

Mini Project

Blood Bank Management System

Course Title: **Database Systems**

Course Code: CSE302

Lab Instructor: Nishat Tasnim Niloy

Section: 04

Group: Hop Monster Theory

Member 1: Samiu Esika Upoma Member 2: Israfil Arman

Member 3: **Zarin Tasnim Nuzhat** Member 4: **Md. Habibuzzaman**

ID: 2020-1-60-211 ID: 2020-1-60-212

Date of submission: 18-04-2022

Story

ER diagrams are usually used to resolve some sort of issue and so they always have a certain

problem to solve. In the Blood Bank Management System, we have tried to solve as much problem

as possible. Here, all the tables have one primary key to identify them distinctly and foreign

key/keys to create link between tables. Moreover, we have created roles to maintain authorization

above the data in the database. Furthermore, we have implemented normalization to reduce

delicacy of records.

Actual Data Objects

User: user id, user name, user cont, user email, user add

Authentication: ath_id, ath_role_id, ath_user_name, user_pass

Roles: role_id, role_name, role_desc

Permission: per_id, per_role_id, per_limit, per_name

Patient: pat_id, pat_name, pat_gender, pat_age, pat_cont, pat_email, pat_add

Donor: dnr_id, dnr_name, dnr_gender, pat_age, dnr_cont, dnr_email, dnr_add

Blood: bld_id, bld_grp, bld_bank, bld_cells, bld_desc

Stock: stk_id, stk_bld_id, stk_num, stk_desc

Relation among Data Objects

ER Diagram

Schema Tables

Table 1: Schema table for User

User		
Attributes	Types	Size
user_id	int	10
user_name	varchar	50
user_cont	int	40
user_email	varchar	50
user_add	varchar	255

Table 2: Schema table for Authentication

Authentication		
Attributes	Types	Size
ath_id	int	10
ath_role_id	int	10
ath_user_name	varchar	50
ath_pass	varchar	25

Table 3: Schema table for Roles

Roles		
Attributes	Types	Size
role_id	int	10
role_name	varchar	50
role_desc	varchar	255

Table 4: Schema table for Permission

Permission		
Attributes	Types	Size
per_id	int	10
per_role_id	int	10
per_limit	varchar	25
per_name	varchar	30

Table 5: Schema table for Patient

Patient		
Attributes	Types	Size
pat_id	int	10
pat_name	varchar	50
pat_gender	varchar	10
pat_age	int	3
pat_cont	varchar	40
pat_email	varchar	50
pat_add	varchar	255

Table 6: Schema table Donor

Donor		
Attributes	Types	Size
dnr_id	int	10
dnr_name	varchar	50
dnr_gender	varchar	10
dnr_age	int	3
dnr_cont	varchar	40
dnr_email	varchar	50
dnr_add	varchar	255

Table 7: Schema table Blood

Blood		
Attributes	Types	Size
bld	varchar	10
bld_grp	varchar	5
bld_bank	varchar	25
bld_cells	varchar	25
bld_desc	varchar	255

Table 8: Schema table Stock

Stock		
Attributes	Types	Size
stk_id	int	100
stk_bld_id	int	10
stk_num	int	100
stk_desc	varchar	255

Creating the database **Blood Bank Manegement System** and creating the tables from given ER diagram:

Adding the attributes in table **user** which have five attributes with one primary key:

Primary key(user_name)

Adding the attributes in table **authentication** which have four attributes, one primary key and two foreign key:

Primary key(ath_id), foreign keys(ath_role_id,ath_user_name)

Adding the attributes in table **roles** which have three attributes with one primary key:

Primary key(role_id)

Adding the attributes in table **permission** which have four attributes, one primary key and one foreign key:

Primary key(per_id), foreign key(per_role_id)

Adding the attributes in table **patient** which have seven attributes with one primary key:

Primary key(pat_id)

Adding the attributes in table **donor** which have seven attributes with one primary key:

Primary key(dnr_id)

Adding the attributes in table **blood** which have five attributes with one primary key:

Primary key(bld_id)

Adding the attributes in table **stock** which have four attributes, one primary key and one foreign key:

Primary key(stk_id), foreign key(stk_bld_id)

Inserting the values into table **user**:

Inserting the values into table authentication:

Inserting the values into table **roles**:

Inserting the values into table **permission**:

Inserting the values into table **patient**:

Inserting the values into table **donor**:

Inserting the values into table **blood**:

Inserting the values into table **stock**:

