Тренировочная работа, 2 тур 9 класс. 2015-16 г.

1. На длинном прямом шоссе автомобили движутся с постоянной скоростью v_1 всюду, за исключением моста, на котором автомобили движутся с другой постоянной скоростью v_2 . На рисунке изображен график зависимости расстояния l между

едущими друг за другом автомобилями от времени. Найдите скорости v_1 и v_2 , а также длину моста L.

- 2. Школьник заметил, что сферический пузырек воздуха диаметром $d_1 = 1$ мм всплывает в воде со скоростью $v_1 = 0.5$ см/с. Пузырек всплывает co скоростью $v_2 = 2$ см/с., диаметром $d_2 = 2 \text{ MM}$ сферическая металлическая дробинка того же диаметра плотностью $\rho_{\pi} = 5 \text{ г/см}^3$ тонет со скоростью $v_3 = 8 \text{ см/с}$. С какой скоростью будет плотностью $\rho = (2/3) \, \Gamma/\text{см}^3$ пластмассовый шарик d = 3 мм? Считайте, что характер зависимости сопротивления движению от скорости и диаметра шарика — степенной (показатели степеней найдите сами), и для всех указанных тел одинаков.
- 3. В калориметре плавает в воде кусок льда. В калориметр опускают нагреватель постоянной мощности P=50 Вт и начинают ежеминутно измерять температуру воды. В течение первой и второй минут температура воды не изменяется, к концу третьей минуты увеличивается на $\Delta T_1 = 2$ °C, а концу четвертой еще на $\Delta T_2 = 5$ °C. Сколько граммов воды и сколько граммов льда было изначально в калориметре? Удельная теплота плавления льда $\lambda = 340$ кДж/кг, удельная теплоемкость воды c = 4200 Дж/(кг · °C).
- 4. Найдите силу тока, текущего через сопротивление R_5 (см. рисунок), если $R_1=R_2=R_3=R_4=10$ Ом, U=12 В. Найдите также общее сопротивление цепи.

