ТЕМЫ И ПЛАНЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Модуль 1. Машина Тьюринга.

- 1. Машины Тьюринга (4 часа):
- решение задач на обработку нечисловых данных;
- решение задач на обработку числовых данных (в унарной и десятичной системах счисления);
 - создание циклических машин Тьюринга.
 - 2. Эмулятор МТ (2 часа).

Модуль 2. Примитивно-рекурсивные функции. Нормальные алгоритмы Маркова.

- 3. Рекурсивные функции (4 часа):
- доказательство примитивной рекурсивности функций от одной и нескольких переменных;
 - восстановление функций по схеме примитивной рекурсии.
 - 4. Нормальные алгоритмы Маркова (2 часа):
- решение задач на работу с числовыми и нечисловыми объектами;
 - доказательство нормальной вычислимости функций.
 - 5. Эмулятор НАМ (2 часа).

Модуль 3. Машины с неограниченными регистрами.

- 6. Машина с неограниченными регистрами (2 часа):
- создание алгоритмов, работающих с нечисловыми объектами;
 - создание алгоритмов, работающих с числовыми объектами.
 - 7. Эмулятор МНР (2 часа).

Модуль 4. Вычислимость и разрешимость.

8. Нумерация программ (2 часа).

Модуль 5. Эффективные операции на вычислимых функциях. Сложность вычисления.

- 9. Машина Поста (2 часа).
- 10. Эмулятор МП (2 часа).

МОДУЛЬ 1. МАШИНЫ ТЬЮРИНГА

Практическое занятие 1

Машины Тьюринга (МТ)

Машина Тьюринга разработана Аланом Тьюрингом в 1936 г. Машина Тьюринга состоит из:

- 1) управляющего устройства, которое может находиться в одном из состояний $Q = \{q_1, q_2, ..., q_n\};$
- 2) ленты, бесконечной в обе стороны, разбитой на ячейки, в каждой из которых может быть записан один из символов конечного алфавита $A = \{a_1, a_2, ..., a_m\}$;
- 3) устройства обращения к ленте, считывающей и пишущей головки, которая в каждый момент времени обозревает ячейку ленты и в зависимости от символа в этой ячейке записывает новый символ, стирает этот или оставляет прежним и переходит в новое состояние или оставляет прежнее состояние.

Память MT – конечное множество состояний (внутренняя память) и лента (внешняя память).

Данные МТ – слова в алфавите ленты.

Элементарные шаги MT – считывание и запись символов, сдвиг головки вправо или влево, переход управляющего устройства в следующее состояние.

Детерминированность МТ — последовательность ее шагов определяется: для любого состояния $q_{\rm i}$ и символа $a_{\rm j}$ однозначно заданы:

- 1) $q_{i}^{'}$ состояние;
- 2) символ a_{j} , который надо записать вместо a_{j} ;
- 3) d_k направление сдвига головки (может принимать значения R, L, E).

Машину Тьюринга можно записывать в виде:

- системы правил (команд);

- таблицы (строки состояния; столбцы символы; на пересечении новое состояние, символ и направление сдвига головки);
 - диаграммы (или графа).

Пример. Сложение. Во введенном раннее представлении чисел сложить числа a и b — это значит слово $1^a * 1^b$ переработать в слово 1^{a+b} , т.е. удалить разделитель * и сдвинуть одно из слагаемых, скажем, первое, к другому. Это осуществляет машина T_+ с четырьмя состояниями и следующей системой команд (первая команда введена для случая, когда a = 0 и исходное слово имеет вид * 1^b):

$$q_1^* \rightarrow q_z \lambda R;$$

 $q_1 1 \rightarrow q_2 \lambda R;$
 $q_2 1 \rightarrow q_2 1 R;$
 $q_2^* \rightarrow q_3 1 L;$
 $q_3 1 \rightarrow q_3 1 L;$
 $q_3 \lambda \rightarrow q_z \lambda R.$

Задания

- 1. Дан алфавит $A = \{1, 0\}$ и состояния $Q = \{q_1\}$. Построить машину Тьюринга, удаляющую 0.
- 2. Построить машину Тьюринга T_+ для сложения двух натуральных чисел, записанных в унарной системе. Построить диаграмму машины Тьюринга T_+ , $A = \{1\}$.
- 3. Дан алфавит A={1}. Построить машину Тьюринга для получения следующего натурального числа.
- 4. Имеется машина Тьюринга с алфавитом $A=\{1\}$ и внутренними состояниями $Q=\{q_1\}$ со следующей системой команд:

$$q_1 0 \rightarrow q_2 1$$

$$q_1 1 \rightarrow q_1 1 R.$$

Определить, в какое слово переработает машина каждое из следующих слов, если она находится в начальном состоянии q_1 :

- a) 10q₁110011;
- b)110q₁11101;
- c) $1q_100111$.

Ответ изобразить схематически в виде последовательности конфигураций, возникающих на ленте на каждом такте работы машины.

- 5. Дано слово в алфавите $A = \{a, b, c, d\}$. Построить машину Тьюринга, удаляющую все буквы a.
- 6. Построить машину Тьюринга T_{++} для суммирования N натуральных подряд идущих чисел, записанных в унарной системе через «*». Пример: $111*11*1111*\dots*11$.
- 7. Построить машину Тьюринга Т_, которая вычисляет разность двух натуральных чисел, записанных в унарной системе через разделитель. Например: 11111-111.

Индивидуальное задание 1

Машины Тьюринга

1. Имеется машина Тьюринга с внешним алфавитом $A=\{0,1\}$ и внутренними состояниями $Q=\{q_1\}$ со следующей системой команд:

$$\begin{aligned} q_1 1 &\rightarrow q_1 0 R \\ q_1 0 &\rightarrow q_1 1 R \\ q_1 \lambda &\rightarrow q_z 1. \end{aligned}$$

Определить, в какое слово переработает машина слово α , если она находится в начальном состоянии q_1 . Ответ изобразить схематически в виде последовательности конфигураций, возникающих на ленте на каждом такте работы машины.

1) 11q ₁ 01λ01;	4) 11q ₁ 01λ01;
2) 100q ₁ 1λ01;	5) 100q ₁ 1λ01;
3) 11λ01q ₁ 01;	6) 11λ01q ₁ 01;

7) $q_1 10 \lambda 1100$;	16) 1q ₁ 111111;
8) 1101q ₁ 001;	17) 110q ₁ 1λ01;
9) 11q ₁ 01101;	18) 0q ₁ 000λ01;
10) 1q ₁ 1010λ1;	19) 100q ₁ 1λ01;
11) 10011q ₁ 01;	20) 0λ1q ₁ 0101;
12) 1λ1q ₁ 0101;	21) 11q ₁ 010λ1;
13) 110 $q_1\lambda$ 101;	22) 0111q ₁ 01λ;
14) $\lambda 11q_10101$;	23) 1λq ₁ 0110λ;
15) 110q ₁ 1λ01;	24) 110q ₁ 1001
	l l

2. Дана машина Тьюринга с внешним алфавитом $A=\{1,\,0\}$ и внутренними состояниями $Q=\{q_1,\,q_2,\,q_3,\,q_4\},$ записанная в виде таблицы:

Q	q_1	q_2	q_3	q_4
A				
λ	$q_2\lambda R$	$q_3\lambda R$	$q_4\lambda R$	$q_z \lambda R$
1	$q_1\lambda R$	q ₃ 1R	$q_4\lambda R$	q ₄ 1L
0	q_11R	q ₃ 0R	q ₄ 1R	q ₁ 0L

Изображая на каждом такте работы машины получающуюся конфигурацию, определите, в какое слово перерабатывает машина слово α , исходя из положения, когда машина находится в состоянии q_1 .

