MAC 0460 / 5832 Introduction to Machine Learning

15 - Validation

•

IME/USP (09/06/2021)

We have seen that E_{in} is computed over the training set

 E_{in} is a (super)optimistic estimate of E_{out}

$$E_{out} = E_{in} + {\rm generalization_error}$$

Minimizing only E_{in} will lead to overfitting

Overfitting

"fitting the data more than is warranted"

Fitting to noisy data (stochastic noise)

Model noise ?? (deterministic noise, according to prof. Abu-Mostafa)

Two fits for each target

Noisy low-order target		
	2nd Order	10th Order
$E_{ m in}$	0.050	0.034
$E_{ m out}$	0.127	9.00

Noiseless high-order target			
	2nd Order	10th Order	
$E_{ m in}$	0.029	10^{-5}	
$E_{ m out}$	0.120	7680	

A detailed experiment

Impact of noise level and target complexity

$$y = f(x) + \underbrace{\epsilon(x)}_{\sigma^2} = \sum_{\substack{q=0 \text{normalized}}}^{Q_f} \alpha_q x^q + \epsilon(x)$$

noise level: σ^2

target complexity: Q_f

data set size: N

The overfit measure

We fit the data set $(x_1, y_1), \dots, (x_N, y_N)$ using our two models:

 \mathcal{H}_2 : 2nd-order polynomials

 \mathcal{H}_{10} : 10th-order polynomials

Compare out-of-sample errors of

 $g_2 \in \mathcal{H}_2$ and $g_{10} \in \mathcal{H}_{10}$

overfit measure: $E_{
m out}({\color{red}g_{10}}) - E_{
m out}({\color{red}g_2})$

The results

Overfitting

Stochastic noise – Too much effort to reduce E_{in} leads to fitting to the noise in the data

Deterministic noise – This is very subtle (my opinion)

A good example to illustrate this is the senoid example

There is "a right complexity \mathcal{H} " for each target and amount N of training data.

and the winner is ...

Validation versus regularization

In one form or another,
$$E_{
m out}(h) \, = \, E_{
m in}(h) \, + \, {
m overfit}$$
 penalty

Regularization:

$$E_{
m out}(h) = E_{
m in}(h) + {
m overfit\ penalty} _{
m regularization\ estimates\ this\ quantity}$$

Validation:

$$\underbrace{E_{\rm out}(h)}_{\rm validation\ estimates\ this\ quantity} = E_{\rm in}(h)\ +\ {\rm overfit\ penalty}$$

How to compute a better estimate of E_{out} ?

Validation error

Partition the existing dataset into two subsets:

$$D = D_{train} \cup D_{val}$$

D_{train} is used for training and for computing E_{in}

 D_{val} is used to compute E_{val}

E_{val} is an unbiased estimate of E_{out}

$$E[E_{val}(g)] = E_{out}(g)$$

Let $K = |D_{val}|$. Then

$$E_{val}(g) = E_{out}(g) \pm O(\frac{1}{K})$$

Chapter 5 of the book "Machine Learning", by Tom Mitchell shows how to compute a confidence interval for E_{out}

That is, an interval $E_{val} \pm \Delta$ that contains E_{out} with high probability ($\Delta = O(\frac{1}{\sqrt{K}})$)

Large $K = |D_{val}|$ yields a good estimate of E_{out} (small variance) but at the same time, with less training data, E_{out} tend to be larger than when using the whole dataset

$$K = |D_{val}|$$

 E_{in} , $E_{out} \times$ training samples

Mean and variance of E_{val}

$$E_{out} \leq E_{val} + O(\frac{1}{\sqrt{K}})$$

Sample set D is finite. There is a trade-off.

