FBX4025 – Sistemas Digitais I

Objetivos

- Introdução as portas lógicas
- Introdução à análise de circuitos digitais

O inversor

O inversor (circuito *NOT*) realiza a operação denominada inversão ou complementação.

Símbolos característicos

Símbolos retangulares Padrão 91-1984 ANSI/IEEE

Tabela verdade

ENTRADA	SAÍDA
BAIXO (0)	ALTO (1)
ALTO (1)	BAIXO (0)

O inversor

Um exemplo de aplicação do inversor seria o circuito de complemento de 1 de 8 bits mostrado abaixo.

Exemplo 01

Uma forma de onda é aplicada no inversor da Figura abaixo. Determine a forma de onda de saída correspondente à entrada e mostre o diagrama de temporização. De acordo com o posicionamento do pequeno círculo, qual é o estado ativo da saída?

O estado ativo da saída é 0.

Porta lógica AND

A porta AND é uma das portas básicas que pode ser combinada para formar qualquer função lógica. Uma porta AND pode ter duas ou mais entradas e realizar uma operação conhecida como multiplicação lógica.

A multiplicação booleana é o mesmo que a função AND.

Porta lógica AND

Sistema de alarme para cinto de segurança (exemplo de aplicação).

Exemplo 02

- a) Desenvolva a tabela-verdade para uma porta AND de 3 entradas.
- b) Determine o número total de combinações de entrada possíveis para uma porta AND de 4 entradas.

a)

ENTRADAS			SAÍDA
A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

b)
$$N = 2^4 = 16$$

Exemplo 03

Para as formas de onda de entrada, A e B, mostre a forma de onda de saída relacionando-a adequadamente às entradas.

Porta lógica OR

A porta *OR* é uma das portas básicas a partir das quais todas as funções lógicas são construídas. Uma porta *OR* pode ter duas ou mais entradas e realiza o que conhecemos como adição lógica.

A adição booleana é o mesmo que a função OR.

Exemplo 04

Para as formas de onda A e B, mostre a forma de onda de saída relacionando-a adequadamente às entradas.

Porta lógica OR

Sistema de alarme para detecção de intrusão (exemplo de aplicação).

Exemplo 05

- a) Em que situação a saída de uma porta OR é nível ALTO?
- b) Em que situação a saída de uma porta OR é nível BAIXO?
- c) Descreva a tabela-verdade de uma porta OR de 3 entradas.

Porta lógica NAND

A porta *NAND* é um elemento lógico popular porque pode ser usada como uma porta universal, ou seja, as portas *NAND* podem ser usadas em combinação para realizarem operações *AND*, *OR* e inversão.

Símbolos retangulares
Padrão 91-1984 ANSI/IEEE

Tabela verdade

Operação da porta NAND

Expressão lógica

Exemplo 06

Mostre a forma de onda de saída para uma porta NAND de 3 entradas, estabelecendo a relação temporal com as entradas.

Porta lógica NOR

Assim como a porta NAND, a porta lógica NOR também pode ser usada como uma porta universal, ou seja, as portas NOR também podem ser usadas em combinação para realizarem operações AND, OR e inversão.

Exemplo 07

Mostre a forma de onda de saída para uma porta NOR de 3 entradas, estabelecendo a relação temporal com as entradas.

Porta lógica X-OR

A saída de uma porta *OR exclusivo* (*X-OR*) é nível alto apenas quando as duas entradas estão em níveis lógicos opostos.

Símbolos retangulares Padrão 91-1984 ANSI/IEEE

Tabela verdade

Expressão lógica

Exemplo 08

Determine as formas de onda das saídas das portas X-OR e X-NOR, a partir das formas de onda nas entradas (A e B).

Resumo das operações booleanas (OR, AND, NOT)

Conceito

A análise de um circuito lógico consiste na determinação da relação entre sua(s) saída(s) e suas entradas, definindo-se sua expressão lógica e/ou tabela verdade.

As operações AND sempre são realizadas antes, a menos que as operações OR estejam dentro de parênteses. A ordem das operações é a mesma da álgebra convencional.

Exemplo 09

Determine as funções lógicas executadas pelos seguintes circuitos. Realize a simulação do circuito e levante a tabela verdade do mesmo.

Uso da tabela-verdade

- ✓ O uso da tabela-verdade permite que se analise uma porta ou combinação lógica por vez.
- ✓ Permite que se confira facilmente o trabalho.
- Quando o trabalho se encerra, há uma tabela que ajuda na verificação de erros do circuito lógico.

Exemplo 10

Considere o circuito lógico abaixo:

Determine:

- a) A função de saída x.
- b) Realize o levantamento da tabela verdade manualmente.
- c) Realize a simulação do circuito e verifique a tabela-verdade do item b).

Exemplo 10

Α	В	С	$\frac{u}{A}$	$\frac{v}{A}B$	w= BC	x= v+w
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			

Α	В	С	$\frac{u}{A}$	$\frac{v=}{AB}$	w= BC	x= v+w
0	0	0	1	0	0	
0	0	1	1	0	0	
0	1	0	1	1	0	
0	1	1	1	1	1	
1	0	0	0	0	0	
1	0	1	0	0	0	
1	1	0	0	0	0	
1	1	1	0	0	1	

Α	В	С	<u>u</u> =	<u>v</u> = AB	w= BC	x= v+w
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	1	1

Exercício 01

O início remoto para um automóvel girará o motor sob certas condições. O circuito lógico é mostrado na figura abaixo. As entradas são definidas da seguinte forma:

Determine:

- a) Escreva a expressão booleana do diagrama de circuito.
- b) Desenhe a tabela-verdade para esse circuito.

Referências

- TOCCI, Ronald J.; Widmer, Neal S.; Moss, Gregory L. **Sistemas digitais:** princípios e aplicações, 12ª ed. Editora Pearson, 2018. 1056 p. ISBN 9788543025018. Capítulo 3 Descrição dos circuitos lógicos.
- CAPUANO, Francisco Gabriel. **Elementos de eletrônica digital**. 42. São Paulo Erica 2019 1 recurso online ISBN 9788536530390. Capítulo 2 Funções, portas lógicas e circuitos lógicos
- FLOYD, Thomas. **Sistemas digitais : fundamentos e aplicações**. 9. Porto Alegre Bookman 2011 1 recurso online ISBN 9788577801077. Capítulo 3 Portas Lógicas