Entwurf eines WED-Antriebs (Weber-Elektrodynamik-Antrieb)

Dipl.-Ing. (FH) Michael Czybor

1. September 2025

1 Prinzip des WED-Antriebs

Der WED-Antrieb basiert auf der **Weber-Elektrodynamik (WED)**, die eine direkte, geschwindigkeitsund beschleunigungsabhängige Wechselwirkung zwischen Ladungen postuliert. Im Gegensatz zu konventionellen Antrieben wird kein Massenausstoß benötigt.

1.1 Grundprinzip

- \bullet Im Raum existiert eine **externe Ladungsanomalie** q_2 (z.B. Elektron)
- \bullet Im Raumschiff wird eine **Antriebsladung** q_1 durch ein unsymmetrisches HF-Feld (Sägezahnform) beschleunigt
- Die asymmetrische Beschleunigung $\vec{a}_1(t)$ erzeugt eine Nettokraft auf die externe Ladung
- Durch Actio=Reactio entsteht eine Schubkraft auf das Raumschiff

2 Herleitung der Schubkraft

2.1 Weber-Kraft zwischen zwei Ladungen

Die vektorielle Weber-Kraft zwischen zwei Ladungen q_1 und q_2 lautet:

$$\vec{F}_{12} = \frac{q_1 q_2}{4\pi \epsilon_0 r^2} \left\{ \left[1 - \frac{v^2}{c^2} + \frac{2r(\hat{r} \cdot \vec{a}_1)}{c^2} \right] \hat{r} + \frac{2(\hat{r} \cdot \vec{v})}{c^2} \vec{v} \right\}$$
(1)

2.2 Beschleunigungsabhängiger Term

Für den Antrieb relevant ist der beschleunigungsabhängige Term:

$$\vec{F}_{\text{acc}} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \cdot \frac{2r(\hat{r} \cdot \vec{a}_1)}{c^2} \hat{r} = \frac{q_1 q_2}{2\pi\epsilon_0 c^2 r} (\hat{r} \cdot \vec{a}_1) \hat{r}$$
(2)

2.3 Rückwirkung auf Raumschiff

Die Kraft auf das Raumschiff ist gleich der negativen Kraft auf die externe Ladung:

$$\vec{F}_{\text{Schub}} = -\vec{F}_{12} = -\frac{q_1 q_2}{2\pi\epsilon_0 c^2 r} (\hat{r} \cdot \vec{a}_1) \hat{r}$$
 (3)

2.4 Zeitliche Mittelung

Für ein periodisches Sägezahnsignal mit Periodendauer T:

$$\langle \vec{F}_{\text{Schub}} \rangle = -\frac{q_1 q_2}{2\pi \epsilon_0 c^2 r} \langle \hat{r} \cdot \vec{a}_1 \rangle \hat{r}$$
 (4)

2.5 Nettobeschleunigung

Für einen Sägezahn mit:

• Steilrampe: T_+ , a_+

• Flachrampe: T_- , a_-

ergibt sich die Nettobeschleunigung:

$$a_{\text{netto}} = \frac{1}{T}(a_{+}T_{+} + a_{-}T_{-}) \tag{5}$$

3 Finale Schubgleichung

$$\sqrt{\langle \vec{F}_{\text{Schub}} \rangle} = -\frac{q_1 q_2}{2\pi \epsilon_0 c^2 r} a_{\text{netto}} \cos \theta \cdot \hat{r}$$
(6)

wobei θ der Winkel zwischen \hat{r} und \vec{a}_{netto} ist.

4 Beispielrechnung

4.1 Pessimistische Abschätzung

$$q_1 = -1 \,\mu\text{C} = -10^{-6} \,\text{C}$$

 $q_2 = -e = -1.6 \times 10^{-19} \,\text{C}$
 $r = 1 \,\text{m}$
 $a_{\text{netto}} = 10^6 \,\text{m/s}^2$
 $\cos \theta = 1$

$$F = \frac{(10^{-6})(1.6 \times 10^{-19})}{2\pi(8.85 \times 10^{-12})(9 \times 10^{16}) \cdot 1} \cdot 10^{6}$$

$$\approx 10^{-15} \,\text{N}$$

4.2 Optimierte Abschätzung

$$q_1 = -1 \,\mathrm{mC} = -10^{-3} \,\mathrm{C}$$
 $q_2 = -1.6 \times 10^{-19} \,\mathrm{C}$
 $M = 10^{16}$
 $r = 0.1 \,\mathrm{mm} = 10^{-4} \,\mathrm{m}$
 $a_{\mathrm{netto}} = 10^{12} \,\mathrm{m/s}^2$
 $\cos \theta = 1$

$$F = \frac{(10^{-3})(1.6 \times 10^{-19})(10^{16})}{2\pi(8.85 \times 10^{-12})(9 \times 10^{16}) \cdot 10^{-4}} \cdot 10^{12}$$

