T319 - Introdução ao Aprendizado de Máquina: *Introdução*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

A disciplina

- Introdução ao aprendizado de máquina.
- Curso onde veremos os *conceitos fundamentais* do funcionamento de alguns *algoritmos de aprendizado de máquina* ou em inglês, *machine learning* (ML).
- O curso é dividido em duas partes: T319 e T320.
- O curso terá sempre uma parte expositiva e outra prática para fixação dos conceitos introduzidos.
 - Quizzes e exercícios envolvendo o uso dos conceitos discutidos em sala de aula.
- Nós não nos aprofundaremos nos conceitos matemáticos envolvidos.
- Porém, vocês precisam conhecer *Python* e alguns conceitos simples de *cálculo, álgebra linear e estatística*.

Cronograma

• Aulas *quinzenais*, começando sempre às 19:30.

Aula	Data	Dia	Horário	Atividade
1	1/8/2025	Sexta-feira	19:30 às 21:10	Introdução ao Aprendizado de Máquina
2	15/8/2025			Introdução ao Aprendizado de Máquina
3	29/8/2025			Introdução ao Aprendizado de Máquina
4	12/9/2025			Introdução ao Aprendizado de Máquina
5	26/9/2025			Introdução ao Aprendizado de Máquina
6	10/10/2025			Introdução ao Aprendizado de Máquina
7	24/10/2025			Introdução ao Aprendizado de Máquina
8	7/11/2025			Avaliação Presencial (Sala I-??)
9	21/11/2025			Introdução ao Aprendizado de Máquina
10	5/12/2025			Introdução ao Aprendizado de Máquina

Objetivo do curso

- O objetivo principal do curso é apresentar
 - os conceitos fundamentais da teoria do aprendizado de máquina.
 - um conjunto de ferramentas (i.e., algoritmos, técnicas, métricas) de aprendizado de máquina para solução de diversos tipos de problemas.
- Ao final do curso vocês devem ser capazes de
 - Entender e discutir os principais algoritmos de ML.
 - Compreender a terminologia utilizada na área.
 - Compreender o funcionamento de novos algoritmos de ML.
 - Aplicar algoritmos de ML para a resolução de problemas.

Critérios de avaliação

- *Um (1) trabalho* em grupo com peso de 85%.
 - Envolvendo questões práticas e/ou teóricas.
 - Uma parte do trabalho será feita presencialmente.
- Atividades (quizzes e laboratórios) com peso de 15%.
 - Podem sempre ser entregues até o fim de semana da próxima aula.
 - As atividades devem ser resolvidas de forma individual.
 - As atividades serão atribuídas e entregues através do MS Teams.
- Extra: 10% da nota da FETIN (mas precisa envolver IA).
- Frequência
 - Gerada automaticamente pelo MS Teams.
 - Por favor, acompanhem suas frequências através do portal.

Motivação

- Emprego: grandes empresas têm usado IA para
 - Automatizar tarefas repetitivas e demoradas.
 - Processar grandes volumes de dados para extração de insights.
 - Criar experiências personalizadas para seus clientes.
- Tudo isso para aumentar a eficiência dos processos, reduzir custos e, consequentemente, aumentar os lucros.
- Além das empresas de tecnologia, IA é empregada em empresas de telecom, saúde, finanças, automação e muitas outras.

Motivação

- Salário: como as empresas têm se apoiado mais e mais em IA para aumentar seus lucros, elas têm tido uma demanda crescente por profissionais com esse conhecimento.
- Os salários são muito bons, pois a demanda é alta, mas não existem tantos profissionais com essa experiência no mercado.

Motivação

Massachusetts

- Pesquisa: a IA já tem sido empregada no 5G e terá um papel fundamental no desenvolvimento da próxima geração de redes móveis e sem fio, o 6G.
- Os algoritmos de IA serão usados nas mais diversas camadas da rede para auxiliar em tarefas que vão desde a estimação de canal, detecção de símbolos de uma modulação até segurança cibernética.

O que é inteligência artificial?

- Campo da computação que almeja criar máquinas que imitem as capacidades humanas.
- Que capacidades são essas?
 - Aprendizado;
 - Adaptação;
 - Comunicação;
 - Raciocínio e tomada de decisão;
 - Resolução de problemas;
 - Criatividade;
 - Movimento;
 - etc.

O que é inteligência artificial?

- Definição formal: Capacidade de uma máquina de receber estímulos vindos do ambiente, interpretá-los, aprender com eles e usar o conhecimento adquirido para tomar decisões e resolver problemas, interagindo com o ambiente.
- Porém, criar máquinas que emulem as nossas capacidades, não é uma tarefa simples.

O problema da inteligência artificial

IA é uma área muito ampla que engloba várias aplicações (subáreas) diferentes.

