1 El cos finit $GF(2^8)$

Els elements d'aquest cos són els **bytes**. Els expressaren en forma binària, hexadecimal o polinòmica, segons convingui.

El byte $b_7b_6b_5b_4b_3b_2b_1b_0$ serà el polinomi $b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$.

Per exemple, 01010111=0x57 serà $x^6 + x^4 + x^2 + x + 1$.

Suma

La suma de dos elements del cos és la suma de polinomis binaris. Per exemple, 01010111+10000011 serà

$$(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2 = 11010100$$

Es correspon amb la operació XOR, que es denotarà \oplus . L'element neutre de la suma és 00000000=0x00.

Multiplicació

Per fer el producte de dos elements del cos cal fer el producte de polinomis binaris i després prendre el residu de la divisió per $\mathbf{m} = \mathbf{x}^8 + \mathbf{x}^4 + \mathbf{x}^3 + \mathbf{x}^2 + \mathbf{1}^1$. Per exemple,

$$(x^{6} + x^{4} + x^{2} + x + 1)(x^{7} + x + 1) = x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{7} + x^{5} + x^{3} + x^{2} + x + x + x^{6} + x^{4} + x^{2} + x + 1$$
$$= x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \pmod{x^8 + x^4 + x^3 + x^2 + 1} = x^5 + x^4 + 1.$$

L'element neutre de la multiplicació és 00000001=0x01.

A $GF(2^8)$, tot element diferent del 0x00 té invers multiplicatiu. L'invers del polinomi a és l'únic polinomi b tal que

$$ab = 1 \mod m$$
.

Es pot calcular usant l'algorisme d'Euclides estès.

També podem escriure els elements diferents del 0x00 com a potència d'un generador. Per exemple, si g = x = 00000010 = 0x02,

llavors

$$GF(2^8) = \{g, g^2, \dots, g^{254}, g^{255} (=g^0=1)\} \cup \{0\}$$

El producte de dos elements $a=g^i$ i $b=g^j$, diferents de 0x00, és $ab=g^ig^j=g^{i+j}$, i l'invers de a és $a^{-1}=(g^i)^{-1}=g^{-i}=g^{255-i}$. En aquest cas, la multiplicació i el càlcul de l'invers es redueixen a la cerca en una taula de 255 elements.

¹El polinomi que fa servir l'AES es $x^8 + x^4 + x^3 + x + 1$.

Definiu en Python 3 les funcions (El polinomi que heu de fer servir per definir les operaciones en el cos és $\mathbf{m} = \mathbf{x}^8 + \mathbf{x}^4 + \mathbf{x}^3 + \mathbf{x}^2 + 1$):

i) GF_product_p(a, b)

entrada: a i b elements del cos representat per enters entre 0 i 255;

sortida: un element del cos representat per un enter entre 0 i 255 que és el producte en el cos de a i b fent servir la definició en termes de polinomis.

ii) GF_es_generador(a)

entrada: a element del cos representat per un enter entre 0 i 255;

sortida: True si a és generador del cos, False si no ho és.

iii) GF_tables()

entrada:

sortida: dues taules (exponencial i logaritme), una que a la posició i tingui $a = g^i$ i una altra

que a la posició a tingui i tal que $a = g^i$. (g generador del cos finit del cos representat

pel menor enter entre 0 i 255.)

iv) GF_product_t(a, b)

entrada: a i b elements del cos representat per enters entre 0 i 255;

sortida: un element del cos representat per un enter entre 0 i 255 que és el producte en el cos

de a i b fent servir la les taules exponencial i logaritme.

v) GF_invers(a)

entrada: a element del cos representat per un enter entre 0 i 255;

sortida: 0 si a=0x00, invers d'a en el cos si a!=0x00 representat per un enter entre 1 i 255.

Feu taules comparatives dels temps d'execució fent servir les diferents funcions:

- GF_product_p vs GF_product_t,
- GF_product_p(a,0x02) vs GF_product_t(a,0x02),
- GF_product_p(a,0x03) vs GF_product_t(a,0x03),
- GF_product_p(a,0x09) vs GF_product_t(a,0x09),
- GF_product_p(a,0x0B) vs GF_product_t(a,0x0B),
- GF_product_p(a,0x0D) vs GF_product_t(a,0x0D),
- GF_product_p(a,0x0E) vs GF_product_t(a,0x0E),

Atenció! És considerarà un error greu si:

- GF_product_p(a, b)!=GF_product_t(a, b) per algun parell (a, b),
- GF_product_p(a, b)!=GF_product_p(b, a) per algun parell (a, b),
- GF_product_p(a, GF_invers(a))!=1 per a!=0.

2 Advanced Encryption Standard (AES)

Podeu fer servir qualsevol implementació de l'AES que trobeu.

