Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Natural Resources Conservation Service

Washington Water Supply Outlook Report May 1, 2006

Water Supply Outlook Reports and

Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:
Local Natural Resources Conservation Service Field Office

or Scott Pattee Water Supply Specialist Natural Resources Conservation Service 2021 E. College Way, Suite 214 Mt. Vernon, WA 98273-2873 (360) 428-7684

or Kelly Sprute Public Affairs Specialist Natural Resources Conservation Service 1835 Black Lake Blvd. SW, Suite D Olympia, WA 98512-5623 (360) 704-7789

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

"The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, mantal status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer."

Washington Water Supply Outlook

May 2006

General Outlook

It is official, spring has sprung, plants are blooming, snow is melting and the rivers are rising, most of them anyway. April brought varying degrees of the evidence of spring including; snow and rain showers, sunshine, freezing and near record high temperatures. Officially all SNOTEL sites in Washington have reached their peak snowpack accumulation and are on the way south along the melt curve, some just beginning and others already showing bare ground. The Climate Prediction Center is now forecasting some chance of above average temperatures and below average precipitation for the rest of this month. This would certainly facilitate a more rapid runoff than normal. However with above average snowpack in most basins, we shouldn't see an early melt out. Spring flooding from snowmelt is also a rare occurrence in Washington.

Snowpack

The May 1 statewide SNOTEL readings remain at 122% of average, compared to 22% in 2005. The Similkameen River Basin snow surveys reported the lowest readings at 80% of average. Readings in the Omak Creek area reported the highest at 209% of average. Western Washington May 1 SNOTEL readings showed snowpack to average 115% of normal, compared to last year at only 26%. Snowpack in Eastern Washington reported an equally dramatic difference between this year and last year with 112% of normal currently on the ground, compared to 25% in 2005. Maximum snow cover in Washington was at Paradise SNOTEL on Mt. Rainer, with a water content of 83 inches. This site would normally have 74.8 inches of water content on May 1. Last year at this time Paradise had only 33.7 inches of snow water.

BASIN	PERCENT	OF LAST YEAR	PERCENT OF AVERAGE
Spokane Newman Lake Pend Oreille		0	130
Okanogan		207	104
Conconully Lake Wenatchee		560	105
Chelan		804	111
Ahtanum Creek Walla Walla	1	L278	112
Lower Snake			118
White		328	119
Puyallup		0	175
Shoqualmie		801	120
Baker		n/a	
Olympic Peninsula		607	94

Precipitation

During the month of April, the National Weather Service and Natural Resources Conservation Service climate stations reported a wide variation in precipitation totals throughout Washington river basins. 131% of average in the Okanogan-Methow Basin was the highest and the Upper Yakima Basin had the low of 61%. All basins on the west side reported below average precipitation. The highest individual station percent of average in the state was at Harts Pass SNOTEL which reported 178% of average. The wettest spot in the state was reported at Skookum Creek SNOTEL with an April accumulation of 11.1 inches, just below the April normal of 11.9 inches. Overall water-year averages held steady or dropped slightly.

RIVER	API	RIL	WATER YE	EAR
BASIN	PERCENT	OF AVERAGE	PERCENT OF	AVERAGE
Spokane		106		102
Colville-Pend Oreille .		108		105
Okanogan-Methow		131		124
Wenatchee-Chelan		89		101
Upper Yakima		61		95
Lower Yakima		95		. 112
Walla Walla		124		106
Lower Snake		112		111
Cowlitz-Lewis		68		101
White-Green-Puyallup		77		102
Central Puget Sound		74		99
North Puget Sound		94		101
Olympic Peninsula		90		. 107

Reservoir

Seasonal reservoir levels in Washington vary greatly due to specific watershed management practices required in preparation for irrigation season, fisheries management, power generation, municipal demands and flood control. Reservoir storage in the Yakima Basin was 389,000-acre feet, 63% of average for the Upper Reaches and 186,000-acre feet, 110% of average for Rimrock and Bumping Lakes. Storage at the Okanogan reservoirs was 86% of average for May 1. The power generation reservoirs included the following: Coeur d'Alene Lake, 220,000 acre feet, 88% of average and 92% of capacity; Chelan Lake, 146,000-acre feet, 55% of average and 22% of capacity; and the Skagit River reservoirs at 79% of average and 42% of capacity.

BASIN	PERCENT OF CAP	ACITY	CURRENT STOR	
			PERCENT OF A	VERAGE
Spokane				88
Colville-Pend Oreill	e 34			56
Okanogan-Methow				86
Wenatchee-Chelan				55
Upper Yakima				63
Lower Yakima	80			110
Lower Snake	71			101
Cowlitz-Lewis				
North Puget Sound	42			79

Streamflow

BASIN

May forecasts vary from 148% of average for Colville River at Kettle Falls to 84% of average for the Spokane River near Post Falls. In contrast; last year at this time the highest forecast in the state was 98% of average for the Kettle River and the lowest was 17% of average for Ahtanum Creek. Forecasts in most basins didn't exceed 80% of average last year. Volumetric forecasts are developed using current, historic and average snowpack, precipitation and streamflow data collected and coordinated by organizations cooperating with NRCS.

Statewide April streamflows varied greatly across the state. Many could be influenced by snow melt rates and/or reservoir operations. The Okanogan near Tonasket had the lowest reported flows with 69% of average. The Snake River below Lower Granite Dam with 151% of average was the highest in the state. Other streamflows were the following percentage of average as reported by the River Forecast Center: the Cowlitz at Castle Rock, 82%; the Dungeness near Sequim, 82%; the Columbia below Rock Island Dam, 116%; and the Yakima near Cle Elum, 90%.

PERCENT OF AVERAGE

BASIN	PERCENT OF AVERAGE
	(50 PERCENT CHANCE OF EXCEEDENCE)
Spokane Colville-Pend Oreille Okanogan-Methow Wenatchee-Chelan Upper Yakima Lower Yakima Walla Walla Lower Snake Cowlitz-Lewis White-Green-Puyallup Central Puget Sound North Puget Sound Olympic Peninsula	94-148 88-118 95-130 107-111 108-122 106-108 101-118 98-122 108-116 97-106 97-100
STREAM	PERCENT OF AVERAGE APRIL STREAMFLOWS
Pend Oreille Below Box Canyon Kettle at Laurier Columbia at Birchbank Spokane at Long Lake Similkameen at Nighthawk Okanogan at Tonasket Methow at Pateros Chelan at Chelan Wenatchee at Pashastin Yakima at Cle Elum Yakima at Parker Naches at Naches Grande Ronde at Troy Snake below Lower Granite Dam SF Walla Walla near Milton Freewa Columbia River at The Dalles Lewis at Ariel Cowlitz below Mayfield Dam Skagit at Concrete Dungeness near Sequim	141 113 120 76 69 103 103 103 81 90 112 116 128 151 141 130 96 82 79

For more information contact your local Natural Resources Conservation Service office.

