Geometry Unit 2: Angles Bronx Early College Academy

Christopher J. Huson PhD

28 September - 7 October 2022

2.1 Angle notation, measures	28 September
2.2 Angle addition, angle pairs	29 September
2.3 Vertical angles	30 September
2.4 Angle bisectors	3 October
2.5 Equilateral, isosceles \triangle angles	4 October
2.6 Review	6 October
2.7 Unit 2 test: Angle measures	7 October

Open Middle: complementary and supplementary puzzle

Learning Target: I can measure angles

CCSS: HSG.CO.A.1 Know precise geometric definitions

2.1 Wednesday 28 Sept

Do Now: Which takes longer, for a clock's hour hand to go from the 1 to the 4 or the 5 to the 9?

Lesson: Angle measures, internal, external, acute, obtuse, right

Learning Target: I can measure angles

CCSS: HSG.CO.A.1 Know precise geometric definitions

2.1 Wednesday 28 Sept

Do Now: Which takes longer, for a clock's hour hand to go from the 1 to the 4 or the 5 to the 9?

Lesson: Angle measures, internal, external, acute, obtuse, right

Two rays with a common endpoint make an angle

Rays \overrightarrow{BA} and \overrightarrow{BC} , vertex B.

Angle Two rays with a common endpoint, $\angle ABC$ or $\angle B$ Vertex The common end point of two rays making an angle Interior Inside, the area between the two rays Exterior Outside, the area in the angle interior

Two rays with a common endpoint make an angle

Rays \overrightarrow{BA} and \overrightarrow{BC} , vertex B.

Angle Two rays with a common endpoint, $\angle ABC$ or $\angle B$ Vertex The common end point of two rays making an angle Interior Inside, the area between the two rays Exterior Outside, the area in the angle interior $m\angle A$ The "measure" of angle A, how big it is

Babylonian measures: 360° in a circle

Full turn A complete rotation, 360° Half turn A straight line, 180°

Quarter turn A right angle, 90°

Protractor A tool for measuring angles

Babylonian measures: 360° in a circle

Full turn A complete rotation, 360°

Half turn A straight line, 180°

Quarter turn A right angle, 90°

Protractor A tool for measuring angles

Angle terminology and notation

Write definitions in your notebook

Angle Q, written $\angle Q$ (also $\angle PQR$, $\angle 1$)

Point *Q* is the *vertex*

The sides or *legs* are \overrightarrow{QR} , \overrightarrow{QP}

Right angle measuring 90°, mark as small square \square , Perpendicular lines meet at right angles. $\overline{AB} \perp \overline{CD}$

Acute angles measure $< 90^{\circ}$

Obtuse angles are $90^{\circ} < m \angle < 180^{\circ}$

Straight angle or a straight line measures 180°

Reflex angles measure $180^{\circ} < m \angle < 360^{\circ}$

Learning Target: I can solve for angle measures

CCSS: HSG.CO.A.1 Know precise geometric definitions 2.2 Thursday 29 Sept

Do Now: Given \overline{LMN} , LM = 2x - 3, MN = x + 7, LN = 4x. Find x. Don't forget to check the solution.

Name the geometry postulate that is the basis for this problem.

Lesson: Angle addition postulate, complementary, supplementary angles, linear pairs

Angle addition postulate

$$m\angle ABD = 30^{\circ}$$
, $m\angle DBC = 45^{\circ}$. Find $m\angle ABC$.

Angle addition The sum of the measures of *adjacent* angles is the measure of their combined angle. (postulate)

$$m\angle ABD + m\angle DBC = m\angle ABC$$

Adjacent "next to" each other. Adjacent angles share a common ray and are external to each other.

Special angle pairs

Linear pair, supplementary $\angle s$

Complementary angles

Linear pair Two adjacent angles that make a straight line Opposite rays collinear with a common endpoint. e.g. \overrightarrow{BA} , \overrightarrow{BC} Supplementary Angles whose measures sum to 180° Complementary Angles whose measures sum to 90° Adjacent "next to" each other. Adjacent angles share a common ray and are external to each other.

Given two supplementary angles, a linear pair.

 $m\angle ABD = 4x + 16$, $m\angle CBD = 100$. Find x.

Given two supplementary angles, a linear pair.

$$m\angle ABD = 4x + 16$$
, $m\angle CBD = 100$. Find x .

Solution:

$$m\angle ABD + m\angle CBD = 180$$

Given two supplementary angles, a linear pair.

$$m\angle ABD = 4x + 16$$
, $m\angle CBD = 100$. Find x.

Solution:

$$m\angle ABD + m\angle CBD = 180$$

$$(4x + 16) + 100 = 180$$
...
 $x = 16$

Check:

$$[4(16) + 16] + 100 = 180 \checkmark$$

Extension (optional problems)

At midnight both the clock's minute hand and hour hand point in the same direction. When is the next time the clock hands coincide?

Learning Target: I can identify vertical angles

CCSS: HSG.CO.A.1 Know precise geometric definitions 2.3 Friday 30 September

Do Now: Check your knowledge of angle pairs

- 1. Complementary angles sum to how many degrees?
- 2. Supplementary angles sum to how many degrees?
- 3. Given complementary angles $m\angle A = 30^{\circ}$. Find $m\angle B$.
- 4. Given intersecting lines. $m\angle 1 = 110^{\circ}$. Find $m\angle 2$.

$$\begin{array}{c|c} m \angle 1 = 110^{\circ} & m \angle 2 = ? \\ & & \end{array}$$

Lesson: Vertical angles

Intersecting lines make two pairs of congruent angles

Angles *opposite* each other match:

 $\angle 1 \cong \angle 3$. $\angle 2 \cong \angle 4$

Vertical angles Opposite each other when two lines intersect. $\angle 1$ and $\angle 3$ are vertical angles, as are $\angle 2$ and $\angle 4$.

