Tirocinio

Mombelli Luca

30 ottobre 2025

Indice

1	Teorema di Nagumo	
2	Ric	hiami di Topologia
	2.1	Parte interna , chiusura ed intorni
	2.2	Spazi Metrici
	2.3	Ricoprimenti

1 Teorema di Nagumo

Utilizzerò la formulazione del teorema di Nagumo presentata nel libro "Viability Theory"[1]. Diamo ora alcune definizione necessarie

Definizione 1.1. Sia K un sottoinsieme di uno spazio vettoriale finito dimensionale (oppure di uno spazio normato) X . Diciamo che una funzione $x(\cdot):[0,T]\to X$ è *viable* in K su [0,T] se

$$\forall t \in [0, T] , x(t) \in K$$

Consideriamo il seguente problema di cauchy

$$\begin{cases} \dot{x}(t) = f(x(t)) & \forall t \in [0, T] \\ x(0) = x_0 \end{cases}$$
 (1.1)

 $\operatorname{con} f: \Omega \subset_{\operatorname{op}} X \to X$

Definizione 1.2. Sia un sottoinsieme di Ω . Diciamo che K è localmente viable sotto f se per ogni condizione iniziale $x_0 \in K$, esiste un T > 0 e una soluzione viable su [0,T] per l'equazione differenziale 1.1 con condizione iniziale x_0

K è (globalmente) viable sotto f se possiamo sempre prendere $T=\infty$

Definizione 1.3 (Cono Tangente di Bouligand). Sia W uno spazio normato , K un sottoinsieme non vuoto di W e sia x un elemento di K . Il cono tangente a K in x è l'insieme

$$T_K(x) = \{ v \in W \mid \liminf_{h \to 0^+} \frac{d_K(x + hv)}{h} = 0 \}$$

 $\operatorname{con} d_k(x) := \inf_{y \in K} \|x - y\|$

Una definizione alternativa utilizza le successioni :

v appartiene a $T_K(x)$ se e solo se esiste una successione $h_n > 0$ $h_n \to 0^+$ e una successione $v_n \in K$, $v_n \to v$ tale che

$$\forall n \in \mathbb{N} , x + h_n v_n \in K$$

È utile notare che se x è un punto interno al sottoinsieme K allora $T_k(x) = X$. Nel caso in cui K sia aperto il cono tangente ad un qualsiasi punto di K è tutto lo spazio normato V.

Lemma 1.1. Sia $x:[0,T]\to K$ una funzione differenziabile e viable , allora

$$\forall t \in [0, T) \ x'(t) \in T_K(x)$$

Definizione 1.4 (Viability Domain). Sia k un sottoinsieme di Ω . Diciamo che k è un viability domain della mappa $f: \Omega \to X$ se

$$\forall x \in X , f(x) \in T_K(x)$$

Teorema 1.1 – Nagumo

Suppiamo che il sotto
insieme K sia localmente compatto e che la funzione $f:K\to X$ sia continua .

Allora K è localmente viable se e solo K è un viability domain

Teorema 1.2 – Viability

Consideriamo un sottoinsieme K di uno spazio finito dimensionale X e una mappa continua $f:K\to X$.

Se k è un viability domain , allora per ogni condizione iniziale $x_0 \in K$ esiste un T positivo e una soluzione viable su [0,T] per l'equazione differenziale 1.1 con C.I x_0 tale che

$$\begin{cases} T = +\infty \\ T < +\infty & e & \limsup_{t \to T_{-}} \|x(t)\| = \infty \end{cases}$$

2 Richiami di Topologia

Definizione 2.1 (Spazio topologico). Sia X un insieme , una topoogia su X , è una famiglia τ di sottoinsiemi di X (i suoi elementi sono gli aperti di X) che soddisfa le seguenti condizioni.

- $\star \emptyset e X \in \tau$
- \star Unione arbitraria di aperti è un sotto
insieme aperto (se $A_\lambda\in\tau$ per ogni $\lambda\in\Lambda$, allor
a $\bigcup_{\lambda\in\Lambda}A_\lambda\in\tau)$
- * Intersezione finita di aperti è un sottoinsieme aperto (Se $A_1, \ldots, A_m \in \tau$ allora $A_1 \cap \cdots \cap A_m \in \tau$ 0-)

Un insieme dotato di una topologia viene detto spazio topologico

Esempio 2.1. Su ogni insieme X , $\tau = \{\emptyset, X\}$ è una topologia detta banale od indiscreta. Sull'insieme $\mathbb R$

$$\tau_i = \{\emptyset, \mathbb{R}\} \cup \{ a, +\infty[\}$$

è una topologia, topologia inferiore, similmente

$$\tau_{\sigma} = \{\emptyset, \mathbb{R}\} \cup \{] - \infty, a[] \}$$

e
1 la topologia superiore di \mathbb{R}

Una descrizione esplicita di tutti gli aperti di uno spazio topologico e1 impossibile , la topologia viene in genere descritta assegnando una base per essa

