BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 18 111.3

Anmeldetag:

22. April 2003

Anmelder/Inhaber:

Continental Aktiengesellschaft, 30419 Hannover/DE

Bezeichnung:

Verfahren und Vorrichtung zur Erkennung eines

Fahrzustands

IPC:

G 01 P, G 01 C, G 01 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 17. Februar 2004

Deutsches Patent- und Markenamt

Der Präsident Im Auftrag

Remus

Continental Aktiengesellschaft

203-034-PDE.1/Fg

15.04.2003 Fg/ho

5 Zusammenfassung

Verfahren und Vorrichtung zur Erkennung eines Fahrzustands

Die Erfindung betrifft ein Verfahren zur Erkennung einer Fahrzustand Verfahren zur

Erkennung eines Fahrzustands aus einer Menge von Fahrzuständen, wobei jedem der
Fahrzustände zumindest ein Prüfkriterium für zumindest einen Fahrparameter zugeordnet ist, wobei die Fahrzustände nach deren Gefährlichkeit sortiert sind, mit folgenden Schritten:

- Erfassung des zumindest einen Fahrparameters,
 - Prüfung anhand des Fahrparameters, ob einer der Fahrzustände aus der Menge von Fahrzuständen vorliegt, wobei die Prüfung in einer zeitlichen Reihenfolge beginnend mit dem gefährlichsten Fahrzustand durch Auswertung des jeweiligen Prüfkriteriums erfolgt.

(Figur 1)

25

203-034-P

Fig. 1

Beschreibung

5

Die Erfindung betrifft ein Verfahren zur Erkennung eines Fahrzustands, ein digitales Speichermedium und eine Vorrichtung zur Erkennung eines Fahrzustands, insbesondere eines Kraftfahrzeugs.

10

15

Aus dem Stand der Technik sind verschiedene Verfahren und Vorrichtungen zur Ermittlung von kritischen Fahrzuständen bekannt. Aus der DE 19918597A1 ist ein Verfahren zur Reduktion der Kippgefahr von Straßenfahrzeugen bekannt, bei dem ständig ein Kippkoeffizient des Kraftfahrzeuges ermittelt und mit einem vorgegebenen Grenzwert verglichen wird. Bei Überschreiten des Grenzwertes wird automatisch ein Lenkeingriff eingeleitet, der mit abnehmender Kippstabilität zunimmt. Der Kippkoeffizient wird über eine Messung der Reifenauftstandskräfte ermittelt oder durch Messung von Signalen, aus denen die Schwerpunkthöhe des Fahrzeuges und die Querbeschleunigung im Schwerpunkt ermittelbar sind. Als zusätzliche Maßnahme kann ein Bremseingriff eingeleitet werden. Aus den DE 19904219A1, DE 19904216A1, DE 19856303A1, DE 1982936A1,

رگ

20

30

DE10133409A1, DE 10065724A1, DE 10039108A1 sind verschiedene weitere Verfahren und Vorrichtungen zur Ermittlung von kritischen Fahrzuständen beim Fahrbetrieb, insbesondere zur Ermittlung einer Kippneigung, bekannt.

Der Erfindung liegt demgegenüber die Aufgabe zugrunde, ein verbessertes Verfahren zur Erkennung eines Fahrzustands, ein digitales Speichermedium sowie eine Vorrichtung zur Erkennung eines Fahrzustands zu schaffen.

Die der Erfindung zugrunde liegenden Aufgaben werden jeweils mit den Merkmalen der unabhängigen Patentansprüche gelöst. Bevorzugte Ausführungsformen der Erfindung sind in den abhängigen Patentansprüchen angegeben.

Die vorliegende Erfindung ermöglicht eine Erkennung eines Fahrzustandes aus einer Menge von Fahrzuständen. Dies kann so erfolgen, dass jedem Fahrzustand ein Prüfkriterium zugeordnet ist. Zur Erkennung eines Fahrzustandes wird zunächst ein Fahrparameter erfasst. Anhand dieses Fahrparameters werden die Prüfkriterien der Fahrzustände dann ausgewertet.

5

15

20

25

Erfindungsgemäß erfolgt dies so, dass zunächst das Prüfkriterium des als am gefährlichsten klassifizierten Fahrzustandes ausgewertet wird. Wenn dieses Prüfkriterium nicht erfüllt wird, d. h. der gefährlichste Fahrzustand nicht vorliegt, wird danach das Prüfkriterium des zweitgefährlichsten Fahrzustandes anhand des Fahrparameters ausgewertet.

