### UNIVERSIDADE DO MINHO

26 Jan. 2010

# Álgebra Linear

## $2^{\underline{0}}$ Teste - **A**

Esboço de uma Resolução

LEI Duração: 2 horas

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. As respostas incorrectamente assinaladas têm cotação negativa.

1. a) Existem valores  $a, b, c \in \mathbb{R}$ , para os quais a matriz  $\begin{pmatrix} a & b \\ ac & bc \end{pmatrix}$  é invertível. V  $\stackrel{\frown}{\mathbb{F}}$ 

**b**) Se 
$$\begin{vmatrix} x & y & z \\ 5 & 0 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 1$$
 então  $\begin{vmatrix} 5x & 5y & 5z \\ 1 & 0 & 3/5 \\ 1 & 1 & 1 \end{vmatrix} = 1$ .  $\boxed{V}$  F

- c) Se B é uma matriz de ordem n tal que  $B = (A^T A^{-1})^2$  então |B| = 1.  $\bigcirc$
- d) A matriz A (ordem n) é invertível se e só se  $A^TA$  for uma matriz invertível  $\widehat{V}$  F

**2.** Seja 
$$A = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

a) O polinómio característico da matriz A é  $p(\lambda) = (1 - \lambda)^2 (-1 - \lambda)^2$ .

V (F)

- **b**) A matriz A tem  $\begin{pmatrix} 0\\1\\1\\2 \end{pmatrix}$  como vector próprio associado ao valor próprio  $\lambda=1.$   $\bigcirc$   $\bigcirc$   $\bigvee$   $\bigcirc$   $\bigvee$
- $\mathbf{c}) |A| = 1$
- d) As matrizes diagonais  $\begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix}$  e  $\begin{pmatrix} 1 & & \\ & 2 & \\ & & 2 \end{pmatrix}$  são semelhantes. V F
- 3. Seja  $A = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ .

 $\mathbf{a}$ ) A matriz A é diagonalizável.



- **b**) O conjunto  $U_{\lambda} = \{(0,0,\alpha) : \alpha \in \mathbb{R}\}$  é um subespaço próprio associado ao valor próprio  $\lambda = 3$  de A
- c) Relativamente à matriz A, a multiplicidade aritmética do valor próprio  $\lambda=3$  é igual a sua multiplicidade geométrica.
- d) Seja A uma matriz de ordem n e  $U_{\lambda 1}$   $U_{\lambda 2}$ , dois subespaços próprios associados a dois valores próprios distintos  $\lambda 1$  e  $\lambda 2$ , e tendo-se  $v \in U_{\lambda 1}$  e  $u \in U_{\lambda 2}$ . Os vectores  $v, \alpha u$  são vectores linearmente independentes, com  $\alpha \in \mathbb{R} \setminus \{0\}$ .

 $\mathbf{II}$ 

Para cada questão deste grupo, complete, justificando, as respectivas afirmações.

1. Considere a seguinte matriz,

$$A = \begin{pmatrix} 1+x & 1 & 1\\ 1 & 1+x & 1\\ 1 & 1 & 1+x \end{pmatrix}, \text{com } x \in \mathbb{R}.$$

a) Os valores de  $x \in \mathbb{R}$  para os quais |A| = 0 são:

### Resolução:

O determinante da matriz A não se altera se adicionarmos à  $1^{\underline{a}}$  coluna a  $2^{\underline{a}}$  e a  $3^{\underline{a}}$  colunas, obtendo-se:

$$A = \begin{vmatrix} 3+x & 1 & 1 \\ 3+x & 1+x & 1 \\ 3+x & 1 & 1+x \end{vmatrix} = \begin{vmatrix} 3+x & 1 & 1 \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix} = (3+x)x^{2}.$$

Assim  $|A| = 0 \Leftrightarrow (3+x)x^2 = 0 \Leftrightarrow x = -3 \lor x = 0$ 

**b**) Considerando x = 1 tem-se que:

### Resolução:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

$$adj(A) = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|} adj(A) = \begin{pmatrix} 3/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 \\ -1/4 & -1/4 & 3/4 \end{pmatrix}$$

2. Considere a seguinte matriz,

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 3 & 2 & -1 & 2 \end{array}\right)$$

a) Os valores  $\lambda \in \mathbb{R}$  para os quais a matriz  $A - \lambda I_4$  tem inversa são:

**Resolução:** Os valores  $\lambda \in \mathbb{R}$  para os quais a matriz  $A - \lambda I_4$  tem inversa são os valores para os quais  $|A - \lambda I_4| \neq 0$ .

Sendo a matriz  $(A - \lambda I_4)$  uma matriz triangular (inferior) o seu determinante é igual ao produto dos elementos da sua diagonal principal.

