Rohan Naidu (he/him)

website: rohannaidu.github.io email: rnaidu@mit.edu address: 37-685, 70 Vassar St.,

Cambridge, MA 02139, USA

2017 - 2022

RESEARCH INTERESTS

promise as researchers"

first stars & galaxies, cosmic reionization, galaxy formation & evolution; Galactic archaeology, near-field cosmology, dark matter

awarded to 1-3 incoming graduate students who "possess significant

Chambliss Astronomy Student Achievement Award, American Astronomical Society

Harvard University, U.S.A., Ph.D. in Astronomy

EDUCATION

Advisor: Prof. Charlie Conroy Thesis: Unraveling the Galactic Halo with the H3 Survey	
Yale-NUS College, Singapore, B.S. in Physical Sciences magna cum laude, inaugural class of 150 of "Asia's first liberal arts college" Capstone Advisor: Prof. Pascal Oesch, Capstone: Insights into Cosmic Reion	2013–2017 <i>ization</i>
Professional Appointments	
NASA Hubble Fellow, Massachusetts Institute of Technology, U.S.A.	2022-2025
Pappalardo Fellow, Massachusetts Institute of Technology, U.S.A.	2025 – 2027
Academic Honors	
IOP Publishing Top Cited Paper Award $\times 2$ awarded for "two of the most cited papers published across the entire IOP Publishing journal portfolio (ApJ, ApJL, AJ) within the past 3 years (2020 to	2023 2022)"
Fireman Prize, Astronomy Department, Harvard University awarded to a graduating student for "superlative work on their Ph.D. thesis"	2022
Certificate of Distinction in Teaching, Harvard University for a "special contribution to undergraduate teaching" based on student evaluations for courses taught during the pandemic	2021
Ashford Fellowship, Harvard University awarded to six incoming students who are "highly likely to make a substantial impact in their chosen field of study, as well as in society"	2017-2022
Peirce Fellowship, Astronomy Department, Harvard University	2017-2020

2017

Select Observing Programs as Principal Investigator

Total funding from approved JWST and HST observing programs: \$701,000

JWST, NIRSpec (co-PI with Pascal Oesch)

33 hours, 2024

Mirage or Miracle?

Spectroscopic Confirmation of Remarkably Luminous Galaxies at z > 10

JWST, NIRCam grism (co-PI with Jorryt Matthee)

47+29 hours, 2024

All the Little Things: Pop III Signatures & the Ionizing Budget of

Dwarf Galaxies in the Epoch of Reionization

JWST, NIRSpec (co-PI with Christina Eilers, Jorryt Matthee, Fred Davies)

21 hours, 2025

MASQUERADE: Mapping a Super-luminous Quasar's Extended

Radiative Emission

JWST, NIRSpec (co-PI with Christina Eilers, Jorryt Matthee, Fred Davies)

21 hours, 2024

Mapping Quasar Light Echoes with Lyman-alpha Forest Tomography

during the Epoch of Reionization

JWST, NIRCam grism

7 hours, 2023

Where Cosmic Dawn Breaks First:

Mapping the Primordial Overdensity Powering a $z \sim 9$ Ionized Bubble

JWST, NIRCam grism (co-PI with Jorryt Matthee)

18 hours, 2023

Anatomy of an Ionized Bubble at z = 6.6:

Which Galaxies Reionized the Universe?

Magellan, MagE (co-PI with Vedant Chandra)

28 nights, 2022-

To 100 kpc and Beyond:

Bringing the Gaia Revolution to the Brink of the Galaxy

Magellan, MIKE (co-PI with Alex Ji)

20 nights, 2021-23

Extending the Chemical Reach of the H3 Survey of the Galactic Halo

Magellan, FIRE

10 nights, 2019-20

Rest-UV Spectroscopy of Galaxies Reionizing the Universe at z = 6-7

Hubble Space Telescope, WFC3/UVIS

5 orbits, 2018

Confirming Extreme Lyman Continuum Emission in a z = 3.27 Star-Forming Galaxy

Magellan, IMACS

4 nights, 2018

A Ly\alpha Survey to Harvest Lyman Continuum and Prepare for JWST

SELECT OBSERVING PROGRAMS AS CO-INVESTIGATOR

PIs: Charlie Conroy, Dennis Zaritsky, MMT, Hectochelle

200+ nights, 2018-

The H3 Spectroscopic Survey of the Stellar Halo. Core survey team member.

