

Contents lists available at ScienceDirect

Journal of Number Theory

An application of a product formula for the cubic Gauss sum

Hiroshi Ito

Department of Mathematics, Kanagawa University, Hiratsuka, 259-1293, Japan

ARTICLE INFO

Article history: Received 9 March 2013 Accepted 13 August 2013 Available online 17 October 2013 Communicated by David Goss

MSC:

 $\begin{array}{c} \text{primary } 11\text{L}05\\ \text{secondary } 11\text{G}05,\,11\text{G}16 \end{array}$

Keywords: Gauss sums Elliptic functions

ABSTRACT

A product formula of Matthews [4] for the cubic Gauss sum $\tau_3(\omega)$ as defined in the Introduction will be applied to determine which of the three intervals $(-2\sqrt{p},-\sqrt{p})$, $(-\sqrt{p},\sqrt{p})$ and $(\sqrt{p},2\sqrt{p})$ contains the cubic Gauss sum $g_3(p) = \sum_{a=0}^{p-1} e^{2\pi i a^3/p}$, where p is a prime number congruent to one modulo 3.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let p be a prime number congruent to one modulo 3 and consider the sum

$$g_3(p) = \sum_{a=0}^{p-1} e^{2\pi i a^3/p}.$$

Let $\rho = e^{2\pi i/3}$ and write $p = \omega \overline{\omega}$ with a number ω in $\mathbf{Z}[\rho]$ such that $\omega \equiv 1 \pmod{3}$. Set

$$\tau_3(\omega) = \sum_{a=1}^{p-1} \left(\frac{a}{\omega}\right)_3 e^{2\pi i a/p},$$

where the symbol $\left(\frac{a}{\omega}\right)_3$ denotes the cubic residue symbol in $\mathbf{Q}(\rho)$. We have

0022-314X/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jnt.2013.08.005

$$g_3(p) = \tau_3(\omega) + \overline{\tau_3(\omega)}$$

and

$$\tau_3(\omega)^3 = -p\omega, \quad |\tau_3(\omega)| = \sqrt{p},$$

cf. Berndt, Evans and Williams [1] for general facts concerning the sums $g_3(p)$ and $\tau_3(\omega)$. Therefore, the sum $g_3(p)$ belongs to the interval $(-2\sqrt{p}, 2\sqrt{p})$ and the problem of determining which cube root of $-p\omega$ coincides to the sum $\tau_3(\omega)$ is equivalent to that of determining which of the three intervals $(-2\sqrt{p}, -\sqrt{p}), (-\sqrt{p}, \sqrt{p})$ and $(\sqrt{p}, 2\sqrt{p})$ contains the sum $g_3(p)$. Many people have made efforts to get clear and satisfying knowledge on these questions (cf. [1, Chapter 4]).

Now, for the sum $\tau_3(\omega)$, Matthews [4] has proved a formula conjectured by Cassels [2], according to which $\tau_3(\omega)$ is expressed in terms of a product of division values of the Weierstraß \wp -function $\wp(z)$ which satisfies $\wp'^2 = 4\wp^3 - 1$. In this paper, by evaluating this product of division values, we will get a formula for $\tau_3(\omega)$ and obtain a criterion for determining the interval which contains the sum $g_3(p)$.

We shall state the main theorem. Let c and d be the integers such that

$$p = c^2 + cd + d^2$$
, $0 < d < c$

and let f be the integer satisfying

$$cf \equiv d \pmod{p}, \quad 1 \leqslant f \leqslant p-1.$$

The integers c, d and f are uniquely determined by these conditions and f gives a primitive cube root of unity modulo p. Define the subset R_p of \mathbf{Z} by

$$R_{p} = \left\{ \frac{u - 2v}{3} + \frac{2u - v}{3} f; \begin{array}{l} 0 \leqslant u \leqslant c - 1, \ 1 \leqslant v \leqslant c - 1, \\ u + v \equiv 0 \ (\text{mod } 3) \end{array} \right\}$$

$$\cup \left\{ \frac{c - u - 2v}{3} + \frac{2c + u - v}{3} f; \begin{array}{l} 0 \leqslant u \leqslant d, \ 1 \leqslant v \leqslant c + d - 1, \\ u - v - c \equiv 0 \ (\text{mod } 3) \end{array} \right\}.$$
(1)

