Дифференциальные уравнения высшего порядка.

Конев В.В. Наброски лекций.

Содержание

1.	Основные понятия	
2.	Уравнения, допускающие понижение порядка	
3.	Линейные дифференциальные уравнения высшего порядка	4
	3.1. Основные теоремы	5
	3.2. <u>Примеры</u> .	10
4.	Линейные неоднородные уравнения. Метод Лагранжа (вариации	1.1
	постоянных).	14
5.	Линейные однородные уравнения с постоянными коэффициентами	17
6.	Уравнения Эйлера	
7.	Линейные неоднородные уравнения с постоянными коэффициентами	22
	с правой частью специального вида.	22

1. Основные понятия.

Обыкновенное дифференциальное **уравнение -го порядка** представляет собой равенство вида

$$F(x, y, y', y'', ..., y^{(n)}) = 0,$$
 (1)

где x – независимая переменная; y = y(x) – искомая функция;

$$y' = \frac{dy}{dx};$$
 $y'' = \frac{d^2y}{dx^2};$... $y^{(n)} = \frac{d^ny}{dx^n}.$

Дифференциальное уравнение вида

$$y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)}),$$
 (2)

где f — заданная функция, называется разрешенным относительно старшей производной.

Решением дифференциального уравнения называется функция $y = \phi(x)$, которая при подстановке в уравнение обращает его в тождество относительно переменной x. Процедура нахождения решений уравнения называется **интегрированием** уравнения.

Любое дифференциальное уравнение имеет бесконечное множество решений. **Общим решением** дифференциального уравнения (1) называется непрерывно дифференцируемая n раз функция

$$y = \varphi(x, C_1, C_2, ..., C_n),$$
 (3)

зависящая от переменной x и от произвольных параметров $C_1, C_2, ..., C_n$, которая является решением уравнения в некоторой области при любых допустимых значениях параметров. Подстановка вместо $C_1, C_2, ..., C_n$ конкретных значений дает частные решения уравнения. Дополнительные условия вида

$$\begin{cases} y(x_0) = y_0, \\ y'(x_0) = y'_0, \\ y''(x_0) = y''_0, \\ \dots \\ y^{(n-1)}(x_0) = y_0^{(n-1)}, \end{cases}$$
 (5)

где $y_0, y_0', ..., y_0^{(n-1)}$ — заданные числа, называются **начальными условиями**. Задача о нахождении решения дифференциального уравнения, удовлетворяющего заданным начальным условиям, называется **задачей Коши**. **Решить** (или **проинтегрировать**) дифференциальное уравнение означает найти его общее решение или же решить задачу Коши.

Уравнение

$$\Phi(x, y, C_1, C_2, \dots, C_n) = 0, \tag{6}$$

определяющее общее решение в виде неявно заданной функции, называется **общим интегралом** дифференциального уравнения. Подстановка вместо констант $C_1, C_2, ..., C_n$ числовых значений приводит к **частному интегралу**:

$$\Phi(x,y) = 0. \tag{7}$$

2. Уравнения, допускающие понижение порядка

1) Уравнения вида

$$y^{(n)} = f(x), \tag{1}$$

где f(x) — заданная функция, решаются непосредственным интегрированием. Например,

$$y'' = 12x \implies y' = 6x^2 + C_1 \implies y = 2x^3 + C_1x + C_2.$$

2) Уравнения вида

$$F(x, y', ..., y^{(n)}) = 0,$$
 (2)

не содержащие явно искомую функцию y, допускают понижение порядка подстановкой y'=p(x).

Действительно,
$$y'' = p'(x)$$
, $y''' = p''(x)$, ..., $y^{(n)} = p^{(n-1)}(x)$.

Если уравнение не содержит явно не только функцию y, но и ее производные до (k-1)-го порядка включительно, то его порядок понижается на k единиц подстановкой $y^{(k)} = p(x)$.

3) Уравнения вида

$$F(y, y', ..., y^{(n)}) = 0,$$
 (3)

не содержащие явно переменную x, допускают понижение порядка подстановкой y' = p(y).

Действительно,

$$y''' = \frac{dp(y)}{dx} = \frac{dp(y)}{dy} \frac{dy}{dx} = p'(y) p(y),$$

$$y'''' = \frac{d(p'(y) p(y))}{dx} = \frac{d(p'(y) p(y))}{dy} \frac{dy}{dx} = (p''p + p'^2) p$$

и так далее.

4) Уравнения вида

$$\frac{d}{dx}F(x,y,y',...,y^{(n-1)}) = 0, (4)$$

в которых левая часть может быть представлена как полная производная от некоторой функции $F(x,y,y',...,y^{(n-1)})$. В этом случае порядок уравнения сразу понижается на единицу:

$$F(x, y, y', ..., y^{(n-1)}) = C_1.$$

Например,

$$y''y - y'^{2} = 4x^{3}y^{2} \implies \left(\frac{y'}{y}\right)' = 4x^{3} \implies \frac{y'}{y} = x^{4} + C_{1}.$$

3. Линейные дифференциальные уравнения высшего порядка Уравнения вида

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x), \tag{1}$$

где f(x), $a_0(x)$, $a_1(x)$, ... — заданные непрерывные функции, называются **линейными** дифференциальными уравнениями n-го порядка.

Если функция f(x) равна нулю, то соответствующее уравнение называется **линейным однородным**.

Введем оператор L, который определим формулой

$$L = \frac{d^n}{dx^n} + a_{n-1} \frac{d^{n-1}}{dx^{n-1}} + \dots + a_1 \frac{d}{dx} + a_0.$$
 (2)

Тогда уравнение (1) можно записать в виде

$$L[y] = f(x). (3)$$

Нетрудно убедиться в том, что оператор \boldsymbol{L} является линейным:

$$L[\lambda_1 y_1 + \lambda_2 y_2] = \lambda_1 L[y_1] + \lambda_2 L[y_2], \tag{4}$$

где λ_1 и λ_2 — произвольные числа. Это, в частности, означает, что если функции y_1 и y_2 являются решениями однородного уравнения

$$L[y] = 0, (5)$$

то и их линейная комбинация $\lambda_1 y_1 + \lambda_2 y_2$ является решением этого уравнения.

Рассмотрим случай вещественных функций $a_0(x)$, $a_1(x)$, ..., $a_{n-1}(x)$. Если комплексная функция

$$y = \varphi(x) = \text{Re}\varphi(x) + i \text{Im} \varphi(x)$$

является решением однородного уравнения (5), то вещественная и мнимая части этой функции также являются решениями уравнения (5).

