

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Plan de Estudios

Ingeniería en Computación

Geometría Analítica					
Clave	Semestre	Créditos	Área		
	1	9	Matemáticas		
Modalidad	Curso		Tipo	Teórico	
Carácter	Obligatorio	Obligatorio			
Horas					
Semana				Semestre	
Teóricas	4.5		Teóricas	72.0	
Prácticas	0.0		Prácticas	0.0	
Total	tal 4.5		Total	72.0	

Seriación indicativa	
Asignatura antecedente	Ninguna
Asignatura subsecuente	Álgebra Lineal

Objetivo general: Reafirmar los conocimientos de la trigonometría básica y de la geometría analítica plana con el fin de adquirir los conceptos fundamentales del álgebra vectorial y aplicarlos al estudio de la geometría analítica del espacio tridimensional.

Índice temático Horas Sem					
No.	Tema		Prácticas		
1	ELEMENTOS DE TRIGONOMETRÍA Y GEOMETRÍA ANALÍTICA EN EL ESPACIO DE DOS DIMENSIONES	24.0	0.0		
2	ALGEBRA VECTORIAL	18.0	0.0		
3	LA RECTA Y EL PLANO EN EL ESPACIO DE TRES DIMENSIONES	10.5	0.0		
4	ECUACIONES PARAMÉTRICAS Y EN COORDENADAS POLARES	7.5	0.0		
5	CURVAS Y SUPERFICIES EN TRES DIMENSIONES	12.0	0.0		
Total			0.0		
	Suma total de horas	7	2.0		

Contenido Temático

1. ELEMENTOS DE TRIGONOMETRÍA Y GEOMETRÍA ANALÍTICA EN EL ESPACIO DE DOS DIMENSIONES

Objetivo: Reafirmar los conceptos y conocimientos básicos relacionados con la trigonometría y la geometría analítica bidimensional.

- 1.1 Funciones trigonométricas: definiciones y signos en los cuatro cuadrantes.
- 1.2 Establecimiento de identidades trigonométricas fundamentales: pitagóricas, inversas y por cociente.
- 1.3 Fórmulas para las identidades trigonométricas de la suma y de la diferencia de dos ángulos. Fórmulas para las identidades trigonométricas del ángulo doble y del ángulo mitad. Formulación de la Ley de los Senos y de la Ley de los cosenos.
- 1.4 Sistemas de referencia: establecimiento del sistema cartesiano rectangular. Establecimiento del sistema polar. Determinación de las ecuaciones de transformación de cartesiano a polar y viceversa.
- La recta: definición de pendiente y de ángulo de inclinación. Ecuaciones de la recta en las formas punto pendiente, dos puntos y pendiente-ordenada al origen. Ecuación general de la recta. Cálculo del ángulo entre dos rectas.
- 1.6 Las cónicas: ecuación general de segundo grado con ausencia del término XY; identificación del tipo de ecuación y obtención de los elementos de las cónicas. Transformación de la ecuación general a la ordinaria y viceversa. Representación gráfica de las cónicas.
- 1.7 La ecuación general de segundo grado. Identificación del tipo de ecuación. Rotación y traslación de los ejes.

2. ALGEBRA VECTORIAL

2.2

Objetivo: Reconocer los conceptos relacionados con el álgebra de vectores en el espacio de dos y tres dimensiones, así como sus propiedades.

- 2.1 Vectores en el plano y en el espacio: simetría de puntos en los sistemas coordenados en 2 y 3 dimensiones. Definición de segmento dirigido; componentes escalares de un segmento dirigido sobre los ejes coordenados en el plano y en espacio; el vector como pareja y como terna ordenada de números reales. Definición de vector de posición y de módulo de un vector e interpretación geométrica. El vector como conjunto ordenado de números reales.
 - Definición de igualdad de vectores; operaciones con vectores: adición, sustracción y multiplicación por un escalar en 2, 3 y n dimensiones. Definiciones de vector nulo y vector unitario; propiedades de las operaciones. Definición de
 - distancia entre dos puntos como módulo de la diferencia de dos vectores.

 Definición de producto escalar de dos vectores y propiedades. Definición de ortogonalidad, de componente vectorial
- 2.3 o proyección y de componente escalar de un vector sobre otro. Definición de ángulo entre dos vectores y de los vectores unitarios i, j, k; forma trigonométrica de un vector. Concepto de ángulos, cosenos y números directores de un vector.
- Definición de producto de dos vectores; interpretación geométrica y propiedades. Definición de paralelismo; aplicación del producto vectorial al cálculo del área de un paralelogramo. Definición del producto mixto. Cálculo de volúmenes mediante el producto mixto.

3. LA RECTA Y EL PLANO EN EL ESPACIO DE TRES DIMENSIONES

Objetivo: Comprender el concepto de recta y plano en el espacio de tres dimensiones.

