

中央财经大学

Central University of Finance and Economics

污秽之世,美丽之笼

学年学期:	2021 年春李学期
课程名称:	东方永夜抄
课程代码:	233333
任课教师:	上白泽慧音
班 级:	金融实验班 18
学 号:	2333333
姓 名:	<u></u> 马云飞
总 分:	
3 元 八 1 ・	

内容摘要

摘要正文

关键字: 关键字 1, 关键字 2, 关键字 3

Abstract

English abstract

 $\textbf{Keywords:} \ \text{keyword1}, \ \text{keyword2}, \ \text{keyword3}$

目 录

→,	子时-	一刻	2
_,	丑时-	一刻	3
	()	二级标题示例	3
	$(\underline{})$	慧音	3
	(\equiv)	线性回归计算 peincome、unincome	3
三、	寅时	一刻	5
	()	曾依藉的绿	5

污秽之世,美丽之笼

这里写引言,论文引用示例[1],按照国标 2015 格式引用

一、子时一刻

成员	分工
博丽灵梦	组长、初期报告展示、复制报告汇总
雾雨魔理沙	稳健 OLS 与 FGLS 回归估计及分地区、年度差异分析
东风谷早苗	分位数回归、分地区回归、年度差异分析
十六夜宵夜	数据处理、期末汇报展示
魂魄妖梦	数据处理、中期报告展示、排版整理

二、丑时一刻

(一) 二级标题示例

1. 三级标题示例

拆行公式:

$$UNEMSEC = \beta_0 + \beta_1 HEA_0 + \beta_2 HEA_1 + \beta_3 OLD_0 + \beta_4 OLD_1 + \beta_5 ifiwork + \beta_6 family_income + \epsilon$$

其中, HEA_0 表达是否¹投保基础医疗保险的离散变量, HEA_1 代表是否投保补充医疗保险的离散变量, OLD_0 代表是否投保基础养老保险的离散变量, OLD_1 代表是否投保补充养老保险的虚拟变量, ifiwork 代表受访者是否正在就业, family_income 代表家庭总收入.

(二) 慧音

1. 就业情况

原文中对确定性收入的线性回归解释变量中有"家庭中就业人口比例"这一变量.CGSS2006 将有关变量统计在"活动状态"中,具体分为全职就业、半职就业、临时就业、务农、服兵役等 14 种. 考虑到原文希望得到"确定性收入",我们推测"全职就业"似乎更为贴近"持久就业"的范畴;另外,根据我国《劳动法》的规定:

quotation 示例

据此,我们认为务农、服兵役是不符合"就业"范畴的.

(三) 线性回归计算 peincome、unincome

1. 被解释变量的选择

关于这两个变量,原文的描述是:

参照前人的方法 (Dynan et al. ,2004; 罗楚亮,2004),以城镇家庭的人均实际收入作为因变量,选择家庭成员的平均年龄、平均受教育程度、户主的性别和政治面貌、家庭中的就业人口比例以及所在省份等作为自变量进行 OLS 回归,并使用该方程预测值和残差作为家庭的持久收入和不确定收入.

¹脚注示例

表 1: 手动插入表格示例 1

variable	mean	sd	min	max
SR1	0.60	0.52	-5.00	1.00
SR2	0.47	0.63	-5.38	1.00
peincome	9.72	0.60	7.86	11.92
unincome	0.00	0.74	-3.35	3.71
PENSION	0.78	0.42	0.00	1.00
HEASEC	0.93	0.26	0.00	1.00
UNEMSEC	0.45	0.50	0.00	1.00
r	0.61	0.27	0.00	1.00
pension	0.47	0.34	0.00	1.00
heasec	0.57	0.30	0.00	1.00
unemsec	0.29	0.35	0.00	1.00

交叉引用示例: 表2

 $Ave_income = \beta_0 + \beta_1 Ave_age + \beta_2 Ave_edu + \beta_3 hgender + \beta_4 hccp + \beta_5 worker_ratio + \epsilon$

2. 解释变量的选择

喵喵喵

三、寅时一刻

(一) 曾依藉的绿

图 1: 插入图片示例

插入代码示例:

```
qui reg SR1 $xx dummy1-dummy24 if time==0

predict e1,res

g e2 = e1^2

g lne2 = log(e2)

qui reg lne2 peincome if time==0,noc

predict lne2f

g e2f =exp(lne2f)

reg SR1 $xx dummy1-dummy24 if time==0 [aw=1/e2f]
```

表 2: 手动插入表格示例 2

variable	mean	sd	min	max
SR1	0.60	0.52	-5.00	1.00
SR2	0.47	0.63	-5.38	1.00
peincome	9.72	0.60	7.86	11.92
unincome	0.00	0.74	-3.35	3.71
PENSION	0.78	0.42	0.00	1.00
HEASEC	0.93	0.26	0.00	1.00
UNEMSEC	0.45	0.50	0.00	1.00
r	0.61	0.27	0.00	1.00
pension	0.47	0.34	0.00	1.00
heasec	0.57	0.30	0.00	1.00
unemsec	0.29	0.35	0.00	1.00
hgender	0.99	0.11	0.00	1.00
hccp	0.24	0.43	0.00	1.00
hedu1	0.19	0.39	0.00	1.00
hedu2	0.32	0.47	0.00	1.00
hedu3	0.26	0.44	0.00	1.00
hedu4	0.23	0.42	0.00	1.00
headage	52.50	14.95	22.00	94.00
headage2	0.30	0.16	0.05	0.88
rchild1	0.03	0.09	0.00	0.67
rchild2	0.04	0.10	0.00	0.67
rchild3	0.02	0.07	0.00	0.50
rchild4	0.02	0.08	0.00	0.67
rchild5	0.02	0.08	0.00	0.50
rold	0.21	0.36	0.00	1.00
ln_ha	3.44	0.66	0.18	6.11

参考文献

[1] 王宣承. 基于 LASSO 和神经网络的量化交易智能系统构建——以沪深 300 股指期货为例. [J]. 投资研究, 2014, 33 (09): 23–39.