QUADRILATERALS AND PARALLELOGRAM

INTRODUCTION

In the previous chapter, we studied triangles and their properties. We know that a triangle is formed by joining any three non-collinear points in a plane. Similarly, if we join any four points in a plane, taken in order, no three of which are collinear then they form a quadrilateral. If we look around us, we will find a number of objects which are in the shape of a quadrilateral, for example- wall of a room, top of a book, blackboard, top of a table etc.

In the present chapter, we shall study quadrilaterals and their different kinds as parallelogram, rectangle, rhombus and square.

Quadrilateral. A plane figure formed by joining four points in an order, no three of which are collinear is called a quadrilateral. A quadrilateral has four vertices, four sides and four angles. It has two diagonals.

In the adjacent figure, ABCD is a quadrilateral. It has four vertices A, B, C and D. It has four sides AB, BC, CD and DA. It has four angles \angle A, \angle B, \angle C and \angle D. It has two diagonals AC and BD.

A quadrilateral ABCD is also written as 'quad ABCD' or ' ABCD' in short.

Terms related to a Quadrilateral.

1. Adjacent sides. Any two sides of a quad. which have one common vertex are called adjacent sides or consecutive sides.

In quad. ABCD following are the pairs of adjacent sides -

AB, BC; BC, CD; CD, DA; DA, AB.

2. Opposite sides. Any two sides of a quad.which have no common vertex are called opposite sides. In quad. ABCD following are the pairs of opposite sides-AB and CD; BC and AD.

3. Consecutive angles. Any two angles of a quad. which have one common arm are called consecutive angles.

In quad. ABCD, $\angle A$ and $\angle B$; $\angle B$ and $\angle C$; $\angle C$ and $\angle D$; $\angle D$ and $\angle A$ and consecutive angles.

4. Opposite angles. Any two angles of a quad. Which have no common arm are called opposite angles. In quad. ABCD, $\angle A$ and $\angle C$; $\angle B$ and $\angle D$ are pairs of opposite angles.

Angle sum property of a quadrilateral.

Theorem 1. The sum of all angles of a quadrilateral is 360°.

Given. A quad. ABCD.

To prove. $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$.

Construction. Join AC.

Proof. In ∆ABC,

$$\angle 1 + \angle B + \angle 2 = 180^{\circ}$$
 (angle sum property of a \triangle)(1)

In ∆ADC,

$$\angle 3 + \angle D + \angle 4 = 180^{\circ}$$
 (Angle sum property of a \triangle)(2)

Adding equations (1) and (2), we get

$$\angle 1 + \angle B + \angle 2 + \angle 3 + \angle D + \angle 4 = 180^{\circ} + 180^{\circ}$$

$$\Rightarrow$$
 $(\angle 1 + \angle 3) + \angle B + (\angle 2 + \angle 4) + \angle D = 360^\circ$

$$\Rightarrow$$
 $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$

Types of Quadrilaterals.

There are different types of quadrilaterals which are discussed below -

1. Trapezium. A quad. in which one pair of opposite sides is parallel is called a trapezium. In the adjacent figure, ABCD is a trapezium with AD||BC. In short we write it as 'trap. ABCD'.

A trap. is said to be isosceles trap. if its non-parallel sides are equal.

Thus trap. ABCD is isosceles if AB = DC.

2. Parallelogram. A quad. in which both the pairs of opposite sides are parallel to each other is called a parallelogram.

So if AB||CD and AD||BC, then ABCD is a parallelogram and in short we write it as ||gm ABCD.

3. Rectangle. A ||gm with one of its angle as 90° is called a rectangle. Here ABCD is a rectangle with AB || DC, AD||BC and $\angle A = 90^{\circ}$ and in short we write it as rect. ABCD.

4. Rhombus. A quadrilateral with all its sides equal is called a rhombus.

In the adjacent figure AB = BC = CD = DA.

:. ABCD is a rhombus and in short we write it as 'rhomb. ABCD'.

Square. A quadrilateral with all its sides equal and with all of its angles as 90° is called a square. Here in the figure, AB = BC = CD = DA and $\angle A = \angle B = \angle C = \angle D = \angle 90$ °.

- :. ABCD is a square and in short we write it 'sq. ABCD.
- **6. Kite.** A quad. is said to be in the shape of a kite if its two pairs of adjacent sides are equal.

Here ABCD is a kite with AB = AD and BC = CD.

Thus we have seen that rectangle, square, rhombus are all some special types of parallelograms, but trapezium and kite are not parallelograms.

A square is a rectangle but every rectangle is not a square.

A parallelogram is a trapezium but every trapezium is not a parallelogram.

Properties of a parallelogram.

In a parallelogram, each of the following properties hold:

- (i) Diagonals of a ||gm divide it into two congruent triangles.
- (ii) Opposite sides of a parallelogram are equal.
- (iii) Opposite angles of a parallelogram are equal.
- (iv) Diagonals of a parallelogram bisect each other.

