Global Attractors of Non-autonomous Lattice Dynamical Systems

David Cheban, Andrei Sultan

Institutul de Matematică și Informatică "Vladimir Andrunachievici"

June 10, 2025

Outline

- 1 Introduction
 - Basic definitions
 - Lattice non-autonomous dynamical systems
 - Cocycles
- 2 Asymptotically compactness of the cocycle
 - Asymptotically compact cocycles
- 3 Compact global attractors

Denote by $\mathbb{R}:=(-\infty,\infty)$, $\mathbb{Z}:=\{0,\pm 1,\pm 2,\ldots\}$ and ℓ_2 the Hilbert space of all two-sided sequences $\xi=(\xi_i)_{i\in\mathbb{Z}}$ $(\xi_i\in\mathbb{R})$ with

$$\sum_{i \in \mathbb{Z}} |\xi_i|^2 < +\infty \tag{1}$$

and equipped with the scalar product

$$\langle \xi, \eta \rangle := \sum_{i \in \mathbb{Z}} \xi_i \eta_i. \tag{2}$$

Let $(\mathfrak{B}, |\cdot|)$ be a Banach space with the norm $|\cdot|$, $C(\mathbb{R}, \mathfrak{B})$ be the space of all continuous functions $f : \mathbb{R} \to \mathfrak{B}$ equipped with the distance

$$d(f_1, f_2) := \sup_{L>0} \min \{ \max_{|t| \le L} |f_1(t) - f_2(t)|, L^{-1} \}.$$
 (3)

The metric space $(C(\mathbb{R},\mathfrak{B}),d)$ is complete and the distance d, defined by (3), generates on the space $C(\mathbb{R},\mathfrak{B})$ the compact-open topology

Let $h \in \mathbb{R}$, $f \in C(\mathbb{R}, \mathfrak{B})$, $f^h(t) := f(t+h)$ for any $t \in \mathbb{R}$ and $\sigma : \mathbb{R} \times C(\mathbb{R}, \mathfrak{B}) \to C(\mathbb{R}, \mathfrak{B})$ be a mapping defined by $\sigma(h, f) := f^h$ for any $(h, f) \in \mathbb{R} \times C(\mathbb{R}, \mathfrak{B})$. Then [2, Ch.I] the triplet $(C(\mathbb{R}, \mathfrak{B}), \mathbb{R}, \sigma)$ is a shift dynamical system (or Bebutov's dynamical system) on he space $C(\mathbb{R}, \mathfrak{B})$. By H(f) the closure in the space $C(\mathbb{R}, \mathfrak{B})$ of $\{f^h \mid h \in \mathbb{R}\}$ is denoted.

We study the compact global attractors of the systems

$$u_i' = \nu(u_{i-1} - 2u_i + u_{i+1}) - \lambda u_i + F(u_i) + f_i(t) \ (i \in \mathbb{Z}), \tag{4}$$

where $\lambda > 0$, $F \in C(\mathbb{R}, \mathbb{R})$ and $f \in C(\mathbb{R}, \ell_2)$ $(f(t) := (f_i(t))_{i \in \mathbb{Z}}$ for any $t \in \mathbb{R}$).

The system (4) can be considered as a discrete (see, for example, [1], [6] and the bibliography therein) analogue of a reaction-diffusion equation in \mathbb{R} :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial^2 x} - \lambda u + F(u) + f(t, x), \tag{5}$$

where grid points are spaced h distance apart and $\nu = D/h^2$.

Condition (C1). The function $f \in C(\mathbb{R}, \mathfrak{B})$ is translation-compact, i.e., the set $\{f^h | h \in \mathbb{R}\}$ is pre-compact in the space $C(\mathbb{R}, \mathfrak{B})$.

Lemma

- [7, 8] The following statements are equivalent:
 - **1** the function $f \in C(\mathbb{R}, \mathfrak{B})$ is translation-compact;
 - **2** the set $Q := f(\mathbb{R})$ is compact in \mathfrak{B} and the function $f \in C(\mathbb{R}, \mathfrak{B})$ is uniformly continuous.

Condition (C2). The function $F \in C(\mathbb{R}, \mathbb{R})$ is Lipschitz continuous on bounded sets and F(0) = 0. Condition (C3). $sF(s) \le -\alpha s^2$ for any $s \in \mathbb{R}$.

