Абдуллаев Т.Х. ИУ5-63 PK1 TMO Вариант 1

Задача №1

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Набор данных:

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html#sklearn.datasets.load_boston

Дополнительные требования по группам:

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель. Доп заданние: для произвольной колонки данных построить график "Ящик с усами (boxplot)".

506 non-null

10 PTRATIO 506 non-null

float64

float64

float64

float64

float64

float64

float64

```
Характеристики датасета
     В [1]: # импорт библиот
            from sklearn.datasets import load_boston
            import numpy as np
            import pandas as pd
            import seaborn as sns
            import matplotlib.pyplot as plt
            *matplotlib inline
            sns.set(style="ticks")
     В [9]: # преобразование и загрузка данных
            boston = load_boston()
            data = pd.DataFrame(boston.data, columns=boston.feature_names)
В [10]: # первые 5 столбцов таблицы
        data.head()
Out[10]:
             CRIM ZN INDUS CHAS NOX RM AGE
                                                  DIS RAD TAX PTRATIO
                                                                            B LSTAT
         0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98
         1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0
                                                                    17.8 396.90 9.14
         2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03
         3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0
                                                                    18.7 394.63 2.94
         4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33
B [11]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 506 entries, 0 to 505
         Data columns (total 13 columns):
             Column Non-Null Count Dtype
         0
              CRIM
                       506 non-null
                                       float64
         1
             ZN
                       506 non-null
                                       float64
             INDUS
                       506 non-null
             CHAS
                       506 non-null
                                       float64
             NOX
                       506 non-null
                                       float64
```

memory usage: 51.5 KB B [12]: data.describe()

AGE

DIS

TAX

LSTAT

dtypes: float64(13)

8 RAD

11 В

Out[12]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	12.
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	7.
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	6.
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	11.
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	16.
may	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	37.

Корреляция

B [13]: corr_matrix = data.corr()
B [14]: data.corr()

Out[14]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	0.625505	0.582764	0.289946	-0.385064	0.455621
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.311948	-0.314563	-0.391679	0.175520	-0.412995
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.595129	0.720760	0.383248	-0.356977	0.603800
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.007368	-0.035587	-0.121515	0.048788	-0.053929
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.611441	0.668023	0.188933	-0.380051	0.590879
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.209847	-0.292048	-0.355501	0.128069	-0.613808
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.456022	0.506456	0.261515	-0.273534	0.602339
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.494588	-0.534432	-0.232471	0.291512	-0.496996
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.000000	0.910228	0.464741	-0.444413	0.488676
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.910228	1.000000	0.460853	-0.441808	0.543993
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.464741	0.460853	1.000000	-0.177383	0.374044
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.444413	-0.441808	-0.177383	1.000000	-0.366087
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.488676	0.543993	0.374044	-0.366087	1.000000

B [15]: plt.figure(figsize=(20,20)) sns.heatmap(corr_matrix, annot=True, fmt='.3f')

Out[15]: <AxesSubplot:>

- В []: # Корреляционная матрица содержит коэффициенты корреляции между всеми парами признаков.
 Корреляционная матрица симметрична относительно главной диагонали. На главной диагонали расположены единицы (корреляция признака самого с соб
 - 1) В и DIS негативно влияют на корреляционную матрицу, что мешает точной оценке данных. Их стоит удалить.

 - 2) ТАХ наиболее сильно коррелирует с RAD. 3) CHAS коррелирует с INDUS, NOX, RM, AGE и В.

Визуальный анализ

B [16]: sns.boxplot(x=data['RM'])

Out[16]: <AxesSubplot:xlabel='RM'>

B [17]: sns.boxplot(y=data['RM'])

Out[17]: <AxesSubplot:ylabel='RM'>

