

INTERNATIONAL A-LEVEL MATHEMATICS MA03

(9660/MA03) Unit P2 Pure Mathematics

Mark scheme

June 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaga.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

-x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

ISW Ignore subsequent working

Q	Answer	Marks	Comments
1(a)	$\left[2\cos\theta+\sqrt{5}\sin\theta=\right]$		
	$R\cos\theta\coslpha+R\sin\theta\sinlpha$	M1	PI
	R=3	B1	
	$\alpha = 48^{\circ}$	A 1	Condone AWRT 48
	$3\cos(\theta-48^\circ)$		
		3	

Q	Answer	Marks	Comments
1(b)(i)	[Min value =] -3	B1ft	
		1	

Q	Answer	Marks	Comments
1(b)(ii)	228°	B1	Condone AWRT 228
		1	

Question 1 Total	5	
------------------	---	--

Q	Answer	Marks	Comments
2(a)	$0 \le f(x) \le \sqrt{18}$ or $[0, \sqrt{18}]$	B1	oe Accept f and y for f(x)
		1	

Q	Answer	Marks	Comments
2(b)(i)	$\left[\operatorname{fg}(x) = \right] \sqrt{18 - 2 \left(\frac{3}{2x - 1} \right)^2}$	B1	oe ISW
		1	

Q	Answer	Marks	Comments
2(b)(ii)	$\left[0\leq\right]\left(\frac{3}{2x-1}\right)\leq3$	M1	or better
	$x \ge 1$ only	A 1	
		2	

Q	Answer	Marks	Comments
2(b)(iii)	$\sqrt{18-2\left(\frac{3}{2x-1}\right)^2}=4$	M1	their $\sqrt{18-2\left(\frac{3}{2x-1}\right)^2}=4$
	$2\left(\frac{3}{2x-1}\right)^2=2$	A 1	PI by seeing either of $x = 2$ or $x = -1$
	x = 2 and $x = -1$ (rejected)	A 1	Only this value of x included in final answer
		3	

Q	Answer	Marks	Comments
2(c)	$x = \sqrt{18 - 2\left(\frac{3}{2y - 1}\right)^2}$	M1	$x = their \sqrt{18 - 2\left(\frac{3}{2y - 1}\right)^2}$
	$x^2 = 18 - 2\left(\frac{3}{2y - 1}\right)^2$		
	$\left(\frac{3}{2y-1}\right)^2 = 9 - \frac{1}{2}x^2$	M1	Correctly isolating their term in 'y' Must have scored B1 in part (b)(i)
	$h(x) = 0.5 \left(1 + \sqrt{\frac{18}{18 - x^2}}\right)$	A1	oe ISW
		3	

Question 2 Total	10	
------------------	----	--

Q	Answer	Marks	Comments
3	$4x^2 + 12x + 9 = (2x+3)^2 \text{ or } (2(x+1.5))^2$		
	or $4x^2 + 12x + 9 = 4\left(x + \frac{3}{2}\right)^2$	B1	For either factorisation
	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	M1	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$
	$\begin{bmatrix} -1.5 \\ 0 \end{bmatrix}$	A 1	$\begin{bmatrix} -3 \\ 0 \end{bmatrix}$
	Stretch	M1	Stretch
	SF 4, parallel to <i>y</i> -axis	A 1	SF 0.5, parallel to <i>x</i> -axis
	OR		
	Stretch	[M1]	Stretch
	SF 0.5, parallel to <i>x</i> -axis	[A1]	SF 4, parallel to <i>y</i> -axis
	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	[M1]	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$
	$\begin{bmatrix} -1.5 \\ 0 \end{bmatrix}$	[A1]	$\begin{bmatrix} -1.5 \\ 0 \end{bmatrix}$

Question 3 Total	5
------------------	---

Q	Answer	Marks	Comments
4(a)	$X = Ae^{-kt}$		
	$\frac{\mathrm{d}X}{\mathrm{d}t} = -kA\mathrm{e}^{-kt} = -kX$	B1	AG Must be convincingly shown
		1	

