# **CHAPTER 5 INTEGRATION**

#### 5.1 AREA AND ESTIMATING WITH FINITE SUMS

1.  $f(x) = x^2$ 



Since f is increasing on [0, 1], we use left endpoints to obtain lower sums and right endpoints to obtain upper sums.

- (a)  $\triangle x = \frac{1-0}{2} = \frac{1}{2}$  and  $x_i = i \triangle x = \frac{i}{2} \Rightarrow$  a lower sum is  $\sum_{i=0}^1 \left(\frac{i}{2}\right)^2 \cdot \frac{1}{2} = \frac{1}{2} \left(0^2 + \left(\frac{1}{2}\right)^2\right) = \frac{1}{8}$
- (b)  $\triangle x = \frac{1-0}{4} = \frac{1}{4}$  and  $x_i = i\triangle x = \frac{i}{4} \Rightarrow a$  lower sum is  $\sum_{i=0}^{3} \left(\frac{i}{4}\right)^2 \cdot \frac{1}{4} = \frac{1}{4} \left(0^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{3}{4}\right)^2\right) = \frac{1}{4} \cdot \frac{7}{8} = \frac{7}{32}$
- (c)  $\triangle x = \frac{1-0}{2} = \frac{1}{2}$  and  $x_i = i \triangle x = \frac{i}{2} \Rightarrow$  an upper sum is  $\sum_{i=1}^{2} \left(\frac{i}{2}\right)^2 \cdot \frac{1}{2} = \frac{1}{2} \left(\left(\frac{1}{2}\right)^2 + 1^2\right) = \frac{5}{8}$
- (d)  $\triangle x = \frac{1-0}{4} = \frac{1}{4}$  and  $x_i = i \triangle x = \frac{i}{4} \Rightarrow$  an upper sum is  $\sum_{i=1}^{4} \left(\frac{i}{4}\right)^2 \cdot \frac{1}{4} = \frac{1}{4} \left(\left(\frac{1}{4}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{3}{4}\right)^2 + 1^2\right) = \frac{1}{4} \cdot \left(\frac{30}{16}\right) = \frac{15}{32}$
- 2.  $f(x) = x^3$

Since f is increasing on [0, 1], we use left endpoints to obtain lower sums and right endpoints to obtain upper sums.



- (a)  $\triangle x = \frac{1-0}{2} = \frac{1}{2} \text{ and } x_i = i \triangle x = \frac{i}{2} \Rightarrow \text{a lower sum is } \sum_{i=0}^{1} \left(\frac{i}{2}\right)^3 \cdot \frac{1}{2} = \frac{1}{2} \left(0^3 + \left(\frac{1}{2}\right)^3\right) = \frac{1}{16} \left(\frac{1}{2}\right)^3 + \frac{1}{2} \left(\frac{1}{2}$
- (b)  $\triangle x = \frac{1-0}{4} = \frac{1}{4} \text{ and } x_i = i \triangle x = \frac{i}{4} \Rightarrow \text{a lower sum is } \sum_{i=0}^{3} \left(\frac{i}{4}\right)^3 \cdot \frac{1}{4} = \frac{1}{4} \left(0^3 + \left(\frac{1}{4}\right)^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{3}{4}\right)^3\right) = \frac{36}{256} = \frac{9}{64}$
- (c)  $\triangle x = \frac{1-0}{2} = \frac{1}{2}$  and  $x_i = i \triangle x = \frac{i}{2} \Rightarrow$  an upper sum is  $\sum_{i=1}^{2} \left(\frac{i}{2}\right)^3 \cdot \frac{1}{2} = \frac{1}{2} \left(\left(\frac{1}{2}\right)^3 + 1^3\right) = \frac{1}{2} \cdot \frac{9}{8} = \frac{9}{16}$
- (d)  $\triangle x = \frac{1-0}{4} = \frac{1}{4}$  and  $x_i = i \triangle x = \frac{i}{4} \Rightarrow$  an upper sum is  $\sum_{i=1}^{4} \left(\frac{i}{4}\right)^3 \cdot \frac{1}{4} = \frac{1}{4} \left(\left(\frac{1}{4}\right)^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{3}{4}\right)^3 + 1^3\right) = = \frac{100}{256} = \frac{25}{64}$





Since f is decreasing on [1, 5], we use left endpoints to obtain upper sums and right endpoints to obtain lower sums.

(a) 
$$\triangle x = \frac{5-1}{2} = 2$$
 and  $x_i = 1 + i\triangle x = 1 + 2i \Rightarrow a$  lower sum is  $\sum_{i=1}^{2} \frac{1}{x_i} \cdot 2 = 2(\frac{1}{3} + \frac{1}{5}) = \frac{16}{15}$ 

(b) 
$$\triangle x = \frac{5-1}{4} = 1$$
 and  $x_i = 1 + i \triangle x = 1 + i \Rightarrow$  a lower sum is  $\sum_{i=1}^4 \frac{1}{x_i} \cdot 1 = 1 \left( \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \right) = \frac{77}{60}$ 

(c) 
$$\triangle x = \frac{5-1}{2} = 2$$
 and  $x_i = 1 + i\triangle x = 1 + 2i \Rightarrow$  an upper sum is  $\sum_{i=0}^{1} \frac{1}{x_i} \cdot 2 = 2\left(1 + \frac{1}{3}\right) = \frac{8}{3}$ 

(d) 
$$\triangle x = \frac{5-1}{4} = 1$$
 and  $x_i = 1 + i \triangle x = 1 + i \Rightarrow$  an upper sum is  $\sum_{i=0}^{3} \frac{1}{x_i} \cdot 1 = 1 \left( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right) = \frac{25}{12}$ 

4. 
$$f(x) = 4 - x^2$$



Since f is increasing on [-2, 0] and decreasing on [0, 2], we use left endpoints on [-2, 0] and right endpoints on [0, 2] to obtain lower sums and use right endpoints on [-2, 0] and left endpoints on [0, 2] to obtain upper sums.

$$\text{(a)} \ \ \triangle x = \tfrac{2-(-2)}{2} = 2 \ \text{and} \ x_i = -2 + i \triangle x = -2 + 2i \Rightarrow \text{a lower sum is} \ 2 \cdot \left(4 - (-2)^2\right) + 2 \cdot \left(4 - 2^2\right) = 0$$

(b) 
$$\triangle x = \frac{2 - (-2)}{4} = 1$$
 and  $x_i = -2 + i \triangle x = -2 + i \Rightarrow a$  lower sum is  $\sum_{i=0}^{1} (4 - (x_i)^2) \cdot 1 + \sum_{i=3}^{4} (4 - (x_i)^2) \cdot 1 = 1((4 - (-2)^2) + (4 - (-1)^2) + (4 - 1^2) + (4 - 2^2)) = 6$ 

(c) 
$$\triangle x = \frac{2 - (-2)}{2} = 2$$
 and  $x_i = -2 + i\triangle x = -2 + 2i \Rightarrow a$  upper sum is  $2 \cdot (4 - (0)^2) + 2 \cdot (4 - 0^2) = 16$ 

(d) 
$$\triangle x = \frac{2 - (-2)}{4} = 1$$
 and  $x_i = -2 + i \triangle x = -2 + i \Rightarrow$  a upper sum is  $\sum_{i=1}^{2} (4 - (x_i)^2) \cdot 1 + \sum_{i=2}^{3} (4 - (x_i)^2) \cdot 1 = 1((4 - (-1)^2) + (4 - 0^2) + (4 - 0^2) + (4 - 1^2)) = 14$ 

5. 
$$f(x) = x^2$$



Using 2 rectangles 
$$\Rightarrow \triangle x = \frac{1-0}{2} = \frac{1}{2} \Rightarrow \frac{1}{2} \left( f\left(\frac{1}{4}\right) + f\left(\frac{3}{4}\right) \right)$$
  
=  $\frac{1}{2} \left( \left(\frac{1}{4}\right)^2 + \left(\frac{3}{4}\right)^2 \right) = \frac{10}{32} = \frac{5}{16}$ 

Using 4 rectangles 
$$\Rightarrow \triangle x = \frac{1-0}{4} = \frac{1}{4}$$
  
 $\Rightarrow \frac{1}{4} \left( f\left(\frac{1}{8}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{7}{8}\right) \right)$   
 $= \frac{1}{4} \left( \left(\frac{1}{8}\right)^2 + \left(\frac{3}{8}\right)^2 + \left(\frac{5}{8}\right)^2 + \left(\frac{7}{8}\right)^2 \right) = \frac{21}{64}$ 

6. 
$$f(x) = x^3$$



7. 
$$f(x) = \frac{1}{x}$$



8. 
$$f(x) = 4 - x^2$$



Using 2 rectangles 
$$\Rightarrow \triangle x = \frac{1-0}{2} = \frac{1}{2} \Rightarrow \frac{1}{2} (f(\frac{1}{4}) + f(\frac{3}{4}))$$
  
=  $\frac{1}{2} ((\frac{1}{4})^3 + (\frac{3}{4})^3) = \frac{28}{2 \cdot 64} = \frac{7}{32}$ 

Using 4 rectangles 
$$\Rightarrow \triangle x = \frac{1-0}{4} = \frac{1}{4}$$
  
 $\Rightarrow \frac{1}{4} \left( f\left(\frac{1}{8}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{7}{8}\right) \right)$   
 $= \frac{1}{4} \left( \frac{1^3 + 3^3 + 5^3 + 7^3}{8^3} \right) = \frac{496}{4 \cdot 8^3} = \frac{124}{8^3} = \frac{31}{128}$ 

Using 2 rectangles 
$$\Rightarrow$$
  $\triangle x = \frac{5-1}{2} = 2 \Rightarrow 2(f(2) + f(4))$   
=  $2(\frac{1}{2} + \frac{1}{4}) = \frac{3}{2}$ 

Using 4 rectangles 
$$\Rightarrow \triangle x = \frac{5-1}{4} = 1$$
  
 $\Rightarrow 1(f(\frac{3}{2}) + f(\frac{5}{2}) + f(\frac{7}{2}) + f(\frac{9}{2}))$   
 $= 1(\frac{2}{3} + \frac{2}{5} + \frac{2}{7} + \frac{2}{9}) = \frac{1488}{3 \cdot 5 \cdot 7 \cdot 9} = \frac{496}{5 \cdot 7 \cdot 9} = \frac{496}{315}$ 

Using 2 rectangles 
$$\Rightarrow \triangle x = \frac{2 - (-2)}{2} = 2 \Rightarrow 2(f(-1) + f(1))$$
  
=  $2(3+3) = 12$ 

$$\begin{split} &\text{Using 4 rectangles} \Rightarrow \triangle x = \frac{2 - (-2)}{4} = 1 \\ &\Rightarrow 1 \left( f \left( -\frac{3}{2} \right) + f \left( -\frac{1}{2} \right) + f \left( \frac{1}{2} \right) + f \left( \frac{3}{2} \right) \right) \\ &= 1 \left( \left( 4 - \left( -\frac{3}{2} \right)^2 \right) + \left( 4 - \left( -\frac{1}{2} \right)^2 \right) + \left( 4 - \left( \frac{1}{2} \right)^2 \right) + \left( 4 - \left( \frac{3}{2} \right)^2 \right) \right) \\ &= 16 - \left( \frac{9}{4} \cdot 2 + \frac{1}{4} \cdot 2 \right) = 16 - \frac{10}{2} = 11 \end{split}$$

9. (a) 
$$D \approx (0)(1) + (12)(1) + (22)(1) + (10)(1) + (5)(1) + (13)(1) + (11)(1) + (6)(1) + (2)(1) + (6)(1) = 87$$
 inches

(b) 
$$D \approx (12)(1) + (22)(1) + (10)(1) + (5)(1) + (13)(1) + (11)(1) + (6)(1) + (2)(1) + (6)(1) + (0)(1) = 87$$
 inches

10. (a) 
$$D \approx (1)(300) + (1.2)(300) + (1.7)(300) + (2.0)(300) + (1.8)(300) + (1.6)(300) + (1.4)(300) + (1.2)(300) + (1.0)(300) + (1.8)(300) + (1.5)(300) + (1.2)(300) = 5220 \text{ meters}$$
 (NOTE: 5 minutes = 300 seconds)

(b) 
$$D \approx (1.2)(300) + (1.7)(300) + (2.0)(300) + (1.8)(300) + (1.6)(300) + (1.4)(300) + (1.2)(300) + (1.0)(300) + (1.8)(300) + (1.5)(300) + (1.2)(300) + (0)(300) = 4920$$
 meters (NOTE: 5 minutes = 300 seconds)

11. (a) 
$$D \approx (0)(10) + (44)(10) + (15)(10) + (35)(10) + (30)(10) + (44)(10) + (35)(10) + (15)(10) + (22)(10) + (35)(10) + (44)(10) + (30)(10) = 3490 \text{ feet} \approx 0.66 \text{ miles}$$

(b) 
$$D \approx (44)(10) + (15)(10) + (35)(10) + (30)(10) + (44)(10) + (35)(10) + (15)(10) + (22)(10) + (35)(10) + (44)(10) + (30)(10) + (35)(10) = 3840$$
 feet  $\approx 0.73$  miles

12. (a) The distance traveled will be the area under the curve. We will use the approximate velocities at the midpoints of each time interval to approximate this area using rectangles. Thus,

$$\begin{split} D &\approx (20)(0.001) + (50)(0.001) + (72)(0.001) + (90)(0.001) + (102)(0.001) + (112)(0.001) + (120)(0.001) \\ &+ (128)(0.001) + (134)(0.001) + (139)(0.001) \approx 0.967 \text{ miles} \end{split}$$

(b) Roughly, after 0.0063 hours, the car would have gone 0.484 miles, where 0.0060 hours = 22.7 sec. At 22.7 sec, the velocity was approximately 120 mi/hr.

- 13. (a) Because the acceleration is decreasing, an upper estimate is obtained using left end-points in summing acceleration  $\cdot \Delta t$ . Thus,  $\Delta t = 1$  and speed  $\approx [32.00 + 19.41 + 11.77 + 7.14 + 4.33](1) = 74.65$  ft/sec
  - (b) Using right end-points we obtain a lower estimate: speed  $\approx [19.41 + 11.77 + 7.14 + 4.33 + 2.63](1)$ = 45.28 ft/sec
  - (c) Upper estimates for the speed at each second are:

Thus, the distance fallen when t = 3 seconds is  $s \approx [32.00 + 51.41 + 63.18](1) = 146.59$  ft.

14. (a) The speed is a decreasing function of time ⇒ right end-points give an lower estimate for the height (distance) attained. Also

gives the time-velocity table by subtracting the constant g=32 from the speed at each time increment  $\Delta t=1$  sec. Thus, the speed  $\approx 240$  ft/sec after 5 seconds.

- (b) A lower estimate for height attained is  $h \approx [368 + 336 + 304 + 272 + 240](1) = 1520 \text{ ft.}$
- 15. Partition [0, 2] into the four subintervals [0, 0.5], [0.5, 1], [1, 1.5], and [1.5, 2]. The midpoints of these subintervals are  $m_1=0.25$ ,  $m_2=0.75$ ,  $m_3=1.25$ , and  $m_4=1.75$ . The heights of the four approximating rectangles are  $f(m_1)=(0.25)^3=\frac{1}{64}$ ,  $f(m_2)=(0.75)^3=\frac{27}{64}$ ,  $f(m_3)=(1.25)^3=\frac{125}{64}$ , and  $f(m_4)=(1.75)^3=\frac{343}{64}$ . Notice that the average value is approximated by  $\frac{1}{2}\left[\left(\frac{1}{4}\right)^3\left(\frac{1}{2}\right)+\left(\frac{3}{4}\right)^3\left(\frac{1}{2}\right)+\left(\frac{5}{4}\right)^3\left(\frac{1}{2}\right)+\left(\frac{7}{4}\right)^3\left(\frac{1}{2}\right)\right]=\frac{31}{16}$ . We use this observation in solving the next several exercises.
- 16. Partition [1, 9] into the four subintervals [1, 3], [3, 5], [5, 7], and [7, 9]. The midpoints of these subintervals are  $m_1 = 2$ ,  $m_2 = 4$ ,  $m_3 = 6$ , and  $m_4 = 8$ . The heights of the four approximating rectangles are  $f(m_1) = \frac{1}{2}$ ,  $f(m_2) = \frac{1}{4}$ ,  $f(m_3) = \frac{1}{6}$ , and  $f(m_4) = \frac{1}{8}$ . The width of each rectangle is  $\Delta x = 2$ . Thus, Area  $\approx 2\left(\frac{1}{2}\right) + 2\left(\frac{1}{4}\right) + 2\left(\frac{1}{6}\right) + 2\left(\frac{1}{8}\right) = \frac{25}{12} \Rightarrow \text{ average value} \approx \frac{\text{area}}{\text{length of } f(1,9)} = \frac{\binom{25}{12}}{8} = \frac{25}{96}$ .
- 17. Partition [0, 2] into the four subintervals [0, 0.5], [0.5, 1], [1, 1.5], and [1.5, 2]. The midpoints of the subintervals are  $m_1 = 0.25$ ,  $m_2 = 0.75$ ,  $m_3 = 1.25$ , and  $m_4 = 1.75$ . The heights of the four approximating rectangles are  $f(m_1) = \frac{1}{2} + \sin^2\frac{\pi}{4} = \frac{1}{2} + \frac{1}{2} = 1$ ,  $f(m_2) = \frac{1}{2} + \sin^2\frac{3\pi}{4} = \frac{1}{2} + \frac{1}{2} = 1$ ,  $f(m_3) = \frac{1}{2} + \sin^2\frac{5\pi}{4} = \frac{1}{2} + \left(-\frac{1}{\sqrt{2}}\right)^2$   $= \frac{1}{2} + \frac{1}{2} = 1$ , and  $f(m_4) = \frac{1}{2} + \sin^2\frac{7\pi}{4} = \frac{1}{2} + \left(-\frac{1}{\sqrt{2}}\right)^2 = 1$ . The width of each rectangle is  $\Delta x = \frac{1}{2}$ . Thus, Area  $\approx (1 + 1 + 1 + 1) \left(\frac{1}{2}\right) = 2 \Rightarrow \text{ average value} \approx \frac{\text{area}}{\text{length of } [0.2]} = \frac{2}{2} = 1$ .
- 18. Partition [0, 4] into the four subintervals [0, 1], [1, 2, ], [2, 3], and [3, 4]. The midpoints of the subintervals are  $m_1 = \frac{1}{2}$ ,  $m_2 = \frac{3}{2}$ ,  $m_3 = \frac{5}{2}$ , and  $m_4 = \frac{7}{2}$ . The heights of the four approximating rectangles are  $f(m_1) = 1 \left(\cos\left(\frac{\pi\left(\frac{1}{2}\right)}{4}\right)\right)^4 = 1 \left(\cos\left(\frac{\pi}{8}\right)\right)^4 = 0.27145$  (to 5 decimal places),  $f(m_2) = 1 \left(\cos\left(\frac{\pi\left(\frac{3}{2}\right)}{4}\right)\right)^4 = 1 \left(\cos\left(\frac{3\pi}{8}\right)\right)^4 = 0.97855, f(m_3) = 1 \left(\cos\left(\frac{\pi\left(\frac{5}{2}\right)}{4}\right)\right)^4 = 1 \left(\cos\left(\frac{5\pi}{8}\right)\right)^4 = 0.97855, and <math>f(m_4) = 1 \left(\cos\left(\frac{\pi\left(\frac{7\pi}{2}\right)}{4}\right)\right)^4 = 1 \left(\cos\left(\frac{7\pi}{8}\right)\right)^4 = 0.27145.$  The width of each rectangle is  $\Delta x = 1$ . Thus, Area  $\approx (0.27145)(1) + (0.97855)(1) + (0.97855)(1) + (0.27145)(1) = 2.5 \Rightarrow average$  value  $\approx \frac{area}{length of [0,4]} = \frac{2.5}{4} = \frac{5}{8}$ .

- 19. Since the leakage is increasing, an upper estimate uses right endpoints and a lower estimate uses left endpoints:
  - (a) upper estimate = (70)(1) + (97)(1) + (136)(1) + (190)(1) + (265)(1) = 758 gal, lower estimate = (50)(1) + (70)(1) + (97)(1) + (136)(1) + (190)(1) = 543 gal.
  - (b) upper estimate = (70 + 97 + 136 + 190 + 265 + 369 + 516 + 720) = 2363 gal, lower estimate = (50 + 70 + 97 + 136 + 190 + 265 + 369 + 516) = 1693 gal.
  - (c) worst case:  $2363 + 720t = 25,000 \Rightarrow t \approx 31.4 \text{ hrs};$ best case:  $1693 + 720t = 25,000 \Rightarrow t \approx 32.4 \text{ hrs}$
- 20. Since the pollutant release increases over time, an upper estimate uses right endpoints and a lower estimate uses left endpoints:
  - (a) upper estimate = (0.2)(30) + (0.25)(30) + (0.27)(30) + (0.34)(30) + (0.45)(30) + (0.52)(30) = 60.9 tons lower estimate = (0.05)(30) + (0.2)(30) + (0.25)(30) + (0.27)(30) + (0.34)(30) + (0.34)(30) + (0.45)(30) = 46.8 tons
  - (b) Using the lower (best case) estimate: 46.8 + (0.52)(30) + (0.63)(30) + (0.70)(30) + (0.81)(30) = 126.6 tons, so near the end of September 125 tons of pollutants will have been released.
- 21. (a) The diagonal of the square has length 2, so the side length is  $\sqrt{2}$ . Area =  $(\sqrt{2})^2 = 2$ 
  - (b) Think of the octagon as a collection of 16 right triangles with a hypotenuse of length 1 and an acute angle measuring  $\frac{2\pi}{16} = \frac{\pi}{9}$ .

Area = 
$$16(\frac{1}{2})(\sin \frac{\pi}{8})(\cos \frac{\pi}{8}) = 4 \sin \frac{\pi}{4} = 2\sqrt{2} \approx 2.828$$

(c) Think of the 16-gon as a collection of 32 right triangles with a hypotenuse of length 1 and an acute angle measuring  $\frac{2\pi}{32} = \frac{\pi}{16}$ .

Area = 
$$32(\frac{1}{2})(\sin\frac{\pi}{16})(\cos\frac{\pi}{16}) = 8\sin\frac{\pi}{8} = 2\sqrt{2} \approx 3.061$$

- (d) Each area is less than the area of the circle,  $\pi$ . As n increases, the area approaches  $\pi$ .
- 22. (a) Each of the isosceles triangles is made up of two right triangles having hypotenuse 1 and an acute angle measuring  $\frac{2\pi}{2n} = \frac{\pi}{n}$ . The area of each isosceles triangle is  $A_T = 2\left(\frac{1}{2}\right)\left(\sin\frac{\pi}{n}\right)\left(\cos\frac{\pi}{n}\right) = \frac{1}{2}\sin\frac{2\pi}{n}$ .
  - (b) The area of the polygon is  $A_P = nA_T = \frac{n}{2}\sin\frac{2\pi}{n}$ , so  $\lim_{n\to\infty}\frac{n}{2}\sin\frac{2\pi}{n} = \lim_{n\to\infty}\pi\cdot\frac{\sin\frac{2\pi}{n}}{(\frac{2\pi}{n})} = \pi$
  - (c) Multiply each area by r<sup>2</sup>.

$$\begin{split} A_T &= \tfrac{1}{2} r^2 sin \, \tfrac{2\pi}{n} \\ A_P &= \tfrac{n}{2} r^2 sin \, \tfrac{2\pi}{n} \\ \lim_{n \to \infty} A_P &= \pi r^2 \end{split}$$

23-26. Example CAS commands:

Maple:

```
\label{eq:avg} \begin{split} & Avg[n] := evalf(add(y,y=Ylist)/nops(Ylist)); \\ & end \ do; \\ & avg := FunctionAverage(\ f(x), \ x=a..b, \ output=value\ ); \\ & evalf(\ avg\ ); \\ & FunctionAverage(f(x),x=a..b, output=plot); \\ & fsolve(\ f(x)=avg, \ x=0.5\ ); \\ & fsolve(\ f(x)=avg, \ x=2.5\ ); \\ & fsolve(\ f(x)=Avg[1000], \ x=0.5\ ); \\ & fsolve(\ f(x)=Avg[1000], \ x=2.5\ ); \\ \end{split}
```

Mathematica: (assigned function and values for a and b may vary):

Symbols for  $\pi$ ,  $\rightarrow$ , powers, roots, fractions, etc. are available in Palettes (under File).

Never insert a space between the name of a function and its argument.

Clear[x]  $f[x_{-}] := x Sin[1/x]$   $\{a,b\} = \{\pi/4, \pi\}$  $Plot[f[x], \{x, a, b\}]$ 

The following code computes the value of the function for each interval midpoint and then finds the average. Each sequence of commands for a different value of n (number of subdivisions) should be placed in a separate cell.

```
\begin{split} n=&100; dx=(b-a)/n;\\ values=&Table[N[f[x]], \{x, a+dx/2, b, dx\}]\\ average=&Sum[values[[i]], \{i, 1, Length[values]\}]/n\\ n=&200; dx=(b-a)/n;\\ values=&Table[N[f[x]], \{x, a+dx/2, b, dx\}]\\ average=&Sum[values[[i]], \{i, 1, Length[values]\}]/n\\ n=&1000; dx=(b-a)/n;\\ values=&Table[N[f[x]], \{x, a+dx/2, b, dx\}]\\ average=&Sum[values[[i]], \{i, 1, Length[values]\}]/n\\ &FindRoot[f[x]==average, \{x, a\}] \end{split}
```

## 5.2 SIGMA NOTATION AND LIMITS OF FINITE SUMS

1. 
$$\sum_{k=1}^{2} \frac{6k}{k+1} = \frac{6(1)}{1+1} + \frac{6(2)}{2+1} = \frac{6}{2} + \frac{12}{3} = 7$$

2. 
$$\sum_{k=1}^{3} \frac{k-1}{k} = \frac{1-1}{1} + \frac{2-1}{2} + \frac{3-1}{3} = 0 + \frac{1}{2} + \frac{2}{3} = \frac{7}{6}$$

3. 
$$\sum_{k=1}^{4} \cos k\pi = \cos (1\pi) + \cos (2\pi) + \cos (3\pi) + \cos (4\pi) = -1 + 1 - 1 + 1 = 0$$

4. 
$$\sum_{k=1}^{5} \sin k\pi = \sin(1\pi) + \sin(2\pi) + \sin(3\pi) + \sin(4\pi) + \sin(5\pi) = 0 + 0 + 0 + 0 + 0 = 0$$

5. 
$$\sum_{k=1}^{3} (-1)^{k+1} \sin \frac{\pi}{k} = (-1)^{1+1} \sin \frac{\pi}{1} + (-1)^{2+1} \sin \frac{\pi}{2} + (-1)^{3+1} \sin \frac{\pi}{3} = 0 - 1 + \frac{\sqrt{3}}{2} = \frac{\sqrt{3}-2}{2}$$

6. 
$$\sum_{k=1}^{4} (-1)^k \cos k\pi = (-1)^1 \cos (1\pi) + (-1)^2 \cos (2\pi) + (-1)^3 \cos (3\pi) + (-1)^4 \cos (4\pi)$$
$$= -(-1) + 1 - (-1) + 1 = 4$$

7. (a) 
$$\sum_{k=1}^{6} 2^{k-1} = 2^{1-1} + 2^{2-1} + 2^{3-1} + 2^{4-1} + 2^{5-1} + 2^{6-1} = 1 + 2 + 4 + 8 + 16 + 32$$

(b) 
$$\sum_{k=0}^{5} 2^k = 2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 1 + 2 + 4 + 8 + 16 + 32$$

(c) 
$$\sum_{k=-1}^{4} 2^{k+1} = 2^{-1+1} + 2^{0+1} + 2^{1+1} + 2^{2+1} + 2^{3+1} + 2^{4+1} = 1 + 2 + 4 + 8 + 16 + 32$$

All of them represent 1 + 2 + 4 + 8 + 16 + 32

8. (a) 
$$\sum_{k=1}^{6} (-2)^{k-1} = (-2)^{1-1} + (-2)^{2-1} + (-2)^{3-1} + (-2)^{4-1} + (-2)^{5-1} + (-2)^{6-1} = 1 - 2 + 4 - 8 + 16 - 32$$

(b) 
$$\sum_{k=0}^{5} (-1)^k 2^k = (-1)^0 2^0 + (-1)^1 2^1 + (-1)^2 2^2 + (-1)^3 2^3 + (-1)^4 2^4 + (-1)^5 2^5 = 1 - 2 + 4 - 8 + 16 - 32$$

(c) 
$$\sum_{k=-2}^{3} (-1)^{k+1} 2^{k+2} = (-1)^{-2+1} 2^{-2+2} + (-1)^{-1+1} 2^{-1+2} + (-1)^{0+1} 2^{0+2} + (-1)^{1+1} 2^{1+2} + (-1)^{2+1} 2^{2+2} + (-1)^{3+1} 2^{3+2} = -1 + 2 - 4 + 8 - 16 + 32;$$

(a) and (b) represent 1 - 2 + 4 - 8 + 16 - 32; (c) is not equivalent to the other two

9. (a) 
$$\sum_{k=2}^{4} \frac{(-1)^{k-1}}{k-1} = \frac{(-1)^{2-1}}{2-1} + \frac{(-1)^{3-1}}{3-1} + \frac{(-1)^{4-1}}{4-1} = -1 + \frac{1}{2} - \frac{1}{3}$$

(b) 
$$\sum_{k=0}^{2} \frac{(-1)^k}{k+1} = \frac{(-1)^0}{0+1} + \frac{(-1)^1}{1+1} + \frac{(-1)^2}{2+1} = 1 - \frac{1}{2} + \frac{1}{3}$$

(c) 
$$\sum_{k=1}^{1} \frac{(-1)^k}{k+2} = \frac{(-1)^{-1}}{-1+2} + \frac{(-1)^0}{0+2} + \frac{(-1)^1}{1+2} = -1 + \frac{1}{2} - \frac{1}{3}$$

(a) and (c) are equivalent; (b) is not equivalent to the other two.

10. (a) 
$$\sum_{k=1}^{4} (k-1)^2 = (1-1)^2 + (2-1)^2 + (3-1)^2 + (4-1)^2 = 0 + 1 + 4 + 9$$

(b) 
$$\sum_{k=-1}^{3} (k+1)^2 = (-1+1)^2 + (0+1)^2 + (1+1)^2 + (2+1)^2 + (3+1)^2 = 0 + 1 + 4 + 9 + 16$$

(c) 
$$\sum_{k=0}^{-1} k^2 = (-3)^2 + (-2)^2 + (-1)^2 = 9 + 4 + 1$$

(a) and (c) are equivalent to each other; (b) is not equivalent to the other two.

11. 
$$\sum_{k=1}^{6} k$$

12. 
$$\sum_{k=1}^{4} k^2$$

13. 
$$\sum_{k=1}^{4} \frac{1}{2^k}$$

14. 
$$\sum_{k=1}^{5} 2k$$

15. 
$$\sum_{k=1}^{5} (-1)^{k+1} \frac{1}{k}$$

16. 
$$\sum_{k=1}^{5} (-1)^k \frac{k}{5}$$

17. (a) 
$$\sum_{k=1}^{n} 3a_k = 3 \sum_{k=1}^{n} a_k = 3(-5) = -15$$

(b) 
$$\sum_{k=1}^{n} \frac{b_k}{6} = \frac{1}{6} \sum_{k=1}^{n} b_k = \frac{1}{6} (6) = 1$$

(c) 
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k = -5 + 6 = 1$$

(d) 
$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k = -5 - 6 = -11$$

(e) 
$$\sum_{k=1}^{n} (b_k - 2a_k) = \sum_{k=1}^{n} b_k - 2 \sum_{k=1}^{n} a_k = 6 - 2(-5) = 16$$

18. (a) 
$$\sum_{k=1}^{n} 8a_k = 8 \sum_{k=1}^{n} a_k = 8(0) = 0$$

(c) 
$$\sum_{k=1}^{n} (a_k + 1) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} 1 = 0 + n = n$$

(b) 
$$\sum_{k=1}^{n} 250b_k = 250 \sum_{k=1}^{n} b_k = 250(1) = 250$$

(d) 
$$\sum_{k=1}^{n} (b_k - 1) = \sum_{k=1}^{n} b_k - \sum_{k=1}^{n} 1 = 1 - n$$

19. (a) 
$$\sum_{k=1}^{10} k = \frac{10(10+1)}{2} = 55$$

(c) 
$$\sum_{k=1}^{10} k^3 = \left[\frac{10(10+1)}{2}\right]^2 = 55^2 = 3025$$

(b) 
$$\sum_{k=1}^{10} k^2 = \frac{10(10+1)(2(10)+1)}{6} = 385$$

(b)  $\sum_{k=1}^{13} k^2 = \frac{13(13+1)(2(13)+1)}{6} = 819$ 

20. (a) 
$$\sum_{k=1}^{13} k = \frac{13(13+1)}{2} = 91$$

(c) 
$$\sum_{13}^{13} k^3 = \left[\frac{13(13+1)}{2}\right]^2 = 91^2 = 8281$$

21. 
$$\sum_{k=1}^{7} -2k = -2\sum_{k=1}^{7} k = -2\left(\frac{7(7+1)}{2}\right) = -56$$

22. 
$$\sum_{k=1}^{5} \frac{\pi k}{15} = \frac{\pi}{15} \sum_{k=1}^{5} k = \frac{\pi}{15} \left( \frac{5(5+1)}{2} \right) = \pi$$

23. 
$$\sum_{k=1}^{6} (3 - k^2) = \sum_{k=1}^{6} 3 - \sum_{k=1}^{6} k^2 = 3(6) - \frac{6(6+1)(2(6)+1)}{6} = -73$$

24. 
$$\sum_{k=1}^{6} (k^2 - 5) = \sum_{k=1}^{6} k^2 - \sum_{k=1}^{6} 5 = \frac{6(6+1)(2(6)+1)}{6} - 5(6) = 61$$

25. 
$$\sum_{k=1}^{5} k(3k+5) = \sum_{k=1}^{5} \left(3k^2 + 5k\right) = 3\sum_{k=1}^{5} k^2 + 5\sum_{k=1}^{5} k = 3\left(\frac{5(5+1)(2(5)+1)}{6}\right) + 5\left(\frac{5(5+1)}{2}\right) = 240$$

26. 
$$\sum_{k=1}^{7} k(2k+1) = \sum_{k=1}^{7} (2k^2 + k) = 2\sum_{k=1}^{7} k^2 + \sum_{k=1}^{7} k = 2\left(\frac{7(7+1)(2(7)+1)}{6}\right) + \frac{7(7+1)}{2} = 308$$

27. 
$$\sum_{k=1}^{5} \frac{k^3}{225} + \left(\sum_{k=1}^{5} k\right)^3 = \frac{1}{225} \sum_{k=1}^{5} k^3 + \left(\sum_{k=1}^{5} k\right)^3 = \frac{1}{225} \left(\frac{5(5+1)}{2}\right)^2 + \left(\frac{5(5+1)}{2}\right)^3 = 3376$$

28. 
$$\left(\sum_{k=1}^{7} k\right)^2 - \sum_{k=1}^{7} \frac{k^3}{4} = \left(\sum_{k=1}^{7} k\right)^2 - \frac{1}{4} \sum_{k=1}^{7} k^3 = \left(\frac{7(7+1)}{2}\right)^2 - \frac{1}{4} \left(\frac{7(7+1)}{2}\right)^2 = 588$$

29. (a) 
$$\sum_{k=1}^{7} 3 = 3(7) = 21$$

(b) 
$$\sum_{k=1}^{500} 7 = 7(500) = 3500$$

(c) Let 
$$j = k - 2 \Rightarrow k = j + 2$$
; if  $k = 3 \Rightarrow j = 1$  and if  $k = 264 \Rightarrow j = 262 \Rightarrow \sum_{k=3}^{264} 10 = \sum_{j=1}^{262} 10 = 10(262) = 2620$ 

30. (a) Let 
$$j = k - 8 \Rightarrow k = j + 8$$
; if  $k = 9 \Rightarrow j = 1$  and if  $k = 36 \Rightarrow j = 28 \Rightarrow \sum_{k=9}^{36} k = \sum_{j=1}^{28} (j+8) = \sum_{j=1}^{28} j + \sum_{j=1}^{28} 8 = \frac{28(28+1)}{2} + 8(28) = 630$ 

(b) Let 
$$j = k - 2 \Rightarrow k = j + 2$$
; if  $k = 3 \Rightarrow j = 1$  and if  $k = 17 \Rightarrow j = 15 \Rightarrow \sum_{k=3}^{17} k^2 = \sum_{j=1}^{15} (j+2)^2$   

$$= \sum_{j=1}^{15} (j^2 + 4j + 4) = \sum_{j=1}^{15} j^2 + \sum_{j=1}^{15} 4j + \sum_{j=1}^{15} 4 = \frac{15(15+1)(2(15)+1)}{6} + 4 \cdot \frac{15(15+1)}{2} + 4(15)$$

$$= 1240 + 480 + 60 = 1780$$

(c) Let 
$$j = k - 17 \Rightarrow k = j + 17$$
; if  $k = 18 \Rightarrow j = 1$  and if  $k = 71 \Rightarrow j = 54 \Rightarrow \sum_{k=3}^{71} k(k-1)$ 

$$= \sum_{j=1}^{54} (j+17)((j+17)-1) = \sum_{j=1}^{54} (j^2+33j+272) = \sum_{j=1}^{54} j^2 + \sum_{j=1}^{54} 33j + \sum_{j=1}^{54} 272$$

$$= \frac{54(54+1)(2(54)+1)}{6} + 33 \cdot \frac{54(54+1)}{2} + 272(54) = 53955 + 49005 + 14688 = 117648$$

31. (a) 
$$\sum_{k=1}^{n} 4 = 4n$$

(b) 
$$\sum_{k=1}^{n} c = cn$$

(c) 
$$\sum_{k=1}^{n} (k-1) = \sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 = \frac{n(n+1)}{2} - n = \frac{n^2 - n}{2}$$

32. (a) 
$$\sum_{k=1}^{n} \left(\frac{1}{n} + 2n\right) = \left(\frac{1}{n} + 2n\right)n = 1 + 2n^2$$

(b) 
$$\sum_{k=1}^{n} \frac{c}{n} = \frac{c}{n} \cdot n = c$$

(c) 
$$\sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{n+1}{2n}$$

33. (a)



(c)





34. (a)



(c)







35. (a)



(c)







36. (a)



(b)



(c)



37.  $|x_1 - x_0| = |1.2 - 0| = 1.2$ ,  $|x_2 - x_1| = |1.5 - 1.2| = 0.3$ ,  $|x_3 - x_2| = |2.3 - 1.5| = 0.8$ ,  $|x_4 - x_3| = |2.6 - 2.3| = 0.3$ , and  $|x_5 - x_4| = |3 - 2.6| = 0.4$ ; the largest is ||P|| = 1.2.

38.  $|x_1 - x_0| = |-1.6 - (-2)| = 0.4$ ,  $|x_2 - x_1| = |-0.5 - (-1.6)| = 1.1$ ,  $|x_3 - x_2| = |0 - (-0.5)| = 0.5$ ,  $|x_4 - x_3| = |0.8 - 0| = 0.8$ , and  $|x_5 - x_4| = |1 - 0.8| = 0.2$ ; the largest is  $\|P\| = 1.1$ .

