§ 3.3 二维随机变量函数的分布

一、离散型

问题:已知二维随机变量(X,Y)的分布律,g(x,y)为已知的二元函数,Z=g(X,Y)

求: Z 的分布律

当(X,Y)为离散型随机变量时,Z也为离散型,

$$Z = z_k = g(x_{i_k}, y_{j_k})$$

$$P{Z = z_k} = \sum_{g(x_{i_k}, y_{j_k}) = z_k} P{X = x_{i_k}, Y = y_{j_k}}$$

$$k = 1, 2, \cdots$$

例1 若X、Y独立, $P\{X=k\}=a_k, k=0,1,2,...$, $P\{Y=k\}=b_k, k=0,1,2,...$,求Z=X+Y的分布律.

解:
$$P{Z=r}=P{X+Y=r}$$

此即离散 卷积公式

$$= \sum_{i=0}^{r} P\{X = i, Y = r - i\}$$

$$= \sum_{i=0}^{r} P\{X = i\} P\{Y = r - i\}$$

$$= \sum_{i=0}^{r} P\{X=i\}P\{Y=r-i\}$$

$$=a_0b_r+a_1b_{r-1}+...+a_rb_0$$
 $r=0,1,2,...$

由独立性

例2 若X和Y相互独立,它们分别服从参数为 λ_1, λ_2 的泊松分布,证明Z=X+Y服从参数为 $\lambda_1 + \lambda_2$ 的泊松分布.

解:依题意

$$P{X = i} = \frac{e^{-\lambda_1} \lambda_1^i}{i!}$$
 $i=0,1,2,...$

$$P{Y = j} = \frac{e^{-\lambda_2} \lambda_2^j}{j!}$$
 $j=0,1,2,...$

由卷积公式

$$P{Z = r} = \sum_{i=0}^{r} P{X = i, Y = r - i}$$

由卷积公式

$$P\{Z = r\} = \sum_{i=0}^{r} P\{X = i, Y = r - i\}$$

$$= \sum_{i=0}^{r} e^{-\lambda_{1}} \frac{\lambda_{1}^{i}}{i!} \cdot e^{-\lambda_{2}} \frac{\lambda_{2}^{r-i}}{(r-i)!}$$

$$= \frac{e^{-(\lambda_{1} + \lambda_{2})}}{r!} \sum_{i=0}^{r} \frac{r!}{i!(r-i)!} \lambda_{1}^{i} \lambda_{2}^{r-i}$$

$$= \frac{e^{-(\lambda_{1} + \lambda_{2})}}{r!} (\lambda_{1} + \lambda_{2})^{r}, \quad r = 0, 1, \dots$$

即 $Z服从参数为 \lambda_1 + \lambda_2$ 的泊松分布.

例3 设X和Y相互独立, $X\sim B(n_1,p),Y\sim B(n_2,p),求$ Z=X+Y的分布。

回忆第二章对服然二项努布的随机变量 所作的直观解释:

若 $X \sim B(n_1, \mathbf{p})$,则X 是在 n_1 次独立重复试验中事件A出现的次数,每次试验中A出现的概率都为p.

同样,Y是在 n_2 次独立重复试验中事件A出现的次数,每次试验中A出现的概率为p.

故Z=X+Y 是在 n_1+n_2 次独立重复试验中事件A出现的次数,每次试验中A出现的概率为p,于是Z是以(n_1+n_2 ,p)为参数的二项随机变量,即 $Z\sim B(n_1+n_2,p)$.

二、连续型

问题:已知二维随机变量(X,Y)的概率密度,

g(x,y)为已知的二元函数,Z = g(X,Y)

求: Z 的概率密度函数

方法:

- 1) 从求Z的分布函数出发,将Z的分布函数 转化为(X,Y)的事件的概率
- 2) 代公式

1、和的分布:Z = X + Y

设(X,Y)为连续型随机变量, 联合密度函数为f(x,y),则

$$F_{Z}(z) = P\{Z \le z\}$$

$$= P\{X + Y \le z\}$$

$$= \iint\limits_{x+y\leq z} f(x,y) dxdy$$

$$= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} f(x,y) dy$$

或
$$=\int_{-\infty}^{+\infty} dy \int_{-\infty}^{z-y} f(x,y) dx$$

$$-\infty < z < +\infty$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx \quad -\infty < z < +\infty \quad (1)$$

