CSCI 420 Computer Graphics Assignment 2 Roller Coasters Extras: Derive the physically realistic equation

Junmeng Xu

USC ID: 8912001452

Problem:

Derive the steps that lead to the physically realistic equation of updating the u.

$$u_{new} = u_{current} + (\Delta t) \frac{\sqrt{2g(h_{max} - h)}}{\left\| \frac{dp}{du} \right\|}$$

where Δt is the time step,

g is the gravity constant,

 h_{max} is the maximum height of the track,

h is the current height of the roller coaster,

p is a function of u (i.e. p(u)) that computes

the position (in 3D) of the roller coaster at $u=u_{current}$.

Note that $\frac{dp}{du}$ is the derivative of p(u) with respect to u, and the derivative is evaluated at $u=u_{current}$. Also, $\left\|\frac{dp}{du}\right\|$ is the magitude

(i.e.
$$mag = \sqrt{x^2 + y^2 + z^2}$$
) of the vector $\frac{dp}{du}$.

In free fall, there are formulas for velocity and falling distance.

$$V = gt$$

$$\Delta h = \frac{1}{2}gt^2$$

Suppose the highest point, that is, the height of the starting position is hmax, and the height of the current position is h.

$$\Delta h = h_{\text{max}} - h$$
 3

From
$$V$$
 and V , we get $V = \sqrt{2gh}$

Then link 3, we get

$$V = \sqrt{2g(h_{\text{max}} - h)}$$

The displacement per unit time at can be derived from the above.

$$d = V \delta t$$

$$= \delta t \sqrt{2g(h_{\text{max}} - h)}$$

Suppose T(u) is $\frac{dp}{du}$, the derivative of p(u) with respect to u, then ||T(u)|| is the displacement distance when u increases by 1.

And in the increase of u, the change in displacement is $st \int 2g(h_{max}-h)$.

According to the proportional relationship, the following equation is thus obtained.

1:
$$||T(u)|| = \Delta u : \Delta t \sqrt{2g(h_{max}-h)}$$

$$\Rightarrow \Delta u = \frac{5t\sqrt{2g(h_{max}-h)}}{||T(u)||}$$

$$\Rightarrow \qquad \Delta u = \frac{bt \sqrt{2g(h_{\text{max}} - h)}}{1 \frac{dP}{du} 1}$$

Finally, the Unew is equal to the Ucurrent plus Δu , then we get.

Unew = Ucurrent $+(\Delta t) \frac{\sqrt{2g(h_{max}-h)}}{||\frac{dp}{du}||}$