1) 1101λ0q ₁ 1λ011;	8) 110q ₁ λ01λ1001;
2) 10λ0q ₁ 10λλ101;	9) 11011q ₁ λ01λ01;
3) 11λq ₁ λ01λ0101;	10) $10\lambda 0q_1110\lambda\lambda 1$;
4) 1001λq ₁ 011λ0λ;	11) $1001\lambda 01q_1\lambda 101$;
5) 110λ01λq ₁ λ101;	12) $1\lambda 10q_1 101\lambda 01\lambda$;
6) 110λq ₁ 01λ1λ01;	13) 11q ₁ 0λ01λλ101;
7) 10λ11λ0q ₁ 1λ00;	14) $\lambda 110q_1\lambda 01\lambda 101$;

15) 110λ01λq11λ01;	20) 0λλ0q11λ10101;
16) 11λ01λq ₁ 11111;	21) 1λ1011λ1λq ₁ 101;
17) 11q ₁ 01λ01λλ01;	22) 00λq ₁ 11λ1λ011;
18) 00λ01λq ₁ 00λ01;	23) $\lambda 110q_1\lambda 01101\lambda$;
19) 1001λλ01λq ₁ 01;	24) $1001\lambda 10q_1\lambda\lambda 11$
, , ,	, 1

3. Постройте машину Тьюринга, которая бы в слове *cabdabda* выполнила указанные действия. Исполнить полученный алгоритм.

1) заменяла <i>ab</i> на <i>e</i>	13) добавляла <i>s</i> до <i>b</i>
′	
(2) добавляла e после b	14) сдвигала на 1 символ влево
3) добавляла f до a	15) сдвигала на 1 символ вправо
4) сдвигала на 2 символа влево	16) заменяла <i>da</i> на k
5) сдвигала на 2 символа вправо	17) добавляла e после a
6) заменяла b на f	18) добавляла c до d
7) добавляла c после a	19) переносила 2 символа слева
8) меняла местами 1 символ и	в конец слова
последний	20) заменяла <i>db</i> на <i>e</i>
9) переносила 2 символа спра-	21) добавляла bc после b
ва в начало слова	22) заменяла <i>а</i> на <i>р</i>
10) меняла местами 2-й символ	(23) добавляла e после b
и предпоследний	24) упорядочивала последова-
11) заменяла <i>d</i> на <i>a</i>	тельность
12) добавляла f после c	

Практическое занятие 2

Машины Тьюринга

1. Построить машину Тьюринга, которая правильно вычисляет функцию f(x) = x + 1 (число записано в двоичной системе счисления).

- 2. Построить машину Тьюринга, которая правильно вычисляет функцию f(x) = 0, $A = \{1, 0\}$.
- 3. Построить машины Тьюринга, которые в алфавите $A = \{1, 0\}$ выполняют:
 - 1) правый сдвиг: $q_1 01^x 0 \Longrightarrow_{R^*} 01^x q_z 0$;
 - 2) левый сдвиг (самостоятельно): $01^{x}q_{1}0 \Longrightarrow_{\overline{b}^{-}} q_{z}01^{x}0;$
 - 3) транспозицию: $01^x q_1 01^y 0 \Longrightarrow_B 01^y q_z 01^x 0$;
 - 4) удвоение: $q_1 01^x 0 \Longrightarrow_{\Gamma} q_z 01^x 01^x 0$.

Индивидуальное задание 2

Машины Тьюринга.

Конструирование машин Тьюринга

- 1. Дан алфавит $A = \{a, b, c, d, e, f\}$ и внутренние состояния $Q = \{q_1, q_2, ..., q_z\}$. Построить машину Тьюринга для транспозиции элементов. Например, последовательность abcd заменить на dcba.
 - 2. Построить машину Тьюринга, вычисляющую функцию:

$$f(x_1, x_2, ..., x_n) = x_m.$$

Пример: 1110110...011. Оставить m-й набор единиц, остальные стереть.

- 3. Дана конечная совокупность единиц, вписанных в ячейки без пропусков. Построить машину Тьюринга, которая записывала бы в десятичной системе счисления число этих единиц, т.е. пересчитывала набор этих единиц.
- 4. Построить машину Тьюринга, которая выполняет умножение двух чисел в унарной системе счисления.
- 5. Даны два набора единиц. Они разделены *. Построить машину Тьюринга, которая выбирала бы больший из этих наборов, а меньший стирала.

- 6. Дана строка из букв «а» и «b». Разработать машину Тьюринга, которая переместит все буквы «а» в левую, а буквы «b» в правую части строки. Каретка находится над крайним левым символом строки.
- 7. На ленте машины Тьюринга находится целое положительное число, записанное в десятичной системе счисления. Найти произведение этого числа на число 11. Каретка обозревает крайнюю правую цифру числа.
- 8. На ленте машины Тьюринга находится десятичное число. Определить, делится ли это число на 5 без остатка. Если делится, то записать справа от числа слово «у», если нет «n».
- 9. На ленте машины Тьюринга записано число в пятеричной системе счисления. Каретка находится над крайней правой цифрой. Записать цифры этого числа в обратном порядке.
- 10. Даны два натуральных числа n и m, представленные в унарной системе счисления. Между этими числами стоит знак «*». Построить машину Тьюринга, определяющую, равны эти числа или нет.
- 11. Даны два натуральных числа n и m, представленные в двоичной системе счисления. Между этими числами стоит знак «*». Найти разность этих чисел.
- 12. Дано число в двоичной системе счисления. Разработать машину Тьюринга, которая будет умножать это число на два (в двоичной системе счисления со сдвигом влево).
- 13. Сконструировать машину Тьюринга, которая выступит в качестве двоично-восьмеричного дешифратора.
- 14. Даны два натуральных числа n и m, заданных в унарной системе счисления. Числа n и m представлены наборами символов «1», разделенных «/». В конце набора стоит знак « = ». Разработать машину Тьюринга, которая будет производить деление нацело двух натуральных чисел n и m и находить остаток от деления.

- 15. Построить машину Тьюринга, которая выполняет деление на три в унарной системе счисления.
- 16. Дан алфавит $A = \{a, b, c, ..., z\}$ и внутренние состояния $Q = \{q_1, q_2, ..., q_z\}$. Построить машину Тьюринга, которая подсчитывает количество букв a в заданной последовательности.
- 17. Даны два целых положительных числа в двоичной системе счисления. Разработать машину Тьюринга, которая будет находить сумму этих чисел.
- 18. На ленте машины Тьюринга записано число в двоичной системе счисления. Каретка находится над крайней правой цифрой. Записать цифры этого числа в обратном порядке.
- 19. Дано натуральное число n, представленное в унарной системе счисления. Выяснить, является это число четным или нечетным.
- 20. Сконструировать машину Тьюринга, которая выступит в качестве четверично-двоичного дешифратора.
- 21. На ленте машины Тьюринга в произвольном порядке записаны 4 буквы k, l, m, n. Каретка обозревает крайнюю левую букву. Необходимо построить машину Тьюринга, которая расположит эти буквы по алфавиту.
- 22. На ленте машины Тьюринга в трех секциях в произвольном порядке записаны 4 цифры 3, 5, 7, 9. Каретка обозревает крайнюю левую цифру. Необходимо построить машину Тьюринга, которая расположит эти цифры в порядке убывания.
- 23. Дан алфавит $A = \{+, =, 0, 1\}$ и внутренние состояния $Q = \{q_1, q_2, ..., q_z\}$. Построить машину Тьюринга, проверяющую, является ли исходная последовательность арифметическим выражением.
- 24. Дан алфавит $A=\{(,)\}$ и внутренние состояния $Q=\{q_1,q_2,...,q_z\}$. Построить машину Тьюринга, проверяющую, верно ли в исходной последовательности расставлены скобки.

