Topologia e espaços métricos

Roberto Imbuzeiro Oliveira*

7 de Fevereiro de $2014\,$

Conteúdo

1	Pre	liminares sobre conjuntos	2	
2	Inti	ntrodução aos espaços métricos		
	2.1	Definição	3	
	2.2	Exemplos	5	
		2.2.1 A reta real	5	
		2.2.2 O espaço Euclideano de d dimensões	4	
		2.2.3 A métrica discreta	5	
		2.2.4 Restrições	5	
	2.3	Sequências, limites e completude	6	
	2.4	Continuidade	7	
3	Inti	rodução à topologia: abertos, fechados e companhia	8	
	3.1	Uniões e interseções	Ć	
	3.2	Caracterizando os fechados via limites	10	
	3.3	Continuidade, abertos e fechados	11	
	3.4	Fechos, interiores e pontos de acumulação	13	
	3.5	Como são os abertos de \mathbb{R} ?	14	
	3.6	Mais exercícios	15	
4	Cor	njuntos conexos	15	
	4.1		16	
	4.2	Os conjuntos conexos de $\mathbb R$ são os intervalos		
	4.3	Aplicações		

^{*}IMPA, Rio de Janeiro, RJ, Brazil, 22430-040.

5	Con	ijuntos compactos	21
	5.1	Compactos são completos	21
	5.2	Compactos são totalmente limitados	23
	5.3	O critério das subsequências convergentes	26
	5.4	Compactos de \mathbb{R}^d : o teorema de Heine-Borel	29
	5.5	Critérios topológicos para a compacidade	29
	5.6	Continuidade uniforme	32
	5.7	Conjuntos perfeitos	33
	Est	as notas sorão atualizadas ao longo das próvimas aulas	

1 Preliminares sobre conjuntos

Aqui observamos alguns fatos sobre conjuntos que não havíamos observado antes.

Em primeiro lugar, é possível falar de uniões e interseções de um número arbitrário de conjuntos. Mais exatamente: suponha que $I \neq \emptyset$ é um conjunto e a cada $i \in I$ está associado um conjunto A_i^1 . (Neste caso dizemos que $\{A_i\}_{i\in I}$ é uma família de conjuntos indexada por I). Definimos as uniões $\bigcup_{i\in I} A_i$ e interseções $\bigcup_{i\in I} A_i$ pelas regras:

$$\forall x: "x \in \bigcup_{i \in I} A_i" \Leftrightarrow "\exists i \in I: x \in A_i".$$

$$\forall x : "x \in \bigcap_{i \in I} A_i" \Leftrightarrow "\forall i \in I : x \in A_i".$$

Em segundo lugar, observamos que, se todos os A_i estão contidos num mesmo conjunto X, podemos falar do complemento $A_i^c := X \setminus A_i$ de cada A_i com relação a X. Notamos que a operação de tomar complementos é idempotente $((A^c)^c = A)$ e troca interseção por união:

$$\bigcup_{i \in I} A_i^c = \left(\bigcap_{i \in I} A_i\right)^c.$$

 $^{^1}$ A maneira correta de pensar nisso seria imaginar que temos uma função $f:I\to \mathcal{A}$, onde \mathcal{A} é um conjunto cujos elementos são conjuntos. Sendo assim, A_i seria um "sinônimo" de f(i).

2 Introdução aos espaços métricos

Neste trecho do curso estudaremos um pouco da teoria de espaços métricos, com ênfase em problemas *topológicos*, isto é, relacionados a conjuntos abertos e fechados e a funções contínuas.

2.1 Definição

Definição 1 Um espaço métrico é um conjunto $X \neq \emptyset$ munido de uma função $d: X \times X \rightarrow [0, +\infty)$, chamada de métrica sobre X, com as seguintes propriedades.

- 1. d é não-negativa e separa pontos distintos: para quaisquer $a, b \in X$, d(a, b) = 0 se e somente se a = b;
- 2. d é simétrica: para qualquer par $(a,b) \in X \times X$, d(a,b) = d(b,a);
- 3. d satisfaz a desigualdade triangular: para quaisquer $a, b, c \in X$, $d(a,b) \le d(a,c) + d(c,b)$.

Todas as propriedades de métrica acima têm uma $interpretação\ intuitiva$ se pensamos em d como uma noção de distância. A propriedade 1 diz que a distância de um lugar a ele mesmo é nula, mas que qualquer outro lugar está a distância positiva. A segunda propriedade afirma que ir de a a b não é mais fácil ou difícil que ir de b a a. A terceira propriedade afirma que ir de a para c e depois para b não pode resultar em um caminho mais curto que a rota direta de a para b.

2.2 Exemplos

Veremos abaixo os principais exemplos de espaços métricos que serão recorrentes no curso. Ocasionalmente usaremos a convenção de denotar por d_X a métrica de X; isto será útil quando tratarmos muitos espaços métricos de uma única vez.

2.2.1 A reta real

 $X=\mathbb{R}$ com a métrica $\mathsf{d}(a,b):=|a-b|\ ((a,b)\in\mathbb{R}^2)$. As duas primeiras propriedades da definição de métrica são triviais. A terceira é consequência de " $|x+y|\leq |x|+|y|$ " aplicada a x=a-c e y=c-b. Em todas estas notas tomaremos esta métrica como a métrica padrão sobre \mathbb{R} , a não ser quando o contrário for dito.

2.2.2 O espaço Euclideano de d dimensões

Nossa segunda classe mais importante de exemplos é dada por $X = \mathbb{R}^d$ com $d \in \mathbb{N}$. Os elementos deste conjunto serão representados na forma $x \in \mathbb{R}^d$, com as d coordenadas de x escritas como $x[1], x[2], \ldots, x[d]$. Às vezes usaremos as seguintes operações:

- Soma e diferença: dados $x, y \in \mathbb{R}^d$, definimos $x \pm y \in \mathbb{R}^d$ como o vetor de coordenadas $x[i] \pm y[i]$ $(1 \le i \le d)$.
- Multiplicação por escalar: se $x \in \mathbb{R}^d$ e $\lambda \in \mathbb{R}$, λx é o vetor de coordenadas $\lambda x[i]$ $(1 \le i \le d)$.

A métrica que normalmente usaremos sobre \mathbb{R}^n será a *Euclideana*. Para defini-la, vamos primeiro fixar a *norma Euclideana*:

$$||x|| := \sqrt{\sum_{i=1}^{d} x[i]^2} \ (x \in \mathbb{R}^d)$$

e então definir d(a,b) := ||a-b|| para $(a,b) \in \mathbb{R}^n \times \mathbb{R}^n$ (aqui definimos a soma e subtração de vetores coordenada a coordenada). Provaremos abaixo que d tem as três propriedades pedidas de uma métrica.

- 1. Veja que $||x|| \ge 0$ sempre, com igualdade se e somente se todas as coordenadas de x são nulas. A propriedade segue quando se aplica isto a x = a b.
- 2. Vem do fato que ||x|| = ||-x||, onde -x é o vetor de coordenadas -x[i] (com $i \in [n]$), uma vez que se aplica isto a x = a b.
- 3. Como no caso de $X=\mathbb{R}$, vamos tomar x=a-c e y=c-b e argumentar que $\|x+y\|\leq \|x\|+\|y\|$. De fato, como a função que leva $t\geq 0$ em t^2 é crescente, basta provar que

$$||x + y||^2 = \sum_{i=1}^{n} (x[i] + y[i])^2$$

é menor ou igual a $(\|x\|+\|y\|)^2.$ Para isto expandimos os quadrados acima.

$$||x + y||^2 = \sum_{i=1}^n x[i]^2 + \sum_{i=1}^n y[i]^2 + 2\sum_{i=1}^n x[i]y[i].$$

Veja que a primeira soma do lado direito é $||x||^2$, a segunda é $||y||^2$ e a terceira pode ser cotada superiormente por ||x|| ||y|| (isto é precisamente a desigualdade de Cauchy Schwartz!). Portanto, temos

$$||x+y||^2 = ||x||^2 + ||y||^2 + 2\sum_{i=1}^n x[i]y[i]. \le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2.$$

Em todas estas notas tomaremos esta métrica como a métrica padrão sobre \mathbb{R}^d , a não ser quando o contrário for dito. No entanto, outras métricas são possíveis.

Exercício 1 (Distância do máximo) $Defina ||x||_{\infty} := \max\{|x[1]|, \dots, |x[d]|\}$ $(x \in \mathbb{R}^d)$. Prove que

$$\forall x \in \mathbb{R}^d : ||x||_{\infty} \le ||x|| \le \sqrt{d} \, ||x||_{\infty}.$$

Mostre que pode haver igualdade tanto na desigualdade inferior quanto na superior. Mostre ainda que

$$\mathsf{d}(a,b) := \|a - b\|_{\infty} \ ((a,b) \in \mathbb{R}^d \times \mathbb{R}^d)$$

define outra métrica sobre \mathbb{R}^d .

2.2.3 A métrica discreta

Os exemplos acima podem passar a impressão de que todo espaço métrico é "agradável" e que a métrica sempre tem uma boa interpretação como distância. Há, no entanto, um exemplo simples de métrica que não tem qualquer interpretação clara. Esta métrica — chamada de métrica discreta sobre X — tem a seguinte forma:

$$\mathsf{d}(a,b) := \left\{ \begin{array}{ll} 1 & \text{se } a \neq b \\ 0 & \text{se n\~ao.} \end{array} \right. ((a,b) \in X^2)$$

Embora esquisita, esta métrica serve para treinar os conceitos que veremos abaixo. Não custa lembrar: qualquer resultado que queiramos provar para qualquer espaço métrico tem de valer para esta classe estranha!

2.2.4 Restrições

Nossa última classe de exemplos é obtida por restrições: se $Y \subset X$ não é vazio, a restrição de uma métrica d_X sobre X define uma métrica d_Y sobre Y [exercício]. Por exemplo, $Y = \mathbb{Q}$, ou Y = [0,1] também podem ser tomado como espaços métricos com a métrica $\mathsf{d}_Y(a,b) = |a-b| \ ((a,b) \in Y^2)$.

2.3 Sequências, limites e completude

Fixo um espaço métrico (X, d_X) , podemos falar de sequências $\{x_n\}_{n\in\mathbb{N}}\subset X$. Assim como no caso de sequências reais, isto é apenas uma forma de escrever uma função de \mathbb{N} em X, que trataremos como uma sucessão de termos em X. Não é difícil adaptar as definições da reta \mathbb{R} para este caso.

Definição 2 Uma sequência $\{x_n\}_{n\in\mathbb{N}}\subset X$ converge (segundo a métrica d_X) a um $x\in X$ se para todo $\varepsilon>0$ existe um $n_0\in\mathbb{N}$ tal que:

$$\forall n \in \mathbb{N} : n \ge n_0 \Rightarrow \mathsf{d}(x_n, x) < \varepsilon.$$

Como no caso de números, trocar < ε por
 $\leq \varepsilon$ na definição não muda nada.

Definição 3 Uma sequência $\{x_n\}_{n\in\mathbb{N}}\subset X$ é Cauchy (segundo a métrica d_X) se para todo $\varepsilon>0$ existe um $n_0\in\mathbb{N}$ tal que:

$$\forall m, n \in \mathbb{N} : m, n \ge n_0 \Rightarrow \mathsf{d}(x_n, x_m) < \varepsilon.$$

 (X, d_X) é dito completo se toda sequência de Cauchy no espaço converge.

