Wiederholung · Verkniifungen auf Menge M: •: M x M -> M · (M,·) Monoaid, falls Assoziativgesetz - arronativ, d.h. \(\times_{17,12} \in M: (AG) \times (YZ) = (XY/Z) $\exists N \in e, A.L. \forall x \in M$; ex = x = xeneutrale Clement · XEM, YEM inversion x: (=) XY = e = YX Inverse sind, fall existent, eindentig: Invene en x: x-1 (bei addiver solveibroeine: -x) $x^n := x \cdot x \cdot \dots \cdot x \quad (n \; \text{Fahtora}), \quad n \in \mathbb{N} \quad \left\{ x^n := e \right\}$. (M, .) abelid, falls. kommutatir, d.h. \(\times 1, \times EM: \times \times 7 = \times \times 1

Ind dieren Fall aft: + für dan Verknüpfungsreichen

· A Menge: (A*, *) Wort monoid Elemente: Worter über A, a, ... an, a, E A Verknipf. (a, --- an) * (b1 -- bm) = a, az -- an b, -- bn E levre Wart · M Menge (Abb (M, M), o), id M · M' : Menog der invertierhere Elemente $X, Y \in M^{\times} \longrightarrow XY \in M^{\times} \text{ und } (XY)^{-1} = Y^{-1}X^{-1}$ $x \in M^{\times} =$ $x^{-1} \in M^{\times} \text{ and } (x^{-1})^{-1} = x$ 1 - M × =1 1-1 = 1 · (G,.) Gruppe, falls (G, .) Monord, end $G^{\times} = G$, d.h. für alle $\times \in G$, ex. $y \in G$: $\times y = e = y \times$.

Gruppe der invertierbaren Elemente

Definition

M Monoid

Einheitengruppe von M (oder Gruppe der invertierbaren Elemente): Gruppe M^{\times} mit Multiplikation gegeben durch diejenige von M.

Beispiel

- $\blacktriangleright (\mathbb{Z},\cdot)^{\times} = \{1,-1\}$
- $\blacktriangleright (\mathbb{Q},\cdot)^{\times} = \mathbb{Q} \setminus \{0\}$
- ► *A* Menge:

 $S_A := Abb(A, A)^{\times}$, die symmetrische Gruppe auf A.

 $S_A = \{ f \in Abb(A, A) \mid f \text{ ist invertierbar} \}.$

Untergruppen

Definition

G Gruppe, $U \subseteq G$.

U heißt Untergruppe von G, falls gilt:

- $(a) \triangleright e \in U.$
- (b) Für alle $x, y \in M$ ist auch $x \cdot y^{-1} \in M U$.
- Unit abgerchlorsen begl. und Invertieren

 (b) Ist águiralant ru: [b1) und (b2)]

 (b1) Für alle x, 4 & U ist x. 4 & U

 (b2) Für alle x & U ist x. 4 & U

Untergruppen (Forts.)

Beispiele

(a) \blacktriangleright Für $n \in \mathbb{Z}$ ist (\mathbb{Z}_{ℓ}^+) $n\mathbb{Z} := \{nz \mid z \in \mathbb{Z}\} \quad \text{Vielfacher menge}$ eine Untergruppe von $(\mathbb{Z}, +)$.

Z.B. ist

- ► 2Z die Menge der gerande Zahlen.
- ▶ $0\mathbb{Z} = \{0\}.$
- $ightharpoonup 1\mathbb{Z} = \mathbb{Z}.$
- (b) \blacktriangleright Sei A eine Menge und $a \in A$. Dann ist

$$S_{A,a} := \{ f \in S_A \mid f(a) = a \}$$

eine Untergruppe von S_A .

▶ $(\mathbb{N}, +)$ ist keine Untergruppe von $(\mathbb{Z}, +)$.

 Beweis von (b):

· idm & SA, a: Kleer, da idm (a) = a /

· Serien fig & SAia. Zu reigen: fogé & SAia.

Zeige ment: g-1(a) = a.

Darn: $\alpha = g(a) = g'(a) = g'(g(a)) = a$ Darnit: $(f \circ g^{-1})(a) = f(g^{-1}(a)) = f(a) = a$ M

Ringe und Körper

Definition

Ring: Menge R mit zwei Verknüpfungen + und \cdot , so dass gilt:

- ▶ (R,+) abelsche Gruppe NE bzgl. +: 0, IE $w \times : -x$
- $ightharpoonup (R, \cdot)$ Monoid NE begl. : 1
- ▶ für alle $x, y, z \in R$ gilt:

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

$$(x+y) \cdot z = (x \cdot z) + (y \cdot z)$$

Die letzten beiden Axiome heißen die Distributivgesetze.

