

SEQUENCE LISTING

Hotten, Gertrud Neidhardt, Helge Bechtold, Rolf Pohl, Jens

<120>	GROWTH/DIFFERENTIATION	FACTORS	OF	THE	TCF-B	FAMIL
- I Z Q -	OKOMITA DITTERMITATION	LWCIONS	OF	TIIL	166-5	L WILL I

<130> 2923-0286

<140> 09/901,556

<141> 1999-09-24

<150> 08/289,222

<151> 1994-08-12

<150> DE P 44 23 190.3

<151> 1994-07-01

<150> EPO 92102324.8

<151> 1992-02-12

<150> PCT/EP93/00350

<151> 1993-02-12

<160> 53

<170> PatentIn version 3.1

<210> 1

<211> 1207

<212> DNA

<213> Homo sapiens

<400> 1

gaggtacgtg	tttgacatta	gtgccctgga	gaaggatggg	ctgctggggg	ccgagctgcg	420
gatcttgcgg	aagaagccct	cggacacggc	caagccagcg	gccccggag	gcgggcgggc	480
tgcccagctg	aagctgtcca	gctgccccag	cggccggcag	ccggcctcct	tgctggatgt	540
gcgctccgtg	ccaggcctgg	acggatctgg	ctgggaggtg	ttcgacatct	ggaagctctt	600
ccgaaacttt	aagaactcgg	cccagctgtg	cctggagctg	gaggcctggg	aacggggcag	660
ggccgtggac	ctccgtggcc	tgggcttcga	ccgcgccgcc	cggcaggtcc	acgagaaggc	720
cctgttcctg	gtgtttggcc	gcaccaagaa	acgggacctg	ttctttaatg	agattaaggc	780
ccgctctggc	caggacgata	agaccgtgta	tgagtacctg	ttcagccagc	ggcgaaaacg	840
gcgggcccca	ctggccactc	gccagggcaa	gcgacccagc	aagaacctta	aggctcgctg	900
cagtcggaag	gcactgcatg	tcaacttcaa	ggacatgggc	tgggacgact	ggatcatcgc	960
accccttgag	tacgaggctt	tccactgcga	ggggctgtgc	gagttcccat	tgcgctccca	1020
cctggagccc	acgaatcatg	cagtcatcca	gaccctgatg	aactccatgg	accccgagtc	1080
cacaccaccc	acctgctgtg	tgcccacgcg	gctgagtccc	atcagcatcc	tcttcattga	1140
ctctgccaac	aacgtggtgt	ataagcagta	tgaggacatg	gtcgtggagt	cgtgtggctg	1200
caggtag						1207

<211> 2272

<212> DNA

<213> Homo sapiens

<400> 2

caaggagcca tgccagctgg acacacatt cttccagggc ctctggcagc caggacagag 60
ttgagaccac agctgttgag accctgagcc ctgagtctgt attgctcaag aagggccttc 120
cccagcaatg acctcctcat tgcttctggc ctttctcctc ctggctccaa ccacagtggc 180
cactcccaga gctggcggtc agtgtccagc atgtgggggg cccaccttgg aactggagag 240
ccagcgggag ctgcttcttg atctggccaa gagaagcatc ttggacaagc tgcacctcac 300
ccagcgccca acactgaacc gccctgtgtc cagagctgct ttgaggactg cactgcagca 360
cctccacggg gtcccacagg gggcacttct agaggacaac agggaacagg aatgtgaaat 420

