

Ù&@^œ^¦ £ Q&È		GÍ »Á√ã¢Á, Đị ÁÙ^ã; (ã&ÁÖ^•ã;)
PÔX	Ùœ), 忦åÁÚXT ∄, ãÁÜæ&\∄, *ÁÛ^• ৫^{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- · Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	18.56 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.82	
C -	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.1 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.1 1.7 <i>(Pressure)</i>	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
<u>Location</u>	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>9</u>		
Outer	M15	5		
Inner	M16A	A		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M15 Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer M11 Outer Location M2 Outer Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top Bottom M3 M7 M7 M11 Outer Outer N7 N15 M11 N7 Outer N15 N23 Location Outer Rear Struts M2 Outer Location M6 Inner Rear Reactions N8 Inner N8 N16 N16 Outer N16 N24 Location Outer M10 M10 Outer N24 Location Outer Bracing M15 Inner M15 M16A

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	ProfiPlus	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
$L_b =$	<u>87</u>	in
$\Phi F_{ty STRONG-AXIS} =$	28.45	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _y =	0.870	k-ft
$M_z =$	0.192	k-ft
M _{y allowable} =	1.211	k-ft
$M_{z \text{ allowable}} =$	0.871	k-ft
Utilization =	94%	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

$Brace Type = \\ Aluminum Type = \\ F_{ty} = \\ \Phi = \\ S_y = \\ E = \\ I_y = \\$	1.5x0.25 6061-T6 35 ksi 0.90 0.02 in ³ 10100 ksi 33.25 in ⁴
A = g =	0.38 in ² 0.45 lbs/ft
$\begin{aligned} M_y &= \\ P_n &= \\ M_{y allowable} &= \\ P_{n allowable} &= \\ Utilization &= \\ \end{aligned}$	0.005 k-ft 0.044 k 0.046 k-ft 11.813 k 11%

A cross brace kit is required every 17 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>151.29</u>	1693.73	k
Compressive Load =	<u>1653.15</u>	1376.09	k
Lateral Load =	<u>4.40</u>	908.28	k
Moment (Weak Axis) =	0.01	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24133.9 in-lbs Resisting Force Required = 804.46 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1340.77 lbs to resist overturning. Minimum Width = Weight Provided = 1903.13 lbs Sliding Force = 209.44 lbs Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 523.59 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 209.44 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	21 in 22 in 23 in 24 in				
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) =$	1903 lbs	1994 lbs	2084 lbs	2175 lbs	

ASD LC		1.0D	+ 1.0S			1.0D+	- 0.6W		1	.0D + 0.75L +	0.45W + 0.75	S		0.6D+	0.6W	
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	630 lbs	630 lbs	630 lbs	630 lbs	469 lbs	469 lbs	469 lbs	469 lbs	773 lbs	773 lbs	773 lbs	773 lbs	-66 lbs	-66 lbs	-66 lbs	-66 lbs
FB	456 lbs	456 lbs	456 lbs	456 lbs	507 lbs	507 lbs	507 lbs	507 lbs	684 lbs	684 lbs	684 lbs	684 lbs	-779 lbs	-779 lbs	-779 lbs	-779 lbs
F_V	69 lbs	69 lbs	69 lbs	69 lbs	381 lbs	381 lbs	381 lbs	381 lbs	332 lbs	332 lbs	332 lbs	332 lbs	-419 lbs	-419 lbs	-419 lbs	-419 lbs
P _{total}	2989 lbs	3080 lbs	3170 lbs	3261 lbs	2879 lbs	2969 lbs	3060 lbs	3151 lbs	3360 lbs	3451 lbs	3541 lbs	3632 lbs	297 lbs	351 lbs	406 lbs	460 lbs
M	443 lbs-ft	443 lbs-ft	443 lbs-ft	443 lbs-ft	523 lbs-ft	523 lbs-ft	523 lbs-ft	523 lbs-ft	691 lbs-ft	691 lbs-ft	691 lbs-ft	691 lbs-ft	653 lbs-ft	653 lbs-ft	653 lbs-ft	653 lbs-ft
е	0.15 ft	0.14 ft	0.14 ft	0.14 ft	0.18 ft	0.18 ft	0.17 ft	0.17 ft	0.21 ft	0.20 ft	0.20 ft	0.19 ft	2.20 ft	1.86 ft	1.61 ft	1.42 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft									
f _{min}	280.9 psf	278.0 psf	275.4 psf	273.0 psf	257.2 psf	255.4 psf	253.8 psf	252.2 psf	289.2 psf	285.9 psf	282.9 psf	280.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	402.3 psf	393.9 psf	386.2 psf	379.2 psf	400.8 psf	392.4 psf	384.8 psf	377.9 psf	478.8 psf	466.9 psf	456.1 psf	446.1 psf	377.4 psf	199.5 psf	158.6 psf	142.0 psf

Maximum Bearing Pressure = 479 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 256.5 \text{ ft-lbs}$

Resisting Force Required = 293.15 lbs S.F. = 1.67

Weight Required = 488.58 lbs Minimum Width = 21 in in Weight Provided = 1903.13 lbs A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0	.362D + 0.875	iΕ
Width		21 in			21 in			21 in	
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	83 lbs	221 lbs	78 lbs	302 lbs	891 lbs	297 lbs	24 lbs	65 lbs	23 lbs
F _V	4 lbs	4 lbs	0 lbs	17 lbs	16 lbs	1 lbs	1 lbs	1 lbs	0 lbs
P _{total}	2439 lbs	2577 lbs	2435 lbs	2545 lbs	3134 lbs	2540 lbs	713 lbs	754 lbs	712 lbs
M	6 lbs-ft	5 lbs-ft	0 lbs-ft	29 lbs-ft	24 lbs-ft	3 lbs-ft	2 lbs-ft	2 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.01 ft	0.01 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.29 ft	1.75 ft	1.75 ft	1.73 ft	1.73 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft
f _{min}	276.5 sqft	292.4 sqft	278.1 sqft	279.6 sqft	279.6 sqft 348.7 sqft		80.9 sqft	85.5 sqft	81.3 sqft
f _{max}	281.0 psf	296.6 psf	278.4 psf	302.0 psf	367.6 psf	291.6 psf	82.2 psf	81.4 psf	

Maximum Bearing Pressure = 368 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.272 k	Maximum Axial Load =	1.168 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>22%</u>	Utilization =	<u>21%</u>
Diagonal Strut		<u>Bracing</u>	
Maximum Axial Load =	0.469 k	Maximum Axial Load =	0.044 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>8%</u>	Utilization =	<u>1%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 30.83 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.617 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.052 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 87.00 \text{ in}$$

$$J = 0.255$$

$$226.543$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \\ \phi F_L &= 28.5 \text{ ksi} \end{split}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \phi \text{F}_{\text{L}} &= & 1.17 \phi \text{yFcy} \end{aligned}$$

 $\phi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

4.14
$$L_{b} = 87.00 \text{ in}$$

$$J = 0.255$$

$$235.251$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2})}]$$

$$\phi F_{L} = 28.4$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C \varphi$$

$$\phi F_L St = 28.5 \text{ ksi}$$

$$lx = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

43.2 ksi

1.211 k-ft

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$X = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

 $M_{max}St =$

 $\phi F_L =$

3.4.9

b/t = 7.4

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L {=} \; \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 23.9$$

 $S1 = 12.21$
 $S2 = 32.70$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

 $\phi F_L = 28.5 \text{ ksi}$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.22 \\ & 22.2924 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$
$$S1 = 1.37733$$

 $S2 = 1.2C_c$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.6 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$L_b = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.22$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

$$S2 = 79.2$$

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

$$\phi F_1 = 29.6 \text{ ksi}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.6 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 29.6 \text{ ksi} \\ Ix &= & 364470 \text{ mm}^4 \\ & & 0.876 \text{ in}^4 \\ y &= & 37.77 \text{ mm} \\ Sx &= & 0.589 \text{ in}^3 \\ M_{max} St &= & 1.453 \text{ k-ft} \end{aligned}$$

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

x =

Sy =

 $M_{max}Wk =$

29 mm

0.457 in³

0.513 k-ft

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi \varphi F c y$$

 $\varphi F_L = 33.3 \text{ ksi}$
b/t = 24.46

$$S1 = 12.21$$

 $S2 = 32.70$
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$

$$\phi F_L = \phi C_L B F_1 .0 B F_2 B F_3 B F_4 B F_4$$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_I = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

Weak Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 18.00 \text{ in} \\ \mathsf{J} = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \varphi \mathsf{F_L} = & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} = & 31.2 \end{array}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$d = 39958.2 \text{ mm}^4$$

$$d = 0.096 \text{ in}^4$$

$$d = 15 \text{ mm}$$

$$d = 0.163 \text{ in}^3$$

$$d = 0.423 \text{ k-ft}$$

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$y = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.423 \text{ k-ft}$$

7.75

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$\left(Bc - \frac{\theta_{y}}{\theta_{x}} Fcy\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$V = 15 \text{ mm}$$

0.163 in³

0.404 k-ft

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= \quad 46.38 \text{ in} \\ \mathsf{J} &= \quad 0.16 \\ &= 121.663 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= \quad 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= \quad 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))}] \end{split}$$

29.8

3.4.16

 $\phi F_L =$

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

Cc = 15

S1 =

m =

 $C_0 =$

3.4.18

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi F Cy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$X = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max} Wk = 0.450 \text{ k-ft}$$

 $M_{max}St =$

y = Sx =

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 36.18 \text{ in}$$

$$J = 0.16$$

$$94.9139$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

S2 =
$$1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$

$$\phi F_1 = 30.2 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_1 = \varphi V F c V$$

 $\phi F_1 = 33.3 \text{ ksi}$

Rb/t = 0.0

3.4.16.1 <u>Not Used</u>

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 30.2 \text{ ksi}$$

 $lx = 39958.2 \text{ mm}^4$

0.096 in⁴

0.163 in³

0.410 k-ft

15 mm

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 36.18 \text{ in} \\ \mathsf{J} &= 0.16 \\ 94.9139 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \mathsf{\varphi} \mathsf{F_L} &= \mathsf{\varphi} \mathsf{b} [\mathsf{Bc-1.6Dc^*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \mathsf{\varphi} \mathsf{F_L} &= 30.2 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

S1 =

m =

 $C_0 =$

Cc =

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

7.75

0.65

$$S2 = \frac{k_1 B b r}{m D b r}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$b = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max} W k = 0.450 \text{ k-ft}$$

 $M_{max}St =$

y = Sx =

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.5514 \\ \textbf{r} = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & s2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi cc = & 0.7972 \\ & \phi \textbf{F}_L = & (\phi cc \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_L = & 11.5927 \text{ ksi} \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 11.59 \text{ ksi}$
 $\phi F_L = 323.87 \text{ mm}^2$
 $\phi F_L = 5.82 \text{ kips}$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-51.748	-51.748	0	0
2	M16	Υ	-51.748	-51.748	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-63.697	-63.697	0	0
2	M16	V	-98.441	-98.441	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	127.394	127.394	0	0
2	M16	V	57.906	57.906	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	6.					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875				·								

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	167.931	2	290.867	2	001	15	0	2	0	1	0	1
2		min	-218.283	3	-395.081	3	138	1	0	3	0	1	0	1
3	N7	max	0	15	465.415	1	065	15	0	15	0	1	0	1
4		min	157	2	-26.49	3	-1.555	1	003	1	0	1	0	1
5	N15	max	0	15	1271.653	1	.591	1	.001	1	0	1	0	1
6		min	-1.78	1	-116.38	3	357	3	0	3	0	1	0	1
7	N16	max	659.255	2	1058.532	1	157	10	0	1	0	1	0	1
8		min	-698.676	3	-1302.87	3	-40.02	3	0	3	0	1	0	1
9	N23	max	0	15	465.11	1	3.387	1	.006	1	0	1	0	1
10		min	157	2	-26.013	3	.133	15	0	15	0	1	0	1
11	N24	max	168.393	2	295.168	2	40.309	3	.002	1	0	1	0	1
12		min	-218.388	3	-392.541	3	.023	10	0	3	0	1	0	1
13	Totals:	max	993.576	2	3837.069	1	0	1						
14		min	-1135.512	3	-2259.373	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	l LC	v-v Mome	LC	z-z Mome.	LC
1	M2	1	max	322.546	1	.641	4	.617	1	0	15	0	3	0	1
2			min	-356.585	3	.151	15	048	3	001	1	0	1	0	1
3		2	max	322.662	1	.596	4	.617	1	0	15	0	3	0	15
4			min	-356.497	3	.141	15	048	3	001	1	0	1	0	4
5		3	max	322.779	1	.55	4	.617	1	0	15	0	1	0	15
6			min	-356.41	3	.13	15	048	3	001	1	0	10	0	4
7		4	max	322.895	1	.504	4	.617	1	0	15	0	1	0	15
8			min	-356.323	3	.119	15	048	3	001	1	0	3	0	4
9		5	max	323.011	1	.459	4	.617	1	0	15	0	1	0	15
10			min	-356.235	3	.108	15	048	3	001	1	0	3	0	4
11		6	max	323.128	1	.413	4	.617	1	0	15	0	1	0	15
12			min	-356.148	3	.098	15	048	3	001	1	0	3	0	4
13		7	max	323.244	1	.367	4	.617	1	0	15	0	1	0	15
14			min	-356.061	3	.087	15	048	3	001	1	0	3	0	4
15		8	max	323.361	1	.322	4	.617	1	0	15	0	1	0	15
16			min	-355.973	3	.076	15	048	3	001	1	0	3	0	4
17		9	max	323.477	1	.276	4	.617	1	0	15	0	1	0	15
18			min	-355.886	3	.066	15	048	3	001	1	0	3	0	4
19		10	max	323.593	1	.23	4	.617	1	0	15	0	1	0	15
20			min	-355.799	3	.055	15	048	3	001	1	0	3	0	4
21		11	max	323.71	1	.185	4	.617	1	0	15	0	1	0	15
22			min	-355.711	3	.044	15	048	3	001	1	0	3	0	4
23		12	max	323.826	1	.139	4	.617	1	0	15	0	1	0	15
24			min	-355.624	3	.033	15	048	3	001	1	0	3	0	4
25		13	max	323.943	1	.099	2	.617	1	0	15	.001	1	0	15
26			min	-355.537	3	.019	12	048	3	001	1	0	3	0	4
27		14	max	324.059	1	.063	2	.617	1	0	15	.001	1	0	15
28			min	-355.45	3	002	3	048	3	001	1	0	3	0	4
29		15	max	324.175	1	.028	2	.617	1	0	15	.001	1	0	15
30			min	-355.362	3	029	3	048	3	001	1	0	3	0	4
31		16	max	324.292	1	008	2	.617	1	0	15	.001	1	0	15
32			min	-355.275	3	055	3	048	3	001	1	0	3	0	4
33		17	max	324.408	1	02	15	.617	1	0	15	.001	1	0	15
34			min	-355.188	3	089	4	048	3	001	1	0	3	0	4
35		18	max	324.525	1	031	15	.617	1	0	15	.002	1	0	15
36			min	-355.1	3	135	4	048	3	001	1	0	3	0	4
37		19	max	324.641	1	042	15	.617	1	0	15	.002	1	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]					LC	y-y Mome		z-z Mome	
38				-355.013	3	18	4	048	3	001	1	0	3	0	4
39	M3	1	max	105.616	2	1.777	4	023	15	0	15	.002	1	0	4
40			min	-127.12	3	.418	15	621	1	0	1	0	15	0	15
41		2	max	105.548	2	1.6	4	023	15	0	15	.002	1	0	4
42			min	-127.171	3	.376	15	621	1	0	1	0	15	0	12
43		3	max	105.479	2	1.422	4	023	15	0	15	.002	1	0	2
44			min	-127.223	3	.335	15	621	1	0	1	0	15	0	3
45		4	max	105.41	2	1.245	4	023	15	0	15	.002	1	0	15
46			min	-127.274	3	.293	15	621	1	0	1	0	15	0	4
47		5	max	105.342	2	1.068	4	023	15	0	15	.001	1	0	15
48			min	-127.326	3	.252	15	621	1	0	1	0	15	0	4
49		6	max	105.273	2	.891	4	023	15	0	15	.001	1	0	15
50			min	-127.377	3	.21	15	621	1	0	1	0	15	0	4
51		7		105.205	2	.714	4	023	15	0	15	.001	1	0	15
52				-127.429	3	.168	15	621	1	0	1	0	15	0	4
53		8		105.136	2	.536	4	023	15	0	15	.001	1	0	15
54				-127.48	3	.127	15	621	1	0	1	0	15	001	4
55		9		105.067	2	.359	4	023	15	0	15	0	1	0	15
56		<u> </u>		-127.532	3	.085	15	621	1	0	1	0	15	001	4
57		10		104.999	2	.182	4	023	15	0	15	0	1	0	15
58		10		-127.583	3	.043	15	621	1	0	1	0	15	001	4
59		11	max		2	.024	2	023	15	0	15	0	1	0	15
60				-127.634	3	021	3	621	1	0	1	0	15	001	4
61		12		104.862	2	04	15	023	15	0	15	0	1	0	15
62		12		-127.686	3	172	4	621	1	0	1	0	15	001	4
63		13		104.793	2	082	15	023	15	0	15	0	1	<u>001</u> 0	15
		13		-127.737	3	35	-	621	1	0	1		15	001	
64		11					4				_	0			4
65		14		104.724	2	123	15	023	15	0	15	0	1	0	15
66		4.5		-127.789	3	527	4	621	1	0		0	12	001	4
67		15		104.656	2	165	15	023	15	0	15	0	3	0	15
68		4.0		-127.84	3	704	4	621	1	0		0		0	4
69		16		104.587	2	207	15	023	15	0	15	0	15	0	15
70		4.7		-127.892	3	881	4	621	1	0	1	0	1	0	4
71		17		104.519	2	248	15	023	15	0	15	0	15	0	15
72		1.0		-127.943	3	-1.058	4	621	1	0	1	0	1	0	4
73		18	max		2	29	15	023	15	0	15	0	15	0	15
74				-127.995	3	-1.236	4	621	1	0	1	0	1	0	4
75		19		104.381	2	332	15	023	15	0	15	0	15	0	1
76			min	-128.046	3_	-1.413	4	621	1	0	1	0	1	0	1
77	<u>M4</u>	1	max		_1_	0	1	065	15	0	1	0	3	0	1
78				-27.363	3	0	1	-1.687	1	0	1	0	1	0	1
79		2		464.315	_1_	0	1	065	15	0	1	0	12	0	1
80			min	-27.315	3	0	1	-1.687	1	0	1	0	1	0	1
81		3	max		_1_	0	1	065	15	0	1	0	15	0	1
82			min	-27.266	3	0	1	-1.687	1	0	1	0	1	0	1
83		4	max	464.444	1	0	1	065	15	0	1	0	15	0	1
84			min	-27.218	3	0	1	-1.687	1	0	1	0	1	0	1
85		5	max	464.509	1	0	1	065	15	0	1	0	15	0	1
86			min	-27.169	3	0	1	-1.687	1	0	1	0	1	0	1
87		6	max		1	0	1	065	15	0	1	0	15	0	1
88			min	-27.121	3	0	1	-1.687	1	0	1	0	1	0	1
89		7		464.638	1	0	1	065	15	0	1	0	15	0	1
90				-27.072	3	0	1	-1.687	1	0	1	0	1	0	1
91		8	max		1	0	1	065	15	0	1	0	15	0	1
92				-27.024	3	0	1	-1.687	1	0	1	001	1	0	1
93		9	max		1	0	1	065	15	0	1	<u>.001</u>	15	0	1
94				-26.975	3	0	1	-1.687	1	0	1	001	1	0	1
34			1111111	20.313	J	U		-1.007		U		001		U	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	464.832	_1_	0	1	065	15	0	1	0	15	0	1
96			min	-26.927	3	0	1	<u>-1.687</u>	1	0	1	001	1	0	1
97		11	max		_1_	0	1	065	15	0	1	0	15	0	1
98			min	-26.878	3	0	1	-1.687	1	0	1	002	1	0	1
99		12	max	464.962	1_	0	1	065	15	0	1	0	15	0	1
100		40	min	-26.83	3	0	1	<u>-1.687</u>	1	0	1	002	1	0	1
101		13	max		1_	0	1	065	15	0	1	0	15	0	1
102		4.4	min	-26.781	3	0	1	<u>-1.687</u>	1	0	1	002	1	0	1
103		14	max	465.091	1	0	1	065	15	0	1	0	15	0	1
104		15	min	-26.732	3	0	1	-1.687	15	0	1	002	15	0	1
105		15	max		<u>1</u> 3	0	1	065 1.697		0	1	0 002		0	1
106 107		16	min	-26.684 465.221	<u>ာ</u> 1	0	1	<u>-1.687</u> 065	15	0	1	<u>002</u> 0	15		1
107		10	max min	-26.635	3	0	1	-1.687	1	0	1	002	1	0 0	1
109		17	max	465.285	<u> </u>	0	1	-1.067 065	15	0	1	<u>002</u> 0	15	0	1
110		17	min	-26.587	3	0	1	-1.687	1	0	1	002	1	0	1
111		18	max		1	0	1	065	15	0	1	0	15	0	1
112		10	min	-26.538	3	0	1	-1.687	1	0	1	003	1	0	1
113		19	max		1	0	1	065	15	0	1	<u>.000</u>	15	0	1
114		10	min	-26.49	3	0	1	-1.687	1	0	1	003	1	0	1
115	M6	1		1053.003	1	.642	4	.211	1	0	1	0	3	0	1
116			min	-1167.764	3	.151	15	139	3	0	15	0	1	0	1
117		2		1053.119	1	.596	4	.211	1	0	1	0	3	0	15
118				-1167.677	3	.141	15	139	3	0	15	0	11	0	4
119		3		1053.236	1	.551	4	.211	1	0	1	0	3	0	15
120				-1167.589	3	.13	15	139	3	0	15	0	15	0	4
121		4	max	1053.352	1	.505	4	.211	1	0	1	0	1	0	15
122			min	-1167.502	3	.119	15	139	3	0	15	0	15	0	4
123		5	max	1053.468	_1_	.459	4	.211	1	0	1	0	1	0	15
124			min	-1167.415	3	.108	15	139	3	0	15	0	15	0	4
125		6		1053.585	_1_	.414	2	.211	1	0	1	0	1	0	15
126			min	-1167.328	3	.098	15	139	3	0	15	0	3	0	4
127		7		1053.701	_1_	.378	2	.211	1	0	1	0	1	0	15
128				-1167.24	3	.086	12	139	3	0	15	0	3	0	4
129		8		1053.818	1_	.342	2	.211	1	0	1	0	1	0	15
130				-1167.153	3	.068	12	139	3	0	15	0	3	0	4
131		9		1053.934	1	.307	2	.211	1	0	1	0	1	0	15
132		40		-1167.066	3	.05	12	139	3	0	15	0	3	0	4
133		10		1054.05 -1166.978	1	.271	2	.211	1	0	1	0	1	0	15
134 135		11	min	1054.167	3	.032 .236	12 2	139 .211	3	0	1 <u>5</u>	<u> </u>	3	0	15
136				-1166.891	3	.012	3	139	3	0	15	0	3	0	2
137		12		1054.283		.2	2	.211	1	0	1	0	1	0	15
138		12		-1166.804	3	015	3	139	3	0	15	0	3	0	2
139		13	max		_ <u></u>	.165	2	.211	1	0	1	0	1	0	12
140		10		-1166.716	3	041	3	139	3	0	15	0	3	0	2
141		14		1054.516	1	.129	2	.211	1	0	1	0	1	0	12
142				-1166.629	3	068	3	139	3	0	15	0	3	0	2
143		15		1054.632	1	.093	2	.211	1	0	1	0	1	0	12
144				-1166.542	3	095	3	139	3	0	15	0	3	0	2
145		16		1054.749	1	.058	2	.211	1	0	1	0	1	0	12
146				-1166.455	3	122	3	139	3	0	15	0	3	0	2
147		17		1054.865	1	.022	2	.211	1	0	1	0	1	0	12
148				-1166.367	3	148	3	139	3	0	15	0	3	0	2
149		18		1054.982	1	013	2	.211	1	0	1	0	1	0	12
150				-1166.28	3	175	3	139	3	0	15	0	3	0	2
151		19	max	1055.098	1	042	15	.211	1	0	1	0	1	0	12

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec	1	Axial[lb]						Torque[k-ft]		y-y Mome	LC	z-z Mome	
152			min	-1166.193	3	202	3	139	3	0	15	0	3	0	2
153	M7	1	max	469.475	2	1.779	4	.012	1	0	2	0	2	0	2
154			min	-392.473	3	.419	15	004	10	0	3	0	3	0	12
155		2	max	469.406	2	1.602	4	.012	1	0	2	0	2	0	2
156				-392.525	3	.377	15	004	10	0	3	0	3	0	3
157		3	max	469.338	2	1.425	4	.012	1	0	2	0	2	0	2
158			min	-392.576	3	.335	15	004	10	0	3	0	3	0	3
159		4	max	469.269	2	1.248	4	.012	1	0	2	0	2	0	2
160			min	-392.628	3	.294	15	004	10	0	3	0	3	0	3
161		5	max	469.2	2	1.07	4	.012	1	0	2	0	2	0	15
162			min	-392.679	3	.252	15	004	10	0	3	0	3	0	3
163		6	max	469.132	2	.893	4	.012	1	0	2	0	2	0	15
164			min	-392.731	3	.21	15	004	10	0	3	0	3	0	4
165		7	max	469.063	2	.716	4	.012	1	0	2	0	2	0	15
166			min	-392.782	3	.169	15	004	10	0	3	0	3	0	4
167		8	max	468.995	2	.539	4	.012	1	0	2	0	2	0	15
168			min	-392.834	3	.127	15	004	10	0	3	0	3	001	4
169		9	max	468.926	2	.362	4	.012	1	0	2	0	2	0	15
170			min	-392.885	3	.085	15	004	10	0	3	0	3	001	4
171		10	max	468.857	2	.222	2	.012	1	0	2	0	2	0	15
172			min	-392.937	3	.021	12	004	10	0	3	0	3	001	4
173		11	max		2	.084	2	.012	1	0	2	0	2	0	15
174				-392.988	3	081	3	004	10	0	3	0	3	001	4
175		12	max	468.72	2	04	15	.012	1	0	2	0	2	0	15
176				-393.039	3	185	3	004	10	0	3	0	3	001	4
177		13		468.651	2	081	15	.012	1	0	2	0	2	0	15
178				-393.091	3	347	4	004	10	0	3	0	3	001	4
179		14	max		2	123	15	.012	1	0	2	0	2	0	15
180				-393.142	3	524	4	004	10	0	3	0	3	001	4
181		15		468.514	2	165	15	.012	1	0	2	0	2	0	15
182		10		-393.194	3	702	4	004	10	0	3	0	3	0	4
183		16		468.446	2	206	15	.012	1	0	2	0	2	0	15
184		10		-393.245	3	879	4	004	10	0	3	0	3	0	4
185		17	max		2	248	15	.012	1	0	2	0	2	0	15
186		1 '		-393.297	3	-1.056	4	004	10	0	3	0	3	0	4
187		18		468.308	2	29	15	.012	1	0	2	0	2	0	15
188		10		-393.348	3	-1.233	4	004	10	0	3	0	3	0	4
189		19	max		2	331	15	.012	1	0	2	0	2	0	1
190		13	min	-393.4	3	-1.41	4	004	10	0	3	0	3	0	1
191	M8	1		1270.488		0	1	.746	1	0	1	0	15	0	1
192	IVIO			-117.253	3	0	1	35	3	0	1	0	1	0	1
193		2		1270.553	1	0	1	.746	1	0	1	0	1	0	1
194				-117.205	3	0	1	35	3	0	1	0	3	0	1
195		3		1270.618	<u> </u>	0	1	.746	1	0	1	0	1	0	1
196				-117.156	3	0	1	35	3	0	1	0	3	0	1
197		4		1270.682	1	0	1	.746	1	0	1	0	1	0	1
198		4		-117.108	3	0	1	35	3	0	1	0	3	0	1
199		5				0	1		1	0	1	0	1	0	1
		5		1270.747	1	0	1	.746	3		1	0	3	0	1
200		_		-117.059	3_		•	35		0	_	_			
201		6		1270.812 -117.01	<u>1</u> 3	0	1	.746	3	0	1	0	3	0	1
202		7					•	35			•	_		0	
203		7		1270.876	1	0	1	.746	1	0	1	0	1	0	1
204				-116.962	3	0	1	35	3	0	1_	0	3	0	1
205		8		1270.941	1_	0	1	.746	1	0	1	0	1	0	1
206				-116.913	3	0	1	35	3	0	1	0	3	0	1
207		9		1271.006	1	0	1	.746	1	0	1	0	1	0	1
208			mın	-116.865	3	0	1	35	3	0	1_	0	3	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10		1271.071	1_	0	1	.746	1	0	1	0	1	0	1
210			min	-116.816	3	0	1	35	3	0	1	0	3	0	1
211		11	max	1271.135	1	0	1	.746	1	0	1	0	1	0	1
212			min	-116.768	3	0	1	35	3	0	1	0	3	0	1
213		12	max	1271.2	1	0	1	.746	1	0	1	0	1	0	1
214			min	-116.719	3	0	1	35	3	0	1	0	3	0	1
215		13	max	1271.265	1	0	1	.746	1	0	1	0	1	0	1
216			min	-116.671	3	0	1	35	3	0	1	0	3	0	1
217		14	max	1271.329	1	0	1	.746	1	0	1	0	1	0	1
218			min	-116.622	3	0	1	35	3	0	1	0	3	0	1
219		15	max	1271.394	1	0	1	.746	1	0	1	0	1	0	1
220			min	-116.574	3	0	1	35	3	0	1	0	3	0	1
221		16	max	1271.459	1	0	1	.746	1	0	1	.001	1	0	1
222			min	-116.525	3	0	1	35	3	0	1	0	3	0	1
223		17	max	1271.524	1	0	1	.746	1	0	1	.001	1	0	1
224				-116.477	3	0	1	35	3	0	1	0	3	0	1
225		18	max	1271.588	1	0	1	.746	1	0	1	.001	1	0	1
226				-116.428	3	0	1	35	3	0	1	0	3	0	1
227		19		1271.653	1	0	1	.746	1	0	1	.001	1	0	1
228			min	-116.38	3	0	1	35	3	0	1	0	3	0	1
229	M10	1		334.059	1	.634	4	006	15	.001	1	0	1	0	1
230				-338.432	3	.15	15	173	1	0	3	0	3	0	1
231		2	max		1	.588	4	006	15	.001	1	0	1	0	15
232				-338.345	3	.14	15	173	1	0	3	0	3	0	4
233		3	max	334.292	1	.543	4	006	15	.001	1	0	1	0	15
234				-338.258	3	.129	15	173	1	0	3	Ö	3	0	4
235		4	max		1	.497	4	006	15	.001	1	0	1	0	15
236			1	-338.171	3	.118	15	173	1	0	3	0	3	0	4
237		5	max		1	.451	4	006	15	.001	1	0	1	0	15
238			min	-338.083	3	.107	15	173	1	0	3	0	3	0	4
239		6	max		1	.406	4	006	15	.001	1	0	1	0	15
240			min	-337.996	3	.097	15	173	1	0	3	0	3	0	4
241		7	max		1	.36	4	006	15	.001	1	0	1	0	15
242				-337.909	3	.086	15	173	1	0	3	0	3	0	4
243		8	max	334.874	1	.314	4	006	15	.001	1	0	1	0	15
244				-337.821	3	.075	15	173	1	0	3	0	3	0	4
245		9	max	334.99	1	.269	4	006	15	.001	1	0	11	0	15
246				-337.734	3	.064	15	173	1	0	3	0	3	0	4
247		10	max	335.107	1	.223	4	006	15	.001	1	0	11	0	15
248			min	-337.647	3	.054	15	173	1	0	3	0	3	0	4
249		11		335.223	1	.177	4	006	15	.001	1	0	15	0	15
250				-337.559	3	.043	15	173	1	0	3	0	3	0	4
251		12	max		1	.134	2	006	15	.001	1	0	15	0	15
252				-337.472	3	.032	15	173	1	0	3	0	3	0	4
253		13		335.456	1	.099	2	006	15	.001	1	0	15	0	15
254		10		-337.385	3	.021	15	173	1	0	3	0	3	0	4
255		14		335.572	1	.063	2	006	15	.001	1	0	15	0	15
256		17		-337.298	3	003	1	173	1	0	3	0	1	0	4
257		15		335.689	1	.028	2	006	15	.001	1	0	15	0	15
258		10	min	-337.21	3	038	1	173	1	0	3	0	1	0	4
259		16		335.805	_ <u></u>	008	2	006	15	.001	1	0	15	0	15
260		10		-337.123	3	074	1	173	1	0	3	0	1	0	4
261		17		335.922	<u> </u>	021	15	173 006	15	.001	1	0	15	0	15
262		17		-337.036	3	11	1	173	1	0	3	0	1	0	4
263		18	max		<u>ა</u> 1	032	15	173 006	15	.001	1	0	15	0	15
264		10		-336.948	3	145	1	006 173	1	0	3	0	1	0	4
265		19		336.154	<u> </u>	043	15	173 006	15	.001	1	0	15	0	15
200		l 19	шах	JJ0.154		043	l 19	000	10	.001		U	LIO	U	⊥เอ

