Maximum Matchings continued ...

Given a graph G = (V, E), let us orient its edges in an arbitrary way, and let G' denote the obtained directed graph. Let further $x_e, e \in E$ be real variables associated with the edges of G, and let us define a matrix $T_G(x) \in \mathbb{R}^{V \times V}$ as follows:

$$t_{uv}(x) = \begin{cases} x_e & \text{if } e = (u, v) \text{ and } (\overrightarrow{u, v}) \in E(G') \\ -x_e & \text{if } e = (u, v) \text{ and } (\overrightarrow{v, u}) \in E(G') \\ 0 & \text{otherwise,} \end{cases}$$

for all $u, v \in V$. Then, det $T_G(x)$ is a polynomial of the variables $x_e, e \in E$.

Theorem 1 (Tutte (1947)) A graph G has a perfect matching if and only if $\det T_G(x)$ is not identically zero.

Proof. Let us denote by S_V the set of permutations of V, and let $sg(\pi)$ denote the sign of permutation $\pi \in S_V$. Then,

$$\det T_G(x) = \sum_{\pi \in S_V} (-1)^{sg(\pi)} \prod_{v \in V} t_{v,\pi(v)}.$$

Each non-vanishing term in this expansion corresponds to a set of edges G, namely for $\pi \in S_V$ we have $F_{\pi} = \{(v, \pi(v)) \mid v \in V\}$. Let us first note that if $M = \{(u_i, v_i) \mid i = 1, ..., n/2\} \subseteq E$ is a perfect matching, then $\pi(u_i) = v_i$ and $\pi(v_i) = u_i$ is a permutation for which $F_{\pi} = M$. The corresponding term is $(-1)^{n/2} \prod_{e \in M} x_e^2$, and since x_e appear only twice in M for each $e \in E$, this term cannot be canceled out by any other term of the expansion, hence $\det T_G(x) \not\equiv 0$.

On the other hand, if G does not contain a perfect matching, then each set F_{π} must contain an odd cycle, oriented naturally by π . Reversing this orientation, we get the same set of edges corresponding to another permutation π' , such that the corresponding terms cancel out. Thus, all terms of det $T_G(x)$ cancel out.

Theorem 2 (Lovász (1979)) Let x_e , $e \in E$ be i.i.d. random variables, uniform in [0,1]. Then, $rankT_G(x) = 2\nu(G)$ with probability 1.

This result leads to a simple, randomized matching algorithm!!

Edmonds' matching algorithm

Given a graph G = (V, E) and a subset $X \subseteq V$ of its vertices, let $q_G(X)$ denote the number of odd connected components in the subgraph of G induced by $V \setminus X$.

Lemma 1 Let G = (V, E) be a graph, and $X \subseteq V$ be a set of vertices. Then, any matching M in G must leave at least $q_G(X) - |X|$ vertices uncovered.

Proof. Let $M \subseteq E$ be a maximum matching in G, $|M| = \nu(G)$. Then, in every odd component of the subgraph induced by $V \setminus X$ either we have a vertex uncovered by M, or a vertex covered by an edge of M, the other endpoint of which is in X. Since these other endpoints are pairwise different (M is a matching), the lemma follows.

Sketch of Edmonds' blossom-shrinking algorithm (1965):

Given a graph G = (V, E) and a matching $M \subseteq E$ in it, we try to find an M-augmenting path, or a proof that such a path does not exists.

We "grow" $|V \setminus V(M)|$ distinct M-alternating trees, i.e., rooted trees in which the root vertices are the ones not covered by M, and in which all unique paths connecting a vertex to the root of its tree are M-alternating. (In particular, all non-root vertices are covered by M.) Initially we start with the vertices $V \setminus V(M)$ as roots of distinct M-alternating trees, and no edges in this M-alternating forest F. We call every second vertex in an M-alternating tree, starting with the root, an outer vertex, while all other vertices will be called inner.

In a general step we choose an outer vertex x of the forest F, and a neighbor y of it (i.e. $(x, y) \in E$), and check the following cases:

Growing: If y is not a vertex (yet) of the forest F, then we add to the forest the edge (x, y) together with the edge of M covering y.

