FORM PTO-1449 (Page 2) U.S. Department of Commerce Patent and Trademark Office	Docket No. (Optional) INVIT1250-4	Serial No.: 09/825,852	#8
COPY OF PAPERS ORIGINALLY FILED	Applicant(s): Jay M. Short		
INCORMATEON DISCLOSURE STATEMENT BY APPLICANT	Filing Date: 04/03/2001	Group Art Unit: 1627	

RECEIVED

FEB 2 1 2002

U.S. PATENT DOCUMENTS

		CIDITITE	T BOCCMENTS			ACUTED 1600/00	anı
	DOCUMENT NUMBER	DATE	NAME	CLASS	SUB- CLASS	FILING DATE	<i>3</i> 0
AA	4,959,309	09/25/1990	Dattagupta et al.	435	6		
AB	5,207,163	12/1993	Gold et al.	435	6		
AC	5,270,170	12/14/1993	Schatz et al.	435	7.37		
AD	5,475,096	12/1995	Gold et al.	536	26		
AE	5,510,240	04/23/1996	Lam et al.	435	7.1		.*
AF	5,660,985	08/1997	Pieken et al.	435	6		,
AG	5,683,867	11/1997	Biesecker et al.	435	6		
AH	5,705,337	01/1998	Gold et al.	435	6		
AI	5,739,305	04/23/1996	Cubicciotti et al	536	23.1		
	AB AC AD AE AF AG AH	NUMBER AA 4,959,309 AB 5,207,163 AC 5,270,170 AD 5,475,096 AE 5,510,240 AF 5,660,985 AG 5,683,867 AH 5,705,337	DOCUMENT NUMBER DATE AA 4,959,309 09/25/1990 AB 5,207,163 12/1993 AC 5,270,170 12/14/1993 AD 5,475,096 12/1995 AE 5,510,240 04/23/1996 AF 5,660,985 08/1997 AG 5,683,867 11/1997 AH 5,705,337 01/1998	DOCUMENT NUMBER DATE NAME AA 4,959,309 09/25/1990 Dattagupta et al. AB 5,207,163 12/1993 Gold et al. AC 5,270,170 12/14/1993 Schatz et al. AD 5,475,096 12/1995 Gold et al. AE 5,510,240 04/23/1996 Lam et al. AF 5,660,985 08/1997 Pieken et al. AG 5,683,867 11/1997 Biesecker et al. AH 5,705,337 01/1998 Gold et al.	DOCUMENT NUMBER DATE NAME CLASS AA 4,959,309 09/25/1990 Dattagupta et al. 435 AB 5,207,163 12/1993 Gold et al. 435 AC 5,270,170 12/14/1993 Schatz et al. 435 AD 5,475,096 12/1995 Gold et al. 536 AE 5,510,240 04/23/1996 Lam et al. 435 AF 5,660,985 08/1997 Pieken et al. 435 AG 5,683,867 11/1997 Biesecker et al. 435 AH 5,705,337 01/1998 Gold et al. 435	DOCUMENT NUMBER DATE NAME CLASS SUBECT CLASS AA 4,959,309 09/25/1990 Dattagupta et al. 435 6 AB 5,207,163 12/1993 Gold et al. 435 6 AC 5,270,170 12/14/1993 Schatz et al. 435 7.37 AD 5,475,096 12/1995 Gold et al. 536 26 AE 5,510,240 04/23/1996 Lam et al. 435 7.1 AF 5,660,985 08/1997 Pieken et al. 435 6 AG 5,683,867 11/1997 Biesecker et al. 435 6 AH 5,705,337 01/1998 Gold et al. 435 6	DOCUMENT NUMBER DATE NAME CLASS SUB-FILING DATE AA 4,959,309 09/25/1990 Dattagupta et al. 435 6 AB 5,207,163 12/1993 Gold et al. 435 6 AC 5,270,170 12/14/1993 Schatz et al. 435 7.37 AD 5,475,096 12/1995 Gold et al. 536 26 AE 5,510,240 04/23/1996 Lam et al. 435 7.1 AF 5,660,985 08/1997 Pieken et al. 435 6 AG 5,683,867 11/1997 Biesecker et al. 435 6 AH 5,705,337 01/1998 Gold et al. 435 6

