合 肥 工 业 大 学 试 卷 (期中)

共_1_ 页第_1_ 页

2021~2022 学年第_二_ 学期 课程代码__034Y01__ 课程名称 数学(下) 学分__5__ 课程性质: 必修☑选修□限修□ 考试形式: 开卷□闭卷☑

专业班级(教学班)____少数民族预科班____ 考试日期__2022 年 5 月 13 日 8:00-10:00_ 命题教师___集体___ 系(所或教研室)主任审批签名______

- 1. (10 分) 求函数 $f(x) = \ln \frac{1}{\sqrt{x^2 1}} + \arctan \frac{1}{x}$ 的定义域.
- 2. (5 分) 求函数 $y = \begin{cases} 1/x, & x < 0, \\ 1, & x = 0, \text{ 的反函数.} \\ 1 + e^{-x}, & x > 0 \end{cases}$
- 3. (10 分) 求极限 $\lim_{x\to 0^-} (1-x)^{1/x}$.
- 4. (5 分) 求极限 $\lim_{x\to -2} \frac{x^2-4}{x^3+8}$.
- 5. (5 分) 求极限 $\lim_{x\to 0} \frac{\sin(e^{-x}-1)}{\arctan(1-\cos x)}$.
- 6. (5 分) 求极限 $\lim_{x\to 0} \frac{\sqrt{1+2x-x^2}-\sqrt{1-2x+x^2}}{x}$.
- 7. (5 分) 求极限 $\lim_{x\to\infty} \left(\cos\frac{1}{x}\right)^{\frac{1}{\ln(1+x^2)-2\ln x}}$.
- 8. (5 分) 求极限 $\lim_{x\to\infty} \left(\frac{\pi}{e^x-1} \arctan\frac{x}{2}\right)$.
- 9. (5 分) 求极限 $\lim_{n\to\infty} \left(\frac{1}{n^2+2} + \frac{2}{n^2+4} + \dots + \frac{n}{n^2+2n}\right)$.
- **10.** (5 分) 设 $a_1 = 4$, $a_{n+1} = \sqrt{a_n + 6}$, 证明 $\lim_{n \to \infty} a_n$ 存在并求之.
- **11.** (10 分) 证明 $e^x + x = 4$ 在 $(0, +\infty)$ 内有零点.
- **12.** (5 分) 设函数 f(x) 在 [-1,1] 上连续, 且 $f(-1) \le 1 \le f(1)$. 证明存在 $\xi \in [-1,1]$, 使得 $f(\xi) = \xi^2$.
- **13.** (10 分) 求 $y = e^{x+1} \sin x e^2 \sin 1$ 的导数.
- **14.** (5 分) 求 $y = \arctan e^x$ 的导数.
- **15.** (5 分) 求曲线 $y = \tan x$ 在点 $\left(-\frac{\pi}{4}, -1\right)$ 处的切线方程和法线方程.

16. (5分)设

$$f(x) = \begin{cases} \frac{e^{3x} - 1}{\arctan x}, & x < 0, \\ 2x + a, & x \ge 0 \end{cases}$$

在 x = 0 处连续, 求常数 a.

合 肥 工 业 大 学 试 卷 (A)

共_1_ 页第_1_ 页

2021~2022 学年第_二_ 学期 课程代码__034Y01__ 课程名称 数学(下) 学分__5_ 课程性质: 必修☑选修□限修□ 考试形式: 开卷□闭卷☑

专业班级(教学班)____少数民族预科班____ 考试日期__2022 年 6 月 18 日 8:00-10:00_ 命题教师___集体___ 系(所或教研室)主任审批签名_______

一、填空题(每题3分,共18分)

