BUNDESREPUBLIK DEUTSCHLAND

Rec'd PCT/PTO 25 JAN 2005

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

10/522341

REC'D 1 9 AUG 2003

WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 34 287.3

Anmeldetag:

26. Juli 2002

Anmelder/Inhaber:

BASF Plant Science GmbH, Ludwigshafen/DE

Bezeichnung:

Neue Selektionsverfahren

IPC:

A 01 H, C 12 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 28. Februar 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Luce

Wehner

BEST AVAILABLE COPY

Patentansprüche

10

15

20

25

30

35

- Verfahren zur Herstellung transformierter pflanzlicher Zellen oder Organismen umfassend nachfolgende Schritte:
 - a) Transformation einer Population pflanzlicher Zellen, wobei die Zellen besagter Population mindestens ein Markerprotein enthalten, das für besagte Population direkt oder indirekt einen toxischen Effekt bewirken kann, mit mindestens einer zu insertierenden Nukleinsäuresequenz in Kombination mit mindestens einer Verbindung befähigt zur Verminderung der Expression, Menge, Aktivität und/oder Funktion mindestens eines Markerproteins, und
 - b) Selektion von transformierten pflanzlichen Zellen, die in ihrem Genom besagte Nukleinsäuresequenz aufweisen und die infolge der Wirkung besagter Verbindung gegenüber nichttransformierten Zellen einen Wachstumsvorteil haben, aus besagter Population pflanzlicher Zellen, wobei die Selektion unter Bedingungen durchgeführt wird, bei denen das Markerprotein seinen toxischen Effekt auf die nichttransformierten Zellen ausüben kann.
 - 2. Verfahren nach Anspruch 1, wobei das Markerprotein in der Lage ist, eine für besagte Population pflanzlicher Zellen nicht-toxische Substanz X in eine für besagte Population toxische Substanz Y direkt oder indirekt umzusetzen, umfassend nachfolgende Schritte:
 - a) Transformation der Population pflanzlicher Zellen mit mindestens einer zu insertierenden Nukleinsäuresequenz in Kombination mit mindestens einer Verbindung befähigt zur
 Verminderung der Expression, Menge, Aktivität und/oder Funktion mindestens eines Markerproteins, und
- b) Behandlung besagter Population pflanzlicher Zellen mit der Substanz X in einer Konzentration, die infolge der Umsetzung durch das Markerprotein einen für nicht-transformierte Zellen toxischen Effekt bedingt, und

- Selektion von transformierten pflanzlichen Zellen, die in C) ihrem Genom besagte Nukleinsäuresequenz aufweisen und die infolge der Wirkung besagter Verbindung gegenüber nichttransformierten Zellen einen Wachstumsvorteil haben, aus besagter Population pflanzlicher Zellen, wobei die Selektion unter Bedingungen durchgeführt wird, bei denen das Markerprotein seinen toxischen Effekt auf die nichttransformierten Zellen ausüben kann.
- **10** 3. Verfahren nach Anspruch 2, wobei es sich bei der nichttoxischen Substanz X um eine Substanz handelt, die natürlicherweise in pflanzlichen Zellen oder Organismen nicht oder nur in Konzentration vorkommt, die im wesentlichen keinen toxischen Effekt bewirken können.

15

5

Verfahren nach Anspruch 2 oder 3, wobei es sich bei der Substanz X um eine Substanz handelt ausgewählt aus der Gruppe bestehend aus Pro-Herbiziden, Pro-Antibiotika, Nukleosidanaloga, 5-Fluorocytosin, Auxinamidverbindungen, Naphthalacetamid, Dihaloalkanen, Acyclovir, Ganciclovir, 1,2-Deoxy-2-20 fluoro-eta-D-arabinofuranosil-5-iodouracil, 6-Thioxanthin, Allopurinol, 6-Methylpurindeoxyribonukleosid, 4-Aminopyrazolopyrimidin, 2-Amino-4-methoxy-butansäure, 5-(Trifluoromethyl) thioribose und Allylalkohol.

25

35

40

45

- Verfahren nach einem der Ansprüche 1 bis 4, wobei das Marker-5. protein ausgewählt ist aus der Gruppe bestehend aus Cytosindeaminasen, Cytochrom P-450 Enyzmen, Indolessigsäurehydrolasen, Haloalkandehalogenasen, Thymidinkinasen, Guaninphosphoribosyltransferasen, Hypoxanthinphosphoribosyltrans-30 ferasen, Xanthinguaninphosphoribosyltransferasen, Purinnukleosidphosphorylasen, Phosphonatmonoesterhydrolasen, Indolacetamidsynthasen, Indolacetamidhydrolasen, Adeninphosphoribosyltransferasen, Methoxinindehydrogenasen, Rhizobitoxinsynthasen, 5-Methylthioribosekinasen und Alkoholdehydrogenasen.
 - Verfahren nach einem der Ansprüche 1 bis 5, wobei das Markerprotein kodiert wird durch
 - eine Sequenz beschrieben durch die GenBank Accessiona) Nummer S56903, M32238, NC003308, AE009419, AB016260, NC002147 M26950, J02224, V00470, V00467, U10247, M13422, X00221, M60917, U44852, M61151, AF039169, AB025110, AF212863, AC079674, X77943, M12196, AF172282, X04049 oder AF253472

- b) eine Sequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46 oder 48
- Verfahren nach einem der Ansprüche 1 bis 6, wobei die Verbindung befähigt zur Verminderung der Expression, Menge, Aktivität und/oder Funktion mindestens eines Markerproteins mindestens eine Nukleinsäuresequenz, Ribonukleinsäuresequenz, doppelsträngige Ribonukleinsäuresequenz, antisense-Ribonukleinsäuresequenz, Expressionskassette oder Polypeptidsequenz umfasst.
- Verfahren nach einem der Ansprüche 1 bis 7, wobei die Verbindung befähigt zur Verminderung der Expression, Menge,
 Aktivität und/oder Funktion mindestens eines Markerproteins ein DNA-Konstrukt ist, welches umfasst
 - a) mindestens eine Expressionskassette geeignet zur Expression einer Ribonukleinsäuresequenz und/oder gegebenenfalls eines Proteins, wobei besagte Nukleinsäuresequenz und/oder Protein in der Lage ist, die Expression, Menge, Aktivität und/oder Funktion des Markerproteins zu vermindern, oder
- b) mindestens eine Sequenz, die eine teilweise oder vollständige Deletion oder Inversion der Sequenz kodierend für besagtes Markerprotein bewirkt und so eine Verminderung der Expression, Menge, Aktivität und/oder Funktion des Markerproteins ermöglicht, sowie
 gegebenenfalls weitere Funktionselemente, die besagte Deletion oder Inversion erleichtern und/oder fördern, oder
- c) mindestens eine Sequenz, die eine Insertion in die
 Sequenz kodierend für das Markerprotein bewirkt und
 so eine Verminderung der Expression, Menge, Aktivität
 und/oder Funktion des Markerproteins ermöglicht, sowie
 gegebenenfalls weitere Funktionselemente, die besagte
 Insertion erleichtern und/oder fördern.

20

Ý

Ž

5

10

4

9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Verminderung der Expression, Menge, Aktivität und/oder Funktion des Markerproteins durch mindestens eines der nachfolgenden Verfahren realisiert wird

a) Einbringen mindestens einer doppelsträngigen Markerprotein Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten.

- b) Einbringen mindestens einer Markerprotein antisense-Ribonukleinsäuresequenzen oder einer deren Expression gewährleistenden Expressionskassette.
- c) Einbringen mindestens einer Markerprotein antisense-Ribonukleinsäuresequenze kombiniert mit einem Ribozym oder
 einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten.
- d) Einbringen mindestens einer Markerprotein sense-Ribonukleinsäuresequenzen zur Induktion einer Kosuppression oder einer deren Expression gewährleistenden Expressionskassette.
- e) Einbringen mindestens eines DNA-oder Protein-bindenden Faktors gegen ein Markerprotein-Gen, -RNA oder -Protein oder einer dessen Expression gewährleistenden Expressionskassette.
- f) Einbringen mindestens einer den Markerprotein RNA-Abbau bewirkenden viralen Nukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette.
- g) Einbringen mindestens eines Konstruktes zur Erzeugung 35 einer Insertion, Deletion, Inversion oder Mutation in einem Markerprotein-Gen.
- 10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die Inaktivierung des Markerprotein-Gens durch das Einbringen einer sequenzspezifischen Rekombinase realisiert wird.
- Verfahren nach einem der Ansprüche 1 bis 9, wobei die Inaktivierung des Markerprotein-Gens durch das Einbringen eines sequenzspezifischen Enzyms geeignet zur Induktion von DNA-Doppelstrangbrüchen realisiert wird.

12. Verfahren nach einem der Ansprüche 1 bis 11, wobei die Inaktivierung des Markerprotein-Gens durch Induktion einer intramolekularen oder intermolekularen homologen Rekombination realisiert wird.

5

- 13. Verfahren nach Anspruch 12, wobei die homologe Rekombination durch Einwirkung eines sequenzspezifischen Enzyms geeignet zur Induktion von DNA-Doppelstrangbrüchen gefördert wird.
- 10 14. Verfahren nach nach einem der Ansprüche 1 bis 13, wobei die Inaktivierung des Markerproteins durch Integration einer DNA-Sequenz in ein Markerprotein-Gen realisiert wird, umfassend nachfolgende Schritte:
- i) Einbringen eines Insertionskonstruktes und mindestens eines Enzyms geeignet zur Induktion von DNA-Doppelstrangbrüchen an einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen in oder in der Nähe des Markerprotein-Gens, und

20

- ii) Induktion von DNA-Doppelstrangbrüchen an den Erkennungssequenzen zur gezielten Induktion von DNA-Doppelstrangbrüchen in oder in der Nähe des Markerprotein-Gens, und
- iii) Insertion des Insertionskonstruktes in das MarkerproteinGen, wobei die Funktionalität des Markerprotein-Gens und
 bevorzugt die Funktionalität der Erkennungssequenz
 zur gezielten Induktion von DNA-Doppelstrangbrüchen
 inaktiviert wird, so dass besagte Erkennungssequenz
 nicht mehr durch das Enzym geeignet zur Induktion von
 DNA-Doppelstrangbrüchen geschnitten werden kann, und
 - iV) Selektion von Pflanzen oder pflanzlichen Zellen, bei denen das Insertionskonstrukt in das Markerproteingen insertiert wurde.
 - 15. Verfahren nach einem der Ansprüche 11, 13 oder 14, wobei das sequenzspezifische Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen eine Homing-Endonuklease ist.

40

45

35

16. Verfahren nach einem der Ansprüche 1 bis 15, wobei zusammen mit der zu insertierenden Nukleinsäuresequenz eine Sequenz kodierend für eine Resistenz gegen mindestens ein Toxin, Antibiotikum oder Herbizid eingebracht wird, und die Selektion zusätzlich unter Einsatz des Toxins, Antibiotikums oder Herbizids erfolgt.

17. Verfahren nach einem der Ansprüche 1 bis 16, wobei die in das Genom der pflanzlichen Zelle oder des pflanzlichen Organismus zu insertierende Nukleinsäuresequenz mindestens eine Expressionskassette umfasst, wobei besagte Expressions-

kassette unter Kontrolle eines in pflanzlichen Zellen oder pflanzlichen Organismen funktionellen Promotors eine RNA und/oder ein Protein exprimieren kann, welche nicht die Verminderung der Expression, Menge, Aktivität und/oder Funktion eines Markerproteins bewirken.

10

5

18. Verfahren nach einem der Ansprüche 1 bis 17, wobei die pflanzliche Zelle Teil eines pflanzlichen Organismus oder eines davon abgeleiteten Gewebes, Teils, Organs, Zellkultur oder Vermehrungsmaterials ist.

15

20

25

- 19. Doppelsträngiges RNA-Molekül umfassend
 - a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil des "sense"-RNA-Transkriptes einer Nukleinsäuresequenz kodierend für ein Markerprotein, und
 - b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen - bevorzugt vollständig komplementären ist.
- 20. Doppelsträngiges RNA-Molekül nach Anspruch 19, wobei das Markerprotein wie in einem der Ansprüche 2 bis 6 definiert ist.

30

21. Doppelsträngiges RNA-Molekül nach einem der Ansprüche 19 oder 20, wobei "sense"-RNA-Strang und "antisense"-RNA-Strang kovalent in Form eines invertierten Repeats miteinander verbunden sind.

35

40

- 22. Transgene Expressionskassette enthaltend in funktioneller Verknüpfung mit einem in pflanzlichen Organismen funktionellen Promotor eine Nukleinsäuresequenz kodierend für ein doppelsträngiges RNA-Molekül gemäß einem der Ansprüche 19 bis 21.
- 23. Transgene Expressionskassette enthaltend eine Nukleinsäuresequenz kodierend für zumindest einen Teil eines Markerproteins, wobei besagte Nukleinsäuresequenz mit einem in pflanzlichen Organismen funktionellen Promotor in antisenseOrientierung funktionell verknüpft ist.

- 24. Transgene Expressionskassette nach Anspruch 23, wobei das Markerprotein wie in einem der Ansprüche 2 bis 6 definiert ist.
- 5 25. Transgener Vektor enthaltend eine transgene Expressionskassette gemäß einem der Ansprüche 22 bis 24.
- 26. Transgener pflanzlicher Organismus enthaltend ein doppelsträngiges RNA-Molekül gemäß einem der Ansprüche 19 bis 21, eine transgene Expressionskassette gemäß einem der Ansprüche 22 bis 24 oder einen transgenen Vektor gemäß Anspruch 25.
- Transgener pflanzlicher Organismus nach Anspruch 26, ausgewählt aus der Gruppe der Pflanzen bestehend aus Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen, Zuckerrohr, Raps, Kresse, Arabidopsis, Kohlarten, Soja, Alfalfa, Erbse, Bohnengewächsen, Erdnuss, Kartoffel, Tabak, Tomate, Aubergine, Paprika, Sonnenblume, Tagetes, Salat, Calendula, Melone, Kürbis und Zucchini.
- 28. Gewebe, Organ, Teil, Zelle, Zellkultur oder Vermehrungsgut abgeleitet von einem transgenen pflanzlichen Organismus gemäß einem der Ansprüche 26 oder 27.

30

35

40

Neue Selektionsverfahren

Beschreibung

5

Die vorliegende Erfindung betrifft Verfahren zur Herstellung transformierter pflanzlicher Zellen oder Organismen durch Transformation einer Population pflanzlicher Zellen, die mindestens ein Markerprotein mit einem für diese direkt oder indirekt toxischen Effekt umfasst, mit mindestens einer zu insertierenden Nukleinsäuresequenz in Kombination mit mindestens einer Verbindung – bevorzugt einem DNA-Konstrukt – befähigt zur Verminderung der Expression, Menge, Aktivität und/oder Funktion des Markerproteins, wobei die transformierten pflanzlichen Zellen infolge der Wirkung besagter Verbindung gegenüber nicht-transformierten Zellen einen Wachstumsvorteil haben.

Die Einführung genetischen Materials in Zielzellen gelingt meist nur in einer sehr begrenzten Anzahl von Zellen einer Population.

- 20 Dies macht die Unterscheidung und Isolierung von erfolgreich transformierten von nicht-transformierten Zellen erforderlich, ein Verfahren das als Selektion bezeichnet wird. Traditionell erfolgt die Selektion mittels einer sogenannten positiven Selektion, wobei die transformierte Zelle in die Lage versetzt
- 25 wird, zu wachsen und zu überleben, wohingegen die untransformierte Zelle im Wachstum gehemmt oder abgetötet wird
 (McCormick et al. (1986) Plant Cell Reports 5:81-84). Üblicherweise wird eine derartige positive Selektion durch Gene realisiert, die für eine Resistenz gegen ein Biozid kodieren (z.B.
- 30 ein Herbizid wie Phosphinothricin, Glyphosat oder Bromoxynil, einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456) oder ein Antibiotikum wie Tetracyclin, Ampicillin, Kanamycin, G 418, Neomycin, Bleomycin oder Hygromycin). Derartige Gene werden auch als positive Selektionsmarker bezeichnet. Der
- 35 positive Selektionsmarker wird gekoppelt (physikalisch oder mittels Cotransformation) mit der in das Zellgenom einzuführenden Nukleinsäuresequenz in die Zelle eingebracht. Anschließend werden die Zellen auf einem Medium unter dem entsprechenden Selektionsdruck (z.B. in Gegenwart eines entsprechenden Antibiotikums oder
- 40 Herbizids) kultiviert, wodurch die transformierten Zellen aufgrund der erworbenen Resistenz gegen besagten Selektionsdruck einen Wachstums-/Überlebensvorteil haben und so selektioniert werden können. Beispielhaft als positive Selektionsmarker seien genannt:

i

30

2

- Phosphinothricinacetyltransferasen (PAT) (auch Bialophos®-Resistenz; bar) acetylieren die freie Aminogruppe des Glutaminsynthaseinhibitors Phosphinothricin (PPT) und erreichen damit eine Detoxifizierung (de Block et al. (1987)
 EMBO J 6:2513-2518; Vickers JE et al. (1996) Plant Mol Biol Reporter 14:363-368; Thompson CJ et al. (1987) EMBO J 6:2519-2523).
- 5-Enolpyruvylshikimat-3-phosphatsynthasen (EPSPS) verleihen 10 eine Resistenz gegen das unselektive Herbizid Glyphosat® (N-(Phosphonomethyl)glycin; Steinrucken HC et al. (1980) Biochem Biophys Res Commun 94:1207-1212; Levin JG und Sprinson DB (1964) J Biol Chem 239:1142-1150; Cole DJ (1985) Mode of action of glyphosate; A literature analysis, p. 48-74. In: Grossbard E und Atkinson D (eds.) The herbicide glyphosate. 15 Buttersworths, Boston.). Glyphosat-tolerante EPSPS Varianten zur Verwendung als Selektionsmarker sind beschrieben (Padgette SR et al. (1996). New weed control opportunities: development of soybeans with a Roundup Ready $^{\mathtt{M}}$ gene. In: Herbicide 20 Resistant Crops (Duke SO, ed.), pp. 53-84. CRC Press, Boca Raton, FL; Saroha MK und Malik VS (1998) J Plant Biochemistry and Biotechnology 7:65-72; Padgette SR et al. (1995) Crop Science 35(5):1451-1461; US 5,510,471; US 5,776,760; US 5,864,425; US 5,633,435; US 5,627;061; US 5,463,175; 25 EP-A 0 218 571).
 - Neomycinphosphotransferasen verleihen eine Resistenz gegen Aminoglykosid-Antibiotika wie Neomycin, G418, Hygromycin, Paromomycin oder Kanamycin, indem sie durch eine Phosphory-lierungsreaktion deren inhibierende Wirkung reduzieren (Beck et al. (1982) Gene 19:327-336).
- 2-Desoxyglukose-6-phosphatphosphatasen verleihen eine Resistenz gegen 2-Desoxyglukose (EP-A 0 807 836; Randez-Gil et al. (1995) Yeast 11:1233-1240; Sanz et al. (1994) Yeast 10:1195-1202).
- Acetolactatsynthasen verleihen eine Resistenz gegen
 Imidazolinon/Sulfonylharnstoff-Herbizide (z.B. Imazzamox,

 Imazapyr, Imazaquin, Imazethapyr, Amidosulforon, Azimsulfuron, Chlorimuronethyl, Chlorsulfuron; Sathasivan K
 et al. (1990) Nucleic Acids Res 18(8):2188).

Darüber hinaus sind Resistenzgene gegen die Antibiotika Hygro-45 mycin (Hygromycinphosphotransferasen), Chloramphenicol (Chloramphenicolacetyltransferase), Tetracyclin, Streptomycin, Zeocin und Ampicillin (ß-Lactamase Gen; Datta N, Richmond MH.(1966) Biochem

J 98(1):204-9) beschrieben.

Gene wie die Isopentenyltransferase (ipt) aus Agrobacterium tumefaciens (strain:PO22) (Genbank Acc.-No.: AB025109) können eben5 falls als Selektionsmarker eingesetzt werden. Das ipt Gen ist
ein Schlüsselenzym der Cytokin-Biosynthese. Seine Überexpression
erleichtert die Regeneration von Pflanzen (z.B. Selektion auf
Cytokin-freiem Medium) (Ebinuma H et al. (2000) Proc Natl Acad
Sci USA 94:2117-2121; Ebinuma H et al. (2000) Selection of

Marker-free transgenic plants using the oncogenes (ipt, rol A, B,
C) of Agrobacterium as selectable markers, In Molecular Biology
of Woody Plants. Kluwer Academic Publishers). Nachteilig ist hier
zum einen, dass der Selektionsvorteil auf meist subtilen Unterschieden in der Zellproliferation beruht, zum anderen die Pflanze
durch die Transformation mit einem Onkogen unerwünschte Eigenschaften (Galltumorbildung) erhält.

Verschiedene weitere positive Selektionsmarker sind in EP-A 0 601 092 beschrieben. Beispielhaft sind zu nennen: $\beta\text{-Glucuronidase}$ (in Verbindung mit z.B. Cytokininglucuronid), Mannose-6-phosphat-Isomerase (in Verbindung mit Mannose), UDP-Galaktose-4-Epimerase (in Verbindung mit z.B. Galactose).

Negative Selektionsmarker werden zur Selektion von Organismen mit erfolgreich deletierten Markersequenzen eingesetzt (Koprek T et 25 al. (1999) Plant J 19(6):719-726). In Gegenwart eines negativen Selektionsmarkers wird die entsprechende Zelle abgetötet oder erfährt einen Wachstumsnachteil. Bei der negativen Selektion wird beispielsweise durch den in die Pflanze eingebrachten negativen Selektionsmarker eine Verbindung, die ansonsten für die Pflanze keine nachteilige Wirkung hat, in eine Verbindung mit nachteiliger (d.h. toxischer) Wirkung umgesetzt. Beispiele für negative Selektionsmarker umfassen: Thymidinkinase (TK) z.B. des Herpes Simplex Virus (Wigler et al. (1977) Cell 11:223), zelluläre Adeninphosphoribosyltransferase (APRT) (Wigler et al. (1979) Proc 35 Natl Acad Sci USA 76:1373), Hypoxanthinphosphoribosyltransferase (HPRT) (Jolly et al. (1983) Proc Natl Acad Sci USA 80:477), Diphtheria Toxin A Fragment (DT-A), die bakterielle Xanthin-Guaninphosphoribosyltransferase (gpt; Besnard et al. (1987) Mol. Cell. Biol. 7:4139; Mzoz and Moolten (1993) Human Gene Therapy $^{f 40}$ 4:589-595), das codA Genprodukt kodierend für eine Cytosindeaminase (Gleave AP et al. (1999) Plant Mol Biol. 40(2):223-35; Perera RJ et al. (1993) Plant Mol Biol 23(4): 793-799; Stougaard J; (1993) Plant J 3:755-761; EP-A1 595 873), das Cytochrom P450 Gen (Koprek et al. (1999) Plant J 16:719-726), Gene kodierend für eine Haloalkandehalogenase (Naested H (1999) Plant J 18:571-576), das iaaH Gen (Sundaresan V et al. (1995) Genes & Development 9:1797-1810) oder das tms2 Gen (Fedoroff NV & Smith DL (1993)

Plant J 3: 273-289). Die negativen Selektionsmarker werden meist in Kombination mit sogenannten "Prodrugs" oder "Pro-Toxinen" eingesetzt, Verbindungen die durch die Aktivität des Selektionsmarkers in Toxine umgesetzt werden.

5

5-Methylthioribose-(MTR)-kinase ist ein Enzym, dessen enzymatische Aktivität nicht in Säugern, wohl aber in Pflanzen, Bakterien und Protozoen beschrieben ist. Das Enzym kann ein MTR-Analog (5-(Trifluoromethyl)thioribose) als sogenanntes "subversives 10 Substrat" des Methionin-Ausweich-Stoffwechselwegs ("Salvage Pathway") über ein instabiles Intermediat zu der toxischen Verbindung Carbothionyldifluorid umsetzen.

Besagte Selektionssysteme haben verschiedene Nachteile. Der 15 eingebrachte Selektionsmarker (z.B. Antibiotikaresistenz) hat seine Berechtigung allein während der Transformation und Selektion stellt jedoch später ein in der Regel unnötiges und oft auch unerwünschtes Proteinprodukt dar. Dies kann aus Gründen der Verbraucherakzeptanz und/oder der Zulassung als Lebens-20 und/oder Futtermittel unvorteilhaft sein. Nachteilig ist in diesem Zusammenhang ferner, dass der zur Selektion verwendete Selektionsmarker in der Regel genetisch mit der in das Genom zu insertierenden Nukleinsäuresequenz gekoppelt ist und nicht durch Segregation im Rahmen der Vermehrung oder Kreuzung entkoppelt 25 werden kann. In der Regel ist eine Deletion der Markersequenz erforderlich, was zusätzliche Arbeitsschritte erfordert. Darüberhinaus erfordern biotechnologische Arbeiten in zahlreichen Fällen eine Mehrfachtransformation mit verschiedenen Genkonstrukten. Hier ist für jeden Transformationsschritt ein neuer Selektions-30 marker erforderlich, wenn nicht der zuvor verwendete zunächst mühsam deletiert werden soll. Dies erfordert jedoch eine breite Palette gut funktionierender Selektionsmarker, die für die meisten pflanzlichen Organismen nicht zur Verfügung stehen.

35 Es stellte sich folglich die Aufgabe, neue Selektionsverfahren zur Selektions transformierter pflanzlicher Zellen und Organismen bereitzustellen, die möglichst die Nachteile der vorhandenen Systeme nicht mehr aufweisen. Diese Aufgabe wird durch die vorliegende Erfindung gelöst.

40

Ein erster Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung transformierter pflanzlicher Zellen oder Organismen umfassend nachfolgende Schritte:

45 a) Transformation einer Population pflanzlicher Zellen, wobei die Zellen besagter Population mindestens ein Markerprotein enthalten, das für besagte Population direkt oder indirekt

einen toxischen Effekt bewirken kann, mit mindestens einer zu insertierenden Nukleinsäuresequenz in Kombination mit mindestens einer Verbindung befähigt zur Verminderung der Expression, Menge, Aktivität und/oder Funktion mindestens eines Markerproteins, und

b) Selektion von transformierten pflanzlichen Zellen, die in ihrem Genom besagte Nukleinsäuresequenz aufweisen und die infolge der Wirkung besagter Verbindung gegenüber nichttransformierten Zellen einen Wachstumsvorteil haben, aus besagter Population pflanzlicher Zellen, wobei die Selektion unter Bedingungen durchgeführt wird, bei denen das Markerprotein seinen toxischen Effekt auf die nicht transformierten Zellen ausüben kann.

15

5

In einer bevorzugten Ausführungsform ist das Markerprotein ein Protein, dass in der Lage ist, eine für besagte Population pflanzlicher Zellen nicht-toxische Substanz X in eine für besagte Population toxische Substanz Y direkt oder indirekt umzusetzen. 20 Das erfindungsgemäße Verfahren umfasst in diesem Fall bevorzugt nachfolgende Schritte:

- a) Transformation der Population pflanzlicher Zellen mit mindestens einer zu insertierenden Nukleinsäuresequenz in Kombination mit mindestens einer Verbindung befähigt zur Verminderung der Expression, Menge, Aktivität und/oder Funktion mindestens eines Markerproteins, und
- b) Behandlung besagter Population pflanzlicher Zellen mit der

 Substanz X in einer Konzentration, die infolge der Umsetzung
 durch das Markerprotein einen für nicht-transformierte Zellen
 toxischen Effekt bedingt, und
- c) Selektion von transformierten pflanzlichen Zellen, die in ihrem Genom besagte insertierte Nukleinsäuresequenz aufweisen und die infolge der Wirkung besagter Verbindung gegenüber nicht-transformierten Zellen einen Wachstumsvorteil aufweisen, aus besagter Population pflanzlicher Zellen, wobei die Selektion unter Bedingungen durchgeführt wird, bei denen das Markerprotein seinen toxischen Effekt auf die nicht transformierten Zellen ausüben kann.

Bevorzugt handelt es sich bei der nicht-toxischen Substanz X um eine Substanz, die natürlicherweise in pflanzlichen Zellen oder Organismen nicht oder nur in Konzentration vorkommt, die im wesentlichen keinen toxischen Effekt bewirken können. Bevorzugt wird die nicht-toxische Substanz X im Rahmen des erfindungs-

gemäßen Verfahrens exogen z.B. über das Medium oder das wachstumssubstrat appliziert.

Der Begriff "Verbindung befähigt zur Verminderung der Expression,

5 Menge, Aktivität und/oder Funktion mindestens eines Markerproteins" ist breit zu verstehen und meint allgemein alle Verbindungen, die direkt oder indirekt, alleine oder in Kooperation
mit anderen Faktoren eine Verminderung der Proteinmenge, RNAMenge, Genaktivität, Proteinaktivität – oder funktion mindestens

10 eines Markerproteins bewirken. Besagte Verbindungen sind infolge
auch unter der Bezeichnung "anti-Markerprotein"-Verbindungen
zusammengefasst. Der Begriff "anti-Markerprotein"-Verbindung
schließt insbesondere – jedoch nicht einschränkend – die im
Rahmen des erfindungsgemäßen Verfahren in den bevorzugten Ausführungsformen zum Einsatz kommenden Nukleinsäuresequenzen,
Ribonukleinsäuresequenzen, doppelsträngigen Ribonukleinsäuresequenzen, antisense-Ribonukeinsäuresequenzen, Expressionskassetten, Peptide, Proteine oder andere Faktoren ein.

- 20 In einer bevorzugten Ausführungsform meint "anti-Markerprotein"-Verbindung ein DNA-Konstrukt umfassend
- a) mindestens eine Expressionskassette geeignet zur Expression einer Ribonukleinsäuresequenz und/oder gegebenenfalls eines Proteins, wobei besagte Nukleinsäuresequenz und/oder Protein in der Lage ist, die Expression, Menge, Aktivität und/oder Funktion des Markerproteins zu vermindern, oder
- b) mindestens eine Sequenz, die eine teilweise oder vollständige Deletion oder Inversion der Sequenz kodierend für
 besagtes Markerprotein bewirkt und so eine Verminderung
 der Expression, Menge, Aktivität und/oder Funktion des
 Markerproteins ermöglicht, sowie gegebenenfalls weitere
 Funktionselemente, die besagte Deletion oder Inversion
 erleichtern und/oder fördern, oder
- c) mindestens eine Sequenz, die eine Insertion in die Sequenz kodierend für das besagte Markerprotein bewirkt und so eine Verminderung der Expression, Menge, Aktivität und/oder
 40 Funktion des Markerproteins ermöglicht, sowie gegebenenfalls weitere Funktionselemente, die besagte Insertion erleichtern und/oder fördern.

Das erfindungsgemäße Verfahren hebt die negativ-selektive

45 Wirkung des Markerproteins auf. Insofern wirkt eine "antiMarkerprotein"-Verbindungen direkt (z.B. über die Inaktivierung
mittels Insertion in das Gen kodierend für das Markerprotein)

oder indirekt (z.B. mittels der durch die Expressionskassette exprimierten Ribonukleinsäuresequenz und/oder gegebenenfalls des davon translatierte Proteins) als positiver Selektionsmarker. Das erfindungsgemäße Selektionssytem sei infolge als "reverses Selektionssystem" bezeichnet, da es die negativ-selektive Wirkung des Markerproteins "revertiert".

Das erfindungsgemäße Verfahren bedeutet eine sprunghafte Verbreiterung des Repertoirs an positiven Selektionsverfahren zur 10 Selektion transformierter pflanzlicher Zellen.

Vorteilhaft ist ferner, dass in bestimmten, bevorzugten Ausführungsform (z.B. durch Wirkung einer doppelsträngigen oder antisense RNA) der Selektionseffekt ohne Expression eines Fremdproteins realisiert werden kann (s.u.).

Vorteilhaft ist darüber hinaus, dass das zur Selektion indirekt verwendete Markerprotein (z.B. der negative Selektionsmarker) nicht genetisch mit der in das Genom zu insertierenden Nuklein20 säuresequenz gekoppelt ist. Im Unterschied zu den ansonsten üblichen Selektionsverfahren kann das Markerprotein - wenn es sich um ein Transgen handelt - durch einfache Segregation im Rahmen nachfolgender Vermehrung oder Kreuzung entfernt werden.

25 "Pflanzliche Zelle" meint im Rahmen der vorliegenden Erfindung jegliche Art von Zelle, die von einem pflanzlichen Organismus abgeleitet oder in diesem vorhanden ist. Der Begriff umfasst dabei beispielhaft Protoplasten, Kallus- oder Zellkulturen, Mikrosporen, Pollen, Zellen in Form von Geweben wie Blättern,
30 Meristem, Blüten, Embryonen, Wurzeln usw. Insbesondere sind all solche Zellen und Zellpopulationen umfasst, die sich als Zielgeweben für eine Transformation eignen.

"Pflanzlicher Organismus" umfasst dabei jeden Organismus, der 35 zur Photosynthese befähigt ist, sowie die von diesem abgeleitete Zellen, Gewebe, Teile oder Vermehrungsgut (wie Samen oder Früchte). Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. Einjährige, mehrjährige, monocotyledone und 40 dicotyledone Pflanzen sowie Gymnospermen sind bevorzugt.

"Pflanze" im Rahmen der Erfindung meint alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. Eingeschlossen unter dem Begriff sind die reifen Pflanzen, Saat-45 gut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut (zum Beispiel Knollen, Samen oder Früchte), Pflanzenorgane, Gewebe, Protoplasten, Kallus und andere Kulturen, zum

Beispiel Zellkulturen, sowie alle anderen Arten von Gruppierungen von Pflanzenzellen zu funktionellen oder strukturellen Einheiten. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge,

- 5 unreife Pflanze in einem frühen Entwicklungsstadium. "Pflanze" umfasst alle einjährigen und mehrjährige, monokotyledonen und dikotyledonen Pflanzen und schließt beispielhaft jedoch nicht einschränkend solche der Gattungen Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium,
- 10 Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solarium, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium,
- 15 Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Secale, Triticum, Sorghum, Picea und Populus ein.

Bevorzugt sind Pflanzen nachfolgender Pflanzenfamilien: Amaranth20 aceae, Asteraceae, Brassicaceae, Carophyllaceae, Chenopodiaceae,
Compositae, Cruciferae, Cucurbitaceae, Labiatae, Leguminosae,
Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceae,
Rubiaceae, Saxifragaceae, Scrophulariaceae, Solanacea,
Sterculiaceae, Tetragoniacea, Theaceae, Umbelliferae.

25

Bevorzugte monokotyle Pflanzen sind insbesondere ausgewählt aus den monokotylen Kulturpflanzen, wie zum Beispiel der Familie der Gramineae wie Alfalfa, Reis, Mais, Weizen oder andere Getreidearten wie Gerste, Hirse, Roggen, Triticale oder Hafer sowie dem 30 Zuckerrohr sowie allen Arten von Gräsern.

Bevorzugte dikotyle Pflanzen sind insbesondere ausgewählt aus den dikotylen Kulturpflanzen, wie zum Beispiel

- 35 Asteraceae wie Sonnenblume, Tagetes oder Calendula und andere mehr,
 - Compositae, besonders die Gattung Lactuca, ganz besonders die Art sativa (Salat) und andere mehr,

40

- Cruciferae, besonders die Gattung Brassica, ganz besonders die Arten napus (Raps), campestris (Rübe), oleracea cv Tastie (Kohl), oleracea cv Snowball Y (Blumenkohl) und oleracea cv Emperor (Broccoli) und weitere Kohlarten; und der Gattung
- Arabidopsis, ganz besonders die Art thaliana sowie Kresse oder Canola und andere mehr,

- Cucurbitaceae wie Melone, Kürbis oder Zucchini und andere mehr,
- Leguminosae besonders die Gattung Glycine, ganz besonders die Art max (Sojabohne) sowie Alfalfa, Erbse, Bohnengewächsen oder Erdnuss und andere mehr
- Rubiaceae, bevorzugt der Unterklasse Lamiidae wie beispielsweise Coffea arabica oder Coffea liberica (Kaffestrauch) und andere mehr,

10

5

- Solanaceae besonders die Gattung Lycopersicon, ganz besonders die Art esculentum (Tomate), die Gattung Solanum, ganz besonders die Art tuberosum (Kartoffel) und melongena (Aubergine) und die Gattung Capsicum, ganz besonders die Art annum (Pfeffor) gowie Mabak und andere die
- 15 fer) sowie Tabak und andere mehr,
 - Sterculiaceae, bevorzugt der Unterklasse Dilleniidae wie beispielsweise Theobroma cacao (Kakaostrauch) und andere mehr,
- 20 Theaceae, bevorzugt der Unterklasse Dilleniidae wie beispielsweise Camellia sinensis oder Thea sinensis (Teestrauch) und andere mehr,
- Umbelliferae, besonders die Gattung Daucus (ganz besonders die Art carota (Karrotte)) und Apium (ganz besonders die Art graveolens dulce (Sellerie)) und andere mehr;

sowie Lein, Baumwolle, Hanf, Flachs, Gurke, Spinat, Möhre, Zuckerrübe und den verschiedenen Baum-, Nuss- und Weinarten, 30 insbesondere Banane und Kiwi.

Pflanzliche Organismen im Sinne der Erfindung sind weiterhin weitere photosynthetisch aktive befähigte Organismen, wie zum Beispiel Algen, Cyanobakterien sowie Moose. Bevorzugte Algen sind 35 Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella. Insbesondere bevorzugt ist Synechocystis.

Besonders bevorzugt ist die Gruppe der Pflanzen bestehend aus 40 Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen, Zuckerrohr, Raps, Kresse, Arabidopsis, Kohlarten, Soja, Alfalfa, Erbse, Bohnengewächsen, Erdnuss, Kartoffel, Tabak, Tomate, Aubergine, Paprika, Sonnenblume, Tagetes, Salat, Calendula, Melone, Kürbis und Zucchini.

Am meisten bevorzugt sind

5

10

30

- a) Pflanzen, die zur Ölproduktion geeignet sind, wie beispielsweise Raps, Sonnenblume, Sesam, Färberdistel (Carthamus
 tinctorius), Ölbaum, Soja, Mais, Erdnuss, Rizinus, Ölpalme,
 Weizen, Kakaostrauch oder verschiedene Nussarten wie beispielsweise Walnuss, Kokosnuss oder Mandel. Unter diesen
 wieder besonders bevorzugt sind dikotyledonen Pflanzen, insbesondere Raps, Soja und Sonnenblume.
- b) Pflanzen, die der Stärkeproduktion dienen, wie beispielsweise Mais, Weizen oder Kartoffel.
- c) Pflanzen, die als Nahrungs- und/oder Futtermittel und/oder
 Nutzpflanze genutzt werden und bei denen eine Resistenz gg.
 Pathogene vorteilhaft wäre, wie beispielsweise Gerste,
 Roggen, Reis, Kartoffel, Baumwolle, Flachs, Lein.
- d) Pflanzen, die zur Produktion von Feinchemikalien wie bei spielsweise Vitaminen und/oder Carotinoiden dienen können, wie beispielsweise Raps.

"Population pflanzlicher Zellen" meint jegliche Gruppe von pflanzlichen Zellen die im Rahmen der vorliegenden Erfindung 25 einer Transformation unterworfen werden kann und von der nach dem erfindungsgemäßen Verfahren transformierte transgene pflanzliche Zellen erhalten und isoliert werden können. Besagte Population kann dabei beispielsweise auch ein pflanzliches Gewebe, Organ oder eine Zellkultur usw. sein.

"Genom" meint die Gesamtheit der Erbinformation einer pflanzlichen Zelle und umfasst sowohl die genetische Information des Zellkerns als auch die der Plastiden (z.B. Chloroplasten) und Mitochondrien. Bevorzugt meint Genom jedoch die genetische 35 Information des Zellkerns (beispielsweise der nukleären Chromosomen).

"Selektion" meint das Identifizieren und/oder Isolieren von erfolgreich transformieren pflanzlichen Zellen aus einer Popu40 lation nicht-transformierter Zellen unter Einsatz des erfindungsgemäßen Verfahrens. Dabei ist es nicht zwingend erforderlich, dass die Selektion unmittelbar nach der Transformation direkt mit den transformierten Zellen erfolgt. Es ist auch möglich, die Selektion erst zu einem späteren Zeitpunkt, ja sogar bei einer späteren Generation der aus der Transformation resultierenden pflanzlichen Organismen (bzw. von diesen abgeleiteten Zellen, Geweben, Organen oder Vermehrungsgut) vorzunehmen. So können

beispielsweise Arabidopsispflanzen direkt mit z.B. der Vakuuminfiltrationsmethode transformiert werden (Clough S & Bent A (1998) Plant J 16(6):735-43; Bechtold N et al. (1993) CR Acad Sci Paris 1144(2):204-212) und ergeben infolge transgene Samen, 5 welche anschließend der Selektion ausgesetzt werden können.

Die Tatsache, dass die zu insertierende Nukleinsäuresequenz "in Kombination mit" der "anti-Markerprotein"-Verbindung (beispielsweise einem DNA-Konstrukt) transformiert wird, ist breit zu ver-10 stehen und meint, dass mindestens eine zu insertierende Nukleinsäuresequenz und mindestens eine "anti-Markerprotein"-Verbindung miteinander funktionell gekoppelt sind, so dass das Vorliegen der "anti-Markerprotein"-Verbindung in der pflanzlichen Zelle - und des damit verbundenen Selektionsvorteils - das parallele Vor-15 liegen der insertierten Nukleinsäuresequenz als wahrscheinlich anzeigt. Die zu insertierende Nukleinsäuresequenz und die "anti-Markerprotein"-Verbindung (z.B. ein DNA-Konstrukt) können dabei bevorzugt, jedoch nicht zwingend, Teil eines einzigen Nukleinsäurekonstruktes (z.B. eines Transformationskonstruktes oder 20 Transformationsvektors) sein, also physikalisch-chemisch durch eine kovalente Bindung gekoppelt vorliegen. Sie können jedoch auch getrennt, beispielsweise im Rahmen einer Co-Transformation, gemeinsam eingeführt werden und auch so ihre Funktion im Rahmen des erfindungsgemäßen Verfahrens wahrnehmen.

25

"Nicht toxische Substanz X" meint allgemein Substanzen, die im Vergleich zu ihrem Umsetzungsprodukt Y - unter ansonsten gleichen Bedingungen - eine verminderte, bevorzugt eine im wesentlichen fehlende biologische Aktivität – bevorzugt Toxizität – aufweisen. 30 Dabei ist die Toxizität der Substanz Y mindestens doppelt so hoch wie die der Substanz X, bevorzugt mindestens fünffach so hoch, besonders bevorzugt mindestens zehnfach so hoch, ganz besonders bevorzugt mindestens zwanzigfach so hoch, am meistens bevorzugt mindestens einhundertfach so hoch. "Gleiche Bedingungen" meint 35 dabei, dass alle Bedingungen abgesehen von den unterschiedlichen Substanzen X bzw. Y gleich gehalten werden. Es werden demnach gleiche molare Konzentrationen von X bzw. Y, bei gleichem Medium, Temperatur, Organismenart und -dichte etc. eingesetzt. Die Umwandlungen der Substanz X in die Substanz Y kann auf ver-40 schiedene Weise z.B. durch Hydrolyse, Deaminierung, Verseifung, Dephosphorylierung, Phosphorylierung, Oxidation oder eine andere Art der Aktivierung, Metabolisierung oder Umsetzung realisiert werden. Beispielhaft - jedoch nicht einschränkend - kann die Substanz X die inaktive Vorstufe oder Derivat eines Pflanzen-45 wachstumsregulators oder Herbizids sein.

÷

20 können.

"Toxizität" oder "toxischer Effekt" meint einen messbaren, negativen Einfluss auf die Physiologie der Pflanze oder der pflanzlichen Zelle und kann dabei Symptome wie beispielsweise - jedoch nicht einschränkend - ein vermindertes oder gestörtes 5 Wachstum, eine verminderte oder gestörte Photosyntheserate, eine verminderte oder gestörte Zellteilung, eine verminderte oder gestörte Regeneration einer vollständigen Pflanze aus Zellkultur oder Kallus usw. umfassen.

10 Die mittels des erfindungsgemässen Verfahrens erfolgreich transformierten pflanzlichen Zellen weisen – anders ausgedrückt – gegenüber den nicht-transformierten Zellen der gleichen Ausgangspopulation einen Wachstumsvorteil oder Selektionsvorteil unter Einwirkung der Substanz "X" auf. Wachstums- oder Selektionsvorteil ist dabei breit zu verstehen und meint beispielsweise die Tatsache, dass besagte transformierte pflanzliche Zellen in der Lage sind, Schösslinge auszubilden und/oder zu vollständigen Pflanzen regenerierbar sind, wohingegen die nicht-transformierten

Der Begriff des "Markerproteins" ist breit zu verstehen und meint allgemein all solche Proteine, die befähigt sind,

Zellen dies nicht oder nur mit deutlicher Verzögerung realisieren

- 25 i) per se einen toxischen Effekt auf die Pflanze oder pflanzliche Zelle auszuüben, oder
- ii) eine nicht toxische Substanz X in eine für die Pflanze oder pflanzliche Zelle toxische Substanz Y direkt oder indirekt
 umzusetzen.

Dabei kann es sich bei dem Markerprotein um ein pflanzeneigenes, endogenes Gen oder aber auch um ein Transgen aus einem anderen Organismus handeln. Bevorzugt hat das Markerprotein selber keine 35 essentielle Funktion für den das Markerprotein umfassenden Organismus. Übt das Markerprotein per se einen toxischen Effekt aus, so wird es bevorzugt nicht konstitutiv sondern beispielsweise unter einem induzierbaren Promotor exprimiert.

Bevorzugt setzt jedoch das Markerprotein eine nicht toxische Substanz X in eine für die Pflanze oder pflanzliche Zelle toxische Substanz Y direkt oder indirekt um. Insbesondere bevorzugt sind als Markerprotein die sogenannten "negativen Selektionsmarker", wie sie beispielsweise im Rahmen von gezielten Deletionen aus dem Genom eingesetzt werden.

25

30

35

40

45

13

Beispielhaft jedoch nicht einschränkend sind für Markerproteine zu nennen:

(a) Cytosindeaminasen (CodA oder CDase), wobei bevorzugt Substanzen wie 5-Fluorocytosin (5-FC) als nicht toxische 5 Substanz X eingesetzt werden. Cytosindeaminasen katalysieren die Deaminierung von Cytosin zu Uracil (Kilstrup M et al. (1989) J Bacteriol 171:2124-2127; Anderson L et al. (1989) Arch Microbiol 152:115-118). Bakterien und Pilze, die CDase-Aktivität aufweisen, konvertieren 5-FC zu dem toxischen Meta-10 boliten ("Y") 5-Fluorouracil (5-FU) (Polak A & Scholer HJ (1975) Chemotherapy (Basel) 21:113-130). 5-FC selbst ist von geringer Toxizität (Bennett JE, in Goodman and Gilman: the Pharmacological Basis of Therapeutics. 8th ed., eds. Gilman AG et al. (Pergamon Press, New York) pp. 1165-1181). 5-FU 15 jedoch hat einen stark zytotoxischen Effekt da es infolge zu Fluoro-UTP (FUTP) und Fluoro-dUMP (FdUMP) metabolisiert wird und so die RNA- und DNA-Synthese inhibiert (Calabrisi P & Chabner BA in Goodman and Gilman: the Pharmacological Basis of Therapeutics. 8th ed., eds. Gilman AG et al. (Pergamon Press, New York) pp. 1209-1263); Damon LE et al. (1989) Pharmac Ther 43:155-189).

Zellen höherer Pflanzen und Säugerzellen haben keine signifikante CDase-Aktivität und können 5-FC nicht deaminieren (Polak A et al. (1976) Chemotherapy 22:137-153; Koechlin BA et al. (1966) Biochemical Pharmacology 15:434-446). Insofern wird im Rahmen des erfindungsgemäßen Verfahrens die CDase als Transgen (z.B. in Form einer transgenen Expressionskassette) in pflanzliche Organismen eingebracht. Entsprechende transgene pflanzliche Zellen oder Organismen werden dann als Masterpflanzen als Ausgangsmaterial eingesetzt. Entsprechende CDase Sequenzen, transgene pflanzliche Organismen und die Durchführung negativer Selektionsverfahren unter Einsatz von z.B. 5-FC als nicht toxische Substanz X sind dem Fachmann bekannt (WO 93/01281; US 5,358,866; Gleave AP et al. (1999) Plant Mol Biol 40(2):223-35; Perera RJ et al. (1993) Plant Mol Biol 23(4):793-799; Stougaard J (1993) Plant J 3:755-761); EP-A1 595 837; Mullen CA et al. (1992) Proc Natl Acad Sci USA 89(1):33-37; Kobayashi T et al. (1995) Jpn J Genet 70(3):409-422; Schlaman HRM & Hooykaas PFF (1997) Plant J 11:1377-1385; Xiaohui Wang H et al. (2001) Gene 272(1-2): 249-255; Koprek T et al. (1999) Plant J 19(6):719-726; Gleave AP et al. (1999) Plant Mol Biol 40(2):223-235; Gallego ME (1999) Plant Mol Biol 39(1):83-93; Salomon S & Puchta H (1998) EMBO J 17(20):6086-6095; Thykjaer T et al. (1997) Plant Mol Biol 35(4):523-530; Serino G (1997) Plant J

10

14

12(3):697-701; Risseeuw E (1997) Plant J 11(4):717-728; Blanc V et al. (1996) Biochimie 78(6):511-517; Corneille S et al. (2001) Plant J 27:171-178). Cytosindeaminasen und die dafür kodierenden Gene können aus einer Vielzahl von Organismen, bevorzugt Mikroorganismen, wie beispielsweise den Pilzen Cryptococcus neoformans, Candida albicans, Torulopsis glabrata, Sporothrix schenckii, Aspergillus, Cladosporium und Phialophora (JE Bennett, Chapter 50: Antifungal Agents, in Goodman and Gilman's the Pharmacological Basis of Therapeutics 8th ed., A.G. Gilman, ed., Pergamon Press, New York, 1990) sowie den bakterien E.coli und Salmonella typhimurium (Andersen L et al. (1989) Arch Microbiol 152:115-118) erhalten werden.

- Auf die im Rahmen der genannten Publikationen offenbarten Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.
- Insbesondere bevorzugt sind Sequenzen entsprechend der

 GenBank Acc.-No: S56903, sowie die in EP-A1 595 873

 beschriebenen modifizierten codA Sequenzen, die eine
 Expression in Eukaryoten ermöglichen. Bevorzugt sind dabei
 Nukleinsäuresequenzen, die für Polypeptide gemäß SEQ ID NO: 2

 oder bevorzugt 4 kodieren, insbesondere die Sequenzen

 gemäß SEQ ID NO: 1 oder bevorzugt 3.
- (b) Cytochrom P-450 Enzyme, insbesondere das bakterielle Cytochrom P-450 SU1 Genprodukt (CYP105A1) aus Streptomyces griseolus (Stamm ATCC 11796), wobei bevorzugt Substanzen wie 30 das Pro-Sulfonylharnstoffherbizid R7402 (2-Methylethyl-2-3dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1,2benzoisothiazol-7-sulfonamid-1,1-dioxid) als nicht toxische Substanz X eingesetzt werden. Entsprechende Sequenzen und die Durchführung negativer Selektionsverfahren unter Einsatz von 35 z.B. R7402 als nicht toxische Substanz X sind dem Fachmann bekannt (O'Keefe DP et al. (1994) Plant Physiol 105:473-482; Tissier AF et al. (1999) Plant Cell 11:1841-1852; Koprek T et al. (1999) Plant J 19(6):719-726; O'Keefe DP (1991) Biochemistry 30(2):447-55). Auf die im Rahmen der genannten Publikationen offenbarten Sequenzen, Materialien und Ver-40 fahren wird hiermit ausdrücklich Bezug genommen.
- Insbesondere bevorzugt sind Sequenzen entsprechend der GenBank Acc.-No: M32238. Bevorzugt sind ferner Nuklein-säuresequenzen, die für das Polypeptid gemäß SEQ ID NO: 6 kodieren, insbesondere die Sequenz gemäß SEQ ID NO: 5.

(c) Indolessigsäurehydrolasen wie beispielsweise das tms2 Genprodukt aus Agrobacterium tumefaciens, wobei bevorzugt Substanzen wie Auxinamidverbindungen oder Naphthalacetamid (NAM) als nicht toxische Substanz X eingesetzt werden (wobei NAM zu Naphthalessigsäure, einer phytotoxischen Substanz, um-5 gesetzt wird). Entsprechende Sequenzen und die Durchführung negativer Selektionsverfahren unter Einsatz von z.B. NAM als nicht toxische Substanz X sind dem Fachmann bekannt (Fedoroff NV & Smith DL (1993) Plant J 3:273-289; Upadhyaya NM et al. 10 (2000) Plant Mol Biol Rep 18:227-223; Depicker AG et al. (1988) Plant Cell rep 104:1067-1071; Karlin-Neumannn GA et al. (1991) Plant Cell 3:573-582; Sundaresan V etal. (1995) Gene Develop 9:1797-1810; Cecchini E et al. (1998) Mutat Res 401(1-2):199-206; Zubko E et al. (2000) Nat Biotechnol 18:442-445). Auf die im Rahmen der genannten Publikationen offenbarten Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.

Insbesondere bevorzugt sind Sequenzen entsprechend den Gen-Bank Acc.-No: NC_003308 (Protein_id="NP_536128.1), AE009419, 20 AB016260 (Protein_id="BAA87807.1) und NC002147. Bevorzugt sind ferner Nukleinsäuresequenzen, die für Polypeptide gemäß SEQ ID NO: 8 oder 10 kodieren, insbesondere die Sequenzen gemäß SEQ ID NO: 7 oder 9.

25

15

(d) Haloalkandehalogenasen (dhlA Genprodukt) z.B. aus Xanthobacter autotropicus GJ10. Die Dehalogenase hydrolisiert Dihaloalkane wie 1,2-Dichloroethan (DCE) zu halogenierten Alkoholen und anorganischen Haliden (Naested H et al. (1999) Plant J 18(5)571-576; Janssen DB et al. (1994) Annu Rev Microbiol 48: 163-191; Janssen DB (1989) J Bacteriol 171(12):6791-9). Auf die im Rahmen der genannten Publikationen offenbarten Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.

35

30

Insbesondere bevorzugt sind Sequenzen entsprechend der GenBank Acc.-No: M26950. Bevorzugt sind ferner Nukleinsäuresequenzen, die für das Polypeptid gemäß SEQ ID NO: 12 kodieren, insbesondere die Sequenz gemäß SEQ ID NO: 11.

40

45

(e) Thymidinkinasen (TK), insbesondere virale TKs aus Viren wie Herpes Simplex Virus, SV40, Cytomegalovirus, Varicella-zoster Virus, insbesondere die TK des Typ 1 Herpes Simplex Virus (TK HSV-1), wobei bevorzugt Substanzen wie Acyclovir, Ganciclovir oder 1,2-Deoxy-2-fluoro- β -D-arabinofuranosil-5-iodouracil (FIAU) als nicht toxische Substanz X eingesetzt werden. Entsprechende Sequenzen und die Durchführung negativer

10

16

Selektionsverfahren unter Einsatz von z.B. Acyclovir, Ganciclovir oder FIAU als nicht toxische Substanz X sind dem Fachmann bekannt (Czako M & Marton L (1994) Plant Physiol 104:1067-1071; Wigler M et al. (1977) Cell 11(1):223-232; McKnight SL et al. (1980) Nucl Acids Res 8(24):5949-5964; McKnight SL et al. (1980) Nucl Acids Res 8(24):5931-5948; Preston et al. (1981) J Virol 38(2):593-605; Wagner et al. (1981) Proc Natl Acad Sci USA 78(3):1441-1445; St. Clair et al. (1987) Antimicrob Agents Chemother 31(6):844-849). Auf die im Rahmen der genannten Publikationen offenbarten Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.

