LC 05 : Oxydants et réducteurs

Niveau: lycée

<u>Prérequis</u>:

- Acides et bases : pKa
- Notions d'électricité : courant, tension, potentiel
- Equation de réaction

Piles Daniell en série

• Identifier les réactifs mis en jeu et les couples impliqués.

• Identifier les réactifs mis en jeu et les couples impliqués.

 Ecrire les deux demi-équations d'oxydoréduction avec les réactifs à gauche.

• Identifier les réactifs mis en jeu et les couples impliqués.

 Ecrire les deux demi-équations d'oxydoréduction avec les réactifs à gauche.

 Si nécessaire : multiplier une ou deux demi-équation(s) pour avoir le même nombre d'électrons cédés et captés.

• Identifier les réactifs mis en jeu et les couples impliqués.

 Ecrire les deux demi-équations d'oxydoréduction avec les réactifs à gauche.

• Si nécessaire : multiplier une ou deux demi-équation(s) pour avoir le même nombre d'électrons cédés et captés.

• Sommer les demi-équations.

Manipulation: sens d'évolution

solide : $Cu_{(s)}$

Solution de sel de

Mohr : $Fe_{(aq)}^{2+}$

Manipulation : sens d'évolution

Force d'un oxydant

Demi-pile: schémas

Les deux espèces du couple Ox/Red sont en présence

Electrode standard de référence (ESH)

<u>Définition</u>: platine (conducteur) plongé dans une solution de pH = 0 se comportant comme une solution infiniment diluée, dans laquelle barbote $H_2(g)$ sous P = 1 bar.

$$2H_{(aq)}^{+} = H_{2(g)} + 2e^{-}$$

Demi-pile fictive : pas réalisable en pratique

Vérification de la loi de Nernst

Sens d'évolution et égalité des potentiels
$$E_1 = E^{\circ}(Cu/Cu^{2+}) + 0.03log(\frac{[Cu^{2+}(aq)]}{C^{\circ}})$$

$$Zn_{(aq)}^{2+} = E_2 Zn_{(s)}$$

$$E_2 = E^{\circ}(Zn/Zn^{2+}) + 0.03log(\frac{[Zn^{2+}(aq)]}{C^{\circ}})$$

$$E_1 = E^{\circ}(Cu/Cu^{2+}) + 0.03log(\frac{[Cu^{2+}(aq)]}{C^{\circ}})$$

$$E_2 = E^{\circ}(Zn/Zn^{2+}) + 0.03log(\frac{[Zn^{2+}(aq)]}{C^{\circ}})$$

Demi-piles Daniell

Pile Daniell et électrodes

Piles Daniell en série

Annexe

Différents types d'electrodes

Electrode de première espèce		Electrode de deuxième espèce	Electrode de troisième espèce
Métal M plongeant dans une solution de ses cations M^{n+}	Lame de Pt platiné dans une solution contenant soit Ox soit Red, le conjugué étant un gaz barbotant dans la solution	Métal M en contact avec un composé ionique peu soluble contenant l'un de ses ions formant ainsi la demi-pile MxAy (s) / M - Electrode au calomel saturé - Electrode de chlorure d'argent	Métal inerte plongé dans une solution contenant les espèces Ox et Red du couple
$Cu_{(s)}$ $Cu_{(aq)}^{2+}$	dihydrogène électrode de platine recouverte de noir de platine solution acide	tête	$Fe_{(aq)}^{2+}, Fe_{(aq)}^{3+}$