Einführung in die Numerik WS2018/19

Dozent: Prof. Dr. Andreas Fischer

24. Oktober 2018

In halts verzeichnis

Ι	Interpolation										
	1	Grundlagen	2								
	2	Interpolation durch Polynome	4								
		2.1 Existenz und Eindeutigkeit	4								
		2.2 Newton-Form des Interpolationspolynoms	5								
		2.3 Interpolationsfehler	6								
	3	Interpolation durch Polynomsplines	9								
		3.1 Polynomsplines	9								
		3.2 Interpolation durch kubische Polynomsplines	9								
		3.3 Interpolation mit kubischen C^2 -Splines	10								
		3.4 Eine Minimaleigenschaft kubischer C^2 -Interpolationssplines	13								
		3.5 Interpolationsfehler bei kubischer C^2 -Interpolation	14								
II	nu	merische Integration (Quadratur)	15								
	1	Integration von Interpolationspolynomen	15								
	2	Newton-Cotes-Formeln	16								
	3	spezielle Newton-Cotes-Formeln	17								
	4										
	5	Gauss'sche Quadraturformeln	19								
III	dir	rekte Verfahren für lineare Gleichungssysteme	20								
	1	Gauss'scher Algorithmus für quadratische Systeme	20								
	2	Lineare Quadratmittelprobleme	21								
	3	Kondition linearer Gleichungssysteme									
IV	Ko	ondition von Aufgaben und Stabilität von Algorithmen	23								
	1	Maschinenzahlen und Rundungsfehler	23								
	2	Fehleranalyse	24								
V	Ne	ewton-Verfahren zur Lösung nichtlinearer Gleichungssysteme	25								
	1	Das Newton-Verfahren	25								
	2	Gedämpftes Newton-Verfahren	26								
VI	lineare Optimierung										
	1	Ecken und ihre Charakterisierung	27								
	2	Simplex-Verfahren	28								
	3	Die Tableauform des Simplex-Verfahrens	29								
	4	Revidiertes Simplex-Verfahren	30								
	5	Bestimmung einer ersten zulässigen Basislösung	31								

An	hang	5	33
A	List	en en	33
	A.1	Liste der Theoreme	33
	A.2	Liste der benannten Sätze, Lemmata und Folgerungen	34
Inde	ex		35

Vorwort

Kapitel I

Interpolation

1. Grundlagen

Aufgabe:

Gegeben sind n+1 Datenpaare $(x_0, f_0), \ldots, (x_n, f_n)$, alles reelle Zahlen und paarweise verschieden. Gesucht ist eine Funktion $F: \mathbb{R} \to \mathbb{R}$, die die Interpolationsbedingungen

$$F(x_0) = f_0, \dots, F(x_n) = f_n$$
 (1)

genügt.

Definition (Stützstellen, Stützwerte)

Die x_0 bis x_n werden Stützstellen genannt.

Die f_0 bis f_n werden Stützwerte genannt.

Die oben gestellte Aufgabe wird zum Beispiel durch

$$F(x) = \begin{cases} 0 & x \notin \{x_0, \dots, x_n\} \\ f_i & x = x_i \end{cases}$$

gelöst. Weitere Möglichkeiten sind: Polygonzug, Treppenfunktion, Polynom, ...

- In welcher Menge von Funktionen soll F liegen?
- Gibt es im gewählten <u>Funktionenraum</u> für beliebige Datenpaare eine Funktion F, die den Interpolationsbedingungen genügt (eine solche Funktion heißt Interpolierende)?
- Ist die Interpolierende in diesem Raum eindeutig bestimmt?
- Welche weiteren Eigenschaften besitzt die Interpolierende, zum Beispiel hinsichtlich ihrer Krümmung oder der Approximation einer Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f_k = f(x_k)$ für $k = 0, \dots, n$
- Wie sollte man die Stützstellen wählen, falls nicht vorgegeben?
- Wie lässt sich die Interpolierende effizient bestimmen, gegebenenfalls auch unter der Berücksichtigung, dass neue Datenpaare hinzukommen oder dass sich nur die Stützwerte ändern?

■ Beispiel 1.1

k	0	1	2	3	4	5
x_k in s	0	1	2	3	4	5
f_k in °C	80	85,8	86,4	93,6	98,3	99,1

Interpolation im

- Raum der stetigen stückweise affinen Funktionen
- Raum der Polynome höchstens 5. Grades
- Raum der Polynome höchstens 4. Grades (Interpolation im Allgemeinen nicht lösbar, Regression nötig)

2. Interpolation durch Polynome

 Π_n bezeichne den Vektorraum der Polynome von Höchstgrad n mit der üblichen Addition und Skalarmultiplikation. Für jedes $p \in \Pi_n$ gibt es $a_0, \ldots, a_n \in \mathbb{R}$, sodass

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
(2)

und umgekehrt.

2.1. Existenz und Eindeutigkeit

Satz 2.1

Zu n+1 Datenpaaren $(x_0, f_0), \ldots, (x_n, f_n)$ mit paarweise verschiedenen Stützstellen existiert genau ein Polynom $p \in \Pi_n$, dass die Interpolationsbedingung Gleichung (1) erfüllt.