Die Auswertung der Prüfkriterien schreitet also in zeitlicher Reihenfolge von dem Prüfkriterium des gefährlichsten Fahrzustands zu dem des am wenigsten gefährlichen Fahrzustands fort. Durch diese Reihenfolge der Datenverarbeitung ist sichergestellt, dass besonders gefährliche Fahrzustände mit höchster Priorität, d. h. besonders schnell, erkannt werden können.

Nach einer bevorzugten Ausführungsform der Erfindung wird beispielsweise zwischen drei verschiedenen Fahrzuständen unterschieden: (i) Kippneigung bei einem dynamischen Fahrmanöver, (ii) Kippneigung bei quasi-statischer Kurvenfahrt und (iii) Kippneigung bei Fahrt am Hang oder bei Stehen am Hang.

Dabei wird der Fahrzustand "Kippneigung bei dynamischem Fahrmanöver" als am gefährlichsten, der Fahrzustand "quasi-statische Kreisfahrt" als zweitgefährlichster und der Fahrzustand "Fahrt am Hang oder Stehen am Hang" als der am wenigsten gefährliche Fahrzustand klassifiziert. Entsprechend dieser Klassifizierung werden den verschiedenen Fahrzuständen Prüfkriterien zugeordnet, die anhand von einem oder mehreren Fahrparametern laufend ausgewertet werden.

Dabei wird immer zuerst geprüft, ob das Prüfkriterium des Fahrzustandes "Kippneigung bei dynamischem Fahrmanöver" von dem oder den Fahrparametern erfüllt wird. Wenn dies nicht der Fall ist, wird danach das Prüfkriterium für den zweitgefährlichsten Fahrzustand und danach das Prüfkriterium für den am wenigsten gefährlichen Fahrzustand ausgewertet.

Als Fahrparameter für die Erkennung eines Fahrzustandes können beispielsweise der Wankwinkel, die Wankwinkelgeschwindigkeit, Querbeschleunigung, Gierrate, der Lenkwinkel und/oder Radaufstandskräfte verwendet werden, die über entsprechende Sensoren erfasst werden.

5

15

Nach einer bevorzugten Ausführungsform der Erfindung wird der Wankwinkel durch Auswertung der Signale von Höhensensoren, die den Abstand zwischen einer Radachse und einem Fahrzeugaufbau messen, gewonnen. Aus dem Wankwinkel kann die Wankwinkelgeschwindigkeit ermittelt werden, indem beispielsweise das Wankwinkelsignal durch zwei verschiedene Tiefpassfilter gefiltert wird und die Filterausgänge voneinander subtrahiert werden. Wenn es sich bei dem einen der Filter um einen Filter mit großer Zeitkonstante, d. h. einen so genannten Langzeitfilter, und bei dem anderen Filter um einen Filter mit kleiner Zeitkonstante, d. h. einen so genannten Kurzzeitfilter, handelt, ist das Ausgangssignal proportional zur Wankwinkelgeschwindigkeit.

- Nach einer weiteren bevorzugten Ausführungsform der Erfindung ist einem ersten
 Fahrzustand ein Schwellwert als Prüfkriterium zugeordnet und einem zweiten Fahrzustand ein zweiter Schwellwert als Prüfkriterium zugeordnet, wobei der erste Fahrzustand gefährlicher als der zweite Fahrzustand ist, und der erste Schwellwert so gewählt ist, dass dieser schon erreicht werden kann, ohne dass der zweite Schwellwert überschritten wurde;
 beispielsweise wird also der erste Schwellwert kleiner als der zweite Schwellwert gewählt.
 Durch die Wahl eines kleineren Schwellwerts für den gefährlicheren Fahrzustand wird z. B. die größere Kippneigung in dem gefährlicheren Fahrzustand bei den Prüfkriterien berücksichtigt.
- Nach einer weiteren bevorzugten Ausführungsform der Erfindung wird bei Erkennung einer der Fahrzustände ein Warnsignal ausgegeben. Dies kann beispielsweise über eine

Anzeigevorrichtung in dem Fahrzeugcockpit erfolgen, um den Fahrer entsprechend zu warnen. Zum Beispiel kann das Warnsignal als visuelles oder auch als haptisches und/oder akustisches Signal ausgegeben werden.