Augmenting: If y is an outer vertex of F, but belongs to a tree of F different from the one containing x, then the paths connecting x and y to the roots of their respective M-alternating trees, together with (x, y) form an M-augmenting path. (Then we can augment M, and start this procedure from scratch.)

Blossom shrinking: If y is an outer vertex in the same M-alternating tree of F to which x belongs to, then the paths connecting x and y to the root

of this tree converge at some vertex r, and the path segments till r together with (x, y) form a blossom, which we shrink into one vertex.

We keep doing the above, as long as there are edges connecting two outer vertices. Finally we may arrive to a situation, when none of the above applies for all the outer vertices, i.e., when all outer vertices have all their neighbors as inner.

Theorem 3 Either M is augmented in the above procedure, or M is a maximum matching.

Proof. Proof follows by Lemma 1. Choose X to be the set of inner vertices at the end. By removing X we have every outer vertex in distinct odd components (each outer vertex u represent a set of vertices which from which the repeated blossom shrinking produced u; each of those steps kept the cardinality of the set of vertices corresponding to u odd). Each of the these odd components are connected by one matching edge to X, except the root components, in which exactly one edge is not covered by M.

Theorem 4 (Gallai-Edmonds structure theorem: Gallai (1964)) Let G = (V, E) be an arbitrary graph, denote by Y the set of vertices not covered by at least one maximum matching of G, by $X \subseteq V \setminus Y$ the neighbors of Y, and by W the rest of the vertices. Then we have the following:

- (a) Any maximum matching of G contains a perfect matching of G[W], an almost perfect matching of each of the connected components of G[Y], and matches all vertices of X into distinct connected components of G[Y].
- (b) The connected components of G[Y] are factor-critical, i.e., they have a perfect matching after the removal of any of their vertices.

(c)
$$2\nu(G) = |V| - q_G(X) + |X|$$
.

Proof. Choose X to be the set of inner vertices, Y to be the set of vertices shrunk to the outer vertices, and let W be the rest. Then, every maximum matching M misses the same number of $|V \setminus V(M)|$ vertices, which in case of the matching at the end of the procedure is the set of roots of the M-alternating trees of cardinality $q_G(X) - |X|$, proving (c). Since every odd

component of the graph induced by $V \setminus X$ must have at least one vertex not covered by a matching edge inside this odd component in any maximum matching, property (a) follows readily. Finally, picking any vertex u in any of the (odd) components of Y, u belongs to one of the trees in the final M-augmenting tree, and in this tree there is an M-augmenting path connecting u to the root. Replacing non-matching edges in this path with matching edges, we get another maximum matching, so that the same trees will form an M-alternating tree representation, but with u as a root vertex. Thus, (b) follows.

Theorem 5 (Berge (1958)) Given a graph G = (V, E), we have

$$2\nu(G) + \max_{X \subseteq V} (q_G(X) - |X|) = |V|.$$

Proof. By Lemma 1 we have $|V \setminus V(M)| = |V| - 2\nu(G) \ge q_G(X) - |X|$ for any maximum matching M and any subset $X \subseteq V$.

Choosing X as in the Gallai-Edmonds Structure Theorem, (c) shows that equality can be attained, completing the proof.

Theorem 6 (Tutte (1947)) A graph G = (V, E) has a perfect matching if an only if

$$q_G(X) \leq |X|$$
 for all subsets $X \subseteq V$.

Proof. By Lemma 1 we have $|V \setminus V(M)| = |V| - 2\nu(G) \ge q_G(X) - |X|$ for any maximum matching M and any subset $X \subseteq V$ Thus, if M is a perfect matching in G, we get $0 \ge q_G(X) - |X|$ for every subset $X \subseteq V$. For the converse direction, assume that $q_G(X) > |X|$ for a subset X. Then $\max_{X \subseteq V} q_G(X) - |X| > 0$, and thus by Theorem 5 we get $|V| - 2\nu(G) > 0$, proving that G cannot have a perfect matching.

Matching Polyhedra

Let us associate to a graph G = (V, E) a polyhedron

$$P_G = \left\{ \mathbf{x} \in \mathbb{R}_+^E \middle| \sum_{u \in N(v)} x_{uv} \le 1 \text{ for all } v \in V \right\}.$$

Clearly, $P_G \cap \mathbb{Z}^E$ contains characteristic vectors of matchings of G. P_G is called the *fractional matching polytope* of G.

