Co-exposure maximization in online social networks Supplementary material

Sijing Tu

Department of Computer Science KTH Royal Institute of Technology Stockholm, Sweden sijing@kth.se

Cigdem Aslay

Department of Computer Science Aarhus University Aarhus, Denmark cigdem@cs.au.dk

Aristides Gionis

Department of Computer Science KTH Royal Institute of Technology Stockholm, Sweden argioni@kth.se

A Proof of Theorem 4.1

Proof. We prove this by using an approximation preserving reduction from the MAXIMUM COVERAGE problem. Given a universe $U = \{x_1, \dots, x_n\}$ of n elements, a collection $\mathcal{S} = \{S_1, \dots, S_m\}$ of subsets of U, and an integer k, MAXIMUM COVERAGE problem asks to select k subsets from \mathcal{S} such that their union has the maximum cardinality.

Given an instance Π_{MC} of the MAXIMUM COVERAGE problem, we construct an instance Π_{COEM} of COEM problem as follows. First, we create a directed graph G=(V,E) with the set V of nodes containing the ground set U, a node s_i for each subset $S_j \in \mathcal{S}$, and an additional node t, i.e., $V=\{s_1,\ldots,s_m\} \cup \{t\} \cup \{x_1,\ldots,x_n\}$. We define the set E of edges as $E=\{(s_j,x_i) \mid x_i \in S_j\} \cup \{(t,x_i) \mid x_i \in U\}$. Finally, we let $k_r=1$, $k_b=k$, and $p_{uv}^r=p_{uv}^b=1$, for all $(u,v) \in E$.

Let $S_{\mathrm{MC}}^* = \{S_{j_1}, \dots, S_{j_k}\}$ denote the optimal solution to Maximum Coverage problem on the instance Π_{MC} and let $\mathrm{OPT}_{\mathrm{MC}} = |\cup_{S \in S_{\mathrm{MC}}^*} S|$. Likewise, let (S_r^*, S_b^*) denote the optimal pair of seed sets maximizing the co-exposure in the instance Π_{CoEM} and let $\mathrm{OPT}_{\mathrm{CoEM}} = |I(S_r^*) \cap I(S_b^*)|$. Next, we will show that $\mathrm{OPT}_{\mathrm{MC}} = \mathrm{OPT}_{\mathrm{CoEM}}$.

First we show that $\mathrm{OPT}_{\mathrm{MC}} \leq \mathrm{OPT}_{\mathrm{COEM}}$. Let $S_{\mathrm{MC}}^* = \{S_{j_1}, \dots S_{j_k}\}$. Since setting $S_r = \{t\}$ and $S_b = \{s_{j_1}, \dots s_{j_k}\}$ provides a feasible solution to COEM, we have $\mathrm{OPT}_{\mathrm{MC}} = |U \cap (\cup_{i \in [k]} S_{j_i})| = |I(S_r) \cap I(S_b)| \leq \mathrm{OPT}_{\mathrm{COEM}}$.

We now show that $\mathrm{OPT}_{\mathrm{C0EM}} \leq \mathrm{OPT}_{\mathrm{MC}}$. First, notice that any feasible solution (S_r, S_b) to $\mathrm{C0EM}$ in which node t is not assigned to S_r is suboptimal as the number of nodes co-exposed to both campaigns would be upper bounded by the cardinality of the largest subset in $\mathcal S$ for such solutions. It's also easy to see that for any $S_b \in V \setminus \{t\}$ such that $S_b \cap \{x_1, \ldots, x_n\} \neq \emptyset$, we can always find another feasible S_b' by replacing each $x_i \in S_b$ with a neighbor s_j of x_i . Thus, we have $\mathrm{OPT}_{\mathrm{C0EM}} = |I(S_r^*) \cap I(S_b^*)| = |U \cap I(S_b^*)| \leq \mathrm{OPT}_{\mathrm{MC}}$.

Assume now that there is an approximation algorithm for COEM problem with a ratio better than $1-\frac{1}{e}$. This implies that we can also approximate the MAXIMUM COVERAGE problem with a ratio better than $1-\frac{1}{e}$, which is a contradiction as shown by Feige et al. Feige [1998].

B Proof of Lemma 4.2

Proof. Consider the following toy example. Let G=(V,E), where $V=\{r_1,r_2,b_1,b_2,v_1,v_2\}$, and $E=\{(r_1,v_1),(r_2,v_2),(b_1,v_1),(b_2,v_2)\}$ with $p_e^i=1$ for all $e\in E$ and $i=\{r,b\}$. Let $S_r=\{r_1\}$, $S_r'=\{r_2\}$, $S_b=\{b_1\}$, and $S_b'=\{b_2\}$. It follows that $\mathbb{E}[C(S_r,S_b)]+\mathbb{E}[C(S_r',S_b')]=0$, while $\mathbb{E}[C(\emptyset,\emptyset)]+\mathbb{E}[C(S_r\cup S_r',S_b\cup S_b')]=2$. which contradicts the condition of simple or directed bisubmodularity. \square

C Proof of Lemma 4.3

Proof. For any $(S_r, S_b) \in O_1$, we can construct a set $X \subseteq \mathcal{E}$ by pairing each node in S_r with at most $\lceil \frac{k_b}{k_r} \rceil$ different nodes of S_b . The resulting X contains $|S_b|$ pairs and is a member of \mathcal{I} since it satisfies all the conditions of the set-of-pairs system $(\mathcal{E}, \mathcal{I})$. Thus, we have $O_1 \subseteq O_2$.