► R Ring

R kommutativ: kommutativ

- ► Körper: kommutativer Ring K mit
 - ► 1 ≠ 0
 - ▶ jedes Element von $K \setminus \{0\}$ ist invertierbar, d.h. $K^{\times} = K \setminus \{0\}$

Beispiel: R = 405 int Ring ruit 1=0

Beispiele

- ▶ Z mit üblicher Addition und Multiplikation: Komm. Ring
- ▶ Q mit üblicher Addition und Multiplikation: Korpe
- R. C 1. ____ : Körner

Beispiel

Körper mit genau zwei Elementen:

$$1 = -\Lambda$$

$$1 + \Lambda = 0$$

Beispiel

Die Menge $\mathbb{F}_4 := \{0, 1, a, b\}$ mit den Verknüpfungstafeln

+	0	1	a	b		•	0	1	a	b
0	0	1	а	b		0	0	0	0	0
1	1	0	b	a	ě	1	0	1	a	b
a	a	b	0	1		a	0	a	b	1
b	b	a	1	0		b	0	b	1	a

bildet einen Körper.

Proposition

```
R Ring
(a) \triangleright für a \in R: a \cdot 0 = 0 \cdot a = 0
(b) ► für a, b \in R: a(-b) = (-a)b = -ab
(c) \blacktriangleright für a, b \in R: (-a)(-b) = ab
  Bervein: (a) \alpha \cdot 0 = \alpha \cdot (0+0) = \alpha \cdot 0 + \alpha \cdot 0 | Addient - \alpha \cdot 0
             =) -\alpha \cdot 0 + \alpha \cdot 0 = -\alpha \cdot 0 + \alpha \cdot 0 + \alpha \cdot 0
                                 0 = 0.0
  (b) ab + a(-b) = a(b+(-b)) = a(b-b) = a \cdot 0 = 0
 \Rightarrow a(-b) = -ab
  (c) (-a) (-b) \stackrel{(b)}{=} -((-a)b) \stackrel{(b)}{=} -(-ab) = ab. \checkmark
```

Integritätsbereiche

Definition

R kommutativer Ring.

- ▶ $a \in R$ heißt *Nullteiler*, falls ein $0 \neq b \in R$ existiert mit ab = 0.
- ▶ R heißt $Integrit "atsbereich", falls <math>1 \neq 0$ und R keine Nullteiler außer 0 besitzt (d.h. für alle $a, b \in R$ gilt: $ab = 0 \Rightarrow a = 0$ oder b = 0).

Integritätsbereiche (Forts.)

Beispiel

Ring \mathbb{Z} ist Integritätsbereich

Beispiel

Kommutativer Ring mit genau vier Elementen und Nullteilern:

+	0	1	2	3			0	1	2	3
	0				• "	0	0	0	0	0
	1					1	0	1	2	3
2	2	3	0	1				2		
3	3	0	1	2		3	0	3	2	1

Integritätsbereiche (Forts.)

Proposition

Körper sind Integritätsbereiche.

Bemerkung

R kommutativer Ring mit $1 \neq 0$

Äquivalent sind:

(a) ► R ist Integritätsbereich

(b) Für
$$a, x, y \in R$$
: $ax = ay \Rightarrow a = 0$ oder $x = y$ Kürzungs regel

Benvein: $(a) \Rightarrow (b)$: $ax = ay \Rightarrow a = 0$ oder $x - y = 0$
 $\Rightarrow a = 0$ oder $x - y = 0$
 $\Rightarrow a = 0$ oder $x = y$.

(b) $\Rightarrow (a)$: $ab = 0 \Rightarrow ab = a \cdot 0$

Beh: K Korper =) K Integritationeraile Bew: 1+0 V

> Serie $a,b \in K_1$ ab = 0 $\overline{c}.\overline{c}.: a = 0$ oder b = 0. Serie $a \neq 0$. (something) Multimit $a^{-1}:$ $a^{-1}(ab) = a^{-1}.0 = 0$

 $(a^{-1}a)b = 1.b = b, d.b = 0.$

Polynome

K Körper

Definition

▶ Polynom in der *Unbestimmten X*: Ausdruck der Form

$$f = \sum_{i=0}^{n} a_i X^i = a_0 X^0 + a_1 X + \dots + a_n X^n$$

für ein $n \in \mathbb{N}_0$ mit $a_i \in K$ für $i = 0, \ldots, n_{-\kappa}$ (beliebig groß)

- ▶ Die $a_i \in K$, i = 0, ..., n heißen die *Koeffizienten* von f.
- \blacktriangleright K[X]: Menge der Polynome über K in der Unbestimmten X.

