Introduction to AI Support Vector Machines

Rodrigo Cabral

EUR DS4H-LIFE-SPECTRUM

cabral@unice.fr

Outline

- 1. Hard-margin support vector machines for binary classification
- 2. Soft-margin support vector machines for binary classification
- 3. Nonlinear support vector machines
- 4. Multi-class classification
- 5. Conclusions

- 1. Hard-margin support vector machines for binary classification
- 2. Soft-margin support vector machines for binary classification
- Nonlinear support vector machines
- 4. Multi-class classification

Linearly separable classes

What happens if the classes are separable?

Which line do you choose?

- Logistic regression suffers from two major issues in this case:
 - 1. $\kappa \to +\infty$ to have $J \to 0$: optimization algorithms become unstable.
 - 2. The solution of the problem is not unique.

Are there other approaches different from regularized logistic regression?

What would be a good decision line?

- Line with a "safe zone" around it.
 - Correct classification for new data points which can located around training data.
 - Good generalization properties.

Margin: maximum width around the decision line before hitting a data point.

What would be a good decision line?

- Line with a "safe zone" around it.
 - Correct classification for new data points which can located around training data.
 - Good generalization properties.

- Margin: maximum width around the decision line before hitting a data point.
- Choose decision line with largest margin.

Reminder: hyperplane equations and half-spaces

Equation of an hyperplane passing through 0

$$\mathbf{x}\mathbf{w} = 0$$
 $\|\mathbf{w}\|_2 = 1$ - unitary vector

Reminder: hyperplane equations and half-spaces

Equation of an hyperplane passing through 0

$$\mathbf{x}\mathbf{w} = 0$$
 $\|\mathbf{w}\|_2 = 1$ - unitary vector

General hyperplane equation

$$\mathbf{x}\mathbf{w} + b = 0$$

b - signed distance of closest
point to origin

Reminder: hyperplane equations and half-spaces

Equation of an hyperplane passing through 0

$$\mathbf{x}\mathbf{w} = 0$$
 $\|\mathbf{w}\|_2 = 1$ - unitary vector

General hyperplane equation

$$\mathbf{x}\mathbf{w} + b = 0$$

b - signed distance of closest point to origin

Upper half-space

Lower half-space

$$\mathbf{xw} + b \ge 0$$

$$\mathbf{x}\mathbf{w} + b < 0$$

Possible decision line and margin

• **Objective:** choose line parameters **w** and *b* leading to maximum margin 2δ such that data points are outside the margin.

Problem formulation as constrained minimization

▶ The margin constraint for a data point \mathbf{x}_i is

$$\begin{cases} \mathbf{x}_i \mathbf{w} + b \ge \delta & \text{if } y_i = 1 \\ \mathbf{x}_i \mathbf{w} + b \le -\delta & \text{if } y_i = 0 \end{cases}$$

▶ Dividing both sides by δ , defining $\beta' = \mathbf{w}/\delta$ and $\beta_0 = b/\delta$, we have

$$\begin{cases} \mathbf{x}_i \boldsymbol{\beta}' + \beta_0 \ge 1 & \text{if} \quad y = 1 \\ \mathbf{x}_i \boldsymbol{\beta}' + \beta_0 \le -1 & \text{if} \quad y = 0 \end{cases}$$

This can be rewritten in a more compact form as follows

$$(2y_i-1)\left(\mathbf{x}_i\boldsymbol{\beta}'+\beta_0\right)\geq 1$$

Problem formulation as constrained minimization

Note that $\delta = 1/\|\beta'\|_2$, therefore the optimization problem we want to solve is

maximize
$$\frac{2}{\|\beta'\|_2}$$
 with respect to
$$\beta', \, \beta_0$$
 subject to
$$(2y_i - 1) \left(\mathbf{x}_i \beta' + \beta_0\right) \geq 1$$
 for all $i \in \{1, \, \cdots, \, N\}$

Problem formulation as convex optimization

The previous problem can be transformed into the following equivalent problem:

minimize
$$\frac{\|\boldsymbol{\beta}'\|_2^2}{2}$$
 with respect to
$$\boldsymbol{\beta}',\,\beta_0$$
 subject to
$$(2y_i-1)\left(\mathbf{x}_i\boldsymbol{\beta}'+\beta_0\right)\geq 1$$
 for all $i\in\{1,\,\cdots,\,N\}$

- This is a convex optimization problem. More precisely a problem from the class of quadratic programs.
- It does not have a closed-form solution.
 - Fortunately, many numerical optimization algorithms can be used to solve it.