B A S I N S U M M A R Y O F S N O W C O U R S E D A T A

MAY 2006

SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00	SNOW COURSE	ELI	EVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00
ALPINE MEADOWS SN	TL 3500	5/01/06		62.2	14.0	45.8	LESTER CREEK		3100	4/28/06	54	24.2	.0	16.6
AMBROSE	6480	4/26/06	28	11.5	5.8	11.1	LOGAN CREEK		4300	4/25/06	4	1.6	.0	1.7
ASHLEY DIVIDE	4820	5/02/06	0	.0	.0	1.1	LOLO PASS	SNOTEL	5240	5/01/06	57	25.8	12.3	24.5
BADGER PASS SNOTE BAREE CREEK	L 6900 5500	5/01/06 4/26/06	68 90	32.6 41.8	21.5 20.1	36.2 40.3	LONE PINE LOOKOUT	SNOTEL	3800 5140	5/01/06 5/01/06	51	50.8	5.7	34.2
BAREE MIDWAY	4600	4/26/06	69	31.5	7.5	27.4	LOST HORSE MT		6300	4/30/06	24	22.3 7.9	10.9 3.4	27.2 9.7
BAREE TRAIL	3800	4/26/06	15	5.8	. 0	1.3	LOST HORSE	SNOTEL	5000	5/01/06	29	12.5	.0	10.7
BARKER LAKES SNOT		5/01/06		17.2	15.4	16.2	LOST LAKE	SNOTEL	6110	5/01/06		53.5	33.9	59.7
	AN. 5320	4/26/06	40	17.4	17.2	19.7	LOWER SANDS CI		3120	5/01/06	40	18.0	.0	15.8
BASIN CREEK SNOTE BASSOO PEAK	L 7180 5150	5/01/06 4/28/06	30 8	11.5 2.7	8.4	10.0 3.2	LUBRECHT FORES		5450 4650	5/01/06 5/01/06	0	.0	.0	1.7
BEAVER CREEK TRAIL		4/28/06	5	2.4	.0	4.4	LUBRECHT FORES		4040	5/01/06	ŏ	.0	.0	.0
BEAVER PASS	3680	4/28/06	66	30.8	3.1	27.2	LUBRECHT HYDRO	PLOT	4200	5/01/06	0	.0	.0	.1
BEAVER PASS SNOTE		5/01/06	83	41.4	14.5		LUBRECHT SNOTE		4680	5/01/06	0	.0	.0	.5
BERNE-MILL CREEK BIG WHITE MTN C	3170 AN. 5510	4/28/06 4/30/06	67 50	28.3 20.8	2.8	22.5	LYMAN LAKE	SNOTEL	5900	5/01/06	139	68.8	32.0	67.2
BLACK MOUNTAIN	7750	4/27/06	50 51	19.0	14.5 12.6	19.4 16.9	LYNN LAKE MARIAS PASS		4000 5250	4/28/06 4/28/06	45 23	20.6 9.7	.0	14.5 12.5
BLACK PINE SNOTEL	7100	5/01/06	19	8.5	8.5	11.0	MARTEN LAKE	AM	3600	5/02/06	157	84.4		73.4
BLACKWALL PEAK C	AN. 6370	5/01/06		27.8	15.8	34.9	MCCULLOCH	CAN.	4200	5/01/06	0	.0		1.2
BLEWETT PASS#2SNO		5/01/06		2.4	.0	5.0	MEADOWS CABIN		1900	4/27/06	0	.0	.0	1.1
BLUE LAKE BRENDA MINE C	5900 AN. 4450	4/24/06 5/01/06	40	14.9 10.2	11.8	22.4 9.3	MEADOWS PASS MERRITT	SNOTEL	3240 2140	5/01/06 4/28/06	53 0	24.5	.0	10.8
BROWN TOP	AM 6000	4/28/06	128	60.0	26.0	62.1		SNOTEL	4980	5/01/06	123	65.9	25.5	4.0
BRUSH CREEK TIMBE		4/25/06	5	2.2	.0	3.6	MICA CREEK	SNOTEL	4750	5/01/06	30	11.4	.0	15.3
BULL MOUNTAIN	6600	4/26/06	2	. 6	.8	2.6	MINERAL CREEK		4000	5/01/06	0	.0	.0	9.6
BUMPING LAKE (NEW)		5/02/06	24	11.2		10.4		SNOTEL	6200	5/01/06		56.4	24.0	56.9
BUMPING RIDGE SNOT BUNCHGRASS MDWSNOT		5/01/06 5/01/06	75 72	32.2	.4	27.5	MISSION CREEK	CAN.	5840	5/01/06	24	22.4	20.0	21.3
BURNT MOUNTAIN PI		5/01/06	29	32.7 14.1	15.4	28.6	MONASHEE PASS MORRISSEY RIDO		4500 6100	4/26/06 5/01/06	24	7.4 31.0	.1 21.4	11.4 27.2
	N. 4100	4/30/06	0	.0	.0	1.1	MORSE LAKE	SNOTEL	5400	5/01/06	139	68.4	20.3	57.0
CHESSMAN RESERVOI		4/26/06	2	. 5	.7	1.7	MOSES MTN	SNOTEL	4800	5/01/06	41	22.8	.1	10.9
CHICKEN CREEK	4060	4/27/06	22	10.2	.0	5.4		SNOTEL	5200	5/01/06		33.1	17.3	32.2
CHIWAUKUM G.S.	2500	4/28/06	0	.0	.0	1.7	MOULTON RESERV		6850	4/26/06	20	7.9	.3	3.5
COMBINATION SNOTES COPPER BOTTOM SNOTES		5/01/06 5/01/06	0	.0	.0	1.2 4.5	MOUNT BLUM MOUNT CRAG	AM SNOTEL	5800 4050	5/02/06 5/01/06	138 88	71.8 26.0	10.4	72.4 27.8
COPPER MOUNTAIN	7700	4/28/06	42	14.1	8.9	10.0	MT. KOBAU	CAN.	5500	4/30/06	45	16.7	6.5	12.8
CORRAL PASS SNOT	TEL 6000	5/01/06		41.0	13.1	35.3	MOWICH	SNOTEL	3150	5/01/06	0	.0	.0	
COTTONWOOD CREEK	6400	4/27/06	22	8.2	6.0	7.3	MOUNT GARDNER		2860	5/01/06	16	8.8	.0	4.8
COUGAR MTN. SNOT		5/01/06	37	13.1	.0	11.0	N.F. ELK CR SN		6250	5/01/06	25	8.3	8.6	8.0
COYOTE HILL	4500 4200	4/29/06 4/26/06	89 0	41.3	4.4	37.1 2.6	NEVADA RIDGE S NEW HOZOMEEN I		7020 2800	5/01/06 4/29/06	33 0	13.4	10.5 .0	14.4 3.9
DALY CREEK SNOTEL	5780	5/01/06	7	2.6	3.7	5.3	NEZ PERCE CMP		5650	5/01/06	26	10.1	4.9	10.8
DEER PARK	5200	5/01/06		10.0e	.0	15.2	NEZ PERCE PASS		6570	4/25/06	38	14.9	4.5	14.2
DEVILS PARK	5900	4/28/06	93	42.8	17.6	44.7	NOISY BASIN SN		6040	5/01/06	109	47.4	32.0	43.8
DISCOVERY BASIN	7050	4/28/06	29	9.5	6.5	9.4	NORTH FORK JOC		6330	4/24/06	98	46.8	31.7	FF 1
DIX HILL DOCK BUTTE	6400 AM 3800	4/30/06 5/02/06	0 140	.0 72.8	.0	3.8 62.9	OLALLIE MDWS OPHIR PARK	SNOTEL	3960 7150	5/01/06 4/30/06	118 34	64.6 13.4	11.6 9.9	55.1 16.0
DOMMERIE FLATS	2200	5/02/06	0	.0			OYAMA LAKE	CAN.	4100	4/28/06	7	1.9		2.6
DUNGENESS SNOT		5/01/06	19	6.9	.0		PARADISE PARK		5500	5/01/06		83.0	33.7	74.8
EAST FORK R.S.	5400	4/26/06	0	.0	.0	.7	PARK CK RIDGE		4600	5/01/06		46.8	2.5	39.8
EASY PASS ELBOW LAKE SNOT	AM 5200	5/02/06	144	74.9		86.9	PETERSON MDW S		7200	5/01/06	32	11.0	8.7	11.0
ELBOW LAKE SNOT EMERY CREEK SNOTE		5/01/06 5/01/06	72 2	36.3 .7	.0	32.5 7.4	PIGTAIL PEAK PIKE CREEK SNO	SNOTEL TEL	5900 5930	5/01/06 5/01/06	141 49	62.6 21.9	21.9 12.3	56.5 25.9
	N. 5800	4/30/06	105	47.6	34.6	43.5	PIPESTONE PASS		7200	4/27/06	13	4.3	2.5	4.8
ESPERON CK. UP CA	M. 5050	4/29/06	41	17.5	10.3	15.4	POPE RIDGE	SNOTEL	3540	5/01/06	34	13.5	.0	7.0
	N. 4000	4/25/06	28	11.3	6.1	8.1	POSTILL LAKE	CAN.	4200	4/28/06	15	6.0	3.2	5.3
FATTY CREEK	5500	4/24/06	58	25.3	16.7	23.4	POTATO HILL	SNOTEL	4500	5/01/06	45	26.8	.0	18.9
FISH CREEK FISH LAKE	8000 3370	4/26/06 5/02/06	43 56	13.6 29.6	9.4	11.5 23.1	QUARTZ PEAK RAGGED RIDGE	SNOTEL	4700 3330	5/01/06 4/26/06	45 0	19.3 .0	.0	14.9
FISH LAKE SNOT		5/01/06	65	27.0	.8	28.8	RAINY PASS	SNOTEL	4780	5/01/06	75	37.7	13.0	43.2
FLATTOP MTN SNOTE	6300	5/01/06	112	45.3	31.8	46.7	REX RIVER	SNOTEL	1900	5/01/06	66	34.7	.0	19.0
FLEECER RIDGE	7500	4/26/06	31	11.8	5.1	8.7	ROCKER PEAK SN	OTEL	8000	5/01/06	54	19.1	12.4	16.6
FOURTH OF JULY SUN		4/27/06	0	7.0	.0	.3	ROCKY CREEK	AM	2100	5/02/06	54 10	19.4		18.8
FREEZEOUT CK. TRAI FROHNER MDWS SNOTE		4/29/06 5/01/06	16 16	7.2 5.8	.0 8.0	6.4 6.5	ROUND TOP MIN SF THUNDER CK	AM	4020 2200	4/26/06 5/02/06	10	4.2	.0	1.2
GRASS MOUNTAIN #2	2900	4/28/06	0		.0		SADDLE MIN SNO		7900	5/01/06	71	29.3	15.7	26.5
GRAVE CRK SNOTEL	4300	5/01/06	9	4.2	.0	7.0		SNOTEL	4500	5/01/06	19	5.7	.0	3.9
GREEN LAKE SNOT		5/01/06	75	31.3	6.5	24.6		SNOTEL	4200	5/01/06	87	38.4	8.8	32.3
	N. 4700	4/28/06	21	7.1	2.4	7.0	SATUS PASS	anamer.	4030	4/28/06	15	6.1	14.3	25.2
GRIFFIN CR DIVIDE GROUSE CAMP SNOT	5150 EL 5380	4/29/06 5/01/06	6 45	2.2 20.7	.0 1.2	4.9 11.1	SAVAGE PASS SAWMILL RIDGE	SNOTEL	6170 4700	5/01/06 4/28/06	57 56	24.2 26.7	14.3	25.2 32.8
HAND CREEK SNOTEL	5030	5/01/06	6	1.7	0	6.8	SCHREIBERS MDW	MA 1	3400	5/02/06	114	59.3		53.2
HARTS PASS SNOT		5/01/06	89	45.4	13.8	47.7	SENTINEL BT SN		4920	5/01/06	10	4.1	.0	
HARTS PASS	6500	4/29/06	106	49.6	21.0	44.4	SHEEP CANYON		4050	5/01/06	100	44.7	1.1	32.0
HELL ROARING DIVII		4/26/06	74	34.0	20.1	29.0		SNOTEL	3200	5/01/06	72	.0	25.0	3.3
HERRIG JUNCTION HIGH RIDGE SNOT	4850 EL 4920	4/27/06 5/01/06	56 41	23.8 19.6	14.7 .0	22.9 15.9	SILVER STAR MT SKALKAHO SNOTE		5600 7260	4/29/06 5/01/06	72 54	32.2 23.1	25.0 13.0	30.1 25.4
HOLBROOK	4530	4/24/06	0	.0	.0	1.2	SKITWISH RIDGE		5110	5/01/06	63	29.0	2.6	25.8
HOODOO BASIN SNOTE		5/01/06	109	48.7	28.4	45.7	SKOOKUM CREEK		3920	5/01/06	48	28.6	.0	14.6
HUCKLEBERRY SNOT		5/01/06	0	.0	.0		SLIDE ROCK MOU	NTAIN	7100	4/30/06	39	15.6	10.0	15.7
HUMBOLDT GLCH SNOT		5/01/06		2.0	.0	5.5	SOURDOUGH GUL		4000	5/01/06	0	.0	.0	21 9
HURRICANE INTERGAARD	4500 6450	5/01/06 4/30/06	7	15.0e 3.2	.0 1.0	17.9 6.1		SNOTEL SNOTEL	3400 3100	5/01/06 5/01/06	0	37.6 .0	.0	21.8
	N. 5100	4/27/06	18	5.8	.0	5.4	SPOTTED BEAR M		7000	4/24/06	19	7.9	.0	7.6
	AM 5400	5/02/06	185	96.2		91.1	SPRUCE SPGS SN	OTEL	5700	5/01/06	25	11.1	. 0	
JUNE LAKE SNOT		5/01/06	101	57.0	.0	29.6	STAHL PEAK SNO		6030	5/01/06	86	40.2	29.6	37.1
	N. 3450	4/25/06	13	5.0	.0	4.8	STAMPEDE PASS	SNOTEL	3860	5/01/06	91 29	43.1 9.0	3.5 4.6	42.7 9.3
KRAFT CREEK SNOTEI	4750	5/01/06	0	.0	.0	5.2	STEMPLE PASS		6600	4/24/06	23	3.0	4.0	3.3

