Recommender System

User's review Amazon products

Recommender System - Our Team

"A" Team

Antonio

Brenda

Evaristo

Joan

Recommender System – 1. Motivation

The ultimate goal of a recommender systems is to unlock the maximum potential of customer purchases, making them a crucial component of a successful personalized marketing strategy.

Improve user experience: help users to discover new products and services based on their own interests.

User loyalty: encourage customers to return.

User engagement: encourage users to **engage with the content** based on the recommendation of the products or services.

More direct and personalized marketing campaigns

Recommender System - 2. Goals

Baseline

Propose two simple approaches to give a recommendation: most popular products (1) and random products (2).

Define and develop the initial ETL and data preparation for modelling.

Deep learning models

Develop two different deep learning approaches for the recommender system:
Factorization machines (FM) and Neural matrix
Factorization model (NeuMF).

Perform ablation experiments to give an intuition on hyperparameter tuning.

Business sense of a recommender system

Understand the **performance** of the different models based on a **business perspective**.

Conclude the project with **next steps** to perform in the future.

Recommender System - 3. Proposal

- 1. Models: FM, RND, POP, NCF
- 2. Different Datasets:
 Amazon and MovieLens
- Data transformation and Sampling strategy
- 4. Training and Test
- 5. Metrics: HR, NDGC, Coverage
- 6. Histograms and Graphics: Plot and Tensorboard
- 7. Tuning parameters
- 8. Custom parametrization

Pipeline

Recommender System - 3. Proposal

Methodology

CRISP-DM

Cross Industry Standard Process for Data Mining

- 1. Business understanding
- 2. Data understanding
- 3. Data preparation
- 4. Modeling
- 5. Evaluation
- 6. Deployment

Waterfall

Recommender System - 3. Proposal

Project Plan and Milestones

Amazon: Original

Total Reviews 233.1 million

Subset: Musical Instruments

Reviews 1,512,530

Products 112,222

Users 903,330

MovieLens-100k

Reviews 100.000 Movies 1,682

Users 943

Structure: User, Item, Review(1-5), Timestamp

Datasets

Data: Transformation and cleaning

- Format data types
- Remove duplicates
- Reduce reviews by user and item

	Amo	MovieLens	
Users	4.275	14.138	943
Items	2.080	6.178	1.682
Reviews	52.023	137.364	100.000
RxUxI	8x8	6x6	20 reviews

Training

Test

Sampling

Implicit feedback (1-5 -> 1)

Negative Sampling (k=4-6)

TLOO Time Leave One Out (x=1)
RLOO Random Leave One Out (x=1)

Full Ranking

(add neg all items/user)

Models

Random

Popularity

FM - Factorization Machine

NCF - Neural Collaborative Filtering

Models

Random

EPOCH:15 - Recommended items - number of different items=2080 Items also in popularity list=10 - model=Random

- Recommend items of the top@k list randomly
- Has a coverage of 100% of the products set

Models

Popularity

- Most simple statistic method
- Select the first top@K items with more ratings
- Solves the cold start problem with new users but always recommends the same set of products

Models

FM - Factorization Machine

Implement Factorization Machine to perform a ranking prediction task of top@k

Models

NeuMF

- We implemented NeuMF Neural Matrix Factorization model that combines MF with Neural MLP
- Changed the original last MLP layer activation function SIGMOID followed by BCELoss to use only a <u>BCEwithLogitsLoss</u> function in train

Metrics

Hit Ratio HR@topk.

How often is the GT item present in the recommendation list

NDCG Normalized Discounted Cumulative Gain.

Measures ranking quality

Coverage compares the set of total recommended items with the total items in train dataset

Computational resources

- GIT repository (<u>recommender system project AIDL2023</u>)
- Colab notebooks
- CPU (local)
- Tensorboard
- Miniconda environment
- Process average time: 2h

Recommender System – 5. Results. Ablation studies

	K negative sampling	Learning rate	Hidden size	Metrics and TLOO
Exp 1	5	1 e-3	32	HR: 0.05 NDCG:0.02 COVERAGE: 68.2
Exp 2	6	1 e-4	64	HR: 0.07 NDCG:0.04 COVERAGE: 16.2
Exp 3	6	1 e-4	32	HR: 0.06 NDCG:0.03 COVERAGE: 16.3

To determine the best hyperparameters, a grid is created with different configurations. The performance is measured in every iteration and the final model is chosen from the best of these experiments.

Recommender System – 5. Results. Final configuration

	K negative sampling	Learning rate	Hidden size	Metrics
Best exp NeuMF	5	1 e-4	64	HR: 0.07 NDCG:0.04 COVERAGE: 35.8
Best exp FM	5	1 e-3	64	HR: 0.06 NDCG:0.03 COVERAGE: 49.6
Random	<u>.</u>	-	-	HR: 0.004 NDCG:0.002 COVERAGE: 100

NeuFM model has the best metrics in terms of HR and NDCG. With the deep learning approach we have an x10 improvement from the random recommendation.

Recommender System - 6. Conclusions

Hypothesis accomplished Key points in REC Compliance in business

Add context
Bias in dataset and models
Control and insertion of bias
Docker & Flask

Transparency
Limits
Privacy

Ethical

Project Conclusions

Recommender System

Thank you! Questions?