Dual formulation

- In practice, this optimization problem is very complex to solve.
 Moreover, the solution cannot be interpreted.
- The problem is recast in its Langrangian dual form:

maximize
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (2y_i - 1) (2y_j - 1) \mathbf{x}_i \mathbf{x}_j^\mathsf{T}$$
 with respect to
$$\alpha_1, \, \cdots, \, \alpha_N$$
 subject to
$$\alpha_1 \geq 0, \, \cdots, \, \alpha_N \geq 0$$

$$\sum_{j=1}^{N} \alpha_j (2y_i - 1) = 0$$

• α_i are called the Lagrangian dual variables.

Solution and prediction

It can be shown that the optimal solution $\hat{\beta}'$, β_0 of the initial problem is then written as a function of the solution of the dual α_i :

$$\hat{\boldsymbol{\beta}}' = \sum_{i=1}^{N} \alpha_i (2y_i - 1) \mathbf{x}_i^{\mathsf{T}}$$

and for any *i* for which $\alpha_i > 0$ we can retrieve $\hat{\beta}_0$ by solving

$$(2y_i-1)\left(\mathbf{x}_i\boldsymbol{\beta}'+\beta_0\right)=1$$

Prediction:

$$\hat{y}(\mathbf{x}) = \begin{cases} 1, & \text{if} \quad f_{\beta}(\mathbf{x}) \ge 0 \\ 0, & \text{if} \quad f_{\beta}(\mathbf{x}) < 0 \end{cases}$$

where
$$f_{\beta}(\mathbf{x}) = \mathbf{x}\hat{\boldsymbol{\beta}}' + \hat{\boldsymbol{\beta}}_0 = \sum_{i=1}^N \alpha_i (2y_i - 1)\mathbf{x}\mathbf{x}_i^{\mathsf{T}} + \hat{\boldsymbol{\beta}}_0$$
.

Support vector machine

Support vectors

- It can be shown that α_i > 0, only if x_i lies exactly on the optimal margin boundary.
- The prediction line is determined only by these x_i, which are closer to the border.
 - Decision line is defined only by most ambiguous observations.
- If you remove one of these points from the data set, the decision line may change. These data vectors "support" the decision line.
 - They are called support vectors and the method is called support vector machine (SVM).

Example of linear SVM classifier

- 1. Hard-margin support vector machines for binary classification
- 2. Soft-margin support vector machines for binary classification
- Nonlinear support vector machines
- 4. Multi-class classification

Classes not fully separable

What do we do if the classes are not linearly separable?

- The data is almost linearly separable, except for a few points.
- We will deal with this case first.

The data is not close to linear separability, at least with these features.

Soft version of the problem including "slacks" on the margins

- We soften the margins by allowing slacks $\xi_i \ge 0$.
- We should try to keep slacks as small as possible by penalizing them.

⇒ Still trying to keep decision line as far as possible from the two classes.

Problem formulation as convex optimization

We have only slight modifications of the hard margin problem:

minimize
$$\frac{\|\beta'\|_2^2}{2} + C \sum_{i=1}^N \xi_i$$
 with respect to
$$\beta', \, \beta, \, \xi_1, \, \cdots, \, \xi_N$$
 subject to
$$(2y_i - 1) \left(\mathbf{x}_i \beta' + \beta_0\right) \ge 1 - \xi_i \quad i \in \{1, \, \cdots, \, N\}$$

$$\xi_1 \ge 0, \, \cdots, \, \xi_N \ge 0$$

Coefficient C allows to control trade-off between margin maximization and fitting to data.