FOREIGN PATENT DOCUMENTS

EXAM. INITIALS		DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUB- CLASS	TRANSLATION (YES/NO)
mar	AJ	2 183 661	06/1987	UK	C12N	15/00	
NCT	AK	WO 89/06694	07/1989	wo	C12P	21/00	

DATE CONSIDERED 6/5/03

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449 (Page 2) U.S. Department of Commerce Patent and Tracernark Office COPY OF PAPERS	Docket No. (Optional) INVIT1250-4	Serial No.: 09/825,852 RECEIVED
ORIGINALLY FILED	Applicant(s): _ Jay M. Short	FEB 2 1 2002 TECH CENTER 1600/290
INCORMATION DISCLOSURE STATEMENT BY APPLICANT	Filing Date: 04/03/2001	Group Art Unit: 1627

	T	T	1			<u> </u>	
mas	AL	WO 91/14696	10/1991	WO	C07H	17/00	
	AM	WO 92/14843	09/1992	wo	C12Q	1/68	
	AN	WO 95/07364	03/1995	wo	C12Q	1/68	
	AO	WO 95/20591	08/1995	wo	C07F	5/02	
	AP	WO 95/08003	03/1995	wo	C12Q	1/68	
	AQ	WO 95/22625	08/1995	wo	C12Q	1/68	
	AR	WO 95/31429	11/1995	wo	CO7C	205/00	
	AS	WO 96/04403	02/1996	wo	C12Q	1/68	
	AT	WO 96/09316	03/1996	wo	С07Н	21/02	
$\sqrt{}$	AU	WO 96/08274	03/1996	wo	A61K	47/48	
mer	AV	WO 96/27605	09/1996	wo	С07Н	21/02	
							.

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages)

MC6	AW	Abelson, J. "Directed Evolution of nucleic acids by independent replication and selection" <i>Science</i> 249 : 488-489 (1990)
	AX	Bartel, D.P. and Szostak, J.W. "Isolation of new ribozymes from a large pool of random sequences" <i>Science</i> 261 :1411-1418 (1993)
NO	AY	Beaudry, A.A. and Joyce. G.F "Directed Evolution of an RNA Enzyme" Science 257: 635-641 (1992)

EXAMINER	DATE CONSIDERED	6/5/03

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

#8

FORM PTO-1449 (Page 2) U.S. Department of Commerce Patent and Tradomark Office	Docket No. (Optional) INVIT1250-4	Serial No.: 09/825,852 RECEIVED
COPY OF PAPERS ORIGINALLY FILED	Applicant(s): Jay M. Short	TECH CENTER 1600/290
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	Filing Date: 04/03/2001	Group Art Unit: 1627

M	W	AZ	Cech, T.R. "The chemistry of self-splicing RNA and RNAEnzymes" <i>Science</i> 236 : 1532-1539 (1987)
		BA	Conrad, R. et al. "Isozyme-specific inhibition of protein kinase C by RNA aptamers" <i>J. Biol. Chem.</i> 269 : 32051-32054 (1994)
		BB	Crouch, G.J. and Eaton, B.E. "Synthesis of 2'-deoxyuridine nucleosides with appended 5-position carbonyl cross-linking groups" <i>Nucleosides & Nucleotides</i> 13: 939-944 (1994)
		ВС	Dewey, T.M. et al. "New uridine derivatives for systematic evolution of RNA ligands by exponential enrichment" <i>J. Am. Chem. Soc.</i> 117: 8474-8475 (1995)
		BD	Ellington, A.D. and Szostak, J. W. Abstract of papers presented at the 1990 meeting on RNA Processing. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p226 (1990)
		BE	Freier, S.M. et al. "Mutational SURF: A strategy for improving lead compounds identified from combinatorial libraries" <i>Bioorganic & Medicinal Chemistry</i> 4: 717-725 (1996)
		BF	Jensen, K.B. et al. "Characterization of an in vitro selected RNA ligand to the HIV-1 rev protein" J. Mol. Biol. 235:237-247 (1994)
		BG	Joyce, G.F. "Amplification, mutztion and selection of catalytic RNA" Gene 82:83-87 (1989)
		вн	Joyce, G.F. and Inoue, T. "A novel technique for the rapid preparation of mutant RNAs"
			Nucleic Acids Research 17:711-714 (1989)
M	₹	BI	Kinzler, K.W. and Vogelstein, B. "Whole genome PCR: Application to the identification of sequences bound by gene regulatory proteins" <i>Nucleic Acids Research</i> 17:3645-3653 (1989)

