Algèbre et théorie de Galois

Corrigé de la Feuille d'exercices 1

Exercice 1.

(i) Si H est distingué dans G, alors

$$(gH)(g'H) = g(Hg')H = (gg')HH = (gg')H$$

pour tous $g, g' \in G$.

Réciproquement, avec g = e, on obtient Hg'H = g'H. Or $e \in H$, donc $Hg' \subset g'H$. De même, $H(g')^{-1} \subset (g')^{-1}H$, et donc $g'H \subset Hg'$. D'où l'égalité.

(ii) La loi est bien définie car

$$(gg'H) = (gH)(g'H)$$

ne dépend pas de g, g', mais seulement de gH, g'H. La loi est clairement associative, avec $(gH)^{-1} = g^{-1}H$ et H le neutre. On obtient bien un groupe.

La définition du produit implique que π est un morphisme de groupes, qui est surjectif par définition de G/H. Si gH=H, alors $g\in H$. D'où $\mathrm{Ker}(\pi)=H$.

(iii) Appelons Ψ cette application. D'abord, comme X contient le neutre de G/H, on a bien $H \subset \Psi(X)$ et Ψ est bien définie. On a une application réciproque Ψ^{-1} qui à H' sous-groupe de G contenant H associe $\pi(H')$.

Supposons que G est fini. $\pi^{-1}(X)$ est la réunion des classes gH telles que $\pi(g) \in X$. Il y a |X| telles classes, chacune de cardinal |H|, d'où l'égalité.

(iv) Si H est distingué dans G, il suffit de considérer G' = G/H et $\pi = \phi$.

Réciproquement, pour $g \in G$ on a

$$\phi(gHg^{-1}) = \phi(g)\phi(H)\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = e,$$

donc

$$gHg^{-1} \subset H = \operatorname{Ker}(\phi).$$

De même, $g^{-1}Hg\subset H$. Donc gH=Hg et H est distingué dans G.

Exercice 2.

(i) On compare l'action de ces deux permutations sur $\{1, \dots, n\}$. Elles agissent trivialement sur $\{1, \dots, n\} \setminus \{\sigma(i_1), \dots, \sigma(i_k)\}$. Ensuite

$$(\sigma(i_1,\cdots,i_k)\sigma^{-1})(\sigma(i_j)) = (\sigma(i_1,\cdots,i_k))(i_j) = \sigma(i_{j+1})$$

avec la convention $i_{k+1} = i_1$. Donc les permutations coincident.

- (ii) Il suffit de comparer les actions de $\sigma\sigma'$ et de $\sigma'\sigma$ sur $\{1, \dots, n\}$: soit I le support de σ et J le support de σ' . Alors $\sigma\sigma'$ et $\sigma\sigma'$ agissent comme σ sur I et comme σ' sur J, car I et J n'ont pas d'élément commun. Elles agissent trivialement ailleurs.
 - (iii) L'ordre est le plus petit commun multiple des ordres des cycles.
 - (iv) Par exemple

$$(1,2,3,4)^2 = (1,3)(2,4)$$

dans S_4 .

Exercice 3

(i) Il suffit de montrer qu'elles engendrent les cycles. Mais

$$(i_1, i_2, \cdots, i_k) = (i_1, i_2) \cdots (i_{k-2}, i_{k-1})(i_{k-1}, i_k),$$

pour i_1, \dots, i_k distincts dans $\{1, \dots, n\}$.

- (ii) Comme les transpositions engendrent le groupe, il suffit déterminer l'image d'un tel morphisme sur les transpositions. Comme \mathbf{C}^* est commutatif et que les transpositions sont conjuguées entre elles, elles ont toutes la même image. Cette image est d'ordre 2 car les transpositions sont d'ordre 2, c'est sont 1 ou -1 (qui sont les deux seuls complexes d'ordre 2 dans \mathbf{C}^*). On obtient donc deux morphismes, le morphisme constant et la signature.
 - (iii) On obtient un sous-groupe distingué comme noyau d'un morphisme de groupes.

