Indholdsfortegnelse

Summer - fra ugeseddel I	3
Vanital 1 hasia kanaants	•
Kapitel 1 - basic koncepts	
De Morgans law s. 9	
Distributive law	
s. 9	
Inclusive-exclusice principle:	
s. 11 og 27	
Conditional probability s. 40	4
Kædereglen for conditional probability s. 45	
Independence	
Sætning A - ugeseddel 2	
Law of total probaility	
Bayes' rule	5
Kapitel 2 - Combinatorics	
Ordered sampling with replacement	
Unordered sampling without replacement	
Binomial formlen	
·	
Kapitel 3 - Discrete random variable	6
PMF'er	
Definition 3.2 uafhængighed	6
Note om fordelinger	6
CDF'er	7
Expectation	7
LOTUS	7
Varians	7
Standard afvigelse	8
Kapitel 4. Continuous and mixed random variables	c
PDF og CDF	
Expected value	
LOTUS	
Varians	
Transformationsformlen	
Partial integration	
Integration ved substitution	
Kædereglen - integration	
8 8	
Standard normalfordeling	
Theorem 4.3Egenskaber ved Gamma-fordelingen	
Bemærkninger vedr. uafhængighed ugeseddel 8	11
Kapitel 5. Joint distributions: to stok. var	12
Marginal PMFs af X og Y	
Marginal CDFs af X og Y	
Conditional PMF	
Conditional CDF	
To uafhængig stok. var.	
Conditional expectation	
Law of total propability	
Law of total expectation	
•	

LOTUS for to diskrete stok. var.	14
Expectation for to uafh. stok. var	14
Joint PDF - continuous random variables	14
Marginal PDFs for to kont. stok. var	14
Joint cumulative function	15
Egenskaber for joint kont. stok. var.	15
Conditional concepts for joint kont. stok. var	15
Independent random variables:	
Law of total alting og LOTUS for to kont. stok. var	16
Theorem 5.2. X og Y er uafhængige	
Kovarians og korrelation	17
Varians af sum	17
Kapitel 6	
Independent identiually distributed (i.i.d.)	18
Kapitel 7	18
Convergence in distribution	18
Theorem 7.1	
Convergence in Probability	18
Theorem 7.2	18
Kapitel 8 statistik	19
Random sample	19
Sample mean	19
Estimering	
Maximum likelihood estimation (MLE)	20
Konfidensintervaller	
Konfidensintervaller for normal random variables	21
<i>IR</i>	22
Hypotesetest	
P-værdier	
Likelihood ratio test (LRT)	
Lineær regression	
R^2-værdi	26
Kapitel 11	
At lave en matrix i R	26
Markov kæde	27
Endelige markovkæder	29
Theorem 11.3 Mangler!!!	30
Gamblers ruin problem	30

Summer - fra ugeseddel 1

(Resultater fra analyse 1)

1)
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

2) For
$$a \neq 1$$

$$\sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a}$$

3) For
$$a \in (-1, 1)$$

$$\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$$

$$\sum_{i=0}^{\infty} \frac{a^i}{i!} = e^a$$

5) For
$$a, b > 0$$

$$\lim \left(\frac{e^{ax}}{x^b}\right) = \infty \qquad \qquad \lim (x^b e^{-ax}) = 0$$

for $x \to \infty$

$$\lim \left(\frac{\sum_{i=1}^{n} \frac{1}{i}}{\log(n)}\right) = 1, \quad for \ n \to \infty$$

Kapitel 1 - basic koncepts

De Morgans law

s. 9

a)
$$(A_1 \cup A_2 \cup ... \cup A_n) = A_1^c \cap A_2^c \cap ... \cap A_n^c$$

b) $(A_1 \cap A_2 \cap ... \cap A_n)^c = A_1^c \cup A_2^c \cup ... \cup A_n^c$

Distributive law

s. 9

Theorem 1.2.

$$a) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$b) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Theorem 1.2' (fra ugeseddel 2)

$$a) A \cap ()$$

Inclusive-exclusice principle:

s. 11 og 27

$$1. \, |A \cup B| = |A| + |B| - |A \cap B|$$

$$2. \, |A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Bemærkning: Gælder også for ss f.eks.:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Conditional probability

(s. 40)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \text{ når } P(B) > 0$$

Kædereglen for conditional probability

(s. 45)

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_2, A_1)...(P(A_n|A_{n-1}A_{n-2}...A_1)$$

Independence

(s. 46)

A og B er uafhængige hvis:

$$P(A \cap B) = P(A)P(B)$$

A, B og C er uafhængige hvis:

$$P(A \cap B) = P(A)P(B)$$

$$(A \cap C) = P(A)P(C)$$

$$(C \cap B) = P(C)P(B)$$

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

Hvis der er uafhængighed gælder:

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

s. 40

s. 45

Hvis $A_1, A_2, ..., A_n$ er uafhængige, da gælder:

$$P(A_1 \cup ... \cup A_n) = 1 - (1 - P(A_1))(1 - P(A_2))...(1 - P(A_n))$$

Sætning A - ugeseddel 2

Lad $A_1, A_2, ..., A_n$ være uafhængige hændelser.

 $B_1, B_2, ..., B_n$ betegner hændelser, der fremkommer ved at udføre elementære mængdeoperationer på grupper af forskellige af mængderne $A_1, A_2, ..., A_n$.

Da er $B_1, B_2, ..., B_n$ ligeledes uafhængige hændelser.

Law of total probaility

s. 52

Hvis, B_2 , B_3 , ... er en partition af sample space S, for ethvert event A gælder:

$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(A|B_i)P(B_i)$$

Bayes' rule

s. 55

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Hint: Benyt sammen med law of total probability

Kapitel 2 - Combinatorics

Ordered sampling with replacement

(Udtræk med ordning uden tilbagelægning) (s. 87)

Antallet af k permutations af n objekter:

$$P_k^n = \frac{n!}{(n-k)!}, for \ 0 \le k \le n$$

Hvor k er antallet af elementer, der skal trækkes Hvor n er antallet af elementer/mulige udfald

Unordered sampling without replacement

(Udtræk uden ordning uden tilbagelægning) (s. 88)

Antallet af k kombinationer af n elementer:

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}, for \ 0 \le k \le n$$

Hvor k er antallet af elementer der skal trækkes Hvor n er antallet af elementer/mulige udfald

NB: kaldes desuden binomial koefficienten

Binomial formlen

(s. 93)