A function $F \in C(Y \times \mathfrak{B}, \mathfrak{B})$ is said to be Lipschitzian) on every bounded subsets from \mathfrak{B} uniformly with respect to $y \in Y$ if for any bounded set $B \subset \mathfrak{B}$ there exists a constant L_B such that

$$|F(y, v_1) - F(y, v_2)| \le L_B |v_1 - v_2|$$
 (6)

for any $v_1, v_2 \in B \subset \mathfrak{B}$.

For any $u=(u_i)_{i\in\mathbb{Z}}$, the discrete Laplace operator Λ is defined [6, Ch.III] from ℓ_2 to ℓ_2 component wise by $\Lambda(u)_i=u_{i-1}-2u_i+u_{i+1}$ $(i\in\mathbb{Z})$. Define the bounded linear operators D^+ and D^- from ℓ_2 to ℓ_2 by $(D^+u)_i=u_{i+1}-u_i, \ (D^-u)_i=u_{i-1}-u_i \ (i\in\mathbb{Z})$. Note that $\Lambda=D^+D^-=D^-D^+$ and $\langle D^-u,v\rangle=\langle u,D^+v\rangle$ for any $u,v\in\ell_2$ and, consequently, $\langle \Lambda u,u\rangle=-|D^+u|^2\leq 0$. Since Λ is a bounded linear operator acting on the space ℓ_2 , it generates a uniformly continuous semi-group on ℓ_2 .

Under the Conditions (C1) and (C2) the system of differential equations (4) can be written in the form of an ordinary differential equation

$$u' = \nu \Lambda u + \Phi(u) + f(t) \tag{7}$$

$\mathsf{Theorem}$

Under the Conditions (C1)-(C3) the following statements hold:

1 for any $(v,g) \in \ell_2 \times H(f)$ there exists a unique solution $\varphi(t,v,g)$ of the equation

$$u' = \nu \Lambda u + \Phi(u) + g(t) \quad (g \in H(f))$$
 (8)

passing through the point v at the initial moment t=0 and defined on the semi-axis $\mathbb{R}_+:=[0,+\infty)$;

- 3 $\varphi(t+\tau, v, g) = \varphi(t, \varphi(\tau, v, g), g^{\tau})$ for any $t, \tau \in \mathbb{R}_+$, $v \in \ell_2$ and $g \in H(f)$;
- 4 the mapping $\varphi : \mathbb{R}_+ \times \ell_2 \times H(f) \to \ell_2 \ ((t, v, g) \to \varphi(t, v, g))$ for any $(t, v, g) \in \mathbb{R}_+ \times \ell_2 \times H(f)$ is continuous.

A cocycle φ is said to be asymptotically compact if for any bounded subset $B \subset \mathfrak{B}$ there exists a compact subset $K = K(B) \subset \mathfrak{B}$ such that the compact subset K attracts the bounded set B, that is,

$$\lim_{t \to +\infty} \sup_{y \in Y} \beta(\varphi(t, B, y), K) = 0.$$
 (9)

Theorem

Under the Conditions (C1)-(C3) the cocycle $\langle \ell_2, \varphi, (H(f), \mathbb{R}, \sigma) \rangle$ generated by the equation (7) is asymptotically compact.

Theorem

Under the Conditions (C1)-(C3) there exists a closed ball $B[0,r]:=\{\xi\in\ell_2|\ |\xi|\leq r\}$ such that for any bounded subset $B\subset\ell_2$ there exist a positive number L=L(B) such that $\varphi(t,B,Y)\subseteq B[0,r]$ for any $t\geq L(B)$, where $\varphi(t,M,Y):=\{\varphi(t,u,y)|\ u\in M,\ y\in Y\}.$

