VECTOR CALCULUS

Test 3

Problem 1.1.

 $\vec{\nabla} \cdot \vec{A} = \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0 \Rightarrow \vec{A}(\vec{r})$ is divergence-free. Hence, from its curl, $\vec{A}(\vec{r})$ can be given by $\vec{A}(\vec{r}) = z[*(\vec{\nabla} \times \vec{A})] = (zx\sin(x)e^{-x^2}, -zy^2\cos(y)e^{-y^2}, 0)$

Problem 1.2.

Because $\vec{A}(\vec{r})$ is divergence-free, a possible solution is $\vec{A}(\vec{r}) = U(y,z)\hat{i}$, where U(y,z) is a scalar potential for $*(\vec{\nabla} \times \vec{A}) = (0, z^2, 1 + 2yz)$ $U = yz^2 + f(z) = z + yz^2 + g(y) \Rightarrow U = z + yz^2$ So $\vec{A}(\vec{r}) = (z + yz^2, 0, 0)$

Problem 1.3.
$$\vec{E}(\vec{r})$$
 is in \mathbb{R}^2

Problem 1.3.
$$\vec{E}(\vec{r})$$
 is in \mathbb{R}^2 $\vec{E}(\vec{r}) = \frac{2\pi}{S_2(r)}\hat{r} = \frac{2\pi}{S_2(1)}\frac{\hat{r}}{r^{2-1}} = \frac{2\pi}{2\pi}\frac{\hat{r}}{r} = \frac{\hat{r}}{r}$

Problem 1.4.

$$df = d(xdx \wedge dy) + d(ydy \wedge dz)$$

= $(dx \wedge dx \wedge dy) + (dy \wedge dy \wedge dz)$
= $0 \wedge dy + 0 \wedge dz = 0$

Therefore the form f is closed

Problem 1.5.

Since $\vec{\nabla} \times \vec{E} = \vec{0}$, by Gauss' law and divergence theorem, $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{C}$ But because $\vec{\nabla} \cdot \vec{E} = \vec{0}$, \vec{E} can only be a constant vector field: $\vec{E} = (C_x, C_y, C_z)$.