For n uafhængige Bernoulli forsøg, hvor hvert forsøg har ss for succes p, er ss for k sucesser givet ved:

$$P(K) = \binom{n}{k} p^k (1-p)^{n-k}$$

Kapitel 3 - Discrete random variable

- Stokastisk variabel

Defineret ved at range er countable

PMF'er

(s. 112)

- 1. $0 \le P_X(x) \le 1$, for alle x
- $\sum_{x \in R_X} P_X(x) = 1$
- 3. For enhver mængde $A \subset R_X$, $P(X \in A) = \sum_{x \in A} P_X(x)$

Definition 3.2 uafhængighed

(s. 113)

To variable X og Y er uafh hvis:

$$P(X = x, Y = y) = P(X = x)P(Y = y), \forall x, y \in \mathbb{R}$$

Hvis to stokastiske variable er uafh så kan man skrive:

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B), \forall set A og B$$

Note om fordelinger

$$Pascal(1, p) = Geometric(p)$$

Poisson som en approximering af Binomial:

Poisson kan ses som grænsen for en binomial fordeling. Hvis n er meget stor og p er meget lille kan man antage at $\lambda = np$ er en positiv konstant. Dette er vigtigt, da poisson PMF er meget nemmere at lave end binomial.

CDF'er

(s. 137)

$$\forall a \le b : P(a < X \le b) = F_X(b) - F_X(a)$$

CDF er et interval omkring X og PDF'en er sandsynligheden for et enkelt element.

Expectation

s. 139

$$EX = \sum_{x_k \in R_X} x_k P(X = x_k) = \sum_{x_k \in R_X} x_k P_X(x_k)$$

s. 140

Notation:

$$EX = E[X] = E(X) = \mu x$$

s. 142

Linearitet:

$$E[aX + b] = aE[X] + b$$

$$E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n]$$

LOTUS

s. 144

$$E[g(X)] = \sum_{x_k \in R_X} g(x_k) P_X(x_k)$$

Varians

s. 146

$$Var(X) = E[(X - \mu x)^2] = E[X^2] - [EX]^2$$

Bemærkning: $E[X^2]$ findes ved at

$$E[X^2] = \sum_{x_k \in R_X} x_k^2 P_X(x_k)$$

Jf. LOTUS

Eksempel

$$R_X = (1,2), P_X(1) = P_X(2) = \frac{1}{2}$$

$$\Rightarrow E[X^2] = 1^2 \cdot \frac{1}{2} + 2^2 \cdot \frac{1}{2} = \frac{5}{2}$$

Yderligere egenskaber for varians

For en stokastisk variabel X og hele tal a og b:

$$Var(aX + b) = a^2 Var(X)$$

s. 148

For uafh. stok. var. hvor $X = X_1 + X_2 + \cdots + X_n$:

$$Var(X) = Var(X_1) + Var(X_2) + \dots + Var(X_n)$$

Standard afvigelse

(standard deviation)

s. 146

$$SD = \sigma_X = \sqrt{Var(X)}$$

Kapitel 4. Continuous and mixed random variables

- Kontinuerte skotkastiske variable

PDF og CDF

s. 165

Kriterier for en PDF:

 $f_X(x) \ge 0 \ \forall x \in \mathbb{R}$ $\int_{-\infty}^{\infty} f_X(u) du = 1$ 2

 $P(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(u) du$ 3

Mere generelt for et set A, $P(X \in A) = \int_A f_X(u) du$

(PDF: tæthedsfunktion, CDF: fordelingsfunktion)

Definition 4.2

$$f_X(x) = \frac{dF_X(x)}{dx} = F_X'(x)$$

Expected value

(s. 167)

$$EX = \int_{-\infty}^{\infty} x f_X(x) dx$$

LOTUS

s. 168

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Varians

s. 169

$$Var(x) = E[(X - \mu x)^{2}] = \int_{-\infty}^{\infty} (x - \mu x)^{2} f_{X}(x) dx$$
$$= EX^{2} - (EX)^{2} = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx - \mu_{X}^{2}$$

Transformationsformlen

Fra ugeseddel 6:

Theorem 4.1*. Lad X betegne en kontinuert stokastisk variabel med en PDF f_X og range R_X . Lad $g: R_X \to \mathbb{R}$ betegne en differentiabel funktion, der enten er strengt voksende eller strengt aftagende, og sæt Y = g(X). Hvis h betegner den inverse funktion til g så gælder der at Y er en kontinuert stokastisk variabel med en PDF f_Y givet ved

$$f_Y(y) = egin{cases} |h'(y)|f_X(h(y)) & ext{ for } y \in R_Y, \ 0 & ext{ ellers,} \end{cases}$$

hvor mængden R_Y er givet ved $R_Y = \{g(x) : x \in R_X\}.$

Fra bogen:

s. 173

Theorem 4.1

X er kontinuert stok. var. og $g: \mathbb{R} \to \mathbb{R}$ er en strengt monoton differentiabel funktion. Lad Y = g(X). Så er PDF'en af Y givet ved:

$$F_Y(y) = \begin{cases} \frac{f_X(x_1)}{|g'(x_1)|} = f_X(x_1) \cdot \left| \frac{dx_1}{dy} \right| & \text{Hvor } g(x_1) = y\\ 0 & \text{hvis } g(x) = y \text{ ikke har en løsning} \end{cases}$$

Strategi:

- Find Range af Y, $R_Y = \{g(x), for x \in R_X\}$
- Find h(y)
- 3. Find h'(y)
- 4. Sæt ind i sætningen, $f_Y(y)$ 5. Tjek om $\int_{-\infty}^{\infty} f_Y(y) dy = 1$

Partial integration

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} g(x)f'(x)dx$$

Integration ved substitution

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(t) \quad hvor \ t = g(x)$$

Kædereglen - integration

$$(F(g(x)))' = F'(g(x)) \cdot g'(x)$$

Standard normalfordeling

s. 184

Hvis $Z \sim N(0,1)$ er PDF givet ved:

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \quad \forall z \in \mathbb{R}$$
$$EZ = 0 \text{ og } Var(Z) = 1$$

CDF er givet ved:

$$\Phi(x) = P(Z \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du$$

s. 187

Hvis Z er standard normal fordelt og $X = \sigma Z + \mu$, så er X en normal stok var med forventet værdi μ og varians σ^2 :

$$X \sim N(\mu, \sigma^2)$$

For dette tilfælde gælder

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$F_X(x) = P(X \le x) = \phi\left(\frac{x-\mu}{\sigma}\right)$$

$$P(a > X \le b) = \phi\left(\frac{b - \mu}{\sigma}\right) - \phi\left(\frac{a - \mu}{\sigma}\right)$$

Theorem 4.3.

s. 189

Hvis $X \sim N(\mu_X, \sigma_X^2)$, og Y = aX + b, hvor $a, b \in \mathbb{R}$, så er $Y \sim N(\mu_Y, \sigma_Y^2)$ hvor: $\mu_Y = a\mu_X + b$, $\sigma_Y^2 = a^2\sigma_X^2$

NB: Find fordelinger, expected value og varians i appendix!!

Egenskaber ved Gamma-fordelingen

Sætning B - ugeseddel 8

1. Antag, at $X \sim gamma(\alpha_1, \lambda)$ og $Y \sim gamma(\alpha_2, \lambda)$ er uafhængige.

Da gælder det, at

$$X + Y \sim gamma(\alpha_1 + \alpha_2, \lambda)$$

2. Antag, at $X \sim gamma(\alpha, \lambda) \circ g b > 0$.

Da gælder det, at

$$bX \sim gamma\left(\alpha, \frac{\lambda}{b}\right)$$

Bemærkninger vedr. uafhængighed ugeseddel 8

1. To *generelle* stokastiske variable *X* og *Y* siges at være uafhængige hvis deres simultane fordelingesfunktion splitter op i produktet af de marginale fordelingsfunktioner, dvs.

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$
 for alle $x, y \in \mathbb{R}^2$.

Dette er ækvivalent med

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$
 for alle $A, B \subset \mathbb{R}^2$,

og med

$$E[f(X)g(Y)] = E[f(X)]E[g(Y)]$$

for alle $f:\mathbb{R}\to\mathbb{R}$ og $g:\mathbb{R}\to\mathbb{R}$, så længe middelværdierne er veldefinerede.

2. Lad X og Y betegne *uafhængige* stokastiske variable der har marginale tæthedsfunktioner hhv. f_X og f_Y . Så har X og Y en simultan tæthed givet ved

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
 for alle $x, y \in \mathbb{R}$.

3. Lad X og Y betegne stokastiske variable med simultan tæthedsfunktion $f_{X,Y}$, der er på formen $f_{X,Y}(x,y) = g(x)h(y)$ for to funktioner $g: \mathbb{R} \to [0,\infty)$ og $h: \mathbb{R} \to [0,\infty)$. Så er X og Y uafhængige og $f_X(x) = cg(x)$ og $f_Y(y) = ch(y)$ for en konstant c > 0.

Så når man skal tjekke om to stokastiske variable er uafhængige, er det nok at tjekke om $f_{X,Y}$ kan skrives som et produkt af to funktioner g og h (man behøver ikke at vide om g og h er tætheder).

Kapitel 5. Joint distributions: to stok. var.

Marginal PMFs af X og Y s. 221

$$P_X(x) = \sum_{y_j \in R_Y} P_{XY}(x, y_j), \quad \text{for ethvert } x \in R_X$$

$$P_Y(y) = \sum_{x_j \in R_X} P_{XY}(x_i, y), \quad \text{for ethvert } y \in R_Y$$

Hvis man har en tabel:

Man summer ss for X=1 og for X=2 osv. alt efter hvilken range X har. Man gør det samme for Y Se evt. eksempel 5.1, s. 221

Marginal CDFs af X og Y

s. 224

$$F_X(x) = F_{XY}(x, \infty) = \lim_{y \to \infty} F_{XY}(x, y), \quad \forall x$$

$$F_Y(y) = F_{XY}(\infty, y) = \lim_{x \to \infty} F_{XY}(x, y), \quad \forall y$$

Se evt. Eksempel 5.2, s. 225

Conditional PMF

s. 227

$$P_{X|A}(x_i) = P(X = x_i|A) = \frac{P(X = x_i \text{ og } A)}{P(A)}, \quad \forall x_i \in R_X$$

s. 228

For X givet Y:

$$P_{X|Y}(x_i|y_i) \frac{P_{XY}(x_i, y_j)}{P_Y(y_j)}$$

$$P_{Y|X}(y_j|x_i) = \frac{P_{XY}(x_i, y_j)}{P_X(x_i)}$$
for ethvert $x_i \in R_X$ og $y_j \in R_Y$

Find $P(X = 0, Y \le 1) = P_{XY}(0,0) + P_{XY}(0,1)$ og så aflæser man i tabellen for PMF Find $P(Y = 1|X = 0) = \frac{P(X=0,Y=1)}{P(X=0)} = \frac{P_{XY}(0,1)}{P_{X}(0)}$

Hvor man ved $P_X(0)$ ligger alle de ss X kan have sammen når X=0

Conditional CDF

s. 227

$$F_{X|A}(x) = P(X \le x|A)$$

To uafhængig stok. var.

s. 228

To variable er uafh. hvis:

$$P_{XY}(x, y) = P_X(x)P_Y(y), \quad \forall x, y$$

 $F_{XY}(x, y) = F_X(x)F_Y(y), \quad \forall x, y$

Conditional expectation

s. 231

forventet værdi for X:

$$E[X|A] = \sum_{x_i \in R_X} x_i P_{X|A}(x_i)$$

$$E[X|Y = y_j] = \sum_{x_i \in R_X} x_i P_{X|Y}(x_i|y_j)$$

Law of total propability

s. 233

$$P(X \in A) = \sum_{y_j \in R_Y} P(X \in A | T = T_j) P_Y(y_j),$$
 for ethvert se A

Law of total expectation

s. 233

1. Hvis B_1 , B_2 , B_3 , ... er en partition af sample sppace S:

Example sppace S:

$$EX = \sum_{i} E[X|B_{i}]P(B_{i})$$

2. For en stok. var. X og en diskret stok. var. Y:
$$EX = \sum_{y_j \in R_Y} E[X|Y = y_j] P_Y(y_j)$$

LOTUS for to diskrete stok. var.

$$E[g(X,Y)] = \sum_{(x_i,y_j) \in R_{XY}} g(x_i,y_j) P_{XY}(x_i,y_j)$$

Expectation for to uafh. stok. var.

s. 242

Hvis X og Y er uafhængige stok. var. så gælder:

- 1. E[X|Y] = EX
- 2. E[g(X)|Y] = E[g(X)]
- 3. E[XY] = EXEY
- 4. E[g(X)h(Y)] = E[g(X)]E[h(Y)]

Joint PDF - continuous random variables

s. 257

$$P((X,Y) \in A) = \iint_A f_{XY}(x,y) dxdy$$

Marginal PDFs for to kont. stok. var.

s. 259

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy, \quad \forall x$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx, \quad \forall y$$

Hvis man skal finde fx(x) integrerer man over y. Man bruger derfor også y's grænser. Hvis der står 0 < y < x < 1 er nedre grænse 0 og øvre grænse er x.

