```
Lab 4, R code and accompanying figures
library(zoo)
# Read in data for Wave 1
Lab4_W1 <- read.csv("~/github/Coastal_Engineering/Lab 4/Lab4_W1.csv")
Lab4 W2 <- read.csv("~/github/Coastal Engineering/Lab 4/Lab4 W2.csv")
Lab4 W3 <- read.csv("~/github/Coastal Engineering/Lab 4/Lab4 W3.csv")
Lab4 W4 <- read.csv("~/github/Coastal Engineering/Lab 4/Lab4 W4.csv")
# add 0.019s to force transducer time signal
# Convert everything to numeric values
Lab4 W1$time s = as.numeric(Lab4 W1$time s)
Lab4 W1$Force newtons = as.numeric(Lab4 W1$Force newtons)
Lab4_W2$time_s = as.numeric(Lab4_W2$time_s)
Lab4_W2$Force_newtons = as.numeric(Lab4_W2$Force_newtons)
Lab4 W3$time s = as.numeric(Lab4 W3$time s)
Lab4_W3$Force_newtons = as.numeric(Lab4_W3$Force_newtons)
Lab4 W4$time s = as.numeric(Lab4 W4$time s)
Lab4_W4$Force_newtons = as.numeric(Lab4_W4$Force_newtons)
# Reset the time series so it starts at 0 seconds
# correction factor
cf_per1 = 0.19 #s
cf per05 = 0.17 \#s
Lab4 W1time s = (Lab4 W1<math>time s) - (Lab4 W1\\time s[1]) + cf per05
Lab4 W2\$time s = (Lab4 W2\$time s) - (Lab4 W2\$time s[1]) + cf per05
Lab4_W3time_s = (Lab4_W3<math>time_s) - (Lab4_W3\\time_s[1]) + cf_per1
Lab4_W4time_s = (Lab4_W4<math>time_s) - (Lab4_W4\\time_s[1]) + cf_per1
### 1. Plot the Wave Case 1 condition of force vs. time
plot(Lab4_W1$time_s, Lab4_W1$Force_newtons, ylab = "Force (N)", xlab = "Time (s)", main =
"Wave Case 1")
plot(Lab4 W1$time s[0:1000], Lab4 W1$Force newtons[0:1000], ylab = "Force (N)", xlab =
"Time (s)", main = "Wave Case 1")
# Plot Wave Case 2, 3, and 4 to determine the average maxima
plot(Lab4 W2$time s, Lab4 W2$Force newtons, ylab = "Force (N)", xlab = "Time (s)", main =
"Wave Case 2")
```

Zoe Maisel

plot(Lab4_W3\$time_s, Lab4_W3\$Force_newtons, ylab = "Force (N)", xlab = "Time (s)", main = "Wave Case 3")
plot(Lab4_W4\$time_s, Lab4_W4\$Force_newtons, ylab = "Force (N)", xlab = "Time (s)", main = "Wave Case 4")

Wave Case 1

Wave Case 1

2. Calculate D/lambda for each wave case and compare with slender body assumption # Calculate lambda using the dispersion relationship # sigma^2 = gktanh(kh)

