MATHEMATICS-I

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

August 19, 2024

Lecture 7 Infinite Sequences

Important Limits:

$$\lim_{n\to\infty}\frac{\ln n}{n}=0$$

$$\lim_{n\to\infty} n^{1/n} = 1$$

$$\lim_{n \to \infty} x^{1/n} = 1 \ (x > 0)$$

$$\lim_{n \to \infty} x^n = 0 \ (|x| < 1)$$

$$\lim_{n\to\infty} (1+\frac{x}{n})^n = e^x \ (\text{any } x\in\mathbb{R})$$

$$\lim_{n\to\infty}\frac{x^n}{n!}=0 \ \ (\text{any } x\in\mathbb{R})$$

Sequences defined recursively: Sequences are aften defined recursively by giving

- The value(s) of the initial term(s) and
- A rule, called a recursion formula, for calculating any later term from terms that precede it.

Examples

- Let $a_1 = 1$ and $a_n = a_{n-1} + 1$ for n > 1. This recursion formula with $a_1 = 1$ defines the sequence $\{1, 2, 3, \ldots\}$.
- Let $a_1 = 1$, $a_2 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for n > 2 define the sequence $1, 1, 2, 3, 5, \ldots$ of **Fibonacci numbers**.
- $a_1 = 0$, $a_2 = 1$ and $a_n = (a_{n-1} + a_{n-2})/2$ for n > 2.

Bounded and Monotonic Sequences

Bounded Sequences:

- A sequence $\{a_n\}$ is said to be **bounded from above** if there exists a number M such that $a_n \leq M$ for all n. The number M is an **upper bound** for $\{a_n\}$.
- If u is an upper bound for $\{a_n\}$ but any number less than u is not an upper bound for $\{a_n\}$, then u is called the **least upper bound** (lup) for $\{a_n\}$.
- Examples: $\{n/(n+2)\}$ is bounded from above. 2 is an upper bound. What is the least upper bound for this sequence?

Bounded Sequences

- A sequence $\{a_n\}$ is said to be **bounded from below** if there exists a number m such that $a_n \ge m$ for all n. The number m is a **lower bound** for $\{a_n\}$.
- If ℓ is a lower bound for $\{a_n\}$ but no number greater than ℓ is a lower bound for $\{a_n\}$, then ℓ is called the **greatest lower bound** (glb) for $\{a_n\}$.
- Example: $\{n/(n-2)\}$ is bounded from below. 0 is a lower bound. What is the greatest lower bound for this sequence?

Boundedness

- If $\{a_n\}$ is bounded from above and below, then $\{a_n\}$ is called **bounded**.
- If $\{a_n\}$ is not bounded, then we say that $\{a_n\}$ is an **unbounded sequence**.
- Example: n + 1 is bounded from below by 2 but it is not bounded above, so it is unbounded.
- $\{n/(n-\frac{1}{2})\}$ is bounded from below by 1 and above by 3. Hence it is bounded.

Boundedness

Theorem 0.1.

Every convergent sequence $\{a_n\}$ is bounded (bounded from above and bounded from below) equivalently there exist $M, m \in \mathbb{R}$ such that $m \leq a_n \leq M$ for all n.

Monotonic Sequences

Monotonic Sequences: A sequence $\{a_n\}$ is said to be

- increasing if $a_n \le a_{n+1}$ for all n, i.e., $a_1 \le a_2 \le a_3 \le \cdots$.
- **decreasing** if $a_n \ge a_{n+1}$ for all n, i.e., $a_1 \ge a_2 \ge a_3 \ge \cdots$.
- monotonic if the sequence $\{a_n\}$ is either decreasing or increasing.
- **Examples:** The sequence $\{1, 2, 3, ...\}$ is increasing.
- And the sequence $\{1/n\}$ is decreasing.

Monotonic Sequences

- The constant sequence $\{2,2,2,\ldots\}$ is both decreasing and increasing.
- The sequence $\{1,-1,1,-1,\ldots\}$ is not monotonic but bounded.

Theorem 0.2 (The Monotonic Sequence Theorem). If a sequence $\{a_n\}$ is both bounded and monotonic, then the sequence $\{a_n\}$ is convergent.

- If the sequence $\{a_n\}$ is increasing and bounded then it converges to its lub.
- If the sequence $\{a_n\}$ is decreasing and bounded then it converges to its glb.

Subsequences:

- Consider the sequences $\{1, 1/2, 1/3, \ldots\}$.
- $\{1,1/3,1/5,\ldots\}$; $\{1,1/2,1/4,\ldots\}$ or $\{1/3,1/6,1/9,\ldots\}$.
- Let $n_1 < n_2 < n_3 < \cdots$ be strictly increasing sequence of positive integers and $\{a_n\}$ be a sequence of real numbers then the sequence $\{a_{n_k}\}_{k=1}^{\infty} = \{a_{n_1}, a_{n_2}, a_{n_3}, \ldots\}$ is called a subsequence of $\{a_n\}$.
- Examples: $\{1, 1, 1, ...\}$ and $\{-1, -1, -1, ...\}$ are subsequences of $\{(-1)^n\}$.
- $\{1/2^{n^2}\}$ is a subsequence of $\{1/2^n\}$.

Properties of Subsequences

Theorem 0.3.

If the sequence $\{a_n\}$ converges to L then all the subsequences $\{a_{n_k}\}$ converges to L.

Corollary 0.4.

If one of the subsequences of $\{a_n\}$ diverges then the sequence $\{a_n\}$ also diverges.

Theorem 0.5.

If the subsequences $\{a_{2n}\}$ and $\{a_{2n+1}\}$ of $\{a_n\}$ converge to same limit L, then the sequence $\{a_n\}$ also converges to L.

Questions

- **1** Find the limit of the followings as $n \to \infty$.
 - $\sqrt{n+1} \sqrt{n}$
 - $\ln(\frac{n+2}{1+4n})$

 - $\frac{\sin n}{n}$ $\frac{\cos n^2}{n^2}$
- 2 Suppose a_n is sequence of real number converging to a. Show that the sequence $\left\{\frac{a_1+a_2+\cdots+a_n}{n}\right\}$ is also converging to the same limit a.
- **3** If x_n is a sequence of real numbers such that $\{x_{n+1} x_n\}$ convergens to some $x \in R$. Is the sequence x_n/n convergent? If so find the limit.
- **1** Let $x_1 = 1$ and $x_{n+1} = (\frac{n}{n+1})x_n^2$ for all n. Examine whether the sequence x_n is convergent. Also, find the limit if it is convergent.

Thank you