A prova de que "convergente" ⇒ "Cauchy" no caso real se adapta perfeitamente ao caso de espaços métricos gerais. A recíproca nem sempre é verdadeira, pois nem todo espaço métrico é completo. Vejamos isto em alguns exemplos.

Exemplo 1 $(\mathbb{R}, d_{\mathbb{R}})$ é completo, mas $(\mathbb{Q}, d_{\mathbb{Q}})$ não é.

Exemplo 2 (\mathbb{R}^2 , $d_{\mathbb{R}^2}$) é completo. De fato, suponha que $\{x_n\}_n \subset \mathbb{R}^2$ é Cauchy. O exercício 1 acima implica tanto a primeira quanto a segunda coordenadas de x_n formam sequências de Cauchy, que portanto têm limites x[1], x[2]. O mesmo exercício nos permite concluir que x_n converge ao vetor x com estas coordenadas. O raciocínio é o mesmo para dimensões $d=3,4,5,\ldots$

Exercício 2 Prove mais formalmente que $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^d$ converge $a\ x\in\mathbb{R}^d$ se e somente se $x_n[i]\to x[i]$ para cada coordenada $1\leq i\leq d$.

Exercício 3 Calcule o limite dos vetores cujas coordenadas são n/n!, $n^2/n!$, ..., $n^d/n!$ (com $n \in \mathbb{N}$).

Exemplo 3 Suponha que $x \in X$ é discreto, isto é, que existe um r > 0 tal que $\forall x \in X$ e $\forall y \in X \setminus \{x\}$, $d(x,y) \geq r$. Neste caso x_n é Cauchyse e somente se existe um n_0 tal que $x_n = x_{n_0}$ para todo $n \geq n_0$ (de fato, basta tomar o n_0 correspondendo à escolha de $\varepsilon = r$). Mais ainda: quando isto acontece, $\lim x_n = x_{n_0}$. Segue disto que todo conjunto vira um espaço métrico completo com a métrica dscreta.

Exercício 4 Prove que $x_n \to x$ se e somente se $d_X(x_n, x) \to 0$ (note que $d_X(x_n, x)$ é sequência de números reais).

2.4 Continuidade

Vamos definir logo de cara um dos conceitos mais importantes do curso.

Definição 4 Sejam (X, d_X) , (Y, d_Y) espaços métricos e $f: X \to Y$ uma função. Dizemos que f é contínua em $x \in X$ se para toda sequência $\{x_n\}_{n\in\mathbb{N}} \subset X$ com $x_n \to x$, temos $f(x_n) \to f(x)$. f é dita contínua se é contínua em todo $x \in X$.

Exemplo 4 Se $X = Y = \mathbb{R}$ vemos claramente que as funções f(x) = ax + b (com a e b contantes), $f(x) = x^k$ ($k \in \mathbb{N}$), ... são contínuas, por causa das regras sobre limites de produtos. A função f(x) = 1/x é contínua em $X = \mathbb{R} \setminus \{0\}$. A soma e o produto de funções contínuas também é contínua.

Exercício 5 Enuncie de forma precisa e prove a afirmação de que a composição de funções contínuas é contínua.

Exemplo 5 Se $X = \mathbb{R}^d$ e $Y = \mathbb{R}$, qualquer função que seja um polinômio nas variáveis $x[1], \ldots, x[d]$ é contínua. Se P é um destes polinômios, 1/P(x) é contínua quando tomamos como domínio o conjunto

$$\tilde{X}:=\{x\in X\,:\, P(x)\neq 0\}.$$

Proposição 1 Seja d a métrica discreta sobre X, um conjunto com dois ou mais pontos. Então:

- qualquer função $f: X \to \mathbb{R}$ é contínua, mas
- uma função $f: \mathbb{R} \to X$ só pode ser contínua se é constante.

A primeira parte vem do fato que, em X, $x_n \to x$ se e somente se $x_n \to x$ para todo n grande. A segunda parte será evidente quando falarmos de conexidade.

Exercício 6 Dado L > 0, suponha que $f : X \to Y$ é L-Lipschitz, isto é, temos $d_Y(f(x), f(x')) \le L d_X(x, x')$ para quaisquer $x, x' \in X$. Mostre que f é contínua.

Exercício 7 Fixo $x_0 \in X$, defina $f: X \to \mathbb{R}$ com $f(x) := d_X(x, x_0)$ ($x \in X$). Mostre que $f \notin 1$ -Lipshitz e portanto contínua.

Exercício 8 Fixe $S \subset X$, $S \neq \emptyset$.

1. Mostre que, para qualquer $x \in X$, o conjunto

$$\{\mathsf{d}_X(x,s)\,:\,s\in S\}$$

tem um ínfimo.

2. Prove que $d_X(x,S) := \inf\{d_X(x,s) : s \in S\}$ é função 1-Lipschitz (e portanto contínua) de X em \mathbb{R} .

Nas seções seguintes seguintes faremos a relação entre continuidade e conceitos "topológicos."

3 Introdução à topologia: abertos, fechados e companhia

Nesta seção (X, d_X) é um espaço métrico dado. Dados $x \in X$ e $r \geq 0$, denotamos por $B_X(x, r)$ ou apenas B(x, r) a chamada bola aberta de raio r ao redor de x:

$$B(x,r) := \{ y \in X : d(x,y) < r \}.$$

Também definimos a bola fechada $B_X[x,r]$ ou B[x,r] como

$$B[x,r] := \{ y \in X : d(x,y) \le r \}.$$

Exercício 9 Mostre que, dados $0 \le r' < r$,

$$B(x,0) = \emptyset B[x,0] = \{x\} \subset B[x,r'] \subset B(x,r) \subset B[x,r].$$

Mostre que B[x,0] = B[x,1/2] = B(x,1) se a métrica é discreta.

Definição 5 $A \subset X$ é dito aberto (segundo a métrica d_X) se para todo $x \in X$ existe um $\delta > 0$ tal que $B_X(x, \delta) \subset A$. $F \subset X$ é dito fechado se $X \setminus F$ é aberto.

Exemplo 6 Todos os subconjuntos são abertos e fechados se a métrica é discreta.

Exemplo 7 Considere uma bola aberta B(x,r). Afirmamos que ela é um conjunto aberto. Para isto precisamos mostrar que, dado qualquer $y \in B(y,r)$, temos $B(y,\delta) \subset B(x,r)$ para algum $\delta > 0$.

De fato, dado $y \in B(x,r)$, temos $r' := \mathsf{d}(x,y) < r$. Tomando $\delta := r - r'$, que é positivo, vemos que

$$\forall z \in B(y, \delta) : \mathsf{d}(z, x) \le \mathsf{d}(z, y) + \mathsf{d}(x, y) < \delta + r' = r.$$

Portanto todo $z \in B(y,\delta)$ também está em B(x,r), ou seja, $B(y,\delta) \subset B(x,r)$ CQD.

Exemplo 8 De forma semelhante, podemos provar que B[x,r] é fechado para todo $r \geq 0$ (isto inclui o caso de $\{x\} = B[x,0]$). Para fazer isto mostraremos que $X \setminus B[x,r]$ é aberto. De fato, para qualquer $y \in X \setminus B[x,r]$ temos d(y,x) =: r' > r, portanto, se $\delta := r' - r$, temos

$$\forall z \in B(y, \delta) : \mathsf{d}(z, x) \ge \mathsf{d}(y, x) - \mathsf{d}(z, y) > r' - \delta = r,$$

o que implica $B(y,\delta) \subset X \backslash B[x,r]$. Como $\delta > 0$ e podemos encontrar o δ para qualquer $y \in X \backslash B[x,r]$, deduzimos que $X \backslash B[x,r]$ é aberto, de modo que B[x,r] é fechado.

Exercício 10 Prove que \emptyset e X são ambos abertos e fechados.

Exercício 11 Prove que todos os subconjuntos de X são abertos se usamos a métrica discreta.

Exercício 12 Prove que os intervalos abertos e fechados de \mathbb{R} são mesmo abertos e fechados.

3.1 Uniões e interseções

Um dos fatos básicos sobre abertos é que qualquer união de abertos é aberta. Isto inclui uniões de um número infinito de conjuntos.

Proposição 2 Seja A uma família de subconjuntos abertos de X. Então a união $\bigcup_{A \in \mathcal{A}} A$ é aberta.

Prova: Suponha que $a \in \bigcup_{A \in \mathcal{A}} A$. Devemos provar que existe $\delta > 0$ tal que $B(a, \delta) \subset \bigcup_{A \in \mathcal{A}} A$. Para isto basta tomar um A tal que $a \in A$ (tem de existir, pois a pertence à união) e observar que, como este A é aberto, tem de existir $\delta > 0$ com $B(a, \delta) \subset A$. Como $A \subset \bigcup_{A \in \mathcal{A}} A$, isto também implica $B(a, \delta) \subset \bigcup_{A \in \mathcal{A}} A$, \square

Não pode valer um resultado análogo para interseções de um número infinito de abertos. Por exemplo, em \mathbb{R} , a família

$$\mathcal{A} := \{ (-t, t) : t > 0 \}$$

tem interseção $\{0\}$, que não é aberto. No entanto, vale que a interseção de um número *finito* de abertos é aberta.

Proposição 3 Sejam $A_1, \ldots, A_m \subset X$ abertos. Então $\bigcap_{i=1}^m A_i$ é aberto.

Prova: Se $a \in \bigcap_{i=1}^m A_i$, temos que $a \in A_i$ para cada i. Como estes conjuntos são abertos, existem $\delta_1, \ldots, \delta_m > 0$ tais que $B(a, \delta_i) \subset A_i$, $1 \le i \le m$. Mas então

$$\delta := \min\{\delta_1, \dots, \delta_i\} > 0$$

é tal que

$$\forall 1 \leq i \leq m : B(a, \delta) \subset A_i,$$

o que implica $B(a, \delta) \subset \bigcap_{i=1}^m A_i$. \square

Nos exercícios a seguir, é bom lembrar que um conjunto é fechado se e somente se tem complementar aberto.

Exercício 13 Mostre que qualquer interseção de conjuntos fechados é fechada. Prove ainda que a união de um número finito de conjuntos fechados resulta em outro conjunto fechado.

3.2 Caracterizando os fechados via limites

Nas definições acima definimos fechado em função de aberto. Grosso modo, chamaremos de topológicos todos os resultados e definições que forem feitos a partir dos conjuntos abertos. Deste modo, a própria definição de fechado é topológica.

A nossa definição de aberto é *métrica* (isto é, depende de d); damos abaixo uma formulação métrica para os conjuntos fechados.

Proposição 4 $F \subset X$ é fechado se e somente se $\lim_n x_n \in F$ para toda sequência convergente $\{x_n\}_{n\in\mathbb{N}} \subset F$.

Prova: Como a definição de fechado é em função da de aberto, temos de recorrer a $A := X \setminus F$. O que a proposição diz é:

A é aberto \Leftrightarrow toda seq. convergente $\{x_n\}_n \subset X \setminus A$ tem limite em $X \setminus A$.

