Supplementary Information

Genome-scale metabolic modelling of the haloalkaliphilic bacterium *Halomonas campaniensis* provides insights into high poly-hydroxybutyrate accumulation under nitrogen limitation

Carolina Deantas, Sebastián Mendoza, Cuauhtemoc Licona-Cassani, Camila Orellana, Pedro A. Saa

August 7, 2023

Contents

1	Sup	plementary Text	3
		Gap-filling process	
	1.2	Experimental media definition	3
	1.3	Derivation of rate formula	3
2	Sup	plementary Figures	5
3	Sup	plementary Tables	6

List of Figures

S1	Preliminary growth study in shake-flasks of <i>H. campaniensis</i> in glutamate and ammonium as nitrogen sources, both at 18.7 mM. As a control, the base medium did not have any nitrogen sources and was supplemented with 30 g/L glucose as C source. While shake flasks with glutamate exhibited cellular growth, no growth was detected for culture with ammonium. The latter was evidenced when comparing the control and the latter culture	5
${f List}$	of Tables	
S1	GenBank access codes for strains used in this study	6
S2	Constraints used during qualitative model validation, simulating the composition of media previously described in literature (Romano et al., 2005)	7
S3	Main media composition	8
S4	Composition of trace element solution 1	9
S5	Composition of trace element solution 2	10
S6	Manually added reactions and their source	11
S7	Qualitative validation of HaloGEM	19
S8	Characterization of genes based on essentiality and the associated reactions to their encoding proteins	20
S9	Shadow prices in different fermentation phases	21
S10	Nitrogen source ranking. Highlighted rows correspond to tested experimental condi-	
	tions	22

1 Supplementary Text

1.1 Gap-filling process

Network gaps were automatically filled employing the Gapfill algorithm to generate a functional model as described in the original publication (Kumar et al., 2007), but in this case using iFP764 as reaction database. As such, only reactions present in the latter model were considered as candidates for bridging the network gaps that enabled cellular growth *in silico* under known experimental conditions. The latter avoided inclusion of spurious reactions. The GapFill formulation relies on a binary variable y_i defined as (Equation 1):

$$y_j = \begin{cases} 1 & \text{if reaction } j \text{ from the external database is added to the parent network} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Since iFP764 is a functional model, a subset of its reactions is likely to produce a functional model. A value of α was defined as the percentage of growth of the iFP764 model. An additional constraint was added to the GapFill formulation, considering that the biomass reaction has a value that is a percentage of the template model. This percentage was written as α , with values of 1, 80 and 100% used for the gapfilling process.

The reactions that are present for every α value and documented in literature were selected and added to the draft reconstruction using the relevant functions from the COBRA toolbox Heirendt et al., 2019. The MetaDraft and GapFill steps were performed for the five strains studied.

1.2 Experimental media definition

A modified LB medium was used for growth and seed culture preparation, containing per liter: NaCl 60, tryptone 10 and yeast extract 5. For PHB production, an MM medium was used, with its composition detailed in tables S3,S4 and S5 adapted from Tan et al., 2011. The pH of the medium was adjusted to 9.0 using 2.5 M NaOH. Trace solutions were filter sterilized and added to the autoclaved media; glucose was autoclaved separately from the rest of the medium components. MM media was modified to obtain a defined media based on observationsQuillaguamán et al., 2008 that yeast extract can be substituted with glutamate. To avoid cofactor depletion, the amount of trace solution 1 and 2 were increased to 15 mL/L and 1.5 mL/L respectively. Biotin was added (0.05 mg/L) to account for possible vitamin consumption in absence of yeast extract Strazzullo et al., 2008. Since nitrogen depletion leads to stress in *H. campaniensis* the effect of mixed nitrogen sources was studied, and a new defined media was formulated with glutamate and NH₄Cl. To compare across culture conditions, the initial total amount of nitrogen moles was kept fixed. Nitrogen limitation induces a stress response, thus, a mixed nitrogen medium was formulated to assess cellular response. To compare results, cultures were normalized by nitrogen moles, thus mixed nitrogen media contained 1.38 g/L glutamate and 0.5 g/L NH₄Cl.

1.3 Derivation of rate formula

The specific secretion and uptake rates for key metabolites were determined from shake flask experiments using the growth rate and the biomass yield on the corresponding metabolite S. The derivation of the rate formula starts with the general mass balance during the fermentation:

$$\frac{d(S \cdot V)}{dt} = F_{in}S_{in} - F_{out}S_{out} + r_sX_{out}V$$
(2)

Where S corresponds to the substrate concentration, F to the mass flux, X to the biomass concentration, V to the reaction volume and r_s to the specific substrate rate. The subscripts in, out refer to quantities inside or outside of the control volume being analysed. In a shake-flask fermentation, the total volume is constant, thus:

$$V \cdot \frac{d(S)}{dt} = F_{in}S_{in} - F_{out}S_{out} + r_s X_{out} V \tag{3}$$

Also, we assume that the flask and the culture inside are perfectly mixed, implying that the concentration on the inside is the same as the concentration that goes out $(S = S_{out})$ and $X = X_{out}$:

$$V \cdot \frac{d(S)}{dt} = F_{in}S_{in} - F_{out}S + r_sXV \tag{4}$$

Since it is a batch fermentation, there is no input or output of flow, thus $F_{in} = F_{out} = 0$, then:

$$V \cdot \frac{d(S)}{dt} = r_s XV \tag{5}$$

Dividing by the volume and reorganizing:

$$r_s = \frac{1}{X} \cdot \frac{dS}{dt} \tag{6}$$

Then, we need to know the change in substrate and the biomass function. For biomass, the specific substrate rate corresponds to μ , then:

$$\frac{dX}{dt} = \mu \cdot X \tag{7}$$

 μ is a function of biomass and during the exponential phase is constant. By substituting 7 in 6 we get:

$$r_s = -\frac{dS/dt}{dX/dt} \cdot \mu \tag{8}$$

By definition, the observed yield Y_{XS} can be defined as:

$$Y_{XS} = -\frac{dS/dt}{dX/dt} \tag{9}$$

And can be obtained experimentally by plotting the substrate concentration versus the biomass concentration at the same time points and finding the slope, whereas μ can be calculated as the slope of the natural logarithm of biomass concentration versus time. Then, the experimental uptake and production rates can be expressed as:

$$r_s = Y_{XS} \cdot \mu \tag{10}$$

2 Supplementary Figures

Figure S1: Preliminary growth study in shake-flasks of *H. campaniensis* in glutamate and ammonium as nitrogen sources, both at 18.7 mM. As a control, the base medium did not have any nitrogen sources and was supplemented with 30 g/L glucose as C source. While shake flasks with glutamate exhibited cellular growth, no growth was detected for culture with ammonium. The latter was evidenced when comparing the control and the latter culture.

3 Supplementary Tables

 ${\bf Table~S1:}~{\bf GenBank~access~codes~for~strains~used~in~this~study$

Genome	GenBank Assembly	Link
	accession	
H. campaniensis 5AG	GCA_014193375.1	https://www.ncbi.nlm.nih.gov/assembly/GCF_014193375.1
H. boliviensis LC1	GCA_000236035.1	https://www.ncbi.nlm.nih.gov/assembly/GCF_000236035.1
H. sp. ALS9	GCA_001651035.1	https://www.ncbi.nlm.nih.gov/assembly/GCF_001651035.1
H. sp. ISL104	GCA_018612735.1	https://www.ncbi.nlm.nih.gov/assembly/GCF_018612735.1
H. sp. ISL56	GCA_018612805.1	https://www.ncbi.nlm.nih.gov/assembly/GCF_018612805.1

Table S2: Constraints used during qualitative model validation, simulating the composition of media previously described in literature (Romano et al., 2005).

Reaction ID	Value	Comments
EX_k_e	-10	From KH ₂ PO ₄
EX_pi_e	-10	From KH ₂ PO ₄
EX_mg2_e	-10	From $MgSO_4$
EX_so4_e	-10	From $MgSO_4$ and $(NH_4)_2SO_4$
EX_nh4_e	-4	From (NH4)2SO4
EX_na1_e	-10	From NaCl
EX_cl_e	-10	From NaCl
EX_h_e	-10	Always present in media
EX_h2o_e	-10	Always present in media
EX_o2_e	-15	Simulation in aerobic media
EX_ca2_e	-10	Minerals are unconstrained
EX_fe3_e	-10	Minerals are unconstrained
EX_cu2_e	-10	Minerals are unconstrained
EX_zn2_e	-10	Minerals are unconstrained
EX_mn2_e	-10	Minerals are unconstrained
EX_cobalt2_e	-10	Minerals are unconstrained
EX_ni2_e	-10	Minerals are unconstrained
EX_mobd_e	-10	Minerals are unconstrained
EX_btn_e	-0.1	Biotin is added to the medium

Table S3: Main media composition

Component	MM complex media	Defined media	Mixed nitrogen media
Carbon source	30 g/L	30 g/L	$30~\mathrm{g/L}$
NaCl	60 g/L	60 g/L	$60~\mathrm{g/L}$
Yeast extract	1 g/L	-	-
Glutamate	-	$2.75 \mathrm{\ g/L}$	1.38 g/L
${ m MgSO}_4$	$0.2~\mathrm{g/L}$	$0.2~\mathrm{g/L}$	$0.2~\mathrm{g/L}$
$Na_2HPO_4 \cdot 12H_2O$	$9.65~\mathrm{g/L}$	$9.65~\mathrm{g/L}$	$9.65~\mathrm{g/L}$
KH_2PO_4	$1.5~\mathrm{g/L}$	$1.5~\mathrm{g/L}$	$1.5~\mathrm{g/L}$
NH ₄ Cl	2 g/L	-	$0.5~\mathrm{g/L}$
Trace element solution 1	$10~\mathrm{mL/L}$	$15~\mathrm{mL/L}$	$15~\mathrm{mL/L}$
Trace element solution 2	$1~\mathrm{mL/L}$	$1.5~\mathrm{mL/L}$	$1.5~\mathrm{mL/L}$
Biotin	-	$0.5~\mathrm{mg/L}$	$0.5~\mathrm{mg/L}$

Table S4: Composition of trace element solution

Component	Composition (g/L)
Fe(III)-NH ₄ -citrate	5
$CaCl_2$	2
HCl	1 M

Table S5: Composition of trace element solution

Component	Composition (mg/L)
$ZnSO_4 \cdot 7H_2O$	100
$MnCl_2 \cdot 4H_2O$	30
H_3BO_3	3300
$CoCl_2 \cdot 6H_2O$	200
$\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$	10
$NiCl_2 \cdot 6H_2O$	20
$NaMoO_4 \cdot 2H_2O$	30
HCl	1 M

Table S6: Manually added reactions and their source.

