

as follows,

Robust Clearing Price Mechanisms for Reserve Price Optimization

Supplementary Material

OMITTED PROOFS FROM SECTION 3

Proof of Proposition 3.1

PROOF. Taking the derivative of $\mathbb{E}_{v}\left[\ell^{c}(p,\beta(v);\lambda)\right]$ w.r.t p, we have

$$\nabla_{p} \mathbb{E}_{v} [\ell^{c}(p, \beta(v); \lambda)]$$

$$= \mathbb{E}_{v} \left[\nabla_{p} \ell^{c}(p, \beta(v); \lambda) \right] = \mathbb{E}_{v} \left[\lambda - \sum_{i=1}^{n} \mathbb{I} \{ \beta_{i}(v_{i}) \ge p \} \right]$$

$$= \lambda - \mathbb{E}_{v} \left[\sum_{i=1}^{n} \mathbb{I} \{ \beta_{i}(v_{i}) \ge p \} \right] = \lambda - \sum_{i=1}^{n} (1 - D_{i}(\beta_{i}^{-1}(p)))$$

$$= \sum_{i=1}^{n} D_{i}(\beta_{i}^{-1}(p)) - (n - \lambda)$$

Setting the gradient to be zero and by the first order condition, we complete the proof.

C.2 Proof of Theorem 3.3

PROOF. We first rewrite the expected utility function $\mathbb{E}_{v_i}[\hat{u}_{i,2}(\alpha;v)]$ in the following way,

$$\begin{split} & \mathbb{E}_{v}[\hat{u}_{i,2}(\alpha;v)] \\ & = \mathbb{E}_{v}\left[\mathbb{E}_{z}\left[\mathbb{E}_{\{v_{i} \geq \max_{j \neq i} \{v_{j}, p^{*}(\alpha) + z\}\} \cdot (v_{i} - \max_{j \neq i} \{v_{j}, p^{*}(\alpha) + z\})\right]\right] \\ & = \mathbb{E}_{v:v_{i} \geq m_{i}}\left[\int_{m_{i} - p^{*}(\alpha)}^{v_{i} - p^{*}(\alpha)} (v_{i} - p^{*}(\alpha) - z)f(z)dz + \int_{-\infty}^{m_{i} - p^{*}(\alpha)} (v_{i} - m_{i})f(z)dz\right] \\ & = \mathbb{E}_{v:v_{i} \geq m_{i}}\left[(v_{i} - p^{*}(\alpha))(F(v_{i} - p^{*}(\alpha)) - F(m_{i} - p^{*}(\alpha))) - \int_{m_{i} - p^{*}(\alpha)}^{v_{i} - p^{*}(\alpha)} zf(z)dz + (v_{i} - m_{i})F(m_{i} - p^{*}(\alpha))\right] \\ & = \mathbb{E}_{v:v_{i} \geq m_{i}}\left[(v_{i} - p^{*}(\alpha))F(v_{i} - p^{*}(\alpha)) - (m_{i} - p^{*}(\alpha))F(m_{i} - p^{*}(\alpha)) - \int_{m_{i} - p^{*}(\alpha)}^{v_{i} - p^{*}(\alpha)} zf(z)dz\right] \end{split}$$

For notation simplicity, we denote

$$T(v_i, m_i, \alpha) = \left[(v_i - p^*(\alpha))F(v_i - p^*(\alpha)) - (m_i - p^*(\alpha))F(m_i - p^*(\alpha)) - \int_{m_i - p^*(\alpha)}^{v_i - p^*(\alpha)} zf(z)dz \right] \cdot g_i(m_i)$$

By Leibniz integral rule and integral by part, we compute the quantity

$$\lim_{\alpha \to 0} \frac{\mathbb{E}_{\upsilon}[\hat{u}_{i,2}(1+\alpha;\upsilon)] - \mathbb{E}_{\upsilon}[\hat{u}_{i,2}(1-\alpha;\upsilon)]}{2\alpha}$$

