Lógicas Modales

Algoritmos efectivos

Carlos Areces & Raul Fervari

1er cuatrimestre de 2017 Córdoba, Argentina

Repaso

Estuvimos viendo...

- ► Complejidad de distintas lógicas modales
- ► En particular, algoritmos óptimos, pero imprácticos!

Hoy vamos a ver

- Algoritmos con peor complejidad
- Pero buen comportamiento empírico en casos promedio

Satisfacibilidad modal adivinando buscando modelos

Algoritmo NTIME(f) para lógicas con modelos f-acotados

- ▶ Dada una fórmula φ :
 - 1. Adivinar un modelo \mathcal{M} de tamaño a lo sumo $f(|\varphi|)$
 - 2. Adivinar un w en el dominio de \mathcal{M}
 - 3. Devolver 1 sii $\mathcal{M}, w \models \varphi$
- Obviamente, no sirve como algoritmo efectivo

Satisfacibilidad modal adivinando buscando modelos Algoritmo NTIME(f) para lógicas con modelos f-acotados

- ▶ Dada una fórmula φ :
 - 1. Adivinar un modelo \mathcal{M} de tamaño a lo sumo $f(|\varphi|)$
 - 2. Adivinar un w en el dominio de \mathcal{M}
 - 3. Devolver 1 sii $\mathcal{M}, w \models \varphi$
- Obviamente, no sirve como algoritmo efectivo

Algoritmo de Tableaux

- ightharpoonup Dada una fórmula φ
 - 1. Buscar ("backtracking") sistemáticamente un modelo de φ
 - 2. Devolver 1 sii se encuentra tal modelo
- Es la base de muchos razonadores para lógicas modales
- ▶ Varios tipos de tableaux, vamos a ver sólo *tableaux etiquetados*

► Reglas de tableaux: definen un árbol de posibilidades.

- ► Reglas de tableaux: definen un árbol de posibilidades.
- Los nodos de un árbol son, en general:
 - Fórmulas "etiquetadas" $w:\psi$, donde w es una etiqueta.
 - ► "Relaciones" *Rwv* donde *w* y *v* son etiquetas.

- ► Reglas de tableaux: definen un árbol de posibilidades.
- Los nodos de un árbol son, en general:
 - Fórmulas "etiquetadas" $w:\psi$, donde w es una etiqueta.
 - ► "Relaciones" *Rwv* donde *w* y *v* son etiquetas.
- Cada rama del árbol codifica de alguna manera un modelo.

- ► Reglas de tableaux: definen un árbol de posibilidades.
- Los nodos de un árbol son, en general:
 - Fórmulas "etiquetadas" $w:\psi$, donde w es una etiqueta.
 - "Relaciones" Rwv donde w y v son etiquetas.
- Cada rama del árbol codifica de alguna manera un modelo.
- Las reglas nos dicen:
 - 1. Cómo *expandir* una rama.
 - 2. Cómo detectar que una rama no nos sirve (reglas de clash).

- ► Reglas de tableaux: definen un árbol de posibilidades.
- Los nodos de un árbol son, en general:
 - Fórmulas "etiquetadas" $w:\psi$, donde w es una etiqueta.
 - ► "Relaciones" *Rwv* donde *w* y *v* son etiquetas.
- Cada rama del árbol codifica de alguna manera un modelo.
- Las reglas nos dicen:
 - 1. Cómo *expandir* una rama.
 - 2. Cómo detectar que una rama no nos sirve (reglas de clash).
- ► *Algoritmo*: Dada φ , explorar (backtracking) el árbol de $w:\varphi$.

Ejemplo de tableaux etiquetado

Lógica modal con pasado

Reglas de expansión

Ejemplo de tableaux etiquetado

Lógica modal con pasado

Reglas de expansión

Regla de clash:

clash
$$\frac{w:p,w:\neg p}{\perp}$$

Ejemplo de tableaux etiquetado

Lógica modal con pasado

Reglas de expansión

Regla de clash:

clash
$$\frac{w:p,w:\neg p}{\mid}$$

- Asumimos fórmulas en *negation normal form*.
- ▶ Las reglas \Diamond y \Diamond ⁻¹ se usan sólo si no existe tal v en la rama.

Ejemplo

Ejercicio.

Decidir si $\varphi = p_1 \wedge \Diamond p_2 \wedge \Diamond \Box^{-1} \Box (\neg p_2 \vee \Box^{-1} \neg p_1)$ es satisfacible.

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración. Extraemos un modelo de Γ .

$$\begin{aligned} \operatorname{Sea} \mathcal{M}_{\Gamma} &= \left\langle W_{\Gamma}, R_{\Gamma}, V_{\Gamma} \right\rangle \operatorname{donde} & W_{\Gamma} &= \left\{ w \mid w : \varphi \in \Gamma \right\} \\ R_{\Gamma} &= \left\{ (w, v) \mid Rwv \in \Gamma \right\} \\ V_{\Gamma}(p) &= \left\{ w \mid w : p \in \Gamma \right\} \end{aligned}$$

Completitud

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración. Extraemos un modelo de Γ .

Sea
$$\mathcal{M}_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

 $V_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$
 $V_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$
 $V_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración. Extraemos un modelo de Γ .

Sea
$$\mathcal{M}_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

 $V_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$
 $V_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$
 $V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$

Sea ψ la fórmula *más pequeña* t.q. $w:\psi\in\Gamma$ y $\mathcal{M}_{\Gamma},w\not\models\psi$.

• $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración. Extraemos un modelo de Γ .

Sea
$$\mathcal{M}_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

 $V_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$
 $V_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$
 $V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$

- $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
- $\psi \neq \psi_1 \lor \psi_2$ porque tendríamos $w:\psi_i \in \Gamma$ y no sería mínima

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración. Extraemos un modelo de Γ .

Sea
$$\mathcal{M}_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

 $V_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$
 $V_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$
 $V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$

- $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
- $\psi \neq \psi_1 \vee \psi_2$ porque tendríamos $w:\psi_i \in \Gamma$ y no sería mínima
- $\psi \neq \psi_1 \wedge \psi_2$ por razones análogas

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración. Extraemos un modelo de Γ .

$$\begin{aligned} \operatorname{Sea} \mathcal{M}_{\Gamma} &= \left\langle W_{\Gamma}, R_{\Gamma}, V_{\Gamma} \right\rangle \operatorname{donde} & W_{\Gamma} &= \left\{ w \mid w : \varphi \in \Gamma \right\} \\ R_{\Gamma} &= \left\{ (w, v) \mid Rwv \in \Gamma \right\} \\ V_{\Gamma}(p) &= \left\{ w \mid w : p \in \Gamma \right\} \end{aligned}$$

- $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
- $\psi \neq \psi_1 \lor \psi_2$ porque tendríamos $w:\psi_i \in \Gamma$ y no sería mínima
- $\psi \neq \psi_1 \wedge \psi_2$ por razones análogas
- $\psi \neq \Diamond \chi$ porque tendríamos $Rwv, v: \chi \in \Gamma$ y no sería mínima

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración. Extraemos un modelo de Γ .

$$\begin{aligned} \operatorname{Sea} \mathcal{M}_{\Gamma} &= \left\langle W_{\Gamma}, R_{\Gamma}, V_{\Gamma} \right\rangle \operatorname{donde} & W_{\Gamma} &= \left\{ w \mid w : \varphi \in \Gamma \right\} \\ R_{\Gamma} &= \left\{ (w, v) \mid Rwv \in \Gamma \right\} \\ V_{\Gamma}(p) &= \left\{ w \mid w : p \in \Gamma \right\} \end{aligned}$$

- $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
- $\psi \neq \psi_1 \lor \psi_2$ porque tendríamos $w:\psi_i \in \Gamma$ y no sería mínima
- $\psi \neq \psi_1 \wedge \psi_2$ por razones análogas
- $\psi \neq \Diamond \chi$ porque tendríamos $Rwv, v: \chi \in \Gamma$ y no sería mínima
- $\psi \neq \Box \chi$, $\psi \neq \Box^{-1} \chi$ y $\psi \neq \Diamond^{-1} \chi$ por razones análogas.

