In [3]: import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model

Out[4]:

infant eaths	Alcohol	percentage expenditure	Hepatitis B	Measles	 Polio	Total expenditure	Diphtheria	HIV/AIDS	(
62	0.01	71.279624	65.0	1154	 6.0	8.16	65.0	0.1	584.259
64	0.01	73.523582	62.0	492	 58.0	8.18	62.0	0.1	612.696
66	0.01	73.219243	64.0	430	 62.0	8.13	64.0	0.1	631.744
69	0.01	78.184215	67.0	2787	 67.0	8.52	67.0	0.1	669.959
71	0.01	7.097109	68.0	3013	 68.0	7.87	68.0	0.1	63.537
<									>

```
In [5]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):
```

#	Column	Non-Null Count	Dtype
0	Country	2938 non-null	object
1	Year	2938 non-null	int64
2	Status	2938 non-null	object
3	Life expectancy	2928 non-null	float64
4	Adult Mortality	2928 non-null	float64
5	infant deaths	2938 non-null	int64
6	Alcohol	2744 non-null	float64
7	percentage expenditure	2938 non-null	float64
8	Hepatitis B	2385 non-null	float64
9	Measles	2938 non-null	int64
10	BMI	2904 non-null	float64
11	under-five deaths	2938 non-null	int64
12	Polio	2919 non-null	float64
13	Total expenditure	2712 non-null	float64
14	Diphtheria	2919 non-null	float64
15	HIV/AIDS	2938 non-null	float64
16	GDP	2490 non-null	float64
17	Population	2286 non-null	float64
18	thinness 1-19 years	2904 non-null	float64
19		2904 non-null	float64
20	Income composition of resources	2771 non-null	float64
21	Schooling	2775 non-null	
dtyp	es: float64(16), int64(4), object	(2)	

memory usage: 505.1+ KB

```
In [6]: df.drop(['Country', 'Status'], axis=1, inplace=True)
        df.head()
```

Out[6]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ	under- five deaths	Pol
0	2015	65.0	263.0	62	0.01	71.279624	65.0	1154	19.1	83	6
1	2014	59.9	271.0	64	0.01	73.523582	62.0	492	18.6	86	58
2	2013	59.9	268.0	66	0.01	73.219243	64.0	430	18.1	89	62
3	2012	59.5	272.0	69	0.01	78.184215	67.0	2787	17.6	93	67
4	2011	59.2	275.0	71	0.01	7.097109	68.0	3013	17.2	97	68
<											>

In [7]: df.isnull().values.any()

Out[7]: True

```
In [8]: df.isna().any()
 Out[8]: Year
                                             False
         Life expectancy
                                              True
                                              True
         Adult Mortality
         infant deaths
                                             False
         Alcohol
                                              True
         percentage expenditure
                                             False
         Hepatitis B
                                              True
         Measles
                                             False
          BMI
                                              True
         under-five deaths
                                             False
         Polio
                                              True
         Total expenditure
                                              True
         Diphtheria
                                              True
          HIV/AIDS
                                             False
         GDP
                                              True
                                              True
         Population
          thinness 1-19 years
                                              True
          thinness 5-9 years
                                              True
         Income composition of resources
                                              True
         Schooling
                                              True
         dtype: bool
 In [9]: df['Adult Mortality'].fillna(df['Adult Mortality'].median(), inplace=True)
In [10]: df['Life expectancy '].fillna(df['Life expectancy '].median(), inplace=True)
In [11]: df['Hepatitis B'].fillna(df['Hepatitis B'].median(), inplace=True)
In [12]: df['Polio'].fillna(df['Polio'].median(), inplace=True)
```

```
In [13]: plt.figure(figsize=(5,5))
    plt.xlabel('Adult Mortality')
    plt.ylabel('Life expectancy')
    plt.scatter(df['Adult Mortality'], df['Life expectancy '])
```

Out[13]: <matplotlib.collections.PathCollection at 0x1d01055a4c0>


```
In [14]: plt.figure(figsize=(5,5))
    plt.xlabel('infant death')
    plt.ylabel('Life expectancy')
    plt.scatter(df['infant deaths'], df['Life expectancy '])
```

Out[14]: <matplotlib.collections.PathCollection at 0x1d010695d00>


```
In [15]: plt.figure(figsize=(5,5))
    plt.xlabel('under-five deaths')
    plt.ylabel('Life expectancy')
    plt.scatter(df['under-five deaths '], df['Life expectancy '])
```

Out[15]: <matplotlib.collections.PathCollection at 0x1d0106f6fd0>


```
In [16]: model = linear_model.LinearRegression().fit(df[['Adult Mortality', 'infant deaths
In [17]: model.coef_
Out[17]: array([-0.04954221, 0.18538215, -0.14538407])
In [18]: model.intercept_
Out[18]: 77.88910698885105
```

```
In [19]: plt.figure(figsize=(5,5))
    plt.xlabel('Polio')
    plt.ylabel('Life expectancy')
    plt.scatter(df['Polio'], df['Life expectancy '])
```

Out[19]: <matplotlib.collections.PathCollection at 0x1d01077a4c0>


```
In [20]: plt.figure(figsize=(5,5))
    plt.xlabel('Hepatitis B')
    plt.ylabel('Life expectancy')
    plt.scatter(df['Hepatitis B'], df['Life expectancy '])
```

Out[20]: <matplotlib.collections.PathCollection at 0x1d010e4f580>

In []: