Министерство образования РФ Астраханский государственный педагогический университет

Ю. Ю. Тарасевич

Система подготовки математической и естественнонаучной документации $\text{LAT}_{\text{E}} X \, 2_{\mathcal{E}}$

Home Page

Титульная страницс

Содержание

◄◀ **▶**▶

- ◀ - | - ▶

Страница 1 из 33

Назад

Full Screen

Закрыть

Выход

Астрахань, 2002

Home Page

Титульная страницо

Содержание

→

Страница 2 из 33

Наза∂

Full Screen

Закрыть

Выход

Юрий Юрьевич Тарасевич

Система подготовки математической и естественнонаучной документации $\mbox{\sc LT}_E X \ 2_{\varepsilon}$ Электронное учебное пособие. — Астрахань: Астраханский государственный педагогический университет, 2002.

© Тарасевич Ю. Ю., 2002

Содержание

1	Введение	4	
2	Первое знакомство с пакетом LATEX 2_{ε}	6	
3	Математические символы	13	
4	Шрифты	14	
5	Дроби, корни, пределы, суммы и произведения	17	
6	Матрицы	19	
7	Набор сложных формул	21	
8	Создание новых команд	23	
9	Плавающие иллюстрации и таблицы	24	
10	Создание списков	28	
11	Список литературы	30	
12	Этапы полготовки документа	32	

Home Page

Титульная страница

Содержание

•

Страница 3 из 33

Назад

Full Screen

Закрыть

1. Введение

Тех (читается «тех») — это система для подготовки математических и естественнонаучных текстов. Ее создатель — замечательный американский математик и программист Дональд Кнут, известный в нашей стране по переводу его классического многотомного труда «Искусство программирования для ЭВМ» и недавно вышедшей книги «Конкретная математика». Сам Д. Кнут пишет, что к созданию собственной издательской системы его подтолкнул печальный опыт издания его работ Американским математическим обществом. В конце 70-х годов Д. Кнут создал систему, которая стала фактическим мировым стандартом для подготовки и обмена научных статей и монографий. Тех позволяет создавать оригиналы-макеты научных изданий высокого типографского качества. Важными преимуществами Тех'а являются его независимость от платформы и то, что он распространяется свободно. Полный вариант Тех'а можно найти по адресу ftp://ftp.dante.de/tex-archive/.

ТеХ является базовой системой, на его основе были созданы другие пакеты. Наиболее важным из них является разработка Лесли Лэмпорта \mbox{LTEX} (читается «латех»). Наиболее распространенной на сегодняшний день является версия $\mbox{LTEX} \ 2_{\mathcal{E}}$. Но на этой версии развитие \mbox{TeX}' а не остановилось. В настоящее время реализуется проект $\mbox{LTEX} \ 3$, направленный на улучшение и дополнение существующей версии.

Существует программа подготовки научной документации в среде Windows, в основу которой положен TEX. Это Scientific Word и его расширенная версия со встроенным процессором Maple Scientific WorkPlace.

Такие популярные системы компьютерной алгебры как Mathematica и

Home Page

Титульная страница

Содержание

44 >>>

→

Страница 4 из 33

Назад

Full Screen

Закрыть

Марle позволяют сохранять документы в формате \LaTeX а. Программа MathType, которую фирма Microsoft рекомендует использовать вместо Equation Editor, если вы набираете математические тексты, позволяет преобразовывать формулы в различные форматы \Tau EX'a.

Home Page

Титульная страница

Содержание

◄ →

◆

Страница 5 из 33

Назад

Full Screen

Закрыть

2. Первое знакомство с пакетом LATEX 2_{ε}

Знакомство с ГАТБХ, ом начнем с простейшей программы.

\label{trig}
\end{equation}

```
\documentclass[a4paper,12pt]{article}
\usepackage{lh,russian}
\begin{document}
\section{Первое знакомство с издательской системой}
\LaTeX~--- замечательная система
подготовки математических и естественнонаучных статей.
Вы без труда сможете набрать не только простое
математическое выражение вроде
\frac{\sin^2 x + \cos^2 x}{1, \sin^2 x} Ho и более сложное
$$
\int 0^{2 \pi i} \sin x dx = 0.
$$
\subsection{Автоматическая нумерация формул и ссылки}
В отличие от системы MS Word, \LaTeX\ автоматически
центрирует формулы, а также позволяет ссылаться на них.
\begin{equation}
\sin^2 x + \cos^2 x = 1
```

Home Page

Титульная страницо

Содержание

44 >>

→

Страница 6 из 33

Назад

Full Screen

Закрыть

```
Формула (\ref{trig}) называется \emph{основное тригонометрическое тождество.} \end{document}
```

В окончательном виде этот документ будет таким (см. рис. 1).

Разберем наш документ по строкам. Первая строка говорит о том, что наш документ создается в классе (стиле) article. Кроме этого стиля, можно использовать report для больших статей, book для книг, letter для писем, slides для слайдов и целый ряд других. Имя класса документа является обязательным параметром и указывается в фигурных скобках. Кроме того, в квадратных скобках указаны два необязательных параметра a4paper — размер бумаги A4 (по умолчанию используется letterpaper — размер бумаги, принятый в США) и 12pt — размер шрифта (по умолчанию используется шрифт 10pt). Необязательные параметры позволяют радикально менять внешний вид документа в целом. Список доступных параметров приведен в Таблице 1.

Вторая строка указывает, что дополнительно нужно использовать стилевые пакеты

russian, 1h, которые нужны для руссификации. Так следует писать при использовании emTeX в MS DOS. При работе с MiKTeX или TeXLive в Windows вместо этой строки следует вставить

```
\usepackage[T2A]{fontenc}
\usepackage[cp1251]{inputenc}
\usepackage[russian]{babel}
```

Эти две строки составляют преамбулу документа. Собственно документ

Home Page

Титульная страницо

Содержание

44 >>>

→

Страница 7 из 33

Назад

Full Screen

Закрыть

Первое знакомство с издательской системой

ЕТЕХ — замечательная система подготовки математических и естественнонаучных статей.

Вы без труда сможете набрать не только простое математическое выражение вроде $\sin^2 x + \cos^2 x = 1$, но и более сложное

 $\int_0^{2\pi} \sin x dx = 0.$

1.1 Автоматическая нумерация формул и ссылки

В отличие от системы MS Word, I/TEX автоматически центрирует формулы, а также позволяет ссылаться на них.

$$\sin^2 x + \cos^2 x = 1 \tag{1}$$

Формула (1) называется основное тригонометрическое тождество.

Рис. 1: Окончательный вид документа.

Home Page

Титульная страниц

Содержание

44 >>>

→

Страница 8 из 33

Назад

Full Screen

Закрыть

начинается командой \begin{document} и завершается \end{document}. Наверное, Вы уже догадались, что все команды начинаются с символа \.

Komanda \section создает раздел документа. В качестве обязательного аргумента указывается имя раздела. Ниже нам встретится сходная команда \subsection, создающая подраздел.

Текст можно набирать в произвольной форме, так как T_EX форматирует текст самостоятельно. Следует только помнить, что слова отделяются друг от друга пробелами (любым количеством), а абзацы — пустыми строками.

Команда \LaTeX генерирует логотип $\begin{subarray}{l} \begin{subarray}{l} \begin{su$

Формула внутри текста выделяется знаками \$ справа и слева, а выключная — знаками \$\$.

Имена функций задаются командами типа \sin, перед показателем степени (верхним индексом) следует значок ^ (кстати, для нижних индексов используют знак _).

Интегралы создаются командой \int, пределы интегрирования указываются как индексы. Для объединения нескольких символов в группу используют фигурные скобки. Так набран верхний предел интегрирования. При такой записи пределы интегрирования записываются возле знака интеграла. Чтобы пределы были записаны под и над интегралом, следует писать \int $\lim_{0^{\infty}} ^{2 \pi} \$

$$\int_{0}^{2\pi} \sin x \, dx.$$

Команда \backslash , вставляет маленький дополнительный пробел перед dx — так

Home Page

Титульная страницо

Содержание

↔

→

Страница 9 из 33

Назад

Full Screen

Закрыть

красивей (сравните с интегралом на стр. 8).

