Simulation d'un ampli EDFA en C Projet d'informatique

Jérémy Saucourt Gaëtan Jargot

Vendredi 24 avril 2015

Table des matières

Contexte et objectifs

Programme

Configuration initiale Algorithme

Résultats

Courbes obtenues / Interprétation physique

Conclusion et perspectives

Contexte et objectifs

Télécommunications optique haut débit

- Télécoms optiques transocéaniques
- lacktriangle 3ème fenêtre télécom @ 1550 nm ightarrow $A_{SiO_2}=0.2~dB/km$
- → Régénérateurs de signaux → Amplificateurs EDFA
 - SNR limite la distance
 - Simulation d'un l'amplificateur EDFA en C

Configuration initiale

- ► Fibre à saut d'indice
- ▶ Monomode pour $\lambda \in [980, 1600]$ nm (V < 2.405)
- Cœur entier dopé

Algorithme (Schéma)

Inversion de population et puissance de pompe

Sections efficaces

Ps (z variable)

FIGURE: z = 1 m

FIGURE: z = 2 m

FIGURE: z = 3 m

FIGURE: z = 4 m

FIGURE: z = 5 m

Bruit d'ASE+ (z variable)

Résultats à 5m

Entre 1520 nm et 1570 nm

	Min	Max	Valeur
P_s / dBm	-13	6	-
G / dB	17	36	-
SNR / dB	-	-	11
Ondulation / dB	-	-	19

Conclusion et perspectives

- ► Programmation en C (complexité progressive)
- \hookrightarrow Bonne approximation d'un EDFA (P_{ASE-} négligé)
- \rightarrow $\nearrow P_s$, en $\nearrow N_0$ et P_p
- → Transformation en laser à 5 m, prise en compte des allers-retours