Reaction code	Reaction formula	Source
2INSD	1 2ins_c <=>1 h2o_c + 1 dkdi_c	RAVEN
3NUCLE1	1 h2o_c + 1 3amp_c <=>1 pi_c + 1 adn_c	RAVEN
3NUCLE2	1 h2o_c + 1 3ump_c <=>1 pi_c + 1 uri_c	RAVEN
3NUCLE3	1 h2o_c + 1 3cmp_c <=>1 pi_c + 1 cytd_c	RAVEN
3NUCLE4	1 h2o_c + 1 3gmp_c <=>1 pi_c + 1 gsn_c	RAVEN
3OADPCOAT	1 succoa_c + 1 3oxoadp_c <=>1 succ_c + 1 oxadpcoa_c	RAVEN
ACACCT	$1 \text{ ac_c} + 1 \text{ aacoa_c} <=>1 \text{ accoa_c} + 1 \text{ acac_c}$	RAVEN
ACKr	$1 \text{ atp_c} + 1 \text{ ac_c} <=>1 \text{ adp_c} + 1 \text{ actp_c}$	RAVEN
ADNCYC	$1 \text{ atp_c} <=>1 \text{ ppi_c} + 1 \text{ camp_c}$	RAVEN
AEPPYRTA	1 pyr_c + 1 2ameph_c <=>1 alaL_c + 1 Pald_c	RAVEN
ALCD20y	$1 \text{ nadph}_c + 1 \text{ h}_c + 1 \text{ acetone}_c <=>1 \text{ nadp}_c + 1 2ppoh_c$	RAVEN
ATHRDHr	$1 \text{ nadp_c} + 1 \text{ athr_L_c} <=>1 \text{ nadph_c} + 1 \text{ h_c} + 1 \text{ 2aobut_c}$	RAVEN
CEPA	1 pi_c + 1 cellb_c <=>1 glcD_c + 1 g1p_c	RAVEN
CODSCL8XI	1 codscl8x_c <=>1 cobya_c	RAVEN
CPC3MT	$1 \text{ amet_c} + 1 \text{ copre}3_c <=>1 \text{ ahcys_c} + 1 \text{ copre}4_c$	RAVEN
DHPD	1 h2o_c + 1 56dura_c <=>1 cala_c	RAVEN
DURADx	1 nad_c + 1 56dura_c <=>1 nadh_c + 1 h_c + 1 ura_c	RAVEN
FRDx	$1 \text{ nad}_{-c} + 1 \text{ succ}_{-c} <=> 1 \text{ nad}_{-c} + 1 \text{ h}_{-c} + 1 \text{ fum}_{-c}$	RAVEN
GGGABAH	1 h2o_c + 1 gg4abut_c <=>1 glu_L_c + 1 4abut_c	RAVEN
GUACYC	1 gtp_c <=>1 ppi_c + 1 35cgmp_c	RAVEN
HACD4i	1 nad_c + 1 3hdcoa_c <=>1 nadh_c + 1 h_c + 1 3odcoa_c	RAVEN
HBCO_nadp	$1 \text{ nadp_c} + 1 \text{ 3hbcoa_c} <=>1 \text{ nadph_c} + 1 \text{ h_c} + 1 \text{ aacoa_c}$	RAVEN
ICHORS_copy1	1 chor_c <=>1 ichor_c	RAVEN
INS2D	$1 \text{ nad}_{-c} + 1 \text{ inost}_{-c} <=>1 \text{ nadh}_{-c} + 1 \text{ h}_{-c} + 1 \text{ 2ins}_{-c}$	RAVEN
IZPN_1	1 h2o_c + 1 4izp_c <=>1 forglu_c	RAVEN
MCDC	$1 \text{ malcoa_c} <=>1 \text{ co2_c} + 1 \text{ accoa_c}$	RAVEN
MDH	1 nad_c + 1 mal_L_c <=>1 nadh_c + 1 oaa_c + 1 h_c	RAVEN
MSAR	$1 \text{ nadp_c} + 1 \text{ 3hpp_c} \le 1 \text{ nadph_c} + 1 \text{ h_c} + 1 \text{ msa_c}$	RAVEN
MTRI	1 5mdr1p_c <=>1 5mdru1p_c	RAVEN
NNDMBRT	$1 \text{ nicrnt_c} + 1 \text{ dmbzid_c} <=>1 \text{ h_c} + 1 \text{ nac_c} + 1 \text{ 5prdmbz_c}$	RAVEN
OCOAT1	1 succoa_c + 1 acac_c <=>1 succ_c + 1 aacoa_c	RAVEN
PALDH	1 h2o_c + 1 Pald_c <=>1 pi_c + 1 acald_c	RAVEN
PC20M	$1 \text{ amet_c} + 1 \text{ dscl_c} <=>1 \text{ ahcys_c} + 1 \text{ h_c} + 1 \text{ pre3a_c}$	RAVEN
PC6AR	$1 \text{ nadp_c} + 1 \text{ pre6b_c} <=>1 \text{ nadph_c} + 1 \text{ h_c} + 1 \text{ pre6a_c}$	RAVEN
PRE3BS	1 nadh_c + 1 o2_c + 1 h_c + 1 pre3a_c <=>	RAVEN
	1 h2o_c + 1 nad_c + 1 pre3b_c	
PTA2	1 pi_c + 1 ppcoa_c <=>1 coa_c + 1 ppap_c	RAVEN
PTAr	1 pi_c + 1 accoa_c <=>1 coa_c + 1 actp_c	RAVEN
PTRCTA	1 akg_c + 1 ptrc_c <=>1 glu_L_c + 1 4abutn_c	RAVEN
R00150	1 atp_c + 1 nh3_c + 1 h2co3_c <=>	RAVEN
	1 h2o_c + 1 adp_c + 1 cbp_c	
R00261	1 glu_L_c <=>1 co2_c + 1 4abut_c	RAVEN
R00282	1 nadph_c + 1 C00028_c + 1 h_c <=>1 nadp_c + 1 C00030_c	RAVEN

Table S6 continued from previous page			
R00357	1 h2o_c + 1 o2_c + 1 CE1787_c <=>	RAVEN	
	$1 \text{ nh3_c} + 1 \text{ h2o2_c} + 1 \text{ oaa_c}$		
R00481	1 o2_c + 1 CE1787_c <=>1 h2o2_c + 1 iasp_c	RAVEN	
R00552	1 h2o_c + 1 argL_c <=>1 nh3_c + 1 citrL_c	RAVEN	
R00650	$1 \text{ amet_c} + 1 \text{ hcys_L_c} \le 1 \text{ ahcys_c} + 1 \text{ met_L_c}$	RAVEN	
R00749	$1 \text{ etha_c} <=>1 \text{ nh3_c} + 1 \text{ acald_c}$	RAVEN	
R01168	1 his_Lc <=>1 nh3_c + 1 urcan_c	RAVEN	
R01179	1 ac_c + 1 btcoa_c <=>1 accoa_c + 1 C00246_c	RAVEN	
R01196	$1 \cos 2 c + 1 \arccos c + 2 h c + 2 \operatorname{fdxrd} c \ll >$	RAVEN	
101190	$1 \operatorname{coa_cc} + 1 \operatorname{pyr_cc} + 2 \operatorname{fdxo_22_2_c}$	ICAVEN	
R01353	$1 \text{ atp_c} + 1 \text{ C00163_c} \le > 1 \text{ adp_c} + 1 \text{ ppap_c}$	RAVEN	
R01360	1 C00356_c <=>1 accoa_c + 1 acac_c	RAVEN	
R01365	1 btcoa_c + 1 acac_c <=>1 C00246_c + 1 aacoa_c	RAVEN	
R01579	1 h2o_c + 1 C00819_c <=>1 nh3_c + 1 glu_D_c	RAVEN	
R01625	1 coa_c + 1 C03688_c <=>1 pap_c + 1 ACP_c	RAVEN	
R01812	$2 \text{ nadp_c} + 1 \text{ thbpt_c} \le 2 \text{ nadph_c} + 2 \text{ h_c} + 1 \text{ C06313_c}$	RAVEN	
R01959	1 h2o_c + 1 Lfmkynr_c <=>1 for_c + 1 Lkynr_c	RAVEN	
R02085	1 C00356_c <=>1 h2o_c + 1 3mgcoa_c	RAVEN	
R02328	$1 \text{ g1p_c} + 1 \text{ dttp_c} \le 1 \text{ ppi_c} + 1 \text{ dtdpglu_c}$	RAVEN	
R02466	1 3sala_c <=>1 co2_c + 1 C00519_c	RAVEN	
R02487	$1 \text{ fad_c} + 1 \text{ glutcoa_c} -> 1 \text{ co2_c} + 1 \text{ b2coa_c} + 1 \text{ fadh2_c}$	RAVEN	
R02488	1 glutcoa_c + 1 C04253_c <=>	RAVEN	
	$1 \cos_{-c} + 1 \cos_{-c} + 1 \cos_{-c} + 1 \cos_{-c}$		
R02662	1 ibcoa_c + 1 C15973_c <=>1 coa_c + 1 C15977_c	RAVEN	
R03055	1 h2o_c + 1 C21028_c <=>1 C21029_c	RAVEN	
R03174	1 C15973_c + 1 C15980_c <=>1 coa_c + 1 C15979_c	RAVEN	
R03546	$1 \text{ h_c} + 1 \text{ h2co3_c} + 1 \text{ cynt_c} <=>1 \text{ co2_c} + 1 \text{ cbm_c}$	RAVEN	
R03877	1 h2o_c + 1 atp_c + 1 mg2_c + 1 ppp9_c <=>	RAVEN	
N03011	$1 \text{ adp_c} + 1 \text{ pi_c} + 2 \text{ h_c} + 1 \text{ mppp9_c}$	RAVEN	
R04097	1 ivcoa_c + 1 C15973_c <=>1 coa_c + 1 C15975_c	RAVEN	
R04143	$1 \text{ atp_c} + 1 \text{ 5mtr_c} \le 1 \text{ adp_c} + 1 \text{ 5mdr1p_c}$	RAVEN	
R04383	1 5dh4dglcn_c <=>1 C04349_c	RAVEN	
R04435	1 pi_c + 1 C06241_c <=>1 h2o_c + 1 pep_c + 1 acmanap_c	RAVEN	
R04448	$1 \text{ atp_c} + 1 \text{ 4mhetz_c} \le 1 \text{ adp_c} + 1 \text{ 4mpetz_c}$	RAVEN	
R05062	1 C05986_c <=>2 h_c + 2 cytc_c + 1 C05985_c	RAVEN	
R05149	$2 \text{ amet_c} + 1 \text{ pre}6b_c <=>$	RAVEN	
R03149	$1 \cos_c + 2 \text{ ahcys_c} + 1 \cos_6 408 \text{_c}$	RAVEN	
R05177	1 C06408_c <=>1 hgbyr_c	RAVEN	
R05180	$1 \text{ amet_c} + 1 \text{ pre3b_c} <=>1 \text{ ahcys_c} + 1 \text{ pre4_c}$	RAVEN	
R05181	$1 \text{ amet_c} + 1 \text{ pre4_c} \le 1 \text{ ahcys_c} + 1 \text{ pre5_c}$	RAVEN	
R05219	$1 \text{ ahcys_c} + 1 \text{ ac_c} + 1 \text{ pre6a_c} <=>$	RAVEN	
1100219	$1 \text{ h}20_c + 1 \text{ amet_c} + 1 \text{ pre}5_c$	IMALEIN	
R05221	1 atp_c + 1 adocbi_c <=>1 adp_c + 1 adocbip_c	RAVEN	
R05222	1 gtp_c + 1 adocbip_c <=>1 ppi_c + 1 agdpcbi_c	RAVEN	
R05223	1 gmp_c + 1 adocbl_c <=>1 rdmbzi_c + 1 agdpcbi_c	RAVEN	

