Simple functions

Definition. Let (X, \mathcal{M}) be a measurable space. A **simple function** is a finite linear combination, with non-negative coefficients, of characteristic functions on sets in \mathcal{M} . That is.

$$f(x) = \sum_{j=1}^{n} a_j \chi_{E_j}(x),$$

where $E_j \in \mathcal{M}$ for all j, and $a_j \in \mathbb{R}$.

Example.
$$f = 2\chi_{(-5,0)} + 1\chi_{[0,3)}$$
 is a simple function on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Definition. (For $X = \mathbb{R}$) A **step function** is a simple function where each E_i is an interval.

Simple functions

Theorem. Let $f: X \to \mathbb{R}$ be non-negative and measurable. Then there exists a sequence S_n of simple functions such that:

- 1. $S_n(x) \le S_{n+1}(x) \le f(x)$ for all $n \ge 1$, and almost every $x \in X$
- **2.** $\lim_{n\to\infty} S_n(x) = f(x)$ for almost every $x \in X$

Outline of proof. Let
$$E_{n,k} = \{x : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \},$$

 $F_n = \{x : f(x) \ge n \}$ for $n \ge 1, k = 1, 2, ..., n2^n$.

Note $E_{n,k}$, F_n all measurable sets.

$$S_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{E_{n,k}} + n \chi_{F_n} = \begin{cases} n & \text{if } f(x) \ge n \\ \frac{k-1}{2^n} & \text{if } \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \le n \end{cases}$$

So $S_n \to f$ as desired.

Simple functions

Corollary. Let $f: X \to \mathbb{R}$ be measurable. (difference: not assuming non-negative.) Then there exists a sequence S_n of simple functions so

- **1.** $|S_n(x)| \le |S_{n+1}(x)| \le |f(x)|$ for all *n* and a.e. *x*
- **2.** $\lim_{n\to\infty} S_n(x) = f(x)$ for a.e. $x \in X$.

Outline of proof.

- Define $f^+(x) = \max\{f(x), 0\}$, and $f^-(x) = \max\{-f(x), 0\}$.
- Claim: $f = f^+ f^-$ and $|f| = f^+ + f^-$.
- Claim: both functions are measurable.
- (draw picture)
- **Corollary.** If $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable, then there exists a sequence f_n of *step* functions so that $f_n \to f$ a.e.

Integral of simple function

Going back to the simple function $f = 2\chi_{(-5,0)} + 1\chi_{[0,3)}$ on \mathbb{R} .

$$f(x) = \begin{cases} 2, & \text{if } -5 < x < 0, \\ 1, & \text{if } 0 \le x < 3, \\ 0, & \text{otherwise} \end{cases}$$

What should the integral of f be?

Definition. Fix a measure space (X, \mathcal{M}, μ) . If $S = \sum_{j=1}^{n} a_j \chi_{E_j}$, we define the integral of S with respect to μ by

$$\int S d\mu = \int_X S d\mu = \sum_{j=1}^n a_j \mu(E_j).$$

Important observations.

- We allow $\int S d\mu = \infty$.
- We must use the convention that $0 \cdot \infty = 0$.
- Wait: is this even well-defined? Writing a simple function as a sum of characteristic functions is not unique. However, the integral has a unique value no matter how the simple function is represented.
- To simplify things, we can assume the a_j 's are distinct and the $\{E_j\}$ are disjoint, with $\cup E_j = X$ (why?). This is called the **standard representation** of a simple function.

Proposition. Let f, g be simple functions. Then

a. If
$$c \ge 0$$
, $\int cf d\mu = c \int f d\mu$.

b.
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu$$
.

c. If
$$f \le g$$
, then $\int f d\mu \le \int g d\mu$. (\leftarrow homework!)

Proposition. Let f, g be simple functions. Then

a. If
$$c \ge 0$$
, $\int cf \ d\mu = c \int f \ d\mu$.

$$c \int f d\rho$$

b.
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu$$
.

c. If
$$f \le g$$
, then $\int f d\mu \le \int g d\mu$. (\leftarrow homework!)

Proof of a. Write
$$f = \sum_{i=1}^{n} a_i \chi_{E_i}$$
.

Then
$$cf = c \sum_{j=1}^n a_j \chi_{E_j} = \sum_{j=1}^n c a_j \chi_{E_j}$$

So
$$\int cf d\mu = \sum_{j=1}^n ca_j \mu(E_j) = c \sum_{j=1}^n a_j \mu(E_j) = c \int f d\mu$$
.

