5 Компактність в топологічних просторах

Велику роль в топології відіграє клас компактних просторів, які мають дуже важливі властивості. Введемо основні поняття.

§5.1 Покриття і підпокриття

Означення 5.1. Система множин $S = \{A_i \subset X, i \in I\}$ називається покриттям простору X, якщо $\bigcup_{i \in I} A_i = X$.

Означення 5.2. Покриття S називається **відкритим** (**замкненим**), якщо кожна із множин A_i є відкритою (замкненою).

Означення 5.3. Підсистема P покриття S простору X називається **підпокриттям** покриття S, якщо сама P утворює покриття X.

Теорема 5.1 (Ліндельоф)

Якщо простір X має злічену базу, то із його довільного відкритого покриття можна виділити не більш ніж злічене підпокриття.

Доведення. Нехай $\beta = \{U_n\}$ — деяка злічена база простору X, а $S = \{G_i, i \in I\}$ — довільне відкрите покриття простору X. Для кожного $x \in X$ позначимо через $G_n(x)$ один з елементів покриття S, що містить точку x, а через $U_n(x)$ — один з елементів бази β , що містить точку x і цілком міститься у відкритій множині G_n (теорема 2.3).

$$x \in U_n(x) \subset G_n(x)$$
.

Відібрані нами множини $U_n(x) \in \beta$ утворюють злічену множину. Крім того, кожна точка x простору X міститься в деякій множині $U_n(x)$, отже

$$\bigcup_{x \in X} U_n(x) = X.$$

Вибираючи для кожного $U_n(x)$ відкриту множину $G_n(x)$, ми отримаємо не більш ніж злічену систему, яка є підпокриттям покриття S.

Означення 5.4. Топологічний простір (X, τ) , в якому із довільного відкритого покриття можна виділити не більш ніж злічене підпокриття, називається **ліндельофовим**, або фінально компактним.

§5.2 Компактні простори

Звузимо клас ліндельофових просторів і введемо наступне поняття.

Означення 5.5. Топологічний простір (X, τ) називається компактним (бікомпактним), якщо будь-яке його відкрите покриття містить скінченне підпокриття (умова Бореля—Лебега).

Приклад 5.1

Простір з тривіальною топологією є компактним.

Приклад 5.2

Простір з дискретною топологією є компактним тоді й лише тоді, коли він складається зі скінченної кількості точок.

Приклад 5.3

Простір Зариського є компактним.

Приклад 5.4

Простір \mathbb{R}^n , $n \geq 1$ не є компактним.

Теорема 5.2 (перший критерій компактності)

Для компактності топологічного простору (X, τ) необхідно і достатнью, щоб будь-яка сукупність його замкнених підмножин з порожнім перетином містила скінченну підмножину таких множин із порожнім перетином.

$$(X,\tau)-\text{компактний}\iff \\ \forall \left\{\overline{F}_{\alpha},\alpha\in A:\bigcap_{\alpha\in A}\overline{F}_{\alpha}=\varnothing\right\}\quad \exists \left\{\overline{F}_{\alpha_{1}},\overline{F}_{\alpha_{2}},\ldots,\overline{F}_{\alpha_{n}}\right\}:\quad \bigcap_{i=1}^{n}\overline{F}_{\alpha_{i}}=\varnothing.$$

Доведення. Необхідність. Нехай (X,τ) — компактний, а $\{\overline{F}_{\alpha}, \alpha \in A\}$ — довільна сукупність замкнених множин, що задовольняє умові $\bigcap_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. Розглянемо множини $U_{\alpha} = X \setminus F_{\alpha}$. За правилами де Моргана (принцип двоїстості) сукупність множин $\{U_{\alpha}, \alpha \in A\}$ задовольняє умові $\bigcup_{\alpha \in A} U_{\alpha} = X$, тобто утворює покриття простору (X,τ) . Оскільки, за припущенням, (X,τ) — компактний простір, то існує скінченна підмножина множин $\{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}\}$, які також утворюють покриття: $\bigcup_{i=1}^n U_{\alpha_i} = X$. Отже, за правилами де Моргана

$$X \setminus \bigcap_{i=1}^{n} \overline{F}_{\alpha_i} = \bigcup_{i=1}^{n} (X \setminus \overline{F}_{\alpha_i}) = \bigcup_{i=1}^{n} U_{\alpha_i} = X \implies \bigcap_{i=1}^{n} \overline{F}_{\alpha_i} = \emptyset.$$

Достатність. Нехай $\{U_{\alpha}, \alpha \in A\}$ — довільне відкрите покриття простору (X, τ) . Очевидно, що множини $\overline{F}_{\alpha} = X \setminus U_{\alpha}, \alpha \in A$ є замкненими, а їх сукупність має порожній перетин: $\bigcap_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. За умовою, ця сукупність містить скінченну підмножину множин $\{\overline{F}_{\alpha_1}, \overline{F}_{\alpha_2}, \dots, \overline{F}_{\alpha_n}\}$, таку що $\bigcap_{i=1}^n \overline{F}_{\alpha_i} = \emptyset$. Звідси випливає, що множини U_{α_n} , які є доповненнями множин \overline{F}_{α_n} , утворюють покриття простору (X, τ) , тобто простір (X, τ) є компактним.

Означення 5.6. Система підмножин $\{M_{\alpha} \subset X, \alpha \in A\}$ називається **центрованою**, якщо перетин довільної скінченної кількості цих підмножин є непорожнім.

$$\forall \{\alpha_1, \alpha_2, \dots, \alpha_n\} \in A \bigcap_{i=1}^n M_{\alpha_i} \neq \varnothing \implies \{M_\alpha \subset X, \alpha \in A\}$$
 — центрована система.

Теорема 5.3 (другий критерій компактності)

Для компактності топологічного простору (X, τ) необхідно і достатнью, щоб будь-яка центрована система його замкнених підмножин мала непорожній перетин

Доведення. Необхідність. Нехай простір (X,τ) — компактний, а $\{F_{\alpha}\}$ — довільна центрована система замкнених підмножин. Множини $G_{\alpha} = X \setminus F_{\alpha}$ відкриті. Жодна скінченна система цих множин $G_{\alpha_n}, n \in \mathbb{N}$ не покриває X, оскільки

$$\forall n \in \mathbb{N} \bigcap_{i=1}^{n} F_{\alpha_i} \neq \emptyset \implies X \setminus \bigcap_{i=1}^{n} F_{\alpha_i} = \bigcup_{i=1}^{n} G_{\alpha_i} \neq X \setminus \emptyset = X.$$

Отже, оскільки (X,τ) — компактний простір, система $\{G_{\alpha}\}$ не може бути покриттям компактного простору. Інакше ми могли б вибрати із системи $\{G_{\alpha}\}$ скінченне підпокриття $\{G_{\alpha_1},G_{\alpha_2},\ldots,G_{\alpha_n}\}$, а це означало б, що $\bigcap_{i=1}^n F_{\alpha_i}=\varnothing$. Але, якщо $\{G_{\alpha}\}$ — не покриття, то $\bigcap_{\alpha} F_{\alpha} \neq \varnothing$.

Достатність. Припустимо, що довільна центрована система замкнених множин із X має непорожній перетин. Нехай $\{G_{\alpha}\}$ — відкрите покриття (X,τ) . Розглянемо множини $F_{\alpha}=X\setminus G_{\alpha}$. Тоді

$$\bigcup_{\alpha} G_{\alpha} = X \implies X \setminus \bigcup_{\alpha} G_{\alpha} = X \setminus X = \emptyset \implies \bigcap_{\alpha} (X \setminus G_{\alpha}) = \bigcap_{\alpha} F_{\alpha} = \emptyset.$$

Це означає, що система $\{F_{\alpha}\}$ не є центрованою, тобто існують такі множини F_1, F_2, \ldots, F_N , що

$$\bigcap_{i=1}^{N} F_i = \varnothing \implies X \setminus \bigcap_{i=1}^{N} F_i = X \setminus \varnothing \implies \bigcup_{i=1}^{N} G_i = X.$$

Отже, із покриття $\{G_{\alpha}\}$ ми виділили скінчену підсистему

$$\{G_1,\ldots,G_N\}=\{X\setminus F_1,\ldots,X\setminus F_N\}$$

таку що $\bigcup_{i=1}^{N} G_i = X$. Це означає, що простір (X, τ) є компактним.