Joint cumulative function

s. 262

Joint CDF for to stok. var. X og Y er givet ved:

$$F_{XY(x,y)} = P(X \le x, Y \le y)$$

Joint CDF opfylder følgende egenskaber:

- 1. $F_X(x) = F_{XY}(x, \infty)$, for ethvert x (marginal CDF for X)
- 2. $F_Y(y) = F_{YX}(\infty, y)$, for ethvert y (marginal CDF for Y)
- 3. $F_{XY}(\infty, \infty) = 1$
- 4. $F_{XY}(-\infty, y) = F_{XY}(x, -\infty) = 0$
- 5. $P(x_1 < X \le x_2, y_1 < Y \le y_2 = F_{XY}(x_2, y_2) F_{XY}(x_1, y_2) F_{XY}(x_2, y_1) + F_{XY}(x_1, y_1)$
- 6. Hvis X og Y er uafh. så: $F_{XY}(x, y) = F_X(x)F_Y(y)$

Egenskaber for joint kont. stok. var.

s. 263

PDF:

$$F_{XY}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(u,v) du dv$$

CDF:

$$f_{XY}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{XY}(x,y)$$

- s. 271
- 1. Forventet værdi af X givet Y=y:

$$E[X|Y = y] = \int_{-\infty}^{\infty} x f_{x|Y}(x|y) dx$$

2. conditional LOTUS:

$$E[g(X)|Y=y] = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) dx$$

3. conditional Var(X) givet Y=y

$$Var(X|Y = y) = E[X^{2}|Y = y] - (E[X|Y = y])^{2}$$

Conditional concepts for joint kont. stok. var.

s. 269

For to joint kont. stok. var. X og Y, kan man definere følgende afhængige koncepter:

1.Conditional PDF af x givet Y=y:

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

2. Conditional ss for at $X \in A$ givet Y=y:

$$P(X \in A|Y = y) = \int_{A} f_{X|Y}(x|y)dx$$

3.conditional CDF af X givet Y=y:

$$F_{X|Y}(x|y) = P(X \le x|Y = y) = \int_{-\infty}^{x} f_{X|Y}(x|y) dx$$

Independent random variables:

To kontinuerte stok. Var. X og Y er uafhængige hvis:

$$f_{XY}(x,y) = f_X(x)f_Y(y),$$
 for alle x, y

Det gælder ligeledes, at X og Y er uafhængige hvis

$$F_{XY}(x, y) = F_X(x)F_Y(y),$$
 for alle x, y

Vi har desuden, at hvis X og Y er uafhængige, da har vi

$$E[XY] = EXEY$$

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Law of total alting og LOTUS for to kont. stok. var.

s. 275

Total probability

$$P(A) = \int_{-\infty}^{\infty} P(A|X = x) f_X(x) dx$$

Total expectation:

$$E[Y] = [E[Y|X]] = \int_{-\infty}^{\infty} E[Y|X = x] f_X(x) dx$$

For at finde E[Y|X=x] kigger man på hvilken fordeling Y har og kigger i apendix Total variance:

$$Var(Y) = E[Var(Y|X)] + Var(E[Y|X])$$

LOTUS:

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dx dy$$

Theorem 5.2. X og Y er uafhængige

s. 283

Hvis
$$X \sim N(\mu_X, \sigma_X^2)$$
 og $Y \sim N(\mu_Y, \sigma_Y^2)$ er uafhængige, så:

$$X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Kovarians og korrelation

s. 291

Kovarians mellem X og Y kan beskrives som:

$$Cov(X,Y) = E[(X - EX)(Y - EY)] = E[XY] - (EX)(EY)$$

Lemma 5.3. kovariansens egenskaber:

- 1. Cov(X, X) = Var(X)
- 2. Hvis X og Y er uafhængige så er Cov(X, Y) = 0
- 3. Cov(X, Y) = Cov(Y, X)
- 4. Cov(aX, Y) = aCov(X, Y)
- 5. Cov(X + c, Y) = Cov(X, Y)
- 6. Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)

s. 294

Korrelations koefficienten:

$$\rho_{XY} = \rho(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}} = \frac{Cor(X, Y)}{\sigma_X \sigma_Z}$$

Egenskaber for korelations koefficienten:

- $1. -1 \le \rho(X, Y) \le 1$
- 2. Hvis $\rho(X, Y) = 1 \Rightarrow Y = aX + b$, hvor a > 0
- 3. Hvis $\rho(X, Y) = -1 \Rightarrow Y = aX + b$, hvor a < 0
- 4. $\rho(aX + b, cY + d) = \rho(X, Y)$ for a, c > 0

Definition 5.2

Hvis $\rho(X, Y) = 0 \Rightarrow$ ukorreleret

Hvis $\rho(X,Y) > 0 \Rightarrow$ positivt korreleret

Hvis $\rho(X, Y) < 0 \Rightarrow$ Negativt korreleret

Hvis X og Y er ukorreleret:

Var(X + Y) = Var(X) + Var(Y)

Varians af sum

s. 293

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

Kapitel 6

Independent identiually distributed (i.i.d.)

s. 321

Definition 6.1. Stok. Var. $X_1, X_2, X_3, ..., X_n$ er i.i.d., hvis de er uafhængige og de har den samme marginale fordeling:

$$F_{X_1}(x) = F_{X_2} = \dots = F_{X_n}(x), \quad \forall x \in \mathbb{R}$$

Kapitel 7

Convergence in distribution

A sequence of random variables $X_1, X_2, ...$ converges in distribution to a random variable X, shown by $X_n \to X$, if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

Theorem 7.1

Betragt $X_1, X_2, X_3, ...$ og den stokastiske variabel X. Antag at X og X_n (for alle n) er ikke-negative og "integer-valued"

$$R_X \subset \{0, 1, 2, \dots\}$$

 $R_{X_n} \subset \{0, 1, 2, \dots\}$

Så $X_n \to X$ hvis og kun hvis

$$\lim_{n\to\infty} P_{X_n}(k) = P_X(k)$$

Convergence in Probability

A sequence of random variables $X_1, X_2, X_3, ...$ converges **in probability** to af random variable X, shown by $X_n \to X$, if

$$\lim_{n\to\infty}P(|X_n-X|\geq\epsilon)=0,\qquad \ for\ all\ \epsilon>0$$

Theorem 7.2

If $X_n \to^d c$, where c is a constant, then $X_n \to^p c$

Kapitel 8 statistik

Random sample

s. 425 (stikprøve)

