Gradient descent

Start with the provided unigram_pytorch.py.

Explain what this neural network does. What are the inputs and outputs of the learned function?

- 1. Choose a num_iterations.
- 2. Choose a learning_rate.
- 3. Augment the file to build visualizations of:
 - 1. the final token probabilities compare this to the optimal probabilities (figure these out)
 - 2. the loss as a function of time/iteration also include the minimum possible loss (based on the optimal probabilities)

Tweak your num_iterations and learning_rate to get reasonably good results reasonably quickly (seconds).

Describe how you could modify/augment this code to perform document classification.

You should turn in a document (*txt, *md, or *pdf) answering all of the **red** items above. You should also turn in your modified unigram_pytorch.py (the **blue** items). Unless otherwise specified, you may use only numpy, matplotlib, and the standard library.