4 Endliche Körper und der Satz von Chevalley

Schon bekannt:

- (1) $\forall p \in \mathbb{P}$ gibt es den Körper $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ mit $\#\mathbb{F}_p = p$
- (2) Hat man ein irred. Polynom (Primpolynom) g in $R = \mathbb{F}_p[X]$ mit Grad g = n, so ist $\overline{R} = R/gR$ ein Körper mit $q = p^n$ Elementen, der \mathbb{F}_p als Teilkörper enthält.
- (3) Jeder endl. Körper L enthält primitives ζ , $L^x = L \setminus 0 = \{1, \zeta, ...\}$.

4.1 Untersuchung eines endl. Körpers L mit #L=q

 $\operatorname{ord}(1) = p = \min\{n \in \mathbb{N}_+ | n \cdot 1_L = 0\}$ (Ordnung in (L, +), neutr. Element ist 0, statt x^n steht nx)

Beh.: $p \in \mathbb{P}$

Ann.: p = uv zerlegbar, $1 \le u < p$, $1 \le u < p$, $uv \cdot 1 = (u \cdot 1)(v \cdot 1) = 0$

 $\Rightarrow u \cdot 1 = 0$ oder $v \cdot 1 = 0$, Widerspruch. $\Rightarrow L$ enthält \mathbb{F}_p , wenn man $\mathbb{F}_p \cong \text{Versys}_p = \{0, \dots, p-1\} \ni z$ nimmt und $z \cdot 1$ mit \overline{z} identifiziert (inj. Ringhomomorphismus $\mathbb{F}_p \to L$, $\overline{z} \mapsto z \cdot 1$)

Außerdem ist L ein \mathbb{F} -Vektorrraum, wenn die Skalarmultiplikation so erklärt wird:

 $\alpha \in L, \overline{z} \in \mathbb{F}_p : \overline{z}\alpha = (z \cdot 1) \cdot \alpha \text{ (VR-Axiome leicht nachprüfbar!)}$

 $\#L = q < \infty \Rightarrow n := \dim L < \infty.$

LA I: Basiswechsel liefert einen VR-Isomorphismus $L \to \mathbb{F}_p^n$

 $\Rightarrow q = \#L = \#\mathbb{F}_p^n = p^n$

- (1) Gesucht zu $n \in \mathbb{N}_+, p \in \mathbb{P}$ ein Körper mit $q = p^n$ Elementen.
- (2) Wie eindeutig ist L. (Wunsch: Je zwei solche L's sind isomorph)

<u>Idee:</u> "Kleiner Fermat" gilt in L, d.h. $\forall \alpha \in L : \alpha^q = \alpha$

 $\Rightarrow L$ besteht aus allen Nullstellen α von $X^q - X$

$$\Rightarrow X^q - X = \prod_{\alpha \in L} (X - \alpha)$$

Suche "große"Körper $K \supset \mathbb{F}_p$, so dass $X^q - X$ so zerfällt!

Hoffnung: Die Nullstellen α von $X^q - X$ bilden dann den gesuchten Körper.

Durchführung der Idee: Kette von Hilfssätzen

Hilfssatz (1)

Ist R ein Ring der \mathbb{F}_p als Teilring enthält, so gilt $\forall \alpha, \beta \in R, n \in \mathbb{N}_+, a = p^n$

$$(\alpha \pm \beta)^a = \alpha^a \pm \beta^a$$

Beweis

In
$$\mathbb{Z}$$
 gilt für $1 \leq i \leq p : (1 \cdot 2 \cdot \ldots \cdot i) \binom{p}{i} = p \cdot (p-1) \cdot \ldots \cdot (p-i+1)$ In \mathbb{F}_p gilt für $1 \leq i \leq p : \underbrace{(\overline{1} \cdot \overline{2} \cdot \ldots \cdot \overline{i})}_{\in \mathbb{F}_x^x} \underbrace{(\overline{p})}_{i} = \overline{0} \ldots = \overline{0}$

$$\Rightarrow \overline{\binom{p}{i}} = \overline{0}$$

$$\Rightarrow (\alpha + \beta)^p = \alpha^p + \beta^p + \sum_{i=1}^{p-1} {p \choose i} \alpha^i \beta^{p-i} = \alpha^p + \beta^p, \text{ ok für n} = 1 \text{ (- ähnlich)}$$