Практическое занятие 3

Работа с эмулятором МТ

Знакомство с эмулятором «Машина Тьюринга»

- 1. Запустите эмулятор «ТМ»:
- 2. Познакомьтесь с интерфейсной частью программы, рассмотрите возможности меню (рис. 1.1);

Рис. 1.1. Внешний вид эмулятора МТ

Задание 1. На ленте машины Тьюринга содержится последовательность символов "+". Напишите программу для машины Тьюринга, которая каждый второй символ "+" заменит на "–". Замена начинается с правого конца последовательности. Автомат в состоянии q_1 обозревает один из символов указанной последовательности.

В состоянии q_1 машина ищет правый конец числа, в состоянии q_2 – пропускает знак "+", при достижении конца последовательности – останавливается. В состоянии q_3 машина знак "+"

заменяет на знак "-", при достижении конца последовательности она останавливается.

Задание 2. Требуется построить машину Тьюринга, которая прибавляет единицу к числу на ленте. Входное слово состоит из цифр целого десятичного числа, записанных в последовательные ячейки на ленте. В начальный момент машина находится против самой правой цифры числа.

Рис. 1.2. Пример вычисления

Решение. Машина должна прибавить единицу к последней цифре числа. Если последняя цифра равна 9, то ее нужно заменить на 0 и прибавить единицу к предыдущей цифре. В этой машине Тьюринга q_1 — состояние изменения цифры, q_z — состояние останова. Если в состоянии q_I автомат видит цифру 0..8, то он заменяет ее на 1..9 соответственно и переходит в состояние q_z , т.е. машина останавливается. Если же он видит цифру 9, то заменяет ее на 0, сдвигается влево, оставаясь в состоянии q_I . Так продолжается до тех пор, пока автомат не встретит цифру меньше 9. Если же все цифры были равны 9, то он заменит их

нулями, запишет 0 на месте старшей цифры, сдвинется влево и в пустой клетке запишет 1. Затем перейдет в состояние q_z , т.е. остановится.

Задание 3. Дан массив из открывающих и закрывающих скобок. Построить машину Тьюринга, которая удаляла бы пары взаимных скобок, т.е. расположенных подряд "()".

Например, дано ") (() (()", надо получить ") (. . (". Автомат в состоянии q_1 обозревает крайний левый символ строки.

Состояние q_1 : если встретили "(", то сдвиг вправо и переход в состояние q_2 : анализ символа "(" на парность, в случае парности должны увидеть ")". Если парная, то возврат влево и переход в состояние q_3 . Состояние q_3 : стираем сначала "(", затем ")" и переходим в q_1 .

Самостоятельно:

Задание 1. На ленте машины Тьюринга записаны два числа в унарной системе счисления, разделенные *. Построить машину Тьюринга, которая выполнит вычитание. Первое число больше второго.

 $3a\partial aнue\ 2$. Дан алфавит $A=\{0,1\}$. Построить машину Тьюринга, которая подсчитывает количество 1.

Вопросы к модулю 1

- 1. Что такое «алгоритм»?
- 2. Перечислите и охарактеризуйте основные свойства алгоритма.
- 3. Какие существуют подходы к уточнению понятия алгоритма?
 - 4. Почему возникла необходимость уточнить данное понятие?
- 5. Какая функция называется вычислимой, эффективно вычислимой?
- 6. Чем отличается описание алгоритма от механизма его реализации?
 - 7. Что собой представляет блок-схема?

- 8. Как называются вершины в блок-схеме?
- 9. Можно ли записать несколько алгоритмов с помощью блок-схем?
- 10. Дайте характеристику блок-схем (назначение, свойства и др.).
 - 11. Что называется декартовым произведением множеств?
- 12. Что называется областью определения функции? множеством значений?
- 13. Какая функция называется сюръективной? инъективной? биективной?
 - 14. Что является ограничением функции?
 - 15. Дать определение прообраза, композиции.
 - 16. Какая пара объектов a и b называется неупорядоченной?
 - 17. Какие отношения называются бинарными?
- 18. Какие бинарные отношения называются транзитивными, рефлексивными, симметричными, отношениями эквивалентности?
 - 19. Что такое «класс эквивалентности»?
- 20. Какое бинарное отношение называется частичным порядком?
 - 21. Перечислить свойства частичного порядка.
 - 22. Сформулировать теорему Бома и Джакопини.
 - 23. Охарактеризовать основные управляющие структуры.
 - 24. Дайте определение машины Тьюринга.
- 25. Охарактеризовать каждую составляющую машины Тьюринга.
 - 26. Из чего состоит память машины Тьюринга?
 - 27. Бесконечна ли лента в одну сторону? в обе?
 - 28. Сколько символов можно записать в одну ячейку?
- 29. Конечно ли множество ячеек, заполненных на ленте в любой момент времени?
 - 30. Что обозначают следующие символы:
 - a) λ ; b) q_1 ; c) q_2 ?

- 31. Что происходит с машиной Тьюринга, когда она попадает в состояние q_z ?
 - 32. Дать определение функции вычислимой по Тьюрингу.
- 33. Как выполняются требования к алгоритмам на примере MT?
 - 34. Сформулировать проблему остановки. Смысл?
 - 35. Существует ли универсальная МТ?
- 36. Существует ли универсальная МТ с двумя состояниями и двумя символами на ленте?

МОДУЛЬ 2. ПРИМИТИВНО-РЕКУРСИВНЫЕ ФУНКЦИИ. НОРМАЛЬНЫЕ АЛГОРИТМЫ МАРКОВА

Практическое занятие 4

Примитивно-рекурсивные функции

Теория рекурсивных функций появилась в 30-х годах прошлого века. В этой теории, как и вообще в теории алгоритмов, принят конструктивный (финитный) подход, основной чертой которого является то, что все множество исследуемых объектов (в данном случае функций) строится из конечного числа конечных объектов — базиса с помощью простых операций, эффективная вычислимость которых достаточно очевидна. Операции над функциями будем в дальнейшем называть операторами.

В базис включим: константу 0; функцию следования x'=x+1; функцию проекции $U_m^n(x_1,x_2,...,x_n)=x_m(m\leq n)$.

Оператором суперпозиции S_m^n называется подстановка в функцию от m переменных m функций от n одних и тех же переменных:

$$S_m^n(h, g_1, ..., g_m) = h(g_1(x_1, ..., x_n), ..., g_m(x_1, ..., x_n)) = f(x_1, ..., x_n).$$

Суперпозиция дает новую функцию от n переменных.

Таким образом, если заданы функции U_m^n и операторы S_m^n , то можно считать заданными всевозможные операторы подстановки функций в функции, а такие переименования, перестановки и отождествления переменных.

Пример 1.

$$f(x_2, x_1, x_3, ..., x_n) = f(U_2^2(x_1, x_2), U_1^2(x_1, x_2), x_3, ..., x_n);$$

$$f(x_1, x_1, x_3, ..., x_n) = f(U_1^2(x_1, x_2), U_1^2(x_1, x_2), x_3, ..., x_n).$$

Это определение порождает семейство операторов суперпозиции $\{S_m^n\}$. Благодаря функциям проекции стандартизация суперпозиции не уменьшает ее возможностей: любую подстановку функций в функцию можно выразить через S_m^n , U_m^n .

