МЕТОДЫ РАСЧЕТА ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ НЕФТИ, ГАЗОВЫХ КОНДЕНСАТОВ И ИХ ФРАКЦИЙ

Б.А. Григорьев (ООО «Газпром ВНИИГАЗ»), А.А. Герасимов (Калининградский государственный технический университет)

В работе представлены современные методы расчета теплофизических свойств углеводородных систем неопределенного состава, разработанные авторами на основе наиболее надежных и представительных экспериментальных данных [1–13]. База экспериментальных данных включала теплофизическую и физикохимическую информацию более чем о 300-х веществах (нефть и газовые конденсаты различных месторождений и их фракции различного способа переработки). Все методы расчета построены в рамках одножидкостной модели фракции [14] с использованием минимальной исходной информации о физико-химических свойствах вещества и его составе. В качестве показателей, идентифицирующих фракцию, использованы показатель преломления при температуре 20 °C n_D^{20} (или 70 °C — для высококипящих фракций), относительная плотность ρ_4^{20} (или ρ_4^{70}), молярная масса M (кг/кмоль) и среднеобъемная температура кипения T_{bw} (K).

В данной статье освещены только конечные результаты без описания процедуры разработки того или иного метода и сравнения его с существующими. При этом результаты сравнения с другими методами позволяют полагать, что здесь представлены наиболее надежные и широкодиапазонные методы расчета с большими прогнозными возможностями.

Термодинамические свойства

Плотность жидкой фазы при атмосферном давлении. Плотность ρ_T при температуре T рассчитывается по формуле

$$\rho_T = \rho_0 - \gamma (T - T_0), \tag{1}$$

где γ — температурная поправка плотности, кг·м-³·К-¹, принимается зависящей от углеводородного состава фракции, который косвенно учитывается через интегральные показатели состава — n_D^{20} , ρ_4^{20} , M:

$$\gamma = [1,706 - 43,65/(M \cdot R_E)]^{-1}, \tag{2}$$

где $R_{\rm E}$ – удельная рефракция по Эйкману, определяемая по формуле:

$$R_E = [(n_D^{20})^2 - 1]/[(n_D^{20}) + 0.4)\rho_4^{20}].$$
 (3)

Величина среднего квадратичного отклонения (СКО) в диапазоне температур от 230 К до начала кипения составила 0,39 % при среднем арифметическом отклонении (САО) 0,18 % (в тестирование включены данные о 263 веществах).

Плотность на линии насыщения жидкой фазы. Для расширения температурного диапазона расчета плотности до $0.95T_{pc}$ предлагается следующее уравнение, представляющее модификацию уравнения Филиппова [14]:

$$(\rho^* - 1) = B(1 - \tau)^{\beta} + B_1(1 - \tau), \tag{4}$$

где $\rho^* = \rho/\rho_{pc}$; $\tau = T/T_{pc}$.

Коэффициенты B и B_1 рассчитываются по формулам:

$$B = (b_0 + b_1 \omega + b_2 X_c + b_3 \omega X_c) / (1 + b_4 \omega), \tag{5}$$

$$B_1 = [\rho_0^* - 1 - B(1 - \tau_0)^{\beta}]/(1 - \tau_0), \tag{6}$$

где $b_0=1,988268;$ $b_1=0,5893677;$ $b_2=-0,7467901;$ $b_3=3,049256;$ $b_4=0,59;$ $\tau=T/T_{pc};$ X_c — относительное содержание циклических структур (нафтеновых и ареновых) в усредненной молекуле

вещества. Эта величина достаточно просто определяется методами n_D - ρ -M-анализа [15]. Нижний индекс 0 показывает, что соответствующее свойство определяется при опорной температуре $T_0 = 293,15 \; \mathrm{K}.$

Здесь и в дальнейшем для расчета псевдокритических свойств T_{pc} и P_{pc} , а также ацентрического коэффициента Питцера ω рекомендуется использовать корреляционные соотношения, полученные Кеслером и Ли [16]. Расчет псевдокритической плотности ρ_{pc} рекомендуется проводить по формуле Риази и Доуберта [17]:

$$T_{pc} = 189,833 + 450,56\rho_{15}^{15} + (0,4244 + 0,1174\rho_{15}^{15})T_{bv} + (0,1441 - 1,00688\rho_{15}^{15}) \cdot 10^{5}/T_{bv};$$
(7)

