學號:B06705057 系級:資工二 姓名:黃資翔

1. (1%) 試說明 hw5_best.sh 攻擊的方法,包括使用的 proxy model、方法、參數等。此方法和 FGSM 的差異為何?如何影響你的結果?請完整討論。(依內容完整度給分)

hw5_best 是用 FGSM 並迭代 5 次的結果, proxy model 是 pytorch 的 resnet50,每次迭代完會檢查有沒有超過 0.01,有的話會把他拉回來。我發現只要找到正確的模型,只要稍微調一點參數,就很容易攻擊,但我下面想討論當 proxy model 不正確時發生的情況。選定一個替代模型時,即使是 FGSM 也可以輕鬆癱瘓該模型,但其他的模型幾乎沒影響,也就是說純粹使用 FGSM 效果很差 (畢竟現實中要完全猜對模型很難)。因此我同時使用多個模型去迭代,會發現每個訓練的模型都可以輕鬆的誤導,而且若攻擊其他非訓練的模型也有部分的效果,當然也有些模型仍會無效。

2. (1%) 請列出 hw5_fgsm.sh 和 hw5_best.sh 的結果 (使用的 proxy model \ success rate \ L-inf. norm)。

	Proxy model	Success rate	L-inf norm
hw5_best.sh	Resnet50 (pytroch)	0.955	5.5450
hw5_fgsm.sh	VGG16 (keras) 選效果最好的	0.825	23.0
		0.23	6.0
hw5_fgsm	Resnet50 (keras)	0.130	4.650
hw5_multimodel	Resnet50, Resnet101, Densenet121, Densenet169 (keras)	0.500	4.98

配合第一題, hw5_multimodel 沒有使用 pytorch resnet50 進行攻擊,仍有部分的效果,且可以看出 keras 與 pytorch 的 resnet50 是不同模型,但 hw5_multimodel 仍有一半的成功率。

3. (1%) 請嘗試不同的 proxy model,依照你的實作的結果來看,背後的 black box 最有可能為哪一個模型?請說明你的觀察和理由。

Proxy Model	Success rate	L-inf norm
VGG16	0.05	5.5400
VGG19	0.055	5.5300
Resnet50	0.955	5.5450
Resnet101	0.130	5.5300
Densenet121	0.085	5.5650
Densenet169	0.085	5.5600

很明顯背後的 black box 是 Resnet50,以上皆與 hw5_best.sh 一樣迭代 5 次,我發現當 proxy model 是錯誤的時候,迭代越多次,成功率會越低。

4. 請以 hw5_best.sh 的方法, visualize 任意三張圖片攻擊前後的機率圖 (分別取前三高的機率)。

5. (1%) 請將你產生出來的 adversarial img,以任一種 smoothing 的方式實作被動防禦 (passive defense),觀察是否有效降低模型的誤判的比例。請說明你的方法,附上你防禦前後的 success rate,並簡要說明你的觀察。另外也請討論此防禦對原始圖片會有什麼影響。

	Is Defense?	Success rate
Original Images	Before defense	0.0
	After defense	0.115
Adversarial Images	Before defense	0.955
	After defense	0.470

我對圖片進行水平與垂直的模糊化,模糊化矩陣如下。即 diagnol 是 1/2,diagnol 正負1是 1/4。將原始圖片左右兩邊乘此矩陣,左矩陣代表對垂直方向模糊,右矩陣代表對水平方向模糊。若要模糊數次可以在矩陣上加次方,但上表為各模糊一次的結果。原始圖片中約有一成會受影響,即原本正確預測會變錯誤預測,但對抗性圖片成功率會大幅下降五成。若要使原始圖片不要錯誤預測,可以在訓練模型時先讓資料做模糊化。

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & 0 & \dots & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & \dots & 0 \\ 0 & \frac{1}{4} & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$