- 1. 如果 f(x) > 0 且 $\lim_{x \to \infty} f(x) = 0$,则 $\lim_{x \to \infty} [1 + f(x)]^{1/f(x)} =$ ______.
- **2.** 设 $y = \sin(x^2 + 1)$, 则 dy =______.
- 3. 极限 $\lim_{n\to\infty} \left(\frac{1}{n^2-1} + \frac{2}{n^2-2} + \dots + \frac{n}{n^2-n} \right) = \underline{\hspace{1cm}}$
- **4.** 曲线 $y = 2\ln(x+1)$ 在点 $(1, 2\ln 2)$ 处的切线方程为_____.
- 5. 若 $e^{y-1} = 1 + xy$, 则 $\frac{dy}{dx}\Big|_{x=0} =$ _______.
- **6.** 如果函数 f(x) 的定义域是 $(0,+\infty)$, 且 x=0 是曲线 y=f(x) 的垂直渐近线, 那么 $\lim_{x\to 0^+} \frac{1}{f(x)} =$ ______.

二、选择题(每题3分,共18分)

- 1. 当 $x \to +\infty$ 时, $\frac{1}{x}$ 和 () 是等价无穷小.
 - A. $\sin \frac{1}{x}$
- B. $\sin x$
- C. e^{-x}
- D. $e^{1/x}$
- **2.** 若当 $x \to 0$ 时, $\arctan(e^x 1) \cdot (\cos x 1)$ 和 x^n 是同阶无穷小, 则 n = ().
 - A. 0
- B. 1

C. 2

D. 3

- 3. 设 $f(x) = \arctan \frac{1}{x(x-1)^2}$, 则 x = 0 是 f(x) 的 ().
 - A. 可去间断点

B. 跳跃间断点

C. 第二类间断点

- D. 连续点
- 4. 设 f(x) 是定义在 $(-\infty, +\infty)$ 上的连续函数, 且 f'(x) 的图像如下图所示, 则 f(x) 有 ().
 - A. 一个极大值点,没有极小值点
 - B. 没有极大值点, 一个极小值点
 - C. 一个极大值点和一个极小值点
 - D. 一个极大值点和两个极小值点

- **5.** 设函数 f(x) 在点 x = 0 处可导, 且 f(0) = 0, 则 $\lim_{x \to 0} \frac{f(x^{2022}) + x^{2021}f(x)}{x^{2022}} = ($).
 - A. 0

- B. f'(0)
- C. 2f'(0)
- D. 2022f'(0)
- **6.** 如果点 (x_0, y_0) 是曲线 y = f(x) 的拐点, 则 $f''(x_0) = ($).
 - A. 0

- B. ∞
- C. 不存在
- D. 0 或不存在

三、解答题(每题8分,共64分)

- **1.** 求极限 $\lim_{x \to -1} \frac{x^2 1}{x^2 + 3x + 2}$.
- 2. 求极限 $\lim_{x\to 0} \frac{e^x 1 x}{\arcsin x^2}$.
- 3. 设 $\begin{cases} x = t^2 + t \\ y = t^3 + t \end{cases}$, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 和 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- 4. 设 $f(x) = \begin{cases} x \arctan \frac{1}{x}, & x < 0, \\ x^2 + ax + b, & x \ge 0. \end{cases}$ 求常数 a, b 使得函数 f(x) 在 $(-\infty, +\infty)$ 内可导, 并求出此时曲线 y = f(x) 的渐近线.
- **5.** 求函数 $f(x) = x^3 x^2 x$ 在区间 [-2, 2] 上的最大值和最小值.
- **6.** 证明: 当 $-\frac{\pi}{2} < x_1 < x_2 < \frac{\pi}{2}$ 时, $\tan x_2 \tan x_1 \geqslant x_2 x_1$.
- 7. 设函数 f(x) 在 $(-\infty, +\infty)$ 内可导, 且 f(1) = 0. 证明: 存在 $\xi \in (0,1)$ 使得 $\xi f'(\xi) + 2022 f(\xi) = 0$.
- 8. 设函数 $f(x) = \ln x + \frac{2}{x^2}, x \in (0, +\infty)$. 求
 - (1) 函数 f(x) 的增减区间及极值;
 - (2) 曲线 y = f(x) 的凹凸区间及拐点

