with System and Algorithm Co-design

Mu Li AWS 03/2017

$$\min_{w} \frac{\sum_{i=1}^{n} f_i(w)}{\sum_{i=1}^{n} f_i(w)}$$

Large-scale problems

- Distributed systems
- Large scale optimization methods

Large Scale Machine Learning

- Machine learning learns from data
- More data
 - ✓ better accuracy
 - √ can use more complex models

Ads Click Prediction

- Predict if an ad will be clicked
- Each ad impression is an example
- Logistic regression
 - ✓ Single machine processes 1 million examples per second

Ads Click Prediction

- Predict if an ad will be clicked
- Each ad impression is an example
- Logistic regression
 - ✓ Single machine processes 1 million examples per second
- A typical industrial size problem has
 - √ 100 billion examples
 - √ 10 billion unique features

Image Recognition

- Recognize the object in an image
- Convolutional neural network
- A state-of-the-art network
 - √ Hundreds of layers
 - ✓ Billions of floating-point operation for processing a single image

Distributed Computing for Large Scale Problems

- Distribute workload among many machines
- Widely available thanks to cloud providers (AWS, GCP, Azure)

Distributed Computing for Large Scale Problems

- Distribute workload among many machines
- Widely available thanks to cloud providers (AWS, GCP, Azure)
- Challenges
 - ✓ Limited communication bandwidth (10x less than memory bandwidth)
 - ✓ Large synchronization cost (1ms latency)
 - ✓ Job failures

Distributed Optimization for Large Scale ML

$$\min_{w} \sum_{i=1}^{n} f_i(w)$$
 $\bigcup_{i=1}^{m} I_i = \{1, 2, \dots, n\}$

- Challenges
 - √ Massive communication traffic
 - ✓ Expensive global synchronization

Distributed Systems

- ✓ Large data size, complex models
- ✓ Fault tolerant
- ✓ Easy to use

Large Scale Optimization

- ✓ Communication efficient
- √ Convergence guarantee

Distributed Systems

Parameter Server

for machine learning

MXNet

for deep learning

Large Scale Optimization

DBPG

for non-convex non-smooth f_i

EMSO

for efficient minibatch SGD

Distributed Systems

Parameter Server

for machine learning

MXNet

for deep learning

Large Scale Optimization

DBPG

for non-convex non-smooth f_i

EMSO

for efficient minibatch SGD

Existing Open Source Systems in 2012

- MPI (message passing interface)
 - ✓ Hard to use for sparse problems
 - ✓ No fault tolerance
- Key-value store, e.g. redis
 - ✓ Expensive individual key-value pair communication
 - ✓ Difficult to program on the server side
- + Hadoop/Spark
 - ✓ BSP data consistency makes efficient implementation challenging

Parameter Server Architecture

[Smola'10, Dean'12]

Keys Features of our Implementation

[Li et al, OSDI'14]

- Trade off data consistency for speed
 - √ Flexible consistency models
 - ✓ User-defined filters
- Fault tolerance with chain replication

Flexible Consistency Model

User-defined Filters

- User defined encoder/decoder for efficient communication
- Lossless compression
 - √ General data compression: LZ, LZR, ...
- Lossy compression
 - ✓ Random skip
 - ✓ Fixed-point encoding

Fault Tolerance with Chain Replication

- Model is partitioned by consistent hashing
- Chain replication

Option: aggregation reduces backup traffic

Distributed Systems

Parameter Server

for machine learning

MXNet

for deep learning

Large Scale Optimization

DBPG

for non-convex non-smooth f_i

EMSO

for efficient minibatch SGD

Proximal Gradient Method

[Combettes'09]

$$\min_{w \in \Omega} \sum_{i=1}^{n} f_i(w) + h(w)$$

- $\checkmark f_i$: continuously differentiable but not necessarily convex
- ✓ h: convex but possibly non-smooth

$$w_{t+1} = \operatorname{Prox}_{\gamma_t} \left[w_t - \eta_t \sum_{i=1}^n f_i(w_t) \right]$$

Iterative update

where
$$\operatorname{Prox}_{\eta}(x) := \operatorname*{argmin}_{y \in \Omega} h(y) + \frac{1}{2\eta} \|x - y\|^2$$

Delayed Block Proximal Gradient

[Li et al, NIPS'14]

- Algorithm design tailored for parameter server implementation
 - ✓ Update a block of coordinates each time
 - ✓ Allow delay among blocks
 - ✓ Use filters during communication
- Only 300 lines of codes

Convergence Analysis

- Assumptions:
 - ✓ Block Lipschitz continuity: within block $L_{
 m var}$, cross blocks $L_{
 m cor}$
 - ✓ Delay is bounded by τ
 - √ Lossy compressions such as random skip filter and significantly-modified filter
- ♦ DBPG converges to a stationary point if the learning rate is chosen as

$$\eta_t < rac{1}{L_{
m var} + au L_{
m cor}}$$

Experiments on Ads Click Prediction

- Real dataset used in production
 - ✓ 170 billion examples, 65 billion unique features, 636 TB in total
- 4 1000 machines
- Sparse logistic regression

$$\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, w \rangle)) + \lambda ||w||_1$$