2.1 Efectes de les funcions elementals

1. Canviem la funció ByteSub per la identitat, i.e. ByteSub(x):=x.

Sigui M_i igual a M excepte en el bit i; M_j igual a M excepte en el bit j; M_{ij} és igual a M excepte en els bits i, j.

Sigui C_i el resultat de xifrar M_i amb la clau K; C_j el resultat de xifrar M_j amb la clau K; C_{ij} el resultat de xifrar M_{ij} amb la clau K:

Feu un programa, en **Python 3**, que fitxats M i K, comprovi que $C = C_i \oplus C_j \oplus C_{ij}$ per tot i, j, i que això no passa si agafen la funció **ByteSub** original:

C=	0x2a	0x9a	0x7c	0x9c										
	0x56	0x9f	0x36	0x76										
	0xe1	0x34	0x6e	0xec										
	0x4e	0x63	0xc8	0x60										
C_i =	0x67	0x84	0x1b	0xac	$C_{j} =$	0x0e	0x95	0x9c	0x0d	$C_{ij} =$	0x55	0xd1	0x61	0x74
	0x22	0x43	0xbd	0xe7		0xee	0x98	0x3f	0xf2		0xef	0x62	0x72	0x0e
	0x73	0x52	0xed	0x5c		0x81	0x0a	0xb5	0xe2		0xbb	0xe1	0xea	0x9d
	0x82	0xff	0x1d	0xb3		0x2e	0x13	0x59	0xd4		0xd5	0xd0	0xb7	0xea

- 2. Canviem la funció **ShiftRows** per la identitat. Quins efectes té aquest canvi al xifrar un bloc? (Xifreu diferents M i els corresponents M_i amb la mateixa clau K i compareu C amb C_i .)
- 3. Canviem la funció **MixColumns** per la identitat. Quins efectes té aquest canvi al xifrar un bloc? (Xifreu diferents M i els corresponents M_i amb la mateixa clau K i compareu C amb C_i .)

2.2 Propagació de petits canvis

Amb un missatge M de 128 bits i una clau K de 128 bits qualssevol feu una estadística dels bits que canvien a la sortida quan modifiqueu un bit de M:

- 1. histograma del nombre total de bits que canvien amb cada modificació,
- 2. histograma de les posicions que canvien amb cada modificació.

Feu el mateix si modifiqueu un bit de K.

2.3 Ús com a funció unidireccional

- Fixat el missatge M = 0x00112233445566778899AABBCCDDEEFF, proveu claus K de 128 bits de forma que el resultat C de xifrar M amb K tingui el major nombre de bits inicials igual a 0.
 - 1. Quin és el màxim nombre de 0 inicials que heu trobat als diferents C? Doneu K en hexadecinal.
 - 2. Quantes proves heu fet?
- Fixada la clau K = 0x0123456789ABCDEFFEDCBA9876543210, proveu missatges M de 128 bits de forma que el resultat C de xifrar M amb K tingui el major nombre de bits inicials igual a 0.
 - 1. Quin és el màxim nombre de 0 inicials que heu trobat als diferents C? Doneu M en hexadecinal.
 - 2. Quantes proves heu fet?
- Proveu missatges M de 128 bits i claus K de 128 bits de forma que el resultat C de xifrar M amb K tingui el major nombre de bits inicials igual a 0.
 - 1. Quin és el màxim nombre de 0 inicials que heu trobat als diferents C? Doneu M i K en hexadecinal.
 - 2. Quantes proves heu fet?

3 Criptografia de clau secreta

- 1. Desxifreu el primer fitxer que heu rebut.
- 2. Desxifreu el segon fitxer que heu rebut i que ha sigut xifrat fent servir AES-128 (clau 128 bits) amb padding PKCS7 i mode CBC.
 - S'ha volgut que la clau secreta K i el vector inicial IV s'obtingués a partir d'informació aportada per 8 participants de forma sigui necessari el concurs de tots per recuperar K i IV:
 - (a) Cada participant ha escollit 2 caràcters ASCII (8 bits) d'entre el conjunt abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 per exemple a i y, i ha format la seva clau $K_i = aaaaaaayyyyyyyy$
 - (b) S'ha calculat preMasterKey= $K_1 \oplus K_2 \oplus \cdots \oplus K_8$ i H=sha256(preMasterKey).
 - (c) La clau secreta K està formada pel primers 128 bits d'H i el vector inicial IV pels darrers 128 bits d'H.

Referències

- Federal Information Processing Standards Publication (FIPS) 197: Advanced Encryption Standard (AES) http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
- NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of Operation. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38A.pdf
- Padding PKCS7: section 6.3 RFC 5652. http://tools.ietf.org/html/rfc5652#section-6.3

Per llegir

- Bruce Schneier NSA and Bush's Illegal Eavesdropping.
- Schmid, Gerhard (11 July 2001). On the existence of a global system for the interception of private and commercial communications (ECHELON interception system), (2001/2098(INI)). European Parliament: Temporary Committee on the ECHELON Interception System.