Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1	Начала функционального анализа			3
1.1 Понятие множества. Отображение		Поня	гие множества. Отображение	3
	1.2			4
	1.3 Неподвижные точки отображения		цвижные точки отображения	6
		1.3.1	Приложение принципа сжимающих отображений к решению алгебра-	
			ических уравнений	7
		1.3.2	Приложение принципа сжимаемых отображений к решению системы	
			алгебраических уравнений	7
		1.3.3	Применение принципа сжимаемых отображений к решению диффе-	
			ренциальных уравнений	8
		1.3.4	Применение принципа сжимаемых отображений к решению интеграль-	
			ных уравнений	9
		1.3.5	Обобщение признака сжимающих отображений	10
		1.3.6	Теорема о неподвижной точки Шаудера	11
1.4 Евклидово пространство			ІДОВО ПРОСТРАНСТВО	11

Список литературы

- [1] Колмогоров, Фомин «Элементы теории функций и функционального анализа»
- [2] Канторович, Акилов «Функциональный анализ нормированных пространств»
- [3] Вулих «Основы теории функций вещественной переменной»
- [4] Халмош «Теория меры»
- [5] Данфорд, Шварц «Линейные операторы. Общая теория»
- [6] Очан «Сборник задач по теории функций вещественной переменной»

1 Начала функционального анализа

1.1 Понятие множества. Отображение

Определение 1.1. Множеством называется совокупность элементов какой-либо природы.

Определение 1.2. Множества A и B дизъюнктны, если они не пересекаются.

Система множеств также называется дизъюнктной, если множества попарно не пересекаются: $A_i \cap A_j = \emptyset, \ \forall i \neq j$

Определение 1.3. Множество называется упорядоченным, если для его элементов введены операции отношения $<,>,\leq,\geq$.

Если множество упорядочено, то для него можно ввести понятие ограниченности, супремума, инфимума и так далее.

Определение 1.4. Пусть заданы M, N — произвольные множества. И пусть задано правило f, согласно которому $\forall x \in M \; \exists ! y = f(x) \in N$. Тогда говорят, что задано отображение $f: M \to N$.

Соответственно x — прообраз, y — образ.

Пример 1.1. Пусть M и N — числовые. Тогда f называется функцией.

Пример 1.2. Пусть M=C[a,b] — непрерывные функции из [a,b] и $N=\mathbb{R}$. Тогда отображение — функционал. $y=\int_a^b x(t)dt$ — элементарный функционал.

Пример 1.3. $M = \mathbb{R}^3$, а N = Oxy и каждому вектору сопоставляется его проекция. Тогда отображение будет называться оператором.

Пример 1.4. M — множество фигур в \mathbb{R}^2 и каждой фигуре ставится в соответствие ее площадь. Тогда отображение называется мерой. Или, в теории вероятности, отображение события в значение его вероятности.

Определение 1.5. Два множества A и B называются эквивалентными или равномощными, если между их элементами можно установить взаимно однозначное соответствие.

Определение 1.6. Пусть A,B — множества, и при этом $\exists D\subset B: A\sim D$ и $\not\exists C\subset A: B\sim C.$ Тогда говорят, что B мощнее A.

Пример 1.5. Самыми маломощными являются конечные множества. Следующие по мощности — счетные. Следующие — множества мощности континуума (мощность множества вещественных чисел на любом отрезке).

Теорема 1.1. Пусть A — множество, а B — множество всех подмножеств множетсва A. Тогда B мощнее A.

Замечание 1.1. Если A имеет мощность континуума, то B будет иметь мощность гиперконтинуума. Из теоремы следует, что мощность можно увеличивать до бесконечности.

1.2 Метрические и нормированные пространства

Определение 1.7. Пространство X называется метрическим, если $\forall x, y \in X \exists! \rho(x, y) \in \mathbb{R}$, такое, что:

- 1) $\rho(x,y) > 0$, при этом $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2) $\rho(x, y) = \rho(y, x)$;
- 3) $\rho(x,y) < \rho(x,z) + \rho(y,z)$

$$\forall x, y, z \in X$$
.

Пример 1.6.

 $X=\mathbb{R},$ тогда $\rho(x,y)=|x-y|.$ $X=\mathbb{R}^n,$ тогда: $\rho(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2}$ (сферическая метрика) или $\rho(x,y)=\max_{i=\overline{1,n}}|x_i-y_i|$ (параллелепипедальная) и любые другие, на какие может хватить фантазии. Вообще говоря, близость в одной метрике не значит близости в другой.

Пример 1.7. Пусть
$$X = C[a,b]$$
. $\rho(f(x),g(x)) = \max_{[a,b]} |f(x) - g(x)|$ Или $\rho(x,y) = \int_a^b |f(x) - g(x)| dx$.

Определение 1.8. ε -окрестность точки x: $V_{\varepsilon}(x) = \{y \in X : \rho(x,y) < \varepsilon\}$ — шар с центром в точке x и радиусом ε .

Используя понятие окрестности, можно ввести понятия предельной точки, внутренней точки, открытого и замкнутого множества и так далее.

Определение 1.9. Пусть $A \subset B$. A всюду плотно в B, если $\forall \varepsilon > 0, \ \forall x \in B \ \exists y \in A$: $\rho(x,y)<\varepsilon.$

Определение 1.10. Множество X называется сепарабельным, если у него есть счетное всюду плотное подмножество.

Пример 1.8. \mathbb{R} — сепарабельное $\mathbb{Q} \subset \mathbb{R}$.

Аналогично C[a,b] — сепарабельное, поскольку содержит множество полиномов.

Определение 1.11. $A \subset B$. A нигде не плотно в B, если оно не плотно ни в одном шаре из B.

Пример 1.9. $B = \mathbb{R}$. $A = \mathbb{N}$.

Определение 1.12. Пусть $\{x^{(k)}\}_{k=1}^{\infty}$ — последовательность элементов в X. И пусть $x^* \in X$. Тогда $x^{(k)} \to x^*: \rho(x^{(k)}, x^*) \to_{k \to \infty} 0$.

Определение 1.13. Последовательность $\{x^{(k)}\}_{k=1}^{\infty}$ фундаментальна, если для нее выполнен критерий Коши: $\forall \varepsilon > 0 \; \exists N > 0 : \; \forall k, n > N \;$ выполняется $\rho(x^{(k)}, x^{(n)}) < \varepsilon$.

Теорема 1.2. Если последовательность сходится, то она фундаментальна.

Доказательство. Рассмотрим $0 \le \rho(x^{(k)}, x^{(n)}) \le \rho(x^{(k)}, x^*) + \rho(x^*, x^{(n)}) \to_{k \to \infty} 0$. Теорема о двух милиционерах.

Определение 1.14. Пространство X — полное, если любая фундаментальная последовательность в нем сходится к элементу этого пространства: \forall фундаментальной $\{x^{(k)}\} \in X \; \exists x^* \in X$, такое, что $x^{(k)} \to_{k \to \infty} x^*$.

Пример 1.10. $X = \mathbb{R}$ — полное. $X = \mathbb{Q}$ — не полное, $x^{(k)} = (1 + \frac{1}{k})^k \in \mathbb{Q}$ сходится к e, но $e \notin Q$.

Замечание 1.2. Полнота пространства зависит, вообще говоря, от введенной метрики.

Пример 1.11. $X = C[a,b], \rho_1(f(x),g(x)) = \max_{[a,b]} |f(x)-g(x)|$ и $\rho_2(f(x),g(x)) = \int_a^b |f(x)-g(x)| dx$. Если рассматривать $\rho_1(f_k(x),g(x)) \to_{k\to\infty} 0 \Rightarrow f_k(x) \rightrightarrows_{k\to 0}^{[a,b]} f(x) \Rightarrow f(x) \in X$, но $\rho_2(f_k(x),g(x)) \to_{k\to\infty} 0 \not\Rightarrow f(x) \in X$.

Теорема 1.3. Для того, чтобы X было полным, необходимо и достаточно, чтобы любая последовательность вложенных друг в друга замкнутых шаров имела непустое пересечение.

Доказательство. Аналогично лемме Коши-Кантора для вложенных отрезков.

Теорема 1.4. (Бэра) Полное пространство не может быть представлено в виде счетного объединения нигде не плотных множеств.

Вывод 1.1. Полное пространство не может быть счетным.

Если пространство не полное, то его можно пополнить.

Определение 1.15. X^* называется пополнением пространства X, если:

- 1) $X \subset X^*$;
- (2) X всюду плотно в X^* .
- 3) X^* полное.

Операция пополнения эквивалентна опрерации замыкания, но замыкают чем-то известным, а пополняют чем-то новым.

Пример 1.12. \mathbb{Q} — неполное. Дополним его иррациональными числами и получим полное пространство \mathbb{R} .

Определение 1.16. Пространство X линейно, если для элементов этого пространства введены операции сложения и умножения на константу.

Определение 1.17. Линейные пространства X,Y изоморфны, если $X \sim Y$ и $\forall x_1, x_2 \in X$, $\forall y_1, y_2 \in Y$ и $x_1 \sim y_1, x_2 \sim y_2 \Rightarrow x_1 + x_2 \sim y_1 + y_2, \lambda x_1 \sim \lambda y_1$.

Пример 1.13. X — множество полиномов степени $\leq (n-1)$. $Y = \mathbb{R}^n$. Тогда $X \sim Y$,

$$x(t) = a_1 t^{n-1} + \dots + a_n \sim y = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

Для линейных пространств можно ввести понятие линейной зависимости и независимости элементов, размерности, базиса, подпространства и так далее.

Определение 1.18. Линейное пространство X называется нормированным, если $\forall x \in X$: $\exists! r \in \mathbb{R}$, которое называется нормой (||x||) и удовлетворяет следующим аксиомам:

- 1) $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$;
- 2) $||\lambda x|| = |\lambda| \cdot ||x||$;
- 3) $||x + y|| \le ||x|| + ||y||$;

Если пространство нормированно, то его всегда можно метризовать.

Стандартной считается метрика, согласованная с нормой: $\rho(x,y) = ||x-y||$.

Определение 1.19. Полное нормированное пространство называется Банаховым пространством.

Замечание 1.3. Все основные определения и свойства метрического пространства вытекали из определения метрики.

Можно пойти другим путем: не вводя метрику непосредственно определить с помощью аксиом что считать открытым множеством, замкнутым и так далее. В результате приходим к так называемым топологическим пространствам.

1.3 Неподвижные точки отображения

Пусть X, Y — два метрических пространства. Пусть ρ_1, ρ_2 — метрики в пространствах X и Y соответственно. И пусть задано отображение $\mathcal{A}: X \to Y \ (\forall x \in X \ \exists y = \mathcal{A}x \in Y)$.

Определение 1.20. Отображение \mathcal{A} называется непрерывным в точке $x_0 \in X$, если $\forall \{x_k\} \in X: x_k \to_{k \to \infty} x_0 \Rightarrow \mathcal{A}x_k \to_{k \to \infty} \mathcal{A}x_0$.

Или, что то же самое: $\forall \varepsilon > 0 \; \exists \delta > 0$, такое, что если $\rho_1(x, x_0) < \delta$, то $\rho_2(\mathcal{A}x, \mathcal{A}x_0) < \varepsilon$.

Предположим далее, что X=Y, то есть $\mathcal{A}:X\to X$ и $\rho_1=\rho_2=\rho$.

Определение 1.21. Точка $x^* \in X$ — неподвижная точка отображения \mathcal{A} , если $\mathcal{A}x^* = x^*$.

Определение 1.22. Отображение $\mathcal{A}: X \to X$ называется сжимающим, если $\exists \alpha \in [0,1)$, такая, что $\forall x, y \in X$ верно $\rho(\mathcal{A}x, \mathcal{A}y) \leq \alpha \rho(x,y)$.

Лемма 1.1. \mathcal{A} сжимающее $\Rightarrow \mathcal{A}$ непрерывное на X.

Доказательство.
$$\forall x_0 \in X, \forall \{x_k\} \in X: x_k \to_{k \to \infty} x_0 \Rightarrow 0 \le \rho(\mathcal{A}x_k, \mathcal{A}x_0) \le \alpha \rho(x_k, x_0) \to_{k \to \infty} 0$$

Теорема 1.5. (о неподвижной точке, она же Каччаполи-Банаха, она же принцип сжимающих отображений)

Пусть X — полное метрическое пространство, $\mathcal{A}: X \to X$. Тогда у отображения \mathcal{A} $\exists !$ неподвижная точка.

Доказательство. $\forall x_0 \in X$:

$$x_1 = \mathcal{A}x_0;$$

 $x_2 = \mathcal{A}x_1 = \mathcal{A}(\mathcal{A}x_0) = \mathcal{A}^2x_0;$

$$X_k = \mathcal{A}^k x_0;$$

Докажем, что эта последовательность является фундаментальной:

 $\forall n > m > 1$

$$\rho(x_{n}, x_{m}) = \rho(\mathcal{A}^{n} x_{0}, \mathcal{A}^{m} x_{0}) \leq \alpha \rho(\mathcal{A}^{n-1} x_{0}, \mathcal{A}^{m-1} x_{0}) \leq \dots \leq \alpha^{m} \rho(\mathcal{A}^{n-m} x_{0}, x_{0}) \leq
\leq \alpha^{m} \left(\rho(\mathcal{A}^{n-m} x_{0}, \mathcal{A}^{n-m-1} x_{0}) + \dots + \rho(\mathcal{A}^{n-m-1} x_{0}, \mathcal{A}^{n-m-2} x_{0}) + \dots + \rho(\mathcal{A} x_{0}, x_{0}) \right) \leq
\leq \alpha^{m} \left(\alpha^{n-m-1} \rho(\mathcal{A} x_{0}, x_{0}) + \alpha^{n-m-2} \rho(\mathcal{A} x_{0}, x_{0}) + \dots + \rho(\mathcal{A} x_{0}, x_{0}) \right) \leq
\leq \alpha^{m} \rho(x_{0}, x_{1}) \left(1 + \alpha + \alpha^{2} + \dots + \alpha^{n-m-1} + \dots \right) = \frac{\alpha^{m} \rho(x_{0}, x_{1})}{1 - \alpha} \to_{m \to \infty} 0$$

следовательно, последовательность является фундаментальной.

X полное, следовательно, $\exists x^* \in X: \ x_k \to_{k \to \infty} x^*.$ Покажем, что x^* будет неподвижной точкой:

$$\mathcal{A}x^* = \mathcal{A}\lim_{k \to \infty} x_k = (A \text{ сжим, непр}) = \lim_{k \to \infty} \mathcal{A}x^* = \lim_{k \to \infty} x_{x+1} = x^*$$

Докажем, что точка единственная. От противного: x^*, y^* — неподвижные точки \mathcal{A} . Тогда:

$$0 \le \rho(x^*, y^*) = \rho(\mathcal{A}x^*, \mathcal{A}y^*) \le \underbrace{\alpha}_{<1} \rho(x^*, y^*)$$

To ecte
$$\rho(x^*, y^*) = 0$$
.

Замечание 1.4. В доказательстве содержится алгоритм поиска неподвижной точки. Выберем любую точку, применим к ней несколько раз отображение и предел данной последовательности будет неподвижной точкой.

1.3.1 Приложение принципа сжимающих отображений к решению алгебраических уравнений

Проблема. Пусть требуется решить уравнение $x = \varphi(x)$, где c — корень, причем $c \in [a, b]$.

Решение. Возьмем конкретное пространство $X = \mathbb{R}$. Метризуем: $\rho(x,y) = |x-y|$. Пространство полное. Введем отображение $\mathcal{A}x = \varphi(x)$. Тогда уравнение сведется к виду $\mathcal{A}x = x$, а c — неподвижная точка. Нам осталось лишь доказать сжимаемость данного отображения.

Пусть $\varphi(x)$ — удовлетворяет условию Липшица на [a,b]: $\exists \alpha > 0 : \forall x,y \in [a,b] \Rightarrow \underbrace{|\varphi(x) - \varphi(y)|}_{\rho(\mathcal{A}x,\mathcal{A}y)} \leq \alpha \underbrace{|x-y|}_{\rho(x,y)}$. Таким образом, оно сжимающее.

И тогда мы можем найти $\{x_k\} \to_{k\to 0} c$.

1.3.2 Приложение принципа сжимаемых отображений к решению системы алгебраических уравнений

Проблема. Требуется решить следующую систему уравнений: x = Ax + b (1). A, b заданы, x — неизвестен. $X = \mathbb{R}^n$.

Решение. Введем отображение Ax = Ax + b. Тогда уравнение (1) сводится к поиску c — неподвижной точки отображения A. 4

Если отображение сжимающее, то берем произвольный вектор, применяем к нему отображение и так далее. Тогда последовательность векторов будет сходится к нужному нам корню.

Выпишем далее достаточные условия сжимаемости отображения \mathcal{A} . Сжимаемость, вообще говоря, зависит от введенной метрики. Для того, чтобы можно было применить принцип, достаточно, чтобы сжимаемость была хотя бы в одной метрике.