39.  $f(x) = 1 - x^2$ 



Let  $\triangle x = \frac{1-0}{n} = \frac{1}{n}$  and  $c_i = i \triangle x = \frac{i}{n}$ . The right-hand sum is

$$\begin{split} &\sum_{i=1}^{n} (1-c_{i}^{2}) \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} \left(1 - \left(\frac{i}{n}\right)^{2}\right) = \frac{1}{n^{3}} \sum_{i=1}^{n} (n^{2} - i^{2}) \\ &= \frac{n^{3}}{n^{3}} - \frac{1}{n^{3}} \sum_{i=1}^{n} i^{2} = 1 - \frac{n(n+1)(2n+1)}{6n^{3}} = 1 - \frac{2n^{3} + 3n^{2} + n}{6n^{3}} \\ &= 1 - \frac{2 + \frac{3}{n} + \frac{1}{n^{2}}}{6}. \text{ Thus, } &\lim_{n \to \infty} \sum_{i=1}^{n} (1 - c_{i}^{2}) \frac{1}{n} \\ &= \lim_{n \to \infty} \left(1 - \frac{2 - \frac{3}{n} + \frac{1}{n^{2}}}{6}\right) = 1 - \frac{1}{3} = \frac{2}{3} \end{split}$$

40. f(x) = 2x



Let  $\triangle x = \frac{3-0}{n} = \frac{3}{n}$  and  $c_i = i \triangle x = \frac{3i}{n}$ . The right-hand sum is

$${\textstyle\sum_{i=1}^{n}} 2c_i\big(\tfrac{3}{n}\big) = {\textstyle\sum_{i=1}^{n}} \tfrac{6i}{n} \cdot \tfrac{3}{n} = \tfrac{18}{n^2} {\textstyle\sum_{i=1}^{n}} i = \tfrac{18}{n^2} \cdot \tfrac{n(n+1)}{2} = \tfrac{9n^2 + 9n}{n^2}$$

Thus,  $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{6i}{n} \cdot \frac{3}{n} = \lim_{n \to \infty} \frac{9n^2 + 9n}{n^2} = \lim_{n \to \infty} \left(9 + \frac{9}{n}\right) = 9.$ 

41.  $f(x) = x^2 + 1$ 



Let  $\triangle x = \frac{3-0}{n} = \frac{3}{n}$  and  $c_i = i \triangle x = \frac{3i}{n}.$  The right-hand sum is

$$\begin{split} &\sum_{i=1}^{n}(c_{i}^{2}+1)\frac{3}{n}=\sum_{i=1}^{n}\left(\left(\frac{3i}{n}\right)^{2}+1\right)\frac{3}{n}=\frac{3}{n}\sum_{i=1}^{n}\left(\frac{9i^{2}}{n^{2}}+1\right)\\ &=\frac{27}{n}\sum_{i=1}^{n}i^{2}+\frac{3}{n}\cdot n=\frac{27}{n^{3}}\left(\frac{n(n+1)(2n+1)}{6}\right)+3\\ &=\frac{9(2n^{3}+3n^{2}+n)}{2n^{3}}+3=\frac{18+\frac{27}{n}+\frac{9}{n^{2}}}{2}+3. \ \ Thus, \end{split}$$

$$\lim_{n\to\infty} \ \sum_{i=1}^n (c_i^2+1)\tfrac{3}{n} = \lim_{n\to\infty} \left( \tfrac{18+\frac{27}{n}+\frac{9}{n^2}}{2} + 3 \right) = 9+3 = 12.$$

42. 
$$f(x) = 3x^2$$



43. 
$$f(x) = x + x^2 = x(1+x)$$



44. 
$$f(x) = 3x + 2x^2$$



45. 
$$f(x) = 2x^3$$



$$\begin{split} & \text{Let } \triangle x = \frac{1-0}{n} = \frac{1}{n} \text{ and } c_i = i \triangle x = \frac{i}{n}. \text{ The right-hand sum is } \\ & \sum_{i=1}^n 3c_i^2 \left(\frac{1}{n}\right) = \sum_{i=1}^n 3\left(\frac{i}{n}\right)^2 \left(\frac{1}{n}\right) = \frac{3}{n^3} \sum_{i=1}^n i^2 = \frac{3}{n^3} \left(\frac{n(n+1)(2n+1)}{6}\right) \\ & = \frac{2n^3 + 3n^2 + n}{2n^3} = \frac{2 + \frac{3}{n} + \frac{1}{n^2}}{2}. \text{ Thus, } \lim_{n \to \infty} \sum_{i=1}^n 3c_i^2 \left(\frac{1}{n}\right) \\ & = \lim_{n \to \infty} \left(\frac{2 + \frac{3}{n} + \frac{1}{n^2}}{2}\right) = \frac{2}{2} = 1. \end{split}$$

$$\begin{split} \text{Let } \triangle x &= \frac{1-0}{n} = \frac{1}{n} \text{ and } c_i = i \triangle x = \frac{i}{n}. \text{ The right-hand sum is } \\ \sum_{i=1}^n (c_i + c_i^2) \frac{1}{n} &= \sum_{i=1}^n \Big(\frac{i}{n} + \Big(\frac{i}{n}\Big)^2\Big) \frac{1}{n} = \frac{1}{n^2} \sum_{i=1}^n i + \frac{1}{n^3} \sum_{i=1}^n i^2 \\ &= \frac{1}{n^2} \Big(\frac{n(n+1)}{2}\Big) + \frac{1}{n^3} \Big(\frac{n(n+1)(2n+1)}{6}\Big) = \frac{n^2+n}{2n^2} + \frac{2n^3+3n^2+n}{6n^3} \\ &= \frac{1+\frac{1}{n}}{2} + \frac{2+\frac{3}{n}+\frac{1}{n^2}}{6}. \text{ Thus, } \lim_{n \to \infty} \sum_{i=1}^n (c_i + c_i^2) \frac{1}{n} \\ &= \lim_{n \to \infty} \left[ \Big(\frac{1+\frac{1}{n}}{2}\Big) + \Big(\frac{2+\frac{3}{n}+\frac{1}{n^2}}{6}\Big) \right] = \frac{1}{2} + \frac{2}{6} = \frac{5}{6}. \end{split}$$

$$\begin{split} \text{Let } \triangle x &= \frac{1-0}{n} = \frac{1}{n} \text{ and } c_i = i \triangle x = \frac{i}{n}. \text{ The right-hand sum is } \\ \sum_{i=1}^n (3c_i + 2c_i^2) \frac{1}{n} &= \sum_{i=1}^n \left(\frac{3i}{n} + 2\left(\frac{i}{n}\right)^2\right) \frac{1}{n} = \frac{3}{n^2} \sum_{i=1}^n i + \frac{2}{n^3} \sum_{i=1}^n i^2 \\ &= \frac{3}{n^2} \left(\frac{n(n+1)}{2}\right) + \frac{2}{n^3} \left(\frac{n(n+1)(2n+1)}{6}\right) = \frac{3n^2 + 3n}{2n^2} + \frac{2n^2 + 3n + 1}{3n^2} \\ &= \frac{3 + \frac{3}{n}}{2} + \frac{2 + \frac{3}{n} + \frac{1}{n^2}}{3}. \text{ Thus, } \lim_{n \to \infty} \sum_{i=1}^n (3c_i + 2c_i^2) \frac{1}{n} \\ &= \lim_{n \to \infty} \left[ \left(\frac{3 + \frac{3}{n}}{2}\right) + \left(\frac{2 + \frac{3}{n} + \frac{1}{n^2}}{3}\right) \right] = \frac{3}{2} + \frac{2}{3} = \frac{13}{6}. \end{split}$$

$$\begin{split} \text{Let } \triangle x &= \frac{1-0}{n} = \frac{1}{n} \text{ and } c_i = i \triangle x = \frac{i}{n}. \text{ The right-hand sum is} \\ \sum_{i=1}^n (2c_i^3) \frac{1}{n} &= \sum_{i=1}^n \Big(2 \Big(\frac{i}{n}\Big)^3\Big) \frac{1}{n} = \frac{2}{n^4} \sum_{i=1}^n i^3 = \frac{2}{n^4} \Big(\frac{n(n+1)}{2}\Big)^2 \\ &= \frac{2n^2(n^2+2n+1)}{4n^4} = \frac{n^2+2n+1}{2n^2} = \frac{1+\frac{2}{n}+\frac{1}{n^2}}{2}. \end{split}$$
 Thus,  $\lim_{n \to \infty} \sum_{i=1}^n (2c_i^3) \frac{1}{n} = \lim_{n \to \infty} \left[\frac{1+\frac{2}{n}+\frac{1}{n^2}}{2}\right] = \frac{1}{2}.$ 

46. 
$$f(x) = x^2 - x^3$$



$$\begin{split} \text{Let } \triangle x &= \frac{0 - (-1)}{n} = \frac{1}{n} \text{ and } c_i = -1 + i \triangle x = -1 + \frac{i}{n}. \text{ The right-hand sum is } \sum_{i=1}^n (c_i^2 - c_i^3) \frac{1}{n} = \sum_{i=1}^n \Big( \left( -1 + \frac{i}{n} \right)^2 - \left( -1 + \frac{i}{n} \right)^3 \Big) \frac{1}{n} \\ &= \sum_{i=1}^n \Big( 2 - \frac{5i}{n} + \frac{4i^2}{n^2} - \frac{i^3}{n^3} \Big) \frac{1}{n} = \sum_{i=1}^n \Big( \frac{2}{n} - \frac{5i}{n^2} + \frac{4i^2}{n^3} - \frac{i^3}{n^4} \Big) \\ &= \sum_{i=1}^n \frac{2}{n} - \frac{5}{n^2} \sum_{i=1}^n i + \frac{4}{n^3} \sum_{i=1}^n i^2 - \frac{1}{n^4} \sum_{i=1}^n i^3 \\ &= \frac{2}{n}(n) - \frac{5}{n^2} \Big( \frac{n(n+1)}{2} \Big) + \frac{4}{n^3} \Big( \frac{n(n+1)(2n+1)}{6} \Big) - \frac{1}{n^4} \Big( \frac{n(n+1)}{2} \Big)^2 \end{split}$$

$$\begin{split} &=2-\tfrac{5n+5}{2n}+\tfrac{4n^2+6n+2}{3n^2}-\tfrac{n^2+2n+1}{4n^2}=2-\tfrac{5+\frac{5}{n}}{2}+\tfrac{4+\frac{6}{n}+\frac{2}{n^2}}{3}-\tfrac{1+\frac{2}{n}+\frac{1}{n^2}}{4}. \text{ Thus, } \lim_{n\to\infty} \sum_{i=1}^n (c_i^2-c_i^3)\tfrac{1}{n}\\ &=\lim_{n\to\infty} \left[2-\tfrac{5+\frac{5}{n}}{2}+\tfrac{4+\frac{6}{n}+\frac{2}{n^2}}{3}-\tfrac{1+\frac{2}{n}+\frac{1}{n^2}}{4}\right]=2-\tfrac{5}{2}+\tfrac{4}{3}-\tfrac{1}{4}=\tfrac{7}{12}. \end{split}$$

## 5.3 THE DEFINITE INTEGRAL

$$1. \quad \int_0^2 x^2 \, dx$$

2. 
$$\int_{-1}^{0} 2x^3 dx$$

3. 
$$\int_{-7}^{5} (x^2 - 3x) \, dx$$

4. 
$$\int_{1}^{4} \frac{1}{x} dx$$

5. 
$$\int_{2}^{3} \frac{1}{1-x} dx$$

6. 
$$\int_0^1 \sqrt{4-x^2} \, dx$$

$$7. \quad \int_{-\pi/4}^{0} (\sec x) \, \mathrm{d}x$$

8. 
$$\int_0^{\pi/4} (\tan x) \, dx$$

9. (a) 
$$\int_2^2 g(x) dx = 0$$

(b) 
$$\int_{5}^{1} g(x) dx = -\int_{1}^{5} g(x) dx = -8$$

(c) 
$$\int_{1}^{2} 3f(x) dx = 3 \int_{1}^{2} f(x) dx = 3(-4) = -12$$

(c) 
$$\int_{1}^{2} 3f(x) dx = 3 \int_{1}^{2} f(x) dx = 3(-4) = -12$$
 (d)  $\int_{2}^{5} f(x) dx = \int_{1}^{5} f(x) dx - \int_{1}^{2} f(x) dx = 6 - (-4) = 10$ 

(e) 
$$\int_{1}^{5} [f(x) - g(x)] dx = \int_{1}^{5} f(x) dx - \int_{1}^{5} g(x) dx = 6 - 8 = -2$$

(f) 
$$\int_{1}^{5} [4f(x) - g(x)] dx = 4 \int_{1}^{5} f(x) dx - \int_{1}^{5} g(x) dx = 4(6) - 8 = 16$$

10. (a) 
$$\int_{1}^{9} -2f(x) dx = -2 \int_{1}^{9} f(x) dx = -2(-1) = 2$$

(b) 
$$\int_{7}^{9} [f(x) + h(x)] dx = \int_{7}^{9} f(x) dx + \int_{7}^{9} h(x) dx = 5 + 4 = 9$$

(c) 
$$\int_{7}^{9} [2f(x) - 3h(x)] dx = 2 \int_{7}^{9} f(x) dx - 3 \int_{7}^{9} h(x) dx = 2(5) - 3(4) = -2$$

(d) 
$$\int_{9}^{1} f(x) dx = -\int_{1}^{9} f(x) dx = -(-1) = 1$$

(e) 
$$\int_{1}^{7} f(x) dx = \int_{1}^{9} f(x) dx - \int_{7}^{9} f(x) dx = -1 - 5 = -6$$

(f) 
$$\int_{9}^{7} [h(x) - f(x)] dx = \int_{7}^{9} [f(x) - h(x)] dx = \int_{7}^{9} f(x) dx - \int_{7}^{9} h(x) dx = 5 - 4 = 1$$

11. (a) 
$$\int_{1}^{2} f(u) du = \int_{1}^{2} f(x) dx = 5$$

(b) 
$$\int_{1}^{2} \sqrt{3} f(z) dz = \sqrt{3} \int_{1}^{2} f(z) dz = 5\sqrt{3}$$

(c) 
$$\int_{2}^{1} f(t) dt = -\int_{1}^{2} f(t) dt = -5$$

(d) 
$$\int_{1}^{2} [-f(x)] dx = -\int_{1}^{2} f(x) dx = -5$$

12. (a) 
$$\int_0^{-3} g(t) dt = -\int_{-3}^0 g(t) dt = -\sqrt{2}$$

(b) 
$$\int_{-3}^{0} g(u) du = \int_{-3}^{0} g(t) dt = \sqrt{2}$$

(c) 
$$\int_{-3}^{0} [-g(x)] dx = -\int_{-3}^{0} g(x) dx = -\sqrt{2}$$

12. (a) 
$$\int_{0}^{-3} g(t) dt = -\int_{-3}^{0} g(t) dt = -\sqrt{2}$$
 (b) 
$$\int_{-3}^{0} g(u) du = \int_{-3}^{0} g(t) dt = \sqrt{2}$$
 (c) 
$$\int_{-3}^{0} [-g(x)] dx = -\int_{-3}^{0} g(x) dx = -\sqrt{2}$$
 (d) 
$$\int_{-3}^{0} \frac{g(r)}{\sqrt{2}} dr = \frac{1}{\sqrt{2}} \int_{-3}^{0} g(t) dt = \left(\frac{1}{\sqrt{2}}\right) \left(\sqrt{2}\right) = 1$$

13. (a) 
$$\int_{3}^{4} f(z) dz = \int_{0}^{4} f(z) dz - \int_{0}^{3} f(z) dz = 7 - 3 = 4$$
(b) 
$$\int_{4}^{3} f(t) dt = -\int_{2}^{4} f(t) dt = -4$$

$$\begin{aligned} &14. \ \ (a) \quad \int_1^3 h(r) \ dr = \int_{-1}^3 h(r) \ dr - \int_{-1}^1 h(r) \ dr = 6 - 0 = 6 \\ &(b) \quad - \int_3^1 h(u) \ du = - \left( - \int_1^3 h(u) \ du \right) = \int_1^3 h(u) \ du = 6 \end{aligned}$$

15. The area of the trapezoid is  $A = \frac{1}{2}(B + b)h$  $= \frac{1}{2} (5+2)(6) = 21 \implies \int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx$ = 21 square units



16. The area of the trapezoid is  $A=\frac{1}{2}\left(B+b\right)\!h$  $= \frac{1}{2} (3+1)(1) = 2 \implies \int_{1/2}^{3/2} (-2x+4) \, dx$ = 2 square units



17. The area of the semicircle is  $A=\frac{1}{2}\,\pi r^2=\frac{1}{2}\,\pi(3)^2$  $=\frac{9}{2}\pi \Rightarrow \int_{-3}^{3} \sqrt{9-x^2} dx = \frac{9}{2}\pi$  square units



18. The graph of the quarter circle is  $A=\frac{1}{4}\pi r^2=\frac{1}{4}\pi(4)^2$   $=4\pi \ \Rightarrow \ \int_{-4}^0 \sqrt{16-x^2} \ dx=4\pi \ \text{square units}$ 



19. The area of the triangle on the left is  $A = \frac{1}{2}$  bh  $= \frac{1}{2}$  (2)(2) = 2. The area of the triangle on the right is  $A = \frac{1}{2}$  bh  $= \frac{1}{2}$  (1)(1)  $= \frac{1}{2}$ . Then, the total area is 2.5  $\Rightarrow \int_{-2}^{1} |x| dx = 2.5$  square units



20. The area of the triangle is  $A = \frac{1}{2}bh = \frac{1}{2}(2)(1) = 1$  $\Rightarrow \int_{-1}^{1} (1 - |x|) dx = 1 \text{ square unit}$ 



21. The area of the triangular peak is  $A=\frac{1}{2}$  bh  $=\frac{1}{2}$  (2)(1) =1. The area of the rectangular base is  $S=\ell w=(2)(1)=2$ . Then the total area is  $3\Rightarrow \int_{-1}^1 (2-|x|)\,dx=3$  square units



22.  $y = 1 + \sqrt{1 - x^2} \Rightarrow y - 1 = \sqrt{1 - x^2}$  $\Rightarrow (y - 1)^2 = 1 - x^2 \Rightarrow x^2 + (y - 1)^2 = 1$ , a circle with center (0, 1) and radius of  $1 \Rightarrow y = 1 + \sqrt{1 - x^2}$  is the upper semicircle. The area of this semicircle is  $A = \frac{1}{2}\pi r^2 = \frac{1}{2}\pi(1)^2 = \frac{\pi}{2}$ . The area of the rectangular base is  $A = \ell w = (2)(1) = 2$ . Then the total area is  $2 + \frac{\pi}{2}$   $\Rightarrow \int_{-1}^{1} \left(1 + \sqrt{1 - x^2}\right) dx = 2 + \frac{\pi}{2}$  square units



23. 
$$\int_0^b \frac{x}{2} dx = \frac{1}{2}(b)(\frac{b}{2}) = \frac{b^2}{4}$$



24. 
$$\int_0^b 4x \, dx = \frac{1}{2} b(4b) = 2b^2$$



25. 
$$\int_{a}^{b} 2s \, ds = \frac{1}{2} b(2b) - \frac{1}{2} a(2a) = b^2 - a^2$$



26. 
$$\int_{a}^{b} 3t \, dt = \frac{1}{2} b(3b) - \frac{1}{2} a(3a) = \frac{3}{2} (b^2 - a^2)$$



27. (a) 
$$\int_{-2}^{2} \sqrt{4 - x^2} \, dx = \frac{1}{2} \left[ \pi(2)^2 \right] = 2\pi$$

(b) 
$$\int_0^2 \sqrt{4-x^2} \, dx = \frac{1}{4} [\pi(2)^2] = \pi$$

$$28. (a) \int_{-1}^{0} \left(3x + \sqrt{1 - x^2}\right) dx = \int_{-1}^{0} 3x \, dx + \int_{-1}^{0} \sqrt{1 - x^2} \, dx = -\frac{1}{2} \big[ (1)(3) \big] + \frac{1}{4} \big[ \pi(1)^2 \big] = \frac{\pi}{4} - \frac{3}{2}$$
 
$$(b) \int_{-1}^{0} \left(3x + \sqrt{1 - x^2}\right) dx = \int_{-1}^{0} 3x \, dx + \int_{0}^{1} 3x \, dx + \int_{-1}^{1} \sqrt{1 - x^2} \, dx = -\frac{1}{2} \big[ (1)(3) \big] + \frac{1}{2} \big[ (1)(3) \big] + \frac{1}{2} \big[ (1)(3) \big] + \frac{1}{2} \big[ \pi(1)^2 \big] = \frac{\pi}{2}$$

29. 
$$\int_{1}^{\sqrt{2}} x \, dx = \frac{\left(\sqrt{2}\right)^{2}}{2} - \frac{(1)^{2}}{2} = \frac{1}{2}$$

30. 
$$\int_{0.5}^{2.5} x \, dx = \frac{(2.5)^2}{2} - \frac{(0.5)^2}{2} = 3$$

31. 
$$\int_{\pi}^{2\pi} \theta \, d\theta = \frac{(2\pi)^2}{2} - \frac{\pi^2}{2} = \frac{3\pi^2}{2}$$

32. 
$$\int_{\sqrt{2}}^{5\sqrt{2}} r \, dr = \frac{\left(5\sqrt{2}\right)^2}{2} - \frac{\left(\sqrt{2}\right)^2}{2} = 24$$

33. 
$$\int_0^{\sqrt[3]{7}} x^2 dx = \frac{\left(\sqrt[3]{7}\right)^3}{3} = \frac{7}{3}$$

34. 
$$\int_0^{0.3} s^2 ds = \frac{(0.3)^3}{3} = 0.009$$

35. 
$$\int_0^{1/2} t^2 dt = \frac{\left(\frac{1}{2}\right)^3}{3} = \frac{1}{24}$$

36. 
$$\int_0^{\pi/2} \theta^2 \, \mathrm{d}\theta = \frac{\left(\frac{\pi}{2}\right)^3}{3} = \frac{\pi^3}{24}$$

37. 
$$\int_{a}^{2a} x \, dx = \frac{(2a)^2}{2} - \frac{a^2}{2} = \frac{3a^2}{2}$$

38. 
$$\int_{a}^{\sqrt{3}a} x \, dx = \frac{\left(\sqrt{3}a\right)^{2}}{2} - \frac{a^{2}}{2} = a^{2}$$

39. 
$$\int_0^{\sqrt[3]{b}} x^2 dx = \frac{\left(\sqrt[3]{b}\right)^3}{3} = \frac{b}{3}$$

40. 
$$\int_0^{3b} x^2 dx = \frac{(3b)^3}{3} = 9b^3$$

41. 
$$\int_{3}^{1} 7 \, dx = 7(1-3) = -14$$

42. 
$$\int_0^2 5x \, dx = 5 \int_0^2 x \, dx = 5 \left[ \frac{2^2}{2} - \frac{0^2}{2} \right] = 10$$

43. 
$$\int_0^2 (2t - 3) dt = 2 \int_1^1 t dt - \int_0^2 3 dt = 2 \left[ \frac{2^2}{2} - \frac{0^2}{2} \right] - 3(2 - 0) = 4 - 6 = -2$$

$$44. \int_0^{\sqrt{2}} \left( t - \sqrt{2} \right) dt = \int_0^{\sqrt{2}} t \, dt - \int_0^{\sqrt{2}} \sqrt{2} \, dt = \left[ \frac{\left( \sqrt{2} \right)^2}{2} - \frac{0^2}{2} \right] - \sqrt{2} \left[ \sqrt{2} - 0 \right] = 1 - 2 = -1$$

$$45. \ \int_{2}^{1} \left(1 + \frac{z}{2}\right) \, dz = \int_{2}^{1} 1 \, dz + \int_{2}^{1} \frac{z}{2} \, dz = \int_{2}^{1} 1 \, dz - \frac{1}{2} \int_{1}^{2} z \, dz = 1 [1 - 2] - \frac{1}{2} \left[\frac{2^{2}}{2} - \frac{1^{2}}{2}\right] = -1 - \frac{1}{2} \left(\frac{3}{2}\right) = -\frac{7}{4} \left(\frac{3}{2}\right$$

$$46. \int_{3}^{0} (2z - 3) \, dz = \int_{3}^{0} 2z \, dz - \int_{3}^{0} 3 \, dz = -2 \int_{0}^{3} z \, dz - \int_{3}^{0} 3 \, dz = -2 \left[ \frac{3^{2}}{2} - \frac{0^{2}}{2} \right] - 3[0 - 3] = -9 + 9 = 0$$

$$47. \ \int_{1}^{2} 3u^{2} \ du = 3 \int_{1}^{2} u^{2} \ du = 3 \left[ \int_{0}^{2} u^{2} \ du - \int_{0}^{1} u^{2} \ du \right] = 3 \left( \left[ \frac{2^{3}}{3} - \frac{0^{3}}{3} \right] - \left[ \frac{1^{3}}{3} - \frac{0^{3}}{3} \right] \right) = 3 \left[ \frac{2^{3}}{3} - \frac{1^{3}}{3} \right] = 3 \left( \frac{7}{3} \right) = 7 \left( \frac{7}{3} - \frac{1}{3} \right) = 3 \left( \frac{7}{3} - \frac{1}{3} - \frac{1}{3} \right) = 3 \left( \frac{7}{3} - \frac{1}{3} -$$

$$48. \ \int_{1/2}^{1} 24 u^2 \ du = 24 \int_{1/2}^{1} \ u^2 \ du = 24 \left[ \int_{0}^{1} \ u^2 \ du - \int_{0}^{1/2} \ u^2 \ du \right] = 24 \left[ \frac{1^3}{3} - \frac{\left(\frac{1}{2}\right)^3}{3} \right] = 24 \left[ \frac{\left(\frac{7}{8}\right)}{3} \right] = 7$$

$$49. \int_{0}^{2} (3x^{2} + x - 5) dx = 3 \int_{0}^{2} x^{2} dx + \int_{0}^{2} x dx - \int_{0}^{2} 5 dx = 3 \left[ \frac{2^{3}}{3} - \frac{0^{3}}{3} \right] + \left[ \frac{2^{2}}{2} - \frac{0^{2}}{2} \right] - 5[2 - 0] = (8 + 2) - 10 = 0$$

$$50. \int_{1}^{0} (3x^{2} + x - 5) dx = -\int_{0}^{1} (3x^{2} + x - 5) dx = -\left[3 \int_{0}^{1} x^{2} dx + \int_{0}^{1} x dx - \int_{0}^{1} 5 dx\right]$$

$$= -\left[3 \left(\frac{1^{3}}{3} - \frac{0^{3}}{3}\right) + \left(\frac{1^{2}}{2} - \frac{0^{2}}{2}\right) - 5(1 - 0)\right] = -\left(\frac{3}{2} - 5\right) = \frac{7}{2}$$

51. Let  $\Delta x = \frac{b-0}{n} = \frac{b}{n}$  and let  $x_0 = 0$ ,  $x_1 = \Delta x$ ,  $x_2 = 2\Delta x, \ldots, x_{n-1} = (n-1)\Delta x, x_n = n\Delta x = b$ . Let the  $c_k$ 's be the right end-points of the subintervals  $\Rightarrow c_1 = x_1, c_2 = x_2$ , and so on. The rectangles defined have areas:

$$\begin{split} f(c_1)\,\Delta x &= f(\Delta x)\,\Delta x = 3(\Delta x)^2\,\Delta x = 3(\Delta x)^3\\ f(c_2)\,\Delta x &= f(2\Delta x)\,\Delta x = 3(2\Delta x)^2\,\Delta x = 3(2)^2(\Delta x)^3 \end{split}$$

$$\begin{array}{l} f(c_3)\,\Delta x = f(3\Delta x)\,\Delta x = 3(3\Delta x)^2\,\Delta x = 3(3)^2(\Delta x)^3 \\ \cdot \end{array}$$

:

$$f(c_n)\,\Delta x=f(n\Delta x)\,\Delta x=3(n\Delta x)^2\,\Delta x=3(n)^2(\Delta x)^3$$

Then 
$$S_n = \sum_{k=1}^n f(c_k) \Delta x = \sum_{k=1}^n 3k^2 (\Delta x)^3$$

$$= 3 (\Delta x)^3 \sum\limits_{k=1}^{n} \; k^2 = 3 \left( \frac{b^3}{n^3} \right) \left( \frac{n(n+1)(2n+1)}{6} \right)$$

$$= \frac{b^3}{2} \left( 2 + \frac{3}{n} + \frac{1}{n^2} \right) \Rightarrow \int_0^b 3x^2 \, dx = \lim_{n \to \infty} \frac{b^3}{2} \left( 2 + \frac{3}{n} + \frac{1}{n^2} \right) = b^3.$$



52. Let  $\Delta x = \frac{b-0}{n} = \frac{b}{n}$  and let  $x_0 = 0$ ,  $x_1 = \Delta x$ ,  $x_2=2\Delta x,\ldots,x_{n-1}=(n-1)\Delta x,\,x_n=n\Delta x=b.$ Let the  $c_k$ 's be the right end-points of the subintervals  $\Rightarrow$  c<sub>1</sub> = x<sub>1</sub>, c<sub>2</sub> = x<sub>2</sub>, and so on. The rectangles defined have areas:





$$= \tfrac{\pi b^3}{6} \left(2 + \tfrac{3}{n} + \tfrac{1}{n^2}\right) \Rightarrow \int_0^b \pi x^2 \ dx = \lim_{n \to \infty} \ \tfrac{\pi b^3}{6} \left(2 + \tfrac{3}{n} + \tfrac{1}{n^2}\right) = \tfrac{\pi b^3}{3}.$$

53. Let  $\Delta x = \frac{b-0}{n} = \frac{b}{n}$  and let  $x_0 = 0$ ,  $x_1 = \Delta x$ ,  $x_2 = 2\Delta x, \dots, x_{n-1} = (n-1)\Delta x, x_n = n\Delta x = b.$ Let the  $c_k$ 's be the right end-points of the subintervals  $\Rightarrow$  c<sub>1</sub> = x<sub>1</sub>, c<sub>2</sub> = x<sub>2</sub>, and so on. The rectangles defined have areas:

$$f(c_1) \Delta x = f(\Delta x) \Delta x = 2(\Delta x)(\Delta x) = 2(\Delta x)^2$$
  

$$f(c_2) \Delta x = f(2\Delta x) \Delta x = 2(2\Delta x)(\Delta x) = 2(2)(\Delta x)^2$$

$$f(c_3) \Delta x = f(3\Delta x) \Delta x = 2(3\Delta x)(\Delta x) = 2(3)(\Delta x)^2$$
:

$$\begin{split} f(c_n)\,\Delta x &= f(n\Delta x)\,\Delta x = 2(n\Delta x)(\Delta x) = 2(n)(\Delta x)^2 \\ Then \; S_n &= \sum_{k=1}^n \; f(c_k)\,\Delta x = \sum_{k=1}^n \; 2k(\Delta x)^2 \end{split}$$

$$=2(\Delta x)^2 \textstyle\sum\limits_{k=1}^{n} \; k=2\left(\frac{b^2}{n^2}\right)\left(\frac{n(n+1)}{2}\right)$$

$$= b^{2} \left(1 + \frac{1}{n}\right) \Rightarrow \int_{0}^{b} 2x \, dx = \lim_{n \to \infty} b^{2} \left(1 + \frac{1}{n}\right) = b^{2}.$$

54. Let  $\Delta x = \frac{b-0}{n} = \frac{b}{n}$  and let  $x_0 = 0$ ,  $x_1 = \Delta x$ ,  $x_2 = 2\Delta x, \dots, x_{n-1} = (n-1)\Delta x, x_n = n\Delta x = b.$ Let the  $c_k$ 's be the right end-points of the subintervals  $\Rightarrow$  c<sub>1</sub> = x<sub>1</sub>, c<sub>2</sub> = x<sub>2</sub>, and so on. The rectangles defined have areas:

$$f(c_1) \Delta x = f(\Delta x) \Delta x = \left(\frac{\Delta x}{2} + 1\right) (\Delta x) = \frac{1}{2} (\Delta x)^2 + \Delta x$$

$$f(c_2) \Delta x = f(2\Delta x) \Delta x = \left(\frac{2\Delta x}{2} + 1\right) (\Delta x) = \frac{1}{2} (2)(\Delta x)^2 + \Delta x$$

$$f(c_3) \Delta x = f(3\Delta x) \Delta x = \left(\frac{3\Delta x}{2} + 1\right) (\Delta x) = \frac{1}{2} (3)(\Delta x)^2 + \Delta x$$





Then 
$$S_n = \sum_{k=1}^n f(c_k) \Delta x = \sum_{k=1}^n \left( \frac{1}{2} k(\Delta x)^2 + \Delta x \right) = \frac{1}{2} (\Delta x)^2 \sum_{k=1}^n k + \Delta x \sum_{k=1}^n 1 = \frac{1}{2} \left( \frac{b^2}{n^2} \right) \left( \frac{n(n+1)}{2} \right) + \left( \frac{b}{n} \right) (n)$$

$$= \frac{1}{4} b^2 \left( 1 + \frac{1}{n} \right) + b \implies \int_0^b \left( \frac{x}{2} + 1 \right) dx = \lim_{n \to \infty} \left( \frac{1}{4} b^2 \left( 1 + \frac{1}{n} \right) + b \right) = \frac{1}{4} b^2 + b.$$







55. 
$$\operatorname{av}(f) = \left(\frac{1}{\sqrt{3} - 0}\right) \int_0^{\sqrt{3}} (x^2 - 1) \, dx$$
  

$$= \frac{1}{\sqrt{3}} \int_0^{\sqrt{3}} x^2 \, dx - \frac{1}{\sqrt{3}} \int_0^{\sqrt{3}} 1 \, dx$$
  

$$= \frac{1}{\sqrt{3}} \left(\frac{\left(\sqrt{3}\right)^3}{3}\right) - \frac{1}{\sqrt{3}} \left(\sqrt{3} - 0\right) = 1 - 1 = 0.$$

56. 
$$\operatorname{av}(f) = \left(\frac{1}{3-0}\right) \int_0^3 \left(-\frac{x^2}{2}\right) dx = \frac{1}{3} \left(-\frac{1}{2}\right) \int_0^3 x^2 dx$$
  
=  $-\frac{1}{6} \left(\frac{3^3}{3}\right) = -\frac{3}{2}; -\frac{x^2}{2} = -\frac{3}{2}.$ 





59. 
$$\operatorname{av}(f) = \left(\frac{1}{3-0}\right) \int_0^3 (t-1)^2 dt$$
  

$$= \frac{1}{3} \int_0^3 t^2 dt - \frac{2}{3} \int_0^3 t dt + \frac{1}{3} \int_0^3 1 dt$$
  

$$= \frac{1}{3} \left(\frac{3^3}{3}\right) - \frac{2}{3} \left(\frac{3^2}{2} - \frac{0^2}{2}\right) + \frac{1}{3} (3-0) = 1.$$











60. 
$$\operatorname{av}(f) = \left(\frac{1}{1 - (-2)}\right) \int_{-2}^{1} (t^{2} - t) dt$$
$$= \frac{1}{3} \int_{-2}^{1} t^{2} dt - \frac{1}{3} \int_{-2}^{1} t dt$$
$$= \frac{1}{3} \int_{0}^{1} t^{2} dt - \frac{1}{3} \int_{0}^{-2} t^{2} dt - \frac{1}{3} \left(\frac{1^{2}}{2} - \frac{(-2)^{2}}{2}\right)$$
$$= \frac{1}{3} \left(\frac{1^{3}}{3}\right) - \frac{1}{3} \left(\frac{(-2)^{3}}{3}\right) + \frac{1}{2} = \frac{3}{2}.$$







(b) 
$$\operatorname{av}(g) = \left(\frac{1}{3-1}\right) \int_{1}^{3} (|x|-1) \, dx = \frac{1}{2} \int_{1}^{3} (x-1) \, dx$$
  
 $= \frac{1}{2} \int_{1}^{3} x \, dx - \frac{1}{2} \int_{1}^{3} 1 \, dx = \frac{1}{2} \left(\frac{3^{2}}{2} - \frac{1^{2}}{2}\right) - \frac{1}{2} (3-1)$   
 $= 1.$ 







62. (a) 
$$\operatorname{av}(h) = \left(\frac{1}{0 - (-1)}\right) \int_{-1}^{0} -|x| \, dx = \int_{-1}^{0} -(-x) \, dx$$
  
$$= \int_{-1}^{0} x \, dx = \frac{0^{2}}{2} - \frac{(-1)^{2}}{2} = -\frac{1}{2} \, .$$



(b) 
$$av(h) = \left(\frac{1}{1-0}\right) \int_0^1 -|x| dx = -\int_0^1 x dx$$
  
=  $-\left(\frac{1^2}{2} - \frac{0^2}{2}\right) = -\frac{1}{2}$ .



(c) 
$$\operatorname{av}(h) = \left(\frac{1}{1 - (-1)}\right) \int_{-1}^{1} -|x| \, dx$$
  

$$= \frac{1}{2} \left( \int_{-1}^{0} -|x| \, dx + \int_{0}^{1} -|x| \, dx \right)$$

$$= \frac{1}{2} \left( -\frac{1}{2} + \left( -\frac{1}{2} \right) \right) = -\frac{1}{2} \text{ (see parts (a) and (b) above)}.$$



- 63. Consider the partition P that subdivides the interval [a,b] into n subintervals of width  $\triangle x = \frac{b-a}{n}$  and let  $c_k$  be the right endpoint of each subinterval. So the partition is  $P = \{a, a + \frac{b-a}{n}, a + \frac{2(b-a)}{n}, \ldots, a + \frac{n(b-a)}{n}\}$  and  $c_k = a + \frac{k(b-a)}{n}$ . We get the Riemann sum  $\sum_{k=1}^n f(c_k) \triangle x = \sum_{k=1}^n c \cdot \frac{b-a}{n} = \frac{c(b-a)}{n} \sum_{k=1}^n 1 = \frac{c(b-a)}{n} \cdot n = c(b-a)$ . As  $n \to \infty$  and  $\|P\| \to 0$  this expression remains c(b-a). Thus,  $\int_a^b c \, dx = c(b-a)$ .
- 64. Consider the partition P that subdivides the interval [0,2] into n subintervals of width  $\triangle x = \frac{2-0}{n} = \frac{2}{n}$  and let  $c_k$  be the right endpoint of each subinterval. So the partition is  $P = \{0,\frac{2}{n},2\cdot\frac{2}{n},\ldots,n\cdot\frac{2}{n}=2\}$  and  $c_k = k\cdot\frac{2}{n} = \frac{2k}{n}$ . We get the Riemann sum  $\sum_{k=1}^n f(c_k) \triangle x = \sum_{k=1}^n \left[2\left(\frac{2k}{n}\right)+1\right] \cdot \frac{2}{n} = \frac{2}{n}\sum_{k=1}^n \left(\frac{4k}{n}+1\right) = \frac{8}{n^2}\sum_{k=1}^n k + \frac{2}{n}\sum_{k=1}^n 1 = \frac{8}{n^2} \cdot \frac{n(n+1)}{2} + \frac{2}{n} \cdot n = \frac{4(n+1)}{n} + 2$ . As  $n \to \infty$  and  $\|P\| \to 0$  the expression  $\frac{4(n+1)}{n} + 2$  has the value 4+2=6. Thus,  $\int_0^2 (2x+1) \, dx = 6$ .
- 65. Consider the partition P that subdivides the interval [a,b] into n subintervals of width  $\triangle x = \frac{b-a}{n}$  and let  $c_k$  be the right endpoint of each subinterval. So the partition is  $P = \{a, a + \frac{b-a}{n}, a + \frac{2(b-a)}{n}, \ldots, a + \frac{n(b-a)}{n}\}$  and  $c_k = a + \frac{k(b-a)}{n}$ . We get the Riemann sum  $\sum_{k=1}^{n} f(c_k) \triangle x = \sum_{k=1}^{n} c_k^2 \left(\frac{b-a}{n}\right) = \frac{b-a}{n} \sum_{k=1}^{n} \left(a + \frac{k(b-a)}{n}\right)^2 = \frac{b-a}{n} \sum_{k=1}^{n} \left(a^2 + \frac{2ak(b-a)}{n} + \frac{k^2(b-a)^2}{n^2}\right)$   $= \frac{b-a}{n} \left(\sum_{k=1}^{n} a^2 + \frac{2a(b-a)}{n} \sum_{k=1}^{n} k + \frac{(b-a)^2}{n^2} \sum_{k=1}^{n} k^2\right) = \frac{b-a}{n} \cdot na^2 + \frac{2a(b-a)^2}{n^2} \cdot \frac{n(n+1)}{2} + \frac{(b-a)^3}{n^3} \cdot \frac{n(n+1)(2n+1)}{6}$   $= (b-a)a^2 + a(b-a)^2 \cdot \frac{n+1}{n} + \frac{(b-a)^3}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = (b-a)a^2 + a(b-a)^2 \cdot \frac{1+\frac{1}{n}}{1} + \frac{(b-a)^3}{6} \cdot \frac{2+\frac{3}{n}+\frac{1}{n^2}}{1}$  As  $n \to \infty$  and  $\|P\| \to 0$  this expression has value  $(b-a)a^2 + a(b-a)^2 \cdot 1 + \frac{(b-a)^3}{6} \cdot 2$   $= ba^2 a^3 + ab^2 2a^2b + a^3 + \frac{1}{3}(b^3 3b^2a + 3ba^2 a^3) = \frac{b^3}{3} \frac{a^3}{3}$ . Thus,  $\int_a^b x^2 dx = \frac{b^3}{3} \frac{a^3}{3}$ .
- 66. Consider the partition P that subdivides the interval [-1,0] into n subintervals of width  $\triangle x = \frac{0-(-1)}{n} = \frac{1}{n}$  and let  $c_k$  be the right endpoint of each subinterval. So the partition is  $P = \{-1, -1 + \frac{1}{n}, -1 + 2 \cdot \frac{1}{n}, \dots, -1 + n \cdot \frac{1}{n} = 0\}$  and

$$\begin{split} c_k &= \, -1 + k \cdot \tfrac{1}{n} = -1 + \tfrac{k}{n}. \text{ We get the Riemann sum} \sum_{k=1}^n f(c_k) \triangle x = \sum_{k=1}^n \left( \left( -1 + \tfrac{k}{n} \right) - \left( -1 + \tfrac{k}{n} \right)^2 \right) \cdot \tfrac{1}{n} \\ &= \tfrac{1}{n} \sum_{k=1}^n \left( -1 + \tfrac{k}{n} - 1 + \tfrac{2k}{n} - \left( \tfrac{k}{n} \right)^2 \right) = -\tfrac{2}{n} \sum_{k=1}^n 1 + \tfrac{3}{n^2} \sum_{k=1}^n k - \tfrac{1}{n^3} \sum_{k=1}^n k^2 = -\tfrac{2}{n} \cdot n + \tfrac{3}{n^2} \cdot \tfrac{n(n+1)}{2} - \tfrac{1}{n^3} \cdot \tfrac{n(n+1)(2n+1)}{6} \\ &= -2 + \tfrac{3(n+1)}{2n} - \tfrac{(n+1)(2n+1)}{6n^2}. \text{ As } n \to \infty \text{ and } \|P\| \to 0 \text{ this expression has value } -2 + \tfrac{3}{2} - \tfrac{1}{3} = -\tfrac{5}{6}. \text{ Thus,} \\ \int_{-1}^0 (x - x^2) dx = -\tfrac{5}{6}. \end{split}$$

- 67. Consider the partition P that subdivides the interval [-1,2] into n subintervals of width  $\triangle x = \frac{2-(-1)}{n} = \frac{3}{n}$  and let  $c_k$  be the right endpoint of each subinterval. So the partition is  $P = \{-1, -1 + \frac{3}{n}, -1 + 2 \cdot \frac{3}{n}, \ldots, -1 + n \cdot \frac{3}{n} = 2\}$  and  $c_k = -1 + k \cdot \frac{3}{n} = -1 + \frac{3k}{n}$ . We get the Riemann sum  $\sum_{k=1}^{n} f(c_k) \triangle x = \sum_{k=1}^{n} \left(3\left(-1 + \frac{3k}{n}\right)^2 2\left(-1 + \frac{3k}{n}\right) + 1\right) \cdot \frac{3}{n}$   $= \frac{3}{n} \sum_{k=1}^{n} \left(3 \frac{18k}{n} + \frac{27k^2}{n^2} + 2 \frac{6k}{n} + 1\right) = \frac{18}{n} \sum_{k=1}^{n} 1 \frac{72}{n^2} \sum_{k=1}^{n} k + \frac{81}{n^3} \sum_{k=1}^{n} k^2 = \frac{18}{n} \cdot n \frac{72}{n^2} \cdot \frac{n(n+1)}{2} + \frac{81}{n^3} \cdot \frac{n(n+1)(2n+1)}{6}$   $= 18 \frac{36(n+1)}{n} + \frac{27(n+1)(2n+1)}{2n^2}$ . As  $n \to \infty$  and  $\|P\| \to 0$  this expression has value 18 36 + 27 = 9. Thus,  $\int_{-1}^{2} (3x^2 2x + 1) dx = 9.$
- 68. Consider the partition P that subdivides the interval [-1,1] into n subintervals of width  $\triangle x = \frac{1-(-1)}{n} = \frac{2}{n}$  and let  $c_k$  be the right endpoint of each subinterval. So the partition is  $P = \{-1, -1 + \frac{2}{n}, -1 + 2 \cdot \frac{2}{n}, \ldots, -1 + n \cdot \frac{2}{n} = 1\}$  and  $c_k = -1 + k \cdot \frac{2}{n} = -1 + \frac{2k}{n}$ . We get the Riemann sum  $\sum_{k=1}^{n} f(c_k) \triangle x = \sum_{k=1}^{n} c_k^3 \left(\frac{2}{n}\right) = \frac{2}{n} \sum_{k=1}^{n} \left(-1 + \frac{2k}{n}\right)^3$   $= \frac{2}{n} \sum_{k=1}^{n} \left(-1 + \frac{6k}{n} \frac{12k^2}{n^2} + \frac{8k^3}{n^3}\right) = \frac{2}{n} \left(-\sum_{k=1}^{n} 1 + \frac{6}{n} \sum_{k=1}^{n} k \frac{12}{n^2} \sum_{k=1}^{n} k^2 + \frac{8}{n^3} \sum_{k=1}^{n} k^3\right)$   $= -\frac{2}{n} \cdot n + \frac{12}{n^2} \cdot \frac{n(n+1)}{2} \frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{16}{n^4} \cdot \left(\frac{n(n+1)}{2}\right)^2 = -2 + 6 \cdot \frac{n+1}{n} 4 \cdot \frac{(n+1)(2n+1)}{n^2} + 4 \cdot \frac{(n+1)^2}{n^2}$   $= -2 + 6 \cdot \frac{1+\frac{1}{n}}{1} 4 \cdot \frac{2+\frac{3}{n}+\frac{1}{n^2}}{1} + 4 \cdot \frac{1+\frac{2}{n}+\frac{1}{n^2}}{1}$ . As  $n \to \infty$  and  $\|P\| \to 0$  this expression has value -2 + 6 8 + 4 = 0. Thus,  $\int_{-1}^{1} x^3 dx = 0$ .
- 69. Consider the partition P that subdivides the interval [a, b] into n subintervals of width  $\triangle x = \frac{b-a}{n}$  and let  $c_k$  be the right endpoint of each subinterval. So the partition is  $P = \{a, a + \frac{b-a}{n}, a + \frac{2(b-a)}{n}, \dots, a + \frac{n(b-a)}{n} = b\}$  and  $c_k = a + \frac{k(b-a)}{n}$ . We get the Riemann sum  $\sum_{k=1}^{n} f(c_k) \triangle x = \sum_{k=1}^{n} c_k^3 \left(\frac{b-a}{n}\right) = \frac{b-a}{n} \sum_{k=1}^{n} \left(a + \frac{k(b-a)}{n}\right)^3$   $= \frac{b-a}{n} \sum_{k=1}^{n} \left(a^3 + \frac{3a^2k(b-a)}{n} + \frac{3ak^2(b-a)^2}{n^2} + \frac{k^3(b-a)^3}{n^3}\right) = \frac{b-a}{n} \left(\sum_{k=1}^{n} a^3 + \frac{3a^2(b-a)}{n} \sum_{k=1}^{n} k + \frac{3a(b-a)^2}{n^2} \sum_{k=1}^{n} k^2 + \frac{(b-a)^3}{n^3} \sum_{k=1}^{n} k^3\right)$   $= \frac{b-a}{n} \cdot na^3 + \frac{3a^2(b-a)^2}{n^2} \cdot \frac{n(n+1)}{2} + \frac{3a(b-a)^3}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{(b-a)^4}{n^4} \cdot \left(\frac{n(n+1)}{2}\right)^2$   $= (b-a)a^3 + \frac{3a^2(b-a)^2}{2} \cdot \frac{n+1}{n} + \frac{a(b-a)^3}{2} \cdot \frac{(n+1)(2n+1)}{n^2} + \frac{(b-a)^4}{4} \cdot \frac{(n+1)^2}{n^2}$   $= (b-a)a^3 + \frac{3a^2(b-a)^2}{2} \cdot \frac{1+\frac{1}{n}}{1} + \frac{a(b-a)^3}{2} \cdot \frac{2+\frac{3}{n}+\frac{1}{n^2}}{1} + \frac{(b-a)^4}{4} \cdot \frac{1+\frac{2}{n}+\frac{1}{n^2}}{1}.$  As  $n \to \infty$  and  $\|P\| \to 0$  this expression has value  $(b-a)a^3 + \frac{3a^2(b-a)^2}{2} + a(b-a)^3 + \frac{(b-a)^4}{4} = \frac{b^4}{4} \frac{a^4}{4}.$  Thus,  $\int_a^b x^3 dx = \frac{b^4}{4} \frac{a^4}{4}.$
- 70. Consider the partition P that subdivides the interval [0,1] into n subintervals of width  $\triangle x = \frac{1-0}{n} = \frac{1}{n}$  and let  $c_k$  be the right endpoint of each subinterval. So the partition is  $P = \{0,0+\frac{1}{n},0+2\cdot\frac{1}{n},\ldots,0+n\cdot\frac{1}{n}=1\}$  and  $c_k = 0+k\cdot\frac{1}{n}=\frac{k}{n}$ . We get the Riemann sum  $\sum_{k=1}^n f(c_k) \triangle x = \sum_{k=1}^n (3c_k-c_k^3)\left(\frac{1}{n}\right) = \frac{1}{n}\sum_{k=1}^n \left(3\cdot\frac{k}{n}-\left(\frac{k}{n}\right)^3\right) = \frac{1}{n}\left(\frac{3}{n}\sum_{k=1}^n k-\frac{1}{n^3}\sum_{k=1}^n k^3\right)$

