

DEPARTMENT OF THE ARMY

U.S. ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010-6422

REPLY TO

HSHB-ML-T (40)

1 5 AUG 1994_

MEMORANDUM FOR RECORD

SUBJECT: Toxicological Study No. 75-51-YJ81-93, 4-Amino 2-Nitrotoluene (4A2NT) OralApproximate Lethal Dose 14-Day Range Finding and 90-Day Subchronic Feeding Studies in Rats, August 1991 - November 1993

Copies of report with Executive Summary are enclosed.

FOR THE COMMANDER:

Encl

MAURICE H. WEEKS
Chief, Toxicology Division

U.S. Army Environmental Hygiene Agency

TOXICOLOGICAL STUDY NO. 75-51-YJ81-93
4-AMINO 2-NITROTOLUENE (4A2NT)
ORAL APPROXIMATE LETHAL DOSE
14-DAY RANGE FINDING AND 90-DAY
SUBCHRONIC FEEDING STUDIES
IN RATS
AUGUST 1991 - NOVEMBER 1993

Distribution Unlimited; Approved for Public Release

Nationally Recognized as the Center of Matrixed Occupational and Environmental Health Excellence

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

Since 1942, USAEHA has provided worldwide preventive medicine support to the Army, Department of Defense and other Federal agencies. The USAEHA accomplishes this mission by providing information and consultative services to leaders and decision makers charged with the responsibility for the occupational and environmental health of military and civilian service members and associated communities worldwide. The USAEHA is unique nationally in its ability to matrix and tailor its staff, representing a wide array of scientific disciplines, for immediate response to occupational and environmental health crises and issues.

- COMMITTE	LASSIFICATION C		DOCUMENTATIO	N PAGE	•		Form Approved OMB No. 0704-0188		
1a. REPORT	SECURITY CLAS UNCLASSI			1b. RESTRICTIVE	1		H		
2a. SECURIT	TY CLASSIFICATION			3. DISTRIBUTIO	N/AVAILABILITY	OF REPORT	distribution		
2b. DECLAS	SIFICATION / DOV	WNGRADING SCHEDU	ILE	unlimited/		GIGUSES	A 13 CT I DU L TOTT		
4 PERFORM	IING ORGANIZA	TION REPORT NUMBE	R(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)					
	75-51-YJ								
6a. NAME (OF PERFORMING	ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MONITORING ORGANIZATION					
	USAEHA		(If applicable) HSHB-ML-T						
6c. ADDRES	S (City, State, ar	nd ZIP Code)		7b. ADDRESS (C	ity, State, and Z	IP Code)			
	Aberdeen	Proving Grou	nd, MD						
	21010-54				NE INCESTION	DENTIFICAT	ION AUIMPER		
	OF FUNDING/SPO IZATION	ONSORING	8b. OFFICE SYMBOL (if applicable)	9. PROCUREME	NT INSTRUMENT	DENTIFICA	ION MONIBER		
8c. ADDRES	S (City, State, and	d ZIP Code)		10. SOURCE OF	FUNDING NUME				
	44			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.		
12. PERSON		loupt, Glenn J		14. DATE OF REP 94 July	PORT (Year, Mon	th, Day) 15	5. PAGE COUNT 85		
16. SUPPLE	MENTARY NOTA					*			
17.	COSATI		18. SUBJECT TERMS						
FIELD	GROUP	SUB-GROUP	4-Amino 2-Nit 14-day	itrotoluene toxicity ALD 90-day					
19. ABSTRA	CT (Continue on	reverse if necessary	and identify by block r	umber)	- 1				
n n	following administr higher in cytoplasm was not e	y oral adminis ration of 4A2N ncidence of ca nic vacvolizti established.	tration in feed T in rats was t rdiomyopathy, a	for 90 day: esticular h nemia and a ved adverse rved-advers	s. Associa ypospermato high incid effect lev e-effect-le	ted with genesis lence of the	(atrophy) a hecatocellular ne 90-day study		
	24			3					
	≈ <u>6</u> -			÷ .					
			*				4		
		HLITY OF ABSTRACT	RPT. DTIC USERS		SECURITY CLASS	FICATION			
	OF RESPONSIBLE		WIL COEKS	SERS UNCLASSIFIED 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL					
	John T. H			(410) 671-3980 HSHB-ML-T					

DEPARTMENT OF THE ARMY

U.S. ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010-5422

REPLY TO

EXECUTIVE SUMMARY
TOXICOLOGICAL STUDY NO. 75-51-YJ81-93
4-AMINO 2-NITROTOLUENE (4A2NT)
ORAL APPROXIMATE LETHAL DOSE
14-DAY RANGE FINDING AND 90-DAY
SUBCHRONIC FEEDING STUDIES
IN RATS
AUGUST 1991 - NOVEMBER 1993

- 1. PURPOSE. The oral approximate lethal dose study was conducted to determine an approximate dosage range at which to begin the 14-day range finding feeding study. The 14-day feeding study served as a range finding study to determine the dosages used in the subsequent subchronic feeding study. The subchronic study was conducted to determine the toxic effects associated with the continuous oral exposure of 4A2NT in rats over a period of 90 days and to establish a no-observed-adverse-effect-level (NOAEL).
- 2. CONCLUSIONS. The oral approximate lethal dose for 4A2NT in both sexes was 5000 mg/Kg. The 14-day range finding study suggested a probable compound related effect in the 2000 ppm (high dose) exposure groups of both sexes and a possible compound related effect in the 1000 ppm (middle dose) exposure groups of both sexes. An NOAEL was not established for the 90-day subchronic study. The lowest dosage levels in this study were 27 mg/Kg/day for males and 32 mg/Kg/day for females. A lowest-observed-adverse-effect-level of 27 mg/Kg/day for males and 32 mg/Kg/day for females was established.

DEPARTMENT OF THE ARMY

U.S. ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010-5422

REPLY TO ATTENTION OF

HSHB-ML-T

TOXICOLOGICAL STUDY NO. 75-51-YJ81-93
4-AMINO 2-NITROTOLUENE (4A2NT)
ORAL APPROXIMATE LETHAL DOSE
14-DAY RANGE FINDING AND 90-DAY
SUBCHRONIC FEEDING STUDIES
IN RATS
AUGUST 1991 - NOVEMBER 1993

1. REFERENCES. See Appendix A.

2. PURPOSE.

- a. The oral approximate lethal dose study was conducted to determine an approximate dosage range at which to begin the 14-day range finding feeding study.
- b. The 14-day feeding study served as a range finding study to determine the dosages used in the subsequent subchronic feeding study.
- c. The subchronic study was designed to determine the toxic effects associated with the continuous oral exposure of 4-amino 2-nitrotoluene (4A2NT) in rats over a period of 90 days and to establish a no-observed-adverse-effect-level (NOAEL).
- 3. GENERAL. 4-amino-2-nitrotoluene is a photolytic metabolite of 2,4-dinitrotoluene (2,4-DNT). The 4A2NT is a potential contaminant at army ammunition plants and depots which are historically associated with 2,4-DNT. Little toxicity data is available and these studies were conducted to provide basic information on the potential toxicity of this material. This information will be used to predict the probable risk to human health posed by this compound.

4. MATERIALS.

a. <u>Test Substance</u>. The test substance, 4A2NT, was purchased from the Aldridge Chemical Co., Inc., 1001 W. Paul Ave., Milwaukee, Wisconsin. It was a rust colored powder with little, if any odor. It is listed in registry of toxic effects as CAS No. 119-32-4. One lot (07006BX) of 4A2NT 97 percent was received containing 2475 grams. A sample was analyzed by the Organic Environmental Chemistry Division, U.S. Army Environmental Hygiene Agency (USAEHA), using infrared spectroscopy and gas chromotography (GC). The analysis was a comparison of spectrum with literature and GC. the IR spectrum is similar to that reported by Aldridge with differences due to sampling techniques.

b. Animals. All studies were conducted using male and female Sprague-Dawley rats obtained from the Charles River Laboratories, Wilmington, Massachusetts. The animals were examined by the divisions' veterinarians and found to be in acceptable health. The male rats had a weight range of 198-231g and the female rats had a weight range of 127-176g. The animals were quarantined for a 1-week period. Drinking quality water and Purina Certified Rodent Chow 5002® were available ad libitum.

5. METHODS.

a. Acute Oral Toxicity. An approximate lethal dose (ALD) study was performed to determine the lethality occuring within 14 days following a single oral dose of a 4A2NT. The chemical was suspended in polyethylene glycol 200 (PEG 200) at a concentration of 800 mg/mL. Single oral graduated doses of 7500 mg/Kg, 500 mg/Kg, 3333 mg/Kg, 2222 mg/Kg, 1480 mg/Kg, and 987 mg/Kg were given by gavage to male and female rats. A 14-day observation period was used to observe death or clinical signs. Animals were weighed at 1, 3, 7, and 14-day intervals after exposure. All survivors were euthanized at 14 days and submitted for gross pathological examination. The ALD of the test substance is considered to be the lowest dose that causes death (with none living at higher doses and no deaths at lower doses) during the 14-day observation period.

b. 14-Day Feeding Study.

- (1) A 14-day range finding study was conducted in male and female rats in accordance with the Toxicology Division standing operating procedure (SOP) for 14- and 90-Day Feeding Studies (reference 1).
- (2) Forty-two male and forty-two female Sprague-Dawley rats 6 to 8 weeks old were used for this study. Following a 1-week acclimatization period, animals were randomly distributed (using the Labcat Randomization Program)* into seven dosage groups consisting of six male and six female rats each. Dosage levels were set at 0 ppm (control), 0 ppm (pair fed control), 125 ppm, 250 ppm, 500 ppm, 1000 ppm, and 2000 ppm. The pair fed control groups containing 0 ppm 4A2NT were started on study 1 week after the high level groups to assure that they received the same amount of feed as the 2000 ppm dosage level consumed in the previous week. A staggered start between males and females was also used to facilitate scheduling of necropsies.

[®]Purina is a registered trademark of Purina Mills, Inc., St. Louis, Missouri. Use of company names does not imply endorsement by the U.S. Army but is intended only to assist in identification of a specific product.

- (3) 4A2NT was ground (mortar and pestle) and mixed with ground rat chow weekly. The compound and feed were mixed for 25-30 min using a Hobart mixer. The mixtures were randomly sampled and independently verified for concentrations (ppm) weekly by GC electron capture detectors. The samples were extracted with acetonitrile, filtered and stored refrigerated until analyzed.
- (4) Body weights and feeder weights were observed and recorded on days 0, 1, 3, 7, and 14. Animals were observed daily for toxic signs. Water consumption was not monitored during this study.
- (5) Prior to necropsy on day 14, blood samples were collected by intracardiac puncture from all study rats. Clinical chemistry and hematology values were determined from all valid samples (Table 1).
- (6) Following the 14-day study period, the surviving rats were euthanized using carbon dioxide. The brain, liver, kidneys, spleen, and tested/ovaries were removed and weighed. These weights were used for calculations of organ-to-body weight and organ-to-brain weight ratios.
- (7) Food consumption, body weights, and weight gains were statistically compared using an analysis of variance and when significance was observed the data were further analyzed using a Duncan's post hoc test. Clinical chemistry values, hematology values, organ-to-body weight ratios, and organ-to-brain-weight ratios were statistically compared using an analysis of variance and a Newman-Kuels post hoc test.

c. 90-Day Study.

- (1) A 90-day feeding study was conducted in rats in accordance with the Toxicology Division SOP for 14- and 90-day studies (reference 1).
- (2) Rats were acclimatized for a 1-week period, then randomly distributed into 5 groups of 10 of each sex. Dose levels were set at 0, 500, 1000, 2000, and 0 ppm (pair fed) based on toxic effects and food consumption seen in the 14-day range finding study. A pair fed control group was included in the study to determine the effects of reduced food consumption in the high dose.

- (3) 4A2NT was ground (mortar and pestle) and mixed with ground rat chow weekly. The compound and feed were mixed for 25-30 min using a Hobart mixer. The mixtures were randomly sampled and independently verified for concentrations weekly. After mixing each dose level, compound and feed were refrigerated until needed. All food was discarded every Wednesday during the study. Food was added to the feed jars every Monday, Wednesday, and Friday.
- (4) Both sexes were started on test on the same Wednesday. The pair fed control groups were started 1 week after the high dose groups. The 1-week delay allowed a measure of the amount of feed the pair fed control groups received.
- (5) Body weights were recorded every week throughout the study. Feeder weights were recorded and feed consumptions were calculated every Monday, Wednesday, and Friday throughout the study. Observations of all animals for sighs of toxicity were made and recorded daily.
- (6) On the final day of the study (day 90 for male and day 91 for females), blood samples were collected by intracardiac puncture from all rats. All rats were euthanized with carbon dioxide and necropsied. Following examination of external surfaces and internal cavities, major organs were removed, trimmed, and weighed for organ-to-body-weight and organ-to-brain-weight ratio calculations. Other organs and tissues processed for microscopic examination included all gross lesions, brain, eye, pituitary, tongue, salivary gland, thymus, thyroid, parathyroid, trachea, esophagus, lungs, heart, liver, spleen, stomach, pancreas, lymph node, small and large intestines, adrenals, kidneys, urinary bladder, testes, prostate, ovaries, corpus and cervix uteri, skeletal muscle, fat, nerve, skin, fur, sections of sternebrae, vertebrae, and tibia-femoral joint with marrow.

6. RESULTS

a. Approximate Lethal Dose. The vehicle, PEG 200, had on apparent effect on toxicity. The earliest toxic effects appeared at 3 hours with deaths occurring between 21 hours and 42 hours after treatment. Deaths occurred in the 7500 mg/Kg and 5000 mg/Kg dose groups of both sexes. The male 3333 mg/Kg rat was determined to have died from improper gavage technique. Gross pathology at lethal doses showed multifocal hemorrhagic colitis, mild hemorrhage in the stomach and intestines, and multifocal hemorrhage and congestion of the lungs. No toxic signs were observed in surviving animals and gross pathology observations were unremarkable, though several of the surviving rats had mild congestion of the kidneys.

b. 14-Day Study.

- (1) All animals survived to the end of the study. The 2000 ppm exposure groups of both sexes showed statistically significant differences in food consumption, weight gain, body weights, body-to-brain weight ratios, liver-to-body weight ratios and hematology values compared to their respective control groups. The female 2000 ppm group had decreased hemoglobin, hematocrit and red blood cell counts indicating anemia. The testis-to-brain weight ratio showed a statistically significant higher value in the male 2000 ppm group compared to the male control group.
- (2) The adrenal-to-brain weight was statistically significantly higher in the female 2000 ppm group compared to the female control group. This data suggest a possible compound related effect in the 2000 ppm exposure groups of both sexes. In addition, the liver-to-body weight ratio showed a statistically significant higher value in the female 1000 ppm exposure group compared to the control group. The male 1000 ppm exposure group showed statistically significant lower food consumption compared to the control group. The lower food consumption in the female 2000 ppm group and the male 2000 ppm and male 1000 ppm groups may be due to possible unpalatability of the compound\food mixture (Appendices B through G).

c. 90-Day Study.

- (1) Appendix I shows the average dose (mg/Kg) received by each group for the 90-day study. The male 500 ppm group received approximately 27 mg/Kg/day, with the females receiving 32 mg/Kg/day. The male 1000 ppm group received 52 mg/Kg/day, with the females receiving 65 mg/Kg day. The male 200 ppm group received 115 mg/Kg/day and the females received 138 mg/Kg/day.
- (2) The male 115 mg/Kg/day group and the female 138 mg/Kg/day group showed statistically significant differences in food consumption, body weights, weight gains, clinical chemistry values, hematology values, liver-to-bodyweight ratios, and liver-to-brain weight ratios. The male 115 mg/Kg/day group and the female 138 mg/Kg/day group had decreased hemoglobin values, hematocrit values and red blood cell counts which indicated anemia. The testis-to-brain weight ration and the spleen-to-brain weight compared to the control group. The adrenal-to-brain weight ratio in the female 138 mg/Kg/day group was significantly lower compared to the control group.
- (3) The male 52 mg/Kg/day group and the female 65 mg/Kg/day groups showed statistically significant differences in food consumption, weight gain, hematology values, liver-to-body weight ratios, and liver-to-brain weight ratios.

- (4) The male 27 mg/Kg/day group showed statistically significant diminished weight gain, higher liver-to-body weight ratios and higher liver-to-brain weight ratios compared to the control group. The female 32 mg/Kg/day group showed no statistically significant differences from the female control group (Appendices H through N).
- (5) All animals survived to the end of the 90-day study. At necropsy all the male 115 mg/Kg/day animals had yellow stained pelts, pale livers and minimal body fat. Eight of ten female 138 mg/Kg/day animals had yellow stained pelts at necropsy.
- (6) Histopathological examination of tissues and organs taken at necropsy showed that males from the 52 mg/Kg/day and 115 mg/Kg/day groups had a moderate to high incidence of testicular hypospermatogenesis (atrophy). Epididymides of affected testes often showed hypospermia (reduced content of maturing sperm). Testes of two additional males for the 53 mg/Kg/day group had a mild dilitation of seminiferous tubules. The incidence pattern of testicular hypospermatogenesis and epididymal hypospermia were associated with the administration of the test material.
- (7) All test groups except the pair fed groups, had a high incidence of cytoplasmic vacuolization of hepatocytes. The vacuolization was more pronounced in the treated males to a lesser extent in the treated females than in the control groups. The change consisted of indistinctly bound cytoplasmic vacuoles, morphologically similar to postprandial glycogen and fat accumulation. In some rats, the vacuolization was more prominent in the periportal region, while in others the change was distributed throughout the liver. The increased severity of vacuolization in the treated groups suggest compound related accentuation of the change.
- (8) Males from the 115 mg/Kg/day and 52 mg/Kg/day groups and females from the 138 mg/Kg/day group had a low incidence of trace-level subacute inflammation in the liver. The lesion consisted of infiltration of lymphocytes and a few neutrophils around biliary tracts. The lesion was judged to be of little clinical significance but, coupled with the vacuolization of hepatocytes, was interpreted by the pathologist as evidence of mild hepatotoxicity.
- (9) Males from the 115 mg/Kg/day group had a high incidence of cardiomyopathy. The lesion consisted of focal or multifocal degeneration of cardiac myofibers, often with a concurrent infiltration of lymphocytes and proliferation of Anitschkoow myocytes. One male from the 52 mg/Kg/day group showed a similar lesion. The severity and incidence pattern suggest an association with the compound administration in males.
- (10) All other lesions are considered to be incidental findings or part of spontaneous disease complexes of laboratory rats.

7. CONCLUSIONS.

a. The conclusion from the Acute Oral Toxicity study follows:

The oral ALD for 4A2NT in both sexes was 5000 mg/Kg.

b. The conclusions for the 14-day study follows:

The data collected in this study suggest a probable compound related effect in the 2000 ppm exposure groups of both sexes. Anemia was evident in the female 2000 ppm exposure group. This statistically significant liver-to-body weight ratio data, suggest a possible compound related effect in the 100 ppm group of both sexes. Based on this study, the 2000 ppm dose group was determined to be the high exposure group for the 90-day study.

c. The conclusions from the 90-day study follows:

This regimen of 4A2NT was associated with testicular hypospermatogenesis (atrophy) and associated depletion of spermatozoa in the epidiymides of rats from the 115 mg/Kg/day and 52 mg/Kg/day dosage groups. Males from the 115 mg/Kg/day dose group had a high incidence of cardiomyopathy that was more severe than that commonly seen in male rats of this age, suggesting a compound-related accentuation of a spontaneous disease process. Male 115 mg/Kg/day and female 138 mg/Kg/day groups had anemia. All groups except the pair fed groups, including the control group, had a high incidence of hepatocellular cytoplasmic vacuolization. The severity of the hepatocellular vacuolization, particularly in males, was associated with the dosage of 4A2NT, suggesting administration of the test material resulted in hepatocellular changes that were morphologically similar to postprandial accumulation of glycogen and fat.

d. Based on this study, a NOAEL was not established. The lowest-observed-adverse-effect-level for this 90-day study is 27 mg/Kg/day for males and 32 mg/Kg/day for females .

JOHN C. HOUPT

Biologist

Toxicology Division

APPROVED:

MAURICE H. WEEKS Chief, Toxicology Division

Toxicological Study No. 75-51-YJ81-93, Aug 91 - Nov 93

APPENDIX A

REFERENCE

1. Standing Operating Procedure No. 37, USAEHA, Toxicology Division, February 1991, 14-Day Range Finding and 90-Day Feeding Study in Rats.

Toxicological Study No. 75-51-YJ81-93, Aug 91 - Nov 93

APPENDIX B

*********	Cmr	DY: YJ81N	ž		£7.73.72	. Marn		DACE - 1
	510	DI: 1981	1		SEX	: MALE		PAGE: 1
	DOSE: (ppm)	. 0	0	12 5	250	500	1000	2000
PERIOD	GROUP:	1-H	2-H	3-M	4-M	5-M	6-H	7-M
DAY 1	INTAKE (g)	23**	24**	24**	24**	26**	21##B	18 AB
	S.D.	1,9	2.8	1.3	2.1	1.9	1.8	2.4
	EFF. (g/kg)	98	88	103	103	107	97	81
	N	6	6	6	6	6	6	6
DAY 2	INTAKE (g)		15					
	S.D.	0.0	2.6	0.0	0.0	0.0	0.0	0.0
	EFF. (g/kg)	W7 500						
	N	0	6 34/:	2 = 17	0	0	O	0
DAY 3	INTAKE (g)	24** B	19A	25**B	_{24**} B	23** B	22**AB	19**A
	S.D.	2.1	0.0	2.0	1.4	1.0	2.4	1.7
	Eff. (g/kg)	101	72	7,022	98	100	96	83
	N	6	6	6	6	6	6	6
AY 6	INTAKE (g)	26** B	18 A	27** B	25**B	25** B	23** B	20** A
	S.D.	2.6	2.9	2.3	2.2	1.8	1.6	2.4
	EFF. (g/kg)	-		Ball-May				
	N	6	6	5	6.	6	6	6
AY 7	INTAKE (g) .	24**B	19** A	25**B	24**B	24** B	21**B	18
	S.D.	1.0	0.0	1.0	1.5	1.2	3.0	2.3
	EFF. (g/kg)	95	71	99	95	95	89	77
	N	6	6	6	6	6	6	6
AY 8	INTAKE (g)		19		en-en-	4840		
	S.D.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	EFF. (g/kg)				-	***		
	N	0	6	0	0	0	0	0
AY 9	INTAKE (g)	26**		27**	26**	25**	23 A	20 ^A
	S.D.	2.0	0.0	1.8	1.8	1.0	2.2	2.1
	EFF. (g/kg)					- CONT. AND .	40.40	-
	N	6	0	6	6	6	6	6
AY 10	INTAKE (g)	27 * B	19 ^A	28 *B	27 * B	27 * B	25 AB	19A
	S.D.	1.7	0.4	0.8	1.8	1.3	2.9	2.2
	EFF. (g/kg)		**					
	N	6	6	6	6	6	6	6

P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P Less than .01

^{-- =} Data Unavailable
A - Significance with control group (1-M)
B - Significance with pair fed group (2-M)

		SUMM	ARY OF L	AILY MEAN	FOOD C	ONSUMPTI	ON (Grams)	
	S':	rudy: YJ811	1		SEX	: MALE		PAGE: 2
	DOSE: (ppm)	0	0	125	250	500	1000	2000
PERIOD	GROUP:	1-K	2-M	3-H	4-M	5 - #	6-M	7-M
AY 12	INTAKE (g)		19			सर वर		~~
	\$.D.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	EFF. (g/kg)					aus die		
	N	0	6	0	Ð	0	0	0
AY, 13	INTAKE (g)	27**	19A	27** B	26**B	26** B	23** AB	18 <u>A</u>
	S.D.	2,4	0.4	2.3	2.1	1.4	2.0	1.9
	EFF. (g/kg)							
	N	6	6	6	6	6	6	6
AY 14	INTAKE (g)	. 27**	19A	28** B	25**B	25** B	22**	19 A
	S.D.	6.9	0.0	2.7	1.8	2.1	1.5	4.5
	EFF. (g/kg)	95	69	95	91	91	87	74
	И,	6	6	6	6	6	6	6

^{*} P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P less than .01

^{-- =} Date Unavailable

A - Significance with control group (1-M)

B - Significance with pair fed group (2-M)

		SUMM	ARY OF DA	AILY MEAN	FOOD C	ONSUMPTI	ON (Grams)	
	STU	DY: YJ811	14F		SEX	: FEMALE		PAGE: 1
	DOSE. (ppm)	D	125	250	500	1000	2000	0
PERIOD	GROUP:	1-F	2-F	3-F	4-F	5-F	6-F	7-F
		D		D	P		4	
DAY 1	-							
	S.D.	2.2		2.1 89	0.8 86	2.7 88	1.9 58	0.4 65
	EFF. (g/kg)	91 5	6 6	6	6	6	6	6
	"	ь.	0	0	0	0	0	6
AY 3	INTAKE (g)	19** B	19**B	19** B	18** B	19**B	13** A	13 A
	S.D.	0.6	1.7	1.4	1.5	2.5	2.3	0.0
	Eff. (g/kg)	98	96	95	92	99	71	65
	н	6	6	6	6	6	6	6
AY 5	INTAKE (g)				***			13
	S.D.	0.0	Ó.0	0.0	0.0	0.0	0.0	0.0
	EFF. (g/kg)		-			***		
	N	0.	0	0	0	0	0	·6·
AY 6	INTAKE (g)	20** B	10** B	19** B	1864 B	19##B	14** A	13 A
•	S.D.	4.4	2.8	1.5	1.5		1.3	0.0
	EFF. (g/kg)							
	N	6	6	ě	6	6	6	6
NY 7	INTAKE (g)	18** B	179 % B	17±± B	16##B	16## B	13∆	13**A
., ,	S.D.	1.8	2.4	1.5	2.6	2.1		0.0
	EFF. (g/kg)	90	87	84	82	83	67	65
	N	6	6	6	6	6	6	6
AY 8	INTAKE (g)	18**	20**	18**	18**	19**	14Å	
	S.D.	2.1	4.3	0.8	1.8	2.6	2.5	0.0
	EFF. (g/kg)		7.3	0.0		2.0		
	N (g/kg/	6	6	6	6	6	6	0
LY 9	INTAKE (g)							15
. ,	S.D.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	EFF. (g/kg)		0.0	U.U	0.0		0.0	U.U
	N (g/kg/	0	0	0	0	 D	0	6
U 40	THEAVE /->	19**B	20** B	21** B	19**B	20** B	A A	α. Δ
Y 10	INTAKE (g)							14 A
	S.D.	1.3	1.9	3.5	1.7	1.8	1.0	0.0
	EFF. (g/kg)							
	N	6		6	6	6	6	_ 6

P less than .05

Analysis of Variance using DUNCAN'S Procedure ** Pless than .01

^{-- =} Data Unavailable

A - Significance with control group (1-F)

B - Significance with pair fed group (7-F)

		SUMMA	RY OF DA	ILY MEAN	FOOD C	ONSUMPTI	ON (Grams))
**************************************	STU	DY: YJ811	4F		SEX	: FEMALE		PAGE: 2
	DOSE:(ppm)	0	125	850	500	1000	2000	0
ERIOD	• •	1 -F	2-F	3-F	4-F	5-F	6-F	7-F
AY 12	INTAKE (g)	1900 mas	100 100	***	viole face			15
	S.O.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	EFF. (g/kg)							-
	N	0	0	0	0	0	0	6
AY 13	INTAKE (g)	19** B	19** B	19** B	19** B	19**B	14 <u>A</u>	14 A
	S.D.	1.9	3.1	2.0	1.3	1.5	1.0	0.0
	EFF. (g/kg)			-			-	
	N	6	6	8	6	6	6	6
AY 14	INTAKE (g)	19** B	20**B	19** B	18** B	19** B	15A	14 A
	S.D.	2.1	1.8	0.8	2.5	1.6	1.9	0.4
	EFF. (g/kg)	91	95	92	86	91	78	69
	N	6	6	6	6	6	6	6

P less than .05

Analysis of Variance using DUNCAN'S Procedure

P less than .01

^{-- =} Data Unavailable

A - Significance with control group (1-F) B - Significance with pair fed group (7-F)

Toxicological Study No. 75-51-YJ81-93, Aug 91 - Nov 93

APPENDIX C

			SUMMAR	Y OF BOD	Y WEIGHT	CS (Grams)		
	STUDY	: YJ81M			SEX	MALE		PAGE: 1
	DOSE: (ppm)	0	0	125	250	500	1000	2000
PERIOD	GROUP:	1-M	2-K	3-M	4-H	5-M	6-H	7-M
DAY O	KEAN	232** B	268** ^A	230** B	230** B	224** B	217 ^B	224** B
	S.D.	15.6		10.8	20.9	12.0	20.6	18.2
	N	6	6	6	6	6	6	6
AY 1	MEAN	234** B	277** A	235**B	236** B	231** B	222 B	223B
	S.D.	14.6		10.3			19.7	15.1
	N	6	6	5	6	6	6	6
DAY 3	HEAN	249	261	249	248	244	236	234
	S.D.	14.9	10.5	10.2	20.3	12.4	21.4	15.4
	N	6	6 .	6	6	6	6	6
AY 7	MEAN	278	271	281	274	272	260	· 253
	. S.D.	15.8	13.1	13.9	20.2	11.3	24.4	13.8
	N	6	6	Б	6	6	6	6
AY 14	MEAN	322** B	284**A	330**B	317** B	.314** B	298**	275A
	S.D.	21.8	13.2	15.3	20.9	10.1	26.7	20.0
	N	6	6	6	6	6	6	6

^{*} P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P Less than .01

A - Significance with control group (1-M) B - Significance with pair fed group (2-M)

			SUMMAR	Y OF BOI	Y WEIGH	IS (Grams)			
	STUDY	: YJ811	4F		SEX	FEMALE		PAGE:	1
	DOSE: (ppm)	0	125	250	500	1000	2000	0	
PERIOD	GROUP:	1-F	2-F	3-F	4-F	5-F	6-F	7-F	
DAY O	NEAN	189	187	191	189	188	183	207	
	S.D.	15.1	12.8	15.3	15.5	16.5	13.1	14.6	
	R	6	6	6	6	6	6	6	
DAY 1	MEAN	193	188	193	190	187	180	202	
	S.D.	15.1	15.9	13.5	14.7	18.3	16.2	14.3	
	N	6	6	6	6	6	6	6	
DAY 3	HEAN	198	196	198	197	193	185	192	
	S.D.	15.9	16.4	16.4	16.9	17.9	17.1	13.7	
	N	6	6	6	6	6	6	6	
AY 7	MEAN	209	206	208	207	205	196	195	
	S.D.	18.2	18.2	16.7	13.4	19.9	15.8	13.5	
	N	6	6	6	6	6	6	6	
DAY 14	MEAN	227**	225**	230**	223**	222**	201	203	
	S.D.	19.8	19.9	17.9	15.9	19.6	15.4	11.8	
	N	6	6	6	6	6	6	Б	