Samlingen af stok. var. V $x_0 = X_1, X_2, X_3, ..., X_n$ er et random sample med størrelse n, hvis de er i.i.d.:

1. $X_1, X_2, X_3, \dots, X_n$ er uafhængig stok. var. og

2. De har samme fordeling: $F_{X_1}(x) = F_{X_2} = \cdots = F_{X_n}(x)$, $\forall x \in \mathbb{R}$

For et random sample antager man følgende:

1. X_i er uafhængig

2.
$$F_{X_1}(x) = F_{X_2} = \dots = F_{X_n}(x) = F_X(x)$$

3.
$$EX_i = EX = \mu < \infty$$

$$4.\ 0 < Var(X_i) = Var(X) = \sigma^2 < \infty$$

Sample mean

s. 426

Sample mean er givet ved:

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Egenskaber for sample mean:

 $1.E\bar{X} = \mu$

$$2.Var(\bar{X}) = \frac{\sigma^2}{n}$$

3. Weak law of large numbers (WILN):

$$\lim_{n\to\infty} P(|\bar{X}-\mu| \ge \epsilon) = 0$$

 $\lim_{n\to\infty} P(|\bar{X} - \mu| \ge \epsilon) = 0$ 4.Central limit theorem: The random variable

$$Z_n = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$

dette konvergerer i fordeling til standard normal stok. var når $n \to \infty$:

$$\lim_{n\to\infty} P(Z_n \le x) = \phi(x), \qquad \forall x \in \mathbb{R}$$

hvor $\phi(x)$ er standard normal CDF

Estimering

s. 429

Bias:

Lad $\hat{\theta} = h(X_1, X_2, ..., X_n)$ være en estimator for θ . Bias for estimatoren beskrives som:

$$B(\hat{\theta}) = E[\hat{\theta}] - \theta$$

 $\hat{\theta}$ er **unbiased** hvis:

$$B(\hat{\theta}) = 0, \forall mulige \ v \text{$ardier} \ af \ \theta$$

Mean squared error (MSE) for en estimator $\hat{\theta}$:

$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right]$$

Det er den fejl vi laver når vi bruger $\hat{\theta}$ til at estimere θ . Derfor måler man afstanden mellem de to.

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + B(\hat{\theta})^2$$

Bemærk: Hvis $\widehat{\Theta}$ er unbiased $\rightarrow MSE(\widehat{\Theta}) = Var(\widehat{\Theta})$

Lad $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_n, \dots$, være en følge af estimatore for θ . $\hat{\theta}_n$ er en konsistent estimator hvis:

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| > \epsilon) = 0, \quad \forall \epsilon > 0$$

s. 434

Lad $X_1, X_2, ..., X_n$ være et tilfældigt sample med mean $EX_i = \mu < \infty$ og varians $0 < Var(X_i) = \sigma^2 < \infty$. Så er **sample varians** defineret som:

$$\bar{S}^2 = \frac{1}{n} \left(\sum_{k=1}^n X_k^2 - n\bar{X}^2 \right)$$

$$S^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{k=1}^{n} X_{k}^{2} - n\bar{X}^{2} \right)$$

(Nederste bruges oftest!)

Sample varians er en unbiased estimator af σ^2

Sample standard deviation/standard afvigelse er givet ved:

$$S = \sqrt{S^2}$$

Dette er en biased estimator for σ , men den man bruger.

Bemærk!!! Jf. opgave 23 kap. 8 - s. 518

- $\widehat{\beta_1}$ er en unbiased estimator

Maximum likelihood estimation (MLE)

s. 437

Lad $X_1, X_2, ..., X_n$ være et tilfældigt sample fra en fordeling med parameter θ . Antag at man har observeret $X_1 = x_1, X_2 = x_2, ..., X_n = x_n$.

Hvis X_i er diskret, så er likelihood funktionen (PMF) givet ved:

$$L(x_1, x_2, ..., x_n; \theta) = P_{X_1 X_2 ... X_n}(x_1, x_2, ..., x_n; \theta)$$

Hvis X_i er simultan kontinuert er likelihood funktion (PDF) givet ved:

$$L(x_1, x_2, ..., x_n; \theta) = f_{X_1 X_2 ... X_n}(x_1, x_2, ..., x_n; \theta)$$

Nogle gange er det nemmere at brug log ligelihood funktionen:

$$\ln L(x_1, x_2, ..., x_n; \theta)$$

s. 440

Maximum likelihood funktionen:

Til dette bruger man samme funktion som før, hvor man differentierer likelihood funktionen og sætter den lig 0. (find maximum)

Se bogen for asymptopiske egenskaber for MLE - s. 443

Konfidensintervaller

s. 455

For kendt varians $Var(X_i) = \sigma^2 < \infty$; $n \ er \ stor$

Parameter der skal estimeres: $\theta = EX_i$

$$\left[\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right]$$
 er approximativt et $(1 - \alpha)100\%$ konfidens interval for θ

s. 458

For et sample der er $Bernoulli(\theta)$; n er stor:

Parameter der skal estimeres: θ

$$\left[\bar{X} - \frac{z_{\alpha}}{2\sqrt{n}}, \bar{X} + \frac{z_{\alpha}}{2\sqrt{n}} \right]$$
er approximativt et $(1 - \alpha)100\%$ konfidens interval for θ .

Det er et konservativt interval, da det bruger en upper bound for σ .