 $\approx 3200 \,\text{N}$

5 Regelprinzip

Die Schubrichtung wird durch die Richtung der Nettobeschleunigung \vec{a}_{netto} gesteuert:

$$\vec{F}_{\text{Schub}} \propto (\hat{r} \cdot \vec{a}_{\text{netto}})\hat{r}$$
 (7)

5.1 Steuerungsgrößen

• Amplitude: Steuert die Schubstärke

• Phase: Steuert die Richtung der Beschleunigung

• Tastverhältnis: Steuert die Asymmetrie

• Frequenz: Optimierung der Resonanz

5.2 Regelkreis

1. Sollwert: Gewünschte Flugrichtung

2. Messung: Trägheitsnavigationssystem

3. Regelung: Anpassung der HF-Parameter

4. Wirkung: Schub in gewünschter Richtung

6 Konstruktionsprinzip

6.1 Komponenten

- HF-Generator mit Sägezahnform
- 3-Phasen-Elektrodenanordnung
- Supraleitende Kavität für Ladungswolke
- $\bullet \ \ {\rm Regelung selektronik}$
- Trägheitsnavigationssystem

6.2 Betriebsparameter

Parameter	Symbol	Wert
HF-Frequenz	f	1 MHz - 1 GHz
HF-Spannung	U	$1\mathrm{kV}$ - $10\mathrm{kV}$
Ladungsmenge	q_1	$-1\mathrm{mC}$
Anzahl externer Ladungen	M	10^{16}
Minimalabstand	r_{min}	$0.1\mathrm{mm}$

Tabelle 1: Typische Betriebsparameter

7 Vorteile

- Kein Treibstoffverbrauch
- Keine beweglichen Teile
- Elektronische Steuerung
- Sofortige Schubumkehr
- Theoretisch unbegrenzte Betriebsdauer

8 Berechnung der Schubkraft unter WDBT-Bedingungen

Unter Annahme der Gültigkeit der Weber-De Broglie-Bohm-Theorie (WDBT) ergibt sich eine modifizierte Berechnung der Schubkraft. Die WDBT liefert dabei folgende entscheidende Modifikationen:

- Nicht-Lokalität: Die Weber-Kraft wirkt instantan über beliebige Entfernungen
- Fraktale Raumdimension $D\approx 2,71$: Die Kraft skaliert mit $r^{D-3}\approx r^{-0,29}$ anstatt mit r^{-1}
- Quantenpotential Q: Zusätzliche Kraftkomponente durch $-\vec{\nabla}Q$

8.1 Modifizierte Schubkraftgleichung

Die zeitgemittelte Schubkraft unter WDBT-Bedingungen ergibt sich zu:

$$\langle \vec{F}_{\mathrm{Schub}} \rangle = -\frac{q_1 q_2}{2\pi \epsilon_0 c^2 r^{3-D}} a_{\mathrm{netto}} \cos \theta \cdot \hat{r} - \vec{\nabla} Q$$

wobei der Exponent $3-D\approx 0,29$ die fraktale Skalierung berücksichtigt.

8.2 Beispielrechnung mit astrophysikalischer Ladungsquelle

Für ein Raumschiff in Sonnennähe mit folgenden Parametern:

$$q_1=1$$
 C
$$q_2=10^2$$
 C (effektive Ladung des Sonnenwinds)
$$r=1,5\times 10^{11}\,\mathrm{m}$$

$$a_{\mathrm{netto}}=10^{15}\,\mathrm{m/s^2}$$

$$\cos\theta=1$$

$$D=2,71$$

ergibt sich die Basiskraft zu:

$$F_{\text{base}} = \frac{(1)(10^2)}{2\pi(8,85\times10^{-12})(9\times10^{16})(1,5\times10^{11})^{0,29}} \cdot 10^{15}$$

Unter Berücksichtigung der fraktalen Skalierung:

$$F_{\text{Schub}} = F_{\text{base}} \cdot r^{D-2} \approx 11,8 \,\text{MN}$$

8.3 Schlussfolgerung

Unter WDBT-Bedingungen können durch:

- Nutzung astrophysikalischer Ladungsquellen (Sonne, Planeten, galaktische Ströme)
- \bullet Ausnutzung der fraktalen Skalierung ($r^{0,29}$ statt r^{-1})
- Optimierung der Antriebsparameter (q_1, a_{netto})

signifikante Schubkräfte im Bereich von Meganewton erreicht werden. Diese würden einen treibstofflosen Antrieb für interplanetare und interstellarare Missionen ermöglichen.

Tabelle 2: Vergleich der Schubkraft unter verschiedenen Theorien

Theorie	q_2 [C]	Skalierung	Schubkraft [N]
Konventionell	10^{2}	r^{-1}	0, 13
WDBT	10^{2}	$r^{-0,29}$	$1,18 \times 10^{7}$
WDBT (optimiert)	10^{4}	$r^{-0,29}$	$1,18 \times 10^{9}$

© 2025 Dipl.-Ing. (FH) Michael Czybor. Alle Rechte vorbehalten.