MMF1941H: Stochastic Analysis Revision Questions Set # 8

30 Oct 2023

1 Infinitesimal Generator of Brownian Motion

Let $(B(t))_{t\geq 0}$ be a Brownian Motion with start in x. We know that the infinitesimal generator of this process takes the form $Af=\frac{1}{2}\frac{\partial^2 f}{\partial x^2}$, ie the Laplace operator. Furthermore, we define the transition operator P_t for a function f through $P_t f(x)=\mathbb{E}\left(f(B(t))\mid B(0)=x\right)$ for $t\geq 0$ and $x\in\mathbb{R}$.

- 1. Show that for $f(x) = x^k$ for k = 1, 2, 3 the relation $P_t f(x) = f(x) + tAf(x)$ holds exactly.
- 2. Show that for $f(x) = \exp(x)$ the relation $P_t f(x) = f(x) + tAf(x)$ only holds as a first order approximation for small t.

2 Heat Equation

Show that the following functions u = u(t, x) solve the heat equation

$$\frac{\partial}{\partial t}u(t,x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x).$$

- 1. $u(t,x) = u_1(t,x) + u_2(t,x)$ where u_1 and u_2 satisfy the heat equation individually.
- 2. u(t,x) = g(t)h(x) where the functions g, h satisfy $\frac{1}{2}\frac{h''(x)}{h(x)} = \frac{g'(t)}{g(t)}$.
- 3. $u(t,x) = \exp(x + \frac{t}{2})$. (Hint: Either do this directly, or validate that the condition from the previous example is satisfied.)
- 4. $u(t,x) = x^2 + t$.
- 5. $u(t,x) = \Phi\left(\frac{y-x}{\sqrt{t}}\right)$ for $y \in \mathbb{R}$ where Φ is the cumulative distribution function of the standard normal distribution. Note that we already know that any function $u(t,x) = \mathbb{E}(f(B(t)) \mid B(0) = x)$ for f a real-valued function and B Brownian Motion solves the heat equation, so easiest is to determine that u is of this particular form for a suitable f where we also know that $f(x) = \lim_{t \to 0} u(t,x)$ holds.

3 Stochastic Integral of Brownian Motion

Let $(B(t))_{t \ge 0}$ be a standard Brownian Motion. For $\alpha \in [0,1]$ and a partition $0 = t_0 < \ldots < t_n = T$ define

$$I(T;\alpha) = \sum_{i=0}^{n-1} (\alpha B(t_i) + (1-\alpha)B(t_{i+1}))(B(t_{i+1}) - B(t_i))$$

Calculate $\mathbb{E}(I(T;\alpha))$.

4 Moments of Stochastic Integral

For an Ito Process of the form $X(t) = X(0) + \int_0^t f(u)dB(u)$ with deterministic coefficients f we know that X(t) at any time t follows a normal distribution. We also know that from the Ito isometry $\mathbb{E}(X(t)^2) = \int_0^t b^2(u)du$ holds.

- 1. For $X(t) = \int_0^t dB(s)$ calculate Var(X(t)).
- 2. For $X(t) = \int_0^t s^{\alpha} dB(s)$ for $\alpha > 0$ calculate Var(X(t)).
- 3. For $X(t) = \int_0^t \exp(s) dB(s)$ calculate Var(X(t)).

5 Direct Solution of Stochastic Integral

Let $(B(t))_{t\geq 0}$ be a standard Brownian Motion. Show directly from the definition of the stochastic integral that

$$\int_0^t s dB(s) = tB(t) - \int_0^t B(s) ds$$

holds. (Hint: For any partition $0 = t_0 < ... < t_n = t$ you can see that

$$t_{i+1}B(t_{i+1}) - t_iB(t_i) = t_i(B(t_{i+1}) - B(t_i)) + (t_{i+1} - t_i)B(t_{i+1})$$

holds for $i = 0, \ldots, n$.)

6 Ito Formula and Martingale Property

1. Use Ito's Formula to prove that

$$\int_0^t B(s)^2 dB(s) = \frac{1}{3}B(t)^3 - \int_0^t B(s)ds$$

holds.

2. Use Ito's Formula to prove that

$$\int_0^t s dB(s) = tB(t) - \int_0^t B(s) ds$$

holds.

7 Martingale Property of Product Process

Use Ito's Formula to write the following stochastic processes $(X(t))_{t>0}$ in the form

$$dX(t) = a(t)dt + b(t)dB(t)$$

where $(B(t))_{t\geq 0}$ denotes Brownian Motion.

Define a process $(M(t))_{t>0}$ by setting

$$M(t) = \exp(-\int_0^t a(u)dB(u) - \frac{1}{2}\int_0^t a^2(s)ds).$$

- 1. Use Ito's formula to calculate the differential form dM(t).
- 2. Use Ito's formula to calculate the differential form d(M(t)X(t)).
- 3. Conclude that the process $(M(t)X(t))_{t\geq 0}$ is a martingale. (Hint: You simply need to validate that in the form of M(t)X(t) all non-stochastic integrals cancel out).