Dual formulation

It can be shown that the dual formulation only changes slightly:

maximize
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (2y_i - 1) (2y_j - 1) \mathbf{x}_i \mathbf{x}_j^\mathsf{T}$$
 with respect to
$$\alpha_1, \, \cdots, \, \alpha_N$$
 subject to
$$0 \leq \alpha_i \leq C \text{ for all } \alpha_i$$

$$\sum_{i=1}^{N} \alpha_i (2y_i - 1) = 0$$

Dual formulation

It can be shown that the dual formulation only changes slightly:

maximize
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (2y_i - 1)(2y_j - 1) \mathbf{x}_i \mathbf{x}_j^\mathsf{T}$$
 with respect to
$$\alpha_1, \, \cdots, \, \alpha_N$$
 subject to
$$0 \leq \alpha_i \leq C \text{ for all } \alpha_i$$

$$\sum_{i=1}^{N} \alpha_i (2y_i - 1) = 0$$

We still have

$$\hat{\boldsymbol{\beta}}' = \sum_{i=1}^{N} \alpha_i (2y_i - 1) \mathbf{x}_i^{\mathsf{T}}$$

but $\hat{\beta}_0$ is different:

$$\hat{\beta}_0 = (2y_k - 1)(1 - \xi_k) - \mathbf{x}_k \hat{\boldsymbol{\beta}}'$$
 with $k = \arg\max_i \alpha_i$

Support vectors and effect of C

- ▶ Support vectors are still \mathbf{x}_i corresponding to positive α_i .
- ► The predictions are given in the same way as before.

 Same example but with different *C*

Support vectors are either on the margin border or beyond it.

- 1. Hard-margin support vector machines for binary classification
- 2. Soft-margin support vector machines for binary classification
- 3. Nonlinear support vector machines
- 4. Multi-class classification

Nonlinear separation

What do we do when classes are not directly linearly separable?

Example of data set with classes which are not linearly separable in their original features:

We can do the same as we did in linear regression to fit nonlinear curves: add transformations of the features.

 ⇒ The border seems quadratic, we can try adding (x⁽¹⁾)² to the features.

Nonlinear separation with feature transformation

Transformed feature space

Transformation of each data feature with a function $\phi(\mathbf{x})$ generates an augmented feature space:

$$\mathbf{x}' = \phi(\mathbf{x}) = \begin{bmatrix} x^{(1)} & x^{(2)} & (x^{(1)})^2 \end{bmatrix}$$

Classes can be separated by a plane.

⇒Linear separation!

SVM with transformed observations

What do we get if we apply SVM with this extended feature space?

Classes can be perfectly separated with a hard-margin SVM.

SVM with transformed observations

Dual formulation

For a general transformation $\phi(\mathbf{x}): \mathbb{R}^M \to \mathbb{R}^L$, the dual formulation of the soft SVM changes to

maximize
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (2y_i - 1) (2y_j - 1) \phi(\mathbf{x}_i) \phi^\mathsf{T}(\mathbf{x}_j)$$
 with respect to
$$\alpha_1, \, \cdots, \, \alpha_N$$
 subject to
$$0 \leq \alpha_i \leq C \text{ for all } \alpha_i$$

$$\sum_{i=1}^{N} \alpha_i (2y_i - 1) = 0$$

SVM with transformed observations

Dual formulation

For a general transformation $\phi(\mathbf{x}): \mathbb{R}^M \to \mathbb{R}^L$, the dual formulation of the soft SVM changes to

maximize
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (2y_i - 1) (2y_j - 1) \phi(\mathbf{x}_i) \phi^{\mathsf{T}}(\mathbf{x}_j)$$

