Summer 2022 Data Science Intern Challenge

Zirui Li

January 11, 2022

Question 1

Please check the Python program "shopify challenge.ipynb" for details.

(a) Think about what could be going wrong with our calculation. Think about a better way to evaluate this data

To find out what goes wrong of the dataset, I first analyzed the relationship between AOV and the known features. The features of 'order_amount' and 'total_items' have close relationship with AOV calculation. So I checked the details of 'order_amount' and 'total_items'. In Figure 1, we can tell there are some outliers in the data, e.g. the max number of total items (2000).

11.01	der_amount.describe() # AOV = 3145.120				
count	5000.000000				
mean	3145.128000				
std	41282.539349				
min	90.000000				
25%	163.000000				
50%	284.000000				
75%	5% 390.000000				
max	ax 704000.000000				
Name: order_amount, dtype: float64					
	tal_items. describe()				
df.to	tal_items.describe()				
df.tot count mean	tal_items.describe() 5000.00000				
df.tot count mean std	tal_items.describe() 5000.00000 8.78720				
df. tot	tal_items.describe() 5000.00000 8.78720 116.32032				
df. tot count mean std min 25%	tal_items. describe() 5000.00000 8.78720 116.32032 1.00000				
df. tot count mean std min 25%	tal_items. describe() 5000.00000 8.78720 116.32032 1.00000 1.00000				
df.tot count mean std min	tal_items. describe() 5000.00000 8.78720 116.32032 1.00000 1.00000 2.00000				

Figure 1: Details of order_amount

In Figure 2 and Figure 3, there are some points far away from the majorities which can be defined as outliers, so we need to find the details of those outliers.

After the analysis, the store 78 sells a sneaker at 25725 per item, which is unreasonable high, this data may have been entered incorrectly. All transactions at store 78 in March 2017 had a really high order_amount value. It made a huge impact to the AOV calculation so should be treated as

Figure 2: Plot of order_amount by shop_id

Figure 3: Plot of total_items by shop_id

an outlier.

Not all transactions at store 42 have a really large total_items value. But the transactions with total_items = 2000 can misleading the AOV calculation.

Consider from the time period, this sample data contains the transaction of one month (March) which does not include discount day such as Black Friday, so we can ignore the impact of the discount day on AOV calculation. The sample data contains 100 different stores results, so we need to consider the location/environment factor. The order amount of stores in shopping malls is generally higher than those of stores in small towns. Combining the order amount of all stores and calculating the AOV can make the AOV result inaccurate.

(b) What metric would you report for this dataset?

Metric: Calculate the AOV and median values separately by store. Because the order amount of store 78 and store 42 are special cases, calculating the order amount by store will not influence other stores' AOV and median results

(c) What is its value?

Figure 4 shows part of the AOV and median results. The details of the final result is saved in "final data report.csv"

	shop_id	store_amount	store_AOV	store_median
0	1	13588	308.818182	316.0
1	2	9588	174.327273	188.0
2	3	14652	305.250000	296.0
3	4	13184	258.509804	256.0
4	5	13064	290.311111	284.0
95	96	16830	330.000000	306.0
96	97	15552	324.000000	324.0
97	98	14231	245.362069	266.0
98	99	18330	339.444444	390.0
99	100	8547	213.675000	222.0

100 rows x 4 columns

Figure 4: Final Report of the Data

Question 2

(a) How many orders were shipped by Speedy Express in total?

SELECT COUNT(Orders.ShipperID) FROM Orders JOIN shippers ON Orders.ShipperID=Shippers.ShipperID WHERE ShipperName="Speedy_Express"; The answer is 54.

(b) What is the last name of the employee with the most orders?

SELECT LastName FROM Orders JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID GROUP BY Orders.EmployeeID ORDER BY COUNT(Orders.EmployeeID) DESC LIMIT 1;

The answer is Peacock.

(c) What product was ordered the most by customers in Germany?

```
SELECT ProductName FROM Products
JOIN OrderDetails ON Products.ProductID = OrderDetails.ProductID
JOIN Orders ON Orders.OrderID = OrderDetails.OrderID
JOIN Customers ON Customers.CustomerID = Orders.CustomerID
WHERE Country = "Germany"
```

GROUP BY ProductName
ORDER BY COUNT(ProductName) DESC LIMIT 1;

The answer is Gorgonzola Telino.