- Alternativ oder zusätzlich wird nach Erkennung einer der Fahrzustände ein Signal an ein Fahrzeugsteuerungs- und/oder Regelungssystem ausgegeben. Dabei gibt dieses Signal vorzugsweise den erkannten Fahrzustand an, damit das Steuerungs- und/oder Regelungssystem entsprechend angepasst reagieren kann. Wenn beispielsweise ein Fahrzustand mit Kippneigung erkannt wird, kann der Kippneigung durch eine automatische Abbremsung und/oder einen Lenkeingriff und/oder weitere Maßnahmen entgegengewirkt werden. Als Steuerungs- und/oder Regelungssysteme, die hierzu angesprochen werden, kommen insbesondere ein ABS, ESP, aktive Lenkverstellung und/oder Motormanagementsystem in Frage.
- Die Anwendung des erfindungsgemäßen Verfahrens ist insbesondere bei Fahrzeugen mit hohem Schwerpunkt, wie z. B. bei Kleintransportern, Vans oder Geländewagen vorteilhaft, da solche Fahrzeuge mit hohem Schwerpunkt bei dynamischen Fahrmanövern, d. h. bei plötzlichen Richtungswechsel oder während einer Kurven- oder Kreisfahrt zum Kippen neigen können. Mit dem erfindungsgemäßen Verfahren kann rechtzeitig eine Kippgefahr erkannt werden, um schnell entsprechende Gegenmaßnahmen zu treffen, wie z. B. eine Reduktion des Motormoments, ein zusätzliches Bremsmoment und/oder eine Adaption der Dämpfercharakteristik.

Im Weiteren werden bevorzugte Ausführungsformen der Erfindung mit Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:

- Figur 1 ein Flussdiagramm eines Verfahrens zur Erkennung von Fahrzuständen,
- Figur 2 ein Blockdiagramm einer Vorrichtung zur Erkennung von Fahrzuständen,

Figur 3 eine schematische Darstellung eines Kraftfahrzeugs mit einer weiteren Ausführungsform einer Vorrichtung zur Erkennung von Fahrzuständen,

Figur 4 eine Ausführungsform einer Entscheidungsmatrix für die Erkennung von Fahrzuständen,

Figur 5 eine Filtervorrichtung zur Ermittlung eines Wankwinkelgeschwindigkeitssignals,

5

15

20

25

30

Figur 6 ein Diagramm zur Veranschaulichung der Arbeitsweise der Vorrichtung der Figur 5.

Figur 1 zeigt ein Flussdiagramm zur Erkennung eines Fahrzustands. In dem Schritt 100 werden ein oder mehrere Fahrparameter erfasst. Beispielsweise werden der Wankwinkel, die Wankgeschwindigkeit, Querbeschleunigung, Gierrate, der Lenkwinkel und/oder die Radaufstandskräfte eines Kraftfahrzeugs erfasst. Auf der Grundlage dieser Fahrparameter wird dann in dem Schritt 102 geprüft, ob ein Fahrzustand F_i aus einer Menge von Fahrzuständen $F=\{F_1, F_2, ..., F_N\}$ vorliegt.

Jedem dieser Fahrzustände der Menge F ist dabei ein Prüfkriterium P_i zugeordnet. Wenn ein Prüfkriterium P_i durch die erfassten Fahrparameter erfüllt wird, so bedeutet dies, dass der Fahrzustand F_i vorliegt.

Die Fahrzustände sind hinsichtlich ihrer Gefährlichkeit klassifiziert und entsprechend sortiert. Der gefährlichste Fahrzustand ist der Fahrzustand F_1 ; der am wenigsten gefährliche Fahrzustand ist der Fahrzustand F_N , wobei die dazwischenliegenden Fahrzustände F_2 bis F_{N-1} eine in dieser Reihenfolge abnehmende Gefährlichkeit aufweisen.

Die Prüfung in dem Schritt 102 erfolgt so, dass zunächst geprüft wird, ob der gefährlichste Fahrzustand F_1 vorliegt, indem das entsprechende Prüfkriterium P_1 mittels der in dem Schritt 100 erfassten Fahrparameter ausgewertet wird. Wird das Prüfkriterium P_1 durch die

Fahrparameter erfüllt, so bedeutet dies, dass der Fahrzustand F₁ vorliegt. Daraufhin wird in dem Schritt 104 ein Signal ausgegeben.

Bei dem Signal 104 kann es sich um ein Warnsignal für den Fahrer handeln, welches beispielsweise über eine Anzeige über die Instrumententafel des Kraftfahrzeugs ausgegeben wird.

Wenn hingegen das Prüfkriterium P₁ nicht erfüllt wird, wird der Index i in dem Schritt 106 inkrementiert, um danach in dem Schritt 102 das Prüfkriterium P₂ für den weniger gefährlichen Fahrzustand F₂ auszuwerten.

