PAGE NO.

1. STAAD SPACE

INPUT FILE: D:\SEM 7\CE402 Design Project\Building 1\Building 1.STD

- 2. START JOB INFORMATION
- 3. ENGINEER DATE 16-AUG-21
- 4. END JOB INFORMATION
- 5. INPUT WIDTH 79
- 6. UNIT METER KN
- 7. JOINT COORDINATES
- 8. 1 0 0 0; 2 3.96241 0 0; 3 7.62002 0 0; 4 10.973 0 0; 5 0 0 -4.57201
- 9. 6 3.96201 0 -4.57201; 7 7.62002 0 -4.57201; 8 10.973 0 -4.57201
- 10. 9 7.62002 0 -3.04801; 10 10.973 0 -3.04801; 11 0 0 -6.70561
- 11. 12 3.96201 0 -6.70561; 13 7.62002 0 -6.70561; 14 10.973 0 -6.70561
- 12. 15 0 0 -10.3632; 16 3.96201 0 -10.3632; 17 7.62002 0 -10.3632
- 13. 18 10.973 0 -10.3632; 19 0 3.00001 0; 20 3.96241 3.00001 0
- 14. 21 7.62002 3.00001 0; 22 10.973 3.00001 0; 23 0 3.00001 -4.57201
- 15. 24 3.96201 3.00001 -4.57201; 25 7.62002 3.00001 -4.57201
- 16. 26 10.973 3.00001 -4.57201; 27 7.62002 3.00001 -3.04801
- 17. 28 10.973 3.00001 -3.04801; 29 0 3.00001 -6.70561; 30 3.96201 3.00001 -6.70561
- 18. 31 7.62002 3.00001 -6.70561; 32 10.973 3.00001 -6.70561; 33 0 3.00001 -10.3632
- 19. 34 3.96201 3.00001 -10.3632; 35 7.62002 3.00001 -10.3632
- 20. 36 10.973 3.00001 -10.3632; 37 0 6.00001 0; 38 3.96241 6.00001 0
- 21. 39 7.62002 6.00001 0; 40 10.973 6.00001 0; 41 0 6.00001 -4.57201
- 22. 42 3.96201 6.00001 -4.57201; 43 7.62002 6.00001 -4.57201
- 23. 44 10.973 6.00001 -4.57201; 45 7.62002 6.00001 -3.04801
- 24. 46 10.973 6.00001 -3.04801; 47 0 6.00001 -6.70561; 48 3.96201 6.00001 -6.70561
- 25. 49 7.62002 6.00001 -6.70561; 50 10.973 6.00001 -6.70561; 51 0 6.00001 -10.3632
- 26. 52 3.96201 6.00001 -10.3632; 53 7.62002 6.00001 -10.3632
- 27. 54 10.973 6.00001 -10.3632; 55 0 9.00002 0; 56 3.96241 9.00002 0
- 28. 57 7.62002 9.00002 0; 58 10.973 9.00002 0; 59 0 9.00002 -4.57201
- 29. 60 3.96201 9.00002 -4.57201; 61 7.62002 9.00002 -4.57201
- 30. 62 10.973 9.00002 -4.57201; 63 7.62002 9.00002 -3.04801
- 31. 64 10.973 9.00002 -3.04801; 65 0 9.00002 -6.70561; 66 3.96201 9.00002 -6.70561
- 32. 67 7.62002 9.00002 -6.70561; 68 10.973 9.00002 -6.70561; 69 0 9.00002 -10.3632
- 33. 70 3.96201 9.00002 -10.3632; 71 7.62002 9.00002 -10.3632
- 34. 72 10.973 9.00002 -10.3632; 73 0 -2 0; 74 3.96241 -2 0; 75 7.62002 -2 0
- 35. 76 10.973 -2 0; 77 0 -2 -4.57201; 78 3.96201 -2 -4.57201
- 36. 79 7.62002 -2 -4.57201; 80 10.973 -2 -4.57201; 81 7.62002 -2 -3.04801
- 37. 82 10.973 -2 -3.04801; 83 0 -2 -6.70561; 84 3.96201 -2 -6.70561
- 38. 85 7.62002 -2 -6.70561; 86 10.973 -2 -6.70561; 87 0 -2 -10.3632