1) Пусть метрика введена следующим образом: x, y — вектора и $\rho(x, y) = \sqrt{\sum_{i=1}^{n} \overline{(x_i - y_i)^2}}$. Рассмотрим расстояния между образами:

$$\rho^{2}(\mathcal{A}x, \mathcal{A}y) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}(x_{j} - y_{j}) \right)^{2} \leq \dots$$

Применяем неравенство Коши-Буняковского-Шварца:

$$\dots \le \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2\right) \left(\sum_{i=1}^n (x_i - y_i)^2\right) = \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2\right) \rho^2(x, y)$$

Тогда \mathcal{A} — сжимающее, если $\left(\sum_{i=1}^n\sum_{j=1}^n a_{ij}^2\right)<1$. 2) Или так: $\rho(x,y)=\max_{i=\overline{1,n}}|x_i-y_i|$.

$$\forall x, y \in \mathbb{R}^n \ \rho(\mathcal{A}x, \mathcal{A}y) = \max_{i=\overline{1,n}} \left| \sum_{j=1}^n a_{ij} (x_j - y_j) \right|$$

Оценим сие сверху:

$$\rho(\mathcal{A}x, \mathcal{A}y) = \max_{i=\overline{1,n}} \left| \sum_{j=1}^{n} a_{ij} (x_j - y_j) \right| \le \left(\max_{i=\overline{1,n}} \sum_{j=1}^{n} |a_{ij}| \right) \cdot \underbrace{\left(\max_{j=\overline{1,n}} |x_j - y_j| \right)}_{=\rho(x,y)}$$

Для сжимаемости достаточно выполнения условия $\sum_{i=1}^{n} |a_{ij}| < 1, i = \overline{1, n}$.

1.3.3 Применение принципа сжимаемых отображений к решению дифференциальных уравнений

Пусть записан диффур в стандартном виде: y' = f(x, y). Поставим задачу Коши: $y(x_0) = y_0.$

Данную задачу Коши можно переписать в следующей интегральной форме:

$$y = y_0 + \int_{x_0}^x f(x, y(x)) dx$$

Тогда $X=C^1$ — множество непрерывно дифференцируемых функций. Теперь нужно найти отображение $\mathcal{A}: X \to X$:

$$\mathcal{A}y(x) = y_0 + \int_{x_0}^x f(x, y(x)) dx$$

Откуда отображение запишется в форме

$$y(x) = Ay(x)$$

Пусть G — некоторая область, содержащая точку (x_0, y_0) . Будем считать, что f(x, y)— непрерывна в G и удовлетворяет условию Липшица, то есть $\forall y_1, y_2, \ \forall x: \ (x, y_1), (x, y_2) \in$ $G \Rightarrow |f(x,y_1) - f(x,y_2)| \le L |y_1 - y_2|$. Пусть без потери общности G замкнута, тогда $K = \max_G |f(x,y)|$.

Рассмотрим область D следующего вида: $\begin{cases} |x-x_0| \leq d \\ |y-y_0| \leq Kd \end{cases}$, где $d=\mathrm{const}$. Положим,

 $D \subset G$ и Ld < 1.

 $\forall y(x): |y(x)-y_0| \leq Kd$ при $x \in [x_0-d,x_0+d]$, следовательно, $|\mathcal{A}y(x)-y_0| = \left|\int_{x_0}^x f(x,y(x))dx\right| \leq Kd$, то есть применение отображения \mathcal{A} за пределы области D не выводит.

Теперь нам нужна метрика и мозги. В качестве метрики примем: $\rho(y_1(x),y_2(x))=\max_{[x_0-d,x_0+d]}|y_1(x)-y_2(x)|$. Проверим, что в этой метрике отображение будет сжимающим. $\forall y_1(x),y_2(x)$

$$\rho(\mathcal{A}y_{1}(x), \mathcal{A}y_{2}(x)) = \max_{[x_{0}-d, x_{0}+d]} \left| \int_{x_{0}}^{x} \left(f(x, y_{1}(x)) - f(x, y_{2}(x)) \right) dx \right| \leq \max_{[x_{0}-d, x_{0}+d]} Ld \left| y_{1}(x) - y_{2}(x) \right| = \underbrace{Ld}_{<1} \rho(y_{1}(x), y_{2}(x))$$

В результате получаем теорему Пикара.

Теорема 1.6. (Пикара) Пусть f(x,y) непрерывна в G, удовлетворяет условию Липшица по у. Тогда решение задачи Коши будет существовать и будет единственным на $[x_0-d,x_0+d]$.

Доказательство. $\forall y^{(0)}(x) = y_0$.

Построим последовательность:

$$y^{(1)} = \mathcal{A}y^{(0)}(x) = y_0 + \int_{x_0}^x f(x, y^{(0)}(x)) dx.$$
...
$$y^{(k)}(x) = \mathcal{A}y^{(k-1)}(x) = y_0 + \int_{x_0}^x f(\tau, y^{(k-1)}(x)) dx$$

Пример 1.14. $y' = y \Rightarrow y = Ce^x$. Пусть требуется найти функцию, удовлетворяющую начальному условию $y(0) = 1 \Rightarrow C = 1$: $y = e^x$.

Строим последовательность:

$$\begin{aligned} y^{(0)}(x) &= 1 \\ y^{(1)}(x) &= 1 + \int_0^x dx = x + 1. \\ y^{(2)}(x) &= 1 + \int_0^x (x+1)dx = 1 + x + \frac{x^2}{2} \\ \dots \\ y^{(k)}(x) &= 1 + x + \frac{x^2}{2!} + \dots + \frac{x^k}{k!} + \dots \end{aligned}$$

1.3.4 Применение принципа сжимаемых отображений к решению интегральных уравнений

Проблема. Рассмотрим уравнение вида $f(x) = \lambda \int_a^b K(x,y) f(y) dy + \varphi(x)$ — уравнение Фридгольма второго рода. Здесь $\lambda = \mathrm{const}, \, K(x,y), \varphi(x)$ — заданы. Требуется найти f(x).

Решение. K(x,y) непрерывна при $x,y \in [a,b], \varphi(x)$ непрерывна на [a,b] и мы будем искать нашу функцию, которая должна быть непрерывной на [a,b].

В качестве пространства возьмем X = C[a, b]. Найдем отображение. Пусть

$$\mathcal{A}f(x) = \lambda \int_{a}^{b} K(x, y)f(y)dy + \varphi(x)$$

откуда $f(x) = \mathcal{A}f(x)$. Если $f^*(x)$ — неподвижная точка \mathcal{A} , то $f^*(x)$ — решение уравнения Фридгольма. Нам нужна метрика. Берем стандартную: $\forall f_1(x), f_2(x) \ \rho(f_1(x), f_2(x)) = \max_{[a,b]} |f_1(x) - f_2(x)|$.

