Tmap		Data Cycle Test
	ТМар	
		Design Technique – Data Cycle Test(DCyT)

Lesson Objectives

- Description of Data Cycle Test
- Steps of DCyT
- Example of DCyT
- Variations

11.1 Data Cycle Test

- Aim
 - Detailed testing of functionality; Integration of functions and data
 - Thorough coverage of decision points
- Deriving Principle
 - Coverage type 'CRUD'
 - For coverage of the life cycle of data
 - Coverage type 'Decision points': Decision Coverage
 - For coverage of application integrity rules
- Test Basis
 - CRUD-matrix
 - Description of applicable integrity rules
 - Functions description of detailed domain expertise
- Quality Characteristics
 - Functionality , Connectivity, Suitability.

11.2 Steps

- Identify test situations
- Specify logical test cases
- Create physical test cases
- Establish the initial data set
- Assemble the test script

11. 3 Example Situation

- Taxes
- Part of a system creates tax assessments for tax payers.
 - The following data hereby are relevant:
 - The personal data of the taxpayer
 - The taxable income (this will be determined in another part of the system)
 - The tariff levels
 - The valid tax tariff for each tariff level

Step 1: Identify test situations

With regard to CRUD

- Determine to be tested data items
- Determine the functions that make use of these data items
- Fill in the relevant part of CRUD-matrix
- Each processing step (C,R,U or D) is a test situation with regard to integrity rules
- Gather integrity rules on the selected data items
- Apply Decision Coverage

Step 1.1Determine to be tested data items

Taxes

The data (entities) to be tested by means of DCyT are:

- Taxpayer
- Taxable income (only for R, read)
- Tariff level
- Tariff
- Assessment

11.3 Example

Step 1.2 Determine to be tested functions

Taxes

The functions that make use of these entities, are (within the scope of the test):

- Add Personal data
- Modify personal data
- View personal data
- Approve/delete personal data
- Maintain tariff level
- Maintain tariff
- Create assessment
- Print assessment

11.3 Example

Step 1.5 Gather Integrity rules

- Integrity rules between entities
- Sources of information: Data model, Description of functions
- Examples:
- Entity B must be deleted if entity A is deleted
- Entity A cannot be deleted as long as records exist in Entity B
- Entity A can only be created, if entity B is also created

Taxes example:

For this set of data and functions one integrity rule applies:

A tariff level may not be deleted if there is still an entry in 'tariff' that is connected to this tariff level

Step 1.6 Apply Decision Coverage

Taxes

The application of Decision Coverage on this integrity leads to the following two

test situations:

- IR1-1 Delete (D) tariff level while corresponding tariff is not deleted
- IR1-2 Delete (D) tariff level while no corresponding tariff exists

11.3 Example

Step 2. Specify logical test cases

Create one or more logical test cases, in such a way that:

- Each data item goes through a full life cycle (starting from 'C' ending in 'D')
- All test situations from the CRUD-matrix are covered
- All test situations from the relevant integrity rules are covered

A test case therefore describes a complete scenario that consists of several actions, each of which performs a process on a particular entity.

Step 2 Specify logical test cases Taxes Entity Tariff level Maintain tariff level С Add a new tariff level in TS-01 Maintain tariff Check TS-01 U Modify TS-01 (example. Boundary level) in TS-01B Maintain tariff level Maintain tariff level Check TS-01B Maintain tariff Create tariff T-01 in TS-01B Create assessment Create assessment ASL-01, for which part of the taxable income is in tariff level TS-01B Print assessment Check ASL-01 Maintain tariff level D IR1-1 Error handling! Maintain tariff Check TS-01B:still existing Maintain tariff Delete tariff T-01 Maintain tariff level D IR1-2 -> allowed Maintain tariff Check TS-01B has been deleted **Capgemini**

11.3 Example

Step 3. Create physical test cases

To create physical testcases the following details are added:

- 1. By which mode the relevant function is activated (optional)
- 2. Which data has to be entered
- 3. A concrete description of what needs to be checked for a specific data item
- 4. Extra actions needed to facilitate the following action in the test case.

11.3 Example

Step 4. Establish the initial data set

- Data is established on:
 - Overall system level
 - Sometimes even on a higher level (over multiple systems)
- Substantial starting point
 - Databases for all relevant systems in which all data is filled consistently
 - Configuration in which all necessary system are connected
 - All required users need to be defined with their subsequent access rights
- Whenever possible make use of existing 'real life' Test environment
- Note: possible limited validity of certain data (for e.g. Validation on date)

Step 5. Assemble the test script

- Form and content are specific to organization
- Does not differ per test technique

11.4 Variation

More thorough coverage by means of the following coverage types:

- CRUD
 - Choose a variation of CRUD with more checks (R's) for testing the lifecycle data
- Modify Condition/Decision Coverage
 - More in depth testing of integrity rules
- Multiple Condition Coverage
 - More in depth testing of integrity rules

Data Cycle Test in Short - 1

- Identify test situations
 - Create CRUD-matrix:
 - Inventory entities and functions
 - Establish relevant processing step(s) per function/entity
 - Possible processing steps: C,R,U,D
 - Check completeness of design
 - Inventory of integrity rules
 - Integrity checks between entities
 - Sources of information: Data model, Description of functions
 - Examples:
 - Entity B must be deleted if entity A is deleted
 - Entity A cannot be deleted as long as records exist in Entity B
 Entity A can only be created, if entity B is also created

1.4 Variations

Data Cycle Test in Short -2

- Specify test cases (LTC and afterwards PTC)
- Determine test actions and checks for each entity
- Possible actions and checks:
 - · Checks (action)
 - Read (check) after each test action
 - Update (Action)
 - Delete (action)
 - Simulate valid and non valid situations for integrity control (action)
- Establish initial data set
- Mind the data necessary for integrity control
- Assemble test script

Summary

- Discussed Design Technique Data Cycle Test
- The steps to design test cases using this method is discussed
- An example of this is discussed
- Variations of DCyT

Copyright © Capgemini 2015. All Rights Reserved

Add the notes here.

Review Question

- The Quality Characteristics of DCyT
 - Functionality
 - Connectivity
 - Suitability
 - Integrity
- Which of the following is not part of DCyT steps
 - Determine the functions that make use of these data items
 - Each data item goes through a full life cycle
 - Identify Decision points
 - Data is established on Overall system level

Copyright © Capgemini 2015, All Rights Reserved

Add the notes here.