Formale Semantik 04. Aussagenlogik

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Folien in Überarbeitung. Englische Teile (ab Woche 8) sind noch von 2007!

Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

- Was ist Logik?
- Aussagenlogik
 Rekursive Syntax

 - Interpretation von Wffs

- Gesetze der Aussagenlogik
- Schlussregeln
- Beweise in der Aussagenlogik

Was leistet eine Aussagenlogik (und was nicht)?

Was leistet eine Aussagenlogik (und was nicht)?
Wann sind und/oder/wenn-dann-Aussagen wahr oder falsch?

Was leistet eine Aussagenlogik (und was nicht)?
Wann sind und/oder/wenn-dann-Aussagen wahr oder falsch?
Wann sind logische Ausdrücke gleichbedeutend (äquivalent)?

Was leistet eine Aussagenlogik (und was nicht)?
Wann sind und/oder/wenn-dann-Aussagen wahr oder falsch?
Wann sind logische Ausdrücke gleichbedeutend (äquivalent)?
Was darf man aus was folgern?

Was leistet eine Aussagenlogik (und was nicht)?
Wann sind und/oder/wenn-dann-Aussagen wahr oder falsch?
Wann sind logische Ausdrücke gleichbedeutend (äquivalent)?
Was darf man aus was folgern?

Texte für heute: Partee u. a. (1990: 87-246), selektiv auch Bucher (1998).

Roland Schäfer

Wie Logiken funktionieren

• Sammlungen von Aussagen bzw. Propositionen

- Sammlungen von Aussagen bzw. Propositionen
- Axiome | als wahr angenommene Aussagen

- Sammlungen von Aussagen bzw. Propositionen
- Axiome | als wahr angenommene Aussagen
 - eventuell über Induktion gegeben

- Sammlungen von Aussagen bzw. Propositionen
- Axiome | als wahr angenommene Aussagen
 - eventuell über Induktion gegeben
 - oder aus rein theoretischen Überlegungen abgeleitet

- Sammlungen von Aussagen bzw. Propositionen
- Axiome | als wahr angenommene Aussagen
 - eventuell über Induktion gegeben
 - oder aus rein theoretischen Überlegungen abgeleitet
- Deduktion | Ableiten von Aussagen aus Axiomen

- Sammlungen von Aussagen bzw. Propositionen
- Axiome | als wahr angenommene Aussagen
 - eventuell über Induktion gegeben
 - oder aus rein theoretischen Überlegungen abgeleitet
- Deduktion | Ableiten von Aussagen aus Axiomen
- in der Wissenschaft damit Voraussagen aus Axiomen

Roland Schäfer Semantik | 04. Aussagenlogik

Status von Aussagen in logischen Beweisen ...

• Axiome | atomare Wahrheiten (der Theorie oder des Diskurses)

- Axiome | atomare Wahrheiten (der Theorie oder des Diskurses)
- Theorem | eine Aussage, die bewiesen werden soll oder bewiesen wurde

- Axiome | atomare Wahrheiten (der Theorie oder des Diskurses)
- Theorem | eine Aussage, die bewiesen werden soll oder bewiesen wurde
- Lemma | ein nebensächliches bewiesenes Theorem

- Axiome | atomare Wahrheiten (der Theorie oder des Diskurses)
- Theorem | eine Aussage, die bewiesen werden soll oder bewiesen wurde
- Lemma | ein nebensächliches bewiesenes Theorem
- Korollar | ein minderes Theorem im Rahmen einer Beweisführung

Roland Schäfer Semantik | 04. Aussagenlogik 5 / 3

Verständnis von der Welt in eine Form bringen ...

• keine neuen Wahrheiten (Informationen) durch Logik

- keine neuen Wahrheiten (Informationen) durch Logik
- Verfahren zur Formalisierung von Aussagen

- keine neuen Wahrheiten (Informationen) durch Logik
- Verfahren zur Formalisierung von Aussagen
- Schlussregeln zur Ableitung von Theoremen aus Axiomen

- keine neuen Wahrheiten (Informationen) durch Logik
- Verfahren zur Formalisierung von Aussagen
- Schlussregeln zur Ableitung von Theoremen aus Axiomen
- Untersuchung, inwieweit Sprache logischen Prinzipien folgt

- keine neuen Wahrheiten (Informationen) durch Logik
- Verfahren zur Formalisierung von Aussagen
- Schlussregeln zur Ableitung von Theoremen aus Axiomen
- Untersuchung, inwieweit Sprache logischen Prinzipien folgt
- Wissenschaft

- keine neuen Wahrheiten (Informationen) durch Logik
- Verfahren zur Formalisierung von Aussagen
- Schlussregeln zur Ableitung von Theoremen aus Axiomen
- Untersuchung, inwieweit Sprache logischen Prinzipien folgt
- Wissenschaft
 - Hypothesengenerierung durch Induktion und Abduktion

- keine neuen Wahrheiten (Informationen) durch Logik
- Verfahren zur Formalisierung von Aussagen
- Schlussregeln zur Ableitung von Theoremen aus Axiomen
- Untersuchung, inwieweit Sprache logischen Prinzipien folgt
- Wissenschaft
 - Hypothesengenerierung durch Induktion und Abduktion
 - Hypothesenprüfung durch Deduktion plus Testung

- keine neuen Wahrheiten (Informationen) durch Logik
- Verfahren zur Formalisierung von Aussagen
- Schlussregeln zur Ableitung von Theoremen aus Axiomen
- Untersuchung, inwieweit Sprache logischen Prinzipien folgt
- Wissenschaft
 - Hypothesengenerierung durch Induktion und Abduktion
 - Hypothesenprüfung durch Deduktion plus Testung
 - außerdem Prüfen auf Widerspruchsfreiheit

Warum Logik in der Semantik?

Roland Schäfer Semantik | 04. Aussagenlogik 6 / 33

Warum Logik in der Semantik?

Sprache ist nicht ohne Logik.

Warum Logik in der Semantik?

Sprache ist nicht ohne Logik.

Aussagesätze haben Wahrheitsbedingungen!

Warum Logik in der Semantik?

Sprache ist nicht ohne Logik.

- Aussagesätze haben Wahrheitsbedingungen!
- Sprache ist systematisch und kompositional!

Warum Logik in der Semantik?

Sprache ist nicht ohne Logik.

- Aussagesätze haben Wahrheitsbedingungen!
- Sprache ist systematisch und kompositional!
- Natürlichsprachliche Sätze folgen aus anderen Sätzen!
 ... wie Theoreme aus Axiomen ...

Warum Logik in der Semantik?

Sprache ist nicht ohne Logik.

- Aussagesätze haben Wahrheitsbedingungen!
- Sprache ist systematisch und kompositional!
- Natürlichsprachliche Sätze folgen aus anderen Sätzen!
 ... wie Theoreme aus Axiomen ...
- Was das Gehirn damit macht, ist wie gesagt eine parallele Frage.