Q	Answer	Marks	Comments
4(b)	$X = Ae^{-kt}$		
	t = 0, X = 90, A = 90	B1	
	$t = 5, X = 80, 80 = 90e^{-5k}$	M 1	
	$e^{-5k} = \frac{8}{9}$ $\left[k = \frac{1}{5} \ln\left(\frac{9}{8}\right) = 0.02355\right]$	A 1	Allow $k = 0.024$ AWRT
	X = 22.5		
	$22.5 = 90e^{-kt}$		oe
	$t = -\frac{1}{k} \ln \left(\frac{22.5}{90} \right) \left[= -\frac{5}{\ln \left(\frac{9}{8} \right)} \ln \left(\frac{1}{4} \right) \right]$	m1	PI
	t = 58.8 [mins]	A 1	Condone 58.7 to 58.9
		5	

Question 4 Total	6	
------------------	---	--

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q	Answer	Marks	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5(a)		B1	All five correct x values (and no extra used) PI by five correct y values
$ \begin{array}{c c} - \times 0.5 (3.46 + 1.707 + 4 (2.536) \\ + 1.809) + 2 \times 2.017) \end{array} $ with $h = 0.5$ or least four correction or totalled		$ \begin{array}{rcl} 1 & 3 - \tan^{-1}(1.5) & = & 2.0172063 \\ 1.5 & 3 - \tan^{-1}(2.5) & = & 1.8097101 \end{array} $	M1	At least four correct <i>y</i> values in exact form or decimals, rounded or truncated to two dp or better (in table or formula)
I I I I I I I I I I I I I I I I I I I			m1	
answer)		$\int_0^2 3 - \tan^{-1}(2x - 0.5) \mathrm{d}x = 4.432$		CAO, must see this value

Q	Answer	Marks	Comments
5(b)(i)	$f(x) = 0.5\tan(3-x) + 0.25-x$		Or reverse
	f(1.7) = 0.35	M 1	Both values rounded or truncated to at least 1 sf
	f(1.8) = -0.26		
	Change of sign, 1.7 < α < 1.8	A1	Must have both statement and interval in words or symbols or comparing 2 sides: M1 $y(1.7) = 2.05 > 1.7$ and $y(1.8) = 1.54 < 1.8$ A1: Conclusion as before
		2	

Q	Answer	Marks	Comments
5(b)(ii)	$0.5 \tan(3-x) = x - 0.25$		
	$\tan(3-x) = 2x - 0.5$	M1	oe
	$3 - x = \tan^{-1}(2x - 0.5)$		
	$x = 3 - \tan^{-1}(2x - 0.5)$	A 1	AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
5(b)(iii)	$x_2 = 1.761$	B1	
	$x_3 = 1.749$	B1	
		2	

Q	Answer	Marks	Comments
5(b)(iv)	1.8 $y = 3 - \tan^{-1}(2x - 0.5)$ 1.6 x_1 x_3 x_2 1.8 x_2 and x_3 in (approx.) correct position on axis	M1	Cobweb diagram
		2	

