OPTICAL DESIGN

Suresh Sivanandam

Assistant Professor

(Dunlap Institute/University of Toronto)

Facilitators:

Dr. Shaojie Chen, Elliot Meyer

State-of-the-art Lithography Lens

Credit: Nature Pub

WHERE DO YOU START?

- System Requirements:
 - Field-of-view
 - Resolution
 - Wavelength
 - Sensitivity
 - Mechanical Constraints
 - Environment

- Other Considerations:
 - Cost
 - Timescale
 - Complexity
 - Manufacturability

LENS DESIGN SOFTWARE

- Ray trace codes (e.g. Zemax, Code V, OSLO) that trace rays through optical systems to determine their performance
- They use sequential ray tracing to determine optical parameters

• One can evaluate various performance parameters such as image quality

OSLO-EDU

Optics Software for Layout and Optimization

INPUT FORMAT

(Credit: Wikipedia)

Cellphone Camera

(Credit: Carl Zeiss)

Hubble Space Telescope

Sony Cellphone Camera Patent

3RD ORDER OPTICS

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} \dots$$

Paraxial Optics (1st order)

Geometric Aberrations (3rd order)

• If you use spherical surfaces, the paraxial approximation breaks down at larger incident angles, which produces optical aberrations

f/1.5 spherical planoconvex lens

OPTICAL ABERRATIONS

Well-defined formalism exists that predicts optical performance

ABERRATIONS

- MONOCHROMATIC
 ABERRATIONS
 - Spherical
 - Coma
 - Field Curvature
 - Astigmatism
 - Distortion

- CHROMATIC
 ABERRATIONS
 - Axial Colour
 - Lateral Colour

Seidel Aberrations

SPHERICAL ABERRATION

- Field independent aberration
- Strong function of f/#
- Methods of reduction
 - Slow optics
 - Lens bending
 - Lens splitting

Credit: Optical System Engineering

COMA

- Field dependent aberration
- Methods of reduction
 - Shift aperture stop
 - System symmetry

ASTIGMATISM

FIELD CURVATURE

- Curved focal plane
- Methods of reduction
 - Curved focal plane
 - Field flattener
 - Negative astigmatism

DISTORTION

CHROMATIC ABERRATION

 Index of refraction of glass varies with wavelength

Outside the scope of lab

IDENTIFYING ABERRATIONS

- Many Methods:
 - Spot Diagrams
 - Optical Path Difference Plots
 - Seidel Coefficients
 - Zernike Polynomials
 - Ray Fans
 - Encircled Energy

SPOT DIAGRAM

OPTICAL PATH DIFFERENCE

(Credit: OSA)

ABERRATION THEORY SEIDEL COEFFICIENTS

$$OPD = W(\rho, \theta, H) = W_{040}\rho^4 + W_{131}H\rho^3\cos\theta + W_{222}H^2\rho^2\cos^2\theta + W_{220}H^2\rho^2 + W_{311}H^3\rho\cos\theta$$
 Optical Spherical Coma Astigmatism Field Distortion Path

Difference

LAB ACTIVITY

- Learn to use optical design software
 Construct your own lens
 Identify geometric aberrations
 - Correct for those aberrations

LANDSCAPE LENS

REFERENCES

- Optical System Design (Fischer)
- Astronomical Optics (Schroeder)
- Lens Design Fundamentals (Kingslake)
- Field Guide to Geometrical Optics (Greivenkamp)