6 - Introduzione agli Spazi normati e di Banach

Premesse

> Convenzione: Campo degli scalari di uno spazio vettoriale

Uno spazio vettoriale si intenderà sempre su \mathbb{R} .

> Sottospazio generato da un sottoinsieme di uno spazio vettoriale

Sia E uno spazio vettoriale.

Sia $A \subseteq E$.

Si dice sottospazio generato da A (o inviluppo lineare di A), e si denota con $\mathrm{span}(A)$, l'intersezione di tutti i sottospazi vettoriali di E contenenti A.

> Norma di uno spazio vettoriale

Sia E uno spazio vettoriale.

Si dice norma una funzione $\|\cdot\|:E\to\mathbb{R}_0^+$ tale che:

- 1. Assoluta omogeneità: $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$;
- 2. Sub-additività: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$;
- 3. Positiva definitività: $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$.

La coppia costituita da uno spazio vettoriale e da una norma su di esso è detta spazio normato.

> Metrica indotta da una norma

Sia $(E, \|\cdot\|)$ uno spazio normato.

La norma $\|\cdot\|$ induce su E una metrica d; essa è definita ponendo $d(\mathbf{x},\mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$ per ogni $\mathbf{x},\mathbf{y} \in E$.

⋮ E Spazio di Banach

Uno spazio normato si dice spazio di Banach quando è completo rispetto alla metrica indotta dalla norma.

Alcune proprietà degli spazi normati

Proposizione 6.1: Lemma di Riesz

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $F \subsetneq E$ un sottospazio vettoriale di E, chiuso rispetto alla metrica d indotta dalla norma.

Si ha
$$\sup_{\mathbf{x} \in E} d(\mathbf{x}, F) = 1.$$
 $\|\mathbf{x}\| = 1$

Q Osservazioni preliminari

Sia $\mathbf{x} \in E$ tale che $\|\mathbf{x}\| = 1$.

Essendo F sottospazio vettoriale di E_t si ha $\mathbf{0} \in F$.

Allora, $d(\mathbf{x}, F) \le \|\mathbf{x} - \mathbf{0}\| = \|\mathbf{x}\| = 1$.

Segue
$$\sup_{\mathbf{x}\in E} d(\mathbf{x},F) \leq 1$$
 per arbitrarietà di $\mathbf{x}\in E$ con $\|\mathbf{x}\|=1$. $\|\mathbf{x}\|=1$

Dimostrazione

In virtù dell'osservazione preliminare, basta mostrare che $\sup_{\mathbf{x} \in E} d(\mathbf{x}, F) \geq 1.$

Essendo $F \subseteq E$, esiste $\mathbf{x}_0 \in E \setminus F$.

Essendo F chiuso e $\mathbf{x}_0 \notin F$, esiste un intorno sferico di \mathbf{x}_0 disgiunto da F; pertanto, si ha $d(\mathbf{x}_0, F) > 0$.

Sia $\varepsilon>0$; si provi che $\sup_{\substack{\mathbf{x}\in E\\ \|\mathbf{x}\|=1}}d(\mathbf{x},F)\geq 1-\varepsilon.$

Si supponga $\varepsilon < 1$ senza perdere di generalità; ne segue che $\frac{1}{1-\varepsilon} > 1$.

Si ha allora $d(\mathbf{x}_0,F)<\frac{1}{1-\varepsilon}d(\mathbf{x}_0,F)$; dalla definizione di $d(\mathbf{x}_0,F)$ segue allora l'esistenza di $\mathbf{x}_1\in F$ tale che $\|\mathbf{x}_0-\mathbf{x}_1\|<\frac{1}{1-\varepsilon}d(\mathbf{x}_0,F)$.

Poiché $\mathbf{x}_0 \not\in F$ e $\mathbf{x}_1 \in F$, si ha $\mathbf{x}_0 \neq \mathbf{x}_1$, per cui $\|\mathbf{x}_0 - \mathbf{x}_1\| \neq 0$ Allora, si può porre $\tilde{\mathbf{x}} = \frac{\mathbf{x}_0 - \mathbf{x}_1}{\|\mathbf{x}_0 - \mathbf{x}_1\|}$; evidentemente, $\|\tilde{\mathbf{x}}\| = 1$. Si valuti $d(\tilde{\mathbf{x}}, F)$.

Si fissi $\mathbf{y} \in F$.

