Qualidade de Serviço (QoS)

"Faster sites create happy users and, we've seen in our internal studies that when a site responds, slowly, visitors spend less time there." From google

Serviços Multimédia

E-Commerce & Conversion

7% A ONE SECOND DELAY IN SITE LOADING TIME WILL LEAD TO LOSS IN CONVERSION

40% OF PEOPLE WILL ABANDON YOUR WEBSITE IF IT TAKES LONGER THAN 3 SECONDS TO LOAD

51% OF U.S. ONLINE SHOPPERS ABANDON A PURCHASE BECAUSE OF SLOW WEBSITES

40% OF SHOPPERS CONSULT 3 OR MORE CHANNELS BEFORE MAKING A PURCHASE

97% OF USERS ABANDON MOBILE SHOPPING CARTS, COMPARED TO AROUND 70 - 75% FOR DESKTOP USERS

PROM B TO 2 SECONDS CAN INCREASE 74%

1 BILLION
PEOPLE HAVE BOUGHT PRODUCTS ONLINE

\$349 BILLION
& CHINA'S E-COMMERCE ECONOMY IS WORTH
& CHINA'S E-COMMERCE ECONOMY IS WORTH
\$562.66 BILLION

\$500 BILLION

8/10

CONSUMERS WILL SHOP ONLINE IF
FREE SHIPPING IS AVAILABLE

INTERNET VISITS FROM DESKTOP LEAD TO MORE SALES THAN VISITS FROM OTHER DEVICES

Serviços Multimédia

APLICAÇÕES MULTIMÉDIA EM REDE

Exemplos de Aplicações Multimédia

- Streaming de video
- Telefonia IP
- Internet Radio
- Videoconferência
- Jogos interactivos
- Mundos virtuais
- Ensino à distância
- Colaboração web
- Mensagens instantâneas

Aplicações Multimédia vs Aplicações Elásticas

Aplicações Multimédia

- Tradicionalmente muito sensíveis ao atraso ponto-a-ponto e à variação deste atraso
- Toleram uma perda ocasional de pacotes

Aplicações Elásticas

- Atrasos grandes podem ser indesejáveis mas não impedem o sucesso da comunicação
- A integridade da informação é fundamental: se existem perdas tem de se garantir o reenvio da informação
- e.g., Web, e-mail, FTP, Telnet

Streaming

- Streaming de áudio/vídeo em diferido
- Streaming de áudio/vídeo em directo
- Comunicação interactiva áudio/vídeo em tempo real

CODIFICAÇÃO & COMPRESSÃO

Problema?

- Uma imagem de 1080 x 768 pixels:
 - nº de pixels = 829.440
 - cada pixel representado por 3 cores (vermelho, azul, verde)
 - cada cor representada por 8 bits (i.e., 256 níveis de intensidade)
 - cada pixel com 16.777.216 possibilidades de cor, representado por 24 bits
 - 829.440 pixels x 24 bits ≈ 2.4Mbytes
- Um segundo de vídeo a esta resolução:
 - 2.4Mbytes x 30 frames = 72 Mbytes
 - *i.e.*, 576 Mbits/s
- Num acesso ADSL2+ com 24 Mbps downstream... 24 sec!

Áudio - codecs

Exemplo de MOS para codecs de Voz

Codec ⋈	Data rate [kbit/s] ⋈	Mean Opinion Score (MOS) ▼
G.711 (ISDN)	64	4.3
AMR	12.2	4.14
iLBC	15.2	4.14
G.729	8	3.92
G.723.1	6.3	3.9
GSM EFR	12.2	3.8
G.726 ADPCM	32	3.8
G.729a	8	3.7
G.723.1	5.3	3.65
GSM FR	12.2	3.5

Exemplo de frases recomendadas pelo ITU-T para o teste em inglês:

- You will have to be very quiet.
- There was nothing to be seen.
- They worshipped wooden idols.
- I want a minute with the inspector.
- Did he need any money?

Skype (codec OPUS)

Skype (codec OPUS)

Vídeo - Codecs

Compressão de Vídeo - MPEG

- MPEG Moving Picture Experts Group
- MPEG 1 define a compressão de vídeo até 1,5Mbps
- MPEG 2 suporta HDTV (High Definition TV) e ainda outros formatos para TV
- MPEG 4 define transmissões multimédia genéricas, incluindo objectos como texto, gráficos, MIDI, etc.
- As técnicas de compressão de vídeo digital sujeitas a perdas (lossy), como o MPEG, podem criar artefactos digitais durante o processo de compressão:
 - distorção da cor, degradação da cor, degradação do movimento, aumento do ruído, duplicação de frames, escadeado, geração de blocos (ou mosaico), et cetera

Compressão de Vídeo - MPEG2

- Qualidade de estúdio
- Define 4 níveis de resolução
 - Low 352x288 compatível com MPEG 1
 - Main 720x576 (PAL)
 - High 1440 1440x1152 (HDTV)
 - High 1920 1920x1152 (wide-screen HDTV)
- Os arquivos podem ser criados usando processos de codificação CBR (Constant Bit Rate) ou VBR (Variable Bit Rate)
 - CBR: 6 Mbps; VBR: 4 Mbps
- Frames do tipo I, P, e B

Compressão de Vídeo - MPEG4

- Inicialmente o MPEG-4 era destinado a vídeos de baixo débito. Algoritmos de compressão de alto desempenho
- MPEG-4 part 2 (MPEG-4 SP/ASP, utilizado por codecs como o DivX, Xvid, Nero Digital, 3ivx e Quicktime 6)
- MPEG-4 part 10 (MPEG-4 AVC/H.264, utilizado por x264 codec, pelo Nero Digital AVC, pelo Quicktime 7 e pelos formatos next-gen DVD como o HD DVD e o Blu-ray Disc).
- Para um sinal HDTV com uma resolução de 1920×1080, varrimento entrelaçado e frequência de refrescamento de 25Hz, o MPEG-2 apresenta um débito binário de 12 Mbits/s para uma qualidade da luminância de 35dB, por sua vez o MPEG-4 AVC apresenta um débito binário de 6,5 Mbits/s para uma qualidade semelhante

Compressão de Vídeo

- Frames codificadas
 - I-Frames
 - Não contêm informação sobre outras frames
- Frames previstas
 - P-Frames (previstas)
 - O conteúdo é relacionado com a I-Frame precedente
 - B-Frames (bidirecionais)
 - O conteúdo é relacionado com a I-Frame anterior e com a seguinte.
 - D-Frames
 - frames de baixa resolução usadas para o fast-forward e rewind da TVon-demand

Novos formato - Vídeo 3D

 Multiview Video Coding (MVC) é uma emenda aos standards de compressão de videio H.264/MPEG-4 AVC - http://www.youtube.com/watch?v=McJCyhwhcAs

Aplicações do MVC

- Free Viewpoint Television (FTV) http://www.youtube.com/watch?v=0yP_J6M4fiU
- Three-dimensional TV (3DTV)
- Immersive Teleconference

Codificação do MVC

- Permite codificar N câmeras
- Existe uma enorme dependência entre frames da mesma câmera e de câmeras diferentes

Protocolos em Comunicações Multimédia

Protocolos usados numa comunicação multimédia

Real-Time Streaming Protocol (RTSP)

Real Time Protocol (RTP)

Real Time Control Protocol (RTCP)

Session Initiation Protocol (SIP)

Session Description Protocol (SDP)

Real-Time Streaming Protocol (RTSP)

- Comunicação entre o media player e o servidor de streaming
- Especificado na RFC 2326
- Permite ao media player controlar a transmissão do stream de áudio/vídeo
 - pause/resume, play, fast-forwarding, rewind, saltar entre capítulos, et cetera
- É um protocolo *out-of-band*, i.e., a comunicação é efectuada fora da *stream* áudio/vídeo (utiliza o porto 544)
- as mensagens RTSP podem ser enviadas sobre UDP ou TCP
- É UMA ESPÉCIE DE CONTROLO REMOTO

Real Time Protocol (RTP)

Real Time Protocol (RTP)

- Especifica uma estrutura de pacote para transportar dados de áudio e vídeo em tempo real
- Especificado na RFC 1889
- Pacote RTP
 - Identificação do tipo de carga
 - Numeração da sequência de pacotes
 - Marcas de tempo
- RTP executado nos sistemas terminais
- Os pacotes RTP são tipicamente encapsulados em segmentos UDP
- Interoperabilidade: se duas aplicações de telefonia IP usam
 RTP, então elas podem trabalhar juntas

Cabeçalho RTP

Cabeçalho RTP – Payload Type (PT)

CODEC	Payload Type (7 bits)
G.711 (Áudio)	0 (mu-law) 8 (a-law)
G.721 (Áudio)	2
GSM	3
G.722 (Áudio)	9
G.723 (Áudio)	4
G.728 (Áudio)	15
G.729 (Áudio)	18
H.261 (Vídeo)	31
MPEG-1 (Áudio/Vídeo) MPEG-2 (Áudio/Vídeo)	14 (Áudio), 32 (Vídeo), 33 (Áudio/Vídeo)
H.263 (Vídeo)	34
Dinâmico	96–127