Table S6 continued from previous page			
R05225	4 h2o_c + 4 atp_c + 4 glnL_c + 1 C06506_c <=>	RAVEN	
100225	$4 \text{ adp_c} + 4 \text{ pi_c} + 4 \text{ glu_L_c} + 1 \text{ adcobhex_c}$	1071V LIV	
R05227	$1 \text{ h2o_c} + 1 \text{ atp_c} + 1 \text{ cobalt2_c} + 1 \text{ hgbam_c} <=>$	RAVEN	
	$1 \text{ adp_c} + 1 \text{ pi_c} + 1 \text{ h_c} + 1 \text{ co}2\text{dam_c}$		
R05285	$1 \text{ C}06753_c \le 2 \text{ h_c} + 2 \text{ cytc_c} + 1 \text{ C}06754_c$	RAVEN	
R05576	1 nadp_c + 1 C05116_c <=>1 nadph_c + 1 h_c + 1 aacoa_c	RAVEN	
R05661	$1 atp_c + 1 d5kg_c <=>1 adp_c + 1 d5kgp_c$	RAVEN	
R05794	$1 \text{ chol_c} + 1 \text{ cdpdag_cho_c} \le 1 \text{ cmp_c} + 1 \text{ pchol_cho_c}$	RAVEN	
R05808	$1 \text{ amet_c} + 1 \text{ C11538_c} <=>1 \text{ ahcys_c} + 1 \text{ C17401_c}$	RAVEN	
R05810	$1 \text{ amet_c} + 1 \text{ copre4_c} \le 1 \text{ ahcys_c} + 1 \text{ codscl5a_c}$	RAVEN	
R05812	$1 \text{ nadh_c} + 1 \text{ h_c} + 1 \text{ copre6_c} \le >1 \text{ nad_c} + 1 \text{ codhpre6_c}$	RAVEN	
R06529	$1 \text{ atp_c} + 1 \text{ applp_c} + 1 \text{ adcobhex_c} \le >$	RAVEN	
1000029	$1 \text{ adp_c} + 1 \text{ pi_c} + 1 \text{ adocbip_c}$		
R06530	$1 thrp_c <=>1 co2_c + 1 applp_c$	RAVEN	
R06558	$1 \text{ gtp_c} + 1 \text{ adocbi_c} <=>1 \text{ gdp_c} + 1 \text{ adocbip_c}$	RAVEN	
R06943	$1 \text{ fad_c} + 1 \text{ C14143_c} <=>1 \text{ fadh2_c} + 1 \text{ C14144_c}$	RAVEN	
R07229	$1 \text{ C00030_c} + 1 \text{ sel_c} -> 1 \text{ h2o_c} + 1 \text{ C00028_c} + 1 \text{ slnt_c}$	RAVEN	
R07302	$1 \text{ atp_c} + 1 \text{ appl_c} + 1 \text{ adcobhex_c} <=>$	RAVEN	
N07302	$1 \text{ adp_c} + 1 \text{ pi_c} + 1 \text{ adocbi_c}$	RAVEN	
R07392	1 5mdru1p_c <=>1 h2o_c + 1 2h3k5m_c	RAVEN	
R07395	1 h2o_c + 1 2h3k5m_c <=>1 pi_c + 1 dhmtp_c	RAVEN	
R07412	1 h2o_c + 2 C00028_c + 1 hemeO_c <=>	RAVEN	
N01412	$2 \text{ C}00030_c + 1 \text{ hemeA_c}$	RAVEN	
R07599	1 thmpp_c + 1 3mob_c ->1 co2_c + 1 2mhop_c	RAVEN	
R07600	1 C15972_c + 1 2mhop_c ->1 thmpp_c + 1 C15977_c	RAVEN	
R07601	1 thmpp_c + 1 4mop_c ->1 co2_c + 1 3mhtpp_c	RAVEN	
R07602	1 C15972_c + 1 3mhtpp_c ->1 thmpp_c + 1 C15975_c	RAVEN	
R07603	1 thmpp_c + 1 3mop_c ->1 co2_c + 1 2mhob_c	RAVEN	
R07604	1 C15972_c + 1 2mhob_c ->1 thmpp_c + 1 C15979_c	RAVEN	
R07634	1 h2o_c + 1 Lcyst_c <=>1 nh3_c + 1 pyr_c + 1 so3_c	RAVEN	
R07772	$1 \text{ h}2o_c + 1 \text{ codscl}5a_c <=>1 \text{ acald}_c + 1 \text{ codscl}5b_c$	RAVEN	
R07774	$1 \text{ amet_c} + 1 \text{ codhpre6_c} <=>$	RAVEN	
N01114	$1 \cos_c + 1 \text{ ahcys_c} + 1 \text{ codscl7_c}$		
R07775	$1 \text{ amet_c} + 1 \text{ codscl7_c} <=>1 \text{ ahcys_c} + 1 \text{ codscl8x_c}$	RAVEN	
R07832	1 accoa_c + 1 C16272_c <=>1 ac_c + 1 C16273_c	RAVEN	
R08090	1 C04675_c <=>1 ac_c + 1 C16466_c	RAVEN	
R08227	$1 \text{ h}_{20_c} + 1 \text{ 56dh}_{5}\text{flura}_{_c} -> 1 \text{ aflburppa}_{_c}$	RAVEN	
R08503	1 C16737_c <=>1 d5kg_c	RAVEN	
R08603	1 h2o_c + 1 dkdi_c <=>1 C16737_c	RAVEN	
R08836	1 o2_c + 1 C00355_c <=>1 C17758_c	RAVEN	
R09083	1 o2_c + 1 fmnh2_c <=>	RAVEN	
UUAUOO	$1 \text{ h}2o_c + 1 \text{ e}4p_c + 1 \text{ dmbzid_c}$	RAVEN	
R09707			
1000101	1 C19830_c <=>1 C19831_c	RAVEN	

	Table S6 continued from previous page	
R09951	1 nad_c + 1 inost_c <=> 1 nadh_c + 1 h_c + 1 C20251_c	RAVEN
	1 nad.c + 1 C06153.c <=>	
R09953		RAVEN
D00000	1 nadh_c + 1 h_c + 1 2ins_c	DAVEN
R09993	1 h2o_c + 1 C20267_c <=>1 nh3_c + 1 4ahmmp_c	RAVEN
R10061	2 amet_c + 1 sarcs_c <=>2 ahcys_c + 1 glyb_c	RAVEN
R10074	1 glutcoa_c + 1 C04253_c <=>1 C02411_c + 1 C04570_c	RAVEN
R10150	$1 \text{ tet_c} + 2 \text{ C05359_c} <=>2 \text{ tsul_c}$	RAVEN
R10151	$5 \text{ h}_{20_c} + 1 \text{ tsul}_{_c} <=>2 \text{ so}_{_c} + 10 \text{ h}_{_c} + 8 \text{ cyt}_{_c}$	RAVEN
R10152	1 undefined_148_c + 1 undefined_158_c <=> 1 C19692_c + 1 undefined_159_c	RAVEN
	1 dhna_c + 1 C05847_c <=>	
R10757	1 co2_c + 1 ppi_c + 1 C19847_c	RAVEN
D10000	1 atp_c + 1 coa_c + 1 3mtp_c <=>	DAVEN
R10820	$1 \text{ ppi}_{-c} + 1 \text{ amp}_{-c} + 1 \text{ C20870}_{-c}$	RAVEN
D1000C	1 thmpp_c + 1 2obut_c <=>	DAMEN
R10996	$1 \cos^2 c + 1 \cos^2 c$	RAVEN
R10997	1 C15972_c + 1 C21017_c <=>1 thmpp_c + 1 C21018_c	RAVEN
R10998	1 ppcoa_c + 1 C15973_c <=>1 coa_c + 1 C21018_c	RAVEN
R11026	$1 \text{ nad_c} + 1 \text{ C21028_c} <=>1 \text{ nadh_c} + 1 \text{ h_c} + 1 \text{ thym_c}$	RAVEN
R11264	1 C21250_c <=>1 2mcacn_c	RAVEN
R11555	1 pe_hs_c + 1 lipa_c ->1 dag_hs_c + 1 C21461_c	RAVEN
R11556	1 pe_hs_c + 1 lipa_c <=>1 dag_hs_c + 1 C21462_c	RAVEN
R11557	1 pe_hs_c + 1 C21461_c ->1 dag_hs_c + 1 C21463_c	RAVEN
	1 amet_c + 1 C00030_c + 1 C17401_c <=>	
R11580	1 ahcys_c + 1 C00028_c + 1 copre4_c	RAVEN
R12202	1 pe_hs_c + 1 C21994_c <=>1 dag_hs_c + 1 C21995_c	RAVEN
	1 nadp_c + 1 CE2705_c <=>	
R12644	1 nadph_c + 1 h_c + 1 C06313_c	RAVEN
R12897	$1 \text{ atp_c} + 1 \text{ 3mbald_c} <=>1 \text{ adp_c} + 1 \text{ C21214_c}$	RAVEN
RZ5PP	1 h2o_c + 1 5prdmbz_c <=>1 pi_c + 1 rdmbzi_c	RAVEN
SALADC2	1 Lcyst_c <=>1 co2_c + 1 taur_c	RAVEN
	1 nadp_c + 1 dtdprmn_c <=>	
TDPDRR	$\begin{array}{c} 1 \text{ nadp}_{2c} + 1 \text{ dadp}_{1} \text{min}_{2c} & < -> \\ 1 \text{ nadph}_{c} + 1 \text{ h}_{c} + 1 \text{ dtdp}_{4} \text{d6dm}_{c} & \\ \end{array}$	RAVEN
TDPGDH	$\begin{array}{c} 1 \text{ dtdp} \text{hls} + 1 \text{ hls} + 1 \text{ dtdp} \text{ hls} \text{dh} \text{hls} \\ 1 \text{ dtdp} \text{glu} \cdot \text{c} <=>1 \text{ h2o} \cdot \text{c} + 1 \text{ dtdp4d6dg} \cdot \text{c} \end{array}$	RAVEN
TMN	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RAVEN
URCN	1 4izp_c <=>1 h2o_c + 1 urcan_c	RAVEN
r0330	1 nad_c + 1 56dthm_c <=>1 nadh_c + 1 h_c + 1 thym_c	RAVEN
ATPM	$\frac{1 \text{ had} \cdot c + 1 \text{ soddhill} \cdot c - > 1 \text{ had} \cdot c + 1 \text{ th} \cdot c + 1 \text{ th} \cdot c}{\text{h} \cdot 20 \cdot c + \text{atp} \cdot c - > \text{h} \cdot c + \text{pi} \cdot c + \text{adp} \cdot c}$	manual
GLCt2pp	$glcDp + hp \le glcDc + hc$	manual
F6Pt6_2pp	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	manual
GLYCtpp	2 pi_c + top_p <=>top_c + 2 pi_p glyc_c <=>glyc_p	
		manual
PYRt2rpp	$h_p + pyr_p <=>h_c + pyr_c$	manual
FBP	fdp_c + h2o_c <=>f6p_c + pi_c	manual
ACALDtpp	acald_p <=>acald_c	manual

