

Week 1 Day 3

Led by: Emily Crose

fo

Oakland University

DAY 2 RECAP

CLEARTEXT VS. CIPHERTEXT

LAYER OF VALIDATION OF DATA

SECURES BOTH ENDS OF TRANSMISSION

ANYONE CAN VALIDATE!

PROTECTS ORIGINAL SECRET

IRREVERSIBLE

VALUE OF HASHING

POPULAR HASHING ALGORITHMS

- ► MD5
- ► SHA-1 (compromised)
- ► SHA-2
- ► SHA-3
- ► LM/NTLM hash (for Windows passwords)

LET'S TRY SOME HASH!

https://gchq.github.io/CyberChef/

WHAT IS ENCRYPTION?

ENCRYPTION HISTORY

WARTIME CRYPTOGRAPHY

10 MINUTE BREAK

VENONA PROJECT

WHAT DO WE ENCRYPT?

HOW DO WE ENCRYPT TODAY?

- ➤ Rivest-Shamir-Adleman (RSA) (1977)
 - Based on prime number factorization
- Advanced Encryption Standard (AES) 256
 - Block cipher

POPULAR MODERN CRYPTOGRAPHY ALGORITHMS

- AES
 - Supports key sizes of 128, 192, 256
- ► Key sizes improve the strength of cryptographic protection
- ➤ 2048 & 4096 key sizes
 - Large keys
 - ► Hard to brute force

KEYSPACE/KEYLENGTH/KEYSIZE

CRYPTOGRAPHIC STANDARDS

https://csrc.nist.gov/Projects/cryptographicstandards-and-guidelines

THE THREE STATES OF DATA

STATES OF DATA

DATA AT REST

DATA IN TRANSIT

DATA SECURITY

How the FDE process works

Full-disk encryption

Pre-boot authentication password

Boot process

Entire system protected

FULL DISK ENCRYPTION

SYMMETRIC KEY ENCRYPTION

Symmetric encryption

ASYMMETRIC KEY ENCRYPTION

SECURE KEY EXCHANGE?

PUBLIC KEY CRYPTOGRAPHY

10 MINUTE BREAK

SECURING NETWORK CONNECTIONS IN PRACTICE

Internet VPN

VIRTUAL PRIVATE NETWORKS

THIS IS HOW END-TO-END ENCRYPTION WORKS

A major selling point for instant-messaging providers is some form of content encryption. But does this technology fully protect your privacy?

WHY DO WE CARE ABOUT TRUST?

WHAT IS A SECURITY CERTIFICATE?

Provides trust

Allows a secure connection

Encrypts data

HTTPS

WHAT DOES A SECURITY CERTIFICATE DO?

- > X.509 certificate
- Provides Transport Layer security
- > Free!
- ▶ Trusted?

CERTIFICATE AUTHORITIES

HOW DO WE KNOW WHO TRUST?

AUDIT YOUR FAVORITE WEBSITE!

https://www.sslshopper.com/ssl-checker.html

THREATS TO POOR ENCRYPTION

- Cleartext passwords
- Password cracking
- ➤ Man-In-The-Middle (MITM) attack
- ▶ Rainbow Tables
- > Hash collisions

HASH COLLISIONS

BRUTE FORCING

Aircrack-ng 1.5.2

[00:00:00] 176/645 keys tested (547.83 k/s)

Time left: 0 seconds 27.29%

Current passphrase: goldfish

Master Key : 98 8A F1 3B 6F 4B 4F 8B 98 6F 6B 22 C6 E5 70 0C

85 C4 08 89 78 59 B6 6D D3 F5 BD 86 B4 C9 5B B3

Transient Key : DF 25 E0 0A A6 50 1A AF 8B EF 7C D0 D8 18 BF 8A

E0 84 6D 5E 4B 32 0F D8 FD 5C E8 5B 11 F5 C9 70

78 9B 29 D9 7F F9 CA B1 4F 20 32 73 4A 56 0F 08

REAL-LIFE PASSWORD CRACKING

What is a Hash?

RAINBOW TABLES

RAINBOW TABLES CONT'

MAN-IN-THE-MIDDLE

49 busted in Europe for Man-in-the-Middle bank attacks

11 JUN 2015

Data loss, Law & order, Malware, Phishing, Security threats

REAL-WORLD MITM ATTACK

PREVIEW DAY 4