MACHINE LEARNING

WHAT IS MACHINE LEARNING?

Sebastian Engelke

MASTER IN BUSINESS ANALYTICS

Machine learning aims at programming a computer to learn from information (Data) to perform a task (Prediction, etc.) in an optimal way in terms of a performance measure (Loss Function).

Machine learning aims at programming a computer to learn from information (Data) to perform a task (Prediction, etc.) in an optimal way in terms of a performance measure (Loss Function).

Recent success of machine learning due to advances in its main ingredients:

(1) Data availability: huge growth due to automation, digitalization, web applications.

Machine learning aims at programming a computer to learn from information (Data) to perform a task (Prediction, etc.) in an optimal way in terms of a performance measure (Loss Function).

Recent success of machine learning due to advances in its main ingredients:

- (1) Data availability: huge growth due to automation, digitalization, web applications.
- (2) Computing power: significant increase thanks to GPU computing, parallelization, etc.

Machine learning aims at programming a computer to learn from information (Data) to perform a task (Prediction, etc.) in an optimal way in terms of a performance measure (Loss Function).

Recent success of machine learning due to advances in its main ingredients:

- Data availability: huge growth due to automation, digitalization, web applications.
- (2) Computing power: significant increase thanks to GPU computing, parallelization, etc.
- (3) The learning algorithms: theoretical developments of new statistical models and training methods.

The statistical framework

Types of variables:

- quantitative variables take values in an ordered set, typically the real numbers R;
- qualitative variables (also called categorical or factor) take values in a finite set $\mathcal{G} = \{\mathcal{G}_1, \dots, \mathcal{G}_q\}$ without ordering, e.g., {Yes, No}, {blue, red, green, yellow}, etc.

Supervised learning

- ▶ We observe training data (x_i, y_i) , i = 1, ..., n where
 - ▶ the inputs $x_i \in \mathbb{R}^p$ are called predictors, covariates or features;
 - \blacktriangleright the outputs y_i are called responses (in this course we assume they are univariate).
- ▶ The goal is to predict the (unknown) response y_0 for a new (known) predictor x_0 .
- ▶ Regression: the responses $y_i \in \mathbb{R}$ are quantitative.
- ▶ Classification: the responses $y_i \in \mathcal{G}$ are qualitative.

The statistical framework

Types of variables:

- ▶ quantitative variables take values in an ordered set, typically the real numbers ℝ;
- qualitative variables (also called categorical or factor) take values in a finite set $\mathcal{G} = \{\mathcal{G}_1, \dots, \mathcal{G}_q\}$ without ordering, e.g., {Yes, No}, {blue, red, green, yellow}, etc.

Supervised learning

- ▶ We observe training data (x_i, y_i) , i = 1, ..., n where
 - ▶ the inputs $x_i \in \mathbb{R}^p$ are called predictors, covariates or features;
 - \blacktriangleright the outputs y_i are called responses (in this course we assume they are univariate).
- ▶ The goal is to predict the (unknown) response y_0 for a new (known) predictor x_0 .
- ▶ Regression: the responses $y_i \in \mathbb{R}$ are quantitative.
- ▶ Classification: the responses $y_i \in \mathcal{G}$ are qualitative.

Unsupervised learning

- ▶ We only observe multivariate data $x_i \in \mathbb{R}^p$, i = 1, ..., n but without a particular response.
- ▶ The goal is to summarize, understand, interpret and visualize the data.

Machine Learning: an overview

Regression: simple linear model

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$

Goal: Predict unknown outcome y_0 for new predictor x_0 .

Regression: simple linear model

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$

Goal: Predict unknown outcome y_0 for new predictor x_0 .

▶ Linear regression

$$\widehat{y}_0 = \widehat{\beta}_0 + \widehat{\beta}_1 x_0$$

▶ The numbers $\widehat{\beta}_0, \widehat{\beta}_1 \in \mathbb{R}$ are estimated model parameters.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$

Goal: Predict unknown outcome y_0 for new predictor x_0 .

▶ The k-Nearest-Neighbor (kNN) method

$$\widehat{y}_0 = \frac{1}{k} \sum_{i: x_i \in N_k(x_0)} y_i$$
$$= \text{ave}\{y_i : x_i \in N_k(x_0)\},$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

▶ The number k is a tuning parameter.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$

Goal: Predict unknown outcome y_0 for new predictor x_0 .

▶ The k-Nearest-Neighbor (kNN) method

$$\widehat{y}_0 = \frac{1}{k} \sum_{i: x_i \in N_k(x_0)} y_i$$
$$= \text{ave}\{y_i : x_i \in N_k(x_0)\},$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

ightharpoonup The number k is a tuning parameter.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$

Goal: Predict unknown outcome y_0 for new predictor x_0 .

