Policy Evaluation vs. Control

- Policy Evaluation (Ước lượng chính sách):
 - Cho trước một **chính sách cố định** π , nhiệm vụ là tính toán hoặc xấp xỉ hàm giá trị trạng thái $V^{\pi}(s)$ (hay hàm giá trị hành động $Q^{\pi}(s,a)$) tương ứng.
 - Mục đích: xác định xem policy đó "tốt" hay "xấu"—nói cách khác, **đánh giá khả năng thu được reward lâu dài** khi agent tuân theo policy này.
- Control (Điều khiển / Tìm chính sách tối ưu):
 - Mục tiêu là **tìm một chính sách** π^* làm cho hàm giá trị tối ưu $V^*(s)$ (hay $Q^*(s,a)$) được tối đa.
 - Thay vì chỉ xác định giá trị, agent phải cải thiện policy sao cho càng nhiều reward càng tốt.
- Điểm khác biệt then chốt:
 - Với **policy evaluation**, policy đã được định nghĩa sẵn, chỉ việc ước lượng V^{π} hoặc Q^{π} .
 - Với **control**, policy là ẩn, cần lặp đi lặp lại giữa việc ước lượng giá trị và cải thiện policy (như Policy Iteration, Value Iteration).

3. Vai trò của Dynamic Programming trong Policy Evaluation

- Dynamic Programming (DP) yêu cầu:
 - 1. Biết trước mô hình chuyển tiếp $P(s', r \mid s, a)$ của MDP.
 - 2. Không gian trạng thái/ hành động đủ nhỏ để lưu trữ bảng giá trị.
- Úng dụng của DP:
 - Khi policy π cố định, ta có hệ **Bellman Expectation Equation** cho $V^{\pi}(s)$:

$$V^{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} P(s',r \mid s,a) [r + \gamma V^{\pi}(s')].$$

- Giải trực tiếp hệ phương trình đó (hệ tuyến tính) để tìm $V^{\pi}(s)$. Tuy nhiên, nếu số lượng trạng thái lớn, việc giải chính xác sẽ tốn kém về thời gian và bộ nhớ.
- Han chế:
 - 1. **Yêu cầu biết mô hình chuyển tiếp** đầy đủ (đối với nhiều bài toán thực tế, mô hình không rõ hoặc quá phức tạp).
 - 2. **Không gian trạng thái lớn** (độ phức tạp mảng/bảng tăng nhanh), dẫn đến việc tính ngược hoặc lưu trữ V không khả thi.
- Giải pháp thay thế:
 - Iterative Policy Evaluation: thay vì giải hệ tuyến tính, ta lặp lại cập nhật giá trị cho đến khi hội tụ. Mỗi lần lặp gọi là "sweep" qua toàn bộ trạng thái.

4. Iterative Policy Evaluation ☐

4.1 Ý tưởng chính

- Ban đầu cho một ước lượng khởi tạo $V_0(s)$ (có thể gán 0 hoặc bất kỳ giá trị nào).
- Tại mỗi **sweep** k, cập nhật ước lượng $V_{k+1}(s)$ theo công thức Bellman Expectation dùng ước lượng cũ V_k .
- Lặp cho đến khi $\max_{}$ delta (độ thay đổi lớn nhất giữa V_{k+1} và V_k) nhỏ hơn một ngưỡng θ đặt trước. Khi đó, ta coi $V_k \approx V^\pi$.

4.2 Công thức cập nhật

• Với mỗi trạng thái s:

$$V_{k+1}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} P(s',r \mid s,a) [r + \gamma \ V_{k}(s')].$$

- Chú ý: khi cập nhật, để tránh "dùng giá trị mới giữa chừng" để ước lượng (sẽ dẫn đến lỗi), ta thường sử dụng hai mảng:
 - **V** giữ ước lượng cũ V_k .
 - V' (gọi là V_{new}) lưu kết quả $V_{k+1}(s)$.
 - Sau khi quét xong tất cả s, gán $V \leftarrow V'$ cho lần lặp kế tiếp.

