

2. Filtragem espacial

Correlação e Convolução. Filtros passa-baixa, passa-alta e passa-banda. Exemplos de filtros digitais de suavização (média, filtro de *Gauss*, mediana, suavização conservativa, *Kuwahara*). Noção de gradiente. Filtros derivativos (*Roberts, Prewitt* e *Sobel*). *Unsharp*. Laplaciano. Laplaciano do gaussiano.

Filtro digital 2D

Seja H um filtro bidimensional, caracterizado por uma matriz. Por conveniência, considere-se que H respeita as seguintes condições:

- H é uma matriz quadrada.
- H tem um número ímpar de elementos, ou seja, tem (2N+1)×(2N+1) elementos, e que estes estão indexados desde -N até N, tal que o elemento central de H é H(0, 0).
- Os valores numéricos (w_i) de H designam-se por "coeficientes".

Por exemplo:

	-1	0	1
-1	w1	w2	w3
0	w4	w5	w6
1	w7	w8	w9

Filtro digital 2D

No caso de H não ter, à partida, um número ímpar de elementos, as anteriores condições podem ser estabelecidas, pois pode-se pegar em qualquer janela e preenchê-la com zeros, por forma a que passe a ser quadrada e com um número ímpar de elementos. Esta operação não muda o comportamento do filtro H original.

Sendo f uma imagem matricial, define-se a operação de **correlação** (" \otimes ") entre H e F por:

$$H \otimes f(x,y) = \sum_{i=-N}^{N} \sum_{j=-N}^{N} H(i,j) \times f(x+i,y+j)$$

Por exemplo, para um H de 3×3 tem-se:

$$H \otimes f(x,y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} H(i,j) \times f(x+i,y+j) =$$

$$= H(-1,-1) \times f(x-1,y-1) + H(-1,0) \times f(x-1,y) + H(-1,-1) \times f(x-1,y+1) +$$

$$+ H(0,-1) \times f(x,y-1) + H(0,0) \times f(x,y) + H(0,1) \times f(x,y+1) +$$

$$+ H(1,-1) \times f(x+1,y-1) + H(1,0) \times f(x+1,y) + H(1,1) \times f(x+1,y+1)$$

A operação de **convolução** ("*") é semelhante à de correlação. A diferença consiste em primeiro rodar H de 180 graus, e só então aplicar a operação de correlação.

$$H * f(x,y) = \sum_{i=-N}^{N} \sum_{j=-N}^{N} H(i,j) \times f(x-i,y-j)$$

Note-se que a correlação e a convolução são operações idênticas se H for simétrico.

A diferença entre a correlação e a convolução é a de que a última respeita a propriedade associativa. Ou seja, se G e H são filtros, então,

$$G * (H * f) = (G * H) * f$$

- A verificação desta propriedade torna-se bastante conveniente quando, por exemplo, se pretende aplicar mais do que um filtro a uma imagem.
- Como geralmente a dimensão da imagem é significativamente maior do que a do filtro, o esforço de cálculo é reduzido, executando-se a convolução entre os dois filtros, seguida da convolução entre o filtro resultante e a imagem.

Em resumo, numa operação de filtragem espacial por convolução/correlação, uma das matrizes de entrada é geralmente uma imagem de níveis de cinzento (f) e a outra, geralmente bastante mais pequena, é o filtro (H). Dentro desta estabelece-se uma posição de referência (designado por "pixel central", mas que não tem que ser necessariamente o que se encontra no seu centro).

	z1	z2	z3	z4	z5	z6	z7	z8	z9	z10
	z11	z12	z13	z14	z15	z16	z17	z18	z19	z20
	z21	z22	z23	z24	z25	z26	z27	z28	z29	z30
f	z31	z32	z33	z34	z35	z36	z37	z38	z39	z40
	z41	z42	z43	z44	z45	z46	z47	z48	z49	z50
	z51	z52	z53	z54	z55	z56	z57	z58	z59	z60
	z61	z62	z63	z64	z65	z66	z67	z68	z69	z70

h00 h01 h02
Filtro H h10 h11 h12
h20 h21 h22

Para os pixels de fronteira da imagem há que fazer uma adaptação para a executar o processo de filtragem. Uma das quatro seguintes opções pode ser seguida:

