Préparation à l'agrégation externe de Sciences Sociales

Statistique inférentielle - Modèle linéaire 2021-2022

Exercice 1

On souhaite mettre en évidence une corrélation entre le temps passé chaque jour devant la télévision (time_tv, en heures) et le taux de cholestérol (cholesterol, en mmol par litre de sang).

- 1. Rappeler les hypothèses du modèle linéaire gaussien dans le cas d'une variable explicative et d'une variable expliquée.
- 2. Énoncer les propriétés des estimateurs des coefficients du modèle linéaire gaussien par la méthode des moindres carrés.
- 3. Commenter en détail les deux lignes inférieures du tableau de résultats suivant :

. regress chol	lesterol time_	tv						
Source	SS	df	MS			Number of obs	=	100
						F(1, 98)	=	17.47
Model	5.04902329	1	1 5.04902329			Prob > F	=	0.0001
Residual	28.3220135	98	.289	0000137		R-squared	=	0.1513
						Adj R-squared	=	0.1426
Total	33.3710367	99	.337	081179		Root MSE	=	.53759
cholesterol	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
time_tv	.0440691	.0105	5434	4.18	0.000	.0231461		0649921
_cons	-2.134777	1.813	3099	-1.18	0.242	-5.732812	1	.463259

4. Proposez quelques pistes pour améliorer le \mathbb{R}^2 de la régression.

Exercice 2 (2009)

Le tableau ci-dessous fournit pour treize films, le nombre y d'entrées la première semaine d'exploitation ainsi que le nombre x de salles dans lesquelles le film est projeté (avec i le numéro du film, y_i le nombre d'entrées en milliers, et x_i le nombre de salles) :

	i	1	2	3	4	5	6	7	8	9	10	11	12	13
ſ	y_i	129,0	95,7	89,9	890,5	138,7	60,9	340,5	137,8	44,4	30,7	260,2	86,7	79,5
ſ	x_i	226	249	296	695	485	181	494	171	168	159	332	175	98

Les résultats statistiques pourront être déterminés à la calculatrice.

- 1. Étude des séries statistiques.
 - (a) Calculer le nombre moyen d'entrées par film ainsi que la variance du nombre d'entrées par film.
 - (b) Calculer le nombre moyen de salles ainsi que la variance du nombre de salles.
- 2. Le nombre de salles dans lequel le film est projeté est-il corrélé linéairement avec le nombre d'entrées réalisées par le film en première semaine d'exploitation? Justifier votre réponse.

- 3. Modélisation du lien entre les séries statistiques.
 - (a) Représenter le nuage de points $M_i(x_i; y_i)$. Déterminer une équation de la droite de régression de y en x, obtenue par la méthode des moindres carrés sous la forme $y = \hat{a}x + \hat{b}$ et représenter cette droite sur le graphique précédent.
 - Dans la suite on notera $\hat{y} = \hat{a}x + \hat{b}$ l'estimation ponctuelle de y obtenue par la méthode des moindres carrés.
 - (b) En supposant ce modèle utilisé par les producteurs/distributeurs de films pour anticiper le nombre d'entrées en fonction du nombre de salles qu'ils réservent, le score du film 5 est-il conforme aux attentes de son producteur?
- 4. Analyse de la variance.
 - (a) Calculer $\operatorname{Var}(\hat{y})$, variance expliquée par le modèle.
 - (b) Écrire l'équation de l'analyse de la variance et en déduire la variance résiduelle.
 - (c) Déduire des résultats précédents le coefficient de détermination \mathbb{R}^2 . Interpréter votre résultat.