Unsupervised learning:

overview and selected topics

B. Michel

Ecole Centrale de Nantes

Statistical Learning

- 1 Introduction to Clustering and k-means
 - *k*-means Algorithm
 - Others clustering methods
 - Quality of a clustering and number of clusters

- 2 Dimension reduction
 - Introduction to dimension reduction
 - Principal Component Analysis
 - Non linear dimension reduction

Unsupervised learning

- Unsupervised learning is learning from unlabeled data.
- Methods in this field study the intrinsic and hidden structure of the data in order to get meaningful insights, segment the datasets in similar groups or to simplify them.
- Main topics of unsupervised learning :
 - Clustering
 - Anomaly detection
 - Dimension reduction, auto-encoders
 - Matrix factorization
 - Manifold Learning
 - **.**..

Summary

- Introduction to Clustering and k-means
 - k-means Algorithm
 - Others clustering methods
 - Quality of a clustering and number of clusters
- 2 Dimension reduction
 - Introduction to dimension reduction
 - Principal Component Analysis
 - Non linear dimension reduction

Clustering

 Clustering refers to the process of partitioning a set of objects into subsets consisting of similar objects.

- Examples :
 - ▶ Biology : are there sub-species in a population? For cancer studies : are there different clones?
 - Commercial: what kinds of customers do I have?
 - ► Text mining : find "similar or different" texts in a corpus.
 - Other suggestions?
- Other types of application :
 - Image segmentation
 - Compression / quantification

An universal way to find group?

• There is no universal way to find groups in data :

- There are many clustering methods that correspond to different ways of grouping observations into classes: geometric, probabilistic points of view, etc.
- Choosing a clustering method requires defining the notion of "class" and then a criterion to be optimized on the observations.
- Unlike supervised classification, it is more difficult to evaluate and compare the results of clustering methods (no observable truth).

Examples of distances and normalization of numeric variables

Many distances in \mathbb{R}^p can be defined by a quadratic form :

$$d^2(x_i,x_\ell) = (x_i - x_\ell)' M(x_i - x_\ell)$$

• Usual Euclidean norm : $M = I_p$

Clustering methods (and ML in general) often require normalization (or standardization) of data, so that all variables are taken into account equally in the clustering criterion used. For instance :

- $M = \text{diag}\left(\frac{1}{\sigma_1^2}, \dots, \frac{1}{\sigma_p^2}\right)$ where $\sigma_j^2 = S_{dd}$ and where S is the variance-covariance matrix of the data.
- Mahalanobis distance : $M = S^{-1}$.

Example for the Mahalanobis distance

Normalization has a strong impact on the distances between observations.

Clustering is challenging

Many elements have an impact on the result of the clustering:

- The variables included in the study (and the possible repetition of certain variables),
- The metric used to compare the observations,
- The number of classes chosen,
- The selected clustering method
- The data preprocessing : standardization?

Conclusion : data expertise is needed on the data for applying clustering methods (more than for supervised problems).

Clustering for modelling the data?

- For some applications, the clusters really exist : tumor clones (cancer)
- But clustering is used more than it should be, an underlying domain based on discrete classes does not always exist! Example: clustering of costumers.
- Clustering helps understanding the structure of the data but we should keep in mind that the underlying data is **usually continuous**.
- Alternative: matrix factorization (NMF for instance).

Summary

- Introduction to Clustering and k-means
 - k-means Algorithm
 - Others clustering methods
 - Quality of a clustering and number of clusters
- 2 Dimension reduction
 - Introduction to dimension reduction
 - Principal Component Analysis
 - Non linear dimension reduction

Clustering and quantification

- Let $\mathscr X$ be a set and d a distance on $\mathscr X$.
- Let $\{x_1, \ldots, x_n\} \subset \mathscr{X}$ be a sample for which we want to propose a clustering.
- Let $\{c_1, \ldots, c_K\}$ be a set of points of \mathcal{X} , called **codebook** which is supposed to summarize $\{x_1, \ldots, x_n\}$.
- For r > 0, we define the "cost" of quantizing the data $\{x_1, \ldots, x_n\}$ by $\{c_1, \ldots, c_K\}$:

$$\Phi(\{c_1,\ldots,c_K\}) = \sum_{i=1}^n d^r(x_i,\{c_1,\ldots,c_K\})$$

where $d(x, A) = \min_{a \in A} d(x, a)$.

