Statistique (MA101) Cours 4 ENSTA 1ère année

Christine Keribin

christine.keribin@math.u-psud.fr

Laboratoire de Mathématiques Université Paris-Sud

2017-2018

Statistique (MA101) Cours 4

Christine Keribin

Tests

Introduction
Construction
Décision et risque
Hyp. composites

Sommaire

Statistique (MA101) Cours 4

Christine Keribin

Tests

Construction
Décision et risque
Hyp. composites

Tests

Introduction Construction Décision et risques Hyp. composites

Tests : un exemple

Un constructeur automobile annonce une consommation $\mu_0=6.32\ell/100~km$, avec un écart type $\sigma=0.21\ell/100~km$, pour des véhicules d'un type donné. Un organisme indépendant suspecte une sous-estimation de cette consommation et indique que la consommation s'élèverait à $\mu_1=6.45\ell/100~km$.

Sur un 30-échantillon $\bar{x}=6.43\ell/100$ km. Qui a raison?

- (H_0) conso. conforme au constructeur : $X \sim \mathcal{N}(\mu_0, \sigma^2)$ $\mu = \mu_0 = 6.32$
- (\emph{H}_1) conso. suspectée par l'organisme : $X \sim \mathcal{N}(\mu_1, \sigma^2)$ $\mu = \mu_1 = 6.45$
 - Choisir, à partir d'un n-échantillon, entre les deux hypothèses (H_0) et (H_1) , en assumant le risque de première espèce α (5%, 10%,...) de choisir (H_1) alors que (H_0) est vrai.

Un exemple (suite)

- Statistique \bar{X} , moyenne des consommations de n=30 véhicules
- ▶ Loi sous (H_0) ,

$$ar{X} \sim \mathcal{N}(\mu_0, \frac{\sigma^2}{n}) \text{ soit } T = \sqrt{n} \frac{\bar{X} - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$$

Choisir a priori un risque α , calibrant la probabilité de rejet de (H_0) à tort $(\alpha = 5\%$ par exemple)

$$\begin{array}{rcl} \alpha & = & \mathbb{P}_{H_0}\big(& \underbrace{\mathcal{T} > q_{1-\alpha}^*} & \big) \\ & & \mathcal{R} =]q_{1-\alpha}^* ; \infty [, \ \mbox{R\'egion de rejet pour } \mathcal{T} \\ & = & \mathbb{P}_{H_0}\big(& \underbrace{\bar{X} > \mu_0 + q_{1-\alpha}^*} \frac{\sigma}{\sqrt{n}} & \big) \\ & & \mathcal{R} =]\mu_0 + q_{1-\alpha}^* \underbrace{\frac{\sigma}{\sqrt{n}}} ; \infty [, \ \mbox{R\'egion de rejet pour } \bar{X} \end{array} \right)$$

avec q_{1-lpha}^* le quantile d'une loi $\mathcal{N}(0,1)$ d'ordre 1-lpha

- Décider :
 - \hookrightarrow si T est dans la région de rejet, on rejette H_0
 - \hookrightarrow sinon, on conserve (H_0) faute de preuves suffisantes
- ightharpoonup ici, $\bar{x} = 6.43\ell/100 \ km$,

$$t_{obs} = \frac{6.43 - 6.32}{0.21/\sqrt{30}} = 2.86 > 1.64$$

au niveau $\alpha=5\%$, les données sont significatives pour rejeter (H_0) , le constructeur a minimisé la consommation, avec un risque (de première espèce) α .

Représentation graphique

Statistique (MA101) Cours 4

Christine Keribin

Test

Introduction

Décision et risques

Un autre cas de figure :

ightharpoonup si la même consommation a été observée sur un échantillon de n=9 véhicules

$$t_{obs} = \frac{6.43 - 6.32}{0.21/\sqrt{9}} = 1.57 < 1.64$$

on ne peut pas rejeter le fait que le constructeur a sous-estimé la consommation, on accepte (H_0)

→ avec quelle erreur?

Une autre façon de se tromper :

- erreur de seconde espèce : ne pas rejeter (H_0) alors que (H_1) est vraie
- ▶ Sous (H_1) , $\bar{X} \sim \mathcal{N}(\mu_1, \frac{\sigma^2}{n})$ et le risque de seconde espèce est

$$\beta = \mathbb{P}_{H_1} \left(\bar{X} < \mu_0 + q_{1-\alpha}^* \frac{\sigma}{\sqrt{n}} \right)$$
$$= \mathbb{F}^* \left(\sqrt{n} \frac{\mu_0 - \mu_1}{\sigma} + q_{1-\alpha}^* \right)$$

▶ App.Num : n = 9, $\beta \simeq 0.41$

la puissance $\pi=1-\beta$ n'est pas très grande

Représentation graphique

Statistique (MA101) Cours 4

Christine Keribin

Tocto

Introduction

Décision et risque

Procédure de test

Christine Keribin

Test

Introduction

Construction Décision et risque

Définition

- ► Un test est une procédure de décision qui permet de trancher, au vu des résultats d'un échantillon, entre deux hypothèses l'hypothèse nulle (H₀) et une hypothèse alternative (H₁), dont une seule est vraie.
- ► La région critique ou région de rejet R est l'ensemble des valeurs de la variable de décision T qui conduisent à écarter (H₀) au profit de (H₁).
- ▶ La région d'acceptation du test est $\overline{\mathcal{R}}$.

