Prediction of the accident possibility for carsharing company

Content

- 1. Project Description
- 2. Connection to database and data loading
- 3. Data overview
- 4. Statistical analysis of accident factors
- 5. Building model of evaluation of driving risk
- 6. Analysis of accident factors impact
- 7. General Conclusion

Project Description

Carsharing company would like to develop system for the evaluation of the risk of accident for the selected route. As risk company understands is possibility of accident with any damage to the vehicle. The system has to evaluate the risk level just after the booking of the car by client. Current task for the company is to understand is it possible to predict the possibility of accident based on the historical data of one of the regions where company operated.

Main tasks are following:

- 1) To connect to database and import data;
- 2) Prepare and analyze the data.
- 3) Set the tasks to work team.
- 4) Train the models and select the best one;

- 5) Find the key factor leading to possibility of accident;
- 6) Propose the tools for reduction of possibility of accident.

Connection to database and data loading

```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        import numpy as np
        import seaborn as sns
        from sqlalchemy import create engine
        import matplotlib.pyplot as plt
        import torch
        import torch.nn as nn
        from sklearn.preprocessing import OneHotEncoder,StandardScaler, MinMaxScaler
        from sklearn.model selection import train test split
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import roc_auc_score
        from sklearn.metrics import roc curve
        from sklearn.model selection import RandomizedSearchCV
        from sklearn.metrics import precision recall curve
In [2]: import warnings
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.simplefilter(action='ignore', category=DeprecationWarning)
        warnings.simplefilter(action='ignore', category=RuntimeWarning)
In [3]: db config = {
         'user': '*****', # имя пользователя,
         'pwd': '*****', # пароль,
         'host': '****',
         'port': ****, # порт подключения.
         'db': '****' # название базы данных.
        connection_string = 'postgresql://{}:{}@{}:{}/{}'.format(
In [4]:
            db config['user'],
```

```
db_config['pwd'],
            db_config['host'],
            db_config['port'],
            db_config['db'],
In [5]: engine = create_engine(connection_string)
In [6]: query = '''
        SELECT *
        FROM Parties
        1.1.1
        parties_df = pd.read_sql_query(query, con=engine)
In [7]: query = '''
        SELECT *
        FROM collisions
        collisions_df = pd.read_sql_query(query, con=engine)
In [8]: query = '''
        SELECT *
        FROM Vehicles
        vehicles_df = pd.read_sql_query(query, con=engine)
In [9]: query = '''
        SELECT *
        FROM case ids
        case_ids_df = pd.read_sql_query(query, con=engine)
```

Data overview

In [10]: parties_df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 2752408 entries, 0 to 2752407 Data columns (total 9 columns): Column Dtype ---id int64 case_id object party_number int64 party type object at_fault int64 insurance_premium float64 party sobriety object party drug physical object cellphone in use float64 dtypes: float64(2), int64(3), object(4) memory usage: 189.0+ MB

In [11]: parties_df.head()

Out[11]:		id	case_id	party_numbe	r	party_type	at_fault	insurance_premium	party_sobriety	party_drug_physical	cellphone_in_use
	0	22	3899454		1	road signs	1	29.0	had not been drinking	None	0.0
	1	23	3899454	:	2	road signs	0	7.0	had not been drinking	None	0.0
	2	29	3899462	:	2	car	0	21.0	had not been drinking	None	0.0
	3	31	3899465	;	2	road signs	0	24.0	had not been drinking	None	0.0
	4	41	3899478		2 1	oad bumper	0	NaN	not applicable	not applicable	0.0

In [12]: collisions_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1400000 entries, 0 to 1399999 Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	case_id	1400000 non-null	object
1	county_city_location	1400000 non-null	object
2	county_location	1400000 non-null	object
3	distance	1400000 non-null	float64
4	direction	1059358 non-null	object
5	intersection	1387781 non-null	float64
6	weather_1	1392741 non-null	object
7	location_type	518779 non-null	object
8	collision_damage	1400000 non-null	object
9	party_count	1400000 non-null	int64
10	<pre>primary_collision_factor</pre>	1391834 non-null	object
11	<pre>pcf_violation_category</pre>	1372046 non-null	object
12	<pre>type_of_collision</pre>	1388176 non-null	object
13	<pre>motor_vehicle_involved_with</pre>	1393181 non-null	object
14	road_surface	1386907 non-null	object
15	road_condition_1	1388012 non-null	object
16	lighting	1391407 non-null	object
17	control_device	1391593 non-null	object
18	collision_date	1400000 non-null	object
19	collision_time	1387692 non-null	object
dtyp	es: float64(2), int64(1), obj	ect(17)	

memory usage: 213.6+ MB

```
In [13]: collisions_df.head()
```

Out[13]:		case_id	county_city_location	county_location	distance	direction	intersection	weather_1	location_type	collision_damage	party_count	primary_coll
	0	4083072	1942	los angeles	528.0	north	0.0	cloudy	highway	small damage	2	vehicle co
	1	4083075	4313	santa clara	0.0	None	1.0	clear	None	small damage	1	vehicle co
	2	4083073	0109	alameda	0.0	None	1.0	clear	None	scratch	2	vehicle co
	3	4083077	0109	alameda	0.0	None	1.0	clear	None	scratch	2	vehicle co
	4	4083087	4313	santa clara	0.0	None	1.0	clear	None	scratch	2	vehicle co
4)
In [14]:	<pre>vehicles_df.info()</pre>											
	<pre>venicles_dr.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 1021234 entries, 0 to 1021233 Data columns (total 6 columns): # Column</class></pre>		l object l int64 l object object	:								

In [15]: vehicles_df.head()

Out[15]:		id	case_id	party_number	vehicle_type	vehicle_transmission	vehicle_age
	0	1175713	5305032	2	sedan	manual	3.0
	1	1	3858022	1	sedan	auto	3.0
	2	1175712	5305030	1	sedan	auto	3.0
	3	1175717	5305033	3	sedan	auto	5.0
	4	1175722	5305034	2	sedan	auto	5.0
In [16]:		l vehicl l partie	_				
		1 collis					

Conclusion

- 1) Parties_df has 2 752 408 rows and 9 columns;
- 2) collisions_df has 1 400 000 rows and 6 columns;
- 3) vehicles_df has 1 021 234 rows and 5 columns;

Statistical analysis of accident factors

```
In [17]: # dispaly the quantity of accidents per month
    query = '''
    SELECT COUNT(case_id), DATE(DATE_TRUNC('month',collision_date)) AS month_date
    FROM collisions
    GROUP BY DATE(DATE_TRUNC('month',collision_date))
    ORDER BY COUNT(case_id) DESC
    '''

month_df = pd.read_sql_query(query, con=engine)
    month_df.head()
    month_df.plot(kind='bar',y = 'count', x = 'month_date', figsize =(20,7),title = 'Quantity per month')
    plt.xlabel('Quantity')
```

plt.ylabel('Month')
plt.show()

Tasks to work team:

- 1) To analyze the level of damage to vehicles, based on the surface condition in the moment of accident (to join collisions и parties)
- 2) Find the most often reasons of accidents (table parties)
- 3) Analyze in what period of the day is the highest quantity of accidents with fatal damage happens.
- 4) Does the type of gearboxe affect on the quantity of accidents .
- 5) Analysis of relation of level of damage and drivers sbriety.
- 6) Which region has and in whic month has the highest quantity of accdents.

Analysis of relation of level of damage and drivers sbriety

Out[18]: collision_damage count percentage 0 small damage 87228 58.0 1 middle damage 27876 18.0 2 scratch 23937 16.0 3 severe damage 7956 5.0 4 fatal 4485 3.0

```
In [20]: # query to get the statistic on sober drivers
query = '''
SELECT c.collision_damage,COUNT(c.case_id)
    FROM collisions AS c
    FULL OUTER JOIN Parties AS p
        ON c.case_id = p.case_id
    WHERE p.party_sobriety NOT LIKE '%had not been drinking%''
    GROUP BY c.collision_damage
    ORDER BY COUNT(c.case_id) DESC
'''

dmg_sober_df = pd.read_sql_query(query, con=engine)
```

```
dmg sober df['percentage'] = round(dmg sober df['count'] / dmg sober df['count'].sum()*100,0)
dmg sober df
```

```
Out[20]:
             collision damage
                              count percentage
                 small damage 394814
          0
                                            71.0
          1
                      scratch 79614
                                            14.0
               middle damage
          2
                               57497
                                            10.0
                severe damage
          3
                               14771
                                             3.0
          4
                         fatal
                                7030
                                             1.0
```

```
# Comparison of sober and drunk driver statistic
In [21]:
         sober drunk = pd.DataFrame(dmg sober df['collision damage'])
         sober drunk['percentage drunk'] = dmg drunk df['percentage']
         sober drunk['percentage sober'] = dmg sober df['percentage']
         print(sober drunk)
         sober drunk.plot.bar(x='collision damage', figsize =(20,7),title = 'collision damage and driver conditions')
         plt.xlabel('collision damage')
         plt.ylabel('percentage')
           collision damage percentage drunk percentage sober
               small damage
                                         58.0
                                                           71.0
```

14.0

10.0

3.0

1.0

severe damage fatal Text(0, 0.5, 'percentage') Out[21]:

middle damage

1

2

3

scratch

18.0

16.0

5.0

3.0

collision_damage

In [22]: sober_drunk['percentage_sober_drunk'] = round((sober_drunk['percentage_drunk']/sober_drunk['percentage_sober']-1)*100,0)

In [23]: sober_drunk

Out[23]: collision_damage percentage_drunk percentage_sober percentage_sober_drunk small damage 0 58.0 71.0 -18.0 scratch 18.0 14.0 29.0 middle damage 16.0 10.0 60.0 2 severe damage 5.0 3.0 67.0 fatal 3.0 1.0 200.0

Conclusion

- ДТП с небольшим уроном случаются на 18% реже в пьяном состоянии
- ДТП с царапинами случаются на 29% чаще в пьяном состоянии
- ДТП со средним уроном случаются на 60% чаще в пьяном состоянии
- ДТП с серьезным уроном случаются на 67% чаще в пьяном состоянии
- ДТП с фатальным уроном случаются на 200% чаще в пьяном состоянии

В целом по информации из статистики можно сказать что ДТП с серьезными и фатальными поврждениями случаются в разы чаще в пьяном состоянии чем в трезвом, хотя общее количество ДТП в трезвом состоянии по абсолютным цифрам больше.

Главный вывод - не пей за рулем!

Лучше закажи такси

Analysis of relation of gearbox type on quantity of accidents.

```
In [24]:
    query = '''
    SELECT COUNT(s.case_id), v.vehicle_transmission AS transmission_type
        FROM collisions AS s
        FULL OUTER JOIN Vehicles AS v
        ON s.case_id = v.case_id
    GROUP BY v.vehicle_transmission
    ORDER BY COUNT(s.case_id) DESC
    '''

    kpp_df = pd.read_sql_query(query, con=engine)
    kpp_df.head()
    kpp_df.plot(kind='bar',y = 'count', x = 'transmission_type', figsize =(20,7),title = 'Quantity per transmission')
    plt.xlabel('Quantity')
    plt.ylabel('transmission type')
    plt.show()
```



```
In [25]: del kpp_df
del dmg_sober_df
```

Conclusion

Based on the analysis the conclusion is following - type of gearbox has no affect on quantity of accidents.