► The k-Nearest-Neighbor (kNN) method

$$\widehat{y_0} = \frac{1}{k} \sum_{i: x_i \in N_k(x_0)} y_i$$
$$= \text{ave}\{y_i : x_i \in N_k(x_0)\},$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

▶ The number k is a tuning parameter.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$

Goal: Predict unknown outcome y_0 for new predictor x_0 .

► The k-Nearest-Neighbor (kNN) method

$$\widehat{y_0} = \frac{1}{k} \sum_{i: x_i \in N_k(x_0)} y_i$$
$$= \text{ave}\{y_i : x_i \in N_k(x_0)\},$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

▶ The number k is a tuning parameter.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$

Goal: Predict unknown outcome y_0 for new predictor x_0 .

► The k-Nearest-Neighbor (kNN) method

$$\widehat{y_0} = \frac{1}{k} \sum_{i: x_i \in N_k(x_0)} y_i$$
$$= \text{ave}\{y_i : x_i \in N_k(x_0)\},$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

▶ The number k is a tuning parameter.

Business application: advertising

The Advertising data set contains sales, in thousands of units, as a function of TV, radio, and newspaper budgets, in thousands of dollars, for 200 different markets.

Medical application: body fat

Data set bodyfat (R library mfp). The data set contains body fat estimates (siri) for 252 men with measurements of different body attributes. The first 10 measurements and a plot of the responses versus some of the predictors:

Classification: simple linear regression

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$, where $y_i \in \mathcal{G} = \{0, 1\}$ **Goal:** Predict unknown class y_0 for new predictor x_0 .

X1: age of patient

Classification: simple linear regression

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$, where $y_i \in \mathcal{G} = \{0, 1\}$ **Goal:** Predict unknown class y_0 for new predictor x_0 .

X1: age of patient

 Directly apply <u>linear regression</u> treating the classes as quantitative values 0 and 1.
 The prediction is

$$\widehat{y_0} = \begin{cases} 1, & \text{if } \widehat{\beta}_0 + \widehat{\beta}^T x_0 \geq 1/2, \\ 0, & \text{otherwise.} \end{cases}$$

▶ The numbers $\widehat{\beta}_0, \widehat{\beta}_1 \in \mathbb{R}$ are estimated model parameters.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$, where $y_i \in \mathcal{G} = \{0, 1\}$ **Goal:** Predict unknown class y_0 for new predictor x_0 .

X1: age of patient

► The k-Nearest-Neighbor (kNN) method predicts the majority of classes in the neighborhood

$$\widehat{y}_0 = \begin{cases} 1, & \text{if } \frac{1}{k} \sum\limits_{i: x_i \in N_k(x_0)} \mathbf{1}\{y_i = 1\} > 1/2, \\ 0, & \text{otherwise}. \end{cases}$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

▶ The number *k* is a tuning parameter.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$, where $y_i \in \mathcal{G} = \{0, 1\}$ **Goal:** Predict unknown class y_0 for new predictor x_0 .

X1: age of patient

► The k-Nearest-Neighbor (kNN) method predicts the majority of classes in the neighborhood

$$\widehat{y}_0 = \begin{cases} 1, & \text{if } \frac{1}{k} \sum\limits_{i: x_i \in N_k(x_0)} \mathbf{1}\{y_i = 1\} > 1/2, \\ 0, & \text{otherwise}. \end{cases}$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

▶ The number *k* is a tuning parameter.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$, where $y_i \in \mathcal{G} = \{0, 1\}$ **Goal:** Predict unknown class y_0 for new predictor x_0 .

► The k-Nearest-Neighbor (kNN) method predicts the majority of classes in the neighborhood

$$\widehat{y}_0 = \begin{cases} 1, & \text{if } \frac{1}{k} \sum\limits_{i: x_i \in N_k(x_0)} \mathbf{1}\{y_i = 1\} > 1/2, \\ 0, & \text{otherwise}. \end{cases}$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

▶ The number k is a tuning parameter.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$, where $y_i \in \mathcal{G} = \{0, 1\}$ **Goal:** Predict unknown class y_0 for new predictor x_0 .

The k-Nearest-Neighbor (kNN) method predicts the majority of classes in the neighborhood

$$\widehat{y}_0 = \begin{cases} 1, & \text{if } \frac{1}{k} \sum\limits_{i: x_i \in N_k(x_0)} \mathbf{1}\{y_i = 1\} > 1/2, \\ 0, & \text{otherwise}. \end{cases}$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

▶ The number *k* is a tuning parameter.

