
Springer Praxis Books

Astronautical Engineering

More information about this series at <http://www.springer.com/series/5495>

Barrie D. Dunn

Materials and Processes for Spacecraft and High Reliability Applications

Barrie D. Dunn
School of Engineering
University of Portsmouth
Portsmouth
UK

Published in association with Praxis Publishing, Chichester, UK

ISSN 2365-9599 ISSN 2365-9602 (electronic)
Springer Praxis Books
ISBN 978-3-319-23361-1 ISBN 978-3-319-23362-8 (eBook)
DOI 10.1007/978-3-319-23362-8

Library of Congress Control Number: 2015948763

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Cover design: Jim Wilkie

Cover images: Front cover top—The Falcon 9 rocket streaks towards space from Florida's Cape Canaveral Air Force Station containing supplies, including the first 3D printer in space and a troop of 20 mice, for the International Space Station (*Courtesy SpaceX*). Front cover lower—the assembly and integration of a satellite in SSTL's clean-room (*Courtesy of Surrey Satellite Technology Ltd.*). Rear cover—Vega VV05 in its mobile gantry prior to launch at Europe's Spaceport in Kourou, French Guiana (*Courtesy ESA-M. Pedoussaut*).

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Talking of education, ‘People have now a-days, (said he,) got a strange opinion that everything should be taught by lectures. Now, I cannot see that lectures can do so much good as reading the books from which the lectures are taken. I know nothing that can be best taught by lectures, except where experiments are to be shewn. You may teach chemistry by lectures—You might teach making of shoes by lectures!’

Samuel Johnson, 1766
(from Boswell’s *Life*)

This book is dedicated to Cato and Dennis

Preface

This book, as implied by the title page, is an extensively revised version of the former “*Metallurgical Assessment of Spacecraft Parts, Materials and Processes*” published in 1997. The present title has been modified to set it apart from the previous work and describe its expanded content. The book has become more voluminous, this reflects the huge advances made during the past 20 years when we have witnessed the increased usage of modern materials and manufacturing techniques that were unforeseeable when the former book was written. Also, the number of case studies and amount of general information has been extended to become a source for engineers, space scientists, laboratory experimenters and technicians. Although much of the book considers metallurgical aspects of spacecraft engineering, there is now basic advice covering organic and ceramic materials as well as techniques available for assembling them into essential sub-systems, reliable parts and structures.

A good number of the original illustrations are retained but many new ones have been added. Several images reflect the quite remarkable outcomes of space projects. These include high resolution images of Earth taken by satellites which are relevant for surveillance and the forecasting of weather. Also included are fly-by images of enigmatic little moons and comets captured by spacecraft after many years of voyaging in search of life and the origins of water in our own Solar System. Equipment on-board the International Space Station and satellite-based communications are mentioned. These have all been made possible by breakthroughs in materials, processes and electronic-engineering.

Plato saw engineers as “doers” not “thinkers”. From ancient times no one expected engineers to question what they were asked to build and consider the consequences of such achievements. Nowadays engineers are more confident in their social role and have learned to say “no” when the products are questionable or environmental damage may occur—the generation of space debris is one pertinent example. Hopefully, some “lessons learnt” guidance may ensue from the case studies and failure analyses recorded in this book. In 1986 engineers said “go” to the Challenger launch—other engineers said “no” but were over-ruled and the space shuttle exploded shortly after lift-off. It is only in hindsight that we understand that decision making can be extremely difficult, but such decisions must consider input from all engineering disciplines and the recognition of material properties is vital.

A casual review of the Contents and Index will suggest to the reader that the subject matter is likely to be of interest not only to spacecraft engineers, but in the broader sense, to workers in quite different areas where metals, organic materials, composites, ceramics and glass are used under terrestrial conditions or within high vacuum systems. Advancements in technology always produce questions related to the reliability of new systems. Materials testing to agreed codes of practice have been shown to help maximise the reliability of new materials, processes, and applications. Metallography (or “materialography”) has led to an increased understanding of failure modes. Much emphasis of this book has been placed on failure analysis investigations. Each case must be developed in a logical manner—large-scale

(macroscopic) features are initially investigated, then the microscopic features of the materials involved. Test specimen or samples of spacecraft hardware must be meticulously prepared, then examined using both light and electron microscopy. It is amazing how these techniques have evolved and how the recording of images has progressed. The author and his metallurgist contemporaries may well remember early student days when contributions to reports were exquisitely detailed hand drawn micrographs or images captured on photographic plates. The digital revolution has now enabled all levels of detail to be recorded using super-resolution microscopes and the future seems to be heading towards 3-dimensional microscopy.

