

TrenchMV[™] Power MOSFET

IXTA130N10T7

N-Channel Enhancement Mode Avalanche Rated

V _{DSS}	=	100V
I _{D25}	=	130A
R _{DS(on)}	≤	$9.1 \mathrm{m}\Omega$

TO-263 (7-lead) (IXTA..7)

Pins: 1 - Gate 2, 3 - Source 4 - NC (cut) 5,6,7 - Source TAB (8) - Drain

Features

- Ultra-low On Resistance
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- 175°C Operating Temperature

Advantages

- · Easy to mount
- Space savings
- High power density

Applications

- Automotive
 - Motor Drives
 - 42V Power Bus
 - ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- Distributed Power Architechtures and VRMs
- Electronic Valve Train Systems
- High Current Switching Applications
- High Voltage Synchronous Recifier

Symbol	Test Conditions	Maximum Rat	Maximum Ratings		
V _{DSS}	T _J = 25°C to 175°C	100	V		
V _{DGR}	$T_J = 25$ °C to 175°C, $R_{gs} = 1M\Omega$	100	V		
V _{GSM}	Transient	± 20	V		
I _{D25}	T _C = 25°C	130	Α		
LRMS	Lead Current Limit, RMS	120	Α		
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	350	Α		
I _A	T _C = 25°C	65	Α		
E _{AS}	$T_{c} = 25^{\circ}C$	400	mJ		
$\overline{P_{D}}$	T _C = 25°C	360	W		
T _J		-55 +175	°C		
T _{JM}		175	°C		
T _{stg}		-55 + 175	°C		
T,	1.6mm (0.062in.) from case for 10s	300	°C		
T _{SOLD}	Plastic body for 10 seconds	260	°C		
Weight		3	g		

		racteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	100		V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250\mu A$	2.5		4.5 V
I _{gss}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200 nA
I _{DSS}	$V_{DS} = V_{DSS}$			5 μΑ
	$V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			250 μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 25A, Notes 1, 2$			9.1 mΩ

Symbo (T _J = 25	mbol Test Conditions Characteristi = 25°C, unless otherwise specified) Min. Typ.		Values Max.		
g _{fs}		$V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$	55	93	S
C _{iss}	٦			5080	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		635	pF
\mathbf{C}_{rss}	J			95	pF
t _{d(on)}	١	Desire O. W. Live Time		30	ns
t,		Resistive Switching Times		47	ns
$\mathbf{t}_{d(off)}$	ĺ	$V_{GS} = 10V, V_{DS} = 20V, I_{D} = 25A$ $R_{G} = 5\Omega \text{ (External)}$		44	ns
t _f	J			28	ns
$\mathbf{Q}_{g(on)}$	٦			104	nC
Q _{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25$		30	nC
\mathbf{Q}_{gd}	J			29	nC
R _{thJC}					0.42 °C/W

Source-Drain Diode

Symbol	Symbol Test Conditions Charac		cteristic Values		
$(T_J = 25^{\circ}C, t)$	unless otherwise specified)	Vin.	Тур.	Max.	
I _s	$V_{GS} = 0V$			130	Α
I _{SM}	Repetitive, Pulse width limited by $T_{_{\rm JM}}$			350	Α
$V_{_{\mathrm{SD}}}$	$I_{\rm F} = 25 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ \ {\rm Note} \ 1$			1.0	V
t _{rr}	$I_{F} = 25A, V_{GS} = 0V$		67		ns
I _{RM}	$-di/dt = 100A/\mu s$		4.7		Α
Q _{RM}	$V_{R} = 50V$		160		nC

Notes: 1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

2. On through-hole packages, R_{DS(on)} Kelvin test contact location must be 5mm or less from the package body

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 65A Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 65A Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 8. Transconductance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 10. Gate Charge

Fig. 11. Capacitance

Fig. 12. Maximum Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

