CHEM 26100 (Quantum Mechanics) Problem Sets

Steven Labalme

October 27, 2021

Contents

1	Blackbodies and the Photoelectric Effect	-
2	Boxes and Waves	ţ
3	Harmonic Oscillators and Diatomics	12
4	Harmonic Oscillators II and the Hydrogen Atom	18
R	eferences	23

1 Blackbodies and the Photoelectric Effect

- 10/6: 1. The intensity (or emissive power) of solar radiation at the surface of the earth is $1.4 \times 10^3 \,\mathrm{W/m^2}$, the distance from the center of the sun to the sun's surface is $7 \times 10^8 \,\mathrm{m}$, and the distance from the center of the sun to the earth is $1.5 \times 10^{11} \,\mathrm{m}$.
 - (a) Assuming that the sun is a black body, calculate the temperature at the surface of the sun in Kelvin. (Hint: The surface area of a sphere of radius r is $4\pi r^2$.)

Answer. Let

$$I = 1400 \frac{\text{W}}{\text{m}^2}$$
 $r_1 = 7 \times 10^8 \,\text{m}$ $r_2 = 1.5 \times 10^{11} \,\text{m}$

and let $\sigma = 5.67 \times 10^{-8} \,\mathrm{W\,m^{-2}}$ be Stefan's constant. If P is the total power radiated by the sun, we have from physics that

$$I = \frac{P}{4\pi r_2^2}$$
$$P = 4\pi r_2^2 I$$

and from quantum that

$$P = R \cdot 4\pi r_1^2$$
$$= \sigma T^4 \cdot 4\pi r_1^2$$

Thus, setting these two quantities equal to each other, we obtain

$$4\pi r_2^2 I = \sigma T^4 \cdot 4\pi r_1^2$$

$$r_2^2 I = \sigma T^4 r_1^2$$

$$T = \sqrt[4]{\frac{r_2^2 I}{\sigma r_1^2}}$$

$$T = 5803 \,\mathrm{K}$$

(b) Secondly, compute the wavelength at which the emissive power at the sun's surface has its maximum. In which region of the radiation spectrum does this wavelength lie, i.e., infrared (IR), visible, or ultraviolet (UV)?

Answer. If $b = 2.898 \times 10^{-3}$ m K is Wien's displacement constant and we plug in the temperature value T from part (a), then Wien's first law gives us

$$\lambda_{\text{max}} T = b$$

$$\lambda_{\text{max}} = \frac{b}{T}$$

$$\lambda_{\text{max}} = 4.99 \times 10^{-7} \,\text{m}$$

This wavelength lies in the visible spectrum.

2. (a) Using Planck's formula for the energy density $\rho(\lambda, T)$, prove that the total energy density $\rho(T)$ is given by $\rho(T) = aT^4$, where $a = 8\pi^5 k^4/(15h^3c^3)$. (Hint: Use the integral $\int_0^\infty x^3/(e^x - 1) dx = \pi^4/15$.)

Proof. Planck's formula for the energy density is

$$\mathrm{d}\rho(\lambda,T) = \frac{8\pi hc}{\lambda^5} \cdot \frac{\mathrm{d}\lambda}{\mathrm{e}^{hc/\lambda kT} - 1}$$

Thus, if we use the change of variables $x = hc/(\lambda kT)$ (also implying $\lambda = hc/(xkT)$ and $d\lambda = -hc/(x^2kT) dx$), we have that

$$\begin{split} \int_0^\infty \mathrm{d}\rho(\lambda,T) &= \int_{\lambda=0}^\infty \frac{8\pi hc}{\lambda^5} \cdot \frac{\mathrm{d}\lambda}{\mathrm{e}^{hc/\lambda kT} - 1} \\ \int_0^\infty \rho_\lambda(T) \, \mathrm{d}\lambda &= \int_{x=\infty}^0 \frac{8\pi hc}{\left(\frac{hc}{xkt}\right)^5} \cdot \frac{1}{\mathrm{e}^x - 1} \cdot - \frac{hc}{x^2kt} \, \mathrm{d}x \\ \rho(T) &= \int_{x=\infty}^0 -\frac{8\pi (hc)^2 (kT)^5 x^5}{(hc)^5 (\mathrm{e}^x - 1) (x^2) (kT)} \\ &= \int_{x=0}^\infty \frac{8\pi (kT)^4 x^3}{(hc)^3 (\mathrm{e}^x - 1)} \\ &= \frac{8\pi (kT)^4}{(hc)^3} \int_0^\infty \frac{x^3}{\mathrm{e}^x - 1} \, \mathrm{d}x \\ &= \frac{8\pi (kT)^4}{(hc)^3} \cdot \frac{\pi^4}{15} \\ &= \frac{8\pi^5 k^4}{15h^3 c^3} T^4 \\ &= aT^4 \end{split}$$

as desired. \Box

(b) Does this agree with the Stefan-Boltzmann law for the total emissive power?

Answer. Yes — we are given the conversion factor $\rho(\lambda, T) = 4/c \cdot R(\lambda, T)$, so from the above, we should have

$$\begin{split} R(T) &= \frac{c}{4} \cdot R(\lambda, T) \\ &= \frac{c}{4} \cdot \frac{8\pi^5 k^4}{15h^3 c^3} T^4 \\ &= \frac{2\pi^5 k^4}{15h^3 c^2} T^4 \end{split}$$

But by plugging in the appropriate values, we can determine that

$$\frac{2\pi^5k^4}{15h^3c^2}=\sigma$$

where σ is Stefan's constant, giving us

$$R(T) = \sigma T^4$$

as desired.

as acsirca.

- 3. The photoelectric work function for lithium is $2.3\,\mathrm{eV}.$
 - (a) Find the threshold frequency ν_t and the corresponding λ_t .

Answer. From Einstein's annus mirabilis papers, we have that

$$\nu_t = \frac{W}{h} \qquad \qquad \lambda_t = \frac{c}{\nu_t} = \frac{ch}{W}$$

Plugging in $W = 3.685 \times 10^{-19} \,\text{J}$ and $h = 6.626 \times 10^{-34} \,\text{J}\,\text{s}^{-1}$, we have that

$$\nu_t = 5.56 \times 10^{14} \,\mathrm{Hz}$$
 $\lambda_t = 5.39 \times 10^{-7} \,\mathrm{m}$

(b) If UV light of wavelength $\lambda=3000\,\text{Å}$ is incident on the Li surface, calculate the maximum kinetic energy of the electrons.

Answer. From Einstein's annus mirabilis papers, we have that

$$KE_{\text{max}} = h\nu - W$$

$$= \frac{hc}{\lambda} - W$$

$$KE_{\text{max}} = 2.941 \times 10^{-19} \,\text{J}$$

4. (a) Using the Bohr model, compute the ionization energies for He^+ and Li^{2+} .

Answer. From the Bohr model, we have that

$$\begin{split} IE &= E_{\infty} - E_1 \\ &= -\frac{m_e e^4 Z^2}{8\epsilon_0^2 h^2} \cdot \frac{1}{\infty^2} + \frac{m_e e^4 Z^2}{8\epsilon_0^2 h^2} \cdot \frac{1}{1^2} \\ &= \frac{m_e e^4 Z^2}{8\epsilon_0^2 h^2} \end{split}$$

It follows since Z = 2 for He^+ and Z = 3 for Li^{2+} that

$$IE(He^+) = 8.72 \times 10^{-18} J$$
 $IE(Li^{2+}) = 1.962 \times 10^{-19} J$

in units of Joules per electron.

