- 1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. Data type of columns in a table

Query used:

SELECT column_name, data_type
FROM `Customer.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = "Customer_info";

Sample Results:

Row /	column_name	data_type
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

Comments:

We have imported the all the dataset to bigquery and we checked the structure of all the dataset and provide example of one snippet with one query

- 1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 2. Time period for which the data is given

Query used:

SELECT MIN(extract(YEAR FROM order_purchase_timestamp)) as Start_year_data,MAX(extract(YEAR FROM order_purchase_timestamp)) as End_year_data FROM `first-business-case-study.Customer.orders`;

Row /	Start_year_data	End_year_data_
1	2016	2018

- 1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 3. Cities and States of customers ordered during the given period

Query used:

select distinct customer_city,customer.customer_state from `first-business-case-study.Customer.orders` orders join `first-business-case-study.Customer_info` customer on orders.customer_id=customer_id order by customer_city,customer_customer_state;

Row /	customer_city //	customer_state
1	abadia dos dourados	MG
2	abadiania	GO
3	abaete	MG
4	abaetetuba	PA
5	abaiara	CE
6	abaira	BA
7	abare	BA

2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query used:

SELECT count(orders.order_id) as cnt_order, extract(YEAR from orders.order_purchase_timestamp) as order_year, extract(MONTH from orders.order_purchase_timestamp) as order_month FROM `first-business-case-study.Customer.orders` orders LEFT JOIN `first-business-case-study.Customer.Customer_info` customer ON orders.customer_id = customer.customer_id group by order_year,order_month;

Sample Results:

Row	cnt_order //	order_year	order_month
1	4	2016	9
2	324	2016	10
3	1	2016	12
4	800	2017	1
5	1780	2017	2
6	2682	2017	3
7	2404	2017	4

Comments:

Data are exponentially increasing and decreasing there is no seasonality in brazil

- 2. In-depth Exploration: (Approach 1)
 - 2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Query used:

```
select extract(year from date(order_time.order_purchase_timestamp)) as year,
extract(month from date(order_time.order_purchase_timestamp)) as month,
order time.timeslot, count(*) as order count
from
(select *,
case
 when time(orders.order_purchase_timestamp) between '00:00:00' and '05:59:59'
 then 'Dawn'
 when time(orders.order_purchase_timestamp) between '06:00:00' and '11:59:59'
 then 'Morning'
 when time(orders.order_purchase_timestamp) between '12:00:00' and '17:59:59'
 then 'Afternoon'
when time(orders.order_purchase_timestamp) between '18:00:00' and '23:59:59'
 then 'Night'
end as timeslot
from `first-business-case-study.Customer.orders` orders
```

Comments:

Mostly customer are ordering product on afternoon time

		<u>-</u>	-	_	_	
Rov	w Labels	Afternoon	Dawn	Morning	Night	Grand Total
Gra	nd Total	38.58%	4.77%	22.37%	34.29%	100.00%

Sample Results:

group by year, month, order_time.timeslot order by year, month, order time.timeslot

) order_time

Row	year //	month	timeslot	order_count //
1	2016	9	Afternoon	2
2	2016	9	Dawn	1
3	2016	9	Night	1
4	2016	10	Afternoon	125
5	2016	10	Dawn	15
6	2016	10	Morning	84
7	2016	10	Night	100

- 3. Evolution of E-commerce orders in the Brazil region:
 - 1. Get month on month orders by states

Query used:

SELECT extract(MONTH from orders.order_purchase_timestamp) as order_month, count(*) as cnt_orders_month, geolocation_state FROM `first-business-case-study.Customer.orders` orders
INNER JOIN `first-business-case-study.Customer_info` cust

ON orders.customer_id = cust.customer_id

INNER JOIN `first-business-case-study.Customer.Geolocation` geolocation ON cust.customer_zip_code_prefix = geolocation.geolocation_zip_code_prefix group by order_month,geolocation.geolocation_state order by order_month;

Sample Result:

Row /	order_month	cnt_orders_mon	geolocation_state
1	1	2634	RN
2	1	453515	SP
3	1	246203	MG
4	1	32144	BA
5	1	230923	RJ
6	1	62867	RS
7	1	4008	MA

Measurely three State having max orders in brazil

- 3. Evolution of E-commerce orders in the Brazil region:
 - 2. Distribution of customers across the states in Brazil

Query used:

SELECT customer_state, ROUND((count(*)/(SELECT count(*) FROM `first-business-case-study.Customer_info`))*100,2) as cnt_customer_per_state FROM `first-business-case-study.Customer_info` group by customer_state;

Row	customer_state	h	cnt_customer_p
1	RN		0.49
2	CE		1.34
3	RS		5.5
4	SC		3.66
5	SP		41.98
6	MG		11.7
7	BA		3.4