catcagcttt	gctgagacag	gcctctccac	catcaaccag	actcgtcttg	attttcactt	480
ctcctctgat	agaactgctg	gtgacaggga	ggtccagcag	gccagtctca	tgttctttgt	540
gcagctccct	tccaatacca	cttggacctt	gaaagtgaga	gtccttgtgc	tgggtccaca	600
taataccaac	ctcaccttgg	ctactcagta	cctgctggag	gtggatgcca	gtggctggca	660
tcaactcccc	ctagggcctg	aagctcaagc	tgcctgcagc	caggggcacc	tgaccctgga	720
gctggtactt	gaaggccagg	tagcccagag	ctcagtcatc	ctgggtggag	ctgcccatag	780
gccttttgtg	gcagcccggg	tgagagttgg	gggcaaacac	cagattcacc	gacgaggcat	840
cgactgccaa	ggagggtcca	ggatgtgctg	tcgacaagag	ttttttgtgg	acttccgtga	900
gattggctgg	cacgactgga	tcatccagcc	tgagggctac	gccatgaact	tctgcatagg	960
gcagtgccca	ctacacatag	caggcatgcc	tggtattgct	gcctcctttc	acactgcagt	1020
gctcaatctt	ctcaaggcca	acacagctgc	aggcaccact	ggagggggct	catgctgtgt	1080
acccacggcc	cggcgccccc	tgtctctgct	ctattatgac	agggacagca	acattgtcaa	1140
gactgacata	cctgacatgg	tagtagaggc	ctgtgggtgc	agttagtcta	tgtgtggtat	1200
gggcagccca	aggttgcatg	ggaaaacacg	cccctacaga	agtgcacttc	cttgagagga	1260
gggaatgacc	tcattctctg	tccagaatgt	ggactccctc	ttcctgagca	tcttatggaa	1320
attaccccac	ctttgacttg	aagaaacctt	catctaaagc	aagtcactgt	gccatcttcc	1380
tgaccactac	cctctttcct	agggcatagt	ccatcccgct	agtccatccc	gctagcccca	1440
ctccagggac	tcagacccat	ctccaaccat	gagcaatgcc	atctggttcc	caggcaaaga	1500
cacccttagc	tcacctttaa	tagaccccat	aacccactat	gccttcctgt	cctttctact	1560
caatggtccc	cactccaaga	tgagttgaca	caaccccttc	ccccaatttt	tgtggatctc	1620
cagagaggcc	cttctttgga	ttcaccaaag	tttagatcac	tgctgcccaa	aatagaggct	1680
tacctacccc	cctctttgtt	gtgagcccct	gtccttctta	gttgtccagg	tgaactacta	1740
aagctctctt	tgcatacctt	catccatttt	ttgtccttct	ctgcctttct	ctatgccctt	1800
aaggggtgac	ttgcctgagc	tctatcacct	gagctcccct	gccctctggc	ttcctgctga	1860
ggtcagggca	tttcttatcc	ctgttccctc	tctgtctagg	tgtcatggtt	ctgtgtaact	1920
gtggctattc	tgtgtcccta	cactacctgg	ctaccccctt	ccatggcccc	agctctgcct	1980
acattctgat	tttttttt	tttttttt	tgaaaagtta	aaaattcctt	aattttttat	2040
tcctggtacc	actaccacaa	tttacagggc	aatatacctg	atgtaatgaa	aagaaaaaga	2100

aaaagacaaa go	ctacaacag ataa	aaagacc tcaggaatg	t acatctaatt gacactacat					
tgcattaatc aatagctgca ctttttgcaa actgtggcta tgacagtcct gaacaagaag								
		acttttc tgactatgg						
<210> 3								
<211> 401								
<212> PRT								
<213> Homo s	sapiens							
<400> 3								
Pro Gly Gly F	Pro Glu Pro Ly 5	ys Pro Gly His Pr 10	o Pro Gln Thr Arg Gln 15					
	Arg Thr Val Th 20	hr Pro Lys Gly Gl: 25	n Leu Pro Gly Gly Lys 30					
Ala Pro Pro L 35	Lys Ala Gly Se	er Val Pro Ser Se 40	r Phe Leu Leu Lys Lys 45					
Ala Arg Glu F 50	Pro Gly Pro Pr 55		s Glu Pro Phe Arg Pro 60					
Pro Pro Ile T 65	Thr Pro His Gl 70	lu Tyr Met Leu Se: \ 75	r Leu Tyr Arg Thr Leu 80					
Ser Asp Ala A	Asp Arg Lys Gl 85	ly Gly Asn Ser Se: 90	r Val Lys Leu Glu Ala 95					
	Asn Thr Ile Th	hr Ser Phe Ile Ası 105	D Lys Gly Gln Asp Asp 110					
Arg Gly Pro V 115	al Val Arg Ly	ys Gln Arg Tyr Vai 120	l Phe Asp Ile Ser Ala 125					

