Estimando la tasa de propagación del VIH/SIDA

Pablo Aguirre

Departamento de Matemática Universidad Técnica Federico Santa María Valparaíso, Chile

Laboratorio de Modelación I – 2º semestre 2022

Epidemiología Matemática

- * Proponer modelos matemáticos para el estudio de enfermedades infecciosas, su dinámica natural y propagación.
- * Entender cómo una enfermedad infecciosa se transmite entre la población.
- * Información para que expertos puedan proponer estrategias de control, contención y prevención.
- \rightarrow campañas de vacunación, cuarentenas, distribución de medicamentos, etc.

$$\begin{cases} S' = -rSI, \\ I' = rSI - aI, \\ R' = aI. \end{cases}$$
 (1)

- * Compartimentos simbolizan etapas de la enfermedad.
- * Población dividida en tres categorías: Susceptibles (S), Infecciosos (I), y Recuperados/Removidos (R).
- * Remosión induce una inmunidad total \rightarrow removidos no reingresan al sistema como Susceptibles.

$$R_0=\frac{r}{a}S_0.$$

* R₀: Número básico de reproducción

Una medida de cuántos contagios son producidos directamente por el "paciente cero" de la enfermedad.

- * Si $R_0 > 1 \rightarrow$ se produce más de una infección secundaria a partir del primer caso infectado, y por lo tanto, se genera la epidemia.
- * Si $R_0 < 1 \rightarrow dI/dt < 0$ para todo t > 0 y la epidemia es evitada.
- * R_0 es un umbral o valor crítico que determina si la enfermedad se propagará o no (para el modelo estudiado).

Ideas sobre R₀

- * Número promedio de infecciones secundarias producidas por un solo individuo infectado primario en una población completamente susceptible.
- * Mundo real: determinar una estimación de R_0 .
- * Acciones humanas y políticas de salud \rightarrow variar el valor de R_0 de manera de que se tenga $R_0 < 1$.
- * Técnicas para calcular R_0 .

- * La habilidad de la enfermedad para propagarse por la población viene dada por la (in)estabilidad del equilibrio libre de enfermedad
- → Hipótesis esencial: Existe un equilibrio libre de enfermedad!
- * De lo contrario: R_0 pierde interpretabilidad y utilidad!

Por ejemplo: cuando hay flujo de entrada de individuos infecciosos al sistema desde el exterior...

Nuestro interés

- * Escenarios donde no sea posible calcular el R_0 por métodos tradicionales o cuando pierde interpretación de umbral.
- * Proponemos nuevas técnicas para definir un índice que juegue un rol análogo al R_0 en estos casos. (i.e., umbral)
- * Modelos epidemiológicos donde exista un flujo de entrada de individuos infecciosos al sistema desde el exterior...
- \rightarrow no existe equilibrio libre de enfermedad!

- * modelos para propagación de COVID-19 en un país/comuna con fronteras abiertas. (¿suena familiar?);
- * modelos de enfermedades en población carcelaria;
- * otros.

Modelo de epidemia de VIH/SIDA con inmigración de infectados

* Modelo: sistema de 4 EDOs no lineales

S: susceptibles

1: infectados en etapa de incubación

P: pacientes pre-SIDA (primera etapa clínica o epidemiológica)

A: pacientes con síntomas graves.

* Inmigración de infectados al sistema!

Modelo de epidemia de VIH/SIDA con inmigración de infectados

* Objetivos:

- 1. Cuantificar la gravedad de la inmigración de infecciosos.
- 2. Identificar los parámetros clave que son capaces de cambiar, ralentizar o revertir la propagación de la enfermedad.

Metodología

* Modelo:

n compartimentos de enfermedad,m compartimentos que no son de enfermedad.

- * $x \in \mathbb{R}^n$: variables asociadas a estados de la enfermedad,
- * $y \in \mathbb{R}^m$: variables de estado libres de enfermedad.
- \rightarrow Sistema de ecuaciones:

$$\begin{cases} x' = F(x,y), \\ y' = G(x,y). \end{cases}$$

- * $(x, y) \in \mathbb{R}^n \times \mathbb{R}^m$,
- * $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$,
- * $G: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$.
- * x = x(t), y = y(t).
- * x' = dx/dt, y' = dy/dt

Forma extendida

$$\begin{cases} x' = F(x,y), \\ y' = G(x,y). \end{cases}$$
 (2)

- * $(x,y) \in \mathbb{R}^n \times \mathbb{R}^m$,
- * $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$,
- * $G: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$.

