서울시 공유자전거 수요 예측

ESC Final Project

박웅준, 안서연, 최익준, 서지연, 박상용

PART 1.

데이터 처리 / 모델링

	columns (total 14 columns)		5.
#	Column	Non-Null Count	Dtype
0	Date	8760 non-null	object
1	Rented Bike Count	8760 non-null	int64
2	Hour	8760 non-null	int64
3	Temperature(°C)	8760 non-null	float64
4	Humidity(%)	8760 non-null	int64
5	Wind speed (m/s)	8760 non-null	float64
6	Visibility (10m)	8760 non-null	int64
7	Dew point temperature(°C)	8760 non-null	float64
8	Solar Radiation (MJ/m2)	8760 non-null	float64
9	Rainfall(mm)	8760 non-null	float64
10	Snowfall (cm)	8760 non-null	float64
11	Seasons	8760 non-null	object
12	Holiday	8760 non-null	object
13	Functioning Day	8760 non-null	object

Time Series Data

2017/12/01 ~ 2018/11/30 14 Features

Numeric: 10개

Categorical : 4개

기상(대기) 변수 시간대 관련 변수 온도, 습도, 바람, 가시거리, 시간, 계절, 휴일 여부, 이슬점, 자외선, 강수량, 강설량 따릉이 시스템 작동 여부

주요 변수 (Y값 상관성)

- **Temperature**
- Dew point temperature
- Solar Radiation
- → 이후 feature importance: 비슷한 결과

변수 처리

기상 변수 PCA

Fail

변수 Scaling

모델에 따라

- Temperature & Dew point temperature high correlation / VIF 높았던 Temperature & Dew point temperature & Humidity 끼리 PCA 시도: no improvement ⊗

- 기상 변수들끼리 PCA 시도: no improvement ❷

Data Scaling → Categorical data 모두 dummy 화

```
data['Holiday'][data['Holiday']=='No Holiday'] = 0
data['Holiday'][data['Holiday']=='Holiday'] = 1
```

```
name_tonum={'Spring':1, 'Summer':2, 'Autumn':3, 'Winter':4}

data['seasons']=data['seasons'].map(name_tonum)

cate_var=["hour", 'day', 'month', "seasons", "month", "holiday"]
for var in cate_var:
    data[var] = data[var].astype("category")
```

Data Scaling

```
def log transform(x):
    return np.log(x + 1)
from statistics import mean
from statistics import stdev as sd
def scale(x):
  return (x-mean(x))/sd(x)
cols=['temperature',
 'humidity',
'wind speed',
 'visibility',
 'dew point temperature',
 'solar radiation',
'rainfall',
'snowfall']
cols1 = ['temperature', 'dew point temperature']
cols2 = ['humidity', 'wind speed', 'visibility', 'solar radiation', 'rainfall', 'snowfall']
data scaled=data.copy()
for x in cols2:
  data_scaled[x] = log_transform(data[x])
for x in cols:
  data scaled[x] = scale(data scaled[x])
```

Cols 2: 지수분포와 비슷한 변수는 log_transform 후 scale 해줌

Cols 1: normal 따를 것으로 기대되는 변수는 standard_scaling

Train-Test Split

✓ <mark>매월 20일을</mark> 기준으로 Train – Test Split

* 1일 ~ 20일 : Train * 21일 ~ 30(31)일 : Test

PART 2.

Tree 기반 모델링

Root node (뿌리 마디) X₁>c₁ NO YES Intermediate node (중간마디) Terminal node (끝마디) Terminal Terminal node (끝마디) (끝마디) (끝마디)

- Pycaret -

		Mode I	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
lig	ghtgbm	Light Gradient Boosting Machine	1.959493e+02	8.739936e+04	2.740743e+02	6.746000e-01	0.5984	7.857000e-01	0.045
	rf	Random Forest Regressor	2.079232e+02	1.005079e+05	2.962512e+02	6.293000e-01	0.6099	8.525000e-01	0.505
	knn	K Neighbors Regressor	2.318936e+02	1.238236e+05	3.280183e+02	5.287000e-01	0.6165	8.027000e-01	0.025
	et	Extra Trees Regressor	2.065504e+02	9.895985e+04	2.875643e+02	6.616000e-01	0.6396	1.063300e+00	0.411
	gbr	Gradient Boosting Regressor	2.241128e+02	1.090952e+05	3.081725e+02	6.146000e-01	0.6543	8.364000e-01	0.166
	dt	Decision Tree Regressor	2.694274e+02	1.684489e+05	3.882460e+02	3.100000e-01	0.7497	9.274000e-01	0.018

→ 트리 기반의 모델 성능이 비교적 좋게 나타나는 것을 확인

→ 각각을 Modeling & Hyper-parameter tuning

DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=123, splitter='best')

Decision Tree

Parameter 기본 설정

☑ 전반적인 경향성 찾아냄☑ 오차가 큰 부분이 존재→ 다른 모델보다 예측 성능 떨어짐

Hyper-parameter Tuning 전

Model	RMSLE
Decision Tree Regressor	1.2192

Hyper-parameter Tuning

RMSLE

1.2026

DecisionTreeRegressor(ccp_alpha=0.0, criterion='mae', max_depth=15, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.02, min_impurity_split=None, min_samples_leaf=6, min_samples_split=10, min_weight_traction_leaf=0.0, presort='deprecated', random_state=123, splitter='best')

Grid Search 활용: Parameter tuning

RMLSE for the data: 1.2369379993004228

Peak / 낮은 값에서 큰 오차

Random Forest

모델실행

```
rf_params = {'random_state':[2016131028], 'n_estimators':[10, 20, 40, 60, 80, 100, 120, 140]}
rfModel = RandomForestRegressor()
grfModel = GridSearchCV(estimator=rfModel,param_grid=rf_params,scoring=rmsle_scorer,cv=5)
grfModel.fit(train2,np.loglp(ytrain2))
```

