Exercises in Marine Ecological Genetics

11. Metabarcoding: microbiome analysis

- Prepare metabarcoding raw data
- "Denoise" reads and identify ASVs (Amplicon Sequence Variants)
- Analyze the microbial community composition
- Assess alpha and beta diversity

Martin Helmkampf

Download course materials using git

Go to project directory

```
cd dir  # e.g. Documents/meg23_exercises
ls -l  # view directory contents, long format
```

Update course repository

```
cd meg23_repo
git pull
```


In case of an error message

Avoiding version conflict

Please do not save over files in the course repository. Instead, save your own scripts to the local subdirectory (including copies of course scripts you would like to edit), e.g with

cp code/11_meta.sh ../local/11_meta_lc.sh

cp [source] [destination]

Example dataset

Do sea cucumbers of the species Actinopyga crassa in the Red Sea:

- feed selectively?
- change the microbial community of the sediment?

Sample	N
Seawater	3
Seagrass	4
Sediment	4
Foregut	5
Midgut	5
Hindgut	5

Sabrin Abdelghany

Approach: Amplicon sequencing of 16S region V3-V4 (~ 460 bp) on Illumina MiSeq Microbiome analysis with QIIME 2

Oldenburg

Amplicon sequencing

Next-gen sequencing of specific genomic regions (e.g. 16S)

Many samples in parallel by multiplexing (using unique molecular barcode for each sample)

Dual-PCR library preparation

Illumina MiSeq bench top sequencer 7–25 million reads, up to 2 × 300 bp

Illumina Inc.

QIIME 2 microbiome analysis workflow

qiime2.org

Demultiplexing

Exercise 1

• Import raw (e.g. FASTQ) and metadata

qiime tools import

Demultiplex, remove primers

qiime demux-paired

qiime trim-paired

Join pairs

qiime vsearch join-pairs

Quality check

qiime demux summarize

at each step

output.qza (data)

output.qzv (visualization)

Input for next step

View at https://view.qiime2.org

Denoising

qiime deblur denoise-16S

Exercise 2

Quality filter

Filter out low-quality sequences, trim reads

Dereplicate

Count sequences, remove singletons and PCR artifacts

Deblur

Statistically infer error-free sequences, remove chimeras

Amplicon Sequence Variants (ASVs)

ASV sequences
Representative sequences

ASV frequencies
Feature table

Denoising stats

Alternative:

Cluster sequences into

Operational Taxonomic Units

(OTUs), e.g. with 97% threshold

Matching sequences to database with BLAST

Algorithm overview

- Split query into very short segments (k-mers or words)
- Find exact matches between words and sequences in database (seeds)
- Extend matches to local alignments (HSP; stop once too many mismatches occur)
- Evaluate statistical significance of each HSP (e-value)

		Description	Scientific Name	Max Score		Query Cover		Per. Ident	Acc. Len	Accession
	~	Oncorhynchus keta mitochondrial COX1 gene for cytochrome c oxidase subunit 1, partial cds, isolate: OK_M08F	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	772	LC094471.1
1	~	Oncorhynchus keta mitochondrial COX1 gene for cytochrome c oxidase subunit 1, partial cds, isolate: OK_M01F	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	772	LC094464.1
	~	Oncorhynchus keta isolate 10_Narva cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	655	KR778851.1

. . .

QIIME 2 microbiome analysis workflow

qiime2.org

Taxonomic classification

- What species are present in each sample?
- Achieved by comparing query sequences (ASVs) to reference database
- Alignment-based (e.g. BLAST) or using machine-learning

qiime feature-classifier

Castelle & Banfield 2018, Cell

How diverse is the community?

How similar / dissimilar are the communities?

qiime diversity

Alpha diversity

Within-community diversity, e.g. species richness, Shannon's index, $---H'=-\sum_{i=1}^n p_i \ln p_i$ Faith's Phylogenetic Diversity, Pielou's Evenness

$$J'=rac{H'}{H'_{
m max}}$$

Beta diversity

Dissimilarity between communities, e.g. Bray-Curtis index (taxonomic dissimilarity),

Jaccard distance, UniFrac distance (phylogenetic dissimilarity)

and distance, UniFrac distance (phylogenetic dissimilarity)
$$BC_{ij} = 1 - \frac{2C_{ij}}{S_i + S_j}$$

$$d_J(A,B) = 1 - J(A,B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|} \quad \text{0 (same community)}$$

1 (no similarity)

- Diversity estimates are sensitive to sample size (sequencing depth)
 - subsampling to the same depth is required (rarefaction)
- Statistical testing of differences possible

qiime feature—table rarefy

Visualize by ordination (Principal Coordinate Analysis)

Further analyses

- Differential abundance testing
- Phylogenetic tree building
- Time-series data

Course outline

Class	Date	Topics	Script
01	Apr 14	Introduction, software installation	01_intro.R
02	Apr 21	Hardy-Weinberg equilibrium	02_hwe.R
03	Apr 28	Genetic drift and effective population size	03_drift.R
04	May 05	Population structure and gene flow	04_structure.R
05	May 12	Isolation by distance (lecture online, exercises in person)	05_ibd.R
_	May 19	Himmelfahrt break	-
06	May 26	Genome sequencing and assembly	06_genseq.sh
07	Jun 02	Genotyping, SNPs and population genomics	07_snps.sh
08	Jun 09	Recombination and linkage disequilibrium	08_recomb.R
_	Jun 16	Student presentations	_
09	Jun 23	Selection and mutation	09_sel.R
10	Jun 30	DNA barcoding	10_barcode.sh
11	Jul 07	Metabarcoding: microbiome analysis	11_meta.sh
12	Jul 14	Metabarcoding: eDNA	