

Financial Security & Machine Learning

김민경 daengky@naver.com

Outline

- Intorduction
- Immune System
- Machine Learning
- Solutions

Motive

신제윤 금융위원장은 금융보안을 위해 모든 금융권이 이상거 래탐지시스템(FDS) 구축을 완료해야 한다고 촉구했다.

"핀테크 활성화 방안을 추진하기 위해서 반드시 전제돼야할 사항은 보안의 중요성"이라며 "정보보안이 확보되지 않은 서비스는 결국 사상누각이 될 것"이라고 우려했다.

그는 핀테크(Fintech) 추진 방안과 관련해서는 "오프라인 위주의 금융제도 개편을 통해 핀테크 기술이 금융에 자연스 럽게 접목될 수 있도록 지원할 것"이라며 "전자금융업종 규 율을 재설계토록 하겠다"고 밝혔다.

FinTech

FinTech 1,027 Companies

Contact info@venturescanner.com to see all

Venture Scanner

Fraud Detection Basics

- Outlier Detection
 - detecting data points that don't follow the trends and patters in the data
 - rule base detection
 - anomaly detection
- Two approaches for treating input
 - focus on instance of data point
 - focus on sequence of data points
- Three kinds of algorithms
 - building a model out of data
 - using data directly.
 - immunse system base on temporal data
- Real time fraud detection
 - feasible with model based approach
 - A model is built with batch processing of training data
 - A real time stream processor uses the model and makes predictions in real time

Economy Imperative

- Not worth spending \$200m to stop \$20m fraud
- The Pareto principle
 - fthe first 50% of fraud is easy to stop
 - next 25% takes the same effort
 - next 12.5% takes the same effort
- Resources available for fraud detection are always limited
 - around 3% of police resources go on fraud ?
 - this will not significantly increase
- If we cannot outspend the fraudsters we must <u>out-think</u> them

Bigdata Ecosystem

Open Source Bigdata Ecosystem

- Query (NOSQL): Cassandra, HBase, MongoDB and more
- Query (SQL): Hive, Stinger, Impala, Presto, Shark
- Advanced Analytic : Hadoop, Spark,H2O
- Real time: Storm, Samza, S4, Spark Streaming

Bigdata Ecosystem

Seldon infrastructure

- •Real-Time Layer: responsible for handling the live predictive API requests.
- •Storage Layer: various types of storage used by other components.
- •Near time / Offline Layer : components that run compute intensive or otherwise non-realtime jobs.
- Stats layer: components to monitor and analyze the running system.

• Immune Systems Aritifical

Aritifical Immune Systems

AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models, which are applied to complex problem domains

- Immune system needs to be able to differentiate between self and non-self cells
- may result in <u>cell death</u> therefore
 - Some kind of positive selection(Clonal Selection)
 - Some kind of negative selection

Simple View

Lymphocyte(림프구)

무과립성 백혈구(無顆粒性 白血球, agranulocyte)의 일종으로 면역 기능 관여하며 전체 백혈구 중에서도 **30%**를 차지한다.

- T세포(T cell)
 - ●보조 T세포(Helper T cell)
 - ●세포독성 T세포(killer T cell)
 - ●억제 T세포(suppressor T cell)
- B세포(B cell)
- NK세포(Natural killer cell, NK cell)

B cell

B 세포(B細胞, B cell)는 림프구 중 항체를 생산하는 세포

Lymphocyte B cell

T cell

T세포(T細胞, T cell) 또는 T림프구(T lymphocyte)는 <u>항원 특이적인 적용 면역을 주관</u>하는 림프구의 하나이다. 가슴샘(Thymus)에서 성숙되기 때문에 첫글자를 따서 T세포라는 이름이 붙었다. 전체 림프구 중 약 4분의 3이 T세포

T세포는 아직 항원을 만나지 못한 <u>미접촉 T세포</u>와, 항원을 만나 성숙한 <u>효과 T세포</u>(보조 T세포, 세포독성 T세포, 자연살상 T세포), 그리고 <u>기억 T세포</u>로 분류

Antibody, Antigen

each antibody can recognize a single antigen

Biological Immune System

Danger Theory

- Proposed by Polly Matzinger, around 1995
- Traditional self/non-self theory doesn't always match observations
 - Immune system always responds to non-self
 - Immune system <u>always</u> tolerates self
- Antigen-presenting cell(APC): <u>T-cell activation by APCs</u>
- Danger theory <u>relates innate and adaptive</u> immune systems
 - Tissues induce tolerance towards themselves
 - Tissues protect themselves and select class of response

Danger Theory

- Tissues induce tolerance by
 - Lymphocytes receive 2 signals
 - antigen/lymphocyte binding
 - antigen is properly presented by APC
 - Signal 1 WITHOUT signal 2 : lymphocyte death
- Tissues protect themselves
 - Alarm Signals activate APCs
 - Alarm signals come from
 - Cells that die unnaturally
 - Cells under stress
 - APCs activate lymphocytes
- Tissues dictate response type
 - Alarm signals may convey information