In this book I have endeavoured to achieve a reasonable balance between general background knowledge and in-depth technical information. An elementary understanding of metals and materials on the part of the reader is assumed. I have deliberately excluded a comprehensive account of the techniques employed in modern materials laboratories (unless specifically related to unusual space material test methods). Many texts are available and cited in the Reference section. The Appendices have been extended and include many Tables related to: spacecraft materials' properties; alloy comparisons as they may be procured in different countries; a simplified M&P management guideline for universities; and, examples of Declared Materials and Processes Lists.

The space industry is a key sector in driving economic growth and creating new jobs. By 2030, the global space economy is predicted to be worth £400 billion per annum. At the time of writing, the European space manufacturing industry alone has an unprecedented overall turnover at £6 billion and a total direct employment of 38,000 persons. New spaceports will be established and spaceplanes are most likely to be the next generations' means for transporting commercial and scientific payloads into orbit. Many future spacecraft engineers, space scientist and technologists, all specialists in their own fields, may be aghast that some fundamental, 'old-hat' information is contained in this book. But it is the lessons-learnt scenarios that have brought us to where we are today. The industry is expanding and new employees need to learn from our past mistakes and, at least, understand why certain design rules exist.

The wide acceptance of the previous book has been most welcome, and I hope the new changes and additions will also find approval by my colleagues in the space industry and others in the wider engineering community.

Bosham, West Sussex
December 2015

Barrie D. Dunn

Acknowledgments

This book has been brought about by the blending of various published research and investigation projects that I have undertaken as a metallurgist for the European Space Agency, from some written works of others and from personal friends. I am especially grateful to the late Dr. Jacques Dauphin my former Division Head at ESA who gave the encouragement to undertake the writing of the earlier book. He was a native of the French province of Lorraine, where the motto is ‘Qui s’y frotte s’y pique’ which loosely translates to ‘gather thistles, expect prickles’—quite an apt maxim for those of us who have been involved with failure investigations. I also acknowledge the help received from my former ESA colleagues: Dr. Ton de Rooij, Jack Bosma, Guy Ramusat, Adrian Graham, David Collins and David Adams. Special thanks are also given to Dr. Ernst Semerad, Dr. A. Merstallinger, Grazyna Mozdzen and Markus Fink of the Aerospace and Advanced Composites GmbH (formally ARC), Wr. Neustadt, Austria, with whom I have had many years of professional collaboration. As previously stated, there has been a marked progress in this field of materials technology, resulting in significantly more citations to references in this Edition, but even so, the bibliographic information certainly is not complete. Where I have forgotten to cite a reference or credit an image I hope the author will forgive my oversight.

I am also grateful to ESA and NASA for some of the illustrations used in the book. It should be noted that the opinions expressed in this book are those of the author and do not necessarily reflect the policy of the European Space Agency.

Let me add a special note of thanks to my late wife, Hanneke, my son, Martin, and my daughter Harriet, for their patience through the spare-time hours that went into the making of the previous Edition. Also, to Anne for her unwavering support and help editing this present book. Stephen Hulcroft’s assistance at BlueFish Computer Services, Chichester is appreciated. I also wish to thank Clive Horwood, and the staff at Springer Praxis Books in Germany (Ms. Janet Sterritt) and India (Mr. Antony Raj Joseph and Ms. Sivajothi Ganesarathinam), for their assistance during the publication of this book.

The author would like to thank all his colleagues and friends at the following organisations who kindly supplied new information, reference material and photographs:

Torbjörn Lindblom, Celsius Materialteknik, Karlskoga, Sweden.

Dr. Michael Osterman, The Centre for Advanced Life Cycle (CALCE), University of Maryland, MD, USA.

S. Clément, Centre National d’Etudes Spatiales, Toulouse, France.

Dr. H. Boving, Centre Suisse d’Electronique et de Microtechnique SA, Neuchâtel, Switzerland.