Si $F = (f_1, \ldots, f_n)$ y $G = (g_1, \ldots, g_m)$, escribimos (2) como un sistema de n + m ecuaciones diferenciales ordinarias escalares

$$\begin{cases} x'_{1} &= f_{1}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{m}), \\ \vdots & \\ x'_{n} &= f_{n}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{m}), \\ y'_{1} &= g_{1}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{m}), \\ \vdots & \\ y'_{m} &= g_{m}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{m}), \end{cases}$$
(3)

donde $x = (x_1, ..., x_n), y = (y_1, ..., y_m).$

Aparición de un paciente cero

$$\begin{cases} x'_1 &= f_1(x_1, \dots, x_n, y_1, \dots, y_m), \\ \vdots \\ x'_n &= f_n(x_1, \dots, x_n, y_1, \dots, y_m), \\ y'_1 &= g_1(x_1, \dots, x_n, y_1, \dots, y_m), \\ \vdots \\ y'_m &= g_m(x_1, \dots, x_n, y_1, \dots, y_m). \end{cases}$$

$$S = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m : x = 0 \in \mathbb{R}^n\}$$

- * Supongamos que no hay equilibrios en S.
- * Comunidad compuesta solo por individuos susceptibles,

...y aparece un individuo infectado primario.

* Estado inicial:

$$p_{0} = (x^{0}, y^{0}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$$

$$= (x_{1}^{0}, \dots, x_{n}^{0}, y_{1}^{0}, \dots, y_{m}^{0})$$

$$= (\underbrace{0, \dots, 0, 1, 0, \dots, 0}_{n}, \underbrace{N - 1, 0, \dots, 0}_{m}).$$

- 1. N: total de la población.
- x_i⁰ = 1: Aparición de un individuo infeccioso en el estado i de la enfermedad.
- 3. $y_1^0 = N 1$: compartimento de susceptibles.

¿Crecimiento o decrecimiento de la enfermedad?

* $\varphi_{p_0}(t)$: solución de (4) que parte en p_0 .

* Denotamos X = (F, G).

*
$$\frac{d}{dt}\varphi_{p_0}(t) = \mathbf{X}(\varphi_{p_0}(t)).$$

* Sea \mathbf{u} : vector normal unitario a \mathcal{S} apuntando hacia $\Omega = \mathbb{R}^n_+ \times \mathbb{R}^m$.

* Entonces...

$$\langle \mathbf{X}, \mathbf{u} \rangle |_{\mathbf{p}_0}$$
 (5)

componente de la tasa de cambio de la solución de (4) que pasa por p_0 en una dirección ortogonal a S.

trayectoria que pasa por p_0 tiende a alejarse de S;

* $\langle \mathbf{X}, \mathbf{u} \rangle |_{\mathbf{p}_0} < 0$:

la enfermedad decae, pues la solución se acerca a S.

Normalizando la tasa de cambio de la solución en p_0 ...

$$X^{u}(p_{0}) = \frac{\langle \mathbf{X}, \mathbf{u} \rangle}{\|\mathbf{X}\|}|_{p_{0}}, \tag{6}$$

- * $X^{u}(\mathbf{p_0}) \in [-1, 1].$
- * \boldsymbol{X} y \boldsymbol{u} son vectores paralelos y orientados en el mismo sentido en \boldsymbol{p}_0 .
- $\rightarrow X^u(\textbf{p}_0)=1;$
- \rightarrow la solución de (4) en p_0 está evolucionando en dirección del **crecimiento de** la enfermedad a la mayor tasa posible.
- * X y u son vectores paralelos pero en sentido opuesto...
- $\rightarrow X^{u}(\mathbf{p_0}) = -1;$
- \rightarrow solución en \mathbf{p}_0 está evolucionando en dirección del **decaimiento de la enfermedad a la mayor tasa posible.**

- * $X^{u}(\mathbf{p}_{0})$ mantiene el signo de (5).
- * Mientras más pequeño es $|X^{u}(\mathbf{p}_{0})|$, más lenta es la propagación o declive de la enfermedad en \mathbf{p}_{0} en la dirección de \mathbf{u}
- * $X^{\mathbf{u}}(\mathbf{p}_0) = 0$: escenario en que la enfermedad no se propaga ni decae en la dirección de \mathbf{u} en \mathbf{p}_0 .

Variedad umbral para propagación

* Muchas expresiones para (6) dependiendo de la elección de p₀ y de u.

Objetivos generales del proyecto

- * Calcular y analizar $X^{u}(p_0)$ en el modelo de propagación de VIH/SIDA en escenarios con flujo de infectados desde el exterior.
- * Caracterizar Variedad umbral para propagación $\{X^{u}(p_0) = 0\}$.
- * Extrapolar posibles escenarios de epidemia al variar condición inicial p_0 , variar dirección de propagación u, variar parámetros del modelo, etc.
- * Interpretar resultados.

Insumos: Modelo de 4 EDOs, artículo con formulación del modelo,

interpretación y resultados preliminares.

Herramientas: análisis cualitativo de EDOs, métodos numéricos para EDOs.

Otro apoyo: Tesistas Sofía Guarello, Nicolás González.