Beweis. • Existenz: Sei $j \in \{0, ..., n\}$ und $L_j : \mathbb{R} \to \mathbb{R}$ mit

$$L_j(x) := \prod_{\substack{i=0\\i\neq j}}^n \frac{x - x_i}{x_j - x_i} = \frac{(x - x_0) \cdot \dots \cdot (x - x_{j-1})(x - x_{j+1}) \cdot \dots \cdot (x - x_n)}{(x_j - x_0) \cdot \dots \cdot (x_j - x_{j-1})(x_j - x_{j+1}) \cdot \dots \cdot (x_j - x_n)}$$

das LAGRANGE-Basispolynom vom Grad n. Offenbar gilt $L_i \in \Pi_n$ und

$$L_j(x_k) = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases} = \delta_{jk} \tag{3}$$

Definiert man $p: \mathbb{R} \to \mathbb{R}$ durch

$$p(x) := \sum_{j=0}^{n} f_j \cdot L_j(x) \tag{4}$$

so ist $p \in \Pi_n$ und außerdem erfüllt p wegen Gleichung (3) die Interpolationsbedingung Gleichung (1)

• Eindeutigkeit: Angenommen es gibt Interpolierende $p, \tilde{p} \in \Pi_n$ mit $p \neq \tilde{p}$. Dann folgt $p - \tilde{p} \in \Pi_n$ und $(p - \tilde{p})(x_k) = p(x_k) - \tilde{p}(x_k) = 0$ für $k = 0, \ldots, n$. Also hat $(p - \tilde{p})$ mindestens n + 1 Nullstellen, hat aber Grad n. Das heißt, dass $(p - \tilde{p})$ das Nullpolynom sein muss.

Definition (Interpolationspolynom)

Das Polynom, dass die Interpolationsbedingung erfüllt, heißt Interpolationspolynom zu $(x_0, f_0), \ldots, (x_n, f_n)$.

▶ Bemerkung 2.2

- Die Darstellung Gleichung (4) heißt Lagrange-Form des Interpolationspolynoms.
- Um mittels Gleichung (4) einen Funktionswert p(x) zu berechnen, werden $\mathcal{O}(n^2)$ Operationen genötigt; bei gleichabständigen Stützstellen kann man diesen Aufwand auf $\mathcal{O}(n)$ verringern. Ändern sich die Stützwerte, kann man durch Wiederverwendung von den $L_j(x)$ das p(x) in $\mathcal{O}(n)$ Operationen berechnen.
- Man kann zeigen, dass L_0 bis L_n eine Basis von Π_n bilden.

2.2. Newton-Form des Interpolationspolynoms

$$p(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0) \dots (x - x_{n-1})$$

$$(5)$$

mit Koeffizienten $c_0, \ldots, c_n \in \mathbb{R}$. Die Berechnung des Koeffizienten c_j kann rekursiv durch Ausnutzen der Interpolationsbedingung Gleichung (1) erfolgen. Für c_0 erhält man

$$f_0 \stackrel{!}{=} p(x_0) = c_0$$

Seien c_0 bis c_{i-1} bereits ermittelt. Dann folgt:

$$f_j \stackrel{!}{=} p(x_j) = \underbrace{c_0 + \sum_{k=1}^{j-1} c_k(x_j - x_0) \dots (x_j - x_{k-1})}_{\text{bekannt}} + c_j \underbrace{(x_j - x_0) \dots (x_j - x_{j-1})}_{\text{bekannt}}$$

▶ Bemerkung 2.3

- Der Aufwand um die Koeffizienten c_0, \ldots, c_n zu ermitteln ist $\mathcal{O}(n^2)$. Kommt ein Datenpaar hinzu, kann man Gleichung (5) um einen Summanden erweitern und mit $\mathcal{O}(n)$ Operationen c_{n+1} bestimmen.
- Sind die Koeffizienten c_0, \ldots, c_n in Gleichung (5) bekannt, dann benötigt man zur Berechnung von p(x) $\mathcal{O}(n)$ Operationen.
- Die Polynome $N_0, \ldots, N_n : \mathbb{R} \to \mathbb{R}$ mit

$$N_0 = 1$$
 und $N_i = (x - x_0) \dots (x - x_{i-1})$

heißen Newton-Basispolynome und bilden eine Basis von Π_n .

Die Koeffizienten c_0, \ldots, c_n ergeben sich wegen Gleichung (2) auch als Lösung des folgenden linearen Gleichungssystems:

$$\begin{pmatrix}
1 & & & & & \\
1 & (x_1 - x_0) & & & & \\
1 & (x_2 - x_0) & (x_2 - x_0)(x_2 - x_1) & & & \\
\vdots & \vdots & & \vdots & \ddots & \\
1 & (x_n - x_0) & (x_n - x_0)(x_n - x_1) & \dots & \prod_{i=0}^{n-1} (x_n - x_i)
\end{pmatrix} \cdot \begin{pmatrix}
c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n
\end{pmatrix} = \begin{pmatrix}
f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_n
\end{pmatrix}$$

Die Systemmatrix dieses linearen Gleichungssystems ist eine reguläre untere Dreiecksmatrix.

