

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ

«Радиотехнический»

КАФЕДРА

ИУ-5 «Системы обработки информации и управления»

Отчет по лабораторной работе № 1 по курсу Сети и телекоммуникации

Тема работы: "Выбор состава оборудования передачи данных системы телекоммуникации по экономическому критерию с учетом качества каналов связи"

Выполнил: Группа:		Мирсонов В. А. РТ5-51Б
Дата выполнения:	«11»	сентября 2020 г.
	Подпись	:
Проверил:		Антонов А. И.
Дата проверки:	«11»	сентября 2020 г.
	Подпись	:

Оглавление

Значение нагрузки для каждого АП.	3
Этап 1. Выбор оборудования передачи данных для АП с параметром максимальной скорости $V_{\rm j}$	3
Этап 2. Определение эффективной скорости передачи	5
Этап 3. Выбор оборудования передачи данных для АП (с параметром Vэфф)	10
Итоговая таблица	11

Цель работы - закрепление теоретических знаний и развитие практических навыков проектирования сетей по экономическому критерию.

Значение нагрузки для каждого АП.

Введем значение нагрузки для каждого АП:

№ варианта	Номер АП	Нагрузка, КБайт
11	5	3200
	11	3000
	8	5250

Номер АП	Класс АП	Нагрузка	Т раб	Д раб	L
1	1	11450	24	350	0
2	3		8	250	35
3	2		8	250	76
4	5		10	250	84
5	3	3200	6	250	25
6	3		12	250	16
7	4		8	250	46
8	5	5250	12	250	48
9	5		8	250	39
10	2		12	250	4
11	4	3000	6	250	8
12	3		4	250	5
13	4		4	250	12
14	5		6	250	2
15	4		12	250	23
16	2		16	250	15

Этап 1. Выбор оборудования передачи данных для АП с параметром максимальной скорости V_i .

АП № 5

AC-3.1	4800	26 700,00	15	1	2	0,6	3	1	1	0,25	64p.	43 800,00p.	34 094,52p.	
AC-3.2	9600	15 000,00	5	1	1	0,6	3	1	1	0,13	161p.	23 750,00p.	49 857,30p.	Microsoft Excel X
AC-3.3	4800	15 000,00	5	1	1	0,5	3	1	1	0,25	64p.	23 750,00p.	25 673,52p.	
AC-3.4	9600	12 000,00	5	1	1	0,5	3	1	1	0,13	161p.	19 250,00p.	48 501,30p.	
AC-3.5	9600	10 000,00	3	1	1	0,2	3	1	1	0,13	161p.	15 750,00p.	47 433,30p.	Оптимальный выбор АС-3.3
AC-3.6	9600	5 000,00	3	1	1	0,2	3	1	1	0,13	161p.	8 250,00p.	45 183,30p.	
														ОК

Диаграмма зависимости капитальных и приведённых затрат от типа ОПД:

АП № 11

ПК-4.1	4800	13 600,00	1,2	1	1	0,3	4	1	1	0,24	19p.	20 700,00p.	13 463,56p.	
ПК-4.2	2400	16 000,00	1,2	1	1	0,3	4	1	1	0,47	7 p.	24 300,00p.	11 556,89p.	
ПК-4.3	9600	21 000,00	1,2	1	1	0,6	4	1	1	0,12	48p.	31 800,00p.	24 064,89p.	Microsoft Excel X
ПК-4.4	2400	15 000,00	5,5	1	1	1	4	1	1	0,47	7p.	23 875,00p.	11 471,39p.	WICIOSOIT EXCEI
ПК-4.5	2400	18 000,00	1,2	1	1	0,3	4	1	1	0,47	7p.	27 300,00p.	12 456,89p.	
ПК-4.6	9600	20 000,00	4	1	1	0,6	4	1	1	0,12	48p.	31 000,00p.	23 824,89p.	Оптимальный выбор ПК-4.4
														ОК
														OK

Диаграмма зависимости капитальных и приведённых затрат от типа ОПД:

АП № 8

AC-5.1	2400	15 000,00	6	1	1	0,7	5	1	1	0,41	78p.	24 000,00p.	29 097,33p.	Microsoft Excel X
AC-5.2	9600	12 000,00	2	1	1	0,3	5	1	1	0,10	508p.	18 500,00p.	134 919,33p.	MICrosoft Excel
AC-5.3	4800	26 700,00	2	1	1	0,6	5	1	1	0,21	203p.	40 550,00p.	65 410,33p.	
AC-5.4	9600	26 700,00	2	1	1	0,6	5	1	1	0,10	508p.	40 550,00p.	141 570,33p.	Оптимальный выбор АС-5.1
AC-5.5	2400	16 000,00	3	1	1	1	5	1	1	0,41	78p.	24 750,00p.	29 358,33p.	
AC-5.6	9600	25 000,00	2	1	1	0,3	5	1	1	0,10	508p.	38 000,00p.	140 769,33p.	
														ОК

Диаграмма зависимости капитальных и приведённых затрат от типа ОПД:

Этап 2. Определение эффективной скорости передачи. АП № 5

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
1	AC-3.1	4800	26 700,00	15	1	2	0,6	3	1	1	0,25	64p.	43 800,00p.	34 094,52p.
2	AC-3.2	9600	15 000,00	5	1	1	0,6	3	1	1	0,13	161p.	23 750,00p.	49 857,30p.
3	AC-3.3	4800	15 000,00	5	1	1	0,5	3	1	1	0,25	64p.	23 750,00p.	25 673,52p.
4	AC-3.4	9600	12 000,00	5	1	1	0,5	3	1	1	0,13	161p.	19 250,00p.	48 501,30p.
5	AC-3.5	9600	10 000,00	3	1	1	0,2	3	1	1	0,13	161p.	15 750,00p.	47 433,30p.
6	AC-3.6	9600	5 000,00	3	1	1	0,2	3	1	1	0,13	161p.	8 250,00p.	45 183,30p.

$$V_j = 4800$$

АΠ	Nкс	Xj	Кисп	Lпр	Ккс
AC-3.3	3	3	0,843	189 100,19p.	0,1
AC-3.3	2	2	0,632	99 327,59p.	0,2
AC-3.3	1	1	0,843	63 283,40p.	0,3
AC-3.3	1	1	0,632	49 851,30p.	0,4
AC-3.3	1	1	0,506	41 792,04p.	0,5
AC-3.3	1	1	0,421	36 419,20p.	0,6
AC-3.3	1	1	0,361	32 581,46p.	0,7
AC-3.3	1	1	0,316	29 703,15p.	8,0
AC-3.3	1	1	0,281	27 464,47p.	0,9
AC-3.3	1	1	0,253	25 673,52p.	1

Зависимость Кисп от Ккс

Зависимость Lпр от Ккс

Анализируя коэффициенты использования АП № 5 определим точки максимума $K_{\text{исп}}$:

$${
m K}_{{\scriptscriptstyle {\rm ИC\Pi}}}=0{,}843; {
m K}_{{\scriptscriptstyle {\rm KC}}}=0{,}3$$
 и ${
m K}_{{\scriptscriptstyle {\rm ИC\Pi}}}=0{,}843; {
m K}_{{\scriptscriptstyle {\rm KC}}}=0{,}1$

Определим ближайшую к $K_{\kappa c} = 1$:

$$K_{\text{исп}} = 0.843; K_{\text{кс}} = 0.3$$

$$V_{9\phi\phi} = K_{\text{кc}} * V_j = 4800 * 0.3 = 1440$$

Округляем до ближайшего большего:

$$V_{9\Phi\Phi} \approx 2400$$

Заменим значение скорости в нужной таблице в столбце В:

AC-3.1	2400
AC-3.2	2400
AC-3.3	2400
AC-3.4	2400
AC-3.5	2400
AC-3.6	2400

АП № 11

ПК-4.1	4800	13 600,00	1,2	1	1	0,3	4	1	1	0,24	19p.	20 700,00p.	13 463,56p.
ПК-4.2	2400	16 000,00	1,2	1	1	0,3	4	1	1	0,47	7 p.	24 300,00p.	11 556,89p.
ПК-4.3	9600	21 000,00	1,2	1	1	0,6	4	1	1	0,12	48p.	31 800,00p.	24 064,89p.
ПК-4.4	2400	15 000,00	5,5	1	1	1	4	1	1	0,47	7p.	23 875,00p.	11 471,39p.
ПК-4.5	2400	18 000,00	1,2	1	1	0,3	4	1	1	0,47	7p.	27 300,00p.	12 456,89p.
ПК-4.6	9600	20 000.00	4	1	1	0.6	4	1	1	0.12	48p.	31 000.00p.	23 824.89p.

$$V_j=2400$$

АΠ	Nкс	Xj	Кисп	Lпр	Ккс
ПК-4.4	5	5	0,948	64 951,39p.	0,1
ПК-4.4	3	3	0,790	37 286,94p.	0,2
ПК-4.1	1	1	0,790	24 746,52p.	0,3
ПК-4.1	1	1	0,593	20 716,89p.	0,4
ПК-4.4	1	1	0,948	13 320,28p.	0,5
ПК-4.4	1	1	0,790	12 703,98p.	0,6
ПК-4.4	1	1	0,677	12 263,77p.	0,7
ПК-4.4	1	1	0,593	11 933,61p.	0,8
ПК-4.4	1	1	0,527	11 676,82p.	0,9
ПК-4.4	1	1	0,474	11 471,39p.	1

Зависимость Кисп от Ккс

Анализируя коэффициенты использования АП N 11 определим точки максимума $K_{\text{исп}}$:

$${\rm K}_{{\scriptscriptstyle {\rm HC\Pi}}}=0{,}948; {\rm K}_{{\scriptscriptstyle {\rm KC}}}=0{,}1$$
 и ${\rm K}_{{\scriptscriptstyle {\rm HC\Pi}}}=0{,}948; {\rm K}_{{\scriptscriptstyle {\rm KC}}}=0{,}5$