L'image de la signature est

$$\{1, -1\} \simeq {\bf Z}/2{\bf Z}.$$

On obtient donc une suite exacte

$$1 \to A_n \to S_n \to \mathbf{Z}/2\mathbf{Z} \to 1.$$

Exercice 4.

(i) On note $\sigma = (\overline{1}, \overline{2}, \dots, \overline{p})$ et $\tau = (\overline{i}, \overline{j})$. Pour $k \in \mathbb{Z}$, on a

$$\sigma^k \tau \sigma^{-k} = (\overline{i} + \overline{k}, \overline{j} + \overline{k})$$

donc $(\overline{i} + \overline{k}, \overline{j} + \overline{k}) \in G$. En particulier, pour k = -i, on a $(0, \overline{j-i}) \in G$. Donc

$$(\overline{i} + k(\overline{j-i}), \overline{i} + (k+1)\overline{(j-i)}) = \sigma^{i+k(j-i)}(0, \overline{j-i})\sigma^{-(i+k(j-i))} \in G.$$

(ii) Pour k=1 le résultat est clair car $\tau\in G$. Ensuite, si $(\bar{i},\bar{i}+k\overline{(j-i)})\in G$, on obtient que $(\bar{i},\bar{i}+(k+1)\overline{(j-i)})$ est égal à

$$(\overline{i}+k(\overline{j-i}),\overline{i}+(k+1)\overline{(j-i)})(\overline{i},\overline{i}+k\overline{(j-i)})(\overline{i}+k(\overline{j-i}),\overline{i}+(k+1)\overline{(j-i)})\in G.$$

- (iii) Comme $j-i \in [1, p-1]$, son image $\overline{j-i} \neq 0$ est inversible dans le corps $(\mathbf{Z}/p\mathbf{Z})$. Il suffit de considérer son inverse $\overline{k} \in (\mathbf{Z}/p\mathbf{Z})^*$.
- (iv) On choisit \overline{k} comme dans la question précédente et on conclut avec 2. Ensuite on écrit

$$(\overline{t}, \overline{t}+1) = \sigma^{t-i}(\overline{i}, \overline{i}+1)\sigma^{i-t}.$$

- (v) D'après (ii), on a $(\bar{t}, \bar{t} + k) \in G$ pour tous $k \in \mathbf{Z}$. Donc toutes les transpositions sont dans G. Comme elles engendrent S_p , on a $G = S_p$.
- (vi) Quitte à renuméroter $\{1, \dots, p\}$, on peut supposer que $c = \sigma$. Le résultat découle donc de (v).
- (vii) Dans S_4 , étudier le sous-groupe engendré par (1, 2, 3, 4) et (1, 3) (on pourra aussi utiliser l'exercice suivant).

Exercice 5

(i) Comme g préserve les distances, si g fixe deux sommets consécutifs il fixe tous les sommets.

- (ii) Le groupe Γ est un sous-groupe strict de Bij(C) d'après la question précédente. Son ordre est d'au plus 8 : un élément g est entièrement déterminé par l'image de deux sommets consécutifs, on a 4 possibilités pour le premier, puis 2 pour le deuxième, les distances étant préservées par g. Les 8 éléments donnés sont clairement dans Γ et distincts, d'où l'égalité. On vérifie ensuite facilement que $\rho\sigma\rho\sigma$ fixe deux éléments consécutifs de C.
 - (iii) On a vu que Γ est d'ordre 8. Si Γ était abélien, on aurait

$$\rho^{-1} = \rho \sigma^2 = \rho,$$

ce qui n'est pas. Maintenant $< \rho >$ forme un sous-groupe cyclique d'ordre 4 de Γ . Comme $\sigma^{-1}\rho\sigma = \rho^{-1}$, on obtient que c'est un sous-groupe distingué de Γ . Le quotient est d'ordre 2, donc ne peut être que $\mathbb{Z}/2\mathbb{Z}$. On obtient donc la suite exacte demandée.

