```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import warnings
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.ensemble import RandomForestRegressor
    from xgboost.sklearn import XGBRegressor
    from sklearn.metrics import r2_score, mean_squared_error,mean_absolute_error
    from sklearn.preprocessing import StandardScaler
    %matplotlib inline
    warnings.filterwarnings('ignore')
```

```
In [2]: df=pd.read_csv('train_BlackFriday.csv')
df
```

Out[2]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Yea	
0	1000001	P00069042	F	0- 17	10	А		
1	1000001	P00248942	F	0- 17	10	А		
2	1000001	P00087842	F	0- 17	10	А		
3	1000001	P00085442	F	0- 17	10	А		
4	1000002	P00285442	М	55+	16	С		
550063	1006033	P00372445	М	51- 55	13	В		
550064	1006035	P00375436	F	26- 35	1	С		
550065	1006036	P00375436	F	26- 35	15	В		
550066	1006038	P00375436	F	55+	1	С		
550067	1006039	P00371644	F	46- 50	0	В		
550068 rows × 12 columns								

4

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550068 entries, 0 to 550067
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	User_ID	550068 non-null	int64				
1	Product_ID	550068 non-null	object				
2	Gender	550068 non-null	object				
3	Age	550068 non-null	object				
4	Occupation	550068 non-null	int64				
5	City_Category	550068 non-null	object				
6	Stay_In_Current_City_Years	550068 non-null	object				
7	Marital_Status	550068 non-null	int64				
8	Product_Category_1	550068 non-null	int64				
9	Product_Category_2	376430 non-null	float64				
10	Product_Category_3	166821 non-null	float64				
11	Purchase	550068 non-null	int64				
<pre>dtypes: float64(2), int64(5), object(5)</pre>							

localhost:8888/notebooks/Black Friday.ipynb#

memory usage: 50.4+ MB

```
In [4]: df.describe().round(2)
```

Out[4]:

```
User_ID Occupation Marital_Status Product_Category_1 Product_Category_2 Product
        550068.00
                     550068.00
                                    550068.00
                                                         550068.00
                                                                               376430.00
count
mean
       1003028.84
                          8.08
                                         0.41
                                                               5.40
                                                                                    9.84
          1727.59
                          6.52
                                                                                    5.09
  std
                                         0.49
                                                               3.94
 min 1000001.00
                          0.00
                                         0.00
                                                               1.00
                                                                                    2.00
       1001516.00
                          2.00
                                         0.00
                                                               1.00
                                                                                    5.00
 25%
       1003077.00
                          7.00
                                         0.00
                                                              5.00
                                                                                    9.00
 50%
 75%
       1004478.00
                         14.00
                                         1.00
                                                               8.00
                                                                                   15.00
 max 1006040.00
                         20.00
                                         1.00
                                                              20.00
                                                                                   18.00
```

```
In [5]: df.drop(['User_ID'], axis = 1, inplace = True)
```

```
In [6]: df.nunique()
```

```
Out[6]: Product_ID
                                         3631
        Gender
                                            2
                                            7
        Age
        Occupation
                                           21
        City_Category
                                            3
        Stay_In_Current_City_Years
                                            5
        Marital_Status
                                            2
        Product_Category_1
                                           20
        Product_Category_2
                                           17
        Product_Category_3
                                           15
        Purchase
                                        18105
        dtype: int64
```

```
In [7]: df['Gender'] = df['Gender'].map({'F': 0, 'M' : 1})
```

```
In [8]: df['Age'].unique()
```

```
Out[8]: array(['0-17', '55+', '26-35', '46-50', '51-55', '36-45', '18-25'], dtype=object)
```

```
In [9]: df['Age'] = df['Age'].map({'0-17': 0, '18-25' : 1,'26-35':2,'35-45':3,'46-50':
```

```
In [10]: df
Out[10]:
                   Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marita
                   P00069042
                                       0.0
                1
                   P00248942
                                    0
                                       0.0
                                                   10
                                                                  Α
                                                                                            2
                2 P00087842
                                    0
                                       0.0
                                                                                            2
                                                   10
                                                                  Α
                   P00085442
                                       0.0
                                                                                            2
                3
                                    0
                                                   10
                                                                  Α
                   P00285442
                                       6.0
                                                                  С
                                   1
                                                   16
                                                                                           4+
                ...
           550063
                  P00372445
                                       5.0
                                                   13
                                                                  В
                                                                                            1
           550064 P00375436
                                                                  С
                                    0
                                       2.0
                                                    1
                                                                                            3
           550065 P00375436
                                    0
                                       2.0
                                                   15
                                                                                           4+
                                                                  В
           550066 P00375436
                                   0
                                       6.0
                                                                  С
                                                                                            2
                                                    1
           550067 P00371644
                                       4.0
                                                    0
                                                                  В
                                                                                           4+
          550068 rows × 11 columns
In [11]: df['City_Category'].unique()
Out[11]: array(['A', 'C', 'B'], dtype=object)
In [12]: | df['City_Category'] = df['City_Category'].map({'A': 0, 'B' : 1,'C':2})
In [13]: |df
Out[13]:
                   Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marita
                0 P00069042
                                       0.0
                                                   10
                                                                  0
                                                                                            2
                   P00248942
                                       0.0
                                                                  0
                                                                                            2
                1
                                    0
                                                   10
                2 P00087842
                                   0
                                       0.0
                                                                                            2
                                                   10
                                                                  0
                   P00085442
                3
                                       0.0
                                                   10
                                                                  0
                                                                                            2
                                    0
                   P00285442
                                       6.0
                                                   16
                                                                  2
                                                                                           4+
                                        ...
                                                    ...
                                                                                           ...
           550063 P00372445
                                       5.0
                                   1
                                                   13
                                                                  1
                                                                                            1
           550064 P00375436
                                                                  2
                                   0
                                       2.0
                                                    1
                                                                                            3
           550065 P00375436
                                       2.0
                                                   15
                                   0
                                                                  1
                                                                                           4+
           550066 P00375436
                                       6.0
                                                    1
                                                                  2
                                                                                            2
           550067 P00371644
                                       4.0
                                                    0
                                                                                           4+
          550068 rows × 11 columns
In [14]: df.drop(['Product_ID'], axis = 1, inplace = True)
```