Vamos provar primeiro a direção " \Rightarrow ". Supondo que A é aberto, seja $\{x_n\}_n$ qualquer sequência convergente contida em $X \setminus A$ e seja $x = \lim_n x_n$. Fixando $y \in A$, mostraremos que $x \neq y$; o fato de que y pode ser qualquer elemento de A implica $x \notin A$, como desejado. Fixe então $y \in A$. Como A é aberto, $\exists r > 0 : B(y,r) \in A$. Por outro lado, como $x_n \notin A$ para todo n, temos:

$$\forall n \in \mathbb{N} : x_n \notin B(y,r), \text{ isto } é, d(x_n,y) \geq r.$$

O exercício 7 nos mostra que a função $d_X(\cdot,y)$ é contínua. Como $x_n \to x$, isto implica que $d(x_n,y) \to d(x,y)$. Pelas propriedades do limite de números reais, isto nos diz que $d(x,y) \ge r > 0$.

Para terminar a prova, mostraremos que, se A não é aberto, então $\exists \{x_n\} \subset F$ com $\lim_n x_n \in A$. De fato, se A não é aberto, então existe $z \in A$ com $B(z,r) \not\subset A$ para todo r > 0. Isto quer dizer que a bola aberta B(z,r) sempre tem pelo menos um elemento de $F = X \setminus A$. Em particular, para cada $n \in \mathbb{N}$ podemos escolher um elemento

$$x_n \in F \cap B(z, 1/n)$$
.

Afirmamos que a sequência $\{x_n\}$ converge a z. De fato, para provar isto, basta mostrar que $d(x_n, z) \to 0$ (ver exercício 4). Para isto, observe que, para cada $n \in \mathbb{N}$, $d(x_n, z) \geq a_n := 0$ e

$$d(x_n, z) \le b_n := 1/n$$
, já que $x_n \in B(z, 1/n)$.

Portanto, a sequência $\{d(x_n, z)\}_{n \in \mathbb{N}}$ está "sanduichada" entre duas sequências $a_n, b_n \to 0$, o que significa $d(x_n, z) \to 0$.

Vamos agora concluir a prova observando o que fizemos. Nossa missão era provar que, se A não é aberto, existe uma sequência $\{x_n\}_n \subset F$ convergindo a $z \notin F$. Veja que, de fato, a sequência $\{x_n\}_n$ que acabamos de construir só tem elementos de F; por outro lado, $z = \lim_n x_n \in A = X \setminus F$; portanto, missão cumprida. \square

3.3 Continuidade, abertos e fechados

Nosso objetivo nesta seção é apresentar a ideia de continuidade de forma topológica, ao invés da forma métrica (via limites) que já mostramos acima. Na prova da equivalência a seguir, veremos ainda uma outra definição métrica de continuidade.

Recorreremos a uma notação que será muito usada no que segue: dados $f:X\to Y$ e $S\subset Y,$

$$f^{-1}(S) := \{ x \in X : f(x) \in S \}.$$

Exercício 14 Mostre que

$$f^{-1}(S \cup R) = f^{-1}(S) \cup f^{-1}(R), f^{-1}(S \cap R) = f^{-1}(S) \cap f^{-1}(R)$$

e

$$f^{-1}(S\backslash R) = f^{-1}(S)\backslash f^{-1}(R).$$

Teorema 1 Sejam (X, d_X) e (Y, d_Y) espaços métricos. Dada $f: X \to Y$, as seguintes afirmações são equivalentes.

- 1. $f \in continua$, isto e, se $\{x_n\}_n \cup \{x\} \subset X \in x_n \to x$ (segundo a métrica d_X), então $f(x_n) \to f(x)$ (segundo a métrica d_Y).
- 2. Para qualquer $F \subset Y$ fechado em Y, $f^{-1}(F) \subset X$ é fechado em X.
- 3. Para qualquer $A \subset Y$ aberto, $f^{-1}(A) \subset X$ é aberto.
- 4. Para todos $x \in X$ e $\varepsilon > 0$, existe $\delta > 0$ tal que:

$$\forall x' \in X : \text{``d}_X(x, x') < \delta\text{''} \Rightarrow \text{``d}_Y(f(x), f(x')) < \varepsilon\text{''}.$$

Prova: Passo $1 \Rightarrow 2$. Tome f contínua e $F \subset Y$ fechado. Tome uma sequência convergente $\{x_n\}_{n\in\mathbb{N}} \subset f^{-1}(F)$ com limite $x \in X$; nosso objetivo é provar que $x \in f^{-1}(F)$, ou seja, que $f(x) \in F$. Mas isto é simples, já que $f(x_n) \to f(x)$ (por continuidade), $\{f(x_n)\}_{n\in\mathbb{N}} \subset F$ (já que $x_n \in f^{-1}(F)$ para cada n) e F é fechado (de modo que o limite de qualquer sequência convergente em F também está em F).

Passo $2 \Rightarrow 3$. Vem do exercício anterior à prova juntamente com o fato de que A é aberto se e somente se $X \setminus A$ é fechado.

Passo $3\Rightarrow 4$. Fixos $\varepsilon>0$ e $x\in X$, vamos encontrar o δ desejado. Para fazer isto observe que a bola $B_Y(f(x),\varepsilon)\subset Y$ é um aberto de Y, de modo que (pelo item 3) $f^{-1}(B(f(x),\varepsilon))$ é aberto. Como $f(x)\in B(f(x),\varepsilon)$, x é um elemento do aberto $f^{-1}(B(f(x),\varepsilon))$; pela definição de aberto, isto implica que $\exists \delta>0$ tal que $B_X(x,\delta)\in f^{-1}(B(f(y),\varepsilon))$. Isto quer dizer que, para todo $x'\in B(x,\delta)$ – ou seja, todo $x'\in X$ com $\mathsf{d}_X(x,x')<\delta$ – temos $f(x')\in B(f(x),\varepsilon)$ – ou seja, $\mathsf{d}_Y(f(x),f(x'))<\varepsilon$. Em outras palavras, o δ que apresentamos é precisamente o que tínhamos de encontrar.

Passo $4 \Rightarrow 1$. Suponha que $x_n \to x$ em X; nosso objetivo é provar que $\lim_n f(x_n) = f(x)$, ou seja, que dado $\varepsilon > 0$ existe um $n_0 \in \mathbb{N}$ tal que

 $\mathsf{d}_Y(f(x_n),f(x))<\varepsilon$ se $n\geq n_0$. Para isto, fixamos $\varepsilon>0$ e achamos o n_0 correspondente. Pelo item 4 podemos encontrar $\delta>0$ tal que $\mathsf{d}_X(x',x)<\delta$ implica $\mathsf{d}_Y(f(x'),f(x))<\varepsilon$. Como $x_n\to x$, existe $n_0\in\mathbb{N}$ tal que $\mathsf{d}_X(x_n,x)<\delta$ sempre que $n\geq n_0$. Mas então temos $\mathsf{d}_Y(f(x_n),f(x))<\varepsilon$ sempre que $n\geq n_0$. Ou seja, este n_0 assegura a propriedade desejada. \square

3.4 Fechos, interiores e pontos de acumulação

Vamos definir aqui algumas outras noções topológicas e fazer alguns comentários sobre elas. Novamente (X, \mathbf{d}) é um espaço métrico.

Definição 6 O interior de $S \subset X$, denotado por S^o , é definido por:

$$S^o := \bigcup_{A \subset S : A \ aberto} A.$$

O fecho de S é:

$$\overline{S} := \bigcap_{F \supset S : F \ fechado} F.$$

Note que o interior é um aberto (proposição 2) e o fecho é um fechado (exercício 13). Propriedades sinples de conjuntos mostram o seguinte.

Exercício 15 Mostre que o complementar do fecho de S é o interior do complementar de S.

Exercício 16 Prove que $x \in S^o$ se e somente se $B(x, \delta) \subset S$ para algum $\delta > 0$.

Proposição 5 Se $S \neq \emptyset$, $\overline{S} = \{x \in X \,:\, \mathsf{d}(x,S) = 0\}.$

Prova: Defina $F = \{x \in X : \mathsf{d}(x,S) = 0\}$. Recorde que $x \mapsto d(x,S)$ é função contínua. Portanto, a pré imagem de $\{0\}$, que é precisamente F, é fechada, já que $\{0\} \subset \mathbb{R}$ é fechado. Como \overline{S} está contido em qualquer fechado contendo S, e ainda $S \subset F$ claramente, temos $\overline{S} \subset F$.

Por outro lado, se x satisfaz $d(x,S) = \delta > 0$ (ou seja, $x \notin F$), isto quer dizer que a bola $B(x,\delta/2)$ não pode interceptar S. Desta forma vemos que $x \notin \tilde{F}$ e $S \subset \tilde{F}$, onde $\tilde{F} := X \setminus B(x,\delta/2)$ é fechado. Deduzimos que,

$$x \not \in F \Rightarrow \exists \tilde{F} \text{ fechado}, \tilde{F} \supset S \text{ com } x \not \in \tilde{F}.$$

Como $\tilde{F} \supset \overline{S}$, isso quer dizer que $x \notin F \Rightarrow x \notin \overline{S}$. Isto quer dizer que $\forall x : x \in \overline{S} \Leftrightarrow x \in F$, ou seja, $\overline{S} = F$. \square

Definição 7 O conjunto de pontos de acumulação de $S \subset X$, denotado por S' é o conjunto que contem como elementos os $x \in X$ tais que, para todo r > 0, $B(x,r) \cap S$ contem um elemento diferente de x.

Exercício 17 Mostre que $\mathbb{N}' = \emptyset$ e $\mathbb{Q}' = \mathbb{R}$ (como subconjuntos de \mathbb{R}).

3.5 Como são os abertos de \mathbb{R} ?

Em princípio é impossível dar uma "cara" aos abertos de um espaço métrico. Apesar desta dificuldade geral, o teorema a seguir mostra que em \mathbb{R} é possível descrever os abetos de forma bastante direta.

Teorema 2 Todo conjunto aberto de \mathbb{R} que não é vazio pode ser escrito como a união de um número enumerável de intervalos abertos disjutos.

Observe que esta é uma caracterização completa, já que os intervalos abertos são mesmo abertos e toda união de abertos é aberta.

Prova: A ideia da prova será, em primeiro lugar, achar pra cada $q \in A$ racional, o maior intervalo aberto I_q tal que $q \in I_q \subset A$. Depois veremos que cada $x \in A$ está em um destes intervalos. Depois disto teremos de mostrar que podemos selecionar intevalos disjuntos entre eles.

Passo 1 - construção dos intervalos. Dado $q \in \mathbb{Q} \cap A$, definimos I_q como a união de todos os intervalos abertos contidos em A que têm q como elemento. Mais exatamente, definimos

$$\mathcal{I}_q := \{I \subset A \,:\, q \in I,\, I \text{ intervalo aberto }\} \in I_q := \bigcup_{I \in \mathcal{I}_q} I.$$

Note que a família \mathcal{I}_q contem pelo menos um intervalo ao redor de q porque $q \in A$ e A é aberto. Já vimos no primeiro teste que a união de intervalos contidos em [0,1] com interseção não vazia é intervalo; a mesma prova funciona se os intervalos são ilimitados, contanto que permitamos sup e inf infinitos. Deste modo, I_q é um intervalo. Além disto, como I_q é a união de conjuntos abertos, ele também é aberto. Portanto, $I_q \neq \emptyset$ é um intervalo aberto que está contido em A.