Dieser Ablauf wird solange durchgeführt, bis entweder einer der Fahrzustände erkannt worden ist, und ein Signal in dem Schritt 104 ausgegeben worden ist, oder bis festgestellt worden ist, dass keiner der Fahrzustände aus der Menge F vorliegt.

Besonders vorteilhaft ist dabei, dass die Prüfung, ob der gefährlichste Fahrzustand F₁ vorliegt, zuerst vorgenommen wird, da für diesen Fall das Signal 104 entsprechend schnell ausgegeben wird.

Vorzugsweise beinhaltet das Signal, das in dem Schritt 104 ausgegeben wird, eine Angabe des erkannten Fahrzustandes. Wenn beispielsweise der gefährlichste Fahrzustand erkannt worden ist, wird gleichzeitig ein haptisches und ein akustisches Warnsignal für den Fahrer ausgegeben. Bei einem weniger gefährlichen Fahrzustand wird beispielsweise nur ein akustisches Warnsignal ausgegeben und bei dem am wenigsten gefährlichen Fahrzustand nur ein visuelles Warnsignal.

Alternativ oder zusätzlich kann das in dem Schritt 104 ausgegebene Signal in ein Steuerungs- und/oder Regelungssystem des Fahrzeugs eingegeben werden, welches dann entsprechend des erkannten Fahrzustandes reagieren kann, um die Gefahr zu reduzieren. Beispielsweise kann eine automatische Abbremsung vorgenommen werden, um eine

Kippneigung des Fahrzeugs zu reduzieren.

15

5

20

25

Die Figur 2 zeigt ein Blockdiagramm eines entsprechenden Sicherheitssystems 200. Das Sicherheitssystem 200 hat einen oder mehrere Sensoren 202 zur Erfassung eines oder mehrerer der Fahrparameter 204 eines Kraftfahrzeugs. Der oder die Fahrparameter 204 werden in ein Auswertemodul 206 eingegeben.

Das Auswertemodul 206 hat einen Speicherbereich 208, in dem die Prüfkriterien P₁, P₂, ..., P_N in dieser Reihenfolge abgespeichert sind. Nach der Initialisierung des Sicherheitssystems 200 zeigt ein Zeiger 210 auf die Adresse in dem Speicherbereich 208, in dem das Prüfkriterium P₁ für den gefährlichsten Fahrzustand F₁ gespeichert ist.

Das Auswertemodul 206 hat ferner einen Speicherbereich 212, in dem ein Programm gespeichert ist. Das Programm in dem Speicherbereich 212 dient zur Auswertung der in dem Speicherbereich 208 gespeicherten Prüfkriterien P_i mit Hilfe der Fahrparameter 204.

Wenn eines der Prüfkriterien P_i durch die Fahrparameter 204 erfüllt wird, d. h. der entsprechende Fahrzustand F_i erkannt worden ist, erzeugt das Programm des Speicherbereichs 212 ein entsprechendes Signal 214, welches in ein fahrdynamisches Steuerungs- und/oder Regelungssystems des Fahrzeugs eingegeben wird. Auf der Grundlage des Signals 214 kann dann das Steuerungs- und/oder Regelungssystem 216 beispielsweise einen Fahrwerksparameter des Kraftfahrzeugs verändern, um beispielsweise eine Kippneigung des Fahrzeugs zu reduzieren. Alternativ oder zusätzlich kann auf der Grundlage des Signals 214 auch ein Warnsignal für den Fahrer des Fahrzeugs erzeugt werden.

Im Betrieb gibt der Sensor 202 ständig messtechnisch und/oder durch Signalauswertung erfasste Fahrparameter 204 ab. Das Programm 212 prüft zunächst, ob der oder die Fahrparameter 204 das Prüfkriterium P₁ erfüllen. Ist dies der Fall, so wird das Signal 214 ausgegeben. Ist das Gegenteil der Fall, so wird der Zeiger 210 inkrementiert, sodass er auf den benachbarten Adressbereich in dem Speicher 208 zeigt, in dem das nächste

15

5

20

25

Prüfkriterium P_2 gespeichert ist. Auch dieses Prüfkriterium P_2 wird dann anhand der Fahrparameter 204 überprüft usw.