- Objective of k-means type algorithms is finding a codebook (or a data partitioning) which minimizes Φ .
- This is not a standard convex optimization problem.

Space of partitions

 Number of partitions of a set of n individuals in K classes (Stirling number of 2nd species)

$$\frac{1}{K!} \sum_{j=0}^{K} (-1)^{j} (K-j)^{n} C_{K}^{j}$$

 $\simeq 10^{47}$ partitions of n=100 individuals in K=3 classes $\simeq 10^{68}$ partitions of n=100 individuals in K=5 classes

- Exhaustive search is not possible.
- k-means algorithms only provide approximate solutions to the optimum.

Inertia

- Hereafter we consider the Euclidean case : observations belongs to \mathbb{R}^p .
- Let $C = \{C_1, \dots, C_K\}$ be a partition of the data $\{x_1, \dots, x_n\}$ into K clusters.
- We consider the cost of clustering

$$\Phi(C) = \Phi(\{m_1, \dots, m_K\}) = \sum_{i=1}^n ||x_i - \{m_1, \dots, m_K\}||^2$$

where $m_k = \frac{1}{|\mathscr{C}_k|} \sum_{i \in \mathscr{C}_k} x_i$ is the barycentre of cluster \mathscr{C}_k and

$$||x_i - \{m_1, \ldots, m_K\}|| := \inf_{k=1\ldots K} ||x_i - m_k||.$$

Inertia

$$\Phi(\mathcal{C}) = \Phi(\{m_1, \ldots, m_K\}) = \sum_{i=1}^n \|x_i - \{m_1, \ldots, m_K\}\|^2$$

- Total Inertia : $I_{total} = \frac{1}{n} \sum_{i=1}^{n} \|x_i \bar{x}\|^2$ where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the barycentre of the point cloud.
- Between-group Inertia : $I_{inter} = \frac{1}{n} \sum_{k=1}^{K} |\mathscr{C}_k| \times \|m_k \bar{x}\|^2$ $\Rightarrow I_{inter}$ measures the dispersion of the K centers (barycentres)
- Within-group Inertia : $I_{intra} = \frac{1}{n} \sum_{k=1}^K \sum_{i \in \mathscr{C}_k} \|x_i m_k\|^2 = \frac{1}{n} \Phi(\mathcal{C})$
 - \Rightarrow I_{intra} measures the dispersion of the points inside a cluster

Inertia: Huygens Property

$$I_{total} = I_{inter} + I_{intra}$$

Minimizing Within-group Inertia ← Maximizing Between-group Inertia

K-means Algorithm (aka Lloyd Algorithm)

```
Data: Number of clusters K, data set X, number of iterations T.
Result: clustering C = \{\mathcal{C}_1 \dots \mathcal{C}_K\}.
Initialization : choose K initial centers c_1, \ldots, c_K;
t = 0:
while clustering is not stabilized or t < T do
    t = t+1:
    for x \in X do
         for k = 1 to K do
              Compute all distances to centers ||x - c_k||;
         end
         Assign x to the cluster for which ||x - c_k|| is minimal;
    end
    for k = 1 to K do
         Update center in \mathscr{C}_k : c_k = m_k = \frac{1}{|\mathscr{C}_k|} \sum_{i \in \mathscr{C}_k} x_i ;
    end
```

end

Within-group Inertia is decreasing

Proposition:

The Within-group Inertia $I_{\text{intra}}(\mathcal{P}^{(t)})$ decreases at each step and thus convergences to a local minimum.

Sketch of Proof:

• If i moves from cluster $\mathscr{C}_{k}^{(t-1)}$ to cluster $\mathscr{C}_{k'}^{(t)}$ then

$$\left\|x_i - m_{k'}^{(t-1)}\right\|^2 \le \left\|x_i - m_k^{(t-1)}\right\|^2$$

• $m_k^{(t)}$ being the center of $\mathcal{C}_k^{(t)}$, then

$$\sum_{i \in \mathscr{C}_k^{(t)}} \left\| x_i - m_k^{(t)} \right\|^2 \leq \sum_{i \in \mathscr{C}_k^{(t)}} \left| x_i - m_k^{(t-1)} \right\|^2$$

Properties of k-means algorithm

- Relatively efficient : Complexity O(KnT) where T is the number of iterations.
- The Within-group inertia decreases with the iterations of the algorithm.
- But convergence to a local minimum.
- Need to specify the number of classes K.
- Discovers compact, convex and well-separated classes.
- Influence of the choice of initial kernels
- Can produce empty classes.
- Influence of outliers

Choice of initial kernels

- "Furthest Point" Strategy: NO!
- Selection based on expert knowledge.
- Preliminary study of univariate data (histograms, ...).
- Dimension reduction then initialization on a more robust structure (k-means on the first PCA components for example).
- Repetition of the method *N* times and selection of the classification with the lowest within-group inertia.
- k-means ++ : see further.

k-means ++

k-means ++: a clever Initialisation of k-means.