Question 5	Total 12	
------------	----------	--

Q	Answer	Marks	Comments
6(a)	$(\sin\theta - \csc\theta)(\cos\theta - \sec\theta)$		
	$= \left(\sin\theta - \frac{1}{\sin\theta}\right) \left(\cos\theta - \frac{1}{\cos\theta}\right)$		
	$=\frac{\sin^2\theta-1}{\sin\theta}\times\frac{\cos^2\theta-1}{\cos\theta}$	B1	All in terms of sin/cos
	$=\frac{-\cos^2\theta}{\sin\theta}\times\frac{-\sin^2\theta}{\cos\theta}$	M1	Correct use of trig identity
	$= \cos\theta \sin\theta$ $= 0.5\sin2\theta$	A 1	AG Must be convincingly shown
	OR		
	$(\sin\theta - \csc\theta)(\cos\theta - \sec\theta)$		
	$= \left(\frac{1}{\csc\theta} - \csc\theta\right) \left(\frac{1}{\sec\theta} - \sec\theta\right)$		
	$= \frac{1 - \csc^2 \theta}{\csc \theta} \times \frac{1 - \sec^2 \theta}{\sec \theta}$	[B1]	All in terms of sec/cosec
	$= \frac{-\cot^2\theta}{\csc\theta} \times \frac{-\tan^2\theta}{\sec\theta}$	[M1]	Correct use of trig identity
	$=\cos\theta\sin\theta$		
	$=$ 0.5 \sin 2 $ heta$	[A1]	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
6(a)	$\begin{array}{c} \mathbf{OR} \\ (\sin\theta - \csc\theta)(\cos\theta - \sec\theta) \end{array}$		
	$= \sin\theta \cos\theta - \frac{\sin\theta}{\cos\theta} - \frac{\cos\theta}{\sin\theta} + \frac{1}{\sin\theta\cos\theta}$		
	$=0.5\sin 2\theta + \frac{-\sin^2\theta - \cos^2\theta + 1}{\sin\theta\cos\theta}$	[B1]	All in terms of sin/cos
	$=0.5\sin 2\theta + \frac{-1+1}{\sin\theta\cos\theta}$	[M1]	Correct use of trig identity
	$=0.5\sin 2\theta$	[A1]	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
6(b)	$(\sin(1.5x+0.1)-\csc(1.5x+0.1))$		
	$\times (\cos(1.5x+0.1)-\sec(1.5x+0.1))=0.4$		
	$0.5\sin(3x+0.2) = 0.4$		
	$\sin(3x+0.2) = 0.8$	B1	PI by later work
	$3x+0.2=0.927, \pi-0.927,$		
	$2\pi + 0.927$, $3\pi - 0.927$		
	x = 0.242, 0.671, 2.337, 2.766 AWRT	B2,1	B1 for at least one correct value B2 for all four correct values and no others
		3	

Question 6 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	$\left[\int \frac{x-2}{2x^2-8x+3} \mathrm{d}x = \right]$		
	$a\ln\left(2x^2-8x+3\right) \ \left[+c\right]$	M1	
	$=0.25\ln(2x^2-8x+3)$ [+c]	A 1	ISW Accept $0.25 \ln(x^2 - 4x + 1.5)$ [+ c]
		2	

Q	Answer	Marks	Comments
7(b)	$\frac{5x+1}{5x-1} = \frac{5x-1+2}{5x-1} \left[= 1 + \frac{2}{5x-1} \right]$	B1	PI
	$\left[\int \frac{5x+1}{5x-1} dx = \right] x + \frac{2}{5} \ln(5x-1) \left[+ c \right]$	M1 A1	M1: $x + k \ln(5x - 1)$ A1: ACF eg $x - \frac{1}{5} + \frac{2}{5} \ln(5x - 1)$ [+ c]
		3	

Q	Answer	Marks	Comments
7(c)	$\cos 6x = 1 - 2\sin^2 3x$	B1	
	$\sin^2 3x = \frac{1}{2} \left(1 - \cos 6x \right)$		
	$\int \sin^2 3x dx = \frac{1}{2} \left(x - \frac{1}{6} \sin 6x \right) [+c]$	M1 A1	M1: $ax + b \sin 6x$ A1: ACF eg $\frac{x}{2} - \frac{\sin 3x \cos 3x}{6}$ [+c]
		3	

Question 7 Total	8	
------------------	---	--

Q	Answer	Marks	Comments
8(a)	A(0,5) $B(1.25,0)$	B1	
		1	

Q	Answer	Marks	Comments
8(b)(i)	$y = (5 - 4x)e^{-0.5x}$		May use $y = 5e^{-0.5x} - 4xe^{-0.5x}$
	$\frac{dy}{dx} = (5-4x) \times -0.5e^{-0.5x} + (-4) \times e^{-0.5x}$	M1 A1	M1: At least one exponential term differentiated correctly A1: All terms correct, unsimplified
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x - 6.5)\mathrm{e}^{-0.5x}$	A 1	CAO (no ISW)
		3	