- large $|D_{val}| \rightsquigarrow \text{small } |D_{train}|$ (small amount of training data) $\rightsquigarrow \text{large } E_{out}$ and $E_{val} \approx E_{out}$
- small $|D_{val}| \rightsquigarrow$ large $|D_{train}| \rightsquigarrow$ it is possible that E_{out} is small, but E_{val} has large variance

We could train a hypothesis g on D and report E_{val} of the hypothesis g^- trained on D_{train} (but $E_{val}(g^-)$ is not an estimate of $E_{out}(g)$)

In practice, K = N/5 is a good choice

The dilemma about K

The following chain of reasoning:

$$E_{
m out}(g){pprox}E_{
m out}(g^-){pprox}E_{
m val}(g^-) \ {}_{
m (large}\;K)$$

highlights the dilemma in selecting K:

Can we have K both small and large? \odot

Leave one out

N-1 points for training, and 1 point for validation!

$$\mathcal{D}_n = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{n-1}, y_{n-1}), \frac{(\mathbf{x}_n, y_n)}{(\mathbf{x}_n, y_n)}, (\mathbf{x}_{n+1}, y_{n+1}), \dots, (\mathbf{x}_N, y_N)$$

Final hypothesis learned from $\,\mathcal{D}_n\,$ is $\,g_n^-$

$$\mathbf{e}_n = E_{\mathrm{val}}(g_n^-) = \mathbf{e}\left(g_n^-(\mathbf{x}_n), y_n\right)$$

cross validation error: $E_{\mathrm{cv}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{e}_{n}$

Leave-one-out cross-validation

Training is repeated N = |D| times

At training round i,
$$D_{train}^{(i)} = D \setminus \{\mathbf{x}^{(i)}\}$$
 and $D_{val}^{(i)} = \{\mathbf{x}^{(i)}\}$

$$i=1$$

$$i=2$$

$$i=3$$

$$\cdots$$

$$i=\cdots$$

Cross-validation error:
$$E_{cv} = \frac{1}{N} \sum_{i=1}^{N} E_{val}^{(i)}$$

Illustration of cross validation

$$E_{\rm cv} \, = \frac{1}{3} \left(\, {f e}_1 \, + \, {f e}_2 \, + \, {f e}_3 \,
ight)$$

 g^- : hypothesis trained on N-1 examples

We can show that E_{cv} is an unbiased estimator of $E[E_{out}(g^-)]$

$$E_{
m out}(g){pprox}E_{
m out}(g^-){pprox}E_{
m val}(g^-)$$
 (small K) (large K)

k-fold cross validation

Divide D into k parts D_1, D_2, \ldots, D_k of approximately equal sizes Repeat the training k times At training round i, $D_{train}^{(i)} = D \setminus D_i$ and $D_{val}^{(i)} = D_i$

Example with k = 5 (five folds):

Cross-validation error:
$$E_{cv} = \frac{1}{k} \sum_{i=1}^{k} E_{val}^{(i)}$$

12

Is E_{cv} a good estimator of E_{out} ?

k models $\rightsquigarrow k$ values for $E_{out} \rightsquigarrow$ average \overline{E}_{out}

It can be demonstrated that E_{cv} is an unbiased estimator of \overline{E}_{out}

The variance of E_{cv} can not be easily computed

Empirically, it has been observed that E_{cv} is a good estimator of \overline{E}_{out}

Further reading:

 Dietterich, Thomas G., Approximate statistical tests for comparing supervised classification learning algorithms, Neural Comput., 10(7), p.1895-1923, 1998

13

• Chapter 7 of "The Elements of Statistical learning", by Hastie et al.

Can we do better?

There are a lot of discussions in literature about how to get unbiased estimates of E_{out} with small variance, etc

Further reading:

- Dietterich, Thomas G., Approximate statistical tests for comparing supervised classification learning algorithms, Neural Comput., 10(7), p.1895-1923, 1998
- Chapter 7 of "The Elements of Statistical learning", by Hastie et al.

