Stochastic Gradient Search and Stochastic Approximation for MLE Approximation

By Henry Bourne

Table of Contents

What's the MLE and why might we want it?

No analytical solutions

Using GD and SGD to find the MLE

The EM algorithm

Alternatives to the E and M step

What's the MLE?

- Given a dataset, D, and parameters θ
- We define the likelihood as: $p(D|\theta)$
- Then the MLE is: $\hat{\theta} := \operatorname{argmax}_{\theta} p(D|\theta)$
- Why the MLE?
 - Generalizable (regression and classification)
 - MLE efficient (no consistent estimator has lower asymptotic error than MLE –
 if correct distribution being used)
 - Has approx. normal distribution (often) so with sample var. can easily compute confidence bounds and hypothesis tests

Analytical solution

- Sometimes we can directly find an analytical solution
- Start with the likelihood (assuming data iid):

$$L(\theta) := \prod_{i} p(x_i | \theta)$$

Then we take the log (usually we use the negative of this)

$$log(L(\theta)) := \sum_{i} log(p(x_i|\theta))$$

• Then we take partial derivatives, set them to zero and solve

$$\frac{\partial log(L(\theta))}{\partial \theta^i} = 0$$

Some scenarios where we can't find analytical solutions:

- If likelihood function not differentiable
- If $\frac{\partial log(L(\theta))}{\partial \theta^i} = 0$ has no solutions
- If there are latent variables

Latent variables

- A variable that isn't (or can't) be directly observed
- The MLE assumes dataset is complete/fully observed
 - Ie. Assumes all variables relevant to the problem are present
- An Example:
 - Gaussian Mixture Model (GMM): For iid x $p(x_i) = \sum_{i=1}^{\infty} w^{(j)} N_{x_i}(\mu^{(j)}, \sigma^{(j)})$
 - Here our model parameters are: $heta = egin{pmatrix} oldsymbol{w} \\ oldsymbol{\mu} \\ oldsymbol{\sigma} \end{pmatrix}$
 - Where: $\sum_{i} w^{(j)} = 1$

Where's the latent variable?

- The mixture weights effectively are probabilities of a data point, x_i coming from their corresponding distributions
- Let our latent variable for observation i, \mathcal{Z}_i , be one-hot encoded, then

$$p(z_i^{(j)} = 1) = w^{(j)}$$

To show how the latent variable is involved we can derive p(x) using our latent variable (ask me if you're interested!)

MLE for GMM

$$L(\theta) = \prod_{i=1}^{d} \sum_{j=1,\dots,K} w^{(j)} N_{x_i}(\mu^{(j)}, \sigma^{(j)})$$

$$\log(L(\theta)) = \sum_{i=1}^{d} \log(\sum_{j=1,\dots,K} w^{(j)} N_{x_i}(\mu^{(j)}, \sigma^{(j)}))$$

- Problems:
 - Difficult to reduce and therefore difficult to find analytical solutions
 - If one of the components of the GMM explains only a single point then the variance of the component can tend to 0, and L will then act like a delta function
 - So jumping straight to just maximizing the likelihood might not be such a good idea

GD for MLE

- One solution is Gradient Descent (GD)
- 1. Compute $\frac{\partial L}{\partial \theta^i}$, $\forall i$ (Over all our data D)
- 2. Let's say our current best guess is: $\hat{\theta}_t$
- 3. We can then find our next best guess: $\hat{\theta}_{t+1} = \hat{\theta}_t \alpha \cdot \frac{\partial L}{\partial \theta}(\hat{\theta}_t)$

(Note: when working with GMMs we must also include a condition relating to the variance...)

Graphical representation of GD

 Use local knowledge of descent direction to guide us down the slope of the function

$$\alpha = 1$$

However...

• Computing the gradients over all the data requires a large amount of compute

Stochastic GD (SGD) for MLE

- Idea is we use the help of randomness to reduce compute
- Process:
 - Sample random data-point (SGD) / subset of the data (minibatch GD)
 - Perform (one-step) GD on likelihood for the subset of data
 - Repeat
- Here we only have to compute the gradient over the data in our subset!
 - (Overall go over less data-points: as with GD need to use whole dataset for each iteration)

Why does stochastic/minibatch GD work?

