Battery Lifetime Prediction

Given a few cycles

Jinpu Cao, Solomon Kim, Zewen Zhang

Battery Life Prediction Is Important

Battery life prediction

Non-linearity in Battery Degradation Modes

Mechanical / Chemical / Electrochemical Heterogeneities

Battery Lifetime Definition

Data-driven Methods For Battery Life Prediction

- Limited dataset size (124 cells)
- Feature extraction based on 100 cycles data

Severson, Kristen A., et al. Nature Energy 4.5 (2019): 383-391.

Target Area #1: Battery R&D Companies

- Interviewed many different Battery R&D Companies
 - Finding: Many don't use ML
- Respectfully, PhD's without strong CS/data science background
- Case Studies: Proterra, Gridtential

Target Area #2: EV Customers

- Create used EV car market
 - Customer's can determine lifetime on their batteries.
- 3rd Party Certification Agency
- Accelerate EV adoption

Target Area #3: Second Use Battery Companies

- Partner with companies like B2U Storage Solutions
 - Interview Finding: No effective way to determine lifetime

What are potential competitors?

- Voltaiq is more focused on management not prediction
 - Called Sales Representative
 - Interviewed Yen T. Yeh
 - Battery Engineer

Long-term vision Part 1

- Scale Al for Climate
- Alternative to C3AI
 - Don't work with oil companies
 - Focus on Climate Change

Long-term vision Part 2

- Work at intersection of AI and Climate Change
 - Agriculture
 - Crop detection
 - Green Buildings
 - Demand Response
 - Transportation
 - Smart Grids
 - Energy
 - Cloud Forecasting

Mentors

- Professor Simona Onori
 - Energy Resources Engineering Department
- Professor Adam Brandt
 - Energy Resources Engineering Department
- Brian Bartholomeusz
 - Executive Director of Innovation Transfer, TomKat Center for Sustainable Energy

Potential Challenges

- Communicating the Effectiveness of Al
 - Use of Metaphors
 - Learn from Different Experts
- Learn from Alumni Community in Stanford Climate Ventures

What's going on under the hood?

- Feel free to stop me/interrupt me :)
- Explaining the Machine Learning demonstrates uniqueness

Sliding Window for Data Augmentation

Augmented Dataset For Prediction

Convolutional Neural Network Based Models

Results from CNN models

MAPE: 23.6%

10%-BAND: 38.2% 20%-BAND: 63.8% **MAPE: 26.5%**

10%-BAND: 32.6% 20%-BAND: 57.3% **MAPE: 24.3%**

10%-BAND: 38.2% 20%-BAND: 62.6%

Results from RNN models

MAPE: 7.5%

10%-BAND: 81.5% 20%-BAND: 92.7% **MAPE: 11.6%**

10%-BAND: 61.8% 20%-BAND: 84,6% **MAPE: 11.9%**

10%-BAND: 59.1% 20%-BAND: 83.1%

Recurrent Neural Network Based Models

Results for Linear Regression

MAPE: 456%

10%-BAND: 10.5%

20%-BAND: 20.1%

MAPE: 254%

10%-BAND: 10.4%

20%-BAND: 21.0%

MAPE: 258%

10%-BAND: 10.5%

20%-BAND: 25.1%

Random Forest Regression Models

Results from Random Forest Regression

MAPE: 14.0%

10%-BAND: 50.4% 20%-BAND: 74.4% **MAPE: 16.1%**

10%-BAND: 40.0%

20%-BAND: 53.1%

MAPE: 17.9%

10%-BAND: 39.4%

20%-BAND: 52.6%

What about only 1 Cycle?

MAPE:12.1 %!

Challenges/Future Work

Summary

- Data augmentation
 - 124 batteries → ~13k samples
- Remaining cycles prediction model
 - Linear regression
 - Random Forest regression
 - Convolutional neural network (CNN)
 - Recurrent neural network (RNN)
- Discuss # cycles ~ prediction accuracy
- Develop confidence intervals for prediction

Thank you!

Prediction Accuracy with Given Acceptable Interval

#Cycles	Linear Regression	Random Forest	CNN	RNN
5	0.105	0.504	0.382	0.815
10	0.104	0.400	0.326	0.618
20	0.105	0.394	0.382	0.591

#Cycles	Linear Regression	Random Forest	CNN	RNN
10	0.210	0.531	0.573	0.846
20	0.251	0.526	0.626	0.831