

David Cameron

1 Introduction

ITEVU4130 - Digital Twins for Science and Applications

Digital Twins for Science and Applications

This course of 2.5 ECTS will introduce the idea of a digital twin as an integrating framework for data and computational science. Digital twin was the Gartner hype-curves hype word of the year in 2018 and 2019. This has resulted in activity to build digital twins in many fields beyond its original home in engineering and physical sciences. High level policy makers now talk of building twins of people, cities, oceans, indeed the whole world.

Despite all this interest, there is little agreement on what a digital twin is and how it is best built. This course aims to generate clarity about this, based on Oslo's long-term work on the application of digital twins in industry, science and society and on the supporting mathematics, informatics, chemistry and physics that is needed to build useful digital twins.

Despite the hype, the digital twin provides a valuable framework and template for getting impact from data and computational science.

This course:

- Introduces the concept of digital twin and discusses its history and relationship to data science.
- Presents the architectural elements of a digital twin: sensor information that is fused with modelling and static information about a system to support decisions.
- Introduces core scientific topics needed for digital twins.
 - Semantic representation.
 - Model identification and assimilation.
 - Dynamics and handling of time-series data.
 - Decision support using digital twins.
- Examines examples from industry, science, social applications and smart cities.
- Allows hands on work with time-series data from real industrial processes

Practical Details

- Three sessions of four hours, spread over three days:
 - Monday 17th January
 - Tuesday 18th January
 - Friday 28th January
- Starting at 9:00 am
- Lunch from 12:00 noon 1:00 pm
- End at 2:00 pm

 Assignment due Monday 14th February at 5pm.

A bit about my background.

1982

1986

1988

1993

2000

2007

2011

2013

2015

Virtual flow

sopra Steria

Chemical engineering trainee in steel industry. Thesis on physical properties of oil and CO₂

Blast furnace simulation and on-line systems. New steel technologies.

Technical and business consultancy for IT in chemicals and petroleum

Business development for IT in petroleum, energy & industrial sector

Centre for Scalable Data Access. Research entrepreneur and translator between business and academics

Course Plan

Introduction

On Digital Twins

The Data
Foundation for a
Twin

Analysing Digital Twins Set-up of Industrial Data Case

Modelling and Analysis

Choosing Modelling Approaches

Industrial Applications Looking at Industrial Data

Social and Scientific Applications

Workshop on applications

Ethics, Business and Sustainability

Review of Report Ideas

Block 1: On Digital Twins

09:00-09:10	1: Introduction	1222
09:10-09:20	G1: Your background and expectations	202
09:20-09:40	2: What is a Digital Twin?	1222
09:40-10:00	Break	***
10:00-10:30	3: Models and Architectures for Digital Twins	1222
10:30-10:50	G2: Analysis of some examples of digital twins	
10:50-11:00	Break	<u> </u>

Block 2: The Data Foundation for a Twin

11:00-11:20	4: Measurements, Observations and Events	1222
11:20-11:40	G3: Open Industrial Data – Set-up and Overview	202
11:40-12:00	5: Static information in digital twins	1222
12:00-13:00	Lunch Break	
13:00-13:30	6: Organising Knowledge in Digital Twins	122
13:30-13:50	G4: Looking at some knowledge models for Digital Twins	
13:50-14:00	Summary and Feedback on Day One	

Block 3: Modelling and Analysis

09:00-09:10	Welcome to Day 2: Expectations and review of day 1	
09:10-09:30	7: Modelling, Simulation and Machine Learning	
09:30-09:50	G5: Choice of modelling approach for specific problems	
09:50-10:00	Break	***
10:00-10:20	8: Limitations of Data, Modelling and Analysis	1222
10:20-10:40	G6: Investigating the industrial data set	
10:40-11:00	9: Defining the Digital Twin: The Digital Twin Canvas	1222
11:00-12:00	Lunch Break	

Block 4: Industrial Applications

13:00-13:20	10: Digital Twins in Industry 4.0	1111
13:20-13:40	11: Industrial Frameworks for Digital Twins	1222
13:40-14:00	G7: Introduction to assignment and work for Day Three	202

Block 5: Social and Scientific Applications

09:00-09:10	Welcome to Day 3: Expectations and review of day 2	200
09:10-09:30	12: Digital Twins in the Physical Sciences	222
09:30-09:50	G8: Scoping a digital Twin for a scientific application	202
09:50-10:00	Break	***
10:00-10:20	13: Your Digital Twin: Medicine, Social Credit and Big Brother	222
10:20-10:40	G9: Scoping a personal twin application	202
10:40-11:00	14: Smart Cities, Twin-Driven Policy and the Built Environment Twin	222
11:00-12:00	Lunch Break	

Block 6: Ethics, Business and Sustainability

13:00-13:20	15: Ethics and Digital Twins	1222
13:20-13:40	16: Realising Digital Twins: Business Cases and Projects	1222
13:40-14:00	G10: Questions on Assignment. Review of Course	202