Q	Answer	Marks	Comments
8(b)(ii)	$(2x-6.5)e^{-0.5x}=0$		
	2x - 6.5 = 0	M 1	Sets <i>their</i> derivative equal to zero and attempts to solve
	x = 3.25	A 1	
	$y = (5 - 4 \times 3.25)e^{-1.625}$		
	$y = -8e^{-1.625}$		
	$(3.25, -8e^{-1.625})$	A 1	ACF ISW
		3	

Q	Answer	Marks	Comments
8(c)	Area = $0.5 \times 5 \times 1.25 - \int_{0}^{1.25} (5 - 4x) e^{-0.5x} dx$	B1	PI (by later work)
	$\int (5-4x) e^{-0.5x} dx$		$\int 5e^{-0.5x} - 4x e^{-0.5x} dx$ $u = -4x \qquad \frac{dv}{dx} = e^{-0.5x}$
	$u = 5 - 4x \qquad \frac{\mathrm{d}v}{\mathrm{d}x} = \mathrm{e}^{-0.5x}$	M1	
	$\frac{\mathrm{d}u}{\mathrm{d}x} = -4 \qquad \qquad v = -2\mathrm{e}^{-0.5x}$		$\frac{\mathrm{d}u}{\mathrm{d}x} = -4 \qquad \qquad v = -2\mathrm{e}^{-0.5x}$
			Correct use of parts formula
	$\int (5-4x) e^{-0.5x} dx = (5-4x) \times (-2e^{-0.5x})$	m1	$\int 5e^{-0.5x} -4x e^{-0.5x} dx = -10 e^{-0.5x} + (-4x) \times (-2 e^{-0.5x})$
	$-\int -2e^{-0.5x} \times (-4) dx$		$-\int -2e^{-0.5x} \times (-4) dx$
	= $(5-4x)(-2e^{-0.5x})+16e^{-0.5x}$ [+ c]	A1	$= -10e^{-0.5x} + 8xe^{-0.5x} + 16e^{-0.5x} \qquad [+c]$
	[Area = $0.5 \times 5 \times 1.25 -$]	M1	Correct substitution of limits into
	$\left(\left(0+16e^{-0.625}\right)-\left(-10+16\right)\right)$		$(5-4x)(pe^{-0.5x})+qe^{-0.5x}$ oe PI by
	$=9.125-16e^{-0.625}$	A 1	ACF
		6	

Question 8 Total	13	
------------------	----	--

Q	Answer	Marks	Comments
9(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2a - 2a\cos 2\theta \qquad \frac{\mathrm{d}y}{\mathrm{d}\theta} = 2a\sin 2\theta$	M1 A1	M1: At least one correct A1: Both correct
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2a\sin 2\theta}{2a - 2a\cos 2\theta}\right]$		
	$ heta=rac{\pi}{4}$		
	$x = a \left(2 \times \frac{\pi}{4} - \sin\left(\frac{\pi}{2}\right) \right) = a \left(\frac{\pi}{2} - 1\right)$		Condone 0.571 <i>a</i>
	$y = a \left(1 - \cos \left(\frac{\pi}{2} \right) \right) = a$	B1	Both x and y correct
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2a\sin\left(\frac{\pi}{2}\right)}{2a - 2a\cos\left(\frac{\pi}{2}\right)} \left[=1\right]$	В1	
	$y - a = x - a \left(\frac{\pi}{2} - 1\right)$	m1 A1	m1: Substitutes in their coordinates and their gradient into the equation of a straight lineA1: ACF
	$\left[y = x - \frac{\pi a}{2} + 2a\right]$		Condone $y = x + 0.429a$
		6	

Q	Answer	Marks	Comments
9(b)	$y - a = -\left(x - a\left(\frac{\pi}{2} - 1\right)\right)$	M1	Uses their $-\left(\frac{2a-2a\cos\left(\frac{\pi}{2}\right)}{2a\sin\left(\frac{\pi}{2}\right)}\right)$ and their x and y
	$y = -x + \frac{\pi a}{2}$	A 1	Condone $y = -x + 1.57a$
		2	

