

Selection of Probability Distributions

- Several types of probability distributions are available to characterize uncertain system parameters
- Selecting suitable probability distributions for system parameters is essential and largely depends on
 - Nature of structural system
 - Underlying assumptions of probability distributions
 - Distribution shape
 - Convenience and simplicity for subsequent computation
- Types of probability distributions most commonly used in engineering
 - Gaussian– Uniform
 - Lognormal Extreme value
 - Gamma Exponential
 - Binomial

Tip displacement may largely depend on what type of distribution is assumed to characterize uncertainty in load P

Common Engineering Distributions

- Gaussian Distribution (Most common overall)
 - a.k.a. Normal distribution or "bell curve"
 - 2 parameter distribution
 - symmetric distribution with x from -∞ to ∞

$$f_x(x) = \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- Lognormal Distribution (Related to Normal)
 - If the In(x) produces a normal random variable, then X is lognormally distributed
 - 2 parameter distribution
 - Parameters are not equal to mean and standard deviation

$$f_x(x) = \frac{1}{x\sigma\sqrt{2\pi}}exp\left(-\frac{(\ln x - m)^2}{2s^2}\right)$$

- Uniform Distribution (Simplest)
 - Simplest of continuous distributions
 - 2 parameter distribution
 - All positive values between a and b are equally likely

 $f_x(x) = \frac{1}{b-a}$

Common Engineering Distributions

- Exponential Distribution (Single Parameter)
 - Simplest of continuous distributions that has only one parameter
 - Common in reliability Analysis: used for constant failure rates

$$f_x(x) = \lambda exp(-\lambda x)$$

- Weibull Distribution (Fatigue of Materials)
 - Widely used in reliebility engineering: fatigue
 - Weakest link applications
 - Member of extreme value family

$$\alpha, \beta > 0$$

- Binomial Distribution (Counting process)
 - Generalization of Bernoulli for n independent trials
 - Gives probability of success of r unfavorable outcomes in n trials

$$f_x(x) = P(X = r) = \binom{n}{r} p^r (1 - p)^{n - r}$$
 $\binom{n}{r} = \frac{n!}{r! (n - r)!}$

Normal Distribution

Normal (or Gaussian) Distribution

Used in many engineering and science applications due to its simplicity and convenience

$$f_X(x) = \frac{1}{\sigma_X \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{X - \mu_X}{\sigma_X} \right)^2 \right], \ -\infty < x < \infty$$
Often used for problems involving small variation

- - Young's modulus
 - Poisson's ratio
 - Other material properties
- 68-95-99.7 rule

$$P(\mu_x - \sigma_x \le x \le \mu_x + \sigma_x) \approx 0.68$$

$$P(\mu_x - 2\sigma_x \le x \le \mu_x + 2\sigma_x) \approx 0.95$$

$$P(\mu_x - 3\sigma_x \le x \le \mu_x + 3\sigma_x) \approx 0.997$$

$$\checkmark$$
 $Z = a_0 + a_1X_1 + a_2X_2 + \cdots + a_nX_n$
 X_i : independent normal variables

$$Z = a_0 + a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$
 Z is also normal $\mu_z = a_0 + \sum_{i=1}^n a_i \mu_i$ $\sigma_z = \sqrt{\sum_{i=1}^n (a_i \sigma_i)^2}$

Standard Normal Distribution

Standard Normal Distribution

- Normalized normal distribution with zero mean and unit standard deviation, $\mathcal{N}(0,1)$
 - PDF $f_{\Xi}(\xi) = \frac{1}{\sqrt{2\pi}} \exp\left|\frac{-\xi^2}{2}\right|, \ -\infty < \xi < \infty \qquad \xi = \frac{x - \mu_x}{\sigma_x} \quad X: \text{ normal variable}$

$$\xi = \frac{x - \mu_x}{\sigma_x}$$
 X: normal variable

CDF

$$\Phi(\xi) = F_{\Xi}(\xi) = \int_{-\infty}^{\xi} \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-\xi^2}{2}\right] d\xi$$

$$\Phi(\xi = 0.75) = 0.7734$$

$$\checkmark$$
 If $\Phi(\xi_p)=p$ is known,
$$\xi_p=\Phi^{-1}(p) \qquad \Phi^{-1}$$
: inverse of Φ ex) $\xi_p=\Phi^{-1}(0.7734)=0.75$