- Insbesondere bevorzugt sind Sequenzen entsprechend den

 GenBank Acc.-No: J02224, V00470 und V00467. Bevorzugt sind ferner Nukleinsäuresequenzen, die für Polypeptide gemäß SEQ ID NO: 14 oder 16 kodieren, insbesondere die Sequenzen gemäß SEQ ID NO: 13 oder 15.
- 20 (f) Guaninphosphoribosyltransferasen, Hypoxanthinphosphoribosyltransferasen oder Xanthinguaninphosphoribosyltransferasen, wobei bevorzugt Substanzen wie 6-Thioxanthin oder Allopurinol als nicht toxische Substanz X eingesetzt werden. Bevorzugt sind Guaninphosphoribosyltransferasen (gpt) z.B. aus E. Coli 25 (Besnard et al. (1987) Mol Cell Biol 7:4139; Mzoz and Moolten (1993) Human Gene Therapy 4:589-595; Ono et al. (1997) Hum Gene Ther 8(17):2043-55), Hypoxanthinphosphoribosyltransferasen (HPRT; Jolly et al. (1983) Proc Natl Acad Sci USA 80:477; Fonwick "The HGPRT Systern", pp. 333-373, M. Gottes-30 man (ed.), Molecular Cell Genetics, John Wiley and Sons, New York, 1985), Xanthinguaninphosphoribosyltransferasen z.B. aus Toxoplasma gondii (Knoll LJ et al.(1998) Mol Cell Biol 18(2):807-814; Donald RG et al. (1996) J Biol Chem 271(24):14010-14019). Auf die im Rahmen der genannten 35 Publikationen offenbarten Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.

Insbesondere bevorzugt sind Sequenzen entsprechend den GenBank Acc.-No: U10247 (Toxoplasma gondii HXGPRT), M13422

(E. coli gpt) und X00221 (E. coli gpt). Bevorzugt sind ferner Nukleinsäuresequenzen, die für Polypeptide gemäß SEQ ID NO: 18, 20 oder 22 kodieren, insbesondere die Sequenzen gemäß SEQ ID NO: 17, 19 oder 21.

45 (g) Purinnukleosidphosphorylasen (PNP; DeoD Genprodukt) z.B. aus E. coli, wobei bevorzugt Substanzen wie 6-Methylpurindeoxyribonukleosid als nicht toxische Substanz X eingesetzt

35

17

werden. Entsprechende Sequenzen und die Durchführung negativer Selektionsverfahren unter Einsatz von z.B. 6-Methylpurindeoxyribonukleosid als nicht toxische Substanz X sind dem Fachmann bekannt (Sorscher EJ et al. (1994) Gene Therapy 1:233-238). Auf die im Rahmen der genannten Publikationen offenbarten Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.

Insbesondere bevorzugt sind Sequenzen entsprechend der GenBank Acc.-No: M60917. Bevorzugt sind ferner Nukleinsäuresequenzen, die für das Polypeptid gemäß SEQ ID NO: 24 kodieren, insbesondere die Sequenz gemäß SEQ ID NO: 23.

- h) Phosphonatmonoesterhydrolasen, welche inaktive Esterderivate
 des Herbizides Glyphosat (z.B. Glycerylglyphosat) zu der
 aktiven Form des Herbizids umsetzen. Entsprechende Sequenzen
 und die Durchführung negativer Selektionsverfahren unter Einsatz von z.B. Glycerylglyphosat sind dem Fachmann bekannt
 (US 5,254,801; Dotson SB et al. (1996) Plant J 10(2):383-392;
 Dotson SB et al. (1996) J Biol Chem 271(42): 25754-25761).
 Auf die im Rahmen der genannten Publikationen offenbarten
 Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.
- Insbesondere bevorzugt sind Sequenzen entsprechend der GenBank Acc.-No: U44852. Bevorzugt sind ferner Nukleinsäuresequenzen, die für das Polypeptid gemäß SEQ ID NO: 26 kodieren, insbesondere die Sequenz gemäß SEQ ID NO: 25.
- 30 (i) Aux-1 und bevorzugt Aux-2 Genprodukte z.B. der TiPlasmide von Agrobacterium Stämmen wie A.rhizogenes oder
 A.tumefaciens (Beclin C et al. (1993) Transgenics Res
 2:4855); Gaudin V, Jouanin L. (1995) Plant Mol Biol.
 28(1):123-36.

Die Aktivität der beiden Enzyme bedingt die Produktion von Indolacetamid (IAA) in der pflanzlichen Zelle. Aux-1 kodiert für eine Indolacetamidsynthase (IAMS) und setzt Tryptophan zu Indolacetamid um (VanOnckelen et al. (1986) FEBS Lett. 198: 357-360). Aux-2 kodiert für das Enzym Indolacetamidhydrolase (IAMH) und setzt Indolacetamid, eine Substanz ohne Phytohormonaktivität, zu dem aktiven Auxin Indolessigsäure um (Inze D et al. (1984) Mol Gen Genet 194:265-274; Tomashow et al. (1984) Proc Natl Acad Sci USA 81:5071-5075; Schroder et al. (1984) Eur J Biochem 138:387-391). Das Enzym IAMH kann ferner einer Reihe von Indolamid-Substraten wie beispiels-weise Naphthalacetamid hydrolisieren, wobei letzteres in den

10

15

20

18

Pflanzenwachstumsregulator Naphthalessigsäure (NAA) umgesetzt wird. Die Verwendung des IAMH Gens als negativer Selektionsmarker ist beispielsweise in US 5,180,873 beschrieben. Entsprechende Enzyme sind auch in A. rhizogenes, A. vitis (Canaday J et al. (1992) Mol Gen Genet 235:292-303) and Pseudomonas savastanoi (Yamada et al. (1985) Proc Natl Acad Sci USA 82:6522-6526) beschrieben. Der Einsatz als negativer Selektionsmarker zum Abtöten bestimmter Zellgewebe (z.B. Pollen; US 5,426,041) oder transgener Pflanzen (US 5,180,873) ist beschrieben. Entsprechende Sequenzen und die Durchführung negativer Selektionsverfahren unter Einsatz von z.B. Naphthalacetamid sind dem Fachmann bekannt (s.o.). Auf die im Rahmen der genannten Publikationen offenbarten Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.

Insbesondere bevorzugt sind Sequenzen entsprechend den Gen-Bank Acc.-No: M61151, AF039169 und AB025110. Bevorzugt sind ferner Nukleinsäuresequenzen, die für Polypeptide gemäß SEQ ID NO: 28, 30, 32, 34 oder 36 kodieren, insbesondere die Sequenzen gemäß SEQ ID NO: 27, 29, 31, 33 oder 35.

- (j) Adeninphosphoribosyltransferasen (APRT), wobei bevorzugt Substanzen wie 4-Aminopyrazolopyrimidin als nicht toxische
 25 Substanz X eingesetzt werden. Entsprechende Sequenzen und die Durchführung negativer Selektionsverfahren unter Einsatz sind dem Fachmann bekannt (Wigler M et al. (1979) Proc Natl Acad Sci USA 76(3):1373-6; Taylor et al. "The APRT Systern", pp., 311-332, M. Gottesman (ed.), Molecular Cell Genetics, John Wiley and Sons, New York, 1985).
- k) Methoxinindehydrogenasen, wobei bevorzugt Substanzen wie 2-Amino-4-methoxy-butansäure (Methoxinin) als nicht toxische Substanz X eingesetzt werden, welches zum toxischen Methoxy-vinylglycin umgesetzt wird (Margraff R et al. (1980) Experimentia 36: 846).
- 1) Rhizobitoxinsynthasen, wobei bevorzugt Substanzen wie 2-Amino-4-methoxy-butansäure (Methoxinin) als nicht toxische Substanz X eingesetzt werden, welches zum toxischen 2-Amino-4-[2-amino-3-hydroxypropyl]-trans-3-butansäure (Rhizobitoxin) umgesetzt wird (Owens LD et al. (1973) Weed Science 21:63-66),
- 45 m) 5-Methylthioribose (MTR) kinasen, wobei bevorzugt Substanzen wie 5-(Trifluoromethyl)thioribose (MTR-Analog, "subversives Substrat") als nicht toxische Substanz X eingesetzt wird,

10

15

30

welches über ein instabiles Intermediat zu der toxischen Substanz (Y) Carbothionyldifluorid umgesetzt wird. Die MTR-Kinase ist ein Schlüsselenzym des Methionin-Ausweich-Stoffwechselwegs ("Salvage Pathway"). Entsprechende Enzymaktivitäten wurden nicht in Säugern, wohl aber in Pflanzen, Bakterien und Protozoen beschrieben. MTR Kinasen aus verschiedenen Arten wurden aufgrund definierter Sequenzmotive identifiziert (Sekowska A et al. (2001) BMC Microbiol 1:15; http://www.biomedcentral.com/1471-2180/1/15). Entsprechende Sequenzen und die Durchführung negativer Selektionsverfahren unter Einsatz von z.B. 5-(Trifluoromethyl)thioribose sind dem Fachmann bekannt und leicht aus entsprechenden Sequenzdatenbank (z.B. GenBank) erhältlich (Sekowska A et al. (2001) BMC Microbiol 1:15; Cornell KA et al. (1996) 317:285-290). Auf die im Rahmen der genannten Publikationen offenbarten Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.

Eine pflanzliche MTR-Kinase ist bislang jedoch nicht eindeutig identifiziert worden und wird im Rahmen des erfindungsgemäßen Verfahrens bereitsgestellt (SEQ ID NO: 39 bzw. 40). Bevorzugt wird als Markerprotein eine pflanzliche, endogene MTR-Kinase verwendet.

Insbesondere bevorzugt sind Sequenzen entsprechend den Gen-Bank Acc.-No: AF212863 oder AC079674 (Protein_ID=AAG51775.1). Bevorzugt sind ferner Nukleinsäuresequenzen, die für Polypeptide gemäß SEQ ID NO: 38 oder 40 kodieren, insbesondere die Sequenzen gemäß SEQ ID NO: 37 oder 39.

n) Alkoholdehydrogenasen (Adh) insbesondere pflanzliche Adh-1 genprodukte, wobei bevorzugt Substanzen wie Allylalkohol als nicht toxische Substanz X eingesetzt werden, welche so zu der toxischen Substanz (Y) Acrolein umgesetzt wird.

Entsprechende Sequenzen und die Durchführung negativer Selektionsverfahren unter Einsatz von z.B. Allylalkohol sind dem Fachmann bekannt und leicht aus entsprechenden Sequenzdatenbank (z.B. GenBank) erhältlich (Wisman E et al. (1991) Mol Gen Genet 226(1-2):120-8; Jacobs M et al. (1988) Biochem Genet 26(1-2):105-22; Schwartz D. (1981) Environ Health Perspect 37:75-7). Auf die im Rahmen der genannten Publi-

Perspect 37:75-7). Auf die im Rahmen der genannten Publikationen offenbarten Sequenzen, Materialien und Verfahren wird hiermit ausdrücklich Bezug genommen.

Insbesondere bevorzugt sind Sequenzen entsprechend den Gen-Bank Acc.-No: X77943, M12196, AF172282, X04049 oder AF253472. Bevorzugt sind ferner Nukleinsäuresequenzen, die für Poly-

peptide gemäß SEQ ID NO: 42, 44, 46 oder 48 kodieren, insbesondere die Sequenzen gemäß SEQ ID NO: 41, 43, 45 oder 47.

- (o) Weiterhin sind als negativer Selektionsmarker solche
 Sequenzen geeignet, die per se eine toxische Wirkung auf pflanzliche Zellen ausüben, wie beispielsweise Diptheriatoxin A, Ribonukleasen wie Barnase sowie Ribosom-inhibierende Proteine wie Ricin. Dabei werden diese Proteine bevorzugt in den pflanzlichen Zellen nicht konstitutiv, sondern induzierbar exprimiert. Bevorzugt erfolgt die Induktion chemisch, wobei beispielsweise die unten erwähnten chemisch-induzierbaren Promotoren verwendet werden können, um diese chemischinduzierte Expression zu gewährleisten.
- "Verminderung" oder "vermindern" ist im Zusammenhang mit einem Markerprotein, bzw. seiner Menge, Expression, Aktivität und/oder Funktion weit auszulegen und umfasst die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbiologische Mechanismen beruhende Unterbindung oder Blockierung der Funktionalität eines Markerproteins in einer pflanzlichen Zelle, Pflanze oder einem davon abgeleiteten Teil, Gewebe, Organ, Zellen oder Samen.

Eine Verminderung im Sinne der Erfindung umfasst auch eine 25 mengenmäßige Verringerung eines Markerproteins bis hin zu einem im wesentlichen vollständigen Fehlen des Markerproteins (d.h. fehlende Nachweisbarkeit von Markerprotein-Aktivität bzw. Markerprotein-Funktion oder fehlende immunologische Nachweisbarkeit des Markerproteins). Dabei wird die Expression eines bestimmten 30 Markerproteins (bzw. seiner Menge, Expression, Aktivität und/oder Funktion) in einer Zelle oder einem Organismus bevorzugt um mehr als 50 %, besonders bevorzugt um mehr als 80 %, ganz besonders bevorzugt um mehr als 90%, am meisten bevorzugt um mehr als 98 % vermindert. Insbesondere meint Verminderung auch das 35 vollständigen Fehlen des Markerproteins (bzw. seiner Menge, Expression, Aktivität und/oder Funktion). Dabei meint Aktivität und/oder Funktion bevorzugt die Eigenschaft des Markerproteins einen toxischen Effekt auf die pflanzliche Zelle oder den pflanzlichen Organismus auszuüben bzw. die Fähigkeit die Substanz X 40 in die Substanz Y umzusetzen. Bevorzugt wird als der durch das Markerprotein bewirkte toxische Effekt um mehr als 50 %, besonders bevorzugt um mehr als 80 %, ganz besonders bevorzugt um mehr als 90%, am meisten bevorzugt um mehr als 98 % vermindert. Selbst verständliche umfasst "Verminderung" im Rahmen 45 des erfindungsgemäßen Verfahrens auch eine vollständige, 100%ige

Verminderung oder Beseitigung des Markerproteins (bzw. seiner

a)

15

20

21

Menge, Expression, Aktivität und/oder Funktion) (z.B. durch Deletion des Markerprotein-Gens aus dem Genom).

Erfindungsgemäß sind verschiedene Strategien zur Verminderung der 5 Expression, Menge, Aktivität und/oder Funktion des Markerproteins umfasst. Der Fachmann erkennt, dass eine Reihe verschiedener Methoden zur Verfügung stehen, um die Expression, Menge, Aktivität und/oder Funktion eines Markerproteins in gewünschter Weise zu beeinflussen. Beispielhaft, jedoch nicht einschränkend, seien 10 zu nennen:

- Einbringen mindestens einer doppelsträngigen Markerprotein Ribonukleinsäuresequenz (MP-dsRNA) oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten. Umfasst sind solche Verfahren, bei denen die MP-dsRNA gegen ein Markerprotein-Gen (also genomische DNA-Sequenzen wie Promotorsequenzen) oder ein Markerprotein-Gentranskript (also mRNA-Sequenzen) gerichtet ist.
- b) Einbringen mindestens einer Markerprotein antisense-Ribonukleinsäuresequenz (MP-antisenseRNA) oder einer deren Expression gewährleistenden Expressionskassette. Umfasst sind solche Verfahren, bei denen die MP-antisenseRNA gegen 25 ein Markerprotein-Gen (also genomische DNA-Sequenzen) oder ein Markerprotein-Gentranskript (also RNA-Sequenzen) gerichtet ist. Umfasst sind auch α-anomere Nukleinsäuresequenzen.
- **30** c) Einbringen mindestens einer MP-antisenseRNA kombiniert mit einem Ribozym oder einer deren Expression gewährleistenden Expressionskassette
- Einbringen mindestens einer Markerprotein sense-Ribonukleind) 35 säuresequenz (MP-senseRNA) zur Induktion einer Kosuppression oder einer deren Expression gewährleistenden Expressionskassette
- Einbringen mindestens eines DNA-oder Protein-bindenden e) 40 Faktors gegen ein Markerprotein-Gen, -RNA oder -Protein oder einer dessen Expression gewährleistenden Expressionskassette
- Einbringen mindestens einer den Markerprotein RNA-Abbau f) 45 bewirkenden viralen Nukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette

g) Einbringen mindestens eines Konstruktes zur Erzeugung eines Funktionsverlustes (z.B. Generierung von Stopp-Kodons, Verschiebungen im Leseraster etc.) an einem Markerprotein-Gen beispielsweise durch Erzeugung einer Insertion, Deletion, Inversion oder Mutation in einem Markerprotein-Gen. Bevorzugt können Knockout-Mutanten mittels gezielter Insertion in besagtes Markerprotein-Gen durch homologer Rekombination oder Einbringen von sequenzspezifischen Nukleasen gegen Markerprotein-Gensequenzen generiert werden.

10

5

Dem Fachmann ist bekannt, dass auch weitere Verfahren im Rahmen der vorliegenden Erfindung zur Verminderung eines Markerproteins bzw. seiner Aktivität oder Funktion eingesetzt werden können. Beispielsweise kann auch - je nach Art des verwendeten Marker-15 proteins - das Einbringen einer dominant-negativen Variante eines Markerproteins oder einer deren Expression gewährleistenden Expressionskassette vorteilhaft sein. Dabei kann jedes einzelne dieser Verfahren eine Verminderung der Expression, Menge, Aktivität und/oder Funktion eines Markerproteins bewirken. Auch eine 20 kombinierte Anwendung ist denkbar. Weitere Methoden sind dem Fachmann bekannt und können die Behinderung oder Unterbindung der Prozessierung des Markerproteins, des Transports des Markerproteins oder dessen mRNA, Hemmung der Ribosomenanlagerung, Hemmung des RNA-Spleißens, Induktion eines Markerprotein-RNA 25 abbauenden Enzyms und/oder Hemmung der Translationselongation oder -termination umfassen.

Die einzelnen bevorzugten Verfahren seien infolge durch beispielhafte Ausführungsformen beschrieben:

30

a) Einbringen einer doppelsträngigen Ribonukleinsäuresequenz eines Markerproteins (MP-dsRNA)

Das Verfahren der Genregulation mittels doppelsträngiger RNA

("double-stranded RNA interference"; dsRNAi) ist vielfach für tierische und pflanzliche Organismen beschrieben (z.B. Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391:806-811; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035; WO 00/63364). Auf die in den angegebenen Zitaten beschriebenen Verfahren und Methoden wird hiermit ausdrücklich Bezug genommen. dsRNAi-Verfahren beruhen auf dem Phänomen, dass durch gleichzeitiges Einbringen von komplementären Strang- und Gegenstrang eines Gentranskriptes eine hocheffiziente Unterdrückung der Expression des ent
45 sprechenden Gens bewirkt wird. Der bewirkte Phänotyn kommt

45 sprechenden Gens bewirkt wird. Der bewirkte Phänotyp kommt dem einer entsprechenden knock-out Mutanten sehr ähnlich (Waterhouse PM et al. (1998) Proc Natl Acad Sci USA 95:13959-64). Das

23

dsRNAi-Verfahren hat sich bei der Verminderung der Markerprotein-Expression als besonders effizient und vorteilhaft erwiesen.

Doppelsträngiges RNA-Molekül meint im Rahmen der Erfindung bevor5 zugt eine oder mehr Ribonukleinsäuresequenzen, die aufgrund komplementärer Sequenzen theoretisch (z.B. gemäß den Basenpaarregeln von Waston und Crick) und/oder faktisch (z.B. aufgrund von Hybridisierungsexperimenten in vitro und/oder in vivo) in der Lage sind, doppelsträngige RNA-Strukturen auszubilden. Dem
10 Fachmann ist bewusst, dass die Ausbildung von doppelsträngigen RNA-Strukturen, einen Gleichgewichtszustand darstellt. Bevorzugt ist das Verhältnis von doppelsträngigen Molekülen zu entsprechenden dissozierten Formen mindestens 1 zu 10, bevorzugt 1:1, besonders bevorzugt 5:1, am meisten bevorzugt 10:1.

Ein weiterer Gegenstand der Erfindung bezieht sich daher auf doppelsträngige RNA-Moleküle (dsRNA-Moleküle), die bei Einbringen in einen pflanzlichen Organismus (oder eine davon abgeleitete Zelle, Gewebe, Organ oder Vermehrungsmaterial)

20 die Verminderung mindestens eines Markerproteins bewirken.

Das doppelsträngige RNA-Molekül zur Verminderung der Expression eines Markerproteins (MP-dsRNA) umfasst dabei bevorzugt

- a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu
 mindestens einem Teil des "sense"-RNA-Transkriptes einer
 Nukleinsäuresequenz kodierend für ein Markerprotein, und
- b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang

 unter a) im wesentlichen bevorzugt vollständig komplementären ist.

In Bezug auf die dsRNA-Moleküle meint Markerprotein-Nukleinsäuresequenz bevorzugt eine Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 35 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45 oder 47 oder ein funktionelles Äquivalent derselben.

"Im wesentlichen identisch" meint, dass die dsRNA Sequenz auch Insertionen, Deletionen sowie einzelne Punktmutationen im Ver40 gleich zu der Markerprotein Zielsequenz aufweisen kann und dennoch eine effizient Verminderung der Expression bewirkt. Bevorzugt beträgt die Homologie (nach weiter unten folgender Definition) mindestens 75 %, bevorzugt mindestens 80 %, ganz besonders bevorzugt mindestens 90 % am meisten bevorzugt 100 % zwischen dem "sense"-Strang einer inhibitorischen dsRNA und mindestens einem Teil des "sense"-RNA-Transkriptes einer Nukleinsäuresequenz kodierend für ein Markerprotein (bzw. zwischen dem

"antisense"-Strang dem komplementären Strang einer Nukleinsäuresequenz kodierend für ein Markerprotein).

Eine 100% ige Sequenzidentität zwischen dsRNA und einem Marker-5 protein Gentranskript ist nicht zwingend erforderlich, um eine effiziente Verminderung der Markerprotein Expression zu bewirken. Demzufolge besteht der Vorteil, dass das Verfahren tolerant ist gegenüber Sequenzabweichungen, wie sie infolge genetischer Mutationen, Polymorphismen oder evolutionärer Divergenzen vor-10 liegen können. So ist es beispielsweise möglich mit der dsRNA, die ausgehend von der Markerprotein Sequenz des einen Organismus generiert wurde, die Markerprotein Expression in einem anderen Organismus zu unterdrücken. Dies ist besonders dann vorteilhaft, wenn als Markerprotein ein pflanzeneigenes, endogenes Marker-15 protein verwendet wird (beispielsweise eine 5-Methylthioribosekinase oder Alkoholdehydrogenase). Zu diesem Zweck umfasst die dsRNA bevorzugt Sequenzbereiche von Markerprotein-Gentranskripten, die konservierten Bereichen entsprechen. Besagte konservierte Bereiche können aus Sequenzvergleichen leicht abgeleitet werden. 20

Die Länge des Teilabschnittes beträgt mindestens 10 Basen, bevorzugt mindestens 25 Basen, besonders bevorzugt mindestens 50 Basen, ganz besonders bevorzugt mindestens 100 Basen, am meisten bevorzugt mindestens 200 Basen oder mindestens 300 Basen.

Alternativ, kann eine "im wesentlichen identische" dsRNA auch als Nukleinsäuresequenz definiert werden, die befähigt ist, mit einem Teil eines Markerprotein Gentranskriptes zu hybridisieren (z.B. in 400 mM NaCl, 40 mM PIPES pH 6,4, 1 mM EDTA bei 50°C oder 70°C für 12 bis 16 h).

"Im wesentlichen komplementär" meint, dass der "antisense"RNA-Strang auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu dem Komplement des "sense"-RNAStranges aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt
mindestens 95 %, am meisten bevorzugt 100% zwischen dem "antisense"-RNA-Strang und dem Komplement des "sense"-RNA-Stranges.

"Teil des "sense"-RNA-Transkriptes" einer Nukleinsäuresequenz kodierend für ein Markerprotein meint Fragmente einer RNA oder mRNA transkribiert oder transkribierbar von einer für ein Markerprotein kodierenden Nukleinsäuresequenz, bevorzugt von einem Markerprotein-Gen. Dabei haben die Fragmente bevorzugt eine Sequenzlänge von mindestens 20 Basen, bevorzugt mindestens 50 Basen, besonders bevorzugt mindestens 100 Basen, ganz besonders bevorzugt mindestens 200 Basen, am meisten bevorzugt

45

mindestens 500 Basen. Umfasst ist auch die vollständige transkribierte RNA oder mRNA. Umfasst sind auch Sequenzen wie sie unter künstlichen Bedingungen von Regionen eines Marker-protein-Gens transkribiert werden können, die ansonsten – unter natürlichen Bedingungen – nicht transkribiert werden, wie beispielsweise Promotorregionen.

Die dsRNA kann aus einem oder mehr Strängen von Polyribonukleotiden bestehen. Natürlich können, um den gleichen Zweck zu erreichen, auch mehrere individuelle dsRNA Moleküle, die jeweils einen der oben definierten Ribonukleotidsequenzabschnitte umfassen, in die Zelle oder den Organismus eingebracht werden. Die doppelsträngige dsRNA-Struktur kann ausgehend von zwei komplementären, separaten RNA-Strängen oder – bevorzugt – ausgehend von einem einzelnen, selbstkomplementären RNA-Strang gebildet werden. In diesem Fall sind "sense"-RNA-Strang und "antisense"-RNA-Strang bevorzugt kovalent in Form eines invertierten "Repeats" miteinander verbunden.

- Wie z.B. in WO 99/53050 beschrieben, kann die dsRNA auch eine Haarnadelstruktur umfassen, indem "sense"- und "antisense"-Strang durch eine verbindende Sequenz ("Linker"; beispielsweise ein Intron) verbunden werden. Die selbstkomplementären dsRNA-Strukturen sind bevorzugt, da sie lediglich die Expression einer RNA-Sequenz erfordern und die komplementären RNA-Stränge stets in einem äquimolaren Verhältnis umfassen. Bevorzugt kann ist die verbindende Sequenz ein Intron (z.B. ein Intron des ST-LS1 Gens aus Kartoffel; Vancanneyt GF et al. (1990) Mol Gen Genet 220(2):245-250).
 - Die Nukleinsäuresequenz kodierend für eine dsRNA kann weitere Elemente beinhalten, wie beispielsweise Transkriptionsterminationssignale oder Polyadenylierungssignale.
- 35 Sollen die zwei Stränge der dsRNA in einer Zelle oder Pflanze zusammengebracht werden, so kann dies beispielhaft auf folgende Art geschehen:
- a) Transformation der Zelle oder Pflanze mit einem Vektor, der
 40 beide Expressionskassetten umfasst,
 - b) Kotransformation der Zelle oder Pflanze mit zwei Vektoren, wobei der eine die Expressionskassetten mit dem "sense"-Strang, der andere die Expressionskassetten mit dem "antisense"-Strang umfasst.

Die Bildung der RNA Duplex kann entweder außerhalb der Zelle oder innerhalb derselben initiiert werden.

Die dsRNA kann entweder in vivo oder in vitro synthetisiert 5 werden. Dazu kann eine DNA-Sequenz kodierend für eine dsRNA in eine Expressionskassette unter Kontrolle mindestens eines genetischen Kontrollelementes (wie beispielsweise einem Promotor) gebracht werden. Eine Polyadenylierung ist nicht erforderlich, ebenso müssen keine Elemente zur Initiierung einer Translation 10 vorhanden sein. Bevorzugt ist die Expressionskassette für die MPdsRNA auf dem Transformationskonstrukt oder dem Transformationsvektor enthalten. Die Expressionskassetten kodierend für den "antisense"- und/oder den "sense"-Strang einer MP-dsRNA oder für den selbstkomplementären-Strang der dsRNA, werden dazu bevorzugt in einen Transformationsvektor insertiert und mit den unten beschriebenen Verfahren in die pflanzliche Zelle eingebracht. Für das Erfindungsgemäße Verfahren kann eine stabile Insertion in das Genom vorteilhaft sein, ist aber nicht zwingend erforderlich. Da eine dsRNA einen langanhaltenden Effekt bewirkt, ist in vielen Fällen auch eine transiente Expression ausreichend. Die dsRNA kann auch Teil der von der zu insertierenden Nukleinsäuresequenz zu exprimierenden RNA sein, indem sie beispielsweise an den 3'-untranslatierten Teil besagter RNA fusioniert wird.

Die dsRNA kann in einer Menge eingeführt werden, die zumindest eine Kopie pro Zelle ermöglicht. Höhere Mengen (z.B. mindestens 5, 10, 100, 500 oder 1000 Kopien pro Zelle) können ggf. eine effizienter Verminderung bewirken.

b) Einbringen einer antisense-Ribonukleinsäuresequenz eines
 30 Markerproteins (MP-antisenseRNA)

Verfahren zur Verminderung eines bestimmten Proteins durch die "antisense"-Technologie sind vielfach - auch in Pflanzen - beschrieben (Sheehy et al. (1988) Proc Natl Acad Sci USA 85: 8805-8809; US 4,801,340; Mol JN et al. (1990) FEBS Lett 268(2):427-430). Das antisense Nukleinsäuremolekül hybridisiert bzw. bindet mit der zellulären mRNA und/oder genomischen DNA kodierend für das zu vermindernde Markerprotein. Dadurch wird die Transkription und/oder Translation des Markerproteins unterdrückt. Die Hybridisierung kann auf konventionelle Art über die Bildung einer stabilen Duplex oder - im Fall von genomischer DNA - durch Bindung des antisense Nukleinsäuremoleküls mit der Duplex der genomischen DNA durch spezifische Wechselwirkung in der großen Furche der DNA-Helix entstehen.

45
Eine MP-antisenseRNA kann unter Verwendung der für dieses
Markerprotein kodierenden Nukleinsäuresequenz, beispielsweise

27

der Nukleinsäuresequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45 oder 47 nach den Basenpaarregeln von Watson und Crick abgeleitet werden. Die MP-antisenseRNA kann zu der gesamten transkribierten 5 mRNA des Markerproteins komplementär sein, sich auf die kodierende Region beschränken oder nur aus einem Oligonukleotid bestehen, das zu einem Teil der kodierenden oder nicht-kodierenden Sequenz der mRNA komplementär ist. So kann das Oligonukleotid beispielsweise komplementär zu der Region sein, die den Translationsstart für das Markerprotein umfasst. Die MP-antisenseRNA kann eine Länge von zum Beispiel 5, 10, 15, 20, 25, 30, 35, 40, 45 oder 50 Nukleotide haben, kann aber auch länger sein und mindestens 100, 200, 500, 1000, 2000 oder 5000 Nukleotide umfassen. MP-antisenseRNA werden im Rahmen des erfindungsgemäßen Verfahrens bevorzugt rekombinant in der Zielzelle exprimiert.

Die MP-antisenseRNA kann auch Teil einer von der zu insertierenden Nukleinsäuresequenz zu exprimierenden RNA sein, indem sie beispielsweise an den 3'-untranslatierten Teil besagter RNA fusioniert ist.

Ein weiterer Gegenstand der Erfindung betrifft transgene Expressionskassetten enthaltend eine Nukleinsäuresequenz kodierend für zumindest einen Teil eines Markerproteins, wobei besagte Nukleinsäuresequenz mit einem in pflanzlichen Organismen funktionellen Promotor in antisense-Orientierung funktionell verknüpft ist. Besagte Expressionskassetten können Teil eines Transformationskonstruktes oder Transformationsvektors sein, oder aber auch im Rahmen einer Kotransformation eingeführt werden.

30 In einer weiteren bevorzugten Ausführungsform kann die Expression eines Markerproteins durch Nukleotidsequenzen inhibiert werden, die komplementär zu der regulatorischen Region eines Markerprotein-Gens (z.B. einem Markerprotein Promoter und/oder Enhancer) sind und triple-helikale Strukturen mit der dortigen DNA-Doppelhelix ausbilden, so dass die Transkription des Markerprotein-Gens vermindert wird. Entsprechende Verfahren sind beschrieben (Helene C (1991) Anticancer Drug Res 6(6):569-84; Helene C et al. (1992) Ann NY Acad Sci 660:27-36; Maher LJ (1992) Bioassays 14(12):807-815).

40
 In einer weiteren Ausführungsform kann die MP-antisenseRNA eine α-anomere Nukleinsäure sein. Derartige α-anomere Nukleinsäure-moleküle bilden spezifische doppelsträngige Hybride mit komplementärer RNA in denen, - im Unterschied zu den konventionellen β-Nukleinsäuren - die beiden Stränge parallel zueinander verlaufen (Gautier C et al. (1987) Nucleic Acids Res 15:6625-6641).

c) Einbringen einer MP-antisenseRNA kombiniert mit einem Ribozym

Vorteilhaft kann die oben beschriebene antisense-Strategie mit einem Ribozym-Verfahren gekoppelt werden. Katalytische RNA-Mole-5 küle oder Ribozyme können an jede beliebige Ziel-RNA angepasst werden und spalten das Phosphodiester-Gerüst an spezifischen Positionen, wodurch die Ziel-RNA funktionell deaktiviert wird (Tanner NK (1999) FEMS Microbiol Rev 23(3):257-275). Das Ribozym wird dadurch nicht selber modifiziert, sondern ist in der Lage, 10 weitere Ziel-RNA-Moleküle analog zu spalten, wodurch es die Eigenschaften eines Enzyms erhält. Der Einbau von Ribozymsequenzen in "antisense"-RNAs verleiht eben diesen "antisense"-RNAs diese enzymähnliche, RNA-spaltende Eigenschaft und steigert so deren Effizienz bei der Inaktivierung der Ziel-RNA. 15 Die Herstellung und Verwendung entsprechender Ribozym-"antisense"-RNA-Moleküle ist beschrieben (u.a. bei Haseloff et al. (1988) Nature 334: 585-591); Haselhoff und Gerlach (1988) Nature 334:585-591; Steinecke P et al. (1992) EMBO J 11(4):1525- 1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338).

Auf diese Art können Ribozyme (z.B. "Hammerhead"-Ribozyme; Haselhoff und Gerlach (1988) Nature 334:585-591) verwendet werden, um die mRNA eines zu vermindernden Markerproteins katalytisch zu spalten und so die Translation zu verhindern. Die Ribozym-Technologie kann die Effizienz einer antisense-25 Strategie erhöhen. Verfahren zur Expression von Ribozymen zur Verminderung bestimmter Proteine sind beschrieben in (EP 0 291 533, EP 0 321 201, EP 0 360 257). In pflanzlichen Zellen ist eine Ribozym-Expression ebenfalls beschrieben (Steinecke P et al. (1992) EMBO J 11(4):1525-1530; de Feyter R **30** et al. (1996) Mol Gen Genet. 250(3):329-338). Geeignete Zielsequenzen und Ribozyme können zum Beispiel wie bei "Steinecke P, Ribozymes, Methods in Cell Biology 50, Galbraith et al. eds, Academic Press, Inc. (1995), S. 449-460" beschrieben, durch Sekundärstrukturberechnungen von Ribozym- und Ziel-RNA sowie 35 durch deren Interaktion bestimmt werden (Bayley CC et al. (1992) Plant Mol Biol. 18(2):353-361; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet. 242(6):653-657). Beispielsweise können Derivate der Tetrahymena L-19 IVS RNA konstruiert werden, die komplementäre Bereiche zu der mRNA des zu supprimierenden Marker-40 proteins aufweisen (siehe auch US 4,987,071 und US 5,116,742). Alternativ können solche Ribozyme auch über einen Selektionsprozess aus einer Bibliothek diverser Ribozyme identifiziert werden (Bartel D und Szostak JW (1993) Science 261:1411-1418).

29

d) Einbringen einer sense-Ribonukleinsäuresequenz eines Markerproteins (MP-senseRNA) zur Induktion einer Kosuppression

Die Expression einer Markerprotein Ribonukleinsäuresequenz

5 (oder eines Teils derselben) in sense-Orientierung kann zu einer Kosuppression des entsprechenden Markerproteingens führen. Die Expression von sense-RNA mit Homologie zu einem endogenen Markerproteingen kann die Expression desselben vermindern oder ausschalten, ähnlich wie es für antisense Ansätze beschrieben wurde (Jorgensen et al. (1996) Plant Mol Biol 31(5):957-973; Goring et al. (1991) Proc Natl Acad Sci USA 88:1770-1774; Smith et al. (1990) Mol Gen Genet 224:447-481; Napoli et al. (1990) Plant Cell 2:279-289; Van der Krol et al. (1990) Plant Cell 2:291-99). Dabei kann das eingeführte Konstrukt das zu vermindernde, homologe

15 Gen ganz oder nur teilweise repräsentieren. Die Möglichkeit zur Translation ist nicht erforderlich. Die Anwendung dieser Technologie auf Pflanzen ist beschrieben (z.B. Napoli et al. (1990) Plant Cell 2:279-289; in US 5,034,323.

20 Bevorzugt wird die Kosuppression unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für ein Markerprotein, beispielsweise der Nukleinsäuresequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 25, 37, 39, 41, 43, 45 oder 47.

Bevorzugt ist die MP-senseRNA so gewählt, dass es nicht zu einer Translation des Markerproteins oder eines Teils desselben kommen kann. Dazu kann beispielsweise der 5'-untranslatierte oder 30 3'-untranslatierte Bereich gewählt oder aber das ATG-Startkodon deletiert oder mutiert werden.

e) Einbringen von DNA-oder Protein-bindende Faktoren gegen Markerprotein Gene, -RNAs oder Proteine

Eine Verminderung einer Markerprotein Expression ist auch mit spezifischen DNA-bindenden Faktoren z.B. mit Faktoren vom Typ der Zinkfingertranskriptionsfaktoren möglich. Diese Faktoren lagern sich an die genomische Sequenz des endogenen Zielgens, bevorzugt in den regulatorischen Bereichen, an und bewirken eine Verminderung der Expression. Entsprechende Verfahren zur Herstellung

entsprechender Faktoren sind beschrieben (Dreier B et al. (2001) J Biol Chem 276(31):29466-78; Dreier B et al. (2000) J Mol Biol 303(4):489-502; Beerli RR et al. (2000) Proc Natl Acad Sci USA 97 (4):1495-1500; Beerli RR et al. (2000) J Biol Chem 275(42):32617-32627; Segal DJ and Barbas CE 3rd (2000) G

275(42):32617-32627; Segal DJ and Barbas CF 3rd. (2000) Curr Opin Chem Biol 4(1):34-39; Kang JS and Kim JS (2000) J Biol Chem

275(12):8742-8748; Beerli RR et al. (1998) Proc Natl Acad Sci USA 95(25):14628- 14633; Kim JS et al. (1997) Proc Natl Acad Sci USA 94(8):3616 -3620; Klug A (1999) J Mol Biol 293(2):215-218; Tsai SY et al. (1998) Adv Drug Deliv Rev 30(1-3):23-31; Mapp AK et al. (2000) Proc Natl Acad Sci USA 97(8):3930-3935; Sharrocks AD et al. (1997) Int J Biochem Cell Biol 29(12):1371-1387; Zhang L et al. (2000) J Biol Chem 275(43):33850-33860).

Die Selektion dieser Faktoren kann unter Verwendung eines 10 beliebigen Stückes eines Markerprotein-Gens erfolgen. Bevorzugt liegt dieser Abschnitt im Bereich der Promotorregion. Für eine Genunterdrückung kann er aber auch im Bereich der kodierenden Exons oder Introns liegen.

- Ferner können Faktoren in eine Zelle eingebracht werden, die das Markerprotein selber inhibieren. Diese proteinbindenden Faktoren können z.B. Aptamere (Famulok M und Mayer G (1999) Curr Top Microbiol Immunol 243:123-36) oder Antikörper bzw. Antikörperfragmente oder einzelkettige Antikörper sein. Die Gewinnung dieser Faktoren ist beschrieben (Owen M et al. (1992) Biotechnology (N Y) 10(7):790-794; Franken E et al. (1997) Curr Opin Biotechnol 8(4):411-416; Whitelam (1996) Trend Plant Sci 1:286-272).
- f) Einbringen von den Markerprotein RNA-Abbau bewirkenden viralen Nukleinsäuresequenzen und Expressionskonstrukten

Die Markerprotein Expression kann effektiv auch durch Induktion des spezifischen Markerprotein RNA-Abbaus durch die Pflanze mit Hilfe eines viralen Expressionssystems (Amplikon; Angell 30 SM et al. (1999) Plant J 20(3):357-362) realisiert werden. Diese Systeme – auch als "VIGS" (viral induced gene silencing) bezeichnet – bringen Nukleinsäuresequenzen mit Homologie zu dem Transkript eines zu vermindernden Markerproteins mittels viraler Vektoren in die Pflanze ein. Die Transkription wird sodann – vermutlich mediiert durch pflanzliche Abwehrmechanismen gegen Viren – abgeschaltet. Entsprechende Techniken und Verfahren sind beschrieben (Ratcliff F et al. (2001) Plant J 25(2):237-45; Fagard M und Vaucheret H (2000) Plant Mol Biol 43(2-3):285-93; Anandalakshmi R et al. (1998) Proc Natl Acad Sci USA 95(22):13079-84; Ruiz MT (1998) Plant Cell 10(6):937-46).

Bevorzugt wird die VIGS-vermittelte Verminderung unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für ein Markerprotein, beispielsweise der Nukleinsäuresequenz gemäß

SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45 oder 47.

g) Einbringen von Konstrukten zur Erzeugung eines Funktions verlustes oder einer Funktionsminderung an Markerprotein Genen

Dem Fachmann sind zahlreiche Verfahren bekannt, wie genomische Sequenzen gezielt modifiziert werden können. Dazu zählen ins
10 besondere Verfahren wie die Erzeugung von Knockout-Mutanten mittels gezielter homologen Rekombination z.B. durch Generierung von Stopp-Kodons, Verschiebungen im Leseraster etc. (Hohn B und Puchta H (1999) Proc Natl Acad Sci USA 96:8321-8323) oder die gezielte Deletion oder Inversion von Sequenzen mittels z.B.

15 sequenzspezifischer Rekombinasen oder Nukleasen (s.u.)

In einer bevorzugten Ausführungsform wird die Inaktivierung des Markerprotein-Gens durch Einbringen einer sequenzspezifischen Rekombinase realisiert. So kann beispielsweise das Markerprotein20 gen Erkennungssequenzen für sequenzspezifische Rekombinasen umfassen oder von solchen flankiert sein, wobei dann durch Einbringen der Rekombinase bestimmte Sequenzen des Markerproteingens deletiert oder invertiert werden und so eine Inaktivierung des Markerproteinsgens erfolgt. Ein entsprechendes Vorgehen ist

25 schematisch in Fig. 1 dargestellt.

Entsprechende Verfahren zur Deletion/Inversion von Sequenzen mittels sequenzspezifischer Rekombinasesysteme sind dem Fachmann bekannt. Beispielhaft seien zu nennen das Cre/lox-System des 30 Bacteriophagen P1 (Dale EC und Ow DW (1991) Proc Natl Acad Sci USA 88:10558-10562; Russell SH et al. (1992) Mol Gen Genet 234:49-59; Osborne BI et al. (1995) Plant J 7:687-701), das FLP/ FRT System der Hefe (Kilby NJ et al. (1995) Plant J 8:637-652; Lyznik LA et al. (1996) Nucl Acids Res 24:3784-3789), die Gin 35 Rekombinase des Mu Phagen, die Pin Rekombinase aus E.coli oder das R/RS System des pSR1 Plasmids (Onouchi H et al.(1995) Mol Gen Genet 247:653- 660; Sugita Ket al. (2000) Plant J. 22:461-469). Bei diesen Systemen interagiert die Rekombinase (beispielsweise Cre oder FLP) spezifisch mit ihren jeweiligen Rekombinations-40 sequenzen (34 bp lox-Sequenz bzw. 47 bp FRT-Sequenz). Bevorzugt sind das Bacteriophagen P1 Cre/lox und das Hefe FLP/FRT System. Das FLP/FRT und cre/lox Rekombinasesystem wurde bereits in pflanzlichen Systemen angewendet (Odell et al. (1990) Mol Gen Genet 223:369-378). Das Einbringen der Rekombinase wird 45 bevorzugt mittels rekombinanter Expression ausgehend von einer auf einem DNA-Konstrukt umfassten Expressionskassette realisiert.

Die Verminderung der Markerprotein-Aktivität oder -Menge kann auch durch eine gezielte Deletion im Markerprotein-Gen z.B. durch sequenzspezifische Induktion von DNA-Doppelstrangbrüchen an einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrang
5 brüchen in oder in der Nähe der Nukleinsäuresequenz kodierend für ein Markerprotein realisiert werden. In seiner einfachsten Ausführungsform (vgl. Fig. 2, A und B) wird hierbei ein Enzym mit dem Transformationskonstrukt eingebracht, dass mindestens einen Doppelstrangbruch derart erzeugt, dass die resultierende illegitime Rekombination oder Deletion eine Verminderung der Markerprotein-Aktivität oder -Menge - beispielsweise durch Induzieren einer Verschiebung im Leseraster oder Deletion essentieller Sequenzen - bewirkt.

- Die Effizienz dieses Ansatz kann gesteigert werden, indem die Sequenz kodierend für das Markerprotein von Sequenzen (A bzw. A') flankiert ist, die eine ausreichende Länge und Homologie zueinander haben, um infolge des induzierten Doppelstrangbruches miteinander zu rekombinieren und so durch eine intramolekulare homologe Rekombination eine Deletion der Sequenz kodierend für das Markerprotein zu bewirken. Ein entsprechendes Vorgehen ist in einer beispielhaften Ausführungsform dieser Variante in Fig. 3 schematisch dargestellt.
- 25 Die Verminderung der Markerprotein-Menge, -Funktion und/oder -Aktivität kann auch durch eine gezielte Insertion von Nukleinsäuresequenzen (z.B. der im Rahmen der erfindungsgemäßen Verfahrens zu insertierenden Nukleinsäuresequenz) in die Sequenz kodierend für ein Markerprotein (z.B. mittels intermolekularer 30 homologer Rekombination) realisiert werden. Diese Ausführungsform des erfindungsgemäßen Verfahrens ist besonders vorteilhaft und bevorzugt, da es neben den allgemeinen Vorteilen des erfindungsgemäßen Verfahrens zudem noch eine reproduzierbare, vorhersagbare, ortsspezifische Insertion der zu insertierenden Nuklein-35 säuresequenz in das pflanzliche Genom ermöglicht. Dadurch werden die ansonsten im Rahmen einer zufälligen, ortsunspezifischen Insertion auftretenden Positionseffekte (die sich beispielsweise in Form von unterschiedlichen Expressionshöhen des Transgens oder einer unbeabsichtigen Inaktivierung endogener Gene äußern können) 40 vermieden. Im Rahmen dieser Ausführungsform verwendet man als "anti-Markerprotein"-Verbindung bevorzugt ein DNA-Konstrukt, das zumindest einen Teil der Sequenz eines Markerproteingens oder benachbarter Sequenzen umfasst, und so mit diesen in der Zielzelle gezielt rekombinieren kann, so dass durch eine 45 Deletion, Addition oder Substitution mindestens eines Nukleotids das Markerproteingen so verändert wird, dass die Funktionalität des Markerprotein-Gens vermindert oder gänzlich aufgehoben wird.

Die Veränderung kann auch die regulativen Elemente (z.B. den Promotor) des Markerprotein-Gens betreffen, so dass die kodierende Sequenz unverändert bleibt, eine Expression (Transkription und/oder Translation) jedoch unterbleibt und 5 vermindert wird. Bei der konventionellen homologen Rekombination ist die zu insertierende Sequenz an ihrem 5'- und/oder 3'-Ende von weiteren Nukleinsäuresequenzen (A' bzw. B') flankiert, die eine ausreichende Länge und Homologie zu entsprechenden Sequenzen des Markerprotein-Gens (A bzw. B) für die Ermöglichung der homo-10 logen Rekombination aufweisen. Die Länge liegt in der Regel in einem Bereich von mehreren hundert Basen bis zu mehreren Kilobasen (Thomas KR und Capecchi MR (1987) Cell 51:503; Strepp et al. (1998) Proc Natl Acad Sci USA 95(8):4368-4373). Für die homologe Rekombination wird die pflanzliche Zelle mit dem 15 Rekombinationskonstrukt unter Verwendung der unten beschriebenen Verfahren transformiert und erfolgreich rekombinierte Klone basierend auf dem infolge inaktivierten Markerprotein selektioniert. Obgleich homologe Rekombination ein relativ seltenes Ereignis in pflanzlichen Organismen ist, kann durch die Rekombi-20 nation in das Markerprotein-Gen hinein einem Selektionsdruck ausgewichen werden, was eine Selektion der rekombinierten Zellen und eine hinreichende Effizienz des Verfahrens erlaubt. Ein entsprechendes Vorgehen ist in einer beispielhaften Ausführungsform

25

In einer vorteilhaften Ausführungsform der Erfindung wird jedoch die Insertion in das Markerproteingen mittels weiterer Funktionselemente erleichtert. Der Begriff ist umfassend zu verstehen und meint die Verwendung von Sequenzen bzw. von diesen abgeleiteten Transkripten oder Polypeptiden, die die Effizienz der gezielten Integration in ein Markerprotein-Gen zu steigern vermögen. Dazu stehen dem Fachmann verschiedene Verfahren zur Verfügung. Bevorzugt wird jedoch die Insertion durch Induktion eines sequenzspezifischen Doppelstrangbruches in oder in der Nähe des Markerprotein-Gens realisiert.

dieser Variante in Fig. 4 schematisch dargestellt.

In einer bevorzugte Ausführungsform der Erfindung wird die Inaktivierung (d.h. die Verminderung der Menge, Expression, Aktivität oder Funktion) des Markerproteins durch Integration einer DNA-Sequenz in ein Markerprotein-Gen realisiert, wobei das Verfahren bevorzugt nachfolgende Schritte umfasst:

i) Einbringen eines Insertionskonstruktes und mindestens eines Enzyms geeignet zur Induktion von DNA-Doppelstrangbrüchen an einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen in oder in der Nähe des Markerprotein-Gens, und

35

zu nennen:

34

- ii) Induktion von DNA-Doppelstrangbrüchen an den Erkennungssequenzen zur gezielten Induktion von DNA-Doppelstrangbrüchen in oder in der Nähe des Markerprotein-Gens, und
- 5 iii) Insertion des Insertionskonstruktes in das MarkerproteinGen, wobei die Funktionalität des Markerprotein-Gens und
 bevorzugt die Funktionalität der Erkennungssequenz zur
 gezielten Induktion von DNA-Doppelstrangbrüchen inaktiviert
 wird, so dass besagte Erkennungssequenz nicht mehr durch
 das Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen geschnitten werden kann, und
 - iV) Selektion von Pflanzen oder pflanzlichen Zellen, bei denen das Insertionskonstrukt in das Markerproteingen insertiert wurde.

Das Insertionskonstrukt umfasst - bevorzugt - die in das Genom zu insertierende Nukleinsäuresequenz, kann aber auch separat von dieser eingesetzt werden.

- 20 "Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen" (infolge "DSBI-Enzym" für "double strand-break inducing enzyme") meint allgemein all solche Enzyme, die in der Lage sind, sequenzspezifisch Doppelstrangbrüche in doppelsträngige DNA
 25 zu erzeugen. Beispielsweise, aber nicht einschränkend, sind
- Restriktionsendonukleasen, bevorzugt Typ II Restriktionsendonukleasen, besonders bevorzugt Homing-Endonukleasen wie weiter unten im Detail beschrieben.
 - 2. Künstliche Nukleasen wie weiter unten im Detail beschrieben, wie beispielsweise chimäre Nukleasen, mutierte Restriktionsoder Homing-Endonukleasen oder RNA-Proteinpartikel abgeleitet von mobilen Introns der Gruppe II.

Sowohl natürliche als auch künstlich hergestellte DSBI-Enzyme sind geeignet. Bevorzugt sind all solche DSBI-Enzyme, deren Erkennungssequenz bekannt ist und die entweder in Form ihrer 40 Proteine (beispielsweise durch Aufreinigung) gewonnen oder unter Verwendung ihrer Nukleinsäuresequenz exprimiert werden können.

Bevorzugt wird das DSBI-Enzym unter Kenntnis seiner spezifischen Erkennungssequenz so ausgewählt, dass es zusätzlich zu der Ziel45 Erkennungssequenz keine weitere funktionellen Erkennungsregionen im Genom der Zielpflanze besitzt. Ganz besonders bevorzugt sind deshalb Homing-Endonukleasen (Übersicht: Belfort M und Roberts RJ

(1997) Nucleic Acids Res 25:3379-3388; Jasin M (1996) Trends Genet 12:224-228; Internet: http://rebase.neb.com/rebase/rebase.homing.html; Roberts RJ and Macelis D (2001) Nucl Acids Res 29: 268-269). Diese erfüllen aufgrund ihrer langen Erkennungs-

- 5 sequenzen diese Anforderung. Die für derartige Homing-Endonukleasen kodierenden Sequenzen können beispielsweise aus dem Chloroplastengenom von Chlamydomonas isoliert werden (Turmel M et al. (1993) J Mol Biol 232:446-467). Geeignete Homing-Endonukleasen sind unter der oben angegebenen Internet-Adresse auf-
- 10 geführt. Zu nennen sind beispielsweise Homing-Endonukleasen wie
 F-SceI, F-SceII, F-SuvI, F-TevI, F-TevII, I-AmaI, I-AniI, I-CeuI,
 I-CeuAIIP, I-ChuI, I-CmoeI, I-CpaI, I-CpaII, I-CreI, I-CrepsbIP,
 I-CrepsbIIP, I-CrepsbIIIP, I-CrepsbIVP, I-CsmI, I-CvuI, I-CvuAIP,
 I-DdiII, I-DirI, I-DmoI, I-HspNIP, I-LlaI, I-MsoI, I-NaaI,
- 15 I-NanI, I-NclIP, I-NgrIP, I-NitI, I-NjaI, I-Nsp236IP, I-PakI, I-PboIP, I-PcuIP, I-PcuAI, I-PcuVI, I-PgrIP, I-PobIP, I-PorI, I-PorIIP, I-PpbIP, I-PpoI, I-SPBetaIP, I-ScaI, I-SceI, I-SceII, I-SceIII, I-SceIV, I-SceVI, I-SceVII, I-SexIP, I-SneIP, I-SpomCP, I-SpomIP, I-SpomIP, I-SquIP, I-Ssp6803I, I-SthPhiJP,
- 20 I-SthPhiST3P, I-SthPhiS3bP, I-TdeIP, I-TevI, I-TevII, I-TevIII, I-UarAP, I-UarHGPA1P, I-UarHGPA13P, I-VinIP, I-ZbiIP, PI-MtuI, PI-MtuHIP, PI-MtuHIIP, PI-PfuI, PI-PfuII, PI-PkoI, PI-PkoII, PI-PspI, PI-Rma43812IP, PI-SPBetaIP, PI-SceI, PI-TfuI, PI-TfuII, PI-ThyI, PI-TliI, PI-TliII. Bevorzugt sind dabei die Homing-
- 25 Endonukleasen, deren Gensequenzen bereits bekannt sind, wie beispielsweise F-SceI, I-CeuI, I-ChuI, I-DmoI, I-CpaI, I-CpaII, I-CreI, I-CsmI, F-TevI, F-TevII, I-TevI, I-TevII, I-AniI, I-CvuI, I-LlaI, I-NanI, I-MsoI, I-NitI, I-NjaI, I-PakI, I-PorI, I-PpoI, I-ScaI, I-Ssp6803I, PI-PkoI, PI-PkoII, PI-PspI, PI-TfuI, PI-TliI.

Ganz besonders bevorzugt sind

- I-CeuI (Cote MJ und Turmel M (1995) Curr Genet 27:177-183.; Gauthier A et al. (1991) Curr Genet 19:43-47; Marshall (1991) Gene 104:241-245; GenBank Acc.-No.: Z17234 Nukleotide 5102 bis 5758),
- I-ChuI (Cote V et al.(1993) Gene 129:69-76; GenBank Acc.-No.: L06107, Nukleotide 419 bis 1075),

- I-CmoeI (Drouin M et al. (2000) Nucl Acids Res 28:4566-4572),

30

35

40

- I-CpaI aus Chlamydomonas pallidostigmatica (GenBank Acc.-No.: L36830, Nukleotide 357 bis 815; Turmel M et al. (1995)
Nucleic Acids Res 23:2519-2525; Turmel, M et al. (1995)
Mol Biol Evol 12:533-545)

5

- I-CpaII (Turmel M et al. (1995) Mol Biol Evol 12:533-545; GenBank Acc.-No.: L39865, Nukleotide 719 bis 1423),
- I-CreI (Wang J et al. (1997) Nucleic Acids Res 25: 3767-3776;
 10 Dürrenberger, F und Rochaix JD (1991) EMBO J 10:3495-3501;
 GenBank Acc.-No.: X01977, Nukleotide 571 bis 1062),
 - I-CsmI (Ma DP et al. (1992) Plant Mol Biol 18:1001-1004)
- 15 I-NanI (Elde M et al. (1999) Eur J Biochem. 259:281-288; GenBank Acc.-No.: X78280, Nukleotide 418 bis 1155),
 - I-NitI (GenBank Acc.-No.: X78277, Nukleotide 426 bis 1163),
- 20 I-NjaI (GenBank Acc.-No.: X78279, Nukleotide 416 bis 1153),
 - I-PpoI (Muscarella DE und Vogt VM (1989) Cell 56:443-454; Lin J und Vogt VM (1998) Mol Cell Biol 18:5809-5817; GenBank Acc.-No.: M38131, Nukleotide 86 bis 577),

25

- I-PspI (GenBank Acc.-No.: U00707, Nukleotide 1839 bis 3449),
- I-ScaI (Monteilhet C et al. (2000) Nucleic Acids Res 28: 1245-1251; GenBank Acc.-No.: X95974, Nukleotide 55 bis 465)

30

- I-SceI (WO 96/14408; US 5,962,327 dort Seq ID NO: 1),
- Endo SceI (Kawasaki et al. (1991) J Biol Chem 266:5342-5347, identisch zu F-SceI; GenBank Acc.-No.: M63839, Nukleotide 159 bis 1589),
 - I-SceII (Sarguiel B et al. (1990) Nucleic Acids Res 18:5659-5665),
- **40** I-SceIII (Sarguiel B et al. (1991) Mol Gen Genet. 255:340-341),
 - I-Ssp6803I (GenBank Acc.-No.: D64003, Nukleotide 35372 bis 35824),

I-TevI (Chu et al. (1990) Proc Natl Acad Sci USA 87:3574-3578; Bell-Pedersen et al. (1990) Nucleic Acids Res18:3763-3770; GenBank Acc.-No.: AF158101, Nukleotide 144431 bis 143694),

5

- I-TevII (Bell-Pedersen et al. (1990) Nucleic Acids Res 18:3763-3770; GenBank Acc.-No.: AF158101, Nukleotide 45612 bis 44836),
- 10 I-TevIII (Eddy et al. (1991) Genes Dev. 5:1032-1041),

Ganz besonders bevorzugt sind kommerziell erhältliche HomingEndonukleasen wie I-CeuI, I-SceI, I-PpoI, PI-PspI oder PI-SceI.
Am meisten bevorzugt sind I-SceI und I-PpoI. Während das Gen

15 kodierend für I-PpoI in der natürlichen Form genutzt werden kann,
besitzt das Gen kodierend für I-SceI eine Editierstelle. Da die
entsprechende Editierung in höherer Pflanzen im Unterschied zu
den Mitochondrien der Hefe nicht durchgeführt wird, muss eine
künstliche das I-SceI Protein kodierende Sequenz zur hetero20 logen Expression dieses Enzyms eingesetzt werden (US 5,866,361).

Die Enzyme können in der dem Fachmann geläufigen Art und Weise aus ihren Herkunftsorganismen aufgereinigt und/oder die für sie kodierende Nukleinsäuresequenz kloniert werden. Die Sequenzen 25 verschiedener Enzyme sind in der GenBank hinterlegt (s.o.).

Als künstliche DSBI-Enzyme seien beispielhaft chimäre Nukleasen zu nennen, die sich aus einer unspezifischen Nukleasedomäne und einer sequenzspezifischen DNA-Bindungsdomäne (z.B. bestehend aus 30 Zinkfingern) zusammensetzen (Smith J et al. (2000) Nucl Acids Res 28(17):3361-3369; Bibikova M et al. (2001) Mol Cell Biol. 21:289-297). So wurde beispielsweise die katalytische Domäne der Restriktionsendonuklease FokI an Zinkfingerbinde-Domänen fusioniert, wodurch die Spezifität der Endonuklease definiert 35 wurde (Chandrasegaran S & Smith J (1999) Biol Chem 380:841-848; Kim YG & Chandrasegaran S (1994) Proc Natl Acad Sci USA 91:883-887; Kim YG et al. (1996) Proc Natl Acad Sci USA 93:1156-1160). Auch die katalytische Domäne der Ho-Endonuklease aus Hefe konnte bereits mit der beschriebenen Technik eine vor-40 definierte Spezifität verliehen werden, indem diese an die Zinkfingerdomäne von Transkriptionsfaktoren fusioniert wurde (Nahon E & Raveh D (1998) Nucl Acids Res 26:1233-1239). Durch geeignete Mutations- und Selektionsverfahren kann man bestehende Homing-Endonukleasen an jede gewünschte Erkennungssequenz anpassen.

38 Wie erwähnt, eignen sich insbesondere Zinkfingerproteine als DNA-Bindungsdomäne im Rahmen von chimären Nukleasen. Diese DNAbindenden Zinkfingerdomänen können an jede beliebige DNA-Sequenz angepasst werden. Entsprechende Verfahren zur Herstellung 5 entsprechender Zinkfingerdomänen sind beschrieben und dem Fachmann bekannt (Beerli RR et al. (2000) Proc Natl Acad 97(4):1495-1500; Beerli RR et al. (2000) J Biol Chem 275(42):32617-32627; Segal DJ and Barbas CF 3rd. (2000) Curr Opin Chem Biol 4(1):34-39; Kang JS and Kim JS (2000) J Biol Chem 10 275(12):8742-8748; Beerli RR et al. (1998) Proc Natl Acad Sci USA 95(25):14628-14633; Kim JS et al. (1997) Proc Natl Acad Sci USA 94(8):3616-3620; Klug A (1999) J Mol Biol 293(2):215-218; Tsai SY et al. (1998) Adv Drug Deliv Rev 30(1-3):23-31; Mapp AK et al. (2000) Proc Natl Acad Sci USA 97(8):3930-3935; Sharrocks AD 15 et al. (1997) Int J Biochem Cell Biol 29(12):1371-1387; Zhang L et al. (2000) J Biol Chem 275(43):33850-33860). Verfahren zur

et al. (2000) J Biol Chem 275(43):33850-33860). Verfahren zur Herstellung und Selektion von Zink-Finger DNA-Bindedomänen mit hoher Sequenzspezifität sind beschrieben (WO 96/06166, WO 98/53059, WO 98/53057). Durch Fusion einer so erhaltenen 20 DNA-Bindedomäne an die katalytische Domäne einer Endonuklease

20 DNA-Bindedomäne an die katalytische Domäne einer Endonuklease (wie beispielsweise der FokI oder Ho-Endonuklease) kann man chimäre Nukleasen mit jeder beliebigen Spezifität herstellen, die als DSBI-Enzyme im Rahmen der vorliegenden Erfindung vorteilhaft eingesetzt werden können.

25

Künstliche DSBI-Enzyme mit veränderter Sequenzspezifität können auch durch Mutagenese bereits bekannter Restriktionsendonukleasen oder Homing Endonukleasen durch dem Fachmann geläufige Methoden erzeugt werden. Insbesondere von Interesse ist neben der Muta30 genese von Homing-Endonukleasen mit dem Ziel, eine veränderte Substratspezifität zu erzielen, auch die Mutagenese von Maturasen. Maturasen haben häufig viele Gemeinsamkeiten mit Homing-Endonukleasen und lassen sich durch wenige Mutationen ggf. in Nukleasen umwandeln. Dies wurde beispielsweise für die Maturase im bi2 Intron der Bäckerhefe gezeigt. Lediglich zwei Mutationen in dem die Maturase kodierenden offenen Leseraster (ORF) reichten aus, diesem Enzym eine Homing-Endonuklease Aktivität zu verleihen (Szczepanek & Lazowska (1996) EMBO J 15:3758-3767).

40 Weitere künstliche Nukleasen können mit Hilfe mobiler Gruppe II Introns und den von ihnen kodierten Proteinen oder Teile dieser Proteine erzeugt werden. Mobile Gruppe II Introns bilden mit den von ihnen kodierten Proteinen RNA-Protein-Partikel, die sequenzspezifisch DNA erkennen und schneiden können. Die Sequenz-45 spezifität kann dabei durch Mutagenese von bestimmten Bereichen

des Introns (siehe unten) den Bedürfnissen angepasst werden (WO 97/10362).

Bevorzugt wird das DSBI-Enzym als Fusionsprotein mit einer Kern5 lokalisationssequenz (NLS) exprimiert. Diese NLS-Sequenz ermöglicht einen erleichterten Transport in den Kern und steigert die
Effizienz des Rekombinationssystems. Verschiedene NLS-Sequenzen
sind dem Fachmann bekannt und unter anderem beschrieben bei
Jicks GR und Raikhel NV (1995) Annu. Rev. Cell Biol. 11:155-188.

10 Bevorzugt für pflanzliche Organismen ist beispielsweise die NLS-Sequenz des SV40 "large antigen". Ganz besonders bevorzugt sind die nachfolgenden NLS-Sequenzen:

NLS1: N-Pro-Lys-Thr-Lys-Arg-Lys-Val-C

15

NLS2: N-Pro-Lys-Lys-Lys-Arg-Lys-Val-C

Aufgrund der geringen Größe vieler DSBI-Enzyme (wie beispielsweise der Homing-Endonukleasen) ist jedoch eine NLS-Sequenz 20 nicht zwingend erforderlich. Diese Enzyme können die Kernporen auch ohne die Unterstützung passieren.

"Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen" meint allgemein solche Sequenzen, die unter 25 den Bedingungen in der jeweils verwendeten eukaryotischen Zelle oder Organismus die Erkennung und Spaltung durch das DSBI-Enzym erlauben. Beispielhaft aber nicht einschränkend seien dabei in nachfolgender Tabelle 1 die Erkennungssequenzen für die jeweiligen aufgeführten DSBI-Enzyme genannt.

30

Tabelle 1: Erkennungssequenzen und Herkunftsorganismus von DSBI-Enzymen ("^" gibt innerhalb einer Erkennungssequenz die Schnittstelle des DSBI-Enzyms an)

35	DSBI-Enzym	Herkunfts- organismus	Erkennungssequenz
40	CRE	Bacteriophage P1	5'-AACTCTCATCGCTTCGGATAACTTCCTGTTATCCGAAACAT ATCACTCACTTTGGTGATTTCACCGTAACTGTCTATGATTAATG -3'
	FLP	Saccharomyces cerevisiae	5'-GAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTA- TAGGAACTTC-3'
	R	pSR1 Plasmids	5'-CGAGATCATATCACTGTGGACGTTGATGAAAGAATACGTTA TTCTTTCATCAAATCGT
45	P-Element Transpo- sase	Drosophila	5'-CTAGATGAAATAACATAAGGTGG
	I-AniI	Aspergillus nidulans	5'-TTGAGGAGGTT^TCTCTGTAAATAANNNNNNNNNNNNNNNNNNNNNNNNNNN

			40
	DSBI-Enzym	Herkunfts- organismus	Erkennungssequenz
	I-DdiI	Dictyostelium discoideumAX3	5'-TTTTTTGGTCATCCAGAAGTATAT 3'-AAAAAACCAG^TAGGTCTTCATATA
5	I-CvuI	Chlorella vulgaris	5'-CTGGGTTCAAAACGTCGTGA^GACAGTTTGG 3'-GACCCAAGTTTTGCAG^CACTCTGTCAAACC
	I-CsmI	Chlamydomonas smithii	5'-GTACTAGCATGGGGTCAAATGTCTTTCTGG
10 15	I-CmoeI	Chlamydomo- nasmoewusii	5'-TCGTAGCAGCT^CACGGTT 3'-AGCATCG^TCGAGTGCCAA
	I-CreI	Chlamydomonas reinhardtii	5'-CTGGGTTCAAAACGTCGTGA^GACAGTTTGG 3'-GACCCAAGTTTTGCAG^CACTCTGTCAAACC
	I-ChuI	Chlamydomonas humicola	5'-GAAGGTTTGGCACCTCG^ATGTCGGCTCATC 3'-CTTCCAAACCGTG^GAGCTACAGCCGAGTAG
	I-CpaI	Chlamydomonas pallidostig- matica	5'-CGATCCTAAGGTAGCGAA^ATTCA 3'-GCTAGGATTCCATC^GCTTTAAGT
	I-CpaII	Chlamydomonas pallidostig- matica	5'-CCCGGCTAACTC^TGTGCCAG 3'-GGGCCGAT^TGAGACACGGTC
20	I-CeuI	Chlamydomonas eugametos	5'-CGTAACTATAACGGTCCTAA^GGTAGCGAA 3'-GCATTGATATTGCCAG^GATTCCATCGCTT
	I-DmoI	Desulfurococ- cus mobilis	5'-ATGCCTTGCCGGGTAA^GTTCCGGCGCGCAT 3'-TACGGAACGGCC^CATTCAAGGCCGCGCGTA
25	I-SceI	S.cerevisiae	5'-AGTTACGCTAGGGATAA^CAGGGTAATATAG 3'-TCAATGCGATCCC^TATTGTCCCATTATATC 5'-TAGGGATAA^CAGGGTAAT 3'-ATCCC^TATTGTCCCATTA ("Core"-Sequenz)
	I-SceII	S.cerevisiae	5'-TTTTGATTCTTTGGTCACCC^TGAAGTATA 3'-AAAACTAAGAAACCAG^TGGGACTTCATAT
30	I-SceIII	S.cerevisiae	5'-ATTGGAGGTTTTGGTAAC^TATTTATTACC 3'-TAACCTCCAAAACC^ATTGATAAATAATGG
50	I-SceIV	S.cerevisiae	5'-TCTTTTCTCTTGATTA^GCCCTAATCTACG 3'-AGAAAAGAGAAC^TAATCGGGATTAGATGC
	I-SceV	S.cerevisiae	5'-AATAATTTTCT^TCTTAGTAATGCC 3'-TTATTAAAAGAAGAATCATTA^CGG
35	I-SceVI	S.cerevisiae	5'-GTTATTTAATG^TTTTAGTAGTTGG 3'-CAATAAATTACAAAATCATCA^ACC
	I-SceVII	S.cerevisiae	5'-TGTCACATTGAGGTGCACTAGTTATTAC
	PI-SceI	S.cerevisiae	5'-ATCTATGTCGGGTGC^GGAGAAAGAGGTAAT 3'-TAGATACAGCC^CACGCCTCTTTCTCCATTA
40	F-SceI	S.cerevisiae	5'-GATGCTGTAGGC^ATAGGCTTGGTT 3'-CTACGACA^TCCGTATCCGAACCAA
	F-SceII	S.cerevisiae	5'-CTTTCCGCAACA^GTAAAATT 3'-GAAAGGCG^TTGTCATTTTAA
45	I-HmuI	Bacillus sub- tilis bacte- riophage SP01	5'-AGTAATGAGCCTAACGCTCAGCAA 3'-TCATTACTCGGATTGC^GAGTCGTT
	I-HmuII	Bacillus subtilis bacteriophage SP82	5'-AGTAATGAGCCTAACGCTCAACAANNNNNNNNNNNNNNNN

	41		
	DSBI-Enzym	Herkunfts- organismus	Erkennungssequenz
5	I-LlaI	Lactococcus lactis	5'-CACATCCATAAC^CATATCATTTTT 3'-GTGTAGGTATTGGTATAGTAA^AAA
	I-MsoI	Monomastix species	5'-CTGGGTTCAAAACGTCGTGA^GACAGTTTGG 3'-GACCCAAGTTTTGCAG^CACTCTGTCAAACC
	I-NanI	Naegleria an- dersoni	5'-AAGTCTGGTGCCA^GCACCCGC 3'-TTCAGACC^ACGGTCGTGGGCG
15	I-NitI	Naegleria italica	5'-AAGTCTGGTGCCA^GCACCCGC 3'-TTCAGACC^ACGGTCGTGGGCG
	I-NjaI	Naegleria ja- miesoni	5'-AAGTCTGGTGCCA^GCACCCGC 3'-TTCAGACC^ACGGTCGTGGGCG
	I-PakI	Pseudendoclo- nium akinetum	5'-CTGGGTTCAAAACGTCGTGA^GACAGTTTGG 3'-GACCCAAGTTTTGCAG^CACTCTGTCAAACC
	I-PorI	Pyrobaculum organotrophum	5'-GCGAGCCCGTAAGGGT^GTGTACGGG 3'-CGCTCGGGCATT^CCCACACATGCCC
	I-PpoI	Physarum po- lycephalum	5'-TAACTATGACTCTCTTAA^GGTAGCCAAAT 3'-ATTGATACTGAGAG^AATTCCATCGGTTTA
	I-ScaI	Saccharomyces capensis	5'-TGTCACATTGAGGTGCACT^AGTTATTAC 3'-ACAGTGTAACTCCAC^GTGATCAATAATG
	I-Ssp6803I	Synechocystis species	5'-GTCGGGCT^CATAACCCGAA 3'-CAGC©CGAGTA^TTGGGCTT
	PI-PfuI	Pyrococcus furiosus Vc1	5'-GAAGATGGGAGGGGGACCGGACTCAACTT 3'-CTTCTACCCTCC^TCCCTGGCCTGAGTTGAA
25	PI-PfuII	Pyrococcus furiosus Vc1	5'-ACGAATCCATGTGGAGA^AGAGCCTCTATA 3'-TGCTTAGGTACAC^CTCTTCTCGGAGATAT
	PI-PkoI	Pyrococcus kodakaraensis KOD1	5'-GATTTTAGAT^CCCTGTACC 3'-CTAAAA^TCTAGGGACATGG
30	PI-PkoII	Pyrococcus kodakaraensis KOD1	5'-CAGTACTACG^GTTAC 3'-GTCATG^ATGCCAATG
	PI-PspI	Pyrococcus sp.	5'-AAAATCCTGGCAAACAGCTATTAT^GGGTAT '-TTTTAGGACCGTTTGTCGAT^AATACCCATA
	PI-TfuI	Thermococcus fumicolans ST557	5'-TAGATTTTAGGT^CGCTATATCCTTCC 3'-ATCTAAAA^TCCAGCGATATAGGAAGG
35	PI-TfuII	Thermococcus fumicolans ST557	5'-TAYGCNGAYACN^GACGGYTTYT 3'-ATRCGNCT^RTGNCTGCCRAARA
	PI-ThyI	Thermococcus hydrotherma- lis	5'-TAYGCNGAYACN^GACGGYTTYT 3'-ATRCGNCT^RTGNCTGCCRAARA
40	PI-TliI	Thermococcus litoralis	5'-TAYGCNGAYACNGACGG^YTTYT 3'-ATRCGNCTRTGNC^TGCCRAARA
	PI-TliII	Thermococcus litoralis	5'-AAATTGCTTGCAAACAGCTATTACGGCTAT
45	I-TevI	Bacteriophage T4	5'-AGTGGTATCAAC^GCTCAGTAGATG 3'-TCACCATAGT^TGCGAGTCATCTAC
	I-TevII	Bacteriophage T4	5'-GCTTATGAGTATGAAGTGAACACGT^TATTC 3'-CGAATACTCATACTTCACTTGTG^CAATAAG

20 18bp-"Core"-Sequenz definiert werden.

5

40

42

DSBI-Enzym	Herkunfts- organismus	Erkennungssequenz
F-TevI	Bacteriophage T4	5'-GAAACACAAGA^AATGTTTAGTAAANNNNNNNNNNNNNNNNNNNNNN
F-TevII	Bacteriophage T4	5'-TTTAATCCTCGCTTC^AGATATGGCAACTG 3'-AAATTAGGAGCGA^AGTCTATACCGTTGAC

Dabei sind auch kleinere Abweichungen (Degenerationen) der Erkennungssequenz umfasst, die dennoch eine Erkennung und

10 Spaltung durch das jeweilige DSBI-Enzym ermöglichen. Derartige Abweichungen – auch in Zusammenhang mit unterschiedlichen Rahmenbedingungen wie beispielsweise Calcium oder Magnesium-Konzentration – sind beschrieben (Argast GM et al. (1998) J Mol Biol 280:345-353). Ferner sind Kernsequenzen ("Core"-Sequenzen)

15 dieser Erkennungssequenzen umfasst. Es ist bekannt, dass auch die inneren Anteile der Erkennungssequenzen für einen induzierten Doppelstrangbruch genügen und das die äußeren nicht unbedingt relevant sind, jedoch die Effizienz der Spaltung mitbestimmen können. So kann beispielsweise für I-SceI eine

Besagte DSBI-Erkennungssequenzen können an verschiedenen Positionen in oder in der Nähe eines Markerprotein-Gens lokalisiert werden und können - beispielsweise bei der Verwendung eines Transgens als Markerproteins - bereits bei der Konstruktion der Markerprotein-Expressionskassette eingebaut werden. Verschiedene Möglichkeiten der Lokalisation sind beispielhaft in den Fig. 2-A, 2-B, 3 und 5 sowie in den Beschreibungen dazu verdeutlicht.

30 In einer weiteren vorteilhaften Ausführungsform umfasst die Insertionssequenz mindestens eine Homologiesequenz A, die eine ausreichende Länge und eine ausreichende Homologie zu einer Sequenz A' in dem Markerproteingen aufweist, um eine homologe Rekombination zwischen A und A' zu gewährleisten. Bevorzugt ist Insertionssequenz von zwei Sequenzen A und B flankiert, die eine ausreichende Länge und eine ausreichende Homologie zu einer Sequenz A' bzw. B' in dem Markerproteingen aufweisen, um eine homologe Rekombination zwischen A und A' bzw. B und B' zu gewährleisten.

"Ausreichende Länge" meint in Bezug auf die Homologiesequenzen A, A' und B, B' bevorzugt Sequenzen von einer Länge von mindestens 100 Basenpaaren, bevorzugt mindestens 250 Basenpaaren, besonders bevorzugt von mindestens 500 Basenpaaren, ganz besonders bevor25 zugt von mindestens 1000 Basenpaaren, am meistens bevorzugt von mindestens 2500 Basenpaaren.

"Ausreichende Homologie" meint in Bezug auf die Homologiesequenzen, bevorzugt Sequenzen die eine Homologie zueinander
aufweisen von mindestens 70 %, bevorzugt 80 %, vorzugsweise mindestens 90 %, besonders bevorzugt mindestens 95 %, ganz besonders
bevorzugt mindestens 99 %, am meisten bevorzugt 100% über eine
Länge von von mindestens 20 Basenpaaren, bevorzugt mindestens
50 Basenpaaren, besonders bevorzugt von mindestens 100 Basenpaaren, ganz besonders bevorzugt von mindestens 250 Basenpaaren,
am meisten bevorzugt von mindestens 500 Basenpaaren.

10

Unter Homologie zwischen zwei Nukleinsäuren wird die Identität der Nukleinsäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin,

15 Genetics Computer Group (GCG), Madison, USA) unter Einstellung folgender Parameter berechnet wird:

Gap Weight: 12 Length Weight: 4

20 Average Match: 2,912 Average Mismatch: -2,003

In einer weiteren bevorzugten Ausführungsform wird die Effizienz der Rekombination gesteigert durch Kombination mit Verfahren, die die homologe Rekombination fördern. Solche Verfahren sind be-25 schrieben und umfassen beispielhaft die Expression von Proteinen wie RecA oder die Behandlung mit PARP-Inhibitoren. Es konnte gezeigt werden, dass die intrachromosomale homologe Rekombination in Tabakpflanzen durch die Verwendung von PARP-Inhibitoren erhöht werden kann (Puchta H et al. (1995) Plant J 7:203-210). Durch 30 den Einsatz dieser Inhibitoren kann die Rate der homologen Rekombination in den Rekombinationskonstrukten nach Induktion des sequenzspezifischen DNA-Doppelstrangbruches und damit die Effizienz der Deletion der Transgensequenzen weiter erhöht werden. Verschiedene PARP Inhibitoren können dabei zum Einsatz 35 kommen. Bevorzugt umfasst sind Inhibitoren wie 3-Aminobenzamid, 8-Hydroxy-2-methylquinazolin-4-on (NU1025), 1,11b-Dihydro-[2H]benzopyrano[4,3,2-de]isoquinolin-3-on (GPI 6150), 5-Aminoisoquinolinon, 3,4-Dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)isoquinolinon oder die in WO 00/26192, WO 00/29384, WO 00/32579, 40 WO 00/64878, WO 00/68206, WO 00/67734, WO 01/23386 und

Weitere geeignete Methoden sind die Einführung von Nonsense-Mutationen in endogene Markerprotein Gene zum Beispiel mittels 45 Einführung von RNA/DNA-Oligonukleotiden in die Pflanze (Zhu et al. (2000) Nat Biotechnol 18(5):555-558). Punktmutationen können auch mittels DNA-RNA Hybriden erzeugt werden, die auch

WO 01/23390 beschriebenen Substanzen.

als "chimeraplasty" bekannt sind (Cole-Strauss et al. (1999) Nucl Acids Res 27(5):1323-1330; Kmiec (1999) Gene therapy American Scientist 87(3):240-247).

5 Die Methoden der dsRNAi, der Kosuppression mittels sense-RNA und der "VIGS" ("virus induced gene silencing") werden auch als "post-transcriptional gene silencing" (PTGS) bezeichnet. PTGS-Verfahren sind besonders vorteilhaft, weil die Anforderungen an die Homologie zwischen dem zu vermindernden Markerprotein-Gen und der transgen exprimierten sense- oder dsRNA-Nukleinsäuresequenz geringer sind als beispielsweise bei einem klassischen antisense-Ansatz. So kann man unter Verwendung der Markerprotein-Nukleinsäuresequenzen aus einer Art auch die Expression von homologen Markerprotein-Proteinen in anderen Arten effektiv vermindern, ohne, dass die Isolierung und Strukturaufklärung der dort vorkommenden Markerprotein-Homologen zwingend erforderlich wäre. Dies erleichtert erheblich den Arbeitsaufwand.

"Einbringen" umfasst im Rahmen der Erfindung alle Verfahren, die dazu geeignet eine "anti-Markerprotein"-Verbindung, direkt oder indirekt, in eine Pflanze oder eine Zelle, Kompartiment, Gewebe, Organ oder Samen derselben einzuführen oder dort zu generieren. Direkte und indirekte Verfahren sind umfasst. Das Einbringen kann zu einer vorübergehenden (transienten) Präsenz einer 25 "anti-Markerprotein"-Verbindung (beispielsweise einer dsRNA oder einer Rekombinase) führen oder aber auch zu einer dauerhaften (stabilen).

Gemäß der unterschiedlichen Natur der oben beschriebenen Ansätze
30 kann die "anti-Markerprotein"-Verbindung ihre Funktion direkt
(zum Beispiel durch Insertion in ein endogenes Markerprotein Gen)
ausüben. Die Funktion kann aber auch indirekt nach Transkription
in eine RNA (zum Beispiel bei antisense Ansätzen) oder nach
Transkription und Translation in ein Protein (zum Beispiel bei
35 Rekombinasen oder DSBI-Enzymen) ausgeübt werden. Sowohl direkte
als auch indirekt wirkende "anti-Markerprotein"-Verbindungen
sind erfindungsgemäß umfasst.

Einführen umfasst beispielsweise Verfahren wie Transfektion, 40 Transduktion oder Transformation.

"Anti-Markerprotein" Verbindungen umfasst somit beispielsweise auch Expressionskassetten, die eine Expression (d.h. Transkription und ggf. Translation) beispielsweise einer 45 MP-dsRNA, einer MP-antisenseRNA, einer sequenzspezifischen

Rekombinase oder eines DSBI-Enzyms in einer pflanzlichen Zelle realisieren können.

"Expressionskassette" meint im Rahmen dieser Erfindung allgemein 5 solche Konstruktionen in denen eine zu exprimierende Nukleinsäuresequenz in funktioneller Verknüpfung mit mindestens einer genetischen Kontrollsequenz - bevorzugt einer Promotorsequenz - steht. Expressionskassetten bestehen bevorzugt aus doppelsträngiger DNA und können eine lineare oder zirkuläre Struktur 10 haben.

Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines Promotors mit einer zu transkribierenden Nukleinsäuresequenz (beispielsweise kodierend 15 für eines MP-dsRNA oder ein DSBI-Enzym) und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator und/oder Polyadenylierungssignalen derart, dass jedes der regulativen Elemente seine Funktion bei der Transkription der Nukleinsäuresequenz, je nach Anordnung der Nukleinsäuresequenzen erfüllen kann. Funktion 20 kann dabei beispielsweise die Kontrolle der Expression d.h. Transkription und/oder Translation der Nukleinsäuresequenz (beispielsweise kodierend für eine MP-dsRNA oder ein DSBI-Enzym) bedeuten. Kontrolle umfasst dabei beispielsweise das Initiieren, Steigerung, Steuerung oder Suppression der Expression d.h. Tran-25 skription und ggf. Translation. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt 30 sind Anordnungen, in denen die zu transkribierende Nukleinsäuresequenz hinter der als Promoter fungierenden Sequenz positioniert wird, so dass beide Sequenzen kovalent miteinander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der transgen zu exprimierende Nukleinsäuresequenz 35 geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare.

Dem Fachmann sind verschiedene Wege bekannt, um zu einer der erfindungsgemässen Expressionskassette zu gelangen. Die Herstellung einer erfindungsgemässen Expressionskassette erfolgt beispielsweise bevorzugt durch direkte Fusion einer als Promoter fungierenden Nukleinsäuresequenz mit einer zu exprimierenden Nukleotidsequenz (beispielsweise kodierend für eines MP-dsRNA oder ein DSBI-Enzym). Die Herstellung einer funktionellen Verknüpfung kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in Maniatis

T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY sowie in Silhavy TJ et al. (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY und in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience beschrieben sind.

Vorzugsweise umfassen die erfindungsgemässen Expressionskassetten 5'-stromaufwärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktionell verknüpft mit der transgen zu exprimierenden 15 Nukleinsäuresequenz.

Der Begriff der "genetischen Kontrollsequenzen" ist breit zu verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion der erfindungsgemässen 20 Expressionskassette haben. Genetische Kontrollsequenzen gewährleisten zum Beispiel die Transkription und gegebenenfalls Translation in prokaryotischen oder eukaryotischen Organismen. Genetische Kontrollsequenzen sind beispielsweise beschrieben bei "Goeddel; Gene Expression Technology: Methods in Enzymology 185, 25 Academic Press, San Diego, CA (1990)" oder "Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, eds.:Glick and Thompson, Chapter 7, 89-108" sowie den dort aufgewiesenen Zitaten.

30 Genetische Kontrollsequenzen umfassen insbesondere in Pflanzen funktionelle Promotoren. Als bevorzugte Promotoren für die Expressionskassetten ist grundsätzlich jeder Promotor geeignet, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen steuern kann.

Pflanzenspezifische oder in Pflanzen bzw. pflanzlichen Zelle funktionelle Promotoren meint grundsätzlich jeden Promotor, der die Expression von Genen, insbesondere Fremdgenen, in mindestens einer Pflanze oder einem Pflanzenteil, -zelle, -gewebe, -kultur steuern kann. Dabei kann die Expression beispielsweise konstitutiv, induzierbar oder entwicklungsabhängig sein. Bevorzugt sind:

a) Konstitutive Promotoren

35

"Konstitutive" Promotoren meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt

10

47

zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten (Benfey et al.(1989) EMBO J 8:2195-2202). Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221- 228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202) sowie der Promotor des Nitrilase-1 Gens aus Arabidopsis thaliana (GenBank Acc.-No.: U38846, Nukleotide 3862 bis 5325 oder alternativ 5342).

Ein weiterer geeigneter konstitutiver Promotor ist der 15 "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-No.: X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der 20 Ubiquitin Promotor (Holtorfa S et al. (1995) Plant Mol Biol 29:637-649), der Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), der Smas Promotor, der Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), 25 die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.

30 b) Gewebespezifische Promotoren

Bevorzugt sind Promotoren mit Spezifitäten für die Antheren, Ovarien, Blüten, Blätter, Stengel, Wurzeln oder Samen.

35 Samenspezifische Promotoren umfassen zum Beispiel den Promotor des Phaseolins (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1(9):839-53), des 2S Albumins (Joseffson LG et al. (1987) J Biol Chem 262:12196-12201), des Legumins (Shirsat A et al. (1989) Mol Gen Genet 215(2): 40 326-331), des USP (unknown seed protein; Bäumlein H et al. (1991) Mol Gen Genet 225(3):459-67), des Napins (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519), des Saccharosebindeproteins (WO 00/26388), des Legumins B4 (LeB4; Bäumlein H et al. (1991) Mol Gen 45 Genet 225: 121-128; Baeumlein et al. (1992) Plant Journal 2(2):233-9; Fiedler U et al. (1995) Biotechnology (NY) 13(10):1090f), des Oleosins (WO 98/45461) oder des Bce4

10

30

48

(WO 91/13980). Weitere geeignete samenspezifische Promotoren sind die der Gene kodierend für das "High Molecular Weight Glutenin" (HMWG), Gliadin, Verzweigungsenzym, ADP Glucose Pyrophosphatase (AGPase) oder Stärkesynthase. Bevorzugt sind ferner Promotoren, die eine samenspezifische Expression in Monokotyledonen wie Mais, Gerste, Weizen, Roggen, Reis etc. erlauben. Vorteilhaft eingesetzt werden können der Promoter des lpt2- oder lpt1-Gens (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promotoren des Hordeins, Glutelins, Oryzins, Prolamins, Gliadins, Zeins, Kasirins oder Secalins). Weitere samenspezifische Promotoren sind beschrieben in WO 89/03887.

- Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren umfassen beispielsweise den Patatin Promotor Klasse I (B33) oder den Promotor des Cathepsin D Inhibitors aus Kartoffel.
- Blattspezifische Promotoren umfassen beispielsweise den Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), den SSU Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphatcarboxylase) oder den ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).

Blütenspezifische Promotoren umfassen beispielsweise den Phytoen Synthase Promotor (WO 92/16635) oder den Promotor des P-rr Gens (WO 98/22593).

- Antheren-spezifische Promotoren umfassen beispielsweise den 5126-Promotor (US 5,689,049, US 5,689,051), den glob-l Promotor und den γ-Zein Promotor.

35 c) Chemisch induzierbare Promotoren

Chemisch induzierbare Promotor erlauben es, die Expression abhängig von einem exogenen Stimulus zu steuern (Übersichtsartikel: Gatz et al. (1997) Ann Rev Plant Physiol Plant

Mol Biol 48:89-108). Beispielhaft seien zu nennen: Der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), ein durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP-A 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor

(WO 93/21334). Ferner geeignet ist der Promotor des Glutathione-S-transferase Isoform II Gens (GST-II-27), der durch exogen applizierte Safener wie z.B. N,N-Diallyl-2,2-dichloroacetamid aktiviert werden kann (WO 93/01294) und in zahlreichen Geweben von sowohl Monokotyledonen als auch Dikotyledonen funktionell ist.

49

Besonders bevorzugt sind konstitutive oder induzierbare Promotoren.

10

5

Ferner sind für die gezielte Expression in den Plastiden plastiden-spezifische Promotoren bevorzugt. Geeignete Promotoren sind beispielsweise beschrieben in WO 98/55595 oder WO 97/06250. Zu nennen sind das rpo B Promotorelement, das atoB Promotor15 element, das clpP Promotorelement (siehe auch WO 99/46394) oder das 16SrDNA Promotorelement. Weiterhin sind virale Promotoren geeignet (WO 95/16783).

Eine gezielte plastidäre Expression kann auch erreicht werden,

20 wenn man zum Beispiel einen bakteriellen oder Bakteriophagen
Promotor verwendet, die resultierende Expressionskassette in
die plastidäre DNA einbringt und die Expression dann durch ein
Fusionsprotein aus einer bakteriellen oder Bakteriophagen Polymerase und einem plastidären Transitpeptid exprimiert. Ein ent
25 sprechendes Verfahren ist in US 5,925,806 beschrieben.

Genetische Kontrollsequenzen umfassen ferner auch die 5'-untranslatierte Regionen, Introns oder nichtkodierende 3'-Region von
Genen wie beispielsweise das Actin-1 Intron, oder die Adhl-S

30 Introns 1, 2 und 6 (allgemein: The Maize Handbook, Chapter 116,
Freeling and Walbot, Eds., Springer, New York (1994)). Es ist
gezeigt worden, dass diese eine signifikante Funktionen bei der
Regulation der Genexpression spielen können. So wurde gezeigt,
dass 5'-untranslatierte Sequenzen die transiente Expression

35 heterologer Gene verstärken können. Sie können ferner die Gewebsspezifität fördern (Rouster J et al. (1998) Plant J. 15:435-440).
Beispielhaft für Translationsverstärker sei die 5'-Leadersequenz
aus dem Tabak-Mosaik-Virus zu nennen (Gallie et al. (1987) Nucl
Acids Res 15:8693-8711).

40

Als Kontrollsequenzen geeignete Polyadenylierungssignale sind insbesondere Polyadenylierungssignale pflanzlicher Gene sowie T-DNA Polyadenylierungssignale aus Agrobacterium tumefaciens. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase)-Terminator und der NOS (Nopalin-Synthase)-Terminator (Depicker A et al (1982) J Mol Appl Genet 1:561-573), als auch die Terminatoren von Sojabohnen Actin,

RUBISCO oder alpha-Amylase aus Weizen (Baulcombe DC et al (1987) Mol Gen Genet 209:33-40).

Die Expressionskassette kann vorteilhafterweise eine oder mehrere 5 sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen.

Genetische Kontrollsequenzen meint ferner Sequenzen, die für 10 Fusionsproteine bestehend aus einer Signalpeptidsequenz kodieren. Die Expression eines Zielgenes ist in jedem gewünschten Zellkompartiment, wie z.B. dem Endomembransystem, der Vakuole und den Chloroplasten möglich. Durch Nutzung des sekretorischen Weges sind gewünschte Glykosylierungsreaktionen, besondere Faltungen 15 u.ä. möglich. Auch die Sekretion des Zielproteins zur Zelloberfläche bzw. die Sezernierung ins Kulturmedium, beispielsweise bei Nutzung suspensionskultivierter Zellen oder Protoplasten ist möglich. Die dafür notwendigen Targetsequenzen können sowohl in einzelnen Vektorvariationen berücksichtigt werden als auch durch 20 Verwendung einer geeigneten Klonierungsstrategie gemeinsam mit dem zu klonierenden Zielgen in den Vektor mit eingebracht werden. Als Targetsequenzen können sowohl Gen-eigene, sofern vorhanden, oder heterologe Sequenzen genutzt werden. Zusätzliche, heterologe zur funktionellen Verknüpfung bevorzugte aber nicht darauf 25 beschränkte Sequenzen sind weitere Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten; sowie Translationsverstärker wie die 30 5'-Leadersequenz aus dem Tabak-Mosaik-Virus (Gallie et al. (1987) Nucl Acids Res 15: 8693-8711) und dergleichen. Das Verfahren, an sich nicht in den Plastiden lokalisierte Proteine, gezielt in die Plastiden zu transportieren ist beschrieben (Klosgen RB und Weil JH (1991) Mol Gen Genet 225(2):297-304; Van Breusegem

Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom 40 erlauben. Methoden wie die cre/lox-Technologie erlauben eine gewebsspezifische, unter Umständen induzierbare Entfernung der Expressionskassette aus dem Genom des Wirtsorganismus (Sauer B. Methods. 1998; 14(4):381-92). Hier werden bestimmte flankierende Sequenzen dem Zielgen angefügt (lox-Sequenzen), die später eine 45 Entfernung mittels der cre-Rekombinase ermöglichen.

35 F et al. (1998) Plant Mol Biol 38(3):491-496).

Bevorzugt kann die Expressionskassette, bestehend aus einer Verknüpfung von Promoter und zu transkribierender Nukleinsäuresequenz, integriert in einem Vektor vorliegen und durch zum Beispiel Transformation – nach einem der unten beschriebenen Verfahren – in die pflanzliche Zelle oder Organismus eingebracht werden.

"Transgen" meint bevorzugt - beispielsweise in Bezug auf eine transgene Expressionskassette, einen transgenen Expressions-10 vektor, einen transgenen Organismus oder Verfahren zur transgenen Expression von Nukleinsäuren - alle solche durch gentechnische Methoden zustande gekommene Konstruktionen oder Verfahren unter Verwendung derselben, in denen entweder

- 15 a) die zu exprimierende Nukleinsäuresequenz, oder
 - der mit der zu exprimierenden Nukleinsäuresequenz gemäß a) funktionell verknüpfte Promotor, oder
- **20** c) (a) und (b)

sich nicht in ihrer natürlichen, genetischen Umgebung (d.h. an ihrem natürlichen chromosomalen Locus) befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek.

"Transgen" meint in Bezug auf eine Expression ("transgene Expression") bevorzugt all solche unter Einsatz einer transgenen Expressionskassette, transgenen Expressionsvektor oder transgenen Organismus – entsprechend dem oben gegebenen Definitionen – 35 realisierten Expressionen.

Die im Rahmen des erfindungsgemässen Verfahren zum Einsatz kommenden DNA-Konstrukte und die von ihnen abgeleiteten Vektoren können weitere Funktionselemente enthalten. Der 40 Begriff Funktionselement ist breit zu verstehen und meint all solche Elemente, die einen Einfluss auf Herstellung, Vermehrung oder Funktion der DNA-Konstrukte oder von diesen abgeleitete Vektoren oder Organismen haben. Beispielhaft aber nicht einschränkend seien zu nennen:

1. Selektionsmarker

Selektionsmarker umfassen beispielsweise solche Nukleinsäureoder Proteinsequenzen, deren Expression einer Zelle, Gewebe oder 5 Organismus einen Vorteil (positiver Selektionsmarker) oder Nachteil (negativer Selektionsmarker) gegenüber Zellen vermittelt, die diese Nukleinsäure oder Protein nicht exprimieren. Positive Selektionsmarker wirken beispielsweise dadurch, dass eine auf die Zelle inhibitorisch wirkende Substanz detoxifiziert wird 10 (Bsp. Antibiotika-/Herbizidresistenz), oder eine Substanz gebildet wird, welche der Pflanze unter den gewählten Bedingungen verbesserte Regeneration oder erhöhtes Wachstum ermöglicht (zum Beispiel nutritive Marker, hormonproduzierender Marker wie ipt; s.u.). Eine andere Form positiver Selektionsmarker umfasst 15 mutierte Proteine oder RNAs, die gegenüber einem selektiven Agenz nicht empfindlich sind (beispielsweise 16S rRNA Mutanten, die unempfindlich gegenüber Spectinomycin sind). Negative Selektionsmarker wirken beispielsweise dadurch, dass sie die Bildung einer toxischen Substanz in den transformierten Zellen katalysieren 20 (zum Beispiel das codA Gen).

1.1 Positive Selektionsmarker:

Die DNA-Konstrukte können zur weiteren Steigerung der Effizienz

25 zusätzliche positive Selektionsmarker umfassen. In einer bevorzugten Ausführungsform kann so das erfindungsgemäße Verfahren
im Form einer doppelten Selektion realisiert werden, wobei
zusammen mit der zu insertierenden Nukleinsäuresequenz ein
Sequenz kodierend für eine Resistenz gegen mindestens ein Toxin,

30 Antibiotikum oder Herbizid eingebracht wird, und die Selektion
zusätzlich unter Einsatz des Toxins, Antibiotikums oder Herbizids
erfolgt.

Entsprechende Proteine und Sequenzen von positiven Selektions35 markern sowie Selektionsverfahren sind dem Fachmann geläufig. Der Selektionsmarker verleiht den erfolgreich transformierten Zellen eine Resistenz gegen ein Biozid (zum Beispiel ein Herbizid wie Phosphinothricin, Glyphosat oder Bromoxynil), einen Metabolismus-inhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456) oder ein Antibiotikum, wie zum Beispiel Tetracycline, Ampicillin, Kanamycin, G 418, Neomycin, Bleomycin oder Hygromycin. Beispielhaft als Selektionsmarker seien genannt:

- Phosphinothricinacetyltransferasen (PAT), welche die freie

45 Aminogruppe des Glutaminsynthaseinhibitors Phosphinothricin
(PPT) acetylieren und damit eine Detoxifizierung des PPT
erreichen (de Block et al. (1987) EMBO J 6:2513-2518) (auch

10

53

Bialophos® Resistenzgen (bar) genannt). Entsprechende Sequenzen sind dem Fachmann bekannt (aus Streptomyces hygroscopicus GenBank Acc.-No.: X17220 und X05822, aus Streptomyces viridochromogenes GenBank Acc.-No.: M 22827 und X65195; US 5,489,520). Ferner sind synthetische Gene für die Expression in Plastiden beschrieben. Ein synthetisches PAT-Gen ist beschrieben in Becker et al. (1994) Plant J 5:299-307. Die Gene verleihen Resistenz gegen das Herbizid Bialaphos oder Glufosinat und sind vielbenutzer Marker in transgenen Pflanzen (Vickers JE et al. (1996) Plant Mol Miol Reporter 14:363-368; Thompson CJ et al. (1987) EMBO J 6:2519-2523).

5-Enolpyruvylshikimat-3-phosphatsynthasen (EPSPS), die eine Resistenz gegen Glyphosat (N-(phosphonomethyl)glycin) ver-15 leihen. Das unselektive Herbizid Glyphosat hat die 5-Enolpyruvyl-3-phosphoshikimatsynthase (EPSPS) als molekulares Target. Diese hat eine Schlüsselfunktion in der Biosynthese aromatischer Aminosäuren in Mikroben und Pflanzen, jedoch nicht in Säugern (Steinrucken HC et al. (1980) Biochem Bio-20 phys Res Commun 94:1207-1212; Levin JG und. Sprinson DB (1964) J Biol Chem 239:1142-1150; Cole DJ (1985) Mode of action of glyphosate a literature analysis, p. 48-74. In: Grossbard E und Atkinson D (eds.). The herbicide glyphosate. 25 Buttersworths, Boston.). Glyphosat-tolerante EPSPS Varianten werden bevorzugt als Selektionsmarker verwendet (Padgette SR et al. (1996). New weed control opportunities: development of soybeans with a Roundup Ready $^{\mathtt{m}}$ gene. In: Herbicide Resistant Crops (Duke, S.O., ed.), pp. 53-84. CRC Press, Boca Raton, FL; Saroha MK und Malik VS (1998) J Plant Biochemistry and 30 Biotechnology 7:65-72). Das EPSPS Gen des Agrobakterium sp. strain CP4 hat eine natürliche Toleranz gegen Glyphosat, die auf entsprechende transgene Pflanzen transferiert werden kann. Das CP4 EPSPS Gen wurde aus Agrobakterium sp. strain CP4 kloniert (Padgette SR et al. (1995)Crop Science 35 35(5):1451-1461). Sequenzen von EPSPS-Enzymen, die Glyphosattolerant sind, sind beschrieben (u.a. in US 5,510,471; US 5,776,760; US 5,864,425; US 5,633,435; US 5,627;061; US 5,463,175; EP 0 218 571). Weitere Sequenzen sind beschrieben unter GenBank Acc.-No: X63374 oder M10947. 40

Glyphosat® degradierende Enzyme (gox Gen; Glyphosatoxidoreductase reduktase). GOX (beispielsweise die Glyphosatoxidoreductase aus Achromobacter sp.) katalysiert die Spaltung einer C-N
 Bindung im Glyphosat, welches so zu Aminomethylphosphonsäure (AMPA) und Glyoxylat umgesetzt wird. GOX kann dadurch eine Resistenz gegen Glyphosat vermitteln (Padgette SR et al.

(1982) Gene 19 327-336).

54

(1996) J Nutr 126(3):702-16; Shah D et al. (1986) Science 233:478-481).

- Das deh Gen kodiert für eine Dehalogenase, die Dalapon®
 inaktiviert (GenBank Acc.-No.: AX022822, AX022820 sowie
 WO 99/27116)
 - Die bxn Gene kodieren für Bromoxynil degradierende Nitrilaseenzyme (Genbank Acc.-No: E01313 und J03196).

10

15

20

- Peomycinphosphotransferasen verleihen eine Resistenz gegen Antibiotika (Aminoglykoside) wie Neomycin, G418, Hygromycin, Paromomycin oder Kanamycin, indem sie durch eine Phosphorylierungsreaktion deren inhibierende Wirkung reduzieren. Besonders bevorzugt ist das nptII Gen. Sequenzen können aus der GenBank erhalten werden (AF080390; AF080389). Zudem ist das Gen bereits Bestandteil zahlreicher Expressionsvektoren und kann unter Verwendung von dem Fachmann geläufigen Verfahren aus diesen isoliert werden (AF234316; AF234315; AF234314). Das NPTII Gen kodiert für eine Aminoglycosid-3'O-phosphotransferase aus E.coli, Tn5 (GenBank Acc.-No: U00004 Position 1401-2300; Beck et al.
- 25 Das DOGR1-Gen wurde aus der Hefe Saccharomyces cerevisiae isoliert (EP-A 0 807 836) und kodiert für eine 2-Desoxyglukose-6-phosphat Phosphatase, die eine Resistenz gegenüber 2-DOG verleiht (Randez-Gil et al. (1995) Yeast 11:1233-1240; Sanz et al. (1994) Yeast 10:1195-1202, GenBank Acc.-No.:
 30 NC001140; Position 194799-194056).
- Acetolactatsynthasen, die eine Resistenz gegen Imidazolinon/Sulfonylurea-Herbizide verleihen (GenBank Acc-No.: X51514; Sathasivan K et al. (1990) Nucleic Acids Res. 18(8):2188);
 AB049823; AF094326; X07645; X07644; A19547; A19546; A19545; I05376; I05373; AL133315)
- Hygromycinphosphotransferasen (z.B. GenBank Acc-No.: X74325) die eine Resistenz gegen das Antibiotikum Hygromycin verleihen. Das Gen ist Bestandteil zahlreicher Expressionsvektoren und kann unter Verwendung von dem Fachmann geläufigen Verfahren (wie beispielsweise Polymerasekettenreaktion) aus diesen isoliert werden (GenBank Acc-No.: AF294981; AF234301; AF234300; AF234299; AF234298; AF354046; AF354045)

- Resistenzgene gegen

10

15

- a) Chloramphenicol (Chloramphenicolacetyltransferase),
- 5 b) Tetracyclin (u.a. GenBank Acc-No.: X65876; X51366). Zudem ist das Gen bereits Bestandteil zahlreicher Expressionsvektoren und kann unter Verwendung von dem Fachmann geläufigen Verfahren (wie beispielsweise Polymerasekettenreaktion) aus diesen isoliert werden
 - c) Streptomycin (u.a. GenBank Acc.-No.: AJ278607).
 - d) Zeocin, das entsprechende Resistenzgen ist Bestandteil zahlreicher Klonierungsvektoren (z.B. GenBank Acc.-No.: L36849) und kann unter Verwendung von dem Fachmann geläufigen Verfahren (wie beispielsweise Polymerasekettenreaktion) aus diesen isoliert werden.
- e) Ampicillin (ß-Lactamase Gen; Datta N, Richmond MH
 (1966) Biochem J 98(1):204-9; Heffron F et al (1975)
 J. Bacteriol 122: 250-256; Bolivar F et al. (1977)
 Gene 2:95-114). Die Sequenz ist Bestandteil zahlreicher
 Klonierungsvektoren und kann unter Verwendung von dem
 Fachmann geläufigen Verfahren (wie beispielsweise Polymerasekettenreaktion) aus diesen isoliert werden.

Gene wie die Isopentenyltransferase aus Agrobakterium tumefaciens (strain:PO22) (Genbank Acc.-No.: AB025109) können auch als Selektionsmarker eingesetzt werden. Das ipt Gen ist ein Schlüsselenzym der Cytokinin-Biosynthese. Seine Überexpression erleichtert die Regeneration von Pflanzen (z.B. Selektion auf Cytokinin-freiem Medium). Das Verfahren zur Nutzung des ipt Gens ist beschrieben (Ebinuma H et al. (2000) Proc Natl Acad Sci USA 94:2117-2121; Ebinuma H et al. (2000) Selection of Marker-free transgenic plants using the oncogenes (ipt, rol A, B, C) of Agrobakterium as selectable markers, In Molecular Biology of Woody Plants. Kluwer Academic Publishers).

Verschiedene weitere positive Selektionsmarker, die den transformierten Pflanzen einen Wachstumsvorteil gegenüber nicht-transformierten verleihen, sowie Verfahren zu ihrer Verwendung sind
u.a. beschrieben in EP-A 0 601 092. Beispielhaft sind zu nennen
β-Glucuronidase (in Verbindung mit z.B. Cytokininglucuronid),
Mannose-6-phosphat-Isomerase (in Verbindung mit Mannose), UDPGalaktose-4-Epimerase (in Verbindung mit z.B. Galactose).

Für einen in Plastiden funktionellen Selektionsmarker sind insbesondere solche bevorzugt, die eine Resistenz gegen Spectinomycin, Streptomycin, Kanamycin, Lincomycin, Gentamycin, Hygromycin, Methotrexat, Bleomycin, Phleomycin, Blasticidin, Sulfon-5 amid,, Phosphinotricin, Chlorsulfuron, Bromoxymil, Glyphosat, 2,4-Datrazin, 4-methyltryptophan, Nitrat, S-aminoethyl-L-cysteine, Lysin/Threonin, Aminoethyl-Cystein oder Betainaldehyd verleihen. Besonders bevorzugt sind die Gene aadA, nptII, BADH, FLARE-S (eine Fusion aus aadA und GFP, beschrieben bei Khan MS 10 & Maliga P (1999) Nature Biotech 17:910-915). Geeignet ist vor allem das aadA Gen (Svab Z und Maliga P (1993) Proc Natl Acad Sci USA 90:913-917). Ferner beschrieben sind modifizierte 16S rDNA sowie die Betainealdehyddehydrogenase (BADH) aus Spinat (Daniell H et al. (2001) Trends Plant Science 6:237-239; Daniell **15** H et al. (2001) Curr Genet 39:109-116; WO 01/64023; WO 01/64024; WO 01/64850). Auch lethal wirkende Agenzen wie beispielsweise Glyphosat können in Verbindung mit entsprechend detoxifizierenden

20 Die jeweils für die Selektion verwendeten Konzentrationen der Antibiotika, Herbizide, Biozide oder Toxine müssen an die jeweiligen Testbedingungen bzw. Organismen angepasst werden. Beispielhaft seien für Pflanzen zu nennen Kanamycin (Km) 50 mg/L, Hygromycin B 40 mg/L, Phosphinothricin (Ppt) 6 mg/L, Sepctino-25 mycin (Spec) 500 mg/L.

oder resistenten Enzymen genutzt werden (WO 01/81605).

2. Reportergene

Reportergene kodieren für leicht quantifizierbare Proteine
30 und gewährleisten so über Eigenfarbe oder Enzymaktivität eine
Bewertung der Transformationseffizienz, des Expressionsortes oder
-zeitpunktes. Ganz besonders bevorzugt sind dabei Gene kodierend
für Reporter-Proteine (siehe auch Schenborn E, Groskreutz D
(1999) Mol Biotechnol 13(1):29-44) wie

35

40

- "green fluorescence protein" (GFP) (Chui WL et al. (1996) Curr Biol 6:325-330; Leffel SM et al. (1997) Biotechniques 23(5):912-8; Sheen et al. (1995) Plant J 8(5):777-784; Haseloff et al. (1997) Proc Natl Acad Sci USA 94(6): 2122-2127; Reichel et al. (1996) Proc Natl Acad Sci USA 93(12):5888-5893; Tian et al. (1997) Plant Cell Rep 16:267-271; WO 97/41228)
- Chloramphenicoltransferase

- Luziferase (Millar et al. (1992) Plant Mol Biol Rep 10: 324-414; Ow et al. (1986) Science 234:856-859); erlaubt Bioluminescenzdetektion
- 5 β -Galactosidase (kodiert für ein Enzym für das verschiedenen chromogene Substrate zur Verfügung stehen)
- ß-Glucuronidase (GUS) (Jefferson et al. (1987) EMBO J 6: 3901-3907) oder das uidA Gen (kodieren für Enzyme für die verschiedene chromogene Substrate zur Verfügung stehen)
 - R-Locus Genprodukt, das die Produktion von Anthocyaninpigmenten (rote Färbung) in pflanzlichen Gewebe reguliert und
 so eine direkte Analyse der Promoteraktivität ohne Zugabe
 zusätzlicher Hilfsstoffe oder chromogener Substrate ermöglicht (Dellaporta et al. (1988) In: Chromosome Structure
 and Function: Impact of New Concepts, 18th Stadler Genetics
 Symposium, 11:263-282)
- 20 Tyrosinase (Katz et al.(1983) J Gen Microbiol 129:2703-2714), Enzym, das Tyrosin zu DOPA und Dopaquinon oxidiert, die infolge das leicht nachweisbare Melanin bilden.
- Aequorin (Prasher et al.(1985) Biochem Biophys Res Commun 25 126(3):1259-1268), kann in der Calcium-sensitiven Bioluminescenzdetektion verwendet werden.
- Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen Expressionskassetten oder Vektoren in zum Beispiel
 E.coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication), der pBR322 ori oder der P15A ori (Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

35

40

15

- 4. Elemente zum Beispiel "Bordersequenzen", die einen Agrobakterien-vermittelte Transfer in Pflanzenzellen für die Übertragung und Integration ins Pflanzengenom ermöglichen, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.
- 5. Multiple Klonierungsregionen (MCS) erlauben und erleichtern die Insertion eines oder mehrerer Nukleinsäuresequenzen.
- 45 Die Einführung von Nukleinsäuresequenzen (z.B. Expressionskassetten) in einen pflanzlichen Organismus oder Zellen, Geweben, Organe, Teile bzw. Samen desselben kann vorteilhaft unter Ver-

wendung von Vektoren realisiert werden, in denen diese Sequenzen enthalten sind. Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren oder auch Agrobakterien sein. Die Sequenzen können in den Vektor (bevorzugt ein Plasmidvektor) über geeignete

5 Restriktionsschnittstellen insertiert werden. Der entstandene Vektor kann zunächst in E.coli eingeführt und amplifiziert werden. Korrekt transformierte E.coli werden selektioniert, gezüchtet und der rekombinante Vektor mit dem Fachmann geläufigen Methoden gewonnen. Restriktionsanalyse und Sequenzierung können dazu dienen, den Klonierungsschritt zu überprüfen. Bevorzugt sind solche Vektoren, die eine stabile Integration in das Wirtsgenom ermöglichen.

Die Herstellung eines transformierten Organismus (bzw. einer 15 transformierten Zelle oder Gewebes) erfordert, dass die entsprechende DNA (z.B. der Transformationsvektor) oder RNA in die entsprechende Wirtszelle eingebracht wird. Für diesen Vorgang, der als Transformation (oder Transduktion bzw. Transfektion) bezeichnet wird, steht eine Vielzahl von Methoden und Vektoren 20 zur Verfügung (Keown et al. (1990) Methods in Enzymology 185:527-537; Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); White FF (1993) Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: 25 Kung und Wu R, Academic Press, 15-38; Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, S.128-143; Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225; Halford NG, Shewry PR (2000) Br Med Bull 30 56(1):62-73).

Beispielsweise kann die DNA oder RNA direkt durch Mikroinjektion (WO 92/09696, WO 94/00583, EP-A 0 331 083, EP-A 0 175 966) oder durch Bombardierung mit DNA bzw. RNA-beschichteten Mikropartikeln 35 (biolistische Verfahren mit der Genkanone "particle bombardment"; US 5,100,792; EP-A 0 444 882; EP-A 0 434 616; Fromm ME et al. (1990) Bio/Technology 8(9):833-9; Gordon-Kamm et al. (1990) Plant Cell 2:603) eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglycol, permeabilisiert werden, so dass 40 die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen (Freeman et al. (1984) Plant Cell Physiol. 29:1353ff; US 4,536,475) erfolgen. Elektroporation ist eine weitere geeignete Methode 45 zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisert werden (EP-A 290 395, WO 87/06614). Weitere Verfahren umfassen die Calciumphosphatbei Oard (1991) Biotech Adv 9:1-11.

vermittelte Transformation, die DEAE-Dextran-vermittelte Transformation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, oder andere Methoden der direkten DNA-Einführung (DE 4 005 152, WO 90/12096, US 4,684,611). Entsprechende Verfahren sind beschrieben (beispielsweise bei Bilang et al. (1991) Gene 100:247-250; Scheid et al. (1991) Mol Gen Genet 228:104-112; Guerche et al. (1987) Plant Science 52:111-116; Neuhause et al. (1987) Theor Appl Genet 75:30-36; Klein et al. (1987) Nature 327:70-73; Howell et al. (1980) Science 208:1265; Horsch et al. (1985) Science 227:1229- 1231; DeBlock et al. (1989) Plant Physiology 91:694-701; Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press Inc. (1988); and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press Inc. (1989)). Physikalische Methoden der DNA-

Im Falle dieser "direkten" Transformationsmethoden sind keine
besonderen Anforderungen an das verwendete Plasmid gestellt.
20 Einfache Plasmide wie die der pUC-Reihe, pBR322, M13mp Reihe,
pACYC184 etc. können verwendet werden.

15 Einführung in pflanzliche Zelle sind im Überblick dargestellt

Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobacterium 25 (z.B. EP 0 116 718), virale Infektion mittels viraler Vektoren (EP 0 067 553; US 4,407,956; WO 95/34668; WO 93/03161) oder mittels Pollen (EP 0 270 356; WO 85/01856; US 4,684,611) durchgeführt werden.

- 30 Bevorzugt erfolgt die Transformation mittels Agrobacterien, die "entwaffnete" (disarmed) Ti-Plasmidvektoren enthalten, wobei deren natürliche Fähigkeit zum Gentransfer auf Pflanzen genutzt wird (EP-A 0 270 355; EP-A 0 116 718). Agrobacterium-Transformation ist weit verbreitet für die Transformation von 35 Dicotyledonen, wird aber auch zunehmend auf Monocotyledonen angewandt (Toriyama et al. (1988) Bio/Technology 6: 1072-1074; Zhang et al. (1988) Plant Cell Rep 7:379-384; Zhang et al. (1988) Theor Appl Genet 76:835-840; Shimamoto et al. (1989) Nature 338:274-276; Datta et al. (1990) Bio/Technology 8: 736-740; Christou et al. (1991) Bio/Technology 9:957-962; Peng et al. (1991) International Rice Research Institute, Manila, Philippines 563-574; Cao et al. (1992) Plant Cell Rep 11:585-591; Li et al. (1993) Plant Cell Rep 12:250-255; Rathore et al. (1993) Plant Mol Biol 21:871-884; Fromm et al. (1990) Bio/Technology 8:833-839;
- 45 Gordon-Kamm et al. (1990) Plant Cell 2:603-618; D'Halluin et al. (1992) Plant Cell 4:1495-1505; Walters et al. (1992) Plant Mol Biol 18:189-200; Koziel et al. (1993) Biotechnology 11:194-200;

Vasil IK (1994) Plant Mol Biol 25:925-937; Weeks et al. (1993) Plant Physiol 102:1077-1084; Somers et al. (1992) Bio/Technology 10:1589-1594; WO 92/14828; Hiei et al. (1994) Plant J 6:271-282).

5 Die für die Agrobacterium-Transformation meist verwendeten Stämme Agrobacterium tumefaciens oder Agrobacterium rhizogenes enthalten ein Plasmid (Ti bzw. Ri Plasmid), das auf die Pflanze nach Agrobakterium-Infektion übertragen wird. Ein Teil dieses Plasmids, genannt T-DNA (transferred DNA), wird in das Genom der Pflanzenzelle integriert. Alternativ können durch Agrobakterium auch binäre Vektoren (Mini-Ti-Plasmide) auf Pflanzen übertragen und in deren Genom integriert werden.

Die Anwendung von Agrobakterium tumefaciens für die Transformation von Pflanzen unter Verwendung von Gewebekulturexplantaten ist beschrieben (u.a. Horsch RB et al. (1985)
Science 225:1229ff; Fraley et al. (1983) Proc Natl Acad Sci
USA 80: 4803-4807; Bevans et al. (1983) Nature 304:184-187).
Viele Stämme von Agrobakterium tumefaciens sind in der Lage,
genetisches Material zu übertragen, wie z.B. die Stämme
EHA101[pEHA101], EHA105[pEHA105], LBA4404[pAL4404], C58C1[pMP90]
und C58C1[pGV2260] (Hood et al. (1993) Transgenic Res 2:208-218;
Hoekema et al. (1983) Nature 303:179-181; Koncz and Schell (1986)
Gen Genet 204:383-396; Deblaere et al. (1985) Nucl Acids Res 13:

Werden Agrobacterien verwendet, so ist die Expressionskassette in spezielle Plasmide zu integrieren, entweder in einen Zwischenvektor (englisch: shuttle or intermediate vector) oder einen 30 binären Vektor. Wird ein Ti oder Ri Plasmid zur Transformation verwendet, ist zumindest die rechte Begrenzung, meistens jedoch die rechte und die linke Begrenzung der Ti oder Ri Plasmid T-DNA als flankierende Region mit der einzuführenden Expressionskassette verbunden. Bevorzugt werden binäre Vektoren verwendet. 35 Binäre Vektoren können sowohl in E.coli als auch in Agrobacterium replizieren und enthalten die zur Übertragung in ein pflanzliches System erforderlichen Komponenten. Sie enthalten in der Regel ein Selektionsmarkergen für die Selektion transformierter Pflanzen (z.B. das nptII Gen, das eine Resistenz gegen Kanamycin verleiht) 40 und einen Linker oder Polylinker flankiert von der rechten und linken T-DNA Begrenzungssequenz. Außerhalb der T-DNA-Begrenzungssequenz enthalten sie zudem noch einen Selektionsmarker, der eine Selektion transformierter E.coli und/oder Agrobakteria ermöglicht (z.B. das nptIII Gen, das eine Resistenz gegen Kanamycin ver-45 leiht). Entsprechende Vektoren können direkt in Agrobakterium

transformiert werden (Holsters et al. (1978) Mol Gen Genet 163:181-187).

Binärvektoren basieren z.B. auf "broad host range"-Plasmiden

5 wie pRK252 (Bevan et al. (1984) Nucl Acid Res 12,8711-8720) und
pTJS75 (Watson et al. (1985) EMBO J 4(2):277- 284). Eine grosse
Gruppe der verwendeten Binärvektoren leitet sich vom pBIN19
(Bevan et al. (1984) Nucl Acid Res 12:8711-8720) ab. Hajdukiewicz
et al. entwickelten einen Binärvektor (pPZP), der kleiner und effizienter als die bisher üblichen ist (Hajdukiewicz et al. (1994)
Plant Mol Biol 25:989-994). Verbesserte und besondere bevorzugte binäre Vektorsysteme zur Agrobakterium-vermittelten Transformation sind in WO 02/00900 beschrieben.

15 Die mit einem solchen Vektor transformierten Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie z.B. von Raps, verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschliessend in geeig-20 neten Medien kultiviert werden. Die Transformation von Pflanzen durch Agrobakterien ist beschrieben (White FF, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38; Jenes B et al.(1993) 25 Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, S.128-143; Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205- 225). Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke 30 können in bekannter Weise transgene Pflanzen regeneriert werden.

Für die Transformation können unterschiedliche Explantate, Zellkulturen, Gewebe, Organen, Embryonen, Samen, Mikrosporen oder anderen einzelzelligen oder mehrzelligen zelluläre Strukturen 35 abgeleitet von einem pflanzlichen Organismus eingesetzt werden. Auf die jeweiligen Explantate, Kulturen oder Gewebe abgestimmte Transformationsverfahren sind dem Fachmann bekannt. Beispielhaft seien zu nennen: Sprossinternodien (Fry J et al. (1987) Plant Cell Rep. 6:321-325), Hypokotyle (Radke SE et al. (1988) Theor 40 Appl Genet 75:685-694; Schröder M et al. (1994) Physiologia Plant 92: 37-46.; Stefanov I et al. (1994) Plant Sci. 95:175-186; Weier et al. (1997) Fett/Lipid 99:160-165), kotyledonäre Petiolen (Meloney MM et al. (1989) Plant Cell Rep 8:238-242; Weier D et al. (1998) Molecular Breeding 4:39-46), Mikrosporen und Pro-45 embryonen (Pechnan (1989) Plant Cell Rep. 8:387-390) und Blütenstiele (Boulter ME et al. (1990) Plant Sci 70:91-99; Guerche P et al. (1987) Mol Gen Genet 206:382-386). Bei einem direkten Gen-

PF 53790 DE

62

transfer können Mesophyllprotoplasten (Chapel PJ & Glimelius K (1990) Plant Cell Rep 9: 105-108; Golz et al. (1990) Plant Mol Biol 15:475-483) aber auch Hypokotylprotoplasten (Bergmann P & Glimelius K (1993) Physiologia Plant 88:604-611) und Mikrosporen (Chen JL et al. (1994) Theor Appl Genet 88:187-192; Jonesvilleneuve E et al. (1995) Plant Cell Tissue and Organ Cult 40:97-100) und Sprossabschnitte (Seki M et al. (1991) Plant Mol Biol 17:259-263) erfolgreich eingesetzt werden.

10 Stabil transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untransformierten unter Einsatz des erfindungsgemäßen Selektionsverfahrens selektioniert werden. Die erhaltenen Pflanzen können in üblicher Weise gezüchtet und gekreuzt werden. Zwei oder mehr 15 Generationen sollten vorzugsweise kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich ist.

Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann bekannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen, einzelnen Zellen (z.B. Protoplasten) oder Blattscheiben aus (Vasil et al. (1984) Cell Culture and Somatic Cel Genetics of Plants, Vol I, II and III, Laboratory Procedures and nTheir Applications, Academic Press; Weissbach and Weissbach (1989) Methods for Plant Molecular Biology, Academic Press). Aus diesen noch undifferenzierten Callus-Zellmassen kann die Bildung von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden. Entsprechende Verfahren sind beschrieben (Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al. (1995) Plant Cell Rep. 14:273-278; Jahne et al. (1994) Theor Appl Genet 89:525-533).

35 Die Wirksamkeit der Expression der transgen exprimierten Nukleinsäuren kann beispielsweise in vitro durch Sprossmeristemvermehrung unter Verwendung einer der oben beschriebenen Selektionsmethoden ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression eines Zielgens und die Auswirkung auf den Phänptyp der Pflanze an Testpflanzen in Gewächshausversuchen getestet werden.

Bevorzugt wird das erfindungsgemäße Verfahren im Rahmen der Pflanzenbiotechnologie zur Erzeugung von Pflanzen mit vor45 teilhaften Eigenschaften eingesetzt. Die in das Genom der pflanzlichen Zelle oder des pflanzlichen Organismus zu "insertierende Nukleinsäuresequenz" umfasst bevorzugt min-

destens eine Expressionskassette, wobei besagte Expressionskassette unter Kontrolle eines in pflanzlichen Zellen oder
pflanzlichen Organismen funktionellen Promotors eine RNA und/oder
ein Protein exprimieren kann, welche nicht die Verminderung der
5 Expression, Menge, Aktivität und/oder Funktion eines Markerproteins bewirken, sondern - besonders bevorzugt - der so
genetische veränderten Pflanze einen vorteilhaften Phänotyp verleihen. Dem Fachmann sind zahlreiche Gene und Proteine bekannt,
die zum Erreichen eines vorteilhaften Phänotyp beispielsweise
10 zur Qualitätssteigerung bei Nahrungsmitteln oder zur Produktion
bestimmter Chemikalien oder Pharmazeutika (Dunwell JM (2000)
J Exp Bot 51 Spec No:487-96) verwendet werden können.

So kann die Eignung der Pflanzen oder deren Samen als Nahrungs15 oder Futtermittel verbessert werden, beispielsweise über eine
Veränderung der Zusammensetzungen und/oder des Gehalt an Metaboliten, insbesondere Proteinen, Ölen, Vitaminen und/oder Stärke.
Auch können Wachstumsrate, Ertrag oder die Resistenz gegen biotische oder abiotische Stressfaktoren erhöht werden. Vorteilhafte
20 Effekte können sowohl durch transgene Expression von Nukleinsäuren oder Proteinen als auch durch gezielte Verminderung der
Expression endogener Gene hinsichtlich des Phänotypes der transgenen Pflanze erzielt werden. Die in der transgenen Pflanze zu
erzielenden vorteilhaften Effekte umfassen beispielsweise:

25

- Erhöhte Resistenz gegen Pathogene (biotischer Stress)
- Erhöhte Resistenz gegen Umwelteinflüsse wie Hitze, Kälte,
 Frost Trockenheit, UV-Licht, oxidativen Stress, Nässe, Salz
 etc. (abiotischer Stress)
 - Erhöhte Ertragsleistung
- Verbesserte Qualität z.B. erhöhter Nährwert, erhöhte Lager fähigkeit

Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der nach dem erfindungsgemässen Verfahren hergestellten transgenen Pflanzen, und der von ihnen abgeleitete Zellen, Zellkulturen,

40 Teile oder Vermehrungsgut wie Saaten oder Früchte, zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien, wie beispielsweise Enzymen, Vitaminen, Aminosäuren, Zucker, Fettsäuren, natürliche und synthetische Geschmacks-, Aroma- und Farbstoffe. Besonders bevorzugt ist die Produktion von Triaclyglyceriden, Lipiden, Ölen, Fettsäuren,

Stärke, Tocopherolen und Tocotrienolen sowie Carotinoiden. Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch

veränderte Pflanzen können auch beispielsweise direkt oder nach an sich bekannter Aufbereitung als Nahrungsmittel oder Futtermittel verwendet werden.

5 Sequenzen

15

25

- 1. SEQ ID NO: 1 Nukleinsäuresequenz kodierend für Cytosindeaminase aus E.coli (codA)
- 10 2. SEQ ID NO: 2 Aminosäuresequenz kodierend für Cytosindeaminase aus E.coli (codA)
 - 3. SEQ ID NO: 3 Nukleinsäuresequenz kodierend für Cytosindeaminase aus E.coli (codA) mit modifiziertem
 Startkodon (GTG/ATG) zur Expression in
 Eukaryoten
- 4. SEQ ID NO: 4 Aminosäuresequenz kodierend für Cytosindeaminase aus E.coli (codA) mit modifiziertem

 Startkodon (GTG/ATG) zur Expression in
 Eukaryoten
 - 5. SEQ ID NO: 5 Nukleinsäuresequenz kodierend für Cytochrom P450-SU1 (suaC) aus Streptomyces griseolus

6. SEQ ID NO: 6 Aminosäuresequenz kodierend für Cytochrom P450-SU1 (suaC) aus Streptomyces griseolus

7. SEQ ID NO: 7 Nukleinsäuresequenz kodierend für

30 Indolacetamidhydrolase (tms2) aus Agrobacterium tumefaciens

8. SEQ ID NO: 8 Aminosäuresequenz kodierend für Indolacetamidhydrolase (tms2) aus Agrobacterium tumefaciens

9. SEQ ID NO: 9 Nukleinsäuresequenz kodierend für Indolacetamidhydrolase (tms2) aus Agrobacterium tumefaciens

10. SEQ ID NO: 10 Aminosäuresequenz kodierend für Indolacetamidhydrolase (tms2) aus Agrobacterium tumefaciens

40

- 11. SEQ ID NO: 11 Nukleinsäuresequenz kodierend für Haloalkandehalogenase (dhlA) aus Xanthobacter autotrophicus
- 5 12. SEQ ID NO: 12 Aminosäuresequenz kodierend für Haloalkandehalogenase (dhlA) aus Xanthobacter autotrophicus
- 13. SEQ ID NO: 13 Nukleinsäuresequenz kodierend für Thymidinkinase aus Herpes simplex Virus 1
 - 14. SEQ ID NO: 14 Aminosäuresequenz kodierend für Thymidinkinase aus Herpes simplex Virus 1
- 15 15. SEQ ID NO: 15 Nukleinsäuresequenz kodierend für Thymidinkinase aus Herpes simplex Virus 1
 - 16. SEQ ID NO: 16 Aminosäuresequenz kodierend für Thymidinkinase aus Herpes simplex Virus 1

20

- 17. SEQ ID NO: 17 Nukleinsäuresequenz kodierend für Hypoxanthin-Xanthin-Guanin Phosphoribosyltransferase aus Toxoplasma gondii
- 25 18. SEQ ID NO: 18 Aminosäuresequenz kodierend für Hypoxanthin-Xanthin-Guanin Phosphoribosyltransferase aus Toxoplasma gondii
- 19. SEQ ID NO: 19 Nukleinsäuresequenz kodierend für Xanthin-30 Guanin-Phosphoribosyltransferase aus E.coli
 - 20. SEQ ID NO: 20 Aminosäuresequenz kodierend für Xanthin-Guanin-Phosphoribosyltransferase aus E.coli
- 35 21. SEQ ID NO: 21 Nukleinsäuresequenz kodierend für Xanthin-Guanin-Phosphoribosyltransferase aus E.coli
 - 22. SEQ ID NO: 22 Aminosäuresequenz kodierend für Xanthin-Guanin-Phosphoribosyltransferase aus E.coli

- 23. SEQ ID NO: 23 Nukleinsäuresequenz kodierend für Purinnukleosidphosphorylase (deoD) aus E.coli
- 24. SEQ ID NO: 24 Nukleinsäuresequenz kodierend für Purinnukleosidphosphorylase (deoD) aus E.coli

- 25. SEQ ID NO: 25 Nukleinsäuresequenz kodierend für Phosphonatmonoesterhydrolase (pehA) aus Burkholderia caryophylli
- **5** 26. SEQ ID NO: 26 Aminosäuresequenz kodierend für Phosphonatmonoesterhydrolase (pehA) aus Burkholderia caryophylli
- 27. SEQ ID NO: 27 Nukleinsäuresequenz kodierend für Tryptophanoxygenase (aux1) aus Agrobacterium rhizogenes
 - 28. SEQ ID NO: 28 Aminosäuresequenz kodierend für Tryptophanoxygenase (aux1) aus Agrobacterium rhizogenes
- 15 29. SEQ ID NO: 29 Nukleinsäuresequenz kodierend für Indolacetamidhydrolase (aux2) aus Agrobacterium rhizogenes
- 30. SEQ ID NO: 30 Aminosäuresequenz kodierend für Indol20 acetamidhydrolase (aux2) aus Agrobacterium
 rhizogenes
 - 31. SEQ ID NO: 31 Nukleinsäuresequenz kodierend für Tryptophanoxygenase (aux1) aus Agrobacterium tumefaciens
 - 32. SEQ ID NO: 32 Aminosäuresequenz kodierend für Tryptophanoxygenase (aux1) aus Agrobacterium tumefaciens
- 33. SEQ ID NO: 33 Nukleinsäuresequenz kodierend für Indolacetamidhydrolase (aux2) aus Agrobacterium tumefaciens
- 34. SEQ ID NO: 34 Aminosäuresequenz kodierend für Indolacetamidhydrolase (aux2) aus Agrobacterium tumefaciens
 - 35. SEQ ID NO: 35 Nukleinsäuresequenz kodierend für Indolacetamidhydrolase (aux2) aus Agrobacterium vitis
 - 36. SEQ ID NO: 36 Aminosäuresequenz kodierend für Indolacetamidhydrolase (aux2) aus Agrobacterium vitis

40

- 37. SEQ ID NO: 37 Nukleinsäuresequenz kodierend für 5-Methylthioribosekinase (mtrK) aus Arabidopsis
 thaliana
- 5 38. SEQ ID NO: 38 Aminosäuresequenz kodierend für 5-Methylthioribosekinase (mtrK) aus Arabidopsis
 thaliana
- 39. SEQ ID NO: 39 Nukleinsäuresequenz kodierend für 5-Methylthioribosekinase (mtrK) aus Klebsiella
 pneumoniae
- 40. SEQ ID NO: 40 Aminosäuresequenz kodierend für 5-Methylthioribosekinase (mtrK) aus Klebsiella
 pneumoniae
 - 41. SEQ ID NO: 41 Nukleinsäuresequenz kodierend für Alkoholdehydrogenase (adh) aus Arabidopsis thaliana
- 20 42. SEQ ID NO: 42 Aminosäuresequenz kodierend für Alkoholdehydrogenase (adh) aus Arabidopsis thaliana
- 43. SEQ ID NO: 43 Nukleinsäuresequenz kodierend für Alkoholdehydrogenase (adh) aus Hordeum vulgare
 (Gerste)
 - 44. SEQ ID NO: 44 Aminosäuresequenz kodierend für Alkoholdehydrogenase (adh) aus Hordeum vulgare (Gerste)
 - 45. SEQ ID NO: 45 Nukleinsäuresequenz kodierend für Alkoholdehydrogenase (adh) aus Oryza sativa (Reis)
- 46. SEQ ID NO: 46 Aminosäuresequenz kodierend für Alkoholdehydrogenase (adh) aus Oryza sativa (Reis)
 - 47. SEQ ID NO: 47 Nukleinsäuresequenz kodierend für Alkoholdehydrogenase (adh) aus Zea mays (Mais)
- 40 48. SEQ ID NO: 48 Aminosäuresequenz kodierend für Alkoholdehydrogenase (adh) aus Zea mays (Mais)
- 49. SEQ ID NO: 49 Nukleinsäuresequenz kodierend für ein sense-RNA Fragment der Cytosindeaminase aus E.coli (codARNAi-sense)

50. SEQ ID NO: 50 Oligonukleotidprimer codA5'HindIII 5'-AAGCTTGGCTAACAGTGTCGAATAACG-3'

51. SEQ ID NO: 51 Oligonukleotidprimer codA3'SalI 5'-GTCGACGACAAAATCCCTTCCTGAGG-3'

52. SEQ ID NO: 52 Nukleinsäuresequenz kodierend für ein antisense-RNA Fragment der Cytosindeaminase aus E.coli (codARNAi-anti)

10

53. SEQ ID NO: 53 Oligonukleotidprimer codA5'EcoRI 5'-GAATTCGGCTAACAGTGTCGAATAACG-3'

54. SEQ ID NO: 54 Oligonukleotidprimer codA3'BamHI

5'-GGATCCGACAAAATCCCTTCCTGAGG-3'

55. SEQ ID NO: 55 Vektorkonstrukt pBluKS-nitP-STLS1-35S-T

56. SEQ ID NO: 56 Expressionsvektor pSUN-1

20

30

57. SEQ ID NO: 57 Transgener Expressionsvektor pSUN-1-codA-RNAi

Abbildungen

25 Fig.1: Inaktivierung des Markerproteingens mittels Einbringen einer Rekombinase

P: Promotor

MP: Sequenz kodierend für ein Markerprotein

R1/R2: Rekombinase-Erkennungssequenzen

R: Rekombinase bzw. Sequenz kodierend für

Rekombinase.

In einer bevorzugten Ausführungsform wird die Inaktivierung des Markerproteingens durch das Einbringen einer
sequenzspezifischen Rekombinase realisiert. Bevorzugt
wird die Rekombinase - wie hier dargestellt - ausgehend
von einer Expressionskassette exprimiert.

Das Markerproteingen ist von Erkennungssequenzen für sequenzspezifische Rekombinasen flankiert, wobei durch Einbringen der Rekombinase Sequenzen des Markerproteingens deletiert werden und so eine Inaktivierung des Markerproteinsgens erfolgt.

Fig.2-A: Inaktivierung des Markerproteingens durch Einwirken einer sequenzspezifischen Nuklease

P: Promotor

DS: Erkennungssequenz zur gezielten Induk-

tion von DNA-Doppelstrangbrüchen

MP-DS-MP': Sequenz kodierend für ein Markerprotein

umfassend eine DS

nDS: Inaktivierte DS

10 E: Sequenzspezifisches Enzym zur gezielten

Induktion von DNA-Doppelstrangbrüchen

Das Markerprotein-Gen kann durch eine gezielte Mutation oder Deletion im Markerprotein-Gen z.B. durch sequenz-spezifische Induktion von DNA-Doppelstrangbrüchen an einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen in oder in der Nähe des Marker-protein-Gens (P-MP) realisiert werden. Der Doppelstrangbrüch kann in der kodierenden Region oder aber auch der nicht-kodierenden (wie beispielsweise dem Promotor) erfolgen, induziert eine illegitime Rekombination (nicht-homologe Verbindung von DNA-Enden; "non-homologous end-joining") und so z.B. eine Verschiebung im Leseraster des Markerproteins.

25

40

45

15

20

5

Fig.2-B: Inaktivierung des Markerproteingens durch Einwirken einer sequenzspezifischen Nuklease

P: Promotor

30 DS: Erkennungssequenz zur gezielten Induk-

tion von DNA-Doppelstrangbrüchen

MP: Sequenz kodierend für ein Markerprotein

nDS: Inaktivierte DS

E: Sequenzspezifisches Enzym zur gezielten

Induktion von DNA-Doppelstrangbrüchen

Das Markerprotein-Gen kann durch eine gezielte Deletion durch sequenzspezifische Induktion von mehr als einem sequenzspezifischen DNA-Doppelstrangbruch in oder in der Nähe des Markerprotein-Gens realisiert werden. Die Doppelstrangbrüche können in der kodierenden Region oder aber auch der nicht-kodierenden (wie beispielsweise dem Promotor) erfolgen und induzieren eine Deletion im Markerprotein-Gen. Bevorzugt ist das Markerprotein-Gen von DS Sequenzen flankiert und wird vollständig durch Einwirken des Enzyms E deletiert.

Fig. 3: Inaktivierung des Markerprotein-Gens durch Induktion einer intramolekularen homologen Rekombination infolge des Einwirkens einer sequenzspezifischen Nuklease

70

5 A/A': Sequenzen mit einer ausreichenden Länge und Homologie zueinander, um infolge des induzierten Doppelstrangbruches miteinander zu rekombinieren

P: Promotor

10 DS: Erkennungssequenz zur gezielten Induktion

von DNA-Doppelstrangbrüchen

MP: Sequenz kodierend für ein Markerprotein
E: Sequenzspezifisches Enzym zur gezielten
Induktion von DNA-Doppelstrangbrüchen

15

20

25

45

Das Markerprotein-Gen kann durch eine Deletion mittels intramolekularen homologer Rekombination inaktiviert werden. Die homologe Rekombination kann durch sequenzspezifische Induktion von DNA-Doppelstrangbrüchen an einer Erkennungssequenz zur gezielten Induktion von DNA- Doppelstrangbrüchen in oder in der Nähe des Markerprotein-Gens initiiert werden. Die homologe Rekombination erfolgt zwischen den Sequenzen A und A', die eine ausreichenden Länge und Homologie zueinander haben, um infolge des induzierten Doppelstrangbruches miteinander zu rekombinieren. Die Rekombination bewirkt eine Deletion essentieller sequenzen des Markerprotein-Gens.

Fig. 4: Inaktivierung des Markerprotein-Gens durch intermole-30 kulare homologe Rekombination

A/A': Sequenzen mit einer ausreichenden Länge und Holomogie zueinander, um miteinander zu rekombinieren

B/B': Sequenzen mit einer ausreichenden Länge

und Holomogie zueinander, um miteinander zu

rekombinieren

P: Promotor

I: zu insertierende Nukleinsäuresequenz /

Gen von Interesse

40 MP: Sequenz kodierend für ein Markerprotein

Die Inaktivierung des Markerprotein-Gens (P-MP) kann auch durch eine gezielte Insertion in das Markerprotein-Gen z.B. mittels intermolekularer homologer Rekombination realisiert werden. Dabei ist die zu insertierende Region an ihrem 5'- und 3'-Ende von Nukleinsäuresequenzen (A' bzw. B') flankiert, die eine ausreichende Länge und Homo-

logie zu entsprechenden flankierenden Sequenzen des Markerproteingens (A bzw. B) aufweisen, um eine homologe Rekombination zwischen A und A' und B und B' zu ermöglichen. Die Rekombination bewirkt eine Deletion essentieller sequenzen des Markerprotein-Gens.

Fig. 5: Inaktivierung des Markerprotein-Gens durch intermolekulare homologe Rekombination infolge des Einwirkens einer sequenzspezifischen Nuklease

10

5

A/A': Sequenzen mit einer ausreichenden Länge und Holomogie zueinander, um miteinander zu rekombinieren

15

Sequenzen mit einer ausreichenden Länge und Holomogie zueinander, um miteinander zu rekombinieren

P:

B/B':

Promotor

I:

zu insertierende Nukleinsäuresequenz / Gen von Interesse

20

MP: Sequenz kodierend für ein Markerprotein
DS: Erkennungssequenz zur gezielten Induktion

von DNA-Doppelstrangbrüchen

E:

Sequenzspzifisches Enzym zur gezielten Induktion von DNA-Doppelstrangbrüchen

25

30

35

Die Inaktivierung des Markerprotein-Gens kann auch durch eine gezielte Insertion in das Markerprotein-Gen z.B. mittels intermolekularer homologer Rekombination realisiert werden. Die homologe Rekombination kann durch sequenzspezifische Induktion von DNA-Doppelstrangbrüchen an einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen in oder in der Nähe des Markerprotein-Gens initiiert werden. Dabei ist die zu insertierende Region an ihrem 5'- und 3'-Ende von Nukleinsäuresequenzen (A' bzw. B') flankiert, die eine ausreichende Länge und Homologie zu entsprechenden flankierenden Sequenzen des Markerprotein-Gens (A bzw. B) aufweisen, um eine homologe Rekombination zwischen A und A' und B und B' zu ermöglichen. Die Rekombination bewirkt eine Deletion essentieller sequenzen des Markerprotein-Gens.

Fig. 6: Vektorkarte für pBluKS-nitP-STLS1-35S-T (SEQ ID NO: 55)

NitP: Promotor des NitrilaseI-Gens aus A.thaliana (Gen-Bank Acc.-No.: Y07648.2, Hillebrand et al. (1996) Gene 170:197-200)

STLS-1 Intron: Intron des ST-LS1 Gens aus Kartoffel (Vancanneyt GF et al. (1990) Mol Gen Genet 220(2):245-250).

35S-Term: Terminator des 35S CaMV Gens (Blumenkohlmosaikvirus; Franck et al. (1980) Cell 21:285-294).

Schnittstellen relevanter Restriktionsendonukleasen sind mit ihrer jeweiligen Schnittposition angegeben.

Fig. 7: Vektorkarte für den transgenen Expressionsvektor pSUN-1-codA-RNAi (SEQ ID NO: 57)

NitP: Promotor des NitrilaseI-Gens aus A.thaliana (Gen-20 Bank Acc.-No.: Y07648.2, Hillebrand et al. (1996) Gene 170:197-200)

STLS-1 Intron: Intron des ST-LS1 Gens aus Kartoffel (Vancanneyt GF et al. (1990) Mol Gen Genet 220(2):245-250).

35S-Term: Terminator des 35S CaMV Gens (Blumenkohlmosaik-virus; Franck et al. (1980) Cell 21:285-294).

codA-sense: Nukleinsäuresequenz kodierend für ein sense-RNA Fragment der Cytosindeaminase aus E.coli (codARNAi-sense; SEQ ID NO: 49)

codA-anti: Nukleinsäuresequenz kodierend für ein antisense-RNA Fragment der Cytosindeaminase aus E.coli (codARNAi-anti; SEQ ID NO: 52)

LB/RB: Linke bzw. rechte Grenze der Agrobacterium T-DNA

Schnittstellen relevanter Restriktionsendonukleasen sind mit ihrer jeweiligen Schnittposition angegeben. Weitere Elemente stellen übliche Elemente eines binären Agrobakterium-Vektors dar (aadA; ColE1; repA)

5

15

25

30

Ausführungsbeispiele

Allgemeine Methoden

5 Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschritte wie z.B. Restriktionsspaltungen, Agarosegelelektro-

73

- 10 phorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA werden wie bei Sambrook et al. (1989) Cold Spring Harbor
- 15 Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt. Die Sequenzierung rekombinanter DNA-Moleküle erfolgt mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc Natl Acad Sci USA 74:5463-5467).

20

Beispiel 1: Herstellung der codA-Fragmente

Zunächst wird eine verkürzte und am 5' bzw. 3' Ende durch Addition von Erkennungssequenzen der Restriktionsenzyme HindIII 25 und SalI modifizierte Nukleinsäurevariante des codA Gens unter Verwendung der PCR-Technologie hergestellt. Dazu wird ein Teil des codA Gens (GeneBank Acc.-No.: S56903; SEQ ID NO: 1) mittels Polymerasekettenreaktion (PCR) aus dem Herkunftsorganismus E.coli unter Verwendung eines sense-spezifischen Primers (codA5'HindIII; 30 SEQ ID NO: 50) und eines antisense-spezifischen Primers (codA3'SalI; SEQ ID NO: 51) amplifiziert.

codA5'HindIII: 5'-AAGCTTGGCTAACAGTGTCGAATAACG-3' (SEQ ID NO: 50)

35 codA3'SalI: 5'-GTCGACGACAAAATCCCTTCCTGAGG-3' (SEQ ID NO: 51)

Die PCR erfolgt in einem 50 μ l Reaktionsansatz in dem enthalten sind:

- 2 µl (200 ng)genomische DNA von E.coli
- 40 0,2 mM dATP, dTTP, dGTP, dCTP
 - 1,5 mM Mg(OAc)₂
 - 5 μg Rinderserum-Albumin
 - 40 pmol Primer "codA5'HindIII"
 - 40 pmol Primer codA3'SalI
- 45 15 μ l 3,3× rTth DNA Polymerase XLPuffer (PE Applied Biosystems)
 - 5U rTth DNA Polymerase XL (PE Applied Biosystems)

Die PCR wird unter folgenden Zyklus-Bedingungen durchgeführt:

Schritt 1: 5 Minuten 94°C (Denaturierung)

Schritt 2: 3 Sekunden 94°C

5 Schritt 3: 1 Minute 60°C (Annealing)

Schritt 4: 2 Minuten 72°C (Elongation)

30 Wiederholungen der Schritte 2 bis 4

Schritt 5: 10 Minuten 72°C (Post-Elongation)

Schritt 6: 4°C (Warteschleife)

Das Amplifikat (codARNAi-sense; SEQ ID NO: 49) wird unter Verwendung von Standardmethoden in den PCR Klonierungsvektor pGEM-T (Promega) kloniert. Die Identität des erzeugten Amplikons wird durch Sequenzierung unter Verwendung des M13F (-40) Primers bestätigt.

Ein weiteres verkürztes und am 5'- bzw. 3'-Ende durch Addition 20 von Erkennungssequenzen der Restriktionsenzyme EcoRI und BamHI modifiziertes Fragment des codA Gens wird mittels Polymerase-kettenreaktion (PCR) aus E.coli unter Verwendung eines sensespezifischen Primers (codA5'EcoRI; SEQ ID NO: 53) und eines antisense-spezifischen Primers (codA3'BamHI; SEQ ID NO: 54) 25 amplifiziert.

codA5'EcoRI: 5'-GAATTCGGCTAACAGTGTCGAATAACG-3' (SEQ ID NO: 53)

codA3'BamHI: 5'-GGATCCGACAAAATCCCTTCCTGAGG-3' (SEQ ID NO: 54)

30

Die PCR erfolgt in einem 50 μ l Reaktionsansatz in dem enthalten sind:

- 2 μ l (200 ng)genomische DNA von *E.coli*
- 0,2 mM dATP, dTTP, dGTP, dCTP
- 35 $1.5 \text{ mM Mg (OAc)}_2$
 - 5 μg Rinderserum-Albumin
 - 40 pmol Primer "codA5'EcoRI"
 - 40 pmol Primer "codA3'BamHI"
 - 15 μl 3,3x rTth DNA Polymerase XLPuffer (PE Applied Biosystems)
 - 5U rTth DNA Polymerase XL (PE Applied Biosystems)

Die PCR wird unter folgenden Zyklus Bedingungen durchgeführt:

Schritt 1: 5 Minuten 94°C (Denaturierung)

Schritt 2: 3 Sekunden 94°C

5 Schritt 3: 1 Minute 60°C (Annealing) Schritt 4: 2 Minuten 72°C (Elongation)

30 Wiederholungen der Schritte 2 bis 4

10 Schritt 5: 10 Minuten 72°C (Post-Elongation)

Schritt 6: 4°C (Warteschleife)

Das Amplifikat (codARNAi-anti; SEQ ID NO: 52) wird unter Verwendung von Standardmethoden in den PCR Klonierungsvektor pGEM-T (Promega) kloniert. Die Identität des erzeugten Amplikons wird durch Sequenzierung unter Verwendung des M13F (-40) Primers bestätigt.

Beispiel 2 Herstellung des transgenen Expressionsverktors 20 zur Expression einer codA doppelsträngigen RNA

Die in Beispiel 1 generierten codA-Fragmente werden zur Herstellung eines DNA Konstruktes geeignet zur Expression einer doppelsträngigen codA-RNA verwendet (pSUN-codA-RNAi). Das

25 Konstrukt ist geeignet zur Reduktion der RNA Fließgleichgewichtsmenge (RNA-stady state level) des codA Gens in transgenen Pflanzen und einer daraus resultierenden Unterdrückung der Expression des codA Gens unter Verwendung der "doublestrand RNA interference" (dsRNAi) Technologie. Die codA RNAi Kassette wird dazu zunächst in dem Plasmid pBluKS-nitP-STLS1-35S-T aufgebaut und anschließend in einem weiteren Klonierungsschritt vollständig in das pSUN-1 Plasmid überführt.

Der Vektor pBluKS-nitP-STLS1-35S-T (SEQ ID NO: 55) ist ein

35 Derivat des pBluescript KS (Stratagene) und enthält den Promotor des NitrilaseI-Gens aus A.thaliana (GenBank Acc.-No.: Y07648.2, Nukleotide 2456 bis 4340, Hillebrand et al. (1996) Gene
170:197-200), das STLS-1 Intron (Vancanneyt GF et al. (1990) Mol Gen Genet 220(2):245-250), Restriktionsschnittstellen die das

40 Intron an der 5'- bzw. 3'-Seite flankieren und eine gerichtete Insertion von DNA Fragmenten ermöglichen, sowie den Terminator des 35S CaMV Gens (Blumenkohlmosaikvirus; Franck et al. (1980) Cell 21:285-294). Unter Verwendung dieser Restriktionsschnittstellen (HindIII, SalI, EcoRI, BamHI) werden die Fragmente codAR
45 NAi-sense (SEQ ID NO: 49) und codARNAi-anti (SEQ ID NO: 52) in

diesen Vektor inseriert, wodurch die fertige codA RNAi Kassette entsteht.

Zu diesem Zweck wird zunächst das codA-sense Fragment (codARNAi-5 sense SEQ ID NO: 49) unter Verwendung der Enzyme HindIII und Sall aus dem pGEM-T Vektor herausgeschnitten, isoliert und in den pBluKS-nitP-STLS1-35S-T Vektor unter Standardbedingungen ligiert. Dieser Vektor wurde im Vorfeld unter Verwendung der Restriktionsenzyme HindIII und SalI geschnitten. Entsprechend positive Klone 10 werden durch analytischen Restriktionsverdau und Sequenzierung identifiziert.

Der entstandene Vektor (pBluKS-nitP-codAsense-STLS1-35S-T) wird unter Verwendung der Restriktionsenzyme BamHI und EcoRI verdaut.

15 Das codA-anti Fragment (codARNAi-anti; SEQ ID NO: 52) wird aus dem entsprechenden pGEM-T Vektor mit BamHI und EcoRI herausgeschnitten, isoliert und in den geschnittenen Vektor unter Standardbedingungen ligiert. Entsprechend positive Klone, welche die vollständige codA-RNAi Kassette enthalten (pBluKS-nitP-codAsense-STLS1-codAanti-35S-T), werden durch analytischen Restriktionsverdau und Sequenzierung identifiziert.

Der Transfer der codA-RNAi Kassette in den pSUN-1 Vektor (SEQ ID NO: 56) erfolgt unter Verwendung der die Kassette flankierenden Restriktionsschnitt-stellen SacI und KpnI. Der entstandene Vektor pSUN1-codA-RNAi (siehe Fig. 7; SEQ ID NO: 57) wird zur Transformation von transgenen A.thaliana Pflanzen verwendet, die ein aktives codA Gen exprimieren (s.u.). Der Pflanzenexpressions-Vektor pSUN-1 ist im Rahmen des erfindungsgemäßen Verfahrens besonders geeignet, da er keinen weiteren positiven Selektionsmarker trägt.

Der entstandene Vektor pSUN1-codA-RNAi ermöglicht die konstitutive Expression einer artifiziellen codA-dsRNA Variante,

35 bestehend aus zwei identischen Nukleinsäureelementen, die durch ein Intron getrennt, in invertierter Form zueinander vorliegen. In Folge der Transkription dieser artifiziellen codA-dsRNA Variante kommt es aufgrund der Komplementarität der invertierten Nukleinsäureelemente zur Ausbildung eines doppelsträngigen RNA

40 Moleküls. Das Vorhandensein dieses Moleküls induziert die Unterdrückung der Expression (RNA Akkumulation) des codA Gens mittels "double strand RNA interference".

€ .i.

77

Beispiel 4: Herstellung transgener Arabidopis thaliana Pflanzen

Transgene Arabidopsis thaliana Pflanzen, die als Markerprotein das codA Gen aus E.coli transgen exprimieren ("A.thaliana-5 [codA]"), wurden hergestellt wie beschrieben (Kirik et al. (2000) EMBO J 19(20):5562-6).

Die A.thaliana-[codA] Pflanzen werden mit einem Agrobacterium tumefaciens Stamm (GV3101 [pMP90]) auf Grundlage einer modifi
10 zierten Vakuuminfiltrationsmethode transformiert (Clough S & Bent A (1998) Plant J 16(6):735-43; Bechtold N et al. (1993) CR Acad Sci Paris 1144(2):204-212). Die verwendeten Agrobacterium tume-faciens Zellen werden im Vorfeld mit dem beschriebenen DNA-Konstrukt (pSUN1-codA-RNAi) transformiert. Auf diese Art werden

15 doppelt-transgene A.thaliana-[codA] Pflanzen erzeugt, die unter Kontrolle des konstitutiven Nitrilasel-Promotors eine artifizielle codA-doppelsträngige RNA exprimieren. Als Folge des durch die Anwesenheit dieser artifiziellen codA-dsRNA induzierten dsRNAi-Effektes wird die Expression des codA Gens unterdrückt.

20 Diese doppelt-transgenen Pflanzen können aufgrund ihrer wiedergewonnen Fähigkeit, in Anwesenheit von 5-Fluorocytosin im Kultur-

medium zu wachsen, identifiziert werden.

Samen der Primärtransformanden werden auf Grundlage der wieder25 gewonnenen Fähigkeit in Anwesenheit von 5-Fluorcytosin zu wachsen selektioniert. Zu diesem Zweck werden die T1 Samen der Primärtransformanden auf Selektionsmedium ausgelegt welches 200 µg/ml 5-Fluorocytosin enthält. Diese Selektionsplatten werden unter Langtagbedingungen (16 Std. Licht, 21°C/8 Std. Dunkel, 18°C) inkubiert. Keimlinge, die sich in Anwesenheit von 5-Flourocytosin normal entwickeln, werden nach 7 Tagen separiert und auf neue Selektionsplatten transferiert. Diese Platten werden bei unveränderten Bedingungen für weitere 14 inkubiert. Anschließend werden die resistenten Keimlinge in Erde pikiert und unter Kurztagbedingungen (8 Std. Licht, 21°C/16 Std. Dunkel, 18°C) kultiviert. Nach 14 Tagen werden die jungen Pflanzen in das Gewächshaus transferiert und unter Kurztagbedingungen kultiviert.

BASF Plant Science GmbH

Rec'd PCT/PTO 25 JAN 2005

Neue Selektionsverfahren

10/522341

Zusammenfassung

5

Die vorliegende Erfindung betrifft Verfahren zur Herstellung transformierter pflanzlicher Zellen oder Organismen durch Transformation einer Population pflanzlicher Zellen, die mindestens ein Markerprotein mit einem für diese direkt oder indirekt toxischen Effekt umfasst, mit mindestens einer zu insertierenden Nukleinsäuresequenz in Kombination mit mindestens einer Verbindung – bevorzugt einem DNA-Konstrukt – befähigt zur Verminderung der Expression, Menge, Aktivität und/oder Funktion des Markerproteins, wobei die transformierten pflanzlichen Zellen infolge der Wirkung besagter Verbindung gegenüber nicht-transformierten Zellen einen Wachstumsvorteil haben.

20

25

30

35

SEQUENZPROTOKOLL

<110> BASF Plant Science GmbH <120> Neue Selektionssysteme <130> AE20020471 <140> <141> <160> 57 <170> PatentIn Ver. 2.1 <210> 1 <211> 1284 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1)..(1281) <223> coding for cytosine deaminase (codA) <400> 1 gtg tcg aat aac gct tta caa aca att att aac gcc cgg tta cca ggc 48 Val Ser Asn Asn Ala Leu Gln Thr Ile Ile Asn Ala Arg Leu Pro Gly gaa gag ggg ctg tgg cag att cat ctg cag gac gga aaa atc agc gcc 96 Glu Glu Gly Leu Trp Gln Ile His Leu Gln Asp Gly Lys Ile Ser Ala 25 att gat gcg caa tcc ggc gtg atg ccc ata act gaa aac agc ctg gat 144 Ile Asp Ala Gln Ser Gly Val Met Pro Ile Thr Glu Asn Ser Leu Asp gcc gaa caa ggt tta gtt ata ccg ccg ttt gtg gag cca cat att cac 192 Ala Glu Gln Gly Leu Val Ile Pro Pro Phe Val Glu Pro His Ile His 50 ctg gac acc acg caa acc gcc gga caa ccg aac tgg aat cag tcc ggc 240 Leu Asp Thr Thr Gln Thr Ala Gly Gln Pro Asn Trp Asn Gln Ser Gly 65 70 acg ctg ttt gaa ggc att gaa cgc tgg gcc gag cgc aaa gcg tta tta 288 Thr Leu Phe Glu Gly Ile Glu Arg Trp Ala Glu Arg Lys Ala Leu Leu 85 acc cat gac gat gtg aaa caa cgc gca tgg caa acg ctg aaa tgg cag 336 Thr His Asp Asp Val Lys Gln Arg Ala Trp Gln Thr Leu Lys Trp Gln 105 att gcc aac ggc att cag cat gtg cgt acc cat gtc gat gtt tcg gat 384 Ile Ala Asn Gly Ile Gln His Val Arg Thr His Val Asp Val Ser Asp gca acg cta act gcg ctg aaa gca atg ctg gaa gtg aag cag gaa gtc 432 Ala Thr Leu Thr Ala Leu Lys Ala Met Leu Glu Val Lys Gln Glu Val gcg ccg tgg att gat ctg caa atc gtc gcc ttc cct cag gaa ggg att 480 Ala Pro Trp Ile Asp Leu Gln Ile Val Ala Phe Pro Gln Glu Gly Ile 145 150 ttg tcg tat ccc aac ggt gaa gcg ttg ctg gaa gag gcg tta cgc tta 528 Leu Ser Tyr Pro Asn Gly Glu Ala Leu Leu Glu Glu Ala Leu Arg Leu 165 170

Ï											2						
₩	GJĀ āāā	gca Ala	gat Asp	gta Val 180	gtg Val	Gly ggg	gcg Ala	att Ile	ccg Pro 185	cat His	ttt Phe	gaa Glu	ttt Phe	acc Thr 190	cgt Arg	gaa Glu	576
	tac Tyr	ggc Gly	gtg Val 195	gag Glu	tcg Ser	ctg Leu	cat His	aaa Lys 200	acc Thr	ttc Phe	gcc Ala	ctg Leu	gcg Ala 205	caa Gln	aaa Lys	tac Tyr	624
					gac Asp												672
					acc Thr												720
					gcc Ala 245												768
					cgc Arg												816
					ccg Pro												864
					cgt Arg												912
•					gtc Val												960
					acg Thr 325												1008
					ttg Leu												1056
					cac His											ggc	1104
	att Ile	gcc Ala 370	gcc Ala	gga Gly	aac Asn	agc Ser	gcc Ala 375	aac Asn	ctg Leu	att Ile	atc Ile	ctg Leu 380	Pro	gct Ala	gaa Glu	aat Asn	1152
					ctg Leu		Arg					Arg					1200
	Gly	ggc	aag Lys	gtg Val	att Ile 405	gcc Ala	agc Ser	aca Thr	caa Gln	ccg Pro 410	Ala	caa Gln	acc Thr	acc Thr	gta Val 415	tat Tyr	1248
					gaa Glu												1284

<212> PRT

<213> Escherichia coli

<400> 2

Val Ser Asn Asn Ala Leu Gln Thr Ile Ile Asn Ala Arg Leu Pro Gly
1 5 10 15

Glu Glu Gly Leu Trp Gln Ile His Leu Gln Asp Gly Lys Ile Ser Ala 20 25 30

Ile Asp Ala Gln Ser Gly Val Met Pro Ile Thr Glu Asn Ser Leu Asp 35 40 45

Ala Glu Gln Gly Leu Val Ile Pro Pro Phe Val Glu Pro His Ile His 50 55 60

Leu Asp Thr Thr Gln Thr Ala Gly Gln Pro Asn Trp Asn Gln Ser Gly 65 70 75 80

Thr Leu Phe Glu Gly Ile Glu Arg Trp Ala Glu Arg Lys Ala Leu Leu 85 90 95

Thr His Asp Asp Val Lys Gln Arg Ala Trp Gln Thr Leu Lys Trp Gln 100 105 110

Ile Ala Asn Gly Ile Gln His Val Arg Thr His Val Asp Val Ser Asp 115 120 125

Ala Thr Leu Thr Ala Leu Lys Ala Met Leu Glu Val Lys Gln Glu Val 130 135 140

Ala Pro Trp Ile Asp Leu Gln Ile Val Ala Phe Pro Gln Glu Gly Ile 145 150 155 160

Leu Ser Tyr Pro Asn Gly Glu Ala Leu Leu Glu Glu Ala Leu Arg Leu 165 170 175

Gly Ala Asp Val Val Gly Ala Ile Pro His Phe Glu Phe Thr Arg Glu 180 185 190

Tyr Gly Val Glu Ser Leu His Lys Thr Phe Ala Leu Ala Gln Lys Tyr 195 200 205

Asp Arg Leu Ile Asp Val His Cys Asp Glu Ile Asp Asp Glu Gln Ser 210 215 220

Arg Phe Val Glu Thr Val Ala Ala Leu Ala His His Glu Gly Met Gly 225 230 235 240

Ala Arg Val Thr Ala Ser His Thr Thr Ala Met His Ser Tyr Asn Gly
245 250 255

Ala Tyr Thr Ser Arg Leu Phe Arg Leu Leu Lys Met Ser Gly Ile Asn 260 265 270

Phe Val Ala Asn Pro Leu Val Asn Ile His Leu Gln Gly Arg Phe Asp 275 280 285

Thr Tyr Pro Lys Arg Arg Gly Ile Thr Arg Val Lys Glu Met Leu Glu 290 295 300

Ser Gly Ile Asn Val Cys Phe Gly His Asp Asp Val Phe Asp Pro Trp 305 310 315 320

Tyr Pro Leu Gly Thr Ala Asn Met Leu Gln Val Leu His Met Gly Leu
325 330 335

His Val Cys Gln Leu Met Gly Tyr Gly Gln Ile Asn Asp Gly Leu Asn 340 345 350

<u></u>					_												
X											4						
			355		His			360					365				
		370			Asn		375					380					
	385					390					395					400	
	Gly	Gly	Lys	Val	Ile 405	Ala	Ser	Thr	Gln	Pro 410	Ala	Gln	Thr	Thr	Val 415	Tyr	
	Leu	Glu	Gln	Pro 420	Glu	Ala	Ile	Asp	Tyr 425	Lys	Arg						
	<213 <213	0> 3 L> 1: 2> D: 3> K	NA	liche	e Seq	_{[uenz}	1										
	<220 <220	3> B			ıng d deami				en S	Sequ	enz:	cod	ing i	For			
	<22	1> m 2> (3> m	1) utat	ion (of Go			3 sta	art (cođo	n fo	r ex	pres	sion			
	<22	1> C 2> (1)	(128 g fo	1) r cyt	cosi	ne d	eamiı	nase	(co	dA)						
	ato	Ser	aat	aac Asn	gct Ala 5	tta Leu	caa Gln	aca Thr	att Ile	att Ile 10	Asr	gcc Ala	cgg Arg	tta Leu	cca Pro	ggc Gly	48
	gaa Glu	gag Glu	r Glä 1 ggg	ctg Leu 20	tgg Trp	cag Gln	att Ile	cat His	ctg Leu 25	Glr	gac Asp	gga Gly	aaa Lys	ato Ile 30	Ser	gcc Ala	96
	att Ile	gat Asp	gcg Ala 35	Gln	tcc Ser	ggc Gly	gtg Val	atg Met 40	ccc	ata Ile	act Thr	gaa Glu	aac Asn 45	Ser	ctg Leu	gat Asp	144
	gcc Ala	gaa Glu 50	ı Glr	a ggt n Gly	tta Leu	gtt Val	ata Ile 55	Pro	ccg Pro	ttt Phe	gtg Val	g gag L Glu 60	Pro	Cat	att Ile	cac	192
	ctg Leu 65	. Asp	c acc	c acg	caa Gln	acc Thr 70	Ala	gga Gly	caa Glr	ccg Pro	g aad Ası 7!	ı Trp	aat Asn	cag Glr	tcc Ser	80 Gly agc	240
	aco Thr	cto	g ttt ı Phe	t gaa e Glu	ggc Gly 85	Ile	gaa Glu	cgc Arg	tgg Trp	gco Ala 90	a Glu	g cgo	: aaa	gcg	g tta a Leu 95	tta Leu	288
	acc Thr	cat His	t gad s Ası	gat Asr 100	Val	aaa Lys	caa Glr	cgc Arg	gca Ala 105	a Tri	g caa p Gli	a acg n Thi	g ctg Lev	aaa Lys 110	s Trp	cag Gln	336
	att Ile	gce Ala	c aad a Asi	n Gly	att Ile	cag Glr	cat His	gtg Val	Arg	ace Th:	c ca r Hi	t gto s Val	gat L Asp 125	Va.	t tcg l Ser	gat Asp	384

į											5						
₩.	gca Ala	acg Thr 130	cta Leu	act Thr	gcg Ala	ctg Leu	aaa Lys 135	gca Ala	atg Met	ctg Leu	gaa Glu	gtg Val 140	aag Lys	cag Gln	gaa Glu	gtc Val	432
	gcg Ala 145	ccg Pro	tgg Trp	att Ile	gat Asp	ctg Leu 150	caa Gln	atc Ile	gtc Val	gcc Ala	ttc Phe 155	cct Pro	cag Gln	gaa Glu	ggg Gly	att Ile 160	480
	ttg Leu	tcg Ser	tat Tyr	ccc Pro	aac Asn 165	ggt Gly	gaa Glu	gcg Ala	ttg Leu	ctg Leu 170	gaa Glu	gag Glu	gcg Ala	tta Leu	cgc Arg 175	tta Leu	528
	GJA aaa	gca Ala	gat Asp	gta Val 180	gtg Val	Gly ggg	gcg Ala	att Ile	ccg Pro 185	cat His	ttt Phe	gaa Glu	ttt Phe	acc Thr 190	cgt Arg	gaa Glu	576
	tac Tyr	ggc Gly	gtg Val 195	gag Glu	tcg Ser	ctg Leu	cat His	aaa Lys 200	acc Thr	ttc Phe	gcc Ala	ctg Leu	gcg Ala 205	caa Gln	aaa Lys	tac Tyr	624
	gac Asp	cgt Arg 210	ctc Leu	atc Ile	gac Asp	gtt Val	cac His 215	tgt Cys	gat Asp	gag Glu	atc Ile	gat Asp 220	gac Asp	gag Glu	cag Gln	tcg Ser	672
	cgc Arg 225	ttt Phe	gtc Val	gaa Glu	acc Thr	gtt Val 230	gct Ala	gcc Ala	ctg Leu	gcg Ala	cac His 235	cat His	gaa Glu	ggc Gly	atg Met	ggc Gly 240	720
	gcg Ala	cga Arg	gtc Val	acc Thr	gcc Ala 245	agc Ser	cac His	acc Thr	acg Thr	gca Ala 250	atg Met	cac His	tcc Ser	tat Tyr	aac Asn 255	GJA aaa	768
	gcg Ala	tat Tyr	acc Thr	tca Ser 260	cgc Arg	ctg Leu	ttc Phe	cgc Arg	ttg Leu 265	ctg Leu	aaa Lys	atg Met	tcc Ser	ggt Gly 270	att Ile	aac Asn	816
	ttt Phe	gtc Val	gcc Ala 275	aac Asn	ccg Pro	ctg Leu	gtc Val	aat Asn 280	att Ile	cat His	ctg Leu	caa Gln	gga Gly 285	cgt Arg	ttc Phe	gat Asp	864
	acg Thr	tat Tyr 290	cca Pro	aaa Lys	cgt Arg	Arg	ggc Gly 295	Ile	Thr	Arg	Val	aaa Lys 300	Glu	atg Met	ctg Leu	gag Glu	912
	tcc Ser 305	Gly	att Ile	aac Asn	gtc Val	tgc Cys 310	ttt Phe	ggt Gly	cac His	gat Asp	gat Asp 315	gtc Val	ttc Phe	gat Asp	ccg Pro	tgg Trp 320	960
	tat Tyr	ccg Pro	ctg Leu	gga Gly	acg Thr 325	gcg Ala	aat Asn	atg Met	ctg Leu	caa Gln 330	Val	ctg Leu	cat His	atg Met	ggg Gly 335	ctg Leu	1008
	cat His	gtt Val	tgc Cys	cag Gln 340	Leu	atg Met	ggc	tac Tyr	ggg Gly 345	Gln	att Ile	aac Asn	gat Asp	ggc Gly 350	Leu	aat Asn	1056
				His					Thr					Asp		ggc	1104
			Ala										Pro			aat Asn	1152
		Phe					Arg					Arg				cgt Arg 400	1200

BASF Plant Science GmbH

ggc ggc aag gtg att gcc agc aca caa ccg gca caa acc acc gta tat 1248 Gly Gly Lys Val Ile Ala Ser Thr Gln Pro Ala Gln Thr Thr Val Tyr

ctg gag cag cca gaa gcc atc gat tac aaa cgt tga Leu Glu Gln Pro Glu Ala Ile Asp Tyr Lys Arg 420

1284

<210> 4

<211> 427

<212> PRT

<213> Künstliche Sequenz

<223> Beschreibung der künstlichen Sequenz: coding for cytosine deaminase (codA)

<400> 4

Met Ser Asn Asn Ala Leu Gln Thr Ile Ile Asn Ala Arg Leu Pro Gly 10

Glu Glu Gly Leu Trp Gln Ile His Leu Gln Asp Gly Lys Ile Ser Ala 25

Ile Asp Ala Gln Ser Gly Val Met Pro Ile Thr Glu Asn Ser Leu Asp

Ala Glu Gln Gly Leu Val Ile Pro Pro Phe Val Glu Pro His Ile His

Leu Asp Thr Thr Gln Thr Ala Gly Gln Pro Asn Trp Asn Gln Ser Gly

Thr Leu Phe Glu Gly Ile Glu Arg Trp Ala Glu Arg Lys Ala Leu Leu 90

Thr His Asp Asp Val Lys Gln Arg Ala Trp Gln Thr Leu Lys Trp Gln

Ile Ala Asn Gly Ile Gln His Val Arg Thr His Val Asp Val Ser Asp 120

Ala Thr Leu Thr Ala Leu Lys Ala Met Leu Glu Val Lys Gln Glu Val 135

Ala Pro Trp Ile Asp Leu Gln Ile Val Ala Phe Pro Gln Glu Gly Ile 155

Leu Ser Tyr Pro Asn Gly Glu Ala Leu Leu Glu Glu Ala Leu Arg Leu 170 165

Gly Ala Asp Val Val Gly Ala Ile Pro His Phe Glu Phe Thr Arg Glu 185

Tyr Gly Val Glu Ser Leu His Lys Thr Phe Ala Leu Ala Gln Lys Tyr 200

Asp Arg Leu Ile Asp Val His Cys Asp Glu Ile Asp Asp Glu Gln Ser 210

Arg Phe Val Glu Thr Val Ala Ala Leu Ala His His Glu Gly Met Gly 240 235 230

Ala Arg Val Thr Ala Ser His Thr Thr Ala Met His Ser Tyr Asn Gly 250 245

Ala Tyr Thr Ser Arg Leu Phe Arg Leu Leu Lys Met Ser Gly Ile Asn 265 260

Phe Val Ala Asn Pro Leu Val Asn Ile His Leu Gln Gly Arg Phe Asp 280

BASF Plant Science GmbH Thr Tyr Pro Lys Arg Arg Gly Ile Thr Arg Val Lys Glu Met Leu Glu 295 290 Ser Gly Ile Asn Val Cys Phe Gly His Asp Asp Val Phe Asp Pro Trp 315 Tyr Pro Leu Gly Thr Ala Asn Met Leu Gln Val Leu His Met Gly Leu 330 His Val Cys Gln Leu Met Gly Tyr Gly Gln Ile Asn Asp Gly Leu Asn 345 340 Leu Ile Thr His His Ser Ala Arg Thr Leu Asn Leu Gln Asp Tyr Gly Ile Ala Ala Gly Asn Ser Ala Asn Leu Ile Ile Leu Pro Ala Glu Asn 380 375 Gly Phe Asp Ala Leu Arg Arg Gln Val Pro Val Arg Tyr Ser Val Arg 395 390 Gly Gly Lys Val Ile Ala Ser Thr Gln Pro Ala Gln Thr Thr Val Tyr 410 Leu Glu Gln Pro Glu Ala Ile Asp Tyr Lys Arg 420 <210> 5 <211> 1221

<212> DNA <213> Streptomyces griseolus <220> <221> CDS <222> (1)..(1218) <223> coding for cytochrome P450-Sul (suaC) atg acc gat acc gcc acg acg ccc cag acc acg gac gca ccc gcc ttc 48 Met Thr Asp Thr Ala Thr Thr Pro Gln Thr Thr Asp Ala Pro Ala Phe ccg agc aac cgg agc tgt ccc tac cag tta ccg gac ggc tac gcc cag 96 Pro Ser Asn Arg Ser Cys Pro Tyr Gln Leu Pro Asp Gly Tyr Ala Gln 25 ctc cgg gac acc ccc ggc ccc ctg cac cgg gtg acg ctc tac gac ggc 144 Leu Arg Asp Thr Pro Gly Pro Leu His Arg Val Thr Leu Tyr Asp Gly cgt cag gcg tgg gtg gtg acc aag cac gag gcc gcg cgc aaa ctg ctc 192 Arg Gln Ala Trp Val Val Thr Lys His Glu Ala Ala Arg Lys Leu Leu 240 ggc gac ccc cgg ctg tcc tcc aac cgg acg gac gac aac ttc ccc gcc Gly Asp Pro Arg Leu Ser Ser Asn Arg Thr Asp Asp Asn Phe Pro Ala acg tca ccg cgc ttc gag gcc gtc cgg gag agc ccg cag gcg ttc atc 288 Thr Ser Pro Arg Phe Glu Ala Val Arg Glu Ser Pro Gln Ala Phe Ile 85 336 Gly Leu Asp Pro Pro Glu His Gly Thr Arg Arg Arg Met Thr Ile Ser 105 100

į								8			
~			gtc Val								384
			ggc Gly								432
			agt Ser								480
			ggc Gly								528
			ctg Leu 180								576
			ctc Leu								624
			ggc								672
			gag Glu								720
			gcc Ala								768
			ctg Leu 260								816
			ctc Leu			Val					864
			gac Asp								912
			cac His								960
			aac Asn								1008
			cgc Arg 340				Leu				1056
	_	_	ctg Leu	-		Ala					1104
		_	ctc Leu		 		_				1152

gtc gag cag ttg gtg ctg cgg ccg ggt acg acg atc cag ggc gtc aac 1200 Val Glu Gln Leu Val Leu Arg Pro Gly Thr Thr Ile Gln Gly Val Asn 390 gaa ctc ccg gtc acc tgg tga 1221 Glu Leu Pro Val Thr Trp 405 <210> 6 <211> 406 <212> PRT <213> Streptomyces griseolus <400> 6 Met Thr Asp Thr Ala Thr Thr Pro Gln Thr Thr Asp Ala Pro Ala Phe Pro Ser Asn Arg Ser Cys Pro Tyr Gln Leu Pro Asp Gly Tyr Ala Gln 25 Leu Arg Asp Thr Pro Gly Pro Leu His Arg Val Thr Leu Tyr Asp Gly Arg Gln Ala Trp Val Val Thr Lys His Glu Ala Ala Arg Lys Leu Leu 55 Gly Asp Pro Arg Leu Ser Ser Asn Arg Thr Asp Asp Asn Phe Pro Ala 70 Thr Ser Pro Arg Phe Glu Ala Val Arg Glu Ser Pro Gln Ala Phe Ile Gly Leu Asp Pro Pro Glu His Gly Thr Arg Arg Arg Met Thr Ile Ser 105 Glu Phe Thr Val Lys Arg Ile Lys Gly Met Arg Pro Glu Val Glu Glu Val Val His Gly Phe Leu Asp Glu Met Leu Ala Ala Gly Pro Thr Ala 130 135 Asp Leu Val Ser Gln Phe Ala Leu Pro Val Pro Ser Met Val Ile Cys 155 Arg Leu Leu Gly Val Pro Tyr Ala Asp His Glu Phe Phe Gln Asp Ala 170 165 Ser Lys Arg Leu Val Gln Ser Thr Asp Ala Gln Ser Ala Leu Thr Ala 185 Arg Asn Asp Leu Ala Gly Tyr Leu Asp Gly Leu Ile Thr Gln Phe Gln 200 Thr Glu Pro Gly Ala Gly Leu Val Gly Ala Leu Val Ala Asp Gln Leu 215 220 Ala Asn Gly Glu Ile Asp Arg Glu Glu Leu Ile Ser Thr Ala Met Leu 235 Leu Leu Ile Ala Gly His Glu Thr Thr Ala Ser Met Thr Ser Leu Ser 245 250 Val Ile Thr Leu Leu Asp His Pro Glu Gln Tyr Ala Ala Leu Arg Ala 265 Asp Arg Ser Leu Val Pro Gly Ala Val Glu Glu Leu Leu Arg Tyr Leu 280 285

Ala Ile Ala Asp Ile Ala Gly Gly Arg Val Ala Thr Ala Asp Ile Glu

300

											10						
	Val 305	Glu	Gly	His	Leu	Ile 310	Arg	Ala	Gly	Glu	Gly 315	Val	Ile	Val	Val	Asn 320	
	Ser	Ile	Ala	Asn	Arg 325	Asp	Gly	Thr	Val	Tyr 330	Glu	qzA	Pro	Asp	Ala 335	Leu	
	Asp	Ile	His	Arg 340	Ser	Ala	Arg	His	His 345	Ĺeu	Ala	Phe	Gly	Phe 350	Gly	Val	
	His	Gln	Cys 355	Leu	Gly	Gln	Asn	Leu 360	Ala	Arg	Leu	Glu	Leu 365	Glu	Val	Ile	
	Leu	Asn 370	Ala	Leu	Met	Asp	Arg 375	Val	Pro	Thr	Leu	Arg 380	Leu	Ala	Val	Pro	
	Val 385	Glu	Gln	Leu	Val	Leu 390	Arg	Pro	Gly	Thr	Thr 395	Ile	Gln	Gly	Val	Asn 400	
	Glu	Leu	Pro	Val	Thr 405	Trp											
)	<213 <213	0> 7 l> 1: 2> DI 3> Ag		acte	rium	tume	efac:	iens									
	<222 <223	L> C1 2> (1 3> co	1)			dole	acet	tamio	đe hy	ydro.	lase	(tm:	s2)				
	atg	0> 7 gtg Val	ccc Pro	att Ile	acc Thr 5	tcg Ser	tta Leu	gca Ala	caa Gln	acc Thr 10	cta Leu	gaa Glu	cgc Arg	ctg Leu	aga Arg 15	cgg Arg	48
	aaa Lys	gac Asp	tac Tyr	tcc Ser 20	tgc Cys	tta Leu	gaa Glu	cta Leu	gta Val 25	gaa Glu	act Thr	ctg Leu	ata Ile	gcg Ala 30	cgt Arg	tgc Cys	96
									ctt Leu								144
	ttg Leu	cgg Arg 50	cga Arg	agc Ser	gcc Ala	aaa Lys	aaa Lys 55	att Ile	gat Asp	cgt Arg	cat His	gga Gly 60	aac Asn	gcc Ala	gga Gly	tta Leu	192
	ggt Gly 65	ctt Leu	tgc Cys	ggc Gly	att Ile	cca Pro 70	ctc Leu	tgt Cys	ttt Phe	aag Lys	gcg Ala 75	aac Asn	atc Ile	gcg Ala	acc Thr	ggc Gly 80	240
	ata Ile	ttt Phe	cct Pro	aca Thr	agc Ser 85	gct Ala	gct Ala	act Thr	ccg Pro	gcg Ala 90	ctg Leu	ata Ile	aac Asn	cac His	ttg Leu 95	cca Pro	288
	aag Lys	ata Ile	cca Pro	tcc Ser 100	cgc Arg	gtc Val	gca Ala	gaa Glu	aga Arg 105	ctt Leu	ttt Phe	tca Ser	gct Ala	gga Gly 110	gca Ala	ctg Leu	336
	ccg Pro	ggt Gly	gcc Ala 115	tcg Ser	gga Gly	aac Asn	atg Met	cat His 120	gag Glu	tta Leu	tcg Ser	ttt Phe	gga Gly 125	att Ile	acg Thr	agc Ser	384
									cgg Arq								432

Asn Asn Tyr Ala Thr Gly Ala Val Arg Asn Pro Trp Asn Pro Ser Leu

140

135

									:	L1.						
								gtg Val								480
ttg Leu	atg Met	tta Leu	ggc Gly	ggc Gly 165	ata Ile	ggc Gly	acc Thr	gat Asp	acc Thr 170	ggt Gly	gca Ala	tct Ser	gtt Val	cgc Arg 175	cta Leu	528
ccc Pro	gca Ala	gcc Ala	ctg Leu 180	tgt Cys	ggc Gly	gta Val	gta Val	gga Gly 185	ttt Phe	cga Arg	ccg Pro	acg Thr	ctt Leu 190	gct Ala	cga Arg	576
								gtc Val								624
								gat Asp								672
								tca Ser								720
								ttt Phe								768
								att Ile 265								816
								ccc Pro								864
								tac Tyr								912
aag Lys 305	tat Tyr	ctc Leu	gac Asp	gat Asp	ttt Phe 310	gtg Val	gga Gly	aca Thr	gtt Val	tct Ser 315	ttt Phe	tct Ser	gac Asp	gtt Val	atc Ile 320	960
								gcg Ala								1008
								gaa Glu 345								1056
			Arg					tat Tyr								1104
															gcc Ala	1152
	Gly					Val		cac His			Ser					1200
					Arg					Ser					cta Leu	1248

•											12						
3	cct Pro	Gly Gly	g ttg / Lev	g ago 1 Sei 420	: Lev	cct Pro	gcc Ala	tgc Cys	Leu 425	Thr	cct Pro	gat Asp	cgc Arg	ttg Lev 430	Pro	gtt Val	1296
	gga Gly	ato Met	g gaa : Glu 435	ı Ile	gat Asp	gga Gly	tta Leu	gcg Ala 440	Gly	tca Ser	gac Asp	cac His	cgt Arg 445	Lev	r tta Leu	gca Ala	1344
	ato Ile	ggg Gly 450	r Ala	gca Ala	tta Leu	gaa Glu	aaa Lys 455	Ala	ata Ile	aat Asn	ttt Phe	e Pro	Ser	ttt Phe	ccc Pro	gat Asp	1392
		Phe	aat Asn		ſ												1404
	<21 <21	0> 8 1> 4 2> F 3> A	67 PRT	acte	rium	tum	efac	iens									
		0> 8 Val		Tle	Thr	Sor	Leu	λla	C1 n	mb w	T 0	Q1	3			Arg	
					5					10					15		
	Lys	Asp	Tyr	Ser 20	Сув	Leu	Glu	Leu	Val 25	Glu	Thr	Leu	Ile	Ala 30	Arg	Сув	
	Gln	Ala	Ala 35	Lys	Pro	Leu	Asn	Ala 40	Leu	Leu	Ala	Thr	Asp 45	Trp	Asp	Gly	
	Leu	Arg 50	Arg	Ser	Ala	Lys	Lys 55	Ile	Asp	Arg	His	Gly 60	Asn	Ala	Gly	Leu	
	G1y 65	Leu	Cys	Gly	Ile	Pro 70	Leu	Cys	Phe	Lys	Ala 75	Asn	Ile	Ala	Thr	Gly 80	
	Ile	Phe	Pro	Thr	Ser 85	Ala	Ala	Thr	Pro	Ala 90	Leu	Ile	Asn	His	Leu 95		
	Lys	Ile	Pro	Ser 100	Arg	Val	Ala	Glu	Arg 105	Leu	Phe	Ser	Ala	Gly 110		Leu	
	Pro	Gly	Ala 115	Ser	Gly	Asn	Met	His 120	Glu	Leu	Ser	Phe	Gly 125	Ile	Thr	Ser	
	Asn	Asn 130	Tyr	Ala	Thr	Gly	Ala 135	Val	Arg	Asn	Pro	Trp 140	Asn	Pro	Ser	Leu	
	Ile 145	Pro	Gly	Gly	Ser	Ser 150	Gly	Gly	Val	Ala	Ala 155	Ala	Val	Ala	Ser	Arg 160	
	Leu	Met	Leu	Gly	Gly 165	Ile	Gly	Thr	Asp	Thr 170	Gly	Ala	Ser	Val	Arg 175	Leu	
	Pro	Ala	Ala	Leu 180	Cys	Gly	Val	Val	Gly 185	Phe	Arg	Pro	Thr	Leu 190	Ala	Arg	
	Tyr	Pro	Arg 195	Asp	Arg	Ile	Ile	Pro 200	Val	Ser	Pro	Thr	Arg 205	Asp	Thr	Ala	
	Gly	Ile 210	Ile	Ala	Gln	Cys	Val 215	Ala	Asp	Val	Ile	Ile 220		Asp	Gln	Val	
	Ile 225	Ser	Gly	Arg	Ser	Ala 230	Lys	Ile	Ser	Pro	Met 235		Leu	Lys		Leu 240	
	Arg	Ile	Gly	Leu	Pro 245	Thr	Thr	Tyr	Phe	Tyr 250		Asp	Leu	qaA			

Val Ala Phe Ala Ala Glu Thr Thr Ile Arg Leu Leu Ala Asn Arg Gly 260 265 270

Val Thr Phe Val Glu Ala Asp Ile Pro His Leu Glu Glu Leu Asn Ser 275 280 285

Gly Ala Ser Leu Pro Ile Ala Leu Tyr Glu Phe Pro His Ala Leu Lys 290 295 300

Lys Tyr Leu Asp Asp Phe Val Gly Thr Val Ser Phe Ser Asp Val Ile 305 310 315 320

Lys Gly Ile Arg Ser Pro Asp Val Ala Asn Ile Val Ser Ala Gln Ile 325 330 335

Asp Gly His Gln Ile Ser Asn Asp Glu Tyr Glu Leu Ala Arg Gln Ser 340 345 350

Phe Arg Pro Arg Leu Gln Ala Thr Tyr Arg Asn Tyr Phe Arg Leu Tyr 355 360 365

Gln Leu Asp Ala Ile Leu Phe Pro Thr Ala Pro Leu Ala Ala Lys Ala 370 375 380

Ile Gly Gln Glu Ser Ser Val Ile His Asn Gly Ser Met Met Asn Thr 385 390 395 400

Phe Lys Ile Tyr Val Arg Asn Val Asp Pro Ser Ser Asn Ala Gly Leu 405 410 415

Pro Gly Leu Ser Leu Pro Ala Cys Leu Thr Pro Asp Arg Leu Pro Val 420 425 430

Gly Met Glu Ile Asp Gly Leu Ala Gly Ser Asp His Arg Leu Leu Ala 435 440 445

Ile Gly Ala Ala Leu Glu Lys Ala Ile Asn Phe Pro Ser Phe Pro Asp 450 455 460

Ala Phe Asn 465

<210> 9

<211> 1404

<212> DNA

<213> Agrobacterium tumefaciens

<220>

<221> CDS

<222> (1)..(1401)

<223> coding for indole acetamide hydrolase (tms2)

<400> 9

atg gtg ccc att acc tcg tta gca caa acc cta gaa cgc ctg aga cgg 48
Met Val Pro Ile Thr Ser Leu Ala Gln Thr Leu Glu Arg Leu Arg Arg

aaa gac tac tcc tgc tta gaa cta gta gaa act ctg ata gcg cgt tgc 96
Lys Asp Tyr Ser Cys Leu Glu Leu Val Glu Thr Leu Ile Ala Arg Cys
20 25 30

caa gct gca aaa cca tta aat gcc ctt ctg gct aca gac tgg gat ggc 144 Gln Ala Ala Lys Pro Leu Asn Ala Leu Leu Ala Thr Asp Trp Asp Gly 35 40 45

ttg cgg cga agc gcc aaa aaa att gat cgt cat gga aac gcc gga tta 192 Leu Arg Arg Ser Ala Lys Lys Ile Asp Arg His Gly Asn Ala Gly Leu 50 55 60

										;	14						
			_	-		cca Pro 70		_		_							240
						gct Ala											288
	_					gtc Val			_				-		_	_	336
						aac Asn											384
						ggt Gly									_	_	432
)						agc Ser 150											480
						ata Ile					-			-	-		528
						ggc Gly									_	_	576
						ata Ile										_	624
						tgc Cys									-		672
						gcg Ala 230											720
						act Thr											768
						gaa Glu				_	_		-		-		816
						gcc Ala											864
						att Ile											912
	Lys 305	Tyr	Leu	Asp	Asp	ttt Phe 310	Val	Gly	Thr	Val	Ser 315	Phe	Ser	Asp	Val	Ile 320	960
						ccc Pro											1008

-											15						
ù	gat Asp	ggg Gly	cat His	caa Gln 340	att Ile	tcc Ser	aac Asn	gat Asp	gaa Glu 345	tat Tyr	gaa Glu	ctg Leu	gcg Ala	cgt Arg 350	caa Gln	tcc Ser	1056
	ttc Phe	agg Arg	cca Pro 355	agg Arg	ctc Leu	cag Gln	gcc Ala	act Thr 360	tat Tyr	cgg Arg	aat Asn	tac Tyr	ttc Phe 365	aga Arg	ctc Leu	tat Tyr	1104
	cag Gln	tta Leu 370	gat Asp	gca Ala	atc Ile	ctt Leu	ttc Phe 375	cca Pro	act Thr	gca Ala	ccc Pro	tta Leu 380	gcg Ala	gcc Ala	aaa Lys	gcc Ala	1152
	ata Ile 385	ggt Gly	cag Gln	gag Glu	tcg Ser	tca Ser 390	gtc Val	atc Ile	cac His	aat Asn	ggc Gly 395	tca Ser	atg Met	ata Ile	aac Asn	act Thr 400	1200
	ttc Phe	aag Lys	atc Ile	tac Tyr	gtg Val 405	cga Arg	aat Asn	gtg Val	gac Asp	cca Pro 410	agc Ser	agc Ser	aac Asn	gca Ala	ggc Gly 415	cta Leu	1248
	cct Pro	GJÀ aàà	ttg Leu	agc Ser 420	ctt Leu	cct Pro	gcc Ala	tgc Cys	ctt Leu 425	aca Thr	cct Pro	gat Asp	cgc Arg	ttg Leu 430	cct Pro	gtt Val	1296
	gga Gly	atg Met	gaa Glu 435	att Ile	gac Asp	gga Gly	tta Leu	gcg Ala 440	Gl ^A aaa	tca Ser	gac Asp	cac His	cgt Arg 445	ctg Leu	tta Leu	gca Ala	1344
	atc Ile	ggg Gly 450	gca Ala	gca Ala	tta Leu	gaa Glu	aaa Lys 455	gcc Ala	ata Ile	aat Asn	ttt Phe	cct Pro 460	tcc Ser	ttt Phe	ccc Pro	gat Asp	1392
	_	ttt Phe		tag													1404
	<211 <212	0> 10 L> 46 2> PF B> Ag	57 RT	actei	cium	tume	efaci	lens									
)> 10 Val		Ile	Thr 5	Ser	Leu	Ala	Gln	Thr 10	Leu	Glu	Arg	Leu	Arg 15	Arg	
	Lys	Asp	Tyr	Ser 20	Cys	Leu	Glu	Leu	Val 25		Thr	Leu	Ile	Ala 30		Суз	
	Gln	Ala	Ala 35	Lys	Pro	Leu	Asn	Ala 40	Leu	Leu	Ala	Thr	Asp 45	Trp	Asp	Gly	
	Leu	Arg 50	Arg	Ser	Ala	Lys	Lys 55	Ile	Asp	Arg	His	Gly 60	Asn	Ala	Gly	Leu	
	Gly 65	Leu	Суз	Gly	Ile	Pro 70	Leu	Суз	Phe	Lys	Ala 75	Asn	Ile	Ala	Thr	Gly 80	
					85					90		Ile			95		
				100					105			Ser		110			
			115					120					125				
	ASN	Asn 130	īÀL	Ala	Thr	GΤĀ	Ala 135	Val	Arg	Asn		Trp 140	Asn	Pro	Ser	Leu	

											16				•	
	Ile 145	Pro	Gly	Gly	Ser	Ser 150	Gly	Gly	Val	Ala	Ala 155	Ala	Val	Ala	Ser	Arg 160
	Leu	Met	Leu	Gly	Gly 165	Ile	Gly	Thr	Asp	Thr 170	Gly	Ala	Ser	Val	Arg 175	Leu
	Pro	Ala	Ala	Leu 180	Cys	Gly	Val	Val	Gly 185	Phe	Arg	Pro	Thr	Leu 190	Ala	Arg
	Tyr	Pro	Arg 195	Asp	Arg	Ile	Ile	Pro 200	Val	Ser	Pro	Thr	Arg 205	Asp	Thr	Ala
	Gly	Ile 210	Ile	Ala	Gln	Cys	Val 215	Ala	Asp	Val	Ile	Ile 220	Leu	Asp	Gln	Val
	Ile 225	Ser	Gly	Arg	Ser	Ala 230	Lys	Ile	Ser	Pro	Met 235	Pro	Leu	Lys	Gly	Leu 240
	Arg	Ile	Gly	Leu	Pro 245	Thr	Thr	Tyr	Phe	Tyr 250	Asp	Asp	Leu	Asp	Ala 255	qaA
\	Val	Ala	Phe	Ala 260	Ala	Glu	Thr	Thr	Ile 265	Arg	Leu	Leu	Ala	Asn 270	Arg	Gly
)	Val	Thr	Phe 275		Glu	Ala	Asp	Ile 280	Pro	His	Leu	Glu	Glu 285	Leu	Asn	Ser
	Gly	Ala 290	Ser	Leu	Pro	Ile	Ala 295	Leu	Tyr	Glu	Phe	Pro 300	His	Ala	Leu	Lys
	Lys 305	Tyr	Leu	Asp	Asp	Phe 310	Val	Gly	Thr	Val	Ser 315	Phe	Ser	Asp	Val	Ile 320
	Lys	Gly	Ile	Arg	Ser 325	Pro	Asp	Val	Ala	Asn 330	Ile	Val	Ser	Ala	Gln 335	Ile
	Asp	Gly	His	Gln 340	Ile	Ser	Asn	Asp	Glu 345	Tyr	Glu	Leu	Ala	Arg 350	Gln	Ser
	Phe	Arg	Pro 355	Arg	Leu	Gln	Ala	Thr 360	Tyr	Arg	Asn	Tyr	Phe 365	Arg	Leu	Tyr
	Gln	Leu 370	Asp	Ala	Ile	Leu	Phe 375	Pro	Thr	Ala	Pro	Leu 380	Ala	Ala	Lys	Ala
	Ile 385	Gly	Gln	Glu	Ser	Ser 390	Val	Ile	His	Asn	Gly 395	Ser	Met	Ile	Asn	Thr 400
	Phe	Lys	Ile	Tyr	Val 405	Arg	Asn	Val	Asp	Pro 410	Ser	Ser	Asn	Ala	Gly 415	Leu
	Pro	Gly	Leu	Ser 420	Leu	Pro	Ala	Суз	Leu 425	Thr	Pro	Asp	Arg	Leu 430	Pro	Val
	Gly	Met	Glu 435	Ile	Asp	Gly	Leu	Ala 440	Gly	Ser	Asp	His	Arg 445	Leu	Leu	Ala
	Ile	Gly 450	Ala	Ala	Leu	Glu	Lys 455	Ala	Ile	Asn	Phe	Pro 460	Ser	Phe	Pro	Asp
	Ala	Phe	Asn													

<210> 11

465

<211> 609

<212> DNA

<213> Xanthobacter autotrophicus

											17						
	<22	1> C: 2> (:	1)			loal	kane	deha	aloh	enas	9						
		0> 1:															
	atg Met 1	tca Ser	acg Thr	ttt Phe	ttt Phe 5	gaa Glu	ccg Pro	gag Glu	aac Asn	gga Gly 10	atg Met	aaa Lys	caa Gln	aac Asn	gcc Ala 15	aaa Lys	48
	acc Thr	gaa Glu	cga Arg	atc Ile 20	ctg Leu	gat Asp	gtc Val	gcg Ala	ctc Leu 25	gaa Glu	ttg Leu	ctt Leu	gag Glu	aca Thr 30	gag Glu	ggt Gly	96
	gag Glu	ttt Phe	ggt Gly 35	ttg Leu	acg Thr	atg Met	agg Arg	cag Gln 40	gtg Val	gca Ala	acg Thr	caa Gln	gcg Ala 45	gac Asp	atg Met	tcc Ser	144
								ttc Phe									192
								caa Gln									240
								cgt Arg									288
	ttg Leu	tta Leu	cga Arg	gaa Glu 100	ctg Leu	ctc Leu	ggt Gly	cat His	ggt Gly 105	ctt Leu	gag Glu	att Ile	tcc Ser	gag Glu 110	atg Met	tgt Cys	336
								gca Ala 120									384
								tat Tyr									432
)	gag Glu 145	aag Lys	ctt Leu	gcg Ala	cca Pro	ctg Leu 150	gcc Ala	agc Ser	agc Ser	gaa Glu	aag Lys 155	gcg Ala	ctg Leu	gcc Ala	gtg Val	gcc Ala 160	480
,								gtt Val									528
	gca Ala	atg Met	ccc Pro	gaa Glu 180	tcc Ser	att Ile	gat Asp	acg Thr	att Ile 185	tcc Ser	gag Glu	acg Thr	ctg Leu	acc Thr 190	aat Asn	gtg Val	576
								agc Ser 200		tcat	ga						609
	<211 <212)> 12 .> 20 !> PF !> Xa)1 RT	obac+	er s	utot	:ron [}]	nicus									
)> 12					Opi		•								
				Phe	Phe 5	Glu	Pro	Glu	Asn	Gly 10	Met	Lys	Gln	Asn	Ala 15	Lys	

Thr Glu Arg Ile Leu Asp Val Ala Leu Glu Leu Leu Glu Thr Glu Gly 20 25 30

Glu Phe Gly Leu Thr Met Arg Gln Val Ala Thr Gln Ala Asp Met Ser 35 40 45

Leu Ser Asn Val Gln Tyr Tyr Phe Lys Ser Glu Asp Leu Leu Val
50 55 60

Ala Met Ala Asp Arg Tyr Phe Gln Arg Cys Leu Thr Thr Met Ala Glu 65 70 75 80

His Pro Pro Leu Ser Ala Gly Arg Asp Gln His Ala Gln Leu Arg Ala 85 90 95

Leu Leu Arg Glu Leu Leu Gly His Gly Leu Glu Ile Ser Glu Met Cys
100 105 110

Arg Ile Phe Arg Glu Tyr Trp Ala Ile Ala Thr Arg Asn Glu Thr Val 115 120 125

His Gly Tyr Leu Lys Ser Tyr Tyr Arg Asp Leu Ala Glu Val Met Ala 130 135 140

Glu Lys Leu Ala Pro Leu Ala Ser Ser Glu Lys Ala Leu Ala Val Ala 145 150 155 160

Val Ser Leu Val Ile Pro Tyr Val Glu Gly Tyr Ser Val Thr Ala Ile 165 170 175

Ala Met Pro Glu Ser Ile Asp Thr Ile Ser Glu Thr Leu Thr Asn Val 180 185 190

Val Leu Glu Gln Leu Arg Ile Ser Asn 195 200

<210> 13

<211> 1131

<212> DNA

<213> Herpes simplex virus 1

<220>

<221> CDS

<222> (1)..(1128)

<223> coding for thymidine kinase (TK)

<400> 13

atg gct tcg tac ccc tgc cat caa cac gcg tct gcg ttc gac cag gct 48
Met Ala Ser Tyr Pro Cys His Gln His Ala Ser Ala Phe Asp Gln Ala

gcg cgt tct cgc ggc cat agc aac cga cgt acg gcg ttg cgc cct cgc 96
Ala Arg Ser Arg Gly His Ser Asn Arg Arg Thr Ala Leu Arg Pro Arg
20 25 30

cgg cag caa gaa gcc acg gaa gtc cgc ctg gag cag aaa atg ccc acg
Arg Gln Gln Glu Ala Thr Glu Val Arg Leu Glu Gln Lys Met Pro Thr
35
40
45

cta ctg cgg gtt tat ata gac ggt cct cac ggg atg ggg aaa acc acc 192 Leu Leu Arg Val Tyr Ile Asp Gly Pro His Gly Met Gly Lys Thr Thr 50 55 60

acc acg caa ctg ctg gtg gcc ctg ggt tcg cgc gac gat atc gtc tac 240
Thr Thr Gln Leu Leu Val Ala Leu Gly Ser Arg Asp Asp Ile Val Tyr
65 70 75 80

					1						19						
J															gag Glu 95		288
															gag Glu		336
															aca Thr		384
	ggc Gly	atg Met 130	cct Pro	tat Tyr	gcc Ala	gtg Val	acc Thr 135	gac Asp	gcc Ala	gtt Val	ctg Leu	gct Ala 140	cct Pro	cat His	gtc Val	GJA aaa	432
															ctc Leu		480
	ttc Phe	gac Asp	cgc Arg	cat His	ccc Pro 165	atc Ile	gcc Ala	gcc Ala	ctc Leu	ctg Leu 170	tgc Cys	tac Tyr	ccg Pro	gcc Ala	gcg Ala 175	cga Arg	528
	tac Tyr	ctt Leu	atg Met	ggc Gly 180	agc Ser	atg Met	acc Thr	ccc Pro	cag Gln 185	gcc Ala	gtg Val	ctg Leu	gcg Ala	ttc Phe 190	gtg Val	gcc Ala	576
	ctc Leu	atc Ile	ccg Pro 195	ccg Pro	acc Thr	ttg Leu	ccc Pro	ggc Gly 200	aca Thr	aac Asn	atc Ile	gtg Val	ttg Leu 205	GJÀ aaa	gcc Ala	ctt Leu	624
	ccg Pro	gag Glu 210	gac Asp	aga Arg	cac His	atc Ile	gac Asp 215	cgc Arg	ctg Leu	gcc Ala	aaa Lys	cgc Arg 220	cag Gln	cgc Arg	ccc Pro	ggc Gly	672
															tac Tyr		720
	ctg Leu	ctt Leu	gcc Ala	aat Asn	acg Thr 245	gtg Val	cgg Arg	tat Tyr	ctg Leu	cag Gln 250	Gly	ggc Gly	GJÀ aaa	tcg Ser	tgg Trp 255	Trp	768
	gag Glu	gat Asp	tgg Trp	gga Gly 260	cag Gln	ctt Leu	tcg Ser	Gly ggg	acg Thr 265	gcc Ala	gtg Val	ccg Pro	ccc Pro	cag Gln 270	ggt Gly	gcc Ala	816
	Glu	Pro	Gln 275	Ser	Asn	Ala	Gly	Pro 280	Arg	Pro	His	Ile	Gly 285	Asp	acg Thr	Leu	864
	Phe	Thr 290	Leu	Phe	Arg	Ala	Pro 295	Glu	Leu	Leu	Ala	Pro 300	Asn	Gly	gac Asp	Leu	912
	Tyr 305	Asn	Val	Phe	Ala	Trp 310	Ala	Leu	Asp	Val	Leu 315	Ala	Lys	Arg	ctc Leu	Arg 320	960
	Pro	Met	His	Val	Phe 325	Ile	Leu	Asp	Tyr	Asp 330	Gln	Ser	Pro	Ala	ggc Gly 335	Cys	1008
	cgg Arg	gac Asp	gcc Ala	ctg Leu 340	ctg Leu	caa Gln	ctt Leu	acc Thr	tcc Ser 345	Gly ggg	atg Met	gtc Val	cag Gln	acc Thr 350	cac His	gtc Val	1056

acc acc cca ggc tcc ata ccg acg atc tgc gac ctg gcg cgc acg ttt 1104
Thr Thr Pro Gly Ser Ile Pro Thr Ile Cys Asp Leu Ala Arg Thr Phe
355 360 365

gcc cgg gag atg ggg gag gct aac tga Ala Arg Glu Met Gly Glu Ala Asn 370 375 1131

<210> 14

<211> 376

<212> PRT

<213> Herpes simplex virus 1

<400> 14

Met Ala Ser Tyr Pro Cys His Gln His Ala Ser Ala Phe Asp Gln Ala 1 5 10 15

Ala Arg Ser Arg Gly His Ser Asn Arg Arg Thr Ala Leu Arg Pro Arg

Arg Gln Gln Glu Ala Thr Glu Val Arg Leu Glu Gln Lys Met Pro Thr 35 40 45

Leu Leu Arg Val Tyr Ile Asp Gly Pro His Gly Met Gly Lys Thr Thr 50 55 60

Thr Thr Gln Leu Leu Val Ala Leu Gly Ser Arg Asp Asp Ile Val Tyr 65 70 75 80

Val Pro Glu Pro Met Thr Tyr Trp Gln Val Leu Gly Ala Ser Glu Thr 85 90 95

Ile Ala Asn Ile Tyr Thr Thr Gln His Arg Leu Asp Gln Gly Glu Ile 100 105 110

Ser Ala Gly Asp Ala Ala Val Val Met Thr Ser Ala Gln Ile Thr Met

Gly Met Pro Tyr Ala Val Thr Asp Ala Val Leu Ala Pro His Val Gly 130 135 140

Gly Glu Ala Gly Ser Ser His Ala Pro Pro Pro Ala Leu Thr Leu Ile 145 150 155 160

Phe Asp Arg His Pro Ile Ala Ala Leu Leu Cys Tyr Pro Ala Ala Arg

Tyr Leu Met Gly Ser Met Thr Pro Gln Ala Val Leu Ala Phe Val Ala 180 185 190

Leu Ile Pro Pro Thr Leu Pro Gly Thr Asn Ile Val Leu Gly Ala Leu 195 200 205

Pro Glu Asp Arg His Ile Asp Arg Leu Ala Lys Arg Gln Arg Pro Gly 210 215 220

Glu Arg Leu Asp Leu Ala Met Leu Ala Ala Ile Arg Arg Val Tyr Gly 225 230 235 240

Leu Leu Ala Asn Thr Val Arg Tyr Leu Gln Gly Gly Gly Ser Trp Trp 245 250 255

Glu Asp Trp Gly Gln Leu Ser Gly Thr Ala Val Pro Pro Gln Gly Ala 260 265 270

Glu Pro Gln Ser Asn Ala Gly Pro Arg Pro His Ile Gly Asp Thr Leu 275 280 285

Phe Thr Leu Phe Arg Ala Pro Glu Leu Leu Ala Pro Asn Gly Asp Leu 290 295 300

160

		2001								U	•	EE	33730				
								21									
	Tyr 305	Asn	Val	Phe	Ala	Trp 310	Ala	Leu	Asp	Val	Leu 315	Ala	Lys	Arg	Leu	Arg 320	
	Pro	Met	His	Val	Phe 325	Ile	Leu	Asp	Tyr	Asp 330	Gln	Ser	Pro	Ala	Gly 335	Cys	
	Arg	Asp	Ala	Leu 340	Leu	Gln	Leu	Thr	Ser 345	Gly	Met	Val	Gln	Thr 350	His	Val	
	Thr	Thr	Pro 355	Gly	Ser	Ile	Pro	Thr 360	Ile	Cys	Asp	Leu	Ala 365	Arg	Thr	Phe	
	Ala	Arg 370	Glu	Met	Gly	Glu	Ala 375	Asn									
	<210> 15 <211> 1131 <212> DNA <213> Herpes simplex virus 1																
	<222	L> CI 2> (1	L)	(1128 g for	3) c thy	/mid:	ine }	cinas	se (1	rk)							
	atg		tcg		ccc Pro 5												48
					Gly												96
	cgg Arg	cag Gln	caa Gln 35	gaa Glu	gcc Ala	acg Thr	gaa Glu	gtc Val 40	cgc Arg	ctg Leu	gag Glu	cag Gln	aaa Lys 45	atg Met	ccc Pro	acg Thr	144
					tat Tyr												192
)					ctg Leu												240
	gta Val	ccc Pro	gag Glu	ccg Pro	atg Met 85	act Thr	tac Tyr	tgg Trp	cag Gln	gtg Val 90	ctg Leu	GJÀ aaa	gct Ala	tcc Ser	gag Glu 95	aca Thr	288
					tac Tyr												336
					gcg Ala												384
	ggc Gly	atg Met 130	cct Pro	tat Tyr	gcc Ala	gtg Val	acc Thr 135	gac Asp	gcc Ala	gtt Val	ctg Leu	gct Ala 140	cct Pro	cat His	gtc Val	ggg ggg	432

ggg gag gct ggg agt tca cat gcc ccg ccc ccg gcc ctc acc ctc atc

Gly Glu Ala Gly Ser Ser His Ala Pro Pro Pro Ala Leu Thr Leu Ile

155

150

										22									
	ttc Phe	gac Asp	cgc Arg	cat His	ccc Pro 165	atc Ile	gcc Ala	gcc Ala	ctc Leu	ctg Leu 170	tgc Cys	tac Tyr	ccg Pro	gcc Ala	gcg Ala 175	cga Arg	528		
	tac Tyr	ctt Leu	atg Met	ggc Gly 180	agc Ser	atg Met	acc Thr	ccc Pro	cag Gln 185	gcc Ala	gtg Val	ctg Leu	gcg Ala	ttc Phe 190	gtg Val	gcc Ala	576		
	ctc Leu	atc Ile	ccg Pro 195	ccg Pro	acc Thr	ttg Leu	ccc Pro	ggc Gly 200	aca Thr	aac Asn	atc Ile	gtg Val	ttg Leu 205	Gly ggg	gcc Ala	ctt Leu	624		
					cac His												672		
	gag Glu 225	cgg Arg	ctt Leu	gac Asp	ctg Leu	gct Ala 230	atg Met	ctg Leu	gcc Ala	gcg Ala	att Ile 235	cgc Arg	cgc Arg	gtt Val	tac Tyr	ggg Gly 240	720		
1					acg Thr 245												768		
	gag Glu	gat Asp	tgg Trp	gga Gly 260	cag Gln	ctt Leu	tcg Ser	Gly	acg Thr 265	gcc Ala	gtg Val	ccg Pro	ccc Pro	cag Gln 270	ggt Gly	gcc Ala	816		
	gag Glu	ccc Pro	cag Gln 275	agc Ser	aac Asn	gcg Ala	ggc Gly	cca Pro 280	cga Arg	ccc Pro	cat His	atc Ile	ggg Gly 285	gac Asp	acg Thr	tta Leu	864		
	ttt Phe	acc Thr 290	ctg Leu	ttt Phe	cgg Arg	gcc Ala	ccc Pro 295	gag Glu	ttg Leu	ctg Leu	gcc Ala	ccc Pro 300	aac Asn	ggc Gly	gac Asp	ctg Leu	912		
	tat Tyr 305	aac Asn	gtg Val	ttt Phe	gcc Ala	tgg Trp 310	gcc Ala	ttg Leu	gac Asp	gtc Val	ttg Leu 315	gcc Ala	aaa Lys	cgc Arg	ctc Leu	cgt Arg 320	960		
					ttt Phe 325												1008		
)	cgg Arg	gac Asp	gcc Ala	ctg Leu 340	ctg Leu	caa Gln	ctt Leu	acc Thr	tcc Ser 345	Gly	atg Met	gtc Val	cag Gln	acc Thr 350	cac His	gtc Val	1056		
	acc Thr	acc Thr	cca Pro 355	Gly	tcc Ser	ata Ile	ccg Pro	acg Thr 360	Ile	tgc Cys	gac Asp	ctg Leu	gcg Ala 365	Arg	acg Thr	ttt Phe	1104		
					Gly												1131		
	<21 <21	0> 1 1> 3 2> P 3> H	76 RT	s si	mple	x vi	rus	1											
				туг	Pro 5		His	Gln	His	Ala 10		Ala	Phe	qaA :	Gln 15				
	Ala	Arg	Ser	Arg 20	Gly	His	Ser	Asn	Arg 25		Thr	Ala	Leu	Arg		Arg			

