Symulacja cyfrowa

1. Treść zadania

Rozważmy system radiokomunikacyjny składający się z dwóch stacji bazowych **BS1** i **BS2**, oddalonych od siebie o odległość l. W losowych odstępach czasu τ w systemie pojawiają się użytkownicy. System może jednocześnie obsługiwać n użytkowników, każdy kolejny użytkownik trafia do kolejki, gdzie oczekuje na zwolnienie miejsca w systemie. Użytkownicy pojawiają się w odległości x od **BS1** i poruszają się z losową prędkością v w kierunku **BS2.** Użytkownik opuszcza system, kiedy znajdzie się w odległości mniejszej niż x od **BS2.** Użytkownik znajdujący się w systemie w stałych odstępach czasu t raportuje moc odbieraną przez obsługującą go stację bazową i sąsiednią stację bazową (np. użytkownik obsługiwany przez stację bazową **BS1** raportuje do niej moc odbieraną od stacji **BS1** i **BS2**). Moc odbierana P_b dana jest wzorem (na podstawie 3GPP TR 138.901):

$$P_b(d) [dBm] = 4.56 - 22 \log_{10} d[m] + s[dB],$$

gdzie d oznacza odległość od stacji bazowej, a s zmienną losową o rozkładzie Gaussa ze średnią zero i odchyleniem standardowym 4 dB. Jeśli moc odbierana przez użytkownika od sąsiedniej stacji jest większa od mocy odbieranej przez stację obsługującą użytkownika o α przez czas ttt (ang. Time to Trigger), wówczas użytkownik zmienia obsługującą go stację bazową np. z **BS1** na **BS2**. Jeśli moc odbierana przez użytkownika od obsługującej go stacji bazowej będzie o Δ dB niższa niż moc odbierana od sąsiedniej stacji bazowej, wówczas mamy do czynienia z zerwaniem łącza radiowego. Użytkownik, którego łącze radiowe zostało zerwane jest usuwany z systemu.

Opracuj symulator sieci bezprzewodowej zgodnie z przypisaną metodą **M** (Tabela 1) oraz parametrami podanymi w Tabeli 3. W zależności od wybranego scenariusza **A** należy znaleźć wartość wskazanego parametru.

- Za pomocą symulacji ustal minimalną intensywność zgłoszeń, która zapewni obsługę *n* użytkowników w systemie przez cały okres eksperymentu (z pominięciem fazy początkowej).
- W zależności od scenariusza A znajdź, za pomocą symulacji, optymalną wartość parametru ttt lub α tak, aby zapewnić minimalną liczbę przełączeń użytkowników pomiędzy stacjami bazowymi przy liczbie zerwanych łączy radiowych mniejszej niż 0.1 na obsłużonego użytkownika. Następnie wyznacz:
 - średnią liczbę przełączeń użytkowników między stacjami (uśrednioną po obsłużonych użytkownikach),
 - o średnią liczbę zerwanych połączeń radiowych (uśrednioną po obsłużonych użytkownikach),
 - o średnią granicę komórek, tj. odległość od **BS1**, w jakiej powinno dojść do przełączenia użytkownika między stacjami bazowymi.
- Sporządź wykres średniej liczby przełączeń użytkowników między stacjami bazowymi w funkcji optymalizowanego parametru α lub ttt.
- Sporządź wykres średniej liczby zerwanych łączy radiowych w funkcji optymalizowanego parametru α lub ttt
- Ustal stalą wartość prędkości użytkowników v i dla ustalonej wcześniej wartości parametrów
 α i ttt sporządź wykresy średniej liczby przełączeń użytkowników pomiędzy stacjami bazowymi i średniej liczby zerwanych łączy radiowych w funkcji prędkości użytkowników.

2. Parametry

 $l-{\rm stała}$ równa 5000 m

- x stała równa 2000 m
- v zmienna losowa o rozkładzie jednostajnym na przedziale [5, 50] m/s
- t stała równa 20 ms
- s-zmienna losowa o rozkładzie Gaussa ze średnia równą 0 i odchyleniem standardowym równym 4 dB
- ⊿ stała równa 20 dB
- $\tau\,$ zmienna losowa o rozkładzie wykładniczym o intensywności $\,\lambda\,$

Tabela 1. Metoda symulacji.

M	Opis
M1	Przeglądanie działań
M2	Planowanie zdarzeń
M3	Metoda ABC
M4	Metoda interakcji procesów

Tabela 2. Protokół dostępu do łącza

A	Opis
A1	Optymalizacja parametru α
	Zakładamy stałą wartość parametru $ttt=100\ ms$. Optymalizacji podlega parametr
	α
A2	Optymalizacja parametru ttt
	Zakładamy stałą wartość parametru $\alpha=3~dB$. Optymalizacji podlega parametr ttt

Nr zadania	Nr indeksu studenta	Metoda	A	n	
1	144264	M1	A1	20	
2	135630	M2	A1	20	
3	135767	M3	A1	20	
4	135770	M4	A1	20	
5	135784	M1	A1	40	
6	135787	M2	A1	40	
7	136425	M3	A1	40	
8	136782	M4	A1	40	
9	139943	M1	A1	60	
10	140099	M2	A1	60	
11	140171	M3	A1	60	
12	140203	M4	A1	60	
13	142448	M1	A1	80	
14	144199	M2	A1	80	
15	144262	M3	A1	80	
16	144272	M4	A1	80	
17	144280	M1	A2	20	
18	144281	M2	A2	20	
19	144285	M3	A2	20	
20	144311	M4	A2	20	
21	144319	M1	A2	40	
22	144326	M2	A2	40	
23	144332	M3	A2	40	
24	144347	M4	A2	40	
25	144359	M1	A2	60	
26	144354	M2	A2	60	
27	144380	M3	A2	60	
28	144468	M4	A2	60	
29	144366	M1	A2	80	

30	146530	M2	A2	80	
31	146497	M3	A1	20	
32	140122	M4	A1	20	
33	140169	M1	A1	20	