All above necessary properties of a ||gm can be proved in the form of theorems as discussed below-

Theorem 2. A diagonal of a parallelogram divides it into two congruent triangles (CBSE 2010) (NCERT Example)

Given. A parallelogram ABCD with diagonal AC.

To prove. $\triangle ABC \cong \triangle CDA$.

Proof. Since ABCD is a parallelogram,

∴ AB || DC and AD || BC.

Now in $\triangle ABC$ and $\triangle CDA$,

AB || DC and AC is transversal,

 \therefore $\angle 1 = \angle 2$ (alt. int. \angle 's)

Also AD || BC and AC is transversal,

$$\therefore$$
 $\angle 3 = \angle 4$ (alt. int. \angle 's)

and AC = CA (common)

 \therefore \triangle ABC \cong \triangle CDA (ASA congruence condition.)

Theorem 3. In a parallelogram opposite sides are equal.

Given. A parallelogram ABCD.

To Prove. AB = DC and AD = BC.

Construction. Join AC.

Proof. As ABCD is a ||gm, AB||DC and AD||BC.

Now AB||DC and AC is transversal,

$$\therefore$$
 $\angle 1 = \angle 2$ (alt. int. \angle 's)

Also AD || BC and AC is transversal,

$$\therefore$$
 $\angle 3 = \angle 4$ (alt. int. \angle 's)

and AC = CA (common)

$$\therefore$$
 \triangle ABC \cong \triangle CDA (ASA congruence condition.)

$$\therefore$$
 AB = CD and BC = DA (cpct).

Given. A | | gm ABCD.

To prove. $\angle A = \angle C$ and $\angle B = \angle D$.

Construction. Join BD.

Proof. In $\triangle ABD$ and $\angle BCD$,

$$AB = DC$$

and
$$AD = BC$$

(∵ opposite sides of a ||gm are equal)

$$BD = BD$$
 (Common)

$$\therefore$$
 $\angle BDA = \angle BCD (cpct)$

Similarly, we can prove that $\angle ABC = \angle ADC$,

Given. A ||gm ABCD with diagonals AC and BD intersecting each other at O.

To prove. OA = OC and OB = OD.

Proof. In $\triangle AOB$ and $\triangle COD$,

AB = CD (opposite sides of a ||gm)

- ∴ AB||CD and AC transversal
- \therefore $\angle 1 = \angle 2$ (alt. int. \angle 's)
- ∴ AB||CD and BD transversal
- \therefore $\angle 3 = \angle 4$ (alt. int. \angle 's)
- \therefore \triangle AOB \cong \triangle COD (ASA congruence condition)
- \therefore AB = CO and BO = DO (cpct).

SOLVED PROBLEMS

- **Ex.1** Three angles of a quadrilateral measure 56°, 100° and 88°. Find the measure of the fourth angle.
- **Sol.** Let the measure of the fourth angle be x.
 - \therefore 56° + 100° + 88° + x° = 360°
- :. [Sum of all the angles of quadrileteral is 360°]

- ⇒ 244°+x=360°
- \Rightarrow x = 360° 244° = 116°

Hence, the measure of the fourth angle is 116°.

- **Ex.2** The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.
- **Sol.** Let the four angles of the quadrilateral be 3x, 5x, 9x and 13x.

[NCERT]

- \therefore 3x + 5x + 9x + 13x = 360°
- : [Sum of all the angles of quadrileteral is 360°]

- ⇒ 30x = 360°
- ⇒ x=12°

Hence, the angles of the quadrilateral are $3 \times 12^{\circ} = 36^{\circ}$, $5 \times 12^{\circ} = 60^{\circ}$, $9 \times 12^{\circ} = 108^{\circ}$ and $13 \times 12^{\circ} = 156^{\circ}$.

Ex.3 In figure, ABCD is a trapezium in which AB||CD. If \angle D = 45° and \angle C = 75°, find \angle A and \angle B.

- **Sol.** We have, AB | | CD and AD is a transversal.
 - so, $\angle A + \angle D = 180^{\circ}$ [Interior angles on the same side of the transversal]
 - \Rightarrow $\angle A + 45^{\circ} = 180^{\circ}$ [:: $\angle D = 45^{\circ}$]
 - \Rightarrow $\angle A = 180^{\circ} 45^{\circ} = 135^{\circ}$

Similarly, AB||CD and BC is a transversal.

- so, $\angle B + \angle C = 180^{\circ}$
- \Rightarrow $\angle B + 75^{\circ} = 180^{\circ}$
- $[\because \angle C = 75^{\circ}]$
- ⇒ ∠B = 105°

Hence $\angle A = 135^{\circ}$ and $\angle B = 105^{\circ}$

Ex.4 In the given figure, sides AB and CD of the quadrilateral ABCD are produced. Find the value of x.