或
$$f_Z(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy \quad -\infty < z < +\infty$$
 (2)

特别地, 若X, Y相互独立,则

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$

$$-\infty < z < +\infty \quad (3)$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(z - y) f_Y(y) dy$$

$$-\infty < z < +\infty \tag{4}$$

称之为函数 $f_{X}(z)$ 与 $f_{Y}(z)$ 的卷积

例4已知(X,Y)的联合概率密度为

$$Z = X + Y$$
,求 $f_Z(z)$

解法一 从分布函数出发

$$F_Z(z) = P\{X + Y \le z\}$$

$$= \iint_{x+y \le z} f(x,y) dx dy$$

当
$$z < 0$$
时,
$$F_{z}(z) = 0$$

当
$$0 \le z < 1$$
 时,

$$F_{Z}(z) = \int_{0}^{z} dx \int_{0}^{z-x} 1 dy$$
$$= \int_{0}^{z} (z - x) dx$$
$$= \frac{z^{2}}{2}$$

$$f_Z(z) = z$$

当 $1 \le z < 2$ 时,

$$F_{Z}(z) = (z-1) + \int_{z-1}^{1} dx \int_{0}^{z-x} 1 dy$$
$$= z - 1 + \int_{z-1}^{1} (z - x) dx$$
$$= 2z - \frac{z^{2}}{2} - 1$$

$$f_z(z) = 2 - z$$

当z ≥2时,

$$F_Z(z) = 1$$

$$f_Z(z) = 0$$

$$f_{Z}(z) = \begin{cases} 0, & z \leq 0 \text{ for } z \geq 2 \\ z, & 0 < z \leq 1 \\ 2-z, & 1 < z < 2 \end{cases}$$

解法二(图形定限法)

显然X,Y相互独立,且

$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$
 $f_Y(y) = \begin{cases} 1, & 0 < y < 1 \\ 0, & 其他 \end{cases}$

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z - x) dx$$

$$= \int_{0}^{1} f_{Y}(z - x) dx$$

$$1$$

$$f_Y(z-x) = \begin{cases} 1, & z-1 < x < z \\ 0, & 其他 \end{cases}$$

$$\int_{0}^{1} f_{Y}(z-x)dx = egin{cases} 0, & z \leq 0$$
或 $z \geq 2, \ \int_{0}^{1} 1 dx, & 0 < z \leq 1, \ \int_{z-1}^{1} 1 dx, & 1 < z < 2, \end{cases}$

对于 X,Y 不相互独立的情形可同样的用通过分布函数求密度函数与直接求密度函数两种方法求和的分布

例5 已知 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} 3x, & 0 < x < 1, 0 < y < x \\ 0, & \text{ if } \mathbf{w} \end{cases}$$

$$Z = X + Y$$
,求 $f_Z(z)$

解法一 (通过分布函数)

设Z = X + Y的分布函数为 $F_Z(z)$,则

(1) 当
$$z \le 0$$
时, $F_Z(z) = 0$
当 $z \ge 2$ 时, $F_Z(z) = 1$

(2) 当
$$0 < z \le 1$$
时,

$$F_Z(z) = P\{Z \le z\} = P\{X + Y \le z\}$$

$$= \int_0^{\frac{z}{2}} \int_y^{z-y} 3x dx dy = \frac{3}{8} z^3$$

$$(3)$$
 当 $1 < z < 2$ 时,

$$F_Z(z) = P\{Z \le z\} = P\{X + Y \le z\}$$

$$= \int_0^{\frac{z}{2}} \int_0^x 3x dy dx + \int_{\frac{z}{2}}^1 \int_0^{z-x} 3x dy dx$$
$$= \frac{3}{2}z - \frac{z^3}{8} - 1$$

解法二 (图形定限法)

曲公式 (1)
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

$$f(x,z-x) = \begin{cases} 3x, & 0 < x < 1, x < z < 2x \\ 0, &$$
 其他

当
$$z<0$$
或 $z>2$,

$$f_{Z}(z)=0$$

当
$$0 < z < 1$$
,

$$f_Z(z) = \int_{z/2}^{z} 3x dx = \frac{9}{8}z^2$$

当 1 < z < 2,

$$f_Z(z) = \int_{z/2}^1 3x dx = \frac{3}{2}(1 - \frac{z^2}{4})$$

解法三 (不等式组定限法)

