Supplementary Material for

A Conditional Modeling Approach for Dynamic Risk Prediction of A Survival Outcome Using Longitudinal Biomarkers with An Application to Ovarian Cancer

Yongli Han¹, Yifan Yang², Zhiwei Zhang³, Ming Wang², and Danping Liu⁴

1 Descriptive statistics of the PLCO ovarian cancer data

Table S1 lists the descriptive statistics of ovarian cancer data from the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial. Distributions of baseline age and number of observations for cases and controls are listed.

2 Model fittings from the PLCO ovarian cancer data

This section lists the fitted results of case and control modes for the conditional modeling, joint modeling, and landmarking approaches.

¹Biostatistics and Data Management, Daiichi Sankyo, Inc., Basking Ridge, New Jersey 07290, USA, justin.han@daiichisankyo.com

² Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA, yiorfun@case.edu; mxw827@case.edu ³ Biostatistics Branch, Biometric Research Group, Division of Cancer Treatment & Diagnosis,

National Cancer Institute, Rockville, Maryland 20850, USA, zhiwei.zhang@nih.gov

⁴ Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,
Rockville, MD 20852, USA, danping.liu@nih.gov

Table S1: Descriptive statistics of 30310 subjects (208 cases and 30102 controls) from the ovarian cancer data in the PLCO Cancer Screening Trial.

Characteristic	Group	Participants in the ov	arian cancer data $(N = 30310)$
Characteristic	Group	Cases $(M = 208)$	Controls $(N - M = 30102)$
	55-59	58 (27.9%)	10464 (34.8%)
Baseline Age	60-64	60 (28.8%)	9249 (30.7%)
	65-69	52 (25.0%)	6495 (21.6%)
	70+	38 (18.3%)	3894 (12.9%)
	1	32 (15.4%)	1797 (6.0%)
	2	$28\ (13.5\%)$	1542 (5.1%)
Number of	3	18 (8.7%)	1764 (5.9%)
Observations	4	37 (17.8%)	3397 (11.3%)
	5	$33\ (15.9\%)$	5021 (16.7%)
	6	60 (28.8%)	$16581 \ (55.1\%)$

2.1 Modeling Fitting for CM

Fitted results of case models with exponential, Gaussian, and latent changepoint kernels under the conditional modeling approach are listed in Table S2.

Table S2: Case models with exponential, Gaussian, and latent changepoint kernels under the conditional modeling approach: point estimates and associated standard errors (in parentheses) were reported.

Parameters		Kernel	
1 didiliovois	Exponential	Gaussian	Latent changepoint
intercept: β_0	2.315 (0.404)	2.319 (0.403)	2.321 (0.403)
baseline age: β_1	$0.001\ (0.006)$	$0.001\ (0.006)$	$0.001\ (0.006)$
screening time: β_2	0.007 (0.006)	0.009 (0.006)	$0.012\ (0.006)$
kernel slope: η_1	2.837 (0.244)	$6.793 \ (8.636)$	$1.751 \ (0.152)$
kernel location: η_2	$1.970 \ (0.126)$	-1.405(1.347)	1.259 (0.028)
kernel scale: η_3	-	2.038(1.381)	-
SE of random intercept: $\sigma_{b_{i0}}$	$0.480 \ (0.058)$	0.479 (0.058)	$0.478 \; (0.058)$
SE of random kernel slope: $\sigma_{b_{i0}}$	2.079(0.091)	5.033(1.262)	1.372(0.084)
random effects correlation: $\rho_{b_{i0}b_{i1}}$	-0.280 (0.239)	-0.281 (0.237)	$-0.288 \ (0.237)$
SE of random error: σ_{ξ}	$0.237 \ (0.031)$	$0.236 \ (0.031)$	$0.236 \ (0.031)$
-loglikelihood	376.602	375.106	380.273

Two control models were used: (1) a linear mixed effects model with random intercept and random slope $y_{ij} = \beta_0 + \beta_1 A g e_i + \beta_2 t_{ij} + b_{i0} + b_{i1} t_{ij} + \xi_{ij}$; and (2) a linear mixed effects model with natural spline basis of screening time as both random and fixed effects $y_{ij} = \beta_0 + \beta_1 A g e_i + \sum_{\ell=1}^{3} (\eta_\ell + b_{i\ell}) B_\ell(t_{ij}, \tau) + b_{i0} + \xi_{ij}$, where the values of τ were set as the 25%th and 75%th quantiles of t_{ij} . Results are in Table S3.

Under CM, the piecewise constant hazard $h_i(t) = h_0(t) \exp(\alpha A g e_i)$ that was set to have a knot value of 2, has estimated association as 0.038(0.013) with standard error shown in the parentheses and baseline hazards as -9.631(0.821) and -9.855(0.810).

Table S3: Control models under the conditional modeling approach: point estimates and associated standard errors (in parentheses) are reported.

Parameters	Control	models	
1 arameters	Model (1)	Model (2)	
intercept: β_0	2.027 (0.0312)	2.026 (0.0313)	
baseline age: β_1	$0.005\ (0.0005)$	0.005 (0.0005)	
screening time: β_2	$0.008\ (0.0004)$	- -	
knot slope 1: η_1	- -	$0.029 \ (0.0004)$	
knot slope 2: η_2	-	0.057 (0.006)	
knot slope 3: η_3	-	0.044(0.008)	
SE of random intercept: $\sigma_{b_{i0}}$	0.458	0.463	
SE of random knot slope 1: $\sigma_{b_{i1}}$	0.038	0.344	
SE of random knot slope 2: $\sigma_{b_{i2}}$	-	0.416	
SE of random knot slope 3: $\sigma_{b_{i3}}$	-	0.514	
random effects correlation: $\rho_{b_{i0}b_{i1}}$	-0.157	-0.059	
random effects correlation: $\rho_{b_{i0}b_{i2}}$	-	-0.162	
random effects correlation: $\rho_{b_{i0}b_{i3}}$	-	-0.040	
random effects correlation 12: $\rho_{b_{i1}b_{i2}}$	-	-0.324	
random effects correlation 13: $\rho_{b_{i1}b_{i3}}$		-0.507	
random effects correlation 23: $\rho_{b_{i2}b_{i3}}$		0.730	
SE of random error: σ_{ξ}	0.196	0.182	
-loglikelihood	23075.86	22859.96	

2.2 Model Fitting for JM

The JM approach has a longitudinal submodel $y_{ij} = m_i(t) + \xi_{ij} = \beta_0 + \beta_1 \text{Age}_i + \beta_2 t_{ij} + b_{i0} + b_{i1}t_{ij} + \xi_{ij}$, where $m_i(t)$ is the true but unobserved biomarker value. Two survival submodels

are used: (1) $h_i(t) = h_0(t) \exp(\alpha \operatorname{Age}_i + \gamma m_i(t))$; and (2) $h_i(t) = h_0(t) \exp(\alpha \operatorname{Age}_i + \gamma_1 m_i(t) + \gamma_2 m'_i(t))$, where $h_0(t)$ is a piecewise constant baseline hazard function with 4 internal knots, and $m'_i(t)$ is the first derivative or current slope of $m_i(t)$. Results are in Table S4.