Passo 2 - intervalos disjuntos. Considere a família de intervalo

$$\mathcal{V} := \{ I_q : q \in A \cap \mathbb{Q} \}.$$

Esta família é enumerável porque pode ser escrita como a união enumerável dos conjuntos unitários $\{I_q\}$ (a união é enumerável porque \mathbb{Q} é). Afirmamos

que quaisquer intervalos distintos nesta família são disjuntos. De fato, considere $I_q, I_r \in \mathcal{V}$ com $I_q \cap I_r \neq \emptyset$. O argumento já usado no passo anterior nos diz que $I_q \cap I_r$ é intervalo aberto. Ao mesmo tempo, $I_q \cup I_r \subset A$ (pois cada intervalo está contido em A) e $q \in I_q \cup I_r$. Portanto $I_q \cup I_r$ é um intervalo da coleção \mathcal{I}_q definida acima. Segue que:

$$I_q \cup I_r \subset \bigcup_{I \in \mathcal{I}_q} I = I_q.$$

Como claramente $I_q \subset I_q \cup I_r$, temos $I_q = I_q \cup I_r$. Do mesmo modo podemos concluir que $I_r = I_q \cap I_r$ e portanto $I_q = I_r$.

Passo 3 - fim da prova. Falta apenas mostrar que a união dos I_q 's é A. De fato, como cada $I_q \subset A$, a união está contida em A, e falta mostrar que $A \subset \cup_{I_q \in \mathcal{V}} I_q$. Isto é, precisamos mostrar que cada $x \in A$ está num dos I_q 's. Mas isto é simples, pois sabemos que um dado $x \in A$ está num intervalo $J = (x - \delta, x + \delta) \subset A$. Necessariamente J contem um elemento $q \in \mathbb{Q}$, que pertence a A porque $q \in J$ e $J \subset A$. Vemos então que $J \in \mathcal{I}_q$, de modo que $J \subset \cup_{I \in \mathcal{I}_q} I = I_q$, logo $x \in I_q$. \square

3.6 Mais exercícios

Exercício 18 (Acrescentado em 28/01/2014) Seja (X, d_X) um espaço métrico completo e considere um subconjunto $Y \subset X$, $Y \neq \emptyset$. Prove que Y é fechado se e somente se é um espaço métrico completo com a métrica d_Y obtida por restrição de d_X .

4 Conjuntos conexos

Nesta seção (X, d_X) é um espaço métrico fixo.

Intuitivamente, um conjunto em um espaço métrico é conexo se não há nenhuma maneira de dividir seus elementos em dois conjuntos dicotômicos e bem separados. A definição abaixo é uma maneira formal de desenvolver esta ideia.

Definição 8 Dado $Y \subset X$, uma cisão de Y é um par de conjuntos $L, R \subset X$ com $Y = L \cup R$, $\overline{L} \cap R = \emptyset$ e $\overline{R} \cap L = \emptyset$. Esta cisão é dita trivial se $L = \emptyset$ (e portanto R = Y) ou $R = \emptyset$ (e então L = Y). Dizemos que Y é conexo se as únicas cisões possíveis de Y são triviais. Y é desconexo se não é conexo.

No final desta seção, veremos que esta definição tem a ver com o comportamento de funções contínuas sobre Y. Mais precisamente, mostraremos

que Y é conexo se e somente se a imagem de Y por qualquer função contínua $f:Y\to\mathbb{R}$ é um intervalo. Isto é típico de resultados topológicos: eles nos dão uma informação relevante sobre funções contínuas gerais, sem especificar exatamente como cada função se comporta.

Exercício 19 Considerando o caso particular em que Y=X, mostre que, em qualquer cisão temos $\overline{L}=L$ e $\overline{R}=R$, de modo que L e R são simultaneamente abertos e fechados em X. Deduza que X é conexo se e somente se os únicos conjuntos simultaneamente abertos e fechados em X são \emptyset e o próprio X.

Esta é uma definição topológica. Observe que nossas condições implicam $L\cap R=\emptyset$; as condições sobre o fecho implicam que os conjuntos L e R são separados. O estudo das propriedades da conexidade usará a seguinte propriedade.

Proposição 6 Dados conjuntos $L, R \subset X, \overline{L} \cap R = \emptyset$ se e somente se toda sequência $\{x_n\}_n \subset com \ x_n \to x \in R \ tem \ a \ propriedade \ de \ que \ \exists n_0 \in \mathbb{N} \ com \ x_n \not\in L \ para \ todo \ n \geq n_0.$

Prova: Seja $A:=X\backslash \overline{L}$. Como \overline{L} é fechado, A é aberto. Veja que $\overline{L}\cap R=\emptyset$ se e somente se $R\subset A$. Portanto, se $x_n\to x\in R\subset A$, podemos encontrar $\delta>0$ com $B_X(x,\delta)\subset A$ e então tem de existir $n_0\in\mathbb{N}$ tal que

$$\forall n \geq n_0 : d_X(x_n, x) < \delta$$
, isto é, $x_n \in B_X(x, \delta) \subset A$.

Por outro lado, suponha que toda sequência $\{x_n\}_n \subset \text{com } x_n \to x \in R \text{ tem}$ a propriedade de que $\exists n_0 \in \mathbb{N} \text{ com } x_n \notin L \text{ para todo } n \geq n_0$. Como os elementos do fecho são precisamente aqueles que são limites de sequências contidas em L, vemos que nenhum R pode pertencer ao fecho de L, isto é, $R \cap \overline{L} = \emptyset$. \square

4.1 Conexidade e funções contínuas

Imagine que Y é conexo e pintamos seus elementos com duas cores. Intuitivamente, como Y é conexo, os conjuntos com as duas cores não podem ser bem divididos: tem de existir uma "região de fronteira" onde há uma passagem abrupta de uma cor a outra. Dito de outro modo, a função que atribui cada ponto a sua cor tem de ser discontínua. A única forma de evitar este problema seria não utilizar uma das cores. O teorema a seguir transforma isto num critério para conexidade que aplicaremos algumas vezes a seguir.

Teorema 3 $Y \subset X$, $Y \neq \emptyset$ é conexo se e somente se toda função contínua $f: Y \rightarrow \{0,1\}$ é constante. (Usamos a métrica discreta em $\{0,1\}$.)

Prova: A ideia é que há uma correspondência 1 a 1 entre as funções conínuas $f: Y \to \{0,1\}$ e as cisões $Y = L \cup R$; basta tomar $L = f^{-1}(\{0\})$ e $R = f^{-1}(\{1\})$ e vice-versa. De fato, vamos ver que $se\ f: Y \to \{0,1\}$ é uma função dada, f é contínua se e somente se $L := f^{-1}(\{0\}), R := f^{-1}(\{1\})$ é cisão. Para provar isto, lembramos que:

$$f$$
é contínua $\Leftrightarrow \forall \{x_n\}_n \cup \{x\} \subset Y, \, x_n \to x$ implica $f(x_n) \to f(x)$

No entanto, a métrica no contradomínio de f é discreta, de modo que $f(x_n) \to f(x)$ se e somente se $f(x_n) = f(x)$ para todo n grande. Isto é.

$$f$$
 é contínua $\Leftrightarrow \forall \{x_n\}_n \cup \{x\} \subset Y, x_n \to x \text{ implica } \exists n_0 \in \mathbb{N}, \forall n \geq n_0 f(x_n) = f(x).$

Traduzindo em termos de L e R, pedir que f seja contínua equivale a pedir que, se $x \in R$, então $x_n \in R$ para todo $n \ge n_0$ enquanto que, se $x \in L$, então $x_n \in L$ para todo $n \ge n_0$. A Proposição 6 mostra que isto ocorre se e somente se $L \cup R$ é uma cisão.

Para terminar a prova, notamos que a função f é constante se e somente se a cisão correspondente L,R é trivial (ou seja, um dos conjuntos é vazio). \Box

Uma aplicação muito importante do Teorema é que a imagem de conjuntos conexos por funções contínuas é sempre conexa.

Proposição 7 Sejam (X, d_X) e (Z, d_Z) espaços métricos. Se $f: X \to Z$ é contínua e $Y \subset X$ é conexo, então f(Y) é conexa.

Prova: Chame de S a imagem de f. Considere uma função $g:S\to\{0,1\}$ contínua. Como f é contínua e Y é conexo, $g\circ f$ é constante sobre Y. Ou seja:

$$\forall x, x' \in Y : g(f(x)) = g(f(x')).$$

Os elementos de S são precisamente os pontos da forma f(x) com $x \in X$. Deduzimos que:

$$\forall s, s' \in S : g(s) = g(s')$$

ou seja, toda função contínua $g:S\to\{0,1\}$ é constante. Portanto Stambém é conexo. $\ \Box$

O teorema também dá condições suficientes para que uma união de conjuntos seja conexa. Intuitivamente é claro que, quando unimos conjuntos conexos S, R, só é possível produzir um conjunto desconexo se não há um ponto comum de S e R. O Lema a seguir mostra uma versão mais geral disto.

Lema 1 Considere um espaço métrico (X, d_X) e uma família $\mathcal{F} \neq \emptyset$ de subconjuntos de X que não são vazios. Suponha que $V \cap W \neq \emptyset$ para quaisquer $V, W \in \mathcal{F}$. Então $S := \bigcup_{V \in \mathcal{F}} V$ é conexo.

Prova: Seja $f:S\to\{0,1\}$ uma função contínua. Nosso objetivo é provar que f é constante.

Para este fim, notamos primeiramente que a restrição de f a cada conjunto $V \in \mathcal{F}$ função contínua. Em particular, como cada V é conexo (por hipótese), $f|_V$ é constante. Isto é, para todo $V \in \mathcal{F}$ existe um $b_V \in \{0,1\}$ tal que $f(x) = b_V$ para todo $x \in V$.

Vamos provar que todos os b_V 's são iguais. De fato, se tomamos $V \neq W$ elementos de \mathcal{F} , sabemos (por hipótese) que existe um elemento $x \in V \cap W$; portanto $b_V = b_W = f(x)$.

O que concluímos é que f é constante em cada conjunto $V \in \mathcal{F}$ e que os valores tomados por f nestes conjuntos são todos iguais. Isto implica que f é constante sobre todo $S = \bigcup_{V \in \mathcal{F}} V$. \square

Exercício 20 Prove que, no teorema anterior, podemos pedir apenas que \mathcal{F} seja irredutível, o que quer dizer que, se $\mathcal{A} \subset \mathcal{F}$ é uma subfamília com $\mathcal{A} \neq \emptyset, \mathcal{F}$, então existem $A \in \mathcal{A}, B \in \mathcal{F} \setminus \mathcal{A}$ com $A \cap B \neq \emptyset$.

4.2 Os conjuntos conexos de \mathbb{R} são os intervalos

A seguir será extremamente importante termos uma caracterização dos conjuntos conexos de \mathbb{R} . Por sorte, esta não é uma tarefa difícil.

Teorema 4 Os subconjuntos conexos de \mathbb{R} que não são vazios são precisamente os intervalos.

Este teorema terá algumas consequências importantes, que veremos mais adiante.

Prova: Lembre que $E \subset \mathbb{R}$, $E \neq \emptyset$ é intervalo se e somente se (inf E, sup E) $\subset E$.