D Proof of Lemma 4.4

Proof. Let $X \subseteq Y \subseteq \mathcal{E}$ and let $e \in \mathcal{E} \setminus Y$. First, we show that $f(\cdot)$ is non-decreasing. Since by definition, $X \subseteq Y$ indicates that $X_r \subseteq Y_r$ and $X_b \subseteq Y_b$, we have

$$f(X) = |I(X_r) \cap I(X_b)| \le |I(Y_r) \cap I(Y_b)| \le f(Y).$$

Next, we show that f is neither submodular nor supermodular by providing counter examples on a toy graph. Let G = (V, E) be a directed graph such that $V = \{r_0, r_1, b_0, b_1, b_2, v_0, v_1, v_2\}$ and $E = \{(r_0, v_0), (r_0, v_1), (r_1, v_2), (b_0, v_0), (b_0, v_1), (b_1, v_1), (b_2, v_2)\}$. Let $p_{uv}^r = p_{uv}^b = 1$, for all $(u, v) \in E$.

We first show that $f(\cdot)$ is not submodular. Let $X=\emptyset, Y=\{(r_0,b_2)\}$, and $e=(r_1,b_0)$. Then we have $f(X\cup\{e\})-f(X)=0$ while $f(Y\cup\{e\})-f(Y)=3$.

Now we show that $f(\cdot)$ is not supermodular. Let $X = \emptyset$, $Y = \{(r_0, b_1)\}$, $e = (r_0, b_0)$. Then we have $f(X \cup \{e\}) - f(X) = 2$, while $f(Y \cup \{e\}) - f(Y) = 0$.

E Proof of Lemma 4.5

Proof. We prove the monotonicity and submodularity of $g(\cdot)$ over a possible world w sampled from $\tilde{G} = (V, \tilde{E}, \tilde{p})$. Let $X \subseteq Y \subseteq \mathcal{E}$ and let $e = (e_r, e_b) \in \mathcal{E} \setminus Y$. We first show that $g(\cdot)$ is monotone.

$$g(X) = |\bigcup_{(r,b) \in X} (I(r) \cap I(b))| \le |\bigcup_{(r,b) \in Y} (I(r) \cap I(b))| = g(Y).$$

We now show that $g(\cdot)$ is submodular. Since $\bigcup_{(r,b)\in X}(I(r)\cap I(b))\subseteq \bigcup_{(r,b)\in Y}(I(r)\cap I(b))$, for any $e\in \mathcal{E}\setminus Y$, it follows that

$$g(X \cup \{e\}) - g(X) = |(I(e_r) \cap I(e_b)) \setminus \bigcup_{(r,b) \in X} (I(r) \cap I(b))|$$

$$\geq |(I(e_r) \cap I(e_b)) \setminus \bigcup_{(r,b) \in Y} (I(r) \cap I(b))|$$

$$= g(Y \cup \{e\}) - g(Y).$$

Thus, g is a non-decreasing submodular function.

F Proof of Lemma 4.6

Proof. We first prove the connection between f and g in any possible world w.

Given $X^* \subseteq \mathcal{E}$, let (X_r^*, X_b^*) denote the corresponding pair of optimal seed sets. Assume wlog that $X_r^* = \{r_0, \dots, r_{k_r-1}\}$. Furthermore, let $\{X_{b_0}^*, \cdots, X_{b_{k_r-1}}^*\}$ be any partitioning of X_b^* into k_r

disjoint sets. Then we have

$$\begin{split} f(X^*) &= |I(X_r^*) \cap I(X_b^*)| = |(\cup_{i=0}^{k_r-1} I(r_i)) \cap (\cup_{j=0}^{k_r-1} I(X_{b_j}))| \\ &= |\cup_{p=0}^{k_r-1} [\cup_{i=0}^{k_r-1} (I(r_i) \cap I(X_{b_{[i+p]\%k_r}}))]| \\ &\leq k_r \max\{|\cup_{i=0}^{k_r-1} (I(r_i) \cap I(X_{b_{[i+0]\%k_r}}))|, \dots, |\cup_{i=0}^{k_r-1} (I(r_i) \cap I(X_{b_{[i+k_r-1]\%k_r}}))|\} \\ &\leq k_r \, g(X^0). \end{split}$$

Finally, by taking the linear combination over all possible worlds, we have $\mathbb{E}[f(X^*)] \leq k_r \mathbb{E}[g(X^0)]$.