合肥工业大学考试专用答卷纸 (A)

2021~2022 学年第_二_ 学期	课程代码034	Y01 课程名称	数学(下)	命题教师	集体	系主任审批
教学班级	学生姓名	学号	考证	式日期 <u>2022 年 6 月</u>	18 目 8:00-10	:00 成绩
考生注意事项: 1. 本试卷分试题与答卷两部分; 2. 所有试题的解答(包括选择、填空);			3. (8分)【解 dy	$= \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}$		(2 分)
 3. 考试结束后,必须将试题、答卷整理_ 4. 考生务必认真填写班级、姓名、学号等 	•	场;		$-\frac{\mathrm{d}x/\mathrm{d}t}{\mathrm{d}t} = \frac{3t^2 + 1}{2t + 1},$		
 一、填空题(每小题 3 分, 共 18	 分)					(2 分)
请将你的答案对应填在横线上:				$= \frac{\mathrm{d}y'/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}$		(2 分)
1, 2. $2x\cos(x^2+1)$	dx, 3. 1/2	,	:	$=\frac{6t(2t+1)-(3t^2+1)2}{(2t+1)^3}$	$=\frac{6t^2+6t-2}{(2t+1)^3}.$	(2 分)
//			4. (8分)【解】	1		
4. $y = x - 1 + 2 \ln 2$, 51		·	由于 f(x) 右	E x = 0 处连续, 因此		
二、选择题(每小题 3 分, 共 18 请将你所选择的字母 A, B, C, D 之一x			f(0)	$= f(0^+)$		(1 分)
题号 1 2 3	4 5	6		$=b=\lim_{x\to 0^-}x\arctan\frac{1}{x}=$	$0 \times \left(-\frac{\pi}{2}\right) = 0.$	(1 分)
答案 A D B	A C	D	由于 f(x) 花	Ex=0 处可导, 因此		
三、解答题(每小题8分,共64	分)		$f'_{-}(0)$	$= f'_{+}(0),$		(1 分)
1. (8分)【解】			$f'_{-}(0)$	$= \lim_{x \to 0^-} \frac{x \arctan \frac{1}{x}}{x} = \lim_{x \to 0}$	$\arctan \frac{1}{x} = -\frac{\pi}{2}$	(1 分)
$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2} = \lim_{x \to -1} \frac{(x^2 - 1)}{(x^2 + 3x + 2)}$	$\frac{(x-1)(x+1)}{(x+2)(x+1)}$	(3 分		$= (2x+a) _{x=0} = a,$		(1 分)
$= \lim_{x \to -1} \frac{x}{x}$	$\frac{-1}{+2}$	(3 分	 			(1 分)
$=\frac{-2}{1}=\frac{1}{1}$	-2.	(2 ½	·)	$\frac{y}{x} = \lim_{x \to +\infty} \left(x - \frac{\pi}{2} \right) = +\epsilon$	∞ ,	(1 分)
2. (8分)【解】			$\lim_{x\to -\infty}$	$\frac{y}{x} = \lim_{x \to -\infty} \arctan \frac{1}{x} = 0,$		
$\lim_{x \to 0} \frac{e^x - 1 - x}{\arcsin x^2} = \lim_{x \to 0} \frac{e^x}{-1}$		(3 分		$y = \lim_{x \to -\infty} x \arctan \frac{1}{x} = \frac{1}{x}$	$\lim_{t \to 0^-} \frac{\arctan t}{t} = 1,$	
	$\lim_{x \to 0} \frac{e^x - 1}{2x}$	(3 分	\Box 因此曲线 $y = f($	(x) 的渐近线只有 $y=1$.		(1 分)
$=\lim_{x\to 0}\frac{x}{2x}$	$\frac{r}{r} = \frac{1}{2}$.	(2 分	`)			

合肥工业大学考试专用答卷纸 (A)

2021~2022 学年第 二 学期 课程代码 034Y01 数学(下) 课程名称 集体 系主任审批 命题教师 考试日期 2022 年 6 月 18 日 8:00-10:00 教学班级 学生姓名 7. (8分)【证明】 5. (8分)【解】 设 $F(x) = x^{2022} f(x)$,(2 分) 由 则 F(x) 在 [0,1] 上连续, (0,1) 内可导,(1分) $f'(x) = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0$ $\perp F(0) = 0, F(1) = f(1) = 0.$(1分) 由罗尔中值定理, 存在 $\xi \in (0,1)$ 使得 $F'(\xi) = 0$(2 分) 可得驻点 $x = -\frac{1}{3}, 1.$ (2 分) 由于 $F'(x) = x^{2022}f'(x) + 2022x^{2021}f(x)$ 且 $\xi \neq 0$,(1 分) 由于(1分) 所以 $\xi f'(\xi) + 2022 f(\xi) = 1$. $f(-2) = -10, \quad f(2) = 2, \quad f\left(-\frac{1}{3}\right) = \frac{5}{27}, \quad f(1) = -1, \quad \dots \dots (2 \ \%)$ 8. (8分)【解】 (1)因此最大值为 2, 最小值为 -10. $f'(x) = \frac{1}{x} - \frac{4}{x^3} = \frac{x^2 - 4}{x^3} = \frac{(x+2)(x-2)}{x^3}.$(1 分) 6. (8分)【证明】 证法一: 设 $f(x) = \tan x - x$, 则 当 0 < x < 2 时, f'(x) < 0. 当 x > 2 时, f'(x) > 0.(1 分) $f'(x) = \frac{1}{\cos^2 x} - 1 = \tan^2 x \geqslant 0.$ (2 $\frac{1}{2}$) 因此 (0,2] 是 f(x) 的单减区间, $[2,+\infty)$ 是 f(x) 的单增区间.(1 分) 所以 f(x) 只有唯一的极小值 $f(2) = \ln 2 + \frac{1}{2}$(1 分) $f''(x) = -\frac{1}{x^2} + \frac{12}{x^4} = -\frac{x^2 - 12}{x^4} = -\frac{(x - 2\sqrt{3})(x + 2\sqrt{3})}{x^4}.$ (1 分) $f(x_2) \ge f(x_1), \quad \tan x_2 - \tan x_1 \ge x_2 - x_1.$ (2 %) 证法二: 设 $f(x) = \tan x$, 则 f(x) 在 $[x_1, x_2]$ 上连续, (x_1, x_2) 内可导.(2 分) 由拉格朗日中值定理, 存在 $\xi \in (x_1, x_2)$ 使得 因此 $(0,2\sqrt{3}]$ 是曲线 y = f(x) 的凹区间, $[2\sqrt{3}, +\infty)$ 是曲线 y = f(x) 的凸区间, (1 分) 拐点为 $\left(2\sqrt{3}, \ln(2\sqrt{3}) + \frac{1}{6}\right)$(1 分) $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi),$(2 分) 即

 $\frac{\tan x_2 - \tan x_1}{x_2 - x_1} = \frac{1}{\cos^2 \xi} \geqslant 1.$

所以 $\tan x_2 - \tan x_1 \geqslant x_2 - x_1$.

肥 工 业 大 学 试 卷 (B)

共 1 页第 1 页

2021~2022 学年第_二_ 学期 课程代码__034Y01__ 课程名称 数学(下) 学分__5__ 课程性质: 必修☑选修□限修□ 考试形式: 开卷□闭卷☑

专业班级(教学班)___少数民族预科班___ 考试日期 2022 年 7 月 15 日 10:00-12:00 命题教师 集体 系(所或教研室)主任审批签名_

一、填空题(每题 3 分, 共 18 分)

1.
$$\lim_{x \to 0} (1+x^2)^{1/x^2} = \underline{\hspace{1cm}}$$

2. 设
$$y = \cos(2x+1)$$
, 则 d $y =$ _______.

