E40M

Op Amps

Ideal Op Amps in Negative Feedback Circuits

Ideal Op Amp

- Current constraint $i_p = i_n = 0$
- Voltage constraint $v_p = v_n$
- $A = \infty$ $R_i = \infty$ $R_o = 0$

The Two Golden Rules for circuits with ideal op-amps*

 $v_p = v_n$ (Ideal op-amp model).

No voltage difference between op-amp input terminals

2. $i_p = i_n = 0$ (Ideal op-amp model).

No current into op-amp inputs

* when used in <u>negative feedback</u> amplifiers

OP AMP FILTERS

Adding Capacitors

- Suppose we add a capacitor in the feedback path of an inverting amp?
- What happens at low frequency?

What happens at high frequency?

Sinusoidal voltage

Adding Capacitors

Sketching the Bode Plot: low frequency asymptote

Sketching the Bode Plot: high frequency asymptote

More Examples

Summing Amplifier

- $i_p = i_n = 0$
- $v_n = v_p = 0$

KCL at the "summing point" (or the "summing node"):

$$i_1 + i_2 = i_3$$
 so $\frac{v_1}{R_1} + \frac{v_2}{R_2} = -\frac{v_0}{R}$

Output voltage is a scaled sum of the input voltages:

$$V_0 = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2\right)$$

A Subtracting (Difference) Amplifier?

Take an inverting amplifier and put a 2nd voltage on the other input?

• Not quite what we wanted. We'd like $v_0 \alpha (v_1 - v_2)$.

Differential Amplifier 1.0

