

12) Una vez más consideremos las matrices a Pauli: (5,1)=(3,6), (5,1)=(3,1)=(3,1), (5,1)=(3 operadores de Pauli 6x.53.62, conjuntamente con el operador identidad, forman un grupo respecto a la operación ojog = ojok = i Ejkmom + SjkI con j.k.m = x,u,Z → Cerradura respecto a O: Si j=K + o, Ooj=ojoj= IL Si j = K = 1 j O 0 k = 0 j O K = 1 E i Km 0 m -> i E i Km 0 m no siempre pertenecerá al conjunto -> 0 x O 0 4 = 0 x O 4 = (00)(0 0) = (00) =i 02 # {I,0,,0,02} Por lo tanto, el conjunto ¿I, ox, oy, oz? no forma un grupo b) Muestre si las matrices de Pauli, (0,2), linealmente independientes Comprobe mos si $\{1, \sigma_x, \sigma_y, \sigma_z\}$ son L.I: $\alpha\binom{0}{0} + \beta\binom{0}{1} + \gamma\binom{0}{0} + \gamma\binom{0}{1} + \gamma\binom{1}{0} = \binom{0}{0} = \binom{0}{0}$ ya que α= B= 8= λ=0. estas matrices son L.I. c) ¿Las matrices de Pauli forman base para un espacio vectorial de matrices complejas 2 x 2? ¿Por qué? Si forman una base exprese la matriz (31) en términos de esa base. Por b) sabemos que las matrices en {I, 0x, 0y, 0z} son L.I. Ahora, miremos si genera el EV de matrices complejas 2x2: Q (10)+Q,(01)+Q,(0-1)+Q,(0-1)=(2, 2, 2) +2166 Ya gue ak€Cy son únicos, cualquier matriz $\begin{pmatrix} a_0 + a_3 & a_4 - ia_2 \\ a_1 + ia_2 & a_0 - a_3 \end{pmatrix} = \begin{pmatrix} 2_1 & 2_2 \\ 2_3 & 2_4 \end{pmatrix} = \begin{pmatrix} 2_1 = a_0 + a_3 \\ 2_2 = a_4 - ia_2 \\ 2_3 = a_4 + ia_2 \\ 2_4 = a_0 - a_3 \end{pmatrix}$ 2x2 compleja se puede escribir como combina-24= (21-93)-03 2 = 2,+ia,+ia, ción lineal de ¿I, «, «, «, «.). Además ya que dim V=4 23=2,+2ia, y dim? I, ox, ox, oz?=4, este conjunto forma una 21-52-01 base para este espacio vectorial! d) Derive la expresión general para el conmutador [o], ox1 utilizando la descripción de composición de los operadores de Pauli que presentamos arriba Se hene que ojok = i Eikmom+Six II - [oi,ok] = ojok-okoi = i(Eikm-Ekim)om+(Sik-Ski) I -> Sik=Ski, Eikm=-Ekim = 2iEikmom Así, se hene que: $[\sigma_x, \sigma_y] = 2i\sigma_z$, $[\sigma_y, \sigma_z] = 2i\sigma_x$, $[\sigma_z, \sigma_x] = 2i\sigma_y$ e) Como lo planteamos en el ejemplo 4.19, oz actúa de la siguiente forma: ozl+>=1+>, ozl->=-1->, 1+>=(1), 1->=(2) Encuentre la expresión para los autovalores y autovectores de los otros operadores de Pauli $\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow \det(\sigma_{x} - \lambda \mathbf{I}) = \det(\frac{-\lambda_{1}}{4 - \lambda_{2}}) = \lambda^{2} - 1 = 0 \rightarrow \lambda_{xx} = 1, \lambda_{-x} = 1 \rightarrow 0 + 1 + \lambda_{x} = \lambda_{+x} = 1 \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{3} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \rightarrow \frac{1}{12} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} = \begin{pmatrix} x_{$ $\Rightarrow \sigma_{x}|-\gamma_{x}=\lambda_{-x}|-\gamma_{x}\Rightarrow \lambda_{-x}=-1 \Rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = -\begin{pmatrix} x_{1} \\ x_{3} \\ x_{3} \\ x_{4} \\ x_{4} = -x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{3} \\ x_{3} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{3} \\ x_{5} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{3} \\ x_{5} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{3} \\ x_{5} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{5} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{5} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{5} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{5} \\ x_{5} \\ x_{5} \\ x_{5} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{5} \\$ Ug= (10) + de+1 Ug-2 II = det (-1-1) = 2-1=0 → 2+g=1, 2-g=1 → 0g 1+2g=2+g+2g → 2+g=1 → (0-i)(x2) = (x1) + ix=x2 → (x2) = (1) → 1/2 (1) → 1/2 = 1/2 (1) = 1/2 (1+>+i1->) f) Muestre que cualquier representación matricial de un operador hermítico genérico ma puede ser

expresado como combinación lineal de las matrices de Pauli.

1) Por b) sabemos que las matrices en {I,0x,0y,0z² son L.I. Ahora, miremos si generan el EV de matrices 2x2 hermíticas:

Tenemos dos maneras de demostrar esto:

Scanned with

CS CamScanner