Кратные интегралы получаются при использовании команд \iint, \iiint, а контурный \oint.

$$\iint\limits_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint\limits_{C} P dx + Q dy$$

Эта формала была получена следующим образом:

\iint \limits_S \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right)\, dx \, dy =
\oint \limits_C P\, dx + Q \, dy

Греческие буквы записываются в виде команды, совпадающей с названием буквы: \alpha — α , \beta — β , \gamma — γ , \delta — δ . Имена заглавных букв начинаются с большой буквы: \Theta — Θ , \Psi — Ψ . Для заглавных греческих букв, начертания которых совпадают с латинскими буквами, команды не предусмотрены. Примерами могут служить заглавные буквы A (альфа) и B (бета). Некоторые буквы имеют два варианта начертания:

\phi	ϕ	\varphi	φ	\epsilon	ϵ	\varepsilon	ε
\sigma	σ	\varsigma	ς	\theta	θ	\vartheta	ϑ
\pi	π	\varpi	$\overline{\omega}$	\kappa	κ	\varkappa	×

Окружение equation создает пронумерованные формулы. Если такую формулу пометить командой \label, то на нее можно будет сослаться с помощью команды \ref{имя метки}.

Home Page

Титульная странице

Содержание

Страница **10** из **33**

Назад

Full Screen

Закрыть

¹Если подключить стилевой пакет amsmath, то станет доступной команда \eqref, которая автоматически ставит скобки вокруг номера формулы.

Упражнение 1. Наберите документ, приводимый в этом разделе (см. образец на стр. 8). Посмотрите, какое влияние на внешний вид документа оказывают необязательные параметры twocolumn, leqno, fleqn. Возможно ли добиться таких же эффектов в текстовом редакторе MS Word?

Home Page

Титульная страница

Содержание

44 | >>

◆ | **>**

Страница **11** из **33**

Назад

Full Screen

Закрыть

Таблица 1: Опции классов документов

10pt, 11pt, 12pt	Устанавливает размер основного шрифта документа.
	Если ни одна из этих опций не указана, подразумева-
	ется 10pt.
a4paper,	Определяет размер бумаги. По умолчанию подразуме-
letterpaper,	вается letterpaper.
a5paper,	bacten 100001papo1.
b5paper,	
executivepaper	
и legalpaper	
fleqn	Выключные формулы будут выровнены влево, а не от-
TIEdii	центрированы.
logno	* *
leqno	Формулы нумеруются слева, а не справа.
titlepage,	Задает титульные элементы в виде отдельной поло-
notitlepage	сы или в виде шапки. По умолчанию класс article
	делает титул-шапку, а report и book — титульную
	полосу.
twocolumn	Задает ЕТЕХ'у набор в два столбца.
twoside,	Выбирает одно- или двусторонний вывод. По умолча-
oneside	нию классы article и report используют односто-
	ронний вывод, класс book — двусторонний вывод.
openright,	Делает главы начинающимися или только на правой
openany	странице, или на первой доступной. Это не работает
	с классом article, так как он ничего не знает о
	главах. Класс report по умолчанию начинает главы
	на следующей странице, а класс book — на правой.

Home Page

Титульная страница

Содержание

← →

◆

Страница **12** из **33**

Назад

Full Screen

Закрыть

3. Математические символы

Среди огромного количества математических символов, которые имеются в пакете \LaTeX $2_{\mathcal{E}}$, при наборе математического текста часто встречаются лишь немногие. Некоторые полезные символы становятся доступны при подключении стилевого пакета amssymb.

\leqslant	\leq	\geqslant	≽	\in	\in	\forall	A
\varnothing	Ø	\approx	\approx	\notin	∉	\exists	3
\ne	\neq	\infty	∞	\aleph	X	\nabla	∇
\partial	∂	\pm	土	\cup	\bigcup	\cap	\cap

Home Page

Титульная страницо

Содержание

(()

◆

Страница 13 из 33

Назад

Full Screen

Закрыть

4. Шрифты

Имеются следующие семейства: rm — шрифты с засечками (обычно они используются по умолчанию), sf — шрифты без засечек (рубленные), tt — моноширинный шрифт (имитация печатной машинки).

Насыщенность шрифта шрифта может быть нормальной (md) или полужирной (bf).

Начертания могут быть прямое (up), курсивное (it), наклонное (sl) и капитель (sc).

Для перехода, например, на шрифт печатной машинки можно написать \texttt{моноширинный шрифт} или {\ttfamily моноширинный шрифт} или

\begin{ttfamily}
моноширинный шрифт
\end{ttfamily}

Во всех случаях результат будет одинаков — моноширинный шрифт Первый способ переключения — команда с аргументом, второй — декларативный (команда без аргумента), третий — с помощью окружения.