§5.3 Види компактності

Означення 5.7. Множина $M \subset X$ називається компактною (бікомпактною), якщо топологічний підпростір (M, τ_M) , що породжується індукованою топологією, є компактним.

Означення 5.8. Множина $M \subset X$ називається відносно компактною (відносно бікомпактною), якщо її замикання \overline{M} є компактною множиною.

Означення 5.9. Компактний і хаусдорфів простір називається **компактом** (бікомпактом).

Означення 5.10. Топологічний простір називається **зліченно компактним**, якщо із його довільного зліченного відкритого покриття можна виділити скінченне підпокриття (умова Бореля).

Означення 5.11. Топологічний простір називається **секвенційно компактним**, якщо довільна нескінченна послідовність його елементів містить збіжну підпослідовність (умова Больцано-Вейєрштрасса).

§5.4 Зв'язки між видами компактності

Теорема 5.4 (перший критерій зліченної компактності)

Для того щоб простір (X, τ) був зліченно компактним необхідно і достатньо, щоб кожна його нескінченна підмножина мала принаймні одну строгу граничну точку, тобто точку, в довільному околі якої міститься нескінченна кількість точок підмножини.

Доведення. Необхідність. Нехай (X,τ) — зліченно компактний простір, а M — довільна нескінченна множина в X. Припустимо, усупереч твердженню, що M не має жодної строгої граничної точки. Розглянемо послідовність замкнених множин $\Phi_n \subset M$, таку що $\Phi_n \subset \Phi_{n+1}$. Візьмемо $x_n \in \Phi_n$. За припущенням нескінченна послідовність точок $x_1, x_2, \ldots, x_n, \ldots$ не має строгих граничних точок. Побудуємо скінченну систему підмножин $\{F_n, n \in \mathbb{N}\}$, поклавши $F_n = \{x_n, x_{n+1}, \ldots\}$. Зі структури цих множин випливає, що будь-яка скінченна сукупність точок F_n має непорожній перетин, всі множини F_n є замкненими, але $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$. Отже, ми побудували зліченну центровану систему замкнених множин, перетин яких порожній, що суперечить припущенню, що простір (X,τ) зліченно компактним.

Достатність. Нехай в просторі (X,τ) кожна нескінченна множина M має строгу граничну точку. Доведемо, що простір (X,τ) є зліченно компактним. Для цього достатньо перевірити, що будь-яка зліченна центрована система $\{F_n\}$ замкнених множин має непорожній перетин. Побудуємо множини $\hat{F}_n = \bigcap_{i=1}^n F_i$. Оскільки система $\{F_n\}$ є центрованою, то замкнені непорожні множини \hat{F}_n утворюють послідовність $\hat{F}_1, \hat{F}_2, \ldots, \hat{F}_n, \ldots$, що не зростає. Очевидно, що $\bigcap_{n\in\mathbb{N}} F_n = \bigcap_{n\in\mathbb{N}} \hat{F}_n$. Можливі два варіанти: серед множин \hat{F}_n є лише скінченна кількість попарно різних множин, або нескінченна кількість таких множин. Розглянемо ці варіанти окремо.

- 1. Якщо серед множин \hat{F}_n є лише скінченна кількість попарно різних множин, то починаючи з деякого номера n_0 виконується умова $\hat{F}_{n_0} = \hat{F}_{n_0+1} = \dots$ Тоді твердження доведено, оскільки $\bigcap_{n\in\mathbb{N}} \hat{F}_n = \hat{F}_{n_0} \neq \varnothing$.
- 2. Якщо серед множин \hat{F}_n є лише нескінченна кількість попарно різних множин, то можна вважати, що $\hat{F}_n \backslash \hat{F}_{n+1} \neq \varnothing$. Оберемо по одній точці з кожної множини $\hat{F}_n \backslash \hat{F}_{n+1}$. Отже, ми побудували нескінченну множину різних точок, яка, за умовою, має граничну точку x^* . Всі точки x_n, x_{n+1}, \ldots належать множинам \hat{F}_n . Отже, $x^* \in \hat{F}'_n \forall n \in \mathbb{N}$, до того ж $\overline{\hat{F}_n} = \hat{F}_n$. З цього випливає, що $\bigcap_{n \in \mathbb{N}} \hat{F}_n \neq \varnothing$.

