Chapter 11 Reinforcement Learning

Contents

11 Reinforcement Learning			1
11.1 TD Learning			2
11.2 SARSA			2
11.3 <i>Q</i> -Learning			3
11.4 Deep Q -Learning			3
11.5 Policy Gradient Methods			4
11.6 Actor-Critic			4

11.1 TD Learning

Algorithm 11.1 Tabular TD(0) for estimating v_{π}

- 1: **function** $TD(\pi)$: the policy to be evaluated)
- 2: Initialize V(s) arbitrarily (e.g., $V(s) = 0, \forall s \in S^+$)
- 3: end function
 - Model-free
 - Off-policy
 - Discrete action and state spaces

11.2 **SARSA**

- SARSA works by learning a state-action value function rather than a state value function like TD learning.
- SARSA explore the transitions from one state-action pair to another state-action pair and learns the state-action value function.
- In on-policy learning, the optimal value function is learned from actions taken using the current policy.

• Update rule:

$$Q(S_t, A_t) = \tag{11.1}$$

• As in all on-policy methods, Q_n is continually esimated for the policy π , while the policy π is updated using an ϵ -greedy policy.

Algorithm 11.2 ϵ -Greedy Policy

- 1: $p \leftarrow \text{RANDOM}$
- 2: if $p < \epsilon$ then
- 3: pull random action
- 4: **else**
- 5: pull current-best action
- 6: end if

Algorithm 11.3 SARSA (on-policy TD control)

- 1: Algorithm parameters: step size $\alpha \in (0, 1]$, small $\epsilon > 0$
- 2: Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$
- 3: **loop**for each episode:
- 4: Initialize S
- 5: Choose A from S using policy derived from Q (e.g., ϵ -greedy)
- 6: end loop
 - Model-free.
 - On-policy.
 - Discrete action and state spaces.

11.3 Q-Learning

• Q-Learning is very similar to SARSA. The major difference lies in the update rule of the Q-function.

11.4 Deep Q-Learning

- For tasks with continuous state space, updating the Q-function for all state-action pairs can be computationally inefficient and infeasible.
- Rather than using value learning to directly find the optimal Q-function, a function estimator can be used to estimate the optimal Q-function.

- ANNs are effective function estimators. Deep neural network (DNN) can be used to estimate the Q-function for each state-action pairs.
- DQN is trained using batch stochastic gradient updates and experience replay. Experience replay can interact with the environment to generate training data for the DQN.
- Experience replay is a technique where the agent stores a subset of its experiences $\langle s, a, r, s' \rangle$ in a memory buffer and samples from this buffer to update the Q-function.
- Experience replay selects an ϵ -greedy action from the current state, executes it in the environment, and gets back a reward and the next state.
- If DQN was trained with single samples, each sample and the corresponding gradients
- . . .
- Model-free.
- Off-policy.
- Continuous state space.
- Discrete action space.

11.5 Policy Gradient Methods

- Policy gradient methods learn a parameterized policy than can select actions without consulting a value function. The parameters of the policy are called policy weights.
- Policy gradient methods are methods for learning the policy weights using the gradient of some performance measure with respect to the policy weights.
- Policy gradient methods seek to maximize performance and so the policy weights are updated using gradient ascent.

11.6 Actor-Critic

- Actor-Critic method is a TD version of policy gradient. It sues two neural networks, one actor network and one critic network.
- The actor network decides what action should be taken and the critic network informs the actor network how good was the action and how it should update to improve.
- The learning of the actor network is based on policy gradient approach.