<u>Dashboard</u> / My courses / MA-224-G 24H / Tests / Test 1 (topics 1-3: Introduction, Concepts, Induction, Recursion, Grammars)

Started on Wednesday, 11 September 2024, 12:16 PM

State Finished

Completed on Wednesday, 11 September 2024, 12:37 PM

Time taken 21 mins 3 secs

Marks 1.82/3.00

Grade 1.82 out of 3.00 (60.57%)

Information

Information

This page contains all the problems for this test. The very last problem asks you to contact the person in charge of the exam and tell him or her the 4-digit key given in the problem text. In return you will be given a 5-digit signing code which you must give as the answer to the problem.

This problem does not count towards the final score, but tests missing this code will not count towards the final grade.

The following rules apply:

- Total time allowed: 30 minutes. The test will automatically close if time runs out.
- UiA's usual rules in regards to cheating on exams apply.

Question **1**

Partially correct

Mark 0.75 out of 1.00

We use the notation $\{x\cdot n|n\in\mathbb{N}\}$ for all natural multiples of x. Compute the following sets.

$$\{7 \cdot n | n \in \mathbb{N}\} \cup \{21 \cdot n | n \in \mathbb{N}\} = \{ \mid 7 \quad | \cdot n | n \in \mathbb{N}\}$$

Your last answer was interpreted as follows:

7

$$\{6\cdot n|n\in\mathbb{N}\}\cup\{3\cdot n|n\in\mathbb{N}\}$$
 = $\{\boxed{3}$ $\cdot n|n\in\mathbb{N}\}$

Your last answer was interpreted as follows:

3

$$\{5\cdot n|n\in\mathbb{N}\}\cap\{25\cdot n|n\in\mathbb{N}\}$$
 = $\{$ 25 $\cdot n|n\in\mathbb{N}\}$

Your last answer was interpreted as follows:

25

$$\{8\cdot n|n\in\mathbb{N}\}\cap\{22\cdot n|n\in\mathbb{N}\}$$
 = $\{egin{array}{ccc}0&&&&\\-n|n\in\mathbb{N}\}\end{array}$

Your last answer was interpreted as follows:

0

Question **2**Partially correct

Mark 0.67 out of 1.00

Compute the prime factorizations of the following natural numbers.

Write the answer in the following form:

$$p_1^{e_1}\cdot p_2^{e_2}\cdot \dots p_n^{e_n}$$

where p_i is a prime and e_i is a natural number. All the primes p_i must be distinct.

19^1*3^2*2^1	
Your last answer was interpreted	as follows:
$19^1 \cdot 3^2 \cdot 2^1$	
19^1*3^2*2^3	
Your last answer was interpreted	as follows:
$19^1 \cdot 3^2 \cdot 2^3$	
439^1*2^1	
Your last answer was interpreted	as follows:
$439^1\cdot 2^1$	
	Your last answer was interpreted $19^1\cdot 3^2\cdot 2^1$ $19^{^1*3^2\cdot 2^3}$ Your last answer was interpreted $19^1\cdot 3^2\cdot 2^3$ $439^{^1*2^1}$ Your last answer was interpreted

Question $\bf 3$

Partially correct

Mark 0.40 out of 1.00

Consider the following EBNF grammar.

 $A \rightarrow h \mid rh[r]$

 $O \rightarrow M \mid O c O$

 $N \to h \mid h \; N \mid \epsilon$

 $P \rightarrow M \mid P d M \mid \epsilon$

 $M \rightarrow y \mid y y y$

Check the ambiguity of the grammar.

The grammar is ambiguous with the start symbol A:

False

The grammar is ambiguous with the start symbol O:

False

The grammar is ambiguous with the start symbol N:

False

The grammar is ambiguous with the start symbol P:

True

The grammar is ambiguous with the start symbol M:

False

12.00 1 111	root i (topico i o i introduction, o oneopic, induction, i topico i, o i animaro).
Question 4	
orrect	
Mark 0.00 out of 0.00	
C:	
Signing code	
Before closing the test you must	t answer this problem with a signing code given to you by the person in charge of the test.
Tests missing this signing code v	will be ignored and will not count towards the final score.
Key: 414	
Signing code: 26581	
Your last answer was int	erpreted as follows:
	26581
▼ Technical test	
Jump to	
1	