(b) Can the Bohr model be employed to compute the first ionization energy for He and Li? Explain briefly.

Answer. No — the Bohr model is only valid for single electron systems as it does not take into account electron-electron interactions. \Box

5. (a) An electron is confined within a region of atomic dimensions on the order of 1×10^{-10} m. Compute the uncertainty in its momentum.

Answer. From the Heisenberg uncertainty principle, we have that

$$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$$

$$\Delta p \ge \frac{h}{4\pi \Delta x}$$

$$\Delta p \ge 5.273 \times 10^{-25} \frac{\text{kg m}}{\text{s}}$$

(b) Repeat the calculation for a proton confined to a region of nuclear dimensions on the order of $1\times 10^{-14}\,\mathrm{m}$.

Answer. From the Heisenberg uncertainty principle, we have that

$$\Delta p \ge \frac{h}{4\pi\Delta x}$$

$$\Delta p \ge 5.273 \times 10^{-21} \frac{\text{kg m}}{\text{s}}$$

- 6. Use the Quantum Chemistry Toolbox in Maple to complete the worksheet "Blackbody Radiation" on Canvas and answer the following questions.
 - (a) Using the interactive graph of the spectral energy density $\rho(\nu, T)$ as a function of the frequency ν and temperature T, determine the frequency in Hz at which the spectral energy density peaks at a temperature of 700 K.

Answer.

$$5 \times 10^{13} \, \mathrm{Hz}$$

(b) The cosmic background radiation, discovered in 1964 by Penzias and Wilson, can be explained by treating the universe as a blackbody. Using the interactive plot, determine the frequency (in Hz) and wavelength (in m) at which the cosmic background radiation peaks.

Answer.

$$\nu = 2 \times 10^{11} \, \mathrm{Hz}$$

$$\lambda = \frac{c}{\nu}$$

$$\lambda = 1.5 \times 10^{-3} \, \mathrm{m}$$

(c) In which region of the electromagnetic spectrum does the peak cosmic background radiation lie?

Answer. In the microwave region.

- 7. Use the Quantum Chemistry Toolbox in Maple to complete the worksheet "Photoelectric Effect" on Canvas and answer the following questions.
 - (a) Copy and complete Table 1 of the worksheet.

Answer.

	Au	Mg	Pb	Na	Average value of h:
Threshold frequency (ν_0)	$1.084 \times 10^{15} \mathrm{Hz}$	$8.793 \times 10^{14} \mathrm{Hz}$	$1.034 \times 10^{15} \mathrm{Hz}$	$5.684 \times 10^{14} \mathrm{Hz}$	Average value of n.
Planck's constant (h)	$6.681 \times 10^{-34} \mathrm{Js}$	$6.553 \times 10^{-34} \mathrm{Js}$	$6.717 \times 10^{-34} \mathrm{Js}$	$6.522 \times 10^{-34} \mathrm{Js}$	$6.618 \times 10^{-34} \mathrm{Js}$

Table 1: Photoelectric data for Au, Mg, Pb, and Na.

(b) What is the computed average value of Planck's constant, and how does this value compare to its experimental value?

Answer. The computed average value of Planck's constant is $\boxed{6.618 \times 10^{-34}\,\mathrm{J\,s}}$. It is $\boxed{0.12\%$ off from the true value of $6.626 \times 10^{-34}\,\mathrm{J\,s}$.

(c) For which element is it *least* difficult to eject an electron?

Answer. Sodium — lowest threshold frequency means least energy required to excite an electron to the infinite energy level. \Box

2 Boxes and Waves

10/13: 1. (a) Imagine the particle in the infinite square well bouncing back and forth against the walls classically. In the absence of friction, the particle will continue to bounce back and forth with a constant speed. What is the probability P(x) of finding this classical particle as a function of its position in the box?

Answer. Let L be the length of the box and let v be the speed of the particle. If $0 \le x \le L$, the probability P(x, x + dx) that the particle is between x and x + dx is equal to the time the particle spends in the sliver of the box between x and x + dx per unit time divided by the total time. If we let our unit of time be the amount of time it takes the particle to cross the box from end to end once, then we have

$$P(x, x + dx) = \frac{t_{\text{between } x \text{ and } x + dx}}{t_{\text{total}}}$$
$$= \frac{dx/v}{L/v}$$
$$dP(x) = \frac{dx}{L}$$

Note that as $dx \to 0$, $P(x) \to 0$ as well for any x, so technically the probability of finding the particle at any exact spot is always zero.

(b) Secondly, consider the particle to be in the quantum ground state. What is the probability P(x) of finding this quantum particle as a function of its position in the box? Give a sketch.

Answer. If the box is of length L=2a, then the probability is

$$P(x) = \psi^*(x)\psi(x)$$
$$P(x) = \frac{1}{a}\sin^2\left(\frac{\pi x}{2a}\right)$$

Sketch:

(c) Thirdly, consider the particle to be in the quantum state n = 2. What is the probability P(x) of finding this quantum particle as a function of its position in the box? Give a sketch.

Answer. If the box is of length L=2a, then the probability is

$$P(x) = \psi^*(x)\psi(x)$$
$$P(x) = \frac{1}{a}\sin^2\left(\frac{\pi x}{a}\right)$$

Sketch:

(d) As the quantum state n of the particle approaches infinity, the energy and frequency of the particle become very large. What happens to the probability P(x) of finding this quantum particle as a function of its position in the box?

Answer. The probability P(x) becomes more evenly distributed throughout the box, so the particle behaves more classically.

2. The spread or uncertainty in position and momentum may be computed by a mathematical measure of the deviation from the average position

$$\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \tag{1}$$

and

$$\Delta p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} \tag{2}$$

where the notation $\langle \ \rangle$ was developed by Dirac to denote the expectation value. The text evaluates these uncertainties for a particle in the ground state of an infinite square well.

(a) Do they satisfy the Heisenberg uncertainty relation?

Answer. From McQuarrie and Simon (1997), we have that

$$\Delta x = \frac{a}{2\pi} \sqrt{\frac{\pi^2}{3} - 2} \qquad \qquad \Delta p = \frac{\pi \hbar}{a}$$

These do obey the Heisenberg uncertainty relation since

$$\Delta x \cdot \Delta p = \frac{\hbar}{2} \sqrt{\frac{\pi^2}{3} - 2} \ge \frac{\hbar}{2}$$

(b) Evaluate these uncertainties for a particle in the second- and fourth-excited states (the first and second even excited states) of an infinite square well. Do they satisfy the Heisenberg uncertainty relation?

