K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Low & High-frequency response of single-stage amplifier

Numerical 1:

Determine the lower cut off frequency for the network given in figure 1 using the following parameters:

$$\begin{array}{l} C_{C_1}=10\mu F,\, C_E=20\mu F,\, C_{C_2}=1\mu F,\, R_E=2k\Omega,\, R_S=1k\Omega,\, R_1=40k\Omega,\, R_2=10k\Omega,\, R_L=2.2k\Omega,\, \beta=100,\, r_o=40k\Omega,\, V_{CC}=20V,\, R_C=4k\Omega \end{array}$$

Figure 1: Circuit 1

Solution:

DC Analysis:

Since frequency is 0Hz hence all the capacitors are open circuited.

Thus the circuit becomes,

Figure 2: DC Equivalent Circuit

Applying Thevenin's theorem to input side of the circuit at base,

Figure 3: Thevenin's Equivalent Circuit

$$\begin{split} V_{TH} &= \frac{R_2 \times V_{CC}}{R_1 + R_2} \\ &= \frac{10k\Omega \times 20V}{40k\Omega + 10k\Omega} \\ &= \mathbf{4V} \end{split}$$

$$R_{TH} = R_1 \parallel R_2$$
$$= 40k\Omega \parallel 10k\Omega$$
$$= 8k\Omega$$

Applying KVL to B-E loop,

$$V_{TH} - I_B R_{TH} - V_{BE} - I_E R_E = 0$$

 $V_{TH} - I_B R_{TH} - V_{BE} - (1+\beta)I_B R_E = 0$

[Since, $I_E = (1+\beta)I_B$]

$$I_{BQ} = \frac{V_{TH} - V_{BE}}{R_{TH} + (1+\beta)R_E}$$
$$= \frac{4 - 0.7}{8k\Omega + (101) \times 2k\Omega}$$
$$= 15.71\mu \mathbf{A}$$

$$I_{CQ} = \beta I_{BQ} = 100 \times 15.71 \mu A = 1.571 mA$$

Small Signal Analysis:

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$= \frac{100 \times 26mA}{1.571mA}$$

$$= \mathbf{1.655k}\Omega$$

$$g_m = rac{I_{CQ}}{V_T} = \mathbf{60.42mA/V}$$

$$r_o = \frac{V_A}{I_{CO}} \Longrightarrow V_A = r_o \times I_{CQ}$$

 $V_A = 40k\Omega \times 1.571mA = 62.84V$

ic = gm * v_pi

Figure 4: Small Signal Equivalent Circuit for mid frequency

Mid Band Gain
$$(Av_{s(mid)}) = \frac{V_o}{V_S}$$

$$Av_{s(mid)} = \frac{V_o}{V_i} \times \frac{V_i}{V_S}$$

$$Av_{s(mid)} = Av_{(mid)} \times \frac{V_i}{V_S}$$

$$Av_{(mid)} = \frac{V_o}{V_i} = -g_m(R_C \parallel R_L \parallel r_o)$$

$$V_i = \frac{R_1 \parallel R_2 \parallel r_{\pi}}{R_1 \parallel R_2 \parallel r_{\pi} + R_S} \times V_S$$

$$Av_{s(mid)} = Av_{(mid)} \times \frac{R_1 \parallel R_2 \parallel r_{\pi}}{R_1 \parallel R_2 \parallel r_{\pi} + R_S}$$

$$Av_{(mid)} = -g_m(R_C \parallel R_L \parallel r_o)$$

= $(-60.42mA)(4k\Omega \parallel 2.2k\Omega \parallel 40k\Omega)$
= -82.8186

[Mid Band Gain without R_S]

$$Av_{s(mid)} = -82.8186 \times \frac{8k\Omega \parallel 1.655k\Omega}{8k\Omega \parallel 1.655k\Omega + 1k\Omega}$$

= -82.8186×0.578
= -47.869

[Mid Band Gain considering R_S]

$$|Av_{s(mid)}|$$
 in dB = $20\log_{10}(47.869) = 33.6$ dB

Low Frequency Equivalent Circuit:

a. Lower cutoff frequency due to C_{C_1} alone:

Figure 5: Low frequency AC Equivalent Circuit for C_{C_1}

$$\begin{split} f_{L_{C_{C_1}}} &= \frac{1}{2\pi (R_S + R_1 \parallel R_2 \parallel r_\pi) C_{C_1}} \\ R_S + R_1 \parallel R_2 \parallel r_\pi &= 1k\Omega + 8k\Omega \parallel 1.655k\Omega \\ R_S + R_1 \parallel R_2 \parallel r_\pi &= 1k\Omega + 1.37k\Omega = 2.37k\Omega \\ f_{L_{C_{C_1}}} &= \frac{1}{2\pi \times 2.37k\Omega \times 10\mu F} = \textbf{6.715Hz} \end{split}$$

b. Lower cutoff frequency due to C_{C_2} alone:

Figure 6: Low frequency AC Equivalent Circuit for C_{C_2}

$$\begin{split} f_{L_{C_{C_2}}} &= \frac{1}{2\pi \times R_{eq} \times C_{C_2}} \\ R_{eq} &= R_C \parallel r_o + R_L \\ &= 4k\Omega \parallel 40k\Omega + 2.2k\Omega \\ &= 3.363k\Omega + 2.2k\Omega \\ &= 5.836k\Omega \\ \\ f_{L_{C_{C_2}}} &= \frac{1}{2\pi \times 5.836k\Omega \times 1\mu F} = \mathbf{27.27Hz} \end{split}$$

c. Lower cutoff frequency due to \mathcal{C}_E alone:

Figure 7: Low frequency AC Equivalent Circuit for C_E

$$R_E = R_E \parallel \left(\frac{R_S \parallel R_1 \parallel R_2 + r_\pi}{\beta} \right)$$
$$= 2k\Omega \parallel \left(\frac{1k\Omega \parallel 8k\Omega + 1.655k\Omega}{100} \right)$$
$$= 2k\Omega \parallel 25.438$$
$$= 25.118\Omega$$

$$f_{L_{C_E}} = \frac{1}{2\pi \times R_{eq} \times C_E}$$

$$= \frac{1}{2\pi \times 25.118\Omega \times 20\mu F}$$

$$= 316.81 \text{Hz}$$

Since $f_{LC_E} = 316.81 Hz$ is the largest among $f_{LC_{C_1}}$ & $f_{LC_{C_2}}$

$$f_L = 316.81 \text{Hz}$$

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

.model NPN NPN (is=1E-15 bf=100 vaf=62.84V cjc=20pf cje=20pf)
.ac dec 10 5Hz 10kHz *.op

Figure 8: Circuit Schematic

Figure 9: Low frequency response for C_{C_1}

Figure 10: Low frequency response for C_{C_2}

Figure 11: Low frequency response for C_E

Figure 12: Complete Low frequency response

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ results:}$

Parameters	Theoretical	Simulated
I_{CQ}	1.571mA	1.570mA
Lower cut off frequency due to C_{C_1}	6.715Hz	6.308Hz
Lower cut off frequency due to C_{C_2}	27.27Hz	27.38Hz
Lower cut off frequency due to C_E	316.81Hz	328.97Hz
Overall cutoff frequency f_L	316.81Hz	329.98Hz
Mid band voltage gain $ Av_{s(mid)} $ in dB	33.6dB	34dB

Table 1: Numerical 1

Numerical 2:

For the PMOS common source circuit shown in figure 13, the transistor parameters are:

$$V_{TP} = -2V, k_p = 1mA/V^2, \lambda = 0$$

- a. Determine the lower cutoff frequency of the circuit.
- b. Find the midband voltage gain.

