CS3451: Computer Graphics

Mesh

Bo Zhu
School of Interactive Computing
Georgia Institute of Technology

Motivational Video: MeshGPT

Topics

- Triangle
- Mesh
- Normal
- Orientation
- Topology
- Euler-Poincare Formula
- Data structures

TRIANGLE

Digital Shapes

Games/Movies

Medicine/Biology

Engineering/Product design

Architecture

Mesh Representation for Geometry Shapes

Triangle

- Three Vertices
 - A, B, C
- Three Edges
 - AB, BC, CA
- One Face
 - Triangle ABC

Triangle

- We can store properties on triangle vertices or faces
 - For example
 - Vertex positions
 - Vertex colors
 - Texture coordinates
 - Face normals
 - Transparency
 - Etc.

MESH

Triangle Mesh

Other Mesh Types

Mesh Resolution

- Boundary representations of objects
- Piecewise linear

Mesh Resolution

Spheres

Discrete Sphere

Meshes as Approx. of Smooth Surfaces

- Piecewise linear approximation
 - Error is $O(h^2)$

Low-Res v.s. High-Res

A Mesh with Three Disconnected Triangles

A Mesh with Three Connected Triangles

Triangle Vertex Order

Does the order matter when we store the three vertices—should it

be ABC, ACB, or something else, or does it not really matter?

6 cases:

- ABC
- ACB
- BCA
- BAC
- CAB
- CBA

NORMAL

Triangle Normal

For triangle ABC, apply the right-hand rule to determine its normal:

- Fingers curl from vertex A to B,
- then sweep towards C.
- The thumb points to the normal vector.
- Mathematically, this can be written as cross product (and then normalize):

$$\vec{N} = \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{|\overrightarrow{AB} \times \overrightarrow{AC}|}$$

Practice: Pseudocode for Normal Calculation

- Can you write pseudocode for this?
 - Given positions of A, B, C, calculate N.

$$\vec{N} = \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{|\overrightarrow{AB} \times \overrightarrow{AC}|}$$

What is the Normal of Triangle ACB?

- ABC, BCA, CAB -> N
- ACB, CBA, BAC $\rightarrow -\overrightarrow{N}$

Mesh normals must point outward!

Example: Mesh Normal Visualization

Notice the normal vectors are all pointing outward!

Visualize the Orientation with Vectors

ORIENTATION

Convention: Counter-clockwise Order

- Which side is the "front/outside" and which "back/inside"?
- Clockwise vs. counterclockwise order of face vertices defines sign/direction of the surface normal
- Convention: you are on the outside when you see the vertices in counter-clockwise order

Orientation in Differential Geometry

• Consistent orientation of neighboring faces:

Practice: Which triangle has an inconsistent orientation?

TOPOLOGY

Mesh Manifolds

- In a manifold mesh, there are at most 2 faces sharing an edge
 - Boundary edges: have one incident face
 - Inner edges have two incident faces
- A manifold vertex has I connected ring of faces around it, or I connected half-ring (boundary)

Manifold Boundary

• Closed manifold: A surface is a closed **2-manifold** if it is everywhere locally homeomorphic to a disk

• Open manifold: The vicinity of each boundary point is homeomorphic

to a half-disk

EULER-POINCARE FORMULA

Question: Which number is the greatest, #vertices, #edges, or #faces?

Question: Ratios among #faces, #edges, and #vertices

• Given an arbitrary triangle mesh, can we approximate the ratios among the number of triangles, edges, and vertices?

Euler-Poincaré Formula

- The sum of v e + f is constant for a given surface topology, no matter which (manifold) mesh we choose.
 - v = number of vertices
 - e = number of edges
 - f = number of faces
- v-e+f=I for a planar graph
- v-e+f=2 for a closed manifold
 - Most triangle meshes are closed manifolds

Let's check these shapes

Implication for Mesh Storage

- Let's count the edges and faces in a closed triangle mesh:
- Ratio of edges to faces: e = 3/2 f
- each edge belongs to exactly 2 triangles
- each triangle has exactly 3 edges
- Ratio of vertices to faces: f ~ 2v
- 2 = v e + f = v 3/2 f + f
- 2 + f / 2 = v
- Ratio of edges to vertices: e ~ 3v
- e:f:v=3:2:1

DATA STRUCTURE

Triangles v0|v1| v2 t0 **v**3 $\vee 0$ **v**1 t2 v2 **v**3 v4 t3 v5 **v**2 v6 . . .