Theorem 7 (Hoffman and Kruskal (1956), Heller and Tompkins (1956)) If G is bipartite, then P_G is integral.

Proof. For the proof we use the following definition of a vertex (of a convex polyhedron): $\mathbf{v} \in P_G$ is a vertex of P_G if and only if there are no vectors $\mathbf{u}, \mathbf{w} \in P_G, \mathbf{u} \neq \mathbf{w}$ such that $\mathbf{v} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{w}$.

Let us now consider an arbitrary vector $\mathbf{x} = (x_e \mid e \in E) \in P_G$, and define $F(\mathbf{x}) = \{e \in E \mid 0 < x_e < 1\}$. We show that if $F \neq \emptyset$, then there are vectors $\mathbf{y}, \mathbf{z} \in P_G$, $\mathbf{y} \neq \mathbf{z}$ such that $\mathbf{x} = \frac{1}{2}\mathbf{y} + \frac{1}{2}\mathbf{z}$, which by the above definition of a vertex proves that all vertices of P_G have binary coordinates.

Assume now that $F \neq \emptyset$ and that it contains a cycle $C \subseteq F$. Since G is bipartite, C has an even number of edges. Let us label the edges by integers $1, \ldots, |C|$ as we follow these edges along the cycle C, and let $O \subseteq C$ be those edges that have an odd label. Let us choose a tiny $\epsilon > 0$, and define $\mathbf{y} = (y_e \mid e \in E)$ and $\mathbf{z} = (z_e \mid e \in E)$ by

$$y_e = \begin{cases} x_e & \text{if } e \in E \setminus C, \\ x_e + \epsilon & \text{if } e \in O, \\ x_e - \epsilon & \text{if } e \in C \setminus O, \end{cases}$$

and

$$z_e = \begin{cases} x_e & \text{if } e \in E \setminus C, \\ x_e - \epsilon & \text{if } e \in O, \\ x_e + \epsilon & \text{if } e \in C \setminus O. \end{cases}$$

Then we have $\mathbf{y}, \mathbf{z} \in P_G, \mathbf{y} \neq \mathbf{z}$ (think it over!), and $\mathbf{x} = \frac{1}{2}\mathbf{y} + \frac{1}{2}\mathbf{z}$.

If $F \neq \emptyset$ and it does not contain a cycle, then it must contain a maximal path $P \subseteq F$ between two nodes $a, b \in V$ of the graph. Note that by the

maximality of P within F we must have

$$\sum_{u \in N(a)} x_{au} < 1 \text{ and } \sum_{u \in N(b)} x_{bu} < 1.$$

Let us label the edges of P by integers, 1, ..., |P| as we follow these edges along the path P, and define $O \subseteq P$ be those edges of P that have odd label. Let us choose again a tiny $\epsilon > 0$, and define $\mathbf{y} = (y_e \mid e \in E)$ and $\mathbf{z} = (z_e \mid e \in E)$ by

$$y_e = \begin{cases} x_e & \text{if } e \in E \setminus P, \\ x_e + \epsilon & \text{if } e \in O, \\ x_e - \epsilon & \text{if } e \in P \setminus O, \end{cases}$$

and

$$z_e = \begin{cases} x_e & \text{if } e \in E \setminus P, \\ x_e - \epsilon & \text{if } e \in O, \\ x_e + \epsilon & \text{if } e \in P \setminus O. \end{cases}$$

Then we have $\mathbf{y}, \mathbf{z} \in P_G$, $\mathbf{y} \neq \mathbf{z}$ (think it over!), and $\mathbf{x} = \frac{1}{2}\mathbf{y} + \frac{1}{2}\mathbf{z}$. This completes the proof of the theorem.

Theorem 8 (Balinski (1970)) For any graph G, the vertices of P_G are half-integral.

Proof. ... try also with the $\pm \epsilon$ technique, as above.

Let us associate to a graph G = (V, E) another polyhedron, S_G defined by

 $S_G = \{ \mathbf{x} \in \mathbb{R}_+^E \mid x_{uv} + x_{uw} \le 1 \text{ for all } u \in V \text{ and for all } v, w \in N(u), v \ne w \}.$

Clearly, $S_G \cap \mathbb{Z}^E$ contains also exactly the characteristic vectors of matchings of G, and clearly $P_G \subset S_G$.

