Práctica de ejercicios #11 - Árboles binarios

Estructuras de Datos, Universidad Nacional de Quilmes

25 de noviembre de 2020

A claraciones:

- Los ejercicios fueron pensados para ser resueltos en el orden en que son presentados. No se saltee ejercicios sin consultar antes a un docente.
- Recuerde que puede aprovechar en todo momento las funciones que ha definido, tanto las de esta misma práctica como las de prácticas anteriores.
- Pruebe todas sus implementaciones, al menos en una consola interactiva.
- Es sumamente aconsejable resolver los ejercicios utilizando primordialmente los conceptos y metodologías vistos en videos publicados o clases presenciales, dado que los exámenes de la materia evaluarán principalmente este aspecto. Si se encuentra utilizando formas alternativas al resolver los ejercicios consulte a los docentes.

1. Árboles binarios

Ejercicio 1

Dada esta definición para árboles binarios

```
struct NodeT {
   int elem;
   NodeT* left;
   NodeT* right;
}

typedef NodeT* Tree;
   definir la siguiente interfaz:
     Tree emptyT()
     Tree nodeT(int elem, Tree left, Tree right)
     bool isEmptyT(Tree t)
     int rootT(Tree t)
     Tree left(Tree t)
     Tree right(Tree t)
```

Ejercicio 2

Defina las siguientes funciones utilizando la interfaz de árbol y recursión:

1. int sumarT(Tree t)

Dado un árbol binario de enteros devuelve la suma entre sus elementos.

2. int sizeT(Tree t)

Dado un árbol binario devuelve su cantidad de elementos, es decir, el tamaño del árbol (size en inglés).

3. bool perteneceT(int e, Tree t)

Dados un elemento y un árbol binario devuelve True si existe un elemento igual a ese en el árbol.

4. int aparicionesT(int e, Tree t)

Dados un elemento e y un árbol binario devuelve la cantidad de elementos del árbol que son iguales a e.

5. int heightT(Tree t)

Dado un árbol devuelve su altura.

6. ArrayList toList(Tree t)

Dado un árbol devuelve una lista con todos sus elementos.

7. ArrayList leaves(Tree t)

Dado un árbol devuelve los elementos que se encuentran en sus hojas.

8. ArrayList levelN(int n, Tree t)

Dados un número n y un árbol devuelve una lista con los nodos de nivel n.

Ejercicio 3

Definas las funciones del punto anterior utilizando BFS (recorrido iterativo a lo ancho), a excepción de heightT, leaves y levelN. Para esto, utilizar una Queue de Tree.