G Proof of Lemma 4.7

Proof. First, we show that $(\mathcal{E},\mathcal{I})$ is an independence system. Let $X \in \mathcal{I}$, and let Y be any set such that $Y \subseteq X$. Thus we have $Y_r \subseteq X_r$ and $Y_b \subseteq X_b$, it follows that $|Y_r| \leq |X_r| \leq k_r$; $|Y| = |Y_b| \leq |X_b| = |X| \leq k_b$ and $Y_b \cap Y_r \subseteq X_b \cap X_r = \emptyset$. Besides, for each $r_0 \in Y_r$, it follows that $\bigcup_{(r_0,b)\in Y} \{b\} \subseteq \bigcup_{(r_0,b)\in X} \{b\}$, thus $|\bigcup_{(r_0,b)\in Y} \{b\}| \leq \lceil \frac{k_b}{k_r} \rceil$. In conclusion, $Y \in \mathcal{I}$.

Second, I is not a matroid. Let $k_r = 1$, $k_b = 2$, let $X = \{(1, 2), (1, 4)\}$, and $Y = \{(2, 4)\}$, we have |X| - |Y| = 1, while neither $\{(1, 2)\} \cup Y \in \mathcal{I}$ nor $\{(1, 4)\} \cup Y \in \mathcal{I}$.

In conclusion, $(\mathcal{E}, \mathcal{I})$ is an independent system but not a matroid.

H Proof of Lemma 4.8

Proof. For any $A \subseteq \mathcal{E}$, let X be the maximum base of A, let Y be the minimum base of A. Thus for X, $|X_r| \ge |X_b|/\lceil \frac{k_b}{k_n} \rceil = |X|/\lceil \frac{k_b}{k_n} \rceil$. For Y, $|Y_r \cup Y_b| \le 2|Y_b| = 2|Y|$.

If $|X_r| > |Y_r| + |Y_b|$, then there is a pair that only exists in X, i.e. there exists $x \in X \setminus Y$, such that $\{x\} \cup Y \in I$, since both x_r and x_b are not in $Y_r \cup Y_b$. Thus we have $|X|/\lceil \frac{k_b}{k_r} \rceil \le 2|Y|$, it follows that $|X|/|Y| \le 2\lceil \frac{k_b}{k} \rceil$.

I Proof of Theorem 4.9

Proof. Lemmas 4.5 and 4.8 imply that

$$\mathbb{E}[g(X^G)] \ge \frac{1}{1 + 2\lceil \frac{k_b}{k_-} \rceil} \mathbb{E}[g(X^0)]$$

Furthermore, by using the result in Lemma 4.6, we have

$$\mathbb{E}[f(X_f^G)]) \ge \mathbb{E}[g(X^G)] \ge \frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} \, \mathbb{E}[g(X^O)] \ge \frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} \, \frac{\mathbb{E}[f(X^*)]}{k_r}$$

J Proof of Lemma 5.1

Proof. To avoid ambiguity, we use subscriptions w and v to denote specific samples drawn from \tilde{G} and V, respectively; thus, if w and v are given, we write $g_w(X) = |\cup_{(r,b)\in X} (I_w(r)\cap I_w(b))|$, and $R_{v,w} = \{(r,b): v\in I_w(r)\cap I_w(b)\}$.

First, it follows by definition that, in a possible world w, $R_{v,w} \cap X \neq \emptyset$ if and only if $\exists (r,b) \in X$ such that $v \in I_w(r) \cap I_w(b)$. Thus, in a possible world w, we have

$$\begin{split} g_w(X) &= |\{v \in V \mid v \in I_w(r) \cap I_w(b), (r, b) \in X\}| \\ &= |\{v \in V \mid R_{v, w} \cap X \neq \emptyset\}| \\ &= \sum_{v \in V} \mathbb{1}(R_{v, w} \cap X \neq \emptyset) \end{split}$$

3

where $\mathbb{1}(R_{v,w} \cap X \neq \emptyset)$ is an indicator variable that takes the value of 1 if $R_{v,w} \cap X \neq \emptyset$ and 0 otherwise. Then, we have:

$$\mathbb{E}[g(X)] = \sum_{w \subseteq \tilde{G}} \Pr[w] g_w(X)$$

$$= \sum_{w \subseteq \tilde{G}} \Pr[w] \sum_{v \in V} \mathbb{1}(R_{v,w} \cap X \neq \emptyset)$$

$$= \sum_{v \in V} \sum_{w \subseteq \tilde{G}} \Pr[w] \mathbb{1}(R_{v,w} \cap X \neq \emptyset)$$

$$= n \mathbb{E}[\mathbb{1}(R \cap X \neq \emptyset)]$$

where the last equality follows from taking the expectation over the randomness of $v \sim V$ and $w \sim \tilde{G}$.

