- 1. Докажите, что каждое измеримое по Лебегу подмножество в \mathbb{R}^n положительной меры содержит неизмеримое по Лебегу подмножество.
- 2. (*Канторова лестница*). Постройте непрерывную неубывающую сюръекцию из [0,1] на [0,1], локально постоянную на дополнении канторова множества.
- 3. Приведите пример непрерывной функции на отрезке, которая переводит некоторое измеримое по Лебегу множество в неизмеримое.
- 4. Приведите пример непрерывной функции $f:[0,1] \to \mathbb{R}$, такой, что для некоторого измеримого по Лебегу множества $A \subset [0,1]$ его прообраз $f^{-1}(A)$ неизмерим.
- 5. Выведите из предыдущей задачи существование измеримых по Лебегу множеств, не являющихся борелевскими.
- 6. Верно ли, что композиция измеримых по Лебегу функций из \mathbb{R} в \mathbb{R} измерима по Лебегу?
- 7. Пусть $X \subset \mathbb{R}^n$ открытое или замкнутое множество, $f: X \to \mathbb{R}$ непрерывная функция, $\Gamma_f = \{(x, f(x)) : x \in X\} \subset \mathbb{R}^{n+1}$ ее график. Докажите, что $\lambda_{n+1}(\Gamma_f) = 0$. (На лекции это утверждение доказывалось в предположении, что $f \in C^1$.)
- 8. (*Меры Лебега-Стилтьеса*). Пусть \mathscr{A} алгебра подмножеств \mathbb{R} , порожденная всеми полуинтервалами вида (a,b] и $(a,+\infty)$ $(-\infty \le a \le b < +\infty)$. Пусть $F \colon \mathbb{R} \to \mathbb{R}$ неубывающая функция.
 - (а) Положим $F(\pm \infty) = \lim_{x \to \pm \infty} F(x)$. Докажите, что на $\mathscr A$ существует единственная мера μ_F , такая, что $\mu_F((a,b]) = F(b) F(a)$ и $\mu_F((a,+\infty)) = F(+\infty) F(a)$ (где $-\infty \le a \le b < +\infty$.)
 - (b) Какой функции F соответствует мера Лебега? Мера Дирака? Мера $\mu(A) = \sum_{x_n \in A} p_n$, где $\{x_n\}$ произвольное счетное подмножество \mathbb{R} , а (p_n) последовательность неотрицательных чисел, удовлетворяющая условию $\sum_n p_n < \infty$?
 - (c) Придумайте условие на функцию F, необходимое и достаточное для того, чтобы μ_F была σ -аддитивна.
 - (d) Предположим, что μ_F σ -аддитивна, и обозначим тем же символом μ_F ее каноническое продолжение на σ -алгебру \mathcal{M}_F μ_F -измеримых множеств. Докажите, что $\mathcal{M}_F \supset \mathcal{B}or(\mathbb{R})$, и вычислите значения μ_F на всевозможных отрезках, интервалах и полуинтервалах.
 - (e) Докажите, что любая σ -аддитивная борелевская мера на \mathbb{R} , конечная на ограниченных множествах, имеет вид μ_F для некоторой F, удовлетворяющей условию п. (c), и что функция F определена однозначно с точностью до добавления константы.
 - (f) В предположении п. (d) докажите, что μ_F регулярна на \mathcal{M}_F .