EFFECT OF SPARSITY ON SCENE FLOW ESTIMATION

Chandra Teja Kommineni Sai Rahul Vaddadi

Tasks and Contributions

TASKS	CONTRIBUTION
Literature survey of architectures	Rahul / Chandra
Datasets preparation & pre-processing	Chandra
Models training & Validation	Rahul
Results & Inference	Rahul
Slides preparation	Chandra
Final report	Rahul / Chandra

Objectives

- Estimating scene flow by independent estimation of optical flow, disparities at reference frame & next time step.
- Evaluate the performance using Endpoint Error (EPE) as Metric
- Analyze the effect of sparsity in input images on scene flow estimation.

What is Optical Flow?

- Optical flow is a projection of the world's 3D motion onto the image plane.
- Constraint equation for optical flow $I_x u + I_y v + I_t = 0$, where u and v are the x and y components of the optical flow vector

What is disparity?

Disparity refers to the difference in coordinates of similar features within two stereo images.

Depth from disparity:

 Depth can be estimated from disparity d by method of triangulation

Depth
$$z = f*b / (xl - xr) = f*b/d$$

 $x = xl*z/f$ or $b + xr*z/f$
 $y = yl*z/f$ or $yr*z/f$

What is scene flow?

- Scene flow is underlying 3D motion field that can be computed from stereo videos or RGBD videos.
- Estimating scene flow means providing the depth and 3D motion vectors of all visible points in a stereo video. In this project we'll be focusing on forward flow & disparities.

Thus, this task splits into

- Optical flow
- Disparity at reference frame
- Disparity change (fills gaps left by occlusions)

Traditional methods

- Energy Minimization Horn & Schunck (Computationallly expensive for realtime applications)
- Lucas-Kanade Methods Bruce
 D.Lucas & Kanade (sparse optical flow)

CNN based Methods (FlowNetS, FlowNet Corr):

- FlowNetS uses architecture similar to U-Net architecture on raw Images
- FlownetS performs better for large displacements in optical flow

Coarse-to-fine flow estimation

Dataset:

- We cannot obtain ground truth for real world, since it is not possible to manually label optical flow.
- To compensate for the lack of data we work with synthetic data.
- Ground truth can be obtained in simulated data, since location of objects and transformation are known.
- Data Augmentation: To reduce data scarcity and prevent overfitting, we can perform translation, rotation, scaling, changing brightness & colour.
- Driving dataset:
- The Driving scene is a mostly naturalistic, dynamic street scene from
- the viewpoint of a driving car, made to resemble the KITTI datasets.

ΓTI 2015

Driving (o

Flow net architecture

- Left images at t0 and t1 are stacked as input
- Contracting network: feature representation and matching info are learnt from input images
- Refinement Network features are scaled into per pixel optical flow prediction
- Unpooling layer extends the feature maps and increases the resolution

Datasets	Driving
Evaluation Metrices	End Point Error
Optimizer	Adam
Learning Rate	1e-4 (default)
Batch Size	1
Initial training	300 images for 10 epochs

DispNet architecture

Name	Kernel	Str.	Ch I/O	InpRes	OutRes	Input
conv1	7×7	2	6/64	768×384	$384\!\times\!192$	images
conv2	5×5	2	64/128	384×192	192×96	conv1
conv3a	5×5	2	128/256	192×96	96×48	conv2
conv3b	3×3	1	256/256	96×48	96×48	conv3a
conv4a	3×3	2	256/512	96×48	48×24	conv3b
conv4b	3×3	1	512/512	48×24	48×24	conv4a
conv5a	3×3	2	512/512	48×24	24×12	conv4b
conv5b	3×3	1	512/512	24×12	24×12	conv5a
conv6a	3×3	2	512/1024	24×12	12×6	conv5b
conv6b	3×3	1	1024/1024	12×6	12×6	conv6a
pr6+loss6	3×3	1	1024/1	12×6	12×6	conv6b
upconv5	4×4	2	1024/512	12×6	24×12	conv6b
iconv5	3×3	1	1025/512	24×12	24×12	upconv5+pr6+conv5b
pr5+loss5	3×3	1	512/1	24×12	24×12	iconv5
upconv4	4×4	2	512/256	24×12	48×24	iconv5
iconv4	3×3	1	769/256	48×24	48×24	upconv4+pr5+conv4b
pr4+loss4	3×3	1	256/1	48×24	48×24	iconv4
upconv3	4×4	2	256/128	48×24	96×48	iconv4
iconv3	3×3	1	385/128	96×48	96×48	upconv3+pr4+conv3b
pr3+loss3	3×3	1	128/1	96×48	96×48	iconv3
upconv2	4×4	2	128/64	96×48	192×96	iconv3
iconv2	3×3	1	193/64	192×96	192×96	upconv2+pr3+conv2
pr2+loss2	3×3	1	64/1	192×96	192×96	iconv2
upconv1	4×4	2	64/32	192×96	$384\!\times\!192$	iconv2
iconv1	3×3	1	97/32	384×192	$384\!\times\!192$	upconv1+pr2+conv1
pr1+loss1	3×3	1	32/1	384×192	$384\!\times\!192$	iconv1

Datasets	Driving
Evaluation Metrices	End Point Error
Optimizer	Adam
Learning Rate	1e-2
Batch Size	4
Initial training	300 image pairs for 50 epochs

Scene flow architecture

- The Sceneflow was estimated by stacking the independent predictions of optical flow and disparities at t0 and t1 obtained from our trained Flow and Disparity Network architectures respectively.
- The result depicts the sceneflow in the image plane and not the realworld coordinate system.

Results

The tables below depict the EPE of our scene flow estimation (on scale of 1e+12) for different sparsity of input images and ground truths, followed by comparison of our optical flow results with the baseline method.

Sparsity	Our Scene flow (EPE)		
	Driving	Kitti2015	
25%	107.47	11.97	
50%	98.04	3.42	
75%	5.2	26.41	
100%	2e-7	2.46e-7	

Method	Optical Flow (EPE)
Baseline	22.5
Ours	10.5

Expected Scene Flow Results

 These are the expected scene flow results for different 25%, 50%, 75% and 100% dense input and ground truths respectively.

Future work

Train on flying things 3D and validate on sintel dataset (can improve EPE).

PWC Net for computing optical flow:

- 17 times smaller and 2 times faster than FlowNet 2.0
- Easier to train than FlowNet 2.0 & SpyNet.

References

- S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and evaluation methodology for optical flow. Technical Report MSR-TR-2009-179, December 2009.
- D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In ECCV, Part IV, LNCS 7577, pages 611–625, Oct. 2012.
- J. Cech, J. Sanchez-Riera, and R. P. Horaud. Scene flow estimation by growing correspondence seeds. In CVPR, 2011.
- A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazırbas, "V. Golkov, P. van der Smagt, D. Cremers, and T. Brox. FlowNet: Learning optical flow with convolutional networks. In ICCV, 2015.
- A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015.
- D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
- Nikolaus Mayer, Ed dy Ilg, Philip Häusser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, Thomas Brox. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation.