CS321: Computer Networks

Error Detection and Correction

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Error Detection and Correction

 Objective: System must guarantee that the data received are identical to the data transmitted

Methods:

- If a frame is corrupted between the two nodes, it needs to be corrected
- Drop the frame and let the upper layer (e.g. Transport) protocol to handle it by retransmission

Types of Error

- Single bit error
- Burst error / multibit error

Reason: noise in the channel

Detection and Correction

- Central idea: redundancy
 - put some extra bit with our data
 - Achieved by coding scheme
 - Block coding
 - Convolution coding
- Error Detection: looking to see if any error has occurred
- Error Correction: trying to recover the corruption
 - Need to know exact number of bits that are corrupted
 - Needs the position of those bits

Block Coding

- How the extra r bits are chosen or calculated?
- How can errors be detected?
 - Finds the existence of invalid codeword

Example

• Let us assume that k = 2 and n = 3. Table shows the list of datawords and codewords. Later, we will see how to derive a codeword from a dataword.

Dataword	Codeword
00	000
01	011
10	101
11	110

Assume the sender encodes the dataword 01 as 011 and sends it to the receiver.

Possible options at receiver (assume one bit corruption):

011 => correct

111 => invalid

001 => invalid

010 => invalid

Hamming Distance

- The Hamming distance between two words (of the same size) is the number of differences between the corresponding bits.
- Notation: Hamming distance between two words x and y as d(x, y).
- Calculation: apply the XOR operation on the two words and count the number of 1's in the result

• To guarantee the detection of up to s errors in all cases, the minimum Hamming distance in a block code must be $d_{min} = s + 1$.

Types of Block Codes

- Linear Block Code
- Non-linear Block Code

• A linear block code is a code in which the exclusive OR (addition modulo-2) of two valid codewords creates another valid codeword.

Dataword Codeword

• Example:

Reed-Solomon codes

Hamming codes

Parity Check Code.

Dataword	Codeword	
00	000	
01	011	
10	101	
11	110	

 Minimum Hamming distance: number of 1s in the nonzero valid codeword with the smallest number of 1s.

Parity Check Code

Dataword	Codeword	Dataword	Codeword
0000	00000	1000	1000 <mark>1</mark>
0001	0001 <mark>1</mark>	1001	1001 <mark>0</mark>
0010	0010 <mark>1</mark>	1010	1010 <mark>0</mark>
0011	00110	1011	1011 <mark>1</mark>

Parity Check Code

- Modulo arithmetic:
- Generator:

$$r_0 = a_3 + a_2 + a_1 + a_0$$
 (modulo-2)

Checker:

$$s_0 = a_3 + a_2 + a_1 + a_0 + q_0$$
 (modulo-2)

- A parity-check code can detect an odd number of errors.
- what happens if an even number of bit errors occur?
 - a more robust error-detection scheme is needed

Insight into Error-Correction

Correctable single-bit error

- two-dimensional parity scheme
- The receiver can thus not only detect but can identify the bit that has corrupted.
- The ability of the receiver to both detect and correct errors is known as forward error correction (FEC).

Cyclic Redundancy Check (CRC)

 It is an error-detection technique used widely in today's computer networks (e.g., LAN, WAN)

It is linear block code

- If a codeword is cyclically shifted (rotated), the result is another codeword.
 - E.g., if 1011000 is a codeword and we cyclically leftshift, then 0110001 is also a codeword.

CRC code with C(7,4)

C(7,4) => 4 bits dataword, 7 bits codeword

CRC Encoding

CRC Decoding

CRC Decoding

Polynomial Representation

a. Binary pattern and polynomial

- The power of each term shows the position of the bit
- The coefficient shows the value of the bit

 The degree of a polynomial is the highest power in the polynomial.

Polynomial Operations

- Adding and Subtracting Polynomials
 - Not same as it is performed in mathematics
 - addition and subtraction are the same
 - adding or subtracting is done by combining terms
 and deleting pairs of identical terms

- E.g.,
$$x^5+x^4+x^2 + x^6+x^4+x^2 => x^6+x^5$$

- Multiplying or Dividing Terms
 - just add the powers

- E.g.,
$$x^4 * x^3 => x^7$$
 $x^7/x^3 => x^4$

Cont...

- Multiplying Two Polynomials
 - is done term by term

- E.g.,

$$(x^5+x^3+x^2+x)(x^2+x+1)$$

 $\Rightarrow (x^7+x^6+x^5)+(x^5+x^4+x^3)+(x^4+x^3+x^2)+(x^3+x^2+x)$
 $\Rightarrow x^7+x^6+x^3+x$

- Dividing One Polynomial by Another
 - Division of polynomials is conceptually the same as the binary division we discussed for an encoder.

Cont...

Shifting

Shifting left 3 bits: 10011 becomes 10011000 Shifting right 3 bits: 10011 becomes 10

$$x^4 + x + 1$$
 becomes $x^7 + x^4 + x^3$
 $x^4 + x + 1$ becomes x

Cyclic Code Encoder Using Polynomials

 The divisor in a cyclic code is normally called the generator polynomial or simply the generator.

Standard Polynomials for CRC

 The divisor in a cyclic code is normally called the generator polynomial or simply the generator.

Name	Polynomial	Used in
CRC-8	$x^8 + x^2 + x + 1$	
	100000111	header
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x^2 + 1$	ATM
	11000110101	AAL
CRC-16	$x^{16} + x^{12} + x^5 + 1$	HDLC
100	10001000000100001	
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$	LANs
	100000100110000010001110110110111	TAKE

Divisor Polynomial Selection

- This depends on the expectation we have from the code.
- Let, Dataword: d(x), Codeword: c(x), Generator: g(x), Syndrome: s(x), Error: e(x)

- If $s(x) \neq 0$ --> one or more bits is corrupted
- If s(x) == 0 --> either no bit is corrupted or the decoder failed to detect any errors

Received codeword = c(x) + e(x)

Cont...

$$\frac{\text{Received codeword}}{g(x)} = \frac{c(x)}{g(x)} + \frac{e(x)}{g(x)}$$

- Those errors that are divisible by g(x) are not caught.
- A good polynomial generator needs to have the following characteristics:
 - It should have at least two terms.
 - The coefficient of the term x⁰ should be 1.
 - It should not divide $x^t + 1$, for t between 2 and n 1.
 - It should have the factor x + 1.

Checksum

- Error detection technique
- Used in Network and Transport Layer

Example

- Want to send a message represented by five 4-bit units (7,11,12,0,6)
- We send (7,11,12,0,6,36)
- Receiver checks (7+11+12+0+6-36)=?
- Problem:
 - Bits required to present the units and checksum
- Solution using One's complement
 - 7,11,12,0,6 require 4 bits
 - Change the 36 (=100100) as follows: (10+0100) = 6;
 One's complement of 6 is 9
 - Send (7,11,12,0,6,6) OR (7,11,12,0,6,9)

Internet Checksum

Used a 16-bit checksum

Advantage:

- Fast checking
- Small number of bits required

Disadvantage:

- Not robust
- e.g., if the values of several words are incremented but the sum and the checksum do not change, the errors are not detected.
- Solution: weighted checksum proposed by Fletcher and Adler

Error Correction

- Two ways:
 - Forward Error Correction (FEC)
 - Retransmission

Flow Control: production and consumption rates must be balanced

Thanks!