

Thinking about algorithm complexity and estimating it

Sukrit Gupta

October 13, 2023

Outline

- Asymptotic Notation
- 2 Small O Notation
- **3** Big Ω Notation
- 4 Θ Notation

Acknowledgement and disclaimer

All mistakes (if any) are mine.

I have used several other sources which I have referred to in the appropriate places.

Section 1

Asymptotic Notation

Asymptotic notation

- The asymptotic notation provides a formal way to talk about the relationship between the running time of an algorithm and the size of its inputs.
- As a proxy for "very large", asymptotic notation describes the complexity of an algorithm as the size of its inputs approaches infinity.
- Let's quickly look at Big O notation again.

The Big O Notation (loose upper bound)

Definition

For functions f and g, we say that $f \in O(g)$ when there exists **at least one** choice of a constant k > 0, where you can find a constant a such that the inequality $0 \le f(x) \le k \cdot g(x)$ holds for all x > a.

Warm Up.

If
$$f(x) = a_m x^m + \dots + a_i x + a_0$$
, prove that $f(x) = O(x^m)$
Proof:

- $f(x) \le \sum_{i=0}^m |a_i| x^i$
- $f(x) \le x^m \sum_{i=0}^m |a_i| x^{i-m}$
- $f(x) \le x^m \sum_{i=0}^m |a_i| \text{ for } x \ge 1.$
- So, $f(x) = O(x^m)$.

Section 2

Small O Notation

Imagine ...

- You're a **small** kid who is fascinated with his career and likes to dream big.
- You see your father doing his job and drawing a salary f(x), where x denotes his age.
- You imagine that your salary g(x) will be better than your father's at the same age, irrespective of the external factors k that crop up.
- \blacksquare All the external factors contribute a factor k in your life.
- If your salary is f(x) = O(g(x)) this may not be true, depending upon external factors. How?
- But if it is f(x) = o(g(x)), like your "small" child brain imagined, your salary will always exceed your father's salary no matter what the external factors k are.

The Small O notation (strict upper bound)

Definition

For functions f and g, we say that $f \in o(g)$ when for **every** choice of a constant k > 0, you can find a constant a such that the inequality $0 \le f(x) \le k \cdot g(x)$ holds for all x > a.

- f(n) is $O(n^3)$ because it is bounded by n^3 for sufficiently large n.
- f(n) is not $o(n^3)$ because f(n) can grow at the same rate as n^3 or even faster. However, it is $o(n^4)$ because for all n greater than a certain value, f(n) is always less than n^4 .

Example: f(n) = 2n + 10

- \bullet f(n) is O(n) because for sufficiently large n, it grows linearly.
- f(n) is not o(n) because f(n) can grow at the same rate as n. However, it is $o(n^2)$ because for all n greater than a certain value, f(n) is always less than n^2 .

Example: f(n) = 100

- f(n) is O(1) because it is a constant function and does not depend on n.
- f(n) is o(n) because it grows slower than any linear function. However, it is not o(1) because f(n) is not significantly smaller than 1 for large n.

Comments on the Small O notation

- For the big O, the inequality $0 \le f(x) \le k \cdot g(x)$ has to hold for at least one constant k.
- For small O, the inequality $0 \le f(x) \le k \cdot g(x)$ has to hold for all constants k. k can be very small. Each k can have a corresponding a for the condition x > a.
- Thus, small O makes a stronger statement than the corresponding big O notation, i.e., $o(g(x)) \subset O(g(x))$.
- Coming back of our example of the salaries.
- If your father worked in India with salary f(x) and you move to US with a salary g(x), it is likely that your salary f(x) = o(g(x)).
- However, in India, the relationship would most likely be f(x) = O(g(x)).
- One thing's for sure, Happiness = O(f(x)). Can anyone explain why I say so?
- After a certain threshold, happiness is independent of the salary. ;-)

Section 3

Big Ω Notation

The Big Ω Notation (loose lower bound)

Definition

For functions f and g, we say that $f \in \Omega(g)$ when there exists **at least one** choice of a constant k > 0, where you can find a constant a such that the inequality $f(x) \ge k \cdot g(x) \ge 0$ holds for all x > a.

