Indian Institute of Technology, Bombay

Chemical Engineering

CL686: Advanced Process Control

Assignment 4, 2025

Date Due: 30 March 2025, 11.59 PM (Note that time is not 12 PM midnight since that is

confusing to set.)

Mode of Submission: Moodle submission

Late Submission Policy: Submissions late by 0-24 hrs will incur a 25% penalty, and submissions late by 24-48 hrs will incur a 50% penalty. Submissions later than 48 hrs will not be considered.

Topic: State Estimation

AIM: To implement pole placement based observer and Kalman Filter for Quadruple Tank System.

Task at Hand

- 1. Implement Open Loop State Estimator (OLSE).
- 2. Implement Pole Placement based Observer (PPO).
- 3. Implement Kalman Filter using a steady-state solution of the Riccati equation.
- 4. Implement Kalman Filter by solving the Riccati equations forward in time.
- 5. Compare the performance of all of the above estimators in terms of Sum of squared error (SSE) value

NOTE: All estimators must be implemented considering nonlinear ODEs of Quadruple Tank System as the plant. The estimators will be based on linear-model though. Mat file containing the (linearized) matrices for the continuous-time model have been separately uploaded (file Continuous_time_linear_perturbation_model_without_disturbance.mat).

Quadruple Tank System Description

Consider a nonlinear system governed by the following set of coupled nonlinear ODEs,

$$\frac{dh_1}{dt} = -\frac{a_1}{A_1}\sqrt{2gh_1} + \frac{a_3}{A_1}\sqrt{2gh_3} + \frac{\gamma_1 k_1}{A_1}v_1 \tag{1}$$

$$\frac{dh_2}{dt} = -\frac{a_2}{A_2}\sqrt{2gh_2} + \frac{a_4}{A_2}\sqrt{2gh_4} + \frac{\gamma_2 k_2}{A_2}v_2 \tag{2}$$

$$\frac{dh_3}{dt} = -\frac{a_3}{A_3}\sqrt{2gh_3} + \frac{(1-\gamma_2)k_2}{A_3}v_2 + \frac{\gamma_3}{A_3}F_d \tag{3}$$

$$\frac{dh_4}{dt} = -\frac{a_4}{A_4}\sqrt{2gh_4} + \frac{(1-\gamma_1)k_1}{A_4}v_1 + \frac{(1-\gamma_3)}{A_4}F_d \tag{4}$$

The initial steady-state operating conditions of the system are listed in the table below:

Variable	Optimum operating point
$A_1, A_3 \ [cm^2]$	28
$A_2, A_4 \ [cm^2]$	32
$a_1, a_3 \ [cm^2]$	0.071
$a_2, a_4 \ [cm^2]$	0.057
$g [cm/s^2]$	981
$k_1, k_2 \ [cm^3/Vs]$	3.33, 3.35
$\gamma_1, \gamma_2, \gamma_3$	0.7, 0.6, 0.4

- System State: h_1, h_2, h_3, h_4 are the liquid level in the quadruple tank system.
- Process inputs: v_1 and v_2 are the voltage applied to the pump.
- **Disturbance inputs:** F_d acts as the disturbance input to the process. For this assignment, it will not be considered (i.e. its value will be kept at 0). [However, enterprising students can investigate its effect as an additional not-to-be-submitted exercise]

Condition for Simulation:

- Steady state inputs: $\mathbf{U}_s = \begin{bmatrix} 3 & 3 \end{bmatrix}^T$; $D_s = 0$
- Equilibrium/Steady State Operating Point: $\mathbf{X}_s = \begin{bmatrix} 12.263 & 12.7831 & 1.6339 & 1.409 \end{bmatrix}^T$
- Sampling interval, $T = 4 \sec$
- Number of samples, $N_s = 200$

Nonlinear plant simulation: True state and measurement generation

- Initial state $\mathbf{X}(0) = \mathbf{X}_s$
- Input profile generated using the following expression:

$$u_1(k) = 2 \times \sin(0.025 \ k) + 0.15 \times \cos(0.02 \ k)$$

 $u_2(k) = 2 \times \sin(0.02 \ k) - 0.1 \times \cos(0.025 \ k)$

with $\mathbf{u}(k) = [u_1(k) \ u_2(k)]^T$ and $\mathbf{u}(k)$ is deviation inputs at k^{th} instant.

• True state is generated by solving a nonlinear dynamical equation for above generated input profile using an ode-integrator such as explicit Euler or Runge-Kutta method. In Matlab, you can use inbuilt integrators such as ode45.