Bemerkung und Schreibweise

► Koeffizienten gleich 0 können beliebig hinzugefügt oder weggelassen werden.

$$f = \sum_{i=0}^{n} a_i X^i = a_0 + a_1 X + \dots + a_n X^n + 0 X^{n+1} + \dots$$

▶ Der Kürze halber schreibt man: X^i statt $1X^i$, X statt X^1 , a_0 statt a_0X^0 , $-a_iX^i$ statt $+(-a_i)X^i$ und $0X^i$ lässt man weg.

Beispiel

$$2X^{0} + (-1)X + 1X^{2} + 0X^{3} = 2 - X + X^{2}$$
. = $\chi^{2} - \chi + 2$

Definitionen

Seien $f = \sum_{i=0}^{n} a_i X^i$ und $g = \sum_{i=0}^{n} b_i X^i$ in K[X].

- $f = g :\Leftrightarrow a_i = b_i$ für alle $i = 0, \ldots, n$. [Koeffizientenvergleich]
- ▶ f heißt das Nullpolynom, geschrieben f = 0, falls $a_i = 0$ für alle i = 0, ..., n.
- Sei $f \neq 0$. Dann sei deg $f := \max\{i \mid a_i \neq 0\}$. deg f heißt der Grad von f. deg $f = 0 \iff f = \alpha_o \chi^o$, $\alpha_o \neq 0 \iff f = \alpha_o \chi^o$. Konvention: deg $0 := -\infty$.

Definitionen

Sei
$$f = \sum_{i=0}^n a_i X^i \in K[X]$$
.

- ▶ a₀ heißt der konstante oder absolute Koeffizient von f.
- Ist $\deg f = n \ge 0$, so heißt a_n der Leitkoeffizient oder Hauptkoeffizient von f. Tusbesondere: $a_n \ne 0$.
- ▶ Das Polynom heißt normiert, wenn der Hauptkoeffizient gleich 1 ist.
- ▶ Das Polynom f heißt linear, wenn deg f = 1, und quadratisch, wenn deg f = 2 ist.
- ▶ Das Polynom f heißt konstant, wenn $deg f \leq 0$ ist.

Beispiele

►
$$f = -1 + X^2$$

$$ightharpoonup g = X + 2X^2 - X^3$$

- ▶ $\deg f = 2$
- ▶ $\deg g = 3$
- ► Leitkoeffizient von f: 1
- ► Leitkoeffizient von g: -1
- ► Konstanter Koeffizient von *f*: –1
- ► Konstanter Koeffizient von g: 0
- ► f normiert? 7a
- ▶ g normiert? Nein (falls 1 + -1)

Notation

 $K^{(\mathbb{N}_0)} := \{(a_i) \in K^{\mathbb{N}_0} \mid a_i = 0 \text{ für fast alle } i \in \mathbb{N}_0\}.$ (fast alle: alle, bis auf endlich viele.) K No: Menge der Folge in K indiziert durch No

Bemerkung

Das Polynom $f = \sum_{i=0}^{n} a_i X^i \in K[X]$ kann durch die Folge seiner Koeffizienten

$$(a_0, a_1, a_2, \ldots, a_n, 0, 0, 0, \ldots) \in K^{(\mathbb{N}_0)}$$

definiert werden (mathematisch präzise Definition von Polynom.)

Unbestimmte: $X = 1X = 1X^1 = (0, 1, 0, 0, 0, ...)$.

Konstante Polynome: $a_0 X^0 = (a_0, 0, 0, 0, ...)$.

Polynomfunktionen

Warnung Polynome sind *keine* Funktionen $\mathbb{F}_2 = \{0, 1\}:$

- ▶ Abb(K, K) endlich mit |Abb(K, K)| = 4
- ightharpoonup K[X] unendlich

Polynomfunktionen (Forts.)

Definition

$$f = \sum_{i=0}^n a_i X^i \in K[X].$$

Polynomfunktion zu f:

$$K \to K, x \mapsto \sum_{i=0}^{n} a_i x^i$$

Missbrauch der Notation: notiere Polynomfunktion auch als f

Für $x \in K$ heißt $f(x) \in K$ der Wert von f an der Stelle x.

Polynomfunktionen (Forts.)

Beispiele

▶ $f = -2 + X - \frac{1}{3}X^2 + X^4 \in \mathbb{Q}[X]$ liefert Polynomfunktion

$$f: \mathbb{Q} \to \mathbb{Q}, \quad a \mapsto -2 + a - \frac{1}{3}a^2 + a^4$$

$$f(5) = -2 + 5 - \frac{1}{3}25 + 625 = \frac{1859}{3}$$

$$f = X + X^2 \in \mathbb{F}_2[X]$$

$$f(0) = 0 \qquad 0 + 0.0 = 0$$

$$f(1) = 0 \qquad 1 + 1.1 = 1 + 1 = 0$$

Hier liefern f und das Nullpolynom 0 die gleiche Polynomfunktion.