Home Page

Титульная страницо

Содержание

44 →

→

Страница 14 из 33

Наза∂

Full Screen

Закрыть

Команда с аргументом создается из последовательности \text, к которой добавляется характеристика шрифта: \texttt, \textbf, \textit и так далее.

Команда без аргумента создается из наименования характеристики шрифта, к которой добавлено family, series или shape:

\ttfamily, \bfseries, \itshape.

Команды смены шрифта могут идти в любой последовательности:

{\sffamily\mdseries\scshape этот фрагмент набран рубленным шрифтом, капителью обычной насыщенности}

ЭТОТ ФРАГМЕНТ НАБРАН РУБЛЕННЫМ ШРИФТОМ, КАПИТЕЛЬЮ ОБЫЧНОЙ НАСЫ-ЩЕННОСТИ.

Часто бывает необходимо сменить шрифт внутри математического выражения. Например, в типографском наборе векторы и матрицы принято изображать прямым полужирным шрифтом. Внутри формул перключение шрифтов осуществляется сходным образом, но имя команды начинается не c text, а c math. Например, для переключения на полужирный шрифт следует написать $\text{mathbf}\{v\}$, что дает v.

Внутри математических формул можно использовать рукописный шрифт \mathcal. Стилевой пакет amsfonts дает доступ к дополнительно к ажурному (\mathbb) и готическому (\mathfrak) шрифту. Например, \mathbb{Z}, \mathfrak{G}, \mathcal{R} дает

 $\mathbb{Z},\mathfrak{G},\mathcal{R}$

Кроме того, существуют шрифты различных размеров. Подобно смене шрифтов изменение рамеров возможно в виде команды с аргументом и декларативной форме.

Home Page

Титульная страница

Содержание

44 >>

→

Страница 15 из 33

Назад

Full Screen

Закрыть

Имеются следующие размеры

имеются следующие размеры				
\tiny	крохотный			
\scriptsize	размер индексов			
\footnotesize	размер сносок			
\small	маленький			
\normalsize	обычный размер			
\large	большой			
\Large	очень большой			
\LARGE	очень-очень большой			
\huge	огромный			
\Huge	колоссальный			

Home Page

Титульная страница

Содержание

44 >>

→

Страница **16** из **33**

Назад

Full Screen

Закрыть

5. Дроби, корни, пределы, суммы и произведения

Для получения дроби используется команда \frac{числитель} {знаменатель}, например \frac{a+b} {c+d} дает на печати

$$\frac{a+b}{c+d}$$

Если числитель или знаменатель состоят из одного символа, то фигурные скобки можно не ставить. Например, \frac ab дает

$$\frac{a}{b}$$
.

Чтобы получить корень, следует написать \sqrt[3]{1+x^2}

$$\sqrt[3]{1+x^2}$$

Необязательный аргумент в квадратных скобках — степень корня, обязательный аргумент — подкоренное выражение.

Предел задается командой \lim. Например, формула

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

была набрана следующим образом $f'(x) = \lim_{\Delta x \to 0}$ \frac{f(x + \Delta x) - f(x)} {\Delta x}

Home Page

Титульная страницо

Содержание

 \leftarrow

4 →

Страница **17** из **33**

Назад

Full Screen

Закрыть

Сумма задается командой \sum, например, \sum_{i=0}^n x_i дает

$$\sum_{i=0}^{n} x_i$$

Совершенно аналогично произведения задаются командой \prod. Например, \prod_{j = 1^{n} j = n! дает

$$\prod_{j=1}^{n} j = n!$$

Home Page

Титульная страница

Содержание

₩ →

Страница **18** из **33**

Назад

Full Screen

Закрыть

6. Матрицы

Для работы с матрицами лучше всего подключить стилевой пакет amsmath. Этот пакет делает доступным разработки Американского математического общества (AMS), первоначально реализованные в пакете $\mathcal{A}_{M}\mathcal{S}$ -LATEX. Новые возможности оказались настолько удобными, что вошли в реализацию LATEX $2_{\mathcal{E}}$ в качестве стандартных, доступных при использовании указанного стилевого пакета.

