1. Representación de la información

1.1.

a) **16 bits** b) **327680 bits** c) **17.179.869.184 bits** 536.870.912 bits

d)

<u>1.2.</u>

$$80 * 2^{10} * 2^{10} * 2^{10} = 80 * 2^{30} B$$

1.3.

a) 1,44 MB = 1,44 *
$$2^{10}$$
 * 2^{10} * 2^{3} = 1,44 * 2 * 2^{3} bits

b) 17 GB = 17 *
$$2^{10}$$
 * 2^{10} * 2^{10} * 2^{3} = **17** * **2** * **33 bits**

<u>1.4.</u>

2340 palabras * 4 caracteres * 8bits = **74.880 bits**

<u>1.5.</u>

125 alumnos * (30+50) caracteres = 10.000 B = 9,77 MB

1.6.

a) Nombre (40 caracteres) = **320 bits** Dirección (40 caracteres) = **320 bits** NIF (9 caracteres) = 72 bitsTeléfono (9 caracteres) = **72 bits**

b) Bits totales =
$$2*320 + 2*72 = 784$$
 bits

c)
$$1200 * 784 = 940800$$
 bits

1.7.

a)
$$10 = 2^1 = 2$$

b)
$$101 = 2^0 + 2^2 = 5$$

c)
$$1111 = 2^0 + 2^1 + 2^2 + 2^3 = 15$$

d)
$$1100 = 2^2 + 2^3 = 12$$

1.8.

d)
$$14 = 1110$$

b)
$$9 = 1001$$

e)
$$70 = 1000110$$

c)
$$21 = 10101$$

<u>1.9.</u>

a) 7 días de la semana = log_2 7 = 3

f) 65 = 1000001

- b) 16 asignaturas = $\log_2 16 = 4$
- c) $32 \text{ ciudades} = \log_2 32 = 5$
- d) 900 productos = $log_2 900 = 10$

<u>1.10.</u>

1.11.

- a) $20 \text{ símbolos} = \log_2 20 = 5$
- b) $5 \text{ símbolos} = \log_2 5 = 3$
- c) $100 \text{ símbolos} = \log_2 100 = 7$

1.12.

- a) $108 \text{ caracteres} = \log_2 108 = 7$
- b) 200 caracteres = $\log_2 200 = 8$
- c) $512 \text{ caracteres} = \log_2 512 = 9$
- d) $1000 \text{ caracteres} = \log_2 1000 = 10$