Case-Marking Alignment in Kartvelian: An Insight from the BivalTyp Database

Alexander Rostovtsev-Popiel (Mainz University)

Introduction (1)

This presentation addresses case-marking alignment phenomena in Kartvelian in view of the methodological paradigm of BivalTyp (Say 2020–).

In 2023, all the four modern languages of the Kartvelian family (Georgian, Megrelian, Laz, and Svan; Rostovtsev-Popiel 2023) were processed within the framework of BivalTyp, a typological online database of 130 bivalent verbs and their encoding frames.

Introduction (2)

The database features argument encoding patterns of predicates in a convenience sample of (currently) 136 languages. The online version of the database provides an array of interactive tools available for language comparison. These include search of respective valency patterns, as well as the locus of the deviation from the "canonical" transitive model, separately established for each language.

Introduction (3) Subset examples by locus Any Subset examples by locus Any PRS)) L. DAT_NOM Petre-s tav-i s-tk'-iv-a PN-DAT head-NOM 103-ache-REXT-S3SG.INACT Petre has a headache.' Locus: X Locus

Introduction (4)

Preliminary Results (1)

A cursory evaluation of what first met the eye in the case frame typology of Kartvelian was presented in (Rostovtsev-Popiel 2024):

Homogeneity:	Heterogeneity:	Reanalysis:
#26 'X ate an apple'	#3 'X is afraid of the dog'	#100 'X costs Y'
M, L, S:	G: DAT_ GEN ; M: DAT_ ALL ;	L: NOM_is_DAT
ERG_NOM	L: DAT_ABL; S: DAT_BEN	S: NOM_resembles_ <mark>NO</mark> I

Preliminary Results (2)

Heterogeneity:

· And cross-sections thereof.

				(#3)
Giorgi- <u>s</u>	{ G <i>ʒaүl-is /</i> М	ǯογοr-(i)ša	/ L ǯογοr-(i) šen	/ s žeγ- <mark>išd</mark> }
PN-DAT	dog-GEN	dog-ALL	dog-ABL	dog-BEN
	{ G eš <i>inia l</i> M d	ošk'uru(n) l	L ašk'urine(n) l s	s xaq'lu:ni }.
		is_afrai	d	
'Giorgi is afra	id of the dog.'			

Preliminary Results (3)

{ is / costs }

cup-NOM big-NOM / one lira-DAT

'The cup { is big / costs one lira }.'

s{maizer-Ø / č'ik-Ø} {gegi-s / ešxu lar-Ø} xaǯeš. {PN-NOM / cup-NOM} {PN-DAT / one lari-NOM} {resembles / costs} '{Maizer / The cup} {resembles Gegi / costs one lari}.'

This Study

Focus on such domains of linguistic structure as "unanticipated" patterns in casemarking alignment in single languages (#60); language- specific and non-canonical, from what a Kartvelianist would "expect" from a Kartvelian language, wordings (#121); degrade of the "Kartvelian case frame model" (#25); specific patterns of relevant phraseology, detected e.g. in Laz; word-order constraints (i).

Examples

#60 'X surrounds Y'	K (G): NOM_around.strikes.STAT_DAT		
#121 'X wants Y'	L: ERG_looks.for_NOM		
	(instead of DAT_NOM)		
#25 'X thinks about Y'	L: ERG_thinks_NOM		
(i) Deviation from SOV:	G: 2; M: 12; S: 2; L: 0 (per 130 stimuli)		

Parameters

The elicited data were processed with respect to the following three parameters:

Valency pattern (ERG_NOM, NOM_DAT, etc.);
Locus (TR / X / Y / XY), including "non-transitivity" rates;
Etymology of the predicates (2-1-1, 1-1-1-1, 3-1, etc.);