Answer. From McQuarrie and Simon (1997), we have that

$$\Delta x = \frac{a}{2\pi \cdot 3} \sqrt{\frac{\pi^2 \cdot 3^2}{3} - 2}$$

$$\Delta p = \frac{3 \cdot \pi \hbar}{a}$$

$$\Delta x = \frac{a}{2\pi \cdot 5} \sqrt{\frac{\pi^2 \cdot 5^2}{3} - 2}$$

$$\Delta p = \frac{5 \cdot \pi \hbar}{a}$$

These do obey the Heisenberg uncertainty relation since

$$\Delta x \cdot \Delta p = \frac{\hbar}{2} \sqrt{\frac{\pi^2 \cdot 3^2}{3} - 2} \ge \frac{\hbar}{2}$$
$$\Delta x \cdot \Delta p = \frac{\hbar}{2} \sqrt{\frac{\pi^2 \cdot 5^2}{3} - 2} \ge \frac{\hbar}{2}$$

(c) Compare the uncertainties in the position and momentum for the ground, second-excited, and fourth-excited states. What would you expect to happen to the uncertainties as the state n approaches infinity?

Answer. As $n \to \infty$, uncertainty in position will stay basically the same (increase slightly asymptotically), but uncertainty in momentum will diverge to ∞ .

3. Consider a particle in a one-dimensional infinite square well where the infinite walls are located and -b and +b. Give the time-dependent form of the ground and the first-excited states.

Answer. We have that the time-independent forms of the ground and first-excited states are, respectively

$$\psi_1(x) = \frac{1}{\sqrt{b}}\cos\left(\frac{\pi x}{2b}\right)$$
 $\psi_2(x) = \frac{1}{\sqrt{b}}\sin\left(\frac{\pi x}{b}\right)$

Thus, the time-dependent forms are

$$\psi_1(x,t) = \frac{1}{\sqrt{b}}\cos\left(\frac{\pi x}{2b}\right) \cdot e^{-iE_1t/\hbar}$$

$$\psi_2(x,t) = \frac{1}{\sqrt{b}}\sin\left(\frac{\pi x}{b}\right) \cdot e^{-iE_2t/\hbar}$$

$$\psi_1(x,t) = \frac{1}{\sqrt{b}}\cos\left(\frac{\pi x}{2b}\right) \cdot e^{-i\hbar\pi^2t/8mb^2}$$

$$\psi_2(x,t) = \frac{1}{\sqrt{b}}\sin\left(\frac{\pi x}{b}\right) \cdot e^{-i\hbar\pi^2t/2mb^2}$$

- 4. We have been examining a one-dimensional infinite square well where the infinite walls are located at -b and +b. The energy levels in this quantum system are non-degenerate, that is, for each energy, there is only one wave function. Let us place an infinite potential step between -b/2 and +b/2.
 - (a) Is the particle more likely to be in the left or the right infinite square well?

Answer. Because of symmetry, the particle is equally likely to be in the left and right side of the well. \Box

(b) What are the new energy levels and wave functions of this modified system? (Hint: How are they related to the infinite square well?)

Answer. To derive a wave function ψ pertaining to the entire system, we will modify the particle in a box procedure to derive two separate wave functions $\psi_{\rm I}, \psi_{\rm II}$ corresponding to the two sides of the infinite potential step. Let's begin.

For the negative side (corresponding to $\psi_{\rm I}$, start with the Schrödinger equation in the form

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = -k^2\psi(x)$$

where $k = \sqrt{2mE}/\hbar$. The general solution to this ODE will be of the form

$$\psi_{\rm I}(x) = A\cos(kx) + B\sin(kx)$$

Our boundary conditions are

$$0 = \psi_{I}(-b) \qquad 0 = \psi_{II}(-b/2) = A\cos(kb) - B\sin(kb) \qquad = A\cos(kb/2) - B\sin(kb/2)$$

We can make both of the above equations equal to zero three different ways: We can let A = B = 0, we can let $\cos(kb) = \cos(kb/2) = B = 0$, and we can let $\sin(kb) = \sin(kb/2) = A = 0$. We will work through each possibility in turn, either finding a nontrivial $\psi_{\rm I}$ or proving that no such function exists under such conditions. Let's begin.

If A = B = 0, then $\psi_{\rm I} = 0$, and we have a trivial solution.

Now suppose that B=0. Then to make $\cos(kb)=0$, we must have $kb=\pi n/2$ where n is odd. To make $\cos(kb/2)=0$, we also must have $kb/2=\pi n'/2$ where n' is odd. But there is no pair of odd numbers n, n' that satisfy both of these equations, because if there were, we would have

$$\frac{\pi n/2}{2} = \frac{\pi n'}{2}$$
$$n = 2n'$$

implying that n is even, a contradiction.

Now suppose that A=0. Then nontrivial solutions let $kb=\pi n'$ where n' is any integer and $kb/2=\pi n$ where n is any integer. Solving this system gives n'=2n, which does not break the integer condition. Thus, choosing n as our quantum number (that can take on any integer value), we have as our solution

$$\psi_{\rm I}(x) = B \sin\left(\frac{2\pi n}{b}x\right)$$

which does indeed satisfy

$$0 = \psi(-b) = \psi(-b/2)$$

It follows by a symmetric argument that we have

$$\psi_{\rm II}(x) = D \sin\left(\frac{2\pi n}{b}x\right)$$

This allows us to define

$$\psi(x) = \begin{cases} \psi_{\mathrm{I}}(x) & -b \le x \le -\frac{b}{2} \\ \psi_{\mathrm{II}}(x) & \frac{b}{2} \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Before we normalize, note that by part (a), B = D. Thus, we can normalize as follows.

$$\begin{split} 1 &= \int_{-\infty}^{\infty} \psi^2(x) \, \mathrm{d}x \\ &= \int_{-b}^{-b/2} \psi_{\mathrm{I}}^2(x) \, \mathrm{d}x + \int_{b/2}^{b} \psi_{\mathrm{II}}^2(x) \, \mathrm{d}x \\ &= \int_{-b}^{-b/2} B^2 \sin^2\left(\frac{2\pi n}{b}x\right) \, \mathrm{d}x + \int_{b/2}^{b} B^2 \sin^2\left(\frac{2\pi n}{b}x\right) \, \mathrm{d}x \\ &= B^2 \left(\int_{-b}^{-b/2} \frac{1 - \cos\left(\frac{4\pi n}{b}x\right)}{2} \, \mathrm{d}x + \int_{b/2}^{b} \frac{1 - \cos\left(\frac{4\pi n}{b}x\right)}{2} \, \mathrm{d}x\right) \\ &= B^2 \left(\left[\frac{x}{2} - \frac{b}{8\pi n}\sin\left(\frac{4\pi n}{b}x\right)\right]_{-b}^{-b/2} + \left[\frac{x}{2} - \frac{b}{8\pi n}\sin\left(\frac{4\pi n}{b}x\right)\right]_{b/2}^{b}\right) \\ &= B^2 \left(\left[\frac{b}{4}\right] + \left[\frac{b}{4}\right]\right) \\ B &= \sqrt{\frac{2}{b}} \end{split}$$

Thus, our wave function for this system is

$$\psi(x) = \sqrt{\frac{2}{b}} \sin\left(\frac{2\pi n}{b}x\right)$$

where $n = 1, 2, 3, \ldots$, and defined as on the piecewise domain above.

