Week 6: Normal Distribution and Expectations of Continuous RVs

MATH697

Sahir Bhatnagar

October 10, 2017

McGill University

Bell-Shaped Curve

We now define a function $\phi:\mathbb{R} \to \mathbb{R}$ by

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad -\infty < x < \infty \tag{1}$$

- This function ϕ is the famous bell-shaped curve because its graph is in the shape of a bell.

Bell-Shaped Curve

curve(dnorm(x), from = -5, to = 5, ylab = expression(phi(x)), bty = "n")
abline(v=0)

Bell-Shaped Curve is a density function

Example 1 (Bell-Shaped Curve)

Verify that Equation (1) is really a density function.

Proof: on board. note, this is an example of an integration that either you know how to do, or else you can spend a very long time going nowhere.

The Standard Normal Distribution

A probability model that reflects observed (empirical) behaviour of data samples; this distribution is often observed in practice:

Definition 2 (The Standard Normal Distribution)

Let $X \sim N(0,1)$. Then X has density function

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} - \infty < x < \infty$$
 (2)

The Standard Normal Distribution

$$X \sim N(0,1)$$
. This means that for $-\infty < a \le b < \infty$,

$$P(a \le X \le b) = \int_a^b \phi(x) dx = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx$$

Let $\mu \in \mathbb{R}$ and $\sigma > 0$.

Definition 3 (The Normal(μ, σ^2) Distribution)

$$f_{X}(x) = \frac{1}{\sigma} \phi \left(\frac{x - \mu}{\sigma} \right)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} exp \left\{ -\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^{2} \right\} \quad x \in \mathbb{R}.$$
 (3)

Let X be a random variable having density function given by (3). The RV X is said to have the $N(\mu,\sigma^2)$ distribution. We write this as $X \sim N(\mu,\sigma^2)$

Normal Distribution is a density function

Example 4 (Normal Distribution)

Verify that Equation (3) is really a density function.

Proof: on board.

The pdf is symmetric about μ , and hence μ is controls the *location* of the distribution and σ^2 controls the *spread* or *scale* of the distribution.

 The Normal density function is justified by the Central Limit Theorem.

The pdf is symmetric about μ , and hence μ is controls the *location* of the distribution and σ^2 controls the *spread* or *scale* of the distribution.

- The Normal density function is justified by the Central Limit Theorem.
- 2. Special case: $\mu=0, \sigma^2=1 \to \text{the standard}$ or unit normal distribution. In this case, the density function is denoted $\phi(x)$, and the cdf is denoted $\Phi(x)$:

$$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt = \int_{-\infty}^{x} \left(\frac{1}{2\pi}\right)^{1/2} \exp\left\{-\frac{1}{2}t^{2}\right\} dt.$$

The pdf is symmetric about μ , and hence μ is controls the *location* of the distribution and σ^2 controls the *spread* or *scale* of the distribution.

- The Normal density function is justified by the Central Limit Theorem.
- 2. Special case: $\mu=0, \sigma^2=1 \to \text{the standard}$ or unit normal distribution. In this case, the density function is denoted $\phi(x)$, and the cdf is denoted $\Phi(x)$:

$$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt = \int_{-\infty}^{x} \left(\frac{1}{2\pi}\right)^{1/2} \exp\left\{-\frac{1}{2}t^{2}\right\} dt.$$

The pdf is symmetric about μ , and hence μ is controls the *location* of the distribution and σ^2 controls the *spread* or *scale* of the distribution.

- The Normal density function is justified by the Central Limit Theorem.
- 2. Special case: $\mu=0, \sigma^2=1 \to \text{the standard}$ or unit normal distribution. In this case, the density function is denoted $\phi(x)$, and the cdf is denoted $\Phi(x)$:

$$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt = \int_{-\infty}^{x} \left(\frac{1}{2\pi}\right)^{1/2} \exp\left\{-\frac{1}{2}t^{2}\right\} dt.$$

This integral can only be calculated numerically.