- **Sol.** Since, $\angle ADE + \angle ADC = 180^{\circ}$ [Linear pair]
 - \Rightarrow 100° + \angle ADC = 180° [:: \angle ADE = 100°]
 - \Rightarrow $\angle ADC = 180^{\circ} 100^{\circ} = 80^{\circ}$

In quadrilateral ABCD

$$\angle ADC + \angle A + \angle ABC + \angle C = 360^{\circ}$$
 :: [Sum of all the angles of quadrileteral is 360°]

- \Rightarrow 80° + 60° + \angle ABC + 120° = 360°
- \Rightarrow $\angle ABC + 260^{\circ} = 360^{\circ}$
- ⇒ ∠ABC = 100°
- But, $\angle ABC + x = 180^{\circ}$ [Linear pair]
- \therefore 100° + x = 180°

Hence, $x = 80^{\circ}$.

Ex.5 In quadrilateral ABCD \angle B = 90°, \angle C - \angle D = 60° and \angle A - \angle C - \angle D = 10°. Find \angle A, \angle C and \angle D.

Sol. $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ (Sum of the four angles of a quadrilateral is 360°)

...(4)

$$\Rightarrow \angle A + \angle C + \angle D = 360^{\circ} - \angle B$$

$$\angle A + \angle C + \angle D = 360^{\circ} - 90^{\circ}$$

$$\angle A + \angle C + \angle D = 270^{\circ} \qquad \dots (1)$$

It is given that

$$\angle A - \angle C - \angle D = 10^{\circ}$$
 ...(2)

$$\angle C - \angle D = 60^{\circ}$$
 ...(3)

Adding (1) and (2), we get

$$(\angle A + \angle C + \angle D) + (\angle A - \angle C - \angle D) = 270^{\circ} + 10^{\circ}$$

$$\angle A + \angle C + \angle D + \angle A - \angle C - \angle D = 280^{\circ}$$

 $2\angle A = 280^{\circ}$

$$\angle A = \frac{280^{\circ}}{2}$$
 \Rightarrow $\angle A = 140^{\circ}$

From (1),
$$140^{\circ} + \angle C + \angle D = 270^{\circ}$$

$$\Rightarrow$$
 $\angle C + \angle D = 270^{\circ} - 140^{\circ}$

$$\Rightarrow$$
 $\angle C + \angle D = 130^{\circ}$

Adding (3) and (4), we get

$$(\angle C - \angle D) + \angle C + \angle D = 60^{\circ} + 130^{\circ}$$

$$\angle C - \angle D + \angle C + \angle D = 190^{\circ}$$

$$2 \times \angle C = 190^{\circ}$$

$$2 \times \angle C = 190^{\circ}$$

$$\angle C = \frac{190^{\circ}}{2} \qquad \Rightarrow \qquad \angle C = 95^{\circ}$$

Subtracting (3) from (4), we get

$$(\angle C + \angle D) - (\angle C - \angle D) = 130^{\circ} - 60^{\circ}$$

$$\angle C + \angle D - \angle C + \angle D = 70^{\circ}$$

$$2 \times \angle D = 70^{\circ}$$

$$\angle D = \frac{70^{\circ}}{2}$$
 \Rightarrow $\angle D = 35^{\circ}$

Ex.6 In quadrilateral ABCD $\angle A + \angle C = 140^{\circ}$, $\angle A : \angle C = 1 : 3$ and $\angle B : \angle D = 5 : 6$. Find the $\angle A$, $\angle B$, $\angle C$ and $\angle D$.

Sol.

$$\angle A + \angle C = 140^{\circ}$$
 (Given)

$$\angle A : \angle C = 1 : 3$$
 (Given)

sum of ratio = 1 + 3 = 4

$$\Rightarrow \qquad \angle A = \frac{1}{4} \times 140^{\circ} = 35^{\circ}$$

and
$$\angle C = \frac{3}{4} \times 140^{\circ} = 35^{\circ} \times 3 = 105^{\circ}$$

Sum of all the angles of quadrilateral is 360°

We have
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow$$
 35° + \angle B + 105° + \angle D = 360°

$$\Rightarrow$$
 $\angle B + \angle D + 140^{\circ} = 360^{\circ}$

$$\Rightarrow$$
 $\angle B + \angle D = 360^{\circ} - 140^{\circ}$

$$\Rightarrow$$
 $\angle B + \angle D = 220^{\circ}$

It is given that,

$$\angle B : \angle D = 5 : 6$$

sum of ratios = 5 + 6 = 11

$$\Rightarrow \qquad \angle B = \frac{5}{11} \times 220^{\circ} = 20^{\circ} \times 5 = 100^{\circ}$$

and
$$\angle D = \frac{6}{11} \times 220^{\circ} = 20^{\circ} \times 6 = 120^{\circ}$$

Hence,
$$\angle A = 35^{\circ}$$
, $\angle B = 100^{\circ}$, $\angle C = 105^{\circ}$ and $\angle D = 120^{\circ}$

- **Ex.7** Prove that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
- **Sol. Given:** ABCD is a quadrilateral where diagonals AC and BD meet at 0, such that AO = OC, OB = OD and $AC \perp BD$ **[NCERT]**

To Prove: Quadrilateral ABCD is a rhombus, i.e., AB = BC = CD = DA

Proof : In $\triangle AOB$ and $\triangle AOD$, OB=OD [Common]

$$\angle AOB = \angle AOD$$

$$[Each = 90^{\circ}]$$

$$\therefore$$
 $\triangle AOB \cong \triangle AOD$

$$AB = AD$$

Similarly, we can prove that

$$AB = BC$$

$$BC = CD$$

$$CD = AD$$

From (i), (ii), (iii) and (iv), we obtain

$$AB = BC = CD = DA$$

- :. Quadrilateral ABCD is a rhombus.
- **Ex.8** Prove that the diagonals of a square are equal and bisect each other at right angles. **[NCERT]**
- **Sol. Given:** ABCD is a square.