Standard normal table $\Phi(\mathcal{E})$

ξ	0.03	0.04	0.05	0.06	
0.6	0.7357	0.7389	0.7422	0.7357	
0.7	0.7673	0.7704	0.7734	0.7673	
0.8	0.7967	0.7995	0.8023	0.7967	
					2./1

Standard Normal Distribution

$$\checkmark \Phi(\xi) + \Phi(-\xi) = 1$$
 due to symmetry about zero

$$\begin{array}{ll} \checkmark & \text{If } \Phi(\xi) = p, \\ \Phi(-\xi) = 1 - \Phi(\xi) = 1 - p \end{array} \qquad \begin{array}{ll} -\xi = \Phi^{-1}(1-p) \text{ or} & \text{Standard normal table } \Phi(\xi) \\ \xi = -\Phi^{-1}(1-p) & \text{is usually available for } \xi > 0 \end{array}$$

Standard normal table $\Phi(\xi)$

Lognormal Distribution

Lognormal distribution

- Especially useful when negative values of a system parameter are physically impossible and a large range of data are involved
 - Examples:
 Material strength, loading variables, cycles to failure, etc.
 - $Y = \ln X$ If X is a **lognormal** distribution, then Y is **normally** distributed

$$f_{Y}(y) = \frac{1}{\sigma_{Y}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{y - \mu_{Y}}{\sigma_{Y}}\right)^{2}\right], \quad -\infty < y < \infty$$

$$\mu_{Y} = \ln \mu_{X} - \frac{1}{2}\sigma_{Y}^{2}$$

$$f_{X}(x) = \frac{1}{x\sigma_{X}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \mu_{X}}{\sigma_{X}}\right)^{2}\right], \quad 0 < x < \infty$$

$$\sigma_{Y}^{2} = \ln\left[\left(\frac{\sigma_{X}}{\mu_{X}}\right)^{2} + 1\right]$$

$$E[X] = \exp\left(\mu_X + \frac{1}{2}\sigma_X^2\right)$$
$$V[X] = \left(\exp\left(\sigma_X^2\right) - 1\right)\exp\left(2\mu_X + \sigma_X^2\right)$$

Uniform & Gamma Distribution

Uniform Distribution

· All outcomes are equally likely to occur

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & x < a \text{ or } x > b \end{cases} \qquad E[X] = \frac{a+b}{2}$$

$$V[X] = \frac{\left(b - a\right)^2}{12}$$

Gamma Distribution

· Frequently used to model waiting time

$$\begin{split} f_X \big(x \big) &= \frac{1}{\beta^\alpha \Gamma \big(\alpha \big)} x^{\alpha - 1} \exp \left(-\frac{x}{\beta} \right), \ 0 \leq x < \infty \qquad \alpha > 0, \ \beta > 0 \\ & \Gamma \big(\alpha \big) = \int_0^\infty x^{\alpha - 1} \exp \big(-x \big) dx \qquad \text{Gamma function} \\ & E \big[X \big] = \alpha \beta \qquad V \big[X \big] = \alpha \beta^2 \end{split}$$

Exponential and Binomial Distribution

Binomial Distribution

- Generalization of Bernoulli for n independent trials
- Gives probability of success of r unfavorable outcomes in n trials

$$f_X(x) = P(X = r) = \binom{n}{r} p^r (1 - p)^{n-r}$$
$$\binom{n}{r} = \frac{n!}{r! (n-r)!}$$

Exponential Distribution

- Special case of Type III extreme value (or Weibull)
 distribution for α = 1
- Usually describes the time between events in a *Poisson* process (a process in which events occur continuously
 and independently at a constant average rate)

$$f_X(x) = \lambda \exp[-\lambda x], x \ge 0$$
 $F_X(x) = 1 - \exp[-\lambda x]$
$$E[X] = \frac{1}{\lambda} \qquad V[X] = \frac{1}{\lambda^2}$$

