Solició PROVA 2 (GRUPTF).

1

Demostrein que la successió $\left\{ a_n = \left(\frac{n+5}{2n+1} \right) \right\}_{n \in \mathbb{N}}$ es convergent a $\frac{1}{2}$. Hem de veure que $\forall \xi > 0$ provi petit, $\exists no(\xi) \in \mathbb{N}$ tq $|a_n - \frac{1}{2}| < \xi$ $\forall n > no(\xi)$.

$$\left| \frac{n+5}{2n+1} - \frac{1}{2} \right| = \left| \frac{9}{4n+2} \right| = \frac{9}{4n+2} \angle E$$

Ho volem

$$\frac{9}{4n+2} \angle \xi \iff n > \left(\frac{9}{\xi} - 2\right) / 4$$

Per tant, prenent $h_0 = \left[\left(\frac{9}{\epsilon} - 2 \right) / 4 \right] + 1 \cdot \epsilon_{11} \sqrt{3}$

· Consideren E = 0.05, done i ho(E) EIN/.

$$h_0(0.05) = \left[\left(\frac{9}{0.05} - 2 \right) / 4 \right] + 1 = \left[44'5 \right] + 1 = 45$$

· Doneu el valor de la cota superior mes petita:

(an) nes decrecrement ja que antizan.

$$a_{n+1} < a_n < > \frac{(n+1)+5}{2(n+1)+1} < \frac{n+5}{2n+1} < \frac{n+6}{2n+3} < \frac{n+5}{2n+1}$$

Per tant, la cota superior mes petita zera $a_1 = \frac{6}{3} = 2$.