To Prove: (i) AC = BD (ii) AC and BD bisect each other at right angles.

Proof: In $\triangle ABC$ and $\triangle BAD$,

$$AB = BA$$

$$BC = AD$$

[Opp. sides of square ABCD]

$$\angle ABC = \angle BAD$$
 [Each = 90° (:: ABCD is a square]

 $\triangle ABC \cong \triangle BAD [SAS Rule]$

:.

In ΔAOD and ΔBOC

AD = CB [Opp. sides of square ABCD]

[Given]

 \angle OAD = \angle OCB [Alternate angles as AD||BC and transversal AC intersects them] \angle ODA = \angle OBC [Alternate angles as AD||BC and transversal BD intersects them]

 $\triangle AOD \cong \triangle BOC$ [ASA Rule]

 \therefore OA = OC and OB = OD [C.P.C.T.] ...(ii)

So, O is the mid point of AC and BD.

Now, In ΔAOB and ΔCOB

AB = BC

OA = OC [from (ii)]

OB = OB [Common]

 \therefore $\triangle AOB \cong \triangle COB$ [By SSS Rule]

 \therefore $\angle AOB = \triangle BOC$ [C.P.C.T]

But $\angle AOB + \angle BOC = 180^{\circ}$ [Linear pair]

∠AOB + ∠AOB = 180°

[AOB = BOC proved earlier]

⇒ 2∠AOB = 180°

$$\Rightarrow$$
 $\angle AOB = \frac{180^{\circ}}{2} = 90^{\circ}$

:. AC and BD bisect each other at right angles.

Ex.9 In the adjacent figure ABCD is a parallelogram. E is the mid point of CD. AE is joined and produced to meet BC at F. Show that BF = 2AD.

Sol. In \triangle ADE and \triangle FCE,

∴ AD||BF and AF transversal

 $\angle 1 = \angle 2 \text{ (alt. int. } \angle 's)$ $\angle 3 = \angle 4 \text{ (vert. opp. } \angle 's$

DE = EC (:: E is mid point of CD)

 \therefore \triangle ADE \cong \triangle FCE (AAS congruence condition)

 \therefore AD = CF (cpct)

But AD = BC (opp. sides of a ||gm)

 \Rightarrow AD + AD = BC +CF

 \Rightarrow 2AD = BF.

Ex.10 ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD. Show that : (i) \triangle APB $\cong \triangle$ CQD, (ii) AP = CQ. **[NCERT]**

- **Sol.** In \triangle APB and \triangle CQD,
 - ∴ AB ||DC and BD transversal
 - \therefore $\angle 1 = \angle 2$ (alt. int. \angle 's)

AB = DC (opp. sides of a ||gm)

 $\angle APB = \angle CQD \text{ (each 90°)}$

- \therefore \triangle APB \cong \triangle CQS (AAS congruence condition)
- \therefore AP = CQ (cpct).
- **Ex.11** In the given figure ABCD is an isosceles trapezium with AB||DC and AD = BC. Prove that $\angle A = \angle B$.

[NCERT]

Sol. Let us draw DE||BC, which meets BA produced at E.

Now since AB||DC :: EB||DC and ED ||BC (by construction)

- :. BCDE is a parallelogram.
- \therefore BC = De (opp. sides of a||gm)

But BC = AD (given)

- ∴ AD = DE

(angles opp. to equal sides are equal)

Now $\angle 1 + \angle 3 = 180^{\circ}$ (Linear pair)

and $\angle 2 + \angle 4 = 180^{\circ}$ (co. int. \angle 's)

$$\therefore$$
 $\angle 1 + \angle 3 = \angle 2 + \angle 4$

$$\Rightarrow$$
 $\angle 1 = \angle 4$ (using $\angle 1 = \angle 2$)

or $\angle A = \angle B$. **Ex.12** ABCD is a parallelogram. X and Y are points on sides AD and BC such that $AX = \frac{1}{3}BC$ and $CY = \frac{1}{3}BC$.

Pinnacle

Sol. ABCD is a parallelogram.

∴ AD||BC (opp. sides of a||gm)

 \Rightarrow XD||BY ...(1)

Also, AD = BC (opp. sides of a | gm are equal)

$$\Rightarrow \frac{1}{3}AD = \frac{1}{3}BC$$

$$\Rightarrow$$
 AX = CY

$$\left(:: given that AX = \frac{1}{3}AD and CY = \frac{1}{3}BC \right)$$

$$\Rightarrow$$
 AD - AX = BC - CY

$$\Rightarrow$$
 XD = BY ...(2)

From equations (1) and (2), we get XBYD is a ||gm.