# 278 Chapter 5 Integration

$$= \tfrac{3}{n^2} \cdot \tfrac{n(n+1)}{2} - \tfrac{1}{n^4} \cdot \left( \tfrac{n(n+1)}{2} \right)^2 = \tfrac{3}{2} \cdot \tfrac{n+1}{n} - \tfrac{1}{4} \cdot \tfrac{(n+1)^2}{n^2} = \tfrac{3}{2} \cdot \tfrac{1+\frac{1}{n}}{1} - \tfrac{1}{4} \cdot \tfrac{1+\frac{2}{n}+\frac{1}{n^2}}{1}. \text{ As } n \to \infty \text{ and } \|P\| \to 0 \text{ this expression}$$
 has value  $\tfrac{3}{2} - \tfrac{1}{4} = \tfrac{5}{4}.$  Thus,  $\int_0^1 (3x - x^3) dx = \tfrac{5}{4}.$ 

- 71. To find where  $x x^2 \ge 0$ , let  $x x^2 = 0 \Rightarrow x(1 x) = 0 \Rightarrow x = 0$  or x = 1. If 0 < x < 1, then  $0 < x x^2 \Rightarrow a = 0$  and b = 1 maximize the integral.
- 73.  $f(x) = \frac{1}{1+x^2}$  is decreasing on  $[0,1] \Rightarrow$  maximum value of f occurs at  $0 \Rightarrow$  max f = f(0) = 1; minimum value of f occurs at  $1 \Rightarrow$  min  $f = f(1) = \frac{1}{1+1^2} = \frac{1}{2}$ . Therefore, (1-0) min  $f \le \int_0^1 \frac{1}{1+x^2} \, dx \le (1-0)$  max  $f \Rightarrow \frac{1}{2} \le \int_0^1 \frac{1}{1+x^2} \, dx \le 1$ . That is, an upper bound = 1 and a lower bound  $= \frac{1}{2}$ .
- 74. See Exercise 73 above. On [0, 0.5],  $\max f = \frac{1}{1+0^2} = 1$ ,  $\min f = \frac{1}{1+(0.5)^2} = 0.8$ . Therefore  $(0.5-0)\min f \leq \int_0^{0.5} f(x) \, dx \leq (0.5-0)\max f \Rightarrow \frac{2}{5} \leq \int_0^{0.5} \frac{1}{1+x^2} \, dx \leq \frac{1}{2}$ . On [0.5, 1],  $\max f = \frac{1}{1+(0.5)^2} = 0.8$  and  $\min f = \frac{1}{1+1^2} = 0.5$ . Therefore  $(1-0.5)\min f \leq \int_{0.5}^1 \frac{1}{1+x^2} \, dx \leq (1-0.5)\max f \Rightarrow \frac{1}{4} \leq \int_{0.5}^1 \frac{1}{1+x^2} \, dx \leq \frac{2}{5}$ . Then  $\frac{1}{4} + \frac{2}{5} \leq \int_0^{0.5} \frac{1}{1+x^2} \, dx + \int_{0.5}^1 \frac{1}{1+x^2} \, dx \leq \frac{1}{2} + \frac{2}{5} \Rightarrow \frac{13}{20} \leq \int_0^1 \frac{1}{1+x^2} \, dx \leq \frac{9}{10}$ .
- 75.  $-1 \le \sin{(x^2)} \le 1$  for all  $x \Rightarrow (1-0)(-1) \le \int_0^1 \sin{(x^2)} \, dx \le (1-0)(1)$  or  $\int_0^1 \sin{x^2} \, dx \le 1 \Rightarrow \int_0^1 \sin{x^2} \, dx$  cannot equal 2.
- 76.  $f(x) = \sqrt{x+8}$  is increasing on  $[0,1] \Rightarrow \max f = f(1) = \sqrt{1+8} = 3$  and  $\min f = f(0) = \sqrt{0+8} = 2\sqrt{2}$ . Therefore,  $(1-0)\min f \le \int_0^1 \sqrt{x+8} \, dx \le (1-0)\max f \Rightarrow 2\sqrt{2} \le \int_0^1 \sqrt{x+8} \, dx \le 3$ .
- 77. If  $f(x) \ge 0$  on [a,b], then  $\min f \ge 0$  and  $\max f \ge 0$  on [a,b]. Now,  $(b-a)\min f \le \int_a^b f(x)\,dx \le (b-a)\max f$ . Then  $b \ge a \ \Rightarrow \ b-a \ge 0 \ \Rightarrow \ (b-a)\min f \ge 0 \ \Rightarrow \ \int_a^b f(x)\,dx \ge 0$ .
- 78. If  $f(x) \le 0$  on [a,b], then  $\min f \le 0$  and  $\max f \le 0$ . Now,  $(b-a)\min f \le \int_a^b f(x)\,dx \le (b-a)\max f$ . Then  $b \ge a \ \Rightarrow \ b-a \ge 0 \ \Rightarrow \ (b-a)\max f \le 0 \ \Rightarrow \ \int_a^b f(x)\,dx \le 0$ .
- 79.  $\sin x \le x \text{ for } x \ge 0 \Rightarrow \sin x x \le 0 \text{ for } x \ge 0 \Rightarrow \int_0^1 (\sin x x) \, dx \le 0 \text{ (see Exercise 78)} \Rightarrow \int_0^1 \sin x \, dx \int_0^1 x \, dx \le 0 \Rightarrow \int_0^1 \sin x \, dx \le \int_0^1 \sin x \, dx$

- 80.  $\sec x \ge 1 + \frac{x^2}{2}$  on  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \Rightarrow \sec x \left(1 + \frac{x^2}{2}\right) \ge 0$  on  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \Rightarrow \int_0^1 \left[\sec x \left(1 + \frac{x^2}{2}\right)\right] dx \ge 0$  (see Exercise 77) since [0, 1] is contained in  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \Rightarrow \int_0^1 \sec x \, dx \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0 \Rightarrow \int_0^1 \sec x \, dx \ge \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0$   $\Rightarrow \int_0^1 \sec x \, dx \ge \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0 \Rightarrow \int_0^1 \sec x \, dx \ge \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0$   $\Rightarrow \int_0^1 \sec x \, dx \ge \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0 \Rightarrow \int_0^1 \sec x \, dx \ge \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0$   $\Rightarrow \int_0^1 \sec x \, dx \ge \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0 \Rightarrow \int_0^1 \sec x \, dx \ge \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0$   $\Rightarrow \int_0^1 \sec x \, dx \ge \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0 \Rightarrow \int_0^1 \sec x \, dx \ge \int_0^1 \left(1 + \frac{x^2}{2}\right) dx \ge 0$
- 81. Yes, for the following reasons:  $av(f) = \frac{1}{b-a} \int_a^b f(x) dx$  is a constant K. Thus  $\int_a^b av(f) dx = \int_a^b K dx = K(b-a)$   $\Rightarrow \int_a^b av(f) dx = (b-a)K = (b-a) \cdot \frac{1}{b-a} \int_a^b f(x) dx = \int_a^b f(x) dx$ .
- 82. All three rules hold. The reasons: On any interval [a, b] on which f and g are integrable, we have:

(a) 
$$av(f+g) = \frac{1}{b-a} \int_a^b [f(x) + g(x)] dx = \frac{1}{b-a} \left[ \int_a^b f(x) dx + \int_a^b g(x) dx \right] = \frac{1}{b-a} \int_a^b f(x) dx + \frac{1}{b-a} \int_a^b g(x) dx$$
  
=  $av(f) + av(g)$ 

$$(b) \ \ \text{av}(kf) = \tfrac{1}{b-a} \int_a^b kf(x) \ dx = \tfrac{1}{b-a} \left[ k \, \int_a^b f(x) \ dx \right] = k \left[ \tfrac{1}{b-a} \, \int_a^b f(x) \ dx \right] = k \, \text{av}(f)$$

- (c)  $av(f) = \frac{1}{b-a} \int_a^b f(x) dx \le \frac{1}{b-a} \int_a^b g(x) dx$  since  $f(x) \le g(x)$  on [a,b], and  $\frac{1}{b-a} \int_a^b g(x) dx = av(g)$ . Therefore,  $av(f) \le av(g)$ .
- 83. (a)  $U = \max_1 \Delta x + \max_2 \Delta x + \ldots + \max_n \Delta x \text{ where } \max_1 = f(x_1), \max_2 = f(x_2), \ldots, \max_n = f(x_n) \text{ since } f \text{ is increasing on } [a,b]; \\ L = \min_1 \Delta x + \min_2 \Delta x + \ldots + \min_n \Delta x \text{ where } \min_1 = f(x_0), \min_2 = f(x_1), \ldots, \\ \min_n = f(x_{n-1}) \text{ since } f \text{ is increasing on } [a,b]. \\ Therefore \\ U L = (\max_1 \min_1) \Delta x + (\max_2 \min_2) \Delta x + \ldots + (\max_n \min_n) \Delta x \\ = (f(x_1) f(x_0)) \Delta x + (f(x_2) f(x_1)) \Delta x + \ldots + (f(x_n) f(x_{n-1})) \Delta x = (f(x_n) f(x_0)) \Delta x = (f(b) f(a)) \Delta x.$ 
  - $\begin{array}{ll} \text{(b)} & U = \text{max}_1 \; \Delta x_1 + \text{max}_2 \; \Delta x_2 + \ldots + \text{max}_n \; \Delta x_n \; \text{where} \; \text{max}_1 = f(x_1), \, \text{max}_2 = f(x_2), \, \ldots \,, \, \text{max}_n = f(x_n) \; \text{since} \; f(x_n) \; \text{s$
- 84. (a)  $U = \max_1 \Delta x + \max_2 \Delta x + \dots + \max_n \Delta x$  where  $\max_1 = f(x_0), \max_2 = f(x_1), \dots, \max_n = f(x_{n-1})$  since f is decreasing on [a, b];  $L = \min_1 \Delta x + \min_2 \Delta x + \dots + \min_n \Delta x$  where  $\min_1 = f(x_1), \min_2 = f(x_2), \dots, \min_n = f(x_n)$  since f is decreasing on [a, b]. Therefore  $U L = (\max_1 \min_1) \Delta x + (\max_2 \min_2) \Delta x + \dots + (\max_n \min_n) \Delta x$   $= (f(x_0) f(x_1)) \Delta x + (f(x_1) f(x_2)) \Delta x + \dots + (f(x_{n-1}) f(x_n)) \Delta x = (f(x_0) f(x_n)) \Delta x$   $= (f(a) f(b)) \Delta x$ .



# 280 Chapter 5 Integration

- $\begin{array}{lll} \text{(b)} & U = \text{max}_1 \ \Delta x_1 + \text{max}_2 \ \Delta x_2 + \ldots + \text{max}_n \ \Delta x_n \text{ where } \text{max}_1 = f(x_0), \, \text{max}_2 = f(x_1), \ldots, \, \text{max}_n = f(x_{n-1}) \text{ since } \\ & \text{f is decreasing on} [a,b]; \ L = \text{min}_1 \ \Delta x_1 + \text{min}_2 \ \Delta x_2 + \ldots + \text{min}_n \ \Delta x_n \text{ where } \\ & \text{min}_1 = f(x_1), \, \text{min}_2 = f(x_2), \ldots, \, \text{min}_n = f(x_n) \text{ since } f \text{ is decreasing on } [a,b]. \ \text{Therefore } \\ & U L = (\text{max}_1 \text{min}_1) \ \Delta x_1 + (\text{max}_2 \text{min}_2) \ \Delta x_2 + \ldots + (\text{max}_n \text{min}_n) \ \Delta x_n \\ & = (f(x_0) f(x_1)) \ \Delta x_1 + (f(x_1) f(x_2)) \ \Delta x_2 + \ldots + (f(x_{n-1}) f(x_n)) \ \Delta x_n \\ & \leq (f(x_0) f(x_n)) \ \Delta x_{\text{max}} = (f(a) f(b) \ \Delta x_{\text{max}} = |f(b) f(a)| \ \Delta x_{\text{max}} \text{ since } f(b) \leq f(a). \ \text{Thus } \\ & \lim_{\|P\| \to 0} (U L) = \lim_{\|P\| \to 0} |f(b) f(a)| \ \Delta x_{\text{max}} = 0, \, \text{since } \Delta x_{\text{max}} = \|P\| \, . \end{array}$
- 85. (a) Partition  $\left[0,\frac{\pi}{2}\right]$  into n subintervals, each of length  $\Delta x = \frac{\pi}{2n}$  with points  $x_0 = 0, x_1 = \Delta x$ ,  $x_2 = 2\Delta x, \ldots, x_n = n\Delta x = \frac{\pi}{2}$ . Since  $\sin x$  is increasing on  $\left[0,\frac{\pi}{2}\right]$ , the upper  $\sin U$  is the sum of the areas of the circumscribed rectangles of areas  $f(x_1) \, \Delta x = (\sin \Delta x) \Delta x, f(x_2) \, \Delta x = (\sin 2\Delta x) \, \Delta x, \ldots, f(x_n) \, \Delta x$   $= (\sin n\Delta x) \, \Delta x$ . Then  $U = (\sin \Delta x + \sin 2\Delta x + \ldots + \sin n\Delta x) \, \Delta x = \left[\frac{\cos \frac{\Delta x}{2} \cos \left(\left(n + \frac{1}{2}\right) \Delta x\right)}{2 \sin \frac{\Delta x}{2}}\right] \, \Delta x$   $= \left[\frac{\cos \frac{\pi}{4n} \cos \left(\left(n + \frac{1}{2}\right) \frac{\pi}{2n}\right)}{2 \sin \frac{\pi}{4n}}\right] \left(\frac{\pi}{2n}\right) = \frac{\pi \left(\cos \frac{\pi}{4n} \cos \left(\frac{\pi}{2} + \frac{\pi}{4n}\right)\right)}{4 n \sin \frac{\pi}{4n}} = \frac{\cos \frac{\pi}{4n} \cos \left(\frac{\pi}{2} + \frac{\pi}{4n}\right)}{\left(\frac{\sin \frac{\pi}{4n}}{4n}\right)}$ 
  - (b) The area is  $\int_0^{\pi/2} \sin x \ dx = \lim_{n \to \infty} \ \frac{\cos \frac{\pi}{4n} \cos \left(\frac{\pi}{2} + \frac{\pi}{4n}\right)}{\left(\frac{\sin \frac{\pi}{4n}}{4n}\right)} = \frac{1 \cos \frac{\pi}{2}}{1} = 1.$
- 86. (a) The area of the shaded region is  $\sum\limits_{i=1}^{n}\triangle x_{i}\cdot m_{i}$  which is equal to L.
  - (b) The area of the shaded region is  $\sum_{i=1}^n \triangle x_i \cdot M_i$  which is equal to U.
  - (c) The area of the shaded region is the difference in the areas of the shaded regions shown in the second part of the figure and the first part of the figure. Thus this area is U L.
- 87. By Exercise 86,  $U-L=\sum\limits_{i=1}^{n}\triangle x_i\cdot M_i-\sum\limits_{i=1}^{n}\triangle x_i\cdot m_i$  where  $M_i=\max\{f(x) \text{ on the ith subinterval}\}$  and  $m_i=\min\{f(x) \text{ on the ith subinterval}\}. \text{ Thus } U-L=\sum\limits_{i=1}^{n}(M_i-m_i)\triangle x_i<\sum\limits_{i=1}^{n}\epsilon\cdot\triangle x_i \text{ provided }\triangle x_i<\delta \text{ for each }i=1,\ldots,n. \text{ Since }\sum\limits_{i=1}^{n}\epsilon\cdot\triangle x_i=\epsilon\sum\limits_{i=1}^{n}\triangle x_i=\epsilon(b-a) \text{ the result, }U-L<\epsilon(b-a) \text{ follows.}$
- 88. The car drove the first 150 miles in 5 hours and the second 150 miles in 3 hours, which means it drove 300 miles in 8 hours, for an average of  $\frac{300}{8}$  mi/hr = 37.5 mi/hr. In terms of average values of functions, the function whose average value we seek is  $v(t) = \begin{cases} 30, & 0 \le t \le 5 \\ 50, & 5 < 1 \le 8 \end{cases}, \text{ and the average value is}$   $\frac{(30)(5) + (50)(3)}{8} = 37.5.$



```
89-94. Example CAS commands:
    Maple:
         with( plots );
         with( Student[Calculus1]);
         f := x -> 1-x;
         a := 0;
         b := 1;
         N := [4, 10, 20, 50];
         P := [seq(RiemannSum(f(x), x=a..b, partition=n, method=random, output=plot), n=N)]:
         display( P, insequence=true );
95-98. Example CAS commands:
    Maple:
         with(Student[Calculus1]);
         f := x -> \sin(x);
         a := 0;
         b := Pi;
         plot( f(x), x=a..b, title="#95(a) (Section 5.3)");
         N := [100, 200, 1000];
                                                              # (b)
         for n in N do
          Xlist := [a+1.*(b-a)/n*i $i=0..n];
          Ylist := map(f, Xlist);
         end do:
         for n in N do
                                                           # (c)
          Avg[n] := evalf(add(y,y=Ylist)/nops(Ylist));
         avg := FunctionAverage( f(x), x=a..b, output=value );
         evalf( avg );
         FunctionAverage(f(x),x=a..b,output=plot);
                                                        \#(d)
         fsolve( f(x)=avg, x=0.5 );
         fsolve( f(x)=avg, x=2.5 );
         fsolve( f(x)=Avg[1000], x=0.5 );
         fsolve( f(x)=Avg[1000], x=2.5 );
89-98. Example CAS commands:
    Mathematica: (assigned function and values for a, b, and n may vary)
    Sums of rectangles evaluated at left-hand endpoints can be represented and evaluated by this set of commands
         Clear[x, f, a, b, n]
         \{a, b\} = \{0, \pi\}; n = 10; dx = (b - a)/n;
         f = Sin[x]^2;
         xvals = Table [N[x], \{x, a, b - dx, dx\}];
         yvals = f/.x \rightarrow xvals;
         boxes = MapThread[Line[\{\{\#1,0\},\{\#1,\#3\},\{\#2,\#3\},\{\#2,0\}\}\}, {xvals, xvals + dx, yvals}];
         Plot[f, \{x, a, b\}, Epilog \rightarrow boxes];
         Sum[yvals[[i]] dx, {i, 1, Length[yvals]}]//N
    Sums of rectangles evaluated at right-hand endpoints can be represented and evaluated by this set of commands.
         Clear[x, f, a, b, n]
         \{a, b\} = \{0, \pi\}; n = 10; dx = (b - a)/n;
         f = Sin[x]^2;
```

xvals = Table [N[x],  $\{x, a + dx, b, dx\}$ ]; yvals =  $f/.x \rightarrow xvals$ ; boxes = MapThread[Line[ $\{\{\#1,0\},\{\#1,\#3\},\{\#2,\#3\},\{\#2,0\}\}\}$ , $\{xvals - dx,xvals,yvals\}$ ];  $Plot[f, \{x, a, b\}, Epilog \rightarrow boxes];$ Sum[yvals[[i]] dx, {i, 1,Length[yvals]}]//N

Sums of rectangles evaluated at midpoints can be represented and evaluated by this set of commands.

Clear[x, f, a, b, n] $\{a, b\} = \{0, \pi\}; n = 10; dx = (b - a)/n;$  $f = Sin[x]^2$ ; xvals = Table [N[x],  $\{x, a + dx/2, b - dx/2, dx\}$ ]; yvals =  $f/.x \rightarrow xvals$ ;  $boxes = MapThread[Line[\{\{\#1,0\}, \{\#1,\#3\}, \{\#2,\#3\}, \{\#2,0\}]\&, \{xvals - dx/2, xvals + dx/2, yvals\}];$  $Plot[f, \{x, a, b\}, Epilog \rightarrow boxes];$ Sum[yvals[[i]] dx, {i, 1, Length[yvals]}]//N

#### 5.4 THE FUNDAMENTAL THEOREM OF CALCULUS

1. 
$$\int_{-2}^{0} (2x+5) \, dx = [x^2+5x]_{-2}^{0} = (0^2+5(0)) - ((-2)^2+5(-2)) = 6$$

2. 
$$\int_{-3}^{4} \left(5 - \frac{x}{2}\right) dx = \left[5x - \frac{x^2}{4}\right]_{-3}^{4} = \left(5(4) - \frac{4^2}{4}\right) - \left(5(-3) - \frac{(-3)^2}{4}\right) = \frac{133}{4}$$

3. 
$$\int_0^2 x(x-3) \, dx = \int_0^2 (x^2-3x) \, dx = \left[ \frac{x^3}{3} - \frac{3x^2}{2} \right]_0^2 = \left( \frac{(2)^3}{3} - \frac{3(2)^2}{2} \right) - \left( \frac{(0)^3}{3} - \frac{3(0)^2}{2} \right) = -\frac{10}{3}$$

4. 
$$\int_{-1}^{1} (x^2 - 2x + 3) \, dx = \left[ \frac{x^3}{3} - x^2 + 3x \right]_{-1}^{1} = \left( \frac{(1)^3}{3} - (1)^2 + 3(1) \right) - \left( \frac{(-1)^3}{3} - (-1)^2 + 3(-1) \right) = \frac{20}{3}$$

5. 
$$\int_0^4 \left(3x - \frac{x^3}{4}\right) dx = \left[\frac{3x^2}{2} - \frac{x^4}{16}\right]_0^4 = \left(\frac{3(4)^2}{2} - \frac{4^4}{16}\right) - \left(\frac{3(0)^2}{2} - \frac{(0)^4}{16}\right) = 8$$

$$6. \quad \int_{-2}^{2} (x^3 - 2x + 3) \ dx = \left[ \frac{x^4}{4} - x^2 + 3x \right]_{-2}^{2} = \left( \frac{2^4}{4} - 2^2 + 3(2) \right) - \left( \frac{(-2)^4}{4} - (-2)^2 + 3(-2) \right) = 12$$

7. 
$$\int_0^1 (x^2 + \sqrt{x}) dx = \left[ \frac{x^3}{3} + \frac{2}{3} x^{3/2} \right]_0^1 = \left( \frac{1}{3} + \frac{2}{3} \right) - 0 = 1$$

8. 
$$\int_{1}^{32} x^{-6/5} dx = \left[ -5x^{-1/5} \right]_{1}^{32} = \left( -\frac{5}{2} \right) - (-5) = \frac{5}{2}$$

9. 
$$\int_0^{\pi/3} 2 \sec^2 x \, dx = \left[ 2 \tan x \right]_0^{\pi/3} = \left( 2 \tan \left( \frac{\pi}{3} \right) \right) - (2 \tan 0) = 2\sqrt{3} - 0 = 2\sqrt{3}$$

10. 
$$\int_0^{\pi} (1 + \cos x) \, dx = [x + \sin x]_0^{\pi} = (\pi + \sin \pi) - (0 + \sin 0) = \pi$$

11. 
$$\int_{\pi/4}^{3\pi/4} \csc\theta \cot\theta \, d\theta = \left[-\csc\theta\right]_{\pi/4}^{3\pi/4} = \left(-\csc\left(\frac{3\pi}{4}\right)\right) - \left(-\csc\left(\frac{\pi}{4}\right)\right) = -\sqrt{2} - \left(-\sqrt{2}\right) = 0$$

12. 
$$\int_0^{\pi/3} 4 \sec u \tan u \, du = [4 \sec u]_0^{\pi/3} = 4 \sec \left(\frac{\pi}{3}\right) - 4 \sec 0 = 4(2) - 4(1) = 4$$

13. 
$$\int_{\pi/2}^{0} \frac{1+\cos 2t}{2} dt = \int_{\pi/2}^{0} \left(\frac{1}{2} + \frac{1}{2}\cos 2t\right) dt = \left[\frac{1}{2}t + \frac{1}{4}\sin 2t\right]_{\pi/2}^{0} = \left(\frac{1}{2}(0) + \frac{1}{4}\sin 2(0)\right) - \left(\frac{1}{2}\left(\frac{\pi}{2}\right) + \frac{1}{4}\sin 2\left(\frac{\pi}{2}\right)\right) = -\frac{\pi}{4}$$

14. 
$$\int_{-\pi/3}^{\pi/3} \frac{1 - \cos 2t}{1 - \pi/3} dt = \int_{-\pi/3}^{\pi/3} \left(\frac{1}{2} - \frac{1}{2}\cos 2t\right) dt = \left[\frac{1}{2}t - \frac{1}{4}\sin 2t\right]_{-\pi/3}^{\pi/3}$$
$$= \left(\frac{1}{2}\left(\frac{\pi}{3}\right) - \frac{1}{4}\sin 2\left(\frac{\pi}{3}\right)\right) - \left(\frac{1}{2}\left(-\frac{\pi}{3}\right) - \frac{1}{4}\sin 2\left(-\frac{\pi}{3}\right)\right) = \frac{\pi}{6} - \frac{1}{4}\sin \frac{2\pi}{3} + \frac{\pi}{6} + \frac{1}{4}\sin\left(\frac{-2\pi}{3}\right) = \frac{\pi}{3} - \frac{\sqrt{3}}{4}$$

15. 
$$\int_0^{\pi/4} \tan^2 x \, dx = \int_0^{\pi/4} (\sec^2 x - 1) dx = \left[\tan x - x\right]_0^{\pi/4} = \left(\tan\left(\frac{\pi}{4}\right) - \frac{\pi}{4}\right) - (\tan(0) - 0) = 1 - \frac{\pi}{4}$$

16. 
$$\int_0^{\pi/6} (\sec x + \tan x)^2 dx = \int_0^{\pi/6} (\sec^2 x + 2\sec x \tan x + \tan^2 x) dx = \int_0^{\pi/6} (2\sec^2 x + 2\sec x \tan x - 1) dx$$
$$= [2 \tan x + 2\sec x - x]_0^{\pi/6} = \left(2 \tan\left(\frac{\pi}{6}\right) + 2\sec\left(\frac{\pi}{6}\right) - \left(\frac{\pi}{6}\right)\right) - (2 \tan 0 + 2\sec 0 - 0) = 2\sqrt{3} - \frac{\pi}{6} - 2$$

17. 
$$\int_0^{\pi/8} \sin 2x \, dx = \left[ -\frac{1}{2} \cos 2x \right]_0^{\pi/8} = \left( -\frac{1}{2} \cos 2 \left( \frac{\pi}{8} \right) \right) - \left( -\frac{1}{2} \cos 2 (0) \right) = \frac{2-\sqrt{2}}{4}$$

18. 
$$\int_{-\pi/3}^{-\pi/4} \left( 4 \sec^2 t + \frac{\pi}{t^2} \right) dt = \int_{-\pi/3}^{-\pi/4} \left( 4 \sec^2 t + \pi t^{-2} \right) dt = \left[ 4 \tan t - \frac{\pi}{t} \right]_{-\pi/3}^{-\pi/4}$$

$$= \left( 4 \tan \left( -\frac{\pi}{4} \right) - \frac{\pi}{\left( -\frac{\pi}{4} \right)} \right) - \left( 4 \tan \left( \frac{\pi}{3} \right) - \frac{\pi}{\left( -\frac{\pi}{3} \right)} \right) = (4(-1) + 4) - \left( 4 \left( -\sqrt{3} \right) + 3 \right) = 4\sqrt{3} - 3$$

19. 
$$\int_{1}^{-1} (r+1)^{2} dr = \int_{1}^{-1} (r^{2} + 2r + 1) dr = \left[ \frac{r^{3}}{3} + r^{2} + r \right]_{1}^{-1} = \left( \frac{(-1)^{3}}{3} + (-1)^{2} + (-1) \right) - \left( \frac{1^{3}}{3} + 1^{2} + 1 \right) = -\frac{8}{3}$$

$$\begin{aligned} 20. & \int_{-\sqrt{3}}^{\sqrt{3}} (t+1) \left(t^2+4\right) dt = \int_{-\sqrt{3}}^{\sqrt{3}} (t^3+t^2+4t+4) \ dt = \left[\frac{t^4}{4}+\frac{t^3}{3}+2t^2+4t\right]_{-\sqrt{3}}^{\sqrt{3}} \\ & = \left(\frac{\left(\sqrt{3}\right)^4}{4}+\frac{\left(\sqrt{3}\right)^3}{3}+2 \left(\sqrt{3}\right)^2+4 \sqrt{3}\right) - \left(\frac{\left(-\sqrt{3}\right)^4}{4}+\frac{\left(-\sqrt{3}\right)^3}{3}+2 \left(-\sqrt{3}\right)^2+4 \left(-\sqrt{3}\right)\right) = 10 \sqrt{3} \end{aligned}$$

$$21. \ \int_{\sqrt{2}}^{1} \left( \frac{u^7}{2} - \frac{1}{u^5} \right) du = \int_{\sqrt{2}}^{1} \left( \frac{u^7}{2} - u^{-5} \right) du = \left[ \frac{u^8}{16} + \frac{1}{4u^4} \right]_{\sqrt{2}}^{1} = \left( \frac{1^8}{16} + \frac{1}{4(1)^4} \right) - \left( \frac{\left(\sqrt{2}\right)^8}{16} + \frac{1}{4\left(\sqrt{2}\right)^4} \right) = -\frac{3}{4} + \frac{1}{4\left(\sqrt{2}\right)^4} + \frac{1}{4\left(\sqrt{2}\right)^$$

$$22. \ \int_{-3}^{-1} \frac{y^5 - 2y}{y^3} \ dy = \int_{-3}^{-1} (y^2 - 2y^{-2}) \ dy = \left[ \frac{y^3}{3} + 2y^{-1} \right]_{-3}^{-1} = \left( \frac{(-1)^3}{3} + \frac{2}{(-1)} \right) - \left( \frac{(-3)^3}{3} + \frac{2}{(-3)} \right) = \frac{22}{3}$$

$$23. \int_{1}^{\sqrt{2}} \frac{s^2 + \sqrt{s}}{s^2} ds = \int_{1}^{\sqrt{2}} \left(1 + s^{-3/2}\right) ds = \left[s - \frac{2}{\sqrt{s}}\right]_{1}^{\sqrt{2}} = \left(\sqrt{2} - \frac{2}{\sqrt{\sqrt{2}}}\right) - \left(1 - \frac{2}{\sqrt{1}}\right) = \sqrt{2} - 2^{3/4} + 1$$

$$= \sqrt{2} - \sqrt[4]{8} + 1$$

$$24. \int_{1}^{8} \frac{(x^{1/3}+1)(2-x^{2/3})}{x^{1/3}} dx = \int_{1}^{8} \frac{2x^{1/3}-x+2-x^{2/3}}{x^{1/3}} dx = \int_{1}^{8} \left(2-x^{2/3}+2x^{-1/3}-x^{1/3}\right) dx = \\ \left[2x-\frac{3}{5}x^{5/3}+3x^{2/3}-\frac{3}{4}x^{4/3}\right]_{1}^{3} = \left(2(8)-\frac{3}{5}(8)^{5/3}+3(8)^{2/3}-\frac{3}{4}(8)^{4/3}\right) - \left(2(1)-\frac{3}{5}(1)^{5/3}+3(1)^{2/3}-\frac{3}{4}(1)^{4/3}\right) \\ = -\frac{137}{20}$$

25. 
$$\int_{\pi/2}^{\pi} \frac{\sin 2x}{2 \sin x} dx = \int_{\pi/2}^{\pi} \frac{2 \sin x \cos x}{2 \sin x} dx = \int_{\pi/2}^{\pi} \cos x dx = \left[ \sin x \right]_{\pi/2}^{\pi} = \left( \sin (\pi) \right) - \left( \sin \left( \frac{\pi}{2} \right) \right) = -1$$

26. 
$$\int_{0}^{\pi/3} (\cos x + \sec x)^{2} dx = \int_{0}^{\pi/3} (\cos^{2} x + 2 + \sec^{2} x) dx = \int_{0}^{\pi/3} (\frac{\cos 2x + 1}{2} + 2 + \sec^{2} x) dx$$
$$= \int_{0}^{\pi/3} (\frac{1}{2} \cos 2x + \frac{5}{2} + \sec^{2} x) dx = \left[ \frac{1}{4} \sin 2x + \frac{5}{2} x + \tan x \right]_{0}^{\pi/3}$$
$$= \left( \frac{1}{4} \sin 2 \left( \frac{\pi}{3} \right) + \frac{5}{2} \left( \frac{\pi}{3} \right) + \tan \left( \frac{\pi}{3} \right) \right) - \left( \frac{1}{4} \sin 2(0) + \frac{5}{2}(0) + \tan(0) \right) = \frac{5\pi}{6} + \frac{9\sqrt{3}}{8}$$

$$27. \ \int_{-4}^{4} |x| \ dx = \int_{-4}^{0} |x| \ dx + \int_{0}^{4} |x| \ dx = - \int_{-4}^{0} x \ dx + \int_{0}^{4} x \ dx = \left[ -\frac{x^2}{2} \right]_{-4}^{0} + \left[ \frac{x^2}{2} \right]_{0}^{4} = \left( -\frac{0^2}{2} + \frac{(-4)^2}{2} \right) + \left( \frac{4^2}{2} - \frac{0^2}{2} \right) = 16$$

28. 
$$\int_{0}^{\pi} \frac{1}{2} (\cos x + |\cos x|) dx = \int_{0}^{\pi/2} \frac{1}{2} (\cos x + \cos x) dx + \int_{\pi/2}^{\pi} \frac{1}{2} (\cos x - \cos x) dx = \int_{0}^{\pi/2} \cos x dx = [\sin x]_{0}^{\pi/2} = \sin \frac{\pi}{2} - \sin 0 = 1$$

29. (a) 
$$\int_{0}^{\sqrt{x}} \cos t \, dt = \left[\sin t\right]_{0}^{\sqrt{x}} = \sin \sqrt{x} - \sin 0 = \sin \sqrt{x} \Rightarrow \frac{d}{dx} \left(\int_{0}^{\sqrt{x}} \cos t \, dt\right) = \frac{d}{dx} \left(\sin \sqrt{x}\right) = \cos \sqrt{x} \left(\frac{1}{2} x^{-1/2}\right)$$
$$= \frac{\cos \sqrt{x}}{2\sqrt{x}}$$

$$\text{(b)} \ \ \tfrac{d}{dx} \left( \int_0^{\sqrt{x}} \!\! \cos t \, dt \right) = \left( \cos \sqrt{x} \right) \left( \tfrac{d}{dx} \left( \sqrt{x} \right) \right) = \left( \cos \sqrt{x} \right) \left( \tfrac{1}{2} \, x^{-1/2} \right) = \tfrac{\cos \sqrt{x}}{2 \sqrt{x}}$$

$$30. \ \ (a) \quad \int_{1}^{\sin x} 3t^2 \ dt = \left[t^3\right]_{1}^{\sin x} = \sin^3 x - 1 \ \Rightarrow \ \frac{d}{dx} \left( \int_{1}^{\sin x} 3t^2 \ dt \right) = \frac{d}{dx} \left( \sin^3 x - 1 \right) = 3 \sin^2 x \cos x$$

(b) 
$$\frac{d}{dx} \left( \int_{1}^{\sin x} 3t^2 dt \right) = (3 \sin^2 x) \left( \frac{d}{dx} (\sin x) \right) = 3 \sin^2 x \cos x$$

31. (a) 
$$\int_0^{t^4} \sqrt{u} \, du = \int_0^{t^4} u^{1/2} \, du = \left[ \frac{2}{3} \, u^{3/2} \right]_0^{t^4} = \frac{2}{3} \, (t^4)^{3/2} - 0 = \frac{2}{3} \, t^6 \ \Rightarrow \ \frac{d}{dt} \left( \int_0^{t^4} \sqrt{u} \, du \right) = \frac{d}{dt} \left( \frac{2}{3} \, t^6 \right) = 4t^5$$

(b) 
$$\frac{d}{dt} \left( \int_0^{t^4} \sqrt{u} \, du \right) = \sqrt{t^4} \left( \frac{d}{dt} \left( t^4 \right) \right) = t^2 \left( 4t^3 \right) = 4t^5$$

32. (a) 
$$\int_0^{\tan \theta} \sec^2 y \, dy = [\tan y]_0^{\tan \theta} = \tan(\tan \theta) - 0 = \tan(\tan \theta) \Rightarrow \frac{d}{d\theta} \left( \int_0^{\tan \theta} \sec^2 y \, dy \right) = \frac{d}{d\theta} \left( \tan(\tan \theta) \right)$$
$$= (\sec^2 (\tan \theta)) \sec^2 \theta$$

(b) 
$$\frac{d}{d\theta} \left( \int_0^{\tan \theta} \sec^2 y \, dy \right) = \left( \sec^2 (\tan \theta) \right) \left( \frac{d}{d\theta} (\tan \theta) \right) = \left( \sec^2 (\tan \theta) \right) \sec^2 \theta$$

33. 
$$y = \int_0^x \sqrt{1+t^2} dt \Rightarrow \frac{dy}{dx} = \sqrt{1+x^2}$$
 34.  $y = \int_1^x \frac{1}{t} dt \Rightarrow \frac{dy}{dx} = \frac{1}{x}, x > 0$ 

$$35. \ \ y = \int_{\sqrt{x}}^{0} \sin t^2 \ dt = - \int_{0}^{\sqrt{x}} \sin t^2 \ dt \ \Rightarrow \ \frac{dy}{dx} = - \left( \sin \left( \sqrt{x} \right)^2 \right) \left( \frac{d}{dx} \left( \sqrt{x} \right) \right) = - (\sin x) \left( \frac{1}{2} \, x^{-1/2} \right) = - \frac{\sin x}{2 \sqrt{x}} = - \left( \frac{1}{2} \, x^{-1/2} \right) = - \frac{\sin x}{2 \sqrt{x}} = - \left( \frac{1}{2} \, x^{-1/2} \right) = - \frac{\sin x}{2 \sqrt{x}} = - \left( \frac{1}{2} \, x^{-1/2} \right) = - \frac{\sin x}{2 \sqrt{x}} = - \left( \frac{1}{2} \, x^{-1/2} \right) = - \frac{\sin x}{2 \sqrt{x}} = - \left( \frac{1}{2} \, x^{-1/2} \right) = - \frac{\sin x}{2 \sqrt{x}} = - \left( \frac{1}{2} \, x^{-1/2} \right) = - \frac{\sin x}{2 \sqrt{x}} = - \left( \frac{1}{2} \, x^{-1/2} \right) = - \frac{1}{2} \, x^{-1/2} =$$

36. 
$$y = x \int_{2}^{x^{2}} \sin t^{3} dt \Rightarrow \frac{dy}{dx} = x \cdot \frac{d}{dx} \left( \int_{2}^{x^{2}} \sin t^{3} dt \right) + 1 \cdot \int_{2}^{x^{2}} \sin t^{3} dt = x \cdot \sin (x^{2})^{3} \frac{d}{dx} (x^{2}) + \int_{2}^{x^{2}} \sin t^{3} dt$$

$$= 2x^{2} \sin x^{6} + \int_{2}^{x^{2}} \sin t^{3} dt$$

37. 
$$y = \int_{1}^{x} \frac{t^2}{t^2+4} dt - \int_{3}^{x} \frac{t^2}{t^2+4} dt \Rightarrow \frac{dy}{dx} = \frac{x^2}{x^2+4} - \frac{x^2}{x^2+4} = 0$$

$$38. \ y = \left(\int_0^x \left(t^3+1\right)^{10} dt\right)^3 \Rightarrow \ \frac{dy}{dx} = 3 \left(\int_0^x \left(t^3+1\right)^{10} dt\right) \frac{d}{dx} \left(\int_0^x \left(t^3+1\right)^{10} dt\right) = 3 (x^3+1)^{10} \left(\int_0^x \left(t^3+$$

39. 
$$y = \int_0^{\sin x} \frac{dt}{\sqrt{1 - t^2}}, |x| < \frac{\pi}{2} \implies \frac{dy}{dx} = \frac{1}{\sqrt{1 - \sin^2 x}} \left( \frac{d}{dx} (\sin x) \right) = \frac{1}{\sqrt{\cos^2 x}} (\cos x) = \frac{\cos x}{|\cos x|} = \frac{\cos x}{\cos x} = 1 \text{ since } |x| < \frac{\pi}{2}$$

40. 
$$y = \int_0^{\tan x} \frac{dt}{1+t^2} \Rightarrow \frac{dy}{dx} = \left(\frac{1}{1+\tan^2 x}\right) \left(\frac{d}{dx} (\tan x)\right) = \left(\frac{1}{\sec^2 x}\right) (\sec^2 x) = 1$$













44. 
$$x^{1/3} - x = 0 \Rightarrow x^{1/3} \left( 1 - x^{2/3} \right) = 0 \Rightarrow x^{1/3} = 0 \text{ or } 1 - x^{2/3} = 0 \Rightarrow x = 0 \text{ or } 1 = x^{2/3} \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x = 0 \text{ or } 1 = x^2 \Rightarrow x =$$



- 45. The area of the rectangle bounded by the lines y=2, y=0,  $x=\pi$ , and x=0 is  $2\pi$ . The area under the curve  $y=1+\cos x$  on  $[0,\pi]$  is  $\int_0^\pi (1+\cos x)\,dx=[x+\sin x]_0^\pi=(\pi+\sin\pi)-(0+\sin0)=\pi$ . Therefore the area of the shaded region is  $2\pi-\pi=\pi$ .
- 46. The area of the rectangle bounded by the lines  $x=\frac{\pi}{6}, x=\frac{5\pi}{6}, y=\sin\frac{\pi}{6}=\frac{1}{2}=\sin\frac{5\pi}{6}$ , and y=0 is  $\frac{1}{2}\left(\frac{5\pi}{6}-\frac{\pi}{6}\right)=\frac{\pi}{3}.$  The area under the curve  $y=\sin x$  on  $\left[\frac{\pi}{6},\frac{5\pi}{6}\right]$  is  $\int_{\pi/6}^{5\pi/6}\sin x\,dx=\left[-\cos x\right]_{\pi/6}^{5\pi/6}$  $=\left(-\cos\frac{5\pi}{6}\right)-\left(-\cos\frac{\pi}{6}\right)=-\left(-\frac{\sqrt{3}}{2}\right)+\frac{\sqrt{3}}{2}=\sqrt{3}.$  Therefore the area of the shaded region is  $\sqrt{3}-\frac{\pi}{3}$ .
- 47. On  $\left[-\frac{\pi}{4},0\right]$ : The area of the rectangle bounded by the lines  $y=\sqrt{2}, y=0, \theta=0$ , and  $\theta=-\frac{\pi}{4}$  is  $\sqrt{2}\left(\frac{\pi}{4}\right)$   $=\frac{\pi\sqrt{2}}{4}$ . The area between the curve  $y=\sec\theta$  tan  $\theta$  and y=0 is  $-\int_{-\pi/4}^{0}\sec\theta$  tan  $\theta$  d $\theta=\left[-\sec\theta\right]_{-\pi/4}^{0}$   $=(-\sec0)-\left(-\sec\left(-\frac{\pi}{4}\right)\right)=\sqrt{2}-1$ . Therefore the area of the shaded region on  $\left[-\frac{\pi}{4},0\right]$  is  $\frac{\pi\sqrt{2}}{4}+\left(\sqrt{2}-1\right)$ . On  $\left[0,\frac{\pi}{4}\right]$ : The area of the rectangle bounded by  $\theta=\frac{\pi}{4}, \theta=0, y=\sqrt{2}$ , and y=0 is  $\sqrt{2}\left(\frac{\pi}{4}\right)=\frac{\pi\sqrt{2}}{4}$ . The area under the curve  $y=\sec\theta$  tan  $\theta$  is  $\int_{0}^{\pi/4}\sec\theta$  tan  $\theta$  d $\theta=\left[\sec\theta\right]_{0}^{\pi/4}=\sec\frac{\pi}{4}-\sec0=\sqrt{2}-1$ . Therefore the area of the shaded region on  $\left[0,\frac{\pi}{4}\right]$  is  $\frac{\pi\sqrt{2}}{4}-\left(\sqrt{2}-1\right)$ . Thus, the area of the total shaded region is  $\left(\frac{\pi\sqrt{2}}{4}+\sqrt{2}-1\right)+\left(\frac{\pi\sqrt{2}}{4}-\sqrt{2}+1\right)=\frac{\pi\sqrt{2}}{2}$ .
- 48. The area of the rectangle bounded by the lines y=2, y=0,  $t=-\frac{\pi}{4}$ , and t=1 is  $2\left(1-\left(-\frac{\pi}{4}\right)\right)=2+\frac{\pi}{2}$ . The area under the curve  $y=\sec^2 t$  on  $\left[-\frac{\pi}{4},0\right]$  is  $\int_{-\pi/4}^0 \sec^2 t \, dt = \left[\tan t\right]_{-\pi/4}^0 = \tan 0 \tan \left(-\frac{\pi}{4}\right) = 1$ . The area under the curve  $y=1-t^2$  on [0,1] is  $\int_0^1 \left(1-t^2\right) \, dt = \left[t-\frac{t^2}{3}\right]_0^1 = \left(1-\frac{t^3}{3}\right) \left(0-\frac{0^3}{3}\right) = \frac{2}{3}$ . Thus, the total area under the curves on  $\left[-\frac{\pi}{4},1\right]$  is  $1+\frac{2}{3}=\frac{5}{3}$ . Therefore the area of the shaded region is  $\left(2+\frac{\pi}{2}\right)-\frac{5}{3}=\frac{1}{3}+\frac{\pi}{2}$ .
- 49.  $y = \int_{\pi}^{x} \frac{1}{t} dt 3 \Rightarrow \frac{dy}{dx} = \frac{1}{x}$  and  $y(\pi) = \int_{\pi}^{\pi} \frac{1}{t} dt 3 = 0 3 = -3 \Rightarrow (d)$  is a solution to this problem.
- 50.  $y = \int_{-1}^{x} \sec t \, dt + 4 \Rightarrow \frac{dy}{dx} = \sec x$  and  $y(-1) = \int_{-1}^{-1} \sec t \, dt + 4 = 0 + 4 = 4 \Rightarrow$  (c) is a solution to this problem.
- 51.  $y = \int_0^x \sec t \, dt + 4 \Rightarrow \frac{dy}{dx} = \sec x \text{ and } y(0) = \int_0^0 \sec t \, dt + 4 = 0 + 4 = 4 \Rightarrow \text{ (b) is a solution to this problem.}$

52. 
$$y = \int_1^x \frac{1}{t} dt - 3 \Rightarrow \frac{dy}{dx} = \frac{1}{x}$$
 and  $y(1) = \int_1^1 \frac{1}{t} dt - 3 = 0 - 3 = -3 \Rightarrow$  (a) is a solution to this problem.