Figure 13: Circuit 2

Solution:

DC Analysis:

Since frequency is 0Hz hence all the capacitors are open circuited. Hence the circuit becomes,

Figure 14: DC Equivalent Circuit

$$V_G = \frac{R_2}{R_1 + R_2} (V_{SS} - V_{DD}) + V_{DD}$$
$$= \frac{22k\Omega}{8k\Omega + 22k\Omega} (20) - 10 = \mathbf{4.67V}$$

Applying KVL to Gate Source Loop,

$$V_{SS} - I_D R_S - V_{SG} = V_G$$

 $10 - I_D R_S - V_{SG} = 4.67$
 $V_{GS} = 5.33 - I_D R_S$ (1)

Now,

$$I_D = k_p (V_{SG} + V_{TP})^2$$

= $(1mA/V^2)(V_{SG} - 2)^2$ (2)

Substituting equation (2) in equation (1), $V_{SG} = 5.33 - (1)(0.5)(V_{SG}^2 - 4V_{SG} + 4)$ $0.5V_{SG}^2 - V_{SG} - 3.33 = 0$ $V_{SG} = 3.77V$ or $V_{SG} = -1.76V$

For the device to be biased in saturation,

$$V_{SG} > |V_{TP}|$$

$$\therefore V_{SGQ} = 3.77 \mathbf{V}$$

$$I_{DQ} = k_p (V_{SG} + V_{TP})^2$$

= $(1mA/V^2)(3.77 - 2)^2$
= $\mathbf{3.13mA}$

Small Signal Parameters:

$$g_m = 2k_p(V_{SG} + V_{TP})$$

= $2 \times (1mA/V^2)(3.77V - 2V)$
= $3.54mA/V$

Low Frequency AC Equivalent Circuit:

a. Lower cutoff frequency for C_{C_1} alone:

Short V_i , C_S & C_{C_2}

Figure 15: Low frequency AC Equivalent Circuit for $\mathcal{C}_{\mathcal{C}_1}$

$$f_{L_{C_{C_1}}} = \frac{1}{2\pi (R_i + R_1 \parallel R_2) C_{C_1}}$$

$$R_1 \parallel R_2 = 8k\Omega \parallel 22k\Omega = 5.87k\Omega$$

$$\therefore f_{L_{C_{C_1}}} = \frac{1}{2\pi \times (0.5k\Omega + 5.87k\Omega) \times 2\mu F} = \mathbf{12.4925Hz}$$

b. Lower cutoff frequency for $\mathcal{C}_{\mathcal{C}_2}$ alone:

Short V_i , C_S & C_{C_1}

Figure 16: Low frequency AC Equivalent Circuit for C_{C_2}

$$f_{L_{C_{C_2}}} = \frac{1}{2\pi \times (R_D + R_L) \times C_{C_2}}$$
$$= \frac{1}{2\pi \times (2k\Omega + 5k\Omega) \times 2\mu F}$$
$$= 11.368 \text{Hz}$$

c. Lower cutoff frequency for C_S alone:

Short V_i , C_{C_1} & C_{C_2}

Figure 17: Low frequency AC Equivalent Circuit for C_S

$$f_{L_{C_S}} = \frac{1}{2\pi \times R_{eq} \times C_S}$$

$$R_{eq} = R_S \parallel \frac{1}{g_m}$$

$$= 0.5k\Omega \parallel \frac{1}{3.54mA/V}$$

$$= 180.505\Omega$$

$$\therefore f_{L_{C_S}} = \frac{1}{2\pi \times 180.505\Omega \times 10\mu F} = 88.172 \text{Hz}$$

Since $f_{L_{C_S}}$ is the largest among $f_{L_{C_{C_1}}}$ & $f_{L_{C_{C_2}}}$

$$f_L = 88.172 Hz$$

Mid Frequency AC Equivalent Circuit:

Figure 18: Small signal Equivalent Circuit for mid frequency

$$Av_{s(mid)} = \frac{V_o}{V_i}$$

$$Av_{s(mid)} = \frac{V_o}{V_L} \times \frac{V_L}{V_i}$$

$$Av_{s(mid)} = Av_{(mid)} \times \frac{V_L}{V_i}$$

$$Av_{(mid)} = \frac{V_o}{V_L} = -g_m(R_D \parallel R_L)$$

$$V_L = \frac{R_1 \parallel R_2}{R_1 \parallel R_2 + R_i} \times V_i$$

$$\frac{V_L}{V_i} = \frac{R_1 \parallel R_2}{R_1 \parallel R_2 + R_i}$$

$$Av_{s(mid)} = Av_{(mid)} \times \frac{R_1 \parallel R_2}{R_1 \parallel R_2 + R_i}$$

$$Av_{(mid)} = -(3.54mA/V)(2k\Omega \parallel 5k\Omega) = -5.057$$

$$Av_{s(mid)} = -5.057 \times \frac{8k\Omega \parallel 22k\Omega}{8k\Omega \parallel 22k\Omega + 0.5k\Omega}$$
$$= -5.057 \times \frac{5.87k\Omega}{5.87k\Omega + 0.5k\Omega}$$
$$= -4.66$$

$$|Av_{s(mid)}|$$
 in dB = $20\log_{10}(4.66) = 13.3677$ dB

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

.model PMOS pmos(VTO=-2V KP=2E-3 lambda=0)
.ac dec 10 10Hz 10kHz *.op

Figure 19: Circuit Schematic

Figure 20: Low frequency response for C_{C_1}

Figure 21: Low frequency response for C_{C_2}

Figure 22: Low frequency response for C_S

Figure 23: Complete Low frequency response

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ results:}$

Parameters	Theoretical	Simulated
I_{DQ}	3.13mA	3.1289mA
V_{SGQ}	3.77V	3.7688V
Lower cut off frequency due to C_{C_1} alone	12.4925Hz	12.558Hz
Lower cut off frequency due to C_{C_2} alone	11.368Hz	11.53Hz
Lower cut off frequency due to C_S alone	88.172Hz	76.372Hz
Overall cutoff frequency f_L	88.172Hz	80.33Hz
Mid frequency voltage gain $Av_{s(mid)}$ in dB	13.3677dB	13.3603dB

Table 2: Numerical 2

Numerical 3:

Find the lower & higher cut off frequency of the circuit given in the figure 24 using the following parameters:

 $\begin{array}{l} C_{C_1}=10\mu F,\, C_E=20\mu F,\, C_{C_2}=1\mu F,\, R_E=2k\Omega,\, R_S=1k\Omega,\, R_1=40k\Omega,\, R_2=10k\Omega,\, R_L=2.2k\Omega,\, \beta=100,\, r_o=40k\Omega,\, V_{CC}=20V,\, R_C=4k\Omega,\, C_{wi}=4pF,\, C_{wo}=8pF,\, C_{bc}=10pF,\, C_{be}=35pF\,\,\&\,\, C_{ce}=8pF \end{array}$

Figure 24: Circuit 3

Solution:

DC Analysis:

Since frequency is 0Hz hence all the capacitors are open circuited.

Thus the circuit becomes,

Figure 25: DC Equivalent Circuit

Applying Thevenin's theorem to input side of the circuit at base,

Figure 26: Thevenin's Equivalent Circuit

$$\begin{split} V_{TH} &= \frac{R_2 \times V_{CC}}{R_1 + R_2} \\ &= \frac{10k\Omega \times 20V}{40k\Omega + 10k\Omega} \\ &= \mathbf{4V} \end{split}$$

$$R_{TH} = R_1 \parallel R_2$$
$$= 40k\Omega \parallel 10k\Omega$$
$$= 8k\Omega$$

