Geometria e Algebra - MIS-Z

Settimo appello - Marzo

13/03/2023

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE				

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) I vettori $(0, 1, 3, -1), (1, 1, -1, -1), (3, 2, -1, 2) \in \mathbb{R}^4$ sono linearmente indipendenti.

 \Box VERO

 \Box FALSO

(b) Il triangolo nel piano \mathbb{E}^2 di vertici $A(1,0),\,B(-1,0)$ e C(0,1)è equilatero.

 \square VERO

 \Box FALSO

(c) Per ogni $k \in \mathbb{R}$, la matrice

$$A_k = \begin{pmatrix} 1 & k & -1 \\ k & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

è invertibile.

- \square VERO
- \Box FALSO

- (d) Sia V uno spazio vettoriale su un campo K e sia $f:V\to V$ un endomorfismo. Se $v_1,\ v_2$ sono due autovettori relativi all'autovalore $\lambda\in K$, allora anche v_1+v_2 è un autovettore relativo all'autovalore λ .
 - \square VERO
 - \Box FALSO

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} X_1 + kX_3 = 1 \\ kX_1 + X_3 = -1 \\ -X_2 + kX_4 = -1 \\ kX_2 + X_4 = 1 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni

ESERCIZIO 3 [8 punti]. Rango e sottospazi vettoriali.

(a) Si definisca il rango di un insieme di vettori di uno spazio vettoriale. Si definisca quindi il rango di una matrice.

(b) Si dimostri che se $A \in \mathcal{M}_n(\mathbb{R})$ è invertibile, allora A ha rango massimo, richiamando eventualmente le opportune proprietà del rango che vengono usate.

(c) Sia $h \in \mathbb{R}$ e sia

$$W_h = Span\{(-1,0,h,1), (3,1,1,-1), (h,1,3,0), (-4,-1,1,h)\} \subseteq \mathbb{R}^4.$$

Al variare di h si determini la dimensione di W_h .

(d) Sia h_0 uno dei valori per cui W_{h_0} ha dimensione minima e sia $U=Span\{(1,1,1,1),(5,3,11,1)\}.$

Si determini la dimensione e una base di $W_{h_0} + U$ e di $W_{h_0} \cap U$.

ESERCIZIO 4 [7 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

Per $k \in \mathbb{R}$ si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3 (x, y, z) \mapsto (kx + y + z, x + ky + z, x + y + kz).$$

(a) Si determinino tutti i valori di $k \in \mathbb{R}$ per cui f_k non è suriettiva e per ciascuno di essi si determini una base di $\text{Im}(f_k)$.

(b) Per k=1, si determini se f_1 è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

(c) Per ogni $k\in\mathbb{R}$ si mostri che k-1 è un autovalore di f_k e se ne determini l'autospazio corrispondente.

ESERCIZIO 5 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e un'equazione cartesiana del piano π passante per i punti $A(1,1,4),\,B(-1,-2,0)$ e C(1,0,2) di \mathbb{E}^3 .

(b) Al variare di $h \in \mathbb{R}$ si determini la posizione reciproca della retta r_h e del piano π , dove r_h è definita dalle equazioni cartesiane

$$r_h: \left\{ \begin{array}{l} X + Y - h = 0 \\ 3X + hZ - 5 = 0 \end{array} \right.$$

Per i valori di h per cui r_h e π sono incidenti si determini il punto di intersezione.

(c) Per uno dei valori $h_0 \in \mathbb{R}$ tale che la retta r_{h_0} è parallela a π , si determini il piano π' ortogonale al piano π e passante per la retta r_{h_0}