Arg Gln Gln Glu Ala Thr Glu Val Arg Leu Glu Gln Lys Met Pro Thr 35 40 45

Leu Leu Arg Val Tyr Ile Asp Gly Pro His Gly Met Gly Lys Thr Thr 50 55 60

Thr Thr Gln Leu Leu Val Ala Leu Gly Ser Arg Asp Asp Ile Val Tyr 65 70 75 80

Val Pro Glu Pro Met Thr Tyr Trp Gln Val Leu Gly Ala Ser Glu Thr 85 90 95

Ile Ala Asn Ile Tyr Thr Thr Gln His Arg Leu Asp Gln Gly Glu Ile 100 105 110

Ser Ala Gly Asp Ala Ala Val Val Met Thr Ser Ala Gln Ile Thr Met 115 120 125

Gly Met Pro Tyr Ala Val Thr Asp Ala Val Leu Ala Pro His Val Gly
130 135 140

Gly Glu Ala Gly Ser Ser His Ala Pro Pro Pro Ala Leu Thr Leu Ile 145 150 155 160

Phe Asp Arg His Pro Ile Ala Ala Leu Leu Cys Tyr Pro Ala Ala Arg 165 170 175

Tyr Leu Met Gly Ser Met Thr Pro Gln Ala Val Leu Ala Phe Val Ala 180 185 190

Leu Ile Pro Pro Thr Leu Pro Gly Thr Asn Ile Val Leu Gly Ala Leu 195 200 205

Pro Glu Asp Arg His Ile Asp Arg Leu Ala Lys Arg Gln Arg Pro Gly 210 . 215 220

Glu Arg Leu Asp Leu Ala Met Leu Ala Ala Ile Arg Arg Val Tyr Gly 225 230 235 240

Leu Leu Ala Asn Thr Val Arg Tyr Leu Gln Gly Gly Gly Ser Trp Trp 245 250 255

Glu Asp Trp Gly Gln Leu Ser Gly Thr Ala Val Pro Pro Gln Gly Ala 260 265 270

Glu Pro Gln Ser Asn Ala Gly Pro Arg Pro His Ile Gly Asp Thr Leu 275 280 285

Phe Thr Leu Phe Arg Ala Pro Glu Leu Leu Ala Pro Asn Gly Asp Leu 290 295 300

Tyr Asn Val Phe Ala Trp Ala Leu Asp Val Leu Ala Lys Arg Leu Arg 305 310 315 320

Pro Met His Val Phe Ile Leu Asp Tyr Asp Gln Ser Pro Ala Gly Cys 325 330 335

Arg Asp Ala Leu Leu Gln Leu Thr Ser Gly Met Val Gln Thr His Val 340 345 350

Thr Thr Pro Gly Ser Ile Pro Thr Ile Cys Asp Leu Ala Arg Thr Phe 355 360 365

Ala Arg Glu Met Gly Glu Ala Asn 370 375

										_						
<212: <213:			asma	gon	dii											
<220: <221: <222: <223:	> CD: > (1)(ding	for	hyp osyl	oxan tra	thin nsfe	e-xa rase	nthi (HX	ne-g GPRT	uani ase)	ne					
<400 atg Met .	aca	tcc Ser	aaa Lys	ccc Pro 5	att Ile	gaa Glu	gaa Glu	tcc Ser	cgg Arg 10	tcg Ser	caa Gln	aaa Lys	cgg Arg	agt Ser 15	gcc Ala	48
ttc Phe	tca Ser	gac Asp	atc Ile 20	ttc Phe	tgt Cys	tgt [.] Cys	tgc Cys	act Thr 25	cct Pro	aat Asn	gaa Glu	GJA aaa	gct Ala 30	atc Ile	gtg Val	96
ccc Pro	agt Ser	gac Asp 35	cca Pro	atg Met	gtc Val	tcc Ser	acc Thr 40	agt Ser	gct Ala	cca Pro	gca Ala	cgc Arg 45	acc Thr	agt Ser	gct Ala	144
cca Pro	gcg Ala 50	cgc Arg	tcc Ser	agt Ser	gca Ala	ctt Leu 55	caa Gln	gac Asp	tac Tyr	ggc Gly	aag Lys 60	ggc Gly	aag Lys	ggc Gly	cgt Arg	192
Ile 65	Glu	Pro	Met	Tyr	Ile 70	Pro	Asp	Asn	Thr	Phe 75	tac Tyr	Asn	Ala	Asp	qaA 08	240
Phe	Leu	Val	Pro	Pro 85	His	Cys	Lys	Pro	Tyr 90	Ile	gac Asp	Lys	Ile	Leu 95	Leu	288
Pro	Gly	Gly	Leu 100	Val	Lys	Asp	Arg	Val 105	Glu	Lys	ttg Leu	Ala	Tyr 110	Asp	Ile	336
His	Arg	Thr 115	Tyr	Phe	Gly	Glu	Glu 120	Leu	His	Ile	att Ile	Cys 125	IIe	Leu	гЛз	384
Gly	Ser 130	Arg	Gly	Phe	Phe	Asn 135	Leu	Leu	Ile	Asp	tac Tyr 140	Leu	Ala	Thr	11e	432
Gln 145	Lys	Tyr	Ser	Gly	Arg 150	Glu	Ser	Ser	Val	Pro 155		Phe	Phe	Glu	His 160	480
Tyr	Val	Arg	Leu	Lys 165	Ser	Tyr	Gln	Asn	Asp 170	Asn	agc Ser	Thr	Gly	175	Leu	528
Thr	Val	Leu	Ser 180	Asp	Asp	Leu	. Ser	Ile 185	Phe	Arg	Asp	Lys	His 190	Val	ctg Leu	576
Ile	Val	Glu 195	Asp	Ile	· Val	. Asp	200	Gly	Phe	Thr		Thr 205	Glu	Phe	Gly	624
Glu	Arg 210	Leu	Lys	Ala	. Val	Gly 215	Pro	Lys	Ser	Met	220	Ile	. Ala	Thr	ctc Leu	672
gtc Val 225	Glu	aag Lys	arg	aca Thr	gat Asp 230	Arg	tcc Ser	aac Asn	ago Ser	Lev 235	ı Lys	ggc Gly	gac Asp	tto Phe	gtc Val 240	720

ggc ttc agc att gaa gac gtc tgg atc gtt ggt tgc tgc tac gac ttc 768
Gly Phe Ser Ile Glu Asp Val Trp Ile Val Gly Cys Cys Tyr Asp Phe
245 250 255

aac gag atg ttc cgc gac ttc gac cac gtc gcc gtc ctg agc gac gcc 816
Asn Glu Met Phe Arg Asp Phe Asp His Val Ala Val Leu Ser Asp Ala
260 265 270

gct cgc aaa aag ttc gag aag taa 840 Ala Arg Lys Lys Phe Glu Lys 275

<210> 18

<211> 279

<212> PRT

<213> Toxoplasma gondii

<400> 18

Met Ala Ser Lys Pro Ile Glu Glu Ser Arg Ser Gln Lys Arg Ser Ala 1 5 10 15

Phe Ser Asp Ile Phe Cys Cys Cys Thr Pro Asn Glu Gly Ala Ile Val 20 25 30

Pro Ser Asp Pro Met Val Ser Thr Ser Ala Pro Ala Arg Thr Ser Ala 35 40 45

Pro Ala Arg Ser Ser Ala Leu Gln Asp Tyr Gly Lys Gly Lys Gly Arg 50 55 60

Ile Glu Pro Met Tyr Ile Pro Asp Asn Thr Phe Tyr Asn Ala Asp Asp 65 70 75 80

Phe Leu Val Pro Pro His Cys Lys Pro Tyr Ile Asp Lys Ile Leu Leu 85 90 95

Pro Gly Gly Leu Val Lys Asp Arg Val Glu Lys Leu Ala Tyr Asp Ile 100 105 110

His Arg Thr Tyr Phe Gly Glu Glu Leu His Ile Ile Cys Ile Leu Lys 115 120 125

Gly Ser Arg Gly Phe Phe Asn Leu Leu Ile Asp Tyr Leu Ala Thr Ile 130 135 140

Gln Lys Tyr Ser Gly Arg Glu Ser Ser Val Pro Pro Phe Phe Glu His 145 150 155 160

Tyr Val Arg Leu Lys Ser Tyr Gln Asn Asp Asn Ser Thr Gly Gln Leu 165 170 175

Thr Val Leu Ser Asp Asp Leu Ser Ile Phe Arg Asp Lys His Val Leu 180 185 190

Ile Val Glu Asp Ile Val Asp Thr Gly Phe Thr Leu Thr Glu Phe Gly
195 200 205

Glu Arg Leu Lys Ala Val Gly Pro Lys Ser Met Arg Ile Ala Thr Leu 210 215 220

Val Glu Lys Arg Thr Asp Arg Ser Asn Ser Leu Lys Gly Asp Phe Val 225 230 235 240

Gly Phe Ser Ile Glu Asp Val Trp Ile Val Gly Cys Cys Tyr Asp Phe
245 250 255

Asn Glu Met Phe Arg Asp Phe Asp His Val Ala Val Leu Ser Asp Ala 260 265 270

Ala Arg Lys Lys Phe Glu Lys 275

<210> 19 <211> 459 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1)..(456) <223> coding for xanthine-guanine phosphoribosyl transferase (gpt) <400> 19 atg agc gaa aaa tac atc gtc acc tgg gac atg ttg cag atc cat gca 48 Met Ser Glu Lys Tyr Ile Val Thr Trp Asp Met Leu Gln Ile His Ala 10 cgt aaa ctc gca agc cga ctg atg cct tct gaa caa tgg aaa ggc att 96 Arg Lys Leu Ala Ser Arg Leu Met Pro Ser Glu Gln Trp Lys Gly Ile 20 25 144 att gcc gta agc cgt ggc ggt ctg gta ccg ggt gcg tta ctg gcg cgt Ile Ala Val Ser Arg Gly Gly Leu Val Pro Gly Ala Leu Leu Ala Arg 35 gaa ctg ggt att cgt cat gtc gat acc gtt tgt att tcc agc tac gat 192 Glu Leu Gly Ile Arg His Val Asp Thr Val Cys Ile Ser Ser Tyr Asp 240 cac gac aac cag cgc gag ctt aaa gtg ctg aaa cgc gca gaa ggc gat His Asp Asn Gln Arg Glu Leu Lys Val Leu Lys Arg Ala Glu Gly Asp 75 70 288 ggc gaa ggc ttc atc gtt att gat gac ctg gtg gat acc ggt ggt act Gly Glu Gly Phe Ile Val Ile Asp Asp Leu Val Asp Thr Gly Gly Thr 85 90 95 336 gcg gtt gcg att cgt gaa atg tat cca aaa gcg cac ttt gtc acc atc Ala Val Ala Ile Arg Glu Met Tyr Pro Lys Ala His Phe Val Thr Ile 105 110 100 ttc gca aaa ccg gct ggt cgt ccg ctg gtt gat gac tat gtt gtt gat 384 Phe Ala Lys Pro Ala Gly Arg Pro Leu Val Asp Asp Tyr Val Val Asp 115 atc ccg caa gat acc tgg att gaa cag ccg tgg gat atg ggc gtc gta 432 Ile Pro Gln Asp Thr Trp Ile Glu Gln Pro Trp Asp Met Gly Val Val 130 140 135 459 ttc gtc ccg cca atc tcc ggt cgc taa Phe Val Pro Pro Ile Ser Gly Arg 145 150 <210> 20 <211> 152 <212> PRT <213> Escherichia coli <400> 20 Met Ser Glu Lys Tyr Ile Val Thr Trp Asp Met Leu Gln Ile His Ala 10

Arg Lys Leu Ala Ser Arg Leu Met Pro Ser Glu Gln Trp Lys Gly Ile

25

30

27

Ile Ala Val Ser Arg Gly Gly Leu Val Pro Gly Ala Leu Leu Ala Arg Glu Leu Gly Ile Arg His Val Asp Thr Val Cys Ile Ser Ser Tyr Asp 55 His Asp Asn Gln Arg Glu Leu Lys Val Leu Lys Arg Ala Glu Gly Asp Gly Glu Gly Phe Ile Val Ile Asp Asp Leu Val Asp Thr Gly Gly Thr 90 Ala Val Ala Ile Arg Glu Met Tyr Pro Lys Ala His Phe Val Thr Ile 105 Phe Ala Lys Pro Ala Gly Arg Pro Leu Val Asp Asp Tyr Val Val Asp 120 Ile Pro Gln Asp Thr Trp Ile Glu Gln Pro Trp Asp Met Gly Val Val 135 Phe Val Pro Pro Ile Ser Gly Arg 150 145 <210> 21 <211> 459 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1)..(456) <223> coding for xanthine-guanine phosphoribosyl transferase (gpt) <400> 21 atg agc gaa aaa tac atc gtc acc tgg gac atg ttg cag atc cat gca 48 Met Ser Glu Lys Tyr Ile Val Thr Trp Asp Met Leu Gln Ile His Ala cgt aaa ctc gca agc cga ctg atg cct tct gaa caa tgg aaa ggc att 96 Arg Lys Leu Ala Ser Arg Leu Met Pro Ser Glu Gln Trp Lys Gly Ile 30 144 att gcc gta agc cgt ggc ggt ctg gta ccg ggt gcg tta ctg gcg cgt Ile Ala Val Ser Arg Gly Gly Leu Val Pro Gly Ala Leu Leu Ala Arg 35 gaa ctg ggt att cgt cat gtc gat acc gtt tgt att tcc agc tac gat 192 Glu Leu Gly Ile Arg His Val Asp Thr Val Cys Ile Ser Ser Tyr Asp 50 55 cac gac aac cag cgc gag ctt aaa gtg ctg aaa cgc gca gaa ggc gat 240 His Asp Asn Gln Arg Glu Leu Lys Val Leu Lys Arg Ala Glu Gly Asp 70 65 ggc gaa ggc ttc atc gtt att gat gac ctg gtg gat acc ggt ggt act 288 Gly Glu Gly Phe Ile Val Ile Asp Asp Leu Val Asp Thr Gly Gly Thr 90 gcg gtt gcg att cgt gaa atg tat cca aaa gcg cac ttt gtc acc atc 336 Ala Val Ala Ile Arg Glu Met Tyr Pro Lys Ala His Phe Val Thr Ile 105

ttc gca aaa ccg gct ggt cgt ccg ctg gtt gat gac tat gtt gtt gat

Phe Ala Lys Pro Ala Gly Arg Pro Leu Val Asp Asp Tyr Val Val Asp

120

115

PF 53790 DE 20020471 BASF Plant Science GmbH 28 atc ccg caa gat acc tgg att gaa cag ccg tgg gat atg ggc gtc gta 432 Ile Pro Gln Asp Thr Trp Ile Glu Gln Pro Trp Asp Met Gly Val Val 130 459 ttc gtc ccg cca atc tcc ggt cgc taa Phe Val Pro Pro Ile Ser Gly Arg <210> 22 <211> 152 <212> PRT <213> Escherichia coli Met Ser Glu Lys Tyr Ile Val Thr Trp Asp Met Leu Gln Ile His Ala Arg Lys Leu Ala Ser Arg Leu Met Pro Ser Glu Gln Trp Lys Gly Ile 25 Ile Ala Val Ser Arg Gly Gly Leu Val Pro Gly Ala Leu Leu Ala Arg Glu Leu Gly Ile Arg His Val Asp Thr Val Cys Ile Ser Ser Tyr Asp 55 His Asp Asn Gln Arg Glu Leu Lys Val Leu Lys Arg Ala Glu Gly Asp 75 Gly Glu Gly Phe Ile Val Ile Asp Asp Leu Val Asp Thr Gly Gly Thr Ala Val Ala Ile Arg Glu Met Tyr Pro Lys Ala His Phe Val Thr Ile 105 Phe Ala Lys Pro Ala Gly Arg Pro Leu Val Asp Asp Tyr Val Val Asp 120 Ile Pro Gln Asp Thr Trp Ile Glu Gln Pro Trp Asp Met Gly Val Val Phe Val Pro Pro Ile Ser Gly Arg 150 145 <210> 23 <211> 720 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1)..(717) <223> coding for purine nucleoside phosphorylase (deoD)

atg gct acc cca cac att aat gca gaa atg ggc gat ttc gct gac gta 48 Met Ala Thr Pro His Ile Asn Ala Glu Met Gly Asp Phe Ala Asp Val

gtt ttg atg cca ggc gac ccg ctg cgt gcg aag tat att gct gaa act Val Leu Met Pro Gly Asp Pro Leu Arg Ala Lys Tyr Ile Ala Glu Thr

144 ttc ctt gaa gat gcc cgt gaa gtg aac aac gtt cgc ggt atg ctg ggc Phe Leu Glu Asp Ala Arg Glu Val Asn Asn Val Arg Gly Met Leu Gly 45

										:	29						
					tac Tyr												192
	atg Met 65	ggt Gly	atc Ile	ccg Pro	tcc Ser	tgc Cys 70	tcc Ser	atc Ile	tac Tyr	acc Thr	aaa Lys 75	gaa Glu	ctg Leu	atc Ile	acc Thr	gat Asp 80	240
	ttc Phe	ggc Gly	gtg Val	aag Lys	aaa Lys 85	att Ile	atc Ile	cgc Arg	gtg Val	ggt Gly 90	tcc Ser	tgt Cys	ggc Gly	gca Ala	gtt Val 95	ctg Leu	288
	ccg Pro	cac His	gta Val	aaa Lys 100	ctg Leu	cgc Arg	gac Asp	gtc Val	gtt Val 105	atc Ile	ggt Gly	atg Met	ggt Gly	gcc Ala 110	tgc Cys	acc Thr	336
	gat Asp	tcc Ser	aaa Lys 115	gtt Val	aac Asn	cgc Arg	atc Ile	cgt Arg 120	ttt Phe	aaa Lys	gac Asp	cat His	gac Asp 125	ttt Phe	gcc Ala	gct Ala	384
\	atc Ile	gct Ala 130	gac Asp	ttc Phe	gac Asp	atg Met	gtg Val 135	cgt Arg	aac Asn	gca Ala	gta Val	gat Asp 140	gca Ala	gct Ala	aaa Lys	gca Ala	432
,	ctg Leu 145	ggt Gly	att Ile	gat Asp	gct Ala	cgc Arg 150	gtg Val	ggt Gly	aac Asn	ctg Leu	ttc Phe 155	tcc Ser	gct Ala	gac Asp	ctg Leu	ttc Phe 160	480
	tac Tyr	tct Ser	ccg Pro	gac Asp	ggc Gly 165	gaa Glu	atg Met	ttc Phe	gac Asp	g≒g Val 170	atg Met	gaa Glu	aaa Lys	tac Tyr	ggc Gly 175	att Ile	528
	ctc Leu	ggc Gly	gtg Val	gaa Glu 180	atg Met	gaa Glu	gcg Ala	gct Ala	ggt Gly 185	atc Ile	tac Tyr	ggc	gtc Val	gct Ala 190	gca Ala	gaa Glu	576
	ttt Phe	ggc	gcg Ala 195	aaa Lys	gcc Ala	ctg Leu	acc Thr	atc Ile 200	tgc Cys	acc Thr	gta Val	tct Ser	gac Asp 205	cac His	atc Ile	cgc Arg	624
					acc Thr												672
)	atg Met 225	Ile	aaa Lys	atc Ile	gca Ala	ctg Leu 230	gaa Glu	tcc Ser	gtt Val	ctg Leu	ctg Leu 235	Gly	gat Asp	aaa Lys	gag Glu	taa	720
	<21 <21	0> 2 1> 2 2> P 3> E	39 RT	rich	ia c	oli											
				Pro	His 5	Ile	Asn	Ala	Gl u	Met 10		Asp	Phe	Ala	Asp 15	Val	-
	Val	Leu	Met	Pro 20	Gly	Asp	Pro	Leu	Arg 25		Lys	Tyr	Ile	Ala 30		Thr	
	Phe	Leu	Glu 35		Ala	Arg	Glu	Val 40		Asn	Val	Arg	Gly 45		Leu	Gly	
	Phe	Thr 50		Thr	Tyr	Lys	Gly 55	Arg	Lys	Ile	Ser	Val 60		Gly	His	Gly	
	Met 65		Ile	Pro	Ser	Cys 70		Ile	Tyr	Thr	Lys 75		Leu	Ile	Thr	Asp 80	

336

30 Phe Gly Val Lys Lys Ile Ile Arg Val Gly Ser Cys Gly Ala Val Leu 85 Pro His Val Lys Leu Arg Asp Val Val Ile Gly Met Gly Ala Cys Thr Asp Ser Lys Val Asn Arg Ile Arg Phe Lys Asp His Asp Phe Ala Ala 120 Ile Ala Asp Phe Asp Met Val Arg Asn Ala Val Asp Ala Ala Lys Ala 135 130 Leu Gly Ile Asp Ala Arg Val Gly Asn Leu Phe Ser Ala Asp Leu Phe 155 Tyr Ser Pro Asp Gly Glu Met Phe Asp Val Met Glu Lys Tyr Gly Ile 170 Leu Gly Val Glu Met Glu Ala Ala Gly Ile Tyr Gly Val Ala Ala Glu Phe Gly Ala Lys Ala Leu Thr Ile Cys Thr Val Ser Asp His Ile Arg 200 Thr His Glu Gln Thr Thr Ala Ala Glu Arg Gln Thr Thr Phe Asn Asp 215 Met Ile Lys Ile Ala Leu Glu Ser Val Leu Leu Gly Asp Lys Glu 235 230 225

<210> 25 <211> 1545 <212> DNA <213> Burkholderia caryophylli <220> <221> CDS <222> (1)..(1542) <223> coding for phosphonate monoester hydrolase (pehA) atg acc aga aaa aat gtc ctg ctt atc gtc gtt gat caa tgg cga gca 48 Met Thr Arg Lys Asn Val Leu Leu Ile Val Val Asp Gln Trp Arg Ala gat ttt atc cct cac ctg atg cgg gcg gag ggg cgc gaa cct ttc ctt 96 Asp Phe Ile Pro His Leu Met Arg Ala Glu Gly Arg Glu Pro Phe Leu 20 aaa act ccc aat ctt gat cgt ctt tgc cgg gaa ggc ttg acc ttc cgc 144 Lys Thr Pro Asn Leu Asp Arg Leu Cys Arg Glu Gly Leu Thr Phe Arg 35 aat cat gtc acg acg tgc gtg ccg tgt ggt ccg gca agg gca agc ctg 192 Asn His Val Thr Thr Cys Val Pro Cys Gly Pro Ala Arg Ala Ser Leu 50 ctg acg ggc ctc tac ctg atg aac cac cgg gcg gtg cag aac act gtt 240 Leu Thr Gly Leu Tyr Leu Met Asn His Arg Ala Val Gln Asn Thr Val ccg ctt gac cag cgc cat cta aac ctt ggc aag gcc ctg cgc gcc att Pro Leu Asp Gln Arg His Leu Asn Leu Gly Lys Ala Leu Arg Ala Ile 90

ggc tac gat ccc gcg ctc att ggt tac acc acc acg aca cct gat ccg

Gly Tyr Asp Pro Ala Leu Ile Gly Tyr Thr Thr Thr Pro Asp Pro 105

										31						
cgc Arg	aca Thr	acc Thr 115	tct Ser	gca Ala	agg Arg	gat Asp	ccg Pro 120	cgt Arg	ttc Phe	acg Thr	gtc Val	ctg Leu 125	ggc	gac Asp	atc Ile	384
atg Met	gac Asp 130	ggc Gly	ttt Phe	cgt Arg	tcg Ser	gtc Val 135	ggc Gly	gca Ala	ttc Phe	gag Glu	ccc Pro 140	aat Asn	atg Met	gag Glu	Gl ⁷ aaa	432
tat Tyr 145	ttt Phe	ggc Gly	tgg Trp	gtg Val	gcg Ala 150	cag Gln	aac Asn	Gly	ttc Phe	gaa Glu 155	ctg Leu	cca Pro	gag Glu	aac Asn	cgc Arg 160	480
gaa Glu	gat Asp	atc Ile	tgg Trp	ctg Leu 165	ccg Pro	gaa Glu	ggt Gly	gaa Glu	cat His 170	tcc Ser	gtt Val	ccc Pro	ggt Gly	gct Ala 175	acc Thr	528
gac Asp	aaa Lys	ccg Pro	tcg Ser 180	cgc Arg	att Ile	ccg Pro	aag Lys	gaa Glu 185	ttt Phe	tcg Ser	gat Asp	tcg Ser	aca Thr 190	ttc Phe	ttc Phe	576
acg Thr	gag Glu	cgc Arg 195	gcc Ala	ctg Leu	aca Thr	tat Tyr	ctg Leu 200	aag Lys	ggc Gly	agg Arg	gac Asp	ggc Gly 205	aag Lys	cct Pro	ttc Phe	624
Phe	ctg Leu 210	cat His	ctt Leu	ggc Gly	tat Tyr	tat Tyr 215	cgc Arg	ccg Pro	cat His	ccg Pro	cct Pro 220	ttc Phe	gta Val	gcc Ala	tcc Ser	672
gcg Ala 225	ccc Pro	tac Tyr	cat His	gcg Ala	atg Met 230	tac Tyr	aaa Lys	gcc Ala	gaa Glu	gat Asp 235	atg Met	cct Pro	gcg Ala	cct Pro	ata Ile 240	720
Arg	gcg Ala	Glu	Asn	Pro 245	Asp	Ala	Glu	Ala	Ala 250	Gln	His	Pro	Leu	Met 255	Lys	768
cac His	tat Tyr	atc Ile	gac Asp 260	cac His	atc Ile	aga Arg	cgc Arg	ggc Gly 265	tcg Ser	ttc Phe	ttc Phe	cat His	ggc Gly 270	gcg Ala	gaa Glu	816
Gly	tcg Ser	Gly 275	Ala	Thr	Leu	Asp	Glu 280	Gly	Glu	Ile	Arg	Gln 285	Met	Arg	Ala	864
Thr	tat Tyr 290	Cys	Gly	Leu	Ile	Thr 295	Glu	Ile	Asp	Asp	Суs 300	Leu	Gly	Arg	Val	912
Phe 305	gcc Ala	Tyr	Leu	Asp	Glu 310	Thr	Gly	Gln	Trp	Asp 315	Asp	Thr	Leu	Ile	Ile 320	960
Phe	Thr	Ser	Asp	His 325	Gly	Glu	Gln	Leu	Gly 330	Asp	His	His	Leu	Leu 335		1008
Lys	atc Ile	Gly	Tyr 340	Asn	Ala	Glu	Ser	Phe 345	Arg	Ile	Pro	Leu	Val 350	Ile	Lys	1056
Asp	gcg Ala	Gly 355	Gln	Asn	Arg	His	Ala 360	Gly	Gln	Ile	Glu	Glu 365	Gly	Phe	Ser	1104
gaa Glu	agc Ser 370	atc Ile	gac Asp	gtc Val	atg Met	ccg Pro 375	acc Thr	atc Ile	ctc Leu	gaa Glu	tgg Trp 380	ctg Leu	ggc Gly	Gly ggg	gaa Glu	1152

					_				_			=				
									:	32						
acg Thr 385	cct Pro	cgc Arg	gcc Ala	tgc Cys	gac Asp 390	ggc Gly	cgt Arg	tcg Ser	ctg Leu	ttg Leu 395	ccg Pro	ttt Phe	ctg Leu	gct Ala	gag Glu 400	1200
gga Gly	aag Lys	ccc Pro	tcc Ser	gac Asp 405	tgg Trp	cgc Arg	acg Thr	gaa Glu	cta Leu 410	cat His	tac Tyr	gag Glu	ttc Phe	gat Asp 415	ttt Phe	1248
cgc Arg	gat Asp	gtc Val	ttc Phe 420	tac Tyr	gat Asp	cag Gln	ccg Pro	cag Gln 425	aac Asn	tcg Ser	gtc Val	cag Gln	ctt Leu 430	tcc Ser	cag Gln	1296
gat Asp	gat Asp	tgc Cys 435	agc Ser	ctc Leu	tgt Cys	gtg Val	atc Ile 440	gag Glu	gac Asp	gaa Glu	aac Asn	tac Tyr 445	aag Lys	tac Tyr	gtg Val	1344
				ctg Leu												1392
				aat Asn												1440
cgt Arg	gac Asp	tat Tyr	gcc Ala	cag Gln 485	aag Lys	gca Ala	ttg Leu	tcg Ser	tgg Trp 490	cga Arg	ctg Leu	tct Ser	cat His	gcc Ala 495	gac Asp	1488
				cat His												1536
	cat His	tga														1545
<21:	0 > 2 1 > 5 2 > P 3 > B	14 RT	olde	ria •	cary	ophy	11i									
	0> 2 Thr		Lys	Asn	Val	Leu	Leu	Ile	Val	Val	Asp	Gln	Trp	Arg	Ala	
1				5					10			•		15		
			20					25					30			
Lys	Thr	Pro 35		Leu	Asp	Arg	Leu 40		Arg	Glu	GTA	ьеи 45	Thr	Phe	Arg	
Asn	His 50		Thr	Thr	Суз	Val 55		Сув	Gly	Pro	Ala 60		Ala	Ser	Leu	
Leu 65		Gly	Leu	Tyr	Leu 70		Asn	His	Arg	Ala 75		Gln	Asn	Thr	Val 80	
Pro	Leu	Asp	Gln	Arg 85		Leu	Asn	Leu	Gly 90		Ala	Leu	Arg	Ala 95	Ile	
Gly	Tyr	Asp	Pro 100		Leu	Ile	: Gly	Tyr 105		Thr	Thr	Thr	Pro 110		Pro	
Arg	Thr	Thr 115		Ala	Arg	Asp	Pro 120		Phe	Thr	Val	Leu 125		Asp	Ile	

Met Asp Gly Phe Arg Ser Val Gly Ala Phe Glu Pro Asn Met Glu Gly

140

33 Tyr Phe Gly Trp Val Ala Gln Asn Gly Phe Glu Leu Pro Glu Asn Arg 155 150 145 Glu Asp Ile Trp Leu Pro Glu Gly Glu His Ser Val Pro Gly Ala Thr 165 Asp Lys Pro Ser Arg Ile Pro Lys Glu Phe Ser Asp Ser Thr Phe Phe 185 Thr Glu Arg Ala Leu Thr Tyr Leu Lys Gly Arg Asp Gly Lys Pro Phe Phe Leu His Leu Gly Tyr Tyr Arg Pro His Pro Pro Phe Val Ala Ser 215 Ala Pro Tyr His Ala Met Tyr Lys Ala Glu Asp Met Pro Ala Pro Ile 235 230 Arg Ala Glu Asn Pro Asp Ala Glu Ala Ala Gln His Pro Leu Met Lys 250 245 His Tyr Ile Asp His Ile Arg Arg Gly Ser Phe Phe His Gly Ala Glu 265 260 Gly Ser Gly Ala Thr Leu Asp Glu Gly Glu Ile Arg Gln Met Arg Ala 280 Thr Tyr Cys Gly Leu Ile Thr Glu Ile Asp Asp Cys Leu Gly Arg Val 295 Phe Ala Tyr Leu Asp Glu Thr Gly Gln Trp Asp Asp Thr Leu Ile Ile Phe Thr Ser Asp His Gly Glu Gln Leu Gly Asp His His Leu Leu Gly 330 325 Lys Ile Gly Tyr Asn Ala Glu Ser Phe Arg Ile Pro Leu Val Ile Lys 345 Asp Ala Gly Gln Asn Arg His Ala Gly Gln Ile Glu Glu Gly Phe Ser 360 Glu Ser Ile Asp Val Met Pro Thr Ile Leu Glu Trp Leu Gly Gly Glu 375 Thr Pro Arg Ala Cys Asp Gly Arg Ser Leu Leu Pro Phe Leu Ala Glu 395 Gly Lys Pro Ser Asp Trp Arg Thr Glu Leu His Tyr Glu Phe Asp Phe 410 405 Arg Asp Val Phe Tyr Asp Gln Pro Gln Asn Ser Val Gln Leu Ser Gln 425 Asp Asp Cys Ser Leu Cys Val Ile Glu Asp Glu Asn Tyr Lys Tyr Val 440 His Phe Ala Ala Leu Pro Pro Leu Phe Phe Asp Leu Lys Ala Asp Pro 455 450 His Glu Phe Ser Asn Leu Ala Gly Asp Pro Ala Tyr Ala Ala Leu Val 480 470 Arg Asp Tyr Ala Gln Lys Ala Leu Ser Trp Arg Leu Ser His Ala Asp

490

Arg Thr Leu Thr His Tyr Arg Ser Ser Pro Gln Gly Leu Thr Thr Arg 505

Asn His

485

<210> 27 <211> 2250 <212> DNA <213> Agrobacterium rhizogenes <221> CDS <222> (1)..(2247) <223> coding for tryptophane oxygenase (aux1) <400> 27 atg gct gga tcc tcc ttc aca ttg cca tca act ggc tca gcg ccc ctt 48 Met Ala Gly Ser Ser Phe Thr Leu Pro Ser Thr Gly Ser Ala Pro Leu gat atg atg ctt atc gat gat tca gat ctg ctg caa ttg ggt ctc cag 96 Asp Met Met Leu Ile Asp Asp Ser Asp Leu Leu Gln Leu Gly Leu Gln cag gta ttc tcg aag cgg tac aca gag aca ccg cag tca cgc tac aaa 144 Gln Val Phe Ser Lys Arg Tyr Thr Glu Thr Pro Gln Ser Arg Tyr Lys 35 ctg acc agg agg gct tct cca gac gtc tca tct ggc gaa ggc aat gtg 192 Leu Thr Arg Arg Ala Ser Pro Asp Val Ser Ser Gly Glu Gly Asn Val 50 cat gcc ctt gcg ttc ata tat gtc aac gct gag acg ttg cag atg atc 240 His Ala Leu Ala Phe Ile Tyr Val Asn Ala Glu Thr Leu Gln Met Ile 75 70 288 aaa aac gct cga tcg cta acc gaa gcg aac ggc gtc aaa gat ctt gtc Lys Asn Ala Arg Ser Leu Thr Glu Ala Asn Gly Val Lys Asp Leu Val 90 gcc atc gac gtt ccg cca ttt cga aac gac ttc tca aga gcg cta ctc 336 Ala Ile Asp Val Pro Pro Phe Arg Asn Asp Phe Ser Arg Ala Leu Leu 105 ctt caa gtg atc aac ttg ttg gga aac aac cga aat gcc gat gac gat 384 Leu Gln Val Ile Asn Leu Leu Gly Asn Asn Arg Asn Ala Asp Asp Asp 120 115 432 ctt agt cac ttc ata gca gtt gct ctc cca aac agc gcc cgc tct aag Leu Ser His Phe Ile Ala Val Ala Leu Pro Asn Ser Ala Arg Ser Lys 130 135 atc cta acc acg gca ccg ttc gaa gga agc ttg tca gaa aac ttc agg 480 Ile Leu Thr Thr Ala Pro Phe Glu Gly Ser Leu Ser Glu Asn Phe Arg 155 150 145 528 ggg ttc ccg atc act cgt gaa gga aat gtg gca tgt gaa gtg cta gcc Gly Phe Pro Ile Thr Arg Glu Gly Asn Val Ala Cys Glu Val Leu Ala 576 tat ggg aat aac ttg atg ccc aag gcc tgc tcc gat tcc ttt cca acc Tyr Gly Asn Asn Leu Met Pro Lys Ala Cys Ser Asp Ser Phe Pro Thr 185 180 gtg gat ctt ctt tat gac tat ggc aag ttc ttc gag agt tgc gcg gcc 624 Val Asp Leu Leu Tyr Asp Tyr Gly Lys Phe Phe Glu Ser Cys Ala Ala 200 195 672 gat gga cgt atc ggt tat ttt cct gaa ggc gtt acg aaa cct aaa gtg Asp Gly Arg Ile Gly Tyr Phe Pro Glu Gly Val Thr Lys Pro Lys Val 215

											35						
						ggc Gly 230											720
	ctt Leu	cat His	gca Ala	Gly ggg	gta Val 245	gac Asp	gat Asp	gtt Val	acg Thr	gtg Val 250	tat Tyr	gag Glu	gcg Ala	agt Ser	gat Asp 255	cgg Arg	768
						tgg Trp											816
						gcc Ala											864
						aag Lys											912
						gat Asp 310											960
,						gag Glu											1008
						ttt Phe											1056
						tta Leu			-	_	_	_					1104
						ggc											1152
						tct Ser 390			-		_		_				1200
)						caa Gln											1248
	aaa Lys	gcg Ala	ctg Leu	ggt Gly 420	att Ile	gga Gly	tcc Ser	ggc Gly	gga Gly 425	ttc Phe	ggc Gly	cct Pro	gta Val	ttt Phe 430	gaa Glu	agt Ser	1296
	Gly	Phe	Ile 435	Glu	Ile	ctt Leu	Arg	Leu 440	Val	Val	Asn	Gly	Tyr 445	Glu	Asp	Asn	1344
	gtg Val	cgg Arg 450	ctg Leu	agt Ser	tac Tyr	gaa Glu	gga Gly 455	att Ile	tct Ser	gag Glu	ctg Leu	cct Pro 460	cat His	agg Arg	atc Ile	gcc Ala	1392
	tca Ser 465	cag Gln	gta Val	att Ile	aac Asn	ggc Gly 470	aga Arg	tct Ser	att Ile	cgc Arg	gag Glu 475	cgt Arg	aca Thr	att Ile	cac His	gtt Val 480	1440
	caa Gln	gtc Val	gag Glu	cag Gln	att Ile 485	gat Asp	aga Arg	gag Glu	gag Glu	gat Asp 490	aaa Lys	ata Ile	aat Asn	atc Ile	aag Lys 495	atc Ile	1488

										3	36						
	aaa Lys	gga Gly	gga Gly	aag Lys 500	gtt Val	gag Glu	gtc Val	tat Tyr	gat Asp 505	cga Arg	gta Val	ctg Leu	gtt Val	aca Thr 510	tcc Ser	Gly ggg	1536
	ttt Phe	gcg Ala	aac Asn 515	atc Ile	gaa Glu	atg Met	cgc Arg	cat His 520	ctc Leu	ctg Leu	aca Thr	tca Ser	agc Ser 525	aac Asn	gca Ala	ttc Phe	1584
	ttc Phe	cat His 530	gca Ala	gat Asp	gta Val	agc Ser	cat His 535	gca Ala	ata Ile	Gly ggg	aac Asn	agt Ser 540	cat His	atg Met	act Thr	ggt Gly	1632
					ttc Phe												1680
					tgc Cys 565												1728
)					gat Asp												1776
	ata Ile	agc Ser	tat Tyr 595	act Thr	tgg Trp	gag Glu	gat Asp	gac Asp 600	tca Ser	cat His	aag Lys	ctc Leu	cta Leu 605	gcc Ala	gtc Val	ccc Pro	1824
					agg Arg												1872
	ttc Phe 625	cca Pro	gat Asp	ttt Phe	gcc Ala	aag Lys 630	cac His	cta Leu	act Thr	cct Pro	gca Ala 635	gac Asp	Gly	aac Asn	tat Tyr	gat Asp 640	1920
	gat Asp	aat Asn	atc Ile	gtt Val	caa Gln 645	cat His	gat Asp	tgg Trp	ctg Leu	act Thr 650	gat Asp	ccc Pro	cac His	gct Ala	ggc Gly 655	gga Gly	1968
	gcg Ala	ttt Phe	Lys	Leu	aac Asn	Arg	Arg	Gly	Asn	Asp	Val	Tyr	Ser	gaa Glu 670	Arg	ctt Leu	2016
)					ttt Phe												2064
	tac Tyr	ttg Leu 690	gcc Ala	ggt Gly	tgt Cys	agc Ser	tgt Cys 695	tcc Ser	ttc Phe	acc Thr	gga Gly	ggg Gly 700	tgg Trp	gtt Val	cat His	ggt Gly	2112
	gcc Ala 705	att Ile	cag Gln	acc Thr	gca Ala	tgc Cys 710	aac Asn	gct Ala	acg Thr	tgt Cys	gcg Ala 715	Ile	att Ile	tat Tyr	ggt Gly	tcc Ser 720	2160
					gag Glu 725						His					Asn	2208
					gct Ala					Arg							2250

<212> PRT

<213> Agrobacterium rhizogenes

<400> 28

Met Ala Gly Ser Ser Phe Thr Leu Pro Ser Thr Gly Ser Ala Pro Leu
1 5 10 15

Asp Met Met Leu Ile Asp Asp Ser Asp Leu Leu Gln Leu Gly Leu Gln 20 25 30

Gln Val Phe Ser Lys Arg Tyr Thr Glu Thr Pro Gln Ser Arg Tyr Lys 35 40 45

Leu Thr Arg Arg Ala Ser Pro Asp Val Ser Ser Gly Glu Gly Asn Val 50 55 60

His Ala Leu Ala Phe Ile Tyr Val Asn Ala Glu Thr Leu Gln Met Ile 65 70 75 80

Lys Asn Ala Arg Ser Leu Thr Glu Ala Asn Gly Val Lys Asp Leu Val 85 90 95

Ala Ile Asp Val Pro Pro Phe Arg Asn Asp Phe Ser Arg Ala Leu Leu 100 105 110

Leu Gln Val Ile Asn Leu Leu Gly Asn Asn Arg Asn Ala Asp Asp Asp 115 120 125

Leu Ser His Phe Ile Ala Val Ala Leu Pro Asn Ser Ala Arg Ser Lys
130 135 140

Ile Leu Thr Thr Ala Pro Phe Glu Gly Ser Leu Ser Glu Asn Phe Arg 145 150 155 160

Gly Phe Pro Ile Thr Arg Glu Gly Asn Val Ala Cys Glu Val Leu Ala 165 170 175

Tyr Gly Asn Asn Leu Met Pro Lys Ala Cys Ser Asp Ser Phe Pro Thr 180 185 190

Val Asp Leu Leu Tyr Asp Tyr Gly Lys Phe Phe Glu Ser Cys Ala Ala 195 200 205

Asp Gly Arg Ile Gly Tyr Phe Pro Glu Gly Val Thr Lys Pro Lys Val 210 215 220

Ala Ile Ile Gly Ala Gly Phe Ser Gly Leu Val Ala Ala Ser Glu Leu 225 230 235 240

Leu His Ala Gly Val Asp Asp Val Thr Val Tyr Glu Ala Ser Asp Arg 245 250 255

Leu Gly Gly Lys Leu Trp Ser His Gly Phe Lys Ser Ala Pro Asn Val 260 265 270

Ile Ala Glu Met Gly Ala Met Arg Phe Pro Arg Ser Glu Ser Cys Leu 275 280 285

Phe Phe Tyr Leu Lys Lys His Gly Leu Asp Ser Val Gly Leu Phe Pro 290 295 300

Asn Pro Gly Ser Val Asp Thr Ala Leu Phe Tyr Arg Gly Arg Gln Tyr 305 310 315 320

Ile Trp Lys Ala Gly Glu Glu Pro Pro Glu Leu Phe Arg Arg Val His 325 330 335

His Gly Trp Arg Ala Phe Leu Gln Asp Gly Tyr Leu His Asp Gly Val 340 345 350

38 Met Leu Ala Ser Pro Leu Ala Ile Val Asp Ala Leu Asn Leu Gly His 360 Leu Gln Gln Ala His Gly Phe Trp Gln Ser Trp Leu Thr Tyr Phe Glu 375 Arg Glu Ser Phe Ser Ser Gly Ile Glu Lys Met Phe Leu Gly Asn His 395 Pro Pro Gly Glu Gln Trp Asn Ser Leu Asp Asp Leu Asp Leu Phe 405 410 Lys Ala Leu Gly Ile Gly Ser Gly Gly Phe Gly Pro Val Phe Glu Ser Gly Phe Ile Glu Ile Leu Arg Leu Val Val Asn Gly Tyr Glu Asp Asn 440 Val Arg Leu Ser Tyr Glu Gly Ile Ser Glu Leu Pro His Arg Ile Ala 455 Ser Gln Val Ile Asn Gly Arg Ser Ile Arg Glu Arg Thr Ile His Val 475 480 465 Gln Val Glu Gln Ile Asp Arg Glu Glu Asp Lys Ile Asn Ile Lys Ile 485 490 Lys Gly Gly Lys Val Glu Val Tyr Asp Arg Val Leu Val Thr Ser Gly 505 Phe Ala Asn Ile Glu Met Arg His Leu Leu Thr Ser Ser Asn Ala Phe Phe His Ala Asp Val Ser His Ala Ile Gly Asn Ser His Met Thr Gly 535 540 Ala Ser Lys Leu Phe Leu Leu Thr Asn Glu Lys Phe Trp Leu Gln His 555 His Leu Pro Ser Cys Ile Leu Thr Thr Gly Val Ala Lys Ala Val Tyr 565 570 Cys Leu Asp Tyr Asp Pro Arg Asp Pro Ser Gly Lys Gly Leu Val Leu 585 Ile Ser Tyr Thr Trp Glu Asp Asp Ser His Lys Leu Leu Ala Val Pro 600 Asp Lys Arg Glu Arg Phe Ala Ser Leu Gln Arg Asp Ile Gly Arg Ala Phe Pro Asp Phe Ala Lys His Leu Thr Pro Ala Asp Gly Asn Tyr Asp 635 Asp Asn Ile Val Gln His Asp Trp Leu Thr Asp Pro His Ala Gly Gly 650 Ala Phe Lys Leu Asn Arg Arg Gly Asn Asp Val Tyr Ser Glu Arg Leu 665 660 Phe Phe Gln Pro Phe Asp Val Met His Pro Ala Asp Asp Lys Gly Leu 680 Tyr Leu Ala Gly Cys Ser Cys Ser Phe Thr Gly Gly Trp Val His Gly 695

Ala Ile Gln Thr Ala Cys Asn Ala Thr Cys Ala Ile Ile Tyr Gly Ser

Gly His Leu Gln Glu Leu Ile His Trp Arg His Leu Lys Glu Gly Asn

715

730

710

Pro Leu Ala His Ala Trp Lys Arg Tyr Arg Tyr Gln Ala 740

<213 <213	0> 2: 1> 1: 2> DI 3> A:	401 NA	acte	rium	rhi:	zogei	nes									
<222	1> C1 2> (:	1)			dole	acel	camio	de hy	ydro]	lase						
<400	0> 29	9														
					tcg Ser											48
					ttt Phe				_	_			_	_	_	96
					tta Leu											144
					agc Ser											192
					ccc Pro 70											240
					gct Ala		-				_					288
					gtt Val											336
					aac Asn									_	_	384
					ggc											432
atc Ile 145	cca Pro	Gly ggg	gga Gly	tca Ser	agt Ser 150	ggg ggg	ggt Gly	gtg Val	gcc Ala	gcc Ala 155	gcg Ala	gtg Val	gcc Ala	ggc Gly	cga Arg 160	480
					gtc Val											528
					Gly											576
tat Tyr	cca Pro	acg Thr 195	gac Asp	gga Gly	ata Ile	gtt Val	ccg Pro 200	gta Val	agc Ser	ccc Pro	acc Thr	cgg Arg 205	gac Asp	acc Thr	cct Pro	624

										4	ŀO						
	ggc Gly	gtt Val 210	atc Ile	gca Ala	cag Gln	aat Asn	gtt Val 215	ccg Pro	gac Asp	gtg Val	att Ile	ctt Leu 220	ctt Leu	gac Asp	ggt Gly	atc Ile	672
	att Ile 225	tac	Gly ggg	aga Arg	ccg Pro	ccg Pro 230	gtt Val	aat Asn	caa Gln	acg Thr	gtc Val 235	cgc Arg	ctg Leu	aag Lys	ggg Gly	ctg Leu 240	720
	cat	ata Ile	ggc Gly	ttg Leu	cca Pro 245	acc Thr	gct Ala	tac Tyr	ttt Phe	tac Tyr 250	aac Asn	gac Asp	ctg Leu	gag Glu	ccc Pro 255	gat Asp	768
	gtc Val	gcc Ala	tta Leu	gca Ala 260	gcc Ala	gag Glu	acg Thr	att Ile	atc Ile 265	aga Arg	gtt Val	ctg Leu	gca Ala	cgc Arg 270	aaa Lys	gat Asp	816
	gtt Val	act Thr	ttt Phe 275	gtt Val	gaa Glu	gca Ala	gat Asp	att Ile 280	cct Pro	gat Asp	tta Leu	gcg Ala	cat His 285	cac His	aat Asn	gaa Glu	864
	GJA aaa	gtc Val 290	agc Ser	ttt Phe	ccg Pro	act Thr	gcc Ala 295	atc Ile	tac Tyr	gaa Glu	ttt Phe	ccg Pro 300	ttg Leu	tcc Ser	ctt Leu	gaa Glu	912
,	cat His 305	tat Tyr	att Ile	cag Gln	aac Asn	ttc Phe 310	gta Val	gag Glu	ggt Gly	gtt Val	tcc Ser 315	ttt Phe	tct Ser	gag Glu	gtt Val	gtc Val 320	960
	aga Arg	gcg Ala	att Ile	cgc Arg	agt Ser 325	ccg Pro	gat Asp	gtt Val	gca Ala	agt Ser 330	att Ile	ctc Leu	aat Asn	gca Ala	caa Gln 335	ctc Leu	1008
	Ser	qaA	Asn	Leu 340	Ile	Ser	aaa Lys	Ser	Glu 345	Tyr	Cys	Leu	Ala	Arg 350	Arg	Phe	1056
	ttc Phe	aga Arg	ccg Pro 355	Arg	ctc Leu	caa Gln	gcg Ala	gcc Ala 360	Tyr	cac His	agt Ser	tac Tyr	Phe 365	Lys	gcg Ala	cat His	1104
	cag Gln	Leu	Asp	gca Ala	Ile	Leu	ttc Phe 375	Pro	aca Thr	gct Ala	ccg Pro	ttg Leu 380	Thr	gcc Ala	aag Lys	cca Pro	1152
)	att Ile 385	Gly	cat His	gat Asp	cta Leu	tcg Ser 390	Val	att	cac His	aat Asn	ggc Gly 395	Ser	atg Met	acc Thr	gat Asp	acc Thr 400	1200
	ttt Phe	aaa Lys	ato Ile	ttc Phe	gtg Val 405	Arg	aat Asn	gta Val	gat Asp	Pro 410	Ser	agt Ser	aat Asn	gcg Ala	ggc Gly 415	ctg Leu	1248
	ccg Pro	ggc Gly	cta Leu	agt Ser 420	Leu	ccc Pro	gtt Val	tct Ser	ctt Leu 425	Ser	tco Ser	aac Asr	ggt Gly	cto Lev 430	l Pro	att Ile	1296
	Gl7	atg Met	gaa : Glu 435	ı Ile	gat Asp	Gl7	tct Ser	gca Ala 440	a Ser	tcg Ser	gat As <u>r</u>	gaa Glu	a cgt 1 Arg 445	, Lei	g tta 1 Leu	gca Ala	1344
	att Ile	gga Gly 450	Le	a gcg ı Ala	ata Ile	gaa Glu	gaa Glu 455	ı Ala	a ata a Ile	a gad e Asp	ttt Phe	agg Arg 460	y His	cgt Arg	ccg Pro	g act Thr	1392
	_	g tcg ı Ser		a													1401

BASF Plant Science GmbH <210> 30 <211> 466 <212> PRT <213> Agrobacterium rhizogenes <400> 30 20 55 Arg Phe Ala Ala Thr Ala Gly Thr Pro Gly Leu Gln Asn His Lys Pro

Met Val Thr Leu Ser Ser Ile Thr Glu Thr Leu Lys Cys Leu Arg Glu 10 Arg Lys Tyr Ser Cys Phe Glu Leu Ile Glu Thr Ile Ile Ala Arg Cys 25 Glu Ala Ala Arg Ser Leu Asn Ala Phe Leu Glu Thr Asp Trp Ala His Leu Arg Trp Thr Ala Ser Lys Ile Asp Gln His Gly Gly Ala Gly Val Gly Leu Ala Gly Val Pro Leu Cys Phe Lys Ala Asn Ile Ala Thr Gly

Lys Thr Pro Ala Gly Val Ala Arg Gln Leu Leu Ala Ala Gly Ala Leu 105

90

Pro Gly Ala Ser Gly Asn Met His Glu Leu Ser Phe Gly Ile Thr Ser 1.25 120 The

Asn Asn Phe Ala Thr Gly Ala Val Arg Asn Pro Trp Asn Pro Ser Leu 135

Ile Pro Gly Gly Ser Ser Gly Gly Val Ala Ala Ala Val Ala Gly Arg 155 150

Leu Met Leu Gly Gly Val Gly Thr Asp Thr Gly Ala Ser Val Arg Leu 170 165

Pro Ala Ala Leu Cys Gly Val Val Gly Phe Arg Pro Thr Val Gly Arg 185 190

Tyr Pro Thr Asp Gly Ile Val Pro Val Ser Pro Thr Arg Asp Thr Pro 200

Gly Val Ile Ala Gln Asn Val Pro Asp Val Ile Leu Leu Asp Gly Ile 220 215 210

Ile Cys Gly Arg Pro Pro Val Asn Gln Thr Val Arg Leu Lys Gly Leu 235 230

Arg Ile Gly Leu Pro Thr Ala Tyr Phe Tyr Asn Asp Leu Glu Pro Asp 250 245

Val Ala Leu Ala Ala Glu Thr Ile Ile Arg Val Leu Ala Arg Lys Asp 265

Val Thr Phe Val Glu Ala Asp Ile Pro Asp Leu Ala His His Asn Glu 285 280 275

Gly Val Ser Phe Pro Thr Ala Ile Tyr Glu Phe Pro Leu Ser Leu Glu 300 295

His Tyr Ile Gln Asn Phe Val Glu Gly Val Ser Phe Ser Glu Val Val 315

Arg Ala Ile Arg Ser Pro Asp Val Ala Ser Ile Leu Asn Ala Gln Leu 330 325

Ser Asp Asn Leu Ile Ser Lys Ser Glu Tyr Cys Leu Ala Arg Arg Phe 345

42 Phe Arg Pro Arg Leu Gln Ala Ala Tyr His Ser Tyr Phe Lys Ala His 360 Gln Leu Asp Ala Ile Leu Phe Pro Thr Ala Pro Leu Thr Ala Lys Pro 380 375 Ile Gly His Asp Leu Ser Val Ile His Asn Gly Ser Met Thr Asp Thr 390 Phe Lys Ile Phe Val Arg Asn Val Asp Pro Ser Ser Asn Ala Gly Leu 410 Pro Gly Leu Ser Leu Pro Val Ser Leu Ser Ser Asn Gly Leu Pro Ile 425 420 Gly Met Glu Ile Asp Gly Ser Ala Ser Ser Asp Glu Arg Leu Leu Ala 440 Ile Gly Leu Ala Ile Glu Glu Ala Ile Asp Phe Arg His Arg Pro Thr 455 460 450 .