Applying KVL to B-E loop,

$$V_{TH} - I_B R_{TH} - V_{BE} - I_E R_E = 0$$

 $V_{TH} - I_B R_{TH} - V_{BE} - (1+\beta)I_B R_E = 0$

[Since, $I_E = (1+\beta)I_B$]

$$I_{BQ} = \frac{V_{TH} - V_{BE}}{R_{TH} + (1 + \beta)R_E}$$
$$= \frac{4 - 0.7}{8k\Omega + (101) \times 2k\Omega}$$
$$= 15.71\mu A$$

$$I_{CQ} = \beta I_{BQ} = 100 \times 15.71 \mu A = 1.571 \text{mA}$$

Small Signal Analysis:

$$\begin{split} r_{\pi} &= \frac{\beta V_T}{I_{CQ}} \\ &= \frac{100 \times 26mA}{1.571mA} \\ &= \mathbf{1.655k} \mathbf{\Omega} \end{split}$$

$$g_m = rac{I_{CQ}}{V_T} = \mathbf{60.42mA/V}$$

$$r_o = \frac{V_A}{I_{CO}} \Longrightarrow V_A = r_o \times I_{CQ}$$

 $V_A = 40k\Omega \times 1.571mA = 62.84V$

ic = gm * v_pi

Figure 27: Small Signal Equivalent Circuit for mid frequency

Mid Band Gain
$$(Av_{s(mid)}) = \frac{V_o}{V_S}$$

$$Av_{s(mid)} = \frac{V_o}{V_i} \times \frac{V_i}{V_S}$$

$$Av_{s(mid)} = Av_{(mid)} \times \frac{V_i}{V_S}$$

$$Av_{(mid)} = \frac{V_o}{V_i} = -g_m(R_C \parallel R_L \parallel r_o)$$

$$V_i = \frac{R_1 \parallel R_2 \parallel r_{\pi}}{R_1 \parallel R_2 \parallel r_{\pi} + R_S} \times V_S$$

$$Av_{s(mid)} = Av_{(mid)} \times \frac{R_1 \parallel R_2 \parallel r_{\pi}}{R_1 \parallel R_2 \parallel r_{\pi} + R_S}$$

$$Av_{(mid)} = -g_m(R_C \parallel R_L \parallel r_o)$$

= $(-60.42mA)(4k\Omega \parallel 2.2k\Omega \parallel 40k\Omega)$
= -82.8186

[Mid Band Gain without R_S]

$$Av_{s(mid)} = -82.8186 \times \frac{8k\Omega \parallel 1.655k\Omega}{8k\Omega \parallel 1.655k\Omega + 1k\Omega}$$
$$= -82.8186 \times 0.578$$
$$= -47.869$$

[Mid Band Gain considering R_S]

$$|Av_{s(mid)}|$$
 in dB = $20\log_{10}(47.869) = 33.6$ dB

Low Frequency Equivalent Circuit:

a. Lower cutoff frequency due to $\mathcal{C}_{\mathcal{C}_1}$ alone:

Figure 28: Low frequency AC Equivalent Circuit for C_{C_1}

$$\begin{split} f_{L_{C_{C_1}}} &= \frac{1}{2\pi (R_S + R_1 \parallel R_2 \parallel r_\pi) C_{C_1}} \\ R_S + R_1 \parallel R_2 \parallel r_\pi &= 1k\Omega + 8k\Omega \parallel 1.655k\Omega \\ R_S + R_1 \parallel R_2 \parallel r_\pi &= 1k\Omega + 1.37k\Omega = 2.37k\Omega \\ f_{L_{C_{C_1}}} &= \frac{1}{2\pi \times 2.37k\Omega \times 10\mu F} = \textbf{6.715Hz} \end{split}$$

b. Lower cutoff frequency due to C_{C_2} alone:

Figure 29: Low frequency AC Equivalent Circuit for C_{C_2}

$$\begin{split} f_{L_{C_{C_2}}} &= \frac{1}{2\pi \times R_{eq} \times C_{C_2}} \\ R_{eq} &= R_C \parallel r_o + R_L \\ &= 4k\Omega \parallel 40k\Omega + 2.2k\Omega \\ &= 3.363k\Omega + 2.2k\Omega \\ &= 5.836k\Omega \\ \\ f_{L_{C_{C_2}}} &= \frac{1}{2\pi \times 5.836k\Omega \times 1\mu F} = \mathbf{27.27Hz} \end{split}$$

c. Lower cutoff frequency due to C_E alone:

Figure 30: Low frequency AC Equivalent Circuit for C_E

$$R_E = R_E \parallel \left(\frac{R_S \parallel R_1 \parallel R_2 + r_\pi}{\beta} \right)$$
$$= 2k\Omega \parallel \left(\frac{1k\Omega \parallel 8k\Omega + 1.655k\Omega}{100} \right)$$
$$= 2k\Omega \parallel 25.438$$
$$= 25.118\Omega$$

$$f_{L_{C_E}} = rac{1}{2\pi imes R_{eq} imes C_E}$$

$$= rac{1}{2\pi imes 25.118\Omega imes 20\mu F}$$

$$= 316.81 ext{Hz}$$

Since $f_{LC_E} = 316.81 Hz$ is the largest among $f_{LC_{C_1}}$ & $f_{LC_{C_2}}$

 $f_L = 316.81 \text{Hz}$

Hight Frequency Equivalent Circuit:

a. Higher cutoff frequency due to C_i alone: Short $C_o \& V_S$

Figure 31: High frequency AC Equivalent Circuit for C_i

$$C_i = C_{be} + C_{wi} + C_{mi}$$

$$C_{mi} = C_{bc}(a - Av_s)$$

= $10pF (1 - (-47.869))$
= $488.69pF$

$$C_i = 35pF + 4pF + 488.69pF = 527.69pF$$

$$R_{eq} = R_S \parallel R_1 \parallel R_2 \parallel r_{\pi}$$
$$= 1k\Omega \parallel 8k\Omega \parallel 1.655k\Omega$$
$$= 578.29\Omega$$

Now,

$$f_{H_i} = rac{1}{2\pi R_{eq} C_i}$$

$$= rac{1}{2\pi \times (578.29\Omega) \times (527.69pF)}$$

$$= \mathbf{0.521MHz}$$

b. Higher cut off frequency due to C_o alone:

Short C_i & source V_S

Figure 32: High frequency AC Equivalent Circuit for C_o

$$C_{mo} = C_{bc} \left(1 - \frac{1}{Av_{s(mid)}} \right)$$
$$= 10pF \left(1 - \frac{1}{-47.869} \right)$$
$$= 10.2pF$$

$$R_{eq} = r_o \parallel R_C \parallel R_L$$
$$= 40k\Omega \parallel 4k\Omega \parallel 2.2k\Omega$$
$$= 1.37k\Omega$$

$$C_o = C_{mo} + C_{wo}$$
$$= 10.2pF + 8pF$$
$$= 18.2pF$$

Now,

$$f_{H_o} = \frac{1}{2\pi R_{eq}C_o}$$

$$= \frac{1}{2\pi \times (1.37k\Omega) \times (18.2pF)}$$

$$= 6.383\text{MHz}$$

Select the lowest among f_{H_o} & f_{H_i} as the higher cut off frequency of the circuit $f_H = \mathbf{0.521MHz}$

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

.model NPN NPN (is=1E-15 bf=100 vaf=62.84V cjc=10pf cje=35pf)
.ac dec 10 5Hz 10MEGHz *.op

Figure 33: Circuit Schematic

Figure 34: Low frequency response for C_{C_1}

Figure 35: Low frequency response for C_{C_2}

Figure 36: Low frequency response for C_E

 ${\bf Figure~37:~Complete~frequency~response}$

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ results:}$

Parameters	Theoretical	Simulated
I_{CQ}	1.571mA	1.570mA
Lower cut off frequency due to C_{C_1}	6.715Hz	6.308Hz
Lower cut off frequency due to C_{C_2}	27.27Hz	27.38Hz
Lower cut off frequency due to C_E	316.81Hz	328.97Hz
Overall cutoff frequency f_L	316.81Hz	329.98Hz
Overall cutoff frequency f_H	0.521MHz	0.598MHz
Mid band voltage gain $Av_{s(mid)}$ in dB	33.6dB	34dB

Table 3: Numerical 3