Rest Induktion, sei
$$j > 1$$

$$(\alpha + \beta)^{p^j} = (\alpha + \beta)^{p^{j-1} \cdot p} = (\alpha^{p^{j-1}} + \beta^{p^{j-1}})^p = \alpha^{p^{j-1} \cdot p} + \beta^{p^{j-1} \cdot p} = \alpha^{p^j} + \beta^{p^j}$$

Hilfssatz (2)

Sei K ein Körper, der \mathbb{F}_p als Teilkörper enthält, so dass $(q = p^n, n \in \mathbb{N}_+)$

$$X^{q} - X = \prod_{j=0}^{q-1} (X - \alpha_{j}) \text{ mit } \alpha_{0}, \dots, \alpha_{q-1} \in K$$

Dann ist $L := \{\alpha_0, \dots, \alpha_{q-1}\}$ ein Körper mit q Elementen.

Beweis

 $K \ni \alpha$ Nullstelle von $X^q - X \Leftrightarrow \alpha^q - \alpha = 0 \Leftrightarrow \alpha^q = \alpha$

 $\alpha \in L \Leftrightarrow \alpha^q = \alpha$

Prüfe nach: (L,+) ist Untergruppe von (K,+), $(L^x=L\setminus 0,\cdot)$ ist Untergruppe von (K^x,\cdot) \Leftrightarrow Teilkörper, $\mathbb{F}_p \subseteq L$ wegen $\alpha^p = \alpha = \alpha^q$ für $\alpha \in \mathbb{F}_p$

 $\alpha, \beta \in L \Rightarrow \alpha^q = \alpha, \beta^q = \beta \Rightarrow (\alpha - \beta)^q = \alpha^q - \beta^q \text{ (HS1)} = \alpha - \beta \Rightarrow \alpha - \beta \in L \text{ also } L$ Untergruppe von K.

Analog L^x $\alpha, \beta \in L^x \Rightarrow \alpha^q = \alpha, \beta^q = \beta \Rightarrow \alpha^q(\beta^q)^{-1} = \alpha\beta^{-1} \Rightarrow \alpha\beta^{-1} \in L^x$, also L^x Untergruppe von K^x .

Wieso #L = q? Wieso hat $X^q - X$ in K nur einfache Nullstellen?

 $\alpha \in L$, Wende HS1 an auf K[X]

 $X^{q} - X = (X - \alpha)^{q} = X^{q} - \alpha^{q} - (X - \alpha) \Rightarrow 0 = (X - \alpha)^{q} - (X - \alpha) = (X - \alpha)((X - \alpha)^{q-1} - 1),$ α ist nicht Nullstelle von $(X-\alpha)^{q-1}-1$

Die NST ist einfach, Hinweis: $L = \{\zeta - \alpha | \zeta \in L\}$

Existenz von L: Suche $K \supseteq \mathbb{F}_p$ (Körper), so dass $K \neq NST$ von $X^q - X$ enthält.

Hilfssatz (3)

Ist K ein Körper, $f \in K[X]$, Grad f > 0, $K \supseteq \mathbb{F}_p$ (als Teilkörper), so gibt es einen endl. Körper \tilde{K} , der K (und damit \mathbb{F}_n) als Teilkörper enthält und ein $\alpha \in \tilde{K}$ mit $f(\alpha) = 0$

Beweis

Primzerlegung von f, sei $f = g_1^{m_1} \cdot \ldots \cdot g_t^{m_t}, g_j$ irred. in K[X] (EuFa-Satz)

$$f(\alpha) = 0 \Rightarrow 0 = g_1(\alpha)^{m_1} \cdot \dots \cdot g_t(\alpha)^{m_t} \Rightarrow \exists j : g_j(\alpha) = 0$$

So ein α ist gesucht! (und K)

 $K := K[X]/g_iK[X]$ ist ein Körper, der K als Teilkörper enthält.

$$\alpha = \overline{X}$$
 ist NST von g_i , also $f! g_i(\overline{X}) = \overline{g_i(X)} = \overline{0} = 0$

Hilfssatz (4)

Es gibt einen endl. Körper K, in dem $f \in \mathbb{F}_p[X]$ (Grad f > 0, f normiert) in Linearfaktoren zerfällt, d.h.

$$f = \prod_{j=1}^{m} (X - \alpha_j) \quad (\alpha_1, \dots, \alpha_m \in K)$$

Beweis

Induktion nach $m = \text{Grad } f, m = 1, f = X - \alpha, \alpha \in \mathbb{F}_p$

$$m > 1 \ \tilde{\mathbb{F}}_p$$
 nach HS3 mit $\alpha \in \tilde{\mathbb{F}}_p$, $f(\alpha) = 0$
 $\Rightarrow X - \alpha | f \text{ in } \tilde{\mathbb{F}}_p[X]$
 $\Rightarrow f = (X - \alpha)\tilde{f}$, Grad $\tilde{f} = \text{Grad } f - 1$
IH für $\tilde{f} \Rightarrow \text{Beh}$.

