Nonlinear Methods

Damek Davis School of ORIE, Cornell University ORIE 4740 Lec 11–12 (March 3, March 8)

1

Announcements

Recap: What we covered so far

- Concepts: model flexibility; bias-variance tradeoffs
- Linear regression: fitting and evaluation models
- Classification: Logistic regression; KNN
- Model selection and regularization: subset selection; Ridge; Lasso
- Cross-validation

Recap: Supervised Learning

Supervised learning:

- Regression
- Classification
- Regularization & variable selection: apply to both
- CV: estimate test errors to choose models (tunning parameters)

Linear techniques:

- Linear regression
- Logistic regression
- *k*-means clustering (Later)
- Principal Component Analysis (Later)

Linear techniques:

- Linear regression
- Logistic regression
- k-means clustering (Later)
- Principal Component Analysis (Later)

In terms of the bias-variance tradeoff, why might we fit a nonlinear model?

- A. To reduce bias
- B. To reduce variance

Limits of Linearity

Principle: Not all data is linear—nonlinear models are sometimes a necessity.

▶ This week: We're going to reduce bias, but possibly increase variance.

Linear techniques:

- Linear regression
- Logistic regression
- k-means clustering
- Principal Component Analysis

Is KNN a linear or nonlinear technique?

- A. Linear
- B. Nonlinear

Linear techniques:

- Linear regression
- Logistic regression
- k-means clustering
- Principal Component Analysis

Simple extensions of linear techniques:

- Adding high-order and interaction terms
- Converting to dummy variables

Linear techniques:

- Linear regression
- Logistic regression
- k-means clustering
- Principal Component Analysis

Simple extensions of linear techniques:

- Adding high-order and interaction terms
- Converting to dummy variables

Nonlinear techniques:

KNN

Linear techniques:

- Linear regression
- Logistic regression
- k-means clustering
- Principal Component Analysis

Simple extensions of linear techniques:

- Adding high-order and interaction terms
- Converting to dummy variables

Nonlinear techniques:

KNN

Next:

- ▶ More extensions to linear & logistic regression (Today)
- Decision Trees & Random Forest (Next)

Linear techniques:

- Linear regression
- Logistic regression
- k-means clustering
- Principal Component Analysis

Simple extensions of linear techniques:

- Adding high-order and interaction terms
- Converting to dummy variables

Nonlinear techniques:

KNN

Next:

- More extensions to linear & logistic regression (Today)
- Decision Trees & Random Forest (Next)

Outside the Scope:

▶ Neural networks (hard to fit computationally AND hard to analyze statistically)

Beyond Linear Regression and Logistic Regression

Goal: Learn a few classes of nonlinear models.

Beyond Linear Regression and Logistic Regression

Goal: Learn a few classes of nonlinear models.

■ Nonlinear models with 1 predictor: Y = f(X)

■ Nonlinear models with p predictors: $Y = f(X_1, X_2, ..., X_p)$

Beyond Linear Regression and Logistic Regression

Goal: Learn a few classes of nonlinear models.

- Nonlinear models with 1 predictor: Y = f(X)
 - The basis function approach
 - Regression Splines
 - Smoothing Splines
 - Local Regression (not covered)
- Nonlinear models with p predictors: $Y = f(X_1, X_2, ..., X_p)$
 - Generalized Additive Models (GAMs)

Linear regression: $Y \approx \beta_0 + \beta_1 X$

Logistic regression: $\log \left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)} \right) \approx \beta_0 + \beta_1 X$

Linear regression: $Y \approx \beta_0 + \beta_1 X$

Logistic regression: $\log \left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)} \right) \approx \beta_0 + \beta_1 X$

Adding high order terms:

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots$$

Linear regression: $Y \approx \beta_0 + \beta_1 X$

Logistic regression: $\log \left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)} \right) \approx \beta_0 + \beta_1 X$

Adding high order terms:

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots$$

Logarithmic terms:

$$\cdots \cdots \approx \beta_0 + \beta_1 \log(X)$$

Linear regression: $Y \approx \beta_0 + \beta_1 X$

Logistic regression: $\log \left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)} \right) \approx \beta_0 + \beta_1 X$

Adding high order terms:

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots$$

Logarithmic terms:

$$\cdots \cdots \approx \beta_0 + \beta_1 \log(X)$$

How do you perform regression with higher order or log terms? You transform the...

- A. outcome and the response variables and apply least squares.
- B. outcome variables and apply least squares.
- **C.** response variables and apply least squares.