AGAID		
ACALD	$acald_c + coa_c + nad_c \le accoa_c + h_c + nadh_c$	manual
ETOHtrpp	$etoh_p <=>etoh_c$	manual
PFL	$coa_c + pyr_c \le accoa_c + for_c$	manual
FBA3	$s17bp_c <=>dhap_c + e4p_c$	manual
CITt3pp	$h_p + cit_p -> h_c + cit_c$	manual
G6Pt6_2pp	2 pi_c + g6p_p ->g6p_c + 2 pi_p	manual
RBK	$atp_c + rib_D_c <=> adp_c + h_c + r5p_c$	manual
PPK2	$atp_c + ppi_c <=> adp_c + pppi_c$	manual
ECTtra	$ect_L_p \le ect_L_c$	manual
AACPS9	$ACP_c + atp_c + octa_c \le amp_c + ocACP_c + ppi_c$	manual
AACPS8	$ACP_c + atp_c + dca_c \le amp_c + dcaACP_c + ppi_c$	manual
AACPS7	$ACP_c + atp_c + ddca_c \le amp_c + ddcaACP_c + ppi_c$	manual
AACPS6	$ACP_c + atp_c + ocdca_c \le amp_c + ocdcaACP_c + ppi_c$	manual
AACPS3	$ACP_c + atp_c + hdca_c \le amp_c + palmACP_c + ppi_c$	manual
AACPS1	ACP_c + atp_c + ttdca_c <=>amp_c + myrsACP_c + ppi_c	manual
G5SADs	$glu5sa_c <=>1pyr5c_c + h_c + h2o_c$	manual
MHPGLUT	$hcys_L_c + mhpglu_c \le met_L_c + hpglu_c$	manual
FOLR2	$nadph_c + fol_c \le dhf_c + nadp_c$	manual
AACOAT	$acac_c + atp_c + coa_c \le aacoa_c + amp_c + ppi_c$	manual
NDPK(dapd:amp)	$dadp_c + adp_c <=> camp_c + atp_c + h_c$	manual
R02088	$dad_{2c} + pi_c <=> camp_c + h2o_c$	manual
R00706	$msa_c + coa_c + nad_c \le accoa_c + co2_c + nadh_c + h_c$	manual
FESD1s	$2 h_c + h_{202c} + 2 4f_{e4sc} -> 2 h_{20c} + 2 f_{e3c} + 2 3f_{e4sc}$	manual
FESR	$fe2_c + 3fe4s_c -> 4fe4s_c$	manual
prpB	2mcacn_T_c + h2o_c <=>micit_c	manual
R01623	$ACP_c + h2o_c <=> pan4p_c + apoACP_c$	manual

2.6e-05 2fe2s_c + 0.00026 4fe4s_c + 0.0002 5mthf_c + 0.0002 accoa_c + 0.3675 ala_L_c + 0.23851 argL_c + 0.07793 asn_L_c + 0.19512 asp_L_c + 59.98 atp_c + 0.0045 ca2_c + 0.0045 cl_c + 0.0001 coa_c + 0.003 cobalt2_c + 0.1638 ctp_c + 0.003 cu2_c + 0.03049 cys_L_c + 0.01817 datp_c + 0.032029 dctp_c + 0.03241 dgtp_c + 0.0182 dttp_c + 0.2425 ect_L_c +	
0.07793 asn_L_c + 0.19512 asp_L_c + 59.98 atp_c + 0.0045 ca2_c + 0.0045 cl_c + 0.0001 coa_c + 0.003 cobalt2_c + 0.1638 ctp_c + 0.003 cu2_c + 0.03049 cys_L_c + 0.01817 datp_c + 0.032029 dctp_c +	
0.0045 ca2_c +0.0045 cl_c + 0.0001 coa_c + 0.003 cobalt2_c + 0.1638 ctp_c + 0.003 cu2_c + 0.03049 cys_L_c + 0.01817 datp_c + 0.032029 dctp_c +	
$\begin{array}{c} 0.003 \; \mathrm{cobalt2_c} \; + \; 0.1638 \; \mathrm{ctp_c} \; + \; 0.003 \; \mathrm{cu2_c} \; + \\ 0.03049 \; \mathrm{cys_L_c} \; + \; 0.01817 \; \mathrm{datp_c} \; + \; 0.032029 \; \mathrm{dctp_c} \; + \\ \end{array}$	
$0.03049 \text{ cys_L_c} + 0.01817 \text{ datp_c} + 0.032029 \text{ dctp_c} +$	
$0.03241 \text{ dgtp_c} + 0.0182 \text{ dttp_c} + 0.2425 \text{ ect__L_c} +$	
$0.0002 \text{ fad_c} + 0.0067 \text{ fe2_c} + 0.0067 \text{ fe3_c} +$	
$0.11971 \text{ gln_L_c} + 0.41808 \text{ glu_L_c} + 0.25947 \text{ gly_c} +$	
$0.2086 \text{ gtp_c} + 45.56 \text{ h} 20\text{_c} + 0.00939 \text{ h} \text{dect_c} +$	
$0.0002 \text{ hemeO_c} + 0.08145 \text{ his_L_c} + 0.1459 \text{ ile_L_c} +$	
BIOMASS_low_salinity $0.1691 \text{ k_c} + 0.019456 \text{ kdo2lipid4_e} + 0.3594 \text{ leu_L_c} + $ manual	BIOMASS_low_salinity
$0.07997 \text{ lys_L_c} + 0.08023 \text{ met_L_c} + 0.0075 \text{ mg2_c} +$	
$0.003 \text{ mn}_{2-c} + 0.003 \text{ mobd}_{-c} + 0.013894 \text{ murein}_{5px4p_p} +$	
$0.263 \text{ na1_c} + 0.0017 \text{ nad_c} + 4\text{e-}05 \text{ nadh_c} +$	
$0.0001 \text{ nadp_c} + 0.0003 \text{ nadph_c} + 0.0112 \text{ nh4_c} +$	
$0.0268 \text{ pe}160_c + 0.045946 \text{ pe}160_p + 0.0081 \text{ pe}161_c +$	
$0.02106 \text{ pe}161_p + 0.10993 \text{ phe}_L_c + 0.15654 \text{ pro}_L_c +$	
$0.17139 \text{ ser_L_c} + 0.0002 \text{ sheme_c} + 0.0037 \text{ so4_c} +$	
$9e-05 \operatorname{succoa}_{c} + 0.16669 \operatorname{thr}_{L}_{c} + 0.04774 \operatorname{trp}_{L}_{c} +$	
$0.07644 \text{ tyr_L_c} + 5.5 \text{e-} 05 \text{ udcpdp_c} + 0.126 \text{ utp_c} +$	
$0.23021 \text{ val_L_c} + 0.003 \text{ zn2_c} -> 59.81 \text{ adp_c} +$	
$59.81 \text{ h_c} + 58.8062 \text{ pi_c} + 0.7498 \text{ ppi_c}$	