Table S4: Fitted results under the conditional modeling approach: point estimates and associated standard errors (SE) are reported.

Parameters	Joint n	models
Taranicolis	Model (1)	Model (2)
intercept: β_0	2.0146 (0.0316)	2.0144 (0.0316)
baseline age: β_1	$0.0053 \; (0.0005)$	$0.0053 \ (0.0005)$
screening time: β_2	$0.0081\ (0.0004)$	$0.0082\ (0.0004)$
SE of random intercept: $\sigma_{b_{i0}}$	0.463	0.463
SE of random slope: $\sigma_{b_{i1}}$	0.037	0.037
random effects correlation: $\rho_{b_{i0}b_{i1}}$	-0.143	-0.143
age association: α	$0.0230 \ (0.013)$	$0.0199 \ (0.013)$
current value association: γ_1	$1.651\ (0.105)$	1.358 (0.123)
current slope association: γ_2	.	13.050 (2.122)
baseline hazard 1: $\log(xi.1)$	-13.163 (0.838)	-12.493 (0.849)
baseline hazard 2: $\log(xi.2)$	-13.553 (0.896)	-12.902 (0.904)
baseline hazard 3: $\log(xi.3)$	-13.232 (0.893)	-12.589 (0.903)
baseline hazard 4: $\log(xi.4)$	-12.989 (0.979)	-12.387 (0.994)
baseline hazard 5: $\log(xi.5)$	-11.245 (1.281)	-10.594 (1.280)
SE of random error: σ_{ξ}	0.201	0.201
-loglikelihood	55496.86	55463.89

2.3 Model Fitting for LM

We fit a Cox proportional hazard function for LM $h_i(t) = h_0(t) \exp(\alpha_1 \text{Age}_i + \alpha_2 t_{is})$, where t_{is} is the biomarker screening time that is most close to the landmarking time s. Given the prediction horizon, a training dataset with administrative censoring is obtained, then the LM is fit based on the training data.

Table S5: Simulation results for Scenarios A1, A2, and A3, where CM_Dep_Exp, CM_Dep_Gau, and CM_Dep_Lat are the true models, respectively. The averaged time-dependent AUC and standard deviation (in parentheses) are based on 200 simulated replicates. Two landmark times s=2,5 and three prediction horizons t=1,2,3 are used.

Scenario Method			s=2			s = 5	
		t=1	t = 2	t = 3	t = 1	t=2	t = 3
	CM_Dep_Exp	0.879 (0.041	0.769 (0.038)	$0.704 \ (0.033)$	0.889 (0.041)	0.785 (0.040)	$0.725 \ (0.033)$
	CM_Dep_Gau	0.879 (0.041	0.769 (0.038)	0.703 (0.033)	0.889(0.041)	0.784 (0.039)	$0.724 \ (0.033)$
	CM_Dep_Lat	0.877 (0.041	0.764 (0.039)	0.701 (0.033)	0.888(0.041)	0.777(0.040)	$0.721\ (0.033)$
A1	CM_Ind_Exp	0.876 (0.043	0.763 (0.038)	$0.694 \ (0.035)$	0.882 (0.042)	0.768 (0.040)	$0.696 \ (0.035)$
	CM Ind Gau	0.877 (0.043	0.763 (0.038)	0.694 (0.034)	0.883(0.042)	0.768 (0.040)	0.697 (0.035)
	CM Ind Lat	0.876 (0.043	0.759 (0.039)	0.690 (0.034)	0.883(0.042)	0.758(0.041)	0.687 (0.035)
	JM	0.812 (0.047	0.710 (0.041)	$0.650 \ (0.036)$	0.806 (0.053)	0.698 (0.041)	$0.643 \ (0.031)$
	LM	0.818 (0.048	0.711 (0.039)	$0.651\ (0.035)$	0.817(0.052)	0.706(0.040)	$0.648\ (0.032)$
	CM Dep Exp	0.882 (0.040	0.761 (0.038)	0.697(0.034)	0.893 (0.040)	0.775(0.040)	0.719 (0.033)
	CM Dep Gau						
	CM Dep Lat		, , ,	` '	` '	` '	` /
A2	CM Ind Exp						
	CM Ind Gau	0.881 (0.042	0.754 (0.039)	$0.686\ (0.035)$	0.888(0.041)	0.756(0.040)	0.687(0.034)
	CM Ind Lat	`	, ,	` '	` '	` '	` '
	 JM		, , ,	$0.640\ (0.034)$	` '	` '	` /
	LM	,		$0.643\ (0.034)$, , ,	, ,	
	CM Dep Exp		, ,			· /	
	CM Dep Gau		, , ,	` '	` '	` '	` /
	CM Dep Lat		, , ,	` '	` '	` '	` /
A3	CM Ind Exp		, , ,	, ,	` '	` '	` /
	CM Ind Gau		, , ,	` '	` '	` '	` /
	CM Ind Lat						
	JM	`	, ,	0.627 (0.036)	` '	` '	` '
	=		, , ,	` '	` '	` '	` /
	LM		, , ,	$0.633 \ (0.037)$	` '	` '	` /

3 Simulation Results for All Scenarios

3.1 Simulation One

3.1.1 Simulation Results for Scenarios A1, A2, and A3

Simulation results of the time-dependent AUCs and Brier scores for Scenario A1, A2, and A3, where CM_Dep_Exp, CM_Dep_Gau, and CM_Dep_Lat were the respective true models are presented in Table S5 and Table S6.

3.1.2 Simulation Results for Scenarios B1, B2, and B3

Simulation results of the time-dependent AUCs and Brier scores for Scenario B1, B2, and B3, where CM_Ind_Exp, CM_Ind_Gau, and CM_Ind_Lat were the respective true models

Table S6: Simulation results for Scenarios A1, A2, and A3, where CM_Dep_Exp, CM_Dep_Gau, and CM_Dep_Lat are the true models, respectively. The averaged Brier scores and standard deviation (in parentheses) are based on 200 simulated replicates. Two landmark times s=2,5 and three prediction horizons t=1,2,3 are used.