SNOW COURSE EL	EVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00	SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00
STEVENS PASS SNOTEL	4070	5/01/06		35.5	2.2	35.2		NOTEL 5310	5/01/06	18	6.9	.0	4.3
STEVENS PASS SAND SD	3700	4/28/06	70	32.0	. 0	27.5	TRUMAN CREEK	4060	4/28/06	0	.0	.0	.1
STORM LAKE	7780	4/28/06	44	15.5	10.4	14.3	TUNNEL AVENUE	2450	5/03/06	22	10.3	.0	12.0
STRYKER BASIN	6180	4/27/06	79	32.9	21.8	32.6	TV MOUNTAIN	6800	4/24/06	53	21.5	13.2	17.4
SUMMERLAND RES CAN.	4200	4/27/06	11	4.1	. 0	5.1	TWELVEMILE SNOT	EL 5600	5/01/06	26	9.8	. 0	8.8
SUNSET SNOTEL	5540	5/01/06		16.3	8.3	28.7	TWIN CAMP	4100	4/28/06	35	16.3	. 0	20.3
SURPRISE LKS SNOTEL	4250	5/01/06		64.9	7.2	41.8	TWIN CREEKS	3580	4/24/06	0	.0	. 0	1.7
SWAMP CREEK SNOTEL	4000	5/01/06	7	4.1	.0		TWIN LAKES SNOT	EL 6400	5/01/06	91	43.4	22.7	38.5
TEN MILE LOWER	6600	4/24/06	21	4.6	2.7	4.5	UPPER HOLLAND L	AKE 6200	4/24/06	77	34.4	23.1	33.5
TEN MILE MIDDLE	6800	4/24/06	40	12.1	7.6	11.2	UPPER WHEELER S	NOTEL 4400	5/01/06	25	10.8	. 0	6.3
THUNDER BASIN SNOTEL	4200	5/01/06		27.2	11.2	27.4	VASEUX CREEK	CAN. 4250	4/28/06	0	.0	.0	2.3
THUNDER BASIN	4200	4/27/06	42	17.8	2.8	21.2	WARM SPRINGS SN	OTEL 7800	5/01/06	62	23.6	15.3	23.7
THOMPSON CREEK	2500	4/26/06	0	.0	.0		WATSON LAKES	AM 4500	5/02/06	136	70.7		64.0
TINKHAM CREEK SNOTEL	3000	5/01/06	66	27.5	.0	20.0	WATERHOLE S	NOTEL 5000	5/01/06	91	41.0	8.3	
TOUCHET SNOTEL	5530	5/01/06	61	27.7	3.7	26.2	WEASEL DIVIDE	5450	4/26/06	69	33.0	17.9	32.7
TRAPPING CK UP CAN.	4100	4/26/06	88	37.6		1.0	WELLS CREEK S	NOTEL 4200	5/01/06	81	40.3	16.1	
TRINKUS LAKE	6100	4/24/06	97	46.9	32.7	40.8	WHITE PASS ES S	NOTEL 4500	5/01/06		22.7	. 0	21.4
							WHITE ROCKS MIN	CAN. 7200	4/28/06	61	25.2	9.7	21.0