Considering that we substituted $k=2\pi n/b$ in the above derivation, the energy levels for this system will be

$$\frac{2\pi n}{b} = \sqrt{\frac{2mE_n}{\hbar^2}}$$

$$\frac{4\pi^2 n^2}{b^2} = \frac{2mE_n}{\hbar^2}$$

$$E_n = \frac{2\pi^2 n^2 \hbar^2}{mb^2}$$

$$E_n = \frac{n^2 h^2}{2mb^2}$$

(c) Are the energy levels degenerate, and if so, what is the degeneracy?

Answer. Yes. We have the two linearly independent piecewise solutions

$$\psi(x) = \begin{cases} \psi_{\mathrm{I}}(x) & -b \le x \le -\frac{b}{2} \\ \psi_{\mathrm{II}}(x) & \frac{b}{2} \le x \le b \end{cases} \qquad \psi(x) = \begin{cases} \psi_{\mathrm{I}}(x) & -b \le x \le -\frac{b}{2} \\ -\psi_{\mathrm{II}}(x) & \frac{b}{2} \le x \le b \end{cases}$$

so the degeneracy is $\boxed{2}$.

(d) Are the new energies higher or lower than the box without the infinite step?

Answer. By comparing the results from part (b) to those from the pure particle in a box, the energy levels are more spread apart by a factor of 16. Therefore, the new energies are most certainly higher than the box without the infinite step. \Box

5. Consider an electron of energy E incident on the potential step where

$$V(x) = \begin{cases} 0 \text{ eV} & x < 0\\ 8 \text{ eV} & x > 0 \end{cases}$$

Calculate the reflection coefficient R and the transmission coefficient T

(a) When $E = 4 \,\text{eV}$;

Answer. For E < V, we automatically have

$$R=1$$
 $T=0$

(b) When $E = 16 \,\mathrm{eV}$;

Answer. We have that

$$\alpha = \frac{\sqrt{2m \cdot 16}}{\hbar}$$

$$= \frac{4}{\hbar} \sqrt{2m}$$

$$\beta = \frac{\sqrt{2m \cdot 8}}{\hbar}$$

$$= \frac{4}{\hbar} \sqrt{m}$$

Problem Set 2

Thus, we have that

$$R = \frac{(\alpha - \beta)^{2}}{(\alpha + \beta)^{2}} \qquad T = \frac{4\alpha\beta}{(\alpha + \beta)^{2}}$$

$$= \frac{\left(\frac{4}{\hbar}\sqrt{2m} - \frac{4}{\hbar}\sqrt{m}\right)^{2}}{\left(\frac{4}{\hbar}\sqrt{2m} + \frac{4}{\hbar}\sqrt{m}\right)^{2}} \qquad = \frac{4 \cdot \frac{4}{\hbar}\sqrt{2m} \cdot \frac{4}{\hbar}\sqrt{m}}{\left(\frac{4}{\hbar}\sqrt{2m} + \frac{4}{\hbar}\sqrt{m}\right)^{2}}$$

$$= \frac{2m - 2m\sqrt{2} + m}{2m + 2m\sqrt{2} + m} \qquad = \frac{4m\sqrt{2}}{2m + 2m\sqrt{2} + m}$$

$$= \frac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}} \qquad = \frac{4\sqrt{2}}{3 + 2\sqrt{2}}$$

$$R = 17 - 12\sqrt{2}$$

$$T = 12\sqrt{2} - 16$$

(c) When $E = 8 \,\text{eV}$.

Answer. We have that

$$\alpha = \frac{\sqrt{2m \cdot 8}}{\hbar}$$

$$= \frac{4}{\hbar} \sqrt{m}$$

$$\beta = \frac{\sqrt{2m \cdot 0}}{\hbar}$$

$$= 0$$

Thus, we have that

$$R = \frac{(\alpha - \beta)^2}{(\alpha + \beta)^2}$$

$$= \frac{\left(\frac{4}{\hbar}\sqrt{m} - 0\right)^2}{\left(\frac{4}{\hbar}\sqrt{m} + 0\right)^2}$$

$$T = \frac{4\alpha\beta}{(\alpha + \beta)^2}$$

$$= \frac{4 \cdot \frac{4}{\hbar}\sqrt{m} \cdot 0}{\left(\frac{4}{\hbar}\sqrt{m} + 0\right)^2}$$

$$T = 0$$

6. Use the Quantum Chemistry Toolbox in Maple to complete the worksheet "Particle in a Box" on Canvas and answer the following questions.

(a) Based on the interactive plot, does the wave function become more classical as the quantum number n increases?

Answer. Yes. It predicts an increasingly "continuous" probability distribution, wherein the particle is equally likely to be found anywhere.

(b) Does the energy spacing between states become more or less classical as n increases?

Answer. Less classical. Higher energy states are spaced farther apart. $\hfill\Box$

(c) Sketch the n=3 state of the particle in a box and the third molecular orbital of the hydrogen chain.

Answer.

(d)	What do you observe about the nodal patterns in part (c)?	
	Answer. They correspond to each other (both in terms of number and placement).	
(e)	Based on parts (c) and (d), are the particle-in-a-box wave functions a good model for the w functions of the hydrogen chain?	ave

Problem Set 2

Answer. Yes.

 $\mathbf{CHEM}\ \mathbf{26100}$

3 Harmonic Oscillators and Diatomics

10/20: 1. Consider an electron with total energy E incident from left to right across a potential "drop" where

$$V(x) = \begin{cases} V_0 & x < 0 \\ 0 & x > 0 \end{cases}$$

(a) Give an expression for the wave function in each of the two regions.

Answer. If region I is $(-\infty, 0)$ and region II is $(0, \infty)$, then

$$\psi_{\rm I}(x) = Ae^{i\alpha x} + Be^{-i\alpha x}$$

$$\psi_{\rm II}(x) = Ce^{i\beta x} + De^{-i\beta x}$$

(b) Which coefficient in the wave functions from (a) is zero? Explain briefly why.

Answer. As written, we will have D=0. This is because while the particle travels left to right in regions I and II (so $A, C \neq 0$) and there may be reflection back into region I at the intersection (so potentially $B \neq 0$), there is no particle in region II traveling right to left nor is there a barrier that could reflect some of the particle backwards.

(c) Using continuity of the wave function and its derivative at x = 0, derive an expression for the reflection coefficient.

Answer. It follows from the continuity of the wave function itself at x = 0 that

$$A + B = Ae^{i\alpha(0)} + Be^{-i\beta(0)} = \psi_{I}(0) = \psi_{II}(0) = Ce^{i\alpha(0)} = C$$

Similarly, it follows from the continuity of the derivative of the wave function at x=0 that

$$i\alpha A - i\alpha B = \frac{\mathrm{d}}{\mathrm{d}x} \left(A \mathrm{e}^{i\alpha x} + B \mathrm{e}^{-i\alpha x} \right)_{x=0} = \left(\frac{\mathrm{d}\psi_{\mathrm{I}}}{\mathrm{d}x} \right)_{x=0} = \left(\frac{\mathrm{d}\psi_{\mathrm{II}}}{\mathrm{d}x} \right)_{x=0} = \frac{\mathrm{d}}{\mathrm{d}x} \left(C \mathrm{e}^{i\beta x} \right)_{x=0} = i\beta C$$

Thus, we have that

$$A = \frac{C(\alpha + \beta)}{2\alpha}$$

$$B = \frac{C(\alpha - \beta)}{2\alpha}$$

We know that the probability of the particle going left to right in region I is $|A|^2$ and that the probability of the particle going from right to left in region I is $|B|^2$. Thus, since the incident/reflected flux factors in the speed c of the particle in either direction, the respective fluxes are $c|A|^2$ and $c|B|^2$. But this implies that

$$R = \frac{c|B|^2}{c|A|^2}$$
$$= \frac{|B|^2}{|A|^2}$$
$$R = \frac{(\alpha - \beta)^2}{(\alpha + \beta)^2}$$

(d) Calculate the reflection coefficient R when $V_0 = 8 \,\mathrm{eV}$ and $E = 16 \,\mathrm{eV}$.