Действительно, в силу линейности оператора ${\it L}$ и свойств комплексных чисел имеем:

$$L[\varphi(x)] = L[\operatorname{Re}\varphi(x) + i\operatorname{Im}\varphi(x)] =$$

= $L[\operatorname{Re}\varphi(x)] + iL[\operatorname{Im}\varphi(x)] = 0 \implies$
 $L[\operatorname{Re}\varphi(x)] = 0$ и $L[\operatorname{Im}\varphi(x)] = 0.$

Функции $y_1(x)$, $y_2(x)$,..., $y_n(x)$ называются **линейно независимыми** на промежутке (a,b), если существует только тривиальное решение уравнения

$$\lambda_1 y_1 + \lambda_2 y_2 + \dots + \lambda_n y_n = 0 \tag{6}$$

относительно коэффициентов λ_1 , λ_2 ,..., λ_n . В противном случае функции называют **линейно зависимыми**. Другими словами, функции линейно зависимы, если хотя бы одна из них может быть представлена в виде линейной комбинации остальных.

Краткий план последующего изложения.

- 1) Знакомство с такими понятиями, как "определитель Вронского" и "фундаментальная система решений", опираясь на которые можно сформулировать алгоритм исследования функций на их линейную независимость, а также доказать теоремы о структуре общего решения линейного уравнения (однородного и неоднородного)
- 2) Обсуждение некоторых приёмов нахождения решений линейного уравнения.
- 3) Рассмотрение линейных уравнений с постоянными коэффициентами, играющих важную роль в различных приложениях.

3.1. Основные теоремы

Совокупность n линейно независимых решений дифференциального уравнения -го порядка (1) называется фундаментальной системой решений этого уравнения.

Определитель Вронского (или внонскиан) определяется формулой

$$W[y_1,y_2,\dots,y_n] = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y_1' & y_2' & \dots & y_n' \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}.$$

Теорема 1. Если определитель Вронского $W[y_1, y_2, ..., y_n]$ отличен от нуля хотя бы в одной точке промежутка (a,b), то функции $y_1, y_2, ..., y_n$ линейно независимы на этом промежутке.

Доказательство. Составим уравнение (6) и продифференцируем его (n-1) раз. В результате получим однородную алгебраическую систему n линейных уравнений относительно n неизвестных λ_1 , λ_2 , ..., λ_n :

$$\begin{cases} \lambda_1 y_1 + \lambda_2 y_2 + \dots + \lambda_n y_n = 0, \\ \lambda_1 y_1' + \lambda_2 y_2' + \dots + \lambda_n y_n' = 0, \\ \dots \\ \lambda_1 y_1^{(n-1)} + \lambda_2 y_2^{(n-1)} + \dots + \lambda_n y_n^{(n-1)} = 0. \end{cases}$$

По теореме Крамера эта система совместна и имеет единственное решение, если определитель коэффициентной матрицы отличен от нуля. Таким определителем является определитель Вронского W, который по условиям теоремы отличен от нуля. Следовательно, существует только тривиальное решение этой системы.

Пример 1. Функции $1, x, x^2, ..., x^{n-1}$ являются линейно независимыми, поскольку определитель Вронского отличен от нуля:

$$W = \begin{vmatrix} 1 & x & x^2 & \dots & x^{n-1} \\ 0 & 1 & 2x & \dots & (n-1)x^{n-1} \\ 0 & 0 & 2 & \dots & (n-1)(n-2)x^{n-2} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & (n-1)! \end{vmatrix} = 1! \cdot 2! \cdot \dots \cdot (n-1)!$$

Пример 2. Функции e^{k_1x} , e^{k_2x} ,..., e^{k_nx} являются линейно независимыми, если множество k_1 , k_2 ,..., k_n не содержит совпадающих друг с другом чисел. Действительно, составим определитель Вронского и вынесем общие множители в столбцах:

$$W = \begin{vmatrix} e^{k_1 x} & e^{k_2 x} & \dots & e^{k_n x} \\ k_1 e^{k_1 x} & k_2 e^{k_2 x} & \dots & k_n e^{k_n x} \\ \dots & \dots & \dots & \dots \\ k_1^{n-1} e^{k_1 x} & k_2^{n-1} e^{k_2 x} & \dots & k_n^{n-1} e^{k_n x} \end{vmatrix} =$$

$$= e^{(k_1 + k_2 + \dots + k_n)x} \begin{vmatrix} 1 & 1 & \dots & 1 \\ k_1 & k_2 & \dots & k_n \\ \dots & \dots & \dots & \dots \\ k_1^{n-1} & k_2^{n-1} & \dots & k_n^{n-1} \end{vmatrix}.$$

Определитель в правой части этого уравнения известен под именем "определитель Вандермонда", который равен произведению ненулевых множителей:

$$\prod_{1 \le i < j \le n} (k_j - k_i).$$

Теорема 2 (о структуре **общего решения** линейного **однородного уравнения** Ly=0). Пусть функции $y_1,y_2,...,y_n$ образуют фундаментальную систему решений линейного однородного уравнения n-го порядка. Тогда общее решение этого уравнения имеет вид

$$y = C_1 y_1 + C_2 y_2 + \cdots C_n y_n, \tag{7}$$

где \mathcal{C}_1 , \mathcal{C}_2 , ..., \mathcal{C}_n — произвольные константы.

Доказательство. В силу линейности оператора L функция (7) является решением линейного однородного уравнения (5). Покажем, что решение задачи Коши с начальными условиями

$$\begin{cases} y(x_0) = z_0, \\ y'(x_0) = z'_0, \\ \dots \\ y^{(n-1)}(x_0) = z_0^{(n-1)} \end{cases}$$
(8)

является единственным. Здесь z(x) — произвольное решение однородного уравнения (5); $z_0=z(x_0),\ z_0'=z'(x_0),\ z_0^{(n-1)}=z^{(n-1)}(x_0).$

Продифференцируем уравнение (7) (n-1) раз и подставим результаты в систему (8):

$$\begin{cases} C_1 y_1(x_0) + C_2 y_2(x_0) + \cdots + C_n y_n(x_0) = z_0, \\ C_1 y_1'(x_0) + C_2 y_2'(x_0) + \cdots + C_n y_n'(x_0) = z_0', \\ & \cdots \\ C_1 y_1^{(n-1)}(x_0) + C_2 y_2^{(n-1)}(x_0) + \cdots + C_n y_n^{(n-1)}(x_0) = z_0^{(n-1)}. \end{cases}$$

Полученная алгебраическая система состоит из n линейных уравнений относительно n неизвестных C_1 , C_2 , ..., C_n , а определителем коэффициентной матрицы является определитель Вронского, который — по условиям теоремы — отличен от нуля. Тогда по теореме Крамера эта система совместна и имеет единственное решение, что и требовалось доказать.

