开题报告

项目背景

俗语云"未见其人, 先闻其实", 说明每个人的声音会像指纹那样, 是有固定的"声纹",

而即使不认识的人,也能通过声音判别出是男是女,说明是性别的声纹是有固定的模式判别,

而此项目则是让机器能辩雌雄。

问题描述

性别语音识别是一个分类问题。通过对音频信号提取出有可能关联的特征,训练出识别模型。

输入数据

数据集包含 3168 个样本。

```
In [23]: df['label'].value_counts()
Out[23]: female    1584
    male    1584
    Name: label, dtype: int64
```

男性女性各占一半。

df.info() #可见数据无缺失情况

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3168 entries, 0 to 3167
Data columns (total 21 columns):
            3168 non-null float64
meanfreq
sd
            3168 non-null float64
            3168 non-null float64
median
            3168 non-null float64
Q25
Q75
            3168 non-null float64
IQR
            3168 non-null float64
skew
            3168 non-null float64
            3168 non-null float64
kurt
            3168 non-null float64
sp.ent
sfm
            3168 non-null float64
            3168 non-null float64
mode
            3168 non-null float64
centroid
            3168 non-null float64
meanfun
minfun
            3168 non-null float64
            3168 non-null float64
maxfun
meandom
            3168 non-null float64
            3168 non-null float64
mindom
maxdom
            3168 non-null float64
dfrange
            3168 non-null float64
            3168 non-null float64
modindx
label
            3168 non-null object
dtypes: float64(20), object(1)
memory usage: 519.8+ KB
```

数据不存在缺失情况,不需要缺失值填值处理。

In [89]: df.skew()

Out[89]:	meanfreq	-0.617495
	sd	0.136916
	median	-1.012785
	Q25	-0.490877
	Q75	-0.900311
	IQR	0.295432
	skew	4.933314
	kurt	5.872586
	sp.ent	-0.430934
	sfm	0.339958
	mode	-0.837236
	centroid	-0.617495
	meanfun	0.039141
	minfun	1.878004
	maxfun	-2.238535
	meandom	0.611022
	mindom	1.661114
	maxdom	0.726189
	dfrange	0.728261
	modindx	2.064335
	dtype: float64	

结合以上的直方图和 skew()看,特征 skew, kurt, maxfun, modindx 四个特征存在比较大的偏斜,对以上特征进行 log 转换。 另外,把 label 编码成数字值。

解决办法

问题为二分类问题,本次分别使用随机森林^[1]、 XGBoost^[2]模型。选择原因是出于集成学习不会发生过拟合效果。

基准模型

由于数据中男女各占 50%, 假设设置所有的分类为其中一种(譬如都分类为男性),则会有 50%的准确率,所以基准模型可以设为基准准确率为 50%。

svm^[3]和高斯混合模型^[4]的准确了可高达 98. 7%^[3]和 99. 62%^[4],这里设置基准为 98%。

模型调优采用 GridSearch 来对特征中的某一项或多项进行调优,如随机森林,设置 max dept 的候选值进行网格搜索。

评估指标

分类问题,男女的类别标签比例是1:1,数据集是平衡的,可采用准确率进行评价。

设计大纲

数据预处理:结合数据探索,对数据偏斜度高(>2)的特征进行对数转换。另外,由于标签值是 male或 female,需要对标签值转成数值型。

模型搭建:使用 sk-learn 的 train_test_split 将数据以 8:2 比例切分出训练集和测试集,训练集中以 8:2 切分出训练集合验证集。以训练集进行拟合,以验证集和预测值计算出准确率。

模型训练: 随机森林设置决策树的数目 n_estimators, 决策树的最大深度 max depth 等参数; XGBoost 则使用 tree booster, 树的最大深度 max depth

模型调参:利用 sk-learn 的 GridSearchCV 对以上参数进行调参。

模型评估: 使用 sklearn. metrics 中的 accuracy_score 进行评估。

可视化:对随机森林和 XGBoost 的调参过程的准确率,以直方图形式展示出来,展示出不同模型、参数间的差距。

参考文献

- [1] Ho, Tin Kam (1995). <u>Random Decision Forests</u> (PDF). Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14-16 August 1995. pp. 278-282.
- [2] XGBOOST github 地址: https://github.com/dmlc/xgboost
- [3] 肖汉光, 何为. 基于 MFCC 和 SVM 的说话人性别识别[J]. 重庆大学学报(自然科学版), 2009, 7:770-774
- [4] 张超琼, 苗夺谦, 岳晓冬. 基于高斯混合模型的语音性别识别[J]. 计算机应用, 2008, z2:360-362, 365