Here, u and v represent rational integers. As we shall see later, the set R_p consists of (p-1)/3 elements and the union $R_p \cup fR_p \cup f^2R_p \cup \{0\}$ gives a complete representative system for $\mathbf{Z}/p\mathbf{Z}$. Hence, by Wilson's theorem, there exists an integer a_p $(a_p=0,1,2)$ such that

$$\prod_{r \in R_p} r \equiv -f^{a_p} \pmod{p}.$$

Furthermore, for every pair of classes C and D in $\mathbb{Z}/9\mathbb{Z}$ with $C \neq D \pmod{3}$, we define an integer z(C, D) by Table 1 and, by abbreviation, write z(c, d) for $z(c \mod 9, d \mod 9)$.

The values of $z(C,D)$.												
$C \backslash D$	0	1	2	3	4	5	6	7	8			
0	/	0	1	/	2	0	/	1	2			
1	0	/	1	1	/	2	2	/	0			
2	0	1	/	0	1	/	0	1	/			
3	/	2	1	/	1	0	/	0	2			
4	2	/	2	0	/	0	1	/	1			
5	0	2	/	0	2	/	0	2	/			
6	/	1	1	/	0	0	/	2	2			
7	1	/	0	2	/	1	0	/	2			
8	0	0	/	0	0	/	0	0	/			

Table 1 The values of z(C, D).

Theorem 1. The interval which contains the sum $g_3(p)$ is determined by the value of a_p as follows. First, in case $(c, d) \equiv (1, 0), (1, 2), (0, 2) \pmod{3}$,

$$\begin{cases} g_3(p) \in (-2\sqrt{p}, -\sqrt{p}) & \text{if } a_p \equiv z(c, d) \text{ (mod 3)}, \\ g_3(p) \in (-\sqrt{p}, \sqrt{p}) & \text{if } a_p \equiv z(c, d) + 1 \text{ (mod 3)}, \\ g_3(p) \in (\sqrt{p}, 2\sqrt{p}) & \text{if } a_p \equiv z(c, d) - 1 \text{ (mod 3)}. \end{cases}$$

Secondly, in case $(c,d) \equiv (2,0), (2,1), (0,1) \pmod{3}$,

$$\begin{cases} g_3(p) \in (-2\sqrt{p}, -\sqrt{p}) & \text{if } a_p \equiv z(c, d) \text{ (mod 3),} \\ g_3(p) \in (-\sqrt{p}, \sqrt{p}) & \text{if } a_p \equiv z(c, d) - 1 \text{ (mod 3),} \\ g_3(p) \in (\sqrt{p}, 2\sqrt{p}) & \text{if } a_p \equiv z(c, d) + 1 \text{ (mod 3).} \end{cases}$$

Later, we will make a particular choice of ω and construct a set S called "a 1/3-representative system modulo ω " as the set of points of $\mathbf{Z}[\rho]$ contained in the union of two parallelograms considered suitably in the complex plane \mathbf{C} . The above subset R_p of \mathbf{Z} is the set obtained from S by replacing ρ by f in each element $x + y\rho$ $(x, y \in \mathbf{Z})$ of S.

Let, for an odd prime number p,

$$g_2(p) = \sum_{a=0}^{p-1} e^{2\pi i a^2/p}.$$

It can be seen without much difficulty that $g_2(p)^2 = (-1)^{(p-1)/2}p$. Gauss has shown that

$$g_2(p) = \prod_{\substack{a=1\\a \text{ odd}}}^{p-1} \left(2i \sin \frac{2\pi a}{p} \right)$$

and determined which square root of $(-1)^{(p-1)/2}p$ coincides to the sum $g_2(p)$. Cassels made the conjecture mentioned above looking for an analogy of this fact to the sum $\tau_3(\omega)$. Thus, our work here may be viewed as an effort to pursue his intention as far as possible.