3. If $X \sim N(\mu, \sigma^2)$, and $Z = (X - \mu)/\sigma$, then $Z \sim N(0, 1)$, *Proof*: on board

- 3. If $X \sim N(\mu, \sigma^2)$, and $Z = (X \mu)/\sigma$, then $Z \sim N(0, 1)$, Proof: on board
- 4. If $X \sim N(0, 1)$, and $Y = \sigma X + \mu$, then $Y \sim N(\mu, \sigma^2)$, *Proof*: on board

- 3. If $X \sim N(\mu, \sigma^2)$, and $Z = (X \mu)/\sigma$, then $Z \sim N(0, 1)$, *Proof*: on board
- 4. If $X \sim N(0,1)$, and $Y = \sigma X + \mu$, then $Y \sim N(\mu,\sigma^2)$, Proof: on board
- 5. If $X \sim N(0, 1)$, and $Y = X^2$, then $Y \sim Gamma(1/2, 1/2) = \chi_1^2$.

- 3. If $X \sim N(\mu, \sigma^2)$, and $Z = (X \mu)/\sigma$, then $Z \sim N(0, 1)$, *Proof*: on board
- 4. If $X \sim N(0,1)$, and $Y = \sigma X + \mu$, then $Y \sim N(\mu,\sigma^2)$, Proof: on board
- 5. If $X \sim N(0, 1)$, and $Y = X^2$, then $Y \sim Gamma(1/2, 1/2) = \chi_1^2$.

- 3. If $X \sim N(\mu, \sigma^2)$, and $Z = (X \mu)/\sigma$, then $Z \sim N(0, 1)$, Proof: on board
- 4. If $X \sim N(0,1)$, and $Y = \sigma X + \mu$, then $Y \sim N(\mu,\sigma^2)$, Proof: on board
- 5. If $X \sim N(0,1)$, and $Y = X^2$, then $Y \sim Gamma(1/2,1/2) = \chi_1^2$
- 6. If $X \sim N(0,1)$ and $Y \sim \chi^2_{\alpha}$ are independent random variables, then random variable T, defined by

$$T = \frac{X}{\sqrt{Y/\alpha}}$$

has a **Student-t distribution** with α degrees of freedom. The Student-t distribution plays an important role in certain statistical testing procedures.

PDF and CDF of N(0,1) (Standard Normal)

Standard Normal PDF φ (left) and CDF Φ (right).

Figure 1

Important Symmetry Properties of Standard Normal

1. Symmetry of PDF: ϕ statisfies $\phi(z)=\phi(-z)$, i.e., ϕ is an even function

Important Symmetry Properties of Standard Normal

- 1. Symmetry of PDF: ϕ statisfies $\phi(z)=\phi(-z)$, i.e., ϕ is an even function
- 2. Symmetry of Tail Areas: The area under the PDF curve to the left of -2 which is $P(Z \le -2) = \Phi(-2)$ by definition, equals the area to the right of 2, which is $P(Z \ge 2) = 1 \Phi(2)$. In general,

$$\Phi(z) = 1 - \Phi(-z)$$

Important Symmetry Properties of Standard Normal

- 1. Symmetry of PDF: ϕ statisfies $\phi(z)=\phi(-z)$, i.e., ϕ is an even function
- 2. Symmetry of Tail Areas: The area under the PDF curve to the left of -2 which is $P(Z \le -2) = \Phi(-2)$ by definition, equals the area to the right of 2, which is $P(Z \ge 2) = 1 \Phi(2)$. In general,

$$\Phi(z) = 1 - \Phi(-z)$$

3. Symmetry of Z and -Z: if $Z \sim N(0,1)$, then $-Z \sim N(0,1)$ as well. To see this not that the CDF of -Z is

$$P(-Z \le z) = P(Z \ge -z) = 1 - \Phi(-z) = \Phi(z)$$

Exercise in R: Normal Distribution

Exercise 5 (Normal Distribution: Effect of σ and μ)

- 1. Plot the Normal densities for $\mu=0$ and $\sigma^2=1,4,9,16$ on the same plot in different colors. Add a legend.
- 2. Plot the Normal densities for $\mu=0,1,2,3,4$ and $\sigma^2=1$ on the same plot in different colors. Add a legend.

Reading Probabilities of the Table

The N(0,1) table that will be used in this course provides the following area:

Figure 2

Reading Probabilities of the Table

Exercise 6 (Normal Distribution Table)

Suppose $Z \sim N(0,1)$. Find the following using the table.