- 3.1 La recta: ecuación vectorial de la recta, ecuaciones paramétricas y en forma simétrica de la recta. Definición de distancia de un punto a una recta y de ángulo entre dos rectas. Definición de perpendicularidad, de paralelismo y de coincidencia. Definición de distancia entre dos rectas. Obtención del punto de intersección entre dos rectas que se cortan.
- 3.2 El plano: ecuación vectorial y ecuaciones paramétricas del plano. Definición de vector normal. Obtención de la ecuación del plano a partir del vector normal. Ecuación cartesiana del plano. Definición de distancia de un punto a un plano y de ángulo entre dos planos. Definición de perpendicularidad, de paralelismo y de coincidencia. Definición de distancia entre dos planos. Ecuaciones de la recta de intersección entre dos planos que se cortan.
- 3.3 Relaciones entre planos y rectas. Definición de ángulo entre una recta y un plano, de paralelismo y de perpendicularidad. Obtención del punto de intersección entre un plano y una recta que se cortan.

4. ECUACIONES PARAMÉTRICAS Y EN COORDENADAS POLARES

Objetivo: Representar las cónicas y curvas en otras representaciones diferentes a las cartesianas.

- 4.1 Ecuaciones de curvas planas: concepto de ecuación vectorial, de ecuaciones paramétricas y de ecuaciones cartesianas de una curva. Ecuaciones paramétricas y vectoriales de las cónicas.
- 4.2 Ecuaciones en coordenadas polares: discusión de la ecuación de una curva en coordenadas polares.

5. CURVAS Y SUPERFICIES EN TRES DIMENSIONES

Objetivo: Comprender y generar las superficies en el espacio de tres dimensiones con diferentes representaciones geométricas.

- 5.1 Definición de superficie. Representación cartesiana de una superficie. Clasificación de algunos tipos de superficies: Cuadráticas, cilíndricas, cónicas, regladas y de revolución.
- 5.2 Método de las generatrices para la determinación de la ecuación de una superficie. Simplificación del método para algunos tipos de superficie.
- 5.3 Discusión de la ecuación de una superficie.
- 5.4 Ecuaciones vectoriales y paramétricas de superficies.

Estrategias didácticas		Evaluación del aprendizaje		Recursos	
Exposición	(X)	Exámenes parciales	(X)	Aula interactiva	()
Trabajo en equipo	(X)	Examen final	(X)	Computadora	(X)
Lecturas	(X)	Trabajos y tareas	(X)	Plataforma tecnológica	(X)
Trabajo de investigación	(X)	Presentación de tema	()	Proyector o Pantalla LCD	(X)
Prácticas (taller o laboratorio)	()	Participación en clase	(X)	Internet	(X)
Prácticas de campo	()	Asistencia	()		
Aprendizaje por proyectos	()	Rúbricas	()		
Aprendizaje basado en problemas	(X)	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)		Otros (especificar)	

Perfil profesiográfico				
Título o grado	 Poseer un título a nivel licenciatura en Ingeniería, Matemáticas, Física o carreras cuyo perfil sea afín al área de Matemáticas. 			
Experiencia docente	 Poseer conocimientos y experiencia profesional relacionados con los contenidos de la asignación a impartir. 			
	 Tener la vocación para la docencia y una actitud permanentemente educativa a fin de formar íntegramente al alumno: Para aplicar recursos didácticos. Para motivar al alumno. Para evaluar el aprendizaje del alumno, con equidad y objetividad. 			
Otra característica	 Poseer conocimientos y experiencia pedagógica referentes al proceso de enseñanza-aprendizaje. Tener disposición para su formación y actualización, tanto en los conocimientos de su área profesional, como en las pedagógicas. Identificarse con los objetivos educativos de la institución y hacerlos propios. Tener disposición para ejercer su función docente con ética profesional: Para observar una conducta ejemplar fuera y dentro del aula. Para asistir con puntualidad y constancia a sus cursos. 			
	 Para cumplir con los programas vigentes de sus asignaturas. 			

Bibliografía básica	Temas para los que se recomienda
Barry, P. (2001).	
Geometry and trigonometry.	1,2,3,4 y 5
Irlanda: Woodhead Publishing.	
Gigena, S. (2018).	
Álgebra y geometría: teoría, práctica y aplicaciones.	1,2,3,4 y 5
Argentina: Universitas Editorial Cientifica Universitaria	
Granville, W. (1980).	
Trigonometría plana y esférica.	3,4 y 5
México: Hispanoamérica.	
Kaufmann, J. (2000).	
Álgebra intermedia.	1
México: Thomson.	
Kindle, J. (2007).	
Geometría analítica.	1,2,3,4 y 5
México: Mc Grawhill.	

Pogorélov, A. V. (2001). Geometría elemental. México: Editorial Pueblo y Educación.	1,2,3,4 y 5
Sullivan, M. (2011). Algebra and trigonometry. New Jersey: Pearson.	1,2 y 4
Swokowski, E. (2002). Álgebra y trigonometría con geometría analítica. México: International Thompson.	1,2, 3 y 4
Taylor, A. y Mann, R. W. (1989). Fundamentos de cálculo avanzado. México: Limusa.	1,2 y 5

Bibliografía complementaria	Temas para los que se recomienda
Dauben, J. y Scriba, C. J. (2002). Writing the History of Mathematics: Its Historical Development. Germany: Birkhäuser.	1,2,3,4 y 5
Emmer, M. (2012). Imagine Math. Between Culture and Mathematics. Italia: Springer.	1,2,3,4 y 5
Gindikin, S. (2007). Tales of Mathematicians and Physicists. New York: Springer.	1,2,3,4 y 5