Пусть $M = \max_{x,y \in [a,b]} |K(x,y)|$. $\forall f_1(x), f_2(x)$

$$\rho(\mathcal{A}f_{1}(x), \mathcal{A}f_{2}(x)) = \max_{[a,b]} \left| \lambda \int_{a}^{b} K(x,y) \left(f_{1}(y) - f_{2}(y) \right) dy \right| \leq \frac{1}{\lambda} \left| M(b-a) \cdot \max_{[a,b]} |f_{1}(y) - f_{2}(y)| \right| = \rho(f_{1}(x), f_{2}(x))}$$

Откуда условие сжимаемости: $|\lambda| M(b-a) < 1$.

1.3.5 Обобщение признака сжимающих отображений

Теорема 1.7. Пусть X — полное метрическое пространство и A : $X \to X$. Пусть $\exists k \in \mathbb{N}$: A^k — сжимающее. Тогда у отображения A существует ровно одна неподвижная точка.

Доказательство. Пусть $\mathcal{B} = \mathcal{A}^k : X \to X$. \mathcal{B} — сжимающее, следовательно, по теореме Каччаполи-Банаха $\exists !$ неподвижная точка x^* отображения \mathcal{B} . Тогда x^* будет и неподвижной точкой отображения \mathcal{A} .

$$\mathcal{A}x^* = \mathcal{A}(\mathcal{B}x^*) = \dots = \mathcal{A}(\mathcal{B}^m x^*) = \mathcal{B}^m (Ax^*)$$
. Из доказательства теоремы Каччаполи-
Банаха $\mathcal{B}^m(\underbrace{Ax^*}_{=x_0}) \to_{m\to\infty} x^*$, откуда $\mathcal{A}x^* = x^* \Rightarrow x^*$ — неподвижная точка \mathcal{A} .

Пример 1.15. Рассмотрим уравнение Фридгольма, которое теперь уравнение Вольтерра:

$$f(x) = \lambda \int_{a}^{x} K(x, y) f(y) dy + \varphi(x)$$

Аналогично уравнению Фридгольма заданы λ, K, φ и функции непрерывны. Аналогично $X = C[a,b], \forall f_1(x), f_2(x)$ $\rho(f_1(x), f_2(x)) = \max_{[a,b]} |f_1(x) - f_2(x)|, M = \max_{x,y \in [a,b]} |K(x,y)|.$ Под образом функции будем понимать $\mathcal{A} = \lambda \int_a^x K(x,y) f(y) dy + \varphi(x) \Rightarrow \mathcal{A}f(x) = f(x).$ Аналогично с Фридгольмом,

$$\rho(\mathcal{A}f_1(x), \mathcal{A}f_2(x)) \le |\lambda| M(x-a) \cdot \max_{\underline{[a,b]}} |f_1(y) - f_2(y)|$$

$$= \rho(f_1(x), f_2(x))$$

Рассмотрим двукратные образы:

$$\rho(\mathcal{A}^2 f_1(x), \mathcal{A}^2 f_2(x)) \le \frac{|\lambda^2| M^2 (x-a)^2}{2!} \rho(f_1(x), f_2(x))$$

Ha k-том шаге:

$$\rho(\mathcal{A}^{k} f_{1}(x), \mathcal{A}^{k} f_{2}(x)) \leq \frac{\left|\lambda^{k}\right| M^{k}(x-a)^{k}}{k!} \rho(f_{1}(x), f_{2}(x)) \leq \frac{\left|\lambda^{k}\right| M^{k}(b-a)^{k}}{k!} \rho(f_{1}(x), f_{2}(x))$$

Откуда $\exists k$:

$$\frac{|\lambda|^k M^k (b-a)^k}{k!} < 1$$

следовательно, \mathcal{A} сжимающее.

1.3.6 Теорема о неподвижной точки Шаудера

Определение 1.23. Пространство X компактно, если из любой последовательности элементов этого пространства можно выделить сходящуюся подпоследовательность.

Теорема 1.8. $X - \kappa o m n a \kappa m h o$, следовательно, полное.

Доказательство. Пусть $\{x_k\}$ — фундаментальная последовательность. Если X — компактно, то \exists сходящаяся подпоследовательность, которая сходится: $\{x_{m_k}\} \to_{k \to \infty} x^*$.

Рассмотрим $\rho(x_k, x^*)$:

$$0 \le \rho(x_k, x^*) \le \underbrace{\rho(x_k, x_{m_k})}_{\to 0} + \underbrace{\rho(x_{m_k}, x^*)}_{\to 0}$$

первое из фундаментальности, второе из сходимости.

Теорема 1.9. (критерий компактности)

X компактно $\Leftrightarrow X$ замкнуто и ограничено.

Доказательство.

Heoбxoдимость. От противного. Пусть оно не замкнуто. Тогда \exists предельная точка $x^* \notin X$. По определению предельной точки $\exists x_k \in X: x_k \to_{k \to \infty} x^*$. Тогда $\rho(x_k, x^*) \to_{k \to \infty} 0$. Тогда любая подпоследовательность $\{x_{m_k}\} \to_{k \to \infty} x^*$. Отсюда X не компактное.

Пусть X не ограничено. Тогда $\exists \overline{x} \in X$, $\exists \{x_k\} \in X : \rho(x_k, \overline{x}) \to_{k \to \infty} \infty$. Тогда $\forall \{x_{m_k}\} \ \rho(x_{m_k}, \overline{x}) \to_{k \to \infty} \infty$. Следовательно, $\not\exists \hat{x} \in x^* : x_{m_k} \to x$, то есть X не компактное.

Достаточность. Возьмем любую последовательность $\{x_k\}_{k=1}^{\infty} \in X$. X ограничено, следовательно, $\{x_k\}_{k=1}^{\infty}$ ограничена. По теореме Больцано-Вейерштрасса \exists сходящаяся подпоследовательность $\{x_{h_k}\} \to_{k \to \infty} x^*$, где x^* — предельная точка X. X замкнуто, следовательно, $x^* \in X$, откуда X компактно.

