

Forward Selection

Backward Selection

Problem Statement

Home sellers often anchor their offer price to avoid underselling, while home buyers, due to information asymmetry, often pay different prices for houses with similar features.

As a property consultancy firm, we aim to build a model to identify the features that are most important to predict sales price of houses. This would allow us to provide our clients with a tool that gives estimates of their potential selling prices, and help them identify which aspects of their properties they can improve on to enhance their selling prices.

Forward Selection

Backward Selection

Methodologies

Forward Selection

- Selecting variables before running the models
- Two approaches:
 - a. Based on judgement call
 - b. Based on systematic approach

Backward Selection

- Entire dataset was clean before running the model
- All variables were kept for modelling

Initial Exclusions

Feature
Engineering

Drop Variables
of Little
Significance

Drop Variables
to
Improve
Quality of Data

Initial Exclusions

- Identified variables based on judgement call that did not affect sale price
 - E.g. ID, PID, roof material
- Simplifying variables by identifying overlapping variables
 - E.g. garage type vs garage cars

Garage Cars
Size of garage in car capacity

VS

Garage Area
Size of garage in

ze of garage in square feet

Feature Engineering

- Simplifying variables and combining variables
 - For example, summing total number of bathrooms.

Drop Variables of Little Significance

 If the quality of the variable does not significantly affect the average sale price of the property

From the above boxplot, we can see that regardless of the quality of the fences, the mean prices for the properties appear to be relatively similar.

Drop Variables to Improve Quality of Data

- If the sum of null values in the variable was significant.
 - E.g. Lot Frontage; ~20% null values
- If there are categories with few data points
 - E.g. Agricultural zones or split foyer

Data Inspection

- Identify variables that are unlikely to affect sale price.
 - For example, variables such as 'ID' and 'PID'.

Data Inspection

- Identify null values.
 - For example, 'Pool Quality',
 'Miscellaneous Features', etc.

Data Cleaning

- Missing data fields are cleaned, imputed or dropped, according to each column's needs.
- Check for anomalous data and correct/ remove them, if necessary.
 - For example, 'future-dated' 'Year' values.

ID	Garage Year Built	Year Remodeled
2261	2207	2007

Dimensionality Reduction

- Apply high correlation filter
 - Drop one variable of each pair of variables whose pairwise correlation exceeds a preset threshold.
 - Only retain one variable of each pair of variables that show a decent or high correlation with sale price.

Dimensionality Reduction

- Apply low variance filter
 - Variables with a variance lower than a preset threshold are removed.
 - This is because variables with a low variance will have little effect on the sale price.
 - For example, values for 'Utilities' column are all 'All Public Utilities' except for two values, and values for 'Street' column are all 'Paved' except for seven values.

Forward Selection: Regression Model

Best performing model → Lasso Regression

Training R2	88.3%
Test R2	89.2%

Backward Selection

Underlying principle - More Data is Better. There are hidden interactions and nuances behind different data points that we want the machine and algo to pick up.

Approach - Focus on information gain. Employ feature engineering to amplify the information our models can extract from the base data-set. We then refine, adapt and iterate accordingly to achieve the best possible result.

Implementation - Clean up the data set to ensure data quality and logical consistency is present. Avoid throwing out data unless we are absolutely certain that they are redundant. Do feature engineering on a big scale.

Mild multicollinerarity issues? Not a major issue - we rely on standardisation and regularisation to handle these for us. After all, polynomial feature engineering (a standard technique) creates multiple highly correlated features which are then used subsequently in regressions.

Backward Selection - Process Flow

Backward Selection - Polynomial Feature Engineering

Polynomial Feature Engineering

- 1. Split the training data into numerical and categorical dfs.
- 2. Create new numerical features as desired, i.e. age_property_sold.
- 3. Apply polynomial feature engineering with 2 degrees and interaction terms included.
- 4. Apply standardisation techniques to the output from 2.

Backward Selection - Dummy Feature Engineering

Polynomial Feature Engineering

Dummy Feature Engineering

- 1. Clean and ensure all categorical features have logical and well separate categories.
- 2. Create new categorical features as desired, i.e. seasons.
- 3. Apply dummy feature engineering to all categorical features.

Backward Selection - Model Execution

Polynomial Feature Engineering

Dummy Feature Engineering

Model Execution

- 1. Reassemble the training data and experiment with different parameters across the major model classes.
- 2. Deploy optimisation techniques to identify the optimal parameters where possible.
- 3. Decide on the best performing and interpretable model.