Q	Answer	Marks	Comments
9(c)	Area = $\frac{1}{2} (\pi a - 2a) \times a \left(\frac{\pi}{2} - 1 \right)$	M1	Uses their exact intercepts
	$= \frac{1}{4}a^2(\pi - 2)^2$	A 1	AG Must be convincingly shown
		2	

Question 9 Total	10	
------------------	----	--

Q	Answer	Marks	Comments
10(a)	$y = 4 \times 4 - \left(4 - y\right)^2$		
	$y = 16 - 16 + 8y - y^2$		
	$y^2 - 7y = 0 \Rightarrow y = 0, 7$	M 1	Attempt to solve for y PI
	<i>AB</i> = 7	A 1	
		2	

Q	Answer	Marks	Comments
10(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 2(x - y) \left(1 - \frac{\mathrm{d}y}{\mathrm{d}x}\right)$	M1 A1	M1 : Attempt at implicit differentiation $y \frac{\mathrm{d}y}{\mathrm{d}x}$ or $x \frac{\mathrm{d}y}{\mathrm{d}x}$ seen A1 : All correct
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - 2y - 4}{2x - 2y - 1}\right]$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0, x - y = 2$		
	$\begin{bmatrix} (x-y)^2 = 4x - y \\ = (x-y) + 3x \end{bmatrix}$		
	$2^2 = 2 + 3x$	m1	oe Substitutes <i>their</i> $ax + by = c$ in original equation
	$x = \frac{2}{3}$		
	$\begin{vmatrix} \frac{2}{3} - y = 2 \Rightarrow y = -\frac{4}{3} \end{vmatrix}$		
	$\left(\frac{2}{3}, -\frac{4}{3}\right)$	A 1	oe $x = \frac{2}{3}$, $y = -\frac{4}{3}$
		4	

Question 10 To	ıl 6	
----------------	------	--

Q	Answer	Marks	Comments
11(a)	$\frac{75}{(5-x)(5+2x)^2} = \frac{A}{5-x} + \frac{B}{5+2x} + \frac{C}{(5+2x)^2}$		
	$75 = A(5+2x)^{2} + B(5-x)(5+2x) + C(5-x)$	M1	Correctly eliminating fractions PI by at least one correct value for A, B or C
	$x = 5$: $75 = A(15)^2 \implies A = \frac{1}{3}$	A 1	At least one constant correct
	$x = -2.5: 75 = C(7.5) \implies C = 10$	A 1	At least two constants correct
	$x^2: 0 = 4A - 2B \implies B = \frac{2}{3}$		
	$\left[\frac{75}{(5-x)(5+2x)^2}=\right]$		
	$\frac{1/3}{5-x} + \frac{2/3}{5+2x} + \frac{10}{\left(5+2x\right)^2}$	A 1	All correct
		4	

Q	Answer	Marks	Comments
11(b)	$(5+2x)^{-1} = 5^{-1} \left(1 + \frac{2x}{5}\right)^{-1}$	M 1	
	$=\frac{1}{5}\left(1+\left(-1\right)\left(\frac{2x}{5}\right)+\frac{\left(-1\right)\times\left(-2\right)\times\left(\frac{2x}{5}\right)^{2}}{2}\left[+\ldots\right]\right)$		
	$= \frac{1}{5} - \frac{2}{25}x + \frac{4}{125}x^2$	A 1	All correct Condone $\frac{1}{5} \left(1 - \frac{2}{5}x + \frac{4}{25}x^2 \right)$
		2	

Q	Answer	Marks	Comments
11(c)	$\left(5-x\right)^{-1} = \frac{1}{5} \left(1 + \frac{1}{5}x + \frac{1}{25}x^2\right)$	M 1	Either expansion correct
	$\left(5+2x\right)^{-2} = \frac{1}{25} \left(1 - \frac{4}{5}x + \frac{12}{25}x^2\right)$	A 1	Both correct
	f(x) =		
	$\frac{1}{3} \left(\frac{1}{5} + \frac{1}{25} x + \frac{1}{125} x^2 \right) + \frac{2}{3} \left(\frac{1}{5} - \frac{2}{25} x + \frac{4}{125} x^2 \right)$	M1	Correct substitution of at least two of their expressions with their <i>A</i> , <i>B</i> , <i>C</i>
	$+10\left(\frac{1}{25} - \frac{4}{125}x + \frac{12}{625}x^2\right)$	A1ft	All correct
	$=\frac{3}{5}-\frac{9}{25}x+\frac{27}{125}x^2$	A 1	
		5	