53. 
$$y = \int_{2}^{x} \sec t \, dt + 3$$

54. 
$$y = \int_{1}^{x} \sqrt{1 + t^2} dt - 2$$

55. Area = 
$$\int_{-b/2}^{b/2} \left( h - \left( \frac{4h}{b^2} \right) x^2 \right) dx = \left[ hx - \frac{4hx^3}{3b^2} \right]_{-b/2}^{b/2}$$
$$= \left( h \left( \frac{b}{2} \right) - \frac{4h \left( \frac{b}{2} \right)^3}{3b^2} \right) - \left( h \left( - \frac{b}{2} \right) - \frac{4h \left( - \frac{b}{2} \right)^3}{3b^2} \right)$$
$$= \left( \frac{bh}{2} - \frac{bh}{6} \right) - \left( - \frac{bh}{2} + \frac{bh}{6} \right) = bh - \frac{bh}{3} = \frac{2}{3} bh$$



56.  $k > 0 \Rightarrow \text{ one arch of } y = \sin kx \text{ will occur over the interval } \left[0, \frac{\pi}{k}\right] \Rightarrow \text{ the area} = \int_0^{\pi/k} \sin kx \, dx = \left[-\frac{1}{k}\cos kx\right]_0^{\pi/k} = -\frac{1}{k}\cos \left(k\left(\frac{\pi}{k}\right)\right) - \left(-\frac{1}{k}\cos(0)\right) = \frac{2}{k}$ 

57. 
$$\frac{dc}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-1/2} \implies c = \int_0^x \frac{1}{2}t^{-1/2}dt = \left[t^{1/2}\right]_0^x = \sqrt{x}; \ c(100) - c(1) = \sqrt{100} - \sqrt{1} = \$9.00$$

58. 
$$r = \int_0^3 \left(2 - \frac{2}{(x+1)^2}\right) dx = 2 \int_0^3 \left(1 - \frac{1}{(x+1)^2}\right) dx = 2 \left[x - \left(\frac{-1}{x+1}\right)\right]_0^3 = 2 \left[\left(3 + \frac{1}{(3+1)}\right) - \left(0 + \frac{1}{(0+1)}\right)\right] = 2 \left[3 \frac{1}{4} - 1\right] = 2 \left(2 \frac{1}{4}\right) = 4.5 \text{ or } \$4500$$

59. (a) 
$$t = 0 \Rightarrow T = 85 - 3\sqrt{25 - 0} = 70^{\circ} \text{ F}; t = 16 \Rightarrow T = 85 - 3\sqrt{25 - 16} = 76^{\circ} \text{ F};$$
  $t = 25 \Rightarrow T = 85 - 3\sqrt{25 - 25} = 85^{\circ} \text{ F}$ 

(b) average temperature 
$$= \frac{1}{25-0} \int_0^{25} \left( 85 - 3\sqrt{25 - t} \right) dt = \frac{1}{25} \left[ 85t + 2(25 - t)^{3/2} \right]_0^{25}$$

$$= \frac{1}{25} \left( 85(25) + 2(25 - 25)^{3/2} \right) - \frac{1}{25} \left( 85(0) + 2(25 - 0)^{3/2} \right) = 75^{\circ} F$$

60. (a) 
$$t = 0 \Rightarrow H = \sqrt{0+1} + 5(0)^{1/3} = 1 \text{ ft}; t = 4 \Rightarrow H = \sqrt{4+1} + 5(4)^{1/3} = \sqrt{5} + 5\sqrt[3]{4} \approx 10.17 \text{ ft}; t = 8 \Rightarrow H = \sqrt{8+1} + 5(8)^{1/3} = 13 \text{ ft}$$

(b) average height 
$$=\frac{1}{8-0}\int_0^8 \left(\sqrt{t+1}+5\,t^{1/3}\right) dt = \frac{1}{8}\left[\frac{2}{3}(t+1)^{3/2}+\frac{15}{4}\,t^{4/3}\right]_0^8$$
  
 $=\frac{1}{8}\left(\frac{2}{3}(8+1)^{3/2}+\frac{15}{4}\left(8\right)^{4/3}\right)-\frac{1}{8}\left(\frac{2}{3}(0+1)^{3/2}+\frac{15}{4}(0)^{4/3}\right)=\frac{29}{3}\approx 9.67 \text{ ft}$ 

61. 
$$\int_{1}^{x} f(t) dt = x^{2} - 2x + 1 \implies f(x) = \frac{d}{dx} \int_{1}^{x} f(t) dt = \frac{d}{dx} (x^{2} - 2x + 1) = 2x - 2$$

62. 
$$\int_0^x f(t) dt = x \cos \pi x \implies f(x) = \frac{d}{dx} \int_0^x f(t) dt = \cos \pi x - \pi x \sin \pi x \implies f(4) = \cos \pi (4) - \pi (4) \sin \pi (4) = 1$$

63. 
$$f(x) = 2 - \int_{2}^{x+1} \frac{9}{1+t} dt \Rightarrow f'(x) = -\frac{9}{1+(x+1)} = \frac{-9}{x+2} \Rightarrow f'(1) = -3; f(1) = 2 - \int_{2}^{1+1} \frac{9}{1+t} dt = 2 - 0 = 2;$$

$$L(x) = -3(x-1) + f(1) = -3(x-1) + 2 = -3x + 5$$

64. 
$$g(x) = 3 + \int_{1}^{x^{2}} \sec(t - 1) dt \Rightarrow g'(x) = (\sec(x^{2} - 1))(2x) = 2x \sec(x^{2} - 1) \Rightarrow g'(-1) = 2(-1) \sec((-1)^{2} - 1)$$
  
 $= -2$ ;  $g(-1) = 3 + \int_{1}^{(-1)^{2}} \sec(t - 1) dt = 3 + \int_{1}^{1} \sec(t - 1) dt = 3 + 0 = 3$ ;  $L(x) = -2(x - (-1)) + g(-1)$   
 $= -2(x + 1) + 3 = -2x + 1$ 

- 65. (a) True: since f is continuous, g is differentiable by Part 1 of the Fundamental Theorem of Calculus.
  - (b) True: g is continuous because it is differentiable.
  - (c) True, since g'(1) = f(1) = 0.
  - (d) False, since g''(1) = f'(1) > 0.
  - (e) True, since g'(1) = 0 and g''(1) = f'(1) > 0.
  - (f) False: g''(x) = f'(x) > 0, so g'' never changes sign.
  - (g) True, since g'(1) = f(1) = 0 and g'(x) = f(x) is an increasing function of x (because f'(x) > 0).
- 66. Let  $a = x_0 < x_1 < x_2 \cdots < x_n = b$  be any partition of [a, b] and let F be any antiderivative of f.

$$\begin{aligned} &(a) \quad \sum_{i=1}^{n} \big[ F(x_i) - F(x_{i-1}) \big] \\ &= \big[ F(x_1) - F(x_0) \big] + \big[ F(x_2) - F(x_1) \big] + \big[ F(x_3) - F(x_2) \big] + \dots + \big[ F(x_{n-1}) - F(x_{n-2}) \big] + \big[ F(x_n) - F(x_{n-1}) \big] \\ &= -F(x_0) + F(x_1) - F(x_1) + F(x_2) - F(x_2) + \dots + F(x_{n-1}) - F(x_{n-1}) + F(x_n) = F(x_n) - F(x_0) = F(b) - F(a) \end{aligned}$$

(b) Since F is any antiderivative of f on  $[a,b] \Rightarrow F$  is differentiable on  $[a,b] \Rightarrow F$  is continuous on [a,b]. Consider any subinterval  $[x_{i-1},x_i]$  in [a,b], then by the Mean Value Theorem there is at least one number  $c_i$  in  $(x_{i-1},x_i)$  such that

$$\begin{split} \left[ F(x_i) - F(x_{i-1}) \right] &= F'(c_i)(x_i - x_{i-1}) = f(c_i)(x_i - x_{i-1}) = f(c_i)\Delta x_i. \text{ Thus } F(b) - F(a) = \sum_{i=1}^n \bigl[ F(x_i) - F(x_{i-1}) \bigr] \\ &= \sum_{i=1}^n f(c_i)\Delta x_i. \end{split}$$

(c) Taking the limit of 
$$F(b) - F(a) = \sum_{i=1}^n f(c_i) \Delta x_i$$
 we obtain  $\lim_{\|P\| \to 0} (F(b) - F(a)) = \lim_{\|P\| \to 0} \left( \sum_{i=1}^n f(c_i) \Delta x_i \right)$   $\Rightarrow F(b) - F(a) = \int_a^b f(x) \, dx$ 

67-70. Example CAS commands:

Maple:

```
with( plots );
f := x -> x^3-4*x^2+3*x;
a := 0:
b := 4;
F := \text{unapply}(\text{int}(f(t),t=a..x), x);
                                                    # (a)
p1 := plot([f(x),F(x)], x=a..b, legend=["y = f(x)","y = F(x)"], title="#67(a) (Section 5.4)"):
p1;
dF := D(F);
                                                      # (b)
q1 := solve(dF(x)=0, x);
pts1 := [ seq([x,f(x)], x=remove(has,evalf([q1]),I) ) ];
p2 := plot(pts1, style=point, color=blue, symbolsize=18, symbol=diamond, legend="(x,f(x)) where F'(x)=0"):
display([p1,p2], title="81(b) (Section 5.4)");
incr := solve( dF(x)>0, x );
                                                     # (c)
decr := solve(dF(x)<0, x);
df := D(f);
p3 := plot([df(x),F(x)], x=a..b, legend=["y = f'(x)","y = F(x)"], title="#67(d) (Section 5.4)"):
q2 := solve(df(x)=0, x);
```

```
pts2 := [seq([x,F(x)], x=remove(has,evalf([q2]),I))]; \\ p4 := plot([pts2], style=point, color=blue, symbolsize=18, symbol=diamond, legend="(x,f(x)) where f'(x)=0"): \\ display([p3,p4], title="81(d) (Section 5.4)"); \\
```

71-74. Example CAS commands:

```
Maple:
```

```
a := 1;

u := x -> x^2;

f := x -> sqrt(1-x^2);

F := unapply( int( f(t), t=a..u(x) ), x );

dF := D(F); # (b)

cp := solve( dF(x)=0, x );

solve( dF(x)>0, x );

solve( dF(x)<0, x );

d2F := D(dF); # (c)

solve( d2F(x)=0, x );

plot( F(x), x=-1..1, title="#71(d) (Section 5.4)" );
```

75. Example CAS commands:

#### Maple:

```
f := `f';
q1 := Diff( Int( f(t), t=a..u(x) ), x );
d1 := value( q1 );
```

76. Example CAS commands:

### Maple:

```
f := `f`;
q2 := Diff( Int( f(t), t=a..u(x) ), x,x );
value( q2 );
```

#### 67-76. Example CAS commands:

Mathematica: (assigned function and values for a, and b may vary)

For transcendental functions the FindRoot is needed instead of the Solve command.

The Map command executes FindRoot over a set of initial guesses

Initial guesses will vary as the functions vary.

```
Clear[x, f, F]
\{a, b\} = \{0, 2\pi\}; f[x_{-}] = Sin[2x] Cos[x/3]
F[x_{-}] = Integrate[f[t], \{t, a, x\}]
Plot[\{f[x], F[x]\}, \{x, a, b\}]
x/.Map[FindRoot[F'[x]==0, \{x, \#\}] \&, \{2, 3, 5, 6\}]
x/.Map[FindRoot[f'[x]==0, \{x, \#\}] \&, \{1, 2, 4, 5, 6\}]
Slightly alter above commands for 75 - 80.
Clear[x, f, F, u]
a=0; f[x_{-}] = x^{2} - 2x - 3
u[x_{-}] = 1 - x^{2}
F[x_{-}] = Integrate[f[t], \{t, a, u(x)\}]
x/.Map[FindRoot[F'[x]==0, \{x, \#\}] \&, \{1, 2, 3, 4\}]
x/.Map[FindRoot[F'[x]==0, \{x, \#\}] \&, \{1, 2, 3, 4\}]
```

After determining an appropriate value for b, the following can be entered b = 4; Plot[ $\{F[x], \{x, a, b\}$ ]

#### 5.5 INDEFINTE INTEGRALS AND THE SUBSTITUTION RULE

1. Let 
$$u = 2x + 4 \Rightarrow du = 2 dx \Rightarrow \frac{1}{2} du = dx$$

$$\int 2(2x + 4)^5 dx = \int 2u^5 \frac{1}{2} du = \int u^5 du = \frac{1}{6} u^6 + C = \frac{1}{6} (2x + 4)^6 + C$$

$$\begin{array}{l} \text{2. Let } u = 7x - 1 \Rightarrow du = 7 \ dx \ \Rightarrow \ \frac{1}{7} \ du = dx \\ \ \, \int 7 \sqrt{7x - 1} \ dx = \int 7 (7x - 1)^{1/2} \ dx = \int \ 7 u^{1/2} \ \frac{1}{7} du = \int \ u^{1/2} \ du = \frac{2}{3} \ u^{3/2} + C = \frac{2}{3} \ (7x - 1)^{3/2} + C \end{array}$$

3. Let 
$$u = x^2 + 5 \Rightarrow du = 2x dx \Rightarrow \frac{1}{2} du = x dx$$

$$\int 2x (x^2 + 5)^{-4} dx = \int 2 u^{-4} \frac{1}{2} du = \int u^{-4} du = -\frac{1}{3} u^{-3} + C = -\frac{1}{3} (x^2 + 5)^{-3} + C$$

$$\begin{array}{l} \text{4. Let } u = x^4 + 1 \Rightarrow du = 4x^3 \; dx \; \Rightarrow \; \frac{1}{4} \; du = x^3 \; dx \\ \int \frac{4x^3}{(x^4 + 1)^2} dx = \int 4x^3 {(x^4 + 1)}^{-2} dx = \int 4 \, u^{-2} \; \frac{1}{4} du = \int u^{-2} \; du = - \, u^{-1} + C = \frac{-1}{x^4 + 1} + C \end{array}$$

5. Let 
$$u = 3x^2 + 4x \Rightarrow du = (6x + 4)dx = 2(3x + 2) dx \Rightarrow \frac{1}{2} du = (3x + 2) dx$$
  
$$\int (3x + 2)(3x^2 + 4x)^4 dx = \int u^4 \frac{1}{2} du = \frac{1}{2} \int u^4 du = \frac{1}{10} u^5 + C = \frac{1}{10} \left( 3x^2 + 4x \right)^5 + C$$

$$\begin{aligned} \text{6. Let } u &= 1 + \sqrt{x} \Rightarrow du = \frac{1}{2\sqrt{x}} \, dx \, \Rightarrow \, 2 \, du = \frac{1}{\sqrt{x}} \, dx \\ & \int \frac{\left(1 + \sqrt{x}\right)^{1/3}}{\sqrt{x}} dx = \int \left(1 + \sqrt{x}\right)^{1/3} \frac{1}{\sqrt{x}} \, dx = \int u^{1/3} \, 2 \, du = 2 \int u^{1/3} \, du = 2 \cdot \frac{3}{4} \, u^{4/3} + C = \frac{3}{2} \, \left(1 + \sqrt{x}\right)^{4/3} + C \end{aligned}$$

7. Let 
$$u = 3x \Rightarrow du = 3 dx \Rightarrow \frac{1}{3} du = dx$$

$$\int \sin 3x dx = \int \frac{1}{3} \sin u du = -\frac{1}{3} \cos u + C = -\frac{1}{3} \cos 3x + C$$

8. Let 
$$u=2x^2 \Rightarrow du=4x\ dx \Rightarrow \frac{1}{4}\ du=x\ dx$$
 
$$\int x \sin{(2x^2)}\ dx = \int \frac{1}{4}\sin{u}\ du = -\frac{1}{4}\cos{u} + C = -\frac{1}{4}\cos{2x^2} + C$$

9. Let 
$$u=2t \Rightarrow du=2$$
 dt  $\Rightarrow \frac{1}{2}$  du = dt 
$$\int \sec 2t \tan 2t \ dt = \int \frac{1}{2} \sec u \tan u \ du = \frac{1}{2} \sec u + C = \frac{1}{2} \sec 2t + C$$

10. Let 
$$u = 1 - \cos \frac{t}{2} \Rightarrow du = \frac{1}{2} \sin \frac{t}{2} dt \Rightarrow 2 du = \sin \frac{t}{2} dt$$

$$\int \left(1 - \cos \frac{t}{2}\right)^2 \left(\sin \frac{t}{2}\right) dt = \int 2u^2 du = \frac{2}{3} u^3 + C = \frac{2}{3} \left(1 - \cos \frac{t}{2}\right)^3 + C$$

11. Let 
$$u = 1 - r^3 \Rightarrow du = -3r^2 dr \Rightarrow -3 du = 9r^2 dr$$

$$\int \frac{9r^2 dr}{\sqrt{1 - r^3}} = \int -3u^{-1/2} du = -3(2)u^{1/2} + C = -6(1 - r^3)^{1/2} + C$$

12. Let 
$$u = y^4 + 4y^2 + 1 \Rightarrow du = (4y^3 + 8y) dy \Rightarrow 3 du = 12 (y^3 + 2y) dy$$

$$\int 12 (y^4 + 4y^2 + 1)^2 (y^3 + 2y) dy = \int 3u^2 du = u^3 + C = (y^4 + 4y^2 + 1)^3 + C$$

13. Let 
$$u = x^{3/2} - 1 \Rightarrow du = \frac{3}{2} x^{1/2} dx \Rightarrow \frac{2}{3} du = \sqrt{x} dx$$

$$\int \sqrt{x} \sin^2 \left( x^{3/2} - 1 \right) dx = \int \frac{2}{3} \sin^2 u \, du = \frac{2}{3} \left( \frac{u}{2} - \frac{1}{4} \sin 2u \right) + C = \frac{1}{3} \left( x^{3/2} - 1 \right) - \frac{1}{6} \sin \left( 2x^{3/2} - 2 \right) + C$$

14. Let 
$$u = -\frac{1}{x} \Rightarrow du = \frac{1}{x^2} dx$$

$$\int \frac{1}{x^2} \cos^2\left(\frac{1}{x}\right) dx = \int \cos^2\left(-u\right) du = \int \cos^2\left(u\right) du = \left(\frac{u}{2} + \frac{1}{4}\sin 2u\right) + C = -\frac{1}{2x} + \frac{1}{4}\sin\left(-\frac{2}{x}\right) + C$$

$$= -\frac{1}{2x} - \frac{1}{4}\sin\left(\frac{2}{x}\right) + C$$

15. (a) Let 
$$u = \cot 2\theta \Rightarrow du = -2\csc^2 2\theta \ d\theta \Rightarrow -\frac{1}{2} \ du = \csc^2 2\theta \ d\theta$$

$$\int \csc^2 2\theta \cot 2\theta \ d\theta = -\int \frac{1}{2} u \ du = -\frac{1}{2} \left(\frac{u^2}{2}\right) + C = -\frac{u^2}{4} + C = -\frac{1}{4} \cot^2 2\theta + C$$

(b) Let 
$$u = \csc 2\theta \Rightarrow du = -2 \csc 2\theta \cot 2\theta d\theta \Rightarrow -\frac{1}{2} du = \csc 2\theta \cot 2\theta d\theta$$

$$\int \csc^2 2\theta \cot 2\theta d\theta = \int -\frac{1}{2} u du = -\frac{1}{2} \left(\frac{u^2}{2}\right) + C = -\frac{u^2}{4} + C = -\frac{1}{4} \csc^2 2\theta + C$$

16. (a) Let 
$$u = 5x + 8 \Rightarrow du = 5 dx \Rightarrow \frac{1}{5} du = dx$$

$$\int \frac{dx}{\sqrt{5x+8}} = \int \frac{1}{5} \left(\frac{1}{\sqrt{u}}\right) du = \frac{1}{5} \int u^{-1/2} du = \frac{1}{5} \left(2u^{1/2}\right) + C = \frac{2}{5} u^{1/2} + C = \frac{2}{5} \sqrt{5x+8} + C$$

(b) Let 
$$u = \sqrt{5x + 8} \implies du = \frac{1}{2} (5x + 8)^{-1/2} (5) dx \implies \frac{2}{5} du = \frac{dx}{\sqrt{5x + 8}}$$

$$\int \frac{dx}{\sqrt{5x + 8}} = \int \frac{2}{5} du = \frac{2}{5} u + C = \frac{2}{5} \sqrt{5x + 8} + C$$

17. Let 
$$u = 3 - 2s \Rightarrow du = -2 ds \Rightarrow -\frac{1}{2} du = ds$$
 
$$\int \sqrt{3 - 2s} \, ds = \int \sqrt{u} \left( -\frac{1}{2} \, du \right) = -\frac{1}{2} \int u^{1/2} \, du = \left( -\frac{1}{2} \right) \left( \frac{2}{3} \, u^{3/2} \right) + C = -\frac{1}{3} \left( 3 - 2s \right)^{3/2} + C$$

18. Let 
$$u = 5s + 4 \Rightarrow du = 5 ds \Rightarrow \frac{1}{5} du = ds$$

$$\int \frac{1}{\sqrt{5s+4}} ds = \int \frac{1}{\sqrt{u}} \left(\frac{1}{5} du\right) = \frac{1}{5} \int u^{-1/2} du = \left(\frac{1}{5}\right) \left(2u^{1/2}\right) + C = \frac{2}{5} \sqrt{5s+4} + C$$

$$\begin{array}{l} \text{19. Let } u = 1 - \theta^2 \ \Rightarrow \ du = -2\theta \ d\theta \ \Rightarrow \ -\frac{1}{2} \ du = \theta \ d\theta \\ \int \theta \sqrt[4]{1 - \theta^2} \ d\theta = \int \sqrt[4]{u} \left( -\frac{1}{2} \ du \right) = -\frac{1}{2} \int u^{1/4} \ du = \left( -\frac{1}{2} \right) \left( \frac{4}{5} \, u^{5/4} \right) + C = -\frac{2}{5} \left( 1 - \theta^2 \right)^{5/4} + C \end{array}$$

$$\begin{array}{l} 20. \ \ \text{Let} \ u = 7 - 3y^2 \ \Rightarrow \ du = -6y \ dy \ \Rightarrow \ -\frac{1}{2} \ du = 3y \ dy \\ \int 3y \sqrt{7 - 3y^2} \ dy = \int \sqrt{u} \left( -\frac{1}{2} \ du \right) = -\frac{1}{2} \int u^{1/2} \ du = \left( -\frac{1}{2} \right) \left( \frac{2}{3} \ u^{3/2} \right) + C = -\frac{1}{3} \left( 7 - 3y^2 \right)^{3/2} + C \end{array}$$

21. Let 
$$u = 1 + \sqrt{x} \implies du = \frac{1}{2\sqrt{x}} dx \implies 2 du = \frac{1}{\sqrt{x}} dx$$

$$\int \frac{1}{\sqrt{x} (1 + \sqrt{x})^2} dx = \int \frac{2 du}{u^2} = -\frac{2}{u} + C = \frac{-2}{1 + \sqrt{x}} + C$$

22. Let 
$$u = 3z + 4 \Rightarrow du = 3 dz \Rightarrow \frac{1}{3} du = dz$$

$$\int \cos(3z + 4) dz = \int (\cos u) \left(\frac{1}{3} du\right) = \frac{1}{3} \int \cos u du = \frac{1}{3} \sin u + C = \frac{1}{3} \sin(3z + 4) + C$$

23. Let 
$$u = 3x + 2 \Rightarrow du = 3 dx \Rightarrow \frac{1}{3} du = dx$$

$$\int \sec^2 (3x + 2) dx = \int (\sec^2 u) (\frac{1}{3} du) = \frac{1}{3} \int \sec^2 u du = \frac{1}{3} \tan u + C = \frac{1}{3} \tan (3x + 2) + C$$

24. Let 
$$u = \tan x \Rightarrow du = \sec^2 x dx$$
 
$$\int \tan^2 x \sec^2 x dx = \int u^2 du = \frac{1}{3} u^3 + C = \frac{1}{3} \tan^3 x + C$$

25. Let 
$$u = \sin\left(\frac{x}{3}\right) \Rightarrow du = \frac{1}{3}\cos\left(\frac{x}{3}\right) dx \Rightarrow 3 du = \cos\left(\frac{x}{3}\right) dx$$

$$\int \sin^5\left(\frac{x}{3}\right)\cos\left(\frac{x}{3}\right) dx = \int u^5 (3 du) = 3\left(\frac{1}{6}u^6\right) + C = \frac{1}{2}\sin^6\left(\frac{x}{3}\right) + C$$

26. Let 
$$u = \tan\left(\frac{x}{2}\right) \Rightarrow du = \frac{1}{2} \sec^2\left(\frac{x}{2}\right) dx \Rightarrow 2 du = \sec^2\left(\frac{x}{2}\right) dx$$

$$\int \tan^7\left(\frac{x}{2}\right) \sec^2\left(\frac{x}{2}\right) dx = \int u^7 (2 du) = 2\left(\frac{1}{8}u^8\right) + C = \frac{1}{4} \tan^8\left(\frac{x}{2}\right) + C$$

$$\begin{array}{l} \text{27. Let } u = \frac{r^3}{18} - 1 \ \Rightarrow \ du = \frac{r^2}{6} \ dr \ \Rightarrow \ 6 \ du = r^2 \ dr \\ \int r^2 \left(\frac{r^3}{18} - 1\right)^5 \ dr = \int u^5 \left(6 \ du\right) = 6 \int u^5 \ du = 6 \left(\frac{u^6}{6}\right) + C = \left(\frac{r^3}{18} - 1\right)^6 + C \end{array}$$

$$\begin{array}{l} \text{28. Let } u = 7 - \frac{r^5}{10} \ \Rightarrow \ du = -\,\frac{1}{2}\,r^4\,dr \ \Rightarrow \ -2\,du = r^4\,dr \\ \int r^4\left(7 - \frac{r^5}{10}\right)^3\,dr = \int u^3\left(-2\,du\right) = -2\int u^3\,du = -2\left(\frac{u^4}{4}\right) + C = -\,\frac{1}{2}\left(7 - \frac{r^5}{10}\right)^4 + C \end{array}$$

$$\begin{array}{l} \text{29. Let } u = x^{3/2} + 1 \ \Rightarrow \ du = \frac{3}{2} \, x^{1/2} \, dx \ \Rightarrow \ \frac{2}{3} \, du = x^{1/2} \, dx \\ \int x^{1/2} \, \sin \left( x^{3/2} + 1 \right) \, dx = \int \left( \sin u \right) \left( \frac{2}{3} \, du \right) = \frac{2}{3} \int \sin u \, du = \frac{2}{3} \left( -\cos u \right) + C = -\frac{2}{3} \cos \left( x^{3/2} + 1 \right) + C \end{array}$$

30. Let 
$$u = \csc\left(\frac{v-\pi}{2}\right) \Rightarrow du = -\frac{1}{2}\csc\left(\frac{v-\pi}{2}\right)\cot\left(\frac{v-\pi}{2}\right)dv \Rightarrow -2 du = \csc\left(\frac{v-\pi}{2}\right)\cot\left(\frac{v-\pi}{2}\right)dv$$

$$\int \csc\left(\frac{v-\pi}{2}\right)\cot\left(\frac{v-\pi}{2}\right)dv = \int -2 du = -2u + C = -2\csc\left(\frac{v-\pi}{2}\right) + C$$

31. Let 
$$u = \cos{(2t+1)} \Rightarrow du = -2\sin{(2t+1)} dt \Rightarrow -\frac{1}{2} du = \sin{(2t+1)} dt$$

$$\int \frac{\sin{(2t+1)}}{\cos^2{(2t+1)}} dt = \int -\frac{1}{2} \frac{du}{u^2} = \frac{1}{2u} + C = \frac{1}{2\cos{(2t+1)}} + C$$

32. Let 
$$u=\sec z \Rightarrow du=\sec z \tan z \, dz$$
 
$$\int \frac{\sec z \tan z}{\sqrt{\sec z}} \, dz = \int \frac{1}{\sqrt{u}} \, du = \int u^{-1/2} \, du = 2u^{1/2} + C = 2\sqrt{\sec z} + C$$

33. Let 
$$u = \frac{1}{t} - 1 = t^{-1} - 1 \Rightarrow du = -t^{-2} dt \Rightarrow -du = \frac{1}{t^2} dt$$

$$\int \frac{1}{t^2} \cos\left(\frac{1}{t} - 1\right) dt = \int (\cos u)(-du) = -\int \cos u \, du = -\sin u + C = -\sin\left(\frac{1}{t} - 1\right) + C$$

34. Let 
$$u = \sqrt{t} + 3 = t^{1/2} + 3 \Rightarrow du = \frac{1}{2}t^{-1/2} dt \Rightarrow 2 du = \frac{1}{\sqrt{t}} dt$$

$$\int \frac{1}{\sqrt{t}} \cos\left(\sqrt{t} + 3\right) dt = \int (\cos u)(2 du) = 2 \int \cos u du = 2 \sin u + C = 2 \sin\left(\sqrt{t} + 3\right) + C$$

35. Let 
$$u = \sin \frac{1}{\theta} \Rightarrow du = (\cos \frac{1}{\theta}) \left( -\frac{1}{\theta^2} \right) d\theta \Rightarrow -du = \frac{1}{\theta^2} \cos \frac{1}{\theta} d\theta$$

$$\int \frac{1}{\theta^2} \sin \frac{1}{\theta} \cos \frac{1}{\theta} d\theta = \int -u du = -\frac{1}{2} u^2 + C = -\frac{1}{2} \sin^2 \frac{1}{\theta} + C$$

36. Let 
$$u = \csc\sqrt{\theta} \Rightarrow du = \left(-\csc\sqrt{\theta}\cot\sqrt{\theta}\right)\left(\frac{1}{2\sqrt{\theta}}\right)d\theta \Rightarrow -2\ du = \frac{1}{\sqrt{\theta}}\cot\sqrt{\theta}\csc\sqrt{\theta}\ d\theta$$

$$\int \frac{\cos\sqrt{\theta}}{\sqrt{\theta}\sin^2\sqrt{\theta}}\ d\theta = \int \frac{1}{\sqrt{\theta}}\cot\sqrt{\theta}\csc\sqrt{\theta}\ d\theta = \int -2\ du = -2u + C = -2\csc\sqrt{\theta} + C = -\frac{2}{\sin\sqrt{\theta}} + C$$

37. Let 
$$u = 1 + t^4 \Rightarrow du = 4t^3 dt \Rightarrow \frac{1}{4} du = t^3 dt$$

$$\int t^3 (1 + t^4)^3 dt = \int u^3 (\frac{1}{4} du) = \frac{1}{4} (\frac{1}{4} u^4) + C = \frac{1}{16} (1 + t^4)^4 + C$$

38. Let 
$$u = 1 - \frac{1}{x} \Rightarrow du = \frac{1}{x^2} dx$$

$$\int \sqrt{\frac{x-1}{x^5}} dx = \int \frac{1}{x^2} \sqrt{\frac{x-1}{x}} dx = \int \frac{1}{x^2} \sqrt{1 - \frac{1}{x}} dx = \int \sqrt{u} du = \int u^{1/2} du = \frac{2}{3} u^{3/2} + C = \frac{2}{3} \left(1 - \frac{1}{x}\right)^{3/2} + C$$

39. Let 
$$u = 2 - \frac{1}{x} \Rightarrow du = \frac{1}{x^2} dx$$

$$\int \frac{1}{x^2} \sqrt{2 - \frac{1}{x}} dx = \int \sqrt{u} du = \int u^{1/2} du = \frac{2}{3} u^{3/2} + C = \frac{2}{3} \left(2 - \frac{1}{x}\right)^{3/2} + C$$

$$\begin{array}{l} 40. \ \ Let \ u = 1 - \frac{1}{x^2} \ \Rightarrow \ du = \frac{2}{x^3} \ dx \\ \int \frac{1}{x^3} \sqrt{\frac{x^2 - 1}{x^2}} \ dx = \int \frac{1}{x^3} \sqrt{1 - \frac{1}{x^2}} \ dx = \int \sqrt{u} \ \frac{1}{2} \ du = \frac{1}{2} \int u^{1/2} \ du = \frac{1}{3} \ u^{3/2} + C = \frac{1}{3} \ \left(1 - \frac{1}{x^2}\right)^{3/2} + C \end{array}$$

$$\begin{array}{l} 41. \ \ \text{Let} \ u = 1 - \frac{3}{x^3} \ \Rightarrow \ du = \frac{9}{x^4} \ dx \ \Rightarrow \frac{1}{9} \ du = \frac{1}{x^4} \ dx \\ \int \sqrt{\frac{x^3 - 3}{x^{11}}} \ dx = \int \frac{1}{x^4} \sqrt{\frac{x^3 - 3}{x^3}} \ dx = \int \frac{1}{x^4} \sqrt{1 - \frac{3}{x^3}} \ dx = \int \sqrt{u} \ \frac{1}{9} \ du = \frac{1}{9} \int u^{1/2} \ du = \frac{2}{27} \ u^{3/2} + C = \frac{2}{27} \left(1 - \frac{3}{x^3}\right)^{3/2} + C \end{aligned}$$

42. Let 
$$u = x^3 - 1 \Rightarrow du = 3x^2 dx \Rightarrow \frac{1}{3} du = x^2 dx$$

$$\int \sqrt{\frac{x^4}{x^3 - 1}} dx = \int \frac{x^2}{\sqrt{x^3 - 1}} dx = \int \frac{1}{\sqrt{u}} \frac{1}{3} du = \frac{1}{3} \int u^{-1/2} du = \frac{2}{3} u^{1/2} + C = \frac{2}{3} (x^3 - 1)^{3/2} + C$$

43. Let 
$$u = x - 1$$
. Then  $du = dx$  and  $x = u + 1$ . Thus  $\int x(x-1)^{10} dx = \int (u+1)u^{10} du = \int (u^{11} + u^{10}) du = \frac{1}{12}u^{12} + \frac{1}{11}u^{11} + C = \frac{1}{12}(x-1)^{12} + \frac{1}{11}(x-1)^{11} + C$ 

44. Let 
$$u = 4 - x$$
. Then  $du = -1 dx$  and  $(-1) du = dx$  and  $x = 4 - u$ . Thus  $\int x \sqrt{4 - x} dx = \int (4 - u) \sqrt{u} (-1) du = \int (4 - u) \left( -u^{1/2} \right) du = \int \left( u^{3/2} - 4u^{1/2} \right) du = \frac{2}{5} u^{5/2} - \frac{8}{3} u^{3/2} + C = \frac{2}{5} (4 - x)^{5/2} - \frac{8}{3} (4 - x)^{3/2} + C$ 

45. Let 
$$u = 1 - x$$
. Then  $du = -1 dx$  and  $(-1) du = dx$  and  $x = 1 - u$ . Thus  $\int (x + 1)^2 (1 - x)^5 dx$ 

$$= \int (2 - u)^2 u^5 (-1) du = \int (-u^7 + 4u^6 - 4u^5) du = -\frac{1}{8} u^8 + \frac{4}{7} u^7 - \frac{2}{3} u^6 + C$$

$$= -\frac{1}{8} (1 - x)^8 + \frac{4}{7} (1 - x)^7 - \frac{2}{3} (1 - x)^6 + C$$

46. Let 
$$u = x - 5$$
. Then  $du = dx$  and  $x = u + 5$ . Thus  $\int (x + 5)(x - 5)^{1/3} dx = \int (u + 10)u^{1/3} du = \int \left(u^{4/3} + 10u^{1/3}\right) du = \frac{3}{7}u^{7/3} + \frac{15}{2}u^{4/3} + C = \frac{3}{7}(x - 5)^{7/3} + \frac{15}{2}(x - 5)^{4/3} + C$ 

$$\begin{aligned} &\text{47. Let } u = x^2 + 1. \text{ Then } du = 2x \, dx \text{ and } \tfrac{1}{2} du = x \, dx \text{ and } x^2 = u - 1. \text{ Thus } \int x^3 \sqrt{x^2 + 1} \, dx = \int (u - 1) \tfrac{1}{2} \sqrt{u} \, du \\ &= \tfrac{1}{2} \int \left( u^{3/2} - u^{1/2} \right) \! du = \tfrac{1}{2} \left[ \tfrac{2}{5} u^{5/2} - \tfrac{2}{3} u^{3/2} \right] + C = \tfrac{1}{5} u^{5/2} - \tfrac{1}{3} u^{3/2} + C = \tfrac{1}{5} (x^2 + 1)^{5/2} - \tfrac{1}{3} (x^2 + 1)^{3/2} + C \end{aligned}$$

48. Let 
$$\mathbf{u} = \mathbf{x}^3 + 1 \Rightarrow d\mathbf{u} = 3\mathbf{x}^2 d\mathbf{x}$$
 and  $\mathbf{x}^3 = \mathbf{u} - 1$ . So  $\int 3x^5 \sqrt{\mathbf{x}^3 + 1} \, d\mathbf{x} = \int (\mathbf{u} - 1) \sqrt{\mathbf{u}} \, d\mathbf{u} = \int \left(\mathbf{u}^{3/2} - \mathbf{u}^{1/2}\right) d\mathbf{u} = \frac{2}{5} \mathbf{u}^{5/2} - \frac{2}{3} \mathbf{u}^{3/2} + \mathbf{C} = \frac{2}{5} (\mathbf{x}^3 + 1)^{5/2} - \frac{2}{3} (\mathbf{x}^3 + 1)^{3/2} + \mathbf{C}$ 

49. Let 
$$u = x^2 - 4 \Rightarrow du = 2x \, dx$$
 and  $\frac{1}{2} \, du = x \, dx$ . Thus  $\int \frac{x}{(x^2 - 4)^3} \, dx = \int (x^2 - 4)^{-3} x \, dx = \int u^{-3} \frac{1}{2} \, du = \frac{1}{2} \int u^{-3} \, du =$ 

50. Let 
$$u = x - 4 \Rightarrow du = dx$$
 and  $x = u + 4$ . Thus  $\int \frac{x}{(x - 4)^3} dx = \int (x - 4)^{-3} x dx = \int u^{-3} (u + 4) du = \int (u^{-2} + 4u^{-3}) du = -u^{-1} - 2u^{-2} + C = -(x - 4)^{-1} - 2(x - 4)^{-2} + C$ 

