Markov Chains

Statistics and data analysis

Ben Galili

Zohar Yakhini

Leon Anavy

IDC, Herzeliya

Stochastic Processes

A (discrete, integer indexed) stochastic process is a sequence of random variables $X_0, X_1, X_2, \dots, X_n$, ... with a joint distribution defined over any finite set of variables.

For example, the variables: $(X_8, X_{11}, X_{23}, X_{30}, X_{31}, X_{207})$ have some 6-dimensional probability distribution which is consistent with the (lower-dimensional) probability distributions of all subsets of random variables therein.

Example: independent coin tossing.

Stationary Stochastic Processes

A process is called stationary if for every t the distribution of any finite set of variables $(X_{i1}, X_{i2}, X_{i3}, X_{i4}, ..., X_{ir})$ is the same as the distribution of $(X_{i1+t}, X_{i2+t}, X_{i3+t}, X_{i4+t}, ..., X_{ir+t})$

A process is temporally homogeneous if for every t the distribution of any finite set of variables $(X_{i1}, X_{i2}, X_{i3}, X_{i4}, ..., X_{ir}|X_{i0})$ is the same as the distribution of $(X_{i1+t}, X_{i2+t}, X_{i3+t}, X_{i4+t}, ..., X_{ir+t}|X_{i0+t})$

Is independent coin tossing w p=0.5 stationary? How about with p=0.3?

Markov chains

$$X_0, X_1, X_2, \dots, X_n \;, \dots \\ \text{s.t.} \; X_i \in \{Sunny, Cloudy, Rainy\}$$

Example sets of outcomes:

$$(X_8 = s, X_{11} = s, X_{23} = r, X_{30} = r)$$

Transition probability:

The probability of moving from state x to state y

The probability distribution of step n only depend on step n-1

Markov chains

A stochastic process $X_0, X_1, X_2, \ldots, X_n$, ... Taking values in a state space $\{S_1, \ldots, S_k, \ldots\}$ Is said to be a (finite state space) Markov process if:

Andrey A Markov Russian Mathematician 1856 - 1922

- It is temporally homogeneous
- It satisfies the **Markovian property**That is, for all t = 0, 1, 2, ... and for every possible set of t + 1 states, including S_i and S_i :

$$P(X_{t+1} = j \mid X_0 = k_0, X_1 = k_1, \dots, X_{t-1} = k_{t-1}, X_t = i) = P(X_{t+1} = j \mid X_t = i)$$

Markov chains

A sequence of random variables $X_0, X_1, X_2, \ldots, X_n$, ... A finite state space $\{S_1, \ldots, S_k\}$ An initial distribution vector $\pi_0: P(X_0 = S_i) = \pi_0(i)$ A transition square matrix $T: T_{i,i} = P(X_{n+1} = S_i | X_n = S_i)$

$$\pi_{n+1}(j) = P(X_{n+1} = S_j)$$

$$= \sum_{i=1}^k P(X_n = S_i) P(X_{n+1} = S_j | X_n = S_i)$$

$$= \sum_{i=1}^k \pi_n(i) T_{i,j}$$

$$T(1,1) \quad T(1,2) \quad \cdots \quad T(2,k)$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$T(k,1) \quad T(k,2) \quad \cdots \quad T(k,k-1) \quad T(k,k)$$

The transition rule:

$$\pi_{n+1} = \pi_n \cdot T$$

Independent coin tossing

What is the transition matrix?

Fair coin (p=0.5)
$$\begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$$

Biased coin (p=0.7)
$$(0.3 \quad 0.7)$$

What is the initial probability distribution?

Fair coin (p=0.5) Biased coin (p=0.7)
$$(0.5 \ 0.5)$$
 $(0.3 \ 0.7)$

Transitions further into the future

Weather on next day

		Dry	Wet	Total
Weather	Dry	57	12	69
on one day	Wet	12	8	20

Two days into the future:

$$P(X_2 = 0 | X_0 = 1) = ?$$

Transitions further into the future

$$P(X_2 = 0 | X_0 = 1) = ?$$

$$\pi_1 = \pi_0 \cdot T = (0,1) \cdot T = (T(1,0), T(1,1))$$

$$T = \begin{bmatrix} T(0,0) & T(0,1) \\ T(1,0) & T(1,1) \end{bmatrix}$$

$$P(X_2 = 0 | X_0 = 1) = \pi_2(0) = \pi_1 \cdot \begin{bmatrix} T(0,0) \\ T(1,0) \end{bmatrix} = T(1,0)T(0,0) + T(1,1)T(1,0)$$

And therefore, we get:

$$0.6 \cdot 0.826 + 0.4 \cdot 0.6 = 0.7356$$

Transitions further into the future: $T^{(r)} = T^r$

What if we want to talk about day 7?

