

Módulo 3 - Protocolos e Modelos

1. O que são protocolos?

Protocolos são **regras que definem como os dispositivos se comunicam**. Eles determinam:

- Como a mensagem é codificada e formatada.
- Qual o **tamanho máximo**.
- Como controlar o fluxo e lidar com tempo de resposta.
- Se a entrega é unicast (um pra um), multicast (um pra alguns) ou broadcast (um pra todos).

Sem protocolos, os dispositivos até poderiam estar fisicamente conectados, mas não se entenderiam.

3. Conjuntos de protocolos (suítes)

Os protocolos não trabalham sozinhos, eles formam **conjuntos (ou suítes)**, que são coleções de protocolos que atuam juntos pra garantir toda a comunicação.

- TCP/IP é o mais usado hoje, padrão da Internet.
- Outros antigos: AppleTalk, Novell NetWare, OSI.

No TCP/IP temos protocolos pra cada nível:

Camada de Aplicação: HTTP, DNS, SMTP.

Camada de Transporte: TCP, UDP.

Camada Internet: IP.

Camada de Acesso à Rede: Ethernet, Wi-Fi.

4. Modelos de referência

Pra entender onde cada protocolo atua, usamos modelos em camadas. Os dois principais:

- Modelo OSI (7 camadas)

- 1. Aplicação
- 2. Apresentação
- 3. Sessão
- 4. Transporte
- 5. Rede
- 6. Enlace de Dados
- 7. Física

- Modelo TCP/IP (4 camadas)

- 1. Aplicação
- 2. Transporte
- 3. Internet
- 4. Acesso à Rede

- Por que isso importa?

- Facilita o design de protocolos.
- Permite produtos de diferentes fabricantes funcionarem juntos.
- Ajuda a isolar problemas na rede.
 Ex: se o ping (ICMP) falha, a treta tá até a camada 3 (IP, roteamento). Se o ping funciona, o problema é acima (aplicação, transporte).

5. Encapsulamento de dados

Quando dados descem pelas camadas, cada camada adiciona cabeçalhos (headers). Esse processo é chamado **encapsulamento**. O contrário, quando os dados sobem no destino, é o **desencapsulamento**.

Em cada camada o dado é chamado de um nome diferente:

- Dados (Aplicação)
- Segmento (Transporte TCP/UDP)
- Pacote (Internet IP)
- Quadro (Enlace Ethernet)
- Bits (Física)

6. Segmentação e multiplexação

- **Segmentação:** divide mensagens grandes em partes menores pra enviar pela rede.
- Multiplexação: junta vários fluxos diferentes pra usar o mesmo link, tipo vários vagões num trem.

Isso melhora a velocidade e a eficiência. Se um pedaço falhar, só retransmite ele, não tudo.

7. Organizações de padrões

Essas organizações definem como tudo deve funcionar pra garantir **interoperabilidade**, **concorrência** e **inovação**.

Principais:

IEEE: Ethernet, Wi-Fi.

IETF: TCP/IP.

- **ISOC:** evolução da Internet.

ICANN/IANA: IPs, domínios.

8. Endereços nas camadas

Pra enviar dados, cada camada usa endereços específicos:

- Camada 3 (Rede): IPs. Ex: 192.168.0.10 -> 8.8.8.8

- Camada 2 (Enlace): MACs. Ex: AA:BB:CC:DD:EE:FF -> 11:22:33:44:55:66

Em cada "pulo" (hop), o IP não muda, mas o MAC muda, pois é só local no link.

9. Exemplo prático

Quando você abre o navegador e acessa um site:

- HTTP na aplicação envia dados pro TCP.
- TCP quebra em segmentos e passa pro IP.
- **IP** cria pacotes e manda pro Ethernet/Wi-Fi.
- Ethernet encapsula em quadros e envia como bits pelo cabo ou pelo ar.

No outro lado, o processo é invertido.