 $C = C \cup \{\tilde{c}\}\$;

Perform k-means with this initialization;

k-means ++

Theorem (Arthur, D. and Vassilvitskii, S. (2007))

Let C^{++} be the partition of a sample (x_1, \ldots, x_n) provided by k-means++ for K classes. Then :

$$\mathbb{E}\Phi(\mathcal{C}^{++}) \leq 8(\log K + 2)\inf_{|\mathcal{C}| = K}\Phi(\mathcal{C})$$

where the infimum is taken over all partitions of size K of the sample.

Mini batch k-means

k-means for very large samples and many clusters.

Principle : current step of k-means performed on a small subsample.

```
Data: number of classes K, data set X, max iterations T.
Result: clustering C = \{\mathscr{C}_1 \dots \mathscr{C}_K\}.
Initialize the centers c_k by choosing them uniformly into the x_i;
v = (0, ..., 0) vector of zeros of length K;
for t = 1 to T do
    \tilde{\mathbf{X}}: subsample of size b drawn uniformly in the x_i;
    for x \in \tilde{X} do
         k_{c_x}: index of the nearest center c_x of x;
    end
    for x \in \tilde{X} do
         Update center count v[k_{c_x}] = v[k_{c_x}] + 1;
         Update learning rate \eta = 1/v[k_{c_v}];
         Update center c_x = (1 - \eta)c_x + \eta x;
    end
```

end

Summary

- Introduction to Clustering and k-means
 - k-means Algorithm
 - Others clustering methods
 - Quality of a clustering and number of clusters
- 2 Dimension reduction
 - Introduction to dimension reduction
 - Principal Component Analysis
 - Non linear dimension reduction

Limitation: Clusters of k-means are convex regions

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

[Source : scikit-learn.org]

K-means cannot separate non-convex clusters

Many alternatives methods for clustering

 $[{\sf Source}: {\sf scikit-learn.org}]$

Summary

- Introduction to Clustering and k-means
 - k-means Algorithm
 - Others clustering methods
 - Quality of a clustering and number of clusters
- 2 Dimension reduction
 - Introduction to dimension reduction
 - Principal Component Analysis
 - Non linear dimension reduction

Quality of a clustering

- We can evaluate the quality of a clustering by internal methods.
- These criteria can be used to choose a number of classes.
- Many possible approaches :
 - ► Elbow rule.
 - Silhouette criterion
 - Statistical Gap

Elbow method

- ullet For each value of $K\in\{2,\ldots,K_{\max}\}$, we find a clustering on the data.
- R-Square :

$$K \mapsto RSQ(K) = 1 - \frac{I_{within}(\mathcal{P}_K)}{I_{total}} = \frac{I_{between}(\mathcal{P}_K)}{I_{total}}$$

• Find where the curve $K \mapsto \mathsf{RSQ}(K)$ stabilizes :

Silhouette

- $C(K) = \{\mathscr{C}_1, \dots, \mathscr{C}_K\}$ a clustering of **X** into K classes.
- For $i \in \{1, ..., n\}$ let $\mathscr{C}_k(i)$ be the class of i.
- $a(i)=rac{1}{|\mathcal{C}_k|-1}\sum_{\substack{\ell\in\mathscr{C}_k(i)\ \ell
 eq i}}d(x_i,x_\ell)$: mean distance between i and the other

observations of the cluster.

