Mésoméries, on parle de :

- Kékulé molécule avec un mésomère de type cycle avec un enchaînement π –
- Zwitterion molécule neutre avec des charges formelles induites par une différence d'électronégativité $N-\pi-\sigma-N$.

Deux types de charges

Partielle noté **δ**. Formelle.

Rmq: une charge partielle est toujours inférieure à celle d'un électron.

Force motrice étape irréversible qui permet de favoriser la réaction dans un sens. Par exemple, lorsqu'une réaction produit un gaz c'est à dire la production d'une molécule qui quitte le système.

Électronégativité entre deux atomes : $||u|| = \delta \times d$

Réaction d'oxydo-réduction

Réducteur (par opposition à l'oxydant) atome qui gagne un ou plusieurs électrons.

Degré d'oxydation différence d'électrons autour de l'atome.

Rmq : pour les ions, le degré d'oxydation nombre d'électrons (exemple : Fe³⁺ a un degré d'oxydation d'ordre 3).

La différence d'électronégativité doit être >0,5 ($\Delta\chi>0$,5) pour que l'atome récupère l'électron de l'atome voisin.

Prototrophie réaction acido-basique intra moléculaire qui fait intervenir un intermédiaire réactionnel. Elle est souvent représenter comme une réaction de tautomérie (le mécanisme ne fait pas apparaitre l'intermédiaire).

Tautomérie réaction acide base intra-intramoléculaire. Elle a lieu uniquement entre les atomes formant quatre liaisons.

Transposition déplacement d'une partie de la molécule.

La dissolution

La dissolution dépend de deux phénomènes :

- La solvatation de l'espèce chimique
- La stabilisation des espèces formées. Le nombre de molécules autour des ions dépend de leur taille et de leur charge.

Les types de catalyseurs

Les catalyseurs sont classés en fonction de la solubilité de ce dernier :

Homog	gène (solu	ıble)	Hété	rogène (non soluble)	
_					

Composé de coordination molécule qui possèdent comme atome central un cation ou un métal.

Tableau périodique des atomes les plus présent en biologie :

¹ H Hydrogène					
		 ₆ C	^{7}N	⁸ O	
		Carbone	Azote	Oxygène	
¹¹ Na	¹² Mg		¹⁵ P	¹⁶ S	¹⁷ Cl
Sodium	Magnésium		Phosphore	Soufre	Chlore
¹⁹ K	²⁰ Ca				
Potassium	Calcium				

Réactivité des dérivés acides

Substitution

La substitution se fait en deux états :

- 1. Addition
- 2. élimination

Oxydo-réduction

En présence d'hydrure NaBH4 ou LiAlH4.

$$R \xrightarrow{0.5} H^{-} \longrightarrow R \xrightarrow{0.5} H$$

Pour les acides carboxyliques, on a besoin d'utiliser nécessairement du LiAlH4 pour que le groupement O-R puisse être partant.

Addition

On a besoin d'une molécule électrophile et d'un nucléophile :

Amide et nitrites

En milieu d'hydrure (AlH₄), on a réduction de l'oxygène.

Réactivité des carbonyles

C'est la polarisation de la double liaision par l'oxygène qui rend le carbone nucléophile et ainsi la molécule réactive.

Tautomérie céto-énolique

Les cétones et les aldéhydes sont soumis à des formes de tautomérie.

La configuration peut être renforcée en milieu acide :

Addition

Réduction

Rappel: La réduction est une addition d'hydrogène.

La réduction se fait en présence d'hydrure (H⁻) qui peut être produit par :

Base forte (NaH)	Hydrure métalique (LiAlH ₄ , NaBH ₄)
	H-AKH3

Addition d'alcool (oxydation)

En présence d'H₂O avec une catalyse acide, on a une sur oxydation :

Addition nucléophile

On peut réaliser une addition nucléophile en utilisant un nucléophile fort

$$Nu \rightarrow Nu$$

Pour les nucléophiles faibles, on a besoin d'utiliser un catalyseur acide faudrat utiliser un activateur pour augmenter la polarisation de la double liaison en venant sur l'oxygène.

Catalyse acide ou un métal (Zn ⁺ , Mg ⁺)	En milieu basique	
\sqrt{N} \sqrt{N} \sqrt{N} \sqrt{N} \sqrt{N} \sqrt{N}	05 0H => 0H	

Rmq: si le nucléophile n'est pas suffisament fort, il faut utilisé une molécule électrophile pour augmenter la polarité de la liaison OC. On évitera l'utilisation de solvant protique qui conduiront à la formation d'un alcool.

Chimie en biologie

pKa des groupements (à connaitre par cœur)

Fonction	рКа
Amide	35
Ester	16-17
Alcool II	16-17
Alcool I	15-16
Anhydride d'acyle	16-17
Amine	9-10
Acide carboxylique	4-5

Résumé

- « Un riche attaque un pauvre » un atome riche en électron attaque à un atome pauvre.
- « Un mou c'est-à-dire avec un atome avec plusieurs couches électroniques partira plus difficilement, il sera moins nucléofuge, qu'un atome dur ».

Les mous sont également plus facilement polarisable.

Exemple : le thiol (S) est un bon électrophile mais un mauvais nucléofuge (groupe partant). On le retrouve à pH physiologique à la fois sous la forme S et SH.