Roland Schäfer Semanti

Aussagenlogik | Formeln als einzige syntaktische Kategorie

Syntax

- Syntax
 - ▶ keine syntaktische Analyse unterhalb der Ebene der Aussagen

- Syntax
 - keine syntaktische Analyse unterhalb der Ebene der Aussagen
 - ▶ Atome bzw. atomare Formeln | Aussagen bzw. Propositionen

- Syntax
 - keine syntaktische Analyse unterhalb der Ebene der Aussagen
 - ▶ Atome bzw. atomare Formeln | Aussagen bzw. Propositionen
 - ▶ Herr Keydana is a passionate cyclist.: k

- Syntax
 - keine syntaktische Analyse unterhalb der Ebene der Aussagen
 - ▶ Atome bzw. atomare Formeln | Aussagen bzw. Propositionen
 - ► Herr Keydana is a passionate cyclist.: k
- Wahrheitswert | Semantik einer Formel

- Syntax
 - ▶ keine syntaktische Analyse unterhalb der Ebene der Aussagen
 - ▶ Atome bzw. atomare Formeln | Aussagen bzw. Propositionen
 - ► Herr Keydana is a passionate cyclist.: k
- Wahrheitswert | Semantik einer Formel
 - $[k] \in \{0,1\}$

- Syntax
 - keine syntaktische Analyse unterhalb der Ebene der Aussagen
 - ▶ Atome bzw. atomare Formeln | Aussagen bzw. Propositionen
 - ► Herr Keydana is a passionate cyclist.: k
- Wahrheitswert | Semantik einer Formel
 - $[k] \in \{0,1\}$
 - lacktriangle Wenn Herr Keydana passionierter Radsportler ist, dann $[\![k]\!]=1$

- Syntax
 - keine syntaktische Analyse unterhalb der Ebene der Aussagen
 - ▶ Atome bzw. atomare Formeln | Aussagen bzw. Propositionen
 - ► Herr Keydana is a passionate cyclist.: k
- Wahrheitswert | Semantik einer Formel
 - $[k] \in \{0,1\}$
 - lacktriangle Wenn Herr Keydana passionierter Radsportler ist, dann $[\![k]\!]=1$
 - ... sonst $[\![k]\!] = 0$

- Syntax
 - keine syntaktische Analyse unterhalb der Ebene der Aussagen
 - ▶ Atome bzw. atomare Formeln | Aussagen bzw. Propositionen
 - ► Herr Keydana is a passionate cyclist.: k
- Wahrheitswert | Semantik einer Formel
 - $[k] \in \{0,1\}$
 - lacktriangle Wenn Herr Keydana passionierter Radsportler ist, dann $[\![k]\!]=1$
 - ... sonst $[\![k]\!] = 0$
 - ▶ *k* ist kontingent | wahr oder falsch je nach Modell

- Syntax
 - keine syntaktische Analyse unterhalb der Ebene der Aussagen
 - ▶ Atome bzw. atomare Formeln | Aussagen bzw. Propositionen
 - ► Herr Keydana is a passionate cyclist.: k
- Wahrheitswert | Semantik einer Formel
 - $[k] \in \{0,1\}$
 - lacktriangle Wenn Herr Keydana passionierter Radsportler ist, dann $[\![k]\!]=1$
 - ... sonst $[\![k]\!] = 0$
 - ▶ *k* ist kontingent | wahr oder falsch je nach Modell
 - Modell | Spezifikation von Wahrheitsbedingungen

Roland Schäfer Semantik | 04. Aussagenlogik 8 / 33

Syntax aller wohlgeformten Formeln bzw. Wffs

• Syntax | Wenn p und q Wffs sind, dann sind ebenfalls Wffs:

Syntax aller wohlgeformten Formeln bzw. Wffs

• Syntax | Wenn p und q Wffs sind, dann sind ebenfalls Wffs:

¬p

- Syntax | Wenn p und q Wffs sind, dann sind ebenfalls Wffs:
 - → ¬p
 - p ∨ q

- Syntax | Wenn p und q Wffs sind, dann sind ebenfalls Wffs:
 - ▶ ¬p
 - $p \lor q$
 - ▶ p ∧ q

- Syntax | Wenn p und q Wffs sind, dann sind ebenfalls Wffs:
 - → ¬p
 - $\triangleright p \lor q$
 - ▶ p ∧ q
 - ightharpoonup p
 ightarrow q

- Syntax | Wenn p und q Wffs sind, dann sind ebenfalls Wffs:
 - ¬p
 - ▶ p ∨ q
 - ▶ p ∧ q
 - ightharpoonup p
 ightharpoonup q
 - $ightharpoonup p \leftrightarrow q$
 - Es gibt keine anderen Wffs in AL.

- Syntax | Wenn p und q Wffs sind, dann sind ebenfalls Wffs:
 - ¬p
 - ▶ p ∨ q
 - ▶ p ∧ q
 - ightharpoonup p
 ightarrow q
 - $ightharpoonup p \leftrightarrow q$
 - Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn p und q Wffs sind, dann sind ebenfalls Wffs:
 - → ¬p | nicht p
 - $\triangleright p \lor q$
 - ▶ p ∧ q
 - ightharpoonup p
 ightharpoonup q
 - $ightharpoonup p \leftrightarrow q$
 - Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn p und q Wffs sind, dann sind ebenfalls Wffs:
 - → ¬p | nicht p
 - p ∨ q | p oder q
 - $\triangleright p \land q$
 - ightharpoonup p
 ightharpoonup q
 - $ightharpoonup p \leftrightarrow q$
 - Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn *p* und *q* Wffs sind, dann sind ebenfalls Wffs:
 - → ¬p | nicht p
 - p ∨ q | p oder q
 - \triangleright $p \land q \mid p \text{ und } q$
 - ightharpoonup p
 ightharpoonup q
 - $ightharpoonup p \leftrightarrow q$
 - Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn *p* und *q* Wffs sind, dann sind ebenfalls Wffs:
 - → ¬p | nicht p
 - p ∨ q | p oder q
 - \triangleright p \land q | p und q
 - $ightharpoonup p
 ightarrow q \mid wenn p dann q$
 - $ightharpoonup p \leftrightarrow q$
 - ► Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn *p* und *q* Wffs sind, dann sind ebenfalls Wffs:
 - → ¬p | nicht p
 - p ∨ q | p oder q
 - \triangleright p \land q | p und q
 - $ightharpoonup q \mid wenn p dann q$
 - $ightharpoonup p \leftrightarrow q \mid p$ genau dann wenn q
 - Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn *p* und *q* Wffs sind, dann sind ebenfalls Wffs:
 - $ightharpoonup \neg p \mid nicht p \mid Negation$
 - p ∨ q | p oder q
 - p ∧ q | p und q
 - $ightharpoonup q \mid wenn p dann q$
 - $ightharpoonup p \leftrightarrow q \mid p$ genau dann wenn q
 - ► Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn *p* und *q* Wffs sind, dann sind ebenfalls Wffs:
 - → ¬p | nicht p | Negation
 - ▶ $p \lor q \mid p \ oder \ q \mid Disjunktion$
 - \triangleright p \land q | p und q
 - $ightharpoonup p
 ightarrow q \mid wenn p dann q$
 - $ightharpoonup p \leftrightarrow q \mid p$ genau dann wenn q
 - Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn *p* und *q* Wffs sind, dann sind ebenfalls Wffs:
 - $ightharpoonup \neg p \mid nicht p \mid Negation$
 - ▶ $p \lor q \mid p \ oder \ q \mid Disjunktion$
 - ▶ $p \land q \mid p \ und \ q \mid Konjunktion$
 - $ightharpoonup q \mid wenn p dann q$
 - $ightharpoonup p \leftrightarrow q \mid p$ genau dann wenn q
 - ► Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn *p* und *q* Wffs sind, dann sind ebenfalls Wffs:
 - $ightharpoonup \neg p \mid nicht p \mid Negation$
 - ▶ $p \lor q \mid p \ oder \ q \mid Disjunktion$
 - ▶ $p \land q \mid p \text{ und } q \mid \text{Konjunktion}$
 - $ightharpoonup p \rightarrow q \mid wenn p dann q \mid Konditional$
 - $ightharpoonup p \leftrightarrow q \mid p$ genau dann wenn q
 - Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

- Syntax | Wenn *p* und *q* Wffs sind, dann sind ebenfalls Wffs:
 - → ¬p | nicht p | Negation
 - ▶ $p \lor q \mid p \ oder \ q \mid Disjunktion$
 - $ightharpoonup p \wedge q \mid p \ und \ q \mid Konjunktion$
 - $ightharpoonup p \rightarrow q$ | wenn p dann q | Konditional
 - ▶ $p \leftrightarrow q \mid p$ genau dann wenn $q \mid$ Bikonditional
 - Es gibt keine anderen Wffs in AL.
- Semantik | Funktoren bezeichnen Funktionen

Negation | Semantik von ¬

Roland Schäfer Semantik | 04. Aussagenlogik 9 / 33

Es ist nicht der Fall, dass p.

Es ist nicht der Fall, dass p.

• Definition gemäß letzter Woche: $[\![\neg]\!] = \{\langle 1,0\rangle,\langle 0,1\rangle\}$

Es ist nicht der Fall, dass p.

- Definition gemäß letzter Woche: $\llbracket \neg \rrbracket = \{\langle 1, 0 \rangle, \langle 0, 1 \rangle\}$
- Typische Definition als Funktion

$$\llbracket \neg \rrbracket = \left[\begin{array}{c} 1 \to 0 \\ 0 \to 1 \end{array} \right]$$

Es ist nicht der Fall, dass p.

- Definition gemäß letzter Woche: $\llbracket \neg \rrbracket = \{\langle 1, 0 \rangle, \langle 0, 1 \rangle\}$
- Typische Definition als Funktion

$$\llbracket \neg \rrbracket = \left[\begin{array}{c} 1 \to 0 \\ 0 \to 1 \end{array} \right]$$

• Typische Darstellung mit Wahrheitstafel

Roland Schäfer Semantik | 04. Aussagenlogik 10 / 33

Es ist der Fall, dass p, dass q, oder dass p und q.

Es ist der Fall, dass p, dass q, oder dass p und q.

р	V	q
1	1	1
1	1	0
0	1	1
0	0	0

Es ist der Fall, dass p, dass q, oder dass p und q.

• Herr Keydana is a passionate cyclist or we all love logic.

Es ist der Fall, dass p, dass q, oder dass p und q.

- Herr Keydana is a passionate cyclist or we all love logic.
- k∨l

Roland Schäfer Semantik | 04. Aussagenlogik 11 / 33

Es ist der Fall, dass p, und dass q.

Es ist der Fall, dass p, und dass q.

р	\wedge	q
1	1	1
1	0	0
0	0	1
0	0	0

Es ist der Fall, dass p, und dass q.

• Herr Keydana is a passionate cyclist and we all love logic.

Es ist der Fall, dass p, und dass q.

- Herr Keydana is a passionate cyclist and we all love logic.
- k∧l

Roland Schäfer Semantik | 04. Aussagenlogik 12 / 33

Wenn q gilt, dann gilt q.

Wenn q gilt, dann gilt q.

\rightarrow	q
1	1
0	0
1	1
1	0
	0

Wenn q gilt, dann gilt q.

• If it rains, then the streets get wet.

Wenn q gilt, dann gilt q.

- If it rains, then the streets get wet.
- $r \rightarrow s$

Roland Schäfer Semantik | 04. Aussagenlogik 13 / 33

If it rains, the streets get wet. \vdash ? It doesn't rain, so the streets are dry.

• it is raining (1), the streets are wet (1): 1

- it is raining (1), the streets are wet (1): 1
- it is raining (1), the streets are not wet (0): o

- it is raining (1), the streets are wet (1): 1
- it is raining (1), the streets are not wet (0): o
- it is not raining (o), the streets are wet (1): 1

- it is raining (1), the streets are wet (1): 1
- it is raining (1), the streets are not wet (0): o
- it is not raining (o), the streets are wet (1): 1
- it is not raining (o), the streets are not wet (o): 1

- it is raining (1), the streets are wet (1): 1
- it is raining (1), the streets are not wet (0): o
- it is not raining (o), the streets are wet (1): 1
- it is not raining (o), the streets are not wet (o): 1
- Ex falso sequitur quodlibet. | Modus morons

Roland Schäfer Semantik | 04. Aussagenlogik 14 / 33

Bikonditional | Semantik von ↔

p ist der Fall genau dann, wenn q der Fall ist. Wenn p der Fall ist, dann ist q der Fall und umgekehrt.

Bikonditional | Semantik von ↔

p ist der Fall genau dann, wenn q der Fall ist. Wenn p der Fall ist, dann ist q der Fall und umgekehrt.

р	\leftrightarrow	q
1	1	1
1	Ο	О
0	Ο	1
0	1	0

p ist der Fall genau dann, wenn q der Fall ist. Wenn p der Fall ist, dann ist q der Fall und umgekehrt.

$$\begin{array}{cccc} p & \leftrightarrow & q \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array}$$

• If and only if your score is above 50, then you pass the semantics exam.

Bikonditional | Semantik von ↔

p ist der Fall genau dann, wenn q der Fall ist. Wenn p der Fall ist, dann ist q der Fall und umgekehrt.

$$\begin{array}{ccccc} p & \leftrightarrow & q \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array}$$

- If and only if your score is above 50, then you pass the semantics exam.
- $s \leftrightarrow p$

Roland Schäfer Semantik | 04. Aussagenlogik 15 / 33

Bindungsstärke der Funktoren

Bindungsstärke der Funktoren

 $\begin{array}{c} \neg \\ \land \\ \lor \\ \rightarrow \\ \leftrightarrow \end{array}$

Roland Schäfer

Bindungsstärke der Funktoren

Bindungsstärke der Funktoren

Roland Schäfer Semantik | 04. Aussagenlogik 16 / 33

$$p \land \neg q \lor r \to \neg s$$

$$p \land \neg q \lor r \to \neg s$$

$$\equiv p \land (\neg q) \lor r \to (\neg s)$$

$$p \land \neg q \lor r \to \neg s$$

$$\equiv p \land (\neg q) \lor r \to (\neg s)$$

$$\equiv (p \land (\neg q)) \lor r \to (\neg s)$$

$$p \land \neg q \lor r \to \neg s$$

$$\equiv p \land (\neg q) \lor r \to (\neg s)$$

$$\equiv (p \land (\neg q)) \lor r \to (\neg s)$$

$$\equiv ((p \land (\neg q)) \lor r) \to (\neg s)$$

$$p \land \neg q \lor r \to \neg s$$

$$\equiv p \land (\neg q) \lor r \to (\neg s)$$

$$\equiv (p \land (\neg q)) \lor r \to (\neg s)$$

$$\equiv ((p \land (\neg q)) \lor r) \to (\neg s)$$

$$\equiv (((p \land (\neg q)) \lor r) \to (\neg s))$$

Roland Schäfer Semantik | 04. Aussagenlogik 17 / 33

Berechenbarkeit der Länge der Tabelle und volle Abdeckung aller Permutationen

• Länge der Tabelle | 2^n Zeilen für n atomare Wffs

- Länge der Tabelle | 2^n Zeilen für n atomare Wffs
- für jede atomare Wff W_m mit $m \in \{1, ..n\}$

- Länge der Tabelle | 2^n Zeilen für n atomare Wffs
- für jede atomare Wff W_m mit $m \in \{1, ..n\}$
 - $ightharpoonup 2^{(n-m)}$ Einsen gefolgt von $2^{(n-m)}$ Nullen