Теорема 3 (о структуре **общего решения** линейного **неоднородного уравнения** Ly = f(x)). Пусть функция $y_0(x)$ является общим решением линейного однородного уравнения Ly = 0, а функция $\tilde{y}(x)$ — частным решением неоднородного уравнения. Тогда общее решение уравнения Ly = f(x) имеет вид

$$y(x) = y_0(x) + \tilde{y}(x). \tag{9}$$

Доказательство. Для начала покажем, что функция (7) является решением неоднородного уравнения:

$$L[y_0 + \tilde{y}] = L[y_0] + L[\tilde{y}] = 0 + f(x) \equiv f(x).$$

Далее следует показать, что решение задачи Коши с начальными условиями (8) является единственным. С этой целью представим уравнение (9) в виде

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x) + \tilde{y}(x), \tag{10}$$

продифференцируем уравнение (10) (n-1) раз и подставим результаты в систему (8):

$$\begin{cases} C_1 y_1(x_0) + C_2 y_2(x_0) + \cdots + C_n y_n(x_0) = z_0 - \tilde{y}(x_0), \\ C_1 y_1'(x_0) + C_2 y_2'(x_0) + \cdots + C_n y_n'(x_0) = z_0' - \tilde{y}(x_0), \\ & \cdots \\ C_1 y_1^{(n-1)}(x_0) + C_2 y_2^{(n-1)}(x_0) + \cdots + C_n y_n^{(n-1)}(x_0) = z_0^{(n-1)} - \tilde{y}_0^{(n-1)}(x_0). \end{cases}$$

Определителем коэффициентной матрицы полученной алгебраической системы уравнений является отличный от нуля определитель Вронского. Следовательно, эта система совместна и имеет единственное решение относительно неизвестных C_1 , C_2 , ..., C_n (по теореме Крамера).

Теорема 4. Пусть функция y_1 является частным решением линейного дифференциального уравнения Ly=0. Тогда подстановка $y=z\cdot y_1$ приводит к уравнению, не содержащему явно переменную z.

(Это означает, что полученное уравнение допускает понижение порядка на единицу.)

Доказательство. Действительно,

$$a_0 y = \mathbf{a_0 y_1 z},$$

$$a_1 y' = a_1 (z' y_1 + z y_1') = a_1 z' y_1 + \mathbf{a_1 y_1' z},$$

$$a_2 y'' = a_2 (z'' y_1 + 2z' y_1' + z y_1'') = a_2 (z'' y_1 + 2z' y_1') + \mathbf{a_2 y_1'' z},$$

Подставим эти заготовки в уравнение

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$
(11)

и заметим, что члены, содержащие явно z (выделенные красным цветом), в сумме дают $z \cdot L[y_1]$:

$$\left(\underbrace{y_1^{(n)} + a_{n-1}y_1^{(n-1)} + \dots + a_1y_1' + a_0(x)y_1}_{L[\hat{y}_1]}\right)z +$$

+(выражение, не содержащее явно z) = 0.

По условию теоремы, $L[y_1] = 0$ и, следовательно, уравнение (11) приводится к уравнению относительно переменной z, не содержащему явно z. Порядок такого уравнения понижается на единицу подстановкой z' = p(x).

Теорема 5. Если функция $y_1(x)$ является частным решением линейного однородного уравнения 2-го порядка

$$y'' + p(x)y' + q(x)y = 0, (12)$$

то функция $y_2(x)$

$$y_2(x) = y_1(x) \int e^{-F(x)} \frac{dx}{y_1^2(x)}$$
 (13)

также является решением этого уравнения, где F(x) – одна из первообразных функции p(x):

$$F(x) = \int p(x)dx.$$

Доказательство. Согласно условиям теоремы,

$$y_1'' + p(x)y_1' + q(x)y_1 \equiv 0. (14)$$

Предположим, что функции $y_1(x)$ и $y_2(x)$ линейно независимы, и при этом функция $y_2(x)$ также является решением уравнения (12):

$$y_2'' + p(x)y_2' + q(x)y_2 \equiv 0.$$
 (15)

Умножим уравнение (14) на y_2 , уравнение (15) на y_1 и затем почленно вычтем из одного полученного уравнения другое:

$$y_2 y_1'' - y_1 y_2'' + p(x)(y_2 y_1' - y_1 y_2') = 0.$$
 (16)

Составим определитель Вронского:

$$W[y_1, y_2] = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'.$$

Продифференцируем последнее уравнение:

$$W'[y_1, y_2] = \begin{vmatrix} y_1' & y_2' \\ y_1' & y_2' \end{vmatrix} + \begin{vmatrix} y_1 & y_2 \\ y_1'' & y_2'' \end{vmatrix} = y_1 y_2'' - y_2 y_1''.$$

Тогда уравнение (16) можно представить в виде

$$W' + p(x)W = 0,$$

что влечёт

$$\begin{split} \frac{dW}{W} &= -p(x)dx, \quad \ln W = -\int p(x)dx = -F(x), \\ W &= e^{-F(x)}, \quad y_1 y_2' - y_2 y_1' = e^{-F(x)}, \\ \frac{y_1 y_2' - y_2 y_1'}{y_1^2} &= \frac{1}{y_1^2} e^{-F(x)}, \end{split}$$

$$\left(\frac{y_2}{y_1}\right)' = \frac{1}{y_1^2} e^{-F(x)}, \quad \frac{y_2}{y_1} = \int e^{-F(x)} \frac{dx}{y_1^2(x)'}$$

$$y_2 = y_1 \int e^{-F(x)} \frac{dx}{y_1^2(x)}.$$

Следствие. Функция

$$y(x) = y_1(x) \left(C_1 + C_2 \int e^{-F(x)} \frac{dx}{y_1^2(x)} \right)$$
 (17)

является общим решением уравнения (12).

Действительно, функции $y_1(x)$ и $y_2(x)$ образуют фундаментальную систему решений уравнения (12). Тогда общее решение этого уравнения имеет вид

$$y = C_1 y_1 + C_2 y_2.$$

Учитывая формулу (13), получаем требуемое утверждение.

Формула (17) называется формулой Абеля. Она позволяет записать общее решение линейного однородного уравнения 2-го порядка, если удалось "угадать" всего лишь одно его частное решение.

Отметим, что формула (17) включает в себя формулу (13) в качестве частного случая, если выбрать $C_1=0$, $C_2=1$.

3.2. Примеры.

1. Частным решением уравнения

$$x^2y'' + 4xy' - 4y = 0 (18)$$

является $\mathbf{y_1} = \mathbf{x}$. Подставляя $\mathbf{y} = \mathbf{z}\mathbf{x}$, получим

$$y'=z+z'x$$
, $y''=2z'+z''x$, $2x^2z'+z''x^3+4xz+4x^2z'-4xz=0$, $z''x+6z'=0$, $p'x+6p=0$ (где $p=z'$), $\frac{dp}{p}=-\frac{6dx}{x}$, $p=\frac{1}{x^6}$, $\frac{dz}{dx}=\frac{1}{x^6}$, $z=-\frac{1}{5x^5}$.

Поскольку z удовлетворяет однородному уравнению z''x + 6z' = 0, то и функция $z = 1/x^5$ является решением этого уравнения. Таким образом, второе линейно независимое решение уравнения (18) имеет вид

$$y = zx = \frac{1}{x^4}.$$

Поскольку функции

$$y_1 = x \quad \text{if} \quad y_2 = \frac{1}{x^4}$$

образуют фундаментальную систему решений уравнения (18), то общее решение этого уравнения имеет вид

$$y = C_1 x + \frac{C_2}{x^4}.$$

2. Найдём общее решение уравнения (18) с помощью формулы Абеля, считая известным частное решение $y_1=x$.

Разделив обе части уравнения (18) на коэффициент при производной старшего порядка, получим уравнение

$$y'' + \frac{4}{x}xy' - \frac{4}{x^2}y = 0,$$

Затем найдем первообразную функции p(x) = 4/x:

$$F(x) = \int p(x)dx = \int \frac{4}{x}dx = 4\ln x.$$

Далее,

$$\int e^{-F(x)} \frac{dx}{v_1^2(x)} = \int e^{-4\ln x} \frac{dx}{x^2} = \int \frac{dx}{x^6} = -\frac{1}{5x^5}.$$

Применяя формулу Абеля, запишем общее решение уравнения (18):

$$y(x) = x\left(C_1 - \widetilde{C_2} \frac{1}{5x^5}\right) = C_1 x + \frac{C_2}{x^4}.$$

(Для более краткой записи результата множитель (-1/5) включен в константу C_2).

3. Частные решения уравнения

$$x^2y'' + 5xy' + 4y = 0 (19)$$

будем искать в классе функций $y=x^k$:

$$k(k-1)x^k + 5kx^k + 4x^k = 0,$$

 $k^2 + 4k + 4 = 0, (k+1)^2 = 0, k_{1,2} = -2.$

Следовательно, функция $y_1 = x^{-2}$ является частным решением уравнения (19). Для нахождения второго линейно независимого решения используем подстановку $y = x^{-2}z$:

$$\begin{split} y' &= -2x^{-3}z + x^{-2}z', \quad 5xy' = -10x^{-2}z + 5x^{-1}z', \\ y'' &= 6x^{-4}z - 4x^{-3}z' + x^{-2}z'', \quad x^2y'' = 6x^{-2}z - 4x^{-1}z' + z'', \\ (6x^{-2}z - 4x^{-1}z' + z'') + (-10x^{-2}z + 5x^{-1}z') + 4x^{-2}z = 0, \\ z'' + x^{-1}z' &= 0, \qquad p' + \frac{p}{x} = 0 \quad (\text{где } p = z'), \\ \frac{dp}{p} &= -\frac{dx}{x}, \quad p = \frac{1}{x}, \quad z' = \frac{1}{x}, \quad z = \ln x. \end{split}$$

Таким образом, мы получили второе линейно независимое решение уравнения (19):

$$y_2 = \frac{\ln x}{x^2}$$
.

Фундаментальная система решений уравнения (19):

$$y_1 = \frac{1}{x^2}, \quad y_2 = \frac{\ln x}{x^2}.$$

Общее решение уравнения (19):

$$y = \frac{1}{x^2} (C_1 + C_2 \ln x).$$

Заметим, что общее решение уравнения (19) можно записать, используя формулу Абеля. Нужно только предварительно представить это уравнение в виде

$$y'' + \frac{5}{x}y' + \frac{4}{x^2}y = 0 (20)$$

и учесть, что

$$F(x) = \int \frac{5}{x} dx = 5 \ln x,$$

$$\int e^{-F(x)} \frac{dx}{v_1^2(x)} = \int x^4 e^{-5 \ln x} dx = \int x^{4-5} dx = \ln x.$$

Тогда из формулы Абеля получаем

$$y = \frac{1}{x^2} (C_1 + C_2 \ln x).$$

4. Найти общее решение неоднородного уравнения

$$xy'' + 2y' + xy = x, (21)$$

предварительно убедившись в том, одно из частных решений однородного уравнения

$$y'' + \frac{2}{x}y' + y = 0 (22)$$

имеет вид

$$y_1 = \frac{\sin x}{x}.$$

Решение. Нетрудно убедиться, что y_1 является решением однородного уравнения (22). Для нахождения второго частного решения обратимся к теореме 5 (формула (13)):

$$y_2(x) = y_1(x) \int e^{-F(x)} \frac{dx}{y_1^2(x)}$$

где

$$F(x) = \int \frac{2}{x} dx = 2 \ln x.$$

Тогда

$$y_2(x) = \frac{\sin x}{x} \int \frac{dx}{\sin^2 x} = -\frac{\sin x}{x} \operatorname{ctg} x = -\frac{\cos x}{x}.$$

Поскольку речь идет о решении однородного уравнения, то в выражении для y_2 знак "—" можно опустить.