Die Figur 3 zeigt eine Prinzipdarstellung eines Kraftfahrzeugs 300. Das Kraftfahrzeug 300 hat an der linken Seite der Vorderachse 302 einen Sensor 304 und an der rechten Seite einen Sensor 306. Entsprechend hat das Kraftfahrzeug 300 an seiner Hinterachse 308 einen linken Sensor 310 und einen rechten Sensor 312. Beispielsweise kann es sich bei den Sensoren 304, 306 und 310, 312 um Höhensensoren handeln, die den Abstand der jeweiligen Achse von der Karosserie des Kraftfahrzeugs 300 messen.

10

15

5

Die von den Sensoren 304 und 306 ausgegebenen Signale S₁ bzw. S₂ werden in ein Filtermodul 314 eingegeben. Mit Hilfe der Signale S₁ und S₂ erzeugt das Filtermodul 314 die Signale x₁ und x₂, wobei das Signal x₁ beispielsweise proportional zu einem Wankwinkel des Kraftfahrzeugs 300 an der Vorderachse 302 und das Signal x₂ proportional zu der Wankwinkelgeschwindigkeit an der Vorderachse 302 ist.

Entsprechend werden die Signale S₃ und S₄ der Sensoren 310 bzw. 312 in ein Filtermodul 316 eingegeben, welches die Signale x₃ und x₄ ausgibt. Beispielsweise ist das Signal x₃ proportional zu einem Wankwinkel an der Hinterachse 308 und das Signal x₄ ist proportional zu der Wankwinkelgeschwindigkeit an der Hinterachse 308.

20

Die Signale x₁, x₂, x₃ und x₄ werden in ein Auswertemodul 318 eingegeben, welches prinzipiell gleich aufgebaut ist wie das Auswertemodul 206 der Figur 2.

Zusätzlich kann ein Sensor 320 zur Messung einer Querbeschleunigung des Kraftfahrzeugs 300 vorhanden sein. Der Sensor 320 gibt ein Signal aQ, welches proportional zu der gemessenen Querbeschleunigung ist, in das Auswertemodul 318 ein. Zusätzlich kann ein Sensor 322 zur Erfassung einer Gierrate, d. h. der Drehgeschwindigkeit um die Hochachse des Fahrzeugs, vorhanden sein. Die von dem Sensor 322 ermittelten Gierraten werden in das Auswertemodul 318 eingegeben, und können dort anhand eines Fahrzeugmodells in Querbeschleunigungsdaten umgerechnet werden.

Ferner kann ein Sensor 324 zur Erfassung eines Lenkwinkels vorgesehen sein. Der Sensor 324 gibt ein dem Lenkwinkel proportionales Signal an das Auswertemodul 318 ab.

Anhand der durch die Signale x₁, x₂ und/oder x₃, x₄ und/oder a_Q und/oder des Ausgangssignals des Sensors 322 und/oder des Sensors 324 erfassten Fahrparameter (vergleiche Fahrparameter 204 der Figur 2) werden dann von dem Auswertemodul 318 die Prüfkriterien P₁, P₂, ..., P_N der Reihe nach abgearbeitet, wie oben mit Bezugnahme auf die Figuren 1 und 2 erläutert. Wenn von dem Auswertemodul 318 ein Fahrzustand F_i erkannt worden ist, weil das entsprechende Prüfkriterium P_i erfüllt worden ist, gibt das Auswertemodul 318 ein Signal G_i ab, das den erkannten Fahrzustand F_i angibt.

Das Signal G_i wird beispielsweise in ein ABS-System 326, ein ESP-System 328 und/oder ein Motormanagementsystem 330 eingegeben. Alternativ oder zusätzlich kann das Signal G_i auch in ein System zur adaptiven Fahrwerksregelung eingegeben werden, welches beispielsweise die Dämpfercharakteristiken des Kraftfahrzeugs 300 in Abhängigkeit von dem Signal G_i nachregelt.

15

30

Von besonderem Vorteil ist hierbei, dass der gefährlichste Fahrzustand F₁ von dem Auswertemodul 318 am schnellsten erkannt wird, sodass die entsprechenden Steuerungsund/oder Regelungssysteme, z. B. ABS-System 326 und/oder ESP-System 328 und/oder Motormanagementsystem 330, entsprechend schnell auf die Gefahrensituation reagieren können.

Alternativ oder zusätzlich kann ein entsprechendes Warnsignal über die Anzeige 332 ausgegeben werden, um den Fahrer des Kraftfahrzeugs 300 zu warnen.