- Portanto, criar máquinas que imitem a inteligência humana é um problema muito complexo e difícil de ser resolvido de uma só vez.
- Sendo assim, divide-se o problema em problemas menores, chamadas de subáreas da IA.

Subáreas da inteligência artificial

- Processamento de linguagem natural.
 - Compreensão e interpretação de linguagens humanas.
- Representação do conhecimento.
 - Extração e armazenamento eficiente de conhecimento do mundo real.
- Raciocínio automatizado.
 - Resolução de problemas complexos a partir de conhecimento prévio.
- Planejamento.
 - Criação de planos que permitam que uma máquina execute uma tarefa.

Subáreas da inteligência artificial

- Visão computacional.
 - Compreensão e interpretação de imagens e vídeos.
- Robótica.
 - Criação de robôs capazes de realizar tarefas físicas e interagir com o ambiente.
- Aprendizado de máquina.
 - Criação de máquinas que aprendem através de experiências prévias.
- Inteligência artificial geral.
 - Criação de máquinas que se comportem como seres humanos. É a meta final da IA.

Foco do curso

- Como vimos, IA é um área muito ampla e não teríamos tempo para ver todas as subáreas.
- Assim, focaremos no estudo dos fundamentos do aprendizado de máquina.

Por quê?

- Caixa de ferramentas: ML oferece ferramentas para a análise e solução de vários problemas em várias áreas, incluindo telecomunicações, de forma eficiente.
- Redução de complexidade e custo: ML pode reduzir o custo e a complexidade computacional de procedimentos e processos que muitas vezes têm desempenho ótimo na teoria, mas que não são usados na prática devido a sua alta complexidade e/ou custo proibitivo.
- Oportunidades: existem muitos empregos na área de análise, ciência e engenharia de dados, além de pesquisas inovadoras, que usam ML para a solução de problemas em diversas áreas.

O que é o aprendizado de máquina?

- É uma das subáreas da inteligência artificial.
- O termo foi cunhado em 1959, pelo cientista da computação Arthur Samuel, que o definiu como o

"Campo de estudo que dá aos computadores a habilidade de aprender sem serem explicitamente programados."

- Mas como eles aprendem?
 - Através de experiências prévias, induz-se conhecimento nas máquinas.
- Algoritmos de ML são orientados a dados, i.e., eles aprendem automaticamente (através de treinamento) uma solução geral a partir de conjuntos de dados fornecidos a eles.

Paradigma da programação tradicional

- Para entendermos o que é o aprendizado de máquina, vamos fazer um paralelo com a programação tradicional.
- Na programação tradicional, o programador cria as regras (i.e., programa) que mapeiam as entradas, x, nas saídas, y = f(x).
- Imaginem um problema onde a solução geral é a equação de uma reta, f(x).

O paradigma do aprendizado de máquina

- "... aprender sem serem explicitamente programados."
- Esse trecho pode ser entendido se reorganizarmos a figura anterior.
- No ML, nós fornecemos as entradas e as respostas esperadas ao computador e deixamos que ele aprenda, através de treinamento, um modelo (i.e., as regras) que mapeie as entradas nas respostas esperadas.

Generalização

quando a temperatura é de \approx 6 graus

(valor não visto durante o treinamento)?

- Porém, não basta que o algoritmo de ML aprenda um modelo que faça um bom mapeamento apenas para os dados do conjunto de treinamento.
- O algoritmo de ML deve treinar um modelo que aprenda uma solução geral, ou seja, que generalize para entradas não vistas durante o treinamento.

modelo gera como saída o valor 23, que é

coerente com o restante dos dados.

Exemplos de aplicações de ML em várias áreas

- Transporte: veículos autônomos.
- **Negócios**: recomendação de produtos e conteúdos (e.g., amazon e netflix).
- Educação: pontuação automatizada de fala em testes de Inglês.
- **Saúde**: detecção e diagnóstico de doenças (câncer, Alzheimer, pneumonia, COVID-19, etc.).
- Finanças: detecção de fraudes com cartão de crédito.
- Tecnologia: assistentes pessoais (e.g., Siri, Alexa, Cortana, etc.).

Principais motivos da difusão do ML

- A possibilidade de analisar e extrair informações úteis de enormes volumes de dados (centenas de terabytes por dia) disponíveis atualmente, o que seria impossível para nós, vale ouro, pois tem grande potencial para aumentar o lucro das empresas.
- O surgimento de recursos computacionais poderosos tais como GPUs, FPGAs e CPUs com múltiplos cores.
- Surgimento de *novas estratégias de aprendizagem*, e.g., *deep-learning*, *deep reinforment-learning*, modelos generativos, *transformers* etc.
- Disponibilidade de *bibliotecas que facilitam o desenvolvimento* de soluções com ML.

