EXPECTATIONS FORMATION WITH FAT-TAILED PROCESSES: EVIDENCE AND THEORY

Tim de Silva Stanford GSB & SIEPR Eugene Larsen-Hallock CFM

Adam Rej CFM David Thesmar MIT, NBER, CEPR

NBER Behavioral Finance Meeting

April 2025

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - ullet Overreaction: lab + field, often longer-term individual forecasts

de Silva, Larsen-Hallock, Rej, Thesmar

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts
- Models to explain this predictability typically have two ingredients
 - 1 Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
 - 2 Biases given known DGP (e.g. diagnostic expectations)

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts
- Models to explain this predictability typically have two ingredients
 - 1 Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
 - 2 Biases given known DGP (e.g. diagnostic expectations)
- However, many variables have non-Gaussian DGPs with Pareto tails Gabaix 09
 - Challenge: hard to study beliefs because rational expectations become intractable

de Silva, Larsen-Hallock, Rej, Thesmar

1

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts
- Models to explain this predictability typically have two ingredients
 - 1 Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
 - Biases given known DGP (e.g. diagnostic expectations)
- However, many variables have non-Gaussian DGPs with Pareto tails Gabaix 09
 - Challenge: hard to study beliefs because rational expectations become intractable
- This paper: study expectations formation in the presence of "fat" tails
 - Takeaway: helps match data + parsimonious model of under & overreaction

1 Document three facts using analysts forecasts of sales growth from IBES

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts
 - 2. Adding fat tails to DGP in experiment ⇒ non-linear error-revision relationship

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts
 - 2. Adding fat tails to DGP in experiment ⇒ non-linear error-revision relationship
 - 3. Returns to momentum are positive in bulk, but exhibit mean-reversion in tails

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails \Rightarrow Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts
 - 2. Adding fat tails to DGP in experiment ⇒ non-linear error-revision relationship
 - 3. Returns to momentum are positive in bulk, but exhibit mean-reversion in tails
 - ⇒ Allowing for **fat tails** is helpful for understanding belief formation!

OUTLINE

- 1 Three Key Facts
 - Fact 1: Non-Linear Error-Revision Relationship
 - Fact 2: Fat Tails in the Distribution of Growth
 - Fact 3: Expected Growth is Non-Linear in Past Growth
- 2 Model of Expectations Formation
- 3 Additional Model Predictions Quantitative Fit Forecasting Experiment
 - Return Momentum
- 4 Conclusion

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions
 Quantitative Fit
 Forecasting Experiment
 Return Momentum
- 4 Conclusion

DATA AND VARIABLES

- Sample: 122K observations from 2000-2023 of US and foreign firms in IBES
- Forecasting variable: $g_{it} \equiv \log \text{sales}_{it} \log \text{sales}_{it-1 \text{ year}}$
 - ullet Advantages relative to EPS: larger sample + stationary
 - g_{it} is adjusted for firm-specific mean and SD
 - Accounts for heterogenous DGPs across firms Wyatt-Bouchaud 03, but not crucial

DATA AND VARIABLES

- Sample: 122K observations from 2000-2023 of US and foreign firms in IBES
- Forecasting variable: $g_{it} \equiv \log \text{sales}_{it} \log \text{sales}_{it-1 \text{ year}}$
 - ullet Advantages relative to EPS: larger sample + stationary
 - g_{it} is adjusted for firm-specific mean and SD
 - Accounts for heterogenous DGPs across firms Wyatt-Bouchaud 03, but not crucial

Forecasts:

$$F_t g_{it+h} \equiv \log F_t \text{sales}_{it+h \text{ years}} - \log F_t \text{sales}_{it+(h-1) \text{ years}}$$
 (1)

- F_t = consensus analyst forecasts after year t FY-end announcement
- $F_t g_{it+h}$ is adjusted using same firm-specific mean and SD as g_{it}
- Note: (1) ignores a Jensen's adjustment, but not quantitatively important