Lys Pro Ser Asp Thr Ala Lys Pro Ala Ala Pro Gly Gly Arg Ala

Leu Glu Lys Asp Gly Leu Leu Gly Ala Glu Leu Arg Ile Leu Arg Lys

. 145 . 150 . 155 . 160

Ala Gln Leu Lys Leu Ser Ser Cys Pro Ser Gly Arg Gln Pro Ala Ser 165 170 175

Leu Leu Asp Val Arg Ser Val Pro Gly Leu Asp Gly Ser Gly Trp Glu 180 185 190

Val Phe Asp Ile Trp Lys Leu Phe Arg Asn Phe Lys Asn Ser Ala Gln
195 200 205

Leu Cys Leu Glu Leu Glu Ala Trp Glu Arg Gly Arg Ala Val Asp Leu 210 215 220

Arg Gly Leu Gly Phe Asp Arg Ala Ala Arg Gln Val His Glu Lys Ala 225 230 235 240

Leu Phe Leu Val Phe Gly Arg Thr Lys Lys Arg Asp Leu Phe Phe Asn 245 250 255

Glu Ile Lys Ala Arg Ser Gly Gln Asp Asp Lys Thr Val Tyr Glu Tyr
260 265 270

Leu Phe Ser Gln Arg Arg Lys Arg Arg Ala Pro Leu Ala Thr Arg Gln 275 280 285

Gly Lys Arg Pro Ser Lys Asn Leu Lys Ala Arg Cys Ser Arg Lys Ala 290 295 300

Leu His Val Asn Phe Lys Asp Met Gly Trp Asp Asp Trp Ile Ile Ala 305 310 315 320

Pro Leu Glu Tyr Glu Ala Phe His Cys Glu Gly Leu Cys Glu Phe Pro 325 330 335

Leu Arg Ser His Leu Glu Pro Thr Asn His Ala Val Ile Gln Thr Leu 340 345 350

Met Asn Ser Met Asp Pro Glu Ser Thr Pro Pro Thr Cys Cys Val Pro 355 360 365

Thr Arg Leu Ser Pro Ile Ser Ile Leu Phe Ile Asp Ser Ala Asn Asn 370 375 380

Val Val Tyr Lys Gln Tyr Glu Asp Met Val Val Glu Ser Cys Gly Cys 385 390 395 400

Arg

<210> 4

<211> 352

<212> PRT

<213> Homo sapiens

<400> 4

Met Thr Ser Ser Leu Leu Leu Ala Phe Leu Leu Leu Ala Pro Thr Thr 1 5 10 15

Val Ala Thr Pro Arg Ala Gly Gly Gln Cys Pro Ala Cys Gly Gly Pro
20 25 30

Thr Leu Glu Leu Glu Ser Gln Arg Glu Leu Leu Leu Asp Leu Ala Lys 35 40 45

Arg Ser Ile Leu Asp Lys Leu His Leu Thr Gln Arg Pro Thr Leu Asn 50 55 60

Arg Pro Val Ser Arg Ala Ala Leu Arg Thr Ala Leu Gln His Leu His 65 70 75 80

Gly Val Pro Gln Gly Ala Leu Leu Glu Asp Asn Arg Glu Gln Glu Cys
85 90 95

Glu Ile Ile Ser Phe Ala Glu Thr Gly Leu Ser Thr Ile Asn Gln Thr 100 105 110

Arg Leu Asp Phe His Phe Ser Ser Asp Arg Thr Ala Gly Asp Arg Glu 115 120 125

Val Gln Gln Ala Ser Leu Met Phe Phe Val Gln Leu Pro Ser Asn Thr

. 130 135 140

Thr 145	Trp	Thr	Leu	Lys	Val 150	Arg	Val	Leu	Val	Leu 155	Gly	Pro	His	Asn	Thr 160
Asn	Leu	Thr	Leu	Ala 165	Thr	Gln	Tyr	Leu	Leu 170	Glu	Val	Asp	Ala	Ser 175	Gly
Trp	His	Gln	Leu 180	Pro	Leu	Gly	Pro	Glu 185	Ala	Gln	Ala	Ala	Cys 190	Ser	Glr
Gly	His	Leu 195	Thr	Leu	Glu	Leu	Val 200	Leu	Glu	Gly	Gln	Val 205	Ala	Gln	Ser