Пакет имеет несколько окружений для создания матриц: matrix, bmatrix, Bmatrix, pmatrix, vmatrix, Vmatrix. Элементы матрицы отделяются друг от друга знаком &, а строки — $\$ Например,

```
\begin{matrix}
                    a b c
a & b & c \\
d & e & f \\ дает d e f
                             q h i
q&h&i
\end{matrix}
\begin{pmatrix}
                            \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}
a & b & c \\
d & e & f \\
                    дает
q&h&i
\end{pmatrix}
\begin{vmatrix}
a & b & c \\
                    дает
d & e & f \\
q&h&i
\end{vmatrix}
```

Home Page

Титульная страницо

Содержание

44 >>>

→

Страница **19** из **33**

Назад

Full Screen

Закрыть

Упражнение 2. Исследуйте самостоятельно, какие матрицы получаются при использовании окружений bmatrix, Bmatrix, Vmatrix.

Home Page

Титульная страница

Содержание

44 | **>>**

→

Страница **20** из **33**

Назад

Full Screen

Закрыть

7. Набор сложных формул

Для набора системы уравнений удобно использовать окружение align. Следующий фрагмент демонстрирует пример применения этого окружения

\text{begin{align}} \text{x+y=4} \\ $x^2+y^2=4 \end{align} \text{x+y&=4} \\ (2) \text{x^2+y^2&=4} \end{align} \end{align}$

Знак & указывает позицию, по которой формулы будут выравниваться.

Если нужно поставить слева от системы фигурную скобку и нумеровать систему целиком, а не каждое уравнение, то фрагмент следует модернизировать так

Команд \left служит для создания больших ограничителей, в данном случае — большой фигурной скобки. Каждой команде \left должна соответствовать команда \right. В данном случае открывающей скобке не должна соответствовать закрывающая, поэтому использован фиктивный правый ограничитель \right.. Реально он не выводит никакого знака, а служит только для пары.

Home Page

Титульная страницо

Содержание

44 >>

←

Страница **21** из **33**

Назад

Full Screen

Закрыть

Вместо окружения align использована его модификация — aligned. Это окружение может быть использовано только внутри другого окружения. В данном случае — внутри окружения equation.

Окружение cases также может быть использовано только внутри другого окружения и бывает полезно при наборе определений вроде этого

$$\delta_{i,j} = \begin{cases} 1, & \text{ecли } i = j \\ 0, & \text{ecли } i \neq j \end{cases}$$
 \delta_{i,j} = \begin{cases} \text{ecли } i = j \\ 0, & \text{ecли } i \ne j \\ end{cases} \end{equation} \text{equation} \end{equation}

Здесь появилась новая команда \text, которая служит для вставки текста внутрь формул.

Иногда длинные формулы не помещаются на одной строке. В этом случае можно использовать окружение multline.

Для указания места разрыва строки вновь используется \\. Команда \cdots генерирует многоточие.

Home Page

Титульная страницо

Содержание

44 >>

←

Страница 22 из 33

Назад

Full Screen

Закрыть

8. Создание новых команд

Часто бывает необходимо ввести обозначение для новой функции. Например, может потребоваться интегральный синус. Если написать просто $\mathtt{Si}(\mathbf{x})$, то результат будет не совсем хорошим (Si(x)), поскольку имена функций принято писать прямым шрифтом. Можно, конечно, каждый раз менять шрифт, но если в тексте интегральный синус встречается часто, то такая смена шрифта может стать утомительной. Если подключен стилевой пакет amsmath, то лучше всего в преамбуле документа написать \mathbf{Si} \mathbf{Si} — теперь в нашем распоряжении появилась новая функция — \mathbf{Si} . Запись $\mathbf{Si}(\mathbf{x})$ приведет к результату $\mathbf{Si}(x)$.

Home Page

Титульная страница

Содержание

44 >>>

Страница **23** из **33**

Назад

Full Screen

Закрыть

9. Плавающие иллюстрации и таблицы

Для вставки иллюстрации в текст требуется подключить стилевой пакет graphicx.

\usepackage[dvips]{graphicx}

Параметр в квадратных скобках указывает на то, что будет использовано преобразование в формат PostScript.

