Analysis II

Ikhan Choi

April 13, 2025

Contents

Ι	Int	egration	2
1	Riemann integral		3
	1.1	Riemann integral	3
	1.2	Fundamental theorem of calculus	3
2	Lebesgue integral		4
	2.1	Measurability	4
	2.2	Improper integral	4
3	Lebe	esgue spaces	5
II	Μı	ulti-variable calculus	6
4	Fréchet derivatives		7
	4.1	Tangent spaces	7
	4.2	Inverse function theorem	7
	4.3		7
5	Diff	erential forms	8
	5.1	De Rham complex	8
	5.2	Riemannian metrics	8
	5.3	Vector calculus	8
	5.4	Integral of differential forms	8
6			10
	6.1		
	6.2	Local coordinates	10
	6.3	Stokes theorems	11

Part I Integration

Riemann integral

1.1 Riemann integral

We are concerned only with integral on a closed interval, until considering improper integral.

- **1.1.** Let $[a, b] \subset \mathbb{R}$ be a closed interval.
 - (a) The space of real-valued functions $[a, b] \to \mathbb{R}$ is Dedekind complete.
 - (b) The space of continuous functions $C([a, b], \mathbb{R})$ is not Dedekind complete.
- **1.2** (Step functions). A function $f:[a,b] \to \mathbb{R}$ is called a *step function* if it is given by the real linear combination of indicator functions of closed intervals in [a,b].
- **1.3** (Definition of Riemann integral). Let R be a vector space of some real-valued functions on a closed interval [a, b] containing all step functions. Let R^+ be the subset of all non-negative functions in R. The *integral* can be defined as a map $I: R^+ \to [0, \infty]$ such that
 - (a) it is additive and homogeneous,
 - (b) it is normal...
 - (c) $I(1_{s,t}) = t s$ for all closed intervals $[s,t] \subset [a,b]$.

Such a linear functional is given, then we denote as

$$I(f) = \int_{a}^{b} f(x) dx, \qquad f \in \mathbb{R}.$$

On the space of Riemann integrable functions, the Riemann integral uniquely exists.

- (a) The integral $\int_a^b s(x) dx := \sum_{i=1}^n c_i (b_i a_i)$, where $s(x) = \sum_{i=1}^n c_i 1_{[a_i, b_i]}(x)$, is well-defined.
- (b) The integral $\int_a^b f(x) dx := \lim_{n \to \infty} \int_a^b s_n(x) dx$ is well-defined.

Proof.

simple functions are norm dense in $L^{\infty}(I)$. step functions are not norm dense in $L^{\infty}(I)$. step functions are order dense(?) in $L^{\infty}(I)$.

For a given real function on interval, each (tagged) partition provides a step function. Riemann integral: tagged partition Darboux integral: partition

1.2 Fundamental theorem of calculus

Lebesgue integral

2.1 Measurability

- 2.1 (Measurable sets).
- 2.2 (Measurable functions).
- 2.3 (Integral of complex-valued functions).

2.2 Improper integral

It is about a infinite measure. For integrable function, it has no problem.

An improper integral must be interpreted as an extension of operators from L^1 . There are various way to approximate the improper integral. We need to be able to justify the reason why each specific approximation is reasonable or not.

principal values

Exercises

Problems

- 1. Find the value of $\lim_{n\to\infty} \frac{1}{n} \left(\sum_{k=1}^n \frac{1}{n} f\left(\frac{k}{n}\right) \int_0^1 f(x) dx \right)$.
- 2. Find all a > 0 and b > 0 such that $\int_0^\infty x^{-b} |\tan x|^a dx$ converges.
- *3. If xf'(x) is bounded and $x^{-1} \int_0^x f(t) dt \to L$ then $f(x) \to L$ as $x \to \infty$.
- 4. Show that for a continuous function $f:[0,1] \to \mathbb{R}$ we have $\int_0^1 x^2 f(x) dx = \frac{1}{3} f(c)$ for some $c \in [0,1]$.

Lebesgue spaces

Proof.

$$\int fg \le C^p \int \frac{|f|^p}{p} + \frac{1}{C^q} \int \frac{|g|^q}{q}$$

Take C such that

$$C^p \int \frac{|f|^p}{p} = \frac{1}{C^q} \int \frac{|g|^q}{q}.$$

Then,

$$C^{p} \int \frac{|f|^{p}}{p} + \frac{1}{C^{q}} \int \frac{|g|^{q}}{q} = 2p^{-\frac{1}{p}} q^{-\frac{1}{q}} \left(\int |f|^{p} \right)^{\frac{1}{p}} \left(\int |g|^{p} \right)^{\frac{1}{q}}.$$

Note that we can show that $1 \le 2p^{-\frac{1}{p}}q^{-\frac{1}{q}} \le 2$ and the minimum is attained only if p=q=2, so this method does not provide the sharpest constant.

