BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1. Les triangles sans contrainte

2

Date: 18 Jan. 2025 - 19 Jan. 2025.

1. Les triangles sans contrainte

Fait 1. Considérons tous les triangles de périmètre fixé p. Parmi tous ces triangles, celui d'aire maximale est le triangle équilatéral de côté $c=\frac{1}{3}p$.

 $D\'{e}monstration$. Une première idée, calculatoire, est de passer via la classique formule de Héron $Aire = \sqrt{s(s-a)(s-b)(s-c)}$ où s=0.5p désigne le demi-périmètre, et les variables a,b et c les mesures des côtés du triangle. Nous allons raisonner plus géométriquement. Partant d'un triangle ABC quelconque de périmètre p, le fait 1 nous donne successivement les triangles ACD, ADE et AEF isocèles en D, E et F respectivement, ayant tous pour périmètre p, et ceci avec des aires de plus en plus grandes. Le dessin suivant amène à conjecturer qu'en poursuivant le procédé pour avoir ensuite un triangle AFG isocèle en G..., nous aboutirons « à la limite » à un triangle équilatéral.

Le passage d'un triangle quelconque ABC au triangle ACD isocèle en D nous amène à nous concentrer sur ce que donne notre procédé d'agrandissement d'aire à périmètre fixé pour des triangles isocèles. Dans la suite, nous allons nous appuyer sur le schéma suivant.

^{1.} L'aire étant positive ou nulle, nous devons chercher les maxima de $f(a;b;c) = Aire^2 = s(s-a)(s-b)(s-c)$, c'est-à-dire de $f(a;b;c) = \frac{1}{16}(a+b+c)(b+c-a)(a+c-b)(a+b-c)$, sous la contrainte 2s=a+b+c où s>0 est constant. Notant g(a;b;c) = a+b+c-2s, la contrainte s'écrit g(a;b;c) = 0. Selon la méthode des extrema liés, un éventuel maximum doit vérifier $\partial_a f = \lambda \partial_a g$, $\partial_b f = \lambda \partial_b g$ et $\partial_c f = \lambda \partial_c g$ avec $\lambda \in \mathbb{R}$. Donc, $-s(s-b)(s-c) = -s(s-a)(s-c) = -s(s-a)(s-b) = \lambda$, puis (s-b)(s-c) = (s-a)(s-c) = (s-a)(s-b). Les cas s=a, s=b et s=c donnent f(a;b;c) = 0. Quant au cas $\left[s \neq a, s \neq b \text{ et } s \neq c\right]$, il n'est envisageable que si $a=b=c=\frac{p}{3}$ qui implique $f(a;b;c) = \frac{1}{16}p\left(\frac{p}{3}\right)^3 = \left(\frac{p^2}{12\sqrt{3}}\right)^2 > 0$. En résumé, l'existence d'un maximum implique que ce maximum corresponde au cas du triangle équilatéral. Il reste à démontrer qu'un tel maximum existe pour pouvoir conclure : ceci est facile à justifier en considérant l'ensemble compact $\left[0;s\right]^3$ de \mathbb{R}^3 .

Voici ce que nous pouvons affirmer.

- (1) Considérons ACD isocèle en D tel que AC > AD. Comme AC + AD + DC = p, nous avons $AC > \frac{1}{3}p > AD$. Dès lors, on doit avoir ensuite $AD < \frac{1}{3}p < AE$, car AD + DE + AE = p et AD = AE.
- (2) Considérons ADE isocèle en E tel que AD < AE en oubliant le point précédent. Comme AD + DE + AE = p, nous avons $AD < \frac{1}{3}p < AE$. Dès lors, on doit avoir ensuite $AE > \frac{1}{3}p > AF$, car AE + AF + EF = p et AF = EF.
- (3) Les deux points précédents démontrent que notre procédé n'arrivera jamais en un nombre fini d'étapes à un triangle équilatéral si l'on part d'un triangle isocèle non équilatéral. ²
- (4) Nous devons quantifier les écarts à la mesure idéale « limite » $\frac{1}{3}p.$ XXXXX
- (5) XXXX
- (6) XXXX
- (7) XXXX
- (8) XXXX
- (9) XXXX

Remarque 1.1. La comparaison des moyennes géométriques et arithmétiques d'ordre 3 nous donne une solution algébrique efficace, car $\sqrt[3]{(s-a)(s-b)(s-c)} \leq \frac{1}{3} \left((s-a)+(s-b)+(s-c) \right)$ nous donne $s(s-a)(s-b)(s-c) \leq \frac{1}{27}s^4$, puis $\sqrt{s(s-a)(s-b)(s-c)} \leq \frac{p^2}{12\sqrt{3}}$ où $\frac{p^2}{12\sqrt{3}}$ est l'aire du triangle équilatéral de périmètre p.

^{2.} Et plus généralement si le procédé ne commence pas avec une base de longueur $\frac{1}{3}p$.