En anden måde for samme case:

$$\left[\bar{X} - z_{\frac{\alpha}{2}}\sqrt{\frac{\bar{X}(1-\bar{X})}{n}}, \bar{X} + z_{\frac{\alpha}{2}}\sqrt{\frac{\bar{X}(1-\bar{X})}{n}}\right]$$
 er approximativt et $(1-\alpha)100\%$ konfidens interval for θ

s. 460

For ukendt varians $Var(X_i) = \sigma^2 < \infty$; $n \ er \ stor$

Parameter der skal estimeres: $\theta = EX_i$

Man udregner S (sample standard deviation

$$\left[\bar{X} - z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right]$$
 er approximativt et $(1 - \alpha)100\%$ konfidens interval for θ

Konfidensintervaller for normal random variables

$$X \sim N(\mu, \sigma^2)$$
 og varians $Var(X_i) = \sigma^2$ er kendt

Parameter der skal estimeres:
$$\mu = EX_i$$
 $\left[\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right]$ er et $(1 - \alpha)100\%$ konfidens interval for μ

$$X \sim N(\mu, \sigma^2)$$
, $\mu = EX_i$ og varians $Var(X_i) = \sigma^2$ er ukendt
Parameter der skal estimeres: $\mu = EX_i$
 $\left[\overline{X} - t \frac{\alpha}{2}, n-1 \frac{S}{\sqrt{n}}, \overline{X} + t \frac{\alpha}{2}, n-1 \frac{S}{\sqrt{n}} \right]$ er et $(1 - \alpha)100\%$ konfidens interval for μ

$$X \sim N(\mu, \sigma^2)$$
, $\mu = EX_i$ og varians $Var(X_i) = \sigma^2$ er ukendt
Parameter der skal estimeres: $Var(X_i) = \sigma^2$
$$\left[\frac{(n-1)S^2}{X_{\frac{\alpha}{2},n-1}^{\alpha}}, \frac{(n-1)S^2}{X_{1-\frac{\alpha}{2},n-1}^{2}}\right]$$
 er et $(1-\alpha)100\%$ konfidens interval for σ^2

IR

IN	
	a er en simulering af en fordeling (skal bruges til følgende eksempler)
$ar{X}$	Mean(a) - Estimator for middelværdien
$\frac{S/\sqrt{S^2}}{\sigma^2/S^2}$	Sd(a) - Estimator for standardafvigelsen
σ^2/S^2	Var(a) - Estimator for variansen
z_{lpha}	$qnorm(1-\alpha,0,1)$ q=quantile og er den inverse funktion. 0 og 1 er parameteren for normalfordelingen
$\frac{Zlpha}{2}$	$qnorm\left(1-\frac{\alpha}{2},0,1\right)$
$t\frac{\alpha}{2},n-1$	$qt\left(1-\frac{\alpha}{2},n-1\right)$
$\mathcal{X}^2_{\frac{lpha}{2},n-1}$	$qchisq\left(1-\frac{\alpha}{2},n-1\right)$
$\mathcal{X}^2_{1-rac{lpha}{2},n-1}$	$qchisq\left(1-\left(1-\frac{\alpha}{2}\right),n-1\right)$
$1 - \phi(w_1)$	$1 - qnorm(w_1, 0, 1)$
Ukendt σ^2 ensidet test	$pt(w_i, n)$
c for en eksp fordeling	$qexk(1-\alpha,\lambda)$ til hvis man får noget der er ekspo fordelt om man skal finde threshold.

Bemærkning: Den geometriske fordeling og Pascal-fordelingen er begge parametriseret anderledes i R end i kurset.

• Hvis $X \sim Geometric(p)$ så vil Y = X - 1 være "geometrisk fordelt med parameter p i R forstand". Med andre ord: i R beskriver den geometriske fordeling antallet af fiaskoer inden første succes. Da

$$P(X \le x) = P(Y + 1 \le x) = P(Y \le x - 1),$$

kan vi derfor udregne $P(X \le x)$ ved brug af R kommandoen pgeom(x - 1, p) (bemærk: der står x - 1 i R kommandoen).

• Hvis $X \sim Pascal(m, p)$ så er Y = X - m "negativ binomial fordelt i R forstand". Med andre ord: i R beskriver den negative binomialfordeling antallet af fiaskoer inden mte succes. Derfor kan $P(X \leq x)$ udregnes ved R kommandoen pnbinom(x - m, m, p) (bemærk x - m).

Hypotesetest

s. 474

 H_0 er den hypotese man antager er rigtig (nul hypotesen).

 H_1 er den alternative hypotese og er altså det modsatte af H_0 .

s. 477

Test statisk:

En statistik kunne f.eks. være sample mean. Det er en funktion af data. En test statstik er en statistik som vi bruger til at lave vores test.

s. 477

Type 1 fejl:

Man afviser H_0 givet at den er sandt. Matematisk formuleret:

$$P(type\ 1\ fejl|\theta) = P(afvise\ H_0|\theta)$$

Hvis $P(type\ 1\ fejl \le \alpha$ har testen signifikansniveau α eller man kan sige at det er en level α test.

Type 2 fejl

At acceptere H_0 givet at H_1 er sandt. Ss for type 2 fejl beskrives som en funktion af beta:

$$\beta(\theta) = P(accepter H_0|\theta)$$

s. 481

To sidet test

Man skal bestemme mellem

$$H_0: \mu = \mu_0$$

$$H_0: \mu \neq \mu_0$$

En sidet test

$$H_0: \mu \le \mu_0$$

 $H_0: \mu > \mu_0$

eller

$$H_0\colon \mu \geq \mu_0$$

$$H_0\colon \mu < \mu_0$$
 eller
$$H_0\colon \mu = \mu_0$$

$$H_0\colon \mu < \mu_0$$

For to sidet test af mean:

Hvis H_0 er sandt regner man med at \overline{X} er tæt på μ og dermed at $W(X_1, X_2, ..., X_n)$ er tæt på 0. Man vælger derfor en threshold c, så hvis $|W| \le c$ accepterer man H_0 .

Styrke:

$$\pi(\theta) = P(W \notin A)$$

Styrken betegner altså sandsynligheden for at forkaste en falsk nulhypotese.

(Vi er interesserede i så stor styrke som muligt.)

s. 485

For to sidet hypotesetest H_o : $\mu = \mu_0$, H_1 : $\mu = \mu_0$

Case	Test statistik	Acceptance region
$X_i \sim N(\mu, \sigma^2), \sigma \ kendt$	$W = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	$ W \le Z_{\frac{\alpha}{2}}$
N stor, X_i ikke normal	$W = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$	$ W \le z_{\frac{\alpha}{2}}$
$X_i \sim N(\mu, \sigma^2)$, σ er ukendt	$W = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$	$ W \le t_{\frac{\alpha}{2}, n-1}$

s. 488

For etsidet hypotesetest, hvor H_0 : $\mu \le \mu_0$, H_1 : $\mu > \mu_0$

Case	Test statistik	Acceptance region
$X_i \sim N(\mu, \sigma^2), \sigma \ kendt$	$\bar{X} - \mu_0$	$W \leq z_{\alpha}$
	$W = \frac{r \cdot 6}{\sigma / \sqrt{n}}$	
N stor, X_i ikke normal	$W = \frac{\bar{X} - \mu_0}{\bar{x}}$	$W \leq z_{\alpha}$
	$W \equiv \frac{1}{S/\sqrt{n}}$	
$X_i \sim N(\mu, \sigma^2), \sigma$ er ukendt	$\bar{X} - \mu_0$	$W \le t_{\alpha,n-1}$
	$W = \frac{r \cdot s}{S/\sqrt{n}}$	