Answer. We have that

$$\alpha = \frac{\sqrt{2m \cdot (16 - 8)}}{\hbar}$$

$$= \frac{4}{\hbar} \sqrt{m}$$

$$\beta = \frac{\sqrt{2m \cdot 16}}{\hbar}$$

$$= \frac{4}{\hbar} \sqrt{2m}$$

Thus, we have that

$$R = \frac{(\alpha - \beta)^2}{(\alpha + \beta)^2}$$

$$= \frac{(\frac{4}{\hbar}\sqrt{m} - \frac{4}{\hbar}\sqrt{2m})^2}{(\frac{4}{\hbar}\sqrt{m} + \frac{4}{\hbar}\sqrt{2m})^2}$$

$$= \frac{m - 2m\sqrt{2} + 2m}{m + 2m\sqrt{2} + 2m}$$

$$= \frac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}}$$

$$R = 17 - 12\sqrt{2}$$

(e) Compare this result with the result from problem 5b of Problem Set 2.

Answer. The answers are identical.

(f) From your result in (e), explain whether the degree of reflection depends on both the direction (step or "drop") and magnitude of the potential change or only the magnitude of the change.

Answer. Since the answer in part (e) matches that of a setup with the same magnitude but opposite direction, the degree of reflection depends solely on the magnitude of the potential change, not the direction (step or drop).

2. A good approximation to the intermolecular potential for a diatomic molecule is the Morse potential

$$V(x) = D(1 - e^{-\beta x})^2$$

where x is the displacement from the equilibrium bond length.

(a) Compute the Taylor series expansion of the Morse potential about x=0 through second order.

Answer. Since

$$V(0) = D(1 - e^{-\beta(0)})^{2}$$

$$= 0$$

$$V'(0) = 2D(1 - e^{-\beta(0)}) \cdot \beta e^{-\beta(0)}$$

$$= 0$$

$$V''(0) = -2D\beta^2 e^{-\beta(0)} + 4D\beta^2 e^{-2\beta(0)}$$
$$= 2D\beta^2$$

we have that

$$\tilde{V} = V(0) + V'(0)x + \frac{1}{2}V''(0)x^{2}$$

$$\tilde{V} = D\beta^{2}x^{2}$$

(b) Comparing the result with the potential for the harmonic oscillator, give an expression for the harmonic force constant k in terms of D and β .

Answer. For a harmonic oscillator, we have $V(x) = kx^2/2$. Setting this equal to the above, we have that

$$\frac{1}{2}kx^2 = D\beta^2 x^2$$
$$k = 2D\beta^2$$

(c) Given that $D=7.31\times 10^{-19}\,\mathrm{J/molecule}$ and $\beta=1.81\times 10^{10}\,\mathrm{m^{-1}}$ for HCl, calculate the force constant for HCl.

Answer. Plugging the given values into the equation from part (b) gives

$$k = 479 \,\mathrm{N/m}$$

3. In the infrared spectrum of $\mathrm{H^{79}Br}$, chemists find an intense line at $2630\,\mathrm{cm^{-1}}$. For $\mathrm{H^{79}Br}$, calculate

(a) The force constant.

Answer. Let $m_{\rm H}=1.0$ and let $m_{\rm Br}=79.0$. Then

$$\mu = \frac{m_{\rm H} m_{\rm Br}}{m_{\rm H} + m_{\rm Br}} \cdot \frac{1 \times 10^{-3} \,\text{kg}}{6.02 \times 10^{23} \,\text{u}}$$
$$= 1.64 \times 10^{-27} \,\text{kg}$$

Let $\bar{\nu}_{\rm obs} = 2.630 \times 10^5 \, {\rm m}^{-1}$. Then

$$\bar{\nu}_{\rm obs} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$
$$k = (2\pi c \bar{\nu}_{\rm obs})^2 \mu$$
$$k = 403 \, \text{N/m}$$

(b) The period of vibration.

Answer. We have that

$$\frac{2\pi}{T} = \omega = \sqrt{\frac{k}{\mu}}$$

$$T = 2\pi\sqrt{\frac{\mu}{k}}$$

$$T = 1.27 \times 10^{-14} \,\mathrm{s}$$

(c) The zero-point energy.

Problem Set 3

CHEM 26100

Answer. We have that

$$E_0 = \frac{1}{2}\hbar\omega$$
$$= \frac{1}{2}\hbar\sqrt{\frac{k}{\nu}}$$
$$E_0 = 2.61 \times 10^{-20} \text{ J}$$

4. Using the fact that the wave functions of the harmonic oscillator are either even or odd, show that the average values (or expectation values) of odd powers of position x and momentum p vanish, that is

$$\langle x^k \rangle = 0 \qquad \langle p^k \rangle = 0$$

when k is odd.

Answer. Since Hermite polynomials $H_v(\xi)$ are even functions if v is even and odd functions if v is odd, and ψ_v is the product of all even functions and a Hermite polynomial for all v, we know that the parity of the Hermite polynomial determines the parity of ψ_v for all v. Thus, ψ_v is even when v is even, and odd when v is odd.

Since the square of either an odd or an even function is even, ψ_v^2 is even for all v. Additionally, x^k is odd for all k. Thus, $x^k \psi_v^2$ is odd for all k, v. But this means that

$$\langle x^k \rangle = \int_{-\infty}^{\infty} \psi_v(x) x^k \psi_v(x) \, \mathrm{d}x = 0$$

as desired.

Similarly, since the derivative of an even function is odd and vice versa, we know that all odd-order derivatives of ψ_v have opposite parity to ψ_v . But this implies that the product of ψ_v and an odd-order derivative of ψ_v is always odd. It follows that

$$\langle p^k \rangle = \int_{-\infty}^{\infty} \psi_v(x) \left(-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} \right)^k \psi_v(x) \, \mathrm{d}x = 0$$

as desired. \Box

as desired.

5. For the ground state of the harmonic oscillator...

(a) Evaluate the Heisenberg uncertainty relation where the spread (or uncertainty) in position and momentum may be computed by

$$(\Delta x)^2 = \int \psi^*(x)(x - \langle x \rangle)^2 \psi(x) dx \qquad (\Delta p)^2 = \int \psi^*(x)(\hat{p} - \langle \hat{p} \rangle)^2 \psi(x) dx$$

Use the results of Exercise 5.17 in McQuarrie and Simon (1997) to evaluate the necessary integrals.