MSE & RMSE

```
preds = grfModel.predict(X= test2)
mean_squared_error(ytest2,np.exp(preds))
52043.657910751586
```

```
rmsle(np.log1p(ytest2),preds)
0.5075587696396644
```

→ RMSLE 값이 비교적 낮게 나옴

Random Forest - Plot

```
plt.rcParams["figure.figsize"] = (20,8)
fig1, ax1 = plt.subplots()
sns.scatterplot(ax=ax1,x=range(0,len(ytest2)),y=ytest2,color='blue')
sns.scatterplot(ax=ax1,x=range(0,len(ytest2)),y=np.exp(preds),color='red')
```


Extra Tree Regressor

What is Extra Tree?

Extra Tree

(랜덤포레스트와 비교)

₩ 비복원추출(Bootstrap x)

Random feature selection
(information gain 비교 x)

Hyper-parameter tuning 전

Score: 0.9999999998228141

RMSE: 299.04

Hyper-parameter tuning By Grid-Search

RMSE: 271.84

{'min_samples_leaf': 8, 'min_samples_split': 6, 'n_estimators': 200}

Gradient Boosting Regressor

Parameter Tuning 성능

☑ 전반적인 경향성 찾아냄☑ 오차가 큰 부분이 존재→ 다른 모델보다 예측 성능 떨어짐

```
GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse', init=None, learning_rate=0.1, loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_iter_no_change=None, presort='deprecated', random_state=123, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False)
```

 Model
 MAE
 MSE
 RMSE
 R2
 RMSLE
 MAPE

 Gradient Boosting Regressor 177.4921 65626.8019 256.1773 0.8329
 0.8209
 0.7556

Gradient Boosting Regressor

Feature Importance

(Correlation plot과 비교)

Gradient Boosting의 개선 모델

- ☐ LeafWise 트리 분할: loss 줄이기가 빠름
 - Fitting 속도가 빠름

 Model
 MAE
 MSE
 RMSE
 R2
 RMSLE MAPE

 Gradient Boosting Regressor 177.4921 65626.8019 256.1773 0.8329 0.8209 0.7556

Gradient Boosting

성능 개선

 Model
 MAE
 MSE
 RMSE
 R2
 RMSLE
 MAPE

 Light Gradient Boosting Machine 131.4954 41385.2511 203.4337 0.8946
 0.7305
 0.5657

LGBM

SHAP Value

예측값에 대한 직접적인 영향 정도를 표현

PART 3.

Ensemble

Objective

☐ 특정 모델의 경우, peak를 잘 잡지만,대부분 모델들이 그렇지 못함

☆ 성능 개선을 위해 Ensemble 사용

Ensemble Result

• RMSLE 관점 : LGBM + Random Forest Blending

LGBM + Random Forest Blending

LGBM rmsle: 0.6529353550079501

Random Forest: 0.5068182343852953

Ensemble rmsle: 0.4813819205005114

Base Model

Gradient Boosting

Mode I	MAE	MSE	RMSE	R2	RMSLE	MAPE
Gradient Boosting Regressor	177.5741	65688.3357	256.2974	0.8327	0.8209	0.7549

LGBM

Mode I	MAE	MSE	RMSE	R2	RMSLE	MAPE
Light Gradient Boosting Machine	131.4954	41385.2511	203.4337	0.8946	0.7305	0.5657

Extra Tree

Mode I	MAE	MSE	RMSE	R2	RMSLE	MAPE
Extra Trees Regressor	148.5598	52355.8696	228.8141	0.8667	0.5961	0.8275

Bagging

LGBM

Mode I	MAE	MSE	RMSE	R2	RMSLE	MAPE
Light Gradient Boosting Machine	131.4954	41385.2511	203.4337	0.8946	0.7305	0.5657

LGBM Bagging

Mode I				R2		
Light Gradient Boosting Machine	126.2197	39719.3284	199.2971	0.8989	0.7128	0.6216

Blending (Voting)

Gradient Boosting + LGBM + Extra Tree

Mode I				R2		
Voting Regressor	131.241	41427.5217	203.5375	0.8945	0.706	0.6404

LGBM + Extra Tree

LGBM rmsle: 0.6529353550079501

Extra Trees rmsle: 0.5919890487905014

Ensemble rmsle: 0.5458615172683272

Gradient Boosting + LGBM

Mode I					RMSLE	
Voting Regressor	131.8392	41888.6669	204.6672	0.8933	0.7389	0.5859

Stacking / Ensemble

Stacking (LGBM + Extra Tree + Linear Reg.)

Stacking rmsle: 0.9961176709985715

Ensemble (LGBM + Extra Tree + Random Forest)

LGBM rmsle: 0.6529353550079501

Extra Trees rmsle: 0.5919890487905014

Random Forest: 0.5068182343852953

Ensemble rmsle: 0.5164043923163714

Ensemble (LGBM + Random Forest)

LGBM rmsle: 0.6529353550079501

Random Forest: 0.5068182343852953

Ensemble rmsle: 0.4813819205005114

PART 4.

Conclusion & Limitation

- ☆ Data Engineering / Modeling / Ensemble & Parameter tuning : 성능 개선 & 예측
 - ☆ 세션에서 다뤘던 여러 머신 러닝 기법 적용

- ₩ 시계열 데이터 : 딥러닝 RNN과의 비교 필요
- 에이터 자체의 날짜가 적고, feature도 한정적