$$ln P_{pc} = 3,38639 - 0,0566/\rho_{15}^{15} - [0,436392 + 4,12164/\rho_{15}^{15} + 0,213426/(\rho_{15}^{15})^2] \cdot 10^{-3}T_{bv} + [4,75794 + 11,81952/\rho_{15}^{15} + 1,530155/(\rho_{15}^{15})^2] \cdot 10^{-7}T_{bv}^{2} - [2,450548 + 9,900986/(\rho_{15}^{15})^2] \times 10^{-10}T_{bv}^{3};$$

$$(8)$$

$$\rho_{pc} = 1796,37T_{bv}^{-0.2896}(\rho_{15}^{-15})^{0.7666}, \tag{9}$$

где T_{pc} , К; P_{pc} , МПа; ρ_{pc} , кг/м³.

Фактор ацентричности Питцера:

• при $T_{bv}/T_{pc} = \tau_b \le 0.8$

$$\omega = \frac{\ln \pi_b - 5,92714 + 6,09648 / \tau_b + 1,28862 \ln \tau_b - 0,169347 \tau_b^2}{15,2518 - 15,6875 / \tau_b - 13,4721 \ln \tau_b + 0,43577 \tau_b^6}; \quad (10)$$

• при $\tau_b > 0.8$

$$\omega = -7,904 + 0,1352K_W - 0,007465K_W^2 + 8,359\tau_b + (1,408 - 0,01063K_W)/\tau_b,$$
(11)

где $\pi_{\rm b}=0.101325/P_{\it pc};\, K_{\it W}=1.216(T_{\it bv})^{1/3}/\rho_{15}^{-15}$ – фактор Ватсона.

Ошибки расчета плотности по уравнению (4) при температурах до $0.9T_{pc}$ составили: СКО = 0.39 %; САО = 0.23 %. Анализ показал, что температурный диапазон прогнозного расчета плотности может быть расширен до $0.99T_c$, если использовать значение «истинной» критической температуры смеси. В результате обобщения

немногочисленных собственных экспериментальных данных о критических свойствах фракций авторы предлагают использовать следующие корреляционные соотношения для расчета «истинных» критических свойств бензиновых фракций:

$$T_c = 12,27776(\rho_A^{20})^{0,2209} \cdot (T_{bv})^{0,655815}; \tag{12}$$

$$T_c = 12,27776(\rho_4^{20})^{0.2209} \cdot (T_{bv})^{0.655815};$$
(12)
$$P_c = 9857565(\rho_4^{20})^{2.6138} \cdot (T_{bv})^{2.3897} \cdot exp(0.1160\alpha);$$
(13)

$$\rho_c = 7630,092(\rho_4^{20})^{1,15} \cdot (T_{bv})^{-0,52},\tag{14}$$

где P_c , МПа; ρ_c , кг/м³; α – угол наклона кривой разгонки по Энглеру $(\alpha = (T_{90} - T_{10})/80).$

В диапазоне температур $0.9T_c - 0.99T_c$ ошибки расчета плотности для двенадцати легких фракций составили: СКО = 2,8 %; CAO = 2.1 %.

Давление насыщенных паров на линиях начала кипения Р' u точек росы P''. Следует отметить, что в литературе практически отсутствуют широкодиапазонные данные о P' и P'', поэтому предлагаемые здесь уравнения рекомендуются для оценочных расчетов. Температурная зависимость описывается уравнением вида:

$$\ln(P'/P'_{0,8}) = \sum_{i=1}^{5} c_i (\tau - 0.8)^i / \tau, \tag{15}$$

где $c_1 = 9,327653$; $c_2 = 16,16218$; $c_3 = -129,2086$; $c_4 = -139,5549$; $c_5 = 1401,412.$

Для расчета опорного значения давления $P'_{0.8}$ при температуре $\tau = 0.8$ предлагается следующее уравнение:

$$ln(P'_{0,8}) = c_0 + c_1[ln(T_{bv}) - (\rho_4^{20})ln(n_D^{20})] + c_2T_{bv} + c_3\rho_4^{20} + c_4\alpha + c_5Y,$$
(16)

где $Y = \{[(n_D^{20})^2 - 1]/[n_D^{20} + 0.4]\} \cdot [(n_D^{20} - \rho_4^{20})/M]; c_0 = -19.12808;$ $c_1 = 4,446168$; $c_2 = -1,2399827 \cdot 10^{-2}$; $c_3 = -2,218662$; $c_4 = 0,6705583$; $c_5 = -137,51.$

Температурная зависимость давления на линии точек росы P''рассчитывается по уравнению (17), но в качестве опорной температуры принято значение $\tau = 0.85$.

$$\ln(P''/P''_{0,8}) = (1 + \omega X_c) \sum_{i=1}^{5} c_i (\tau - 0.85)^i / \tau,$$
 (17)

где $c_1 = 8,848362$; $c_2 = 38,94787$; $c_3 = -315,4668$; $c_4 = -2165,776$; $c_5 = 18291,74$.