94. 1 TO 27 60 TO 86 105 TO 131 150 TO 176 199 TO 202 PRIS YD 0.4 ZD 0.25

```
95. CONSTANTS
  96. MATERIAL CONCRETE ALL
  97. SUPPORTS
  98. 73 TO 90 FIXED
  99. MEMBER OFFSET
 100. 1 TO 27 60 TO 86 105 TO 131 150 TO 176 199 TO 202 START 0 -0.15 0
 101. 1 TO 27 60 TO 86 105 TO 131 150 TO 176 199 TO 202 END 0 -0.15 0
 102. 132 TO 149 195 TO 198 END 0 0.05 0
 103. CUT OFF MODE SHAPE 10
 104. DEFINE 1893 LOAD
 **WARNING- ELEMENTS
                          34 _
                                   39 ARE BETWEEN THE SAME JOINTS.
                          35 _
                                   40 ARE BETWEEN THE SAME JOINTS.
 **WARNING- ELEMENTS
                          31 _
                                   41 ARE BETWEEN THE SAME JOINTS.
 **WARNING- ELEMENTS
                          38 _
 **WARNING- ELEMENTS
                                   28 ARE BETWEEN THE SAME JOINTS.
 105. ZONE 0.36 RF 3 I 1 SS 2 ST 1 DM 0.05
 106. MEMBER WEIGHT
 107. 1 TO 5 9 13 TO 17 20 27 60 62 TO 64 68 72 TO 76 79 86 105 107 TO 109 113 117 -
 108. 118 TO 121 124 131 158 UNI 13.208
 109. 6 8 10 12 18 19 21 TO 26 65 67 69 71 77 78 80 TO 85 110 112 114 116 122 123 -
 110. 125 TO 130 155 159 171 UNI 6.604
 111. FLOOR WEIGHT
**NOTE** about Floor/OneWay Loads/Weights.
 Please note that depending on the shape of the floor you may
 have to break up the FLOOR/ONEWAY LOAD into multiple commands.
 For details please refer to Technical Reference Manual
 Section 5.32.4.2 Note d and/or "5.32.4.3 Note f.
 112. YRANGE 2 8 FLOAD 1.5
 113. LOAD 1 LOADTYPE DEAD TITLE DL
 114. SELFWEIGHT X 1
 115. SELFWEIGHT Y 1
 116. SELFWEIGHT Z 1
 117. FLOOR LOAD
 118. YRANGE 2 10 FLOAD 3 GX
 119. YRANGE 2 10 FLOAD 3 GY
 120. YRANGE 2 10 FLOAD 3 GZ
 121. MODAL CALCULATION REQUESTED
 122. SPECTRUM CQC 1893 X 0.06 Z 0.06 ACC DAMP 0.05
 123. SOIL TYPE 2
 124. MEMBER LOAD
 125. 1 TO 5 9 13 TO 17 20 27 60 62 TO 64 68 72 TO 76 79 86 105 107 TO 109 113 117 -
 126. 118 TO 121 124 131 158 UNI GX 13.208
 127. 1 TO 5 9 13 TO 17 20 27 60 62 TO 64 68 72 TO 76 79 86 105 107 TO 109 113 117 -
 128. 118 TO 121 124 131 158 UNI GY 13.208
 129. 1 TO 5 9 13 TO 17 20 27 60 62 TO 64 68 72 TO 76 79 86 105 107 TO 109 113 117 -
 130. 118 TO 121 124 131 158 UNI GZ 13.208
 131. 6 8 10 12 18 19 21 TO 26 65 67 69 71 77 78 80 TO 85 110 112 114 116 122 123 -
 132. 125 TO 130 155 159 171 UNI GX 6.604
 133. 6 8 10 12 18 19 21 TO 26 65 67 69 71 77 78 80 TO 85 110 112 114 116 122 123 -
 134. 125 TO 130 155 159 171 UNI GY 6.604
 135. 6 8 10 12 18 19 21 TO 26 65 67 69 71 77 78 80 TO 85 110 112 114 116 122 123 -
 136. 125 TO 130 155 159 171 UNI GZ 6.604
```

137. PERFORM ANALYSIS

PROBLEM STATISTICS

NUMBER OF JOINTS 94 NUMBER OF MEMBERS 188
NUMBER OF PLATES 45 NUMBER OF SOLIDS 0
NUMBER OF SURFACES 0 NUMBER OF SUPPORTS 18

SOLVER USED IS THE OUT-OF-CORE BASIC SOLVER

ORIGINAL/FINAL BAND-WIDTH= 72/ 26/ 138 DOF

TOTAL PRIMARY LOAD CASES = 1, TOTAL DEGREES OF FREEDOM = 456

TOTAL LOAD COMBINATION CASES = 0 SO FAR.

