Тестовое задание для компании ООО "РИТМ"

В. Шаршуков

17 июня 2022 г.

Содержание

1	Формулировка	3
2	Аналитическое решение	4
3	Решение методом Рунге-Кутты	6
4	Графики решений	7
5	Таблица значений	8

1 Формулировка

Написать программу численного решения задачи Коши для уравнения:

$$y^{(5)} + 15y^{(4)} + 90y''' + 270y'' + 405y' + 243y = 0, \quad x \in [0; 5],$$

$$y(0) = 0, \quad y'(0) = 3, \quad y''(0) = -9, \quad y'''(0) = -8, \quad y^{(4)}(0) = 0.$$
(1)

- 1. Реализовать какую-либо численную схему **без использования готовых ре- шений**.
- 2. Построить график решения.

Допустимо использовать сторонние средства построения графиков: gnuplot, Excel, etc.

3. Обосновать достоверность полученного результата.

2 Аналитическое решение

Уравнение 1 является линейным однородным дифференциальным уравнением пятого порядка с постоянными коэффициентами, поэтому для нахождения общего решения составим характеристическое уравнение:

$$\lambda^5 + 15\lambda^4 + 90\lambda^3 + 270\lambda^2 + 405\lambda + 243 = 0.$$

Замечая, что

$$15 = 5 \cdot 3$$
, $90 = 10 \cdot 3^2$, $270 = 10 \cdot 3^3$, $405 = 5 \cdot 3^4$, $243 = 3^5$,

приходим к уравнению

$$(\lambda + 3)^5 = 0,$$

откуда следует, что характеристическое уравнение имеет ровно один корень $\lambda=-3$ с кратностью 5, поэтому общее решение исходного дифференциального уравнения представимо в виде

$$y = (C_0 + C_1 x + C_2 x^2 + C_3 x^3 + C_4 x^4)e^{-3x}.$$

Найдём теперь производные до 4 порядка включительно:

$$y' = (C_1 + 2C_2x + 3C_3x^2 + 4C_4x^3)e^{-3x}$$

$$-3\underbrace{(C_0 + C_1x + C_2x^2 + C_3x^3 + C_4x^4)e^{-3x}}_{y}$$

$$= (C_1 + 2C_2x + 3C_3x^2 + 4C_4x^3)e^{-3x} - 3y.$$

$$y'' = (2C_2 + 6C_3x + 12C_4x^2)e^{-3x}$$

$$-3\underbrace{(C_1 + 2C_2x + 3C_3x^2 + 4C_4x^3)e^{-3x}}_{y' + 3y} - 3y'$$

$$y' + 3y$$

$$= (2C_2 + 6C_3x + 12C_4x^2)e^{-3x} - 6y' - 9y.$$

$$y''' = (6C_3 + 24C_4x)e^{-3x}$$

$$-3\underbrace{(2C_2 + 6C_3x + 12C_4x^2)e^{-3x}}_{y'' + 6y' + 9y} - 6y'' - 9y'$$

$$y'' + 6y' + 9y$$

$$= (6C_3 + 24C_4x)e^{-3x} - 9y'' - 27y' - 27y.$$

$$y^{(4)} = 24C_4e^{-3x} - 3\underbrace{(6C_3 + 24C_4x)e^{-3x}}_{y''' + 9y'' + 27y' + 27y} - 27y'' - 27y'$$

$$= 24C_4e^{-3x} - 12y''' - 54y'' - 108y' - 81y.$$

Пользуясь начальными условиями 1, определим значения констант:

$$y(0) = 0,$$
 \Longrightarrow $C_0 = 0.$
 $y'(0) = 3,$ \Longrightarrow $C_1 = 3.$
 $y''(0) = -9,$ \Longrightarrow $-9 = 2C_2 - 18,$ $C_2 = \frac{9}{2}.$
 $y'''(0) = -8,$ \Longrightarrow $-8 = 6C_3 + 81 - 81,$ $C_3 = -\frac{4}{3}.$
 $y^{(4)}(0) = 0,$ \Longrightarrow $0 = 24C_4 + 96 + 486 - 324,$ $C_4 = -\frac{43}{4}.$

