

Chapter 4 Combinational Logic

FIGURE 4.1Block diagram of combinational circuit

Combinational Logic

aka. Combinational Circuit

Combination of logic gates on the present inputs \rightarrow the outputs *at any time*!

A combinational circuit performs an operation that can be specified logically by a set of Boolean functions.

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Coders

Binary Codes (BCD, Excess-3, Gray)

Arithmatic & ——
Logical Op

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Binary Adder

Half Adder

Full Adder I

Full Adder = Half Adder + ...

Full Adder =? 2 Half Adder + ..

Full Adder II

Full Adder = ^S 2 Half Adder + OR

n-Bit Adder

Carry Lookahead

C_{1:n} → Constant Delay Book Page 138-141

Binary Subtractor

Signed-2's-Complement

M=0 → Adder
M=1 → Subtractor

Overflow

Signed-2's-Complement

Signed-2's-Complement

Truth Table

Y4	Y3	Y2	Y1	X4	X3	X2	X1	C0	OVF
4-Bit Adder							?		

Y3	Y2	Y1	X3	X2	X1	C0	OVF
3-Bit Adder							?

Y2	Y1	X2	X1	C0	OVF
	?				

Signed-2's-Complement

Using Prior Knowledge

Signed-2's-Complement

(I)

Subtraction \rightarrow Addition with 2's Comp.

Signed-2's-Complement

(II)

Sum of Positive Numbers \rightarrow Negative: OVF=1 Sum of Negative Numbers \rightarrow Positive: OVF=1

Signed-2's-Complement

(III)

Binary System > The most significant bit > Sign

Base-r in Radix Complement rn-2 rn-3 rn-1 r^2 rO Positive

0 <= Numbers $<= (r^n - 1) \div 2$

Base-2: 0,111,...,111

Base-4: 1,333,...,333

Base-8: 3,777,...,777

Base-10: 4,999,...,999

Base-16: 7,FFF,...,FFF

Nothing to do!

Base-r in Radix Complement rn-1 rn-2 rn-3 r^0 $(r^n-1)\div 2 + 1 < =$ Negative $<= (r^{n}-1)$ **Numbers** Base-2: 1,000,...,000 Base-4: 2,000,...,000 Base-8: 4,000,...,000 W03 Base-10: 5,000,...,000 Base-16: 8,000,...,000

We see positive number, but we interpret negative! = -(r's comp. (#)) = -((r-1)'s comp. (#) + 1)

$$C_{3}C_{2}C_{1}C_{0}$$

$$X_{4}=0 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=0 Y_{3}Y_{2}Y_{1}$$

$$C4 S_{4}=1 S_{3}S_{2}S_{1}$$

$$C_{3}=1 C_{2}C_{1}C_{0}$$

$$X_{4}=0 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=0 Y_{3}Y_{2}Y_{1}$$

$$C4=0 S_{4}=1 S_{3}S_{2}S_{1}$$

$$C_{3}C_{2}C_{1}C_{0}$$

$$X_{4}=1 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=0 Y_{3}Y_{2}Y_{1}$$

$$C4 S_{4}=? S_{3}S_{2}S_{1}$$

S₄ is guaranteed to be correct in signed-2's-comp. Don't believe it, try!

$$C_{3}C_{2}C_{1}C_{0}$$

$$X_{4}=0 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=1 Y_{3}Y_{2}Y_{1}$$

$$C4 S_{4}=? S_{3}S_{2}S_{1}$$

S₄ is guaranteed to be correct in signed-2's-comp. Don't believe it, try!

$$C_{3}C_{2}C_{1}C_{0}$$

$$X_{4}=1 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=1 Y_{3}Y_{2}Y_{1}$$

$$C4 S_{4}=0 S_{3}S_{2}S_{1}$$

$$C_{3}=0 C_{2}C_{1}C_{0}$$

$$X_{4}=1 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=1 Y_{3}Y_{2}Y_{1}$$

$$C4=1 S_{4}=0 S_{3}S_{2}S_{1}$$

Design a logic circuit that detects overflow?

Signed-2's-Complement

OVF =
$$C'_4C_3 + C_4C'_3 = C_4 \oplus C_3$$

M=0 → Adder
M=1 → Subtractor

Binary Adder | Subtractor | Overflow Unsigned?

Hossein's way! Unsigned: Signed Positive

Binary Adder Unsigned: Signed Positive

Binary Subtractor Unsigned: Signed Positive

 $\begin{array}{c} C_{3}C_{2}C_{1}C_{0} \\ 0 X_{3}X_{2}X_{1} \\ - 0 Y_{3}Y_{2}Y_{1} \\ \hline C4 S_{4}S_{3}S_{2}S_{1} \\ \end{array}$

Binary Overflow Unsigned: Signed Positive

Binary Overflow Unsigned: Signed Positive

OVF = C_3 for 3-bit unsigned adder!

Book's way! Unsigned

M=0 → Adder
M=1 → Subtractor

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Binary Multiplier Unsigned

Binary Multiplier Unsigned

 $\begin{array}{c} X_4 X_3 X_2 X_1 \\ \times & Y_1 \\ \hline M_4 M_3 M_2 M_1 \end{array}$

$$\begin{array}{c} X_4 X_3 X_2 X_1 \\ \times & Y_1 \\ \hline M_1 = Y_1 X_1 \end{array}$$

$$\begin{array}{c} X_4 X_3 X_2 X_1 \\ \times & Y_1 \\ M_2 = Y_1 X_2 \end{array}$$

$$X_{4}X_{3}X_{2}X_{1}$$
 $X_{4}X_{3}X_{2}X_{1}$
 $X_{1}X_{2}X_{1}$
 $X_{1}X_{2}X_{1}$
 $X_{1}X_{2}X_{1}$
 $X_{2}X_{1}$
 $X_{3}X_{2}X_{1}$

$$\begin{array}{c} X_4 X_3 X_2 X_1 \\ \times & Y_1 \\ \hline M_4 = Y_1 X_4 \end{array}$$

 $X_4X_3X_2X_1$ $X_4X_3X_2X_1$ X_2Y_1 X_2Y_1 $X_4X_3X_2X_1$ $X_4X_1X_2X_1$ $X_4X_1X_1X_1$ $X_4X_1X_1X_1$ $X_4X_1X_1X_1$ $X_4X_1X_1X_1$ $X_4X_1X_1X_1$ $X_4X_1X_1$ $X_4X_1X_1$ $X_4X_1X_1$ X_4X_1 X_4X

```
X_4 X_3 X_2 X_1
X_5 X_1 X_
```

```
X_4X_3X_2X_1
X
          M_4 M_3 M_2 M_1
      N_4 N_3 N_2 N_1 0
       S_4 S_3 S_2 S_1 M_1
```



```
X_4X_3X_2X_1
              Y_3Y_2Y_1
       M_4 M_3 M_2 M_1
   N_4 N_3 N_2 N_1 0
P_4 P_3 P_2 P_1 0 0
```

+ $S_4 S_3 S_2 S_1 M_1$ $P_4 P_3 P_2 P_1 0 0$

 $\begin{array}{cccc} X_4 X_3 X_2 X_1 \\ \times & Y_3 Y_2 Y_1 \end{array}$

+ S_4 S_3 S_2 S_1 M_1 P_4 P_3 P_2 P_1 0 0 Z_4 Z_3 Z_2 Z_1 S_1 M_1

 $\begin{array}{c} X_4 X_3 X_2 X_1 \\ \times & Y_3 Y_2 Y_1 \end{array}$

n-bit X × m-bit Y

→ how many output bit?

n-bit X × m-bit Y
→ how many ANDs?

n-bit X × m-bit Y

→ how many k-bit adders?

n-bit X × m-bit Y

→ what is k in k-bit adders?

n-bit X + n-bit X + ... + n-bit X

m-bit Y times!

$$X \times (11)_2 = X + X + X$$

$$X \times (11)_2 = X + X + X$$

If you change Y, you have to change circuit!!