Hilfssatz (5)

Sei M ein Körper mit p^n Elementen, $R = \mathbb{F}_p[X], \xi \in M, g \in R$ mit $g(\xi) = 0$ und g irreduzibel.

Ist dann entweder grad g = n oder ξ ein primitives Element von M, so seind die Körper M und $R/gR = \overline{R}$ isomorph. Ein irreduzibles Polynom, das ξ als Nullstelle hat, hat den Grad n.

Beweis

 $\psi: \overline{R} \to M, \overline{h} \mapsto h(\xi) = \psi(\overline{h})$ ist der gesuchte Isomorphismus.

(1) ψ ist wohldefiniert:

$$\overline{h_1} = \overline{h_2} \iff h_1 \equiv h_2 \mod g$$

 $\iff \exists u \in R : h_2 = h_1 + ug$
 $\implies h_2(\xi) = h_1(\xi) + u(\xi) \cdot g(\xi) = h_1(\xi)$

(2) ψ ist ein Ringisomorphismus, also $\psi(\overline{h_1} + \overline{h_2}) = \psi(\overline{h_1}) + \psi(\overline{h_2})$:

Klar wegen $(h_1 \pm h_2)(\xi) = h_1(\xi) \pm h_2(\xi)$

(3) ψ ist injektiv:

Es genüg zu zeigen: Kern $\psi = \{0\}$.

Ann:
$$\alpha \in \text{Kern } \psi$$
, $\alpha \neq 0$. $1 = \psi(1) = \psi(\alpha^{-1}\alpha) = \psi(\alpha^{-1})\psi(\alpha) = 0$, Wid!

- (4) ψ ist surjektiv:
 - a) grad $q = n \implies \#\overline{R} = p^n$, $\psi: M \to \overline{R}$ injektiv. Da $\#M = p^n \implies \psi$ surjektiv.
 - b) ξ primitiv $\iff M = \{0, \xi, \xi^2, \dots, \xi^{q-2}\}. \ \psi(\overline{R}) \ni h(\xi)$ für z.B. $h = X^n \ (n \in \mathbb{N})$ $\implies \psi(\overline{R}) \ni X^n(\xi) = \xi^n \implies \psi(\overline{R}) \supseteq M \implies \psi$ surjektiv.

Satz 4.1 (Endliche-Körper-Raum)

- (1) Ist L ein endlicher Körper, #L = q, dann $\exists p \in \mathbb{P}, n \in \mathbb{N}_+$ mit $q = p^n$. (Genauer: Dann ist \mathbb{F}_p ein Teilkörper von L und K ein \mathbb{F}_p -Vektorraum der Dimension n).
- (2) Zu jedem $n \in \mathbb{N}_+$, $p \in \mathbb{P}$, existiert ein Körper mit $q = p^n$ Elementen. Zusätzlich gilt: Es gibt ein irreduzibles Polynom $g = \mathbb{F}_p[X]$ mit grad g = n. Es ist $g \mid X^q X$.
- (3) Je zwei Körper mit q Elementen sind isomorph.

Also ist es gerechtfertigt, von dem Körper \mathbb{F}_q oder GF(q) zu sprechen.

Beweis

- (1) Wurde bereits geleistet. (Aber wo?)
- (2) Erinnerung: Es gibt einen Körper K, der \mathbb{F}_p enthält, so dass $X^q X = \prod_{j=0}^{q-1} (X \alpha_j)$, $(\alpha_j \in K)$, $L = \{\alpha_j \mid j = 0, \dots, q-1\}$ ist Körper mit q Elementen.
- (3) M, L seien Körper mti $q = p^n$ Elementen. ξ sei ein primitives Element von M (Existenz: Satz vom primitiven Element). $X^q X = \prod_{\alpha \in L} (X \alpha)$. Betrachte die Primzerlegung $X^q X = \prod_{j=1}^t p_j^{n_j}$ in $\mathbb{F}_p[X]$, p_j irreduzibel in R, die es nach dem EuFa-Satz gibt.

