Table of Contents

Project Design Data and Summary

Roof Design Details

<u>Top Member Design</u>

Shell Design

Bottom Design

Wind Moment

Seismic Design

Anchor Bolt Design

Anchor Chair Design

Appurtenances Design

Normal and Emergency Venting

Capacities and Weights

Reactions on Foundation

Disclaimer and Special Notes

Page: 2/77

Project Design Data and Summary

Back

Project Data

Job: 2024-09-14-06-15 Date of Calcs: 17-Sep-2024

Mfg. or Insp. Date : Designer : Melior

Project:

Tag ID: Q9027 API

Plant:

Plant Location:

Site:

Design Basis: API-650 13th Edition Errata 1, 2021

Annexes Used: E, F, J, M, S

Design Parameters and Operating Conditions Design Parameters

Design Internal Pressure = 2.5 psi or 69.2017 inh2o Design External Pressure = -0 psi or -0 inh2o

D of Tank = 10 ftOD of Tank = 10 ft ID of Tank = 9.9688 ft CL of Tank = 9.9844 ft Shell Height = 16 ft S.G of Contents = 1.05S.G of Hydrotest = 1Hydrotest Liquid Level = 15 ft Max Design Liq. Level = 15 ft Max Operating Liq. Level = 15 ft Min Liq. Level = 1 ft Design Temperature = 120 °F MDMT (Minimum Design Metal Temperature) = -20 °F Tank Joint Efficiency = 0.7 Ground Snow Load = 0 psf Roof Live Load = 20 psf Additional Roof Dead Load = 0 psf

Appendix F Data

Failure pressure (Pf) = 4.7882 psi Maximum design pressure (P_max) = 2.5 psi

Wind Load Basis: ASCE 7-05

3 Second Gust Wind Speed (entered), Vg = 110 mph

Page: 3/77

Wind Importance Factor, Iw = 1 Design Wind Speed, V = Vg * SQRT(Iw) = 110 mph

Seismic Method: API-650 - ASCE7 Mapped(Ss & S1)

Seismic Use Group = I

Site Class = D

 $T_L (sec) = 12$

Ss(g) = 0.223

S1 (g) = 0.084Av (g) = 0.111

Q = 0.6667

Importance Factor = 1

Design Remarks

Summary Results

Shell

Shell #	Width (in)	Material	CA (in)	JE	Min Yield Strength (psi)	Tensile Strength (psi)	Reduction Factor	Sd (psi)	St (psi)
1	48	A240- 304	0	0.7000	29,000	75,000	1	22,500	27,000
2	48	A240- 304	0	0.7000	29,000	75,000	1	22,500	27,000
3	48	A240- 304	0	0.7000	29,000	75,000	1	22,500	27,000
4	48	A240- 304	0	0.7000	29,000	75,000	1	22,500	27,000

(continued)

Shell #	Weight (lbf)	Weight CA (lbf)	t-min Erection (in)	t-Des (in)	t-Test (in)	t-min Seismic (in)	t-min Ext- Pe (in)	t-min (in)	t-Actual (in)
1	982	982	0.1875	0.0338	0.0292	0.0321	NA	0.1875	0.1875
2	982	982	0.1875	0.0269	0.0237	0.0258	NA	0.1875	0.1875
3	982	982	0.1875	0.0199	0.0182	0.0196	NA	0.1875	0.1875
4	982	982	0.1875	0.013	0.0127	0.0134	NA	0.1875	0.1875

(continued)

Shell #	Status
1	ОК
2	OK
3	ОК
4	ОК

Total Weight of Shell = 3,929.6376 lbf

Page: 4/77

Roof

Type = Self Supported Conical Roof Plates Material = A240-304 t.required = 0.1875 in t.actual = 0.1875 in Roof corrosion allowance = 0 in Roof Joint Efficiency = 0.7 Plates Overlap Weight = 0 lbf Plates Weight = 635.6869 lbf

Bottom

Type: Flat Bottom Non Annular
Bottom Material = A240-304
t.required = 0.1875 in
t.actual = 0.1875 in
Bottom corrosion allowance = 0 in
Bottom Joint Efficiency = 0.7
Total Weight of Bottom = 635.6364 lbf

