Lie algebroids, Poisson manifolds and Jacobi structures

BASED ON MINI-COURSE BY CARLOS ZAPATA-CARRATALÁ

by

Guillaume Trojani

Supervisor : Pr Richard Szabo

ABSTRACT: Mistakes almost certainly mine, thanks for course etc... main refs is [1]

Contents

1	Lectu	re 1: Poisson and Presymplectic geometry
	1.1	Poisson Algebra
	1.2	Poisson Manifolds
Biblio	graphy	

Lecture 1

1 Lecture 1: Poisson and Presymplectic geometry

1.1 Poisson Algebra

Definition 1.1. A **Poisson Algebra** is a triple $(A, \cdot, \{,\})$ such that

- 1. (A, \cdot) is a commutative, associative and unital R-algebra
- 2. $(A, \{,\})$ is a Lie \mathbb{R} -algebra, which means that the bracket follows the Jacobi identity:

$$\{\{a,b\},c\} + \{\{b,c\},a\} + \{\{c,a\},b\} = 0 \tag{1}$$

3. The Poisson bracket follows the Libeniz identity in the sense that for $a, b, c \in A$,

$$\{a, b \cdot c\} = \{a, b\} \cdot c + b \cdot \{a, c\} \tag{2}$$

$$:= \operatorname{ad}_{a}(b \cdot c) \tag{3}$$

where we have defined the adjoint map of the Lie algebra.

4. Equivalently to 3, the $\operatorname{ad}_{\{,\}}:A\to\operatorname{Der}(A,\cdot)$, which takes an element of the algebra to a derivation on the commutative algebra (A,\cdot) . We also see that the $\operatorname{ad}_{\{\}}$ induces a derivation on $(A,\{,\})$ using the Jacobi identity.

Therefore the adjoint map of a Lie Algebra is a morphism from A to $Der(A, \{,\})$, the derivations of both bilinear structures of a Poisson algebra.

Definition 1.2. A **Poisson derivation** is a derivation on both bilinear forms of a Poisson algebra, that is $X \in \text{Der}(A,\cdot) \cap \text{Der}(A,\{,\}) \subset \text{End}_{\mathbb{R}}(A)$. If a Poisson derivation is generated by the adjoint map, $X_a = \{a,\}$, we say that it is a **Hamiltonian derivation**.

Definition 1.3. A Poisson Algebra morphism is a linear map $\psi: A \to B$ such that $\psi: (A, \cdot) \to (B, \cdot)$ is an algebra morphism and $\psi: (A, \{,\}) \to (B, \{,\})$ is a Lie algebra morphism.

Definition 1.4. A subalgebra $I \subset A$ is **coisotrope** if

- $I \subset (A, \cdot)$ is a multiplicative ideal
- $I \subset (A, \{,\})$ is a Lie subalgebra

Proposition 1.1. Reduction of Poisson algebra

Suppose $I \subset A$ coisotrope and consider the Lie normaliser (or in ring theory the idealiser)

$$N(I) = \{ a \in A | \{ a, I \} \subset I \}, \tag{4}$$

which is the largest subalgebra of A that contains I as an ideal. We claim that $A' := {N(I)}/{I}$ inherits a Poisson algebra structure.

Proof. Condition 1 is automatically satisfied as A' is a subalgebra of A, with a Lie algebra structure given by the same bracket. For $a', b', c' \in A'$, consider the adjoint action of a' on $b' \cdot c'$ and look at coset representative a, b, c of N(I). Using the fact that I is coisotrope, we see that

$$\{a+I, (b+I) \cdot (c+I)\} = \{a+I, b \cdot c + I\}$$
$$= \{a, b \cdot c\} + I$$

Lecture 1 2

by linearity of the bracket and closure of elements in N(I) w.r.t I. The jacobi identity is checked by similar arguments.

Definition 1.5. The reduced Poisson structure is characterised by the projection map $p:(N(I),\cdot,\{,\})\to (A',\cdot',\{,\}')$, and by the above proposition, this is a Poisson Algebra morphism.

1.2 Poisson Manifolds

Definition 1.6. A **Poisson manifold** is a smooth manifold P whose commutative algebra of smooth functions has the structure of a Poisson algebra $(C^{\infty}(P), \cdot, \{,\})$.

Definition 1.7. A map $\phi: P_1 \to P_2$ is a *Poisson map* if $\phi^*: C^{\infty}(P_2) \to C^{\infty}(P_1)$ is a Poisson morphism of algebras.

Recall that derivations on smooth functions are isomorphic to vector fields:

$$\operatorname{Der}(\mathcal{C}^{\infty}(P)) \simeq \Gamma(TP),$$
 (5)

where the isomorphism is due to

$$\{f,g\} \mapsto X_{\{f,g\}} = [X_f, X_g]$$
 (6)

Definition 1.8. So following through definition definition 1.2, the Poisson derivations on a Poisson manifolds are called **Poisson vector fields**. And Hamiltonian derivations on Poisson manifolds are called **Hamiltonian vector fields**. Hamiltonian vector fields are generated by the adjoint map

ad :
$$C^{\infty}(P) \to \Gamma(TP)$$

 $f \mapsto X_f := \{f, \cdot\}$

Proposition 1.2. A manifold P; with a commutative algebra of smooth functions $(C^{\infty}(P), \cdot, \{,\})$, and a bivector $\Pi \in \Gamma(\bigwedge T^2P)$ defined as

$$\Pi(df, dg) = \{f, g\}; \tag{7}$$

is a Poisson manifold if and only if Π has vanishing Schouten bracket

$$\llbracket \Pi, \Pi \rrbracket = 0. \tag{8}$$

Before proving this statement, we recall facts about the Schouten-Nijenhius which forms a special case of a Gerstenhaber algebra.

Definition 1.9. Let P be an n-dimensional manifold and let $A^k(P) = \Gamma(\bigwedge^{k+1} TP)$. There exists a unique bracket $[\cdot, \cdot] : A^k(P) \times A^l(P) \to A^{k+l}(P)$ such that

- $\forall X \in A^0(P) = \mathcal{X}(P)$, the bracket of vector fields (degree 0) is the Lie derivative $[X, \cdot] = \mathcal{L}_X$,
- $\forall X \in A^k(P) \ \forall Y \in A^l(P)$, the graded antisymmetry: $[X,Y] = -(-1)^{kl}[Y,X]$,
- $\forall X \in A^k(P), [X, \cdot]$ is a derivation of degree k. ¹

The **Schouten-Nijenhius** bracket is the unique extension of the Lie bracket to a \mathbb{Z} -graded bracket on the space of forms.

¹recall that a derivation D of degree k has $D(ab) = D(a)b + (-1)^{|a|k}aD(b)$, not sure here though

Lecture 1

Proof of proposition 1.2. One needs only prove that the Poisson bracket $\{,\}$ satisfies the Jacobi identity if and only if Π has vanishing Schouten bracket to complete the proof that (P,Π) defines a Poisson manifold.

Bibliography

[1] Carlos Zapata-Carratala. A Landscape of Hamiltonian Phase Spaces: on the foundations and generalizations of one of the most powerful ideas of modern science. 2019. URL http://arxiv.org/abs/1910.08469.