Итак, искомое решение задачи Коши:

$$y_1 = e^{-3x} (3x + \frac{9}{2}x^2 - \frac{4}{3}x^3 - \frac{43}{4}x^4)$$

$$= -\frac{1}{12}xe^{-3x} (129x^3 + 16x^2 - 54x - 36).$$
(2)

3 Решение методом Рунге-Кутты

Для начала, произведя замену переменных

$$y_1 = y$$
, $y_2 = y' = y'_1$, $y_3 = y'' = y'_2$, $y_4 = y''' = y'_3$, $y_5 = y^{(4)} = y'_4$,

запишем дифференциальное уравнение 1 в виде системы:

$$\begin{cases} y_1' = y_2, \\ y_2' = y_3, \\ y_3' = y_4, \\ y_4' = y_5, \\ y_5' = -243y_1 - 405y_2 - 270y_3 - 90y_4 - 15y_5. \end{cases}$$

Для удобства введём обозначения

$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -243 & -405 & -270 & -90 & -15 \end{pmatrix};$$

тогда система дифференциальных уравнений запишется в векторной форме:

$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = \vec{f}(x, \vec{y}) = A\vec{y}.$$

В качестве численного метода решения задачи Коши возьмём метод Рунге-Кутты четвёртого порядка с постоянным шагом h и итерационной формулой

$$\vec{y}_{i+1} = \vec{y}_i + \frac{1}{6} \left(\vec{k}_1 + 2\vec{k}_2 + 2\vec{k}_3 + \vec{k}_4 \right),$$

где

$$\vec{k}_1 = h\vec{f}(x_i, \vec{y}_i) = hA\vec{y}_i,$$

$$\vec{k}_2 = h\vec{f}(x_i + \frac{h}{2}, \vec{y}_i + \frac{1}{2}\vec{k}_1) = hA(\vec{y}_i + \frac{1}{2}\vec{k}_1),$$

$$\vec{k}_3 = h\vec{f}(x_i + \frac{h}{2}, \vec{y}_i + \frac{1}{2}\vec{k}_2) = hA(\vec{y}_i + \frac{1}{2}\vec{k}_2),$$

$$\vec{k}_4 = h\vec{f}(x_i + h, \vec{y}_i + \vec{k}_3) = hA(\vec{y}_i + \vec{k}_3).$$

Начальные условия: $x_0 = 0$, $\vec{y}_0 = (0, 3, -9, -8, 0)^T$.

4 Графики решений

Введём обозначения:

- \bullet $y_n(x)$ решение, полученное с помощью численного метода.
- ullet $y_e(x)$ решение, полученное аналитически.

Рис. 1: Графики решений

5 Таблица значений

Шаг: h = 0.1.

x	$y_n(x)$	$y_e(x)$	$y_e(x) - y_n(x)$
0.00	0.00000e+00	0.00000e+00	0.00000e+00
0.10	2.53667e-01	2.53798e-01	1.31482e-04
0.20	4.12751e-01	4.12780 e-01	2.84456e-05
0.30	4.80619e-01	4.80535 e-01	-8.43558e-05
0.40	4.69844e-01	4.69702 e-01	-1.41684e-04
0.50	3.98756 e-01	3.98613e-01	-1.43465e-04
0.60	2.87531e-01	2.87422e-01	-1.09742e-04
0.70	1.55164 e-01	1.55102e-01	-6.13886e -05
0.80	1.76249e-02	1.76114e-02	-1.35458e-05
0.90	-1.12936e-01	-1.12910e-01	2.52220 e-05
1.00	-2.28242e-01	-2.28191e-01	5.16016e-05
1.10	-3.23485e-01	-3.23419e-01	6.57289 e-05
1.20	-3.96679e-01	-3.96609e-01	6.96092 e-05
1.30	-4.47967e-01	-4.47901e-01	6.59687e-05
1.40	-4.78954e -01	-4.78897e-01	5.75325 e-05
1.50	-4.92140e- 01	-4.92094e-01	4.66366e-05
1.60	-4.90467e-01	-4.90431e-01	3.50744e-05
1.70	-4.76977e-01	-4.76953e-01	2.40865 e - 05
1.80	-4.54587e-01	-4.54572e-01	1.44291e-05
1.90	-4.25933e- 01	-4.25926e-01	6.47431e-06
2.00	-3.93296e-01	-3.93295e-01	3.14252e-07