Ονοματεπώνυμο:

AN.

ΕΞΕΤΑΣΗ ΣΕΠΤΕΜΒΡΙΟΥ 2023 ΣΤΟ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗ

ΘΕΜΑ 1° (3 μονάδες)

Για το transistor πυριτίου του Σχήματος Ι δίνεται ότι η τάση βάσης-εκπομπού είναι $V_{BE}=0.7\,$ V καθώς και ότι $\beta_{dc}=270$. Οι dc τάσεις τροφοδοσίας των κυκλωμάτων βάσης και συλλέκτη είναι $V_{BB}=V_{CC}=12\,$ V, αντίστοιχα. Εάν η αντίσταση του κυκλώματος της βάσης είναι $R_B=1.2\,$ Μ Ω και του κυκλώματος του συλλέκτη $R_C=2.5\,$ K Ω , να υπολογιστούν:

ί) Το ρεύμα ΙΒ το οποίο διαρρέει το κύκλωμα της βάσης σε μΑ.

(0.5 μονάδες)

ίί) Το ρεύμα I_C το οποίο διαρρέει το κύκλωμα του συλλέκτη σε mA.

(0.5 μονάδες)

iii) Η τάση στα άκρα συλλέκτη-εκπομπού $V_{\it CE}$.

(0.5 μονάδες)

iv) Εάν δίνεται ότι το transistor δεν βρίσκεται στην περιοχή κατάρρευσης, να προσδιοριστεί η περιοχή λειτουργίας του χρησιμοποιώντας την μέθοδο τάσης συλλέκτη-βάσης. (1.5 μονάδες)

ΘΕΜΑ 2° (4 μονάδες)

Για το κύκλωμα του Σχήματος 2 δίνεται ότι: $V_s=20$ V, $R_s=7$ KΩ, $R_L=10$ ΚΩ και $R_1=2$ ΚΩ. Χρησιμοποιώντας την τρίτη προσέγγιση για την δίοδο pn πυριτίου, η οποία έχει αντίσταση $R_D=0.2$ Ω, και το θεώρημα Thevenin να υπολογιστούν:

i) Η τάση στα άκρα της αντίστασης φορτίου R_L , V_L .

(2 μονάδες)

ii) Το ρεύμα που διαρρέει την αντίσταση φορτίου R_L , I_L .

(2 μονάδες)

ΘΕΜΑ 3° (3 μονάδες)

Για το κύκλωμα με transistor MOSFET του παρακάτω σχήματος δίνονται: VDD=30 V, R1=20 KΩ, R2=0.5 MΩ, RS=0, RD=1 KΩ. Επίσης, γνωρίζουμε ότι VT=6 V και IDS=5 mA. Τέλος, δίνεται και ο παρακάτω πίνακας μαθηματικών σχέσεων για transistor MOSFET.

Πίνακος 4.1 Μαθηματικές εκφοάσεις για το τρανζίστορ κΜΟΣ

REPIQUE AUTOYPHAZ	TYNONELL	PETIMA KANAANOT (Fac)
Anosantic	Vas < Vr	0
Tpióčou	Vos < Vos - Vr. Vos > Vr	K. [2(Vas - Vr) Vas - Vas]
Eópou	$V_{DS} > V_{GS} - V_T$, $V_{GS} > V_T$	$K_n (V_{GN} - V_T)^2$

GROV: K = 1 - 1 - W

Πίνακας 4.2 Μαθηματικές εκφράσεις για το τρανζίστος PMOS

ALITOYPTIAL	TYNOPEEZ	PETMA KANANOT UNI
Anosonis	Vas > VT	0
Tpublou	Vos > Vos - Vr. Vos < Vr	-K. 2 (Vas - Vr) Vos - V2s
Kópou	Vos < Vos - Vr. Vos < Vr	-K, (Vas - Vr)2

draw: K, - 1 - 1 - 1 - 1

- i. Να υπολογιστεί η τάση VGS.
- ii. Να υπολογιστεί η τάση VDS.