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

Query used: (to obtain cost for each year)

WITH payment_2017 as

(SELECT extract(YEAR from orders.order_purchase_timestamp) as orders_year, extract(MONTH from orders.order_purchase_timestamp) as orders_month, ROUND(SUM(payment.payment_value),2) as payme nt_amount FROM `first-business-case-study.Customer.payments` payment

LEFT JOIN `first-business-case-study.Customer.orders` orders

ON payment.order_id = orders.order_id

where extract(MONTH from orders.order_purchase_timestamp) between 1 and 8 AND extract(YEAR from orders.order_purchase_timestamp)= 2017

group by orders_year, orders_month

order by orders_year, orders_month),

payment_2018 as

(SELECT extract(YEAR from orders.order_purchase_timestamp) as orders_year_next, extract(MONTH from orders.order_purchase_timestamp) as orders_month_next, ROUND(SUM(payment.payment_value),2) as payment amount next FROM `first-business-case-study.Customer.payments` payment

LEFT JOIN `first-business-case-study.Customer.orders` orders

ON payment.order_id = orders.order_id

where extract(MONTH from orders.order_purchase_timestamp) between 1 and 8 AND extract(YEAR from orders.order_purchase_timestamp)= 2018

group by orders_year_next, orders_month_next

order by orders_year_next, orders_month_next)

select *,

ROUND(((payment_2018.payment_amount_next - payment_2017.payment_amount)/payment_2017.payment_amount)*100,2) as percentage_increase from payment_2017.payment_amount

INNER JOIN payment_2018

ON payment_2017.orders_month = payment_2018.orders_month_next order by payment_2017.orders_month;

//	orders_year	- /1	payment_amour	orders_year_nex	orders_month_n	payment_amour	percentage_incr
1	2017	1	138488.04	2018	1	1115004.18	705.13
2	2017	2	291908.01	2018	2	992463.34	239.99
3	2017	3	449863.6	2018	3	1159652.12	157.78
4	2017	4	417788.03	2018	4	1160785.48	177.84
5	2017	5	592918.82	2018	5	1153982.15	94.63
6	2017	6	511276.38	2018	6	1023880.5	100.26
7	2017	7	592382.92	2018	7	1066540.75	80.04
8	2017	8	674396.32	2018	8	1022425.32	51.61

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

Query used: (to obtain cost for each year)

```
select round((cost_2018-cost_2017)*100/cost_2017,2) as pc_inc_in_cost from (select extract(year from date(o.order_purchase_timestamp)) as year, round(sum(p.payment_value),2) as cost_2017 from `first-business-case-study.Customer.orders` o join `first-business-case-study.Customer.payments` p on p.order_id=o.order_id where extract(month from date(o.order_purchase_timestamp)) between 1 and 8 group by year having year=2017)t1,
```

(select extract(year from date(o.order_purchase_timestamp)) as year, round(sum(p.payment_value),2) as cost_2018 from `first-business-case-study.Customer..orders` o join `first-business-case-study.Customer.payments` p on p.order_id=o.order_id where extract(month from date(o.order_purchase_timestamp)) between 1 and 8 group by year having year=2018)t2

Sample Results:

Row /	pc_inc_in_cost
1	136.98

Comments:

These problem can be solve by two ways:

- 1. Calculating percentage increase from month of year (2017,2018). It will give the picture of month by month increase percentage from 2017 to 2018
- 2. Calculate the Percentage increase from 2017 to 2018 on the basis of total amount

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - 2. Mean & Sum of price and freight value by customer state

Query used:

SELECT customer_state, ROUND(avg(order_item.price),2) as mean_price, ROUND(sum(order_item.price),2) as total_price,

ROUND(avg(order_item.freight_value),2) as mean_freight_value, ROUND(sum(order_item.freight_value),2) as total_freight_value FROM `first-business-case-study.Customer.order items` order item

INNER JOIN `first-business-case-study.Customer.orders` orders

ON order_item.order_id = orders.order_id

INNER JOIN `first-business-case-study.Customer.Customer_info` customer

ON orders.customer_id = customer.customer_id

group by customer.customer_state

order by customer.customer_state;

Row /	customer_state	mean_price	total_price	mean_freight_va	total_freight_val
1	AC	173.73	15982.95	40.07	3686.75
2	AL	180.89	80314.81	35.84	15914.59
3	AM	135.5	22356.84	33.21	5478.89
4	AP	164.32	13474.3	34.01	2788.5
5	BA	134.6	511349.99	26.36	100156.68
6	CE	153.76	227254.71	32.71	48351.59
7	DF	125.77	302603.94	21.04	50625.5