- 51. (a) Let  $u = \tan x \Rightarrow du = \sec^2 x \, dx$ ;  $v = u^3 \Rightarrow dv = 3u^2 \, du \Rightarrow 6 \, dv = 18u^2 \, du$ ;  $w = 2 + v \Rightarrow dw = dv$   $\int \frac{18 \tan^2 x \sec^2 x}{(2 + \tan^3 x)^2} \, dx = \int \frac{18u^2}{(2 + u^3)^2} \, du = \int \frac{6 \, dv}{(2 + v)^2} = \int \frac{6 \, dw}{w^2} = 6 \int w^{-2} \, dw = -6w^{-1} + C = -\frac{6}{2 + v} + C$   $= -\frac{6}{2 + u^3} + C = -\frac{6}{2 + \tan^3 x} + C$ 
  - (b) Let  $u = \tan^3 x \implies du = 3 \tan^2 x \sec^2 x dx \implies 6 du = 18 \tan^2 x \sec^2 x dx; v = 2 + u \implies dv = du$   $\int \frac{18 \tan^2 x \sec^2 x}{(2 + \tan^3 x)^2} dx = \int \frac{6 du}{(2 + u)^2} = \int \frac{6 dv}{v^2} = -\frac{6}{v} + C = -\frac{6}{2 + u} + C = -\frac{6}{2 + \tan^3 x} + C$
  - (c) Let  $u = 2 + \tan^3 x \implies du = 3 \tan^2 x \sec^2 x dx \implies 6 du = 18 \tan^2 x \sec^2 x dx$   $\int \frac{18 \tan^2 x \sec^2 x}{(2 + \tan^3 x)^2} dx = \int \frac{6 du}{u^2} = -\frac{6}{u} + C = -\frac{6}{2 + \tan^3 x} + C$
- 52. (a) Let  $u = x 1 \Rightarrow du = dx$ ;  $v = \sin u \Rightarrow dv = \cos u \, du$ ;  $w = 1 + v^2 \Rightarrow dw = 2v \, dv \Rightarrow \frac{1}{2} \, dw = v \, dv$   $\int \sqrt{1 + \sin^2(x 1)} \sin(x 1) \cos(x 1) \, dx = \int \sqrt{1 + \sin^2 u} \sin u \cos u \, du = \int v \sqrt{1 + v^2} \, dv$   $= \int \frac{1}{2} \sqrt{w} \, dw = \frac{1}{3} w^{3/2} + C = \frac{1}{3} (1 + v^2)^{3/2} + C = \frac{1}{3} (1 + \sin^2 u)^{3/2} + C = \frac{1}{3} (1 + \sin^2 u)^{3/2} + C$ 
  - (b) Let  $u = \sin(x 1) \Rightarrow du = \cos(x 1) dx$ ;  $v = 1 + u^2 \Rightarrow dv = 2u du \Rightarrow \frac{1}{2} dv = u du$   $\int \sqrt{1 + \sin^2(x 1)} \sin(x 1) \cos(x 1) dx = \int u \sqrt{1 + u^2} du = \int \frac{1}{2} \sqrt{v} dv = \int \frac{1}{2} v^{1/2} dv$   $= \left(\frac{1}{2} \left(\frac{2}{3}\right) v^{3/2}\right) + C = \frac{1}{3} v^{3/2} + C = \frac{1}{3} (1 + u^2)^{3/2} + C = \frac{1}{3} (1 + \sin^2(x 1))^{3/2} + C$
  - (c) Let  $u = 1 + \sin^2(x 1) \Rightarrow du = 2\sin(x 1)\cos(x 1) dx \Rightarrow \frac{1}{2} du = \sin(x 1)\cos(x 1) dx$   $\int \sqrt{1 + \sin^2(x 1)}\sin(x 1)\cos(x 1) dx = \int \frac{1}{2} \sqrt{u} du = \int \frac{1}{2} u^{1/2} du = \frac{1}{2} \left(\frac{2}{3} u^{3/2}\right) + C$   $= \frac{1}{3} \left(1 + \sin^2(x 1)\right)^{3/2} + C$
- $53. \text{ Let } u = 3(2r-1)^2 + 6 \Rightarrow du = 6(2r-1)(2) \text{ d} r \Rightarrow \frac{1}{12} \text{ d} u = (2r-1) \text{ d} r; v = \sqrt{u} \Rightarrow dv = \frac{1}{2\sqrt{u}} \text{ d} u \Rightarrow \frac{1}{6} \text{ d} v = \frac{1}{12\sqrt{u}} \text{ d} u \\ \int \frac{(2r-1)\cos\sqrt{3(2r-1)^2+6}}{\sqrt{3(2r-1)^2+6}} \text{ d} r = \int \left(\frac{\cos\sqrt{u}}{\sqrt{u}}\right) \left(\frac{1}{12} \text{ d} u\right) = \int \left(\cos v\right) \left(\frac{1}{6} \text{ d} v\right) = \frac{1}{6} \sin v + C = \frac{1}{6} \sin \sqrt{u} + C \\ = \frac{1}{6} \sin \sqrt{3(2r-1)^2+6} + C$
- 54. Let  $u = \cos \sqrt{\theta} \Rightarrow du = \left(-\sin \sqrt{\theta}\right) \left(\frac{1}{2\sqrt{\theta}}\right) d\theta \Rightarrow -2 du = \frac{\sin \sqrt{\theta}}{\sqrt{\theta}} d\theta$   $\int \frac{\sin \sqrt{\theta}}{\sqrt{\theta \cos^3 \sqrt{\theta}}} d\theta = \int \frac{\sin \sqrt{\theta}}{\sqrt{\theta} \sqrt{\cos^3 \sqrt{\theta}}} d\theta = \int \frac{-2 du}{u^{3/2}} = -2 \int u^{-3/2} du = -2 \left(-2u^{-1/2}\right) + C = \frac{4}{\sqrt{u}} + C$   $= \frac{4}{\sqrt{\cos \sqrt{\theta}}} + C$
- 55. Let  $u = 3t^2 1 \Rightarrow du = 6t dt \Rightarrow 2 du = 12t dt$   $s = \int 12t (3t^2 1)^3 dt = \int u^3 (2 du) = 2 (\frac{1}{4} u^4) + C = \frac{1}{2} u^4 + C = \frac{1}{2} (3t^2 1)^4 + C;$   $s = 3 \text{ when } t = 1 \Rightarrow 3 = \frac{1}{2} (3 1)^4 + C \Rightarrow 3 = 8 + C \Rightarrow C = -5 \Rightarrow s = \frac{1}{2} (3t^2 1)^4 5$
- 56. Let  $u = x^2 + 8 \Rightarrow du = 2x \ dx \Rightarrow 2 \ du = 4x \ dx$   $y = \int 4x \left(x^2 + 8\right)^{-1/3} dx = \int u^{-1/3} \left(2 \ du\right) = 2 \left(\frac{3}{2} u^{2/3}\right) + C = 3 u^{2/3} + C = 3 \left(x^2 + 8\right)^{2/3} + C;$   $y = 0 \ \text{when} \ x = 0 \ \Rightarrow \ 0 = 3(8)^{2/3} + C \ \Rightarrow \ C = -12 \ \Rightarrow \ y = 3 \left(x^2 + 8\right)^{2/3} 12$
- 57. Let  $u = t + \frac{\pi}{12} \Rightarrow du = dt$   $s = \int 8 \sin^2 \left( t + \frac{\pi}{12} \right) dt = \int 8 \sin^2 u \, du = 8 \left( \frac{u}{2} \frac{1}{4} \sin 2u \right) + C = 4 \left( t + \frac{\pi}{12} \right) 2 \sin \left( 2t + \frac{\pi}{6} \right) + C;$   $s = 8 \text{ when } t = 0 \Rightarrow 8 = 4 \left( \frac{\pi}{12} \right) 2 \sin \left( \frac{\pi}{6} \right) + C \Rightarrow C = 8 \frac{\pi}{3} + 1 = 9 \frac{\pi}{3}$   $\Rightarrow s = 4 \left( t + \frac{\pi}{12} \right) 2 \sin \left( 2t + \frac{\pi}{6} \right) + 9 \frac{\pi}{3} = 4t 2 \sin \left( 2t + \frac{\pi}{6} \right) + 9$

58. Let 
$$u = \frac{\pi}{4} - \theta \Rightarrow -du = d\theta$$

$$r = \int 3\cos^2\left(\frac{\pi}{4} - \theta\right) d\theta = -\int 3\cos^2u \ du = -3\left(\frac{u}{2} + \frac{1}{4}\sin 2u\right) + C = -\frac{3}{2}\left(\frac{\pi}{4} - \theta\right) - \frac{3}{4}\sin\left(\frac{\pi}{2} - 2\theta\right) + C;$$

$$r = \frac{\pi}{8} \text{ when } \theta = 0 \Rightarrow \frac{\pi}{8} = -\frac{3\pi}{8} - \frac{3}{4}\sin\frac{\pi}{2} + C \Rightarrow C = \frac{\pi}{2} + \frac{3}{4} \Rightarrow r = -\frac{3}{2}\left(\frac{\pi}{4} - \theta\right) - \frac{3}{4}\sin\left(\frac{\pi}{2} - 2\theta\right) + \frac{\pi}{2} + \frac{3}{4}$$

$$\Rightarrow r = \frac{3}{2}\theta - \frac{3}{4}\sin\left(\frac{\pi}{2} - 2\theta\right) + \frac{\pi}{8} + \frac{3}{4} \Rightarrow r = \frac{3}{2}\theta - \frac{3}{4}\cos 2\theta + \frac{\pi}{8} + \frac{3}{4}$$

- 59. Let  $u = 2t \frac{\pi}{2} \Rightarrow du = 2 dt \Rightarrow -2 du = -4 dt$   $\frac{ds}{dt} = \int -4 \sin\left(2t \frac{\pi}{2}\right) dt = \int (\sin u)(-2 du) = 2 \cos u + C_1 = 2 \cos\left(2t \frac{\pi}{2}\right) + C_1;$ at t = 0 and  $\frac{ds}{dt} = 100$  we have  $100 = 2 \cos\left(-\frac{\pi}{2}\right) + C_1 \Rightarrow C_1 = 100 \Rightarrow \frac{ds}{dt} = 2 \cos\left(2t \frac{\pi}{2}\right) + 100$   $\Rightarrow s = \int \left(2 \cos\left(2t \frac{\pi}{2}\right) + 100\right) dt = \int (\cos u + 50) du = \sin u + 50u + C_2 = \sin\left(2t \frac{\pi}{2}\right) + 50\left(2t \frac{\pi}{2}\right) + C_2;$ at t = 0 and s = 0 we have  $0 = \sin\left(-\frac{\pi}{2}\right) + 50\left(-\frac{\pi}{2}\right) + C_2 \Rightarrow C_2 = 1 + 25\pi$   $\Rightarrow s = \sin\left(2t \frac{\pi}{2}\right) + 100t 25\pi + (1 + 25\pi) \Rightarrow s = \sin\left(2t \frac{\pi}{2}\right) + 100t + 1$
- $\begin{array}{l} 60. \ \ \text{Let} \ u = \tan 2x \ \Rightarrow \ du = 2 \sec^2 2x \ dx \ \Rightarrow \ 2 \ du = 4 \sec^2 2x \ dx; \ v = 2x \ \Rightarrow \ dv = 2 \ dx \ \Rightarrow \ \frac{1}{2} \ dv = dx \\ \frac{dy}{dx} = \int 4 \sec^2 2x \ \tan 2x \ dx = \int u(2 \ du) = u^2 + C_1 = \tan^2 2x + C_1; \\ \text{at} \ x = 0 \ \text{and} \ \frac{dy}{dx} = 4 \ \text{we have} \ 4 = 0 + C_1 \ \Rightarrow \ C_1 = 4 \ \Rightarrow \ \frac{dy}{dx} = \tan^2 2x + 4 = (\sec^2 2x 1) + 4 = \sec^2 2x + 3 \\ \Rightarrow \ y = \int \left(\sec^2 2x + 3\right) \ dx = \int \left(\sec^2 v + 3\right) \left(\frac{1}{2} \ dv\right) = \frac{1}{2} \tan v + \frac{3}{2} v + C_2 = \frac{1}{2} \tan 2x + 3x + C_2; \\ \text{at} \ x = 0 \ \text{and} \ y = -1 \ \text{we have} \ -1 = \frac{1}{2} (0) + 0 + C_2 \ \Rightarrow \ C_2 = -1 \ \Rightarrow \ y = \frac{1}{2} \tan 2x + 3x 1 \end{array}$
- 61. Let  $u = 2t \Rightarrow du = 2 dt \Rightarrow 3 du = 6 dt$   $s = \int 6 \sin 2t dt = \int (\sin u)(3 du) = -3 \cos u + C = -3 \cos 2t + C;$ at t = 0 and s = 0 we have  $0 = -3 \cos 0 + C \Rightarrow C = 3 \Rightarrow s = 3 - 3 \cos 2t \Rightarrow s(\frac{\pi}{2}) = 3 - 3 \cos(\pi) = 6 \text{ m}$
- 62. Let  $u = \pi t \Rightarrow du = \pi dt \Rightarrow \pi du = \pi^2 dt$   $v = \int \pi^2 \cos \pi t dt = \int (\cos u)(\pi du) = \pi \sin u + C_1 = \pi \sin(\pi t) + C_1;$ at t = 0 and v = 8 we have  $8 = \pi(0) + C_1 \Rightarrow C_1 = 8 \Rightarrow v = \frac{ds}{dt} = \pi \sin(\pi t) + 8 \Rightarrow s = \int (\pi \sin(\pi t) + 8) dt$   $= \int \sin u du + 8t + C_2 = -\cos(\pi t) + 8t + C_2; \text{ at } t = 0 \text{ and } s = 0 \text{ we have } 0 = -1 + C_2 \Rightarrow C_2 = 1$   $\Rightarrow s = 8t \cos(\pi t) + 1 \Rightarrow s(1) = 8 \cos \pi + 1 = 10 \text{ m}$
- 63. All three integrations are correct. In each case, the derivative of the function on the right is the integrand on the left, and each formula has an arbitrary constant for generating the remaining antiderivatives. Moreover,  $\sin^2 x + C_1 = 1 \cos^2 x + C_1 \implies C_2 = 1 + C_1; \text{ also } -\cos^2 x + C_2 = -\frac{\cos 2x}{2} \frac{1}{2} + C_2 \implies C_3 = C_2 \frac{1}{2} = C_1 + \frac{1}{2}.$

64. (a) 
$$\left(\frac{1}{\frac{1}{60}-0}\right) \int_0^{1/60} V_{max} \sin 120\pi t \, dt = 60 \left[-V_{max}\left(\frac{1}{120\pi}\right) \cos \left(120\pi t\right)\right]_0^{1/60} = -\frac{V_{max}}{2\pi} \left[\cos 2\pi - \cos 0\right] = -\frac{V_{max}}{2\pi} \left[1-1\right] = 0$$

(b) 
$$V_{\text{max}} = \sqrt{2} \, V_{\text{rms}} = \sqrt{2} \, (240) \approx 339 \text{ volts}$$

(c) 
$$\int_{0}^{1/60} (V_{\text{max}})^{2} \sin^{2} 120\pi t \, dt = (V_{\text{max}})^{2} \int_{0}^{1/60} \left(\frac{1 - \cos 240\pi t}{2}\right) \, dt = \frac{(V_{\text{max}})^{2}}{2} \int_{0}^{1/60} (1 - \cos 240\pi t) \, dt$$
$$= \frac{(V_{\text{max}})^{2}}{2} \left[ t - \left(\frac{1}{240\pi}\right) \sin 240\pi t \right]_{0}^{1/60} = \frac{(V_{\text{max}})^{2}}{2} \left[ \left(\frac{1}{60} - \left(\frac{1}{240\pi}\right) \sin (4\pi)\right) - \left(0 - \left(\frac{1}{240\pi}\right) \sin (0)\right) \right] = \frac{(V_{\text{max}})^{2}}{120}$$

## 5.6 SUBSTITUTION AND AREA BETWEEN CURVES

1. (a) Let 
$$u = y + 1 \Rightarrow du = dy$$
;  $y = 0 \Rightarrow u = 1$ ,  $y = 3 \Rightarrow u = 4$ 

$$\int_{0}^{3} \sqrt{y + 1} \, dy = \int_{1}^{4} u^{1/2} \, du = \left[\frac{2}{3} u^{3/2}\right]_{1}^{4} = \left(\frac{2}{3}\right) (4)^{3/2} - \left(\frac{2}{3}\right) (1)^{3/2} = \left(\frac{2}{3}\right) (8) - \left(\frac{2}{3}\right) (1) = \frac{14}{3}$$

(b) Use the same substitution for u as in part (a); 
$$y = -1 \Rightarrow u = 0$$
,  $y = 0 \Rightarrow u = 1$  
$$\int_{-1}^{0} \sqrt{y+1} \ dy = \int_{0}^{1} u^{1/2} \ du = \left[\frac{2}{3} \ u^{3/2}\right]_{0}^{1} = \left(\frac{2}{3}\right) (1)^{3/2} - 0 = \frac{2}{3}$$

2. (a) Let 
$$u = 1 - r^2 \Rightarrow du = -2r dr \Rightarrow -\frac{1}{2} du = r dr; r = 0 \Rightarrow u = 1, r = 1 \Rightarrow u = 0$$

$$\int_0^1 r \sqrt{1 - r^2} dr = \int_1^0 -\frac{1}{2} \sqrt{u} du = \left[ -\frac{1}{3} u^{3/2} \right]_1^0 = 0 - \left( -\frac{1}{3} \right) (1)^{3/2} = \frac{1}{3}$$

(b) Use the same substitution for u as in part (a); 
$$r=-1 \Rightarrow u=0, r=1 \Rightarrow u=0$$

$$\int_{-1}^{1} r \sqrt{1-r^2} \, dr = \int_{0}^{0} -\frac{1}{2} \sqrt{u} \, du = 0$$

3. (a) Let 
$$u = \tan x \Rightarrow du = \sec^2 x \, dx; x = 0 \Rightarrow u = 0, x = \frac{\pi}{4} \Rightarrow u = 1$$

$$\int_0^{\pi/4} \tan x \, \sec^2 x \, dx = \int_0^1 u \, du = \left[\frac{u^2}{2}\right]_0^1 = \frac{1^2}{2} - 0 = \frac{1}{2}$$

(b) Use the same substitution as in part (a); 
$$x=-\frac{\pi}{4} \Rightarrow u=-1, x=0 \Rightarrow u=0$$
 
$$\int_{-\pi/4}^0 \tan x \sec^2 x \, dx = \int_{-1}^0 u \, du = \left[\frac{u^2}{2}\right]_{-1}^0 = 0 - \tfrac{1}{2} = -\tfrac{1}{2}$$

4. (a) Let 
$$u = \cos x \Rightarrow du = -\sin x \, dx \Rightarrow -du = \sin x \, dx; x = 0 \Rightarrow u = 1, x = \pi \Rightarrow u = -1$$

$$\int_0^{\pi} 3 \cos^2 x \sin x \, dx = \int_1^{-1} -3u^2 \, du = \left[-u^3\right]_1^{-1} = -(-1)^3 - \left(-(1)^3\right) = 2$$

(b) Use the same substitution as in part (a); 
$$x = 2\pi \Rightarrow u = 1$$
,  $x = 3\pi \Rightarrow u = -1$ 

$$\int_{2\pi}^{3\pi} 3\cos^2 x \sin x \, dx = \int_{1}^{-1} -3u^2 \, du = 2$$

5. (a) 
$$u = 1 + t^4 \Rightarrow du = 4t^3 dt \Rightarrow \frac{1}{4} du = t^3 dt; t = 0 \Rightarrow u = 1, t = 1 \Rightarrow u = 2$$

$$\int_0^1 t^3 (1 + t^4)^3 dt = \int_1^2 \frac{1}{4} u^3 du = \left[\frac{u^4}{16}\right]_1^2 = \frac{2^4}{16} - \frac{1^4}{16} = \frac{15}{16}$$

(b) Use the same substitution as in part (a); 
$$t=-1 \Rightarrow u=2, t=1 \Rightarrow u=2$$

$$\int_{-1}^1 t^3 \left(1+t^4\right)^3 dt = \int_2^2 \tfrac{1}{4} u^3 du = 0$$

6. (a) Let 
$$u = t^2 + 1 \Rightarrow du = 2t dt \Rightarrow \frac{1}{2} du = t dt; t = 0 \Rightarrow u = 1, t = \sqrt{7} \Rightarrow u = 8$$

$$\int_0^{\sqrt{7}} t (t^2 + 1)^{1/3} dt = \int_1^8 \frac{1}{2} u^{1/3} du = \left[ \left( \frac{1}{2} \right) \left( \frac{3}{4} \right) u^{4/3} \right]_1^8 = \left( \frac{3}{8} \right) (8)^{4/3} - \left( \frac{3}{8} \right) (1)^{4/3} = \frac{45}{8}$$

(b) Use the same substitution as in part (a); 
$$t = -\sqrt{7} \Rightarrow u = 8, t = 0 \Rightarrow u = 1$$

$$\int_{-\sqrt{7}}^{0} t (t^2 + 1)^{1/3} dt = \int_{8}^{1} \frac{1}{2} u^{1/3} du = -\int_{1}^{8} \frac{1}{2} u^{1/3} du = -\frac{45}{8}$$

7. (a) Let 
$$u = 4 + r^2 \Rightarrow du = 2r dr \Rightarrow \frac{1}{2} du = r dr; r = -1 \Rightarrow u = 5, r = 1 \Rightarrow u = 5$$

$$\int_{-1}^{1} \frac{5r}{(4+r^2)^2} dr = 5 \int_{5}^{5} \frac{1}{2} u^{-2} du = 0$$

(b) Use the same substitution as in part (a); 
$$r=0 \Rightarrow u=4, r=1 \Rightarrow u=5$$
 
$$\int_0^1 \frac{5r}{(4+r^2)^2} \, dr = 5 \int_4^5 \, \frac{1}{2} \, u^{-2} \, du = 5 \left[ -\frac{1}{2} \, u^{-1} \right]_4^5 = 5 \left( -\frac{1}{2} \, (5)^{-1} \right) - 5 \left( -\frac{1}{2} \, (4)^{-1} \right) = \frac{1}{8}$$

8. (a) Let 
$$u = 1 + v^{3/2} \Rightarrow du = \frac{3}{2} v^{1/2} dv \Rightarrow \frac{20}{3} du = 10 \sqrt{v} dv$$
;  $v = 0 \Rightarrow u = 1, v = 1 \Rightarrow u = 2$ 

$$\int_{0}^{1} \frac{10 \sqrt{v}}{(1 + v^{3/2})^{2}} dv = \int_{1}^{2} \frac{1}{u^{2}} \left(\frac{20}{3} du\right) = \frac{20}{3} \int_{1}^{2} u^{-2} du = -\frac{20}{3} \left[\frac{1}{u}\right]_{1}^{2} = -\frac{20}{3} \left[\frac{1}{2} - \frac{1}{1}\right] = \frac{10}{3}$$

(b) Use the same substitution as in part (a); 
$$v = 1 \Rightarrow u = 2$$
,  $v = 4 \Rightarrow u = 1 + 4^{3/2} = 9$ 

$$\int_{1}^{4} \frac{10\sqrt{v}}{(1+v^{3/2})^{2}} dv = \int_{2}^{9} \frac{1}{u^{2}} \left(\frac{20}{3} du\right) = -\frac{20}{3} \left[\frac{1}{u}\right]_{2}^{9} = -\frac{20}{3} \left(\frac{1}{9} - \frac{1}{2}\right) = -\frac{20}{3} \left(-\frac{7}{18}\right) = \frac{70}{27}$$

9. (a) Let 
$$u = x^2 + 1 \Rightarrow du = 2x dx \Rightarrow 2 du = 4x dx$$
;  $x = 0 \Rightarrow u = 1$ ,  $x = \sqrt{3} \Rightarrow u = 4$ 

$$\int_0^{\sqrt{3}} \frac{4x}{\sqrt{x^2 + 1}} dx = \int_1^4 \frac{2}{\sqrt{u}} du = \int_1^4 2u^{-1/2} du = \left[4u^{1/2}\right]_1^4 = 4(4)^{1/2} - 4(1)^{1/2} = 4$$

(b) Use the same substitution as in part (a); 
$$x=-\sqrt{3} \Rightarrow u=4, x=\sqrt{3} \Rightarrow u=4$$
 
$$\int_{-\sqrt{3}}^{\sqrt{3}} \frac{4x}{\sqrt{x^2+1}} \, dx = \int_4^4 \frac{2}{\sqrt{u}} \, du = 0$$

10. (a) Let 
$$u = x^4 + 9 \Rightarrow du = 4x^3 dx \Rightarrow \frac{1}{4} du = x^3 dx; x = 0 \Rightarrow u = 9, x = 1 \Rightarrow u = 10$$

$$\int_0^1 \frac{x^3}{\sqrt{x^4 + 9}} dx = \int_9^{10} \frac{1}{4} u^{-1/2} du = \left[\frac{1}{4} (2) u^{1/2}\right]_9^{10} = \frac{1}{2} (10)^{1/2} - \frac{1}{2} (9)^{1/2} = \frac{\sqrt{10} - 3}{2}$$

(b) Use the same substitution as in part (a); 
$$x=-1 \Rightarrow u=10, x=0 \Rightarrow u=9$$
 
$$\int_{-1}^{0} \frac{x^3}{\sqrt{x^4+9}} \, dx = \int_{10}^{9} \frac{1}{4} \, u^{-1/2} \, du = -\int_{9}^{10} \frac{1}{4} \, u^{-1/2} \, du = \frac{3-\sqrt{10}}{2}$$

11. (a) Let 
$$u = 1 - \cos 3t \Rightarrow du = 3 \sin 3t dt \Rightarrow \frac{1}{3} du = \sin 3t dt; t = 0 \Rightarrow u = 0, t = \frac{\pi}{6} \Rightarrow u = 1 - \cos \frac{\pi}{2} = 1$$

$$\int_{0}^{\pi/6} (1 - \cos 3t) \sin 3t dt = \int_{0}^{1} \frac{1}{3} u du = \left[\frac{1}{3} \left(\frac{u^{2}}{2}\right)\right]_{0}^{1} = \frac{1}{6} (1)^{2} - \frac{1}{6} (0)^{2} = \frac{1}{6}$$

(b) Use the same substitution as in part (a); 
$$t = \frac{\pi}{6} \Rightarrow u = 1, t = \frac{\pi}{3} \Rightarrow u = 1 - \cos \pi = 2$$

$$\int_{\pi/6}^{\pi/3} (1 - \cos 3t) \sin 3t \, dt = \int_{1}^{2} \frac{1}{3} u \, du = \left[\frac{1}{3} \left(\frac{u^{2}}{2}\right)\right]_{1}^{2} = \frac{1}{6} (2)^{2} - \frac{1}{6} (1)^{2} = \frac{1}{2}$$

12. (a) Let 
$$u=2+\tan\frac{t}{2} \Rightarrow du=\frac{1}{2}\sec^2\frac{t}{2}\,dt \Rightarrow 2\,du=\sec^2\frac{t}{2}\,dt; t=\frac{-\pi}{2} \Rightarrow u=2+\tan\left(\frac{-\pi}{4}\right)=1, t=0 \Rightarrow u=2$$
 
$$\int_{-\pi/2}^0 \left(2+\tan\frac{t}{2}\right)\sec^2\frac{t}{2}\,dt=\int_1^2 u\,(2\,du)=\left[u^2\right]_1^2=2^2-1^2=3$$

(b) Use the same substitution as in part (a); 
$$t = \frac{-\pi}{2} \implies u = 1, t = \frac{\pi}{2} \implies u = 3$$

$$\int_{-\pi/2}^{\pi/2} \left(2 + \tan \frac{t}{2}\right) \sec^2 \frac{t}{2} dt = 2 \int_{1}^{3} u \, du = \left[u^2\right]_{1}^{3} = 3^2 - 1^2 = 8$$

13. (a) Let 
$$u = 4 + 3 \sin z \Rightarrow du = 3 \cos z \, dz \Rightarrow \frac{1}{3} \, du = \cos z \, dz; z = 0 \Rightarrow u = 4, z = 2\pi \Rightarrow u = 4$$

$$\int_0^{2\pi} \frac{\cos z}{\sqrt{4 + 3 \sin z}} \, dz = \int_4^4 \frac{1}{\sqrt{u}} \, \left(\frac{1}{3} \, du\right) = 0$$

(b) Use the same substitution as in part (a); 
$$z=-\pi \Rightarrow u=4+3\sin{(-\pi)}=4$$
,  $z=\pi \Rightarrow u=4$  
$$\int_{-\pi}^{\pi} \frac{\cos z}{\sqrt{4+3\sin z}} \, dz = \int_{4}^{4} \frac{1}{\sqrt{u}} \, \left(\frac{1}{3} \, du\right) = 0$$

14. (a) Let 
$$u = 3 + 2 \cos w \Rightarrow du = -2 \sin w \, dw \Rightarrow -\frac{1}{2} \, du = \sin w \, dw; w = -\frac{\pi}{2} \Rightarrow u = 3, w = 0 \Rightarrow u = 5$$

$$\int_{-\pi/2}^{0} \frac{\sin w}{(3 + 2 \cos w)^2} \, dw = \int_{3}^{5} u^{-2} \left( -\frac{1}{2} \, du \right) = \frac{1}{2} \left[ u^{-1} \right]_{3}^{5} = \frac{1}{2} \left( \frac{1}{5} - \frac{1}{3} \right) = -\frac{1}{15}$$

(b) Use the same substitution as in part (a); 
$$w = 0 \Rightarrow u = 5$$
,  $w = \frac{\pi}{2} \Rightarrow u = 3$ 

$$\int_0^{\pi/2} \frac{\sin w}{(3 + 2\cos w)^2} \, dw = \int_5^3 u^{-2} \left( -\frac{1}{2} \, du \right) = \frac{1}{2} \int_0^5 u^{-2} \, du = \frac{1}{15}$$

15. Let 
$$u = t^5 + 2t \implies du = (5t^4 + 2) dt; t = 0 \implies u = 0, t = 1 \implies u = 3$$

$$\int_0^1 \sqrt{t^5 + 2t} (5t^4 + 2) dt = \int_0^3 u^{1/2} du = \left[\frac{2}{3} u^{3/2}\right]_0^3 = \frac{2}{3} (3)^{3/2} - \frac{2}{3} (0)^{3/2} = 2\sqrt{3}$$

16. Let 
$$u = 1 + \sqrt{y} \implies du = \frac{dy}{2\sqrt{y}}$$
;  $y = 1 \implies u = 2$ ,  $y = 4 \implies u = 3$ 

$$\int_{1}^{4} \frac{dy}{2\sqrt{y}\left(1+\sqrt{y}\right)^{2}} = \int_{2}^{3} \frac{1}{u^{2}} du = \int_{2}^{3} u^{-2} du = \left[-u^{-1}\right]_{2}^{3} = \left(-\frac{1}{3}\right) - \left(-\frac{1}{2}\right) = \frac{1}{6}$$

17. Let 
$$\mathbf{u} = \cos 2\theta \Rightarrow d\mathbf{u} = -2\sin 2\theta \ d\theta \Rightarrow -\frac{1}{2} \ d\mathbf{u} = \sin 2\theta \ d\theta; \ \theta = 0 \Rightarrow \mathbf{u} = 1, \ \theta = \frac{\pi}{6} \Rightarrow \mathbf{u} = \cos 2\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

$$\int_{0}^{\pi/6} \cos^{-3} 2\theta \sin 2\theta \ d\theta = \int_{1}^{1/2} \mathbf{u}^{-3} \left(-\frac{1}{2} \ d\mathbf{u}\right) = -\frac{1}{2} \int_{1}^{1/2} \mathbf{u}^{-3} \ d\mathbf{u} = \left[-\frac{1}{2} \left(\frac{\mathbf{u}^{-2}}{-2}\right)\right]_{1}^{1/2} = \frac{1}{4\left(\frac{1}{2}\right)^{2}} - \frac{1}{4(1)^{2}} = \frac{3}{4}$$

18. Let 
$$u = \tan\left(\frac{\theta}{6}\right) \Rightarrow du = \frac{1}{6} \sec^2\left(\frac{\theta}{6}\right) d\theta \Rightarrow 6 du = \sec^2\left(\frac{\theta}{6}\right) d\theta; \theta = \pi \Rightarrow u = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}, \theta = \frac{3\pi}{2} \Rightarrow u = \tan\frac{\pi}{4} = 1$$

$$\int_{\pi}^{3\pi/2} \cot^5\left(\frac{\theta}{6}\right) \sec^2\left(\frac{\theta}{6}\right) d\theta = \int_{1/\sqrt{3}}^{1} u^{-5} (6 du) = \left[6\left(\frac{u^{-4}}{-4}\right)\right]_{1/\sqrt{3}}^{1} = \left[-\frac{3}{2u^4}\right]_{1/\sqrt{3}}^{1} = -\frac{3}{2(1)^4} - \left(-\frac{3}{2\left(\frac{1}{\sqrt{3}}\right)^4}\right) = 12$$

19. Let 
$$u = 5 - 4 \cos t \Rightarrow du = 4 \sin t dt \Rightarrow \frac{1}{4} du = \sin t dt$$
;  $t = 0 \Rightarrow u = 5 - 4 \cos 0 = 1$ ,  $t = \pi \Rightarrow u = 5 - 4 \cos \pi = 9$ 

$$\int_{0}^{\pi} 5 (5 - 4 \cos t)^{1/4} \sin t dt = \int_{1}^{9} 5 u^{1/4} \left(\frac{1}{4} du\right) = \frac{5}{4} \int_{1}^{9} u^{1/4} du = \left[\frac{5}{4} \left(\frac{4}{5} u^{5/4}\right)\right]_{1}^{9} = 9^{5/4} - 1 = 3^{5/2} - 1$$

20. Let 
$$u = 1 - \sin 2t \implies du = -2 \cos 2t dt \implies -\frac{1}{2} du = \cos 2t dt$$
;  $t = 0 \implies u = 1$ ,  $t = \frac{\pi}{4} \implies u = 0$  
$$\int_0^{\pi/4} (1 - \sin 2t)^{3/2} \cos 2t dt = \int_1^0 -\frac{1}{2} u^{3/2} du = \left[ -\frac{1}{2} \left( \frac{2}{5} u^{5/2} \right) \right]_1^0 = \left( -\frac{1}{5} (0)^{5/2} \right) - \left( -\frac{1}{5} (1)^{5/2} \right) = \frac{1}{5}$$

21. Let 
$$u = 4y - y^2 + 4y^3 + 1 \Rightarrow du = (4 - 2y + 12y^2) dy$$
;  $y = 0 \Rightarrow u = 1$ ,  $y = 1 \Rightarrow u = 4(1) - (1)^2 + 4(1)^3 + 1 = 8$ 

$$\int_0^1 (4y - y^2 + 4y^3 + 1)^{-2/3} (12y^2 - 2y + 4) dy = \int_1^8 u^{-2/3} du = \left[3u^{1/3}\right]_1^8 = 3(8)^{1/3} - 3(1)^{1/3} = 3$$

22. Let 
$$u = y^3 + 6y^2 - 12y + 9 \Rightarrow du = (3y^2 + 12y - 12) dy \Rightarrow \frac{1}{3} du = (y^2 + 4y - 4) dy; y = 0 \Rightarrow u = 9, y = 1 \Rightarrow u = 4$$

$$\int_0^1 (y^3 + 6y^2 - 12y + 9)^{-1/2} (y^2 + 4y - 4) dy = \int_0^4 \frac{1}{3} u^{-1/2} du = \left[\frac{1}{3} \left(2u^{1/2}\right)\right]_0^4 = \frac{2}{3} (4)^{1/2} - \frac{2}{3} (9)^{1/2} = \frac{2}{3} (2 - 3) = -\frac{2}{3} (2 - 3)$$

$$\begin{array}{l} \text{23. Let } u = \theta^{3/2} \ \Rightarrow \ du = \frac{3}{2} \, \theta^{1/2} \, d\theta \ \Rightarrow \ \frac{2}{3} \, du = \sqrt{\theta} \, d\theta; \\ \theta = 0 \ \Rightarrow \ u = 0, \\ \theta = \sqrt[3]{\pi^2} \ \Rightarrow \ u = \pi \\ \int_0^{\sqrt[3]{\pi^2}} \sqrt{\theta} \, \cos^2\left(\theta^{3/2}\right) \, d\theta = \int_0^\pi \cos^2u \left(\frac{2}{3} \, du\right) = \left[\frac{2}{3} \left(\frac{u}{2} + \frac{1}{4} \sin 2u\right)\right]_0^\pi = \frac{2}{3} \left(\frac{\pi}{2} + \frac{1}{4} \sin 2\pi\right) - \frac{2}{3} \left(0\right) = \frac{\pi}{3} \end{array}$$

24. Let 
$$u=1+\frac{1}{t} \Rightarrow du=-t^{-2} dt; t=-1 \Rightarrow u=0, t=-\frac{1}{2} \Rightarrow u=-1$$
 
$$\int_{-1}^{-1/2} t^{-2} \sin^2\left(1+\frac{1}{t}\right) dt = \int_{0}^{-1} -\sin^2 u \ du = \left[-\left(\frac{u}{2}-\frac{1}{4}\sin 2u\right)\right]_{0}^{-1} = -\left[\left(-\frac{1}{2}-\frac{1}{4}\sin (-2)\right)-\left(\frac{0}{2}-\frac{1}{4}\sin 0\right)\right] = \frac{1}{2}-\frac{1}{4}\sin 2$$

25. Let 
$$u = 4 - x^2 \Rightarrow du = -2x \, dx \Rightarrow -\frac{1}{2} \, du = x \, dx; \, x = -2 \Rightarrow u = 0, \, x = 0 \Rightarrow u = 4, \, x = 2 \Rightarrow u = 0$$

$$A = -\int_{-2}^{0} x \sqrt{4 - x^2} \, dx + \int_{0}^{2} x \sqrt{4 - x^2} \, dx = -\int_{0}^{4} -\frac{1}{2} \, u^{1/2} \, du + \int_{4}^{0} -\frac{1}{2} \, u^{1/2} \, du = 2 \int_{0}^{4} \frac{1}{2} \, u^{1/2} \, du = \int_{0}^{4} u^{1/2} \, du = \int_{$$

26. Let 
$$u = 1 - \cos x \implies du = \sin x \, dx; x = 0 \implies u = 0, x = \pi \implies u = 2$$

$$\int_0^{\pi} (1 - \cos x) \sin x \, dx = \int_0^2 u \, du = \left[\frac{u^2}{2}\right]_0^2 = \frac{2^2}{2} - \frac{0^2}{2} = 2$$

299

27. Let 
$$u = 1 + \cos x \Rightarrow du = -\sin x \, dx \Rightarrow -du = \sin x \, dx; x = -\pi \Rightarrow u = 1 + \cos (-\pi) = 0, x = 0 \Rightarrow u = 1 + \cos 0 = 2$$

$$A = -\int_{-\pi}^{0} 3(\sin x) \sqrt{1 + \cos x} \, dx = -\int_{0}^{2} 3u^{1/2} (-du) = 3\int_{0}^{2} u^{1/2} \, du = \left[2u^{3/2}\right]_{0}^{2} = 2(2)^{3/2} - 2(0)^{3/2} = 2^{5/2}$$

- 28. Let  $\mathbf{u} = \pi + \pi \sin \mathbf{x} \Rightarrow \mathbf{d}\mathbf{u} = \pi \cos \mathbf{x} \, \mathbf{d}\mathbf{x} \Rightarrow \frac{1}{\pi} \, \mathbf{d}\mathbf{u} = \cos \mathbf{x} \, \mathbf{d}\mathbf{x}; \, \mathbf{x} = -\frac{\pi}{2} \Rightarrow \mathbf{u} = \pi + \pi \sin\left(-\frac{\pi}{2}\right) = 0, \, \mathbf{x} = 0 \Rightarrow \mathbf{u} = \pi$ Because of symmetry about  $\mathbf{x} = -\frac{\pi}{2}, \, \mathbf{A} = 2 \int_{-\pi/2}^{0} \frac{\pi}{2} (\cos \mathbf{x}) \left(\sin\left(\pi + \pi \sin \mathbf{x}\right)\right) \, \mathbf{d}\mathbf{x} = 2 \int_{0}^{\pi} \frac{\pi}{2} (\sin \mathbf{u}) \left(\frac{1}{\pi} \, \mathbf{d}\mathbf{u}\right)$   $= \int_{0}^{\pi} \sin \mathbf{u} \, \mathbf{d}\mathbf{u} = [-\cos \mathbf{u}]_{0}^{\pi} = (-\cos \pi) (-\cos 0) = 2$
- 29. For the sketch given, a = 0,  $b = \pi$ ;  $f(x) g(x) = 1 \cos^2 x = \sin^2 x = \frac{1 \cos 2x}{2}$ ;  $A = \int_0^{\pi} \frac{(1 \cos 2x)}{2} dx = \frac{1}{2} \int_0^{\pi} (1 \cos 2x) dx = \frac{1}{2} \left[ x \frac{\sin 2x}{2} \right]_0^{\pi} = \frac{1}{2} \left[ (\pi 0) (0 0) \right] = \frac{\pi}{2}$
- 30. For the sketch given,  $a = -\frac{\pi}{3}$ ,  $b = \frac{\pi}{3}$ ;  $f(t) g(t) = \frac{1}{2} \sec^2 t (-4 \sin^2 t) = \frac{1}{2} \sec^2 t + 4 \sin^2 t$ ;  $A = \int_{-\pi/3}^{\pi/3} \left(\frac{1}{2} \sec^2 t + 4 \sin^2 t\right) dt = \frac{1}{2} \int_{-\pi/3}^{\pi/3} \sec^2 t dt + 4 \int_{-\pi/3}^{\pi/3} \sin^2 t dt = \frac{1}{2} \int_{-\pi/3}^{\pi/3} \sec^2 t dt + 4 \int_{-\pi/3}^{\pi/3} \frac{(1 \cos 2t)}{2} dt$  $= \frac{1}{2} \int_{-\pi/3}^{\pi/3} \sec^2 t dt + 2 \int_{-\pi/3}^{\pi/3} (1 \cos 2t) dt = \frac{1}{2} \left[ \tan t \right]_{-\pi/3}^{\pi/3} + 2 \left[ t \frac{\sin 2t}{2} \right]_{-\pi/3}^{\pi/3} = \sqrt{3} + 4 \cdot \frac{\pi}{3} \sqrt{3} = \frac{4\pi}{3}$
- 31. For the sketch given, a=-2, b=2;  $f(x)-g(x)=2x^2-(x^4-2x^2)=4x^2-x^4$ ;  $A=\int_{-2}^2 (4x^2-x^4) \ dx = \left[\frac{4x^3}{3}-\frac{x^5}{5}\right]_{-2}^2 = \left(\frac{32}{3}-\frac{32}{5}\right) \left[-\frac{32}{3}-\left(-\frac{32}{5}\right)\right] = \frac{64}{3}-\frac{64}{5} = \frac{320-192}{15} = \frac{128}{15}$
- 32. For the sketch given, c=0, d=1;  $f(y)-g(y)=y^2-y^3$ ;  $A=\int_0^1 (y^2-y^3)\ dy=\int_0^1 y^2\ dy-\int_0^1 y^3\ dy=\left[\frac{y^3}{3}\right]_0^1-\left[\frac{y^4}{4}\right]_0^1=\frac{(1-0)}{3}-\frac{(1-0)}{4}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$
- 33. For the sketch given, c=0, d=1;  $f(y)-g(y)=(12y^2-12y^3)-(2y^2-2y)=10y^2-12y^3+2y$ ;  $A=\int_0^1 (10y^2-12y^3+2y) \ dy=\int_0^1 10y^2 \ dy-\int_0^1 12y^3 \ dy+\int_0^1 2y \ dy=\left[\frac{10}{3}y^3\right]_0^1-\left[\frac{12}{4}y^4\right]_0^1+\left[\frac{2}{2}y^2\right]_0^1=\left(\frac{10}{3}-0\right)-(3-0)+(1-0)=\frac{4}{3}$
- 34. For the sketch given, a=-1, b=1;  $f(x)-g(x)=x^2-(-2x^4)=x^2+2x^4$ ;  $A=\int_{-1}^1(x^2+2x^4)\ dx=\left[\frac{x^3}{3}+\frac{2x^5}{5}\right]_{-1}^1=\left(\frac{1}{3}+\frac{2}{5}\right)-\left[-\frac{1}{3}+\left(-\frac{2}{5}\right)\right]=\frac{2}{3}+\frac{4}{5}=\frac{10+12}{15}=\frac{22}{15}$
- 35. We want the area between the line  $y=1, 0 \le x \le 2$ , and the curve  $y=\frac{x^2}{4}, minus$  the area of a triangle (formed by y=x and y=1) with base 1 and height 1. Thus,  $A=\int_0^2 \left(1-\frac{x^2}{4}\right) dx \frac{1}{2} (1)(1) = \left[x-\frac{x^3}{12}\right]_0^2 \frac{1}{2} = \left(2-\frac{8}{12}\right) \frac{1}{2} = 2 \frac{2}{3} \frac{1}{2} = \frac{5}{6}$
- 36. We want the area between the x-axis and the curve  $y=x^2, 0 \le x \le 1$  plus the area of a triangle (formed by x=1, x+y=2, and the x-axis) with base 1 and height 1. Thus,  $A=\int_0^1 x^2 \, dx + \frac{1}{2} (1)(1) = \left[\frac{x^3}{3}\right]_0^1 + \frac{1}{2} = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$
- 37. AREA = A1 + A2
  - A1: For the sketch given, a = -3 and we find b by solving the equations  $y = x^2 4$  and  $y = -x^2 2x$  simultaneously for x:  $x^2 4 = -x^2 2x \Rightarrow 2x^2 + 2x 4 = 0 \Rightarrow 2(x + 2)(x 1) \Rightarrow x = -2$  or x = 1 so b = -2:  $f(x) g(x) = (x^2 4) (-x^2 2x) = 2x^2 + 2x 4 \Rightarrow A1 = \int_{-3}^{-2} (2x^2 + 2x 4) dx$

$$= \left[\frac{2x^3}{3} + \frac{2x^2}{2} - 4x\right]_{-3}^{-2} = \left(-\frac{16}{3} + 4 + 8\right) - (-18 + 9 + 12) = 9 - \frac{16}{3} = \frac{11}{3};$$