Zu effizienten Berechnung eines Funktionswertes p(x) nach Gleichung (5) mit gegebenen Koeffizienten

 c_0, \ldots, c_n kann man das Horner-Schema anwenden. Überlegung für n=3.

$$p(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + c_3(x - x_0)(x - x_1)(x - x_2)$$
$$= c_0 + (x - x_0) \left[c_1 + (x - x_1) \left[c_2 + (x - x_2)c_3 \right] \right]$$

Für beliebiges n liefert das den folgenden Algorithmus:

■ Algorithmus 2.4 (Horner-Schema für Newton-Form)

Input: $n, x, c_0, ..., c_n, x_0, ..., x_n$

1
$$p = c_n$$

2 do $j = n-1$, 0, -1
3 $p = c_j + (x - x_j)p$
4 end do

2.3. Interpolationsfehler

Definition (Maximum-Norm)

Die Norm

$$||g||_{\infty} := \max_{x \in [a,b]} |g(x)|$$
 für $g \in C[a,b]$

definiert die Maximum-Norm in C[a, b].

Satz 2.5

Sei $f \in C[a,b]$. Dann existiert zu jedem $\varepsilon > 0$ ein Polynom p_{ε} mit $||f - p_{\varepsilon}|| \le \varepsilon$.

Also liegt die Menge aller Polynome (beliebig hohen Grades) direkt in C[a, b].

Definition 2.6 (Stützstellensystem)

<u>Stützstellensystem</u>: $a \le x_0^{(n)} < ... < x_n^{(n)} \le b$. Weiterhin bezeichne $p_n \in \Pi_n$ das zu den Datenpaaren $(x_k^{(n)}, f(x_k^{(n)}))$ gehörende eindeutig bestimmte Interpolationspolynom.

Satz 2.7 (Satz von Faber 1914)

Zu jedem Stützstellensystem gibt es $f \in C[a,b]$, sodass (p_n) nicht gleichmäßig gegen f konvergiert. $||p_n - f||_{\infty} \to 0$ bedeutet, dass (p_n) gleichmäßig gegen f konvergiert.

Nach einem Resultat von Erdös/Vertesi (1980) gilt sogar, dass $(p_n(x))$ fast überall divergiert.

■ Beispiel 2.8 (Runge)

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{1+25x^2}$$

äquidistante Stützstellen $x_0,...,x_n, p \in \Pi_n$ als Interpolationspolynom

Stützstellen	interpoliertes Polynom
2	$1 - \frac{25x^2}{26}$
4	$3,31565x^4 - 4,27719x^2 + 1$
8	$\boxed{53,6893x^8 - 102,815x^6 + 61,3672x^4 - 13,203x^2 + 1}$
16	

Anmerkung

Wer mit Mathematica selber diese Polynome berechnen will, muss folgende Befehle benutzen:

- Funktion definieren: $f[x_]:=1/(1+25x^2)$
- Interpolations polynome ausrechnen: Expand[InterpolatingPolynomial[Table[{i,f[i]}, {i,-1,-1,Schrittweite}], {x}]]
- plotten: Plot[f[x],InterpolatingPolynomial[Table[{i,f[i]},{i,-1,-1,Schrittweite}],{x}],{x,-1,1}]

Satz 2.9

Sei $f \in C^{n+1}[a,b]$ und gelte $a \le x_0 < ... < x_n \le b$. Mit $p_n \in \Pi_n$ werde das zu den Datenpaaren $(x_0, f(x_0)), ..., (x_n, f(x_n))$ gehörende Interpolationspolynom bezeichnet. Dann existiert zu jedem $x \in [a,b]$ eine Zahl $\xi \in (a,b)$, so dass

$$f(x) - p_n(x) = \frac{f^{n+1}(\xi(x))}{(n+1)!} w(x) \quad \text{für alle } x \in [a, b]$$
 wobei $w(x) = (x - x_0) \cdot \dots \cdot (x - x_n)$

Beweis. Für $x = x_k$ mit k = 0, ..., n ist nicht zu zeigen, da p_n die Interpolationsbedingung erfüllt. Sei nun $x \in [a, b]$ fest gewählt mit $x \notin \{x_0, ..., x_n\}$. Weiter seien

$$K = \frac{f(x) - p_n(x)}{w(x)} \quad \text{und} \quad F : \begin{cases} [a, b] \to \mathbb{R} \\ t \mapsto f(t) - p_n(t) - Kw(t) \end{cases}$$

Man stellt unter Beachtung der Interpolationsbedingung fest, dass $F(x_0) = F(x_1) = \dots = F(x_n) = 0$ und F(x) = 0. Also besitzt F mindestens n+2 paarweise verschiedene Nullstellen in [a,b]. Da $F \in C^{n+1}[a,b]$ erhält man durch n+1-fache Anwendung des Satzes von Rolle, dass $F^{(n+1)}$ mindestens eine Nullstelle $\xi(x)$ in (a,b) besitzt. Also folgt

$$0 = F^{(n+1)}(\xi(x)) = f^{(n+1)}(\xi(x)) - \underbrace{p_n^{(n+1)}(\xi(x))}_{=0} - K\underbrace{w^{(n+1)}(\xi(x))}_{\text{Konstante}}$$

Da $w^{(n+1)} = (n+1)!$, erhält man

$$K = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$$

Da $x \in [a, b]$ beliebig gewählt war, ist die Behauptung bewiesen.