Opposite Across from each other. (opposite angles and vertical angles means the same thing)

Use vertical angles to solve for x

Given vertical angles measuring 4x + 4 and 52° . Find x.

Use vertical angles to solve for x

Given vertical angles measuring 4x + 4 and 52° . Find x.

Solution:

$$4x + 4 = 52$$

$$x = 12$$

Check:

$$4(12) + 4 = 52 \checkmark$$

Extension: Use logic to show vertical angles are congruent

Given intersecting lines making angles $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$.

Prove $\angle 2 \cong \angle 4$.

Linear pairs are supplementary

$$m\angle 2 + m\angle 1 = 180$$

$$m\angle 4 + m\angle 1 = 180$$

Both equal 180, so they are equal (transitive property of equality)

$$m\angle 2 + m\angle 1 = m\angle 4 + m\angle 1$$

Subtract m∠1 from both sides (cancellation law)

link

$$\angle 2 \cong \angle 4$$
 Q.E.D.

Learning Target: I can bisect angles

CCSS: HSG.CO.A.1 Know precise geometric definitions

2.4 Monday 3 October

Do Now: Given vertical angles measuring 7x - 2 and 61° . Find x.

Lesson: Angle bisector situations

Bisect an angle by dividing it exactly in half

 \overrightarrow{BD} bisects $\angle ABC$ if and only if $\angle ABD \cong \angle CBD$.

Angle bisector ray dividing an angle into two congruent angles

Hash marks mark congruent angles

Model angle situations with algebra, then solve

Given angle bisector \overrightarrow{BD} with m $\angle ABD = 60^{\circ}$ and m $\angle CBD = 2x + 10$. Find x.

Model angle situations with algebra, then solve

Given angle bisector \overrightarrow{BD} with $m\angle ABD = 60^{\circ}$ and $m\angle CBD = 2x + 10$. Find x.

Solution:

$$\angle ABD \cong \angle CBD$$

$$2x + 10 = 60$$

$$2x = 50$$

$$x = 25$$

Check:
$$2(25) + 10 = 60?$$
 \checkmark

Extension: Use angles for compass directions

North South East West, points of the compass

Directions are measured relative to North

Bearing The direction as an angle *clockwise* from north Clockwise The direction the clocks turn, "to the right" (tighten) Counterclockwise Opposite of clocks, "to the left" (loosen)

Extension: Use angles for compass directions

North South East West, points of the compass

Directions are measured relative to North

Bearing The direction as an angle *clockwise* from north Clockwise The direction the clocks turn, "to the right" (tighten) Counterclockwise Opposite of clocks, "to the left" (loosen)

LT: I can work with equilateral and isosceles-right \triangle s

CCSS: HSG.CO.A.1 Know precise geometric definitions 2.5 Tuesday 4 October

Do Now: Given perpendiculars $\overrightarrow{AB} \perp \overrightarrow{BC}$, and that the ray \overrightarrow{BD} bisects $\angle ABC$, making two angles, $\angle 1$ and $\angle 2$.

Find the measures of $\angle 1$, $\angle 2$.

Lesson: Isosceles base theorem, special triangles 60° - 60° - 60° , 30° - 60° - 90° , 45° - 45° - 90°

Equilateral \triangle , special relationships and measures

Equilateral \triangle , special relationships and measures

Equiangular means having equal angles
Equilateral having equal sides

The base angles of an isosceles triangle are congruent

Isosceles base theorem: If $\overline{AC} \cong \overline{BC}$ then $\angle A \cong \angle B$

Base angles \angle s opposite the congruent sides in an isosceles \triangle Included angle The angle between two given sides of a triangle $(\angle C$ is included between \overline{AC} and \overline{BC})

Theorem Something we can prove using logic

lsosceles-right triangles' angles measure 45° - 45° - 90°

Hypotenuse the longest side of a right triangle, opposite the 90° angle

Multiple step problem: apply your knowledge

Given isosceles triangle with $\overline{SU}\cong \overline{TU}$, m $\angle RSU=115^{\circ}$.

1. Find m∠*TSU*

2. Find $m \angle T$

Extension: Radian units for angle measures

Mathematicians use radians because calculations are simpler

Convert *units*: $360^{\circ} = 2\pi$ radians:

Degree One 360th of a full turn

Radian A full circle is 2π radians. 1 radian $\approx 57^{\circ}$

Gradian One 400th of a full turn

LT: I can review length and angle measures with peers

CCSS: HSG.CO.A.1 Know precise geometric definitions 2.6 Thursday 6 October

Angle concepts and theorems you have learned

- 1. Angle addition situations
- 2. Angle pairs
 - $2.1~\perp$ lines and complementary angles make 90°
 - 2.2 Vertical \angle s are \cong
- 3. Angle bisectors
- 4. Isosceles base angle theorem, special triangles

Learning Target: I can quantify angles

CCSS: HSG.CO.A.1 Know precise geometric definitions 2.7 Friday 7 October

Unit test

Open Middle problem (fun)

Use digits from 0 to 9. Using a digit no more than once.

The first two angle measures are complementary. The second two angles supplementary. (degrees)