Si ha

$$\begin{split} \|\tilde{\mathbf{x}} - \mathbf{y}\| &= \left\| \frac{\mathbf{x}_0 - \mathbf{x}_1}{\|\mathbf{x}_0 - \mathbf{x}_1\|} - \mathbf{y} \right\| \\ &= \left\| \frac{\mathbf{x}_0 - \mathbf{x}_1 - \|\mathbf{x}_0 - \mathbf{x}_1\|\mathbf{y}}{\|\mathbf{x}_0 - \mathbf{x}_1\|} \right\| = \frac{1}{\|\mathbf{x}_0 - \mathbf{x}_1\|} \|\mathbf{x}_0 - (\mathbf{x}_1 + \|\mathbf{x}_0 - \mathbf{x}_1\|\mathbf{y})\| \quad \text{Proprietà dei vettori e della norma} \end{split}$$

$$d \geq rac{1}{\|\mathbf{x}_0 - \mathbf{x}_1\|} d(\mathbf{x}_0, F)$$

 $\mathbf{x}_1 + \|\mathbf{x}_0 - \mathbf{x}_1\|\mathbf{y} \in F$ essendo $\mathbf{x}_1, \mathbf{y} \in F$ e $\|\mathbf{x}_0 - \mathbf{x}_1\| \in \mathbb{R}$, pertanto $\|\mathbf{x}_0 - (\mathbf{x}_1 + \|\mathbf{x}_0 - \mathbf{x}_1\|\mathbf{y})\|$ è distanza tra \mathbf{x}_0 è

Segue dalla definizione di $d(\mathbf{x}_0, F)$. Infatti,

un vettore in F

Segue dalla disuguaglianza $> 1 - \varepsilon$

$$\|\mathbf{x}_0 - \mathbf{x}_1\| < rac{1}{1-arepsilon}d(\mathbf{x}_0,F)$$

Dunque, $\|\tilde{\mathbf{x}} - \mathbf{y}\| > 1 - \varepsilon$ per ogni $\mathbf{y} \in F$; ne segue che $d(\tilde{\mathbf{x}}, F) \ge 1 - \varepsilon$.

Allora, $\sup_{\|\mathbf{x}\|=1} d(\mathbf{x},F) \geq 1-arepsilon$, che è ciò che si voleva ottenere.

La tesi è allora acquisita, essendo $\varepsilon > 0$ arbitrario.

Proposizione 6.2: Sottospazi vettoriali di dimensione finita sono chiusi

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $F \subseteq E$ un sottospazio vettoriale di dimensione finita.

Allora, F è chiuso in E rispetto alla metrica d indotta dalla norma.

Proposizione 6.3: Non totale limitatezza dell'insieme dei versori in spazi normati di dimensione infinita

Sia $(E, \|\cdot\|)$ uno spazio normato.

Si supponga che E abbia dimensione infinita.

Sia $S = \{ \mathbf{x} \in E : ||\mathbf{x}|| = 1 \}.$

Dimostrazione

Sia $\mathbf{x}_0 \in S$.

Sia $F_0 = \operatorname{span}(\mathbf{x}_0) = \{\lambda \mathbf{x}_0 \mid \lambda \in \mathbb{R}\}$; esso ha dimensione 1.

Pertanto, $F_0 \subseteq E$ in quanto E ha dimensione infinita per ipotesi, e per la [Proposizione 6.2] esso è chiuso.

Allora, $\sup_{\mathbf{x} \in S} d(\mathbf{x}, F_0) = 1$ (> $\frac{1}{2}$) per la [Proposizione 6.1], da cui segue che esiste $\mathbf{x}_1 \in S$ tale che $d(\mathbf{x}_1, F_0) > \frac{1}{2}$.

Sia $F_1 = \operatorname{span}(\mathbf{x}_0, \mathbf{x}_1)$; esso ha dimensione 2.

Pertanto, $F_1 \subseteq E$ in quanto E ha dimensione infinita per ipotesi, e per la [Proposizione 6.2] esso è chiuso.

Allora, $\sup_{\mathbf{x} \in S} d(\mathbf{x}, F_1) = 1$ (> $\frac{1}{2}$) per la [Proposizione 6.1], da cui segue che esiste $\mathbf{x}_2 \in S$ tale che $d(\mathbf{x}_2, F_1) > \frac{1}{2}$.

Procedendo induttivamente si ottiene una successione $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq S$ dimodoché $d(\mathbf{x}_n,\operatorname{span}(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}))>\frac{1}{2}$ per ogni $n\in\mathbb{N}$.