3. 极限
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n} \right) = \underline{\hspace{1cm}}$$

4. 曲线
$$y = e^x$$
 在点 $(0,1)$ 处的切线方程为_____

5. 若
$$x - y + 1 = e^y$$
, 则 $\frac{dy}{dx}\Big|_{x=0} =$ _______.

6. 曲线
$$y = x + \frac{1}{x}$$
 的斜渐近线是______.

二、选择题(每题3分,共18分)

- 1. 当 $x \to \infty$ 时, $\frac{1}{x}$ 和 () 是等价无穷小.
 - A. $\tan \frac{1}{x}$ B. $\tan x$ C. e^x

- D. $e^{1/x}$
- **2.** 若当 $x \to 0$ 时, $\tan(e^x 1) \cdot \sin x$ 和 x^n 是同阶无穷小, 则 n = ().
 - A. 0
- B. 1

C. 2

D. 3

- **3.** $\mbox{$\psi$} f(x) = \arctan \frac{1}{x^2}, \ \mbox{μ} x = 0 \ \mbox{$\rlap/$E} f(x) \ \mbox{h} (\ \).$
 - A. 可去间断点

B. 跳跃间断点

C. 第二类间断点

- D. 连续点
- **4.** 设 f(x) 是定义在 $(-\infty, +\infty)$ 上的连续函数, 且 f'(x) 的图像如下图所示, 则 f(x) 有 ().
 - A. 一个极大值点,没有极小值点
 - B. 没有极大值点, 一个极小值点
 - C. 一个极大值点和一个极小值点
 - D. 一个极大值点和两个极小值点

- **5.** 设函数 f(x) 在点 x = 0 处可导, 且 f(0) = 0, 则 $\lim_{x \to 0} \frac{f(x^2) x f(x)}{x^2} = ($).
- B. f'(0)
- C. 2f'(0)
- D. -f'(0)
- **6.** 如果点 (x_0, y_0) 是曲线 y = f(x) 的极值点, 则 $f'(x_0) = ($).
 - A. 0
- B. ∞
- C. 不存在
- D. 0 或不存在

三、解答题(每题8分,共64分)

- 1. 求极限 $\lim_{r\to 2} \frac{x^2-4}{r^2-3r+2}$.
- 2. 求极限 $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.

3. 设
$$\begin{cases} x = t^2 - t \\ y = t^3 - t \end{cases}$$
 , 求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 和 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

- **4.** 设 $f(x) = \begin{cases} e^x, & x < 0, \\ x^2 + ax + b, & x \ge 0. \end{cases}$ 求常数 a, b 使得函数 f(x) 在 $(-\infty, +\infty)$ 内可导.
- **5.** 求函数 $f(x) = x^3 + x^2 5x$ 在区间 [0,2] 上的最大值和最小值
- 7. 设函数 f(x) 在 $(-\infty, +\infty)$ 内可导, 且 f(1) = 0. 证明: 存在 $\xi \in (0, 1)$ 使得 $\xi f'(\xi) + 2f(\xi) =$
- 8. 设函数 $f(x) = x^3 3x^2 + 5, x \in (-\infty, +\infty)$. 求
 - (1) 函数 f(x) 的增减区间及极值;
 - (2) 曲线 y = f(x) 的凹凸区间及拐点.

合肥工业大学考试专用答卷纸 (B)