Creating a table with all features for statistic analysis

```
total_df = pd.read_sql_query(query, con=engine)
total_df.head()
```

Out[26]:		case_id	county_city_location	county_location	distance	direction	intersection	weather_1	location_type	collision_damage	party_count	•••	vehicle_a
	0	4014984	3631	san bernardino	0.0	None	1.0	clear	highway	fatal	2		1
	1	4027576	3711	san diego	350.0	south	0.0	clear	None	middle damage	1		
	2	4033928	2002	madera	55.0	west	0.0	cloudy	highway	small damage	2		
	3	4035554	1005	fresno	0.0	None	1.0	clear	ramp	scratch	2		
	4	4035554	1005	fresno	0.0	None	1.0	clear	ramp	scratch	2		

5 rows × 35 columns

In [27]: total_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2194043 entries, 0 to 2194042
Data columns (total 35 columns):

Data	columns (total 35 columns):	
#	Column	Dtype
0	case_id	object
1	county_city_location	object
2	county_location	object
3	distance	float64
4	direction	object
5	intersection	float64
6	weather_1	object
7	location_type	object
8	collision_damage	object
9	party_count	int64
10	primary_collision_factor	object
11	pcf_violation_category	object
12	type_of_collision	object
13	motor_vehicle_involved_with	-
14	road_surface	object
15	road_condition_1	object
16	lighting	object
17	control device	object
18	collision date	object
19	collision_time	object
20	id	int64
21	case_id	object
22	party_number	int64
23	vehicle_type	object
24	vehicle_transmission	object
25	vehicle_age	float64
26	id	int64
27	case_id	object
28	party_number	int64
29	party_type	object
30	at_fault	int64
31	insurance_premium	float64
32	party_sobriety	object
33	party_drug_physical	object
34	cellphone in use	float64
	es: float64(5), int64(6), ob	
	ry usage: 585.9+ MB	JCCC(2+)
	, asabc. 303.51 110	

```
In [28]: # deletion of useless columns
         total_df = total_df.drop(columns = ['id','case_id'])
         total df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2194043 entries, 0 to 2194042
         Data columns (total 30 columns):
              Column
                                           Dtype
                                           ----
              county city location
                                           object
              county location
                                           object
          2
              distance
                                           float64
              direction
                                           object
              intersection
                                           float64
              weather 1
                                           object
              location type
                                           object
              collision damage
                                           object
              party count
                                           int64
              primary collision factor
                                           object
              pcf violation category
                                           object
          11 type of collision
                                           object
          12 motor vehicle involved with
                                           object
          13 road surface
                                           object
          14 road condition 1
                                           object
          15 lighting
                                           object
          16 control device
                                           object
                                           object
          17 collision date
          18 collision time
                                           object
          19 party number
                                           int64
          20 vehicle type
                                           object
          21 vehicle transmission
                                           object
          22 vehicle age
                                           float64
          23 party number
                                           int64
          24 party_type
                                           object
          25 at fault
                                           int64
          26 insurance premium
                                           float64
          27 party sobriety
                                           object
          28 party_drug_physical
                                           object
          29 cellphone in use
                                           float64
         dtypes: float64(5), int64(4), object(21)
         memory usage: 502.2+ MB
```

```
In [29]: # change of datatype of column county city location
         total df['county city location'] = total df['county city location'].astype('float64')
In [30]: # selection of categorical and numeric columns
         numeric col = list(total df.select dtypes(include=['int64', 'float64']).columns[:])
         categorical col = list(total df.select dtypes(include=['object']).columns[:])
         categorical col.remove('collision date')
         categorical col.remove('collision time')
         dt cols = ['collision date','collision time']
         print('Numerical columns:', numeric col,'\n')
         print('Categorical columns:','\n',categorical col,'\n')
         print('Date time columns:','\n',dt cols)
         Numerical columns: ['county city location', 'distance', 'intersection', 'party count', 'party number', 'vehicle age', 'party num
         ber', 'at fault', 'insurance premium', 'cellphone in use']
         Categorical columns:
          ['county location', 'direction', 'weather 1', 'location type', 'collision damage', 'primary collision factor', 'pcf violation c
         ategory', 'type of collision', 'motor vehicle involved with', 'road surface', 'road condition 1', 'lighting', 'control device',
         'vehicle type', 'vehicle transmission', 'party type', 'party sobriety', 'party drug physical']
         Date time columns:
          ['collision date', 'collision time']
In [31]: # function for plotting
         def plot bar func (column):
              print(total df.groupby(column)['at fault'].count().sort values(ascending=False))
             total df.groupby(column)['at fault'].count().sort values(ascending=False).plot(kind='bar',figsize = (20,10))
             plt.title(column)
             plt.xlabel(column)
             plt.ylabel('Quantity')
             plt.show()
In [32]: # Plotting the info of categorical columns
         for i in categorical col[:]:
             plot bar func(i)
```

county location	
county_location los angeles	706419
orange	205025
san diego	154835
san diego san bernardino	117320
riverside	11/320
	100013
sacramento alameda	90142
santa clara	82024
ventura	47227
	47227
contra costa	42282
kern	41802
san joaquin fresno	41714
san francisco	40484
san mateo	34695
stanislaus	29903
sonoma	26680
santa barbara	24939
solano	21888
placer	20961
tulare	20897
monterey	18786
merced	14607
santa cruz	14428
san luis obispo	13297
marin	13245
shasta	10728
butte	9131
yolo	8800
napa	7810
madera	7774
humboldt	7693
el dorado	7547
kings	6809
sutter	5450
imperial	5292
nevada	4987
mendocino	4305
tuolumne	3457
yuba	3254
tehama	3155
lake	2908
san benito	2585

amador	2456			
calaveras	2309			
siskiyou	1831			
del norte	1426			
colusa	1239			
glenn	1221			
inyo	1209			
lassen	1143			
mono	881			
mariposa	857			
plumas	819			
trinity	670			
alpine	351			
modoc	316			
sierra	184			
Name: at_fault,	dtype: int64			

direction

south 435473 north 432081 east 355717 west 355433

location_type
highway 708497
ramp 102565
intersection 47820

collision_damage	5	
scratch	1026384	
small damage	595087	
middle damage	455738	
severe damage	84894	
fatal	31940	
Name: at_fault,	dtype: i	nt64

primary_collision_factor
vehicle code violation 2112950
unknown 36365
other than driver 26526
other improper driving 8921
fell asleep 111
Name: at_fault, dtype: int64