^{*} P Less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} Pless than .01

MALE 14-DAY FEEDING STUDY

FEMALE 14-DAY FEEDING STUDY

APPENDIX D

		5	UMMARY	OF DAILY	WEIGHT	GAINS (Gra	ms)		
	STUDY:	YJ8114	F		SEX:	FEMALE		PAGE:	1
	DOSE: (ppm)	0	125	250	500	1000	2000	0	
PERIOD	GROUP:	1-F	2-F	3-F	4-F	5F	6-F	7-F	
DAY 1	HEAN	4** B	1** B	z*∗B	2** B	-1 ★ AB	-3 A	-6 E	Ą
VA. 1	S.D.	2.9	5.0	2.6	3.2	3.6	3.5	1.6	
	N	6	6	6	6	6	6	6	
DAY 3	MEAN	3** B	4**B	з∗∗В	4** B	4** B	3** B	-5 E	Ä
	S.D.	1.7	0.8	1.9	1.2	0.5	2.1	1.5	
	N	6	8	6	6	6	6	6	
DAY 7	BEAN	3** B	3** ^B	3** B	3** B	3**B	3 ± ∗B	1 4	Ā
•	S.D.	1.0	0.8	0.6	1.8	0.6	1.2	0.4	
	N	6	6	6	6	6	6	6	
DAY 14	MEAN	3** B	3**B	3** B	2** B	3**B	1 A	1 A	š.
	S.D.	0.5	1.0	0.4	0.5	0.5	0.5	0.4	
	N	6	6	6	6	6 .	6	6	

^{*} Pless than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P Less than .01

A - Significance with control group (1-F)
B - Significance with pair fed group (7-F)

			SUMMARY	OF DAILY	WEIGHT	GAINS (Gra	ims)	
	STUDY:	YJ81M			SEX:	MALE		PAGE: 1
	DOSE: (ppm)	a	O	125	250	500	1000	2000
FRIOD	GROUP:		2-K	3-H	4-H	5-H·	6-H	7- K
DAY 1	MEAN	2 B	9 4.4 A	5** B	6**A	7** A	5** B	-1 B
/AL 1	S.D.	4.9	1.9	1.5	2.2	1.2	2.1	4.0
	N	6	6	6	6	6	6	6
DAY 3	MEAN	g** B	-8 A	8** B	6**B	7** B	7** B	5**AB
/A1 0	S.D.	1.0	3.6	0.8	1.7	0.8	1.1	1.0
	N	6	6	6	6	6	6	6
AY 7	MEAN	7 ±± B	2 A	. 8** B	7**B	7** B	6** B	5** <u>AB</u>
****	S.D.	0.8	1.4	1.3	1.0	0.8	1.5	1.5
	N	6	6	6	6	6	6	6
AY 14	MEAN	6**B	2 A	7** B	6**B	6** B	6** B	3 *A
	S.D.	1.1	0.4	0.6	0.5	0.6	0.8	1.7
	N	6	6	6	6	6	6	6

^{*} P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P Less than .01

A - Significance with control group (1-M)

B - Significance with pair fed group (2-M)

APPENDIX E

CLINICAL CHEMISTRY
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
FEMALE

	GROUP I	н	BUN	TRIG	CHOL	TOTAL PROTEIN	CALCIUM
	*****	•		***************************************	*****		4,,,,,,
Оррт	1	mean	24.8	227.3	73.95	7.32	10.18
		std	1.61	63.9	15.2	0.542	0.564
		3.5M	0.608522	24.15192	5.745059	0.204856	0.213171
12 5ppm	2	mean	24.8 B	221.5 B	84.5	7.03 B	10.15
		std	1.23	41.3	10.7	0.314	0.558
		sem	0.464896	15.60993	4.044219	0.118680	0.210904
250ppm	3	mean	27.2 В	281.2 8	94.2	7.08 B	10.03
		std	4.4	27.1	14.2	0.299	0.656
		sem	1.663043	10.24283	5.367095	0.113011	0.247944
500ppm	4	mean	27.6 B	250.3 в	87.7	7.38 B	10.48
		std	1.69	61.5	7.88	0.293	0.4916
		sem	0.638759	23.24481	2.978360	0.110743	0.185807
1000ррп	5	wean	21.48 B	183.3	90.46	6.7 A	10.05 B
		std	3.98	30.3	16.52	0.268	0.281
		BEM	1.504298	11.45232	6.243973	0.101294	0.106208
2000ppm	6	mean	21.73 в	203.8	96.4	6.35 A	9.97 B
		std	2.11	19.5	13.26	0.362	0.535
		sem	0.797505	7.370307	5.011808	0.136823	0.202210
* Оррш	7	mean	15.7 A	145.3 A	74.05	6.43 A	10.92 A
		std	2,37	44.7	10.5	0.463	0.402
		sem	0.895775	16.89501	3.968626	0.174997	0.151941

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1 p= 0.05

B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET)

CLINICAL CHEMISTRY
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
FEMALE

	GROUP I	ı	ALKPHOS	SGOT	SGPT
Оррт	1	mean	386	111.3	47.9
		std	120.4	14.9	6.17
		Bem	45.50692	5.631670	2.332040
125ppm	2	mean	357.7	104.7	42.48
		std	98.2	35.9	9.02
		sem	37.11611	13.56892	3,409239
250ppm	3	Reun	349	102	41.87
		std	118.3	17.5	8.51
		sem	44.71319	6.614378	3.216477
500ppm	4	mean	352.7	107	39.55
• •		std	127.1	13.8	10.24
		sem	48.03928	5.215909	3.870356
1000ppm	5	mean	319.3	122.2	40.58
		std	74.3	37	2.85
		sem	28.08276	13.98468	1.077198
2000ppm	6	mean	358.2	104	36.82
•••		std	72.6	24.8	4.57
		sem	27.44022	9.373518	1.727297
*Oppm	7	mean	230.3	126.9	34.47
• •		std	88.7	108.8	4.83
		sem	33.52544	41.12253	1.825568

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1 p= 0.05

B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET)

CLINICAL CHEMISTRY
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
MALE

	GROUP #	!	USTATE	TRIG	CHOL.	TOK." PROTEIN	CALCIUM
Оррт	1	mean	17.5	335.5	65.3	6.65	10.4
		std	1.9	57.4	7.6	0.3	1
		sem	0.718132	21.69516	2.872529	0.113389	0.377964
125ppm	2	mean	18	385.7 B	62.8	6.6	10.6
		std	4	112.5	8.8	0.28	0.16
		sem	1.511857	42.52100	3.326087	0.105830	0.060474
250ppm	3	mean	18	348.7 B	63.5	6.32	10.6
		std	1.9	69	7.7	0.4	0.65
		sem	0.718132	26.07954	2.910326	0.151185	0.245676
500ppm	4	mean	17	334.5 B	76.1	6.28	10.2
		std	2.5	139.4	. 5	0.5	0.28
		sem	0.944911	52.68824	1.889822	0.188982	0.105830
1000ppm	5	mean	15.5	256	88.5 A	6.11	10.1
		std	1.7	61.7	16.7	0.33	0.48
		sem	0.642539	23.32040	6.312006	0.124728	0.181422
2000ppm	6	mean	20.1	320.4 B	87 A	5.84 AB	10.4
		std	3	70	15.3	0.7	0.53
		sem	1.133893	26.45751	5.782856	0.264575	0.200321
*Oppm	7	mean	16.2	169.5 A	73.9	6.78	9.5
- 6- 1		std	1.6	42.5	11.3	0.19	0.61
		sem	0.604743	16.06349	4.270998	0.071813	0.230558

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1 P= 0.05
B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET) P= 0.05

CLINICAL CHEMISTRY
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
HALE

	GROUP #		ALKPHO\$	SGOT	SGPT	BILI	GLU
	1	mean	602.2	90	38.8	0.433	153.7
Oppm	'	std	117.1	18.1	5.1	0.12	16,7
		S CCI	44.25963	6.841156	1.927618	0.045355	6.312006
125ppm	2	mean	514.3 B	91.5	39	0.567	160.2 B
trabb	_	std	213.7	32.2	3.3	0.1	13.4
		sem	80.77100	12.17045	1.247282	0.037796	5.064723
250ppm	3	mean	568.3 B	127.2	37.7	0.533	159.8 B
#20bbii	-	std	88.2	72.5	7.3	0.14	16.3
		som	33.33646	27.40242	2.759140	0.052915	6.160820
500ppm	4	mean	491 B	161.8	41.6	0.5	160.5 B
200ppiii	7	std	104.9	145.2	8.5	0.21	20.9
		sem	39.64847	54.88044	3.212698	0.079372	7.899457
1000ppm	5	mean	469.7 B	122.5	40.5	0.3833	179 B
1000ppiii	-	std	118.3	93	7.3	0.15	27.8
		sem	44.71319	35.15069	2.759140	0.056694	10.50741
2000ppm	6	mean	486.4 B	114.6	34.4	0.298	132.8
Socoppiii	Ŭ	std	215.3	59.5	3.7	0.41	12.2
		sem	81.37575	22.48888	1.398468	0.154965	4.611166
±0	7	mean	164.5 A	108,1	36.4	0.35	120.1 A
*Oppm	•	std	60.9	17	6.6	0.054	16.5
		std	23.01803	6.425396	2.494565	0.020410	6.236413

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1

B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET)

P= 0.05 P= 0.05 Toxicological Study No. 75-51-YJ81-93, Aug 91 - Nov 93

APPENDIX F

HEMATOLOGY
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
MALE

	GROUP	#	HGB	MCV	PLT	мсн	нст
Oppm	1	mean	14.4	61.7	1028	22.27	39.9
		std	0.74	2.08	349	0.77	3.23
		sem	0.279693	0.786166	131.9096	0.291032	1.220825
125ppm	2	mean	14.9 B	61.3 B	1248	22.27	41 B
		std	0.43	2.91	117.2	0.98	1.45
		sem	0.162524	1.099876	44.29743	0.370405	0.548048
250ppm	3	mean	14.8 B	61.1 B	1033	21.58	41.9 B
		std	0.69	2.21	271	1.55	1.61
		sem	0.260795	0.835301	102.4283	0.585844	0.608522
500ррт	4	msem	15 B	60.5 B	1300	21.85	41.3 B
		stď	0.91	2.34	131	0.78	2.16
		sem	0.343947	0.884436	49.51334	0.294812	0.816403
1000ppm	5	mean	15 B	60.1 B	1347	21.62	41.7 B
		stď	0.41	1.94	328,9	0.7	1,53
		sem	0.154965	0.733251	124.3125	0.264575	0.578285
2000ppm	6	mean	14.8 B	60.5 B	1588 AB	21.5	41.7
		std	0.27	1.91	193.4	0.65	1.06
		sem	0.102050	0.721912	73.09832	0.245676	0.400642
* Оррп	7	mean	16.1 A	57.1 A	1081.7	20.62	44.5 A
		std	0.48	1.66	178.9	0.54	1.11
		sem	0.181422	0.627421	67.61784	0.204100	0.419540

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1 P= 0.05
B- SIGNIFICANCE WITHO GROUP 7 (RESTRICTED DIET) P= 0.05

HEMATOLOGY
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
HALE

	GROUP #		RBC	NBC	мснс
Oppm	1	mean std	6.47 0.46	12.23 5.69	3 6.12 1.81
		sem	0.173863	2.150617	0.684115
12 5ppm	2	mean std sem	6.7 B 0.21 0.079372	12.67 3.32 1.254842	36.32 0.5 0.188982
250ppm	3	mean std	6.87 B 0.43 0.162524	12.7 2.06 0.778606	35.33 2.25 0.850420
500ppm	4	mean std	6,83 B 0,55 0,207880	12.85 4.52 1.708399	36.13 0.4 0.151185
1000ppm	5	mean std sem	6.95 B 0.38 0.143626	12.32 1.95 0.737030	35.98 0.55 0.207880
2000ppm	6	mean std sem	6.9 8 0.24 0.090711	16.62 (4.19 1.583671	35.58 0.56 0.211660
*Oppm	7	mean std sem	7.8 A 0.36 0.136067	7.55 a 2.36 0.891996	36.13 0.25 0.094491

*- RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1 P= 0.05

8- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET) P= 0.05

HEMATOLOGY
14-DAY FEEDING STUDY
4-ANINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
FEMALE

GROUP #		HGB	ИСЛ	PLT	мсн	нст	
Оррт	1	mean	15.2	56.67	1153	20.25	42.55
		std	0.335	1.7	91.4	0.737	1.42
		sem	0.126618	0.642539	34.54595	0.278559	0.536709
125ppm	2	mean	14.9	55.87	1073	20	41.7
		std	0.46	1.06	108.2	0.446	1.37
		SAM	0.173863	0.400642	40.89575	0.168572	0.517811
250ppm	3	mean	15.22	56.3	1158	20.4	41.95
		std	0.662	0.827	237.5	0.472	2.33
		340	0.250212	0.312576	89.76656	0.178399	0.880657
500ppm	4	mean	14.92	57.017	1161.7	20.75	41
		std	0.668	1.47	83	0.782	2.05
		sem:	0.252480	0.555607	31.37105	0.295568	0.774827
1000ppm	5	mean	14.68	57.5 B	1131.7	20.78	40.6
		std	0.426	1.17	298	0.264	1.5
		sem	0.161012	0.442218	112.6334	0.099782	0.566946
2000ppm	6	mean	· 12.65 AB	56.75	1423 B	20.08	35.72 AB
		std	0.561	1.51	162.8	0.553	1.46
		sem	0.212038	0.570726	61.53261	0.209014	0.551828
*Oppm	7	mean	15.13	55.18	811.7	19.87	42.05
		std	0.489	0.462	582.7	0.175	1.63
		sem	0.184824	0.174619	220.2398	0.066143	0.616082

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1

p= 0.05

p= 0.05

B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET)

HEMATOLOGY
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
FEMALE

	GROUP #		RBC		WHE	мснс
Oppm	1	mean	7.52		12.2	35.73
		std	0.376		3.41	0.488
		sem	0.142114		1.288858	0.184446
125ppm	2	mean	7.47		11.42	35.57
		std	0.225		3.2	0.535
		B.世間	0.085042		1.209486	0.202210
250ppm	3	mean	7.45		13.17	36.3
, ,		std	0.404		6.26	0.576
		sem	0.152697		2.366057	0.217707
500ppm	4	mean	7.2		9.78	36.4
		std	0.424		4.96	0.837
		sem	0.160256		1.874703	0.316356
					•	
1000ppm	5	mean	7.07		12.35	36.15
		std	0.197		1.31	0.451
		sem	0.074459		0.495133.	0.170461
2000ppm	6	mean	6.3	AB	17.55 B	32.07
• • •		std	0.29		4.32	8.17
		sem	0.109609		1.632806	3.087969
*Oppm	7	mgan	7.62		7.7	36
-1.1		std	0.279		1.5	0.438
		sem	0.105452		0.566946	0.165548

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1 p= 0.05

B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET) p= 0.05

APPENDIX G

ORGAN TO BRAIN WEIGHT RATIO

14-DAY FEEDING STUDY

4-AMINO, 2-MITROTOLUENE (4A2NT)

STUDY NO. 55-YJ81-91

MALE

-	GROUP #	#	TESTES BRAIN	SPLEEN · BRAIN	LIVER DRAIN	KIDNEY BRAIN	ADRENAL BRAIN
0ppm	1	mean	1,54	0.334	8.03	1.46	0.0302
		std sem	0.0373 0.014098	0.057 0.021543	0.874 0.330340	0.191 0.072191	0.003458 0.001307
125ppm	2	mean std	1.51 0.0925	0.342 0.0302	8.89 B 0.942	1.51 в 0.07 1	0.0336 0.01898
		sem	0.034961	0.011414	0.356042	0.026835	0.007173
250ppm	3	mean std	1.58 0.126	0.363 0.0427	8.305 B 0.438	1.4 0.161	0.03037 0.004975
		nem	0.047623	0.016139	0.165548	0.060852	0.001880
500ppm	4	me∋n std	1.53 0.16	0.368 0.0527	8.79 B 0.96	1.49 В 0.13	0.03435 0.0107
		90%	0.060474	0.019918	0.362845	0.049135	0.004044
1000ppm	5	mean std	1.49 0.155	0.328 0.0567	8.21 B 0.704	1,33 0.128	0.0308 0.002419
		sem	0.058584	0.021430	0.266086	0.048379	0.000914
2000ppm	6	mean std	2.42 AB 0.262	0.342 0.055	7.7 B 0.7 91	1.28 0.0825	0.034087 0.007975
		sem	0.099026	0.020788	0.298969	0.031182	0.003014
* 0ppm	7	mean std	1.61 0.109	0.29 0.029	5.43 A 0.684	1.25 0.104	0.046296 0.018056
		sem	0.041198	0.010960	0.258527	0.039308	0.006824

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1 P= 0.05
B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET) P= 0.05

ORGAN TO BRAIN WEIGHT RATIO
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
FEMALE

	GROUP #		OVARIES BHAIN	SPLEEN Brain	LIVER BRAIN	KIDNEY BRAIN	ADRENAL BRAIN
Оррш	1	mean std	0.079588 0.010213	0.2746 0.03167	5.158 B 0.54 0.204100	1.04 0.0563 0.021279	0.05097 0.0118 0.004459
		th detail	0.003860	0.011970	0.204100	0,02127	
125ppm	2	mean	0.076051	0.2699	5.354 B	1.001	0.04583
(-1		std	0.01288	0.03798	0.186	0.113	0.00442
		sem	0.004868	0.014355	0.070301	0.042709	0.001670
250ppm	3	mean	0.080143	0.2508	5.523 B	1.001	0.0437
		std	0.016727	0.0569	0.5	0.0725	0.00744
		sem	0.006322	0.021506	0.188982	0.027402	0,002812
500ppm	4	mean	0.073178	0.2648	5.393 B	0.989	0.044
		std	0.008063	0.0314	0.621	0.078	0.00628
		sem	0.003047	0.011868	0.234715	0.029481	0.002373
1000ppm	5	mgan	0.073746	0.2958	5.813 B	0.983	0.0426
• • •		std	0.018866	0.0494	0.697	0.0773	0.00434
		sem	0.007130	0.018671	0.263441	0.029216	0.001640
2000ppm	6	mean	0.06983	0.3111 B	5.313 B	0.924	0.0348 A
,		std	0.009685	0.0403	0.495	0.0828	0.0103
		wen	0.003660	0.015231	0.187092	0.031295	0.003893
*Oppm	7	mean	0.063536	0.2314	3.904 A	0.896 A	0.0374 A
-t		std	0.018401	0.0149	0.425	0.0485	0.0029
		sem	0.006954	0.005631	0.160634	0.018331	0.001096

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1 p= 0.05

APPENDIX H

ORGAN TO BODY WEIGHT RATIO
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
MALE

	GROUP :	#	TESTIS BODY	SPLEEN BODY	LIVER BODY	KIDNEY BODY	BRAIN BODY
Oppm	1	цеец	0.009	0.00196	0.04688	0.008498	0.00586
		std	0.000632	0.000398	0.003555	0.000832	0.000416
		sem	0.000238	0.000150	0.001343	0.000314	0.000157
125ppm	2	mean	0.0086 B	0.00195	0.05055 B	0.008608	0.0057 B
		std	0.000606	0.000185	0.003924	0.000658	0.000214
		sem	0.000229	0.000069	0.001483	0.000248	0.000080
250ppm	3	mean	0.0094	0.002147	0.049 в	0.00824	0.00592 B
		stď	0.001118	0.000261	0.000857	0.00068	0.000372
		sem	0.000422	0.000098	0.000323	0.000257	0.000140
500ppm	4	muxm	0.009	0.002175	0.05168	0.00879	0.005896 B
		std	0.000786	0.000393	0.004648 B	0.000608	0.000361
		sem	0.000297	0.000148	0.001756	0.000229	0.000136
1000ppm	5	mean	0.0095	0.002071	0.051956 в	0.008419	0.006348
		std	0.000986	0.000223	0.003412	0.000472	0.000393
		sem	0.000372	0.000084	0.001289	0.000178	0.000148
2000ppm	6	mean	0.0168 AB	0.002383	0.05327 AB	0.008834	0.006939 A
		std	0.002266	0.0005	0.004406	0.000433	0.000414
		sem	0.000856	0.000188	0.001665	0.000163	0.000156
*0ppm	7	mean	0.0106	0.00191	0.03555 A	0.008234	0.006589 A
		std	0.000622	0.00021	0.002805	0.000611	0.000475
		sem	0.000235	0.000079	0.001060	0.000230	0.000179

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1 P= 0.05

B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET) P= 0.05

ORGAN TO BODY WEIGHT RATIO, FINAL BODY WEIGHT 14-DAY FEEDING STUDY 4-AMINO, 2-NITROTOLUENE (4A2NT) STUDY NO. 55-YJ81-91 MALE

	GROUP #		ADRENAL BODY	BODY
Oppm	1	mean	0.000177	321.7
		std	0.000021	21.8
		sem	0.000007	8.239625
125ppm	2	mean	0.000195	330 B
		std	0.000118	15.3
		sem	0.000044	5.782856
250ppm	3	mean	0.00018	317.3 B
		std	0.000031	20.9
		sem	0.000011	7.899457
500ppm	4	myam	0.000203	313.5 B
		std	0.000068	10.1
		sem	0.000025	3.817441
1000ppm	5	mean	0.000196	298.3
·		std	0.000018	26.7
		5.00	0.000006	10.09 165
2000ppm	6	mean	0.000235	274.7 A
		std	0.000047	20
		sem	0.000017	7.559289
*Oppm	7	mean	0.000302	283.7 A
-Ph.	•	std	0.000109	13.2
		sem	0.000041	4.989131

^{*-} RESTRICTED DIET GROUP
A- SIGNIFICANCE FROM GROUP 1 P= 0.05

B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET) P= 0.05

ORGAN TO BODY WEIGHT RATIO
14-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
FEMALE

	GROUP #		OVARIES BODY	SPLEEN BODY	LIVER BODY	RIDNEY BODY	BRAIN BODY
0	4		D 00047	0.00349	0.0700	D 009375	0.00709
Оррт	1	mean	0.00063	0.00218	0.0409	0.008275	0.00798
		std	0.000081	0.000203	0.00133	0.000392	0.000659
		sem	0.000030	0.000076	0.000502	0.000148	0.000249
125ppm	2	mean	0.000601	0.00215	0.0426 B	0.007945	0.00796
		std	0.000079	0.000385	0.00142	0.000744	0.000485
		sem	0.000029	0.000145	0.000536	0.000281	0.000183
250ppm	3	mean	0.000624	0.00196	0.0432 8	0.00785	0.00785
-	_	std	0.000107	0.000407	0.00196	0.000525	0.000461
		sem	0.000040	0.000153	0.000740	0.000198	0.000174
500ppm	4	mean	0.000602	0.00218	0.044 8	0.00811	0.00823
		std	0.000087	0.000367	0.0023	0.00067	0.000814
		sem	0.000032	0.000138	0.000869	0.000253	0.000307
1000ppm	5	mean	0.000587	0.00237	0.0461 A G	0.00782	0.00799
•		stá	0.000141	0.000337	0.00203	0.000417	0.000663
		sem	0.000053	0.000127	0.000767	0.000157	0.000250
2000ppm	6	mean	0.000628	0.0028 AB	0.0479 A 6	0.008348	0.00908 A
		std	0.00004	0.000232	0.00207	0.00064	0.00084
		sem	0.000015	0.000087	0.000782	0.000241	0.000317
*Oppm	7	mean	0.000555	0.002	0.03425 A	0.00786	0.0088
		std	0.000148	0.000156	0.003215	0.000312	0.000522
		sem	0.000055	0.000058	0.001215	0.000117	0.000197

^{*-} RESTRICTED DIET GROUP

p≈ 0.05

p= 0.05

A- SIGNIFICANCE FROM GROUP 1

B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET)

ORGAN TO BODY WEIGHT RATIO, FINAL BODY WEIGHT 14-DAY FEEDING STUDY 4-AMINO, 2-NITROTOLUENE (4A2NT) STUDY NO. 55-YJ81-91 FEMALE

			ADRENAL	
	GROUP #		BODY	BODY
	4		•	
	1			
Оррм	1	mean	0.000404	227.3
		std	0.000088	19.8
		sem	0.000033	7.483696
455			0.000744	224.5
125ppm	2	mean	0.000364	19.9
		std	0.000031	
		1000	0.000011	7.521493
250ppm	3	mean	0.000341	2298
	_	std	0.000044	17.9
		sem	0.000016	6.765564
500ppm	4	mean	0.000359	223
		std	0.000031	15.94
		sem	0.000011	6.024753
1000ppm	5	mean	0.00034	221.5
	-	std	0.000038	19.63
		sem	0.000014	7.419442
2000	6	mesn	0.000311	201.3
2000ppm	0	mean	0.000311	15.41
		std		
		sem	0.000030	5.824432
*Oppm	7	mean	0.000328	203.3
• •		std	0.000024	11.79
		sem	0.000009	4,456201

*- RESTRICTED DIET GROUP

A- SIGNIFICANCE FROM GROUP 1

B- SIGNIFICANCE WITH GROUP 7 (RESTRICTED DIET)

p = 0.05

p= 0.05

APPENDIX I

APPENDIX I PREDICTED VERSUS ACTUAL DAILY DOSES

DOSE	ACTUAL	ACTUAL	ACTUAL
Predicted	DAY 0-DAY 28	DAY 28-DAY 56	DAY 56-DAY 90
MALES			
500 ppm	412 ppm	448 ppm	518 ppm
	30 mg/kg/day	26 mg/kg/day	26 mg/kg/day
1,000 ppm	815 ppm	886 ppm	965 ppm
	57 mg/kg/day	52 mg/kg/day	48 mg/kg/day
2000 ppm	1687 ppm	1787 ppm	1950 ppm
	117 mg/kg/day	110 mg/kg/day	117 mg/kg/day
FEMALES			
500 ppm	412 ppm	448 ppm	518 ppm
	35 mg/kg/day	33 mg/kg/day	28 mg/kg/day
1,000 ppm	815 ppm	886 ppm	965 ppm
	66 mg/kg/day	65 mg/kg/day	64 mg/kg/day (
2,000 ppm	1687 ppm	1787 ppm	1950 ppm
	141 mg/kg/day	136 mg/kg/day	136 mg/kg/day

Toxicological Study No. 75-51-YJ81-93, Aug 91 - Nov 93

APPENDIX J

	CIDITING ANDREWS			CEV-	MATE	ከአሮ₽	. 1
	STUDY: 4A2NT-M			SEA:	MALE	PAGE	. 1
	DOSE: (ppm)	0	500	1000	2000	0	
PERIOD	GROUP:	1-H	2-M	3-M	4-M	5-M	
NAV 2	111147 (_)	J/44 D	ozak D	ocal D	19 AB	21++ A	
DAY 2	INTAKE (g) S.D.	2.1		1.1			
	EFF. (g/kg)			***			
		10	10			10	
DAY 5	INTAKE (g)	27**B	28** B	26** B	21**A	21 A	
	S.D.	1.8	1.8	1.3	2.0	0.4	
	EFF. (g/kg)						
	N	10	10	10	10	10	
DAY 7		27**B	29**AB		21** A		
,	S.D.	2.7		1.9			
		110	118	109		75	
	N	10	10	10	10	10	
DAY 9	INTAKE (g)	28**B	28** B	27** B	21**A	21 A	
	S.D.	2.0	1.8	1.9	3.1	0.0	
	EFF. (g/kg)						
	N	10	10	10	10	10	
DAY 12	INTAKE (g)	29** B	29** B	27** B	22**A	21 A	
		1.7	1.8	1.9	2.6	2.3	
	EFF. (g/kg)						
	N	10	10	10	10	10	
DAY 14	•		29** B			21** A	
		1.6	1.7	1.4	5.0	0.3	
		104	107	101	77	75	
	N	10	10	10	10	10	
DAY 16	INTAKE (g)	28** B		27** B	21**A	21 A	
		1.5	2.5	2.3	2.0	0.3	
	Eff. (g/kg)				4.0		
	N	10	10	10	10	10	
DAY 19	INTAKE (g)	29** B	29** B		21 A	22** A	
	S.D.	2.4	2.1	2.4	2.1	0.0	

^{*} Pless than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P less than .01

A - Significance with control Group 1
B - SIgnificance with pair Fed group 5

	SUMMARY	OF DA	ILY MEAN	FOOD CO	NSUMPTIO	N (Grams)		
	STUDY: 4A2NT-M			SEX:	MALE		PAGE:	2
	DOSE: (ppm)	0	500	1000	2000	0		
PERIOD	GROUP:	1-#	2-⋈	3-M	4-H	5-M		
	The state of the s	noss R	30** B	27** B	24 A	22A		
DAY 21			1.9	2.5.	2.9	0.3		
	S.D.	2.8 97	103	93	92	76		
	EFF. (g/kg) N	10	10	10	10	10		
DAY 23	INTAKE (g)	29**B	зоже В	28** AB	23 A	22A		
DA1 23	S.D.	2.5	2.4	1,7	1.8	0.0		
	EFF. (g/kg)							
	N (g/kg/	10	10	10	10	10		
DAY 26	INTAKE (g)	29**B	29** B	28** B	23 A	23A		
DAT EO	S.D.	1.8	1.6	2.4	1.8	0.0		
	EFF. (g/kg)			÷-				
,	N	10	10	10	10	10		
DAY 28	INTAKE (g)	30**B	28** B	28** B	25 *A	23A		
•	S.D.	2.5	2.7	1.5	3.8	0.0		
	EFF. (g/kg)	97	95 .	92	95	76		
	N	10	10	10 .	10	10		
DAY 30	INTAKE (g)	28**B	28**B	27** B	23 A	23A		
	S.D.	1.8	1.5	2.0	2.1	0.0		
	EFF. (g/kg)							
	N	10	10	10	10	10		
DAY 31	INTAKE (g)		28					
	S.D.	0.0	4.1	0.0	0.0	0.0		
	EFF. (g/kg)				4.00			
	N	0	4	0	0	0		
DAY 33	INTAKE (g)	28** B	31**B	26**	21 A	23 A		
	S.D.	1.4	7.3	2.9	2.2	0.0		
	EFF. (g/kg)	***						
	N	10	10	10	10	10		
DAY 35	INTAKE (g)	28** B	27**B	27** B	23 A	22 A		
	S.D.	1.5	2.0	2.1	2.4	0.3		
	EFF. (g/kg)	86	86	86	85	70	-	
	N	10	10	10	10	10		

