

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio Departamento Acadêmico de Matemática

Lista 02

Dados de Identificação	
Professor:	Matheus Pimenta
Disciplina:	Matemática Discreta - EC34G
Aluno:	

- 1. Utilizando os conjuntos: $X=\{x;x^2=9 \land 2x=4\},\ Y=\{x;x\neq x\},\ Z=\{x;x+8=8\}$ responda:
 - \bullet X é um conjunto vazio?

R: Sim.

 \bullet Y é um conjunto vazio?

R: Sim. (em alguns livros essa é a definição de \varnothing)

 \bullet Z é um conjunto vazio?

R: Não.

- 2. Seja $U = \mathbb{N}$, identifique quais dos conjuntos é igual a $\{2, 4\}$:
 - (a) $A = \{\text{números pares menores que 6}\}$
 - (b) $B = \{x; x < 5\}$
 - (c) $C = \{x; (x-2)(x-4)(x+2) = 0\}$

 $\mathbf{R} \colon A, C$

- 3. Prove as seguintes afirmações:
 - (a) Para qualquer conjunto A, temos $\varnothing \subseteq A \subseteq U$
 - (b) Para qualquer conjunto A, temos $A\subset A$
 - (c) Se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C$.
 - (d) A = B se, e somente se, $A \subseteq B$ e $B \subseteq A$.
- 4. Sejam os conjuntos: $U = \{1, 2, 3, \dots, 9\}, A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}, C = \{3, 4, 5, 6\}$
 - (a) Determine: $(A \cup B)$, $(A \cup C)$, $(B \cup C)$ e $(B \cup B)$
 - (b) $(A \cup B) \cup C \in A \cup (B \cup C)$
 - (c) $(A \cap B) \cap C \in A \cap (B \cap C)$
 - (d) $(A \cap B)$, $(A \cap C)$, $(B \cap C)$ e $(B \cap B)$
 - (e) A^C , B^C e C^C
 - (f) A-B, C-A, B-C, B-A e B-B

- (g) $(A \cup B)^C \in A^C \cap B^C$
- (h) $A \cap (B \cup C)$ e $(A \cap B) \cup (A \cap C)$
- (i) $(A \cap B) C \in (A B)^C$
- 5. Prove que $(A \cap B) \subseteq A \subseteq (A \cup B)$ e $(A \cap B) \subseteq B \subseteq (A \cup B)$
- 6. Utilizando diagramas de Venn represente:
 - (a) $(A \cup B)^C$
 - (b) $(A \cap B^C)$
 - (c) $(B A)^C$
 - (d) $(A \cap B) \cup (A \cap C)$
 - (e) $A \cup (B \cap C)$
 - (f) $A^C \cup B \cup C$
- 7. Utilizando as propriedades apresentadas em sala, mostre e justifique:
 - (a) $A \cup A = A$
 - (b) $A \cap A = A$
 - (c) $A \cup U = U$
 - (d) $A \cap \emptyset = \emptyset$
 - (e) $(U \cap A) \cup (B \cap A) = A$
 - (f) $(\varnothing \cup A) \cap (B \cup A) = A$
 - (g) $(A \cup B) \cap (A \cup B^C) = A$
 - (h) Se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C$.
- 8. Em um jantar, cinco pessoas pediram o especial do dia, duas pessoas escolheram somente a entrada e uma pessoa pediu apenas salada. Quantas pessoas jantaram?
- 9. Existem 22 estudantes do sexo feminino e 18 estudantes do sexo masculino em uma sala, quantos estudantes há ao todo?
- 10. De 32 pessoas que reciclam papeis e embalagens, 30 reciclam papel e 14 reciclam embalagens. Determine:
 - (a) Quantas pessoas reciclam embalagens.

R: 12

(b) Quantas pessoas reciclam apenas papel.

R: 18

(c) Quantas pessoas reciclam apenas embalagem.

R: 2

11. Os estudantes de uma moradia estudantil responderam a uma pesquisa sobre o uso de dicionário e enciclopédia nos dias atuais. Os resultados mostraram que 650 estudantes possuem dicionário em seus quartos e 150 não possuem dicionário em seus quartos, 175 possuem enciclopédias em seus dormitórios e 50 estudantes não possuem nem dicionário e nem enciclopédia em seus quartos. Determine o número k de estudantes que:

(a) residem na moradia estudantil.

R: 800

(b) possuem tanto dicionário e enciclopédia.

R: 75

(c) possuem apenas enciclopédia em seu quarto.

R: 100

- 12. Em uma outra pesquisa a respeito sobre a leitura de revistas, foram entrevistadas 60 pessoas e obtidos os seguintes resultados: 25 leem Veja, 26 leem Exame e 26 leem Caras. 9 pessoas leem Veja e Caras, 11 leem Veja e Exame, 8 leem Exame e Caras e 8 não leem nenhuma revista. Determine:
 - (a) Quantidade de pessoas que leem as três revistas simultaneamente.

R: 3

- (b) Represente através de diagrama de Venn.
- (c) Determine o número de pessoas que leem apenas uma revista.

