

Exceções e Interrupções

- <u>Exceções</u> são mudanças no fluxo de execução devido a eventos inesperados gerados internamente ao processador.
 - ecall : chamadas às rotinas do sistema
 - □ instrução inválida
 - □ # overflow em operações aritméticas Não detectado no RISC-V
 - singularidades matemáticas da FPU
 - ...
- Interrupções são mudanças no fluxo devido a eventos externos, tipicamente dispositivos de entrada e saída.
 - □ DMA (Direct Memory Access)
 - acesso ao barramento
 - □ solicitação de dispositivos
 - ...

Definições dependentes do fabricante: Intel usa o termo interrupção,

Ex.: int 21h : Dá acesso a 108 chamadas do sistema (similar ao a7 ecall)

Tratamento de Interrupções e Exceções

Para tratar a Interrupção/Exceção, Sistema Operacional necessita:

- 1) Conhecer o fato que gerou a Exceção/Interrupção
- Uso de Registrador de Causa
 Um registrador especial é utilizado para codificar o motivo da Exceção/Interrupção.
- Uso de Interrupção Vetorizada
 Um vetor (endereço na memória) é utilizado para indicar os endereços para as rotinas de cada interrupção.
- 2) Conhecer o Endereço da instrução onde ocorreu a exceção/interrupção
- Registrador específico (EPC)
- 3) Executar uma rotina capaz de acessar recursos que podem não estar disponíveis ao usuário:
- Modo Usuário (user mode): Modo não privilegiado. Não pode acessar memória de programa, algumas instruções não são permitidas. (Usuário com Sistema Operacional)
- Modo Supervisor (supervisor mode): Modo privilegiado. Pode acessar a memória de programa, instruções específicas. (Sistema Operacional)
- Modo Máquina (machine mode): Sem nenhuma limitação de acesso (Usuário sem Sistema Operacional).

Tratamento de Interrupções e Exceções

Ex.: Registrador de Causa

```
# Programa
                            overflow: Cause=12 / EPC=PC+4
LABEL1: add
         sub
                           interrupção 3: Cause=0 / EPC=PC+4
LABEL2: add
# Rotina de tratamento de exceção
ExceptionHandler: ....
                  se causa=0 então xxxx
                  se causa=12 então yyyy
             XXXX:...
                 retorna
             уууу:...
                  retorna
```

Vetor:

0x0080 0000

0x0080 0120

0x0080 0300

0x0080 1000

Tratamento de Interrupções e Exceções

Ex.: Interrupção Vetorizada

```
#Programa
                            overflow: FPC=PC+4
LABEL1: add
         sub
LABEL2: add
                           interrupção 3: EPC=PC+4
# Rotinas de tratamento 1
0x0080 0000: ....
              retrona
#Rotina de tratamento 2
0x0080 1000: ....
              retorna
```


Operações de Entrada e Saída

- Por Polling: (software)
 - processador testa periodicamente se dispositivo está pronto para realizar a transferência de dados
 - problema: toma muito tempo do processador
- Por Interrupção: (hardware)
 - o dispositivo avisa ao processador a sua disponibilidade
 - Problema: hardware mais complexo, processador deve suportar interrupções
 - antes de iniciar a execução da próxima instrução, processador verifica se existe alguma solicitação de interrupção
 - caso haja, interrompe o processamento normal e executa uma rotina de tratamento de interrupções

Operações de Entrada e Saída

Exemplo de Polling no RISC-V

```
WAIT: lw t0, STATUS(s0)
andi t1, t0, MASK
beq t1, zero, WAIT
lw s1, DATA(s0)
```

```
# lê estado do dispositivo s0# Isola o bit status por MASK# se não está pronto repete# senão lê o dado para s1
```


Ferramentas de IO no Rars:

- Keyboard and Display MMIO Simulator
 - □ Entrada por leitura do teclado
 - □ Saída em terminal de texto
 - □ Simula IO por Polling ou por interrupção (não está Ok!)
- Bitmap Display
 - Saída gráfica em display VGA
 - Resolução selecionável.
 - Acesso direto à Memória de Vídeo (sem GPU)
- Interface de Áudio
 - Saída de áudio por sintetizador MIDI (Musical Instrument Digital Interface)
 - □ ecall 31, 32 e 33

Keyboard and Display MMIO Simulator

Endereço Função

 $0xFF20\ 0000$ bit $0 \rightarrow Status\ do\ teclado$

bit 1 → Define Interrupção ou Polling

0xFF20 0004 bits 7-0 → Código ASCII da tecla

 $0xFF20\ 0008$ bit $0 \rightarrow Status\ do\ monitor$

bit 1 → Define Interrupção ou Polling

0xFF20 000C bits 7-0 → Define ASCII do caractere

ASCII: 12 clear screen

ASCII: 7 posiciona cursor em (x,y)

x: bits 31-20

y: bits 19-8

Keyboard and Display MMIO Simulator

- Exemplos:
 - □ keypoll.s
 - □ keyint.s

Mapeamento da memória de vídeo VGA no RARS

Bitmap Display

- Endereço(X,Y) = Endereço Base (0xFF00 0000) + Y * 320 + X
- Com X de 0 a 319 e Y de 0 a 239.
- Codificação da Cor: 8 bits/pixel

7 6	5 4 3	210
ВВ	GGG	RRR

Ex.: bitmap.s

Paleta de cores

Inclua no seu programa no Rars o arquivo SYSTEMv1.s

Serviço	a7	Argumentos	Resultados
print integer	101	a0=inteiro a1=coluna a2=linha a3=cores	Imprime o número inteiro complemento de 2 a0 na posição (a1,a2) com as cores a3={00BBGGGRRRbbgggrrr} sendo BGR fundo e bgr frente
print float	102	fa0=float a1=coluna a2=linha a3=cores	Imprime o número float em fa0 na posição (a1,a2) com as cores a3
print string	104	a0=endereço string a1=coluna a2=linha a3=cores	Imprime a string terminada em NULL presente no endereço a0 na posição (a1,a2) com as cores a3
print char	111	a0=char (ASCII) a1=coluna a2=linha a3=cores	Imprime o caractere a0 (ASCII) na posição (a1,a2) com as cores a3
print int hex	134	a0=inteiro a1=coluna a2=linha a3=cores	Imprime em hexadecimal o número em a0 na posição (a1,a2) com as cores a3

Sintetizador de Áudio MIDI

- MIDI: Musical Instrument Digital Interface
- Protocolo de comunicação com instrumentos musicais
- Define 128 instrumentos, 128 notas, efeitos especiais, etc.
- No Rars:
 - □ ecall 33: Melodia (blocante)
 - □ ecall 32: Pausa (blocante)
 - ecall 31: Acorde (não-blocante)

Ex.: midi.s