Definizione 2.2. Sia τ una topologia su insieme X . una sottofamiglia (un insieme) $B \subset \tau$ si dice una base di τ se ogni aperto $A \in \tau$ può essere scritt ocome unione di elementi d iB

Teorema 2.0.1. Sia X un insieme e $\mathcal{B} \subset P(X)$ una famiglia di suoi sottoinsiemi . Allora esiste una topologia su X di cui \mathcal{B} è una base se e soltanto se sono soddisfatte le sequenti due condizioni

- $\star \ X = \cup \{B \mid B \in \mathcal{B}\}\$
- * Per ogni coppia $A, B \in \mathcal{B}$ e per ogni punto $x \in A \cap B$ esiste $C \in \mathcal{B}$ tale che $x \in X \subset A \cup B$

2.1 Parte interna, chiusura ed intorni

Definizione 2.3. Sia X uno spazio topologico e $B \subseteq X$. Si denota con

- $\star~B^0$ l'unione di tutti gli aperti contenuti in B
- \star \overline{B} l'intersezione di tutti i chiusi contenenti in B
- $\star \partial B = \overline{B} B^0$

L'insieme B^0 viene detto parte interna di B ed è il più gtande aperto contenuto in B L'insieme \overline{B} è il più piccolo chiuso contente B e viene detto chiusura di B Il sottoinsieme ∂B è l'intersezione dei due chiusi \overline{B} e $X-B^0$ e viene detto **frontiera** di B

Osserviamo che un sottoinsieme B è aperto se e solo se $B=B^0$ e chiuse se $B=\overline{B}$

Definizione 2.4. Sia X uno spazio topologico e $x \in X$. Un sottoinsieme $U \subset X$ si dice intorno di x se x è un punto interno di U , cioè se esiste un aperto V tale che $x \in V$ e $V \subset U$

Indichiamo con $\mathcal{I}(x)$ la famiglia di tutti gli intorni di x . per definizione se A è un sottoinsieme di uno spazio topologico , allora $A^0 = \{x \in A | A \in \mathcal{I}(x)\}$

Definizione 2.5. Sia x un punto di uno spazio topologico X. Un sottofamiglia $\mathcal{J} \subset \mathcal{I}(x)$ si dice *base locale* oppure un sistema fondamentale di intorni di x , se per ogni $U \in \mathcal{I}(x)$ esiste $A \in \mathcal{J}$ tale che $A \subset U$

Esempio 2.2. Sia $U \in \mathcal{I}(x)$ un intorno fissato . Allora tutti gli intorni di x contenuti in U formano un sistema fondamentale di intorni di x

2.2 Spazi Metrici

Definizione 2.6. Una distanza si di un insieme X è un 'applicazione $d: X \times X \to \mathbb{R}$ che soddisfa le seguenti proprietà :

- 1. $d(x,y) \ge 0$ per ogni $x, y \in X$ e vale d(x,y) = 0 se e solo se x=y
- 2. d(x,y) = d(y,x) per ogni $x, y \in X$
- 3. $d(x,y) \leq d(x,z) + d(z,y)$ per ogni $x,y,z \in x$ (Disuguaglianza triangolare)

Esempio 2.3. Su un qualsiasi insieme X, la funzione

$$d: X \times X \to \mathbb{R}$$
 $d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$

è una distanza

Definizione 2.7. Uno spazio metrico è una coppia (X, d), dove X è un insieme e d è una distanza su X

Definizione 2.8. Sia (X,d) uno spazio metrico. Il sottoinsieme

$$B(x,r) = \{ y \in X | d(x,y) < r \}$$

viene detto palla paerta di centro x e raggio r

Definizione 2.9 (Topologia indotta da una distanza). Sia (X,d) uno spazio metrico. Nella topologia su X indotta dalla distanza d , un sottoinsieme $A \subset X$ è aperto se per ogni $x \in A$ esiste r > 0 tale che $B(x,r) \subset A$

Definizione 2.10. Siano (X,d) e (Y,ρ) due spazi metrici , sia f una funzione $f:X\to Y$. f si dice Liptschiziana se esiste una costante $l\geq 0$ tale che sia 1

$$\rho(f(x), f(y)) \le l \ d(x, y) \quad \forall x, y \in X$$

2.3 Ricoprimenti

Definizione 2.11. Un **ricoprimento** di un insieme X è una famiglia \mathcal{A} di sottoinsieme tali che $X = \bigcup \{A \mid A \in \mathcal{A}\}$. diremo che il ricoprimento èa finito se \mathcal{A} è una famiglia finita : numerabile se \mathcal{A} è una famiglia numerabile .

Se \mathcal{A} e \mathcal{B} sono ricoprimento di X se $\mathcal{A} \subset \mathcal{B}$, allora dire che \mathcal{A} è un **sottoricoprimento** di \mathcal{B}

Bibliografia

[1] Jean-Pierre Aubin. Viability Theory. Birkhäuser Boston, MA, 2009.