Práctico 1 Matemática Discreta I - Año 2021/1 **FAMAF**

- (1) Demostrar las siguientes afirmaciones donde a, b, c y d son siempre números enteros. Justificar cada uno de los pasos en cada demostración indicando el axioma o resultado que utiliza.
 - a) a = -(-a)
 - b) a = b si y sólo si -a = -b
 - c) a + a = a implica que a = 0.
- (2) Idem (1).
 - a) $0 < a \neq 0 < b$ implican $0 < a \cdot b$
 - b) $a < b \ y \ c < 0$ implican $b \cdot c < a \cdot c$
- (3) Probar las siguientes afirmaciones, justificando los pasos que realiza.
 - a) Si $0 < a \le 0 < b$ entonces a < b si $\le a^2 < b^2$.
 - b) Si $a \neq 0$ entonces $a^2 > 0$.
 - c) Si $a \neq b$ entonces $a^2 + b^2 > 0$.
 - *d*) Probar que si a + c < b + c entonces a < b.
- (4) Calcular evaluando las siguientes expresiones:

a)
$$\sum_{r=0}^{4} r$$

b)
$$\prod_{i=1}^{5} i$$

c)
$$\sum_{k=-3}^{-1} \frac{1}{k(k+4)}$$

$$d) \qquad \prod_{n=2}^{7} \frac{n}{n-1}$$

(5) Calcular:

a)
$$2^{10} - 2^9$$

c) $(2^2)^n - (2^n)^2$

b)
$$3^22^5 - 3^52^5$$

c)
$$(2^2)^n - (2^n)^2$$

b)
$$3^22^5 - 3^52^2$$

d) $(2^{2^n} + 1)(2^{2^n} - 1)$

(6) Dado un natural m, probar que $\forall n \in \mathbb{N}$; $x, y \in \mathbb{R}$, se cumple:

a)
$$x^n \cdot x^m = x^{n+m}$$

a)
$$x^n \cdot x^m = x^{n+m}$$
 b) $(x \cdot y)^n = x^n \cdot y^n$ c) $(x^n)^m = x^{n \cdot m}$

1

c)
$$(x^n)^m = x^{n \cdot n}$$

(7) Analizar la validez de las siguientes afirmaciones:

a)
$$(2^{2^n})^{2^k} = 2^{2^{n+k}}$$
, $n, k \in \mathbb{N}$.

b)
$$(2^n)^2 = 4^n$$
, $n \in \mathbb{N}$.

c)
$$2^{7+11} = 2^7 + 2^{11}$$
.

- (8) Probar que $\sum_{i=0}^{n} 2^i = 2^{n+1} 1$ $(n \ge 0)$.
- (9) Demostrar por inducción las siguientes igualdades:

a)
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
, $n \in \mathbb{N}$.

b)
$$\sum_{i=1}^{n} j = \frac{n(n+1)}{2}, n \in \mathbb{N}, n \in \mathbb{N}.$$

c)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
, $n \in \mathbb{N}$.

d)
$$\sum_{k=0}^{n} (2k+1) = (n+1)^2$$
, $n \in \mathbb{N}_0$.

e)
$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2, n \in \mathbb{N}.$$

f)
$$\sum_{k=0}^{n} a^{k} = \frac{a^{n+1}-1}{a-1}$$
, donde $a \in \mathbb{R}$, $a \neq 0$, 1, $n \in \mathbb{N}_{0}$.

- (10) Hallar $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se cumpla que $n^2 \geq 11n + 3$.
- (11) Sea $u_1 = 3$, $u_2 = 5$ y $u_n = 3u_{n-1} 2u_{n-2}$ con $n \in \mathbb{N}$, $n \ge 3$. Probar que $u_n = 2^n + 1$.
- (12) Sea $\{u_n\}_{n\in\mathbb{N}}$ la sucesión definida por recurrencia como sigue: $u_1=9$, $u_2=33$, $u_n = 7u_{n-1} - 10u_{n-2}$, $\forall n \geq 3$. Probar que $u_n = 2^{n+1} + 5^n$, para todo $n \in \mathbb{N}$.
- (13) Sea u_n definida recursivamente por: $u_1=2$, $u_n=2+\sum_{i=1}^{n-1}2^{n-2i}u_i \ \forall \ n>1$.
 - a) Calcule u_2 y u_3 .
 - b) Proponga una fórmula para el término general u_n y pruébela por inducción.
- (14) Sea $\{a_n\}_{n\in\mathbb{N}_0}$ la sucesión definida recursivamente por

$$\begin{cases} a_0 = 1, \\ a_1 = 1, \\ a_n = 3a_{n-1} + (n-1)(n-3)a_{n-2}, \text{ para } n \ge 2. \end{cases}$$
 the $a_n = n!$ para todo $n \in \mathbb{N}_0$.

Probar que $a_n = n!$ para todo $n \in \mathbb{N}_0$.

(15) Sea $\{a_n\}_{n\in\mathbb{N}_0}$ la sucesión definida recursivamente por

$$\begin{cases} a_0 = 0, \\ a_1 = 7, \\ a_n = 5a_{n-1} + 6a_{n-2}, \text{ para } n \ge 2. \end{cases}$$

Probar que $a_n = 6^n + (-1)^{n+1}$ para todo $n \in \mathbb{N}_0$.

(16) Las siguientes proposiciones no son válidas para todo $n \in \mathbb{N}$. Indicar en qué paso del principio de inducción falla la demostración:

a)
$$n = n^2$$

b)
$$n = n + 1$$
,

c)
$$3^n = 3^{n+2}$$
,

a)
$$n = n^2$$
, b) $n = n + 1$, c) $3^n = 3^{n+2}$, d) $3^{3n} = 3^{n+2}$.

- § Ejercicios de repaso. Los ejercicios marcados con (*) son de mayor dificultad.
- (17) Demostrar por inducción las siguientes igualdades:

a)
$$\prod_{i=1}^{n} \frac{i+1}{i} = n+1, n \in \mathbb{N}.$$

b)
$$\sum_{i=1}^{n} \frac{1}{4i^2 - 1} = \frac{n}{2n+1}$$
, $n \in \mathbb{N}$.

c)
$$\sum_{i=1}^{n} i^2 / \sum_{j=1}^{n} j = \frac{2n+1}{3}$$
, $n \in \mathbb{N}$.

d)
$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n}$$
, $n \in \mathbb{N}$ y $n \ge 2$.

e) Si $a \in \mathbb{R}$ y $a \ge -1$, entonces $(1 + a)^n \ge 1 + n \cdot a$, $\forall n \in \mathbb{N}$.

f) Si
$$a_1, \ldots, a_n \in \mathbb{R}$$
, entonces $\sum_{k=1}^n a_k^2 \le \left(\sum_{k=1}^n |a_k|\right)^2$, $n \in \mathbb{N}$.

- *g*) Si $a_1, ..., a_n \in \mathbb{R}$ y $0 < a_i < 1 \forall i$, entonces $(1 a_1) \cdots (1 a_n) \ge 1 a_1 a_1$ $\cdots - a_n, n \in \mathbb{N}$.
- (18) Sea $\{a_n\}_{n\in\mathbb{N}}$ la sucesión definida recursivamente por

$$\begin{cases} a_1 = 1, \\ a_2 = 2, \\ a_n = (n-2)a_{n-1} + 2(n-1)a_{n-2}, \text{ para } n \ge 3. \end{cases}$$

Probar que $a_n = n!$ para todo $n \in \mathbb{N}$

(19) Sea $\{a_n\}_{n\in\mathbb{N}_0}$ la sucesión definida recursivamente por

$$\begin{cases} a_0 = 0, \\ a_1 = 5, \\ a_n = a_{n-1} + 6a_{n-2}, \text{ para } n \ge 2. \end{cases}$$

Probar que $a_n = 3^n + (-1)^{n+1} 2^n$ para todo $n \in \mathbb{N}_0$.

- (20) (*) Encuentre el error en los siguientes argumentos de inducción.
 - a) Demostraremos que 5n + 3 es múltiplo de 5 para todo $n \in \mathbb{N}$. Supongamos que 5k + 3 es múltiplo de 5, siendo $k \in \mathbb{N}$. Entonces existe $p \in \mathbb{N}$ tal que 5k + 3 = 5p. Probemos que 5(k + 1) + 3 es múltiplo de 5:

Como

$$5(k + 1) + 3 = (5k + 5) + 3 = (5k + 3) + 5 = 5p + 5 = 5(p + 1),$$

entonces obtenemos que 5(k+1)+3 es múltiplo de 5. Por lo tanto, por el principio de inducción, demostramos que 5n+3 es múltiplo de 5 para todo $n \in \mathbb{N}$.

b) Sea $a \in \mathbb{R}$, con $a \neq 0$. Vamos a demostrar que para todo entero no negativo n, $a^n = 1$.

Como $a^0=1$ por definición, la proposición es verdadera para n=0. Supongamos que para un entero k, $a^m=1$ para $0 \le m \le k$. Entonces $a^{k+1}=\frac{a^ka^k}{a^{k-1}}=\frac{1\cdot 1}{1}=1$. Por lo tanto, el principio de inducción fuerte implica que $a^n=1$ para todo $n\in\mathbb{N}$.

(21) (*) La sucesión de Fibonacci se define recursivamente de la siguiente manera:

$$u_1 = 1$$
, $u_2 = 1$, $u_{n+1} = u_n + u_{n-1}$, $n \ge 2$.

Los primeros términos de esta sucesión son: 1, 1, 2, 3, 5, 8, 13, ...

Demostrar por inducción que el término general de esta sucesión se puede calcular mediante la fórmula

$$u_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

(Ayuda: usar que $\frac{1+\sqrt{5}}{2}$ y $\frac{1-\sqrt{5}}{2}$ son las raíces de la ecuación cuadrática $x^2-x-1=0$ y por lo tanto $\left(\frac{1\pm\sqrt{5}}{2}\right)^{n+1}=\left(\frac{1\pm\sqrt{5}}{2}\right)^n+\left(\frac{1\pm\sqrt{5}}{2}\right)^{n-1}$).