$h\in C\left(K\right)$ such that $Tf\left(s\right)=h\left(s\right)f\left(\phi\left(s\right)\right)$ holds for all $s\in K$. φ is continuous in every point t with $h\left(t\right)\neq0$.

(iii) Let X be locally compact, T \in $L(C_O(X))$. T is a lattice isomorphism if and only if there is a homeomorphism ϕ from X onto X and a bounded continuous function h on X such that $h(s) \ge \delta > 0$ for all s and $Tf(s) = h(s)f(\phi(s))$ ($s \in X$). T is an algebraic *-isomorphism if and only if T is a lattice isomorphism and the function h above is $\equiv 1$.