- 1. Usa-se apenas a convolução que considere os subconjuntos de pixels de H que estejam dentro dos limites da imagem f.
- 2. São escolhidos valores iguais a zero para os pixels das regiões que estão fora da imagem, mas tal escolha pode distorcer a intensidade dos pixels de fronteira na imagem.
- 3. Acrescenta-se linhas e colunas à imagem. Cada pixel destas, terá um valor igual ao do pixel da imagem que dele estiver mais próximo.
- 4. Acrescenta-se linhas e colunas à imagem, por forma a que reflita uma continuidade de carácter periódico, do interior para o exterior da imagem.

Propriedades dos filtros digitais

Para além dos valores dos coeficientes associados, a forma e a dimensão são características segundo as quais H também pode variar. Eis alguns exemplos de geometrias de H.

Propriedades dos filtros digitais

A classificação das janelas de convolução faz-se segundo duas propriedades: convexidade e a isotropia.

	Isotrópico	Anisotrópico
Convexo	Disco	Segmento
Não convexo	Contorno do disco	Par de pontos

Filtragem espacial

A frequência espacial de uma imagem é uma característica que pode ser definida pelo número de variações de níveis de cinzento por unidade de distância.

Se os valores numéricos de uma certa área oscilam pouco, diz-se que essa área tem variações de <u>baixa frequência</u>; se oscilam muito diz-se que essa zona é de <u>alta frequência</u>.

Filtragem espacial

Os **filtros espaciais** 2D são operadores que permitem alterar a frequência espacial de uma imagem, modificando o valor do tom de cinzento de cada pixel em função dos valores dos tons de cinzento dos pixels da sua vizinhança.

Os filtros podem ser lineares ou não-lineares. Nos <u>filtros lineares</u> cada pixel resulta de uma combinação linear entre os pixels da sua vizinhança, com coeficientes que correspondem aos pesos a atribuir às parcelas.

$$f_1 = H * f(x,y) = \sum_{i=-N}^{N} \sum_{j=-N}^{N} H(i,j) \times f(x-i,y-j)$$

$$f_1: \text{imagem filtrada}$$

$$f: \text{imagem inicial}$$

$$H: \text{filtro}$$

Quaisquer outros filtros são designados por filtros não lineares.

Filtro que suaviza o aspecto da imagem atenuando eventos de elevada frequência (transições abruptas), isto é, as zonas de fronteira radiométrica. Tende a minimizar ruídos e o resultado apresenta um efeito de desfocagem.

A forma da função resposta necessária para implementar um filtro passa-baixa indica que este deve ter todos os seus <u>coeficientes positivos</u>, devendo a respectiva <u>soma ser igual a 1</u>.

Função-resposta do filtro PB

,

Por exemplo, no filtro passa-baixa da média aritmética 3 x 3, tem-se:

PB_{i,j}

Função

Coeficientes

Valor calculado

Por convolução, tem-se:

$$PB_{i,j} = \frac{1}{9} \times f_{i-1,j-1} + \frac{1}{9} \times f_{i-1,j} + \frac{1}{9} \times f_{i-1,j+1} + \frac{1}{9} \times f_{i,j-1} + \frac{1}{9} \times f_{i,j} + \frac{1}{9} \times f_{i,j+1} + \frac{1}{9} \times f_{i+1,j-1} + \frac{1}{9} \times f_{i+1,j} + \frac{1}{9} \times f_{i+1,j+1}$$

Média: É o mais simples filtro linear passa-baixa. Todos os coeficientes são iguais. Calcula-se a média dos tons de cinzento no interior da janela (H) e substitui-se o pixel central da janela pelo valor resultante (por esta razão as janelas são normalmente quadradas com dimensão ímpar (3 x 3, 5 x 5, etc.).

