07. час - Електромагнетска компатибилност

1. Направити модел високонапонског трофазног вода у програмском пакету WIPL-D. Сматрати да се вод састоји од три проводника полупречника $r=10\,\mathrm{mm}$. Дужине проводника су $l=100\,\mathrm{m}$, растојање између њих је $d=5\,\mathrm{m}$, а вод се налази на висини $h=20\,\mathrm{m}$ изнад тла (које се моделује вакуумом). Трофазни генератор је везан у звезду, а ефективна вредност електромоторне силе је $E_0=400\,\mathrm{kV}$. Пријемник чине три отпорника отпорности $R=200\,\Omega$, такође везана у звезду (пријемник је симетричан, те је ефективна вредност струје једне фазе $I_0=2\,\mathrm{kA}$). (а) Израчунати ефективне вредности електричног и магнетског поља на нивоу тла (тј. у равни која је на растојању $20\,\mathrm{m}$ од равни вода), око средине вода, у правцу нормалном на проводнике вода у границама $[-50\,\mathrm{m},50\,\mathrm{m}]$ (за координатни систем на слици x=0, $-50 \le y \le 50\,\mathrm{m}$ и z=0). (б) Стандардом је дефинисано да магнетска индукција не сме бити јача од $B_{\mathrm{max}}=1\,\mathrm{\mu}\mathrm{T}$. Да ли је задовољен овај стандард?

Слика 1.1. Модел трофазног вода у програмском пакету WIPL-D.

2. Упрошћена шема појачавача приказана је на слици 2.1. Побудни напон $V_{\rm s}$ доводи се на улаз појачавача преко микротракастог вода карактеристичне импедансе $Z_{\rm c}=50\,\Omega$ и дужине $l=40\,{\rm mm}$. Микротракасти вод је направљен на подлози висине $h=1,6\,{\rm mm}$ и релативне пермитивности $\varepsilon_{\rm r}=1$. Појачавач је моделован отпорником $R_1=50\,\Omega$ (на улазу) и идеалним напонски контролисаним напонским генератором појачања K (на излазу). Излаз појачавача повезан је са потрошачем, $R_{\rm p}=50\,\Omega$, преко другог микротракастог вода карактеристичне импедансе $Z_{\rm c}=50\,\Omega$ и дужине $l=40\,{\rm mm}$, направљеног на истој подлози као и први вод. Растојање од краја улазног вода (улаз појачавача) до почетка излазног вода (излаз појачавача) је $d=4\,{\rm mm}$. Цео појачавач постављен је у метално кућиште димензија $a\times b\times c=150\times100\times30\,{\rm mm}$, тако да микротракасти водови стоје симетрично дуж осе базиса (дужине a и ширине b). Основа металног кућишта истовремено представља други проводник микротракастог вода. Помоћу програмског пакета WIPL-D потребно је анализирати паразитну повратну спрегу коју уноси кућиште. У том циљу потребно је направити 3-D модел кућишта и појачавача према шеми са слике 2.2. Основу кућишта моделовати помоћу бесконачно велике савршено проводне равни. Изглед 3-D модела приказан је на слици 2.3. Кружно појачање може се израчунати као $A\beta=-y_{12}\cdot R_1\cdot K$. (а) У опсегу учестаности $10\,{\rm MHz} \le f \le 2\,{\rm GHz}$ скицирати $|y_{12}|$. На основу $|y_{12}|$, (б) одредити најнижу резонантну учестаност, f_1 , металног кућишта и упоредити је са теоријском вредношћу и (в) одредити највеће могуће напонско појачање појачавача, |K|, у опсегу $10\,{\rm MHz} \le f \le 2\,{\rm GHz}$, тако да појачавач сигурно не заосцилује ($|A\beta| < 1$). (г) Дати предлог за пригушење паразитних резонанција кућишта.

Слика 2.1. Упрошћена шема појачавача.

Слика 2.2. Шема за одређивање кружног појачања.

Слика 2.3. 3-D модел оклопљеног појачавача.