Оператор примитивной рекурсии R_n определяет (n+1)-местную функцию f через n-местную функцию g и (n+2)-местную функцию h так:

$$\begin{cases} f(x_1,...,x_n,0) = g(x_1,...,x_n); \\ f(x_1,...,x_n,y+1) = h(x_1,...,x_n,y,f(x_1,...,x_n,y)). \end{cases}$$

Функция называется примитивно-рекурсивной, если она может быть получена из константы 0, функции х' и функции с помощью конечного числа применений операторов суперпозиции и примитивной рекурсии.

Пример 2. Сложение
$$f_+(x, y) = x + y$$
 примитивно-рекурсивно:
$$f_-(x, 0) = x = U_1^1(x);$$

$$f_-(x, y + 1) = f_+(x, y) + 1 = (f_+(x, y))'$$

Задание 1. Доказать, что если функция $f(x_1, x_2, ..., x_n)$ примитивно-рекурсивная, то следующие функции примитивно-рекурсивны:

а) $g(x_1, x_2, x_3, ..., x_n) = f(x_2, x_1, x_3, ..., x_n)$ — перестановка аргументов;

б) $\psi(x_1, x_2, ..., x_n) = f(x_2, ..., x_n, x_1,)$ — циклическая перестановка аргументов.

Задание 2. Доказать, что следующие функции примитивнорекурсивны:

a)
$$f(x) = x + 2$$
;

б)
$$f(x) = 2^x$$
;

B)
$$f(x, y) = 10^{x \cdot y}$$
;

$$\Gamma$$
) $f(x, y) = [x / y].$

Задание 3. Какая функция получится с помощью схемы примитивной рекурсии:

a)
$$f(x, 0) = x$$
;

$$f(x, y+1) = x^{f(x, y)};$$

б)
$$f(x, 0) = x$$
;

$$f(x, y+1) = (f(x, y))^{x}$$
.

Задание 4. Доказать, что следующие функции примитивнорекурсивны:

a)
$$f(x) = x - 1 = \begin{cases} 0, & ecnu \ x = 0; \\ x - 1, & ecnu \ x > 0. \end{cases}$$

б)
$$f(x, y) = x - y = \begin{cases} 0, & ecnu \ x \le y; \\ x - y, & ecnu \ x > y. \end{cases}$$

$$\mathrm{B})\,f(x,\,y) = \, \begin{cases} x-y, \; ecnu \; \, x \geq y; \\ y-x, \, ecnu \; \, x < y. \end{cases}.$$

Самостоятельно:

1)
$$f(x, y) = x - (x - y);$$

2)
$$f(x, y) = y + x - y$$
;

3)
$$g(x, y) = \begin{cases} 0, & ecnu \ x = y; \\ 1, & ecnu \ x \neq y. \end{cases}$$

4)
$$\overline{g}(x, y) = \begin{cases} 1, & ecnu \ x = y; \\ 0, & ecnu \ x \neq y. \end{cases}$$

Практическое занятие 5

Примитивно-рекурсивные функции от *п*-переменных

- 1. Доказать, что если функция $f(x_1, x_2, ..., x_n)$ примитивно рекурсивная, то следующие функции примитивно рекурсивны:
- а) $h(x_1, ..., x_n, x_{n+1}) = f(x_1, ..., x_n)$ введение фиктивного аргумента;
- б) $\varphi(x_1, ..., x_{n-1}) = f(x_1, x_1, x_2, ..., x_{n-1})$ отождествление аргументов.
- 2. Доказать, что следующие функции примитивно рекурсивны:
 - a) f(x) = x 2;
 - 6) $f(x) = 2^{x-1}$.
- 3. Пусть g примитивно рекурсивная функция. Доказать, что следующие функции примитивно рекурсивны:

a)
$$f(x_1, ..., x_n, x_{n+1}) = \sum_{i=0}^{x_{n+1}} g(x_1, ..., x_n, i);$$

б)
$$f(x_1, ..., x_n, y, z) = \begin{cases} \sum_{i=y}^{z} g(x_1, ..., x_n, i), & ecnu \ y \leq z; \\ 0, & ecnu \ y > z; \end{cases}$$

Самостоятельно:

1)
$$f(x_1, ..., x_n, x_{n+1}) = \prod_{i=0}^{x_{n+1}} g(x_1, ..., x_n, i);$$

2)
$$f(x_1, ..., x_n, y, z) = \begin{cases} \prod_{i=y}^{z} g(x_1, ..., x_n, i), ecnu \ y \leq z; \\ 0, ecnu \ y > z. \end{cases}$$

Индивидуальное задание 3

Примитивно-рекурсивные функции

1. Доказать, что следующие функции примитивнорекурсивны:

1.
$$f(x) = x + n$$
; $f(x) = e^x$; $f(x, y) = (x - y) + y$.

2.
$$f(x) = x!$$
; $f(x) = x \sqrt{2}$; $f(x, y) = (x + y) - y$.

3.
$$f(x) = 10^x$$
; $f(x) = a + b \cdot x$, $a - const$; $f(x, y) = (x + y) \div (y + x)$.

4.
$$f(x) = x + 2$$
; $f(x) = 10^{y-x}$; $f(x, y) = y - (y - x)$.

5.
$$f(x) = 2^x$$
; $f(x) = x - n$, $n - const$; $f(x, y) = (x - y) + (y - x)$.

6.
$$f(x) = x - (x - y)$$
; $f(x, y) = x^y$; $f(x) = 2 \cdot x$.

7.
$$sg(x) = \begin{cases} 0, x = 0, \\ 1, x > 0 \end{cases}$$
; $f(x) = 2 \cdot x - 1$; $f(x) = 100^{x-1}$.

8.
$$sg(x) = \begin{cases} 1, x = 0, \\ 0, x > 0 \end{cases}$$
; $f(x) = x - 10$; $f(x, y) = 2^{x - y}$.

9.
$$x - 1 = \begin{cases} 0, x = 0, \\ x - 1, x > 0 \end{cases}$$
; $f(x) = c \cdot x - d$, c , $d - const$; $f(x) = x \cdot \sqrt{3}$.

10.
$$f(x)=3^x$$
; $f(x)=a-b \cdot x$; $a, b-const$; $f(x, y)=(x+y)-(x-y)$.

11.
$$f(x, y) = (y - x) + x$$
; $f(x, y) = x^{1-y}$; $f(x) = x/2$;

12.
$$f(x) = n - x$$
; $f(x) = 2^{1-x}$; $f(x, y) = (y - x) + x$.

- * считать везде "-" урезанным вычитанием "-".
- 2. Какая функция получится с помощью схемы примитивной рекурсии (по данной схеме примитивной рекурсии восстановить функцию):

1.
$$f(x, 0) = x$$
, $f(x, y+1) = f(x, y)^x$.

2.
$$f(x, 0) = x$$
, $f(x, y+1) = x^{f(x, y)}$.

3.
$$g(x, 0) = 2$$
, $g(x, y+1) = 2^{g(x, y)}$.

4.
$$g(x, 0) = 2$$
, $g(x, y+1) = g(x, y)^2$.

5.
$$f(x, 0) = x$$
, $f(x, y+1) = f(x, y) * x$.

6.
$$f(x, 0) = x$$
, $f(x, y+1) = f(x, y) + x$.

7.
$$g(x, 0) = 2$$
, $g(x, y+1) = g(x, y) * 2$.