H. Papenberg, DASA-ERNO Raumfahrttechnik GmbH (now Airbus Industries), Bremen, Germany.

D. Bagley, ERA Technology, Leatherhead, UK.

Dr. A. Feest, The Harwell Laboratory, Metals Technology Centre, Harwell, UK.

W. Feuring, Heraeus GmbH, Hanau, Germany.

Massimo Bonacci, High Technology Center (HTC), Foligno, Italy.

Poul Juul, Hytek, Aalborg, Denmark.
Messrs G. Kudielka and W. Maier, IFE, Oberpfaffenhofen, Germany.
Luca Moliterni and Gianluca Parodi, Italian Institute of Welding (IIS), Genoa, Italy.
Norio Nemoto, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan.
Dr. Suman Shrestha, Keronite International Ltd., Haverhill, UK.
P. Fletcher, Airbus (formally MMS-UK), Portsmouth, UK.
Dr. Christopher Hunt, Martin Wickham and Ling Zou, The National Physics Laboratory, Teddington, UK.
Dr. David Bernard, Nordson DAGE, Aylesbury, UK.
Jo Wilson and Bob Hussey, RJ Technical Consultants, Juicq, France.
Messrs Jörgen Svensson, U. Berg and Hans Ollfors, RUAG (formally Saab Ericsson Space), Gothenburg, Sweden.
M.P. Hayes, The Spring Research and Manufacturers' Association, Sheffield, UK.
Ian Turner, Cathy Barnes and Malcolm Snowdon, Spur Electron Ltd., Havant, UK.
Dr. R. Eckert, Standard Elektrik Lorenz, Stuttgart, Germany.
Dr. P. von Rosenstiel, Stichting Geavanceerde Metaalkunde, Hengelo, The Netherlands.
Luca Soli and Ulisse Di Marcantonio, Thales Alenia Space Italia, Milan, Italy.
Dr. J.M. Motz, Thyssen Guss AG, Mülheim a.d. Ruhr, Germany.
Stephen Kyle-Henney, TISICS Ltd., Farnborough, UK
Bill Strachan and Dr. Asa Barber, The University of Portsmouth, Portsmouth, UK.
K. Ring, Zentrum für Verbindungs Technik, Gilching, Germany.
Robert Wm. Cooke, NASA—Johnson Space Center, Houston, TX, USA
Pablo D. Torres, NASA—Marshall Space Flight Center, Huntsville, AL, USA
Dr. Fabiola Brusciotti, Tecnalia, San Sebastian, Spain

Contents

1	Introduction	1
2	Requirements for Spacecraft Materials	7
2.1	General Background	7
2.2	Considerations for Materials and Processes	10
2.2.1	General Considerations During the Selection of Materials and Processes	10
2.2.2	Some Futuristic Ideas	11
2.2.3	Some Basic Considerations Regarding Corrosion Prevention . . .	17
2.2.4	Space Project's Phases and Management Events	20
2.3	The Effect of a Space Environment	22
2.4	Materials for Space Launch Vehicles	28
2.5	Non-metallic Materials	38
2.5.1	General	38
2.5.2	Classes of Non-metallic Materials	42
2.5.3	Novel Non-metallics	43
2.6	The Potential for Welding and Joining in a Space Environment	49
2.6.1	Background Considerations	49
2.6.2	Potential Joining and Cutting Processes	50
2.6.3	Expectations	53
3	The Integration of 'Materials' into Product Assurance Schemes	55
3.1	General Product Assurance and the Role of Materials	55
3.1.1	Product Assurance Management	55
3.1.2	Quality Assurance	55
3.1.3	Reliability and Safety	57
3.1.4	Materials and Processes	59
3.1.5	Component Part Selection, and Procurement	61
3.1.6	Control of Ground-Handling Facilities	63
3.2	The Materials Laboratory	66
3.2.1	Major Objectives of Laboratory	66
3.2.2	Facilities and Instrumentation	67
3.2.3	The Use of New Laboratory Techniques for NDT	85
3.2.4	Organic Chemistry and Environmental Test Laboratories	98
3.3	Preparation of Materials and Metallographic Evidence	100
3.3.1	The Metallographer	100
3.3.2	Laboratory Records and Reports	101
3.3.3	Report of Materials Data to Spacecraft Projects	101
3.3.4	Training of Materials Engineers and Laboratory Staff	103
3.3.5	Ethical Issues	104