A2: For the sketch given, 
$$a = -2$$
 and  $b = 1$ :  $f(x) - g(x) = (-x^2 - 2x) - (x^2 - 4) = -2x^2 - 2x + 4$   

$$\Rightarrow A2 = -\int_{-2}^{1} (2x^2 + 2x - 4) dx = -\left[\frac{2x^3}{3} + x^2 - 4x\right]_{-2}^{1} = -\left(\frac{2}{3} + 1 - 4\right) + \left(-\frac{16}{3} + 4 + 8\right)$$

$$= -\frac{2}{3} - 1 + 4 - \frac{16}{3} + 4 + 8 = 9;$$

Therefore, AREA = A1 + A2 =  $\frac{11}{3}$  + 9 =  $\frac{38}{3}$ 

38. 
$$AREA = A1 + A2$$

A1: For the sketch given, 
$$a = -2$$
 and  $b = 0$ :  $f(x) - g(x) = (2x^3 - x^2 - 5x) - (-x^2 + 3x) = 2x^3 - 8x$   

$$\Rightarrow A1 = \int_{-2}^{0} (2x^3 - 8x) \, dx = \left[\frac{2x^4}{4} - \frac{8x^2}{2}\right]_{-2}^{0} = 0 - (8 - 16) = 8;$$

A2: For the sketch given, 
$$a = 0$$
 and  $b = 2$ :  $f(x) - g(x) = (-x^2 + 3x) - (2x^3 - x^2 - 5x) = 8x - 2x^3$   

$$\Rightarrow A2 = \int_0^2 (8x - 2x^3) dx = \left[\frac{8x^2}{2} - \frac{2x^4}{4}\right]_0^2 = (16 - 8) = 8;$$

Therefore, AREA = A1 + A2 = 16

39. 
$$AREA = A1 + A2 + A3$$

A1: For the sketch given, 
$$a = -2$$
 and  $b = -1$ :  $f(x) - g(x) = (-x + 2) - (4 - x^2) = x^2 - x - 2$  
$$\Rightarrow A1 = \int_{-2}^{-1} (x^2 - x - 2) \ dx = \left[ \frac{x^3}{3} - \frac{x^2}{2} - 2x \right]_{-2}^{-1} = \left( -\frac{1}{3} - \frac{1}{2} + 2 \right) - \left( -\frac{8}{3} - \frac{4}{2} + 4 \right) = \frac{7}{3} - \frac{1}{2} = \frac{14 - 3}{6} = \frac{11}{6};$$

A2: For the sketch given, 
$$a = -1$$
 and  $b = 2$ :  $f(x) - g(x) = (4 - x^2) - (-x + 2) = -(x^2 - x - 2)$   

$$\Rightarrow A2 = -\int_{-1}^{2} (x^2 - x - 2) dx = -\left[\frac{x^3}{3} - \frac{x^2}{2} - 2x\right]^2 = -\left(\frac{8}{3} - \frac{4}{2} - 4\right) + \left(-\frac{1}{3} - \frac{1}{2} + 2\right) = -3 + 8 - \frac{1}{2} = \frac{9}{2};$$

A3: For the sketch given, 
$$a = 2$$
 and  $b = 3$ :  $f(x) - g(x) = (-x + 2) - (4 - x^2) = x^2 - x - 2$   

$$\Rightarrow A3 = \int_2^3 (x^2 - x - 2) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} - 2x\right]_2^3 = \left(\frac{27}{3} - \frac{9}{2} - 6\right) - \left(\frac{8}{3} - \frac{4}{2} - 4\right) = 9 - \frac{9}{2} - \frac{8}{3};$$

Therefore, AREA = A1 + A2 + A3 =  $\frac{11}{6} + \frac{9}{2} + \left(9 - \frac{9}{2} - \frac{8}{3}\right) = 9 - \frac{5}{6} = \frac{49}{6}$ 

40. AREA = 
$$A1 + A2 + A3$$

A1: For the sketch given, 
$$a = -2$$
 and  $b = 0$ :  $f(x) - g(x) = \left(\frac{x^3}{3} - x\right) - \frac{x}{3} = \frac{x^3}{3} - \frac{4}{3}x = \frac{1}{3}(x^3 - 4x)$   

$$\Rightarrow A1 = \frac{1}{3} \int_{-2}^{0} (x^3 - 4x) dx = \frac{1}{3} \left[\frac{x^4}{4} - 2x^2\right]_{-2}^{0} = 0 - \frac{1}{3}(4 - 8) = \frac{4}{3};$$

A2: For the sketch given, 
$$a = 0$$
 and we find b by solving the equations  $y = \frac{x^3}{3} - x$  and  $y = \frac{x}{3}$  simultaneously for x:  $\frac{x^3}{3} - x = \frac{x}{3} \Rightarrow \frac{x^3}{3} - \frac{4}{3}x = 0 \Rightarrow \frac{x}{3}(x-2)(x+2) = 0 \Rightarrow x = -2, x = 0, \text{ or } x = 2 \text{ so } b = 2$ : 
$$f(x) - g(x) = \frac{x}{3} - \left(\frac{x^3}{3} - x\right) = -\frac{1}{3}(x^3 - 4x) \Rightarrow A2 = -\frac{1}{3}\int_0^2 (x^3 - 4x) \, dx = \frac{1}{3}\int_0^2 (4x - x^3) = \frac{1}{3}\left[2x^2 - \frac{x^4}{4}\right]_0^2 = \frac{1}{3}(8 - 4) = \frac{4}{3};$$

A3: For the sketch given, 
$$a=2$$
 and  $b=3$ :  $f(x)-g(x)=\left(\frac{x^3}{3}-x\right)-\frac{x}{3}=\frac{1}{3}\left(x^3-4x\right)$  
$$\Rightarrow A3=\frac{1}{3}\int_2^3(x^3-4x)\,dx=\frac{1}{3}\left[\frac{x^4}{4}-2x^2\right]_2^3=\frac{1}{3}\left[\left(\frac{81}{4}-2\cdot 9\right)-\left(\frac{16}{4}-8\right)\right]=\frac{1}{3}\left(\frac{81}{4}-14\right)=\frac{25}{12};$$
 Therefore, AREA  $=A1+A2+A3=\frac{4}{3}+\frac{4}{3}+\frac{25}{12}=\frac{32+25}{12}=\frac{19}{4}$ 

41. 
$$a = -2$$
,  $b = 2$ ;  
 $f(x) - g(x) = 2 - (x^2 - 2) = 4 - x^2$   
 $\Rightarrow A = \int_{-2}^{2} (4 - x^2) dx = \left[4x - \frac{x^3}{3}\right]_{-2}^{2} = \left(8 - \frac{8}{3}\right) - \left(-8 + \frac{8}{3}\right)$   
 $= 2 \cdot \left(\frac{24}{3} - \frac{8}{3}\right) = \frac{32}{3}$ 



42. 
$$a = -1, b = 3;$$
  
 $f(x) - g(x) = (2x - x^2) - (-3) = 2x - x^2 + 3$   
 $\Rightarrow A = \int_{-1}^{3} (2x - x^2 + 3) dx = \left[x^2 - \frac{x^3}{3} + 3x\right]_{-1}^{3}$   
 $= (9 - \frac{27}{3} + 9) - (1 + \frac{1}{3} - 3) = 11 - \frac{1}{3} = \frac{32}{3}$ 



43. 
$$a = 0, b = 2;$$
  
 $f(x) - g(x) = 8x - x^4 \implies A = \int_0^2 (8x - x^4) dx$   
 $= \left[\frac{8x^2}{2} - \frac{x^5}{5}\right]_0^2 = 16 - \frac{32}{5} = \frac{80 - 32}{5} = \frac{48}{5}$ 



















48. Limits of integration:  $x\sqrt{a^2 - x^2} = 0 \Rightarrow x = 0$  or  $\sqrt{a^2 - x^2} = 0 \Rightarrow x = 0$  or  $a^2 - x^2 = 0 \Rightarrow x = -a$ , 0, a;  $A = \int_{-a}^{0} -x\sqrt{a^2 - x^2} \, dx + \int_{0}^{a} x\sqrt{a^2 - x^2} \, dx$   $= \frac{1}{2} \left[ \frac{2}{3} (a^2 - x^2)^{3/2} \right]_{-a}^{0} - \frac{1}{2} \left[ \frac{2}{3} (a^2 - x^2)^{3/2} \right]_{0}^{a}$   $= \frac{1}{3} (a^2)^{3/2} - \left[ -\frac{1}{3} (a^2)^{3/2} \right] = \frac{2a^3}{3}$ 



49. Limits of integration:  $y = \sqrt{|x|} = \begin{cases} \sqrt{-x}, & x \le 0 \\ \sqrt{x}, & x \ge 0 \end{cases}$  and 5y = x + 6 or  $y = \frac{x}{5} + \frac{6}{5}$ ; for  $x \le 0$ :  $\sqrt{-x} = \frac{x}{5} + \frac{6}{5}$   $\Rightarrow 5\sqrt{-x} = x + 6 \Rightarrow 25(-x) = x^2 + 12x + 36$   $\Rightarrow x^2 + 37x + 36 = 0 \Rightarrow (x + 1)(x + 36) = 0$   $\Rightarrow x = -1, -36$  (but x = -36 is not a solution); for  $x \ge 0$ :  $5\sqrt{x} = x + 6 \Rightarrow 25x = x^2 + 12x + 36$   $\Rightarrow x^2 - 13x + 36 = 0 \Rightarrow (x - 4)(x - 9) = 0$   $\Rightarrow x = 4, 9$ ; there are three intersection points and



- $A = \int_{-1}^{0} \left(\frac{x+6}{5} \sqrt{-x}\right) dx + \int_{0}^{4} \left(\frac{x+6}{5} \sqrt{x}\right) dx + \int_{4}^{9} \left(\sqrt{x} \frac{x+6}{5}\right) dx$   $= \left[\frac{(x+6)^{2}}{10} + \frac{2}{3}(-x)^{3/2}\right]_{-1}^{0} + \left[\frac{(x+6)^{2}}{10} \frac{2}{3}x^{3/2}\right]_{0}^{4} + \left[\frac{2}{3}x^{3/2} \frac{(x+6)^{2}}{10}\right]_{4}^{9}$   $= \left(\frac{36}{10} \frac{25}{10} \frac{2}{3}\right) + \left(\frac{100}{10} \frac{2}{3} \cdot 4^{3/2} \frac{36}{10} + 0\right) + \left(\frac{2}{3} \cdot 9^{3/2} \frac{25}{10} \frac{2}{3} \cdot 4^{3/2} + \frac{100}{10}\right) = -\frac{50}{10} + \frac{20}{3} = \frac{5}{3}$
- 50. Limits of integration:

$$\begin{split} y &= |x^2 - 4| = \left\{ \begin{array}{l} x^2 - 4, \ x \leq -2 \ \text{or} \ x \geq 2 \\ 4 - x^2, \ -2 \leq x \leq 2 \end{array} \right. \\ \text{for} \ x \leq -2 \ \text{and} \ x \geq 2 \text{:} \ x^2 - 4 = \frac{x^2}{2} + 4 \\ &\Rightarrow 2x^2 - 8 = x^2 + 8 \ \Rightarrow \ x^2 = 16 \ \Rightarrow \ x = \pm 4 \text{;} \\ \text{for} \ -2 \leq x \leq 2 \text{:} \ 4 - x^2 = \frac{x^2}{2} + 4 \ \Rightarrow \ 8 - 2x^2 = x^2 + 8 \\ &\Rightarrow x^2 = 0 \ \Rightarrow \ x = 0 \text{; by symmetry of the graph,} \end{split}$$



- $\begin{aligned} &A = 2\int_0^2 \left[ \left( \frac{x^2}{2} + 4 \right) (4 x^2) \right] dx + 2\int_2^4 \left[ \left( \frac{x^2}{2} + 4 \right) (x^2 4) \right] dx = 2\left[ \frac{x^3}{2} \right]_0^2 + 2\left[ 8x \frac{x^3}{6} \right]_2^4 \\ &= 2\left( \frac{8}{2} 0 \right) + 2\left( 32 \frac{64}{6} 16 + \frac{8}{6} \right) = 40 \frac{56}{3} = \frac{64}{3} \end{aligned}$
- 51. Limits of integration: c = 0 and d = 3;  $f(y) - g(y) = 2y^2 - 0 = 2y^2$  $\Rightarrow A = \int_0^3 2y^2 dy = \left[\frac{2y^3}{3}\right]_0^3 = 2 \cdot 9 = 18$



52. Limits of integration:  $y^2 = y + 2 \Rightarrow (y+1)(y-2) = 0$   $\Rightarrow c = -1 \text{ and } d = 2; f(y) - g(y) = (y+2) - y^2$   $\Rightarrow A = \int_{-1}^{2} (y+2-y^2) dy = \left[\frac{y^2}{2} + 2y - \frac{y^3}{3}\right]_{-1}^{2}$  $= \left(\frac{4}{2} + 4 - \frac{8}{3}\right) - \left(\frac{1}{2} - 2 + \frac{1}{3}\right) = 6 - \frac{8}{3} - \frac{1}{2} + 2 - \frac{1}{3} = \frac{9}{2}$ 



53. Limits of integration:  $4x = y^2 - 4$  and 4x = 16 + y  $\Rightarrow y^2 - 4 = 16 + y \Rightarrow y^2 - y - 20 = 0 \Rightarrow$   $(y - 5)(y + 4) = 0 \Rightarrow c = -4$  and d = 5;  $f(y) - g(y) = \left(\frac{16+y}{4}\right) - \left(\frac{y^2-4}{4}\right) = \frac{-y^2+y+20}{4}$   $\Rightarrow A = \frac{1}{4} \int_{-4}^{5} (-y^2 + y + 20) dy$   $= \frac{1}{4} \left[ -\frac{y^3}{3} + \frac{y^2}{2} + 20y \right]_{-4}^{5}$   $= \frac{1}{4} \left( -\frac{125}{3} + \frac{25}{2} + 100 \right) - \frac{1}{4} \left( \frac{64}{3} + \frac{16}{2} - 80 \right)$  $= \frac{1}{4} \left( -\frac{189}{3} + \frac{9}{2} + 180 \right) = \frac{243}{8}$ 



54. Limits of integration:  $x = y^2$  and  $x = 3 - 2y^2$   $\Rightarrow y^2 = 3 - 2y^2 \Rightarrow 3y^2 = 3 \Rightarrow 3(y - 1)(y + 1) = 0$   $\Rightarrow c = -1$  and d = 1;  $f(y) - g(y) = (3 - 2y^2) - y^2$   $= 3 - 3y^2 = 3(1 - y^2) \Rightarrow A = 3\int_{-1}^{1} (1 - y^2) dy$   $= 3\left[y - \frac{y^3}{3}\right]_{-1}^{1} = 3\left(1 - \frac{1}{3}\right) - 3\left(-1 + \frac{1}{3}\right)$  $= 3 \cdot 2\left(1 - \frac{1}{3}\right) = 4$ 



55. Limits of integration:  $x = y^2 - y$  and  $x = 2y^2 - 2y - 6$  $\Rightarrow y^2 - y = 2y^2 - 2y - 6 \Rightarrow y^2 - y - 6 = 0$   $\Rightarrow (y - 3)(y + 2) = 0 \Rightarrow c = -2 \text{ and } d = 3;$   $f(y) - g(y) = (y^2 - y) - (2y^2 - 2y - 6) = -y^2 + y + 6$   $\Rightarrow A = \int_{-2}^{3} (-y^2 + y + 6) \, dy = \left[ -\frac{y^3}{3} + \frac{1}{2}y^2 + 6y \right]_{-2}^{3}$   $= \left( -9 + \frac{9}{2} + 18 \right) - \left( \frac{8}{3} + 2 - 12 \right) = \frac{125}{6}$ 



56. Limits of integration:  $x = y^{2/3}$  and  $x = 2 - y^4$  $\Rightarrow y^{2/3} = 2 - y^4 \Rightarrow c = -1 \text{ and } d = 1;$   $f(y) - g(y) = (2 - y^4) - y^{2/3}$   $\Rightarrow A = \int_{-1}^{1} (2 - y^4 - y^{2/3}) dy$   $= \left[ 2y - \frac{y^5}{5} - \frac{3}{5} y^{5/3} \right]_{-1}^{1}$   $= \left( 2 - \frac{1}{5} - \frac{3}{5} \right) - \left( -2 + \frac{1}{5} + \frac{3}{5} \right)$   $= 2 \left( 2 - \frac{1}{5} - \frac{3}{5} \right) = \frac{12}{5}$ 



57. Limits of integration:  $x = y^2 - 1$  and  $x = |y| \sqrt{1 - y^2}$   $\Rightarrow y^2 - 1 = |y| \sqrt{1 - y^2} \Rightarrow y^4 - 2y^2 + 1 = y^2 (1 - y^2)$   $\Rightarrow y^4 - 2y^2 + 1 = y^2 - y^4 \Rightarrow 2y^4 - 3y^2 + 1 = 0$   $\Rightarrow (2y^2 - 1)(y^2 - 1) = 0 \Rightarrow 2y^2 - 1 = 0 \text{ or } y^2 - 1 = 0$   $\Rightarrow y^2 = \frac{1}{2} \text{ or } y^2 = 1 \Rightarrow y = \pm \frac{\sqrt{2}}{2} \text{ or } y = \pm 1.$ 

Substitution shows that  $\frac{\pm\sqrt{2}}{2}$  are not solutions  $\Rightarrow y = \pm 1$ ; for  $-1 \le y \le 0$ ,  $f(x) - g(x) = -y\sqrt{1-y^2} - (y^2-1)$   $= 1 - y^2 - y(1-y^2)^{1/2}$ , and by symmetry of the graph,



$$=2\int_{-1}^{0} (1-y^2) dy - 2\int_{-1}^{0} y (1-y^2)^{1/2} dy = 2\left[y - \frac{y^3}{3}\right]_{-1}^{0} + 2\left(\frac{1}{2}\right) \left[\frac{2(1-y^2)^{3/2}}{3}\right]_{-1}^{0}$$

$$= 2\left[(0-0) - \left(-1 + \frac{1}{2}\right)\right] + \left(\frac{2}{3} - 0\right) = 2$$



58. AREA = A1 + A2

Limits of integration: x = 2y and  $x = y^3 - y^2 \Rightarrow y^3 - y^2 = 2y \Rightarrow y (y^2 - y - 2) = y(y + 1)(y - 2) = 0 \Rightarrow y = -1, 0, 2$ : for  $-1 \le y \le 0$ ,  $f(y) - g(y) = y^3 - y^2 - 2y \Rightarrow A1 = \int_{-1}^{0} (y^3 - y^2 - 2y) dy = \left[\frac{y^4}{4} - \frac{y^3}{3} - y^2\right]_{-1}^{0} = 0 - \left(\frac{1}{4} + \frac{1}{3} - 1\right) = \frac{5}{12}$ ; for  $0 \le y \le 2$ ,  $f(y) - g(y) = 2y - y^3 + y^2 \Rightarrow A2 = \int_{0}^{2} (2y - y^3 + y^2) dy = \left[y^2 - \frac{y^4}{4} + \frac{y^3}{3}\right]_{0}^{2} \Rightarrow \left(4 - \frac{16}{4} + \frac{8}{3}\right) - 0 = \frac{8}{3}$ ; Therefore,  $A1 + A2 = \frac{5}{12} + \frac{8}{3} = \frac{37}{12}$ 



59. Limits of integration:  $y = -4x^2 + 4$  and  $y = x^4 - 1$   $\Rightarrow x^4 - 1 = -4x^2 + 4 \Rightarrow x^4 + 4x^2 - 5 = 0$   $\Rightarrow (x^2 + 5)(x - 1)(x + 1) = 0 \Rightarrow a = -1$  and b = 1;  $f(x) - g(x) = -4x^2 + 4 - x^4 + 1 = -4x^2 - x^4 + 5$   $\Rightarrow A = \int_{-1}^{1} (-4x^2 - x^4 + 5) dx = \left[ -\frac{4x^3}{3} - \frac{x^5}{5} + 5x \right]_{-1}^{1}$  $= \left( -\frac{4}{3} - \frac{1}{5} + 5 \right) - \left( \frac{4}{3} + \frac{1}{5} - 5 \right) = 2 \left( -\frac{4}{3} - \frac{1}{5} + 5 \right) = \frac{104}{15}$ 



60. Limits of integration:  $y = x^3$  and  $y = 3x^2 - 4$   $\Rightarrow x^3 - 3x^2 + 4 = 0 \Rightarrow (x^2 - x - 2)(x - 2) = 0$   $\Rightarrow (x + 1)(x - 2)^2 = 0 \Rightarrow a = -1 \text{ and } b = 2;$   $f(x) - g(x) = x^3 - (3x^2 - 4) = x^3 - 3x^2 + 4$   $\Rightarrow A = \int_{-1}^{2} (x^3 - 3x^2 + 4) dx = \left[\frac{x^4}{4} - \frac{3x^3}{3} + 4x\right]_{-1}^{2}$  $= \left(\frac{16}{4} - \frac{24}{3} + 8\right) - \left(\frac{1}{4} + 1 - 4\right) = \frac{27}{4}$ 



61. Limits of integration: 
$$x = 4 - 4y^2$$
 and  $x = 1 - y^4$   
 $\Rightarrow 4 - 4y^2 = 1 - y^4 \Rightarrow y^4 - 4y^2 + 3 = 0$   
 $\Rightarrow \left(y - \sqrt{3}\right) \left(y + \sqrt{3}\right) (y - 1)(y + 1) = 0 \Rightarrow c = -1$   
and  $d = 1$  since  $x \ge 0$ ;  $f(y) - g(y) = (4 - 4y^2) - (1 - y^4)$   
 $= 3 - 4y^2 + y^4 \Rightarrow A = \int_{-1}^{1} (3 - 4y^2 + y^4) dy$   
 $= \left[3y - \frac{4y^3}{3} + \frac{y^5}{5}\right]_{-1}^{1} = 2\left(3 - \frac{4}{3} + \frac{1}{5}\right) = \frac{56}{15}$ 







63. 
$$a = 0, b = \pi$$
;  $f(x) - g(x) = 2 \sin x - \sin 2x$   

$$\Rightarrow A = \int_0^{\pi} (2 \sin x - \sin 2x) dx = \left[ -2 \cos x + \frac{\cos 2x}{2} \right]_0^{\pi}$$

$$= \left[ -2(-1) + \frac{1}{2} \right] - \left( -2 \cdot 1 + \frac{1}{2} \right) = 4$$







65. 
$$a = -1, b = 1; f(x) - g(x) = (1 - x^2) - \cos\left(\frac{\pi x}{2}\right)$$
  

$$\Rightarrow A = \int_{-1}^{1} \left[1 - x^2 - \cos\left(\frac{\pi x}{2}\right)\right] dx = \left[x - \frac{x^3}{3} - \frac{2}{\pi}\sin\left(\frac{\pi x}{2}\right)\right]_{-1}^{1}$$

$$= \left(1 - \frac{1}{3} - \frac{2}{\pi}\right) - \left(-1 + \frac{1}{3} + \frac{2}{\pi}\right) = 2\left(\frac{2}{3} - \frac{2}{\pi}\right) = \frac{4}{3} - \frac{4}{\pi}$$



$$\begin{aligned} &66. \ \ A = A1 + A2 \\ &a_1 = -1, b_1 = 0 \ \text{and} \ a_2 = 0, b_2 = 1; \\ &f_1(x) - g_1(x) = x - \sin\left(\frac{\pi x}{2}\right) \ \text{and} \ f_2(x) - g_2(x) = \sin\left(\frac{\pi x}{2}\right) - x \\ &\Rightarrow \ \ \text{by symmetry about the origin,} \\ &A_1 + A_2 = 2A_1 \ \ \Rightarrow \ \ A = 2\int_0^1 \left[\sin\left(\frac{\pi x}{2}\right) - x\right] \ dx \\ &= 2\left[-\frac{2}{\pi}\cos\left(\frac{\pi x}{2}\right) - \frac{x^2}{2}\right]_0^1 = 2\left[\left(-\frac{2}{\pi}\cdot 0 - \frac{1}{2}\right) - \left(-\frac{2}{\pi}\cdot 1 - 0\right)\right] \end{aligned}$$

 $=2\left(\frac{2}{\pi}-\frac{1}{2}\right)=2\left(\frac{4-\pi}{2\pi}\right)=\frac{4-\pi}{2\pi}$ 



67. 
$$a = -\frac{\pi}{4}, b = \frac{\pi}{4}; f(x) - g(x) = \sec^2 x - \tan^2 x$$
  

$$\Rightarrow A = \int_{-\pi/4}^{\pi/4} (\sec^2 x - \tan^2 x) dx$$

$$= \int_{-\pi/4}^{\pi/4} [\sec^2 x - (\sec^2 x - 1)] dx$$

$$= \int_{-\pi/4}^{\pi/4} 1 \cdot dx = [x]_{-\pi/4}^{\pi/4} = \frac{\pi}{4} - (-\frac{\pi}{4}) = \frac{\pi}{2}$$







69. 
$$c = 0$$
,  $d = \frac{\pi}{2}$ ;  $f(y) - g(y) = 3 \sin y \sqrt{\cos y} - 0 = 3 \sin y \sqrt{\cos y}$   

$$\Rightarrow A = 3 \int_0^{\pi/2} \sin y \sqrt{\cos y} \, dy = -3 \left[ \frac{2}{3} (\cos y)^{3/2} \right]_0^{\pi/2}$$

$$= -2(0-1) = 2$$



70. 
$$a = -1, b = 1; f(x) - g(x) = \sec^2\left(\frac{\pi x}{3}\right) - x^{1/3}$$
  

$$\Rightarrow A = \int_{-1}^{1} \left[\sec^2\left(\frac{\pi x}{3}\right) - x^{1/3}\right] dx = \left[\frac{3}{\pi}\tan\left(\frac{\pi x}{3}\right) - \frac{3}{4}x^{4/3}\right]_{-1}^{1}$$

$$= \left(\frac{3}{\pi}\sqrt{3} - \frac{3}{4}\right) - \left[\frac{3}{\pi}\left(-\sqrt{3}\right) - \frac{3}{4}\right] = \frac{6\sqrt{3}}{\pi}$$



 $\begin{array}{l} \text{71. } A = A_1 + A_2 \\ \text{Limits of integration: } x = y^3 \text{ and } x = y \ \Rightarrow \ y = y^3 \\ \Rightarrow y^3 - y = 0 \ \Rightarrow \ y(y-1)(y+1) = 0 \ \Rightarrow \ c_1 = -1, \, d_1 = 0 \\ \text{and } c_2 = 0, \, d_2 = 1; \, f_1(y) - g_1(y) = y^3 - y \, \text{and} \\ f_2(y) - g_2(y) = y - y^3 \ \Rightarrow \ \text{by symmetry about the origin,} \\ A_1 + A_2 = 2A_2 \ \Rightarrow \ A = 2 \int_0^1 (y - y^3) \, dy = 2 \left[ \frac{y^2}{2} - \frac{y^4}{4} \right]_0^1 \\ = 2 \left( \frac{1}{2} - \frac{1}{4} \right) = \frac{1}{2} \end{array}$ 



72.  $A = A_1 + A_2$ Limits of integration:  $y = x^3$  and  $y = x^5 \Rightarrow x^3 = x^5$   $\Rightarrow x^5 - x^3 = 0 \Rightarrow x^3(x - 1)(x + 1) = 0 \Rightarrow a_1 = -1, b_1 = 0$ and  $a_2 = 0, b_2 = 1$ ;  $f_1(x) - g_1(x) = x^3 - x^5$  and  $f_2(x) - g_2(x) = x^5 - x^3 \Rightarrow \text{ by symmetry about the origin,}$   $A_1 + A_2 = 2A_2 \Rightarrow A = 2\int_0^1 (x^3 - x^5) \, dx = 2\left[\frac{x^4}{4} - \frac{x^6}{6}\right]_0^1$  $= 2\left(\frac{1}{4} - \frac{1}{6}\right) = \frac{1}{6}$ 



73.  $A = A_1 + A_2$ 

Limits of integration: y = x and  $y = \frac{1}{x^2} \implies x = \frac{1}{x^2}, x \neq 0$  $\Rightarrow \; x^3 = 1 \; \Rightarrow \; x = 1 \; , \, f_1(x) - g_1(x) = x - 0 = x$  $\Rightarrow A_1 = \int_0^1 x \, dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}; f_2(x) - g_2(x) = \frac{1}{x^2} - 0$  $= x^{-2} \implies A_2 = \int_1^2 x^{-2} dx = \left[ \frac{-1}{x} \right]_1^2 = -\frac{1}{2} + 1 = \frac{1}{2};$  $A = A_1 + A_2 = \frac{1}{2} + \frac{1}{2} = 1$ 



74. Limits of integration:  $\sin x = \cos x \implies x = \frac{\pi}{4} \implies a = 0$ and  $b = \frac{\pi}{4}$ ;  $f(x) - g(x) = \cos x - \sin x$ 





75. (a) The coordinates of the points of intersection of the line and parabola are  $c = x^2 \implies x = \pm \sqrt{c}$  and y = c





entire shaded region can be found by setting c = 4:  $A = \left(\frac{4}{3}\right) 4^{3/2} = \frac{4 \cdot 8}{3} = \frac{32}{3}$ . Since we want c to divide the region into subsections of equal area we have  $A=2A_L\,\Rightarrow\,\frac{32}{3}=2\left(\frac{4}{3}\,c^{3/2}\right)\,\Rightarrow\,c=4^{2/3}$ 

- (c)  $f(x) g(x) = c x^2 \Rightarrow A_L = \int_{-\sqrt{c}}^{\sqrt{c}} [f(x) g(x)] dx = \int_{-\sqrt{c}}^{\sqrt{c}} (c x^2) dx = \left[ cx \frac{x^3}{3} \right]_{-\sqrt{c}}^{\sqrt{c}} = 2 \left[ c^{3/2} \frac{c^{3/2}}{3} \right]_{-\sqrt{c}}^{\sqrt{c}}$  $=\frac{4}{3}$  c<sup>3/2</sup>. Again, the area of the whole shaded region can be found by setting c = 4  $\Rightarrow$  A =  $\frac{32}{3}$ . From the condition  $A=2A_L$ , we get  $\frac{4}{3}\,c^{3/2}=\frac{32}{3}\,\Rightarrow\,c=4^{2/3}$  as in part (b).
- 76. (a) Limits of integration:  $y = 3 x^2$  and y = -1 $\Rightarrow$  3 - x<sup>2</sup> = -1  $\Rightarrow$  x<sup>2</sup> = 4  $\Rightarrow$  a = -2 and b = 2;  $f(x) - g(x) = (3 - x^2) - (-1) = 4 - x^2$  $\Rightarrow A = \int_{0}^{2} (4 - x^{2}) dx = \left[4x - \frac{x^{3}}{3}\right]^{2}$  $= \left(8 - \frac{8}{3}\right) - \left(-8 + \frac{8}{3}\right) = 16 - \frac{16}{3} = \frac{32}{3}$



(b) Limits of integration: let 
$$x = 0$$
 in  $y = 3 - x^2$   
 $\Rightarrow y = 3$ ;  $f(y) - g(y) = \sqrt{3 - y} - (-\sqrt{3 - y})$   
 $= 2(3 - y)^{1/2}$   
 $\Rightarrow A = 2 \int_{-3}^{3} (3 - y)^{1/2} dy = -2 \int_{-3}^{3} (3 - y)^{1/2} dy$ 

$$\Rightarrow A = 2 \int_{-1}^{3} (3 - y)^{1/2} dy = -2 \int_{-1}^{3} (3 - y)^{1/2} (-1) dy = (-2) \left[ \frac{2(3 - y)^{3/2}}{3} \right]_{-1}^{3} = \left( -\frac{4}{3} \right) \left[ 0 - (3 + 1)^{3/2} \right] = \left( \frac{4}{3} \right) (8) = \frac{32}{3}$$

77. Limits of integration:  $y = 1 + \sqrt{x}$  and  $y = \frac{2}{\sqrt{x}}$   $\Rightarrow 1 + \sqrt{x} = \frac{2}{\sqrt{x}}$ ,  $x \neq 0 \Rightarrow \sqrt{x} + x = 2 \Rightarrow x = (2 - x)^2$   $\Rightarrow x = 4 - 4x + x^2 \Rightarrow x^2 - 5x + 4 = 0$   $\Rightarrow (x - 4)(x - 1) = 0 \Rightarrow x = 1, 4 \text{ (but } x = 4 \text{ does not satisfy the equation); } y = \frac{2}{\sqrt{x}} \text{ and } y = \frac{x}{4} \Rightarrow \frac{2}{\sqrt{x}} = \frac{x}{4}$  $\Rightarrow 8 = x\sqrt{x} \Rightarrow 64 = x^3 \Rightarrow x = 4.$ 

$$y = 2/\sqrt{x}$$

$$y = 1 + \sqrt{x}$$

$$y = x/4$$

$$0$$

$$1$$

$$2$$

$$3$$

$$4$$

Therefore, AREA = 
$$A_1 + A_2$$
:  $f_1(x) - g_1(x) = (1 + x^{1/2}) - \frac{x}{4}$   
 $\Rightarrow A_1 = \int_0^1 (1 + x^{1/2} - \frac{x}{4}) dx = \left[x + \frac{2}{3}x^{3/2} - \frac{x^2}{8}\right]_0^1$ 

$$=\left(1+\tfrac{2}{3}-\tfrac{1}{8}\right)-0=\tfrac{37}{24}; f_2(x)-g_2(x)=2x^{-1/2}-\tfrac{x}{4} \Rightarrow \ A_2=\int_1^4 \left(2x^{-1/2}-\tfrac{x}{4}\right) dx \ = \left[4x^{1/2}-\tfrac{x^2}{8}\right]_1^4 \\ =\left(4\cdot 2-\tfrac{16}{8}\right)-\left(4-\tfrac{1}{8}\right)=4-\tfrac{15}{8}=\tfrac{17}{8}; \text{Therefore, AREA} = A_1+A_2=\tfrac{37}{24}+\tfrac{17}{8}=\tfrac{37+51}{24}=\tfrac{88}{24}=\tfrac{11}{3}$$

78. Limits of integration:  $(y-1)^2 = 3 - y \Rightarrow y^2 - 2y + 1$   $= 3 - y \Rightarrow y^2 - y - 2 = 0 \Rightarrow (y-2)(y+1) = 0$   $\Rightarrow y = 2$  since y > 0; also,  $2\sqrt{y} = 3 - y$   $\Rightarrow 4y = 9 - 6y + y^2 \Rightarrow y^2 - 10y + 9 = 0$  $\Rightarrow (y-9)(y-1) = 0 \Rightarrow y = 1$  since y = 9 does not satisfy the equation;



$$AREA = A_1 + A_2$$

$$f_1(y) - g_1(y) = 2\sqrt{y} - 0 = 2y^{1/2}$$

$$\Rightarrow A_1 = 2 \int_0^1 y^{1/2} dy = 2 \left[ \frac{2y^{3/2}}{3} \right]_0^1 = \frac{4}{3}; \ f_2(y) - g_2(y) = (3 - y) - (y - 1)^2$$

$$\Rightarrow A_2 = \int_0^2 \left[ 3 - y - (y - 1)^2 \right] dy = \left[ 3y - \frac{1}{2} y^2 - \frac{1}{3} (y - 1)^3 \right]_0^2 = \left( 6 - 2 - \frac{1}{3} \right) - \left( 3 - \frac{1}{2} + 0 \right) = 1 - \frac{1}{3} + \frac{1}{2} = \frac{7}{6};$$

Therefore,  $A_1 + A_2 = \frac{4}{3} + \frac{7}{6} = \frac{15}{6} = \frac{5}{2}$ 

79. Area between parabola and 
$$y = a^2$$
:  $A = 2 \int_0^a (a^2 - x^2) dx = 2 \left[ a^2 x - \frac{1}{3} x^3 \right]_0^a = 2 \left( a^3 - \frac{a^3}{3} \right) - 0 = \frac{4a^3}{3}$ ; Area of triangle AOC:  $\frac{1}{2}$  (2a)  $(a^2) = a^3$ ; limit of ratio  $= \lim_{a \to 0^+} \frac{a^3}{\left(\frac{4a^3}{3}\right)} = \frac{3}{4}$  which is independent of a.

80. 
$$A = \int_a^b 2f(x) dx - \int_a^b f(x) dx = 2 \int_a^b f(x) dx - \int_a^b f(x) dx = \int_a^b f(x) dx = 4$$

81. The lower boundary of the region is the line through the points  $(z, 1-z^2)$  and  $(z+1, 1-(z+1)^2)$ . The equation of this line is  $y-(1-z^2)=\frac{(1-(z+1)^2)-(1-z^2)}{z+1-z}(x-1)=-(2z+1)(x-1)\Rightarrow y=-(2z+1)x+(z^2+z+1)$ . The area of theregion is given by  $\int_z^{z+1}((1-x^2)-(-(2z+1)x+(z^2+z+1)))dy$ 

$$= \int_{z}^{z+1} (-x^2 + (2z+1)x - z^2 - z) dy = \left[ -\frac{1}{3}x^3 + \frac{1}{2}(2z+1)x^2 - (z^2+z)x \right]_{z}^{z+1}$$

$$= \left( -\frac{1}{3}(z+1)^3 + \frac{1}{2}(2z+1)(z+1)^2 - (z^2+z)(z+1) \right) - \left( -\frac{1}{3}z^3 + \frac{1}{2}(2z+1)z^2 - (z^2+z)z \right) = \frac{1}{6}.$$
 No matter where we choose z, the area of the region bounded by  $y = 1 - x^2$  and the line through the points  $(z, 1-z^2)$  and

 $(z+1, 1-(z+1)^2)$  is always  $\frac{1}{6}$ .

82. It is sometimes true. It is true if  $f(x) \ge g(x)$  for all x between a and b. Otherwise it is false. If the graph of f lies below the graph of g for a portion of the interval of integration, the integral over that portion will be negative and the integral over [a, b] will be less than the area between the curves (see Exercise 71).

83. Let 
$$u = 2x \Rightarrow du = 2 dx \Rightarrow \frac{1}{2} du = dx; x = 1 \Rightarrow u = 2, x = 3 \Rightarrow u = 6$$

$$\int_{1}^{3} \frac{\sin 2x}{x} dx = \int_{2}^{6} \frac{\sin u}{\frac{u}{2}} \left(\frac{1}{2} du\right) = \int_{2}^{6} \frac{\sin u}{u} du = [F(u)]_{2}^{6} = F(6) - F(2)$$

84. Let 
$$u = 1 - x \Rightarrow du = -dx \Rightarrow -du = dx; x = 0 \Rightarrow u = 1, x = 1 \Rightarrow u = 0$$

$$\int_0^1 f(1 - x) dx = \int_1^0 f(u) (-du) = -\int_1^0 f(u) du = \int_0^1 f(u) du = \int_0^1 f(x) dx$$

85. (a) Let 
$$u = -x \Rightarrow du = -dx$$
;  $x = -1 \Rightarrow u = 1$ ,  $x = 0 \Rightarrow u = 0$   
 $f \text{ odd } \Rightarrow f(-x) = -f(x)$ . Then  $\int_{-1}^{0} f(x) \, dx = \int_{1}^{0} f(-u) \, (-du) = \int_{1}^{0} -f(u) \, (-du) = \int_{1}^{0} f(u) \, du = -\int_{0}^{1} f(u) \, du = -\int_{$ 

(b) Let 
$$u = -x \implies du = -dx$$
;  $x = -1 \implies u = 1$ ,  $x = 0 \implies u = 0$  
$$f \text{ even } \implies f(-x) = f(x). \text{ Then } \int_{-1}^{0} f(x) \, dx = \int_{1}^{0} f(-u) \, (-du) = -\int_{1}^{0} f(u) \, du = \int_{0}^{1} f(u) \, du = 3$$

86. (a) Consider 
$$\int_{-a}^{0} f(x) dx$$
 when f is odd. Let  $u = -x \Rightarrow du = -dx \Rightarrow -du = dx$  and  $x = -a \Rightarrow u = a$  and  $x = 0$   $\Rightarrow u = 0$ . Thus  $\int_{-a}^{0} f(x) dx = \int_{a}^{0} -f(-u) du = \int_{a}^{0} f(u) du = -\int_{0}^{a} f(u) du = -\int_{0}^{a} f(u) du = -\int_{0}^{a} f(x) dx$ . Thus  $\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = -\int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx = 0$ .