Não é intervalo \Rightarrow não é conexo. Vamos supôr primeiramente que E não é intervalo e provar que ele tem uma cisão que não é trivial. Como E não é intervalo, existe $x_0 \in (\inf E, \sup E)$ que não pertence a E. Podemos tomar $L = E \cap (-\infty, x)$ e $R = E \cap (x, +\infty)$ e observar que:

$$\overline{L} \cap R = \emptyset$$
 porque $\overline{L} \subset (-\infty, x]$ e $R \cap (-\infty, x] = \emptyset$.

Um argumento semelhante mostra que $\overline{R} \cap L = \emptyset$. Além disto, E tem de conter elementos em $[\inf E, x)$ e $(x, \sup E]$, portanto $L, R \neq \emptyset$. Deduzimos que L, R é uma cisão de E que não é trivial.

É intervalo \Rightarrow é conexo. Observe que todo intervalo é união de intervalos fechados limitados que contêm um ponto em comum [exercício]. Portanto, basta provar este resultado no caso em que E = [a, b] com $-\infty < a \le b < +\infty$ (v. Lema 1).

Para isto vamos tomar uma $f:[a,b] \to \{0,1\}$ contínua e supôr (para chegar a uma contradição) que que f não é constante. Tome então $a \le x_1 < y_1 \le b$ com $f(x_1) \ne f(y_1)$. Vamos definir $x_2, y_2, x_3, y_3, \ldots$ com $a \le x_1 \le x_2 \le x_3 \le \ldots, b \ge y_1 \ge y_2 \ge y_3 \ge \ldots$ e $f(x_n) \ne f(y_n)$ para todo n, mas $y_n - x_n \to 0$. Faremos isto usando o "velho truque" de dividir o intervalo $[x_n, y_n]$ em 2 e notar que o ponto médio do intervalo tem valor de f diferente de um dos dois extremos. Disto poderemos deduzir que:

- $x_n \to x$ (pois é não descrescente e limitada);
- $y_n \to x \text{ (pois } |y_n x_n| = y_n x_n \to 0;$
- mas $|f(y_n) f(x_n)| = 1$ para todo n, pois $f(x_n), f(y_n) \in \{0, 1\}$ e $f(x_n) \neq f(y_n)$.

O resultado será que $0 = |f(x) - f(x)| = \neq \lim_n |f(x_n) - f(y_n)|$, o que contradiz a premissa de que f não é constante.

O argumento é bem simples. Já definimos x_1 e y_1 acima. Suponha que $x_1, y_1, \ldots, x_n, y_n$ já foram definidos de forma que $x_i \leq y_i, y_i - x_i = 2^{1-i}(y_1 - x_1)$ e $f(y_i) \neq f(x_i)$ para cada $1 \leq i \leq n$. Note que o ponto médio $z_n = (x_n + y_n)/2$ pertence a [a, b] e uma das possibilidades abaixo vale:

- 1. $f(z_n) \neq f(x_n)$. Neste caso tomamos $x_{n+1} = x_n$, $y_{n+1} = z_n$.
- 2. $f(z_n) = f(x_n)$. Como $f(x_n \neq f(y_n), \text{ temos } f(z_n) \neq f(y_n)$ e podemos tomar $x_{n+1} = z_n, y_{n+1} = y_n$.

Claramente, $f(x_{n+1}) \neq f(y_{n+1})$, $x_n \leq x_{n+1} \leq y_{n+1} \leq y_n$ e $y_{n+1} - x_{n+1} = (y_n - x_n)/2$. É fácil deduzir disto que valem as propriedades desejadas. \square

4.3 Aplicações

O teorema a seguir é um dos mais importantes de todo o cálculo.

Teorema 5 (Teorema do valor intermediário) Seja $I \neq \emptyset$ um intervalo de \mathbb{R} . Então a imagem de I por f é intervalo. Em particular

$$\forall a,b \in I \ com \ f(a) \leq f(b), \ \forall c \in [f(a),f(b)] \ \exists x \in I \ : \ f(x) = c.$$

O "em particular" é consequência do fato que $f(a), f(b) \in f(I)$ e que f(I) é intervalo, logo todo ponto $c \in [f(a), f(b)]$ está na imagem de I. Note que este teorema segue da Proposição 7 combinada com o Teorema 4. Também podemos provar este teorema diretamente a partir do argumento de bisseção de intervalo usado na prova do Teorema.

De qualquer modo, o que já vimos permite provar resultados muito mais gerais.

Definição 9 Dado (X, d_X) , $Y \subset X$ é dito conexo por caminhos se dados quaisquer $a, b \in Y$ existe uma função contínua $\gamma : [0, 1] \to Y$ (uma "curva") $com \gamma(0) = a \ e \ \gamma(1) = b$.

Exercício 21 Mostre que qualquer bola aberta ou fechada em \mathbb{R}^d é conexa por caminhos.

Exercício 22 Suponha que $C \subset \mathbb{R}^d$ é convexo, isto é, $\forall x, y \in C$ e 0 < t < 1 temos que $t \cdot x + (1 - t) \cdot y \in C$. Prove que C é conexo por caminhos.

Teorema 6 Um conjunto conexo por caminhos é conexo. Qualquer imagem de um conjunto conexo por caminhos por uma função contínua é também conexa por caminhos, logo conexa.

Prova: Suponha que (X, d_X) é dado e $Y \subset X$ é conexo por caminhos. Vamos mostrar que Y é conexo tomando uma $f: Y \to \{0,1\}$ contínua e mostrando que f é constante.

Se $a, b \in Y$ e $\gamma : [0,1] \to Y$ é uma curva ligando $\gamma(0) = a$ a $\gamma(1) = b$, vemos que $f \circ \gamma : [0,1] \to \{0,1\}$ é contínua. Como [0,1] é intervalo (logo conexo), $f \circ \gamma$ é constante, emm partcular

$$f(a) = f(\gamma(0)) = f(\gamma(1)) = f(b).$$

Como quaisquer $a, b \in Y$ são ligados por uma curva, deduzimos que f(a) = f(b) para todos $a, b \in Y$, portanto f é constante. O fato de que a imagem de conexo por caminhos também é conexo por caminhos é um exercício. \Box

Exercício 23 Prove que $Y \subset X$, $Y \neq \emptyset$ é conexo se e somente se f(Y) é intervalo para toda $f: Y \to \mathbb{R}$ conínua. [Dica: o "somente se" já está provado. O "se" resulta do fato de que um intervalo $I \subset \{0,1\}$ só pode conter um ponto.]

5 Conjuntos compactos

Esta parte ainda vai passar por alterações bem grandes.

Muitos problemas em Matemática Pura e Aplicada podem ser postos na forma de problemas de minimização.

```
Dado um conjunto S e uma função f: S \to \mathbb{R}, encontre s_* \in S tal que f(s_*) \leq f(s) para todo s \in S.
```

Por exemplo: os problemas de achar o mínimo de uma função $f: \mathbb{R}^d \to \mathbb{R}$, de achar a curva de menor comprimento ligando dois pontos em uma superfície e de achar uma superfície mínima para um contorno dado têm todos esta forma.

Nem todo problema desta forma tem solução. Por exemplo, a função f(x)=-1/x não atinge um valor mínimo no domínio $S=(0,+\infty)$. Definiremos um conjunto como *compacto* se este problema não ocorre quando f é contínua.

Definição 10 Um espaço métrico (K, d_K) é dito compacto se para toda $f: K \to \mathbb{R}$ contínua existe um $x_* \in K$ tal que $f(x_*) = \inf_{x \in K} f(x)$. Se $K \subset X$, dizemos que K é compacto (e escrevemos $K \subset X$) se K é compacto (na acepção anterior) com a métrica induzida por X.

Veremos nesta seção que os espaçcompactos têm uma teoria extremamente rica tanto do ponto de vista métrico quanto do ponto de vista topológico.

5.1 Compactos são completos

Começamos com o fato de que todo compacto é completo do ponto de vista métrico.

Teorema 7 Se (K, d_K) é compacto, ele é um espaço métrico completo.

Antes da prova, observe que o teorema implica que todo $K \subset\subset X$ é subconjunto fechado de X (v. exercício 18).

Prova: Vamos provar que se K não é completo, então não é compacto. Suponha então que existe $\{x_n\}_n \subset K$ que é Cauchy, mas não converge (em K). Nossa intuição é de que existe em algum "universo maior" um limite para esta sequência, dado por um $x_* \not\in K$. A função $f: K \to \mathbb{R}$ dada por $f(x) = \mathsf{d}(x, x_*)$ é contínua e sempre positiva (já que $x_* \not\in K$), mas toma valores arbitrariamente pequenos ao longo da sequência. Isto quer dizer que inf $_{x \in K} f(x) = 0$, mas não há ponto atingindo este valor.

Evidentemente, o que descrevemos acima é só intuição. A rigor o x_* não existe. No entanto, se ele existisse, teríamos $\mathsf{d}(x,x_*) = \lim \mathsf{d}(x,x_n)$ para todo n. Mostraremos que este limite faz sentido de qualquer forma e o usaremos para definir uma f contínua que não atinge seu ínfimo. Eis os passos formais.

Passo 1 - definindo uma f. Notamos primeiramente que para todo $x \in K$ existe o limite:

$$f(x) := \lim_{n} \mathsf{d}_K(x_n, x) \in \mathbb{R}.$$

Isto segue do fato que $\{d_K(x_n, x)\}_{n \in \mathbb{N}} \subset \mathbb{R}$ é Cauchy, que provamos a seguir. Veja primeiramente que, pela desigualdade triangular,

$$\forall m, n \in \mathbb{N}, \forall x \in K : |\mathsf{d}_K(x_n, x) - \mathsf{d}_K(x_m, x)| \leq \mathsf{d}_K(x_n, x_m)$$

O fato que $\{x_n\}_n$ é Cauchy implica que para todo $\varepsilon > 0$ existe n_0 tal que o lado direito acima é $< \varepsilon$ para $n, m \ge n_0$. Deste modo, dado $\varepsilon > 0$ existe um n_0 tal que

$$\forall m, n \ge n_0 \, \forall x \in K : |\mathsf{d}_K(x_n, x) - \mathsf{d}_K(x_m, x)| < \varepsilon.$$

Isto é precisamente a afirmação de que $\{d_K(x_n,x)\}_n$ é Cauchy para todo x.

Passo 2 - o ínfimo de f é 0, mas f(x) > 0 para todo x. Veja primeiramente que f(x) > 0 para todo $x \in K$. De fato, f é sempre não negativa (pois é limite de termos não negativos) e f(x) = 0 implicaria $d(x_n, x) \to 0$, ou seja, $x_n \to x$ (contradição com o fato de que x_n não converge).

Falta mostrar que $\inf_{x \in K} f(X) = 0$. Para isso primeiro fixamos $\varepsilon > 0$. Vamos observar que, tomando n_0 como acima:

$$\forall m, n \geq n_0 : d(x_m, x_n) < \varepsilon.$$

Tomando o limite quando $m \to +\infty$ vemos que $f(x_n) \le \varepsilon$ para todo $n \ge n_0$. Logo $\inf_{x \in K} f(x) \le \varepsilon$. Como $\varepsilon > 0$ é arbitrário, isto quer dizer que $\inf_{x \in K} f(x) \le 0$. Como já vimos, f nunca toma valores negativos, e disto deduzimos $\inf_{x \in K} f(x) = 0$.