Let, for a prime number p congruent to one modulo 4,

$$g_4(p) = \sum_{a=0}^{p-1} e^{2\pi i a^4/p}.$$

For $g_4(p)$, consideration similar to that in this paper has already been done by Matthews ([5], cf. also [1, Theorem 4.2.4]). We can express $g_4(p)$ as a sum of Gauss sums with characters, relate the biquadratic Gauss sum appearing there to a product of division values of an elliptic function, and evaluate the product of division values. We see then, if $p \equiv 1 \pmod{8}$,

$$g_4(p) = \sqrt{p} + E\left(\frac{B}{|A|}\right) (-1)^{(B^2 + 2B)/8} \sqrt{2p + 2A\sqrt{p}},$$

and if $p \equiv 5 \pmod{8}$,

$$g_4(p) = \sqrt{p} + iE\left(\frac{B}{|A|}\right) (-1)^{(B^2 + 2B)/8} \sqrt{2p - 2A\sqrt{p}}.$$

Here, A and B are integers such that

$$p = A^2 + B^2$$
, $A \equiv -1 \pmod{4}$, $B > 0$

and E is the square root of unity which satisfies the congruence

$$E \equiv \frac{B}{A} \cdot \frac{p-1}{2}! \cdot \left(\frac{2}{p}\right) \pmod{p}.$$

Also, $(\dot{-})$ is the Jacobi symbol. It is remarked in [1, p. 164] that these formulae enable us to compute the value of $g_4(p)$ in time $O(p^{1/2+\epsilon})$ for every $\epsilon > 0$. The author does not know at present whether or not our results here have similar applications.

In the following, we shall prove Theorem 1 in Sections 2 and 3, and give an example in Section 4.

2. Proof of Theorem 1

We return to the notation introduced before Theorem 1. Thus, p is a prime number congruent to one modulo 3. First, we make a special choice of ω . Let

$$\omega' = c - d\rho^{-1}$$

and define the integer n $(0 \le n \le 5)$ and the number ω in $\mathbf{Z}[\rho]$ by

$$\omega = (-\rho)^n \omega' \equiv 1 \pmod{3}.$$

We have $f \equiv \rho \pmod{\omega}$. Furthermore, let θ be the smallest positive period of the Weierstraß \wp -function $\wp(z)$ satisfying $\wp'^2 = 4\wp^3 - 1$. The period lattice of $\wp(z)$ is $\mathbf{Z}[\rho]\theta$. Let S be a 1/3-representative system modulo ω , namely, S is a set of (p-1)/3 elements of $\mathbf{Z}[\rho]$ such that the union $S \cup \rho S \cup \rho^2 S \cup \{0\}$ gives a complete representative system modulo ω . By Wilson's theorem, we can define a cube root $\alpha(S)$ of -1 by the congruence

$$\alpha(S) \equiv \prod_{s \in S} s \pmod{\omega}.$$

Also, since $\wp(\rho z) = \rho\wp(z)$ and $\prod_{a=1}^{p-1} \wp(\frac{a\theta}{\omega}) = \frac{1}{\omega^2}$ (cf. for example, [2]), we may define a cube root $\zeta(S)$ of unity by the identity

$$\omega \prod_{s \in S} \wp\left(\frac{s\theta}{\omega}\right) = \zeta(S)\sqrt[3]{\omega} \quad \left(|\arg\sqrt[3]{\omega}| < \frac{\pi}{3}\right).$$

Here, we agree that $-\pi \leq \arg z < \pi$ for the argument $\arg z$ of a non-zero number z in \mathbb{C} . Now, by Matthews [4], we have

$$\tau_3(\omega) = p^{1/3} \omega \alpha(S)^{-1} \prod_{s \in S} \wp\left(\frac{s\theta}{\omega}\right)$$

and hence,

$$\tau_3(\omega) = p^{1/3} \alpha(S)^{-1} \zeta(S) \sqrt[3]{\omega}. \tag{2}$$

Theorem 2. The subset R_p of **Z** defined by (1) is a 1/3-representative system modulo ω and we have

$$\zeta(R_p) = \rho^{z(c,d)},$$

where the integer $z(c, d) = z(c \mod 9, d \mod 9)$ is defined by Table 1.