 $X \times Y = X + ... + X \rightarrow When to stop?$ Feedback \rightarrow Sequential Logic

n-bit X × m-bit Y

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Binary Comparator Unsigned

$$X > Y$$
 $X = = Y$ $X < Y$

Given two unsigned numbers x and y, design a logic circuit to see

 $x \geq ? y$

Y2	Y1	X2	X1	F(Y2,Y1,X2,X1)=Σ m(0,1,2,3,5,6,7,10,11,15)	$F(Y2,Y1,X2,X1)=\Pi M(4,8,9,12,13,14)$
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0

Given two unsigned numbers x and y, design a logic circuit to see

$$x > y$$
; $x == y$; $x < y$

Y2	Y1	X2	X1	$F_1 = (X > Y)$	$F_2 = (X = = Y)$	F ₃ = (X < Y)
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Y2	Y1	X2	X1	$F_1 = (X > Y)$	$F_2 = (X = = Y)$	F ₃ = (X < Y)
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1		0
0	0	1	1	1		0
0	1	0	0	0	If X and Y 3, 4, 5, bits?!	1
0	1	0	1	0		0
0	1	1	0	1		0
0	1	1	1	1		0
1	0	0	0	0		1
1	0	0	1	0		1
1	0	1	0	0		0
1	0	1	1	1		0
1	1	0	0	0		1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Binary Subtractor Unsigned by Hossein's Way!

 $\begin{array}{c} C_{3}C_{2}C_{1}C_{0} \\ 0 X_{3}X_{2}X_{1} \\ - 0 Y_{3}Y_{2}Y_{1} \\ \hline C4 S_{4}S_{3}S_{2}S_{1} \\ \end{array}$

If S'_4 then $X \ge Y$ If S'_4 AND $(S_3+S_2+S_1)=1$ then X > Y

If S_4 then X < Y

If
$$S'_4$$
 AND $(S_3 + S_2 + S_1)' = 1$ then $X = Y$

XNOR Equality Gate

NOT Exclusive-OR (XNOR)

Y	X	$F = F(Y,X) = Y'X'+YX = m_0+m_3$
0	0	1
0	1	0
1	0	0
1	1	1

$$X_4 = 1 X_3 X_2 X_1$$

$$Y_4 = 0 Y_3 Y_2 Y_1$$

$$X_4 Y'_4 \rightarrow X > Y$$

$$X_{4}=0 X_{3}X_{2}X_{1}$$
 $Y_{4}=1 Y_{3}Y_{2}Y_{1}$
 $X'_{4}Y_{4} \rightarrow X < Y$

$$X_{4} X_{3} X_{2} X_{1}$$

 $Y_{4} Y_{3} Y_{2} Y_{1}$
 $X_{4} \bigcirc Y_{4} = 1$

$$X_{4} X_{3} = 1 X_{2}X_{1}$$

$$Y_{4} Y_{3} = 0 Y_{2}Y_{1}$$

$$X_{4} \bigcirc Y_{4} = 1$$

$$X'_{3}Y_{3} \rightarrow X > Y$$

$$X_{4} X_{3} = 0 X_{2}X_{1}$$

$$Y_{4} Y_{3} = 1 Y_{2}Y_{1}$$

$$X_{4} \bigcirc Y_{4} = 1$$

$$X_{3} Y'_{3} \rightarrow X < Y$$

F1=(X>Y)=
$$X_4Y'_4$$
+
 $(X_4 \odot Y_4)X_3Y'_3$ +
 $(X_4 \odot Y_4)(X_3 \odot Y_3)X_2Y'_2$ +
 $(X_4 \odot Y_4)(X_3 \odot Y_3)(X_2 \odot Y_2)X_1Y'_1$

F1=(XX'_{4}Y_{4}+

$$(X_{4} \odot Y_{4})X'_{3}Y_{3}$$
+
 $(X_{4} \odot Y_{4})(X_{3} \odot Y_{3})X'_{2}Y_{2}$ +
 $(X_{4} \odot Y_{4})(X_{3} \odot Y_{3})(X_{2} \odot Y_{2})X'_{1}Y_{1}$

Chapter 4 Combinational Logic

FIGURE 4.17 Four-bit magnitude comparator

Chapter 4 Combinational Logic

FIGURE 4.17 Four-bit magnitude comparator

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Coders

Binary Codes (BCD, Excess-3, Gray)

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission

Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Coders

Binary Codes (BCD, Excess-3, Gray)