I- Définition:

I-1. Exemple:

Une urne contient 6 boules blanches et 4 boules noires indiscernables au toucher. On tire simultanément 3 boules. On appelle X le nombre de boules blanches restant dans l'urne. Quelles sont les valeurs possibles pour X? Avec quelles probabilités?

X peut prendre les valeurs 3, 4, 5 ou 6 et on note : $X(\Omega) = \{3, 4, 5, 6\}$

(X = 3): "tirer 3 boules blanches",

(X = 4):" tirer une boule noire et 2 boules blanches"

(X = 5): "tirer deux boules noires et une boule blanche".

(X = 6): "tirer trois boules noires".

Les événements (X = 3), (X = 4), (X = 5) et (X = 6) sont incompatibles deux à deux et leur réunion est l'univers Ω .

$$P(X=3) = \frac{C_6^3}{C_{10}^3} = \frac{20}{120} = \frac{1}{6} , P(X=4) = \frac{C_6^2 C_4^1}{C_{10}^3} = \frac{1}{2} , P(X=5) = \frac{C_6^1 C_4^2}{C_{10}^3} = \frac{3}{10}$$

et
$$P(X=6) = \frac{C_4^3}{C_{10}^3} = \frac{1}{30}$$
.

Les résultats peuvent se présenter dans le tableau :

Xi	3	4	5	6	
$P(X = x_i)$	$\frac{5}{30}$	$\frac{15}{30}$	$\frac{9}{30}$	$\frac{1}{30}$	1

Ce tableau définit la loi de probabilité de X.

I-2. Aléa numérique – Loi de probabilité

Soit $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$ un univers muni d'une probabilité P.

Un aléa numérique X défini sur Ω est une application qui à chaque élément de Ω fait correspondre un nombre réel.

Désignons par $X(\Omega) = \{x_1, x_2, ..., x_m\}$ l'ensemble des valeurs prises par X où $m \le n$. La loi de probabilité de X est l'application qui à tout élément x_i de $X(\Omega)$ associe la probabilité $p_i = P(X = x_i)$ que X prenne cette valeur x_i .

Il est commode de présenter cette loi de probabilité sous forme d'un tableau :

X _i	\mathbf{x}_1	x ₂		X _m	
$p_i = P(X = x_i)$	\mathbf{p}_1	p_2	• • •	$p_{\rm m}$	1

I-3. Fonction de répartition Définition :

La fonction de répartition F de X est :

$$F: IR \rightarrow [0, 1]$$

$$x \mapsto F(x) = P(X \le x)$$

Reprenons l'exemple précédent :

www.devoir@t.ne	70	
ww.devoir@t.1		
ww.devoir@t	Я	
ww.devoir@t		
ww.devoir	u	
ww.devoir	(2)
ww.devoi	_	
ww.devo	Н	
ww.de	O	
ww.d	a)	
15		
15		
15	3	
	15	

Intervalles des	Valeurs de X	$F(x) = P(X \le x)$
valeurs de x	vérifiant X≤x	
]-∞,3[Aucune	0
[3,4[3	$p_1 = \frac{5}{30}$
[4,5[3 et 4	$p_1 + p_2 = \frac{5}{30} + \frac{15}{30} = \frac{20}{30}$
[5,6[3 , 4 et 5	$p_1 + p_2 + p_3 = \frac{29}{30}$
[6,+∞[3,4,5 et 6	$p_1 + p_2 + p_3 + p_4 = 1$

Question: Calculer $P(X \le 5)$, $P(X \ge 4)$ et $P(3 < X \le 5)$

Réponse :
$$P(X < 5) = P(X \le 4) = F(4) = \frac{15}{30} = \frac{1}{2}$$

 $P(X > 4) = 1 - P(X \le 4) = 1 - F(4) = \frac{1}{2}$.

$$P(3 < X \le 5) = P(4 \le X \le 5) = P(X = 4) + P(X = 5) = \frac{24}{30} = \frac{4}{5}$$
.

II- Espérance mathématique, variance et écart-type

II-1. Espérance mathématique :

Définition : On appelle espérance mathématique de X le réel $E(X) = \sum_{i=1}^{m} x_i p_i$.