Inicial

Média 3×3

$$H_{3\times3} = \frac{1}{9} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Média 9×9

$$H_{9\times9} = \frac{1}{81} \times \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}_{15}$$

Gaussiano 2-D: é um operador de convolução que utiliza um kernel representado sob a forma de uma "bossa" gaussiana (em forma de sino).

$$G(x) = \frac{1}{\sqrt{2\pi}\sigma} \times e^{-\left(\frac{(x-x_0)^2}{2\sigma^2}\right)}$$

$$G(x) = \frac{1}{\sqrt{2\pi}\sigma} \times e^{-\left(\frac{(x-x_0)^2}{2\sigma^2}\right)} \qquad G(x,y) = \frac{1}{2\pi\sigma^2} \times e^{-\left(\frac{(x-x_0)^2+(y-y_0)^2}{2\sigma^2}\right)}$$

y = np.meshgrid(np.linspace(-l, l, 2*l+1), np.linspace(-l, l, l)lambda x, y: 1/(2*np.pi*siqma**2)*np.e**(-(x**2+v**2)/(2*siqma**2)*(-(x**2+v**2)/(2*siqma**2)*(-(x**2+v**2)/(2*siqma**2)*(-(x**2+v**2)/(2*siqma**2)*(-(x**2+v**2)/(2*siqma**2)*(-(x**2+v**2)/(2*siqma**2)*(-(x**2+v**2)/(2*siqma**2)*

Exemplo de 7×7, centrada em (0, 0), com σ^2 = 1:

1.96413e-05	0.00023928	0.00107238	0.00176805	0.00107238	0.00023928	1.96413e-05
0.00023928	0.00291502	0.0130642	0.0215393	0.0130642	0.00291502	0.00023928
0.00107238	0.0130642	0.0585498	0.0965324	0.0585498	0.0130642	0.00107238
0.00176805	0.0215393	0.0965324	0.159155	0.0965324	0.0215393	0.00176805
0.00107238	0.0130642	0.0585498	0.0965324	0.0585498	0.0130642	0.00107238
0.00023928	0.00291502	0.0130642	0.0215393	0.0130642	0.00291502	0.00023928
1.96413e-05	0.00023928	0.00107238	0.00176805	0.00107238	0.00023928	1.96413e-05

0	0	0	0	0	0	0	
0	0	1	1	1	0	0	
0	1	3	5	3	1	0	1
0	1	5	8	5	1	0	$\times \frac{1}{40}$
0	1	3	5	3	1	0	49
0	0	1	1	1	0	0	
0	0	0	0	0	0	0	

O filtro gaussiano é uma média ponderada, com maior peso aplicado ao pixel central, diminuíndo progressivamente para o exterior. Como tal, proporciona uma suavização mais "delicada" que o da média, preservando melhor as fronteiras entre objectos.

O grau de suavização é determinado pelo valor da variância (ou do desvio-padrão) da função de Gauss (funções com desvios-padrão mais altos requerem janelas de convolução maiores no sentido de as funções ficarem mas bem representadas).

Gaussiana ($\sigma^2 = 0.5$)

Gaussiana ($\sigma^2 = 5$)

Exemplo: diferença entre os filtros da média e gaussiano.

Gaussiano 9 x 9

Média 9 x 9

Mediana: é um filtro <u>não-linear</u> de suavização. O resultado é geralmente melhor que o do filtro da média, quando usado em imagens com ruído do tipo Sal-e-Pimenta, ou Speckle. Ainda, tende a preserver melhor as fronteiras dos objectos.

Valores da vizinhança

115, 119, 120, 123, 124, 125, 126, 127, 150

Mediana: 124

Exemplo: filtro da mediana.

Mediana 5 x 5

Mediana 9 x 9

Média 9 x 9

Kuwahara: Suaviza uma imagem sem perturbar a nitidez e a posição das fronteiras.