Part II Multi-variable calculus

Fréchet derivatives

- 4.1 Tangent spaces
- 4.1 (Vector fields).
- 4.2 Inverse function theorem
- 4.3

Differential forms

5.1 De Rham complex

```
5.1 (Tensor product).
```

- 5.2 (Wedge product).
- 5.3 (One-forms).
- 5.4 (Exterior derivative).

5.2 Riemannian metrics

- 5.5 (Musical isomorphisms).
- 5.6 (Inner product of differential forms). ONB
- 5.7 (Hodge star operator). Identification of 2-forms and vector fields

5.3 Vector calculus

- 5.8 (Gradient, curl, and divergence).
- 5.9 (Potentials).
- 5.10 (Vector calculus identities).

5.4 Integral of differential forms

- 5.11 (Multiple integral). volume forms, stone weierstrass and fubini
- **5.12** (C^1 singular chains).
- **5.13** (Line integrals). A C^1 singular 1-cycle is the formal sum of *contours*, piecewise C^1 closed curves.
- **5.14** (Surface integrals). A C^1 singular 2-cycles.

Exercises

- **5.15** (Multivariable Taylor's theorem). Symmetric product
- **5.16** (Vector analysis in two dimension).
- **5.17** (Geometric algebra).

Stokes theorem

6.1

embedded chains instead of manifolds triangulation

6.2 Local coordinates

6.1 (Spherical coordinates). Let $U = \mathbb{R}^3 \setminus \{(x, y, z) : x = 0, y \ge 0\}$.

$$(x, y, z) = (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)$$

for $(r, \theta, \varphi) \in (0, \infty) \times (0, \pi) \times (0, 2\pi)$. Orthonormal bases are

$$\left\{\partial_r, \ \frac{1}{r}\partial_\theta, \ \frac{1}{r\sin\theta}\partial_\varphi\right\} \subset \mathfrak{X}(U),$$

$$\{dr, r d\theta, r \sin\theta d\varphi\} \subset \Omega^1(U),$$

 $\{r^2 \sin \theta \, d\theta \wedge d\varphi, r \sin \theta \, d\varphi \wedge dr, r \, dr \wedge d\theta\} \subset \Omega^2(U).$

- (a)
- (b) The Laplacian is given by

$$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

Proof. Write df in the orthonormal basis $\{dr, r d\theta, r \sin\theta d\varphi\}$ as

$$df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta + \frac{\partial f}{\partial \varphi} d\varphi$$
$$= \left(\frac{\partial f}{\partial r}\right) dr + \left(\frac{1}{r} \frac{\partial f}{\partial \theta}\right) r d\theta + \left(\frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi}\right) r \sin \theta d\varphi.$$

After taking the Hodge star operator, write in the basis $\{d\theta \wedge d\varphi, d\varphi \wedge dr, dr \wedge d\theta\}$ as

$$\begin{split} *\,df &= \left(\frac{\partial f}{\partial r}\right) r^2 \sin\theta \,d\theta \wedge d\varphi + \left(\frac{1}{r}\frac{\partial f}{\partial \theta}\right) r \sin\theta \,d\varphi \wedge dr + \left(\frac{1}{r \sin\theta}\frac{\partial f}{\partial \varphi}\right) r \,dr \wedge d\theta \\ &= r^2 \sin\theta \frac{\partial f}{\partial r} \,d\theta \wedge d\varphi + \sin\theta \frac{\partial f}{\partial \theta} \,d\varphi \wedge dr + \frac{1}{\sin\theta}\frac{\partial f}{\partial \varphi} \,dr \wedge d\theta. \end{split}$$

Then, the differential is computed as

$$\begin{split} d*df &= d\left(r^2\sin\theta\frac{\partial f}{\partial r}\right)d\theta\wedge d\varphi + d\left(\sin\theta\frac{\partial f}{\partial \theta}\right)d\varphi\wedge dr + d\left(\frac{1}{\sin\theta}\frac{\partial f}{\partial \varphi}\right)dr\wedge\theta \\ &= \left[\sin\theta\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) + \frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial f}{\partial \theta}\right) + \frac{1}{\sin\theta}\frac{\partial^2 f}{\partial \varphi^2}\right]dr\wedge d\theta\wedge d\varphi. \end{split}$$

Finally we have

$$\begin{split} \Delta f &= *d*df = \frac{1}{r^2 \sin \theta} \left[\sin \theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial^2 f}{\partial \varphi^2} \right] \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2} \end{split}$$

6.3 Stokes theorems

- 6.2 (Bump functions).
- **6.3** (Partition of unity).
- 6.4.