PI: Pascal Oesch, JWST, NIRCam 53 hours, 2022-23 FRESCO: The First Reionization Epoch Spectroscopic COmplete Survey PI: Sirio Belli, JWST, NIRSpec 84 hours, 2022-23 The Stellar and Gas Content of Galaxies at Cosmic Noon PIs: Hakim Atek & John Chisholm, JWST, NIRCam 148 hrs, 2024 JWST's GLIMPSE: gravitational lensing & NIRCam imaging to probe early galaxy formation and sources of reionization PI: Wren Suess, JWST, NIRCam 50 hrs, 2024 Medium bands, Mega Science: spatially-resolved $R \sim 15$ spectrophotometry of 50,000 sources at z = 0.3 - 12PI: Anna de Graaff, JWST, NIRSpec 59 hrs, 2024 A complete census of the rare, extreme and red: a NIRCam-selected extragalactic community survey with JWST/NIRSpec PI: Jorryt Matthee, JWST, NIRSpec 45 hrs, 2024 Dissecting Little Red Dots: the connection between early SMBH growth and cosmic reionization PI: Vedant Chandra, VLT, FLAMES 75 hrs, 2023-24 A Chemical Survey of the Milky Way's Ancient Heart PI: Charlotte Mason, MMT, Binospec 15.5 nights, 2019-21 BLAS: The Binospec Ly α Survey 12 nights, 2019-21 PI: Sandro Tacchella, MMT, MMIRS Consensus on low-mass galaxies: how do low-mass galaxies grow?

Publication Record

22 primary author (first/second author) papers, 1600+ citations, h-index 18, ADS library.

64 total papers, 3100+ citations, h-index 32, ADS library.

31 papers set in the Milky Way, 33 papers set in the distant Universe.

† marks 5 supervised student papers.

Primary Author Papers

- 22. J. Matthee, R.P. Naidu, G. Brammer, et al., Little Red Dots: an abundant population of faint AGN at $z \sim 5$ revealed by the EIGER and FRESCO JWST surveys, arXiv:2306.05448.
- 21. †K. Sharpe, R.P. Naidu, C. Conroy, What is Missing from the Local Stellar Halo?, arXiv:2211.04562, submitted to ApJ.
- 20. **R.P. Naidu**, P. A. Oesch, D. Setton et al., Schrodinger's Galaxy Candidate: Puzzlingly Luminous at $z \approx 17$, or Dusty/Quenched at $z \approx 5$?, arXiv:2208.02794, submitted to ApJ.
- 19. **R.P. Naidu**, C. Conroy, A. Bonaca, et al., Live Fast, Die α-Enhanced: The Mass-Metallicity-α Relation of the Milky Way's Disrupted Dwarf Galaxies, arXiv:2204.09057, submitted to ApJ.

