Eckstein-Keane-Wolpin models

An invitation for transdisciplinary collaboration

Computational modeling in economics

- provide learning opportunities
- assess importance of competing mechanisms
- predict the effects of public policies

Eckstein-Keane-Wolpin (EKW) models

- understanding individual decisions
 - human capital investment
 - savings and retirement
- predicting effects of policies
 - welfare programs
 - tax schedules

Transdisciplinary components

- economic model
- mathematical formulation
- computational implementation

Cooperations

Institute for Numerical Simulation

Roadmap

- Setup
- Example
- Pipeline
- Improvements
- Extensions

Setup

Components

- economic model
- mathematical formulation
- calibration procedure

Economic model

Decision problem

$$t=1,\ldots,T$$
 decision period $s_t\in S$ state $a_t\in A$ action $a_t(s_t)$ decision rule $u_t(s_t,a_t)$ immediate utility

Timing of events

$$\pi=(a_1^\pi(s_1),\ldots,a_T^\pi(s_T))$$
 policy δ discount factor $p_t(s_t,a_t)$ conditional distribution

Individual's objective

$$\max_{\pi \in \Pi} \mathrm{E}_{\mathsf{s}_1}^{\pi} \left[\left. \sum_{t=1}^{T} \delta^{t-1} u_t(\mathsf{s}_t, \mathsf{a}_t^{\pi}(\mathsf{s}_t)) \right| \, \mathcal{I}_1 \, \right]$$

Mathematical formulation

Policy evaluation

$$v_t^\pi(s_t) \equiv \mathrm{E}_{s_t}^\pi \left[\left. \sum_{j=0}^{T-t} \delta^j \, u_{t+j}(s_{t+j}, a_{t+j}^\pi(s_{t+j}))
ight| \, \mathcal{I}_t \,
ight]$$

Inductive scheme

$$v_t^{\pi}(s_t) = u_t(s_t, a_t^{\pi}(s_t)) + \delta \operatorname{E}_{s_t}^{\pi} \left[v_{t+1}^{\pi}(s_{t+1}) \mid \mathcal{I}_t \right]$$

Optimality equations

$$egin{aligned} \mathbf{v}_t^{\pi^*}(s_t) &= \max_{a_t \in A} \left\{ u_t(s_t, a_t) + \delta \operatorname{E}_{s_t}^{\pi^*} \left[\left. \mathbf{v}_{t+1}^{\pi^*}(s_{t+1}) \, \right| \, \mathcal{I}_t \,
ight]
ight. \end{aligned}$$

Backward induction algorithm

```
for t = T, \dots, 1 do
       if t == T then
               v_T^{\pi^*}(s_T) = \max_{a_T \in A} \left\{ u_T(s_T, a_T) \right\} \qquad \forall s_T \in S
       else
               Compute v_t^{\pi^*}(s_t) for each s_t \in S by
                         v_t^{\pi^*}(s_t) = \max_{a_t \in A} \left\{ u_t(s_t, a_t) + \delta \operatorname{E}_{s_t}^{\pi} \left[ v_{t+1}^{\pi^*}(s_{t+1}) \middle| \mathcal{I}_t \right] \right\}
               and set
                         a_t^{\pi^*}(s_t) = rg\max_{s_t \in A} \Bigl\{ u_t(s_t, a_t) + \delta \operatorname{E}_{s_t}^{\pi} \left[ \left. v_{t+1}^{\pi^*}(s_{t+1}) \right| \left. \mathcal{I}_t \, \right] \, \Bigr\}
       end if
end for
```

Calibration procedure

Data

$$\mathcal{D} = \{a_{it}, \bar{s}_{it}, \bar{u}_{it} : i = 1, \dots, N; t = 1, \dots, T_i\}$$

State variables

- $ightharpoonup s_t = (\bar{s}_t, \epsilon_t)$
 - $ightharpoonup \bar{s}_t$ observed
 - $ightharpoonup \epsilon_t$ unobserved

Procedures

▶ likelihood-based

$$\hat{ heta} \equiv rg \max_{ heta \in \Theta} \prod_{i=1}^N \prod_{t=1}^{T_i} \, p_{it}(a_{it}, ar{u}_{it} \mid ar{s}_{it}, heta)$$

simulation-based

$$\hat{\theta} \equiv \mathop{\mathrm{arg\,min}}_{\theta \in \Theta} (M_D - M_S(\theta))' W (M_D - M_S(\theta))$$

Example

Seminal paper

► Keane, M. P. and Wolpin, K. I. (1997). The career decisions of young men. *Journal of Political Economy*, 105(3):473–522

Model of occupational choice

- ► life cycle histories
 - school attendance
 - occupation-specific work status
 - wages

Figure: Decision tree

Immediate utility

$$u(\cdot) = \begin{cases} \zeta_a(\cdot) + w_a(\cdot) & \text{if } a \in \{1, 2, 3\} \\ \zeta_a(\cdot) & \text{if } a \in \{4, 5\} \end{cases}$$

 $\zeta_a(\cdot)$ non-pecuniary utility $w_a(\cdot)$ wage component

Transitions

Work experience k_t and years of completed schooling h_t evolve deterministically.

$$k_{a,t+1} = k_{a,t} + I[a_t = a]$$
 if $a \in \{1, 2, 3\}$
 $h_{t+1} = h_t + I[a_t = 4]$

Productivity shocks e_t are uncorrelated across time and follow a multivariate normal distribution with mean $\mathbf{0}$ and covariance matrix Σ .