(b)  $\int_{-a}^{\pi/2} \sin x dx = [-\cos x]_{-\pi/2}^{\pi/2} = -\cos \left(\frac{\pi}{2}\right) + \cos \left(-\frac{\pi}{2}\right) = 0 + 0 = 0$ .

$$\begin{split} &87. \ \ \text{Let} \ u = a - x \ \Rightarrow \ du = - \, dx; \ x = 0 \ \Rightarrow \ u = a, \ x = a \ \Rightarrow \ u = 0 \\ &I = \int_0^a \frac{f(x) \, dx}{f(x) + f(a - x)} = \int_a^0 \frac{f(a - u)}{f(a - u) + f(u)} \left( - \, du \right) = \int_0^a \frac{f(a - u) \, du}{f(u) + f(a - u)} = \int_0^a \frac{f(a - x) \, dx}{f(x) + f(a - x)} \\ &\Rightarrow \ I + I = \int_0^a \frac{f(x) \, dx}{f(x) + f(a - x)} + \int_0^a \frac{f(a - x) \, dx}{f(x) + f(a - x)} = \int_0^a \frac{f(x) + f(a - x)}{f(x) + f(a - x)} \, dx = \int_0^a dx = [x]_0^a = a - 0 = a. \end{split}$$
 Therefore,  $2I = a \ \Rightarrow \ I = \frac{a}{2}$ .

88. Let 
$$u = \frac{xy}{t} \Rightarrow du = -\frac{xy}{t^2} dt \Rightarrow -\frac{t}{xy} du = \frac{1}{t} dt \Rightarrow -\frac{1}{u} du = \frac{1}{t} dt; t = x \Rightarrow u = y, t = xy \Rightarrow u = 1.$$
 Therefore, 
$$\int_x^{xy} \frac{1}{t} dt = \int_y^1 -\frac{1}{u} du = -\int_y^1 \frac{1}{u} du = \int_1^y \frac{1}{t} dt$$

89. Let 
$$u=x+c \Rightarrow du=dx$$
;  $x=a-c \Rightarrow u=a$ ,  $x=b-c \Rightarrow u=b$ 

$$\int_{a-c}^{b-c} f(x+c) \, dx = \int_a^b f(u) \, du = \int_a^b f(x) \, dx$$



91-94. Example CAS commands:

```
Maple:
```

```
f := x -> x^3/3 - x^2/2 - 2 + x + 1/3;
    g := x -> x-1;
    plot([f(x),g(x)], x=-5...5, legend=["y = f(x)","y = g(x)"], title="#91(a) (Section 5.6)");
    q1 := [-5, -2, 1, 4];
    q2 := [seq(fsolve(f(x)=g(x), x=q1[i]..q1[i+1]), i=1..nops(q1)-1)];
    for i from 1 to nops(q2)-1 do # (c)
     area[i] := int( abs(f(x)-g(x)),x=q2[i]..q2[i+1]);
    end do:
    add( area[i], i=1..nops(q2)-1 ); # (d)
Mathematica: (assigned functions may vary)
    Clear[x, f, g]
    f[x_{-}] = x^2 \operatorname{Cos}[x]
    g[x_{-}] = x^3 - x
    Plot[\{f[x], g[x]\}, \{x, -2, 2\}]
After examining the plots, the initial guesses for FindRoot can be determined.
    pts = x/.Map[FindRoot[f[x]==g[x],{x, \#}]\&, {-1, 0, 1}]
    i1=NIntegrate[f[x] - g[x], \{x, pts[[1]], pts[[2]]\}]
    i2=NIntegrate[f[x] - g[x], \{x, pts[[2]], pts[[3]]\}]
    i1 + i2
```

## **CHAPTER 5 PRACTICE EXERCISES**

1. (a) Each time subinterval is of length  $\Delta t = 0.4$  sec. The distance traveled over each subinterval, using the midpoint rule, is  $\Delta h = \frac{1}{2} \left( v_i + v_{i+1} \right) \Delta t$ , where  $v_i$  is the velocity at the left endpoint and  $v_{i+1}$  the velocity at the right endpoint of the subinterval. We then add  $\Delta h$  to the height attained so far at the left endpoint  $v_i$  to arrive at the height associated with velocity  $v_{i+1}$  at the right endpoint. Using this methodology we build the following table based on the figure in the text:

| t (sec) | 0 | 0.4 | 0.8 | 1.2 | 1.6 | 2.0 | 2.4 | 2.8 | 3.2 | 3.6 | 4.0 | 4.4 | 4.8 | 5.2 | 5.6 | 6.0   |
|---------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| v (fps) | 0 | 10  | 25  | 55  | 100 | 190 | 180 | 165 | 150 | 140 | 130 | 115 | 105 | 90  | 76  | 65    |
| h (ft)  | 0 | 2   | 9   | 25  | 56  | 114 | 188 | 257 | 320 | 378 | 432 | 481 | 525 | 564 | 592 | 620.2 |

| t (sec) | 6.4   | 6.8   | 7.2 | 7.6   | 8.0   |
|---------|-------|-------|-----|-------|-------|
| v (fps) | 50    | 37    | 25  | 12    | 0     |
| h (ft)  | 643.2 | 660.6 | 672 | 679.4 | 681.8 |

NOTE: Your table values may vary slightly from ours depending on the v-values you read from the graph. Remember that some shifting of the graph occurs in the printing process.

The total height attained is about 680 ft.

(b) The graph is based on the table in part (a).



2. (a) Each time subinterval is of length  $\Delta t = 1$  sec. The distance traveled over each subinterval, using the midpoint rule, is  $\Delta s = \frac{1}{2} (v_i + v_{i+1}) \Delta t$ , where  $v_i$  is the velocity at the left, and  $v_{i+1}$  the velocity at the right, endpoint of the subinterval. We then add  $\Delta s$  to the distance attained so far at the left endpoint  $v_i$ to arrive at the distance associated with velocity  $v_{i+1}$  at the right endpoint. Using this methodology we build the table given below based on the figure in the text, obtaining approximately 26 m for the total distance traveled:

| t (sec)   | 0 | 1    | 2   | 3   | 4   | 5    | 6   | 7     | 8     | 9    | 10   |
|-----------|---|------|-----|-----|-----|------|-----|-------|-------|------|------|
| v (m/sec) | 0 | 0.5  | 1.2 | 2   | 3.4 | 4.5  | 4.8 | 4.5   | 3.5   | 2    | 0    |
| s (m)     | 0 | 0.25 | 1.1 | 2.7 | 5.4 | 9.35 | 14  | 18.65 | 22.65 | 25.4 | 26.4 |

(b) The graph shows the distance traveled by the moving body as a function of time for  $0 \le t \le 10$ .



- 3. (a)  $\sum_{k=1}^{10} \frac{a_k}{4} = \frac{1}{4} \sum_{k=1}^{10} a_k = \frac{1}{4} (-2) = -\frac{1}{2}$  (b)  $\sum_{k=1}^{10} (b_k 3a_k) = \sum_{k=1}^{10} b_k 3 \sum_{k=1}^{10} a_k = 25 3(-2) = 31$ 
  - (c)  $\sum_{k=1}^{10} (a_k + b_k 1) = \sum_{k=1}^{10} a_k + \sum_{k=1}^{10} b_k \sum_{k=1}^{10} 1 = -2 + 25 (1)(10) = 13$
  - (d)  $\sum_{k=1}^{10} \left( \frac{5}{2} b_k \right) = \sum_{k=1}^{10} \frac{5}{2} \sum_{k=1}^{10} b_k = \frac{5}{2} (10) 25 = 0$
- 4. (a)  $\sum_{k=0}^{20} 3a_k = 3 \sum_{k=0}^{20} a_k = 3(0) = 0$
- (b)  $\sum_{k=1}^{20} (a_k + b_k) = \sum_{k=1}^{20} a_k + \sum_{k=1}^{20} b_k = 0 + 7 = 7$
- (c)  $\sum_{k=1}^{20} \left(\frac{1}{2} \frac{2b_k}{7}\right) = \sum_{k=1}^{20} \frac{1}{2} \frac{2}{7} \sum_{k=1}^{20} b_k = \frac{1}{2}(20) \frac{2}{7}(7) = 8$
- (d)  $\sum_{k=1}^{20} (a_k 2) = \sum_{k=1}^{20} a_k \sum_{k=1}^{20} 2 = 0 2(20) = -40$
- 5. Let  $u = 2x 1 \Rightarrow du = 2 dx \Rightarrow \frac{1}{2} du = dx$ ;  $x = 1 \Rightarrow u = 1$ ,  $x = 5 \Rightarrow u = 9$  $\int_{0}^{5} (2x-1)^{-1/2} dx = \int_{0}^{9} u^{-1/2} \left(\frac{1}{2} du\right) = \left[u^{1/2}\right]_{0}^{9} = 3 - 1 = 2$
- 6. Let  $u = x^2 1 \Rightarrow du = 2x dx \Rightarrow \frac{1}{2} du = x dx$ ;  $x = 1 \Rightarrow u = 0$ ,  $x = 3 \Rightarrow u = 8$  $\int_{0}^{3} x (x^{2} - 1)^{1/3} dx = \int_{0}^{8} u^{1/3} (\frac{1}{2} du) = \left[ \frac{3}{8} u^{4/3} \right]_{0}^{8} = \frac{3}{8} (16 - 0) = 6$
- 7. Let  $u = \frac{x}{2} \Rightarrow 2 du = dx$ ;  $x = -\pi \Rightarrow u = -\frac{\pi}{2}$ ,  $x = 0 \Rightarrow u = 0$  $\int_{-\pi/2}^{0} \cos\left(\frac{x}{2}\right) dx = \int_{-\pi/2}^{0} (\cos u)(2 du) = \left[2 \sin u\right]_{-\pi/2}^{0} = 2 \sin 0 - 2 \sin\left(-\frac{\pi}{2}\right) = 2(0 - (-1)) = 2$
- 8. Let  $u = \sin x \Rightarrow du = \cos x dx$ ;  $x = 0 \Rightarrow u = 0$ ,  $x = \frac{\pi}{2} \Rightarrow u = 1$  $\int_0^{\pi/2} (\sin x) (\cos x) \, dx = \int_0^1 u \, du = \left[ \frac{u^2}{2} \right]_0^1 = \frac{1}{2}$

9. (a) 
$$\int_{-2}^{2} f(x) dx = \frac{1}{3} \int_{-2}^{2} 3 f(x) dx = \frac{1}{3} (12) = 4$$

9. (a) 
$$\int_{-2}^{2} f(x) dx = \frac{1}{3} \int_{-2}^{2} 3 f(x) dx = \frac{1}{3} (12) = 4$$
 (b)  $\int_{2}^{5} f(x) dx = \int_{-2}^{5} f(x) dx = \int_{-2}^{5} f(x) dx = 6 - 4 = 2$ 

(c) 
$$\int_{5}^{-2} g(x) dx = -\int_{2}^{5} g(x) dx = -2$$

(c) 
$$\int_{5}^{-2} g(x) dx = -\int_{-2}^{5} g(x) dx = -2$$
 (d)  $\int_{-2}^{5} (-\pi g(x)) dx = -\pi \int_{-2}^{5} g(x) dx = -\pi (2) = -2\pi$ 

(e) 
$$\int_{-2}^{5} \left( \frac{f(x) + g(x)}{5} \right) dx = \frac{1}{5} \int_{-2}^{5} f(x) dx + \frac{1}{5} \int_{-2}^{5} g(x) dx = \frac{1}{5} (6) + \frac{1}{5} (2) = \frac{8}{5}$$

10. (a) 
$$\int_0^2 g(x) dx = \frac{1}{7} \int_0^2 7 g(x) dx = \frac{1}{7} (7) = \frac{1}{7}$$

10. (a) 
$$\int_0^2 g(x) dx = \frac{1}{7} \int_0^2 7 g(x) dx = \frac{1}{7} (7) = 1$$
 (b)  $\int_1^2 g(x) dx = \int_0^2 g(x) dx - \int_0^1 g(x) dx = 1 - 2 = -1$ 

(c) 
$$\int_{2}^{0} f(x) dx = -\int_{0}^{2} f(x) dx = -\pi$$

(c) 
$$\int_{0}^{0} f(x) dx = -\int_{0}^{2} f(x) dx = -\pi$$
 (d)  $\int_{0}^{2} \sqrt{2} f(x) dx = \sqrt{2} \int_{0}^{2} f(x) dx = \sqrt{2} (\pi) = \pi \sqrt{2}$ 

(e) 
$$\int_0^2 [g(x) - 3 f(x)] dx = \int_0^2 g(x) dx - 3 \int_0^2 f(x) dx = 1 - 3\pi$$

11. 
$$x^2 - 4x + 3 = 0 \Rightarrow (x - 3)(x - 1) = 0 \Rightarrow x = 3 \text{ or } x = 1;$$

Area = 
$$\int_0^1 (x^2 - 4x + 3) dx - \int_1^3 (x^2 - 4x + 3) dx$$
  
=  $\left[\frac{x^3}{3} - 2x^2 + 3x\right]_0^1 - \left[\frac{x^3}{3} - 2x^2 + 3x\right]_1^3$   
=  $\left[\left(\frac{1^3}{3} - 2(1)^2 + 3(1)\right) - 0\right]$   
-  $\left[\left(\frac{3^3}{3} - 2(3)^2 + 3(3)\right) - \left(\frac{1^3}{3} - 2(1)^2 + 3(1)\right)\right]$   
=  $\left(\frac{1}{3} + 1\right) - \left[0 - \left(\frac{1}{3} + 1\right)\right] = \frac{8}{3}$ 



12. 
$$1 - \frac{x^2}{4} = 0 \implies 4 - x^2 - 0 \implies x = \pm 2;$$

Area = 
$$\int_{-2}^{2} \left(1 - \frac{x^2}{4}\right) dx - \int_{2}^{3} \left(1 - \frac{x^2}{4}\right) dx$$
  
=  $\left[x - \frac{x^3}{12}\right]_{-2}^{2} - \left[x - \frac{x^3}{12}\right]_{2}^{3}$   
=  $\left[\left(2 - \frac{2^3}{12}\right) - \left(-2 - \frac{(-2)^3}{12}\right)\right] - \left[\left(3 - \frac{3^3}{12}\right) - \left(2 - \frac{2^3}{12}\right)\right]$   
=  $\left[\frac{4}{3} - \left(-\frac{4}{3}\right)\right] - \left(\frac{3}{4} - \frac{4}{3}\right) = \frac{13}{4}$ 



13. 
$$5 - 5x^{2/3} = 0 \implies 1 - x^{2/3} = 0 \implies x = \pm 1$$
;

Area = 
$$\int_{-1}^{1} (5 - 5x^{2/3}) dx - \int_{1}^{8} (5 - 5x^{2/3}) dx$$
  
=  $[5x - 3x^{5/3}]_{-1}^{1} - [5x - 3x^{5/3}]_{1}^{8}$   
=  $[(5(1) - 3(1)^{5/3}) - (5(-1) - 3(-1)^{5/3})]$   
-  $[(5(8) - 3(8)^{5/3}) - (5(1) - 3(1)^{5/3})]$   
=  $[2 - (-2)] - [(40 - 96) - 2] = 62$ 



14. 
$$1 - \sqrt{x} = 0 \implies x = 1;$$

Area = 
$$\int_0^1 (1 - \sqrt{x}) dx - \int_1^4 (1 - \sqrt{x}) dx$$
  
=  $\left[ x - \frac{2}{3} x^{3/2} \right]_0^1 - \left[ x - \frac{2}{3} x^{3/2} \right]_1^4$   
=  $\left[ (1 - \frac{2}{3} (1)^{3/2}) - 0 \right] - \left[ (4 - \frac{2}{3} (4)^{3/2}) - (1 - \frac{2}{3} (1)^{3/2}) \right]$   
=  $\frac{1}{3} - \left[ (4 - \frac{16}{3}) - \frac{1}{3} \right] = 2$ 



15. 
$$f(x) = x$$
,  $g(x) = \frac{1}{x^2}$ ,  $a = 1$ ,  $b = 2 \Rightarrow A = \int_a^b [f(x) - g(x)] dx$   
 $= \int_1^2 (x - \frac{1}{x^2}) dx = \left[\frac{x^2}{2} + \frac{1}{x}\right]_1^2 = \left(\frac{4}{2} + \frac{1}{2}\right) - \left(\frac{1}{2} + 1\right) = 1$ 



16. 
$$f(x) = x$$
,  $g(x) = \frac{1}{\sqrt{x}}$ ,  $a = 1$ ,  $b = 2 \Rightarrow A = \int_{a}^{b} [f(x) - g(x)] dx$   
 $= \int_{1}^{2} \left( x - \frac{1}{\sqrt{x}} \right) dx = \left[ \frac{x^{2}}{2} - 2\sqrt{x} \right]_{1}^{2}$   
 $= \left( \frac{4}{2} - 2\sqrt{2} \right) - \left( \frac{1}{2} - 2 \right) = \frac{7 - 4\sqrt{2}}{2}$ 



17. 
$$f(x) = (1 - \sqrt{x})^2$$
,  $g(x) = 0$ ,  $a = 0$ ,  $b = 1 \Rightarrow A = \int_a^b [f(x) - g(x)] dx = \int_0^1 (1 - \sqrt{x})^2 dx = \int_0^1 (1 - 2\sqrt{x} + x) dx = \int_0^1 (1 - 2x^{1/2} + x) dx = \left[x - \frac{4}{3}x^{3/2} + \frac{x^2}{2}\right]_0^1 = 1 - \frac{4}{3} + \frac{1}{2} = \frac{1}{6}(6 - 8 + 3) = \frac{1}{6}$ 

18. 
$$f(x) = (1 - x^3)^2$$
,  $g(x) = 0$ ,  $a = 0$ ,  $b = 1 \implies A = \int_a^b [f(x) - g(x)] dx = \int_0^1 (1 - x^3)^2 dx = \int_0^1 (1 - 2x^3 + x^6) dx = \left[x - \frac{x^4}{2} + \frac{x^7}{7}\right]_0^1 = 1 - \frac{1}{2} + \frac{1}{7} = \frac{9}{14}$ 

19. 
$$f(y) = 2y^2$$
,  $g(y) = 0$ ,  $c = 0$ ,  $d = 3$   

$$\Rightarrow A = \int_c^d [f(y) - g(y)] dy = \int_0^3 (2y^2 - 0) dy$$

$$= 2 \int_0^3 y^2 dy = \frac{2}{3} [y^3]_0^3 = 18$$



20. 
$$f(y) = 4 - y^2$$
,  $g(y) = 0$ ,  $c = -2$ ,  $d = 2$   

$$\Rightarrow A = \int_{c}^{d} [f(y) - g(y)] dy = \int_{-2}^{2} (4 - y^2) dy$$

$$= \left[4y - \frac{y^3}{3}\right]_{-2}^{2} = 2\left(8 - \frac{8}{3}\right) = \frac{32}{3}$$



21. Let us find the intersection points:  $\frac{y^2}{4} = \frac{y+2}{4}$   $\Rightarrow y^2 - y - 2 = 0 \Rightarrow (y-2)(y+1) = 0 \Rightarrow y = -1$ or  $y = 2 \Rightarrow c = -1$ , d = 2;  $f(y) = \frac{y+2}{4}$ ,  $g(y) = \frac{y^2}{4}$   $\Rightarrow A = \int_c^d [f(y) - g(y)] dy = \int_{-1}^2 (\frac{y+2}{4} - \frac{y^2}{4}) dy$   $= \frac{1}{4} \int_{-1}^2 (y+2-y^2) dy = \frac{1}{4} \left[ \frac{y^2}{2} + 2y - \frac{y^3}{3} \right]_{-1}^2$  $= \frac{1}{4} \left[ \left( \frac{4}{5} + 4 - \frac{8}{3} \right) - \left( \frac{1}{5} - 2 + \frac{1}{3} \right) \right] = \frac{9}{9}$ 



22. Let us find the intersection points:  $\frac{y^2-4}{4} = \frac{y+16}{4}$   $\Rightarrow y^2 - y - 20 = 0 \Rightarrow (y-5)(y+4) = 0 \Rightarrow y = -4$ or  $y = 5 \Rightarrow c = -4$ , d = 5;  $f(y) = \frac{y+16}{4}$ ,  $g(y) = \frac{y^2-4}{4}$   $\Rightarrow A = \int_c^d [f(y) - g(y)] dy = \int_{-4}^5 \left(\frac{y+16}{4} - \frac{y^2-4}{4}\right) dy$   $= \frac{1}{4} \int_{-4}^5 (y+20-y^2) dy = \frac{1}{4} \left[\frac{y^2}{2} + 20y - \frac{y^3}{3}\right]_{-4}^5$   $= \frac{1}{4} \left[\left(\frac{25}{2} + 100 - \frac{125}{3}\right) - \left(\frac{16}{2} - 80 + \frac{64}{3}\right)\right]$  $= \frac{1}{4} \left(\frac{9}{2} + 180 - 63\right) = \frac{1}{4} \left(\frac{9}{2} + 117\right) = \frac{1}{8} (9 + 234) = \frac{243}{8}$ 



23. f(x) = x,  $g(x) = \sin x$ , a = 0,  $b = \frac{\pi}{4}$  $\Rightarrow A = \int_a^b [f(x) - g(x)] dx = \int_0^{\pi/4} (x - \sin x) dx$   $= \left[\frac{x^2}{2} + \cos x\right]_0^{\pi/4} = \left(\frac{\pi^2}{32} + \frac{\sqrt{2}}{2}\right) - 1$ 



24. f(x) = 1,  $g(x) = |\sin x|$ ,  $a = -\frac{\pi}{2}$ ,  $b = \frac{\pi}{2}$  $\Rightarrow A = \int_{a}^{b} [f(x) - g(x)] dx = \int_{-\pi/2}^{\pi/2} (1 - |\sin x|) dx$   $= \int_{-\pi/2}^{0} (1 + \sin x) dx + \int_{0}^{\pi/2} (1 - \sin x) dx$   $= 2 \int_{0}^{\pi/2} (1 - \sin x) dx = 2[x + \cos x]_{0}^{\pi/2}$   $= 2(\frac{\pi}{2} - 1) = \pi - 2$ 



25.  $a = 0, b = \pi, f(x) - g(x) = 2 \sin x - \sin 2x$  $\Rightarrow A = \int_0^{\pi} (2 \sin x - \sin 2x) dx = \left[ -2 \cos x + \frac{\cos 2x}{2} \right]_0^{\pi}$   $= \left[ -2 \cdot (-1) + \frac{1}{2} \right] - \left( -2 \cdot 1 + \frac{1}{2} \right) = 4$ 



26. 
$$a = -\frac{\pi}{3}, b = \frac{\pi}{3}, f(x) - g(x) = 8 \cos x - \sec^2 x$$
  

$$\Rightarrow A = \int_{-\pi/3}^{\pi/3} (8 \cos x - \sec^2 x) dx = [8 \sin x - \tan x]_{-\pi/3}^{\pi/3}$$

$$= \left(8 \cdot \frac{\sqrt{3}}{2} - \sqrt{3}\right) - \left(-8 \cdot \frac{\sqrt{3}}{2} + \sqrt{3}\right) = 6\sqrt{3}$$



27. 
$$f(y) = \sqrt{y}$$
,  $g(y) = 2 - y$ ,  $c = 1$ ,  $d = 2$   

$$\Rightarrow A = \int_{c}^{d} [f(y) - g(y)] dy = \int_{1}^{2} [\sqrt{y} - (2 - y)] dy$$

$$= \int_{1}^{2} (\sqrt{y} - 2 + y) dy = \left[\frac{2}{3}y^{3/2} - 2y + \frac{y^{2}}{2}\right]_{1}^{2}$$

$$= \left(\frac{4}{3}\sqrt{2} - 4 + 2\right) - \left(\frac{2}{3} - 2 + \frac{1}{2}\right) = \frac{4}{3}\sqrt{2} - \frac{7}{6} = \frac{8\sqrt{2} - 7}{6}$$



28. 
$$f(y) = 6 - y$$
,  $g(y) = y^2$ ,  $c = 1$ ,  $d = 2$   

$$\Rightarrow A = \int_{c}^{d} [f(y) - g(y)] dy = \int_{1}^{2} (6 - y - y^2) dy$$

$$= \left[ 6y - \frac{y^2}{2} - \frac{y^3}{3} \right]_{1}^{2} = \left( 12 - 2 - \frac{8}{3} \right) - \left( 6 - \frac{1}{2} - \frac{1}{3} \right)$$

$$= 4 - \frac{7}{3} + \frac{1}{2} = \frac{24 - 14 + 3}{6} = \frac{13}{6}$$



$$29. \ \ f(x) = x^3 - 3x^2 = x^2(x-3) \ \Rightarrow \ f'(x) = 3x^2 - 6x = 3x(x-2) \ \Rightarrow \ f' = +++ \left| ---- \right| + ++ \\ 0 \ \ 2$$
 
$$\Rightarrow \ f(0) = 0 \ \text{is a maximum and} \ f(2) = -4 \ \text{is a minimum}. \ \ A = -\int_0^3 (x^3 - 3x^2) \ dx = -\left[\frac{x^4}{4} - x^3\right]_0^3 = -\left(\frac{81}{4} - 27\right) = \frac{27}{4}$$

30. 
$$A = \int_0^a \left(a^{1/2} - x^{1/2}\right)^2 dx = \int_0^a \left(a - 2\sqrt{a}\,x^{1/2} + x\right) dx = \left[ax - \frac{4}{3}\,\sqrt{a}\,x^{3/2} + \frac{x^2}{2}\right]_0^a = a^2 - \frac{4}{3}\,\sqrt{a}\cdot a\sqrt{a} + \frac{a^2}{2} \\ = a^2\left(1 - \frac{4}{3} + \frac{1}{2}\right) = \frac{a^2}{6}\left(6 - 8 + 3\right) = \frac{a^2}{6}$$





32. 
$$A = \int_0^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{5\pi/4} (\sin x - \cos x) \, dx$$
$$+ \int_{5\pi/4}^{3\pi/2} (\cos x - \sin x) \, dx = [\sin x + \cos x]_0^{\pi/4}$$
$$+ [-\cos x - \sin x]_{\pi/4}^{5\pi/4} + [\sin x + \cos x]_{5\pi/4}^{3\pi/2}$$
$$= \left[ \left( \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right) - (0+1) \right] + \left[ \left( \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right) - \left( -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \right) \right]$$
$$+ \left[ (-1+0) - \left( -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \right) \right] = \frac{8\sqrt{2}}{2} - 2 = 4\sqrt{2} - 2$$



33. 
$$y = x^2 + \int_1^x \frac{1}{t} dt \Rightarrow \frac{dy}{dx} = 2x + \frac{1}{x} \Rightarrow \frac{d^2y}{dx^2} = 2 - \frac{1}{x^2}$$
;  $y(1) = 1 + \int_1^1 \frac{1}{t} dt = 1$  and  $y'(1) = 2 + 1 = 3$ 

$$34. \ \ y = \int_0^x \left(1 + 2\sqrt{\sec t}\right) dt \ \Rightarrow \ \frac{dy}{dx} = 1 + 2\sqrt{\sec x} \ \Rightarrow \ \frac{d^2y}{dx^2} = 2\left(\frac{1}{2}\right) (\sec x)^{-1/2} (\sec x \tan x) = \sqrt{\sec x} (\tan x);$$
 
$$x = 0 \ \Rightarrow \ y = \int_0^0 \left(1 + 2\sqrt{\sec t}\right) dt = 0 \ \text{and} \ x = 0 \ \Rightarrow \ \frac{dy}{dx} = 1 + 2\sqrt{\sec 0} = 3$$

35. 
$$y = \int_{5}^{x} \frac{\sin t}{t} dt - 3 \implies \frac{dy}{dx} = \frac{\sin x}{x}; x = 5 \implies y = \int_{5}^{5} \frac{\sin t}{t} dt - 3 = -3$$

36. 
$$y = \int_{-1}^{x} \sqrt{2 - \sin^2 t} \, dt + 2$$
 so that  $\frac{dy}{dx} = \sqrt{2 - \sin^2 x}$ ;  $x = -1 \implies y = \int_{-1}^{-1} \sqrt{2 - \sin^2 t} \, dt + 2 = 2$ 

37. Let 
$$u = \cos x \Rightarrow du = -\sin x \, dx \Rightarrow -du = \sin x \, dx$$
 
$$\int 2(\cos x)^{-1/2} \sin x \, dx = \int 2u^{-1/2}(-du) = -2 \int u^{-1/2} \, du = -2 \left(\frac{u^{1/2}}{\frac{1}{2}}\right) + C = -4u^{1/2} + C = -4(\cos x)^{1/2} + C$$

38. Let 
$$u = \tan x \implies du = \sec^2 x \, dx$$
 
$$\int (\tan x)^{-3/2} \sec^2 x \, dx = \int u^{-3/2} \, du = \frac{u^{-1/2}}{(-\frac{1}{2})} + C = -2u^{-1/2} + C = \frac{-2}{(\tan x)^{1/2}} + C$$

39. Let 
$$u = 2\theta + 1 \Rightarrow du = 2 d\theta \Rightarrow \frac{1}{2} du = d\theta$$
 
$$\int \left[ 2\theta + 1 + 2\cos(2\theta + 1) \right] d\theta = \int \left( u + 2\cos u \right) \left( \frac{1}{2} du \right) = \frac{u^2}{4} + \sin u + C_1 = \frac{(2\theta + 1)^2}{4} + \sin(2\theta + 1) + C_1 = \theta^2 + \theta + \sin(2\theta + 1) + C$$
, where  $C = C_1 + \frac{1}{4}$  is still an arbitrary constant

$$\begin{array}{l} 40. \ \ Let \ u = 2\theta - \pi \ \Rightarrow \ du = 2 \ d\theta \ \Rightarrow \ \frac{1}{2} \ du = d\theta \\ \\ \int \left( \frac{1}{\sqrt{2\theta - \pi}} + 2 \ sec^2 \left( 2\theta - \pi \right) \right) \ d\theta = \int \left( \frac{1}{\sqrt{u}} + 2 \ sec^2 \ u \right) \left( \frac{1}{2} \ du \right) = \frac{1}{2} \int \left( u^{-1/2} + 2 \ sec^2 \ u \right) \ du \\ \\ = \frac{1}{2} \left( \frac{u^{1/2}}{\frac{1}{2}} \right) + \frac{1}{2} \left( 2 \ tan \ u \right) + C = u^{1/2} + tan \ u + C = (2\theta - \pi)^{1/2} + tan \ (2\theta - \pi) + C \end{array}$$

$$41. \ \int \left(t - \frac{2}{t}\right) \left(t + \frac{2}{t}\right) \, dt = \int \left(t^2 - \frac{4}{t^2}\right) \, dt = \int \left(t^2 - 4t^{-2}\right) \, dt = \frac{t^3}{3} - 4 \left(\frac{t^{-1}}{-1}\right) + C = \frac{t^3}{3} + \frac{4}{t} + C$$

42. 
$$\int \frac{(t+1)^2-1}{t^4} dt = \int \frac{t^2+2t}{t^4} dt = \int \left(\frac{1}{t^2} + \frac{2}{t^3}\right) dt = \int (t^{-2} + 2t^{-3}) dt = \frac{t^{-1}}{(-1)} + 2\left(\frac{t^{-2}}{-2}\right) + C = -\frac{1}{t} - \frac{1}{t^2} + C$$

$$\begin{array}{l} \text{43. Let } u = 2t^{3/2} \Rightarrow \ du = 3\sqrt{t} \, dt \Rightarrow \frac{1}{3} du = \sqrt{t} \, dt \\ \int \sqrt{t} \sin \left(2t^{3/2}\right) dt = \frac{1}{3} \int \sin u \, du = -\frac{1}{3} \cos u + C = -\frac{1}{3} \cos \left(2t^{3/2}\right) + C \end{array}$$

44. Let 
$$u=1+\sec\theta\Rightarrow du=\sec\theta\tan\theta\ d\theta\Rightarrow\int\sec\theta\tan\theta\ \sqrt{1+\sec\theta}\ d\theta=\int u^{1/2}du=\frac{2}{3}u^{3/2}+C=\frac{2}{3}(1+\sec\theta)^{3/2}+C$$

45. 
$$\int_{-1}^{1} (3x^2 - 4x + 7) dx = \left[x^3 - 2x^2 + 7x\right]_{-1}^{1} = \left[1^3 - 2(1)^2 + 7(1)\right] - \left[(-1)^3 - 2(-1)^2 + 7(-1)\right] = 6 - (-10) = 16$$

46. 
$$\int_0^1 (8s^3 - 12s^2 + 5) \, ds = \left[2s^4 - 4s^3 + 5s\right]_0^1 = \left[2(1)^4 - 4(1)^3 + 5(1)\right] - 0 = 3$$

47. 
$$\int_{1}^{2} \frac{4}{v^{2}} dv = \int_{1}^{2} 4v^{-2} dv = \left[ -4v^{-1} \right]_{1}^{2} = \left( \frac{-4}{2} \right) - \left( \frac{-4}{1} \right) = 2$$

48. 
$$\int_{1}^{27} x^{-4/3} dx = \left[ -3x^{-1/3} \right]_{1}^{27} = -3(27)^{-1/3} - \left( -3(1)^{-1/3} \right) = -3\left( \frac{1}{3} \right) + 3(1) = 2$$

$$49. \ \int_{1}^{4} \frac{dt}{t\sqrt{t}} = \int_{1}^{4} \frac{dt}{t^{3/2}} = \int_{1}^{4} t^{-3/2} \ dt = \left[ -2t^{-1/2} \right]_{1}^{4} = \frac{-2}{\sqrt{4}} - \frac{(-2)}{\sqrt{1}} = 1$$

$$50. \text{ Let } x = 1 + \sqrt{u} \ \Rightarrow \ dx = \frac{1}{2} \, u^{-1/2} \, du \ \Rightarrow \ 2 \, dx = \frac{du}{\sqrt{u}} \, ; u = 1 \ \Rightarrow \ x = 2, u = 4 \ \Rightarrow \ x = 3$$
 
$$\int_{1}^{4} \frac{(1 + \sqrt{u})^{1/2}}{\sqrt{u}} \, du = \int_{2}^{3} \, x^{1/2} (2 \, dx) = \left[ 2 \left( \frac{2}{3} \right) x^{3/2} \right]_{2}^{3} = \frac{4}{3} \left( 3^{3/2} \right) - \frac{4}{3} \left( 2^{3/2} \right) = 4 \sqrt{3} - \frac{8}{3} \, \sqrt{2} = \frac{4}{3} \left( 3 \sqrt{3} - 2 \sqrt{2} \right)$$

51. Let 
$$u = 2x + 1 \Rightarrow du = 2 dx \Rightarrow 18 du = 36 dx$$
;  $x = 0 \Rightarrow u = 1$ ,  $x = 1 \Rightarrow u = 3$ 

$$\int_{0}^{1} \frac{36 dx}{(2x+1)^{3}} = \int_{1}^{3} 18u^{-3} du = \left[\frac{18u^{-2}}{-2}\right]_{1}^{3} = \left[\frac{-9}{u^{2}}\right]_{1}^{3} = \left(\frac{-9}{3^{2}}\right) - \left(\frac{-9}{1^{2}}\right) = 8$$

$$52. \text{ Let } u = 7 - 5r \ \Rightarrow \ du = -5 \ dr \ \Rightarrow \ -\frac{1}{5} \ du = dr; \\ r = 0 \ \Rightarrow \ u = 7, \\ r = 1 \ \Rightarrow \ u = 2$$
 
$$\int_0^1 \frac{dr}{\sqrt[3]{(7 - 5r)^2}} = \int_0^1 (7 - 5r)^{-2/3} \ dr = \int_7^2 u^{-2/3} \left( -\frac{1}{5} \ du \right) = -\frac{1}{5} \left[ 3u^{1/3} \right]_7^2 = \frac{3}{5} \left( \sqrt[3]{7} - \sqrt[3]{2} \right)$$

53. Let 
$$u = 1 - x^{2/3} \Rightarrow du = -\frac{2}{3} x^{-1/3} dx \Rightarrow -\frac{3}{2} du = x^{-1/3} dx; x = \frac{1}{8} \Rightarrow u = 1 - \left(\frac{1}{8}\right)^{2/3} = \frac{3}{4}, x = 1 \Rightarrow u = 1 - 1^{2/3} = 0$$

$$\int_{1/8}^{1} x^{-1/3} \left(1 - x^{2/3}\right)^{3/2} dx = \int_{3/4}^{0} u^{3/2} \left(-\frac{3}{2} du\right) = \left[\left(-\frac{3}{2}\right) \left(\frac{u^{5/2}}{\frac{5}{2}}\right)\right]_{3/4}^{0} = \left[-\frac{3}{5} u^{5/2}\right]_{3/4}^{0} = -\frac{3}{5} (0)^{5/2} - \left(-\frac{3}{5}\right) \left(\frac{3}{4}\right)^{5/2}$$

$$= \frac{27\sqrt{3}}{160}$$

54. Let 
$$u = 1 + 9x^4 \Rightarrow du = 36x^3 dx \Rightarrow \frac{1}{36} du = x^3 dx; x = 0 \Rightarrow u = 1, x = \frac{1}{2} \Rightarrow u = 1 + 9\left(\frac{1}{2}\right)^4 = \frac{25}{16}$$

$$\int_0^{1/2} x^3 \left(1 + 9x^4\right)^{-3/2} dx = \int_1^{25/16} u^{-3/2} \left(\frac{1}{36} du\right) = \left[\frac{1}{36} \left(\frac{u^{-1/2}}{-\frac{1}{2}}\right)\right]_1^{25/16} = \left[-\frac{1}{18} u^{-1/2}\right]_1^{25/16}$$

$$= -\frac{1}{18} \left(\frac{25}{16}\right)^{-1/2} - \left(-\frac{1}{18} (1)^{-1/2}\right) = \frac{1}{90}$$

55. Let 
$$u = 5r \Rightarrow du = 5 dr \Rightarrow \frac{1}{5} du = dr; r = 0 \Rightarrow u = 0, r = \pi \Rightarrow u = 5\pi$$

$$\int_{0}^{\pi} \sin^{2} 5r dr = \int_{0}^{5\pi} (\sin^{2} u) \left(\frac{1}{5} du\right) = \frac{1}{5} \left[\frac{u}{2} - \frac{\sin 2u}{4}\right]_{0}^{5\pi} = \left(\frac{\pi}{2} - \frac{\sin 10\pi}{20}\right) - \left(0 - \frac{\sin 0}{20}\right) = \frac{\pi}{2}$$

56. Let 
$$u = 4t - \frac{\pi}{4} \Rightarrow du = 4 dt \Rightarrow \frac{1}{4} du = dt; t = 0 \Rightarrow u = -\frac{\pi}{4}, t = \frac{\pi}{4} \Rightarrow u = \frac{3\pi}{4}$$

$$\int_{0}^{\pi/4} \cos^{2} \left(4t - \frac{\pi}{4}\right) dt = \int_{-\pi/4}^{3\pi/4} (\cos^{2} u) \left(\frac{1}{4} du\right) = \frac{1}{4} \left[\frac{u}{2} + \frac{\sin 2u}{4}\right]_{-\pi/4}^{3\pi/4} = \frac{1}{4} \left(\frac{3\pi}{8} + \frac{\sin \left(\frac{3\pi}{2}\right)}{4}\right) - \frac{1}{4} \left(-\frac{\pi}{8} + \frac{\sin \left(-\frac{\pi}{2}\right)}{4}\right) = \frac{\pi}{8} - \frac{1}{16} + \frac{1}{16} = \frac{\pi}{8}$$

57. 
$$\int_0^{\pi/3} \sec^2 \theta \ d\theta = [\tan \theta]_0^{\pi/3} = \tan \frac{\pi}{3} - \tan 0 = \sqrt{3}$$

58. 
$$\int_{\pi/4}^{3\pi/4} \csc^2 x \, dx = \left[ -\cot x \right]_{\pi/4}^{3\pi/4} = \left( -\cot \frac{3\pi}{4} \right) - \left( -\cot \frac{\pi}{4} \right) = 2$$

59. Let 
$$u = \frac{x}{6} \Rightarrow du = \frac{1}{6} dx \Rightarrow 6 du = dx$$
;  $x = \pi \Rightarrow u = \frac{\pi}{6}$ ,  $x = 3\pi \Rightarrow u = \frac{\pi}{2}$ 

$$\int_{\pi}^{3\pi} \cot^2 \frac{x}{6} dx = \int_{\pi/6}^{\pi/2} 6 \cot^2 u \, du = 6 \int_{\pi/6}^{\pi/2} (\csc^2 u - 1) \, du = [6(-\cot u - u)]_{\pi/6}^{\pi/2} = 6 \left( -\cot \frac{\pi}{2} - \frac{\pi}{2} \right) - 6 \left( -\cot \frac{\pi}{6} - \frac{\pi}{6} \right) = 6\sqrt{3} - 2\pi$$

60. Let 
$$u = \frac{\theta}{3} \Rightarrow du = \frac{1}{3} d\theta \Rightarrow 3 du = d\theta$$
;  $\theta = 0 \Rightarrow u = 0$ ,  $\theta = \pi \Rightarrow u = \frac{\pi}{3}$ 

$$\int_{0}^{\pi} \tan^{2} \frac{\theta}{3} d\theta = \int_{0}^{\pi} \left( \sec^{2} \frac{\theta}{3} - 1 \right) d\theta = \int_{0}^{\pi/3} 3 \left( \sec^{2} u - 1 \right) du = \left[ 3 \tan u - 3u \right]_{0}^{\pi/3} = \left[ 3 \tan \frac{\pi}{3} - 3 \left( \frac{\pi}{3} \right) \right] - (3 \tan 0 - 0) = 3\sqrt{3} - \pi$$

61. 
$$\int_{-\pi/3}^{0} \sec x \tan x \, dx = [\sec x]_{-\pi/3}^{0} = \sec 0 - \sec \left( -\frac{\pi}{3} \right) = 1 - 2 = -1$$

62. 
$$\int_{\pi/4}^{3\pi/4} \csc z \cot z \, dz = \left[-\csc z\right]_{\pi/4}^{3\pi/4} = \left(-\csc \frac{3\pi}{4}\right) - \left(-\csc \frac{\pi}{4}\right) = -\sqrt{2} + \sqrt{2} = 0$$

63. Let 
$$u = \sin x \Rightarrow du = \cos x \, dx$$
;  $x = 0 \Rightarrow u = 0$ ,  $x = \frac{\pi}{2} \Rightarrow u = 1$ 

$$\int_0^{\pi/2} 5(\sin x)^{3/2} \cos x \, dx = \int_0^1 5u^{3/2} \, du = \left[5\left(\frac{2}{5}\right)u^{5/2}\right]_0^1 = \left[2u^{5/2}\right]_0^1 = 2(1)^{5/2} - 2(0)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} + 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{5/2} = 2(1)^{$$

64. Let 
$$u = 1 - x^2 \Rightarrow du = -2x \ dx \Rightarrow -du = 2x \ dx; \ x = -1 \Rightarrow u = 0, \ x = 1 \Rightarrow u = 0$$

$$\int_{-1}^{1} 2x \sin(1 - x^2) \ dx = \int_{0}^{0} -\sin u \ du = 0$$

65. Let 
$$u = \sin 3x \Rightarrow du = 3\cos 3x \, dx \Rightarrow \frac{1}{3} \, du = \cos 3x \, dx; x = -\frac{\pi}{2} \Rightarrow u = \sin\left(-\frac{3\pi}{2}\right) = 1, x = \frac{\pi}{2} \Rightarrow u = \sin\left(\frac{3\pi}{2}\right) = -1$$

$$\int_{-\pi/2}^{\pi/2} 15\sin^4 3x \cos 3x \, dx = \int_{1}^{-1} 15u^4 \left(\frac{1}{3} \, du\right) = \int_{1}^{-1} 5u^4 \, du = \left[u^5\right]_{1}^{-1} = (-1)^5 - (1)^5 = -2$$

$$66. \text{ Let } u = \cos\left(\frac{x}{2}\right) \Rightarrow du = -\frac{1}{2}\sin\left(\frac{x}{2}\right) dx \Rightarrow -2 \ du = \sin\left(\frac{x}{2}\right) dx; \ x = 0 \Rightarrow u = \cos\left(\frac{0}{2}\right) = 1, \ x = \frac{2\pi}{3} \Rightarrow u = \cos\left(\frac{2\pi}{3}\right) = \frac{1}{2}$$
 
$$\int_{0}^{2\pi/3} \cos^{-4}\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right) dx = \int_{1}^{1/2} u^{-4}(-2 \ du) = \left[-2\left(\frac{u^{-3}}{-3}\right)\right]_{1}^{1/2} = \frac{2}{3}\left(\frac{1}{2}\right)^{-3} - \frac{2}{3}\left(1\right)^{-3} = \frac{2}{3}\left(8 - 1\right) = \frac{14}{3}$$

