Intelligent Robotics Sensors

Armando Sousa (University of Porto)

Luís Paulo Reis (University of Minho)

Nuno Lau (University of Aveiro)

The Perception Problem

- Do we need perception?
 - Complexity
 - Uncertainty
 - Dynamic World
 - Detection/Correction of errors
- A robot must perceive its physical environment to get information about itselt and its surroundings

The Perception Problem

What does a robot needs to sense

- Depends on what the robot needs to do
- Animals have evolved sensors that suited to their environment and position in the ecosystem
 - ⇒ A good robot designer should follow similar principles

Two possible questions:

- Given a sensory reading, what was the world like when the reading was taken?
- Given a sensory reading, what should I do?

The Perception Problem

The first question

- Focused on world representation
- Perception is considered in isolation

The second question

- Perception without the context of action is meaningless
- Systemic view of the robot design
 - Task to perform
 - Best suited sensors
 - Most suited mechanical design

Some current sensing methods

Action oriented perception

Direct link between perception and action

Expectation-based perception

Sensor interpretation constraining based on world knowledge

Task-driven attention

 Direct perception where information is needed or likely to be provided (focus-of-attention)

Perceptual classes

Partition world in manageable categories

What is a sensor?

- Sensors constitute the perceptual system of the robot
- A sensor is a device that maps an physical attribute to a quantitative measure
- Sensors are essentially transducers that convert some form of energy into electrical energy that is then processed as a quantitative measure
- Transducer + electronics + ADC + software

Human sensing

Sense	Physical attribute	Organ
Vision	EM waves	eyes
Audition	Pressure waves	Ears
Gustation	Chemical properties	Tongue
Olfaction	Chemical properties	Nose
Tact	Contact pressure/texture	Skin

- Humans can also sense other things like temperature, pain, equilibrium, own body
- Several animals have still other types of sensor capabilities

Robot sensors

Proximity

Infrared, Sonar, laser, optical, capacitive, inductive

Position

 Potentiometer, switch, buttons, encoder

Heading

Compass, gyroscope

Temperature

Thermocouple

Sound

Microphone

Force, Pressure

Piezoelectric, variable resistance

Battery, Current

Thermocouple

Chemical

Several

Magnetic field

magnetometer

Vision

Camera

• Etc...

Levels of sensing

- Attribute to be measured
- Physical principle of transduction
 - Determines many of the characteristics of the sensor
- Hardware
 - Electronics
- Software
 - Signal processing
 - Computation
 - Sensor fusion

Levels of sensing

- Attribute to be measured
- Physical principle of transduction
 - Determines many of the characteristics of the sensor
- Hardware
 - Electronics
- Software
 - Signal processing
 - Computation
 - Sensor fusion

Sensor Characteristics

- Field of view and Range
- Accuracy, repeatability and resolution
- Responsiveness in the target domain
- Power comsumption
- Hardware reliability
- Size
- Computational complexity
- Interpretation reliability

Sensor errors

Systematic errors

- Always push the measured value in the same direction
- Can be reduced by sensor calibration
- Ex: temperature in sonar, wheel radius in odometry

Non systematic errors

- Have a more random behavior
- Cannot be predicted or eliminated by calibration

Classification of sensors

Passive sensors

- Rely on environment to provide the medium for observation
- Ex: Camera, thermocouple, microphone
- Less energy
- Reduced Signal to Noise ratio

Active sensors

- Emits form of energy and measures the impact
- Ex: sonars. X-ray
- Restricted environments

Classification of sensors

Proprioceptive

- Measure values intenally to the system
- Ex: motor speed, battery status, joint angle, etc.

Exteroceptive

- Information from the robots external environment
- Generally considering the robots frame of reference

Proprioceptive sensors

- Potentiometers
- Encoders
- Inertial navigation system
- GPS
- Compass
- Gyroscopes
- Battery sensors

Potentiometer

Physical principle:

Linear tension variation at the output of a variable resistance

- Can be used to detect angular or linear position
 - Joint angle, servomotor, etc

Encoders

Physical principle

Record the wheel traversed distance

 Wheel traversed distance is used to estimate robot position and orientation

$$lin = \frac{v_l + v_r}{2}$$

$$rot = \frac{v_l - v_r}{D}$$

Detect direction of movement

GPS/DGPS

Physical principle

Triangulation over the distance to several satellites

- Estimates longitude, latitude and altitude
 - Resolution: 10-15m
- DGPS (Differential GPS)
 - Extra GPS receivers at known locations are used to reduce errors
 - Resolution: few centimeters

Proximity sensors

- Bumper
- Infrared
- Sonar
- Laser Range Finder

Bumper

- Physical principle
 - Direct contact closes (or opens) a circuit
- Used to detect collisions
- Binary value
- Reliable but the collision is eminent

