Universidad Peruana Cayetano Heredia

FACULTAD DE CIENCIAS Y FILOSOFÍA

Uso de modelos de machine learning en la clasificación de moléculas de colorante según su desempeño en las celdas solares orgánicas sensibilizadas por tintes naturales

Tesis

Autor: Bach. Dan Santivañez Gutarra

Asesora: Dra. María Quintana Caceda

Julio 2022

Índice

	Introducción
	1.1. Problemática
	1.2. Justificación
	1.3. Antecedentes
	Marco Teórico 2.1. Celdas solares sensibilizadas por tintes
3.	Metodología

Resumen

Las celdas solares son dispositivos que convierten energía lumínica en energía eléctrica útil a través de fenómenos electroquímicos. El desarrollo de materiales sostenibles y con mayor eficiencia es un reto de investigación y también ambiental, ya que resolverlo conlleva explorar miles de millones de compuestos y hallar dicho tipos de materiales favorecerían el consumo de energías limpias. Esta exploración requiere recursos humanos y materiales que muchos investigadores no pueden proporcionarse, es entonces que las simulaciones computacionales y el enfoque dirigido por datos cobran importancia. El uso de experimentos in silico han ...

1. Introducción

1.1. Problemática

Las sociedades en este siglo han estado esforzándose por cambiar sus fuentes de energía

1.2. Justificación

La referencia es citada en [1]

1.3. Antecedentes

2. Marco Teórico

- 2.1. Celdas solares sensibilizadas por tintes
- 2.2. Enfoque dirigido por datos

3. Metodología

Referencias

[1] Yaping Wen y col. «Accelerated Discovery of Potential Organic Dyes for Dye-Sensitized Solar Cells by Interpretable Machine Learning Models and Virtual Screening». En: *Solar RRL* 4.6 (2020), pág. 2000110.