Assim 
$$|A - \lambda I_4| \neq 0 \Leftrightarrow (2 - \lambda)\lambda(1 - \lambda)(2 - \lambda) \neq 0 \Leftrightarrow \lambda \neq 0 \land \lambda \neq 1 \land \lambda \neq 2$$
.

b) Os valores próprios da matriz A e respectivas multiplicidade algébrica são:

**Resolução:** Os valores próprios da matriz A são os valores para os quais  $|A - \lambda I_4| = 0$ . Da alinea anterior, a), tem-se que  $(2 - \lambda)\lambda(1 - \lambda)(2 - \lambda) = 0$ .

Os valores próprios de A são então:

- \*  $\lambda = 2$  de multiplicidade algébrica 2,
- \*  $\lambda = 1$  de multiplicidade algébrica 1,
- \*  $\lambda = 0$  de multiplicidade algébrica 1.
- $\mathbf{c}$ ) O subespaço próprio associado ao valor próprio de A, de maior módulo é

**Resolução:** O subespaço próprio pretendido é o conjunto solução do sistema homogéneo (A-2I)X=0.

$$\begin{cases} x + 2y - z = 0 \\ -6y + 2z = 0 \\ 2/3z = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \\ z = 0, \forall w \end{cases}$$

e então:  $U_{\lambda-2} = \{(0,0,0,w) : w \in \mathbb{R}\}$ 

d) Averigue se a matriz A é diagonalizável (justifique a sua resposta).

#### Resolução:

$$U_{\lambda=0}=?$$

$$(A-0I) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 3 & 2 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 0 & 0 & 0 \\ 3 & 2 & -1 & 2 \\ 2 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -4 & -2 & 0 \\ 0 & -4 & -4 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -4 & -2 & 0 \\ 0 & 0 & -2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

tendo-se então:

$$\begin{cases} x+2y-z=0\\ -2y-z=0\\ -z+w=0 \end{cases} \Leftrightarrow \begin{cases} x=0\\ y=-1/2z, \quad U_{\lambda=0}=\left\{(0,-1/2z,z,z):z\in\mathbb{R}\right\}, \ dim U_{\lambda=0}=1\\ z=w \end{cases}$$
 
$$U_{\lambda=1}=?$$

$$(A-1I) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 3 & 2 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

tendo-se então:

$$\begin{cases} x = 0 \\ y = 0 \\ -z + w = 0 \end{cases} U_{\lambda=1} = \{(0, 0, z, z) : z \in \mathbb{R}\}, \ dim U_{\lambda=1} = 1$$

Da aliena anterior, c), tem-se que  $dim U_{\lambda=2}=1$ , verificando-se  $dim U_{\lambda=2}+dim U_{\lambda=1}+dim U_{\lambda=0}=1+1+1=3\neq 4$ , onde n=4 é  $dim \mathbb{R}^4$ . Logo a matriz A não é diagonalizável.

#### III

Responda à questão deste grupo **justificando** a sua resposta e apresentando todos os cálculos efectuados.

1. Seja A uma matriz de ordem n invertível. Prove que

$$det(adj(A)) = (det(A))^{n-1}$$

# Resolução:

$$A^{-1} = \frac{1}{|A|} adj(A) \Leftrightarrow adj(A) = |A|A^{-1}$$
 tendo-se então  $|adj(A)| = |A|A^{-1}$ 

e, sendo válida a seguinte propriedade dos determinantes,  $|\alpha A| = \alpha^n |A|$ , sendo n a ordem da matriz A, tem-se

$$|adj(A)| = |A|^n |A^{-1}| = |A|^n \frac{1}{|A|} = |A|^{n-1}.$$

2. Seja A uma matriz quadrada de ordem n.

Determine os possíveis valores próprios de A, considerando:

(a) A uma matriz idempotente, ou seja  $A^2 = A$ ,

# Resolução:

Se  $\lambda$  é valor próprio de A associado ao vector próprio x tem-se que  $Ax = \lambda x$ . Sabemos também que  $A^2x = \lambda^2x$ .

Neste caso tem-se ainda que  $A^2 = A$ .

Assim podemos escrever  $\lambda^2 x = \lambda x \Leftrightarrow (\lambda^2 - \lambda)x$  com x vector próprio associado a  $\lambda$  e por isso  $x \neq 0$ . Assim vem  $(\lambda^2 - \lambda) = 0 \Leftrightarrow \lambda(\lambda - 1) = 0 \Leftrightarrow \lambda = 0 \lor \lambda = 1$ . Os valores próprios de uma matriz A idempotente são iguais a 0 ou a 1.

(b) A uma matriz nilpotente, ou seja  $A^2 = O$ , sendo O a matriz nula.

# Resolução:

De  $A^2x=\lambda^2x$  vem que  $Ox=\lambda^2x\Leftrightarrow 0=\lambda^2x$ , com x um vector próprio associado a  $\lambda$  e por isso  $x\neq 0$ . Logo  $\lambda^2=0\Leftrightarrow \lambda=0$ .

Os valores próprios de uma matriz A nilpotente são iguais a 0.

### Cotações:

| Parte I | Parte II                 | Parte III |
|---------|--------------------------|-----------|
| 6       | 1.5+1.5+1; $1.5+1+1+1.5$ | 2;1.5+1.5 |