Forecasting Employee Attrition: Insights and Strategies

Capstone Two - Final PresentationSpringboard Data Science Career Track

Tuba Cakir Kranda

Problem Statement

- Employee attrition poses significant challenges for organizations
 - Impacts productivity, knowledge transfer, costs of hiring/training new employees
 - Disrupts team dynamics, morale and overall organizational performance
 - High attrition rates lead to loss of valuable human capital and expertise
- Objective: Analyze factors influencing attrition and develop a predictive model
 - Identify key factors influencing an employee's decision to leave
 - Develop a predictive model to forecast attrition risk for individual employees
 - Generate actionable insights to improve employee retention strategies
 - Enable proactive interventions to retain valuable talent

Dataset

- IBM HR Analytics Employee Attrition & Performance dataset (<u>Kaggle</u>)
- Contains 1470 employee records
- Features: age, education, job role, satisfaction levels, attrition status, etc.

RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

Data	columns (total 35 columns):	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtype	es: int64(26) object(9)		

dtypes: int64(26), object(9)

Methodology

Data Wrangling

Ensure data cleanliness and completeness.

Exploratory Data Analysis (EDA)

Explore distributions, correlations, and trends.

Pre-processing

 Encode categorical variables and scale features.

Modeling

Train and evaluate machine learning models.

Analysis

Interpret model performance and feature importance.

Data Wrangling

- Data Collection
- Data Organization
- Data Definition
 - Summary statistics for numeric columns to understand distributions.
 - Unique value counts for categorical columns to identify distinct categories.
 - Calculating percentages of unique values for categorical columns to understand distribution.

Data Cleaning

- Checking missing values to identify any gaps.
- Visualizing missing data patterns.
- Identifying duplicate rows to ensure data integrity.
- Dropping columns with zero variance ('EmployeeCount', 'Over18', 'StandardHours').

EDA Highlights

- Descriptive statistics
 - mean, median, std. dev.
- Visualizations
 - histograms, boxplots, etc.
- Correlation analysis
 - identified key influencers

- 0.1

- 0.0

Data Pre-processing

- One-hot encoding for categorical variables
- Feature scaling with StandardScaler
- 75% training, 25% testing split

Modeling

- Models:
 - Logistic Regression,
 - K-Nearest Neighbors,
 - Support Vector Machine (SVM),
 - Random Forest,
 - Naive Bayes,
 - Gradient Boosting,
 - XGBoost
- Hyperparameter tuning
 - GridSearchCV
- Evaluation Metrics
 - Accuracy, F1-score,
 - o Precision, Recall, ROC AUC

Best Performing Model

• Linear SVM (C=0.1)

• Accuracy: 89.9%

• F1-Score: 0.519

	Model	Accuracy	Precision	Recall	F1 Score	ROC AUC
2	Support Vector Machine	0.899457	0.689655	0.416667	0.519481	0.694271
0	Logistic Regression	0.896739	0.678571	0.395833	0.500000	0.683854
1	K-Nearest Neighbor	0.891304	0.681818	0.312500	0.428571	0.645313
7	XGBoost	0.888587	0.684211	0.270833	0.388060	0.626042
6	Gradient Boosting	0.883152	0.592593	0.333333	0.426667	0.649479
3	Random Forest (Entropy)	0.869565	0.500000	0.083333	0.142857	0.535417
4	Random Forest (Gini)	0.869565	0.500000	0.083333	0.142857	0.535417
5	Naive Bayes	0.682065	0.228346	0.604167	0.331429	0.648958

Feature Importance

SVM coefficients highlighting top predictive features

Key Findings

- NumCompaniesWorked, YearsSinceLastPromotion, and OverTime_Yes
 - o relatively higher positive coefficients,
 - o indicating their significant role in predicting attrition
- TotalWorkingYears, YearsInCurrentRole, OverTime_No, and JobSatisfaction
 - o <u>negative</u> coefficients,
 - suggesting that lower levels of satisfaction and involvement are associated with higher attrition rates

Handling Class Imbalance

- Applied SMOTE (Synthetic Minority Over-sampling Technique)
- Increased recall for minority class (attrition)
- Tradeoff with decreased precision, more false positives

SVM (with S	MOTE)) Classification Report:			
	pre	ecision	cision recall f1-so		core support
	0	0.91	0.96	0.93	320
	1	0.56	0.38	0.45	48
accurac	у			0.88	368
macro av	g	0.74	0.67	0.69	368
weighted av	g	0.87	0.88	0.87	368

Recommendations

- Enhance work-life balance initiatives
- Develop career growth and mentorship programs
- Implement engagement surveys and feedback mechanisms
- Offer competitive compensation and benefits

Limitations & Future Work

- Potential gaps or biases in dataset
- Incorporate additional data sources (performance reviews, etc.)
- Explore advanced machine learning techniques

Conclusion

- Predictive model can identify at-risk employees proactively
- Actionable recommendations for retention strategies
- Optimization of HR processes and organizational success

References

Dataset: <u>Kaggle</u>

• GitHub Repository: Link

