

4

10 33. (Amended) A scanning exposure method in which a
11 pattern area of a mask is transferred onto a sensitive plate
12 through a projection system in a scanning manner, the method
13 comprising the steps of:

14 (a) irradiating the mask with a radiation in order to
15 project an image portion of said pattern area of the mask
16 onto the plate through said projection system;

17 (b) synchronously scanning each of the mask and the
18 plate relative to said projection system in a scanning
19 direction at a predetermined velocity ratio by using a
20 scanning mechanism for the scanning exposure, wherein a
21 scanning velocity of the mask is different from a scanning
22 velocity of the plate;

23 (c) detecting a deviation between an ideal positional
24 relation and an actual positional relation of the mask and
25 the plate at a term of the scanning exposure; and

26 (d) correcting a position of the mask determined by
27 said scanning mechanism for decreasing said detected
28 deviation by using a fine moving mechanism provided on said
29 scanning mechanism at the term of the scanning exposure.

1 36. (Amended) A scanning exposure method in which a
2 pattern of a mask is transferred onto a sensitive plate
3 through a projection system in a scanning manner, the method
4 comprising the steps of:

5 (a) irradiating the mask with a radiation in order to
6 project an image of said pattern of the mask onto the plate
7 through said projection system;

8 (b) synchronously scanning each of the mask and the
9 plate relative to said projection system by using a scanning
10 mechanism for a scanning exposure wherein a scanning
11 velocity of the mask is different from a scanning velocity
12 of the plate;

13 (c) detecting a positional deviation between the mask
14 and the plate at a term of the scanning exposure; and

15 (d) correcting a position of the mask determined by
16 said scanning mechanism for decreasing said detected
17 deviation at the term of the scanning exposure.

1 96. (Amended) A method for manufacturing a circuitry
2 element with use of the method as defined in claim 68.

1 128. (Amended) A method for manufacturing a circuitry
2 element with use of a scanning exposure apparatus made by
3 using the method as defined in claim 97.

Please add the following claims:

1 --129. An apparatus according to claim 39, wherein
2 during movement of said first object by said first driving
3 system, said second driving system rotates said first object
4 about a rotation axis passing through a predetermined point
5 in an illumination region of exposure beam irradiated to
6 said first object.--

1 --130. An apparatus according to claim 58, wherein
2 said first measuring device includes a first interferometer
3 system, and said second measuring device includes a second
4 interferometer system.--

1 --131. An apparatus according to claim 130, wherein:
2 said first interferometer system has a measuring axis
3 for measuring the position of said first object in said
4 first direction, a measuring axis for measuring the position
5 of said first object in a direction which crosses said first
6 direction and a measuring axis for measuring information on
7 rotation of said first object, and
8 said second interferometer system has a measuring axis
9 for measuring the position of said second object in said
10 second direction, a measuring axis for measuring the
11 position of said second object in a direction which crosses
12 said second direction and a measuring axis for measuring
13 information on rotation of said second object.--

--132. An apparatus according to claim 37, further comprising:

a fourth driving system which moves said second object
in a direction crossing said second direction.--

--133. An apparatus according to claim 70, wherein
during movement of said first object by said first driving
system, said second driving system rotates said first object
about a rotation axis passing through a predetermined point
in an illumination region of exposure beam irradiated to
said first object --

-134. A method according to claim 68, wherein said first driving system is capable of moving said first object by a longer distance than that moved by said second driving system. --

~~--135. A method according to claim 68, wherein during movement of said first object by said first driving system at least a portion of said second driving system moves in said first direction in order to move said first object.--~~

--136. A method according to claim 74, wherein said second driving system moves the first object based on the detected relative relationship.--

*sub
obj*

1 --137. A method according to claim 87, wherein said
2 positional information of the first object includes
3 positional information of said first object in a direction
4 which crosses said first direction, and
5 said positional information of the second object
6 includes positional information of said second object in a
7 direction which crosses said second direction.--

*Chart
of*

1 --138. A method according to claim 87, wherein
2 said positional information of the first object
3 includes information on rotation of the first object; and
4 said positional information of the second object
5 includes information on rotation of the second object.--

*sub
obj*

1 --139. A method according to claim 99, wherein during
2 movement of said first object by said first driving system,
3 said second driving system rotates said first object about a
4 rotation axis passing through a predetermined point in an
5 illumination region of exposure beam irradiated onto said
6 first object.--

1 --140. A method according to claim 97, further
2 comprising:
3 providing a fourth driving system which moves said
4 second object in a direction which crosses said second
5 direction.--