So far we have shown that for a random RRP-set R, we have $\mathbb{E}[\mathbb{1}(R \cap X \neq \emptyset)] = \frac{\mathbb{E}[g(X)]}{n}$. Then, by using $F_{\mathcal{R}}(X)$ as an estimator of $\mathbb{E}[\mathbb{1}(R \cap X \neq \emptyset)]$, we have:

$$\begin{split} \mathbb{E}[F_{\mathcal{R}}(X)] &= \mathbb{E}\left[\frac{\sum_{R \in \mathcal{R}} \mathbbm{1}(R \cap X \neq \emptyset)}{|\mathcal{R}|}\right] \\ &= \frac{\sum_{R \in \mathcal{R}} \mathbb{E}[\mathbbm{1}(R \cap X \neq \emptyset)]}{|\mathcal{R}|} \\ &= \frac{|\mathcal{R}| \cdot \mathbb{E}[\mathbbm{1}(R \cap X \neq \emptyset)]}{|\mathcal{R}|} \\ &= \frac{\mathbb{E}[g(X)]}{n}. \end{split}$$

K Proof of Theorem 5.2

We first provide the pseudocode of the greedy pair selection phase of TCEM in Algorithm 1.

```
Algorithm 1: RR-Pairs-Greedy \begin{array}{l} \text{input} \ : \mathcal{R}, \, (\mathcal{E}, \mathcal{I}) \\ \text{output} : \tilde{X}^G \\ \\ \text{1} \ \tilde{X}^G \leftarrow \emptyset \\ \\ \text{2} \ x = \arg\max_{x: \{x\} \cup \tilde{X}^G \in \mathcal{I}} F_{\mathcal{R}}(\tilde{X}^G \cup \{x\}) - F_{\mathcal{R}}(\tilde{X}^G) \\ \\ \text{3} \ \text{while} \ x \neq \emptyset \ \text{do} \\ \text{4} \ \ | \ \tilde{X}^G = \tilde{X}^G \cup \{x\}; \\ \text{5} \ \ | \ x = \arg\max_{x: \{x\} \cup \tilde{X}^G \in \mathcal{I}} F_{\mathcal{R}}(\tilde{X}^G \cup \{x\}) - F_{\mathcal{R}}(\tilde{X}^G) \\ \text{6} \ \text{end} \\ \text{7} \ \text{return} \ \tilde{X}^G \end{array}
```

We now show that $F_{\mathcal{R}}(\cdot)$ is monotone. Given any $X \subset \mathcal{E}$ and $x \in \mathcal{E} \setminus X$, we have

$$F_{\mathcal{R}}(X \cup \{x\}) = \frac{\sum_{R \in \mathcal{R}} \mathbb{1}[R \cap (X \cup \{x\}) \neq \emptyset]}{\mathcal{R}} \ge \frac{\sum_{R \in \mathcal{R}} \mathbb{1}[R \cap X \neq \emptyset]}{\mathcal{R}} = F_{\mathcal{R}}(X).$$

Thus, $F_{\mathcal{R}}(\cdot)$ is monotone.

Next we show that $F_{\mathcal{R}}(\cdot)$ is submodular. Given any $X \subseteq Y \subset \mathcal{E}$ and $x \in \mathcal{E} \setminus Y$, we have

$$\begin{split} F_{\mathcal{R}}(X \cup \{x\}) - F_{\mathcal{R}}(X) &= \frac{\sum_{R \in \mathcal{R}} \mathbbm{1}[R \cap (X \cup \{x\}) \neq \emptyset] - \sum_{R \in \mathcal{R}} \mathbbm{1}[R \cap X \neq \emptyset]}{\mathcal{R}} \\ &= \frac{\sum_{R \in \mathcal{R}} \mathbbm{1}[R \cap \{x\} \neq \emptyset, R \cap X = \emptyset]}{\mathcal{R}} \\ &\geq \frac{\sum_{R \in \mathcal{R}} \mathbbm{1}[R \cap \{x\} \neq \emptyset, R \cap Y = \emptyset]}{\mathcal{R}} \\ &= F_{\mathcal{R}}(Y \cup \{x\}) - F_{\mathcal{R}}(Y). \end{split}$$

We have shown that $F_{\mathcal{R}}(\cdot)$ is monotone and submodular. Thus, Algorithm 1 provides $\left(1+2\lceil\frac{k_b}{k_r}\rceil\right)$ -approximation Calinescu et al. [2011] to the problem of maximizing $F_{\mathcal{R}}(X)$ on the sample \mathcal{R} ; let $X^+:=\arg\max_{X\in\mathcal{I}}F_{\mathcal{R}}(X)$ denote the optimal solution of this problem. Then, we have

$$F_{\mathcal{R}}(\tilde{X}^G) \ge \frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} F_{\mathcal{R}}(X^+) \tag{1}$$

