

INTRODUCTION

- In this project, we will try to predict whether a customer will churn, i.e. if a customer will cancel their telecom subscription based on their activity data.
- To do so, we will implement Logistic Regression, Random Forest and a Neural Network model to find the best one.
- Data Source <u>Link</u>

ΚX

Pitch Deck

DATA DESCRIPTION

COLUMN NAME	DESCRIPTION	
State	State where the account is based	
Account.length	Time that the account has been active	
Area.code	Area code of the account	
Internation.plan	Whether account has international plan or not	
Voice.mail.plan	Whether account has voice plan or not	
Number.vmail.messages	Number of voice mail messages	
Total.day.minutes	Total day minutes used	
Total.day.calls	Day calls made	
Total.day.charge	Total day charge	
Total.eve.minutes	Total evening minutes used	
Total.eve.calls	Evening calls made	
Total.eve.charge	Total evening charge	
Total.night.minutes	Total night minutes used	
Total.night.calls	Night calls made	
Total.night.charge	Total night charge	
Total.intl.minutes	Total international minutes used	
Total.intl.calls	Total international calls made	
Total.intl.charge	Total international charge	
Customer.service.calls	Number of service calls made	
Churn	Whether the customer churns, 0 if True, 1 if False	

- 20 attributes : 4 categorical and 16 are numerical
- The target variable is Churn. It has 2 factor levels: True and False
- The state attribute is dropped from the dataset.

DATA EXPLORATION

Pitch Deck

DATA EXPLORATION CONT.

```
> table(train$Churn) # 0.172, more cases of false than true

False True
2278 388
> table(test$Churn) # 0.166 more cases of false than true

False True
572 95
```


LOGISTIC REGRESSION


```
Call:
glm(formula = Churn ~ ., family = binomial(link = "logit"), data = train_final)
Deviance Residuals:
           10 Median
                          30 Max
-3.2287 0.1982 0.3410 0.5128 2.1255
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
(Intercept)
                    7.7395755 1.0361961 7.469 8.07e-14 ***
Account.length
                   -0.0008571 0.0015685 -0.546 0.58476
Area.code
                    0.0006087 0.0014690 0.414 0.67861
International.planYes -2.0977591 0.1595518 -13.148 < 2e-16 ***
Voice.mail.planYes
                   2.0315470 0.6553951 3.100 0.00194 **
Number.vmail.messages -0.0374140 0.0206236 -1.814 0.06966 .
Total.day.minutes
                   -0.0125970 0.0012187 -10.337 < 2e-16 ***
Total.day.calls
                   -0.0028906 0.0030978 -0.933 0.35075
Total.eve.minutes
                   Total.eve.calls
                    0.0007921 0.0030824 0.257 0.79720
Total.night.minutes
                   -0.0028341 0.0012418 -2.282 0.02247 *
Total.night.calls
                   -0.0020081 0.0031666 -0.634 0.52598
Total.intl.minutes
                   Total.intl.calls
                   0.1201464 0.0287918 4.173 3.01e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2212.2 on 2665 degrees of freedom
Residual deviance: 1730.6 on 2651 degrees of freedom
AIC: 1760.6
Number of Fisher Scoring iterations: 6
```

RESULTS FROM LOGISTIC REGRESSION

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 17 20

1 78 552

Accuracy: 0.8531

95% CI : (0.8239, 0.8791)

No Information Rate : 0.8576 P-Value [Acc > NIR] : 0.655

Kappa : 0.1932

Mcnemar's Test P-Value : 8.518e-09

Sensitivity: 0.17895

Specificity: 0.96503

Pos Pred Value : 0.45946

Neg Pred Value : 0.87619

Precision : 0.45946

Recall : 0.17895

F1: 0.25758

Prevalence: 0.14243

Detection Rate : 0.02549

Detection Prevalence : 0.05547

Balanced Accuracy: 0.57199

'Positive' Class : 0

RANDOM FOREST

Variable Importance Plot for RF

RESULTS FROM RANDOM FOREST

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 71 5

1 24 567

Accuracy : 0.9565

95% CI: (0.9382, 0.9707)

No Information Rate : 0.8576 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8058

Mcnemar's Test P-Value: 0.0008302

Sensitivity: 0.7474

Specificity: 0.9913

Pos Pred Value : 0.9342

Neg Pred Value : 0.9594

Precision: 0.9342

Recall : 0.7474

F1: 0.8304

Prevalence: 0.1424

Detection Rate: 0.1064

Detection Prevalence : 0.1139

Balanced Accuracy : 0.8693

'Positive' Class : 0

.outcome

RESULTS FROM NEURAL NETWORK

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 67 28

1 10 562

Accuracy: 0.943

95% CI : (0.9226, 0.9594)

No Information Rate : 0.8846 P-Value [Acc > NIR] : 1.793e-07

Kappa : 0.7468

Mcnemar's Test P-Value : 0.00582

Sensitivity: 0.8701

Specificity: 0.9525

Pos Pred Value : 0.7053

Neg Pred Value : 0.9825

Precision: 0.7053

Recall : 0.8701

F1: 0.7791

Prevalence: 0.1154

Detection Rate: 0.1004

Detection Prevalence : 0.1424

Balanced Accuracy: 0.9113

'Positive' Class : 0

COMPARISON B/W MODELS

	Logistic Regression	Random Forest	Neural Network
Accuracy	0.853	0.956	0.943
AUC	0.572	0.868	0.844
F1 Score	0.257	0.830	0.779

REFERENCES

- 1. https://www.researchgate.net/figure/Algorithmic-flow-chart-of-Logistic-Regression-Lei-et-al-2016-42-Support-vector_fig3_343472002
- 2. https://www.crowdanalytix.com/contests/why-customer-churn
- 3. Dataset
- 4. https://medium.com/analytics-vidhya/accuracy-vs-f1-score-6258237beca2