Proposition. Let f, g be simple functions. Then

a. If
$$c \ge 0$$
, $\int cf d\mu = c \int f d\mu$.

b.
$$\int (f+g) d\mu = \int_{a}^{b} f d\mu + \int_{a}^{b} g d\mu.$$

c. If
$$f \leq g$$
, then $\int f \, d\mu \leq \int g \, d\mu$. (\leftarrow homework!)

Proof of b. Write $f = \sum_{j=1}^{n} a_j \chi_{E_j}$, $g = \sum_{k=1}^{m} b_k \chi_{F_k}$, and assume these are standard representations. Then,

$$E_j = E_j \cap X = E_j \cap (\cup_1^m F_k) = \cup_{k=1}^m (E_j \cap F_k),$$

$$F_k = F_k \cap X = F_k \cap (\cup_{1}^m E_i) = \cup_{i=1}^n (F_k \cap E_i),$$

and these unions are disjoint.

So
$$f + g = \sum_{i=1}^{n} \sum_{k=1}^{m} (a_j + b_k) \chi_{E_i \cap F_k}$$
.

Then, by definition,

$$\int (f+g) \ d\mu = \sum_{j=1}^{n} \sum_{k=1}^{m} (a_j + b_k) \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} a_j \mu(E_j \cap F_k) + \sum_{k=1}^{m} \sum_{j=1}^{n} b_k \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} a_j \mu(E_j) + \sum_{j=1}^{n} b_k \mu(F_k)$$

$$= \int f \ d\mu + \int g \ d\mu.$$

The Lebesgue integral

Definition. For $f \ge 0$ measurable, define

$$\int_X f \, d\mu = \sup \left\{ \int_X s \, d\mu : 0 \le s \le f, s \text{ simple} \right\}.$$

What if f is measurable, but not necessarily nonnegative?

Definition. Suppose
$$f$$
 is measurable. As we've seen before, let $f^+ = \max(f, 0)$ and $f^- = \max(-f, 0)$. Then

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu,$$

...as long as
$$\int_{Y} f^{+} d\mu$$
 and $\int_{Y} f^{-} d\mu$ are not both infinite.

The Lebesgue integral

Definition.

If f is measurable and $\int |f| d\mu < \infty$, we say f is **integrable**.

Basic properties of the Lebesgue integral

Bass: "The proof of the next proposition follows from the definitions." (This is Prop 6.3.)

Proposition.

- **a.** If f is a real-valued measurable function with $a \le f(x) \le b$ for all x and $\mu(X) < \infty$, then $a\mu(X) \le \int f \, d\mu \le b\mu(X)$;
- **b.** If f and g are measurable, real-valued, and integrable and $f(x) \le g(x)$ for all x, then $\int f d\mu \le \int g d\mu$;
- **c.** If f is integrable, then $\int cf d\mu = c \int f d\mu$ for all complex c;
- **d.** If $\mu(A) = 0$ and f is integrable, then $\int f \chi_A d\mu = 0$.

Let's prove part **d.**.

If
$$\mu(A) = 0$$
 and f is integrable, then $\int f \chi_A d\mu = 0$.

I.e., the integral of any function over a nullset is zero.

Proof. First suppose f is a simple function, $f = \sum_{j=1}^{n} a_j \chi_{E_j}$. Then

$$\int_X f d\mu = \sum_{j=1}^n a_j \mu(E_j).$$

So for a nullset E, we have

$$\int_{\mathcal{E}} f \ d\mu = \sum_{i=1}^n a_j \mu(E_j \cap E) \leq \sum_{i=1}^n a_j \mu(E) = 0.$$

If $\mu(A) = 0$ and f is integrable, then $\int f \chi_A d\mu = 0$. I.e., the integral of any function over a nullset is zero.

Next, suppose $f \ge 0$ is measurable, so its integral is by definition $\int_{\mathbb{R}^n} f \ d\mu = \sup \left\{ \int_{\mathbb{R}^n} s \ d\mu : 0 \le s \le f, s \text{ simple} \right\}.$

$$Jx$$
 Jx Jx Then for the nullset E , for any simple function s we already proved

 $\int_E s \ d\mu = 0$. Thus

$$\int_E f \ d\mu = \sup \left\{ \int_E s \ d\mu : 0 \le s \le f, s \ \mathsf{simple}
ight\} = 0.$$

Finally, since every measurable function can be written as $f=f^+-f^-$ and $f^+,f^-\geq 0$, for any nullset E,

$$\int_{\mathcal{E}}f\,d\mu=\int_{\mathcal{E}}f^+\,d\mu-\int_{\mathcal{E}}f^-\,d\mu=0.$$