Scenario Method			s=2			s = 5	
		t=1	t=2	t=3	t=1	t=2	t=3
	CM_Dep_Exp	0.015 (0.004)	$0.043 \ (0.006)$	$0.071 \ (0.007)$	0.014 (0.004)	0.042 (0.007)	0.069 (0.007)
	CM_Dep_Gau	0.015 (0.004)	0.043 (0.006)	0.071 (0.007)	0.014 (0.004)	0.042 (0.007)	0.069 (0.007)
	CM_Dep_Lat	0.016 (0.004)	0.044 (0.006)	0.071 (0.007)	0.014 (0.004)	0.042 (0.007)	0.069 (0.007)
A1	CM_Ind_Exp	0.016 (0.004)	0.044 (0.006)	0.072 (0.007)	0.014 (0.004)	0.043 (0.007)	$0.070 \ (0.008)$
	CM Ind Gau	0.016 (0.004)	0.044 (0.006)	0.072 (0.007)	0.014 (0.004)	0.043 (0.007)	0.070 (0.008)
	CM Ind Lat	0.016 (0.004)	0.045 (0.006)	0.072(0.007)	0.014(0.004)	0.044 (0.007)	0.071 (0.008)
	JM	0.029 (0.005)	0.056 (0.007)	0.082 (0.007)	0.027(0.006)	0.056 (0.007)	0.081 (0.008)
	LM	0.023 (0.005)	0.053 (0.007)	0.081 (0.007)	0.023(0.005)	0.053 (0.007)	0.080 (0.008)
	CM Dep Exp	0.015 (0.004)	0.043 (0.006)	0.071 (0.007)	0.014 (0.004)	0.042 (0.006)	0.069 (0.007)
	CM Dep Gau	0.015(0.004)	0.043(0.006)	0.071(0.007)	0.014(0.004)	0.042(0.006)	$0.069\ (0.007)$
	CM Dep Lat	0.015(0.004)	0.043(0.006)	0.071(0.007)	0.014(0.004)	0.042(0.006)	0.069(0.007)
A2	CM Ind Exp	0.015 (0.004)	(0.044 (0.006)	0.072(0.007)	0.014(0.004)	0.043(0.007)	$0.070\ (0.008)$
	CM Ind Gau	0.015(0.004)	0.044(0.006)	0.072(0.007)	0.014(0.004)	0.043(0.007)	$0.070\ (0.008)$
	CM Ind Lat	` '	\ /	· · · · · · · · · · · · · · · · · · ·	` /	, ,	\ /
	JM	` '	\ /	· · · · · · · · · · · · · · · · · · ·	` /	, ,	0.082 (0.008)
	LM	0.023 (0.005)	$(0.053 \ (0.006)$	0.081(0.007)	0.023(0.005)	0.053(0.007)	0.081 (0.008)
	CM Dep Exp					, ,	. , ,
	CM Dep Gau						
	CM Dep Lat						
A3	CM Ind Exp	` '	\ /	\ /	` /	, ,	\ /
	CM Ind Gau	` '	\ /	` '	` /	, ,	\ /
	CM Ind Lat	` '	` /	,	` /	` /	` '
	JM	` '	\ /	` '	` /	, ,	0.082 (0.008)
	LM	` '	` /	,	` /	` /	0.079 (0.008)

are presented in Table S7 and Table S8.

Table S7: Simulation results for Scenarios B1, B2, and B3, where CM_Ind_Exp, CM_Ind_Gau, and CM_Ind_Lat are the true models, respectively. The averaged time-dependent AUC and standard deviation (in parentheses) are based on 200 simulated replicates. Two landmark times s=2,5 and three prediction horizons t=1,2,3 are used.

Scenario Method			s=2			s = 5	
ocenan	Decimio Memod		t = 2	t = 3	t=1	t = 2	t = 3
	CM_Dep_Exp	0.869 (0.041)	$0.756 \ (0.039)$	$0.686 \ (0.034)$	$0.876 \ (0.041)$	0.762 (0.040)	0.686 (0.034)
	CM_Dep_Gau	$0.869 \ (0.041)$	$0.756 \ (0.039)$	$0.686 \ (0.034)$	$0.876 \ (0.040)$	$0.762 \ (0.039)$	$0.686 \ (0.033)$
	${\rm CM_Dep_Lat}$	$0.868 \ (0.041)$	0.751 (0.041)	$0.681 \ (0.035)$	$0.875 \ (0.041)$	0.753 (0.041)	$0.678 \; (0.034)$
B1	CM_Ind_Exp	0.870 (0.040)	0.758 (0.038)	0.688 (0.032)	0.877(0.041)	0.765 (0.039)	$0.692 \ (0.034)$
	CM_Ind_Gau	0.869(0.041)	0.757 (0.038)	$0.688 \ (0.033)$	0.877(0.040)	0.764 (0.039)	$0.691 \ (0.035)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.869 (0.041)	$0.750 \ (0.039)$	$0.681 \ (0.034)$	$0.876 \ (0.041)$	0.753 (0.041)	$0.681 \ (0.034)$
	$_{ m JM}$	0.798 (0.044)	0.697(0.036)	$0.643 \ (0.031)$	0.798 (0.048)	0.693(0.040)	$0.638 \ (0.036)$
	LM	0.814 (0.044)	$0.708 \ (0.036)$	$0.651 \ (0.031)$	$0.808 \ (0.047)$	$0.700 \ (0.039)$	$0.643 \ (0.035)$
	CM_Dep_Exp	0.872 (0.040)	0.746 (0.040)	0.676 (0.034)	0.878 (0.040)	0.746 (0.042)	0.672 (0.035)
	CM_Dep_Gau	0.873 (0.041)	0.746(0.040)	0.676 (0.034)	0.878(0.040)	0.746(0.042)	$0.672 \ (0.035)$
	CM_Dep_Lat	0.872 (0.040)	0.742(0.042)	0.673 (0.036)	0.878(0.040)	0.740 (0.043)	$0.667 \ (0.034)$
B2	CM_Ind_Exp	0.873 (0.040)	0.747(0.040)	0.678 (0.033)	0.879(0.040)	0.748(0.041)	$0.678 \; (0.035)$
	CM_Ind_Gau	0.873 (0.040)	0.747 (0.039)	$0.678 \ (0.033)$	$0.879 \ (0.040)$	0.748 (0.042)	$0.678 \ (0.036)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.873 (0.040)	0.743 (0.040)	$0.675 \ (0.034)$	$0.879 \ (0.040)$	$0.743 \ (0.042)$	$0.674 \ (0.035)$
	$_{ m JM}$	0.793 (0.045)	0.685 (0.039)	$0.633 \ (0.031)$	$0.790\ (0.055)$	0.676 (0.042)	$0.624 \ (0.037)$
	LM	0.815 (0.043)	$0.700 \ (0.037)$	$0.643 \ (0.031)$	$0.808 \ (0.048)$	0.689 (0.039)	$0.633 \ (0.035)$
	CM_Dep_Exp	0.888 (0.041)	0.725 (0.044)	0.665 (0.035)	0.894 (0.039)	0.721 (0.042)	0.659 (0.033)
	CM_Dep_Gau	0.888 (0.041)	0.727(0.044)	$0.666 \ (0.035)$	$0.894 \ (0.039)$	0.722(0.041)	$0.659 \ (0.033)$
	CM_Dep_Lat	0.888(0.041)	0.726 (0.045)	0.664 (0.036)	0.894 (0.039)	0.720(0.041)	$0.656 \ (0.033)$
B3	CM_Ind_Exp	0.888 (0.041)	0.724 (0.044)	$0.666 \ (0.035)$	$0.894 \ (0.039)$	0.720 (0.043)	$0.661 \ (0.035)$
	CM_Ind_Gau	0.889(0.041)	0.728 (0.043)	0.668 (0.036)	0.895 (0.039)	0.724 (0.042)	$0.663 \ (0.035)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.889 (0.040)	0.728 (0.043)	0.668 (0.036)	0.895 (0.039)	0.725(0.042)	$0.664 \ (0.035)$
	$_{ m JM}^{-}$	0.796 (0.050)	0.669 (0.040)	$0.622 \ (0.032)$	$0.796 \ (0.060)$	$0.660 \ (0.045)$	$0.612 \ (0.038)$
	LM	0.827 (0.046)	0.685 (0.041)	$0.633 \ (0.033)$	$0.826 \ (0.050)$	0.677 (0.041)	$0.624\ (0.036)$