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec	1	Axial[lb]						Torque[k-ft]		<u>y-y Mome</u>	LC	z-z Mome	
266			min	-336.861	3	188	4	173	1	0	3	0	1	0	4
267	M11	1	max		2	1.781	4	.722	1_	0	1	0	3	0	4
268			min	-127.738	3	.419	15	.008	12	0	15	002	1	0	15
269		2	max	105.279	2	1.604	4	.722	1	0	1	0	3	0	4
270			min	-127.789	3	.377	15	.008	12	0	15	002	1	0	12
271		3	max	105.211	2	1.427	4	.722	1	0	1	0	3	0	1
272			min	-127.841	3	.336	15	.008	12	0	15	002	1	0	3
273		4	max	105.142	2	1.25	4	.722	1	0	1	0	3	0	15
274			min	-127.892	3	.294	15	.008	12	0	15	002	1	0	3
275		5	max	105.074	2	1.073	4	.722	1	0	1	0	3	0	15
276			min	-127.944	3	.252	15	.008	12	0	15	001	1	0	4
277		6	max		2	.895	4	.722	1	0	1	0	3	0	15
278			min	-127.995	3	.211	15	.008	12	0	15	001	1	0	4
279		7	max	104.936	2	.718	4	.722	1	0	1	0	3	0	15
280			min	-128.047	3	.169	15	.008	12	0	15	001	1	0	4
281		8	max		2	.541	4	.722	1	0	1	0	3	0	15
282			min	-128.098	3	.127	15	.008	12	0	15	0	1	001	4
283		9	max		2	.364	4	.722	1	0	1	0	3	0	15
284		9	min	-128.149	3	.086	15	.008	12	0	15	0	1	001	4
285		10		104.731	2	.187	4	.722	1	0	1	0	3	<u>001</u> 0	15
286		10	max	-128.201	3	.044	15	.008	12	0	15	0	1	001	4
		11	min												
287		11	max		2	.025	1	.722	1	0	1	0	3	0	15
288		40	min	-128.252	3	039	3	.008	12	0	15	0		001	4
289		12	max	104.593	2	039	15	.722	1	0	1	0	3	0	15
290		40	min	-128.304	3	168	4	.008	12	0	15	0	1	001	4
291		13	max		2	081	15	.722	1	0	1	0	3	0	15
292			min	-128.355	3	345	4	.008	12	0	15	0	1	<u>001</u>	4
293		14	max		2	123	15	.722	1	0	1	0	3	0	15
294			min	-128.407	3	522	4	.008	12	0	15	0	2	001	4
295		15	max	104.388	2	164	15	.722	1	0	1	0	3	0	15
296			min	-128.458	3	699	4	.008	12	0	15	0	10	0	4
297		16	max		2	206	15	.722	1_	0	1	0	1	0	15
298			min	-128.51	3	877	4	.008	12	0	15	0	15	0	4
299		17	max	104.25	2	248	15	.722	1	0	1	0	1	0	15
300			min	-128.561	3	-1.054	4	.008	12	0	15	0	15	0	4
301		18	max	104.182	2	289	15	.722	1	0	1	0	1	0	15
302			min	-128.613	3	-1.231	4	.008	12	0	15	0	15	0	4
303		19	max		2	331	15	.722	1	0	1	0	1	0	1
304			min	-128.664	3	-1.408	4	.008	12	0	15	0	15	0	1
305	M12	1	max		1	0	1	3.669	1	0	1	0	1	0	1
306			min	-26.886	3	0	1	.134	15	0	1	0	3	0	1
307		2	max	464.01	1	0	1	3.669	1	0	1	0	1	0	1
308			min	-26.838	3	0	1	.134	15	0	1	0	15	0	1
309		3	max	464.075	1	0	1	3.669	1	0	1	0	1	0	1
310			min	-26.789	3	0	1	.134	15	0	1	0	15	0	1
311		4	max		1	0	1	3.669	1	0	1	.001	1	0	1
312			min	-26.741	3	0	1	.134	15	0	1	0	15	0	1
313		5	max		1	0	1	3.669	1	0	1	.001	1	0	1
314			min	-26.692	3	0	1	.134	15	0	1	0	15	0	1
315		6	max		1	0	1	3.669	1	0	1	.002	1	0	1
316			min	-26.644	3	0	1	.134	15	0	1	0	15	0	1
317		7	max		1	0	1	3.669	1	0	1	.002	1	0	1
318		+	min	-26.595	3	0	1	.134	15	0	1	<u>.002</u>	15	0	1
		8			1		1		1		1				
319		Ŏ	max	464.398	_	0	1	3.669	15	0	1	.002	15	0	1
320		0	min	-26.547	3	0	_	.134		0	-	0		0	
321		9	max		1	0	1	3.669	1	0	1	.003	1	0	1
322			min	-26.498	3	0	1	.134	15	0	1	0	15	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC :	z-z Mome	LC
323		10	max	464.527	1	0	1	3.669	1	0	1	.003	1	0	1
324			min	-26.45	3	0	1	.134	15	0	1	0	15	0	1
325		11	max	464.592	1	0	1	3.669	1	0	1	.003	1	0	1
326			min	-26.401	3	0	1	.134	15	0	1	0	15	0	1
327		12	max	464.657	1	0	1	3.669	1	0	1	.004	1	0	1
328			min	-26.353	3	0	1	.134	15	0	1	0	15	0	1
329		13	max		1	0	1	3.669	1	0	1	.004	1	0	1
330		10	min	-26.304	3	0	1	.134	15	0	1	0	15	0	1
331		14	max	464.786	1	0	1	3.669	1	0	1	.004	1	0	1
332		17	min	-26.255	3	0	1	.134	15	0	1	0	15	0	1
		15			<u> </u>	0	1		1	0	1	.005	1	0	1
333		15	max	464.851				3.669							
334		40	min	-26.207	3	0	1_	.134	15	0	1	0	15	0	1
335		16	max	464.916	1	0	1	3.669	1	0	1	005	1	0	1
336			min	-26.158	3	0	1_	.134	15	0	1	0	15	0	1
337		17	max	464.98	1	0	_1_	3.669	1	0	1	.005	1	00	1
338			min	-26.11	3	0	1_	.134	15	0	1	0	15	0	1
339		18	max		1	0	_1_	3.669	1	0	1	.006	1	0	1
340			min	-26.061	3	0	1	.134	15	0	1	0	15	0	1
341		19	max	465.11	1	0	1	3.669	1	0	1	.006	1	0	1
342			min	-26.013	3	0	1	.134	15	0	1	0	15	0	1
343	M1	1	max	137.879	1	335.641	3	-2.682	15	0	1	.144	1	0	1
344			min	5.025	15	-320.684	1	-72.802	1	0	3	.005	15	0	3
345		2	max	137.997	1	335.451	3	-2.682	15	0	1	.128	1	.07	1
346			min	5.06	15	-320.937	1	-72.802	1	0	3	.005	15	073	3
347		3	max	93.663	1	6.969	9	-2.66	15	0	12	.111	1	.138	1
348		3	min	-2.461	10	-17.83	3	-72.61	1	0	1	.004	15	144	3
		1		93.781	1	6.758	9		15	0	12	.004		.138	1
349		4	max					-2.66					1		_
350		_	min	-2.362	10	-18.02	3	-72.61	1_	0	1	.003	15	14	3
351		5	max	93.899	1	6.547	9	-2.66	15	0	12	.079	1	.139	1
352			min	-2.264	10	-18.214	2	-72.61	1_	0	1	.003	15	136	3
353		6	max	94.017	1	6.336	9	-2.66	15	0	12	.064	1	.139	1
354			min	-2.166	10	-18.467	2	-72.61	1	0	1	.002	15	132	3
355		7	max	94.135	1	6.125	9	-2.66	15	0	12	.048	1	.14	1
356			min	-2.067	10	-18.72	2	-72.61	1	0	1	.002	15	128	3
357		8	max	94.253	1	5.914	9	-2.66	15	0	12	.032	1	.14	1
358			min	-1.969	10	-18.974	2	-72.61	1	0	1	.001	15	124	3
359		9	max	94.371	1	5.704	9	-2.66	15	0	12	.016	1	.141	1
360			min	-1.871	10	-19.227	2	-72.61	1	0	1	0	15	12	3
361		10	max	94.489	1	5.493	9	-2.66	15	0	12	0	3	.143	2
362			min	-1.772	10	-19.48	2	-72.61	1	0	1	0	10	116	3
363		11	max		1	5.282	9	-2.66	15	0	12	0	12	.147	2
364			min		10	-19.733	2	-72.61	1	0	1	015	1	112	3
365		12		94.725	1	5.071	9	-2.66	15	0	12	<u>015</u> 0	12	.152	2
		12	max				2		1	_	1	031	1		
366		40	min	-1.576	10	-19.986		-72.61		0				108	3
367		13	max	94.843	1	4.86	9	-2.66	15	0	12	002	12	.156	2
368			min	-1.477	10	-20.239	2	-72.61	1_	0	1	047	1	104	3
369		14	max	94.961	1	4.649	9	-2.66	15	0	12	002	15	16	2
370			min	-1.379	10	-20.492	2	-72.61	1	0	1	062	1	099	3
371		15	max	95.079	1	4.438	9	-2.66	15	0	12	003	15	.165	2
372			min	-1.281	10	-20.745	2	-72.61	1	0	1	078	1	095	3
373		16	max	86.912	2	60.253	2	-2.683	15	0	1	003	15	.169	2
374			min	-19.465	3	-120.88	3	-73.143	1	0	12	095	1	09	3
375		17	max	87.03	2	60	2	-2.683	15	0	1	004	15	.158	1
376			min	-19.376	3	-121.07	3	-73.143	1	0	12	11	1	063	3
377		18	max	-5.04	15	367.414	1	-2.749	15	0	3	005	15	.08	1
378				-137.553	1	-146.09	3	-74.969	1	0	1	127	1	032	3
379		19			15	367.161	1	-2.749	15	0	3	005	15	0	1
013		13	παλ	-0.004	IJ	501.101		-2.143	LIU		J	000	LIU	<u> </u>	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
380			min	-137.435	1	-146.28	3	-74.969	1	0	1	143	1	0	3
381	M5	1	max	301.68	1	1110.799	3	057	10	0	1	.004	3	0	3
382			min	9.299	12	-1062.505	1	-35.931	3	0	3	0	10	0	1
383		2	max	301.798	1	1110.609	3	057	10	0	1	0	2	.23	1
384			min	9.358	12	-1062.758	1	-35.931	3	0	3	004	3	241	3
385		3	max	179.047	3	7.21	9	4.149	3	0	3	0	2	.456	1
386			min	-21.263	10	-69.922	2	37	2	0	1	011	3	476	3
387		4	max	179.135	3	6.999	9	4.149	3	0	3	0	2	.462	1
388			min	-21.165	10	-70.176	2	37	2	0	1	01	3	462	3
389		5	max	179.224	3	6.789	9	4.149	3	0	3	0	2	.468	1
390			min	-21.066	10	-70.429	2	37	2	0	1	01	3	449	3
391		6	max	179.313	3	6.578	9	4.149	3	0	3	0	2	.474	1
392			min	-20.968	10	-70.682	2	37	2	0	1	009	3	434	3
393		7	max	179.401	3	6.367	9	4.149	3	0	3	0	2	.48	1
394			min	-20.87	10	-70.935	2	37	2	0	1	008	3	42	3
395		8	max	179.49	3	6.156	9	4.149	3	0	3	0	2	.486	1
396			min	-20.771	10	-71.188	2	37	2	0	1	007	3	406	3
397		9	max	179.578	3	5.945	9	4.149	3	0	3	0	2	.492	1
398			min	-20.673	10	-71.441	2	37	2	0	1	006	3	392	3
399		10	max	179.667	3	5.734	9	4.149	3	0	3	0	10	.498	1
400			min	-20.574	10	-71.694	2	37	2	0	1	005	3	378	3
401		11	max	179.755	3	5.523	9	4.149	3	0	3	0	10	.504	1
402			min	-20.476	10	-71.947	2	37	2	0	1	004	3	364	3
403		12	max	179.844	3	5.312	9	4.149	3	0	3	0	10	.518	2
404			min	-20.378	10	-72.2	2	37	2	0	1	003	3	349	3
405		13	max	179.932	3	5.101	9	4.149	3	0	3	0	10	.533	2
406			min	-20.279	10	-72.453	2	37	2	0	1	002	3	335	3
407		14	max	180.021	3	4.891	9	4.149	3	0	3	0	10	.549	2
408			min	-20.181	10	-72.706	2	37	2	0	1	002	1	321	3
409		15	max	180.109	3	4.68	9	4.149	3	0	3	0	10	.565	2
410			min	-20.083	10	-72.959	2	37	2	0	1	002	1	306	3
411		16	max	301.568	2	296.048	2	4.121	3	0	1	0	3	.577	2
412			min	-64.572	3	-374.248	3	389	2	0	15	001	1	289	3
413		17	max	301.686	2	295.795	2	4.121	3	0	1	0	3	.52	1
414			min	-64.484	3	-374.437	3	389	2	0	15	001	1	208	3
415		18	max	-10.052	12	1211.161	1	3.773	3	0	3	.002	3	.262	1
416			min	-302.388	1	-481.336	3	092	2	0	1	0	1	104	3
417		19	max	-9.993	12	1210.908	1_	3.773	3	0	3	.003	3	0	3
418			min	-302.27	1	-481.526	3	092	2	0	1	0	2	0	1
419	M9	1	max	137.26	1	335.619	3	91.916	1	0	3	005	15	0	1
420			min		15		1	3.583	15	0	1	143	1	0	3
421		2	max	137.378	1	335.429	3	91.916	1	0	3	003	12	.07	1
422			min	5.036	15	-320.923	1	3.583	15	0	1	123	1	073	3
423		3	max	93.62	1	6.945	9	68.99	1	00	1	.004	3	.138	1
424			min	-1.971	10	-17.766	3	.938	12	0	15	102	1	144	3
425		4	max	93.738	1	6.734	9	68.99	1	0	1	.005	3	.138	1
426			min	-1.873	10	-17.972	2	.938	12	0	15	087	1	14	3
427		5	max		1	6.523	9	68.99	1	0	1	.005	3	.139	1
428			min	-1.774	10	-18.225	2	.938	12	0	15	072	1	136	3
429		6	max	93.974	1_	6.312	9	68.99	1	0	1	.005	3	.139	1
430			min	-1.676	10	-18.478	2	.938	12	0	15	057	1	132	3
431		7	max		1	6.101	9	68.99	1	0	1	.005	3	.14	1
432			min	-1.578	10	-18.731	2	.938	12	0	15	042	1	128	3
433		8	max	94.21	1	5.89	9	68.99	1	0	1	.006	3	.14	1
434			min	-1.479	10	-18.984	2	.938	12	0	15	027	1	124	3
435		9	max	94.328	1	5.68	9	68.99	1	0	1	.006	3	.141	1
436			min	-1.381	10	-19.238	2	.938	12	0	15	012	1	12	3

