

Fairness Impact of Privacy

Milestone #1 Presentation

Blake Bullwinkel, Scarlett Gong, Kristen Grabarz, Lily Ke October 4, 2021

Problem statement

Original Data				
Age	State			
23	NY			
47	NE			
35	NY			
29	СТ			
52	СТ			

Average Age: 44 State: 0.8% NE

Private Data				
Age 24	State			
24	NY			
45	NY			
33	NY			
31	СТ			
51	СТ			

Average Age: 45 State: 0% NE Differential privacy protects sensitive information by adding noise to data. However, it can have a disparate impact on model accuracy.

Our goal is to understand how changing ε (privacy loss) across various differentially private synthesizers affects our ability to achieve "fair" outcomes.

Scope of work

Using 3 initial datasets popular in the fairness literature, we will:

- **Generate** synthetic datasets using 2+ synthesizers and 8 ε values.
- Perform tasks including binary classification and hypothesis testing.
- Measure and compare fairness outcomes across these variants to understand the tradeoff between privacy and fairness.

Team & collaboration infrastructure

- To streamline our progress, we are operating on sub-workstreams as pairs.
 - Built processing and evaluation pipelines for respective datasets

• Tooling:

- Deepnote: Initial exploratory data analysis and pipeline development.
- SmartNoise synthesizers: Require dependencies that are better suited to install and run locally.
- **Github:** Code sharing for synthesis and downstream evaluation.

Lit review: Differential privacy & fairness

Lit review: Fairness data sets

Protected Attributes:

Based on the literature, we identify the following protected attributes in our data:

a. **Adult:**

- i. Gender (male: privileged; female: unprivileged);
- ii. Race (white: privileged; nonwhite: unprivileged)

b. **COMPAS**:

i. Race (white: privileged; nonwhite: unprivileged)

c. German Credit:

- i. Gender (male: privileged; female: unprivileged);
- ii. Age (> 25: privileged; < 25: unprivileged)
- iii. Nationality (non-foreigners: privileged; foreigners: unprivileged)

Lit review: Fairness metrics

Core Fairness Metrics:

a. Binary Classification:

i. Equalized Odds Distance:

$$\delta_{y} = \Pr(\hat{y}=1|A=0,Y=y) - \Pr(\hat{y}=1|A=1,Y=y), y \in \{0,1\}$$

ii. Demographic/statistical parity

b. **Hypothesis Testing:**

- i. Method: Difference in proportions hypothesis testing
- ii. Target outcomes across protected / unprotected groups
- iii. Target outcomes across original versus synthetic data for protected and unprotected groups

Lit review: Differentially private synthesizers

- 1. MWEM (2012): simple but effective with shorter runtime
- 2. PrivBayes (2014): developed by dataResponsibily
- 3. GAN-based (2018-2019): based on GAN architecture, privatized by DPSGD
 - a. PATE-GAN
 - b. DPGAN
 - c. DP-CTPGAN
- 4. FFPDG (2021): "native fair" synthesizer developed by Amazon

Project ideas

Milestone 1	 Literature review (fairness definition, fairness metrics) EDA on three datasets - Adult, COMPAS, and German Credit Prepare fairness evaluation pipelines Explore SmartNoise synthesizers
Milestone 2	 Use various synthesizers to generate synthetic data and apply them through the established pipelines Compare and analyze results and understand the conditions that lead to good or bad results
Milestone 3	 Recommend pre/post-processing steps that mitigates the bias we observe Gain a deeper understanding on the tradeoff between privacy and fairness
Final deliverable	 Wrap up and write paper Prepare the final presentation

Learning Goals

Milestone 1	 Literature review fairness definitions & fairness metrics Adult, COMPAS, German Credit datasets
Milestone 2	SmartNoise synthesizers and DP algorithms • GAN algorithm • privacy loss ε • tradeoff between fairness and privacy
Milestone 3	Existing pre/post-processing bias mitigation algorithm
Final deliverable	Improve our academic research skills

Adult data set: EDA

Both unprotected groups (Women and Nonwhite individuals) are less likely to make an income of at least \$50k

Adult data set: EDA

Women and Nonwhite people tend to work fewer hours per week and, especially for women, they appear to be slightly younger.

Adult: Binary Classification Pipeline & Results

We confirmed that men is the privileged class and has higher TPR and FPR than women, both of which are associated with favorable outcomes in the

Adult data set.

Test Set Fairness Metrics	Gender
Equalized Opportunity (TP rate difference)	0.120
Equalized Odds (FP rate difference)	0.081
Demographic Parity (FP+TP rate difference)	0.201

Adult: Hypothesis Test Pipeline & Results

Compared rate of favorable outcome (>\$50k)
 across protected versus unprotected group: Men
 versus Women

Reject the null hypothesis of no difference:

- Men significantly more likely than women to yield a positive outcome
- Plan to expand comparison to original versus synthetic data

COMPAS dataset: EDA

Histogram of decile_score provided by COMPAS tool

Plotting the decile scores produced by COMPAS tool as a prediction score, the distribution for white individuals is right-skewed

COMPAS dataset: EDA

decile_score provided by COMPAS tool

• False Positive Rate:

• White: 23.5%

o Black: 44.9%

• False Negative Rate:

o White: 47.7%

o Black: 28.0%

Black individuals have a higher FP rate and lower FN rate than white people.

COMPAS: Binary Classification Pipeline & Results

This shows the classifications appeared to favor white defendants over black defendants by underpredicting recidivism for white and over predicting recidivism for black defendants.

COMPAS: Hypothesis Test Pipeline & Results

Compared recidivism rate across protected versus unprotected group: African American versus Caucasian individuals.

Reject the null hypothesis of no difference:

- Mean of the African American predicted recidivism rate > the mean of the Caucasian predicted recidivism rate
- Mean of the African American predicted recidivism rate > the mean of the African American real recidivism rate

German Credit dataset: EDA

People who are older and
Male tend to have longer
employment histories that
can influence their
likelihood of obtaining
credit.

German Credit: Binary Classification Pipeline & Results

Equalized Opportunity

the TP rates for different values of the protected attribute should match

Equalized Odds

the TP and FP rates for different values of the protected attribute should match

	Gender	Age	Nationality
Equalized Opportunity (TP rate difference)	0.035	0.084	0.108
Equalized Odds (FP rate difference)	0.239	0.011	0.102

German Credit: Hypothesis Test Pipeline & Results

- Compared rate of credit risk across protected versus unprotected group:
 Men versus Women, Young and Older population(age >25)
- Reject the null hypothesis of no difference:
 - Men significantly more likely than women to have a good credit risk
 - Younger population is more likely to have a bad credit risk

Thank you!