Extreme Value Distribution

Extreme Value Distribution

- Used as an approximation to model the maximum or minimum of long (finite) sequences of random variables
 - Type I extreme value (or *Gumbel*) distribution

$$f_X(x) = \alpha \exp\left[-\exp\left(-\alpha(x-u)\right)\right] \exp\left[-\alpha(x-u)\right]$$

$$u = \ln v, \ \alpha = k$$

$$f_X(x) = \frac{k}{v} \left(\frac{v}{x}\right)^{k+1} \exp\left[-\left(\frac{v}{x}\right)^k\right], \ 0 \le x < \infty, \ k \ge 2$$

$$f_X(x) = \frac{\alpha x^{\alpha - 1}}{\beta^{\alpha}} \exp \left[-\left(\frac{x}{\beta}\right)^{\alpha} \right], x \ge 0, \alpha > 0, \beta > 0$$

Determination of Probability Distribution WRIGHT STATE

- Probability Paper Method

Table 5.1 Preparation of Data for Young's Modulus for Plotting on Probability Papers

m	E (ksi)	m/(N+1)	m	E (ksi)	m/(N+1)
1	25,900	1/42 = 0.0238	21	29,400	21/42 = 0.5000
2	27,400	0.0476	22	29,400	0.5238
3	27,400	0.0714	23	29,500	0.5476
4	27,500	0.0952	24	29,600	0.5714
5	27,600	0.1190	25	29,600	0.5952
6	28,100	0.1429	26	29,900	0.6190
7	28,300	0.1667	27	30,200	0.6429
8	28,300	0.1905	28	30,200	0.6667
9	28,400	0.2143	29	30,200	0.6905
10	28,400	0.2381	30	30,300	0.7143
11	28,700	0.2619	31	30,500	0.7381
12	28,800	0.2857	32	30,500	0.7619
13	28,900	0.3095	33	30,600	0.7857
14	29,000	0.3333	34	31,100	0.8095
15	29,200	0.3571	35	31,200	0.8333
16	29,300	0.3810	36	31,300	0.8571
17	29,300	0.4048	37	31,300	0.8810
18	29,300	0.4286	38	31,300	0.9048
19	29,300	0.4524	39	32,000	0.9286
20	29,300	0.4762	40	32,700	0.9524
20	,500	3.4702	41	33,400	0.9762

Figure 5.1 Normal Probability Paper

Determination of Probability Distribution WRIGHT STATE

Normal Probability Plot

Right-skewed

Uniform data

Kolmogorov-Smirnov test

Illustration of the Kolmogorov–Smirnov statistic.

Red line is CDF, blue line is an ECDF, and the black arrow is the K–S statistic.

Sample Size,	Level of Significance, α				
N	0.20	0.15	0.10	0.05	0.01
3	0.565	0.597	0.642	0.708	0.828
4 5	0.494	0.525	0.564	0.624	0.733
5	0.446	0.474	0.474	0.565	0.669
10	0.322	0.342	0.368	0.410	0.490
15	0.266	0.283	0.304	0.338	0.404
20	0.231	0.246	0.264	0.294	0.356
25	0.21	0.22	0.24	0.27	0.32
30	0.19	0.20	0.22	0.24	0.29
35	0.18	0.19	0.21	0.23	0.27
40	0.17	0.18	0.19	0.21	0.25
45	0.16	0.17	0.18	0.20	0.24
50	0.15	0.16	0.17	0.19	0.23
overl	1.07	1.14	1.22	1.36	1.63
50 ∫	\sqrt{N}	\sqrt{N}	\sqrt{N}	\sqrt{N}	\sqrt{N}

K-S test:

$$P(D_n \le D_n^{\alpha}) = 1 - \alpha$$

Central Limit Theorem

Central Limit Theorem (CLT)