- $b(i) = \min_{k' \neq k} \frac{1}{|\mathcal{C}_{k'}(i)|} \sum_{\ell \in \mathcal{C}_{k'}} d(x_i, x_\ell)$: mean distance between i and the observations of the closest cluster to i.
- $s(i) = \frac{b(i) a(i)}{\max(b(i), a(i))} \in [-1, 1]$
- $S(C(K)) = \frac{1}{n} \sum_{i=1...n} s(i)$
- For a collection of clusterings $C(2), \ldots, C(K_{max})$, the selected number of clusters is

$$\hat{K} = \underset{1 \leq K \leq K_{\text{max}}}{\operatorname{argmax}} S(\mathcal{C}(K))$$

Example

Silhouette analysis for KMeans clustering on sample data with n clusters = 6

Statistical Gap

- For every K in $\{1, \ldots, K_{\text{max}}\}$:
 - Compute the within-group covariance matrix $W_K = \frac{1}{n} \sum_{k=1}^K \sum_{i \in \mathscr{C}_k} (x_i m_k)'(x_i m_k)$ and its determinant $\det(W_K)$,
 - ▶ Build curve $K \mapsto \log(det(W_K))$,
 - Compare this curve to the one obtained from the uniformly distributed data.
- Choose the number of clusters K corresponding to the greatest difference between the two curves ("gap")

Silhouette et Gap Statistique

Summary

- Introduction to Clustering and k-means
 - k-means Algorithm
 - Others clustering methods
 - Quality of a clustering and number of clusters
- 2 Dimension reduction
 - Introduction to dimension reduction
 - Principal Component Analysis
 - Non linear dimension reduction

Summary

- 1 Introduction to Clustering and k-means
 - k-means Algorithm
 - Others clustering methods
 - Quality of a clustering and number of clusters
- 2 Dimension reduction
 - Introduction to dimension reduction
 - Principal Component Analysis
 - Non linear dimension reduction

Why dimension reduction?

- Visualization. Beyond three axes, it is difficult to represent the structure of a cloud of points.
- Extraction or creation of "features" that best summarize the information.
- **Statistical efficiency.** Many methods in statistics are inefficient in high dimension.
 - Ex : estimation of a density by histograms.
- Computational burden. The computational complexity of learning algorithms depends on the dimension of the data.
- The last two points both result from **the curse of dimensionality**: when the dimensionality increases, the volume of the space increases so fast that the available data become sparse.

Manifold Assumption

- High-dimensional data is usually concentrated on or near a lower-dimensional structure $M \subset \mathbb{R}^D$ (submanifold).
- We try to "embed" the data in a lower dimensional space while preserving the geometry of the data as much as possible :

- [Source : Isomap]
- \bullet The dimension reduction map Φ is generally learned from the data.
- Linear dimension reduction means that Φ is linear.

Multivariate statistics

Let **y** and **z** in \mathbb{R}^n .

Vector $\mathbf{e}_n = (1, \dots, 1)' \in \mathbb{R}^n$.

- Means of $\mathbf{y}: \bar{y} = \frac{1}{n} \sum_{i=1...n} y_i = \frac{1}{n} \mathbf{y}' \mathbf{e}_n$.
- Covariance of y and z :

$$cov(\mathbf{y}, \mathbf{z}) = \frac{1}{n} \sum_{i=1...n} (y_i - \bar{y})(z_i - \bar{z})$$
$$= \frac{1}{n} (\mathbf{y} - \bar{y}\mathbf{e}_n)' (\mathbf{z} - \bar{z}\mathbf{e}_n).$$

• Variance of y :

$$\operatorname{var}(\mathbf{y}) = \frac{1}{n} \sum_{i=1...n} (y_i - \bar{y})^2$$
$$= \frac{1}{n} (\mathbf{y} - \bar{y} \mathbf{e}_n)' (\mathbf{y} - \bar{y} \mathbf{e}_n).$$

Multivariate statistics

$$\mathbf{X} = \begin{bmatrix} x_1^1 & \dots & x_1^p \\ \vdots & \vdots & \vdots \\ x_n^1 & \dots & x_n^p \end{bmatrix} \quad \bullet \quad \mathbf{X}$$