Die Figur 4 zeigt in tabellarischer Form eine Entscheidungsmatrix des Auswertemoduls 318. Die Entscheidungsmatrix ist beispielsweise in der Programmlogik des Auswertemoduls 318 abgebildet (vergleiche das Programm in dem Speicherbereich 212 der Figur 2).

In dem Anwendungsfall der Figur 4 wird zwischen drei verschiedenen Fahrzuständen unterschieden:

5 F_1 = Kippneigung bei dynamischem Fahrmanöver,

 F_2 = Kippneigung bei quasi-statischer Kurvenfahrt,

 F_3 = Kippneigung bei Fahrt oder Stand am Hang.

Das Prüfkriterium P₁ für den Fahrzustand F₁ ist wie folgt:

Der Betrag des Signals x_1 liegt oberhalb des Schwellschwerts K_6 , das Signal x_2 ist oberhalb des Schwellwerts K_7 , der Betrag des Signals x_3 liegt oberhalb des Schwellwerts K_8 , das Signal x_4 liegt oberhalb des Schwellwerts K_9 und das Signal a_Q liegt oberhalb des Schwellwerts K_{10} .

15

Wenn sämtliche dieser Kriterien für die Fahrparameter erfüllt sind, ist das Prüfkriterium P_1 erfüllt und der Fahrzustand F_1 liegt vor.

Das Prüfkriterium P2 für den Fahrzustand F2 lautet wie folgt:

20

Der Betrag des Signals x_1 liegt oberhalb des Schwellwerts K_3 , der Betrag des Signals x_3 liegt oberhalb des Schwellwerts K_4 und das Signal a_Q liegt oberhalb des Schwellwerts K_5 . Die Signale x_2 und x_4 gehen nicht in das Prüfkriterium P_2 ein.

Da der Fahrzustand F₂ weniger kritisch als der Fahrzustand F₁ ist, können die Schwellwerte K₃, K₄ und K₅ größer als die entsprechenden Schwellwerte K₆, K₈ und K₁₀ gewählt werden.

Das Prüfkriterium P3 für den am wenigsten gefährlichen Fahrzustand F3 ist wie folgt:

Der Betrag des Signals x_1 liegt oberhalb des Schwellwerts K_1 und der Betrag des Signals x_3 liegt oberhalb des Schwellwerts K_2 . Da der Fahrzustand F_3 weniger kritisch als der Fahrzustand F_2 ist, können die Schwellwerte K_1 und K_2 wiederum oberhalb der entsprechenden Schwellwerte K_3 und K_4 gewählt werden, d. h. es ist $K_1 > K_3 > K_6$ und $K_2 > K_4 > K_8$ und außerdem $K_5 > K_{10}$.

50

5

Sobald die Fahrparameter eingegeben werden, wird von dem Auswertemodul zunächst das Prüfkriterium P_1 ausgewertet, um zu prüfen, ob der Fahrzustand F_1 vorliegt. Ist dies nicht der Fall, so folgt danach die Prüfung des Prüfkriteriums P_2 , und wenn auch dieses nicht erfüllt wird, schließlich die Auswertung des Prüfkriteriums P_1 . Daraus ergibt sich eine Prüfreihenfolge nach abnehmender Gefährlichkeit der Fahrzustände. Wenn bei dieser Prüfreihenfolge einer der Fahrzustände F_i erkannt wird, wird daraufhin ein entsprechendes Signal G_i abgegeben, wie oben unter anderem mit Bezugnahme auf die Figur 3 erläutert.

Die Figur 5 zeigt ein Beispiel für die Realisierung des Filtermoduls 314. In dieser Ausführungsform hat das Filtermodul einen Subtrahierer 500, der die Signale S₁ und S₂ voneinander subtrahiert. Das Ergebnis dieser Subtraktion ist das Signal x₁, welches proportional zu dem Wankwinkel an der Vorderachse 302 ist (vergleiche Figur 3).

20

Das Signal x_1 wird in die beiden Filter 502 und 504 eingegeben. Bei dem Filter 502 handelt es sich um einen so genannten Langzeitfilter, d. h. einen Tiefpass mit einer relativ großen Zeitkonstante T_1 , während es sich bei dem Filter 504 um einen so genannten Kurzzeitfilter, d. h. um einen Tiefpassfilter mit einer relativ kurzen Zeitkonstante T_2 handelt. Beispielsweise liegt die Zeitkonstante T_1 im Bereich von 1 Sekunde bis 50 Sekunden und die Zeitkonstante T_2 im Bereich von 10 bis 100 Millisekunden.