Paradigmas de aprendizado de máquina

Os algortimos de aprendizado de máquina podem ser *agrupados* de acordo com o *tipo de aprendizado que realizam*:

- Supervisionado
- Não-Supervisionado
- Semi-Supervisionado
- Por Reforço
- Metaheurístico

Aprendizado supervisionado

 $x = [x_1, x_2, x_3, ...]$: data, remetente, assunto, etc. y: spam ou ham

- No aprendizado supervisionado, o algoritmo de ML tem acesso às saídas esperadas, y, chamadas de rótulos (ou labels, em inglês), para o conjunto de valores de entrada, chamados de atributos, x.
- Em outras palavras, cada *exemplo de treinamento* é composto pelos valores de entrada, *x* (*atributos*), e sua saída correspondente, *y* (*rótulo*).
 - OBS.: Em alguns casos, têm-se mais de uma saída esperada.

Aprendizado supervisionado

 $x = [x_1, x_2, x_3, ...]$: data, remetente, assunto, etc. y: spam ou ham

- Objetivo: os algoritmos supervisionados de ML devem aprender uma função (i.e., o modelo) que mapeie as entradas x nas saídas esperadas, y, ou seja, y = f(x).
- Esse tipo de aprendizado é dividido em problemas de regressão e classificação.
 - Regressão: o rótulo, y, pertence a um conjunto infinito de valores, i.e., números reais.
 - **Exemplo**: anos de experiência versus salário.
 - Classificação: o rótulo, y, pertence a um conjunto finito e discreto de valores, i.e., número de possíveis classes.
 - **Exemplo**: filtro de spam.

Aprendizado não-supervisionado

Dados não rotulados

Algoritmo de aprendizado não-supervisionado

Dados agrupados por proximidade

- Neste tipo de aprendizado, os algoritmos de ML *não têm acesso às saídas* esperadas, y.
- Os algoritmos só têm acesso aos atributos, x.
- Objetivo: os algoritmos devem aprender/descobrir padrões, muitas vezes ocultos, presentes nos dados se baseando apenas, por exemplo, na similaridade entre os atributos, x ou seja, sem a presença de rótulos.

Aprendizado não-supervisionado

Clusterização

Redução de dimensionalidade

Reduce data from 3D to 2D

Detecção de Anomalias

Regras de associação

Of transactions that included milk:

- · 71% included bread
- 43% included eggs
- · 29% included toilet paper

• Esses algoritmos de ML tratam problemas de clusterização, detecção de anomalias (outliers), redução de dimensionalidade, e aprendizado de regras de associação.

Aprendizado semi-supervisionado

- Neste tipo de aprendizado, os algoritmos de ML têm acesso a exemplos de treinamento com e sem rótulos.
- Geralmente envolve uma pequena quantidade de dados rotulados e uma grande quantidade de dados nãorotulados.
- É de grande ajuda em casos onde se ter uma grande quantidade de *dados* rotulados é muito demorado, caro ou complexo.

Aprendizado semi-supervisionado

- Algoritmos de aprendizagem semi-supervisionada são o resultado da combinação de algoritmos não-supervisionados e supervisionados.
- Uma maneira de realizar aprendizado semi-supervisionado é combinar algoritmos de *clusterização* e *classificação*.
 - Por exemplo, como classificaríamos uma quantidade massiva de textos nãorotulados da internet?

Textos não-rotulados Textos agrupados

Textos classificados

Aprendizado por reforço

- Abordagem de aprendizado totalmente diferente das anteriores, pois não temos exemplos de treinamento, sejam eles rotulados ou não.
- O algoritmo de aprendizado por reforço, chamado de agente nesse contexto, aprende como se comportar em um ambiente através de interações do tipo tentativa e erro.
- O agente observa o estado do ambiente, seleciona e executa uma ação e recebe uma recompensa (ou reforço +/-) em consequência da ação tomada.

Aprendizado por reforço

- Seguindo estes passos, o agente aprende por si só qual a melhor estratégia, chamada de política, para obter a maior recompensa possível ao longo do tempo.
- Uma *política* define qual *ação* o *agente* deve escolher quando o *ambiente* estiver em um determinado *estado*.
- Portanto, a política é uma função que mapeia os estados do ambiente em ações que o agente deve tomar para maximizar as recompensas.

Aprendizado metaheurístico

- Metaheurísticas são algoritmos usados para encontrar soluções de forma rápida e genérica, mas muitas vezes subótimas, para problemas complexos de otimização.
- Metaheurísticas são aplicadas a problemas onde métodos convencionais são impraticáveis, devido à alta complexidade, ou o espaço de busca é extremamente grande.