5. Analysis on sales, freight and delivery time1.Calculate days between purchasing, delivering and estimated delivery

Query used:

```
SELECT order_id,
DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) as purchase_delivery_day_diff,
DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) as estimated_delivery_day_diff,
DATE_DIFF(order_estimated_delivery_date, order_purchase_timestamp, day) as estimated_purchase_day_diff
FROM `first-business-case-study.Customer.orders`
where order_status='delivered';
```

Row	order_id //	purchase_delive	estimated_delive	estimated_purch
1	635c894d068ac37e6e03dc54e	30	1	32
2	3b97562c3aee8bdedcb5c2e45	32	0	33
3	68f47f50f04c4cb6774570cfde	29	1	31
4	276e9ec344d3bf029ff83a161c	43	-4	39
5	54e1a3c2b97fb0809da548a59	40	-4	36
6	fd04fa4105ee8045f6a0139ca5	37	-1	35
7	302bb8109d097a9fc6e9cefc5	33	-5	28

- 5. Analysis on sales, freight and delivery time
 - 1. Calculate days between purchasing, delivering and estimated delivery

Graph:

- 5. Analysis on sales, freight and delivery time
 - 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - 1. time_to_delivery = order_purchase_timestamp order_delivered_customer_date
 - 2. diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

SELECT DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp,day) as time_to_delivery, DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) as diff_estimated_delivery FROM `first-business-case-study.Customer.orders` where (order_delivered_customer_date - order_purchase_timestamp) is not null or (order_estimated_delivery_date - order_delivered_customer_date) is not null;

Sample results:

Row /	time_to_delivery	diff_estimated_c
1	30	-12
2	30	28
3	35	16
4	30	1
5	32	0
6	29	1
7	43	-4

Comments:

By analyzing the data is shows that time to delivery is higher than estimate delivery date

- 5. Analysis on sales, freight and delivery time
 - 3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

SELECT customer.customer_state,

ROUND(AVG(order_items.freight_value),2) as mean_freight_value,

ROUND(AVG(DATE_DIFF(orders.order_delivered_customer_date, orders.order_purchase_timestamp,day)),

2) as time_to_delivery,

ROUND(AVG(DATE_DIFF(orders.order_estimated_delivery_date, orders.order_delivered_customer_date, d ay)),2) as diff_estimated_delivery

FROM `first-business-case-study.Customer.orders` orders

LEFT JOIN `first-business-case-study.Customer.order_items` order_items

ON orders.order_id = order_items.order_id

LEFT JOIN `first-business-case-study.Customer.Customer_info` customer

ON orders.customer_id = customer.customer_id

group by customer_customer_state

order by customer.customer_state;

Comments:

Comparing the data by state is shows that time to delivery is higher than estimate delivery date

Row /	customer_state	mean_freight_va	time_to_delivery	diff_estimated_c
1	AC	40.07	20.33	20.01
2	AL	35.84	23.99	7.98
3	AM	33.21	25.96	18.98
4	AP	34.01	27.75	17.44
5	BA	26.36	18.77	10.12
6	CE	32.71	20.54	10.26
7	DF	21.04	12.5	11.27

- 5. Analysis on sales, freight and delivery time
 - 3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

- 5. Analysis on sales, freight and delivery time
 - 5. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

```
WITH State freight value as,
(SELECT customer.customer state,
ROUND(AVG(order items.freight value),2) as mean freight value,
ROUND(AVG(DATE_DIFF(orders.order_delivered_customer_date, orders.order_purchase_timestamp,day)),2) as time_to_delivery,
ROUND(AVG(DATE_DIFF(orders.order_estimated_delivery_date, orders.order_delivered_customer_date, day)),2) as diff_estimated_delivery,
dense_rank() over(order by ROUND(AVG(order_items.freight_value),2) desc) as max_freight_value
dense rank() over(order by ROUND(AVG(order items.freight value),2) asc) as min freight value
FROM `first-business-case-study.Customer.orders` orders
LEFT JOIN 'first-business-case-study.Customer.order items' order items
ON orders.order id = order items.order id
LEFT JOIN `first-business-case-study.Customer.Customer info` customer
ON orders.customer id = customer.customer id
group by customer.customer state),
max_freight as
(SELECT customer state, mean freight value, max freight value FROM State freight value
WHERE max freight value <= 5),
min freight as
(SELECT customer state, mean freight value, min freight value FROM State freight value
WHERE min freight value<=5)
SELECT max_freight.customer_state as top_five_state,max_freight.mean_freight_value as top_five_freight_value,
min freight.customer state as lower five state, min freight.mean freight value as lower five freight value
FROM max freight
INNER JOIN min freight
ON max_freight_max_freight_value = min_freight.min_freight_value
order by max freight.max freight value;
```

