Grupo Disciplinar de Controlo (ADEEA) EE – EXAME de Época Especial

Controlo de Sistemas

Ref.a: LREE01

Data: 05-março-2020

ENUNCIADO

I - PARTE TEÓRICA

- (2,0) 1 Diga o que entende por servomecanismo e apresente as diferenças entre Sistema de cadeia aberta e Sistema de cadeia Fechada.
- (2,0) 2 Diga o que entende por Controladores Contínuos? Implemente a montagem física do controlador com a seguinte FT: $C(s)=K_p+K_d s$

II - PARTE PRÁTICA

Considere o seguinte sistema elétrico (Figura 1):

Variável de Saída: v_{C1}

Variável de Entrada: V_i

Variáveis de Estados: i_f ; v_{Cf} ; v_{C1}

Figura 1

- (4,0) 3 Determine o Modelo de Estado da do sistema da Figura 1: $\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$
- (4,0) 4 Desenhe o diagrama de blocos de estado do sistema da Figura 1.
- (4,0) 5 Calcular a resposta temporal y(t), a um escalão de posição de um sistema com o seguinte Modelo de estado:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -10 & -25 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 50 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Sugestão: Utilize a relação $Gp(s)=C(sI-A)^{-1}$, para obter a Função de Transferência em cadeia fechada, e depois utilize a tabela de transformadas de Laplace em anexo para calcular a resposta temporal

Grupo Disciplinar de Controlo (ADEEA) **EE – EXAME de Época Especial**Controlo de Sistemas

Data: 05-março-2020

Ref.^a: LREE01

(4,0) 6 – Analise a estabilidade relativa, calculando de forma analítica a Margem de Ganho (Kg) e a Margem de Fase (γ) da seguinte $FTCA = \frac{20}{s(s+2)(s+10)}$.

Algumas propriedades das Transformadas de Laplace (para usar na resposta da questão 5)

f(t) $t>0$	F(S)	F(S)	f(t) $t>0$
δ(t)	1	$\frac{1}{s \pm a}$	e ^{∓at}
Ku(t)	$K\frac{1}{s}$	$\frac{1}{(s\pm a)^n}$	$\frac{t^{n-1}}{(n-1)!}e^{\mp at}$ $n = 1;2;3;4;\cdots$
af(at)	$\frac{F(S)}{a}$	$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!} 0!=1 ; n=1;2;3;4;\cdots$
$\frac{f(t)}{a}$	aF(aS)	F ₁ (S)F ₂ (S)	$\int_{0^{+}}^{t} f_{1}(\gamma) f_{2}(t-\gamma) d\gamma$
t ⁿ	$\frac{n!}{s^{n+1}}$	11(0)12(0)	$\int_{0^{+}}^{t} f_{2}(\gamma) f_{1}(t-\gamma) d\gamma$
f(t-T)	$e^{-ST}.F(S)$ $T>0$ $t>T$	$\frac{(s+a_0)}{(s+\alpha)^2+\beta^2}$	$\frac{1}{\beta}\sqrt{(a_0-\alpha)^2+\beta^2}\cdot e^{-\alpha t}\cdot sen(\beta t+\varphi)$
$e^{\mp at}.f(t)$	$F(s \pm a)$	$(s+\alpha)^2+\beta^2$	$\varphi = \operatorname{arctg} \frac{\beta}{a_0 - \alpha}$
cos(ωt)	$\frac{s}{s^2 + \omega^2}$	$R_{ij} = \frac{1}{(K-j)!} \frac{d^{K-j}}{dS^{K-j}} \left[(S+S_i)^K \cdot F(S) \right]_{S=-Si}$	
sen(ωt)	$\frac{\omega}{s^2 + \omega^2}$		

NOTAS FINAIS - Para a resolução da prova atenda às seguintes notas:

- 1 Deverá apresentar todas as justificações a cálculos realizados.
- 2 O enunciado é entregue juntamente com ou sem a folha de prova.

Nome				Aluno nº		
Turma	Semestre	Classificação	() O Professor		