A proof of the above theorem will be given in the next section. Let us put $S = R_p$ in the formula (2) for $\tau_3(\omega)$. By the definition of a_p , we see that

$$\alpha(R_p) \equiv \prod_{r \in R_p} r \equiv -f^{a_p} \equiv -\rho^{a_p} \pmod{\omega}$$

and

$$\alpha(R_p) = -\rho^{a_p}.$$

Hence,

$$\tau_3(\omega) = \xi_p p^{1/3} \sqrt[3]{\omega}$$

Table 2 The values of n and $\arg \omega - \arg \omega'$.

$(c,d) \mod 3$	(1,0)	(1, 2)	(2,0)	(2,1)	(0, 1)	(0, 2)
\overline{n}	0	5	3	2	1	4
$\arg \omega - \arg \omega'$	0	$\frac{\pi}{3}$	$-\pi$	$-\frac{2\pi}{3}$	$-\frac{\pi}{3}$	$\frac{2\pi}{3}$

with

$$\xi_p = -\rho^{z(c,d) - a_p}.$$

For the interval containing $g_3(p) = \tau_3(\omega) + \overline{\tau_3(\omega)}$, we have, in case $\arg \omega > 0$,

$$\begin{cases} g_3(p) \in (-2\sqrt{p}, -\sqrt{p}) & \text{if } \xi_p = -1, \\ g_3(p) \in (-\sqrt{p}, \sqrt{p}) & \text{if } \xi_p = -\rho^{-1}, \\ g_3(p) \in (\sqrt{p}, 2\sqrt{p}) & \text{if } \xi_p = -\rho. \end{cases}$$

Also, in case $\arg \omega < 0$, we have

$$\begin{cases} g_3(p) \in (-2\sqrt{p}, -\sqrt{p}) & \text{if } \xi_p = -1, \\ g_3(p) \in (-\sqrt{p}, \sqrt{p}) & \text{if } \xi_p = -\rho, \\ g_3(p) \in (\sqrt{p}, 2\sqrt{p}) & \text{if } \xi_p = -\rho^{-1}. \end{cases}$$

The value of n is determined by the condition

$$(-\rho)^{-n} \equiv \omega' \equiv c - d\rho^{-1} \pmod{3}$$

and we can see it is determined by the classes of c and d modulo 3 as in Table 2. Note that $\omega = (-\rho)^n \omega'$ and $0 < \arg \omega' < \pi/6$. Then, we see that

$$\begin{cases} \arg \omega > 0 & \text{if } (c,d) \equiv (1,0), \ (1,2), \ (0,2) \ (\text{mod } 3), \\ \arg \omega < 0 & \text{if } (c,d) \equiv (2,0), \ (2,1), \ (0,1) \ (\text{mod } 3). \end{cases}$$

This concludes the proof of Theorem 1. \Box

We remark here that the value of $\arg \omega - \arg \omega'$ is determined by the value of n as in Table 2.

3. Proof of Theorem 2

Theorem 2 follows from a result of McGettrick [6] concerning division values of elliptic functions if we add some consideration similar to that in [3]. First, we recall the construction of a certain 1/3-representative system S_{ω} of [3] and quote a result on the determination of $\zeta(S_{\omega})$ from [3].