NRCS Natural Resources Conservation Service

May 1, 2006 -Snowpack, Precipitation and Reservoir Conditions at a Glance

(Water Year = October 1, 2005 - Current Date)

Natural Resources Conservation Service

Washington State Snow, Water and Climate Services

Program Contacts

RL "Gus" Hughbanks State Conservationist Spokane State Office W. 316 Boone Ave., Suite 450 Spokane, WA 99201-2348 phone: 509-323-2961 fax: 509-323-2979 gus.hughbanks@wa.usda.gov

Scott Pattee
Water Supply Specialist
Washington Snow Survey Office
2021 E. College Way, Suite 214
Mount Vernon, WA 98273-2873

phone: 360-428-7684 fax: 360-424-6172 scott.pattee@wa.usda.gov Jon Lea
DCO Supervisor
Oregon Data Collection Office
101 SW Main St, Suite 1300
Portland, OR 97204
Phone: 503-414-3267
Fax: 503-414-3277
jon.lea@or.usda.gov

James Marron
Resource Conservationist
National Water and Climate Center
101 SW Main St., Suite 1600
Portland, OR 97204-3224
phone: 503-414-3047
fax: 503-414-3101
imarron@wcc.nrcs.usda.gov

Helpful Internet Addresses

NRCS Snow Survey and Climate Services Homepages

Washington:

http://www.wa.nrcs.usda.gov/snow

Oregon:

http://www.or.nrcs.usda.gov/snow

Idaho:

http://www.id.nrcs.usda.gov/snow

National Water and Climate Center (NWCC): http://www.wcc.nrcs.usda.gov

NWCC Anonymous FTP Server: ftp.wcc.nrcs.usda.gov

USDA-NRCS Agency Homepages

Washington:

http://www.wa.nrcs.usda.gov

NRCS National: http://www.nrcs.usda.gov

Columbia Basin Snowpack Summary

Columbia Basin snowpack conditions as of: May 1, 2006

The Columbia Basin snowpack charts are produced with automated snow pillow data, collected by BC Hydro, Alberta Environment, and NRCS Snow Survey Program. These charts will now be available on the first of each month, January through May. Be aware that the data are provisional until they are officially released by the responsible data collection agencies.

In total, the 2006 Columbia Basin snowpack is about as normal as it gets. The overall snowpack above The Dalles is currently average. This is down slightly from 102 percent on April 1. However, it's a whole lot better than last year's 58 percent of average! While the Salmon, Boise, and Kettle snowpacks increased slightly from last month, most of the basin's snowpack decreased slightly. The biggest losers over the past month were the southern Cascades, Snake headwaters, Kootenay, and Pend Oreille at -12, -7, -4, and -4 percent, respectively. Two to three percent decreases were reported over the rest of the basin.

Precipitation during April was heavy over the middle/southern Snake area and the upper Clark Fork. Precipitation amounts were lowest over the Cascades, upper Snake, and the upper Kootenay.

The snowpack in the Columbia Basin above Castlegar is at 91 percent of average. This compares to 65 percent last year and 92 percent of average last month. For the basin above Grand Coulee, the snowpack is at 93 percent of average. This compares to 63 percent last year and 95 percent of average last month. The Snake River snowpack above Ice Harbor is at 113 percent of average, compared to 58 percent last year and 115 percent of average last month.

Spokane River Basin

*Based on selected stations

The May 1 forecasts for summer runoff within the Spokane River Basin are 84% of average near Post Falls and 86% at Long Lake. The Chamokane River near Long Lake forecasted to have 135% of average flows for the May-August period. The forecast is based on a basin snowpack that is 90% of average and precipitation that is 98% of average for the water year. Precipitation for April was near normal at 106% of average. Streamflow on the Spokane River at Long Lake was 120% of average for April. May 1 storage in Coeur d'Alene Lake was 220,000acre feet, 88% of average and 92% of capacity. Snowpack at Quartz Peak SNOTEL site was 130% of average with 19.3 inches of water content. Average temperatures in the Spokane basin were 2 degrees above normal for April and 1 degree above for the water year.

Spokane River Basin

SPOKANE RIVER BASIN Streamflow Forecasts - May 1, 2006

							========	
Forecast Point	Forecast Period		Drier ===== 70% (1000AF)			===== Wetter ==================================	10% (1000AF)	30-Yr Avg. (1000AF)
SPOKANE near Post Falls (2)	MAY-SEP MAY-JUL	1070 1000	1310 1230	1480 1390	84 83	1650 1550	1890 1780	1770 1670
SPOKANE at Long Lake (2)	MAY-JUL MAY-SEP	1170 1370	1440 1650	1620 1840	85 86	1800 2030	2070 2310	1910 2130
CHAMOKANE CREEK near Long Lake	MAY-AUG JUL-AUG	10.2	12.3	13.8 4.5	135 129	15.3 4.7	17.4 4.9	10.2 3.5

Usable *** Usable Storage *** Watershed Number This Year as \$ Number This Year as \$ This Last Watershed Of Data Sites Last Yr Avershed Avershed Data Sites Last Yr Avershed Number This Year as \$ Nu	SPOKANE Reservoir Storage (10	RIVER BASIN 00 AF) - End					POKANE RIVER BASII Dwpack Analysis -	006
	Reservoir		This	Last		Watershed	of	
	COEUR D'ALENE	238.5	219.5	198.9	249.7		11	

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Colville - Pend Oreille River Basins

*Based on selected stations

The May–September average forecast for the Kettle River streamflow is 99%, Colville at Kettle Falls is 148% and Priest River near the town of Priest River is 110%. April streamflow was 127% of average on the Pend Oreille River, 113% on the Columbia at Birchbank and 141% on the Kettle River. May 1 snow cover was 99% of average in the Pend Oreille Basin River Basin and 156% for the Kettle River. Bunchgrass Meadows SNOTEL site had 32.5 inches of snow water on the snow pillow. Normally Bunchgrass would have 28.6 inches on May 1. Precipitation during April was 108% of average, bringing the year-to-date precipitation to 105% of average. Reservoir storage in the basin, including Lake Pend Oreille and Priest Lake was 56% of normal. Average temperatures were 1-2 degrees above normal for April and 1 degree above for the water year.