■ Beispiel 2.10

Sei $f \in C^2[a, b]$ mit $||f||_{\infty} \leq M$. Weiter sei $a = x_0 < x_1 = x_0 + h = b$. Mit Satz 2.9 folgt:

$$|f(x) - p_2(x)| = \left| \frac{f''(\xi(x))}{2} (x - x_0)(x - x_1) \right|$$

$$\leq \frac{1}{2} M \cdot \lambda(x) h \cdot (1 - \lambda(x)) h$$

$$\leq \frac{1}{2} M \cdot h^2 \underbrace{\lambda(x)(1 - \lambda(x))}_{\leq^{1/4}}$$

$$\leq \frac{1}{8} M \cdot h^2$$

$$h$$

$$x_0$$
 x
 x
 x

$$\Rightarrow x = x_0 + \lambda \cdot (x_1 - x_0) = \lambda x_1 + (1 - \lambda)x_0$$

3. Interpolation durch Polynomsplines

3.1. Polynomsplines

Zur Abkürzung bezeichne Δ eine Zerlegung des Intervall [a,b] durch die Stützstellen $a=:x_0<\ldots< x_n:=b.$

Definition 3.1 (Polynomspline)

Ein Polynomspline vom Grad $m \in \mathbb{N}$ und Glattheit $l \in \mathbb{N}$ zur Zerlegung Δ ist eine Funktion $s \in C^l[a,b]$ mit

$$s_k := s|_{[x_k, x_{k+1}]} \in \Pi_n$$
 für $k = 0, ..., n-1$

Dabei bezeichnet $s|_{[x_k,x_{k+1}]}$ die Einschränkung von s auf das Intervall $[x_k,x_{k+1}]$. Die Menge aller Splines wird mit $\mathcal{S}_m^l(\Delta)$ bezeichnet.

Folglich ist ein Polynomspline $s \in \mathcal{S}_m^l(\Delta)$ auf jedem der Teilintervall $[x_k, x_{k+1}]$ ein Polynom vom Höchstgrad m. Außerdem ist $s \in \mathcal{S}_m^l(\Delta)$ in allen Punkten $x \in [a, b]$ (also auch in den Stützstellen) l-mal stetig differenzierbar. $\mathcal{S}_m^l(\Delta)$ ist mit der üblichen Addition und Multiplikation ein Vektorraum. Speziell ist $\mathcal{S}_1^0(\Delta)$ die Menge aller stetigen stückweise affin linearen Funktionen.

3.2. Interpolation durch kubische Polynomsplines

Gegeben sei eine Zerlegung Δ und die Stützwerte $f_0, ..., f_n$. Gesucht ist eine Funktion $s \in \mathcal{S}_3^l(\Delta)$ mit l = 1, 2 derart, dass

$$s(x_k) = f_k \quad \text{für } k = 0, ..., n \tag{6}$$

Jede derartige Funktion heißt kubischer Interpolationspline .

Konstruktion eines solchen Splines:

$$h_k := x_{k-1} - x_k$$
 für $k = 0, ..., n-1$
 $m_k := s'(x_k)$ für $k = 0, ..., n-1$

Wegen $l \in \{1,2\}$ ist s zunächst stetig differenzierbar. Wegen $s_k = s|_{[x_k,x_{k+1}]}$ für k = 0,...,n-1 und m = 3 kann man folgenden Ansatz für s_k benutzen:

$$s_k(x) = a_k(x - x_k)^3 + b_k(x - x_k)^2 + c_k(x - x_k) + d_k$$
(7)

Aus den Interpolationsbedingungen Gleichung (6) und der stetigen Differenzierbarkeit aller Funktionen in $s \in \mathcal{S}_m^l(\Delta)$ für $l \geq 1$ ergeben sich folgende Forderungen an s_k , k = 0, ..., n - 1:

$$s_k(x_k) = f_k \quad \text{und} \quad s_k(x_{k+1}) = f_{k+1}$$

 $s'_k(x_k) = m_k \quad \text{und} \quad s'_k(x_{k+1}) = m_{k+1}$

$$(8)$$

Diese liefern:

$$d_k = s_k(x_k) = f_k$$

$$c_k = s'_k(x_k) = m_k$$
(9)

und damit:

$$s_k(x_{k+1}) = a_k h_k^3 + b_k h_k^2 + m_k h_k + f_k = f_{k+1}$$

$$s'_k(x_{k+1}) = 3a_k h_k^2 + 2b_k h_k + m_k = m_{k+1}$$

Damit ergeben sich a_k und b_k als eindeutige Lösung für das lineare Gleichungssystem

$$\begin{pmatrix} h_k^3 & h_k^2 \\ 3h_k^2 & 2h_k \end{pmatrix} \begin{pmatrix} a_k \\ b_k \end{pmatrix} = \begin{pmatrix} f_{k+1} - f_k - m_k f_k \\ m_{k+1} - m_k \end{pmatrix}$$
(10)

Die Determinante ist $-h_k^4 \neq 0$.