T = 1/freq

 $h_m = 0.2$

 $W1_freq_Hz = 0.5$

T12 = 2

T34 = 1

 $g_m = 9.81 \# m/s^2$

Use root-solver function to find the k values for the different waves

 $W1_k = 2.3209 # 1/m$

 $W2_k = 2.3209$

 $W3_k = 5.17913$

 $W4_k = 5.17913$

lambda = 2*pi/k #m

 $W1_{mbda} = 2*pi/W1_{k}$

 $W2_lmbda = 2*pi/W2_k$

 $W3_lmbda = 2*pi/W3_k$

 $W4_lmbda = 2*pi/W4_k$

```
# D/lambda to check slender body assumption
D = 0.0508 \, \text{#m}
W1_DI = D/W1_Imbda
W2 DI = D/W2 Imbda
W3_DI = D/W3_Imbda
W4_DI = D/W4_Imbda
W1 DI = 0.0188
W2_DI = 0.0188
W3 DI = 0.0142
W4 DI = 0.0142
# The slender body assumption may hold because wavelength is greater than D. However, it is
unclear whether the
# difference is large enough for the slender body assumption to hold.
### 3. Calculate the Reynolds number for each wave
W1 a = 0.013 \# m
W2 a = 0.003
W3_a = 0.012
W4 a = 0.003
# Find sigma using sigma = 2*pi/T
W1_{sig} = 2*pi/T12 # 1/s
W2_{sig} = 2*pi/T12
W3 sig = 2*pi/T34
W4_sig = 2*pi/T34
# Find u using u = g*a*k/sigma
# or use sigma k
#shallow water wave assume velocity constant with depth
W1_u = g_m * W1_a * W1_k / W1_sig
W2_u = g_m * W2_a * W2_k / W2_sig
W3_u = g_m * W3_a * W3_k / W3_sig
W4_u = g_m * W4_a * W4_k / W4_sig
# Find Reynolds number using Re = u*D/v
v = 1*10^-6 \text{ } \text{#m}^2\text{/s}
W1_Re = W1_u * D/v
W2 Re = W2 u * D/v
W3 Re = W3 u * D/v
W4_Re = W4_u * D/v
```

```
W1_Re = 4786
W2_Re = 1104
W3_Re = 4929
W4_Re = 1232
```

```
# We expect very large Reynolds number for the waves.
### 4. Find Cd and Cm for each wave case
rho_kg_m3 = 1000
# To find Cd, first find local maxima of Fd timeseries and take average to find Fd average
# At du/dt = 0, Ftot = Fd, which means that at the wave peak, the entire force is equal to the
drag force
# There is an offset between the force gauge data and the wave amplitude data, as given above
in the correction factor, cf
# The following Fd values were determined by taking the maximum force data, offset by the
correction factor, to find the wave peak
# These values were then averaged to find estimates for the force values. It would be more
precise if wave amplitude
# data was obtained to avoid these estimates. This simplification in analysis is imprecise but
should suffice as a first attempt at analysis.
W1 Fd = 0.2
W2 Fd = 0.018
W3 Fd = 0.35
W4_Fd = 0.07
# Cd = 2*Fd/(rho*A*u^2), from Dean and Dalrymple page 224
L = 0.2 \, \text{#m}
W1_Cd = 2^* W1_Fd/(rho_kg_m3^*(D^*L)^*(W1_u)^2)
W2 Cd = 2^* W2 Fd/(rho kg m3*(D*L)*(W2 u)^2)
W3_Cd = 2*W3_Fd/(rho_kg_m3*(D*L)*(W3_u)^2)
W4\_Cd = 2* W4\_Fd/(rho\_kg\_m3*(D*L)*(W4\_u)^2)
W1 Cd = 4.44
W2_Cd = 7.5
W3 Cd = 7.32
W4 Cd = 23.4
Cd = c(W1\_Cd, W2\_Cd, W3\_Cd, W4\_Cd)
```

still use shallow water form of u and take temporal derivative of that # u = a*sigma*cos(kx-sigmat)

du/dt = a*sigma*(sigma*sin(sigma*t))

```
# use t at t = (1/4)T, because that is the time that the wave passes through the zero point and u
= 0, assuming that the wave starts at a crest.
t_12 = (1/4)*T12
t 34 = (1/4)*T34
der_u1 = W1_a * W1_sig^2 * sin(W1_sig^t_12)
der_u2 = W2_a * W2_sig^2 * sin(W2_sig^t_12)
der_u3 = W3_a * W3_sig^2 * sin(W3_sig^t_12)
der_u4 = W4_a * W4_sig^2 * sin(W4_sig^t_12)
# Fi values will be found in a similar manner to how Fd values were found. The force gauge data
is offset from the
# wave amplitude data. Accounting for the offset, all force should be inertial when the wave
passes through the zero point
# The force data can be used find the point where the wave is at the node.
W1 Fi = 0.02
W2 Fi = 0.005
W3 Fi = 0.03
W4_Fi = 0.003
\# Cm = (Fi^2^4)/(L^*rho^*pi()^*D^2^*(du/dt))
W1_Cm = (W1_Fi^*2^*4)/(L^*rho_kg_m3^*pi^*(D^2)^*der_u1)
W2_Cm = (W2_Fi^*2^*4)/(L^*rho_kg_m3^*pi^*(D^2)^*der_u2)
W3 Cm = (W3 Fi^2^4)/(L^*rho kg m3^*pi^*(D^2)^*der u3)
W4\_Cm = (W4\_Fi*2*4)/(L*rho\_kg\_m3*pi*(D^2)*der\_u4)
W1 Cm = 0.79
W2_Cm = 0.86
W3 Cm = 0.323
W4 Cm = 0.129
Cm = c(W1\_Cm, W2\_Cm, W3\_Cm, W4\_Cm)
# Calculate KC values
\# KC = UT/D
W1 KC = (W1 u * T12) / D
W2_KC = (W2_u * T12) / D
W3_KC = (W3_u * T34) / D
W4_KC = (W4_u * T34) / D
```

 $KC = c(W1_KC, W2_KC, W3_KC, W4_KC)$

plot(KC, Cm)

The values for Cd are at least an order of magnitude larger than they should be. Cm values are smaller than they should be.

In general, the lab analysis is very different from the expected values as dictated in the lab.