Top Member

Type = Detail B Size = L2x2x1/4 Material = A240-304 Weight = 100.0838 lbf

Anchors

Quantity = 4 Size = 1 in Material = A36 Bolt Hole Circle Radius = 5.1458 ft

Nameplate Information

Pressure Combination Factor	0.4
Design Standard	API-650 13th Edition Errata 1, 2021
Appendices Used	E, F, J, M, S
Roof	A240-304 : 0.1875 in
Shell (1)	A240-304 : 0.1875 in
Shell (2)	A240-304 : 0.1875 in
Shell (3)	A240-304 : 0.1875 in
Shell (4)	A240-304 : 0.1875 in
Bottom	A240-304 : 0.1875 in

Page: 5/77

Anchor Chair Design Back

Anchor Chair Design per AISI T-192 Part V

a = Top Plate Width Along Shell (in) b = Top Plate Length (in) bmin = Top Plate Minimum Length (in) c = Top Plate Thickness (in)CA = Chair Corrosion Allowance (in) c_corr = Top Plate Corroded Thickness (in) D = Tank Nominal Diameter (ft) d = Anchor Bolt Diameter (in) e = Anchor Bolt Eccentricity (in) Earthquakes-Considered = Earthquakes Considered emin = Minimum Calculated Eccentricity (in) emin-btm = Minimum Eccentricity Based on Bolt Clearance From Bottom Plates per API-650 5.12.4 (in) emin-req = Minimum Required Eccentricity (in) Et = Bottom Plates Thermal Expansion Coefficient per API-650 Table P.1b (in/in.fdeg) f = Top Plate Outside To Hole Edge Distance (in) f_min = Distance from Outside of Top Plate to Edge of Hole per AISI T-192 Part V, Notation g = Vertical Plates Distance (in) g min = Minimum Distance Between Vertical Plates per AISI T-192, PartV, Notation (in) h = Chair Height (in) h-eff = Effective Chair Height (in) hmax = Chair Maximum Height (in) j = Vertical Plate Thickness (in) i corr = Vertical Plate Corroded Thickness (in) i_min = Vertical Plate Minimum Thickness per AISI T-192 Part V, Vertical Side Plates (in) k = Vertical Plates Average Width (in) m = Base or Bottom Plate Thickness (in) Ma-chair = Chair Material outside-projection = Bottom Outside Projection (in) R = Nominal Shell Radius (in) Ssw-chair = Chair Allowable Stress for Seismic or Wind Design per API-650 5.12.9 (psi) T = Difference between ambient and design temperature per API 650 5.12.4 (°F) t = Shell Thickness (in)T ambient = Ambient Temperature ($^{\circ}$ F) T_design = Design Temperature (°F) V = Wind Velocity (mph) Y-bolt = Anchor Bolt Yield Load (lbf) a = 8 inb = 8 in

Page: 51/77

c = 0.5 in

```
CA = 0 in
d = 1 in
D = 10.0 \text{ ft}
e = 1.75 in
Earthquakes-Considered = ASCE7-MAPPED-SS-AND-S1
Et = 6.67E-6 \text{ in/in.fdeg}
f = 4.25 in
g = 4.25 \text{ in}
h = 12 in
j = 0.5 \text{ in}
k = 4.4417 in
m = 0.1875 in
Ma-chair = A240-304
outside-projection = 1 in
R = 60.0 \text{ in}
t = 0.1875 in
T ambient = 70 \, ^{\circ}F
T_design = 120 \, ^{\circ}F
V = 110.0 \text{ mph}
Y-bolt = 19,831.7945 lbf
```

Anchor Chair Material Properties

Material = A240-304
Minimum Tensile Strength (Sut-chair) = 75,000 psi
As per API-650 S.5.b, Minimum Yield Strength (Sy-chair) = 29,000 psi
As per API-650 S.2b, Allowable Design Stress (Sd-chair) = 22,500 psi
As per API-650 S.2b, Allowable Hydrostatic Test Stress (St-chair) = 27,000 psi