Satz 3.2

Sei eine Zerlegung Δ des Intervalls [a, b] gegeben. Dann gibt es für beliebig gewählte reelle Zahlen $f_0, ..., f_n$ und $m_0, ..., m_n$ einen Interpolationsspline $s \in \mathcal{S}^1_3(\Delta)$, der den Interpolationsbedingungen

$$s'(x_0) = m_0, ..., s'(x_n) = m_n$$

genügt. Außerdem gilt: $s|_{[x_k,x_{k+1}]} = s_k$ für k=0,...,n-1 mit s_k entsprechend Gleichung (7), wobei sich a_k, b_k, c_k, d_k aus Gleichung (9) und Gleichung (10) ergeben.

Für die Wahl der m_k gibt es verschiedene Möglichkeiten, zum Beispiel:

- Falls Ableitungswerte der zu interpolierenden Funktion f bekannt sind, kann man $m_k = f'(x_k)$ setzen.
- Man wählt $m_0, ..., m_n$ so, dass s zweimal stetig differenzierbar ist, das heißt $s \in \mathcal{S}_3^1(\Delta)$ statt $s \in \mathcal{S}_3^1(\Delta)$ gilt.

3.3. Interpolation mit kubischen C^2 -Splines

Damit ein kubischer Interpolationsspline s zu $S_3^2(\Delta)$ gehört, muss neben den Forderungen in Gleichung (8) die Stetigkeit von s'' an den Stützstellen $x_1, ..., x_{n-1}$ gewährleistet sein. Also hat man zusätzliche Bedingungen

$$s_k''(x_{k+1}) = s_{k+1}''(x_{k+1})$$
 für $k = 0, ..., n-2$

Mit Gleichung (7) ergibt sich $s''(x) = 6a_k(x - x_0) + 2b_k$ für $x \in [x_k, x_{k+1}]$ und damit $s''_k(x_{k+1}) = 6a_k h_k + 2b_k$ und $s''_{k+1}(x_{k+1}) = 2b_{k+1}$, also

$$3a_k h_k + b_k = b_{k+1}$$
 für $k = 0, ..., n-2$ (11)

Aus Gleichung (10) folgt

$$a_k = \frac{-2}{h_k^2} (f_{k+1} - f_k) + \frac{1}{h_k^2} (m_k + m_{k+1})$$
$$b_k = \frac{3}{h_k^2} (f_{k+1} - f_k) - \frac{1}{h_k} (2m_k + m_{k+1})$$

für k=0,...,n-1. Wegen Gleichung (11) erhält man für k=0,...,n-2

$$\begin{aligned} &\frac{-6}{h_k^2}(f_{k+1}-f_k) + \frac{3}{h_k}(m_k+m_{k+1}) + \frac{3}{h_k^2}(f_{k+1}-f_k) - \frac{1}{h_k}(2m_k+m_{k+1}) \\ &= \frac{-6}{h_{k+1}^2}(f_{k+2}-f_{k+1}) - \frac{1}{h_{k+1}}(2m_{k+1}+m_{k+2}) \end{aligned}$$

Damit folgt

$$\frac{1}{h_k}(m_k + 2m_{k+1}) + \frac{1}{h_{k+1}}(2m_{k+1} + m_{k+2}) = \frac{3}{h_k^2}(f_{k+1} - f_k) + \frac{3}{h_{k+1}^2}(f_{k+2} - f_{k+1})$$
 bzw.
$$h_{k+1}m_k + 2(h_{k+1} + h_k)m_{k+1} + h_km_{k+2} = \frac{3h_{k+1}}{h_k}(f_{k+1} - f_k) + \frac{3h_k}{h_{k+1}}(f_{k+2} - f_{k+1})$$

Also müssen die n+1 Zahlen $m_0,...,m_n$ den n-1 Gleichungen des linearen Gleichungssystems

$$\begin{pmatrix} \lambda_0 & 2 & \mu_0 & & & \\ & \lambda_1 & 2 & \mu_1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & \lambda_{n-2} & 2 & \mu_{n-2} \end{pmatrix} \begin{pmatrix} m_0 \\ m_1 \\ \vdots \\ m_n \end{pmatrix} = \begin{pmatrix} r_0 \\ r_1 \\ \vdots \\ r_{n-2} \end{pmatrix}$$

genügen, wobei λ_k, μ_k, r_k durch

$$\begin{split} \lambda_k &= \frac{h_{k+1}}{h_k + h_{k+1}} \\ \mu_k &= \frac{h_k}{h_k + h_{k+1}} \\ r_k &= \frac{3h_{k+1}}{h_k (h_k + h_{k+1})} (f_{k+1} - f_k) + \frac{3h_k}{h_{k+1} (h_k + h_{k+1})} (f_{k+2} - f_{k+1}) \end{split}$$

für k=0,...,n-2 gegeben sind. Die Systemmatrix und die erweiterte Systemmatrix haben den Rang n-1. Somit ist das Gleichungssystem lösbar, besitzt aber keine eindeutige Lösung. Um solche zu erhalten, kann man zusätzliche Bedingungen stellen, etwa