Colville - Pend Oreille River Basins

Streamflow Forecasts	-	May	1,	2006
----------------------	---	-----	----	------

		<<=====	Drier ====	== Future Co	nditions =	===== Wetter	====>>	
Forecast Point	Forecast Period	90%	70%		xceeding *	======================================	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
PEND OREILLE Lake Inflow (2)	MAY-JUL	8790	9690	10300	97	10910	11810	10600
	MAY-SEP	9820	10820	11500	98	12180	13180	11800
PRIEST near Priest River (1,2)	MAY-JUL	570	645	680	111	715	790	615
	MAY-SEP	600	695	735	110	775	870	670
PEND OREILLE bl Box Canyon (2)	MAY-JUL	8520	9640	10400	97	11160	12280	10700
	MAY-SEP	9670	10820	11600	98	12380	13530	11900
COLVILLE at Kettle Falls	MAY-SEP	110	126	136	148	146	162	92
	MAY-JUL	95	108	117	148	126	139	79
KETTLE near Laurier	MAY-SEP	1360	1520	1630	99	1740	1900	1640
	MAY-JUL	1290	1430	1520	99	1610	1750	1540
COLUMBIA at Birchbank (1,2)	MAY-JUL	26332	28579	29600	94	30620	32870	31600
	MAY-SEP	33636	36499	37800	94	39100	41960	40200
COLUMBIA at Grand Coulee Dm (1,2)	MAY-SEP	47323	51502	53400	94	55300	59480	56700
	MAY-JUL	38413	41842	43400	93	44960	48390	46600

COLVILLE - PEND Reservoir Storage (1					COLVILLE - PEN Watershed Snowpa			
Reservoir	Usable Capacity	*** Usal This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites		ar as % of Average
ROOSEVELT		NO REPO	 R T		COLVILLE RIVER	0	0	0
PEND OREILLE	1561.3	946.2	952.5	916.7	PEND OREILLE RIVER	10	213	99
PRIEST LAKE	119.3	107.4	90.8	102.5	KETTLE RIVER	6	161	156

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Okanogan - Methow River Basins

*Based on selected stations

Summer runoff average forecast for the Okanogan River is 90%, Similkameen River is 90%, Methow River is 88% and Salmon Creek is 114%. May 1 snow cover on the Okanogan was 104% of average, Omak Creek was 209% and the Methow was 94%. April precipitation in the Okanogan-Methow was 131% of average, with precipitation for the water year at 124% of average. April streamflow for the Methow River was 103% of average, 69% for the Okanogan River and 76% for the Similkameen. Snowwater content at Moses Mtn. SNOTEL was 22.8to be 15 inches. Average for this site is 10.9 inches on May 1. Combined storage in the Conconully Reservoirs was 16,000-acre feet, which is 70% of capacity and 86% of the May 1 average. Temperatures were near normal for April and for the water year.

Okanogan - Methow River Basins

Streamflow Forecasts - May 1, 2006

East ==== .od 90 .(1000) .EEP 90 .EEP 90 .EEP 92	70% AF) (1000AF	1100 1190 1260 1430	Exceeding * : 50%) (% AVG.) 90 90 90 90	30% (1000AF) ====================================	10% (1000AF) 1380 1480 1750 1960	30-Yr Avg. (1000AF) 1220 1320 1400 1590
(1000) IUL 820 IUL 770 SEP 900 IUL 790	AF) (1000AF 0 1015 100 0 1110 0 1260 0 1140	1100 1190 1260 1430	90 90 90 90	(1000AF) =========== 1190 1280 1410 1600	(1000AF) ====================================	(1000AF)
GEP 90! GEP 900 GUL 790	1100 0 1110 0 1260 0 1140	1190 1260 1430 1300	90 90 90	1280 1410 1600	1480 1750	1320 1400
TUL 770	0 1110 0 1260 0 1140	1260 1430 1300	90 90	1410 1600	1750	1400
EP 900	1260	1430	90	1600		
TUL 790	1140	1300			1960	1590
			90			
SEP 920	1300			1460	1810	1449
		1470	90	1640	2020	1641
TUL 10.9	9 15.7	19.4	117	24	30	16.6
SEP 11.0	16.0	20	114	24	32	17.6
TUL 2:	2 28	32	119	36	42	27
EP 23	3 29	33	118	37	43	28
SEP 8.6	11.0	12.6	113	14.2	16.6	11.2
UL 8.0	10.3	11.9	118	13.5	15.8	10.1
EP 670	730	775	88	820	880	880
UL 620	675	715	88	755	810	810
	.=======	 		! 		
ER BASINS						
J	JUL 620	JUL 620 675 VER BASINS	JUL 620 675 715 VER BASINS	JUL 620 675 715 88 VER BASINS OKANOG.	JUL 620 675 715 88 755 VER BASINS OKANOGAN - METHOW R:	JUL 620 675 715 88 755 810

OKANOGAN - Reservoir Storage	METHOW RIVER B. (1000 AF) - End				OKANOGAN - Watershed Snowpa	METHOW RIVER I		006
Reservoir	Usable Capacity	*** Usal This Year	ble Storag Last Year	je *** Avg	Watershed	Number of Data Sites		ar as % of Average
SALMON LAKE	10.5	8.2	6.2	8.9	OKANOGAN RIVER	18	207	104
CONCONULLY RESERVOIR	13.0	8.2	6.4	10.1	OMAK CREEK	1	0	209
					SANPOIL RIVER	0	0	0
					SIMILKAMEEN RIVER	2	186	80
					TOATS COULEE CREEK	0	0	0
					CONCONULLY LAKE	1	0	146
					METHOW RIVER	3	331	94

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

Wenatchee - Chelan River Basins

*Based on selected stations

Precipitation during April was 89% of average in the basin and 101% for the year-to-date. Runoff for Entiat River is forecast to be 107% of average for the summer. The May-September average forecast for Chelan River is 95%, Wenatchee River at Plain is 100%, Stehekin River is 97% and Stemilt Ck. near Wenatchee is 130%. Icicle and Squilchuck creeks are expected to have near average flows as well. April average streamflows on the Chelan River were 103% and on the Wenatchee River 81%. May 1 snowpack in the Wenatchee River Basin was 105% of average; the Chelan, 101%; the Entiat, 193%; Stemilt Creek, 171% and Colockum Creek, 160%. Reservoir storage in Lake Chelan was 146,000-acre feet, 55% of May 1 average and 22% of capacity. Lyman Lake SNOTEL had the most snow water with 68.8 inches of water. This site would normally have 67.2 inches on May 1. Temperatures were near normal for April and for the water year.