8.
$$g(x, 0) = 2$$
, $g(x, y+1) = g(x, y) + 2$.

9.
$$f(x, 0) = x$$
, $f(x, y+1) = f(x, y)^2$.

10.
$$f(x, 0) = x$$
, $f(x, y+1) = 2^{f(x,y)}$.

11.
$$f(x, 0) = 10$$
, $f(x, y+1) = f(x, y) + 10$.

12.
$$g(x, 0) = 2^x$$
, $g(x,y+1) = g(x, y) * 2^x$.

Практическое занятие 6

Нормальные алгоритмы Маркова (НАМ)

Марковской подстановкой называется операция над словами, задаваемыми с помощью упорядоченной пары слов (P, Q), состоящая в следующем. В заданном слове R находят первое вхождение слова P (если оно есть) и, не изменяя остальных частей слова R, заменяют в нем это вхождение словом Q. Полученное слово называется результатом применения марковской подстановки (P, Q) к слову R. Если же первого вхождения P в слово R (и, следовательно, вообще нет ни одного вхождения P в R), то считается, что марковская подстановка (P, Q) не применима к слову R.

Запись $P \to Q$ называется формулой подстановки (P,Q). P называется левой частью, Q — правой частью в формуле подстановки. Некоторые подстановки называются заключительными. Для обозначения таких подстановок будем использовать запись $P \to {}^{\bullet}\!Q$, называя ее формулой заключительной подстановки.

Упорядоченный конечный список формул подстановок в алфавите A

$$\begin{cases} P_1 \to (\cdot)Q_1 \\ P_2 \to (\cdot)Q_2 \\ \vdots \\ P_n \to (\cdot)Q_n \end{cases}$$

называется схемой нормального алгоритма в алфавите А. Запись точки в скобках означает, что она может стоять на этом месте, а может отсутствовать.

Пример. Построить нормальный алгоритм Маркова, заменив в алфавите $A = \{a, b, c\}$ все буквы a на c. Используем символ α для расширения алфавита A. $B = \{\alpha\} \cup A$. Схема Z нормального алгоритма будет иметь следующий вид:

$$Z: \begin{cases} \alpha a \longrightarrow c \alpha \\ \alpha b \longrightarrow b \alpha \\ \alpha c \longrightarrow c \alpha \\ \alpha \longrightarrow \cdot \Lambda \\ \Lambda \longrightarrow \alpha \end{cases}$$

Например, $aacbab \Rightarrow \alpha aacbab \Rightarrow c\alpha acbab \Rightarrow cc\alpha cbab \Rightarrow cccabab \Rightarrow cccbcab \Rightarrow cccbcba \Rightarrow cccbcba$

Этот алгоритм может быть реализован так же следующей схемой:

$$Z_1: \begin{cases} a \to c \\ \Lambda \to \cdot \Lambda \end{cases}$$

Задание 1. Что получится в результате следующих марковских подстановок в слово «апельсин»:

- a) (Λ, κ) ;
- б) (пельс, спир);
- в) (ль, Λ).

Задание 2. Построить нормальный алгоритм Маркова для вычисления функции f(x) = x - 1 (x > 1) в унарной системе счисления.

Задание 3. Исполнить алгоритм вычисления функции f(x) = x + 1 в десятичной системе счисления.

Задание 4. Построить нормальный алгоритм Маркова для вычисления функции f(x) = x - 1 в десятичной системе счисления.

Задание 5. Дано слово в алфавите $A = \{a, b, c\}$. Построить алгоритм Маркова, присоединяющий слово Q к данному слову.

Решение:

$$\begin{cases} \varepsilon a \to a\varepsilon \\ \varepsilon b \to b\varepsilon \\ \varepsilon c \to c\varepsilon \\ \varepsilon \to \cdot Q \\ \Lambda \to \varepsilon \end{cases}$$

Задание 6. Построить нормальный алгоритм Маркова, удваивающий слово в унарной системе счисления.

Задание 7. Построить нормальный алгоритм Маркова для перевода числа из двоичной системы счисления в четверичную систему счисления.

Самостоятельно:

- 1. Дан алфавит $A = \{a, b, c\}$. Заменить все a на bc.
- 2. Дан алфавит $A = \{a, b, c\}$. Удалить все b.
- 3. Построить нормальный алгоритм Маркова для вычисления функции f(x) = x 1 в троичной системе счисления.
- 4. Построить нормальный алгоритм Маркова для перевода числа из четверичной системы счисления в двоичную систему счисления.

Практическое занятие 7

Нормальные алгоритмы Маркова (работа с эмулятором)

Рассмотрим примеры, в которых демонстрируются типичные приёмы составления нормальных алгоритмов Маркова (HAM).

Как и в случае машины Тьюринга, для сокращения формулировки задач будем использовать следующие соглашения:

- буквой *P* будем обозначать входное слово;
- буквой A будем обозначать алфавит входного слова, т.е. набор тех символов, которые могут входить во входное слово P

(но в процессе выполнения НАМ в обрабатываемых словах могут появляться и другие символы).

На рисунке 2.1 приведен пример работы эмулятора.

Рассмотрен пример добавления к слову в алфавите $A = \{a, b, c, d\}$ слова Q = aaaa.

Рис. 2.1. Главное окно эмулятора НАМ

Задание 1. Вставка и удаление символов.

 $A = \{a, b, c, d\}$. В слове P требуется заменить первое вхождение подслова bb на ddd и удалить все вхождения символа c. Исполнить по шагам.

Например: abbcabbca → addabba.

Задание 2. Перестановка символов.

 $A = \{a, b\}$. Преобразовать слово P так, чтобы в начале оказались все символы a, а в конце — все символы b.

Например: babba → aabbb.

Задание 3. Использование спецзнака.

 $A = \{a, b\}$. Удалить из непустого слова P его первый символ. Пустое слово не менять.

Задание 4. Фиксация спецзнаком заменяемого символа.

 $A = \{0, 1, 2, 3\}$. Пусть P — непустое слово. Трактуя его как запись неотрицательного целого числа в четверичной системе счисления, требуется получить запись этого же числа, но в дво-ичной системе.

Например: $0123 \rightarrow 00011011$.

Самостоятельно:

- 1. Составить НАМ, проверяющий деление десятичного числа на 5.
- 2. $A = \{a, b, c\}$. Составить НАМ, перемещающий все буквы а в конец слова.
- 3. Построить нормальный алгоритм Маркова для вычисления разности двух чисел, представленных в унарной системе счисления.

Индивидуальное задание 4

Нормальные алгоритмы Маркова

Залание 1.

- 1. Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A = \{a, b, c, d, e, f\}$ все вхождения последовательности abc заменял на символ f и удалял первое вхождение пары cf.
- 2. Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A = \{a, b, c, d, e, f\}$ удалял все вхождения последовательности bc и удваивал гласные буквы.
- 3. Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A = \{a, b, c, d, e, f\}$ все символы a заменял на f, а все f на af.