Given that X^+ is the optimal solution on the sample, we also have

$$F_{\mathcal{R}}(X^+) \ge F_{\mathcal{R}}(X^0) \tag{2}$$

where $X^0 = \arg \max_{X \in \mathcal{I}} \mathbb{E}[g(X)].$

We remind that $\mathrm{OPT} = \mathbb{E}[g(X^0)]$ and that the size of the sample \mathcal{R} is such that $|nF_{\mathcal{R}}(X) - \mathbb{E}[g(X)]| < \frac{\epsilon}{2}$ OPT holds for any $X \in \mathcal{I}_{base}$ with probability at least $1 - n^{-\ell}/|\mathcal{I}_{base}|$. Then, by using Eq.s 1 and 2, and a union bound over all $n^{-\ell}/|\mathcal{I}_{base}|$ estimations, w.p. at least $1 - n^{-\ell}$ we have:

$$\mathbb{E}[g(\tilde{X}^G)] \ge n \, F_{\mathcal{R}}(\tilde{X}^G) - \frac{\epsilon}{2} \, \text{OPT}$$

$$\ge \frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} \, n \, F_{\mathcal{R}}(X^+) - \frac{\epsilon}{2} \, \text{OPT}$$

$$\ge \frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} \, n \, F_{\mathcal{R}}(X^0) - \frac{\epsilon}{2} \, \text{OPT}$$

$$\ge \frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} \, (\mathbb{E}[g(X^0)] - \frac{\epsilon}{2} \, \text{OPT}) - \frac{\epsilon}{2} \, \text{OPT}$$

$$\ge \frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} \, \mathbb{E}[g(X^0)] - \epsilon \, \text{OPT}$$

$$= \left(\frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} - \epsilon\right) \, \mathbb{E}[g(X^0)]$$

Finally, by using Lemma 4.6, we obtain

$$\mathbb{E}[g(\tilde{X}^G)] \ge \left(\frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} - \epsilon\right) \mathbb{E}[g(X^0)]$$

$$\ge \left(\frac{1}{1 + 2\lceil \frac{k_b}{k_r} \rceil} - \epsilon\right) \frac{\mathbb{E}[f(X^*)]}{k_r}$$

$$\ge \left(\frac{1}{(1 + 2\lceil \frac{k_b}{k_r} \rceil)k_r} - \epsilon\right) \mathbb{E}[f(X^*)].$$

Finally, we note that the running time of Algorithm 1 follows from the running time analysis for the maximum coverage problem; that is, it is linear in the size of the input as each pair in each RRP-set of the sample will be consider at most once, leading to $\mathcal{O}(\sum_{R \in \mathcal{R}} |R|)$.

L Proof of Lemma 5.3

Proof. For any $X \in \mathcal{I}_{base}$, we have $|X_r| = k_r$, $|X_b| = k_b$, and each node in X_r is paired with τ nodes in X_b . Notice that, there are $\binom{n}{k_r + k_b}$ ways to select red and blue seed nodes. Once we select $k_r + k_b$ nodes, we create k_r groups of at most $\tau + 1$ nodes, each of which has at most $\binom{\tau+1}{1}$ ways to create ordered pairings by using the nodes in the group. Thus, we have

$$|\mathcal{I}_{base}| \leq \binom{n}{k_r + k_b} \binom{k_r + k_b}{\tau + 1} \binom{\tau + 1}{1} \cdots \binom{k_r + k_b - (k_r - 1)(\tau + 1)}{\tau + 1} \binom{\tau + 1}{1}$$
$$= \binom{n}{k_r(\tau + 1)} \frac{(k_r(\tau + 1))!}{k_r! (\tau!)^{k_r}}.$$

M Proof of Lemma 5.4

We follow the martingale based framework as in Tang et al. [2015], Aslay et al. [2018].

First we introduce preliminary definitions.

Definition M.1 (Martingale). A sequence of random variable $Y_1, Y_2, Y_3, ...$ is a martingale, if and only if $\mathbb{E}[|Y_i|] < +\infty$ and $\mathbb{E}[Y_i \mid Y_1, Y_2, ..., Y_{i-1}] = Y_{i-1}$ for any i.

Given a random sample $\mathcal{R} = \{R_1, \dots, R_{\theta}\}$, let x_i be a binary random variable defined as $x_i = \mathbb{1}[R_i \cap X \neq \emptyset]$. By Lemma 5.1, we have $\frac{\mathbb{E}[g(X)]}{n}$. Noting that the generation of an RRP-set R_i is independent of R_1, \dots, R_{i-1} , we have $\mathbb{E}[x_i \mid x_1, \dots, x_{i-1}] = \frac{\mathbb{E}[g(X)]}{n}$.

Let
$$x = \frac{1}{n}\mathbb{E}[g(X)]$$
, let $M_j = \sum_{z=1}^j (x_z - x)$, so $\mathbb{E}[M_j] = 0$, and
$$\mathbb{E}[M_j \mid M_1, \dots, M_{j-1}] = \mathbb{E}[M_{j-1} + x_j - x \mid M_1, \dots, M_{j-1}] = M_{j-1} - x + \mathbb{E}[x_j] = M_{j-1}$$
,

therefore, the sequence M_1, \ldots, M_θ is a martingale.

We have shown that M_1, \ldots, M_{θ} is a martingale. We now restate a concentration inequality for martingale sequences by Chung and Lu Chung and Lu [2006].

