Math Computing

NCERT 9.7.1.6

This question is from class 9 NCERT chapter 7.triangles

1. AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE

Figure 1: $\triangle ABC$ and $\triangle ADE$

${\bf Construction\ steps:}$

(i) Let assume, the input parameters are,

Parameter	Value	Description
θ	60°	$\angle BAD = \angle CAE$
В	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Reference point at origin
D	$\begin{pmatrix} 6 \\ 0 \end{pmatrix}$	point ${\bf D}$ on the same axis of ${\bf B}$
C	$\begin{pmatrix} 8 \\ 0 \end{pmatrix}$	point C on the same axis of B

Table 1: Input Parameters

 \therefore the output can be calculated as,

Parameter	Value	Description
BD	B - D	Length of BD
CD	C - D	Length of CD
α	$\frac{180-\theta}{2}$	Angle ABD
AB	$\mathbf{BD}\frac{\sin lpha}{\sin heta}$	Length of AB
A	$\mathbf{B} + \begin{pmatrix} \mathbf{A}\mathbf{B}\cos\alpha\\ \mathbf{A}\mathbf{B}\sin\alpha \end{pmatrix}$	point B makes an angle α with line (AB , BD)
AD	A - D	Length of AD
AC	A - C	Length of AC
$\beta 1$	$ ext{COS}^{-1} rac{ ext{AC}^2 + ext{CD}^2 - ext{AD}^2}{ ext{2ACAD}} \ ext{AC} rac{\sin heta}{\sin lpha}$	Angle ACD
CE	$\mathbf{AC}\frac{\sin\theta}{\sin\alpha}$	Length of CE
β	$\alpha + \beta 1$	Angle ECB
E	$\mathbf{C} + \begin{pmatrix} -\mathbf{C}\mathbf{E}\cos\beta \\ \mathbf{C}\mathbf{E}\sin\beta \end{pmatrix}$	point \mathbf{C} makes an angle β with line $(\mathbf{BC}, \mathbf{CE})$

Table 2: Output Parameters

 \therefore By, joining these points forms the required figure

Figure 2: $\triangle \mathbf{ABC}$ and $\triangle \mathbf{ADE}$