1. Consider the scenario shown below, with four different servers connected to four different clients over four three-hop paths. The four pairs share a common middle hop with a transmission capacity of R = 200 Mbps. The four links from the servers to the shared link have a transmission capacity of $R_S = 20$ Mbps. Each of the four links from the shared middle link to a client has a transmission capacity of $R_C = 100$ Mbps per second. [10+10+10=30 Marks]

1.1 What is the maximum achievable end-end throughput (in Mbps) for each of four client-to-server pairs, assuming that the middle link is fair-shared (i.e., divides its transmission rate equally among the four pairs)? Provide a brief explanation of your answer.

1.2 Which link is the bottleneck link for each session? and Why?

1.3 Assuming	that the	senders	are	sending	at tl	he	maximum	rate	possible,	what	are	the	link
utilizations for the sender links (R_s) , client links (R_c) , and the middle link (R) ?													

- 2. Consider the scenario below:
 - \bullet A circuit-switching scenario in which $N_{\rm cs}$ users, each requiring a bandwidth of 25 Mbps, must share a link of capacity 100 Mbps.

[10+10 = 20 Marks]

2.1 When circuit switching is used, what is the maximum number of circuit-switched users that can be supported? Explain your answer.

2.2 Now suppose that packet switching is used. Suppose there are 7 packet-switching users (i.e., N_{ps} = 7). Can this many users be supported under circuit-switching? Explain.