Ssw-chair = 1.33 * Sd-chair Ssw-chair = 1.33 * 22,500 Ssw-chair = 29,925 psi

Size Requirements

c_corr = c - (2 * CA) c_corr = 0.5 - (2 * 0) c_corr = 0.5 in

j_corr = j - (2 * CA) j_corr = 0.5 - (2 * 0) j_corr = 0.5 in

Chair Minimum Height (hmin) = 12 in

h >= hmin ==> PASS

Page: 52/77

Appurtenances Design Back

Plan View

LABEL	MARK	CUST. MARK	DESCRIPTION	OUTSIDE PROJ (in)	INSIDE PROJ (in)	ORIENT	RADIUS (in)	REMARKS	REF DWG
Circular- Manway- 0001	RM01A	M1	24" ROOF MANWAY	8"	1"	270 '	2'-9"		
Nozzle- 0001	RN01A	А	8" ROOF NOZZLE	6"	1"	20 '	3'-4"		
Nozzle- 0002	RN02A	В	2" ROOF NOZZLE	6"	1"	90 '	3'-4"	W/ BLIND	
Nozzle- 0004	RN03A	VENT	4" ROOF NOZZLE	6"	1"	0 '	0"		
Nozzle- 0005	RN04A		3" ROOF NOZZLE	6"	0"	0 '	0"		
Nozzle- 0006	RN02A	В	2" ROOF NOZZLE	6"	1"	180 '	3'-4"	W/ BLIND	

Elevation View

LABEL	MARK	CUST. MARK	DESCRIPTION	OUTSIDE PROJ (in)	INSIDE PROJ (in)	ORIENT	ELEVATION (in)	REMARKS	REF DWG
Anchor- Chair- Bolts	AC01A		ANCHOR CHAIRS			SEE TABLE			
Name- Plate	NP01A		STD API			0 '	3'-4"		
Nozzle- 0001	SN01A	FILL	6" SHELL NOZZLE	8"	0"	0 '	1'-0 1/8"		
Nozzle- 0002	SN02A	OUTLET	3" SHELL NOZZLE	7"	0"	90 '	9 1/2"		
Nozzle- 0003	SN03A	T1	2" SHELL NOZZLE	6"	0"	20 '	7"		Ì
Nozzlo	SNI03 V	T2	2" SHELL NOZZLE	6"	0"	70 '	7"		Ì
Nozzle- 0005	SN03A	ТЗ	2" SHELL NOZZLE	6"	0"	110 '	7"		

Page: 56/77

Nozzle- 0006 SN04A SAMPLE	1" SHELL NOZZLE	6"	0"	300 '	6"		ĺ
------------------------------	--------------------	----	----	-------	----	--	---

Shell Nozzle: Nozzle-0001

Repad Design

NOZZLE Description: 6 in SCH 40 TYPE RFSO Material: A312-TP304 t rpr = (Repad Required Thickness) t_n = (Thickness of Neck) Sd_n = (Stress of Neck Material) Sd_s = (Stress of Shell Course Material) CA = (Corrosion Allowance of Neck) MOUNTED ON SHELL 1: Elevation = 1.0104 ft **COURSE PARAMETERS:** t-calc = 0.0338 in t_cr = 0.0338 in (Course t-calc less C.A) $t_c = 0.1875$ in (Course t less C.A.) t Basis = 0.0338 in (SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7) Required Area = t_Basis * D Required Area = 0.0338 * 6.625 Required Area = 0.2238 in2 Available Shell Area = (t_c - t_Basis) * D Available Shell Area = (0.1875 - 0.0338) * 6.625 Available Shell Area = 1.0184 in 2 Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1) Available Nozzle Neck Area = 2 * [(4 * (0.28 - 0)) + 0.1875] * (0.28 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.7322 in2 A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area) A-rpr = 0.2238 - 1.0184 - 0.7322A-rpr = 0 in2 Since A-rpr ≤ 0 , $t_rpr = 0$

Nozzle Neck Material Properties

No Reinforcement Pad required.

Material = A312-TP304

Page: 57/77

Shell Nozzle: Nozzle-0002

Repad Design

```
NOZZLE Description: 3 in SCH 40S TYPE RFSO
Material: A312-TP304
t_rpr = (Repad Required Thickness)
t n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd_s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON SHELL 1: Elevation = 0.7917 ft
COURSE PARAMETERS:
t-calc = 0.0338 in
t cr = 0.0338 in (Course t-calc less C.A)
t c = 0.1875 in (Course t less C.A.)
t_Basis = 0.0338 in
(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)
Required Area = t_Basis * D
Required Area = 0.0338 * 3.5
Required Area = 0.1183 in2
Available Shell Area = (t c - t Basis) * D
Available Shell Area = (0.1875 - 0.0338) * 3.5
Available Shell Area = 0.538 in2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)
Available Nozzle Neck Area = 0.4542 in2
A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)
A-rpr = 0.1183 - 0.538 - 0.4542
A-rpr = 0 in2
Since A-rpr \leq 0, t rpr = 0
No Reinforcement Pad required.
Nozzle Neck Material Properties
```