In [15]: df Out[15]: Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status 0.0 0.0 0.0 6.0 4+ 5.0 2.0 2.0 4+ 6.0 4.0 550068 rows × 10 columns In [16]: df['Product_Category_2'].unique() Out[16]: array([nan, 6., 14., 2., 8., 15., 16., 11., 5., 3., 4., 12., 9., 10., 17., 13., 7., 18.]) In [17]: df['Product_Category_2'] = df['Product_Category_2'].fillna(df['Product_Categor In [18]: df['Product_Category_3'] = df['Product_Category_3'].fillna(df['Product_Category_3']) In [19]: df Out[19]: Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Pro 0.0 0.0 0.0 0.0 6.0 4+ 5.0 2.0 2.0 6.0 4.0 550068 rows × 10 columns

```
In [20]: df.isnull().sum()
Out[20]: Gender
                                                 0
                                            110013
          Age
                                                 0
          Occupation
          City_Category
                                                 0
          Stay_In_Current_City_Years
                                                 0
          Marital_Status
                                                 0
          Product_Category_1
                                                 0
          Product_Category_2
          Product_Category_3
                                                 0
                                                 0
          Purchase
          dtype: int64
In [21]: |df['Age'] = df['Age'].fillna(df['Age'].mean())
In [22]:
Out[22]:
                   Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Pro
                0
                        0
                           0.0
                                       10
                                                      0
                                                                               2
                                                                                             0
                           0.0
                                                                               2
                1
                        0
                                       10
                                                      0
                                                                                             0
                2
                                                      0
                                                                               2
                        0
                           0.0
                                       10
                                                                                             0
                3
                        0
                           0.0
                                       10
                                                      0
                                                                               2
                                                                                             0
                4
                           6.0
                                       16
                                                      2
                                                                                             0
                        1
                            ...
                                        ...
                                                     ...
                                                                               ...
           550063
                        1
                           5.0
                                       13
                                                      1
                                                                               1
                                                                                             1
                                                      2
                                                                                             0
           550064
                        0
                           2.0
                                        1
                                                                               3
           550065
                        0
                           2.0
                                       15
                                                                                             1
                                                      1
                                                                              4+
           550066
                                        1
                                                      2
                                                                               2
                                                                                             0
                           6.0
           550067
                        0
                           4.0
                                        0
                                                                              4+
                                                                                             1
          550068 rows × 10 columns
In [23]: |df.isnull().sum()
Out[23]: Gender
                                            0
          Age
                                            0
          Occupation
                                            0
          City_Category
                                            0
          Stay_In_Current_City_Years
                                            0
          Marital_Status
                                            0
          Product_Category_1
                                            0
          Product_Category_2
                                            0
          Product_Category_3
                                            0
          Purchase
                                            0
          dtype: int64
In [24]: df['Stay_In_Current_City_Years'] = df['Stay_In_Current_City_Years'].str.replac
```

In [25]: df.sample(10)

Out[25]:

	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status
2752	1	2.370538	14	1	3	1
542541	0	2.000000	20	1	1	1
279005	1	2.000000	11	2	1	1
519929	1	1.000000	4	2	2	1
31523	1	2.370538	18	1	1	0
147340	1	2.370538	7	2	1	1
542047	1	2.000000	12	0	1	0
217810	1	2.000000	0	1	2	1
479396	1	5.000000	13	0	1	1
191608	0	1.000000	2	0	0	0
4						•

In [26]: df['Stay_In_Current_City_Years'] = df['Stay_In_Current_City_Years'].astype(int

In [27]: df['Age'] = df['Age'].astype(int)

In [28]: df['Product_Category_2'] = df['Product_Category_2'].astype(int)

In [29]: df['Product_Category_3'] = df['Product_Category_3'].astype(int)

In [30]: df

Out[30]:

	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Pro
0	0	0	10	0	2	0	
1	0	0	10	0	2	0	
2	0	0	10	0	2	0	
3	0	0	10	0	2	0	
4	1	6	16	2	4	0	
550063	1	5	13	1	1	1	
550064	0	2	1	2	3	0	
550065	0	2	15	1	4	1	
550066	0	6	1	2	2	0	
550067	0	4	0	1	4	1	

550068 rows × 10 columns

```
In [31]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550068 entries, 0 to 550067
Data columns (total 10 columns):
```

Column Non-Null Count Dtype _ _ _ _____ 0 Gender 550068 non-null int64 1 Age 550068 non-null int32 2 **Occupation** 550068 non-null int64 3 City_Category 550068 non-null int64 4 Stay_In_Current_City_Years 550068 non-null int32 5 550068 non-null int64 Marital_Status Product_Category_1 550068 non-null int64 6 Product_Category_2 550068 non-null int32 8 Product_Category_3 550068 non-null int32 int64 9 Purchase 550068 non-null

dtypes: int32(4), int64(6)
memory usage: 33.6 MB

In [32]: correlation_matrix = df.corr() plt.figure(figsize=(20, 12)) sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') plt.title('Correlation Heatmap') plt.show()


```
In [33]: sns.distplot(df["Stay_In_Current_City_Years"])
    plt.title("Stay in Current City Years Distribution")
    plt.show()
```



```
In [34]: plt.style.use('fivethirtyeight')
   plt.figure(figsize=(13, 7))
   sns.distplot(df['Purchase'], bins=25)
```

Out[34]: <Axes: xlabel='Purchase', ylabel='Density'>


```
In [35]:
    gender_plot = df.pivot_table(index='Gender', values='Purchase', aggfunc=np.mea
    gender_plot.plot(kind='bar', figsize=(13, 7))
    plt.xlabel('Gender')
    plt.ylabel("Purchase")
    plt.title("Gender and Purchase Analysis")
    plt.xticks(rotation=0)
    plt.show()
```


In [36]: df.groupby('Product_Category_1')['Purchase'].sum().plot(kind='bar',figsize=(12

In [37]: df.groupby('Product_Category_2')['Purchase'].sum().plot(kind='bar',figsize=(12