Real Time Control Protocol (RTCP)

Real Time Control Protocol (RTCP)

- Também definido na RFC 1889, trabalha em conjunto com o RTP
- Cada participante de uma sessão RTP transmite periodicamente pacotes de controle RTCP para todos os outros participantes
- Cada pacote RTCP contém relatórios do transmissor e/ou do receptor que são úteis para a aplicação
- As estatísticas incluem o número de pacotes enviados, número de pacotes perdidos e variação de atraso entre chegadas (jitter)
- Esta informação de realimentação para a aplicação pode ser usada para controle do desempenho e para fins de diagnóstico, no entanto, a RFC não o especifica
- O transmissor pode mudar as características das transmissões com base nestas informações de realimentação

Session Initiation Protocol (SIP)

Session Initiation Protocol (SIP)

- 1º RFC: 2543 (Março de 1999)
- O SIP é um protocolo de controlo (sinalização) da camada aplicacional para criar, modificar e terminar sessões multimédia com um ou mais participantes
- Pode ser usado para conferências multimédia, chamadas de voz, sessões de vídeo, distribuição de multimédia, instant messaging, etc.
- Usa o endereçamento da internet (URLs, DNS, proxies)
- Usa os formatos HTTP
 - Text based
- Não assume quais são os protocolos na camada de transporte. Pode suportar qualquer um:
 - TCP, UDP, SCTP ou TLS sobre TCP
- Porto 5060
- Suporta multicast

Session Description Protocol (SDP)

Session Description Protocol (SDP)

RFC 4566, 3264

- Um protocolo de descrição da sessão para comunicações multimédia
- Apresenta uma gama de parâmetros para sessões multimédia
 - Semelhante ao H.245 em termos de funcionalidade
- Desenvolvido pelo IETF MMUSICWG
- Simples/Flexível
 - Text-based
 - Extensível
- Modelo SIP Offer/Answer (RFC 3264)

Linhas (por ordem de utilização)

- v = versão do protocolo
- o = owner/creator e session identifier
- s = session name
- c = connection information não é necessária caso esteja incluída em todos os media.
- k = encryption keys
- t = tempo que a sessão está activa
- m = media description e transport address
- a = (zero ou mais) linhas de media attributes

Formatos de vídeo

- Os formatos de vídeo envolvem dois componentes:
 - Containers (involucro)
 - Codecs

Containers

AVI - (Audio Video Interleave): a Windows'standard multimedia

MPEG-4 Part14 - (known as .mp4): is the standardized container for MPEG-4.

FLV - (Flash Video): the format used to deliver MPEG video through Flash Player.

MOV - Apple's QuickTime container format.

OGG, OGM &OGV - open-standard containers.

VOB (DVDVideoObject) - It's DVD's standard container.

Formatos de vídeo

Codecs - Exemplos

MPEG-2:Used in HDTV, DVD

MPEG-4:

H.264: Most commonly used codecs for videos uploaded to the web.

Mp3 (for music)

WMV (Windows Media Video)- a special version of MPEG4.

RM (Real Media): a closed codec developed by Real Networks for streaming

DivX:

Quicktime 6: Apple's implementation of an MPEG4 codec.

PROBLEMÁTICAS DAS REDES DE COMUNICAÇÃO

Comunicações Multimédia

- Componentes com influência numa comunicação multimédia:
- Buffers

Buffers

- Onde estão os buffers?
 - Em todos os equipamentos da rede existem buffers onde os pacotes são temporariamente armazenados (interfaces de equipamentos de rede, equipamentos terminais, etc)
 - Os buffers têm uma capacidade máxima
 - Se atingirmos esta capacidade os próximos pacotes não têm espaço onde estar e são descartados, dando origem a perdas de pacotes

Distâncias

- A distância entre dois pontos têm que ser percorrida pelos pacotes. Quanto maior a distância maior será o tempo que o pacote necessita para chegar ao destino.
- Distâncias exemplo:
 - Portugal → França
 - Portugal → EUA
 - Portugal → Austrália
 - Portugal → Satélite → destino

