

Evaluation of GEOS-Chem vertical profiles of nitrogen dioxide and ozone using cloud-sliced TROPOMI columns



## $NO_x$ plays an important role in the formation of $O_3$ in the troposphere





Lifetime of  $NO_x$  increases with altitude  $\rightarrow NO_x$  has a large influence on tropospheric ozone

# Current observations of NO<sub>2</sub> and O<sub>3</sub> vertical profiles are limited

Total ozone column, 29<sup>th</sup> March 2018



Total nitrogen dioxide column, April-September 2018



Sample of NASA DC8 aircraft data



### We use cloud-slicing to look at the vertical distribution from satellite measurements

#### **TROPOMI**



Launched 13<sup>th</sup> October 2017 Spatial resolution of 5.5 km x 3.5 km



VMR  $\propto$   $\Delta$  vertical column density  $\Delta$  cloud-top pressure

NO<sub>2</sub> cloud-slicing results

## NO<sub>2</sub> vertical profiles from cloud-slicing of TROPOMI data

Multiyear seasonal mean for JJA 2018-2021 at a resolution of 1° x 1°



## We use aircraft observations to compare to cloud-slicing results



$$PSS = \frac{[NO]}{[NO_2]} \approx \frac{j_{NO_2}}{k_1[O_3] + k_2[HO_2]} \approx \frac{j_{NO_2}}{k_1[O_3]}$$



SEAC<sup>4</sup>RS – Central US, summer 2013



ATom – Remote Pacific & Atlantic, once in all 4 seasons from 2016 to 2018



ARCTAS – Canada & Arctic Circle, spring and summer 2008

#### Aircraft measurements are filtered where:

- The local solar time is similar to the TROPOMI overpass time
- NO measurements are 2x the instrument detection limit

### GEOS-Chem is updated to include nitrate photolysis

Seasonal multiyear means 2015-2019













[Dang et al., 2022, Shah et al., 2022]

## Comparison of NO<sub>2</sub> cloud-slicing to GEOS-Chem and aircraft observations



## Comparison of NO<sub>2</sub> cloud-slicing to GEOS-Chem and aircraft observations



O<sub>3</sub> cloud-slicing results

### O<sub>3</sub> vertical profiles from cloud-slicing TROPOMI data

Multiyear seasonal mean for JJA 2020-2022 at a resolution of 1° x 1°



### We use ozonesonde measurements to compare to cloud-slicing

#### Ozonesonde measurements



Measures vertical distribution of atmospheric ozone up to 30-35 km

#### SHADOZ ozonesonde network



SHADOZ is primarily focused around the tropics and subtropics

We filter ozonesonde data where local solar time is similar to the TROPOMI overpass time

#### GEOS-Chem overestimates concentrations at individual ozonesonde sites



## There is good agreement between datasets cross latitude bands



### Concluding remarks

- The cloud-slicing technique improves global coverage of NO<sub>2</sub> and O<sub>3</sub> vertical profiles
- $\bullet$  Cloud-slicing underestimates NO<sub>2</sub> concentrations in the urban terrestrial boundary layer due to large land-based anthropogenic pollution sources
- GEOS-Chem underestimates  $NO_2$  concentrations in the remote troposphere by as much as 20 pptv  $\rightarrow$  this is improved by including nitrate photolysis in simulations.
- Cloud-sliced  $O_3$  and SHADOZ measurements are in good agreement in the Northern Hemisphere however in some regions there is an overestimate from GEOS-Chem