Time to achieve the same objective value

Filters to Reduce Communication Traffic

- Key caching
 - ✓ Cache feature IDs on both sender and receiver
- Data compression
- ♦ KKT filter
 - ✓ Shrink gradient to 0 based on the KKT condition

Distributed Systems

Parameter Server

for machine learning

MXNet

for deep learning

Large Scale Optimization

DBPG

for non-convex non-smooth f_i

EMSO

for efficient minibatch SGD

Deep Learning is Unique

Complex workloads

Heterogeneous computing

♦ Easy to use programming interface

Key Features of MXNet

[Chen et al, NIPS'15 workshop] (corresponding author)

- Easy-to-use front-end
 - ✓ Mixed programming
- Scalable and efficient back-end
 - ✓ Computation and memory optimization
 - ✓ Auto-parallelization
 - ✓ Scaling to multiple GPU/machines

Mixed Programming

- Declarative programs are easy to optimize
 - ✓ e.g. TensorFlow, Theano, Caffe, ...

Good for defining the neural network

- Imperative programming is flexible
 - ✓ e.g. Numpy, Matlab, Torch, ...

```
import mxnet as mx
a = mx.nd.zeros((100, 50))
b = mx.nd.ones((100, 50))
c = a * b
print(c)
c += 1
```

Good for updating and interacting with the neural network

Back-end System

```
import mxnet as mx
a = mx.nd.zeros((100, 50))
b = mx.nd.ones((100, 50))
c = a * b
c += 1
```

Front-end

- Optimization
 - ✓ Memory optimization
 - ✓ Operator fusion and runtime compilation
- Scheduling
 - ✓ Auto-parallelization

Scale to Multiple GPU Machines

Hierarchical parameter server

4 1000 lines of codes

Experiment Setup

- ♦ IMAGENET
 - √ 1.2 million images with 1000 classes
- Resnet 152-layer model
- ♦ EC2 P2.8 xlarge
 - √ 8 K80 GPUs per machine

- Minibatch SGD
 - ✓ Draw a random set of examples I_t at iteration t
 - ✓ Update

$$w_{t+1} = w_t - \frac{\eta_t}{|I_t|} \sum_{i \in I_t} \partial f_i(w_t)$$

Synchronized updating

Communication Cost

Scalability

Convergence

- Increase learning rate by 5x
- Increase learning
 rate by 10x, decrease
 it at epoch 50, 80

Distributed Systems

Parameter Server

for machine learning

MXNet

for deep learning

Large Scale Optimization

DBPG

for non-convex non-smooth f_i

EMSO

for efficient minibatch SGD

Minibatch SGD

- ♦ Large batch size b in SGD
 - ✓ Better parallelization within a batch
 - ✓ Less switching/communication cost
- ♦ Small batch size b
 - ✓ Faster convergence

$$O(1/\sqrt{N} + b/N)$$

N: number of examples processed

Motivation

[Li et al, KDD'14]

- Improve converge rate for large batch size
 - ✓ Example variance decreases with batch size
 - ✓ Solve a more "accurate" optimization subproblem over each batch

Efficient Minibatch SGD

 \Rightarrow Define $f_{I_t}(w) := \sum_{i \in I_t} f_i(w)$. Minibatch SGD solves

first-order approximation

conservative penalty

$$w_{t} = \underset{w \in \Omega}{\operatorname{argmin}} \left[f_{I_{t}}(w_{t-1}) + \langle \partial f_{I_{t}}(w_{t-1}), w - w_{t-1} \rangle + \frac{1}{2\eta_{t}} \|w - w_{t-1}\|_{2}^{2} \right]$$

EMSO solves the subproblem at each iteration

$$w_{t} = \underset{w \in \Omega}{\operatorname{argmin}} \left[f_{I_{t}}(w) + \frac{1}{2\eta_{t}} ||w - w_{t-1}||_{2}^{2} \right]$$

exact objective

ightharpoonup For convex f_i , choose $\eta_t = O(b/\sqrt{N})$. EMSO has convergence rate

$$O(1/\sqrt{N})$$

(compared to $O(1/\sqrt{N} + b/N)$)

Experiment

Ads click prediction with fixed run time

Extended to deep learning in [Keskar et al, arXiv'16]

Reduce communication cost

- Distributed systems
- Large scale optimization

- √ Communicate less
- With appropriate computational frameworks and algorithm

 Message compression

 design, distributed machine learning can be made simple,
- ✓ Relaxed data consistency fast, and scalable, both in theory and in practice.

Backup slides

Scaling to 16 GPUs in a Single Machine

Compare to a L-BFGS Based System

