МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ДЕРЖАВНИЙ УНІВЕРСИТЕТ ТЕЛЕКОМУНІКАЦІЙ

НАВЧАЛЬНО-НАУКОВИЙ ІНСТИТУТ ТЕЛЕКОМУНІКАЦІЙ ТА ІНФОРМАТИЗАЦІЇ

Кафедра комп'ютерної інженерії

РОЗРАХУНКОВО-ПОЯСНЮВАЛЬНА ЗАПИСКА

до курсового проекту з дисципліни «Технології проектування ком'ютерних систем»

Варіант 13

Виконав студент:

Максімов Євгеній Сергійович група: КІД-31

Керівник роботи:

кандидат технічних наук, доцент Торошанко Ярослав Іванович

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ДЕРЖАВНИЙ УНІВЕРСИТЕТ ТЕЛЕКОМУНІКАЦІЙ

НАВЧАЛЬНО-НАУКОВИЙ ІНСТИТУТ ТЕЛЕКОМУНІКАЦІЙ ТА ІНФОРМАТИЗАЦІЇ

Кафедра комп'ютерної інженерії

ЗАВДАННЯ

на курсовий проект студенту

Максімов Євгеній Сергійович

- 1. Тема проекту:
 - 1.1 Мінімізація та побудова логічної функції.
 - 1.2 Побудова багатовходового дешифратора.
- 2. Вхідні дані проекту:
 - 2.1 Таблиця істинності 2-вох логічних функцій згідно варіанту.
 - 2.2 Таблиця обмежень побудови неповного дешифратора відповідно до варіанту для двох адресних просторів A1 і A2.
- 3. Зміст розрахунково-пояснювальної записки (перелік питань, які потрібно розробити):
 - 3.1 Перша логічна функція.
 - 3.1.1 Мінімізація та побудова схеми функції.
 - 3.1.2 Переведення в базис I-HE(NAND) та побудова схеми функції.
 - 3.1.3 Переведення в базис AБO-HE(NOR) та побудова схеми функції.
 - 3.2 Друга логічна функція.
 - 3.2.1 Мінімізація та побудова схеми функцій.
 - 3.2.2 Переведення в базис I-HE(NAND) та побудова схеми функції.
 - 3.2.3 Переведення в базис AБO-HE(NOR) та побудова схеми функції.
 - 3.3 Побудова багатовходового дешифратора.
 - 3.3.1 Побудувати схему неповного дешифратора відповідно до варіанту для двох адресних просторів A1 і A2.
 - 3.3.2 Привести таблицю, в якій для кожної мікросхеми останнього ступеню вказати її адресний простір.
 - 3.3.3 Оцінити апаратні витрати на побудову дешифратора.

КАЛЕНДАРНИЙ ПЛАН

$N_{\overline{0}}$	Назва етапів виконання курсового	Строк	Примітка
з/п	проекту	виконання	
		етапів роботи	
1	Підбір науково-технічної літератури		
2	Проведення необхідних обчислень		
3	Розробка креслень		
4	Розробка розрахунково-пояснювальної		
	записки та реферату		

Студент		
	(підпис)	(прізвище та ініціали)
Керівник роботи		
–	(підпис)	(прізвище та ініціали)

$PE\Phi EPAT$

3MICT

1	Вступ	7
1.1	Теоретичні відомості до першого завдання	7
1.1.1	Алгебра логіки	7
1.1.2	Базові логічні вирази	8
1.1.3	Форма подання логічних виразів	9
1.1.4	Дії над логічними виразами	10
1.1.5	Мінімізація логічних виразів	11
1.1.6	Логічні базиси	12
1.2	Теоретичні відомості до другого завдання	13
1.2.1	Будова дешифратора	13
1.2.2	Алгоритм побудови багаступеневого дешифратора	14
2	Перше завдання	15
2.1	Перша функція	15
2.1.1	Мінімізація та побудова схеми функції	16
2.1.2	Переведення в базис I-HE(NAND) та побудова схеми функції	17
2.1.3	Переведення в базис AБО-HE(NOR) та побудова схеми функції	18
2.2	Друга функція	19
2.2.1	Мінімізація та побудова схеми функції	20
2.2.2	Переведення в базис I-HE(NAND) та побудова схеми функції	21
2.2.3	Переведення в базис AБО-HE(NOR) та побудова схеми функції	22
3	Друге завдання	23
3.1	Характеристики дешифратора згідно варіанту	23
3.1.1	Таблиця адресних просторів та схема багаступеневого неповного де-	
	шифратора	24
3.2	Апаратні витрати на побудову дешифратора	25
4	Висновок	26
Спи	сок джерел	27

Перелік таблиць

1.1	Приклад таблиці істинності								. '
1.2	Таблиця законів алгебри логічних виразів								. 10

Перелік ілюстрацій

1.1	Графічне позначення дешифратора	1:
1.2	Схема дешифратора з 3 входами и 8 виходами	1:

Розділ 1

Вступ

1.1. Теоретичні відомості до першого завдання

1.1.1. Алгебра логіки

Алгебра логіки (Булева логіка, двійкова логіка, двійкова алгебра) — розділ математичної логіки, що вивчає систему логічних операцій над висловлюваннями. Вважається, що висловлювання можуть бути тільки істинними або помилковими, тобто використовується так звана бінарна або двійкова логіка.

Булева функція задається у вигляді таблиці, або графіка зі стандартним (лексикографічним) розташуванням наборів аргументів, виконана кодом Грея.

Код Грея — одна із систем кодування інформації, в якій два послідовні коди відрізняються значенням лише одного біта.

Таблиця істинності — математична таблиця, що широко використовується у математичній логіці зокрема в алгебрі логіки, численні висловлень для обчислення значень булевих функцій.

Приклад таблиці істинності:

N	X_1	X_2	F_1
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

Табл. 1.1. Приклад таблиці істинності

1.1.2. Базові логічні вирази

Відомі такі основні логічні вирази, як:

- Інверсія (логічне 'HE', NOT,¬)
- Кон'юнкція (логічне множення, логічне І, AND, <)
- Диз'юнкція (логічне додавання, логічне AБO, OR, V)
- Виключне AБO(Сума по модулю 2,XOR,⊕)

Також існують логічні вирази для базисів(детально розглядаються на сторінці 12).

1.1.3. Форма подання логічних виразів

Логічний вираз можна подати у трьох загальних виглядах:

- Диз'юнктивна нормальна форма (ДНФ)
- Кон'юнктивна нормальна форма (КНФ)
- Алгебраїчна нормальна форма (АНФ або поліном Жегалкіна)

1.1.4. Дії над логічними виразами

Для логічних виразів існують такі закони алгебри:

Назва закону	АБО	I
Переміщення	$A \vee B = B \vee A$	$A \wedge B = B \wedge A$
Комбінування	$A \vee (B \vee C) = (A \vee B) \vee C$	$A \wedge (B \wedge C) = (A \wedge B) \wedge C$
Розподільний	$(A \vee B) \wedge C =$	$(A \land B) \lor C =$
	$A \wedge C \vee B \wedge C$	$A \lor C \land B \lor C$
Правило де Моргана	$\neg (A \lor B) = \neg A \land \neg B$	$\neg (A \land B) = \neg A \lor \neg B$
Ідемпотентність	$A \lor A = A$	$A \wedge A = A$
Виключення	$A \vee \neg A = 1$	$A \wedge \neg A = 0$
Операції з константами	$A \lor 1 = 1; A \lor 0 = A$	$A \wedge 1 = A; A \wedge 0 = 0$
Поглинання	$A \lor (A \land B) = A$	$A \wedge (A \vee B) = A$
Склеювання	$(A \land B) \lor (\neg A \land B) = B$	$(A \lor B) \land (\neg A \lor B) = B$

Табл. 1.2. Таблиця законів алгебри логічних виразів

1.1.5. Мінімізація логічних виразів

Мінімізація булевих функцій — спрощення булевих виразів. Оскільки логічні функції реалізують за допомогою певного набору пристроїв, то, спрощуючи вираз, зменшуємо кількість елементів.