(a) natürliche Randbedingungen:

$$s''(x_0) = s''(x_n) = 0 (12)$$

Diese sind gleichbedeutend mit

$$s_0''(x_0) = 6a_0(x - x_0) + 2b_0 = 0$$
 und $s_{n-1}''(x_n) = 6a_{n-1}(x_n - x_{n-1}) + 2b_{n-1} = 0$

Also folgt

$$b_0 = 0$$
 und $3a_{n-1}h_{n-1} + b_{n-1} = 0$

Nutzt man noch die Darstellung für b_0 sowie für a_{n-1} und b_{n-1} , so folgt

$$2m_0 + m_1 = \frac{3}{h_0}(f_1 - f_0)$$
 und $m_{n-1} + 2m_n = \frac{3}{h_{n-1}}(f_n - f_{n-1})$

Fügt man beide Gleichungen geeignet zum obigen System hinzu, erhält man ein lineares Gleichungssystem mit einer regulären trigonales Systemmatrix. Dieses kann in $\mathcal{O}(n)$ Operationen gelöst werden.

(b) Vollständige Randbedingungen: Sind f'(a) und f'(b) bekannt, dann können die zusätzlichen Bedingungen

$$s'(x_0) = f'(a)$$
 und $s'(x_n) = f'(b)$ (13)

mittels $m_0 = f'(a)$ und $m_n = f'(b)$ geeignet in das Gleichungssystem eingefügt werden, so dass man analog zu Fall (a) eine trigonale reguläre Systemmatrix erhält.

(c) Periodische Spline-Interpolation: Falls

$$f'(a) = f'(b) \tag{14}$$

und f''(a) = f''(b) gilt, dann sind

$$s'(x_0) = s'(x_n)$$
 und $s''(x_0) = s''(x_n)$ (15)

sinnvolle Randbedingungen, woraus sich zwei zusätzliche lineare Gleichungen zur Ergänzung des Gleichungssystems ableiten lassen.

(d) (nicht in der Vorlesung) Not-in-knot Bedingung: Es soll zusätzlich

$$s_0'''(x_1) = s_1'''(x_1)$$
 und $s_{n-2}'''(x_{n-1}) = s_{n-1}'''(x_{n-1})$

gelten, das heißt s ist auf $[x_0, x_2]$ und auf $[x_{n-2}, x_n]$ ein Polynom dritten Grades. Man erhält daraus die Forderungen $a_0 = a_1$ und $a_{n-2} = a_{n-1}$, woraus sich zusätzliche Gleichungen in den

Variablen m_0, m_1, m_2 und m_{n-2}, m_{n-1}, m_n ergeben.

3.4. Eine Minimaleigenschaft kubischer C^2 -Interpolationssplines

Durch

$$\langle f, g \rangle := \int_a^b f(x)g(x) dx$$
 bzw. $||g||_2 := \sqrt{\int_a^b g(x)^2 dx}$ für $f, g \in L^2[a, b]$

ist ein Skalarprodukt bzw. eine Norm in $L^2[a,b]$ definiert.

Satz 3.3

Seien $f \in C^2[a, b]$, Δ eine Zerlegung von [a, b] und $f_k := f(x_k)$ für k = 0, ..., n. Für einen Interpolationsspline $s \in \mathcal{S}_3^2(\Delta)$, der die natürlichen, vollständigen oder periodischen Randbedingungen (bei letzteren gelte Gleichung (14)) erfüllt, gilt:

$$||s''||_2^2 = ||f''||_2^2 - ||f'' - s''||_2^2 \le ||f''||_2^2$$

Beweis. Durch Nachrechnen sieht man

$$\int_{a}^{b} (f''(x))^{2} dx - \int_{a}^{b} (f''(x) - s''(x))^{2} dx = \int_{a}^{b} (s''(x))^{2} dx + 2 \int_{a}^{b} \left[f''(x) - s''(x) \right] s''(x) dx$$

Es wird nun $J := \int_a^b \left[f''(x) - s''(x) \right] s''(x) dx = 0$ gezeigt. Mit Hilfe partieller Integration folgt

$$J = [f'(x) - s'(x)] s''(x)|_a^b - \int_a^b [f'(x) - s'(x)] s'''(x) dx$$

wobei s''' auf jedem Teilintervall $[x_k, x_{k+1}]$ konstant ist. Dies ergibt wegen Gleichung (6)

$$\int_{a}^{b} \left[f'(x) - s'(x) \right] s'''(x) dx = \sum_{k=0}^{n-1} s''' \left(x_k + \frac{h_k}{2} \right) \int_{x_k}^{x_{k+1}} f'(x) - s'(x) dx$$

$$= \sum_{k=0}^{n-1} s''' \left(x_k + \frac{h_k}{2} \right) \left(\left[f(x_{k+1}) - s(x_{k+1}) \right] - \left[f(x_k) - s(x_k) \right] \right)$$

$$= 0$$

und damit

$$J = [f'(x) - s'(x)] s''(x)|_a^b = [f'(b) - s'(b)] s''(b) - [f'(a) - s'(a)] s''(a)$$

