import seaborn as sns In [3]: cars=pd.read_csv('final_cars.csv') In [4]: y=cars['price'] X=cars.drop(columns=['price']) X=pd.get_dummies(X) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=99) **Random Forest regressor** from sklearn.ensemble import RandomForestRegressor model=RandomForestRegressor() model.fit(X_train,y_train) print(f'train score:{model.score(X_train,y_train)}') train score:0.9842889830163025 In [12]: from sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error In [13]: import sklearn.metrics y_pred=model.predict(X_test) r2score=r2_score(y_test,y_pred) In [14]: print(f'test score:{r2score:0.2f}') test score:0.93 mse = mean_squared_error(y_test,y_pred) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) MSE : 5826220.00377168 RMSE: 2413.756409369363 In [19]: for f,v in zip (X_train.columns, model.feature_importances_): print(f"{f:30} {v:0.2f}") curb-weight 0.28 engine-size 0.58 highway-mpg 0.09 make_alfa-romero 0.00 0.00 make_audi 0.01 make_bmw make_chevrolet 0.00 make_dodge 0.00 make_honda 0.00 make_isuzu 0.00 make_jaguar 0.00 make_mazda 0.00 make_mercedes-benz 0.00 make_mercury 0.00 make_mitsubishi 0.00 make_nissan 0.00 0.00 make_peugot make_plymouth 0.00 make_porsche 0.00 0.00 make_renault make_saab 0.00 make_subaru 0.00 make_toyota 0.00 make_volkswagen 0.00 make_volvo 0.00 fuel-type_diesel 0.00 fuel-type_gas 0.00 num-of-doors_four 0.00 num-of-doors_two 0.00 body-style_convertible 0.00 body-style_hardtop 0.00 body-style_hatchback 0.00 0.00 body-style_sedan body-style_wagon 0.00 drive-wheels_4wd 0.00 drive-wheels_fwd 0.00 0.00 drive-wheels_rwd In [20]: plt.gcf().set_size_inches(20,10) sns.lineplot(y = y_test, x = X_test.index, label="Actual") sns.lineplot(y = y_pred, x = X_test.index, label="Predicted") Out[20]: <AxesSubplot:ylabel='price'> — Predicted 45000 40000 35000 30000 . 원 25000 20000 15000 10000 5000 25 50 75 100 125 175 150 200 **SGDRegressor** In [22]: from sklearn.linear_model import SGDRegressor In [25]: X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=99) from sklearn.preprocessing import StandardScaler scaler=StandardScaler() scaler.fit(X_train) X_train=scaler.transform(X_train) X_test=scaler.transorm(X_test) model = SGDRegressor(random_state=100) model.fit(X_train, y_train) print(f'Train score : {model.score(X_train,y_train):f}') Train score : -1187559418988067028992.000000 In [28]: y_pred = model.predict(X_test) r2score = r2_score(y_test,y_pred) print(f'Test Score : {r2score:0.2f}') Test Score : -804186665125677105152.00 In [29]: mse = mean_squared_error(y_test,y_pred) print("MSE : ", mse) print("RMSE : ", np.sqrt(mse)) MSE : 7.0908251652951476e+28 RMSE: 266286033529645.47 In []: In []:

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt