Principal G-Bundles

Principal G-bundles are fiber bundles $\pi:P\to X$ such that G acts freely and transitively as a right action on the fibers. There are many important examples of such bundles. Now, let $\pi:E\to X$ be a rank n real vector bundle. If we construct the fiber over $x\in X$ as the set of bases of $\pi^{-1}(x)$, we get a principal $\mathrm{GL}(n;\mathbb{R})$ -bundle. Similarly, if E is oriented, we get a principal $\mathrm{GL}^+(n;\mathbb{R})$ -bundle by this same process. If we can fix a metric on E, we get a principal $\mathrm{O}(n)$ -bundle. Finally, if X is oriented, we can get a principal $\mathrm{SO}(n)$ -bundle.

An important property of principal G-bundles is that $H^1(X;G)$ can be identified with the set of principal G-bundles for a given G modulo homeomorphisms that preserve the projection map. If we let $\operatorname{Prin}_G(X)$ denote this moduli space, it follows that $\operatorname{Prin}_G(X) = [X, BG]$, where BG is the classifying space of G.

Another interesting construction involving principal G-bundles is the associated bundle. Associated bundles are useful, especially when considered together with the adjoint representation. If $\pi:P\to X$ is a principal G-bundle and $\phi:G\to \operatorname{Homeo}(F)$ be a left action of G on F. One can define a fiber bundle associated to P by ϕ by setting the total space equal to $P\times F/G$, where G acts as a right action by $(p,f)\cdot g=(p\cdot g,\phi(g^{-1})f)$. The projection map is defined by composing π with the projection onto P. We call this new fiber bundle $P\times_{\phi}F$. In the case in which $\phi=\operatorname{Ad}$, we get the adjoint bundle: $\mathfrak{g}_P=P\times_{\operatorname{Ad}}\mathfrak{g}$, where \mathfrak{g} is the Lie algebra of G. Thus, this is naturally a bundle of Lie algebras.