Таким образом, общее решение однородного уравнения найдено:

$$y_2(x) = \frac{1}{x}(C_1 \sin x + C_2 \cos x).$$

Теперь проверим наличие частного решения неоднородного уравнения

$$y'' + \frac{2}{x}y' + y = 1 \tag{23}$$

в классе функций $y = x^k$:

$$k(k-1)x^{k-2} + 2kx^{k-2} + x^k = 1,$$
$$(k^2 + k)x^{k-2} + x^k = 1.$$

Полученное уравнение тождественно удовлетворяется, если k=0, что даёт нам частное решение $\tilde{y}=1$.

Ответ. Общее решение уравнения (21) имеет вид

$$y = \frac{1}{x}(C_1 \sin x + C_2 \cos x) + 1. \tag{24}$$

4. Линейные неоднородные уравнения. Метод Лагранжа (вариации постоянных).

Общее решение неоднородного уравнения

$$L[y] \equiv y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x)$$
(1)

представляет собой суммы общего решения y_0 соответствующего однородного уравнения

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$
(2)

и частного решения 👣 уравнения (1):

$$y(x) = y_0(x) + \tilde{y}(x).$$

Если функции $y_1, y_2, ..., y_n$ образуют фундаментальную систему решений однородного уравнения, то

$$L[y_j] = 0 \quad (j = 1, 2, ..., n)$$
 (3)

И

$$y_0 = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x),$$
 (4)

где \mathcal{C}_1 , \mathcal{C}_2 , ..., \mathcal{C}_n – произвольные постоянные числа.

Частное решения неоднородного уравнения (1) будем искать в виде

$$\tilde{y}(x) = C_1(x) y_1(x) + C_2(x) y_2(x) + \dots + C_n(x) y_n(x), \tag{5}$$

где $C_1(x)$, $C_2(x)$, ..., $C_n(x)$ — неизвестные функции. Формально всё выглядит так, как если бы константам в уравнении (4) разрешили изменяться (варьироваться).

Прежде чем подставить функцию (5) в уравнение (1), обеспечим себя соответствующими заготовками.

$$\tilde{y}' = (C_1' y_1 + C_2' y_2 + \dots + C_n' y_n) +
+ (C_1 y_1' + C_2 y_2' + \dots + C_n y_n').$$
(6)

Потребуем, чтобы первое выражение в скобках правой части этого равенства было равно нулю:

$$C_1' y_1 + C_2' y_2 + \dots + C_n' y_n = 0 (7)$$

(как если бы функции $C_1(x)$, $C_2(x)$, ..., $C_n(x)$ продолжали оставаться константами).

Далее,

$$\tilde{y}'' = (C_1' y_1' + C_2' y_2' + \dots + C_n' y_n') +
+ (C_1 y_1'' + C_2 y_2'' + \dots + C_n y_n'').$$
(8)

Вновь потребуем, чтобы первое выражение в скобках правой части этого равенства было равно нулю:

$$C_1' y_1' + C_2' y_2' + \dots + C_n' y_n' = 0. (9)$$

Следуя подобному алгоритму, мы доберёмся до формулы

$$\tilde{y}^{(n)} = \left(C_1' y_1^{(n-1)} + C_2' y_2^{(n-1)} + \dots + C_n' y_n^{(n-1)}\right) + \\
+ \left(C_1 y_1^{(n)} + C_2 y_2^{(n)} + \dots + C_n y_n^{(n)}\right)$$
(10)

и на этот раз потребуем, чтобы первое выражение в скобках правой части этого равенства было равно f(x):

$$C_1' y_1^{(n-1)} + C_2' y_2^{(n-1)} + \dots + C_n' y_n^{(n-1)} = f(x).$$
 (11)

Подведём промежуточные итоги. Для функции $\tilde{y}(x)$ и её производных имеем следующие формулы:

$$\begin{split} \tilde{y} &= C_1 y_1 + C_2 y_2 + \dots + C_n y_n, \\ \tilde{y}' &= C_1 y_1' + C_2 y_2' + \dots + C_n y_n', \\ \tilde{y}'' &= C_1 y_1'' + C_2 y_2'' + \dots + C_n y_n'', \\ \dots & \dots \\ \tilde{y}^{(n)} &= C_1 y_1^{(n)} + C_2 y_2^{(n)} + \dots + C_n y_n^{(n)} + f(x). \end{split}$$

Подставляя эти равенства в уравнение (1), в левой части получим выражение

$$C_1L[y_1] + C_2L[y_2] + \cdots + C_nL[y_n] + f(x),$$

которое (с учётом уравнений (3)) тождественно совпадает с правой частью f(x). Следовательно, функция вида (5) является решением уравнения (1).

Функции $C_1(x)$, $C_2(x)$, ..., $C_n(x)$ должны удовлетворять уравнения (7), (9), (11) и им аналогичным, которые подразумевались в процессе вычислений:

$$\begin{cases}
C_1' y_1 + C_2' y_2 + \dots + C_n' y_n = 0, \\
C_1' y_1' + C_2' y_2' + \dots + C_n' y_n' = 0, \\
\dots \\
C_1' y_1^{(n-1)} + C_2' y_2^{(n-1)} + \dots + C_n' y_n^{(n-1)} = f(x).
\end{cases} (12)$$

Убедимся в том, что такой набор требований не является противоречивым. Действительно, условия (12) образуют неоднородную систему алгебраических уравнений. Определителем коэффициентной матрицы является определитель Вронского,

$$W[y_1,y_2,\dots,y_n] = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y_1' & y_2' & \dots & y_n' \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix},$$

который отличен от нуля в силу линейной независимости функций y_1, y_2, \dots, y_n . Тогда по теореме Крамера система уравнений (12) совместна и имеет единственное решение относительно переменных C_1^t , C_2^t , ..., C_n^t .

Пример. Рассмотрим уравнение

$$y''' - 3y' + 2y = x. (13)$$

Легко проверить, что функции $y_1 = e^x$ и $y_2 = e^{2x}$ образуют фундаментальную систему решений соответствующего однородного уравнения. Тогда общее решение этого уравнения описывается функцией

$$y_0(x) = C_1 e^x + C_2 e^{2x}$$

где $\emph{\textbf{C}}_{1}$ и $\emph{\textbf{C}}_{2}$ – произвольные константы.