Page: 58/77

Material = A312-TP304

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Shell Nozzle: Nozzle-0003

NOZZLE Description: 2 in SCH 80S TYPE RFSO

Repad Design

Material: A312-TP304 t rpr = (Repad Required Thickness) t_n = (Thickness of Neck) Sd_n = (Stress of Neck Material) Sd s = (Stress of Shell Course Material) CA = (Corrosion Allowance of Neck) MOUNTED ON SHELL 1: Elevation = 0.5833 ft COURSE PARAMETERS: t-calc = 0.0338 in $t_cr = 0.0338$ in (Course t-calc less C.A) $t_c = 0.1875$ in (Course t less C.A.) t Basis = 0.0338 in (SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7) Required Area = t_Basis * D Required Area = 0.0338 * 2.375 Required Area = 0.0802 in2 Available Shell Area = (t_c - t_Basis) * D Available Shell Area = (0.1875 - 0.0338) * 2.375 Available Shell Area = 0.3651 in2 Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.218 - 0)) + 0.1875] * (0.218 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.4619 in2 A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area) A-rpr = 0.0802 - 0.3651 - 0.4619A-rpr = 0 in2 Since Nozzle size <= NPS 2 (per API-650 Table 5.6 Note f), t rpr = 0 No Reinforcement Pad required.

Nozzle Neck Material Properties Material = A312-TP304

Material = A312-TP304 As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Shell Nozzle: Nozzle-0004

Page: 59/77

Repad Design

NOZZLE Description: 2 in SCH 80S TYPE RFSO

```
Material: A312-TP304
t_rpr = (Repad Required Thickness)
t_n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd_s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON SHELL 1: Elevation = 0.5833 ft
COURSE PARAMETERS:
t-calc = 0.0338 in
t_cr = 0.0338 in (Course t-calc less C.A)
t c = 0.1875 in (Course t less C.A.)
t Basis = 0.0338 in
(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)
Required Area = t_Basis * D
Required Area = 0.0338 * 2.375
Required Area = 0.0802 in2
Available Shell Area = (t_c - t_Basis) * D
Available Shell Area = (0.1875 - 0.0338) * 2.375
Available Shell Area = 0.3651 in 2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.218 - 0)) + 0.1875] * (0.218 - 0) * MIN((22,500/22,500) 1)
Available Nozzle Neck Area = 0.4619 in2
A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)
A-rpr = 0.0802 - 0.3651 - 0.4619
A-rpr = 0 in2
Since Nozzle size <= NPS 2 (per API-650 Table 5.6 Note f), t_rpr = 0
No Reinforcement Pad required.
Nozzle Neck Material Properties
Material = A312-TP304
```

Shell Nozzle: Nozzle-0005

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Page: 60/77

Repad Design

NOZZLE Description: 2 in SCH 80S TYPE RFSO Material: A312-TP304 t_rpr = (Repad Required Thickness) t n = (Thickness of Neck) Sd_n = (Stress of Neck Material) Sd_s = (Stress of Shell Course Material) CA = (Corrosion Allowance of Neck) MOUNTED ON SHELL 1: Elevation = 0.5833 ft COURSE PARAMETERS: t-calc = 0.0338 in t cr = 0.0338 in (Course t-calc less C.A) $t_c = 0.1875$ in (Course t less C.A.) $t_Basis = 0.0338 in$ (SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7) Required Area = t Basis * D Required Area = 0.0338 * 2.375Required Area = 0.0802 in2 Available Shell Area = (t_c - t_Basis) * D Available Shell Area = (0.1875 - 0.0338) * 2.375 Available Shell Area = 0.3651 in2 Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.218 - 0)) + 0.1875] * (0.218 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.4619 in 2 A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area) A-rpr = 0.0802 - 0.3651 - 0.4619A-rpr = 0 in2 Since Nozzle size <= NPS 2 (per API-650 Table 5.6 Note f), t_rpr = 0 No Reinforcement Pad required. **Nozzle Neck Material Properties** Material = A312-TP304

