

$$A. \ \frac{n(n+1)}{2} = \Omega(n^3)$$

$$B. \ \frac{n(n+1)}{2} = O(n^3)$$

$$C. \frac{n(n+1)}{2} = \Theta(n^2)$$

$$D. \frac{n(n+1)}{2} = \Omega(n)$$

Е. жодне не виконується

Мова йде про час роботи взагалі, а не в окремій конкретній ситуації (тобто швидке сортування не підходить).

 Розташуйте подані функції в порядку зростання (перелічіть літери через пробіл):

A.
$$n^3 + \log_2 n$$

B.
$$2^{n-1}$$

C.
$$n \log_2 n$$

E.
$$(3/2)^n$$

X Вкажіть всі випадки, що відповідають співвідношенню f(n) = o(g(n)):

A.
$$f(n) = n(n+1)$$
, $g(n) = 2000n^2$

B.
$$f(n) = 100n^2$$
, $g(n) = 0.01n^3$

C.
$$f(n) = \log_2 n$$
, $g(n) = \ln n$

D.
$$f(n) = (\log_2 n)^2$$
, $g(n) = \log_2 n^2$

- I A
- E
- (C
- VI

Правильный ответ

B

√ Яке з сортувань найшвидше відсортує цілі числа з множини [1..К] (за умови не дуже великого К);

- пірамідальне сортування
- швидке сортування
- сортування вибором
- О сортування злиттям
- сортування підрахунком

X	Які з сортувань мають час роботи О(n^2) в найгіршому випадку:	
V	швидке сортування	~
	пірамідальне сортування	
	сертування алиттям	
V	сортування вставкою	~
	сортування Шелла	
Пра	вильный ответ	
V	швидке сортування	
Y	сортування Шелла	
Y	сортування вставкою	
✓	Вкажіть функцію g(n), що є асимптотично точною оцінкою зобра функції. Використайте найпростішу функцію g(n) (наприклад: n, n^2).	
	$2^{n+1} + 3^{n-1}$	
3^n		~

 Вкажіть рекурентні співвідношення, які можна розв'язувати за допомогою основної теореми: A. T(n) = T(n-1) + nB. T(n) = 2nT(n/2) + nC. T(n) = T(2n/3) + 1 $D. T(n) = 2T(n/2) + \log n$ E. $T(n) = 2T(n/4) + 3T(n/6) + n \log n$ F. жодне з перелічених A В C C D E I E Вкажіть загальне рекурентне співвідношення декомпозиції; A. T(n) = T(n-1) + f(n)B. T(n) = T(n/b) + f(n), де b > 1C. T(n) = aT(n/b) + f(n), де $a \ge 1$, b > 1D. aT(n) + bT(n-1) + cT(n-2) = f(n), A = a, b, c - aдійсні числа та a=0Е. жодне з перелічених OA () B (C () D

 Яку загальну форму має рекурентне співвідношення для бінарного пошуку (вкажіть найбільш точний варіант)? A. T(n) = T(n-1) + f(n)B. T(n) = T(n/b) + f(n), де b > 1C. T(n) = aT(n/b) + f(n), де $a \ge 1, b > 1$ D. aT(n) + bT(n-1) + cT(n-2) = f(n), e a, b, c дійсні числа та a=0Е. жодне з перелічених () A (O) B () C () E Вкажіть всі випадки, коли g(n) є нижньою границею, але не асимптотично точною оцінкою f(n): A. $f(n) = 2^{n+1}$, $g(n) = 2^n$ B. $f(n) = 2^n$, $g(n) = 2^{2n}$ C. $f(n) = (\log_2 n)^2$, $g(n) = \log_2 n^2$ D. $f(n) = \log_2 n^2$, $g(n) = \sqrt{2n}$ D

1

Вкажіть всі випадки, коли g(n) є асимптотичною нижньою границею f(n):

A.
$$f(n) = 2^{n+1}$$
, $g(n) = 2^n$

B.
$$f(n) = 2^n$$
, $g(n) = 2^{2n}$

C.
$$f(n) = (\log_2 n)^2$$
, $g(n) = \log_2 n^2$

D.
$$f(n) = \log_2 n^2$$
, $g(n) = \sqrt{2n}$