Si provi che $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ non è totalmente limitato.

Siano $N_1,\ldots,N_k\subseteq\mathbb{N}$ tali che $igcup_{i=1}^k=\mathbb{N}$; almeno uno di essi è infinito (altrimenti \mathbb{N} sarebbe unione finita di insiemi

finiti, cioè sarebbe un insieme finito, il che è falso), sia esso N_{i_0} .

Essendo N_{i_0} infinito, esso ammette due elementi distinti; siano essi m e n, e si supponga n > m.

Essendo n>m, si ha $\mathbf{x}_m\in \mathrm{span}(\mathbf{x}_1,\ldots,\mathbf{x}_n)$; allora, $\|\mathbf{x}_n-\mathbf{x}_m\|\geq d(\mathbf{x}_n,\mathrm{span}(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}))>\frac{1}{2}$.

Dunque, ogni ricoprimento finito di $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ ammette due elementi nello stesso insieme aventi distanza maggiore di $\frac{1}{2}$; ne segue che $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ non è totalmente limitato.

Allora, a maggior ragione S non è totalmente limitato, in quanto $S \supseteq \{\mathbf{x}_n\}_{n \in \mathbb{N}}$.

Q Osservazione

In \mathbb{R}^n , S è compatto essendo chiuso e limitato.

Invece, in uno spazio normato $(E, \|\cdot\|)$ con E di dimensione infinita, per la [Proposizione 6.3] S non è totalmente limitato, per cui non è compatto.

Si dimostra che, in uno spazio normato $(E, \|\cdot\|)$ con E di dimensione infinita, si ha $\alpha(S) = 2$.

Lo spazio $\mathcal{L}(X,Y)$

¡ Definizione: Operatore lineare

Siano X, Y due spazi vettoriali.

Sia $T: X \rightarrow Y$ una funzione.

T si dice operatore lineare quando $T(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda T(\mathbf{x}) + \mu T(\mathbf{y})$ per ogni $\mathbf{x}, \mathbf{y} \in X$ e per ogni $\lambda, \mu \in \mathbb{R}$.

Se X e Y sono dotati di norma, si può parlare anche di continuità degli operatori lineari.

Q Osservazione: Continuità di un operatore lineare in tutto il dominio equivale alla sua continuità nel solo zero

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $T: X \rightarrow Y$ un operatore lineare.

T è continuo in X se e solo se è continuo in $\mathbf{0}_X$.

Dimostrazione

Se T è continuo in X, chiaramente T è continuo in $\mathbf{0}_X$.

Viceversa, si supponga T continuo in $\mathbf{0}_X$; si fissi $\mathbf{x}_0 \in X$, e si provi la continuità di T in \mathbf{x}_0 .

Si fissi $\varepsilon > 0$.

Per continuità di T in $\mathbf{0}_X$ esiste $\delta > 0$ tale che, per ogni $\mathbf{x} \in X$ con $\|\mathbf{x}\|_X < \delta$, si abbia $\|T(\mathbf{x}) - T(\mathbf{0}_X)\|_Y < \varepsilon$, ossia $\|T(\mathbf{x})\|_Y < \varepsilon$ in quanto $T(\mathbf{0}_X) = \mathbf{0}_Y$ per linearità di T.

Sia $\mathbf{x}' \in X$ con $\|\mathbf{x}' - \mathbf{x}_0\|_X < \delta$; per costruzione di δ vale $\|T(\mathbf{x}' - \mathbf{x}_0)\|_Y < \varepsilon$, vale a dire $\|T(\mathbf{x}') - T(\mathbf{x}_0)\|_Y < \varepsilon$ per linearità di T.

Allora, risulta verificata la definizione di continuità in x_0 , dunque in tutto X per arbitrarietà di questo.

Proposizione 6.4: Criterio di continuità degli operatori lineari

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $T: X \to Y$ un operatore lineare.

Le seguenti affermazioni sono equivalenti:

- 1. T è continuo;
- 2. Esiste k > 0 tale che $||T(\mathbf{x})||_Y \le k ||\mathbf{x}||_X$ per ogni $x \in X$.

Si supponga T continuo.

Allora, T è continuo in $\mathbf{0}_X$, per cui in corrispondenza a $\varepsilon=1$ esiste $\delta>0$ tale che, per ogni $\mathbf{x}\in X$ con $\|\mathbf{x}\|_X<\delta$, si abbia $\|T(\mathbf{x})\|_Y<1$.