Data: Observations $(x_1, y_1), \dots, (x_n, y_n)$, where $y_i \in \mathcal{G} = \{0, 1\}$ **Goal:** Predict unknown class y_0 for new predictor x_0 .

► The k-Nearest-Neighbor (kNN) method predicts the majority of classes in the neighborhood

$$\widehat{y}_0 = \begin{cases} 1, & \text{if } \frac{1}{k} \sum\limits_{i: x_i \in N_k(x_0)} \mathbf{1}\{y_i = 1\} > 1/2, \\ 0, & \text{otherwise}. \end{cases}$$

 $N_k(x_0)$ are the k closest points x_i to x_0 .

▶ The number k is a tuning parameter.

Example: spam classification

The spam data set (R library kernlab). 4601 emails classified as one of two classes, i.e., $G \in \{\text{spam}, \text{nonspam}\}$, based on and 57 predictors indicating the frequency of certain words and characters in the e-mail. A subset of the data:

	type	george	free	credit	money	hp	business	your	1	capitalTotal
1222	spam	0.00	0.00	5.19	0.64	0.00	1.29	1.29	0.09	135.00
1712	spam	0.00	0.44	0.00	0.00	0.00	0.00	0.00	0.00	186.00
2635	nonspam	0.66	1.33	0.00	0.22	3.34	0.00	0.44	0.37	411.00
4176	nonspam	0.00	0.00	0.00	0.00	0.00	0.00	0.22	0.04	97.00
928	spam	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.40	495.00
4129	nonspam	0.00	0.00	0.00	1.16	0.00	0.00	1.16	0.49	34.00
4341	nonspam	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.77	18.00
3036	nonspam	0.00	0.00	0.00	0.00	0.00	0.00	2.32	0.00	37.00
2890	nonspam	0.00	0.00	0.00	0.00	1.72	0.00	2.58	0.11	58.00
284	spam	0.00	0.40	1.81	0.60	0.00	1.61	2.62	1.45	513.00
946	spam	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	339.00
811	spam	0.00	0.00	1.02	0.00	0.34	0.00	0.68	0.90	1330.00
3153	nonspam	0.38	0.00	0.00	0.00	0.90	0.00	0.00	0.00	1232.00
1763	spam	0.00	0.00	0.00	0.00	0.00	0.00	11.11	0.00	4.00
3532	nonspam	2.00	0.00	0.00	0.00	4.00	0.00	0.00	0.00	46.00
2283	nonspam	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.00
3291	nonspam	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
4547	nonspam	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.00
1742	spam	0.00	0.00	0.00	0.00	0.00	0.00	0.47	0.69	239.00
3563	nonspam	4.16	0.00	0.00	0.00	8.33	0.00	0.00	0.00	30.00

Example: handwritten characters/digits recognition

Data set from [ESL] homepage: handwritten digits (16 \times 16 grey scale images). There are ten classes, namely, $G = \{0, 1, \dots, 9\}$.

Example: CIFAR-10 data set

The CIFAR-10 data set contains 60'000 image of size 32×32 . There are ten classes, namely, $G = \{\text{airplane}, \text{automobile}, \dots, \text{truck}\}.$

Example: smart cars

Smart cars classify objects according to

 $G \in \{\text{cars, pedestrian, buildings, road signs, traffic lights,...}\}$ and predict how these objects will move, and take decisions based on these predictions.

CES 2016: NVIDIA DRIVENet Demo - Visualizing a Self-Driving Future (part 5) (www.youtube.com/watch?v=HJ58dbd5g8g)

All models are wrong [George Box; Statistician]

All models are wrong, some are useful.
[George Box; Statistician]

All models are wrong, some are useful.
[George Box; Statistician]

Everything should be made as simple as possible. But not simpler.

[Albert Einstein; Physicist]

In this course

(1) Statistical concepts

- ▶ Modeling, inference, prediction.
- ▶ Model assessment and selection: training versus test error, cross-validation, etc.
- (2) Machine learning methods
 - ▶ Regression: linear models, basis functions, regularization for high-dimensional data.
 - Classification: linear methods, trees and random forest, support vector machines.
 - ▶ Recent developments: convolutional (deep) neural networks, reinforcement learning, etc.

In this course

(1) Statistical concepts

- ▶ Modeling, inference, prediction.
- ▶ Model assessment and selection: training versus test error, cross-validation, etc.

(2) Machine learning methods

- ▶ Regression: linear models, basis functions, regularization for high-dimensional data.
- ▶ Classification: linear methods, trees and random forest, support vector machines.
- Recent developments: convolutional (deep) neural networks, reinforcement learning, etc.

(3) Applications

- Analysis of simulated and real data sets.
- Image recognition
- (4) Practical skills
- Programming with python.
- Working with data and interpretation of the results