Universidad de Granada	Fundamentos Físicos y Tecnológicos G.I.I. D.G.I.M	Examen de Teoría 30 de Enero de 2014	
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Responde a cada pregunta en hojas separadas.
- Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- Enuncia el Teorema de Gauss y utilízalo razonadamente para calcular el campo eléctrico creado por un hilo infinito con densidad de carga λ. Calcule razonadamente el valor de λ utilizando que la diferencia de potencial entre dos puntos situados a 3cm y 1cm del hilo es 10V.(1 punto)

situados a 3cm y 1cm del hilo es 10V.(1 punto) Datos:
$$\varepsilon_0=8.85~10^{-12}\frac{C^2}{Nm^2},~S^{esfera}=4\pi r^2,~S^{cilindro}_{lat}=2\pi rl,~S^{cilindro}_{base}=\pi r^2,~V^{esfera}=\frac{4}{3}\pi r^3,~V^{cilindro}=\pi r^2l.$$

- 2. En el circuito de la figura 1:
 - a) Calcula el equivalente Thevenin del circuito visto desde los puntos A y B si R=1k Ω , I₁=1mA, I₂=2mA, V₁=2V, V₂=4V.(**2.5 puntos**)
 - b) Calcula la potencia en cada una de las fuentes de corriente del circuito justificando si es consumida o suministrada.(0.5 puntos)

Figura 1: Circuito para el problema 2

3. Calcula en el circuito de la figura 2 el punto de polarización del transistor (I_D , V_{DS} y V_{GS}). Datos: V_T =2V (tensión umbral del transistor), $k=2\,10^{-3}A/V^2$, R=1k Ω , V_1 =10V, V_2 =5V, I=1mA. (1.5 puntos)

Figura 2: Circuito para el problema 3

- 4. En el circuito de la figura 3, $R=1k\Omega$, L=1mH y C=10nF.
 - a) Calcula la función de transferencia. (1 punto)
 - b) Calcula las potencia media e instantánea consumida por el condensador si la entrada es $v_i(t) = 4 \sin(210^5 t + \frac{\pi}{4})V$. (0.5 puntos)

Figura 3: Circuito para el problema 4

5. En las dos representaciones que aparecen en la figura 4 se muestran los diagramas de Bode en módulo y argumento de tres funciones de transferencia. Si la función de transferencia $T(\omega) = T_1(\omega)T_2(\omega)T_3(\omega)$, use los diagramas de $T_1(\omega)$, $T_2(\omega)$ y $T_3(\omega)$ para dibujar el diagrama de Bode en módulo y en argumento de $T(\omega)$ y explique la información proporcionada por dichos diagramas.

Figura 4: Circuito para el problema 5

- 6. Dibuje usando tecnología MOSFET el circuito que implementa la función lógica $f(A, B, C, D) = A + (C \cdot B)$ teniendo en cuenta que se busca que el consumo de potencia sea el menor posible. Razone el estado de cada transistor del circuito para la combinación de entradas (1,1,0).(1 punto)
- 7. Calcule razonadamente y dibuje la característica de transferencia del circuito de la figura 5 si la salida se toma en la resistencia y la entrada en la fuente que alimenta al circuito. (1.25 puntos)

Figura 5: Circuito para el problema 6