Open Loop State Estimator (OLSE)

• In this implementation, refer to the class notes or lecture slides.

Pole Placement based Observer (PPO)

- Desired observer pole: $\mathbf{p} = [0.7503 \quad 0.7655 \quad 0.6711 \quad 0.7004]^T$
- Estimator gain matrix (L): Estimator gain matrix (L) can be obtained using MATLAB inbuilt command *place* as follows

 $\mathbf{L}^T = place(\mathbf{\Phi}^T, \mathbf{C}^T, \mathbf{p})$. Note that the place command will give you \mathbf{L}^T and not \mathbf{L} . This function places the desired closed-loop poles \mathbf{p} by computing an estimator gain matrix \mathbf{L} . Here $\mathbf{\Phi}$ and \mathbf{C} are discrete-time states and measurement matrices.

NOTE: Please refer to lecture notes for the detailed algorithm and MATLAB help for the above function.

• Initial state $\widehat{\mathbf{X}}(0) = \mathbf{X}_s + \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

Kalman Filter (KF)

- 1. Covariance matrix of measurement noise is $\mathbf{R} = 0.025^2 \times \mathbf{I}$
- 2. Covariance matrix of state noise is $\mathbf{Q} = 0.05^2 \times \mathbf{I}$
- 3. Initial state $\widehat{\mathbf{X}}(0|0) = \mathbf{X}_s + \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.
- 4. Initial covariance $\mathbf{P}(0|0) = 100 \times \mathbf{Q}$

A: Steady State Estimator Gain

In this implementation, use \mathbf{L}_{∞} as the estimator gain where \mathbf{L}_{∞} is the steady state solution of the Riccati equation.

• Solution for Algebraic Riccati Equation (ARE) can be found using MATLAB inbuilt function kalman as follows

$$[KEST, \mathbf{L}, \mathbf{P}, \mathbf{M}, \mathbf{Z}] = kalman(sys, \mathbf{Q}, \mathbf{R})$$

NOTE: Please refer to lecture notes for the detailed algorithm and MATLAB help for above function.

Additional information: The *sys* is a state-space model representation, can be generated using the following sample MATLAB code:

$$\Gamma_{w} = eye(n_{st})$$

$$\Gamma_{u_{y}} = zeros(n_{op}, n_{ip})$$

$$\Gamma_{w_{y}} = zeros(n_{op}, n_{st})$$

$$sys = ss(\phi, [\Gamma \Gamma_{w}], \mathbf{C}, [\Gamma_{u_{y}} \Gamma_{w_{y}}])$$

where, n_{st} , n_{ip} , and n_{op} are the number of states, known inputs (*u* variables), and outputs. ϕ , Γ , \mathbf{C} are as before.

B: Time Varying Estimator Gain Matrix

In this implementation, solve for $\mathbf{P}(k|k-1), \mathbf{L}(k), \mathbf{P}(k|k)$, forward in time as discussed in class and slides.

Performance index calculation

• Sum Squared Error

 $SSE_i = \sum_{k=1}^{N_s} (\hat{X}_i(k) - X_i(k))^2$, for i = 1, 2, 3, 4. Where $\hat{X}_i(k) = \hat{X}_i(k|k)$ for KF and $\hat{X}_i(k) = \hat{X}_i(k|k-1)$ for PPO. Also $X_i(k)$ is the true value of i^{th} state. Calculate the SSE value for OLSE, PPO, KF-Steady state, and KF-Time Varying implementation.

Plots to generate

- 1. Plot of the estimated state obtained using OLSE, PPO, KF-Steady State, and KF-Time Varying along with true value for each state in the same plot using 'hold on'. You can have one figure per state. Don't forget to insert a legend.
- 2. Plot the manipulated inputs profile for both inputs.
- 3. Plot of predicted states for KF-Time varying, KF-Steady state and PPO estimator for all four states.

MATLAB Code To Submit

- Submit all files in a zipped folder. The submitted folder should have the following MATLAB files:
 - File for open loop state estimator implementation.
 - File for Pole placement based observer implementation.

- File for KF-steady state estimator implementation.
- File for KF-time-varying estimator implementation.
- Function file of system dynamics.
- MAT file for continuous-time linear state space model. (Use the MAT file provided in Assignment 4).
- File, which on execution, will generate the various plots and return the value of performance indices.

Keep the file name as $Assn_04_ROLLNO.m$ where ROLLNO is your roll number. [Get in touch with TA for any issues.]

• Make sure that the plots are labelled properly with axes names, titles, and legends.

Learning is fun. Best of Luck!