NIS2312-01 Fall 2023-2024

信息安全的数学基础(1)

Answer 14

2023 年 11 月 17 日

Problem 1

证明: \mathbf{Z}_{18} 的极大理想是 $\langle 2 \rangle$ 与 $\langle 3 \rangle$.

解: Z₁₈ 有理想:

$$\{0\}$$
, \mathbf{Z}_{18} , $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 6 \rangle$, $\langle 9 \rangle$,

不考虑平凡理想. 因为 $2 \mid 6$, 由此得到 $\langle 6 \rangle \subset \langle 2 \rangle$; 此外, $\langle 3 \rangle$ 和 $\langle 9 \rangle$ 均不包含 $\langle 2 \rangle$, 故 $\langle 2 \rangle$ 是极大理想; 同理 $\langle 3 \rangle$ 也是极大理想.

Problem 2

设 p 是正整数. 证明: $\langle p \rangle$ 是 **Z** 的极大理想的充分必要条件是 p 是素数. 解: 证明必要性. 如果 p 不是素数, 则 p=1 或 p 是一个合数.

- (1) 如果 p = 1, 则 $\langle p \rangle = \mathbf{Z}$ 不是 \mathbf{Z} 的极大理想.
- (2) 如果 p 是合数, 设 p = ab(1 < a < p, 1 < b < p), 则 $\langle p \rangle \subseteq \langle a \rangle$. 因为 a < p, 所以 $a \notin \langle p \rangle$, 从而 $\langle p \rangle \subsetneq \langle a \rangle$. 又因为 $a \rangle 1$, 所以 $\langle a \rangle \subsetneq \mathbf{Z}$. 因此 $\langle p \rangle$ 也不是 \mathbf{Z} 的极大理想.

这就证明了必要性.

充分性. 设 p 是素数, I 是 \mathbf{Z} 的任一理想, 使 $\langle p \rangle \subsetneq I \subseteq \mathbf{Z}$, 则存在 $a \in I$, 使 $a \notin \langle p \rangle$. 从而 $p \nmid a$. 因为 p 是素数, 所以 (a,p) = 1. 从而存在 $u,v \in \mathbf{Z}$, 使 au + pv = 1. 于是, 对任意的 $z \in \mathbf{Z}$,

$$z = z \cdot 1 = zau + zpv \in I$$
.

由此得 $I = \mathbf{Z}$. 所以 $\langle p \rangle$ 为 \mathbf{Z} 的极大理想.

Problem 3

设 $R = 2\mathbf{Z}, I = 4\mathbf{Z}$ 为 R 的理想, 则 I 为 R 的极大理想, 但不是素理想.

解: 设 J 为 R 的任一理想且 $I \subsetneq J \subseteq R$, 则存在 $a \in J$ 且 $a \notin I$. 令 a = 2b, 则 $2 \nmid b$, 所以 (4,a) = 2. 从而存在 $u,v \in \mathbf{Z}$, 使 au + 4v = 2. 由此得 $2 \in J$, 所以 $J = 2\mathbf{Z} = R$, 从 而 I 为 R 的极大理想.

又因为 $2 \notin I$, 但 $2 \cdot 2 = 4 \in I$, 所以 I 不是 R 的素理想.

Problem 4

设 R 是全体实函数的集合按通常函数的加法与乘法构成的一个环. 令

$$I = \{ f(x) \in R | f(0) = 0 \}.$$

证明: $I \in R$ 的极大理想.

解: 易知 I 为 R 的理想.

设 J 是 R 的任意真包含 I 的理想, 则存在 $h(x) \in J$ 使得 $h(0) \neq 0$. 令 $a = \frac{1}{h(0)}$ 且 $g(x) \equiv a$, 则 $g(x) \in R$. 又因为 1 - g(0)h(0) = 1 - 1 = 0, 所以 $1 - g(x)h(x) \in I$. 从而

$$1 = (1 - g(x)h(x) + g(x)h(x) \in J.$$

由此得 J = R. 所以 I 为 R 的极大理想.