Die Ausgangssignale der Filter 502 und 504 werden von dem Subtrahierer 506 voneinander subtrahiert, sodass man das Signal x₂ erhält, welches Näherungsweise proportional zu der Wankwinkelgeschwindigkeit, d. h. der Ableitung des Signals x₁ ist.

Die Funktionsweise der Ausführungsform des Filtermoduls der Figur 5 ist in der Figur 6 veranschaulicht. Die Figur 6 zeigt den zeitlichen Verlauf des Signals x_1 sowie der Signale 600 und 602, wobei es sich bei dem Signal 600 um das Ausgangssignal des Filters 504 und bei dem Signal 602 um das Ausgangssignal des Filters 502 handelt. Die Differenz dieser Signale ist das Signal x_2 , welches aufgrund der unterschiedlichen Zeitkonstanten x_1 und x_2 der Filter 502 und 504 Näherungsweise die Ableitung des Signals x_1 ist.

Bezugszeichen liste

(Teil der Beschreibung)

5	Sicherheitssystem	200
	Sensor	202
	Fahrparameter	204
	Auswertemodul	206
	Speicherbereich	208
To lo	Zeiger	210
<i>1</i> **	Speicherbereich	212
	Signal	214
	Steuerungs- und/oder Regelungssystem	216
	Kraftfahrzeug	300
15	Vorderachse	302
	Sensor	304
	Sensor	306
	Hinterachse	308
	Sensor	310
20	Sensor	312
W.	Filtermodul	314
Ŧ,	Filtermodul	316
	Auswertemodul	318
	Sensor	320
25	Sensor	322
	Sensor	324
	ABS-System	326
	ESP-System	328
	Motormanagementsystem	330
30	Anzeige	332
	Subtrahierer	500

	Filter	502
	Filter	504
	Subtrahierer	506
	Signal	600
5	Signal	602

Patentansprüche

- 1. Verfahren zur Erkennung eines Fahrzustands aus einer Menge von Fahrzuständen, wobei jedem der Fahrzustände zumindest ein Prüfkriterium für zumindest einen Fahrparameter zugeordnet ist, wobei die Fahrzustände nach deren Gefährlichkeit sortiert sind, mit folgenden Schritten:
 - Erfassung des zumindest einen Fahrparameters,

5

- Prüfung anhand des Fahrparameters, ob einer der Fahrzustände aus der Menge von Fahrzuständen vorliegt, wobei die Prüfung in einer zeitlichen Reihenfolge beginnend mit dem gefährlichsten Fahrzustand durch Auswertung des jeweiligen Prüfkriteriums erfolgt.
- Verfahren nach Anspruch 1, wobei die Menge von Fahrzuständen einen zumindest einen ersten Fahrzustand mit einer Kippneigung bei einem dynamischen Fahrmanöver und einen zweiten Fahrzustand mit einer Kippneigung bei einer quasistatischen Kurvenfahrt beinhaltet.

- 3. Verfahren nach Anspruch 2, wobei die Menge von Fahrzuständen einen dritten Fahrzustand mit einer Kippneigung bei Fahrt entlang eines Hangs oder Stand an einem Hang beinhaltet.
- 4. Verfahren nach einem der vorhergehenden Ansprüche 1, 2 oder 3, wobei die Fahrparameter Wankwinkel, Wankgeschwindigkeit, Querbeschleunigung, Gierrate, Radaufstandskraft und/oder Lenkwinkel erfasst werden.
- 5. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 4, wobei die Menge von Fahrzuständen zumindest einen ersten Fahrzustand und einen zweiten Fahrzustand beinhaltet, dem ersten Fahrzustand ein erster Schwellwert als Prüfkriterium zugeordnet ist, und dem zweiten Fahrzustand ein zweiter Stellwert als Prüfkriterium

zugeordnet ist, wobei der erste Fahrzustand gefährlicher als der zweite Fahrzustand ist, und der erste Schwellwert unterhalb des zweiten Schwellwerts liegt.