"Non-Trans	sitivity"
against the	Sample

1–2.	Karata, Estonian	75%	
3–6.	Kandyk Tabasaran, Mehweb, Kina Rutul, Georgian	74%	
7–10.	Yargun Lezgian, Northern Akhvakh, Svan, Megrelian	73%	
33–36.	Lezgian, Turoyo, Kaytag Dargwa, Laz	66%	
47–51.	Guro, Azerbaijani, Kalderash Romani, Kumyk, Russian	<u>58%</u>	
65–69.	Tuvan, Erzya, Buriat, Macedonian, Turkish	<u>53%</u>	

Locus Deviation on X against the Sample

1.	Svan	23%
2.	Archi, Megrelian	21%
4–6.	Mehweb, Khwarshi, Georgian	20%
22–23.	Yargun Lezgian, Laz	16%
72–89.	Russian, Turkish	<u>5%</u>

X Locus in Megrelian and Y Locus in Laz

М	čelo-s	anučia- <u>Ø</u>	gur-s	giox	ant'u(n)	#129
	PN-DAT	PN-NOM	heart-DAT	is_fo	nd	
	'Chelo is fo	ond of Anuc	hia.'			
L	Käzimi- k	ayne	t'elefon- <u>i</u>		go(r)ums.	#121
	PN-ERG	new	telephone-	NOM	wants	
	'Käzim waı	nts a new te	telephone.'			
						I

Locus Deviation on Y against the Sample

6–7.	Ismayilli Kryz, <u>Russian</u>	<u>52%</u>	
16–21.	Udmurt, Ossetic, Czech, Ukrainian, Lithuanian, Georgian	49%	
27–28.	Modern Hebrew, Megrelian	47%	
45–59.	Uzbek, Mehweb, Shinaz and Southern Rutul, Svan	44%	
50–57.	Abaza, Lezgian, Buriat, Bulgarian, Kina Rutul,		
	Mukhad Rutul, Kalderash Romani, Laz	43%	

Y Locus in Svan

	1 LO	cus II	i Svai	
#13	maizer- <u>d</u>	gegi-s	žaxc'inda.	
	PN-ERG	PN-DAT	beat	
	'Maizer be	at Gegi.'		
#48	maizer- <u>Ø</u>	axne man	kana- <mark>s</mark>	iwdi.
	PN-NOM	new car-	DAT	dreams
	'Maizer dre	eams of a n	ew car.'	

Valency Pattern vs. Dominant Locus in Kartvelian (1)

Core			(out of 17 patterns identified)		
VP: 4–0	DL: TR	24	(18%)	throw, take, bend	
VP: 3–1	DL: Y	23	(18%)	touch, catch up, follow	
VP: 2–1–1	DL: Y	18	(14%)	see, listen, trust	
VP: 3–1	DL: X	14	(10%)	forget, forfeit, miss	

Valency Pattern vs. Dominant Locus in Kartvelian (2)

Periphery			(ou	t of 17 patterns identifie
VP: 2–1–1	DL: TR	1	(1%)	respect
VP: 1–1–1	DL: TR	1	(1%)	cross
VP: 2-1-0	DL: Y	1	(1%)	punish
VP: 1–1–1	DL: XY	1	(1%)	be afraid

Dominant Locus vs. Etymology in Kartvelian (1)

Core			(out of 15 patterns identified)		
DL: Y	E: 1-1-1-1	37	(28%)	see, wait, dream	
DL: Y	E: 2-1-1	19	(15%)	win, fight, call	
DL: TR	E: 2-1-1	18	(14%)	take, milk, fry	
DL: X	E: 2-1-1	17	(13%)	need, hear, want	

Dominant Locus vs. Etymology in Kartvelian (2)

Periphery		(out of 15 patterns identified)					
DL: XY	E: 2-1-1	1	(1%)	be shy			
DL: XY	E: 1-1-1-1	1	(1%)	envy			
DL: X	E: 2-1-1	1	(1%)	feel pain			
DL: Y	E: 2-1-1	1	(1%)	trust			

Valency Pattern vs. Etymology in Kartvelian (1)

