$\dot{X} = F(X; \Lambda)$ XER", LERK, F smooth Defining conditions for a steady state bifurcation: F(Xo; No)=0 Det[DxF(Xo, Ao)]=0 <= M=0 is spectrum of D.F (implicit function theorem cannot be applied to F(Xo;10)=0) After (extended) center manifold reduction, assuming u=0 is simple eigenvalue, Let JEIR be biturcation parameter of happens at 1=0, for equilibrium at x=0. $\chi = f(\chi; \lambda)$ $\chi \in \mathbb{R}$ defining conditions for bifurcation are now $f(0;0) = \frac{\partial f}{\partial x}(0;0) = 0$, Taylor expand f(0;x) = 0 about x = x = 0 $f(x,1) = f(0,0) + \frac{\partial f}{\partial x}(0,0) \times + \frac{\partial f}{\partial x}(0,0) \times$ $+\frac{1}{2}\frac{\partial x^{2}}{\partial x^{2}}(0;0)x^{2}+\frac{\partial^{2} f}{\partial x^{2}}(0;0)X\lambda+\frac{1}{2}\frac{\partial^{2} f}{\partial x^{2}}(0;0)^{2}$ Suddle-note or fold: $\frac{\partial f}{\partial x}(0.0) \neq 0$, $\frac{\partial^2 f}{\partial x^2}(0.0) \neq 0$ frang versality non-degeneracy

	Saddle-node ferminology comes from higher
	al in a silver of the silver o
	1 mis (0)
·	W(0)) (0c (0)
	The process of the pr
	Stable saddle
	dimension at zases of this, e.g. in 1/2 V V V V V V V V
	1 20
· · · · · · · · · · · · · · · · · · ·	
	To accept 1 laic - La lagrand malayarth
	Transcriticul bifurcation happens naturally
	in problems where there is an equilibrium
	that exists for all values of the parameter
	I, e.g., a zero population state in
	population dynamics, or a no infection
·	State in epidemiology. These may be
	Some kind of trivial equilibrium
	If X=0 is alguars an equilibrium
	If x=0 is always an equilibrium
 	⇒ ∴ (/ 1) - 5 - 6 1 1
	$\Rightarrow \dot{x} = f(x,\lambda) = xg(x;\lambda)$
· 	> 2f () dg ()
	$\Rightarrow \frac{\partial f}{\partial \lambda}(0,0) = x \frac{\partial g}{\partial \lambda}(0,0) = 0 \qquad , 50 \text{our}$
	trans vers ality
	X=1=0 (x=x=0 condition is
· · · ·	vio)ated automortically
<u></u>	
	it's replaced by $\frac{\partial f}{\partial x \partial x} 0,0 \neq 0$

$$f(0,0) = 0, \quad \frac{\partial f}{\partial x}(0,0) = 0; \quad \frac{\partial f}{\partial x}(0,0) = 0$$

$$\frac{\partial^2 f}{\partial x^2}(0,0) \neq 0, \quad \frac{\partial^2 f}{\partial x^2}(0,0) \neq 0 \quad \Rightarrow \text{ transcalheal}$$

example: $\dot{x} = x(\lambda - x) = \lambda x - x^2$

 $\left(\frac{\partial^2 f}{\partial \lambda \partial \lambda}\right) > 0, \quad \frac{\partial^2 f}{\partial \lambda^2} < 0$

unstable | unstable
strable at x=0 equilibrium

1 (positive) stalk

Bihrcution Diagram

	Again, we can find all versions via reflector
	in x & li
	X-3-x
_	
	× → ×
	Final example: pitch-fork bifuration occurs
_	as the generic bifurcation in systems with a reflection symmetry x -> -x.
_	a reflection symmetry x -> -x.
	If $\tilde{\chi}(t)$ solves $\dot{\chi} = f(\alpha)$, then so does
	- ~(t). Implications on form of f(x):
+	
_	$\tilde{\chi} = f(\tilde{\chi})$
+	$(-\tilde{\chi})^{\circ} = F(-\tilde{\chi})$
1	= - f(\$\forall \cdot)
_	
	f is 72-equivariant when
	-f(x) = f(-x) = f(x) is add in x
\$	$\dot{\chi} = \chi g(\chi^2; \lambda)$
	a) $\frac{\partial^2 f}{\partial x^2}(0,0) = 0$, $\frac{\partial f}{\partial x}(0,0) = 0$ by symmetry
	$\frac{\partial}{\partial x^2} \left(0, 0 \right) = 0 \frac{\partial}{\partial x} \left(0, 0 \right) = 0 \text{by symmetry}$

	Two distinct cases.	to consider here
	Two distinct cases $\frac{\partial^3 f}{\partial x^0}(0,0) > 0$)3¢ (0r0) <0
	∂x_{2}	→×*
	ex amples:	
	Cr arepes	
(ı)	$\dot{x} = \lambda x - x^3$	
		we can't get
(2)	$\dot{x} = \lambda x + x^3$	(2) from (1) by $lethy x \rightarrow -x$
		Since this the symmetry
		is symmetric under X -> -x.
	Biturcation Diagrams	:
	· ·	
(1)		$ \begin{array}{cccc} \uparrow \times \\ \downarrow \longrightarrow & \downarrow \\ \end{array} $
		"Supercritical pitchfork"
!		
(2)		"subcritical
		Pitchfor K"
· · · · · · · · · · · · · · · · · · ·		
	λ→ -λ:	
	Supercitical	sulevitical

Example: Lore to zequations, supercuitical pitchfork at r=1. $\dot{x} = \sigma(y-x)$ $\dot{y} = rx - xz - y$ $\dot{z} = xy - bz$ consider r as bifurcation parameterreflection symmetry $(x,y,z) \rightarrow (-x,-y,z)$ $\gamma = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $\gamma^2 = \overline{1}$ X = F(X) & Y F(X) = F(YX) Z₂-equivariant typical regilitorium exists because of this tirivial equilibrium X=0 exists for all r & it is symmetric: 8X0=X8. other equilibria? x=y $z = x^2/b$ $rx - x - x^3/b = 0$ b(r-1)= x2 X = (x,y,7/= (+ /b(r-1), + /b(r-1), r-1) related by symmetry XX+ STARY = X