Існують такі методи мінімізації:

- метод Блейка-Порецького;
- метод Нельсона;
- метод Дужкових форм;
- метод Карта Карно;
- метод Куайна Мак-Класкі.

В данному проекті буде розглянутий тільки метод Блейка-Порецького та метод Нельсона.

Метод Блейка-Порецького та Нельсона

Алгоритм мінімізації за методами Блейка-Порецького та Нельсона полягає в:

- 1. Виконати всі можливі склеювання виразів;
- 2. Виконати всі можливі поглинання виразів;
- 3. Виконати перевірку виразу на слеювання і поглинання;
- 4. Повторити пунтки 1-3 до отримання мінімального варінту виразу.

1.1.6. Логічні базиси

Функціонально повним набором або логічним базисом - називається набір логічних операцій, що дозволяє аналітично описати будь-яку логічну функцію. Такий набір складають основні логічні операції АБО, І, НЕ, тому він є одним з логічних базисів.

Логічний базис називається **мінімальним**, якщо видалення з набору хоча б однієї операції перетворює його в функціонально неповний.

Логічний базис НЕ, АБО, І не є мінімальним, так як на підставі законів подвійності можна виключити з логічних виразів операцію АБО або І, отже, він є надлишковимбазисом. Мінімальний базис складають дві операції НЕ, АБО і НЕ, І.

Практичного уваги заслуговують мінімальні базиси, що представляють собою тільки одну операцію. До них відносяться операції логічного множення з запереченням (I-HE, штрих Шеффера,NAND, \uparrow) і логічного додавання з запереченням (ABO-HE, стрілка Пірса,NOR, \downarrow).

- I-HE(NAND, \(\))
- ABO-HE(NOR,↓)

1.2. Теоретичні відомості до другого завдання

1.2.1. Будова дешифратора

Дешифратор або декодер (англ. decoder) — логічний пристрій, який перетворює код числа, що поступило на вхід, в сигнал на одному з його виходів.

Якщо число представлено у вигляді n двійкових розрядів, то дешифратор повинен мати 2^n виходів.

Дешифратор довільної складності може бути складено з трьох базових логічних елементів: кон'юнкції, диз'юнкції та інверсії.

Рис. 1.1. Графічне позначення дешифратора

Рис. 1.2. Схема дешифратора з 3 входами и 8 виходами

1.2.2. Алгоритм побудови багаступеневого дешифратора

Розділ 2

Перше завдання

2.1. Перша функція

2.1.1. Мінімізація та побудова схеми функції

2.1.2. Переведення в базис I-HE(NAND) та побудова схеми функції

2.1.3. Переведення в базис AБО-HE(NOR) та побудова схеми функції

2.2. Друга функція

2.2.1. Мінімізація та побудова схеми функції

2.2.2. Переведення в базис I-HE(NAND) та побудова схеми функції

2.2.3. Переведення в базис AБО-HE(NOR) та побудова схеми функції

Розділ 3

Друге завдання

3.1. Характеристики дешифратора згідно варіанту

3.1.1. Таблиця адресних просторів та схема багаступеневого неповного дешифратора

3.2. Апаратні витрати на побудову дешифратора

Розділ 4

Висновок

Список джерел

- [1] *Кожевников А. Б., Петросова А. Г.* Научная периодика в СССР(1917–1949): количественный анализ // Вопросы истории естествознания и техники. 1991. №4. С. 44–50.
- [2] Gupta B. M., Kumar S., Sangam S. L., Karisiddappa C. R. Modeling the growth of world social science literature // Scientometrics. 2002. Vol. 53, №1. P. 161–164.
- [3] Krementsov N. Stalinist science. Princeton, NJ:Princeton Univ. Press, 1997. XVII, 371 p.