SIZE OF STIFFNESS MATRIX = 63 DOUBLE KILO-WORDS

REQRD/AVAIL. DISK SPACE = 13.6/ 94907.9 MB

***NOTE: MASSES DEFINED UNDER LOAD# 1 WILL FORM

THE FINAL MASS MATRIX FOR DYNAMIC ANALYSIS.

EIGEN METHOD : SUBSPACE

NUMBER OF MODES REQUESTED = 10

NUMBER OF EXISTING MASSES IN THE MODEL = 228

NUMBER OF MODES THAT WILL BE USED = 10

CALCULATED FREQUENCIES FOR LOAD CASE

MODE	FREQUENCY (CYCLES/SEC)	PERIOD(SEC)	ACCURACY
1	1.918	0.52145	9.788E-16
2	1.997	0.50070	9.024E-16
3	2.164	0.46204	0.000E+00
4	5.996	0.16678	1.486E-11
5	6.241	0.16023	9.756E-12
6	6.666	0.15002	8.898E-11
7	10.126	0.09876	5.036E-08
8	10.562	0.09468	7.136E-08
9	11.037	0.09060	9.025E-07
10	12.806	0.07809	2.916E-07

1

The following Frequencies are estimates that were calculated. These are for information only and will not be used. Remaining values are either above the cut off mode/freq values or are of low accuracy. To use these frequencies, rerun with a higher cutoff mode (or mode + freq) value.

CALCULATED FREQUENCIES FOR LOAD CASE 1

MODE	FREQUENCY (CYCLES/SEC)	PERIOD(SEC)	ACCURACY
11	13.532	0.07390	9.246E-05

RESPONSE LOAD CASE 1

MODE	MODAL WEIGHT (MODA:	L MASS TIMES g Y	r) IN KN Z	GENERALIZED WEIGHT
1	4.669151E+03	2.244694E-03	4.727882E+01	2.240372E+03
2	1.151811E+02	6.148556E-04	3.467246E+03	1.397416E+03
3	1.970408E+01	4.735063E-03	1.307181E+03	1.346390E+03
4	6.221948E+02	1.926852E-02	4.436374E+00	8.761073E+02
5	1.034201E+01	1.377658E-02	5.393013E+02	1.337971E+03
6	5.673627E+00	5.626204E-02	9.101538E+01	6.232149E+02
7	2.348562E+02	7.790473E-02	1.208276E+00	2.450798E+02
8	3.045275E+00	8.239527E-02	2.385304E+02	5.599887E+02
9	5.997130E+00	1.781353E-01	9.401817E+00	2.264556E+02
1.0	6 866785E+01	4 659414E-01	1 812229E-02	9 970116E+01

CQC MODAL COMBINATION METHOD USED.

DYNAMIC WEIGHT X Y Z 6.292111E+03 6.292111E+03 6.292111E+03 KN
MISSING WEIGHT X Y Z -5.372980E+02 -6.291209E+03 -5.864940E+02 KN
MODAL WEIGHT X Y Z 5.754813E+03 9.012785E-01 5.705617E+03 KN

***NOTE: IT IS RECOMMENDED TO DEFINE FLOOR LEVELS USING "FLOOR HEIGHT" INPUT.

RESPONSE LOAD CASE 1

MODE	SPECTRAL ACCELERATION	DESIGN	SEISMIC	COEFFICIENT
		X	 Y	7.
		21	_	2
1	2.50000	0.1500	0.0000	0.1500
2	2.50000	0.1500	0.0000	0.1500
3	2.50000	0.1500	0.0000	0.1500
4	2.50000	0.1500	0.0000	0.1500
5	2.50000	0.1500	0.0000	0.1500
6	2.50000	0.1500	0.0000	0.1500
7	2.48138	0.1489	0.0000	0.1489
8	2.42017	0.1452	0.0000	0.1452
9	2.35904	0.1415	0.0000	0.1415
10	2.17132	0.1303	0.0000	0.1303

