Assignment 3

Question 1

D characteristic table

P	~ ~	10 t+1	
0	0	0	clear to 0
.0.		Qt	no charge
٠١ .	0	Ot'	complement
.1 .			Set to 1

3 excitation table

	Qt	Q(t+1)	P	N
	0	O	0	X
	.0.) .	×
-	.1.		× .	. 0 .
			*	· ;

1) truth table

٠	P	~ \	Qt	Qt+1
	0	0	0	
	0	0		0
	0	• • •	0	0.
1	0		1	
ł	1.	0	` ``	
ŀ		· .	1	0.
-	,	• • • •		
-			,	
			1	1

4 PN flip flop -> D flip flop

Present	Input	Next	PNFF Input
\mathcal{O}_{t}	· · · X	Qt+1	PN
0	o	O	0 ×
0	1		
		. •	$ \times \cdot _{\Omega}$
	1 . 1.		• × • ; •

Karnaugh Map

1	PN	Ot	0	. .
Ţ	0 0		0	0
\int	.0 .1		0	
٦.	1 1		. 1	
	.1 .0	• •		.0.
. 7				

D	٠.	F	liD'	F	lop
•				•	

1	Q _t	Ď	Q_{t+l}
١.	Ō	. 0.	.0
	စ	1	
١.	į	0	0
	.1	l.	

٠	D.		10t+1
	0	•	0

	•																						
ċ	ر.	ho	r'C	ac.	tei	ris	ti	C	e	yu	at	iOV	١:	$2t_1$	F/_	=	Q	t	V	+	Ot	F) ·

$$A(t+1) = J_A A' + k_A' A = x'A' + B'A$$
 $B(t+1) = J_B B' + k_B' B = xB' + AB$

$$\begin{cases} A(t+1) = x'A'(t) + B(t) A(t) \\ B(t+1) = x B'(t) + A(t) B(t) \end{cases}$$

Next.							
_			=				
A	B	A	B				
١٠	0	. 0.					
7	5	ວ	0				
1.	ō	. / .	.1 .				
0	i	0	1				
	A	x = 0 A B 1 0 1 0 1 0	A B A 1 0 0 1 0 0 1 0 1				

State diagram

state table 如果多处行的方

3 Karnaugh Map for Attl

					_
At Bt XY	00	0		10	
0.0	ò	Y		Đ	
. 0 . 1		.1)	3	0	
. (0	0	1	0	L
1.0.	, 0	(1		0	

A(t+1) = B(t)y+ A(t) xy+ A(t) B(t) x' state equation for A and B

$$\begin{cases} A(t+1) = B(t)y + A(t) \times y + A(t) B(t) \times \\ B(t+1) = A(t) B(t) \times x' + A'(t) B(t) y + A(t) B'(t) \times x' \end{cases}$$

Bitti) = Ait) Bit) x' + A'it) Bit) y

+ Alto Bits x

D State diagram

@ 0/0/00/00/11

original table.

 $\frac{1}{3}b \xrightarrow{0} d \xrightarrow{1} a \xrightarrow{1} b \xrightarrow{1} c$

 $a \rightarrow f \rightarrow b \rightarrow d \rightarrow a \rightarrow f \rightarrow f$

- 9
- Output -> 01000110000

reduced table.

$$a \xrightarrow{\circ} f \xrightarrow{\downarrow} b \xrightarrow{\circ} d \xrightarrow{\downarrow} a \xrightarrow{\circ} f \xrightarrow{\circ} f$$

$$\xrightarrow{\downarrow} b \xrightarrow{\circ} d \xrightarrow{\downarrow} a \xrightarrow{\downarrow} b \xrightarrow{\downarrow} a$$

- Next State 0x = 0 x = 1 x = 0
- Output
 - x=0 x=1 Output $\rightarrow 01000110000$
 - a finds
-

- d
- . a.

- f
- £ , , , *b*,

(3)

Present	Input	Output	Input f	or TFF
A B	· · · · · · · · · · · · · · · · · · ·	A' B'	T _A	TB
0 0	0	. O	0	. 1
0 0		0 0	0 .	. 0
01		.11		0
	• • •	.1		
			0	·
		. 1 0	0	. D
		0 0		. 1
		. ,	0 0 0	. ₀

AB\x	0		
00	0	Ū.	,
01	(1)		-
		6	
	0	0	

TA	٠ _	A'I	3 .	† .	Bo	κ'

AB X	0	1
00		9
0	0	U
1.1.		J
. 1.0		. 0

$$T_B = A'Bx + B'x' + Ax'$$

$$\begin{cases}
T_A = A'B + Bx' \\
T_B = A'Bx + B'x' + Ax'
\end{cases}$$