- 1. $P(0 \le Z \le 1.4)$
- 2. $P(0 \le Z \le 1.42)$
- 3. P(Z > 1.42)
- 4. P(Z < -1.42)
- 5. P(-1.5 < Z < 1.42)
- 6. P(1.25 < Z < 1.42)
- 7. Confirm your results in R

Percentiles of the Standard Normal Distribution

For any p between 0 and 1, the standard normal table can be used to obtain the (100p)th percentile of the standard normal distribution.

Some Notation in Statistical Inference

In statistical inference, we will need the values on the measurement axis that capture certain small tail areas under the standard normal curve. z_{α} will denote the value on the measurement axis for which α of the area under the z curve lies to the right of z_{α} .

Example

Example 7 (95th Percentile)

The 100(1 - 0.05)th = 95th percentile of the standard normal distribution is $z_{.05}$, so $z_{.05} = 1.645$. The area under the standard normal curve to the left of $-z_{.05}$ is also .05.

Figure 5

Reading Probabilities of the Table

Exercise 8 (Normal Distribution Table)

Suppose $Z \sim N(0,1)$. Find z so that

- 1. P(Z > z) = 0.05
- 2. P(Z > z) = 0.025
- 3. Confirm your results in R

Reading Probabilities of the Table

Exercise 9 (Normal Distribution Table)

Suppose $X \sim N(-2, 9)$. Find

- 1. P(-6.5 < X < 2.26)
- 2. Confirm your result in R

Expectation and Variance for Continous RVs

 We introduced the distribution of a RV, which gives us full information about the probability that the RV will fall into any particular set.

- We introduced the distribution of a RV, which gives us full information about the probability that the RV will fall into any particular set.
- For example, we can say how likely it is that the RV will exceed 1000, that it will equal 5, and that it will be in the interval [0, 7]

- We introduced the distribution of a RV, which gives us full information about the probability that the RV will fall into any particular set.
- For example, we can say how likely it is that the RV will exceed 1000, that it will equal 5, and that it will be in the interval [0, 7]
- It can be difficult to manage so many probabilities though, so often we want just one number summarizing the "average" value of the RV → Expected Value

- We introduced the distribution of a RV, which gives us full information about the probability that the RV will fall into any particular set.
- For example, we can say how likely it is that the RV will exceed 1000, that it will equal 5, and that it will be in the interval [0, 7]
- It can be difficult to manage so many probabilities though, so often we want just one number summarizing the "average" value of the RV → Expected Value
- In addition, much of statistics is about understanding variability in the world, so it is often important to know how spread out the distribution is → Variance

Expectation and Variance

Recall for a **discrete** random variable X taking values in set X with mass function f_X , the **expectation** of X is defined by

$$E_{f_X}[X] = \sum_{x \in \mathbb{X}} x f_X(x) \equiv \sum_{x = -\infty}^{\infty} x f_X(x)$$

Expectation and Variance

Recall for a **discrete** random variable X taking values in set X with mass function f_X , the **expectation** of X is defined by

$$E_{f_X}[X] = \sum_{x \in X} x f_X(x) \equiv \sum_{x = -\infty}^{\infty} x f_X(x)$$

For a **continuous** random variable X with pdf f_X , the expectation of X is defined by

$$E_{f_X}[X] = \int_{\mathbb{X}} x f_X(x) \ dx \equiv \int_{-\infty}^{\infty} x f_X(x) \ dx$$

Expectation and Variance

Recall for a **discrete** random variable X taking values in set X with mass function f_X , the **expectation** of X is defined by

$$E_{f_X}[X] = \sum_{x \in \mathbb{X}} x f_X(x) \equiv \sum_{x = -\infty}^{\infty} x f_X(x)$$

For a **continuous** random variable X with pdf f_X , the expectation of X is defined by

$$E_{f_X}[X] = \int_{\mathbb{X}} x f_X(x) dx \equiv \int_{-\infty}^{\infty} x f_X(x) dx$$

The variance of X is defined by

$$Var_{f_X}[X] = E_{f_X}[(X - E_{f_X}[X])^2] = E_{f_X}[X^2] - \{E_{f_X}[X]\}^2.$$

Expectation and Variance Interpretation

The expectation and variance of a probability distribution can be used to aid description, or to characterize the distribution; the EXPECTATION is a measure of **location** (that is, the "centre of mass" of the probability distribution. The VARIANCE is a measure of **scale** or **spread** of the distribution (how widely the probability is distributed).