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	94.446	1	5.469	9	68.99	1	0	1	.006	3	.143	2
438			min	-1.283	10	-19.491	2	.938	12	0	15	0	2	116	3
439		11	max	94.564	1	5.258	9	68.99	1	0	1	.018	1	.147	2
440			min	-1.184	10	-19.744	2	.938	12	0	15	0	15	112	3
441		12	max	94.682	1	5.047	9	68.99	1	0	1	.033	1	.152	2
442			min	-1.086	10	-19.997	2	.938	12	0	15	.001	15	108	3
443		13	max	94.8	1	4.836	9	68.99	1	0	1	.048	1	.156	2
444			min	988	10	-20.25	2	.938	12	0	15	.002	15	104	3
445		14	max	94.918	1	4.625	9	68.99	1	0	1	.063	1	.16	2
446			min	889	10	-20.503	2	.938	12	0	15	.002	15	099	3
447		15	max	95.036	1	4.414	9	68.99	1	0	1	.078	1	.165	2
448			min	791	10	-20.756	2	.938	12	0	15	.003	15	095	3
449		16	max	87.184	2	60.034	2	69.633	1	0	15	.094	1	.169	2
450		1.0	min	-19.576	3	-121.31	3	.948	12	0	1	.003	15	09	3
451		17	max	87.302	2	59.78	2	69.633	1	0	15	.109	1	.158	1
452		 ''	min	-19.488	3	-121.5	3	.948	12	0	1	.004	15	063	3
453		18	max	-5.029	15	367.414	1	73.336	1	0	1	.125	1	.08	1
454		10	min	-137.232	1	-146.087	3	1.22	12	0	3	.005	15	032	3
455		19		-4.994	15	367.161	1	73.336	1	0	1	.141	1	0	1
456		19	max min	-137.114	1	-146.277	3	1.22	12	0	3	.005	15	0	3
457	M13	1		92.14	1	320.199	1	-5	15		1	.143	1 <u>15</u>		1
	IVII3		max							0				0	_
458		_	min	3.583	15	-335.613	3	-137.242	1_	0	3	.005	<u>15</u>	0	3
459		2	max	92.14	1	225.822	1	-3.836	15	0	1	.045	1_	.23	3
460			min	3.583	15	-236.622	3	-105.197	1_	0	3	.002	15	22	1
461		3	max	92.14	1	131.444	1	-2.672	15	0	1	.002	3	.381	3
462		-	min	3.583	15	-137.631	3	-73.151	1_	0	3	027	1_	364	1
463		4	max	92.14	1	37.066	1	-1.508	15	0	1	0	12	.452	3
464			min	3.583	15	-38.641	3	-41.106	1_	0	3	073	_1_	432	1
465		5	max	92.14	1	60.35	3	345	15	0	1	002	12	.443	3
466		_	min	3.583	15	-57.311	1	-9.06	1	0	3	093	_1_	424	1
467		6	max	92.14	1_	159.341	3	22.986	1	0	1_	002	12	.355	3
468			min	3.583	15	-151.689	1	.204	12	0	3	087	1_	339	1
469		7	max	92.14	1_	258.332	3	55.031	1	0	1	002	12	.187	3
470			min	3.583	15	-246.067	1	1.333	12	0	3	056	1	179	1
471		8	max	92.14	1	357.323	3	87.077	1	0	1	.002	2	.057	1
472			min	3.583	15	-340.444	1	2.462	12	0	3	0	3	061	3
473		9	max	92.14	1	456.314	3	119.122	1	0	1	.084	1_	.369	1
474			min	3.583	15	-434.822	1	3.591	12	0	3	.002	12	389	3
475		10	max	92.14	1	555.305	3	151.168	1	0	2	.193	1	.758	1
476			min	3.583	15	-529.2	1	4.72	12	0	1	.006	12	796	3
477		11	max	73.043	1	434.822	1	-3.446	12	0	3	.081	1	.369	1
478			min	2.682	15	-456.314	3	-118.499	1	0	1	0	3	389	3
479		12	max	73.043	1	340.444	1	-2.317	12	0	3	.001	2	.057	1
480			min	2.682	15	-357.323	3	-86.454	1	0	1	004	3	061	3
481		13	max		1	246.067	1	-1.188	12	0	3	002	15	.187	3
482			min	2.682	15	-258.332	3	-54.408	1	0	1	058	1	179	1
483		14	max	73.043	1	151.689	1	.029	3	0	3	003	15	.355	3
484			min	2.682	15	-159.341	3	-22.362	1	0	1	089	1	339	1
485		15	max	73.043	1	57.311	1	9.683	1	0	3	003	15	.443	3
486		'0	min	2.682	15	-60.35	3	.369	15	0	1	094	1	424	1
487		16	max		1	38.641	3	41.729	1	0	3	002	12	.452	3
488		10	min	2.682	15	-37.066	1	1.533	15	0	1	002	1	432	1
489		17					3	73.774	1		3	073 0	3	.381	3
		17	max	73.043	1	137.631				0	1		<u> </u>		1
490		40	min	2.682	15	-131.444	1	2.697	15	0		027	•	364	-
491		18		73.043	1	236.622	3	105.82	1	0	3	.045	1_	.23	3
492		40	min	2.682	15	-225.822	1	3.861	15	0	1	.002	15	22	1
493		19	max	73.043	1	335.613	3	137.865	1	0	3	.144	_1_	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

494		Member	Sec		Axial[lb]			LC	z Shear[lb]		Torque[k-ft]	LC			z-z Mome	
A96	494			min	2.682	15	-320.2	1	5.025	15	0		.005	15	0	3
498	495	M16	1	max	-1.219	12	367.665	1	-4.994	15	0	3	.141	1	0	1
498	496			min	-73.073	1	-146.299	3	-137.129	1	0	1	.005	15	0	3
Agg			2	max		12		1	-3.83	15	0	3	.043	1	.101	3
199								3			0			15		
Soli			3			_				15		3				3
SOI																
SO2			4													
503								_								
504			-									•				_
505			5													
506												•		-		
507			Ь													
Sobs			_													_
Sol			/								_					
STO			_			_		_								
STI			8			12		3			0					
512				min		1		_		12	0			3		3
513			9	max		12		3	119.236	_	0	3	.083	1		_
515	512			min	-73.073	1	-499.309	1	3.774	12	0	1	.001	12	166	3
515	513		10	max	-2.748	15	-13.996	15	151.281	1	0	15	.192	1	.87	1
516	514			min		1	-607.681	1	-7.6	3	0	1	.006	12	343	3
516			11			15		1		12	0	1		1	.424	1
517												3		12		
518			12													
519 13 max -2.748 15 282.565 1 -1.703 12 0 1 -0.02 12 .083 3 520 min -74.737 1 -111.788 3 -54.823 1 0 3 -057 1 -206 1 521 14 max -2.748 15 174.194 1 -5.74 12 0 1 -003 12 156 3 522 min -74.737 1 -68.774 3 -22.777 1 0 3 -088 1 -39 1 523 15 max -2.748 15 65.822 1 9.268 1 0 1 -003 12 194 3 524 min -74.737 1 -25.759 3 341.314 1 0 1 -002 12 198 3 525 16 max -2.748 1			1-								_					
S20			13			_				_						
521			10													
522			11													
523			14													
S24			4.5								•	•				
525 16 max -2.748 15 17.255 3 41.314 1 0 1 002 12 .198 3 526 min -74.737 1 -42.555 1 1.513 15 0 3 -073 1 496 1 527 17 max -2.748 15 60.27 3 73.359 1 0 1 0 12 .166 3 528 min -74.737 1 -150.922 1 2.677 15 0 3 -027 1 -418 1 529 18 max -2.748 15 103.284 3 105.405 1 0 1 .045 1 .101 3 530 min -74.737 1 -259.294 1 3.84 15 0 3 .002 15 -252 1 531 19 max -2.748 15 </td <td></td> <td></td> <td>15</td> <td></td>			15													
526 min -74.737 1 -42.55 1 1.513 15 0 3 073 1 496 1 527 17 max -2.748 15 60.27 3 73.359 1 0 1 0 12 .166 3 528 min -74.737 1 -150.922 1 2.677 15 0 3 027 1 -418 1 529 18 max -2.748 15 103.284 3 105.405 1 0 1 .045 1 .101 3 530 min -74.737 1 -259.294 1 3.84 15 0 3 .002 15 252 1 531 19 max -2.748 15 146.299 3 137.45 1 0 1 .143 1 0 1 .0 1 .0 1 .0 1			10			_								-		
527 17 max -2.748 15 60.27 3 73.359 1 0 1 0 12 .166 3 528 min -74.737 1 -150.922 1 2.677 15 0 3 027 1 -418 1 529 18 max -2.748 15 103.284 3 105.405 1 0 1 .045 1 .101 3 530 min -74.737 1 -259.294 1 .84 15 0 3 .002 15 -252 1 531 19 max -2.748 15 146.299 3 137.45 1 0 1 .143 1 0 1 532 min -74.737 1 -367.665 1 5.004 15 0 3 .005 15 0 3 533 M15 1 max 0			16													
528 min -74.737 1 -150.922 1 2.677 15 0 3 027 1 418 1 529 18 max -2.748 15 103.284 3 105.405 1 0 1 .045 1 .101 3 530 min -74.737 1 -259.294 1 3.84 15 0 3 .002 15 -252 1 531 19 max -2.748 15 146.299 3 137.45 1 0 1 .143 1 0 1 532 min -47.737 1 -367.665 1 5.004 15 0 3 .005 15 0 3 533 M15 1 max 0 2 2.531 4 .037 3 0 1 0 1 0 1 534 min -43.163 3																_
529 18 max -2.748 15 103.284 3 105.405 1 0 1 .045 1 .101 3 530 min -74.737 1 -259.294 1 3.84 15 0 3 .002 15 -252 1 531 19 max -2.748 15 146.299 3 137.45 1 0 1 .143 1 0 1 532 min -74.737 1 -367.665 1 5.004 15 0 3 .005 15 0 3 533 M15 1 max 0 2 2.531 4 .037 3 0 1 0 1 0 1 534 min -43.098 3 0 2 039 1 0 3 0 1 0 1 0 1 0 1 0 1 0			17								_					
530 min -74.737 1 -259.294 1 3.84 15 0 3 .002 15 252 1 531 19 max -2.748 15 146.299 3 137.45 1 0 1 .143 1 0 1 532 min -74.737 1 -367.665 1 5.004 15 0 3 .005 15 0 3 533 M15 1 max 0 2 2.531 4 .037 3 0 1				min		_		_			0	3		_		_
531 19 max -2.748 15 146.299 3 137.45 1 0 1 .143 1 0 1 532 min -74.737 1 -367.665 1 5.004 15 0 3 .005 15 0 3 533 M15 1 max 0 2 2.531 4 .037 3 0 1 0			18	max		15	103.284	3			0		.045	1		3
532 min -74.737 1 -367.665 1 5.004 15 0 3 .005 15 0 3 533 M15 1 max 0 2 2.531 4 .037 3 0 1	530			min	-74.737	1		1		15	0	3	.002	15	252	1
533 M15 1 max 0 2 2.531 4 .037 3 0 1 0 1 0 1 534 min -43.098 3 0 2 -039 1 0 3 0 1 0 1 0 1 0 1 0 1 0 1 0 2 2 536 1 0 1 0 1 0 1 0 1 0 1 0 2 2 536 1 0 1 0 1 0 1 0 1 0 2 2 536 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1	531		19	max	-2.748	15	146.299	3	137.45	1	0	1	.143	1	0	1
534 min -43.098 3 0 2 039 1 0 3 0 1 535 2 max 0 2 2.25 4 .037 3 0 1 0 1 0 2 536 min -43.163 3 0 2 039 1 0 3 0 3 001 4 537 3 max 0 2 1.968 4 .037 3 0 1 0 1 0 2 538 min -43.228 3 0 2 039 1 0 3 0 3 002 4 539 4 max 0 2 1.687 4 .037 3 0 1 0 1 0 2 540 min -43.293 3 0 2 039 1 0 3 0	532			min	-74.737	1	-367.665	1	5.004	15	0	3	.005	15	0	3
534 min -43.098 3 0 2 039 1 0 3 0 1 535 2 max 0 2 2.25 4 .037 3 0 1 0 1 0 2 536 min -43.163 3 0 2 039 1 0 3 0 3 001 4 537 3 max 0 2 1.968 4 .037 3 0 1 0 1 0 2 538 min -43.228 3 0 2 039 1 0 3 0 3 002 4 539 4 max 0 2 1.687 4 .037 3 0 1 0 1 0 2 540 min -43.293 3 0 2 039 1 0 3 0	533	M15	1	max	0	2	2.531	4	.037	3	0	1	0	1	0	1
535 2 max 0 2 2.25 4 .037 3 0 1 0 1 0 2 536 min -43.163 3 0 2 039 1 0 3 0 3 001 4 537 3 max 0 2 1.968 4 .037 3 0 1 0 1 0 2 538 min -43.228 3 0 2 039 1 0 3 0 3 002 4 539 4 max 0 2 1.687 4 .037 3 0 1 0 1 0 2 540 min -43.293 3 0 2 039 1 0 3 0 3 003 4 541 5 max 0 2 1.406 4 .037 3					-43.098			2				3		3		1
536 min -43.163 3 0 2 039 1 0 3 0 3 001 4 537 3 max 0 2 1.968 4 .037 3 0 1 0 1 0 2 538 min -43.228 3 0 2 039 1 0 3 0 3 002 4 539 4 max 0 2 1.687 4 .037 3 0 1 0 1 0 2 540 min -43.293 3 0 2 039 1 0 3 0 3 003 4 541 5 max 0 2 1.406 4 .037 3 0 1 0 1 0 2 542 min -43.358 3 0 2 039 1 0 3 </td <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>2.25</td> <td>4</td> <td></td> <td>3</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td>			2				2.25	4		3	0					
537 3 max 0 2 1.968 4 .037 3 0 1 0 1 0 2 538 min -43.228 3 0 2 039 1 0 3 0 3 002 4 539 4 max 0 2 1.687 4 .037 3 0 1 0 1 0 2 540 min -43.293 3 0 2 039 1 0 3 0 3 003 4 541 5 max 0 2 1.406 4 .037 3 0 1 0 1 0 2 542 min -43.358 3 0 2 039 1 0 3 0 3 003 4 543 6 max 0 2 1.125 4 .037 3							_									
538 min -43.228 3 0 2 039 1 0 3 0 3 002 4 539 4 max 0 2 1.687 4 .037 3 0 1 0 1 0 2 540 min -43.293 3 0 2 039 1 0 3 0 3 003 4 541 5 max 0 2 1.406 4 .037 3 0 1 0 1 0 2 542 min -43.358 3 0 2 039 1 0 3 0 3 003 4 543 6 max 0 2 1.125 4 .037 3 0 1 0 1 0 2 544 min -43.423 3 0 2 039 1 0 </td <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			3				_									
539 4 max 0 2 1.687 4 .037 3 0 1 0 1 0 2 540 min -43.293 3 0 2 039 1 0 3 0 3 003 4 541 5 max 0 2 1.406 4 .037 3 0 1 0 1 0 2 542 min -43.358 3 0 2 039 1 0 3 0 3 003 4 543 6 max 0 2 1.125 4 .037 3 0 1 0 1 0 2 544 min -43.423 3 0 2 039 1 0 3 0 3 004 4 545 7 max 0 2 .844 4 .037 3																
540 min -43.293 3 0 2 039 1 0 3 0 3 003 4 541 5 max 0 2 1.406 4 .037 3 0 1 0 1 0 2 542 min -43.358 3 0 2 039 1 0 3 0 3 003 4 543 6 max 0 2 1.125 4 .037 3 0 1 0 1 0 2 544 min -43.423 3 0 2 039 1 0 3 0 3 004 4 545 7 max 0 2 .844 4 .037 3 0 1 0 3 0 2 546 min -43.489 3 0 2 039 1 0 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1				_									
541 5 max 0 2 1.406 4 .037 3 0 1 0 1 0 2 542 min -43.358 3 0 2 039 1 0 3 0 3 003 4 543 6 max 0 2 1.125 4 .037 3 0 1 0 1 0 2 544 min -43.423 3 0 2 039 1 0 3 0 3 004 4 545 7 max 0 2 .844 4 .037 3 0 1 0 3 0 2 546 min -43.489 3 0 2 039 1 0 3 0 1 004 4 547 8 max 0 2 .562 4 .037 3																
542 min -43.358 3 0 2 039 1 0 3 0 3 003 4 543 6 max 0 2 1.125 4 .037 3 0 1 0 1 0 2 544 min -43.423 3 0 2 039 1 0 3 0 3 004 4 545 7 max 0 2 .844 4 .037 3 0 1 0 3 0 2 546 min -43.489 3 0 2 039 1 0 3 0 1 004 4 547 8 max 0 2 .562 4 .037 3 0 1 0 3 0 2 548 min -43.554 3 0 2 039 1 0 <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td></td>			-		_											
543 6 max 0 2 1.125 4 .037 3 0 1 0 1 0 2 544 min -43.423 3 0 2 039 1 0 3 0 3 004 4 545 7 max 0 2 .844 4 .037 3 0 1 0 3 0 2 546 min -43.489 3 0 2 039 1 0 3 0 1 004 4 547 8 max 0 2 .562 4 .037 3 0 1 0 3 0 2 548 min -43.554 3 0 2 039 1 0 3 0 1 005 4 549 9 max 0 2 .281 4 .037 3 0 1 0 3 0 2			- 5													
544 min -43.423 3 0 2 039 1 0 3 0 3 004 4 545 7 max 0 2 .844 4 .037 3 0 1 0 3 0 2 546 min -43.489 3 0 2 039 1 0 3 0 1 004 4 547 8 max 0 2 .562 4 .037 3 0 1 0 3 0 2 548 min -43.554 3 0 2 039 1 0 3 0 1 005 4 549 9 max 0 2 .281 4 .037 3 0 1 0 3 0 2							•				-					
545 7 max 0 2 .844 4 .037 3 0 1 0 3 0 2 546 min -43.489 3 0 2 039 1 0 3 0 1 004 4 547 8 max 0 2 .562 4 .037 3 0 1 0 3 0 2 548 min -43.554 3 0 2 039 1 0 3 0 1 005 4 549 9 max 0 2 .281 4 .037 3 0 1 0 3 0 2			б											_	_	
546 min -43.489 3 0 2 039 1 0 3 0 1 004 4 547 8 max 0 2 .562 4 .037 3 0 1 0 3 0 2 548 min -43.554 3 0 2 039 1 0 3 0 1 005 4 549 9 max 0 2 .281 4 .037 3 0 1 0 3 0 2					_		_									
547 8 max 0 2 .562 4 .037 3 0 1 0 3 0 2 548 min -43.554 3 0 2 039 1 0 3 0 1 005 4 549 9 max 0 2 .281 4 .037 3 0 1 0 3 0 2			7													
548 min -43.554 3 0 2 039 1 0 3 0 1 005 4 549 9 max 0 2 .281 4 .037 3 0 1 0 3 0 2																
549 9 max 0 2 .281 4 .037 3 0 1 0 3 0 2			8		•								-		0	
				min			_					3	0			
550 min -43.619 3 0 2039 1 0 3 0 1005 4			9	max		2	.281			3	0		0	3	0	
	550			min	-43.619	3	0	2	039	1	0	3	0	1	005	4