Answer. We have from McQuarrie and Simon (1997) that $\langle x \rangle = 0$. Thus,

$$(\Delta x)^2 = \int \psi_0^*(x)(x - \langle x \rangle)^2 \psi_0(x) dx$$
$$= \int_{-\infty}^{\infty} \sqrt[4]{\frac{\alpha}{\pi}} e^{-\alpha x^2/2} x^2 \sqrt[4]{\frac{\alpha}{\pi}} e^{-\alpha x^2/2} dx$$
$$= \sqrt{\frac{\alpha}{\pi}} \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx$$

$$= \sqrt{\frac{\alpha}{\pi}} \cdot \frac{1}{2\alpha} \sqrt{\frac{\pi}{\alpha}}$$
$$= \frac{1}{2\alpha}$$
$$\Delta x = \sqrt{\frac{1}{2\alpha}}$$

Additionally, we have that $\langle p \rangle = 0$. Thus,

$$(\Delta p)^{2} = \int \psi_{0}^{*}(x)(\hat{p} - \langle \hat{p} \rangle)^{2} \psi_{0}(x) dx$$

$$= \int_{-\infty}^{\infty} \sqrt[4]{\frac{\alpha}{\pi}} e^{-\alpha x^{2}/2} \left(-i\hbar \frac{d}{dx} \right)^{2} \sqrt[4]{\frac{\alpha}{\pi}} e^{-\alpha x^{2}/2} dx$$

$$= -\hbar^{2} \sqrt{\frac{\alpha}{\pi}} \int_{-\infty}^{\infty} e^{-\alpha x^{2}/2} \frac{d}{dx} \left(-\alpha x e^{-\alpha x^{2}/2} \right) dx$$

$$= -\hbar^{2} \sqrt{\frac{\alpha}{\pi}} \int_{-\infty}^{\infty} e^{-\alpha x^{2}/2} (-\alpha e^{-\alpha x^{2}/2} + \alpha^{2} x^{2} e^{-\alpha x^{2}/2}) dx$$

$$= \hbar^{2} \sqrt{\frac{\alpha^{3}}{\pi}} \int_{-\infty}^{\infty} (1 - \alpha x^{2}) e^{-\alpha x^{2}} dx$$

$$= \hbar^{2} \sqrt{\frac{\alpha^{3}}{\pi}} \cdot \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

$$= \frac{1}{2} \alpha \hbar^{2}$$

$$\Delta p = \hbar \sqrt{\frac{\alpha}{2}}$$

Therefore, we have

$$\Delta x \cdot \Delta p = \frac{\hbar}{2} \ge \frac{\hbar}{2}$$

(b) In terms of the uncertainty relation, what is special about the harmonic oscillator?

Answer. The product of the uncertainties is exactly $\hbar/2$, as opposed to some number greater than it. In other words, it can be described as precisely as any quantum system.

6. Using the expectation values from the previous problem, show for the ground state of the harmonic oscillator that the average values of the kinetic and the potential energies are equal to one half of the total energy, i.e.,

$$\langle T \rangle = \langle V \rangle = \frac{E_0}{2}$$

This relation, known as the **virial theorem**, is true for all states of the harmonic oscillator.

Answer. Invoking the definitions of $\langle T \rangle$ and $\langle V \rangle$ and substituting from Problem 5a, we have that

$$\langle T \rangle = \int \psi_0^*(x) \hat{H} \psi_0(x) \, \mathrm{d}x \qquad \qquad \langle V \rangle = \int \psi_0^*(x) \hat{V} \psi_0(x) \, \mathrm{d}x$$

$$= \frac{1}{2\mu} \int \psi_0^*(x) \hat{p}^2 \psi_0(x) \, \mathrm{d}x \qquad \qquad = \frac{1}{2} k \int \psi_0^*(x) x^2 \psi_0(x) \, \mathrm{d}x$$

$$= \frac{1}{2\mu} \cdot \frac{1}{2} \alpha \hbar^2 \qquad \qquad = \frac{1}{2} k \cdot \frac{1}{2\alpha}$$

$$= \frac{\hbar^2}{4\mu} \cdot \frac{\sqrt{k\mu}}{\hbar} \qquad \qquad = \frac{k}{4} \cdot \frac{\hbar}{\sqrt{k\mu}}$$

$$=\frac{\hbar}{4}\sqrt{\frac{k}{\mu}} \qquad \qquad =\frac{\hbar}{4}\sqrt{\frac{k}{\mu}}$$

Thus, we have shown that $\langle T \rangle = \langle V \rangle$. To complete the proof, we have that

$$\langle T \rangle = \langle V \rangle = \frac{\hbar}{4} \sqrt{\frac{k}{\mu}} = \frac{\frac{\hbar\omega}{2}}{2} = \frac{\hbar\omega \left(0 + \frac{1}{2}\right)}{2} = \frac{E_0}{2}$$

as desired. \Box

7. Use the Quantum Chemistry Toolbox in Maple to answer the lettered questions in the worksheet "Harmonic Oscillator" on Canvas.

Answer.

Molecule	Reduced Mass (μ)	Spring Constant (k)	Angular Frequency (ω)	Energy Spacing (ΔE)
HF	$1.59 \times 10^{-27} \mathrm{kg}$	$1110\mathrm{J/m^2}$	$8.36\times10^{14}\mathrm{Hz}$	$8.81 \times 10^{-20} \mathrm{J}$
N_2	$1.16 \times 10^{-26} \mathrm{kg}$	$3130\mathrm{J/m^2}$	$5.19\times10^{14}\mathrm{Hz}$	$5.47 \times 10^{-20} \mathrm{J}$
CO	$1.14 \times 10^{-26} \mathrm{kg}$	$2390\mathrm{J/m^2}$	$4.58\times10^{14}\mathrm{Hz}$	$4.83 \times 10^{-20} \mathrm{J}$

4 Harmonic Oscillators II and the Hydrogen Atom

10/27: 1. The J=0 to J=1 transition for carbon monoxide ($^{12}C^{16}O$) occurs at 1.153×10^5 MHz.

(a) Calculate the value of the bond length in carbon monoxide.

Answer. Let $\nu = 1.153 \times 10^{11} \, \text{Hz}$. We have from McQuarrie and Simon (1997) that

$$\nu = \frac{h}{4\pi^2 I}(0+1)$$

for the transition from J=0 to J=1. Thus,

$$I = \frac{h}{4\pi^2 \nu} = 1.456 \times 10^{-46} \,\mathrm{kg} \,\mathrm{m}^2$$

This combined with the fact that the reduced mass is

$$\mu = \frac{12 \cdot 16}{12 + 16} = 1.140 \times 10^{-26} \,\mathrm{kg}$$

and that $I = \mu r^2$ tells us that

$$r = 1.130 \times 10^{-10} \,\mathrm{m}$$

(b) Predict the J=1 to J=2 transition for carbon monoxide.