Определение 1.24. X — выпуклое (линейное), если $\forall x_1, x_2 \in X, \ \forall \lambda = \text{const} \in [0, 1] \Rightarrow x = \lambda x_1 + (-\lambda)x_2 \in X.$

Теорема 1.10. (Шаудера о неподвижной точке)

Пусть X — выпуклое, компактное. \mathcal{A} — непрерывно: $X \to X$. Тогда существует хотя бы одна неподвижная точка отображения \mathcal{A} .

Пример 1.16. $X = \{x^2 + y^2 \le 1\}.$

Пусть \mathcal{A} — поворот вокруг центра на угол φ . Тогда (0,0) — неподвижная точка.

Пусть \mathcal{A} — поворот вокруг центра на угол 180° . Тогда все точки на OX — неподвижные.

1.4 Евклидово пространство

Определение 1.25. Линейное пространство X евклидово, если введено скалярное произведение.

Определение 1.26. X — линейное пространство.

Введено скалярное произведение, если $\forall x,y \in X \; \exists ! \; (x,y) \in \mathbb{R},$ удовлетворяющее следующим условиям:

- 1) (x,x) = 0, $(x,x) = 0 \Leftrightarrow x \neq 0$;
- 2) (x,y) = (y,x);
- 3) $(\lambda x, y) = \lambda(x, y);$
- 4) (x + y, z) = (x, z) + (y, z).

Лемма 1.2. (Неравенство Коши-Буняковского-Шварца) X - eвклидово пространство. Тогда $\forall x, y \in X \Rightarrow |(x,y)| \leq \sqrt{(x,x)} \cdot \sqrt{(y,y)}$.

Доказательство. Рассмотрим произвольные $x, y \in X$ и $\lambda = \text{const.}$ Рассмотрим

$$0 \le (\lambda x + y, \lambda x + y) = \lambda^2(x, x) + 2\lambda(x, y) + (y, y)$$

Это парабола, ветви которой направлены вверх. Она не имеет корней (двух разных, как минимум). Тогда $D=(x,y)^2-(x,x)(y,y)\leq 0 \Rightarrow (x,y)^2\leq (x,x)(y,y)$ откуда $|(x,y)|\leq \sqrt{(x,x)}\cdot\sqrt{(y,y)}$.

Любое евклидово пространство можно нормировать. $||x|| = \sqrt{(x,x)}$.

Докажем, что при таком введении нормы верны аксиомы:

1) ||x|| > 0, $||x|| = 0 \Leftrightarrow x = \emptyset$.

2) $\|\lambda x\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{\lambda^2(x, x)} = |\lambda| \|x\|$.

3)
$$||x+y|| = \sqrt{(x+y,x+y)} = \sqrt{(x,x)+2(x,y)+(y,y)} \le (\text{KEIII}) \le \sqrt{(x,x)+2\sqrt{(x,x)}\sqrt{(y,y)}+(y,y)}$$

$$\sqrt{\left(\sqrt{(x,x)}+\sqrt{(y,y)}\right)^2} = \sqrt{(x,x)}+\sqrt{(y,y)} = ||x||+||y||.$$

Замечание 1.5. Неравенство КБШ: $|(x,y)| \le ||x|| \cdot ||y||$.

В евклидовом пространстве можно ввести понятие угла между элементами.

Определение 1.27. $\varphi \in [0,\pi] = (x\hat{\ }y)$ — угол между x,y если $\cos \varphi = \frac{(x,y)}{\|x\|\cdot\|y\|}$

Определение 1.28. $x, y \in X$ ортогональны, если (x, y) = 0, то есть $\varphi = \pi/2$.

Определение 1.29. $\{x_k\}$ — ортогональная система, если $(x_k, x_m) = 0$ при $k \neq m, x_k \neq \emptyset$. Если при этом $||x_k|| = 1 \ \forall k$, то $\{x_k\}$ — ортонормированная система.

Замечание 1.6. Любую ортогональную систему всегда можно нормировать: $\left\{\frac{x_k}{\|x_k\|}\right\}$.

Теорема 1.11. $\{x_k\}$ — ортогональная система в X. Тогда $\{x_k\}$ — линейно независимая в X.

Доказательство.
$$\sum_k \lambda_k x_k = \varnothing$$
, $\lambda_k = \text{const.}$

$$0 = \sum_k \lambda_k (x_k, x_j) = (\sum_k \lambda_k x_k, x_j) = (\varnothing, x_j) = 0 \text{ (по KБШ).}$$

$$\lambda_j \underbrace{(x_j, x_j)}_{\neq 0} = 0 \Rightarrow \lambda_j = 0 \forall j \Rightarrow \text{система линейно независима.}$$

Определение 1.30. $\{x_k\}$ — полная система в X, если наименьшее содержащее ее замкнутое пространство есть пространство X.

Определение 1.31. Полная система линейно независимых элементов называется базисом. Если система ортогональна или ортонормирована, то базис называется соответственно ортогональным или ортонормированным.

Теорема 1.12. Любая ортогональная система в сепарабельном пространстве не более чем счетна.

Теорема 1.13. Любую систему линейно независимых элементов можно ортонормировать.

Теорема 1.14. В любом сепарабельном евклидовом пространстве всегда существует счетный ортонормированный базис.

Пусть X — сепарабельное евклидово пространство и $\{\varphi_k\}$ — ортонормированный базис в X.

 $\forall f \in X \Rightarrow f = \sum_{k=1}^{\infty} c_k \varphi_k$, где c = const - обобщенный ряд Фурье.

$$(f, \varphi_j) = (\sum_{k=1}^{\infty} c_k \varphi_k, \varphi_j) = \sum_{k=1}^{\infty} c_k (\varphi_k, \varphi_j) = \begin{cases} c_k \cdot 1 & k=j \\ 0 & k \neq j \end{cases}$$
. Отсюда $(f, \varphi_k) = c_j, \ j=1,2,...$

Найдем аппроксимацию наилучшим образом (далее ~ — аппроксимация).

