Exercise 27

a

 $\mathfrak A$: The automaton $\mathfrak A$ does both, Büchi- and co-Büchi-recognize L.

 \mathbf{b}

Assume \mathfrak{A}' E-recognizes L. So for $\rho(i)=q_f$ and $q_f\in F$ for $i\in\mathbb{N}$. So the read letter before the accepting state is reached are final. Let the read word be $w=a^{1+n_1}b^{n_2}$. So \mathfrak{A}' would recognize w but $w\notin L$. Contradiction \mathfrak{A}' does not recognize L.

Assume \mathfrak{A}'' A-recognizes L. Let $w=a^ub^\omega$. So $\rho(i)=q_f$ where $q_f\in F$ and $i\leq u$. By repeating the letter a the automaton must allways reach a final state. So $w=a^\omega$ leads to a final state. This means \mathfrak{A}'' recognizes $w=a^\omega\not\in L$. Contradiction \mathfrak{A}'' does not recognize L.

 \mathbf{c}

 \mathfrak{A}_A :

Exercise 28

 \mathbf{a}

 \mathfrak{A}_{SW} :

 $\mathcal{F} = \{\{q_0\}, \{q_0, q_2\}, \{q_0, q_3\}, \{q_0, q_1, q_3\}, \{q_0, q_2, q_3\}, \{q_0, q_1, q_2, q_3\}\}$

b

 \mathfrak{A}'_{SW} :


```
\mathcal{F} = \{ \{q_0\}, \\ \{q_0, q_1\}, \{q_0, q_2\}, \{q_0, q_4\}, \\ \{q_0, q_1, q_2\}, \{q_0, q_1, q_4\}, \{q_0, q_2, q_4\}, \{q_0, q_4, q_5\}, \\ \{q_0, q_1, q_2, q_4\}, \{q_0, q_1, q_4, q_5\}, \{q_0, q_2, q_4, q_5\}, \\ \{q_0, q_1, q_2, q_4, q_5\} \} \}
```