Si provi la disuguaglianza espressa nel punto 2.

Si fissi dunque $\mathbf{x} \in X$, e si supponga per il momento $\mathbf{x} \neq \mathbf{0}_X$ cosicché $\|\mathbf{x}\|_X \neq 0$.

Allora, è ben definito il vettore $\dfrac{\delta \mathbf{x}}{2\|\mathbf{x}\|_X}$, che ha norma $\frac{\delta}{2}<\delta$.

Per costruzione di δ , si ha allora $\left\|T\left(\frac{\delta\mathbf{x}}{2\|\mathbf{x}\|_X}\right)\right\|_Y < 1$, ossia $\frac{\delta}{2\|\mathbf{x}\|_X}\|T(\mathbf{x})\|_Y < 1$ per linearità di T e per assoluta omogeneità di $\|\cdot\|_Y$.

Ne segue che $\|T(\mathbf{x})\|_Y < \frac{2}{\delta}\|\mathbf{x}\|_X$; questa disuguaglianza vale per ogni $\mathbf{x} \in X \smallsetminus \{\mathbf{0}_X\}$ per arbitrarietà di \mathbf{x} .

D'altra parte, per $\mathbf{x} = \mathbf{0}_X$ si ha $T(\mathbf{x}) = \mathbf{0}_Y$ per linearità di T, e dunque $\|T(\mathbf{x})\|_Y = \frac{2}{\delta} \|\mathbf{x}\|_X = 0$.

Ne segue che $\|T(\mathbf{x})\|_Y \leq \frac{2}{\delta} \|\mathbf{x}\|_X$ per ogni $\mathbf{x} \in X$.

\bigcap Dimostrazione: $2. \Rightarrow 1.$

Si supponga l'esistenza di k > 0 tale che $||T(\mathbf{x})||_Y \le k ||\mathbf{x}||_X$ per ogni $x \in X$; si provi la continuità di T in $\mathbf{0}_{X_I}$ che per l'osservazione precedente ne implica la continuità in tutto X.

Sia dunque $\varepsilon > 0$.

Sia $\delta = \frac{\varepsilon}{k}$; per ogni $\mathbf{x} \in X$ con $\|\mathbf{x}\|_X < \delta$ si ha per ipotesi $\|T(\mathbf{x})\| \le k\|\mathbf{x}\|_X < k\delta = \varepsilon$, per cui la tesi è acquisita.

\equiv Notazione: Lo spazio $\mathcal{L}(X,Y)$

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Si denota con $\mathcal{L}(X,Y)$ lo spazio degli operatori lineari continui da X in Y.

Evidentemente, $\mathcal{L}(X,Y)$ è uno spazio vettoriale con le operazioni di somma di funzioni e di prodotto di una funzione per una costante.

Il prossimo obiettivo è quello di rendere $\mathcal{L}(X,Y)$ uno spazio normato.

Si ha la seguente proposizione:

Proposizione 6.5: Norma su $\mathcal{L}(X,Y)$.

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Fissato $T \in \mathcal{L}(X,Y)$, si definiscano i seguenti valori:

$$ullet
ho_1(T) = \sup_{\|\mathbf{x}\|_X=1} \|T(\mathbf{x})\|_Y$$
 ;

$$ullet
ho_2(T) = \sup_{\|\mathbf{x}\|_X \leq 1} \|T(\mathbf{x})\|_Y$$
 ;

•
$$\rho_3(T) = \sup_{\mathbf{x} \in X \setminus \{\mathbf{0}_{\mathbf{x}}\}} \frac{\|T(\mathbf{x})\|_Y}{\|\mathbf{x}\|_X}$$
.

Valgono i seguenti fatti:

1.
$$\rho_1(T), \rho_2(T), \rho_3(T) < +\infty;$$

2.
$$\rho_1(T) = \rho_2(T) = \rho_3(T)$$
;

3. La funzione $\|\cdot\|_{\mathcal{L}(X,Y)}:\mathcal{L}(X,Y)\to\mathbb{R}_0^+$ definita ponendo $\|T\|_{\mathcal{L}(X,Y)}:=
ho_1(T)=
ho_2(T)=
ho_3(T)$ per ogni $T\in\mathcal{L}(X,Y)$ è una norma su $\mathcal{L}(X,Y)$.

Dimostrazione: Punto 1.