Linear regression: $Y \approx \beta_0 + \beta_1 X$

Logistic regression: $\log \left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)} \right) \approx \beta_0 + \beta_1 X$

Adding high order terms:

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots$$

Logarithmic terms:

$$\cdots \sim \beta_0 + \beta_1 \log(X)$$

More generally:

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_K b_K(X)$$

 \blacktriangleright $b_1(\cdot), \ldots, b_K(\cdot)$: basis functions (pre-specified)

Linear regression: $Y \approx \beta_0 + \beta_1 X$

Logistic regression: $\log \left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)} \right) \approx \beta_0 + \beta_1 X$

Adding high order terms:

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots$$

Logarithmic terms:

$$\cdots \cdots \approx \beta_0 + \beta_1 \log(X)$$

More generally:

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_K b_K(X)$$

 \blacktriangleright $b_1(\cdot), \ldots, b_K(\cdot)$: basis functions (pre-specified)

Principle: To use basis functions, you just transform the predictor table.

Polynomial Basis Functions

Principle: To use basis functions, you just transform the predictor table.

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_K b_K(X)$$

Polynomial functions:

$$b_j(x) = x^j, \quad j = 1, \ldots, K$$

This leads to a polynomial model

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_K X^K$$

11

 y_i = wage of individual i x_i = age of individual i

 y_i = wage of individual i x_i = age of individual i

Regression with polynomial basis functions up to degree 4:

$$\hat{y}_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4$$

Dotted lines: 95% confidence intervals of \hat{y}_i

$$y_i =$$
wage of individual i

$$x_i$$
 = age of individual i

Regression with polynomial basis functions up to degree 4:

$$\hat{y}_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4$$

Suppose we fit a linear model to a similar data set. Which of the following scenarios cannot be captured by such a model?

- A. Wage decreases with age
- B. Wage increases with age
- C. Wage stays constant as people age
- **D.** Wage is low at birth and death
- **E.** Wage is low at birth and death, but is substantially higher at age 40.

Dotted lines: 95% confidence intervals of ŷ_i

$$y_i$$
 = wage of individual i x_i = age of individual i

 y_i = wage of individual i x_i = age of individual i

Classification with polynomial basis functions up to degree 4:

$$\log \left[\frac{\hat{\Pr}(y_i > 250)}{1 - \hat{\Pr}(y_i > 250)} \right] = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4$$

13

 y_i = wage of individual i x_i = age of individual i

Classification with polynomial basis functions up to degree 4:

$$\log \left[\frac{\hat{\Pr}(y_i > 250)}{1 - \hat{\Pr}(y_i > 250)} \right] = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4$$

Suppose we fit a linear logistic model to a similar data set and then interpret the model. Is it possible for our model to suggest that a 1 year old has wage < 250, that an 80 year old has wage < 250, but a 40 year old has wage > 250?

A. Yes

B. No

Step Basis Functions

Principle: To use basis functions, you just transform the predictor table.

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_K b_K(X)$$

Step functions: Given knots c_1, c_2, \ldots, c_K

$$b_{1}(x) = C_{1}(x) \triangleq I(c_{1} \leq x < c_{2})$$

$$b_{2}(x) = C_{2}(x) \triangleq I(c_{2} \leq x < c_{3})$$

$$\vdots$$

$$b_{K-1}(x) = C_{K-1}(x) \triangleq I(c_{K-1} \leq x < c_{K})$$

$$b_{K}(x) = C_{K}(x) \triangleq I(c_{K} < x)$$

This leads to a piecewise-constant model

knots need to be pre-specified

 y_i = wage of individual i x_i = age of individual i

Use step basis functions with 2 or 3 knots:

$$y_i \approx \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i)$$

$$\log \left[\frac{\hat{\Pr}(y_i > 250)}{1 - \hat{\Pr}(y_i > 250)} \right] \approx \beta_0 + \dots + \beta_3 C_3(x_i)$$

 y_i = wage of individual i x_i = age of individual i

Use step basis functions with 2 or 3 knots:

$$y_i \approx \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) \qquad \log \left[\frac{\hat{Pr}(y_i > 250)}{1 - \hat{Pr}(y_i > 250)} \right] \approx \beta_0 + \dots + \beta_3 C_3(x_i)$$

Consider the left figure, which has 2 knots. Suppose we add a new person of age 50 to our dataset and then refit the model. Which of the following is true?