with respect to

$$\alpha_1, \, \cdots, \, \alpha_N$$

subject to

$$0 \le \alpha_i \le C$$
 for all α_i
$$\sum_{i=1}^{N} \alpha_i (2y_i - 1) = 0$$

▶ The function $f_{\beta}(\mathbf{x})$ used for prediction changes to

$$f_{\beta}(\mathbf{x}) = \mathbf{x}\hat{\boldsymbol{\beta}}' + \hat{\beta}_0 = \sum_{i=1}^N \alpha_i (2y_i - 1)\phi(\mathbf{x})\phi^{\mathsf{T}}(\mathbf{x}_i) + \hat{\beta}_0$$

and $\hat{\beta}_0$ is

$$\hat{\beta}_0 = (2y_k - 1)(1 - \xi_k) - \sum_{i=1}^N \alpha_i (2y_i - 1)\phi(\mathbf{x}_k)\phi^\mathsf{T}(\mathbf{x}_i) \quad \text{with } k = \arg\max_i \alpha_i$$

Kernels

Kernels

The transformed features appear always through scalar products

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})\phi^{\mathsf{T}}(\mathbf{x}')$$

- For any chosen $\phi(\cdot)$, $k(\mathbf{x}, \mathbf{x}')$ is a **kernel function**.
- Kernel functions measure similarity between vectors.

Kernels

Kernels

The transformed features appear always through scalar products

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})\phi^{\mathsf{T}}(\mathbf{x}')$$

- For any chosen $\phi(\cdot)$, $k(\mathbf{x}, \mathbf{x}')$ is a **kernel function**.
- Kernel functions measure similarity between vectors.
- ▶ What if we do not know the transformation $\phi(\cdot)$?
 - Choose directly the kernel function.

Kernels

Kernels

The transformed features appear always through scalar products

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})\phi^{\mathsf{T}}(\mathbf{x}')$$

- For any chosen $\phi(\cdot)$, $k(\mathbf{x}, \mathbf{x}')$ is a **kernel function**.
- Kernel functions measure similarity between vectors.
- ▶ What if we do not know the transformation $\phi(\cdot)$?
 - → Choose directly the kernel function.
- Examples of kernel functions:
 - ► Radial basis function (RBF): $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} \mathbf{x}'\|_2^2)$
 - Exponential: $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} \mathbf{x}'||_2)$
 - *d*-th degree polynomial: $k(\mathbf{x}, \mathbf{x}') = (\gamma \mathbf{x} \mathbf{x}'^{\mathsf{T}} + r)^d$

Kernel SVM

Dual formulation with kernels - Kernel SVM

For a kernel $k(\cdot, \cdot)$, the dual formulation of the soft SVM becomes

maximize
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (2y_i - 1) (2y_j - 1) k(\mathbf{x}_i, \mathbf{x}_j)$$
 with respect to
$$\alpha_1, \, \cdots, \, \alpha_N$$
 subject to
$$0 \le \alpha_i \le C \text{ for all } \alpha_i$$

$$\sum_{i=1}^{N} \alpha_i (2y_i - 1) = 0$$

▶ The function $f_{\beta}(\mathbf{x})$ used for prediction changes to

$$f_{\beta}(\mathbf{x}) = \mathbf{x}\hat{\boldsymbol{\beta}}' + \hat{\beta}_0 = \sum_{i=1}^N \alpha_i (2y_i - 1)k(\mathbf{x}, \mathbf{x}_i) + \hat{\beta}_0$$

and $\hat{\beta}_0$ is

$$\hat{\beta}_0 = (2y_k - 1)(1 - \xi_k) - \sum_{i=1}^N \alpha_i (2y_i - 1)k(\mathbf{x}_k, \mathbf{x}_i)$$
 with $k = \arg\max_i \alpha_i$

Kernel SVM

Kernel value as a function of distance

Let us define the distance $d = \|\mathbf{x} - \mathbf{x}'\|_2$.

RBF:
$$k(d) = \exp(-\gamma d^2)$$

RBF:
$$k(d) = \exp(-\gamma d^2)$$

Exponential: $k(d) = \exp(-\gamma d)$

- $ightharpoonup \gamma > 0$ is an hyperparameter indicating how support vectors will influence decisions on their neighborhoods.
 - \Longrightarrow Large γ produces local influence.
 - \Longrightarrow Small γ produces global influence.