Embora possa ser implementado em janelas de formas diversas, considera-se aqui uma janela quadrada de dimensão ímpar. Esta janela é dividida em 4 regiões e em cada uma delas calcula-se a intensidade média m_i e a variância s_i^2 , (i = 1, 2, 3, 4). O valor atribuído ao pixel central da janela corresponde ao valor médio da janela que tem menor variância.

Kuwahara 5 x 5

Mediana 5 x 5

Ao contrário da filtragem passa-baixa, que esbate/elimina os eventos de detalhe contidos nas imagens, a diferenciação vai ter o efeito contrário, ou seja, evidenciar o detalhe. Definem-se assim outros filtros designados por filtros derivativos (operadores de gradiente).

Gradiente: O gradiente de uma função f, no ponto (x,y), define-se por $\nabla f = \begin{vmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x} \end{vmatrix}$

A magnitude é dada por $mag(\nabla f) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$.

Estes conceitos constituem a base de diversas abordagens de diferenciação da imagem.

Considerando a janela da figura, pode aproximar-se a equação anterior no ponto z_5 de diversas formas. A mais simples é utilizar a diferença (z_5 - z_6) para definir a derivada parcial na direcção x e a diferença (z_5 - z_8) para definir a derivada parcial na direcção y.

$$f(z_5) = mag(\nabla f) \approx \sqrt{(z_5-z_6)^2 + (z_5-z_8)^2}$$
 ou

$$f(z_5) = mag(\nabla f) \approx |z_5 - z_6| + |z_5 - z_8|$$

Filtro que atenua, ou elimina, os eventos da imagem com baixa frequência, pelo que os filtros tornam mais nítidas as fronteiras radiométricas e os detalhes.

A forma da função resposta necessária para implementar um filtro passa-alta indica que este deve ter os coeficientes positivos na vizinhança do centro e negativos na periferia, devendo a respectiva soma ser igual a 0.

Função-resposta

Efeito

Filtro Passa-Alta = Imagem original - Filtro Passa-Baixa

Por exemplo, a partir do filtro da média do slide 14, tem-se:

$$\begin{split} PA_{i,j} &= f_{i,j} - PB_{i,j} = \\ &= f_{i,j} - \left(\frac{1}{9} \times f_{i-1,j-1} + \frac{1}{9} \times f_{i-1,j} + \frac{1}{9} \times f_{i-1,j+1} + \frac{1}{9} \times f_{i,j-1} + \frac{1}{9} \times f_{i,j} + \frac{1}{9} \times f_{i,j+1} + \frac{1}{9} \times f_{i+1,j-1} + \frac{1}{9} \times f_{i+1,j} + \frac{1}{9} \times f_{i+1,j+1} \right) = \\ &= -\frac{1}{9} \times f_{i-1,j-1} - \frac{1}{9} \times f_{i-1,j} - \frac{1}{9} \times f_{i-1,j+1} - \frac{1}{9} \times f_{i,j-1} + \frac{8}{9} \times f_{i,j} - \frac{1}{9} \times f_{i,j+1} - \frac{1}{9} \times f_{i+1,j-1} - \frac{1}{9} \times f_{i+1,j+1} \end{split}$$

Coeficientes

f _{i-1,j-1}	f _{i-1,j}	f _{i-1,j+1}
f _{i,j-1}	$f_{i,j}$	f _{i,j+1}
f _{i+1,j-1}	f _{i+1,j}	f _{i+1,j+1}

	-1/9	-1/9	-1/9
=	-1/9	8/9	-1/9
	-1/9	-1/9	-1/9

Função

Valor a calcular

Roberts: este filtro executa o gradiente cruzado, isto é, em vez de calcular as diferenças de valores de brilho na direção vertical e horizontal, fá-lo numa direção rodada de 45º, onde as janelas de convolução são as seguintes:

1	0
0	-1

0	1
-1	0

$$f(z_5) = mag(\nabla f) \approx \sqrt{(z_5 - z_9)^2 + (z_6 - z_8)^2}$$

ou

$$f(z_5) = mag(\nabla f) \approx |z_5 - z_9| + |z_6 - z_8|$$

Roberts (exemplo 1):

Roberts (exemplo 2):

Sobel: este operador realça linhas verticais e horizontais mais escuras que o fundo, sem realçar pontos isolados. Consiste na aplicação de duas máscaras, descritas a seguir, que compõem um resultado único.