- 18. †V. Chandra, **R.P. Naidu**, C. Conroy, et al., *Discovery of the Magellanic Stellar Stream Out to 100 kpc*, ApJ, 956, 110C, 2023.
- 17. †V. Chandra, R.P. Naidu, C. Conroy, et al., Distant Echoes of the Milky Way's Last Major Merger, ApJ, 951, 26C, 2023.
- A. P. Ji, R.P. Naidu, K. Brauer et al., Chemical abundances of the Typhon Stellar Stream, MNRAS, 519, 4467J, 2023.
- 15. **R.P. Naidu**, P. A. Oesch, P. G. van Dokkum et al., *Two Remarkably Luminous Galaxy Candidates at* $z \approx 10 12$ *Revealed by JWST*, ApJ, 940L, 14N, 2022.
- 14. †J. J. Han, **R.P. Naidu**, C. Conroy et al., A Tilt in the Dark Matter Halo of the Galaxy, ApJ, 934, 14, 2022.
- 13. **R.P. Naidu**, A.P. Ji, C. Conroy, et al., Evidence from Disrupted Halo Dwarfs that r-process Enrichment via Neutron Star Mergers is Delayed by > 500 Myrs, ApJL, 926, 32, 2022.
- 12. **R.P. Naidu** & J. Matthee et al., The Synchrony of Production and Escape: Half the Bright Ly α Emitters at $z \approx 2$ have Lyman Continuum Escape Fractions $\approx 50\%$, MNRAS, 510, 4582, 2022.
- 11. J. Matthee & R.P. Naidu et al., (Re)Solving Reionization with Ly α : How Bright Ly α Emitters Account for the $z \approx 2-8$ Cosmic Ionizing Background, MNRAS, 512, 5960, 2022.
- 10. **R.P. Naidu**, C. Conroy, A. Bonaca, et al., Reconstructing the Last Major Merger of the Milky Way with the H3 Survey, ApJ, 923, 92, 2022.
- 9. C. Conroy, R.P. Naidu, N. Garavito-Camargo, et al., All-Sky Dynamical Response of the Galactic Halo to the Magellanic clouds, Nature, 592, 534–536, 2021.
- 8. †M.T. Gialluca, **R.P. Naidu**, A. Bonaca, Velocity Dispersion of the GD-1 Stellar Stream, ApJL, 911, 32, 2021.
- 7. A. Bonaca, R.P. Naidu, C. Conroy, et al., Orbital Clustering Identifies the Origins of Galactic Stellar Streams, ApJL, 909, 26, 2021.
- 6. R.P. Naidu, C. Conroy, A. Bonaca, et al., Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure, ApJ, 901, 48, 2020.
- R.P. Naidu, S. Tacchella, C.A. Mason, et al., Rapid Reionization by the Oligarchs: The Case for Massive, UV-bright, Star-forming Galaxies with High Escape Fractions, ApJ, 892, 109, 2020.
- 4. C.A. Mason, R.P. Naidu, S. Tacchella, J.R. Leja, Model-independent constraints on the hydrogen-ionizing emissivity at z > 6, MNRAS, 489, 2669, 2019.
- 3. C. Conroy, R.P. Naidu, D. Zaritsky, et al., Resolving the Metallicity Distribution of the Stellar Halo with the H3 Survey, ApJ, 887, 237, 2019.
- 2. **R.P. Naidu**, B. Forrest, P. A. Oesch, et al., A low Lyman Continuum escape fraction of < 10% for extreme [OIII] emitters in an overdensity at $z \sim 3.5$, MNRAS, 478, 791, 2018.
- 1. **R.P. Naidu**, P.A. Oesch, N. Reddy, et al., *The HDUV Survey: Six Lyman Continuum Emitter Candidates at z* \sim 2 *Revealed by HST UV Imaging*, ApJ, 847, 12, 2017.

Contributing Author Papers

42. P.A. Oesch, G. Brammer, **R.P. Naidu** et al., The JWST FRESCO survey: legacy NIRCam/grism spectroscopy and imaging in the two GOODS fields, MNRAS, 525, 2864O, 2023.