Kernel SVM

Example

Previous nonlinear separation example with hard margin kernel SVM: RBF kernel with two different γ .

 $\,\,{}^{\backprime}$ needs to be chosen wisely depending on the complexity of the decision boundary.

- 1. Hard-margin support vector machines for binary classification
- 2. Soft-margin support vector machines for binary classification
- Nonlinear support vector machines
- 4. Multi-class classification

Problem with K classes

▶ Given classes with K different labels $y \in \{0, \dots, K-1\}$, how do we define the decision boundaries to generate the predictions?

► Three methods: One vs. one, One vs. rest, Multi-class.

One vs. one (OVO)

- 1. For each pair of classes (k, k'), $k \neq k'$, learn the binary classifier parameters $\beta_{(k,k')}$ to generate predictions $\hat{y}_{(k,k')}$ disregarding the other classes.
- Combine binary classifiers via voting mechanism, for example, majority voting:

$$\hat{y}_{\text{OVO}}(\mathbf{X}) = \underset{1 \le k' \le K}{\text{arg max}} \left\{ k : \hat{y}_{(k,k')} = k' \right\} |$$

where $|\cdot|$ denotes the number of elements of a set.

Drawbacks:

- Computational: train all combinations of binary classifiers.
- Overfitting: size of training sample could be small for a given pair.

One vs. rest (OVR)

- 1. Learn binary classifier parameters β_k for each class against all the other classes merged.
- 2. Since $f_{\beta_k}(\mathbf{x})$ is a measure of the depth of \mathbf{x} within class k, prediction is given by

$$\hat{y}_{\text{OVR}}(\mathbf{x}) = \underset{1 \le k \le K}{\text{arg max}} f_{\beta_k}(\mathbf{x})$$

Drawback:

• Calibration: classifier functions $f_{\beta_k}(\mathbf{x})$ may not be comparable.

It is however quite simple to implement and less complex than OVO.

Multi-class approach

- Both logistic regression and SVM can be modified to explicitly deal with multiple classes.
 - → No need to learn binary classifiers and to apply fusion rules.
- We are not going to detail this approach in this class.
 - This kind of approach may increase learning complexity, without leading to a significant increase in classification performance with respect to OVO and OVR.

- 1. Hard-margin support vector machines for binary classification
- 2. Soft-margin support vector machines for binary classification
- Nonlinear support vector machines
- 4. Multi-class classification
- 5. Conclusions

Logistic regression

- Logistic regression can be seen as a simple adaptation of linear regression to do classification. Learning is equivalent to solve a smooth optimization problem.
- If we want nonlinear boundaries we need to include them explicitly.
- Parameter vector $\hat{\boldsymbol{\beta}}$ allows for interpretation of the importance of the features.
- Complexity of underlying optimization problem depends on the dimension of feature space.
- It is sensible to outliers (it is designed for this) and it cannot be used directly for separable problems.

SVM

- SVM focus directly on the classification problem. It learns a robust separation boundary. Learning is equivalent to solve a quadratic program.
- The boundary can be turned nonlinear either with feature transformation or with kernel SVM.
 - ⇒ Kernels can be designed for non-numeric data types (graphs, sequences, relational data).
 - → Kernel SVM has been applied to many different fields ranging from text to genetic data.
- Dual formulation allows to know which observations are important for the SVM classifier, they are the support vectors.

SVM

- In the standard SVM approach, $\hat{\beta}'$ allows to analyze the importance of the features. In kernel SVM, there is no $\hat{\beta}'$, therefore the importance of the features is difficult to be analyzed.
- Complexity of underlying optimization problem depends on the number of observations mainly.
- ▶ It can be made insensible to outliers (with *C*) and it can directly deal with separable problems.
- Tuning kernel SVM parameters C, type of kernel and γ can be quite difficult. Most common approach consists in using cross-validation (topic of more advanced lectures).