多LED對多PD定位系統:介紹

各LED進行編碼 (Modulation)

光波傳遞

各PD進行解碼 (Demodulation)

定位演算法

	LED_1	LED_2	•••	$\mathrm{LED}_{\mathrm{L}}$
PD_1	5	0.01	• • •	-
PD_2	0.02	-	•••	-
:	•	:		:
PD_p	-	3.21	•••	10.35
				昭 / : · · · · · · · · · · · · · · · · · ·

<u>單位:μA</u>

光傳遞模型

LED發光輻射強度I_{LED}

$$I_{LED} = Ptrac{(Ml+1)}{2\pi} ext{cos}\, { heta_{lp}}^{Ml}$$

Pt LED總輻射能量

MI LED朗博次方

PD接收光輻射強度I_{PD}

$$I_{PD} = I_{LED} imes rac{\cos \phi_{lp}^{Mp}}{D_{lp}^{2}}$$

θ	LED出射角
D	距離
φ	PD入射角

 ϕ_{lp}

 PD_{p}

朗博次方與輻射模式(Pattern)

PD輸出電流Ie

$$Ie = I_{PD} \times A \times Re$$

Мр	PD朗博次方
A	PD有效面積
Re	PD響應率

定位演算法:獲得入射方位

限制組態

兩PD強度比值開朗博次方根,為 入射角餘弦比值,即為一平面

多個平面交得一點

PD and Stereographic Projection

$$\sqrt{\frac{Ie_1}{Ie_2}} = \frac{\cos\phi_{l1}}{\cos\phi_{l2}} = \frac{\overrightarrow{PV_1} \cdot \overrightarrow{D}}{\overrightarrow{PV_2} \cdot \overrightarrow{D}}$$

$$\sqrt[Mp]{\frac{Ie_1}{Ie_2}} \times \overline{{}^PV_2} \cdot \overrightarrow{D} - \overline{{}^PV_1} \cdot \overrightarrow{D} = 0$$

定位演算法:獲得距離

限制組態

兩PD強度比值開朗博次方根,為 入射角餘弦比值,即為一平面

多個平面交得一點

PD and Stereographic Projection

$$\sqrt{\frac{Ie_1}{Ie_2}} = \frac{\cos\phi_{l1}}{\cos\phi_{l2}} = \frac{\overrightarrow{PV_1} \cdot \overrightarrow{D}}{\overrightarrow{PV_2} \cdot \overrightarrow{D}}$$

$$\sqrt[Mp]{\frac{Ie_1}{Ie_2}} \times \overline{{}^PV_2} \cdot \overrightarrow{D} - \overline{{}^PV_1} \cdot \overrightarrow{D} = 0$$

目標函數

目標:目標物在ROI中,使相對位置誤差在容許誤差內的範圍提高

在ROI中選則K個樣本點

各樣本點利用定位演算法求相對位置

系算容許誤差內的樣本點數量

最佳化變數

最佳化結果

樣本點

	min	max	amount
X	-1	1	4
У	-1	1	4
z	1	3	4
rotation	0	10deg	2

LED朗博次方: 1.11833

PD朗博次方: 1.35157

容許誤差內的樣本點數:128/128

LED組態

PD組態