- 6. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 5, wobei es sich bei dem Fahrparameter um einen Wankwinkel handelt, und der Wankwinkel durch Auswertung der Signale von Höhensensoren, die den Abstand eines Fahrzeugaufbaus von einer Radachse messen, ermittelt wird.
- 7. Verfahren nach Anspruch 6, wobei eine Wankwinkelgeschwindigkeit durch Filterung des Wankwinkels durch erste und zweite Filter unterschiedlicher Zeitkonstanten als Fahrparameter ermittelt wird.
- 8. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 7, wobei bei Erkennung eines Fahrzustands ein Warnsignal ausgegeben wird, insbesondere ein haptisches, akustisches und/oder visuelles Warnsignal.
- Verfahren nach einem der vorhergehenden Ansprüche 1 bis 8, wobei nach Erkennung einer der Fahrzustände ein Signal an ein Fahrzeugsteuerungs- und/oder Regelungssystem abgegeben wird.
- 10. Digitales Speichermedium mit Programmmitteln zur Erkennung eines Fahrzustands aus einer Menge von Fahrzuständen, wobei jedem der Fahrzustände zumindest ein Prüfkriterium für zumindest einen Fahrparameter zugeordnet ist, wobei die Fahrzustände nach deren Gefährlichkeit sortiert sind, und die Programmmittel zur Durchführung der folgenden Schritte ausgebildet sind:
 - Eingabe des zumindest einen Fahrparameters,
 - Prüfung anhand des Fahrparameters, ob einer der Fahrzustände aus der Menge von Fahrzuständen vorliegt, wobei die Prüfung in einer zeitlichen Reihenfolge

5

20

15

30

beginnend mit dem gefährlichsten Fahrzustand durch Auswertung des jeweiligen Prüfkriteriums erfolgt.

- 11. Vorrichtung zur Erkennung eines Fahrzustands aus einer Menge von Fahrzuständen mit:
 - einem Speicherbereich (208) zur Speicherung von zumindest einem Prüfkriterium für jeden der Fahrzustände,

10

15

- Mitteln (202; 304, 306, 310, 312, 320, 322, 324) zur Erfassung von zumindest einem Fahrparameter,
- Mitteln (206, 212; 318) zur Prüfung anhand des Fahrparameters, ob einer der Fahrzustände vorliegt, wobei die Mittel zur Prüfung so ausgebildet sind, dass die Prüfung in einer zeitlichen Reihenfolge beginnend mit dem gefährlichsten Fahrzustand durch Auswertung des jeweiligen Prüfkriteriums erfolgt.
- 12. Vorrichtung nach Anspruch 12, wobei die Mittel zur Erfassung des Fahrparameters zur Erfassung eines Wankwinkels, einer Wankwinkelgeschwindigkeit, einer Querbeschleunigung, einer Gierrate, einer Radaufstandskraft und/oder eines Lenkwinkels ausgebildet sind.
- 13. Vorrichtung nach Anspruch 11 oder 12, wobei in dem Speicher ein erster Schwellwert als erstes Prüfkriterium für einen ersten Fahrzustand und ein zweiter Schwellwert als zweites Prüfkriterium für einen zweiten Fahrzustand gespeichert sind, die erste Fahrzustand gefährlicher als die zweite Fahrzustand ist, und der erste Schwellwert unterhalb des zweiten Schwellwerts liegt.
- Vorrichtung nach Anspruch 11, 12 oder 13, mit Höhensensoren (304, 306, 310, 312)
 zur Messung von zumindest zwei Abständen zwischen einer Radachse und einem Fahrzeugaufbau zur Ermittlung eines Wankwinkels als Fahrparameter.

- 15. Vorrichtung nach einem der vorhergehenden Ansprüche 11 bis 14, mit ersten und zweiten Filtern (502, 504) zur Ermittlung einer Wankwinkelgeschwindigkeit aus dem Wankwinkel, wobei das erste Filter eine größere Zeitkonstante als das zweite Filter aufweist.
- 16. Vorrichtung nach einem der vorhergehenden Ansprüche 11 bis 15, mit Ausgabemitteln (332) für ein Warnsignal, insbesondere für ein haptisches, akustisches und/oder visuelles Warnsignal.

10

- 17. Vorrichtung nach einem der vorhergehenden Ansprüche 11 bis 16, mit Mitteln zur Ausgabe eines Signals an ein Fahrzeugsteuerungs- und/oder Regelungssystem (216; 326, 328, 330) nach Erkennung einer der Fahrzustände.
- 15 18. Vorrichtung nach Anspruch 17, wobei das Signal eine Angabe des erkannten Fahrzustands beinhaltet.

Fig. 1

Fig. 2

Fig. 3

Fahrparameter	Fahrt/Stand am Hang	Statische Kurvenfahrt	dynamisches Fahrmanöver
x ₁	> K ₁	> K3	> K ₆
Χ ₂	_	-	> K7
x ₃	> K ₂	> K ₄	> K ₈
*44	-	-	> Kg
^a Q	-	> K ₅	> K ₁₀

Fig. 4

Fig. 5

Fig. 6