

HOW TO PARTICIPATE

- One discussion leader, and everyone welcome to participate
- Majority of material comes from Reinforcement Learning by Sutton and Barto
- Options to approach the content:
 - Treat this as a standalone webinar
 - Read the book first, and come with questions and discussion items
 - Use this meetup as a primer and read the chapters afterward
- Ask questions
- Give feedback. Too fast or too slow? Want to see more of something or less of something else?
- Have fun!

AGENDA

- Recap what reinforcement learning (RL) is
 - Elements and formulation as Markov decision processes (MDP)
 - Terminology and notation used in RL
 - The Bellman equations
 - Generalized policy iteration
- Introduce temporal-difference (TD) learning
 - Temporal-difference update
 - TD(0)
 - SARSA
 - Q-learning

REINFORCEMENT LEARNING

- Reinforcement learning (RL) is about an agent learning from interacting with its uncertain environment
 - The agent interacts by choosing from a set of allowed actions
 - It gets feedback from a numeric reward signal
 - Goal is to maximize the return, which is the total rewards received
- Reinforcement learning is about exploring the environment and recording useful information for the future
- RL is sequential decision making; time is intrinsic

MARKOV DECISION PROCESSES

- Elements of the fully observable Markov Decision Process (MDP):
 - State at each time step t, the environment is in some state S_t
 - Action at each time step t, the agent chooses an action A_t
 - Reward after taking the action, the agent is given a reward signal R_{t+1} and subsequently finds itself in a new state S_{t+1}

In a Markov Decision Process, the transition at any given time t only depends on the state S_t and action chosen A_t

MDPS AS A GRAPH

- Sometimes it is easier to visualize a MDP as a directed graph
 - The states are nodes (big white circles)
 - The actions are edges leading from nodes (here with small black circles)
 - The rewards are values along directed edges that take you to a new state
- Here is the recycling robot from the book:

REINFORCEMENT LEARNING NOTATION

Letter	Used for
S	<u>S</u> tate
a	<u>A</u> ction
r	<u>R</u> eward
γ	Discount rate
G	Return – sum of all future rewards
p	Transition p robability
V	<u>V</u> alue function for states
q	Value function for state-action pairs
π	Policy (<u>π</u> ολιτική)
*	Optimal choices, e.g. π_*

BELLMAN EQUATION

- The value function for state s under policy π is a sum of the rewards received and the value functions for each future state s' times the probability of winding up there
- Formally:

$$v_{\pi}(s) = \sum_{a} \pi(a, s) \sum_{s', r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$$

Probability you take action a

Probability you and end in state s' of new state s'

Reward plus get reward r discounted value

BELLMAN EQUATION VISUALIZED

This is a *backup diagram* for $v_{\pi}(s)$. To compute it:

- We need to sum over each branch of π(), based on the probability of each action a
- And sum over of each branch of p(), based on probability we wind up in state s'
- The quantity we sum is the reward and the discounted value of possible state s'

$$v_{\pi}(s) = \sum_{a} \pi(a, s) \sum_{s', r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$$

BELLMAN OPTIMALITY EQUATIONS – V()

 The Bellman optimality equation says the optimal value for a state must be the same as the return from the best action

 $= \max_{a} \sum_{s} p(s', r | s, a) [r + \gamma v_*(s')].$

We can rewrite it recursively

 (v_*)

(3.19)

BELLMAN OPTIMALITY EQUATIONS – Q()

- The Bellman optimality equation for state-action pairs is very similar.
- The optimal value for a state-action pair must be the same as the return from the reward and best next action

s, a

It also can be written recursively

$$q_*(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$

$$= \sum_{s',r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a')\right]. \tag{3.20}$$

POLICY ITERATION

• The book shows a sequence like this:

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_1 \xrightarrow{E} \dots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

- The arrows with E's are full cycles of iterative policy evaluation
- And the arrows with I's are policy improvement

GENERALIZED POLICY ITERATION

- The term generalized policy iteration (GPI)
 refers to the general idea of letting policy
 evaluation and policy improvement
 processes interact
 - Doesn't matter how fully each evaluation or improvement step runs, or if they exactly alternate

REINFORCEMENT LEARNING CONTROL

- With this foundation, there's a lot we can tackle
 - Algorithms for learning
 - Dealing with memory and compute limitations
 - Getting models to converge quickly
- We also still have many challenges
 - Reward design effectively communicating the real goal
 - Sparse rewards
 - Credit assignment which actions in trajectory contributed
 - Exploration vs. exploitation

TEMPORAL-DIFFERENCE PREDICTION

• The dynamic programming (DP) update rule says to calculate a new estimate for $V_{\pi}(s)$:

$$v_{k+1}(s) = \sum_{a} \pi(a, s) \sum_{s', r} p(s', r|s, a) [r + \gamma v_k(s')]$$

This update goes really wide, but only one step ahead

Monte Carlo (MC) methods average sampled returns.
 If we tweak Monte Carlo to use a constant step size α, update is:

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

This update is narrow, sampling only one trajectory, and it waits all the way until the end of the episode to do this update

TEMPORAL-DIFFERENCE PREDICTION [2]

- Another option is to stay narrow, like Monte Carlo, and only go one step ahead before updating, like dynamic prog.
- This is the way temporal-difference (TD) does it's update
- Again, the Monte Carlo update after full episode:

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

- Our estimate of G_t is $R_{t+1} + \gamma V(S_{t+1})$
- Here is the temporal-difference update after one step:

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

TEMPORAL-DIFFERENCE PREDICTION [3]

• Temporal-difference update:

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

- TD, like MC, doesn't require knowledge of environment dynamics
- TD, like MC, samples from experience
- TD differs from MC (but is like DP) b/c it updates after every step
- TD also differs from MC (but is like DP) in that it bootstraps
 - TD estimates $V(S_t)$ using $V(S_{t+1})$

TD(0)

until S is terminal

• Using this update, we can create a simple algorithm to estimate v_{π} for any policy π . This algorithm is called TD(0).

Input: the policy π to be evaluated Algorithm parameter: step size $\alpha \in (0,1]$ Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0 Loop for each episode: Initialize SLoop for each step of episode: $A \leftarrow \text{action given by } \pi \text{ for } S$ Take action A, observe R, S' $V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]$ $S \leftarrow S'$

TD ADVANTAGES

- Advantage over DP because you don't need to know environment dynamics
- Advantages over MC because:
 - TD is naturally online and fully incremental
 - Waiting to end of episode is sometimes too long
 - Importance sampling doesn't work in practice (esp. long episodes)
 - TD converges faster than MC
 - Example 6.4 in the book shows a subtle difference where MC converges to a V() that minimizes mean-squared error for the rewards given.
 However TD minimizes error for a MDP model of the sample rewards.

TD CONTROL

- Can we use the TD(0) algorithm shown for estimating $v_{\pi}(s)$ and plug it into policy iteration to find the optimal policy v_* ?
- If we don't know the environment dynamics (the p() function),
 then the answer is no
 - Policy improvement greedily chooses actions for each state, but if we don't know the rewards and next states, we can't do improvement
- We showed TD for $v_{\pi}(s)$ because it's simplest, but for real problems we are going to use TD for $q_{\pi}(s, a)$. Here's the update:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

SARSA

- We can now look at the SARSA algorithm for on-policy TD control
 - Notice there is no policy improvement step

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathcal{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

Q-LEARNING

- Now comes the Q-learning algorithm for off-policy TD control
 - Huge breakthrough by Watkins in 1989
 - Rather than learning q_{π} , it directly goes after q_* , independent of the behavior policy being followed
 - Does not need importance sampling
 - Note that we can derive a behavior policy from Q that always explores, and don't have to explicitly store a separate behavior policy
- Here's the Q-learning update:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Q-LEARNING [2]

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

ADDITIONAL SARSA/TD ALGORITHMS

Expected SARSA

 SARSA adds the reward to a single action's discounted future reward estimated by Q(). Expected SARSA adds the reward to the expected value from all the one-step discounted future rewards coming from Q().

Double Q-learning

- Maximization bias is a problem with RL algorithms
 - Imagine you had 1,000 actions all mean zero variance 1, what would max() be?
- Double Q-learning keeps two separate Q tables. You pick a "best" action using the argmax() from one, but you use the Q() value from the other

Afterstates

 If you know 100% the single state after an action, can improve algorithms to use the afterstate instead of the current state

RECAP

- Review what reinforcement learning (RL) is
 - Elements and formulation as Markov decision processes (MDP)
 - Terminology and notation used in RL
 - The Bellman equations
 - Generalized policy iteration
- Introduce temporal-difference (TD) learning
 - Temporal-difference update
 - TD(0)
 - SARSA
 - Q-learning

QUESTIONS

8

DISCUSSION

NEXT SESSION

- Next session we will play with code examples finding optimal policies using Monte Carlo, SARSA, and Q-learning, on Sat. June 26
- We may also discuss some additional material about temporaldifference learning, from chapter 7 of Sutton & Barto
- The following week, Sat. July 3, there will be no book club