This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT.
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

① 特許出顧公告

報 (B2) 公 許 昭56—24447

👀 Int .Cl .⁸ H 02 G 1/14 H 01 R 9/05 43 / 00 H 02 G 15/02

庁内整理番号 識別記号

20(4)公告 昭和56年(1981)6月6日

6969-5E 7373-5E 6574 - 5 E 6969-5E

発明の数

(全3頁)

図同軸ケーブルの端末部形成方法

创特

顧 昭52-27725

69出

昭52(1977)3月14日

公

昭53-112487 墠

④昭53(1978)9月30日

個発 蚏 者 山口秀夫

> 日立市日高町5丁目1番地日立電 **舰株式会社研究所内**

79発 明 大森信夫

日立市日高町 5 丁目 1 番地日立電

線株式会社研究所内

创出 顖 人 日立電線株式会社

東京都千代田区丸の内2丁目1番

2号

OH. 人 弁理士 佐藤不二堆

6か特許請求の範囲

内部導体の周囲に順次絶縁体、外部導体を設 けてなる同軸ケーブルの端末部近傍の絶縁体を除 20 等とすることは至難の技であり、不可能に近く、 去して外部導体端末部に拡開部を形成すると共に、 絶縁体除去部および拡開部に位置する内部導体周 上に誘電体層を密着被覆して形成することを特徴 とする同軸ケーブルの端末部形成方法。

発明の詳細な説明

本発明はコルデル紐あるいは発泡ポリエチレン 等により内部導体と外部導体間が絶縁されてなる 同軸ケーブルの端末部形成方法に関する。

同軸ケーブルに接栓等を取付ける際、内部導体 と外部導体間を外気より遮断するための気密構造 30 においても拡開部を形成する際には拡開部近傍の として、例えば第1凶に示すような構造がある。 1は同軸ケーブルであつて、順次内部導体 2、絶 緑体3、外部導体4、プラスチツクシース5より 構成されている。

接栓固定金具9が使用される。

この場合、同軸ケーブル1の内部導体2と外部

導体3の間を外気より遮断するため、外部導体3 の端末部に設けられた拡開部6の内周面と接栓7 に設けられた尖端部8とが線接触するような構成 が採られている。

コルデル紐絶縁同軸ケープルを例にとると、拡 開部6を形成する時は従来次のような方法であつ

- (1) コルデル紐を同軸ケーブルの内部に押し込む。
- (2) 拡開部を形成する。
- 10 (3) コルデル紐を同軸ケーブルの内部から引き出 して正規の位置に戻す。

周知の通り、コルデル紐絶縁同軸ケーブルにお けるコルデル紐は内部導体の保持および特性イン ピーダンス均等性維持のため、正確な巻付ピツチ 15 でもつて内部導体周上に巻回されているのである が、拡開部形成の際には上述したようにコルデル 紐を同軸ケーブル内部に押し込んだり、また内部 から引き出したりするので、コルデル紐の位置お よび形状を拡開部を形成する前の正規なものと同 特性インピーダンスの均等性が損なわれるし、作 業自体も高度な熟練を要すると共に長時間必要と なる。また、拡開部においては内部導体と外部導 体の間隔が大きくなり特性インピーダンスの均等 25 性が損なわれる原因となる。

このように特性インピーダンスの均等性が損な われることは使用周波数帯域が狭められることに なる。

なお、発泡ポリエチレン充実絶縁同軸ケーブル 絶縁体が除去されるので、特性インピーダンスの 均等性が損なわれることは云うまでもない。

本発明は以上に鑑みてなされたもので、同軸ケ - プル端末部における特性インピータンスの均等 この同軸ケープル1を接栓1に取付ける際には 35 性が凶れ、更にはコルデル紐絶縁同軸ケープルに おいては端末部形成の際の作業能率を改善できる 同軸ケーブルの端末部形成方法の提供を目的とす

3

る。

本発明においては、絶縁体の除去部および外部 導体の拡開部に位置する内部導体周上に誘電体層 を密着被覆することにより、特性インピーダンス ・ プルにおいては、拡開部近傍のコンデル紐を予め 除去することにより従来技術の煩わしさを解決し ている。

第2図を参照して本発明の一実施例について説 明する。

同軸ケープル1の内部導体2の周上にはコルデ ル紐絶縁体3が一定ピッチでもつて巻回されてい る。端末部近傍にある絶縁体3を一定長1だけ除 去してから外部導体4の端末部に拡開部6を形成 する。拡開部6は接栓固定会具9を取付けた後に 15 形成するのが好ましいが、拡開部6を形成してか ら接栓固定金具を取付けることも可能である。

次に、絶縁体3の除去部および拡開部6に位置 する内部導体2の周上に誘電体層10を密着被覆 する。

誘電体層 1 () としてはプラスチックチュープ、 特に熱収縮性プラスチックチューブが好適であり、 加熱するだけで内部導体2の周上に密着被覆可能 となる。

誘電体層10の長さおよび厚さは特性インピー 25 による効果の説明図である。 ダンス調整量に応じて任意に決定される。

以上のようにして形成されたコルデル紐絶縁同

軸ケーブルに第1図に示すような接栓7を設けて 特性を測定したところ第3図および第4図に示す ような結果が得られた。

第3図は特性インピーダンスの分布状態を示す の均等性を図り、更にはコルデル紐絶縁同軸ケー 5 もので、従来方法による場合は曲線A、本発明方 法による場合は曲線Bのような結果が得られ、大 幅に特性インピーダンスが均等化された。また特 性インピーダンスの変化幅△2は、ほゞ 0.5 Ωの 範囲内に押えられるようになつた。

> 第4図は電圧定在波比の周波数特性を示すもの 10 で、従来方法による場合は曲線A、本発明方法に よる場合は曲線Bに示すような結果が得られ、広 い周波数帯域にわたり良好な電圧定在波比が得ら れた。

> 以上説明したように、本発明によれば同軸ケー プル端末部における特性インピーダンスの均等化 が可能となり、優れた電気的特性を有する同軸ケ ープルの端末部が得られ、またコルデル紐絶縁同 軸ケーブルの端末部形成に際しては作業能率も改 20 善される。

図面の簡単な説明

第1図は同軸ケーブルに接栓を取付けた場合の 端末気密構造の一例の説明図、第2図は本発明の 一実施例の説明凶、第3図および第4図は本発明

1:回軸ケーブル、2:内部導体、3:絶縁体、 4:外部導体、6:拡開部、10:誘電体層。

才 2 図