Vertices v0 ×0| y0 **z**0 v1 **x**1 **x1** z1**v**2 x2 y2 **z**2 **v**3 у3 x3 z3 **v**4 y4 x4 **z**4 **v**5 x5 y5 **z**5 v6 x6 y6 **z**6

How do we describe a triangle mesh?

Data Structures: What should be stored?

- Geometry
 - 3D coordinates
- Topology
 - Adjacency relationships
- Attributes
 - Normal, color, texture coordinates
 - Per vertex, face, edge

Data Structures: What should be supported?

Rendering

Geometry queries

- What are the vertices of face #2?
- Is vertex A adjacent to vertex H?
- Which faces are adjacent to face #1?

Modifications

- Remove/add a vertex/face
- Vertex split, edge collapse

Topology vs. Geometry

- Topology: how the triangles are connected (ignoring positions)
 - Same geometry
 - Different mesh topology
- triangles are in 3D space

- Same mesh topology
- Different geometry

Topology specifies the connectivities among vertices and triangles Geometry specifies the shape of the object

Can we brainstorm some way to store a triangle mesh?

Separate Triangle List or Face Set (STL)

- Face:
 - 3 vertex positions
- Storage:
 - 4 Bytes/coordinate
 - 36 Bytes/face
- Store a single array of vertex positions
- Wastes space
- No connectivity information

Triangles

0	x0	у0	z0
1	x 1	у1	z1
2	x2	y2	z2
3	х3	у3	z3
4	x4	у4	z4
5	x5	у5	z5
6	x6	у6	z6
•••	•••		•••

 $\bullet \bullet \bullet$

Example: STL Format

27 floats
••• in total

Indexed Face Set (OBJ, OFF, WRL)

- Vertex: position
- Face: vertex indices
- Storage:
 - 3 floats per vertex
 - 3 ints per face
- Separates topology from geometr
- No explicit neighborhood info

0.00								
t0	O	v1	v2					
t1	v0	v1	v3					
t2	v2	v4	v3					
t3	v5	v2	v6					
• • •	•••	•••	•••					

Triangles

Ver cices							
v0	x0	у0	z0				
v1	x 1	x1	z1				
v2	x2	y2	z2				
v3	х3	у3	z3				
v4	x4	y4	z4				
v5	x5	у5	z5				
v6	х6	y6	z6				
•••	•••	•••	•••				

Vertices

Example: OBJ Format

1	2	3	2	4	3	2	5	4		VTX	: 15 fl	oats	(5 Vec	tor3f)
x_1	y_1	z_1	x_2	y_2	Z_2	x_3	y_3	Z_3	x_4	y_4	Z_4	x_5	y_5	Z_5

Practice: Can you write the TRI and VTX arrays for the following mesh?

Topology Queries

• All possible neighborhood relationships:

Vertex	_	Vertex	VV
Vertex	_	Edge	VE
Vertex	_	Face	VF
Edge	_	Vertex	EV
Edge	_	Edge	EE
Edge	_	Face	EF
Face	_	Vertex	FV
Face	_	Edge	FE
Face		Face	FF

Solution: Auxiliary Data Structures

• E.g., store an unordered map to maintain the vertex-vertex relationship, and store another unordered map to maintain the vertex-edge relationship

```
C++
Code:
```

```
std::unordered_map<Vector2i,std::vector<int> > edge_tri_map;
std::unordered_map<int,std::vector<int> > vtx_vtx_map;
```


Example: Vtx-Vtx Map

Example: Edge-Tri Map

1,2

3