- Assuming the samples we use are iid:
 - Gradient calculations on our samples = Unbiased estimators of the gradient of the whole dataset

• ie.
$$\mathbb{E}(\hat{g}_{D'\subset D} - \hat{g}_D) = 0$$

- Means that the expected direction of the stochastic gradient is the same as the "full" gradient
- Bonus: stochasticity can help us escape local minima

Drawbacks of SGD

- We can use it even though we have latent variables!, however...
- We have to compute the first derivative of the likelihood
 - This can be intractable
 - Eg. Laplace distribution

The EM algorithm

- Doesn't need any derivatives! (... maybe?)
- Can be used with latent variables!
- More advantages?....
- Idea: find lower bound and raise it
 - Will continuously raise lower bound of the likelihood
- Now we have a lower bound, how do we raise it?
 - Problem: we have two arguments to maximize: $q(z), \theta$

Raising the lower bound

E-step

- Estimates missing or latent variables
- Let our "best guesses" be: $q_t(z), \hat{\theta}_t$
- We let $\hat{\theta}_t$ be fixed
- Want to maximize: $F(q_t(z), \hat{\theta}_t)$
 - Intuitively: this happens when we choose q s.t. F meets the likelihood
 - Mathematically:
 - Likelihood independent of $\,q(z)\,$
 - Recall, $F(q_t(z), \hat{\theta}_t) = \mathbb{E}(\log(L(\hat{\theta}_t))) KL(q(z), p(z|y, \hat{\theta}_t))$
 - So maximum is equivalent to minimizing the KL divergence
- E-step: $q_{t+1}(z) = p(z|y, \hat{\theta}_t)$

M-step

- Now we fix $q_{t+1}(z)$
- And want to maximize: $F(q_{t+1}(z), \hat{\theta}_t)$
 - We can write F as:

$$F(q_{t+1}(z), \hat{\theta}_t) = \int q_{t+1}(z) \log[p(y|z, \hat{\theta}_t) \cdot p(z|\hat{\theta}_t)] dz - \int q_{t+1}(z) \log[q_{t+1}(z)] dz$$

- Note: second term doesn't depend on theta
- So:

$$\hat{\theta}_{t+1} = \operatorname{argmax}_{\theta} \int q_{t+1}(z) \log[p(y|z,\theta) \cdot p(z|\theta)] dz$$

• (Can find this analytically?)

The algorithm

problem with GMMs highlighted earlier?)

Advantages of the EM algorithm

- Already discussed:
 - Doesn't need any derivatives! (sometimes...)
 - Can be used with latent variables!
- Further advantages:
 - Guaranteed that likelihood will increase with each iteration
 - E or M step often very easy to implement
 - Closed form solutions to M step often exist

The problem with the EM algorithm...

- 1. The M-step may need numerical methods (often requiring derivatives!) if analytical solution to maximization doesn't exist
- 2. The E-step may also need a numerical method due to intractability!

If the M-step not tractable:

- We can perform one step of Newtons method [1]
 - Any strict local max. point of the observed likelihood locally attracts EM with this replacement step as it would regular EM and at the same rate of convergence
 - Close to the max. point it always produces an increase in the likelihood
 - With some modification it also exhibits global convergence properties similar to that of EM
- Could also perform GD or SGD
- Could also use a stochastic approximation algorithm [2][4] (Might not need derivatives!)
- Some examples of where the M-step are intractable are provided in [1]

If the E-step intractable:

- Stochastic approximation [2][3]
- Monte Carlo methods [4][5]
- The better solution depends on simulation cost vs. maximization cost

References

- [1]: Lange, K., 1995. A gradient algorithm locally equivalent to the EM algorithm. *Journal of the Royal Statistical Society: Series B (Methodological)*, 57(2), pp.425-437.
- [2] Gu, M.G. and Li, S., 1998. A stochastic approximation algorithm for maximum-likelihood estimation with incomplete data. *Canadian Journal of Statistics*, 26(4), pp.567-582.
- [3] Delyon, B., Lavielle, M. and Moulines, E., 1999. Convergence of a stochastic approximation version of the EM algorithm. *Annals of statistics*, pp.94-128.
- [4] Gu, M.G. and Zhu, H.T., 2001. Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 63(2), pp.339-355.
- [5] Wei, G.C. and Tanner, M.A., 1990. A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. *Journal of the American statistical Association*, 85(411), pp.699-704.