	X		У			
-1	0	1	-1	-2	-1	
-2	0	2	0	0	0	
-1	0	1	1	2	1	

$$S_x = (z_1 + 2 \times z_4 + z_7) - (z_3 + 2 \times z_6 + z_9)$$

$$S_y = (z_1 + 2 \times z_2 + z_3) - (z_7 + 2 \times z_8 + z_9)$$

$$f(z_5) = |S_x| + |S_y|$$

Sobel (exemplo):

Prewitt: este operador realça linhas verticais e horizontais mais escuras que o fundo, sem realçar pontos isolados. Consiste na aplicação de duas máscaras, descritas a seguir, que compõem um resultado único.

	X			У	
-1	0	1	-1	-1	-1
-1	0	1	0	0	0
-1	0	1	1	1	1

$$S_x = (z_1 + z_4 + z_7) - (z_3 + z_6 + z_9)$$

$$S_y = (z_1 + z_2 + z_3) - (z_7 + z_8 + z_9)$$

$$f(z_5) = |S_x| + |S_y|$$

Prewitt (completar):

Os filtros passa-alta podem ser "desenhados" em função da direção. Neste caso o kernel contém coeficientes que variam em função da orientação que apresentam na imagem as fronteiras que se pretende realçar.

NW					N					NE
	1	1	1	1	1	1	1	1	1	
	1	-2	-1	1	-2	1	-1	-2	1	
	1	-1	-1	-1	-1	-1	-1	-1	1	
	1	1	-1				-1	1	1	
W	1	-2	-1				-1	-2	1	E
	1	1	-1				-1	1	1	
	1	-1	-1	-1	-1	-1	-1	-1	1	
	1	-2	-1	1	-2	1	-1	-2	1	
	1	1	1	1	1	1	1	1	1	
SW					S					SE

Operadores de gradiente:

Operadores de gradiente:

HP Roberts H

Filtro passa-banda

Filtro que remove/atenua determinados intervalos de frequências.

A forma da função resposta necessária para implementar um filtro passa-banda indica que este deve ter os coeficientes <u>positivos na vizinhança do centro e alternadamente negativos e positivos no sentido da periferia</u>.

Função-resposta

Passa-banda

Filtro passa-banda

Filtro Passa-Banda = Filtro Passa-Baixa 1 - Filtro Passa-Baixa 2

Tipicamente, os filtros PB1 e PB2 devem representar médias de curto-termo e de longotermo.

Os filtros Passa-Banda são geralmente usados para realçar as fronteiras e outras características de filtragem passa-alta na presença de ruído.

Operação de unsharp

Permite fazer sobressair as fronteiras dos objectos de uma imagem, através da operação de subtracção entre a imagem original e a imagem suavizada com um filtro passa-baixa.

$$u(i,j) = f(i,j) + k \times [f(i,j) - PB(i,j)], \qquad 0 \le k \le 1$$

Operação de unsharp

Exemplo:

Depois

O filtro laplaciano distingue-se dos restantes filtros de realce de fronteiras porque usa a informação de segundas derivadas relativa às variações de intensidade dos pixels.

No espaço 2D o laplaciano define-se como:

$$\nabla^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

As exigências para a definição do laplaciano digital são as de o coeficiente associado com o pixel central ser negativo e os coeficientes dos pixels externos serem positivos (laplaciano negativo), ou vice-versa (laplaciano positivo)

Como o laplaciano é uma derivada, a soma dos coeficientes tem que ser nula (toda a vez que o ponto em questão e seus vizinhos tiverem o mesmo valor, a resposta será nula).