Leu Ser 465

<210> 31 <211> 2268 <212> DNA

<213> Agrobacterium tumefaciens

<220> <221> CDS

<222> (1)..(2265)

<223> coding for tryptophan monooxygenase

atg tca gct tca cct ctc ctt gat aac cag tgc gat cat ttc tct acc Met Ser Ala Ser Pro Leu Leu Asp Asn Gln Cys Asp His Phe Ser Thr 10

96 aaa atg gtg gat ctg ata atg gtc gat aag gct gat gaa ttg gac cgc Lys Met Val Asp Leu Ile Met Val Asp Lys Ala Asp Glu Leu Asp Arg 20

agg gtt tcc gat gcc ttc tca gaa cgt gaa gct tct agg gga agg agg 144 Arg Val Ser Asp Ala Phe Ser Glu Arg Glu Ala Ser Arg Gly Arg Arg 35

192 att act caa atc tcc ggc gag tgc agc gct ggg tta gct tgc aaa agg Ile Thr Gln Ile Ser Gly Glu Cys Ser Ala Gly Leu Ala Cys Lys Arg 50

ctq qcc qac qgt cqc ttt ccc gag atc tca act ggt gag aag gta gca 240 Leu Ala Asp Gly Arg Phe Pro Glu Ile Ser Thr Gly Glu Lys Val Ala

288 gcc ctc tcc gct tac atc tat gtt ggc aag gaa att ctg ggg cgg ata Ala Leu Ser Ala Tyr Ile Tyr Val Gly Lys Glu Ile Leu Gly Arg Ile 90

ctt gaa tcg gaa cct tgg gcg cga gca aga gtg agt ggt ctc gtt gcc 336 Leu Glu Ser Glu Pro Trp Ala Arg Ala Arg Val Ser Gly Leu Val Ala

atc gac ctt gca cca ttt tgt atg gat ttc tcc gaa gca caa ctt ctc 384 Ile Asp Leu Ala Pro Phe Cys Met Asp Phe Ser Glu Ala Gln Leu Leu 115 120 125

										4	13						
(Gln	acc Thr 130	ctg Leu	ttt Phe	ttg Leu	ctg Leu	agc Ser 135	ggt Gly	aaa Lys	aga Arg	tgt Cys	gca Ala 140	tcc Ser	agc Ser	gat Asp	ctt Leu	432
	agt Ser 145	cat His	ttc Phe	gtg Val	gcc Ala	att Ile 150	tca Ser	atc Ile	tct Ser	aag Lys	act Thr 155	gcc Ala	cgc Arg	tcc Ser	cga Arg	acc Thr 160	480
	ctg Leu	caa Gln	atg Met	ccg Pro	ccg Pro 165	tac Tyr	gag Glu	aaa Lys	ggc Gly	acg Thr 170	acg Thr	aaa Lys	cgc Arg	gtt Val	acc Thr 175	GJA āāā	528
	ttt Phe	acc Thr	ctg Leu	acc Thr 180	ctt Leu	gaa Glu	gag Glu	gcc Ala	gta Val 185	cca Pro	ttt Phe	gac Asp	atg Met	gta Val 190	gct Ala	tat Tyr	576
	ggt Gly	cga Arg	aac Asn 195	ctg Leu	atg Met	ctg Leu	aag Lys	gct Ala 200	tcg Ser	gca Ala	ggt Gly	tcc Ser	ttt Phe 205	cca Pro	aca Thr	att Ile	624
)	gac Asp _.	ttg Leu 210	ctc Leu	tat Tyr	gac Asp	tac Tyr	aga Arg 215	tcg Ser	ttt Phe	ttt Phe	gac Asp	caa Gln 220	tgt Cys	tcc Ser	gat Asp	att Ile	672
,	gga Gly 225	cgg Arg	atc Ile	ggc	ttc Phe	ttt Phe 230	ccg Pro	gaa Glu	gat Asp	gtt Val	cct Pro 235	aag Lys	ccg Pro	aaa Lys	gtg Val	gcg Ala 240	720
	Ile	Ile	Gly	gct Ala	Gly 245	Ile	Ser	Gly	Leu	Val 250	Val	Ala	Ser	Glu	Leu 255	Leu	768
	His	Ala	Gly	gta Val 260	Asp	Asp	Val	Thr	Ile 265	Tyr	Glu	Ala	Ser	Asp 270	Arg	Val	816
	Gly	Gly	Lys 275		Trp	Ser	His	Ala 280	Phe	ГЛS	Asp	Ala	285	Ser	Val	Val	864
	Ala	Glu 290	Met	ggg Gly	Ala	Met	Arg 295	Phe	Pro	Pro	Ala	300	Ser	Cys	Leu	Phe	912
	Phe 305	Phe	. Lev		Arg	Tyr 310	Gly	Leu	Ser	Ser	Met 315	Arg	Pro	Phe	Pro	320	960
	Pro	Gly	Thr	gto Val	. Asp 325	Thr	Asn	Leu	. Val	Тут 330	Glr	ı Gly	Leu	Arg	335	Val	1008
	Trp	Lys	: Ala	340	y Gln	Gln	Pro	Pro	145 345	Leu	Phe	e His	arç	7 Val 350	. Tyr)	agc Ser	1056
	Gly	Trp	35	g Ala 5	a Phe	e Leu	ı Arç	360	Gly	, Phe	e His	s Glu	365	Asp) Ile	gtg Val	1104
	Leu	370	a Sei	r Pro	o Val	. Val	l Il∈ 375	Thr	Glr	Ala	t Let	380 380	s · Sei)	Gly	y As <u>r</u>	att Ile	1152
	agg Arg 385	Arg	g gci	t cat a His	c gad s Asp	Sei 390	rr	g caa o Glr	a act n Thi	t tgg	t cto Let 39!	ı Ası	e egt	t tto g Phe	e Gly	agg Arg 400	1200

									4	14				,		
gag Glu	tcc Ser	ttc Phe	tct Ser	tca Ser 405	gcg Ala	ata Ile	gag Glu	agg Arg	atc Ile 410	ttt Phe	ctg Leu	ggc Gly	acg Thr	cat His 415	cct Pro	1248
cct Pro	ggt Gly	ggt Gly	gaa Glu 420	aca Thr	tgg Trp	agt Ser	ttc Phe	cct Pro 425	cat His	gat Asp	tgg Trp	gac Asp	cta Leu 430	ttc Phe	aag Lys	1296
cta Leu	atg Met	gga Gly 435	ata Ile	gga Gly	tct Ser	ggc Gly	ggg Gly 440	ttt Phe	ggt Gly	cca Pro	gtt Val	ttt Phe 445	gaa Glu	agc Ser	Gly ggg	1344
ttt Phe	att Ile 450	gag Glu	atc Ile	ctt Leu	cgc Arg	ttg Leu 455	gtc Val	ata Ile	aac Asn	gga Gly	tat Tyr 460	gaa Glu	gaa Glu	aat Asn	cag Gln	1392
cgg Arg 465	atg Met	tgc Cys	tct Ser	gaa Glu	gga Gly 470	atc Ile	tca Ser	gaa Glu	ctt Leu	cca Pro 475	cgt Arg	cga Arg	ata Ile	gcc Ala	tct Ser 480	1440
caa Gln	gtg Val	gtt Val	aac Asn	ggt Gly 485	gtg Val	tct Ser	gta Val	agc Ser	cag Gln 490	cgt Arg	ata Ile	cgc Arg	cat His	gtt Val 495	caa Gln	1488
gtc Val	agg Arg	gcg Ala	att Ile 500	gag Glu	aag Lys	gaa Glu	aag Lys	aca Thr 505	aaa Lys	ata Ile	aag Lys	ata Ile	agg Arg 510	ctt Leu	aag Lys	1536
agc Ser	Gly aaa	ata Ile 515	tct Ser	gaa Glu	ctt Leu	tat Tyr	gat Asp 520	aag Lys	gtg Val	gtg Val	gtt Val	aca Thr 525	tct Ser	gga Gly	ctc Leu	1584
gca Ala	aat Asn 530	atc Ile	caa Gln	ctc Leu	agg Arg	cat His 535	tgt Cys	ctg Leu	aca Thr	tgc Cys	gat Asp 540	acc Thr	acc Thr	att Ile	ttt Phe	1632
cgt Arg 545	Āla	cca Pro	gtg Val	aac Asn	caa Gln 550	gcg Ala	gtt Val	gat Asp	aac Asn	agc Ser 555	cat His	atg Met	aca Thr	ggc	tcg Ser 560	1680
tca Ser	aaa Lys	ctc Leu	ttt Phe	ctg Leu 565	ctg Leu	act Thr	gaa Glu	cga Arg	aaa Lys 570	ttt Phe	tgg Trp	tta Leu	gac Asp	cat His 575	atc Ile	1728
ctc Leu	ccg Pro	tcc Ser	tgt Cys 580	gtc Val	ctc Leu	atg Met	gac Asp	ggg Gly 585	atc Ile	gca Ala	aaa Lys	gca Ala	gtg Val 590	Tyr	tgc Cys	1776
ttg Leu	gac Asp	tat Tyr 595	gag Glu	ccg Pro	cag Gln	gat Asp	ccg Pro 600	aat Asn	ggt Gly	aaa Lys	ggt Gly	ctg Leu 605	gtg Val	Pro	ccc Pro	1824
act Thr	tat Tyr 610	Thr	tgg Trp	gag Glu	gac Asp	gac Asp 615	tcc Ser	cac His	aag Lys	ctg Leu	ttg Leu 620	Ala	gtt Val	ccc Pro	gac Asp	1872
aaa Lys 625	Lys	gag Glu	cga Arg	ttc Phe	tgt Cys 630	Leu	ctg Leu	cgg Arg	gac Asp	gca Ala 635	Ile	tcg Ser	aga Arg	tct Ser	ttc Phe 640	1920
					His					Cys					caa Gln	1968
aat Asn	gtt Val	gtt Val	Gln 660	His	gat Asp	tgg Trp	ctt Leu	aca Thr 665	Asp	gag Glu	aat Asn	gcc Ala	ggg Gly 670	Gly	gct Ala	2016

									4	1 5						
	Lys	Leu 675	Asn	Arg	Arg	GГĀ	680	Asp	Pne	туг	Ser	685	Giu	Deu	1110	2064
ttt Phe	caa Gln 690	gcg Ala	ctg Leu	gac Asp	atg Met	cct Pro 695	aat Asn	gat Asp	acc Thr	gga Gly	gtt Val 700	tac Tyr	ttg Leu	gcg Ala	ggt Gly	2112
tgc Cys 705	agt Ser	tgt Cys	tcc Ser	ttc Phe	acc Thr 710	ggt Gly	gga Gly	tgg Trp	gtg Val	gag Glu 715	ggc Gly	gct Ala	att Ile	cag Gln	acc Thr 720	2160
gcg Ala	tgt Cys	aac Asn	gcc Ala	gtc Val 725	tgt Cys	gca Ala	att Ile	atc Ile	cac His 730	aat Asn	tgt Cys	gga Gly	ggt Gly	att Ile 735	ttg Leu	2208
gca Ala	aag Lys	gac Asp	aat Asn 740	Pro	ctc Leu	gaa Glu	cac His	tct Ser 745	Trp	aag Lys	aga Arg	tat Tyr	aac Asn 750	TAT	cgc Arg	2256
	aga Arg		•	ı												2268

<210> 32

<211> 755

<212> PRT

<213> Agrobacterium tumefaciens

<400> 32

Met Ser Ala Ser Pro Leu Leu Asp Asn Gln Cys Asp His Phe Ser Thr

Lys Met Val Asp Leu Ile Met Val Asp Lys Ala Asp Glu Leu Asp Arg

Arg Val Ser Asp Ala Phe Ser Glu Arg Glu Ala Ser Arg Gly Arg Arg

Ile Thr Gln Ile Ser Gly Glu Cys Ser Ala Gly Leu Ala Cys Lys Arg 55

Leu Ala Asp Gly Arg Phe Pro Glu Ile Ser Thr Gly Glu Lys Val Ala 70

Ala Leu Ser Ala Tyr Ile Tyr Val Gly Lys Glu Ile Leu Gly Arg Ile 90

Leu Glu Ser Glu Pro Trp Ala Arg Ala Arg Val Ser Gly Leu Val Ala 105 100

Ile Asp Leu Ala Pro Phe Cys Met Asp Phe Ser Glu Ala Gln Leu Leu 120

Gln Thr Leu Phe Leu Leu Ser Gly Lys Arg Cys Ala Ser Ser Asp Leu 135 130

Ser His Phe Val Ala Ile Ser Ile Ser Lys Thr Ala Arg Ser Arg Thr 155 150

Leu Gln Met Pro Pro Tyr Glu Lys Gly Thr Thr Lys Arg Val Thr Gly 170 165

Phe Thr Leu Thr Leu Glu Glu Ala Val Pro Phe Asp Met Val Ala Tyr 190 185 180

Gly Arg Asn Leu Met Leu Lys Ala Ser Ala Gly Ser Phe Pro Thr Ile 200 195

Asp Leu Leu Tyr Asp Tyr Arg Ser Phe Phe Asp Gln Cys Ser Asp Ile 215 220 Gly Arg Ile Gly Phe Phe Pro Glu Asp Val Pro Lys Pro Lys Val Ala 230 235 Ile Ile Gly Ala Gly Ile Ser Gly Leu Val Val Ala Ser Glu Leu Leu 250 His Ala Gly Val Asp Asp Val Thr Ile Tyr Glu Ala Ser Asp Arg Val 260 265 Gly Gly Lys Leu Trp Ser His Ala Phe Lys Asp Ala Pro Ser Val Val 280 Ala Glu Met Gly Ala Met Arg Phe Pro Pro Ala Ala Ser Cys Leu Phe 295 Phe Phe Leu Glu Arg Tyr Gly Leu Ser Ser Met Arg Pro Phe Pro Asn 310 315 320 Pro Gly Thr Val Asp Thr Asn Leu Val Tyr Gln Gly Leu Arg Tyr Val 325 330 Trp Lys Ala Gly Gln Gln Pro Pro Lys Leu Phe His Arg Val Tyr Ser 345 Gly Trp Arg Ala Phe Leu Arg Asp Gly Phe His Glu Gly Asp Ile Val 360 Leu Ala Ser Pro Val Val Ile Thr Gln Ala Leu Lys Ser Gly Asp Ile 375 380 Arg Arg Ala His Asp Ser Trp Gln Thr Trp Leu Asn Arg Phe Gly Arg 390 395 Glu Ser Phe Ser Ser Ala Ile Glu Arg Ile Phe Leu Gly Thr His Pro 405 410 Pro Gly Gly Glu Thr Trp Ser Phe Pro His Asp Trp Asp Leu Phe Lys Leu Met Gly Ile Gly Ser Gly Gly Phe Gly Pro Val Phe Glu Ser Gly 440 Phe Ile Glu Ile Leu Arg Leu Val Ile Asn Gly Tyr Glu Glu Asn Gln 455 Arg Met Cys Ser Glu Gly Ile Ser Glu Leu Pro Arg Arg Ile Ala Ser 475 480 470 Gln Val Val Asn Gly Val Ser Val Ser Gln Arg Ile Arg His Val Gln 485 490 Val Arg Ala Ile Glu Lys Glu Lys Thr Lys Ile Lys Ile Arg Leu Lys 505 Ser Gly Ile Ser Glu Leu Tyr Asp Lys Val Val Thr Ser Gly Leu Ala Asn Ile Gln Leu Arg His Cys Leu Thr Cys Asp Thr Thr Ile Phe 535 540 Arg Ala Pro Val Asn Gln Ala Val Asp Asn Ser His Met Thr Gly Ser 550 555 Ser Lys Leu Phe Leu Leu Thr Glu Arg Lys Phe Trp Leu Asp His Ile 565 570 Leu Pro Ser Cys Val Leu Met Asp Gly Ile Ala Lys Ala Val Tyr Cys 585

Leu Asp Tyr Glu Pro Gln Asp Pro Asn Gly Lys Gly Leu Val Pro Pro 595 600 605

Thr Tyr Thr Trp Glu Asp Asp Ser His Lys Leu Leu Ala Val Pro Asp 610 615 620

Lys Lys Glu Arg Phe Cys Leu Leu Arg Asp Ala Ile Ser Arg Ser Phe 625 630 635 640

Pro Ala Phe Ala Gln His Leu Val Pro Ala Cys Ala Asp Tyr Asp Gln 645 650 655

Asn Val Val Gln His Asp Trp Leu Thr Asp Glu Asn Ala Gly Gly Ala 660 665 670

Phe Lys Leu Asn Arg Arg Gly Glu Asp Phe Tyr Ser Glu Glu Leu Phe 675 680 685

Phe Gln Ala Leu Asp Met Pro Asn Asp Thr Gly Val Tyr Leu Ala Gly 690 695 700

Cys Ser Cys Ser Phe Thr Gly Gly Trp Val Glu Gly Ala Ile Gln Thr 705 710 715 720

Ala Cys Asn Ala Val Cys Ala Ile Ile His Asn Cys Gly Gly Ile Leu
725 730 735

Ala Lys Asp Asn Pro Leu Glu His Ser Trp Lys Arg Tyr Asn Tyr Arg
740 745 750

Asn Arg Asn 755

<210> 33

<211> 1404

<212> DNA

<213> Agrobacterium tumefaciens

<220>

<221> CDS

<222> (1)..(1401)

<223> coding for indole acetamide hydrolase

85

<400> 33

atg gtg ccc att acc tcg tta gca caa acc cta gaa cgc ctg aga cgg 48
Met Val Pro Ile Thr Ser Leu Ala Gln Thr Leu Glu Arg Leu Arg Arg
1 5 10 15

aaa gac tac tcc tgc tta gaa cta gta gaa act ctg ata gcg cgt tgc 96
Lys Asp Tyr Ser Cys Leu Glu Leu Val Glu Thr Leu Ile Ala Arg Cys
20 25 30

caa gct gca aaa cca tta aat gcc ctt ctg gct aca gac tgg gat ggc 144 Gln Ala Ala Lys Pro Leu Asn Ala Leu Leu Ala Thr Asp Trp Asp Gly

ttg cgg cga agc gcc aaa aaa aat gat cgt cat gga aac gcc gga tta 192 Leu Arg Arg Ser Ala Lys Lys Asn Asp Arg His Gly Asn Ala Gly Leu

ggt ctt tgc ggc att cca ctc tgt ttt aag gcg aac atc gcg acc ggc 240
Gly Leu Cys Gly Ile Pro Leu Cys Phe Lys Ala Asn Ile Ala Thr Gly
65 70 75 80

gta ttt cct aca agc gct gct act ccg gcg ctg ata aac cac ttg cca 288 Val Phe Pro Thr Ser Ala Ala Thr Pro Ala Leu Ile Asn His Leu Pro

										4	FR						
	aag Lys	ata Ile	cca Pro	tcc Ser 100	cgc Arg	gtc Val	gca Ala	gaa Glu	aga Arg 105	ctt Leu	ttt Phe	tca Ser	gct Ala	gga Gly 110	gca Ala	ctg Leu	336
	ccg Pro	ggt Gly	gcc Ala 115	tcg Ser	gga Gly	aac Asn	atg Met	cat His 120	gag Glu	tta Leu	tcg Ser	ttt Phe	gga Gly 125	att Ile	acg Thr	agc Ser	384
	aac Asn	aac Asn 130	tat Tyr	gcc Ala	acc Thr	ggt Gly	gcg Ala 135	gtg Val	cgg Arg	aac Asn	ccg Pro	tgg Trp 140	aat Asn	cca Pro	agt Ser	ctg Leu	432
	ata Ile 145	cca Pro	Gly ggg	ggt Gly	tca Ser	agc Ser 150	ggt Gly	ggt Gly	gtg Val	gct Ala	gct Ala 155	gcg Ala	gtg Val	gca Ala	agc Ser	cga Arg 160	480
	ttg Leu	atg Met	tta Leu	ggc Gly	ggc Gly 165	ata Ile	ggc Gly	acg Thr	gat Asp	acc Thr 170	ggt Gly	gca Ala	tct Ser	gtt Val	cgc Arg 175	cta Leu	528
	ccg Pro	gca Ala	gcc Ala	ctg Leu 180	tgt Cys	ggc Gly	gta Val	gta Val	gga Gly 185	ttt Phe	cga Arg	ccg Pro	acg Thr	ctt Leu 190	ggt Gly	cga Arg	576
,	tat Tyr	cca Pro	aga Arg 195	gat Asp	cgg Arg	ata Ile	ata Ile	ccg Pro 200	ttc Phe	agc Ser	ccc Pro	acc Thr	cgg Arg 205	gac Asp	acc Thr	gcc Ala	624
	gga Gly	atc Ile 210	ata Ile	gcg Ala	cag Gln	tgc Cys	gta Val 215	gcc Ala	gat Asp	gtt Val	ata Ile	atc Ile 220	ctc Leu	gac Asp	cag Gln	gtg Val	672
	att Ile 225	Ser	gga Gly	cgg Arg	tcg Ser	gcg Ala 230	aaa Lys	att Ile	tca Ser	ccc Pro	atg Met 235	Pro	ctg Leu	aag Lys	Gly	ctt Leu 240	720
	cgg Arg	atc Ile	ggc	ctc Leu	ccc Pro 245	Thr	acc Thr	tac Tyr	ttt Phe	tac Tyr 250	Asp	gac Asp	ctt Leu	gat Asp	gct Ala 255	Asp	768
	gtg Val	gcc	tto Phe	gca Ala 260	Ala	gaa Glu	acg Thr	acg Thr	att Ile 265	Arg	ttg Leu	cta Leu	gcc	aac Asn 270	Arg	ggc	816
)	gta Val	acc Thr	ttt Phe 275	· Val	gaa Glu	gco Ala	gac Asp	ato Ile 280	Pro	cac His	cta Leu	gag Glu	gaa Glu 285	Leu	aac Asn	agt Ser	864
	GJ7 āā5	gca Ala 290	Ser	ttg Leu	cca Pro	att Ile	gcg Ala 295	Leu	tac Tyr	gaa Glu	ttt Phe	cca Pro	His	gct Ala	cta Leu	aaa Lys	912
	aag Lys 305	Туг	cto Lev	gac Asp	gat Asr	ttt Phe 310	val	gga Gly	aca Thr	gtt Val	tct Ser 315	Phe	tct Ser	gac Asp	gtt Val	atc Ile 320	960
	aaa Lys	gga Gly	att / Ile	cgt Arg	ago g Ser 325	Pro	gat Asp	gta Val	gcg Ala	g aac a Asr 330	ıle	gto Val	agt Ser	gcg Ala	caa Glr 335	a att n Ile	1008
	gat As <u>r</u>	Gly	g cat	caa Glr 340	ı Ile	tco e Sei	aac Asr	gat Asp	gaa Glu 345	туг	gaa Glu	a cto 1 Lei	g gcg	g cgt a Arg 350	g Glr	a tcc n Ser	1056
	tto Phe	e agg	g cca g Pro 35!	o Arg	g cto g Leo	c cag ı Glı	g gco n Ala	act Thi 360	туз	c egg	g aat g Asi	tac n Tyi	Pho 36	a Arg	a cto g Leu	tat ı Tyr	1104

									4	19)		
cag Gln	tta Leu 370	gat Asp	gca Ala	atc Ile	ctt Leu	ttc Phe 375	cca Pro	act Thr	gca Ala	ccc Pro	tta Leu 380	gcg Ala	gcc Ala	aaa Lys	gcc Ala	1152
ata Ile 385	ggt Gly	cag Gln	gag Glu	tcg Ser	tca Ser 390	gtc Val	atc Ile	cac His	aat Asn	ggc Gly 395	tca Ser	atg Met	atg Met	aac Asn	act Thr 400	1200
ttc Phe	aag Lys	atc Ile	tac Tyr	gtg Val 405	cga Arg	aat Asn	gtg Val	gac Asp	cca Pro 410	agc Ser	agc Ser	aac Asn	gca Ala	ggc Gly 415	cta Leu	1248
cct Pro	ggg Gly	ttg Leu	agc Ser 420	ctt Leu	cct Pro	gcc Ala	tgc Cys	ctt Leu 425	aca Thr	cct Pro	gat Asp	cgc Arg	ttg Leu 430	cct Pro	gtt Val	1296
gga Gly	atg Met	gaa Glu 435	att Ile	gat Asp	gga Gly	tta Leu	gcg Ala 440	Gly ggg	tca Ser	gac Asp	cac His	cgt Arg 445	ctg Leu	tta Leu	gca Ala	1344
atc Ile	ggg Gly 450	gca Ala	gca Ala	tta Leu	gaa Glu	aaa Lys 455	gct Ala	ata Ile	aat Asn	ttt Phe	tct Ser 460	tcc Ser	ttt Phe	ccc Pro	gat Asp	1392
٠,	ttt Phe		_													1404
<21 <21	0> 3 1> 4 2> P 3> A	67 RT	acte	rium	tum	efac	iens									
<40 Met 1		4 Pro	Ile	Thr 5	Ser	Leu	Ala	Gln	Thr 10	Leu	Glu	Arg	Leu	Arg 15		
Lys	Asp	Tyr	Ser 20	Суз	Leu	Glu	Leu	Val 25		Thr	Leu	Ile	Ala 30	Arg	Сув	
Gln	Ala	Ala 35		Pro	Leu	Asn	Ala 40		Leu	Ala	Thr	Asp 45		Asp	Gly	
Leu	Arg		Ser	Ala	Lys	Lys 55		Asp	Arg	His	Gly 60	. Asn	Ala	Gly	Leu	
G1y 65		"Cys	Gly	' Ile	Pro		Cys	Phe	Lys	Ala 75		Ile	Ala	Thr	Gly 80	
Val	. Phe	Pro	Thr	Ser 85		Ala	Thr	Pro	Ala 90		Ile	Asn	His	Leu 95	Pro	
Lys	; Ile	Pro	Ser 100		Val	. Ala	Glu	Arg		Phe	e Ser	Ala	Gly 110	Ala	Leu	
Pro	Gly	Ala 115		Gly	Asn	Met	His 120		. Leu	. Ser	Phe	Gly 125		Thr	Ser	
Asr	n Asr 130		: Ala	a Thr	GJZ	7 Ala 135		. Arg) Asr	Pro	Trp 140		Pro	Ser	Leu	
Ile 145		G13	g Gly	y Ser	Ser 150		gly	v Val	. Ala	A Ala 155		val	Ala	Ser	160	
Let	ı Met	Leu	ı Gly	7 Gly 165		e Gly	Thr	. Asp	Thr 170		, Ala	Ser	· Val	Arg 175	Leu i	
Pro	o Ala	a Ala	180		s Gly	y Val	. Val	185		e Arg	g Pro	Thr	190		y Arg	

Tyr Pro Arg Asp Arg Ile Ile Pro Phe Ser Pro Thr Arg Asp Thr Ala 200

Gly Ile Ile Ala Gln Cys Val Ala Asp Val Ile Ile Leu Asp Gln Val 215

Ile Ser Gly Arg Ser Ala Lys Ile Ser Pro Met Pro Leu Lys Gly Leu 235 230

Arg Ile Gly Leu Pro Thr Thr Tyr Phe Tyr Asp Asp Leu Asp Ala Asp 250

Val Ala Phe Ala Ala Glu Thr Thr Ile Arg Leu Leu Ala Asn Arg Gly 265

Val Thr Phe Val Glu Ala Asp Ile Pro His Leu Glu Glu Leu Asn Ser 280

Gly Ala Ser Leu Pro Ile Ala Leu Tyr Glu Phe Pro His Ala Leu Lys 300 290

Lys Tyr Leu Asp Asp Phe Val Gly Thr Val Ser Phe Ser Asp Val Ile 310

Lys Gly Ile Arg Ser Pro Asp Val Ala Asn Ile Val Ser Ala Gln Ile 330

Asp Gly His Gln Ile Ser Asn Asp Glu Tyr Glu Leu Ala Arg Gln Ser 345 340

Phe Arg Pro Arg Leu Gln Ala Thr Tyr Arg Asn Tyr Phe Arg Leu Tyr 360

Gln Leu Asp Ala Ile Leu Phe Pro Thr Ala Pro Leu Ala Ala Lys Ala 375

Ile Gly Gln Glu Ser Ser Val Ile His Asn Gly Ser Met Met Asn Thr 395 390

Phe Lys Ile Tyr Val Arg Asn Val Asp Pro Ser Ser Asn Ala Gly Leu 410

Pro Gly Leu Ser Leu Pro Ala Cys Leu Thr Pro Asp Arg Leu Pro Val 425

Gly Met Glu Ile Asp Gly Leu Ala Gly Ser Asp His Arg Leu Leu Ala

Ile Gly Ala Ala Leu Glu Lys Ala Ile Asn Phe Ser Ser Phe Pro Asp 455 450

Ala Phe Asn

465

<210> 35

<211> 1419

<212> DNA

<213> Agrobacterium vitis

<220>

<221> CDS

<222> (1)..(1416)

<223> coding for indole acetamide hydrolase

<400> 35

atg gtg acc cta ggt tca atc aag gaa acc ctg gaa tgt ctc agg ctg Met Val Thr Leu Gly Ser Ile Lys Glu Thr Leu Glu Cys Leu Arg Leu 10

										J 1						
aaa Lys	aaa Lys	tac Tyr	tcc Ser 20	tgt Cys	tcc Ser	gaa Glu	ctg Leu	gct Ala 25	gaa Glu	acc Thr	ata Ile	ata Ile	gcc Ala 30	cgt Arg	tgc Cys	96
gaa Glu	gcc Ala	gcg Ala 35	aaa Lys	tct Ser	ctc Leu	aat Asn	gct Ala 40	ctt Leu	ctg Leu	gcg Ala	act Thr	gac Asp 45	tgg Trp	gat Asp	tac Tyr	144
ctg Leu	cgg Arg 50	cgt Arg	aat Asn	gcc Ala	aag Lys	aaa Lys 55	gta Val	gat Asp	gaa Glu	gat Asp	gga Gly 60	agc Ser	gcc Ala	ggc Gly	gag Glu	192
ggt Gly 65	ctt Leu	gcc Ala	ggc Gly	atc Ile	ccg Pro 70	ctg Leu	tgt Cys	tct Ser	aaa Lys	gcg Ala 75	aac Asn	att Ile	gca Ala	aca Thr	ggc 80	240
ata Ile	ttc Phe	cca Pro	gca Ala	agc Ser 85	gcg Ala	gcc Ala	acg Thr	ccg Pro	gcg Ala 90	ctt Leu	gat Asp	gaa Glu	cat His	tta Leu 95	cct Pro	288
aca Thr	aca Thr	cca Pro	gcc Ala 100	ggc Gly	gtc Val	cgt Arg	aaa Lys	ccg Pro 105	ctt Leu	cta Leu	gac Asp	gct Ala	ggg Gly 110	gca Ala	ctg Leu	336
ata Ile	ggc Gly	gct Ala 115	tcg Ser	gga Gly	aac Asn	atg Met	cat His 120	gag Glu	tta Leu	tcg Ser	ttt Phe	ggc Gly 125	att Ile	acc Thr	agt Ser	384
aac Asn	aac Asn 130	cac His	gcc Ala	act Thr	ggt Gly	gcg Ala 135	gtg Val	aga Arg	aac Asn	ccc Pro	tgg Trp 140	aat Asn	ccc Pro	agc Ser	tta Leu	432
ata Ile 145	cca Pro	gga Gly	ggc Gly	tcg Ser	agc Ser 150	ggc Gly	ggc	gtg Val	gct Ala	gct Ala 155	gct Ala	gta Val	gca Ala	tca Ser	cgg Arg 160	480
tta Leu	atg Met	ctc Leu	ggc Gly	gga Gly 165	att Ile	ggc Gly	acc Thr	gac Asp	acg Thr 170	GJÀ aaa	gct Ala	tcg Ser	gtc Val	cgc Arg 175	cta Leu	528
cct Pro	gca Ala	tcc 6er	cta Leu 180	tgt Cys	ggc Gly	gta Val	gtg Val	gga Gly 185	ttc Phe	cgc Arg	ccg Pro	acg Thr	atc Ile 190	ggc Gly	aga Arg	576
		gga Gly 195														624
gga Gly	att Ile 210	atc Ile	gca Ala	cag Gln	agc Ser	gtt Val 215	cct Pro	gat Asp	gtg Val	ata Ile	ctc Leu 220	ctt Leu	gac Asp	caa Gln	atc Ile	672
att Ile 225	tgc Cys	Gly aaa	aag Lys	ctc Leu	acg Thr 230	acc Thr	cac His	caa Gln	cct Pro	gta Val 235	ccc Pro	ctg Leu	gag Glu	gga Gly	tta Leu 240	720
cgt Arg	atc Ile	ggc Gly	ttg Leu	cca Pro 245	acc Thr	act Thr	tac Tyr	ttt Phe	tac Tyr 250	gat Asp	gac Asp	ctt Leu	gat Asp	gct Ala 255	gat Asp	768
gtg Val	gcc Ala	ttc Phe	gca Ala 260	gct Ala	gaa Glu	aac Asn	ctt Leu	atc Ile 265	acg Thr	ctg Leu	ctg Leu	gcc Ala	agc Ser 270	aag Lys	ggt Gly	816
gta Val	acc Thr	ttt Phe 275	gtt Val	aag Lys	gcc Ala	gag Glu	att Ile 280	cca Pro	gat Asp	ctg Leu	cag Gln	cgt Arg 285	ctg Leu	aac Asn	atc Ile	864

											52						
	GJ ^A aaa	gtt Val 290	agc Ser	ttt Phe	cct Pro	att	gcc Ala 295	ctg Leu	tac Tyr	gag Glu	ttt Phe	ccg Pro 300	ttc Phe	gcc Ala	cta Leu	caa Gln	912
	aag Lys 305	Tyr	atc Ile	gat Asp	gac Asp	ttt Phe 310	gtg Val	aag Lys	gat Asp	gtg Val	tct Ser 315	ttt Phe	tct Ser	gac Asp	gtc Val	atc Ile 320	960
	aaa Lys	gga Gly	att Ile	cgt Arg	agc Ser 325	cct Pro	gat Asp	gta Val	gcc Ala	aac Asn 330	att Ile	gcc Ala	aat Asn	gct Ala	caa Gln 335	att Ile	1008
	gat Asp	gga Gly	cat His	caa Gln 340	att Ile	tcc Ser	aaa Lys	gct Ala	tca Ser 345	tat Tyr	gaa Glu	ctg Leu	gcg Ala	cga Arg 350	caa Gln	tct Ser	1056
	ttc Phe	aga Arg	cca Pro 355	aag Lys	ctg Leu	caa Gln	gcc Ala	gcc Ala 360	tac Tyr	cat His	gat Asp	tac Tyr	ttc Phe 365	aag Lys	ctg Leu	cac His	1104
	cag Gln	cta Leu 370	gac Asp	gcg Ala	atc Ile	ctt Leu	ttc Phe 375	ccg	aca Thr	gct Ala	ccc Pro	ctg Leu 380	aca Thr	gcc Ala	aaa Lys	ccg Pro	1152
	atc Ile 385	ggc Gly	caa Gln	gat Asp	tta Leu	tcg Ser 390	gtg Val	atg Met	cac His	aat Asn	ggc Gly 395	gta Val	atg Met	gcc Ala	gac Asp	acg Thr 400	1200
	ttt Phe	aaa Lys	atc Ile	ttc Phe	gtg Val 405	cga Arg	aat Asn	gtg Val	gat Asp	ccg Pro 410	Gly aaa	agc Ser	aac Asn	gca Ala	ggc Gly 415	ctg Leu	1248
	cca Pro	gga Gly	tta Leu	agc Ser 420	ctt Leu	ccc Pro	gtt Val	tct Ser	ctt Leu 425	act Thr	tca Ser	aag Lys	ggt Gly	ttg Leu 430	cct Pro	att Ile	1296
	gga Gly	atg Met	gaa Glu 435	atc Ile	gat Asp	gga Gly	tta Leu	gcg Ala 440	ggc Gly	atg Met	gac Asp	gac Asp	cgt Arg 445	ttg Leu	cta Leu	gca Ala	1344
	atc Ile	gga Gly 450	gcg Ala	gça Ala	cta Leu	gag Glu	gaa Glu 455	gcg Ala	ata Ile	gct Ala	ttt Phe	cat His 460	aat Asn	tta Leu	cct Pro	gac Asp	1392
)	ttc Phe 465	ccg Pro	aaa Lys	gtc Val	gag Glu	aca Thr 470	aac Asn	tac Tyr	tga								1419
	<211 <212)> 36 .> 47 !> PF !> Ag	2	.cter	ium	• viti	.s										
)> 36 Val		Leu	Gly 5	Ser	Ile	Lys	Glu	Thr 10	Leu	Glu	Cys	Leu	Arg 15	Leu	
	Lys	Lys	Tyr	Ser 20	Cys	Ser	Glu	Leu	Ala 25		Thr	Ile	Ile	Ala 30		Cys	
	Glu	Ala	Ala 35		Ser	Leu	Asn	Ala 40		Leu	Ala	Thr	Asp 45	_	Asp	Tyr	
	Leu	Arg 50	Arg .	Asn	Ala	Lys	Lys 55	Val	Asp	Glu	Asp	Gly 60		Ala	Gly	Glu	
	Gly 65	Leu	Ala	Gly	Ile	Pro 70	Leu	Cys	Ser	Lys	Ala 75		Ile	Ala	Thr	Gly 80	

Ile Phe Pro Ala Ser Ala Ala Thr Pro Ala Leu Asp Glu His Leu Pro 90 Thr Thr Pro Ala Gly Val Arg Lys Pro Leu Leu Asp Ala Gly Ala Leu 105 100 Ile Gly Ala Ser Gly Asn Met His Glu Leu Ser Phe Gly Ile Thr Ser 120 Asn Asn His Ala Thr Gly Ala Val Arg Asn Pro Trp Asn Pro Ser Leu 135 Ile Pro Gly Gly Ser Ser Gly Gly Val Ala Ala Ala Val Ala Ser Arg 155 Leu Met Leu Gly Gly Ile Gly Thr Asp Thr Gly Ala Ser Val Arg Leu 170 Pro Ala Ser Leu Cys Gly Val Val Gly Phe Arg Pro Thr Ile Gly Arg 185 Tyr Pro Gly Asp Arg Ile Val Pro Val Ser Pro Thr Arg Asp Thr Ala 205 Gly Ile Ile Ala Gln Ser Val Pro Asp Val Ile Leu Leu Asp Gln Ile 220 215 Ile Cys Gly Lys Leu Thr Thr His Gln Pro Val Pro Leu Glu Gly Leu 235 230 Arg Ile Gly Leu Pro Thr Thr Tyr Phe Tyr Asp Asp Leu Asp Ala Asp 250 245 Val Ala Phe Ala Ala Glu Asn Leu Ile Thr Leu Leu Ala Ser Lys Gly 265 Val Thr Phe Val Lys Ala Glu Ile Pro Asp Leu Gln Arg Leu Asn Ile 280 Gly Val Ser Phe Pro Ile Ala Leu Tyr Glu Phe Pro Phe Ala Leu Gln 300 295 290 Lys Tyr Ile Asp Asp Phe Val Lys Asp Val Ser Phe Ser Asp Val Ile 315 310 Lys Gly Ile Arg Ser Pro Asp Val Ala Asn Ile Ala Asn Ala Gln Ile 325 330 Asp Gly His Gln Ile Ser Lys Ala Ser Tyr Glu Leu Ala Arg Gln Ser 345 Phe Arg Pro Lys Leu Gln Ala Ala Tyr His Asp Tyr Phe Lys Leu His Gln Leu Asp Ala Ile Leu Phe Pro Thr Ala Pro Leu Thr Ala Lys Pro 375 Ile Gly Gln Asp Leu Ser Val Met His Asn Gly Val Met Ala Asp Thr 395 390 Phe Lys Ile Phe Val Arg Asn Val Asp Pro Gly Ser Asn Ala Gly Leu 410 405 Pro Gly Leu Ser Leu Pro Val Ser Leu Thr Ser Lys Gly Leu Pro Ile 425 Gly Met Glu Ile Asp Gly Leu Ala Gly Met Asp Asp Arg Leu Leu Ala 440 Ile Gly Ala Ala Leu Glu Glu Ala Ile Ala Phe His Asn Leu Pro Asp 455

Phe Pro Lys Val Glu Thr Asn Tyr 465 470

<210> 37 <211> 1263 <212> DNA <213> Arabidopsis thaliana																
<221 <222	<220> <221> CDS <222> (1)(1260) <223> coding for 5-methylthioribose kinase															
<400																4.0
														gta Val 15		48
														gac Asp		96
tcc Ser	gat Asp	gat Asp 35	gat Asp	ttg Leu	gtt Val	atc Ile	aaa Lys 40	gaa Glu	gtt Val	gga Gly	gat Asp	ggc Gly 45	aat Asn	ctc Leu	aat Asn	144
ttc Phe	gtt Val 50	ttc Phe	atc Ile	gtt Val	gtt Val	gga Gly 55	tcc Ser	tct Ser	ggt Gly	tct Ser	ctt Leu 60	gtc Val	atc Ile	aaa Lys	cag Gln	192
														acg Thr		240
gaa Glu	aga Arg	gct Ala	tat Tyr	ttt Phe 85	gaa Glu	gca Ala	aca Thr	act Thr	ttg Leu 90	aga Arg	aag Lys	cat His	gga Gly	aat Asn 95	tta Leu	288
tca Ser	cct Pro	gat Asp	cat His 100	gtt Val	cct Pro	gaa Glu	gtc Val	tac Tyr 105	cat His	ttt Phe	gac Asp	aga Arg	aca Thr 110	atg Met	gcg Ala	336
														cgc Arg		384
gga Gly	ctc Leu 130	att Ile	gct Ala	ggg Gly	att Ile	gag Glu 135	tat Tyr	cct Pro	ttc Phe	ctc Leu	gca Ala 140	gac Asp	cac His	atg Met	tct Ser	432
gat Asp 145	tac Tyr	atg Met	gcg Ala	aag Lys	act Thr 150	ctc Leu	ttc Phe	ttc Phe	act Thr	tct Ser 155	ctc Leu	ctc Leu	tat Tyr	cac His	gat Asp 160	480
														gtg Val 175		528
tta Leu	tgc Cys	cga Arg	tta Leu 180	acg Thr	gag Glu	caa Gln	gtt Val	gtg Val 185	ttt Phe	tcg Ser	gac Asp	cca Pro	tat Tyr 190	aga Arg	gtt Val	576
														gct Ala		624

										!	55						
	gct Ala	gtg Val 210	cgc Arg	gaa Glu	gac Asp	agt Ser	gcc Ala 215	ttg Leu	aag Lys	ctc Leu	gaa Glu	atc Ile 220	gca Ala	gag Glu	cta Leu	aaa Lys	672
	tcg Ser 225	atg Met	ttc Phe	tgt Cys	gaa Glu	aga Arg 230	gct Ala	caa Gln	gct Ala	tta Leu	ata Ile 235	cat His	ggt Gly	gat Asp	ctt Leu	cat His 240	720
	act Thr	ggt Gly	tct Ser	gtc Val	atg Met 245	gtt Val	act Thr	caa Gln	gat Asp	tca Ser 250	acg Thr	caa Gln	gtt Val	ata Ile	gat Asp 255	cca Pro	768
	gag Glu	ttt Phe	tcg Ser	ttc Phe 260	tat Tyr	gga Gly	ccg Pro	atg Met	ggt Gly 265	ttc Phe	gat Asp	att Ile	ggc Gly	gct Ala 270	tat Tyr	ctt Leu	816
	ggt Gly	aac Asn	ttg Leu 275	ata Ile	cta Leu	gct Ala	ttc Phe	ttt Phe 280	gca Ala	caa Gln	gat Asp	gga Gly	cac His 285	gcc Ala	act Thr	cag Gln	864
	gaa Glu	aat Asn 290	gat Asp	cga Arg	aaa Lys	gaa Glu	tac Tyr 295	aag Lys	cag Gln	tgg Trp	atc Ile	ttg Leu 300	aga Arg	acc Thr	att Ile	gag Glu	912
<i>!</i>	caa Gln 305	act Thr	tgg Trp	aat Asn	ttg Leu	ttt Phe 310	aac Asn	aaa Lys	agg Arg	ttc Phe	att Ile 315	gcg Ala	cta Leu	tgg Trp	gat Asp	caa Gln 320	960
	aac Asn	aaa Lys	gat Asp	gga Gly	cca Pro 325	ggc Gly	gaa Glu	gca Ala	tac Tyr	ctt Leu 330	gca Ala	gat Asp	atc Ile	tat Tyr	aac Asn 335	aat Asn	1008
	acc Thr	gag Glu	gtt Val	ttg Leu 340	aag Lys	ttt Phe	gtt Val	caa Gln	gaa Glu 345	aac Asn	tac Tyr	atg Met	agg Arg	aat Asn 350	ttg Leu	ttg Leu	1056
				Leu	gga Gly												1104
	gga Gly	gtg Val 370	gca Ala	cat His	gtt Val	gag Glu	gac Asp 375	ttt Phe	gaa Glu	tca Ser	atc Ile	gaa Glu 380	Glu	gat Asp	aag Lys	cga Arg	1152
	aga Arg 385	gct Ala	att Ile	tgc Cys	gag Glu	aga Arg 390	agt Ser	gca Ala	ctc Leu	gag Glu	ttt Phe 395	Ala	aag Lys	atg Met	ctt Leu	ctc Leu 400	1200
	aag Lys	gaa Glu	agg Arg	aga Arg	aag Lys 405	ttt Phe	aag Lys	agt Ser	atc Ile	ggt Gly 410	Glu	gtt Val	gtt Val	tca Ser	gca Ala 415	Ile	1248
				agc Ser 420													1263
	<21 <21	0> 3 1> 4 2> P 3> A	20 RT	.dops	is t	hali	ana										
				Glu	Glu 5	Phe	Thr	Pro	Leu	Asn 10		Lys	Ser	Leu	Val		
	Tyr	Ile	Lys	Ser 20	Thr	Pro	Ala	Leu	. Ser 25		Lys	Ile	e Gly	Ala 30		Lys	

Ser Asp Asp Asp Leu Val Ile Lys Glu Val Gly Asp Gly Asn Leu Asn Phe Val Phe Ile Val Val Gly Ser Ser Gly Ser Leu Val Ile Lys Gln Ala Leu Pro Tyr Ile Arg Cys Ile Gly Glu Ser Trp Pro Met Thr Lys Glu Arg Ala Tyr Phe Glu Ala Thr Thr Leu Arg Lys His Gly Asn Leu Ser Pro Asp His Val Pro Glu Val Tyr His Phe Asp Arg Thr Met Ala 100 105 Leu Ile Gly Met Arg Tyr Leu Glu Pro Pro His Ile Ile Leu Arg Lys 120 Gly Leu Ile Ala Gly Ile Glu Tyr Pro Phe Leu Ala Asp His Met Ser 135 Asp Tyr Met Ala Lys Thr Leu Phe Phe Thr Ser Leu Leu Tyr His Asp 150 155 Thr Thr Glu His Arg Arg Ala Val Thr Glu Phe Cys Gly Asn Val Glu 170 Leu Cys Arg Leu Thr Glu Gln Val Val Phe Ser Asp Pro Tyr Arg Val 185 Ser Thr Phe Asn Arg Trp Thr Ser Pro Tyr Leu Asp Asp Asp Ala Lys 200 Ala Val Arg Glu Asp Ser Ala Leu Lys Leu Glu Ile Ala Glu Leu Lys 215 220 Ser Met Phe Cys Glu Arg Ala Gln Ala Leu Ile His Gly Asp Leu His 230 235 Thr Gly Ser Val Met Val Thr Gln Asp Ser Thr Gln Val Ile Asp Pro 245 250 Glu Phe Ser Phe Tyr Gly Pro Met Gly Phe Asp Ile Gly Ala Tyr Leu 260 265 Gly Asn Leu Ile Leu Ala Phe Phe Ala Gln Asp Gly His Ala Thr Gln 280 Glu Asn Asp Arg Lys Glu Tyr Lys Gln Trp Ile Leu Arg Thr Ile Glu 295 Gln Thr Trp Asn Leu Phe Asn Lys Arg Phe Ile Ala Leu Trp Asp Gln 310 315 Asn Lys Asp Gly Pro Gly Glu Ala Tyr Leu Ala Asp Ile Tyr Asn Asn 325 330 Thr Glu Val Leu Lys Phe Val Gln Glu Asn Tyr Met Arg Asn Leu Leu 345 His Asp Ser Leu Gly Phe Gly Ala Ala Lys Met Ile Arg Arg Ile Val 355 Gly Val Ala His Val Glu Asp Phe Glu Ser Ile Glu Glu Asp Lys Arg 375 Arg Ala Ile Cys Glu Arg Ser Ala Leu Glu Phe Ala Lys Met Leu Leu 390 395 Lys Glu Arg Arg Lys Phe Lys Ser Ile Gly Glu Val Val Ser Ala Ile 405 410

Gln Gln Gln Ser

	<211 <212	> 39 > 12 > DN	00 A	. 11 -			٠		•								
<213> Klebsiella pneumoniae <220> <221> CDS <222> (1)(1197) <223> coding for 5-methylthioribose kinase																	
	atq	> 39 tcg Ser	caa	tac Tyr	cat His 5	acc Thr	ttc Phe	acc Thr	gcc Ala	cac His 10	gat Asp	gcc Ala	gtg Val	gct Ala	tac Tyr 15	gcg Ala	48
\	caa Gln	cag Gln	ttc Phe	gcc Ala 20	ggc Gly	atc Ile	gac Asp	aac Asn	cca Pro 25	tct Ser	gag Glu	ctg Leu	gtc Val	agc Ser 30	gcg Ala	cag Gln	96
	gaa Glu	gtg Val	ggc Gly 35	gat Asp	ggc Gly	aac Asn	ctc Leu	aat Asn 40	ctg Leu	gtg Val	ttt Phe	aaa Lys	gtg Val 45	ttc Phe	gat Asp	cgt Arg	144
	cag Gln	ggc Gly 50	gtc Val	agc Ser	cgg Arg	gcg Ala	atc Ile 55	gtc Val	aaa Lys	cag Gln	gcc Ala	ctg Leu 60	ccc Pro	tac Tyr	gtg Val	cgc Arg	192
	tgc Cys 65	gtc Val	ggc Gly	gaa Glu	tcc Ser	tgg Trp 70	ccg Pro	ctg Leu	acc Thr	ctc Leu	gac Asp 75	cgc Arg	gcc Ala	cgt Arg	ctc Leu	gaa Glu 80	240
	gcg Ala	cag Gln	acc Thr	ctg Leu	gtc Val 85	gcc Ala	cac His	tat Tyr	cag Gln	cac His 90	agc Ser	ccg Pro	cag Gln	cac His	acg Thr 95	gta Val	288
	aaa Lys	atc Ile	cat His	cac His 100	ttt Phe	gat Asp	ccc Pro	gag Glu	ctg Leu 105	gcg Ala	gtg Val	atg Met	gtg Val	atg Met 110	gaa Glu	gat Asp	336
	ctt Leu	tcc Ser	gac Asp 115	cac His	cgc Arg	atc Ile	tgg Trp	cgc Arg 120	gga Gly	gag Glu	ctt Leu	atc Ile	gct Ala 125	aac Asn	gtc Val	tac Tyr	384
	tat Tyr	ccc Pro 130	cag Gln	gcg Ala	gcc Ala	cgc Arg	cag Gln 135	ctt Leu	ggc Gly	gac Asp	tat Tyr	ctg Leu 140	gcg Ala	cag Gln	gtg Val	ttg Leu	432
	ttc Phe 145	cac His	acc Thr	agc Ser	gat Asp	ttc Phe 150	tac Tyr	ctc Leu	cat His	ccc Pro	cac His 155	gag Glu	aaa Lys	aag Lys	gcg Ala	cag Gln 160	480
	gtg Val	gcg Ala	cag Gln	ttt Phe	att Ile 165	aac Asn	ccg Pro	gcg Ala	atg Met	tgc Cys 170	gag Glu	atc Ile	acc Thr	gag Glu	gat Asp 175	ctg Leu	528
	ttc Phe	ttt Phe	aac Asn	gac Asp 180	Pro	tat Tyr	cag Gln	atc Ile	cac His 185	gag Glu	cgc Arg	aat Asn	aac Asn	tac Tyr 190	ccg Pro	gcg Ala	576
	gag Glu	ctg Leu	gag Glu 195	gcc Ala	gat Asp	gtc Val	gcc Ala	gcc Ala 200	Leu	cgc Arg	gac Asp	gac Asp	gcc Ala 205	cag Gln	ctt Leu	aag Lys	624

									!	58						4
ctg Leu	gcg Ala 210	gtg Val	gcg Ala	gcg Ala	ctg Leu	aag Lys 215	cac His	cgt Arg	ttc Phe	ttt Phe	gcc Ala 220	cat His	gcg Ala	gaa Glu	gcg Ala	672
ctg Leu 225	ctg Leu	cac His	ggc Gly	gat Asp	atc Ile 230	cac His	agc Ser	ggg Gly	tcg Ser	atc Ile 235	ttc Phe	gtt Val	gcc Ala	gaa Glu	ggt Gly 240	720
agc Ser	ctg Leu	aag Lys	gcc Ala	atc Ile 245	gac Asp	gcc Ala	gag Glu	ttc Phe	ggc Gly 250	tac Tyr	ttc Phe	ggc Gly	ccc Pro	atc Ile 255	ggc Gly	768
				acc Thr												816
				ctc Leu												864
				atc Ile												912
				gcg Ala												960
				gcc Ala 325												1008
ttc Phe	tgc Cys	ggc Gly	agc Ser 340	gaa Glu	ctg Leu	atc Ile	cgc Arg	cgc Arg 345	agc Ser	gtc Val	gga Gly	ctg Leu	tcg Ser 350	cac His	gtc Val	1056
gcg Ala	gat Asp	atc İle 355	gac Asp	act Thr	atc Ile	cag Gln	gac Asp 360	gac Asp	gcc Ala	atg Met	cgt Arg	cat His 365	gag Glu	tgc Cys	ctg Leu	1104
cgc Arg	cac His 370	gcc Ala	att Ile	acc Thr	ctg Leu	ggc Gly 375	aga Arg	gcg Ala	ctg Leu	atc Ile	gtg Val 380	ctg Leu	gcc Ala	gag Glu	cgt Arg	1152
atc Ile 385	Asp	agc Ser	gtc Val	gac Asp	gag Glu 390	ctg Leu	ctg Leu	gcg Ala	cgg Arg	gta Val 395	Arg	cag Gln	tac Tyr	agc Ser	tga	1200
<21 <21	0> 4 1> 3 2> P 3> K	99 RT	iell	a pn	eumo	niae										
			Tyr	His 5	Thr	Phe	Thr	Ala	His 10		Ala	Val	Ala	Tyr 15	Ala	
Gln	Gln	Phe	Ala 20		Ile	Asp	Asn	Pro 25		Glu	Leu	Val	Ser 30		Gln	
Glu	Val	Gly 35		Gly	Asn	Leu	Asn 40		Val	Phe	Lys	Val 45		Asp	Arg	
Gln	Gly 50		Ser	Arg	Ala	Ile 55		Lys	Gln	Ala	. Leu 60		Tyr	Val	Arg	
Cys 65		Gly	Glu	Ser	Trp 70		Leu	Thr	Leu	Asp 75		Ala	Arg	Leu	Glu 80	

Val Ala His Tyr Gln His Ser Pro Gln H

Ala Gln Thr Leu Val Ala His Tyr Gln His Ser Pro Gln His Thr Val 85 90 95

Lys Ile His His Phe Asp Pro Glu Leu Ala Val Met Val Met Glu Asp 100 105 110

Leu Ser Asp His Arg Ile Trp Arg Gly Glu Leu Ile Ala Asn Val Tyr 115 120 125

Tyr Pro Gln Ala Ala Arg Gln Leu Gly Asp Tyr Leu Ala Gln Val Leu 130 135 140

Phe His Thr Ser Asp Phe Tyr Leu His Pro His Glu Lys Lys Ala Gln 145 150 155 160

Val Ala Gln Phe Ile Asn Pro Ala Met Cys Glu Ile Thr Glu Asp Leu 165 170 175

Phe Phe Asn Asp Pro Tyr Gln Ile His Glu Arg Asn Asn Tyr Pro Ala 180 185 190

Glu Leu Glu Ala Asp Val Ala Ala Leu Arg Asp Asp Ala Gln Leu Lys 195 200 205

Leu Ala Val Ala Ala Leu Lys His Arg Phe Phe Ala His Ala Glu Ala 210 215 220

Leu Leu His Gly Asp Ile His Ser Gly Ser Ile Phe Val Ala Glu Gly 225 230 235 240

Ser Leu Lys Ala Ile Asp Ala Glu Phe Gly Tyr Phe Gly Pro Ile Gly 245 250 255

Phe Asp Ile Gly Thr Ala Ile Gly Asn Leu Leu Leu Asn Tyr Cys Gly 260 265 270

Leu Pro Gly Gln Leu Gly Ile Arg Asp Ala Ala Ala Ala Arg Glu Gln
275 280 285

Arg Leu Asn Asp Ile His Gln Leu Trp Thr Thr Phe Ala Glu Arg Phe 290 295 300

Gln Ala Leu Ala Ala Glu Lys Thr Arg Asp Ala Ala Leu Ala Tyr Pro 305 310 315 320

Gly Tyr Ala Ser Ala Phe Leu Lys Lys Val Trp Ala Asp Ala Val Gly 325 330 335

Phe Cys Gly Ser Glu Leu Ile Arg Arg Ser Val Gly Leu Ser His Val 340 345 350

Ala Asp Ile Asp Thr Ile Gln Asp Asp Ala Met Arg His Glu Cys Leu 355 360 365

Arg His Ala Ile Thr Leu Gly Arg Ala Leu Ile Val Leu Ala Glu Arg 370 375 380

Ile Asp Ser Val Asp Glu Leu Leu Ala Arg Val Arg Gln Tyr Ser 385 390 395

<210> 41

<211> 1140

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1137)

<223> coding for alcohol dehydrogenase

				•					•	, ,						
ato	0> 41 tct Ser	acc	acc Thr	gga Gly 5	cag Gln	att Ile	att Ile	cga Arg	tgc Cys 10	aaa Lys	gct Ala	gct Ala	gtg Val	gca Ala 15	tgg Trp	48
Glı	gcc Ala	Gly	Lys 20	Pro	Leu	Val	Ile	Glu 25	Glu	Val	Glu	Val	30	Pro	Pro	96
caç Gl:	g aaa 1 Lys	cac His 35	gaa Glu	gtt Val	cgt Arg	atc Ile	aag Lys 40	att Ile	ctc Leu	ttc Phe	act Thr	tct Ser 45	ctc Leu	tgt Cys	cac His	144
acc Th	gat Asp 50	gtt Val	tac Týr	ttc Phe	tgg Trp	gaa Glu 55	gct Ala	aag Lys	gga Gly	caa Gln	aca Thr 60	ccg Pro	ttg Leu	ttt Phe	cca Pro	192
cg Ar	t atc g Ile 5	ttc Phe	ggc Gly	cat His	gaa Glu 70	gct Ala	gga Gly	GJA aaa	att Ile	gtt Val 75	gag Glu	agt Ser	gtt Val	gga Gly	gaa Glu 80	240
Gl	a gtg y Val	Thr	Asp	Leu 85	Gln	Pro	Gly	Asp	His 90	Val	Leu	Pro	Ile	Phe 95	Thr	288
Gl	a gaa y Glu	Сув	Gly 100	Asp	Суз	Arg	His	Cys 105	Gln	Ser	Glu	Glu	Ser 110	Asn	Met	336
Су	t gat s Asp	Leu 115	Leu	Arg	Ile	Asn	Thr 120	Glu	Arg	Gly	Gly	Met 125	Ile	His	Asp	384
Gl	t gaa y Glu 130	Ser	Arg	Phe	Ser	11e 135	Asn	Gly	Lys	Pro	11e 140	Tyr	His	Phe	Leu	432
G1 14		Ser	Thr	Phe	Ser 150	Glu	Tyr	Thr	Val	Val 155	. His	Ser	GТĀ	, GIU	160	480
Al	t aag a Lys	: Ile	Asr	Pro 165	Asp	Ala	Pro	Leu	170) Lys	: Val	. Сув	Ile	175	. ser	528
C ⁷	rt ggt rs Gly	y Leu	180	Thr	Gly	Leu	Gly	185	Thr	Leu	ı Asr	ı Val	190) LLYS	Pro	576
ΓZ	ig aaa /s Ly:	5 Gly 195	y Glr	n Ser	val	. Ala	11e 200	Phe	: Glz	, Let	ı Gly	7 Ala 205	. Val	Γ GTΆ	r Leu	624
G.	gc gc ly Ala 21	a Ala D	a Glu	ı Gly	, Ala	215	, Ile	Ala	. Gly	y Ala	220	Arg	, Ile	∍ Il∈	e GIY	672
Va 2:	t gas al As 25	o Phe	e Ası	n Ser	230	Arg	J Ph∈	e Asr	Glı	n Ala 23!	a Lys 5	s Glu	ı Phe	e GT2	240	720
T]	cc ga nr Gl	u Cys	s Vai	l Ası 249	n Pro) Lys	s Asp) His	Asp 250	o D	s Pro	o Ile	e Glı	n Gli 25!	n Val	768
a: I:	tc gc le Al	t gaq a Gl	g ate u Me 26	t Thi	g gat r Ası	ggt Gly	A GJ7 c aaa	g gtg 7 Va: 26	l Ası	c agg	g agt g Se:	t gtg r Val	g gaa L Gli 27	u Cy	c acc s Thr	816