EXAMINER	DATE CONSIDERED	6/5/03	

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449 (Page 2) U.S. Department of Commerce Patent and	Docket No. (Optional) INVIT1250-4	Serial No.: 09/825,852 RECEIVE
Traderoark Officeo COPY OF PAPERS ORIGINALLY FILED	Applicant(s): Jay M. Short	FEB 2 1 2002 TECH CENTER 1600/290
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	Filing Date: 04/03/2001	Group Art Unit: 1627

mes	Ryamer, F.R. et al. "Evolution in vitro: sequence and phenotype of a mutant RNA resistant to Ethidium Bromide" J. Mol. Biol. 89: 719-736 (1974)	
	BK	Latham, J.A. et al. "The application of a modified nucleotides in aptamer selection: novel thrombin aptamers containing 5-(1-Pentyny)-2'-deoxyuridine" <i>Nucleic Acids Research</i> 22: 2817-2822(1994)
	BL	Lestienne, P and Bieth, J.G. "Inhibtion of human leucocyte elastate by polynucleotides" <i>Biochimie</i> 65: 49-52 (1983)
	ВМ	Levisohn, R. and Spiegelman, S. "The Cloning of a self-replicating RNA molecule" <i>Proc. Natl. Acad. Sci. USA</i> 60 : 866-872 (1968)
	BN	Levisohn, R. and Spiegelman, S. "Further extracellular Darwinian experiments with replicating RNA Molecules: diverse variants isolated under different selective conditions" <i>Proc. Natl. Acad. Sci. USA</i> 63: 805-811 (1969)
	ВО	Lorsch, J.R. and Szostak, J.W. "In Vitro Evolution of new ribozymes with polynucleotide kinase activity" <i>Nature</i> 371: 31-36 (1994)
	BP	Ma, M.Y. et al. "design and synthesis of RNA miniduplexes via a synthetic linker approach" biochemistry
	BQ	Maxam, A.M. and Gillbert, W. "A new method for sequencing DNA" <i>Proc. Natl. Acad. Sci. USA</i> 74: 560-564 (1977)
V	BR	McCorkle, G.M. and Altman, S. "RNA's as catalysts" <i>Journal of Chemical Education</i> 64: 221-226 (1987)
Ner	BS	Nelson, J et al. "Incorporation of a non-nucleotide bridge into hairpin oliggonucleotides capable of high-affinity binding to the rev protein of HIV-1" <i>Biochemistry</i> 35: 5339-5344 (1996)

EXAMINER	DATE CONSIDERED	6/5/03
		0/0/03
		<u> </u>

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449 (Page 2) U.S. Department of Commerce Patent and	Docket No. (Optional) INVIT1250-4	Serial No.: 09/825,85 RECEIVE
Trademark Office C COPY OF PAPERS ORIGINALLY FILED	Applicant(s): Jay M. Short	TECH CENTER 1600/2900
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	Filing Date: 04/03/2001	Group Art Unit: 1627

μ	6	ВТ	Oleksyszyn, J. and Powers, J.C. "Irreversible inhibition of serine proteases by peptide derivatives of (a-Aminoalkyl)phosphonate diphenyl esters" <i>Biochemical and Biophysical Research Communications</i> 161: 143-149 (1989).
		BU	Oleksyszyn, J. and Powers, J.C. "Irreversible inhibition of serine proteases by peptide derivatives of (a-Aminoalkyl)phosphonate diphenyl esters" <i>Biochemistry</i> 30: 485-493 (1991)
		BV	Oliphant, A.R. et al. "Cloning of random-sequence oligodeoxynucleotides" <i>Gene</i> 44: 177-183 (1986)
		BW	Oliphant, A.R. and Struhl, K. "The use of random-sequence oligonucleotides for determining consensus sequences" <i>Methods in Enzymology</i> 155 : 568-582 (1987)
		BX -	Oliphant, A.R. and Struhl, K. "Defining the consensus of <i>E.Coli</i> .promoter elements by random selection" <i>Nucleic Acids Research</i> 16: 7673-7683 (1988)
	BY Oliphant, A.R. et al. "Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides analysis of yeast GCN4 protein" <i>Mol. Cell. Biol.</i> 9 :2944-2949 (1989)		
		BZ	Pan, T. and Unlenbeck, O.C. "In vitro selection of RNAs that undergo autolytic cleavage with Pb" <i>Biochemistry</i> 31 : 3887-3895 (1992)
		CA	Piccirilli, J.A. et al. "Aminoacyl esterase activityof the Tetrahymena Ribozyme" Science
			256: 1420-1424 (1992)
V	/	СВ	Prudent, J.R. et al. "Expanding the scope of RNA catalysis" Science 264: 1924-1927 (1994)
W	06	CC	Ren, X.F. et al. "Formation of stable DNA loops by incorporation of nonpolar, non-hydrogen-bonding nucleoside isosteres" <i>Angew. Chem. Int. Ed. Engl.</i> 35: 743-746 (1996)