- 4. Построить нормальный алгоритм Маркова, который бы в любом слове из алфавита $A = \{a, b, c, d, e, ..., x, y, z\}$ удваивал все буквы, стоящие на четных местах в исходном слове.
- 5. Построить нормальный алгоритм Маркова, который упорядочивает любое слово в алфавите $A = \{a, b, c, d\}$.
- 6. Поменять местами первый и последний символы слова в алфавите $A = \{a, b, c, d, e\}$.
- 7. Даны два слова из букв, записанные через * в алфавите $A = \{a, b, c, d, e, f\}$. Вместо пробела поставить « = ».
- 8. Построить нормальный алгоритм Маркова, реализующий циклический сдвиг первого символа слова в алфавите $A = \{a, b, c, d, e, f, g\}$.
- 9. Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A = \{a, b, c, d, e, f\}$ все вхождения последовательности cde заменял на символ a и удваивал согласные буквы.
- 10. Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A = \{a, b, c, d, e, f\}$ удалял все вхождения последовательности fe и заменял первое вхождение da на b.
- 11. Построить нормальный алгоритм Маркова, который бы переворачивал любое заданное слово в алфавите $A = \{a, b, c, d\}$.
- 12. Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A = \{a, b, c, d, e, f\}$ все символы e заменял на d, а все d на de.
- 13. Построить нормальный алгоритм Маркова, который бы в любом слове из алфавита $A = \{a, b, c, d, e, ..., x, y, z\}$ удваивал все гласные буквы.
- 14. Поменять местами первый и последний символа слова в алфавите $A = \{0, 1, 2, 3, 4, 5\}.$
- 15. Построить нормальный алгоритм Маркова, реализующий циклический сдвиг последнего символа слова в алфавите $A = \{a, b, c, d, e, f\}$.
- 16. Построить нормальный алгоритм Маркова для вычисления функции $f(x) = x \mod 3$ в унарной системе счисления.

- 17. Построить нормальный алгоритм Маркова для вычисления функции $f(x) = x \ div \ 3$ в унарной системе счисления.
- 18. Построить нормальный алгоритм Маркова для перевода числа из двоичной системы счисления в восьмеричную систему счисления.
- 19. Построить нормальный алгоритм Маркова для перевода числа из двоичной системы счисления в шестнадцатеричную систему счисления.
- 20. Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A = \{a, b, c, d, e, f\}$ все символы e заменял на d, а все d на de.
- 21. Построить нормальный алгоритм Маркова, который бы в любом слове из алфавита $A = \{a, b, c, d, e, ..., x, y, z\}$ удваивал все гласные буквы и удалял согласные буквы.
- 22. Построить нормальный алгоритм Маркова, который в любом слове в алфавите $A = \{a, b, c\}$ переносит все буквы a в конец слова, а буквы b в конец слова.
- 23. Поменять местами первый и последний символы слова в алфавите $A = \{0, 1, 2, 3, 4, 5\}$.
- 24. Построить нормальный алгоритм Маркова для перевода числа из шестнадцатеричной системы счисления в двоичную систему счисления.

Задание 2 (+ 0,2 балла).

- 1. Даны два слова в унарной системе, записанные через *. Вместо звездочки поставить >, <, =.
- 2. Построить нормальный алгоритм Маркова для определения системы счисления (найти возможное минимальное основание), в которой записано натуральное число (предполагается, что основание не может превышать 16_{10}).
- 3. Считая непустое слово P записью двоичного числа в алфавите $A = \{0, 1\}$, определить, является ли это число степенью 2 $(1, 2, 4, \ldots)$. Ответ: слово 1, если является, или слово 0 иначе.

- 4. Считая непустое слово P в алфавите $A = \{0, 1, 2, 3\}$ записью четверичного числа, проверить, чётное оно или нет. Ответ: слово 0, если чётное, и слово 1 иначе.
- 5. Считая непустое слово P в алфавите $A = \{0, 1, 2, 3\}$ записью четверичного числа, получить остаток от деления этого числа на 4.
- 6. Считая непустое слово P в алфавите $A = \{0, 1\}$ записью двоичного числа, получить это же число, но в четверичной системе. (Замечание: учесть, что в двоичном числе может быть нечётное количество цифр.)
- 7. Считая непустое слово P в алфавите $A = \{0, 1, 2\}$ записью троичного числа, увеличить это число на 3.
- 8. Считая непустое слово P в алфавите $A = \{0, 1, 2\}$ записью положительного троичного числа, уменьшить это число на 3.
- 9. Считая слово P записью числа в единичной системе счисления, получить запись этого числа в троичной системе. (Pекомендация: следует в цикле удалять из «единичного» числа по единице и каждый раз прибавлять 1 к троичному числу, которое вначале положить равным 0).
- 10. Считая непустое слово P в алфавите $A = \{0, 1, 2\}$ записью числа в троичной системе, получить запись этого числа в единичной системе.
- 11. Определить, входит ли первый символ непустого слова P в алфавите $A = \{a, b, c\}$ ещё раз в это слово. Ответ: слово a, если входит, или пустое слово иначе.
- 12. Если в непустом слове P в алфавите $A = \{a, b\}$ совпадают первый и последний символы, то удалить оба этих символа, а иначе слово не менять.
- 13. Определить, является ли слово P в алфавите $A = \{a, b\}$ палиндромом (перевёртышем, симметричным словом). Ответ: слово a, если является, или пустое слово иначе.
- 14. Пусть слово P в алфавите $A = \{a, b\}$ имеет нечётную длину. Удалить из него средний символ.

- 15. Пусть P имеет вид Q = R, где Q и R любые слова из символов a и b. Выдать ответ a, если слова Q и R одинаковы, и пустое слово иначе.
- 16. Пусть P имеет вид Q = R, где Q и R непустые слова из символов 0 и 1. Трактуя Q и R как записи двоичных чисел (возможно, с незначащими нулями), выдать в качестве ответа слово 1, если эти числа равны, и слово 0 иначе.
- 17. Пусть P имеет вид Q > R, где Q и R непустые слова из символов 0 и 1. Трактуя Q и R как записи двоичных чисел (возможно, с незначащими нулями), выдать в качестве ответа слово 1, если число Q больше числа R, и слово 1 иначе.
- 18. Определить, сбалансировано ли слово P в алфавите $A = \{(,)\}$ по круглым скобкам. Ответ: y (да) или n (нет).

Вопросы к модулю 2

- 1. В чем заключается конструктивный подход, принятый в теории алгоритмов?
 - 2. Как называются операции над функциями?
 - 3. Что входит в базис?
- 4. Дать определение функции проекции, суперпозиции, примитивной рекурсии.
 - 5. Дать определение примитивно-рекурсивной функции.
- 6. Как доказать примитивную рекурсию сложения? вычитания?
 - 7. Какое отношение называется примитивно-рекурсивным?
 - 8. Какой предикат называется примитивно-рекурсивным?
 - 9. Какой оператор называется примитивно-рекурсивным?
- 10. Как задается циклическая перестановка аргументов, отождествление и др.?
- 11. Как определяется ограниченный оператор наименьшего числа (µ-оператор)?
 - 12. Какой оператор называется оператором обращения?
 - 13. Где определены примитивно-рекурсивные функции?

- 14. Как задается функция Аккермана?
- 15. Является ли функция Аккермана примитивно-рекурсивной? общерекурсивной?
 - 16. Дать определение частично-рекурсивной функции.
- 17. Какая частично-рекурсивная функция называется общерекурсивной?
- 18. Как выполняются свойства детерминированности, массовости и дискретности для частично-рекурсивных функций?
 - 19. Что собой представляют нормальные алгоритмы Маркова?
 - 20. Дать определение алфавита, слова.
- 21. Какая операция называется «Марковской подстановкой»?
- 22. Как записывается формула подстановки? Конечной подстановки?
 - 23. Как записывается схема нормального алгоритма Маркова?
 - 24. Что означает, что алгоритм М применим к слову Р?
- 25. В чем заключается правило построения последовательности $\{P_i\}$ слов в алфавите A?
- 26. Что является результатом применения нормального алгоритма к слову Р?
- 27. Какая функция называется частично вычислимой по Маркову?
 - 28. Сформулировать принцип нормализации Маркова.
 - 29. Что называется расширением алфавита?
 - 30. Какая функция называется вычислимой по Маркову?
- 31. В каком случае можно говорить о нормальном алгоритме, что он замкнут?
- 32. Что называется естественным распространением алгоритма Маркова?
- 33. В каком случае композиция алгоритмов называется нормальной композицией алгоритмов M_1 и M_2 ?
 - 34. Сформулировать принцип нормализации Маркова.