3.4	The Future for Materials Failure Investigations.	104
3.4.1	The Larger Company	104
3.4.2	The Smaller Company.	105
3.4.3	Product Liability.	105
3.5	'Greener' Spacecraft.	105
3.6	The Potential for Recycling Electronic Waste.	111
3.6.1	General	111
3.6.2	Elemental Distribution for Spacecraft Electronic Box	111
4	Spacecraft Manufacturing—Failure Prevention and the Application of Material Analysis and Metallography	115
4.1	Sources of Failure	115
4.2	Drawings and Workmanship	115
4.2.1	Design and Manufacturing Drawings.	115
4.2.2	Workmanship Standards	116
4.3	Mechanical Damage Revealed by Microstructure	122
4.4	Hydrogen Embrittlement	122
4.4.1	Interaction of Metal with Hydrogen	122
4.4.2	Hydrogen Embrittlement of Spring Steel	123
4.4.3	Blistering of Plated Aluminium Alloy	124
4.4.4	Examination for Titanium Hydride Precipitates.	125
4.4.5	Embrittlement of Copper	127
4.4.6	Future Developments	128
4.5	General Corrosion Problems	128
4.5.1	Bimetallic Corrosion-Related Failures	128
4.5.2	Corrosion Resistance of Anodic and Chemical Conversion Coatings on Al 2219 Alloy	132
4.5.3	Evaluation of Alodine Finishes on Common Spacecraft Aluminium Alloys	134
4.5.4	Cleaning, Passivation, and Plating of Spacecraft Steels	137
4.5.5	Launch Site Exposure and Corrosion.	138
4.6	Stress-Corrosion Resistance of Metals.	139
4.6.1	Stress-Corrosion Cracking	139
4.6.2	SCC Evaluation	140
4.6.3	The Properties of Spring Materials	144
4.6.4	Bearing Materials	148
4.7	Control of Printed Circuit Boards.	148
4.7.1	Chemical Composition of Tin-Lead from Microstructure	148
4.7.2	Grainy Solder Coverage on PCBs and the Effects of Rework.	150
4.7.3	Evaluation of Multilayer Board Internal Connections.	155
4.7.4	Flexible Circuits.	159
4.7.5	Hot-Air-Levelled Circuit Boards.	160
4.7.6	Solder Assembly of Component Packages onto Multilayer Boards with High Heat Capacity	161
4.8	Control of Composite Materials	161
4.8.1	Metal–Matrix Composites for Space Structures.	161
4.8.2	Composite Contact Devices	164
4.8.3	Fibre-Reinforced Plastic Composites	166
4.8.4	Fibre-Reinforced Glass Ceramics	170
4.8.5	Carbon–Carbon Composites.	170
4.8.6	Metal Matrix Composites for Spacecraft Pressure Vessels	172

4.9	Control of Capillary Screens	172
4.10	Examination of Electroless Nickel Deposits	173
4.10.1	Microcracked Electroless Nickel	173
4.10.2	Electroless Nickel Plating of Aluminium Electronic Housings	175
4.11	Control of Electroforming Processes	176
4.12	Dip Brazing of Aluminium Alloys	179
4.13	Considerations for the Assembly of Subsystems by Welding	181
4.13.1	General Welding Methods and Controls	181
4.13.2	Electron Beam Welding	184
4.13.3	Laser Beam Welding	185
4.13.4	Explosive Welding	186
4.13.5	Welding of Aluminium–Lithium Alloys	187
4.13.6	Welding of Thermoplastics for Space Applications	188
4.14	Control of Power System Weldments	189
4.14.1	General	189
4.14.2	Welded Solar Arrays	189
4.14.3	Suitability of Welded Battery Cells	193
4.15	Problems Associated with Residual Stresses in Weldments	195
4.16	Electromagnetic Emission from TIG Welding Equipment	195
4.17	Titanium Aluminides for High-Temperature Applications	196
4.18	Shape-Memory Alloys for Spacecraft Devices	197
4.19	Foamed Aluminium for Damping Purposes	202
4.20	Superplastic Forming and Diffusion Bonding of Metals	203
4.20.1	Forming of Propellant Tanks	203
4.20.2	Diffusion Bonding	206
4.20.3	Superplastic Forming and Diffusion Bonding in One Operation	206
4.21	Cleaning of Mechanical Parts	207
4.21.1	General Background	207
4.21.2	Metallic Surfaces	209
4.21.3	Cleaning of Individual Parts	210
4.21.4	Cleaning of Metallurgically Joined Assemblies	213
4.21.5	Maintenance of Cleanliness	216
4.21.6	Cleaning of Silicone Contamination	219
4.22	Novel Thermal Management Materials	220
4.23	Cold Sprayed Coatings	223
4.24	Advanced Plasma Electrolytic Oxidation Treatment for Aluminium, Magnesium and Titanium Alloys	224
4.24.1	General Process	224
4.24.2	Characteristics of PEO Coatings	225
4.24.3	Applications	229
4.25	Joining by “Friction Stir”	231
4.25.1	Friction Stir Welding	231
4.25.2	Friction Stud Welding	234
4.26	Selective Brush Electroplating	234
4.27	Control of Coatings and Bonded Items by Tape Testing	237
4.28	The Application of EB Welding Machine for Reflow Brazeing	239

