



a/ Déterminez le gain en boucle ouverte, les pôles et le produit gain-bande des amplificateurs opérationnels. Quel est le gain minimal de boucle fermée que l'on peut réaliser avec de tels amplificateurs opérationnels ? Est-ce cohérent avec les gains réalisés par le circuit de la figure 1 ?

b/ Pour chaque étage, donnez le schéma du bloc F et déterminez ses paramètres. Quel étage présente la configuration la plus défavorable pour la stabilité ?

c/ A l'aide de la méthode exposée en cours, déterminez la marge de phase pour l'étage du circuit présentant la configuration la plus défavorable (les formules utilisées seront explicitées en reportant |1/F| sur le graphe figure 6). Concluez sur la stabilité de l'ensemble.

Nom:

Prénom:

avec n= 49

|                    | -VVC( 11-                                                                                  |                       |
|--------------------|--------------------------------------------------------------------------------------------|-----------------------|
| source             | Expression littérale du bruit en Vout                                                      | Application numérique |
| aktn Re            | $4kTnR_2\left(\frac{R_2}{nR_2}\right)^2\left(nR_3/R_3\right)^2=4kTnR_2$                    | 78,4 10-17 V2/1       |
| 4KTR2              | $4kTR_2\left(\frac{nR_3}{R_3}\right)^2 = 4kTn^2R_2$                                        | 3841,610-17 12/4      |
| en <sup>2</sup> A1 | $e_n^2 \left( 1 + \frac{1}{n} \right)^2 \left( \frac{nR_3}{R_3} \right)^2 = e_n^2 (n+1)^2$ | 10-4 V2/H2            |
| Jn €               | 0                                                                                          | . 0                   |
| Into               | Un R2 (nR3)2 = un R2 R2 n2                                                                 | 9604 10-20 V2/1       |
| GKT R3             | $UKTR_3 \left(\frac{nR_3}{R_3}\right)^2 = UKTR_3 n^2$                                      | 3861,610-14 VYL       |
| 4KTnR3             | 4KTnR3                                                                                     | 78,4 10-12 V2/m       |
| en <sup>2</sup>    | en2 (1+ nR3)2 = en2 (1+n)2                                                                 | 10-4 V2/H2            |
| În ⊕²              | 0.                                                                                         | 0                     |
| In o2              | 1120 (nR3)2                                                                                | 9604 10-10 V2/M       |

TOTAL = 9859, 210-17 V/h