Частное решение ў уравнения (13) имеет вид

$$\tilde{y}(x) = C_1(x)e^x + C_2(x)e^{2x}$$
 (14)

Производные функций $C_1(x)$ и $C_2(x)$ удовлетворяют алгебраической системе уравнений

$$\begin{cases}
C_1^r e^x + C_2^r e^{2x} = 0, \\
C_1^r e^x + 2C_2^r e^{2x} = x.
\end{cases}$$
(15)

Найдём решение этой системы:

$$C_2' = xe^{-2x}, \quad C_1' = -C_2'e^x = -xe^{-x}.$$

Далее,

$$C_1(x) = -\int x e^{-x} dx = xe^{-x} + e^{-x},$$

$$C_2(x) = \int x e^{-2x} dx = -\frac{1}{2} x e^{-2x} - \frac{1}{4} e^{-2x}.$$

Таким образом,

$$\widetilde{y}(x) = (xe^{-x} + e^{-x})e^x - \left(\frac{1}{2}xe^{-2x} + \frac{1}{4}e^{-2x}\right)e^{2x} =$$

$$= x + 1 - \frac{1}{2}x - \frac{1}{4} = \frac{1}{2}x + \frac{3}{4}.$$

Общее решение уравнения (13) имеет вид

$$y = C_1 e^x + C_2 e^{2x} + \frac{1}{2}x + \frac{3}{4}.$$

5. Линейные однородные уравнения с постоянными коэффициентами

Уравнение вида

$$y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \dots + a_1y' + a_0y = 0,$$
 (1)

где a_j — постоянные вещественные коэффициенты (j=0,1,...,n), называется линейным однородным уравнением с постоянными коэффициентами.

Чтобы составить фундаментальную систему решений уравнения (1), нужно найти n линейно независимых частных решений. Такие частные решения будем искать в виде

$$y = e^{kx}$$
,

где k – постоянное число (вещественное или комплексное). Тогда

$$y' = ke^{kx}$$
, $y' = k^2e^{kx}$, ..., $y^{(n)} = k^ne^{kx}$.

Подставляя эти выражения в (1), получим уравнение

$$k^{n} + a_{n-1}k^{n-1} + a_{n-2}k^{n-2} + \dots + a_{1}k + a_{0} = 0,$$
(2)

которое называется **характеристическим**. Формально оно получается заменой в уравнении (1) производных j-го порядка от функции y соответствующими степенями k (j=0,1,...,n). Каждому корню уравнения (2) соответствует частное решение уравнения (1).

В соответствии с основной теоремой алгебры уравнение имеет ровно n корней k_1, k_2, \dots, k_n , среди которых могут быть и совпадающие друг с другом (вырожденные корни). Термины "двукратно вырожденный корень", "трехкратно вырожденный корень" и так далее вырожденные используют для обозначения двух, трех и так далее совпадающих корней.

1) Если все корни характеристического уравнения различны (то есть являются невырожденными), то функции

$$y_1 = e^{k_1 x}$$
, $y_2 = e^{k_2 x}$, ..., $y_n = e^{k_n x}$

образуют фундаментальную систему решений уравнения (1) и, следовательно, общим решением уравнения (1) является функция

$$y_0 = C_1 e^{k_1 x} + C_2 e^{k_2 x} + \dots + C_n e^{k_n x}.$$

(Функции $e^{k_{j}x}$ линейно независимы, поскольку их определитель Вронского отличен от нуля.)

2) Если среди корней k_1, k_2, \dots, k_n имеется комплексный корень, например,

$$k_1 = \alpha + i\beta$$
,

то и комплексно сопряженное выражение

$$k_1 = \alpha - i\beta$$

также является корнем характеристического уравнения (2). Тогда из комплексных решений

$$y_1 = e^{k_1 x} = e^{(\alpha + i\beta)x} = e^{\alpha x} (\cos \beta x + i \sin \beta x)$$

И

$$y_2 = e^{k_2 x} = e^{(\alpha - i\beta)x} = e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

можно получить вещественные решения, составив линейные комбинации вида

$$\frac{1}{2}(y_1 + y_2) = e^{\alpha x} \cos \beta x,$$

$$\frac{1}{2i}(y_1 - y_2) = e^{\alpha x} \sin \beta x.$$

3) Пусть корень k_1 является двукратно вырожденным: $k_1=k_2$. Каждому из этих двух корней соответствует всего лишь одно решение $y_1=e^{k_1x}$. Для получения второго линейно независимого решения y_2 можно составить линейную комбинацию

$$y_1 - y_2 = \frac{1}{k_1 - k_2} (e^{k_1 x} - e^{k_2 x}),$$

временно рассматривая $k_1 \bowtie k_2$ как различные корни, и выполнить затем предельный переход $k_2 \to k_1$. Применяя правило Лопиталя, получим второе частное решение, соответствующее корням $k_1 = k_2$:

$$y_2 = \lim_{k_2 \to k_1} \frac{1}{k_2 - k_1} (e^{k_2 x} - e^{k_1 x}) = \lim_{k_2 \to k_1} \frac{x e^{k_2 x}}{1} = x e^{k_1 x}.$$

4) Если корень k_1 является r-кратно вырожденным, то аналогичные рассуждения приводят к системе линейно независимых функций

$$\begin{aligned} y_1 &= e^{k_1 x}, \\ y_2 &= x e^{k_1 x}, \\ \\ y_r &= \lim_{k_2 \to k_1} \frac{x^{r-2}}{k_r - k_1} (e^{k_r x} - e^{k_1 x}) = x^{r-1} e^{k_1 x}. \end{aligned}$$

Таблица 1. Сопоставление корням характеристического уравнения частных решений однородного уравнения (1).

Корни уравнения (2).	Частные решения уравнения (1).
1. Невырожденный случай: среди корней k_1, k_2, \dots, k_n нет совпадающих друг с другом.	$y_1 = e^{k_1 x}, \ y_2 = e^{k_2 x},, \ y_n = e^{k_n x}.$
2. Комплексные корни $k_{1,2}=lpha\pm ieta$.	$y_1 = e^{\alpha x} \cos \beta x,$ $y_2 = e^{\alpha x} \sin \beta x.$
3. Вырожденный случай: корень k_1 является r -кратно вырожденным.	$y_j = x^{j-1}e^{k_1x}$ $(j = 1, 2,, r)$
4. Комплексные корни $\mathbf{\alpha} \pm i \mathbf{\beta}$ являются двукратно вырожденными.	$y_1 = e^{\alpha x} \cos \beta x,$ $y_2 = e^{\alpha x} \sin \beta x,$ $y_3 = x e^{\alpha x} \cos \beta x,$ $y_4 = x e^{\alpha x} \sin \beta x.$

Пример 1. Пусть $k_1, k_2, ..., k_n$ — корни характеристического уравнения. Чтобы составить соответствующее дифференциальное уравнение, нужно записать характеристическое уравнение

$$(k-k_1)(k-k_2)...(k-k_n)=0$$

и выполнить формальную замену

$$k^0 \rightarrow y$$
, $k \rightarrow y'$, $k^2 \rightarrow y''$, ...