Включение иллюстрации в текст осуществляется командой \includegraphics, например, так

\centerline{
\includegraphics*[width=0.5\linewidth]{fig1.eps}}

При этом в текст будет вставлен графический файл fig1 в формате Encapsulated PostScript. Следует иметь в виду, что именно этот графический формат (векторная графика фирмы Adobe) является общепринятым в научных публикациях и при научном обмене. Рисунок будет центрирован (команда \centerline) и будет масштабирован так, чтобы его ширина составила половину ширины строки (необязательный парметр width=0.5\linewidth).

В большинстве случаев желательно, чтобы рисунок имел пояснительную надпись и был пронумерован. Хотелось бы иметь возможность ссылаться на него в тексте. Кроме того, положение рисунка в тексте должно выбираться автоматически. Все эти возможности предоставляет окружение figure.

```
\begin{figure}[!hb]
\centerline{
```

Home Page

Титульная страница

Содержание

H | **>>**

- ◀

Страница 24 из 33

Назад

Full Screen

Закрыть

```
\includegraphics*[width=0.5\linewidth]{fig1.eps}}
\caption{Пример вставки рисунка в текст.}
\label{fig1}
\end{figure}
```

Komanda \caption создает подпись под рисунком. Рисунок помечен (команда \label), теперь на него можно ссылаться (\ref{fig1} или \pageref{fig1}).

Инструкции !hb указывают наши пожелания о месте размешения иллюстрации. Это именно пожелания, а не команды, LATEX может их не выполнить, если они вступят в противоречие с правилами размещения плавающих объектов. Подробнее о правилах, действующих при размещении плавающих иллюстраций см. [3]. Следует иметь в виду, что алгоритм размещения плавающих иллюстраций допускает их появление до первого упоминания в тексте. Это противоречит отечественным правилам, поэтому рекомендуется подключать стилевой пакет flafter, обеспечивающий появление плавающих объектов только после их первого упоминания в тексте.

Таблица 2: Возможные варианты размещения иллюстраций

h	here	разместить здесь		
t	top	разместить вверху страницы		
b	bottom	разместить в нижней части страницы		
p	page	разместить на отдельной странице, целиком отведенной		
		под иллюстрации		
!		усиливает пожелание, перед которым стоит		

Home Page

Титульная страницо

Содержание

44 >>>

→

Страница **25** из **33**

Назад

Full Screen

Закрыть

По умолчанию реализуется вариант размещения tbp.

Сходным образом создаются плавающие таблицы. Например, таблица 2 была создана так

```
\begin{table}[h]
\caption{Boзмoжные варианты размещения иллюстраций}
\medskip
\begin{tabular}{|1|1|p{8cm}|}
\hline
h & here & paзместить здесь\\
t & top & paзместить вверху страницы\\
b & bottom & paзместить в нижней части страницы\\
p & page & paзместить на отдельной странице,
целиком отведенной под иллюстрации\\
! & & усиливает пожелание, перед которым стоит\\
\hline
\end{tabular}
\label{table1}
\end{table}
```

Окружение tabular в данном случае создает таблицу из 3-х колонок, две первые выравниваются по левому краю, а последняя имеет ширину 8 см. Колонки отделены друг от друга вертикальными линиями. \\ указывает на окончание строки, а & — на конец колонки. \hline создает горизонтальную линию. Список допустимых параметров приведен в таблице 3

Home Page

Титульная страницо

Содержание

→

→

Страница **26** из **33**

Назад

Full Screen

Закрыть

Таблица 3: Варианты форматирования таблицы

1	left	выровнять столбец по левому краю
r	right	выровнять столбец по правому краю
c	center	центрировать столбец
p{Ncm}	paragraph	создать колонку шириной N см
		провести вертикальную линию между столбцами

Home Page

Титульная страница

Содержание

44 >>>

←

Страница **27** из **33**

Назад

Full Screen

Закрыть

10. Создание списков

LATEX позволяет создавать списки различного вида. Окружение enumerate создает нумерованный список, а itemize — непронумерованный (перечень). Списки могут быть вложены один в другой, образуя многоуровневые списки. Элементы списков вводятся командой \item (см. пример ниже).

```
Имеется большое количество программных продуктов,
облегчающих проведение научных исследований и подготвку
публикаций:
\begin{enumerate}
 \item Пакеты символических преобразований
      (компьютерной алгебры)
   \begin{itemize}
     \item Mathematica
     \item Maple
   \end{itemize}
 \item Пакеты для проведения расчетов
   \begin{enumerate}
     \item Matlab
     \item Mathcad
   \end{enumerate}
 \item Пакеты для подготовки научных текстов
   \begin{enumerate}
```