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración. Extraemos un modelo de Γ .

$$\begin{aligned} \operatorname{Sea} \mathcal{M}_{\Gamma} &= \left\langle W_{\Gamma}, R_{\Gamma}, V_{\Gamma} \right\rangle \operatorname{donde} & W_{\Gamma} &= \left\{ w \mid w : \varphi \in \Gamma \right\} \\ R_{\Gamma} &= \left\{ (w, v) \mid Rwv \in \Gamma \right\} \\ V_{\Gamma}(p) &= \left\{ w \mid w : p \in \Gamma \right\} \end{aligned}$$

Sea ψ la fórmula *más pequeña* t.q. $w:\psi \in \Gamma$ y $\mathcal{M}_{\Gamma}, w \not\models \psi$.

- $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
- $\psi \neq \psi_1 \lor \psi_2$ porque tendríamos $w:\psi_i \in \Gamma$ y no sería mínima
- $\psi \neq \psi_1 \wedge \psi_2$ por razones análogas
- $\psi \neq \Diamond \chi$ porque tendríamos $Rwv, v: \chi \in \Gamma$ y no sería mínima
- $\psi \neq \Box \chi$, $\psi \neq \Box^{-1} \chi$ y $\psi \neq \Diamond^{-1} \chi$ por razones análogas.

Luego, no existe tal fórmula; $w:\psi \in \Gamma$ implica $\mathcal{M}, w \models \psi$

Terminación

Teorema

Toda rama saturada de un tableaux para φ es finita.

Terminación

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración. Sea Γ una rama saturada y

$$\mathsf{LABEL}(w) = \{\psi \mid w : \psi \in \Gamma\}.$$

Terminación

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración. Sea Γ una rama saturada y

$$\mathsf{LABEL}(w) = \{\psi \mid w : \psi \in \Gamma\}.$$

1. LABEL(w) es finito porque son todas subfórmulas de φ .

Terminación

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración. Sea Γ una rama saturada y

$$\mathsf{LABEL}(w) = \{\psi \mid w : \psi \in \Gamma\}.$$

- 1. LABEL(w) es finito porque son todas subfórmulas de φ .
- 2. Luego, $\{v \mid Rwv \in \Gamma\}$ es finito (ver nota sobre $\Diamond y \Diamond^{-1}$).

Terminación

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración. Sea Γ una rama saturada y LABEL(w) = { $\psi \mid w: \psi \in \Gamma$ }.

- 1. LABEL(w) es finito porque son todas subfórmulas de φ .
- 2. Luego, $\{v \mid Rwv \in \Gamma\}$ es finito (ver nota sobre $\diamondsuit y \diamondsuit^{-1}$).
- 3. Entonces, Γ es infinito sii existe una cadena w_1, w_2, \ldots tal que w_i generó a w_{i+1} usando la regla \diamondsuit ó la regla \diamondsuit^{-1} .

Terminación

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración. Sea Γ una rama saturada y LABEL(w) = { $\psi \mid w: \psi \in \Gamma$ }.

- 1. LABEL(w) es finito porque son todas subfórmulas de φ .
- 2. Luego, $\{v \mid Rwv \in \Gamma\}$ es finito (ver nota sobre $\diamondsuit y \diamondsuit^{-1}$).
- 3. Entonces, Γ es infinito sii existe una cadena w_1, w_2, \ldots tal que w_i generó a w_{i+1} usando la regla \diamondsuit ó la regla \diamondsuit^{-1} .
- 4. Pero si w genera a v, $d(\mathsf{LABEL}(w)) > d(\mathsf{LABEL}(v))$ (sale por inducción en la derivación de Γ , d es profundidad modal).

Terminación

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración. Sea Γ una rama saturada y LABEL(w) = { $\psi \mid w: \psi \in \Gamma$ }.

- 1. LABEL(w) es finito porque son todas subfórmulas de φ .
- 2. Luego, $\{v \mid Rwv \in \Gamma\}$ es finito (ver nota sobre $\Diamond y \Diamond^{-1}$).
- 3. Entonces, Γ es infinito sii existe una cadena w_1, w_2, \ldots tal que w_i generó a w_{i+1} usando la regla \diamondsuit ó la regla \diamondsuit^{-1} .
- 4. Pero si w genera a v, $d(\mathsf{LABEL}(w)) > d(\mathsf{LABEL}(v))$ (sale por inducción en la derivación de Γ , d es profundidad modal).
- 5. Por lo tanto, para algún j, $d(LABEL(w_i)) = 0$.

¿Importa el orden en que aplicamos las reglas?

¿Importa el orden en que aplicamos las reglas?

▶ No afecta la terminación del algoritmo.

¿Importa el orden en que aplicamos las reglas?

- No afecta la terminación del algoritmo.
- Sí afecta el tamaño del árbol generado!
 - ► Considerar: $(p_1 \lor p_2) \land ((p_3 \lor p_4) \land ((p_5 \lor p_6) \land (p \land \neg p)))$
 - ¿Qué sucede si siempre preferimos aplicar ∧ antes que ∨?
 - ¿Qué sucede si siempre preferimos aplicar ∨ antes que ∧?

¿Importa el orden en que aplicamos las reglas?

- No afecta la terminación del algoritmo.
- Sí afecta el tamaño del árbol generado!
 - ► Considerar: $(p_1 \lor p_2) \land ((p_3 \lor p_4) \land ((p_5 \lor p_6) \land (p \land \neg p)))$
 - ¿Qué sucede si siempre preferimos aplicar ∧ antes que ∨?
 - ¿Qué sucede si siempre preferimos aplicar ∨ antes que ∧?

Heurísticas básicas

- ► Usar reglas sin branching (e.g., \(\Lambda\)) antes que aquellas con branching (como \(\nabla\))
- Usar reglas proposicionales (e.g., ∧ y ∨) antes que reglas modales (como ◊ y □)

Optimizaciones

- Las reglas \land , \lor y *clash* son un tableaux proposicional
- Pero es preferible DPLL para razonamiento proposicional
- Los demostradores basados en tableaux incorporan elementos de DPLL:
 - Branching semántico (una forma de splitting)
 - Backjumping
 - Caching

Un tableaux para K sobre la clase de modelos transitivos (K4)

Un tableaux para K sobre la clase de modelos transitivos (K4)

Teorema

Este tableaux es completo para K4.

Un tableaux para K sobre la clase de modelos transitivos (K4)

Teorema

Este tableaux es completo para K4.

Demostración Ejercicio!

Terminación en casos más complejos Blocking

▶ ¿Podemos repetir el argumento de terminación?

Blocking

- ¿Podemos repetir el argumento de terminación?
- ▶ ¿Qué sucede al ejecutar este tableaux sobre $w:(\Diamond p \land \Box \Diamond p)$?

Blocking

- ¿Podemos repetir el argumento de terminación?
- ▶ ¿Qué sucede al ejecutar este tableaux sobre $w:(\Diamond p \land \Box \Diamond p)$?
- Conclusión: una rama abierta saturada puede no ser finita!

Blocking

- ¿Podemos repetir el argumento de terminación?
- ▶ ¿Qué sucede al ejecutar este tableaux sobre $w:(\Diamond p \land \Box \Diamond p)$?
- ► Conclusión: una rama abierta saturada puede no ser finita!

Técnicas de blocking

- ► Se usan para garantizar terminación en implementaciones
- ▶ Idea:
 - ▶ Algunas w: φ pueden "bloquearse" o "desbloquearse"
 - Algunas reglas no se aplican sobre fórmulas bloqueadas
- Muchos tipos de blocking
 - subset blocking
 - dynamic blocking
 - ▶ ...
- ► En cada caso se debe probar terminación...y completitud!