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	
551		10	max	0	2	0	1	.037	3	0	1	0	3	0	2
552			min	-43.684	3	0	1	039	1	0	3	0	1	005	4
553		11	max	0	2	0	2	.037	3	0	1	0	3	0	2
554			min	-43.749	3	281	4	039	1	0	3	0	1	005	4
555		12	max	0	2	0	2	.037	3	0	1	0	3	0	2
556			min	-43.815	3	562	4	039	1	0	3	0	1	005	4
557		13	max	0	2	0	2	.037	3	0	1	0	3	0	2
558			min	-43.88	3	844	4	039	1	0	3	0	1	004	4
559		14	max	0	2	0	2	.037	3	0	1	0	3	0	2
560			min	-43.945	3	-1.125	4	039	1	0	3	0	1	004	4
561		15	max	0	2	0	2	.037	3	0	1	0	3	0	2
562			min	-44.01	3	-1.406	4	039	1	0	3	0	1	003	4
563		16	max	0	2	0	2	.037	3	0	1	0	3	0	2
564			min	-44.075	3	-1.687	4	039	1	0	3	0	1	003	4
565		17	max	0	2	0	2	.037	3	0	1	0	3	0	2
566			min	-44.141	3	-1.968	4	039	1	0	3	0	1	002	4
567		18	max	0	2	0	2	.037	3	0	1	0	3	0	2
568			min	-44.206	3	-2.25	4	039	1	0	3	0	1	001	4
569		19	max	0	2	0	2	.037	3	0	1	0	3	0	1
570			min	-44.271	3	-2.531	4	039	1	0	3	0	1	0	1
571	M16A	1	max	823	10	2.531	4	.023	1	0	3	0	3	0	1
572			min	-43.689	3	.595	15	014	3	0	1	0	1	0	1
573		2	max	75	10	2.25	4	.023	1	0	3	0	3	0	15
574			min	-43.624	3	.529	15	014	3	0	1	0	1	001	4
575		3	max	678	10	1.968	4	.023	1	0	3	0	3	0	15
576		_	min	-43.559	3	.463	15	014	3	0	1	0	1	002	4
577		4	max	605	10	1.687	4	.023	1	0	3	0	3	0	15
578			min	-43.493	3	.397	15	014	3	0	1	0	1	003	4
579		5	max	533	10	1.406	4	.023	1	0	3	0	3	0	15
580			min	-43.428	3	.331	15	014	3	0	1	0	1	003	4
581		6	max	461	10	1.125	4	.023	1	0	3	0	3	0	15
582		_	min	-43.363	3	.264	15	014	3	0	1	0	1	004	4
583		7	max	388	10	.844	4	.023	1	0	3	0	3	001	15
584			min	-43.298	3	.198	15	014	3	0	1	0	1	004	4
585		8	max	316	10	.562	4	.023	1	0	3	0	3	001	15
586			min	-43.233	3	.132	15	014	3	0	1	0	1	005	4
587		9	max	243	10	.281	4	.023	1	0	3	0	3	001	15
588		10	min	-43.168	3	.066	15	014	3	0	1	0	1	005	4
589		10	max	171	10	0	1	.023	1	0	3	0	3	001	15
590		44	min	-43.102	3	0	1_	014	3	0	1	0	1	005	4
591		11	max	098	10	066	15	.023	1	0	3	0	3	001	15
592		40	min	-43.037	3	281	4	014	3	0	1	0	1	005	4
593		12	max	026	10	132	15	.023	3	0	3	0	3	001	15
594		10	min	-42.972	3	562	4	014 .023	1	0		0		005	4
595		13		.047 -42.907	10 3	198	1 <u>5</u>		3	0	3	0	3	001	15
596		1.1	min			844		014		0		_		004	4
597		14	max	.119	10	264	15	.023	1	0	3	0	1	0	15
598		4.5	min	<u>-42.842</u>	3	-1.125	4	014	3	0	1	0	3	004	15
599		15	max	.191	10	331	15	.023	3	0	3	0	1	0	15
600		1.0	min		3	-1.406	15	014 .023		0	3	0	3	003	15
601		16	max	.264	10	397	15		1	0		0	1	0	15
602		17	min	-42.711	10	-1.687	15	014	3	0	1	0	3	003	15
603		17	max	.336	10	463	15	.023	3	0	3	0	1	0	15
604		4.0	min	-42.646	3	-1.968	4	014		0		0	3	002	4
605		18		.409	10 3	529	15	.023	3	0	3	0	3	0	15
606		10	min	-42.581		-2.25	4	014		0				001	4
607		19	max	.481	10	595	15	.023	1	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-42.516	3	-2.531	4	014	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini			on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.003	1	.008	2	.014	1	-4.165e-5	15	NC	3	NC	3
2			min	003	3	007	3	0	3	-1.132e-3	1	4630.139	2	2607.892	1
3		2	max	.003	1	.007	2	.013	1	-3.988e-5	15	NC	3	NC	3
4			min	003	3	007	3	0	3	-1.084e-3	1	5044.982	2	2815.76	1
5		3	max	.003	1	.007	2	.012	1	-3.811e-5	15	NC	3	NC	3
6			min	003	3	007	3	0	3	-1.037e-3	1	5536.936	2	3060.944	1
7		4	max	.002	1	.006	2	.011	1	-3.634e-5	15	NC	1	NC	3
8		-		003	3	007	3	0	3	-9.888e-4	1	6124.441	2	3352.438	
		F	min	.002								NC			3
9		5	max		1	.005	2	.01	1	-3.457e-5	<u>15</u>		1_	NC 0700 050	<u>3</u>
10			min	002	3	006	3	0	3	-9.411e-4	1_	6832.024	2	3702.252	
11		6	max	.002	1	.005	2	.009	1	-3.28e-5	<u>15</u>	NC	1_	NC 4400.744	2
12			min	002	3	006	3	0	3	-8.934e-4	1_	7692.853	2	4126.711	1
13		7	max	.002	1	.004	2	.008	1	-3.103e-5	15	NC	1_	NC	2
14			min	002	3	006	3	0	3	-8.457e-4	1_	8752.646	2	4648.466	
15		8	max	.002	1	.004	2	.007	1	-2.925e-5	15	NC	_1_	NC	2
16			min	002	3	005	3	0	3	-7.979e-4	1	NC	1	5299.71	1
17		9	max	.002	1	.003	2	.006	1	-2.748e-5	15	NC	1	NC	2
18			min	002	3	005	3	0	3	-7.502e-4	1	NC	1	6127.489	1
19		10	max	.001	1	.003	2	.005	1	-2.571e-5	15	NC	1	NC	2
20			min	002	3	005	3	0	3	-7.025e-4	1	NC	1	7202.865	1
21		11	max	.001	1	.002	2	.004	1	-2.394e-5	15	NC	1	NC	2
22			min	001	3	004	3	0	3	-6.548e-4	1	NC	1	8637.497	1
23		12	max	.001	1	.002	2	.003	1	-2.217e-5	15	NC	1	NC	1
24		12	min	001	3	004	3	0	3	-6.071e-4	1	NC	1	NC	1
25		13	max	0	1	.004	2	.003	1	-2.04e-5	15	NC	1	NC	1
26		13	min	001	3	003	3	0	3	-5.593e-4	1	NC	1	NC	1
27		14		<u>001</u> 0	1	.003	2	.002	1	-1.863e-5	15	NC	1	NC	1
		14	max		3				3	-5.116e-4		NC NC	1	NC	1
28		4.5	min	0		003	3	0			1_				
29		15	max	0	1	0	2	.001	1	-1.686e-5	<u>15</u>	NC	1	NC NC	1
30			min	0	3	002	3	0	3	-4.639e-4	1_	NC	1_	NC	1
31		16	max	0	1	0	2	0	1	-1.509e-5	<u>15</u>	NC	_1_	NC	1
32			min	0	3	002	3	0	3	-4.162e-4	1_	NC	1_	NC	1
33		17	max	0	1	00	2	0	1	-1.332e-5	15	NC	_1_	NC	1
34			min	0	3	001	3	0	3	-3.685e-4	1_	NC	1_	NC	1
35		18	max	0	1	0	2	0	1	-1.155e-5	<u>15</u>	NC	_1_	NC	1_
36			min	0	3	0	3	0	12	-3.207e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-8.243e-6	12	NC	1	NC	1
38			min	0	1	0	1	0	1	-2.73e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.271e-4	1	NC	1	NC	1
40			min	0	1	0	1	0	1	3.955e-6	12	NC	1	NC	1
41		2	max	0	3	0	2	0	12	1.58e-4	1	NC	1	NC	1
42			min	0	2	0	3	0	1	5.701e-6	15	NC	1	NC	1
43		3	max	0	3	0	2	0	12	1.89e-4	1	NC	1	NC	1
44		J	min	0	2	002	3	0	1	6.851e-6	15	NC	1	NC	1
45		4			3	<u>002</u> 0	2	0	12	2.2e-4		NC NC	1	NC NC	1
		4	max	0							1_				
46		_	min	0	2	002	3	<u>001</u>	1	8.e-6	<u>15</u>	NC NC	1_1	NC NC	1
47		5	max	0	3	0	2	0	3	2.51e-4	1_	NC	1	NC NC	1
48			min	0	2	003	3	001	1	9.149e-6	15	NC	1_	NC	1
49		6	max	0	3	0	2	0	3	2.819e-4	1_	NC	1_	NC	1
50			min	0	2	004	3	001	1	1.03e-5	15	NC	1_	NC	1
51		7	max	0	3	0	2	0	3	3.129e-4	1_	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
52			min	0	2	004	3	0	1	1.145e-5	15	NC	1_	NC	1
53		8	max	0	3	0	2	0	3	3.439e-4	<u>1</u>	NC	_1_	NC	1
54			min	0	2	005	3	0	1	1.26e-5	15	NC	1	NC	1
55		9	max	0	3	.001	2	0	3	3.748e-4	1_	NC	1_	NC	1_
56			min	0	2	006	3	0	1	1.375e-5	15	NC	1	NC	1
57		10	max	0	3	.002	2	0	1	4.058e-4	1	NC	1	NC	1
58			min	0	2	006	3	0	15	1.49e-5	15	NC	1	NC	1
59		11	max	0	3	.002	2	.001	1	4.368e-4	1	NC	1	NC	1
60			min	0	2	007	3	0	15	1.605e-5	15	NC	1	NC	1
61		12	max	0	3	.003	2	.002	1	4.678e-4	1	NC	1_	NC	1
62			min	0	2	007	3	0	15	1.719e-5	15	NC	1	NC	1
63		13	max	0	3	.003	2	.003	1	4.987e-4	1_	NC	1	NC	1
64			min	0	2	007	3	0	15	1.834e-5	15	NC	1	NC	1
65		14	max	.001	3	.004	2	.003	1	5.297e-4	1	NC	1	NC	1
66			min	0	2	007	3	0	15	1.949e-5	15	NC	1	NC	1
67		15	max	.001	3	.005	2	.004	1	5.607e-4	1	NC	1	NC	1
68			min	0	2	007	3	0	15	2.064e-5	15	9535.159	2	NC	1
69		16	max	.001	3	.006	2	.005	1	5.916e-4	1	NC	1	NC	2
70			min	0	2	007	3	0	15	2.179e-5	15	8041.757	2	9374.939	1
71		17	max	.001	3	.007	2	.006	1	6.226e-4	1	NC	1	NC	2
72			min	001	2	007	3	0	15	2.294e-5	15	6894.035	2	8063.527	1
73		18	max	.001	3	.008	2	.006	1	6.536e-4	1	NC	3	NC	2
74			min	001	2	007	3	0	15		15	6001.125	2	7092.806	1
75		19	max	.001	3	.009	2	.007	1	6.845e-4	1	NC	3	NC	2
76			min	001	2	007	3	0	15	2.524e-5	15	5299.757	2	6357.541	1
77	M4	1	max	.002	1	.009	2	0	15		15	NC	1	NC	3
78			min	0	3	007	3	005	1	-9.049e-4	1	NC	1	3540.554	1
79		2	max	.002	1	.009	2	0	15		15	NC	1	NC	2
80			min	0	3	007	3	005	1	-9.049e-4	1	NC	1	3862.783	
81		3	max	.002	1	.008	2	0	15	-3.284e-5	15	NC	1	NC	2
82			min	0	3	007	3	005	1	-9.049e-4	1	NC	1	4246.27	1
83		4	max	.002	1	.008	2	0	15	-3.284e-5	15	NC	1	NC	2
84			min	0	3	006	3	004	1	-9.049e-4	1	NC	1	4707.176	
85		5	max	.002	1	.007	2	0	15	-3.284e-5	15	NC	1	NC	2
86			min	0	3	006	3	004	1	-9.049e-4	1	NC	1	5267.517	1
87		6	max	.002	1	.007	2	0	15		15	NC	1	NC	2
88			min	0	3	005	3	003	1	-9.049e-4	1	NC	1	5957.917	1
89		7	max	.001	1	.006	2	0	15		•	NC	1	NC	2
90			min	0	3	005	3	003	1	-9.049e-4	1	NC	1	6821.996	
91		8	max	.001	1	.006	2	0	15	-3.284e-5	•	NC	1	NC	2
92			min	0	3	005	3	002		-9.049e-4		NC	1	7923.631	1
93		9	max	.001	1	.005	2	0		-3.284e-5		NC	1	NC	2
94		Ť	min	0	3	004	3	002	1	-9.049e-4	1	NC	1	9359.458	
95		10	max	.001	1	.005	2	0	15	-3.284e-5	15	NC	1	NC	1
96		10	min	0	3	004	3	002	1	-9.049e-4	1	NC	1	NC	1
97		11	max	0	1	.004	2	0	15	-3.284e-5	15	NC	1	NC	1
98			min	0	3	003	3	001	1	-9.049e-4	1	NC	1	NC	1
99		12	max	0	1	.004	2	0	15		15	NC	1	NC	1
100		12	min	0	3	003	3	001	1	-9.049e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0		-3.284e-5	_	NC	1	NC	1
102		13	min	0	3	002	3	0	1	-9.049e-4	1	NC NC	1	NC	1
103		14	max	0	1	.002	2	0	15		-	NC	1	NC	1
104		14	min	0	3	002	3	0	1	-9.049e-4	1	NC	1	NC	1
105		15		0	1	.002	2	0	15	-3.284e-5	15	NC NC	1	NC NC	1
106		10	max	0	3	002	3	0	1	-9.049e-4	1 <u>1</u>	NC NC	1	NC NC	1
107		16		0	1	.002	2	0	15			NC NC	1	NC NC	1
		10	max												
108			min	0	3	001	3	0	1	-9.049e-4	<u> 1</u>	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
109		17	max	0	1	.001	2	0	15	-3.284e-5	15	NC	1_	NC	1
110			min	0	3	0	3	0	1	-9.049e-4	1	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-3.284e-5	15	NC	1	NC	1
112			min	0	3	0	3	0	1	-9.049e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-3.284e-5	15	NC	1	NC	1
114			min	0	1	0	1	0	1	-9.049e-4	1	NC	1	NC	1
115	M6	1	max	.009	1	.029	2	.005	1	2.585e-4	3	NC	3	NC	2
116	1110		min	01	3	024	3	003	3	1.724e-6		1260.053	2	8018.894	
117		2	max	.009	1	.027	2	.004	1	2.508e-4	3	NC	3	NC	2
118			min	01	3	023	3	003	3	1.069e-6	10	1346.382	2	8691.794	
119		3	max	.008	1	.025	2	.004	1	2.43e-4	3	NC	3	NC	2
120		- 3	min	009	3	021	3	003	3	4.144e-7	10	1445.06	2	9488.819	
		1													1
121		4	max	.008	1	.023	2	.003	1	2.353e-4	3	NC 4550.550	3_	NC NC	1
122		_	min	009	3	02	3	003	3	-2.401e-7	10	1558.558	2	NC	1
123		5	max	.007	1	.022	2	.003	1	2.276e-4	3	NC	3	NC	1
124			min	008	3	019	3	002	3	-8.947e-7	10	1690.054	2	NC	1
125		6	max	.007	1	.02	2	.003	1	2.199e-4	3_	NC	3	NC	1
126			min	008	3	018	3	002	3	-2.949e-6	2	1843.712	2	NC	1
127		7	max	.006	1	.018	2	.002	1	2.121e-4	3	NC	3	NC	1
128			min	007	3	016	3	002	3	-6.116e-6	2	2025.085	2	NC	1
129		8	max	.006	1	.016	2	.002	1	2.044e-4	3	NC	3	NC	1
130			min	006	3	015	3	002	3	-9.283e-6	2	2241.75	2	NC	1
131		9	max	.005	1	.015	2	.002	1	1.967e-4	3	NC	3	NC	1
132			min	006	3	014	3	002	3	-1.245e-5	2	2504.317	2	NC	1
133		10	max	.005	1	.013	2	.002	1	1.89e-4	3	NC	3	NC	1
134		10	min	005	3	012	3	001	3	-1.562e-5	2	2828.112	2	NC	1
135		11	max	.004	1	.011	2	.001	1	1.813e-4	3	NC	3	NC	1
136			min	005	3	011	3	001	3	-1.878e-5	2	3236.125	2	NC	1
137		12	max	.004	1	.01	2	.001	1	1.735e-4	3	NC	3	NC	1
138		12	min	004	3	01	3	0	3	-2.195e-5	2	3764.477	2	NC	1
139		13		.003	1	.008	2	0	1	1.658e-4	3	NC	3	NC	1
		13	max												1
140		4.4	min	003	3	008	3	0	3	-2.512e-5	2	4473.365	2	NC NC	1
141		14	max	.003	1	.007	2	0	1	1.581e-4	3_	NC	3_	NC NC	1
142			min	003	3	007	3	0	3	-2.828e-5	2	5471.127	2	NC	1
143		15	max	.002	1	.005	2	0	1	1.504e-4	3_	NC	3_	NC	1
144			min	002	3	006	3	0	3	-3.145e-5	2	6974.422	2	NC	1
145		16	max	.002	1	.004	2	0	1	1.426e-4	3_	NC	_1_	NC	1
146			min	002	3	004	3	0	3	-3.462e-5	2	9488.743	2	NC	1
147		17	max	.001	1	.003	2	0	1	1.349e-4	3	NC	1_	NC	1
148			min	001	3	003	3	0	3	-3.778e-5	2	NC	1	NC	1
149		18	max	0	1	.001	2	0	1	1.272e-4	3	NC	1	NC	1
150			min	0	3	001	3	0	3	-4.095e-5	2	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.195e-4	3	NC	1	NC	1
152			min	0	1	0	1	0	1	-4.922e-5	1	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.243e-5	1	NC	1	NC	1
154			min	0	1	0	1	0	1	-5.533e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	2.072e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-4.096e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.901e-5	<u> </u>	NC	1	NC	1
158				0	2	004	3	0	1	-2.659e-5	3	NC	1	NC	1
		4	min		3		2					NC NC	1		-
159		4	max	0		.004		0	3	1.73e-5	1			NC NC	1
160		-	min	0	2	005	3	0	1	-1.222e-5	3	NC NC	1_	NC NC	1
161		5	max	0	3	.006	2	0	3	1.559e-5	4=	NC	1_	NC NC	1
162			min	001	2	007	3	0	1	4.359e-7		8101.877	2	NC	1
163		6	max	.001	3	.007	2	.001	3	1.651e-5	3_	NC	3	NC	1
164			min	001	2	009	3	0	1	4.621e-7		6496.892	2	NC	1
165		7	max	.001	3	.009	2	.001	3	3.088e-5	3	NC	3	NC	_1_

