International Institute of Information Technology, Bangalore EG102 Data Structures and Algorithms Lab.

- 1. Let F(0) = 0, F(1) = 1 and F(n) = (F(n-1) + F(n-2))%m. Implement the algorithm to compute F(n), by finding the period of the sequence. $1 < n < 10^{10^5}$, $10 < m < 10^6$.
- 2. Let F(0) = 0, F(1) = 1, F(2) = 2 and F(n) = (F(n-1) + F(n-3))%m. Implement the algorithm to compute F(n), using the matrix multiplication method . $1 < n < 10^{10^5}$, $10 < m < 10^6$.
- 3. Implement MergeSort, QuickSort and FindRank algorithms.
- 4. Given an array of integers, $a_0, a_1, a_2, \ldots a_{n-1}$, we would like to know, if there are three numbers such that sum of two numbers is equal to the third number. That is if there is i, j, k such that $a_i + a_j = a_k$. Give an $O(n^2)$ algorithm to solve this problem.
- 5. Let $a_1, a_2, \ldots a_n$ be a sequence of distinct numbers. The pair (i, j) is called a inversion, if i < j and $a_i > a_j$. Write an $O(n \log n)$ algorithm to determine the number of inversions in the given array.
- 6. You are given a sequence of $10 < n < 10^9$ numbers and a number $10 < k < 10^5$ such that, $1 \le k \le n$. Write an efficient algorithm to list the k smallest numbers among the given sequence of numbers. What is the complexity of the algorithm?