Question 11 Total	11	
-------------------	----	--

Q	Answer	Marks	Comments
12	$x(16-y^2) = 2(x^2+5)\frac{\mathrm{d}y}{\mathrm{d}x}$		
	$\int \frac{x}{x^2 + 5} \mathrm{d}x = \int \frac{2}{16 - y^2} \mathrm{d}y$	M 1	Separates variables Condone omission of integral signs
	$\frac{2}{16 - y^2} = \frac{A}{4 + y} + \frac{B}{4 - y}$	m1	Attempt to use partial fractions PI by correct integration of $\int \frac{k}{16 - y^2} dy$
	$2 = A(4-y) + B(4+y)$ $A = \frac{1}{4}$ $B = \frac{1}{4}$	A 1	Both correct PI by correct integration of $\int \frac{k}{16 - y^2} dy$
	$\left[\int \frac{x}{x^2 + 5} dx = \int \frac{1/4}{4 + y} + \frac{1/4}{4 - y} dy \right]$		
	$\frac{1}{2}\ln(x^2+5) = \frac{1}{4}\ln(4+y) - \frac{1}{4}\ln(4-y)[+c]$	m1 A1	m1: Attempt to integrate both sides A1: Both sides integrated correctly
	At $(0, 1)$ $2\ln(5) = \ln\left(\frac{5}{3}\right) + c$	m1	Attempt to find <i>c</i> , or to use limits for <i>x</i> and <i>y</i>
	c = In15		or $c = \ln \frac{1}{15}$
	$2\ln(x^2+5) = \ln(4+y) - \ln(4-y) + \ln 15$	A 1	$\mathbf{oe} \mathbf{eg} \ln\left(\frac{\left(x^2+5\right)^2}{15}\right) = \ln\left(\frac{4+y}{4-y}\right)$
	$\left(x^2 + 5\right)^2 = \frac{15(4+y)}{4-y}$		
	$2\ln(x^{2}+5) = \ln(4+y) - \ln(4-y) + \ln 15$ $(x^{2}+5)^{2} = \frac{15(4+y)}{4-y}$ $(x^{2}+5)^{2}(4-y) - 15y = 60$ $y = \frac{4(x^{2}+5)^{2} - 60}{(x^{2}+5)^{2} + 15}$	M1	Attempt to isolate y from $(x^2 + 5)^2 = \frac{k(4 \pm y)}{4 \pm y}, k \neq 0, 1$
	$y = \frac{4(x^2 + 5)^2 - 60}{(x^2 + 5)^2 + 15}$	A 1	ACF eg $y = 4 - \frac{120}{x^4 + 10x^2 + 40}$

	Question 12 Total	9	
--	-------------------	---	--

Q	Answer	Marks	Comments
13(a)	$\begin{bmatrix} AB \colon \mathbf{r} = \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 6 \\ 8 \\ -10 \end{bmatrix}$	B1	$\mathbf{oe} \begin{bmatrix} 8 \\ 6 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} 6 \\ 8 \\ -10 \end{bmatrix}$
		1	

Q		Ans	wer	Marks	Comments
13(b)(i)	$2+6\lambda=-2+4\mu$	or	$8+6\lambda=-2+4\mu$		
	$-2+8\lambda=3-5\mu$	or	$6+8\lambda=3-5\mu$	M1	Equating <i>x</i> and <i>y</i> coordinates
	$\mu = 1$, $\lambda = 0$	or	$\mu = 1$, $\lambda = -1$	A1	
	$6-10\lambda=c+3\mu$	or	$-4-10\lambda=c+3\mu$		
	<i>c</i> = 3			A1	AG Must be convincingly shown
				3	