Aprendizado metaheurístico

- Características das metaheurísticas:
 - não garantem que uma solução ótima seja encontrada, mas podem encontrar uma solução suficientemente boa (i.e., subótima).
 - são estratégias que orientam o processo de busca através do espaço de soluções.
 - não são específicas de um problema, ou seja, são genéricas.
 - funcionam bem mesmo em dispositivos com capacidade computacional limitada (e.g., dispositivos IoT).
- São, em sua grande maioria, algoritmos inspirados pelo *processo de seleção natural* (e.g., algoritmo genético) ou no *comportamento de grupos de animais* (e.g., algoritmos de otimização por exame de partículas e por colônia de formigas).

Executando códigos

- Durante o curso, usaremos *Python* como linguagem de programação.
 - Fácil de aprender, possui várias bibliotecas, é a linguagem mais utilizada em ML e é gratuita e open-source.
- Utilizaremos notebooks Jupyter para execução de exemplos e resolução dos laboratórios.
 - Eles são documentos virtuais usados para desenvolver e documentar código.
 - Pode-se adicionar equações, gráficos e texto.
 - Para executá-los, utilizaremos o Google Colaboratory ou apenas Colab, que é um ambiente computacional interativo e gratuito executado na nuvem.
 - Portanto, *vocês não precisam instalar nada*, apenas terem um navegador web e conexão com a internet.

Goolge Colaboratory (Colab)

- Colab é uma aplicação web gratuita que permite a criação, edição e execução de notebooks Jupyter em navegadores web.
- É um produto da Google.
- Vantagens:
 - Grande número de servidores.
 - Rápida inicialização e processamento do código.
 - Fornece acesso a GPUs e TPUs gratuitamente.
 - Notebooks podem ser salvos no seu Google Drive, evitando que você perca seu código.
- Desvantagem
 - Por hora, suporta apenas a execução de códigos escritos em Python.
- URL: https://colab.research.google.com/

Objetivo do curso

- O objetivo desta primeira parte do curso é ensinar a vocês como encontrar uma função (i.e., um modelo), usando ML, que aproxime (i.e., aprenda) o comportamento geral por trás de um conjunto de amostras (x e y) da melhor forma possível.
 - Tanto para amostras conhecidas quanto para inéditas.

Objetivo do curso

- Mas o que você quer dizer com melhor forma possível?
- Na maioria dos casos, o mapeamento verdadeiro entre x e y não é conhecido ou nem mesmo existe e nós nos baseamos apenas em uma métrica para definir se a função de mapeamento aprendida (i.e., o modelo) é boa ou não.
 - Exemplo: dada a previsão da temperatura média para um dia qualquer, quantos picolés serão vendidos?

Referências

- [1] Stuart Russell e Peter Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall Series in Artificial Intelligence, 3rd ed., 2015.
- [2] Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", 1st ed., O'Reilly Media, 2017.
- [3] Levy Boccato, "Notas de aula do curso Tópicos em Sistemas Inteligentes II Aprendizado de Máquina" (IA006), disponíveis em https://www.dca.fee.unicamp.br/~lboccato/ia006 2s2019.html (2019).
- [4] Joseph Misiti, "Awesome Machine-Learning," on-line data base with several free and/or open-source books (https://github.com/josephmisiti/awesome-machine-learning).
- [5] C. M. Bishop, "Pattern Recognition and Machine Learning," Springer, 1st ed., 2006.
- [6] Coleção de livros, https://tinyurl.com/mp64ksye

Avisos

- Toda a nossa comunicação (avisos, atendimentos e tarefas) será feita via Teams.
- Todas as aulas serão gravadas e os vídeos ficarão disponíveis na pasta "Recordings" dentro de "Arquivos".
- Todo material do curso está disponível no GitHub:
 - https://github.com/zz4fap/t319 aprendizado de maquina
- As entregas das atividades (laboratórios e quizzes) devem ser feitas através do Teams.
 - Se atentem às datas e horários de entrega das atividades no Teams.

Avisos

- Vídeos do minicurso curso de Python e de como usar o Colab estão na pasta "Recordings" dentro de "Arquivos".
- Horários de Atendimento
 - Professor: quintas-feiras das 16:00 às 17:00.
 - Monitor (Marcus Wilians Gomes Chagas: marcuswilians@gea.inatel.br): todas as terças-feiras das 17:30 às 19:30.
 - Atendimento remoto via Teams.

Tarefas

- Quiz: "T319 Quiz Introdução" que se encontra no MS Teams.
- Exercício Prático: Laboratório #1.
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Vídeo explicando o laboratório #1: Arquivos -> Recordings -> Laboratório #1.
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.

Obrigado!

Inteligência Artificial

Programas que podem sentir, raciocinar, agir, aprender e se adaptar como humanos

Aprendizado de Máquina

Algoritmos que permitem que uma máquina aprenda automaticamente sem ser explicitamente programada

Redes Neurais Artificiais

Multilayer perceptron, Convolutional, Recursive Networks, etc.

Ambiente