Essendo T un operatore lineare continuo per definizione di $\mathcal{L}(X,Y)$, per la [Proposizione 6.5] esiste k>0 tale che $||T(\mathbf{x})||_Y \le k||\mathbf{x}||_X$ per ogni $\mathbf{x} \in X$.

Allora:

- Per ogni $\mathbf{x} \in X$ con $\|\mathbf{x}\|_X \le 1$, si ha $\|T(\mathbf{x})\|_Y \le k \|\mathbf{x}\|_X \le k$, dunque sia $\rho_1(T)$ che $\rho_2(T)$ sono finiti;
- Per ogni $\mathbf{x} \in X \setminus \{\mathbf{0}\}$, si ha $\|T(\mathbf{x})\|_Y \le k \|\mathbf{x}\|_X$ ossia, essendo $\|\mathbf{x}\|_X \ne 0$, $\frac{\|T(\mathbf{x})\|_Y}{\|\mathbf{x}\|_X} \le k$; ne segue che $\rho_3(T)$ è finito.

Osservazioni preliminari

Vale $||T(\mathbf{x})||_Y \leq \rho_1(T) ||\mathbf{x}||_X$ per ogni $\mathbf{x} \in X$.

Infatti, se $\mathbf{x} = \mathbf{0}_X$, tale disuguaglianza è vera per linearità di T, in quanto $||T(\mathbf{0}_X)||_Y = ||\mathbf{0}_Y||_Y = 0 \le \rho_1(T)$.

Se invece $\mathbf{x} \neq \mathbf{0}_X$, si ha $\|\mathbf{x}\|_X \neq 0$, per cui risulta ben definito il vettore $\frac{\mathbf{x}}{\|\mathbf{x}\|_X}$, che ha norma 1.

Allora,

$$\left\|T\left(rac{\mathbf{x}}{\|\mathbf{x}\|_X}
ight)
ight\|_Y \leq
ho_1(T)$$
 Per definizione di $ho_1(T)$, essendo $rac{\mathbf{x}}{\|\mathbf{x}\|_X}$ di norma 1

$$\implies \frac{1}{\|\mathbf{x}\|_X}\|T(\mathbf{x})\|_Y \leq
ho_1(T)$$
 Per linearità di T e per assoluta omogeneità di $\|\cdot\|_Y$

$$\implies \|T(\mathbf{x})\|_Y \leq \rho_1(T) \|\mathbf{x}\|_1$$
 Segue moltiplicando ambo i membri per $\|\mathbf{x}\|_X$

Dimostrazione: Punto 2.

Evidentemente, $\rho_1(T) \leq \rho_2(T)$ in quanto, per ogni $\mathbf{x}' \in X$ con $\|\mathbf{x}'\|_X = 1$, vale $\|T(\mathbf{x}')\|_Y \leq \sup_{\|\mathbf{x}\|_X \leq 1} \|T(\mathbf{x})\|_Y = \rho_2(T)$.

Si provi $\rho_1(T) \leq \rho_2(T)$.

Sia $\mathbf{x} \in X$ con $\|\mathbf{x}\|_X \leq 1$; si mostri che $\|T(\mathbf{x})\|_Y \leq \rho_1(T)$.

Per l'osservazione preliminare ed essendo $\|\mathbf{x}\|_X \le 1$, si ha allora $\|T(\mathbf{x})\|_Y \le \rho_1(T)$ $\|\mathbf{x}\|_X \le \rho_1(T)$, da cui segue quindi che $\rho_2(T) \le \rho_1(T)$.

La disuguaglianza $ho_3(T) \leq
ho_1(T)$ segue immediatamente dall'osservazione preliminare; infatti, per ogni $\mathbf{x} \in X \smallsetminus \{\mathbf{0}_X\}$ si ha $\|T(\mathbf{x})\|_Y \leq
ho_1(T) \ \|\mathbf{x}\|_X$ ossia, essendo $\|\mathbf{x}\|_X \neq 0$, $\frac{\|T(\mathbf{x})\|_Y}{\|\mathbf{x}\|_X} \leq
ho_1(T)$, da cui segue proprio $ho_3(T) \leq
ho_1(T)$.