Q	Answer	Marks	Comments
13(b)(ii)	Coords of $P(4p-2,-5p+3,3p+3)$		
	$\overrightarrow{XP} = \begin{bmatrix} 4p - 4 \\ -5p + 1 \\ 3p - 3 \end{bmatrix}$	M1	oe
	$\begin{bmatrix} 4p-4 \\ -5p+1 \\ 3p-3 \end{bmatrix} \begin{bmatrix} 4 \\ -5 \\ 3 \end{bmatrix} [=0]$	m1	Correct dot product seen
	-16+16p-5+25p-9+9p=0		
	$[50 p = 30] \qquad p = \frac{3}{5}$	A 1	
	$QP = \sqrt{(2-0.4)^2 + (2-0)^2 + (6-4.8)^2}$	m1	Attempt at distance, m1 dependent on M1m1 scored
	$QP \Big[= \sqrt{8} \Big] = 2\sqrt{2}$	A 1	
		5	

OR	Answer	Marks	Comments
	$\sqrt{(4p-4)^2 + (-5p+1)^2 + (3p-3)^2} = \sqrt{D}$	M1	
	$D = 16p^2 - 32p + 16 + 25p^2 - 10p + 1 + 9p^2 - 18p + 9$	m1	
	$=50p^2-60p+26$	A 1	
	$=50\left(p^2-\frac{6}{5}p+\frac{9}{25}\right)+8$		
	$=50\left(p-\frac{3}{5}\right)^2+8$	m1	
	Shortest distance $\left[=\sqrt{8}\right]=2\sqrt{2}$	A1	
		5	

Question 13 Total	9	
-------------------	---	--

Q	Answer	Marks	Comments
14(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin x \left(-\sin x\right) - \cos x \left(\cos x\right)}{\sin^2 x}$	M 1	Attempt at quotient rule
	$=\frac{-\sin^2 x - \cos^2 x}{\sin^2 x}$		Must see a 'middle' line
	$=-\csc^2 x$	A 1	AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
14(a)(ii)	$u = 1 + \cot x \implies \frac{\mathrm{d}u}{\mathrm{d}x} = -\csc^2 x$		
	$\int \frac{\csc^2 x}{\left(1 + \cot x\right)^2} \mathrm{d}x = -\int \frac{1}{u^2} \mathrm{d}u$	M1	Everything in terms of <i>u</i>
	$= u^{-1} \left[+ c \right]$	A 1	
	$\left[\frac{1}{u}\right]_{1+\sqrt{3}}^{2} = \left[\frac{1}{1+\cot x}\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}$	B1	Change limits or change back to x
	$\left[\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\csc^2 x}{(1 + \cot x)^2} dx = \right] \frac{1}{2} - \frac{1}{1 + \sqrt{3}}$	m1	Substitute <i>their</i> limits into <i>their</i> expression of the form ku^{-1}
	$=1-\frac{\sqrt{3}}{2}$	A 1	
		5	

Q	Answer	Marks	Comments
14(b)	$\frac{1}{\sqrt{(2x+1)} + \sqrt{(2x-1)}} \times \frac{\sqrt{(2x+1)} - \sqrt{(2x-1)}}{\sqrt{(2x+1)} - \sqrt{(2x-1)}}$	B1	Correctly rationalising
	$= \frac{\sqrt{(2x+1)} - \sqrt{(2x-1)}}{2x+1-2x+1} = \frac{\sqrt{(2x+1)}}{2} - \frac{\sqrt{(2x-1)}}{2}$		
	$\int \frac{1}{\sqrt{(2x+1)} + \sqrt{(2x-1)}} \mathrm{d}x$		
	$= \frac{(2x+1)^{1.5}}{6} - \frac{(2x-1)^{1.5}}{6} [+c]$	M1 A1	M1 : $a(2x+1)^{1.5} + b(2x-1)^{1.5}$ A1 : Fully correct
		3	

Question 14 Total	10	
-------------------	----	--