Wegen $(X^q - X)(\xi) = 0 = \prod_{j=1}^t p_j(\xi)^{n_j}$ existiert ein $j \in \{1, \dots, t\}$, $p_j(\xi) = 0$, $p_j = g$ irreduzibel in $\mathbb{F}_p[X]$. Hilfssatz 5 liefert: $M \cong R/gR$ und grad g = n (wo $\#M = p^n$). Wir folgern also: Jedes p_j (also auch g) ist Produkt gewisser $(X - \alpha)$ (EuFa-Satz für L[X]) $\Longrightarrow \exists \alpha \in L : X - \alpha \mid g \Longrightarrow g(\alpha) = 0$. Wir benutzen nun den Hilfssatz für L statt M und erhalten: $\overline{R} = R/gR \cong L$. Damit erhalten wir: $L \cong M$.

Satz 4.2 (Teilkörpersatz)

- (1) Sei K ein Teilkörper von \mathbb{F}_q mit $q=p^n$ wie oben. Dann existiert ein $d\in\mathbb{N}$ mit $d\mid n$ und $K\cong\mathbb{F}_{p^d}$.
- (2) Ist $d \mid n$, so gibt es genau einen Teilkörper von \mathbb{F}_q mit $\#K = p^d$

Fazit: Teilkörper enpsrechen bijektiv den Teilern d von n.

Beweis

Bemerkung: Ist K ein Teilkörper von L, so ist L ein K-Vektorraum (Skalare Multiplikation ist die von L).

Also ist \mathbb{F}_q ein K-Vektorraum \Longrightarrow (Basiswahl) $\mathbb{F}_q \cong K^{d'}$; d' ist die Dimension des K-Vektorraums $\mathbb{F}_q = q^n = q = \# K_q = (p^d)^{d'}$, (da $\# K = p^d$) $\Longrightarrow n = dd' \Longrightarrow d \mid n$.

Ist $\#K = p^d$, $d \mid n$, K Teilkörper von \mathbb{F}_q , so muss K aus den Nullstellen von $X^{p^d} - X$ in \mathbb{F}_p bestehen, also ist K eindeutig bestimmt. $(K = \{\alpha^{p^{\frac{n}{d}}} \mid \alpha \mathbb{F}_p\})$.

4.2 Die Sätze von Chevalley und Warming

Es sei generell hier $K = \mathbb{F}_q$, $q = p^n$ wie oben, mit dem wichtigsten Fall n = 1, $K = \mathbb{F}_p$.

Das Problem ist: $f \in K[X_1, ..., X_n]$ liege vor mit $f(\underline{0}) = 0$, $\underline{0} = (0, ..., 0) \in K^n$. Gesucht: Möglichst gute Bedingungen, so dass f eine nicht-triviale Nullstelle $\underline{x} = (\alpha_1, ..., \alpha_n) \in K^n$ besitzt. (nicht-trivial: $x \neq 0$).

Bezeichnungen:

- (1) $f = \sum_{\underline{m} \in \mathbb{N}^n} \alpha_{\underline{m}} X^{\underline{m}}$, wobei $\underline{m} = (m_1, \dots, m_n)$, $\underline{0} = (0, \dots, 0)$, $\alpha_{\underline{m}} \in K$, davon nur endlich viele $\neq 0$.
- (2) $X^{\underline{m}} := X_1^{m_1} \cdots X_n^{m_n}$

(3) Setze $|\underline{m}| = m_1 + \cdots + m_n$. Damit ist der Gesamtgrad grad f wie folgt definiert: grad $0 = -\infty$, $f \neq 0$: grad $f = \max\{|m| \mid \alpha_m \neq 0\}$.

Satz 4.3 (von Warming)

Sei $f \in \mathbb{F}_q[X_1, \dots, X_n]$, grad f < n. Dann ist die Anzahl der Nullstellen von f in \mathbb{F}_q^n durch p teilbar.

Dabei heißt $\mathcal{V}_f(k) := \{\underline{x} \in K^n \mid f(\underline{x}) = 0\}$ die Nullstellenmannigfaltigkeit von f in K.