Давление в опорной точке $P''_{0,85}$ рассчитывается по уравнению вида (11) с коэффициентами: $c_0=-26,56512;\ c_1=5,428314;\ c_2=-2,158791\cdot 10^{-2};\ c_3=5,26349;\ c_4=-0,1458249;\ c_5=-52,15446.$

Величина СКО для P' в диапазоне температур $0.6 < \tau < 1.0$ составила 8.9 %, а для P'' в диапазоне температур $0.7 < \tau < 1.0 - 5.8$ %. Большие ошибки прогноза объясняются не только сложным и многопараметрическим характером зависимостей P' и P'', но и более высокой погрешностью определения этих величин по результатам P-, ρ -, T- и C_{ρ} -, P-, T-исследований многокомпонентных систем.

Р-, ρ -, **Т-свойства в жидкой фазе.** Для расчета плотности жидкой фазы и других производных свойств при $\rho^* \ge 2$ и T ≤ 600 К предлагается использовать уравнение состояния вида

$$P = K(\tau)\rho^2 + L(\tau)\rho^8, \tag{18}$$

где температурные функции $K(\tau)$ и $L(\tau)$ определяются по уравнениям

$$K^{*}(\tau) = K(\tau) / K(\tau_{0}) = \sum_{i=1}^{3} k_{i} \tau^{i};$$
(19)

$$L^{*}(\tau) = L(\tau) / L(\tau_{0}) = \sum_{i=1}^{3} l_{i} \tau^{i},$$
 (20)

где при $T_{pc} \le 750$ K, $\tau_0 = 0.6$; $k_0 = 5,194997$; $k_1 = -11,56064$; $k_2 = 9,482536$; $k_3 = -3,127349$; $l_0 = 0,6243408$; $l_1 = 0,838046$; $l_2 = 1,007374$; $l_3 = 1,081703$.

Опорные значения коэффициентов определяются по соотношениям

$$K(\tau_0)(\rho_4^{20})^2 = k_0 + k_1 T_{pc} + k_2 [(13 - K_w)(10 - K_w)] + k_3 \omega;$$
 (21)

$$L(\tau_0)(\rho_4^{20})^8 = l_0 + l_1 T_{pc} + l_2 [(13 - K_W)(10 - K_W)] + l_3 \omega, \tag{22}$$

где $k_0 = 29,40516$; $k_1 = -0,3175597$; $k_2 = 2,186032$; $k_3 = 130,6964$; $l_0 = -375,9973$; $l_1 = 1,075399$; $l_2 = 3,413777$; $l_3 = -212,4517$.

Для повышения точности прогнозных расчетов рекомендуется производить корректировку значений коэффициентов уравнения (18) по экспериментальному значению относительной плотности ρ_4^{20} . Скорректированные значения коэффициентов определяются по соотношениям $K=Kcor^2, L=Lcor^8, cor=1000\rho_4^{20}/\rho_{20}^{pacu}$, где ρ_{20}^{pacu} – значение плотности при атмосферном давлении (кг/м³) и температуре $T_0=293,15$ К, рассчитанное по уравнению (18) без корректировки коэффициентов. Результаты тестирования уравнения (18) представлены в табл. 1.

Таблица 1 Средние квадратичные и средние арифметические отклонения результатов расчета плотности по обобщенному уравнению состояния (18)

Вещество, источник	Число	Число	Ошибки расчета, %	
	веществ	точек	CKO	CAO
Нефти и нефтяные фракции [1,2,5]	146	3951	0,40	0,24
Фракции газоконденсатов [8]	3	80	0,98	0,68
Газоконденсаты и фракции [12]	12	392	0,75	0,52
Газоконденсаты и фракции [9]	26	855	0,69	0,49
Газоконденсаты и фракции [13]	19	1132	1,04	0,68
Газоконденсаты и фракции [8, 9, 12, 13]	60	2459	0,85	0,58

Изобарная меплоемкость на линии насыщения. Для прогнозных расчетов C_p в жидкой фазе при атмосферном давлении либо на линии насыщения при $\tau \le 0.85$ предлагается уравнение вида:

$$\rho \Delta C_p = c_0 + c_1 \tau^2 + [c_2 + c_3 (1 - \tau)^4 + c_4 \tau^2 + c_5 X_c (1 - \tau)^4] / (1 + \omega), (23)$$

где
$$\Delta C_p = C_p - C_p^{\text{ o}}$$
, кДж·кг⁻¹·К⁻¹; $c_0 = 183,914$; $c_1 = -414,326$; $c_2 = 163,442$; $c_3 = 893,999$; $c_4 = 593,666$; $c_5 = 2370,43$.

