- signals can be expressed as the sum of a series of sine/ cosine waves of specific amplitude and phase
- computing the Fourier transform of a signal allows us to extract the 'amount' of signal at different frequencies

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
your timeseries sinusoid (more signal about this later)

Fourier transform (FT) is the product of a **signal** with a **sinusoid** at a particular frequency, summed (integrated) across all time...should sound familiar

- Fourier analysis is the foundation of all signal processing
 - Analyze components of a signal (what are the frequencies at which the brain oscillates?)
 - Filter out components you don't want (electrical noise from the environment)

sum of 3, 20 and 40 Hz sine waves

FT of the sum (same as sum of the FTs)

zero-frequency component = 436.4

- Why is the maximum frequency of the Fourier transform for this particular EEG time series 500 Hz?
- Sampling rate of this time series was 1000 Hz
- What does this mean?

Sampling Theorem

- The signals that we are interested in are continuous—voltage fluctuations over time
- Can take on an infinite number of values
- Digital computers cannot do infinite
- Continuous signals must therefore be sampled

Sampling Theorem

- Digital signals are therefore representations of the continuous quantities we are actually interested
- What is the proper sampling rate?
- Allows perfect reconstruction of the original signal
- Nyquist rate: twice the frequency of the highest sinusoid contained in the signal
- In the case of a signal sampled 1000 times/second (1000 Hz), it is not possible to extract information about frequencies higher than 500 Hz

Sampling Theorem

so we'll use Fourier analysis?

 FT has some limitations that make it not perfectly suited for analysis of neural EEG data

Limitation of FFT: If signal composition changes over time (stationarity)

Limitation of FFT: If signal composition changes over time (stationarity)

- could we just do the FT on many small segments of the data that are assumed to be stationary?
- so, take a few cycles of a sinusoid and compute the dot product with each small segment of data?

Limitation of FFT: If signal composition changes over time (stationarity)

- can't literally take just one/a few cycles of a sinusoid because of the sharp transition at the edges
- solution: wavelets

Wavelets

- wavelet = small wave
- take a sinusoid, multiply it by a Gaussian that 'windows' it to be (mostly) limited to brief time period

Wavelets

Gaussian

$$x(t, \mu, \sigma) = Ae^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

$$A = \frac{1}{\sqrt{\sigma\sqrt{\pi}}}$$

$$\sigma = \frac{1}{2\pi\frac{f}{n}}$$

$$\mu = mean$$

$$\sigma = SD$$

$$f = frequency$$

$$n = cycles$$

Wavelet convolution

- now we can take our wavelet and compute the dot product with the signal across time
- computing the dot product between two signals over time is called convolution

Wavelet dot products

- problem: at any point in time, the dot product between the wavelet and the signal will be influenced by the phase offset between the wavelet (kernel) and the data (signal)
- this is why we need the complex wavelet

Complex wavelets

- complex sinusoid is the sum of a real and imaginary part
- cos = real part, sin = imaginary part

$$x(t,f) = M[\cos(2\pi ft) + i\sin(2\pi ft)]$$

Euler's formula

 a complex sinusoid can also be written as a complex exponential

$$x(t,f) = M[\cos(2\pi f t) + i\sin(2\pi f t)]$$

$$e^{ix} = \cos(x) + i\sin(x)$$
 ——— greatly simplifies the math of dealing with sinusoids