(if in a quad. a pair of opp. sides is equal and parallel then it is a | |gm)

Ex.13 In \triangle ABC, D and E are mid points of sides AB and AC respectively. DE is joined and produced till F such that DE = EF. CF is joined. Show that BCFD is a parallelogram.

Sol. In \triangle ADE and \triangle CFE

AE = EC (: E is the mid point of AC)

DE = EF (by construction)

$$\angle AED = \angle CEF$$
 (vert. int. \angle 's)

 \therefore \triangle ADE \cong \angle CFE (SAS congruence condition)

$$\therefore$$
 \angle FCE = \angle EAD (cpct)

But it is a pair of alt. int. ∠'s, therefore CF||AD

or CF||BD (: BD and AD are coincident lines)

Also
$$CF = AD (cpct)$$

But
$$Ad = BD (:D)$$
 is mid point of AB)

Hence in quad. BCFD, CF|BD and CF = BD.

- :. BCFD is a parallelogram.
- **Ex.14** Two parallel lines I and m are intersected by a transversal p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle. **[NCERT]**

nacle

nade

Sol. Let two parallel lines I and m be intersected by a transversal p at M and N respectively. The bisectors of ∠BMN and ∠DNM intersect each other at X and bisectors of ∠AMN and ∠CNM intersect each other at Y. We are required to show that MXNY is a rectangle.Now since AB||CD and PQ transversal, therefore

$$\angle$$
BMN = \angle MNC (alt. int. \angle 's)

$$\Rightarrow \frac{1}{2} \angle BMN = \frac{1}{2} \angle MNC$$

$$\Rightarrow$$
 $\angle XMN = \angle MNY$

(∵ MX bisects ∠BMN and NY bisects ∠MNC)

But these form a pair of alternate angles for lines MX and NY with MN transversal.

Similarly we can prove that MY||NX.

: Both the pairs of opposite sides are parallel,

:. MXNY is a parallelogram.

Also, \angle BMN + \angle MND = 180° (Co-interior \angle 's)

$$\Rightarrow \frac{1}{2} \angle BMN + \frac{1}{2} \angle MND = 90^{\circ}$$

$$\Rightarrow$$
 $\angle XMN + \angle XNM + \angle MXN = 180^{\circ}$

$$\Rightarrow$$
 90° + \angle MXN = 180° (using eqn. (1))

$$\Rightarrow$$
 $\angle MXN = 90^{\circ}$

Hence MXYN is a | gm with one of its angle as 90°, So it is a rectangle.

Ex.15 Show that the bisectors of angles of a parallelogram form a rectangle.

Sol. Let ABCD be a ||gm. Let bisectors of $\angle A$ and $\angle B$ intersect each other at P, bisectors of $\angle B$ and $\angle C$ intersect each other at Q, bisectors of $\angle C$ and $\angle D$ intersect each other at R and Bisectors of $\angle D$ and $\angle A$ intersect each other at S. We are to prove that PQRS is a rectangle.

Now since AP bisects $\angle A$,

$$\therefore$$
 $\angle PAB = \frac{1}{2} \angle A$

and since BP bisects $\angle B$,

$$\therefore$$
 $\angle PAB = \frac{1}{2} \angle B$

But $\angle A + \angle B = 180^{\circ}$ (co-interior angles)

$$\therefore \frac{1}{2} \angle A + \frac{1}{2} \angle B = 90^{\circ}$$

$$\Rightarrow$$
 $\angle PAB + \angle PBA = 90^{\circ}$ (1)
 $\angle PAB + \angle PBA + \angle P = 180^{\circ}$

(angle sum property of triangle)

$$\Rightarrow$$
 90° + \angle P = 180° (using eqn.1)

$$\Rightarrow$$
 $\angle P = 90^{\circ}$

Similarly we can prove that $\angle Q$, $\angle R$, $\angle S$ each is 90°.

Now we have a quad. PQRS in which opposite angles are equal, so PQRS is a parallelogram. Also $\angle P = 90^\circ$

∴ PQRS is a rectangle.

(: a parallelogram with any one of its angle as right angle is a rectangle)

Ex.16 In the given figure, on line I perpendicular lines AD and BE are drawn from points A and B. IF C is the mid point of AB, prove that CD = CE.

Sol. Let us draw CF perpendicular to I. Now AD, CF and BE all are perpendicular to I

and these lines make equal intercepts on transversal

AB (: AC = BC, C being mid point of AB).

:. Intercepts made on transversal I should also be equal i.e.,

DF = FE (by intercept theorem)

Now in \triangle CDF and \triangle CEF,

DF = EF (proved above)

CF = CF (common)

 \angle CFD = \angle CFE (each 90°)

 \triangle \triangle CDF \cong \triangle CEF (SAS congruence condition)

CD = CE (cpct).

Ex.17 In \triangle ABC, D and E are the mid points of sides AB and AC. F is any point of BC. Line joining A and F meets DE at G. Show that G is the mid point of AF.