- Länge der Tabelle | 2^n Zeilen für n atomare Wffs
- für jede atomare Wff W_m mit $m \in \{1, ..n\}$
 - ▶ $2^{(n-m)}$ Einsen gefolgt von $2^{(n-m)}$ Nullen
- Beispiel mit vier atomaren Wffs p, q, r, s

- Länge der Tabelle | 2^n Zeilen für n atomare Wffs
- für jede atomare Wff W_m mit $m \in \{1, ..n\}$
 - ▶ $2^{(n-m)}$ Einsen gefolgt von $2^{(n-m)}$ Nullen
- Beispiel mit vier atomaren Wffs p, q, r, s
 - Für p als W_m mit m=1 | alternierende Blöcke von $2^{4-1}=2^3=8$ Einsen/Nullen

- Länge der Tabelle | 2^n Zeilen für n atomare Wffs
- für jede atomare Wff W_m mit $m \in \{1, ..n\}$
 - ▶ $2^{(n-m)}$ Einsen gefolgt von $2^{(n-m)}$ Nullen
- Beispiel mit vier atomaren Wffs p, q, r, s
 - für p als W_m mit m=1 | alternierende Blöcke von $2^{4-1}=2^3=8$ Einsen/Nullen
 - ightharpoonup für q als W_m mit m=2 | alternierende Blöcke von $2^{4-2}=2^2=4$ Einsen/Nullen

- Länge der Tabelle | 2^n Zeilen für n atomare Wffs
- für jede atomare Wff W_m mit $m \in \{1, ..n\}$
 - ▶ $2^{(n-m)}$ Einsen gefolgt von $2^{(n-m)}$ Nullen
- Beispiel mit vier atomaren Wffs p, q, r, s
 - Für p als W_m mit m=1 | alternierende Blöcke von $2^{4-1}=2^3=8$ Einsen/Nullen
 - Für q als W_m mit m=2 | alternierende Blöcke von $2^{4-2}=2^2=4$ Einsen/Nullen
 - ightharpoonup für r als W_m mit m=3 | alternierende Blöcke von $2^{4-3}=2^1=2$ Einsen/Nullen

- Länge der Tabelle | 2^n Zeilen für n atomare Wffs
- für jede atomare Wff W_m mit $m \in \{1, ..n\}$
 - ▶ $2^{(n-m)}$ Einsen gefolgt von $2^{(n-m)}$ Nullen
- Beispiel mit vier atomaren Wffs p, q, r, s
 - Für p als W_m mit m=1 | alternierende Blöcke von $2^{4-1}=2^3=8$ Einsen/Nullen
 - lacktriangle für q als W_m mit m=2 | alternierende Blöcke von $2^{4-2}=2^2=4$ Einsen/Nullen
 - Für r als W_m mit m=3 | alternierende Blöcke von $2^{4-3}=2^1=2$ Einsen/Nullen
 - ightharpoonup für s als W_m mit m=4 | alternierende Blöcke von $2^{4-4}=2^0=1$ Einsen/Nullen

Roland Schäfer Semantik | 04. Aussagenlogik 18 / 3

 $p \land \neg q \lor r \rightarrow \neg s$

$$p \land \neg q \lor r \rightarrow \neg s$$

- Tabelle vorbereiten
 - für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen

р	\wedge	\neg	q	V	r	\rightarrow	一	;
1			1					
1			1					
1			1					
1			1					
1			0					
1			0					
1			0					
1			0					
0			1					
0			1					
0			1					
0			1					
0			0					
0			0					
0			0					
0			0					

- ▶ für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen ▶ für q | $2^{4-2} = 2^2 = 4$ Einsen/Nullen

р	\wedge	乛	q	V	r	\rightarrow	 S
1			1		1		
1			1		1		
1			1		0		
1			1		0		
1			0		1		
1			0		1		
1			0		0		
1			О		О		
0			1		1		
			1		1		
0 0 0			1		0		
0			1		0		
0			0		1		
0			0		1		
0			0		0		
0			0		0		

- für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen
- für q | 2⁴⁻² = 2² = 4 Einsen/Nullen
 für r | 2⁴⁻³ = 2¹ = 2 Einsen/Nullen

р	\wedge	乛	q	V	r	\rightarrow	_	S
1			1		1			1
1			1		1			0
1			1		0			1
1			1		0			0
1			0		1			1
1			0		1			0
1			0		0			1
1			0		0			0
1 0			1		1			1
0			1		1			0
0			1		0			1
0 0 0			1		0			0
0			0		1			1
0			0		1			0
O			0		0			1
0			0		0			О

- für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen
- für q | $2^{4-2}=2^2=4$ Einsen/Nullen
- für r | $2^{4-3} = 2^1 = 2$ Einsen/Nullen
- für s | $2^{4-4} = 2^0 = 1$ Einsen/Nullen

р	\wedge	乛	q	V	r	\rightarrow	_	S
1			1		1			1
1			1		1			О
1			1		0			1
1			1		0			0
1			О		1			1
1			0		1			0
1			0		0			1
1			0		0			0
0			1		1			1 0
0			1		1			0
0			1		0			1
0			1		0			0
0			0		1			0 1 0
0			0		1			0
1 0 0 0 0 0			0		0			1
0			О		0			О

- für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen
- für q | $2^{4-2}=2^2=4$ Einsen/Nullen
- für r | $2^{4-3} = 2^1 = 2$ Einsen/Nullen
- Für s | $2^{4-4} = 2^0 = 1$ Einsen/Nullen
- Wahrheitswerte ermitteln entsprechend Funktorenskopus

р	\wedge	一	q	V	r	\rightarrow	П	S
1		0	1		1			1
1		0	1		1			0
1		0	1		О			1
1		0	1		0			0
1		1	0		1			1
1		1	0		1			1 0
1		1	0		0			1
1		1	0		0			0
О		0	1		1			1
1 0 0 0 0		0	1		1			1 0
О		0	1		0			1
0		0	1		0			
О		1	0		1			1
0		1	0		1			0 1 0
0		1	0		0			1
0		1	0		0			0

- für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen
- für q | $2^{4-2}=2^2=4$ Einsen/Nullen
- für r | $2^{4-3}=2^1=2$ Einsen/Nullen
- für s | $2^{4-4}=2^0=1$ Einsen/Nullen
- Wahrheitswerte ermitteln entsprechend Funktorenskopus
 - ▶ für ¬q

р	\wedge	一	q	V	r	\rightarrow	\neg	S
1		0	1		1		0	1
1		0	1		1		1	
		0	1		0		0	1
1		О	1		0		1 0 1	0
1		1	0		1		0	1
1 1 1 1		1	0		1		1	0
		1	0		0		0	1
1		1	0		0		0 1	0
0		0	1		1		0	1
О		О	1		1		1	0
0		0	1		0		0	1
0		0	1		0		1	0
0		1	0		1		0	1
1 1 0 0 0 0 0 0		1	0		1		1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0		1	0		0		0	1
0		1	0		0		1	0

- für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen
- für q | $2^{4-2} = 2^2 = 4$ Einsen/Nullen
- für r | $2^{4-3} = 2^1 = 2$ Einsen/Nullen
- Für s | $2^{4-4} = 2^0 = 1$ Einsen/Nullen
- Wahrheitswerte ermitteln entsprechend Funktorenskopus
 - für ¬q
 - ▶ für ¬s

р	\wedge	\neg	q	V	r	\rightarrow	\neg	S
1	0	0	1		1		0	1
1	0	0	1		1		1	0
1	0	0	1		0		О	1
1	0	0	1		0		1	0
1	1	1	О		1		О	1
1	1	1	0		1		1	0
1	1	1	0		0		0	1
1	1	1	0		0		1	0
0	0	0	1		1		0	1
0	0	0	1		1		1	0
0	0	0	1		0		0	1
0	0	0	1		0		1	0
0	0	1	0		1		0	1
0	0	1	0		1		1	0
0	0	1	0		0		0	1
0	0	1	О		0		1	0

- für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen
- für q | $2^{4-2} = 2^2 = 4$ Einsen/Nullen
- für r | $2^{4-3}=2^1=2$ Einsen/Nullen
- für s | $2^{4-4} = 2^0 = 1$ Einsen/Nullen
- Wahrheitswerte ermitteln entsprechend Funktorenskopus
 - ▶ für ¬q
 - ▶ für ¬s
 - ▶ für $p \land \neg q$

р	\wedge	一	q	V	r	\rightarrow	\neg	S
1	0	0	1	1	1		0	1
1	0	0	1	1	1		1	0
1	0	0	1	0	0		О	1
1	0	0	1	0	0		1	0
1	1	1	0	1	1		О	1
1	1	1	0	1	1		1	0
1	1	1	0	1	0		О	1
1	1	1	0	1	0		1	0
0	0	0	1	1	1		О	1
0	0	0	1	1	1		1	0
0	0	0	1	0	0		О	1
0	0	0	1	0	0		1	0
0	0	1	0	1	1		О	1
0	0	1	0	1	1		1	0
0	0	1	0	0	0		0	1
0	0	1	О	0	0		1	0

- für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen
- für q | $2^{4-2} = 2^2 = 4$ Einsen/Nullen
- für r | $2^{4-3} = 2^1 = 2$ Einsen/Nullen
- für s | $2^{4-4} = 2^0 = 1$ Einsen/Nullen
- Wahrheitswerte ermitteln entsprechend Funktorenskopus
 - ▶ für ¬q
 - ▶ für ¬s
 - für $p \wedge \neg q$
 - ▶ für $p \land \neg q \lor r$

_p	Λ	一	q	V	r	\rightarrow		S
1	0	0	1	1	1	0	0	1
1	0	0	1	1	1	1	1	0
1	0	0	1	0	0	1	0	1
1 1	0	0	1	0	0	1	1	1 0 1
1	1	1	0	1	1	0	0	1
1	1	1	0	1	1	1	1	0
1 1 1 1	1 1 1 1	1	0	1	0	0	0	1 0
1	1	1	0	1	0	1	1	0
О	0	0	1	1	1	0	0	1
0	0	0	1	1	1	1	1	0
О	0	0	1	0	0	1 1	0	1 0
0	0	0	1	0	0	1	1	0
О	0	1	0	0 1 1	1	0	0	1
0	0	1	0	1	1	1	1	0
0	0	1	0	0	0	1	0	1 0
0	0	1	0	0	0	1	1	0

- für p | $2^{4-1} = 2^3 = 8$ Einsen/Nullen
- für q | $2^{4-2} = 2^2 = 4$ Einsen/Nullen
- für r | $2^{4-3}=2^1=2$ Einsen/Nullen
- für s | $2^{4-4} = 2^0 = 1$ Einsen/Nullen
- Wahrheitswerte ermitteln entsprechend Funktorenskopus
 - ▶ für ¬q
 - ▶ für ¬s
 - ▶ für $p \land \neg q$
 - ▶ für $p \land \neg q \lor r$
 - ▶ $f\ddot{u}r p \land \neg q \lor r \rightarrow \neg s$

Roland Schäfer Semantik

Wann können oder müssen Wffs wahr oder falsch sein?

Wann können oder müssen Wffs wahr oder falsch sein?

• Tautologie = immer wahr | Beispiel $p \lor \neg p$

Wann können oder müssen Wffs wahr oder falsch sein?

• Tautologie = immer wahr | Beispiel $p \vee \neg p$

Wann können oder müssen Wffs wahr oder falsch sein?

• Tautologie = immer wahr | Beispiel $p \vee \neg p$

• Kontradiktion = immer falsch | Beispiel $p \land \neg p$

Wann können oder müssen Wffs wahr oder falsch sein?

• Tautologie = immer wahr | Beispiel $p \vee \neg p$

• Kontradiktion = immer falsch | Beispiel $p \land \neg p$

Tautologie, Kontradiktion, Kontingenz

Wann können oder müssen Wffs wahr oder falsch sein?

• Tautologie = immer wahr | Beispiel $p \vee \neg p$

• Kontradiktion = immer falsch | Beispiel $p \land \neg p$

Kontingenz = je nach Modell wahr oder falsch | Beispiel p ∧ p

Tautologie, Kontradiktion, Kontingenz

Wann können oder müssen Wffs wahr oder falsch sein?

• Tautologie = immer wahr | Beispiel $p \vee \neg p$

• Kontradiktion = immer falsch | Beispiel $p \land \neg p$

• Kontingenz = je nach Modell wahr oder falsch | Beispiel $p \land p$

Roland Schäfer Semantik | 04. Aussagenlogik 20 / 33

Aus Mengenlehre und Arithmetik bekannt: Assoziativität, Kommutativität usw.

Aus Mengenlehre und Arithmetik bekannt: Assoziativität, Kommutativität usw. Gesetze als Formulierung bekannter Äquivalenzen (≡ oder ⇔)

Aus Mengenlehre und Arithmetik bekannt: Assoziativität, Kommutativität usw. Gesetze als Formulierung bekannter Äquivalenzen (≡ oder ⇔)

Wffs mit stets gleicher Interpretation
 X ≡ Y: X hat dieselben Wahrheitsbedingungen wie Y

Aus Mengenlehre und Arithmetik bekannt: Assoziativität, Kommutativität usw. Gesetze als Formulierung bekannter Äquivalenzen (≡ oder ⇔)

- Wffs mit stets gleicher Interpretation
 X ≡ Y: X hat dieselben Wahrheitsbedingungen wie Y
- Regeln zum wahrheitswertkonservativen Umschreiben komplexer Wffs

Aus Mengenlehre und Arithmetik bekannt: Assoziativität, Kommutativität usw. Gesetze als Formulierung bekannter Äquivalenzen (≡ oder ⇔)

- Wffs mit stets gleicher Interpretation
 X ≡ Y: X hat dieselben Wahrheitsbedingungen wie Y
- Regeln zum wahrheitswertkonservativen Umschreiben komplexer Wffs
- Parallelen zur Mengenlehre offensichtlich (mit den zugrundeliegenden algebraischen Formalisierungen erst recht)

Aus Mengenlehre und Arithmetik bekannt: Assoziativität, Kommutativität usw. Gesetze als Formulierung bekannter Äquivalenzen (≡ oder ⇔)

- Wffs mit stets gleicher Interpretation
 X ≡ Y: X hat dieselben Wahrheitsbedingungen wie Y
- Regeln zum wahrheitswertkonservativen Umschreiben komplexer Wffs
- Parallelen zur Mengenlehre offensichtlich (mit den zugrundeliegenden algebraischen Formalisierungen erst recht)
- Alle Funktoren lassen sich aus einem Funktor ableiten.

