Trabajo Práctico Nro 4 - Las Reducciones

Ejercicio 1

Considerando la reducción de HP a LU descripta en clase, responder:

1. Explicar por qué la función identidad, es decir la función que a toda cadena le asigna la misma cadena, no es una reducción de HP a L_U .

Considerando la reducción de HP a L_U , la función identidad, es decir, la función f(v) = v, no es una reducción de HP a L_U porque no cumple con la condición de correctitud para una reducción de lenguajes.

Para que una función f sea una reducción del lenguaje L_1 al lenguaje L_2 , debe satisfacer dos condiciones:

- Condición de computabilidad: Debe existir una Máquina de Turing (MT) M_f que compute f. La función identidad es computable por una MT que simplemente copia su entrada a la salida.
- Condición de correctitud: Para toda cadena w en el alfabeto Σ^* :
 - Si $w \in L_1$, entonces $f(w) \in L_2$.
 - Si $w \notin L_1$, entonces $f(w) \notin L_2$.

La Máquina de Turing M_{HP} puede parar por 2 casos:

- El código de máquina < M > para, para la entrada w y termina en q_A , por lo tanto M_{HP} también termina en q_A .
- El código de máquina < M > para, para la entrada w y termina en q_R , por lo tanto M_{HP} también termina en q_A .

En el *primer caso* cuando se realice la reducción va a ser correcto ya que al pasar el par (< M >, w) por M_{HP} esta acepta y cuando ese mismo par se pasa por la función de identidad y se evalúa para L_U esto también es correcto ya que la máquina acepta.

El segundo caso es el que rompe la correctitud ya que al pasar el par (< M >, w) por M_{HP} esta acepta pero cuando ese mismo par se pasa por la función de identidad y se evalúa para L_U supuestamente debería de ser correcto y aceptar pero como < M > rechaza w, ese par en L_U no sería aceptado, ahí es donde la correctitud ya no se garantiza.

2. Explicar por qué las MT M_2 generadas en los pares de salida ($< M_2 >$, w), o bien paran aceptando, o bien loopean.

Las MT M_2 generadas en los pares de salida ($< M_2>$, w) o bien paran aceptando, o bien loopean porque en la reducción descrita en la teoría se define a M_2 de la siguiente forma " M_2 es como M_1 , salvo que los estados q_R de M_1 se cambian en M_2 por estados q_A ." Esto se hace para poder garantizar la correctitud en la reducción, generando también así que las MT M_2 solo puedan aceptar o loopear.

3. Explicar por qué la función utilizada para reducir HP a L_U también sirve para reducir HP^C a L_U^C .

La función utilizada para reducir HP a L_U también sirve para reducir HP^C a L_U^C por una de las propiedades de las reducciones que nos dice que " $L_1 \leq L_2 \iff L_1^C \leq L_2^C$ ". La reducción es la misma.

4. Explicar por qué la función utilizada para reducir HP a L_U no sirve para reducir L_U a HP.

La función utilizada para reducir HP a L_U no sirve para reducir L_U a HP ya que en este caso no se cumple la propiedad de Simetría de las reducciones, esta propiedad nos dice que " $L_1 \leq L_2$ no implica $L_2 \leq L_1$ ", es más, esta propiedad solamente se puede cumplir en ciertos casos donde ambos lenguajes pertenezcan al conjunto R, condición que de base no tenemos.

5. Explicar por qué la siguiente MT M_f no computa una reducción de HP a L_U : dada una cadena válida (<M>, w), M_f ejecuta M sobre w, si M acepta entonces genera la salida (<M>, w), y si M rechaza entonces genera la cadena 1.

La MT M_f no computa una reducción de HP a L_U ya que si tenemos un par (< M >, w) donde < M > no para con la entrada w la MT M_f se quedaría en loop, algo que no puede ocurrir ya que las *funciones de reducción* tienen que ser *total computables* y si esta loopea la propiedad no se cumpliría. Para estos casos donde sabemos que se pueden generar loops, las *funciones de reducción* deben de actuar como unas "*traductoras de sintaxis*" no deben computar ningún código ya que no garantizamos que la función pare, en casos donde trabajamos con *lenguajes decidibles* si podemos hacer que la *función de reducción* compute ya que al ser decidible sabemos que parará siempre ya sea por q_A o por q_R .

Ejercicio 2

Sabiendo que $L_U \in \mathsf{RE} \ \mathsf{y} \ L_U^C \in \mathsf{CO}\text{-RE}$:

1. Probamos en clase que existe una reducción de L_U a $L_{\Sigma}*$. En base a esto, ¿Qué se puede afirmar con respecto a la ubicación de $L_{\Sigma}*$ en la jerarquía de la computabilidad?