Nutzt man nun noch Gleichung (12), Gleichung (13) bzw. Gleichung (14) mit Gleichung (15), so folgt J=0. \square

Anmerkung

- Gleichung (12): natürliche Randbedingungen: s''(a) = s''(b) = 0
- Gleichung (13): vollständige Randbedingungen: s(a') = f'(a), s'(b) = f'(b)
- Gleichung (14) und Gleichung (15): periodische Randbedingungen: s'(a) = s'(b), s''(a) = s'(b), f'(a) = f'(b)

3.5. Interpolationsfehler bei kubischer C^2 -Interpolation

Anmerkung

Die CAUCHY-SCHWARZ-Ungleichung hat folgende Form:

$$|\langle f, g \rangle| \le ||f||_2 \cdot ||g||_2$$

Satz 3.4

Seien $f \in C^2[a, b]$, Δ eine Zerlegung von [a, b] und $f_k := f(x_k)$ für k = 0, ..., n. Für einen Interpolationsspline $s \in \mathcal{S}_3^2(\Delta)$, der die natürlichen, vollständigen oder periodischen Randbedingungen (bei letzteren gelte Gleichung (14)) erfüllt, gilt:

$$||f - s||_{\infty} \le \frac{1}{2} h^{3/2} ||f''||_2$$

wobei $h := \max\{h_0, ..., h_{n-1}\}.$

Beweis. Die Funktion r:=f-s hat wegen Gleichung (6) die n+1 Nullstellen $x_0,...,x_n$. Der maximale Abstand benachbarter Nullstellen ist h. Nach dem Satz von Rolle besitzt r' mindestens n Nullstellen. Der Abstand zweier Nullstellen von r' ist durch 2h nach oben beschränkt. Sei $z \in [a,b]$ so gewählt, dass $|r'(z)| = ||r'||_{\infty}$. Dann gilt $|z-z^0| \le h$ für die z am nächsten liegende Nullstelle z^0 von r'. O.B.d.A. sei $z^0 \le z$. Mit der Cauchy-Scharz-Ungleichung folgt:

$$||r'||_{\infty}^{2} = |r'(z) - \underbrace{r'(z^{0})}_{z^{0} \text{ NST}}|^{2}$$

$$\stackrel{*}{=} \left| \int_{z^{0}}^{z} r''(x) \cdot 1 dx \right|^{2}$$

$$\stackrel{\text{CS}}{\leq} \int_{z^{0}}^{z} r''(x)^{2} dx \cdot \underbrace{\int_{z^{0}}^{z} 1^{2} dx}_{=z-z^{0} \leq h}$$

$$\leq h ||r''||_{2}^{2}$$
(16)

*: Anwendung des Hauptsatzes der Integralrechnung

Sei nun $y \in [a, b]$ so gewählt, dass $|r(y)| = ||r||_{\infty}$. Dann gilt $|y - y_0| \le h/2$ für die y am nächsten liegende Nullstelle y^0 von r. O.B.d.A. sei $y^0 \le y$. Mit Gleichung (16) ergibt sich

$$||r||_{\infty} = |r(y) - r(y^{0})| = \left| \int_{y^{0}}^{y} r'(x) dx \right| \le \max |r'(x)| \cdot \int_{y^{0}}^{y} dx \le \frac{1}{2} ||r'||_{\infty} \le \frac{1}{2} h^{3/2} ||r''||_{2}$$

Mit Satz 3.3 hat man $||r''||_2 \le ||f||_2$ und damit die Behauptung.

▶ Bemerkung 3.5

Besitzt f eine höhere Glattheit, so kann die obige Fehlerschranke bezüglich der h-Potenz verbessert werden. Es lassen sich ferner Abschätzungen für $||f'-s'||_{\infty}$ und $||f''-s''||_{\infty}$ herleiten.

Kapitel II

numerische Integration (Quadratur)

1. Integration von Interpolationspolynomen

Für eine Funktion $f \in C[a, b]$ ist eine Näherung für den Wert des bestimmten Integrals

$$J(f) := \int_a^b f(x) \mathrm{d}x$$

gesucht. Seien $a \le x_0 < ... < x_n \le b$ Stützstellen und $f_k = f(x_k)$ für k = 0, ..., n. Weiter bezeichne $p_n \in \Pi_n$ das zugehörige Interpolationspolynom. Dann kann man

$$Q_n(f) := J(p_n) = \int_a^b p_n(x) dx$$

als Näherung für J(f) verwenden. Mit der LAGRANGE-Form des Interpolationspolynoms sieht man, dass

$$Q_n(f) = \int_a^b \sum_{k=0}^n f_k \cdot L_k(x) dx = \sum_{k=0}^n f_k \cdot \int_a^b L_k(x) dx$$

das heißt die Quadraturformel $Q_n(f)$ ist die gewichtete Summe von Funktionswerten der Funktion f mit den Gewichten $\int_a^b L_k(x) dx$.