Пример 2. Пусть $k_1 = 2$, $k_2 = -3$. Тогда

$$(k-2)(k+3) = 0 \implies k^2 + k - 6 = 0 \implies$$
$$y'' + y' - 6y = 0.$$

Пример 3. Пусть $k_1 = k_2 = 1$, $k_3 = -3$. Тогда

$$(k-1)^2(k+3) = 0 \implies k^3 + k^2 - 5k + 3 = 0 \implies$$

 $y''' + y'' - 5y' + 3y = 0$

Пример 4. Пусть корни характеристического уравнения равны

$$k_1 = k_2 = k_3 = 0$$
, $k_4 = -2$, $k_5 = 3$.

Тогда общим решением соответствующего однородного уравнения является функция

$$y_0 = C_1 + C_2 x + C_3 x^2 + C_4 e^{-2x} + C_5 e^{3x}$$
.

Характеристическое уравнение и соответствующее дифференциальное уравнение имеют вид

$$k^{3}(k+2)(k-3) = 0$$
, $k^{5} - k^{4} - 6k = 0$,
 $v^{(5)} - v^{(4)} - 6v^{(4)} = 0$.

Пример 5. Пусть корни характеристического уравнения равны

$$k_{1,2} = -1 \pm 4i$$
, $k_3 = 2$.

Тогда общим решением соответствующего дифференциального уравнения является функция

$$y_0 = C_1 e^{-x} \cos 4x + C_2 e^{-x} \sin 4x + C_3 e^{2x}.$$

6. Уравнение Эйлера

Уравнение вида

$$x^{n}y^{(n)} + a_{n-1}x^{n-1}y^{(n-1)} + a_{n-2}x^{n-2}y^{(n-2)} + \dots + xa_{1}y' + a_{0}y = 0,$$
 (1)

в котором a_j — постоянные числа (j=0,1,...,n), называется **уравнением Эйлера**. Заменой $x=e^t$ это уравнение приводится к уравнению с постоянными коэффициентами. Действительно,

$$y'' = \frac{dy}{dx} = \frac{y_t'}{x_t'} = e^{-t}y_t', \quad xy' = y_t',$$

$$y''' = \frac{d}{dx}(e^{-t}y_t') = \frac{(e^{-t}y_t')_t'}{x_t'} = e^{-t}(-e^{-t}y_t' + e^{-t}y_t''),$$

$$x^2y'' = y_t'' - y_t'$$

и так далее. Частными решениями уравнения, полученного применением вышеуказанной подстановки, являются функции вида $y=e^{kt}=x^k$. Если же какой-либо корень k является r-кратно вырожденным, то решения, соответствующие этому корню, описываются формулой

$$y_i = e^{kt}t^{j-1} = x^k \ln^{j-1} x \quad (j = 1, 2, ...).$$
 (2)

Это означает, что частные решения уравнения Эйлера можно сразу искать в виде $y=x^k$. В вырожденном случае решениями также будут являться функции

$$y_2 = x^k \ln x$$
, $y_3 = x^k \ln^2 x$, ... (3)

Пример 1. Рассмотрим уравнение Эйлера

$$x^2y'' + 4xy' - 4y = 0, (4)$$

частное решение которого будем искать в виде $y=x^k$. Тогда

$$x^{2}k(k-1)x^{k-2} + 4xkx^{k-1} - 4x^{k} = 0,$$

$$k^2 + 3k - 4 = 0$$
, $k_1 = 1$, $k_2 = -4$,

что влечет

$$y_1 = \frac{1}{x^4}, \quad y_2 = x.$$

Общее решение уравнения (4) описывается формулой

$$y = \frac{C_1}{x^4} + C_2 x.$$

Пример 2. Чтобы найти частные решения уравнения Эйлера

$$x^2y'' + 5xy' + 4y = 0, (5)$$

сделаем подстановку $y = x^k$:

$$k(k-1)x^k + 5kx^k + 4x^k = 0,$$

 $k^2 + 4k + 4 = 0,$ $k_1 = k_2 = -2.$

Следовательно, функции

$$y_1 = x^{-2}$$
 $y_2 = x^{-2} \ln x$

являются частными решениями уравнения (5).

Убедимся в том, что функция 🎶 является решением этого уравнения:

$$y_2' = -2x^{-3} \ln x + x^{-3},$$

$$y_2'' = 6x^{-4} \ln x - 2x^{-4} - 3x^{-4},$$

$$(6x^{-2} \ln x - 5x^{-2}) + 5(-2x^{-2} \ln x + x^{-2}) + 4x^{-2} \ln x \equiv 0.$$

Таким образом, общее решение уравнения (5) имеет вид

$$y = \frac{1}{x^2} (C_1 + C_2 \ln x).$$

7. Линейные неоднородные уравнения с постоянными коэффициентами с правой частью специального вида.

Говорят, что неоднородное уравнение

$$y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \dots + a_1y' + a_0y = f(x)$$
(1)

имеет правую часть специального вида, если

$$f(x) = e^{\alpha x} (P_m(x) \cos \beta x + Q_l(x) \sin \beta x), \tag{2}$$

где P_m и Q_l – многочлены целой степени x.

В качестве примеров приведем несколько функций, каждая из которых относится к функциям специального вида (2):

$$f(x) = 3x - 4$$
 $(\alpha = \beta = 0, P_1(x) = 3x - 4),$
 $f(x) = xe^{4x}$ $(\alpha = 4, \beta = 0, P_1(x) = x),$
 $f(x) = 5\cos 7x$ $(\alpha = 0, \beta = 7, P_0(x) = 5, Q_l(x) = 0).$

Согласно теореме о структуре общего решения линейного неоднородного дифференциального уравнения такое решение представляет собой сумму общего решения соответствующего однородного уравнения и частного решения неоднородного уравнения (1). Алгоритм нахождения общего решения однородного уравнения изложен в предшествующей части курса. Здесь основное внимание будет сосредоточено на алгебраических методах отыскания частного решения уравнения (1). В этой связи нам предстоит обсудить несколько случаев.