R: 30

- 13. Suponha que 100 de 120 engenheiros da UTFPR estudem outros idiomas, sendo o seguinte: 65 estudam francês, 45 estudam alemão, 42 estudam russo, 20 estudam francês e alemão, 25 estudam francês e russo e 15 estudam alemão e russo. Determine:
 - (a) A quantidade de estudantes que estudam os três idiomas.

R: 8

- (b) Represente através de diagrama de Venn.
- (c) Determine o número de estudantes que estudam apenas um idioma. E dois idiomas. R: 56 e 36
- 14. Em uma amostra de 25 carros de uma concessionária, foi obtido o seguinte levantamento: 15 carros possuíam ar condicionado, 12 possuíam rádio, 5 possuíam ar condicionado e vidros elétricos, 9 possuíam ar condicionado e rádio, 4 possuíam rádio e vidros elétricos, 3 possuíam todos os três opcionais e 2 carros não possuíam nenhum opcional. Determine a quantidade de carros que possuíam:

DICA: Represente através de um diagrama de Venn.

(a) Apenas vidros elétricos;

R: 5

(b) Apenas ar condicionado;

R: 4

(c) Apenas rádio;

R: 2

(d) Rádio e vidros elétricos, mas sem ar condicionado;

R: 4

(e) Ar condicionado e rádio, mas sem vidros elétricos;

R: 6

(f) Apenas um opcional.

R: 11

- 15. Suponha que certa identificação é composta por duas letras e três números, onde o primeiro número deve ser obrigatoriamente diferente de 0. Quantas possibilidades de combinação é possível? R: 608400
- 16. Suponha que certa identificação é composta por duas letras e três números, onde cada caractere deve ser diferente? **R:** 468000
- 17. Suponha que certa identificação é composta por duas letras e três números, onde o primeiro número deve ser obrigatoriamente diferente de 0 e nenhum caractere pode ser repetido. Quantas possibilidades de combinação é possível? R: 421200
- 18. Determine o número de possibilidades de uma eleição para o grêmio estudantil, onde estão concorrendo 26 candidatos para as vagas de presidente, secretário e tesoureiro. (Um candidato não pode assumir duas vagas) **R**: 15600
- 19. Simplifique $\frac{(n-r+1)!}{(n-r-1)!}$
- 20. Simplifique $\frac{(n-r)!}{(n-r-2)!}$
- 21. O símbolo $\binom{n}{r}$, onde n e r são números naturais com $r \leq n$ é definido por: $\binom{n}{r} = \frac{n(n-1)(n-2)...(n-r+1)}{1.2.3...(r-1)r}$. Observe que tem r elementos tanto no numerador, quanto no denominador. Assim, determine:
 - (a) $\binom{16}{3}$ **R:** 560
 - (b) $\binom{12}{4}$ **R:** 495
 - (c) $\binom{8}{2}$ **R:** 28
 - (d) $\binom{9}{4}$ **R**: 126
 - (e) $\binom{10}{3}$ **R:** 120
- 22. Determine quantas possibilidades de anagramas com três elementos podemos ter com as seguintes letras, sem repetição.
 - (a) a, b, c, e, d, r
 - (b) e, h, y, t
 - (c) e, b, g
 - (d) e, d, q, s, c, f, g, y, u
- 23. Repetições não são permitidas. Quantos numerais de três dígitos podem ser formados com:
 - (a) Os seguintes seis dígitos: 2, 3, 4, 5, 7 e 9? R: 120
 - (b) Quantos desses são menores que 400?
 - **R**: 40
 - (c) Quantos desses são pares?

R: 40

(d) Quantos são impares?

R: 80

(e) Quantos são múltiplos de 5?

R: 20

- 24. Repetições são permitidas. Quantos numerais de três dígitos podem ser formados com:
 - (a) Os seguintes seis dígitos: 2, 3, 4, 5, 7 e 9?

R: 216

(b) Quantos desses são menores que 400?

R: 72

(c) Quantos desses são pares?

R: 72

(d) Quantos são ímpares?

R: 144

(e) Quantos são múltiplos de 5?

R: 36

- 25. Uma caixa contêm 10 lâmpadas coloridas. Determine:
 - (a) Retirando-se 3 lâmpadas com repetição.

R: 1000

(b) Retirando-se 3 lâmpadas sem repetição.

R: 720

- 26. Resolva o anterior agora com:
 - (a) Retirando-se 4 lâmpadas com repetição.

R: 10000

(b) Retirando-se 5 lâmpadas sem repetição.

R: 5824

27. Um fazendeiro compra três vacas, dois porcos e quatro galinhas de um vendedor que possui seis vacas, cinco porcos e oito galinhas. Quantas possibilidades o fazendeiro possui para a compra?

R: 14000

- 28. Um mochila contem 5 bolinhas de gude vermelhas e 6 bolinhas de gude brancas. Determine:
 - (a) O número de possibilidades para se retirar 4 bolinhas de gude da mochila?

R: 330

(b) O número de possibilidades se duas bolinhas de gude for vermelha e duas forem brancas?

R: 150

- (c) O número de possibilidades se forem de uma mesma cor as quatro bolinhas retiradas? R: 20
- 29. Nosso alfabeto possui 26 letras, sendo 21 letras consoantes. Determine a quantidade de palavras com cinco letras podemos ter com 3 consoantes diferentes e 2 vogais diferentes. R: 1596000