Let $\lambda = \rho - \rho^2 = \sqrt{3}i$ and let

$$D = \{ z \in \mathbf{C}; \ |z| < |z - \alpha| \ (0 \neq \alpha \in \mathbf{Z}[\rho]) \}.$$

The set D is a fundamental domain for $\mathbb{C}/\mathbb{Z}[\rho]$ and is the interior of the regular hexagon with vertices $\frac{(-\rho)^j}{\lambda}$ $(0 \leq j \leq 5)$. For two numbers a and b in \mathbb{C} , we set $\gamma(a,b) = \{at + b(1-t); 0 \leq t \leq 1\}$ and

$$L = \gamma \left(\frac{\omega'}{\lambda}, \frac{c}{\lambda} \right) \cup \gamma \left(\frac{c}{\lambda}, -\frac{c}{\lambda} \right) \cup \gamma \left(-\frac{c}{\lambda}, -\frac{\omega'}{\lambda} \right).$$

Let T_{ω} be the set of points of ωD lying between L and $-\rho^2 L$. More precisely, we define

$$T_{\omega} = \left(\bigcup_{0 < \psi \leqslant \frac{\pi}{2}} e^{i\psi} \cdot L\right) \cap \omega D - \{0\}.$$

Then, setting

$$S_{\omega} = T_{\omega} \cap \mathbf{Z}[\rho],$$

we get a 1/3-representative system S_{ω} modulo ω . In Fig. 1, we show T_{ω} in the case of p=43 as the shaded region.

As we have seen in [3, p. 19], we can calculate the cube root $\zeta(S_{\omega})$ of unity utilizing a result of McGettrick [6] and get that

$$\frac{1}{2\pi} \arg \zeta(S_{\omega}) \equiv \frac{p}{3\pi} \left(\arg \omega - \arg \omega'\right) + \frac{1}{9}(p-1) + \frac{1}{3} \left(\frac{1}{3}cd - q - k - \frac{2}{3}l\right) \pmod{1}.$$
(3)

Here, we let

$$q = \begin{cases} \left[\frac{d}{3}\right] & \text{if } c + 2d \equiv 1 \pmod{3}, \\ \left[\frac{d+1}{3}\right] & \text{if } c + 2d \equiv -1 \pmod{3}, \\ k = \left[\frac{c-1}{3}\right] \end{cases}$$

with [x] denoting the greatest integer not exceeding x. Also, we put

$$l = \begin{cases} 1 & \text{if } c \equiv 0 \text{ (mod 3),} \\ 0 & \text{if } c \equiv 1, 2 \text{ (mod 3).} \end{cases}$$

Note that the class on the right-hand side of (3) depends only on the classes of c and d modulo 9, cf. the remark on $\arg \omega - \arg \omega'$ made in the last paragraph of the previous section.

Fig. 1. T_{ω} in the case of p = 43 (c = 6, d = 1, $\omega = 1 - 6\rho$).

Next, we shall modify the set S_{ω} and relate it to the set R_p defined by (1). We can express T_{ω} as the following disjoint union:

$$T_{\omega} = T_{\omega}^{(1)} \cup T_{\omega}^{(2)} \cup (-T_{\omega}^{(1)}) \cup (-T_{\omega}^{(2)}).$$

Here, we let

$$\begin{split} T_{\omega}^{(1)} &= \left\{ -\frac{c}{\lambda} x + \frac{\rho^2 c}{\lambda} y; \ 0 \leqslant x, \ 0 < y, \ x + y < 1 \right\}, \\ T_{\omega}^{(2)} &= \left\{ -\frac{c}{\lambda} + \frac{\rho^2 d}{\lambda} x - \frac{\rho(c+d)}{\lambda} y; \ 0 \leqslant x, \ 0 < y, \ x + y < 1 \right\}. \end{split}$$

Note that

$$\begin{split} -\frac{\omega'}{\lambda} &= -\frac{c}{\lambda} + \frac{\rho^2 d}{\lambda} \cdot 1 - \frac{\rho(c+d)}{\lambda} \cdot 0, \\ \frac{\rho^2 \omega'}{\lambda} &= -\frac{c}{\lambda} + \frac{\rho^2 d}{\lambda} \cdot 0 - \frac{\rho(c+d)}{\lambda} \cdot 1. \end{split}$$

