$\begin{array}{c} {\rm COMPSCI/SFWRENG~2FA3} \\ {\rm Discrete~Mathematics~with~Applications~II} \\ {\rm Winter~2020} \end{array}$

Week 07 Exercises

Dr. William M. Farmer McMaster University

Revised: February 14, 2020

Exercises

- 1. Construct deterministic finite automata $M=(Q,\Sigma,\delta,s,F)$ such that:
 - a. $\Sigma = \{a, b, ..., z\}$ and L(M) contains the single string calculemus. **SOLUTION:** Let M be the DFA to match L(M), where δ is illustrated by the below transition diagram:

We've used the notation "Any $\sigma \in \Sigma$ " to denote any member of the alphabet, to save space. We've also added some extra states (q_{13}, q_{14}) , which were unnecessary, but makes the diagram easier to read.

b. $\Sigma = \{a, b\}$ and $L(M) = \{x \in \Sigma^* \mid |x| \equiv 0 \mod 3\}$. **SOLUTION:** Let M be the appropriate DFA with the following transition diagram:

c. $\Sigma = \{0, 1\}$ and $L(M) = \{x \in \Sigma^* \mid x \text{ contains the string } 101\}$ **SOLUTION:** Let the appropriately defined DFA M have the following transition diagram:

d. $\Sigma = \{0,1\}$ and L(M) is set of strings in Σ^* of the form 0^m1^n where $m,n \geq 1$.

SOLUTION: Let M be the DFA with the following transition diagram:

e. $\Sigma = \{a,b\}$ and L(M) is the set of strings in Σ^* that contain at least three occurrences of bbb. Note: Overlapping is permitted so $bbbb \in L(M)$.

SOLUTION: Let M be the DFA with the following transition diagram:

f. $\Sigma = \{a, b\}$ and $L(M) = \{x_1 a x_2 \mid |x_1| \geq 3 \text{ and } |x_2| \leq 4\}$. **SOLUTION:** Let M be the DFA with the following transition diagram:

2. Let $M=(Q,\Sigma,\delta,s,F)$ and $M'=(Q,\Sigma,\delta,s,\{q\in Q\mid q\not\in F\})$ be DFAs. Prove that $L(M')=\sim L(M).$

Proof. We begin by noting the definition of the languages:

$$\begin{split} L(M') &= \{x \in \Sigma^* \mid \hat{\delta}(s,x) \in \{q \in Q \mid q \not \in F\}\} \\ \sim &L(M) = \sim \{x \in \Sigma^* \mid \hat{\delta}(s,x) \in F\} \end{split}$$

Then, we have

$$\begin{split} L(M') &= \{x \in \Sigma^* \mid \hat{\delta}(s,x) \in \{q \in Q \mid q \not\in F\}\} & \langle \text{Definition of } L(M') \rangle \\ &= \{x \in \Sigma^* \mid \hat{\delta}(s,x) \in \sim F\} & \langle \text{Set complement} \rangle \\ &= \{x \in \Sigma^* \mid \hat{\delta}(s,x) \not\in F\} & \langle \text{Membership of complement} \rangle \\ &= \sim \{x \in \Sigma^* \mid \hat{\delta}(s,x) \in F\} & \langle \text{Set complement} \rangle \\ &= \sim L(M) & \langle \text{Definition of } \sim L(M) \rangle \end{split}$$

as required.

3. Let Σ be a finite alphabet and $B \subseteq \Sigma^*$. B is reflexive if $\epsilon \in B$ and is transitive if $BB \subseteq B$. Prove that, if $A \subseteq \Sigma^*$, then A^* is smallest reflexive and transitive set containing A. That is, show that (1) $A \subseteq A^*$, (2) A^* is reflexive, (3) A^* is transitive, and (4) if B is any other reflexive and transitive set containing A, then $A^* \subseteq B$.

Proof. We begin by noting the definition of A^* :

$$A^* = \bigcup_{n>0} A^n = A^0 \cup A^1 \cup A^2 \cup \cdots$$

From this, we know that $A \subseteq A^*$, as A appears in the iterated union of A^* .

Also, we know that $A^0 = \{\epsilon\}$. Thus, $\epsilon \in A^*$, so A^* is reflexive.

Since A^* is the set of all possible strings buildable from strings in A, we have that $A^*A^* \subseteq A^*$. We can show this by building an injective map $f: A^*A^* \to A^*$. For any member from the domain (A^*A^*) , we can map it to a unique member of the codomain (A^*) . The member of the codomain must have the form xy where $x, y \in A^*$. Furthermore, x must come from A^n for some appropriate $n \in \mathbb{N}$. y must similarly come from A^m for some appropriate $m \in \mathbb{N}$. Yet, $xy \in A^{n+m} \subseteq A^*$, so we must have that $A^*A^* \subseteq A^*$, so A^* is transitive.

We know $A^* \subseteq B$ if for any string $x \in A^*$, we have that $x \in B$. For any $x \in A^*$, we can write it as a concatenation of strings $x_1x_2x_3 \dots x_\ell$ where $x_1, x_2, x_3, \dots x_\ell \in A$. We can do a proof by induction on ℓ to show that $x \in B$.

Proof. Base case: $\ell = 0$. i.e. $x = \epsilon$. B is reflexive, so $\epsilon \in B$.

Induction Step: Assume that if $x_1, x_2, \ldots, x_\ell \in A^\ell$, then $x_1 x_2 \ldots x_\ell \in B$. So, for any string $x_1, x_2, \ldots, x_{\ell+1} \in A^*$, we know that $x_1, x_2, \ldots, x_{\ell+1} \in A^\ell A$. We also know from the induction hypothesis that $A^\ell \subseteq B$ and we know from the question that $A \subseteq B$. Therefore, $x_1, x_2, \ldots, x_{\ell+1} \subseteq BB$

Thus,
$$A^* \subseteq B$$
, as required.

4. Let $M = (Q, \Sigma, \delta, s, F)$ be a DFA. Prove by induction on |y| that, for all $x, y \in \Sigma^*$ and $q \in Q$,

$$\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y).$$

Proof. Let $P(y) \equiv \hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y)$. We will prove P(y) by induction over |y|, for any state $q \in Q$ and $x \in \Sigma^*$.

Base case: |y| = 0, i.e. $y = \epsilon$.

$$\begin{split} P(\epsilon) &\equiv \hat{\delta}(\hat{\delta}(q,x),\epsilon) & \langle \text{Definition of } P \rangle \\ &= \hat{\delta}(q,x) & \langle \text{Definition of } \hat{\delta} \rangle \\ &= \hat{\delta}(q,x\epsilon) & \langle \text{Identity of concatenation} \rangle \end{split}$$

Induction step: Assume P(y). Show that, for any $\sigma \in \Sigma$, we have $P(y\sigma)$.

$$\begin{split} P(y\sigma) &\equiv \hat{\delta}(\hat{\delta}(q,x),y\sigma) & \langle \text{Definition of } P \rangle \\ &= \delta(\hat{\delta}(\hat{\delta}(q,x),y),\sigma) & \langle \text{Definition of } \hat{\delta} \rangle \\ &= \delta(\hat{\delta}(q,xy),\sigma) & \langle \text{Induction hypothesis} \rangle \\ &= \hat{\delta}(q,xy\sigma) & \langle \text{Definition of } \hat{\delta} \rangle \end{split}$$

Thus, by induction over |y|, we have that P holds for all $x,y\in \Sigma^*$ and $q\in Q,$ as required. \square