- States that given certain conditions, the linear combination of a sufficiently large number of independent random variables will be approximately normally distributed
- Suppose that $X_1, X_2, ..., X_n$ are any independent random variables with the same mean μ and variance σ^2 , then the sum and mean of all X's are approximated by

$$\begin{split} X_1 + X_2 +, \dots, + X_n &\sim \mathcal{N}\left(n\mu, \sqrt{n\sigma^2}\right) \\ \frac{X_1 + X_2 +, \dots, + X_n}{n} &\sim \mathcal{N}\left(\mu, \sqrt{\frac{\sigma^2}{n}}\right) \end{split}$$
 Usually, CLT is valid when $n \geq 30$

Ex: When n dice are rolled, the sum of n dice is approximated by a normal distribution

$$X_1 + X_2 + \dots + X_n \sim \mathcal{N}\left(3.5n, \sqrt{2.92n}\right)$$
 X_i : number rolled on each die

Mean of number rolled on each die: (1+2+3+4+5+6)/6 = 3.5Variance of number rolled on each die: $\{(1-3.5)^2 + \cdots + (6-3.5)^2\}/6 = 2.92$

Confidence Interval

- Based on Normal approximation
- Estimated range of values that is likely to include an unknown population parameter (e.g. mean of a population)
- Calculated from a given set of sample data
- Take into consideration variation in point estimate from sample to sample
- Stated in terms of confidence level (90%, 95%, and 99% commonly used)
 e.g. 95 % confidence interval: 95 % confident that the Interval contains an unknown parameter

Lower Point Estimate Upper Confidence Limit Confidence Limit

Point estimate: Best estimate of an unknown population parameter based on sample data

Confidence interval = Point Estimate ± Margin of Error

Confidence Interval

Confidence interval to estimate population mean μ

- Assume that
 - Population is normally distributed and its standard deviation σ is known
 - sample size is large: n ≥ 30 (CLT)

$$\overline{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 \overline{x} : Sample mean

 σ : Population standard deviation (if $n \ge 30$, sample standard deviation can be used instead)

n: Sample size

 $Z_{lpha\!/2}$: Standard normal distribution's critical value for probability of $lpha\!/2$ in each tail

Estimating Required Sample Size

- Required sampled size can be found mathematically
 - Depends on desired relative error
 - · Depends on confidence level

$$n = \left(\frac{1 - p_f}{p_f}\right) \left(\frac{k}{Relative\ Error}\right)^2$$

$$p_f = probability$$

 $k = confidence\ level$

k = # of Std. Dev.	Two-Sided Confidence Level
1	68%
1.64	90%
1.96	95%
2.6	99%

Maximum Likelihood Estimation

$$\mathcal{L}(\theta; x_1, \dots, x_n) = f(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta).$$

https://en.wikipedia.org/wiki/Maximum_likelihood

Bayesian Estimation

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int p(x|\theta)p(\theta)d\theta}.$$

https://en.wikipedia.org/wiki/Bayes estimator

- When $f_X(x|\theta)$ is viewed as a **function of observable random variable** X with **fixed parameters** θ , it is a probability distribution function of X
- It would be improper to switch likelihood and probability in the following two sentences
 - If I were to flip a fair coin 10 times, what is the probability of it landing heads-up every time?
 - Given that I have flipped a coin 10 times and it has landed heads-up 10 times,
 what is the *likelihood* that the coin is fair?

Likelihood can be used to *estimate unknown statistical parameters* given observed experimental data

$$f_X(x|n,p) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$
 denoted by $X \sim B(n,p)$

• When $L(\theta \mid x)$ is viewed as a *function of unknown parameter* θ with *observed realization of random variable* X (X being held at x), it is a likelihood function of θ

$$L(p|X=x,n) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$X = x \text{ from } B(n,p)$$

• Maximum likelihood estimator of unknown parameter θ :

Defined as the **point that maximizes likelihood function** of θ

$$\hat{\theta}_{mle} = \max L(\theta | X = x)$$

Tip Displacement:
$$d = \frac{4Ft^3}{Ebh^3}$$

Tip load F is known to follow a normal distribution of standard deviation 400 N, but its mean is unknown: $F \sim \mathcal{N}(\mu, 400 \text{ N})$

Tip displacement d is measured from an experimental test, d = 0.13 cm

What is the mean of tip load F?

