Mémo modélisation géométrique

Seul document autorisé à l'examen

- Mise en place des repères \Re_1 à \Re_{n-1}
 - Numéroter les corps de 0 → n et les liaisons de 1 → n
 - Mettre en place les axes des liaisons Δ_i
 - Mettre en place les perpendiculaires $\perp_{i-1,i}$ communes à Δ_{i-1} et Δ_{i}
 - O_{i-1} est le point d'intersection entre Δ_{i-1} et $\perp_{i-1,i}$
 - $\overrightarrow{x_{i-1}}$ porté par $\bot_{i-1,i}$ et orienté de Δ_{i-1} vers Δ_i . Si Δ_{i-1} vers Δ_i sont concourantes, convention « naturelle » : AVANT, DROITE, HAUT.
 - ightharpoonup ightharpoonup porté par $\Delta_{i\text{-}1}$ et orienté selon la convention « naturelle » : AVANT, DROITE, HAUT
 - $\overrightarrow{y_{i-1}}$ donné par le produit vectoriel de $\overrightarrow{z_{i-1}}$ par $\overrightarrow{x_{i-1}}$

UPSSITECH - 1A SRI - Université P. Sabatier

1

Mémo modélisation géométrique

Seul document autorisé à l'examen.

- Mise en place des repères \Re_0 et \Re_n
 - Repère \Re_0
 - □ z vertical ascendant (généralement)
 - \vec{x}_0 perpendiculaire et concourant à l'axe de la 1^e liaison
 - Repère \Re_n
 - \bigcirc O_n est sur \triangle _n

 - \Box \overrightarrow{x}_n tel que O_{n+1} est dans le plan $(O_n, \overrightarrow{x}_n, \overrightarrow{z}_n)$

UPSSITECH - 1A SRI - Université P. Sabatier

2

Mémo modélisation géométrique

Seul document autorisé à l'examen.

■ Paramètres de Denavit – Hartenberg modifiés

Mémo modélisation géométrique

Seul document autorisé à l'examen.

■ Matrice de passage homogène T_{i-1,i}

$$T_{i-1, i} = \begin{pmatrix} \cos \theta_i & -\sin \theta_i & 0 & a_{i-1} \\ \cos \alpha_{i-1} \sin \theta_i & \cos \alpha_{i-1} \cos \theta_i & -\sin \alpha_{i-1} & -r_i \sin \alpha_{i-1} \\ \sin \alpha_{i-1} \sin \theta_i & \sin \alpha_{i-1} \cos \theta_i & \cos \alpha_{i-1} & r_i \cos \alpha_{i-1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

■ Matrice de passage homogène T_{0n}

$$T_{on} = \prod_{i=1}^{n} T_{i-1,i}$$

UPSSITECH - 1A SRI - Université P. Sabatier

2