Les terpènes

On part toujours de la forme limite de résonnance la plus stable :

1 - Addition nucléophile intramoléculaire avec un mouvement conjugué des électrons

2 - Un grand et un petit cycle (3 et 5) sont préférables à deux cycle à 4 :

4 – Des liaisons C-C peuvent être briser dans le cadre de cycle à 4 atomes :

Exemple de réaction compliquée :

Synthèse des terpènes

La synthèse des terpènes (C5H8)_n

n =	Précurseurs	Classe	
	Isoprène		
2	DMAPP + IPP = géranyle phosphate (GPP)	Monoterpénoide	
4	FPP + IPP	Diterpénoide	
6		Triterpénoide	Stéroide, cholestérol

mono terpénoide

GPP + IPP donne sequiterpénoide

Type de réaction (catalytique ou anabolitique)

Si une réaction régénére les produits de départ alors elle est de type catalytique (dégradation).

Rendre un groupe nucléofuge

Addtion nucléophile sur un groupement phosphate comme ceux de l'ATP.

Rendre un groupement mauvais groupe partant en bon groupe partant.

• AMP (Mg²⁺) permet d'éliminer deux groupements phosphate d'une molécule d'ATP

• Autoprotolyse (réaction acido-basique intramoléculaire)

L'histidine molécule acide-base

Histidine un acide aminé à la fois base et acide

Co-enzyme A

Réaction d'oxydo-réduction

Pour les réactions d'oxydo-réduction en milieu physiologique généralement par l'intermédiaire de :

• NAD+

• FAD+/FADH2 par l'ajout de H+ et H-

Cinétique

Lors d'une réaction avec un intermédiaire réactionnel, c'est l'aspect cinétique qui est dominant.

énergie d'activation énergie minimum

On peut accélérer une réaction en augmentant la température ce qui a pour effet de faciliter :

La rencontre entre les	La vitesse de collision et ainsi leur permettre
molécules	de passer la barrière de l'énergie d'activation

Vitesse de disparition $2A \rightarrow B$

Vitesse	Loi de vitesse
$v = \frac{d[B]}{dt} = -\frac{d[A]}{2 \times dt}$	$v = k[A]^2$

La vitesse de disparition de A est deux fois plus que celle de B.

Réaction élémentaire réaction en une seule étape.

Molarité nombre d'entités chimiques (molécules, ions, radicaux) qui participent à une réaction élémentaire.

Ordre partielle nombre de molécule de chaque espèce.

Ordre de réaction évolution de la concentration de l'espèce.

Calcule de la vitesse en fonction de l'

$$A + B \rightarrow C$$

La vitesse est $v = -\frac{d[A]}{dt}$

Ordre	Loi de vitesse		Loi de la vitesse intégrée
0	v = k	d[A] = -k. dt	A = -kt
1	v = k[A]	$\frac{d[A]}{[A]} = -k.dt$	$A = A_0 e^{-kt}$
2	$v = k[A]^2$	$-\frac{d[A]}{[A]^2} = k. dt$	$\frac{1}{A} = \frac{1}{A_0} + kt$

$$\underline{\text{NB}:} \int_{A_0}^{A} \frac{d[A]}{[A]} = [\ln A]_{A_0}^{A} = \ln A - \ln A_0 = -kdt \iff A = A_0 e^{-kt}$$

<u>Rmq</u>: pour tracer le graphique, on peut linéariser en utilisant $\ln (A)$ Demi-temps de vie, c'est $[A] = \frac{[A]_0}{2}$

Deux méthodes pour déterminer l'ordre d'une réaction :

- Intégrale. On suppose l'ordre de la réaction et tracer la ver, l'ordre correspondra à la représentation graphique d'une droite).
- Différentielle (linéariser la vitesse et déterminer l'ordre à partir du coefficent b de la droite).

Méthode intégrale

On représente f(t)=y pour chacun des ordres :

Ordre	0	1	2
Réprésentation	y = [A]	$y = \ln[A]$	$y = \frac{1}{[A]}$

L'ordre de la réaction correspond à la représentation graphique donnerat une droite.

Méthode différentielle

On trace le graphique $f(\log[A]) = \log v$

Car $\log v = \log k + \log[A]$. Pour rappel la vitesse est la variation de concentration pour une petite unité de temps : $v = -\frac{d[A]}{dt}$

Effet de la température :

$k = Ae^{-\frac{E_a}{RT}}$	k constante de vitesse
110	A facteur de fréquence (même unité que k)
	E_a énergie d'activation j.mol $^{-1}$
	R constante des gaz parfaits 8,314 j.K ⁻¹ .mol ⁻¹
	T température en K

Rmq: lorsque E_a augmente, k diminue et lorsque T augmente k augmente. Plus k est grand plus la réaction est rapide.

Linéarisation et représentation graphique

$$f\left(\frac{1}{T}\right) = \ln K$$

L'énergie d'activation correspond alors au coefficent de la droite.

La dissolution

La dissolution est une réaction chimique qui fait intervenir deux phénomènes :

- Dissociation polarité des molécules du solvant.
- Solvatation stabilisation des espèces formées nombre de molécules autour des ions. Dispersion taille et de la charge.

La catalyse

Il existe deux types de catalyse en fonction de la solubilité de celui-ci :

Homogène (soluble)	Hétérogène (non soluble)		
Cinétique passage par des intermédiaires non stable $K(=Q_r)$ faible.			

Composé de coordination molécule composé d'un cation central ou d'un métal.