Определим ближайшую к $K_{\kappa c} = 1$:

$$K_{\text{исп}} = 0.948; K_{\text{кс}} = 0.5$$

$$V_{9\phi\phi} = K_{\text{кc}} * V_j = 2400 * 0.5 = 1200$$

Округляем до ближайшего большего:

$$V_{9\phi\phi} \approx 1200$$

Заменим значение скорости в нужной таблице в столбце В:

ПК-4.1	1200
ПК-4.2	1200
ПК-4.3	1200
ПК-4.4	1200
ПК-4.5	1200
ПК-4 6	1200

АП № 8

AC-5.1	2400	15 000,00	6	1	1	0,7	5	1	1	0,41	78p.	24 000,00p.	29 097,33p.
AC-5.2	9600	12 000,00	2	1	1	0,3	5	1	1	0,10	508p.	18 500,00p.	134 919,33p.
AC-5.3	4800	26 700,00	2	1	1	0,6	5	1	1	0,21	203p.	40 550,00p.	65 410,33p.
AC-5.4	9600	26 700,00	2	1	1	0,6	5	1	1	0,10	508p.	40 550,00p.	141 570,33p.
AC-5.5	2400	16 000,00	3	1	1	1	5	1	1	0,41	78p.	24 750,00p.	29 358,33p.
AC-5.6	9600	25 000,00	2	1	1	0,3	5	1	1	0,10	508p.	38 000,00p.	140 769,33p.

$$V_i = 2400$$

АΠ	Икс	Xj	Кисп	Lпр	Ккс
AC-5.1	5	5	0,830	240 753,33p.	0,1
AC-5.1	3	3	0,691	125 218,67p.	0,2

AC-5.1	2	2	0,691	83 629,11p.	0,3
AC-5.1	2	2	0,519	67 451,33p.	0,4
AC-5.1	1	1	0,830	48 510,67p.	0,5
AC-5.1	1	1	0,691	42 039,56p.	0,6
AC-5.1	1	1	0,593	37 417,33p.	0,7
AC-5.1	1	1	0,519	33 950,67p.	0,8
AC-5.1	1	1	0,461	31 254,37p.	0,9
AC-5.1	1	1	0,415	29 097,33p.	1

Зависимость Кисп от Ккс

Анализируя коэффициенты использования АП № 8 определим точки максимума $K_{\text{исп}}$:

$${\rm K}_{{\scriptscriptstyle \rm HC\Pi}}=$$
 0,830; ${\rm K}_{{\scriptscriptstyle \rm KC}}=$ 0,1 и ${\rm K}_{{\scriptscriptstyle \rm HC\Pi}}=$ 0,830; ${\rm K}_{{\scriptscriptstyle \rm KC}}=$ 0,5

0,6

0,8

Определим ближайшую к $K_{\kappa c} = 1$:

0,2

0,4

$$K_{\text{исп}} = 0,830; K_{\text{кс}} = 0,5$$

$$V_{9\varphi\varphi} = K_{\text{кc}} * V_j = 2400 * 0,5 = 1200$$

Округляем до ближайшего большего:

 $V_{9\phi\phi} \approx 1200$

Заменим значение скорости в нужной таблице в столбце В:

AC-5.1	1200
AC-5.2	1200
AC-5.3	1200
AC-5.4	1200
AC-5.5	1200
AC-5.6	1200

Этап 3. Выбор оборудования передачи данных для АП (с параметром $V_{\ni \varphi \varphi}$).

Повторим Этап 1 для АП № 1 (ГВЦ):

Migragaft Evgal	28 654,80p.	77 500,00p.	0p.	0,45	1	1	1	1,8	2	16	10	50 000,00	2400	МПД-1.1
	34 779,00p.	106 250,00p.	0p.	0,45	1	1	1	1,5	1	63	5	70 000,00	2400	МПД-1.2
	47 541,00p.	143 750,00p.	0p.	0,23	1	1	1	6	1	176	35	90 000,00	4800	МПД-1.3
Оптимальный выбор МПД-1.7	25 551,60p.	76 500,00p.	0p.	0,90	1	1	1	0,6	1	12	6	50 000,00	1200	МПД-1.4
Оптимальный высор імпід-1.7	29 976,60p.	91 250,00p.	0p.	0,45	1	1	1	0,6	1	32	5	60 000,00	2400	МПД-1.5
	88 030,80p.	271 500,00p.	0p.	0,23	1	1	1	5,3	2	352	6	180 000,00	4800	МПД-1.6
	23 799,00p.	61 250,00p.	0p.	0,23	1	1	1	9	1	4	5	40 000,00	4800	МПД-1.7
OK														
OK .														

Диаграмма зависимости капитальных и приведённых затрат от типа ОПД:

Итоговая таблица.

№ АП	Тип ОПД	V_{j}	K	L_{np}	$V_{ m s \varphi \varphi}$
5	AC - 3.6	4800	0,3	63 283,40p.	2400
11	ПК - 4.1	2400	0,5	13 320,28p.	1200
8	AC - 5.2	2400	0,5	48 510,67p.	1200
1	МПД - 1.7	4800			