Sol. Let us draw a line / through A, parallel to BC. Also DE||BC (by mid point theorem).

 $\therefore \ell$ ||DE||BC and AB transversal on which intercepts made by these parallel lines are equal as AD = BD (\because given that D is the mid point of AB).

AF is another transversal, therefore by intercept theorem, intercepts made by the parallel lines on AF are also equal i.e., AG = GF.

or G is the mid point of AF.

Ex.18 The sides BA and DC of a quadrilateral ABCD are produced as shown in fig.

Prove that a + b = x + y.

Sol. Join BD. In $\triangle ABD$, we have

$$\angle ABD + \angle ADB = b^0$$
(i)

In $\triangle CBD$, we have

$$\angle CBD + \angle CDB = a^0$$
(ii)

Adding (i) and (ii), we get

$$(\angle ABD + \angle CBD) + (\angle ADB + \angle CDB) = a^0 + b^0$$

$$\Rightarrow$$
 $x^0 + y^0 = a^0 + b^0$

Hence, x + y = a + b

Ex.19 In a quadrilateral ABCD, AO and BO are the bisectors of ∠A and ∠B respectively. Prove that $\angle AOB = \frac{1}{2}(\angle C + \angle D).$

Sol. In $\triangle AOB$, we have

$$\angle AOB + \angle 1 + \angle 2 = 180^{\circ}$$

$$\Rightarrow$$
 $\angle AOB = 180^{\circ} - (\angle 1 + \angle 2)$

$$\Rightarrow$$
 $\angle AOB = 180^{\circ} - \left(\frac{1}{2}\angle A + \frac{1}{2}\angle B\right)$ $\left[\because \angle 1 = \frac{1}{2}\angle A \text{ and } \angle 2 = \frac{1}{2}\angle B\right]$

$$\Rightarrow$$
 $\angle AOB = 180^{\circ} - \frac{1}{2}(\angle A + \angle B)$

$$\Rightarrow \angle AOB = 180^{\circ} - \frac{1}{2} [360^{\circ} - (\angle C + \angle D)]$$

$$[\because \angle A + \angle B + \angle C + \angle D = 360^{\circ}]$$

$$\therefore \quad \angle A + \angle B = 360^{\circ} - (\angle C + \angle D)]$$

$$\Rightarrow$$
 $\angle AOB = 180^{\circ} - 180^{\circ} + \frac{1}{2}(\angle C + \angle D)$

$$\Rightarrow$$
 $\angle AOB = \frac{1}{2}(\angle C + \angle D)$

Ex.20 In figure bisectors of $\angle B$ and $\angle D$ of quadrilateral ABCD meet CD and AB produced at P and Q

respectively. Prove that
$$\angle P + \angle Q = \frac{1}{2}(\angle ABC + \angle ADC)$$

nnade

Sol. In $\triangle PBC$, we have

$$\therefore \qquad \angle P + \angle 4 + \angle C = 180^{\circ}$$

$$\Rightarrow \angle P + \frac{1}{2} \angle B + \angle C = 180^{\circ} \dots (i)$$
In $\triangle QAD$, we have
$$\angle O + \angle A + \angle I = 180^{\circ}$$

$$\angle Q + \angle A + \angle 1 = 180^{\circ}$$

$$\Rightarrow$$
 $\angle Q + \angle A + \frac{1}{2} \angle D = 180^{\circ}$...(ii)

Adding (i) and (ii), we get

$$\angle P + \angle Q + \angle A + \angle C + \frac{1}{2} \angle B + \frac{1}{2} \angle D = 180^{\circ} + 180^{\circ}$$

$$\Rightarrow \qquad \angle P + \angle Q + \angle A + \angle C + \frac{1}{2} \angle B + \frac{1}{2} \angle D = 360^{\circ}$$

$$\Rightarrow \qquad \angle P + \angle Q + \angle A + \angle C + \frac{1}{2}(\angle B + \angle D) = \angle A + \angle B + \angle C + \angle D$$

[: In a quadrilateral ABCD

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow$$
 $\angle P + \angle Q = \frac{1}{2}(\angle B + \angle D)$

$$\Rightarrow$$
 $\angle P + \angle Q = \frac{1}{2}(\angle ABC + \angle ADC)$

- Ex.21 In a parallelogram ABCD, prove that sum of any two consecutive angles is 180°.
- **Sol.** Since ABCD is a parallelogram. Therefore, AD || BC.

- Now, AD || BC and transversal AB intersects them at A and B respectively.
- \therefore $\angle A + \angle B = 180^{\circ}$
- [\cdot : Sum of the interior angles on the same side of the transversal is 180°] Similarly, we can prove that

$$\angle B + \angle C = 180^{\circ}$$
, $\angle C + \angle D = 180^{\circ}$ and $\angle D + \angle A = 180^{\circ}$.