Aus Mengenlehre und Arithmetik bekannt: Assoziativität, Kommutativität usw. Gesetze als Formulierung bekannter Äquivalenzen (≡ oder ⇔)

- Wffs mit stets gleicher Interpretation
 X ≡ Y: X hat dieselben Wahrheitsbedingungen wie Y
- Regeln zum wahrheitswertkonservativen Umschreiben komplexer Wffs
- Parallelen zur Mengenlehre offensichtlich (mit den zugrundeliegenden algebraischen Formalisierungen erst recht)
- Alle Funktoren lassen sich aus einem Funktor ableiten.
 Scheffer-Strich (NAND, nicht-und; vgl. auch Peirce-Funktor)

				(p		
1	0	1	0	1	1	1
		0			0	0
0				0	0	
0		0		0	0	0

Eher triviale Äquivalenzregeln

Roland Schäfer Semantik | 04. Aussagenlogik 21 / 33

Eher triviale Äquivalenzregeln

Idempotenz $p \vee p \equiv p$

 $p \wedge p \equiv p$

 $P \cup P = P$ $P \cap P = P$

Assoziativität

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

 $(P \cup Q) \cup R = P \cup (Q \cup R)$

 $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

 $(P \cap Q) \cap R = P \cap (Q \cap R)$

Kommutativität

 $p \lor q \equiv q \lor p$

 $P \cup Q = Q \cup P$

 $p \wedge q \equiv q \wedge p$

 $P \cap O = O \cap P$

Distributivität

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \quad P \cup (Q \cap R) = (P \cup Q) \cap (P \cup R)$

DeMorgan

 $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ $P \cap (Q \cup R) = (P \cap Q) \cup (P \cap R)$ $(P \cup Q)' = P' \cap Q'$ $\neg(p \lor a) \equiv \neg p \land \neg a$

 $\neg(p \land q) \equiv \neg p \lor \neg q$

 $(P \cap Q)' = P' \cup Q'$

Komplementgesetze

- Tautologie

 $p \vee \neg p \equiv T$ $p \wedge \neg p \equiv \mathbf{F}$

- Kontradiktion - Doppelnegation

 $\neg \neg p \equiv p$

They talk or they talk. They talk and they talk.

(He walks or (she talks) or we walk). (He walks and (she talks) and we walk).

Peter walks or Sue snores. = Sue snores or Peter walks. Peter walks and Sue snores. \equiv Sue snores and Peter walks.

(Sue snores) and (Peter walks or we talk). \equiv (Sue snores and Peter walks) or

(Sue snores and we talk).

Eher triviale Äquivalenzregeln

Idempotenz	$p \lor p \equiv p$	$P \cup P = P$	They talk or they talk.
	$p \wedge p \equiv p$	$P \cap P = P$	They talk and they talk.
Assoziativität	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(P \cup Q) \cup R = P \cup (Q \cup R)$	(He walks or (she talks) or we walk).
	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(P\cap Q)\cap R=P\cap (Q\cap R)$	(He walks and (she talks) and we walk).
Kommutativität	$p \lor q \equiv q \lor p$	$P \cup Q = Q \cup P$	Peter walks or Sue snores. \equiv
			Sue snores or Peter walks.
	$p \wedge q \equiv q \wedge p$	$P \cap Q = Q \cap P$	Peter walks and Sue snores. \equiv
			Sue snores and Peter walks.
Distributivität	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	$P \cup (Q \cap R) = (P \cup Q) \cap (P \cup R)$	(Sue snores) and (Peter walks or we talk). \equiv
			(Sue snores and Peter walks) or
			(Sue snores and we talk).

 $(P \cup Q)' = P' \cap Q'$ $(P \cap Q)' = P' \cup Q'$

 $P \cap (Q \cup R) = (P \cap Q) \cup (P \cap R)$

Komplementgesetze

DeMorgan

- Tautologie $p \vee \neg p \equiv \mathbf{T}$ - Kontradiktion $p \wedge \neg p \equiv \mathbf{F}$ - Doppelnegation

 $\neg \neg p \equiv p$

 $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$

 $\neg (p \lor q) \equiv \neg p \land \neg q$

 $\neg(p \land q) \equiv \neg p \lor \neg q$

T für Tautologie ([T] = 1), **F** für Kontradiktion ([F] = 0) alternative Notation für DeMorgan: $\overline{p} \vee \overline{q} \equiv \overline{p} \wedge \overline{q}$ folgt aus DeMorgan: $\overline{p} \vee \overline{q} \equiv \overline{p} \wedge \overline{q} \equiv p \wedge q$

Roland Schäfer Semantik | 04. Aussagenlogik 22 / 33

Implikation (Impl.)

Roland Schäfer Semantik | 04. Aussagenlogik 22 / 33

Implikation (Impl.)

P	\rightarrow	Q	<u> </u>	一	Р	V	Q
1	1	1		0	1	1	1
1	0	0		0	1	0	0
0	1	1		1	0	1	1
0	1	О		1	0	1	0

Implikation (Impl.)

Kontraposition (Kontr.)

Implikation (Impl.)

Kontraposition (Kontr.)

Roland Schäfer Semantik | 04. Aussagenlogik 23 / 33

Feste Regeln für Deduktionsschlüsse aus Prämissen

• alle obigen Regel | Äquivalenzregeln (= Umformungsregeln) für einzelne Wffs

- alle obigen Regel | Äquivalenzregeln (= Umformungsregeln) für einzelne Wffs
- Schlussregeln

- alle obigen Regel | Äquivalenzregeln (= Umformungsregeln) für einzelne Wffs
- Schlussregeln
 - Schließen aus Mengen von Prämissen

- alle obigen Regel | Äquivalenzregeln (= Umformungsregeln) für einzelne Wffs
- Schlussregeln
 - Schließen aus Mengen von Prämissen
 - kein neues Wissen, aber Erschließen existierenden Wissens

- alle obigen Regel | Äquivalenzregeln (= Umformungsregeln) für einzelne Wffs
- Schlussregeln
 - Schließen aus Mengen von Prämissen
 - kein neues Wissen, aber Erschließen existierenden Wissens
 - nicht naturgegeben | zahlreiche alternative Logiken

Roland Schäfer Semantik | 04. Aussagenlogik 24 / 33

 $\textbf{Eine Implikation (Antezedens} \rightarrow \textbf{Konsequenz) und ihr Antezedens sind gegeben.}$

Eine Implikation (Antezedens \rightarrow Konsequenz) und ihr Antezedens sind gegeben.

$$\begin{array}{c} p \rightarrow q \\ \hline p \\ \hline \vdash q \end{array} \begin{array}{c} \text{Pr\"{a}misse 1} \\ \text{Pr\"{a}misse 2} \\ \text{Schluss} \end{array}$$

Eine Implikation (Antezedens \rightarrow Konsequenz) und ihr Antezedens sind gegeben.

$$p \rightarrow q$$
 Prämisse 1
 p Prämisse 2
 q Schluss

Beispiel mit natürlichsprachlichem Material

- (1) If It rains, the streets get wet.
- (2) It is raining.

⊢ The streets are getting wet. 1,2,MP

Roland Schäfer Semantik | 04. Aussagenlogik 25 / 33

Prämissen werden immer als wahr angenommen! Sonst wären es keine.

• Prämisse 1 (p o q) muss wahr sein, ...

- Prämisse 1 (p o q) muss wahr sein, ...
- ... also Zeilen mit o für streichen!

- Prämisse 1 (p o q) muss wahr sein, ...
- ... also Zeilen mit o für streichen!
- Prämisse 2 (p) muss wahr sein, ...