П

Therefore, we have

$$\begin{split} & = & \lim_{\alpha \to 0} \frac{\mathbb{E}_{\upsilon}[\hat{u}_{i,2}(1+\alpha;\upsilon)] - \mathbb{E}_{\upsilon}[\hat{u}_{i,2}(1-\alpha;\upsilon)]}{2\alpha\mathbb{E}_{\upsilon_i}[\upsilon_i x_i(\upsilon_i)]} \\ & = & -\frac{\eta \cdot \mathbb{E}_{\upsilon_i} \left[\int\limits_0^{\upsilon_i} (F(\upsilon_i - p^*(1)) - F(m_i - p^*(1))) g_i(m_i) d\, m_i\right]}{\mathbb{E}_{\upsilon}[\upsilon_i x_{i,1}(\upsilon)]} \\ & = & -\eta \cdot \frac{\mathbb{E}_{\upsilon_i} \left[(F(\upsilon_i - p^*(1)) G_i(\upsilon_i) - \int\limits_0^{\upsilon_i} F(m_i - p^*(1))) d\, G_i(m_i)\right]}{\mathbb{E}_{\upsilon}[\upsilon_i x_{i,1}(\upsilon)]} \\ & = & -\eta \cdot \frac{\mathbb{E}_{\upsilon_i} \left[F(\upsilon_i - p^*(1)) G_i(\upsilon_i) - F(m_i - p^*(1)) G_i(m_i) \Big|_0^{\upsilon_i}\right]}{\mathbb{E}_{\upsilon}[\upsilon_i x_{i,1}(\upsilon)]} - \eta \cdot \frac{\mathbb{E}_{\upsilon_i} \left[\int\limits_0^{\upsilon_i} G_i(m_i) f(m_i - p^*(1)) d\, m_i\right]}{\mathbb{E}_{\upsilon}[\upsilon_i x_{i,1}(\upsilon)]} \\ & = & -\eta \cdot \frac{\mathbb{E}_{\upsilon_i} \left[\int\limits_0^{\upsilon_i} G_i(m_i) f(m_i - p^*(1)) d\, m_i\right]}{\mathbb{E}_{\upsilon_i}[\upsilon_i \cdot G_i(\upsilon_i)]} \end{split}$$

where the last equality above holds because

$$x_{i,1}(v) = \mathbb{P}(m_i \le v_i) = G_i(v_i).$$

C.3 Proof of Proposition 3.4

PROOF. Given the definition of $p^*(\alpha)$ and Proposition 3.1, we have $D_i\left(\frac{p^*(\alpha)}{\alpha}\right) + \sum_{j\neq i} D_j(p^*(\alpha)) = n - \lambda$. Taking gradient w.r.t α of the both sides in the above equation, we have

$$\frac{\partial p^*(\alpha)}{\partial \alpha} = \frac{p^*(\alpha)D_i'\left(\frac{p^*(\alpha)}{\alpha}\right)}{\alpha D_i'\left(\frac{p^*(\alpha)}{\alpha}\right) + \alpha^2 \sum_{j \neq i} D_j'(p^*(\alpha))}.$$

Submission ID: 9723. 2022-10-14 07:14. Page 13 of 1-15.

Therefore,
$$\eta = \frac{p^*(1)D_i'(p^*(1))}{D_i'(p^*(1)) + \sum_{j \neq i} D_j'(p^*(1))}$$

D OMITTED PROOFS FROM SECTION 4

D.1 Proof of Proposition 4.1

PROOF.

$$\begin{split} & \mathbb{E}_{v \sim D, z \sim F} [\ell^{c}(p, \beta(v) + z; \lambda)] \\ &= \sum_{i=1}^{n} \int_{0}^{1} \int_{p-\beta_{i}(v)}^{\infty} (\beta_{i}(v) + z - p) dF(z) dD_{i}(v) + \lambda p \\ &= \sum_{i=1}^{n} \int_{0}^{1} (\beta_{i}(v) - p) \cdot (1 - F(p - \beta_{i}(v))) dD_{i}(v) + \sum_{i=1}^{n} \int_{0}^{1} \int_{p-\beta_{i}(v)}^{\infty} z dF(z) dD_{i}(v) + \lambda p \end{split}$$

Taking the partial gradient of the above formula w.r.t p, we have

la w.r.t
$$p$$
, we have
$$\frac{\partial \mathbb{E}_{v,z}[\ell^c(p,\beta(v)+z;\lambda)]}{\partial p}$$

$$= -\sum_{i=1}^n \int_0^1 (1-F(p-\beta_i(v)))dD_i(v) + \lambda$$

$$= \sum_{i=1}^n \int_0^1 F(p-\beta_i(v))dD_i(v) - (n-\lambda)$$

If $\sum_{i=1}^{n} \mathbb{E}_{v_i}[F(-\beta_i(v_i))] \ge n - \lambda$, the reserve price is equal to 0. Otherwise, setting the gradient to be zero, we complete the proof.

D.2 Proof of Theorem 4.3

PROOF. We first derive the expected utility of bidder i at stage 2,

$$\begin{split} & \mathbb{E}_{v_{i}}[\hat{u}_{i,2}(\alpha;v)] \\ & = \mathbb{E}_{v}\left[\mathbb{I}\{v_{i} \geq \max_{j \neq i}\{v_{j}, r^{*}(\alpha)\}\} \cdot (v_{i} - \max_{j \neq i}\{v_{j}, r^{*}(\alpha)\})\right] \\ & = \mathbb{E}_{v:v_{i} \geq m_{i}, v_{i} \geq r^{*}(\alpha)}\left[(v_{i} - m_{i}) \cdot \mathbb{I}\{m_{i} \geq r^{*}(\alpha)\} + (v_{i} - r^{*}(\alpha)) \cdot \mathbb{I}\{m_{i} \leq r^{*}(\alpha) \leq v_{i}\}\right] \\ & = \mathbb{E}_{v_{i}:v_{i} \geq r^{*}(\alpha)}\left[\int_{r^{*}(\alpha)}^{v_{i}} (v_{i} - m_{i})g_{i}(m_{i})dm_{i}\right] + \int_{r^{*}(\alpha)} \int_{0}^{r^{*}(\alpha)} (v_{i} - r^{*}(\alpha))g_{i}(m_{i})dm_{i}dD_{i}(v_{i}) \\ & = \mathbb{E}_{v_{i}:v_{i} \geq r^{*}(\alpha)}\left[\int_{r^{*}(\alpha)}^{v_{i}} (v_{i} - m_{i})g_{i}(m_{i})dm_{i}\right] + \int_{r^{*}(\alpha)} (v_{i} - r^{*}(\alpha))G_{i}(r^{*}(\alpha))dD_{i}(v_{i}) \end{split}$$