МОДУЛЬ 3. МАШИНА С НЕОГРАНИЧЕННЫМИ РЕГИСТРАМИ

Практическое занятие 8

Машина с неограниченными регистрами (МНР)

Машина с неограниченными регистрами (МНР) состоит из:

- 1) ленты, содержащей бесконечное число регистров, обозначаемых через $R_1,\,R_2,\,R_3,\,\ldots$, каждый из которых в любой момент времени содержит некоторое натуральное число. Число, содержащееся в R_n , мы будем обозначать через r_n ;
- 2) программы P, состоящей из конечного списка команд. Команды бывают следующих четырех видов:
- а) команда обнуления Z(n) заменяет содержание R_n на 0; обозначается также $0 \to R_n$ или $r_n := 0$ (читается, как r_n присваивается 0);
- b) команды прибавления единицы S(n) увеличивает содержимое R_n на 1; обозначается также $r_n+1 \rightarrow R_n$ или $r_n:=r_n+1$ (r_n присваивается r_n+1);
- с) команда переадресации T(m, n) заменяет содержимое R_n числом r_m , содержащимся в R_m ; обозначается также $r_m \rightarrow R_n$ или $r_n := r_m(r_n \text{ присваивается } r_m)$;
- d) команда условного перехода $J(m,\ n,\ q)$ сравнивает содержимое регистров R_m и R_n , далее, если $r_m = r_n$, то МНР переходит к выполнению q-й команды программы P, если $r_m \neq r_n$, то МНР переходит к выполнению следующей команды в P. Если условный переход невозможен ввиду того, что в P меньше, чем q команд, то МНР прекращает работу.

Команды обнуления, прибавления единицы и переадресации называются арифметическими.

Пример. f(x, y) = x - y. Мы получим x - y, прибавляя 1 к у (используя соответствующие команды) у раз. Вычисление x - y начинается с начальной конфигурации x, y, 0, 0, ...; наша про-

грамма продолжает прибавление $1\ \kappa\ r_2$, используя R_3 как счетчик числа прибавлений $1\ \kappa\ r_2$. Типичной конфигурацией в процессе вычисления является:

\mathbf{R}_1	R_2	R_3	R_4	R_5	
X	у	k	0	0	

Программа спроектирована на останов, когда x = y, при этом в регистре R_I оказывается число k, что и требовалось. Итак, нашу задачу решает МНР, программа которой следующая:

 I_1 J (1,2,6)

 I_2 S(2)

 I_3 S (3)

I₄ J (1,2,6)

 $I_5 J (1,1,2)$

 $I_6 T (3,1)$

Таким образом, функция f(x, y) = x - y оказывается вычислимой.

Задания

1. Построить МНР, вычисляющую функцию f(x, y) = x + y. Исполнить для чисел 3 и 2.

R_1	R_2	R_3		R_4	R_5	
x+k	у	k		0	0	
$I_1 J(3,2)$,5)	3	2	0		
$I_2 S(1)$		4	2	1		
$I_3 S(3)$		5	2	2		
$I_4 J(1,1)$,1)					

2. Построить МНР, вычисляющую функцию

$$f(x) = egin{cases} rac{1}{2}x, & ecnu & x & vemho, \\ heonpedeneha, & ecnu & x & hevemho. \end{cases}$$

Исполнить алгоритм для числа 6.

R_1 R_2	R_3	R_4	R_5	
2k	k	0	0	
Y Y (1.0.5)	- 0			
$I_1 J(1,2,6)$	6 (0	0	
I_2 $S(3)$	6 1	1	0	
I_3 $S(2)$	6 2	1	0	
I_4 $S(2)$	6 3	2	0	
$I_5 J(1,1,1)$	6 4	. 2	0	
$I_6 T(3,1)$	6 5	3	0	
	6 6	3	0	
	3 6	3	0	
$\begin{array}{cc} I_3 & S(2) \\ I_4 & S(2) \\ I_5 & J(1,1,1) \end{array}$	6 2 6 3 6 4 6 5 6 6	2 2 3 3 3	0 0 0 0 0 0 0	

- 3. Построить МНР, вычисляющую функцию f(x, y) = x 2.
- 4. Построить МНР, вычисляющую функцию f(x, y) = x * y.
- 5. Построить МНР, вычисляющую функцию f(x, y) = x / y.

Самостоятельно:

1. Построить МНР, вычисляющую функцию

- 2. Построить МНР, вычисляющую функцию f(x) = 2 * x.
- 3. Построить МНР, вычисляющую функцию f(x) = x 2, если x > 2.
 - 4. Построить МНР, вычисляющую функцию f(x, y) = (x + y) / 2.

Машина с неограниченными регистрами (работа с эмулятором)

Задание 1. Знакомство с эмулятором «Машина с неограниченными регистрами».

1. Запустить эмулятор «МНР» с внутреннего. Портала $\text{ЮУр}\Gamma\Gamma\Pi\text{У}$: $\text{ЮУр}\Gamma\Gamma\Pi\text{У}$ >Учебно-метод. матер. >IITiMOI>ISiT> 3k>TA>Emuliytors>MNR.swf

2. Познакомиться с интерфейсной частью программы, рассмотреть возможности меню (рис. 3.1);

Рис. 3.1. Внешний вид эмулятора МНР

Задание 2. Реализация готовых алгоритмов в эмуляторе «МНР».

Рис. 3.2. Пример вычислений в эмуляторе «МНР»

- 1. Рассмотреть пошагово работу эмулятора для задачи, представленной на рисунке 3.2.
 - 2. Какой алгоритм реализован с помощью данной МНР?

Задание 1. Построить МНР, вычисляющую функцию $f(x) = 4 \cdot x$.

Задание 2. Составить программу для вычисления функции

$$f(x) = \begin{cases} 0, & ecnu \quad x = 0, \\ x - 1, & ecnux <> 0 \end{cases}$$

Самостоятельно:

- 1. Составить МНР-программу, вычисляющую $f(x) = a \cdot x + b$.
- 2. Построить МНР, вычисляющую остаток от деления х на у.

Индивидуальное задание 5

Машина с неограниченными регистрами

Задание 1. Построить машину с неограниченными регистрами, вычисляющую функцию y(x):

- 1. y = a * x + b.
- 2. y = x div 2.
- 3. y = b a * x.
- 4. $y = x^2$.
- 5. y = 2 * x 1.
- 6. y = a * x.
- 7. y = a * x b.
- 8. $y = x \mod 2$.
- 9. $y = a^x$.
- 10. Среднее 2-х чисел.
- 11. $y = 2^x$.
- 12. Проверка на четность.
- 13. $y = x^3$.
- 14. Проверка деления на 3.
- 15. y = x / 3.
- 16. Проверка на нечетность.

- 17. y = x / 2.
- 18. Проверка деления на 5.
- 19. y = x div 3.
- 20. $y = 3^x$.
- 21. $y = x \mod 3$.
- 22. y = x/a d.
- 23. y = b x / a.
- 24. Проверка деления на 10.