Allgemeiner:
$$f_1, \ldots, f_l \in K[X_1, \ldots, K_n]$$
: $\mathcal{V}_{f_1, \ldots, f_l}(K) = \{\underline{x} \in K^n \mid f_1(\underline{x}) = \cdots = f_l(\underline{x}) = 0\} = \bigcap_{i=1}^l \mathcal{V}_{f_i}(K)$

Die Aussage des Satzen ist nun: Ist grad f < n, so gilt $p \mid \# \mathcal{V}_f(K)$

Satz 4.4 (Satz von Chevalley)

Sei $f \in K[X_1, ..., X_n], f(\underline{0}) = 0$ und grad f < n. Dann hat f ein nichttriviale Nullstelle.

Es ist klar: Satz von Warming impliziert den Satz von Chevalley, da: $f(\underline{0}) = 0 \implies \underline{0} \in \mathcal{V}_f(K) \implies \#\mathcal{V}_f(K) > 0.$ $p \mid \mathcal{V}_f(K) \implies \#\mathcal{V}_f(K) \geq p \geq 2$

Spezielles Beispiel:

Satz 4.5

Seien $\alpha_1, \ldots, \alpha_{n+1} \in \mathbb{Z}$, $d \leq n$, $d \in \mathbb{N}$. Dann hat die Kongruenz $\alpha_1 x_1^d + \cdots + \alpha_{n+1} x_{n+1}^d \equiv 0$ mod p stets eine nicht-triviale Lösung $x = (x_1, \ldots, x_n) \in \mathbb{Z}^{n+1}$

Noch spezieller: $\alpha_1 x_1^2 + \alpha_2 x_2^2 + \alpha_3 x_3^2 \equiv 0$ hat stets nicht-triviale Lösung $(x_1, x_2, x_3 \in \mathbb{Z})$.

Beweis

grad $\alpha_1 x X^d + \cdots + \alpha_{n+1} X_{n+1}^d \le d \le n+1$ (Variablenzahl). Satz von Chevalley liefert die Behauptung.

Gegenbeispiel: $x_1^2 + x_2^2 \equiv 0 \mod 3$: $x_i^2 \in \{0,1\} \implies \text{Jede L\"osung hat } 3 \mid x_1 \text{ und } 3 \mid x_2$

Weitere Sätze (siehe z.B. Lidl/Niederreiter, Finite Fields):

Satz 4.6 (Satz I)

Sei $d = \operatorname{grad} f_1 + \cdots + \operatorname{grad} f_l < n \text{ und } f_j \in \mathbb{F}_q[X_1, \dots, X_n]$. Falls $\mathcal{V}_{f_1, \dots, f_l}(\mathbb{F}_q) \neq \emptyset$, so gilt: $\#\mathcal{V}_{f_1, \dots, f_l}(\mathbb{F}_q) \geq w^{n-d}$

Satz 4.7 (Satz II)

Falls $f \in \mathbb{F}_1[X_1, \dots, X_n]$, 0 < grad f = d, so gilt: $\#\mathcal{V}_f(\mathbb{F}_q) \le d \cdot 1^{n-1}$

Satz 4.8

Sei $0 \neq f \in \mathbb{Z}[X_1, \dots, X_n]$. Dann gibt e es eine konstante c_f unabhängig von p, so dass

$$\forall p \in \mathbb{P} : |\#\mathcal{V}_f(\mathbb{F}_q) - p^{n-1}| \le c_f \frac{p^{n-1}}{\sqrt{p}}$$

Der Beweis ist äußerst schwierig, bereits für n=2.

Beweis

Der Beweis des Satzes von Warming ?? gliedert sich in mehrere Ideen, wie bringen sie hier schön isoliert. In vielen Büchern ist der Beweis ziemlich unübersichtlich.

Idee 1: Das Kronecker- δ ist als Polynom darstellbar.

Lemma 4.9

 $\delta: K \to K$ sei definiert wie folgt:

$$\delta(\alpha) = \delta_0(\alpha) = \begin{cases} 1, & \alpha = 0 \\ 0, & \text{sonst} \end{cases}$$

Dann $\delta(\alpha) = 1 - \alpha^{q-1} = (1 - X^{q-1})(\alpha)$, weil $\alpha^{q-1} = 1$, wenn $\alpha \in K^{\times} = \mathbb{F}_q^{\times}$ und $\alpha^{q-1} = 0$, wenn $\alpha = 0$.