- 41. G. Limberg, A.P. Ji, **R.P. Naidu** et al., Extending the Chemical Reach of the H3 Survey: Detailed Abundances of the Dwarf-galaxy Stellar Stream Wukong/LMS-1, arXiv:2308.13702, submitted to MNRAS.
- 40. V. Chandra et al., The Three-Phase Evolution of the Milky Way, arXiv:2310.13050, submitted to ApJ.
- 39. R.L. Davies et al., JWST Reveals Widespread AGN-Driven Neutral Gas Outflows in Massive $z \sim 2$ Galaxies, arXiv:2310.17939, submitted to MNRAS.
- 38. C. Conroy et al., Detection of Accretion Shelves Out to the Virial Radius of a Low-Mass Galaxy with JWST, arXiv:2310.13048, submitted to ApJ.
- 37. E.J. Nelson et al., FRESCO: An extended, massive, rapidly rotating galaxy at z = 5.3, arXiv:2310.06887, submitted to ApJ.
- 36. R. Gottumukkala et al., Unveiling the hidden universe with JWST: The contribution of dust-obscured galaxies to the stellar mass function at $z \sim 3-8$, arXiv:2310.03787, submitted to MNRAS.
- 35. J.E. Greene et al., UNCOVER spectroscopy confirms a surprising ubiquity of AGN in red galaxies at z > 5, arXiv:2309.05714, submitted to ApJ.
- 34. M. Yue et al., EIGER V. Characterizing the Host Galaxies of Luminous Quasars at z > 6, arXiv:2309.04614, submitted to ApJ.
- 33. T. Herard-Demanche et al., Mapping dusty galaxy growth at z > 5 with FRESCO: Detection of $H\alpha$ in submm galaxy HDF850.1 and the surrounding overdense structures, arXiv:2309.04525, submitted to MNRAS.
- 32. M. Xiao et al., Massive Optically Dark Galaxies Unveiled by JWST Challenge Galaxy Formation Models, arXiv:2309.02492, submitted to Nature.
- 31. S. Belli et al., Massive and Multiphase Gas Outflow in a Quenching Galaxy at z=2.445, arXiv:2308.05795, submitted to Nature.
- 30. R. Bordoloi et al., EIGER IV: The cool 10⁴ K circumgalactic environment of high-z galaxies reveals remarkably efficient IGM enrichment, arXiv:2307.01273, submitted to ApJ.
- 29. I. Labbe et al., UNCOVER: Candidate Red Active Galactic Nuclei at 3 < z < 7 with JWST and ALMA, arXiv:2306.07320, submitted to ApJ.
- 28. K. E. Heintz et al., Extreme damped Lyman- α absorption in young star-forming galaxies at z = 9 11, arXiv:2306.00647, submitted to Science.
- 27. C. Conroy et al., Birth of the Galactic Disk Revealed by the H3 Survey, arXiv:2204.02989, submitted to ApJ.
- 26. K. El-Badry et al., The fastest stars in the Galaxy, OJA, 6, 28, 2023.
- 25. J. Johnson et al., Dwarf galaxy archaeology from chemical abundances and star-formation histories, MNRAS, 526, 5084J, 2023.
- 24. R.J. Bouwens et al., Evolution of the UV LF from $z \sim 15$ to $z \sim 8$ using new JWST NIRCam medium-band observations over the HUDF/XDF, MNRAS, 523, 1036B, 2023.
- 23. R.J. Bouwens et al., UV luminosity density results at z > 8 from the first JWST/NIRCam fields: limitations of early data sets and the need for spectroscopy, MNRAS, 523, 1009B, 2023.
- 22. L. Barrufet et al., Unveiling the Nature of Infrared Bright, Optically Dark Galaxies with Early JWST Data, MNRAS, 522, 449B, 2023.
- 21. H. Rix et al., The Poor Old Heart of the Milky Way, ApJ, 941, 45R, 2022.

- 20. V. Chandra et al., A Ghost in Boötes: The Least Luminous Disrupted Dwarf Galaxy, ApJ, 940, 127C, 2022.
- 19. J. J. Han et al., The Stellar Halo of the Galaxy is Tilted & Doubly Broken, AJ, 164, 249, 2022.
- 18. M. Hasheminia et al., No Evolution in the Half-mass Radius of Milky Way-type Galaxies over the Last 10 Gyr, ApJ, 932, 23, 2022.
- 17. D. Schaerer et al., First look with JWST spectroscopy: Resemblance among $z \sim 8$ galaxies and local analogs, A&A, 665, L4, 2022.
- 16. E. Leonova et al., The prevalence of galaxy overdensities around UV-luminous Lymanα emitters in the Epoch of Reionization, MNRAS, 515, 5790, 2022.
- 15. J. Shen et al., The Mass of the Milky Way from the H3 Survey, ApJ, 925, 1S, 2022.
- 14. Y. Qin et al., Dark-ages Reionization and Galaxy Formation Simulation XX. The Lyα IGM transmission properties and environment of bright galaxies during the Epoch of Reionization, MNRAS, 510, 3858, 2022.
- 13. J. Matthee et al., The X-SHOOTER Lyman- α survey at z=2 (XLS-z2) I: the panchromatic spectrum of typical Lyman- α emitters, MNRAS, 505, 1382M, 2021.
- 12. R. Bouwens et al., New Determinations of the UV Luminosity Functions from $z \sim 9$ to $z \sim 2$ Show a Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency, AJ, 162, 47B, 2021.
- 11. C. Carter et al., Ancient Very Metal-poor Stars Associated with the Galactic Disk in the H3 Survey, ApJ, 908, 208, 2021.
- 10. D. Zaritsky et al., Discovery of Magellanic Stellar Debris in the H3 Survey, ApJL, 905, 3, 2020.
- 9. B.D. Johnson et al., A Diffuse Metal-poor Component of the Sagittarius Stream Revealed by the H3 Survey, ApJ, 900, 103, 2020.
- 8. A. Bonaca et al., Timing the Early Assembly of the Milky Way with the H3 Survey, ApJL, 897, 18, 2020.
- 7. A. Bonaca et al., High-resolution Spectroscopy of the GD-1 Stellar Stream Localizes the Perturber near the Orbital Plane of Sagittarius, ApJL, 892, 37, 2020.
- D. Zaritsky et al., A Lower Limit on the Mass of Our Galaxy from the H3 Survey, ApJ, 888, 114, 2020.
- C. Conroy et al., Mapping the Stellar Halo with the H3 Spectroscopic Survey, ApJ, 883, 107, 2019.
- 4. X. Fan et al., The Discovery of a Gravitationally Lensed Quasar at z = 6.51, ApJL, 870, 11, 2019.
- 3. L.H. Jones et al., $z\sim2.5-3$ Ionizers in the GOODS-N Field, ApJ, 862, 142, 2018.
- 2. P.A. Oesch et al., HDUV: The Hubble Deep UV Legacy Survey, ApJS, 237, 12, 2018.
- 1. C. Conroy et al., They Might Be Giants: An Efficient Color-based Selection of Red Giant Stars, ApJL, 861, 16, 2018.

COVERAGE IN POPULAR MEDIA

- On "Two Remarkably Luminous Galaxies at $z \approx 12$ Revealed by JWST"
 - Standard Model of Cosmology Survives a Telescope's Surprising Finds, Quanta
 - JWST finds two of the oldest and most distant galaxies ever seen, The Guardian

- JWST may have found the most ancient starlight we've ever seen—and it's only the beginning, The Atlantic
- JWST has found the oldest galaxy we have ever seen in the universe, New Scientist
- What the spectacular images of JWST Reveal, Le Monde
- The James Webb Space Telescope Might Have Spotted the Most Distant Galaxy Ever Seen, Smithsonian Magazine
- On "Schrodinger's Galaxy"
 - JWST Discovers a Galaxy That Could Break Physics, 1.5 million views on Secrets of The Universe YouTube channel
 - JWST catches 'imposter' galaxies red-handed, CNET
 - Could This Galaxy Be In Two Different Places? James Webb Telescope Reveals Another Candidate For Distant Galaxy, Mashable
- On Milky Way work
 - Astronomers Find Stars Cast Away from Galactic Neighbors, Sky & Telescope
 - Stars found hidden in huge cloud wrapped around the Milky Way, New Scientist
 - Our Milky Way Galaxy's Most Recent Major Collision, SciTech Daily
 - Astronomers chart ocean of dark matter swirling outside the Milky Way, Live Science
 - Dark matter could be powering a galaxy that orbits the Milky Way, SYFY