<pre>pcf_violation_category</pre>	
speeding	815444
automobile right of way	318257
improper turning	215350
traffic signals and signs	164629
dui	142711
unsafe lane change	137691
following too closely	58733
wrong side of road	57217
unsafe starting or backing	53540
pedestrian right of way	38795
unknown	38430
pedestrian violation	38186
other than driver (or pedestrian)	26526
other hazardous violation	21396
improper passing	16174
other improper driving	8921
other equipment	1811
impeding traffic	1694
hazardous parking	1276
lights	455
brakes	372
fell asleep	111
pedestrian dui	4
Name: at_fault, dtype: int64	

type_of_collision
rear end 927529
broadside 535425
sideswipe 288132
other 146999
hit object 131288
head-on 113380
overturned 35667

L9087
31762
22610
39665
52292
37920
L9518
2762
686

road_surface

dry 1983149 wet 182005 snowy 8736 slippery 1596

road_condition_1	L		
normal	2112501		
construction	35337		
holes	8348		
other	7631		
obstruction	7327		
loose material	2954		
reduced width	1649		
flooded	1250		
Name: at fault.	dtvpe: int6		

lighting	
daylight	1574429
dark with street lights	407141
dark with no street lights	125922
dusk or dawn	69753
dark with street lights not functioning	6100
Names of Caville drivers into	

control_device
none 1313657
functioning 862091
not functioning 6424
obscured 1136

vehicle_type
sedan

 sedan
 1069935

 coupe
 934526

 hatchback
 102755

 minivan
 84088

 other
 2739

Name: at_fault, dtype: int64

vehicle_transmission auto 1103504 manual 1039858

party_type
car 2014393
road signs 62564
road bumper 57367
building 52245
other 5504

party_sobriety	
had not been drinking	1879053
impairment unknown	99058
had been drinking, under influence	79412
not applicable	65117
had been drinking, not under influence	15035
had been drinking, impairment unknown	11037
Name: at_fault, dtype: int64	

party_drug_physical
G 99058
not applicable 65117
under drug influence 11304
sleepy/fatigued 8030
impairment - physical 3036
Name: at_fault, dtype: int64

Out[33]:		county_city_location	distance	intersection	party_count	party_number	party_number	vehicle_age	party_number	party_number	
	count	2.194043e+06	2.194043e+06	2.181354e+06	2.194043e+06	2.194043e+06	2.194043e+06	2.140681e+06	2.194043e+06	2.194043e+06	2.1940
	mean	2.797314e+03	6.340588e+02	2.680239e-01	2.436112e+00	1.738596e+00	1.718074e+00	5.161942e+00	1.738596e+00	1.718074e+00	4.361
	std	1.274938e+03	2.374460e+04	4.429302e-01	1.076418e+00	8.416262e-01	8.930279e-01	3.113283e+00	8.416262e-01	8.930279e-01	4.959
	min	1.000000e+02	0.000000e+00	0.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	0.000000e+00	1.000000e+00	1.000000e+00	0.0000
	25%	1.942000e+03	0.000000e+00	0.000000e+00	2.000000e+00	1.000000e+00	1.000000e+00	3.000000e+00	1.000000e+00	1.000000e+00	0.0000
	50%	3.004000e+03	8.400000e+01	0.000000e+00	2.000000e+00	2.000000e+00	2.000000e+00	5.000000e+00	2.000000e+00	2.000000e+00	0.0000
	75%	3.705000e+03	4.000000e+02	1.000000e+00	3.000000e+00	2.000000e+00	2.000000e+00	7.000000e+00	2.000000e+00	2.000000e+00	1.0000
	max	5.802000e+03	8.363520e+06	1.000000e+00	2.700000e+01	2.700000e+01	2.700000e+01	1.610000e+02	2.700000e+01	2.700000e+01	1.0000

In [34]: total_df.info()