Wenatchee - Chelan River Basins

_______ <<===== Drier ===== Future Conditions ====== Wetter ====>> Forecast 90% 70% 50% 30% 10% 30-Yr Avg. (1000AF) (1000AF) (1000AF) (1000AF) (1000AF)

1		(1000AL)	(1000AI)	(1000AI)	(* AVG.)	(IOUNT)	(1000AF)	(1000AF)
THELAN RIVER near Chelan	MAY-SEP	890	950	1000	95	1050	1110	1050
MEMININE MEGIL CARETAIN	MAY-JUL	765	830	870	96	910	970	910
STEHEKIN near STEHEKIN	MAY-SEP	640	690	720	97	750	800	745
	MAY-JUL	525	570	600	97	630	675	620
ENTIAT RIVER nr Ardenvoir	MAY-SEP	210	225	230	107	235	250	215
	MAY-JUL	188	200	205	105	210	220	195
VENATCHEE at Plain	MAY-SEP	910	980	1030	100	1080	1150	1035
	MAY-JUL	825	880	920	101	955	1015	915
VENATCHEE R. at Peshastin	MAY-SEP	922	1213	1410	100	1607	1900	1410
	MAY-JUL	815	1074	1250	100	1426	1685	1250
STEMILT CK nr Wenatchee (miner's in)	MAY-SEP	144	165	179	130	193	215	138
ICICLE CREEK near Leavenworth	MAY-SEP	300	310	315	103	320	330	305
	MAY-JUL	265	280	290	104	300	315	280
COLUMBIA R. bl Rock Island Dam (2)	MAY-SEP	53679	57264	59700	97	62140	65720	61600
	MAY-JUL	43421	46921	49300	97	51680	55180	51100
	=======	========		=========			:=========	

Streamflow Forecasts - May 1, 2006

	WENATCHEE - CHELAN RIVER BASINS Reservoir Storage (1000 AF) - End of April						BASINS May 1, 20	06
Reservoir	Usable Capacity	*** Usable Storage *** This Last Year Year Avg			Watershed	Number of Data Sites	This Yea Last Yr	r as % of Average
CHELAN LAKE	676.1	146.2	545.2	265.6	CHELAN LAKE BASIN	4	293	101
					ENTIAT RIVER	1	0	193
					WENATCHEE RIVER	11	638	107
					STEMILT CREEK	1	0	171
					COLOCKUM CREEK	1	0	160

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

The average is computed for the 1971-2000 base period.

Forecast Point

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural volume - actual volume may be affected by upstream water management.

Upper Yakima River Basin

*Based on selected stations

May 1 reservoir storage for the Upper Yakima reservoirs was 389,000-acre feet, 63% of average. Forecasts for the Yakima River at Cle Elum are 109% of average and the Teanaway River near Cle Elum is at 110%. Lake inflows are all forecasted to be near that same range this summer. April streamflows within the basin were Yakima near Cle Elum at 90% and Cle Elum River near Roslyn at 91%. May 1 snowpack was 111% based upon 7 snow course and SNOTEL readings within the Upper Yakima Basin. Precipitation was only 61% of average for April and 95% for the water-year. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Upper Yakima River Basin

Streamflow Forecasts - May 1, 2006

		<<=====	Drier ====	== Future Co	onditions ==	===== Wetter	_====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		Exceeding * = 50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
KEECHELUS LAKE INFLOW	MAY-JUL	84	94	101	110	108	118	92
	MAY-SEP	92	105	113	110	121	134	103
KACHESS LAKE INFLOW	MAY-JUL	81	88	93	111	98	105	84
	MAY-SEP	88	96	102	111	108	116	92
CLE ELUM LAKE INFLOW	MAY-JUL	320	335	350	106	365	380	330
	MAY-SEP	360	385	400	107	415	440	375
YAKIMA at Cle Elum	MAY-JUL	625	665	695	109	725	765	635
	MAY-SEP	695	745	780	109	815	865	715
TEANAWAY near Cle Elum	MAY-JUL	86	95	101	111	107	116	91
	MAY-SEP	89	98	104	110	110	119	95

	UPPER YAKIM Reservoir Storage (1000					UPPER YA Watershed Snowpa	KIMA RIVER BAS ck Analysis -)6
Reservoir		Usable Capacity	*** Usal This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year	
KEECHELUS		157.8	92.1	114.0	125.6	UPPER YAKIMA RIVER	8	912	112
KACHESS		239.0	116.4	158.9	188.3				
CLE ELUM		436.9	180.6	330.1	307.0				
L. w									

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural volume - actual volume may be affected by upstream water management.

Lower Yakima River Basin

*Based on selected stations

April average streamflows within the basin were: Yakima River near Parker, 112%; Naches River near Naches, 116%; and Yakima River at Kiona, 96%. May 1 reservoir storage for Bumping and Rimrock reservoirs was 186,000-acre feet, 110% of average. Forecast averages for Yakima River near Parker are 112%; American River near Nile, 113%; Ahtanum Creek, 122%; and Klickitat River near Glenwood, 119%. May 1 snowpack was 118% based upon 6 snow course and SNOTEL readings within the Lower Yakima Basin and Ahtanum Creek reported in at 124% of average. Precipitation was 95% of average for April and 112% year-to-date for water. Temperatures were near normal for April and near average for the water year. Volume forecasts for Yakima Basin are for natural flow. As such, they May differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Lower Yakima River Basin

Streamflow Forecasts - May 1, 2006

,		<<======	Drier ====	== Future Co	onditions =	===== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		Exceeding * : 00% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
BUMPING LAKE INFLOW	MAY-SEP	110	121	128	113	135	146	113
	MAY-JUL	103	111	117	114	123	131	103
AMERICAN RIVER near Nile	MAY-SEP	98	107	113	113	119	128	100
	MAY-JUL	89	97	103	114	109	117	90
RIMROCK LAKE INFLOW	MAY-SEP	199	215	225	110	235	250	205
	MAY-JUL	168	179	187	111	195	206	168
NACHES near Naches	MAY-SEP	645	700	735	108	770	825	680
	MAY-JUL	575	620	650	108	680	725	600
HTANUM CREEK at Union Gap	MAY-SEP	22	26	28	122	30	34	23
	MAY-JUL	20	24	26	124	28	32	21
AKIMA near Parker	MAY-SEP	1480	1580	1650	112	1720	1820	1480
	MAY-JUL	1290	1380	1440	112	1500	1590	1290
LICKITAT near Glenwood	MAY-JUN	106	114	120	118	126	134	102
	MAY-SEP	141	152	160	119	168	179	135
LOWER Y	AKIMA RIVER BAS					I ======= ER YAKIMA RIVE DOWDACK ADALYS		2006

LOWER YAKIMA Reservoir Storage (1000					LOWER YA Watershed Snowpa	KIMA RIVER BAS ck Analysis -	
Reservoir	Usable Capacity		le Storag Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year as % of ====================================
BUMPING LAKE	33.7	24.1	33.9	19.6			
RIMROCK	198.0	161.8	179.3	149.4			

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Walla Walla River Basin

*Based on selected stations

April precipitation was 124% of average, maintaining the year-to-date precipitation at 106% of average. Snowpack in the basin was 112% of average. Streamflow forecasts are 108% of average for Mill Creek and 106% for the SF Walla Walla near Milton-Freewater. April streamflow was 193% of average for the Walla Walla River. Average temperatures were 1 degree above normal for April and 1 degree above average for the water year.