Answer. From McQuarrie and Simon (1997), we have that the $J=0 \rightarrow 1$ and $J=1 \rightarrow 2$ transitions are, respectively,

$$\nu_0 = \frac{h}{4\pi^2 I}(0+1) \qquad \qquad \nu_1 = \frac{h}{4\pi^2 I}(1+1)$$

Thus, $\nu_1 = 2\nu_0$, so

$$\nu_1 = 2.306 \times 10^{11} \, \mathrm{Hz}$$

- 2. The harmonic oscillator has a finite zero-point energy because of the uncertainty relation. In contrast, the lowest possible energy for the 2D rigid rotor is zero.
 - (a) For the ground state of the 2D rigid rotor, what is the expectation value of the angular momentum, and what is the uncertainty ΔL_z in the expectation value? Recall that

$$(\Delta L_z)^2 = \langle \hat{L}_z^2 \rangle - \langle \hat{L}_z \rangle^2$$

Answer. Since this is the ground state m = 0, we have that

$$\begin{split} \langle \hat{L}_z \rangle &= \int_0^{2\pi} \psi^*(\phi) \hat{L}_z \psi(\phi) \, \mathrm{d}\phi \\ &= \int_0^{2\pi} \left(\frac{1}{\sqrt{2\pi}} \mathrm{e}^{-i(0)\phi} \right) \left(-i\hbar \frac{\partial}{\partial \phi} \right) \left(\frac{1}{\sqrt{2\pi}} \mathrm{e}^{i(0)\phi} \right) \mathrm{d}\phi \\ &= \frac{1}{2\pi} \int_0^{2\pi} (1) \cdot -i\hbar \cdot 0 \, \mathrm{d}\phi \\ \hline \left\langle \hat{L}_z \right\rangle &= 0 \end{split}$$

and that

$$\begin{split} \langle \hat{L}_z^2 \rangle &= \int_0^{2\pi} \psi^*(\phi) \hat{L}_z^2 \psi(\phi) \, \mathrm{d}\phi \\ &= \int_0^{2\pi} \left(\frac{1}{\sqrt{2\pi}} \mathrm{e}^{-i(0)\phi} \right) \left(-i\hbar \frac{\partial}{\partial \phi} \right)^2 \left(\frac{1}{\sqrt{2\pi}} \mathrm{e}^{i(0)\phi} \right) \mathrm{d}\phi \\ &= \frac{1}{2\pi} \int_0^{2\pi} (1) \cdot -i\hbar \cdot 0 \, \mathrm{d}\phi \\ &= 0 \end{split}$$

SO

$$(\Delta L_z)^2 = \langle \hat{L}_z^2 \rangle - \langle \hat{L}_z \rangle^2$$
$$= 0 - 0$$
$$\Delta L_z = 0$$

(b) In words, describe the uncertainty in position.

Answer. Since the uncertainty in angular momentum is 0, the uncertainty in position (the Fourier transform of the uncertainty in position) is infinite. \Box

(c) Using your answers to (a) and (b), explain briefly why the 2D rigid rotor can have a vanishing zero-point energy and yet still remain consistent with the uncertainty relation.

Answer. It is consistent with the uncertainty relation because we have total certainty in one term and zero certainty in the other. \Box

- 3. For the ground state of the hydrogen atom, compute
 - (a) The average distance from the nucleus for finding the electron.

Answer. We have that

$$\langle r \rangle = \int_{0}^{\infty} \psi_{100}^{*}(r) r \psi_{100}(r) 4\pi r^{2} dr$$

$$= \int_{0}^{\infty} \left(\frac{1}{\sqrt{\pi}} \left(\frac{1}{a_{0}} \right)^{3/2} e^{-r/a_{0}} \right) r \left(\frac{1}{\sqrt{\pi}} \left(\frac{1}{a_{0}} \right)^{3/2} e^{-r/a_{0}} \right) 4\pi r^{2} dr$$

$$= 4a_{0} \int_{0}^{\infty} \sigma^{3} e^{-2\sigma} d\sigma$$

$$= 4a_{0} \left[-\frac{1}{2} \sigma^{3} e^{-2\sigma} \Big|_{0}^{\infty} + \frac{3}{2} \int_{0}^{\infty} \sigma^{2} e^{-2\sigma} d\sigma \right]$$

$$= 4a_{0} \left[\frac{3}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} \int_{0}^{\infty} e^{-2\sigma} d\sigma \right]$$

$$= 4a_{0} \cdot \frac{3}{8}$$

$$\langle r \rangle = \frac{3}{2} a_{0}$$

(b) The most probable distance from the nucleus for finding the electron.

Answer. We have from McQuarrie and Simon (1997, p. 211) that the probability that the electron is between r and r + dr is

$$Prob(r) = \frac{4}{a_0^3} r^2 e^{-2r/a_0}$$

We want to find the point where $d \operatorname{Prob}(r)/dr = 0$, as this will be the maximum. We can do this as follows.

$$0 = \frac{d}{dr} \left(\frac{4}{a_0^3} r^2 e^{-2r/a_0} \right)$$

$$= \frac{4}{a_0^3} \left(2r e^{-2r/a_0} - \frac{2r^2}{a_0} e^{-2r/a_0} \right)$$

$$= e^{-2r/a_0} - \frac{r}{a_0} e^{-2r/a_0}$$

$$\frac{r}{a_0} = 1$$

$$\boxed{r = a_0}$$

(c) Repeat the calculation for the second excited state (n = 3 and l = 0) and compare your results with the ground state.

Answer. Average distance from the nucleus: We have that

$$\begin{split} \langle r \rangle &= \int_0^\infty \psi_{300}^*(r) r \psi_{300}(r) 4\pi r^2 \, \mathrm{d} r \\ &= \int_0^\infty \left(\frac{1}{81\sqrt{3\pi}} \left(\frac{1}{a_0} \right)^{3/2} \left[27 - 18 \left(\frac{r}{a_0} \right) + 2 \left(\frac{r}{a_0} \right)^2 \right] \mathrm{e}^{-r/3a_0} \right) r \\ &\cdot \left(\frac{1}{81\sqrt{3\pi}} \left(\frac{1}{a_0} \right)^{3/2} \left[27 - 18 \left(\frac{r}{a_0} \right) + 2 \left(\frac{r}{a_0} \right)^2 \right] \mathrm{e}^{-r/3a_0} \right) 4\pi r^2 \, \mathrm{d} r \\ &= \frac{1}{3^9 \pi} \left(\frac{1}{a_0} \right)^3 \int_0^\infty \left([27 - 18\sigma + 2\sigma^2] \mathrm{e}^{-\sigma/3} \right) \sigma a_0 \left([27 - 18\sigma + 2\sigma^2] \mathrm{e}^{-\sigma/3} \right) 4\pi (\sigma a_0)^2 a_0 \, \mathrm{d} \sigma \\ &= \frac{4a_0}{3^9} \int_0^\infty \left([27 - 18\sigma + 2\sigma^2] \mathrm{e}^{-\sigma/3} \right) \sigma^3 ([27 - 18\sigma + 2\sigma^2] \mathrm{e}^{-\sigma/3}) \, \mathrm{d} \sigma \\ &= \frac{4a_0}{3^9} \int_0^\infty \left(27 - 18\sigma + 2\sigma^2 \right)^2 \sigma^3 \mathrm{e}^{-2\sigma/3} \, \mathrm{d} \sigma \\ &= \frac{4a_0}{3^9} \int_0^\infty \left(4\sigma^7 - 72\sigma^6 + 432\sigma^5 - 972\sigma^4 + 729\sigma^3 \right) \mathrm{e}^{-2\sigma/3} \, \mathrm{d} \sigma \\ &= \frac{4a_0}{3^9} \left[4 \int_0^\infty \sigma^7 \mathrm{e}^{-2\sigma/3} \, \mathrm{d} \sigma - 72 \int_0^\infty \sigma^6 \mathrm{e}^{-2\sigma/3} \, \mathrm{d} \sigma + 432 \int_0^\infty \sigma^5 \mathrm{e}^{-2\sigma/3} \, \mathrm{d} \sigma \right. \\ &= \frac{4a_0}{3^9} \left[4 \cdot \frac{7!}{(2/3)^7} \cdot \frac{3}{2} - 72 \cdot \frac{6!}{(2/3)^6} \cdot \frac{3}{2} + 432 \cdot \frac{5!}{(2/3)^5} \cdot \frac{3}{2} - 972 \cdot \frac{4!}{(2/3)^4} \cdot \frac{3}{2} + 729 \cdot \frac{3!}{(2/3)^3} \cdot \frac{3}{2} \right] \\ \hline{\langle r \rangle = 13.5a_0} \end{split}$$