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

考虑被积函数取非零值的区域

$$\begin{cases} 0 < x < 1 \\ 0 < z - x < x \end{cases} \Rightarrow \begin{cases} 0 < x < 1 \\ \frac{z}{2} < x < z \end{cases}$$
 (*)

由此不等式边边相等,解得z轴上的三个分界点0,1,2

当z < 0或 $z \ge 2$ 时不等式组(*)无解 当 $0 \le z < 1$ 时不等式组(*)解为 $\frac{z}{2} < x < z$ 当 $1 \le z < 2$ 时不等式组(*)解为 $\frac{z}{2} < x < 1$

$$\int_{z/2}^{z} 3x dx = \frac{9}{8}z^{2} \qquad 0 \le z < 1$$

$$f_{Z}(z) = \begin{cases}
\int_{z/2}^{1} 3x dx = \frac{3}{2}(1 - \frac{z^{2}}{4}) & 1 \le z < 2 \\
0 & 其他
\end{cases}$$

正态随机变量的情形

1) 若X,Y相互独立, $X \sim N(\mu_1,\sigma_1^2),Y \sim N(\mu_2,\sigma_2^2)$

则
$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

若 X_1, X_2, \dots, X_n 相互独立

$$X_{i} \sim N(\mu_{i}, \sigma_{i}^{2}), i = 1, 2, \dots, n$$

2) 若 $(X,Y) \sim N(\mu_1, \sigma_1^2; \mu_2, \sigma_2^2; \rho)$

则
$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + 2\rho\sigma_1\sigma_2 + \sigma_2^2)$$

2、 商的分布: Z = X/Y

例如 已知(X,Y)的联合概率密度 f(x,y), 令 Z = X/Y, 求 $f_Z(z)$

$$F_Z(z) = P\{Z \le z\} = P\{\frac{X}{Y} \le z\} = \iint\limits_D f(x, y)d\sigma$$

其中积分区域 D为下图中的阴影部分: $\frac{x}{y} \le z$

$$\therefore F_Z(z) = \int_{-\infty}^0 \left[\int_{yz}^{+\infty} f(x, y) dx \right] dy + \int_0^{+\infty} \left[\int_{-\infty}^{yz} f(x, y) dx \right] dy$$

$$\stackrel{\diamondsuit{x=yu}}{=\!=\!=} \int_{-\infty}^{0} \left[\int_{z}^{-\infty} f(yu,y)ydu dy + \int_{0}^{+\infty} \left[\int_{-\infty}^{z} f(yu,y)ydu dy \right] \right]$$

$$= \int_{-\infty}^{z} \left[\int_{-\infty}^{0} f(yu, y)(-y) dy \right] du + \int_{-\infty}^{z} \left[\int_{0}^{+\infty} f(yu, y) y dy \right] du$$

$$= \int_{-\infty}^{z} \left[\int_{-\infty}^{+\infty} f(yu, y) | -y | dy \right] du$$

于是Z的概率密度为:

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(yz, y) |y| dy$$

特别地,若X与Y相互独立,则:

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(yz) \cdot f_{Y}(y) |y| dy$$

例6 已知(X,Y)的联合分布函数为

$$F(x,y) = \begin{cases} 1 - e^{-x} - e^{-y} + e^{-(x+y)}, & x > 0, y > 0 \\ 0, &$$
其他

求Z = X / Y 的概率密度函数

解
$$f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0 \\ 0, & 其他 \end{cases}$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f(zy, y) |y| dy$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f(zy, y) |y| dy$$

$$=\begin{cases} \int_0^{+\infty} e^{-y(z+1)} y dy, & z > 0, \\ 0, & 其他 \end{cases}$$

$$= \begin{cases} \frac{1}{(z+1)^2}, & z > 0, \\ 0, & 其他 \end{cases}$$

3、最大值、最小值的分布

设X的分布函数为 $F_X(x)$, Y的分布函数为 $F_Y(y)$,且相互独立, $M=\max\{X,Y\}$, $N=\min\{X,Y\}$, 求 M,N的分布函数.