- 5. Analysis on sales, freight and delivery time
 - 5. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

Row /	top_five_state	top_five_freight_	lower_five_state	lower_five_freigl
1	RR	42.98	SP	15.15
2	PB	42.72	PR	20.53
3	RO	41.07	MG	20.63
4	AC	40.07	RJ	20.96
5	PI	39.15	DF	21.04

- 5. Analysis on sales, freight and delivery time
 - 7. Top 5 states where delivery is really fast/ not so fast compared to estimated date

WITH fast_delivery as

(SELECT distinct customer.customer_state,

TIMESTAMP_DIFF(orders.order_delivered_customer_date, orders.order_purchase_timestamp,HOUR) as time_to_del ivery,

dense_rank() over(partition by customer_customer_state order by TIMESTAMP_DIFF(orders.order_delivered_custome r_date, orders.order_purchase_timestamp,HOUR)) as d_rnk

FROM `first-business-case-study.Customer.orders` orders

LEFT JOIN `first-business-case-study.Customer.order_items` order_items

ON orders.order_id = order_items.order_id

LEFT JOIN `first-business-case-study.Customer_Customer_info` customer

ON orders.customer id = customer.customer id

where TIMESTAMP_DIFF(orders.order_estimated_delivery_date, orders.order_delivered_customer_date, HOUR)>0)

SELECT customer_state, time_to_delivery FROM fast_delivery where d_rnk=1 order by time_to_delivery limit 5;

Row /	customer_state	time_to_delivery
1	RJ	12
2	SP	18
3	BA	20
4	RS	25
5	MG	25

- 6 Payment type analysis:
- 1. Month over Month count of orders for different payment types

SELECT count(orders.order_id) as cnt_order_per_month, EXTRACT(MONTH from orders.order_purchase_timestamp) as mo nth_order, payments.payment_type
FROM `first-business-case-study.Customer.orders` orders
LEFT JOIN `first-business-case-study.Customer.payments` payments
ON orders.order_id = payments.order_id
group by EXTRACT(MONTH from orders.order_purchase_timestamp),payments.payment_type;

Sample results:

Row /	cnt_order_per_r	month_order	payment_type	1.
1	1509	11	UPI	
2	4378	12	credit_card	
3	1723	2	UPI	
4	5897	11	credit_card	
5	572	4	voucher	
6	7841	7	credit_card	
7	2074	7	UPI	

Comments:

It's looks like Credit card method is most frequent used and three of the payment mode is more usable in

- 6 Payment type analysis:
 - 2. Count of orders based on the no. of payment installments

SELECT payment_installments, count(order_id) as cnt_order FROM `first-business-case-study.Customer.payments` group by payment_installments order by payment_installments;

Row	payment_installr	cnt_order
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920

Question 7 - Actionable Insights

2. Need more seller in other states

By analyzing data it's seems the there is correlation between count of orders and sellers with respect to product category and states in other word below charts suggested that the order count in certain states are low because the sellers them self are low

Count of orders

Count of sellers

Product categories

States

Question 7 - Actionable Insights

2. Need more seller in other states

```
select c.customer_state, p.product_category, count(s.seller_id) as seller_count from `first-business-case-study.Customer.orders` o

left join `first-business-case-study.Customer.order_items` oi on oi.order_id=o.order_id

left join `first-business-case-study.Customer.products` p on p.product_id=oi.product_id

left join `first-business-case-study.Customer.Customer_info` c on c.customer_id=o.customer_id

left join `first-business-case-study.Customer.order_reviews` o_r on o_r.order_id=o.order_id

left join `first-business-case-study.Customer.sellers` s on s.seller_id=oi.seller_id

group by c.customer_state, p.product_category

order by c.customer_state, p.product_category
```

select c.customer_state, p.product_category, count(o.order_id) as order_count from `first-business-case-study.Customer.orders` o left join `first-business-case-study.Customer.order_items` oi on oi.order_id=o.order_id left join `first-business-case-study.Customer.products` p on p.product_id=oi.product_id left join `first-business-case-study.Customer.Customer_info` c on c.customer_id=o.customer_id group by c.customer_state, p.product_category order by c.customer_state, p.product_category

Question 7 - Actionable Insights

3. Need to use more UPI

The chart below clearly shows that UPI option is being underused a lot specially when compared to the credit card.

Question 8 - Recommendation

Drawing from the insights pointed out in the Question 7 following are the recommendations:

- 1. Target should work on capturing potential customer base in other state as well
- 2. Target should work on increasing the seller footprint among the other states where the seller presence is very low
- 3. Encourage among the sellers the usage of UPI as payment method