Lemma M.1. [Theorem 6.1 Chung and Lu [2006]] Let $Y_1, Y_2,...$ be a martingale, such that $Y_1 \le a$, $Var[Y_1] \le b_1$, $|Y_z - Y_{z-1}| \le a$ for $z \in [2, j]$, and

$$Var[Y_z \mid Y_1, \dots, Y_{z-1}] \le b_j, \text{ for } z \in [2, j],$$

where $Var[\cdot]$ denotes the variance. Then, for any $\gamma > 0$

$$\Pr(Y_j - \mathbb{E}[Y_j] \ge \gamma) \le \exp\left(-\frac{\gamma^2}{2(\sum_{z=1}^j b_z + a\gamma/3)}\right)$$

We now use Lemma M.1 to get the concentration result for the martingale sequence M_1, \ldots, M_{θ} . Since $x_j \in [0,1]$ for all $j \in [1,\theta]$, we have $|M_1| = |x_1 - x| \le 1$ and $|M_j - M_{j-1}| \le 1$ for any $j \in [2,\theta]$. $Var[M_1] = Var[x_1]$, and for any $j \in [2,\theta]$

$$Var[M_j \mid M_1, \dots, M_{j-1}] = Var[M_{j-1} + x_j - x \mid M_1, \dots, M_{j-1}]$$

= $Var[x_j \mid M_1, \dots, M_{j-1}]$
= $Var[x_j]$.

And for $Var[x_i]$ we have that

$$Var[x_j] = \mathbb{E}[x_j^2] - \mathbb{E}[x_j]^2$$
$$= x - x^2 \le x$$

By using Lemma M.1, for $M_{\theta} = \sum_{j=1}^{\theta} (x_j - x)$, with $\mathbb{E}[M_{\theta}] = 0$, $a = 1, b_j = x$, for $j = 1, 2, \dots, \theta$, and $\gamma = \delta \theta x$, we have the following corollary.

Corollary M.1.1. For any $\delta > 0$,

$$\Pr\left[\sum_{j=1}^{\theta} x_j - \theta x \ge \delta \theta x\right] \le \exp\left(-\frac{\delta^2}{\frac{2\delta}{3} + 2} \theta x\right).$$

Moreover, for the martingale $-M_1,\ldots,-M_{\theta}$, we similarly have a=1 and $b_j=x$ for $j=1,\ldots,\theta$. Note also that $\mathbb{E}[-M_{\theta}]=0$. Hence, for $-M_{\theta}=\sum_{j=1}^{\theta}(x-x_j)$ and $\gamma=\delta\theta x$ we can obtain:

Corollary M.1.2. For any $\delta > 0$,

$$\Pr\left[\sum_{j=1}^{\theta} x_j - \theta x \le -\delta \theta x\right] \le \exp\left(-\frac{\delta^2}{\frac{2\delta}{3} + 2} \theta x\right).$$

We are now ready to prove Lemma 5.4.

Proof. Using Corollaries M.1.1 and M.1.2 and letting $\delta = \frac{\epsilon \, \mathrm{OPT}}{2nx}$, we obtain

$$\Pr[|nF_{\mathcal{R}}(X) - \mathbb{E}[g(X)]| \ge \frac{\epsilon}{2} \text{OPT}] = \mathbb{P}[|\sum_{i=1}^{\theta} x_i - \theta x| \ge \frac{\theta \epsilon}{2n} OPT]$$

$$\le 2 \exp\left(-\frac{\delta^2}{\frac{2\delta}{3} + 2} \theta x\right)$$

$$= 2 \exp\left(-\frac{3\epsilon^2 \text{ OPT}^2}{4 n(\epsilon \text{ OPT} + 6nx)} \theta\right)$$

$$\le 2 \exp\left(-\frac{3\epsilon^2 \text{ OPT}^2}{4 n(\epsilon \text{ OPT} + 6\text{ OPT})} \theta\right)$$

$$= 2 \exp\left(-\frac{\epsilon^2 \text{ OPT}}{4 n(\frac{\epsilon}{2} + 2)} \theta\right),$$

where the last inequality above follows from the fact that $nx \leq OPT$. Finally, by requiring

$$2\exp\left(-\frac{\epsilon^2 \operatorname{OPT}}{4 \, n(\frac{\epsilon}{3} + 2)} \, \theta\right) \le \frac{1}{n^\ell \, |\mathcal{I}_{base}|},$$

we obtain the lower bound on θ .

N Proof of Theorem 5.5

We provide the pseudocode of the sampling phase of TCEM in Algorithm 2.

Let $\beta=\frac{(\frac{2}{3}\epsilon_2+2)(l\ln n+\ln\log_22n+\ln|\mathcal{I}_{base}|)n}{\epsilon_2^2}$. To prove Theorem 5.5, we first prove Lemma N.1, Lemma N.2. In these lemmas, we show that we can return a lower bound of OPT with high probability.

