Power and Size

1. Suppose we observe a single $X|\theta \sim \text{Exp}(\theta)$, so $F_X(x) = 1 - e^{-\theta x}$ for x > 0. We have the following hypothesis testing procedure δ :

$$H_0: \theta \ge 1$$
 vs. $H_1: \theta < 1$

Our rule is reject H_0 if $X \geq 1$.

- (a) Why does this rule seem appropriate for the given set of hypotheses?
- (b) What is the power function $\pi(\theta|\delta)$ of this test? Is it increasing or decreasing in θ ?
- (c) What is the probability of a Type II error? What is the interpretation as θ increases? Why does this "make sense"?
- (d) For after next class: What is the size of this test?
- 2. Suppose we observe a single $X|\theta \sim \text{Poisson}(\theta)$. We have the following hypothesis testing procedure δ :

$$H_0: \theta \le 1$$
 vs. $H_1: \theta > 1$

Our rule is reject H_0 if $X \ge c$ for some c.

- (a) Why does this rule seem appropriate for the given set of hypotheses?
- (b) What is the power function $\pi(\theta|\delta)$ of this test? For fixed c, is it increasing or decreasing in θ ?
- (c) For after next class (and good practice for Midterm 2): Find c to make the size of this test δ as close as possible to 0.1, without exceeding 0.1. R may be helpful.