Andrew Peeling Back the Layers of Solar Cells Juggri 01/11/17 The Physics, Chemistry, and Biology of Solar Energy \* 0.100 incident sole output = total consemption of earth & Energy - Fuel Sun Light "Potential"
[Biolists]
[Chemistry] "Ordered" [ Chemistry] Easeld office Hy fillies from 2nd Low of "Disorced" Themodynamics [Physics] (bear jar) men. The me Collect Heat Sola Thermal Collectors - ( black tohat) [50-70%] · Cuo in Cu > App. Bol H20 · Black Cr on Ni-plated Cu 1? Wy not pant? Kirchhoff's Land of Thermal Radiation X=E (\$7 -inf Edra) => & (vis) > {(IR) Schementic thermal contact

"torching" 1 Lage use "easo"

Work

Semiconductors "Photo viltaic

Schematic

A65006 See c-Wse

 $E = h_U = \frac{hC}{\lambda}$ 

A ? Peak of slar spectrum

Kej.

1. Only absorb hu if E>BG

2. All E-BG lost lusually, multiexutur generation for exception)

13 Tradeoff, which do se wort? TBG ~ LBG

Ly Shockley-Queisser Limit (+ physics of losses in SC) 36. 
1 layer 33,70% → ∞ layers 86.8% "320. 
[28 %] [46 %]

· Perovsterter - specific crystal structure of SC

· Chape, bette montal BG\* [210/0]

· degrade easily

App: Root panele [14-17%]

END CLASS 1

## Dye-Sens. tred Solar Cells

Schematic:

Absorb

H Layer

Sep e different phaser

L eletrical

use

contact



Redox-loople:  $I\vec{3} + 2\vec{c} \neq \vec{3} I^{-1}$   $[:I - I - I:]^{-1}$ 

17 Why need electrolate?

The e-ht not seperate well ("excitors")

→ thin layer → puch e- into SC

\* no e-ht recombine

(Welety Le

Man difference is mobility it e!!!

Ex: Rulbpy) 3 [11.50/0]

· low light operation, flexisle
· liquid electriste

## Fuel

Biology [0.1-0.3%)

6 CO2 + 6 H20 hr C6H1206 + 602

7

· light-actuated reaction -mover e- w/m molecule "vadical"

ADP/NADPH -> Power protein mechanisms -> protein m

Absorb Sepe-

N Layers 1et jumps

where N is very , very laye

Store

| Solar Electrolysis (split H20) [30%]                                                                       |
|------------------------------------------------------------------------------------------------------------|
| 2 H20 -> 2 H2 + Oz DG = 286 KJ/mel (taken E)                                                               |
| -catalyst to oxidite H2D  photocatalyst is reactive in excited state (very careful molenle                 |
| 10 M, explosive                                                                                            |
| Schemetic:  Absorb  Sepe-  Store  Store                                                                    |
| there liquid betseen deetsder is active in reaction. I Electrolyte comple just a transport mechanism.      |
| Solar Thermal Cells                                                                                        |
| Store E who molecule by charging its orientation of edersity  how I low E molecule high E molecule -> heat |
| Electrocyclic: norbornadiene -> quadricyclane                                                              |
| 3-men ray stran                                                                                            |
| Double Bond Isomerization: atobertene [0,4%]                                                               |

4

? crowded v apart

Ligard Reorientation (break (-( bord)

For (fulvalene)

Ful-co (fulvalene)

tetracciongle
oc Ru-Ru

co co co co co

Appino electral grad (11 sola collectors), but also able to store \* "engelable" fuel

Showing

· Always think about good on hierarchy, and how going to get there Ex: electroder for 2 very different cells

· (ost to maintaining order in the efficiencies.

· H2 exception ble coupling of lbut very promising)

| Fuel                                                      | Work                                       | Heat                     |
|-----------------------------------------------------------|--------------------------------------------|--------------------------|
| · H2 · STC -electrocyclic -duble bond -ligand r · biology | · Semiconductors<br>- Perosketer<br>· DSSC | Sola Themal<br>Collector |

Approxim/bone