11-611 Natural Language Processing Homework 2

Jennifer Li

February 2019

1 Transducer-1

Keep the first letter of the name, and drop all occurrences of non-initial a, e, h, i, o, u, w, y

Caps = All capital letters NI = a, e, h, i, o, u, w, y

2 Transducer-2

Replace the remaining letters with the following numbers:

- (a) b, f, p, v replaced with 1
- (b) c, g, j, k, q, s, x, z replaced with 2
- (c) d, t replaced with 3
- (d) 1 replaced with 4
- (e) m, n replaced with 5
- (f) r replaced with 6

$$L1=b,\,f,\,p,\,v$$

$$L2 = c, g, j, k, q, s, x, z$$

$$L3 = d, t$$

$$L4 = 1$$

$$L5 = m, n$$

$$L6 = r$$

- \star Here I am using "other" for not changing those place holders (\$ sign in FST
- 1) or non-initals (a, e, i, o, u, w, y) that potentially exist

3 Transducer-3

Replace any sequences of identical numbers with a single number, only if they derive from two or more letters that were adjacent in the original name

Transition	input:output
$q_8, q_9, q_{10}, q_{11}, q_{12}, q_{13} \rightarrow q_1$	$\$:\epsilon$
$q_3, q_4, q_5, q_6, q_7 \rightarrow q_8$	1
$q_8 o q_8$	$1:\epsilon$
$q_2, q_4, q_5, q_6, q_7 \rightarrow q_9$	2
$q_9 ightarrow q_9$	$2:\epsilon$
$q_2, q_3, q_5, q_6, q_7 \rightarrow q_{10}$	3
$q_{10} ightarrow q_{10}$	$4:\epsilon$
$q_2, q_3, q_4, q_6, q_7 \rightarrow q_{11}$	4
$q_{11} ightarrow q_{11}$	$4:\epsilon$
$q_2, q_3, q_4, q_5, q_7 \rightarrow q_{12}$	5
$q_{12} ightarrow q_{12}$	$5:\epsilon$
$q_2, q_3, q_4, q_5, q_6 \rightarrow q_{13}$	6
$q_{13} ightarrow q_{13}$	$6:\epsilon$
$q_8 o q_3, q_4, q_5, q_6, q_7$	2, 3, 4, 5, 6
$q_9 \rightarrow q_2, q_4, q_5, q_6, q_7$	1, 3, 4, 5, 6
$q_{10} \rightarrow q_2, q_3, q_5, q_6, q_7$	1, 2, 4, 5, 6
$q_{11} \rightarrow q_2, q_3, q_4, q_6, q_7$	1, 2, 3, 5, 6
$q_{12} \rightarrow q_2, q_3, q_4, q_5, q_7$	1, 2, 3, 4, 6
$q_{13} \rightarrow q_2, q_3, q_4, q_5, q_6$	1, 2, 3, 4, 5

Here, all the place holders (\$ sign) are removed and consecutive same numbers are truncated

4 Transducer-4

Convert to the form "Letter Digit Digit Digit" by dropping the rest of the digits. If there are too few digits, pad with sufficient 0 s.

Numbers = 1, 2, 3, 4, 5, 6

Caps = All capital letters

* Here I am using state q_8 for not letting non-terminated string go through the path q_5 through q_7 since that path is for the strings that do not have enough digits

5 Combination

In order to combine the above four FSTs, assuming the first transducer T_1 takes in the input name S and output O_1 , and the second transducer T_2 takes in O_1 and output O_2 , thrid transducer T_3 takes O_2 and output O_3 and the fourth transducer T_4 takes O_3 and output O_4 . This process maps from S to O_4 , which is composition of T_1 , T_2 , T_3 and T_4 ($T_1 \circ T_2 \circ T_3 \circ T_4$)