- $\mathbf{X} = \begin{bmatrix} x_1^{\bar{1}} & \cdots & x_1^{\bar{r}} \\ \vdots & \vdots & \vdots \\ x_n^{\bar{1}} & \cdots & x_n^{\bar{p}} \end{bmatrix} \bullet \text{Variables } \mathbf{x}^1, \dots, \mathbf{x}^j, \dots, \mathbf{x}^p \text{ (colomns)}$ $\bullet \text{ Observations } \mathbf{x}_1, \dots, \mathbf{x}_i, \dots, \mathbf{x}_n \text{ (raws)}$
 - Barycenter of the point cloud : $\bar{\mathbf{x}} = (\bar{x}^1, \dots, \bar{x}^p)' \in \mathbb{R}^p$.
 - Covariance matrix of the variables :

$$\mathbf{S} := \left[\operatorname{cov}(\mathbf{x}^{j}, \mathbf{x}^{k}) \right]_{1 \leq j, k \leq p} = \frac{1}{n} \left(\mathbf{X} - \mathbf{e}_{n} \bar{\mathbf{x}}' \right)' \left(\mathbf{X} - \mathbf{e}_{n} \bar{\mathbf{x}}' \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}}) (\mathbf{x}_{i} - \bar{\mathbf{x}})'.$$

• Inertia of the point cloud in \mathbb{R}^p :

$$\mathcal{I}(\mathbf{X}) := \frac{1}{n} \sum_{i=1, n} \|\mathbf{x}_i - \bar{\mathbf{x}}\|^2 = \frac{1}{n} \operatorname{tr} \left[(\mathbf{X} - \mathbf{e}_n \bar{\mathbf{x}}') (\mathbf{X} - \mathbf{e}_n \bar{\mathbf{x}}')' \right] = \operatorname{tr}(S)$$

For centered data:

$$\bar{\mathbf{x}} = (0, \dots, 0)'$$
 , $\mathbf{S} = \frac{1}{n} \mathbf{X}' \mathbf{X}$ et $\mathcal{I}(\mathbf{X}) = \frac{1}{n} \operatorname{tr}(\mathbf{X}' \mathbf{X})$.

Summary

- Introduction to Clustering and k-means
 - k-means Algorithm
 - Others clustering methods
 - Quality of a clustering and number of clusters
- 2 Dimension reduction
 - Introduction to dimension reduction
 - Principal Component Analysis
 - Non linear dimension reduction

Introduction

- Quantitative continuous variables $x^1,...,x^j,...,x^p$ in columns.
- The data matrix **X** is assumed to be centered : $\bar{\mathbf{x}} = 0$.
- PCA : provides :
 - An "optimal" representation of observations in a subspace of dimension q of \mathbb{R}^p
 - ▶ New variables called principal components- summarizing in an "optimal way" the information contained in the initial set of variables.

Example: Basketball Dataset

The dataset provides the results of four basketball teams during the 2012-2013 regular season. For each of the 69 players :

- Height
- Width
- Age
- Salary
- Team
- Position
- nb of Games played
- Minutes played
- Fields goals made
- Fields goal attempted
- ...

Fitting a linear subspace on $\mathcal{N}_{\mbox{\tiny ind}}$

- we are looking for the linear subspace E_q of dim q in \mathbb{R}^p that best fits on X.
- By Pythagoras : $\|\mathbf{x}_i\|^2 = \|\mathbf{x}_i \mathbf{P}_{E_a}(\mathbf{x}_i)\|^2 + \|\mathbf{P}_{E_a}(\mathbf{x}_i)\|^2$
- $\mathcal{I}(\mathbf{X}) := \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i\|^2$. Thus

$$\text{Minimize } \frac{1}{n} \sum_{i=1...n} \|\mathbf{x}_i - \mathbf{P}_{E_q}(\mathbf{x}_i)\|^2 \Longleftrightarrow \text{Maximize } \mathcal{I}\left(\mathbf{P}_{E_q}(\mathbf{X})\right)$$

- Singular value decomposition of $\mathbf{X} := \sum_{s=1} \mu_s \mathbf{v}^s \mathbf{u}_s'$.
- ullet According to SVD, it can be checked that $\mathcal{I}\left(oldsymbol{P}_{\!\scriptscriptstyle{E_q}}\!\left(oldsymbol{X}
 ight)
 ight)$ is maximum for

$$\hat{E}_q := \mathsf{Vect}(\mathbf{u}_1, \dots, \mathbf{u}_q).$$

ullet Equivalently : fitting a linear subspace $\hat{\mathcal{E}}_q$ on ${f X}$ is optimal for $\hat{\mathcal{E}}_q$.

Principal Components

• For $s=1\dots p$, the **principal component** $\Psi^s=(\Psi^s_1,\dots,\Psi^s_n)$ is the vector :

$$\Psi^s = \begin{bmatrix} \langle \mathbf{x}_1, \mathbf{u}_s \rangle \\ \vdots \\ \langle \mathbf{x}_n, \mathbf{u}_s \rangle \end{bmatrix} = \mathbf{X}\mathbf{u}_s$$

• The vector $\Psi_s \in \mathbb{R}^n$ can be considered as a new variable. It "measures" each observation in the direction \mathbf{u}_s .