.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2194043 entries, 0 to 2194042
Data columns (total 30 columns):
    Column
                                 Dtype
    ----
                                 ____
    county city location
                                 float64
1
    county location
                                 object
2
    distance
                                 float64
                                 object
3
    direction
    intersection
                                 float64
    weather 1
                                 object
    location type
                                 object
    collision damage
                                 object
    party count
                                 int64
    primary collision factor
                                 object
10 pcf violation category
                                 object
11 type of collision
                                 object
12 motor vehicle involved with
                                 object
13 road surface
                                 object
14 road condition 1
                                 object
15 lighting
                                 object
16 control device
                                 object
17 collision date
                                 object
18 collision time
                                 object
19 party number
                                 int64
20 vehicle type
                                 object
21 vehicle transmission
                                 object
22 vehicle age
                                 float64
23 party_number
                                 int64
24 party type
                                 object
25 at fault
                                 int64
26 insurance premium
                                 float64
27 party sobriety
                                 object
28 party drug physical
                                 object
29 cellphone in use
                                 float64
dtypes: float64(6), int64(4), object(20)
memory usage: 502.2+ MB
```

In [35]: # clear the memory del total df

Building model of evaluation of driving risk

Selection of features for the model

- 0) case_id to delete, has no affect on possibility of accident
- 1) county_city_location to delete, has no affect on possibility of accident
- 2) county_location to delete, has no affect on possibility of accident
- 3) distance to delete, has no affect on possibility of accident
- 4) direction to delete, has no affect on possibility of accident
- 5) intersection to delete, has no affect on possibility of accident
- 6) weather_1 to inclde, has an affect on possibility of accident
- 7) location_type to delete, has no affect on possibility of accident
- 8) collision_damage to inclde, has an affect on possibility of accident
- 9) party_count to delete, has no affect on possibility of accident
- 10) primary_collision_factor to delete, has no affect on possibility of accident
- 11) pcf_violation_category to inclde, has an affect on possibility of accident
- 12) type_of_collision to inclde, has an affect on possibility of accident
- 13) motor_vehicle_involved_with to delete, has no affect on possibility of accident
- 14) road_surface to inclde, has an affect on possibility of accident
- 15) road_condition_1 to delete, has no affect on possibility of accident
- 16) lighting to inclde, has an affect on possibility of accident

- 17) control device to inclde, has an affect on possibility of accident
- 18) collision_date to delete, has no affect on possibility of accident
- 19) collision_time to delete, has no affect on possibility of accident
- 20) id to delete, has no affect on possibility of accident
- 21) case_id to delete, has no affect on possibility of accident
- 22) party_number to delete, has no affect on possibility of accident
- 23) vehicle_type to delete, has no affect on possibility of accident
- 24) vehicle_transmission to delete, has no affect on possibility of accident
- 25) vehicle_age to inclde, has an affect on possibility of accident
- 26) id to delete, has no affect on possibility of accident
- 27) case_id to delete, has no affect on possibility of accident
- 28) party_number to delete, has no affect on possibility of accident
- 29) party_type to delete, has no affect on possibility of accident
- 30) at_fault target
- 31) insurance_premium to inclde, has an affect on possibility of accident
- 32) party_sobriety to inclde, has an affect on possibility of accident
- 33) party_drug_physical to inclde, has an affect on possibility of accident
- 34) cellphone_in_use to inclde, has an affect on possibility of accident

In [36]: # query to get the dataset with important features and target
query = '''
SELECT collision_damage,

```
pcf_violation_category,
      type_of_collision,
      road_surface,
      lighting,
      control_device,
      vehicle age,
      at fault,
      insurance premium,
      party sobriety,
      party_drug_physical,
      cellphone in use
  FROM collisions AS c
      INNER JOIN Vehicles AS v
         ON c.case_id = v.case_id
         INNER JOIN Parties AS p
             ON c.case id = p.case id
WHERE c.collision damage NOT LIKE ('%%scratch%%'')
   AND p.party_type LIKE (''%car%%')
  AND EXTRACT(YEAR FROM collision date) = (2012.0)
ttl_model_df = pd.read_sql_query(query, con=engine)
ttl model df.head()
```

Out[36]:		collision_damage	pcf_violation_category	type_of_collision	road_surface	lighting	control_device	vehicle_age	at_fault	insurance_premium	party_sobr
	0	fatal	pedestrian violation	other	dry	dark with street lights	none	9.0	1	60.0	had k drinking, uı influe
	1	fatal	pedestrian right of way	other	dry	dark with street lights	none	8.0	0	50.0	had k drinking, ui influe
	2	fatal	improper turning	rear end	dry	dark with street lights	none	3.0	0	NaN	not applic
	3	fatal	improper turning	rear end	dry	dark with street lights	none	5.0	0	NaN	not applic
	4	fatal	pedestrian violation	other	dry	dark with street lights	none	4.0	1	30.0	had k drinking, ui influe
4											>

In [37]: ttl_model_df.info()

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 246125 entries, 0 to 246124
         Data columns (total 12 columns):
              Column
                                      Non-Null Count
                                                      Dtype
              _____
                                      _____
              collision damage
                                      246125 non-null object
              pcf violation category 242012 non-null object
              type of collision
                                      244631 non-null object
              road surface
          3
                                      244160 non-null object
              lighting
                                      245264 non-null object
              control device
                                     244923 non-null object
              vehicle age
                                      240096 non-null float64
          7
              at fault
                                     246125 non-null int64
              insurance premium
                                     229970 non-null float64
              party sobriety
                                     241127 non-null object
          10 party drug physical
                                     21205 non-null
                                                      object
          11 cellphone in use
                                      213747 non-null float64
         dtypes: float64(3), int64(1), object(8)
         memory usage: 22.5+ MB
In [38]: # display the unique value of column party drug physical
         ttl model df['party drug physical'].unique()
         array([None, 'under drug influence', 'not applicable', 'G',
Out[38]:
                'sleepy/fatigued', 'impairment - physical'], dtype=object)
In [39]: # count the values by columns party drug physical in case of accident
         ttl model df.groupby('party drug physical')['at fault'].count().sort values(ascending = False)
         party_drug_physical
Out[39]:
                                  10898
         not applicable
                                   7102
         under drug influence
                                  1945
         sleepy/fatigued
                                    919
         impairment - physical
                                    341
         Name: at fault, dtype: int64
In [40]: # filling the nulls
         ttl model df['party drug physical'] = ttl model df['party drug physical'].fillna('G')
In [41]: ttl_model_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 246125 entries, 0 to 246124
Data columns (total 12 columns):
    Column
                          Non-Null Count
                                          Dtype
---
                           _____
                                          ----
    collision damage
                          246125 non-null object
    pcf violation category 242012 non-null object
    type of collision
                          244631 non-null object
    road surface
3
                          244160 non-null object
    lighting
                          245264 non-null object
    control device
                          244923 non-null object
    vehicle age
                          240096 non-null float64
7 at fault
                          246125 non-null int64
8 insurance premium
                         229970 non-null float64
9 party sobriety
                          241127 non-null object
10 party drug physical
                          246125 non-null object
11 cellphone in use
                          213747 non-null float64
dtypes: float64(3), int64(1), object(8)
memory usage: 22.5+ MB
```