Ser	Val 210	Ile	Leu	Gly	Gly	Ala 215	Ala	His	Arg	Pro	Phe 220	Val	Ala	Ala	Arç
Va1 225	Arg	Val	Gly	Gly	Lys 230	His	Gln	Ile	His	Arg 235	Arg	Gly	Ile	Asp	Cys 240
Gln	Gly	Gly	Ser	Arg 245	Met	Cys	Cys	Arg	Gln 250	Glu	Phe	Phe	Val	Asp 255	Phe
Arg	Glu	Ile	Gly 260	Trp	His	Asp	Trp	Ile 265	Ile	Gln	Pro	Glu	Gly 270	Tyr	Ala
Met	Asn	Phe 275	Cys	Ile	Gly	Gln	Cys 280	Pro	Leu	His	Ile	Ala 285	Gly	Met	Pro
Gly	Ile 290	Ala	Ala	Ser	Phe	His 295	Thr	Ala	Val	Leu	Asn 300	Leu	Leu	Lys	Ala
Asn 305	Thr	Ala	Ala	Gly	Thr 310	Thr	Gly	Gly	G1y	Ser 315	Cys	Cys	Val	Pro	Thr 320
Ala	Arg	Arg	Pro	Leu 325	Ser	Leu	Leu	Tyr	Tyr 330	Asp	Arg	Asp	Ser	Asn 335	Ile
Val	Lys	Thr	Asp 340	Ile	Pro	Asp	Met	Val 345	Val	Glu	Ala	Cys	Gly 350	Cys	Ser

	<210> 5	
	<211> 265	
	<212> DNA	
•	<213> Homo sapiens	
	<400> 5	
	catccagect gagggetacg ccatgaactt ctgcataggg cagtgcccac tacacatage	60
	aggcatgcct ggtattgctg cctcctttca cactgcagtg ctcaatcttc tcaaggccaa	120
	cacagetgea ggeaceaetg gagggggete atgetgtgta eccaeggeee ggegeeeet	180
	gtctctgctc tattatgaca gggacagcaa cattgtcaag actgacatac ctgacatggt	240
	agtagaggcc tgtgggtgca gttag	265
	<210> 6	
	<211> 139	
	<212> DNA	
	<213> Homo sapiens	
	<400> 6 Catcgcaccc cttgagtacg aggctttcca ctgcgagggg ctgtgcgagt tcccattgcg	60
	ctcccacctg gagcccacga atcatgcagt catccagacc ctgatgaact ccatggaccc	120
	cgagtccaca ccacccacc	139
		133
	<210> 7	
	<211> 27	
	<212> DNA	
	<213> Homo sapiens	
	<400> 7	
	atgaactcca tggaccccga gtccaca	27
	<210> 8	
	<211> 30	
	<212> DNA	
	<213> Homo saniens	

```
<210> 9
<211> 9
<212> PRT
<213> Homo sapiens
<400> 9
Met Asn Ser Met Asp Pro Glu Ser Thr
<210> 10
<211>
     10
<212> PRT
<213> Homo sapiens
<400> 10
Leu Leu Lys Ala Asn Thr Ala Ala Gly Thr
<210> 11
<211> 44
<212>
<213> artificial sequence
<220>
<223> oligodT (16 residues) linked to adapter primer
<400> 11
agaattcgca tgccatggtc gacgaagctt ttttttttt tttt
                                                                     44
<210> 12
```

30

<400> 8

<211> 24

<212> DNA

cttctcaagg ccaacacagc tgcaggcacc

<220>		
<223>	adaptor primer	
<400> agaatt	12 .cgca tgccatggtc gacg 24	4
<210>	13	
<211>	24	
<212>	DNA	
<213>	Homo sapiens	
<400> ggctac	13 gcca tgaacttctg cata	24
<210>	14	
<211>	24	
<212>	DNA	
<213>	Homo sapiens	
<400> acatag	14 cagg catgcctggt attg	24
<210>	15	
<211>	23	
<212>	DNA	
<213>	Homo sapiens	
<400> cttgag	15 tacg aggettteca etg	23
<210>	16	
<211>	24	
<212>	DNA	
<213>	artificial sequence	

<213> artificial sequence

<220>		
<223>	nested adaptor primer	
	16 atgc catggtcgac gaag	24
<210>	17	
<211>	23	
<212>	DNA	
<213>	Homo sapiens	
	17 cacg aatcatgcag tca	23
<210>	18	
<211>	23	
<212>	DNA	
<213>	Homo sapiens	
<400> acagcag	18 ggtg ggtggtgtgg act	23
<210>	19	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400> ccagcag	19 geec atecttetee	20
<210>	20	
<211>	24	
<212>	DNA	
<213>	Homo sapiens	
<400> tccaggg	20 gcac taatgtcaaa cacg	24

<211> 24

<212> DNA

<213> Homo sapiens

<400> 21

actaatgtca aacacgtacc tctg

24

<210> 22

<211> 102

<212> PRT

<213> Homo sapiens

<400> 22

Cys Ser Arg Lys Ala Leu His Val Asn Phe Lys Asp Met Gly Trp Asp 1 5 10 15

Asp Trp Ile Ile Ala Pro Leu Glu Tyr Glu Ala Phe His Cys Glu Gly 20 25 30

Leu Cys Glu Phe Pro Leu Arg Ser His Leu Glu Pro Thr Asn His Ala 35 40 45

Val Ile Gln Thr Leu Met Asn Ser Met Asp Pro Glu Ser Thr Pro Pro 50 55 60

Thr Cys Cys Val Pro Thr Arg Leu Ser Pro Ile Ser Ile Leu Phe Ile 65 70 75 80

Asp Ser Ala Asn Asn Val Val Tyr Lys Gln Tyr Glu Asp Met Val Val 85 90 95

Glu Ser Cys Gly Cys Arg 100

<210> 23

<211> 101

<212> PRT

<213> Homo sapiens

<400> 23

Cys Lys Arg His Pro Leu Tyr Val Asp Phe Ser Asp Val Gly Trp Asn 1 5 10 15

Asp Trp Ile Val Ala Pro Pro Gly Tyr His Ala Phe Tyr Cys His Gly
20 25 30

Glu Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr Asn His Ala 35 40 45

Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser Lys Ile Pro Lys Ala 50 55 60

Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser Met Leu Tyr Leu Asp 70 75 80

Glu Asn Glu Lys Val Val Leu Lys Asn Tyr Gln Asp Met Val Val Glu 85 90 , 95

Gly Cys Gly Cys Arg 100

<210> 24

<211> 101

<212> PRT

<213> Homo sapiens

<400> 24

Cys Arg Arg His Ser Leu Tyr Val Asp Phe Ser Asp Val Gly Trp Asn $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Asp Trp Ile Val Ala Pro Pro Gly Tyr Gln Ala Phe Tyr Cys His Gly 20 25 30

Asp Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr Asn His Ala

35 40 45

Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser Ser Ile Pro Lys Ala 50 55 60

Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser Met Leu Tyr Leu Asp 65 70 75 80

Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr Gln Glu Met Val Val Glu 85 90 95

Gly Cys Gly Cys Arg 100

<210> 25

<211> 102

<212> PRT

<213> Homo sapiens

<400> 25

Cys Lys Lys His Glu Leu Tyr Val Ser Phe Arg Asp Leu Gly Trp Gln 1 5 10 15

Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala Ala Phe Tyr Cys Asp Gly 20 25 30