Shell Nozzle: Nozzle-0006

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Repad Design

Page: 61/77

```
NOZZLE Description: 1 in SCH 80S TYPE RFSO
```

Material: A312-TP304

t_rpr = (Repad Required Thickness)

t_n = (Thickness of Neck)

Sd_n = (Stress of Neck Material)

Sd_s = (Stress of Shell Course Material)

CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1: Elevation = 0.5 ft

COURSE PARAMETERS:

t-calc = 0.0338 in

t_cr = 0.0338 in (Course t-calc less C.A)

 $t_c = 0.1875$ in (Course t less C.A.)

t Basis = 0.0338 in

(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)

Required Area = t_Basis * D

Required Area = 0.0338 * 1.315

Required Area = 0.0444 in2

Available Shell Area = (t_c - t_Basis) * D

Available Shell Area = (0.1875 - 0.0338) * 1.315

Available Shell Area = 0.2021 in2

Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)

Available Nozzle Neck Area = 2 * [(4 * (0.179 - 0)) + 0.1875] * (0.179 - 0) * MIN((22,500/22,500) 1)

Available Nozzle Neck Area = 0.3235 in2

A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)

A-rpr = 0.0444 - 0.2021 - 0.3235

A-rpr = 0 in2

Since Nozzle size <= NPS 2 (per API-650 Table 5.6 Note f), t_rpr = 0

No Reinforcement Pad required.

Nozzle Neck Material Properties

Material = A312-TP304

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 22,500 psi

Roof Nozzle: Nozzle-0001

Page: 62/77

Repad Design

(Per API-650 and other references below) NOZZLE Description: 8 in SCH 40S TYPE RFSO Material: A312-TP304 t rpr = (Repad Required Thickness) t_n = (Thickness of Neck) Sd n = (Stress of Neck Material) Sd s = (Stress of Roof Material) CA = (Corrosion Allowance of Neck) MOUNTED ON ROOF: Elevation = 16.3174 ft **ROOF PARAMETERS:** t-calc = 0.1875 in $t_cr = 0.1875$ in (Roof t-act less C.A) t c = 0.1875 int Basis = 0.1875 in Repad Type: Circular Repad Size (Do): = 12.75 in (FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15, API-650 F.2.4) Required Area = t Basis * D Required Area = 0.1875 * 8.625 Required Area = 1.6172 in2 Available Roof Area = (t c - t Basis) * D Available Roof Area = (0.1875 - 0.1875) * 8.625 Available Roof Area = 0 in2 Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.322 - 0)) + 0.1875] * (0.322 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.9502 in2 A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area) $A_{rpr} = 1.6172 - 0 - 0.9502$ $A_{rpr} = 0.667 \text{ in } 2$ t_rpr = (A_rpr / (repad-min-OD - D)) + repad_CA t rpr = (0.667 / (12.75 - 8.625)) + 0 $t_{rpr} = 0.1617 in$ As per API-650 J.3.6.3, reinforcement pad is required since roof loads exceed 25 psf. Reinforcement Pad is required. Based on Roof Nozzle Size of 8" Repad Size (OD) Must be = 18 in

Page: 63/77

Roof Nozzle: Nozzle-0002

Repad Design

```
(Per API-650 and other references below)
NOZZLE Description: 2 in SCH 80 TYPE RFSO
Material: A312-TP304
t_rpr = (Repad Required Thickness)
t n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd_s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON ROOF: Elevation = 16.3174 ft
ROOF PARAMETERS:
t-calc = 0.1875 in
t cr = 0.1875 in (Roof t-act less C.A)
t c = 0.1875 in
t Basis = 0.1875 in
Repad Type: Circular
Repad Size (Do): = 6.5 in
(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or
API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15, API-650 F.2.4)
Required Area = t_Basis * D
Required Area = 0.1875 * 2.375
Required Area = 0.4453 in2
Available Roof Area = (t c - t Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 2.375
Available Roof Area = 0 in2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.218 - 0)) + 0.1875] * (0.218 - 0) * MIN((22,500/22,500) 1)
Available Nozzle Neck Area = 0.4619 in2
A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A rpr = 0.4453 - 0 - 0.4619
Required A_rpr calculated value = -0.0166 in^2 is less than zero. A_rpr will be set to zero.
A_rpr = 0 in 2
t_rpr = (A_rpr / (repad-min-OD - D)) + repad_CA
t_rpr = (0 / (6.5 - 2.375)) + 0
t rpr = 0 in
```

As per API-650 J.3.6.3, reinforcement pad is required since roof loads exceed 25 psf.