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
166			min	002	2	01	3	0	1	4.884e-7	15	5400.857	2	NC	1
167		8	max	.002	3	.01	2	.001	3	4.525e-5	3	NC	3	NC	1
168			min	002	2	012	3	0	1	-2.486e-6	2	4598.375	2	NC	1
169		9	max	.002	3	.012	2	.002	3	5.962e-5	3	NC	3	NC	1_
170			min	002	2	013	3	001	1	-5.747e-6	2	3982.104	2	NC	1
171		10	max	.002	3	.013	2	.002	3	7.399e-5	3	NC	3	NC	1
172			min	003	2	015	3	001	1	-9.007e-6	2	3492.547	2	NC	1
173		11	max	.002	3	.015	2	.002	3	8.836e-5	3	NC	3	NC	1
174			min	003	2	016	3	001	1	-1.227e-5	2	3093.997	2	NC	1
175		12	max	.003	3	.017	2	.002	3	1.027e-4	3	NC	3	NC	1
176			min	003	2	017	3	001	1	-1.553e-5	2	2763.627	2	NC	1
177		13	max	.003	3	.019	2	.002	3	1.171e-4	3	NC	3	NC	1
178			min	004	2	018	3	002	1	-1.879e-5	2	2486.068	2	NC	1
179		14	max	.003	3	.02	2	.002	3	1.315e-4	3	NC	3	NC	1
180			min	004	2	019	3	002	1	-2.205e-5	2	2250.511	2	NC	1
181		15	max	.003	3	.022	2	.002	3	1.458e-4	3	NC	3	NC	1
182			min	004	2	02	3	002	1	-2.531e-5	2	2049.068	2	NC	1
183		16	max	.004	3	.025	2	.002	3	1.602e-4	3	NC	3	NC	1
184			min	004	2	021	3	002	1	-2.857e-5	2	1875.808	2	NC	1
185		17	max	.004	3	.027	2	.002	3	1.746e-4	3	NC	3	NC	1
186			min	005	2	022	3	002	1	-3.183e-5	2	1726.157	2	NC	1
187		18	max	.004	3	.029	2	.002	3	1.889e-4	3	NC	3	NC	1
188			min	005	2	023	3	002	1	-3.509e-5	2	1596.517	2	NC	1
189		19	max	.004	3	.031	2	.002	3	2.033e-4	3	NC	3	NC	1
190			min	005	2	024	3	002	1	-3.835e-5	2	1484.016	2	NC	1
191	M8	1	max	.006	1	.033	2	.002	1	-2.176e-6	10	NC	1	NC	2
192			min	0	3	024	3	001	3	-1.596e-4	3	NC	1	8208.644	1
193		2	max	.006	1	.031	2	.002	1	-2.176e-6	10	NC	1	NC	2
194			min	0	3	023	3	001	3	-1.596e-4	3	NC	1	8949.654	
195		3	max	.005	1	.029	2	.002	1	-2.176e-6	10	NC	1	NC	2
196			min	0	3	021	3	0	3	-1.596e-4	3	NC	1	9831.828	1
197		4	max	.005	1	.027	2	.002	1	-2.176e-6	10	NC	1	NC	1
198			min	0	3	02	3	0	3	-1.596e-4	3	NC	1	NC	1
199		5	max	.005	1	.025	2	.002	1	-2.176e-6	10	NC	1	NC	1
200			min	0	3	019	3	0	3	-1.596e-4	3	NC	1	NC	1
201		6	max	.004	1	.024	2	.001	1	-2.176e-6	10	NC	1	NC	1
202			min	0	3	017	3	0	3	-1.596e-4	3	NC	1	NC	1
203		7	max	.004	1	.022	2	.001	1	-2.176e-6	10	NC	1	NC	1
204			min	0	3	016	3	0	3	-1.596e-4	3	NC	1	NC	1
205		8	max	.004	1	.02	2	.001	1	-2.176e-6		NC	1	NC	1
206			min	0	3	015	3	0	3	-1.596e-4	3	NC	1	NC	1
207		9	max	.003	1	.018	2	0	1	-2.176e-6		NC	1	NC	1
208			min	0	3	013	3	0	3	-1.596e-4	3	NC	1	NC	1
209		10	max	.003	1	.016	2	0	1	-2.176e-6		NC	1	NC	1
210		10	min	0	3	012	3	0	3	-1.596e-4	3	NC	1	NC	1
211		11	max	.003	1	.015	2	0	1	-2.176e-6	10	NC	1	NC	1
212		+ ' '	min	0	3	011	3	0	3	-1.596e-4	3	NC	1	NC	1
213		12	max	.002	1	.013	2	0	1	-2.176e-6	10	NC	1	NC	1
214		12	min	0	3	009	3	0	3	-1.596e-4	3	NC	1	NC	1
215		13	max	.002	1	.011	2	0	1	-1.330e-4 -2.176e-6	10	NC	1	NC	1
216		13	min	0	3	008	3	0	3	-1.596e-4	3	NC	1	NC	1
217		14	max	.002	1	.009	2	0	1	-1.590e-4 -2.176e-6	10	NC	1	NC	1
218		14	min	0	3	007	3	0	3	-1.596e-4	3	NC	1	NC	1
219		15		.001	1	.007	2	0	1	-1.596e-4 -2.176e-6	10	NC NC	1	NC	1
220		10	max	.001	3	00 <i>7</i>	3	0	3	-2.176e-6 -1.596e-4	3	NC NC	1	NC NC	1
221		16	min		1	005 .005	2	0	1	-1.596e-4 -2.176e-6		NC NC	1	NC NC	1
		10	max	.001							<u>10</u>				
222			min	0	3	004	3	0	3	-1.596e-4	3	NC	<u>1</u>	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	· ') LC
223		17	max	0	1	.004	2	0	1	-2.176e-6	10	NC	1_	NC	1
224			min	0	3	003	3	0	3	-1.596e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	1	-2.176e-6	10	NC	1	NC	1
226			min	0	3	001	3	0	3	-1.596e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1		10	NC	1	NC	1
228			min	0	1	0	1	0	1	-1.596e-4	3	NC	1	NC	1
229	M10	1	max	.003	1	.008	2	0	3	9.934e-4	1	NC	3	NC	1
230	IVITO		min	003	3	007	3	002	1		3	4634.417	2	NC	1
231		2	max	.003	1	.007	2	<u>.002</u>	3	9.426e-4	1	NC	3	NC	1
					3		3	002	1			5049.774	2	NC	1
232			min	003		007				-2.568e-4	3				•
233		3	max	.003	1	.007	2	0	3	8.917e-4	1	NC	3	NC NC	1
234			min	003	3	007	3	002	1	-2.488e-4	3	5542.363	2	NC	1
235		4	max	.003	1	.006	2	0	3	8.409e-4	_1_	NC	_1_	NC	1
236			min	003	3	007	3	002	1	-2.408e-4	3	6130.658	2	NC	1
237		5	max	.002	1	.005	2	0	3	7.901e-4	1	NC	1	NC	1
238			min	002	3	006	3	002	1	-2.328e-4	3	6839.236	2	NC	1
239		6	max	.002	1	.005	2	0	3	7.393e-4	1	NC	1	NC	1
240			min	002	3	006	3	001	1		3	7701.332	2	NC	1
241		7	max	.002	1	.004	2	0	3	6.885e-4	1	NC	1	NC	1
242			min	002	3	006	3	001	1	-2.168e-4	3	8762.763	2	NC	1
243		8		.002	1	.004	2	<u>001</u> 0	3		-	NC	1	NC	1
		-	max							6.376e-4	1				
244			min	002	3	005	3	001	1	-2.088e-4	3_	NC	1_	NC NC	1
245		9	max	.002	1	.003	2	0	3	5.868e-4	1_	NC	1_	NC	1
246			min	002	3	005	3	001	1	-2.008e-4	3	NC	1_	NC	1
247		10	max	.002	1	.003	2	0	3	5.36e-4	<u>1</u>	NC	<u>1</u>	NC	1
248			min	002	3	005	3	0	1	-1.928e-4	3	NC	1_	NC	1
249		11	max	.001	1	.002	2	0	3	4.852e-4	1	NC	1	NC	1
250			min	001	3	004	3	0	1	-1.848e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	0	3	4.343e-4	1	NC	1	NC	1
252		· -	min	001	3	004	3	0	1	-1.768e-4	3	NC	1	NC	1
253		13	max	.001	1	.001	2	0	3	3.835e-4	1	NC	1	NC	1
254		10	min	001	3	003	3	0	1	-1.688e-4	3	NC	1	NC	1
		11									1				
255		14	max	0	1	.001	2	0	3	3.327e-4		NC	1	NC	1
256			min	0	3	003	3	0	1	-1.608e-4	3	NC	1_	NC	1
257		15	max	0	1	0	2	0	3	2.819e-4	1_	NC	1_	NC	1
258			min	0	3	002	3	0	1	-1.528e-4	3	NC	1	NC	1
259		16	max	0	1	0	2	0	3	2.311e-4	1_	NC	_1_	NC	1
260			min	0	3	002	3	0	1	-1.447e-4	3	NC	1_	NC	1
261		17	max	0	1	0	2	0	3	1.802e-4	1	NC	1	NC	1
262			min	0	3	001	3	0	1	-1.367e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	1.294e-4	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	-1.287e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	7.86e-5	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	-1.207e-4	3	NC	1	NC	1
	N/4.4	4					-						•		
267	<u>M11</u>	1	max	0	1	0	1	0	1	5.62e-5	3	NC NC	1_	NC NC	1
268		_	min	0	1	0	1	0	1	-3.783e-5	1_	NC	1	NC	1
269		2	max	0	3	0	2	0	1	4.035e-5	3_	NC	_1_	NC	1
270			min	0	2	0	3	0	3	-9.399e-5	1_	NC	1_	NC	1
271		3	max	0	3	0	2	0	11	2.451e-5	3	NC	1_	NC	1
272			min	0	2	002	3	0	3	-1.501e-4	1	NC	1	NC	1
273		4	max	0	3	0	2	0	10	8.659e-6	3	NC	1	NC	1
274			min	0	2	002	3	0	3	-2.063e-4	1	NC	1	NC	1
275		5	max	0	3	0	2	0	10	-5.271e-6	•	NC	1	NC	1
276			min	0	2	003	3	001	3	-2.625e-4	1	NC	1	NC	1
		G			_		2		_			NC NC	1		1
277		6	max	0	3	0		0	10		<u>15</u>			NC NC	
278		-	min	0	2	004	3	001	1	000	1_	NC NC	1_	NC NC	1
279		7	max	0	3	0	2	0	15	-1.372e-5	<u>15</u>	NC	<u>1</u>	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
280			min	0	2	005	3	002	1	-3.748e-4	1_	NC	1_	NC	1
281		8	max	0	3	00	2	0	15		<u>15</u>	NC	_1_	NC	1
282			min	0	2	005	3	003	1	-4.309e-4	1_	NC	1_	NC	1
283		9	max	0	3	.001	2	0	15		<u>15</u>	NC	1_	NC	1
284		4.0	min	0	2	006	3	004	1_	-4.871e-4	_1_	NC	1_	NC	1
285		10	max	0	3	.002	2	0	15	-2.011e-5	<u>15</u>	NC	1	NC	2
286		44	min	0	2	006	3	005	1_	-5.432e-4	1_	NC	1_	9979.514	1
287		11	max	0	3	.002	2	0	15	-2.224e-5	<u>15</u>	NC	1_	NC 0404 007	2
288		40	min	0	2	007	3	006	1_	-5.994e-4	1_	NC NC	1_1	8164.887	1
289		12	max	<u> </u>	3	.003	3	0 007	15	-2.437e-5	<u>15</u>	NC NC	1	NC coco oco	2
290 291		13	min		3	007	2	007 0	15	-6.555e-4	1_	NC NC	1	6862.068 NC	2
292		13	max	0	2	.003 007	3	008	1	-2.65e-5 -7.117e-4	<u>15</u> 1	NC NC	1	5895.364	1
293		14		.001	3	.007	2	<u>008</u> 0	15	-7.117e-4 -2.862e-5	15	NC NC	1	NC	2
294		14	max min	001	2	007	3	009	1	-2.602e-3 -7.678e-4	1	NC NC	1	5159.303	
295		15	max	.001	3	.005	2	<u>009</u> 0	15	-3.075e-5	15	NC	1	NC	2
296		10	min	0	2	007	3	01	1	-8.24e-4	1	9548.282	2	4587.394	
297		16	max	.001	3	.006	2	0	15	-3.288e-5	15	NC	1	NC	2
298		10	min	0	2	008	3	011	1	-8.801e-4	1	8051.738	2	4136.035	
299		17	max	.001	3	.007	2	0	15	-3.501e-5	15	NC	3	NC	2
300		<u> </u>	min	001	2	008	3	012	1	-9.363e-4	1	6901.846	2	3775.699	
301		18	max	.001	3	.008	2	0	15	-3.714e-5	15	NC	3	NC	3
302			min	001	2	007	3	013	1	-9.925e-4	1	6007.404	2	3485.881	1
303		19	max	.001	3	.009	2	0	15	-3.927e-5	15	NC	3	NC	3
304			min	001	2	007	3	014	1	-1.049e-3	1	5304.934	2	3252.055	1
305	M12	1	max	.002	1	.009	2	.012	1	9.397e-4	1	NC	1	NC	3
306			min	0	3	007	3	0	15	3.581e-5	15	NC	1	1649.477	1
307		2	max	.002	1	.009	2	.011	1	9.397e-4	1	NC	1	NC	3
308			min	0	3	007	3	0	15	3.581e-5	15	NC	1	1798.96	1
309		3	max	.002	1	.008	2	.01	1	9.397e-4	1_	NC	1_	NC	3
310			min	0	3	007	3	0	15	3.581e-5	15	NC	1_	1976.892	1
311		4	max	.002	1	.008	2	.009	1	9.397e-4	1_	NC	1_	NC	3
312			min	0	3	006	3	0	15	3.581e-5	15	NC	1_	2190.772	1
313		5	max	.002	1	.007	2	.008	1	9.397e-4	_1_	NC	_1_	NC	3
314			min	0	3	006	3	0	15	3.581e-5	15	NC	_1_	2450.815	1
315		6	max	.002	1	.007	2	.007	1	9.397e-4	1_	NC	_1_	NC	3
316		<u> </u>	min	0	3	005	3	0	15	3.581e-5	15	NC	1_	2771.232	1
317		7	max	.001	1	.006	2	.006	1	9.397e-4	1_	NC	1_	NC NC	3
318			min	0	3	005	3	0	15	3.581e-5	15	NC	1_	3172.263	
319		8	max	.001	1	.006	2	.005	1	9.397e-4	1_	NC NC	1_	NC	2
320			min	0	3	005	3	0		3.581e-5			1	3683.55	1
321		9	max	.001	3	.005	2	.004	1	9.397e-4	1_	NC NC	1_1	NC	2
322		10	min	0	1	004	2	004	15		<u>15</u>	NC NC	<u>1</u> 1	4349.928	
323		10	max	.001	3	.005	3	.004	1_15	9.397e-4 3.581e-5	1_	NC NC	1	NC 5241.89	2
324		11	min max	<u> </u>	1	004 .004	2	.003	15	9.397e-4	<u>15</u> 1	NC NC	1	NC	2
326			min	0	3	003	3	<u>.003</u>	15		15	NC	1	6475.546	
327		12	max	0	1	.003	2	.002	1	9.397e-4	1	NC	1	NC	2
328		12	min	0	3	003	3	0	15			NC	1	8253.456	
329		13	max	0	1	.003	2	.002	1	9.397e-4	<u>15</u> 1	NC NC	1	NC	1
330		13	min	0	3	002	3	0	15	3.581e-5	15	NC	1	NC	1
331		14	max	0	1	.003	2	.001	1	9.397e-4	1	NC	1	NC	1
332			min	0	3	002	3	0	15		15	NC	1	NC	1
333		15	max	0	1	.002	2	0	1	9.397e-4	1	NC	1	NC	1
334		10	min	0	3	002	3	0	15	3.581e-5	15	NC	1	NC	1
335		16	max	0	1	.002	2	0	1	9.397e-4	1	NC	1	NC	1
336			min	0	3	001	3	0	15		15	NC	1	NC	1
000										3.00100					

