Vol. 20 No. 3 Sup. 2002

# 步进电机控制接口实例

## 罗庚合

(西安航专 机械系,西安 710077)

摘 要:文章以脉冲分配器集成电路 TD62803P 为主,用压控振荡器 74LS624 进行频率控制,采用直流固态继电器作为驱动器,步进电机采用高低压双路供电,改善起动性能。该电路比以硬件为主的传统电路简单,又比以软件实现的环行分配电路节省计算机内部资源和占用 I/O 接口少,又很容易实现正转、反转、速度、模式、步进步数等控制,是未来步进电机控制接口技术发展的方向。

关键词: TD62803; 74LS624; 直流固态继电器; VMOS管; 步进电机; 高低供电

中图分类号:TM383.6 文献标识码:A 文章编号:1008-9233(2002)03-0008-03

# 1 概述

步进电机受驱动控制线路的控制,将具有一定 频率 fck,一定数量 N 和方向的进给脉冲转换成控 制步进电机各相定子绕组通断电的电平信号,使步 进电机步进转动,通过齿轮和丝杠带动工作台移动。

其特点是直接用数字量控制,用计算机控制很容易,所以在数控及计算机控制领域得到广泛的应用。步进电机控制接口性能好坏对步进电机的工作产生很大的影响,直接关系到被控对象的精度、稳定性。传统的控制接口受器件发展限制,采用以触发器构成的环行分配器、复合晶体管驱动,电路复杂,器件性能不稳定,容易产生故障。而以软件代替硬件环行分配器,增加了程序编制工作量,占用计算机 I/O 接口线较多。

随着集成电路事业的发展和新器件的出现,采用专用脉冲分配器集成电路 TD62803P 配合压控震荡器 74LS624,用直流固态继电器驱动,采用 VMOS 大功率器件做开关对步进电机双路供电构成的接口电路,具有性能稳定,容易控制等特点,是未来步进电机控制接口发展的方向。

# 2 TD62803P 介绍

TD62803P 是专门用于步进电机控制的脉冲分

配器芯片。它可以适用于 3 相步进电机的各种激励 方式。各引脚功能见表 1。

表 1 TD62803P 引脚功能表

| 表 1 1D02603F 引脚功能表 |                        |                  |  |  |  |  |  |
|--------------------|------------------------|------------------|--|--|--|--|--|
| 引脚                 | 名称                     | 功能               |  |  |  |  |  |
| 1                  | CW/CCW                 | 正转/反转控制端         |  |  |  |  |  |
| 2                  | $E_A$                  | 激磁方式控制           |  |  |  |  |  |
| 3                  | $E_B$                  | 激磁方式控制           |  |  |  |  |  |
| 4                  | 3/4                    | 3 相或 4 相切换控制     |  |  |  |  |  |
| 5                  | $\overline{\text{MO}}$ | 初始状态检出。初始状态时其输出为 |  |  |  |  |  |
|                    |                        | 低电平              |  |  |  |  |  |
| 6                  | $\Phi_{\mathbf{i}}$    | 驱动器脉冲输出相1        |  |  |  |  |  |
| 7                  | $\Phi_2$               | 驱动器脉冲输出相 2       |  |  |  |  |  |
| 8                  | GND                    | 地线               |  |  |  |  |  |
| 9                  | $\Phi_3$               | 驱动器脉冲输出相3        |  |  |  |  |  |
| 10                 | $\Phi_4$               | 驱动器脉冲输出相 4       |  |  |  |  |  |
| 11                 | E                      | 输出允许 E=1 允许输出    |  |  |  |  |  |
| 12                 | CKOUT                  | 时钟输出,它可以用来对步进脉冲进 |  |  |  |  |  |
|                    |                        | 行记数              |  |  |  |  |  |
| 13                 | $CK_1$                 | 时钟脉冲输出           |  |  |  |  |  |
| 14                 | $CK_2$                 | 时钟脉冲输出           |  |  |  |  |  |
| 15                 | $\overline{R}$         | 复位输入             |  |  |  |  |  |
| 16                 | $V_{\infty}$           | + 5v 电源          |  |  |  |  |  |

从 TD62803P 的引脚定义可以看到,它是一个可控的多功能脉冲分配器。在相应引脚上加不同的控制电平,即可得到不同的控制功能。有关控制功能的真值表如表 2 所示。

<sup>\*</sup> 收稿日期:2002-05-06

| 表 2 TD62803P 控制真值表 |     |        |        |    |    |     |             |  |
|--------------------|-----|--------|--------|----|----|-----|-------------|--|
| CK1                | CK2 | CW/CCW | 功能     | EA | EB | 3/4 | 功能          |  |
|                    | 1   | 0      | CW 正转  | 0  | 0  | 0   | 4相1相激磁      |  |
|                    | 0   | 0      | 禁止     | 1  | 0  | 0   | 4相2相激磁      |  |
| 1                  |     | 0      | CCW 反转 | 0  | 1  | 0   | 4 相 1-2 相激磁 |  |
| 0                  |     | 0      | 禁止     | 1  | 1  | 0   | 测试模式,输出全部有效 |  |
|                    | 1   | 1      | CCW 反转 | 0  | 0  | 1   | 3相1相激磁      |  |
|                    | 0   | 1      | 禁止     | 1  | 0  | 1   | 3相1相激磁      |  |
| 1                  |     | 1      | CW 正转  | 0  | 1  | 1   | 3相2相激磁      |  |
| 0                  |     | 1      | 禁止     | 1  | 1  | 1   | 测试模式,输出全部有效 |  |

表 2 中提出了以下几种控制步进电机正反转法:

- 一是 CK1 输入步进脉冲 CK2 = 1 用 CW/ CCW 控制 0/1—正/反
- 一是 CK2 输入步进脉冲 CK1 = 1 用 CW/ CCW 控制 0/1—反/正
  - 一是 CK1 或 CK2=0 禁止输出

# 3 步进电机控制接口实例

以 MCS-51 单片机系统,包括可编程并行 I/O 接口 8255,D/A 转换电路等,

可设置 A、B 口为输入接口,接受步进速度和步进给定,用 PC 口控制信号,用定时器口做为步数计数器。电路如图 1 所示。

可利用拨盘开关设定进给速度和步数,通过8255A口和B口采集,进给速度给定值通过 A/D转换电路转变为直流电压  $U_0$  的输出,去控制压控震荡器 74LS624。其中输出频率  $f_{ck}$  正比 D/A 输出电压  $U_0$  压控震荡器受 $\overline{EN}$  控制用单片机系统的  $PC_0$  控制。



图 1 步进电机控制接口电路图

图中 TD62803 工作方式为三相  $1\sim2$  相激磁方式,进给脉冲由 CK1 输入 CK2="1",正反转控制由 CW/CCW 受 PC1 控制, $E_A=0$ , $E_B=1$ ,3/4=1。驱动和放大电路采用直流固态继电器。固态继电器是一种无触点的电子开关,可广泛用于各种行业,是防火、防爆、防震的理想元件,外形和内部电路如图 2 所示。



#### 图 2 直流固态继电器外形和内部结构图

固态继电器核心是由 VMOS 管和光电隔离两部分构成, VMOS 具有输入电阻极高, 前级的驱动电流小、输出的功率大(电流可达几十安培)是一种较理想的计算机接口器件, 用做步进电机驱动器具有电路简单、可靠、无噪声干扰等优点。

步进电机绕阻供电采用高低压供电方式,改善了起动性能。

CK1 上升沿时,单稳工作(可调整单稳时间),高压 开关管  $VT_1 \sim VT_3$  导通,隔离二极管  $D_1 \sim D_3$  截止, +50V 给步进电机供电,改善起动特性,单稳态系统 结束, $VT_1 \sim VT_3$  截止, $D_1 \sim D_3$  导通,由低压 24V 供电。电机的电流还用  $RP_1 \sim RP_3$  调整。 $D_A \sim D_C$  是 续流二极管,吸收绕阻通断电的自感电势。

### 4 小结

本文介绍的步进电机接口实例,作者用它替代原线切割机驱动电路,和 X-Y 绘图仪的十字拖极的步进机驱动器经过长期的运行证明,该电路简单、可靠,与计算机系统连接方便,很容易控制,是当今步进电机控制接口的发展趋势。

#### 参考文献

- [1] 王润孝,秦现生编著. 机床数控原理与系统. 西北工业大学出版社,1997.6
- [2] 电子技术 .1998.10.
- [3] 李伯成,侯伯李等编.IBM-PC 微机应用系统设计. 西安电子科技大学,1996.
- [4] 黄义源主编.机械设备电气与数字控制.中共广播电视大学出版社,1992.5.
- [5] 彭晓南主编.数控技术.机械工业出版社,2001.9.

#### A sample of a steep motor interface

### Luo Genghe

(Machine Egnineering Department, Xi'an Aerotechnical College, Xi'an 710077)

Abstract: This article introduced a kind of new interface between computer and singlechip, which is using a pulse distributor—integrated circuit chip TD62803P, using voltage control vibrator 74LS624 as the frequency controller, using DC solid relay as the driver, using a double—voltage steep motor as the power provider. So the interface can provide various control for direction, speed, steep models and so on.

Key words: TD62803; 74LS624; DC Solid Relay; VMOS; Steep Motor; Double - voltage Supply