Q1)
$$\begin{bmatrix} 1 & 1 & 2 & 3 & 6 \\ 1 & 1 & 2 & 3 & 6 \\ 2 & 4 & 3 & 2 & 1 & 1 & 0 & 1 & 19 \\ 2 & 4 & 3 & 2 & 1 & 1 & 0 & 1 & 157 \\ -10 & -24 & -20 & -20 & -25 & 1 & 0 & 0 & 7 \\ \end{bmatrix}$$

$$\begin{bmatrix} 0.2 & 0.2 & 0.4 & 0.6 & 1 & 0.2 & 0 & | 3.8 \\ 1.8 & 3.8 & 2.6 & 1.4 & 0 & -0.2 & 1 & | 53.2 \\ -5 & -19 & -10 & -5 & 0 & +5 & 0 & | \end{bmatrix}$$

$$\begin{bmatrix} -0 & - & - & - & | 1 & | -$$

$$\begin{bmatrix} 2 & -1 & -1 & -1 & 0 & | & 8 \\ 1 & -1 & 1 & 0 & -1 & | & 2 \\ \hline \frac{1}{3}-2 & 1 & 0 & 0 & 0 & | & 1.5 \\ 0 & -0.5 & -0.5 & -0.5 & 0 & | & 1.5 \\ 0 & -0.5 & (1.5) & 0.5 & -1 & 0.5 \\ \hline 0 & -0.5 & (1.5) & 0.5 & -1 & 0.5 \\ \hline 0 & -1/3 & 0 & -1/3 & -1/3 & | & 1/3 \\ \hline 0 & -1/3 & 1 & 1/3 & -2/3 & | & 1/3 \\ \hline 0 & -1/3 & 0 & -2/3 & -2/3 & | & 1/3 \\ \hline x* = (\frac{1}{3}, 0, \frac{1}{3}) \\ F_{min} = \frac{10}{2}$$

Dual Problem 24,+42 6 2 -Y1-Y2 E-1 -41+42 SO 41,42 >0 Solution - (2313) (SY, 17)

14

Q3) Introduce Artificial Variables A, Az As

$$Phase^{-1} x_{1} + 2x_{2} - x_{3} + x_{4} + A_{1} + A_{1} + A_{2} = 0$$

$$2x_{1} - 2x_{2} + 5x_{3} + 3x_{4} + A_{2} = 9$$

$$x_{1} - x_{2} + 2x_{3} + x_{4} + A_{3} = 6$$

$$X_{1}, A_{1} \ge 0$$

$$\begin{bmatrix} -1 & -2 & \bigcirc & -1 & 1 & 0 & 0 & 0 & 0 \\ 2 & -2 & 3 & 3 & 0 & 1 & 0 & 9 \\ \hline 1 & -1 & 2 & -1 & 0 & 0 & 1 & 6 \\ \hline 2 & -5 & 6 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 1 & -1 & 1 & 0 & 0 & 0 \\ \hline & 4 & 0 & 6 & -3 & 1 & 0 & 9 \\ \hline & 3 & 3 & 0 & 1 & -2 & 0 & 1 & 6 \\ \hline & 8 & 7 & 0 & 7 & -6 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & -S & | & 3 \\
1 & 0 & 0 & | & 4/3 & | \\
0 & 1 & 0 & -\frac{13}{8} & | & = (1, 1, 3, 0)
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -0.75 & 0.5 & \frac{3}{8} & -\frac{1}{8} & \frac{1}{2} \\ 0 & 1 & 0.25 & -0.5 & -\frac{1}{8} & \frac{3}{8} & \frac{1}{2} \\ \hline 0 & 0 & -\frac{12.5}{3} & -\frac{3}{8} & \frac{15.25}{3} & \frac{12.25}{3} \end{bmatrix}$$

$$F^* = 15$$

 $x^* = (\frac{1}{2}, \frac{1}{2}, 0)$

subject
$$341+242 \le 18$$
 - (1)
 $41+342 \le 12$ - (2)
 $-241 \le 2$ - (3)
 $41-42 \le 6$ - (4)
 $41,42 \ge 0$ - (5)

c) x1,22 ≠0 at optimality

They constitute the active constraints

(alumn 1, bolumn 2

For the dual problem, we see that why morning active constraints

05) \max . $30x_1 + 20x_2 + 40x_3 + 25x_4 + 10x_5$ $2x_1 + x_2 + 3x_3 + 3x_4 + x_5 \le 700$ $3x_4 + 2x_2 + 2x_3 + x_4 + x_5 \le 1000$ $x_1 \ge 0 \ \forall i \in \mathbb{Z}[1,2,3,4,5]$