67. Let 
$$u = 1 + 3 \sin^2 x \Rightarrow du = 6 \sin x \cos x \, dx \Rightarrow \frac{1}{2} \, du = 3 \sin x \cos x \, dx; x = 0 \Rightarrow u = 1, x = \frac{\pi}{2} \Rightarrow u = 1 + 3 \sin^2 \frac{\pi}{2} = 4$$

$$\int_0^{\pi/2} \frac{3 \sin x \cos x}{\sqrt{1 + 3 \sin^2 x}} \, dx = \int_1^4 \frac{1}{\sqrt{u}} \left(\frac{1}{2} \, du\right) = \int_1^4 \frac{1}{2} u^{-1/2} \, du = \left[\frac{1}{2} \left(\frac{u^{1/2}}{\frac{1}{2}}\right)\right]_1^4 = \left[u^{1/2}\right]_1^4 = 4^{1/2} - 1^{1/2} = 1$$

68. Let 
$$u = 1 + 7 \tan x \Rightarrow du = 7 \sec^2 x \, dx \Rightarrow \frac{1}{7} \, du = \sec^2 x \, dx; x = 0 \Rightarrow u = 1 + 7 \tan 0 = 1, x = \frac{\pi}{4}$$

$$\Rightarrow u = 1 + 7 \tan \frac{\pi}{4} = 8$$

$$\int_0^{\pi/4} \frac{\sec^2 x}{(1 + 7 \tan x)^{2/3}} \, dx = \int_1^8 \frac{1}{u^{2/3}} \left(\frac{1}{7} \, du\right) = \int_1^8 \frac{1}{7} \, u^{-2/3} \, du = \left[\frac{1}{7} \left(\frac{u^{1/3}}{\frac{1}{3}}\right)\right]_1^8 = \left[\frac{3}{7} \, u^{1/3}\right]_1^8 = \frac{3}{7} \, (8)^{1/3} - \frac{3}{7} \, (1)^{1/3} = \frac{$$

69. Let 
$$\mathbf{u} = \sec \theta \Rightarrow d\mathbf{u} = \sec \theta \tan \theta \, d\theta$$
;  $\theta = 0 \Rightarrow \mathbf{u} = \sec 0 = 1$ ,  $\theta = \frac{\pi}{3} \Rightarrow \mathbf{u} = \sec \frac{\pi}{3} = 2$ 

$$\int_{0}^{\pi/3} \frac{\tan \theta}{\sqrt{2} \sec \theta} \, d\theta = \int_{0}^{\pi/3} \frac{\sec \theta \tan \theta}{\sec \theta \sqrt{2} \sec \theta} \, d\theta = \int_{0}^{\pi/3} \frac{\sec \theta \tan \theta}{\sqrt{2} (\sec \theta)^{3/2}} \, d\theta = \int_{1}^{2} \frac{1}{\sqrt{2} \mathbf{u}^{3/2}} \, d\mathbf{u} = \frac{1}{\sqrt{2}} \int_{1}^{2} \mathbf{u}^{-3/2} \, d\mathbf{u}$$

$$= \frac{1}{\sqrt{2}} \left[ \frac{\mathbf{u}^{-1/2}}{(-\frac{1}{2})} \right]_{1}^{2} = \left[ -\frac{2}{\sqrt{2}(1)} \right]_{1}^{2} = -\frac{2}{\sqrt{2}(2)} - \left( -\frac{2}{\sqrt{2}(1)} \right) = \sqrt{2} - 1$$

- 70. Let  $u = \sin \sqrt{t} \Rightarrow du = \left(\cos \sqrt{t}\right) \left(\frac{1}{2} t^{-1/2}\right) dt = \frac{\cos \sqrt{t}}{2\sqrt{t}} dt \Rightarrow 2 du = \frac{\cos \sqrt{t}}{\sqrt{t}} dt; t = \frac{\pi^2}{36} \Rightarrow u = \sin \frac{\pi}{6} = \frac{1}{2}$ ,  $t = \frac{\pi^2}{4} \Rightarrow u = \sin \frac{\pi}{2} = 1$   $\int_{\pi^2/36}^{\pi^2/4} \frac{\cos \sqrt{t}}{\sqrt{t \sin \sqrt{t}}} dt = \int_{1/2}^{1} \frac{1}{\sqrt{u}} (2 du) = 2 \int_{1/2}^{1} u^{-1/2} du = \left[4\sqrt{u}\right]_{1/2}^{1} = 4\sqrt{1} 4\sqrt{\frac{1}{2}} = 2\left(2 \sqrt{2}\right)$
- 71. (a)  $\operatorname{av}(f) = \frac{1}{1 (-1)} \int_{-1}^{1} (mx + b) \, dx = \frac{1}{2} \left[ \frac{mx^2}{2} + bx \right]_{-1}^{1} = \frac{1}{2} \left[ \left( \frac{m(1)^2}{2} + b(1) \right) \left( \frac{m(-1)^2}{2} + b(-1) \right) \right] = \frac{1}{2} (2b) = b$ (b)  $\operatorname{av}(f) = \frac{1}{k (-k)} \int_{-k}^{k} (mx + b) \, dx = \frac{1}{2k} \left[ \frac{mx^2}{2} + bx \right]_{-k}^{k} = \frac{1}{2k} \left[ \left( \frac{m(k)^2}{2} + b(k) \right) \left( \frac{m(-k)^2}{2} + b(-k) \right) \right] = \frac{1}{2k} (2bk) = b$
- 72. (a)  $y_{av} = \frac{1}{3-0} \int_0^3 \sqrt{3x} \, dx = \frac{1}{3} \int_0^3 \sqrt{3} \, x^{1/2} \, dx = \frac{\sqrt{3}}{3} \left[ \frac{2}{3} \, x^{3/2} \right]_0^3 = \frac{\sqrt{3}}{3} \left[ \frac{2}{3} \, (3)^{3/2} \frac{2}{3} \, (0)^{3/2} \right] = \frac{\sqrt{3}}{3} \left( 2\sqrt{3} \right) = 2$  (b)  $y_{av} = \frac{1}{a-0} \int_0^a \sqrt{ax} \, dx = \frac{1}{a} \int_0^a \sqrt{a} \, x^{1/2} \, dx = \frac{\sqrt{a}}{a} \left[ \frac{2}{3} \, x^{3/2} \right]_0^a = \frac{\sqrt{a}}{a} \left( \frac{2}{3} \, (a)^{3/2} \frac{2}{3} \, (0)^{3/2} \right) = \frac{\sqrt{a}}{a} \left( \frac{2}{3} \, a\sqrt{a} \right) = \frac{2}{3} \, a$
- 73.  $f'_{av} = \frac{1}{b-a} \int_a^b f'(x) dx = \frac{1}{b-a} [f(x)]_a^b = \frac{1}{b-a} [f(b) f(a)] = \frac{f(b) f(a)}{b-a}$  so the average value of f' over [a, b] is the slope of the secant line joining the points (a, f(a)) and (b, f(b)), which is the average rate of change of f over [a, b].
- 74. Yes, because the average value of f on [a, b] is  $\frac{1}{b-a} \int_a^b f(x) dx$ . If the length of the interval is 2, then b-a=2 and the average value of the function is  $\frac{1}{2} \int_a^b f(x) dx$ .
- 75. We want to evaluate  $\frac{1}{365-0} \int_0^{365} f(x) \, dx = \frac{1}{365} \int_0^{365} \left(37 \sin \left[\frac{2\pi}{365}(x-101)\right] + 25\right) dx = \frac{37}{365} \int_0^{365} \sin \left[\frac{2\pi}{365}(x-101)\right] dx + \frac{25}{365} \int_0^{365} dx$  Notice that the period of  $y = \sin \left[\frac{2\pi}{365}(x-101)\right]$  is  $\frac{2\pi}{365} = 365$  and that we are integrating this function over an iterval of length 365. Thus the value of  $\frac{37}{365} \int_0^{365} \sin \left[\frac{2\pi}{365}(x-101)\right] dx + \frac{25}{365} \int_0^{365} dx$  is  $\frac{37}{365} \cdot 0 + \frac{25}{365} \cdot 365 = 25$ .
- $76. \ \, \frac{1}{675-20} \int_{20}^{675} (8.27+10^{-5}(26T-1.87T^2)) dT = \frac{1}{655} \left[ 8.27T + \frac{26T^2}{2\cdot10^5} \frac{1.87T^3}{3\cdot10^5} \right]_{20}^{675} \\ = \frac{1}{655} \left( \left[ 8.27(675) + \frac{26(675)^2}{2\cdot10^5} \frac{1.87(675)^3}{3\cdot10^5} \right] \left[ 8.27(20) + \frac{26(20)^2}{2\cdot10^5} \frac{1.87(20)^3}{3\cdot10^5} \right] \right) \approx \frac{1}{655} (3724.44 165.40) \\ = 5.43 = \text{the average value of } C_v \text{ on } [20, 675]. \text{ To find the temperature } T \text{ at which } C_v = 5.43, \text{ solve} \\ 5.43 = 8.27 + 10^{-5}(26T 1.87T^2) \text{ for } T. \text{ We obtain } 1.87T^2 26T 284000 = 0 \\ \Rightarrow T = \frac{26 \pm \sqrt{(26)^2 4(1.87)(-284000)}}{2(1.87)} = \frac{26 \pm \sqrt{2124996}}{3.74}. \text{ So } T = -382.82 \text{ or } T = 396.72. \text{ Only } T = 396.72 \text{ lies in the interval } [20, 675], \text{ so } T = 396.72^{\circ}\text{C}.$
- 77.  $\frac{dy}{dx} = \sqrt{2 + \cos^3 x}$
- 78.  $\frac{dy}{dx} = \sqrt{2 + \cos^3(7x^2)} \cdot \frac{d}{dx}(7x^2) = 14x\sqrt{2 + \cos^3(7x^2)}$

79. 
$$\frac{dy}{dx} = \frac{d}{dx} \left( - \int_1^x \frac{6}{3+t^4} dt \right) = -\frac{6}{3+x^4}$$

$$80. \ \frac{dy}{dx} = \frac{d}{dx} \left( \int_{\sec x}^2 \frac{1}{t^2 + 1} dt \right) = -\frac{d}{dx} \left( \int_2^{\sec x} \frac{1}{t^2 + 1} dt \right) = -\frac{1}{\sec^2 x + 1} \frac{d}{dx} (\sec x) = -\frac{\sec x \tan x}{1 + \sec^2 x}$$

- 81. Yes. The function f, being differentiable on [a, b], is then continuous on [a, b]. The Fundamental Theorem of Calculus says that every continuous function on [a, b] is the derivative of a function on [a, b].
- 82. The second part of the Fundamental Theorem of Calculus states that if F(x) is an antiderivative of f(x) on [a, b], then  $\int_a^b f(x) dx = F(b) F(a)$ . In particular, if F(x) is an antiderivative of  $\sqrt{1 + x^4}$  on [0, 1], then  $\int_0^1 \sqrt{1 + x^4} dx = F(1) F(0)$ .

$$83. \ \ y = \int_x^1 \sqrt{1+t^2} \ dt = -\int_1^x \sqrt{1+t^2} \ dt \ \Rightarrow \ \frac{dy}{dx} = \frac{d}{dx} \left[ -\int_1^x \sqrt{1+t^2} \ dt \right] = -\frac{d}{dx} \left[ \int_1^x \sqrt{1+t^2} \ dt \right] = -\sqrt{1+x^2}$$

84. 
$$y = \int_{\cos x}^{0} \frac{1}{1-t^2} dt = -\int_{0}^{\cos x} \frac{1}{1-t^2} dt \Rightarrow \frac{dy}{dx} = \frac{d}{dx} \left[ -\int_{0}^{\cos x} \frac{1}{1-t^2} dt \right] = -\frac{d}{dx} \left[ \int_{0}^{\cos x} \frac{1}{1-t^2} dt \right]$$

$$= -\left(\frac{1}{1-\cos^2 x}\right) \left(\frac{d}{dx} (\cos x)\right) = -\left(\frac{1}{\sin^2 x}\right) (-\sin x) = \frac{1}{\sin x} = \csc x$$

85. We estimate the area A using midpoints of the vertical intervals, and we will estimate the width of the parking lot on each interval by averaging the widths at top and bottom. This gives the estimate

$$A \approx 15 \cdot \left( \frac{0+36}{2} + \frac{36+54}{2} + \frac{54+51}{2} + \frac{51+49.5}{2} + \frac{49.5+54}{2} + \frac{54+64.4}{2} + \frac{64.4+67.5}{2} + \frac{67.5+42}{2} \right)$$

 $A \approx 5961 \text{ ft}^2$ . The cost is Area  $\cdot$  (\$2.10/ft<sup>2</sup>)  $\approx$  (5961 ft<sup>2</sup>) (\$2.10/ft<sup>2</sup>) = \$12,518.10  $\Rightarrow$  the job cannot be done for \$11,000.

- 86. (a) Before the chute opens for A, a = -32 ft/sec<sup>2</sup>. Since the helicopter is hovering,  $v_0 = 0$  ft/sec  $\Rightarrow v = \int -32$  dt = -32t +  $v_0 = -32$ t. Then  $s_0 = 6400$  ft  $\Rightarrow s = \int -32$ t dt  $= -16t^2 + s_0 = -16t^2 + 6400$ . At t = 4 sec,  $s = -16(4)^2 + 6400 = 6144$  ft when A's chute opens;
  - (b) For B,  $s_0 = 7000$  ft,  $v_0 = 0$ , a = -32 ft/sec<sup>2</sup>  $\Rightarrow v = \int -32$  dt = -32t  $+ v_0 = -32$ t  $\Rightarrow s = \int -32$ t dt  $= -16t^2 + s_0 = -16t^2 + 7000$ . At t = 13 sec,  $s = -16(13)^2 + 7000 = 4296$  ft when B's chute opens;
  - (c) After the chutes open, v = -16 ft/sec  $\Rightarrow s = \int -16$  dt  $= -16t + s_0$ . For A,  $s_0 = 6144$  ft and for B,  $s_0 = 4296$  ft. Therefore, for A, s = -16t + 6144 and for B, s = -16t + 4296. When they hit the ground,  $s = 0 \Rightarrow$  for A,  $0 = -16t + 6144 \Rightarrow t = \frac{6144}{16} = 384$  seconds, and for B,  $0 = -16t + 4296 \Rightarrow t = \frac{4296}{16} = 268.5$  seconds to hit the ground after the chutes open. Since B's chute opens 58 seconds after A's opens  $\Rightarrow$  B hits the ground first.

## CHAPTER 5 ADDITIONAL AND ADVANCED EXERCISES

- 1. (a) Yes, because  $\int_0^1 f(x) dx = \frac{1}{7} \int_0^1 7f(x) dx = \frac{1}{7} (7) = 1$ 
  - (b) No. For example,  $\int_0^1 8x \, dx = \left[4x^2\right]_0^1 = 4$ , but  $\int_0^1 \sqrt{8x} \, dx = \left[2\sqrt{2}\left(\frac{x^{3/2}}{\frac{3}{2}}\right)\right]_0^1 = \frac{4\sqrt{2}}{3}\left(1^{3/2} 0^{3/2}\right) = \frac{4\sqrt{2}}{3} \neq \sqrt{4}$
- 2. (a) True:  $\int_{5}^{2} f(x) dx = -\int_{2}^{5} f(x) dx = -3$ 
  - (b) True:  $\int_{-2}^{5} [f(x) + g(x)] dx = \int_{-2}^{5} f(x) dx + \int_{-2}^{5} g(x) dx = \int_{-2}^{2} f(x) dx + \int_{2}^{5} f(x) dx + \int_{-2}^{5} g(x) dx = 4 + 3 + 2 = 9$

- $\text{(c) False: } \int_{-2}^{5} f(x) \, dx = 4 + 3 = 7 > 2 = \int_{-2}^{5} g(x) \, dx \ \Rightarrow \ \int_{-2}^{5} [f(x) g(x)] \, dx > 0 \ \Rightarrow \ \int_{-2}^{5} [g(x) f(x)] \, dx < 0.$  On the other hand,  $f(x) \leq g(x) \ \Rightarrow \ [g(x) f(x)] \geq 0 \ \Rightarrow \ \int_{-2}^{5} [g(x) f(x)] \, dx \geq 0$  which is a contradiction.
- 3.  $y = \frac{1}{a} \int_0^x f(t) \sin a(x-t) dt = \frac{1}{a} \int_0^x f(t) \sin ax \cos at dt \frac{1}{a} \int_0^x f(t) \cos ax \sin at dt$   $= \frac{\sin ax}{a} \int_0^x f(t) \cos at dt \frac{\cos ax}{a} \int_0^x f(t) \sin at dt \Rightarrow \frac{dy}{dx} = \cos ax \left( \int_0^x f(t) \cos at dt \right)$   $+ \frac{\sin ax}{a} \left( \frac{d}{dx} \int_0^x f(t) \cos at dt \right) + \sin ax \int_0^x f(t) \sin at dt \frac{\cos ax}{a} \left( \frac{d}{dx} \int_0^x f(t) \sin at dt \right)$   $= \cos ax \int_0^x f(t) \cos at dt + \frac{\sin ax}{a} (f(x) \cos ax) + \sin ax \int_0^x f(t) \sin at dt \frac{\cos ax}{a} (f(x) \sin ax)$   $\Rightarrow \frac{dy}{dx} = \cos ax \int_0^x f(t) \cos at dt + \sin ax \int_0^x f(t) \sin at dt. \text{ Next,}$   $\frac{d^2y}{dx^2} = -a \sin ax \int_0^x f(t) \cos at dt + (\cos ax) \left( \frac{d}{dx} \int_0^x f(t) \cos at dt \right) + a \cos ax \int_0^x f(t) \sin at dt$   $+ (\sin ax) \left( \frac{d}{dx} \int_0^x f(t) \sin at dt \right) = -a \sin ax \int_0^x f(t) \cos at dt + (\cos ax) f(x) \cos ax$   $+ a \cos ax \int_0^x f(t) \sin at dt + (\sin ax) f(x) \sin ax = -a \sin ax \int_0^x f(t) \cos at dt + a \cos ax \int_0^x f(t) \sin at dt + f(x).$ Therefore,  $y'' + a^2y = a \cos ax \int_0^x f(t) \sin at dt a \sin ax \int_0^x f(t) \cos at dt + f(x)$   $+ a^2 \left( \frac{\sin ax}{a} \int_0^x f(t) \cos at dt \frac{\cos ax}{a} \int_0^x f(t) \sin at dt \right) = f(x). \text{ Note also that } y'(0) = y(0) = 0.$
- $4. \quad x = \int_0^y \frac{1}{\sqrt{1+4t^2}} \ dt \ \Rightarrow \ \frac{d}{dx} \left(x\right) = \frac{d}{dx} \int_0^y \frac{1}{\sqrt{1+4t^2}} \ dt = \frac{d}{dy} \left[ \int_0^y \frac{1}{\sqrt{1+4t^2}} \ dt \right] \left( \frac{dy}{dx} \right) \ \text{from the chain rule}$   $\Rightarrow \ 1 = \frac{1}{\sqrt{1+4y^2}} \left( \frac{dy}{dx} \right) \ \Rightarrow \ \frac{dy}{dx} = \sqrt{1+4y^2} \ . \ \text{Then} \ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( \sqrt{1+4y^2} \right) = \frac{d}{dy} \left( \sqrt{1+4y^2} \right) \left( \frac{dy}{dx} \right)$   $= \frac{1}{2} \left( 1+4y^2 \right)^{-1/2} \left( 8y \right) \left( \frac{dy}{dx} \right) = \frac{4y \left( \frac{dy}{dx} \right)}{\sqrt{1+4y^2}} = \frac{4y \left( \sqrt{1+4y^2} \right)}{\sqrt{1+4y^2}} = 4y. \ \text{Thus} \ \frac{d^2y}{dx^2} = 4y, \ \text{and the constant of proportionality is 4.}$
- 5. (a)  $\int_0^{x^2} f(t) \, dt = x \cos \pi x \, \Rightarrow \, \frac{d}{dx} \int_0^{x^2} f(t) \, dt = \cos \pi x \pi x \sin \pi x \, \Rightarrow \, f\left(x^2\right)(2x) = \cos \pi x \pi x \sin \pi x \\ \Rightarrow f\left(x^2\right) = \frac{\cos \pi x \pi x \sin \pi x}{2x}. \text{ Thus, } x = 2 \, \Rightarrow \, f(4) = \frac{\cos 2\pi 2\pi \sin 2\pi}{4} = \frac{1}{4}$  (b)  $\int_0^{f(x)} t^2 \, dt = \left[\frac{t^3}{3}\right]_0^{f(x)} = \frac{1}{3} \left(f(x)\right)^3 \, \Rightarrow \, \frac{1}{3} \left(f(x)\right)^3 = x \cos \pi x \, \Rightarrow \, \left(f(x)\right)^3 = 3x \cos \pi x \, \Rightarrow \, f(x) = \sqrt[3]{3x \cos \pi x} \\ \Rightarrow \, f(4) = \sqrt[3]{3(4) \cos 4\pi} = \sqrt[3]{12}$
- 6.  $\int_0^a f(x) \, dx = \frac{a^2}{2} + \frac{a}{2} \sin a + \frac{\pi}{2} \cos a. \text{ Let } F(a) = \int_0^a f(t) \, dt \ \Rightarrow \ f(a) = F'(a). \text{ Now } F(a) = \frac{a^2}{2} + \frac{a}{2} \sin a + \frac{\pi}{2} \cos a$   $\Rightarrow \ f(a) = F'(a) = a + \frac{1}{2} \sin a + \frac{a}{2} \cos a \frac{\pi}{2} \sin a \ \Rightarrow \ f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} + \frac{1}{2} \sin \frac{\pi}{2} + \frac{\left(\frac{\pi}{2}\right)}{2} \cos \frac{\pi}{2} \frac{\pi}{2} \sin \frac{\pi}{2} = \frac{\pi}{2} + \frac{1}{2} \frac{\pi}{2} = \frac{1}{2}$
- $7. \quad \int_{1}^{b} f(x) \ dx = \sqrt{b^2 + 1} \sqrt{2} \ \Rightarrow \ f(b) = \frac{d}{db} \int_{1}^{b} f(x) \ dx = \frac{1}{2} \left( b^2 + 1 \right)^{-1/2} (2b) = \frac{b}{\sqrt{b^2 + 1}} \ \Rightarrow \ f(x) = \frac{x}{\sqrt{x^2 + 1}} = \frac{1}{2} \left( b^2 + 1 \right)^{-1/2} (2b) = \frac{b}{\sqrt{b^2 + 1}} = \frac{1}{2} \left( b^2 + 1 \right)^{-1/2} (2b) = \frac{b}{\sqrt{b^2 + 1}} \Rightarrow \ f(x) = \frac{x}{\sqrt{x^2 + 1}} = \frac{1}{2} \left( b^2 + 1 \right)^{-1/2} (2b) = \frac{b}{\sqrt{b^2 + 1}} = \frac{1}{2} \left( b^2 + 1 \right)^{-1/2} (2b) = \frac{b}{\sqrt{b^2 + 1}} \Rightarrow \ f(x) = \frac{x}{\sqrt{x^2 + 1}} = \frac{1}{2} \left( b^2 + 1 \right)^{-1/2} (2b) = \frac{b}{\sqrt{b^2 + 1}} = \frac{x}{\sqrt{b^2 + 1}} =$
- 8. The derivative of the left side of the equation is:  $\frac{d}{dx} \left[ \int_0^x \left[ \int_0^u f(t) dt \right] du \right] = \int_0^x f(t) dt$ ; the derivative of the right side of the equation is:  $\frac{d}{dx} \left[ \int_0^x f(u)(x-u) du \right] = \frac{d}{dx} \int_0^x f(u) x du \frac{d}{dx} \int_0^x u f(u) du$

$$=\frac{d}{dx}\left[x\int_0^x f(u)\,du\right]-\frac{d}{dx}\int_0^x u\;f(u)\,du=\int_0^x f(u)\,du+x\left[\frac{d}{dx}\int_0^x f(u)\,du\right]-xf(x)=\int_0^x f(u)\,du+xf(x)-xf(x)$$
 
$$=\int_0^x f(u)\,du. \text{ Since each side has the same derivative, they differ by a constant, and since both sides equal 0}$$
 when  $x=0$ , the constant must be 0. Therefore,  $\int_0^x \left[\int_0^u f(t)\,dt\right]\,du=\int_0^x f(u)(x-u)\,du.$ 

- 9.  $\frac{dy}{dx} = 3x^2 + 2 \implies y = \int (3x^2 + 2) dx = x^3 + 2x + C$ . Then (1, -1) on the curve  $\implies 1^3 + 2(1) + C = -1 \implies C = -4$   $\implies y = x^3 + 2x 4$
- 10. The acceleration due to gravity downward is  $-32 \text{ ft/sec}^2 \Rightarrow v = \int -32 \text{ dt} = -32t + v_0$ , where  $v_0$  is the initial velocity  $\Rightarrow v = -32t + 32 \Rightarrow s = \int (-32t + 32) \text{ dt} = -16t^2 + 32t + C$ . If the release point, at t = 0, is s = 0, then  $C = 0 \Rightarrow s = -16t^2 + 32t$ . Then  $s = 17 \Rightarrow 17 = -16t^2 + 32t \Rightarrow 16t^2 32t + 17 = 0$ . The discriminant of this quadratic equation is -64 which says there is no real time when s = 17 ft. You had better duck.
- 11.  $\int_{-8}^{3} f(x) dx = \int_{-8}^{0} x^{2/3} dx + \int_{0}^{3} -4 dx$  $= \left[ \frac{3}{5} x^{5/3} \right]_{-8}^{0} + \left[ -4x \right]_{0}^{3}$  $= \left( 0 \frac{3}{5} (-8)^{5/3} \right) + \left( -4(3) 0 \right) = \frac{96}{5} 12$  $= \frac{36}{5}$

 $y = x^{2/3}$  -8 -4 0  $y = x^{2/3}$  4 2 y = -4 3 y = -4

12.  $\int_{-4}^{3} f(x) dx = \int_{-4}^{0} \sqrt{-x} dx + \int_{0}^{3} (x^{2} - 4) dx$  $= \left[ -\frac{2}{3} (-x)^{3/2} \right]_{-4}^{0} + \left[ \frac{x^{3}}{3} - 4x \right]_{0}^{3}$  $= \left[ 0 - \left( -\frac{2}{3} (4)^{3/2} \right) \right] + \left[ \left( \frac{3^{3}}{3} - 4(3) \right) - 0 \right]$  $= \frac{16}{3} - 3 = \frac{7}{3}$ 



13.  $\int_{0}^{2} g(t) dt = \int_{0}^{1} t dt + \int_{1}^{2} \sin \pi t dt$  $= \left[ \frac{t^{2}}{2} \right]_{0}^{1} + \left[ -\frac{1}{\pi} \cos \pi t \right]_{1}^{2}$  $= \left( \frac{1}{2} - 0 \right) + \left[ -\frac{1}{\pi} \cos 2\pi - \left( -\frac{1}{\pi} \cos \pi \right) \right]$  $= \frac{1}{2} - \frac{2}{\pi}$ 



14.  $\int_{0}^{2} h(z) dz = \int_{0}^{1} \sqrt{1 - z} dz + \int_{1}^{2} (7z - 6)^{-1/3} dz$  $= \left[ -\frac{2}{3} (1 - z)^{3/2} \right]_{0}^{1} + \left[ \frac{3}{14} (7z - 6)^{2/3} \right]_{1}^{2}$  $= \left[ -\frac{2}{3} (1 - 1)^{3/2} - \left( -\frac{2}{3} (1 - 0)^{3/2} \right) \right]$  $+ \left[ \frac{3}{14} (7(2) - 6)^{2/3} - \frac{3}{14} (7(1) - 6)^{2/3} \right]$  $= \frac{2}{3} + \left( \frac{6}{7} - \frac{3}{14} \right) = \frac{55}{42}$ 



15. 
$$\int_{-2}^{2} f(x) dx = \int_{-2}^{-1} dx + \int_{-1}^{1} (1 - x^{2}) dx + \int_{1}^{2} 2 dx$$

$$= [x]_{-2}^{-1} + \left[ x - \frac{x^{3}}{3} \right]_{-1}^{1} + [2x]_{1}^{2}$$

$$= (-1 - (-2)) + \left[ \left( 1 - \frac{1^{3}}{3} \right) - \left( -1 - \frac{(-1)^{3}}{3} \right) \right] + \left[ 2(2) - 2(1) \right]$$

$$= 1 + \frac{2}{3} - \left( -\frac{2}{3} \right) + 4 - 2 = \frac{13}{3}$$







- 17. Ave. value  $= \frac{1}{b-a} \int_a^b f(x) \, dx = \frac{1}{2-0} \int_0^2 f(x) \, dx = \frac{1}{2} \left[ \int_0^1 x \, dx + \int_1^2 (x-1) \, dx \right] = \frac{1}{2} \left[ \frac{x^2}{2} \right]_0^1 + \frac{1}{2} \left[ \frac{x^2}{2} x \right]_1^2$   $= \frac{1}{2} \left[ \left( \frac{1^2}{2} 0 \right) + \left( \frac{2^2}{2} 2 \right) \left( \frac{1^2}{2} 1 \right) \right] = \frac{1}{2}$
- 18. Ave. value =  $\frac{1}{b-a} \int_a^b f(x) \, dx = \frac{1}{3-0} \int_0^3 f(x) \, dx = \frac{1}{3} \left[ \int_0^1 dx + \int_1^2 0 \, dx + \int_2^3 dx \right] = \frac{1}{3} \left[ 1 0 + 0 + 3 2 \right] = \frac{2}{3}$
- 19. Let  $f(x)=x^5$  on [0,1]. Partition [0,1] into n subintervals with  $\Delta x=\frac{1-0}{n}=\frac{1}{n}$ . Then  $\frac{1}{n},\frac{2}{n},\ldots,\frac{n}{n}$  are the right-hand endpoints of the subintervals. Since f is increasing on [0,1],  $U=\sum_{j=1}^{\infty}\left(\frac{j}{n}\right)^5\left(\frac{1}{n}\right)$  is the upper sum for  $f(x)=x^5 \text{ on } [0,1] \ \Rightarrow \ \lim_{n\to\infty}\sum_{j=1}^{\infty}\left(\frac{j}{n}\right)^5\left(\frac{1}{n}\right)=\lim_{n\to\infty}\frac{1}{n}\left[\left(\frac{1}{n}\right)^5+\left(\frac{2}{n}\right)^5+\ldots+\left(\frac{n}{n}\right)^5\right]=\lim_{n\to\infty}\left[\frac{1^5+2^5+\ldots+n^5}{n^6}\right] = \int_0^1 x^5 \ dx = \left[\frac{x^6}{6}\right]_0^1=\frac{1}{6}$
- 20. Let  $f(x) = x^3$  on [0,1]. Partition [0,1] into n subintervals with  $\Delta x = \frac{1-0}{n} = \frac{1}{n}$ . Then  $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$  are the right-hand endpoints of the subintervals. Since f is increasing on [0,1],  $U = \sum_{j=1}^{\infty} \left(\frac{j}{n}\right)^3 \left(\frac{1}{n}\right)$  is the upper sum for  $f(x) = x^3$  on  $[0,1] \Rightarrow \lim_{n \to \infty} \sum_{j=1}^{\infty} \left(\frac{j}{n}\right)^3 \left(\frac{1}{n}\right) = \lim_{n \to \infty} \frac{1}{n} \left[\left(\frac{1}{n}\right)^3 + \left(\frac{2}{n}\right)^3 + \ldots + \left(\frac{n}{n}\right)^3\right] = \lim_{n \to \infty} \left[\frac{1^3 + 2^3 + \ldots + n^3}{n^4}\right] = \int_0^1 x^3 \, dx = \left[\frac{x^4}{4}\right]_0^1 = \frac{1}{4}$
- 21. Let y=f(x) on [0,1]. Partition [0,1] into n subintervals with  $\Delta x=\frac{1-0}{n}=\frac{1}{n}$ . Then  $\frac{1}{n},\frac{2}{n},\ldots,\frac{n}{n}$  are the right-hand endpoints of the subintervals. Since f is continuous on  $[0,1],\sum_{j=1}^{\infty}f\left(\frac{j}{n}\right)\left(\frac{1}{n}\right)$  is a Riemann sum of y=f(x) on  $[0,1] \Rightarrow \lim_{n\to\infty}\sum_{j=1}^{\infty}f\left(\frac{j}{n}\right)\left(\frac{1}{n}\right)=\lim_{n\to\infty}\frac{1}{n}\left[f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\ldots+f\left(\frac{n}{n}\right)\right]=\int_{0}^{1}f(x)\,dx$
- 22. (a)  $\lim_{n \to \infty} \frac{1}{n^2} [2 + 4 + 6 + \dots + 2n] = \lim_{n \to \infty} \frac{1}{n} \left[ \frac{2}{n} + \frac{4}{n} + \frac{6}{n} + \dots + \frac{2n}{n} \right] = \int_0^1 2x \, dx = \left[ x^2 \right]_0^1 = 1$ , where f(x) = 2x on [0, 1] (see Exercise 21)

- (b)  $\lim_{n \to \infty} \frac{1}{n^{16}} \left[ 1^{15} + 2^{15} + \dots + n^{15} \right] = \lim_{n \to \infty} \frac{1}{n} \left[ \left( \frac{1}{n} \right)^{15} + \left( \frac{2}{n} \right)^{15} + \dots + \left( \frac{n}{n} \right)^{15} \right] = \int_0^1 x^{15} \, dx = \left[ \frac{x^{16}}{16} \right]_0^1 = \frac{1}{16}, \text{ where } f(x) = x^{15} \text{ on } [0, 1] \text{ (see Exercise 21)}$
- (c)  $\lim_{n \to \infty} \frac{1}{n} \left[ \sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{n\pi}{n} \right] = \int_0^1 \sin n\pi \, dx = \left[ -\frac{1}{\pi} \cos \pi x \right]_0^1 = -\frac{1}{\pi} \cos \pi \left( -\frac{1}{\pi} \cos 0 \right) = \frac{2}{\pi}$ , where  $f(x) = \sin \pi x$  on [0, 1] (see Exercise 21)
- (d)  $\lim_{n \to \infty} \frac{1}{n^{17}} [1^{15} + 2^{15} + \dots + n^{15}] = \left(\lim_{n \to \infty} \frac{1}{n}\right) \left(\lim_{n \to \infty} \frac{1}{n^{16}} [1^{15} + 2^{15} + \dots + n^{15}]\right) = \left(\lim_{n \to \infty} \frac{1}{n}\right) \int_0^1 x^{15} dx$   $= 0 \left(\frac{1}{16}\right) = 0 \quad \text{(see part (b) above)}$
- (e)  $\lim_{n \to \infty} \frac{1}{n^{15}} \left[ 1^{15} + 2^{15} + \dots + n^{15} \right] = \lim_{n \to \infty} \frac{n}{n^{16}} \left[ 1^{15} + 2^{15} + \dots + n^{15} \right]$  $= \left( \lim_{n \to \infty} n \right) \left( \lim_{n \to \infty} \frac{1}{n^{16}} \left[ 1^{15} + 2^{15} + \dots + n^{15} \right] \right) = \left( \lim_{n \to \infty} n \right) \int_{0}^{1} x^{15} \, dx = \infty \text{ (see part (b) above)}$
- 23. (a) Let the polygon be inscribed in a circle of radius r. If we draw a radius from the center of the circle (and the polygon) to each vertex of the polygon, we have n isosceles triangles formed (the equal sides are equal to r, the radius of the circle) and a vertex angle of  $\theta_n$  where  $\theta_n = \frac{2\pi}{n}$ . The area of each triangle is  $A_n = \frac{1}{2} r^2 \sin \theta_n \implies$  the area of the polygon is  $A = nA_n = \frac{nr^2}{2} \sin \theta_n = \frac{nr^2}{2} \sin \frac{2\pi}{n}$ .
  - $\text{(b)} \quad \lim_{n \to \infty} \ A = \lim_{n \to \infty} \ \frac{n r^2}{2} \sin \frac{2\pi}{n} = \lim_{n \to \infty} \ \frac{n \pi r^2}{2\pi} \sin \frac{2\pi}{n} = \lim_{n \to \infty} \ (\pi r^2) \frac{\sin \left(\frac{2\pi}{n}\right)}{\left(\frac{2\pi}{n}\right)} = (\pi r^2) \lim_{2\pi/n \to 0} \ \frac{\sin \left(\frac{2\pi}{n}\right)}{\left(\frac{2\pi}{n}\right)} = \pi r^2$
- 24. Partition [0, 1] into n subintervals, each of length  $\Delta x = \frac{1}{n}$  with the points  $x_0 = 0$ ,  $x_1 = \frac{1}{n}$ ,  $x_2 = \frac{2}{n}$ , ...,  $x_n = \frac{n}{n} = 1$ . The inscribed rectangles so determined have areas  $f(x_0) \, \Delta x = (0)^2 \, \Delta x, \, f(x_1) \, \Delta x = \left(\frac{1}{n}\right)^2 \, \Delta x, \, f(x_2) \, \Delta x = \left(\frac{2}{n}\right)^2 \, \Delta x, \dots, \, f(x_{n-1}) = \left(\frac{n-1}{n}\right)^2 \, \Delta x.$  The sum of these areas is  $S_n = \left(0^2 + \left(\frac{1}{n}\right)^2 + \left(\frac{2}{n}\right)^2 + \dots + \left(\frac{n-1}{n}\right)^2\right) \, \Delta x = \left(\frac{1^2}{n^2} + \frac{2^2}{n^2} + \dots + \frac{(n-1)^2}{n^2}\right) \frac{1}{n} = \frac{1^2}{n^3} + \frac{2^2}{n^3} + \dots + \frac{(n-1)^2}{n^3}.$  Then  $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1^2}{n^3} + \frac{2^2}{n^3} + \dots + \frac{(n-1)^2}{n^3}\right) = \int_0^1 x^2 \, dx = \frac{1}{3} = \frac{1}{3}.$
- 25. (a)  $g(1) = \int_{1}^{1} f(t) dt = 0$ 
  - (b)  $g(3) = \int_{1}^{3} f(t) dt = -\frac{1}{2}(2)(1) = -1$
  - (c)  $g(-1) = \int_{1}^{-1} f(t) dt = -\int_{-1}^{1} f(t) dt = -\frac{1}{4} (\pi 2^{2}) = -\pi$
  - (d)  $g'(x) = f(x) = 0 \Rightarrow x = -3, 1, 3$  and the sign chart for g'(x) = f(x) is  $\begin{vmatrix} +++ \\ -3 \end{vmatrix} = -1$ . So g has a relative maximum at x = 1.
  - (e) g'(-1) = f(-1) = 2 is the slope and  $g(-1) = \int_{1}^{-1} f(t) dt = -\pi$ , by (c). Thus the equation is  $y + \pi = 2(x + 1)$   $y = 2x + 2 \pi$ .
  - (f) g''(x) = f'(x) = 0 at x = -1 and g''(x) = f'(x) is negative on (-3, -1) and positive on (-1, 1) so there is an inflection point for g at x = -1. We notice that g''(x) = f'(x) < 0 for x on (-1, 2) and g''(x) = f'(x) > 0 for x on (2, 4), even though g''(2) does not exist, g has a tangent line at x = 2, so there is an inflection point at x = 2.
  - (g) g is continuous on [-3, 4] and so it attains its absolute maximum and minimum values on this interval. We saw in (d) that  $g'(x) = 0 \Rightarrow x = -3, 1, 3$ . We have that

$$g(-3) = \int_{1}^{-3} f(t) dt = -\int_{-3}^{1} f(t) dt = -\frac{\pi 2^{2}}{2} = -2\pi$$

$$g(1) = \int_{1}^{1} f(t) \, dt = 0$$

$$g(3) = \int_{1}^{3} f(t) dt = -1$$

$$g(4) = \int_{1}^{4} f(t) dt = -1 + \frac{1}{2} \cdot 1 \cdot 1 = -\frac{1}{2}$$

Thus, the absolute minimum is  $-2\pi$  and the absolute maximum is 0. Thus, the range is  $[-2\pi, 0]$ .

26. 
$$y = \sin x + \int_{x}^{\pi} \cos 2t \, dt + 1 = \sin x - \int_{\pi}^{x} \cos 2t \, dt + 1 \Rightarrow y' = \cos x - \cos(2x)$$
; when  $x = \pi$  we have  $y' = \cos \pi - \cos(2\pi) = -1 - 1 = -2$ . And  $y'' = -\sin x + 2\sin(2x)$ ; when  $x = \pi$ ,  $y = \sin \pi + \int_{x}^{\pi} \cos 2t \, dt + 1 = 0 + 0 + 1 = 1$ .

27. 
$$f(x) = \int_{1/x}^{x} \frac{1}{t} dt \implies f'(x) = \frac{1}{x} \left( \frac{dx}{dx} \right) - \left( \frac{1}{\frac{1}{x}} \right) \left( \frac{d}{dx} \left( \frac{1}{x} \right) \right) = \frac{1}{x} - x \left( -\frac{1}{x^2} \right) = \frac{1}{x} + \frac{1}{x} = \frac{2}{x}$$

28. 
$$f(x) = \int_{\cos x}^{\sin x} \frac{1}{1 - t^2} dt \Rightarrow f'(x) = \left(\frac{1}{1 - \sin^2 x}\right) \left(\frac{d}{dx} \left(\sin x\right)\right) - \left(\frac{1}{1 - \cos^2 x}\right) \left(\frac{d}{dx} \left(\cos x\right)\right) = \frac{\cos x}{\cos^2 x} + \frac{\sin x}{\sin^2 x}$$
$$= \frac{1}{\cos x} + \frac{1}{\sin x}$$

$$29. \ \ g(y) = \int_{\sqrt{y}}^{2\sqrt{y}} \sin t^2 \ dt \ \Rightarrow \ g'(y) = \left(\sin \left(2\sqrt{y}\right)^2\right) \left(\frac{d}{dy} \left(2\sqrt{y}\right)\right) - \left(\sin \left(\sqrt{y}\right)^2\right) \left(\frac{d}{dy} \left(\sqrt{y}\right)\right) = \frac{\sin 4y}{\sqrt{y}} - \frac{\sin y}{2\sqrt{y}}$$

30. 
$$f(x) = \int_{x}^{x+3} t(5-t) dt \Rightarrow f'(x) = (x+3)(5-(x+3)) \left(\frac{d}{dx}(x+3)\right) - x(5-x) \left(\frac{dx}{dx}\right) = (x+3)(2-x) - x(5-x)$$

$$= 6 - x - x^2 - 5x + x^2 = 6 - 6x. \text{ Thus } f'(x) = 0 \Rightarrow 6 - 6x = 0 \Rightarrow x = 1. \text{ Also, } f''(x) = -6 < 0 \Rightarrow x = 1 \text{ gives a maximum.}$$

| 326 | Chapter 5 | Integration |
|-----|-----------|-------------|
|     |           |             |

NOTES