optique quantique TA

Lautaro Labarca

September 16, 2024

Contents

1	Cou	urse-1. Qubit code.	1
	1.1	Configuration de qutip avec Visual Studio Code	1
	1.2	Pourquoi nous intéressons-nous aux qubits?	1
	1.3	Dynamique simple des qubits	2
	1.4	Profil de fréquence de l'impulsion et ses effets sur les fuites (leakage)	3

1 Course-1. Qubit code.

L'objectif est de familiariser les étudiants avec la dynamique simple des qubits. Pour ça, on va faire un exercice computationnel. Nous allons esquisser quelques étapes analytiques pour obtenir les formes simples que nous étudierons numériquement, mais aucun détail de ces dérivations n'est fourni. En général, elles sont simples, mais légèrement fastidieuses à reproduire. Si ce n'est pas déjà fait, il est bon de compléter les étapes manquantes. Le chapitre 4 de Nielsen et Chuang [1], le chapitre 2 de Sakurai [2], et la page Wikipédia sur les transformations unitaires couvrent tout le nécessaire pour combler ces lacunes. En guise de spoiler, la semaine prochaine, lors de la révision des devoirs, nous passerons en revue tous les détails analytiques fastidieux, mais nécessaire.

1.1 Configuration de qutip avec Visual Studio Code

Tout d'abord, nous devons installer Python. Allez sur le lien [3]. Utilisez simplement la version recommandée. Pendant que Python s'installe, nous pouvons installer Visual Studio Code [4]. Ensuite, créez simplement un dossier pour le cours, ouvrez-le, et téléchargez-y le notebook utilisé en classe [5]. Créez un environnement virtuel en tapant dans la palette de commandes Python: Create Environment. Maintenant, utilisez simplement la palette de commandes pour ouvrir le terminal. Dans le terminal, tapez pip install qutip. De la même manière, installez numpy (manipulations basiques de tableaux), matplotlib (signification évidente), scipy (manipulations de tableaux plus efficaces, précises et variées, avec de nombreuses fonctions spécifiques comme l'intégration, les séries, les polynômes, et le fitting), tqdm (pour voir des barres de progression). Vous pouvez voir toutes les versions installées avec pip list. Vérifiez les compatibilités dans la documentation d'installation de qutip, à savoir essentiellement numpy < 2.0, scipy > 1.8, python > 3.9, matplotlib > 1.2.1. Avec cela, vous êtes prêts à exécuter tous les codes utilisés dans ce cours. Enfin, configurez GitHub Copilot. L'utilité de cet outil c'es top. Avec Visual Studio Code, c'est très facile : il suffit d'installer l'extension et de lier votre compte GitHub étudiant.

Alternativement, créez un compte sur Cocalc, allez dans vos projets, démarrez-en un nouveau et téléchargez le notebook qubit-drive-pulse.ipynb trouvé sur le GitHub [5].

1.2 Pourquoi nous intéressons-nous aux qubits?

Tout d'abord, le qubit est l'objet mathématique le plus simple qui capture les caractéristiques essentielles de la mécanique quantique non relativiste. Avec les qubits, nous pouvons avoir la superposition, c'est-à-dire l'interférence. En particulier, le fait qu'il y ait deux signes est suffisant, voir par exemple [6]. De plus, avec deux qubits ou plus, nous pouvons étudier l'entrelacement, probablement la caractéristique la plus frappante de la mécanique quantique comme l'a posée Einstein et ses collaborateurs

[7] (sérieusement, l'article est très facile à lire, allez le lire), ce qui peut conduire à des corrélations non locales entre les particules entrelacées comme le montrent d'abord [8, 9] basées sur les inégalités de Bell [10] (très simples à lire également, c'est fantastique). Plus récemment, les inégalités ont été violées en utilisant des circuits supraconducteurs dans [11]. Il est à noter que certains chercheurs affirment encore que les inégalités de Bell telles que proposées par Bell n'ont pas encore été testées, voir par exemple [12].

Deuxièmement, pour la physique fondamentale, les qubits, en raison de leur simplicité, sont très utiles pour concevoir des expériences mesurant une force ou une interaction désirée. Par exemple, des tests ont été réalisés pour rechercher la matière noire [13]. Cet expérience, comme beaucoup d'autres, est basée sur le schéma montré dans fig. 1. De plus, les qubits (sous forme d'atomes, on mesure les probabilités de transition; si une seule transition est pertinente, alors les deux niveaux correspondants forment un qubit) sont utilisés dans des expériences mesurant la constante gravitationnelle (je manque d'une référence particulière pour cela) et font partie de propositions testant la nature quantique de la gravité, voir par exemple le dossier [14].

Figure 1: Oscillateur couplé à un qubit. Dans ce cas, le qubit est utilisé pour extraire des informations de l'oscillateur, mais l'inverse est également utilisé.

Troisièmement, les qubits forment la base de l'informatique et de l'information quantiques. Audelà de la promesse de démontrer que le modèle computationnel le plus fondamental n'est pas la machine de Turing classique, mais l'ordinateur quantique, ils promettent d'améliorer les protocoles cryptographiques. Nous verrons cela dans le chapitre 4. ¹

1.3 Dynamique simple des qubits

En général, la dynamique d'un qubit conservatif est générée par l'Hamiltonien

$$\hat{H}(t) = f(t)\sigma_z + q(t)\sigma_x + h(t)\sigma_y. \tag{1.3.1}$$

Ainsi, formellement, l'évolution est donnée par

$$\hat{U} = \mathcal{T}[i\exp\left\{\int_0^t dt' f(t')\sigma_z + g(t')\sigma_x + h(t')\sigma_y\right\}] \equiv \exp\{i\alpha(t)\sigma_z\} \exp\{i\beta(t)\sigma_x\} \exp\{i\gamma(t)\sigma_z\}, \quad (1.3.2)$$

où la dernière équivalence est due à la décomposition des rotations, voir [1] chapitre 4. En résumé, toute évolution non dissipative d'un qubit unique est simplement une rotation et nous pouvons la visualiser dans la sphère de Bloch. Dans le code partagé [5], vous trouverez une animation montrant l'impulsion de $\pi/2$ permettant de préparer $|+\rangle$ à partir de $|0\rangle$.

