

Fintech 2.0 задача от МТС банка

Команда REBOOT участники: Ольга Дейкина



# Задача:

построить модель, предсказывающую дефолт по займу

# Цель:

внедрить результат модели в виде скоров в алгоритм NBO (Next Best Offer)

# КОНЦЕПЦИЯ РЕШЕНИЯ:

- **1.** Разведочный анализ данных (EDA).
- 2. Разработка и выбор Baseline на необработанных данных с применением алгоритмов машинного обучения на базе sklearn.
- **3.** Первичная обработка данных: выбросы, Feature Selection.
- 4. Преобразование признаков, генерация новых признаков.
- Построение моделей с разбивкой по срокам кредитования.
- **6.** Новая разметка данных.
- **7.** Выбор итоговой модели.
- Оценка качества модели на тестовой выборке.
- 9. Расчет эффекта от внедрения модели.

# Выбранный технический стек:

pandas, numpy, sklearn, catboost, matplotlib, seaborn.

### 1. EDA

В исходных данных содержится размеченный набор данных для бинарной классификации. Размер датасета: 1723 строк, 14 столбцов. Без пропусков

Целевые данные не сбалансированы:

| Нет дефолта | 1527 |
|-------------|------|
| Дефолт      | 196  |

Некоторые признаки можно преобразовать (сумма, срок, возраст, доход):

| df.nunique() # смотрим коли             | чество ун | икальных | значений |
|-----------------------------------------|-----------|----------|----------|
| Месяц выдачи кредита                    | 12        |          |          |
| Сумма кредита                           | 205       |          |          |
| Срок кредита                            | 22        |          |          |
| Возраст клиента                         | 66        |          |          |
| Пол клиента                             | 2         |          |          |
| Образование клиента                     | 6         |          |          |
| Тип товара                              | 22        |          |          |
| Наличие детей у клиента                 | 2         |          |          |
| Регион выдачи кредита                   | 3         |          |          |
| Доход клиента                           | 76        |          |          |
| Семейное положение                      | 3         |          |          |
| Оператор связи                          | 5         |          |          |
| Является ли клиентом банка              | 2         |          |          |
| Флаг дефолта по кредиту<br>dtype: int64 | 2         |          |          |

### 1. EDA





### 1. EDA

Нет идеального нормального распределения. У некоторых признаков видны выбросы.



### 2. Baseline

Категориальные данные преобразованы с использованием LabelEncoder. Исходный датасет разделен на выборки методом train\_test\_split (в соотношении 60%, 20%, 20%) с сохранением пропорции целевого класса:

```
Размер исходной выборки: 1723
Размер обучающей выборки: 1033
Размер валидационной выборки: 345
Размер тестовой выборки: 345
```

В качестве вероятной базовой модели рассматривались следующие модели:

```
classifiers = [
   LogisticRegression(random_state=42, class_weight='balanced'),
   KNeighborsClassifier(3),
   SVC(kernel="linear", C=0.025),
   SVC(gamma=2, C=1),
   DecisionTreeClassifier(max_depth=5),
   RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
   MLPClassifier(alpha=1, max_iter=1000),
   GaussianNB(),
```

В качестве базовой модели выбрана модель с классификатором LogisticRegression. Выбор сделан, исходя из макро-оценки F1.

### 3. Первичная обработка данных

#### Удаление выбросов методом OCSVM



**Feature Selection:** отбор признаков с помощью логистической регрессии, метрика fl улучшилась на 5.5 % **Оптимизация гиперпараметров модели:** не принесло положительных результатов

|                                                    | f1 macro avg |
|----------------------------------------------------|--------------|
| Baseline                                           | 0.48         |
| Baseline + выбросы_OCSVM                           | 0.54         |
| Baseline + выбросы_OCSVM + Feature Selection       | 0.59         |
| Baseline + OCSVM + Feature Selection + оптимизация | 0.47         |

# 4. Преобразование признаков

Признак "Возраст клиента" преобразован по четырем категориям:

| df_1['Age_bin']         | .value_counts() |   | Age_bin | Возраст клиента | средний возраст<br>в категории |
|-------------------------|-----------------|---|---------|-----------------|--------------------------------|
| 26-45 841               |                 | 0 | 0-25    | 23.0            |                                |
| 0-25 418                |                 | 1 | 26-45   | 32.0            |                                |
| 46-55 193<br>56-100 151 |                 | 2 | 46-55   | 50.0            |                                |
| Name: Age_bin,          | dtype: int64    | 3 | 56-100  | 62.0            |                                |

Признак "Доход клиента" преобразован по четырем категориям:

| df_1['Income_  | bin'].value_counts( |
|----------------|---------------------|
| 20100-50000    | 1110                |
| 10100-20000    | 315                 |
| 50100-100000   | 165                 |
| 5000-10000     | 13                  |
| Name: Income ! | oin, dtype: int64   |

|   | Income_bin   | Доход клиента |
|---|--------------|---------------|
| 0 | 5000-10000   | 9000.0        |
| 1 | 10100-20000  | 16000.0       |
| 2 | 20100-50000  | 31000.0       |
| 3 | 50100-100000 | 56000.0       |



### 4. Генерация новых признаков

Признак "Показатель долговой нагрузки" получен из признаков "Сумма кредита", "Срок кредита" и "Доход клиента" с учётом коэффициента минимальных расходов:

| df_1['PND | _bins' | ].value | _counts( |  |
|-----------|--------|---------|----------|--|
| 0-33      | 1540   |         |          |  |
| 34-50     | 46     |         |          |  |
| 51-80     | 14     |         |          |  |
| 81-200    | 3      |         |          |  |
| Name: PND | _bins, | dtype:  | int64    |  |

|   | PND_bins | Показатель долговой нагрузки |
|---|----------|------------------------------|
| 0 | 0-33     | 11.00                        |
| 1 | 34-50    | 39.80                        |
| 2 | 51-80    | 60.15                        |
| 3 | 81-200   | 94.60                        |