2.6e-05 2fc2s.c + 0.00026 4fc4s.c + 0.0002 5mthf.c + 0.0002 accou.c + 0.333055 als.L.c + 0.216148 argL.c + 0.216148 argL.c + 0.0706132 asnL.c + 0.176825 aspL.c + 56.81 atp.c + 0.0045 ca2.c + 0.0045 cd.c + 0.0001 coa.c + 0.0033 cobalt2.c + 0.1612 ctp.c + 0.033 cu2.c + 0.0276294 cysL.c + 0.0181542 datp.c + 0.00376294 cysL.c + 0.0324077 dgtp.c + 0.0182 dttp.c + 0.338121 cctL.c + 0.0002 fad.c + 0.0007 fc2.c + 0.0007 fc3.c + 0.33919 gluL.c + 0.235141 gly.c + 0.0926154 hdcct.c + 0.0002 heme0.c + 0.0738118 hisL.c + 0.132208 lie.L.c + 0.19456 kdc3bip44 + 0.325218 lie.L.c + 0.0724631 lysL.c + 0.0025 lie.L.c + 0.0075 fo3.c + 0.00373012 hisL.c + 0.0075 mg2.c + 0.003 mn2.c + 0.013394 murein5px4p.p + 0.339268 na1.c + 0.0017 nad.c + 4c-05 nadh.c + 0.0001 nadp.c + 0.045946 pe160.p + 0.00765868 pe161.c + 0.0245946 pe160.p + 0.00765868 pe161.c + 0.02166 pe161.p + 0.0991598 pheL.c + 0.0143843 proL.c + 0.053813 proL.c + 0.0032 andph.c + 0.0153319 scrL.c + 0.0032685 trpL.c + 0.0432685 trpL.c + 0.0332685 trpL.c + 0.00327665 dyrL.c + 0.0332685 trpL.c + 0.0582685 dalc + 0.003 ara.2 c + 0.18485 glnL.c - 556.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 pi.c + 0.745319 ppi.c but.c <=>56.81 adp.c + 56.81 pi.c + 0.745319 ppi.c but.c + 0.003 ppi	Table S6 continued from previous page					
0.216148 arg_L.c + 0.0706132 asn_L.c + 0.176825 asp_L.c + 56.81 atp_c + 0.0045 ca2_c + 0.0045 ca2_c + 0.0005 coa_c + 0.0003 cobat2_c + 0.0045 cl2_c + 0.0005 ca2_c + 0.0076204 cys_L.c + 0.1612 ctp_c + 0.003 cu2_c + 0.0276294 cys_L.c + 0.0181542 datp_c + 0.007466 dctp_c + 0.00324077 dgtp_c + 0.0182 dttp_c + 0.38121 ect_L.c + 0.0002 fad_c + 0.0067 fc2_c + 0.0067 fc3_c + 0.38121 ect_L.c + 0.0324077 dgtp_c + 0.0182 dttp_c + 0.0067 fc3_c + 0.34919 glu_L.c + 0.235141 gly_c + 0.214914 gtp_c + 56.81 h2o_c + 0.0926154 hdect_c + 0.0002 hemeO_c + 0.0738118 his_L.c + 0.00216 hemeO_c + 0.0738118 his_L.c + 0.0020 hemeO_c + 0.0738118 his_L.c + 0.003 mm2_c + 0.013894 mureinSps4p_p + 0.332968 nal_c + 0.0013894 mureinSps4p_p + 0.332968 nal_c + 0.0017 nad_c + 4e-05 nadh_c + 0.0001 nadp_c + 0.0017 nad_c + 4e-05 nadh_c + 0.00268837 pe160_c + 0.045946 pe160_p + 0.00765868 pe161_c + 0.02166 pe161_p + 0.0991598 phe_L.c + 0.02166 pe161_p + 0.0991598 phe_L.c + 0.0432635 trp_L.c + 0.00327864 c + 9e-05 succoa_c + 0.151061 thr_L.c + 0.0432635 trp_L.c + 0.0632735 tyr_L.c + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.2309 utp_c + 0.208626 val_l.c + 0.0032 nal_c c + 0.10485 glm_L.c ⇒ 56.81 alp_c + 56.81 hc + 56.81 pi_c + 0.745319 ppi_c BUTt but_c <=>but_c = 0.0042658 trp_L.c + 0.0032 nal_c c + 0.004856 glm_L.c ⇒ 56.81 hc + 56.81 pi_c + 0.745319 ppi_c BUTt but_c <=>but_c = 0.004266 pe160_c + 0.00		$2.6e-05 2fe2s_c + 0.00026 4fe4s_c + 0.0002 5mthf_c$				
0.176825 asp_L.c + 56.81 atp.c + 0.0045 ca2.c + 0.0045 clac.c + 0.0045 clac.c + 0.0001 cac.c + 0.003 cobalt2.c + 0.1612 ctp.c + 0.003 cac.c + 0.00276294 cys_L.c + 0.0181542 datp.c + 0.0972466 dctp.c + 0.0324077 dgtp.c + 0.0182 dttp.c + 0.338121 cet_L.c + 0.0026 fac.c + 0.00067 fe2.c + 0.00667 fe3.c + 0.00067 fe3.c + 0.00028 fe3.c + 0.00028 fe3.c + 0.00028 fe3.c + 0.00028 fe3.c + 0.0003 mal_c c + 0.0001 mal_c c + 0.0002 sheme.c + 0.003 mal_c c + 0.0003 mal_c c + 0		$+ 0.0002 \ accoa_c + 0.333055 \ ala_L_c +$				
0.0045 cl.c + 0.0001 coa.c + 0.003 cobalt2.c + 0.1612 ctp.c + 0.003 cu2.c + 0.0076294 cys.L.c + 0.0181542 datp.c + 0.0072466 dctp.c + 0.00324077 dgtp.c + 0.0182 dttp.c + 0.338121 cct_L.c + 0.0324077 dgtp.c + 0.0182 dttp.c + 0.338121 cct_L.c + 0.0002 fadc + 0.0067 fe2.c + 0.0067 fe3.c + 0.349119 glu.L.c + 0.235141 gly.c + 0.214914 gtp.c + 56.81 h2c.c + 0.0926154 hdect.c + 0.0002 hemeO.c + 0.0738118 his.L.c + 0.132208 ile.L.c + 0.132208 ile.L.c + 0.19456 kdo2lipid4.e + 0.325711 leu.L.e + 0.0738118 his.L.c + 0.003 mn2.c + 0.0737273 met.L.e + 0.00727973 met.L.e + 0.0072793 me		$0.216148 \text{ arg_L_c} + 0.0706132 \text{ asn_L_c} +$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0.176825 \text{ asp_L-c} + 56.81 \text{ atp_c} + 0.0045 \text{ ca2_c} +$				
0.0181542 datp.c + 0.0972466 detp.c + 0.0324077 dgtp.c + 0.0182 dttp.c + 0.338121 ect_L.c + 0.0324077 dgtp.c + 0.0067 fe2.c + 0.0067 fe3.c + 0.0067 fe3.c + 0.349719 glu_L.c + 0.235141 gly_c + 0.214914 gtp.c + 56.81 h2o_c + 0.0926154 hdect_c + 0.0002 hemeO_c + 0.0738118 his_L.c + 0.0132008 ile_L.c + 0.19456 kdo2lipid4_c + 0.325711 leu_L.c + 0.0724631 lys_L.c + 0.0727073 met_L.c + 0.0075 mg2_c + 0.003 mn2_c + 0.013894 murein5px4p_p + 0.339268 na1_c + 0.0017 nad_c + 4e-05 nadh_c + 0.0001 nadp_c + 0.003 nadph_c + 0.0112 nhd_c + 0.0268837 pe160_c + 0.045946 pe160_p + 0.00765868 pe161_c + 0.02106 pe161_p + 0.0991598 phe_L.c + 0.0414843 pro_L.c + 0.155319 ser_L.c + 0.0432635 trp_L.c + 0.0592726 tyr_L.c + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.0432635 trp_L.c + 0.0692726 tyr_L.c + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_L.c + 0.003 m2_c + 0.108485 gln_L.c >56.81 adp_c + 56.81 h_c + 56.81 pi_c + 0.745319 ppi_c BUTt		$0.0045 \text{ cl_c} + 0.0001 \text{ coa_c} + 0.003 \text{ cobalt2_c} +$				
0.0324077 dgtp.c + 0.0182 dttp.c + 0.038121 ect_L.c + 0.0002 fact_c + 0.0007 fe2.c + 0.0067 fe3.c + 0.349719 glu_L.c + 0.235141 gly.c + 0.214914 gtp.c + 56.81 h2o.c + 0.0926154 hdect_c + 0.0002 hemeO_c + 0.0738118 his_L.c + 0.132208 ile_L.c + 0.0132208 ile_L.c + 0.0075 mg2.c + 0.003 mn2.c + 0.01324084 murein5px4p_p + 0.339268 na1.c + 0.013894 murein5px4p_p + 0.339268 na1.c + 0.013894 myrein5px4p_p + 0.339268 na1.c + 0.0037 nad.c + 4e-05 nadh.c + 0.0001 nadp.c + 0.0030 nadph.c + 0.0112 nh4.c + 0.0268837 pe160.c + 0.04396 pe160.p + 0.00765868 pe161.c + 0.02106 pe161.p + 0.0991598 phe_L.c + 0.02106 pe161.p + 0.0991598 phe_L.c + 0.0432635 trp_L.c + 0.058368 pe161.c + 0.0432635 trp_L.c + 0.0592726 tyr_L.c + 0.0432635 trp_L.c + 0.0032 shere_c + 0.10387 sod.c + 0.13309 utp.c + 0.208626 val_L.c + 0.003 zn2.c + 0.108485 gln_L.c + 0.208626 val_L.c + 0.003 zn2.c + 0.108485 gln_L.c + 0.556.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c BUTt but.c <=>but.c <=>but.c <=>but.c <=>but.c <=>but.c <=>amnual iBTt ibt.e <=>>but.c <=>but.c <=>amnual iBTt ibt.e <=>>but.c <=>but.c <=>amnual iBTt ibt.e <=>>but.c <=>amnual iBTt ibt.e <=>but.c <=>amnual ibt.e <=>amnua		$0.1612 \text{ ctp_c} + 0.003 \text{ cu2_c} + 0.0276294 \text{ cys_L_c} +$				
0.0324077 dgtp.c + 0.0182 dttp.c + 0.038121 ect_L.c + 0.0002 fact_c + 0.0007 fe2.c + 0.0067 fe3.c + 0.349719 glu_L.c + 0.235141 gly.c + 0.214914 gtp.c + 56.81 h2o.c + 0.0926154 hdect_c + 0.0002 hemeO_c + 0.0738118 his_L.c + 0.132208 ile_L.c + 0.0132208 ile_L.c + 0.0075 mg2.c + 0.003 mn2.c + 0.01324084 murein5px4p_p + 0.339268 na1.c + 0.013894 murein5px4p_p + 0.339268 na1.c + 0.013894 myrein5px4p_p + 0.339268 na1.c + 0.0037 nad.c + 4e-05 nadh.c + 0.0001 nadp.c + 0.0030 nadph.c + 0.0112 nh4.c + 0.0268837 pe160.c + 0.04396 pe160.p + 0.00765868 pe161.c + 0.02106 pe161.p + 0.0991598 phe_L.c + 0.02106 pe161.p + 0.0991598 phe_L.c + 0.0432635 trp_L.c + 0.058368 pe161.c + 0.0432635 trp_L.c + 0.0592726 tyr_L.c + 0.0432635 trp_L.c + 0.0032 shere_c + 0.10387 sod.c + 0.13309 utp.c + 0.208626 val_L.c + 0.003 zn2.c + 0.108485 gln_L.c + 0.208626 val_L.c + 0.003 zn2.c + 0.108485 gln_L.c + 0.556.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c BUTt but.c <=>but.c <=>but.c <=>but.c <=>but.c <=>but.c <=>amnual iBTt ibt.e <=>>but.c <=>but.c <=>amnual iBTt ibt.e <=>>but.c <=>but.c <=>amnual iBTt ibt.e <=>>but.c <=>amnual iBTt ibt.e <=>but.c <=>amnual ibt.e <=>amnua						
0.0002 fad.c + 0.0067 fe2.c + 0.0067 fe3.c + 0.319719 glu_L.c + 0.235141 gly_c + 0.214914 gtp_c + 56.81 ho_c + 0.0926154 hdect_c + 0.0002 hemeO_c + 0.0738118 his_Lc + 0.132208 ile_L.c + 0.19456 kdo2lipid4.e + 0.325711 leu_L.c + 0.0724631 lys_L.c + 0.0727073 met_L.c + 0.0724631 lys_L.c + 0.0727073 met_L.c + 0.0075 mg2.c + 0.003 mn2.c + 0.013894 murein5px4p.p + 0.339268 nal.c + 0.0017 nad.c + 4e.05 nadh.c + 0.0001 nadp_c + 0.0003 nadph.c + 0.0112 nh4.c + 0.0268837 pe160.c + 0.045946 pe160.p + 0.0991598 phe_L.c + 0.02106 pe161.p + 0.0991598 phe_L.c + 0.041843 pro_L.c + 0.155319 ser_L.c + 0.04392635 trp_L.c + 0.0037 so4.c + 9e.05 succoa.c + 0.151061 thr_L.c + 0.04392635 trp_L.c + 0.0032726 tyr_L.c + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_L.c + 0.003 m2_c + 0.108485 gln_L.c ->56.81 adp_c + 56.81 h_c + 56.81 pi_c + 0.745319 ppi_c BUTt but_e <=>but_e < but_e <=>but_e manual MALONt malon.c <=>manual MALONt malon.c <=>manual MALONt malon.c <=>manual ABBUTt glutar_e <=>pluac manual ADPACtd adpac_e <=>adpac_e manual R06944 adpac_e <=>adpac_e manual R06942 23dhacoa_e + h2o_e <=>adpac_e manual MALONt h2o_e + nad_e <=>accoa_e + succoa_e manual MALONt manual R06942 23dhacoa_e + h2o_e <=>adpac_e manual MALONt manual ADPCOADH3 h2o_e + nad_e <=>accoa_e + succoa_e manual MALONt manual ADPCOADH3 h2o_e + nad_e + oxptn_e <=> manual OXPTNDH h2o_e + nad_e + oxptn_e <=> manual clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e + clutar_e		$0.0324077 \text{ dgtp_c} + 0.0182 \text{ dttp_c} + 0.338121 \text{ ect_L_c} +$				
0.349719 glu_L.c + 0.235141 gly_c +		~ -				
0.214914 tpp.c + 56.81 h2o.c + 0.0926154 hdect.c + 0.0002 hemeO.c + 0.0738118 his.L.c + 0.132208 lie.L.c + 0.013818 his.L.c + 0.132208 lie.L.c + 0.19456 kdo2lipid4.e + 0.325711 leu.L.c + 0.0724631 lys.L.c + 0.0727073 met.L.c + 0.0075 mg2.c + 0.003 mn2.c + 0.013894 murein5px4p.p + 0.339268 na1.c + 0.0017 nad.c + 4e-05 nadh.c + 0.0001 nadp.c + 0.0003 nadph.c + 0.0112 nb4.c + 0.0268837 pe160.c + 0.02166 pe161.p + 0.0991598 phe.L.c + 0.02166 pe161.p + 0.0991598 phe.L.c + 0.0141843 pro_Lc + 0.1515319 ser_Lc + 0.0002 sheme.c + 0.0337 so4.c + 9e-05 succoa.c + 0.151061 hr. L.c + 0.0032 sheme.c + 0.0037 so4.c + 9e-05 succoa.c + 0.151061 hr. L.c + 0.00432635 trp.L.c + 0.0032 putp.c + 0.208626 val.L.c + 0.003 zn2.c + 0.108485 gh.L.c + 0.208626 val.L.c + 0.003 zn2.c + 0.108485 gh.L.c + 0.56.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c but.e <=>butte but.e <=>but.e but.e <=>but.e manual						
BIOMASS_medium_salinity		9				
BIOMASS_medium_salinity		9 1				
BIOMASS_medium_salinity						
0.0727073 met_L.c + 0.0075 mg2.c + 0.003 mn2.c + 0.013894 murrein5px4p.p + 0.339268 nal.c + 0.0017 nad.c + 4e-05 nadh.c + 0.0001 nadp.c + 0.0003 nadph.c + 0.0112 nh4.c + 0.0268837 pel60.c + 0.045946 pel60.p + 0.00765868 pel61.c + 0.02106 pel61.p + 0.0991598 phe_L.c + 0.141843 pro_L.c + 0.155319 ser_L.c + 0.141843 pro_L.c + 0.155319 ser_L.c + 0.0002 sheme.c + 0.0037 so4.c + 9e-05 succoa.c + 0.151061 thr_L.c + 0.0432635 trp_L.c + 0.0692726 tyr_L.c + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_L.c + 0.003 zn2.c + 0.108485 gln_L.c - 56.81 adp_c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c BUTt	RIOMASS medium salinity	_	manual			