Passo 3 - f **é contínua.** Observe que este passo termina a prova pois ele implica que f é contínua e $f(z) \neq \inf_{x \in K} f(x)$ para todo $z \in K$, o que mostra que K $n\~ao$ é compacto pela nossa definiç $\~a$ o. Vamos provar na verdade que f é 1-Lipschitz (v. exercício 6). Isto é bastante dieto: dados $x, x' \in K$, a desigualdade triangular nos diz que

$$\forall n \in \mathbb{N} d(x, x_n) \le d(x', x_n) + d(x, x')$$

e tomando limites obtemos

$$f(x) \le f(x') + \mathsf{d}(x, x').$$

Trocando os papeis de x e x' descobrimos que $|f(x) - f(x')| \le d(x, x')$. Como $x, x' \in K$ são arbitrários, isto nos dá o resultado desejado. \square

5.2 Compactos são totalmente limitados

Vimos acima que todo conjunto compacto é completo. A recíproca não é verdadeira, como mostra, por exemplo, o caso $K = \mathbb{R}$ (com a métrica usual). Nesta seção mostraremos que há uma propriedade extra que um compacto tem de satisfazer. De fato, vamos ver a seguir que ela é equivalente a compacidade se K é completo.

Definição 11 Considere um espaço métrico (X, d_X) . Um conjunto $S \subset X$ é separado se existe um $\delta > 0$ tal que $d_X(s, s') \geq \delta$ para todos $s, s' \in S$, $s \neq s'$. Dizemos que (X, d_X) é totalmente limitado se ele não contem um conjunto infinito que é separado.

Esta definição tem uma reformulação equivalente que será importante mais adiante.

Proposição 8 Um espaço métrico (X, d_X) é totalmente limitado se e somente se vale a seguinte propriedade: para todo $\varepsilon > 0$ existe uma coleção finita de bolas abertas $B_X(x_i, \varepsilon)$, $1 \le i \le k$, com $X = \bigcup_{i=1}^k B_X(x_i, \varepsilon)$.

Prova: Vamos provar primeiro que a existência da coleção de bolas implica que X é totalmente limitado. Fixe $\delta > 0$ e tome $\varepsilon = \delta/2$. Supondo $X \subset \bigcup_{i=1}^k B_X(x_i, \varepsilon)$, qualquer conjunto infinito $S \subset X$ tem de conter infinitos elementos em pelo menos uma das bolas $B_X(x_i, \varepsilon)$ (isto é o caso infinito do Princípio das Casas dos Pombos). Em particular, usando a desigualdade triangular, vemos que S obrigatoriamente possui infinitos pares de elementos a distância $< \delta$; de fato, dados $s, s' \in S \cap B_X(x_i, \varepsilon)$

$$d_X(s,s') \le d_X(x_i,s) + d_X(x_i,s') < \delta.$$

Como $\delta > 0$ é arbirtrário, deduzimos que qualquer conjunto infinito $S \subset X$ não é separado e portanto X é totalmente limitado.

Vamos provar agora a direção contrária. Fixe $\varepsilon > 0$. Supondo que $n\tilde{a}o$ existe uma coleção finita de bolas de raio $\varepsilon > 0$ cobrindo X, vamos construir um conjunto separado infinito $S \subset X$. A construção é recursiva.

- 1. Escolha $x_1 \in X$ arbitrariamente.
- 2. Dados $x_1, \ldots, x_n \in X$, escolha x_{n+1} de modo que $\mathsf{d}_X(x_{n+1}, x_i) \geq \varepsilon$ para todo $1 \leq i \leq n$.

Note que esta recursão faz sentido: sob a nossa hipótese, temos que para todo $n \in \mathbb{N}$ as bolas $B(x_1, \varepsilon), \ldots, B(x_n, \varepsilon)$ não cobrem X, portanto existe um $x_{n+1} \in X$ que não está em qualquer uma das bolas. É fácil verificar que o conjunto

$$S := \{x_n : n \in \mathbb{N}\}$$

é separado, já que a recursão garante $\mathsf{d}_X(x_i, x_j) \geq \varepsilon$ quando $1 \leq i < j$. \square

Lema 2 Todo espaço métrico compacto é totalmente limitado.

Prova: Vamos mostrar que um espaço métrico (X, d_X) que $n\~ao$ é totalmente limitado não pode ser compacto. Para isto partimos de um conjunto $S \subset X$ que é infinito e separado: $\mathsf{d}(s,s') \geq \delta$ para quaisquer elementos distintos $s,s' \in S$. Sem perda de generalidade, suporemos que S é enumerável e escreveremos $S = \{s_j : j \in \mathbb{N}\}$. Nosso objetivo será construir uma função contínua $f: X \to \mathbb{R}$ com sup $\{f(x) : x \in S\} = +\infty$. isto implica que X não é compacto porque a função contínua -f não atinge seu ínfimo sobre X.

Defina $r := \delta/4 > 0$. Vamos começar a prova com a seguinte observação. Dado $x \in X$, existe no máximo um índice $j = j(x) \in \mathbb{N}$ com $\mathsf{d}(x, s_i) < 2r$.

A razão para isto é que, se houvesse outro índice $k \in \mathbb{N}$ com $\mathsf{d}(x, s_k) < 2r$, a desigualdade triangular implicaria

$$d(s_i, s_k) \le d(x, s_i) + d(x, s_k) < 4r = \delta,$$

o que contraria o fato de que a distância mínima entre elementos de S é δ . Continuando, definimos, para cada $j \in \mathbb{N}$, uma função contínua $f_j : X \to \mathbb{R}$ da seguinte forma:

$$f_j(x) := j \times \max\{r - \mathsf{d}(s_j, x), 0\} \ (x \in X).$$

Exercício 24 Prove que f_j é mesmo contínua. [Dica: Primeiro prove que $x \mapsto \max\{x,0\}$ é função contínua de \mathbb{R} em \mathbb{R} e depois aplique composições.]

Agora vamos definir uma função $f: X \to \mathbb{R}$ da seguinte forma.

$$f(x) := \left\{ \begin{array}{ll} f_j(x) & \text{se } j \in \mathbb{N} \text{ \'e o \'unico \'indice tal que } \mathsf{d}(x,s_j) < 2r; \\ 0 & \text{se n\~ao h\'a} \ s_j \ \text{com } \mathsf{d}(x,s_j) < 2r \end{array} \right.$$

Veja que f é ilimitada: de fato, para todo $j \in \mathbb{N}$ temos $f(s_j) = f_j(s_j) = j.r \to +\infty$ (pois r > 0). Portanto $\sup\{f(x) : x \in X\} = +\infty$. Falta mostrar que ela é contínua. Para isto, fixamos $\{x_n\}_n \cup \{x\} \subset X$ com $x_n \to x$; vamos provar que $f(x_n) \to f(x)$. Consideraremos dois casos.

- $d(x, s_j) \geq 3r/2$ para todo j. Neste caso f(x) = 0, pois $f_j(x) = 0$ sempre que $d(x, s_j) \geq r$. Por outro lado, observe que existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$, $d(x, x_n) < r/2$, o que implica que $d(x_n, s_j) > r$ para todo $n \geq n_0$. Neste caso também $f_j(x_n) = 0$ para todo $j \in \mathbb{N}$, donde segue que $f(x_n) = 0$ para $n \geq n_0$. Ou seja, $f(x_n) \to 0$ neste caso.
- $d(x, s_j) < 3r/2$ para algum j. Neste caso, como observamos acima, $j = j(x) \in \mathbb{N}$ é o único índice com $d(x, s_j) < 2r$; além disto, $f(x) = f_j(x)$. Observe que existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ vale $d(x, x_n) < r/2$, de modo que $d(x_n, s_j) < 2r$ para todo $n \geq n_0$. Usando a definição de f, deduzimos

$$n \ge n_0 \Rightarrow f(x_n) = f_j(x_n).$$

Como f_j é contínua, $f_j(x_n) \to f_j(x) = f(x)$. A implicação acima nos diz que $f(x_n) \to f(x)$ neste caso.

5.3 O critério das subsequências convergentes

Nesta seção vamos mostrar que a compacidade de um espaço métrico pode ser avaliada a partir de subsequências.

Definição 12 Dados um conjunto infinito $N \subset \mathbb{N}$ e uma sequência $\{x_n\}_{n \in \mathbb{N}}$, a subsequência $\{x_n\}_{n \in \mathbb{N}}$ é definida da forma $\{\tilde{x}_j\}_{j \in \mathbb{N}}$ com $\tilde{x}_j := \{x_{n_j}\}$, onde $n_1 < n_2 < n_3 < \dots$ é a única enumeração crescente dos elementos de N. Também escrevemos $\{x_{n_j}\}_{j \in \mathbb{N}}$ diretamente. Falamos que $\lim_{n \in \mathbb{N}} x_n = x$ se $x_{n_j} \to x$ quando $j \to +\infty$.

Exercício 25 Mostre que $x_n \to x$ implica $x_{n_i} \to x$.

A propriedade 3 do teorema é muitas vezes tomada como ponto de partida da definição de compacidade em espaços métricos. Como veremos abaixo, ela implica facilmente a nossa definição de compacidade (=funções contínuas atingem o ínfimo). Antes disto, veremos um exemplo de aplicação.

Teorema 8 Considere um espaço métrico (K, d_K) . As seguintes propriedades são equivalentes.

- 1. (K, d_K) é compacto.
- 2. (K, d_K) é completo e totalmente limitado.
- 3. Toda sequência em K possui uma subsequência convergente.

Prova: [do Teorema 8] A implicação $1 \Rightarrow 2$ foi vista no Lema 2 acima. Vamos ver agora que $3 \Rightarrow 1$ e $2 \Rightarrow 3$.

Prova de $3 \Rightarrow 1$. Seja $f: X \to \mathbb{R}$ contínua. Vamos primeiramente supôr que $\ell := \inf\{f(x): x \in K\} > -\infty$. Neste caso sabemos que para cara $n \in \mathbb{N}$ há um $x_n \in K$ com $\ell \leq f(x_n) \leq \ell + 1/n$; deste modo, $f(x_n) \to \ell$ quando $n \to +\infty$.

Agora observe que, pela propriedade 3, a sequência $\{x_n\}_{n\in\mathbb{N}}$ tem uma subsequência convergente $\{x_n\}_{n\in\mathbb{N}}$ com limite $x_*\in K$. Por continuidade, $f(x_*)=\lim_{n\in\mathbb{N}}f(x_n)$. Mas veja que $\{f(x_n)\}_{n\in\mathbb{N}}$ é subsequência de $\{f(x_n)\}_{n\in\mathbb{N}}$, logo

$$\lim_{n \in N} f(x_n) = \lim_{n \in \mathbb{N}} f(x_n) = \ell = \inf\{f(x) : x \in K\}.$$

Portanto $f(x_*) = \inf$.

Falta mostrar que não é possível ter $\ell = -\infty$. Para provar isto, vamos supôr que $\ell = -\infty$. Neste caso, podemos construir x_n com $f(x_n) < -n$ para

todo $n \in \mathbb{N}$, de modo que $\lim_n f(x_n) = -\infty$. Um argumento semelhante ao que demos acima nos mostraria que uma subsequência dos x_n converge a um $x_* \in K$; mas então $f(x_*) = \lim_{n \in N} f(x_n)$, o que contradiz o fato de que $f(x_n) \to -\infty$.

Prova de que $2 \Rightarrow 3$. Seja $\{x_n\}_{n \in \mathbb{N}} \subset K$. Nosso *objetivo* será provar que $\{x_n\}_{n \in \mathbb{N}}$ possui uma subsequência de Cauchy. Como (K, d_K) é completo, isto basta para provar que sempre há uma subsequência convergente.