Значения плотности ρ рассчитываются по уравнению (4), а идеально-газовая теплоемкость может быть определена по уравнению Кеслера и Ли [16]. Ошибки расчета C_p по уравнению (23) составили: СКО = 1,9 %, САО = 1,4 % (тестирование проведено для 240 веществ без ограничений по углеводородному составу смесей). Для легких газоконденсатных и нефтяных фракций

 $(T_{bv} \le 450 \text{ K})$ прогнозные расчеты теплоемкости на линии начала кипения C'_p и линии точек росы C''_p вплоть до $0.99T_c$ могут быть выполнены с использованием следующих соотношений:

$$\Delta C'_{p} = c_{0} + c_{1}\omega + c_{2}(1+\omega)(1-\tau)^{3} + c_{3}(1+\omega)\tau + c_{4}(1-\tau)^{-0.8} exp[c_{5}(1/\tau-1)],$$
(24)

где т = T/T_c ; c_0 = -30,0334; c_1 = 32,2544; c_2 = 174,099; c_3 = 75,6304; c_4 = 11,01534; c_5 = -13,974; $\Delta C'_p$, кДж·кмоль⁻¹·К⁻¹.

$$\Delta C_p'' = c_0 (1 - \tau)^{-0.5} (1 - \omega)^{F(\tau)} \exp \left[\sum_{i=1}^3 c_i (1/\tau - 1)^i \right], \tag{25}$$

где $F(\tau)=-6,6\{1-exp[-0,1/(1-\tau)]\}; c_0=2,0379; c_1=-21,62356; c_2=49,05584; c_3=-51,04731; \Delta C''_p,$ кДж·кмоль-¹-К-¹.

Средние квадратичные ошибки расчета C_p по уравнениям (24) и (25) для семи исследованных фракций соответственно составили 1,20 и 1,74 % при максимальных отклонениях 3,40 и 3,78 %.

Энтальпия и энтропия налинии насыщения. Представленные уравнения получены путем обобщения авторских экспериментальных данных о свойствах семи исследованных бензиновых фракций. Энтальпия H' и энтропия S' на линии начала кипения в диапазоне температур $0.55 \le \tau \le 1.0$ рассчитываются по уравнениям:

$$[(H_c - H_c^0) - (H' - H^0)]/RT_c = h_1(1 - \tau) + h_2(1 - \tau)^2 + h_3(1 - \tau)^{\beta_0} + \omega[h_4(1 - \tau) + h_5(1 - \tau)^2 + h_6(1 - \tau)^{\beta_1}],$$
(26)

где $h_1=0.34384;\ h_2=-2.3010;\ h_3=4.1444;\ \beta_0=0.442;\ h_4=-4.5433;\ h_5=20.3731;\ h_6=6.6264;\ \beta_1=0.403;\ (H_c-H_c^{\rm o})/RT_c=5.5944-10.0581\omega+23.67\omega^2;$

$$[(S_c - S_c^0) - (S' - S^0)]/R = s_1(1 - \tau)/\tau + s_2(1 - \tau)^2/\tau + s_3(1 - \tau)^{\beta_0}/\tau + \omega[s_4(1 - \tau)/\tau + s_5(1 - \tau)^2/\tau + s_6(1 - \tau)^{\beta_1}/\tau],$$
(27)

где $s_1=2,03515$; $s_2=-6,001$; $h_3=2,26998$; $\beta_0=0,332$; $s_4=-9,5620$; $s_5=14,830$; $s_6=9,25085$; $\beta_1=0,409$; $(S_c-S_c^{\ 0})/R=7,5259-19,4864\omega++42,21\omega^2$; H_c , S_c , — значения энтальпии и энтропии в критической точке.

В уравнениях (26) и (27) в качестве точки отсчета принято состояние насыщенной жидкости при $\tau = 0,55$. Величина СКО для H' составила 2,73 кДж·кг⁻¹, а для S' - 0,009 кДж·кг⁻¹.К⁻¹, что весьма близко к погрешности определения этих величин интегрированием C_n -, P-, T-данных.