0.013894 murein5px4p_p + 0.33\(\frac{0}{2}\) 68 \text{nal}_c \cdot + 0.0017 \text{nal}_c \cdot + 4e-05 \text{nal}_c \cdot + 0.0001 \text{nal}_c \cdot + 0.0003 \text{nal}_c \cdot + 0.01268837 \text{pel60_c} \cdot + 0.045946 \text{pel60_p} \cdot + 0.00765868 \text{pel61_c} \cdot \cdot + 0.02106 \text{pel60_p} \cdot + 0.00765868 \text{pel60_c} \cdot + 0.02106 \text{pel60_p} \cdot + 0.00765868 \text{pel60_c} \cdot \text{c} \\	DIOWASS_medium_sammty	· ·	Illaliuai			
0.0017 nad.c + 4e-05 nadh.c + 0.0001 nadp.c + 0.0003 nadph.c + 0.0112 nh4.c + 0.0268837 pe160_c + 0.045946 pe160_p + 0.00765868 pe161_c + 0.02106 pe161_p + 0.0991598 phe.L.c + 0.141843 pro_L.c + 0.155319 ser_L.c + 0.141843 pro_L.c + 0.155319 ser_L.c + 0.0002 sheme.c + 0.0037 so4.c + 9e-05 succoa.c + 0.151061 thr_L.c + 0.0432635 trp_L.c + 0.0692726 tyr_L.c + 5.5e-05 udepdp.c + 0.12309 utp_c + 0.208626 val_L.c + 0.003 zn2_c + 0.108485 gln_L.c -56.81 adp.c + 56.81 h.c + 56.81 pi.c + 0.745319 ppi.c BUTt		_				
0.0003 nadph_c + 0.0112 nh4_c + 0.0268837 pe160_c + 0.045946 pe160_p + 0.00765868 pe161_c + 0.02106 pe161_p + 0.0991598 phe_LL_c + 0.141843 pro_L_c + 0.155319 ser_L_c + 0.0002 sheme_c + 0.0037 so4_c + 9e-05 succoa_c + 0.151061 thr_L_c + 0.0432635 trp_L_c + 0.0692726 tyr_L_c + 0.0432635 trp_L_c + 0.0692726 tyr_L_c + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_L_c + 0.003 zn2_c + 0.108485 gln_L_c - >56.81 adp_c + 56.81 h_c + 56.81 pi_c + 0.745319 ppi_c BUTt						
0.045946 pe160_p + 0.00765868 pe161_c + 0.02106 pe161_p + 0.0991598 phe_Lc + 0.02106 pe161_p + 0.0991598 phe_Lc + 0.0141843 pro_Lc + 0.155319 ser_Lc + 0.0002 sheme_c + 0.0037 so4_c + 9e-05 succoa_c + 0.151061 thr_Lc + 0.0432635 trp_Lc + 0.0692726 tyr_Lc + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_Lc + 0.003 zn2_c + 0.108485 gln_Lc ->56.81 adp_c + 56.81 pl_c + 0.745319 ppi_c BUTt						
0.02106 pe161_p + 0.0991598 phe_L.c + 0.141843 pro_L.c + 0.141843 pro_L.c + 0.155319 ser_L.c + 0.0002 sheme_c + 0.0037 so4_c + 9e-05 succoa_c + 0.151061 thr_L.c + 0.0432635 trp_L.c + 0.0692726 tyr_L.c + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_L.c + 0.003 zn2_c + 0.108485 gln_L.c ->56.81 adp_c + 56.81 h_c + 56.81 pi_c + 0.745319 ppi_c BUTt						
0.141843 pro_Lc + 0.155319 ser_Lc + 0.0002 sheme_c + 0.0037 so4_c + 9e-05 succoa_c + 0.151061 thr_Lc + 0.0432635 trp_Lc + 0.0692726 tyr_Lc + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_Lc + 0.003 zn2_c + 0.108485 gln_Lc ->56.81 adp_c + 56.81 h_c + 56.81 pi_c + 0.745319 ppi_c BUTt						
0.0002 sheme.c + 0.0037 so4.c + 9e-05 succoa.c + 0.151061 thr_L.c + 0.0432635 trp_L.c + 0.0692726 tyr_L.c + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_L.c + 0.003 zn2.c + 0.108485 gln_L.c ->56.81 adp_c + 56.81 h_c + 56.81 pi_c + 0.745319 ppi_c BUTt but_e <=>but_c =>but_c manual BTt ibt_e <=>ibt_c manual BTt ibt_e <=>jut_c manual BTt pta_e <=>pta_c manual						
9e-05 succoa_c + 0.151061 thr_Lc + 0.0432635 trp_Lc + 0.0692726 tyr_Lc + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_Lc + 0.003 zn2_c + 0.108485 gln_Lc ->56.81 adp_c + 56.81 h_c + 56.81 pi_c + 0.745319 ppi_c BUTt but_e <=>but_c manual IBTt ibt_e <=>ibt_c manual PTAt pta_e <=>pta_c manual MALONt malon_e <=>malon_c manual 4ABUTt dabut_e <=>4abut_c manual GLUTARt glutar_e <=>glutar_c manual ADPACtd adpac_e <=>adpac_c manual R06944 adpac_e <=>adpac_c manual R06942 23dhacoa_c + atp_c <=> adpac_c manual HADPCOADH3 h_c + nadh_c + oxadpcoa_c 3OXCOAT coa_c + oxadpcoa_c <=>accoa_c + succoa_c manual N2PTNDH 2h_c + nadh_c + oxtn_c <=> alpqut_c manual R12216 glutar_c + akg_c + o2_c <=> alpqut_c		-				
0.0432635 trp_Lc + 0.0692726 tyr_Lc + 5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_Lc + 0.003 zn2_c + 0.108485 gln_Lc ->56.81 adp_c + 56.81 h_c + 56.81 pl_c + 0.745319 ppl_c BUTt						
5.5e-05 udcpdp_c + 0.12309 utp_c + 0.208626 val_Lc + 0.003 zn2_c + 0.108485 gln_Lc - >56.81 adp_c + 56.81 h_c + 56.81 pi_c + 0.745319 ppi_c						
0.208626 val_L_c + 0.003 zn2.c + 0.108485 gln_L_c		$0.0432635 \text{ trp_L}_c + 0.0692726 \text{ tyr_L}_c +$				
->56.81 adp_c + 56.81 h_c + 56.81 pi_c + 0.745319 ppi_c BUTt						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0.208626 \text{ val_L_c} + 0.003 \text{ zn2_c} + 0.108485 \text{ gln_L_c}$				
IBTt ibt_e <=>ibt_c manual 3MBtex 3mb_e <=>3mb_c manual PTAt pta_e <=>pta_c manual MALONt malon_e <=>malon_c manual 4ABUTt 4abut_e <=>4abut_c manual GLUTARt glutar_e <=>glutar_c manual ADPACtd adpac_e <=>adpac_c manual R06944 adpac_e <=>adpac_e + atp_c <=> manual R06942 23dhacoa_c + h2o_c <=>3hadpcoa_c manual HADPCOADH3 3hadpcoa_c + nad_c <=> manual 3OXCOAT coa_c + oxadpcoa_c <=>accoa_c + succoa_c manual OXPTNDH h2o_c + nad_c + oxptn_c <=> manual R12216 glutar_c + akg_c + o2_c <=> manual R12216 manual manual manual		$->56.81 \text{ adp_c} + 56.81 \text{ h_c} + 56.81 \text{ pi_c} + 0.745319 \text{ ppi_c}$				
3MBtex 3mb_e <=>3mb_c manual PTAt pta_e <=>pta_c manual MALONt malon_e <=>malon_c manual 4ABUTt 4abut_e <=>4abut_c manual GLUTARt glutar_e <=>glutar_c manual ADPACtd adpac_e <=>adpac_c manual R06944 adpac_e <=>adpac_e + atp_c <=> manual R06942 23dhacoa_c + h2o_c <=>3hadpcoa_c manual HADPCOADH3 3hadpcoa_c + nad_e <=> manual 3OXCOAT coa_c + oxadpcoa_c <=>accoa_c + succoa_c manual OXPTNDH h2o_c + nad_c + oxptn_c <=> manual R12216 glutar_c + akg_c + o2_c <=> manual			manual			
PTAt pta_e <=>pta_c manual MALONt malon_e <=>malon_c manual 4ABUTt 4abut_e <=>4abut_c manual GLUTARt glutar_e <=>glutar_c manual ADPACtd adpac_e <=>adpac_c manual R06944 adpac_e + coa_e + atp_e <=> adpcoa_e + amp_e + ppi_e manual R06942 23dhacoa_e + h2o_e <=>3hadpcoa_e manual HADPCOADH3 3hadpcoa_e + nad_e <=> h_e + nadh_e + oxadpcoa_e manual 3OXCOAT coa_e + oxadpcoa_e <=>accoa_e + succoa_e manual OXPTNDH h2o_e + nad_e + oxptn_e <=> 2 h_e + nadh_e + glutar_e manual R12216 glutar_e + akg_e + o2_e <=> 2hglut_e + succ_e + co2_e manual		$ibt_e \le ibt_c$	manual			
MALONt malon_e <=>malon_c manual 4ABUTt 4abut_e <=>4abut_c manual GLUTARt glutar_e <=>glutar_c manual ADPACtd adpac_e <=>adpac_e manual R06944 adpac_e + coa_e + atp_e <=> adpcoa_e + amp_e + ppi_e manual R06942 23dhacoa_e + h2o_e <=>3hadpcoa_e manual HADPCOADH3 3hadpcoa_e + nad_e <=> h_e + nadh_e + oxadpcoa_e manual 3OXCOAT coa_e + oxadpcoa_e <=>accoa_e + succoa_e manual OXPTNDH h2o_e + nad_e + oxptn_e <=> 2 h_e + nadh_e + glutar_e manual R12216 glutar_e + akg_e + o2_e <=> 2hglut_e + succ_e + co2_e manual		$3mb_e <=>3mb_c$	manual			
4ABUTt 4abut_e <=>4abut_c manual GLUTARt glutar_e <=>glutar_c manual ADPACtd adpac_e <=>adpac_c manual R06944 adpac_e + coa_e + atp_e <=> adpcoa_e + amp_e + ppi_e manual R06942 23dhacoa_e + h2o_e <=>3hadpcoa_e manual HADPCOADH3 3hadpcoa_e + nad_e <=> h_e + nadh_e + oxadpcoa_e manual 3OXCOAT coa_e + oxadpcoa_e <=>accoa_e + succoa_e manual OXPTNDH h2o_e + nad_e + oxptn_e <=> 2 h_e + nadh_e + glutar_e manual R12216 glutar_e + akg_e + o2_e <=> 2hglut_e + succ_e + co2_e manual		pta_e <=>pta_c	manual			
GLUTARt glutar_e <=>glutar_c manual ADPACtd adpac_e <=>adpac_c manual R06944 adpac_c + coa_c + atp_c <=> adpcoa_c + amp_c + ppi_c manual R06942 23dhacoa_c + h2o_c <=>3hadpcoa_c manual HADPCOADH3 3hadpcoa_c + nad_c <=> adpcoa_c manual 3OXCOAT coa_c + oxadpcoa_c <=>accoa_c + succoa_c manual OXPTNDH h2o_c + nad_c + oxptn_c <=> adputar_c manual R12216 glutar_c + akg_c + o2_c <=> adpcoa_c manual R12216 glutar_c + akg_c + o2_c <=> adpcoa_c manual			manual			
ADPACtd adpac_e <=>adpac_c manual R06944 adpac_c + coa_c + atp_c <=> adpcoa_c + amp_c + ppi_c manual R06942 23dhacoa_c + h2o_c <=>3hadpcoa_c manual HADPCOADH3 3hadpcoa_c + nad_c <=> manual manual 3OXCOAT coa_c + oxadpcoa_c <=>accoa_c + succoa_c manual OXPTNDH h2o_c + nad_c + oxptn_c <=> manual manual R12216 glutar_c + akg_c + o2_c <=> manual manual			manual			
R06944 adpac_c + coa_c + atp_c <=> adpac_c + amp_c + ppi_c manual R06942 23dhacoa_c + h2o_c <=>3hadpcoa_c manual HADPCOADH3 3hadpcoa_c + nad_c <=> manual manual 3OXCOAT coa_c + oxadpcoa_c <=>accoa_c + succoa_c manual OXPTNDH h2o_c + nad_c + oxptn_c <=> manual manual R12216 glutar_c + akg_c + o2_c <=> manual 2 h_c + succ_c + co2_c manual		glutar_e <=>glutar_c	manual			
R06944adpcoa_c + amp_c + ppi_cmanualR06942 $23\text{dhacoa_c} + \text{h2o_c} <=>3\text{hadpcoa_c}$ manualHADPCOADH3 $3\text{hadpcoa_c} + \text{nad_c} <=>$ h_c + nadh_c + oxadpcoa_cmanual3OXCOAT $\cos_c + \cos_c + \cos_c - \cos_c + \sin_c - \cos_c$ manualOXPTNDH $\frac{\text{h2o_c} + \text{nad_c} + \text{oxptn_c} <=>}{2 \text{h_c} + \text{nadh_c} + \text{glutar_c}}$ manualR12216 $\frac{\text{glutar_c} + \text{akg_c} + o2_c <=>}{2\text{hglut_c} + \text{succ_c} + \cos_c}$ manual	ADPACtd	adpac_e <=>adpac_c	manual			
R06942 23dhacoa_c + h2o_c <=>3hadpcoa_c manual	D06044	$adpac_c + coa_c + atp_c <=>$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R00944	adpcoa_c + amp_c + ppi_c	manuai			
HADPCOADH3 $h_c + \text{nadh}_c + \text{oxadpcoa}_c$ manual3OXCOAT $\cos_c + \text{oxadpcoa}_c <=> \text{accoa}_c + \text{succoa}_c$ manualOXPTNDH $\frac{h_{20}c + \text{nad}_c + \text{oxptn}_c}{2 \text{h}_c + \text{nadh}_c + \text{glutar}_c}$ manualR12216 $\frac{\text{glutar}_c + \text{akg}_c + o_{2}_c}{2 \text{h}_c + \text{succ}_c + \text{co}_{2}_c}$ manual	R06942	23dhacoa_c + h2o_c <=>3hadpcoa_c	manual			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HADDCOADH3	3hadpcoa_c + nad_c <=>	manual			
OXPTNDH		$h_c + nadh_c + oxadpcoa_c$	Illaliuai			
$\begin{array}{c} \text{CXPTNDH} & 2 \text{ h_c} + \text{nadh_c} + \text{glutar_c} \\ \text{R12216} & \text{glutar_c} + \text{akg_c} + \text{o2_c} <=> \\ 2 \text{hglut_c} + \text{succ_c} + \text{co2_c} \end{array} \qquad \text{manual}$	3OXCOAT	coa_c + oxadpcoa_c <=>accoa_c + succoa_c	manual			
$\begin{array}{c} 2 \text{ h_c} + \text{nadh_c} + \text{glutar_c} \\ \text{glutar_c} + \text{akg_c} + \text{o2_c} <=> \\ 2 \text{hglut_c} + \text{succ_c} + \text{co2_c} \end{array} \qquad \text{manual} $	OYPTNDH	$h2o_c + \overline{nad_c + oxptn_c} <=>$	manual			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	OM INDII	$2 h_c + nadh_c + glutar_c$	IIIaiiuai			
$2 \text{ngiut_c} + \text{succ_c} + \text{coz_c}$	D19916	$glutar_c + akg_c + o2_c <=>$				
$APTNAT \qquad akg_c + 5aptn_c <=>glu_L_c + oxptn_c \qquad manual$	N12210	$2 \text{hglut_c} + \text{succ_c} + \text{co2_c}$	manuai			
	APTNAT	akg_c + 5aptn_c <=>glu_L_c + oxptn_c	manual			

