第二次习题课题目(复合函数链式法则、高阶偏导数、方向导数)

1. 解答下列各题:

(1) 设
$$f$$
 可微,且 $z = x^3 f\left(xy, \frac{y}{x}\right)$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

(2) 设
$$z = f(x^2y, \frac{y}{x})$$
, 其中 $f \in C^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial^2 z}{\partial y \partial x}$.

- 2. 设 $g(x) = f(x, \phi(x^2, x^2))$, 其中函数 f 和 ϕ 的二阶偏导数连续, 求 g''(x).
- 3. 设 z=z(x,y) 二阶连续可微,并且满足方程 $A\frac{\partial^2 z}{\partial x^2}+2B\frac{\partial^2 z}{\partial x\partial y}+C\frac{\partial^2 z}{\partial y^2}=0$,其中 A,B,C 都是非零常数。若令 $\begin{cases} u=x+\alpha y \\ v=x+\beta y, \end{cases}$ 试确定 α,β 为何值时原方程可转化为 $\frac{\partial^2 z}{\partial u\partial y}=0$.
- 4. 读 $u(x,y) \in C^2$, 又 $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2} = 0$, u(x,2x) = x, $u'_x(x,2x) = x^2$, 求 $u''_{xx}(x,2x)$, $u''_{xy}(x,2x)$, $u''_{yy}(x,2x)$.
- 5. 设 z(x,y) 是定义在矩形区域 $D = \{(x,y) | 0 \le x \le a, 0 \le y \le b\}$ 上的可微函数。证明:

(1)
$$z(x, y) = f(y) \Leftrightarrow \forall (x, y) \in D, \frac{\partial z}{\partial x} \equiv 0$$

(2)
$$z(x,y) = f(y) + g(x) \Leftrightarrow \forall (x,y) \in D, \frac{\partial^2 z}{\partial x \partial y} \equiv 0$$
.

6. 计算下列各题:

(1)
$$\exists \exists z = \left(\frac{y}{x}\right)^{\frac{x}{y}}, \ \ \vec{x} \frac{\partial z}{\partial x}\Big|_{(1,2)}.$$

(2) 设
$$f(u,v) \in C^2$$
 且 $z = f(e^{x+y}, xy)$. 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

(3) 设函数 f 二阶可导,函数 g 一阶可导。令

$$z(x,y) = f(x+y) + f(x-y) + \int_{x-y}^{x+y} g(t)dt \cdot \stackrel{?}{R} \frac{\partial^2 z}{\partial x^2}, \quad \frac{\partial^2 z}{\partial y^2}, \quad \frac{\partial^2 z}{\partial x \partial y}.$$

(4)
$$\mbox{if } f(x,y) = \begin{cases} e^{-\frac{1}{x^2 + y^2}}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$
 $\mbox{if } f''_{xx}(0,0) = f''_{xy}(0,0).$

- 7. 证明: 函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 在 (0,0) 点不连续,但在该点存在任

意阶偏导数 $\frac{\partial^n f}{\partial x^n}(0,0)$ 和 $\frac{\partial^n f}{\partial y^n}(0,0)$.

- 8. 设u(x,y)有二阶偏导数,无零点。证明: u(x,y)满足方程 $u\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y}$ 当且仅当u(x,y) = f(x)g(y).
- 9. 设 $f(x,y) \in C^2(\mathbb{R}^2)$ 满足 Laplace 方程 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.

证明: $u(x,y) = f\left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$ 也满足 Laplace 方程.

- 10. 设n 为整数,若对任意的t>0, $f(tx,ty)=t^nf(x,y)$,则称f 是n 次齐次函数。证明: 可微函数 f(x,y) 是零次齐次函数的充要条件是 $x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=0$.
- 11. 设 f(x, y) 在 $P_0(x_0, y_0)$ 可微。已知 $\vec{v} = \vec{i} \vec{j}$, $\vec{u} = -\vec{i} + 2\vec{j}$, 且 $\frac{\partial f}{\partial \vec{v}}\Big|_{P_0} = 2$, $\frac{\partial f}{\partial \vec{u}}\Big|_{P_0} = 1$, 求 f(x, y) 在 $P_0(x_0, y_0)$ 的微分。
- 12. 设 f(x,y) 为可微函数, $\vec{l_1}$, $\vec{l_2}$ 是 \mathbb{R}^2 上的一组线性无关的向量。试证: f(x,y) 在任一点 P(x,y) 沿任意向量 \vec{l} 的方向导数 $f_{\vec{l}}'(P)$ 必定能用 $f_{\vec{l_1}}'(P)$ 与 $f_{\vec{l_2}}'(P)$ 线性表示。
- 13. 设 $f(x,y) = x^2 xy + y^2$, $P_0(1,1)$. 试求 $\frac{\partial f}{\partial \vec{l}}\Big|_{P_0}$, 并问: 在怎样的方向 \vec{l} 上, 方向导数

 $\left. \frac{\partial f}{\partial \vec{l}} \right|_{P_0}$ 分别有最大值、最小值和零值。

- 14. 设 a, b 是实数,函数 $z = 2 + ax^2 + by^2$ 在点 (3,4) 处的方向导数中,沿 $l = -3\mathbf{i} 4\mathbf{j}$ 的方向导数最大,最大值为 10,求 a, b.
- 15. 设 $f(x,y) \in C^2(\mathbb{R}^2)$ 满足 $f'_x(x,y) = f'_y(x,y)$,且 f(x,0) > 0. 试证明: 对任意的 $(x,y) \in \mathbb{R}^2$,有 f(x,y) > 0.
- 16. 设 f(x,y) 在区域 $D \subset \mathbb{R}^2$ 上具有连续的偏导数, $L: \begin{cases} x = x(t) \\ y = y(t) \end{cases}$ ($a \le t \le b$)是 D 中的一段曲线, L 的端点为 A, B.假设 x, $y \in C^1[a,b]$ 且 $x'(t)^2 + y'(t)^2 \neq 0$ ($\forall t \in [a,b]$).证明:若 f(A) = f(B),则存在点 $P_0(x_0,y_0) \in L$ 使得 $f_{\bar{l}}'(P_0) = 0$,其中 \bar{l} 是曲线 L 在 P_0 的单位切向量。

=========

以下供学有余力的同学选做。

- 17. 若 $f_x'(x,y)$, $f_y'(x,y)$ 在 $P_0(x_0,y_0)$ 的邻域内存在,且在 $P_0(x_0,y_0)$ 点可微,则 $f_{xy}''(P_0) = f_{yx}''(P_0).$
- 18. 设 $f_x'(x,y)$, $f_y'(x,y)$ 在 $P_0(x_0,y_0)$ 的邻域内存在, 且 f_{xy}'' 在 $P_0(x_0,y_0)$ 连续, 则 $f_{yx}''(P_0)$ 存在且 $f_{xy}''(P_0) = f_{yx}''(P_0)$.