- Prämisse 1 (p o q) muss wahr sein, ...
- ... also Zeilen mit o für streichen!
- Prämisse 2 (p) muss wahr sein, ...
- ... also Zeilen mit o streichen

Eine Illustration des MP an der Wahrheitstabelle

Prämissen werden immer als wahr angenommen! Sonst wären es keine.

р	\rightarrow	q
1	1	1
	0	

- Prämisse 1 (p o q) muss wahr sein, ...
- ... also Zeilen mit o für streichen!
- Prämisse 2 (p) muss wahr sein, ...
- ... also Zeilen mit o streichen
- Es bleibt nur noch eine Zeile, in der [q] = 1

Roland Schäfer Semantik | 04. Aussagenlogik 26 / 33

Eine Implikation und die Negation ihrer Konsequenz sind gegeben.

Eine Implikation und die Negation ihrer Konsequenz sind gegeben.

$$\begin{array}{c} p \rightarrow q & \text{Pr\"{a}misse 1} \\ \hline -q & \text{Pr\"{a}misse 2} \\ \hline \vdash \neg p & \text{Schluss} \end{array}$$

Eine Implikation und die Negation ihrer Konsequenz sind gegeben.

$$\begin{array}{c} p \rightarrow q \\ \hline \neg q \\ \hline \vdash \neg p \end{array} \begin{array}{c} \text{Pr\"{a}misse 1} \\ \text{Pr\"{a}misse 2} \\ \text{Schluss} \end{array}$$

Illustration an der Wahrheitstafel

```
P → Q
1 1 1 ausgeschlossen durch Prämisse 2
1 0 0 ausgeschlossen durch Prämisse 1
0 1 1 ausgeschlossen durch Prämisse 2
0 1 0
```

Roland Schäfer Semantik | 04. Aussagenlogik 27 / 33

Hypothetischer Syllogismus (HS) | Verkettung von zwei Implikationen

• $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache
 - If it rains, the streets get wet.

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache
 - If it rains, the streets get wet.
 - If the streets get wet, it smells nice.

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache
 - If it rains, the streets get wet.
 - If the streets get wet, it smells nice.
 - ► | If it rains, it smells nice.

Hypothetischer Syllogismus (HS) | Verkettung von zwei Implikationen

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache
 - If it rains, the streets get wet.
 - If the streets get wet, it smells nice.
 - ► | If it rains, it smells nice.

Hypothetischer Syllogismus (HS) | Verkettung von zwei Implikationen

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache
 - If it rains, the streets get wet.
 - ▶ If the streets get wet, it smells nice.
 - ► | If it rains, it smells nice.

Disjunktiver Syllogismus (DS) | Eine Disjunktion und die Negation eines ihrer Disjunkte

• $p \lor q, \neg p \vdash q$

Hypothetischer Syllogismus (HS) | Verkettung von zwei Implikationen

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache
 - If it rains, the streets get wet.
 - ▶ If the streets get wet, it smells nice.
 - ► | If it rains, it smells nice.

- $p \lor q, \neg p \vdash q$
- Beispiel in natürlicher Sprache

Hypothetischer Syllogismus (HS) | Verkettung von zwei Implikationen

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache
 - If it rains, the streets get wet.
 - ▶ If the streets get wet, it smells nice.
 - ► | If it rains, it smells nice.

- $p \lor q, \neg p \vdash q$
- Beispiel in natürlicher Sprache
 - Either Peter sleeps or Peter is awake.

Hypothetischer Syllogismus (HS) | Verkettung von zwei Implikationen

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache
 - If it rains, the streets get wet.
 - ▶ If the streets get wet, it smells nice.
 - ► | If it rains, it smells nice.

- $p \lor q, \neg p \vdash q$
- Beispiel in natürlicher Sprache
 - Either Peter sleeps or Peter is awake.
 - Peter isn't awake.

Hypothetischer Syllogismus (HS) | Verkettung von zwei Implikationen

- $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$
- Beispiel in natürlicher Sprache
 - If it rains, the streets get wet.
 - ▶ If the streets get wet, it smells nice.
 - ► | If it rains, it smells nice.

- $p \lor q, \neg p \vdash q$
- Beispiel in natürlicher Sprache
 - Either Peter sleeps or Peter is awake.
 - Peter isn't awake.
 - ▶ ⊢ Peter sleeps.

• Simplifikation (Simp.):

- Simplifikation (Simp.):
 - $ightharpoonup p \land q \vdash p, q$

- Simplifikation (Simp.):
 - $\triangleright p \land q \vdash p, q$
 - $\,\blacktriangleright\,$ It is raining and the sun is shining. \vdash It is raining.

- Simplifikation (Simp.):
 - $\triangleright p \land q \vdash p, q$
 - ightharpoonup It is raining and the sun is shining. \vdash It is raining.
- Konjunktion (Konj.):

- Simplifikation (Simp.):
 - $\triangleright p \land q \vdash p, q$
 - ▶ It is raining and the sun is shining. \vdash It is raining.
- Konjunktion (Konj.):
 - $ightharpoonup p, q \vdash p \land q$

- Simplifikation (Simp.):
 - $\triangleright p \land q \vdash p, q$
 - ▶ It is raining and the sun is shining. \vdash It is raining.
- Konjunktion (Konj.):
 - \triangleright $p, q \vdash p \land q$
 - ightharpoonup It is raining. \vdash It is raining and the sun is shining.

- Simplifikation (Simp.):
 - $\triangleright p \land q \vdash p, q$
 - It is raining and the sun is shining. ⊢ It is raining.
- Konjunktion (Konj.):
 - \triangleright $p, q \vdash p \land q$
 - ightharpoonup It is raining. \vdash It is raining and the sun is shining.
- Addition (Add.):

- Simplifikation (Simp.):
 - \triangleright $p \land q \vdash p, q$
 - ▶ It is raining and the sun is shining. \vdash It is raining.
- Konjunktion (Konj.):
 - \triangleright $p, q \vdash p \land q$
 - ightharpoonup It is raining. The sun is shining. \vdash It is raining and the sun is shining.
- Addition (Add.):
 - $\triangleright p \vdash p \lor q$

- Simplifikation (Simp.):
 - $\triangleright p \land q \vdash p, q$
 - ▶ It is raining and the sun is shining. \vdash It is raining.
- Konjunktion (Konj.):
 - ▶ $p, q \vdash p \land q$
 - ▶ It is raining. The sun is shining. ⊢ It is raining and the sun is shining.
- Addition (Add.):
 - $\triangleright p \vdash \overline{p \lor q}$
 - ▶ It is raining. ⊢ It is raining or the sun is shining.

- Simplifikation (Simp.):
 - $\triangleright p \land q \vdash p, q$
 - ▶ It is raining and the sun is shining. \vdash It is raining.
- Konjunktion (Konj.):
 - ▶ $p, q \vdash p \land q$
 - ▶ It is raining. The sun is shining. ⊢ It is raining and the sun is shining.
- Addition (Add.):
 - $\triangleright p \vdash \overline{p \lor q}$
 - ▶ It is raining. \vdash It is raining or the sun is shining.
 - ▶ What if Q is instantiated as true or false by another premise?