Retour à l'exemple :

$$E(X) = 3.\frac{5}{30} + 4.\frac{15}{30} + 5.\frac{9}{30} + 6.\frac{1}{30} = \frac{21}{5} = 4.2$$
.

Propriétés:

- 1. Si E(X) > 0, alors on dit que l'épreuve est gagnante (ou favorable)
- 2. Si E(X) = 0, alors on dit l'épreuve est équitable.
- 3. Si E(X) < 0, alors on dit que l'épreuve est favorable ;

Exercice 1

Une urne contient trois boules vertes portant le numéro 0, deux boules rouges portant le numéro 5 et une boule noire portant le numéro a (a est un entier naturel non nul, différent de 5 et de 10).

Toutes les boules sont indiscernables au toucher.

Un joueur tire simultanément trois boules de l'urne.

- 1. Quelle est la probabilité pour qu'il tire :
 - a) trois boules de la même couleur,
 - b) trois boules de couleurs différentes,
 - c) deux boules et deux seulement de la même couleur.
- 2. Le joueur reçoit, en dinars, la somme des numéros marqués sur les boules tirées. Les gains possibles du joueur sont donc :

$$0; 5; 10; a; 5+a; 10+a.$$

a) Soit X la variable aléatoire égale au gain du joueur, déterminer la loi de probabilité de X.

- b) Calculer l'espérance mathématique de X en fonction de a.
- c) Calculer a pour que l'espérance de gain du joueur soit de 20 dinars.

Exercice 2

Les questions 1 et 2 peuvent être traitées indépendamment. Les résultats seront donnés sous forme de fractions.

A la gare A, 16 voyageurs ont pris chacun un billet dont :

7 pour la gare B (prix du billet 5 dinars)

5 pour la gare C (prix du billet 6 dinars)

4 pour la gare D (prix du billet 7,5 dinars)

1. On choisit au hasard un de ces voyageurs.

Soit X la variable aléatoire associant à chaque voyageur le prix de son billet (en dinars).

- a) Déterminer la loi de probabilité de X.
- b) Calculer l'espérance mathématique de X.
- 2. On choisit au hasard trois de ces voyageurs.
- a) Calculer la probabilité pour que ces trois voyageurs aient trois destinations différentes.
- b) Calculer la probabilité pour qu'au moins un des voyageurs ait un billet pour la gare B.
- c) Quelle est la probabilité pour que cette destination soit B, sachant que les trois voyageurs ont la même destination.

CORRECTION

Exercice 1

Epreuve : tirage simultané de 3 boules dans une urne comportant 6 boules. Les boules étant indiscernables au toucher, nous sommes dans l'hypothèse d'équiprobabilité.

Il s'ensuit : $Card\Omega = C_6^3 = 20$.

1. a) Soit A l'événement : « les trois boules sont de la même couleur ». A se traduit par : « les trois boules sont vertes ».

Donc p(A) =
$$\frac{C_3^3}{20} = \frac{1}{20}$$
.

b) Soit B l'événement : « les trois boules sont de couleurs différentes ». B se traduit par : « une boule verte et une boule rouge et une boule noire ».

Donc, p(B) =
$$\frac{C_3^1 C_2^1 C_1^1}{20} = \frac{3}{10}$$

c) Soit C l'événement : « deux boules et deux seulement sont de la même couleur ».

C s'écrit : $C = \overline{A \cup B}$.

 $p(C) = 1 - p(A \cup B)$ avec A et B incompatibles.

Donc:
$$p(C) = 1 - (p(A) + p(B)) = \frac{3}{20}$$
.

2. a) $X(\Omega) = \{0,5; 10; a; 5+a; 10+a\}$ avec a entier non nul, différent de 5 et de 10.

$$p(X = 0) = p(A) = \frac{1}{20};$$

$$p(X = 5) = p(2 \text{ vertes et 1 rouge}) = \frac{C_3^2 C_2^1}{20} = \frac{3}{10}$$
;

$$p(X = 10) = p(1 \text{ verte et 2 rouges}) = \frac{C_3^1 C_2^2}{20} = \frac{3}{20};$$

$$p(X = a) = p(2 \text{ vertes et 1 noire}) = \frac{C_3^2 C_1^1}{20} = \frac{3}{20}$$
;

$$p(X = 5+a) = p(B) = \frac{3}{10}$$
;

$$p(X = 10 + a) = p(2 \text{ rouges et 1 noire}) = \frac{C_1^2 C_1^1}{20} = \frac{1}{20}$$