P less than .05

Analysis of Variance using DUNCAN'S Procedure

P Less than .01

^{-- =} Data Unavailable A - Significance with control group (1-M) B - Significance with pair Fed group (5-M)

	SUMMARY	OF DA	ILY MEAN	FOOD CO	NSUMPTIO	(Grams)		
	STUDY: 4A2NT-M			SEX:	MALE		PAGE: 3	
	DOSE: (ppm)	0	500	1000	2000	0		
PERIOD	GROUP:	1-M	2-M	3-M	4-11	5-M		
DAY 37	INTAKE (g)	28** B	27** B	24**A	22A	23 A		
	-	2.3			2.8	0.0		
	EFF. (g/kg)							
	N	10	10	10	10	10		
DAY 40	INTAKE (g)	27** B	27** B	26**B	21A	21A		
		2.2	2.1	2.1	2.1	0.0		
	• •							
	N	10	10	10	10	10		
DAY 42	INTAKE (g)	27** B	27** B	25**B	21A	22 A		
		1.7	2.3	3.0	2.9	0.0		
	EFF. (g/kg)	80	81	77	76	67		
	II.	10	TO	IO	10	10		
DAY 44	INTAKE (g)	27** B	27** B	26** ^B	21A	22 A		
	S.D.	2.2	2.2	1.4	2.2	0.0		
	EFF. (g/kg)		Die Jahr					
	N	10	TO	10	10	10		
DAY 47	INTAKE (g)	28** B	27** B	26** AB	21 ^A	21 A		
•		1.7	2.0	2.3	1.9	0.3		
	N	10	10	10	10	10		
DAY 49	INTAKE (g)	28** B	26** AB	26**AB	21 A	21 A		
		2.3	2.3	1.7		0.5		
	EFF. (g/kg)	85	76	78	76	63		
	N	10	10	10	10	10		
DAY 51			26** B	24**B	19 A	21 *A		
		2.2	2.7	2.2	2.7	0.0		
		hada	-					
	N	10	7/0	10	10	10		
DAY 54	_	28** B	2744 B	26** B	₂₁ A	20 A		
		2.1	2.2	2.3	3.2	0.0		
	EFF. (g/kg) -						_	

P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P Less than .01

^{-- =} Data Unavailable

A - Significance with control group (1-M) B - Significance with pair Fed group (5-M)

	SUMMARY	OF DAI	LY MEAN	FOOD CO	NSUMPTIO	N (Grams)	
	STUDY: 4A2NT-M			SEX:	MALE	•	PAGE: 4
	DOSE: (ppm)	0	500	1000	2000	D	
PERIOD	GROUP:	1-#	2-M	3-H	4-M	5-M	
DAY 56	INTAKE (g)	27**B	26 k ≱ B	25** AB	21 A	20 A	
DAT 36	S.D.	2.3	2.9	1.9	2.5		
	EFF. (g/kg)	77	76	74	74	61	
	N (g/kg/	10	10	10	10 ,	10	,
DAY 58	INTAKE (g)	27**B	27** B	24** AB	20 A	20 A	
	S.D.	1.9	1.7	1.6	2.6	0.0	
	EFF. (g/kg)			4-40			
	N	10	10	10	10	10	
DAY 61	INTAKE (g)	27** B	27** B	24** AB	21 A	20 A	
DATE	S.D.	1.3	2.0	1.9	1.8	0.0	
	EFF. (g/kg)				***		
	K	10	10	10	10	10	
DAY 63	INTAKE (g)	27**B	27** B	24** AB	21 A	21 A	
	S.D.	1.5	2.1	1.9	2.4	0.3	
	EFF. (g/kg)	74	77	72	74	62	
	N	10	10	10	10	10	
DAY 65	INTAKE (g)	28**B	26** B	24** AB	19 Å	21 Å	
	S.D.	3.7	2.4	2.2	2.5	0.3	
	EFF. (g/kg)						
	N	· 10	10	10	10	10	
DAY 68	INTAKE (g)	27**B		24** AB		20A	
	S.D.	1.4	2.1	1.7	1.9	0.0	
	Eff. (g/kg)						
	N	10	10	10	10	10	
DAY 70	INTAKE (g)	29**B	27** B			20 A	
	S.D.	1.5	2.4	2.2	1.4	0.3	
	EFF. (g/kg)	77	76	74	77	60	
	N	10	10	10	10	10	
DAY 72	INTAKE (g)	25**B	26** B	23** AB	20 A	20A	
	S.D.	2.1	2.1	2.3	2.2	0.0	
	EFF. (g/kg)	_					
	N	10	10	10	10	10	

^{*} P Less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P Less than .01

^{-- =} Data Unavailable A - Significance with control group (1-M)
B - Significance with pair Fed group (5-M)

	STUDY: 4A2NT-M	Ι.		SEX:	MALE	PAGE: 5
	DOSE: (ppm)	0	500	1000	2000	D
PERIOD	GROUP:			3-N		5-M
	,		10	A R	A	^
DAY 75	*		26** B			
	S.D.	1.8	1.8	2.1	2.7	0.4
	EFF. (g/kg) N	10	10	10	10	10
DAY 77	INTAKE (g)	27** B	26** B	24**AB	21 A	21A
	S.D.	2.1	1.8	1.7	2.5	0.3
	EFF. (g/kg)	72	71	70	75	61
	N	10	10	10	10	10
DAY 79	INTAKE (g)	26**B	26** B	23** AB	21 A	21A
	S.D.	1.6	2.0	2.3	2.5	0.3
	Eff. (g/kg)					
	N	10	10	10	10	10
DAY 82			26** B			21Å
	S.D.	1.7	2.3	2.0	2.2	0.0
	EFF. (g/kg)					
	N	10	TO	10	10	10
DAY 83					***	35 42/2 = 21g/da
	\$.D.	0.0	0.0	0.0	0.0	4.0
	EFF. (g/kg)				· 	97
	N	0	0	10	0	10
DAY 84		28**B	25** AB	23** A	22**A	7A 21g/day
		1.3	1.4	1.6	2.3	3.9
	EFF. (g/kg)	73	69	68	80	22
	N	10	10	10	10	10
DAY 86		25**B	25** B	22 A	21 A	21A
		1.3	2.8	3.0	3.0	0.0
	Eff. (g/kg)	40		40	40	uniona.
	N	10	10	10	10	10
DAY 89	INTAKE (g)	27**B	23**	23**	₂₀ A	₂₀ A
	S.D. Eff. (g/kg)	1.4	6.9	2.3	3.9	0.0
	EFE (a/ka)			***		

P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} Pless than .01

^{-- =} Data Unavailable A - Significance with control group (1-M) B - Significance with pair Fed group (5-M)

		SUMMARY	OF D	AILY MEAN	FOOD CO	NSUMPTI	ON (Grams)		
	STUDY:	4A2NT-M			SEX:	MALE		PAGE:	6
	DOSE: (ppm))	0	50 0	1000	2000	0		
PERIOD	GROUP:		1-K	2-M	3-H	4-M	5-M		
DAY 90	INTAKE (g)		25**B	24 * B	22 AB	20 A	20.A		•
001 70	S.D.		2.2	2.4	2.5	3.0	0.4		
	EFF. (g/k	(a)	65	67	65	73	57		
	N (g)	73"	10	10	10	10	10		

^{*} P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P Less than .01

^{-- =} Data Unavailable

A - Significance with control group (1-M) B - Significance with pair Fed group (5-M)

 	SUMMARY	OF DA	ILY MEAN	FOOD CO	NSUMPTIO	N (Grams)	
 	STUDY: YJ8190F			SEX:	FEMALE	PAGE:	1
	DOSE: (ppm)	0	500	1000	2000	0	
 PERIOD		1 –F	2 -F	3-F	4~F	5-F	ويت والمها والمارة المرادة الم
DAY 2	INTAKE (g)	19**B	19 k/	18 **	15 AB	17 * * A	
on c	S.D.	2.0	1.8	1.1	2.8	1.6	
	EFF. (g/kg)		_				
	N	10	10	10	10	10	
DAY 5	INTAKE (g)	20**B	20** B	20** B	18**A	17A	
	S.D.	1.9	1.9	1.7	2.2	1.1	
	EFF. (g/kg)						
	N	10	10	10	10	10	
DAY 7	INTAKE (g)	19	21	19	19	23	
	S.D.	1.9	3.1	9.9	1.8	3.6	
	EFF. (g/kg)	114	125	113	116	117	•
	N	10	. 10	10	10	10	
DAY 9	INTAKE (g)	20** B	20** B	20** B	17**A	17A	
	S.D.	1.8	2.2	2.2	1.6	1.1	
	EFF. (g/kg)		MAR WILL			-	
	N	10	10	10	10	10	
DAY 12	INTAKE (g)	20**B	21** B	19** B		17A	
	S.D.	1.9	2.0	1.8	1.7	0.3	
	EFF. (g/kg)			. —	44.0		
	N	10	10	10	10	10	
DAY 14			19** B			16** A	
	S.D.	1.6	2.9		3.1	1.6	
	EFF. (g/kg)	109	105	100	93	85	
	N	10	UD	10	10	10	
DAY 16	INTAKE (g)	19**B	20** B	19** B	16 A	17** A	
	S.D.	2.2	1.6	1.9	2.3	0.0	
	EFF. (g/kg)	-			-	***	
	N	10	10	10	10	10	
DAY 19	INTAKE (g)	21**B	22** B	20** B	18**A	16A	
	S.D.	1.6	2.6	2.9	1.8	1.9	
	EFF. (g/kg)						
	N	10	10	10	10	10	

[★] P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P less than .01

A - Significance with control group (1-F)

B - Significance with pair Fed group (5-F) $\Im - 8$

				SEX:	FEMALE		PAGE: 2
	STUDY: YJ8190F			JIA.	Lunin		
	DOSE: (ppm)	0	500	1000	2000	0	
PERIOD	GROUP:	1-F	2-F	3F	4-F	5~F	
	ه جهد منها المنه الله المنه الله المنه الله المنه الله المنه المنه المنه المنه المنه المنه المنه المنه المنه ا						
DAY 21	INTAKE (g)	20 *B	21** B	21** B	18 A	18A	
	S.D.	2.0	1.4	3.9	1.6	0.0	
	EFF. (g/kg)	106	110	109	102	90	
	N	10	10	10	10	10	
DAY 23	INTAKE (g)	22**B	22** B	22** B	18 A	18 <u>A</u>	
DAT LD	S.D.	2.7	2.9	2.6 ,	1.9	0.3	
	EFF. (g/kg)		•				
	R .	10	10	10	10	10	
84V 24	INTAKE (g)	21**B	23** B	20 * B	19 A	18A	
DAY 26		2.2	2.8	2.1	1.3	0.0	
	S.D.						
	EFF. (g/kg)	10	10	10	10	10	
	N	10	10				
DAY 28	INTAKE (g)	21** B	22** B	22** B	18 A	18 A	
J 25	S.D.	2.4	2.9	2.0	1.7	0.3	
	EFF. (g/kg)	105	109	110	100	89	
	N	10	10	10	10	10	
DAY 30	INTAKE (g)	21** B.	_{22**} B	20 * B	18 A	18 A	
טב זאט	S.D.	2.1	1.8	1.3	1.3	0.6	
	EFF. (g/kg)						
	N (a) Ka	10	TO	10	10	10	
- 444 ===		21** B	2744 R	22** B	18A	18 A	
DAY 33	INTAKE (g)	3.2	2.6	2.2	1.4	0.3	
	S.D.		2.0 				
	EFF. (g/kg)	40		10	10	10	
	N	10	10 .				
DAY 35	INTAKE (g)	21 * B	22** B	21**B		18 A	
	S.D.	2.6	2.1	1.6	1.1	0.6	
	EFF. (g/kg)	98	104	103	98	86	
	N	10	10	10	10	10	
DAY 37	INTAKE (g)	22** B	22** B	21**AB	17A	18 A	
	S.D.	2.1	2.5	2.5	1.1	0.3	
	EFF. (g/kg)						

^{*} Pless than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} Pless than .01

A - Significance with control group (1-F)

B - Significance with pair Fed group (5-F)

	STUDY: YJ819	OF .		SEX:	FEMALE		PAGE: 3
	DOSE: (ppm)	0	500 ′	1000	2000	0	
PERIOD			2-F				
247 / 7		В	B	20** B	A.	Δ	निर्धि विभिन्न प्रमान प्रमान प्रमान स्थान स्
DAY 40	INTAKE (g)	20** ^B					
	S.D.	2.7	2.1	1.5	1.0	0.0	
	EFF. (g/kg) N	10	10	10	10	10	
DAY 42	THTAVE (a)	na tak	21** B	40 + AR	42 1	474	
DAT 42	INTAKE (g) S.D.						
	EFF. (g/kg)	1.6 99	1.4 98	2.5 8 9	1.2 88	0.3 79	
	N (g) kg)	10	10	10	10	10	
DAY 44	INTAKE (g)	10 ⊕ R	21** B	40 + B	17 A	17A	
וחש	S.D.	1.9	2.0	2.8	1.3	0.0	
	EFF. (g/kg)						
	N	10	10	10	10	10	
DAY 47	INTAKE (g)	21##B	22** B	2014 B	17 Å	17A	
27	S.D.	1.9	1.9	1.7		0.3	
	EFF. (g/kg)						
	N	10	10	110	10	10	
DAY 49	INTAKE (g)	20**B	19 * B	17 A	17 A	17Å	
	S.D.	2.3	1.4	3.2	1.4	0.5	
	EFF. (g/kg)	90	88	82	90	81	
	ĸ	10	10	10	10	10	
DAY 51	INTAKE (g)	18 *	19** B	18 *	16 A	17 ^A	
	S.D.	1.8	1.8	1.4	1.5	0.3	
	EFF. (g/kg)						
	N	10	10	10	10	10	
DAY 54	INTAKE (g)	20**B	21** B	19** B	17 A	16 ^A	
	S.D.	2.9	3.3	1.7	1.2	0.3	
	EFF. (g/kg)	47.00	499-400			-	
	N	10	10	10	10	10	
DAY 56	INTAKE (g)	194xB	21** B	20** B	17 A	16 ^A	
	S.D.	1.8	2.4	2.1	1.3	0.6	
	EFF. (g/kg)	88	94	91	90	77	•
	N	10	10	10	10	10	•

P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{** .} P less than .01

A - Significance with control group (1-F) B - Significance with pair fed group (5-F)

	STUDY: YJ8190F			SEX:	FEMALE		PAGE: 4
		0	500	1000	2000	0	
		0 1–F	2-F	3-F	4-F	5-F	
PERIOD	GROUP:						,
DAY 58	INTAKE (g)	21** B	21** B	20**B	17A	16 A	
DA1 30	S.D.	2.2	2.2	2.6	1.3	0.0	
	EFF. (g/kg)				:		
	N	10	10	10	10	10	
DAY 61	INTAKE (g)	20** B	20** B	19**B	17A	17 A	
יאם ואם	S.D.	1.3	1.6	1.4	1.4	0.0	
	EFF. (g/kg)						
•	N (g/kg/	10	10	10	10	10	
DAY 63	INTAKE (g)	20** B	21**B	19 *	17A	17 A	
טאו טש	S.D.	3.2	2.8	2.0	1.3	0.3	
	EFF. (g/kg)	87	94	86	87	77	
	N	10	10	10	10	10	
DAY 65	INTAKE (g)	20** B	19**	19**B	16 A	17 A	
DRI OF	S.D.	1.8	3.6	2.4	0.9	0.3	
	EFF. (g/kg)				alash safes		•
	N	10	10	10	10	10	
DAY 68	INTAKE (g)	20** B	20**B	20**B	17A	16 A	
	S.D.	1.9	3.4	1.6	1.6	0.0	
	EFF. (g/kg)						
	N	10	10	10	10	10	
DAY 70	INTAKE (g)	21** B	20**B	19*#B	17 A	17 A	
	S.D.	2.6	2.5	1.4	1.2	0.3	
	EFF. (g/kg)	92	B7	88	89	77	
	N	10	10	10	10	10	
DAY 72	INTAKE (g)	20** B	21**B	19**B	16 A	17 A	
	\$.D.	2.4	3.9	2.1	1.8	0.5	
	EFF. (g/kg)	***************************************	-		-		
	N	10	10	10	10	10	
DAY 75	INTAKE (g)	20** B	19**B	19##B	17 A	16 A	
	S.D.	2.3	3.1	1.1	1.1	0.0	
	EFF. (g/kg)						-
	N	10	10	10	10	10	

^{*} Pless than .05

Analysis of Variance using DUNCAN'S Procedure

^{##} Pless than .01

A - Significance with control group (1-F)

B - Significance with pair fed group (5-F)

	SUMMARY	OF DA	ILY MEAN	FOOD CO	NSUMPTIO	N (Grams)	
	STUDY: YJ8190F			SEX:	FEMALE	PAGE:	5
	DOSE: (ppm)	0	500	1000	2000	II .	
PERIOD	GROUP:	1-F	2-F	3-F	4-F	5-F	
. क्योंने क्या क्या नाम क्या केन प्राप्त क्या प्रमुख क्या का क्या कर्य क्या क्या क्या क्या क्या क्या क्या क्	ng ana was na <mark>1900 (1900 (1900 (1900 (1900 (1900 (1</mark> 900 (190) (1900 (1900 (1900 (190) (1900 (190) (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (190) (1900 (190) (1900 (190) (1900 (1900 (1900 (1900 (1900 (1900 (19						
DAY 77	INTAKE (g)	20** B	20**B	18 * B	17A	16 A	
VAL II	S.D.	1.8	2.9	2.1	1.1	0.6	
	EFF. (g/kg)	84	87	83	86	74	
	N (g/kg/	10	10	10	10	10	
	THINE (a)	19** B	19**B	19** B	16 A	16 A	
DAT 79				2.3	1.5	0.3	
	S.D.	2.9	2.7		4.2	0.5	
	EFF. (g/kg)	10	10	10	10	10	
		10	IU	10	to .	10	
DAY 82	INTAKE (g)	20** B	21** ^B	18** B	16 A	16 A	
7711	S.D.	1.7	2.1	1.2	1.3	0.3	
	EFF. (g/kg)						
	N	10	10	10	10	10	
DAY 83			 .			58	
	\$.0.	0.0	0.0	0.0	0.0	5.1	
	EFF. (g/kg)					118	
	N	0	0 ·	0	0	10	
DAY 84	INTAKE (g)	18** B	19** B	19** B	16** <u>A</u>	5A 16.5g	
	S.D.	2.3	2.8	2.4	1.8	5.4	
	EFF. (g/kg)	77	82	85	84	22	
	N	10	10	10	10	10	
DAY 86	INTAKE (g)	18** B	19**B	18** B	15 A	16 A	
PAT DO	S.D.	2.8	2.6	2.3	1.1	0.3	
	EFF. (g/kg)						
	N (g/kg/	10	10	10	10	10	
		ID	D	no. P	A	A	
DAY 89	INTAKE (g)	19** B		194# B	16 ^A	16 A	
	S.D.	1.9	1.9	1.4	1.1	1.0	
	EFF. (g/kg)					***	
	N	10	10	10	10	10	
DAY 90	INTAKE (g)	19** B	19**B	17** AB	15 A	15 A	
	S.D.	2.7	2.0	2.1	1.6	0.9	
	EFF. (g/kg)	83	83	78	80	67	
	*** * * ******************************					•	

P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P less than _01

^{--- =} Data Unavailable

A - Significance with control group (1-F) B - Significance with pair fed group (5-F)

	SUMM	ARY OF D	AILY MEA	N FOOD CO	NSUMPTIO	N (Grams)		
	STUDY: YJ819	90F		SEX:	FEMALE	,	PAGE:	6
	DOSE: (ppm)	0	500	1000	2000	0		
PERIOD	GROUP:	1-F	2-F	3–F	4-F	5-F		
DAY 91	INTAKE (g)	17	19	18	16			
	S.D.	2.8	3.2	2.7	0.7	0.0		
	EFF. (g/kg)	73	84	83	85			
	N	10	10	10	10	0		

^{*} P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P less than .01

^{-- =} Data Unavailable

Toxicological Study No. 75-51-YJ81-93, Aug 91 - Nov 93

APPENDIX K

	STUDY: 4A2NT	–M .		SEX:	MALE		PAGE: 1
	DOSE: (ppm)	0	500	1000	2000	0	
PERIOD		1-M	2-M	3-M	4-M	5-H	
				Ph. To the commence was a few and the cold the		ر الله على مواد الله المدارسية ميدا واستطار يوم الواد المدارسة	
DAY O	MEAN	214B	214B	214 B	212B	271** <u>A</u>	
	S.D.	10.4	8.6	9.4	9.5	10.6	
	п	10	10	10	10	10	
DAY 7	MEAN	276**	276**	273**	250 ^{AB}	271**	
-	S.D.	13.8	10.7	12.2	12.7	11.3	
	N	10	10	10	10	10	
****		333**B	326** B	323** ^B	276 ^{AB}	294 ** A	
DAY 14							
	S.D.	24.0	12.5	14.6	17.6	12.4	
	N	10	10	10	10	10	
DAY 21	MEAN	370** B	368** B	365**B	299A	313** A	
	S.D.	16.9	16.2	19.1	21.4	12.0	
	N	10	10	10	10	10	
DAY 28	HEAR	396** B	391** ^B	387**B	313AB	336**A	
	S.D.	19.9	20.5	. 24.6	19.0	10.8	
	N	10	10	10	10	10	
DAY 35	MEAN	427** B	417** B	409** ^B	326AB	357** A	
	S.D.	22.7	21.5	27.3	22.0	11.7	
	N	10	10	10	10	10	
· DAY 42	MEAN	451** B	441** B	425** AB	337AB	368** A	
	S.D.	22.0	24.9	31.3	27.3	11.8	
	N	10	10	10	10	10	
DAY 49	REAR	472** B	455 ★★ B	439**AB	344AB	372** A	
	S.D.	25.0				12.5	
	R	10	10	10	10	10	
DAY 56	MEAN	485** B	467 ** B	445**AB	343. AB	379** A	
	S.D.	28.0	27.5	32.4	30.3	11.6	
	N	10	10	10	10	10	
DAY 63	MEAN	504** B	481** B	453** AB	343AB	390**A	
5A1 03	S.D.	30 ₋₂	28.4	34.0	30.0	14.5	
	N	10	10	J4.U	10	10	-

^{*} Pless than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} Pless than .01

A - Significance with control group (1-M)

		SUMMAKX	OF BODY					
ST	JDY: 4A2NT-	M		SEX:	MALE		PAGE:	2
	DOSE: (ppm)	0	500	1000	2000	0		
PERIOD	GROUP:	1-H	2-H	3-M	4-H	5-H	ng aga gap gan ara dipinang aga dan dan	
रक क्षेत्री स्वयु प्रका स्वयः स्वयः स्वयः स्वयः स्वयः प्रको नेत्री स्वयः स्वयः गातः वेदी स्वयः स्वयः स्वयः स्व		519## B	489** AB	45944AB	340AB	397** A		
DAY 70	MEAN		29.8	37.0	33.1	14.6		
	S.D. N	30.4 10	10	10	10	10		
	MEAN	531** B	499**AB	465** AB	344AB	406** A		
DAY 77	S.D.	33.4	30.8	37.6	33.4	13.2		
	N.	10	10	10	10	10		
DAY 83	MEAN					448		
UAT 63	S.D.			***		17.2		
	N	0	0	D	0	10		
DAY 84	MEAN	542** B	505**AB	468** AB	342 AB	415**A		
DAT 64	S.D.	32.8	30.5	37.4	33.7	14.0		
	N	10	10	10	10	10		
DAY 90	MEAN	553** B	5104xAB	470** AB	343AB	422**A	,	
pa, 70	S.D.	33.1	31.0	39.2	36.7	14.7		
	N	10	10	10	10	10		

P less than .05

^{**} P less than .01

^{-- =} Data Unavailable

A - Significance with control group (1-M) B - Significance with pair Fed group (5-M)

MALE 90-DAY FEEDING STUDY

		SUMMAR	Y OF BOD	Y WEIGHT	S (Grams)			
 ST	UDY: YJ819)F		SEX:	FEMALE		PAGE:	1
	DOSE: (ppm)	0	500	1000	2000	0		
PERIOD	GROUP:	1~F	2-F	3-F	4-F	5-F		
DAY O	MEAN	148 B	148 ^B	152**B	149B	181 * *		
אלו ט	S.D.	8.9	10.0	12.6	8.1	9.8		
	N	10	10	10	10	10		
DAY 7	MEAN	182** B	181** B	182**B	177B	203**		
	S.D.	12.2	8.6	9.3	8.1	14.4		
	N	10	10	10	10	10		
DAY 14	MEAN	208**	208**	204 **	190AB	202**		
	S.D.	15.4	11.8	11.6	10.8	10.1		
	N	10	10	10	10	10		
DAY 21	MEAN	229** B	232** B	226**B	204A	208** A		
	S.D.	18.4	13.0	16.7	11.1	8.4		
	N	10	10	10	10	10		
DAY 28	MEAN .			243**B		221** A		
•	S.D.	20.2	16.6	14.9	11.8	10.0		
	N	10	10	10	10	10		
DAY 35	MEAN	262** B	261** B	254**B	216 AB	231** A		
	S.D.	24.2	16.0	16.7	12.5	7.7		
	N-	10	10	10	10	10		
DAY 42	MEAN	278** B	273** B	261** ^B	221 A	234** A		
	S.D.	28.6	16.4	19.8	11.8	6.8		
	N	10	50	10	10	10		
DAY 49	MEAN		279** B			240** A		
	\$.0.	26.6	17.6	19.9	12.2	6.8		
	N	10	10	10	10	10		
DAY 56	REAR	287** B	287** B	270**B	227A	242** A		
	\$.0.	23.1	17.4	21.7	11.9	8.7		
	N	10	10	10	10	10		
DAY 63	MEAN	298** B	295** B	277**B	230A	247** A		
	S.D.	28.4	22.6	21.7	12.6	7.6	-	
	\$ I	10	10	10	10	10		

P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P less than .01

A - Significance from control
B - Significance from 5F (pair fed)

		SUMMAR	Y OF BODY	WEIGHT	S (Grams)			
S	TUDY: YJ8190)F		SEX:	FEMALE		PAGE: 2	2
	DOSE: (ppm)	0	500	1000	2000	D		
PERIOD	GROUP:	1-F	2-F	3 -F	4-F	5-F		
	MEAN	307** ^B	206++ B	280** B	232 A	249** A		
DAY 70	S.D.	27.6	23.8	23.1	12.8	7.1		
	N	10	10	10	10	10		
DAY 77	MEAN	314** B	302** B	282** B	234 AB	254** A		
	S.D.	28.1	22.3	25.1		6.4		
	N	10	10	10	10	10		
DAY 83	MEAN					282		
• • • • • • • • • • • • • • • • • • • •	S.D.					12.0		
	N .	D	0	0	0	10		
· DAY 84	MEAN	315** B	306** B	284**B	234 AB	258** A		
2111	S.D.	33.6	22.9	24.1	13.5	7.3		
	R	10	10	10	10	10		
DAY 90	MEIAR	321** B	314** B	286**B	236 AB	259** A		
	S.D.	29.6	22.6	25.9	12.7	8.6		
	N	10	10	10	10	10		
DAY 91	MEAN	323** B	315** B	289**B	237			
	S.D.	31.1	23.7	26.4	12.9			
	N	10	10	10	10	G		

^{*} P Less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P less than .01

^{-- =} Data Unavailable

A - Significance with control group (1-F)

B - Significance with pair Fed group (5-F)

FEMALE 90-DAY FEEDING STUDY BODY WEIGHT

	STUDY: 4A2NT-	M		SEX:	MALE	PAG	GE: 1
			500	1000	2000	0	
	DOSE: (ppm)		2-H	3-M	4-H	5-M	
PERIOD	GROUP:	1-#					
DAY 7	MEAN	9** B	9**B	9** B	5** AB	-0 A	
OH! !	S.D.	0.6	0.6	0.8	1.3	0.6	
	N	10	10	10	10	10	
DAY 14	MEAN	. 8** B	7**B	7** B	4 A	3 A	
ynt ts	S.D.	2.7	0.7	0.9	1.2	0.7	
	N	10	10	10	10	10	
DAY 21		5** B	6 * ∗B	6** B	зА	3 A	
	S.D.	2.4	0.9	1.3	1.1	0.7	
	N	10	. 10	10	10	10	
DAY 28	MEAN	4**	3**	3**	2 AB	3 **	
	S.D.	0.8	0.7	1.1	1.2	0.4	
	N·	10	10	10	10	10	
DAY 35	MEAN	4** B	4**	3## A		3**A	
	S.D.	0.9	0.6	1.7	8.0	0.3	
	N	10	TO	10	10	10	
DAY 42	MEAN	4** B	3**B		2 A	2 A	
	S.Đ.	8.0	8.0	1.0	1.0	0.5	
	H	10	10	10	10	10	
DAY 49	MEAN	3** B		2★★ AB		1 A	
	\$.0.	0.7	1.0	0.4	0.6	0.5	
	N	10	10	10	10	10	
DAY 56	MEAN	2**	2 **	1##	-o A	1**	
	S.D.	0.6	1.1	0.7		0.3	
	N	10	AG	10	10	10	
DAY 63	MEAN	3** B	2 k tA	1** A		2**A	
	·S.D.	0.6	8.0	8.0	0.9	0.8	
	N	10	10	10	10	10	
DAY 70		2** B	1±± A	7** A	-0 AB	1** A	
	S.D.	0.3	0.6	0.9	1.2	0.5 -	
	И	10	10	10	10	10	

P less than .05

Analysis of Variance using DUNCAN'S Procedure

P less than .01

A - Significance with control group (1-M) B - Significance with pair Fed group (5-M)

	S	UMMARY	OF DAIL	WEIGHT	GAINS (Gr	ams)		
STU	STUDY: 4A2NT-M			SEX: MALE			PAGE: 2	
	DOSE: (ppm)	~ O	500 .	1000	2000	0		
PERIOD	GROUP:	1-H	2-H	3-M	4-M	5- M	ere der det blev ved står fink har ved ved ver ver ver ver der der der der der der der der der d	
DAY 77	MEAN:	2**	1 *	1 A	1 AB	1 7	•	
2	S.D.	0.6	0.8	0.6	0.7	0.5		
	N	10	10	10	10	10		
DAY 83	MEAN	-			ww	7	42/6 day	
	S.D.					1.1	42-33 = 9g for 7 det	
	N	0	0	Ð	0 .	10		
DAY 84	MEAN	2**	1**	O++	-0**	-33	-33/1 day 1.28/day	
No significance	S.D.	0.7	0.7	0.5	0.8	6.7	20, 2 22, 2120, 22,	
,	И	10	10	10	10	10		
DAY 90	MEAN	2 *	1	0 A	0 A	1		
	S.D.	0.7	2.8	1.0	0.9	0.7		
	N	10	10	10	10	10		

P less than .05

Analysis of Variance using DUNCAN'S Procedure

P less than .01

^{-- =} Data Unavailable

A - Significance with control group (1-M) B - Significance with pair Fed group (5-M)

 				CTW-	DEMATE		DACE • 1
	STUDY: YJ8190	F		SEX:	FEMALE		PAGE: 1
	DOSE: (ppm)	0	500	1000	2000	0	
PERIOD	GROUP:	1-F	2-F	3-F	4-F	5-F	
DAY 7	KEAN	5** B	5** B		4	3 A	
	S.D.	0.7		1.7	0.8	1.2	
	N	10	10	10	10	10	
DAY 14	MEAN	4** B	4** B	3**B	2** AB	-0 A	
	S.D.	0.8	1.1	0.9	0.7	1.2	
	н	10	10	10	10	10	
DAY 21	MEAN	3** B	3** B	3**B	2 * AB	1 A	
	S.D.	0.6	0.7	1.2	0.8	0.7	
	N	10	10	10	10	10	
DAY 28	MEAN	3**	2**	2**	1AB	2 *	
DAT ES	S.D.	1.7	1.1	1.1	0.6	0.6	
	N	10	113)	10	10	10	
DAY 35	MEAN	2**	2 *	2 *	1A	1	
54. 55	S.D.	1.2	1.1	0.7	0.4	0.7	
	N	10	10	10	10	10	
DAY 42	MEAN	2 kk B	2** B	1 A	1Å	1 A	
DA1 42	S.D.	0.9	0.7	1.1	0.5	0.5	
	N	10	10	10	10	10	
B.W. 46	mp		а	0	1	1	
DAY 49	MEAN	1	1 0.9	0.8	0.5	0.6	
	S.D.	0.9	10	10	10	10	
	N ,	10	IU	10	10	10	
DAY 56	MEAN	1 .	1 ATB		0	0	
	S.D.	1.0	0.6		8.0	0.5	
	N	10	10	10	10	10	
DAY 63	MEAN	2 * B	1 *	1	1	1	
	\$.D.	1.3	0.7	0.7	0.7	0.5	
	N	10	10	10	10	10	
DAY 70	MEAN	1** B	-0 AL	1 * A	0 10	Α 0	
	S.D.	0.8	1.0	0.7	0.5	0.4	•
	N	10	10	10	10	10	

P Less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} P less than .01

A - Sig with control
B - Sig with group 5 (pair fed)

APPENDIX L

•		SUMMARY	OF DAILY	WEIGHT	GAINS (G	rams)	
######################################	STUDY: YJ8190F			SEX: FEMALE			PAGE: 2
	DOSE: (ppm) 0	500	1000	2000	0	
PERIO	OD GROUP:	1-F	2-F	3-F	4-F	5-F	
DAY 7	7 MEAN	1 *	1 *	οА	n	1	
•	S.D.	0.7	1.1	0.8	0.4	0.3	
•	и	10	10	10	10	10	
DAY 8	3 MEAN	terte				5	6x5 = 30g/6 days
	S.D.					1.7	30-24 = 6g
	N		O	0	0	10	_
DAY 8	4 MEAN	O##	1**	0**	-0**	-24 lg	
,	S.D.	1.1	1.0	1.0	0.8	9.9	
	N	10	10	10	10	10	
DAY 9	O MEAN	1 *B	1** B	0	0	0A	
	S.D.	1.0	1.0	1.1	8.0	0.6	
	М	10	10	10	10	10	
DAY 9	MEAN	2	2	3	1		,
	S.D.	6.5	4.4	4.6	2.3		
	N	10	10	10	10	0	

P less than .05

Analysis of Variance using DUNCAN'S Procedure

^{**} Pless than .01

^{-- =} Data Unavailable

A - Significance with control group (1-F) B - Significance with pair Fed group (5-F)

APPENDIX M

CLINICAL CHEMISTRY

90 DAY FEEDING STUDY

4-AMINO, 2-NITROTOLUENE (4A2NT)

STUDY NO. 55-YJ81-91

MALE

DOSE		SGOT	SGPT	GLUCOSE	EUN	ALKPHOS
1 Оррж	mean	112.00	41.00	123.00	17.40	359.00
	std	18.50	7.10	14.80	1.80	80.00
	sem	5.85	2.25	4.68	0.57	25.30
2 *Oppm	mean	108.00	33.00	146.00	11.10 A	233.00
	std	74.90	6.40	29.00	2.10	90.00
	sem	23.69	2.02	9.17	0.66	28.46
3 500ppm	mean	106.00	35.00	125.00	17.60 B	258.00
	std	12.30	3.80	10.20	2.00	88.00
	8/5/11	3.89	1.20	3.23	0.63	27.83
4 1000ppm	arawana	122.00	47.00	150.00	17.00 B	296.00
	std	43.20	22.90	15.30	1.60	115.00
	sem	13.66	7.24	4.84	0.51	36.37
5 2000ppm	mean	121.00	50.00	195.00 AB	15.10 AB	400.00 B
	std	36.40	16.90	64.60	2.80	148.00
	sem	11.51	5.34	20.43	0.89	46.80

^{*-} RESTRICTED DIET GROUP

p= 0.05

A- SIGNIFICANCE WITH GROUP 1 (CONTROL)

B- SIGNIFICANCE WITH GROUP 2 (RESTRICTED DIET)

CLINICAL CHEMISTRY
90 DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91

DOSE		T.BILI	CALCIUM	T. PRO	TRIG	CHOL
1 0	ррт теап	0.34	10.00	7.60	320.00	74.90
, ,	std	0.27	0.31	0.28	48.30	10.60
	sem	0.09	0.10	0.09	15.27	3.35
2 *	Oppm mean	0.28	10:90	6.90 A	. 164.00 A	62.10
	std	0.05	0.47	0.40	26.10	6.90
	sen	0.02	0.15	0.13	8.25	2.18
3 5	OOppm mean	0.40	9.70 B	7.20 B	295.00 B	71.80
	std	0.20	0.41	0.36	58.70	10.80
	sen	0.06	0.13	0.11	18.56	3.42
4 10	00ppm mean	0.53 В	10.70 A	7.70 B	324.00 B	93.50 AB
,	std	0.17	0.48	0.40	80.70	15.80
	sem	0.05	0.15	0.13	25.52	5.00
5 20	OOppm mean	0.50 B	11.40 AB	7.50 B	464.00 AB	110.80 AB
,	std	0.20	0.56	0.38	176.80	23.80
	sem	0.06	0.18	0.12	55.91	7.53
*_ D	ESTRICTED DI	FT GROUP				
		WITH GROUP 1 (CC	ONTROL)		p= 0.05	
n v					0.05	

B- SIGNIFICANCE WITH GROUP 2 (RESTRICTED DIET)

CLINICAL CHEMISTRY
90-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
FEMALE

DOSE		SGOT	SGPT ·	GLUCOSE	BUN	ALKPHOS
1 Oppm	mean	134.70	49.67	125.57	20.04	266.18
	std	42.08	20.57	7.81	2.39	81.25
	sem	13.31	6.50	2.47	0.76	25.69
2 * Oppm	mean	163.70	30.43 A	127.78	13.11 A	121.55 A
	std	168.87	13.72	23:01	3.49	54.62
	sem	53.40	4.34	7.28	1.10	17.27
3 500pp	m mean	105.50	44.07	119.05	18.32 B	216.05 B
	std	33.45	17.52	6.81	2.14	76.57
	sem	10.58	5.54	2.15	0.68	24.21
4 1000ppi	II MGATI	82.20	30.95 A	131.17	17.16 AB	161.89 A
	std	16.33	5.17	15.43	2.11	44.87
	sem	5.16	1.63	4.88	0.67	14.19
5 2000ppi	m mean	74.70	27.57 A	147.20 AB	16.83 AB	73.11 A
	stď	18.79	5.23	9.50	2.55	148.00
	sem	5.94	1.65	3.00	0.81	46.80
*- RESTRI	CTED DIE	T GROUP				
A- SIGNIE	FICANCE FE	ROM GROUP 1 (CO	NTROL)		p= 0.05	
B- SIGNI	ICANCE F	p= 0.05				

CLINICAL CHEMISTRY
90-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
'STUDY NO. 55-YJ81-91
FEMALE

DC	OSE		T.BILI	CALCIUM	T.VRD	TRIG	CHOL
1	Oppm	mean	0.48	10.25	7.79	270.68	82.16
'	ազգ	std	0.17	0.60	0.60	48.28	7.23
		sem	0.05	0.19	0.19	15.27	2.29
2	*0ppm	mean	0.30	10.67	7.15	108.09 A	72.10
_	,opp	std	0.08	0.27	0.49	25.53	14.76
		sem	0.03	0.09	. 0.15	8.07	4.67
3	mqq002	mean	0.46	10.51	7.65	282.84 B	84.97
,	200ppiii	std	0.08	0.83	0.55	74.05	9.87
		sem	0.03	0.26	0.17	23.42	3.12
4	1000ppm	mean	0.53	10.95	7.49	203.37 в	80.99
7	1000pp	std	0.53	0.65	0.48	56.07	15.16
		BJSMI	0.17	0.21	0.15	17.73	4.79
5	2000ppm	henn	1.12 AB	12.38 AB	7.84	471.63 AB	97.19 B
_	Socobbin	std	1.18	0.68	0.59	146.93	23.45
		B ACM	0.37	0.22	0.19	46.46	7.42
.	- RESTRIC	TED DIS	T GROUP				
			ROM GROUP 1 (CO	NTROL)		p= 0.05	
Α.	2701121 7	I		· · · · · ·			

A- SIGNIFICANCE FROM GROUP 1 (CONTROL)

B- SIGNIFICANCE FROM GROUP 2 (RESTRICTED DIET)

p= 0.05 p= 0.05 APPENDIX N

HEMATOLOGY
90 DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
MALE

DOSE		МСН€	MCH .	URIT	WCA .
1 Oppm	mean	35.2	17.9	43.6	50.8
	std	0.7	0.6	2.0	2.2
	sem	0.2	0.2	0.6	0.7
2 * 0ppm	mean	35.4	18.1	44.5	51.0
	std	0.7	0.4	0.6	0.8
	sem	0.2	0.1	0.2	0.3
3 500ppm	mean	34.8	17.8	42.6	51.1
•	std	0.6	0.6	2.2	2.0
	\$ EM	0.2	0.2	0.7	0.6
4 1000ppm	mean	35.5	18.7 A	42.7	52.6
	std	1.2	0.8	2.0	1.8
	SZEM	0.4	0.2	0.6	0.6
5 2000ppm	mean	34.7	18.5 A	40.0 AB	53.5 AB
	std	0.7	0.6	4.6	2.2
	sem	0.2	0.2	1.5	0.7
*- RESTRIC	TED DIET	GROUP			
A- SIGNIFI	CANCE WI	TH GROUP 1 (CON	TROL)		p≈ 0.05
D CICNIET	CANCE III	TH CDOUG 3 (DEC			· 0.05

B- SIGNIFICANCE WITH GROUP 2 (RESTRICTED DIET)

HEMATOLOGY
90 DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
MALE

DOSE	PLT	WBC	ROC	HGB			
1 Оррт мез	1070.0	12.3	8.6	15.3			
ste		3.2	0.4	0.5			
se		1.0	0.1	0.2			
5 *Oppm mea	1093.0	6.9 A	8.7	15.8			
ste		2.1	0.2	0.3			
se		0.7	0.1	0.1			
2 500ppm mea	n 1060.0	15.0 в	8.4	14.8			
st.		3.5	0.5	8.0			
se		1.1	0.2	0.3			
3 1000ppm mea	n 1121.0	16.8 AB	8.1	15.1			
st		1.5	0.3	0.5			
S/E		0.5	0.1	0.2			
4 2000ppm mea	n 1177.0	17.0 AB	7.5 AB	13.9 AB			
st		5.3	0.9	1.6			
se		1.7	0.3	0.5			
*- RESTRICTED	DIET GROUP						
		(CONTROL)		p≈ 0.05			
A- SIGNIFICANCE WITH GROUP 1 (CONTROL) B- SIGNIFICANCE WITH GROUP 2 (RESTRICTED DIET) p= 0.05							

HEMATOLOGY 90-DAY FEEDING STUDY 4-AMINO, 2-NITROTOLUENE (4A2NT) STUDY NO. 55-YJ81-91 FEMALE

DOSE		PLT	WBC.	RBC	HGB
1 Oppm	mean	1083	7.04	7.77	15.26
1 Oppm	std	151.4	2.3	0.3	0.5
					. 0.1
	sem	47.9	0.7	0.1	. 0.1
2 *Oppm	mean	942.0	6.2	8.3 A	15.4 A
	stď	355.1	2.8	0.4	0.7
	sem	112.3	0.9	0.1	0.2
3 500ppm	mean	911.0	8.0	7.5 в	14.8 B
	std	171.6	2.6	0.2	0.6
	sem	54.3	8.0	0.1	0.2
4 1000pp	mean	1120.0	8.8	. 7.2 AB	14.3 AE
	std	195.0	2.4	0.4	0.6
	II CIII	61.7	0.7	0.1	0.2
5 2000ppm	mean	1118.0	12.3 AB	6.5 AB	13.3 AE
	std	241.7	4.4	0.4	0.3
	sem	76.4	1.4	0.1	0.1
*- RESTRIC	TED DIE	T GROUP			
		ROM GROUP 1	(CONTROL)		p≍ 0.05
			(00000000000000000000000000000000000000		0.05

p≈ 0.05 B- SIGNIFICANCE FROM GROUP 2 (RESTRICTED DIET)

HEMATOLOGY
90-DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
FEMALE

DOSE		MCH		MCA	нст	MCHC
1 Oppm	mean	19.66		53.41	41.48	36.78
•	std	0.5		1.3	1.5	0.5
	sem	0.2		0.4	. 0.5	0.2
2 * Oppm	mean	18.5	A	53.7	44.6 A	34.6
	std	0.5		1.6	2.3	0.8
	sem	0.2		0.5	0.7	0.2
3 500ppm	mean	19.8	В	55.1 B	41.1 B	36.0
5 5	stď	0.3		1.5	2.1	0.5
	sem	0.1		0.5	0.7	0.2
4 1000ppm	NIII II W	19.8	В	56.0 AB	40.5 B	33.4
• • • • • • • • • • • • • • • • • • • •	std	0.8		1.9	2.8	6.7
	sem	0.3		0.6	0.9	2.1
5 2000ppm	mean	20.7	AB	57.6 AB	37.2 AB	35.9
	std	1.0		1.5	1.9	1.5
	6em	0.3		0.5	0.6	0.5
*- RESTRIC	TED DIET	GROUP				
A- SIGNIFI			1 (CONT	ROL.)		p= 0.05
				RICTED DIET)		p= 0.05

Toxicological Study No. 75-51-YJ81-93, Aug 91 - Nov 93

APPENDIX O

ORGAN TO BRAIN WEIGHT RATIO 90 DAY FEEDING STUDY 4-AMINO, 2-NITROTOLUENE (4A2NT) STUDY NO. 55-YJ81-91

MALE

		FIALL			
	LIVER	KIDNEY	ADRENAL	SPLEEN	GONAD
	BRAIN	BRAIN	BRAIN	BRAIN	BRAIN
mean	9.80	1.94	0.0450	0.40	1.64
std	0.47	0.18	0.0200	0.07	0.08
sem	0.15	0.06	0.0063	0.02	0.03
mean	6.20 A	1.59 A	0.0350	0.31 A	1.77
std	0.47				0.15
sem	0.15	0.03	0.0019	0.01	0.05
mean	10 70 B	1 90 B	0.0520	0.40 8	1.78
					0.20
5€M	0.37	0.07	0.0060	0.04	0.06
mean	11.80 AB	1.92 B	0.0440	0.43 B	1.74
std	1.60	0.22	0.0140	0.06	0.85
Sem	0.51	0.07	0.0044	0.02	0.27
mean	11.80 AB	2.00 B	0.0450	0.31 A	0.96 AB
std	1.24	0.43	0.0190	0.04	0.22
sem	0.39	0.14	0.0060	0.01	0.07
	std sem mean std sem mean std sem	BRAIN MEAN 9.80 std 0.47 sem 0.15 Mean 6.20 A std 0.47 sem 0.15 Mean 10.70 B std 1.17 sem 0.37 Mean 11.80 AB std 1.60 56m 0.51 MEEN 11.80 AB std 1.24	LIVER RIDNEY BRAIN Std 0.47 0.18 0.06 Color Color	LIVER RIDNEY ADRENAL	LIVER RAIN BRAIN BRAIN

^{*-} RESTRICTED DIET GROUP

p= 0.05

A- SIGNIFICANCE WITH GROUP 1 (CONTROL)

B- SIGNIFICANCE WITH GROUP 2 (RESTRICTED DIET)

ORGAN TO BODY WEIGHT RATIO
90 DAY FEEDING STUDY
4-AMINO, 2-NITROTOLUENE (4A2NT)
STUDY NO. 55-YJ81-91
MALE

DOSE		RODY	GONAD	SPLEEN BODY	LIVER BODY	ADRENAL BODY	BRAIN BODY
	nean std	0.0075 0.0009 0.0003	0.0063 0.0002 0.0001	0.0016 0.0003 0.0001	0.0370 0.0016 0.0005	0.0002 0.0001 0.0000	0.0039 0.0002 0.0001
	nean	0.0077	0.0085	0.0015	0.0300 A	0.0002	0.0048 A
	std	0.0006	0.0007	0.0002	0.0022	0.0000	0.0001
	sem	0.0002	0.0002	0.0001	0.0007	0.0000	0.0000
(1	mean	0.0077	0.0072	0.0016	0.0440 AB	0.0002	0.0041 B
	std	0.0008	0.0004	0.0005	0.0036	0.0001	0.0003
	sem	0.0002	0.0001	0.0002	0.0011	0.0000	0.0001
, , , , , , , , , , , , , , , , , , , ,	std	0.0088 0.0010 0.0003	0.0080 0.0040 0.0013	0.0020 AB 0.0003 0.0001	0.0550 AB 0.0086 0.0027	0.0002 0.0001 0.0000	0.0046 A 0.0004 0.0001
	mcan	0.0124 AB	0.0059 B	0.0020 AB	0.0720 AB	0.0003 AB	0.0062 AB
	std	0.0034	0.0019	0.0002	0.0027	0.0001	0.0006
	sem	0.0011	0.0006	0.0001	0.0009	0.0000	0.0002

^{*-} RESTRICTED DIET GROUP

A- SIGNIFICANCE WITH GROUP 1 (CONTROL)

B- SIGNIFICANCE WITH GROUP 2 (RESTRICTED DIET)

ρ≃ 0.05

ORGAN TO BRAIN WEIGHT RATIO 90-DAY FEEDING STUDY ' 4-AMINO, 2-NITROTOLUENE (4A2NT) STUDY NO. 55-YJ81-91 FEMALE

DOSE		SPLEEN BRAIN	LIVER BRAIN	ADRENAU BRAIN	OVARIES BRAIN	KIDNEY BRAIN
1 Oppm	mean	0.31	5.94	0.0532	0.10	1.23
	std	0.03	0.71	0.0089	0.01	0.13
	sem	0.01	0.22	0.0028`	0.00	0.04
2 *Oppm	mean	0.27	3.66 A	0.0388 A	0.08 A	1.02 A
	std	0.03	0.36	0.0068	0.01	0.06
	sem	0.01	0.11	0.0022	0.00	0.02
3 500ppm	mean	0.31	6.42 B	0.0518 в	0.10 B	1.23 B
	std	0.04	0.48	0.0083	0.02	0.08
	sem	0.01	0.15	0.0026	0.00	0.03
4 1000ppm	mean	0.34 B	7.10 AB	0.0561 B	0.10 B	1.33 B
	std	0.06	1.28	0.0080	0.01	0.30
	sem	0.02	0.40	0.0025	0.00	0.09
5 2000ppm	mean	0.30	7.56 AB	0.0427 A	0.09	1.23 B
	std	0.06	1.15	0.0047	0.02	0.11
	13 900	0.02	0.36	0.0015	0.00	0.03

^{*-} RESTRICTED DIET GROUP

B- SIGNIFICANCE FROM GROUP 2 (RESTRICTED DIET)

p= 0.05

A- SIGNIFICANCE FROM GROUP 1 (CONTROL)

ORGAN TO BODY WEIGHT RATIO-90-DAY FEEDING STUDY 4-AMING, 2-NITROTOLUENE (4A2NT) STUDY NO. 55-YJ81-91 FEMALE

DOSE		ADRENAL BODY	OVARIES BODY	SPLEEN BOOY	LIVER BODY	KIDNEY	BRAIN BODY
1 Oppm	mean	0.0003	0.0006	0.0019	0.0357	0.0074	0.0061
i obbii	std	0.0001	0.0001	0.0002	0.0032	0.0007	0.0002
	sem	0.0000	0.0000	0.0001	0.0010	0.0002	0.0001
2 *Oppm	mean	0.0003	0.0006	0.0020	0.0277 A	0.0077	0.0076 AB
20pp	std	0.0001	0.0001	0.0002	0.0030	0.0005	0.0001
	500	0.0000	0.000	0.0001	0.0009	0.0002	0,0000
3 500ppm	wean	0.0003	0.0 007	0.0020	0.0410 B	0.0078	0.0064 B
3 Suoppiii	std	0.0001	0.0001	0.0002	0.0022	0.0004	0.0003
	sem	0.0000	0.0000	0.0001	0.0007	G.0001	0.0001
4 1000ppm	mean	0.0004 B	0.0007	0.0023 AB	0.0492 AB	0.0093	0.0069 AB
4 1000ppiii	std	0.0001	0.0001	0.0004	0.0143	0.0033	0.0004
	5 Est	0.0000	0.0000	0.0001	0.0045	0.0010	0.0001
5 2000ppm	mean	0.0004	0.0008 AB	0.0025 AB	0.0631 AB	0.0103 AB	Q.0083 AB
2 Socobbiii	std	0.0000	0.0002	0.0004	0.0126	0.0011	0.0006
	sem	0.0000	0.0000	0.0001	0.0040	0.0004	0.0002
*- RESTRICT	TED DIE	T GROUP					

ρ= 0.05 p= 0.05

0 - 5

A- SIGNIFICANCE FROM GROUP 1 (CONTROL) B- SIGNIFICANCE FROM GROUP 2 (RESTRICTED DIET)

BODY WEIGHT, WEIGHT GAIN 90-DAY FEEDING STUDY 4-AMINO, 2-NITROTOLUENE (4A2NT) STUDY NO. 55-YJ81-91 FEMALE

1 Oppm	mean	322.90		173.00
• •	std	31.15		
	sem	9.85		
2 *OPPM	mean	258.70	A	166.00
	std	8.60		
,	sem	2.72		
3 500ppm	mean	315.40	В	134.00
	std	23.70		
	sem	7.49		
				AT 00
4 1000ppm	mean	289.30	AB	87.00
	std	26.40		
	sem	8.35		
5 2000ppm	mean	237.20	AB	78.00
PF.	std	12.90		
	sem	4.08		
*- RESTRI	CTED DIE	ET GROUP		

WEIGHT

GAIN

*- RESTRICTED DIET G

A- SIGNIFICANCE FROM GROUP 1 (CONTROL)

FINAL

BODY

DOSE

p= 0.05

B- SIGNIFICANCE FROM GROUP 2 (RESTRICTED DIET)

Telephone (703) 481-1122

Fax (703) 481-3224

US ARMY ENVIRONMENTAL HYGIENE AGENCY

4-AMINO, 2-NITROTOLUENE (4A2NT) 90-DAY FEEDING STUDY IN RATS

PROJECT NO. 55-YJ81-91

REPORT DATE: 04JUN93

SUBMITTED BY:

George A. Parker, DVM
Diplomate, American College
of Veterinary Pathologists

US ARMY ENVIRONMENTAL HYGIENE AGENCY

4-AMINO, 2-NITROTOLUENE (4A2NT) 90-DAY FEEDING STUDY IN RATS

PROJECT NO. 55-YJ81-91

GOOD LABORATORY PRACTICES COMPLIANCE STATEMENT

Histopathologic examination and those phases of microslide preparation completed by Biotechnics were performed in compliance with in-house Standard Operating Procedures; 21 CFR Part 58- Good Laboratory Practice for Nonclinical Laboratory Studies; 40 CFR Part 792- Toxic Substance Control Act (TSCA): Good Laboratory Practice Standards; and 40 CFR Part 160- Federal Insecticide, Fungicide and Rodenticide Act (FIFRA): Good Laboratory Practice Standards.

Catherine A. Picut, VMD, JD
Diplomate, American College
of Veterinary Pathologists

US ARMY ENVIRONMENTAL HYGIENE AGENCY

4-AMINO, 2-NITROTOLUENE (4A2NT) 90-DAY FEEDING STUDY IN RATS

PROJECT NO. 55-YJ81-91

PATHOLOGY REPORT

TABLE OF CONTENTS

INTRODUCTION AND METHODOLOGY
RESULTS
CONCLUSIONS
INCIDENCE OF HISTOPATHOLOGIC FINDINGS, MALES
INCIDENCE OF HISTOPATHOLOGIC FINDINGS, FEMALES
INCIDENCE OF HISTOPATHOLOGIC FINDINGS, FEMALES
OUTLINE OF MICROSCOPIC FINDINGS, MALES22
OUTLINE OF MICROSCOPIC FINDINGS, MALES
OUTLINE OF MICROSCOPIC FINDINGS, FEMALES
•
SUMMARIZED INDIVIDUAL ANIMAL PATHOLOGY REPORTS

SPONSOR: US ARMY ENVIRONMENTAL HYGIENE AGENCY

MATERIAL: 4-amino, 2-NITROTOLUENE (4A2NT)

SUBJECT: Pathology Report

90-Day Feeding Study in Rats

USAEHA Project No. 55-YJ81-91

This narrative summarizes histopathologic findings in 100 Sprague-Dawley rats from a 90-day feeding study of 4-amino, 2-nitrotoluene (4A2NT).

METHODOLOGY

We received trimmed, formalin-fixed tissues in plastic process/embed cassettes that were labelled with the Pathology Branch accession number. Accompanying the tissues were trimming record sheets that listed the number of tissues that were trimmed, and a record of gross necropsy observations in each rat. The dosage groups were not known to the histopathologist until after the initial histopathologic examination was completed. After the initial histopathologic examination was completed, the study protocol revealed three treated groups, each consisting of 10 male and 10 female rats, that had received 500, 1000, or 2000 ppm of the test material in the feed. A group of 10 each male and female rats served as concurrent controls, and an additional group of 10 each male and female rats served as a second control group given a restricted diet that was quantitatively matched to the diet consumed by the 2000 ppm group.

The fixed tissue specimens were processed via standard histology techniques, embedded in paraffin, sectioned at approximately six microns, stained with hematoxylin and eosin, and examined via light microscopy. A

record of tissues examined and histopathologic findings were entered in a computer-assisted data retrieval system at the time of histopathologic examination. Tables generated from those entries constitute the basis for this narrative summary.

A small number of tissues were missing due to laboratory errors or sectioning difficulties. The number of missing tissues did not interfere with evaluation of the effects of compound administration. The microscopic sections were of adequate size and quality to allow critical histopathologic evaluation.

RESULTS

All animals survived to the scheduled termination of the study.

Males from the 1000 and 2000 ppm dosage groups had a moderate to high incidence of testicular hypospermatogenesis. The lesion consisted of reduction in spermatogenesis in a large number of seminiferous tubules, with many affected tubules containing only Sertoli cells. The lesion tended to be patchy within the testis, with some tubules severely affected and other tubules spared. Epididymides of affected testes often had a reduced content of maturing spermatozoa, which was recorded as hypospermia. Testes of two additional males from the 1000 ppm group had mild dilatation of seminiferous tubules. Testicular hypospermatogenesis and epididymal hypospermia are seen with some frequency as an incidental finding in laboratory rats, but the incidence pattern in this study indicates an association with administration of the test material.

All dosage groups except the restricted diet group had a high incidence of cytoplasmic vacuolization of hepatocytes, but the vacuolization was distinctly more pronounced in the treated males and somewhat more pronounced in the treated females. The change consisted of indistinctly bound cytoplasmic vacuoles, morphologically similar to postprandial glycogen and fat accumulation. In some rats the vacuolization was more prominent in the periportal region, while in others the change was distributed throughout the liver. Presence of the change in the control group suggests the vacuolization was due in part to postprandial accumulation of glycogen and fat, but the increased severity in rats that received the test material suggests compound-related accentuation of the change.

It would be helpful to perform stains for fat and glycogen on any remaining liver specimens, if further definition of the liver change is necessary. The hepatocellular changes may be associated with alterations in organ weights, and may be associated with increases in liver-related serum enzymes if the changes have advanced to the stage that cellular membranes are damaged or there is obstruction to bile outflow. Careful analysis of the organ weight and clinical pathology data is indicated to determine the extent and significance of the morphologic changes in the liver. Morphometric analysis of hepatocellular volume may also be indicated.

Males from the 1000 ppm group, and males and females from the 2000 ppm group, also had a low incidence of trace-level subacute inflammation in the liver. The lesion consisted of infiltrations of lymphocytes and a few neutrophils around biliary tracts. The lesion was judged to be of little clinical significance but, coupled with the vacuolization of hepatocytes, was interpreted as evidence of mild hepatotoxicity.

Males of the 2000 ppm group had a high incidence of cardiomyopathy, and a similar lesion was noted in the heart of 1/10 males from the 1000 ppm group. The lesion consisted of focal or multifocal degeneration of cardiac myofibers, often with a concurrent infiltration of lymphocytes and proliferation of Anitschkow myocytes. Cardiomyopathy is a common incidental finding in laboratory rats, particularly males, but usually is graded as trace-level in rats of this age. The incidence pattern and severity seen in this study suggest an association with compound administration in males.

Remaining lesions were considered to be incidental findings or part of spontaneous disease complexes of laboratory rats. Brief descriptive summaries of those lesions follows.

Microgranulomas in the liver consisted of focal or multifocal aggregations of lymphocytes and histiocytes. Lesions of this type are very common in laboratory rodents, and are suspected to be due to bacterial showering from the gastrointestinal tract.

Interstitial inflammation in the lung consisted of focal or multifocal thickening of alveoli with minimal associated lymphocytic infiltration, and sometimes included aggregations of alveolar macrophages. Lesions which consisted purely of alveolar macrophage aggregates were recorded as alveolar histiocytosis, though both types of lesions were considered to be part of the same pathologic process. Lesions of this type are commonly seen in laboratory rats, and may be due to aspiration of minor irritants or sialodacryoadenitis virus infection.

Embryonic remnants in the thyroid gland consisted of small, centrally located cystic structures that were lined by squamous epithelium. The structures are considered to be remnants of the thyroglossal duct system.