Note that the above calculation actually means that:

$$\pi_2 = \pi_1 \cdot T = (\pi_0 \cdot T) \cdot T = \pi_0 \cdot T^2$$

and we can continue to get

$$\pi_r = \pi_0 \cdot T^r$$

which we can summarize as: $T^{(r)} = T^r$

The stationary distribution

A probability distribution, σ , over the state space $\{S_1, \dots, S_k\}$ that satisfies:

$$\sigma \cdot T = \sigma$$

$$\pi_0 = \sigma \to \pi_1 = \pi_0 \cdot T = \sigma \cdot T = \sigma = \pi_0 \to \pi_n = \sigma \,\forall n$$

The stationary distribution

$$\sigma \cdot T = \sigma$$

- 1 is an eigenvalue of *T*
- σ is a left eigenvector of T, with eigenvalue 1

What is the stationary distribution here?

$$T = \begin{bmatrix} 0.3 & 0.7 \\ 0.8 & 0.2 \end{bmatrix}$$

What is the stationary distribution here?

$$T = \begin{bmatrix} 0.3 & 0.7 \\ 0.8 & 0.2 \end{bmatrix}$$

$$(x \ y)T = (x \ y) \begin{pmatrix} 0.3 & 0.7 \\ 0.8 & 0.2 \end{pmatrix} = (x \ y)$$

 $0.3x + 0.8y = x \rightarrow x = \frac{0.8y}{0.7}$

$$0.3x + 0.8y = x \rightarrow x = \frac{0.0y}{0.7}$$

$$0.7x + 0.2y = y$$

$$x + y = 1 \rightarrow \frac{0.8y}{0.7} + y = 1 \rightarrow 1.5y = 0.7 \rightarrow y = \frac{7}{15}, x = \frac{8}{15}$$

Higher order Markov

$$P(X_{t+1} = j \mid X_0 = k_0, X_1 = k_1, \dots, X_{t-1} = k_{t-1}, X_t = i) = P(X_{t+1} = j \mid X_t = i)$$

Need more terms in the condition. Will depend not only on the most recent time but on r recent times.

Higher order Markov

$$P(X_{t+1} = j \mid X_0 = k_0, X_1 = k_1, \dots, X_{t-r+1} = k_{t-r+1}, \dots, X_{t-1} = k_{t-1}, X_t = k_t) = k_t + k$$

$$P(X_{t+1} = j \mid X_{t-r+1} = k_{t-r+1}, \dots, X_{t-1} = k_{t-1}, X_t = k_t)$$

r most recent events

Markov chains application: text prediction

- Use the previous N-1 words in a sequence to predict the next word
- In auto completion and in auto translation these are called N-Grams
- Language Model (LM)
 - unigrams, bigrams, trigrams,...

Using N-Grams

- For N-gram models $P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-N+1}^{n-1})$
- Bi-grams: N = 2. A Markov assumption.
- By the Chain Rule we can compute probabilities of sentences:

$$P(w_1, w_2, w_3, ..., w_n) =$$

$$= P(w_n | w_1, w_2, ..., w_{n-1}) P(w_{n-1} | w_1, w_2, ..., w_{n-2}) ... P(w_2 | w_1) P(w_1)$$

What would this be under a Markov assumption?

$$= P(w_n|w_{n-1})P(w_{n-1}|w_{n-2}) \dots P(w_2|w_1)P(w_1)$$

Bigram Counts - example

Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Using the Bigram

P("i want chinese food") =

P(i) * P(want|i) * P(chinese | want) * P(food | chinese) =

$$\frac{\#(i)}{\#(all\ sentences)}*\frac{\#("i\ want")}{\#(i)}*\frac{\#("want\ chinese")}{\#(want)}*\frac{\#("chinese\ food")}{\#(chinese)}=$$

$$\left(\frac{2533}{9222}\right) * \left(\frac{827}{2533}\right) * \left(\frac{6}{927}\right) * \left(\frac{82}{158}\right) = 0.0003$$

Useful for ...

- Speech recognition:
 "I ate a cherry" is a more likely sentence than "Eye eight a Jerry"
- Machine translation
 Pr[high acceptance rate] > Pr[tall acceptance rate]
 Pr[finite list] >? Pr[final list]
- Context sensitive spelling correction
 "Their are problems wit this sentence."
- Sentence completion "Please turn off your ...", "I want to eat ..."

CLT for Markov chains

In the homework ...

$$Cov(X_i, X_{i+t})$$

- How can we compute it?
- Assume stationarity for simplicity
- First, note that $Cov(X_i, X_{i+t}) = Cov(X_0, X_t)$
- How would we compute $Cov(X_0, X_1)$?
- Use the definition and compute from the joint distribution, over k^2 elements
- Now use the fact that $T^{(t)} = T^t$

Summary

- Brief intro to Markov Chains
- The transition matrix and its powers
- The stationary distribution
- N-grams
- Covariance and the CLT