Infrared sensor

Physical principle

Na IR emitter/receiver is used to detect distance or as a barrier

- Used to estimate distance, presence of objects or color
 - Some dark surfaces do not reflect IR
- Several technologies
- Range: from <10cm to ~1m
- Narrow field of view
- Cheap

Sonar

Physical principle

Emit US chirp, time until echo is received is used to estimate distance

- Time until echo is proportional to the distance closest obstacle
 - Speed of sound changes with temperature and pressure
- Range: few centimeters to ~10m
- Field of view ~30°
- Cheap (but not as cheap as IR)
- Fast (depends on range)
- Ring of sonars

Sonar problems

Foreshortening

- Crosstalk
 - Receiver may detect echoes from other sonars in the ring

- Specular reflection
 - Wave is reflected when angle is acute

Laser range finder

Physical principle

Similar to sonar but uses laser instead of sound

- Time of flight is used to estimate distance
- Range: 2m until ~500m
- Resolution: 1 cm
- Field of view: 100°-180°
- Much more accurate than sonar
- Also more expensive

Vision

Pinhole camera

https://slidetodoc.com/pinhole-cameramodel-computational-photography-derekhoiem-university/

Figure from Forsyth

https://www.scratchapixel.com/ lessons/3d-basic-rendering/ 3d-viewing-pinhole-camera/ how-pinhole-camera-works-part-2

Depth Sensing

Depth Sensing

Stereo Vision

Visual tracking of unknown moving object by adaptive binocular visual servoing 1999

DOI:10.1109/MFI.1999.815998

- •IEEE Xplore
- •Conference: Multisensor Fusion and Integration for Intelligent Systems, 1999

https://www.stereolabs.com/zed-2i/ https://www.stereolabs.com/solutions/robotics/

Active Stereo

ACTIVE STEREO

STRUCTURED LIGHT

RGBD

https://p3d.in/ifOvj (interactive!)

RGBD - Point Cloud

https://blog.bricsys.com/ point-clouds-whats-the-point/

Yu, Lequan & Li, Xianzhi & Fu, Chi-Wing & Cohen-Or, Daniel & Heng, Pheng-Ann. (2018). EC-Net: an Edge-aware Point set Consolidation Network.

https://www.researchgate.net/publication/326459
389 EC-Net an Edgeaware Point set Consolidation Network

Laser range finder

Thrun et al.

Fire detection sensors

- Physical principle
 Detect flame by sensing ultraviolet light
- Flame detector, fire alarms, fire fighting competitions, etc
- Can detect a flame from a cigarette lighter from a distance of more than 5m

Compass

- Physical principle
 Detection of Earth magnetic field
- Used to detect robot orientation
- Together with velocity information can be used for dead reckoning
- Resolution 1º, Accuracy 2º
- Sensitive to other magnetic fields ot metal in the environment

Inertial sensors

Accelerometer

- Measures the linear acceleration of the robot
- Second integration to obtain displacement

Gyroscope

- Measures the angular motion of the robot
- Not influenced by gravity
- Integration gives angular displacement

Multisensor fusion

Redundant

Several sensors return the same percept

Complementary

Provide disjoint types of information about percept

Coordinated

- Sequence of sensors
- Focus-of-attention

Redundant Multisensor fusion

Mean of several measures

– Considering a normal distribution:

$$M \sim N(\mu, \sigma^2)$$

The mean of N measures as a reduced covariance

$$Mean = 1/N \sum_{n=1}^{N} M_{i}$$

$$Mean \sim N(\mu, \sigma^{2}/N)$$

Redundant Multisensor fusion

Kalman filter

- Integration of measures over time
- Markovian assumption
- Considers physics model and action model

$$x_t = Px_{t-1} + Cu_t + q$$
 $q \quad N(0, Q)$
 $z_t = Hx_t + r$ $r \quad N(0, R)$
 $N(\hat{x}_{t-1}, \Sigma_{t-1})$

Forecast step

$$\bar{x}_t = P\hat{x}_{t-1} + Cu_t$$

$$\bar{\Sigma}_t = P\Sigma_{t-1}P^{\mathrm{T}} + Q$$

Information

$$K_t = \bar{\Sigma}_t H^{\mathrm{T}} (H \bar{\Sigma}_t H^{\mathrm{T}} + R)^{-1}$$

$$\Sigma_t = (I - K_t H) \bar{\Sigma}_t$$

$$\hat{x}_t = \bar{x}_t + K_t (z_t - H \bar{x}_t)$$

Complementary Multisensor fusion

Example: Mercator Project

- The robot
 - 2 Laser ranger finders
 - 1 omnicam
- Laser ranger finders are used to detect distance to walls and obstacles
- Output of omnicam is used to apply textures to the model

Intelligent Robotics

Sensors

That's all folks @!