EXAMINER	DATE CONSIDERED	6/5/03	

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

8

U.S. Department of Commerce Patent and Trademark Office COPY OF PAPERS	Docket No. (Optional) INVIT1250-4	Serial No.: 09/825,852 RECEIVED
ORIGINALLY FILED	Applicant(s): Jay M. Short	TECH CENTER 1600/290
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	Filing Date: 04/03/2001	Group Art Unit: 1627

	Τ,	D. L. A. D. L. and Javes C. E. "Salastian in wints of an DNA angume that specifically
mç	CI حر	Robertson, D.L. and Joyce, G.F. "Selection <i>in virto</i> of an RNA enzyme that specifically cleaves single-stranded DNA" <i>Nature</i> 344 :467-468 (1990)
	CE Sakthivel, et al. "Expanding the potential of DNA for binding and catelysis: highly functionalized dUTP derivatives that are substrates for thermostable DNA polymerases Angew. Chem. Int. Ed. 37 (20): 2872-2875 (1998)	
	CI	Synthetic polynucleotides" Adv. Exp. Med. Biol. 240: 65-74 (1988)
	CO	Synthetic RNA homopolymers" Exp. Lung. Res. 14: 85-99 (1988)
	CI	Smith, et al. "In vitro selection without intervening amplification" Angew. Chem. Int. Ed. 36(17): 1879-1881 (1997)
	CI	Soukup, G. et al. "Preparation of oligonucleotide-biotin conjugates with cleavable linkers" <i>Bioconjugate Chem.</i> 6: 135-138 (1995)
	CJ	Thiesen, H. and Bach, C. "Target detection assay(TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein" <i>Nucleic Acids research</i> 18: 3203-3209 (1990)
	Cl	Tuerk, C. and Gold, L. "Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase" <i>Science</i> 249 :505-510 (1990)
	CI	Tyagi, S. "Taking DNA probes into a protein world" <i>Nature Biotechnology</i> 14: 947-948 (1996)
	CI	Vered, M. et al. "Inhibtion of human neutrophil elastase by bacterial polyanions" <i>Exp. Lung. Res.</i> 14: 67-83 (1988)
	C	Vlasova, I.E. and Vlasov, V.V "Molecular evolution: design of nucleic acids possessing
WCG	1	Catalytic properties and capable of specific complex formation" <i>Molecular Biology</i> 27: 1-5 (1993)

EXAMINER	DATE CONSIDERED	6/5/03	

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449 (Page 2) U.S. Department of Commerce Patent and Trademark Office	Docket No. (Optional) Serial No.: 1NVIT1250-4 09/825,852	
COPY OF PAPERS ORIGINALLY FILE	Applicant(s):) Jay M. Short	
INFORMATION DISCLOSURE STATEMENT BY APPLICANT	Filing Date: 04/03/2001	Group Art Unit: 1627

mo	со	Wiegand, T. et al. "Selection of RNA amides synthases" <i>Chemistry & Biology</i> 4: 675-683 (1997)
wes-	СР	Xu, W. and Ellington, A "Anti-peptide aptarmers recongnize amino sequence and bind a protein epitope" <i>Proc. Natl. Acad. Sci. USA</i> 93: 7475-7480 (1996)

RECEIVED
FEB 2 1 2002
TECH CENTER 1600/2900

DATE CONSIDERED 6/5/03

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.