ME220 Theory of Machines and Machine Design

Lec 3 - 16 Jan 2020

Calculation of Degrees-of-Freedom

Please attempt to calculate of number of DOFs of the mechanism below by inspection or any method you can think of!!

Determining Degrees-of-Freedom

• Gruebler's Equation for Planar Mechanisms: M (or DOF) = 3L - 2J - 3G

M/DOF: Degrees of freedom

L: Number of Links

J: Number of Joints (counting half joints as 1/2 and full joints as 1)

G: Number of Grounded Links

• Kutzbach's Modification (called Kutzbach's Equation): M (or DOF) = $3(L-1) - 2J_1 - J_2$

M/DOF: Degrees of freedom

L: Number of Links

 J_1 : Number of 1 DOF (full joints)

J₂: Number of 2DOF (half joints)

Example: Calculate Degrees-of-Freedom for this Earth Digger's Arm

M (or DOF) =
$$3(L-1) - 2J_1 - J_2$$

L = 12
 J_1 = 12 (pin joints) + 3 (slide joints)
 J_2 = 0
M (or DOF) = $3(12-1) - 2(12+3) - 0$
= $33 - 30 = 3$

The three prismatic joints are used as input joints by means of hydraulic joints controlled by the operator.

Example – DOF: Multiple Joints

Multiple joints count as one less than number of links joined at the joint.

Multiple joints count as one less than number of links joined at the joint.

Example – DOF: Higher Pair

Higher pair allows motion in 2 DOF Link 3 can roll and slide L = 6 J_1 = 7 (or 7.5 counting the higher pair as half and taking J_2 =0) J_2 = 1

M = 0

Mechanisms and Structures

(a) Mechanism—DOF = +1

(b) Structure—DOF = 0

(c) Preloaded structure—DOF = -1

- If DOF > 0, the assembly of links is a mechanism and will exhibit relative motion
- If DOF = 0, the assembly of links is a structure and will exhibit no motion
- If DOF < 0, then the assembly is a preloaded structure, no motion is possible and stresses are present

Limitations of Gruebler's/Kutzbach's Equation

- Find the degrees of freedom of these mechanisms
 - · Using Gruebler's/Kutzbach's Equation, and also
 - By Inspection
 - From the perspective of Gruebler's/Kutzbach's Equation both mechanisms above ar similar and have 0-DOF. However, the mechanism on the left is indeed had 0-DOF but the parallelogram mechanism on the right has 1-DOF.

Gruebler criterion does not include geometry!
We need to be careful and use inspection to verify the prediction

Another Anomaly: Rolling cylinders

- Number of links: 3
- If no slip is allowed:
 - Number of joints that allow single DOF: 3
 - Gruebler's equation
 DOF = 3(3-1) 2*3
 = 0
 - But we know that the mechanism has 1 DOF

Special Geometric Condition: Length of ground link is exactly the sum of other two links

DOF in Spatial Mechanisms

- M/DOF = $6(L-1) 5J_1 4J_2 3J_3 2J_4 J_5$
 - L: Number of Links
 - J_n: Number of Joints with n DOFs

• Example – Stewart Platform

Universal Joint (2-DOF)

6 – Cylindrical (2-DOF) Joints (hydraulic/pneumatic cylinders) 12 – Universal Joints (2-DOF) J_2 = 12+6 = 18 L (Rigid Links) = 12+2 = 14

M = 6(14-1) - 4(18) = 78 - 72 = 6 DOFs This implies all six DOFs of the top platform (output) can be controlled using six inputs chosen to be linear displacements of cylindrical joints (hydraulic actuators)

Stewart Platform