Likelihood can be used to *estimate unknown statistical parameters* given observed experimental data

- In 1922, R. A. Fisher introduced the concept of likelihood function "to express the state of available information (data) concerning the parameters of hypothetical populations"
- Likelihood function gives a measure of how likely any particular value of parameter is, given that specific data is observed
- If a certain value of parameter gives a large likelihood value, it indicates that the observed data favor the parameter value
- Likelihood function (often simply likelihood) is a key component of Bayesian inference

Likelihood vs. Probability

- Likelihood is usually a synonym for probability, but a clear technical distinction exists
- It would be improper to switch likelihood and probability in the following two sentences
 - If I were to flip a fair coin 10 times, what is the *probability* of it landing heads-up every time?
 - Given that I have flipped a coin 10 times and it has landed heads-up 10 times,
 what is the *likelihood* that the coin is fair?
- A probability represents the chance of getting specific data, not yet observed, given that a statement is true (or Statistical parameters are known)
- A likelihood represents the support of a given statement (or statistical parameters)
 provided by observed data

	Probability, <i>P</i>	Likelihood, <i>L</i>
Parameter	Known	Unknown
Exptl. Data	Unknown	Known

Probability Distribution Function

• When $f_X(x|\theta)$ is viewed as a *function of observable random variable* X with *fixed parameters* θ , it is a probability distribution function of X

Ex: (Discrete) binomial distribution of variable *X*

$$f_X\left(\mathbf{x}|n,p\right) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$$
 denoted by

 θ : n, p

Unknown variable

$$X \sim B(n, p)$$
 $\uparrow \uparrow \uparrow$

Fixed

X: Number of success

n: Number of trials

p: Success probability in each trial

Given n=20 and p=0.7

$$f_X (x|n = 20, p = 0.7)$$

$$= \frac{20!}{x!(20-x)!} 0.7^x (1-0.7)^{20-x}$$

Likelihood Function

• When $L(\theta \mid x)$ is viewed as a *function of unknown parameter* θ with *observed realization of random variable* X(X) being held at x, it is a likelihood function of θ

Ex: Binomial likelihood function of parameter p

$$L(p|X=x,n) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$\theta: p$$

Unknown parameter X=x from B(n,p)A sample X(an observed realization of X)

Given
$$n=20$$
 and $X=5$

$$L(p|n=20, X=5)$$

$$= \frac{20!}{5!(20-5)!} p^5 (1-p)^{15}$$

 A likelihood value is not probability (nor density) because the argument of likelihood function is parameter(s) of a probability distribution function, not the random variable itself

Maximum Likelihood Estimation (MLE) WRIGHT

- Solve for the set of parameter values that maximizes joint distribution of PDF
- A popular statistical inference method used to obtain the best (point)
 estimate of unknown parameter given observed data
- Selects the parameter value that is most strongly supported by observed data (i.e. the value most likely to have resulted in the data)
- Maximum likelihood estimator of unknown parameter θ : Defined as the *point that maximizes likelihood function* of θ

$$\hat{\theta}_{mle} = \max L(\theta | X = x)$$

Maximum Likelihood Estimation

p = unknown

- More convenient to work in terms of the natural logarithm of likelihood
 - Zero gradient of log-likelihood function is found at the same location as likelihood function thus log-likelihood function can be used to determine the maximum value of a likelihood function

In biased coin toss problem

$$L(p|X=3) = 10p^{3}(1-p)^{2}$$

$$\ln L(p|X=3) = \ln(10p^{3}(1-p)^{2}) = \ln 10 + 3\ln p + 2\ln(1-p)$$

 Take derivative of the log-likelihood function and setting it to zero to find the maximum

$$\frac{d\left\{\ln L(p|X=3)\right\}}{dp} = \frac{d\left\{\ln 10 + 3\ln p + 2\ln(1-p)\right\}}{dp} = \frac{3}{p} - \frac{2}{1-p} = 0$$

$$\hat{p}_{mle} = 0.6$$

Maximum Likelihood Estimation Example

Tip load F is known to follow a normal distribution of standard deviation 400 N, but its mean is unknown: $F \sim \mathcal{N}(\mu, 400 \text{ N})$