- **A.** Our estimate of β_1 do not change.
- **B.** Our estimate of β_0 and β_2 dop not change.

Principle: To use basis functions, you just transform the predictor table.

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_K b_K(X)$$

Principle: To use basis functions, you just transform the predictor table.

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_K b_K(X)$$

Fit using least squares

Principle: To use basis functions, you just transform the predictor table.

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_K b_K(X)$$

Fit using least squares

Can use all the tools from linear regression:

- Standard errors & confidence intervals for $\hat{\beta}_i$
- \blacksquare *p*-values for each $\hat{\beta}_j$
- p-values for the entire model

Principle: To use basis functions, you just transform the predictor table.

Y or log-odds
$$(Y) \approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_K b_K(X)$$

Fit using least squares

Can use all the tools from linear regression:

- Standard errors & confidence intervals for $\hat{\beta}_i$
- \blacksquare *p*-values for each $\hat{\beta}_j$
- p-values for the entire model

Other choices of basis functions:

- $b_1(x) = \sqrt{x}$
- $b_1(x) = \log(x)$
- Regression Splines (next)
- Based on wavelets or Fourier series (not covered)

Regression Splines (ISLR 7.4)

Using step functions, we fit a piecewise constant model

$$Y pprox eta_0 + eta_1 \underbrace{C_1(X)}_{ ext{Step Function}} = egin{cases} eta_0 & ext{if } X < c \ eta_0 + eta_1 & ext{if } X \geq c \end{cases}$$

Regression Splines (ISLR 7.4)

Using step functions, we fit a piecewise constant model

$$Y pprox eta_0 + eta_1 \underbrace{C_1(X)}_{ ext{Step Function}} = egin{cases} eta_0 & ext{if } X < c \\ eta_0 + eta_1 & ext{if } X \geq c \end{cases}$$

More generally, we can fit a piecewise polynomial model

$$Y \approx \begin{cases} \beta_{01} + \beta_{11}X + \beta_{21}X^2 + \beta_{31}X^3 & \text{if } X < c \\ \beta_{02} + \beta_{12}X + \beta_{22}X^2 + \beta_{32}X^3 & \text{if } X \ge c \end{cases}$$

Regression Splines (ISLR 7.4)

Using step functions, we fit a piecewise constant model

$$Y pprox eta_0 + eta_1 \underbrace{C_1(X)}_{ ext{Step Function}} = egin{cases} eta_0 & ext{if } X < c \ eta_0 + eta_1 & ext{if } X \geq c \end{cases}$$

More generally, we can fit a piecewise polynomial model

$$Y \approx \begin{cases} \beta_{01} + \beta_{11}X + \beta_{21}X^2 + \beta_{31}X^3 & \text{if } X < c \\ \beta_{02} + \beta_{12}X + \beta_{22}X^2 + \beta_{32}X^3 & \text{if } X \ge c \end{cases}$$

8 degrees of freedom (too flexible)

Regression Splines

Regression splines:

Piecewise polynomial models that are continuous and smooth at the knots (smoothness = continuity of derivatives)

Regression Splines

Regression splines:

Piecewise polynomial models that are continuous and smooth at the knots (smoothness = continuity of derivatives)

Most popular: Cubic splines

- Continuous piecewise cubic models with continuous first two derivatives
- \blacktriangleright K knots: K+4 degrees of freedom (instead of 4K+4)
- Reduce flexibility/variance; increase bias

▶ A cubic splines with one knot at x = 1 can be written as

$$Y \approx \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 \max\{(X-1)^3, 0\}.$$

▶ A cubic splines with one knot at x = 1 can be written as

$$Y \approx \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 \max\{(X-1)^3, 0\}.$$

▶ More generally, a cubic splines with K knots at $\xi_1, \xi_2, \dots, \xi_K$ (i.e., K+4 DF) can be written as

$$Y \approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_{K+3} b_{K+3}(X)$$

with basis functions

$$b_{1}(X) = X$$

$$b_{2}(X) = X^{2}$$

$$b_{3}(X) = X^{3}$$

$$b_{4}(X) = \max\{(X - \xi_{1})^{3}, 0\}$$

$$\vdots$$

$$b_{K+3}(X) = \max\{(X - \xi_{K})^{3}, 0\}$$

(cf. ISLR 7.4.3)

► Hence, cubic splices can be fitted using least squares

▶ Problem: Cubic splines may appear wild at boundary (conf. int. big).