Зауваження 5.1 — Вимогу наявності строгої граничної точки можна замінити аксіомою T_1 . Інакше кажучи, в досяжних просторах будь-яка гранична точка є строгою. Припустимо, що X — досяжний простір, а гранична точка x множини A не є строгою, і тому існує деякий окіл U, що містить лише скінчену кількість точок множини A, що відрізняються від x. Розглянемо множину $V = U \setminus ((A \cap U)\setminus\{x\})$, тобто різницю між множиною U і цим скінченним перетином. Оскільки простір X є досяжним, то в ньому будь-яка скінченна множина є замкненою. Отже, множина V0 є відкритою ($V = X \cap (U\setminus\{A\cap U\setminus\{x\}\}) = U\cap(X\setminus(U\cap A\setminus\{x\}))$, містить точку x1, а перетин множин дорівнює $A\cap V = \{x\}$ 3 або \emptyset 1. Це суперечить тому, що x1— гранична точка множини A1.

Зауваження 5.2 — Чому не можна взагалі зняти умову наявності строгої граничної точки? Розглянемо як контрприклад топологію, що складається з натуральних чисел на відрізку [1,n], тобто $\tau = \{\varnothing, \mathbb{N}, [1,n] \cap \mathbb{N} \forall n \in \mathbb{N}\}$. Цей простір не є зліченно компактним (порушується другий критерій компактності). Розглянемо нескінченну множину $A \subset \mathbb{N}$ і покладемо $n = \min A$. Тоді будь-який $m \in A \setminus \{n\}$ є граничною точкою множини A, тобто \mathbb{N} є слабко зліченно компактним простором.

Теорема 5.5 (другий критерій зліченної компактності)

Для того щоб досяжний простір (X, τ) був зліченно компактним необхідно і достатнью, щоб кожна нескінченна множина точок із X мала принаймні одну граничну точку (такі простори називаються слабко зліченно компактними). Інакше кажучи, в досяжних просторах слабка зліченна компактність еквівалентна зліченній компактності.

Доведення. Необхідність. Припустимо, що A — злічена підмножина X, що не має граничних точок (це не обмежує загальності, оскільки в будь-якій нескінченій підмножині ми можемо вибрати злічену підмножину). Множина A є замкненою в X (оскільки будь-яка точка множини $\overline{A} \setminus A$ є граничною точкою множини A, яка за припущенням не має граничних точок, тому $\overline{A} = A$). Нехай $A = \{a_1, s_2, \dots\}$ і $A_n = \{a_n, a_{n+1}, \dots\}$. Зі сказаного вище випливає, що $A_n = \overline{A}_n$, інакше $A' = \emptyset$. Покладемо $G_n = X \setminus A_n$. Ця множина є доповненням замкненої множини A_n , тому вона є відкритою. Розглянемо послідовність множин G_n . Вона зростає і покриває X, тому що кожна точка X із множини $X \setminus A$ належить G_1 , а значить, усім множинам G_n , а якщо $X \in A$, то вона дорівнює якомусь A_n , отже, належить $A_n \in A_n$. Таким чином, послідовність множин $A_n \in A_n$ 0, оскільки об'єднання елементів цього скінченне підпокриття $A_n \in A_n$ 1, оскільки об'єднання елементів цього скінченного підпокриття було б найбільшим серед усіх множин $A_n \in A_n$ 2, які утворюють зростаючу послідовність).

$$G_1 \subset G_2 \subset \cdots \subset \bigcup_{k=1}^n G_{i_k} = G_N = X.$$

У цьому випадку об'єднання $G_N = \bigcup_{k=1}^n G_{i_k}$ не може містити усі елементи a_i , номер яких перевищує N (за конструкцією), отже, воно не покриває X. У такому випадку простір X не є зліченно компактним. Отримана суперечність доводить бажане.

Достатність. Припустимо, що простір X не є зліченно компактним. Значить, існує зліченне відкрите покриття $\{G_n\}_{n\in\mathbb{N}}$, що не містить скінченного підпокриття. Жодна сукупність множин $\{G_1,G_2,\ldots,G_n\}$ не є покриттям, тому можемо вибрати з множин $X\setminus\bigcup_{k=1}^nG_i$ по одній точці x_i і утворити із них множину A.

Розглянемо довільну точку $x \in X$. Оскільки $\{G_n\}_{n \in \mathbb{N}}$ — покриття простору X, точка x належить якійсь множині G_N , яка своєю чергою може містити лише такі точки x_i із множини A, номер яких задовольняє умові i < N (оскільки за означенням точка x_i не належить жодному G_j , якщо $j \le i$). Отже, множина G_N є околом точки x, перетин якої із множиною A є лише скінченним. Водночас, оскільки простір є досяжним, в околі граничної точки будь-якої множини повинно міститись нескінченна кількість точок цієї множини. Отже, точка x не є граничною точкою множини A. Це твердження є слушним для будь-якої точки x, отже, множина A не має жодної граничної точки. Отримана суперечність доводить бажане.

Теорема 5.6 (про еквівалентність компактності та зліченої компактності)

Для топологічного простору (X, τ) зі зліченною базою компактність еквівалентна зліченній компактності.

Доведення. Необхідність. Нехай (X, τ) — компактний простір. Тоді із довільного відкритого покриття можна виділити скінченне покриття. Значить, скінченне покриття можна виділити зі зліченного відкритого покриття.

Достатність. Нехай (X,τ) є зліченно компактним простором, а $S = \{U_{\alpha}, \alpha \in A\}$ — його довільне відкрите покриття. Оскільки простори зі зліченою базою мають властивість Ліндельофа (теорема 5.1), то покриття S містить підпокриття S', яке, внаслідок, зліченної компактності простору (X,τ) містить скінченне підпокриття S''. Отже, простір (X,τ) є зліченно компактним.

Теорема 5.7 (про еквівалентність компактності, секвенційної компактності та зліченної компактності)

Для досяжних просторів зі зліченою базою компактність, секвенційна компактність і зліченна компактність є еквівалентними.

Доведення. З огляду на теорему 5.6, достатньо показати, що злічена компактність в досяжному просторі зі зліченною базою еквівалентна секвенційній компактності.

Необхідність. Розглянемо зліченно компактний простір (X,τ) . Нехай $A=\{x_n\}_{n\in\mathbb{N}}$ — довільна нескінченна послідовність (тобто послідовність, що містить нескінченну кількість різних точок), а простір є зліченно компактним. Отже, за теоремою 5.5, множина A має граничну точку x^* . Розглянувши зліченну локальну базу околів $\{G_k\}_{k\in\mathbb{N}}$ точки x^* , так що $G_{k+1}\subset G_k$, можна виділити послідовність x_{n_k} , що збігається до x^* . Отже, простір (X,τ) є секвенційно компактним.

Достатність. Нехай простір (X, τ) є секвенційно компактним. З теореми 5.4 випливає, що будь-яка зліченна нескінченна підмножина простору X має строгу граничну точку. Це означає, що будь-яка нескінченна зліченна послідовність має граничну точку, тобто із неї можна виділити збіжну підпослідовність.

§5.5 Література

- [1] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 225–238).
- [2] **Колмогоров А.Н.** Элементы теории функций и функционального анализа. 5-е изд. / Колмогоров А.Н., С. В. Фомин М.: Наука, 1981 (стр. 98–105).
- [3] **Энгелькинг Р.** Общая топология / Р. Энгелькинг М.: Мир, 1986 (стр. 195—215).