Não é muito simples achar esta subsequência, então vamos começar com o resultado mais fraco que apenas garante o seguinte: sempre há uma subsequência "apertadinha".

Afirmação 1 Dado qualquer r > 0 existe uma subsequência $\{x_n\}_{n \in N}$ tal que $\forall m, n \in N$, $d_K(x_m, x_n) < r$.

De fato, como estamos supondo que K é totalmente limitado, a Proposição 8 nos diz que podemos cobrir K por um número finito de bolas de raio r/2. Como o número de bolas é finito, uma das bolas, que chamaremos de B(z,r/2), é tal que o conjunto

$$N := \{ n \in \mathbb{N} : x_n \in B(z, r/2) \}$$

é infinito, e um argumento simples mostra que $\{x_n\}_{n\in\mathbb{N}}$ tem a propriedade desejada.

O que vem a seguir é uma espécie de "truque diagonal" que mostra como esta afirmação pode ser usada para achar uma subsequência convergente. A primeira ideia deste truque diagonal é que, aplicando a afirmação infinitas vezes, podemos encontrar subsequências encaixadas e cada vez mais apertadas. Mais precisamente:

- 1. A afirmação implica que existe $N_1 \subset \mathbb{N}$ infinito tal que $\mathsf{d}_K(x_n,x_m) < 1/2$ para todos $n,m \in N_1$.
- 2. Suponha (recursivamente) que existem conjuntos infinitos $N_1 \supset N_2 \supset \cdots \supset N_k$, todos contidos em \mathbb{N} , tais que, para qualquer $1 \leq i \leq k$ e quaisquer $n,m \in N_i$, vale a desigualdade $\mathsf{d}_K(x_n,x_m) < 2^{-i}$. Vamos mostrar como construir um conjunto N_{k+1} de forma a estender por mais um passo esta construção. Para isto, aplicaremos a afirmação à sequência

$$\{x_{n_j}\}_{j\in\mathbb{N}}$$
 onde $\{n_j:j\in\mathbb{N}\}=N_k$.

com $r = 2^{-k-1}$. Isto nos dá um conjunto N e podemos definir $N_{k+1} := \{n_j : j \in N\}$, de modo a termos as propriedades desejadas.

Nossa tarefa final é extrair destas subsequências encaixadas e cada vez mais apertadas uma subsequência de Cauchy. Uma tentativa poderia ser definir $\{x_n\}_{n\in N}$ com $N:=\cap_k N_k$, mas isto não pode funcionar em geral: afinal.

$$n, m \in \mathbb{N} \Rightarrow \forall k \in \mathbb{N}, n, m \in \mathbb{N}_k \Rightarrow \forall k \in \mathbb{N}, d_K(x_n, x_m) \leq 2^{-k} \Rightarrow x_n = x_m.$$

Portanto N não pode ser um conjunto infinito (a não ser que a sequência original tenha infinitos termos iguais).

A segunda ideia do truque diagonal é uma maneira "diagonal" de selecionar um subconjunto infinito N_* de modo que $N_* \subset N_k$ "quase vale", isto é, $N_* \subset N_k$ tem apenas um número finito de termos. Vamos escrever

$$N_* := \{ n_1 < n_2 < n_3 < \dots \}$$

onde os n_k são definidos recursivamente.

- 1. Em primeiro lugar, definimos $n_1 = \min N_1$ (isto é válido porque $N_1 \neq \emptyset$ é subconjunto dos naturais).
- 2. Definidos $n_1 < \cdots < n_k$, observamos que, como N_{k+1} é infinito,

$$N_{k+1} \setminus [n_k] \neq \emptyset$$
.

Como ele também é subconjunto dos naturais, podemos definir

$$n_{k+1} := \min(N_{k+1} \setminus [n_k])$$

e observamos que $n_{k+1} \notin [n_k]$, de modo que $n_{k+1} > n_k$.

Pela construção temos $n_1 < n_2 < \dots$ Além disto, para $k, r \in \mathbb{N}$ com k < r, temos que

$$n_k \in N_k, n_r \in N_r \subset N_k$$

e como $\mathsf{d}_K(x_n,x_m)<2^{-k}$ para $n,m\in N_k,$ isto implica

$$\forall k, r \in \mathbb{N} : k < r \Rightarrow \mathsf{d}_K(x_{n_k}, x_{n_r}) < 2^{-k}.$$

Exercício 26 Para terminar a prova, deduza disto que $\{x_{n_k}\}_{k\in\mathbb{N}}$ é Cauchy.

Exercício 27 Use o critério das subsequências para mostrar que todo subconjunto fechado de um compacto é ele próprio compacto.

5.4 Compactos de \mathbb{R}^d : o teorema de Heine-Borel

Teorema 9 (Heine Borel) Um subconjunto $K \subset \mathbb{R}^d$ é compacto se e somente se é fechado e limitado.

Prova: [de Heine Borel] Compactos são fechados (v. exercício 18) e totalmente limitados, e vice-versa. Basta provar então que um conjunto em \mathbb{R}^d é limitado se e somente se é totalmente limitado. Mas isto é simples:

- Se K é totalmente limitado, $K \subset \bigcup_{i=1}^m B(x_i, \delta)$. Mas então a desigualdade triangular mostra que $\mathsf{d}(0, x) \leq \max\{\mathsf{d}(0, x_i)\}_{1 \leq i \leq n} + \delta$ para todo $x \in K$, ou seja, K é limitado.
- Se $K \subset \mathbb{R}^d$ é limitado, temos que $K \subset [-n,n]^d$ para algum $n \in \mathbb{N}$. Dividindo cada intervalo [-n,n] em intervalos de comprimento $<\delta/\sqrt{d}$, vemos que $[-n,n]^d$ é dividido em um número finito de cubos tais que $||x-x'|| < \delta$ para quaisquer dois elementos no mesmo cubo. Tomando um ponto x_i em cada cubo, vemos que $K \subset [-n,n]^d \subset \bigcup_{i=1}^m B(x_i,\delta)$ para uma certa coleção finita de pontos. Deste modo, K é totalmente limitado.

Exercício 28 Mostre que um espaço métrico com a métrica discreta e com um número infinito de pontos não é totalmente limitado, apesar de ser fechado (completo) e limitado.

5.5 Critérios topológicos para a compacidade

Vimos acima que a compacidade – o fato de que "funções contínuas sempre atingem o ínfimo-- tem várias expressões em termos de métricas. Agora veremos uma versão topológica destes critérios.

Teorema 10 Dado um espaço métrico (K, d_K) , são equivalentes:

- 1. K é compacto.
- 2. Toda coleção de abertos \mathcal{A} de K com $\bigcup_{A \in \mathcal{A}} A = K$ tem uma subcoleção finita $\mathcal{C} \subset \mathcal{A}$ com $\bigcup_{A \in \mathcal{C}} A = K$. (Normalmente abrevia-se este enunciado dizendo que "toda cobertura de K por abertos tem uma subcobertura finita.)

3. Toda coleção de fechados \mathcal{F} de K com $\cap_{F \in \mathcal{F}} F = \emptyset$ possui uma subcoleção finita $\mathcal{P} \subset \mathcal{F}$ com $\cap_{F \in \mathcal{P}} F = \emptyset$.

Prova: Veja que $2 \Rightarrow 3$ segue se escrevemos $\mathcal{A} := \{X \setminus F : F \in \mathcal{F}\}$ e notamos que $\bigcap_{F \in \mathcal{F}} F = \emptyset$ se e somente se $\bigcup_{A \in \mathcal{A}} A = K$. Provaremos que $3 \Rightarrow 1$ e $1 \Rightarrow 2$ a seguir.

Prova de que $3 \Rightarrow 1$. Seja $f: K \to \mathbb{R}$ contínua e chame de $\ell = \inf\{f(x) : x \in K\}$ (em princípio permitimos $\ell = -\infty$). Vamos mostrar que existe um $x_* \in K$ com $f(x_*) = \ell$. Para isto notamos que, se $t \in \mathbb{R}$ e $t > \ell$, tem de existir um $x \in K$ com $f(x) \leq t$. Portanto, os conjuntos

$$F_t := \{x \in K : f(x) \le t\} = f^{-1}((-\infty, t])$$

são fechados e não são vazios.

Afirmamos que $\cap_{t>\ell} F_t \neq \emptyset$. Para isto, o item 3 nos diz que basta checar que qualquer coleção finita dos conjuntos F_t tem interseção não-vazia. Tome, então conjuntos F_{t_1}, \ldots, F_{t_k} com $t_1, \ldots, t_k > \ell$ e verifique que:

$$\bigcap_{i=1}^{k} F_{t_i} = \bigcap_{i=1}^{k} f^{-1}((-\infty, t_i]) = f^{-1}((-\infty, \min_{1 \le i \le k} t_i]) \ne \emptyset$$

já que min $t_i > \ell$ quando $t_1, i, t_k > \ell$. Pelo item 3, isto implica que

$$\bigcap_{t>\ell} F_t \neq \emptyset.$$

Veja que qualquer $x_* \in \bigcap_{t>\ell} F_t$ tem $\ell \leq f(x_*)$ (pois ℓ é infimo) e $f(x_*) \leq t$ para todo $t \geq \ell$, logo $f(x) = \ell$ e (a fortiori) $\ell \neq -\infty$.

Prova de que $1 \Rightarrow 2$. Seja \mathcal{A} como no item 2. Observe que todo $x \in K$ pertence a algum aberto $A \in \mathcal{A}$. Portanto existe um $\delta > 0$ com $B(x, \delta) \subset A$ para algum $A \in \mathcal{A}$. Reduzindo δ se necessário, podemos tomar $\delta < 1$.

Isto nos permite definir uma função $r: K \to (0, +\infty)$ da seguinte forma:

$$r(x) := \sup\{0 < \delta < 1 : \text{ existe } A \in \mathcal{A} \text{ tal que } B(x, \delta) \subset A\} \ (x \in K).$$

Afirmação 2 r é contínua.

Prova: [da Afirmação] Vamos mostrar que r é 1-Lipschitz, o que implica que r é contínua. Para isto basta mostrar que:

Objetivo:
$$\forall x, x' \in X : r(x) - r(x') \le d_X(x, x')$$
. (1)

De fato, se temos isto, podemos trocar os papeis de x, x' e mostrar que também vale $r(x') - r(x) \leq d_X(x, x')$, de modo que $|r(x') - r(x)| \leq d_X(x, x')$ para todos $x, x' \in X$. Para provar nosso objetivo, tome qualquer 0 < r < r(x) e um conjunto $A \in \mathcal{A}$ com $B(x, r) \subset A$. Note que $B(x', r - d_X(x, x')) \subset B(x, r)$; afinal,

$$\forall y \in B(x', r - \mathsf{d}_X(x, x')) : \mathsf{d}_X(y, x) \le \mathsf{d}_X(y, x') + \mathsf{d}_X(x, x') < r.$$

Portanto também temos $B(x', r - \mathsf{d}_X(x, x')) \subset A \in \mathcal{A}$ e isto implica $r(x') \geq r - \mathsf{d}_X(x, x')$. Tomando o supremo em r, vemos que $r(x') \geq r(x) - \mathsf{d}_X(x, x')$, como queríamos demonstrar. [Fim da prova da afirmação.]

