MTH 201: Calculus - Module 1B

The concept of the limit (AC 1.2)

Robert Talbert

Grand Valley State University

Agenda

Review of Daily Prep

Polling for today

Go to www.mentimeter.com and enter code 32 04 90 Or go to https://www.menti.com/4d48wn64k6

Q+A

Limits using algebra

Finding limits using algebra

Alert

Finding a limit of a function at a point, is not always the same thing as evaluating the function at that point.

Example

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

dg3.png

But $\frac{x^2-4}{x-2}$ evaluated at x=2 is undefined (0/0).

Using algebra first

Pro Tip

Always try to simplify the algebra first.

Example

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2}$$
$$= \lim_{x \to 2} (x + 2)$$

As x gets closer to 2, x + 2 gets closer to 4.

Therefore $\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$.

4

Practice with the concept

Go to:

http://gvsu.edu/s/1pq

Find the value of the limit using algebra simplification first. Spoiler: The answer is 12.

Instantaneous velocity using

limits

Average velocity

Consider a moving object whose position function is given by $s(t) = t^2$ where t is time in seconds, s is position in meters.

dg5.png

Finding average and instantaneous velocity

The average velocity on the small time interval from t = 3 to t = 3 + h is

$$\frac{s(3+h)-s(3)}{(3+h)-3}=\frac{s(3+h)-s(3)}{h}$$

On Mentimeter: If we wanted to find the *instantaneous velocity* at t=3, how would we modify this?

Working out the velocity

We get the instantaneous velocity at t=3 by taking the average velocity expression and evaluating its limit as $h \to 0$:

$$IV_{t=3} = \lim_{h \to 0} \frac{s(3+h) - s(3)}{h}$$

But we can now work out the value with algebra! Work with your partner to do this:

Spoiler: The answer is 6 meters/second.

Getting the instantaneous velocity

$$IV_{t=3} = \lim_{h \to 0} \frac{s(3+h) - s(3)}{h}$$

$$= \lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$$

$$= \lim_{h \to 0} \frac{9 + 6h + h^2 - 9}{h}$$

$$= \lim_{h \to 0} \frac{6h + h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(6+h)}{h}$$

$$= \lim_{h \to 0} (6+h)$$

$$= 6 \text{ meters/second}$$

What to do next

Coming up next

- Online followup activities: Due 11:59pm ET, Friday 9/11 (Link to be posted and in email)
- Daily Prep for Module 2A: Due 11:59pm ET, Sunday 9/13 (Blackboard)
- WeBWorK 1B: Due 11:59pm ET, Sunday 9/13 (WeBWorK)

Continue to check email and announcements every day — ask questions and give help on CampusWire too.