Table S6 continued from previous page				
R12217	$2 hglut_c + q8_c <=> akg_c + q8h2_c$	manual		
ABTA	$4abut_c + akg_c <=>glu_L_c + sucsal_c$	manual		
R04002	$atp_c + ibt_c \le adp_c + 2mpylp_c$	manual		
EATi4	2mpylp_c + coa_c <=>ibcoa_c + pi_c	manual		
ACOAD9m	$ibcoa_c + fad_c <=> fadh2_c + 2mp2coa_c$	manual		
R04095	$ivcoa_c + fad_c <=> fadh2_c + 3mb2coa_c$	manual		
R04138	atp_c + 3mb2coa_c + hco3_c <=>	manual		
TITOO	adp_c + pi_c + 3mgcoa_c	,		
IVCS	$atp_c + coa_c + 3mb_c <=> amp_c + ppi_c + ivcoa_c$	manual		
FACOAL50i	atp_c + coa_c + pta_c <=>amp_c + ppi_c + ptcoa_c	manual		
MALCT	malon_c + accoa_c <=>ac_c + malcoa_c	manual		
CELLBabc	$atp_c + h2o_c + cellb_e <=> $ $adp_c + h_c + pi_c + cellb_c$	manual		
MALT	h2o_c + malt_c <=>2 glcD_c	manual		
	$atp_c + h2o_c + man_p <=>$			
MANabcpp	$adp_c + h_c + man_c + pi_c$	manual		
HEX4	$man_c + atp_c -> h_c + adp_c + man6p_c$	manual		
R04224	$2mp2coa_c + h2o_c <=>3hibutcoa_c$	manual		
3HBCOAHL	$3hibutcoa_c + h2o_c <=>coa_c + 3hmp_c$	manual		
R05066	$3hmp_c + nad_c <=> 2mop_c + nadh_c + h_c$	manual		
MMSAD1	$coa_c + nad_c + 2mop_c <=>$	manual		
WINDI	$co2_c + nadh_c + ppcoa_c$	mandai		
ASNabcpp	$h2o_c + atp_c + asn_Lp ->$	manual		
	$asn_L_c + h_c + pi_c + adp_c$	mandar		
3HBC3E	3hbcoa_c <=>3hbcoa_R_c	manual		
PHB_syn_1	$4 \text{ 3hbcoa_R_c} <=> \text{phb_c} + 4 \text{ coa_c}$	manual		
PHB-transport	phb_c <=>phb_e	manual		
EX_phb_e	phb_e <=>	manual		
EX_but_e	but_e <=>	manual		
EX_ibt_e	ibt_e <=>	manual		
EX_pta_e	pta_e <=>	manual		
EX_3mb_e	3mb_e <=>	manual		
EX_malon_e	malon_e <=>	manual		
EX_4abut_e	4abut_e <=>	manual		
EX_glutar_e	glutar_e <=>	manual		
EX_adpac_e	adpac_e <=>	manual		
EX_gal_e	gal_e <=>	manual		
EX_arabD_e	arab_D_e <=>	manual		
EX_cellb_e	cellb_e <=>	manual		
EX_xylD_e	xylD_e <=>	manual		
<u> </u>				

 $\textbf{Table S7:} \ \ \text{Qualitative validation of HaloGEM}$

Test Condition	Media	Growth in vivo	Growth in sillico	TFPN	References		
	No Peptone	+	+	TP	Romano et al., 2005		
Nutrient essentiality	No Oxygen	-	-	TN	Romano et al., 2005		
	No Na	-	-	TN	Romano et al., 2005		
	Glucose	+	+	TP	This work; Romano et al., 2005; Yue et al., 2014		
	Fructose	+	+	TP	This work; Romano et al., 2005; Yue et al., 2014		
	Glycerol	+	+	TP	This work; Romano et al., 2005; Yue et al., 2014		
	Sucrose	+	+	TP	This work; Romano et al., 2005; Yue et al., 2014		
	Maltose	+	+	TP	This work; Romano et al., 2005		
	Xylose	-		TN	Romano et al., 2005		
	Galactose	-	-	TN	Romano et al., 2005; Yue et al., 2014		
	Arabinose	-	-	TN	Romano et al., 2005		
	Cellobiose	+	+	TP	Romano et al., 2005; Yue et al., 2014		
	Mannose	+	+	TP	Romano et al., 2005; Yue et al., 2014		
	Sodium acetate	+	+	TP	Romano et al., 2005; Yue et al., 2014; Strazzullo et al., 2008		
	Propionic acid	+	+	TP	Strazzullo et al., 2008		
	Butyric acid	+	+	TP	Strazzullo et al., 2008		
	Iso-butyric acid	+	+	TP	Strazzullo et al., 2008		
Carbon sources	Valeric acid	+		FN	Strazzullo et al., 2008		
	Iso-valeric acid	+	+	TP	Strazzullo et al., 2008		
	Malonic acid	+	+	TP	Strazzullo et al., 2008		
	Succinic acid	+	+	TP	Strazzullo et al., 2008		
	Glutaric acid	+	+	TP	Strazzullo et al., 2008		
	Adipic acid	+	+	TP	Strazzullo et al., 2008		
	Citric acid	+	+	TP	Strazzullo et al., 2008		
	L-glutamine	+	+	TP	Strazzullo et al., 2008		
	Aminobutyric acid	+	+	TP	Strazzullo et al., 2008		
	L-asparagine	+	+	TP	Strazzullo et al., 2008		
	L-arginine	-	-	TN	Strazzullo et al., 2008		
	L-glutamic acid	+	+	TP	Strazzullo et al., 2008		
	L-aspartic acid	+	+	TP	Strazzullo et al., 2008		
	L-tyrosine	+	-	FN	Strazzullo et al., 2008		
	L-proline	+	+	TP	Strazzullo et al., 2008		
	L-glutamine	+	+	TP	Strazzullo et al., 2008		
	Amino-butyric acid	+	+	TP	Strazzullo et al., 2008		
Both carbon and nitrogen	L-asparagine	+	+	TP	Strazzullo et al., 2008		
	L-arginine	-	-	TN	Strazzullo et al., 2008		
sources,	L-glutamic acid	+	+	TP	Strazzullo et al., 2008		
supplemented	L-aspartic acid	+	+	TP	Strazzullo et al., 2008		
with NH4	L-tyrosine	+	-	FN	Strazzullo et al., 2008		
	L-proline	+	+	TP	Strazzullo et al., 2008		
Glucose as a carbon source	Ammonium	-	+	FP	This work.		

 $\textbf{Table S8:} \ \ \textbf{Characterization of genes based on essentiality and the associated reactions to their encoding proteins}$

Category	Essential	Non-essential	Non-lethal with reduced growth
Amino acid metabolism	64	128	9
Metabolism of cofactors and vitamins	44	87	12
Cell envelope biosynthesis	24	25	0
Nucleotide metabolism	14	26	6
Other	12	86	2
Carbohydrate metabolism	6	105	24
Membrane transport	5	108	4
Biosynthesis of secondary metabolites	4	8	0
Lipid metabolism	4	25	0
Energy metabolism	0	28	28
Exchange	0	0	0
Total	177	626	85

Table S9: Shadow prices in different fermentation phases

Shadow price	Condition A: Glutamate medium		Condition B: Glutamate and NH ₄ medium		
Shadow price	Phase I	Phase II	Phase I	Phase II	
Glucose	0.0971	0	0.0971	0	
Glutamate	0.0671	NA	0.0971	NA	
NH4	NA	0.1174	0	0.1174	

 $\textbf{Table S10:} \ \ \text{Nitrogen source ranking.} \ \ \text{Highlighted rows correspond to tested experimental conditions.}$

N source 1	N source 2	N source 3	Yield (mmal AA/m DCW)
EX_argL_e			(mmol AA/g DCW) -0.4910
EX_arg_L_e	EX_gly_e	EX_trpL_e	-0.3493
EX_arg_L_e	EX_lys_L_e	EX_glnL_e	-0.3413
EX_arg_L_e	EX_glu_L_e	EX_phe_L_e	-0.3398
EX_arg_L_e	EX_asp_L_e	EX_cys_L_e	-0.3398
EX_nh4_e	EX_argL_e	EX_ser_L_e	-0.3257
EX_arg_L_e	EX_ser_L_e	EX_gln_L_e	-0.3108
EX_arg_L_e	EX_his_L_e	EX_asn_L_e	-0.2718
EX_argL_e	EX_asn_L_e	LIX-asii_LL_C	-0.2691
EX_arg_L_e	EX_met_L_e	EX_glnL_e	-0.2665
EX_asn_L_e	LA IIICU_LLC	DA-giiiD_c	-0.2455
EX_arg_L_e	EX_asnL_e	EX_glnL_e	-0.2455
EX_gln_L_e	LA CONTENT	DA-giiiD-C	-0.2455
EX_hisL_e	EX_pro_L_e	EX_asnL_e	-0.2219
EX_glu_L_e	EX_met_L_e	EX_asn_L_e	-0.2183
EX_lysL_e	EX_ser_L_e	EX_glnL_e	-0.2179
EX_hisL_e	EX_ser_L_e	EX_asn_L_e	-0.2179
	EX_ile_L_e		-0.2170
EX_gluL_e EX_cysL_e	EX_gly_e	EX_asnL_e EX_asnL_e	-0.2159
EX_cys_L_e EX_gly_e	EX_his_L_e	EX_asn_L_e	-0.2159
EX_gry_e EX_argL_e	EX_his_L_e	EX_asiiL_e EX_valL_e	-0.1931
EX_gly_e	EX_pro_L_e	EX_var_L_e EX_glnL_e	-0.1931
	EX_proL_e EX_valL_e	FV dln I o	-0.1654
EX_gly_e EX_nh4_e		EX_glnL_e EX_asnL_e	-0.1654
EX_nh4_e	EX_cys_L_e	EA_asiiL_e	-0.1654
EX_nh4_e	EX_gln_L_e	EX_asnL_e	-0.1654
EX_asp_L_e	EX_phe_L_e		-0.1554
EX_asp_LL_e EX_nh4_e	EX_pro_L_e	EX_gln_L_e	
EX_asp_L_e	EX_tyrL_e EX_serL_e	EX_gln_L_e	-0.1554 -0.1554
EX_gly_e	EX_met_L_e	EX_glnL_e EX_glnL_e	-0.1501
EX_arg_L_e	EX_asp_L_e	EX_his_L_e	-0.1444
EX_asp_L_e	EX_his_L_e	EX_gln_L_e	-0.1416
EX_nh4_e	EX_his_L_e	EX_glnL_e	-0.1416
EX_arg_L_e	EX_gluL_e	EX_leu_L_e	-0.1410
EX_argL_e	EX_gluL_e	EX_val_L_e	-0.1414
EX_argL_e	EX_pro_L_e	EX_ser_L_e	-0.1334
EX_nh4_e	EX_arg_L_e	DA_ser_LL_e	-0.1334
EX_arg_L_e	EX_ser_L_e		-0.1334
EX_nh4_e	EX_his_L_e	EX_pro_L_e	-0.1250
EX_his_L_e	EX_pro_L_e	EX_ser_L_e	-0.1250
EX_gly_e	EX_his_L_e	EX_pro_L_e	-0.1250
EX_asp_L_e	EX_his_L_e	EX_pro_L_e	-0.1250
EX_asp_L_e	EX_his_L_e	EX_ser_L_e	-0.1250
EX_nh4_e	EX_gluL_e	EX_lys_L_e	-0.1238
EX_asp_L_e	EX_gly_e	EX_lys_L_e	-0.1238
EX_asp_Le EX_pro_Le	EX_gry_e EX_serL_e	EX_trp_L_e	-0.1234
EX_nh4_e	EX_glu_L_e	EX_phe_L_e	-0.1227
EX_asp_Le	EX_pro_L_e	EX_asn_L_e	-0.1227
EX_glu_L_e	EX_ser_L_e	EX_valL_e	-0.1227
EX_gly_e	EX_pro_L_e	EX_ser_L_e	-0.1227
EX_asp_Le			-0.1227
EX_asp_L_e	EX_gluL_e	EX_serL_e	-0.1227
EX_asp_LL_e	EX_val_L_e		-0.1227
EX_nh4_e			-0.1227
EX_nh4_e	EX_pro_L_e	EX_asnL_e	-0.1227
EX_gly_e			-0.1227
EX_asp_L_e	EX_ser_L_e	EX_valL_e	-0.1227
EX_nh4_e	EX_asp_L_e	EX_val_Le	-0.1227
EX_ser_L_e			-0.1227
	l		U.122,

EX_nh4_e	EX_gly_e	EX_pro_L_e	-0.1227
EX_aspL_e	EX_proL_e	EX_valL_e	-0.1227
EX_gluL_e	EX_gly_e		-0.1227
EX_valL_e			-0.1227
EX_pro_L_e			-0.1227
EX_gluL_e			-0.1227
EX_aspL_e	EX_cys_L_e	EX_pro_L_e	-0.1227

References

- Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdóttir, H. S., Wachowiak, J., Keating, S. M., Vlasov, V., Magnusdóttir, S., Ng, C. Y., Preciat, G., Žagare, A., Chan, S. H. J., Aurich, M. K., Clancy, C. M., Modamio, J., Sauls, J. T., ... Fleming, R. M. T. (2019). Creation and analysis of biochemical constraint-based models using the cobra toolbox v.3.0. Nat. Protoc, 6, 1290–1307. https://doi.org/10.1038/nprot.2007.99
- Kumar, V. S., Dasika, M. S., & Maranas, C. D. (2007). Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics, 8. https://doi.org/10.1186/1471-2105-8-212
- Quillaguamán, J., Doan-Van, T., Guzman, H., Guzman, D., Martin, J., Everest, A., & Hatti-Kaul, R. (2008). Poly(3-hydroxybutyrate) production by halomonas boliviensis in fed-batch culture. *Applied Microbiology and Biotechnology*, 78, 227–232. https://doi.org/10.1007/s00253-007-1297-x
- Romano, I., Giordano, A., Lama, L., Nicolaus, B., & Gambacorta, A. (2005). Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of campania region, italy. Systematic and Applied Microbiology, 28, 610–618. https://doi.org/10.1016/j.syapm. 2005.03.010
- Strazzullo, G., Gambacorta, A., Vella, F. M., Immirzi, B., Romano, I., Calandrelli, V., Nicolaus, B., & Lama, L. (2008). Chemical-physical characterization of polyhydroxyalkanoates recovered by means of a simplified method from cultures of halomonas campaniensis. World Journal of Microbiology and Biotechnology, 24, 1513–1519. https://doi.org/10.1007/s11274-007-9637-7
- Tan, D., Xue, Y. S., Aibaidula, G., & Chen, G. Q. (2011). Unsterile and continuous production of polyhydroxybutyrate by halomonas td01. *Bioresource Technology*, 102, 8130–8136. https://doi.org/10.1016/j.biortech.2011.05.068
- Yue, H., Ling, C., Yang, T., Chen, X., Chen, Y., Deng, H., Wu, Q., Chen, J., & Chen, G.-Q. (2014). A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant halomonas campaniensis ls21 grown in mixed substrates. *Biotechnology for Biofuels 2014 7:1*, 7, 1–12. https://doi.org/10.1186/1754-6834-7-108