Danger Theory

Artificial Immune System

Artificial Immune Systems

Vectors

$$Ab = \{Ab_1, Ab_2, ..., Ab_L\}$$

$$Ag = \{Ag_1, Ag_2, ..., Ag_L\}$$

- Real-valued shape-space
- Integer shape-space
- Binary shape-space
- Symbolic shape-space

Artificial Immune System

Artificial Immune System

Meta-Frameworks

Artificial Immune System

Artificial Immune Recognition System

• Immune Systems Hybrid Immune

Learning

• Immune Systems Hybrid Immune

Learning

Immune Network Theory

- Idiotypic network (Jerne, 1974)
- B cells co-stimulate each other
 - Treat each other a bit like antigens
- Creates an immunological <u>memory</u>

Non-self Detection Principle

For natural immune system, all cells of body are categorized as two types of **self and non-self**. The immune process is to **detect non-self** from cells.

use the Positive Selection Algorithm (PSA) to perform the **non-self detection** for recognizing the malicious executable.

• Immune Systems Network Security

• Immune Systems Intrusion Detection

Intrusion Detection Systems

• Immune Systems Network Security

Architecture of anomaly detection system.

• Immune Systems Movie Recomendation

Movie Recomendation Systems

Types

- Supervised learning: 지도학습
 - Data의 종류를 알고 있을 때(Category, Labeled)
 - ex: spam mail
- Unsupervised : 비지도학습
 - Data의 종류는 모르지만 패턴을 알고 싶을 때
 - SNS, Twitter
- Semi-supervised learning: 지도학습 + 비지도학습
- Reinforcement learning : 강화학습
 - 잘못된 것을 다시 피드백
- Evolutionary learning: 진화학습(GA, AIS)
- Meta Learning: Landmark of data for classifier

Genetic algorithm

Genetic algorithm

Abnormal Behavior

Types of Anomaly

Point Anomalies

An individual data instance is anomalous w.r.t. the data

Contextual Anomalies

- An individual data instance is anomalous within a context
- Requires a notion of context
- Also referred to as conditional anomalies*

Collective Anomalies

- A collection of related data instances is anomalous
- · Requires a relationship among data instances
 - Sequential Data
 - Spatial Data
 - Graph Data

Association Rule Mining

• Machine Learnig Finite State Automata

Finite State Automata (FSA)

Since the tests in can be **grouped**, the states can represent the several tests being performed at **the same time**. For example, T34 means that T3 and T4 can be done simultaneously

Clustering

Hidden Markov

Sequence Based Algorithm

- Certain fraudulent activities may not be detectable with instance based algorithms
- small amount of money, instance based algorithms will fail to detect the fraud

Decision Tree

Profiling?

Support Vector Machine

This shows the hyperplane which classify the data from one class to another class

Neural Network

Single Layer Feed Forward Model

Machine Learnig anti-k nearest

neighbor

Outlier Detection

Comparison of Three Algorithms

	GA (Optimisation)	NN (Classification)	AIS
Components	Chromosome Strings	Artificial Neurons	Attribute Strings
Location of Components	Dynamic	Pre-Defined	Dynamic
Structure	Discrete Components	Networked Components	Discrete components / Networked Components
Knowledge Storage	Chromosome Strings	Connection Strengths	Component Concentration / Network Connections
Dynamics	Evolution	Learning	Evolution / Learning
Meta-Dynamics	Recruitment / Elimination of Components	Construction / Pruning of Connections	Recruitment / Elimination of Components
Interaction between Components	Crossover	Network Connections	Recognition / Network Connections
Interaction with Environment	Fitness Function	External Stimuli	Recognition / Objective Function

Solutions

Classical rule-based approach

- Always "too late":
 - New fraud pattern is "invented" by criminals
 - Cardholders lose money and complain
- Banks investigate complains and try to understand the new pattern
 - A new rule is implemented a few weeks later
 - Expensive to build (knowledge intensive)
 - Difficult to maintain:
 - Many rules
 - The situation is dynamically changing, so frequently
 - rules have to be added, modified, or removed …

Solutions

Neural Stream

Storage

- hadoop
 - HDFS: Distributed File System(DFS)
 - MapReduce: parallel processing

Algorithms

- on-line learning (Immune System and Genetic Algorithms)
- batch model
- direct data

Stream

- Neural stream
 - Decentralize decision process
 - Cell base detection
 - Network for Artificial Immune Systems
- Storm, Samja can 't use on-line learning

Solutions

A system based on profiles

- Every bank user gets a vector of parameters that describe his/her behavior: an "average-behavior" profile
- The system <u>constantly</u> <u>compares this</u> "long-term" profile with the recent behavior of cardholder
- Transactions that do not fit into bank user 's profile are flagged as suspicious (or are blocked)
- Profiles are updated with every single transaction, so the system constantly adopts to (slow and small) changes in bank user' behavior

Q&A Thanks