Expectation Interpretation - Discrete

Center of mass of two pebbles, depicting that E(X) = p for $X \sim Bernoulli(p)$. Here q and p denote the masses of the two pebbles.

Figure 6

Expectation Interpretation - Continuous

The expected value of a continuous RV is the balancing point of the PDF.

Expectation Example Continuous RV

Example 10 (A continuous RV)

Suppose that X is a continuous random variable taking values on $\mathbb{X}=\mathbb{R}^+$ with pdf

$$f_X(x) = \frac{2}{(1+x)^3}$$
 $x > 0$.

Then, integrating by parts.

$$E_{f_X}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx = \int_0^{\infty} \frac{2x}{(1+x)^3} \, dx = \left[-\frac{x}{(1+x)^2} \right]_0^{\infty} + \int_0^{\infty} \frac{1}{(1+x)^2} \, dx$$
$$= 0 - \left[-\frac{1}{1+x} \right]_0^{\infty} = 1$$

Expectations of Sums of RVs

Suppose that X_1 and X_2 are independent random variables, and a_1 and a_2 are constants. Then if $Y = a_1X_1 + a_2X_2$, it can be shown that

$$E_{f_Y}[Y] = a_1 E_{f_{X_1}}[X_1] + a_2 E_{f_{X_2}}[X_2]$$

$$Var_{f_{Y}}[Y] = a_{1}^{2}Var_{f_{X_{1}}}[X_{1}] + a_{2}^{2}Var_{f_{X_{2}}}[X_{2}]$$

so that, in particular (when $a_1=a_2=1$) we have

$$E_{f_Y}[Y] = E_{f_{X_1}}[X_1] + E_{f_{X_2}}[X_2]$$

$$Var_{f_Y}[Y] = Var_{f_{X_1}}[X_1] + Var_{f_{X_2}}[X_2]$$

so we have a simple additive property for expectations and variances.

Sums of RVs

Sums of random variables crop up naturally in many statistical calculations. Often we are interested in a random variable Y that is defined as the sum of some other independent and identically distributed (i.i.d) random variables, $X_1, ..., X_n$. If

$$Y = \sum_{i=1}^{n} X_i$$
 with $E_{f_{X_i}}[X_i] = \mu$ and $Var_{f_{X_i}}[X_i] = \sigma^2$

we have

$$E_{f_Y}[Y] = \sum_{i=1}^n E_{f_{X_i}}[X_i] = \sum_{i=1}^n \mu = n\mu$$

and

$$Var_{f_{Y}}[Y] = \sum_{i=1}^{n} Var_{f_{X_{i}}}[X_{i}] = \sum_{i=1}^{n} \sigma^{2} = n\sigma^{2}$$

Sums of RVs

and also, if

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 is the **sample mean** random variable

then, using the properties listed above

$$E_{f_{\bar{X}}}[\bar{X}] = \frac{1}{n}E_{f_{Y}}[Y] = \frac{1}{n}n\mu = \mu$$

and

$$Var_{f_Y}[Y] = \frac{1}{n^2} Var_{f_Y}[Y] = \frac{1}{n^2} n\sigma^2 = \frac{\sigma^2}{n}$$

Expectations of a function of a RV

Suppose that X is a random variable, and g(.) is some function. Then we can define the expectation of g(X) (that is, the expectation of a function of a random variable) by

$$E_{f_X}[g(X)] = \begin{cases} \sum_{x=-\infty}^{\infty} g(x)f_X(x) & \text{DISCRETE CASE} \\ \int_{-\infty}^{\infty} g(x)f_X(x) dx & \text{CONTINUOUS CASE} \end{cases}$$

Expectations of a function of a RV

For example, if X is a continuous random variable, and $g(x) = \exp\{-x\}$ then

$$E_{f_X}[g(X)] = E_{f_X}[\exp\{-X\}] = \int_{-\infty}^{\infty} \exp\{-x\} f_X(x) dx$$

Note that Y = g(X) is also a random variable whose probability distribution we can calculate from the probability distribution of X.

Mean of an Exponential RV

Recall that if $X \sim Exponential(\lambda)$, then $f_X(x) = \lambda e^{-\lambda x}$, for $x \geq 0$. The λ parameter is known as the rate paramter. Show that $E(X) = 1/\lambda$.

Proof: on board.