Now, put

$$T'_{\omega} = T_{\omega}^{(1)} \cup \rho^{2} \left(-T_{\omega}^{(1)} \right) \cup T_{\omega}^{(2)} \cup \left(-T_{\omega}^{(2)} + \rho \omega' \right),$$

$$S'_{\omega} = T'_{\omega} \cap \mathbf{Z}[\rho].$$

Then, S'_{ω} is also a 1/3-representative system modulo ω and T'_{ω} is the union of two parallelograms

$$T_{\omega}^{(1)} \cup \rho^2 \left(-T_{\omega}^{(1)} \right) = \left\{ -\frac{c}{\lambda} x - \frac{\rho c}{\lambda} y; \ 0 \leqslant x < 1, \ 0 < y < 1 \right\}$$

and

$$T_{\omega}^{(2)} \cup \left(-T_{\omega}^{(2)} + \rho \omega' \right) = \left\{ -\frac{c}{\lambda} + \frac{\rho^2 d}{\lambda} x - \frac{\rho(c+d)}{\lambda} y; \ 0 \leqslant x \leqslant 1, \ 0 < y < 1 \right\}.$$

Lemma 1. Let $S_{\omega}^{(1)} = T_{\omega}^{(1)} \cap \mathbf{Z}[\rho]$ and define the integer k' by

$$k' = \begin{cases} -\frac{c}{3} & \text{if } c \equiv 0 \pmod{3}, \\ \frac{c-1}{3} & \text{if } c \equiv 1 \pmod{3}, \\ 0 & \text{if } c \equiv 2 \pmod{3}. \end{cases}$$

Then, we have

$$2 \cdot |S_{\omega}^{(1)}| \equiv k' \pmod{3}.$$

We shall prove the lemma later. Since $\wp(\rho z) = \rho \wp(z)$, we have

$$\zeta(S'_{\omega})\sqrt[3]{\omega} = \omega \prod_{s \in S'_{\omega}} \wp\left(\frac{s\theta}{\omega}\right) = \rho^{2|S_{\omega}^{(1)}|} \cdot \omega \prod_{s \in S_{\omega}} \wp\left(\frac{s\theta}{\omega}\right)$$
$$= \rho^{k'} \cdot \zeta(S_{\omega})\sqrt[3]{\omega}$$

and

$$\zeta(S'_{\omega}) = \rho^{k'} \zeta(S_{\omega}).$$

Therefore, by (3),

$$\begin{split} \frac{1}{2\pi} \arg \zeta \big(S_\omega' \big) &\equiv \frac{k'}{3} + \frac{1}{2\pi} \arg \zeta (S_\omega) \\ &\equiv \frac{p}{3\pi} \big(\arg \omega - \arg \omega' \big) + \frac{1}{9} (p-1) \\ &\quad + \frac{1}{9} \big(cd - 3q - 3k + 3k' - 2l \big) \text{ (mod 1)}. \end{split}$$

Because the class k' mod 3 is determined by the class c mod 9, we see that the class $\frac{1}{2\pi} \arg \zeta(S'_{\omega})$ mod 1 is determined by the classes of c and d modulo 9. By calculation, we observe that

$$\frac{1}{2\pi}\arg\zeta\bigl(S'_{\omega}\bigr) \equiv \frac{1}{3}z(c,d) \pmod{1}$$

and

$$\zeta(S'_{\omega}) = \rho^{z(c,d)}$$

with the integer z(c,d) defined by Table 1.

Finally, every point of $T_{\omega}^{(1)} \cup \rho^2(-T_{\omega}^{(1)})$ is of the form

$$-\frac{u}{\lambda} - \frac{\rho v}{\lambda} = \frac{u - 2v}{3} + \frac{2u - v}{3}\rho \quad (0 \leqslant u < c, \ 0 < v < c)$$

and this belongs to $\mathbf{Z}[\rho]$ if and only if

$$u, v \in \mathbf{Z}, \quad u + v \equiv 0 \pmod{3}.$$

Also, every point of $T_{\omega}^{(2)} \cup (-T_{\omega}^{(2)} + \rho \omega')$ is of the form