Lemma N.1. Let \tilde{X} be the output of Algorithm 1, when the size of sampled \mathcal{R} is θ and

$$\theta > \frac{\left(\frac{2}{3}\epsilon_2 + 2\right)\left(l\ln n + \ln\log_2 2n + \ln|\mathcal{I}_{base}|\right)}{\epsilon_2^2} \frac{n}{y},$$

if OPT < y, then $n F_{\mathcal{R}}(\tilde{X}) < (1 + \epsilon_2)y$, with probability at least $1 - \frac{n^{-\ell}}{\log_2 n}$.

Proof. To prove this, we will show that, when $\mathrm{OPT} < y$, the probability that $nF_{\mathcal{R}}(X) \geq (1+\epsilon_2)\,y$ is at most $\frac{n^{-\ell}}{\log_2 n|\mathcal{I}_{base}|}$. Let X be arbitrary $X \in \mathcal{I}_{base}$ and let $x = \frac{1}{n}\mathbb{E}[g(X)]$. Assume that $\mathrm{OPT} < y$

Algorithm 2: Sampling

```
Input : \tilde{G}, \lambda, \beta, \epsilon_2, \tilde{I}
     Output: R
             \mathcal{R} \leftarrow \emptyset;
             LB \leftarrow LB_0;
             for i = 1, ..., \log_2 n - 1 do
                    y \leftarrow n/2^i;
                    \theta_i = \frac{\beta}{y};
 5
                     while |\mathcal{R}| \leq \theta_i do
                            \mathcal{R} \leftarrow \overline{\mathcal{R}} \cup \text{GenerateRRP-Set};
                     \tilde{X}_i \leftarrow \text{RR-Pairs-Greedy}(\mathcal{R}, \tilde{I});
                    if n F_{\mathcal{R}}(\tilde{X}_i) \geq (1 + \epsilon_2) y, then
10
                            LB \leftarrow \frac{n F_{\mathcal{R}}(\tilde{X}_i)}{1+\epsilon_2};
11
                             break:
12
13
                     end
             end
14
             \theta \leftarrow \lambda/\text{LB};
15
             while |\mathcal{R}| \leq \theta do
16
                     \mathcal{R} \leftarrow \mathcal{R} \cup GenerateRRP-Set;
17
18
             Return \mathcal{R};
19
```

which implies that $x < \frac{\text{OPT}}{n} < \frac{y}{n}$, and $1 < \frac{y}{xn}$. Notice that by construction $y \le n$ since $y \leftarrow n/2^i$. Then, by using Corollary M.1.1, we have

$$\Pr[nF_{\mathcal{R}}(X) \ge (1+\epsilon)y] = \Pr\left[\theta F_{\mathcal{R}}(X) - \theta x \ge \theta x \left(\frac{(1+\epsilon_2)y}{nx} - 1\right)\right]$$

$$\le \Pr[\theta F_{\mathcal{R}}(X) - \theta x \ge \theta x \epsilon_2]$$

$$\le \exp\left(-\frac{\epsilon_2^2}{\frac{2}{3}\epsilon_2 + 2}\theta\right)$$

$$\le \exp\left(-\frac{\epsilon_2^2}{\frac{2}{3}\epsilon_2 + 2}\frac{y}{n}\theta\right)$$

$$\le \frac{n^{-\ell}}{\log_2 n|\mathcal{I}_{base}|}$$

Finally by a union bound, we conclude that if OPT < y, then $nF_{\mathcal{R}}(\tilde{X}) < (1 + \epsilon_2)y$ w.p. at least $1 - \frac{n^{-\ell}}{\log_2 n}$.

Lemma N.2. Let \tilde{X} be the output of Algorithm 1, when the size of sampled \mathcal{R} is θ and

$$\theta > \frac{\left(\frac{2}{3}\epsilon_2 + 2\right)(l\ln n + \ln\log_2 2n + \ln|\mathcal{I}_{base}|)}{\epsilon_2^2} \frac{n}{y},$$

if $OPT \geq y$, then $n F_{\mathcal{R}}(\tilde{X}) \leq (1 + \epsilon_2) OPT$ with probability at least $1 - \frac{n^{-\ell}}{\log_2(n)}$.

Proof. Let X be arbitrary $X \in \mathcal{I}_{base}$. Assume that $\mathrm{OPT} \geq y$, let $x = \frac{1}{n}\mathbb{E}[g(X)]$, thus $\frac{\mathrm{OPT}}{nx} \geq 1$. We will now show that when $\mathrm{OPT} \geq y$, the probability that $n F_{\mathcal{R}}(\tilde{X}) > (1 + \epsilon_2)\mathrm{OPT}$ is at most

 $\frac{n^{-\ell}}{\log_2 n |\mathcal{I}_{base}|}$. By using Corollary M.1.2, we obtain

$$\mathbb{P}[n F_{\mathcal{R}}(X) > (1 + \epsilon_2)\text{OPT}] = \Pr\left[\theta F_{\mathcal{R}}(X) - \theta x > \theta x \left(\frac{(1 + \epsilon_2)\text{OPT}}{nx} - 1\right)\right]$$

$$\leq \exp\left(-\frac{\epsilon_2^2}{\frac{2}{3}\epsilon_2 + 2} \frac{y}{n}\theta\right)$$

$$\leq \frac{n^{-\ell}}{\log_2 n |\mathcal{I}_{base}|}$$

By taking a union bound, we reach the desired result.