For etsidet hypotesetest, hvor H_0 : $\mu \ge \mu_0$, H_1 : $\mu < \mu_0$

Case	Test statistik	Acceptance region
$X_i \sim N(\mu, \sigma^2), \sigma \ kendt$	$W = \frac{\bar{X} - \mu_0}{\bar{x}}$	$W \ge -z_{\alpha}$
	σ/\sqrt{n}	

N stor, X_i ikke normal	$W = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$	$W \ge -z_{\alpha}$
$X_i \sim N(\mu, \sigma^2), \sigma$ er ukendt	$W = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$	$W \ge -t_{\alpha,n-1}$

P-værdier

s. 488

Det laveste signifikansniveau af α der resulterer i at man afviser nul hypotesen. Jo mindre pværdien er jo mere sikker er man i at afvise H_0

For to sidet test med kendt σ^2 er p-værdi givet ved:

$$2(1-\phi(|w_1|)$$

For to sidet test med ukendt σ^2 er p-værdi givet ved:

For en sidet med kendt σ^2 er p-værdi givet ved:

$$1 - \phi(|w_1|)$$

For en sidet med ukendt σ^2 er p-værdi givet ved:

$$1 - F_{T(n-1)}(w_i)$$

I en opgave er det for dette tilfælde regnet som $\phi(c)$ hvor (threshold) er det man regner i R (f.eks. $-z_{\alpha}$). Så

Likelihood ratio test (LRT)

s. 491

Lad $X_1, X_2, ..., X_n$ være et tilfældigt sample fra en fordeling med parameter θ . Antag at man har observeret $X_1=x_1, X_2=x_2, \dots, X_n=x_n$. For at vælge mellem to <u>simple</u> hypoteser $H_0: \theta = \theta_0 \text{ og } H_1: \theta = \theta_1$

$$\lambda(x_1, x_2, \dots, x_n) = \frac{L(x_1, x_2, \dots, x_n; \theta_0)}{L(x_1, x_2, \dots, x_n; \theta_1)}$$

 $\lambda(x_1,x_2,\ldots,x_n) = \frac{L(x_1,x_2,\ldots,x_n;\theta_0)}{L(x_1,x_2,\ldots,x_n;\theta_1)}$ Man vælger en konstans c. H_0 afvises hvis $\lambda < c$ og accepterer hvis $\lambda \geq c$. c vælges ud fra det ønskede a

For generelle nulhypoteser:

Samme settup.

$$\lambda(x_1,x_2,\ldots,x_n) = \frac{\sup\{L(x_1,x_2,\ldots,x_n;\theta) \colon \theta \in S_0\}}{\sup\{L(x_1,x_2,\ldots,x_n;\theta) \colon \theta \in S\}}$$

Her vælges c i intervallet [0,1]. H_0 afvises hvis $\lambda < c$ og accepterer hvis $\lambda > c$. c vælges ud fra det ønskede a

Lineær regression

s. 500

Simpel lineær resgression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Vi modellerer ϵ_i som uafhængige og med nul-mean normale stok. var.:

$$\epsilon_i \sim N(0, \sigma^2)$$

Regressionslinjen kan beskrives som:

$$\hat{y} = \beta_0 + \beta_1 x$$

 β_0 og β_1 estimeres som:

$$\hat{\beta}_1 = \frac{s_{xy}}{s_{xx}}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$s_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$$

$$s_{xy} = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})$$

Når der står bar altså \bar{x} og \bar{y} , menes der et gennemsnit

"Fitted value" \hat{y}_i

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Mængden $e_i = y_i - \hat{y}_i$ kaldes residuals

R^2-værdi

s. 505

 r^2 udregnes som:

$$r^2 = \frac{s_{xy}^2}{s_{xx}s_{yy}}$$

For r^2 gælder: $0 \le r^2 \le 1$. Desto større en værdi desto bedre en model

Kapitel 11

At lave en matrix i R

Another way of creating a matrix is by using functions <code>cbind()</code> and <code>rbind()</code> as in column bind and row bind.

Markov kæde

s. 631

En stok. process $\{X_n, n = 0, 1, 2, ...\}$, hvor $R_{X_i} = S \subset \{0, 1, 2, ...\}$. Denne process er en markov kæde hvis:

$$P(X_{m+1} = j | X_m = i, X_{m-1} = i_{m-1}, ..., X_0 = i_0) = P(X_{m+1} = j | X_m = i), \quad \forall m, j, i, i_1, ... i_{m-1}$$

Hvis antallet at tilstande er endeligt f.eks. $S = \{0, 1, 2, ..., r\}$, kalder man det en endelig markov kæde

Transitions sandsynligheden

$$P_{ij} = P(X_{m+1} = j | X_m = i)$$

P er transitionsmatricen

Følgende gælder:

$$\pi^{(n+1)} = \pi^{(n)} P$$
, for $n = 0, 1, 2, ...$
 $\pi^{(n)} = \pi^{(0)} P^n$, for $n = 0, 1, 2, ...$

Vigtig udregning:

Find
$$P(X_1 = 3, X_2 = 2, X_3 = 1)$$

Kan se ud på mange måder. Det vigtige er princippet

$$= P(X_1 = 3) \cdot P(X_2 = 2|X_1 = 3) \cdot P(X_3 = 1|X_2 = 2, X_1 = 3)$$

Da fortid er ligemeget, sletter man det sidste $X_1 = 3$ og man skal nu aflæse

$$P(X_1 = 3) \cdot P_{32} \cdot P_{21}$$

 $P(X_1 = 3)$ skal på en eller anden måde være givet og resten aflæses i matricen

Find
$$P(X_5 = 3 | X_0 = 1)$$

Find ss for at man til tid 5 er i tilstand 3 givet man starter i tilstand 1. Man definerer matricen i R og finder:

$$P_{13}^{(5)}$$

Chapman-Kolmogorov ligningen

$$p_{ij}^{(m+n)} = P(X_{m+n} = j | X_0 = i) = \sum_{k \in S} p_{ik}^{(m)} p_{kj}^{(n)}$$