2. Newton-Cotes-Formeln

Falls die Stützstellen gleichabständig sind mit $x_0=a$ und $x_n=b,$ das heißt

$$x_{k+1} = x_k + h$$
 für $k = 0, ..., n - 1$ (1)

mit der Schrittweite $h=\frac{b-a}{n}$ gilt, so nennt man $Q_n(f)$ geschlossene Newton-Cotes-Formel . Ist $a < x_0$ und $x_n < b$ und gilt Gleichung (1) mit $h=\frac{b-a}{n+2}$, so bezeichnet man $Q_n(f)$ als offene Newton-Cotes-Formel . Im Folgenden wollen wir uns auf den Fall geschlossener Newton-Cotes-Formeln beschränken.

3. spezielle Newton-Cotes-Formeln

Für n=1 erhält man die Trapezformel mit $x_0=a,\,x_1=b$ und h=b-a wie folgt:

$$Q_1(f) = f_0 \int_a^b L_0(x) dx + f_1 \int_a^b L_1(x) dx$$

Mit

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} = \frac{b - x}{h} \quad \text{und} \quad L_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{x - a}{h}$$

$$\int_a^b L_0(x) dx = \frac{1}{h} \int_a^b (b - x) dx = \frac{1}{h} \left(bx - \frac{1}{2}x^2 \right) \Big|_a^b = \frac{1}{h} \left(\frac{b^2}{2} - ab + \frac{a^2}{2} \right) = \frac{h}{2}$$

$$\int_a^b L_1(x) dx = \frac{h}{2}$$

folgt

$$Q_1(f) = \frac{h}{2}(f_0 + f_1)$$

Für Polynomgrad n=2 erhält man auf ähnliche Weise die SIMPSON-Formel (auch KEPLER'sche Fassregel genannt):

$$Q_2(f) = \frac{h}{3}(f_0 + 4f_1 + f_2)$$

Für Polynomgrade bis n=6 findet man weitere Formeln in der Literatur. Formeln nur n>6 werden aus numerischen Gründen nicht verwendet. Es können dann negative Gewichte auftreten.

Satz 3.1

(a) Sei $f \in C^2[a, b]$. Dann gilt:

$$|Q_1(f) - J(f)| \le \frac{1}{12} h^3 ||f''||_{\infty}$$

(b) Sei $f \in C^4[a,b]$. Dann gilt:

$$|Q_2(f) - J(f)| \le \frac{1}{12} h^5 ||f^{(4)}||_{\infty}$$

${\bf 4.}\ \ {\bf Zusammenge setz te}\ \ {\bf Newton\text{-}Cotes\text{-}Formeln}$

Kanitel	Π·	numerische	Integration	(Quadratur)
Tranifer	11.	numerische	IIIIGELAGIOII	i Wuauratur

${\bf 5.\ Gauss's che\ Quadratur formeln}$

Kapitel III

direkte Verfahren für lineare Gleichungssysteme

1. Gauss'scher Algorithmus für quadratische Systeme

${\bf 2.}\ \ {\bf Lineare}\ {\bf Quadratmittel probleme}$

3. k	3. Kondition linearer Gleichungssysteme Kapitel III: direkte Verfahren für lineare Gleichungssysteme					
3.	Kondition	linearer	Gleichungssysteme			

Kapitel IV

Kondition von Aufgaben und Stabilität von Algorithmen

1. Maschinenzahlen und Rundungsfehler

2. Fehleranalyse

Kapitel V

${\bf Newton\text{-}Verfahren\ zur\ L\"{o}sung\ nichtlinearer} \\ Gleichungssysteme$

1. Das Newton-Verfahren

Q 1 2.	
Gedämpftes	Newton-Verfahren

Kapitel VI

lineare Optimierung

1. Ecken und ihre Charakterisierung

2. Simplex-Verfahren

3. Die Tableauform des Simplex-Verfahrens

4. Revidiertes Simplex-Verfahren

5. Bestimmung einer ersten zulässigen Basislösung

Anhang A: Listen

A.1. Liste der Theoreme

A.2.	Liste	der	benannten	Sätze.	Lemmata	und Fo	olgerungen

Anhang	A:	Listen
--------	----	--------

A.2. Liste	e der benannten Sätze, Lemmata und Folgerungen	
Satz I.2.7:	Satz von Faber 1914	6

Index

Horner-Schema, 6	kubischer Interpolationspline, 9
Kepler'sche Fassregel, 17	
Lagrange-Form, 4	Maximum-Norm, 6
SIMPSON-Formel, 17	Newton-Cotes-Formel
Basispolynom	geschlossene Newton-Cotes-Formel, 16
Lagrange-Basispolynom, 4	offene Newton-Cotes-Formel, 16
NEWTON-Basispolynome, 5	Polynomspline, 9
Funktionenraum, 2	Stützstellen, 2
	Stützstellensystem, 6
Interpolationsbedingungen, 2	Stützwerte, 2
Interpolationspolynom, 4	
Interpolierende, 2	Trapezformel, 17