D'où la loi de X:

Xi	0	5	10	a	5+a	10+a
$P(X = x_i)$	$\frac{1}{20}$	3 10	<u>3</u> 20	3 20	<u>3</u> 10	$\frac{1}{20}$

Remarquons que p(X = 0) + p(X = 5) + p(X = 10) + p(X = a) + p(X = 5+a) + p(X = 10 + a) est bien égal à 1.

b)
$$E(X) = 0 \times p(X = 0) + 5 \times p(X = 5) + 10 \times p(X = 10) + a \times p(X = a) + (5+a) \times p(X = a$$

$$p(X = 5+a) + (10+a) \times p(X = 10+a) = 5 + \frac{a}{2}$$
.

c)
$$E(X) = 20$$
 si et seulement si $a = 30$.

Exercice 2

- 1. X désigne la variable aléatoire correspondant au prix du billet de chacun des voyageurs.
- a) Sur les 16 voyageurs qui ont pris un billet, 7 l'ont pris pour la gare B au prix de 5 dinars.

Donc :
$$p(X = 5) = \frac{7}{16}$$
.

5 ont pris un billet pour la gare C au tarif de 6 dinars. Nous pouvons donc en déduire

que :
$$p(X = 6) = \frac{5}{16}$$
.

Enfin, 4 ont pris un billet à 7,5 dinars pour la gare D, donc : $p(X = 7,5) = \frac{4}{16} = \frac{1}{4}$.

La loi de probabilité de X est donc la suivante :

Xi	5	6	7,5
$p(X = x_i)$	$\frac{7}{16}$	$\frac{5}{16}$	$\frac{1}{4}$

b) L'espérance mathématique de X est donnée par :

$$E(X) = 5 \times p(X = 5) + 6 \times p(X = 6) + 7,5 \times p(X = 7,5) = \frac{95}{16}.$$

2. a) On choisit au hasard trois voyageurs. Nous avons $C_{16}^3 = 560$ façons de choisir trois voyageurs.

Notons A l'événement « les trois voyageurs ont des destinations différentes ».

Nous avons donc :
$$p(A) = \frac{C_7^1 C_5^1 C_4^1}{C_{10}^3} = \frac{1}{4}$$
.

b) Calculons tout d'abord la probabilité de l'événement D : « aucun des voyageurs n'a un billet pour la gare B ».

Nous avons 9 personnes dont la destination est différente de la gare B, donc :

$$p(D) = \frac{C_9^3}{C_{16}^3} = \frac{3}{20}$$
.

L'événement « un voyageur au moins a un billet pour la gare B » est l'événement contraire de D. Or, $p(\overline{D}) = 1 - \frac{3}{20} = \frac{17}{20}$.

La probabilité pour qu'au moins un des voyageurs ait un billet pour la gare B est égale à $\frac{17}{20}$.

c) Calculons tout d'abord la probabilité que les trois voyageurs aient la même destination (événement E). Ceux-ci peuvent aller soit à la gare B, soit à la gare C, soit à la gare D. Ces trois événements étant incompatibles, nous avons donc :

$$p(E) = \frac{C_7^3}{C_{16}^3} + \frac{C_5^3}{C_{16}^3} + \frac{C_4^3}{C_{16}^3} = \frac{7}{80}.$$

La probabilité que les trois voyageurs aillent à la gare B (événement F) est :

$$p(F) = \frac{35}{760} = \frac{1}{16}.$$

L'événement « la destination est B, sachant que les trois voyageurs ont la même destination » correspond à l'événement F|E.

Or,
$$p(F/E) = \frac{p(F \cap E)}{p(E)} = \frac{p(F)}{p(E)} = \frac{5}{7}$$
.

III- Variance et écart-type :

Définition:

On appelle variance de X le réel positif $V(X) = E(X^2) - (E(X))^2 = \sum_{i=1}^{m} x_i^2 p_i - (E(X))^2$

On appelle écart-type de X le réel positif $\sigma(X) = \sqrt{V(X)}$.

