SS 2018

Kirby-Kalkül

Übungsblatt 5

Aufgabe 1.

- (a) Sei D_K ein reguläres Diagramm eines orientierten Knotens in S^3 . Die **Tafelrahmung** von K bezüglich dem Diagramm D_K ist durch den zu K parallelen Knoten K_{bb} gegeben, den man in dem Diagramm D_K durch Verschiebung von K innerhalb der Projektionsebene erhält. Zeigen Sie, dass $lk(K, K_{bb}) = writhe(D_K)$ gilt, wobei writhe (D_K) die Summe der Selbstkreuzungen (gezählt mit Vorzeichen) von K in D_K bezeichnet.
- (b) Berechnen Sie die Verschlingungszahlen der orientierten Knoten aus den Diagrammen von $S^1 \times S^2$ in Abbildung 1. Überlegen Sie sich dazu zuerst, wie man die Homologieklasse eines Knotens in dem Standard-Kirby-Diagramm von $S^1 \times S^2$ berechnen kann und überprüfen Sie, dass die Knoten in Abbildung 1 alle nullhomolog sind.
- (c) Zeigen Sie anhand von Beispielen, dass die Verschlingungszahl $lk(K_1, K_2)$ nicht wohldefiniert ist, falls einer (oder beide) der Knoten nicht-nullhomolog ist.

Abbildung 1: Orientierte Knoten in $S^1 \times S^2$.

Aufgabe 2.

- (a) Wie erhält man aus einer Henkelzerlegung einer Fläche F mit genau einem 0-Henkel und genau einem 2-Henkel eine Henkelzerlegung von $I \times F$ und $S^1 \times F$? Wie erhält man so ein Heegaard-Diagramm von $S^1 \times F$?
- (b) Konstruieren Sie aus einem Heegaard-Diagramm einer 3-Mannigfaltigkeit M ein Kirby-Diagramm von $I \times M$ und $S^1 \times M$.
- (c) Stellen Sie den 4-Torus als Kirby-Diagramm dar.
- (d) **Bonusaufgabe:** Beschreiben Sie eine Henkelzerlegung des n-Torus $T^n := S^1 \times \cdots S^1$.

Marc Kegel

Aufgabe 3.

Eine orientierbare Mannigfaltigkeit M heißt **reversibel**, falls es einen Diffeomorphismus gibt, der die Orientierung auf M umkehrt.

- (a) Zeigen Sie, dass S^n und $S^1 \times M^{n-1}$ reversibel sind.
- (b) Wie erhält man aus einem planaren Heegaard-Diagramm einer 3-Mannigfaltigkeit M ein planares Heegaard-Diagramm der gleichen Mannigfaltigkeit -M mit umgekehrter Orientierung?
- (c) Wie erhält man aus einem Kirby-Diagramm einer 4-Mannigfaltigkeit W ein Kirby-Diagramm der gleichen Mannigfaltigkeit -W mit umgekehrter Orientierung?
- (d) Zeigen Sie anhand der Kirby-Diagramme von S^4 , $S^1 \times S^3$ und T^4 , dass diese 4-Mannigfaltigkeiten reversibel sind.
- (e) Beschreiben Sie ein Kirby-Diagramm von $-\mathbb{C}P^2$.
- (f) Ist $\mathbb{C}P^2$ reversibel? *Hinweis:* Betrachten Sie die Schnittform von $\mathbb{C}P^2$.

Aufgabe 4.

- (a) Die Fundamentalgruppe einer kompakten Mannigfaltigkeit ist endlich präsentiert. Umgekehrt tritt für alle natürlichen Zahlen n > 3 jede endlich präsentierte Gruppe als Fundamentalgruppe einer geschlossenen, orientierbaren n-Mannigfaltigkeit auf.
- (b) Zeigen Sie, dass nicht jede endlich präsentierte Gruppe als Fundamentalgruppe einer geschlossenen, orientierbaren 3-Mannigfaltigkeit auftritt. Gruppen die als Fundamentalgruppe einer geschlossenen, orientierbaren 3-Mannigfaltigkeit auftreten nennen wir 3-Mannigfaltigkeitsgruppen.
 - Hinweis: Sei $\langle g_1, \dots g_n | r_1, \dots r_k \rangle$ eine endliche Präsentation einer Gruppe G. Wir nennen n-k den Defekt dieser Präsentation. Als **Defekt** einer endlich Präsentierten Gruppe G bezeichnen wir das Maximum der Defekte über alle endlichen Präsentationen von G. Zeigen Sie dann, dass jede 3-Mannigfaltigkeitsgruppe Defekt 0 hat und finden Sie eine Gruppe, deren Defekt nicht verschwindet.
- (c) **Bonusaufgabe:** Leiten Sie mittels planaren Heegaard-Diagrammen eine zur 3-dimensionalen Poincaré-Vermutung äquivalente komplett 2-dimensionale Aussage her.