Distâncias - Exemplo

Verizon Enterprise Solutions Latency Statistics for Country Specific Metrics (ms)									
2012									
	September	August	July	June	Мау	April	March	February	January
Hong Kong to US (230.000)	149.422	148.114	149.470	150.293	148.715	147.630	149.262	152.449	155.357
Singapore to US (260.000)	199.364	201.820	201.808	201.797	192.459	202.148	202.620	201.899	197.672
Australia to US (210.000)	157.141	155.505	155.490	155.546	155.505	155.559	155.547	155.511	155.732
Argentina to US (160.000)	117.398	116.941	116.909	117.198	116.593	117.115	117.082	116.897	118.344
Brazil to US (130)	112.444	112.316	112.508	112.473	112.148	111.952	111.965	111.683	112.071
Chile to US (150.000)	100.757	100.166	100.195	100.381	100.277	100.655	100.716	100.304	103.247
Colombia to US (95.000)	65.169	60.872	59.547	58.554	60.027	68.769	67.746	63.875	58.932
Panama to US (60.000)	46.108	46.266	41.384	41.330	41.065	40.943	40.862	40.908	40.510
Venezuela to US (110.000)	49.954	49.816	53.509	63.564	49.839	49.775	49.703	49.760	49.755
NA to India (380.000)	270.042	275.594	274.004	263.463	272.904	258.612	267.823	278.361	270.970
NA to Intra EMEA (110.000)	91.224	91.933	92.727	92.136	91.658	92.648	91.234	92.170	93.065
NA to Korea (200.000)	176.116	166.380	156.124	133.696	150.625	153.724	151.799	161.144	144.070
NA to Taiwan (220.000)	142.208	142.739	142.464	143.698	145.635	145.501	148.461	148.456	148.887
Hongkong to Sydney (180.000)	131.211	131.132	132.750	139.949	132.605	131.053	130.284	128.228	127.510
Hongkong to Singapore (65.000)	32.306	32.260	32.090	32.084	32.124	32.193	32.297	32.218	32.293
Hongkong to Tokyo (125.000)	45.636	45.474	47.706	50.238	45.369	45.534	46.406	45.862	47.061
Singapore to Sydney (150.000)	105.692	106.828	111.987	111.641	110.309	107.240	105.454	105.346	105.079
Singapore to Tokyo (115.000)	76.996	77.010	76.944	84.009	76.971	76.961	76.905	76.770	76.760
Sydney to Tokyo (150.000)	114.365	114.431	114.386	114.403	114.408	114.222	114.137	117.244	118.247
Korea to Singapore (200.000)	93.042	92.750	106.312	110.884	94.198	93.219	92.075	92.614	92.714

Processamento

- Temos processamento nos terminais origem e destino, para processarem os dados na origem e apresentarem a informação no destino.
- Temos processamento nos equipamentos de rede para processarem os pacotes (routers, switchs, firewalls, proxys, etc)

Velocidade do Meio

Services / Network	Rate
POTS	28.8-56 Kbit/s
ISDN	64-128 Kbit/s
ADSL	1.544-8.448 Mbit/s(downstream) 16-640 Kbit/s (upstream)
VDSL	12.96-55.2 Mbit/s
CATV	20-40 Mbit/s
OC-N/STS-N	N × 51.84 Mbit/s
Ethernet	10 Mbit /s
Fast Ethernet	100 Mbit/s
Gigabit Ethernet	1000 Mbit/s
FDDI	100 Mbit/s
802.11 (wireless)	1, 2, 5.5, and 11 Mbit/s
	in 2.4 GHz band
802.11a (wireless)	6-54 Mbit/s in 5 GHz band

Perdas

- Os dados enviados num pacote não chegam ao destino
- Em comunicações multimédia significa a perda de informação que é enviada para a rede mas não chega ao destino
- A partir de um certo limite de perdas não é possível reproduzir a informação no destino

Perdas – Exemplo

Verizon Enterprise Solutions Packet Delivery Statistics for Country Specific Metrics (%)									
2012									
	September	August	July	June	Мау	April	March	February	January
Hong Kong to US (99.000)	99.998	99.994	100.000	99.992	99.972	99.988	99.985	100.000	99.998
Singapore to US (99.000)	99.999	99.999	99.998	99.984	100.000	100.000	100.000	100.000	100.000
Australia to US (99.000)	99.977	99.998	99.989	99.933	100.000	100.000	99.999	99.999	100.000
Argentina to US (99.000)	99.984	99.973	99.980	99.979	99.996	99.965	99.973	99.987	99.984
Brazil to US (99.00)	99.987	99.983	99.984	99.975	99.982	99.976	99.975	99.964	99.951
Chile to US (99.000)	99.953	99.960	99.961	99.977	99.960	99.965	99.975	99.928	99.947
Colombia to US (99.000)	100.000	100.000	99.998	100.000	100.000	100.000	99.999	99.996	99.999
Panama to US (99.000)	99.979	99.978	99.984	99.970	99.988	99.930	99.985	99.990	99.989
Venezuela to US (99.000)	99.977	99.983	99.972	99.975	99.989	99.486	99.171	98.816	98.957
NA to India (99.000)	100.000	99.998	99.999	100.000	99.994	99.998	99.996	99.891	99.998
NA to Intra EMEA (99.000)	100.000	100.000	99.996	99.999	100.000	99.997	100.000	99.995	99.994
NA to Korea (99.000)	100.000	100.000	100.000	99.933	99.910	100.000	100.000	100.000	100.000
NA to Taiwan (99.000)	100.000	100.000	100.000	100.000	99.991	100.000	100.000	100.000	100.000
Hongkong to Sydney (99.000)	99.999	100.000	99.997	99.983	99.973	99.994	99.999	99.990	100.000
Hongkong to Singapore (99.000)	100.000	100.000	99.999	100.000	99.999	99.999	99.998	100.000	99.999
Hongkong to Tokyo (99.000)	99.999	99.999	99.991	99.997	99.999	99.998	100.000	100.000	100.000
Singapore to Sydney (99.000)	100.000	99.999	100.000	100.000	99.999	100.000	100.000	99.980	99.997
Singapore to Tokyo (99.000)	99.999	99.996	100.000	99.998	99.999	100.000	99.999	100.000	100.000
Sydney to Tokyo (99.000)	100.000	99.999	100.000	100.000	100.000	99.994	100.000	99.995	99.993
Korea to Singapore (99.000)	100.000	100.000	99.989	100.000	100.000	100.000	100.000	100.000	100.000
Korea to Hongkong (99.000)	100.000	100.000	99.996	99.998	100.000	100.000	100.000	100.000	100.000

Atraso (delay)

O atraso depende:

- Da distância entre a origem e o destino
- Do tempo que os pacotes perdem nos buffers
- Do tempo necessário para que os equipamentos processem os pacotes
- Do taxa de transmissão (transmissão implica serialização)
- Do tempo necessário para que os equipamentos terminais possam mostrar a informação

Serialization Delay = Frame Size/Link Speed

Atraso (delay)

Serialization Delay = Frame Size / Link Speed

Frame Size (Bytes)							
Speed	64	128	256	512	1024	1500	
64 kbps	8 ms	16 ms	32 ms	64 ms	128 ms	187 ms	
128 kbps	4 ms	8 ms	16 ms	32 ms	64 ms	93 ms	
256 kbps	2 ms	4 ms	8 ms	16 ms	32 ms	46 ms	
512 kbps	1 ms	2 ms	4 ms	8 ms	16 ms	23 ms	
768 kbps	0.640 ms	1.28 ms	2.56 ms	5.12 ms	10.4 ms	15 ms	

Variação do atraso (Jitter)

Os pacotes partem com um determinado espaçamento entre pacotes e chegam ao destino com um espaçamento diferente

Variação do atraso (Jitter) - Exemplo

	Verizon Enterprise Solutions Jitter Statistics (ms)								
	2012	012							
	September	August	July	June	Мау	April	March	February	January
U.S. Jitter (1.00)	0.083	0.059	0.059	0.057	0.057	0.059	0.059	0.061	0.062
Europe Jitter (1.00)	0.023	0.023	0.023	0.023	0.023	0.023	0.022	0.022	0.022

Bottlenecks

- Pontos de congestionamento do link entre dois sistemas finais pode ser na rede de acesso, backbone, rede terminal, servidores
- Com o aumento da capacidade da rede de acesso, o bottleneck desloca-se para o backbone

Bandwidth $_{\rm max}$ = min (10 Mbps, 256 kbps, 512 kbps, 100 Mbps) = 256 kbps Bandwidth $_{\rm avail}$ = bandwidth $_{\rm max}$ / flows

Throughput

- Throughput ou taxa de transmissão entre dois sistemas terminais.
- O throughput nas redes de pacotes é inferior à velocidade de acesso da interfaces de transmissão.
- Algumas aplicações geram uma taxa de bits constante (CBR)
- Outras aplicações geram tráfego a taxas variáveis (VBR)

Máximo Throughput

Table 1. Maximum Frame Rate and Throughput Calculations For a 1-Gb/s Ethernet Link

Frame Part	Minimum Frame Size	Maximum Frame Size
Inter Frame Gap (9.6 ms)	12 bytes	12 bytes
MAC Preamble (+ SFD)	8 bytes	8 bytes
MAC Destination Address	6 bytes	6 bytes
MAC Source Address	6 bytes	6 bytes
MAC Type (or length)	2 bytes	2 bytes
Payload (Network PDU)	46 bytes	1,500 bytes
Check Sequence (CRC)	4 bytes	4 bytes
Total Frame Physical Size	84 bytes	1, 538 bytes