Non-pecuniary utility of blue-collar occupation

$$\zeta_{1}(\cdot) = \alpha_{1} + c_{1,1} \cdot \mathbf{I}[a_{t-1} \neq 1] + c_{1,2} \cdot \mathbf{I}[k_{1,t} = 0] + \vartheta_{1} \cdot \mathbf{I}[h_{t} \geq 12] + \vartheta_{2} \cdot \mathbf{I}[h_{t} \geq 16] + \vartheta_{3} \cdot \mathbf{I}[k_{3,t} = 1]$$

Wage component

$$w_a(\cdot) = r_a x_a(\cdot)$$

with skill production function

$$x_1(\cdot) = \exp\left(\Gamma_1(\boldsymbol{k_t}, h_t, t, a_{t-1}, e_{j,1}) \cdot \epsilon_{1,t}\right).$$

Skill production for blue-collar occupation

$$\Gamma_{1}(\cdot) = e_{j,1} + \beta_{1,1} \cdot h_{t} + \beta_{1,2} \cdot \mathbf{I}[h_{t} \ge 12] + \beta_{1,3} \cdot \mathbf{I}[h_{t} \ge 16]$$

$$+ \gamma_{1,1} \cdot k_{1,t} + \gamma_{1,2} \cdot (k_{1,t})^{2} + \gamma_{1,3} \cdot \mathbf{I}[k_{1,t} > 0]$$

$$+ \gamma_{1,4} \cdot t + \gamma_{1,5} \cdot \mathbf{I}[t < 18]$$

$$+ \gamma_{1,6} \cdot \mathbf{I}[a_{t-1} = 1] + \gamma_{1,7} \cdot k_{2,t} + \gamma_{1,8} \cdot k_{3,t}$$

Empirical data

National Longitudinal Survey of Youth 1979

- ▶ 1,373 individuals starting at age 16
- life cycle histories
 - school attendance
 - occupation-specific work status
 - wages

Figure: Choices

Figure: Average wage

Economic insights

Figure: Economic mechanism and policy forecast

Pipeline

respy

GitHub OpenSourceEconomics/respy

Docs respy.readthedocs.io

estimagic

GitHub OpenSourceEconomics/estimagic

Docs estimagic.readthedocs.io

Figure: Typical workflow

```
import respy as rp
from estimagic import maximize

# obtain model input
params, options, df = rp.get_example_model("kw_97_extended_respy")

# process model specification
log_like = rp.get_log_like_func(params, options, df)
simulate = rp.get_simulate_func(params, options)

# perform calibration
results, params_rslt = maximize(log_like, params, "nlopt_bobyqa")

# conduct analysis
df_rslt = simulate(params_rslt)
```

Figure: Model parameterization

name	value		
		name	category
delta_delta	9.370735e-01	delta	delta
wage_white_collar_constant	8.741888e+00	constant	wage_white_collar
wage_white_collar_exp_school	6.548940e-02	exp_school	
wage_white_collar_exp_white_collar	1.763655e-02	exp_white_collar	
wage_white_collar_exp_white_collar_square	-4.215936e-02	exp_white_collar_square	
wage_white_collar_exp_blue_collar	3.431936e-02	exp_blue_collar	
wage_white_collar_exp_military	1.406945e-02	exp_military	
wage_white_collar_hs_graduate	-3.599855e-03	hs_graduate	
wage_white_collar_co_graduate	2.301313e-03	co_graduate	
wage_white_collar_period	9.577717e-03	period	
wage_white_collar_is_minor	-1.509984e-01	is_minor	

Figure: Model options

	value
estimation_draws	200
estimation_seed	500
estimation_tau	500
interpolation_points	-1
n_periods	50
simulation_agents	5000
simulation_seed	132
solution_draws	500
solution_seed	456
monte_carlo_sequence	random
covariates	$\label{eq:condition} \mbox{\ensuremath{$($'$hs_graduate': 'exp_school >= 12', 'co_gradua}}$

Figure: Dashboard

Roadmap

Improvements

- numerical integration
- global optimization
- ► function approximation
- ▶ high-performance computing

Extensions

- robust decision-making
- uncertainty quantification
- model validation
- non-standard expectations

Join us!

GitHub http://bit.ly/ose-github

Meetup http://bit.ly/ose-meetup

Chat http://bit.ly/ose-zulip

Appendix

Content

- ► Contact
- References

Contact

Philipp Eisenhauer

Mail peisenha@uni-bonn.de

Web http://peisenha.github.io

GitHub https://github.com/peisenha

References

Keane, M. P. and Wolpin, K. I. (1997). The career decisions of young men. Journal of Political Economy, 105(3):473–522.