

Recall: Linear independence

The set $\{v_1, ..., v_p\}$ is said to be linearly dependent if there exist weights $\alpha_1, ..., \alpha_p$, not all zero, such that

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_p v_p = 0 \tag{1}$$

- ➤ It is linearly independent otherwise
- The above equation is called linear dependence relation among the vectors v_1, \cdots, v_p
- The set v_1, v_2, \dots, v_p is linearly dependent if and only if equation (1) has a nontrivial solution, i.e., if there are some weights, $\alpha_1, \dots, \alpha_p$, not all zero, such that (1) holds.
- In such a case, (1) is called a linear dependence relation among $v_1, ..., v_p$.

12-2 _____ Text: 4.3 – Bases

Theorem: An indexed set $\{v_1,...,v_p\}$ of two or more vectors, with $v_1 \neq 0$, is linearly dependent if and only if some v_j (with j>1) is a linear combination of the preceding vectors, $v_1,...,v_{j-1}$.

As an exercise prove formally this theorem

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\{b_1,...,b_p\}$ in V is a basis for H if:

- 1. \mathcal{B} is a linearly independent set, and
- 2. The subspace spanned by ${\cal B}$ coincides with H; that is, ${m H}= {
 m span}\{b_1,...,b_p\}$

- The definition of a basis applies to the case when $m{H}=m{V}$, (any vector space is a subspace of itself)
- lacksquare A basis of $oldsymbol{V}$ is a linearly independent set that spans $oldsymbol{V}$.
- Note that condition (2) implies that each of the vectors $b_1, ..., b_p$ must belong to H, because $\operatorname{span}\{b_1, ..., b_p\}$ contains $b_1, ..., b_p$.

$Standard\ basis\ of\ \mathbb{R}^n$

Let $e_1,...,e_n$ be the columns of the n imes n matrix, I_n . That is,

$$e_1=egin{pmatrix}1\0\dots\0\end{pmatrix};\;e_2=egin{pmatrix}0\1\dots\0\end{pmatrix};\;\cdots\;;e_n=egin{pmatrix}0\0\dots\1\end{pmatrix};$$

- The set $\{e_1, \cdots, e_n\}$ is called the standard basis for \mathbb{R}^n .
- Sometimes the term canonical basis is used

Spanning set theorem

Theorem: Let $S=\{v_1,...,v_p\}$ be a set in V, and let $H=\operatorname{span}\{v_1,...,v_p\}$.

- 1. If one of the vectors in S-say, v_k -is a linear combination of the remaining vectors in S, then the set formed from S by removing v_k still spans H.
- 2. If $H \neq \{0\}$, some subset of S is a basis for H.

Proof: 1. By rearranging the list of vectors in S, if necessary, we may assume that v_k is the last vector of the list, i.e., v_p , so:

$$v_p = a_1 v_1 + ... + a_{p-1} v_{p-1}$$
 (1)

lacksquare Given any x in H, we may write

$$x = \alpha_1 v_1 + \dots + \alpha_{p-1} v_{p-1} + \alpha_p v_p$$
 (2)

for suitable scalars $\alpha_1, ..., \alpha_p$.

- Substituting the expression for v_p from (1) into (2) it is easy to see that x is a linear combination of $v_1, ..., v_{p-1}$.
- lacksquare Vector x was arbitrary Thus $\{v_1,...,v_{p-1}\}$ spans H -
- 2. If the original spanning set S is linearly independent, then it is already a basis for H.
- \triangleright Otherwise, one of the vectors in S depends on the others and can be deleted, by part (1).
- Repeat this process until the spanning set is linearly independent and hence is a basis for H. (If the spanning set is eventually reduced to one vector, that vector will be nonzero because $H \neq \{0\}$)

$$v_1=egin{pmatrix} -1\ 1\ -1 \end{pmatrix};\quad v_2=egin{pmatrix} 1\ 1\ 0 \end{pmatrix};\quad v_3=egin{pmatrix} 1\ 3\ -1 \end{pmatrix};$$

Show that v_3 is a linear combination of the first 2 vectors and then find a basis of H.