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growtl

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum
- 4 Conclusion

Coibion-Gorodnichenko Error-Revision Regressions

$$\underbrace{g_{it+1} - F_t g_{it+1}}_{\text{forecast error}} = \alpha + \beta \underbrace{\left(F_t g_{it+1} - F_{t-1} g_{it+1}\right)}_{\text{forecast revision}} + \epsilon_{it+1}$$

Coibion-Gorodnichenko Error-Revision Regressions

$$\underbrace{g_{it+1} - F_t g_{it+1}}_{\text{forecast error}} = \alpha + \beta \underbrace{\left(F_t g_{it+1} - F_{t-1} g_{it+1}\right)}_{\text{forecast revision}} + \epsilon_{it+1}$$

- $\beta \neq 0$ is inconsistent with rational expectations
 - Revisions are in forecasters' information set \Rightarrow should not predict errors
- $eta > 0 \Rightarrow$ revisions do not update "enough" \Rightarrow underreaction Bouchaud et al. 19
- $eta < 0 \Rightarrow$ revisions update "too much" \Rightarrow **overreaction** Bordalo et al. 19
- Now a standard way of characterizing deviations from RE across datasets

FACT 1: Non-Linear Error-Revision Relationship

• Forecasts underreact and overreact within same variable and horizon

Underreaction in the Bulk of the Distribution...

• Between 10-90% of revisions, error-revision slope is positive Bouchaud et al. 19

... BUT OVERREACTION IN THE TAILS!

• Between 0-10%

of revisions, error-revision slope is negative

... But Overreaction in the Tails!

• Between 0-10% and 90-100% of revisions, error-revision slope is negative

ROBUSTNESS OF NON-LINEAR ERROR-REVISION RELATIONSHIP

- Not driven by within-firm adjustment: holds with raw growth
- 2 Does not reflect omitted Jensen's term: holds with percent growth
- Open Does not arise because of aggregate time-varying volatility
- Not driven by aggregation: present in individual forecasts
- 6 Does not reflect sample: similar for both US and foreign firms

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions
 Quantitative Fit
 Forecasting Experiment
 Return Momentum
- 4 Conclusion

Tails of g_{it} are Fatter than Gaussian

TAIL BEHAVIOR IN TOP DECILES IS APPROXIMATELY A POWER LAW

Power Law : $\log P(|g_{it}| > x) = -\nu \log x + \text{constant}$

TAIL BEHAVIOR IN TOP DECILES IS APPROXIMATELY A POWER LAW

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- Model of Expectations Formation
- Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum
- 4 Conclusion

FACT 3: $\mathbf{E}(g_{it}|g_{it-1})$ IS NON-LINEAR

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growtl

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions
 Quantitative Fit
 Forecasting Experiment
 Return Momentum
- 4 Conclusion

DATA-GENERATING PROCESS

• DGP for sales growth (dropping *i* subscripts):

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

DATA-GENERATING PROCESS

• DGP for sales growth (dropping *i* subscripts):

$$\begin{split} g_{t+1} &= g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} & \epsilon_t \sim f(\cdot) \\ g_{t+1}^* &= \rho g_t^* + \sigma_u u_{t+1} & u_t \sim \textit{N}(0, \sigma_u^2) \end{split}$$

- g_t is a combination of persistent & transitory processes Bansal-Yaron 04, Lettau-Wachter 07
 - g_t^* = **unobservable** persistent latent state
 - ϵ_t = transitory shock with **Pareto tail**: $f(\epsilon) \propto \epsilon^{-\nu}$ as $|\epsilon| \longrightarrow \infty$, where $\nu > 2$

DATA-GENERATING PROCESS

• DGP for sales growth (dropping *i* subscripts):

$$egin{aligned} g_{t+1} &= g_{t+1}^* + \sigma_\epsilon \epsilon_{t+1} & \epsilon_t \sim f(\cdot) \ g_{t+1}^* &=
ho g_t^* + \sigma_u u_{t+1} & u_t \sim N(0, \sigma_u^2) \end{aligned}$$