Retour à l'exemple :

CACILIPIC	•				
Xi	3	4	5	6	
p _i	5	$\frac{15}{30}$	9	1	1
	$\frac{3}{30}$	30	30	30	
$x_i . p_i$	15	$\frac{60}{30}$	$\frac{45}{30}$	6	4,2
	30	30	30	30	
$x_i^2.p_i$	$\frac{45}{30}$	240	225	$\frac{36}{30}$	18,2
	30	30	30	30	

$$V(X) = 18.2 - (4.2)^2 = 0.56$$
 ; $\sigma(X) = \sqrt{V(X)} = \sqrt{0.56}$

IV- Schéma de Bernoulli

Exemple:

On dispose d'une pièce de monnaie pipée telle que la probabilité d'obtenir "pile" soit le double d'obtenir "face". On déclare qu'il y a succès, noté S, si le résultat est pile, sinon il y a échec noté E.

Comme
$$P(S) + P(E) = 1$$
 et $P(S) = 2P(E)$ alors $P(S) = \frac{2}{3}$ et $P(E) = \frac{1}{3}$.

Lançons deux fois de suite la pièce ; on peut supposer que le résultat du second lancer est indépendant de celui du premier lancer. Soit A :" obtenir exactement un seul succès " alors $A = \{(S, E), (E, S)\}$ et donc

$$P(A) = 2.P(S).P(E) = 2.\frac{2}{3}.\frac{1}{3} = \frac{4}{9}$$
.

Lançons à présent trois de suite la pièce ; on peut supposer que les résultats des différents lancers sont indépendants. Soit A' :" obtenir exactement un seul succès " alors $A' = \{(S, E, E), (E, S, E), (E, E, S)\}$ et donc

$$P(A') = 3.P(S).(P(E))^2 = 3. \frac{2}{3} (\frac{1}{3})^2 = \frac{2}{9}.$$

Définition:

On appelle schéma de Bernoulli l'expérience qui consiste à répéter n fois de suite une épreuve à deux issues possibles sous l'hypothèse suivante : les résultats de deux épreuves sont indépendants.

Lançons à présent n fois de suite la pièce (n > 1) et désignons par X l'aléa numérique qui à toute série de n lancers associe le nombre de succès obtenus. Calculons la probabilité des événements suivants :

$$(X = n)$$
, $(X = 1)$ et $(X = k)$, où $0 \le k \le n$.

Réponse:

On a:
$$P(X = n) = \left(\frac{2}{3}\right)^n$$
, $P(X = 1) = n\frac{2}{3}\left(\frac{1}{3}\right)^{n-1}$ et $P(X = k) = C_n^k \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{n-k}$.

Retenons:

Soit un série de n épreuves de Bernoulli avec, pour chaque épreuve, la probabilité d'un succès est p.

Le nombre de succès réalisés au cours d'une série de n épreuves est un aléa numérique X telle que sa loi de probabilité suit la loi binomiale de paramètres n et p définie par :

$$\begin{split} P(X=k) &= \, C_n^k p^k (1-p)^{n-k} \quad , \ \, \text{où} \ \, k \in \big\{0,\!1,\!2,\!...,n\big\} \quad . \\ \text{Et on a}: \quad E(X) &= n.p \quad \text{et} \quad V(X) = n.p.(1-p) \ \, . \end{split}$$

Exercice 1:

Une urne contient 9 boules indiscernables au toucher dont quatre sont blanches, numérotées 0, 0, 1, 2 e 5 sont rouges, numérotées 0, 0, 1, 1, 2.

Une épreuve consiste à tirer simultanément et au hasard 2 boules de l'urne.

1. a) Déterminer la probabilité de chacun des événements suivants :

A : « les deux boules tirées sont de même couleur »

www.devoir@t.net

- B: « les deux boules tirées portent le même numéro ».
- b) Sachant que les deux boules tirées sont de même couleur, quelle est la probabilité pour qu'elles portent le même numéro ?
- 2. Soit X l'aléa numérique prenant pour valeur le produit des numéros parqués sur les deux boules tirées. On désigne par E l'événement « X est différent de 0 ».

Montrer que
$$P(E) = \frac{5}{18}$$
.

