Tentamen i TATA24 Linjär Algebra

2019-04-23 kl 8.00-13.00

Inga hjälpmedel. Ej räknedosa.

På del A och B (uppgift 1–6) ska endast svar ges. De ska lämnas på ett gemensamt papper. Varje uppgift på del A och B ger högst 1 poäng.

Uppgifterna på del C (uppgift 7–10) ger högst 3 poäng per uppgift, och till dessa krävs fullständiga och välmotiverade lösningar.

För betyg 3/4/5 krävs minst 2 poäng på del A, minst 2 poäng på del B, minst 2/3/4 uppgifter på del C som bedömts med minst 2 poäng vardera, samt minst 8/12/16 poäng totalt.

Godkänd kontrollskrivning ger 3 poäng på del A (uppgift 1–3) som då inte behöver lösas. Markera detta genom att skriva "G" i rutorna för uppgift 1–3.

Svar finns efter skrivningstidens slut på kursens hemsida.

Nedan ges \mathbb{R}^n alltid standardskalärprodukten, och standardbasen i \mathbb{R}^n ses som ett höger ON-system när lämpligt.

DEL A

- 1. Ange alla lösningar till ekvationssystemet $\begin{cases} 3x+4y-3z=1,\\ 2x+3y-2z=2,\\ 4x+3y-3z=3. \end{cases}$
- 2. Betrakta vektorerna $\mathbf{u} = (1, 2, 0, -1)$ och $\mathbf{v} = (7, 2, 8, -7)$ i \mathbb{R}^4 . Beräkna $\mathbf{v}_{\parallel \mathbf{u}}$, det vill säga den ortogonala projektionen av \mathbf{v} på \mathbf{u} .
- 3. Bestäm arean av den triangel som har hörn i punkterna (2,0,1), (3,1,3) och (5,2,2).

DEL B

- 4. Låt \mathbf{e}_1 , \mathbf{e}_2 vara standardbasen i \mathbb{R}^2 och sätt $\mathbf{f}_1 = 2\mathbf{e}_1 + \mathbf{e}_2$ och $\mathbf{f}_2 = 3\mathbf{e}_1 + 3\mathbf{e}_2$. Beräkna koordinaterna för vektorn $5\mathbf{e}_1 2\mathbf{e}_2$ i basen \mathbf{f}_1 , \mathbf{f}_2 .
- 5. Den linjära avbildningen $F:\mathbb{R}^2\to\mathbb{R}^2$ har avbildningsmatris $\begin{pmatrix} 7 & -4 \\ 6 & -7 \end{pmatrix}$ i standardbasen. Bestäm alla F:s egenvärden och motsvarande egenrum.
- 6. Ange avbildningsmatrisen i standardbasen för den linjära avbildning på \mathbb{R}^3 som utför spegling i det plan som ges av $x_1 + x_2 + x_3 = 0$.

VÄND!

Kurskod: TATA24

Provkod: TEN1

DEL C

- 7. Bestäm det kortaste avståndet i \mathbb{R}^4 mellan underrummet $\mathbb{U} = [(-1,0,-2,1),(3,2,4,-1)]$ och punkten (3,3,3,3).
- 8. Bestäm den allmänna lösningen till följande system av differentialekvationer:

$$\begin{cases} x_1'(t) = x_1(t) - 3x_2(t) + 3x_3(t), \\ x_2'(t) = -2x_1(t) + 2x_3(t), \\ x_3'(t) = x_1(t) - x_2(t) + 3x_3(t). \end{cases}$$

- 9. Den linjära avbildningen $F: \mathbb{P}_3 \to \mathbb{P}_3$ ges av F(p(x)) = (x-1)p'(x) 2p(x) för alla polynom p(x) i \mathbb{P}_3 . (\mathbb{P}_3 är vektorrummet bestående av polynom vars grad är högst tre.) Bestäm en bas i N(F) och en bas i V(F).
- 10. (a) Visa att $(AB)^{-1} = B^{-1}A^{-1}$ om A och B är inverterbara $n \times n$ -matriser. (1p)
 - (b) Visa att determinanten av en godtycklig ON-matris är lika med 1 eller -1. (1p)
 - (c) Antag att $F: \mathbb{R}^5 \to \mathbb{R}$ är en linjär avbildning och att $F((1,1,1,1,1)) \neq 0$. Visa att dim N(F) = 4. (1p)

LYCKA TILL!