Al saber que existe una reducción de L_U a L_{Σ^*} sabemos que L_{Σ^*} es igual o más complejo que L_U , como $L_U \in \mathsf{RE}$ y L_{Σ^*} es igual o más complejo que L_U entonces deducimos que $L_{\Sigma^*} \notin R$ ya que R es menos complejo que RE.

En segundo lugar, al saber que existe una reducción de L_U a $L_{\Sigma}*$ sabemos que existirá una reducción de L_U^C a $L_{\Sigma}*^C$ por propiedad de las reducciones, y como sabemos que $L_U^C \notin RE$ deducimos que $L_{\Sigma}*^C \notin RE$.

De forma parecida, al saber que existe una reducción de L_U^C a $L_{\Sigma}*$ y como $L_U^C \notin RE$ podemos asegurar que $L_{\Sigma}* \notin RE$.

Por definición también podemos ver que $L_{\Sigma}* \notin CO - RE$ ya que vimos que $L_{\Sigma}*^{C} \notin RE$ y para que $L_{\Sigma}* \in CO - RE$ su complemento debe pertenecer a RE.

Como vemos que $L_{\Sigma} \notin R$, que $L_{\Sigma} \notin RE$ y que $L_{\Sigma} \notin CO - RE$, en nivel de complejidad solo nos quedaría que $L_{\Sigma} \notin L - (RE \bigcup CO - RE)$.*

2. Se prueba que existe una reducción de L_U^C a L_\emptyset . En base a esto, ¿Qué se puede afirmar con respecto a la ubicación de L_\emptyset en la jerarquía de la computabilidad?

Dado que existe una reducción de L_U^C a L_\emptyset y sabiendo que $L_U^C \notin RE$ deducimos que $L_\emptyset \notin RE$. Por otro lado, se probó anteriormente que $L_\emptyset^C \in RE$, por lo tanto, siguiendo la definición podemos afirmar que $L_\emptyset \in CO - RE$ ya que su complemento pertenece a RE.

Ejercicio 3

Sea el lenguaje $D_{HP} = \{w_i \mid M_i \text{ para a partir de } w_i\}$ (considerar el orden canónico). Encontrar una reducción de D_{HP} a HP. Comentario: hay que definir la función de reducción y probar su total computabilidad y correctitud.

Idea General: Analizando los 2 lenguajes tenemos a $D_{HP} = \{w_i \mid M_i \text{ para a partir de } w_i\}$ y a $HP = \{(< M>, w) \mid M \text{ se detiene a partir de } w\}$. D_{HP} va a recibir una cadena w_i , al seguir el orden canónico, sabemos que esa cadena w_i va a tener una MT M_i que puede parar o no a partir de esa entrada, nosotros debemos pasarle a HP el par $(< M_i >), w_i)$. Podemos plantear la reducción de esta forma:

Reducción: Se define $f(w_i) = (< M_i >, w_i)$, tal que M_i es la MT asociada a la cadena w_i por orden canónico.

Computabilidad: Existe una MT M_f , que computa f: genera el par $(< M_i >, w_i)$, donde $< M_i >$ es la $i - \acute{e}sima$ MT dada por el orden canónico. f es total ya que está definida para toda

entrada de su dominio ($\Sigma*$) y siempre encontrará la $i-\acute{e}sima$ MT dada por el orden canónico, por lo tanto, no loopea, y es *computable* ya que la búsqueda de la $i-\acute{e}sima$ MT y la creación del par ($< M_i >, w_i$) se da en un tiempo finito.

Correctitud:

- $ullet w_i \in D_{HP} o M_i$ se detiene a partir de w $ullet f(w_i) = (< M_i >, w_i) \in HP$
- $w_i \notin D_{HP} o M_i$ no se detiene a partir de w $o f(w_i) = (< M_i >, w_i) \notin HP$

Ejercicio 4

Sean TAUT y NOSAT los lenguajes de las fórmulas booleanas sin cuantificadores, respectivamente, tautológicas (satisfactibles por todas las asignaciones de valores de verdad), e insatisfactibles (ninguna asignación de valores de verdad las satisface). Encontrar una reducción de TAUT a NOSAT. Comentario: hay que definir la función de reducción y probar su total computabilidad y correctitud.

Idea General: Analizando los 2 lenguajes tenemos a $TAUT = \{\phi \mid \phi \text{ es una fórmula tautológica}$ (se cumple para toda asignación de verdad)} y a $NOSAT = \{\phi \mid \phi \text{ es una fórmula insatisfactible}$ (no se cumple para ninguna asignación)}. La clave es la lógica proposicional y usar una negación ya que Una fórmula ϕ es tautológica \Leftrightarrow su negación $\neg \phi$ es insatisfactible. Podemos plantear la reducción de esta forma:

Reducción: Se define $f(\phi) = \neg \phi$, tal que $\neg \phi$ es la fórmula booleana insatisfactible asociada a la fórmula booleana tautológica ϕ .