Cardiomyopathy consisted of degeneration of ventricular myofibers and an associated proliferation of endomysial fibrous connective tissue.

Cardiomyopathy is a common incidental finding in laboratory rats, particularly males, but is of unknown pathogenesis.

Hydronephrosis is a common observation in the kidneys of laboratory rats, particularly in the right kidney, and may reflect a partial obstruction of the right ureter as it passes the great vessels in the lumbar region.

There is evidence of a genetic influence on the incidence of hydronephrosis in laboratory rats.

Regeneration of renal tubular epithelium, interstitial inflammation, and accumulations of intratubular proteinic material are considered to be an early manifestation of spontaneous nephropathy syndrome, which is a very common spontaneous degenerative process of laboratory rats. The precise pathogenesis is unknown, but the incidence and severity are known to be influenced by protein content of the diet, total caloric content of the diet, and gender of the animals.

infiltrations of lymphocytes and a few neutrophils in the stroma of the prostate. Subacute prostatitis is a common incidental finding which has been attributed to various pathogens, but the precise pathogenesis remains largely unknown. One rat from the 2000 ppm group had severe chronic active inflammation of the prostate, which was considered to represent a severe manifestation of the spontaneous prostatitis seen in other rats.

Dilatation of the uterus, recorded as hydrometra in this study, is commonly seen in laboratory rats, and may represent a normal aspect of physiologic function.

Embryonic remnants in the pituitary gland consisted of small cystic cavities, some of which were lined by columnar epithelium. The lesions are compatible with cystic remnants of Rathke's pouch.

Spermatic granulomas were noted in the testis and epididymis of a small number of males. The lesions consisted of aggregations of spermatozoa surrounded by histiocytes. Changes of this type are a common incidental finding in young laboratory rats, and are presumed to be a result of "blind" testicular or epididymal ducts.

Focal or multifocal hemorrhage was noted in the thymus of a number of rats. Similar changes are commonly seen in both unscheduled and scheduled death animals, and are suspected to be agonal events. Small hemorrhages in the lung, heart, and pancreas were presumed to be of a similar pathogenesis. One male rat from the 2000 ppm group had severe renal hemorrhage and necrosis that were of unknown pathogenesis. The focal, unilateral nature of the lesion suggests it was not associated with administration of the test material.

Trace-level or mild subacute inflammation was noted in the pancreas of a small number of males. The lesions consisted of focal or multifocal infiltrations of lymphocytes and neutrophils, which were commonly located around pancreatic islets. The inflammation was considered to be an incidental finding, of uncertain pathogenesis.

The liver of one 2000 ppm male had mild focal coagulative necrosis.

Lesions of this type are seen as an incidental finding in laboratory rats,

therefore it was not possible to relate the single occurrence of

hepatocellular necrosis to administration of the test material.

CONCLUSIONS

This regimen of 4-amino, 2-nitrotoluene (4A2NT) was associated with testicular hypospermatogenesis (atrophy) and associated depletion of spermatozoa in the epididymides of rats from the 1000 and 2000 ppm dosage groups. Males from the 2000 ppm dosage group had a high incidence of cardiomyopathy that was more severe than that commonly seen in male rats of this age, suggesting a compound-related accentuation of a spontaneous disease process. All groups except the restricted diet group, including the control group, had a high incidence of hepatocellular cytoplasmic vacuolization. The severity of the hepatocellular vacuolization, particularly in males, was associated with the dosage of 4A2NT, suggesting administration of the test material resulted in hepatocellular changes that were morphologically similar to postprandial accumulation of glycogen and fat.

SUBMITTED BY:

George A. Parker, DVM
Diplomate, American College
of Veterinary Pathologists

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

Diagnosis
Total Animals
Adrenal Cortex (0) (10) (0) (10) (0) (10) (0) (
Within Normal Limits 0 10
Adrenal Medulla (0) (10) (0) (9) (0) (10) (0) (10) Within Normal Limits 0 10 0 9 0 10 0 10 Aorts (0) (5) (0) (9) (0) (10) (0) (10) Within Normal Limits 0 5 0 9 0 10 0 9 Bone Marrow, Femur (0) (10) (0) (10) (0) (10) (0) (
Within Normal Limits 0 10 0 9 0 10 0 10 Aorta (0) (5) (0) (5) (0) (9) (0) (10) (0) (10) (0) (9) Within Normal Limits 0 5 0 9 0 10 0 9 Bone Marrow, Femur (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) 0 10 0 1
Aorta (0) (5) (0) (9) (0) (10) (0) (9) Within Normal Limits 0 5 0 9 0 10 0 9 Bone Marrow, Femur (0) (10) (0) (10) (0) (10) (0) (
Within Normal Limits 0 5 0 9 0 10 0 9 Bone Marrow, Femur (0)(10)(0)(10)(0)(10)(0)(10)(0)(10)(0)(10) (0)(10)(0)(10)(0)(10)(0)(10)(0)(10) (0)(10)(0)(10)(0)(10)(0)(10)(0)(10)(0)(10) 0 10 0
Bone Marrow, Femur (0) (10) (0) (10) (0) (10) (0) (
Within Normal Limits 0 10 0 10 0 10 0 10 0 10 Brain, Cerebellum (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) 0 0 10 0 <t< td=""></t<>
Brain, Cerebellum (0) (10) (0) (10) (0) (10) (0) (
Within Normal Limits 0 10 0 10 0 10 0 10 Brain, Cerebrum (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) Within Normal Limits (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10)
Brain, Cerebrum (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (0) (10)
Within Normal Limits 0 10 0 10 0 10 0 10 Brain, Medulla Oblongata (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) (0) (10) Within Normal Limits 0 10 0 10 0 10
Brain, Medulla Oblongata (0) (10) (0) (10) (0) (10) (0) (
Within Normal Limits 0 10 0 10 0 10 0 10
Dogin Midhnoin
Brain, Midbrain (0) (10) (0) (10) (0) (10) (0) (10)
Within Normal Limits 0 10 0 10 0 10 0 10
<u>Brain, Pons</u> (0) (10) (0) (10) (0) (10)
Within Normal Limits 0 10 0 10 0 10 0 10
<u>Duodenum</u> (0) (10) (0) (10) (0) (10)
Within Normal Limits 0 10 0 10 0 10 0 10
Epididymis (0) (10) (0) (9) (0) (10) (0) (10)
Hypospermia 0 0 0 0 0 0 3
moderate 0 0 0 0 0 0 1
severe 0 10 0 0 10 0 0 2
Inflammation, granulomatous 0 0 0 0 0 1
moderate 0 0 0 0 0 0 1
Within Normal Limits 0 10 0 9 0 10 0 7
Esophagus (0) (9) (0) (10) (0) (10) (0) (10)
Within Normal Limits 0 9 0 10 0 10 0 10
Heart (0)(10)(0)(10)(0)(10)(0)(10)
Cardiomyopathy 0 0 0 0 0 0 1
mild 0 0 0 0 0 0 1
Hemorrhage 0 0 0 1 0 0 0
mild 0 0 0 1 0 0 0 0
Within Normal Limits D 10 0 9 0 10 0 9
<u>Intestine</u> (0) (9) (0) (10) (0) (10) (0) (10)
Within Normal Limits 0 9 0 10 0 10 0 10

Titles:

Group 1 0 PPM

Group 2 0 PPM/RESTRICTED DIET

Group 3 500 PPM

Group 4 1000 PPM

All modifiers are printed.

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

<u>Tissue</u> / Diagnosis/		Group		1	Gro		iroup 2			Grou	р 3	Grou		p 4	
Modifier(s)	-	DOS		SAC	-	DOS		SAC	-	DOS	SAC	-	DOS	SAC	
Total Animals		0		10		0		10		0	10		0	10	
Kidney	(. 0) ((10)	(0) ((10)	(0)	(10)	(0)	(10)	
Inflammation, interstitial		0		1		0		0	٠	o	0	•	o´	1	
trace		0		1		0		0		0	0		0	1	
Intratubular proteinic material		0		0		D		0		0	1		0	2	
trace		0		0.		Ð		0		0	1		0	2	
Regeneration, tubular		0		1		0		1		0	3		0	3	
trace		0		1		0		1		0	3		ō	3	
Within Normal Limits		0		8		0		9		0	7		0	6	
<u>Liver</u>	(0)	(10)	(0)	(10)	(0)	(10)	((10)	
Cytoplasmic vacuolization		0		10		0		0		0	10	•	0	10	
mild		0		8		0		0		0	2		ō	0	
moderate		0		2		0		0		0	8		ō	10	
Microgranuloma		0		2		0		3		ō	6		0	5	
trace		0		2		Q		3		0	6		ō	5	
Within Normal Limits		0		0		0		7		ō	Ô		0	ō	
Luna	(0)	(10)	(0)	(•	(_	(10)	(_	(10)	
Alveolar histiocytosis		0		0	•	0	•	0	•	Q,	0	`	0	2	
trace		0		0		Ō		0		o	0		0	2	
Congestion		0		0		Ō		0		ō	1		o	0	
mild		0		٥		0		0		0	1		0	G	
Hemorrhage		0		0		0		3		0	ò		0	1	
trace		0		0		0		3		0	0		0	0	
mild		0		0		a		ō		0	0		ō	1	
Inflammation, interstitial		0		1		0		ā		ō	1		0	1	
trace		0		1		0		0		0	1		0	1	
Within Normal Limits		0		9		0		7		a	8		0	6	
Lymph Node	(0)	(10)	(0)	(10)	(_	(10)	(_	(10)	
Within Normal Limits	•	0	•	10		0	•	10		0	10	1	0	10	
Nerve, Peripheral	(0)	(10)	(0)	(10)	(_	(10)	(_	(10)	
Within Normal Limits	•	0	•	10	•	0	•	10	`	0	10	`	0	10	
Pancreas	(_	•	10)	(_	((_	(10)	(_		
. Hemorrhage	`	0	•	۵	•	0	•	0	`	0	1	•			
trace		n		8		0		0		0	1		0	0	
Inflammation, subscute		0		0		0		0		0	1		0	0	
trace		0		0		0		0		_	•		0	3	
moderate		0		0		0		_		0	1		0	2	
Within Normal Limits		0				_		0		0	0		0	1	
Herman Fillith		U		10		0		10		0	9		0	7	

Titles:

Group 1 0 PPM

Group 2 0 PPM/RESTRICTED DIET

Group 3 500 PPM

Group 4 1000 PPM

All modifiers are printed.

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

Study Number: 55-YJ81-91

Species: Rat

This report was printed on O6-09-1993.

Tissue/		Gro	цр 1	l	Gro	up 2		Grou	р 3		Grou	p 4
Diagnosis/ Modifier(s)	-	DOS	SAC	 !	DOS	SAC	-	DOS	SAC	-		
<u>Total Animals</u>		0	10		0	10		0	3AC 10		000	SAC 10
Parathyroid					ŭ	10		U	10		Ü	10
Within Normal Limits	(• •		(0)		(0)	(8)	(0)	(9)
Pituitary	_	0	7		0	8		0	8		0	9
Embryonic remnant	(((10)	(0)	(10)
Within Normal Limits		0	0		0	1		0	0		0	0
Prostate		0	10		D	9		0	10		0	10
Inflammation, subacute	(-					((10)	(0)	(10)
trace		0	3		0	4		0	3		0	2
mild		0	. 2		U	1		0	1		0	2
moderate		0	1		0	3		0	1		0	0
Within Normal Limits		0	0		0	0		0	1		0	0
Salivary Gland	,	0	7		0	6		0	7		0	8
Within Normal Limits	(0)	(10)) ((10)	(- •	(9)	(0)	(10)
Seminal Vesicle		0	10		0	10		0	9		0	10
Within Normal Limits	(0)	(10)) ((10)	(- •	(10)	(0)	(10)
Skeletal Muscle		0	10		0	10		0	10		0	10
Within Normal Limits	(00	(10)	((10)	((10)	•	0)	
Skin	,	0	10		0	10		0	10		0	10
Within Normal Limits	(0)	(10)	(-,	(10)	(0)				(10)
Spinal Cord		0	10		0	10		0	9		0	10
Within Normal Limits	(0)	(10)	((10)	((10)	((10)
Spleen	,	-	10		0	10	_	0	10	-	0	10
Within Normal Limits	(0)	(10)	(0)	(10)	((10)	((10)
Stomach, Glandular	,	0)	10	,	0	10		0	10		0	10
Within Normal Limits	(0	(10)	((10)	((10)	((10)
Stomach, Nonglandular	(_	10	,	0	10		0	10		0	10
Within Normal Limits		0	(10)	((10)	(0) (((10)
Testis	(_	10 (10)	- 2	0	10		0	10		0	10
Dilatation, tubular	•	0	(30)	(-	(10)	((10)	((10)
mild		0	0		0	0		0	0		0	2
Hypospermatogenesis		0	0		0	0		0	0		0	2.
mild		0	_		0	0		0	0		0	5
moderate		0	0		0	0		0	0		0	1
severe		_	0		0	0		0	0		0	2
Within Normal Limits		0	0		0	0		0	0		0	2
Thymus		0	10		0	10		0	10		0	4
Hemorrhage	*		(10)	((10)	(0) (((10)
trace		0	4		0	7		0	6		0	4
mild		0	4		0	5		0	6		0	4
III I CAI	•	0	O		0	2		0	0		0	0

Titles:

Group 1 0 PPM

Group 2 0 PPM/RESTRICTED DIET

Group 3 500 PPM

Group 4 1000 PPM

All modifiers are printed.

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

<u>Tissue</u> / Diagnosis/	6	irou	ıþ	1	(Grou	p 	2	6	roup	3	6	irou	9 4
Modifier(s)	C	os		SAC	(os	S	AC	B	os	SAC		os	SAC
Total Animals		0		10		0		10		0	10		0	10
Thymus (continued)														
Within Normal Limits		0		6		0		3		0	4		0	6
Thyroid	(0)	(10)	(0)		10)	(0)	(10)	•	0)	(10)
Embryonic remnant	•	0	•	1	•	0	•	2	`	0	2	•	0	107
Within Normal Limits		0		9		ō		8		ō	8		0	9
Tongue	(0)	(10)	(0)		10)	(0)	(10)		0)	(10)
Within Normal Limits		0		10	Ī	0		10	•	o o	10	`	o,	10
Trachea	(0)	(10)	(0)		10)	(0)	(10)	(0)	(10)
Within Normal Limits		0		10	-	0	1	10	•	0	10	`	0	10
<u> Urinary Bladder</u>	(0)	(10)	((D)		10)	(0)	(10)	(0)	(9)
Within Normal Limits		0	-	10	-	0	-	10	•	0	10	•	0	9

Titles:

Group 1 0 PPM

Group 2 0 PPM/RESTRICTED DIET

Group 3 500 PPM

Group 4 1000 PPM

All modifiers are printed.

() = Total Examined

DOS= Intercurrent Death(s)

SAC≃ Scheduled Euthanasia

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

Tissue/	Group 5
Diagnosis/	
Modifier(s)	DOS SAC
* Total Animals	0 10
Adrenal Cortex	(0) (10)
Within Normal Limits	0 10
Adrenal Medulla	(0) (10)
Within Normal Limits	0 10
Aorta	(0)(7)
Within Normal Limits	0 7
Bone Marrow, Femur	(0) (10)
Within Normal Limits	0 10
Brain, Cerebellum	(0)(9)
Within Normal Limits	0 9
Brain, Cerebrum	(0) (9)
Within Normal Limits	0 9
Brain, Medulla Oblongata	(0)(9)
Within Normal Limits	0 9
Brain, Midbrain	(0)(9)
Within Normal Limits	0 9
Brain, Pons	(0)(9)
Within Normal Limits	0 9
Duodenum	(0) (10)
Within Normal Limits	0 10
Epididymis	(0) (10)
Granuloma, spermatic	0 1
moderate	0 1
Hypospermia	0 10
moderate	0 5
severe	0 5
Inflammation, subscute	0 . 1
trace	0 1
Esophagus	(0) (10)
Within Normal Limits	0 10
Heart	(0) (10)
Cardiomyopathy	
trace	0 8
mild	
Within Normal Limits	0 6
Intestine	0 2
Within Normal Limits	(0) (10)
WIGHTH NOTHER LIMITS	0 10

Titles:

Group 5 2000 PPM

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

All modifiers are printed.

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

Tissue/	Group 5
Diagnosis/	
Modifier(s)	DOS SAC
Total Animals	0 10
Kidney	(0) (10)
Hemorrhage	0 1
severe	0 1
Hydronephrosis	0 2
moderate	0 2
Inflammation, interstitial	0 1
trace	0 1
Intratubular proteinic material	0 4
trace	0 4
Necrosis	D 1
severe	0 1
Regeneration, tubular	0 4
trace	D 4
Within Normal Limits	0 3
<u>Liver</u>	(0) (10)
Cytoplasmic vacuolization	0 10
moderate	0 B
severe	0 2
Inflammation, subacute	0 6
trace	0 1
portal, trace	0 4
portal, mild	0 1
Microgranuloma	0 5
trace	0 5
Necrosis, coagulative	0 1
focal, mild	0 1
Lung	(0) (10)
Alveolar histiocytosis	0 1
trace	0 1
Within Normal Limits	0 9
Lymph Node	(0) (10)
Within Normal Limits	0 10
Nerve, Peripheral	(0) (10)
Within Normal Limits	0 10
<u>Pancreas</u>	(0) (10)
Inflammation, subacute	0 1
mild	0 1
Within Normal Limits	0 9

Titles:

Group 5 2000 PPN

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

All modifiers are printed.

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

Tissue/	(Group	5
Diagnosis/ Modifier(s)		oos	SAC
Total Animals		0	10
Parathyroid	(0)	(8)
Within Normal Limits		0	8
Pituitary	(0)	(9)
Within Normal Limits		0	9
Prostate	(0)	(10)
Inflammation, chronic active		0	1
severe		0	1
Inflammation, subacute		0	1
mild		0	1
Within Normal Limits		0	8
Salivary Gland	(0) ((10)
Within Normal Limits		0	10
<u>Seminal Vesicle</u>	(0) ((10)
Within Normal Limits		0	10
<u>Skeletal Muscle</u>	(0) ((10)
Within Normal Limits		0	10
Skin	(0) ((10)
Within Normal Limits		0	10
Spinal Cord	(0) ((10)
Within Normal Limits		0	10
Spleen	(0) (10)
Inflammation, subacute		0	1
capsular, moderate		0	1
Within Normal Limits		0	9
Stomach, Glandular	(0) (10)
Within Normal Limits		0	10
Stomach, Nonglandular	(0) (10)
Within Normal Limits		0	10
<u>Testis</u>	(0) (10)
Granuloma, spermatic		0	1
mild		0	1
Hypospermatogenesis		0	10
moderate		0	4
severe		0	6
<u>Thymus</u>	(0) (10)
Hemorrhage		0	3
trace		0	3
Within Normal Limits		0	7

Titles:

Group 5 2000 PPM

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

All modifiers are printed.

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

Tissue/	G	5	
Diagnosis/			
Modifier(s)	D	OS	SAC
Total Animals		0	10
Thyroid	(0)	(10)
Embryonic remnant		0	2
Within Normal Limits		0	8
Tongue	(0)	(10)
Within Normal Limits		0	10
Trachea	(0)	(10)
Within Normal Limits		0	10
<u>Urinary Bladder</u>	(0)	(10)
Within Normal Limits		0	10

Titles:

Group 5 2000 PPM

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

All modifiers are printed.

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

<u>Tissue</u> /		6rol	air.	1		Grou	ın.	2	•	irou	р 3		Group	o 4
Diagnosis/	_													
Modifier(s)		DOS		SAC		DOS		BAC	I	ЮE	SAC	8	os	SAC
Total Animals		0		10		0		10		0	10		0	10
Adrenal Cortex	(0)	(10)	(0)	(10)	(0)	(10)	(0)	(10)
Within Normal Limits		0		10		0		10		0	10		0	10
Adrenal Medulla	(•	10)	(0)	(10)	(0)	(10)	(0)	(10)
Within Normal Limits		0		10		0		10		0	10		Ð	10
Aorta	(0)	(((8)	(0)	(9)	(0)	(9)
Within Normal Limits		0		9		0		8		0	9		0	9
Bone Marrow, Femur	(0)	(,	(0)	((0)	(10)	(0)	(10)
Within Normal Limits		0		10		0		10		0	10		Ü	10
Brain, Cerebellum	(0)	(10)	(0)	(10)		0)	(10)	(0)	(10)
Within Normal Limits		0		10		0		10		Ø	10		0	10
Brain, Cerebrum	(0)	((0)	((0)	(10)	(0)	(10)
Within Normal Limits		0		10		D		10		O	10		0	10
Brain, Medulla Oblongata	(0)	(10)	(0)	(10)	(0)	(10)		0)	(10)
Within Normal Limits		0		10		O		10		0	10		0	10
Brain, Midbrain	(0)	(10)	(0)	(10)	(0)	(10)	(0)	(10)
. Within Normal Limits		0		10		0		10		0	10		0	10
Brain, Pons	(0)	(10)	(0)	((Q)	(10)	(0)	(10)
Within Normal Limits Duodenum		D		10		0		10		D	10		0	10
	(0)	(10)	(0)	(10)	((10)	(0)	(10)
Within Normal Limits		0		10		0		10		0	10		D	10
<u>Esophagus</u>	(0)	(10)	(0)	(10)	(0)	(10)	(0)	(10)
Within Normal Limits		0		10		0		10		0	10		0	10
Within Normal Limits	(0)	(0)	((0)	((1)	((1)
Heart		0		0		0		0		0	1		0	1
Within Normal Limits	(0)	(10)	(0)	(10)			(10)		0)	(10)
Intestine		0		10		0		10		0	10		0	10
Within Normal Limits	(0)	(10)	(0)	(10)	((10)	((10)
Kidney		D		10		0		10		0	10		0	10
Intratubular proteinic material	(0)	(10)	((10)	(-	(10)	((10)
mild		0		0		0		0		0	0		0	1
		0		0		0		0		0	0		0	1
Regeneration, tubular trace		0		1		0		0		0	0		0	1
mild		0		1		0		0		0	0		0	0
		0		0		0		0		0	0		0	1
Within Normal Limits Liver		0		9		0		10		0	10		0	9
	(0)	-	10)	((10)	(0)	(10)	(0) ((10)
Cytoplasmic vacuolization mild		0		10		0		0		0	4		0	8
,		0		8		0		0		0	2		0	1
moderate		0		2		0		0		0	2		0	7

Titles:

Group 1 0 PPM

Group 2 0 PPM/RESTRICTED DIET

Group 3 500 PPM

Group 4 1000 PPM

All modifiers are printed.

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

<u>Tissue/</u> Diagnosis/	+	Grou	ιþ	1	(Grou	ф	2	(Grou	ıр	. 3	6	Grou	9 4
Modifier(s)	Ī	DOS		SAC	-	DOS		BAC		108		SAC		oos	SAC
Total Animals		0		10		0		10		0		10		0	10
<u>Liver</u> (continued)															
Inflammation, subacute		0		0		0		0		0		0		0	3
portal, trace		Ö		0		0		0		Ö		ō		0	3
Microgranuloma		0		3		0		7		0		В		Ö	8
trace		0		3		0		7		0		8		ō	8
Within Normal Limits		0		0		0		3		0		2		ō	1
Lung	C	0)	(10)	(0)	(10)	(0)	(10)	(0)	(10)
Alveolar histiocytosis		0		0		0		1	•	0	•	0	•	0	0
trace		0	•	0		Ü		1		D		D		ā	0
Within Normal Limits		0		300		10		9		0		10		0	10
Lymph Node	(0)	(10)	(0)	(10)	(0)	(10)	(0)	(10)
Within Normal Limits	_	0	•	10	•	0	•	10	•	0	•	10	•	0	10
Nerve, Peripherat	(0)	(10)	(0)	(10)	C	0)	((_	(10)
Within Normal Limits		0		700	•	0		10	•	0	•	10	•	D	10
Overy	(0)	(10)	(0)	(10)	(0)	(10)	(_	(10)
Within Normal Limits	-	0	•	10	•	0	•	10	•	0	•	10	•	0	10
Pancreas	(0)	(10)	(0)	C		(0)	((_	(10)
Within Normal Limits	-	D	·	10	_	0	•	10	•	0	٠	10	`	0	10
Parathyroid	(0)	(8)	(0)	((0)	(. –	(0)	(8)
Within Normal Limits	•	0	Ī	8	-	0	•	6	•	0	•	6	•	0	8
Pituitary	(0)	(10)	(0)	(10)	(0)	(10)	(-	(10)
Within Normal Limits	•	0	•	10	•	0	•	10	•	0	•	10	`	0	10
Salivary Gland	(0)	(C	0)	((0)	(. –	(_	(10)
Within Normal Limits	•	0	•	10	•	0	•	10	•	0	•	10	`	0	10
Skeletał Muscle	(מו	(10)	(0)	(•	(0)	((0)	(10)
Within Normal Limits	•	0	•	10	•	0	•	10		0		10	•	0	10
Skin	(_	(10)	(_	(10)	(0)	1		(_	(10)
Within Normal Limits	•	0	•	10	•	0	•	10		0	•	9	`	0	10
Spinal Cord	(0)	(10)	(0)	(10)	(0)	(10)	((10)
Within Normal Limits	•	0	•	10	•	0	•	10		0	•	10		0	10
Spleen	(o	(C	0)	((0)	((-	(10)
Within Normal Limits	•	0	•	10	•	0	•	10	•	0	•	10	•	0	10
Stomach, Glandular	(_	,	10)	(-	((0)	((_	(10)
Mineralization	•	0	`	0	`	0	`	1		0	`	0		0	0
mild		0		0		0		1		0		0		0	0
Within Normal Limits		0		10		0		9		0		10		0	10
Stomach, Nonglandular	(0)	(10)	(0)	(10)	(0)	(,	_	
Within Normal Limits		0	•	10)	1	0	•	10)		נט מ	-		(0	(10)
WINITED MOTINGS EINIES		U		łU		Ų		IU		U		10		U	10

Titles:

Group 1 0 PPM

Group 2 0 PPM/RESTRICTED DIET

Group 3 500 PPM

Group 4 1000 PPM

All modifiers are printed.

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

<u>Tissue/</u> Diagnosis/ Modifier(s)		Gro	iroup 1		Group		2	(Group	3	Group		o 4
		DOS	OS BAC		DOS		SAC		OOS SAC			os	SAC
Total Animals		0		10		0	10		D	10		0	10
Thymus Hemorrhage trace	(02	(10) 3 3	(0) (8	(0)	(10)	(0)	(10)
Within Normal Limits		0		7		0	8 2		0	6 4		0	3 7
Thyroid Embryonic remnant Within Normal Limits Tongue Within Normal Limits Trachea	(0) 0 0 0) 0	(10) 0 10 10) 10) 10	(0) (0 0 0) (0 0) (0 10 10) 10)	(0) 0 0 0) 0	(10) 1 9 (10) 10 (10)	(0) 0 0 0 0 0 0	(10) 2 8 (10) 10 (10)
Within Normal Limits <u>Urinary Bladder</u> Within Normal Limits	(0	(10 10) 10	(0 0) (10 10) 10	C	0 0) 0	10 (10) 10	(0.	10 (10) 10
Uterus Hydrometra trace mild moderate Within Normal Limits	(0) 0 0 0 0 0	(10) 0 0 0 0	(0) (10) 3 0 3 0	(0) 0 0 0	(10) 2 0 2	(0) 0 0 0	(10) 2 1 0
Vagina Within Normal Limits	(0 0) 0	(10 10) 10	(0 0) (0	7 9) 9	<	0 0) 0	8 (10) 10	(0 0) 0	8 (10) 10

Titles:

Group 1 0 PPM

Group 2 0 PPM/RESTRICTED DIET

Group 3 500 PPM

Group 4 1000 PPM

All modifiers are printed.

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

Incidence of Histopathologic Findings for Females (continued) US ARMY ENVIRONMENTAL HYGIENE AGENCY 90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

Tissue/		Grou	р	5
Diagnosis/	-			
Modifier(s)		DOS	,	SAC
Total Animals		0		10
Adrenal Cortex	(0)	(10)
Within Normal Limits		0		10
Adrenal Medulla	(0)	(10)
Within Normal Limits		0		10
<u>Aorta</u>	(0)	(9)
Within Normal Limits		0		9
Bone Marrow, Femur	(0)	(10)
Within Normal Limits		0		10
Brain, Cerebellum	(0)	(10)
Within Normal Limits		0		10
Brain, Cerebrum	(0)	(10)
Within Normal Limits	,	0	Ť	10
Brain, Medulia Oblongata	(_		10)
Within Normal Limits	•	0	-	10
Brain, Midbrain	(0)		10)
Within Normal Limits	•	0	-	10
Brain, Pons	(_		
Within Normal Limits	•	0	-	10
<u>Duodenum</u>	(0)		
Within Normal Limits	•	0	_	10
Esophagus	(0)		
Within Normal Limits	•	0	-	10
Heart	(0)		
Within Normal Limits		0	-	10,
Intestine	(0)		
Within Normal Limits		0	-	10)
Kidney	(0)		
Intratubular proteinic material		0	(1
mild		0		1
Regeneration, tubular		0		2
trace		0		1
mild		_		•
Within Normal Limits		0		1
Liver		0		8
Cytoplasmic vacuolization	(0) (
mild		0	1	10
		0		2
moderate		0		6
severe		0		2

Titles:

Group 5 2000 PPM

() = Total Examined

DOS= Intercurrent Death(s) SAC= Scheduled Euthanasia

All modifiers are printed.

Microscopic Incidence Page: 19

Incidence of Histopathologic Findings for Females (continued) US ARMY ENVIRONMENTAL HYGIENE AGENCY 90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

Tissue/	(aroup	5
Diagnosis/			
Modifier(s)	[00\$	SAC
Total Animals		0	10
<u>Liver</u> (continued)			
Inflammation, subacute		0	2
portal, trace		0	2
Microgranuloma		0	9
trace		0	9
Lung	(0)	(10)
Alveolar histiocytosis		0	2
trace		0	2
Hemorrhage		Õ	1
trace		O	1
Within Normal Limits		0	7
Lymph Node	(-	(10)
Sequestered blood	•	0	1
mild		ō	1
Within Normal Limits		0	9
Nerve, Peripheral	(-	(10)
Within Normal Limits		0	10
Ovary	(-	(10)
Within Normal Limits		0	
Pancreas	,	_	10
Within Normal Limits	((10)
Parathyroid		<u> </u>	10
Within Normal Limits	((8)
		0	8
Pituitary	(0)	
Within Normal Limits		ō.	9
Salivary Gland	((10)
Within Normal Limits		0	10
Skeletal Muscle	(-	(10)
Within Normal Limits		0	10
Skin	((9)
Within Normal Limits		0	9
Spinal Cord	(0) ((10)
Within Normal Limits		0	10
Spleen	(0) ((10)
Within Normal Limits		0	10
Stomach, Glandular	(0) ((10)
Mineralization		0	1
moderate		0	1

Titles:

Group 5 2000 PPM

() = Total Examined

DOS= Intercurrent Death(s)

SAC= Scheduled Euthanasia

All modifiers are printed.