D'altra parte, la disuguaglianza $ho_1(T) \leq
ho_3(T)$ è evidente in quanto, per ogni $\mathbf{x}' \in X$ con $\|\mathbf{x}'\|_X = 1$, si ha $\|T(\mathbf{x}')\|_Y = \frac{\|T(\mathbf{x}')\|_Y}{\|\mathbf{x}'\|_X} \leq \sup_{\mathbf{x} \in X \setminus \{\mathbf{0}_X\}} \frac{\|T(\mathbf{x})\|_Y}{\|\mathbf{x}\|_X} = \rho_3(T)$.

Dimostrazione: Punto 3.

Si provi che ρ_1 è assolutamente omogenea.

Fissati $T \in \mathcal{L}(X,Y)$ e $\lambda \in \mathbb{R}$, si ha

$$ho_1(\lambda T) = \sup_{\|\mathbf{x}\|_X = 1} \|\lambda \ T(\mathbf{x})\|_Y \quad ext{Per definizione di }
ho_1$$

$$=\sup_{\|\mathbf{x}\|_X=1}|\lambda|\;\|T(\mathbf{x})\|_Y$$
 Per assoluta omogeneità di $\|\cdot\|_Y$

$$= |\lambda| \sup_{\|\mathbf{x}\|_X = 1} \|T(\mathbf{x})\|_Y$$
 Proprietà dell'estremo superiore

$$=\left|\lambda\right|\,
ho_{1}(T)$$
 Per definizione di $ho_{1}.$

Si provi ora che ρ_3 è definita positiva.

Chiaramente, $\rho_3(T) \geq 0$ per ogni $T \in \mathcal{L}(X,Y)$.

Si supponga $\rho_3(T)=0$; si provi che $T(\mathbf{x})=\mathbf{0}_Y$ per ogni $\mathbf{x}\in X$.

Se $\mathbf{x} = \mathbf{0}_X$, tale uguaglianza è immediata per linearità di T.

Se $\mathbf{x} \neq \mathbf{0}_X$, essendo $\rho_3(T) = 0$ si ha $\frac{\|T(\mathbf{x})\|_Y}{\|\mathbf{x}\|_X} = 0$, ossia $\|T(\mathbf{x})\|_Y = 0$, ossia $T(\mathbf{x}) = \mathbf{0}_Y$ per definita positività di $\|\cdot\|_Y$

Si provi infine che ρ_1 è subadditiva.

Fissati $T_1,T_2\in\mathcal{L}(X,Y)$, si ha

$$ho_1(T_1+T_2)=\sup_{\|\mathbf{x}\|_X=1}\|T_1(\mathbf{x})+T_2(\mathbf{x})\|_Y$$
 Per definizione di ho_1

$$\leq \sup_{\|\mathbf{x}\|_X=1} \left(\|T_1(\mathbf{x})\|_Y + \|T_2(\mathbf{x})\|_Y
ight)$$
 Per subadditività di $\|\cdot\|_Y$

$$\leq \sup_{\|\mathbf{x}\|_X=1} \|T_1(\mathbf{x})\|_Y + \sup_{\|\mathbf{x}\|_X=1} \|T_2(\mathbf{x})\|_Y \qquad \text{In quanto questa espressione maggiora } \|T_1(\mathbf{x})\|_Y + \|T_2(\mathbf{x})\|_Y \text{ per ognion } \mathbf{x} \in X \text{ con } \|\mathbf{x}\|_X = 1$$

$$=
ho_1(T_1)+
ho_1(T_2)$$
 Per definizione di $ho_1.$

Dunque, $(\mathcal{L}(X,Y), \|\cdot\|_{\mathcal{L}(X,Y)})$ è uno spazio normato.

Proposizione 6.6: Condizione per la completezza dello spazio degli operatori lineari

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Si supponga $(Y, \|\cdot\|_Y)$ di Banach (cioè completo rispetto alla metrica indotta dalla norma)

Allora, lo spazio normato $(\mathcal{L}(X,Y), \|\cdot\|_{\mathcal{L}(X,Y)})$ è di Banach.

Q Osservazioni preliminari

Sia (S, d) uno spazio metrico.

Sia $\{s_n\}_{n\in\mathbb{N}}\subseteq S$ una successione di Cauchy.

Allora, $\{s_n\}_{n\in\mathbb{N}}$ è limitata.

Infatti, essendo di Cauchy, in corrispondenza a $\varepsilon=1$ esiste $\nu\in\mathbb{N}$ tale che, per ogni $m,n\geq\nu$, valga $d(s_m,s_n)<1$.