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	9.397e-4	1	NC	1	NC	1
338			min	0	3	0	3	0	15	3.581e-5	15	NC	1	NC	1
339		18	max	0	1	0	2	0	1	9.397e-4	1	NC	1	NC	1
340			min	0	3	0	3	0	15	3.581e-5	15	NC	1	NC	1
341		19	max	0	1	0	1	0	1	9.397e-4	1_	NC	_1_	NC	1
342			min	0	1	0	1	0	1	3.581e-5	15	NC	1_	NC	1
343	<u>M1</u>	1_	max	.007	3	.023	3	.002	3_	2.299e-2	_1_	NC	_1_	NC	1
344		_	min	007	2	023	1	005	1	-2.396e-2	3	NC	_1_	NC	1
345		2	max	.007	3	.013	3	.001	3	1.105e-2	_1_	NC	4_	NC	2
346			min	007	2	<u>013</u>	1	<u>01</u>	1	-1.187e-2	3	4467.927	1_	8347.069	
347		3	max	.007	3	.004	3	0	3	1.011e-5	3_	NC	4	NC 5000,000	2
348		1	min	007	2	003	1	014	1	-6.573e-4	1_	2305.103	1_	5062.989	
349		4	max	.007	3	.005	1	0	3	1.403e-5	3	NC 4000.00	5	NC 4400 004	2
350		-	min	007	2	003	3	016	1	-5.565e-4	1_	1629.22	1_	4190.964	
351		5	max	.007	3	.012	3	0 016	3	1.794e-5	<u>3</u> 1	NC	<u>5</u> 1	NC 4026 422	2
352 353		6	min	007 .007	3	01 .018	1	<u>016</u> 0	3	-4.556e-4	3	1304.442 NC	5	4026.123 NC	2
354		6	max	007	2	015	3	015	1	2.186e-5 -3.548e-4	1	1120.85	1	4310.789	
355		7	min	.007	3	.022	1	<u>015</u> 0	3	2.578e-5	3	NC	5	NC	2
356			max	007	2	018	3	013	1	-2.539e-4	1	1009.639	1	5138.055	
357		8	max	.007	3	.025	1	<u>013</u> 0	3	2.97e-5	3	NC	5	NC	2
358			min	007	2	021	3	011	1	-1.53e-4	1	942.203	1	7066.631	1
359		9	max	.007	3	.027	1	0	3	3.362e-5	3	NC	5	NC	1
360			min	007	2	022	3	008	1	-5.219e-5	1	905.184	1	NC	1
361		10	max	.007	3	.028	2	0	3	4.867e-5	1	NC	5	NC	1
362		10	min	008	2	023	3	004	1	2.121e-6	15	886.881	2	NC	1
363		11	max	.007	3	.028	2	0	3	1.495e-4	1	NC	5	NC	1
364			min	008	2	022	3	001	1	5.798e-6	15	889.832	2	NC	1
365		12	max	.007	3	.026	2	.002	1	2.504e-4	1	NC	5	NC	2
366			min	008	2	02	3	0	15	9.475e-6	15		2	8001.506	1
367		13	max	.007	3	.023	2	.005	1	3.512e-4	1	NC	5	NC	2
368			min	008	2	017	3	0	15	1.315e-5	15	972.041	2	5580.545	1
369		14	max	.007	3	.018	2	.007	1	4.521e-4	1	NC	5	NC	2
370			min	008	2	013	3	0	15	1.683e-5	15	1068.654	2	4585.35	1
371		15	max	.007	3	.012	2	.007	1	5.53e-4	1	NC	5	NC	2
372			min	008	2	009	3	0	15	2.051e-5	15	1232.625	2	4228.861	1
373		16	max	.007	3	.004	1	.007	1_	6.25e-4	<u>1</u>	NC	4	NC	2
374			min	008	2	003	3	0	15	2.315e-5	15	1527.972	2	4362.436	1
375		17	max	.007	3	.003	3	.006	1	2.986e-5	3	NC	4	NC	2
376			min	008	2	005	2	0	15	1.193e-6	15	2156.442		5237.532	1
377		18	max		3	.01	3	.002		1.307e-2	_1_	NC	4	NC	2
378			min	008	2	016	2	0	15	-5.286e-3	3	4173.404	2	8598.108	
379		19	max	.007	3	.017	3	0	3	2.639e-2	1_	NC	_1_	NC	1
380			min	008	2	027	2	003	1	-1.07e-2	3	NC	_1_	NC	1
381	<u>M5</u>	1_	max	.022	3	.074	3	.002	3	1.082e-6	3_	NC	_1_	NC	1
382			min	027	2	081	1	006	1	5.05e-8	<u>15</u>	NC	1_	NC	1
383		2	max	.022	3	.043	3	.002	3	6.805e-5	3_	NC	5_	NC NC	1
384			min	028	2	045	1	005	1	-7.407e-5	1_	1299.179	1_	NC NC	1
385		3	max	.022	3	.013	3	.003	3	1.337e-4	3_	NC coo coo	_5_	NC NC	1
386		A	min	028	2	012	1	005	1	-1.473e-4	1_2	669.389	<u>T</u>	NC NC	1
387		4	max	.022	3	.017	1	.004	3	1.308e-4	3_1	NC 471 019	5_1	NC NC	1
388		_	min	028	2	011	3	004	1	-1.391e-4	1_2	471.918	1_	NC NC	1
389		5	max	.022	3	.041	1	.004	3	1.279e-4	3	NC 276.956	5	NC NC	1
390		6	min	028	2	032	3	004	1	-1.31e-4	1_	376.856	1_	NC NC	1
391 392		6	max min	.022 028	3	.061 048	3	.004 003	3	1.25e-4 -1.229e-4	<u>3</u> 1	NC 322.978	<u>15</u> 1	NC NC	1
393		7		026 .022	3	046 .077	1	003 .004	3	1.229e-4	3	NC	15	NC NC	1
JJJ			max	.022	J	.011		.004	J	1.2216-4	<u> </u>	INC	10	INC	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
394			min	028	2	06	3	003	1	-1.147e-4	1	290.196	1	NC	1
395		8	max	.022	3	.089	1	.004	3	1.192e-4	3	NC	15	NC	1
396			min	028	2	068	3	003	1	-1.066e-4	<u>1</u>	270.152	<u>1</u>	NC	1
397		9	max	.022	3	.096	1	.004	3	1.163e-4	3	NC	15	NC	1
398		10	min	028	2	<u>073</u>	3	003	1	-9.845e-5	1_	258.93	1_	NC	1
399		10	max	.022	3	.098	1	.004	3	1.133e-4	3	NC OF 4.744	<u>15</u>	NC NC	1
400		44	min	028	2	073	3	002	1	-9.032e-5	1_	254.711	1_	NC NC	1
401		11	max	.022	3	.096	1	.004	3	1.104e-4	3	NC OFF OAF	<u>15</u>	NC NC	1
402		40	min	028	2	<u>071</u>	3	002	1	-8.218e-5	1_	256.915	1_	NC NC	1
403		12	max	.022 028	3	.089	3	.003 002	3	1.075e-4 -7.404e-5	<u>3</u> 1	NC 265 072	<u>15</u> 1	NC NC	1
404		13	min	.022	3	065		.002	3			265.972 NC	15	NC NC	1
406		13	max min	028	2	.078 056	3	002	1	1.046e-4 -6.591e-5	<u>3</u> 1	283.515	1	NC NC	1
407		14	max	.021	3	<u>036</u> .061	1	.002	3	1.017e-4	3	NC	15	NC NC	1
408		14	min	028	2	044	3	002	1	-5.777e-5	1	313.169	1	NC	1
409		15	max	.021	3	.04	1	.002	3	9.878e-5	3	NC	5	NC	1
410		13	min	028	2	029	3	002	1	-4.964e-5	1	362.764	1	NC	1
411		16	max	.021	3	.015	1	.002	3	9.27e-5	3	NC	5	NC	1
412		10	min	028	2	011	3	002	1	-4.837e-5	1	450.596	2	NC	1
413		17	max	.021	3	.01	3	.001	3	1.116e-5	3	NC	5	NC	1
414			min	028	2	018	2	002	1	-2.107e-4	1	636.919	1	NC	1
415		18	max	.021	3	.033	3	0	3	4.768e-6	3	NC	5	NC	1
416			min	028	2	054	2	002	1	-1.079e-4	1	1233.176	1	NC	1
417		19	max	.021	3	.057	3	0	3	0	15	NC	1	NC	1
418			min	028	2	093	2	003	1	-2.091e-7	3	NC	1	NC	1
419	M9	1	max	.007	3	.022	3	.001	3	2.397e-2	3	NC	1	NC	1
420			min	007	2	024	1	007	1	-2.299e-2	1	NC	1	NC	1
421		2	max	.007	3	.013	3	0	3	1.187e-2	3	NC	4	NC	2
422			min	007	2	013	1	001	1	-1.13e-2	1	4468.938	1	9508.211	1
423		3	max	.007	3	.004	3	.002	1	1.705e-4	1_	NC	4	NC	2
424			min	007	2	003	1	0	3	-1.036e-5	3	2305.638	1_	5886.371	1
425		4	max	.007	3	.005	1	.004	1	8.539e-5	_1_	NC	5	NC	2
426			min	007	2	004	3	0	3	-1.86e-5	3	1629.589	1_	4973.35	1
427		5	max	.007	3	.012	1	.004	1	1.428e-5	2	NC	5_	NC	2
428		_	min	007	2	01	3	001	3	-2.683e-5	3	1304.715	_1_	4909.642	1
429		6	max	.007	3	.018	1	.003	1	1.886e-6	10	NC	5	NC	2
430			min	007	2	015	3	002	3	-8.477e-5	1_	1121.06	_1_	5476.085	
431		7	max	.007	3	.022	1	.002	1	-5.753e-6	10	NC	5	NC Tool 100	2
432			min	007	2	018	3	002	3	-1.699e-4	1_	1009.803	1_	7001.483	
433		8	max	.007	3	.025	1	0	2	-9.287e-6	<u>15</u>	NC 040,000	5	NC NC	1
434			min		2	021	3	003		-2.549e-4			1	NC NC	1
435		9	max		3	.027	2	0		-1.241e-5			5_4	NC NC	1
436		10	min	007	2	022	2	003	10	-3.4e-4	1_	905.286	_1_	NC NC	1
437		10	max	.007	3	.028	3	006	10	-1.554e-5		NC	5	NC NC	1
438 439		11	min max	007 .007	3	023 .028	2	006 0		-4.251e-4 -1.867e-5	<u>1</u> 15	887.259 NC	<u>2</u> 5	NC NC	2
440		11	min	007	2	022	3	009	1	-5.102e-4	1	890.203	2	9523.033	
441		12	max	.007	3	.026	2	<u>009</u> 0	15		15	NC	5	NC	2
442		12	min	008	2	02	3	011	1	-5.953e-4	1	916.828	2	6078.186	
443		13	max	.007	3	.023	2	<u>011</u> 0	15		15	NC	5	NC	2
444		13	min	008	2	023 017	3	013	1	-6.803e-4	1	972.427	2	4690.171	1
445		14	max	.007	3	.018	2	<u>013</u> 0	_	-2.805e-5		NC	5	NC	2
446		14	min	008	2	013	3	015	1	-7.654e-4	1	1069.067	2	4062.527	1
447		15	max	.007	3	.012	2	<u>013</u> 0		-7.054e-4 -3.118e-5		NC	5	NC	2
448		10	min	008	2	009	3	015	1	-8.505e-4	1	1233.086	2	3869.668	
449		16	max	.007	3	.003	1	0	15		15	NC	4	NC	2
450		1.0	min	008	2	003	3	014	1	-9.127e-4	1	1528.521	2	4079.04	1
			1111111		_	.000				J. 1210 T	-	.020.021	_	10.0.01	

