1 Regression

Suppose we know there exists a function $y : \mathbb{A} \to \mathbb{T}$, such that $t = y(x, \underline{w})$ for $x \in \mathbb{A}$ and $t \in \mathbb{T}$, and \underline{w} is a vector of parameters. If we are given training set $(\underline{x}, \underline{t})$, how do we find y?

Furthermore, if t is noisy, how do we learn y from $(\underline{x},\underline{t})$? Let's formalize the idea or noisy as follows, each t_i is observed form a random variable \mathbb{T}_i , where $\mathbb{T}_i = y(x_i,\underline{w}) + \epsilon$ and $\epsilon \sim N(0,\beta^{-1})$.

Remark Notice \mathbb{T}_i is indeed a random variable, because y is a deterministic function, and ϵ is a random variable.

Now suppose each observations are independent, we have probability

$$\mathbb{P}(\underline{\mathbb{T}} = \underline{t}) = \prod_{i=1}^{n} \mathbb{P}(\mathbb{T}_{i} = t_{i}) = \prod_{i=1}^{n} \mathbb{P}(y(x_{i}, \underline{w}) + \epsilon = t_{i})$$

$$= \prod_{i=1}^{n} \mathbb{P}(\epsilon = t_{i} - y(x_{i}, \underline{w}))$$

$$= (\frac{\beta}{2\pi})^{\frac{n}{2}} e^{-\frac{\beta}{2} \sum_{i=1}^{n} (t_{i} - y(x_{i}, \underline{w}))^{2}}$$

Now let $\mathbb{L}(\mathbb{X}_1,...,\mathbb{X}_n) = (\frac{\beta}{2\pi})^{\frac{n}{2}} e^{-\frac{\beta}{2} \sum_{i=1}^n (t_i - y(\mathbb{X}_i,\underline{w}))^2}$ be a statistics with parameter \underline{w}, y , we can estimate \underline{w}, y by maximum likelihood method. But since y is a function, it is harder to optimize (in Gaussian process we will see how to optimize w.r.t y), we usually will fix y, and optimize w.r.t \underline{w} .

1.1 Linear Regression

In linear regression, we transform x to the same dimension of \underline{w} by a feature

function
$$\phi(x) = \begin{bmatrix} \phi_1(x) \\ \vdots \\ \phi_n(x) \end{bmatrix} \in \mathbb{R}^n$$
, and we fix our y in such linear form

$$y(x) = \underline{w}^T \cdot \phi(x)$$