Microscopic Incidence Page: 20

Incidence of Histopathologic Findings for Females (continued) US ARMY ENVIRONMENTAL HYGIENE AGENCY 90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Study Number: 55-YJ81-91

Species: Rat

This report was printed on 06-09-1993.

<u>Tissue/</u>		Group	р	5
Diagnosis/	_			
Modifier(s)		DOS	SA	C
Total Animals		0	1	0
Stomach, Glandular (continued)				
Within Normal Limits		0		9
Stomach, Nonglandular	(0)	(1	0)
Within Normal Limits		0	1	0
Thymus	(0)	(1	o)
Hemorrhage	•	a		5
trace		0		5
Within Normal Limits		ō		5
Thyroid	(-	(1	-
Embryonic remnant	•	0		2
Within Normal Limits		a		В
Tongue	(_	C 1	-
Within Normal Limits	•	0	11	
Trachea	(_	C 10	_
Within Normal Limits	•	0	10	
Urinary Bladder	(0)		, 7)
Within Normal Limits	•	0,		7
Uterus		0)	,	9)
Hydrometra	•	0		2
trace		o ·	1	_
mild		0		_
Within Normal Limits		a	7	•
Vagina	(Ξ.	-))
Within Normal Limits	`	0	5	
		-		,

Titles:

Group 5 2000 PPM

() = Total Examined

DOS= Intercurrent Death(s)

· SAC= Scheduled Euthanasia

All modifiers are printed.

Microscopic Incidence Page: 21

Project: 55-YJ81-91 Species: Rat This report was printed on 06-09-1993.

The Legend to the Outline Report

X = Within Normal Limits

P = Present

C = Comment made

N = Metastatic

2 = trace

3 = mild

4 = moderate

5 = severe

6 = present NG

7 = focal trace

8 = focal mild

9 = massive

10 =

() = Focal

<> = Multifocal

[] = Diffuse

SE = Scheduled Euthanasia

ME = Moribund Euthanasia

FD = Found Dead

OT = Other

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (1) O PPM

		_	9	-	-	9	9	-	9	-	9
			-				-				-
	Animal Number:						0				
							7				
			1			1				2	
	Fate:	_	4 SE	-	_	-	8 SE	-	_		_
Organ/	Death Day:	0	Q	0	٥	٥	9	٥	٥	٥	0
Diagnosis	waati vay						ó		-	-	-
Adrenal Cortex											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Adrenal Medulla											
One of pair present					P		-	P	•		
Within Normal Limits Aorta		Х	Х	Х	X	X	X	Х	X	X	X
Tissue Not Present											
Within Normal Limits		v					С				
Bone Marrow, Femur											
Within Normal Limits							Х				
Brain, Cerebellum											
Within Normal Limits		Х	х	х	х	х	Х	х	х	х	х
Brain, Cerebrum											
Within Normal Limits		X	X	Х	X	X	X	X	X	X	Х
Brain, Medulla Oblongata											
Within Normal Limits		X	X	X	X	X	Х	X	X	X	X
Brain, Midbrain											
Within Normal Limits		X	X	X	X	Х	X	X	X	X	X
Brain, Pons Within Normal Limits											
Duodenum		Х	Х	Х	Х	X	X	X	X	X	X
Within Normal Limits											
Epididymis							X				
Within Normal Limits							Х				
Esophagus											
Tissue Not Present		c									
Within Normal Limits		_	х	х	х	х	X	х	х	х	X
Heart											
Within Normal Limits		X	X	Х	X	X	X	х	Х	X	X
Intestine											
Tissue Not Present		C									
Within Normal Limits			X	X	X	X	X	X	X	X	X

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (1) 0 PPM

		9		9	9 2	9	-	9	_	9	9 2
	Animal Number:	0 7	0 7	0 7	0 7	0 7	0	0 7		_	
		1	1	1	1	1	1	1	2	2	2
`	Fate:	_						-	_	-	-
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis	·		0								
Kidney											
Inflammation, interstitia	il					2					
Regeneration, tubular Within Normal Limits		w	х	v	v		v	v	v	v	2
Liver		-									_
Cytoplasmic vacuolization Microgranuloma		3	3	3	4	3	3	3	3	4 2	
Lung											
Inflammation, interstitia	ι			_		_					2
Within Normal Limits Lymph Node		х	X	×	Х	X	X	Х	Х	8	
Within Normal Limits		v	ĸ	· ·	w		v				~
Nerve, Peripheral											
Within Normal Limits			х								
Pancreas											
Within Normal Limits		х	X	ж	х	x	х	x	х	х	X
Parathyroid ·											
Not in plane of section		C					C	10			
One of pair present			P		R	P				Р	Р
Within Normal Limits			X	X	X	Х			X	Х	Х
Pituitary											-
Within Normal Limits Prostate			X								
Inflammation, subacute		2	3						2		
Within Normal Limits											
Salivary Gland											
Within Normal Limits Seminal Vesicle			X								
Within Normal Limits											
Skeletal Muscle		^	N	A	X	ж		Х	А	X	X
Within Normal Limits		Y	Х	¥		Y	Y	v	ν.	ν.	w
Skin											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (1) 0 PPM

		9	-	9	_		-	9		9	
		2	2	2	2	2	2	2	2	2	2
	_	-	-	•			-	•		-	-
	Animal Number:		0							0	-
										7	
		1	,						_	2	_
			4			7	_	9	_		2
	Fate:	SE	SE	\$E	SE						
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis		0		-	-	-	-	_		0	-
Spinal Cord											
Within Normal Limits		Х	х	Х	х	Х	X	х	x	х	x
Spleen											
Within Normal Limits		Х	Х	Х	Х	х	Х	х	Х	Х	х
Stomach, Giandular											
Within Normal Limits		Х	Х	X	Х	Х	Х	X	Х	Х	Х
Stomach, Nonglandular											
Within Normal Limits		Х	X	X	X	Х	X	X	Х	X	Х
Testis											
Within Normal Limits		X	Х	X	Х	X	Х	X	X	X	Х
Thymus											
Hemorrhage		2						2		2	2
Within Normal Limits			X	X	X	X	Х		X		
Thyroid											
Embryonic remnant											В
One of pair present		P					P				
Within Normal Limits		X	X	X	X	X	X	X	X	X	
Tongue	•										
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Trachea											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Urinary Bladder											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (2) O PPM/RESTRICTED DIET

		9	9		-	_	_	9	_	_	-
		2	2	2	2	2	2	2	2	2	2
	Animal Numbers	-	٠				-	-			-
	Animal Number:	_	_					0			
		7	7	-				7		8	8
		9	-	9	-	-	-	-	_	_	C
	Fotos	3		5	_	_	_	_	_	1	2
	Fate:	2E	9E	3E	2E	2F	5E	2E	2E	2E	SE
Organ/	Death Day:	0	0	9	٥	0	٥	9	0	0	9
Diagnosis	veder bay.			o							
5 (3)((6) (6)		٠		U	U	•	·	U	0	U	
Adrenal Cortex											
Within Normal Limits		X	x	х	x	X	X	X	х	x	У
Adrenai Medulla											
Not in plane of section	n						С				
One of pair present		Р			Р		·	Р			
Within Normal Limits		Х	X	X	X	х		X	X	x	Х
Aorta											
Tissue Not Present		С									
Within Normal Limits			Х	X	Х	х	х	x	х	х	Х
Bone Marrow, Femur											
Within Normal Limits		Х	Х	X	Х	х	X	х	х	X	х
Brain, Cerebellum											
Within Normal Limits		Х	Х	X	Х	х	Х	Х	х	Х	Х
Brain, Cerebrum											
Within Normal Limits		Х	Х	X	Х	х	Х	х	х	х	Х
Brain, Medulia Oblongata											
Within Normal Limits		Х	Х	Х	Х	Х	Х	Х	Х	Х	х
Brain, Midbrain											
Within Normal Limits		Х	х	х	х	х	Х	Х	X	Х	х
Brain, Pons											
Within Normal Limits		X	X	X	X	х	Х	Х	X	Х	Х
Duodenum											
Within Normal Limits		X	X	X	Х	х	Х	X	X	X	Х
Epididymis											
Tissue Not Present							C				
Within Normal Limits		X	X	X	X	X		X	X	X	Х
Esophagus											
Within Normal Limits		Х	X	X	X	X	X	Х	Х	Х	Х
Heart											
Hemorrhage								3			
Within Normal Limits		X	X	X	X	X	Х		Х	Х	Х
Intestine											
Within Normal Limits		Х	Х	Х	X	Х	Х	Х	х	Х	Х

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (2) O PPM/RESTRICTED DIET

				9								
			2	2	2	2	2	2	2	2	2	2
	Animal Nu	mbaa.			-		-		:	-	•	•
	ATTS INCIC NO	mpet.*	7	0 7					0 7	_	_	_
			-	9						_	_	_
			3		5							_
		Fate:			_	-		_		_	1 SE	SE
Organ/	Death	Day:	9	9	9	9	9	9	9	9	9	. 9
Diagnosis			0	0	0				-	_	-	
Kidney												
Regeneration, tubular									2			
Within Normal Limits			X	X	X	X	X	X		X	X	Х
Liver												
Microgranuloma							2				2	2
Within Normal Limits			X	X	X	X		X	X	X		
Lung			•									
Hemorrhage			2		2				2			
Within Normal Limits				X		X	X	X		X	X	X
Lymph Node												
Within Normal Limits			X	X	X	X	X	X	X	. Х	X	Х
Nerve, Peripheral												
Within Normal Limits				X								
Pancreas												
Within Normal Limits				X								
Parathyroid												
Not in plane of section			C				C					
One of pair present					P					P		
Within Normal Limits				X	X	X		X	X	X	X	X
Pituitary												
Embryonic remnant								P				
Within Normal Limits			X	X	X	X	X		X	X	X	X
Prostate												
Inflammation, subacute			3		_			_				3
Within Normal Limits									X			
Salivary Gland												
Within Normal Limits			X	X	X	X	X	Х	X	X	X	X
Seminal Vesicle												-
Within Normal Limits			X	X	X	X	X	X	X	X	X	X
Skeletal Muscle												-
Within Normal Limits Skin				X								
Within Normal Limits			X	X	X	X	X	X	X	X	X	X

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (2) O PPM/RESTRICTED DIET

		9	9	9	9	9	9	9	9	9	9
		2	2	2	2	2	2	2	2	2	2
		•	•	•		-		-	-	-	-
	Animal Number:			_	0	_	0				0
		7								8	
		9		-	-	_	-	_	_	0	_
	Fate:	-	- 0	_	_	7	_		_		_
	rate:	9E	9E	3E	3E	3E	9E	⊅E	3E	2E	⊅E
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis		0			-					ó	-
			_	_	_	_	-	_	_	_	·
Spinal Cord											
Within Normal Limits		X	Х	X	X	X	X	X	X	X	Х
Spleen											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Stomach, Glandular											
Within Normal Limits		X	X	X	X	X	X	X	X	X	Х
Stomach, Nonglandular											-
Within Normal Limits Testis		X	Х	X	X	X	X	X	X	X	X
Within Normal Limits											
Thymus										X	
Hemorrhage											
Within Normal Limits		2	3	~		х		_	2	3	2
Thyroid											
Embryonic remnant					Р			Р			
Within Normal Limits		х	х	x	•	¥	х	•	Y	х	¥
Tongue											
Within Normal Limits		х	Х	х	X	х	х	х	х	х	Х
Trachea											
Within Normal Limits		X	X	X	X	х	Х	X	X	X	Х
Urinary Bladder											
Within Normal Limits		х	Х	Х	Х	х	х	х	х	X	Y

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (3) 500 PPM

		9	-	-	-	9		-	-	_	
		2	S	2	Z	2	2	2	2	2	2
		•	-		_	•			•		-
	Animal Number:		_	0	_	0				0	
										7	
										3	
										1	
	` Fate:	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis	·	0	0	0	0	0	0	0	0	0	0
Adrenal Cortex											
Within Normal Limits		×	Х	х	Х	Х	х	X	х	Х	X
Adrenal Medulla											
One of pair present				P	Р					p	Р
Within Normal Limits		×	х	-			х	×	×	Х	
Aorta		-									
Within Normal Limits		х	K	×	X	x	×	Y	x	Х	Y
Bone Marrow, Femur											
Within Normal Limits		х	Х	х	Х	х	х	X	х	X	x
Brain, Cerebellum											
Within Normal Limits		X	X	<u> 8</u>	Х	Х	х	Х	х	Х	х
Brain, Cerebrum											'
Within Normal Limits		Х	Х	X	Х	X	X	Х	X	X	X
Brain, Medulla Oblongata											
Within Normal Limits		Х	X	X	X	X	Х	Х	X	X	X
Brain, Midbrain	•										
Within Normal Limits		Х	Х	X	X	X	Х	Х	X	X	Χ
Brain, Pons											
Within Normal Limits		'X	X	Х	X	χ	X	X	X	Х	X
Duodenum											
Within Normal Limits		X	X	Х	X	X	χ	Х	Х	X	X
Epididymis											
Within Normal Limits		X	X	Х	X	χ	X	X	X	X	Χ
Esophagus											
Within Normal Limits		Х	X	X	Х	X	X	X	χ	X	X
Heart ·											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Intestine											
Within Normal Limits		X	Х	X	X	X	X	X	X	X	X
Kidney											
Intratubular proteinic m	aterial			2							
Regeneration, tubular				2	2			2			
Within Normal Limits		X							X	X	X

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (3) 500 PPM

							9				9
Animal Numbe	r:	0					0	0	0	0	0
		7	7	7	7	7	7	7	7	7	7
		2	2	2	2	2	2	2	3	3	3
		3	4	5	6	7	8	9	0	1	2
Fat	e: \$	E	\$E	\$E	\$E	SE	SE	SE	SE	SE	SE
Organ/ Death Da	y:	9	9	9	9	9	9	9	9	9	9
Diagnosis	•						0				
Liver											
Cytoplasmic vacuolization							4				
Microgranuloma		2	2			2	2		2	2	
Lung											
Congestion							3				
Inflammation, interstitial					2						
Within Normal Limits		X	X	X		X		X	Х	Х	χ
Lymph Node							~~~				
Within Normal Limits							X				
Nerve, Peripheral Within Normal Limits											
Pancreas							X				
Hemorrhage		2									
Inflammation, subacute											•
Within Normal Limits		_	х	х	x	х	X	x	х	х	х
Parathyroid											
Not in plane of section					C	С					
One of pair present		Р	P	Р				Ρ	P	Р	P
Within Normal Limits	;	X	Х	X			Х	Х	X	Х	Х
Pituitary											
Within Normal Limits	1	X	X	X	X	X	X	X	X	X	X
Prostate											
Inflammation, subacute	1	2		4		٠				3	
Within Normal Limits							X				X
Salivary Gland											
Tissue Not Present	ı	С									
Within Normal Limits			Х	Х	X	X	X	X	Х	Х	X
Seminal Vesicle											
Within Normal Limits							X				
Skeletal Muscle Within Normal Limits											
Skin							X				
Tissue Not Present		C .									
Within Normal Limits	,		Y	У	¥	¥	х	У	Y	y	Υ
to a mark file plane is there as no provide G			^	^	A		^	٨	^	٨	^

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (3) 500 PPM

		9	9		-				-	_	9
		2	2	2	2	2	2	5	2	2	2
	Animal Number:	0		0	0	0	0		0	0	0
	MITTACL HOMDEL:	7	_	7	_	7	_	7	_	7	
		2	_	2		2	-	-	-	3	
		3	4	_	_	7					2
	Fate:	SE		_	_	-	_		_	-	-
Organ/	Death Day:	9	9	9	9	9	0	٥	٥	9	9
Diagnosis			-	-	_	_			_	0	
Spinal Cord											
Within Normal Limits		ж	x	x	¥	¥	×	Y	¥	Х	Y
Spleen											
Within Normal Limits		Х	X	Х	Х	Х	Х	Х	х	ж	Х
Stomach, Glandular											
Within Normal Limits		Х	Х	Х	Х	Х	Х	Х	X	X	X
Stomach, Nonglandular											
Within Normal Limits		X	Х	Х	X	X	X	X	X	X	X
Testis											
Within Normal Limits		Х.	X	X	X	X	X	X	X	Х	×
Thymus											
Hemorrhage			2			2	2		2	2	2
Within Normal Limits		X		×	X			X			
Thyroid Embryonic remnant											
One of pair present		P									Ъ
Within Normal Limits						P					
Tongue			Х	х	Х	×	X	Х	X	X	
Within Normal Limits											
Trachea		K	X	X	×	X	X	Х	Х	Х	Х
Within Normal Limits		x	X	ĸ	v			~		~~	
Urinary Bladder				Α	X	X	X	X	X	Х	X
Within Normal Limits		X	X	X	M	X	X	X	X	Х	X

9 9 9 9 9 9 9 9 9

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (4) 1000 PPM

		2	2	2	2	2	2	2	2	2	2
		-		-	-		-	•	-	-	
Ani	mal Number		0	_						0	
			7							7	
		3			3					4	4
		3	4	5	6	7	8	9	0	1	2
	Fate	: SE	SE	SE	SE	SE	\$E	SE	SE	SE	SE
Organ/	Death Day:	: 9	9	9	9	9	9	9	9	9	9
Diagnosis	•		0	0	0	0	0	0	0	0	0
Adrenal Cortex											
Within Normal Limits		x	х	¥	Y	Y	Y	¥	Y	Y	Y
Adrenal Medulla											
Within Normal Limits		x	X	x	Y	¥	Y	¥	¥	Υ	Y
Aorta											
Tissue Not Present									£		
Within Normal Limits		х	X	x	x	x	X	x	-	Y	Y
Bone Marrow, Femur											
Within Normal Limits		х	х	х	х	х	х	х	x	х	х
Brain, Cerebellum											
Within Normal Limits		Х	Х	х	Х	Х	х	х	Х	X	Х
Brain, Cerebrum											
Within Normal Limits		Х	X	Х	Х	Х	Х	Х	Х	X	Х
Brain, Medulla Oblongata											
Within Normal Limits		Х	X	Х	Х	Х	Х	х	х	х	х
Brain, Midbrain											
Within Normal Limits		X	X	Х	Х	Х	Х	X	Х	х	х
Brain, Pons											
Within Normal Limits		X	Х	Х	Х	X	Х	Х	Х	Х	Х
Duodenum											
Within Normal Limits		X	X	X	X	Х	Х	Х	X	X	Х
Epididymis											
Hypospermia					4			5		5	
Inflammation, granulomatous								4			
Within Normal Limits		X	X	X		X	X		X		X
Esophagus											
Within Normal Limits		X	X	Х	X	X	X	X	X	X	X
Heart											
Cardiomyopathy					3						
Within Normal Limits		X	X	X		X	X	Х	Х	X	X
Intestine											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (4) 1000 PPM

			9	9	9	9	9	9	9	9	9	9
			2	2	2	2	. 2	2	2	2	2	2
			-	-	-	-	•				-	
Ar	nimal	Number:	_		0	0	0	0	0	0	0	D
			7	7	7	7	7	7	7	7	7	7
			3	3			3	3	3	4	4	4
			3	4	5	6	7	8	9	0	1	2
		Fate:	SE	\$E	SE	SE	SE	SE	SE	\$E	SE	\$E
Organ/	Dea	th Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis		•	0	0	0	0	0	D	0	0	0	0
Kidney												
Inflammation, interstitial										2		
Intratubular proteinic mate	rial			2	2							
Regeneration, tubular				2			2			2		
Within Normal Limits			X			X		M	Х		χ	X
Liver												
Cytoplasmic vacuolization			4	4	4	4	4	4	4	4	4	4
Microgranuloma			2		2		2			2		2
Lung												
Alveolar histiocytosis											2	2
Hemorrhage .			3									
Inflammation, interstitial							2					
Within Normal Limits				Х	X	X		X	X	X		
Lymph Node												
Within Normal Limits			X	X	Ж	X	Х	Х	X	Х	Х	X
Nerve, Peripheral												
Within Normal Limits			Х							X		
Pancreas												44 44
Inflammation, subacute Within Normal Limits												
Parathyroid			Х		Х		х	Х		X	Х	Х
Not in plane of section												-
One of pair present							C				_	
Within Normal Limits			E V	P X				P			P	1/
Pituitary			Α	Х	Х	Х.		. A	Х.	Х.	. X	Х
Within Normal Limits			v	v	v	v	v	~	v	~		v
Prostate				X								
Inflammation, subacute			2			2						
Within Normal Limits			_	Y	X	_	w	v	v	Х	Y	v
Salivery Gland									^	^	^	
Within Normal Limits			Y	Х	Y	v	Y	¥	Y	Y	Y	Y
Seminal Vesicle						,n.						
Within Normal Limits			Y	Х	¥	Y	Y	Υ	Y	Y		٧
variable remarkable to the same and the same			^	А	А	^	^	^	^	^		٨

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (4) 1000 PPM

		9	9	9	9	9	9	9	9	9	9
										ź	
		_	-	-							
	Animal Number:	0	0	0		0		0		0	0
		7	7	7	7	7	7	7	7	7	7
	•	3	3	3	3	3	3	3	4	4	4
		3	4	5	6	7	8	9	0	1	2
46	Fate:	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis		0	0	0	0	0	0	0	0	0	0
Skeletal Muscle											
Within Normal Limits		Χ	X	X	X	Х	Х	Х	Х	Х	Х
Skin											
Within Normal Limits		X	X	X	Х	X	Х	X	X	X	Х
Spinal Cord											
Within Normal Limits		X	X	X	X	Х	X	X	X	Х	X
Spleen											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Stomach, Glandular											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Stomach, Nonglandular											
Within Normal Limits		X	X	X	X	X	X	X	X	Х	X
Testis											
Dilatation, tubular		3						_			
Hypospermatogenesis						4					
Within Normal Limits			Х				X	•	Х		X
Thymus											
Hemorrhage						2					
Within Normal Limits Thyroid											
Embryonic remnant						'n.					
One of pair present		Р									
Within Normal Limits		-	Y	¥	¥		Y	¥	¥	х	Y
Tongue											
Within Normal Limits		X	x	x	х	х	x	x	х	х	x
Trachea											
Within Normal Limits		X	х	х	х	х	х	х	х	х	X
Urinary Bladder											
Tissue Not Present											C
Within Normal Limits		X	х	X	Х	X	х	х	Х	х	

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (5) 2000 PPM

										9	
		2	2	2	5	2	2	2	2	2	2
	Animal Number:	-			-	-			-		
	Antimat Mumber;									0 7	
										5	
			4							1	
	Fate:			_	-	-	_	-	_	•	_
Organ/	Death Day:	٥	0	0	0	0	0	0	٥	9	0
Diagnosis	ococii bay.								-	0	-
Adrenal Cortex											
Within Normal Limits		X	Х	X	X	X	X	X	X	٠ χ	×
Adrenal Medulla											
One of pair present											В
Within Normal Limits		×	Х	86	Х	X	Х	X	X	X	Х
Aorta											
Tissue Not Present					C						
Within Normal Limits		X	Х	X		X	X			X	Х
Bone Marrow, Femur Within Normal Limits											
Brain, Cerebellum		Х	Х	×	Х	X	Х	Ж	Х	X	Х
Tissue Not Present		••									
Within Normal Limits		v	u					C	14	.,	_
Brain, Cerebrum		A		_^_		ж.			X	X	Х
Tissue Not Present								c			
Within Normal Limits		v	v	w	v	w	v	-	v	v	v
Brain, Medulla Oblongata										X	
Tissue Not Present								c			
Within Normal Limits		¥	Y	х	v	v	¥	-	v	X	v
Brain, Midbrain											
Tissue Not Present								c			
Within Normal Limits		Х	х	х	×	х	х	-	X	X	X
Brain, Pons											
Tissue Not Present ,								С			
Within Normal Limits		X	X	X	X	Х	χ		Х	X	Х
Duodenum											
Within Normal Limits		X	X	×	×	Х	X	Х	Χ	Х	X
Epididymis											
Granuloma, spermatic											4
Hypospermia		4	5	5	5	5	4	4	4	4	5
Inflammation, subacute							2				
One of pair present								8			

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (5) 2000 PPM

•												
			9	9	9	9	9	9	9	9	9	9
			2	2	2	2	2	2	2	2	2	2
	nimal	Number:	-							0		
*	ntwat	MUNIDEL:								7		
										5		
				-	-	-	-	_	-	ō	_	_
		Fate:	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE
Organ/	0	-th D					_	_		_		•
Diagnosis	ve	ath Day:								9		9
v ragilos rs			U	U	V	U	U	U	U	U	U	U
Esophagus												
Within Normal Limits			X	X	Х	X	X	X	X	Х	×	X
Heart												
Cardiomyopathy			3	3	3	3	2	2	3			
Within Normal Limits											Ж	
Intestine												
Within Normal Limits										X		
Kidney												
Hemorrhage Hydronephrosis				,		,					5	
Inflammation, interstitial				4								
Intratubular proteinic mate	hnial				2	2				2	2	
Necrosis	# Iat				~	~				~	5	
Regeneration, tubular			2		2		2			2		
Within Normal Limits			_		-		_			-		Y
Liver												
Cytoplasmic vacuolization			5	5	Z,	7,	4	4	4	4	4	4
Inflammation, subscute												
Microgranuloma				2	2	2	2					2
Necrosis, coagulative			(3)									
Lung												
Alveolar histiocytosis											2	
Within Normal Limits			X	X	Х	X	χ	X	Х	X		X
Lymph Node												
Within Normal Limits										Χ		
Nerve, Peripheral												
Within Normal Limits										Х		
Pancreas												
Inflammation, subacute										3		
Within Normal Limits												
Parathyroid												
Not in plane of section One of pair present												
Within Normal Limits			w	P V	w					х		
TIGHT HOUSE LIBITS			×	^			^		٨	A	Α.	A

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (5) 2000 PPM

				-							
		9	9	9	9	9	9	9	9	9	9
		2	2	2	2	2	2	2	2	2	2
		•	•	-	-	•	-	-	-	•	-
	Animal Number:	_	0						0		
			7		7					7	
		_	_	_		-	_	_	_	5	
	F-4	3	4	5	6	-	8	_	-		2
	Fate:	\$E	2E	2E	2E	3E	2F	5E	SE	2F	SE.
Organ/	Death Day:	0	9	Q	9	9	9	9	9	9	9
Diagnosis	beach bay.		_	_				_	_	ó	-
J (agitos is			•	•	•	•	•	•	•	•	
Pituitary											
Tissue Not Present							Ç				
Within Normal Limits		X	X	X	Х	X		Х	Х	Х	Х
Prostate											
Inflammation, chronic a	ctive			5							
Inflammation, subscute					3						
Within Normal Limits		Х	X			X	X	X	X	X	X
Salivary Gland											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Seminal Vesicle											
Within Normal Limits										X	
Skeletal Muscle											
Within Normal Limits		X								X	
Skin											
Within Normal Limits		Х								X	
Spinal Cord											
Within Normal Limits										X	
Spieen											-
Inflammation, subacute										4	
Within Normal Limits											
Stomach, Glandular Within Normal Limits											
Stomach, Nonglandular										X	
Within Normal Limits										Х	
Testis											
Granuloma, spermatic			3								
Hypospermatogenesis		4	_	5	5	5	4	4	4	5	5
Thymus											
Hemorrhage						2	2	2			
Within Normal Limits		Y	х	х	X		_	_		х	x
Thyroid											
Embryonic remnant	•				Р	Ρ					
One of pair present					-	-	Р				
Within Normal Limits		X	Х	Х			-	х	X	X	Х
									-		

Project: 55-YJ81-91 Species: Rat Sex: Male Group: (5) 2000 PPM

9 9 9 9 9 9 9 9 9 2 2 2 2 2 2 2 2 2 2 2

Animal Number: 0 0 0 0 0 0 0 0 0

7 7 7 7 7 7 7 7 7 7 4 4 4 4 4 4 4 5 5 5 3 4 5 6 7 8 9 0 1 2

Fate: SE SE SE SE SE SE SE SE SE SE

Organ/ Death Day: 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0

Diagnosis

Tongue

Within Normal Limits

X X X X X X X X X Trachea

Within Normal Limits XXXXXXXXXX Urinary Bladder

Within Normal Limits * * * * * * * * * * *

Project: 55-YJ81-91 Species: Rat This report was printed on 06-09-1993.

