Statistique (MA101) Cours 5 ENSTA 1ère année

Christine Keribin

christine.keribin@math.u-psud.fr

Laboratoire de Mathématiques Université Paris-Sud

2017-2018

Statistique (MA101) Cours 5

Christine Keribin

Tests (suite

Rappels p-value Utiliser un test existant

Sommaire

Statistique (MA101) Cours 5

Christine Keribin

Tests (suite)

p-value Utiliser un ter existant

Tests (suite)

Rappels p-value Utiliser un test existant Propriétés

Do you remember?

Un test est une procédure de décision qui permet de trancher, au vu des résultats d'un échantillon X, entre deux hypothèses l'hypothèse nulle (H_0) et une hypothèse alternative (H_1) , dont une seule est vraie.

- Définir le modèle
- ▶ Définir les hypothèses nulle (H_0) et alternative (H_1)
- ► Choisir une statistique de test T(X), calculer sa loi sous (H_0)
- ▶ Définir la règle de décision en calibrant la région de rejet \mathcal{R} suivant le risque de première espèce α :

$$\alpha = \mathbb{P}_{H_0}(T(X) \in \mathcal{R})$$

- ▶ Calcul de la puissance $\pi = \mathbb{P}_{H_1}(T(X) \in \mathcal{R})$
- ▶ Calcul de la statistique observée et décision : rejet ou acceptation de (H_0) .

- Dans le test de l'espérance d'une loi gaussienne $\mu=\mu_0$ contre $\mu>\mu_0$, la valeur observée de la statistique de Student sur un échantillon de 12 individus est $t_{obs}=1.5$.
 - ▶ Quelle est la décision au niveau 5%? Quel est le risque de cette décision?
 - ▶ Quelle est la décision au niveau 10% ? Quel est le risque de cette décision ?

α			0.975	
$q_{\mathcal{T}(11)}(\alpha)$	1.36	1.80	2.20	2.72

p-value

- C'est le niveau obtenu si le seuil est remplacé par la statistique observée, "plus petit niveau qui fait rejeter (H₀)" au vu des données
- **Exemple** : test de Student de $\mu = \mu_0$ contre $\mu > \mu_0$,
 - \hookrightarrow rejet : $\mathcal{R} = \{t; t = T(x) > qt(1 \alpha, n 1)\}$
 - \hookrightarrow niveau : $\mathbb{P}_{H_0}(T(X) > qt(1-\alpha, n-1)) = \alpha$
 - \hookrightarrow valeur observée de la stat de test : $t_{obs} = T(x_{obs})$
 - \hookrightarrow p-value : $P_c(t_{obs}) = \mathbb{P}_{H_0}(T(X) > t_{obs})$
- Donc,
 - \hookrightarrow si $P_c(t_{obs}) \le \alpha$, c'est que t_{obs} est dans la région de rejet de (H_0)
 - \hookrightarrow si $P_c(t_{obs}) > \alpha$, c'est que t_{obs} est dans la région d'acceptation de (H_0)

 \hookrightarrow dessin!

Soit la fonction test $\varphi(x;\alpha)$ associée à la région de rejet \mathcal{R}_{α} de niveau α . La p-value est définie par

$$P_c(t_{obs}) = \inf\{\alpha \in [0,1]; \varphi(x_{obs}; \alpha) = 1\}$$

C'est une variable aléatoire qui qualifie "non-adéquation" des données avec (H_0)

Dans un test de niveau α , (H_0) est rejetée si $\alpha > p$ -value, conservée si α < p-value :

- \triangleright si 0.05 > p-value > 0.01, le test est significatif,
- \triangleright si 0.01 > p-value > 0.001, le test est très significatif,
- ▶ si 0.001 > p-value, le test est hautement significatif.

Exemple : test de Student de $\mu=\mu_0$ contre $\mu\neq\mu_0$,

- $\mu = \mu_0 \quad \text{for } \quad \mu = \mu_0 \quad \text{for } \quad \mu = \mu_0$
- rejet : $\mathcal{R} = \{x; |T(x)| > qt(1 \alpha/2, n 1)\}$
- ▶ niveau : $\mathbb{P}_{H_0}(T(X) \in \mathcal{R}) = \alpha$
- ightharpoonup valeur observée de la stat de test : $t_{obs} = T(x_{obs})$
- ightharpoonup p-value : $P_c(t_{obs}) = \mathbb{P}_{H_0}(|T(X)| > t_{obs})$
 - \hookrightarrow si t_{obs} est supérieur à la médiane de T :

$$P_c(t_{obs}) = 2 \mathbb{P}_{H_0}(T(X) > t_{obs})$$

 \hookrightarrow si t_{obs} est inférieur à la médiane de T:

$$P_c(t_{obs}) = 2 \, \mathbb{P}_{H_0}(T(X) < t_{obs})$$

▶ dans le cas de l'exemple introductif $(t_{obs} = 2, n = 12)$

$$P_c(t_{obs}) = 2(1 - F^{T(11)}(t_{obs} = 2) = 0.07$$

p-value

Statistique (MA101) Cours 5

Christine Keribin

Tests (suite)

Rappels

p-value Utiliser un tes existant

Attention:

p-value= proba d'observer sous (H_0) des valeurs au moins aussi "extrêmes" que celle qui a été observée sur l'échantillon x

proba que H_0 soit vraie sachant qu'on a observé x

Il n'est pas possible de calculer cette dernière à partir de la seule connaissance de la p-value.

La p-value permet de prendre une décision à partir du

résultat d'un test sans utiliser les tables

Exemple : Test de Shapiro-Wilks à partir d'un n échantillon

$$(H_0): X_i \sim \mathcal{N} \text{ contre } (H_1): X_i \not\sim \mathcal{N}$$

- ▶ La statistique de test est $W = \frac{\left(\sum_{i} a_{i} X_{[i]}\right)^{2}}{\sum_{i} (X_{i} \bar{X})^{2}}$ où $X_{[i]}$ est la i-ème statistique d'ordre, ai les coordonnées du vecteur $a=rac{m'V^{-1}}{\sqrt{m'V^{-1}V^{-1}m}}$ et $m=(m_1,\ldots,m_n)$ est le vecteur des espérances des statistiques d'ordre d'un échantillon i.i.d. $\mathcal{N}(0,1)$
- La région de rejet est unilatérale à gauche
- Les logiciels calculent la pvalue

```
> shapiro.test(x)
Shapiro-Wilk normality test
data:
W = 0.9284, p-value = 0.4323
```

- ▶ Le test est sans biais si $1 \beta(\theta) = \pi(\theta) > \alpha$ pour tout $\theta \in \Theta_1$
- ▶ Le test est consistant (ou convergent) si la suite des puissance $\pi_n(\theta)$ tend vers 1 quand n tend vers l'infini
- A niveau fixé a priori, on choisit un test de puissance maximale

Définition

Un test est uniformément plus puissant (UPP) si, quelle que soit la valeur de θ , sa puissance $\pi(\theta)$ est supérieure à la puissance de tout autre test de niveau α .

Le cadre de la théorie de Neyman-Pearson permet de construire des tests les plus puissants parmi les tests de niveau fixé

Théorème (Neyman-Pearson)

Soit $L(\theta; x)$ la vraisemblance des observations. La région critique optimale (de NP) du test de $\theta = \theta_0$ vs $\theta = \theta_1$ au niveau α est définie par

$$\mathcal{R}_{\alpha}^{opt} = \left\{ x \in \mathbb{R}^n; \frac{L(\theta_1; x)}{L(\theta_0; x)} > k_{\alpha} \right\}$$

Traduction Tout test de niveau inférieur ou égal à α est de puissance inférieure à celle du test de NP Rem : $L(\theta_1; X)/L(\theta_0; X)$ est bien une statistique de test car θ_1 et θ_0 sont donnés.

Soit \mathcal{R}_{α} une région de rejet qcq de niveau α . Supposons qu'il existe k_{α} définissant la région de rejet $\mathcal{R}_{\alpha}^{opt}$ de NP de risque α .

 \triangleright Puissance associée au test de région de rejet \mathcal{R}_{α}

$$\pi(\mathcal{R}_{\alpha}) = \underbrace{\int_{\mathcal{R}_{\alpha} \setminus \mathcal{R}_{\alpha}^{opt}} L(\theta_{1}; x) dx}_{\leq k_{\alpha} \mathbb{P}_{\theta_{0}}(\mathcal{R}_{\alpha} \setminus \mathcal{R}_{\alpha}^{opt})} + \int_{\mathcal{R}_{\alpha}^{opt} \cap \mathcal{R}_{\alpha}} L(\theta_{1}; x) dx$$

Puissance associée au test de région de rejet $\mathcal{R}_{\alpha}^{opt}$

$$\pi(\mathcal{R}_{\alpha}^{opt}) = \underbrace{\int_{\mathcal{R}_{\alpha}^{opt} \setminus \mathcal{R}_{\alpha}} L(\theta_{1}; x) dx}_{k_{\alpha} P_{\theta_{0}}(\mathcal{R}_{\alpha}^{opt} \setminus \mathcal{R}_{\alpha}) <} + \int_{\mathcal{R}_{\alpha}^{opt} \cap \mathcal{R}_{\alpha}} L(\theta_{0}; x) dx$$

niveau α :

$$\mathbb{P}_{\theta_0}(\mathcal{R}_{\alpha} \setminus \mathcal{R}_{\alpha}^{opt}) + \mathbb{P}_{\theta_0}(\mathcal{R}_{\alpha} \cap \mathcal{R}_{opt}) \leq \alpha = \mathbb{P}_{\theta_0}(\mathcal{R}_{\alpha}^{opt} \setminus \mathcal{R}_{\alpha}) + \mathbb{P}_{\theta_0}(\mathcal{R}_{\alpha} \cap \mathcal{R}_{\alpha}^{opt})$$

- ightharpoonup D'où $\pi(\mathcal{R}_{\alpha}) < \pi(\mathcal{R}_{\alpha}^{opt})$
- Existence de k_{α} : TVI

La puissance est une fonction de θ

- $\theta = \theta_0$ contre $\theta > \theta_0$ est UPP pour tester l'espérance dans un modèle gaussien
- $\theta = \theta_0$ contre $\theta \neq \theta_0$ n'est pas UPP

