Алгоритм Мо

Алгоритм Мо (англ. *Mo's algorithm*) — применяется для решения задач, в которых требуется отвечать на запросы $arr[l\dots r]$ на массиве *без* изменения элементов в оффлайн за время $O(Q \cdot \log Q + (N+Q) \cdot \sqrt{N})$, где Q — количество запросов, а N — количество элементов в массиве. Характерными примерами задач на этот алгоритм являются: нахождение моды на отрезке (число, которое встречается больше всех остальных), вычисление количества инверсий на отрезке.

Содержание

- 1 Алгоритм
- 2 Доказательство
- 3 Реализация
- 4 См. также
- 5 Источники информации

Алгоритм

В каждый момент времени будем хранить непрерывный отрезок $[a\dots b]$ исходного массива (будем называть его рабочим отрезком), вместе со структурой данных, которая умеет обрабатывать следующие операции:

- addLeft(a 1), addRight(b + 1) операции, которые позволяют добавить элемент в рабочий отрезок слева и справа соответственно;
- delLeft(a), delRight(b) операции, которые позволяют удалить элемент рабочего отрезка слева и справа соответственно;
- answer операция, которая позволяет получить ответ на запрос, если бы его границами был рабочий отрезок.

Изначально в качестве рабочего отрезка можно взять любой отрезок. Для удобства чтения будем считать изначальным отрезок [1;1), то есть a=1,b=0, фактически — пустой отрезок.

Запишем все запросы в массив, отсортируем их определённым способом (который будет описан ниже) будем их обрабатывать в том порядке, в котором они будут лежать в массиве после сортировки.

Допустим, что текущий рабочий отрезок — $[a \dots b]$, а первый необработанный запрос — $[l_i, r_i]$ тогда рассмотрим случаи:

- Если изначально было $a>l_i$, то будем добавлять в рабочий отрезок элементы слева по одному, пока граница не совпадёт;
- Если же это не так, то есть $a < l_i$ это значит, что в рабочем отрезке присутствуют те элементы, которых там быть не должно, и они должны быть удалены;
- При равенстве $a=l_i$ никаких действий с левой границей рабочего отрезка производить не потребуется.

Аналогично поступим с b и r_i . Для компактности и наглядности кода мы сначала расширим рабочий отрезок до отрезка $[l\dots r]$, где $l=\min(a,l_i)$, а $r=\max(b,r_i)$, а затем удалим лишние элементы при помощи операций $\mathbf{delLeft}$, $\mathbf{delRight}$, чтобы получить отрезок $[l_i\dots r_i]$, после чего вызовем \mathbf{answer} и запомним ответ для этого запроса.

Теперь разберём поподробнее, как именно следует сортировать запросы для достижения вышеназванной асимптотики по времени.

Разделим все запросы на блоки размера K по левой границе: те запросы, для которых $1\leqslant l_i\leqslant K$ — попадают в первую группу, те запросы, для которых $K+1\leqslant l_i\leqslant 2\cdot K$ — во вторую, $2\cdot K+1\leqslant l_i\leqslant 3\cdot K$ — в третью, и так далее. Будем рассматривать все группы запросов независимо друг от друга. Если внутри каждой группы отсортировать запросы увеличению правой границы, то асимптотика по времени для обработки одной группы будет $O(N+Q_i\cdot K)$, где Q_i — количество запросов, принадлежащих группе под номером i.

Доказательство

Докажем, что на обработку одной группы суммарно уйдёт не больше чем $3 \cdot N + Q_i \cdot K$ операций add и del.

Для этого рассмотрим отдельно количество сделанных операций каждого из четырёх типов:

- изначально, до обработки группы, рабочий отрезок был $[a \dots b]$, для обработки первого запроса может потребоваться $2 \cdot N$ операций \mathtt{add} , \mathtt{del} ;
- delRight между отрезками одной группы не произойдёт ни разу, так как рабочий отрезок внутри одной группы будет только расширяться в сторону правого конца;
- addRight в этой группе произойдёт суммарно не больше чем N раз, так как минимальная правая граница 1, а максимальная N;
- для оставшихся двух операций рассмотрим два последовательных запроса $[l_i \dots r_i], [l_j \dots r_j].$ Нетрудно заметить, что так как отрезки принадлежат одной группе, то $|l_i l_j| < K$, следовательно, количество операций $\mathbf{addLeft}$ или $\mathbf{delLeft}$ не будет превосходить K, а суммарно для всей группы $Q_i \cdot K$.

Таким образом, нетрудно видеть, все группы будут обработаны за время $O\left(rac{N^2}{K} + K \cdot Q
ight)$.

При выборе $K = \sqrt{N}$ с учётом сортировки по правой границе получается асимптотика времени $O(Q \cdot \log Q + (N+Q) \cdot \sqrt{N}).$

Реализация

```
struct Query:
 int 1, r, index
int K = sqrt(N)
int a = 1, b = 0 // создаём пустой рабочий отрезок
bool isLess(Query a, Query b):
 if a.1 / K != b.1 / K:
    return a.1 < b.1
 return a.r < b.r</pre>
function process(Query[Q] q):
  sort(q, isless) // сортируем запросы, используя функцию isless как оператор сравнения
  for i = 0 to Q - 1:
    while a > q[i].1:
      addLeft(a - 1)
      a -= 1
    while b < q[i].r:
      addRight(b + 1)
      b += 1
    while a < q[i].1:
      delLeft(a)
```

```
a += 1
while b > q[i].r:
delRight(b)
b -= 1
result[q[i].id] = answer() // получаем ответ на [a...b]
```

Рассмотрим для наглядности решение задачи нахождения моды на отрезке:

Будем использовать код описанный выше, осталось только описать операции addLeft, addRight, delLeft, delRight. Так как в данной задаче порядок чисел на отрезке не важен, важно лишь количество вхождений каждого, то реализация отдельных функций для добавления слева и справа нам не потребуется.

Для простоты будем считать, что все числа **не превышают** N, тогда будем хранить массив cnt[N+1], где cnt[value] - количество вхождений числа value в рабочем отрезке. Будем помимо этого массива хранить отсортированное множество current, в котором будут содержаться все пары вида $\langle \mathtt{cnt[value]}, \mathtt{value} \rangle$, для ненулевых cnt[value]. Реализовать его можно, например, используя красно-черное дерево Тогда операции будут иметь следующий вид:

```
function add(int index):
    int value = arr[index]
    if cnt[value] > 0:
        current.erase((cnt[value], value))
    cnt[a[index]] += 1
        current.insert((cnt[value], value))

function del(int index):
    int value = arr[index]
    current.erase((cnt[value], value))
    cnt[a[index]] -= 1
    if cnt[value] > 0:
        current.insert((cnt[value], value))

function answer(): int
    return current.max.second // находим максимальную пару в множестве
```

Итоговая асимптотика решения: $O(Q \cdot \log Q + (N+Q) \cdot \sqrt{N} \cdot \log N)$.

См. также

- Корневая эвристика
- Разреженная таблица

Источники информации

HackerEarth - Mo's algorithm (https://www.hackerearth.com/practice/notes/mos-algorithm/)

Источник — «http://neerc.ifmo.ru/wiki/index.php?title=Алгоритм Mo&oldid=60019»

■ Эта страница последний раз была отредактирована 18 января 2017 в 19:08.