Now we prove Theorem 5.5.

Proof. Let $i^* = \lceil \log_2 \frac{n}{\mathrm{OPT}} \rceil$. We will first show that the probability the stopping condition holds while $\mathrm{OPT} < y$ is at most $(i^* - 1)/(n^\ell \log_2 n)$. Recall that the value of y is determined by $n/2^i$ at each iteration i. Then for any $i < i^*$, we have $y = n/2^i < \mathrm{OPT}$. Thus, by Lemma N.1 and the union bound over $i^* - 1$ iterations, the probability that $\mathrm{OPT} < y$ and $nF_{\mathcal{R}}(X) \ge (1 + \epsilon_2)y$ is at most $\frac{i^*-1}{n^\ell \log_2 n}$. Furthermore, it follows from Lemma N.2 that the probability that $\mathrm{OPT} \ge y$ and $nF_{\mathcal{R}}(\tilde{X}) > (1 + \epsilon_2)\mathrm{OPT}$ is at most $1/(n^\ell \log_2 n)$. Hence, when the stopping condition holds, by union bound, the probability that $\mathrm{OPT} \ge y$ and $nF_{\mathcal{R}}(\tilde{X}) \le (1 + \epsilon_2)\mathrm{OPT}$ is at least

$$1 - \left(\frac{i^* - 1}{n^{\ell} \log_2 n} + \frac{1}{n^{\ell} \log_2 n}\right) \ge 1 - n^{-\ell}.$$

Then, by Lemma N.2 and the union bound, it follows that w.p. at least $1 - n^{-\ell}$, we have

$$OPT \ge \frac{n F_{\mathcal{R}}(\tilde{X})}{1+\epsilon} \ge y.$$

Therefore, the algorithm sets LB \leq OPT w.p. at least $1-n^{-\ell}$ and returns a sample \mathcal{R} such that

$$|\mathcal{R}| \ge \frac{\lambda}{\text{LB}} \ge \frac{\lambda}{\text{OPT}}$$

w.p. at least $1 - n^{-\ell}$.

O Experiment

O.1 Experiment Setup

In Table 1, we report the graph statistics on number of nodes, edges and average degree.

Table 1: Statistics of the Datasets			
Dataset	n	m	d(G)
Flixster	28843	272786	9.4576
Last.FM	1372	14708	10.72
NetHEPT	15229	62752	4.1204
WikiVote	7115	103689	14 57

Baseline. MNI¹ solves $\arg\max_{X\in\mathcal{I}}|N'(X_r)\cap N'(X_b)|$, where $N'(X_i)$ is the union of X_i and X_i 's out neighbors, and \mathcal{I} is given in Definition 3.1. MNI has a similar formulation as the f; while MNI only picks the seed nodes that can maximally influence the neighbors without taking further nodes into consideration. We apply this local-based method as a comparison with our global based algorithm TCEM.

O.2 results

We set $k_r = 20$, and $k_b = 20:10:200$, here we use the Matlab grammar for list, e.g. $k_r = 20:10:200$ means k_r ranges from 20 to 200 with increment value 10. The results are put in Figure 1.

Figure 1: Co-exposure results for different networks for varying k_b .

¹Short for maximum neighborhood intersection.

We set $k_b = k_r$, and $k_r = 10:6:64$. The results are put in Figure 2.

Figure 2: Co-exposure results comparison on fixed $k_b = k_r$

We set $k_r = 10:6:64$, and $k_b = 1.5k_r$. The results are put in Figure 3.

Figure 3: Co-exposure results comparison on fixed $k_b = 1.5k_r$

We set $k_r = 10:6:64$, and $k_b = 2k_r$. The results are put in Figure 5.

Figure 4: Performance comparison with fixed $\tau=2$

We set $k_r + k_b = 50,100,150,200$, we first obtain the k_r and k_b through implementing BalanceExposure, then we compare the performances of all the algorithms.

Figure 5: Performance comparison with fixed $k_r + k_b$

O.3 Time and Memory

We set $k_r=20$, and $k_b=20:10:200$. We show the Memory and Time consumption with k_r+k_b increasing. The results are put in Figure 6, and Figure 7.

Figure 6: Memory consumption with varying $k_r + k_b$.

Figure 7: Time consumption with varying $k_r + k_b$.

References

- Cigdem Aslay, Antonis Matakos, Esther Galbrun, and Aristides Gionis. Maximizing the diversity of exposure in a social network. In 2018 IEEE International Conference on Data Mining (ICDM), pages 863–868. IEEE, 2018.
- Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. *SIAM Journal on Computing*, 40(6):1740–1766, 2011.
- Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey. *Internet Mathematics*, 3(1):79–127, 2006.
- Uriel Feige. A threshold of ln n for approximating set cover. *Journal of the ACM (JACM)*, 45(4): 634–652, 1998.
- Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear time: A martingale approach. In *Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data*, pages 1539–1554, 2015.