3.2 Simulation Two

Simulation results for Scenarios A1, A2, A3, B1, B2, B3, and C are presented in Figures S1, S2, S3, S4, S5, S6, and S7, respectively.

Table S8: Simulation results for Scenarios B1, B2, and B3, where CM_Ind_Exp, CM_Ind_Gau, and CM_Ind_Lat are the true models, respectively. The averaged Brier scores and standard deviation (in parentheses) are based on 200 simulated replicates. Two landmark times s=2,5 and three prediction horizons t=1,2,3 are used.

Scenario Method			s=2			s = 5	
		t=1	t=2	t = 3	t=1	t=2	t = 3
	CM_Dep_Exp	0.017 (0.004)	0.046 (0.006)	0.074 (0.008)	0.015 (0.004)	0.044 (0.007)	0.071 (0.008)
	CM_Dep_Gau	0.017 (0.004)	$0.046 \ (0.006)$	$0.074 \ (0.008)$	0.015 (0.004)	0.044 (0.007)	$0.071 \ (0.008)$
	CM_Dep_Lat	0.017(0.004)	0.046 (0.007)	0.074 (0.008)	0.015 (0.004)	0.044 (0.007)	$0.071 \ (0.008)$
B1	CM_Ind_Exp	0.017(0.004)	0.046 (0.006)	$0.074 \ (0.008)$	0.015 (0.004)	0.044 (0.007)	$0.071 \ (0.008)$
	CM_Ind_Gau	0.017(0.004)	0.046 (0.006)	0.074 (0.008)	0.015(0.004)	0.044(0.007)	$0.071 \ (0.008)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.017(0.004)	0.046 (0.007)	$0.074 \ (0.008)$	0.015 (0.004)	0.045 (0.007)	$0.072 \ (0.008)$
	$_{ m JM}$	$0.030 \ (0.005)$	0.057 (0.007)	0.084 (0.008)	$0.028 \ (0.006)$	0.056 (0.007)	$0.082 \ (0.008)$
	LM	$0.024 \ (0.005)$	0.054 (0.007)	0.082 (0.008)	$0.023 \ (0.005)$	0.054 (0.007)	$0.081 \ (0.008)$
	CM_Dep_Exp	0.016 (0.004)	0.046 (0.006)	0.074 (0.008)	0.015 (0.004)	0.044 (0.007)	0.072 (0.008)
	CM_Dep_Gau	0.016 (0.004)	0.046 (0.006)	0.074 (0.008)	0.015(0.004)	0.044(0.007)	$0.072 \ (0.008)$
	CM_Dep_Lat	0.016 (0.004)	0.046 (0.006)	0.074 (0.008)	0.015(0.004)	0.045 (0.007)	$0.072 \ (0.008)$
B2	CM_Ind_Exp	0.016 (0.004)	0.046 (0.006)	0.074 (0.008)	0.015(0.004)	0.044 (0.007)	$0.072 \ (0.008)$
	CM_Ind_Gau	0.016 (0.004)	$0.046 \ (0.006)$	$0.074 \ (0.008)$	0.015 (0.004)	0.044 (0.007)	$0.072 \ (0.008)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.016 (0.004)	$0.046 \ (0.006)$	$0.074 \ (0.008)$	0.015 (0.004)	0.045 (0.007)	$0.072 \ (0.008)$
	$_{ m JM}$	$0.030 \ (0.005)$	$0.058 \ (0.007)$	0.085 (0.008)	$0.028 \ (0.006)$	0.057 (0.007)	$0.083 \ (0.008)$
	LM	$0.024 \ (0.005)$	$0.054 \ (0.006)$	$0.082 \ (0.008)$	$0.023 \ (0.005)$	$0.054 \ (0.007)$	$0.082 \ (0.008)$
	CM_Dep_Exp	0.014 (0.004)	0.044 (0.006)	$0.073 \ (0.007)$	0.013 (0.004)	0.043 (0.006)	0.071 (0.007)
	CM_Dep_Gau	0.014 (0.004)	0.044 (0.006)	$0.073 \ (0.007)$	$0.013 \ (0.004)$	0.043 (0.006)	$0.071 \ (0.007)$
	CM_Dep_Lat	0.014 (0.004)	0.044 (0.006)	0.073 (0.007)	$0.012 \ (0.004)$	0.043 (0.006)	$0.071 \ (0.007)$
В3	CM_Ind_Exp	0.014 (0.004)	0.042 (0.006)	$0.073 \ (0.007)$	0.013 (0.004)	0.043 (0.006)	$0.071 \ (0.007)$
	CM_Ind_Gau	0.014 (0.004)	0.044 (0.006)	$0.073 \ (0.007)$	$0.013 \ (0.004)$	0.043 (0.006)	$0.071 \ (0.007)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.014 (0.004)	0.044 (0.006)	$0.072 \ (0.007)$	$0.012 \ (0.004)$	0.043 (0.006)	$0.070 \ (0.007)$
	$_{ m JM}$	$0.030 \ (0.005)$	0.059 (0.007)	0.085 (0.008)	$0.029 \ (0.006)$	0.057 (0.007)	$0.084 \ (0.008)$
	LM	0.023 (0.004)	$0.053 \ (0.007)$	0.082 (0.007)	$0.022 \ (0.005)$	0.053 (0.006)	0.081 (0.008)