INVITED TALKS

Caltech, The First Glimpse of the The First Galaxies with JWST	Colloquium, 2023
Chicago, The First Glimpse of the The First Galaxies with JWST	Colloquium, 2023
CfA, The First Glimpse of the The First Galaxies with JWST	Colloquium, 2023
MIT, The First Glimpse of the The First Galaxies with JWST	Colloquium, 2023
Yale, The First Glimpse of the The First Galaxies with JWST	Colloquium, 2023
UTRGV, The First Glimpse of the The First Galaxies with JWST	Colloquium, 2023
Carnegie, The First Glimpse of the The First Galaxies with JWST	Colloquium, 2022
ANU, The First Glimpse of the The First Galaxies with JWST	Colloquium, 2022
UMass Amherst, The First Glimpse of the The First Galaxies with JWST	Colloquium, 2022
U. of Minnesota, Unraveling the Galactic Halo with the H3 Survey	Colloquium, 2020
IIT Hyderabad, The First Glimpse of the The First Galaxies with JWST	Seminar, 2023
MIT, The First Glimpse of the The First Galaxies with JWST	Seminar, 2023
Tufts, The First Glimpse of the The First Galaxies with JWST	Seminar, 2022
Sao Paulo, The First Glimpse of the The First Galaxies with JWST	Seminar, 2022
U. of Washington, The First Glimpse of the The First Galaxies with JWST	Seminar, 2022
CfA, (Very) Early Results from JWST	Seminar, 2022
DAWN, Solving Reionization with Resolved Ly α	Seminar, 2022

Seminar, 2022
Merger Seminar, 2021
Seminar, 2021
Seminar, 2021
Seminar, 2021
Seminar, 2021
Seminar, 2021
Astrophysics Seminar, 2021
Extragalactic Seminar, 2021
Seminar, 2021
Astronomy seminar, 2021
Milky Way seminar, 2021
Astro Coffee, 2020
Dynamics meeting, 2020
Galaxy Crawl seminar, 2020
Galaxy Coffee, 2020
HiGEM seminar, 2020
EURECA seminar, 2020
Thirty Minutes Talk, 2019

CONFERENCE TALKS

The Early Universe according to JWST, ISSI Bern Seeking the Photons for Reionization	2024
Reionization & Cosmic Dawn, Berkeley Solving Reionization with Resolved Ly α	2022
SAZERAC2, Double Bubble Lyman Trouble: Indirect tracers of LyC for the JWST Era	2021
Streams21, The Accretion Origins of Stellar Streams	2021
AAS Winter Meeting, Unraveling the Galactic Halo with the H3 Survey	2021
Harvard-Heidelberg Star-Formation Meeting, Starburst (Sgrburst) in our Backyard	2020
SAZERAC, Rapid Reionization by the Oligarchs	2020
Early Galaxy Evolution in the ALMA $\&$ JWST Era, $Rapid\ Reionization\ by\ the\ Oligarchs$	2019
Escape of Lyman Radiation, OAC Crete, LyC at $z \approx 2-3$ with the HDUV Survey	2018

TEACHING & ADVISING

Teaching Head Teaching Fellow, Stellar & Planetary Astronomy, Harvard University Instructor: Prof. John Johnson Teaching Fellow, Galaxies & Cosmology, Harvard University Instructor: Prof. Charlie Conroy Teaching Assistant, Intro. to Observational Astronomy, Yale-NUS College Instructor: Prof. Bryan Penprase Advising Kate Leonova (Amsterdam) 2022-

adviser on ongoing reionization project with JWST surveys, paper in prep.	2022
Vedant Chandra (Harvard Astronomy) adviser with Prof. Charlie Conroy on ongoing halo survey; two papers published	2021-
Katherine Sharpe (Harvard College \to UC Berkeley) advised with Prof. Charlie Conroy on one published paper and Harvard Jr. Thesis	2021-23
Steve Diaz (UMass Lowell, SAO Latino Initiatives Program) mentored on all aspects of research life during 3 month internship	2021
Megan Gialluca (Northern Arizona University, SAO REU student) advised with Dr. Ana Bonaca on one published paper	2020-21
Lavonna Mark (Yale-NUS College) advised on PhD applications & interviews, Stanford PhD on prize fellowship	2020-21
Jerrick Wee (Yale-NUS College) mentored on all aspects of astronomy research, published two papers	2017-18

