Hashing

Gus Khawaja

Gus.Khawaja@guskhawaja.me www.ethicalhackingblog.com

Concept

Hashing == Integrity

One Way Hash Function

h=Hx

- ❖ The output h is called digest or checksum.
- ❖ The H is the hashing algorithm, example MD5 or SHA-2.
- ❖ The x is the input data.

Hashing Examples

- Generating a checksum for a file.
- Hashing passwords in the database.
- Hashing is also used in digital signatures.
- Intrusion detection systems and antiviruses.

Requirements

- 1. Applicable to any type of input.
- 2. The output must be of fixed length.
- 3. The output should be easy to compute.
- 4. The output should not be reversible to its original state.
- 5. $Hx \neq Hy$ (collision resistant).

Message Digest - MD5

Message Digest - MD5

- ❖ Predecessor MD4 is not used anymore (it's old and not secure).
- ❖ The output of MD5 is 128 bit (32 hexadecimal characters).
- ❖ Do NOT use MD5 to store passwords!

Secure Hash Algorithm - SHA

Secure Hash Algorithm - SHA

- SHA 0 Not used anymore
- ❖ SHA 1 generates an output of 160bits
- **❖** SHA 2:

SHA 224

SHA 256

SHA 384

SHA 512

❖ SHA 3:

SHA 224

SHA 256

SHA 384

SHA 512

File Checksum

Example

Hash: AABB23FF Hash: AABB23FF

Hashing Passwords

Hashing Passwords

Secure Method

To store passwords securely:

- Do NOT use MD5/SHA1 for storing passwords.
- Use SHA2 / SHA3.
- Use salt against password brute-force attacks.

Protection

MD5

Fast Algorithm

128-bit output

SHA-256

Slow Algorithm

256-bit output

Salting

With Salting

Hashed Based Message Authenticated Code HMAC

Integrity & Authenticity

HMAC

HMAC-MD5 or **HMAC-SHA1**

Cracking Hashes

Benchmark

Hash Algorithm	Speed
MD4	103.8 GH/s
MD5	61,468.8 MH/s
SHA1	22,161.4 MH/s
SHA-256	7,311.3 MH/s
SHA-384	2,531.8 MH/s
SHA-512	2,544.4 MH/s

NTLM

LM vs NTLM

LM - LANMAN

- ❖ Windows 95-98
- Limited to 15 Chars

NTLM - NT LAN MANAGER

- Version 1 (Not secure)
- Version 2

Summary

Hashing In Practice

- MD5 128 bits
- SHA 2 & 3
- HMAC Authenticity & Integrity
- Long & Complex Passwords
 e.g. aw@%plkMNBV--R

