1 Logistic regression (for classification)

Categorize observations based on quantitative features. Predict target class or probabilities of target classes.

1.1 Binary classification

Description

Logistic regression is a statistical method that studies the relationship between multiple variables:

- n variables $x = \{x_1, x_2, \dots, x_n\}$: the predictor, explanatory, independent variables,
- one *y* variable: the response, outcome, dependent variable.

Logistic regression expands the linear regression model with a *logistic function* to make it suitable for classification. Its dependent variable is therefore categorical instead of numerical.

In case of a binary classification task, its dependent variable takes on one out of two possible values

- $y \in \{0, 1\}$
- o 0 indicates the negative class
- 1 indicates the *positive* class
- Model's hypothesis: output the estimated probability that y = 1 on input x

$$\circ z = \theta_0 + \theta_1 * x_1 + \theta_2 * x_2 + ... + \theta_n * x_n$$

•
$$h(x) = P(y = 1|x, \theta) = \sigma(z) = \frac{1}{1 + e^{-z}} = \hat{y}$$
 (0 <= $h(x)$ <= 1)

• Model's parameters (# n + 1)

$$\theta = \{\theta_0, \theta_1, \dots, \theta_n\}$$

- · Decision boundary
 - linear
 - o non-linear when adding extra higher-order polynomial terms to the features
- Cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(-y^{(i)} \log \hat{y}^{(i)} - (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) \right)$$

in other words

• Goal

 $minimiz.e_{\theta}J(\theta)$

- Algorithm
 - o gradient descent
 - start with some initial values for $\theta_0, \theta_1, ..., \theta_n$ (usually normal random values)
 - keep changing θ s to reduce $J(\theta)$

$$\bullet \theta_0 = \theta_0 - \alpha \frac{\partial J}{\partial \theta_0} = \theta_0 - \alpha \left(\frac{1}{m} \sum_{i=1}^m \left(\hat{y}^i - y^{(i)} \right) \right)$$

$$\bullet \theta_1 = \theta_1 - \alpha \frac{\partial J}{\partial \theta_1} = \theta_1 - \alpha \left(\frac{1}{m} \sum_{i=1}^m \left(\hat{y}^i - y^{(i)} \right) \cdot x_1^{(i)} \right)$$

. . . .

$$\bullet \theta_n = \theta_n - \alpha \frac{\partial J}{\partial \theta_n} = \theta_n - \alpha \left(\frac{1}{m} \sum_{i=1}^m \left(\hat{y}^i - y^{(i)} \right) \cdot x_n^{(i)} \right)$$

- Hyperparameters
 - α
- Problems
 - o the idea of feature scaling also aplied for logistic regression
 - o make sure the gradient descent is working correctly
 - in case of **underfitting**
 - try adding new features
 - e.g., use a polynomial regression

$$\theta_0 + \theta_1 * x \Rightarrow \theta_0 + \theta_1 * x + \theta_2 * x^2 + \theta_3 * x^3$$

- o in case of **overfitting**
 - reduce the number of features
 - manually select which features to keep
 - use a model-selection algorithm
 - use regularization
 - keep all the features, but reduce the magnitude of parameters θ ; works well when working with a lot of features, each of which contributes a bit to predicting y
 - intuition: shrink model parameters in order to smooth out the decision boundary (generate a simpler hypothesis)
 - cost function with the regularization term

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(-y^{(i)} \log \hat{y}^{(i)} - (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) \right) + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$

• parameter update in gradient descent (for $j \in \{1, 2, ..., n\}$)

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial J}{\partial \theta_{j}} = \theta_{j} - \alpha \left(\frac{1}{m} \sum_{i=1}^{m} \left(\hat{y}^{i} - y^{(i)} \right) \cdot x_{j}^{(i)} + \frac{\lambda}{m} \theta_{j} \right) = \theta_{j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(\hat{y}^{i} - y^{(i)} \right) \cdot x_{j}^{(i)}$$

• λ is the *regularization parameter* and needs to be tuned; it controls the trade-off between the goal of fitting the training data well and the goal of keeping the parameters small

Evaluation metrics

- o accuracy: out of all predictions, how many of them were correct
- precision: out of all positive predictions, how many of them were actually positive examples
- recall: out of all positive examples, how many of them were detected as positive
- f1-score: harmonic mean between precision and recall
- Trading off precision and recall
 - use a different threshold for making decisions whether the class is positive or negative
 - o minimize the number of false positives
 - generate a higher precision, but a lower recall
 - choose a higher threshold (e.g. $\sigma = \{0.7, \dots, 0.9\}$)
 - o minimize the number of false negatives
 - generate a higher recall, but a lower precision
 - choose a lower threshold (e.g. $\sigma = \{0.1, \dots, 0.3\}$)
 - \circ plot the precision-recall tradeoff curve by testing various threshold values between [0,1]

1.2 Multiclass classification

- Description
 - use the one-vs-all (one-vs-rest) approach
 - \circ turn the problem into C binary classification problems (generate C decision boundaries)
 - formally: train a logistic regression classifier $h^{(i)}(x)$ for each class i to predict the probability that y = i
 - on a new input x, in order to make a prediction pick the class i that maximizes $max_ih^{(i)}(x)$