2021~2022 学年第_二_ 学期	课程代码034Y01_	课程名称	数学(下)	命题教师 集体	系主任审批
教学班级					 L0:00-12:00_ 成绩
考生注意事项: 1. 本试卷分试题与答卷两部分; 2. 所有试题的解答(包括选择、填空)必3. 考试结束后,必须将试题、答卷整理上4. 考生务必认真填写班级、姓名、学号等	· 交,不得将试题带离考场;	题上直接作答一律无效;	3. $(8 \Im)$ 【解】 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x}$ $= \frac{3t^2}{2t}$		(2 分)
一、填空题(每小题 3 分, 共 18 g 请将你的答案对应填在横线上:			$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}y'}{\mathrm{d}x}$	$\frac{/\operatorname{d}t}{/\operatorname{d}t}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1. e , 2. $-2\sin(2x+1)e$ 4. $y = x+1$, 5. $1/2$	y = x	-	4. (8 分)【解】 由于 $f(x)$ 在 $x =$		
二、选择题 (每小题 3 分, 共 18 ; 请将你所选择的字母 A, B, C, D 之一对				$f(0) = f(0^-)$	(2 分)
题号 1 2 3	4 5 6			$= b = \lim_{x \to 0^{-}} e^{x} = 1.$	(2 分)
答案 A C A 三、解答题(每小题 8 分, 共 64 g)	C A D 分)		由于 $f(x)$ 在 $x =$	0 处可导, 因此	
1. (8分)【解】			j	$f'_{+}(0) = f'_{-}(0),$	(1 分)
$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2} = \lim_{x \to 2} \frac{(x - 4)}{(x - 4)}$	$\frac{-2)(x+2)}{-2)(x-1)}$	(3 分)		·	(1 分)
$= \lim_{x \to 2} \frac{x+}{x-}$	· <u>2</u>	(3 分)	因此 $a=1$.		(1 分)
=4.		(2 分)			
2. (8分)【解】					
$\lim_{x \to 0} \frac{x - \sin x}{x^3} \stackrel{\text{Aess}}{=} \lim_{x \to 0}$	$\frac{1-\cos x}{3x^2}$	(3 分)			
$= \lim_{x \to 0} \frac{x^2/2}{3x^2}$ $= \frac{1}{3x^2}$		(3 分)			
$=\frac{1}{6}.$		(2 分)			

合肥工业大学考试专用答卷纸 (B)

2021~2022 学年第 二 学期 课程代码 034Y01 课程名称 数学(下) 命题教师 集体 系主任审批 考试日期 2022 年 7 月 15 日 10:00-12:00 成绩 教学班级 学生姓名 学号 7. (8分)【证明】 5. (8分)【解】 由 设 $F(x) = x^2 f(x)$, (2 分) 则 F(x) 在 [0,1] 上连续, (0,1) 内可导,(1分) $f'(x) = 3x^2 + 2x - 5 = (x - 1)(3x + 5) = 0$ \perp $\perp F(0) = 0, F(1) = f(1) = 0.$(1分) 由罗尔中值定理, 存在 $\xi \in (0,1)$ 使得 $F'(\xi) = 0$(2 分) 可得驻点 x = 1. (2分) 由干 $\xi f'(\xi) + 2f(\xi) = 1.$ (1 %) $f(0) = 0, \quad f(1) = -3, \quad f(2) = 2,$ (2 $\frac{1}{2}$) 8. (8分)【解】 (1)(2分) 因此最大值为 2, 最小值为 -3. 6. (8分)【证明】 $f'(x) = 3x^2 - 6x = 3x(x-2).$(1 分) 证法一: 设 $f(x) = e^x - ex$, 则(2 分) 当 0 < x < 2 时, f'(x) < 0. 当 x > 2 或 x < 0 时, f'(x) > 0.(1 分)(2 分) $f'(x) = e^x - e \geqslant 0.$ 所以 f(x) 的极小值为 f(2) = 1, 极大值为 f(0) = 5.(1分) f''(x) = 6x - 6 = 6(x - 1)......(1 分) $f(x_2) \geqslant f(x_1), \quad e^{x_2} - ex_2 \geqslant e^{x_1} - ex_1.$ (2 \(\frac{1}{2}\)) 当 x > 1 时, f''(x) > 0. 当 x < 1 时, f''(x) < 0.(1分) 由拉格朗日中值定理, 存在 $\xi \in (x_1, x_2)$ 使得 拐点为 (1,3).(1 分) $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi),$(2 分) 即 $\frac{e^{x_2} - e^{x_1}}{x_2 - x_1} = e^{\xi} \geqslant e.$ 所以 $e^{x_2} - e^{x_1} \ge e(x_2 - x_1)$(2 分)