Programming Paradigms

JOIE ANN M. MAC
Instructor

CS315 PROGRAMMING LANGUAGES

Final Project Specifications and Guidelines

PROGRAMMING PARADIGMS

Contents

Rationale and Overview	3
General Instructions	3
Grading	4
Machine Problem Solutions	4
Documentation Contents	5
Formatting	6

Rationale and Overview

This project is a major requirement for the course CS315 Programming Languages, one of the core courses of the BS Computer Science program. This project is a mixture of research work and programming.

This project is composed of three major parts: (a) machine problem solution, (b) language definition, and (c) language evaluation.

General Instructions

- 1. This final project must be done in **5-6 members**.
- 2. **Each group will propose a machine problem with mid-level complexity**. This is a first come first serve idea. You may write the problem in the given LINK.
- 3. This machine problem must be solved in four different languages, each of which is under in a different paradigm (imperative, object-oriented, logic, functional).
- 4. No alterations of groupings and machine problem shall be allowed, unless there are compelling reasons to do so.

Grading

This project is 30% of the student's **Final Grade**. It will be graded according to the following distribution of points and weights as shown in the table below.

Machine Problem Solutions Code Professionalism Input/output Inline Documentation	TOTAL	8 points 1 points 1 points 10 points X 4 Codes	50 pts
Documentation Content		15 points	50 pts
Professional Furnish		5 points TOTAL	100 pts

Table 1 Project Grading Scheme

Machine Problem Solutions

- All programs are assumed to run perfectly and must produce correct output.
- Every program must demonstrate the characteristics of its paradigm.
- Students may use the following languages suggested, together with the development environment, but may opt for another option if they wish to.

Paradigm	Language	Environment
Imperative	С	Dev-C++
Object-Oriented	Java	JCreator or Notepad++ and cmd
Logic	Prolog	SWI-Prolog
Functional	Common Lisp	Steel Bank Common Lisp

Table 2 Suggested Languages and Environments

Documentation Contents

Cover Page

Table of Contents

- I. The Machine Problem
 - A. The Problem Statement *Define the problem here. Make sure that I/O is clear*
 - B. Solutions Copy and paste all source code for every program here
 - a. Imperative Paradigm Solution
 - b. Object-Oriented Paradigm Solution
 - c. Logic Paradigm Solution
 - d. Functional Paradigm Solution
- II. Language Definition
 - A. Syntax
 - a. BNF from basic syntax until control structures
 - b. Syntax Graphs of the Grammars
 - c. At least 3 derivations
 - d. Parse trees in lieu with the derivations
 - B. Semantics
 - a. Informal Semantics (in lieu with each BNF)
 - 1. Basic Syntax
 - 2. Control Structures
 - 3. Data Types
 - 4. Subprograms
 - b. Formal Semantics (in lieu with each BNF, whichever is applicable)
 - 1. Operational Semantics
 - 2. Denotational Semantics
 - 3. Axiomatic Semantics
- III. Evaluation of the programming languages (in your own ideas, evaluate these programming languages according to the criteria for evaluating them. You may emphasize their strengths and drawbacks)
- IV. Concluding Statements (you may write a generalization of your research)
- V. Bibliographic Sources (list of all reliable sources of your research)
- VI. Appendices
 - A. Screenshots (show sample run of your programs)
 - B. Photo documentation (photos of members working on the project)

Formatting

- Observe 1 inch margin at all sides.
- Use readable fonts, e.g. Cambria 11, Times New Roman 12, or Arial 11. For source codes in the document, use Courier New 12.
- Document must be professionally furnished.