Признак **"Скоринг клиента"** получен по бальной методике из признаков "Возраст", "Пол", "Образование", "Регион", "Доход", "Семейное положение", "Дети":

средний в категории



## 4. Генерация новых признаков

Новые признаки также не смогли отделить два класса друг от друга:





# 4. Генерация новых признаков

#### Проверка метрики:

|                                                            | f1 macro avg |
|------------------------------------------------------------|--------------|
| Baseline                                                   | 0.48         |
| Baseline + выбросы_OCSVM                                   | 0.54         |
| Baseline + выбросы_ОСSVM + Feature Selection               | 0.59         |
| Преобразование признаков                                   | 0.51         |
| Преобразование признаков + Feature Selection               | 0.58         |
| Преобразование признаков + Feature Selection + оптимизация | 0.49         |

### 5. Модели по срокам кредитования

#### Срок кредитования - до 12 месяцев

```
      print(df_short.shape)

      print('-----')

      print(df_short['Флаг дефолта по кредиту'].value_counts())

      (1292, 20)

      Нет дефолта 1157

      Дефолт 135

      Name: Флаг дефолта по кредиту, dtype: int64
```

#### Срок кредитования - более 12 месяцев

```
      print(df_long.shape)

      print('----')

      print(df_long['Флаг дефолта по кредиту'].value_counts())

      (311, 20)

      Нет дефолта 259

      Дефолт 52

      Name: Флаг дефолта по кредиту, dtype: int64
```

#### Не принесло положительных результатов:

#### f1 macro avg Baseline 0.48 Baseline + выбросы ОСSVM 0.54 Baseline + выбросы ОСSVM + Feature Selection 0.59 Преобразование признаков 0.51 Преобразование признаков + Feature Selection 0.58 Преобразование признаков + Feature Selection + оптимизация 0.49 Преобразование признаков + короткий срок 0.46 Преобразование признаков + длинный срок 0.40

### 6. Новая разметка данных

Предполагаю, что проблема низкого качества классификации состоит в том, что в исходном датасете произошло слияние двух баз -завершенные и текущие кредиты. В результате клиенты, подпадающие под дефолтные критерии имеют метку "нет дефолта".

Новая разметка данных проведена путем кластеризации с использованием модели:

В результате получен датасет со следующим балансом категорий:

```
df_my_concat['Флаг_new'].value_counts()

Нет дефолта 1195
Дефолт 408

Name: Флаг_new, dtype: int64
```

### 7. Выбор итоговой модели

|                                                            | f1 macro avg |
|------------------------------------------------------------|--------------|
| Baseline                                                   | 0.48         |
| Baseline + выбросы_OCSVM                                   | 0.54         |
| Baseline + выбросы_OCSVM + Feature Selection               | 0.59         |
| Преобразование признаков                                   | 0.51         |
| Преобразование признаков + Feature Selection               | 0.58         |
| Преобразование признаков + Feature Selection + оптимизация | 0.49         |
| Преобразование признаков + короткий срок                   | 0.46         |
| Преобразование признаков + длинный срок                    | 0.40         |
| Переразметка на преобразованных признаках                  | 0.75         |
| Переразметка на преобразованных признаках + оптимизация    | 0.81         |

Размер обновленного датасета: 1603 строк, 6 столбцов. Данные не сбалансированы.

Параметры итоговой модели:

```
LogisticRegression random_state=42, class_weight=None, max_iter = 100,

multi_class = 'auto', penalty = None, solver = 'newton-cg')
```

## 8. Оценка качества модели на тестовой выборке

```
print(classification report(y test, pred model grid, target names=['Деφοπτ', 'Heτ деφοπτa']))
                          recall f1-score support
             precision
     Дефолт
                  0.80
                            0.55
                                     0.65
                                                 78
Нет дефолта
                  0.87
                            0.95
                                     0.91
                                                243
                                     0.86
                                                321
   accuracy
                  0.83
                            0.75
                                     0.78
                                                321
  macro avg
weighted avg
                  0.85
                            0.86
                                     0.85
                                                321
```

```
f1_model_grid=f1_score(y_test, pred_model_grid, average='macro')
f1_model_grid
```

0.7806595365418895

### 8. Оценка качества модели на тестовой выборке



## 9. ЭФФЕКТ ОТ ВНЕДРЕНИЯ МОДЕЛИ







## 9. ЭФФЕКТ ОТ ВНЕДРЕНИЯ МОДЕЛИ

Модель с отсечкой 0.5 Модель с отсечкой 0.3 Модель с отсечкой 0.7

| Заработано, % | 72,3 | 75,7 | 64,8 |
|---------------|------|------|------|
| Сохранено, %  | 13,4 | 11,2 | 16,5 |
| Упущено, %    | 3,4  | 0    | 10,9 |
| Убытки, %     | 10,9 | 13,1 | 7,8  |

Сравним нашу модель по предсказанию с тремя вариантами порога классификатора:

- Если банку хочется **больше заработать**, то лучше выдавать кредиты всем людям, которые способны его вернуть, то есть следует понизить порог модели.
- Если банку хочется **меньше потерять**, то лучше выдавать кредиты *только* надежным людям, то есть следует повысить порог модели.

# 9. ЭФФЕКТ ОТ ВНЕДРЕНИЯ МОДЕЛИ



Итоговая модель со средним порогом классификатора