Análise Complexa e Equações Diferenciais

Problemas propostos para as aulas práticas

Semanas 6 - 26 a 30 de Outubro de 2020

1. Escreva uma expressão da forma $\sum_{n=0}^{\infty} c_n z^n$ para as seguintes funções:

 $\frac{1}{2z+5} \qquad \text{b)} \qquad \frac{1}{z^4+1} \qquad \text{c)} \qquad \frac{1+iz}{1-iz} \qquad \text{d)} \qquad \frac{1}{1-z+z^2}$ $\frac{1}{(z+1)(z+2)} \qquad \text{f)} \qquad \frac{1}{(z^2-1)(z^2-9)}$

Em cada caso, indique o conjunto onde a expressão obtida é válida.

2. Determine a região de convergência das seguintes séries de potências:

a) $\sum_{n=0}^{\infty} \frac{\left(\frac{z}{\sqrt{2}} - i\sqrt{2}\right)^n}{n^4 + 1}$ b) $\sum_{n=1}^{\infty} \frac{(z+i)^n}{(n!)^2}$ c) $\sum_{n=1}^{\infty} \frac{1}{n^n} (z+1-i)^n$ d) $\sum_{n=1}^{\infty} \frac{n!}{n^n} (z+1)^n$ e) $\sum_{n=0}^{\infty} n^n z^{n^2}$

3. A função ζ de Riemann é definida pela fórmula:

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}.$$

Mostre que esta série é absolutamente convergente para Re(z) > 1 e uniformemente convergente para $Re(z) \ge c$, para qualquer c > 1.

- 4. Se a série $\sum_{n=0}^{\infty} a_n z^n$ tem raio de convergência R, quais os raios de convergência das séries $\sum_{n=0}^{\infty} a_n^5 z^n \in \sum_{n=0}^{\infty} a_n z^{2n+3}$?
- 5. Determine a região de convergência e calcule a soma das seguintes séries de potências:

a) $\sum_{n=0}^{\infty} (\alpha z)^{3n}$, $\alpha \in \mathbb{C}$, b) $\sum_{n=1}^{\infty} nz^{2n+1}$, c) $\sum_{n=0}^{\infty} \frac{1}{n!z^n}$.

6. Determine os desenvolvimentos de Taylor das seguintes funções em torno dos pontos indicados, bem como as respectivas regiões de convergência:

1

a) $\frac{1}{1-z}$, em torno de z=3.

b) $e^{5z} + \frac{3}{3+5z}$, em torno de z = 2.

c) sen z, em torno de $z = \pi$.

d) e^{2z} , em torno de $z = i\pi$.

- e) $z^2 e^z$, em torno de z = 1.
- f) Valor principal de $\log z$, em torno de z = i 1.
- 7. Considere a função $f(z) = \frac{e^z}{\sin^2 z}$. Sem calcular os respectivos coeficientes, indique justificadamente qual o raio de convergência do desenvolvimento de f em série de potências de (z-2).