Beskriver ss for at går fra i til j i m+n skridt n-step transitionsmatricen er givet ved:

$$P^{(n)} = P^n$$
, for $n = 1, 2, 3, ...$

Tilgængelig/accessible $i \rightarrow j$	J er tilgængelig fra i hvis $p_{ij}^{(n)} > 0$
Kommunikativ $i \leftrightarrow j$	Man kan komme fra den ene til den anden og omvendt
Klasse	En gruppe af tilstande, der kommunikerer med hinanden
Irreducibel	Hvis alle tilstande kommunikerer med hinanden
f_{ii}	$= P(X_n = i, for \ et \ n \ge 1 X_0 = i)$

Rekurrent	Tilstand i er rekurrent hvis $f_{ii} = 1$. Med andre ord, hvis man ikke kan komme ud af klassen. (Eller at man altid (på et tidspunkt) vil komme tilbage til samme tilstand.)
	Klasseegenskab
Transient	Tilstand i er transient, hvis f_{ii} < 1. Hvis man kan komme ud af klassen. (Positiv sandsynlighed for, at man aldrig kommer tilbage til samme tilstand.) **Klasseegenskab**
Periode	Perioden af i skrives som $d(i)$. Hvis det tager 3, 6, skridt at komme til i er $d(i) = 3$. Hvis det kan tage 2 og 3 skridt er $d(i) = 1$. Det er altså sfd af antal skridt, man kan tage for at komme tilbage til i.
	OBS: Hvis der er selvløkker, vil perioden være 1 i markov kæden. (Da sfd $(1,n) = n$)
Periodisk	Hvis $d(i) > 1$.
	OBS: Hvis to tilstande
aperiodisk	Hvis $d(i) = 1$
	OBS:
Absorbering	At man aldrig kommer væk fra en tilstand. Hvis l er en absorberende tilstand skriver man $a_i = P(absorbering \ i \ l x_0 = i), \forall i \in S$ Løs ligningen: $a_i = \sum_k a_k p_{ik}$, for $i \in S$

s. 639

For en diskret markov kæde:

Lad \boldsymbol{V} væredet totale antal besøg i tilstand i.

A Hvis i er rekurrent:

$$P(V = \infty | X_0 = i) = 1$$

B Hvis i er transient:

$$V|X_0=i{\sim}Geometric(1-f_{ii})$$

Mean hitting time

s. 644

Den tid det går før man ramme nogle bestemte tilstande for første gang:

$$t_i = E[T|X_0 = i] = 1 + \sum_k t_k p_{ik}$$

 t_k er tilstanden og p_{ik} er ss for at man går derhen. Man skal løse et ligningssystem se s. 644

Grænsefordelingen

s. 649

Sandsynlighedsfordelingen $\pi = [\pi_0, \pi_1, \pi_2, ...]$ kaldes grænsefordelingen for markovkæden X_n hvis:

$$\pi_j = \lim_{n \to \infty} P(X_n = j | X_0 = i), \quad \forall i, j \in S$$

Og

$$\sum_{i \in S} \pi_j = 1$$

Når en grænsefordeling eksisterer afhænger den ikke af begyndelses stedet. Man kan derfor skrive:

$$\pi_j = \lim_{n \to \infty} P(X_n = j)$$

Grænsefordelingen er, hvordan MK ser ud langt ude i fremtiden

Hvis en markovkæde er aperiodisk og irreducibel -> har den en "veldefineret"/entydig grænsefordeling -> har den en entydig stationærfordeling

Stationærfordeling

For matricen P

- 1. Byt om på rækker og søjler
- 2. Træk 1 fra på diagonalen (skrå linje)
- 3. erstat nederste række med 1 hele vejen
- 4. Definer som A i R

For at løse i R:

Gør tricket ovenfor og definer matricen

Definer en matrice B med det antal rækker A har og sæt dem til nul. Undtagen den nederste, der skal være 1.

Kod: solve(A,B) man får fordelingen pi

Hvis dette bruges til eksamen er det vigtigt at vise den er aperiodisk og irreducibel!

Endelige markovkæder

s.53

Theorem 11.2.

En endelig markovkæde $\{X_n, n = 0, 1, 2, ...\}$ hvor $X_n \in S = \{0, 1, 2, ..., r\}$. Antag at kæden er **irreducibel og aperiodisk**. Så gælder:

1.settet af ligninger:

$$\pi = \pi P$$

$$\sum_{j\in S}\pi_j=1$$

har en unik løsning

2.Den unikke løsning er grænsefordelingen af markovkæden givet ved

$$\pi_j = \lim_{n \to \infty} P(X_n = j | X_0 = i), \quad \forall i, j \in S$$

3.Følgende gælder

$$r_j = \frac{1}{\pi_i}, \quad \forall j \in S$$

Hvor r_i er mean return time til tilstand j.

Theorem 11.3 Mangler!!!

Betragt en uendelig Markov kæde (X_n , n = 0, 1, 2, ...). Antag, at kæden er **ireducibel** og **aperiodisk**. Da gælder det, at en af følgende cases kan opstå.

Alle tilstande er transiente, og

Gamblers ruin problem

s. 699

MK i R

Husk at slå pakken EXPM til!

Trusk at sia pakken 1271 Wi tii.	
Matrix	Kaldes f.eks. A
	A = matrix(c(tal, tal, tal, tal), nrow
	= antal rækker, byrow
	= TRUE)
Grænsefordeling	solve(A, B), hvor A er matricen P med magic
	trick (3 trin) og B også er en matrice (se afsnit
	om grænsefordling)
$P^{(n)} = P^n$	For overgangsmatricen P:
	P%^%n
AB	A% * %B

[&]quot;fordelingsforklaring" → hvad måler den enkelte fordeling - sagt med ord. (Han lægger meget vægt på dette!!!!)

o Bernoulli: Alle er 0 eller 1 variabler (gælder eller gælder ikke/succes eller ikke succes?)

o Binomial(n, p): Antal succeser i n forsøg.

O Geometric(p): Antal forsøg inden første succes (Vær obs. på R!)
O Pascal(m, p): Antal forsøg indtil m'te succes (Vær obs. på R!)

o Poisson: Antal ankomster(forekomster) i et givet tidsinterval

o Uniform(a,b): Et tilfældigt valgt tal mellem a og b

o Exponential(λ): Ventetid på første succes (i kontinuert tid)

O Gamma(α , λ): Ventetid på α 'te succes

o $N(\mu, \sigma^2)$: For $\mu = 0$: Tilfældigt støj (CLT(central

grænseværdisætning)