No caso discreto, para uma vizinhança de 3×3, o laplaciano (negativo) pode ser aproximado por um operador de conectividade-4 ou um de conectividade-8:

$$\nabla^2 f(i,j) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\nabla^2 f(i,j) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Usando qualquer um dos anteriores kernels, a filtragem é ser calculada por convolução:

$$\nabla^2 f(i,j) = -f(i-1,j) - f(i+1,y) - f(i,j-1) - f(i,j+1) + 4 \times f(i,j)$$

$$\nabla^2 f(i,j) = -f(i-1,j) - f(i+1,y) - f(i,j-1) - f(i,j+1) - f(i-1,j-1) - f(i+1,j+1) - f(i-1,j+1) - f(i+1,j-1) + 8 \times f(i,j)$$

Porque estes *kernels* são uma aproximação à segunda derivada, os operadores são bastante sensíveis à presença de ruído aleatório na imagem.

Exemplo 1:

Exemplo 2:

Para atenuar o efeito da presença de ruído, a imagem é geralmente filtrada, primeiro com um filtro passa-baixa gaussiano, antes de aplicar o operador laplaciano. Esta tarefa reduz o ruído de alta frequência antes da diferenciação.

Como a operação de convolução é associativa, pode-se executar em primeiro lugar a convolução do filtro passa-baixa Gaussiano com operador laplaciano, e só depois executar a convolução da imagem com este operador híbrido (*LoG - Laplacian of Gaussian*). Desta forma têm-se as seguintes vantagens:

- Como ambos os *kernels* gaussiano e laplaciano são geralmente bastante menores que a imagem, este método requer de longe muito menos operações aritméticas.
- O filtro LoG pode ser pré-calculado antecipadamente e, como tal, executa-se apenas uma operação de convolução, em vez de duas.

2ª derivada em ordem a x

$$G(x,y) = \frac{1}{2\pi\sigma^2} \times e^{-\left(\frac{x^2 + y^2}{2\sigma^2}\right)}$$
Função gaussiana
$$\frac{\partial^2}{\partial x^2} G(x,y) = \frac{x^2 - \sigma^2}{2\pi\sigma^6} \times e^{-\left(\frac{x^2 + y^2}{2\sigma^2}\right)}$$

$$\frac{\partial^2}{\partial y^2} G(x,y) = \frac{y^2 - \sigma^2}{2\pi\sigma^6} \times e^{-\left(\frac{x^2 + y^2}{2\sigma^2}\right)}$$

2ª derivada em ordem a y

$$LoG(x,y) = \nabla^2 \left(G(x,y) \right) = \frac{\partial^2}{\partial x^2} G(x,y) + \frac{\partial^2}{\partial y^2} G(x,y) = -\frac{1}{\pi \sigma^4} \times \left(1 - \frac{x^2 + y^2}{2\sigma^2} \right) \times e^{-\left(\frac{x^2 + y^2}{2\sigma^2} \right)}$$

Laplaciano do gaussiano

A aproximação discreta do operador LoG pode ser obtida com,

0.00031426	0.00263208	0.00857902	0.0123764	0.00857902	0.00263208	0.00031426
0.00263208	0.0174901	0.0391927	0.0430786	0.0391927	0.0174901	0.00263208
0.00857902	0.0391927	- 0	-0.0965324	-0	0.0391927	0.00857902
0.0123764	0.0430786	-0.0965324	-0.31831	-0.0965324	0.0430786	0.0123764
0.00857902	0.0391927	- 0	-0.0965324	- 0	0.0391927	0.00857902
0.00263208	0.0174901	0.0391927	0.0430786	0.0391927	0.0174901	0.00263208
0.00031426	0.00263208	0.00857902	0.0123764	0.00857902	0.00263208	0.00031426

	0	0	0	1	0	0	0
	0	1	2	2	2	1	0
	0	2	-0	-5	-0	2	0
=	1	2	-5	-16	-5	2	1
	0	2	-0	-5	-0	2	0
	0	1	2	2	2	1	0
	0	0	0	1	0	0	0

$$<\frac{1}{49} =$$

Exemplo 1:

Exemplo 2:

