Topics: inverse trig functions

Student Learning Outcomes:

- 1. Students will be able to evaluate the inverse trigonometric functions for sine, cosine, and tangent.
- 2. Students will be able to solve trigonometric equations using inverse trigonometric functions.
- 3. Students will be able to find the composition of trigonometric and inverse trigonometric functions.

Recall: A one-to-one function has an inverse function.

1 Evaluate the Inverse Sine Function

Let's draw a graph of sine and find it's inverse function:

The Inverse Sine Function

The **inverse sine function**, denoted by \sin^{-1} , is the inverse of the restricted sine function $y = \sin x$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Thus,

$$y = \sin^{-1} x$$
 means $\sin y = x$,

where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ and $-1 \le x \le 1$. We read $y = \sin^{-1} x$ as "y equals the inverse sine at x."

Domain:

Range:

Finding Exact Values of $\sin^{-1}(x)$ (or $\arcsin(x)$)

- 1. Let $\theta = \sin^{-1} x$.
- 2. Rewrite $\theta = \sin^{-1} x$. as $\sin \theta = x$, where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.
- 3. Use exact values on the unit circle to find the value of θ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ that satisfies $\sin \theta = x$.
- 1. Find the exact values of an inverse function:

(a)
$$\sin^{-1}\left(\frac{1}{2}\right) =$$

(b)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) =$$

$$(c) \sin^{-1}\left(-\frac{1}{2}\right) =$$

2 Evaluate the Inverse Cosine Function

Let's draw a graph of cosine and find it's inverse function:

The Inverse Cosine Function

The **inverse cosine function**, denoted by \cos^{-1} , is the inverse of the restricted cosine function $y = \cos x$, $0 \le x \le \pi$. Thus,

$$y = \cos^{-1} x$$
 means $\cos y = x$,

where $0 \le y \le \pi$ and $-1 \le x \le 1$.

Domain:

Range:

Finding Exact Values of $\cos^{-1}(x)$ (or $\arccos(x)$)

1. Let
$$\theta = \cos^{-1} x$$
.

- 2. Rewrite $\theta = \cos^{-1} x$. as $\cos \theta = x$, where $0 \le \theta \le \pi$.
- 3. Use exact values on the unit circle to find the value of θ in $[0,\pi]$ that satisfies $\cos\theta = x$.
- 2. Find the exact values of an inverse function:

(a)
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) =$$

(b)
$$\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$$

(c)
$$\cos^{-1}\left(\frac{1}{2}\right) =$$

3 Evaluate the Inverse Tangent Function

Let's draw a graph of tangent and find it's inverse function:

The Inverse Tangent Function

The **inverse tangent function**, denoted by \tan^{-1} , is the inverse of the restricted tangent function $y = \tan x$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$. Thus,

$$y = \tan^{-1} x$$
 means $\tan y = x$,

where
$$-\frac{\pi}{2} < y < \frac{\pi}{2}$$
 and $-\infty < x < \infty$.

Domain:

Range:

Finding Exact Values of $\tan^{-1}(x)$ (or $\arctan(x)$)

- 1. Let $\theta = \tan^{-1} x$.
- 2. Rewrite $\theta = \tan^{-1} x$. as $\tan \theta = x$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.
- 3. Use exact values on the unit circle to find the value of θ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that satisfies $\tan \theta = x$.
- 3. Find the exact values of an inverse function:

(a)
$$\tan^{-1}\left(\frac{\sqrt{3}}{3}\right) =$$

(b)
$$\tan^{-1}(0) =$$

(c)
$$\tan^{-1}(1) =$$

4 Approximate Inverse Trigonometric Functions on a Calculator

4. Use a calculator to find the value of each expression rounded to 2 decimal places in radians and degrees.

(a)
$$\sin^{-1}(.7) =$$

(b)
$$\cos^{-1}(-.47) =$$

(c)
$$\tan^{-1}(-14) =$$

5 Inverse Properties of Trigonometric Functions

Inverse Properties

The Sine Function and Its Inverse

$$\sin(\sin^{-1} x) = x$$
 for every x in the interval [-1, 1]

$$\sin^{-1}(\sin x) = x$$
 for every x in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

The Cosine Function and Its Inverse

$$\cos(\cos^{-1} x) = x$$
 for every x in the interval $[-1, 1]$

$$\cos^{-1}(\cos x) = x$$
 for every x in the interval $[0, \pi]$

The Tangent Function and Its Inverse

$$tan(tan^{-1} x) = x$$
 for every real number x

5

$$\tan^{-1}(\tan x) = x$$
 for every x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

5. Find the exact value of the expression. Do not use a calculator.

(a)
$$\cos(\cos^{-1}(-0.4))$$

(b)
$$\sin^{-1}(\cos(\frac{\pi}{12}))$$

(c)
$$\sin^{-1}(\sin(\frac{3\pi}{12}))$$

(d)
$$\tan(\tan^{-1}(11))$$

(e)
$$\tan^{-1}(\tan(-\frac{\pi}{4}))$$

(f)
$$\sin^{-1}(\sin(\pi))$$

(g)
$$\sin(\sin^{-1}(\pi))$$

$\,\,$ Composing Trigonometric and Inverse Trigonometric Functions

6. Use a sketch to find the exact value of each expression.

(a)
$$\cos(\sin^{-1}(\frac{24}{26}))$$

(b)
$$\tan(\cos^{-1}(-\frac{10}{26}))$$

(c)
$$\sec(\sin^{-1}(-\frac{1}{6}))$$

Student Learning Outcomes Check

- 1. Can you evaluate the inverse trigonometric functions for sine, cosine, and tangent?
- 2. Can you solve trigonometric equations using inverse trigonometric functions?
- 3. Are you able to find the composition of trigonometric and inverse trigonometric functions?

If any of your answers were no, please ask about these topics in class.