Example 0.1

Recall a vector bundle (E, B, \mathbb{R}^n) has a k-frame iff the structure group reduces to $\operatorname{GL}_{n-k}(\mathbb{R})$. If we choose a metric on E, then the structure group of E is O(n). E has an orthonormal k-frame iff structure group reduces to O(n-k). In terms of principal bundles. Let $\mathcal{F}(E)$ be the orthonormal frame bundle associated to E. Now E has an orthonormal k-frame iff $\mathcal{F}(E)/O(n-k)$ has a section. The fibers of F(E)/O(n-k) are $O(n)/O(n-k)\cong V_{n,k}$. In Cor II.11, we have $\pi_i(V_{n,k})$. Unfortunately, $\pi_1(M)$ does not necessarily act trivially on $\pi_{n-k}(V_{n,k})$ if it is \mathbb{Z} . But if we take $\pi_{n-k}(V_{n,k})$ mod 2 then action is trivial (since any action on $\mathbb{Z}/2$ is trivial. So we have a primary obstruction to a k-frame over the (n-k+1)-skeleton of M. So $\gamma^{n-k+1}(E) \in H^{n-k+1}(M; \pi_{n-k}(V_{n,k}) \mod 2)$. We set $w_{\ell}(E) := \gamma^{\ell}(E) \in H^{\ell}(M; \mathbb{Z}/2)$. This is called the ℓ th- Steifel-Witney class of E. When ℓ is even, this is the primary obstruction to existence of an $n-\ell+1$ -frame on $M^{(\ell-1)}$ that extends to $M^{(\ell)}$. If ℓ odd then $w_{\ell}(E)$ is the mod 2 reduction of the primary obstruction.

Fact: w_{ℓ} determines primary obstruction for all ℓ .

Exercise: given (E, M, \mathbb{R}^n) ,

- (1) $w_{\ell}(E)0 \Leftrightarrow \text{there exists } n\text{-frame over } M^{(0)} \text{ that extends over } M^{(1)} \text{ iff there is an orientation on } E, i.e. \text{ structure group reduces to } SO(n).$
- (2) If E is orientable, then $w_2(E) = 0 \Leftrightarrow$ there exists an (n-1)-frame over $M^{(1)}$ that extends to $M^{(2)}$ iff there exists an n-frame on $M^{(1)}$ that extends to $M^{(2)}$ (since there is a canonical unit vector with positive orientation orthogonal to (n-1)-frame). This is called a **spin** structure on E.

Example 0.2

If (E, M, \mathbb{R}^n) is oriented, then $\pi_1(M)$ acts trivially on $\pi_{n-1}(V_{n,1}) \cong \mathbb{Z}$. Exercise: check this. So we get a primary obstruction $e(E) \in H^n(M; \mathbb{Z})$ to the existence of a non-zero section of E over $M^{(n)}$. e(E) is called the **Euler class**.

Exercise:

- (1) If $s: M \to E$ is a section and M a manifold. Then we can isotop s so it is transverse to zero section $Z = \{0 \in E_x : x \in M\}$. Then $e(E) = P.D.[s^{-1}(Z)]$ (Poincare duality of homology class of $s^{-1}(Z)$).
- (2) e(TM)([M]) = (M).

Example 0.3

Let (E, M, \mathbb{C}^n) be a vector bundle. Structure group is $GL_n(\mathbb{C})$ so this is a complex vector bundle. As discussed above, we can take structure group to be U(n). Let $\mathcal{F}(E)$ be the frame bundle which is a U(n) bundle over M.

Then E has a complex k-frame iff structure group reduces to $U(n)/U(n-k) \cong V_{n,k}(\mathbb{C}) \Leftrightarrow \mathcal{F}(E)/U(n-k)$ has a section. We have $\pi_i(V_{n,k}(\mathbb{C}))$ by Cor II.11.

Exercise: $\pi_1(M)$ acts trivially on $\pi_{2(n-k)+1}(V_{n,k}(\mathbb{C}))$ as the fiber of $\mathcal{E}/U(n-k)$. Thus we get a primary obstruction to a $M^{2(n-k)+2}$:

$$\gamma^{2(n-k)+2}(E) \in H^{2(n-k)+2}(M; \mathbb{Z} = \pi_{2(n-k)+1}(V_{n,k}(\mathbb{C}))).$$

Define $c_k(E) = \gamma^{2k}(E) \in H^{2k}(M; \mathbb{Z})$. This is called the **kth Chern class of** E. Then $c_k(E)$ is the obstruction to a complex (n-k+1) frame on $M^{(2k-1)}$ that extends to $M^{(2k)}$.

Exercise:

- $(1) c_n(E) = e(E).$
- (2) $w_{2i+1}(E) = 0$, which implies complex bundles are orientable.
- (3) $w_{2i}(E) = c_i(E) \mod 2$.
- (4) $c_1(E) = 0 \Leftrightarrow \text{structure group of } E \text{ reduces to } SU((n)), "complex orientation".$
- (5) if \overline{E} is E with the conjugate complex structure, i.e. $z \in \mathbb{C}$ multiply by \overline{z} , then $c_i(\overline{E}) = (-1)^i c_i(E)$. Hint: easy for $c_n(E)$, reduce to this case (see Milnor-Stasheff).

Example 0.4

 (E, M, \mathbb{R}^n) , then $E \otimes_{\mathbb{R}} \mathbb{C}$ is a complex vector bundle. Then the **ith Pontrjagin class**

of E is

$$p_1(E) = (-1)^i c_{2i}(E \otimes \mathbb{C}) \in H^{4i}(M; \mathbb{Z})$$

Exercise:

- (1) show $E \otimes \mathbb{C}$ and $\overline{E \otimes \mathbb{C}}$ are isomorphic. Use this to show $c_{2i+1}(E \otimes \mathbb{C})$ is 2-torsion.
- (2) If E is an oriented \mathbb{R}^{2n} -bundle, then

$$p_n(E) = e(E) \smile e(E)$$

(3) If E is a complex bundle and and $E^{\mathbb{R}}$ denotes the underlying real bundle. Then

$$E^{\mathbb{R}} \otimes \mathbb{C} \cong E \oplus \overline{E}.$$

(4) use 3) to show for complex \mathbb{C}^n -bundle E we have

$$1 - P_1(E) + p_2(E) - \ldots \pm p_n(E) = (1 + c_1(E) + \ldots + c_n(E)) \smile (1 - c_1(E) + c_2(E) - \ldots \pm c_n(E)) p_1(E)$$

Characteristic class, in general, do not determine a bundle. But we have

- (1) complex line bundles are determined by c_1 , and any $\alpha \in H^2(M)$ is c_1 of some \mathbb{C} -bundle.
- (2) c^2 -bundles are determined by c_1 and c_2 , and any $(\alpha, \beta) \in H^2(M) \times H^4(M)$ is (c_1, c_2) of some \mathbb{C}^2 -bundle.
- (3) SO(3)-bundles are isomorphic iff w_2, p_1 agree.
- (4) SO(4)-bundles are isomorphic $\Leftrightarrow w_2, p_1, e$ agree.

Exercise: prove them.