Glu Cys Ser Phe Pro Leu Asn Ala His Met Asn Ala Thr Asn His Ala 35 40 45

Ile Val Gln Thr Leu Val His Leu Met Phe Pro Asp His Val Pro Lys 50 55 60

Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe 65 70 75 80

Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn Met Val Val 85 90 95

Arg Ser Cys Gly Cys His

<211> 102

<212> PRT

<213> Homo sapiens

<400> 26

Cys Arg Lys His Glu Leu Tyr Val Ser Phe Gln Asp Leu Gly Trp Gln 1 5 10 15

Asp Trp Ile Ile Ala Pro Lys Gly Tyr Ala Ala Asn Tyr Cys Asp Gly 20 25 30

Glu Cys Ser Phe Pro Leu Asn Ala His Met Asn Ala Thr Asn His Ala 35 40 45

Ile Val Gln Thr Leu Val His Leu Met Asn Pro Glu Tyr Val Pro Lys 50 55 60

Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe 70 75 80

Asp Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn Met Val Val 85 90 95

Arg Ala Cys Gly Cys His 100

<210> 27

<211> 102

<212> PRT

<213> Homo sapiens

<400> 27

Cys Lys Lys His Glu Leu Tyr Val Ser Phe Arg Asp Leu Gly Trp Gln 1 5 10 15

Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala Ala Tyr Tyr Cys Glu Gly

20 25 30

Glu Cys Ala Phe Pro Leu Asn Ser Tyr Met Asn Ala Thr Asn His Ala 35 40 45

Ile Val Gln Thr Leu Val His Phe Ile Asn Pro Glu Thr Val Pro Lys 50 55 60

Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser Val Leu Tyr Phe 65 70 75 80

Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn Met Val Val 85 90 95

Arg Ala Cys Gly Cys His 100

<210> 28

<211> 106

<212> PRT

<213> Homo sapiens

<400> 28

Cys Cys Arg Gln Glu Phe Phe Val Asp Phe Arg Glu Ile Gly Trp His 1 5 10 15

Asp Trp Ile Ile Gln Pro Glu Gly Tyr Ala Met Asn Phe Cys Ile Gly 20 25 30

Gln Cys Pro Leu His Ile Ala Gly Met Pro Gly Ile Ala Ala Ser Phe 35 40 45

His Thr Ala Val Leu Asn Leu Leu Lys Ala Asn Thr Ala Ala Gly Thr 50 55 60

Thr Gly Gly Ser Cys Cys Val Pro Thr Ala Arg Arg Pro Leu Ser 65 70 75 80

Leu Leu Tyr Tyr Asp Arg Asp Ser Asn Ile Val Lys Thr Asp Ile Pro 85 90 95

Asp Met Val Val Glu Ala Cys Gly Cys Ser 100 105

<210> 29

<211> 106

<212> PRT

<213> Homo sapiens

<400> 29

Cys Cys Lys Lys Gln Phe Phe Val Ser Phe Lys Asp Ile Gly Trp Asn 1 5 10 15

Asp Trp Ile Ile Ala Pro Ser Gly Tyr His Ala Asn Tyr Cys Glu Gly 20 25 30

Glu Cys Pro Ser His Ile Ala Gly Thr Ser Gly Ser Ser Leu Ser Phe 35 40 45

His Ser Thr Val Ile Asn His Tyr Arg Met Arg Gly His Ser Pro Phe 50 55 60

Ala Asn Leu Lys Ser Cys Cys Val Pro Thr Lys Leu Arg Pro Met Ser 65 70 75 80

Met Leu Tyr Tyr Asp Asp Gly Gln Asn Ile Ile Lys Lys Asp Ile Gln 85 90 95

Asn Met Ile Val Glu Glu Cys Gly Cys Ser 100 105

<210> 30

<211> 105

<212> PRT

<213> Homo sapiens

<400> 30

Cys Cys Arg Gln Gln Phe Phe Ile Asp Phe Arg Leu Ile Gly Trp Asn

1 5 10 15

Asp Trp Ile Ile Ala Pro Thr Gly Tyr Tyr Gly Asn Tyr Cys Glu Gly 20 25 30

Ser Cys Pro Ala Tyr Leu Ala Gly Val Pro Gly Ser Ala Ser Ser Phe 35 40 45

His Thr Ala Val Val Asn Gln Tyr Arg Met Arg Gly Leu Asn Pro Gly 50 55 60

Thr Val Asn Ser Cys Cys Ile Pro Thr Lys Leu Ser Thr Met Ser Met 65 70 75 80

Leu Tyr Phe Asp Asp Glu Tyr Asn Ile Val Lys Arg Asp Val Pro Asn 85 90 95

Met Ile Val Glu Glu Cys Gly Cys Ala 100 105

<210> 31

<211> 105

<212> PRT

<213> Homo sapiens

<400> 31

Cys His Arg Val Ala Leu Asn Ile Ser Phe Gln Glu Leu Gly Trp Glu 1 5 10 15

Arg Trp Ile Val Tyr Pro Pro Ser Phe Ile Phe His Tyr Cys His Gly 20 25 30

Gly Cys Gly Leu His Ile Pro Pro Asn Leu Ser Leu Pro Val Pro Gly 35 40 45

Ala Pro Pro Thr Pro Ala Gln Pro Tyr Ser Leu Leu Pro Gly Ala Gln 50 55 60

Pro Cys Cys Ala Ala Leu Pro Gly Thr Met Arg Pro Leu His Val Arg 65 70 75 80

Thr Thr Ser Asp Gly Gly Tyr Ser Phe Lys Tyr Glu Thr Val Pro Asn 85 90 95

Leu Leu Thr Gln His Cys Ala Cys Ile 100 105

- <210> 32
- <211> 36
- <212> DNA
- <213> artificial sequence
- <220>
- <223> OD PCR amplification primer
- <400> 32

atgaattccc atggacctgg gctggmakga mtggat

36

- <210> 33
- <211> 22
- <212> DNA
- <213> Homo sapiens
- <400> 33

acgtggggtg gaatgactgg at

22

- <210> 34
- <211> 22
- <212> DNA
- <213> Homo sapiens
- <400> 34

atattggctg gagtgaatgg at

- <210> 35
- <211> 22

<212>	DNA	
<213>	Homo sapiens	
<400> atgtgg	35 gctg gaatgactgg at	22
<210>	36	
<211>	22	
<212>	DNA	
<213>	Homo sapiens	
<400> acctgg	36 gctg gcaggactgg at	22
<210>	37	
<211>	22	
<212>	DNA	
<213>	Homo sapiens	
<400> aggacct	37 tcgg ctggaagtgg at	22
<210>	38	
<211>	22	
<212>	DNA	
<213>	Homo sapiens	
<400> gggatct	38 tagg gtggaaatgg at	22
<210>	39	
<211>	22	
<212>	DNA	
<213>	Homo sapiens	
<400> aggatet	39 tggg ctggaagtgg gt	22

<210>	40		
<211>	22		
<212>	DNA		
<213>	Homo sapiens		
<400> agctgg	40 gctg ggaacggtgg at	22	
<210>	41		
<211>	22		
<212>	DNA		
<213>	Homo sapiens		
<400> acatcg	41 gctg gaatgactgg at	22	
<210>	42		
<211>	22		
<212>	DNA		
<213>	Homo sapiens		
<400> tcatcg	42 gctg gaacgactgg at	22	
<210>	43		
<211>	29		
<212>	DNA		
<213>	artificial sequence		
<220>			
<223>	OID PCR amplification primer		
<400> atgaat	43 tega getgegtsgg sreacagea		29

<211>	21	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<223>	oligodT (16 residues) linked to adapter primer	
<400> gagtto	44 tgtc gggacacagc a	21
<210>	45	
<211>	21	
<212>	DNA	
<213>	Homo sapiens	
	45 Ettet ggtacacage a	21
<210>	46	
<211>	21	
<212>	DNA	
<213>	Homo sapiens	
<400> cagtto	46 cagtg ggcacacaac a	21
<210>	47	
<211>	21	
<212>	DNA	
<213>	Homo sapiens	
	47 gegtg ggegeaeage a	21
<210>		

<211> 21

n	as	4
C)	-7	•

<212>	DNA	
<213>	Homo sapiens	
	48 ctgc ggcacgcagc a	21
<210>	49	
<211>	21	
<212>	DNA	
<213>	Homo sapiens	
	49 ttgg gacacgcagc a	21
<210>	50	
<211>	21	
<212>	DNA	
<213>	Homo sapiens	
<400> caggtc	50 ctgg ggcacgcagc a	21
<210>	51	
<211>	21	
<212>	DNA	
<213>	Homo sapiens	
<400> ccctggg	51 gaga gcagcacagc a	21
<210>	52	
<211>	21	
<212>	DNA	
<213>	Homo sapiens	
<400>	52 ggtg ggcacacagc a	21

· <210> 53

<211> 21

<212> DNA

<213> Homo sapiens

<400> 53

cagcttggtg ggaatgcagc a