Deletion of nulls

```
In [42]: ttl_model_df = ttl_model_df.dropna()
In [43]: target = ttl_model_df['at_fault']
In [44]: # Selection of categorical and numeric columns
    numeric_col = list(ttl_model_df.select_dtypes(include=['int64', 'float64']).columns[:])
    numeric_col.remove('at_fault')
    categorical_col = list(ttl_model_df.select_dtypes(include=['object']).columns[:])
    print('Numerical columns:', numeric_col,'\n')
    print('Categorical columns:','\n',categorical_col,'\n')
    Numerical columns: ['vehicle_age', 'insurance_premium', 'cellphone_in_use']
    Categorical columns:
        ['collision_damage', 'pcf_violation_category', 'type_of_collision', 'road_surface', 'lighting', 'control_device', 'party_sobrie ty', 'party_drug_physical']
```

Splitting the data on samples

```
In [45]: X_train_for_coding, X_valid_for_coding, y_train, y_valid = train_test_split(ttl_model_df.drop(columns = ['at_fault']), ttl_model
          Rescaling the numeric columns
In [46]:
          numeric col
          ['vehicle_age', 'insurance_premium', 'cellphone_in_use']
Out[46]:
          scaler = MinMaxScaler()
In [47]:
          scaler.fit(X train for coding[numeric col])
          X_train_numeric = pd.DataFrame(scaler.transform(X_train_for_coding[numeric_col]),columns = X_train_for_coding[numeric_col].column
          X valid numeric = pd.DataFrame(scaler.transform(X valid for coding[numeric col]),columns = X valid for coding[numeric col].column
         X train numeric.head(10)
In [49]:
Out[49]:
            vehicle_age insurance_premium cellphone_in_use
                                                      0.0
          0
               0.012422
                                 0.504762
               0.043478
                                 0.714286
                                                      0.0
          2
               0.074534
                                 0.371429
                                                      0.0
                                                      0.0
          3
               0.031056
                                 0.266667
               0.049689
                                 0.314286
                                                      0.0
                                 0.342857
               0.006211
                                                      0.0
          6
               0.037267
                                 0.390476
                                                      0.0
          7
               0.049689
                                 0.380952
                                                      0.0
          8
               0.018634
                                 0.361905
                                                      0.0
               0.043478
                                 0.438095
                                                      0.0
```

In [50]: X_train_numeric.info()

In [51]: X_valid_numeric.head(10)

Out[51]: vehicle_age insurance_premium cellphone_in_use 0 0.068323 0.342857 0.0 0.012422 0.171429 0.0 1 0.043478 0.447619 0.0 2 0.031056 0.380952 0.0 3 0.024845 0.304762 0.0 5 0.024845 0.504762 0.0 6 0.031056 0.361905 0.0 0.031056 0.409524 0.0 7 0.012422 0.619048 0.0 8 0.031056 0.657143 0.0

In [52]: X_valid_numeric.info()

Encoding of categorical features

```
In [53]: ohe = OneHotEncoder()
     X train categorical = ohe.fit transform(X train for coding[categorical col]).toarray()
     X valid categorical = ohe.transform(X valid for coding[categorical col]).toarray()
In [54]: X train categorical = pd.DataFrame(X train categorical)
     X valid categorical = pd.DataFrame(X valid categorical)
In [55]: X train categorical.head()
Out[55]:
                 5 6 7 8 9 ... 48 49 50 51 52 53 54 55 56 57
     5 rows × 58 columns
In [56]: X valid categorical.head()
```

Out[56]: 8 9 ... 48 49 50 51 52 53 54 55 56 57 5 rows × 58 columns In [57]: # merge the categorical and numeric prepared features X train = X train numeric.join(X train categorical) X valid = X valid numeric.join(X valid categorical) In [58]: X train.head() Out[58]: vehicle_age insurance_premium cellphone_in_use 0 1 2 3 4 5 6 ... 48 49 50 51 52 53 54 55 56 57 0 0.012422 0.504762 $0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad \dots \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0$ 0.043478 0.714286 $0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad \dots \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0$ 2 $0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad \dots \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0$ 0.074534 0.371429 0.031056 0.266667 $0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad \dots \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0$

5 rows × 61 columns

0.049689

0.314286

In [59]: X_valid.head()

```
Out[59]:
                    vehicle age insurance premium cellphone in use 0 1 2 3 4 5 6 ... 48 49 50 51 52 53 54 55 56 57
                       0.068323
               0
                                                    0.342857
                                                                                    0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad \dots \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0
                       0.012422
                                                    0.171429
                                                                                    0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad \dots \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0
                                                                                    0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad \dots \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0
               2
                       0.043478
                                                    0.447619
                        0.031056
                                                    0.380952
                                                                                    0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad \dots \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0
               3
                                                                                    0.024845
                                                    0.304762
```

5 rows × 61 columns

```
In [60]: # split the valid data on valid and test samples
X_test, X_valid, y_test, y_valid = train_test_split(X_valid, y_valid, test_size=0.5, random_state=42)
```