The Legend to the Outline Report

X = Within Normal Limits

P = Present

C = Comment made

1 = Metastatic

2 = trace

3 = mild

4 = moderate

5 = severe

6 = present NG

7 = focal trace

8 = focal mild

9 = massive

10 =

() = Focal

= Multifocal

[] = Diffuse

SE = Scheduled Euthanasia

ME = Moribund Euthanasia

FD = Found Dead

OT = Other

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (1) 0 PPM

		9 2	9			9				9	-
		-	-			•			•	-	•
	Animal Number:	-	0								
			7							-	-
		5	_	_	_	5	_	_	_	_	_
			4								
	Fate:	SE	SE	SE	SE	SE	SE	SE	SE	SE	\$E
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis	-	0	0	0	0	0	0	0	0	0	0
Adrenal Cortex											
Within Normal Limits			X								
Adrenal Medulla											
One of pair present		•	P				P				
Within Normal Limits		X	X	X	Х	Х	X	Х	X	X	X
Aorta Tissue Not Present											
Within Normal Limits		v		3/	C					34	
		X	X	X		X	Х	X	X	Х	Х
Bone Marrow, Femur Within Normal Limits		v	v	~		~		~	· · · ·		~~
Brain, Cerebellum			X								
Within Normal Limits			Х								
Brain, Cerebrum		^									
Within Normal Limits		Y	Х								
Brain, Medulla Oblongata											
Within Normal Limits		x	х	x	x	x	x	¥	Y	Y	Y
Brain, Midbrain											
Within Normal Limits		х	х	х	х	х	х	х	Х	х	x
Brain, Pons											
Within Normal Limits		X	X	Х	Х	X	X	X	Х	Х	Х
Duodenum											
Within Normal Limits		X	X	X	X	X	X	Х	X	X	X
Esophagus											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Heart											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Intestine											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Kidney											
Regeneration, tubular	•								2		
Within Normal Limits		X	X	X	X	X	X	X		X	X
Liver											
Cytoplasmic vacuolization	חי	3		3	3	3	3	4		3	
Microgranuloma			2						2		2

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (1) O PPM

		_	_	_	_	_	_	_	_	_	_
			9								
		~	C	~	~	~	2	~	~		_
	Animal Number:	-	0	n	0	n	n			0	
	Allemac Hamper.		7								
			5								
			4	_	_	_	_	_	_	_	2
	Fate:	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis			0								
Lung											
Within Normal Limits		X	X	X	X	Х	X	X	Х	X	X
Lymph Node											
Within Normal Limits			Х								
Nerve, Peripheral											
Within Normal Limits		Х	X	Х	Х	X	X	X	X	X	X
Ovary Within Normal Limits					· · ·						
Pancreas			X								
Within Normal Limits			Х								
Parathyroid											
Not in plane of section				С				С			
One of pair present				_		Р		-	P	Р	Р
Within Normal Limits		X	Х		Х	X	X		X	X	X
Pituitary											
Within Normal Limits		×	Х	Х	Х	Х	Х	Х	X	X	X
Salivary Gland											
Within Normal Limits			Х								
Skeletal Muscle											
Within Normal Limits Skin		Х	X	х	Х	Х	Х	Х	Х	X	Х
Within Normal Limits		~	x	N.	v	~					
Spinel Cord											
Within Normal Limits			Х								
Spleen											
Within Normal Limits		X	X	Х	Х	Х	Х	х	Х	X	χ
Stomach, Glandular											
Within Normal Limits		X	X	X	X	Х	X	X	χ	X	X
Stomach, Nonglandular											
Within Normal Limits			X								
Thymus											
Hemorrhage			••						2	2	
Within Normal Limits		X	X	X	X	Х	X				X

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (1) 0 PPM

Project: 55-YJ81-91 Species: Rat Sex: F	еша	Le	Gro	up:		ולו) Pi	'(N		
	•	9 9	9	9	9	9	9	9	9	9
	- 2	2 2	2	2	2	2	S	2	2	2
			-	-	-	-	-	-	•	
Animal Number			0		0		-			0
			7							
		_	5	_	_	_	_	_	_	
			5	_	7	_	9	_		2
Fate	: \$I	SE	SE	SE	SE	SE	SE	SE	SE	SE
Ones /							0		0	0
Organ/ Death Day			9							
Diagnosis	,	, ,	. 0	U	U	U	u	U	u	U
Thyroid	,									
One of pair present								В		
Within Normal Limits	1	()	X	X	X	X	X	X	Х	X
Tongue										
Within Normal Limits		()	X	Х	X	X	X	X	X	X
Trachea	•									
Within Normal Limits	7	()	X	X	X	X	X	X	X	Х
Urinary Bladder	•									
Within Normal Limits	7	()	X	Х	X	X	X	X	X	Х
Uterus	•									
Within Normal Limits		()	X	Х	X	Х	X	Х	X	Х
Vagina	•									
Within Normal Limits	2	()	X	X	. Х	X	X	X	X	X

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (2) O PPM/RESTRICTED DIET

,			•			` -						
		9	9	9	9	9	9	9	9	9	9	
		2	_	2	_	-	-	_	-	_	-	
									-	-		
	Animal Number:	0	0			0,		0	0	0	0	
		8	8	8	.8	8	8	8	8	8	8	
		0	0	0	0	0	0	0	1	1	1	
		3	4	5	6	7	8	9	0	1	2	
	Fate:	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9	
Diagnosis	·	0	0	0	0	0	0	0	0	0	0	
Adrenal Cortex												
Within Normal Limits		X	X	X	Х	Х	X	Х	X	X	Χ	
Adrenal Medulla												
One of pair present											P	
Within Normal Limits		X	X	X	X	X	X	X	X	X	X	
Aorta												
Tissue Not Present		C			C							
Within Normal Limits			Х	Х		X	X	X	Х	X	X	
Bone Marrow, Femur												
Within Normal Limits		X	X	X	X	Х	X	X	X	X	X	
Brain, Cerebellum												
Within Normal Limits		X	X	X	X	X	X	X	X	X	X	
Brain, Cerebrum												
Within Normal Limits		X	X	X	Х	X	X	X	X	X	X	
Brain, Medulla Oblongata												
Within Normal Limits		X	X	Х	X	X	X	X	X	X	X	
Brain, Midbrain												
Within Normal Limits		X	Х	X	X	X	X	X	X	X	X	
Brain, Pons												
Within Normal Limits		X	Х	X	X	X	X	X	X	X	X	
Duodenum												
Within Normal Limits		X	X	X	X	X	X	X	X	X	X	
Esophagus												
Within Normal Limits			X									
Heart												
Within Normal Limits			X									
Intestine												
Within Normal Limits		X	X	X	X	X	Х	Х	X	X	Х	
Kidney												
Within Normal Limits		X	X	X	X	X	X	X	X	X	X	
Liver												
Microgranuloma		2	2	2	2		2	2				
Within Normal Limits						X			Х		X	

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (2) 0 PPM/RESTRICTED DIET

		-	9								
		2	2	2	2	2	2	2	2	2	2
		•	•				-	-		:	-
	Animal Number:	_	0							0	
		_	8	_	_	_	_			8	
		_	0	_						1	
		_	4	_	_	_	8	_	0	1	2
	Fate:	SE	SE.	SE	SE	\$E	2E	2E	2E	9E	3E
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis	·	0	0	0	0	0	0	0	0	0	0
Lung											
Alveolar histiocytosis										2	
Within Normal Limits		×	X	¥	Y	Y	×	х	X	_	
Lymph Node											
Within Normal Limits		¥	Х	х	×	Х	х	Х	Х	×	×
Nerve, Peripheral											
Within Normal Limits		X	X	X	×	X	X	X	X	Х	8
Ovary											
One of pair present				P							
Within Normal Limits		X	X	×	Х	X	×	Х	X	X	X
Pancreas											
Within Normal Limits		X	Х	Х	X	X	X	Ж	X	×	Х
Parathyroid											
Not in plane of section			E						C	C	C
One of pair present		P			P		P	P			
Within Normal Limits		×		X	Х	х	Х	Х			
Pituitary											
Within Normal Limits		X	X								
Salivary Gland		-									
Within Normal Limits			Х								
Skeletal Muscle											
Within Normal Limits		100	X	Ж	Ж	X	Х	X	ж	Х	X
Skin			·	~~~	· · ·	·	·	·		· ·	
Within Normal Limits Spinal Cord			Х								
Within Normal Limits			Х								
Spleen		A									
Within Normal Limits		Y	Х								
Stomach, Glandular											
Mineralization				3							
Within Normal Limits		Я	X		×	x	X	Y	Х	X	X
Stomach, Nonglandular											
Within Normal Limits		X	х	X	Х	X	Х	х	Х	х	Х
· · · · · · · · · · · · · · · · · · ·			-	~							~

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (2) 0 PPM/RESTRICTED DIET

•											
		9	9	9	9	9	9	9	9	9	ç
		2	2	2	_		_	_		2	-
		_	_		-	_	_	-	_	Ī	_
	Animal Number:	0	0			0	0	0	0	0	C
	14114-1	8	_	_	_	8	_	8	_	_	
		0	0	-	_		0	_	_	_	•
t		3	4	_	_	7	_	_	-	1	2
	Fate:	SE	SE	_	_	-	-		_	_	SE
Organ/	Death Day:	0	9	0	۵	Ω	a	0	a	9	
Diagnosis	veath bay.		0							0	
o ragnos is		•			0		٠	•	٠		
Thymus											
Hemorrhage		2	2	2	2	2		2	2	2	
Within Normal Limits							X)
Thyroid											
One of pair present			P		P			P		P	F
Within Normal Limits		X	X	X	X	X	X	X	X	X)
Tongue											
Within Normal Limits		X	X	X	X	X	X	X	X	X)(
Trachea											
Within Normal Limits		X	X	X	X	X	X	X	X	X)
Urinary Bladder											
Within Normal Limits		X	X	Х	X	X	X	X	X	X)
Uterus											- 54 44
Hydrometra				3			3		3		
Within Normal Limits		X	X		X	X		X		X)(
Vagina											
Tissue Not Present			C								
Within Normal Limits		X		X	X	X	X	X	X	X	Х

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (3) 500 PPM

		a	9	G	a	Q	9	9	o	9	0
			2								
		-	-	_	-						-
	Animal Number:	0	0	0	0	0	0	0	0	0	0
		7	7	7	7	7	7	7	7	7	7
		6	6	6	6	6	6	6	7	7	7
		3	4	5	6	7	8	9	0	1	2
	Fate:	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis		0	0	0	0	0	0	0	0	0	0
Adrenal Cortex											
Within Normal Limits	•	X	X	X	X	X	X	X	X	X	X
Adrenal Medulta											
Within Normal Limits Aorta		X	X	X	X	Х	X	X	Х	Х	Х
Tissue Not Present					С						
Within Normal Limits		X	X	Х		Х	Х	X	X	X	X
Bone Marrow, Femur											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Brain, Cerebellum											
Within Normal Limits			X								
Brain, Cerebrum											
Within Normal Limits			X								
Brain, Medulla Oblongata Within Normal Limits			х								
Brain, Midbrain											
Within Normal Limits		х	х	х	х	х	х	х	х	х	Х
Brain, Pons											
Within Normal Limits		Х	X	Х	X	Х	X	X	X	Х	Х
Duodenum											
Within Normal Limits			X								
Esophagus											
Within Normal Limits			X								
Eye											
Within Normal Limits Heart					X	m -					
Within Normal Limits			Х								
Intestine											
Within Normal Limits		Х	X	х	х	х	х	х	х	х	Х
Kidney											
Within Normal Limits		Х	X	Х	Х	Х	X	X	X	X	Х
Liver											
Cytoplasmic vacuolization	n	3	4	3	4						
Microgranuloma		2	2	2	2		2	2	2	2	

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (3) 500 PPM

9 9 9 9 9 9 9 9 9 2 2 2 2 2 2 2 2 2 2 Animal Number: 0 0 0 0 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 7 7 7 3 4 5 6 7 8 9 0 1 2 Fate: SE Organ/ Death Day: 9 9 9 9 9 9 9 9 9 Diagnosis 0 0 0 0 0 0 0 0 0 0 Liver ----- continued Х . Х Within Normal Limits ______ Lung **x x x x x x x x x x** Within Normal Limits Lymph Node ______ Within Normal Limits **x** x x x x x x x x x Nerve, Peripheral Within Normal Limits **x** x x x x x x x x Ovary Within Normal Limits **x x x x x x x x x x** Pancreas Within Normal Limits **x** x x x x x x x x x ______ Parathyroid C C C C Not in plane of section One of pair present P P P Within Normal Limits x x x x x x Pituitary **x x x x x x x x x x** Within Normal Limits Salivary Gland Within Normal Limits **x x x x x x x x x x** Skeletal Muscle Within Normal Limits **x x x x x x x x x x** ______ Tissue Not Present Within Normal Limits **x x x x x x x x x** Spinal Cord Within Normal Limits **x x x x x x x x x x** Spleen Within Normal Limits **x x x x x x x x x x** Stomach, Glandular Within Normal Limits **x x x x x x x x x x** Stomach, Nonglandular Within Normal Limits **x x x x x x x x x x**

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (3) 500 PPM

110jeut. 33 1001 71 Opeo	ico: ilat oca. ic	iires e v	• •	JI (ap-	•			• • • •	•	
		9	9	9	9	9	9	9	9	9	9
		2	2	2	2	2	2	2	2	2	2
					_	_					
	Animal Number:	0	0	0	0	0	0	0	0	0	0
		7	7	7	7	7	7	7	7	7	7
		6	6	6	6	6	6	6	7	7	7
		3	4	5	6	7	8	9	0	1	2
	Fate:	SE	\$E	SE	SE	SE	SE	SE	SE	SE	SE
Organ/	Death Day:	9	9	9	۰	a	٥	0	0	9	0
Diagnosis	beach bay.	Ó	ó	Ó	-	-			Ó		Ó
D lagilos is			Ü		Ü	•	٠			•	•
Thymus											
Hemorrhage		2	2	2	2					2	2
Within Normal Limits						Х	X	X	X		
Thyroid		• •									
Embryonic remnant											
One of pair present				P							
Within Normal Limits		X	X	X	X	X		X	X	X	X
Tongue											
Within Normal Limits		X	X	X	X	Х	X	X	X	X	X
Trachea											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Urinary Bladder											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Uterus											
Hydrometr a							_	3			
Within Normal Limits		Х	X	X	X	X			X	X	X
Vagina											
Within Normal Limits		Х	X	X	X	X	X	X	X	Х	Х

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (4) 1000 PPM

·	Animal Number: Fate:	0 7 7 3	9 2 0 7 7 4 SE	0 7 7 5	2 . 0 7 7 6	0 7 7	2 . 0 7 7 8	2 . 0 7 7 9	0 7 8 0	0 7 8	7 8 2
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis		0	0	0	0	0	0	0	0	0	0
Adrenal Cortex											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Adrenal Medulla											
One of pair present Within Normal Limits		¥	x	Y	¥	¥	P		•	¥	У
Aorta											
Tissue Not Present								C			
Within Normal Limits		X	X	X	Ϋ́	X	X		X	X	X
Bone Marrow, Femur											
Within Normal Limits Brain, Cerebellum			X								
Within Normal Limits			Х								
Brain, Cerebrum											
Within Normal Limits		X	Х	X	X	X	Х	X	X	Х	Х
Brain, Medulla Oblongata											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Brain, Midbrain											
Within Normal Limits Brain, Pons		Х	X	Х	Х	X	Х	Х	Х	Х	Х
Within Normal Limits		v	х		· ·	v		~	v	v	
Duodenum											
Within Normal Limits		х	x	х	х	Х	х	х	х	х	х
Esophagus											-
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Eye											
Within Normal Limits								X			
Heart											
Within Normal Limits Intestine		X	X	X	X	X	X	X	X	X	Х
Within Normal Limits		Y	Х	Y	Y	Y	Y	Y	Y	Y	Y
Kidney											
Intratubular proteinic ma	iterial			3							
Regeneration, tubular				3							
Within Normal Limits		X	X		X	X	X	X	X	X	X

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (4) 1000 PPM

			_	_		_	_		_	_	_
			9								9
•		~	~	_			_	_	~	_	2
Animal !	Mumbans	-	0	0		0		-	-	0	0
Miliac	Muliber.	_	7	_	7	_	7	_	7	_	_
			7	-	7	*	7	-	-	8	8
		3	4	-	6	-	_	9	_	1	2
	Fate:			_	-	-	_	•	_		_
			-								
Organ/ Deat	th Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis		0	0	0	0	0	0	0	0	0	0
Liver											
Cytoplasmic vacuolization				4	3	4	4	4	4	4	4
Inflammation, subscute				2		2				2	
Microgranuloma			2	2	2		2	2	2	2	2
Within Normal Limits		X									
Lung											
Within Normal Limits		Х	X	X	X	X	X	X	X	X	X
Lymph Node											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Nerve, Peripheral											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Ovary											
Within Normal Limits		X	X								X
Pancreas											
Within Normal Limits		X	X	X	X	Х	X	X	X	X	X
Parathyroid											
Not in plane of section		C							C		
One of pair present			P		P	P	P	P		P	
Within Normal Limits			X	X	X	X	X	X		X	X
Pituitary											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Salivary Gland											
Within Normal Limits		X	X	X	X	X.	X	X	X	X	X
Skeletal Muscle											
Within Normal Limits			X								
Skin											
Within Normal Limits			X								
Spinal Cord							-,-				
Within Normal Limits			X								
Spleen											
Within Normal Limits			X								
Stomach, Glandular											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (4) 1000 PPM

				•						
	9	9	9	9	9	9	9	9	9	9
	2	2	2	2	2	2	2	2	2	2
	-	-	_							
Animal Number:	D	0	0	_	_		0	Ð	D	0
		7	7	7	7	7	7	7	7	7
		7	7	7	7	7	7	8	8	8
	-	4	5	6	-	_		_	-	2
Fate:	SE	5E	5E	SE	SE	SE	SE	SE	SE	SΕ
Death Day:	9	9	9	9	9	9	9	9	9	9
Ť	0	0	0	0	0	0	Ð	0	Ð	ŋ
									i.	
	х	х	х	х	х	×	x	х	×	X
	-									
							2	2		2
	X	Х	X	×	×	×			X	
								P	P	
			P							
	X	Х	X	Х	Ж	X				
	•-									
	_			_			•			
	ж	X	20	×	N	Х	Х	Х	Х	Х
	v							·	· · · ·	
	Α	Α.	Α.		Α.	A	ж.	Λ.		- A
	v	v	ν	×	w	v	v	v	v	٧
			4			2				
	х	х	•	х	Х	***	ж	Х	х	х
	X	X	X	Х	X	X	X	Х	Х	X
	Fate:	Animal Number: D 7 7 3 Fate: SE Death Day: 9 0 X X X X X	2 2 Animat Number: D 0 7 7 7 7 3 4 Fate: SE 5E Death Day: 9 9 0 0 X X X X X X X X X X X X	2 2 2 Animal Number: 0 0 0 7 7 7 7 7 7 7 7 7 3 4 5 Fate: SE 5E SE Death Day: 9 9 9 0 0 0 X X X X X X X X X X X X X X X X X X X X X	2 2 2 2 2 2 2	Animat Number: 0 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7	Animat Number: D 0 0 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7	P X X X X X X X X X X X X X X X X X X X	Animat Number: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Animat Number: D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (5) 2000 PPM

					-						
		9	9	9	9	9	9	9	9	9	9
		2	2	2	2	2	2	2	2	2	2
		-	-	-	-	-	-		•	-	
	Animal Number:		0								0
		7	7	7	7	-	_	7	_	7	7
		-	8	_	_	_		_	9	-	9
		3	4	5	_	-	8	_	0	1	2
	Fate:	SE	SE	\$E	\$E	SE	SE	SE	SE	SE	SE
Organ/	Death Day:	۰	9	0	0	٥	٥	a	. 0	٥	9
Diagnosis	beath bay.		0								•
र विद्वारिक वि		U	U	v	U	v	U	U	U	U	U
Adrenal Cortex											
One of pair present				P							
Within Normal Limits		X	X	X	X	X	X	Х	X	X	Х
Adrenal Medulla											
One of pair present				P	P		P	P			
Within Normal Limits		X	X	Х	X	Х	X	Х	X	X	X
Aorta											
Tissue Not Present		C									
Within Normal Limits			X	X	X	X	X	X	X	X	X
Bone Marrow, Femur											
Within Normal Limits		X	X	X	X	X	X	X	X	X	Х
Brain, Cerebellum											
Within Normal Limits		X	X	X	X	X	X	X	X	Х	Х
Brain, Cerebrum											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Brain, Medulla Oblongata											
Within Normal Limits		X	X	X	X	Х	X	X	X	X	X
Brain, Midbrain											
Within Normal Limits			X								
Brain, Pons											
Within Normal Limits			X								X
Duodenum											
Within Normal Limits			X								
Esophagus											
Within Normal Limits			X								
Heart											
Within Normal Limits			X								X
Intestine											
Within Normal Limits			X								
Kidney											
Intratubular proteinic ma	iterial								3		
Regeneration, tubular									3		2
Within Normal Limits		X	X	Х	Х	X	X	X		X	

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (5) 2000 PPM

							•						
				9	9	9	9	9	9	9	9	9	9
				2	2	2	2	2	2	2	2	2	2
		NI	·	-					•				
	Animal	NUM	ber:		7				7			0	
				8	8	-							
				3	4	5		7			Ó	1	2
		Fa	ate:	_	-	_	_	-	_	-	_	-	-
Organ/	Đe	ath i	Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis			•	0	0	0	0	0	0	0	0	0	0
Liver													
Cytoplasmic vacuolization	1			4	4	4	4	3	3	4	5	5	4
Inflammation, subacute											2	_	_
Microgranuloma				2	2	2	2		2	2	2	2	2
Lung													
Alveolar histiocytosis					2	2		_					
Hemorrhage								2			v	M	v
Within Normal Limits													X
Lymph Node													-
Sequestered blood					.,		3		3.5	24		74	
Within Normal Limits					X								
Nerve, Peripheral													
Within Normal Limits				X	X	Х	Х	X	Х	X	X	X	X
Ovary									~~~				~
Within Normal Limits				Х	X	Х	X	ж	ж	X	ж	X	X
Pancreas												~	·
Within Normal Limits					X						X	A	X
Parathyroid													
Not in plane of section						_					C	·	
One of pair present										v			P
Within Normal Limits					Х								
Pituitary													
Tissue Not Present				v	v	v	v	v	v	C	v	v	v
Within Normal Limits					X								
Salivary Gland				Ū									
Within Normal Limits					X								
Skeletal Muscle													
Within Normal Limits					X								
Skin													
Tissue Not Present				С	v	v	v	v	v	v	v	v	v
Within Normal Limits					X								Х
Spinal Cord													
Within Normal Limits				X	X	A	X	X	X	A	A	A	X

Project: 55-YJ81-91 Species: Rat Sex: Female Group: (5) 2000 PPM

		9	9	9	9	9	9	9	9	9	9
		2	2	2	2	2	2	2	2	2	2
			-	-			-	-	-		
	Animal Number:	0	0	0	0	0	0	0	0	0	0
		7	7	7	7	7	7	7	7	7	7
		8	8	8	8	8	8	8	9	9	9
		3	4	5	6	7	8	9	0	1	2
	Fate:	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE
Organ/	Death Day:	9	9	9	9	9	9	9	9	9	9
Diagnosis		0	0	0	0	0	0	0	0	0	0
Spieen											
Within Normal Limits		X	X	X	X	X	X	X	X	X	X
Stomach, Glandular											
Mineralization				•			34		4	w	v
Within Normal Limits		Х	Х	Х	Х	X	X	X			Х
Stomach, Nonglandular								~~~		v	v
Within Normal Limits	•	X	X	X	Х			A		X	
Thymus					2		2	2			2
Hemorrhage		v	x	2	~	х		~		х	
Within Normal Limits											
Thyroid		-	Р								р
Embryonic remnant			P	Р						Р	-
One of pair present Within Normal Limits		v		X	Y	¥	Х	¥	x	X	
Tongue											
Within Normal Limits		Y	Y	X	x	X	X	х	X	х	х
Trachea											
Within Normal Limits		- x	Х	X	X	X	Х	X	Х	X	X
Urinary Bladder											
Tissue Not Present			C		•					C	C
Within Normal Limits		X		X	X	X	Х	X	X		
Uterus											
Hydrometr a					2					3	
Tissue Not Present			C								
Within Normal Limits		X		Х		X	X	X	X		X
Va gina											
Tissue Not Present			C								
Within Normal Limits		X		X	X	Х	·X	Х	X	X	Х

Animal Number: 92.0713 Sex: Male Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 635

Microscopic Observations:

Esophagus -Tissue Not Present
Intestine -Tissue Not Present

Cassette 9 contained brain sections.

Liver - Cytoplasmic vacuolization, mild
Parathyroid - Not in plane of section
Prostate - Inflammation, subacute, trace
Thymus - Hemorrhage, trace

Thymus -Hemorrhage, trace
Thyroid -Within Normal Limits
One of pair present

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Heart, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Monglandular, Testis, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0714 Sex: Male Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 658

Microscopic Observations:

Aorta

Adrenal Medulla -One of pair present

Within Normal Limits
-Tissue Not Present

Liver -Cytoplasmic vacuolization, mild

Parathyroid -One of pair present
Within Normal Limits

Prostate -Inflammation, subacute, mild

The following tissues were found to be within normal limits:

Adrenal Cortex, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0715 Sex: Male Group: (1) 0 PPM

Printed on 06-09-1993. Accession Number: 638 Fate: (Day= 90) Scheduled Euthanasia

<u>Microscopic Observations:</u>

Adrenal Medulla -One of pair present Within Normal Limits

Liver -Cytoplasmic vacuolization, mild

The following tissues were found to be within normal limits: Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0716 Sex: Male Group: (1) O PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 629

<u>Microscopic Observations:</u>

Parathyroid

Adrenal Medulla -One of pair present

Within Normal Limits

Liver -Cytoplasmic vacuolization, moderate

> -One of pair present Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0717 Sex: Male Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 644

Microscopic Observations:

Kidney -Inflammation, interstitial, trace Liver -Cytoplasmic vacuolization, mild Parathyroid -One of pair present

Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulia, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0717 Sex: Male Group: (1) 0 PPM

Printed on 06-09-1993. Accession Number: 644 Fate: (Day= 90) Scheduled Euthanasia

<u>Microscopic Observations</u> (continued):

The following tissues were found to be within normal limits (continued): Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0718 Sex: Male Group: (1) 0 PPM

Printed on 06-09-1993. Accession Number: 648 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

-One of pair present Adrenal Medulla

> Within Normal Limits -Tissue Not Present

Aorta -Nicrogranuloma, trace Liver

Cytoplasmic vacuolization, mild

-Not in plane of section Parathyroid -One of pair present Thyroid Within Normal Limits

The following tissues were found to be within normal limits: Adrenal Cortex, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,

Stomach, Nonglandular, Testis, Thymus, Tongue, Trachea, Urinary Bladder. ______

Animal Number: 92.0719 Sex: Male Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 699

Microscopic Observations:

Aorta

Adrenai Meduila -One of pair present

> Within Normal Limits -Tissue Not Present

-Cytoplasmic vacuolization, mild Liver

-Not in plane of section Parathyroid -Hemorrhage, trace

Thymus

The following tissues were found to be within normal limits: Adrenal Cortex, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart,

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0719 Sex: Male Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 699

Microscopic Observations (continued):

The following tissues were found to be within normal limits (continued): Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0720 Sex: Male Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 697

Microscopic Observations:

-One of pair present Adrenal Medulla Within Normal Limits

-Tissue Not Present Aorta

Liver -Cytoplasmic vacuolization, mild -Inflammation, subacute, trace **Prostate**

The following tissues were found to be within normal limits:

Adrenal Cortex, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0721 Sex: Male Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993.

<u>Microscopic Observations:</u>

Aorta -Tissue Not Present Liver -Microgranuloma, trace

Cytoplasmic vacuolization, moderate

Parathyroid -One of pair present Within Normal Limits Thymus -Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0722 Sex: Male Group: (1) 0 PPM

Printed on 06-09-1993. Accession Number: 708 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

-Regeneration, tubular, trace Kidney -Cytoplasmic vacuolization, mild Liver Lung -Inflammation, interstitial, trace

Parathyroid -One of pair present Within Normal Limits

Thymus -Hemorrhage, trace -Embryonic remnant Thyroid

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0753 ; Sex: Female Group: (1) 0 PPM

Printed on 06-09-1993. Accession Number: 760 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

-One of pair present Adrenai Medulla

Within Normal Limits

-Cytoplasmic vacuolization, mild Liver

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0754 Sex: Female Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 713

Microscopic Observations:

Adrenal Medulla -One of pair present Within Normal Limits

Liver -Microgranuloma, trace

Cytoplasmic vacuolization, mild

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0754 Sex: Female Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on O6-09-1993. Accession Number: 713

<u>Microscopic Observations</u> (continued):

The following tissues were found to be within normal limits (continued):
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,
Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary,
Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,
Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0755 Sex: Female Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on O6-09-1993. Accession Number: 745

<u>Microscopic Observations:</u>

Liver -Cytoplasmic vacuolization, mild
Parathyroid -Not in plane of section

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0756 Sex: Female Group: (1) 0 PPN

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 744

Microscopic Observations:

Aorta Liver Parathyroid -Tissue Not Present
-Cytoplasmic vacuolization, mild
-One of pair present
Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0757 Sex: Female Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 783

Microscopic Observations:

Liver

-Cytoplasmic vacuolization, mild

Parathyroid

-One of pair present Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Monglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0758 Sex: Female Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 779

Microscopic Observations:

Adrenal Medulla

-One of pair present Within Normal Limits

Liver

-Cytoplasmic vacuolization, mild

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0759 Sex: Female Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 726

Microscopic Observations:

Liver

- Cytoplasmic vacuolization, moderate

Parathyroid

-Not in plane of section

Thymus

-Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Braîn, Cerebellum, Braîn, Cerebrum, Brain, Medulla Obiongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0760 Sex: Female Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 722

<u>Microscopic Observations:</u>

Kidney -Regeneration, tubular, trace

Liver -Microgranuloma, trace

Cytoplasmic vacuolization, mild Parathyroid -One of pair present

Within Normal Limits Thymus -Hemorrhage, trace

Thyroid -One of pair present Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0761 Sex: Female Group: (1) D PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 729

Microscopic Observations:

Liver -Cytoplasmic vacuolization, mild

Parathyroid -One of pair present Within Normal Limits

-Hemorrhage, trace Thymus

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0762 Sex: Female Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on O6-09-1993. Accession Number: 756

<u>Microscopic Observations:</u>

Liver -Microgranuloma, trace

Cytoplasmic vacuolization, moderate

Parathyroid -One of pair present Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0762 Sex: Female Group: (1) 0 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 756

<u>Microscopic Observations</u> (continued):

The following tissues were found to be within normal limits (continued): Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0793 Sex: Male Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 637

Microscopic Observations:

Aorta

-One of pair present Adrenal Meduila

Within Normal Limits -Tissue Not Present -Hemorrhage, trace

Luna Parathyroid -Not in plane of section Prostate -Inflammation, subacute, mild

-Hemorrhage, trace Thymus

The following tissues were found to be within normal limits: Adrenal Cortex, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Quodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Liver, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0794 Sex: Male Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 639

Microscopic Observations:

Thymus -Hemorrhage, mild

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen,

Stomach, Glandular, Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0795 Sex: Male Group: (2) O PPM/RESTRICTED DIET

Printed on 06-09-1993. Accession Number: 670 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Lung

Parathyroid

Prostate Thymus

-Hemorrhage, trace

-One of pair present Within Normal Limits

-Inflammation, subacute, mild

-Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Liver, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

.....

Animal Number: 92.0796 Sex: Male Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on O6-09-1993. Accession Number: 633

Microscopic Observations:

Adrenal Medulla

-One of pair present Within Normal Limits

Thyroid

-Embryonic remnant

The following tissues were found to be within normal limits: Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen,

Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0797 Sex: Male Group: (2) @ PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 704

<u>Microscopic Observations:</u>

Liver

Parathyroid

-Microgranuloma, trace

-Not in plane of section

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0797 Sex: Male Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 704

<u>Microscopic Observations</u> (continued):

The following tissues were found to be within normal limits (continued): Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0798 Sex: Male Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 650

Microscopic Observations:

Adrenal Medulla -Not in plane of section
Epididymis -Tissue Not Present
Pituitary -Embryonic remnant

Prostate - Inflammation, subacute, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,
Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Salivary Gland,
Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,
Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0799 Sex: Male Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthenesia Printed on 06-09-1993. Accession Number: 682

Microscopic Observations:

Heart

Adrenal Medulia -One of pair present
Within Normal Limits

-Hemorrhage, mild

Kidney - Regeneration, tubular, trace

Lung -Hemorrhage, trace
Thymus -Hemorrhage, trace
Thyroid -Embryonic remnant

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus,
Intestine, Liver, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate,
Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,
Stomach, Nonglandular, Testis, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0800 Sex: Male Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 636

<u>Microscopic Observations:</u>

Parathyroid

-One of pair present Within Normal Limits

Thymus

-Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0801 Sex: Male Group: (2) 0 PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993, Accession Number: 672

<u>Microscopic Observations:</u>

Liver Thymus -Microgranuloma, trace -Hemorrhage, mild

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0802 Sex: Male Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 631

Microscopic Observations:

Liver Prostate Thymus

-Nicrogranuloma, trace -Inflammation, subacute, mild

-Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0803 Sex: Female Group: (2) 0 PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 773

Microscopic Observations:

Aorta -Tissue Not Present
Liver -Microgranuloma, trace
Parathyroid -One of pair present
Within Normal Limits

Thymus -Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0804 Sex: Female Group: (2) 0 PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 789

Microscopic Observations:

Liver -Microgranuloma, trace
Parathyroid -Not in plane of section
Thymus -Hemorrhage, trace
Thyroid -One of pair present
Within Normal Limits

Vagina -Tissue Not Present

The following tissues were found to be within normal Limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Obiongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue, Trachea, Urinary Bladder, Uterus.