• The principal components are orthogonal (as vectors of \mathbb{R}^n).

PCA: find directions of highest variance

- SVD : $\mathbf{X} := \sum_{s=1} \mu_s \mathbf{v}^s \mathbf{u}_s'$.
- We have seen that PCA corresponds to projecting data on $\hat{E}_q := \mathsf{Vect}(\mathbf{u}_1, \dots, \mathbf{u}_q)$..
- A little of algebra gives that the \mathbf{u}_s are the eigenvectors of the covariance matrix S.
- The solution of PCA makes sense: we project the data into the directions of largest variance.

PCA in a nutshell

- Starting with a raw dataset $\mathbf{R} = (r_{ij})$ of size $n \times p$. There are two types of **principal component analysis** (PCA) :
 - **non-normalized PCA**: centered array analysis $\mathbf{X} = \mathbf{R} \overline{\mathbf{r}}$;
 - ▶ the normalized PCA : analysis of the reduced centered tableau

$$\mathbf{X} = \left(rac{\mathbf{r}_i^j - ar{\mathbf{r}}^j}{\sqrt{\mathsf{var}(\mathbf{r}^j)}}
ight)_{i,j}.$$

- In both cases, PCA consists in diagonalizing the variance-covariance matrix $\mathbf{S} = \frac{1}{n} \mathbf{X}' \mathbf{X}$.
- PCA makes it possible to explore the data, it is also a preliminary step to many statistical methods such as regression or data classification.

Representation of individuals

We analyze the cloud of individuals projected on the first factorial directions :

$$\begin{array}{c|c} \cdot \cdot \cdot & u_3 \cdot \cdot \cdot \\ \hline \cdot \cdot & u_1 \cdot \cdot \end{array}$$

We can define indicators to measure :

- the overall quality of the representation of the projected cloud,
- the quality of the representation of an individual,
- the contribution of an individual to the total inertia of the cloud,
- the contribution of an individual to the variance of a principal component.

All these indicators allow in particular

- to discuss the quality of PCA,
- to analyze and explain by individuals the geometry of the cloud,
- to detect the most influential observations on the principal components,
- to identify possible outliers (which we can then remove data to proceed to a new PCA).

Representation of additional observations

We call *additional observation* any observation that has not been taken into account in the calculation of the PCA (i.e. for the diagonalization of **S**).

We can represent additional observations by projecting them into the factorial planes. Let z be such an individual, we recenter (and reduce if normalized PCA) z: $\tilde{z}=z-\bar{x}$. The coordinates of the projection of \tilde{z} on each of the factorial axes are given by :

You can also give the quality of the representation of \tilde{z}_{0}

Basketball Dataset: PC1 and PC2

Correlation circle

- The correlation circle visualizes the correlation between
 - two PC (first and second for instance)
 - ▶ the variables
- ullet The variable $old x^j$ is represented by the vector pointing

$$(\operatorname{cor}(\mathbf{x}^j, \Psi^1), \operatorname{cor}(\mathbf{x}^j, \Psi^2))$$

Basketball Dataset

How to choose the number of principal components

Several methods and heuristics:

Proportion of imposed inertia :

$$r_q := \frac{\mathcal{I}\left(\mathbf{P}_{\hat{\epsilon}_q}(\mathbf{X})\right)}{\mathcal{I}(\mathbf{X})} = \frac{\lambda_1 + \dots + \lambda_q}{\lambda_1 + \dots + \lambda_p} > \text{threshold}?$$

 Kaiser's rule (normalized PCA): keep only the eigenvalues larger than the average:

$$q = \max\{\ell \mid \lambda_\ell \ge \frac{1}{\rho} \sum_{s=1} \lambda_s\}$$

Elbow criterion

Summary

- Introduction to Clustering and k-means
 - k-means Algorithm
 - Others clustering methods
 - Quality of a clustering and number of clusters
- 2 Dimension reduction
 - Introduction to dimension reduction
 - Principal Component Analysis
 - Non linear dimension reduction

Non linear dimension reduction

Isomap Embedding

Non linear dimension reduction: autoencoder

Appendices

