



출처 : https://youtu.be/e2\_hsjpTi4w







# The Deep Learning Revolution





**Algorithms** 



## Al's Explosive Growth & Impact









Number of attendance At AI conferences

Startups Developing Al Systems

Enterprise Application Al Revenue

Source: The Gradient

Source: Crunchbase, VentureSource, Sand Hill Econometrics

Source: Statista

## 인공지능(Artificial Intelligent)



#### 인공 지능

인간의 지적능력(추론, 인지)을 구현하는 모든 기술



#### 머신 러닝

알고리즘으로 데이터를 분석, 학습하여 판단이나 예측을 하는 기술

선형회귀 로지스틱회귀 K-최근접 이웃 결정트리 랜덤포레스트 서포트 벡터 머신 클러스터링 차원축소



#### 딥러닝

인공신경망 알고리즘을 활용하는 머신러닝 기술

심층신경망 합성곱 신경망 순환 신경망 생성적 적대 신경망 강화학습 (DNN) (CNN) (RNN) (GAN) (RL)

### 머신러닝 VS 딥러닝



머신러닝에서는 데이터로부터 속성(Feature)을 찾아내는 역할을 컴퓨터(Machine)가 담당

딥러닝에서는 신경망으로 데이터/이미지를 '있는 그대로' 학습하며, 데이터에 포함된 중요한 속성을 컴퓨터가 스스로 학습

| 구분          | 머신러닝                               | 딥러닝                                     |
|-------------|------------------------------------|-----------------------------------------|
| 동작원리        | 데이터에 머신러닝 알고리즘을<br>적용하여 분류/예측을 한다. | 신호를 전달하는 신경망을 사용<br>하여 데이터의 feature를 추출 |
| 적합한 학습 데이터량 | 수천개                                | 수만/수백만개 이상                              |
| 모델 훈련 소요시간  | 단시간                                | 장시간                                     |

### 딥러닝 학습 방법



정답지(Label)로 학습 분류(Classification) 예측(Regression) 정답지(Label) 없이 학습 군집(Clustering) 차원 축소

시뮬레이션 반복 학습 성능 강화 등에 사용 마르코프 결정 과정(Markov Decision Process)

#### |딥러닝 모델 - 심층신경망

- DNN: Deep Neural Network
- 사람의 신경망 원리와 구조를 모방하여 만든 알고리즘
- 입력층(input layer)과 출력층(output yayer) 사이에 여러개의 은닉층(hidden layer)으로 이루어진 인공신경망
- 인공신경망의 레이어가 많아 질수록 높은 수준의 특징/패턴을 찾아내는 것이 가능해짐



#### 딥러닝 모델 - 합성곱 신경망

- CNN : Convolutional Neural Network
- 뇌의 시각 피질이 물체를 인식할 때 동작하는 방식에서 영감을 얻은 모델
- 1989년 얀 르쿤(Yann Lecun)과 동료들이 손글씨 숫자를 분류하는 신경망 구조를 발표 <a href="http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf">http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf</a>
- 이미지 분류 작업에서 탁월한 성능을 내며 컴퓨터 비전 분야를 크게 발전 시킴
- 2012년 Image Net 대회에서 기존의 모든 알고리즘을 압도하는 성능으로 1등을 차지함.



#### 딥러닝 모델 - 순환신경망

- RNN : Recurrent Neural Network
- 순차적 정보가 담긴 데이터에서 규칙적인 패턴을 인식하고 추상화된 정보를 추출
- 텍스트, 음성, 음악, 영상 등 순차 데이터(Sequence Data)를 다루는데 적합



#### 딥러닝 모델 - 생성적 적대 신경망

- GAN : Generative Adversarial Network
- 생성자(Generator)와 판별자(Discriminator)가 경쟁(Adversarial)하며 데이터를 생성(Generative)하는 모델
- 2014년 이안 굿펠로우(Ian Goodfellow)와 동료들이 심층신경망으로 새로운 이미지는 합성하는 방법 발표 <a href="https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf">https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf</a>



#### 딥러닝 모델 - 강화학습

- RL : Reinforcement Learning,
- 어떤 환경(Environment) 안에서 정의된 에이전트(Agent)가 현재의 상태(State)를 인식하여 선택 가능한 행동(Action)들 중 보상(Reward)을 최대화하는 행동 혹은 생동 순서를 선택하는 방법



## 딥러닝 활용사례 - 추천(예측), 탐지(분류)



#### 딥러닝 활용사례 - 이미지 분류

이미지넷(ImageNet) 제공 이미지 데이터 1,000여 카테고리로 분류된 100만 개의 이미지

airplane automobile bird cat deer dog frog horse ship truck



## 딥러닝 활용사례 - 객체 탐지(Object Detection)









출처: https://sigmoidal.io/dl-computer-vision-beyond-classification

## 딥러닝 활용사례 - 이미지 생성(Style Transfer)

























출처 : https://aiportraits.org/

## 딥러닝 활용사례 - 이미지 생성(GAN: generative adversarial network)



Original



Change Hair Color



Change Eye Color



Change Hair Style



Open Mouth



Add Assesories

출처 : <u>https://crypko.ai/</u>

### 딥러닝 활용사례 - 자연어 처리

# Google







## 딥러닝 활용사례 - Improving our world with Al













출처 : https://twitter.com/pascal\_bornet

#### AI 시대의 경쟁력

문제의 본질을 파악하는 능력과 데이터를 만드는 능력이 중요

인공지능을 활용하여 기존의 일을 효율화 하는 것이 실력

AI를 활용하여 기존의 일을 효율적으로 바꾸는 일을 주도하는 것이 경쟁력

# Thank you