Circle

Standard form:
$$\frac{(x-h)^2}{R^2} + \frac{(y-k)^2}{R^2} = 1$$

Center: (h, k)Radius: R

Ellipse

with major axis in x,

Standard form: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

Center: (h, k)

Vertices: $(h \pm a, k)$ Covertices: $(h, k \pm b)$

Foci: $(h \pm c, k)$ where $c^2 = a^2 - b^2$

with major axis in y,

Standard form: $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$

Center: (h, k)

Vertices: $(h, k \pm a)$ Covertices: $(h \pm b, k)$

Foci: $(h, k \pm c)$ where $c^2 = a^2 - b^2$

Hyperbola

with transverse axis in x,

Standard form: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Center: (h, k)

Vertices: $(h \pm a, k)$

Foci: $(h \pm c, k)$ where $c^2 = a^2 + b^2$

Asymptotes: $y - k = \pm \frac{b}{a}(x - h)$

with transverse axis in y,

Standard form: $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$

Center: (h, k)

Vertices: $(h, k \pm a)$

Foci: $(h, k \pm c)$ where $c^2 = a^2 + b^2$ Asymptotes: $y - k = \pm \frac{a}{b}(x - h)$

Parabola

opening in x,

Standard form: $4p(x-h) = (y-k)^2$

Vertex: (h, k)Focus: (h + p, k)Directrix: x = h - p opening in y,

Standard form: $4p(y-k) = (x-h)^2$

Vertex: (h, k)Focus: (h, k + p)Directrix: y = k - p