Backward Selection

Best performing model → Lasso Regression

Why? Lasso works well with large data-sets with many features (like the training dataset used here) and performs feature selection automatically by shrinking the coeffs of less important features.

Backward Selection - Selected Features by Lasso

1. The majority of the features "selected" by Lasso as most important were interaction features.

2. Some of them exhibited a direct relationship with sales price, but others had less indirect relationships.

Forward Selection

Backward Selection

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%
Features	1029	38	76	19	35	43

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%

Backward selection gave the highest R2

Features

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%

Features

38 76 1029

Less time efficient

19

More computationally intensive

35

43

Backward selection gave the highest R2

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%

76

Backward selection gave the highest R2

38

Features

1029

• Less time efficient

19

• More computationally intensive

35

43

• Results were harder to interpret

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%

Forward selection gave lower R2 scores

Features

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%
Features	1029	38	76	19	35	43

Forward selection gave lower R2 scores

- More time efficient
- Less computationally intensive

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%

76

Forward selection gave lower R2 scores

38

Features

1029

• More time efficient

19

- Less computationally intensive
- Results were easier to understand

35

43

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%

In general, all models performed well

Features

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%

 Features
 1029
 38
 76
 19
 35
 43

Problem Statement

- **Predictive tool** to help clients estimate price of their properties
- **Gain insights** to inform recommendations on how clients can enhance selling price

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%

 Features
 1029
 38
 76
 19
 35
 43

Problem Statement

Gain insights to inform recommendations on how clients can enhance selling price

	Kang Yang	Ken	Huimin	Rebecca	Clara	Tze Ling
1	Overall Quality + Ground Living Area	Ground Living Area	Ground Living Area	Overall Quality	Neighborhood	Neighborhood
2	Overall Quality + Total Basement Area	Overall Quality	Overall Quality	Age of Property	Ground Living Area	Land Contour
3	Masonry Veneer Area + Pool Area	Neighborhood	Neighbourhood	Overall Condition	Sale Type	Near positive feature
4	Overall Quality + Basemt Finished Area	Basement Exposure	External Quality	Size of Property	MS Zoning	Exterior Quality
5	Basemt Finished Area + Pool Area	Garage Area	Garage Cars	No. of Full Baths	Overall Quality	Exterior Covering
Train R2	91.9%	87.7%	88.3%	85.9%	88.7%	86.9%
Test R2	92.8%	88.4%	89.2%	88.7%	87.5%	88.1%

Problem Statement

Features

Predictive tool to help clients estimate price of their properties Gain insights to inform recommendations on how clients can enhance selling price

Forward Selection

Backward Selection

Conclusion

Recommendations

Focus on Quality

Ensure materials and finish used for the house is of high quality

Being Young is Attractive

Older houses sell for much less than newer houses.

Location Matters

Use the neighborhood of the property as an anchoring point for the market sale price of the property.

- + Northridge Heights, Northridge, Stone Brook
- Edwards, Northwest Ames, Old Town

Recommendations

Garage Size

Build a new garage if not present

Expand the garage area

Indoor > Outdoor

Extend ground living area if there are large area of unused land, as it more valuable than lot area.

Less emphasis can be placed on urban landscape.

Put in Effort for Maintenance

Maintain the overall condition of the house to maximize resale value

Interesting Features

Build them if you haven't already

 Total number of bathroom matters, especially full bathrooms; consider converting half bathrooms to full if possible

 Despite size being an important factor for several features, lot area does not seem to affect sale price much

Next Steps?

Proximity to Amenities

As location is a top feature, the data collection of the proximities of amenities (such as schools, supermarkets and restaurants) could be included to further narrow down the neighbourhood features that has a high correlation with the sale prices of properties.

O I

Intangible Variables

02

Variables that increases the quality of one's life, which may rival the location of the property as the most important feature for the purchase of a property. For example, the safety index & crime rate of the neighborhood, transport accessibility, and noise & air quality.

Next Steps?

Access to continuous flow of transactional data

03

The sale prices are only accurate to a certain extent due to the lack of recent sales data. A real-time machine-learning model with access to a continuous flow of transactional data would be necessary to keep the model updated. Data collection could be improved to deal with the missing data fields upfront.

Change your Target Audience

04

For neighborhoods that appear to be less desirable to live in, such as the South & West of Iowa State University, perhaps changing the target audience of property buyers from new families to families with schooling children. Broden target market by positioning it as an up and coming city with education district.

