

주 제 명

소개

같은 기계공학 전공분야에서 설계, 제어 등 각자 다른 방향으로 키워낸 전공 지식을 활용하 여 학부 수준의 완성도가 높은 결과물을 만들어 내는 것을 목표로 함.

그에 따라 4차 산업 혁명의 인공지능 기술과 로봇 팔을 활용한 쓰레기 분리 수거 로봇을 제작 함.

작동 방식

학습한 인공지능이 쓰레기의 종류를 분류한 후, 그에 해당하는 좌표 값을 받아 로봇 팔이 작동하 여 쓰레기를 분리하게 됨.

설계

• 로봇 팔

'Kinematic Decoupling' 이론을 활용, 3개의 각도 만으로 좌표 값을 계산할 수 있도록 설계함.

3D 프린터와 탄소 나노 튜브를 활용 하여 제작.

• 레일

레일은 알루미늄 프로파일로 뼈대를 조립하고 주문제작한 롤러를 이용해 제작.

로봇 팔 제어

사다리꼴 속도 프로파일을 활용하여 로 봇 팔의 움직임을 미세하게 계산. 연속적인 움직임을 가능하도록 함.

설계적 이점을 통해 구한 3가지 각도 값을 활용, 나머지 3개의 각도를 구함.

비전 학습

= You Only Look Once

Unified, Real-Time Object Detection

비전 알고리즘으로써 실시간 객체 검출에 적합한 YOLO를 기반으로 프로젝트 환경에 맞추어 신경망을 재구성 함.

약 9000장의 학습 데이터를 직접 제작 후 'Tensorflow'를 통해 학습 시킴.

기존의 신경망보다 더 페트병과 캔을 분류하는데 높은 정확도를 가지게 됨

최종 모델