STORY	LEVEL IN METE	PEAK STORY SHEAR	IN KN
		x	 Z
			-
_			
5	12.00	19.42	15.24
4	9.00	231.35	212.46
3	6.00	509.54	470.15
2	3.00	682.07	630.97
1	0.00	723.95	670.95
BASE	-2.00	723.95	670.95

MODE	ACCELERATION-G	DAMPING
1	2.50000	0.05000
2	2.50000	0.05000
3	2.50000	0.05000
4	2.50000	0.05000
5	2.50000	0.05000
6	2.50000	0.05000
7	2.48138	0.05000
8	2.42017	0.05000
9	2.35904	0.05000
10	2.17132	0.05000

MODAL	BASE ACTIONS	FORCE:	S IN KN	LENGTH IN METE			
MODE	PERIOD	FX	FY	FZ	MOMENTS MX	ARE ABOUT	THE ORIGIN MZ
1	0.521	629.90	0.44	-63.38	-361.62	-3426.55	-3750.26
2	0.501	112.07	0.26	614.88	3595.96	-2171.31	-663.09
3	0.462	-21.12	0.33	172.00	1071.94	-2358.01	129.41
4	0.167	85.45	-0.48	-7.22	15.96	-459.69	249.17
5	0.160	12.75	-0.47	92.10	-271.08	-373.69	30.68
6	0.150	-2.56	-0.25	10.24	-39.85	-174.55	-8.31
7	0.099	32.46	0.59	-2.33	2.26	-178.87	-23.40
8	0.095	4.36	0.72	38.55	33.81	-181.61	3.74
9	0.091	-0.21	0.04	0.27	0.95	-7.42	0.40
10	0.078	8.80	-0.72	-0.14	-4.22	-42.81	10.13

MASS PARTICIPATION FACTORS IN PERCENT			BASE	SHEAR IN	KN				
MODE	Х	Y	Z	SUMM-X	SUMM-Y	SUMM-Z	Х	Y	Z
1	74.21	0.00	0.75	74.206	0.000	0.751	700.37	0.00	7.09
2	1.83	0.00	55.10	76.037	0.000	55.856	17.28	0.00	520.09
3	0.31	0.00	20.77	76.350	0.000	76.631	2.96	0.00	196.08
4	9.89	0.00	0.07	86.239	0.000	76.701	93.33	0.00	0.67
5	0.16	0.00	8.57	86.403	0.001	85.272	1.55	0.00	80.90
6	0.09	0.00	1.45	86.493	0.002	86.719	0.85	0.00	13.65
7	3.73	0.00	0.02	90.226	0.003	86.738	34.97	0.00	0.18
8	0.05	0.00	3.79	90.274	0.004	90.529	0.44	0.00	34.64
9	0.10	0.00	0.15	90.369	0.007	90.679	0.85	0.00	1.33
10	1.09	0.01	0.00	91.461	0.014	90.679	8.95	0.00	0.00
					TOTAL SRSS	SHEAR	707.70	0.00	562.96
					TOTAL 10PC	T SHEAR	724.94	0.00	728.47
					TOTAL ABS	SHEAR	861.54	0.00	854.62
					TOTAL CSM	SHEAR	852.64	0.00	854.62
					TOTAL CQC	SHEAR	723.95	0.00	670.95

- 138. PERFORM ANALYSIS
- **WARNING- CONSECUTIVE ANALYSIS COMMANDS. ONLY FIRST USED.
- 139. PERFORM ANALYSIS
- **WARNING- CONSECUTIVE ANALYSIS COMMANDS. ONLY FIRST USED.
- 140. PERFORM ANALYSIS
- **WARNING- CONSECUTIVE ANALYSIS COMMANDS. ONLY FIRST USED.
- 141. FINISH

****** END OF THE STAAD.Pro RUN *******

**** DATE= AUG 23,2021 TIME= 15:37:28 ****

* For technical assistance on STAAD.Pro, please visit

* http://selectservices.bentley.com/en-US/

*
Details about additional assistance from

* Bentley and Partners can be found at program menu

Help->Technical Support
Copyright (c) 1997-2016 Bentley Systems, Inc.

* http://www.bentley.com