▶ Hence, cubic splices can be fitted using least squares

- ▶ Problem: Cubic splines may appear wild at boundary (conf. int. big).
- ► Natural cubic splines: linear at the boundary (further reduce df/flexibility/variance)

Cubic Splines: Choosing the Knots

Locations of knots:

■ Placed at uniform quantiles of data

Cubic Splines: Choosing the Knots

Locations of knots:

■ Placed at uniform quantiles of data

Number of knots:

- Equivalent to choosing degrees of freedom
- Choose the best-looking curve, or...
- By cross-validation

Apply to classification (logistic regression) as well

Polynomial Regression vs. Cubic Splines

Polynomial regression (the basis function approach with polynomial basis)

$$Y \approx \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots + \beta_K X^K$$

■ Flexibility/DF determined by degree of polynomials *K*

Cubic splines

■ Flexibility/DF determined by number of knots *K*

Polynomial Regression vs. Cubic Splines

Polynomial regression (the basis function approach with polynomial basis)

$$Y \approx \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots + \beta_K X^K$$

■ Flexibility/DF determined by degree of polynomials *K*

Cubic splines

■ Flexibility/DF determined by number of knots *K*

Same degrees of freedom (=15)

Cubic splines often more stable (esp. at the boundaries)

Principle: When faced with a new data set, try splines before polynomials.

Suppose our training samples (x_i, y_i) satisfy

$$y_i = 1 + x_i + x_i^2 + x_i^3$$
 $i = 1, ..., 10$

for distinct points $x_1 < x_2 < \ldots < x_{10}$.

Which model will have better training error?

- A. Regression with degree 3 polynomial basis.
- **B.** A continuous piecewise cubic function with one knot at x_2 .
- **C.** Both models will have identical training error.

Which of the following is not true

- **A.** One can use fit a cubic spline using the basis function approach.
- B. Standard polynomial basis function models do not have continuous second derivatives.
- **C.** Cubic splines enforce continuity of first and second derivatives at the boundaries of regions.
- **D.** A cubic spline can be more flexible than a degree 100 standard polynomial basis function model.
- E. Compared to cubic splines, natural cubic splines are less wiggly at the boundaries of data sets.

Which model is more flexible?

- **A.** A cubic Spline with K = 13 knots
- B. A degree 15 polynomial

Recap

Principle: To use basis functions, you just transform the predictor table.

Y or log-odds(Y)
$$\approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_K b_K(X)$$

Polynomial functions:

$$b_j(x) = x^j, \quad j = 1, \ldots, K$$

Cubic splines: with K knots at $\xi_1, \xi_2, \dots, \xi_K$ (i.e., K + 4 DF) can be written as

$$Y \approx \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \cdots + \beta_{K+3} b_{K+3}(X)$$

with basis functions

$$b_{1}(X) = X$$

$$b_{2}(X) = X^{2}$$

$$b_{3}(X) = X^{3}$$

$$b_{4}(X) = \max\{(X - \xi_{1})^{3}, 0\}$$

$$\vdots$$

$$b_{K+3}(X) = \max\{(X - \xi_{K})^{3}, 0\}$$

(cf. ISLR 7.4.3)

Smoothing Splines (ISLR 7.5)

Recall:

(Cubic) Regression splines:

- Problem: Specify knots (or DF)
- Cubic polynomials between knots
- Smoothness at knots
- Fitting: convert to a basis function model and solved by LS

Smoothing Splines (ISLR 7.5)

Recall:

(Cubic) Regression splines:

- Problem: Specify knots (or DF)
- Cubic polynomials between knots
- Smoothness at knots
- Fitting: convert to a basis function model and solved by LS

Smoothing splines: Another way of fitting a smooth curve $g(\cdot)$

- Nonparametric regression!
- Specify tuning parameter λ
- Find the curve as the solution to the optimization problem

$$\min_{g} \quad \underbrace{\sum_{i=1}^{n} (y_i - g(x_i))^2}_{\text{Loss (RSS)}} + \underbrace{\lambda \int g''(t)^2 dt}_{\text{Regularization}}$$

$$\min_{g} \quad \underbrace{\sum_{i=1}^{n} (y_i - g(x_i))^2}_{\text{Loss (RSS)}} + \underbrace{\lambda \int g''(t)^2 dt}_{\text{Regularization}}$$