En raison de la décomposition des rotations ci-dessus, nous pouvons nous concentrer simplement sur les Hamiltoniens de la forme,

$$\hat{H}(t) = f(t)\sigma_z + g(t)\sigma_x. \tag{1.3.3}$$

L'Hamiltonien ci-dessus est couramment généré dans les circuits supraconducteurs en utilisant un qubit avec une fréquence dépendante du temps (par exemple, en faisant passer un flux magnétique

¹Il y a eu tant de choses écrites à ce sujet que je préfère ne pas commenter davantage pour le moment. De plus, je manque de temps, donc je ne vais pas inclure d'autres références pour l'instant, mais je pourrais mettre à jour cela à l'avenir.

à travers un SQUID), et en excitant le qubit à travers une ligne de charge (la partie $g(t)\sigma_x$). Pour simplifier, concentrons-nous sur $f(t) = \omega_0/2$ constant, ou ω_0 étant la fréquence du qubit. En passant à un cadre tournant à la fréquence ω , nous obtenons dans le cadre d'interaction un Hamiltonien de la forme suivante

$$\hat{H}(t) = \Delta \sigma_z + g(t)\sigma_x. \tag{1.3.4}$$

Notez que g(t) est modifié, mais pour notre étude qualitative, la forme exacte n'est pas importante. En fait, nous simplifierons encore davantage, et nous poserons $\Delta = 0$, pour obtenir

$$\hat{H}(t) = g(t)\sigma_x. \tag{1.3.5}$$

Ensuite, l'évolution unitaire est donnée par

$$\hat{U}(t) = \exp\left[-i\int_0^t dt' g(t)\sigma_x\right]. \tag{1.3.6}$$

Ainsi, en redimensionnant simplement $g(t) \to 2\pi g(t)$, et en utilisant le fait qu'une rotation autour de l'axe x dans la sphère de Bloch par un angle θ est donnée par

$$\hat{R}_x(\theta) \equiv \exp\{-i\theta\sigma_x/2\},\tag{1.3.7}$$

nous obtenons

$$\hat{U}(t) = \hat{R}_x(2I), \text{ avec } I = \int_0^t dt' g(t).$$
 (1.3.8)

Cela signifie que si nous ne considérons que le sous-espace des qubits, seule l'intégrale de l'impulsion, c'est-à-dire son amplitude totale, est importante, et sa forme est sans importance pour la fidélité de l'état final. Cependant, en ajoutant un troisième état, nous verrons que ce n'est plus le cas et que la forme de l'impulsion, et en particulier son profil de fréquence, jouent un rôle crucial.

1.4 Profil de fréquence de l'impulsion et ses effets sur les fuites (leakage)

Ici, je vais développer un exemple avec un qutrit, avec des détails. Cela devrait (légèrement) vous être utile pour l'exercice 1 de votre devoir.

References

- [1] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010.
- [2] Jun John Sakurai and Jim Napolitano. *Modern quantum mechanics*. Cambridge University Press, 2020.
- [3] python.org. https://www.python.org/downloads/. [Accessed 16-09-2024].
- [4] Getting started with Visual Studio Code code.visualstudio.com. https://code.visualstudio.com/docs/introvideos/basics. [Accessed 16-09-2024].
- [5] GitHub LautaroLabarcaG/optique-quantique: optique-quantique 2024 UdeS github.com. https://github.com/LautaroLabarcaG/optique-quantique/tree/main. [Accessed 16-09-2024].
- [6] Christopher M Dawson et al. "Quantum computing and polynomial equations over the finite field Z₂". In: arXiv preprint quant-ph/0408129 (2004).
- [7] Albert Einstein, Boris Podolsky, and Nathan Rosen. "Can quantum-mechanical description of physical reality be considered complete?" In: *Physical review* 47.10 (1935), p. 777.
- [8] Alain Aspect, Jean Dalibard, and Gérard Roger. "Experimental test of Bell's inequalities using time-varying analyzers". In: *Physical review letters* 49.25 (1982), p. 1804.
- [9] Stuart J Freedman and John F Clauser. "Experimental test of local hidden-variable theories". In: *Physical review letters* 28.14 (1972), p. 938.
- [10] John S Bell. "On the einstein podolsky rosen paradox". In: Physics Physique Fizika 1.3 (1964), p. 195.

- [11] Simon Storz et al. "Loophole-free Bell inequality violation with superconducting circuits". In: *Nature* 617.7960 (2023), pp. 265–270.
- [12] Andrea Aiello. *Against Bell's Theorem.* 2024. arXiv: 2406.03028 [quant-ph]. URL: https://arxiv.org/abs/2406.03028.
- [13] Akash V Dixit et al. "Searching for dark matter with a superconducting qubit". In: *Physical review letters* 126.14 (2021), p. 141302.
- [14] Topical on quantum gravity tests with atoms. https://smd-cms.nasa.gov/wp-content/uploads/2023/05/45_e8d91f69e93d0cf59de3959b6bb25b55_BiedermannGrantW.pdf. [Accessed 16-09-2024].