Satz 4.10

Jede Funktion $\mathbb{F}_1 \to \mathbb{F}_1$ ist als Polynom darstellbar.

Beweis

Übung.

Idee 2: Aus f kann man eine Funktion F konstruieren, so dass F die Nullstellen von f zählen hilft.

 $F = A - f^{q-1}$. Dann

$$F(x) = 1 - f(x)^{q-1} = \delta_{0, f(x)} = \begin{cases} 1, & x \in V_f(K) \\ 0, & \text{sonst} \end{cases}$$

Es folgt die Formel $\sum_{x \in K^n} = \#V_f(K) \cdot 1_K$.

Idee 3: Versuche die linke Seite der Formel zu berechnen, nämlich $\sum_{x \in K^n} g(x), g \in K[X_1, X_2, \dots, X_n]$. Beginne mit $n = 1, g = X^k$. $\sum_{\alpha \in K} \alpha^k = ?$.

Lemma 4.11

Ist $k \in \mathbb{N}$ und k = 0 oder $q - a \nmid k$, so ist $\sum_{\alpha \in K} \alpha^k = 0$ (Dabei muss $0^0 = 1$ definiert werden).

Beweis

k=0: $\sum_{\alpha\in K}\alpha^0=\sum_{\alpha\in K}1=q\cdots 1_K=0$ und $1_Kq=p^n$. k>0: Dann existiert ein primitives Element $\xi\in K$, das heißt, $K^\times=K\setminus\{0\}=\{1,\xi,\xi^2,\ldots,x^{q-2}\}$ und ord $\xi=q-1$, daraus folgt $\xi^k\neq 1$ (laut Elementarordnungs-satz).

$$\sum_{\alpha \in K} \alpha^k = \sum_{\alpha \in K \setminus \{0\}} \alpha^k = \sum_{j=0}^{q-2} \xi^{j-k} = \sum_{j=0}^{q-2} \left(\xi^k \right)^j = \frac{\xi^{k(q-1)} - 1}{\xi^k - 1} \text{ (geometrische Reihe!)}$$
(wegen $\xi^{q-1} = 1$).

Lemma 4.12

Sei $g \in K[X_1, X_2, \dots, X_n]$, grad g < n(q-1), dann ist $\sum_{x \in K^n} g(x) = 0$.

Beweis

Ohne Beschränkung der Allgemeinheit ist $g = x^m$ mit |m| < n(q-1), $m \in K^n$, denn wenn $g = \sum \beta_m X^m$, dann $\forall m$ mit $\beta_m \neq 0$: |m| < n(q-1), denn die Summe von Nullen ergibt null. Weiterhin gilt

$$\sum_{x \in K^n} X^m(x) = \sum_{(\alpha_1, \alpha_2, \dots, \alpha_n) \in K^n} \alpha_1^{m_1} \cdot \alpha_2^{m_2} \cdot \dots \cdot \alpha_n^{m_n}$$

(Durch Ausmultiplizieren erhält man

$$\prod_{j=1}^{n} \left(\sum_{\alpha_j \in K} \alpha_j^{m_j} \right) = \sum_{(\alpha_1, \alpha_2, \dots, \alpha_n) \in K^n} \alpha_1^{m_1} \cdot \alpha_2^{m_2} \cdot \dots \cdot \alpha_n^{m_n}.$$

(Kann man, wenn man Lust hat, mit Induktion beweisen))

Voraussetzung: $m_1 + m_2 + \cdots + m_n < n(q-1) \implies \exists j \in \{1, 2, \dots, n\} \text{ mit } m_j < q-1 \implies m_j = 0 \text{ oder } q-1 \mid m_j$. Anwendung von Lemma 4.11 mit $k = m_j$

$$\implies \sum_{\alpha_j \in K} \alpha_j^{m_j} = 0 \implies \prod \sum \alpha_j^{m_j} = 0 = \sum X^m(x).$$

Wende das Lemma 4.12 an auf $g = F = 1 - f^{q-1}$. grad $g = (q-1)\underbrace{\operatorname{grad} f}_{< n} \implies$

 $\operatorname{grad} g < (q-1)n$, also kann letztes Lemma angewandt werden

$$\implies \sum_{x \in K^n} F(x) = 0 = \#V_f(K) \cdots 1_k \implies p = \operatorname{ord} 1_K \mid \#V_f(K).$$