Walla Walla River Basin

Streamflow Forecasts - May 1, 2006									
		========	- 				====== Wetter		
Forecast Point	Forecast Period		70% (1000AF)	= Chan	ce Of E		30% (1000AF)		30-Yr Avg. (1000AF)
3F WALLA WALLA near Milton-Freewater		33	37		40	105	43	47	38
	MAY-SEP	46	51		54	106	57	62	51
4ILL CREEK at Kooskooskie	MAY-JUL	11.6	14.1	i	16.0	109	18.0	21	14.7
	MAY-SEP	14.8	17.7		19.8	108	22	26	18.4
WALLA WALLA Reservoir Storage (1000				: 			LLA WALLA RIVE nowpack Analys		2006
	Usable		e Storage *	**			Numbe	r This	Year as % of
Reservoir	Capacity	This Year	Last Year A	vg	Water	shed	of Data Si	==== tes Last	Yr Average
·					WALLA	WALLA RIVE	R 2	1278	112

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Lower Snake River Basin

*Based on selected stations

The May-September forecast is for 101% for Clearwater River at Spalding. The Snake and Grande Ronde rivers can expect summer flows to be about 118% and 108% of normal respectively. April precipitation was 112% of average, maintaining the year-to-date precipitation at 111% of average. May 1 snowpack readings averaged 100% of normal. April streamflow was 151% of average for Snake River below Lower Granite Dam and 128% for Grande Ronde River near Troy. Average temperatures were 2 degrees above for April and 1 degree above normal for the water year.

Lower Snake River Basin

______ Streamflow Forecasts - May 1, 2006

	=======================================	<<=====	Drier ====	== Future Co	onditions =:	====== Wetter	:=====>>	
Forecast Point	Forecast			= Chance Of E	xceeding * :		======	
1010000	Period	90%	70%	j 5	50%	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
=======================================					========	=========		
GRANDE RONDE at Troy (1)	MAY-JUL	736	904	980	108	1056	1225	910
	MAY-SEP	818	1005	1090	108	1175	1360	1010
CLEARWATER at Spalding (1,2)	MAY-JUL	4750	5490	5830	101	6170	6910	5770
Children at Sparaing (17-7)	MAY-SEP	5090	5890	6250	101	6610	7410	6190
SNAKE blw Lower Granite Dam (1,2)	MAY-JUL	16510	18772	19800	119	20830	23090	16700
SNAKE DIW LOWEL GLATITE DAM (1,2)	MAY-SEP	18995	21612	22800	118	23990	26600	19300
	rmi-SEP	10995	21012	22800	110	23990	20000	19300

	OWER SNAKE RIVER BASI rage (1000 AF) - End				ER SNAKE RIVER BAS owpack Analysis -			
Reservoir	Usable Capacity	*** Usable St This Las Year Yea	st	Watershed	Number of Data Sites			
DWORSHAK	3468.0	2447.3 3326	4 2421.3	LOWER SNAKE, GRAN	DE RONDE 10	218 100		

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Cowlitz - Lewis River Basins

*Based on selected stations

Forecasts for May – September streamflows within the basin are Lewis River at Ariel, 122% and Cowlitz River at Castle Rock, 113% of average. The Columbia at The Dalles is forecasted to have 98% of average flows this summer. April average streamflow for Cowlitz River was 82% and 96% for Lewis River. The Columbia River at The Dalles was 130% of average. April precipitation was 68% of average and the water-year average was 101%. June Lake SNOTEL received 9.6 inches of precipitation in April, normal is 12.4 inches. May 1 snow cover for Cowlitz River was 118%, and Lewis River was 163% of average. Average temperatures were 2 degrees above normal during April and 1 degree above for the water year.

Cowlitz - Lewis River Basins

Streamflow Forecasts - May 1, 2006

:======================================			=========	======================================		:========	========	==========
		<<=====	Drier ====	== Future Co	nditions ==	===== Wetter	====>>	
Forecast Point	Forecast	=======		= Chance Of E	xceeding * =			
	Period	90%	70%	5	0%	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
LEWIS at Ariel (2)	MAY-JUL	726	800	850	127	900	974	667
	MAY-SEP	863	939	990	122	1041	1117	812
OWLITZ R. bl Mayfield Dam (2)	MAY-SEP	890	1354	1670	113	1986	2450	1478
	MAY-JUL	764	1154	1420	114	1686	2076	1247
OWLITZ R, at Castle Rock (2)	MAY-SEP	1203	1797	2200	112	2603	3197	1972
	MAY-JUL	1010	1504	1840	113	2176	2670	1629
CLICKITAT near Glenwood	MAY-JUN	106	114	120	118	126	134	102
	MAY-SEP	141	152	160	119	168	179	135
COLUMBIA R. at The Dalles (2)	MAY-SEP	71444	78265	82900	98	87530	94360	84500
	MAY-JUL	59344	65034	68900	98	72770	78460	70500

	COWLITZ - LEWIS R Reservoir Storage (1000 AF)			L		COWLITZ - Watershed Snowp	LEWIS RIVER BA		06
Reservoir		sable pacity		able Storag Last Year	e *** Avg	Watershed	Number of Data Sites	This Year Last Yr	r as % of Average
40SSYROCK		0.0	1223.6	1496.1		LEWIS RIVER	5	1369	163
SWIFT		0.0	671.6	751.4		COWLITZ RIVER	5	423	118
YALE		0.0	383.4	372.9					
MERWIN		0.0	407.5	419.3					

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural volume - actual volume may be affected by upstream water management.

White - Green River Basins

*Based on selected stations

Summer runoff is forecast to be 116% of normal for the Green River below Howard Hanson Dam and 108% for the White River near Buckley. May 1 snowpack was 119% of average in both White River and Puyallup River basins and 99% in Green River Basin. Water content on May 1 at Corral Pass SNOTEL, at an elevation of 6,000 feet, was 41 inches. This site has a May 1 average of 35.3 inches. April precipitation was 77% of average, dropping the water year-to-date to 102% of average for the basins. Average temperatures in the area were 1 degree above normal for April and 1 degree above for the water-year.

White - Green - Puyallup River Basins

6

4114

370

119

104

119

Streamflow Forecasts - May 1, 2006

	<<=====	Drier ====	== Future Co	onditions ==	===== Wetter	====>>	
Forecast Period	90% (1000AF)	70% (1000AF)	. 5	50%	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
MAY-JUL MAY-SEP	296 389	350 448	375 475	108	400 502	454 561	348 442
MAY-JUL MAY-SEP	142 161	175 198	190 215	109 106	205 232	238 269	175 202
WHITE - GREEN - PUYALLUP RIVER BASINS WHITE - GREEN - PUYALLUP RIVER BASINS Reservoir Storage (1000 AF) - End of April Watershed Snowpack Analysis - May 1, 2006							
Usable Capacity	*** Usabl This Year	Last	Water	shed	of	====	Year as % of ====================================
	Period MAY-JUL MAY-JUL MAY-SEP MAY-SEP PUYALLUP RIVE 00 AF) - End Usable	Forecast 90% (1000AF) MAY-JUL 296 MAY-SEP 389 MAY-JUL 142 MAY-SEP 161 PUYALLUP RIVER BASINS 00 AF) - End of April Usable *** Usabl Capacity This	Forecast 90% 70% 70% (1000AF) (1000AF) (1000AF) (1000AF) MAY-JUL 296 350 MAY-SEP 389 448 MAY-JUL 142 175 MAY-SEP 161 198 PUYALLUP RIVER BASINS 00 AF) - End of April Usable *** Usable Storage *** Capacity This Last	Forecast	Forecast Period 90% 70% 50% 50% (1000AF) (1000AF) (1000AF) (\$ AVG.) MAY-JUL 296 350 375 108 MAY-SEP 389 448 475 108 MAY-JUL 142 175 190 109 MAY-SEP 161 198 215 106 PUYALLUP RIVER BASINS WHITE - GROWN AFF - End of April Watershed SI Usable *** Usable Storage *** Capacity This Last Watershed	Forecast Period 90% 70% 50% 30% 30% (1000AF) (10	Period 90% 70% (1000AF) (1000A

WHITE RIVER

GREEN RIVER

PUYALLUP RIVER

* 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the :able.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

Central Puget Sound River Basins

*Based on selected stations

Forecast for spring and summer flows are: 98% for Cedar River near Cedar Falls; 97% for Rex River; 104% for South Fork of the Tolt River; and 106% for Cedar River at Cedar Falls. Basin-wide precipitation for April was 74% of average, bringing water-year-to-date to 99% of average. May 1 average snow cover in Cedar River Basin was 175%, Tolt River Basin was 150%, Snoqualmie River Basin was 125%, and Skykomish River Basin was 120%. Olallie Meadows SNOTEL site, at 3960 feet, had 64.6 inches of water content. Average May 1 water content is 55.1 inches at Olallie Meadows. Temperatures were near average for April and for the water-year.