Figure S1: Predicted risks versus true risks in Scenario A1: CM with exponential kernel under biomarker dependent and independent censoring assumptions, JM and LM are used to illustrate the comparison. Results were based on 200 simulated replicates.

Figure S2: Predicted risks versus true risks in Scenario A2: CM with Gaussian kernel under biomarker dependent and independent censoring assumptions, JM and LM are used to illustrate the comparison. Results were based on 200 simulated replicates.

Figure S3: Predicted risks versus true risks in Scenario A3: CM with latent changepoint kernel under biomarker dependent and independent censoring assumptions, JM and LM are used to illustrate the comparison. Results were based on 200 simulated replicates.

Figure S4: Predicted risks versus true risks in Scenario B1: CM with exponential kernel under biomarker dependent and independent censoring assumptions, JM and LM are used to illustrate the comparison. Results were based on 200 simulated replicates.

Figure S5: Predicted risks versus true risks in Scenario B2: CM with Gaussian kernel under biomarker dependent and independent censoring assumptions, JM and LM are used to illustrate the comparison. Results were based on 200 simulated replicates.

Figure S6: Predicted risks versus true risks in Scenario B3: CM with latent changepoint kernel under biomarker dependent and independent censoring assumptions, JM and LM are used to illustrate the comparison. Results were based on 200 simulated replicates.

Figure S7: Predicted risks versus true risks in Scenario C: CM with exponential kernel under biomarker dependent and independent censoring assumptions, JM and LM are used to illustrate the comparison. Results were based on 200 simulated replicates.

4 Additional Simulations Using Low Disease Prevalence

4.1 Simulation Results for Scenarios A1, A2, and A3

Simulation results of the time-dependent AUCs and Brier scores for Scenario A1, A2, and A3, where CM_Dep_Exp, CM_Dep_Gau, and CM_Dep_Lat were the respective true models are presented in Table S9 and Table S10.

Table S9: Simulation results for Scenarios A1, A2, and A3, where CM_Dep_Exp, CM_Dep_Gau, and CM_Dep_Lat are the true models, respectively. The averaged time-dependent AUC and standard deviation (in parentheses) are based on 200 simulated replicates. Two landmark times s = 2, 5 and three prediction horizons t = 1, 2, 3 are used.

Scenario Method			s = 2			s = 5	
Scenario		t=1	t=2	t=3	t=1	t=2	t = 3
	CM_Dep_Exp	0.878 (0.053)	0.759 (0.039)	0.697 (0.037)	0.895 (0.047)	0.778 (0.045)	0.721 (0.040)
	CM_Dep_Gau	$0.878 \ (0.053)$	0.759 (0.041)	$0.697 \ (0.037)$	0.895 (0.046)	0.777(0.045)	$0.720 \ (0.041)$
	CM_Dep_Lat	0.878 (0.052)	0.751 (0.041)	$0.691 \ (0.037)$	0.894 (0.047)	0.771 (0.045)	0.717 (0.040)
A1	CM_Ind_Exp	0.872 (0.054)	0.751 (0.041)	$0.682 \ (0.039)$	0.886 (0.053)	0.757 (0.047)	$0.685 \ (0.043)$
	CM Ind Gau	0.874 (0.053)	0.751 (0.042)	0.684 (0.039)	0.886 (0.052)	0.758 (0.048)	$0.686 \ (0.043)$
	CM Ind Lat	0.875 (0.053)	0.747(0.041)	$0.680 \ (0.037)$	0.887(0.052)	0.750(0.044)	$0.678 \; (0.041)$
	JM	0.809 (0.063)	0.706(0.042)	0.649 (0.037)	0.823(0.066)	0.708(0.047)	$0.648 \ (0.041)$
	LM	0.803(0.064)	0.698 (0.040)	$0.642 \ (0.037)$	0.824 (0.065)	0.700(0.054)	$0.646 \ (0.046)$
	CM Dep Exp	0.889 (0.046)	0.755 (0.041)	0.698 (0.037)	0.899 (0.048)	0.773 (0.046)	0.714 (0.040)
	CM Dep Gau	0.890 (0.046)	0.756(0.041)	0.699(0.036)	0.898(0.048)	0.773(0.047)	$0.714 \ (0.040)$
	CM Dep Lat	0.890(0.045)	0.751 (0.043)	0.694 (0.037)	0.899(0.048)	0.771(0.048)	$0.715 \ (0.039)$
A2	CM Ind Exp	0.883 (0.048)	0.743(0.043)	0.679 (0.038)	0.887(0.051)	0.744(0.047)	$0.673 \ (0.045)$
	CM Ind Gau	0.886(0.047)	0.745(0.043)	0.682 (0.038)	0.887(0.050)	0.745(0.048)	$0.674 \ (0.044)$
	CM Ind Lat	0.887 (0.046)	0.745(0.044)	0.682 (0.038)	0.889(0.049)	0.742(0.044)	$0.674 \ (0.042)$
	JM	0.812 (0.062)	0.694 (0.045)	$0.640 \ (0.039)$	0.816(0.073)	0.694(0.050)	0.637 (0.045)
	LM	0.808 (0.063)	0.687 (0.043)	0.633(0.039)	0.816(0.069)	0.690(0.054)	$0.633 \ (0.048)$
	CM Dep Exp	0.900 (0.050)	0.727 (0.043)	0.678 (0.039)	0.905 (0.053)	0.750 (0.047)	0.701 (0.041)
	CM Dep Gau	0.901 (0.050)	0.729(0.041)	0.679(0.039)	0.905(0.053)	0.753(0.047)	0.702(0.041)
	CM Dep Lat	0.902(0.049)	0.731(0.041)	0.679(0.039)	0.908 (0.053)	0.753(0.048)	$0.702 \ (0.041)$
A3	CM Ind Exp	0.899(0.051)	0.711 (0.048)	0.658 (0.042)	0.895(0.057)	0.715 (0.045)	$0.659 \ (0.038)$
	CM Ind Gau	0.900(0.050)	0.716(0.046)	0.665 (0.040)	0.897(0.055)	0.720(0.045)	$0.663 \ (0.038)$
	CM Ind Lat	0.901 (0.049)	0.722(0.043)	0.668 (0.040)	0.898(0.056)	0.724(0.044)	$0.664 \ (0.039)$
	JM	, , ,		0.622(0.046)	, , ,		, , ,
	LM	0.815 (0.061)	$0.664 \ (0.052)$	$0.616 \ (0.045)$	$0.829 \ (0.069)$	0.679 (0.050)	$0.627 \ (0.041)$

4.2 Simulation Results for Scenarios B1, B2, and B3

Simulation results of the time-dependent AUCs and Brier scores for Scenario B1, B2, and B3, where CM_Ind_Exp, CM_Ind_Gau, and CM_Ind_Lat were the respective true models are presented in Table S11 and Table S12.

Table S10: Simulation results for Scenarios A1, A2, and A3, where CM_Dep_Exp, CM_Dep_Gau, and CM_Dep_Lat are the true models, respectively. The averaged Brier scores and standard deviation (in parentheses) are based on 200 simulated replicates. Two landmark times s=2,5 and three prediction horizons t=1,2,3 are used.

Scenario Method			s=2			s = 5	
		t=1	t=2	t = 3	t = 1	t=2	t=3
	CM_Dep_Exp	0.002 (0.001)	0.007 (0.001)	0.012 (0.002)	0.002 (0.001)	0.007 (0.001)	0.011 (0.002)
	CM_Dep_Gau	0.002 (0.001)	0.007(0.001)	0.012 (0.002)	0.002(0.001)	0.007(0.001)	$0.011 \ (0.002)$
	CM_Dep_Lat	0.002 (0.001)	0.007(0.001)	0.012 (0.002)	0.002(0.001)	0.007(0.001)	$0.011 \ (0.002)$
A1	CM_Ind_Exp	0.002 (0.001)	0.007 (0.002)	0.012 (0.002)	0.002 (0.001)	0.007 (0.001)	$0.011 \ (0.002)$
	CM Ind Gau	0.002 (0.001)	0.007 (0.001)	0.012 (0.002)	0.002(0.001)	0.007(0.001)	$0.011 \ (0.002)$
	CM Ind Lat	0.002 (0.001)	0.007 (0.002)	0.012 (0.002)	0.002(0.001)	0.007 (0.001)	$0.011 \ (0.002)$
	JM _	0.005 (0.001)	0.009 (0.002)	0.014(0.002)	0.004(0.001)	0.009 (0.001)	$0.013 \ (0.002)$
	LM						$0.013 \ (0.002)$
	CM Dep Exp	0.002 (0.001)	0.007 (0.001)	0.012 (0.002)	0.002 (0.001)	0.007 (0.001)	0.011 (0.002)
	CM Dep Gau	0.002 (0.001)	0.007(0.001)	0.012(0.002)	0.002 (0.001)	0.007 (0.001)	$0.011 \ (0.002)$
	CM Dep Lat	0.002 (0.001)	0.007(0.001)	0.012(0.002)	0.002 (0.001)	0.007 (0.001)	$0.011 \ (0.002)$
A2	CM Ind Exp	0.002 (0.001)	0.007(0.001)	0.012 (0.002)	0.002 (0.001)	0.007 (0.001)	$0.012 \ (0.002)$
	CM_Ind_Gau	0.002 (0.001)	0.007(0.001)	0.012 (0.002)	0.002 (0.001)	0.007(0.001)	$0.012 \ (0.002)$
	CM_Ind_Lat	0.002 (0.001)	0.007(0.001)	0.012 (0.002)	0.002 (0.001)	0.007(0.001)	$0.012 \ (0.002)$
	$_{ m JM}$	0.004 (0.001)	0.009 (0.002)	0.014 (0.002)	0.004(0.001)	0.009 (0.002)	$0.013 \ (0.002)$
	LM	0.003 (0.001)	0.008 (0.001)	0.013 (0.002)	0.004 (0.001)	0.009 (0.002)	$0.013 \ (0.002)$
	CM Dep Exp	0.002 (0.001)	0.006 (0.001)	0.011 (0.002)	0.002 (0.001)	0.007 (0.001)	0.011 (0.002)
	CM Dep Gau	0.002 (0.001)	0.006 (0.001)	0.011 (0.002)	0.002(0.001)	0.007 (0.001)	$0.011 \ (0.002)$
	CM Dep Lat	0.002 (0.001)	0.006 (0.001)	0.011 (0.002)	0.002(0.001)	0.007(0.001)	$0.011 \ (0.002)$
A3	CM Ind Exp	0.002 (0.001)	0.006 (0.001)	0.011 (0.002)	0.002(0.001)	0.007 (0.001)	$0.011 \ (0.002)$
	CM_Ind_Gau	0.002 (0.001)	0.006 (0.001)	0.011 (0.002)	0.002(0.001)	0.007(0.001)	$0.011 \ (0.002)$
	CM Ind Lat	0.002 (0.001)	0.006 (0.001)	0.011 (0.002)	0.002(0.001)	0.007(0.001)	$0.011 \ (0.002)$
	$_{ m JM}^{-}$	0.004 (0.001)	0.009 (0.002)	0.013 (0.002)	0.004 (0.001)	0.009 (0.001)	$0.014 \ (0.002)$
	LM	0.003 (0.001)	0.008 (0.002)	$0.013 \ (0.002)$	0.003 (0.001)	0.008 (0.001)	0.013 (0.002)

4.3 Simulation Results for Scenario C

Simulation results of the time-dependent AUCs and Brier scores for Scenario C, where JM was the true model are presented in Table S13.

References

Table S11: Simulation results for Scenarios B1, B2, and B3, where CM_Ind_Exp, CM_Ind_Gau, and CM_Ind_Lat are the true models, respectively. The averaged time-dependent AUC and standard deviation (in parentheses) are based on 200 simulated replicates. Two landmark times s=2,5 and three prediction horizons t=1,2,3 are used.

Scenario Method			s = 2			s = 5	
o cenario		t=1	t=2	t = 3	t = 1	t=2	t = 3
	CM_Dep_Exp	0.865 (0.056)	0.742 (0.050)	0.669 (0.043)	0.875 (0.053)	0.753 (0.049)	0.679 (0.043)
	CM_Dep_Gau	0.864 (0.056)	$0.742 \ (0.050)$	$0.668 \ (0.043)$	$0.875 \ (0.054)$	0.752 (0.050)	$0.678 \ (0.043)$
	CM_Dep_Lat	0.864 (0.055)	$0.736 \ (0.051)$	$0.664 \ (0.043)$	$0.875 \ (0.054)$	0.745 (0.049)	$0.674 \ (0.043)$
B1	CM_Ind_Exp	0.865 (0.056)	0.745 (0.050)	0.673 (0.041)	0.876 (0.055)	0.757 (0.049)	$0.686 \ (0.042)$
	CM_Ind_Gau	0.865 (0.056)	0.745 (0.049)	0.673(0.041)	0.876 (0.055)	0.756 (0.050)	$0.685 \ (0.043)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.864 (0.056)	0.737 (0.051)	$0.666 \ (0.041)$	$0.875 \ (0.056)$	0.746 (0.050)	$0.675 \ (0.043)$
	$_{ m JM}$	0.769 (0.074)	$0.672 \ (0.054)$	$0.623 \ (0.038)$	$0.766 \ (0.084)$	0.669 (0.061)	$0.623 \ (0.047)$
	LM	0.813 (0.062)	0.701 (0.049)	$0.640 \ (0.037)$	$0.812 \ (0.059)$	0.698 (0.047)	$0.641 \ (0.040)$
	CM_Dep_Exp	0.862 (0.059)	0.725 (0.052)	0.656 (0.044)	$0.883 \ (0.053)$	0.735 (0.049)	0.664 (0.046)
	CM_Dep_Gau	0.859 (0.058)	0.723 (0.049)	0.655 (0.043)	0.881 (0.054)	0.734 (0.048)	$0.663 \ (0.044)$
	CM_Dep_Lat	0.863 (0.058)	0.720 (0.052)	0.654 (0.043)	$0.883 \ (0.053)$	0.729(0.047)	$0.661 \ (0.046)$
B2	CM_Ind_Exp	0.863 (0.059)	0.728 (0.051)	$0.660 \ (0.043)$	$0.883 \ (0.053)$	0.740 (0.049)	$0.670 \ (0.044)$
	CM_Ind_Gau	0.862 (0.058)	0.727 (0.050)	$0.660 \ (0.042)$	$0.883 \ (0.054)$	0.741 (0.048)	$0.670 \ (0.044)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.863 (0.058)	$0.724 \ (0.052)$	0.657 (0.042)	$0.883 \ (0.054)$	0.737 (0.045)	$0.668 \ (0.043)$
	$_{ m JM}$	$0.763 \ (0.074)$	$0.658 \ (0.054)$	$0.613 \ (0.041)$	$0.752 \ (0.095)$	$0.651 \ (0.058)$	$0.609 \ (0.047)$
	LM	0.815 (0.062)	0.690 (0.051)	$0.630 \ (0.041)$	$0.819\ (0.063)$	0.687 (0.048)	$0.632 \ (0.041)$
	CM_Dep_Exp	0.882 (0.053)	0.705 (0.054)	0.644 (0.047)	0.893 (0.049)	0.704 (0.047)	0.642 (0.039)
	CM_Dep_Gau	0.881 (0.053)	0.704 (0.054)	$0.643 \ (0.046)$	$0.892 \ (0.050)$	0.702 (0.049)	$0.640 \ (0.043)$
	CM_Dep_Lat	0.882 (0.053)	0.706 (0.053)	$0.644 \ (0.046)$	$0.891 \ (0.050)$	0.699(0.050)	$0.638 \ (0.043)$
В3	CM_Ind_Exp	0.883 (0.053)	0.705 (0.054)	$0.645 \ (0.045)$	$0.893 \ (0.050)$	0.704 (0.048)	$0.645 \ (0.039)$
	CM_Ind_Gau	0.882 (0.053)	0.707 (0.055)	$0.648 \ (0.045)$	$0.892 \ (0.050)$	0.707(0.047)	$0.649 \ (0.036)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.883 (0.054)	0.708 (0.052)	0.649 (0.044)	$0.891 \ (0.050)$	0.709 (0.046)	$0.651 \ (0.036)$
	JM	` '	· · · · · · · · · · · · · · · · · · ·	` /	· /	` /	$0.598 \ (0.043)$
	LM	0.821 (0.065)	$0.673 \ (0.055)$	0.616 (0.043)	$0.819 \ (0.057)$	0.672 (0.050)	0.620 (0.041)

Table S12: Simulation results for Scenarios B1, B2, and B3, where CM_Ind_Exp, CM_Ind_Gau, and CM_Ind_Lat are the true models, respectively. The averaged Brier scores and standard deviation (in parentheses) are based on 200 simulated replicates. Two landmark times s=2,5 and three prediction horizons t=1,2,3 are used.

Scenario Method			s = 2			s = 5	
		t=1	t=2	t = 3	t=1	t=2	t = 3
	CM_Dep_Exp	0.003 (0.001)	0.008 (0.001)	0.012 (0.002)	0.003 (0.001)	0.007 (0.001)	0.012 (0.002)
	CM_Dep_Gau	0.003 (0.001)	0.008 (0.001)	$0.012 \ (0.002)$	$0.003 \ (0.001)$	0.007(0.001)	$0.012 \ (0.002)$
	CM_Dep_Lat	0.003 (0.001)	0.008 (0.001)	0.012 (0.002)	$0.003 \ (0.001)$	0.007(0.001)	$0.012 \ (0.002)$
B1	CM_Ind_Exp	0.003 (0.001)	0.008 (0.001)	0.012 (0.002)	0.003(0.001)	0.007(0.001)	$0.012 \ (0.002)$
	CM_Ind_Gau	0.003 (0.001)	0.008(0.001)	0.012 (0.002)	0.003(0.001)	0.007(0.001)	$0.012 \ (0.002)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.003 (0.001)	0.008 (0.001)	$0.012 \ (0.002)$	$0.003 \ (0.001)$	0.007(0.001)	$0.012 \ (0.002)$
	$_{ m JM}$	0.005 (0.001)	0.009 (0.002)	$0.014 \ (0.002)$	0.005 (0.001)	0.009 (0.002)	$0.014 \ (0.002)$
	LM	0.004 (0.001)	0.009 (0.001)	$0.013 \ (0.002)$	0.004 (0.001)	0.009 (0.001)	$0.013 \ (0.002)$
	CM_Dep_Exp	0.003 (0.001)	0.008 (0.001)	0.012 (0.002)	0.003 (0.001)	0.007 (0.001)	0.012 (0.002)
	CM_Dep_Gau	0.003(0.001)	0.008 (0.001)	0.012 (0.002)	0.003(0.001)	0.007(0.001)	$0.012 \ (0.002)$
	CM_Dep_Lat	0.003(0.001)	0.008 (0.001)	0.012 (0.002)	0.003(0.001)	0.007(0.001)	$0.012 \ (0.002)$
B2	CM_Ind_Exp	0.003 (0.001)	0.008 (0.001)	0.012 (0.002)	0.003(0.001)	0.007(0.001)	$0.012 \ (0.002)$
	CM_Ind_Gau	0.003 (0.001)	0.008 (0.001)	$0.012 \ (0.002)$	0.003 (0.001)	0.007(0.001)	$0.012 \ (0.002)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.003 (0.001)	0.008 (0.001)	$0.012 \ (0.002)$	0.003 (0.001)	0.007(0.001)	$0.012 \ (0.002)$
	$_{ m JM}$	0.005 (0.001)	0.009 (0.002)	$0.014 \ (0.002)$	0.005 (0.001)	0.009 (0.002)	$0.014 \ (0.002)$
	LM	0.004 (0.001)	0.009 (0.001)	$0.013 \ (0.002)$	$0.004 \ (0.001)$	0.009 (0.001)	$0.013 \ (0.002)$
	CM_Dep_Exp	0.003 (0.001)	0.008 (0.001)	0.012 (0.002)	0.003 (0.001)	0.007 (0.001)	0.012 (0.002)
	CM_Dep_Gau	0.003 (0.001)	0.008 (0.001)	$0.012 \ (0.002)$	0.003 (0.001)	0.007(0.001)	$0.012 \ (0.002)$
	CM_Dep_Lat	0.003 (0.001)	0.008 (0.001)	0.012 (0.002)	0.003 (0.001)	0.007(0.001)	$0.012 \ (0.002)$
B3	CM_Ind_Exp	0.003 (0.001)	0.008 (0.001)	$0.012 \ (0.002)$	0.003 (0.001)	0.007(0.001)	$0.012 \ (0.002)$
	CM_Ind_Gau	0.003 (0.001)	0.008 (0.001)	$0.012 \ (0.002)$	0.003 (0.001)	0.007(0.001)	$0.012 \ (0.002)$
	$\mathrm{CM}_{-}\mathrm{Ind}_{-}\mathrm{Lat}$	0.003 (0.001)	0.008 (0.001)	$0.012 \ (0.002)$	0.003 (0.001)	0.007(0.001)	$0.012 \ (0.002)$
	$_{ m JM}$	` '	\ /	` /	` '	` '	$0.014 \ (0.002)$
	LM	0.004 (0.001)	0.008 (0.001)	$0.013 \ (0.002)$	0.004 (0.001)	0.009 (0.002)	$0.013 \ (0.002)$

Table S13: Simulation results for Scenario C, where JM is the true model. The averaged time-dependent AUC and Brier score as well as the associated standard deviations (in parentheses) are based on 200 simulated replicates. Two landmark times s=2,5 and three prediction horizons t=1,2,3 are used.

Scenario Method		s = 2			s = 5		
		t=1	t=2	t=3	t=1	t=2	t = 3
AUC	CM_Dep_Exp	0.887 (0.037)	0.882 (0.022)	0.881 (0.018)	0.864 (0.033)	0.864 (0.022)	0.863 (0.020)
	CM_Dep_Gau	$0.888 \ (0.037)$	0.884 (0.022)	0.883 (0.018)	0.865 (0.033)	0.865 (0.022)	0.864 (0.020)
	CM_Dep_Lat	$0.888 \ (0.036)$	0.885 (0.021)	0.883(0.018)	0.865 (0.033)	0.865 (0.021)	0.864 (0.019)
	CM Ind Exp	$0.892 \ (0.037)$	0.885 (0.025)	0.881 (0.023)	0.868 (0.037)	0.870 (0.031)	0.868 (0.032)
	CM Ind Gau	0.893 (0.037)	0.887 (0.025)	0.885 (0.023)	0.870 (0.039)	0.870 (0.033)	0.868 (0.032)
	CM_Ind_Lat	$0.896 \ (0.036)$	0.891 (0.021)	0.889(0.018)	0.873(0.032)	0.874 (0.020)	0.872 (0.018)
	JM _	0.897 (0.035)	0.892 (0.021)	0.890 (0.018)	0.877 (0.033)	0.878 (0.020)	0.878 (0.018)
	LM	$0.896 \ (0.036)$	0.892 (0.021)	0.890(0.018)	0.876 (0.032)	0.877 (0.020)	0.878 (0.018)
Brier	CM_Dep_Exp	0.006 (0.001)	0.013 (0.002)	0.019 (0.002)	0.011 (0.002)	0.020 (0.003)	0.028 (0.003)
	CM Dep Gau	0.006 (0.001)	0.013 (0.002)	0.019(0.002)	0.011 (0.002)	0.020 (0.003)	0.028 (0.003)
	CM Dep Lat	0.006 (0.001)	0.013 (0.002)	0.019(0.002)	0.011 (0.002)	0.020 (0.003)	0.028 (0.003)
	CM Ind Exp	0.006 (0.001)	0.013 (0.002)	0.019 (0.003)	0.011 (0.002)	0.021 (0.003)	0.029 (0.005)
	CM Ind Gau	0.006 (0.001)	0.013 (0.002)	0.019(0.002)	0.011 (0.002)	0.020 (0.003)	0.028 (0.004)
	CM Ind Lat	0.006 (0.001)	0.013 (0.002)	0.019(0.002)	0.011 (0.002)	0.020 (0.003)	0.028 (0.003)
	$_{ m JM}^{-}$	$0.006 \ (0.001)$	0.012 (0.002)	0.018(0.002)	0.011 (0.002)	0.020 (0.002)	0.028 (0.003)
	LM	$0.006 \ (0.001)$	0.012 (0.002)	$0.018 \ (0.002)$	0.011 (0.002)	0.020 (0.002)	0.028 (0.003)