

Indian Institute of Information Technology, Sri City, Chittoor

(An Institute of National Importance under an Act of Parliament)

Computer Communication Networks

Introduction, Communication link, Multiplexing

Dr. Raja Vara Prasad Assistant Professor IIIT Sri City

CDMA—Code Division Multiple Access

Figure 2-45. (a) Binary chip sequences for four stations. (b) Bipolar chip sequences. (c) Six examples of transmissions. (d) Recovery of station C's signal.

Six examples:

two stations, A and C, both transmit a 1 bit at the same time that B transmits a 0 bit.

 $\begin{array}{l} S_1 \bullet C = (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)/8 = 1 \\ S_2 \bullet C = (2 + 0 + 0 + 0 + 2 + 2 + 0 + 2)/8 = 1 \\ S_3 \bullet C = (0 + 0 + 2 + 2 + 0 - 2 + 0 - 2)/8 = 0 \\ S_4 \bullet C = (1 + 1 + 3 + 3 + 1 - 1 + 1 - 1)/8 = 1 \\ S_5 \bullet C = (4 + 0 + 2 + 0 + 2 + 0 - 2 + 2)/8 = 1 \\ S_6 \bullet C = (2 - 2 + 0 - 2 + 0 - 2 - 4 + 0)/8 = -1 \\ (d) \end{array}$

If the received chip sequence is S and the receiver is trying to listen to a station whose chip sequence is

$$\mathbf{S} \bullet \mathbf{C} = (\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}) \bullet \mathbf{C} = \mathbf{A} \bullet \mathbf{C} + \overline{\mathbf{B}} \bullet \mathbf{C} + \mathbf{C} \bullet \mathbf{C} = 0 + 0 + 1 = 1$$

CDMA—Code Division Multiple Access

two stations, A and C, both transmit a 1 bit at the same time that B transmits a 0 bit.

If the received chip sequence is S and the receiver is trying to listen to a station whose chip sequence is C

$$\mathbf{S} \bullet \mathbf{C} = (\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}) \bullet \mathbf{C} = \mathbf{A} \bullet \mathbf{C} + \overline{\mathbf{B}} \bullet \mathbf{C} + \mathbf{C} \bullet \mathbf{C} = 0 + 0 + 1 = 1$$

How are the end systems connected

- Circuit switching
 - A dedicated path from source to destination
 - Resources on the path are reserved for the source-destination pair
- Packet switching
 - No dedicated path from source to destination
 - A switch/router forwards packets to another router / destination on the path.

Circuit switching

- The network establishes a connection from source to its destination. This connection is called circuit.
- Resources such as bandwidth, buffers on the circuit are blocked for the duration of communication.
- Telephone network is a circuit switching network.
- Links are finite, so very few users can be supported simultaneously.

Circuit switching

Multiplexing in circuit switching

Packet switching

Statistical multiplexing

- Suppose users share a 1Mbps link.
- A user can be active or inactive. User will generate 100Kbps when active and we assume that a user is active for 10% of the time.
- Circuit switching: 100Kbps must be reserved for each user all the time, can support 10 users simultaneously!
- Circuit switching with TDM:
 - Say, one-second frame is divided into 10 frames each of 100ms.
 - Only 10 simultaneous connections are supported!!!

Statistical multiplexing

- Packet switching: Let there be 35 users in the system. What is the probability that 11 or more users are active simultaneously?
 - Approximately 0.0004
- As the probability of more than 10 users being active simultaneously is small, Packet switching can support 35 users!
- Packet switching allocate links on demand
- On demand allocation of resources is referred to as Statistical multiplexing.

Circuit switching vs Packet switching

Circuit switching

- Waste of bandwidth in silent periods
- Expensive
- Supports less number of connections
- Suitable for real-time services (video conferencing, etc)

Packet switching

- Effective use of bandwidth
- Cheaper than circuit switched network
- Supports more simultaneous connections
- Queuing delays
- Packet loss
- Not suitable for delay constrained applications

Layered Network Architecture

Why Layered Architecture?

- Organizing a network is a big and complicated task.
- Divide and conquer
- Example: Organization of an institute
 - academic section
 - finance section
 - administration section
 - procurement section

Advantages of Layered Architecture

- Divide the design issues into small pieces.
- A layer provides a service (set of actions) to the immediate higher layer.
- New technologies can be adopted in a layer without affecting other layers.
- Each layer can be analysed and tested independently.

Open System Interconnection (OSI) Reference Model

- Developed by International Organization for Standardization (ISO)
- 7-layer model:
 - Application layer
 - Presentation layer
 - Session layer
 - Transport layer
 - Network layer
 - Data-link layer
 - Physical layer

Layers

Application Layer

- Consists of user programs, network applications that does work at hand
- Examples:
 - File transfer, Remote login, Mail, Web access
- Protocols: FTP, Telnet, Simple Mail Transfer Protocol(SMTP), HTTP.

Presentation Layer

- Concerned with syntax and semantics of information transmitted
- Translation
- Encoding data: Data compression/conversion, encryption and decryption

Session Layer

- Allows to establish a session between peers
- Dialogue control: Session can allow bidirectional traffic or only unidirectional traffic.
- Token management: In some protocols, it is required that both sides do not attempt same operation at same time.
 Session layer provides tokens to perform such actions
- Synchronization: Pausing and resuming a download.

Transport Layer

- Connection-oriented services to applications
 - flow control
 - guaranteed delivery of messages to destination
- Ensures data delivery is
 - error-free
 - in sequence
 - no loss, duplication and corruption of packets

Network Layer

- Interface between host and network
- Routing
- Congestion and deadlock
- Internetworking

Data-Link Layer and Physical Layer

Data-link layer

- Takes packet from network layer and moves it to the next router
- error-free delivery: computes error detection information

Physical layer

- Controls transmission into the network cable.
- Defines electrical signals.

Internet Protocol Stack

- Application layer
- Transport layer
- Network layer
- Data-link layer
- Physical layer

Encapsulation

Figure 1.24 • Hosts, routers, and link-layer switches; each contains a different set of layers, reflecting their differences in functionality