TFE4101 KRETS- OG DIGITALTEKNIKK

Gajski:

- Kap. 1: Introduksjon
- Kap. 2.1 2.2: Tallsystemer
- Kap. 2.3: Konvertering mellom tallsystemer
- Konvertering av deltall (ikke dekket av boka)
- Avrunding og usikkerhet (ikke dekket av boka)

TFE4101 Læringsmål digitalteknikk

Kunnskap

- 5. Forstå ulike tallsystemer og forstå hvordan binær aritmetikk utføres.
- 6. Kjenne til digitale kretselementer som porter og vipper og forstå hvordan disse kan brukes til å bygge opp kombinatoriske kretser, aritmetiske kretser og enkle minnekretser.
- 7. Forstå Boolsk algebra og ulike forenklingsmetoder som kan benyttes ved design av digitale kretser og systemer.
- 8. Forstå hvordan ulike alternative kretsløsninger påvirker tidsforsinkelse, areal og effektforbruk i enkle digitale kretser.

Ferdigheter

- 4. Kunne utnytte Boolsk algebra og forenklingsmetoder til å analysere og konstruere digitale kretser og systemer bygget opp av digitale kretselementer som porter og vipper.
- 7. Kunne benytte moderne verktøy og utviklingskort til design av digitale systemer.

Overordnet plan del 2 Digitalteknikk

- Uke 41 (8. oktober)
 - Intro til digitalteknikken (kapittel 1)
 - Tallsystemer og regnemåter (kapittel 2)
- Uke 42 (13. og 15. oktober)
 - Tallformat og regnemåter (kapittel 2)
 - Boolsk algebra og Boolske funksjoner (kapittel 3)
- Uke 43 (20. og 22. oktober)
 - Algebraisk manipulasjon (kapittel 3)
 - Digitale porter (kapittel 3)
 - Forenkling av Boolske funksjoner (kapittel 4)
- Uke 44 (27. og 29. oktober)
 - Forenkling av boolske funksjoner (kapittel 4)
 - Eksempler på kombinatoriske kretser (kapittel 5)
 - Mer om regnemåter (kapittel 2)
- Uke 45/46 (3., 5. og 10. november)
 - Låser og vipper (kapittel 6)
 - Tilstandsmaskinmodell (kapittel 6)
 - Eksempler på minnekomponenter (kapittel 7)
 - Større designeksempel

TFE4101 Digitaltekn. Forel. 1

Hva er digitalteknikk?

- Digit : Digitus (latin) = Tå eller finger
 - Brukes til å telle → Derfor brukt om tall
- Digital
 - Webster's Dictionary: involving or using numerical digits in a scale of notation to represent discretely all variables occuring in a problem
 - Behandler data representert ved diskrete verdier
 - Motsetning til analogteknikk med kontinuerlige verdier

Hva er digitalteknikk?

Signal[4:0]

Hva er digitalteknikk?

Teknikk

 Webster's Dictionary: the body of specialized procedures and methods used in any special field

Digitalteknikk

 Settet av spesialiserte prosedyrer og metoder brukt i (design av) systemer som behandler data representert ved diskrete verdier

Historikk

- Digital styring av elektromekaniske systemer (heiser, båndopptakere etc.)
- Håndholdte kalkulatorer
- Digital styring av analoge systemer (musikkanlegg, TV, høreapparater)
- Bruk av mikroprosessorer (uP) for slik styring
- Mikroprosessorer i personlige datamaskiner
- Digitale signalprosessorer
- Både digital styring og signalbehandling (CD-spillere, DAT-spillere, multimedia, spill, digital telefoni, digitalt høreapparat, digital-TV, ultralydinstrumenter)
- Integrering av uP, DSP, + digitalt og analogt, alt på en og samme IC.
- Kalles nå System-On-Chip: (SoC) et viktig internasjonalt forskningsområde, også ved kretsdesignmiljøet på NTNU!