- **Ex.22** In a parallelogram ABCD, $\angle D = 115^{\circ}$, determine the measure of $\angle A$ and $\angle B$.
- **Sol.** Since the sum of any two consecutive angles of a parallelogram is 180°. Therefore,

$$\angle A$$
 + $\angle D$ = 180° and $\angle A$ + $\angle B$ = 180°

Now,
$$\angle A + \angle D = 180^{\circ}$$

$$\Rightarrow$$
 $\angle A + 115^\circ = 180^\circ$

$$[: \angle D = 115^{\circ} (given)]$$

$$\Rightarrow$$
 $\angle A = 65^{\circ}$

and
$$\angle A + \angle B = 180^{\circ}$$

$$\Rightarrow$$
 65° + \angle B = 180°

$$\Rightarrow$$
 $\angle B = 115^{\circ}$

Thus,
$$\angle A = 65^{\circ}$$
 and $\angle B = 115^{\circ}$

Ex.23 In figure find the four angles A, B, C and D in the parallelogram ABCD.

Sol. In $\triangle BCD$ we have

$$\angle BDC + \angle DCB + \angle CBD = 180^{\circ}$$

$$\Rightarrow$$
 2a + 5a + 3a = 180°

$$\Rightarrow$$
 10a = 180°

$$\Rightarrow$$
 a = 18°

$$\therefore$$
 $\angle C = 5a = 5 \times 18^{\circ} = 90^{\circ}$

Since opposite angles are equal in a parallelogram. Therefore,

$$\angle A = \angle C \Rightarrow \angle A = 90^{\circ}$$

Since the sum of the angles of a quadrilateral is 360°. Therefore,

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow$$
 2($\angle A + \angle B$) = 360°

$$[\because \angle A = \angle C \text{ and } \angle B = \angle D]$$

$$\Rightarrow$$
 $\angle A + \angle B = 180^{\circ}$

$$\Rightarrow$$
 90° + \angle B = 180° [$\cdot \cdot \cdot \angle$ A = 90°]

Hence,
$$\angle A = 90^{\circ}$$
, $\angle B = 90^{\circ}$, $\angle C = 90^{\circ}$ and $\angle D = 90^{\circ}$

Ex.24 ABCD is a parallelogram and line segments AX & CY are bisector of \angle A and \angle C. Show that AX || CY.

Sol. Since opposite angles are equal in a parallelogram. Therefore, in parallelogram ABCD, we have

$$\Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C$$

- $[:: AX \text{ and } CY \text{ are bisectors of } \angle A \text{ and } \angle C \text{ respectively}]$
- Now, AB || DC and the transversal CY intersects them.

- [: Alternate interior angles are equal]
- From (i) and (ii), we get

- Thus, transversal AB intersects AX and YC at A and Y such that $\angle 1 = \angle 3$
- i.e. corresponding angles are equal.
- ∴ AX || CY
- **Ex.25** In figure AN and CP are perpendiculars to the diagonal BD of a parallelogram ABCD. Prove that:
 - (i) $\triangle ADN \cong \triangle CBP$ (ii) AN = CP

- **Sol.** Since ABCD is a parallelogram.
 - ∴ AD || BC
 - Now, AD || BC and transversal BD intersects them at B and D.
 - ∴ ∠1 = ∠2
 - [.: Alternate interior angles are equal]
 - Now, in Δs ADN and CBP, we have

$$\angle 1 = \angle 2$$

$$\angle AND = \angle CPD$$

and,
$$AD = BC$$

- [\cdot : Opposite sides of a ||gm are equal]
- So, by AAS criterion of congruence

$$\triangle ADN \cong \triangle CBP$$

$$AN = CP$$

 $[\cdot \cdot \cdot]$ Corresponding parts of congruent triangles are equal]

Ex.26 In figure ABCD is a parallelogram and AP and CQ are bisectors of $\angle A$ and $\angle C$. Prove that AP||CQ.

Sol. We have $\angle A = \angle C$ [Opposite angles of a ||gm|]

$$\frac{1}{2} \angle A = \frac{1}{2} \angle C$$

Now, AB || CD and CQ is a transversal. Therefore,

$$/PCO = /BOC$$

[Alternate angles]

$$\Rightarrow$$
 $\angle PAQ = \angle BQC$

But, these are corresponding angles formed when AP and CQ are intersected by transversal AB.

Hence proved.

- Ex.27 In the following figure, D, E and F are respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. Prove that ΔDEF is also an equilateral triangle.[NCERT]
- **Sol. Given :** D, E and F are respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. **To prove :** $\triangle DEF$ is also an equilateral triangle.

Proof: since the segment joining the mid points of two sides of a triangle is half of the third side. Therefore D and E are the mid point of BC and AC respectively.

$$\therefore \qquad \mathsf{DE} = \frac{1}{2} \; \mathsf{AB}$$

E and F are the mid point of AC and AB respectively

$$\therefore$$
 EF = $\frac{1}{2}$ BC

F and D are the mid point of AB and BC respectively

∴ ∆ABC is an equilateral triangle

$$\Rightarrow$$
 AB = BC = CA

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC = \frac{1}{2}CA$$

$$\Rightarrow$$
 DE = EF = FD

using (i), (ii) & (iii)

Hence, $\triangle DEF$ is an equilateral triangle.