Задание 2. Построить машину с неограниченными регистрами (не из списка) +0,2 балла.

Вопросы к модулю 3

- 1. Из чего состоит машина с неограниченными регистрами?
- 2. Охарактеризовать каждую составляющую МНР.
- 3. Из чего состоит память машины с неограниченными регистрами?
 - 4. Бесконечна ли лента в одну сторону? в обе?
 - 5. Сколько символов можно записать в одну ячейку?
 - 6. Объяснить команды машины: Z, S, T, J.
 - 7. Какие команды относятся к арифметическим?
 - 8. Что является данными МНР?
- 9. Что собой представляет память, элементарные шаги, детерминированность МНР?
 - 10. Что является результатом работы МНР?
 - 11. Какая функция называется МНР-вычислимой?
- 12. Как выполняются требования к алгоритмам на примере МНР?
 - 13. В каком случае вычисление $P(a_1, a_2, ..., a_n)$ сходится к b?
 - 14. Что обозначает запись $P(a_1, a_2, a_3, ...)$?
 - 15. Что является результатом работы МНР?

МОДУЛЬ 4. ВЫЧИСЛИМОСТЬ И РАЗРЕШИМОСТЬ

Практическое занятие 10

Нумерация программ

Биекция π : N*N \to N определяется равенством $\pi(m, n) = 2^m(2 \cdot n + 1) - 1$.

Величину π^{-1} можно задать как $\pi^{-1}(x) = (\pi_I(x), \pi_2(x))$, где π_I и π_2 — вычислимые функции, определяемые равенством: π_I = минимальной степени 2 в двоичном разложении числа x;

$$\pi_2 = \frac{1}{2} \left(\frac{x+1}{2\pi_1(x)} - 1 \right).$$

Для явного задания биекции $\zeta: N^{+*}N^{+*}N^{+} \to N$ используем функцию π :

$$\zeta(m, n, q) = \pi(\pi(m-1, n-1), q-1).$$

Тогда
$$\zeta^{-1}(x) = (\pi_1(\pi_1(x)) + 1, \ \pi_2(\pi_1(x)) + 1, \ \pi_2(x) + 1).$$

Биекция $\tau:\bigcup_{k>0}N^k\to N$ задается тождеством:

$$au(a_1, ..., a_k) = 2^{a_1} + 2^{a_1 + a_2 + 1} + 2^{a_1 + a_2 + a_3 + 2} + ... + 2^{a_1 + a_2 + ... + a_k + k - 1} - 1.$$
 $au^{-l}(x) = (a_1, ..., a_k), \text{ где } a_1 = b_1, \text{ а } a_{i+1} = b_{i+1} - b_i - 1 \ (1 < = i < k).$

Определим биекцию β : $\mathcal{L} \to N$, которая отображает команды четырех типов в натуральные числа вида 4u, 4u+1, 4u+2, 4u+3 соответственно; используем функции π и ξ :

$$\beta(Z(n)) = 4 \cdot (n-1),$$

$$\beta(S(n)) = 4 \cdot (n-1) + 1,$$

$$\beta(T(m, n)) = 4 \cdot \pi(m-1, n-1) + 2,$$

$$\beta(J(m, n, q)) = 4 \cdot \xi(m, n, q) + 3.$$

Для вычисления $\beta^{-1}(x)$ найдем сначала такие числа u, r, что $x = 4 \cdot u + r$ при $0 \le r < 4$. Значение r указывает тип команды $\beta^{-1}(x)$, а u позволяет найти конкретно команду данного типа, а именно:

– если
$$r = 0$$
, то $\beta^{-1}(x) = Z(u + 1)$;

$$-$$
 если $r = 1$, то $\beta^{-1}(x) = S(u + 1)$;

- если
$$r=2$$
, то $\beta^{-1}(x)=T(\pi_1(u)+1,\pi_2(u)+1)$;

$$-$$
 если $r=3$, то $\beta^{-1}(x)=I(m,\,n,\,q)$, где $(m,n,q)=\xi^{-1}(u)$.

Определим биекцию $\gamma: P \to \mathbb{N}$ следующим образом: если $P = I_1, I_2, ..., I_s$, то $\gamma(P) = \tau(\beta(I_1), ..., \beta(I_s))$.

Примеры.

A. Пусть P является программой T(1,3), S(4), Z(6). Вычислим γ (P).

$$\beta(T(1,3)) = 4\pi(0,2) + 2 = 4 \cdot (2^{0} \cdot (2*2+1)) + 2 = 18,$$

$$\beta(S(4)) = 4 \cdot 3 + 1 = 13,$$

$$\beta(Z(6)) = 4 \cdot 5 = 20.$$

Следовательно γ (P) = $2^{18} + 2^{32} + 2^{53} - 1 = 9007203549970431$.

B. Пусть n=4127, найдем P_{4127} . $4127=2^5+2^{12}-1$; следовательно, P_{4127} является программой с двумя командами I_1 и I_2 , где $\beta(I_1)=5=4\cdot 1+1$.

$$\beta(I_2) = 12 - 5 - 1 = 6 = 4 \cdot 1 + 2 = 4\pi(1,0) + 2.$$

Согласно определению β , $I_1 = S(2)$, а $I_2 = T(2,1)$, и, значит, P_{4127} есть S(2), T(2,1).

Задание 1.

- 1. Пусть P является программой Z(3), S(2), T(3,1). Вычислить γ (P).
- 2. Пусть P является программой S(2), S(3), T(3,1). Вычислить γ (P).
 - 3. Пусть n = 1089, найти P_{1089} .
 - 4. Пусть n = 523, найти P_{523} .

Вопросы к модулю 4

- 1. Кто впервые сформулировал принцип, утверждающий пригодность некоторых конкретных уточнений понятия «алгоритм»?
- 2. Является ли разрешимой задача распознавания эквивалентности примитивно-рекурсивных описаний?
- 3. Пусть X множество конечных объектов; в каком случае X называется эффективно счетным?
- 4. Существует ли невычислимая всюду определенная (или тотальная) функция?
- 5. Кто предложил метод диагональной конструкции для построения функции f?
 - 6. Как можно найти индекс вычислимой функции?
- 7. Как обозначается область определения $\Phi_a^{(n)} = \{(x_I, ..., x_n) | P_a(x_I, ..., x_n) \downarrow \}$?
- 8. Как обозначается n-местная функция, вычислимая по программе $P_a = f_{\ p}^{\ (n)}$?
 - 9. Как обозначается множество значений функции $\Phi_a^{(n)}$?
- 10. Для любого перечисления множества всюду определенных вычислимых функций существует ли общерекурсивная функция, входящая в это перечисление?

- 11. Что означает, что проблема « $x \in W_x$ » неразрешима?
- 12. Что означает, что проблема « Φ_x всюду определена» неразрешима?
- 13. Что означает, что проблема « $\Phi_x(y)$ определена» неразрешима?
- 14. Что означает, что проблема « $\Phi_x = g$ », где g любая фиксированная вычислимая функция, неразрешима?
- 15. Можно ли проверить, вычисляют ли две программы одну и ту же одноместную функцию?
- 16. Как называется множество M, если существует общерекурсивная функция $\psi_M(x)$, такая, что $a \in M$ тогда и только тогда, когда для некоторого x $a = \psi_M(x)$?
- 17. Существует ли множество M, которое перечислимо, но не разрешимо?
- 18. В чем смысл теоремы Райса (с точки зрения программирования)?
- 19. Множество квадратов натуральных чисел $M = \{a | a = x^2\}$ перечислимо и разрешимо?