 $S_n = \sum_{k=1}^n \alpha_k \varphi_k$, $\alpha_k = \text{const.}$ Найдем такие α_k , чтобы $S_n \sim f$ наилучшим образом. Для этого должно выполняться $\rho(S_n, f) \to \min$.

$$\rho^{2}(S_{n}, f) = \|S_{n} - f\|^{2} = (S_{n} - f, S_{n} - f) = (S_{n}, S_{n}) - 2(f, S_{n}) + (f, f) =$$

$$= \left(\sum_{k=1}^{n} \alpha_{k} \varphi_{k}, \sum_{k=1}^{n} \alpha_{k} \varphi_{k}\right) - 2\left(f, \sum_{k=1}^{n} \alpha_{k} \varphi_{k}\right) + (f, f) = \sum_{k=1}^{n} \alpha_{k}^{2} - 2\sum_{k=1}^{n} \alpha_{k}(f, \varphi_{k}) + \|f\|^{2} =$$

$$= \|f\|^{2} + \left(\sum_{k=1}^{n} \alpha_{k}^{2} - 2\sum_{k=1}^{n} \alpha_{k} c_{k} + \sum_{k=1}^{n} c_{k}^{2}\right) - \sum_{k=1}^{n} c_{k}^{2}$$

$$= \sum_{k=1}^{n} (\alpha_{k} - c_{k})^{2}$$

Отсюда

$$||f||^2 + \sum_{k=1}^n (\alpha_k - c_k)^2 - \sum_{k=1}^n c_k^2 \to \min_{\alpha_1, \dots, \alpha_n}$$

при $\alpha_k = c_k$, $k = \overline{1, n}$, следовательно, это наилучшая аппроксимация. Далее будем считать, что $\alpha_k = c_k$, откуда $0 \le \|S_n - f\| = \|f\|^2 - \sum_{k=1}^n c_k^2$. $\sum_{k=1}^n c_k^2 \le \|f\|^2 \ \forall n$ при $n \to \infty$.

Определение 1.32. $\sum_{k=1}^{\infty} c_k^2 \le \|f\|^2$ — неравенство Бесселя.

Определение 1.33. $\{\varphi\}$ — замкнутая в X, если $\forall f \in X \Rightarrow \sum_{k=1}^{\infty} c_k^2 = \|f\|^2$ — неравенство Парсеваля.

 $\{\varphi\}$ — замкнутая, следовательно, $f=\sum_{k=1}^{\infty}c_k\varphi_k$ — сходится.

Теорема 1.15. X — сепарабельное евклидово пространство. Тогда полная система \Leftrightarrow замкнутая система.

Теорема 1.16. (Pucca- $\Phi uuepa$)

X — полное сепарабельное евклидово пространство. $\{\varphi_i\}$ — ортогональная система в X. $\forall c_i = \mathrm{const} \colon \sum_i c_i^2 < +\infty, \ mor \partial a \ \exists f \in X \colon \begin{cases} c_i = (f_i, \varphi_i) & \forall i \\ \sum_i c_i^2 = \|f\|^2 \end{cases}$.

Замечание 1.7. То есть для любой константы c_i можно построить элемент f, для которого они будут являться координатами сходящегося ряда Тейлора.

Определение 1.34. X,Y — евклидовы. X и Y изоморфны ($X \sim Y$), если

$$\begin{cases} x_1 \in X \sim y_1 \in Y \\ x_2 \in X \sim y_2 \in Y \end{cases} \Rightarrow \begin{cases} x_1 + x_2 \sim y_1 + y_2 \\ \lambda x_1 \sim \lambda y_1 \\ (x_1, x_2) = (y_1, y_2) \end{cases}$$

Определение 1.35. Полное, евклидово, бесконечномерное пространство называется Гильбертовым.

Теорема 1.17. Любые 2 сепарабельных гильбертовых пространства изоморфны друг другу.

 $Доказательство. \ X, Y$ — сепарабельные гильбертовы пространства.

Докажем, что $X \sim l_2 \sim Y$, тогда $X \sim Y$.

Рассмотрим произвольное сепарабельное гильбертово пространство X. Пусть $\{\varphi_i\}$ —

ортонормированный базис в
$$X$$
. $\forall x \in X$:
$$\begin{cases} x = \sum c_i \varphi_i \\ \|x\|^2 = \sum_{i=1}^{\infty} c_i^2 \end{cases} . x \in X \leftrightarrow c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \end{pmatrix} \in l_2.$$

Проверим 3 условия изоморфности (по определению):

1)
$$x^{(1)} \sim c^{(1)}, \ x^{(2)} \sim c^{(2)}, \ x^{(1)}, x^{(2)} \in X \sim c^{(1)}, c^{(2)} \in l_2$$

$$\begin{cases} x^{(1)} = \sum_{i=1}^{\infty} c_i^{(1)} \varphi_i \\ x^{(2)} = \sum_{i=1}^{\infty} c_i^{(2)} \varphi_i \end{cases} \Rightarrow \{$$

//Тут еще 3 лекции

Теорема 1.18.

- 1) Любое открытое множество является измеримым;
- 2) Любое замкнутое множество измеримо:
- 3) \forall измеримого E и $\forall \varepsilon > 0$ $\exists G$ открытое, F замкнутое, $m.ч.: F \subset E \subset G$, $\mu(G \backslash E) < \varepsilon$, $\mu(E \backslash F) < \varepsilon$.

Определение 1.36.

- 1) Множество называется множеством типа $G\delta$, если оно представимо в виде пересечения открытых множеств.
- 2) Множество называется множеством типа $F\sigma$, если оно представимо в виде объединения замкнутых множеств.

Пример 1.17.
$$A_i = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 < 1 + \frac{1}{i}\}$$
 — открытое. $A = \bigcap_{i=1}^{\infty} A_i = \{x : x_1^2 + x_2^2 \le 1\}$ — не открытое.

Теорема 1.19. $\forall E$ — измеримого $\exists G$ muna $G\delta$, $\exists F$ muna $F\sigma$: $\mu(E) = \mu(F) = \mu(G)$.