Animal Number: 92.0805 Sex: Female Group: (2) 0 PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 731

Microscopic Observations:

Liver -Microgranuloma, trace
Ovary -One of pair present
Within Normal Limits
Stomach, Glandular -Mineralization, mild

Stomach, Glandular -Mineralization, mild
Thymus -Hemorrhage, trace
Uterus -Hydrométra, mild

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0805 Sex: Female Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 731

<u>Microscopic Observations</u> (continued):

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Vagina.

Animal Number: 92.0806 Sex: Female Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on O6-09-1993. Accession Number: 716

Microscopic Observations:

Aorta Liver Parathyroid

Thymus Thyroid -Tissue Not Present -Nicrogranuloma, trace -One of pair present Within Normal Limits -Hemorrhage, trace -One of pair present Within Normal Limits

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue,

Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0807 Sex: Female Group: (2) 0 PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 770

Microscopic Observations:

Thymus

-Hemorrhage, trace

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0808 Sex: Female Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 734

Microscopic Observations:

Liver Parathyroid -Microgranuloma, trace -One of pair present Within Normal Limits

Uterus

-Hydrometra, mild

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Vagina.

Animal Number: 92.0809 Sex: Female Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 790

Microscopic Observations:

Parathyroid

Thymus Thyroid -Microgranuloma, trace
-One of pair present

Within Normal Limits
-Hemorrhage, trace

One of pair present
 Within Normal Limits

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0810 Sex: Female Group: (2) 0 PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 769

<u>Microscopic Observations:</u>

Parathyroid -Not in plane of section
Thymus -Hemorrhage, trace
Uterus -Hydrometra, mild

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulia, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0810 Sex: Female Group: (2) 0 PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 769

<u>Microscopic Observations</u> (continued):

The following tissues were found to be within normal limits (continued):

Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Vagina.

Animal Number: 92.0811 Sex: Female Group: (2) O PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 766

Microscopic Observations:

Liver Lung Parathyroid Thymus Thyroid -Microgranuloma, trace
-Alveolar histiocytosis, trace
-Not in plane of section
-Hemorrhage, trace
-One of pair present
Within Normal Limits

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0812 Sex: Female Group: (2) 0 PPM/RESTRICTED DIET

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 738

Microscopic Observations:

Adrenal Medulla

Parathyroid Thyroid -One of pair present
Within Normal Limits
-Not in plane of section
-One of pair present
Within Normal Limits

The following tissues were found to be within normal limits:
Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,
Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland,
Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus,
Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0723 Sex: Male Group: (3) 500 PPM

Printed on 06-09-1993. Accession Number: 702 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Liver

Prostate

-Microgranuloma, trace

Cytoplasmic vacuolization, mild -Inflammation, subacute, trace Pancreas

Hemorrhage, trace -One of pair present

Parathyroid Within Normal Limits

-Inflammation, subacute, trace

-Tissue Not Present Salivary Gland -Tissue Not Present Skin -Embryonic remnant Thyroid

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pituitary, Seminal Vesicle, Skeletal Muscle, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus,

Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0724 Sex: Male Group: (3) 500 PPM

Printed on 06-09-1993. Accession Number: 655 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Liver

-Microgranuloma, trace Cytoplasmic vacuolization, moderate

Parathyroid

-One of pair present Within Normal Limits

Thymus

-Hemorrhage, trace

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate,

Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,

Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0725 Sex: Male Group: (3) 500 PPM
Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 669

Microscopic Observations:

Adrenal Medulla

Kidney

Liver Parathyroid

Prostate

-One of pair present Within Normal Limits

-Intratubular proteinic material, trace

Regeneration, tubular, trace

-Cytoplasmic vacuolization, moderate

-One of pair present
Within Normal Limits

-Inflammation, subscute, moderate

The following tissues were found to be within normal limits:
Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart,
Intestine, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Salivary Gland,
Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,
Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0726 Sex: Male Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 652

Microscopic Observations:

Adrenal Medulla

Kidney Liver Lung Parathyroid -One of pair present Within Normal Limits

-Regeneration, tubular, trace

-Cytoplasmic vacuolization, moderate -Inflammation, interstitial, trace

-Not in plane of section

The following tissues were found to be within normal limits:
Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart,
Intestine, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland,
Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,
Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0727 Sex: Male Group: (3) 500 PPM

Printed on 06-09-1993. Accession Number: 689 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Liver

-Microgranuloma, trace Cytoplasmic vacuolization, moderate

Parathyroid Thymus Thyroid

-Not in plane of section -Hemorrhage, trace -One of pair present Within Normal Limits

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0728 Sex: Nate Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia

Printed on 06-09-1993. Accession Number: 646

Microscopic Observations:

Liver

-Cytoplasmic vacuolization, moderate Microgranuloma, trace -Congestion, mild

Lung Thymus

-Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0729 Sex: Male Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia . Printed on 06-09-1993. Accession Number: 680

Microscopic Observations:

Kidney Liver

-Regeneration, tubular, trace -Cytoplasmic vacuolization, moderate

Parathyroid

-One of pair present Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0729 Sex: Male Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 680

Microscopic Observations (continued):

The following tissues were found to be within normal limits (continued):
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart,
Intestine, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland,
Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,
Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0730 Sex: Male Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 706

Microscopic Observations:

Liver -Microgranuloma, trace

Cytoplasmic vacuolization, moderate

Parathyroid -One of pair present Within Normal Limits

Thymus -Hemorrhage, trace

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart,
Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate,
Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,

Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0731 Sex: Male Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 712

Microscopic Observations:

Liver

Adrenal Meduila -One of pair present

Within Normal Limits
-Microgranuloma, trace

Cytoplasmic vacuolization, moderate

Parathyroid -One of pair present
Within Normal Limits

Prostate -Inflammation, subacute, mild

Thymus -Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart,

Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Salivary Gland,

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0731 Sex: Male Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 712

Microscopic Observations (continued):

The following tissues were found to be within normal limits (continued):
Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,
Stomach, Nonglandular, Testis, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0732 Sex: Male Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 703

Microscopic Observations:

Adrenal Medulla

Liver Parathyroid

The man

Thymus Thyroid -One of pair present Within Normal Limits

-Cytoplasmic vacuolization, mild

-One of pair present Within Normal Limits -Hemorrhage, trace -Embryonic remnant

The following tissues were found to be within normal limits:
Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart,
Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate,
Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,
Stomach, Nonglandular, Testis, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0763 Sex: Female Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 719

<u>Microscopic Observations:</u>

Liver

-Microgranuloma, trace
Cytoplasmic vacuolization, mild
-Not in plane of section
-Hemorrhage, trace

Parathyroid Thymus

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain; Medulla Oblongata, Brain, Nidbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,
Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland,
Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid,
Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0764 Sex: Female Group: (3) 500 PPM

Printed on 06-09-1993. Accession Number: 753 Fate: (Day≂ 90) Scheduled Euthanasia

<u>Microscopic Observations:</u>

Liver

-Microgranuloma, trace

Cytoplasmic vacuolization, moderate

Parathyroid Thymus

-Not in plane of section -Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulia, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Monglandular, Thyroid, Tonque, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0765 Sex: Female Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia

Printed on 06-09-1993. Accession Number: 718

Microscopic Observations:

Liver

-Microgranuloma, trace

Cytoplasmic vacuolization, mild

Parathyroid

-One of pair present Within Normal Limits

Thymus

-Hemorrhage, trace -One of pair present

Thyroid

Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulia, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0766 Sex: Female Group: (3) 500 PPM

Printed on 06-09-1993. Accession Number: 735 Fate: (Day= 90) Scheduled Euthanasia

<u>Microscopic Observations:</u>

Aorta

-Tissue Not Present

Liver

-Microgranuloma, trace

Cytoplasmic vacuolization, moderate

Skin

-Tissue Not Present

Thymus

-Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Species: Rat

Project Number: 55-YJ81-91

Sex: Female Group: (3) 500 PPM Animal Number: 92.0766

Printed on 06-09-1993. Accession Number: 735 Fate: (Day= 90) Scheduled Euthanasia

<u>Microscopic Observations</u> (continued):

The following tissues were found to be within normal limits (continued): Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Eye, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Sex: Female Group: (3) 500 PPM Animat Number: 92.0767

Printed on 06-09-1993. Accession Number: 787 Fate: (Day= 90) Scheduled Euthanasia

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow) Femur, Brain, Cerebellum, Brain, Cerebrum,

Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,

Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland,

Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus,

Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Marian

Animal Number: 92.0768 Sex: Female Group: (3) 500 PPM

Printed on 06-09-1993. Accession Number: 759 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Liver Parathyroid

Thyroid Uterus

-Microgranuloma, trace -One of pair present Within Normal Limits -Embryonic remnant -Hydrometra, mild

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulia, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Tongue, Trachea, Urinary Bladder, Vagina.

Species: Rat

Project Number: 55-YJ81-91

Summarized STAR Page: 77

2 - Slocks : slider #/2 (see 92.0767)

Animal Number: 92.0769 Sex: Female Group: (3) 500 PPM

Fate: (Day≠ 90) Scheduled Euthanasia Printed on O6-09-1993. Accession Number: 724

Microscopic Observations:

Liver Parathyroid Uterus -Microgranuloma, trace -Not in plane of section

-Hydrometra, mild

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Vagina.

Animal Number: 92.0770 Sex: Female Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 749

Microscopic Observations:

Liver

-Microgranuloma, trace

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0771 Sex: Female Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 755

Microscopic Observations:

Liver Parathyroid -Microgranuloma, trace -One of pair present Within Normal Limits -Hemorrhage, trace

Thymus

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,
Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland,
Kidney, Lung, Eymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland,
Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid,
Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0772 Sex: Female Group: (3) 500 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 742

Microscopic Observations:

Parathyroid -One of pair present

Within Normal Limits

Thymus -Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0733 Sex: Male Group: (4) 1000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 642

Microscopic Observations:

Lung

Liver -Cytoplasmic vacuolization, moderate

Microgranuloma, trace -Hemorrhage, mild -One of pair present

Parathyroid -One of pair present
Within Normal Limits

Prostate - Inflammation, subacute, trace
Testis - Dilatation, tubular, mild
Thyroid - One of pair present
Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0734 Sex: Male Group: (4) 1000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 694

Microscopic Observations:

Kidney - Intratubular proteinic material, trace

Regeneration, tubular, trace

- Cytoplasmic vacuolization, moderate

Pancreas - Inflammation, subacute, trace

Parathyroid -One of pair present

Within Normal Limits

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0734 Sex: Male Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 694 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations (continued):

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Lung, Lymph Node, Nerve, Peripheral, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Sex: Male Group: (4) 1000 PPM Animal Number: 92.0735

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 662

Microscopic Observations:

Kidney Liver

Parathyroid

Testis

-Intratubular proteinic material, trace

-Microgranuloma, trace

Cytoplasmic vacuolization, moderate

-One of pair present Within Normal Limits -Dilatation, tubular, mild Hypospermatogenesis, mild

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0736 Sex: Male Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 701 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Epididymis Heart Liver Pancreas

Parathyroid

Prostate Testis

-Hypospermia, moderate -Cardiomyopathy, mild

-Cytoplasmic vacuolization, moderate

-Inflammation, subacute, trace -One of pair present Within Normal Limits

-Inflammation, subacute, trace -Hypospermatogenesis, moderate

-Hemorrhage, trace

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0736 Sex: Male Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 701 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations (continued):

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pituitary, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid,

Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0737 Sex: Male Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 656 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Kidney Liver

Lung Parathyroid Testis

Thymus Thyroid -Regeneration, tubular, trace

-Cytoplasmic vacuolization, moderate

Microgranuloma, trace

-Inflammation, interstitial, trace

-Not in plane of section -Hypospermatogenesis, moderate

-Hemorrhage, trace -Embryonic remnant

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulia, Aorta, Bone Marrow, Femur, Brain, Cerebelium, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0738 Sex: Male Group: (4) 1000 PPM

Printed on O6-09-1993. Accession Number: 681 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Liver

Parathyroid

-Cytoplasmic vacuolization, moderate

-One of pair present Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart,

Species: Rat

Project Number: 55-YJ81-91

Sex: Male Group: (4) 1000 PPM Animal Number: 92.0738

Printed on 06-09-1993. Accession Number: 681 Fate: (Day≃ 90) Scheduled Euthanasia

Microscopic Observations (continued):

The following tissues were found to be within normal limits (continued): Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0739 Sex: Male Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 688 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

-Hypospermia, severe Epididymis

Inflammation, granulomatous, moderate -Cytoplasmic vacuolization, moderate Liver -Inflammation, subacute, moderate **Pancreas**

-Hypospermatogenesis, severe Testis

-Hemorrhage, trace Thymus

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0740 Sex: Male Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 640 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

-Tissue Not Present Aorta

-Inflammation, interstitial, trace Kidney Regeneration, tubular, trace

-Microgranuloma, trace Liver

Cytoplasmic vacuolization, moderate

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

Group: (4) 1000 PPM Animal Number: 92.0741 Sex: Male

Printed on 06-09-1993. Accession Number: 654 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Epididymis Liver Luna

Parathyroid

Testis Thymus -Hypospermia, severe

-Cytoplasmic vacuolization, moderate

-Alveolar histiocytosis, trace

-One of pair present Within Normal Limits

-Hypospermatogenesis, severe

-Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0742 Sex: Male Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 661 Fate: (Day= 90) Scheduled Euthanasia

<u>Microscopic Observations:</u>

Liver

Lung Urinary Bladder -Cytoplasmic vacuolization, moderate Microgranuloma, trace

-Alveolar histiocytosis, trace

-Tissue Not Present

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Epididymis, Esophagus, Heart, Intestine, Kidney, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Testis, Thymus, Thyroid, Tongue, Trachea.

Sex: Female Group: (4) 1000 PPM Animal Number: 92.0773

Printed on 06-09-1993. Accession Number: 732 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Parathyroid

-Not in plane of section

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,

Species: Rat

Project Number: 55-YJ81-91

Sex: Female Group: (4) 1000 PPM Animal Number: 92.0773

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 732

Microscopic Observations (continued):

The following tissues were found to be within normal limits (continued): Kidney, Liver, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0774 Sex: Female Group: (4) 1000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 776

Microscopic Observations:

Liver Parathyroid -Microgranuloma, trace -One of pair present Within Normal Limits

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0775 Sex: Female Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 774 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Kidney

Liver

Thyroid

Uterus

-Regeneration, tubular, mild Intratubular proteinic material, mild

-Cytopiasmic vacuolization, moderate

Microgranuloma, trace

Inflammation, subacute, portal, trace

-One of pair present Within Normal Limits -Hydrometra, moderate

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Tongue, Trachea, Urinary Bladder, Vagina.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0776 Sex: Female Group: (4) 1000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 730

Microscopic Observations:

Liver -Microgranuloma, trace

Cytoplasmic vacuolization, mild

Parathyroid -One of pair present

Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Çerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0777 Sex: Female Group: (4) 1000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 751

Microscopic Observations:

Liver - Cytoplasmic vacuolization, moderate

Inflammation, subacute, portal, trace

Parathyroid -One of pair present
Within Normal Limits

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0778 Sex: Female Group: (4) 1000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 740

Microscopic Observations:

Adrenal Medulla -One of pair present
Within Normal Limits

Liver -Microgranuloma, trace

Cytoplasmic vacuolization, moderate

Parathyroid -One of pair present
Within Normal Limits

Uterus -Hydrometra, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Species: Rat

Project Number: 55-YJ81-91

Sex: Female Group: (4) 1000 PPM Animal Number: 92.0778

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 740

<u>Microscopic Observations</u> (continued):

The following tissues were found to be within normal limits (continued): Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Vagina.

Animal Number: 92.0779 Sex: Female Group: (4) 1000 PPN

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 781

Microscopic Observations:

-Tissue Not Present Aorta -Microgranuloma, trace Liver

Cytoplasmic vacuolization, moderate

-One of pair present Parathyroid Within Normal Limits -Hemorrhage, trace

Thymus -One of pair present Tongue Within Normal Limits

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Eye, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular,

Stomach, Nonglandular, Thyroid, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92,0780 Sex: Female Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 794 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

-One of pair present Adrenal Medulla Within Normal Limits

-Microgranuloma, trace Liver

Cytoplasmic vacuolization, moderate

-Not in plane of section Parathyroid -Hemorrhage, trace Thymus -Embryonic remnant Thyroid

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, -----

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0780 Sex: Female Group: (4) 1000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 794

<u>Microscopic Observations</u> (continued):

The following tissues were found to be within normal limits (continued): Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0781. Sex: Female Group: (4) 1000 PPM

Printed on 06-09-1993. Accession Number: 757 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Liver

-Cytoplasmic vacuolization, moderate Microgranuloma, trace Inflammation, subacute, portal, trace -One of pair present

Parathyroid

Within Normal Limits

Thyroid

-Embryonic remnant

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,

Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0782 Sex: Female Group: (4) 1000 PPM Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 750

Microscopic Observations:

Liver

-Cytoplasmic vacuolization, moderate Microgranuloma, trace

Thymus

-Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Monglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0743 Sex: Male Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 663

Microscopic Observations:

Epididymis Heart

Kidney Liver -Hypospermia, moderate

-Cardiomyopathy, mild

-Regeneration, tubular, trace
-Necrosis, coagulative, focal, mild
Cytoplasmic vacuolization, severe
Inflammation, subacute, portal, trace

-Hypospermatogenesis, moderate

Testis

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Intestine, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0744 Sex: Male Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 678

Microscopic Observations:

Epididymis Heart Kidney Liver -Hypospermia, severe
-Cardiomyopathy, mild
-Hydronephrosis, moderate
-Microgranuloma, trace

Inflammation, subacute, portal, trace Cytoplasmic vacuolization, severe

Parathyroid

Testis

-One of pair present
Within Normal Limits
-Hypospermatogenesis, severe
Granuloma, spermatic, mild

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Obiongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Intestine, Lung,
Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle,
Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus,
Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0745 Sex: Male Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 634

Microscopic Observations:

Prostate

Epididymis -Hypospermia, severe
Heart -Cardiomyopathy, mild
Intestine -Within Normal Limits

Only two sections of intestine present.

Kidney -Regeneration, tubular, trace

Intratubular proteinic material, trace
Inflammation, interstitial, trace

Liver -Microgranuloma, trace

Cytoplasmic vacuolization, moderate
-Inflammation, chronic active, severe

Testis -Hypospermatogenesis, severe

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0746 Sex: Male Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on O6-09-1993. Accession Number: 641

Microscopic Observations:

Aorta -Tissue Not Present

Epididymis -Hypospermia, severe

Heart -Cardiomyopathy, mild

Kidney -Hydronephrosis, moderate

Liver -Cytoplasmic vacuolization, moderate
Inflammation, subacute, trace

Microgranuloma, trace

Parathyroid -Not in plane of section
Prostate -Inflammation, subacute, mild
Testis -Hypospermatogenesis, severe

Thyroid -Embryonic remnant

The following tissues were found to be within normal limits:
Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Intestine, Lung,

Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Salivary Gland, Seminal Vesicle,

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0746 Sex: Male Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia . Printed on 06-09-1993. Accession Number: 641

Microscopic Observations (continued):

The following tissues were found to be within normal limits (continued):

Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus,

Tongue, Trachea, Urinary Bladder.

Animai Number: 92.0747 Sex: Nale Group: (5) 2000 PPM

Fate: (Day= 9D) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 690

Microscopic Observations:

Parathyroid

-Hypospermia, severe **Epididymis** -Cardiomyopathy; trace Heart

-Regeneration, tubular, trace Kidney

-Cytoplasmic vacuolization, moderate Liver

Microgranuloma, trace -One of pair present

Within Normal Limits -Hypospermatogenesis, severe Testis

-Hemorrhage, trace Thymus -Embryonic remnant Thyroid

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Intestine, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0748 Sex: Male Group: (5) 2000 PPM

Printed on 06-09-1993. Accession Number: 649 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

-One of pair present Adrenal Medulla Within Normal Limits -Hypospermia, moderate

Epididymis Inflammation, subacute, trace

-Cardiomyopathy, trace Heart

-Cytoplasmic vacuolization, moderate Liver Inflammation, subacute, portal, mild

-Not in plane of section Parathyroid -Tissue Not Present Pituitary

-Hypospermatogenesis, moderate

Testis -Hemorrhage, trace Thymus

Species: Rat

Project Number: 55-YJ81-91 Summarized STAR Page: 90

Animal Number: 92.0748 Sex: Male Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 649

<u>Microscopic Observations</u> (continued):

Thyroid

-One of pair present Within Normal Limits

The following tissues were found to be within normal limits:
Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Intestine, Kidney,
Lung, Lymph Node, Nerve, Peripheral, Pancreas, Prostate, Salivary Gland, Seminal Vesicle,
Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue,
Trachea, Urinary Bladder.

Animal Number: 92.0749 Sex: Male Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 679

Microscopic Observations:

Heart

Aorta - Tissue Not Present
Brain, Cerebellum - Tissue Not Present
Brain, Cerebrum - Tissue Not Present
Brain, Medulla Oblongata - Tissue Not Present
Brain, Midbrain - Tissue Not Present
Brain, Pons - Tissue Not Present

Brain, Pons -Tissue Not Present
Epididymis -One of pair present
Hypospermia, moderate

General Comments - Cassette #1 has three sections of intestine

rather than brain.
-Cardiomyopathy, mild

Liver -Cytoplasmic vacuolization, moderate
Inflammation, subacute, portal, trace

Parathyroid -One of pair present
Within Normal Limits

Testis -Hypospermatogenesis, moderate

Thymus -Hemorrhage, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Duodenum, Esophagus, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0750 Sex: Male Group: (5) 2000 PPM

Printed on 06-09-1993. Accession Number: 643 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Aorta **Epididymis**

Kidney

Liver **Pancreas** Testis

-Tissue Not Present

-Hypospermia, moderate

-Intratubular proteinic material, trace

Regeneration, tubular, trace

-Cytoplasmic vacuolization, moderate

-Inflammation, subacute, mild

-Hypospermatogenesis, moderate

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Lung, Lymph Node, Nerve, Peripheral, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0751 Sex: Male Group: (5) 2000 PPM

Printed on 06-09-1993. Accession Number: 675 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Epididymis Kidney

-Hypospermia, moderate

-Hemorrhage, severe

Intratubular proteinic material, trace

Necrosis, severe

-Cytoplasmic vacuolization, moderate Inflammation, subacute, portal, trace

-Alveolar histiocytosis, trace

-One of pair present Within Normal Limits

-Inflammation, subacute, capsular, moderate

-Hypospermatogenesis, severe

Liver

Lung Parathyroid

Spleen Testis

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Lymph Node, Nerve, Peripheral, Pancreas, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0752 Sex: Male Group: (5) 2000 PPM

Printed on 06-09-1993. Accession Number: 632 Fate: (Day≂ 90) Scheduled Euthanasia

Microscopic Observations:

Liver

-One of pair present Adrenal Medulla Within Normal Limits

-Hypospermia, severe Epididymis

Granuloma, spermatic, moderate

-Cardiomyopathy, mild Heart

-Cytoplasmic vacuolization, moderate

Microgranuloma, trace

-Hypospermatogenesis, severe Testis

The following tissues were found to be within normal limits: Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Pancreas, Parathyroid, Pituitary, Prostate, Salivary Gland, Seminal Vesicle, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder.

Animal Number: 92.0783 Sex: Female Group: (5) 2000 PPM

Printed on O6-09-1993. Accession Number: 768 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

-Tissue Not Present Aorta -Nicrogranuloma, trace Liver

Cytoplasmic vacuolization, moderate

-One of pair present Parathyroid Within Normal Limits -Tissue Not Present Skin

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Animal Number: 92.0784 Sex: Female Group: (5) 2000 PPM

Printed on 06-09-1993. Accession Number: 761 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

-Cytoplasmic vacuolization, moderate Liver

Microgranuloma, trace

Luna -Alveolar histiocytosis, trace

-Embryonic remnant Thyroid Urinary Bladder -Tissue Not Present -Tissue Not Present Uterus Vagina -Tissue Not Present

The following tissues were found to be within normal limits:

Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Tongue, Trachea.

Animal Number: 92.0785 Sex: Female Group: (5) 2000 PPM

Printed on 06-09-1993. Accession Number: 784 Fate: (Day= 90) Scheduled Euthanasia

<u>Microscopic Observations:</u>

Liver

Adrenal Cortex -One of pair present

Within Normal Limits -One of pair present

Adrenal Medulla Within Normal Limits

-Cytoplasmic vacuolization, moderate

Microgranuloma, trace

Lung -Alveolar histiocytosis, trace

Parathyroid -One of pair present

Within Normal Limits Thymus -Hemorrhage, trace -One of pair present

Thyroid Within Normal Limits

The following tissues were found to be within normal limits:

Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0786 Sex: Female Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 771

Microscopic Observations:

Adrenal Medulla

-One of pair present Within Normal Limits

Liver

-Cytoplasmic vacuolization, moderate

Lymph Node Thymus Uterus

Microgranuloma, trace -Sequestered blood, mild -Hemorrhage, trace

-Hydrometra, trace

The following tissues were found to be within normal limits:

Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid, Tongue, Trachea, Urinary Bladder, Vagina.

Animal Number: 92.0787 Sex: Female Group: (5) 2000 PPN

Fate: (Day= 90) Scheduled Euthanasia

Printed on 06-09-1993. Accession Number: 778

Microscopic Observations:

Liver

-Cytoplasmic vacuolization, mild

Lung Parathyroid -Hemorrhage, trace -One of pair present Within Normal Limits

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0788 Sex: Female Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia

Printed on 06-09-1993. Accession Number: 725

Microscopic Observations:

Adrenai Medulla

-One of pair present Within Normal Limits

Liver

-Microgranuloma, trace Cytoplasmic vacuolization, mild

Parathyroid

-One of pair present

Within Normal Limits

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0788 Sex: Female Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 725

<u>Microscopic Observations</u> (continued):

Thymus

-Hemorrhage, trace

The following tissues were found to be within normal limits:
Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,
Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland,
Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid,
Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0789 Sex: Female Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 715

Microscopic Observations:

Adrenal Medulla

-One of pair present Within Normal Limits

Liver

-Cytoplasmic vacuolization, moderate Microgranuloma, trace

Inflammation, subacute, portal, trace

Pituitary Thymus ~Tissue Not Present -Hemorrhage, trace

The following tissues were found to be within normal limits:
Adrenal Cortex, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,
Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Parathyroid, Salivary Gland,
Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Thyroid,
Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Animal Number: 92.0790 Sex: Female Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 727

Microscopic Observations:

Kidney

-Intratubular proteinic material, mild Regeneration, tubular, mild

Liver

-Microgranuloma, trace
Inflammation, subacute, portal, trace
Cytoplasmic vacuolization, severe

Parathyroid Stomach, Glandular -Not in plane of section
-Mineralization, moderate

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Species: Rat

Project Number: 55-YJ81-91

90-DAY FEEDING STUDY OF 4-AMINO, 2-NITROTOLUENE IN RATS

Sex: Female Group: (5) 2000 PPM Animal Number: 92.0790

Printed on 06-09-1993. Accession Number: 727 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations (continued):

The following tissues were found to be within normal limits (continued): Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Nonglandular, Thymus, Thyroid, Tongue, Trachea, Urinary Bladder, Uterus, Vagina.

Sex: Female Group: (5) 2000 PPN Animal Number: 92.0791

Printed on 06-09-1993. Accession Number: 736 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Liver

-Microgranuloma, trace

Cytoplasmic vacuolization, severe

Parathyroid Thyroid

-Not in plane of section -One of pair present

Within Normal Limits -Tissue Not Present

Urinary Bladder

Uterus

-Hydrometra, mild

The following tissues were found to be within normal Limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum, Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine, Kidney, Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland, Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Monglandular, Thymus, Tongue, Trachea, Vagina.

Sex: Female Group: (5) 2000 PPM Animal Number: 92.0792

Printed on 06-09-1993. Accession Number: 714 Fate: (Day= 90) Scheduled Euthanasia

Microscopic Observations:

Kidney Liver

-Regeneration, tubular, trace

-Cytoplasmic vacuolization, moderate

Parathyroid

Microgranuloma, trace -One of pair present Within Normal Limits

Thymus Thyroid -Hemorrhage, trace

Urinary Bladder

-Embryonic remnant -Tissue Not Present

The following tissues were found to be within normal limits: Adrenal Cortex, Adrenal Medulla, Aorta, Bone Marrow, Femur, Brain, Cerebellum, Brain, Cerebrum,

Species: Rat

Project Number: 55-YJ81-91

Animal Number: 92.0792 Sex: Female Group: (5) 2000 PPM

Fate: (Day= 90) Scheduled Euthanasia Printed on 06-09-1993. Accession Number: 714

Microscopic Observations (continued):

The following tissues were found to be within normal limits (continued):
Brain, Medulla Oblongata, Brain, Midbrain, Brain, Pons, Duodenum, Esophagus, Heart, Intestine,
Lung, Lymph Node, Nerve, Peripheral, Ovary, Pancreas, Pituitary, Salivary Gland,
Skeletal Muscle, Skin, Spinal Cord, Spleen, Stomach, Glandular, Stomach, Nonglandular, Tongue,
Trachea, Uterus, Vagina.

Species: Rat

Project Number: 55-YJ81-91

George A. Parker, D.V.M., Ltd.

Veterinary Pathologist 111-A Carpenter Drive P.O. Box 1278 Sterling, VA 20167-8424

Telephone (703) 481-1122

Fax (703) 481-3224

Mrs. Pat Beall US Army Environmental Hygiene Agency Tox Division, Bldg E-2100 Aberdeen Proving Ground, MD 21010-5422

June 10, 1993

Dear Mrs. Beall:

Enclosed are two copies of the pathology report, microslides, paraffin blocks, and histology processing records from 100 rats from the 90-day feeding study of 4-amino, 2-nitrotoluene.

The report is signed, and can be considered a final report if there are no revisions. If there are any revisions, this version will be considered as a draft report.

Sincerely yours,

George A. Parker, DVM