Sia
$$M=\maxig(\{1\}\cupig\{d(s_n,s_
u)\mid n\in\{1,\dots,
u-1\}ig\}ig).$$

Per ogni $n \in \mathbb{N}$, si ha $d(s_n, s_{\nu}) \leq M$, per cui $\{s_n\}_{n \in \mathbb{N}}$ è limitata.

Dimostrazione

Sia $\{T_n\}_{n\in\mathbb{N}}\subseteq\mathcal{L}(X,Y)$ una successione di Cauchy; si provi che essa converge.

Essendo $\{T_n\}_{n\in\mathbb{N}}$ di Cauchy, per ogni $\varepsilon>0$ esiste $\nu\in\mathbb{N}$ tale che, per ogni $m,n\geq\nu$, si abbia $\|T_m-T_n\|_{\mathcal{L}(X,Y)}<\varepsilon$, ossia $\sup_{\mathbf{x}\in X\smallsetminus\{\mathbf{0}_X\}}\frac{\|T_n(\mathbf{x})-T_m(\mathbf{x})\|_Y}{\|\mathbf{x}\|_X}<\varepsilon$ per definizione di $\|\cdot\|_{\mathcal{L}(X,Y)}$ come ρ_3 .

Si provi che $\{T_n(\mathbf{x}')\}_{n\in\mathbb{N}}\subseteq Y$ è di Cauchy per ogni $\mathbf{x}'\in X$.

Se $\mathbf{x}' = \mathbf{0}_X$, si ha $\{T_n(\mathbf{0}_X)\}_{n \in \mathbb{N}} = \{\mathbf{0}_Y\}_{n \in \mathbb{N}}$, che è costante e dunque di Cauchy.

Si supponga quindi $\mathbf{x}' \neq \mathbf{0}_X$, e si fissi $\varepsilon > 0$.

Essendo $\{T_n\}_{n\in\mathbb{N}}$ di Cauchy, in corrispondenza a $\frac{\varepsilon}{\|\mathbf{x}'\|_X}$, ben definito in quanto $\mathbf{x}'\neq\mathbf{0}_X$, esiste $\nu\in\mathbb{N}$ tale che, per ogni $m,n\geq\nu$, si abbia $\sup_{\mathbf{x}\in X\smallsetminus\{\mathbf{0}\}}\frac{\|T_n(\mathbf{x})-T_m(\mathbf{x})\|_Y}{\|\mathbf{x}\|_X}<\frac{\varepsilon}{\|\mathbf{x}'\|_X}$;

ne segue che, per ogni $m,n\geq \nu$, vale $\frac{\|T_n(\mathbf{x}')-T_m(\mathbf{x}')\|_Y}{\|\mathbf{x}'\|_X}<\frac{\varepsilon}{\|\mathbf{x}'\|_X}$, ossia $\|T_n(\mathbf{x}')-T_m(\mathbf{x}')\|_Y<\varepsilon$, in quanto $\frac{\|T_n(\mathbf{x}')-T_m(\mathbf{x}')\|_Y}{\|\mathbf{x}'\|_X}\leq \sup_{\mathbf{x}\in X\smallsetminus\{\mathbf{0}\}}\frac{\|T_n(\mathbf{x})-T_m(\mathbf{x})\|_Y}{\|\mathbf{x}\|_X}$.

Dunque, $\{T_n(\mathbf{x}')\}_{n\in\mathbb{N}}\subseteq Y$ è di Cauchy per ogni $\mathbf{x}'\in X$; essendo Y di Banach, ne segue che $\{T_n(\mathbf{x}')\}_{n\in\mathbb{N}}$ converge per ogni $\mathbf{x}'\in X$.

Sia definisca allora T:X o Y ponendo $T(\mathbf{x}')=\lim_n T_n(\mathbf{x}')$ per ogni $x'\in X.$

Si provi che $T\in \mathcal{L}(X,Y)$ e che $T=\lim_n T_n.$

Per mostrare la linearità di T, si consideri l'identità $T_n(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda T_n(\mathbf{x}) + \mu T_n(\mathbf{y})$, che vale per ogni $\mathbf{x}, \mathbf{y} \in X$, per ogni $\lambda, \mu \in \mathbb{R}$ e per ogni $n \in \mathbb{N}$, dal momento che $\{T_n\}_{n \in \mathbb{N}} \subseteq \mathcal{L}(X, Y)$.

Passando al limite di indice n di entrambi i membri si ottiene proprio la linearità di T.

Si mostri la continuità di T.