Page: 64/77

Roof Nozzle: Nozzle-0004

Repad Design

(Per API-650 and other references below)

NOZZLE Description: 4 in SCH 80 TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)

t_n = (Thickness of Neck)

Sd_n = (Stress of Neck Material)

Sd_s = (Stress of Roof Material)

CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 16.8886 ft

ROOF PARAMETERS:

t-calc = 0.1875 in

t_cr = 0.1875 in (Roof t-act less C.A)

 $t_c = 0.1875$ in

t Basis = 0.1875 in

Repad Type: Circular

Repad Size (Do): = 8.5 in

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15, API-650 F.2.4)

Required Area = t_Basis * D

Required Area = 0.1875 * 4.5

Required Area = 0.8438 in2

Available Roof Area = (t_c - t_Basis) * D

Available Roof Area = (0.1875 - 0.1875) * 4.5

Available Roof Area = 0 in2

Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)$

Available Nozzle Neck Area = 2 * [(4 * (0.337 - 0)) + 0.1875] * (0.337 - 0) * MIN((22,500/22,500) 1)

Available Nozzle Neck Area = 1.0349 in2

A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)

 $A_rpr = 0.8438 - 0 - 1.0349$

Required A_rpr calculated value = -0.1912 in^2 is less than zero. A_rpr will be set to zero.

 $A_rpr = 0 in2$

Page: 65/77

```
t_rpr = (A_rpr / (repad-min-OD - D)) + repad_CA
t_rpr = (0 / (8.5 - 4.5)) + 0
t rpr = 0 in
```

As per API-650 J.3.6.3, reinforcement pad is required since roof loads exceed 25 psf.

Reinforcement Pad is required. Based on Roof Nozzle Size of 4" Repad Size (OD) Must be = 11 in

Roof Nozzle: Nozzle-0005

Repad Design

(Per API-650 and other references below)

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)
t_n = (Thickness of Neck)
Sd_n = (Stress of Neck Material)
Sd_s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 16.8886 ft

ROOF PARAMETERS:

t-calc = 0.1875 in t_cr = 0.1875 in (Roof t-act less C.A) t_c = 0.1875 in t_Basis = 0.1875 in Repad Type: Circular Repad Size (Do): = 7.5 in

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15, API-650 F.2.4)

Required Area = t_Basis * D Required Area = 0.1875 * 3.5 Required Area = 0.6563 in2 Available Roof Area = (t_c - t_Basis) * D Available Roof Area = (0.1875 - 0.1875) * 3.5 Available Roof Area = 0 in2

Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((22,500/22,500) 1)Available Nozzle Neck Area = 0.4542 in2

Page: 66/77

```
A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A_rpr = 0.6563 - 0 - 0.4542
A_rpr = 0.202 in2

t_rpr = (A_rpr / (repad-min-OD - D)) + repad_CA
t_rpr = (0.202 / (7.5 - 3.5)) + 0
t_rpr = 0.0505 in
```

As per API-650 J.3.6.3, reinforcement pad is required since roof loads exceed 25 psf.

Reinforcement Pad is required. Based on Roof Nozzle Size of 3" Repad Size (OD) Must be = 9 in

Roof Nozzle: Nozzle-0006

Repad Design

(Per API-650 and other references below)

NOZZLE Description: 2 in SCH 80 TYPE RFSO

Material: A312-TP304

t_rpr = (Repad Required Thickness)
t_n = (Thickness of Neck)
Sd_n = (Stress of Neck Material)
Sd_s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON ROOF: Elevation = 16.3174 ft

ROOF PARAMETERS: t-calc = 0.1875 in t_cr = 0.1875 in (Roof t-act less C.A) t_c = 0.1875 in t_Basis = 0.1875 in Repad Type: Circular Repad Size (Do): = 6.5 in

(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15, API-650 F.2.4)

Required Area = t_Basis * D Required Area = 0.1875 * 2.375 Required Area = 0.4453 in2 Available Roof Area = (t_c - t_Basis) * D Available Roof Area = (0.1875 - 0.1875) * 2.375