$$\begin{bmatrix} 2 & 1 & 3 & 3 & 1 & 1 & 0 & 700 \\ 3 & 2 & 2 & 1 & 1 & 0 & 1 & 1000 \\ \hline -30 & -20 & -40 & -25 & -10 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2/3 & 1/3 & 1 & 1 & 1/3 & 1/3 & 0 & | & 700/3 \\ 5/3 & (9/3) & 0 & -1 & 1/3 & -2/3 & 1 & | & 1600/3 \\ \hline & -10/3 & -20/3 & 0 & 15 & | & 10/3 & 40/3 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0.25 & 0 & 1 & 1.25 & 0.25 & 0.5 & -0.25 & 100 \\ 1.25 & 1 & 0 & -0.75 & 0.25 & -0.5 & 0.75 & 400 \\ 5 & 0 & 0 & 10 & 5 & 10 & 5 \end{bmatrix}$$

$$x^* = (0,400,100,0,0)$$

 $f_{\text{max}} = 12000$

			1	2	3	4				Date:	Youva	
1	Q9)	a	0	0	0	0	S	6	7	8		
	Q17	6	2	2	2	2	2	0	0	0	0 0 11	12
		c	3	3	3	3	3	3	2	2	200	O
		d	1	1-	-1	10	1	1	3	3	3 3 3	2
		e	_	3	3	3	3	3	3	1	1 1 1	3
		F	_	4	4	4	4	4	4	3	3 3 3	3
		g	14 2		5	5	5	5	5	4 5	4 4 4	4
		h	-	-	-	-		-	9	9	5 5 5	+3+1
		i	4 -	-	7-	-		8	8	7		
		Ti o	+ 18	-	-		5	5	5	5	-	
		k	-			-	6	6	6	6		5 5
		l	-	-	-	-	+	-	-	7		7 7
		M	- 2	7	1-2	H- 8	7	1-	7	7		7 7
		0	11-11	7	7 - N	8- N	-	0-	_	-	- 10	10 10
			1 5	(3) /	1 3	p	4	5	1 5			HIN
		81	13	14 8	8	\$ 0	S	A	8 0		-13/153	
100		a	0	0	1	OF SST	145 00	ngou n	ple je	i ago	STORE WITH	
		Ь	2	2	0	1 5	3	14 1	2 7			*
		C	3	3	2		11	01 1	1) 0			
	-	d	12	d s	P	7 01	(a) a	-n	-> 10			
		e	3	3	2	s - 2	(b) a	+j -	-> 5			
		f	4	4	1 5		31	11 .	SEL			
		g	5	5	OF I	1 81	31	p1 . 3	1 8			
/		h	9	9								
/		i	7	7								
/		j	5	(3)			- 2	1 9-	12 - 1	1		
/		k	6	6	7 18			*	N.			
/	N.	1	7	7			-10. 3					
/	K			7				19.00	MIN			
/,	K	M	7									
/,	M	n	10	(10)								
/	1											

Q6) min. 25000 (
$$\frac{x_{11}}{0.3} + \frac{x_{12}}{0.2} + \frac{x_{13}}{0.3}$$
) +3000 ($\frac{x_{21}}{0.3} + \frac{x_{22}}{0.4} + \frac{x_{23}}{0.2}$)

$$0.03 \times 1.1 + 0.05 \times 2.1 \times 900,000$$

 $0.02 \times 1.2 + 0.00 \times 2.2 \times 800,000$
 $0.008 \times 1.3 + 0.00 \times 2.3 \times 500,000$
 $0.008 \times 1.3 + 0.00 \times 2.3 \times 500,000$

Solving using simplex method, we get

$$(x_{11}, x_{12}, x_{15}, x_{21}, x_{22}, x_{23}) = (0, 0, 5 \times 10^{5}, 9 \times 10^{5}, 8 \times 10^{5}, 0)$$

$$\min 2 = \frac{625}{3} \times 10^{8}$$

Q7) Supply = 14K is greater than Demand = 10K, weadd a slack variable

$$x_{11} + x_{12} + x_{13} + x_{14} = 2$$
 $x_{21} + x_{22} + x_{23} + x_{24} = 6$
 $x_{31} + x_{32} + x_{33} + x_{43} = 6$
 $x_{31} + x_{32} + x_{33} + x_{43} = 6$

NW Algorith m --

- b) How should every location sell oil so that total profit made is maximal.
- Q8) minimize (1. sp., + 2. sp., 2+ 4 x PM, 1 + 2 xPM, 2+ PM, B) 1000 + 2. sp., + 1. ssp., + 3 xPM, 2+ 4PM, 2+ 2PM, 23) 1000

Supply 4 3 2
$$x_{11} + x_{12} + x_{13} = 10$$

4.5 4 3 $x_{21} + x_{22} + x_{23} = 15$
 $x_{21} + x_{22} + x_{23} = 15$

final solution with all simplex multipliers non-zero

2 min = 9100 rapees.