The Photonic Universe Hypothesis and Optical Lambda Quantum Energy Model: Spin-Driven Matter/Antimatter Production in GW231123

Brian Martell gb12345@rogers.com Whitby, Ontario, Canada

July 18, 2025

Abstract

The Photonic Universe Hypothesis (PUH) and its Optical Lambda Quantum Energy Model (OLQEM) propose that Planck stars with photon cores replace black hole singularities, with high spins driving matter/antimatter production in cyclic cosmologies. We analyze the GW231123 merger (masses 137^{+22}_{-17} and 103^{+20}_{-52} M_{\odot} , spins $0.9^{+0.10}_{-0.19}$ and $0.8^{+0.20}_{-0.51}$) detected by the LIGO-Virgo-KAGRA Collaboration on November 23, 2023, as evidence for PUH's framework. We demonstrate how near-extremal spins influence photon lattice dynamics, potentially seeding matter/antimatter asymmetries via CP violation. The absence of emissions is explained by beamed emission or condensate damping. We propose tests with LISA and CMB-S4 and align with photon-to-particle experiments (Breit-Wheeler, SLAC).

1 Introduction

The Photonic Universe Hypothesis (PUH) posits that Planck stars, with photon cores $(N_{\gamma} \approx 10^{80}, E_{\gamma} \gtrsim 1 \,\mathrm{MeV})$ confined in a Planck lattice $(R_P \propto \ell_P (\rho_m/\rho_m^0)^{0.1}, \ell_P \approx 1.616 \times 10^{-35} \,\mathrm{m})$, replace black hole singularities [1]. The Optical Lambda Quantum Energy Model (OLQEM) formalizes photon interactions driving matter/antimatter production. The GW231123 merger, forming a 225 M_{\odot} intermediate-mass black hole, challenges standard stellar evolution due to its masses and high spins [2]. We explore how its spin dynamics support PUH's cyclic cosmology and matter/antimatter production.

2 Photon Core and Planck Lattice

PUH replaces singularities with a photon core:

$$M_{\text{core}} \approx N_{\gamma} \frac{E_{\gamma}}{c^2}, \quad E_{\gamma} \sim M_P c^2, \quad M_P \approx 2.176 \times 10^{-8} \,\text{kg}.$$
 (1)

The Planck lattice radius is:

$$R_P \propto \ell_P \left(\frac{\rho_m}{\rho_m^0}\right)^{0.1}, \quad \ell_P \approx 1.616 \times 10^{-35} \,\mathrm{m}, \quad \rho_m^0 \sim 10^{-27} \,\mathrm{kg/m}^3.$$
 (2)

GW231123's masses (137/103 M_{\odot}) suggest hierarchical mergers bypassing pair-instability limits [3].

3 Spin-Driven Matter/Antimatter Production

The high spins (0.9/0.8) induce spin-orbit coupling:

$$\mathcal{L}_{\text{spin}} = \xi J^2 \phi^2, \quad \xi \approx \frac{g^2}{\ell_P^2 M_P^2}, \quad J \approx aMc, \quad a \approx 0.9, \quad g \approx 7 \times 10^{-4}.$$
 (3)

Photon interactions produce matter/antimatter:

$$\mathcal{L}_{\text{int}} = g\phi\gamma\gamma\psi, \quad \frac{dN_{\gamma}}{dt} \approx \frac{F_{\text{photon}}}{\ell_{D}^{3}} \cdot \frac{g^{2}\phi^{2}}{\hbar} \cdot \frac{N_{\gamma}}{2}.$$
 (4)

CP violation biases the matter/antimatter ratio:

$$\delta_{\rm CP} \propto \frac{\xi J^2}{M_P^2}.$$
 (5)

This aligns with GW231123's near-extremal spins and Breit-Wheeler pair production [4].

4 Null Emissions and Observational Tests

The absence of GRBs/neutrinos [5] is consistent with beamed emission ($\Omega \approx 0.01 \,\mathrm{sr}$) or damping by a polariton condensate ($\rho_{\mathrm{pol}} \sim 10^{-30} \,\mathrm{g/cm^3}$). Tests include:

- LISA: GW echoes at $f \approx 0.1 \,\mathrm{Hz}$ [6].
- CMB-S4: B-modes at $\ell \approx 1000$ for CP violation [7].
- IceCube DeepCore: Neutrinos at 0.5–5 GeV.

5 Conclusion

GW231123's high spins and masses support PUH's photon core and lattice dynamics, with spin-driven CP violation seeding matter/antimatter in a cyclic universe. Future LISA and CMB-S4 observations will test these predictions. Contact: Brian Martell, gb12345@rogers.com, Whitby, Ontario, Canada.

References

- [1] Rovelli, C., & Vidotto, F. (2014). Planck stars. arXiv:1401.6562.
- [2] LIGO-Virgo-KAGRA Collaboration. (2025). GW231123: A Binary Black Hole Merger. arXiv:2507.08219.
- [3] Hannam, M., et al. (2025). GW231123: Massive black hole merger. *Nature*, *DOI:* 10.1038/s41586-024-08226-8.
- [4] STAR Collaboration. (2021). Breit-Wheeler pair production. *Phys. Rev. Lett.*, *DOI:* 10.1103/PhysRevLett.127.052302.
- [5] LIGO-Virgo-KAGRA Collaboration. (2023). Search for counterparts to GW231123. arXiv:2307.15902.
- [6] Abadie, J., et al. (2017). LISA mission. arXiv:1702.00868.
- [7] Planck Collaboration. (2018). Planck 2018 results. arXiv:1807.06211.