Per l'osservazione preliminare, $\{T_n\}_{n\in\mathbb{N}}$ è limitata essendo di Cauchy; pertanto, esiste M>0 tale che $\|T_n\|_{\mathcal{L}(X,Y)}\leq M$ per ogni $n\in\mathbb{N}$.

Da questa disuguaglianza e dalla [Proposizione 6.5, Osservazione Preliminare] si ottiene che $||T_n(\mathbf{x})||_Y \leq ||T_n||_{\mathcal{L}(X,Y)} ||\mathbf{x}||_X \leq M ||\mathbf{x}||_X$ per ogni $\mathbf{x} \in X$, da cui segue la continuità.

Resta da provare che $\lim_n \|T_n - T\|_{\mathcal{L}(X,Y)} = 0$ ossia che, per ogni $\varepsilon > 0$, esiste $\nu \in \mathbb{N}$ tale che $\|T_n - T\|_{\mathcal{L}(X,Y)} < \varepsilon$, ossia $\sup_{\|\mathbf{x}\|_X = 1} \|T_n(\mathbf{x}) - T(\mathbf{x})\|_Y < \varepsilon$ per definizione di $\|\cdot\|_{\mathcal{L}(X,Y)}$ come ρ_1 .

Si fissi dunque $\varepsilon > 0$.

Essendo $\{T_n\}_{n\in\mathbb{N}}$ di Cauchy, esiste $\nu\in\mathbb{N}$ per cui, per ogni $m,n\geq\nu$, vale $\|T_n-T_m\|_{\mathcal{L}(X,Y)}<\varepsilon$, ossia $\sup_{\|\mathbf{x}\|_X=1}\|T_m(\mathbf{x})-T_n(\mathbf{x})\|_Y<\frac{\varepsilon}{2}$ per definizione di $\|\cdot\|_{\mathcal{L}(X,Y)}$ come ρ_1 .

Sia allora $n \geq \nu$;

siano $\mathbf{x} \in X$ con $\|\mathbf{x}\|_X = 1$, e sia $m \ge \nu$.

Si ha

 $\|T_n(\mathbf{x}) - T(\mathbf{x})\|_Y \le \|T_n(\mathbf{x}) - T_m(\mathbf{x})\|_Y + \|T_m(\mathbf{x}) - T(\mathbf{x})\|_Y$ Disuguaglianza triangolare $< \frac{\varepsilon}{2} + \|T_m(\mathbf{x}) - T(\mathbf{x})\|_Y$ Per costruzione di ν , essendo $m, n \ge \nu$ e $\|\mathbf{x}\|_X = 1$

Dunque, per ogni $n \ge \nu$ e per ogni $\mathbf{x} \in X$ con $\|\mathbf{x}\|_X = 1$, vale la disuguaglianza $\|T_n(\mathbf{x}) - T(\mathbf{x})\|_Y \le \frac{\varepsilon}{2} + \|T_m(\mathbf{x}) - T(\mathbf{x})\|_Y$ per ogni $m \ge \nu$;

passando allora al limite di indice m di entrambi i membri e sfruttando il fatto che $\lim_m \|T_m(\mathbf{x}) - T(\mathbf{x})\|_Y = 0$ per costruzione di T, segue per confronto che $\|T_n(\mathbf{x}) - T(\mathbf{x})\| \le \frac{\varepsilon}{2}$.

Dunque, per ogni $n \geq \nu$ si ha $\|T_n(\mathbf{x}) - T(\mathbf{x})\| \leq \frac{\varepsilon}{2}$ per ogni $\mathbf{x} \in X$ con $\|\mathbf{x}\|_X = 1$, dunque $\sup_{\|\mathbf{x}\|_X = 1} \|T_n(\mathbf{x}) - T(\mathbf{x})\|_Y \leq \frac{\varepsilon}{2} < \varepsilon$, come volevasi dimostrare.

Spazi duali topologici

∷ Definizione: Funzionale lineare, Spazio duale topologico

Sia $(X, \|\cdot\|)$ uno spazio normato.

Si consideri \mathbb{R} come spazio normato.

Gli operatori lineari da X a \mathbb{R} prendono il nome di **funzionali lineari** in X.

L'insieme $\mathcal{L}(X,\mathbb{R})$ si denota con X^* , e si chiama **spazio duale topologico** di X.

Segue dalla [Proposizione 6.6] che gli spazi duali topologici sono di Banach, essendo $\mathbb R$ di Banach.