AIFA Searching Game Trees

23/01/2024

Searching Game Trees

- Consider an OR tree with two types of OR nodes, namely Min nodes and Max nodes
- In Min nodes, select the min cost successor
- In Max nodes, select the max cost successor
- Terminal nodes are winning or losing states
 - It is often infeasible to search up to the terminal nodes
 - We use heuristic costs to compare non-terminal nodes

Searching Game Trees

• We will expand these moves up to a certain depth

• We will have some heuristic functions to evaluate the position of the game after that many lookaheads

AIFA MinMax Trees

23/01/2024

- Looked ahead up to this many number of moves
- Found out the cost value
 - How much cost I have to incur to win the game

Shallow and Deep Pruning

Max

Min

AIFA AlphaBeta Pruning

23/01/2024

Alpha-Beta Pruning

- Alpha bound of J
 - The max current val of all MAX ancestors of J
 - Exploration of a min node, J, is stopped when its value equals or falls below alpha
 - In a min node, we update beta

What are we looking in MIN node?

Whether its current value fallen below the value backed up in the max ancestor of the node

 $\alpha(J) = Current \max val \ of \ all \ MAX \ ancestors \ of \ J$

Alpha-Beta Pruning

- Alpha bound of J
 - The max current val of all MAX ancestors of J
 - Exploration of a min node, J, is stopped when its value equals or falls below alpha
 - In a min node, we update beta
- Beta bound of J
 - The min current val of all MIN ancestors of J
 - Exploration of a max node, J, is stopped when its value equals or exceeds beta
 - In a max node, we update alpha
- In both min and max nodes, we return when $\alpha \ge \beta$

Alpha-Beta Pruning

- Alpha = best already explored option along path to the root for maximizer
- Beta = best already explored option along path to the root for minimizer

Compute step by step

Alpha-Beta Procedure: $V(J; \alpha, \beta)$

- 1. If J is a terminal, return V(J) = h(J)
- 2. If J is a max node:
 - 1. For each successor J_k of J in succession:
 - 1. Set $\alpha = \max \left\{ \begin{matrix} \alpha \\ V(J_k; \alpha, \beta) \end{matrix} \right\}$
 - 2. If $\alpha \geq \beta$, then return β , else continue
 - 2. Return α
- 3. If J is a min node:
 - 1. For each successor J_k of J in succession:
 - 1. Set $\beta = min \begin{cases} \beta \\ V(J_k; \alpha, \beta) \end{cases}$
 - 2. If $\alpha \geq \beta$, then return α , else continue
 - 2. Return β

Knowledge Based System: Logic and Deduction

23/01/2024

Knowledge and Intelligence

How to act given a particular scenario in the environment?

Machine: It is mandatory to have means of representing knowledge

How to represent knowledge in a way that machine can understand?

Represent knowledge in a machine

- We need a language to represent domain knowledge
 - Expect a machine to demonstrate an intelligent behaviour when that machine is left to work in a particular environment in a particular domain, provided we empower the machine with relevant knowledge from that domain
- There must be a method to use the knowledge
 - Understand the knowledge in which it is expressed

Inference

• Interpret knowledge in response to environmental fact that has been sensed

Syntax and semantics of language

- Grammar of a language
- Laughs(Anil) == ?
- Likes(Ashok, Akash) == ?

Logic is one such formal language

Logic

- A formal system for describing states of affairs, consisting of:
 - Syntax: describes how to make sentences, and
 - Semantics: describes the relation between the sentences and states of affairs
- Propositional Logic
- First Order Logic
- Temporal Logic
- Fuzzy Logic

Logical Deduction Propositional Logic

23/01/2024

Objective

• How to represent simple facts in the language of propositional logic?

• How can we interpret propositional logic statement?

• How to compute the meaning of compound proposition?

Propositional Logic

Objects and Relations

- A Proposition (statement) can either be True or False
- Intelligent Anil == Anil is intelligent
- Hardworking_Anil == Anil is hardworking

Towards the Syntax

- Let P stands for Intelligent_Anil
- Let Q stands for Hardworking_Anil
- What does $P \wedge Q$ (P and Q) mean?
- What does P V Q (P or Q) mean?
- P \(\text{Q}\) and P \(\text{V}\) Q are compound propositions

Syntactic Elements of Propositional Logic

- Vocabulary
 - A set of propositional symbols (P, Q, R, etc.) each of which can be True or False
 - Set of <u>logical operators</u>
 - \land (AND), \lor (OR), \sim (NOT), \rightarrow (implies)
 - Parenthesis () used for grouping
 - There are two special symbols
 - TRUE (T) and FALSE (F)
 - These are **logical constants**

How to form propositional sentences?

- Each symbol (a proposition or a constant) is a sentence
- If P is a sentence and Q is a sentence then
 - (P) is a sentence
 - PAQ is a sentence
 - PVQ is a sentence
 - ~P is a sentence
 - $P \rightarrow Q$ is a sentence

Sentences are called well-formed formulae

Propositional Logic

- Given a set of atomic propositions AP
- Sentence → Atom | ComplexSentence
- Atom → True | False | AP
- ComplexSentence → (Sentence)
 - | Sentence Connective Sentence
 - | ~ Sentence
- Connective $\rightarrow \land | \lor | \rightarrow | \Leftrightarrow$

Implication \rightarrow

• P→Q

• If P is true then Q is true

• If it rains then the roads are wet

Equivalence (\Leftrightarrow)

- $P \Leftrightarrow Q$
- If P is True then Q is True and If Q is True then P is True
- If two sides of a triangle are equal then two base angles of the triangle are equal
- $(P \rightarrow Q) \land (Q \rightarrow P)$

Thank You