Энтальпия ΔH_{ν}^{T} и энтропия ΔS_{ν}^{T} испарения при постоянной температуре могут быть рассчитаны по формулам:

$$\Delta H_{\nu}^{T}/RT_{c} = 7,086(1-\tau)^{0,349} + 12,04\omega(1-\tau)^{0,446},$$
 (28)

$$\Delta S_{\nu}^{T}/R = 6,2984(1-\tau)^{0,338}/\tau + 15,0871(1-\tau)^{0,452}\omega/\tau + 11,8228(1-\tau)\alpha - 30,5553(1-\tau)\alpha\omega.$$
 (29)

Величина СКО для уравнения (28) составила 1,49 %, а для уравнения (29) -1,91 %.

Изобарная меплоемкость в широком диапазоне параметров состояния. Уравнения (18) и (23) позволяют производить расчет C_p в жидкой фазе при $\rho^* \ge 2$, используя аппарат дифференциальной термодинамики. В частности, из УС в форме (18) следует:

$$C_{p}(p,T) = C_{p}(p_{1},T) + T[(K'\rho^{2} + L'\rho^{8})^{2}/(2K\rho^{3} + 8L\rho^{9}) - (K'\rho_{1}^{2} + L'\rho_{1}^{8})^{2}/(2K\rho_{1}^{3} + 8L\rho_{1}^{9}) - K''(\rho - \rho_{1}) - -L''(\rho^{7} - \rho_{1}^{7})/7],$$
(30)

где нижний индекс 1 относит соответствующее свойство к атмосферному давлению либо давлению насыщения; K, L, K', L', K'', L''— соответственно температурные функции уравнения состояния (18) и их первые и вторые производные.

Погрешности расчета для нефтяных фракций составили: СКО = 1,22 %, САО = 1,05 %. Для прогнозных расчетов C_p , H, S, легких нефтяных и газоконденсатных фракций рекомендуется использовать обобщенное уравнение состояния Ли и Кеслера [18]. Анализ показал, что оно может быть рекомендовано в жидкой и газовой фазах, а также в сверхкритической области. Средние квадратичные ошибки расчета C_p для различных фракций, как правило, находились в диапазоне 1,2–2,5 %. Уравнение не рекомендуется использовать в критической области, ограниченной

снизу пограничной кривой, а сверху линией, описанной уравнением (31):

$$P/P_c = \sum_{i=1}^{5} p_i(p^*)^i,$$
 (31)

где $p_1 = -3,117909$; $p_2 = 21,87373$; $p_3 = -29,76725$; $p_4 = 16,09147$; $p_5 = -3,175087$.

Коэффициенты переноса

Коэффициент динамической вязкости. В результате компьютерного эксперимента была определена форма интерполяционного уравнения, которая наилучшим образом передает поверхность состояния вязкости исследуемых веществ. Интерполяционное уравнение имеет вид:

$$\Delta \eta^* = \exp[AX^{1.5} + BX^3 + CX^8 + DX^{10.5} \ln(\tau_{\epsilon})] - 1, \tag{32}$$

где приведенная вязкость $\Delta \eta^*$ определяется по соотношению:

$$\Delta \eta^* = (\eta - \eta^{\circ}) V^{2/3} / (MT)^{1/2}. \tag{33}$$

Здесь η° — вязкость разреженного газа, мкПа·с, определяемая по формуле Стила и Тодоса:

$$\eta^{\circ}\xi = 1,5643\tau^{0,94}$$
 при $\tau < 1,5,$ (34)

где $\xi = T_{pc}^{-1/6}/M^{1/2}/P_{pc}^{-2/3}; \, \tau = T/T_{pc}; \, \eta^{\circ}, \, \text{мкПа·c}; \, P_{pc}, \, \text{МПа}; \, V$ — молярный объем, см³/моль.

