$oldsymbol{\mathsf{L}}$ Schéma Terre-Terre

1.1 Caractéristiques générales

Définition 1.1: Schéma TT

Schéma de liaison à la terre dans lequel :

Neutre : relié à la terre ; Masses : reliées à la terre.

Dans le SLT TT, le point neutre du transformateur HT/BT (point commun) est relié à la terre via la prise de terre du neutre ①. Cette liaison présente une certaine résistance, la résistance de la prise de terre du neutre R_B ②. Sa mise en œuvre est à charge du fournisseur d'électricité et sa résistance globale doit être inférieure ou égale à $15\Omega^{\text{NF:C13-100-2015}}$.

Les masses sont quant à elles reliées à la terre via la prise de terre de l'installation électrique \Im , qui présente aussi une certaine résistance, la résistance de la prise de terre de l'installation électrique R_A \Im . Sa mise en œuvre est à charge du propriétaire de l'installation (voir ?? page ??).

Ce SLT présente les caractéristiques principales suivantes :

- entrainement d'une coupure de l'installation en défaut suite à une seule coupure ;
- simplicité à l'étude et à l'installation ;
- usage dans les installations alimentées directement par le réseau de distribution publique d'électricité;
- protection assurée par des DDR permettant, en plus de la protection des personnes contre les contacts indirects, la prévention des risques d'incendie (lorsque leur sensibilité $I_{\Delta n} \leq 300 \text{mA}$).
- permanence de surveillance en exploitation non nécessaire seulement un contrôle périodique des DDR via leur bouton test (?? page ??);
- possibilité de sélectivité de protection des circuits (?? page ??);
- prise en compte d'appareils spécifiques pouvant provoquer des courants de défauts I_d par le choix de DDR adaptés.

1.2 Schémas de principe

En cas de défaut d'isolement sur les masses métalliques, le courant de défaut I_d dispose d'un chemin, via la terre, pour revenir au poste de transformateur HT/BT. Cela forme la boucle de défaut. Dans les calculs, il faut tenir compte de la résistance de défaut R_d qui prend en compte la nature du défaut d'isolement (franc ou non-franc) et la résistance de la carcasse métallique.

Fig. 1.1: Installation Terre-Terre

Fig. 1.3: Boucle de défaut du courant \mathcal{I}_d sur L1

L'intensité de courant \mathcal{I}_d vaut alors :

Formule 1.1: Courant de défaut I_d en schéma TT

$I_d = \frac{U_0}{R_B + R_A + R_d}$		
vec : Grandeur dans l'ISQ	Unité SI de mesure	Description
U_0 : tension nominale simple	volt (V)	Différence de potentiel entre les masses métalliques et la terre
R_B : résistance	ohm (Ω)	Résistance de la prise de terre du neutre
R_A : résistance	ohm (Ω)	Résistance de la prise de terre de l'installation électrique
R_d : résistance	ohm (Ω)	Résistance de défaut d'isolement

Le courant de défaut I_d fera alors apparaître une tension de défaut U_d entre la masse métallique et la terre. Pour satisfaire aux normes de sécurité de la NF C15-100, il est imposé que la tension de défaut U_d ne dépasse pas la tension de sécurité du local U_L (voir ?? page ??) :

Formule 1.2: Tension de défaut U_d en schéma TT

$$U_d = R_A \times I_d$$
$$< U_L$$

Avec:

${\bf Grandeur\ dans\ l'ISQ}$	Unité SI de mesure	Description
R_A : résistance	ohm (Ω)	Résistance de la prise de terre de l'instal- lation électrique
I_d : intensité	ampère (A)	Courant de défaut d'isolement
U_L : tension	volt (V)	Tension de sécurité du local avec :
		Local sec : $U_L = 50V$ Local humide : $U_L = 25V$

Il est donc nécessaire de limiter U_d à la valeur suivante (voir ?? page ??) :

Formule 1.3: Calibre du DDR $I_{\Delta n}$

$$I_{\Delta n} < \frac{U_L}{R_A}$$

Avec:						
Grandeur dans l'ISQ	Unité SI de mesure	Description				
U_L : tension	volt (V)	Tension de sécurité du local avec : Local sec : $U_L = 50 \text{V}$ Local humide : $U_L = 25 \text{V}$				
R_A : résistance	ohm (Ω)	Résistance de la prise de terre de l'installation électrique				

Exemple 1.1: Calcul du calibre du DDR $I_{\Delta n}$

Si on considère que le transformateur est un transformateur 20 kV/400 V, que $R_A=20 \Omega$, que $R_B=10 \Omega$ et que R_d est négligée, on peut déduire que le courant de défaut I_d vaut :

$$I_d = \frac{U_0}{R_B + R_A}$$
$$= \frac{400}{20 + 10}$$
$$= 13,33A$$

Si une personne touche une masse des récepteurs en défaut, elle sera soumise à une tension de défaut U_d :

$$U_d = R_A \times I_d$$
$$= 20 \times 13,33$$
$$= 266,6 \text{V}$$

La tension de défaut U_d est dangereuse quelle que soit la tension limite choisie :

- coupure la plus rapide possible ;
- protection des personnes.

Dans le cas d'un local sec :

Dans le cas d'un local humide :

$$I_{\Delta n} < \frac{U_L}{R_A}$$
 $I_{\Delta n} < \frac{U_L}{R_A}$ $< \frac{50}{20}$ $< \frac{25}{20}$ $< 1,25A$

D'après le tableau situé en ?? page ??, le DDR doit présenter un temps de coupure de moins de 70ms avec une tension de défaut U_d de 266,6V.