(iv) On a d'abord les deux sous-groupes triviaux $\{1\}$ et Γ , tous deux distingués. D'après le théorème de Lagrange, les autres sous-groupes sont d'ordre 2 ou 4. Les éléments d'ordre 2 de Γ sont

$$\rho^2$$
, σ , $\sigma\rho$, $\sigma\rho^2$, $\sigma\rho^3$.

Ceci donne 5 sous-groupes d'ordre 2. On voit que seul $< \rho^2 >$ est distingué parmi eux. Ensuite, $< \rho >$, $< \sigma, \rho^2 >$ et $< \rho \sigma, \rho^2 >$ sont les sous-groupes d'ordre 4 et sont distingués.

Exercice 6

Un calcul direct montre que \mathcal{T}_k est stable par produit de matrices. Si k=0, \mathcal{T}_0 est l'ensemble des matrices triangulaires supérieures inversibles qui est stable par inverse. Pour k>0 et $I_n+N\in\mathcal{T}_k$, N est nilpotente et

$$I_n - N + N^2 + \dots + (-1)^n N^n$$

est l'inverse de $I_n + N$ et est dans \mathcal{T}_k . Pour k > 0, l'application $\phi_k : \mathcal{T}_k \to K^{n-k}$ telle que

$$M = I_n + N \mapsto (M_{1,1+k}, M_{2,2+k}, \cdots, M_{n-k,n})$$

est un morphisme de groupe de noyau \mathcal{T}_{k+1} . On obtient donc une suite exacte

$$1 \to \mathcal{T}_{k+1} \to \mathcal{T}_k \to K^k \to 1.$$

Pour k = 0, l'application $\phi_0 : \mathcal{T}_0 \to (K^*)^n$ telle que

$$M \mapsto (M_{1,1}, \cdots, M_{n,n})$$

est un morphisme de groupe de \mathcal{T}_1 . On obtient donc une suite exacte

$$1 \to \mathcal{T}_1 \to \mathcal{T}_0 \to (K^*)^n \to 1.$$

Exercice 7

- (i) Un élément de X est entièrement déterminé par $\alpha \in \{2,3,4\}$ telle que $\{1,\alpha\}$ apparaît dans la partition, ce qui fait 3 possibilités. Pour $\sigma \in S_4$ et $\{P,Q\} \in X$, comme σ est bijective, on a encore $\sigma.\{P,Q\} \in X$.
 - (ii) On a

$$K = \{ \mathrm{Id}, (12)(34), (13)(24), (14)(23) \}.$$

On peut vérifier directement que c'est un sous-groupe car les double-transpositions sont d'ordre 2 et

$$(12)(34) \circ (13)(24) = (14)(23).$$

Ceci implique que

$$(12)(34) \mapsto (1,0) , (13)(24) \mapsto (0,1)$$

définit un isomorphisme avec $(\mathbf{Z}/2\mathbf{Z})^2$. D'après l'exercice 2, le groupe de Klein est bien distingué car le conjugué d'une double-transposition est une double-transposition.

(iii) Une transposition dans S_4 donne une transposition dans S_3 et on obtient ainsi toutes les transpositions. Donc le morphisme est surjectif. Le noyau est d'ordre 4!/3! = 4 et on vérifie directement que les 4 éléments de K sont dans le noyau, donc le noyau est K.

Exercice 8

On veut prouver que $gHg^{-1}=H$, ce qui est équivalent à gH=Hg pour tout $g\in G$. Le résultat est vrai si $g\in H$: dans ce cas gH=Hg=H.

Supposons que $g \notin H$. Comme H est d'indice 2, G est la réunion disjointe de H et de gH. De même, il est la réunion disjointe de H et de Hg. On obtient alors que gH = Hg est le complémentaire de H dans G. Donc H est distingué dans G. Soit maintenant H un sous-groupe de S_n d'indice 2. Il est donc distingué et le morphisme

$$S_n \to S_n/H$$

est la signature d'après l'exercice 3. Donc $H = A_n$.