Computabilidad: Existe una MT M_f , que computa f: genera la fórmula booleana insatisfactible $\neg \phi$, donde $\neg \phi$ es la misma fórmula ϕ que se recibe como entrada solo que se ve envuelta por una negación para hacerla insatisfactible. f es total ya que está definida para toda entrada de su dominio y ya que para toda fórmula booleana sin cuantificadores ϕ , su negación también es una fórmula válida, por lo tanto, no loopea. Y es computable, ya que la construcción sintáctica de $\neg \phi$ donde a la misma fórmula que se recibe de entrada se le agrega un símbolo de negación que la niega completamente, se da en un tiempo finito.

Correctitud:

- $\phi \in TAUT o \phi$ es una fórmula booleana tautológica $o f(\phi) = \neg \phi \in NOSAT$
- $\phi \notin TAUT \rightarrow \phi$ no es una fórmula booleana tautológica $\rightarrow f(\phi) = \neg \phi \notin NOSAT$

Ejercicio 5

Se prueba que existe una reducción de L_U^C a $L_{\Sigma*}$ (y así, como $L_U^C \notin RE$, entonces se cumple que $L_{\Sigma*} \notin RE$). La reducción es la siguiente. Para toda w: $f((\langle M_1 \rangle, w)) = \langle M_2 \rangle$, tal que M_2 , a partir de su entrada v, ejecuta |v| pasos de M_1 a partir de w, y acepta sii M_1 no acepta. Probar que la función definida es efectivamente una reducción de L_U^C a $L_{\Sigma*}$. Comentario: hay que probar su total computabilidad y correctitud.

Total Computabilidad: Debemos mostrar que existe una Máquina de Turing (MT) M_f que, dada una entrada ($< M_1 >$, w), siempre se detiene y produce la salida $< M_2 >$ tal como se define.

- Dada la codificación de una MT M_1 (representada por $< M_1 >$) y una cadena w, la MT M_f puede construir la codificación de una nueva MT M_2 .
- La construcción de $< M_2 >$ implica especificar su comportamiento: al recibir una entrada v, M_2 debe primero calcular |v|, luego simular la ejecución de M_1 sobre w durante |v| pasos. Finalmente, M_2 debe aceptar si y solo si M_1 no ha aceptado w en esos |v| pasos.
- Cada uno de estos pasos puede ser realizado por una MT que siempre se detiene. Por lo tanto, M_f puede construir la descripción de M_2 , $< M_2 >$, en un tiempo finito. La función f es total computable porque existe una MT M_f que puede calcular $f((< M_1 >, w))$ para cualquier entrada $(< M_1 >, w)$ y siempre se detiene.

Correctitud: Debemos demostrar que para toda cadena $(< M_1 >, w)$, se cumple que $(< M_1 >, w) \in L^C_U$ si y solo si $f((< M_1 >, w)) = < M_2 > \in L_{\Sigma*}$.

- ullet Caso 1: Si $(< M_1 >, w) \in L^C_U$.
 - Esto significa que la MT M_1 no acepta la cadena w.
 - M_2 simula |v| pasos de M_1 sobre w. Como M_1 no acepta w, no importa cuántos pasos simule M_2 , M_1 nunca alcanzará un estado de aceptación en esos pasos.
 - Por lo tanto, para cualquier entrada v, M_2 siempre aceptará porque la condición "M1 no acepta" se cumple después de |v| pasos (ya que M_1 nunca acepta w).
- Caso 2: Si $(< M_1 >, w)
 otin L_U^C$
 - Esto significa que la MT M_1 acepta la cadena w. Supongamos que M_1 acepta w en k pasos (donde k es un número finito de pasos).
 - Consideremos el comportamiento de M_2 sobre una entrada v cuya longitud |v| es menor que k (|v| < k). Al ejecutar |v| pasos de M_1 sobre w, M_1 aún no habrá aceptado. Por lo tanto, M_2 aceptará v.
 - Ahora, consideremos el comportamiento de M_2 sobre una entrada v' cuya longitud |v'| es mayor o igual a k ($|v'| \geq k$). Al ejecutar |v'| pasos de M_1 sobre w, M_1 habrá

alcanzado el estado de aceptación en algún paso $j \leq k \leq |v'|$. Por lo tanto, la condición "M1 no acepta" será falsa, y M_2 rechazará v'.