4.3 Quy trình (Pseudo-code)

1. Khởi tạo:

$$V(s) \leftarrow 0 \quad \forall s.$$

- 2. Lặp (cho đến khi hội tụ):
 - 1. Gán $\Delta \leftarrow 0$.
 - 2. Tạo mảng mới V_{new} .
 - 3. Với mỗi s không phải terminal:
 - 1. $v_{\text{old}} \leftarrow V(s)$.
 - 2. Tính $v_{\text{new}} = \sum_{a} \pi(a \mid s) \sum_{s',r} P(s',r \mid s,a) [r + \gamma V(s')].$
 - 3. Gán $V_{\text{new}}(s) \leftarrow v_{\text{new}}$.
 - 4. $\Delta \leftarrow \max(\Delta, |v_{\text{new}} v_{\text{old}}|)$.
 - 4. Với trạng thái terminal, có thể giữ $V_{\text{new}}(s_{\text{terminal}}) = 0$ hoặc không thay đổi.
 - 5. Gán $V \leftarrow V_{\text{new}}$.
 - 6. Nếu $\Delta < \theta$, dừng vòng lặp.

4.4 Sự hội tụ

• Cho bất kỳ khởi tạo V_0 , sau đủ nhiều lần quét (iterative sweeps), $V_k(s)$ sẽ **hội tụ** về $V^{\pi}(s)$ (đúng giá trị ước lượng) khi $k \to \infty$ và $\theta \to 0$.

- Thời gian hội tụ phụ thuộc:
 - Kích thước không gian trạng thái.
 - **Giá trị** γ (nếu γ gần 1, hội tụ chậm hơn).
 - **Cấu trúc mô hình** (trạng thái có nhiều liên kết chuyển tiếp, cập nhật nhiều lần để "lan" giá trị).

5. Ví dụ minh họa trên Grid World

5.1 Mô tả Grid World

- Lưới 4×4 (16 ô), trong đó:
 - Trạng thái terminal nằm ở góc trên bên trái và góc dưới bên phải. Khi agent bước vào các ô này, episode kết thúc.
 - Với mỗi bước di chuyển, agent nhận **reward** = **–1** (để khuyến khích agent tìm đường ngắn nhất đến terminal).
 - Discount factor y = 1 (không chiết khấu), vì đây là episodic task có độ dài hữu hạn.
 - Chính sách (Policy): agent chọn ngẫu nhiên (random policy)—mỗi bước, 4 hướng (up, down, left, right) đều có xác suất 0.25. Nếu hướng ra khỏi lưới, agent vẫn ở nguyên ô cũ nhưng vẫn bị trừ –1 reward.

5.2 Bảng trạng thái khởi đầu

• Khởi tạo ước lượng V(s)=0 cho mọi trạng thái, kể cả non-terminal (terminal luôn giữ 0 hoặc không cần cập nhật).

5.3 Lần quét đầu tiên (Sweep 1)

• Với mỗi trạng thái phi-terminal (có 14 trạng thái), tính:

$$V_1(s) = \sum_{a \in \{\text{up,down,left,right}\}} \frac{1}{4} [-1 + V_0(s')],$$

trong đó $s^{'}$ là ô kế tiếp nếu di chuyển theo a; nếu ra khỏi lưới, $s^{'}=s$. Vì $V_{0}(s^{'})=0$ với mọi $s^{'}$, ta có:

$$V_1(s) = \sum_{a} \frac{1}{4}(-1+0) = -1.$$

• Kết quả: sau sweep 1, mọi ô phi-terminal có giá trị –1, ngoại trừ các ô ngay cạnh terminal (khi di chuyển về terminal, $s^{'}$ là terminal, nhưng $V_0(\text{terminal})=0$). Tuy nhiên, vì khởi đầu mô hình terminal không bị trừ thêm gì, kết quả chung vẫn là –1 với $\gamma=1$.

5.4 Lần quét thứ hai (Sweep 2)

• Bây giờ $V_1(s')$ đã là -1 cho nhiều ô, nên:

$$V_2(s) = \sum_{a} \frac{1}{4} [-1 + V_1(s')] = \sum_{a} \frac{1}{4} (-1 + (-1)) = -2.$$

Tuy nhiên, lưu ý: nếu một action a đưa agent sang terminal, lúc đó reward = -1 nhưng $V_1(\text{terminal}) = 0$. Ví dụ, trạng thái bên cạnh góc terminal:

- Có 1/4 hướng "vào terminal" $\rightarrow -1 + 0 = -1$.
- 3/4 hướng khác $\rightarrow -1 + (-1) = -2$.
- Tổng: $V_2(s) = \frac{1}{4}(-1) + \frac{3}{4}(-2) = -\frac{1}{4} \frac{6}{4} = -\frac{7}{4} = -1.75$.
- Với các ô xa terminal, chưa thể "tiếp cận" nên có $V_2(s) = -2$.

5.5 Các lần quét tiếp theo

- Mỗi lần quét, giá trị $V_k(s)$ tiếp tục được làm mới dựa trên "trung bình" reward –1 cộng với giá trị các ô kế tiếp từ lần quét trước.
- Giá trị hội tụ khi k đủ lớn, vì đường đi ngắn nhất từ mỗi ô đến terminal có **độ dài hữu hạn**. Cuối cùng, V(s) sẽ phản ánh **độ ngắn** của đường đi đến terminal (với random policy, tức độ kỳ vọng số bước).

5.6 Dừng khi hội tụ

- Chọn ngưỡng $\theta = 0.001$.
- Mỗi sweep, tính $\Delta = \max_{s} |V_{\text{new}}(s) V_{\text{old}}(s)|$.
- Khi $\Delta < \theta$, coi như hàm V đã hội tụ gần tới V^{π} .

6. Tóm tắt quá trình Iterative Policy Evaluation

- 1. **Khởi tạo**: Đặt V(s) = 0 hoặc một giá trị bất kỳ.
- 2. Lặp cho tới khi hội tụ:
 - Với mỗi state s (ngoại trừ các trạng thái terminal), cập nhật:

$$V_{k+1}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} P(s',r \mid s,a) [r + \gamma V_k(s')].$$

- Tính $\Delta = \max_{s} |V_{k+1}(s) V_k(s)|$.
- Nếu $\Delta \le \theta$, dừng; ngược lại, gán $V_k \leftarrow V_{k+1}$ và tiếp tục.
- 3. **Kết quả**: Khi dừng, V(s) là ước lượng gần đúng của $V^{\pi}(s)$, tức là **giá trị kỳ vọng dài hạn** khi agent tuân theo policy π .

7. Ứng dụng và Hạn chế của Policy Evaluation với DP

- Khi nào áp dụng được:
 - 1. **Mô hình chuyển tiếp** P đã biết và có thể tra cứu.
 - 2. Không gian trạng thái đủ nhỏ để lặp qua và lưu trữ giá trị.
- Han chế:
 - 1. Nếu **không gian trạng thái quá lớn** (ví dụ: hàng triệu trạng thái), việc lặp qua tất cả state mỗi lần sweep là không khả thi.
 - 2. **Nếu mô hình** P **không biết** (model-free setting), không thể tính trực tiếp phép tổng trên $P(s', r \mid s, a)$.
 - 3. **Thời gian hội tụ** có thể rất chậm khi γ gần 1 hoặc khi trạng thái liên kết rộng (phải thông tin "lan" qua nhiều bước).
- Giải pháp thay thế:
 - Trong những trường hợp mô hình không biết và không gian trạng thái quá lớn, dùng các phương pháp model-free (ví dụ TD Learning, Monte Carlo, Q-learning) hoặc approximate methods (học hàm giá trị bằng hàm xấp xỉ như mạng neural).

8. Tổng kết (Summary)

- 1. **Policy Evaluation**: Cho policy π , tính hoặc xấp xỉ $V^{\pi}(s)$ (hoặc $Q^{\pi}(s,a)$). Không thay đổi policy.
- 2. **Control**: Cải thiện policy để đạt reward cao nhất → cần lặp giữa policy evaluation và policy improvement.
- 3. **Iterative Policy Evaluation**: Dùng **dynamic programming** để cập nhật dần giá trị, hội tụ về V^{π} nếu mô hình P biết và không gian trạng thái đủ nhỏ.
- 4. **Ví dụ Grid World**: Mỗi bước -1 reward, $\gamma=1$, random policy, 4×4 , hai terminal corners. Iterative sweeps cho đến khi V(s) hội tụ, phản ánh "độ ngắn" đường đi trung bình đến terminal.
- 5. **Hạn chế của DP**: Yêu cầu biết mô hình, không gian trạng thái nhỏ; nếu không, cần chuyển sang phương pháp mô hình-free hoặc hàm xấp xỉ.