

计算机组成原理

第十五讲

计算学部 哈尔滨工业大学

第5章 输入输出系统

- 5.1 概述
- 5.2 外部设备
- 5.3 I/O接口
- 5.4 程序查询方式
- 5.5 程序中断方式
- 5.6 DMA方式

5.2 I/O设备

概述

外部设备大致分三类

- 1. 人机交互设备
- 2. 计算机信息存储设备 磁盘、光盘、磁带
- 3. 机一机通信设备

键盘、鼠标、打印机、显示器

调制解调器等

二、输入设备

5.2

1. 键盘

按键

判断哪个键按下

将此键翻译成 ASCII 码 (编码键盘法)

2. 鼠标

机械式 金属球 电位器

光电式 光电转换器

3. 触摸屏

三、输出设备

5.2

- 1. 显示器
- (1) 字符显示 字符发生器
- (2) 图形显示 主观图像
- (3) 图像显示 客观图像

(1) 击打式 点阵式(逐字、逐行)

(2) 非击打式 激光(逐页)喷墨(逐字)

四、其他

- 1. A/D、D/A 模拟/数字(数字/模拟)转换器
- 2. 终端 由键盘和显示器组成 完成显示控制与存储、键盘管理及通信控制
- 3. 汉字处理 汉字输入、汉字存储、汉字输出

五、多媒体技术

- 1. 什么是多媒体
- 2. 多媒体计算机的关键技术

5.3 1/0接口

一、概述

为什么要设置接口?

- 1. 实现设备的选择
- 2. 实现数据缓冲达到速度匹配
- 3. 实现数据串一并格式转换
- 4. 实现电平转换
- 5. 传送控制命令
- 6. 反映设备的状态("忙"、"就绪"、 "中断请求")

二、接口的功能和组成

5.3

1. 总线连接方式的 I/O 接口电路

- (1)设备选择线
- (2) 数据线
- (3) 命令线
- (4) 状态线

2. 接口的功能和组成

5.3

功能

组成

选址功能

设备选择电路

传送命令的功能

命令寄存器、命令译码器

传送数据的功能

数据缓冲寄存器

反映设备状态的功能

设备状态标记

完成触发器 D

工作触发器 B

中断请求触发器 INTR

屏蔽触发器 MASK

3. I/O 接口的基本组成

5.3

2022/11/4

I/O接口(I/O控制器)的结构

• I/O控制器的一般结构:不同I/O模块在复杂性和控制外设的数量上相差很大

- 通过发送命令字到I/O控制寄存器来向设备发送命令
- 通过从状态寄存器读取状态字来获取外设或I/O控制器的状态信息
- 通过向I/O控制器发送或读取数据来和外设进行数据交换
- · 将I/O控制器中CPU能够访问的各类寄存器称为I/O端口
- 对外设的访问通过向I/O端口发命令、读状态、读/写数据来进行

三、接口类型

5.3

1. 按数据 传送方式 分类

并行接口 Intel 8255

串行接口 Intel 8251

2. 按功能 选择的灵活性 分类

可编程接口 Intel 8255、Intel 8251

不可编程接口 Intel 8212

3. 按 通用性 分类

通用接口 Intel 8255、Intel 8251

专用接口 Intel 8279、Intel 8275

4. 按数据传送的 控制方式 分类

中断接口 Intel 8259

DMA 接口 Intel 8257

5.4 程序查询方式

一、程序查询流程

1. 查询流程

单个设备

2. 程序流程

保存 寄存器内容

2022/11/4

5.4

举例:用程序直接控制方式控制打印输出

这里"就绪"的含义是什么?

打印控制器的数据缓冲中内容已被取走, 现为"空",可接受新的打印字符

功能:打印AL寄存器中的字符。 访问I/O的指令、检查状态位的指令各是什么? IN / OUT指令! TEST指令! PROC NEAR **PRINT** ; 保留用到的寄存器 PUSH $\mathbf{A}\mathbf{X}$; 保留用到的寄存器 PUSH DX MOV DX,378H ;输入数据锁存器口地址 OUT DX, AL ;输出要打印的字符到数据锁存器 MOV DX,379H ;输入状态寄存器口地址 IN AL, DX ; 读打印机状态位 WAIT: TEST AL, 80H ; 检查忙碌位 JE WAIT ;等待直到打印机不忙 MOV DX, 37AH ; 输入命令(控制)寄存器口地址 MOV AL, 0DH ; 置选通位=1 OUT DX, AL ; 使控制卡的命令锁存器中选通位置1 MOV AL, 0CH ; 置选通位=0 : 使控制卡的命令锁存器中选通位置0 DX, AL OUT POP DX ;恢复寄存器 POP \mathbf{AX} RET 回顾:过程/函数/子程序中的开始总是先要 **PRINT ENDP** 保护现场,最后总是要恢复现场!

程序控制I/O (查询I/O方式)

5.4

"探询"期间,可一直不断查询(独占查询),也可定时查询(需保证数据不丢失!)。

• 特点:

- 简单、易控制、外围接口控制逻辑少;
- CPU与外设串行工作,效率低、速度慢,适合于慢速设备
- 查询开销极大(CPU完全在等待"外设完成")
- 工作方式:完全串行工作方式或部分串行,CPU用100%的时间为I/O服务!

二、程序查询方式的接口电路

5.4

以输入为例