$$\begin{split} F_M(u) &= P\{\max\{X,Y\} \leq u\} \\ &= P\{X \leq u, Y \leq u\} = P\{X \leq u\} P\{Y \leq u\} \\ &= F_X(u) F_Y(u) \\ \\ F_N(v) &= P\{\min\{X,Y\} \leq v\} = 1 - P\{\min\{X,Y\} > v\} \\ &= 1 - P\{X > v, Y > v\} = 1 - P\{X > v\} P\{Y > v\} \\ &= 1 - (1 - F_X(v))(1 - F_Y(v)) \end{split}$$

推广至n 个相互独立的 随机变量的情形:

设
$$X_1, X_2, \dots, X_n$$
相互独立,且

$$X_i \sim F_i(x_i), i = 1, 2, \dots, n$$

$$M = \max\{X_1, X_2, \dots, X_n\}$$
 $N = \min\{X_1, X_2, \dots, X_n\}$

则

$$F_{M}(u) = \prod_{i=1}^{n} F_{i}(u) \qquad F_{N}(v) = 1 - \prod_{i=1}^{n} (1 - F_{i}(v))$$

$$i.i.d.$$

特例 若
$$X_1, X_2, \dots, X_n \sim F(x)$$
, i.i.d.表示

独立同分布

则

$$F_M(u) = [F(u)]^n$$
 $F_N(v) = 1 - [1 - F(u)]^n$

- 例7 设系统L 由相互独立的n 个元件组成,连接方式为
 - (1) 串联;
 - (2) 并联;
 - (3) 冷贮备(起初由一个元件工作,其它n-1个元件做冷贮备,当工作元件失效时, 贮备的元件逐个地自动替换);

如果 n 个元件的寿命分别为 X_1, X_2, \dots, X_n 且 $X_i \sim E(\lambda), i = 1, 2, \dots, n$

求在以上 3 种组成方式下,系统 L 的寿命 X 的密度函数.

解
$$f_{X_i}(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & 其它 \end{cases}$$

$$F_{X_i}(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

(1)
$$X = \min\{X_1, X_2, \dots, X_n\}$$

$$F_X(x) = 1 - \prod_{i=1}^n (1 - F_{X_i}(x))$$

$$1 - F_{X_i}(x) = \begin{cases} e^{-\lambda x}, & x > 0, \\ 1, & x \le 0 \end{cases}$$

$$f_X(x) = \begin{cases} n\lambda e^{-n\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

(2) $X = \max\{X_1, X_2, \dots, X_n\}$

$$F_X(x) = \prod_{i=1}^n F_{X_i}(x)$$

$$=\begin{cases} (1-e^{-\lambda x})^n, & x>0, \\ 0, & x\leq 0 \end{cases}$$

$$f_X(x) = \begin{cases} n\lambda e^{-\lambda x} (1 - e^{-\lambda x})^{n-1}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

(3)
$$X = X_1 + X_2 + \dots + X_n$$
$$n = 2 \exists \forall ,$$

$$f_{X_1+X_2}(x) = \int_{-\infty}^{+\infty} f_{X_1}(t) f_{X_2}(x-t) dt$$

$$=\begin{cases} \int_0^x e^{-\lambda t} e^{-\lambda (x-t)} dt, & x > 0 \\ 0, & x \le 0 \end{cases}$$

$$=\begin{cases} xe^{-\lambda x}, & x>0\\ 0, & x\leq 0 \end{cases}$$

可以证明, X_1+X_2 与 X_3 也相互独立,故

$$f_{X_1+X_2+X_3}(x) = \int_{-\infty}^{+\infty} f_{X_1+X_2}(t) f_{X_3}(x-t) dt$$

$$=\begin{cases} \int_0^x te^{-\lambda t}e^{-\lambda(x-t)}dt, & x>0\\ 0, & x\leq 0 \end{cases}$$

$$= \begin{cases} \frac{x^2}{2!}e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

归纳地可以证明,

$$f_X(x) = \begin{cases} \frac{x^{n-1}}{(n-1)!} e^{-\lambda x}, & x > 0\\ 0, & x \le 0 \end{cases}$$
 $(n \ge 2)$