Доказательство. Пусть $\varepsilon = \frac{1}{m}, m = 1, 2,$ По предыдущей теореме $\exists G_m$ — открытое, F_m — замкнутое, такие, что $F_m \subset E \subset G_m$. Пусть $G = \cap_{m=1}^\infty G_m$ — типа $G\delta$, $F = \cup_{m=1}^\infty F_m$ — типа $F\sigma$. Возьмем $G \setminus E \subset G_m \setminus E \Rightarrow 0 \leq \mu(G \setminus E) \leq \mu(G_m \setminus E) < \frac{1}{m} \to_{m \to \infty} 0$, отсюда $\mu(G \setminus E) = 0, E \subset G$. Для F аналогично.

Пусть f(x) определена на $E \subset \mathbb{R}^n$. Под записью E[св-во] — часть E для которой верно свойство.

Определение 1.37.

```
E[f(x) > a];

E[f(x) \ge a];

E[f(x) < a];

E[f(x) \le a];

где a = \text{const} - \text{множества} Лебега.
```

Определение 1.38. Функция f(x) называется измеримой на E, если все ее множества Лебега измеримы $\forall a$.

Свойства измеримости:

- 1) f(x) измерима на множестве, то и множество измеримо.
- 2) Из измеримости одного типа множества Лебега следует измеримость трех оставшихся.
 - 3) $E = \bigcup_i E_i$ и функция f(x) измерима на каждом E_i . Тогда она измерима на E.
 - 4) $\mu(E) = 0 \Rightarrow \forall f(x)$ измеримо на E.

Теорема 1.20. f(x) — непрерывна на E и E измеримо. Тогда f(x) — измерима.

Доказательство.

1) Частный случай, E замкнуто. Покажем, что непрерывная функция измерима на этом множестве. Покажем, что $E[f(x) \ge a]$ замкнуто, как следствие, измеримо, а значит, и функция будет измерима.

Выберем произвользую последовательность $\{x_k\} \in E[f(x) \geq a]$. Пусть $x_k \to_{k \to \infty} x^*$, $x_k \in E$ и E замкнуто, следовательно, $x^* \in E$. Если $x_k \in E[f(x) \geq a] \Rightarrow f(x_k) \geq a$ и f непрерывна, следовательно, $f(x^*) \geq a \Rightarrow x^* \in E[f(x) \geq a]$.

2) Общий случай: \forall измеримого E. Найдется F типа $F\sigma$: $F \subset E$ и $\mu(E \backslash F) = 0$. $\exists F_i$ — замкнутые, $F = \cup_i F_i$. Тогда $E = (\cup_i F_i) \cup (E \backslash F)$. Теорема доказана по пункту 1 и свойствам 3, 4.

Теорема 1.21. f(x), g(x) — измеримы на E, тогда измеримы их сумма, разность, произведение и отношение.

Теорема 1.22. $\{f_k(x)\}$ — измерима на E, тогда супремум и инфимум этой последовательности также измеримы.

Теорема 1.23. $\{f_k(x)\}$ — измерима на E и $f_k(x) \to_{k\to\infty}^E f(x)$. Тогда f(x) также измерима.

Замечание 1.8. Пусть $f_k(x)$ непрерывна на E и $f_k(x) \to_{k\to\infty}^E f(x)$. Если сходимость не равномерная, то f(x) может оказаться не непрерывной. Такая функция называется функцией первого класса по Бэру.

Аналогично, если $f_k(x)$ — функции первого класса по Бэру, то $f_k(x) \to_{k\to\infty}^E f(x)$ — функция второго класса по Бэру.

Из сформулированной выше теоремы следует, что функция любого класса по Бэру является измеримой.

Определение 1.39. Будем говорить, что некоторое свойство выполняется почти всюду на E, если та часть E, на которой она не выполняется, имеет меру 0.

Определение 1.40. Будем говорить, что функция сходится почти всюду на E, если та часть E, на которой она не сходится, имеет меру 0.

Определение 1.41. $f_k(x)$ по мере сходится к f(x) на E если $\forall \varepsilon > 0$ $\mu E[|f_k(x) - f(x)| \ge \varepsilon] \to_{k\to\infty} 0$.

Теорема 1.24. (Лебега)

Если последовательность сходится в обычном смысле почти везде на E и мера E конечна, то $\{f_k(x)\}$ сходится κ f(x) и по мере.

Обратная теорема вообще говоря не верна.

Теорема 1.25. (*Pucca*)

Если $\{f_k(x)\}$ сходится по мере κ f(x), то \exists подпоследовательность $\{f_{k_i}(x)\}$, которая сходится в обычном смысле.

Теорема 1.26. (Лузина)

Пусть f(x) измеримая и почти везде конечная на E. Тогда $\forall \varepsilon > 0 \; \exists$ непрерывная $\varphi(x)$ на E, такая, что $\mu E[f(x) \neq \varphi(x)] < \varepsilon$ то есть любую измеримую почти везде конечную функцию можно сколь угодно апроксимировать обычной функцией.

Введем общее определение интеграла Лебега:

Пусть f(x) почти всюду ограничена на E, E измерима, $\mu(E) < +\infty$. Разобьем $E = \bigcup_{i=1}^m E_i, m_i = \inf_{E_i} f(x), M_i = \sup_{E_i} f(x)$.

 $s = \sum_{i=1}^{n} m_i \mu(E_i)$ — нижняя и $S = \sum_{i=1}^{n} M_i \mu(E_i)$ — верхняя суммы Дарбу Лебега. Нетрудно проверить, что выполнены стандартные 3 свойства для сумм Дарбу. $L = \sup s$, $M = \inf S$.

Определение 1.42. Если L = M, то это число называется интегралом Лебега по E от f(x).

Замечание 1.9. Пусть n=1. Когда мы вводили интеграл Римана от f(x) по E, то предполагали, что E_i — отрезки. Дописать.

Если интеграл Римана существует, то он совпадает с интегралом Лебега.