Interrupts

Dr. Vibhu Jately
Assistant Professor-SG
School of Computer Science

Introduction

- Interrupt is an internal or external signal which may disturb or alter the sequence of execution of processor.
- It is a method by which an I/O device informs the processor that it requires services of the processor.
- It is asynchronous.
- The response to an interrupt is controlled by the microprocessor.
- Interrupt can be classified as:
- a. Maskable Interrupt which can be avoided.
 - Non-Maskable Interrupt which cannot be ignored or avoided.
- **b. Vectored** Interrupt which has specific address location in the memory.
 - **Non-vectored** Interrupt which do not have specific address location in the memory.

8085 Interrupt

Priority	Interrupt	Type of Triggering	Vector Address
1	TRAP V E		0024 H
2	M RST 7.5 C A T		003C H
3	S K RST 6.5 R A E		0034 H
4	B RST 5.5 D		002C H
5	E INTR		

Level Triggering

Edge Triggering

• The 8085 interrupt process is controlled by the Interrupt Enable flip-flop, which is internal to the processor and can be set or reset by using software instructions.

Enabled	
	Microprocessor is
High	enabled

- The 8085 interrupt process is described in terms of following process:
- 1. The interrupt is enabled using EI instruction in the main program. The DI resets the flip-flop and disable the interrupt process.

EI	Enable Interrupt
DI	Disable Interrupt

- 2. While executing the program, microprocessor checks the INTR line during the execution of each instruction.
- 3. If interrupt is enabled and INTR is high, the processor completes its present instruction and sends \overline{INTA} signal.
- 4. The signal *INTA* is used to insert a restart (RST) instruction (Call instruction) through external hardware.
- 5. When the microprocessor receives an RST instruction it saves the memory address of the next instruction on the stack.
- 6. The program is transferred to CALL location and performs the task in the subroutine (service routine).
- 7. The subroutine contains the EI instruction.
- 8. At the end of the subroutine, RET instruction is used.

Restart Instructions

							Bir	nary co	ode	
Mnemonics	D7	D6	D 5	D4	D3	D2	D1	D0	Hex Code	Call Location In Hex
RST0	1	1	0	0	0	1	1	1	C7	0000
RST1	1	1	0	0	1	1	1	1	CF	0008
RST2	1	1	0	1	0	1	1	1	D7	0010
RST3	1	1	0	1	1	1	1	1	DF	0018
RST4	1	1	1	0	0	1	1	1	E7	0020
RST5	1	1	1	0	1	1	1	1	EF	0028
RST6	1	1	1	1	0	1	1	1	F7	0030
RST7	1	1	1	1	1	1	1	1	FF	0038

HOMEWORK

- WAP to count continuously in binary with a one second delay between each count.
- Write a service routine at XX70H to flash FFH five times when the program is interrupted, with some appropriate delay between each flash.

Schematic to Implement the 8085 Interrupt

Vectored Interrupt

- The four vectored interrupt of 8085 microprocessor don't require the \overline{INTA} signal or an input port.
- The necessary hardware is implemented inside 8085 microprocessor.

Interrupt	Call Location
TRAP	0024Н
RST 7.5	003CH
RST 6.5	0034Н
RST 5.5	002CH

• TRAP has highest priority among other interrupt but has lower priority than HOLD signal in DMA controller.

- EI instruction is used to enable the interrupt in the main program.
- DI instruction resets the interrupt enable flip-flop except the TRAP interrupt.

DI	
RESET	Disable the interrupt enable flip-flop
Interrupt recognized	

- Before the program returns back from ISS to the main program all the interrupts are enabled again using EI instruction before using the RET instruction.
- TRAP is a nonmaskable interrupt which cannot be enabled or disabled and is not accessible to user. It is used for emergency situation such as power failure and energy shut-off.

8085 Interrupts and Vector Locations

RST 7.5, 6.5, 5.5

- These are maskable interrupt and are enabled by software using the instruction
- EI
- □ SIM (Set Interrupt Mask)
- The execution of the instruction SIM enables/disables interrupt according to the bit pattern of the accumulator.

Interpretation of the Accumulator Bit Pattern for the SIM Instruction

- Write instructions to enable all the interrupts of Intel 8085.
- Write instructions to enable RST 6.5 and disable RST 7.5 and RST 5.5.
- WAP to interrupt Intel 8085 using RST 7.5.

Pending Interrupt

- When one interrupt is served by microprocessor, then other interrupt resulting in a pending request.
- The interrupt having highest priority is served first and remaining are left pending.
- In 8085 programmer uses the instruction RIM to know the current status of the pending interrupt.