5 Metallography Applied to Spacecraft Test Failures	247
5.1 Application of Electron Microscope	247
5.1.1 SEM Examination of Fracture Surfaces	247
5.1.2 TEM Examination of Metallic Failures	250
5.2 Fasteners	251
5.2.1 Spacecraft Fasteners	251
5.2.2 Fastener Failure Due to Forging Defect	254
5.2.3 Laps and Surface Irregularities in Threads	255
5.2.4 Hydrogen Embrittlement of Steel Fasteners	255
5.2.5 Embrittlement of Titanium Alloys	255
5.2.6 Galvanic Corrosion of Fasteners	257
5.2.7 Contamination and Organic Fastener Lubrication Systems	257
5.2.8 Metallic Particle Generation	258
5.2.9 Quality Assurance Controls for Fasteners	261
5.3 Thermal History from Microstructure	262
5.4 Effect of Inclusions Within the Microstructure of Explosively Deformed Material	264
5.5 Degradation of Passive Thermal Control Systems	266
5.5.1 General Background	266
5.5.2 Low-Emissivity Surfaces	268
5.5.3 High-Absorption Surfaces	269
5.5.4 Rigid Optical Solar Reflectors	270
5.5.5 Flexible Second Surface Mirrors	271
5.6 Sublimation of Metals	272
5.6.1 General	272
5.6.2 Sublimation of and Condensation of Cadmium and Zinc	274
5.6.3 Heater Sublimation Problem Associated with Thruster Motor	276
5.6.4 Sublimation of Klystron Cathode-Heaters	276
5.6.5 Sublimation of Rhenium	278
5.7 Beryllium for Spacecraft Applications	280
5.7.1 General	280
5.7.2 Health and Safety	281
5.7.3 Integrity of Machined Beryllium	283
5.7.4 Thermal Cycling on Work-Hardened Beryllium	284
5.7.5 General Etching Solutions for Beryllium	285
5.7.6 Investigation of Microcracked Thin-Foil Detector Windows	286
5.7.7 Aluminium-Beryllium Alloys	288
5.8 Deactivation of Catalyst Particles for Hydrazine Decomposition	288
5.8.1 Testing Procedure	288
5.8.2 Material Investigation	288
5.8.3 Mechanism of Particle Deactivation	290
5.9 Cathode Emitter Degradation	291
5.10 Investigation of a Failed Spacecraft Antenna	293
5.11 The Wear of Ball Bearings	296
5.12 Cold Welding of Mechanisms	304
5.12.1 General	304
5.12.2 Cold Welding Due to Cyclic, Impact Loading	306
5.12.3 Cold-Welding Due to Fretting	307
5.13 Defective Black-Anodized Electrical Connector	308
5.14 Contaminant Particles—Identification of Their Sources	309

