Chemical Process Safety Chapter 8: Relief Systems

What: A relief system protects the process from the damaging effects of high or low pressure. How: A relief system removes energy from a process by discharging mass with an energy content. Mass with energy

How Can High Pressures Develop?

Overheat Freezing

Over Pump Thermal Expansion
Over Fill Loss of mixing
Failure of Regulator Many others!

External Fire Runaway Reaction

Combustion of gases / dusts

Definitions - 1

Set Pressure: Pressure at which the relief device begins to open.

Maximum Allowable Working Pressure (MAWP):

Maximum design pressure at the top of a vessel for a designated temperature.

As T increases, MAWP decreases.

As T decreases, MAWP decreases.

Vessel fails at 4 to 5 times MAWP.

Overpressure: Pressure increase over set pressure during relieving. Expressed as % of set pressure. Must be specified prior to relief design. Typically 10% Pressure Overpressure Relief begins to open Time -->

Accumulation: The pressure increase over the MAWP of the vessel during the relief process. Expressed as % of MAWP. Pressure Accumulation Accumulation MAWP Set Pressure Relief begins to open Time --> Backpressure: The pressure downstream of the relief device during the relieving process.

Advantages / Disadvantages Conventional Valve

- · Advantages
 - + Most reliable type if properly sized and operated
 - + Versatile -- can be used in many services
- Disadvantages
 - Relieving pressure affected by back pressure
 - Susceptible to chatter if built-up back pressure is too high

Advantages / Disadvantages Balanced Bellows Valve

- · Advantages
 - + Relieving pressure not affected by back pressure
 - + Can handle higher built-up back pressure
 - + Protects spring from corrosion
- · Disadvantages
 - Bellows susceptible to fatigue/rupture
 - Flow thru valve is affected by back pressure

Chatter

- Chattering is the rapid, alternating opening and closing of a PR Valve.
- Resulting vibration may cause misalignment, valve seat damage and, if prolonged, can cause mechanical failure of valve internals and associated piping.
- Chatter may occur in either liquid or vapor services

Chatter - Principal Causes

- Excessive inlet pressure drop
- Excessive built-up back pressure
- · Oversized valve
- Valve handling widely differing rates

Rupture Discs

- A rupture disc is a thin diaphragm (generally a solid metal disc) designed to rupture (or burst) at a designated pressure. It is used as a weak element to protect vessels and piping against excessive pressure (positive or negative).
- · There are five major types available
 - Conventional tension-loaded rupture disc
 - Pre-scored tension-loaded rupture disc
 - Composite rupture disc
 - Reverse buckling rupture disc with knife blades
 - Pre-scored reverse buckling rupture disc

Rupture Discs

- They are often used as the primary pressure relief device.
 - Very rapid pressure rise situations like runaway reactions.
 - When pressure relief valve cannot respond quick enough.
- They can also be used in conjunction with a pressure relief valve to:
 - Provide corrosion protection for the PRV.
 - Prevent loss of toxic or expensive process materials.
 - Reduce fugitive emissions to meet environmental requirements.

* Calibrated metal disk * Remains open after rupture * Subject to pressure cycling fatigue

Rupture Disk White the first and the latest and th

Rupture Discs Are Well Suited For Some Applications

Advantages

- + Reduced fugitive emissions no simmering or leakage prior to bursting.
- + Protect against rapid pressure rise cased by heat exchanger tube ruptures or internal deflagrations.
- + Less expensive to provide corrosion resistance.
- + Less tendency to foul or plug.
- + Provide secondary protective device for lower probability contingencies requiring large relief areas.

Rupture Discs Are Less Well Suited For Other Applications

Disadvantages

- Don't reclose after relief.
- Burst pressure cannot be tested.
- Require periodic replacement.
- Greater sensitivity to mechanical damage.
- Greater sensitivity to temperature

Advantages / Disadvantages Pilot Operated Valve

- Advantages
 - + Relieving pressure not affected by backpressure
 - + Can operate at up to 98% of set pressure
 - + Less susceptible to chatter (some models)
- Disadvantages
 - Pilot is susceptible to plugging
 - Limited chemical and high temperature use by "O-ring" seals
 - Vapor condensation and liquid accumulation above the piston may cause problems
 - Potential for back flow

Rupture Pins

- A rupture pin is designed to be a non-reclosing pressure relief device, similar to a rupture disc
- A piston is held in the closed position with a buckling pin which will fail at a set pressure according to Euler's Law
- An o-ring on the piston is used to make a bubble tight seal

Comparison of Rupture Pins To Rupture Discs

Advantages

- + Not subject to premature failure due to fatigue
- + Can be operated closer to its set point
- + Setpoint is insensitive to operating temperature
- + Available as balanced or unbalanced device
- + Capable of operating as low as 0.1 psig (0.007 barg)
- + Suitable for liquid service
- + Resetting after release usually requires no breaking of flanges
- + Replacement pins are 1/3 to 1/4 the cost of replacement discs

Comparison of Rupture Pins To Rupture Discs

Disadvantages

- The elastomer o-ring seal limits the maximum operating temperature to about 450°F (230°C)
- Initial cost of installation is greater than for a rupture disc
 - * twice as costly for 2" carbon steel
 - * up to seven times as costly for 8" stainless steel

Code Requirements

Relieving pressure shall not exceed MAWP (accumulation) by more than:

- 3% for fired and unfired steam boilers
- 10% for vessels equipped with a single pressure relief device
- 16% for vessels equipped with multiple pressure relief devices
- 21% for fire contingency

Runaway Reactions - 2

How?

- 1. Loss of coolant.
- 2. Increased temperature.
- ${\bf 3.\ Increased\ energy\ generation.}$

Vapor decomposition products.

 $Larger\ vessels\ respond\ faster\ \textbf{-}\ less\ heat\ transfer\ thru\ walls!!!}$

Some chemicals can achieve self heat rates of 100's deg. C/min! Styrene, Acrylic Acid

Runaway Reactions - 3

Some ways for runaways to occur:

- Loss of cooling.
- Overcharge reactant.
- External fire.
- Mis-charge reactant.
- Low reaction temperature in semi-batch reactor . This is called a sleeping reactor.
- · Loss of agitation.

Most reactive runaways result in 2-phase flow thru relief and require a relief area 2 to 10 times larger than single phase relief.

October 20, 2006 CM4310: Chapter 8

Relief Scenarios - Example High P **High Pressure In Reactor** Cooling

Relief Scenarios

What: Describe situations or sequences of events that result in high pressure.

- Could be dozens of scenarios for a particular piece of equipment, particularly with reactors.
- Select worst case, i.e. case that requires largest relief

Generally, worst case is:

- · Runaway Reaction.
- External Fire.