A Machine Learning-Enabled Study of Superconductivity

Raieev At

Introduction Superconductivity

Data

Discussion

Canalusia

Reference

Acknowledgement

A Machine Learning-Enabled Study of Superconductivity

Application of the XGBoost Algorithm

Rajeev Atla

John P. Stevens High School

July 29, 2020

Outline

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction

Superconductivity XGBoost

Data

Method

- Introduction
 - Superconductivity
 - XGBoost
- 2 Data
- Methods
- Discussion
- Conclusion
- 6 References
- Acknowledgements

Ginzburg-Landau Theory

A Machine Learning-Enabled Study of Superconductivity

Rajeey Atla

Introduction

Superconductivity XGRoost

Data

Method

Discussia

. . .

References

Ginzburg-Landau Theory

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

Introduction Superconductivity

Data

Metho

Discussio

Reference

Acknowledgement

 For a homogenous superconductor, the Ginzburg-Landau equation is

$$\alpha\phi + \beta|\phi|^2\phi = 0$$

Ginzburg-Landau Theory

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction
Superconductivity
XGBoost

Data

Method

Discussio

_ .

Acknowledgement

 For a homogenous superconductor, the Ginzburg-Landau equation is

$$\alpha\phi + \beta|\phi|^2\phi = 0$$

• The nontrivial solution for $T < T_c$ is

$$|\phi|^2 = -\frac{\alpha}{\beta} \left(T - T_c \right)$$

Ginzburg-Landau Theory

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction
Superconductivity

Data

Method

Discussio

Reference

Acknowledgements

 For a homogenous superconductor, the Ginzburg-Landau equation is

$$\alpha\phi + \beta|\phi|^2\phi = 0$$

• The nontrivial solution for $T < T_c$ is

$$|\phi|^2 = -\frac{\alpha}{\beta} (T - T_c)$$

• The characteristic length scale ξ is called the Ginzburg-Landau coherence length

$$\xi = \sqrt{\frac{\hbar^2}{2m^*|\alpha|}}$$

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Raisey At

Introduction

Superconductivity

Data

Method

Discussio

Doforonco

Acknowledgemen:

• Two types - Type 1 and Type 2

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Raisey Atl

Introduction Superconductivity

Data

Method

Discussio

Conclusio

References

- Two types Type 1 and Type 2
- Notation

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

ntroduction Superconductivity

Data

ivietnoc

Discussio

Conclusio

Reference:

- Two types Type 1 and Type 2
- Notation
 - $H_c(T)$ is critical field as a function of temperature

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

ntroduction Superconductivity

Data

.....

Discussio

Conclusio

References

- Two types Type 1 and Type 2
- Notation
 - $H_c(T)$ is critical field as a function of temperature
 - \bullet T_c is critical temperature

Types of Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction Superconductivity

Data

Method

Discussion

Conclusio

- Two types Type 1 and Type 2
- Notation
 - $H_c(T)$ is critical field as a function of temperature
 - \bullet T_c is critical temperature

Figure: H - T phase diagram for a Type 1 superconductor [Tinkham]

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

10000

Superconductivity

D. . .

Method

Discussia

D (

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Raieev At

Introduction Superconductivity

_

Method

Discussio

Doforonco

Acknowledgemen

 \bullet Ginzburg-Landau parameter $\kappa>\frac{1}{\sqrt{2}}$

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Raieev Atl

ntroduction Superconductivity

Data

Method

Discussio

Conclusio

references

• Ginzburg-Landau parameter $\kappa > \frac{1}{\sqrt{2}}$

• Definition: $\kappa = \frac{\lambda}{\xi} = \frac{e\hbar}{m_{\rm e}c} \sqrt{\frac{\beta}{2\pi}}$

Surface energy is negative

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Raieev At

Introduction Superconductivity

Data

Method

Discussio

Acknowledgemer

• Ginzburg-Landau parameter $\kappa > \frac{1}{\sqrt{2}}$

• Definition:
$$\kappa = \frac{\lambda}{\xi} = \frac{e\hbar}{m_{\rm e}c} \sqrt{\frac{\beta}{2\pi}}$$

Surface energy is negative

$$\bullet \ H_{c2} = H_{c1} \kappa \sqrt{2}$$

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction
Superconductivity
XGBoost

Data

Discussio

Acknowledgement

• Ginzburg-Landau parameter
$$\kappa > \frac{1}{\sqrt{2}}$$

• Definition:
$$\kappa = \frac{\lambda}{\xi} = \frac{\mathrm{e}\hbar}{m_{\mathrm{e}}c}\sqrt{\frac{\beta}{2\pi}}$$

Surface energy is negative

•
$$H_{c2} = H_{c1} \kappa \sqrt{2}$$

• In type 1,
$$H_{c2} = H_{c1}$$

Type 2 Superconductors

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction
Superconductivity
XGBoost

Data

Method

Discussio

_ . .

Reference

Acknowledgement

• Ginzburg-Landau parameter
$$\kappa > \frac{1}{\sqrt{2}}$$

• Definition:
$$\kappa = \frac{\lambda}{\xi} = \frac{e\hbar}{m_e c} \sqrt{\frac{\beta}{2\pi}}$$

Surface energy is negative

$$\bullet \ H_{c2} = H_{c1} \kappa \sqrt{2}$$

• In type 1,
$$H_{c2} = H_{c1}$$

Figure: H - T phase diagram for a Type 2 superconductor [Girvin and Yang 2019]

Type 2 Superconductors: Abrikosov Lattice Vortices

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

Superconductivity

Data

Method

Discussio

Conclusio

Reference:

Acknowledgement

• For $H_{c1} < H < H_{c2}$ in a Type 2 Superconductor, Abrikosov vortices appear in the material

Type 2 Superconductors: Abrikosov Lattice Vortices

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

Introduction Superconductivity

Data

Discussio

Б.

- For $H_{c1} < H < H_{c2}$ in a Type 2 Superconductor, Abrikosov vortices appear in the material
- These are flux vortices that are quantized, with

$$\Phi = \frac{nhc}{2e}, \quad n \in \mathbb{Z}$$

Type 2 Superconductors: Abrikosov Lattice Vortices

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

Introduction Superconductivity

Data

Method

Discussio

Conclusio

Reference

Acknowledgements

- For $H_{c1} < H < H_{c2}$ in a Type 2 Superconductor, Abrikosov vortices appear in the material
- These are flux vortices that are quantized, with

$$\Phi = \frac{nhc}{2e}, \quad n \in \mathbb{Z}$$

Figure: Abrikosov vortices in YBCO - created by Wells et al. 2015 using scanning SQUID microscopy

XGBoost

A Machine Learning-Enabled Study of Superconductivity

D . A.

Introduction

Superconductiv XGBoost

D. . .

Method

Discussio

Doforonco

Acknowledgemen

eXtreme Gradient Boosting

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Painou Atl

Introduction

XGBoost

Data

ivietnoc

Discussio

Conclusio

Reference

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

Introductio Superconductiv XGBoost

Data

Discussio

Conclusio

Reference

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introductio Superconductiv XGBoost

Data

ivietnoc

Discussion

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

Introductio Superconductiv XGBoost

Data

.........

Discussio

D . C

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge
- Ensemble learning [Friedman et al. 2017]

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introductio Superconductivi XGBoost

Data

.........

Discussio

D . C

- eXtreme Gradient Boosting
- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge
- Ensemble learning [Friedman et al. 2017]
 - Combination of homogenous weak learners

XGBoost

A Machine Learning-Enabled Study of Superconductivity

Rajeev At

Introduction Superconductivi XGBoost

Data

Method

Discussio

Acknowledgement

eXtreme Gradient Boosting

- Package for Python, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge
- Ensemble learning [Friedman et al. 2017]
 - Combination of homogenous weak learners
 - End result is a weighted sum of weak learners

$$\theta_f = \sum_j w_j \theta_j$$

XGBoost

A Machine Learning-Enabled Study of Superconductivity

XGBoost

- eXtreme Gradient Boosting
- Package for **Python**, C++, Java, R, Julia, and Scala
- Was used to process data from Large Hadron Collider (LHC) [Chen 2015]
 - Won the Higgs Boson Machine Learning Challenge
- Ensemble learning [Friedman et al. 2017]
 - Combination of homogenous weak learners
 - End result is a weighted sum of weak learners

$$\theta_f = \sum_j w_j \theta_j$$

 w_i are determined by backpropogation via gradient descent

4 D > 4 B > 4 B > 4 B > 9 Q P

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

ntroduction Superconductivit

Data

ivietnoas

Discussion

Conclusio

References

Acknowledgement

Taken from UCI (University of California, Irvine)
 Machine Learning Repository

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atl

Introduction
Superconductivi
XGRoost

Data

Discussion

Conclusio

rtererences

- Taken from UCI (University of California, Irvine)
 Machine Learning Repository
- 21,263 examples with 81 features

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction Superconductivit XGBoost

Data

Discussio

Reference

- Taken from UCI (University of California, Irvine)
 Machine Learning Repository
- 21,263 examples with 81 features
- Model was only trained with 11 features to prevent overfitting

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction Superconductivity XGBoost

Data Method

Discussio

Conclusio

Reference:

Acknowledgement

- Taken from UCI (University of California, Irvine)
 Machine Learning Repository
- 21,263 examples with 81 features
- Model was only trained with 11 features to prevent overfitting

Figure: UCI Machine Learning Repository

Methods

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

Introduction

XGBoost XGBoost

ъ.

Methods

Discussion

Conclusion

References

Methods

A Machine Learning-Enabled Study of Superconductivity

Paiony Atla

Introduction

Superconductivit XGBoost

ъ.

${\sf Methods}$

Discussion

_ .___.

Deference

Acknowledgemen:

XGBoost library

Methods

A Machine Learning-Enabled Study of Superconductivity

Paigou Atla

Superconductivit

D. . .

Methods

Discussion

Doforonco

- XGBoost library
 - XGBClassifier class

Discussion

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

Introduction
Superconductivity

D. . .

ivietnoa

Discussion

Discussion

A Machine Learning-Enabled Study of Superconductivity

Daison Atl

Superconductivi

_

Method

Discussion

References

Acknowledgement

• Confusion matrix made using matplotlib library

Discussion

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction
Superconductivit
XGBoost

Data

Discussion

Acknowledgem

Confusion matrix made using matplotlib library

Positive (1) Negative (0) Positive (1) TP FP Negative (0) FN TN

Actual Values

Figure: Example Confusion Matrix

Conclusion

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

Introduction

Superconductivit

D. . .

Method

Discussion

Conclusion

References

Conclusion

A Machine Learning-Enabled Study of Superconductivity

Raieev Atla

Introductio Superconductiv XGBoost

Data

Discussion

Conclusion

References

Acknowledgement

 Python training files, these slides, the dataset, etc. can be found at https://github.com/ RajeevAtla/Graphene-Research/

Conclusion

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction Superconductivi XGBoost

Data

Discussion

Conclusion

Reference

- Python training files, these slides, the dataset, etc. can be found at https://github.com/ RajeevAtla/Graphene-Research/
- Easiest way to access is using git

References

A Machine Learning-Enabled Study of Superconductivity

Raisey Atla

Introduction

Superconductivit

D. . .

ivietnoas

Discussion

References

Acknowledgements

A Machine Learning-Enabled Study of Superconductivity

Rajeev Atla

Introduction Superconductivit XGBoost

Data

Method

Discuss

Conclusi

Reference

Acknowledgements

I would like to thank Leo Lo and Dr. Serena McCalla for their mentorship through the iResearch Institute.

I would also like to acknowledge my parents for their constant support.