Central Puget Sound River Basins

Streamflow Forecasts - May 1, 2006

,		<<=====	Drier ====	== Future Co	onditions ==	===== Wetter	====>>		
Forecast Point	Forecast Period	======= 90%	70%		Exceeding * =	20%	======	20 1/2 7.10	
	Period	(1000AF)	(1000AF)		(% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)	
CEDAR near Cedar Falls	MAY-JUL	40	47	52	100	57	64	52	
	MAY-SEP	45	53	58	98	63	71	59	
REX near Cedar Falls	MAY-JUL	11.5	14.8	17.0	98	19.2	23	17.4	
	MAY-SEP	13.2	16.9	19.4	97	22	26	20	
CEDAR RIVER at Cedar Falls	MAY-JUL	17.9	36	49	104	62	80	47	
	MAY-SEP	11.9	33	48	104	63	84	46	
4									
SOUTH FORK TOLT near Index	MAY-JUL	9.0	10.5	11.5	105	12.5	14.0	11.0	
	MAY-SEP	10.8	12.7	14.0	106	15.3	17.2	13.2	

CENTRAL PUGET SOUND RIVER BASINS Reservoir Storage (1000 AF) - End of April					CENTRAL PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - May 1, 2006				
Reservoir	Usable Capacity	*** Usabl This Year	e Storage Last Year	*** Avg	Watershed	Number of Data Sites	This Year Last Yr		
=========					CEDAR RIVER	4	0	175	
					TOLT RIVER	2	649	150	
					SNOQUALMIE RIVER	4	682	125	
					SKYKOMISH RIVER	3	801	120	

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

North Puget Sound River Basins

*Based on selected stations

Forecast for Skagit River streamflow at Newhalem is 97% of average for the spring and summer period. April streamflow in Skagit River was 79% of average. Other forecast points included Baker River at 98% and Thunder Creek at 100% of average. Basin-wide precipitation for April was 94% of average, bringing water-year-to-date down to 101% of average. May 1 average snow cover in Skagit River Basin was 94% and Nooksack River Basin was 112%. Baker River Basin snow surveys showed above average conditions at 105%. Rainy Pass SNOTEL, at 4,780 feet, had 37.7 inches of water content. Average May 1 water content is 43.2 inches at Rainy Pass. In preparation for spring runoff, May 1 Skagit River reservoir storage was down to 79% of average and 42% of capacity. Average temperatures for April were near normal for the basin and 1 degree above average for the water year.

North Puget Sound River Basins

Streamflow Forecasts - May 1, 2006										
Forecast Point	Forecast			== Future Con		==== Wetter	====>>			
	Period	90% (1000AF)	70% (1000AF)	(1000AF)	0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)		
THUNDER CREEK near Newhalem	MAY-JUL MAY-SEP	189 284	204 300	215 310	101 100	226 320	241 336	212 310		
SKAGIT at Newhalem (2)	MAY-JUL	1465	1551	1610	100	1669	1755	1611		

NORTH Reservoir Stor	NORTH PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - May 1, 2006							
Reservoir	Usable Capacity	*** Usa This Year	able Stora Last Year	ge *** Avg	Watershed	Number of Data Sites		ar as % of Average
ROSS	1404.1	537.8	1144.5	708.8	SKAGIT RIVER	12	315	94
DIABLO RESERVOIR	90.6	86.9	83.9	85.9	BAKER RIVER	9	0	105
					NOOKSACK RIVER	1	343	112

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The average is computed for the 1971-2000 base period.

BAKER RIVER near Concrete

MAY-SEP

MAY-JUL

MAY-SEP

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Olympic Peninsula River Basins

*Based on selected stations

Forecasted average runoff for streamflow for both the Dungeness and Elwha rivers is 105% and 103% respectively. April runoff in the Dungeness River was 82% of normal. Big Quilcene and Wynoochee rivers should expect near average runoff this summer as well. April precipitation was 90% of average. Precipitation has accumulated at 107% of average for the water year. April precipitation at Quillayute was 5.92 inches. The thirty-year average for April is 7.44 inches. Olympic Peninsula snowpack averaged 94% of normal. Mt Crag SNOTEL reported 88 inches of snow depth with 26 inches of water content. Normal May 1 snow-water-content at Mt. Crag is 27.8 inches. Temperatures were slightly below average for April and 1 degree above average for the water year.

Olympic Peninsula River Basins

	Str	eamflow	Forecas	ts - May	1, 2006			
			Drion	- Futuro Co	nditions	===== Wetter		
		· · · · · · · · · · · · · · · · · · ·	Dilei ====	== rucure co	marcions ==	===== wetter		
Forecast Point	Forecast							
	Period	90% (1000AF)	70% (1000AF)		60% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
	·	========	=========	(1000AF)		======================================	(1000AI)	=======================================
DUNGENESS near Sequim	MAY-SEP	124	132	138	105	144	152	132
	MAY-JUL	102	108	112	107	116	122	105
ELWHA near Port Angeles	MAY-SEP	390	417	435	103	453	480	423
Damar Mode Fore Imageres	MAY-JUL	314	336	350	104	364	386	338
OT.YMPTC PR	ENTURINA PIVER BA	======== SINS	=		OTAMPTO	PENINSULA RIV	PR BASTNS	==========
OLYMPIC PENINSULA RIVER BASINS Reservoir Storage (1000 AF) - End of April						owpack Analysi		2006
	Usable	*** Usabl	e Storage *:	**		Number	This	Year as % of
Reservoir	Capacity	This	Last	Water	shed	of		******
<u> </u>	1	Year	Year A	/g		Data Sit	es Last	Yr Average
			========	OLYME	IC PENINSULA	4	607	94

* 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

Issued by

Released by

Bruce Knight

Chief

Natural Resources Conservation Service

U.S. Department of Agriculture

R.L. "Gus" Hughbanks State Conservationist

Natural Resources Conservation Service

Spokane, Washington

The Following Organizations Cooperate with the Natural Resources Conservation Service in Snow Survey Work*:

Canada Ministry of Sustainable Resources

Snow Survey, River Forecast Centre, Victoria, British Columbia

State Washington State Department of Ecology

Washington State Department of Natural Resources

Federal Department of the Army

Corps of Engineers
U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce

NOAA, National Weather Service

U.S. Department of Interior

Bonneville Power Administration

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Local City of Tacoma

City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company

Puget Sound Power and Light Company Washington Water Power Company

Snohomish County P.U.D.

Snohomish County P.U.D. Colville Confederated Tribes

Spokane County

Yakama Indian Nation Whatcom County

Pierce County

Private Okanogan Irrigation District

Wenatchee Heights Irrigation District Newman Lake Homeowners Association

Whitestone Reclamation District

Washington Snow Survey Office 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873

FOR OFFICIAL USE ONLY

Washington Water Supply Outlook Report

Outlook Report
Natural Resources Conservation Service
Spokane, WA