	BASI	P1	ant	Sci	ence	e Gm	bН			2	0020	0471	•			PF	53790	L
-										6	51							
•	gga Gly	Ser	gtt Val 275	cag Gln	gcc Ala	atg Met	att Ile	caa Gln 280	gca Ala	ttt Phe	gaa Glu	tgt Cys	gtc Val 285	cac His	gat Asp	ggc Gly	864	
	tgg Trp	ggt Gly 290	gtt Val	gca Ala	gtg Val	ctg Leu	gtg Val 295	ggt Gly	gtg Val	cca Pro	agc Ser	aaa Lys 300	gac Asp	gat Asp	gcc Ala	ttc Phe	912	
	aag Lys 305	act Thr	cat His	ccg Pro	atg Met	aat Asn 310	ttc Phe	ttg Leu	aat Asn	gag Glu	agg Arg 315	act Thr	ctt Leu	aag Lys	ggt Gly	act Thr 320	960	
	ttc Phe	ttc Phe	Gly ggg	aac Asn	tac Tyr 325	aaa Lys	ccc Pro	aaa Lys	act Thr	gac Asp 330	att Ile	ccc Pro	GJÀ âââ	gtt Val	gtg Val 335	gaa Glu	100	8
	aag Lys	tac Tyr	atg Met	aac Asn 340	aag Lys	gag Glu	ctg Leu	gag Glu	ctt Leu 345	gag Glu	aaa Lys	ttc Phe	atc Ile	act Thr 350	cac His	aca Thr	105	6
	gtg Val	cca Pro	ttc Phe 355	tcg Ser	gaa Glu	atc Ile	aac Asn	aag Lys 360	gcc Ala	ttt Phe	gat Asp	tac Tyr	atg Met 365	ctg Leu	aag Lys	gga Gly	110)4
	gag Glu	agt Ser 370	att Ile	cgt Arg	tgc Cys	atc Ile	atc Ile 375	acc Thr	atg Met	ggt Gly	gct Ala	tga					114	10
	<21:	0> 4: 1> 3' 2> P: 3> A	79 RT	dops	is tl	hali	ana											
	<40 Met 1		2 Thr	Thr	G1y 5	Gln	Ile	Ile	Arg	Cys 10		Ala	Ala	. Val	Ala 15	Trp)	
	Glu	Ala	Gly	Lys 20	Pro	Leu	Val	Ile	G1u 25		. Val	. Glu	Val	Ala 30	Pro	Pro)	
			35		Val			40	1				45)				
		50			Phe		55					60)					
	65	1			His	70)				75	5				81	U	
					Leu 85	•				90)				95)		
				100					105	5				110)			
	Суз	asp	115		ı Arg	, Il∈	e Asr	120		ı Arç	g Gly	y Gly	y Met 125	5	e His			

Gly Glu Ser Arg Phe Ser Ile Asn Gly Lys Pro Ile Tyr His Phe Leu 135

Gly Thr Ser Thr Phe Ser Glu Tyr Thr Val Val His Ser Gly Gln Val 155

Ala Lys Ile Asn Pro 165

Cys Gly Leu Ser Thr Gly Leu Gly Ala Thr Leu Asn Val Asn Val Ala Lys Pro

180

BASF Plant Science GmbH

62

Lys Lys Gly Gln Ser Val Ala Ile Phe Gly Leu Gly Ala Val Gly Leu 200

Gly Ala Ala Glu Gly Ala Arg Ile Ala Gly Ala Ser Arg Ile Ile Gly 215

Val Asp Phe Asn Ser Lys Arg Phe Asp Gln Ala Lys Glu Phe Gly Val

Thr Glu Cys Val Asn Pro Lys Asp His Asp Lys Pro Ile Gln Gln Val 250

Ile Ala Glu Met Thr Asp Gly Gly Val Asp Arg Ser Val Glu Cys Thr 265 260

Gly Ser Val Gln Ala Met Ile Gln Ala Phe Glu Cys Val His Asp Gly 280

Trp Gly Val Ala Val Leu Val Gly Val Pro Ser Lys Asp Asp Ala Phe 295 290

Lys Thr His Pro Met Asn Phe Leu Asn Glu Arg Thr Leu Lys Gly Thr 305 310

Phe Phe Gly Asn Tyr Lys Pro Lys Thr Asp Ile Pro Gly Val Val Glu 330

Lys Tyr Met Asn Lys Glu Leu Glu Leu Glu Lys Phe Ile Thr His Thr 345 340

Val Pro Phe Ser Glu Ile Asn Lys Ala Phe Asp Tyr Met Leu Lys Gly

Glu Ser Ile Arg Cys Ile Ile Thr Met Gly Ala 375 370

<210> 43

<211> 1140

<212> DNA

<213> Hordeum vulgare

<220>

<221> CDS

<222> (1)...(1137)

<223> coding for alcohol dehydrogenase

<400> 43

atg gcg acg gcc ggc aag gtg atc aag tgc aaa gcc gcg gtg gcg tgg Met Ala Thr Ala Gly Lys Val Ile Lys Cys Lys Ala Ala Val Ala Trp

gag gcc ggg aag ccg ctg acc atg gag gag gtg gag gtg gcg ccg ccg 96 Glu Ala Gly Lys Pro Leu Thr Met Glu Glu Val Glu Val Ala Pro Pro

144 cag gcc atg gag gtg cgc gtc aag atc ctc ttc acc tcc ctc tgc cac Gln Ala Met Glu Val Arg Val Lys Ile Leu Phe Thr Ser Leu Cys His

192 acc gac gtc tac ttc tgg gag gcc aag ggg cag acc ccc atg ttc cct Thr Asp Val Tyr Phe Trp Glu Ala Lys Gly Gln Thr Pro Met Phe Pro 55

cgg atc ttc ggc cat gaa gct gga ggc ata gtg gag agt gtt gga gag Arg Ile Phe Gly His Glu Ala Gly Gly Ile Val Glu Ser Val Gly Glu

						(63				
								ctc Leu			288
								gcg Ala			336
								gtg Val			384
								att Ile 140			432
								cat His			480
								gtc Val			528
_		_			 _			aat Asn			576
								gga Gly			624
								tca Ser 220			672
								agg Arg			720
								cca Pro			768
								agt Ser			816
								tgt Cys			864
	Val							aag Lys 300			912
								acc Thr			960
								ccc			1008
			Lys			Glu		ttc Phe			1056

64

gtg ccg ttc tcg gag ata aac aag gcc ttc gac ctt atg gcg aag ggg 1104
Val Pro Phe Ser Glu Ile Asn Lys Ala Phe Asp Leu Met Ala Lys Gly
355 360 365

gag ggc atc cgt tgc atc atc cgc atg gac aac tag
Glu Gly Ile Arg Cys Ile Ile Arg Met Asp Asn
370 375

<210> 44

<211> 379

<212> PRT

<213> Hordeum vulgare

<400> 44

Met Ala Thr Ala Gly Lys Val Ile Lys Cys Lys Ala Ala Val Ala Trp

1 5 10 15

Glu Ala Gly Lys Pro Leu Thr Met Glu Glu Val Glu Val Ala Pro Pro 20 25 30

Gln Ala Met Glu Val Arg Val Lys Ile Leu Phe Thr Ser Leu Cys His

Thr Asp Val Tyr Phe Trp Glu Ala Lys Gly Gln Thr Pro Met Phe Pro 50 55 60

Arg Ile Phe Gly His Glu Ala Gly Gly Ile Val Glu Ser Val Gly Glu
65 70 75 80

Gly Val Thr Asp Val Ala Pro Gly Asp His Val Leu Pro Val Phe Thr 85 90 95

Gly Glu Cys Lys Glu Cys Pro His Cys Lys Ser Ala Glu Ser Asn Met 100 105 110

Cys Asp Leu Leu Arg Ile Asn Thr Asp Arg Gly Val Met Ile Gly Asp 115 120 125

Gly Lys Ser Arg Phe Ser Ile Gly Gly Lys Pro Ile Tyr His Phe Val 130 135 140

Gly Thr Ser Thr Phe Ser Glu Tyr Thr Val Met His Val Gly Cys Val 145 150 155 160

Ala Lys Ile Asn Pro Glu Ala Pro Leu Asp Lys Val Cys Val Leu Ser 165 170 175

Cys Gly Ile Cys Thr Gly Leu Gly Ala Ser Ile Asn Val Ala Lys Pro 180 185 190

Pro Lys Gly Ser Thr Val Ala Ile Phe Gly Leu Gly Ala Val Gly Leu 195 200 205

Ala Ala Glu Gly Ala Arg Ile Ala Gly Ala Ser Arg Ile Ile Gly 210 215 220

Val Asp Leu Asn Ala Ser Arg Phe Glu Glu Ala Arg Lys Phe Gly Cys 225 230 235 240

Thr Glu Phe Val Asn Pro Lys Asp His Thr Lys Pro Val Gln Gln Val 245 250 255

Leu Ala Asp Met Thr Asn Gly Gly Val Asp Arg Ser Val Glu Cys Thr 260 265 270

Gly Asn Val Asn Ala Met Ile Gln Ala Phe Glu Cys Val His Asp Gly 275 280 285

Trp Gly Val Ala Val Leu Val Gly Val Pro His Lys Asp Ala Glu Phe 290 295 300

Lys Thr His Pro Met Asn Phe Leu Asn Glu Arg Thr Leu Lys Gly Thr 305 310 315 320

Phe Phe Gly Asn Phe Lys Pro Arg Thr Asp Leu Pro Asn Val Val Glu 325 330 335

Met Tyr Met Lys Lys Glu Leu Glu Val Glu Lys Phe Ile Thr His Ser 340 345 350

Val Pro Phe Ser Glu Ile Asn Lys Ala Phe Asp Leu Met Ala Lys Gly 355 360 365

Glu Gly Ile Arg Cys Ile Ile Arg Met Asp Asn 370 375

<210> 45

<211> 1140

<212> DNA

<213> Oryza sativa

<220>

<221> CDS

<222> (1)..(1137)

<223> coding for alcohol dehydrogenase

<400> 45

atg gcg acc gca ggg aag gtg atc aag tgc aaa gcg gcg gtg gca tgg 48
Met Ala Thr Ala Gly Lys Val Ile Lys Cys Lys Ala Ala Val Ala Trp

10 15

gag gcc gcg aag ccg ctg gtg atc gag gag gtg gag gtg gcg ccg ccg 96
Glu Ala Ala Lys Pro Leu Val Ile Glu Glu Val Glu Val Ala Pro Pro
20 25 30

cag gcc atg gag gtg cgc gtc aag atc ctc ttc acc tcg ctc tgc cac 144
Gln Ala Met Glu Val Arg Val Lys Ile Leu Phe Thr Ser Leu Cys His
35 40 45

acc gac gtc tac ttc tgg gag gcc aag gga cag act ccc gtg ttc cct 192
Thr Asp Val Tyr Phe Trp Glu Ala Lys Gly Gln Thr Pro Val Phe Pro
50 55 60

cgg atc ttc ggc cat gaa gct gga ggt att gtg gag agt gtt gga gag 240 Arg Ile Phe Gly His Glu Ala Gly Gly Ile Val Glu Ser Val Gly Glu 65 70 75 80

ggt gtg act gat ctt gcc cct ggt gac cat gtt ctc cct gtg ttc act 288 Gly Val Thr Asp Leu Ala Pro Gly Asp His Val Leu Pro Val Phe Thr 85 90 95

ggg gag tgc aag gag tgt gcc cac tgc aag tca gca gag agc aac atg 336 Gly Glu Cys Lys Glu Cys Ala His Cys Lys Ser Ala Glu Ser Asn Met 100 105 110

tgt gat ctg ctc agg atc aac act gac agg ggt gtg atg att ggt gat

Cys Asp Leu Leu Arg Ile Asn Thr Asp Arg Gly Val Met Ile Gly Asp

115 120 125

ggc aaa tca cgc ttt tcc atc aac ggg aag ccc att tac cat ttc gtc 432 Gly Lys Ser Arg Phe Ser Ile Asn Gly Lys Pro Ile Tyr His Phe Val 130 135 140

ggg act tcg acc ttc agc gag tac act gtc atg cat gtt ggt tgc gtt 480 Gly Thr Ser Thr Phe Ser Glu Tyr Thr Val Met His Val Gly Cys Val 145 150 155 160

			(66			
gcg aag atc Ala Lys Ile							
tgt ggt att Cys Gly Ile		Leu Gly			-		
cca aag ggt Pro Lys Gly 195	-				_		
gct gcc gca Ala Ala Ala 210							
att gac ctg Ile Asp Leu 225		Arg Phe					5
act gaa ttt Thr Glu Phe							
ctt gct gag Leu Ala Glu		Gly Gly					
ggc aac atc Gly Asn Ile 275							
tgg ggt gtt Trp Gly Val 290							
aag acc cac Lys Thr His 305		Phe Leu			_		r
ttc ttc ggc Phe Phe Gly				•	_	_	-
ctc tac atg Leu Tyr Met		Leu Glu					
gtg ccg ttc Val Pro Phe 355		_		_	-		
gag ggc atc Glu Gly Ile 370							1140
<210> 46 <211> 379 <212> PRT <213> Oryza	sativa						
<400> 46 Met Ala Thr 1	Ala Gly Lys	Val Ile	Lys Cys 10	Lys Ala	Ala Val	Ala Tr	p
Glu Ala Ala	Lys Pro Leu 20	Val Ile	Glu Glu 25	Val Glu	Val Ala 30	Pro Pro	0

Gln Ala Met Glu Val Arg Val Lys Ile Leu Phe Thr Ser Leu Cys His 35 40 45

Thr Asp Val Tyr Phe Trp Glu Ala Lys Gly Gln Thr Pro Val Phe Pro 50 55 60

Arg Ile Phe Gly His Glu Ala Gly Gly Ile Val Glu Ser Val Gly Glu 65 70 75 80

Gly Val Thr Asp Leu Ala Pro Gly Asp His Val Leu Pro Val Phe Thr 85 90 95

Gly Glu Cys Lys Glu Cys Ala His Cys Lys Ser Ala Glu Ser Asn Met 100 105 110

Cys Asp Leu Leu Arg Ile Asn Thr Asp Arg Gly Val Met Ile Gly Asp 115 120 125

Gly Lys Ser Arg Phe Ser Ile Asn Gly Lys Pro Ile Tyr His Phe Val 130 135 140

Gly Thr Ser Thr Phe Ser Glu Tyr Thr Val Met His Val Gly Cys Val 145 150 155 160

Ala Lys Ile Asn Pro Ala Ala Pro Leu Asp Lys Val Cys Val Leu Ser 165 · 170 175

Cys Gly Ile Ser Thr Gly Leu Gly Ala Thr Ile Asn Val Ala Lys Pro 180 185 190

Pro Lys Gly Ser Thr Val Ala Ile Phe Gly Leu Gly Ala Val Gly Leu 195 200 205

Ala Ala Ala Glu Gly Ala Arg Ile Ala Gly Ala Ser Arg Ile Ile Gly 210 215 220

Ile Asp Leu Asn Ala Asn Arg Phe Glu Glu Ala Arg Lys Phe Gly Cys 225 230 235 240

Thr Glu Phe Val Asn Pro Lys Asp His Asp Lys Pro Val Gln Gln Val 245 250 255

Leu Ala Glu Met Thr Asn Gly Gly Val Asp Arg Ser Val Glu Cys Thr 260 265 270

Gly Asn Ile Asn Ala Met Ile Gln Ala Phe Glu Cys Val His Asp Gly 275 280 285

Trp Gly Val Ala Val Leu Val Gly Val Pro His Lys Asp Ala Glu Phe 290 295 300

Lys Thr His Pro Met Asn Phe Leu Asn Glu Arg Thr Leu Lys Gly Thr 305 310 315 320

Phe Phe Gly Asn Tyr Lys Pro Arg Thr Asp Leu Pro Asn Val Val Glu 325 330 335

Leu Tyr Met Lys Lys Glu Leu Glu Val Glu Lys Phe Ile Thr His Ser 340 345 350

Val Pro Phe Ser Glu Ile Asn Thr Ala Phe Asp Leu Met His Lys Gly 355 360 365

Glu Gly Ile Arg Cys Ile Ile Arg Met Glu Asn 370 375

					•			•				
<212> DNA <213> Zea												
<220> <221> CDS <222> (1) <223> cod			. dehy	droge	nase							
<400> 47 atg gcg a Met Ala T	cc gcg hr Ala	ggg aag Gly Lys 5	gtg a Val I	tc aa le Ly	g tgc s Cys 10	aaa Lys 2	gct (Ala)	gcg (gtg Val	gca Ala 15	tgg Trp	48
gag gcc g Glu Ala G	gc aag ly Lys 20	cca ctg Pro Leu	tcg a Ser I	le Gl	g gag u Glu 5	gtg Val	gag (Glu	gta Val .	gcg Ala 30	cct Pro	ccg Pro	96
cag gcc a Gln Ala M	tg gag Met Glu 35	gtg cgc Val Arg	gtc a Val I	ag at ys Il 40	c ctc e Leu	ttc Phe	acc Thr	tcg Ser 45	ctc Leu	tgc Cys	cac His	144
acc gac g Thr Asp V 50	tc tac al Tyr	ttc tgg Phe Trp	gag g Glu A 55	gcc aa Ala Ly	g ggg	cag Gln	act Thr 60	ccc Pro	gtg Val	ttc Phe	cct Pro	192
cgg atc t Arg Ile E 65	tt ggc Phe Gly	cat gag His Glu 70	gct g Ala (gga gg Gly Gl	t atc y Ile	ata Ile 75	gag Glu	agt Ser	gtt Val	gga Gly	gag Glu 80	240
ggt gtg a Gly Val T	act gac Thr Asp	gta gct Val Ala 85	ccg (ggc ga Gly As	ac cat sp His 90	gtc Val	ctt Leu	cct Pro	gtg Val	ttc Phe 95	act Thr	288
ggg gag t Gly Glu (tgc aag Cys Lys 100	gag tgc Glu Cys	gcc o Ala I	cac to His Cy 10	ys Lys	tcg Ser	gca Ala	gag Glu	agc Ser 110	aac Asn	atg Met	336
tgt gat t Cys Asp I	ttg ctc Leu Leu 115	agg atc Arg Ile	Asn '	act ga Thr As 120	ac cgc sp Arg	ggt Gly	gtg Val	atg Met 125	att Ile	ggc Gly	gat Asp	384
ggc aag (Gly Lys (130	tcg cgg Ser Arg	ttt tca Phe Ser	atc i Ile i 135	aat gg Asn G	gg aag ly Lys	cct Pro	atc Ile 140	tac Tyr	cac His	ttt Phe	gtt Val	432
ggg act Gly Thr 145	tcc acc Ser Thr	ttc ago Phe Ser 150	Glu	tac a Tyr T	cc gtc hr Val	atg Met 155	cat His	gtc Val	ggt Gly	tgt Cys	gtt Val 160	480
gca aag Ala Lys	atc aac Ile Asn	cct cag Pro Glr 165	gct Ala	ccc c Pro L	tt gat eu Asp 170	Lys	gtt Val	tgc Cys	gtc Val	ctt Leu 175	agc Ser	528
tgt ggt Cys Gly	att tct Ile Ser 180	Thr Gly	ctt Leu	Gly A	ca tca la Ser 85	att	aat Asn	gtt Val	gca Ala 190	Lys	cct Pro	576
ccg aag Pro Lys	ggt tcg Gly Ser 195	aca gto Thr Val	g gct Ala	gtt t Val P 200	tc ggt he Gly	tta Leu	gga Gly	gcc Ala 205	gtt Val	ggt Gly	ctt Leu	624
gcc gct Ala Ala 210	gca gaa Ala Glu	ggt gca Gly Ala	a agg a Arg 215	att g Ile A	ct gga la Gly	gcg Ala	tca Ser 220	agg Arg	atc Ile	att Ile	ggt Gly	672
gtc gac Val Asp 225	ctg aac Leu Asr	ccc ago Pro Sei 230	Arg	ttc g Phe G	aa gaa lu Glu	gct Ala 235	Arg	aag Lys	ttc Phe	ggt Gly	tgc Cys 240	720

										•	59						
	act Thr	gaa Glu	ttt Phe	gtg Val	aac Asn 245	cca Pro	aaa Lys	gac Asp	cac His	aac Asn 250	aag Lys	ccg Pro	gtg Val	cag Gln	gag Glu 255	gta Val	768
]	ctt Leu	gct Ala	gag Glu	atg Met 260	acc Thr	aac Asn	gga Gly	GJA aaa	gtc Val 265	gac Asp	cgc Arg	agc Ser	gtg Val	gaa Glu 270	tgc Cys	act Thr	816
9	ggc	aac Asn	atc Ile 275	aat Asn	gct Ala	atg Met	atc Ile	caa Gln 280	gct Ala	ttc Phe	gaa Glu	tgt Cys	gtt Val 285	cat His	gat Asp	ggc Gly	864
	tgg Irp	ggt Gly 290	gtt Val	gcc Ala	gtg Val	ctg Leu	gtg Val 295	ggt Gly	gtg Val	ccg Pro	cat His	aag Lys 300	gac Asp	gct Ala	gag Glu	ttc Phe	912
	aag Lys 305	acc Thr	cac His	ccg Pro	atg Met	aac Asn 310	ttc Phe	ctg Leu	aac Asn	gaa Glu	agg Arg 315	acc Thr	ctg Leu	aag Lys	Gly	acc Thr 320	960
)	ttc Phe	ttt Phe	ggc	aac Asn	tat Tyr 325	aag Lys	cca Pro	cgc Arg	act Thr	gat Asp 330	ctg Leu	cca Pro	aat Asn	gtg Val	gtg Val 335	gag Glu	1008
	Leu	Tyr	Met	Lys 340	aag Lys	Glu	Leu	Glu	Val 345	Glu	Lys	Phe	Ile	Thr 350	His	Ser	1056
	gtc Val	ccg Pro	ttc Phe 355	Ala	gag Glu	atc Ile	aac Asn	aag Lys 360	gcg Ala	ttc Phe	aac Asn	ctg Leu	atg Met 365	gcc Ala	aag Lys	GJA āāā	1104
	gag Glu	ggc Gly 370	Ile	cgc Arg	tgc Cys	atc Ile	atc Ile 375	Arg	atg Met	gag Glu	aac Asn	tag					1140
<210> 48 <211> 379 <212> PRT <213> Zea mays																	
	<40 Met		8 Thr	. Ala	. G1y 5		Val	Ile	Lys	Cys 10	Lys	Ala	Ala	Val	Ala 15	Trp	
	Glu	Ala	Gly	, Lys 20		Leu	Ser	Ile	Glu 25		. Val	. Glu	Val	Ala 30	Pro	Pro	
	Gln	Ala	Met		. Val	Arg	Val	ьуs 40		. Leu	ı Phe	. Thr	Ser 45		суя	His	
	Thr	Asp 50		L Tyr	Phe	Trp	Glu 55		Lys	Gly	g Glr	Thr 60		Val	. Phe	e Pro	
	Arg		e Phe	e Gl∑	/ His	Glu 70		Gly	Gly	7 Ile	e Il∈ 75		ı Ser	· Val	Gly	Glu 80	
	Gly	y Val	LThi	c As <u>r</u>	Val		Pro	Gly	r Asp	His		L Let	ı Pro	Va]	Phe 9!	Thr	
	Gl7	/ Glu	і Су:	5 Lys 100		а Суз	a Ala	a His	Cys 105		s Sei	c Ala	a Glu	110	Ası	n Met	
	Суя	s Asp	Le:		ı Arç	g Ile	e Asr	120		Arg	g Gly	y Vai	125		e Gl	y Asp	
	G17	/ Lys		r Arg	g Phe	e Sei	135		n Gly	/ Ly:	s Pro	140		Hi:	s Pho	e Val	

									•	70					
Gly 145	Thr	Ser	Thr	Phe	Ser 150	Glu	Tyr	Thr	Val	Met 155	His	Val	Gly	Суз	Val 160
Ala	Lys	Ile	Asn	Pro 165	Gln	Ala	Pro	Leu	Asp 170	Lys	Val	Cys	Val	Leu 175	Ser
Сув	Gly	Ile	Ser 180	Thr	Gly	Leu	Gly	Ala 185	Ser	Ile	Asn	Val	Ala 190	Lys	Pro
Pro	Lys	Gly 195	Ser	Thr	Val	Ala	Val 200	Phe	Gly	Leu	Gly	Ala 205	Val	Gly	Leu
Ala	Ala 210	Ala	Glu	Gly	Ala	Arg 215	Ile	Ala	Gly	Ala	Ser 220	Arg	Ile	Ile	Gly
Val 225	Asp	Leu	Asn	Pro	Ser 230	Arg	Phe	Glu	Glu	Ala 235	Arg	Lys	Phe	Gly	Cys 240
Thr	Glu	Phe	Val	Asn 245	Pro	Lys	Asp	His	Asn 250	Lys	Pro	Val	Gln	Glu 255	Val
Leu	Ala	Glu	Met 260	Thr	Asn	Gly	Gly	Val 265	Asp	Arg	Ser	Val	Glu 270	Суз	Thr
Gly	Asn	Ile 275	Asn	Ala	Met	Ile	Gln 280	Ala	Phe	Glu	Сув	Val 285	His	Asp	Gly
Trp	Gly 290	Val	Ala	Val	Leu	Val 295	Gly	Val	Pro	His	Lys 300		Ala	Glu	Phe
Lys 305	Thr	His	Pro	Met	Asn 310	Phe	Leu	Asn	Ĝlu	Arg 315	Thr	Leu	Lys	Gly	Thr 320
Phe	Phe	Gly	Asn	Tyr 325	Lys	Pro	Arg	Thr	Asp 330	Leu	Pro	Asn	Val	Val 335	Glu
Leu	Tyr	Met	Lys 340	Lys	Glu	Leu	Glu	Val 345	Glu	Lys	Phe	Ile	Thr 350	His	Ser
Val	Pro	Phe 355	Ala	Glu	Ile	Asn	Ъуз 360	Ala	Phe	Asn	Leu	Met 365	Ala	Lys	Gly
Glu	Gly 370	Ile	Arg	Cys	Ile	Ile 375	Arg	Met	Glu	Asn					

<210> 49

<211> 505

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: coding for sense RNA-fragment of E.coli codA gene

<400> 49

aagcttggct aacagtgtcg aataacgctt tacaaacaat tattaacgcc cggttaccag 60 gcgaagaggg gctgtggcag attcatctgc aggacggaaa aatcagcgcc attgatgcgc 120 aatccggcgt gatgcccata actgaaaaca gcctggatgc cgaacaaggt ttagttatac 180 cgccgtttgt ggagccacat attcacctgg acaccacgca aaccgccgga caaccgaact 240 ggaatcagtc cggcacgctg tttgaaggca ttgaacgctg ggccgagcgc aaagcgttat 300 taacccatga cgatgtgaaa caacgcgcat ggcaaacgct gaaatggcag attgccaacg 360 gcattcagca tgtgcgtacc catgtcgatg tttcggatgc aacgctaact gcgctgaaag 420 caatgctgga agtgaagcag gaagtcgcgc cgtggattga tctgcaaatc gtcgccttcc 480 ctcaggaagg gattttgtcg tcgac

<210> 50

<211> 27

	BASF :	Plant	Science	GmbH	20020	471	PF 53	790
					71			
	<212> <213>		liche Seque	enz				
			reibung der nucleotide	künstliche primer	n Sequenz:			
	<400> aagctt		aacagtgtcg	aataacg				27
	<210><211><212><213>	26 DNA	liche Seque	enz				
	<220> <223>		reibung der nucleotide	r künstliche primer	en Sequenz:			
	<400> gtcgad	-	aaatcccttc	ctgagg				26
	<210> <211> <212> <213>	505 DNA	liche Seque	enz		·		
	<220> <223>	Besch	reibung de ense RNA-fi	r künstliche ragment of I	en Sequenz: E.coli codA	coding for gene		
	gcgaag aatcc cgccg ggaat taacc gcatt caatg	cggct gaggg ggcgt tttgt cagtc catga cagca ctgga	gctgtggcag gatgcccata ggagccacat cggcacgctg cgatgtgaaa tgtgcgtacc	attcatctgc actgaaaaca attcacctgg tttgaaggca caacgcgcat catgtcgatg gaagtcgcgc	tacaaacaat aggacggaaa gcctggatgc acaccacgca ttgaacgctg ggcaaacgct tttcggatgc cgtggattga	aatcagegee egaacaaggt aacegeegga ggeegagege gaaatggeag aacgetaact	attgatgcgc ttagttatac caaccgaact aaagcgttat attgccaacg gcgctgaaag	120 180 240 300 360 420
)	<210><211><212><213>	27 DNA	liche Sequ	enz				
	<220> <223>	Besch	nreibung de onucleotide	r künstlich primer	en Sequenz:			
	<400> gaatt		aacagtgtcg	aataacg				27

<400> 54 ggatccgaca aaatcccttc ctgagg

oligonucleotide primer

<213> Künstliche Sequenz

<210> 54 <211> 26 <212> DNA

<220>

<210> 55 <211> 5674

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: vector
 construct pBluKS-nitP-STLS1-35S-T

<400> 55 ccagcttttg ttccctttag tgagggttaa tttcgagctt ggcgtaatca tggtcatagc 60 tgtttcctgt gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca 120 taaagtgtaa agcctggggt gcctaatgag tgagctaact cacattaatt gcgttgcgct 180 cactgcccgc tttccagtcg ggaaacctgt cgtgccagct gcattaatga atcggccaac 240 gcgcggggag aggcggtttg cgtattgggc gctcttccgc ttcctcgctc actgactcgc 300 tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt 360 tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg 420 ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc cccctgacg 480 agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat 540 accaggegtt teceeetgga ageteeeteg tgegetetee tgtteegaee etgeegetta 600 ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct 660 gtaggtatet cagtteggtg taggtegtte getecaaget gggetgtgtg caegaacece 720 ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa 780 gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg 840 taggeggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag 900 tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt 960 gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta 1020 cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc 1080 agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca 1140 cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa 1200 cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat 1260 ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct 1320 taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt 1380 tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat 1440 ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgccagtta 1500 atagtttgcg caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg 1560 gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt 1620 tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt aagttggccg 1680 cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg 1740 taagatgett ttetgtgaet ggtgagtaet caaccaagte attetgagaa tagtgtatge 1800 ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca catagcagaa 1860 ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac 1920 cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt 1980 ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg 2040 gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa 2100 gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata 2160 aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgcg ccctgtagcg 2220 gcgcattaag cgcggcggt gtggtggtta cgcgcagcgt gaccgctaca cttgccagcg 2280 ccctagcgcc cgctcctttc gctttcttcc cttcctttct cgccacgttc gccggctttc 2340 cccgtcaagc tctaaatcgg gggctccctt tagggttccg atttagtgct ttacggcacc 2400 tcgaccccaa aaaacttgat tagggtgatg gttcacgtag tgggccatcg ccctgataga 2460 cggtttttcg ccctttgacg ttggagtcca cgttctttaa tagtggactc ttgttccaaa 2520 ctggaacaac actcaaccct atctcggtct attcttttga tttataaggg attttgccga 2580 tttcggccta ttggttaaaa aatgagctga tttaacaaaa atttaacgcg aattttaaca 2640 aaatattaac gettacaatt tecattegee atteaggetg egeaactgtt gggaagggeg 2700 atcggtgcgg gcctcttcgc tattacgcca gctggcgaaa gggggatgtg ctgcaaggcg 2760 attaagttgg gtaacgccag ggttttccca gtcacgacgt tgtaaaacga cggccagtga 2820

attgtaatac gactcactat agggcgaatt ggagctcgtc gagaccagat gttttacact 2880

tgaccgtaaa tgagcacccg aagaaaccgg tcacattcat ttcgaaggtg gagaaagcgg 2940 aagatgactc aaacaagtaa tcggttgtga ttcgtcagtt catgtcactc ctatgaagga 3000 gtcaagttca aaatgttatg ttgagtttca aacttttatg ctaaactttt tttctttatt 3060 ttcqttaata atggaagaga accaattctc ttgtatctaa agattatcca tctatcatcc 3120 aatttgagtg ttcaattctg gatgttgtgt taccctacat tctacaacca tgtagccaat 3180 tattatgaat ctggctttga tttcagttgt gttcttttct ttttttctt tgcatatttg 3240 catttagaat gtttaataat taagttactg tatttccaca tacattagtt ccaagaatat 3300 acatatatta atttatttt cttaaaaatg ttttggaatg actaatattg acaacgaaaa 3360 tagaagctat gctaaaccat tacgtatatg tgacttcaca tgttgttgtt ttacattccc 3420 tatatatatg gatggctgtc acaatcagaa acgtgatcga aaaaagacaa acagtgtttg 3480 cataaaaaga ctatttcgtt tcattgacaa tttgtgttta tttgtaaaga aaagtggcaa 3540 agtggaattt gagtteetge aagtaagaaa gatgaaataa aagaettgag tgtgtgtttt 3600 tttcttttat ctgaaagctg caatgaaata ttcctaccaa gcccgtttga ttattaattg 3660 gggtttggtt ttcttgatgc gaactaattg gttatataag aaactataca atccatgtta 3720 attcaaaaat tttgatttct cttgtaggaa tatgatttac tatatgagac tttcttttcg 3780 ccaataatag taaatccaaa gatatttgac cggaccaaaa cacattgatc tatttttag 3840 tttatttaat ccagtttctc tgagataatt cattaaggaa aacttagtat taacccatcc 3900 taagattaaa taggagccaa actcacattt caaatattaa ataacataaa atggatttaa 3960 aaaatctata cgtcaaattt tatttatgac atttcttatt taaatttata tttaatgaaa 4020 tacagctaag acaaaccaaa aaaaaaatac tttctaagtg gtccaaaaca tcaattccgt 4080 tcaatattat taggtagaat cgtacgacca aaaaaaggta ggttaatacg aattagaaac 4140 atatctataa catagtatat attattacct attatgagga atcaaaatgc atcaaatatg 4200 gatttaagga atccataaaa gaataaattc tacgggaaaa aaaatggaat aaattctttt 4260 aagtttttta tttgttttt atttggtagt tctccatttt gttttatttc gtttggattt 4320 attgtgtcca aatactttgt aaaccaccgt tgtaattctt aaacggggtt ttcacttctt 4380 ttttatattc agacataaag catcggctgg tttaatcaat caatagattt tatttttctt 4440 ctcaattatt agtaggtttg atgtgaactt tacaaaaaaa acaaaaacaa atcaatgcag 4500 agaaaagaaa ccacgtgggc tagtcccacc ttgtttcatt tccaccacag gttcgatctt 4560 cgttaccgtc tccaatagga aaataaacgt gaccacaaaa aaaaaacaaa aaaaagtcta 4620 tatattgctt ctctcaagtc tctgagtgtc atgaaccaaa gtaaaaaaca aagactcgac 4680 ctgcaggcat gcaagcttat cgtcgactac gtaagtttct gcttctacct ttgatatata 4740 tataataatt atcattaatt agtagtaata taatatttca aatattttt tcaaaataaa 4800 agaatgtagt atatagcaat tgcttttctg tagtttataa gtgtgtatat tttaatttat 4860 aacttttcta atatatgacc aaaatttgtt gatgtgcagg tatcaccgga tccatcgaat 4920 teggtacget gaaatcacca gtetetetet acaaatctat etetetetat tttetecata 4980 aataatgtgt gagtagtttc ccgataaggg gaanttaggg ttcttatagg gtttcgctca 5040 tgtgttgagc atataagaaa cccttagtat gtatttgtat ttgtaaaata cttctatcaa 5100 taaaatttct aattcctaaa accaaaatcc agtactaaaa tccagatctc ctaaagtccc 5160 tatagatett tgtegtgaat ataaaceaga cacgagaega etaaacetgg ageecagaeg 5220 ccgttcgaag ctagaagtac cgcttaggca ggaggccgtt agggaaaaga tgctaaggca 5280 gggttggtta cgttgactcc cccgtaggtt tggtttaaat atgatgaagt ggacggaagg 5340 aaggaggaag acaaggaagg ataaggttgc aggccctgtg caaggtaaga agatggaaat 5400 ttgatagagg tacgctacta tacttatact atacgctaag ggaatgcttg tatttatacc 5460 ctataccccc taataacccc ttatcaattt aagaaataat ccgcataagc ccccgcttaa 5520 aaattggtat cagagccatg aataggtcta tgaccaaaac tcaagaggat aaaacctcac 5580 caaaatacga aagagttett aactetaaag ataaaagate ttteaagate aaaactagtt 5640 5674 ccctcacacc ggtgacgggg atcgcgatgg gtac

<210> 56

<211> 6046

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: binary vector pSUN1

<400> 56

ttccatggac atacaaatgg acgaacggat aaaccttttc acgccctttt aaatatccga 60

gtcacacatg taagtgactg atataaaaga gaaaaaaggc gatttttccg cctaaaactc 3540 tttaaaactt attaaaactc ttaaaacccg cctggcctgt gcataactgt ctggccagcg 3600 cacagoogaa gagotgoaaa aagogootao cottoggtog otgogotoco tacgoocogo 3660 cgcttcgcgt cggcctatcg cggccgctgg ccgctcaaaa atggctggcc tacggccagg 3720 caatctacca gggcgcggac aagccgcgcc gtcgccactc gaccgccggc gcccacatca 3780 aggeaccetg cetegegegt theggtgatg aeggtgaaaa cetetgaeae atgeagetee 3840 cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 3900 cgtcagcggg tgttggcggg tgtcggggcg cagccatgac ccagtcacgt agcgatagcg 3960 gagtgtatac tggcttaact atgcggcatc agagcagatt gtactgagag tgcaccatat 4020 gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc 4080 ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca 4140 ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg 4200 agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca 4260 taggeteege eeceetgaeg ageateaeaa aaategaege teaagteaga ggtggegaaa 4320 cccgacagga ctataaagat accaggegtt teeceetgga ageteeeteg tgegetetee 4380 tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc 4440 gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct 4500 gggctgtgtg cacgaaccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg 4560 tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag 4620 gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta 4680 cggctacact agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg 4740 aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt 4800 tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt 4860 ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgca 4920 tgatatatct cccaatttgt gtagggctta ttatgcacgc ttaaaaataa taaaagcaga 4980 cttgacctga tagtttggct gtgagcaatt atgtgcttag tgcatctaac gcttgagtta 5040 agccgcgccg cgaagcggcg tcggcttgaa cgaatttcta gctagacatt atttgccgac 5100 taccttggtg atctcgcctt tcacgtagtg gacaaattct tccaactgat ctgcgcgcga 5160 ggccaagcga tcttcttctt gtccaagata agcctgtcta gcttcaagta tgacgggctg 5220 atactgggcc ggcaggcgct ccattgccca gtcggcagcg acatccttcg gcgcgatttt 5280 geeggttact gegetgtace aaatgeggga caaegtaage actacattte geteategee 5340 ageceagteg ggeggegagt tecatagegt taaggtttea tttagegeet caaatagate 5400 ctgttcagga accggatcaa agagttcctc cgccgctgga cctaccaagg caacgctatg 5460 ttctcttgct tttgtcagca agatagccag atcaatgtcg atcgtggctg gctcgaagat 5520 acctgcaaga atgtcattgc gctgccattc tccaaattgc agttcgcgct tagctggata 5580 acgccacgga atgatgtcgt cgtgcacaac aatggtgact tctacagcgc ggagaatctc 5640 gctctctcca ggggaagccg aagtttccaa aaggtcgttg atcaaagctc gccgcgttgt 5700 ttcatcaagc cttacggtca ccgtaaccag caaatcaata tcactgtgtg gcttcaggcc 5760 gccatccact gcggagccgt acaaatgtac ggccagcaac gtcggttcga gatggcgctc 5820 gatgacgcca actacctctg atagttgagt cgatacttcg gcgatcaccg cttcccccat 5880 gatgtttaac tttgttttag ggcgactgcc ctgctgcgta acatcgttgc tgctccataa 5940 catcaaacat cgacccacgg cgtaacgcgc ttgctgcttg gatgcccgag gcatagactg 6000 6046 taccccaaaa aaacagtcat aacaagccat gaaaaccgcc actgcg

```
<210> 57
```

<400> 57
cgaattcact ggccgtcgtt ttacaacgac tcagctgctt ggtaataatt gtcattagat 60
tgtttttatg catagatgca ctcgaaatca gccaatttta gacaagtatc aaacggatgt 120
taattcagta cattaaagac gtccgcaatg tgttattaag ttgtctaagc gtcaatttgt 180
ttacaccaca atatatcctg ccaccagcca gccaacagct ccccgaccgg cagctcggca 240
caaaatcacc acgcgttacc accacgccgg ccggccgcat ggtgttgacc gtgttcgccg 300

<211> 9838

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: Transgenic expression vector for codA dsRNA pSUN1-codA-RNAi

gcattgccga gttcgagcgt tccctaatca tcgaccgcac ccggagcggg cgcgaggccg 360 ccaaggcccg aggcgtgaag tttggcccc gcctaccct caccccggca cagatcgcgc 420 acgcccgcga gctgatcgac caggaaggcc gcaccgtgaa agaggcggct gcactgcttg 480 qcqtqcatcg ctcgaccctg taccgcgcac ttgagcgcag cgaggaagtg acgcccaccg 540 aggccaggcg gcgcggtgcc ttccgtgagg acgcattgac cgaggccgac gccctggcgg 600 ccgccgagaa tgaacgccaa gaggaacaag catgaaaccg caccaggacg gccaggacga 660 accepttttc attaccgaag agatcgaggc ggagatgatc gcggccgggt acgtgttcga 720 gccgcccgcg cacgtctcaa ccgtgcggct gcatgaaatc ctggccggtt tgtctgatgc 780 caagetggeg geetggeegg ceagettgge egetgaagaa acegagegee geegtetaaa 840 aaggtgatgt gtatttgagt aaaacagctt gcgtcatgcg gtcgctgcgt atatgatgcg 900 atgagtaaat aaacaaatac gcaaggggaa cgcatgaagg ttatcgctgt acttaaccag 960 aaaggegggt caggeaagac gaccategea acceatetag eeegegeeet geaactegee 1020 ggggccgatg ttctgttagt cgattccgat ccccagggca gtgcccgcga ttgggcggcc 1080 gtgcgggaag atcaaccgct aaccgttgtc ggcatcgacc gcccgacgat tgaccgcgac 1140 gtgaaggcca tcggccggcg cgacttcgta gtgatcgacg gagcgcccca ggcggcggac 1200 ttggctgtgt ccgcgatcaa ggcagccgac ttcgtgctga ttccggtgca gccaagccct 1260 tacgacatat gggccaccgc cgacctggtg gagctggtta agcagcgcat tgaggtcacg 1320 gatggaagge tacaagegge etttgtegtg tegegggega teaaaggeae gegeategge 1380 ggtgaggttg ccgaggcgct ggccgggtac gagctgccca ttcttgagtc ccgtatcacg 1440 cagcgcgtga gctacccagg cactgccgcc gccggcacaa ccgttcttga atcagaaccc 1500 gagggcgacg ctgcccgcga ggtccaggcg ctggccgctg aaattaaatc aaaactcatt 1560 tgagttaatg aggtaaagag aaaatgagca aaagcacaaa cacgctaagt gccggccgtc 1620 cgagcgcacg cagcagcaag gctgcaacgt tggccagcct ggcagacacg ccagccatga 1680 agcgggtcaa ctttcagttg ccggcggagg atcacaccaa gctgaagatg tacgcggtac 1740 gccaaggcaa gaccattacc gagctgctat ctgaatacat cgcgcagcta ccagagtaaa 1800 tgagcaaatg aataaatgag tagatgaatt ttagcggcta aaggaggcgg catggaaaat 1860 caagaacaac caggcaccga cgccgtggaa tgccccatgt gtggaggaac gggcggttgg 1920 ccaggcgtaa gcggctgggt tgtctgccgg ccctgcaatg gcactggaac ccccaagccc 1980gaggaatcgg cgtgagcggt cgcaaaccat ccggcccggt acaaatcggc gcggcgctgg 2040 gtgatgacct ggtggagaag ttgaaggccg cgcaggccgc ccagcggcaa cgcatcgagg 2100 cagaagcacg ccccggtgaa tcgtggcaag cggccgctga tcgaatccgc aaagaatccc 2160 ggcaaccgcc ggcagccggt gcgccgtcga ttaggaagcc gcccaagggc gacgagcaac 2220 cagatttttt cgttccgatg ctctatgacg tgggcacccg cgatagtcgc agcatcatgg 2280 acgtggccgt tttccgtctg tcgaagcgtg accgacgagc tggcgaggtg atccgctacg 2340 agettecaga egggeaegta gaggttteeg eagggeegge eggeatggee agtgtgtggg 2400 attacgacct ggtactgatg gcggtttccc atctaaccga atccatgaac cgataccggg 2460 aagggaaggg agacaagccc ggccgcgtgt tccgtccaca cgttgcggac gtactcaagt 2520 tctgccggcg agccgatggc ggaaagcaga aagacgacct ggtagaaacc tgcattcggt 2580 taaacaccac gcacgttgcc atgcagcgta cgaagaaggc caagaacggc cgcctggtga 2640 cggtatccga gggtgaagcc ttgattagcc gctacaagat cgtaaagagc gaaaccgggc 2700 ggccggagta catcgagatc gagctagctg attggatgta ccgcgagatc acagaaggca 2760 agaacccgga cgtgctgacg gttcaccccg attacttttt gatcgatccc ggcatcggcc 2820 gttttctcta ccgcctggca cgccgcgcg caggcaaggc agaagccaga tggttgttca 2880 agacgatcta cgaacgcagt ggcagcgcg gagagttcaa gaagttctgt ttcaccgtgc 2940 gcaagctgat cgggtcaaat gacctgccgg agtacgattt gaaggaggag gcggggcagg 3000 ctggcccgat cctagtcatg cgctaccgca acctgatcga gggcgaagca tccgccggtt 3060 cctaatgtac ggagcagatg ctagggcaaa ttgccctagc aggggaaaaa ggtcgaaaag 3120 gtctctttcc tgtggatagc acgtacattg ggaacccaaa gccgtacatt gggaaccgga 3180 acceptacat tgggaaccca aagceptaca ttgggaaccg gtcacacatg taagtgactg 3240 atataaaaga gaaaaaaggc gatttttccg cctaaaactc tttaaaactt attaaaactc 3300 ttaaaacccg cctggcctgt gcataactgt ctggccagcg cacagccgaa gagctgcaaa 3360 aagcgcctac cetteggteg etgegeteee taegeeeege egettegegt eggeetateg 3420 eggeegetgg eegeteaaaa atggetggee taeggeeagg caatetaeca gggegeggae 3480 aageegegee gtegeeacte gaeegeegge geeeacatea aggeaceetg eetegegegt 3540 ttcggtgatg acggtgaaaa cctctgacac atgcagctcc cggagacggt cacagcttgt 3600 ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg cgtcagcggg tgttggcggg 3660 tgtcggggcg cagccatgac ccagtcacgt agcgatagcg gagtgtatac tggcttaact 3720

atgcggcatc agagcagatt gtactgagag tgcaccatat gcggtgtgaa ataccgcaca 3780 gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc ttcctcgctc actgactcgc 3840 tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt 3900 tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg 3960 ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc cccctgacg 4020 aqcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat 4080 accaggegtt tececetgga ageteceteg tgegetetee tgtteegace etgeegetta 4140 ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct 4200 gtaggtatet cagtteggtg taggtegtte getecaaget gggetgtgtg caegaacece 4260 ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa 4320 gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg 4380 taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag 4440 tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt 4500 gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta 4560 cqcqcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc 4620 agtggaacga aaactcacgt taagggattt tggtcatgca tgatatatct cccaatttgt 4680 gtagggctta ttatgcacgc ttaaaaataa taaaagcaga cttgacctga tagtttggct 4740 gtgagcaatt atgtgcttag tgcatctaac gcttgagtta agccgcgccg cgaagcggcg 4800 tcggcttgaa cgaatttcta gctagacatt atttgccgac taccttggtg atctcgcctt 4860 tcacgtagtg gacaaattct tccaactgat ctgcgcgcga ggccaagcga tcttcttctt 4920 gtccaagata agcctgtcta gcttcaagta tgacgggctg atactgggcc ggcaggcgct 4980 ccattgccca gtcggcagcg acatccttcg gcgcgatttt gccggttact gcgctgtacc 5040 aaatgcggga caacgtaagc actacatttc gctcatcgcc agcccagtcg ggcggcgagt 5100 tccatagcgt taaggtttca tttagcgcct caaatagatc ctgttcagga accggatcaa 5160 agagtteete egeegetgga eetaceaagg caacgetatg ttetettget tttgteagea 5220 agatagecag atcaatgteg atcgtggetg getegaagat acetgeaaga atgteattge 5280 gctgccattc tccaaattgc agttcgcgct tagctggata acgccacgga atgatgtcgt 5340 cgtgcacaac aatggtgact tctacagcgc ggagaatctc gctctctcca ggggaagccg 5400 aagtttccaa aaggtcgttg atcaaagctc gccgcgttgt ttcatcaagc cttacggtca 5460 ccgtaaccag caaatcaata tcactgtgtg gcttcaggcc gccatccact gcggagccgt 5520 acaaatgtac ggccagcaac gtcggttcga gatggcgctc gatgacgcca actacctctg 5580 atagttgagt cgatacttcg gcgatcaccg cttcccccat gatgtttaac tttgttttag 5640 ggcgactgcc ctgctgcgta acatcgttgc tgctccataa catcaaacat cgacccacgg 5700 cgtaacgcgc ttgctgcttg gatgcccgag gcatagactg taccccaaaa aaacagtcat 5760 aacaagccat gaaaaccgcc actgcgttcc atggacatac aaatggacga acggataaac 5820 cttttcacgc ccttttaaat atccgattat tctaataaac gctcttttct cttaggttta 5880 cccgccaata tatcctgtca aacactgata gtttaaactg aaggcgggaa acgacaatca 5940 gatctagtag gaaacagcta tgaccatgat tacgccaagc ttgcatgcct gcaggtcgac 6000 tctagactag tggatccgat atcgcccggg ctcgaggtac ccatcgcgat ccccgtcacc 6060 ggtgtgaggg aactagtttt gatcttgaaa gatcttttat ctttagagtt aagaactctt 6120 tegtattttg gtgaggtttt atectettga gttttggtea tagacetatt catggetetg 6180 ataccaattt ttaagcgggg gcttatgcgg attattctt aaattgataa ggggttatta 6240 gggggtatag ggtataaata caagcattcc cttagcgtat agtataagta tagtagcgta 6300 cctctatcaa atttccatct tcttaccttg cacagggcct gcaaccttat ccttccttgt 6360 cttcctcctt ccttccgtcc acttcatcat atttaaacca aacctacggg ggagtcaacg 6420 taaccaaccc tgccttagca tcttttccct aacggcctcc tgcctaagcg gtacttctag 6480 cttcgaacgg cgtctgggct ccaggtttag tcgtctcgtg tctggtttat attcacgaca 6540 aagatctata gggactttag gagatctgga ttttagtact ggattttggt tttaggaatt 6600 agaaatttta ttgatagaag tattttacaa atacaaatac atactaaggg tttcttatat 6660 gctcaacaca tgagcgaaac cctataagaa ccctaanttc cccttatcgg gaaactactc 6720 agogtacoga attoggotaa cagtgtogaa taacgottta caaacaatta ttaacgooog 6840 gttaccaggc gaagagggc tgtggcagat tcatctgcag gacggaaaaa tcagcgccat 6900 tgatgcgcaa tccggcgtga tgcccataac tgaaaacagc ctggatgccg aacaaggttt 6960 agttataccg ccgtttgtgg agccacatat tcacctggac accacgcaaa ccgccggaca 7020 accgaactgg aatcagtccg gcacgctgtt tgaaggcatt gaacgctggg ccgagcgcaa 7080 agogttatta acccatgacg atgtgaaaca acgcgcatgg caaacgctga aatggcagat 7140

tgccaacggc attcagcatg tgcgtaccca tgtcgatgtt tcggatgcaa cgctaactgc 7200 gctgaaagca atgctggaag tgaagcagga agtcgcgccg tggattgatc tgcaaatcgt 7260 cgccttccct caggaaggga ttttgtcgga tccggtgata cctgcacatc aacaaatttt 7320 ggtcatatat tagaaaagtt ataaattaaa atatacacac ttataaacta cagaaaagca 7380 attgctatat actacattct tttattttga aaaaaatatt tgaaatatta tattactact 7440 aattaatgat aattattata tatatatcaa aggtagaagc agaaacttac gtagtcgacg 7500 acaaaatccc ttcctgaggg aaggcgacga tttgcagatc aatccacggc gcgacttcct 7560 gcttcacttc cagcattgct ttcagcgcag ttagcgttgc atccgaaaca tcgacatggg 7620 tacgcacatg ctgaatgccg ttggcaatct gccatttcag cgtttgccat gcgcgttgtt 7680 tcacatcgtc atgggttaat aacgctttgc gctcggccca gcgttcaatg ccttcaaaca 7740 gcgtgccgga ctgattccag ttcggttgtc cggcggtttg cgtggtgtcc aggtgaatat 7800 gtggctccac aaacggcggt ataactaaac cttgttcggc atccaggctg ttttcagtta 7860 tgggcatcac gccggattgc gcatcaatgg cgctgatttt tccgtcctgc agatgaatct 7920 gccacagccc ctcttcgcct ggtaaccggg cgttaataat tgtttgtaaa gcgttattcg 7980 acactgttag ccaagettge atgeetgeag gtegagtett tgttttttae tttggtteat 8040 gacactcaga gacttgagag aagcaatata tagacttttt tttgttttt ttttgtggtc 8100 acgtttattt tcctattgga gacggtaacg aagatcgaac ctgtggtgga aatgaaacaa 8160 ggtgggacta gcccacgtgg tttctttct ctgcattgat ttgtttttgt ttttttgta 8220 aagttcacat caaacctact aataattgag aagaaaaata aaatctattg attgattaaa 8280 ccagccgatg ctttatgtct gaatataaaa aagaagtgaa aaccccgttt aagaattaca 8340 acggtggttt acaaagtatt tggacacaat aaatccaaac gaaataaaac aaaatggaga 8400 actaccaaat aaaaaacaaa taaaaaactt aaaagaattt attccatttt ttttcccgta 8460 gaatttattc ttttatggat tccttaaatc catatttgat gcattttgat tcctcataat 8520 aggtaataat atatactatg ttatagatat gtttctaatt cgtattaacc tacctttttt 8580 tggtcgtacg attctaccta ataatattga acggaattga tgttttggac cacttagaaa 8640 gtattttttt tttggtttgt cttagctgta tttcattaaa tataaattta aataagaaat 8700 gtcataaata aaatttgacg tatagatttt ttaaatccat tttatgttat ttaatatttg 8760 aaatgtgagt ttggctccta tttaatctta ggatgggtta atactaagtt ttccttaatg 8820 aattatctca gagaaactgg attaaataaa ctaaaaaata gatcaatgtg ttttggtccg 8880 gtcaaatatc tttggattta ctattattgg cgaaaagaaa gtctcatata gtaaatcata 8940 ttcctacaag agaaatcaaa atttttgaat taacatggat tgtatagttt cttatataac 9000 caattagttc gcatcaagaa aaccaaaccc caattaataa tcaaacgggc ttggtaggaa 9060 tatttcattg cagctttcag ataaaagaaa aaaacacaca ctcaagtctt ttatttcatc 9120 tttcttactt gcaggaactc aaattccact ttgccacttt tctttacaaa taaacacaaa 9180 ttgtcaatga aacgaaatag tctttttatg caaacactgt ttgtcttttt tcgatcacgt 9240 ttctgattgt gacagccatc catatatata gggaatgtaa aacaacaaca tgtgaagtca 9300 catatacgta atggtttagc atagcttcta ttttcgttgt caatattagt cattccaaaa 9360 catttttaag aaaaataaat taatatatgt atattcttgg aactaatgta tgtggaaata 9420 cagtaactta attattaaac attctaaatg caaatatgca aagaaaaaaa agaaaagaac 9480 acaactgaaa tcaaagccag attcataata attggctaca tggttgtaga atgtagggta 9540 acacaacatc cagaattgaa cactcaaatt ggatgataga tggataatct ttagatacaa 9600 gagaattggt tctcttccat tattaacgaa aataaagaaa aaaagtttag cataaaagtt 9660 tgaaactcaa cataacattt tgaacttgac teetteatag gagtgacatg aactgacgaa 9720 tcacaaccga ttacttgttt gagtcatctt ccgctttctc caccttcgaa atgaatgtga 9780 ccggtttctt cgggtgctca tttacggtca agtgtaaaac atctggtctc gacgagct

Fig. 1

Fig. 2-A

Fig. 2-B

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7