• for the holdout method ($D=D_{train}\cup D_{val}$) a common proportion is 70% \sim 80% for training and 20% \sim 30% for validation

• for k-fold cross-validation, usual value of k is 5 or 10

leave-one-out is just k-fold cross-validation, with k = |D|
 Requires |D| training rounds → computationally intense
 For small |D| it could be the best option

 holdout should be sufficient if both D_{train} and D_{val} are large and representative enough of the true distribution (this usually is not the case in practice)

• k-fold cross-validation is largely used for model selection

16

Model selection

We already know

- how to train an ML algorithms (get hypothesis)
- how to evaluate a hypothesis (E_{val} , E_{cv} , other metrics)

How do we choose ONE?

Model selection

Here we call as **model** any specific hypothesis g in the hypothesis space $\mathcal H$ that resulted after training

For example, after doing logistic regression we have a weight vector \mathbf{w} which characterizes the learned classifier (the model)

As we have seen, we can compute $E_{val}(g)$ over a validation set

Model selection

Suppose you have two models, g_1 and g_2 , as well as $E_{val}(g_1)$ and $E_{val}(g_2)$

If $E_{val}(g_1) < E_{val}(g_2)$, would you choose g_1 without hesitation ?

What if $E_{val}(g_1) = E_{val}(g_2)$?

Model selection in practice

Based on validation or cross-validation error

Usually the one with smallest validation error is chosen

Statistical tests can be applied to test whether $E_{val}(g_1) = E_{val}(g_2)$ or not

Holdout error: <u>Hypothesis test</u> (see for instance Chapter 5 of the book "Machine Learning", by Tom Mitchell)

Cross-validation error: paired t-test (see Dietterich, Thomas G., Approximate statistical tests for comparing supervised classification learning algorithms)

Model selection using CV

The result

without validation

Average intensity $E_{
m in}=0\%$ $E_{
m out}=2.5\%$

with validation

 $E_{\rm in} = 0.8\%$ $E_{\rm out} = 1.5\%$

If we use E_{val} for model selection, E_{val} no longer in an unbiased estimate of E_{out}

We can see model selection also as a kind of training (given a set of hypothesis M, we will choose ONE with smallest E_{val})

In this sense, we can apply the Hoeffding inequality in a similar way

The larger K, the smaller the bound (i.e., $E_{val} \approx E_{out}$)

Why 'validation'

 $\mathcal{D}_{ ext{val}}$ is used to make learning choices

If an estimate of $E_{
m out}$ affects learning:

the set is no longer a test set!

It becomes a validation set

Discussion: with early stopping, we can think that we have a large number of choices (any iteration number is a hypothesis). But in terms of VC dimension, it is just one parameter. This is why methods such as early stopping work in practice.

The process of model selection and performance evaluation

- 1. Divide the dataset D into $D_{train+val}$ and D_{test}
- 2. Isolate *D*_{test} (put it under quarantine ...)
- Use D_{train+val} for training and choosing a model
 Depending on the selection technique different partitions of D_{train+val} will
 be used for training and for error estimation
- 4. the chosen model can be retrained using the whole dataset $D_{train+val}$ (advantage is that we have more training data)
- 5. Having the final model, compute E_{test} over D_{test} E_{test} would be a less biased estimator of E_{out} than E_{val} and E_{cv} (since these last two would be an optimistic estimate)

In many situations, we just want to choose the best model

We do not need to have an estimate of E_{out}

In such situation, it is common to not consider D_{test} (the whole set D is used for training and model choice only)

Obviously, the validation error of the chosen model is biased (because we chose the model with minimum E_{val} value)

The same observation holds with respect to any of the metrics computed on D_{val} , after a model is chosen based on its E_{val} value

References

Section 4.3 of "Learning from data" by Mostafa et al.

There are references at:

https://stats.stackexchange.com/questions/18348/differences-between-cross-validation-and-bootstrapping-to-estimate-the-predictions and the state of the state o

Chapter 7 of "The Elements of Statistical learning", by Hastie et al.

Chapter 5 of "Machine Learning" , by Tom Mitchell

Steven L. Salzberg, On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach, Data Min. Knowl. Discov., 3, pp.317-328, 1993

Dietterich, Thomas G., Approximate statistical tests for comparing supervised classification learning algorithms, Neural Comput., 10(7), p.1895-1923, 1998.