Math2033 TA note 7

Yang Yunfei, Chen Yipei, Liu Ping March 24, 2019

1 LIMIT

Example 1. Let $\{a_n\}$ be a sequence satisfying $\lim_{n\to\infty}(a_{n+1}-\frac{a_n}{2})=0$. Prove that $\lim_{n\to\infty}a_n=0$.

Solution: Because

$$\lim_{n\to\infty}(a_{n+1}-\frac{a_n}{2})=0.$$

Then for $\epsilon > 0$, $\exists K_1 \in \mathbb{N}$, $\forall n \geq K_1$, $|a_{n+1} - \frac{a_n}{2}| < \frac{\epsilon}{4}$. Then

$$\forall n \geq K_1, |a_{n+1}| < \frac{|a_n|}{2} + \frac{\epsilon}{4}.$$

Then we prove by mathematical induction principle that

$$\forall n \ge K_1, |a_n| \le \frac{|a_{K_1}|}{2^{n-K_1}} + \frac{\epsilon}{2}.$$

Firstly, $|a_{K_1+1}| \le \frac{|a_{K_1}|}{2} + \frac{\epsilon}{2}$. If when n = k, $|a_k| \le \frac{|a_{K_1}|}{2^{k-K_1}} + \frac{\epsilon}{2}$. Then for n = k+1,

$$\begin{aligned} |a_{k+1}| &\leq \frac{|a_k|}{2} + \frac{\epsilon}{4} \\ &\leq \frac{\frac{|a_{K_1}|}{2^{k-K}} + \frac{\epsilon}{2}}{2} + \frac{\epsilon}{4} \\ &= \frac{|a_{K_1}|}{2^{k+1-K_1}} + \frac{\epsilon}{2}. \end{aligned}$$

So by mathematical induction principle, the statement is true that

$$\forall n \ge K_1, |a_n| \le \frac{|a_{K_1}|}{2^{n-K_1}} + \frac{\epsilon}{2}.$$

There exist K_2 such that $\forall n \geq K_2$, $\frac{|a_{K_1}|}{2^{n-K_1}} < \frac{\epsilon}{2}$. So for $\epsilon > 0$, $\exists K = \max\{K_1, K_2\}, \forall n \geq K$,

$$|a_n| \le \frac{|a_{K_1}|}{2^{n-K_1}} + \frac{\epsilon}{2} < \epsilon.$$

That is $\lim_{n\to\infty} a_n = 0$.

Example 2. If $\{x_n\}$ is a sequence such that $|x_{k+1} - x_k| < \frac{1}{2^k}$ for k = 1, 2, 3, ..., then show that $\{x_n\}$ is a Cauchy sequence.

Solution: For every $\epsilon > 0$, there is a integer $K = 2 - \lfloor \frac{\ln \epsilon}{\ln 2} \rfloor$. Then $n \ge K$, $p \in \mathbb{N}$ implies

$$\begin{aligned} |x_{n+p} - x_n| &= |(x_{n+p} - x_{n+p-1}) + (x_{n+p-1} - x_{n+p-2}) + \dots + (x_{n+1} - x_n)| \\ &\leq |x_{n+p} - x_{n+p-1}| + |x_{n+p-1} - x_{n+p-2}| + \dots + |x_{n+1} - x_n| \\ &< \frac{1}{2^{n+p-1}} + \frac{1}{2^{n+p-2}} + \dots + \frac{1}{2^n} \\ &< \sum_{j=n}^{\infty} \frac{1}{2^j} = \frac{1}{2^{n-1}} \\ &\leq \frac{1}{2^{K-1}} < \varepsilon \end{aligned}$$

Therefore, $\{x_n\}$ is a Cauchy sequence.

Example 3. We can find a divergent sequence $\{a_n\}$ such that for any $p \in \mathbb{N}$, $\lim_{n \to \infty} (a_{n+p} - a_n) = 0$.

Solution: Take

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

It is divergent. However, for any $p \in \mathbb{N}$,

$$a_{n+p} - a_n = \frac{1}{n+1} + \dots + \frac{1}{n+p} \le \frac{p}{n+1} \to 0$$
 as $n \to \infty$.

Remark 4. The Cauchy sequence, p is independent of n while the previous one is dependent of n.

Definition 5. f(x) converges to L as x tends to x_0 in S iff for every $\epsilon > 0$, there exists a $\delta > 0$ such that $x \in S$ and $0 < |x - x_0| < \delta$ imply $|f(x) - L| < \epsilon$.

Example 6. (1) Let $f:(1,3) \to \mathbb{R}$ be defined by $f(x) = x^2 + \frac{1}{x}$. Prove that $\lim_{x\to 2} f(x) = \frac{9}{2}$ by checking the definition.

(2) Let $f:(1,4) \to \mathbb{R}$ be defined by $f(x) = |x^2 - 9|$. Prove that $\lim_{x\to 2} f(x) = 5$ by checking the definition.

Solution: (1) For every $\epsilon > 0$, take $\delta = 2\epsilon/11 > 0$. If $0 < |x-2| < \delta$ and $x \in (1,3)$, then

$$\left| f(x) - \frac{9}{2} \right| = \left| x^2 + \frac{1}{x} - \frac{9}{2} \right| = \left| (x^2 - 4) + \left(\frac{1}{x} - \frac{1}{2} \right) \right| \le |x^2 - 4| + \left| \frac{1}{x} - \frac{1}{2} \right|$$

$$= |x + 2||x - 2| + \frac{|x - 2|}{2|x|} \le 5|x - 2| + \frac{1}{2}|x - 2| = \frac{11}{2}|x - 2| < \frac{11}{2}\delta = \epsilon.$$

(2) For every $\epsilon > 0$, take $\delta = \min\{1, \epsilon/5\} > 0$. If $0 < |x - 2| < \delta$ and $x \in (1, 4)$, then $x \in (1, 3)$ and $f(x) = |x^2 - 9| = 9 - x^2$. Therefore

$$|f(x) - 5| = |9 - x^2 - 5| = |4 - x^2| = |2 - x||2 + x| < 5|x - 2| < 5\delta \le \epsilon.$$