Hence Proved

Ex.28 ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC is a diagonal. **[NCERT]**

Show that:

(i) SR || AC and SR =
$$\frac{1}{2}$$
 AC

(ii)
$$PQ = SR$$

- (iii) PQRS is a parallelogram.
- **Sol. GIVEN:** ABCD is a quadrilateral in which P, Q, R and S are mid-points of AB, BC, CD and DA. AC is a diagonal.

TO PROVE:

(i) SR || AC and SR =
$$\frac{1}{2}$$
 AC

(ii)
$$PQ = SR$$

(iii) PQRS is a parallelogram.

PROOF: (i) In $\triangle DAC$,

 \because S is the mid-point of DA and R is the mid-point of DC

∴ SR || AC and SR =
$$\frac{1}{2}$$
 AC [By Mid-point theorem]

(ii) In ∆BAC,

 \because P is the mid-point of AB and Q is the mid-point of BC

∴ PQ || AC and PQ =
$$\frac{1}{2}$$
 AC [By Mid-point theorem]

But from (i) SR =
$$\frac{1}{2}$$
 AC & (ii) PQ = $\frac{1}{2}$ AC

$$\Rightarrow$$
 PQ = SR

(iii) PQ
$$\parallel$$
 AC

[Two lines parallel to the same line are parallel to each other]

Also,
$$PQ = SR$$

:. PQRS is a parallelogram.

[A quadrilateral is a parallelogram if a pair of opposite sides is parallel and is of equal length]

- **Ex.29** Show that the quadrilateral formed by joining the mid-point of the consecutive sides of a square is also a square. **[NCERT]**
- **Sol. Given :** ABCD is a square. R, Q, P and S are the mid-points of the consecutive isdes AB, BC, CD and DA respectively. PQ, QR, RS and SP are joined.

To prove : Quadrilateral PQRS is a square.

Construction: Join AC and BD

Proof: RQ || AC and RQ = $\frac{1}{2}$ AC ... (1)

SP || AC and SP =
$$\frac{1}{2}$$
 AC ...(2)

From (1) & (2)

$$\therefore$$
 RQ = SP and RQ || SP

Similarly, SR = PQ and $SR \parallel PQ$

:. PQRS is a parallelogram

- a variation of the state of t

∴ RQ || AC
∴ RE || HO

: SR || PQ :: HR || OE

.: OERH is a parallelogram.

 \therefore $\angle R = \angle HOE$

But \angle HOE = 90°

∴ ∠R = 90°

But AC = BD

[Opposite \angle s of a \parallel gm]

[Diagonal of square bisect at 90°]

:. Quadrilateral PQRS is a rectangle.

[Diagonal of a square are equal]

 \therefore HF = GE or PQ = QR, so all sides are equal

 $\therefore PQ = QR = RS = SP$

Hence Proved.

.. Quadrilateral PQRS is a square.

- **Ex.30** In triangle ABC, points M and N on sides AB and AC respectively are taken so that AM = $\frac{1}{4}$ AB and AN = $\frac{1}{4}$ AC. Prove that MN = $\frac{1}{4}$ BC.
- **Sol. Given :** In triangle ABC, points M and N on the sides AB and AC respectively are taken so that AM = $\frac{1}{4}$ AB and AN = $\frac{1}{4}$ AC.

To prove : MN = $\frac{1}{4}$ BC.

Construction: Join EF where E and F are the mid points of AB and AC respectively.

Proof: : E is the mid-point of AB and F is the mid-point of AC.

$$\therefore \qquad \mathsf{EF} \parallel \mathsf{BCand} \; \mathsf{EF} = \frac{1}{2} \, \mathsf{BC} \qquad \dots (1)$$

Now,
$$AE = \frac{1}{2}AB$$
 and $AM = \frac{1}{4}AB$

$$\therefore \qquad AM = \frac{1}{2}AE$$

Similarly,
$$AN = \frac{1}{2}AF$$

 \Rightarrow M and N are the mid-points of AE and AF resepctively.

∴ MN || EF and MN =
$$\frac{1}{2}$$
 EF = $\frac{1}{2}$ $\left(\frac{1}{2}$ BC) [From (1)]

$$MN = \frac{1}{4}BC.$$

Hence Proved.

Ex.31 In figure ℓ , m and n are three parallel lines intersected by transversals p and q such that ℓ , m and n cutoff equal intercepts AB and BC on p. Show that ℓ , m and n cut off equal intercepts DE and EF on q also.

Sol.

Pinnacle

Given : AB = BC **To prove :** DE = EF

Construction: Join AF, it intersect line m at G

In $\triangle ACF$, B is the mid-point of AC (\because AB = BC and BG \parallel CF. Therefore, G is the mid-point of AF. In $\triangle AFD$, G is the mid-point of AF and GD \parallel AD.

 \therefore E is the mid-point of DE

⇒ DE = EF

Hence, ℓ , m and n cut of equal intercepts DE and EF on q.