A quick introduction to machine learning Spyros Samothrakis Senior Lecturer, IADS University of Essex MiSoC

June 22, 2022

Welcome/course contents

- ▶ What will this course cover?
 - ▶ Day 1: An intro to machine learning (ML)
 - ► Day 1: ML labs
 - ▶ Day 2: An intro to causal inference
 - ▶ Day 2: ML and causal inference labs
- ► Textbooks?
 - ► Mitchell, T. M. (1997). Machine learning.¹
 - ▶ Bishop, C. M. (2006). Pattern recognition and machine learning. springer.2
 - Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer Science & Business Media.³

1http://www.cs.cmu.edu/~tom/mlbook.html

2https://www.microsoft.com/en-us/research/publication/patternrecognition-machine-learning/

 3 http://www.stat.cmu.edu/~larry/all-of-statistics/index.html

INTRODUCTION

Introduction

Better science through data

Hey, Tony, Stewart Tansley, and Kristin M. Tolle. "Jim Gray on eScience: a transformed scientific method." (2009).⁴

- ▶ Thousand years ago: empirical branch
 - ▶ You observed stuff and you wrote down about it
- ▶ Last few hundred years: theoretical branch
 - \blacktriangleright Equations of gravity, equations of electromagnetism
- ► Last few decades: computational branch
 - $\,\blacktriangleright\,$ Modelling at the micro level, observing at the macro level
- ► Today: data exploration
 - $\,\blacktriangleright\,$ Let machines create models using vast amounts of data

 $^4 \verb|http://languagelog.ldc.upenn.edu/myl/JimGrayOnE-Science.pdf|$

Better business through data

▶ There was a report by Mckinsey

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.⁵

- ▶ Urges everyone to monetise "Big Data"
- ▶ Use the data provided within your organisation to gain insights
- Has some numbers as to how much this is worth
- ▶ Proposes a number of methods, most of them associated with machine learning and databases

Introduction

Introduction

Why is it popular now?

► Algorithms + data + tools

- ▶ Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231.6
- ► Anderson, P. W. (1972). More is different. Science, 177(4047),
- ► Pedregosa, et.al. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, $2825 - 2830.^{8}$

//www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

SO THIS COURSE COVERS TOOLS

- ► ML theory
 - ► Supervised learning, (non)-linear regression
 - ▶ Understanding basic modelling
 - Confirming your model is sane
 - ► Tuning your model
 - ► All within a very applied setting
- ► Tools
 - ► Numpy
 - ▶ Scikit-learn

 $^{^5 {\}tt http://www.mckinsey.com/business-functions/digital-mckinsey/our-properties} and the properties of the properties$ insights/big-data-the-next-frontier-for-innovation

⁶http://projecteuclid.org/download/pdf_1/euclid.ss/1009213726%20 7https:

^{//}www.tkm.kit.edu/downloads/TKM1_2011_more_is_different_PWA.pdf

Introduction	Introduction
What is supervised learning?	Some abstraction
 ▶ Imagine someone gives you a group of smokers ▶ And asks the question – what is there life expectancy? ▶ Completely made up imaginary data 	▶ We are given inputs x_0, x_1x_n and we are looking to predict y ▶ Let's plot!
7	/8