Building of simple neural network

The roc auc score to be used for models evaluation. Auc roc selected due to the fact the it's not only allows to evaluate the result, moreover it allows to evaluate the probabily of prediction.

```
In [61]: # transformation of data to tensors

X_train_tensor = torch.FloatTensor(X_train.values)
    X_test_tensor = torch.FloatTensor(Y_test.values)
    y_train_tensor = torch.FloatTensor(y_train.values)
    y_test_tensor = torch.FloatTensor(y_test.values)
    X_valid_tensor = torch.FloatTensor(X_valid.values)
    y_valid_tensor = torch.FloatTensor(y_valid.values)

In [62]: # building of neural network
    torch.manual_seed(1234)
    input_size = 61
    hidden_size_1 = 15
    hidden_size_2 = 8
    output_size = 1

class NeuralNet(nn.Module):
```

```
def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):
        super(NeuralNet, self). init ()
       self.fc1 = nn.Linear(input size, hidden size 1)
        self.act1 = nn.Tanh()
       self.fc2 = nn.Linear(hidden size 1, hidden size 2)
        self.act2 = nn.Tanh()
       self.fc3 = nn.Linear(hidden size 2, output size)
       self.act3 = nn.Sigmoid()
    def forward(self, x):
       x = self.fc1(x)
       x = self.act1(x)
       x = self.fc2(x)
       x = self.act2(x)
       x = self.fc3(x)
       x = self.act3(x)
        return x
nn model = NeuralNet(input size, hidden size 1, hidden size 2, output size)
```

```
In [63]: # training of nn model and predict the target
         optimizer = torch.optim.Adam(nn model.parameters(),lr=0.0015)
         loss = torch.nn.BCELoss()
         num epochs = 1000
         for epoch in range(num epochs):
             optimizer.zero grad()
             preds = nn model.forward(X train tensor).flatten()
             loss value = loss(preds,y train tensor)
             loss_value.backward()
             optimizer.step()
             if (epoch % 100 == 0) or (epoch == 1000) :
                     print(loss value)
                     nn_model.eval(),
                     nn model preds = nn model.forward(X valid tensor).flatten()
                     accuracy = (torch.round(nn_model_preds) == y_valid_tensor).float().mean().data
                     print(accuracy)
```

```
tensor(0.7081, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.4425)
         tensor(0.6330, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.6331)
         tensor(0.6076, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.6414)
         tensor(0.6031, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.6425)
         tensor(0.5998, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.6435)
         tensor(0.5971, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.6463)
         tensor(0.5946, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.6480)
         tensor(0.5922, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.6514)
         tensor(0.5900, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.6538)
         tensor(0.5878, grad fn=<BinaryCrossEntropyBackward0>)
         tensor(0.6549)
In [64]: nn preds = torch.round(nn model preds, decimals=0).detach().numpy()
In [65]: # display the auc roc score
          roc auc score nn = roc auc score(y valid, nn preds, average=None)
         roc auc score nn
         0.6242019244517162
Out[65]:
In [66]: # plot the auc roc curve
         precision, recall, thresholds = roc curve(y valid, nn model preds.detach().numpy())
         plt.figure(figsize=(6, 6))
         plt.step( precision, recall, where='post')
         plt.plot([0.0,1.0],[0.0,1.0])
         plt.xlabel('FPR')
         plt.ylabel('TPR')
         plt.ylim([0.0, 1.05])
         plt.xlim([0.0, 1.0])
         plt.title('Кривая AUC ROC')
         plt.show()
```


Training of random forest model

```
In [69]: print(model_rf.best_params_)
         roc_auc_cv_rf = model_rf.best_score_
         model rf.best score
         {'n estimators': 40, 'max depth': 21}
         0.7239854982152952
Out[69]:
In [70]: predictions rf = model rf.predict(X valid)
In [71]: # display auc roc score
         probabilities_rf = model_rf.predict proba(X valid)
         roc auc rf = roc auc score(y valid,probabilities rf[:, 1])
         roc auc rf
         0.7224588632217692
Out[71]:
In [72]: # plot the auc roc curve
         precision, recall, thresholds = roc curve(y valid, probabilities rf[:, 1])
         plt.figure(figsize=(6, 6))
         plt.step( precision, recall, where='post')
         plt.plot([0.0,1.0],[0.0,1.0])
         plt.xlabel('FPR')
         plt.ylabel('TPR')
         plt.ylim([0.0, 1.05])
         plt.xlim([0.0, 1.0])
         plt.title('Кривая AUC ROC')
         plt.show()
```


Training of decision tree model

```
print(model_dt.best_params )
In [75]:
         roc_auc_cv_dt = model_dt.best_score_
         model dt.best score
         {'min samples split': 2, 'max leaf nodes': 89, 'max depth': 31}
         0.7170041072103599
Out[75]:
In [76]: predictions dt = model dt.predict(X valid)
In [77]: # display the auc roc score
         probabilities dt = model dt.predict proba(X valid)
         roc auc dt = roc auc score(y valid,probabilities dt[:, 1])
         roc auc dt
         0.7122762133170126
Out[77]:
In [78]: # plot the auc roc curve
         precision, recall, thresholds = roc curve(y valid, probabilities dt[:, 1])
         plt.figure(figsize=(6, 6))
         plt.step( precision, recall, where='post')
         plt.plot([0.0,1.0],[0.0,1.0])
         plt.xlabel('FPR')
         plt.ylabel('TPR')
         plt.ylim([0.0, 1.05])
         plt.xlim([0.0, 1.0])
         plt.title('Кривая AUC ROC')
         plt.show()
```


Selection of best model

```
In [79]: table = ['model_nn', 'model_rf', 'model_dt']
In [80]: result = [roc_auc_score_nn,roc_auc_rf,roc_auc_dt]
In [81]: df_result = pd.DataFrame(table,columns = ['model_name'])
In [82]: df_result['roc_auc_score'] = result
In [83]: df_result.sort_values('roc_auc_score',ascending = False)
```

Out[83]:		model_name	roc_auc_score
	1	model_rf	0.722459
	2	model_dt	0.712276
	0	model_nn	0.624202