Переменная X определяется по соотношению

$$X = \rho_{\varepsilon}^*/[\tau_{\varepsilon}^{\rho 1}], \tag{35}$$

где $\tau_{\xi} = T/T_{\xi}; \, \rho_{\xi}^* = \rho/\rho_{\xi}; \, \rho 1 = 0, 1(\rho_{\xi}^*)^5.$

Температура фиксированного значения вязкости T_{ξ} определяется по обобщенной зависимости

$$T_{\xi}/T_{pc} = 0.6592591 - 0.1709597Y - 0.01088077K_{w} - 0.0721121Y/(K_{w} - 9) + 0.1077843Y^{2} + 0.0226019(M/100),$$
 (36)

где Y — характеристический комплекс, определяемый по формуле (10); K_w — фактор Ватсона.

$$Y = 100[(n_D^{\ 0})^2 - 1](n_D^{\ 0} - \rho_4^{\ 0})/[M\rho_4^{\ 0}(n_D^{\ 0} + 0.4)]. \tag{37}$$

Вид переменной X определялся таким образом, чтобы исключить расслоение избыточной вязкости по изотермам. Небольшое расслоение учитывается последним слагаемым под экспонентой в уравнении (32). Плотность ρ при температуре T и давлении P рассчитывается по УС (18). Опорное значение плотности ρ_{ξ} при температуре T_{ε} и давлении $P = P_{pc}$ также рассчитывают по УС (18).

Коэффициенты A, B, C, D зависят от индивидуальных свойств веществ и определяются по соотношению (F = A, B, C, D)

$$F = f_0 + f_1 Y + f_2 (K_w/10) + f_3 (K_w/10)^2.$$
 (38)

Значения коэффициентов уравнения (37), аппроксимированных зависимостью (32), представлены в табл. 2.

Таблица 2 Значения коэффициентов уравнения (38)

Коэффициент	f_0	f ₁	f_2	f ₃
Α	-75,095609	7,7282428	139,27582	-61,990086
В	131,62054	-10,954723	-231,37228	102,94091
С	-48,221585	3,2622499	84,669971	-37,267337
D	-24,118043	0,05563355	41,902559	-18,234842

Плотность рассчитывается по уравнению состояния (18). Распределение ошибок расчета представлено гистограммами, показанными на рис. 1. Там же даны значения СКО и САО. Для газовых конденсатов и их фракций ошибки расчета весьма существенны. Однако, по мнению авторов, это характеризует точность экспериментальных данных. Использование других, опубликованных в литературе, методов расчета не приводит к лучшим

СБОРНИК НАУЧНЫХ СТАТЕЙ

Рис. 1. Гистограмма отклонений экспериментальных данных о вязкости от рассчитанных по уравнению (32): а – газовые конденсаты и их фракции; б – нефти и нефтяные фракции

результатам. В то же время для нефтяных фракций предлагаемое уравнение имеет наиболее высокую точность.

Коэффициент теплопроводности. Для прогнозного расчета коэффициента теплопроводности предлагаются две близкие по точности методики расчета, основанные на разных формах интерполяционных уравнений. Первая форма имеет вид

$$\Delta \lambda^* = \frac{C_1 \rho_{\lambda}^* + C_2 \rho_{\lambda}^* / \tau_{\lambda} + C_3 \rho_{\lambda}^* / \tau_{\lambda}^2 + C_4 \rho_{\lambda}^{*2} / \tau_{\lambda}^3}{1 + C_5 \rho_{\lambda}^* / \tau_{\lambda}^5},$$
 (39)

где $\Delta\lambda^* = (\lambda - \lambda^0)\Lambda_{\lambda} \cdot 10^4; \ \Lambda_{\lambda} = 1/(T^{1/2}M^{1/6}\rho^{2/3}); \ \lambda, \ \lambda^0, \ \mathrm{Bt/(m\cdot K)}; \ \rho_{\lambda}^{\ *} = \rho/\rho_{\lambda}; \ \tau_{\lambda} = T/T_{\lambda}.$

Температура фиксированного значения теплопроводности рассчитывается по уравнению

$$T_{\lambda}/T_{pc} = c_0 + c_1 Y + c_2 Y^2 + c_3 (K_w - 10) + c_4 (K_w - 10)^2 + c_5 Y(K_w - 10), \tag{40}$$

где $Y = R_E(n_D^{-20} - \rho_4^{-20})/M$; $c_0 = 0.180689$; $c_1 = 1.279527$; $c_2 = -0.443805$; $c_3 = 0.032758$; $c_4 = 0.020290$; $c_5 = -0.180112$.

Плотность ρ рассчитывается по уравнению состояния (18). Опорное значение плотности ρ_{λ} при температуре T_{λ} и давлении $P = P_{pc}$ также рассчитывается уравнению состояния (18). Теплопроводность разреженного газа λ^0 рассчитывается по формуле

$$\lambda^0 \cdot 10^3 = \frac{\eta^0}{M} (16,75 + 1,15C_v^{\infty}), \tag{41}$$

где λ^0 , Вт/(м·К); η^0 , мкПа·с; C_{ν}^{∞} – изохорная теплоемкость в состоянии идеального газа, кДж/(кмоль·К); M – молярная масса, кг/кмоль. Величину η^0 рассчитывают по формуле Стила и Тодоса (34), а идеально-газовую теплоемкость определяют по разработанной авторами n- ρ -M-методике [19].

