Beam-RICH Meeting

鈴木翔太

2023/3/9 (Thu.) 9:10 ~ 10:00

@ Zoom

目次

- ▶現在の進捗について
 - ▶ヒットパターンから角度に直す手法の作成
 - ➤ Geant4 のデータ解析
- ▶報告
 - ▶光学実験台について
- ▶これからやること

お知らせ

作成中のコードなどは全て GitHub に Public で上げています。 https://github.com/shotaKU99/beamRICH

現在の進捗

検出位置 → 角度への変換の計算内容

- ➤ Input (計15)
 - ▶放出点 (ビーム上の点, 輻射体の中心?)
 - ▶輻射体後方の面の法線ベクトル
 - ▶輻射体の屈折率
 - ▶球面鏡中心
 - ▶球面鏡半径
 - ▶検出位置
- ▶変数
 - ▶輻射体後方の面上の点 (2変数)

- ▶反射光と検出位置の距離が最小となるような点を計算 ← Minimizer が 1Hit 毎に回る
- → ビームの方向ベクトルと内積をとり, Cherenkov角を計算

角度への変換コード

- ▶前回までは Python で書いていたが、2重の for ループが回っていた ▶500 k のヒットを解析するのに 2 時間...
- ▶ C++ のコードを作成した
 - ➤ ROOT::Math::Minimizer を用いた
 - **▶**500 k のヒットの解析に 数十秒 (シングルスレッド) → OK!!
 - ▶依存する外部ライブラリは少なめに
 - ▶ Root (thisroot.sh を実行している必要あり)
 - > yaml-cpp
 - ▶ ジオメトリやチャンネルの座標などのパラメータを書く yaml ファイルを読む用
 - ▶ インストールは簡単 (github の ray-trace 以下の README に書いてある)
 - ➤ cmake → make でコンパイルできるようにしている

Geant4 のデータ解析

- → ジオメトリ
 - R = 300 cm
 - ▶球面中心
 - > (0, 0, -150 cm)
 - > Beam
 - ▶ z軸上, 正の向き
 - ▶エアロゲル
 - ▶ 各辺 10 cm の立方体
 - ➤中心 (0,0, 40 cm)
 - ▶検出面
 - ➤ xy 平面
 - ▶材質は Si
 - ▶量子効率は入っていない

Geant4 のデータ解析

- > Beam
 - > 8.5 GeV/c
 - \rightarrow 粒子 π , K, p
- ▶放出点
 - ▶エアロゲル中心と仮定
 - > (0,0, 40 cm)
- ▶検出位置
 - ▶検出器の正確な検出点を使用
- ▶屈折率は固定 (波長依存性なし)
 - ▶エアロゲル: 1.021
 - ▶空気:1.000273

→ 角度の再構成はおおむね成功

それぞれの粒子の Hit 毎の角度

- ▶どの粒子に対しても(どの放出角に対しても)ピークの中心値は理論計算と一致
- ▶構造はどの粒子でも似ている

変換コードのデバック

- ▶位置依存性がある
 - ➤ Minimizer 付近にバグがある?
 - ▶初期値が有力か?

20

10

30

x [cm]

|x| < 10 && |y| > 10

-20

-30

-20

イベント毎に平均した Cherenkov 角度分布

- ▶理論値と一致するピーク周りの Hit のみ選択し平均
 - $\triangleright \pi : 202.0 \text{ mrad } \le \theta \le 203.0 \text{ mrad}$
 - $ightharpoonup K: 193.8 \text{ mrad} \leq \theta \leq 195.8 \text{ mrad}$
 - \triangleright p: 170.2 mrad $\leq \theta \leq$ 172.2 mrad
- ➤ Gaussian Fit
 - $\triangleright \pi$
- ➤ Mean : 202.5243 +/- 0.0003 mrad
- ➤ Sigma : 0.0133 +/- 0.0003 mrad
- \triangleright K
 - Mean: 194.8254 +/- 0.0003 mrad
 - ➤ Sigma : 0.0140 +/- 0.0003 mrad
- $\triangleright P$
 - ➤ Mean: 171.1947 +/- 0.0003 mrad
 - > Sigma: 0.0156 +/- 0.0003 mrad

Pion 8.5 GeV 3000 Events

各粒子でのフィッティング

- ▶テール部分を除いてフィッティングしている
- ▶理論値付近のカットを入れないとピークがずれ、幅が広くなる
- →ノイズはまじめにカットしないと分解能悪化をまねく
 - ▶ダークカレントや散乱電子からの Cherenkov 光 など (今は入っていない)

理論計算との比較

- > n = 1.021, 8.5 GeV/c での Cherenkov Angle は
 - $\triangleright \pi : 202.51434 \text{ mrad}$
 - ≻K: 194.82031 mrad
 - ➤ P: 171.20039 mrad
- ▶シミュレーションデータのフィット結果
 - $\triangleright \pi$
 - Mean: 202.5243 +/- 0.0003 mrad
 - ➤ Sigma : 0.0133 +/- 0.0003 mrad
 - \triangleright K
 - Mean: 194.8254 +/- 0.0003 mrad
 - ➤ Sigma : 0.0140 +/- 0.0003 mrad
 - $\triangleright P$
 - ➤ Mean: 171.1947 +/- 0.0003 mrad
 - > Sigma : 0.0156 +/- 0.0003 mrad
- $\rightarrow 1\sigma$ で理論計算と一致

2023/3/9

12

報告

光学実験台について

- ▶引き取ることになりました
- ▶昨日3/8に周りの遮光フレームを解体
- ▶明日 3/10 に一階実験室に搬入予定
- ▶費用は高西さんと折半ということになりました
- ▶修論終了後、東棟測定室に移動予定

これからやること

- ▶解析方法
 - ▶コードのデバック
 - ▶位置によって角度の分布が異なる問題の解決
 - ▶LHCb の分解能の評価方法を詳しく書いているものがないか探してみる
- ➤ Geant4
 - ▶より実機に近い状況でのシミュレーションを作成
 - ▶ Hit Channel → 座標 への変換で Pixel Error の評価
 - ▶量子効率の導入
 - ▶物体の色付け

2023/3/9 15