Model Name

: Schletter, Inc. : HCV

TICV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
451		17	max	.007	3	.003	3	0	15	4.214e-6	3	NC	4_	NC	2
452			min	008	2	005	2	012	1	-4.312e-4	1_	2157.165	2	4973.043	
453		18	max	.007	3	.01	3	0	15	5.304e-3	3	NC	4_	NC	2
454			min	008	2	016	2	008	1	-1.329e-2	1_	4174.757	2	8256.705	
455		19	max	.007	3	.017	3	0	3	1.07e-2	3_	NC		NC	1
456	1440		min	008	2	027	2	002	1	-2.639e-2	1_	NC	1_	NC NC	1
457	M13	1_	max	.007	1	.022	3	.007	3	3.644e-3	3	NC	1_	NC NC	1
458			min	001	3	024	1	007	2	-3.93e-3	1_	NC NC	1_	NC NC	1
459		2	max	.006	1	.246	3	.04	1	4.568e-3	3	NC 777 004	5	NC 2020 F04	2
460		2	min	001	1	238	3	0 .102	10	-4.989e-3	1	777.881 NC	3	3939.584 NC	1
461 462		3	max	.006	3	.429			15	5.491e-3	<u>3</u>	428.328	5	1633.773	3
463		4	min	001 .006	1	<u>414</u> .542	3	<u>.004</u> .155	1	-6.048e-3	3	NC	<u>3</u> 15	NC	3
464		4	max	001	3	523	1	.006	15	6.414e-3 -7.106e-3	<u> </u>	334.66	3	1091.536	
465		5	max	.006	1	<u>523</u> .574	3	.181	1	7.338e-3	3	NC	15	NC	3
466		<u> </u>	min	001	3	555	1	.007	15	-8.165e-3	1	315.369	3	939.488	1
467		6	max	.006	1	.526	3	.172	1	8.261e-3	3	NC	15	NC	3
468		—	min	002	3	509	1	.007	15	-9.224e-3	1	345.753	3	987.872	1
469		7	max	.006	1	.413	3	.13	1	9.184e-3	3	NC	5	NC	3
470			min	002	3	403	1	.003	10	-1.028e-2	1	445.309	3	1295.124	1
471		8	max	.006	1	.268	3	.068	1	1.011e-2	3	NC	5	NC	3
472			min	002	3	265	1	005	10	-1.134e-2	1	709.832	3	2419.337	1
473		9	max	.006	1	.135	3	.021	3	1.103e-2	3	NC	5	NC	1
474			min	002	3	138	1	016	2	-1.24e-2	1	1515.893	1	NC	1
475		10	max	.006	1	.074	3	.022	3	1.195e-2	3	NC	4	NC	1
476			min	002	3	081	1	027	2	-1.346e-2	1	3035.052	1	8676.921	2
477		11	max	.006	1	.135	3	.025	3	1.103e-2	3	NC	5	NC	1
478			min	002	3	138	1	015	2	-1.24e-2	1	1515.894	1	9430.755	3
479		12	max	.005	1	.268	3	.073	1	1.011e-2	3	NC	5	NC	5
480			min	002	3	265	1	005	10	-1.134e-2	1	709.831	3	2259.409	1
481		13	max	.005	1	.413	3	.136	1	9.186e-3	3	NC	5	NC	5
482			min	002	3	403	1	.003	10	-1.028e-2	1	445.309	3	1240.051	1
483		14	max	.005	1	.526	3	.178	1	8.263e-3	3	NC	15	NC	5
484			min	002	3	509	1	.007	15	-9.223e-3	1_	345.753	3	955.398	1
485		15	max	.005	1	.574	3	.186	1	7.34e-3	3	NC	<u>15</u>	NC	5
486			min	002	3	<u>555</u>	1	.007	15	-8.164e-3	1_	315.369	3_	913.14	1
487		16	max	.005	1	.543	3	<u>.16</u>	1_	6.418e-3	3	NC	<u>15</u>	NC	3
488			min	002	3	523	1	.006	15	-7.105e-3	1_	334.659	3_	1063.312	
489		17	max	.005	1	.429	3	.105	1	5.495e-3	3_	NC	5	NC 4504.000	3
490		40	min	002	3	413	1	.004	15	-6.046e-3	1_	428.328	3	1591.323	1
491		18	max	.005	1	.246	3	.041		4.572e-3		NC	5		2
492		10	min	002	3	238	1	0	10	-4.988e-3	1	777.881	3	3821.367	1
493		19	max	.005	1	.023	3	.007	3	3.649e-3	3	NC NC	<u>1</u> 1	NC NC	1
494 495	M16	1	min	002 .002	1	023 .017	3	007 .007	3	-3.929e-3 4.369e-3	<u>၂</u>	NC NC	1	NC NC	1
496	IVITO		max min	.002	3	027	2	008	2	-2.781e-3	3	NC NC	1	NC NC	1
497		2	max	.002	1	.117	3	.042	1	5.527e-3	2	NC	5	NC	2
498			min	0	3	272	1	0	10	-3.474e-3	3	706.278	1	3740.179	
499		3	max	.002	1	.199	3	.106	1	6.686e-3	2	NC	5	NC	3
500		<u> </u>	min	0	3	473	1	.004	15	-4.166e-3	3	388.696	1	1574.193	
501		4	max	.002	1	.251	3	.16	1	7.844e-3	2	NC	15	NC	3
502		1	min	0	3	599	1	.006	15	-4.859e-3	3	303.402	1	1057.931	1
503		5	max	.002	1	.268	3	.186	1	9.003e-3	2	NC	15	NC	5
504			min	0	3	635	1	.007		-5.552e-3	3	285.446	1	912.452	1
505		6	max	.002	1	.249	3	.177	1	1.016e-2	2	NC	15	NC	5
506			min	0	3	583	1	.007	15		3	312.048	1	958.812	1
507		7	max	.002	1	.201	3	.134	1	1.132e-2	2	NC	5	NC	5
			max	.002		0.					_				<u> </u>

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	461	1	.003	10	-6.938e-3	3	399.666	1_	1251.79	1
509		8	max	.002	1	14	3	.071	1	1.248e-2	2	NC	5	NC	5
510			min	0	3	302	1	005	10	-7.63e-3	3	628.924	_1_	2308.291	1_
511		9	max	.002	1	.083	3	.024	3	1.364e-2	2	NC	5	NC	1
512		40	min	0	3	1 <u>58</u>	2	016	2	-8.323e-3	3	1324.533	1_	NC	1
513		10	max	.003	1	.057	3	.021	3	1.48e-2	2	NC	4	NC	1
514		.	min	0	3	093	2	028	2	-9.016e-3	3	2645.721	2	8668.323	2
515		11	max	.003	1	.083	3	.021	3	1.364e-2	2	NC	5_	NC NC	1
516		40	min	0	3	<u>158</u>	2	015	2	-8.323e-3	3	1324.533	1_	NC NC	1
517		12	max	.003	1	.14	3	.069	1	1.248e-2	2	NC COO COE	5_	NC OOFO O44	3
518		40	min	0	3	302	1	005	10	-7.629e-3	3	628.925	1_	2358.944	1
519		13	max	.003	1	.201	3	.132	1	1.132e-2	2	NC 200 ccc	5	NC	3
520		144	min	0	3	461	1	.003	10	-6.936e-3	3	399.666	1_	1273.592	1
521		14	max	.003	1	.249	3	.174	1	1.016e-2	2	NC	<u>15</u>	NC 074.704	3
522		4.5	min	0	3	583	1	.007	15	-6.242e-3	3	312.049	1_	974.794	1
523		15	max	.003	1	.268	3	.183	1	9.004e-3	2	NC OOF 440	<u>15</u>	NC 000 FF4	3
524		4.0	min	0	3	635	1	.007	15	-5.549e-3	3	285.446	1_	928.554	1
525		16	max	.003	1	.251	3	.157	1	7.846e-3	2	NC 200,400	15	NC	3
526		47	min	0	3	599	1	.006	15	-4.856e-3	3	303.403	1_	1079.422	1
527		17	max	.003	1	.199	3	.103	1	6.687e-3	2	NC 200 COC	5	NC 1014.70	3
528		40	min	0	3	473	1	.004	15	-4.162e-3	3	388.696	1_	1614.79	1
529		18	max	.003	3	.117	3	.04	1	5.529e-3	2	NC 700 070	5_4	NC	2
530		40	min	0		272	1	0	10	-3.469e-3	3	706.278	1_	3883.817	1
531		19	max	.003	1	.017	3	.007	3	4.371e-3	2	NC NC	1_	NC NC	1
532	NAA C	1	min	0	3	027	2	008	2	-2.775e-3	3	NC NC	1_	NC NC	1
533	M15	1	max	0	1	0	1	0	1	3.382e-4	3	NC NC	1_	NC NC	1
534		2	min	0	3	0	15	0	1	-6.316e-5	2	NC NC	<u>1</u> 5	NC NC	1
535			max	0		004 017	4	001	3	8.412e-4	<u>3</u> 1			NC NC	1
536		3	min	0	10 3	017		0 0 1	1	-6.435e-4 1.344e-3		5486.812 NC	4	NC NC	1
537 538		3	max	0	10	008 034	15	.004 003	3	-1.253e-3	<u>3</u> 1	2792.052	<u>15</u> 4	NC NC	1
539		4	min		3	034 012	15	.008	1	1.847e-3	3	8148.857	15	NC NC	4
540		4	max	0	10	012 049	4	007	3	-1.863e-3	1	1915.51	4	7607.965	4
541		5		0	3	049 015	15	.013	1	2.35e-3	3	6358.636	15	NC	4
542		5	max	0	10	063	4	013	3	-2.473e-3	1	1494.692	4	5036.85	4
543		6	min max	0	3	003 018	15	.019	1	2.853e-3	3	5351.464	15	NC	4
544		-	min	0	10	075	4	016	3	-3.083e-3	1	1257.942	4	3689.635	1
545		7	max	0	3	073 02	15	.024	1	3.356e-3	3	4745.783	15	NC	4
546			min	0	10	085	4	021	3	-3.693e-3	1	1115.567	4	2897.098	
547		8	max	0	3	022	15	.03	1	3.859e-3	3	4382.283	15	NC	4
548			min		10	092	4	026						2396.812	
549		9	max	0	3	023	15	.034	1	4.362e-3	3		15	NC	4
550		<u> </u>	min	0	10	096	4	031	3	-4.913e-3	1	984.129	4	2068.565	
551		10	max	0	3	023	15	.038	1	4.865e-3	3	4124.73	15	NC	5
552		''	min	0	10	098	4	034	3	-5.523e-3	1	969.579	4	1851.698	
553		11	max	0	3	023	15	.041	1	5.368e-3	3	4186.626	15	NC	5
554			min	0	10	097	4	037	3	-6.133e-3	1	984.129	4	1714.3	1
555		12	max	0	3	022	15	.042	1	5.871e-3	3	4382.283	15	NC	5
556		14	min	0	10	092	4	038	3	-6.743e-3	1	1030.121	4	1640.605	
557		13	max	0	3	02	15	.041	1	6.374e-3	3	4745.783	15	NC	5
558			min	0	10	085	4	037	3	-7.353e-3	1	1115.567	4	1626.262	1
559		14	max	0	3	003 018	15	.038	1	6.877e-3	3	5351.464	15	NC	5
560		17	min	0	10	076	4	034	3	-7.963e-3	1	1257.942		1678.671	1
561		15	max	0	3	015	15	.032	1	7.38e-3	3	6358.636	15	NC	4
562		10	min	0	10	064	4	028	3	-8.573e-3	1	1494.692	4	1824.178	
563		16	max	0	3	012	15	.023	1	7.883e-3	3	8148.857	15	NC	4
564		10	min	0	10	05	4	02	3	-9.183e-3	1	1915.51		2133.976	
JU -1			11/011	U	IU	.00	7	.02	J	J. 100C-0	_	1010.01	7	2100.010	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	0	3	008	15	.011	1	8.386e-3	3	NC	15	NC	4
566			min	0	10	035	4	008	3	-9.793e-3	1	2792.052	4	2831.151	1
567		18	max	.001	3	004	15	.007	3	8.889e-3	3	NC	5	NC	4
568			min	0	10	018	4	011	2	-1.04e-2	1	5486.812	4	5043.906	1
569		19	max	.001	3	.003	3	.026	3	9.392e-3	3	NC	1	NC	1
570			min	001	10	003	9	03	2	-1.101e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.008	3	2.794e-3	3	NC	1	NC	1
572			min	001	3	002	1	008	2	-2.832e-3	2	NC	1	NC	1
573		2	max	0	10	004	15	.004	1	2.678e-3	3	NC	5	NC	2
574			min	001	3	018	4	001	10	-2.706e-3	2	5486.812	4	9702.6	1
575		3	max	0	10	008	15	.012	1	2.561e-3	3	NC	15	NC	4
576			min	0	3	034	4	004	3	-2.58e-3	2	2792.052	4	5487.448	1
577		4	max	0	10	012	15	.018	1	2.445e-3	3	8148.857	15	NC	4
578			min	0	3	05	4	007	3	-2.454e-3	2	1915.51	4	4171.642	1
579		5	max	0	10	015	15	.022	1	2.329e-3	3	6358.636	15	NC	4
580			min	0	3	064	4	01	3	-2.328e-3	2	1494.692	4	3600.861	1
581		6	max	0	10	018	15	.024	1	2.212e-3	3	5351.464	15	NC	4
582			min	0	3	075	4	012	3	-2.202e-3	2	1257.942	4	3350.827	1
583		7	max	0	10	02	15	.025	1	2.096e-3	3	4745.783	15	NC	4
584			min	0	3	085	4	012	3	-2.076e-3	2	1115.567	4	3288.519	1
585		8	max	0	10	022	15	.025	1	1.98e-3	3	4382.283	15	NC	4
586			min	0	3	092	4	012	3	-1.95e-3	2	1030.121	4	3368.345	1
587		9	max	0	10	023	15	.023	1	1.864e-3	3	4186.626	15	NC	4
588			min	0	3	096	4	012	3	-1.824e-3	2	984.129	4	3583.957	1
589		10	max	0	10	023	15	.021	1	1.747e-3	3	4124.73	15	NC	4
590			min	0	3	098	4	011	3	-1.698e-3	2	969.579	4	3957.046	1
591		11	max	0	10	023	15	.018	1	1.631e-3	3	4186.626	15	NC	4
592			min	0	3	096	4	009	3	-1.572e-3	2	984.129	4	4542.017	1
593		12	max	0	10	022	15	.015	1	1.515e-3	3	4382.283	15	NC	4
594			min	0	3	092	4	007	3	-1.446e-3	2	1030.121	4	5447.025	1
595		13	max	0	10	02	15	.012	1	1.398e-3	3	4745.783	15	NC	2
596			min	0	3	085	4	006	3	-1.32e-3	2	1115.567	4	6887.97	1
597		14	max	0	10	018	15	.009	1	1.282e-3	3	5351.464	15	NC	2
598			min	0	3	075	4	004	3	-1.194e-3	2	1257.942	4	9332.175	1
599		15	max	0	10	015	15	.006	1	1.166e-3	3	6358.636	<u>15</u>	NC	1
600			min	0	3	063	4	002	3	-1.068e-3	2	1494.692	4	NC	1
601		16	max	0	10	012	15	.003	1	1.05e-3	3	8148.857	15	NC	1
602			min	0	3	049	4	0	3	-9.423e-4	2	1915.51	4	NC	1
603		17	max	0	10	008	15	.001	1	9.332e-4	3	NC	15	NC	1
604			min	0	3	034	4	0	10	-8.163e-4	2	2792.052	4	NC	1
605		18	max	0	10	004	15	0	3	8.169e-4	3	NC	5	NC	1
606			min	0	3	017	4	0	2	-6.903e-4	2	5486.812	4	NC	1
607		19	max	0	1	0	1	0	1	7.007e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-5.643e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,l}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253 92	256.00	0 995	1.00	1 000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

τ_{k,cr} (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cby} = \phi (A_V$	$_{/c}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,V}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)				
Avc (in ²)	Avco (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
238.44	288.00	0.897	1.000	1.000	8488	0.70	4411	

Shear perpendicular to edge in x-direction:

V _{bv} =	7(1,/	$(d_0)^{0.2}$	2 da 2	Vf'acas	1.5 (F	a. D-24)
v bx -	' I Vie/	uai	VUa/L	VI CLAT	100	J. D-241

l _e (in)	d _a (in)	λ	f_c (psi)	c _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / Avco) Yed, v Yc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)	
--	--

I _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m p,Na}$	N _{a0} (lb)	Na (lb)	, ,	
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No

Project description:

Location:

Fastening description:

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Z

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 3>

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	5.333	10469				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ed}	$_{l,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\mathscr{V}_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	la) ^{0.2} √daλ√f'c C a1 ^{1.}	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPhi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec,V}$	V $\Psi_{\text{ed,V}} \Psi_{\text{c,V}} \Psi_{\text{h,V}}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$arPsi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{CPG}} = \phi \min[k_{\textit{CP}} N_{\textit{eg}} \; ; \; k_{\textit{CP}} N_{\textit{CbG}}] = \phi \min[k_{\textit{CP}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{g},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{p},\textit{Na}} N_{\textit{a0}} \; ; \; k_{\textit{CP}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{c},\textit{N}} \; \Psi_{\textit{c},\textit{N}} N_{\textit{b}}] \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3	0.20	0.25	45.0 %	1.2	Pass
------------	------	------	--------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.