Most probable distance from the nucleus: We have from McQuarrie and Simon (1997) that

$$\begin{split} R_{30}(r) &= -\sqrt{\frac{(3-0-1)!}{2\cdot 3[(3+0)!]^3}} \left(\frac{2}{3a_0}\right)^{0+3/2} r^0 \mathrm{e}^{-r/3a_0} L_{3+0}^{2\cdot 0+1} \left(\frac{2r}{3a_0}\right) \\ &= -\sqrt{\frac{2}{6^4}} \left(\frac{2}{3a_0}\right)^{3/2} \mathrm{e}^{-\sigma/3} L_3^1 \left(\frac{2\sigma}{3}\right) \\ &= -\frac{1}{27\sqrt{3}a_0^{3/2}} \mathrm{e}^{-\sigma/3} \left[-3! \left(3-3\left(\frac{2\sigma}{3}\right)+\frac{1}{2}\left(\frac{2\sigma}{3}\right)^2\right) \right] \\ &= -\frac{1}{27\sqrt{3}a_0^{3/2}} \mathrm{e}^{-\sigma/3} \left[-\frac{4}{3}\sigma^2 + 12\sigma - 18 \right] \\ &= \frac{1}{81\sqrt{3}a_0^{3/2}} (4\sigma^2 - 36\sigma + 54) \mathrm{e}^{-\sigma/3} \end{split}$$

Thus,

$$Prob(r) = [R_{30}(r)]^2 r^2$$

$$= \left[\frac{1}{3^9 a_0^3} (16\sigma^4 - 288\sigma^3 + 1728\sigma^2 - 3888\sigma + 2916) e^{-2\sigma/3} \right] (a_0\sigma)^2$$

$$= \frac{1}{3^9 a_0} (16\sigma^6 - 288\sigma^5 + 1728\sigma^4 - 3888\sigma^3 + 2916\sigma^2) e^{-2\sigma/3}$$

so

$$0 = \frac{\mathrm{d} \operatorname{Prob}(r)}{\mathrm{d}r}$$

$$= \frac{1}{3^9 a_0} (96\sigma^5 - 1440\sigma^4 + 6912\sigma^3 - 11664\sigma^2 + 5832\sigma) e^{-2\sigma/3}$$

$$- \frac{2}{3^{10} a_0} (16\sigma^6 - 288\sigma^5 + 1728\sigma^4 - 3888\sigma^3 + 2916\sigma^2) e^{-2\sigma/3}$$

$$= \frac{8}{3^{10} a_0} x (-4\sigma^5 + 108\sigma^4 - 972\sigma^3 + 3564\sigma^2 - 5103\sigma + 2187) e^{-2\sigma/3}$$

$$= -4\sigma^5 + 108\sigma^4 - 972\sigma^3 + 3564\sigma^2 - 5103\sigma + 2187$$

Solving this polynomial for its zeroes, and knowing that the most probable distance is going to be the zero of greatest magnitude (orbital penetration peaks will necessarily be smaller than the farthest one out), we have that the most probable distance is

$$\sigma = 13.704$$

$$r = 13.704a_0$$

4. Using non-relativistic quantum mechanics, compute the ratio of the ground-state energy of hydrogen to that of atomic tritium.

Answer. We have from class that

$$E_1 = -\frac{\mu}{2\hbar^2} \left(\frac{(1e)e}{4\pi\epsilon_0}\right)^2 \frac{1}{1^2}$$
$$= -\frac{\mu e^4}{8\hbar^2 \epsilon_0^2}$$

Thus, since

$$\mu_{\rm H} = \frac{m_e m_p}{m_e + m_p}$$

$$= 9.11 \times 10^{-31} \,\text{kg}$$
 $\mu_{\rm T} = \frac{m_e (3m_p)}{m_3 + 3m_p}$

$$= 9.12 \times 10^{-31} \,\text{kg}$$

Therefore, we have that

$$\begin{split} \frac{E_{1_{\rm H}}}{E_{1_{\rm T}}} &= \frac{-\frac{\mu_{\rm H}e^4}{8\hbar^2\epsilon_0^2}}{-\frac{\mu_{\rm T}e^4}{8\hbar^2\epsilon_0^2}} \\ &= \frac{\mu_{\rm H}}{\mu_{\rm T}} \\ \hline E_{1_{\rm H}} : E_{1_{\rm T}} &= 0.999 \end{split}$$

5. The Hamiltonian operator for a hydrogen atom in a magnetic field where the field is in the z-direction is given by

$$\hat{H} = \hat{H}_0 + \frac{\beta_B B_z}{\hbar} \hat{L}_z$$

where \hat{H}_0 is the Hamiltonian operator in the absence of the magnetic field, B_z is the z-component of the magnetic field, and β_B is a constant called the Bohr magneton.

(a) Show that the wave functions of the Schrödinger equation for a hydrogen atom in a magnetic field are the same as those for the hydrogen atom in the absence of the field.

Answer. We have from McQuarrie and Simon (1997, p. 201) that $\hat{L}_z = m\hbar$ for $m = 0, \pm 1, \pm 2, \ldots$. Thus, the solutions to $\hat{H}\psi = E\psi$ will be the solutions to

$$\left(\hat{H}_0 + \frac{\beta_B B_z}{\hbar} \hat{L}_z\right) \psi = E\psi$$
$$\hat{H}_0 \psi + \beta_B B_z m \psi = E\psi$$
$$\hat{H}_0 \psi = (E - \beta_B B_z m) \psi$$

i.e., the original wave functions but with a different constant (which will lead to a different energy). \Box

(b) Show that the energy associated with the wave function $\psi_{n,l,m}$ is

$$E = E_n^{(0)} + \beta_B B_z m$$

where $E_n^{(0)}$ is the energy in the absence of the field and m is the magnetic quantum number.

Answer. Since we have $\hat{H}_0\psi = E_n^{(0)}\psi$ originally and $\hat{H}_0\psi = (E - \beta_B B_z m)\psi$ from part (a), it follows that

$$E - \beta_B B_z m = E_n^{(0)}$$
$$E = E_n^{(0)} + \beta_B B_z m$$

as desired.

References

McQuarrie, D. A., & Simon, J. D. (1997). Physical chemistry: A molecular approach. University Science Books.