Analysis of accident factors impact

best model testing

```
predictions_rf_test = model_rf.predict(X_test)
In [84]:
In [85]: probabilities rf test = model rf.predict proba(X test)[:, 1]
In [86]: # display the auc roc on test sample
         roc auc rf test = roc auc score(y test,probabilities rf test)
         roc auc rf test
         0.7314310940350061
Out[86]:
In [87]: # plot the auc roc curve
         precision, recall, thresholds = roc curve(y test, probabilities rf test)
         plt.figure(figsize=(6, 6))
         plt.step( precision, recall, where='post')
         plt.plot([0.0,1.0],[0.0,1.0])
         plt.xlabel('FPR')
         plt.ylabel('TPR')
         plt.ylim([0.0, 1.05])
         plt.xlim([0.0, 1.0])
         plt.title('Кривая AUC ROC')
         plt.show()
```


Plot the precision-recall curve

```
In [88]: precision, recall, thresholds = precision_recall_curve(y_test, probabilities_rf_test)

fig, ax = plt.subplots()
ax.plot(recall, precision, color='purple')
ax.set_title('Precision-Recall Curve')
ax.set_ylabel('Precision')
ax.set_xlabel('Recall')
plt.show()
```


Analysis of violations which has impact on the accident possibility

```
In [89]:
        fault df = ttl model df
In [90]: fault_df = fault_df.drop(columns = ['collision_damage','type_of_collision'])
         fault df['at fault'].sum()
In [91]:
         85547
Out[91]:
In [92]: # pivot table gounts the quantity of accidents per violation
         factors_count_df = pd.pivot_table(fault_df,values='at_fault',index=['pcf_violation_category'], aggfunc=np.sum).reset_index()
         factors count df.columns= ["fault factor", "count"]
In [93]:
         # loop for index change
In [94]:
         temp = []
         for i in factors_count_df.index:
             temp.append('pcf_violation_category')
         factors_count_df.index = temp
In [95]: factors_count_df
```

Out[95]:

	lauit_lactor	count
pcf_violation_category	automobile right of way	12897
pcf_violation_category	brakes	19
pcf_violation_category	dui	6770
pcf_violation_category	fell asleep	1
pcf_violation_category	following too closely	2029
pcf_violation_category	hazardous parking	45
pcf_violation_category	impeding traffic	54
pcf_violation_category	improper passing	599
pcf_violation_category	improper turning	11444
pcf_violation_category	lights	19
pcf_violation_category	other equipment	96
pcf_violation_category	other hazardous violation	735
pcf_violation_category	other improper driving	309
pcf_violation_category	other than driver (or pedestrian)	0
pcf_violation_category	pedestrian right of way	1254
pcf_violation_category	pedestrian violation	1394
pcf_violation_category	speeding	32611
pcf_violation_category	traffic signals and signs	5613
pcf_violation_category	unknown	51
pcf_violation_category	unsafe lane change	5054
pcf_violation_category	unsafe starting or backing	2107
pcf_violation_category	wrong side of road	2446

In [96]: # loop for cration of column with foult factor anf calculation of percentage of it
for i in fault_df.columns:

fault_factor count

```
In [97]: factors_count_df['percentage'] = round(factors_count_df['count'] / fault_df['at_fault'].sum()*100,0)
In [98]: factors_count_df.sort_values('count',ascending = False).head(30)
```

Out[98]:

	fault_factor	count	percentage
party_drug_physical	G	84028	98.0
cellphone_in_use	0.0	83537	98.0
road_surface	dry	76689	90.0
party_sobriety	had not been drinking	75215	88.0
lighting	daylight	61252	72.0
control_device	none	54866	64.0
pcf_violation_category	speeding	32611	38.0
control_device	functioning	30430	36.0
vehicle_age	3.0	15591	18.0
lighting	dark with street lights	14903	17.0
pcf_violation_category	automobile right of way	12897	15.0
pcf_violation_category	improper turning	11444	13.0
vehicle_age	4.0	10935	13.0
vehicle_age	5.0	9118	11.0
vehicle_age	2.0	8406	10.0
road_surface	wet	8336	10.0
party_sobriety	had been drinking, under influence	7150	8.0
vehicle_age	7.0	7059	8.0
vehicle_age	6.0	7009	8.0
pcf_violation_category	dui	6770	8.0
vehicle_age	8.0	6698	8.0
lighting	dark with no street lights	6524	8.0
pcf_violation_category	traffic signals and signs	5613	7.0
vehicle_age	9.0	5216	6.0

	fault_factor	count	percentage
pcf_violation_category	unsafe lane change	5054	6.0
insurance_premium	19.0	3759	4.0
insurance_premium	20.0	3569	4.0
vehicle_age	10.0	3535	4.0
vehicle_age	0.0	3506	4.0
insurance_premium	21.0	3397	4.0

The highest quantity of accident happends due to the violation of speed limit - 38% случаев.

```
In [99]: # plottng of quantity of accident per violation
    fault_df.groupby('pcf_violation_category')['at_fault'].count().sort_values(ascending = False).plot(kind = 'bar',figsize = (20,10 plt.viabel('quantity of accidents per violation', fontsize='16')
    plt.vlabel('type of violation', fontsize='16')
    plt.ylabel('quantity of accidents', fontsize='16')
Out[99]:
Text(0, 0.5, 'quantity of accidents')
```


Proposal: for the reduction of quantity of accident it's possible to develop a software which will not allow user to exceed the speed limit.

General Conclusion

The best models for the possibility accident pridiction is random forest, with auc roc score - 0.72

Deevelopment of accident prediction system is possible, but the quantity of factor with affect of the accident is very high. The easiest way to set the parameters which will track the drivers profile and restrict the possibily of car rental in case of any specific violations.

Addition factor which also shall be considered - drivers age, experience, quantity of accidents, etc. (some of data s possible to get from insurance companies in case of pertnership.)