1) Если $\alpha + i\beta$ не совпадает ни с одним из корней характеристического уравнения, то частное решение уравнения (1) нужно искать в виде

$$\widetilde{y}(x) = e^{\alpha x} (\widetilde{P}_s(x) \cos \beta x + \widetilde{Q}_s(x) \sin \beta x),$$

где $\widetilde{P}_s(x)$ и $\widetilde{Q}_s(x)$ — многочлены s-го порядка с неопределенными коэффициентами; $s=\max\{m,l\}$:

$$\widetilde{P}_s(x) = A_0 + A_1 x + A_2 x^2 + \dots + A_s x^s,$$

 $\widetilde{Q}_s(x) = B_0 + B_1 x + B_2 x^2 + \dots + B_s x^s.$

2) Если $\alpha + i\beta$ совпадает с корнем характеристического уравнения кратности r, то частное решение уравнения (1) отыскивается в виде

$$\widetilde{y}(x) = e^{\alpha x} (\widetilde{P}_s(x) \cos \beta x + \widetilde{Q}_s(x) \sin \beta x) x^r.$$

Пример 1. Для отыскания частного решения дифференциального уравнения

$$y'' + y' - 6y = -x^3 (3)$$

сначала составим характеристическое уравнение и найдем его корни:

$$k^2 + k - 6 = 0$$
, $k_1 = 2$, $k_2 = -3$.

Частное решение неоднородного уравнения (3) будем искать в виде многочлена третьей степени с неопределенными коэффициентами:

$$\tilde{y} = A_0 + A_1 x + A_2 x^2 + A_3 x^3:$$

$$(2A_2 + 6A_3 x) + (A_1 + 2A_2 x + 3A_3 x^2) - 6(A_0 + A_1 x + A_2 x^2 + A_3 x^3) = x^3.$$

Приравняем друг к другу коэффициенты с одинаковыми степенями:

$$-6A_3 = -1 \implies A_3 = \frac{1}{6},$$

 $3A_3 - 6A_2 = 0 \implies A_2 = \frac{1}{12},$

$$6A_3 + 2A_2 - 6A_1 = 0 \implies A_1 = \frac{7}{36},$$

 $2A_2 + A_1 - 6A_0 = 0 \implies A_0 = \frac{13}{216}.$

Записываем частное решение неоднородного уравнения (3):

$$\tilde{y} = \frac{13}{216} + \frac{7}{36}x + \frac{1}{12}x^2 + \frac{1}{6}x^3 =$$

$$= \frac{1}{216}(13 + 42x + 18x^2 + 36)x^3.$$

Общее решение уравнения (3):

$$C_1e^{-3x} + C_2e^{2x} + \frac{1}{216}(13 + 42x + 18x^2 + 36)x^3.$$

Пример 2. Найти общее решение дифференциального уравнения

$$y''' + y'' - 6y = e^{2x}. (4)$$

Корни характеристического уравнения:

$$k_1 = 2$$
, $k_2 = -3$.

Далее устанавливаем, что $\alpha + i\beta = 2$ совпадает с одним из корней характеристического уравнения. Поэтому частное решение уравнения (4) следует искать в виде

$$\tilde{y} = Axe^{2x}$$
,

где A — неопределенный коэффициент (многочлен нулевой степени). Тогда

$$\tilde{y}' = Ae^{2x} + 2Axe^{2x},$$

$$\tilde{y}'' = 4Ae^{2x} + 4Axe^{2x},$$

$$4Ae^{2x} + 4Axe^{2x} + Ae^{2x} + 2Axe^{2x} - 6Axe^{2x} = e^{2x},$$

$$5A = 1, \ A = \frac{1}{5}.$$

Частное решение уравнения (4):

$$\widetilde{y} = \frac{1}{5} x e^{2x}.$$

Общее решение уравнения (4):

$$y = C_1 e^{-3x} + C_2 e^{2x} + \frac{1}{5} x e^{2x}.$$

Пример 3. Рассмотрим уравнение

$$y^{(4)} - 6y''' + 17y'' - 54y' + 72y = f(x), \tag{5}$$

корни характеристического уравнения которого равны

$$k_1 = 2$$
, $k_2 = 4$, $k_{3,4} = \pm 3i$.

1) Пусть $f(x) = (8x - 7)e^{5x}$. Тогда $\alpha + i\beta = 5$, и частное решение уравнения (5) следует искать в виде

$$\widetilde{y} = (A_0 + A_1 x)e^{5x}.$$

2) Пусть $f(x) = (8x - 7)e^{4x}$. Тогда $\alpha + i\beta = 4 = k_2$. Поэтому частное решение уравнения (5) следует искать в виде

$$\widetilde{y} = (A_0 + A_1 x) x e^{4x}.$$

3) Пусть $f(x) = (8x - 7)\cos 5x$. Тогда $\alpha + i\beta = 5i$, а частное решение уравнения (5) имеет вид

$$\tilde{y} = (A_0 + A_1 x) \cos 5x + (B_0 + B_1 x) \sin 5x.$$

4) Пусть $f(x) = x \sin 5x$. Здесь — как и в предыдущем случае — частное решение уравнения (5) следует искать в виде

$$\tilde{y} = (A_0 + A_1 x) \cos 5x + (B_0 + B_1 x) \sin 5x.$$

5) Пусть $f(x) = x \sin 3x$. Тогда $\alpha + i\beta = 3i$ совпадает с одним из корней характеристического уравнения. Поэтому частное решение уравнения (5) имеет вид

$$\tilde{y} = (A_0 + A_1 x) x \cos 5x + (B_0 + B_1 x) x \sin 5x.$$

Пример 4. Если правая часть линейного неоднородного дифференциального уравнения L[y] = f(x) с постоянными коэффициентами имеет вид

$$f(x) = 3x - 1 + xe^{4x} + x^2 \sin x - 7e^{2x} \cos 3x,$$

то проблема отыскания частного решения $ilde{y}$ этого уравнения сводится к нахождению частных решений $ilde{y}_i$ (j=1,2,3,4) вспомогательных уравнений

$$L[y] = 3x - 1$$
, $L[y] = xe^{4x}$,

$$L[y] = x^2 \sin x$$
, $L[y] = -7e^{2x} \cos 3x$

с правыми частями специального вида. При этом

$$\widetilde{y} = \widetilde{y}_1 + \widetilde{y}_2 + \widetilde{y}_3 + \widetilde{y}_4.$$