Principles of Drug Therapy

ASTHMA

Dr Channa D. Ranasinha

OUTLINE

- Pathophysiology
- Drugs
 - Relievers
 - Preventers
- Therapeutics
 - devices
 - emergency treatment
 - chronic out-patient treatment

DEFINITION (1/3) - CLINICAL

Clinical

partial airflow limitation

 Varies over short periods of time and with treatment

Peak flow chart with treatment

DEFINITION (2/3) - PHYSIOLOGY

- Smooth muscle constriction

DEFINITION (3/3) - PATHOLOGY

Site: smaller bronchi (& bronchiole)

Findings:

- smooth muscle hypertrophy
- submucous gland hypertrophy
- cellular infiltration (lympho + eosin's)

Asthma = eosinophilic bronchitis

MAST CELL DERIVED MEDIATORS

Preformed

- Histamine
- Eosinophil chemotactic factor
- Neutrophil chemotactic factor
- Neutral proteases
- Acid hydrolases
- Heparin proteoglycans

Membrane derived

- Leukotrienes
- Prostaglandins
 - Thromboxanes
 - Platelet activating factor

MECHANISMS FOR ASTHMA DRUG THERAPY

- Preventing mediator formation
 - Glucocorticoids, lipoxygenase inhibitors
- Preventing mediator release
 - Na cromoglycate
- Preventing mediators reaching targets
 - Leukotriene receptor antagonists
- Physiological antagonism of mediators
 - Histamine and adrenaline have the opposite effects by separate mechanisms
 - $-\beta_2$ agonists, the ophylline

DRUGS

Relievers

- SALBUTAMOL
- terbutaline
- salmeterol
- IPATROPIUM
- THEOPHYLLINE

Preventers

- GLUCOCORTICOIDS
 - beclomethasone
 - budesonide
 - fluticasone
- Na cromoglycate

Zileuton

RELIEVERS

Drugs that reverse bronchoconstriction for acute attacks

β₂ agonistsMethylxanthinesAnti-muscarinicsAnti-leukotriene agents

SHORT ACTING B₂ AGONISTS

Mechanism of action: competitive agonist

SHORT ACTING B₂ AGONISTS

Kinetics

- well absorbed, not metabolised by COMT, less MAO metabolism, so used orally, by inhalation and iv
- Onset 1-2 mins, duration 2-3 hrs, $t_{1/2} = 4$ hrs

SHORT ACTING B₂ AGONISTS

Clinical Uses

- Acute relief of bronchospasm (& COPD)
 - prophylactically in exercise induced asthma
- Delaying premature labour

Adverse effects:

- β₂ Hypokalaemia, muscle tremor
- β₁ Tachycardia

LONG ACTING B₂ AGONISTS

Salmeterol and formoterol

- Structural modification of salbutamol
- Lipophilic side-chains bind to sites adjacent to β₂ receptor
- Increases time spent at receptor site
- Duration of action 12hrs
- Salmeterol slower onset of action, formoterol as fast as salbutamol.

CLASSIFICATION

Fast onset Slow onset

Short acting salbutamol (oral salbutamol)

Long acting formoterol salmeterol

ANTI-MUSCARINICS

IPATROPIUM, oxitropium

Mechanism of action:

Competitive, non-selective anti-muscarinic, post-synaptic acetylcholine antagonism

Tone to bronchial muscle is vagal & parasympathetic

Bronchdilatation & dries up secretions

ANTI-MUSCARINICS

Kinetics

Synthetic analogues of atropine

Very little absorption across pulmonary epithelium unlike atropine

Onset slower than salbutamol

Only administered by inhaler and nebuliser

ANTI-MUSCARINICS

Clinical Uses

acute asthma and COPD

less effective than salbutamol as only Ach actions are blocked

Adverse effects

Topical administration has little systemic action

dry mouth, raised intra-ocular pressure, urinary retention, tachycardia

Include theophylline, aminophylline and choline theophyllinate NH₂

Mechanisms of action

- adenosine receptor antagonism
- direct effects on calcium concentration
- phosphodiesterase inhibition
 - inhibits the breakdown of cAMP

Kinetics

- fully and rapidly absorbed
- widely distributed: emergency loading dose
 - theophylline very lipophilic only orally
 - aminophylline more soluble po or iv
- metabolised in liver
 - prolonged in heart failure and cirrhosis
 - metabolised by CYT P450 enzymes

Clinical uses: not a first line drug

- Bronchodilator
- Cardiac stimulant
- Vasodilator
- Central stimulant
- Diuretic

Adverse Effects

- Narrow therapeutic index: <u>Harmful dose</u> Effective dose
- Nausea, vomiting, cardiac arrhythmias, epileptic seizures
- Monitor plasma levels
 - therapeutic range 10-20mg/l

LEUKOTRIENE MODIFIERS

Membrane bound phospholipids

Phospholipase 2

Arachadonic acid

Cycloxygenase

Prostaglandins

5 lipoxygenase

Leukotrienes

LEUKOTRIENE MODIFIERS

Mechanism of Action

Leukotrienes are among the most important mediators

- 5 lipoxygenase inhibitor: zileuton
- LTD₄ competitive receptor antagonists:
 - montelukast and zafirlukast
- bronchodilator & anti-inflammatory action
- exact place in treatment unclear

PREVENTERS

Do not cause bronchodilatation (acutely) no use for acute treatment

- 'Anti-inflammatory action'
- reduce bronchial hyper-reactivity
 - reduce entry of inflammatory cells
 - inhibit release of mediators from cells
 - reduce formation of mucosal oedema by mediators

Systemic: PREDNISOLONE

Hydrocortisone

Topical: BECLOMETHASONE

Budesonide

Fluticasone

Membrane bound phospholipids

Steroid product

Phospholipase 2 LIPOCORTIN

Arachadonic acid

Cycloxygenase

5 lipoxygenase

Prostaglandins

Leukotrienes

Kinetics

- metabolised in the liver
- $t_{1/2}$ 1-3 hrs
 - shortened by P450 enzyme induction
 - increase dose

Clinical Uses

anti-inflammatory effect

Adverse Effects

many and serious, usually after long term use BUT these are life saving drugs

- Metabolic: diabetes, osteoporosis, growth retardation, spread of infection
- Psychiatric: depression & euphoria
- Cardiovascular: hypertension
- Adrenal suppression

PREDNISOLONE, hydrocortisone

Systemic agents

Prednisolone po onset 12-24 hrs

HC iv onset 6-8 hrs

Used for acute deteriorations as systemic actions are beneficial

BECLOMETHASONE, budesonide, fluticasone

• Topical agents, direct to target site (still 20% only reaches) pulmonary epithelium

- Can use very small doses, so small but definite systemic absorption (pulmonary and GI)
- Budesonide & fluticasone extensive 1st pass metabolism: destroyed

Na CROMOGLYCATE

Mechanism of action unclear: stabilises the mast cell membrane when in allergen contact = <u>preventer</u>

Poor GI and good pulmonary absorption, so given by inhalation

Useful for extrinsic (allergic) asthma esp kids Remarkably non toxic

SUMMARY

- Pathophysiology
 - bronchoconstrictor & inflammatory disease
- Drugs
 - Relievers: acute attack → bronchodilatation
 B2 agonists, anti-muscarinics, methylxanthenes, leukotriene modifiers
 - Preventers: prophylactic → reduce inflammation glucocorticoids (topical & systemic)