Lista de exercícios

Aplicações da integral

Comprimento do Arco

Fórmula do Comprimento do Arco:

Se f' for contínua em [a, b], então o comprimento da curva y = f(x) (x = f(y)), $a \le x \le b$, é

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx$$

1. Nos exercícios a seguir, determinar encontrar o comprimento do arco da curva dada.

(a)
$$y = 5x - 2, -2 \le x \le 2$$

(b)
$$y = x^{2/3} - 1$$
, $1 \le x \le 2$

(c)
$$y = \frac{1}{3}(2+x^2)^{3/2}$$
, $0 \le x \le 3$

(d)
$$x^{2/3} + y^{2/3} = 2^{2/3}$$
,

(e)
$$y = \ln(x), \sqrt{3} \le x \le \sqrt{8}$$

(f)
$$y = 1 - \ln(\sin x), \ \frac{\pi}{6} \le x \le \frac{\pi}{4}$$

(g)
$$y = \sqrt{x^3}$$
, de $P_0(0,0)$ até $P_1(4,8)$

(h)
$$y = 4\sqrt{x^3} + 2$$
, de $P_0(0,2)$ até $P_1(1,6)$

(i)
$$y = 6(\sqrt[3]{x^2} - 1)$$
, de $P_0(1,0)$ até $P_1(2\sqrt{2},6)$

(j)
$$(y-1)^2 = (x+4)^3$$
, de $P_0(-3,2)$ até $P_1(0,9)$

(k)
$$x^2 = y^3$$
, de $P_0(0,0)$ até $P_1(8,4)$

Respostas