WN Sheet 5 Sol.

WI-FI

1) Compare BSS and IBSS?

Solution

A basic service set is a set of stations that can communicate with one another

BSS (Infrastructure Basic Service Set)	IBSS (Independent Basic Service Set)	
Ad hoc Mode	Infrastructure Mode (Default)	
No AP	Has APs	
Stations communicate with each other	Stations communicate with each other	
directly	via AP	

2) Explain the Association Process

Solution

- 1. Client sends a probe to all nearby APs (to discover networks in the range); this is known as active probing
 - APs in range send a probe response to the client (contains basic info such as network name)
- 2. Client evaluates AP responses and selects best AP
- 3. Client sends authentication request to selected AP
 - o AP confirms authentication and registers client
- 4. Client sends association request to selected AP
 - AP confirms it and registers client by setting for it a unique association ID
 - This makes logical connection between the AP
 and the station; now data can transmit from station to AP.

In summary, probe req/response, selection, authentication req/response, association req/response

3) What are the Interframe spaces used in NAV?

Solution

- o DIFS (DCF Interframe Space)
 - Time interval that must be waited before beginning transmission while sensing an idle channel
 - Can be used to prioritize stations
 - \Rightarrow If a station has smaller *DIFS* than another one, and both finish backoff in the same time then only the one with smaller *DIFS* will be able to transmit
 - When the network uses both DCF and PCF, this is used in the contention phase where the AP does not govern access to the channel
- o PIFS (PCF Interframe Space)
 - Used by access point to get prioritized access (DIFS > PIFS) of the channel before any other station can claim access.
- o *EIFS* (Extended Interframe Space)
 - Suppose a station transmitted a frame that was erroneously received (known by absence of acknowledgement)
 - ⇒ Then the next time it senses the channel as free to retransmit, it will have to wait (keep sensing) for EIFS rather than DIFS where EIFS > DIFS. The long duration may help the transmitter to recover from what could have caused the error.
- o SIFS (Short Interframe Space)
 - Shortest interframe space
 - \Rightarrow Thus, *EIFS* > *DIFS* > *PIFS* > *SIFS*
 - Between any two frames in the same transmission between sender and receiver and for the time to be waited before acknowledgement from the receiving station can be sent
 - \Rightarrow A transmission takes the form $RTS \rightarrow CTS \rightarrow Data \rightarrow Ack$

4) How is fragmentation handled in 802.11?

Solution

Each fragment is a frame that carries the ordinary 802.11 header. However, all fragments will have the same sequence number but incrementing fragment numbers specified in *SequenceConrol*. All fragments except for the last will set *MoreFrag* of *FrameControl* as 1. Thus, they can be reassembled into the message at the receiver.

Each fragment is acknowledged separately and thus, if an error occurs to a message only the corresponding fragment will have to be resent.

5) What are the frame types in 802.11? Give one example of each

Solution

O Type

- → The type of the frame (data, control, management)
 - Data when sending data (10)
 - Control when sending control frames (01)
 - » For example: RTS, CTS, ACK
 - Management when engaging in IEEE 802.11 services and power saving (00)
 - » For example: Probe Reg/Resp, Association Reg/Resp, Authentication, etc.

6) What is the use of "To Ds" and "From Ds" frame bits in 802.11 frame?

Solution

O To/From DS

- → Recall, DS is distribution system (network of APs)
 - Hence, if From/To DS is 1 then the frame comes from/will go to AP
 - If its 0 then that's equivalent to From/To STA

→ Conclusively,

From DS	To DS	Meaning
0	0	Data frame goes from station to station in the independent basic service set (ad-hoc mode where there are no APs)
0	1	Data frame destined to DS (AP) and coming from Station
1	0	Data frame destined to Station and coming from DS (AP)
1	1	Data frame being distributed from one AP to another in the wireless distribution system (WDS)

// Will assume to be memorized in the exam

→ The fields are not used (set to zero) if the frame is not a data frame (management or control).

7) What kind of error detection is used in 802.11?

Solution

Error detection via CRC (Cylic Redunancy Check). In particular, in the trailer there is a FrameCheckSequence (FCS) 32 - bit field which is obtained using long division while involving all fields in the header and the body of the frame