5.15	Silicone Contamination	310
5.15.1	General	310
5.15.2	Contamination of Black-Anodized Finish.	311
5.15.3	Contamination of Invar Moulding Tool	312
5.15.4	Removal of Silicone Polymers	314
5.15.5	Contamination of Aluminium Tubes for Vacuum Pinch-Offs	317
5.16	Magnetic Problems	317
5.17	Thermal Stress-Induced Dimensional Changes	319
5.17.1	General Problems	319
5.17.2	Stress-Relaxation by Thermal Gradients.	319
5.17.3	Thermally Induced Vibrations	321
5.18	Defects in Titanium Piece-Parts	323
5.18.1	General	323
5.18.2	Alpha-Case Embrittlement	323
5.18.3	Titanium Hydride Embrittlement.	324
5.19	Leaking Water Tank on Launcher.	325
5.20	Compatibility of Liquid and Solid Propellants with Components and Subsystems	326
6	Failure Analysis of Electrical Interconnections and Recommended Processes	329
6.1	Material Problems	329
6.2	Welded Lead Wire Interconnections	329
6.3	'Purple Plague'	332
6.4	Mechanical Electrical Connections	337
6.4.1	General	337
6.4.2	Wire-Wrapped Connections	337
6.4.3	Crimped Joints	339
6.5	Soldered Interconnections	340
6.5.1	Introduction to Soldering	340
6.5.2	Inspection of Soldered Joints	341
6.5.3	The Effect of Thermal Fatigue on Solder-Assembled Leaded Components	344
6.5.4	Effect of Thermal Fatigue on Leadless Components	351
6.5.5	The Effect of Thermal Fatigue on Semi-rigid Cable Connections	353
6.6	Problems Associated with Coatings for Soldering Applications	357
6.6.1	The Need for Coatings	357
6.6.2	Surfaces that Can Be 'Soldered To'	357
6.6.3	Surfaces that Can Be 'Soldered Through'	359
6.7	The Use of Indium Solder Alloys.	363
6.8	Wires and Cables	369
6.8.1	Selection of Plated Finish on Copper Conductors	369
6.8.2	Effect of Ageing on the Solderability of Tin-Plated and Silver-Plated Wires	371
6.8.3	'Red Plague' Corrosion of Silver-Plated Copper, and Plagues on Other Plated Stranded Wires	375
6.8.4	Manganin Wire	379
6.8.5	High-Voltage Wires, Cables, and Connections	380
6.8.6	Cold Welding of Stranded Wires and Cables	380

6.9	Problems Associated with Soldering Fluxes	380
6.9.1	Purpose of a Flux	380
6.9.2	Heat-Shrinkable Sleeves Containing Solder Preforms	381
6.9.3	Stress Corrosion of Component Lead Material	383
6.9.4	Flux-Corrosion of Silver-Plated Stranded Wires	383
6.9.5	Selection of a Soldering Flux or a Solderable Finish	386
6.9.6	Control of Galvanic Corrosion	389
6.9.7	Cleaning of Flux-Contaminated Surfaces	389
6.9.8	Flux Residues, Their Ingress into Top-Coat of PCB Surfaces, and Bake Out After Cleaning	391
6.9.9	Conductive Anodic Filament (CAF) Formation and Particulate Contamination	394
6.9.10	Potential Health Hazards in the Electronic Assembly Area	398
6.10	Problems Associated with Brazeing	399
6.10.1	Design Considerations	399
6.10.2	Brazeability of Materials and Braze Alloy Compositions	400
6.10.3	Braze Fluxes and Their Removal	403
6.10.4	Atmospheres for Brazeing	404
6.10.5	Safety Precautions	405
6.10.6	Produce Assurance Applied to Brazeing Operations	405
6.10.7	Inspection Criteria for Brazeed Aluminium Alloy Waveguide-to-Flange Joints	406
6.11	Diffusion Soldering/Brazeing	408
6.12	Effects of Rework and Repair on Soldered Interconnections	408
6.12.1	General	408
6.12.2	Cosmetics of Solder Fillets	410
6.12.3	Effect of Rework on Electronic Components	410
6.12.4	Effect of Rework on Plated-Through Holes	410
6.12.5	Effect of Rework on Composition of Joint	412
6.12.6	Recuperation of Unsolderable PCBs and Component Leads	413
6.13	Electrical Conductive Adhesives	413
6.14	Training and Certification	415
6.14.1	General	415
6.14.2	Certification for Electronic Assembly Techniques	417
6.14.3	Understanding Process-Induced Failures and the Importance of Workshops	418
6.15	Verification of Surface-Mount Technology and Prevalent Failure Mechanisms	419
6.15.1	Verification Testing	419
6.15.2	Failure Under Mechanical Overloading	422
6.15.3	Failures Due to Board Flatness Problems	422
6.15.4	Failure Due to Co-planarity Problems	423
6.15.5	Solder Joint Failure Due to Thermal Mismatch Between SMD and Substrate	425
6.15.6	Conductor Track Failure Due to Thermal Mismatch	428
6.15.7	Failure of RF Cables Connected by SMT	428
6.15.8	SMT Solder Joint Failure Due to Conformal Coatings	428
6.15.9	SMT Problems Related to Flux and White Residues	432
6.15.10	Area Grid Array (AGA) Packaging	434