TFE4101 Digitaltekn. Forel. 1

Kobling mot kretsteknikken

CMOS inverter

v _{inn} (fysisk)	v_{inn} (logisk)	v _{ut} (fysisk)	v_{ut} (logisk)
~ 0 V	0	~ 5 V	1
~ 5 V	1	~ 0 V	0

Kobling mot kretsteknikken

CMOS inverter

NOT operator

X	X' (F)	
0	1	
1	0	

TFE4101 Digitaltekn Forel. 1

Spesifikasjon av vekkerklokke

- Oppførselsrepresentasjon (Behavioral or functional)
 - Beskriver hva systemet gjør, dets oppførsel
 - Svart boks respons til alle kombinasjoner av inngangsverdier
 - Ikke implementering

TFE4101 Digitaltekn Forel. 1

25

Oppførselsrepresentasjon : klokkeprosess

- Strukturell representasjon
 - Definerer den svarte boksen som et sett av <u>komponenter</u> og deres <u>sammenkobling</u>
 - Sier ikke noe om funksjonalitet

Forel. 1

Fra oscillator: analogt signal

Fra pulsgenerator: digitalt signal (AD-konvertert)

- Fysisk representasjon
 - Definerer de <u>fysiske</u> karakteristikker til den svarte boksen
 - Størrelser og plassering

Abstraksjonsnivå

Nivå Oppførsel		Strukturelt	Fysisk
Prosessor	Eksekverbar spesifikasjon Programmer	Prosessorer Kontrollere ASICs	Kretskort Multichip- moduler
Register Port	Algoritmer Flytkart Instruksjonssett Boolske likninger Tilstandsmaskiner	Adderere etc. Registre Datastier Porter Vipper	Mikrochips Moduler
Transistor	Differsiallikninger Strøm-spenning diagram	Transistor Motstand Kondensator	Analoge og digitale celler

TFE4101 Digitaltekn. Forel. 1

	Desimal	Binær	Oktal	Heksadesimal
	0	0	0	0
o NTNU	1	1	1	1
	2	10	2	2
	3	11	3	3
	4	100	4	4
	5	101	5	5
	6	110	6	6
	7	111	7	7
	8	1000	10	8
	9	1001	11	9
	10	1010	12	A
	11	1011	13	В
	12	1100	14	С
	13	1101	15	D
TEE 4404	14	1110	16	E
TFE4101 Digitaltekn. Forel. 1	15	1111	17	F
37	16	10000	20	10

Radix / base / grunntall

Tallsystem	Radix / base / grunntall	
Binært	2	
Oktalt	8	
Desimalt	10	
Heksadesimalt	16	

Desimalt: $12 = 12_{10} = (12)_{10} = 12_{(10)}$

Binært: $1100_2 = (1100)_2 = 1100_{(2)}$

Oktalt: $14_8 = (14)_8 = 14_{(8)}$

Heksa: $C_{16} = (C)_{16} = C_{(16)}$

Posisjonsbaserte tallsystemer

- Hvert tall representeres med en streng av siffer
- Posisjonen til hvert siffer har en bestemt vekt (signifikans)

$$364.57 = \frac{3 \cdot 10^{2} + 6 \cdot 10^{1} + 4 \cdot 10^{0} + 5 \cdot 10^{-1} + 7 \cdot 10^{-2}}{\text{polynomform}}$$

MSD / LSD

- LSD = Least Significant Digit
 Sifferet med minst betydning/vekt/signifikans
 F.eks. 356₁₀, ABCE₁₆, 11010₂
- MSD = Most significant digit
 Sifferet med størst betydning/vekt/signifikans
 F.eks. 356₁₀, ABCE₁₆, 11010₂
- For binære tall og koder bruker vi MSB og LSB, der B står for bit

Generelt r-tallssystem

Posisjonsbasert:

$$D = (d_{m-1} d_{m-2} d_1 d_0 \cdot d_{-1} d_{-2} d_{-n})_r$$

r er radix/grunntall/base m er antall siffer i heltallsdelen n er antall siffer i deltallsdelen d_{m-1} er MSD og d_{-n} er LSD Dersom D er heltall er d_0 tallets LSD

På polynomform:

$$D = d_{m-1} \cdot r^{m-1} + d_{m-2} \cdot r^{m-2} + \dots d_1 \cdot r^1 + d_0$$

+ $d_{-1} \cdot r^{-1} + d_{-2} \cdot r^{-2} + \dots d_{-n} \cdot r^{-n}$

$$= \sum_{i=-n}^{m-1} d_i \cdot r^i$$

TFE4101 Digitaltekn Forel. 1

I 2-tallssystem (binært)

Posisjonsbasert:

$$B = 0100011 \cdot 101_2$$

$$r = 2$$

$$m = 7$$

$$n = 3$$

$B = \sum_{i=-n}^{m-1} b_i \cdot 2^i$

På polynomform:

$$B = 0 \cdot 2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 0 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

$$= 0 + 32 + 0 + 0 + 0 + 2 + 1$$

$$+ 0.5 + 0 + 0.125$$

$$= 35.625_{10}$$

I heksadesimalt tallssystem

Posisjonsbasert:

$$H = 23 . A_{16}$$

$$r = 16$$

$$m = 2$$

$$n = 1$$

$H = \sum_{i=-n}^{m-1} h_i \cdot 16^i$

På polynomform:

$$B = 2 \cdot 16^1 + 3 \cdot 16^0$$

$$= 32 + 3$$

$$+ 0.625$$

$$= 35.625_{10}$$

43

Binær til oktal konvertering

- Heltallsdel
 - Start ved binærpunktum
 - Grupper 3 og 3 bit fra høyre mot vestre

- Deltallsdel
 - Start ved binærpunktum
 - Grupper 3 og 3 bit fra venstre mot høyre

$$0. 10111_2 = 0.56$$

Tilsvarende andre veien

Binær til heksadesimal konvertering

- Heltallsdel
 - Start ved binærpunktum
 - Grupper 4 og 4 bit fra høyre mot venstre

- Deltallsdel
 - Start ved binærpunktum
 - Grupper 4 og 4 bit fra venstre mot høyre

$$0. \ 10111_2 = 0.B8_{16}$$

Tilsvarende andre veien

Konvertering til desimaltall

Eks: BADE₁₆ =
$$11 \cdot 16^3 + 10 \cdot 16^2 + 13 \cdot 16^1 + 14 \cdot 16^0$$

= $11 \cdot 4096 + 10 \cdot 256 + 13 \cdot 16 + 14 \cdot 1$
= 47838_{10}

Alternativt: Et tall D kan skrives som

$$D = ((... ((d_{m-1}) \cdot r + d_{m-2}) \cdot r + ...) \cdot r + d_1) \cdot r + d_0$$

Setter inn:

BADE₁₆ =
$$(((11) \cdot 16 + 10) \cdot 16 + 13) \cdot 16 + 14$$

= 47838_{10}

Konvertere desimaltall til radix r

$$D = ((... ((d_{m-1}) \cdot r + d_{m-2}) \cdot r + ...) \cdot r + d_1) \cdot r + d_0$$

Dividerer D på r

D/r =
$$(... ((d_{m-1}) \cdot r + d_{m-2}) \cdot r + ...) \cdot r + d_1 + d_0/r$$

Q kvotient

Rest

- $d_0 = Rest$
- Dividerer Q på r
- $d_1 = Rest$
- OSV.

Konvertering av deltall til radix r

- For deltall <u>multipliserer</u> vi suksessivt med radix
- Vi må ofte foreta <u>avrunding</u>
- Konverter 0.513₁₀ til oktalt med 5 siffer etter radix-punkt

$$0.987 \cdot 8 = 7.872$$

$$0.513_{10} \approx 0.40651$$
 $\approx 0.40652_8$

Gruppeoppgave

1. Konverter HEX \rightarrow DEC (velg metode selv) 7A9.D1₁₆ =

2. Konverter 6.72₁₀ til binært (*n*=3)

Avrunding til *n* siffer etter radix-punktum

• Desimaltall (med n = 3)

Heksadesimalt (med n = 3)

1 4 . 6 7 B₁₆ representerer følgelig området

$$14.67A8000..._{16} \leftrightarrow 14.67B7FFF..._{16}$$

Usikkerheten = $\pm (\frac{1}{2} \cdot 16^{-3})_{10}$

 Generelt: Et tall D_r avrundet til n siffer etter radixpunkt har usikkerhet på:

$$\pm (\frac{1}{2} \cdot r^{-n})_{10}$$

TFE4101 Digitaltekn. Forel. 1