Theorem 9 (Nemhauser and Trotter (1974)) The vertices of S_G are also half-integral. Furthermore, if $\widehat{\mathbf{x}}$ is an optimal solution to the $LP \max_{\mathbf{x} \in S_G} \mathbf{c}^T \mathbf{x}$, then there exists an optimal solution \mathbf{x}^* to the $IP \max_{\mathbf{x} \in S_G \cap \mathbb{Z}^E} \mathbf{c}^T \mathbf{x}$ for which the following implication holds for all $(u, v) \in E$:

If
$$\widehat{x}_{uv} \in \{0,1\}$$
 then $x_{uv}^* = \widehat{x}_{uv}$.

Proof. ... $\pm \epsilon$ technique + ... in any maximum weight matching we can switch to the edges $(u, v) \in E$ for which $\widehat{x}_{uv} = 1$ by the LP optimality of $\widehat{\mathbf{x}}$.

Given a graph G=(V,E) and vertex $v\in V$, let us denote by $\delta(v)=\{(u,v)\mid u\in V,\ (u,v)\in E\}$ and for a subset $S\subseteq V$ by $\delta(S)=E\cap S\times (V\setminus S)$ the boundary set of edges. For a vector $x\in\mathbb{R}^E$ and subset $F\subseteq E$ we use $x(F)=\sum_{e\in F}x_e$.

Let us further associate to G = (V, E) the following polyhedron

$$Q_G = \left\{ \mathbf{x} \in \mathbb{R}^E \middle| \begin{array}{l} 0 \le x_{uv} \le 1 & \text{for all } (u, v) \in E \\ x(\delta(v)) = 1 & \text{for all } v \in V \\ x(\delta(S)) \ge 1 & \text{for all } S \subseteq V, |S| \ge 3, |S| \text{ odd} \end{array} \right\}$$

called the perfect matching polytope of G.

Theorem 10 (Edmonds (1965)) For every graph Q_G is integral.

Proof. See Schrijver's 1983 proof.

Lemma 2 Assume that for a vector $x \in Q_G$ and a subset $\emptyset \neq S \subseteq V$ we have |S| even, and $x(\delta(S)) < 1$. Then, for every vertex $u \in S$ we have $x(\delta(S \setminus \{u\})) < 1$.

Proof. Assume indirectly that $x(\delta(S \setminus \{u\})) \ge 1$. Denote by $F \subseteq \delta(v)$ the set of edges $F = E \cap (S \setminus \{u\})$. Then we have

$$1 > x(\delta(S)) = x(\delta(S \setminus \{u\})) + x(\delta(v)) - x(F) \ge 2 - x(F)$$

where $x(F) \leq 1$ since $F \subseteq \delta(v)$. Thus we get 2 > 2, a contradiction proving our claim.

Lemma 3 Given $x^* \in \mathbb{R}^E$ satisfying $0 \le x_{uv}^* \le 1$ for all $(u, v) \in E$ and $x^*(\delta(v)) = 1$ for all $v \in V$ we can find in polynomial time a nonempty subset $S \subsetneq V$ such that $x^*(\delta(S)) < 1$, or prove that $x^* \in Q_G$.

Proof. Let as introduce $z \in \{0,1\}^V$ and define

$$g(z) = \sum_{(u,v)\in E} x_{uv}^* \cdot (z_u \bar{z}_v + \bar{z}_u z_v),$$

where $\bar{z}_u = 1 - z_u$. Then for every subset $S \subseteq V$ we have $x^*(\delta(S)) = g(\chi(S))$. Furthermore,

$$\min_{z \in \{0,1\}^V} g(z)$$

is a submodular quadratic minimization problem, solvable in polynomial time by solving an associated min-cut problem (Hammer 1965). Thus, the problem of

$$\min_{\emptyset \neq S \subsetneq V} x^*(\delta(S))$$

is solvable by fixing in all possible ways one of the z variables at 1 and one at 0, and then minimizing g(z) for the remaining variables. If we find that the minimum value of g is always at least 1, then $x^* \in Q_G$. Otherwise we find a nontrivial subset S for which $x^*(\delta(S)) < 1$, and thus by Lemma 3, we also find such an odd set.