3. On répète l'épreuve précédente cinq fois de suite en remettant à chaque fois les deux boules tirées dans l'urne.

Calculer la probabilité p que l'événement (X = 0) soit réalisé au moins une fois.

Exercice 2

On dispose de deux urnes U_1 et U_2 .

U₁ contient 2 boules rouges et 8 boules blanches

U₂ contient une boule rouge et deux boules blanches.

1. Une épreuve consiste à tirer une boule de U_1 que l'on met dans U_2 puis on tire une boule de U_2 . On considère les événements suivants :

 R_1 : « la boule tirée de U_1 est rouge » et R_2 : «la boule tirée de U_2 est rouge » A: « à la fin de l'épreuve, U_2 ne contient plus de boule rouge ».

- a) Calculer $P(R_1)$ et $P(R_2)$.
- b) Montrer que $P(A) = \frac{1}{5}$.
- 2. On répète l'épreuve précédente quatre fois d suite en remettant chaque fois les boules tirées dans leurs urnes d'origine. On considère l'aléa numérique X défini par le nombre de fois où A est réalisé.
 - a) Déterminer la loi de probabilité de X.
 - b) Déterminer l'espérance mathématiques et la variance de X.
- 3. Une nouvelle épreuve consiste à tirer une boule de $\,U_{\scriptscriptstyle 1}\,$:
 - Si elle est rouge, on la garde et on tire une seconde boule de U₂
 - Si elle est blanche, on la remet dans U₂ et on tire simultanément deux boules de U₂.

Soit Y l'aléa numérique égal au nombre de boules rouges obtenues à l'issue d'une épreuve.

- a) Calculer P(Y = 0) et P(Y = 2).
- b) En déduire P(Y = 1).

Exercice 3:

n étant un entier naturel non nul.

Une urne U_1 contient 2 boules blanches et n boules noires.

Une urne U₂ contient n boules blanches et 2 boules noires.

On suppose que toutes les boules sont indiscernables au toucher. On tire une boule de U_1 puis on tire également une boule de U_2 .

1. On suppose que n = 1.

- a) Calculer la probabilité de chacun des événements suivants :
 - A : « les deux boules tirées sont de couleurs différentes »
 - B: « tirer au moins une boule blanche »
- b) On répète l'épreuve précédente 4 fois de suite, quelle est la probabilité d'obtenir exactement trois deux boules de même couleur ?
- 2. On suppose que n est supérieur ou égal à 2. On désigne par X le nombre total de boules blanches qui restent dans les deux urnes U_1 et U_2 .
 - a) Prouver que $P(X = n+2) = \frac{2n}{(n+2)^2}$.
 - b) Déterminer la loi de probabilité de X.
 - c) Déterminer l'entier n pour lequel E(X) = 3.

Exercice 4:

Une urne U_1 contient 4 boules blanches et 2 boules noires et une urne U_2 contient 3 boules blanches et 3 boules noires. Une épreuve consiste à tirer une boule et l'urne U_1 que l'on met dans U_2 puis tirer une boule de l'urne U_2 que l'on met dans U_1 . Soient A, B, C les événements suivants :

A : « à l'issue de cette épreuve la boule tirée de U_1 est blanche et la boule tirée de U_2 est blanche ».

B : « à l'issue de cette épreuve la boule tirée de $\,U_1\, est$ noire et la boule tirée de $\,U_2\,$ est noire »

C: « à l'issue de cette épreuve les deux U_1 et U_2 se retrouvent chacune avec la même configuration de départ, c'est-à-dire que l'urne U_1 contient 4 boules blanches et 2 boules noires et l'urne U_2 contient 3 boules blanches et 3 boules noires ».

- 3. a) Calculer P(A) et P(B).
 - b) Montrer que $P(C) = \frac{4}{7}$.
- 2. On répète l'épreuve précédente 4 fois de suite et on désigne par X l'aléa numérique qui prend pour valeurs :
 - 0 si l'événement C n'est pas réalisé au cours des 4 épreuves
 - k si l'événement C est réalisé pour la première fois à la $k^{\text{ème}}$ épreuve $(0 < k \le 4)$.
 - a) Déterminer la loi de probabilité de X.
 - b) Calculer l'espérance mathématique de X.