- ullet g_t is a combination of persistent & transitory processes Bansal-Yaron 04, Lettau-Wachter 07
 - $g_t^* =$ **unobservable** persistent latent state
 - ϵ_t = transitory shock with **Pareto tail**: $f(\epsilon) \propto \epsilon^{-\nu}$ as $|\epsilon| \longrightarrow \infty$, where $\nu > 2$
- Remarks:
 - If ϵ_t was Gaussian, rational expectation would be the Kalman filter
 - **Key**: tail parameter in u_t smaller than ϵ_t , otherwise inconsistent with Fact 3

DGP REPLICATES FACTS 2 AND 3

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

• Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

 $g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = -
ho\sigma_{g^*}^2\cdot rac{d}{dg}\log h(g_t)$$

$$egin{aligned} g_{t+1} &= g_{t+1}^* + \sigma_\epsilon \epsilon_{t+1} & \epsilon_t \sim f(\cdot) \ g_{t+1}^* &=
ho g_t^* + \sigma_u u_{t+1} & u_t \sim N(0, \sigma_u^2) \end{aligned}$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = -\rho \sigma_{g^*}^2 \cdot \frac{d}{dg} \log h(g_t)$$

• In bulk of distribution, $g_t pprox ext{Gaussian} \Rightarrow \log h(g_t) pprox -rac{g_t^2}{2\sigma_g^2} + ext{constant}$

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = \rho \sigma_{g^*}^2 \cdot \frac{g_t}{\sigma_g^2} \qquad \nearrow g_t$$

- In bulk of distribution, $g_t \approx \text{Gaussian} \Rightarrow \log h(g_t) \approx -\frac{g_t^2}{2\sigma^2} + \text{constant}$
- **Intution**: moderate values of g_t likely reflect $g_t^* \Rightarrow$ likely persistent

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = -
ho\sigma_{g^*}^2 \cdot \frac{d}{dg}\log h(g_t)$$

• In tails of distribution, $g_t \approx \mathsf{Pareto} \Rightarrow \log h(g_t) \approx -\nu \log(g_t)$

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot)$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) =
ho \sigma_{g^*}^2 \cdot rac{
u}{g_t} \qquad \searrow g_t$$

- In tails of distribution, $g_t \approx \text{Pareto} \Rightarrow \log h(g_t) \approx -\nu \log(g_t)$
- **Intuition**: extreme values of g_t likely reflect $\epsilon_t \Rightarrow$ likely transitory

• **Assumption**: agents think $\epsilon_t \sim N(0, \sigma_{\epsilon}^2)$ but otherwise rational \Rightarrow **Kalman filter**

- **Assumption**: agents think $\epsilon_t \sim N(0, \sigma_\epsilon^2)$ but otherwise rational \Rightarrow **Kalman filter**
- Result: In steady-state,

$$E(error_{t+1} \mid revision_t)$$

- **Assumption**: agents think $\epsilon_t \sim N(0, \sigma_\epsilon^2)$ but otherwise rational \Rightarrow **Kalman filter**
- Result: In steady-state,

$$E(\operatorname{error}_{t+1} \mid \operatorname{revision}_t) \xrightarrow{|\operatorname{revision}_t| \to \infty}$$

- **Assumption**: agents think $\epsilon_t \sim N(0, \sigma_{\epsilon}^2)$ but otherwise rational \Rightarrow **Kalman filter**
- Result: In steady-state,

$$E(\mathsf{error}_{t+1} \mid \mathsf{revision}_t) \xrightarrow{|\mathsf{revision}_t| \to \infty} - C \times \mathsf{revision}_t$$

- **Assumption**: agents think $\epsilon_t \sim N(0, \sigma_{\epsilon}^2)$ but otherwise rational \Rightarrow **Kalman filter**
- Result: In steady-state,

$$E(\text{error}_{t+1} \mid \text{revision}_t) \xrightarrow{|\text{revision}_t| \to \infty} -C \times \text{revision}_t < 0$$

• Large revision_t reflects ϵ_t or ϵ_{t-h} , but forecasters overreact ignoring its **transitory**