Out[37]: <Axes: xlabel='Product_Category_2'>


```
In [39]: df
Out[39]:
                    Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status
                 0
                         0
                 1
                         0
                              0
                                          10
                                                         0
                                                                                    2
                                                                                                  0
                 2
                                                                                   2
                         0
                              0
                                          10
                                                         0
                                                                                                  0
                 3
                                                                                   2
                         0
                              0
                                          10
                                                         0
                                                                                                  0
                                                         2
                                                                                    4
                 4
                         1
                              6
                                          16
                                                                                                  0
            550063
                         1
                              5
                                          13
                                                         1
                                                                                   1
                                                                                                  1
            550064
                         0
                              2
                                          1
                                                         2
                                                                                   3
                                                                                                  0
            550065
                         0
                              2
                                          15
                                                                                   4
                                                         1
                                                                                                  1
            550066
                         0
                                                         2
                                                                                   2
                                                                                                  0
                              6
                                          1
            550067
                                          0
                                                                                    4
                                                                                                  1
           550068 rows × 10 columns
In [40]:
           y = df['Purchase']
           X = df.drop(['Purchase'],axis=1)
           print(X.shape)
           print(y.shape)
           (550068, 9)
           (550068,)
In [41]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_st
In [42]: X_train.shape
Out[42]: (440054, 9)
In [43]: X_test.shape
Out[43]: (110014, 9)
In [44]: | sc = StandardScaler()
           sc.fit_transform(X_train)
Out[44]: array([[ 0.57253078, -0.22060038, -1.23883412, ..., -1.11908088,
                    -1.69108745, -2.18585851],
                   [-1.746631 , 1.27535186, -1.08555176, ..., 0.65804121, -0.29311687, 0.3692529 ], [ 0.57253078, -0.22060038, 1.21368357, ..., 0.65804121, 0.87185862, 0.00423698],
                   [-1.746631 , -0.22060038, -0.16585763, ..., 0.65804121,
                      1.33784881, 0.3692529 ],
                   [ 0.57253078, -0.22060038,
                                                    1.06040121, ..., 0.15029204,
                    -0.29311687, -0.36077893],
                   [\ 0.57253078,\ -0.22060038,\ -1.08555176,\ \ldots,\ 2.68903788,
                    -0.29311687, 0.3692529 ]])
```

```
In [45]: | sc.fit_transform(X_test)
Out[45]: array([[ 0.57272498, -0.22512453, -0.31535789, ..., 0.66511126,
                   1.79616633, 0.36695146],
                 [-1.74603873, 2.00800092, -0.31535789, ..., 0.66511126,
                                0.36695146],
                   1.09892534,
                 [ 0.57272498,
                                2.75237607,
                                             0.75865802, ..., 1.42940877,
                   1.56375266, 0.36695146],
                 [0.57272498, -0.22512453, -1.23594295, ..., 0.66511126,
                  -0.29555665, 0.36695146],
                 [0.57272498, 2.00800092, -1.23594295, ..., -0.09918624,
                   1.09892534, 0.36695146],
                 [-1.74603873, 2.00800092, -0.16192704, ..., 0.66511126, 1.09892534, 0.36695146]])
In [46]:
         lm=LinearRegression()
         lm.fit(X_train, y_train)
         w=lm.coef_
         b=lm.intercept_
         print(w)
         print(b)
         [ 524.84035275 113.81633635
                                          7.0799316
                                                       343.18200818
                                                                      14.03896331
            -33.32650998 -401.89080381
                                         -2.52320091 -155.63897588]
         12703.676844626701
In [47]:
         predictions=lm.predict(X_test)
         predictions
Out[47]: array([8149.72286106, 8255.67869166, 7733.17608869, ..., 7758.69214486,
                 9929.67290293, 8282.04616992])
In [ ]:
In [48]:
         RF = RandomForestRegressor(n_estimators=10,max_depth=7,n_jobs=-1,random_state=
         RF.fit(X_train,y_train)
Out[48]:
                                                                                    (i)
                                      RandomForestRegressor
          RandomForestRegressor(max_depth=7, n_estimators=10, n_jobs=-1, random_state=
          42)
         y_pred = RF.predict(X_test)
In [49]:
         y_pred
Out[49]: array([7916.69287295, 7460.77795096, 4828.44481796, ..., 7460.77795096,
                 6446.92469462, 7460.77795096])
In [50]: y_test
Out[50]: 24033
                     5970
         301904
                     6060
         44698
                     4615
         53213
                     8654
                     9907
         353008
         49945
                    1723
         355438
                    10634
         199602
                    7772
         423504
                     6962
         199365
                     8093
         Name: Purchase, Length: 110014, dtype: int64
```

```
In [51]: MAE = mean_absolute_error(y_test,y_pred)
Out[51]: 2251.7295643036487
In [52]: r2_score(y_test, y_pred)
Out[52]: 0.6457521652667443
In [53]: print(mean_squared_error(y_test, y_pred))
         8936003.010271017
In [54]: print(np.sqrt(mean_squared_error(y_test, y_pred)))
         2989.3148061505694
In [55]: |y.mean()
Out[55]: 9263.968712959126
In [56]: y_test.mean()
Out[56]: 9287.85901794317
In [58]: xgb_reg=XGBRegressor(n_estimators=480, learning_rate=0.2, max_depth=8)
In [59]: | xgb_reg.fit(X_train,y_train)
Out[59]:
                                          XGBRegressor
          XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=None, device=None, early_stopping_rounds=No
          ne,
                       enable_categorical=False, eval_metric=None, feature_types=No
          ne,
                       gamma=None, grow_policy=None, importance_type=None,
                       interaction_constraints=None, learning_rate=0.2, max_bin=Non
          e,
                       max_cat_threshold=None, max_cat_to_onehot=None,
In [60]: xgb_y_pred=xgb_reg.predict(X_test)
         print("RMSE:",np.sqrt(mean_squared_error(y_test, xgb_y_pred)))
In [61]:
         print("y_mean",(y.mean()))
         print("R2 Score:",round(r2_score(y_test,xgb_y_pred)*100,2))
         RMSE: 2889.6578583824735
         y_mean 9263.968712959126
         R2 Score: 66.9
 In [ ]:
```