Home Page

Титульная страницо

Содержание

44 >>>

→

Страница **28** из **33**

Назад

Full Screen

Закрыть

```
\item Scientific WorkPlace
\item Math Office
\item MiKTeX
\end{enumerate}
```

\end{enumerate}

Имеется большое количество программных продуктов, облегчающих проведение научных исследований и подготвку публикаций:

- 1. Пакеты символических преобразований (компьютерной алгебры)
 - Mathematica
 - Maple
- 2. Пакеты для проведения расчетов
 - (a) Matlab
 - (b) Mathcad
- 3. Пакеты для подготовки научных текстов
 - (a) Scientific WorkPlace
 - (b) Math Office
 - (c) MiKTeX

Home Page

Титульная страницо

Содержание

44 >>

▼

Страница **29** из **33**

Назад

Full Screen

Закрыть

11. Список литературы

Список литературы оформляется в виде окружения thebibliography.

\begin{thebibliography} {11}

\bibitem{lvovski}

Львовский~С.~М. Набор и верстка в пакете

\LaTeX. 2-е изд.~--- М.: Космосинформ, 1995.

\bibitem{companion}

Гуссенс~М., Миттельбах~Ф., Самарин~А.

Путеводитель по пакету \LaTeX.~--- М.: Мир, 1999.

\end{thebibliography}

На печати этот фрагмент будет выглядеть так

Список литературы

- Львовский С. М. Набор и верстка в пакете ВТЕХ. 2-е изд. — М.: Космосинформ, 1995.
- [2] Гуссенс М., Миттельбах Ф., Самарин А. Путеводитель по пакету ЕТЕХ. — М.: Мир, 1999.

Обязательный парметр указывает формат номера. Каждый пункт списка литературы начинается командой \bibitem{имя ссылки}. Обязательный параметр — имя ссылки — это то имя, которое будет использоваться при генерации сссылки, которая осуществляется командной \cite{имя ссылки}. Например, ссылка на книгу Львовского будет выглядеть так \cite{lvovski}.

Home Page

Титульная страницо

Содержание

44 >>

→

Страница 30 из 33

Назад

Full Screen

Закрыть

В отечественных изданиях обычно номера в списке литературы записывают иначе. Например, так 1. или так 1). Чтобы список литературы соответствовал отечественным традициям, следует в преамбуле документа написать

```
\makeatletter
\renewcommand{\@biblabel}[1]{#1.\hfill}
\makeatother
```

Home Page

Титульная страница

Содержание

↔

◆

Страница 31 из 33

Назад

Full Screen

Закрыть

12. Этапы подготовки документа

Документ можно набрать в любом текстовом редакторе. Файл должен иметь расширение tex. После обработки этого файла транслятором LATEX'а появятся файлы со следующими расширениями: log — протокол трансляции, аих — файл, содержащий информацию о перекрестных ссылках, dvi — (device indepenend) результат трансляции — готовый документ, toc — (table of contents) информация для оглавления, если создание оглавления предусмотрено в документе, и ряд других файлов, например, список рисунков, если это предусмотрено в документе.

С помощью dvi-драйвера полученный dvi-файл можно просмотреть на экране компьютера или распечатать.

Home Page

Титульная страницо

Содержание

↔

◆

Страница *32* из *33*

Назад

Full Screen

Закрыть

Список литературы

- [1] Львовский С. М. Набор и верстка в пакете LATEX. 2-е изд. М.: Космосинформ, 1995.
- [2] Котельников И. А., Чеботаев П. 3. Издательская система ${}^{\text{LT}}$ ЕХ 2_{ε} . Новосибирск: Сибирский хронограф, 1998.
- [4] Гуссенс М., Ратц С. Путеводитель по пакету \LaTeX и его Web-приложениям. М.: Мир, 2001.
- [5] Гуссенс М., Ратц С., Миттельбах Ф. Путеводитель по пакету РЕТЕХ и его графическим расширениям. М.: Мир, 2002.
- [6] Говорухин В., Цибулин В. Компьютер в математическом исследовании. Учебный курс. Спб.: Питер, 2001. 624 с.: ил.

Home Page

Титульная страница

Содержание

Страница 33 из 33

Назад

Full Screen

Закрыть