Un test peut s'écrire comme une fonction φ de l'échantillon qui ne peut prendre que deux valeurs :

- ▶ 0 pour accepter (*H*₀)
- ▶ 1 pour rejeter (H_0) :

$$X = (X_1, \ldots, X_n) \mapsto \varphi(X) \in \{0, 1\}$$

Elle est définie en fonction de la région de rejet de la statistique de test T(X) choisie

$$\varphi(X)=1\!\!1_{T(X)\in\mathcal{R}}$$

- 1. Définir le modèle
- 2. Définir les hypothèses nulle (H_0) et alternative (H_1)
- 3. Choisir une statistique de test T(X), déterminer sa loi sous (H_0)
- 4. Définir la règle de décision en calibrant la région de rejet $\mathcal R$ suivant le risque α . Calculer la puissance π
- 5. Calcul de la statistique observée et décision : rejet ou acceptation de (H_0) .

La décision du test, à partir de la valeur observée t de la statistique de test $\mathcal T$ est :

▶ si $t \in \mathcal{R}$, on rejette (H_0) au risque α : l'erreur commise est de risque

$$\alpha = \mathbb{E}_{(H_0)}(\varphi(T(X))) = \mathbb{P}_{(H_0)}(T \in \mathcal{R})$$

si t ∉ R, on conserve (H₀) dans le test de risque α : les données ne sont pas significatives pour accepter (H₁). L'erreur commise est de risque de seconde espèce

$$\beta = \mathbb{E}_{(H_1)}(\varphi(T(X))) = \mathbb{P}_{(H_1)}(T \in \overline{\mathbb{R}})$$

en général inconnu.

La décision dépend de l'échantillon, mais la fonction de test φ est déterministe

Récapitulatif

A l'issue du test, les quatre situations suivantes sont possibles

	Choix (H ₀)	Choix (H ₁)
(H_0) vraie	$1-\alpha$	$\alpha = \mathbb{P}_{H_0}(T \in \mathcal{R})$
		risque première espèce
	bonne décision	mauvaise décision
(H_1) vraie	$\beta = \mathbb{P}_{H_1}(T \notin \mathcal{R})$	$\pi = 1 - \beta$
	risque seconde espèce	puissance
	mauvaise décision	bonne décision

Statistique (MA101) Cours 4

Christine Keribin

Tests

Introduction

Décision et risques Hyp. composites

- ▶ Le risque n'est contrôlé que pour (H_0)
 - \hookrightarrow La véritable décision est celle qui rejette (H_0) .
 - \hookrightarrow (H_0) et (H_1) ne sont pas interchangeables.
- ▶ Il faut connaître la loi de la statistique de test sous (H_0)
- ▶ Il faut que cette loi soit différente sous (H_1)
- Entre deux tests de même risque de 1ère espèce α, il faut choisir le plus puissant
 - \hookrightarrow dans le cas de l'exemple, la région de rejet de la forme $\{T < q_{0.05}^*\}$ est aussi de risque 5%, mais elle n'a aucune puissance pour détecter le cas $\mu_1 > \mu_0$

La valeur observée n'a pas servi à construire la région de rejet qui a été définie a priori en fonction de la problématique fixée.

Ainsi, pour tester

$$(H_0)$$
: $\theta = \theta_0$ contre (H_1) : $\theta > \theta_0$

on utilise la même région de rejet que pour le test d'hypothèse simple

$$(H_0)$$
: $\theta = \theta_0$ contre (H_1) : $\theta = \theta_1 > \theta_0$

ightharpoonup mais la puissance devient une fonction de heta :

$$\theta_1 \in \Theta_1 = \{\theta | \theta > \theta_0\}, \ \pi(\theta_1) = \mathbb{P}_{\theta_1}(T \in \mathcal{R}) = 1 - \beta(\theta_1).$$

Hyp. composites

 $(H_0): \theta = \theta_0$ contre $(H_1): \theta = \theta_1$

▶ Test unilatéral pour une hypothèse alternative composite

$$(H_0)$$
: $\theta = \theta_0$ contre (H_1) : $\theta > \theta_0$

► Test bilatéral pour une hypothèse nulle simple

$$(H_0): \theta = \theta_0 \text{ contre } (H_1): \theta \neq \theta_0$$

▶ Test unilatéral pour une hypothèse nulle composite

$$(H_0): \theta \geq \theta_0 \text{ contre } (H_1): \theta < \theta_0$$

De façon générale :

Formes d'hypothèses

Hypothèses simples

$$(H_0): \theta \in \Theta_0 \text{ contre } (H_1): \theta \in \Theta_1 = \Theta \setminus \Theta_0$$