- The big Omega gives a lower bound of a function.
- For example, the formula $f(x) \in \Omega(x^2)$ means that the function f grows faster than the quadratic polynomial x^2 .

Comments on the Big Ω notation

- Big Ω notation is used to give a lower bound on the asymptotic growth (often called the order of growth) of a function.
- The Big Ω notation is loose and can often be *abused* by making statements like, "the complexity of f(x) is $\Omega(x)$ ". This means that in the best case f will take $\Omega(x)$ steps to run.
- However, it can be much more than $\Omega(x)$.
- The big Ω represents the best case performance.

f(n) is $\Omega(n^3)$ because, for sufficiently large n, f(n) is greater than or equal to $5n^3$.

f(n) is $\Omega(n)$ because, for sufficiently large n, f(n) is greater than or equal to 2n.

f(n) is $\Omega(1)$ because it is a constant function and, for any positive constant c, f(n) is greater than or equal to c for all n greater than a certain value.

Coming back to the looseness of the bounds

- The big O and the big Ω notations are loose.
- For $f(x) = x^2$, the loose bounds can often be *abused* by making statements like "f(x) is $O(x^3)$ ". This means that in the worst case f will take $O(x^3)$ steps to run. True, but it can be much less than $O(x^3)$.
- Or "f(x) is $\Omega(x)$ ". This means that in the best case f cannot take less than O(x) steps to run. True, but it can be much more than O(x).
- What do we do?
- \blacksquare The big Theta!

Section 4

 Θ Notation

The Θ Notation

Definition

For functions f and g, we say that $f \in \Theta(g)$ when there exists **at least one** choice of a constants $k_1 > 0$ and $k_2 > 0$ where you can find a constant a such that the inequality $0 \le k_1 \cdot g(x) \le f(x) \le k_2 \cdot g(x)$ holds for all x > a.

f(n) is $\theta(n^3)$ because, for sufficiently large n, f(n) is both upper bounded by $5n^3$ times a constant and lower bounded by $5n^3$ times a constant.

f(n) is $\theta(n)$ because, for sufficiently large n, f(n) is both upper bounded by 2n times a constant and lower bounded by 2n times a constant.

f(n) is $\theta(1)$ because it is a constant function. In this case, the function is both the upper and lower bound of a constant times a constant.

Comments on the Θ notation

- The Big Θ sandwiches f(x) between $k_1g(x)$ and $k_2g(x)$.
- It is the tightest bound on the performance of a function, i.e. the best of all the worst case times that the algorithm can take.

How do you remember this?

Table: Summary. Remember \exists means "there exists" and \forall means "for all".

Notation	Name	Description	Formal definition
f(x) = O(g(x))	Big O	f is bounded above by g asymptotically	$\exists k > 0 \exists a \forall x > a \colon$ $ f(x) \le k g(x)$
f(x) = o(g(x))	Small O	f is $dominated$ by g asymptotically	$\forall k > 0 \exists a \forall x > a : $ $ f(x) < k g(x)$
$f(x) = \Omega(g(x))$	Big Omega	f is bounded $below$ by g asymptotically	$\exists k > 0 \exists a \forall x > a \colon$ $f(x) \ge k g(x)$
$f(x) = \Theta(g(x))$	Big Theta	f is bounded both above and below by g asymptotically	$\exists k_1 > 0 \exists k_2 > 0$ $\exists a \forall x > a \colon$ $k_1 g(x) \le f(x) \le k_2 g(x)$

What did we learn today?

- Asymptotic Notation
- 2 Small O Notation

- **3** Big Ω Notation
- 4 Θ Notation

Thank you!

Figure: Need your feedback for better delivery.