Available Roof Area = 0 in2

Page: 67/77

```
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)

Available Nozzle Neck Area = 2 * [(4 * (0.218 - 0)) + 0.1875] * (0.218 - 0) * MIN((22,500/22,500) 1)

Available Nozzle Neck Area = 0.4619 in2

A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)

A_rpr = 0.4453 - 0 - 0.4619

Required A_rpr calculated value = -0.0166 in^2 is less than zero. A_rpr will be set to zero.

A_rpr = 0 in2

t_rpr = (A_rpr / (repad-min-OD - D)) + repad_CA

t_rpr = (0 / (6.5 - 2.375)) + 0

t_rpr = 0 in

As per API-650 J.3.6.3, reinforcement pad is required since roof loads exceed 25 psf.

Reinforcement Pad is required.

Based on Roof Nozzle Size of 2"

Repad Size (OD) Must be = 7 in
```

Repad Design

```
(Per API-650 Section 5.8.4 and other references below)
MANWAY Description: 24 in Neck Thickness 0.25
Material: A240-304
t_rpr = (Repad Required Thickness)
MOUNTED ON ROOF: Elevation = 16.4146 ft
ROOF PARAMETERS:
t-calc = 0.1875 in
t cr = 0.1875 in (Roof t-act less C.A)
t c = 0.1875 in
t Basis = 0.1875 in
Repad Type: Circular
Repad Size (Do): = 40 in
(FOR ROOF MANWAY, REF. API-650 FIG 5-16, TABLE 5-13)
Required Area = t Basis * D
Required Area = 0.1875 * 24
Required Area = 4.5 in2
Available Roof Area = (t_c - t_Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 24
Available Roof Area = 0 in2
Available Manway Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
```

Page: 68/77

```
Available Manway Neck Area = 2 * [(4 * (0.25 - 0)) + 0.1875] * (0.25 - 0) * MIN((22,500/22,500) 1)
Available Manway Neck Area = 0.5938 \text{ in} 2
```

A-rpr = (Required Area - Available Roof Area - Available Manway Neck Area) A-rpr = 4.5 - 0 - 0.5938

A-rpr = 3.9063 in 2

t_rpr = (A_rpr / (repad-min-OD - D)) + repad_CA

 $t_rpr = (3.9063 / (40 - 24)) + 0$

 $t_{rpr} = 0.2441 \text{ in}$

Reinforcement Pad is required. Based on Roof Manway Size of 24" Repad Size (OD) Must be = 46 in

Page: 69/77

Capacities and Weights Back

Capacity to Top of Shell (to Tank Height): 9,341 gal

Capacity to Design Liquid Level: 8,757 gal Capacity to Maximum Liquid Level: 8,757 gal

Working Capacity (to Normal Working Level): 8,757 gal

Net working Capacity (Working Capacity - Min Capacity): 8,173 gal

Minimum Capacity (to Min Liq Level): 583 gal

Component	New Condition (lbf)	Corroded (lbf)
SHELL	3,930	3,930
ROOF	602	602
RAFTERS	0	0
GIRDERS	0	0
FRAMING	0	0
COLUMNS	0	0
TRUSS	0	0
STRUCTURE COMPONENTS	0	0
воттом	635	635
STAIRWAYS	0	0
ACCESS	0	0
STIFFENERS	101	101
WIND GIRDERS	0	0
ANCHOR CHAIRS	62	62
SHELL APPURTENANCES	70	70
ROOF APPURTENANCES	457	457
BOTTOM APPURTENANCES	0	0
INSULATION	0	0
FLOATING ROOF	0	0
TOTAL	5,858.1886	5,858.1886

Weight of Tank, Empty: 5,858.1886 lbf

Weight of Tank, Full of Product (Design SG = 1.05): 83,081.1886 lbf

Weight of Tank, Full of Water: 79,404.3257 lbf

Net Working Weight, Full of Product (Design SG = 1.05): 77,933.4029 lbf

Net Working Weight Full of Water: 74,501.2499 lbf

Foundation Area Req'd: 81.1796 ft2

Foundation Loading, Empty: 72.1632 lbf/ft2

Foundation Loading, Full of Product Design: 1,023.4241 lbf/ft2

Foundation Loading, Full of Water: 978.1311 lbf/ft2

SURFACE AREAS Roof: 81.186 ft2 Shell: 501.084 ft2 Bottom: 81.1796 ft2

Page: 72/77