$$-\frac{c}{\lambda} + \frac{\rho^2 u}{\lambda} - \frac{\rho v}{\lambda} = \frac{c - u - 2v}{3} + \frac{2c + u - v}{3}\rho$$
$$(0 \le u \le d, \ 0 < v < c + d)$$

and this belongs to $\mathbf{Z}[\rho]$ if and only if

$$u, v \in \mathbf{Z}, \quad u - v - c \equiv 0 \pmod{3}.$$

Since, $\rho \equiv f \pmod{\omega}$, we see that there is a one-to-one correspondence modulo ω between the sets S'_{ω} and R_p . Therefore, R_p is a 1/3-representative system modulo ω and we have that

$$\zeta(R_p) = \zeta(S'_{\omega}) = \rho^{z(c,d)}.$$

This proves Theorem 2. \square

Proof of Lemma 1. The number $2|S_{\omega}^{(1)}|$ is equal to the number of points of $\mathbf{Z}[\rho]$ in $T_{\omega}^{(1)} \cup \rho^2(-T_{\omega}^{(1)})$ and, by what we have mentioned above, this number is equal to the number of elements of the set

$$\{(u,v) \in \mathbf{Z}^2; \ 0 \leqslant u \leqslant c-1, \ 1 \leqslant v \leqslant c-1, \ u+v \equiv 0 \ (\text{mod } 3)\}.$$

We can calculate the number of elements of this set and we get, writing $c = 3c_1 + c_2$ $(c_1, c_2 \in \mathbf{Z}, 0 \le c_2 \le 2)$,

$$2 \cdot \left| S_{\omega}^{(1)} \right| = \begin{cases} 3c_1^2 - c_1 & \text{if } c_2 = 0, \\ 3c_1^2 + c_1 & \text{if } c_2 = 1, \\ 3c_1^2 + 3c_1 & \text{if } c_2 = 2. \end{cases}$$

This proves Lemma 1.

4. An example

We describe an example of determination of the interval containing $g_3(p)$ by the use of Theorem 1. Let p = 43. We have

$$c = 6,$$
 $d = 1,$ $f = 36$

and, from Table 1,

$$z(c,d) = z(6,1) = 1.$$

Also,

$$\begin{split} R_{43} &= \left\{ \frac{u-2v}{3} + \frac{2u-v}{3} \cdot 36; \begin{array}{l} 0 \leqslant u \leqslant 5, \ 1 \leqslant v \leqslant 5, \\ u+v \equiv 0 \ (\text{mod } 3) \end{array} \right\} \\ &\qquad \qquad \cup \left\{ \frac{6-u-2v}{3} + \frac{12+u-v}{3} \cdot 36; \begin{array}{l} 0 \leqslant u \leqslant 1, \ 1 \leqslant v \leqslant 6, \\ u-v \equiv 0 \ (\text{mod } 3) \end{array} \right\} \\ &= \left\{ -38, -1, -39, 36, -2, 35, 72, 34, 109, 71 \right\} \\ &\qquad \qquad \cup \left\{ 108, 70, 145, 107 \right\} \end{split}$$

and we have

$$\prod_{r \in R_{43}} r \equiv 37 \equiv -f^2 \pmod{43}.$$

It follows that

$$a_{43} = 2 \equiv z(c, d) + 1 \pmod{3}$$

and we see from Theorem 1 that

$$g_3(43) \in (\sqrt{43}, 2\sqrt{43}).$$

References

- B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998.
- [2] J.W.S. Cassels, On Kummer sums, Proc. Lond. Math. Soc. (3) 21 (1970) 19–27.
- [3] H. Ito, A note on a product formula for the cubic Gauss sum, Acta Arith. 152 (2012) 11–21.
- [4] C.R. Matthews, Gauss sums and elliptic functions: I. The Kummer sum, Invent. Math. 52 (1979) 163–185.
- [5] C.R. Matthews, Gauss sums and elliptic functions: II. The Quartic sum, Invent. Math. 54 (1979) 23–52.
- [6] A.D. McGettrick, A result in the theory of Weierstrass elliptic functions, Proc. Lond. Math. Soc. (3) 25 (1972) 41–54.