6.15.11	High Voltage Interconnections and Influence of Geometry (Workmanship) on Corona Discharge	442
6.15.12	Tin Pest	448
6.15.13	Mechanical and Electrical Properties of Electronic Materials at Temperatures Down to 4.2 K	451
7	Whisker Growths	461
7.1	The Problem of Whisker Growth	461
7.2	Analysis of Failures Due to Whisker Growth	462
7.2.1	Molybdenum Whiskers on Metallized Miniature Circuits	462
7.2.2	Tungsten Whisker Growth Within Travelling Wave Tubes	466
7.2.3	Metal Oxide Whisker Precipitation in Glass Seals	466
7.2.4	Integrated Circuit Failure Modes Due to Electromigration—Aluminium Whisker Growth and Solder Joint Voiding	468
7.3	Tin Whisker Growths	472
7.3.1	Tin Whisker Growth on a Plated Steel Housing	472
7.3.2	Tin Whisker Growth on PCB and Other Electronic Materials During Thermal Cycling	474
7.3.3	Tin Whisker Growth on Crimp Termination Devices	479
7.3.4	The Nucleation, Growth and Mechanism of Growth of Tin Whiskers—Results from a C-Ring Test Programme	481
7.3.5	Some Properties of Tin Whiskers	485
7.4	Precautions to Avoid General Whisker Growths	491
7.5	The Creation of Lead-Free Control Plans	494
7.5.1	General	494
7.5.2	Methods for Reprocessing Pure Tin Terminations	495
7.5.3	Mitigation Approaches	498
8	Assessment of Post-flight Materials	501
8.1	General	501
8.1.1	Hardware Return from Space	501
8.1.2	Raw Materials from the Moon	501
8.1.3	Recent Investigations Using Retrieved Materials	503
8.2	Space Environmental Effects from Vacuum and Radiation	503
8.2.1	Organic Materials and Lubricants	503
8.2.2	Radiation Effects	507
8.2.3	Effects of Vacuum on Metals	508
8.3	Temperature Cycling	509
8.4	Micrometeoroids and Debris	509
8.4.1	General	509
8.4.2	Debris Emanating from Catalytic Bed Thruster Motors	512
8.4.3	Returned Hardware	514
8.4.4	Protection Shields	515
8.5	Effect of Atomic Oxygen on Materials	517
8.6	Decelerators and Heat Shield Materials	524
8.6.1	General Examples	524
8.6.2	Beryllium as a Heat Shield	528
8.6.3	Alternative Heat Shield Materials	531
8.6.4	High-Temperature Fasteners	533

8.7 Manned Compartments	535
8.7.1 General Conditions	535
8.7.2 Solder Assembly Defects	538
8.7.3 Inspection of Spacelab Post-flight Hardware	542
Appendix 1: Coefficient of (Linear) Thermal Expansion for Selected Materials (COE or CTE)	557
Appendix 2: Properties of Printed Circuit Laminates	559
Appendix 3: Reagents for Microetching Metals and Alloys	561
Appendix 4: Conversion Table for Mechanical Properties	565
Appendix 5: Aluminium Alloy Temper Designations	567
Appendix 6: Metal Alloy Comparison Tables	571
Appendix 7: Variation of Standard Free Energy of Formation of Oxides with Temperature	613
Appendix 8: Simplified Procedure for the Management of Materials, Processes and Mechanical Parts—Possible Guidelines for a Cubesat or Small University Spacecraft	615
Appendix 9: Materials and Processes Standards Related to Space (Released by ECSS, JAXA and NASA) as of 2015	619
Appendix 10: Examples of Declared Process Lists (DPL)	621
Appendix 11: Examples of Declared Materials Lists (DMLs)	625
Glossary	629
References	639
Index	655