}{V_l}\right) + R_{lm}(t) - R_{vm}(t) - k_i\left(\frac{RM}{V_l}\right)$$

3.
$$\frac{dR}{dt} = 2fk_dI - k_i(\frac{RM}{V_1})$$

4.
$$\frac{d\lambda_0}{dt} = k_i \left(\frac{RM}{V_1}\right) - k_t \left(\frac{\lambda_0^2}{V_1}\right)$$

5.
$$\frac{d\lambda_1}{dt} = k_i \left(\frac{RM}{V_l}\right) + k_p M\left(\frac{\lambda_0}{V_l}\right) - k_t \left(\frac{\lambda_0 \lambda_1}{V_l}\right) + k_{tm} M\left(\frac{\lambda_0 - \lambda_1}{V_l}\right)$$

$$6. \ \frac{\text{d}\lambda_2}{\text{d}t} = k_i \left(\frac{\text{RM}}{\text{V}_l}\right) + k_p M \left(\frac{\lambda_0 + 2\lambda_1}{\text{V}_l}\right) - k_t \left(\frac{\lambda_0 \lambda_2}{\text{V}_l}\right) + k_{tm} M \left(\frac{\lambda_0 - \lambda_2}{\text{V}_1}\right)$$

7.
$$\frac{d\mu_0}{dt} = k_{tm} M \left(\frac{\lambda_0}{V_1} \right) + \left(k_{td} + \frac{1}{2} k_{tc} \right) \left(\frac{\lambda_0^2}{V_1} \right)$$

8.
$$\frac{d\mu_1}{dt} = k_{tm} M \left(\frac{\lambda_1}{V_l} \right) + k_t \left(\frac{\lambda_0 \lambda_1}{V_l} \right)$$

9.
$$\frac{d\mu_2}{dt} = k_{tm} M\left(\frac{\lambda_2}{V_l}\right) + k_t \left(\frac{\lambda_0 \lambda_2}{V_l}\right) + k_{tc} \left(\frac{\lambda_1^2}{V_l}\right)$$

10.
$$\frac{d\varsigma_{\rm m}}{dt} = R_{\rm lm}(t) - R_{\rm vm}(t)$$

11.
$$\frac{d\varsigma_{m1}}{dt} = R_{lm}(t)$$

12.
$$V_l = \left(\frac{M(MW_m)}{\rho_m}\right) + \left(\frac{(\varsigma_m - M)(MW_m)}{\rho_p}\right)$$

13.
$$\phi_{m} = \frac{\binom{\frac{M(MW_{m})}{\rho_{m}}}{\binom{\frac{M(MW_{m})}{\rho_{m}}} + \binom{(\varsigma_{m} - M)(MW_{m})}{\rho_{p}}}}$$

14.
$$\phi_{\rm p} = 1 - \phi_{\rm m}$$

15.
$$k_d = k_{d,o} \exp\left(-\frac{E_d}{RT}\right)$$

16.
$$k_p^0 = k_{p,o}^0 \exp\left(-\frac{E_p}{RT}\right)$$

17.
$$k_{td}^0 = k_{td,o}^0 \exp\left(-\frac{E_{td}}{RT}\right)$$

18.
$$k_t = k_t^0 \exp(A_1 + A_2 x_m + A_3 x_m^2 + A_4 x_m^3)$$
; for $x_m > 0$

19.
$$k_p = k_p^0 \exp(B_1 + B_2 x_m + B_3 x_m^2 + B_4 x_m^3)$$
; for $x_m > 0$

20.
$$A_i = A_{i1}(T - 273.15) + A_{i2}$$
; $i = 1, 2, ..., 4$

21.
$$B_i = B_{i1}(T - 273.15) + B_{i2}$$
; $i = 1, 2, ..., 4$

$$22. \quad X_m = 1 - \left(\frac{M(t)}{C_{m1}}\right)$$

Initial conditions (t=0)

23.
$$\lambda_0 = \lambda_1 = \lambda_2 = \mu_0 = \mu_1 = \mu_2 = R = 0$$

24.
$$I = I_0$$
; $M = \varsigma_m = \varsigma_{m1} = M_0$

Model Parameters

$ ho_m$	966.5 – 1.1(T-273.15) $\frac{kg}{m^3}$
$ ho_p$	$1200 \frac{kg}{m^3}$
f	0.58
k_d	$f(k_{d,o}$, E_d , T)
k_p	$f(k_p^0$, B_1 , B_2 , B_3 , B_4 , x_m $)$
k_{tm}	$f(k_{tm}^0$, E_p , $T)$
k_t	$f(k_t^0$, A_1 , A_2 , A_3 , A_4 , $x_m)$
k_{td}^0	$f(k^0_{td,o}$, E_{td})
A_i	$f(A_{i1}, A_{i2}, T)$
B_i	$f\left(B_{i1},B_{i2},T\right)$

k_d^0	$1.053 \times 10^{15} \ s^{-1}$
$\boldsymbol{k_{p,0}^0}$	$4.917 \times 10^2 \ m^3 mol^{-1} s^{-1}$
$k^0_{td,0}$	$9.800 \times 10^4 m^3 mol^{-1} s^{-1}$
k_{fm}^0	$4.66 \times 10^6 m^3 mol^{-1} s^{-1}$
k_{tc}	0.0
k_t	k_d
k_i	k_p
k_{tm}/k_{tm}^0	k_p/k_p^0
E_d	$128.45 \ kJ \ mol^{-1}$
$\boldsymbol{E_p}$	$18.22 \ kJ \ mol^{-1}$
E_{td}	$2.937 \ kJ \ mol^{-1}$
(MW_m)	$0.10013\ kg\ mol^{-1}$
(MW_l)	$0.06800\ kg\ mol^{-1}$
A_{i1} , A_{i2} for $i=1$ to 4	see ref
B_{i1} , B_{i2} $for 1 = 1 \ to 4$	see ref

Ref: Sangwai, J.S., Bhat, S.A., Gupta, S., Saraf, D.N. and Gupta, S.K., 2005. Bulk free radical polymerizations of methyl methacrylateunder non-isothermal conditions and with intermediate additionof initiator: Experiments and modeling. *Polymer*, *46*(25), pp.11451-11462.