DIVERSITY, EQUITY, INCLUSION

- Lead Member, NASA Hubble Fellowship DEI Group (2023-)
 - One of nine lead members of DEI group that is focused on diversifying the fellowship and using the program's privileged position to bring positive change in the community.
 - One of two fellows with overall responsibility for the annual postdoc fellowship application feedback program (e.g., recruiting team of current/former fellows, matching students with suitable mentors, publicity).
- Survey Representative, Harvard Graduate Student Mental Health Survey (2021)
 - One of five Astronomy Dept. point-persons for the Harvard-wide initiative.
 - Coordinated 95% participation from department and helped disseminate results.
- Python instructor & STEM Mentor, SAO's Latino Initiatives Program (2021)
 - Three month program for students from communities under-represented in STEM.
 - Introduced students to python with a focus on scientific computing.

- Held weekly one-to-one mentoring meetings.
- Volunteer, Harvard Banneker Institute summer program (2018, 2020)
 - Ten week research-study experience to prepare students of color for graduate school.
 - Held weekly office hours on all aspects of research, provided catch-all programming assistance.
- Department Point-Person & Volunteer, Harvard Graduate Students Union (2017-19)
 - Fair pay, affordable healthcare, and protection from abuse are core goals of the union.
 - Canvassed STEM departments (≈200 calls + in-person conversations) and international students (e.g., Harvard Crimson Op-Ed) for union formation election.
 - Organized action with a focus on international student issues (e.g., Muslim ban, visa-related travel reimbursements, pandemic pay).

PROFESSIONAL SERVICE

- Subject-matter expert reviewer in a NASA peer review (2024)
- Scientific & Local Organizing Committees, First Light Conference, Boston (2023)
 - One of five SOC members, and one of six LOC members for > 150 person conference focused on early Universe results from the first year of JWST.
 - Designed scientific program, organized logistics, coordinated social events, assisted with overall responsibilities for smooth conduct of the event.
- Journal referee for the Astrophysical Journal (ApJ, ApJL), and Astronomy & Astrophysics (A&A, A&AL)
- Chief Coordinator, Harvard Astronomy's Recruitment Week (2019)
 - One of two grad students in-charge of every aspect of recruitment (e.g., designing the overall program, travel/restaurant arrangements, liaising with faculty/admin).
 - Developed new programming (e.g., closed-door student panel with anonymous questions) and conducted an entry/exit survey to probe the visit's successes/failures.
 - Produced a detailed report for faculty identifying areas of weakness (e.g., CfA web portals) that spurred action.

OTHER INTERESTS

- Quizzing/Trivia/Quiz-bowl
 - Won several national & international events youngest gold medalist at the Asia-Pacific Quizzing Championships and four-time national champion (Singapore), one-time international champion of the Tata Crucible campus quiz (among the world's largest university tournaments with 38 cities, 5000+ teams).
 - Wrote/presented 1000+ questions for TV shows, pub quizzes, and community events.
- Poetry

 Published in journals including Helter Skelter Magazine's New Indian Writing, the Quarterly Literary Review Singapore, and Softblow. Shortlisted/longlisted for prizes including the Poetry Society of India's All-India Prize, University of Canberra's International Poetry Prize, and the Wingword Poetry Prize.

• Data-science for social good

- Led the team behind the viral electoral literacy website, electionaire.info (>500,000 unique hits, > 10% of Singapore's population). Conceptualized the project, recruited team, oversaw research on stances of political parties, handled press.
- Data miner for studies focused on domestic maids' rights in Singapore. Studies based on these data revealed live-in domestic maids from the Philippines, Indonesia and India who work in 1-of-4 households often enter contracts with zero off days per month.