Therefore, we have

$$\begin{split} &\lim_{\alpha \to 0} \frac{\mathbb{E}_{\upsilon}[\hat{u}_{i,2}(1+\alpha;\upsilon)] - \mathbb{E}_{\upsilon}[\hat{u}_{i,2}(1-\alpha;\upsilon)]}{2\alpha} \\ &= \frac{1}{2} \cdot \left(\frac{\partial \mathbb{E}_{\upsilon}[\hat{u}_{i,2}(\alpha;\upsilon)]}{\partial \alpha} \Big|_{\alpha=1^{+}} + \frac{\partial \mathbb{E}_{\upsilon}[\hat{u}_{i,2}(\alpha;\upsilon)]}{\partial \alpha} \Big|_{\alpha=1^{-}} \right) \\ &= -\mathbb{E}_{\upsilon_{i}:\upsilon_{i} \geq r^{*}(1)} \left[(\upsilon_{i} - r^{*}(1))g_{i}(r^{*}(1)) \cdot \zeta \right] + \mathbb{E}_{\upsilon_{i}:\upsilon_{i} \geq r^{*}(1)} \left[-\eta G_{i}(r^{*}(1)) + (\upsilon_{i} - r^{*}(1))g_{i}(r^{*}(1))\zeta \right] \\ &= -\zeta \mathbb{E}_{\upsilon_{i}:\upsilon_{i} \geq r^{*}(1)} \left[G_{i}(r^{*}(1)) \right], \end{split}$$

where $\zeta = \frac{1}{2} \left[\frac{\partial r^*(\alpha)}{\partial \alpha} \Big|_{\alpha=1^+} + \frac{\partial r^*(\alpha)}{\partial \alpha} \Big|_{\alpha=1^-} \right]$. Therefore, the IC-metric for bidder *i* is

$$\label{eq:discrete_$$

Then we can derive ζ in the following way, by Proposition 4.1, when $\sum_{i=1}^{n} \mathbb{E}_{v_i}[F(-v_i)] < n - \lambda$, we have

$$\sum_{i=1}^{n} \int_{0}^{1} F(r^*(\alpha) - \alpha v_i) dD_i(v_i) = n - \lambda$$

Taking derivative with respect to α in the both sides, we have

$$\sum_{i=1}^{n} \int_{0}^{1} f(r^{*}(\alpha) - \alpha v_{i}) \cdot \left(\frac{\partial r^{*}(\alpha)}{\partial \alpha} - v_{i} \right) dD_{i}(v_{i}) = 0$$

Thus, we get

$$\left. \frac{\partial r^*(\alpha)}{\partial \alpha} \right|_{\alpha=1} = \frac{\sum_{i=1}^n \int_0^1 v_i f(r^*(1) - v_i) dD_i(v_i)}{\sum_{i=1}^n \int_0^1 f(r^*(1) - v_i) dD_i(v_i)}$$

Then we characterize ζ following a case analysis:

- When $\sum_{i=1}^{n} \mathbb{E}_{\upsilon_i}[F(-\upsilon_i)] > n \lambda$, there exists a $\delta > 0$, $r^*(\alpha) = 0$, $\forall \alpha \in [1 \delta, 1 + \delta]$. Thus $\zeta = 0$. When $\sum_{i=1}^{n} \mathbb{E}_{\upsilon_i}[F(-\upsilon_i)] = n \lambda$, the left derivative of $r^*(\alpha)$ at $\alpha = 1$ ($\alpha = 1^-$) is 0, and the right derivative of $r^*(\alpha)$ at $\alpha = 1$ ($\alpha = 1^+$) is

$$\frac{\sum_{i=1}^n \int_0^1 v_i f(r^*(1)-v_i) dD_i(v_i)}{\sum_{i=1}^n \int_0^1 f(r^*(1)-v_i) dD_i(v_i)}.$$

$$\frac{\sum_{i=1}^n \int_0^1 f(r^*(1)-v_i) dD_i(v_i)}{\sum_{i=1}^n \int_0^1 f(r^*(1)-v_i) dD_i(v_i)}.$$
plete the proof.

Then
$$\zeta = \frac{\sum_{i=1}^{n} \int_{0}^{1} v_{i} f(r^{*}(1) - v_{i}) dD_{i}(v_{i})}{2 \sum_{i=1}^{n} \int_{0}^{1} f(r^{*}(1) - v_{i}) dD_{i}(v_{i})}.$$

Therefore, we complete the pro-