Com esta afirmação podemos provar que

$$\exists \delta > 0 : \forall x \in K, \exists A \in \mathcal{A} \text{ com } B(x, \delta) \subset A.$$

De fato, basta tomar $\delta := \inf\{r(x) : x \in K\}/2$ e notar que:

- $\delta > 0$ porque $r(\cdot)$ contínua e K é compacto implicam que $\inf\{r(x) : x \in K\} = r(x_*)$ para algum $x_* \in K$, de modo que $r(x_*) > 0$ porque r é positiva em todo ponto.
- Dado $x \in X$, $r(x) > \delta$. Pela definição de r(x) como supremo, existem $r \in (\delta, r(x)]$ e $A \in \mathcal{A}$ com $B(x, \delta) \subset B(x, r) \subset A$.

Vamos agora terminar a prova. Já vimos no Teorema 8 que K compacto implica que K é totalmente limitado. Pela Proposição 8, isto quer dizer que $K \subset \bigcup_{i=1}^k B(x_i, \delta)$ para alguma escolha de $x_1, \ldots, x_n \in K$. Mas então escolhemos, para cada $1 \leq i \leq k$, um aberto $A_i \in \mathcal{A}$ com $B(x_i, \delta) \subset A_i$, e observamos que $K \subset \bigcup_{i=1}^k A_i$. Deste modo, $\mathcal{C} := \{A_i : 1 \leq i \leq k\}$ é uma subcoleção finita que cobre K. \square

Observação 1 Um dado importante que surgiu na prova acima é que, se K é compacto, então toda cobertura A de K por abertos possui um número de Lebesgue, isto é, um $\delta > 0$ tal que, se $x, x' \in K$ e $d_K(x, x') < \delta$, então $x, x' \in A$ para algum $A \in A$. Isto é, se $d_K(x, x') < \delta$, x, x' pertencem ao mesmo aberto da cobertura. Usaremos isto mais adiante.

5.6 Continuidade uniforme

Vamos mostrar no restante desta seção que uma função contínua em um compacto é sempre uniformemente contínua.

Definição 13 Dizemos que $f: X \to Z$ é uniformemente contínua se para qualquer $\varepsilon > 0$ existe um $\delta > 0$ tal que, se $x, x' \in X$ e $d_X(x, x') < \delta$, então $d_Z(f(x), f(x')) < \varepsilon$.

Note que isto é diferente da definição de continuidade via ε/δ , que é:

$$\forall \varepsilon > 0 \, \forall x \in X \, \exists \delta > 0 \, \forall x' \in X : d_X(x, x') < \delta \Rightarrow d_Z(f(x), f(x')) < \varepsilon.$$

Já continuidade uniforme pede que:

$$(\star) \forall \varepsilon > 0 \exists \delta > 0 \forall x, x' \in X : d_X(x, x') < \delta \Rightarrow d_Z(f(x), f(x')) < \varepsilon.$$

Ou seja: dado ε , temos que achar um δ que serve para todos os x simultaneamente.

Exercício 29 Toda função Lipschitz é uniformemente contínua.

Por outro lado, $f:\mathbb{R}\to\mathbb{R}$ dada por $f(x)=x^2$ não é uniformemente contínua. De fato, vemos que:

$$\forall n \in \mathbb{N}, \forall h > 0 : f(n+h) - f(n) > 2n.h.$$

Portanto, fixo $\varepsilon > 0$, vemos que $\forall \delta > 0$ existe um $n \in \mathbb{N}$ e um $0 < h < \delta$ (de fato, $2h = \delta/n$ basta) com

$$|h| < \delta \max |f(n+h) - f(n)| \ge \delta.$$

O teorema a seguir mostra que este fenômeno $n\tilde{a}o$ pode acontecer se o domínio da função f é compacto.

Teorema 11 Se (X, d_X) é compacto, então toda função $f: X \to Z$ que é contínua é uniformemente contínua.

Prova: Seja $f: X \to Z$ contínua e fixe $\varepsilon > 0$. Mostraremos que existe um $\delta > 0$ satisfazendo (\star) .

Pela definição ε/δ de continuidade, para qualquer $\varepsilon>0$ e qualquer $x\in X$ existe um $\delta(x)>0$ tal que

$$\forall x' \in X : d_X(x, x') < \delta \Rightarrow d_Z(f(x), f(x')) < \frac{\varepsilon}{2}.$$

A desigualdade triangular implica que:

$$\forall x \in X, \, \forall x', x'' \in B_X(x, \delta(x)) : \mathsf{d}_Z(f(x'), f(x'')) < \varepsilon. \tag{2}$$

Observe que

$$\mathcal{A} := \{ B_X(x, \delta(x)) : x \in X \}$$

é uma coleção de abertos que cobre X. A Observação 1 implica que existe um n'umero de Lebesgue $\delta>0$ tal que, se $a,b\in X$ e $\mathsf{d}_X(a,b)<\delta$, então a,b ambos pertencem a um mesmo aberto desta coleção. Isto é:

$$\mathsf{d}_X(a,b) < \delta \Rightarrow \exists x \in X \, a, b \in B_X(x,\delta(x)) \Rightarrow \mathsf{d}_Z(f(a),f(b)) < \varepsilon \text{ (por (2))}.$$

Concluímos que o número de Lebesgue δ tem exatamente a propriedade que procurávamos. \qed

Exercício 30 Construa uma prova alternativa da continuidade uniforme baseada no seguinte argumento.

1. Primeiro mostre que f é uniformemente contínua se e somente se vale a seguinte propriedade:

$$\forall \{x_n\}_{n\in\mathbb{N}}, \{y_n\}_{n\in\mathbb{N}} \subset X \,:\, \mathsf{d}_X(x_n,y_n) \to 0 \Rightarrow \mathsf{d}_Z(f(x_n),f(y_n)) \to 0.$$

2. Agora suponha (para chegar a uma contradição) que existem $\{x_n\}_n$, $\{y_n\}_n$ com $\mathsf{d}_X(f(x_n), f(y_n)) \to 0$, mas $\mathsf{d}_Z(f(x_n), f(y_n)) \not\to 0$. Observe que, se x_n converge a algum x, y_n também converge a x e portanto $\mathsf{d}_X(f(x_n), f(y_n)) \to 0$, contradição. Depois note que, mesmo que x_n não convirja, é sempre possível achar uma subsequência convergente, e isto já basta para fazer valer a prova.

5.7 Conjuntos perfeitos

Nesta seção concluímos as notas sobre topologia falando de certos conjuntos em que todo ponto pode ser bem aproximado por outros pontos.

Definição 14 Seja (X, d_X) um espaço métrico. $P \subset X$ é perfeito se todo $x \in P$ é ponto de acumulação de P, isto é:

$$\forall p \in P, \forall \delta > 0 : (B_X(p, \delta) \setminus \{p\}) \cap P \neq \emptyset.$$

Exercício 31 Mostre que P é perfeito se e somente se para cada $p \in P$ existe uma sequência $\{p_n\}_n \subset P \setminus \{p\}$ que converge a p.

Exercício 32 Mostre que \mathbb{R} , \mathbb{Q} e $\mathbb{R}\setminus\mathbb{Q}$ são subconjuntos perfeitos de \mathbb{R} .

Exercício 33 Mostre que existem conjuntos perfeitos enumeráveis.

Provaremos abaixo um resultado que mostra que não há conjuntos compactos, perfeitos e enumeráveis.

Teorema 12 Se $P \subset X$ é compacto e perfeito, P é não enumerável.

Veja que a hipótese de que P é compacto não pode ser descartada. Prova: Na prova vamos supôr sem perda de generalidade que X = P.

Tome uma $f:\mathbb{N}\to P$ qualquer; vamos mostrar que ela não é sobrejetiva. A demonstração será bastante parecida com a que usamos para provar que \mathbb{R} não era enumerável. O que faremos será construir irecursivamente bolas fechadas encaixadas

$$P \supset F_1 \supset F_2 \supset F_3 \supset \dots$$

de modo que:

- 1. O raio de cada F_n é positivo.
- 2. $f(n) \notin F_n$ para todo $n \in \mathbb{N}$.

Antes de embarcar na construção, vamos explicar porque ela basta para provar nossa tese. Veja que

$$\mathcal{F} := \{F_1, F_2, F_3, \dots\}$$

é família de subconjuntos fechados de P tal que, para qualquer subfamília finita $\{F_{n_1},\ldots,F_{n_k}\}$,

$$\bigcap_{i=1}^{k} F_{n_i} = F_{\max\{n_1,\dots,n_k\}} \neq \emptyset;$$

portanto, o fato de que P é compacto implicará que:

$$\cap_n F_n \neq \emptyset$$
.

Por fim, notamos que $\cap_n F_n$, que não é vazio, não tem elementos em comum com a imagem de f (afinal, $f(j) \notin F_j$ para todo j), portanto f não pode ser sobrejetiva.

Agora vamos partir para a construção. Para definir F_1 , fixe primeiramente um $x_1 \neq f(1)$ e defina $r_1 := \mathsf{d}_X(f(1), x_1)/2$. Tomamos $F_1 := B_X[x_1, r_1]$ e notamos que $f(1) \not\in F_1$, $F_1 \neq \emptyset$.

Suponha agora que F_1, \ldots, F_n já foram definidas; vamos construir F_{n+1} a seguir. Sabemos que $F_n := B[x_n, r_n]$ com $x_n \in P$ e $r_n > 0$. Agora usaremos fortemente a hipótese de que P é perfeito para notar que $B(x_n, r_n/2) \setminus \{x_n\}$ não é vazio, de modo que podemos tomar $y_n \in P$ com $0 < \mathsf{d}_X(x_n, y_n) < r_n/2$.

Vamos construir F_{n+1} considerando dois casos. Se $f(n+1) \neq x_n$, podemos tomar

$$F_{n+1} := B[x_n, r_{n+1}] \text{ com } r_{n+1} := \min \left\{ r_n, \frac{\mathsf{d}_X(f(n+1), x_n)}{2} \right\}.$$

Veja que $F_{n+1} \subset F_n$ porque o centro da bola se manteve e o raio não pode aumentar. Além disto, como $\mathsf{d}_X(f(n+1),x_n)>0$ e $r_n>0$ (por hipótese da recursão), o raio de F_{n+1} é positivo. Finalmente, $f(n+1) \not\in F_{n+1}$ porque a distância entre x_n e f(n+1) é maior do que o raio da bola F_{n+1} .

Resta decidir o que fazer no caso em que $f(n+1) = x_n$. Neste caso, tomaremos uma bola ao redor de y_n

$$F_{n+1} := B[y_n, r_{n+1}] \text{ com } r_{n+1} := \min \left\{ \frac{r_n}{2}, \frac{\mathsf{d}_X(f(n+1), y_n)}{2} \right\}.$$

Veja que $f(n+1) \notin F_{n+1}$ porque o raio da bola é menor do que a distância de f(n+1) ao centro da bola. Além disto, o raio é positivo porque tanto esta distância quanto o $r_n > 0$ são positivos. Finalmente, $F_{n+1} \subset F_n$ porque

$$\mathsf{d}_X(y_n,x_n)+r_{n+1}\leq r_n\Rightarrow B[y_n,r_{n+1}]\subset B[x_n,r_n].$$

Isto mostra que podemos definir F_{n+1} com as propriedades desejadas. \Box