8 Martingale Representation Theorem

Let $(B(t))_{t\geq 0}$ be a standard Brownian Motion. We know from the Martingale Representation Theorem that each martingale $(M(t))_{t\geq 0}$ can be written in the form

$$M(t) = \mathbb{E}(M(0)) + \int_0^t g(s)dB(s)$$

for a suitable integrand g. Use Ito's Formula to derive the explicit form of the integrand for the following martingales $(M(t))_{t\geq 0}$.

- 1. M(t) = B(t).
- 2. $M(t) = B(t)^2 t$.
- 3. $M(t) = \exp(B(t) \frac{1}{2}t)$.

9 Assignment: Digital Option Pricing with Default Risk

- Let τ be the default time of an option seller and let $S = s \exp(\sigma Z \frac{1}{2}\sigma^2)$ where Z follows a standard normal distribution and parameters s > 0, $\sigma > 0$.
- We are looking again at the risk-adjusted digital option value

$$v = \mathbb{E}\left(1_{\tau > T} 1_{S > K}\right)$$
.

- We are modelling $\{\tau > T\} = \{Y > a\}$ for a standard normal random variable Y and set $a = \Phi^{-1}(p)$ for some $p \in (0,1)$.
- We express $Y = \rho Z + \sqrt{1 \rho^2} W$ for W a standard normal random variable independent of Z.
- For the context of all questions, we set s = 1, $\sigma = 0.2$ and K = 1.25.
- You are asked to submit a written assignment asking the following questions where the respective points are indicated with each question. Assignments are due on Monday Nov 6th, 5:30pm EST. Submissions are accepted late for 1 day with a 10% penalty, submissions after Nov 7th will not be accepted.
- Please have your final report typeset using LATEX and submit your report individually. Provide code separate in a Python script file that you attach with your submission.
- You may discuss these questions with your fellow students, however the write-up must be yours and yours alone, sharing of the write-up before the deadline is not allowed.
- 1. (3 pts) Show that for all ρ

$$\mathbb{P}\{\tau < T\} = p$$

holds.

- 2. (2 pts) In order to make the dependency on p and ρ explicit, we write $v = v(\rho; p)$. For $\rho = 0$, state the form of v(0; p) explicitly and plot v(0; p) as a function of p for $p \in (0, 1)$.
- 3. (5 pts) With the same notation state the explicit form of $v(\rho, p)$ for $\rho = -1$ and plot v(-1; p) as a function of p.
- 4. (5 pts) For p = 0.05 write Python Code to determine

$$v(\rho) = \mathbb{E} \left(1_{Y>a} 1_{S>K} \right)$$

through a MC simulation of both Z and W with sample size N=10,000. Use this code to plot $v(\rho)$ for $\rho \in (-1,1)$, include the code and the plot.

- 5. (5 pts) In the same simulation include the correlation risk $\frac{\partial}{\partial \rho}v(\rho) \approx \frac{1}{\varepsilon}(v(\rho+\varepsilon)-v(\rho))$ for small values of ε and again include the plot for $\rho \in (-1,1)$.
- 6. (3 pts) We know that

$$\mathbb{E}\left(1_{\rho Z + \sqrt{1 - \rho^2}W > a} 1_{S \ge K} \mid Z\right) = h(Z; \rho)$$

holds for a function h – which will again depend on ρ . State the explicit form of h.

- 7. (7 pts) Calculate the derivative of h with respect to ρ .
- 8. (5 pts) For p = 0.05 write Python Code to determine

$$v(\rho) = \mathbb{E}(h(Z; \rho))$$

through a MC simulation of just simulating Z with sample size N=10,000. Use this code to plot $v(\rho)$ for $\rho \in (-1,1)$, include the code and the plot.

9. (5 pts) Use the same simulation approach to calculate

$$\frac{\partial}{\partial \rho}v(\rho) = \mathbb{E}\left(\frac{\partial}{\partial \rho}h(Z;\rho)\right)$$

and plot the results.

10. (5 pts) Finally, we can approximate an integral over a normal distribution

$$y = \int_{\mathbb{R}} f(x)\varphi(x)dx$$

where f is an integrable function and φ the density of the standard normal distribution through

$$y \approx \sum_{i=1}^{M} f(x_i) w_i$$

where we choose $x_i = -b + \frac{2bi}{M}$ for a lower bound -b and $w_i = \Phi(x_i) - \Phi(x_{i-1})$ for i = 1, ..., M (and $w_0 = \Phi(x_0)$). Again, for the same parameters and M = 200 and b = 5, calculate

$$v(\rho) = \mathbb{E}(h(Z; \rho))$$

through this numerical integration, therefore avoiding all simulations. Plot the results of your calculation for $\rho \in (-1,1)$.

11. (5 pts) Finally, use the same integration to calculate

$$\frac{\partial}{\partial \rho}v(\rho) = \mathbb{E}\left(\frac{\partial}{\partial \rho}h(Z;\rho)\right)$$

and plot the result for $\rho \in (-1,1)$.