WE CLAIM:

1. A compound of formula I

$$R^1$$
 NR^3R^4
 I

or a pharmaceutically acceptable salt, hydrate, solvate or prodrug of the compound, wherein:

 R^1 is hydrogen, -OH, -NO₂, -CN, -COOR, -OCH₂OR, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy or halo;

R is C_1 - C_6 alkyl;

R² is hydrogen, a non-radioactive halo or a radioactive halo;

R³ is hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl or C₂-C₆ alkynyl; and

 R^4 is hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, wherein the alkyl, alkenyl or alkynyl comprises a radioactive carbon or is substituted with a radioactive halo when R^2 is hydrogen or a non-radioactive halo;

provided that when R^1 is hydrogen or -OH, R^2 is hydrogen and R^4 is - 11 CH₃, then R^3 is C_2 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl; and

further provided that when R^1 is hydrogen, R^2 hydrogen and R^4 is $-CH_2CH_2CH_2^{18}F$, then R^3 is C_2-C_6 alkyl, C_2-C_6 alkenyl or C_2-C_6 alkynyl.

2. The compound of claim 1, wherein:

 R^1 is hydrogen, -OH, -CN, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy or halo;

R² is hydrogen; and

 R^4 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, wherein the alkyl, alkenyl or alkynyl comprises a radioactive carbon.

3. The compound of claim 2, wherein:

R¹ is hydrogen, -OH, -CN, -OCH₃, -CH₃ or -Br; and

R³ is hydrogen or -CH₃; and

 R^4 is $-{}^{11}CH_3$.

4. The compound of claim 1, wherein:

 R^2 is a non-radioactive halo or a radioactive halo, wherein the halo is iodo; and

 R^4 is hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, wherein the alkyl, alkenyl or alkynyl comprises a radioactive carbon when R^2 is a non-radioactive halo.

5. The compound of claim 4, wherein:

R is -CH₃; and

the radioactive carbon in R⁴ is ¹¹C.

6. The compound of claim 5, wherein:

 R^1 is -OH or C_1 - C_6 alkoxy;

R² is a radioiodine; and

R³ and R⁴ are independently hydrogen or C₁-C₆ alkyl.

7. The compound of claim 6, wherein:

 R^1 is -OH;

$$R^2$$
 is $-^{123}I$ or $-^{125}I$; and

R³ and R⁴ are each hydrogen.

- 8. The compound of claim 1, wherein R² is a radiofluoro.
- 9. The compound of claim 8, wherein:

 R^1 is –OH or C_1 - C_6 alkoxy;

 R^3 and R^4 are independently hydrogen or C_1 - C_6 alkyl.

10. The compound of claim 9, wherein:

 R^1 is -OH;

R³ is hydrogen; and

 R^4 is $-CH_3$.

- 11. The compound of claim 1, wherein R^4 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, wherein the alkyl, alkenyl or alkynyl is substituted with a radioactive halo.
 - 12. The compound of claim 11, wherein:

$$R^1$$
 is -OH or C_1 - C_6 alkoxy;

R² is hydrogen;

R³ is hydrogen or C₁-C₆ alkyl; and

 R^4 is C_1 - C_6 alkyl substituted with ¹⁸F.

13. The compound of claim 12, wherein:

$$R^1$$
 is $-OH$;

R³ is hydrogen; and

 R^4 is $-CH_2CH_2CH_2^{18}F$.

- 14. A pharmaceutical composition comprising
- (i) an effective amount of a compound of claim 1; and
- (ii) a pharmaceutically acceptable carrier.
- 15. A method for detecting amyloid deposit(s) in vivo, comprising:

- (i) administering to a mammal an effective amount of a compound of claim 1, wherein the compound would bind any amyloid deposit(s) in the mammal; and
 - (ii) detecting binding of the compound to amyloid deposit(s) in the mammal.
- 16. The method of claim 15, wherein the amyloid deposit(s) is/are located in the brain of the mammal.
- 17. The method of claim 15, wherein the mammal is a human who is suspected of having Alzheimer's disease, familial Alzheimer's disease, Down's syndrome, Mild Cognitive Impairment or homozygotes for apolipoprotein E4 allele.
- 18. The method of claim 15, wherein the detecting is effected by gamma imaging, magnetic resonance imaging or magnetic resonance spectroscopy.
- 19. The method of claim 18, wherein the detecting is effected by gamma imaging.
- 20. The method of claim 19, wherein the gamma imaging is PET or SPECT.
- 21. The method of claim 15, wherein the compound is administered intravenously.

- 22. A method for detecting amyloid deposit(s) in vitro comprising:
- (i) contacting a bodily tissue with an effective amount of a compound of claim 1, wherein the compound would bind any amyloid deposit(s) in the tissue; and
 - (ii) detecting binding of the compound to amyloid deposit(s) in the tissue.
- 23. The method of claim 22, wherein the compound is in a solution that further comprises 25-99% ethanol, with the remainder of the solution being water.
- 24. The method of claim 23, wherein the solution comprises 0-50% ethanol and 0.0001 to 100 μM of the compound.
- 25. The method of claim 22 wherein the detecting is effected by bright-field, fluorescence, laser-confocal or cross-polarization microscopy.
 - 26. The method of claim 22, wherein the method further comprises:
- (iii) separating from the tissue the amyloid deposit(s) bound to the compound; and
 - (iv) quantifying the amyloid deposit(s) bound to the compound.
- 27. A method for distinguishing an Alzheimer's diseased brain from a normal brain comprising:
- (i) obtaining tissues from (i) the cerebellum and (ii) another area of the same brain, of a normal mammal and of a mammal suspected of having Alzheimer's disease;

- (ii) contacting the tissues with a compound of claim 1;
- (iii) quantifying the amyloid bound to the compound;
- (iv) calculating the ratio of (a) the amount of amyloid in the area of the brain other than the cerebellum to (b) the amount of amyloid in the cerebellum;
- (v) comparing the ratio for a normal mammal with the ratio for a mammal suspected of having Alzheimer's disease.