Core		(01	ut of 18 patterns identified)
VP: 3–1 E: 2–1–1	24	(18%)	lose, obey, cost
VP: 4-0 E: 2-1-1	20	(15%)	tell, wave, plough
VP: 2-1-1 E: 1-1-1	16	(12%)	see, flatter, agree
VP: 4–0 E: 1–1–1	13	(10%)	throw, hold, bite

Valency Pattern vs. Etymology in Kartvelian (2)

Periphery		(out of 18 patterns identified)			
VP: 2-1-1	E: 2–2	1	(1%)	be shy	
VP: 2-1-1	E: 4-0	1	(1%)	trust	
VP: 2-1-1	E: 3–1	1	(1%)	fall in love	
VP: 1-1-1-1	E: 1-1-1-1	1	(1%)	be afraid	

Valency Pattern vs. Dominant Locus vs. Etymology in Kartvelian

Quasi-Core		(out of 37 patterns identified)				
VP: 2–1–1	DL: Y	E: 1–1–1	13	(10%)	agree	
VP: 3–1	DL: Y	E: 1-1-1-1	11	(8%)	kiss	
VP: 4–0	DL: TR	E: 2-1-1	11	(8%)	find	
VP: 3–1	DL: X	E: 2-1-1	10	(8%)	want	

Hierarchical Clusters Based on Direct Pattern Equation

Neighbornet Entropy in Kartvelian vs. Turkish (1) and against the Sample (2)

Neighbornet Locus in Kartvelian vs. Turkish (1) and against the Sample (2)

Conclusions (1)

(1) Viewed against the background of the whole BivalTyp sample, Kartvelian demonstrates an unexpectedly large number of deviations from the "canonical" valency pattern. While e.g. Western European languages usually feature Y locus deviations, Kartvelian clearly features X and XY deviations as well.

Conclusions (2)

(2)Georgian, Megrelian, and Svan demonstrate a high degree of "non-transitivity" rates throughout the BivalTyp questionnaire, whereby Laz clearly inclines toward transitive treatment of the contexts examined.

(3)Svan and Megrelian also top the list of X Locus deviation in BivalTyp with the rates of over 20%.

Conclusions (3)

(4)In terms of Kartvelian lexicon, Laz proves to have retained the fewest number of "canonical" wordings (thus e.g. employing guri 'heart' in six collocates; and listen in place of agree, obey, and respect).

(5)Examples of the reanalysis in Laz and Svan demonstrate that a change of valency pattern can affect the lexical semantics of the verb in a given instance.

Abbreviations

ABL – ablative; ALL – allative; BEN – benefactive; DAT – dative; DL – dominant locus; E – etymology; ERG – ergative; G – Georgian; K – Kartvelian; L – Laz; L – locus; M – Megrelian; NOM – nominative; PN – person name; S – Svan; SOV – subject-object-verb; STAT – stative; TR – transitive; VP – valency pattern; X – first argument; Y – second argument.

References

Rostovtsev-Popiel, Alexander. 2023. Bivalent Patterns in Georgian / Mingrelian / Laz / Svan, in: Say, Sergey (Ed.). BivalTyp: Typological Database of Bivalent Verbs and Their Encoding Frames (URL: https://www.bivaltyp.info/languages/listview/); Rostovtsev-Popiel, Alexander. 2024. Odnorodnost', raznorodnost' i pereosmyslenie: pervye zamečanija po obrabotke kartvel'skogo materiala v baze BivalTyp [Homogeneity, Heterogeneity, and Reanalysis: First Remarks on the Processing of Kartvelian Data for the Database BivalTyp]. *Izvestiâ Rossijskoj Akademii Nauk* 2: 64–71; Say, Sergey (Ed.). 2018. *Valentnostnye klassy dvuxmestnyx predikatov v raznostrukturnyx jazykax* [Bivalent Valency Classes in Structurally Diverse Languages]. St. Petersburg: ILS RAN; Say, Sergey (Ed.). 2020–. BivalTyp: Typological Database of Bivalent Verbs and Their Encoding Frames (URL: https://www.bivaltyp.info/).