Roland Schäfer Semantik | 04. Aussagenlogik 29 / 3

Schritte zur Beweisführung

Schritte zur Beweisführung

🔟 Prämissen formalisieren | eine atomare Wff (Buchstabe) pro atomarer Aussage

Schritte zur Beweisführung

- Prämissen formalisieren | eine atomare Wff (Buchstabe) pro atomarer Aussage
- zu beweisende Aussage (Schlussfolgerung) notieren

Schritte zur Beweisführung

- 🔟 Prämissen formalisieren | eine atomare Wff (Buchstabe) pro atomarer Aussage
- 👱 zu beweisende Aussage (Schlussfolgerung) notieren
- aus den Prämissen und Schlussregeln versuchen, zur Schlussfolgerung zu kommen

Schritte zur Beweisführung

- 🔟 Prämissen formalisieren | eine atomare Wff (Buchstabe) pro atomarer Aussage
- 👱 zu beweisende Aussage (Schlussfolgerung) notieren
- 🔞 aus den Prämissen und Schlussregeln versuchen, zur Schlussfolgerung zu kommen

keine exakte Wissenschaft, erfordert Übung und Intuition

Schritte zur Beweisführung

- 🔟 Prämissen formalisieren | eine atomare Wff (Buchstabe) pro atomarer Aussage
- zu beweisende Aussage (Schlussfolgerung) notieren
- 🔞 aus den Prämissen und Schlussregeln versuchen, zur Schlussfolgerung zu kommen
 - keine exakte Wissenschaft, erfordert Übung und Intuition
- automatische Schlussverfahren (Tableaux) verfügbar (Partee u. a. 1990)

Ein Beispielbeweis

Roland Schäfer Semantik | 04. Aussagenlogik 30 / 33

Wenn es regnet, dann ist es nicht der Fall, dass die Sonne scheint oder der Wind nicht bläst. Es regnet. Zeigen Sie: Die Sonne scheint nicht.

• erste Prämisse |

Wenn es regnet, dann ist es nicht der Fall, dass die Sonne scheint oder der Wind nicht bläst. Es regnet. Zeigen Sie: Die Sonne scheint nicht.

erste Prämisse | →

Wenn es regnet, dann ist es nicht der Fall, dass die Sonne scheint oder der Wind nicht bläst. Es regnet. Zeigen Sie: Die Sonne scheint nicht.

• erste Prämisse | $r \rightarrow$

Wenn es regnet, dann ist es nicht der Fall, dass die Sonne scheint oder der Wind nicht bläst. Es regnet. Zeigen Sie: Die Sonne scheint nicht.

• erste Prämisse | $r \rightarrow \neg ($

Wenn es regnet, dann ist es nicht der Fall, dass die Sonne scheint oder der Wind nicht bläst. Es regnet. Zeigen Sie: Die Sonne scheint nicht.

• erste Prämisse | $r \rightarrow \neg (s)$

Wenn es regnet, dann ist es nicht der Fall, dass die Sonne scheint oder der Wind nicht bläst. Es regnet. Zeigen Sie: Die Sonne scheint nicht.

• erste Prämisse | $r \rightarrow \neg (s \lor)$

Wenn es regnet, dann ist es nicht der Fall, dass die Sonne scheint oder der Wind nicht bläst. Es regnet. Zeigen Sie: Die Sonne scheint nicht.

• erste Prämisse | $r \rightarrow \neg (s \lor \neg)$

Wenn es regnet, dann ist es nicht der Fall, dass die Sonne scheint oder der Wind nicht bläst. Es regnet. Zeigen Sie: Die Sonne scheint nicht.

• erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse |

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse | r

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse | r
- Schlussfolgerung |

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse | r
- Schlussfolgerung | s

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse | r
- Schlussfolgerung | ¬s

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse | r
- Schlussfolgerung | ¬s

1
$$r \rightarrow \neg (s \lor \neg b)$$

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse | r
- Schlussfolgerung | ¬s

$$\begin{array}{ccc}
1 & r \to \neg(s \lor \neg b) \\
2 & r & \vdash \neg s
\end{array}$$

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse | r
- Schlussfolgerung | ¬s

$$\begin{array}{ccc}
1 & r \to \neg(s \lor \neg b) \\
2 & r & \vdash \neg s \\
\hline
3 & \neg(s \lor \neg b) & 1,2,MP
\end{array}$$

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse | r
- Schlussfolgerung | ¬s

$$\begin{array}{cccc} & 1 & r \rightarrow \neg (\mathsf{s} \vee \neg b) \\ & 2 & r & \vdash \neg \mathsf{s} \\ \hline & 3 & \neg (\mathsf{s} \vee \neg b) & \mathsf{1,2,MP} \\ & 4 & \neg \mathsf{s} \wedge b & \mathsf{3,DeM} \end{array}$$

- erste Prämisse | $r \rightarrow \neg (s \lor \neg b)$
- zweite Prämisse | r
- Schlussfolgerung | ¬s

1	$r \rightarrow \neg (s \lor \neg b)$	
2	r	⊢ ¬s
3	$\neg (s \lor \neg b)$	1,2,MP
4	$\neg s \wedge b$	3,DeM
5	¬S	4,Simp. ■

Aufgaben I

Versuchen Sie, nur mittels des Scheffer-Strichs (s. Folie 20) die Wahrheitstabellen für $\neg p$, $p \lor q$, $p \land q$ und $p \to q$ zu rekonstruieren. Das ergibt nur einen Sinn, wenn Sie es selbst versuchen. Sie haben mehr davon, wenn Sie daran scheitern, als wenn Sie gleich Wikipedia nehmen.

Aufgaben II

Versuchen Sie sich an folgenden vier Beweisen.

Hinweis: Sie benötigen, soweit ich sehe, nur die folgenden Schlussregeln:

- Simp. | Simplifikation (auch Konjunktionsreduktion o.ä.)
- MT | Modus Tollens
- MP | Modus Ponens
- DS | Disjunktiver Syllogismus
- Konj. | Konjunktionsregel
- Der Beweis ist sophistisch, oder Achilles holt die Schildkröte ein. Wenn Achilles die Schildkröte einholt, dann versagt die Logik. Die Mathematiker haben alles geprüft, und die Logik versagt nicht. Zeigen/Widerlegen Sie: Der Beweis ist sophistisch.

Aufgaben II

- Pettenkofer lebte weiter, oder seine Hypothese versagte. Wenn die Hypothese versagte, dann wurde Pettenkofer in der Hygiene abgeschrieben. Er schluckte öffentlich eine Kultur Cholerabakterien und wurde in der Hygiene nicht abgeschrieben. Zeigen/Widerlegen Sie: Pettenkofer lebte weiter.
- Der Fischer trinkt gerne Wein, und der Müller singt im Männerchor. Wenn der Veganladenbesitzer Hausbesitzer ist, dann wählt er nicht die Linkspartei. Der Veganladenbesitzer ist Hausbesitzer, oder der Müller singt nicht im Männerchor. Zeigen/Widerlegen Sie: Der Fischer trinkt gern ein Glas Wein, und der Veganladenbesitzer wählt nicht die Linkspartei.
- Wenn Schopenhauer so früh aufstand wie Kant, dann hat er ihn in dieser Hinsicht gut nachgeahmt. Schopenhauer war eingebildt, liebte die Demokratie nicht, und er hatte Wutanfälle. In einem Wutausbruch warf er die Näherin die Stiege hinunter. Er stand so früh auf wie Kant, oder er war nicht eingebildet. Zeigen/Widerlegen Sie: Schopenhauer hat die Näherin die Stiege hinuntergeworfen, und er hat Kant im Frühaufstehen gut nachgeahmt.

Literatur I

Bucher, Theodor. 1998. Einführung in die angewandte Logik. 2. Aufl. Bd. 2231 (Sammlung Göschen). Berlin: de Gruyter.

Partee, Barbara, Alice ter Meulen & Robert E. Wall. 1990. Mathematical methods in linguistics. Dordrecht: Kluwer.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.