- **Assumption**: agents think $\epsilon_t \sim N(0, \sigma_{\epsilon}^2)$ but otherwise rational \Rightarrow **Kalman filter**
- Result: In steady-state,

$$E(\operatorname{error}_{t+1} \mid \operatorname{revision}_t) \xrightarrow{|\operatorname{revision}_t| \to \infty} -C \times \operatorname{revision}_t < 0$$

- Large revision_t reflects ϵ_t or ϵ_{t-h} , but forecasters overreact ignoring its **transitory**
- **Result**: In steady-state, there exists a R > 0 where:

$$E\left(\operatorname{error}_{t+1} \times \operatorname{revision}_{t} | | \operatorname{revision}_{t}| < R\right) > 0$$

Overreaction in tails + unbiased on average ⇒ some underreaction ⇒ Fact 1

- **Assumption**: agents think $\epsilon_t \sim N(0, \sigma_{\epsilon}^2)$ but otherwise rational \Rightarrow **Kalman filter**
- Result: In steady-state,

$$E(\mathsf{error}_{t+1} \mid \mathsf{revision}_t) \xrightarrow{|\mathsf{revision}_t| \to \infty} -C \times \mathsf{revision}_t < 0$$

- Large revision_t reflects ϵ_t or ϵ_{t-h} , but forecasters overreact ignoring its **transitory**
- **Result**: In steady-state, there exists a R > 0 where:

$$E\left(\operatorname{error}_{t+1} \times \operatorname{revision}_{t} | | \operatorname{revision}_{t}| < R\right) > 0$$

- Overreaction in tails + unbiased on average ⇒ some underreaction ⇒ Fact 1
- Note: forecasts overreact to weak + underreact to strong signals Augenblick et al. 24
 - $V(g_{t+1}|g_t)$ is higher than $V(g_t)$ in bulk and lower in tails

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- 3 Additional Model Predictions

Quantitative Fit
Forecasting Experiment
Return Momentum

4 Conclusion

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growtl

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- 3 Additional Model Predictions Quantitative Fit

Forecasting Experiment Return Momentum

4 Conclusion

MODEL FIT: DGP

- Estimate DGP parameters using SMM by matching Facts 2 and 3
 - Assume $\epsilon \sim t$ -distribution with ν degrees of freedom

MODEL FIT: DGP

- Estimate DGP parameters using SMM by matching Facts 2 and 3
 - Assume $\epsilon \sim t$ -distribution with ν degrees of freedom
- Parameter estimates: $\rho =$ 0.53, $\nu =$ 2.53, $\sigma_u =$ 0.63, $\sigma_\epsilon =$ 1.33

Given DGP, model generates Fact 1 qualitatively, but not quantitatively

• Allow anchoring to RE:
$$F_t^{\lambda}g_{t+h} = \lambda F_t g_{t+h} + \underbrace{(1-\lambda)E_t g_{t+h}}_{\text{particle filtering}}$$

Fuster et al. 10, Gabaix 19

- Allow anchoring to RE: $F_t^{\lambda}g_{t+h} = \lambda F_t g_{t+h} + (1-\lambda)E_t g_{t+h}$ Fuster et al. 10, Gabaix 19
- $\lambda = 0.29 \Rightarrow \text{replicate Fact 1}$

- Allow anchoring to RE: $F_t^{\lambda}g_{t+h} = \lambda F_t g_{t+h} + (1-\lambda)E_t g_{t+h}$ Fuster et al. 10, Gabaix 19
- $\lambda = 0.29 \Rightarrow$ replicate Fact 1, but accuracy loss is small: **0.1%** of MSE

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growtl

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- 3 Additional Model Predictions

Quantitative Fit

Forecasting Experiment

Return Momentum

4 Conclusion

EXPERIMENTAL DESIGN

- Design follows Afrouzi et al. 23: participants make one and two-period forecasts
- 201 participants make 40 forecasts ⇒ 8K observations possibly scale up?
- DGPs: 1. rescaled estimated DGP, 2. Gaussian AR1 with $\rho = 0.2$ Afrouzi et al. 23