$Basis\ of\ Col(A)$

Theorem:

The pivot columns of a matrix A form a basis for Col(A).

Proof: Let B be the reduced echelon form of A. The set of pivot columns of B is linearly independent (no vector in the set is B = a linear combination of the vectors that precede it).

- ightharpoonup Since $m{A}$ is row equivalent to $m{B}$, the pivot columns of $m{A}$ are linearly independent as well
- \triangleright Every nonpivot column of A is a linear combination of the pivot columns of A.

- Thus the nonpivot columns of a may be discarded from the spanning set for Col(A), by the Spanning Set Theorem.
- ightharpoonup This leaves the pivot columns of A as a basis for Col(A).

Note: The pivot columns of a matrix A are evident when A has been reduced to an echelon form B (standard or reduced). However be sure to use the pivot columns of A itself for the basis of Col(A), not those of B

12-10 Text: 4.3 – Bases

Two Views of a Basis:

- When the Spanning Set Theorem is used, the deletion of vectors from a spanning set must stop when the set becomes linearly independent.
- If an additional vector is deleted, it will not be a linear combination of the remaining vectors, and hence the smaller set will no longer span V.
- Thus a basis is a spanning set that is as small as possible.
- A basis is also a linearly independent set that is as large as possible.
- If S is a basis for V, and if S is enlarged by one vector —say, w—from V, then the new set loses linear independence [Explain why]

12-11 Text: 4.3 – Bases

Dimension and rank

It can be shown that the number of vectors in a basis of a subspace $m{H}$ is always the same –

Show the result

Hence the definition:

Definition: The dimension of a subspace H is the number of vectors in any basis for H. When $H=\{0\}$ its dimension is defined to be zero.

 $ightharpoonup \operatorname{Notation}\,\operatorname{dim}(oldsymbol{H})$

12-12 Text: 4.3 – Bases

Related (and important) definition

Definition: The rank of a matrix A is the dimension of its column space.

- ightharpoonup Notation: rank(A).
- Note: rank(A) = number of pivot columns in A.
- Recall from an earlier example that we could find a spanning set of Nul(A) which has as many vectors as there are free variables.
- Therefore $\dim(\operatorname{Nul}(A)) = \operatorname{number}$ of free variables. Hence the important result

$$\operatorname{rank}(A) + \dim(\operatorname{Nul}(A)) = n$$

- ➤ Known as the Rank+Nullity theorem
- $ightharpoonup rank(A) = rank(A^T) [row-rank=column rank]$

Application: Rotations and translations in \mathbb{R}^2

In the form of exercises. Try to answer all questions before class [see textbook if needed]

Consider the mapping that sends any point x in \mathbb{R}^2 into a point y in \mathbb{R}^2 that is rotated from x by an angle θ . Is the mapping linear?

Find the matrix representing the mapping. [Hint: observe how the canonical basis is transformed]

Text: 2.7 – Mappings2

$Rotations \ and \ translations \ in \ \mathbb{R}^2$

- We will now deal with Translations or shifts
- Another very important operation...
- Recall: Not a linear mapping but called affine mapping..
- This will require a little artifice..
- How can you now represent a translation via a matrix-vector product? [Hint: add an artificial component of 1 at the end of vector $m{x}$]
- Called Homogeneous coordinates
- Try this in matlab

$Rotations \ and \ translations \ in \ \mathbb{R}^2$

- The most important mapping in real life is a combination of Rotation and Translation. How do you represent these?
- We will use the Homogeneous coordinates introduced above
- Need to combine two mappings: rotation and then translation
- Does the order matter? Reason from the geometry and then from the derivation of your matrix
- Find the combined mapping
- Try this in matlab