Коэффициенты C_i уравнения (39) были аппроксимированы двухпараметрической зависимостью (37). Значения коэффициентов c_{ij} представлены в табл. 3.

$$C_i = c_{i0} + c_{i1}Y + c_{i2}(K_w - 10) + c_{i3}Y(K_w - 10) + c_{i4}Y^2.$$
 (42)

Таблица 3 **Значения коэффициентов** c_{ij} **уравнения (42)**

C _{ij}	C ₁	C ₂	C ₃	C ₄	C ₅
C_{i0}	0,204390.10-2	1,680487	-2,904145	1,686053	0,838634
<i>C</i> _{i1}	-0,695245	-1,122808	4,206791	-2,740641	-1,296082
<i>C</i> _{/2}	-0,229917	0,313671	0,190280	-0,341391	-0,264053
<i>C</i> _{/3}	0,116596	-0,034522	-0,597869	0,646504	0,479159
C _{i4}	1,476049	-1,496842	-0,525802	0,549570	0,0

Вторая форма (уравнение (43)) была установлена в результате анализа экспериментальных данных. В основу положен экспериментально установленный факт – прямолинейный (либо близкий к нему) характер изотерм теплопроводности в жидкой фазе.

В безразмерной форме интерполяционное уравнение имеет вид

$$\Delta \lambda^* = A(\tau_{\lambda}) \rho_{\lambda}^{*2} + B(\tau_{\lambda}) \rho_{\lambda}^{*8}; \tag{43}$$

$$A(\tau_{\lambda}) = A_0 + A_1/\tau_{\lambda} + A_2/\tau_{\lambda}^{2}; \tag{44}$$

$$B(\tau_{\lambda}) = B_0 + B_1/\tau_{\lambda}. \tag{45}$$

Анализ зависимости коэффициентов A_i и B_i в уравнениях (43) и (44) показал, что эти зависимости также являются многофакторными, но с достаточной точностью для обобщения может быть использована двухпараметрическая зависимость (42). То есть коэффициенты A_i и B_i определяются по уравнениям

$$A_i = a_{i0} + a_{i1}Y + a_{i2}(K_w - 10) + a_{i3}Y(K_w - 10) + a_{i4}Y^2;$$
 (46)

$$B_i = b_{i0} + b_{i1}Y + b_{i2}(K_w - 10) + b_{i3}Y(K_w - 10) + b_{i4}Y^2.$$
 (47)

Значения коэффициентов a_{ii} и b_{ii} представлены в табл. 4.

Таблица 4 **Значения коэффициентов** *а*_и **и** *b*_и **в уравнениях (46), (47)**

i, j	A_0	A_1	A_2	B_{0}	B ₁
<i>i</i> , 0	0,15519727	0,5273538	-0,39723886	-0,33422569	0,30709824
<i>i</i> , 1	0,24478143	-2,612638	2,3526207	1,5774289	-1,5849624
i, 2	-0,12682638	0,26076327	-0,18329726	0,007405679	0,03780367
i, 3	0,54566064	-1,7456126	1,2611914	0,53715452	-0,58605539
i, 4	-2,3297041	9,6474196	-7,3137163	-4,0344172	4,0298514

Результаты тестирования уравнения (39) представлены гистограммами отклонений, показанными на рис. 2. Там же указаны значения СКО и САО. Для нефтяных фракций ошибки прогноза близки к погрешностям экспериментальных данных; для газовых конденсатов и их фракций — примерно в два раза больше. Уравнение (43) в том же диапазоне параметров характеризуется следующими показателями точности:

- газовые конденсаты и их фракции: СКО = 6,6 %, САО = 4,5 %;
- нефти и нефтяные фракции: СКО = 3,3 %, CAO = 2,5 %.