Let $\langle \mathfrak{B}, \varphi, (Y, \mathbb{R}, \sigma) \rangle$ (or shortly φ) be a cocycle over dynamical system (Y, \mathbb{R}, σ) with the compact phase space Y. Let A and B be two bounded subsets from \mathfrak{B} . Denote by $\rho(a,b) := |a-b| \ (a,b \in \mathfrak{B}), \ \rho(a,B) := \inf_{b \in B} \rho(a,b)$ and

$$\beta(A,B) := \sup_{a \in A} \rho(a,B). \tag{10}$$

Definition

A cocycle φ is said to be asymptotically compact if for any bounded subset $B \subset \mathfrak{B}$ there exists a compact subset $K = K(B) \subset \mathfrak{B}$ such that the compact subset K attracts the bounded set B, that is,

$$\lim_{t \to +\infty} \sup_{y \in Y} \beta(\varphi(t, B, y), K) = 0. \tag{11}$$

Theorem

Under the Conditions (C1)-(C3) the cocycle $\langle \ell_2, \varphi, (H(f), \mathbb{R}, \sigma) \rangle$ generated by the equation (7) is asymptotically compact.

A family $\{I_v | v \in Y\}$ of compact subsets I_v of \mathfrak{B} is said to be a compact global attractor for the cocycle $\langle \mathfrak{B}, \varphi, (Y, \mathbb{R}, \sigma) \rangle$ if the following conditions are fulfilled:

11 the set

$$\mathcal{I} := \bigcup \{l_y | y \in Y\} \tag{12}$$

is precompact;

2 the family of subsets $\{I_v | y \in Y\}$ is invariant, i.e., $\varphi(t, I_{y}, y) = I_{\sigma(t, y)}$ for any $(t, y) \in \mathbb{R}_{+} \times Y$;

3

$$\lim_{t \to +\infty} \sup_{y \in Y} \beta(\varphi(t, M, y), \mathcal{I}) = 0$$
 (13)

for any compact subset M from \mathfrak{B} .

A cocycle φ is said to be dissipative if there exists a bounded subset $K \subset \mathfrak{B}$ such that for any bounded subset $B \subset \mathfrak{B}$ there exists a positive number L = L(B) such that $\varphi(t, B, Y) \subseteq K$ for any t > L(B), where $\varphi(t, B, Y) := {\varphi(t, u, y) | (u, y) \in B \times Y}$.

$\mathsf{Theorem}$

[4, Ch.II] Assume that the metric space Y is compact and the cocycle $\langle \mathfrak{B}, \varphi, (Y, \mathbb{R}, \sigma) \rangle$ is dissipative and asymptotically compact. Then the cocycle φ has a compact global attractor.

$\mathsf{Theorem}$

Under the Conditions (C1)-(C3) the equation (7) (the cocycle φ generated by the equation (7)) has a compact global attractor $\{I_{\sigma}|\ g\in H(f)\}.$

Petr W. Bates, Kening Lu and Bixiang Wang, Attractors for Lattice Dynamical Systems. International Journal of Bifurcation and Chaos, Vol. 11, No. 1 (2001), pp.143-153.

Cheban D. N.

Global Attractors of Nonautonomous Dynamical and Control Systems. 2nd Edition.

Interdisciplinary Mathematical Sciences, vol.18, River Edge, NJ: World Scientific, 2015, xxv+589 pp.

David N. Cheban,

Nonautonomous Dynamics: Nonlinear Oscillations and Global Attractors.

Springer Nature Switzerland AG 2020, xxii+ 434 pp.

David N. Cheban,

Monotone Nonautonomous Dynamical Systems. Springer Nature Switzerland AG, 2024, xix+460 pp.

Daletskii Yu. L. and Krein M. G.. Stability of Solutions of Differential Equations in Banach Space.

Moscow, "Nauka", 1970, 534 pp. [English transl., Amer. Math. Soc., Providence, RI 1974.

Xiaoying Han and Peter Kloeden, Dissipative Lattice Dynamical systems. World Scientific, Singapoor, 2023, xv+364 pp.

Sell G. R...

Lectures on Topological Dynamics and Differential Equations, vol.2 of Van Nostrand Reinhold math, studies.

Van Nostrand-Reinbold, London, 1971.

K. S. Sibirsky, Introduction to Topological Dynamics.

Kishinev, RIA AN MSSR, 1970, 144 p. (in Russian). [English translationn: Introduction to Topological Dynamics. Noordhoff, Leyden, 1975]

P. Hartman, On stability in the large for systems of ordinary differential equations. Can. J. Math. 13 (1961), 480-492