Tip displacement d is measured from an experimental test, d = 0.13 cm

What is the mean of tip load F?

$$d = \frac{4Fl^3}{Ebh^3} \qquad \begin{array}{c} l = 1 \text{ m, } E = 2 \text{x} 10^5 \text{ MPa, } h = 0.1 \text{ m, } b = 0.05 \text{ m} \\ F \sim \mathcal{N} (\mu, 400 \text{ N}) \end{array}$$

$$d = 4 \times 10^{-7} F$$

Maximum Likelihood Estimation Example

 Because tip load F is a normal variable, tip displacement d is also normally distributed

The mean and standard deviation of tip displacement d are

$$\mu_d = 4 \times 10^{-7} \,\mu_F$$
 $\sigma_d = 4 \times 10^{-7} \times 400 = 1.6 \times 10^{-4}$
 $\mu(aX) = a\mu(X)$
 $\sigma(aX) = a\sigma(X)$

Therefore,

$$d \sim \mathcal{N}(4 \times 10^{-7} \mu_F, 1.6 \times 10^{-4} \,\mathrm{N})$$

 μ_F : Mean of tip load μ_d : Mean of tip displacement

 σ_d : Standard deviation of tip displacement

$$f(d) = \frac{1}{\sqrt{2\pi\sigma_d^2}} \exp\left[-\frac{(d-\mu_d)^2}{2\sigma_d^2}\right] = 2.49 \times 10^3 \times \exp\left[-1.95 \times 10^7 (d-4 \times 10^{-7} \mu_F)^2\right]$$

• Given the observed data on tip displacement d = 0.0013 m, likelihood function of unknown parameter μ_F is obtained by putting the d value into f(d)

$$L(\mu_F | d = 0.0013) = 2.49 \times 10^3 \times \exp \left[-1.95 \times 10^7 (0.0013 - 4 \times 10^{-7} \mu_F)^2 \right]$$

Maximum Likelihood Estimation Example

• Taking the logarithm of $L(\mu_F/d)$ gives

$$\ln L(\mu_F | d = 0.0013) = -4.86 \times 10^{10} \times (0.0013 - 4 \times 10^{-7} \,\mu_F)^2$$

• To find the maximum likelihood estimator of μ_F , take the derivative of the log-likelihood function with respect to μ_F and set it to zero

$$\frac{d \ln L(\mu_F | d = 0.0013)}{d \mu_F} = \frac{d \left\{ -4.86 \times 10^{10} \times \left(0.0013 - 4 \times 10^{-7} \, \mu_F \right)^2 \right\}}{d \mu_F}$$
$$= 8 \times 4.86 \times 10^3 \times \left(0.0013 - 4 \times 10^{-7} \, \mu_F \right) = 0$$

• Solving the equation for μ_F gives

$$(\hat{\mu}_F)_{mle} = 3,250 \text{ N}$$

• $(\hat{\mu}_F)_{mle} = 3,250 \text{ N}$ is the value that is most likely to have generated the observed tip displacement d = 0.13 cm

Summary of Likelihood

- Likelihood provides a measure of how likely specific values of statistical parameters are, given that data are observed
- In likelihood, random variables are fixed at certain values (data values are known) while some statistical parameters are unknown
- Likelihood value is meaningful in comparison with other likelihood values
- Maximum likelihood estimation provides the best point estimate of unknown statistical parameter given observed data
- Likelihood of each model given experimental data (*model likelihood*) is formulated based on the concept of likelihood

Maximum Likelihood Estimation

$$\mathcal{L}(\theta; x_1, \dots, x_n) = f(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta).$$

https://en.wikipedia.org/wiki/Maximum_likelihood

Bayesian Estimation

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int p(x|\theta)p(\theta)d\theta}.$$

https://en.wikipedia.org/wiki/Bayes estimator