	Dependent Variable: Error			
	Estimated D	GP	Gaussian AR1	
Revision	(1) -0.40*** (0.02)			
Revision \times Bottom 20%	(0.02)			
Revision \times Top 20%				
Revision \times Top & Bottom 20%				
Constant	√			
Clustering by Participant Number of Observations	√ 7839			

	Dependent Variable: Error			
	Estimated DGP	Gaussian AR1		
	(1)	(4)		
Revision	-0.40***	-0.44***		
	(0.02)	(0.02)		
Revision \times Bottom 20%				
D 11 T 2001				
Revision $ imes$ Top 20%				
Revision × Top & Bottom 20%				
116VISIO11 × 10p & Bottoiii 2076				
Constant	√	√		
Clustering by Participant	✓	✓		
Number of Observations	7839	5421		

	Dependent Variable: Error				
	Estimated DGP		Gaussian AR1		
	(1)	(2)	(4)		
Revision	-0.40***	-0.28***	-0.44***		
	(0.02)	(0.06)	(0.02)		
Revision \times Bottom 20%		-0.27***			
		(0.09)			
Revision $ imes$ Top 20%		-0.11			
		(80.0)			
Revision × Top & Bottom 20%					
Constant			/		
Clustering by Participant	V	v	v		
Number of Observations	v 7839	v 7839	v 5421		
	, 555	7000	V-12 1		

	Dependent Variable: Error				
	Estimated DGP			Gaussi	an AR1
	(1)	(2)	(3)	(4)	
Revision	-0.40***	-0.28***	-0.28***	-0.44***	
	(0.02)	(0.06)	(0.06)	(0.02)	
Revision × Bottom 20%		-0.27***			
		(0.09)			
Revision × Top 20%		-0.11			
		(0.08)			
Revision × Top & Bottom 20%			-0.18**		
			(80.0)		
Constant	✓	✓	✓	✓	
Clustering by Participant	\checkmark	\checkmark	\checkmark	\checkmark	
Number of Observations	7839	7839	7839	5421	

	Dependent Variable: Error					
	Estimated DGP			Gaussian AR1		
	(1)	(2)	(3)	(4)	(5)	(6)
Revision	-0.40*** (0.02)	-0.28*** (0.06)	-0.28*** (0.06)	-0.44*** (0.02)	-0.42*** (0.06)	-0.42*** (0.06)
Revision \times Bottom 20%	, ,	-0.27*** (0.09)	, ,	, ,	-0.12 (0.09)	` ,
Revision \times Top 20%		-0.11 (0.08)			-0.07 (0.07)	
Revision × Top & Bottom 20%			-0.18**			-0.09
			(80.0)			(0.07)
Constant	√	√	√	√	√	√
Clustering by Participant	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Number of Observations	7839	7839	7839	5421	5421	5421

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- 3 Additional Model Predictions

Quantitative Fit Forecasting Experiment

Return Momentum

4 Conclusion

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t=\gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma (F_{t+1} - F_t) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma (F_{t+1} - F_t) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Model

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma (F_{t+1} - F_t) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Model

Positive Momentum in Bulk + Mean-Reversion in Tails

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma (F_{t+1} - F_t) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Model

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma (F_{t+1} - F_t) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Model

Data: Below Median Market Cap

OUTLINE

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth

Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions
 Quantitative Fit
 Forecasting Experiment
 Return Momentum
- 4 Conclusion

Conclusion

- Main fact: forecast errors are **non-linear** in forecast revisions
 - Underreaction in the bulk of the distribution, overreaction in the tails
- One deviation from RE can explain this: ignoring fat tails
 - Intuition: extreme realizations are less persistent than forecasters realize
 - Provides a parsimonious model of under and overreaction within a DGP
 - Also consistent with evidence from experiments and asset prices
- Broader takeaways:
 - 1 Non-Gaussian models of DGP are helpful for understanding belief formation
 - **2** Combining experiments + surveys useful for assessing important features

THANK YOU!

tdesilva@stanford.edu

thesmar@mit.edu