Рис. 2. Гистограмма отклонений экспериментальных данных о теплопроводности от рассчитанных по уравнению (39) с ограничением по температуре $T \le 600$ K: а – газовые конденсаты и их фракции; б – нефти и нефтяные фракции

Список литературы

- 1. Γ ригорьев E.A. Исследование теплофизических свойств нефтей, нефтепродуктов и углеводородов: дис. ... докт. техн. наук. Грозный: ГНИ, 1979. 524 с.
- $2.\ \mathit{Курумов}\ \mathcal{A}.\mathit{C}.$ Термические свойства н-алканов и фракций Мангышлакской нефти в жидком и газообразном состояниях: дис. ... докт. техн. наук. Грозный, 1991.-440 с.

- 3. *Богатов* Γ . Φ . Теплопроводность индивидуальных углеводородов и нефтепродуктов в жидком состоянии: дис. ... докт. техн. наук. Грозный, 1992. 424 с.
- 4. *Герасимов А.А*. Калорические свойства нормальных алканов и многокомпонентных углеводородных смесей в жидкой и газовой фазах, включая критическую область: дис. ... докт. техн. наук. Калининград, 2000. 434 с.
- 5. *Овчинников Н.А*. Плотность нефтяных фракций и нефтепродуктов, полученных физическими и каталитическими процессами переработки нефти: дис. ... канд. техн. наук. Грозный, 1992. 169 с.
- 6. *Болдырев Д.В.* Разработка методов расчета вязкости нефтепродуктов: дис. ... канд. техн. наук. Грозный, 1994. 227 с.
- 7. *Магомадов А.С.* Исследование вязкости газовых конденсатов и их фракций при различных температурах и давлениях: дис. ... канд. техн. наук. Краснодар: КПИ, 1978. 190 с.
- 8. Экспериментальное исследование термодинамических свойств и коэффициентов переноса газоконденсатов и легких фракций нефтей в жидкой и паровой фазах: отчет о НИР / Калининград. техн. ин-т рыб. пром. и хоз. Калининград, 1993. 107 с.
- 9. *Муталибов А.А.* Таблицы рекомендуемых справочных данных. Плотность газовых конденсатов и их фракций / А.А. Муталибов, В.В. Шубин, А.А. Абдурахманов и др. // ВНИЦ МВ Госстандарта СССР. М., 1989. 67 с. Деп. в (ГСССД Р307-89).
- 10. *Муталибов А.А.* Таблицы рекомендуемых справочных данных. Теплопроводность газовых конденсатов и их фракций / А.А. Муталибов, В.В. Шубин, Г.Н. Махмудов и др. // ВНИЦ МВ Госстандарта СССР. М.,1989. 40 с. Деп. в (ГСССД Р309-89).
- 11. *Муталибов А.А.* Таблицы рекомендуемых справочных данных. Вязкость газовых конденсатов и их фракций / А.А. Муталибов, В.В. Шубин, А.А. Абдурахманов и др. // ВНИЦ МВ Госстандарта СССР. М., 1989. 56с. Деп. в (ГСССД Р308-89).
- 12. Экспериментальное исследование теплофизических свойств стабильных газовых конденсатов и их фракций в жидкой фазе: отчет о НИР / Кубанский государственный технологический университет; руководитель А.С. Магомадов. Тема № 112.04.14. Краснодар: КГТУ, 1994. 171 с.
- 13. *Казарян В.А.* Теплофизические свойства индивидуальных углеводородов и газовых конденсатов / В.А. Казарян. М.: Техника, 2002.-448 с.

- 14. Жидкие углеводороды и нефтепродукты / под. ред. М.И. Шахпоронова, Л.П. Филиппова. М.: Изд-во МГУ, 1989. 192 с.
- 15. Ван-Нес К. Состав масляных фракций нефти и их анализ / К. Ван-Нес, Х. Ван-Вестен. М.: Иностранная литература, 1954. 463 с.
- 16. *Kesler M.G.* Improve prediction of enthalpy of fractions / M.G. Kesler, B.I. Lee // Hydrocarbon Processing. 1976. V. 55, No 3. P. 153–158.
- 17. *Riazi M.R.* Characterization parameters for petroleum fractions / M.R. Riazi, Th.E. Daubert // Ind. Eng. Chem. Res. 1987. V. 26, No 4. P. 755–759.
- 18. *Lee B.I.* A generalized thermodynamic correlation based on three-parameter corresponding states / B.I. Lee, M.G. Kesler // AIChE Journal. 1975. V. 21, No 3. P. 510–527.
- 19. *Григорьев Б.А.* Теплофизические свойства нефти, газовых конденсатов и их фракций / Б.А. Григорьев, Г.Ф. Богатов, А.А. Герасимов; под ред. Б.А. Григорьева. М.: Изд-во МЭИ, 1999. 372 с.