- Loss term: encourage $g(\cdot)$ to fit data well
- Regularization: encourage smoothness
- $\blacksquare g''(t)$: second derivative
- Small g''(t): less wiggly near t
- Larger $\lambda \Rightarrow \text{Smaller } g''(t) \Rightarrow g(\cdot) \text{ more smooth}$

$$\min_{g} \quad \underbrace{\sum_{i=1}^{n} (y_i - g(x_i))^2}_{\text{Loss (RSS)}} + \underbrace{\lambda \int g''(t)^2 dt}_{\text{Regularization}}$$

- Loss term: encourage $g(\cdot)$ to fit data well
- Regularization: encourage smoothness
- g''(t): second derivative
- Small g''(t): less wiggly near t
- Larger $\lambda \Rightarrow \text{Smaller } g''(t) \Rightarrow g(\cdot) \text{ more smooth}$

Suppose h is a function with h''(t) = 0 at every t. Then

- A. h is linear
- **B.** *h* is quadratic

$$\min_{g} \quad \underbrace{\sum_{i=1}^{n} (y_i - g(x_i))^2}_{\text{Loss (RSS)}} + \underbrace{\lambda \int g''(t)^2 dt}_{\text{Regularization}}$$

- Loss term: encourage $g(\cdot)$ to fit data well
- Regularization: encourage smoothness
- \blacksquare g''(t): second derivative
- Small g''(t): less wiggly near t
- Larger $\lambda \Rightarrow \text{Smaller } g''(t) \Rightarrow g(\cdot) \text{ more smooth}$

If $\lambda = 0$, then any solution g will

- A. Perfectly fit the training data (if possible).
- **B.** Perfectly fit the test data (if possible).

$$\min_{g} \quad \underbrace{\sum_{i=1}^{n} (y_i - g(x_i))^2}_{\text{Loss (RSS)}} + \underbrace{\lambda \int g''(t)^2 dt}_{\text{Regularization}}$$

- Loss term: encourage $g(\cdot)$ to fit data well
- Regularization: encourage smoothness
- \blacksquare g''(t): second derivative
- Small g''(t): less wiggly near t
- Larger $\lambda \Rightarrow \text{Smaller } g''(t) \Rightarrow g(\cdot) \text{ more smooth}$

The optimal solution

- Can show: the optimal $g(\cdot)$ is a natural cubic spline
- \blacksquare knots are located at x_1, x_2, \dots, x_n .
- Benefit: n knots, but less than n + 4 DF (b/c of λ)

$$\min_{g} \quad \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

(Recall: In regression splines, flexibility determined by # knots K, or equivalently DF = K + 4)

¹(Optional) For more mathematical details, see Sec 5.4.1 in *Elements of Statistical Learning* by T. Hastie, R. Tibshirani, J. Friedman.

$$\min_{g} \quad \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

(Recall: In regression splines, flexibility determined by # knots K, or equivalently DF = K + 4)

For smoothing splines:

■ Flexibility determined by λ

¹(Optional) For more mathematical details, see Sec 5.4.1 in *Elements of Statistical Learning* by T. Hastie, R. Tibshirani, J. Friedman.

$$\min_{g} \quad \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

(Recall: In regression splines, flexibility determined by # knots K, or equivalently DF = K + 4)

For smoothing splines:

 \blacksquare Flexibility determined by λ

How should flexibility depend on λ ?

- **A.** As λ increases, flexibility increases.
- **B.** As λ increases, flexibility decreases.

¹(Optional) For more mathematical details, see Sec 5.4.1 in *Elements of Statistical Learning* by T. Hastie, R. Tibshirani, J. Friedman.

$$\min_{g} \quad \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

(Recall: In regression splines, flexibility determined by # knots K, or equivalently DF = K + 4)

- \blacksquare Flexibility determined by λ
- Corresponding to an effective degree of freedom, $df_{\lambda} \in [2, n]$

¹(Optional) For more mathematical details, see Sec 5.4.1 in *Elements of Statistical Learning* by T. Hastie, R. Tibshirani, J. Friedman.

$$\min_{g} \quad \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

(Recall: In regression splines, flexibility determined by # knots K, or equivalently DF = K + 4)

- Flexibility determined by λ
- Corresponding to an effective degree of freedom, $df_{\lambda} \in [2, n]$
- Closed form expression for df_{λ} (cf. ISLR 279)¹

¹(Optional) For more mathematical details, see Sec 5.4.1 in *Elements of Statistical Learning* by T. Hastie, R. Tibshirani, J. Friedman.

$$\min_{g} \quad \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

(Recall: In regression splines, flexibility determined by # knots K, or equivalently DF = K + 4)

- Flexibility determined by λ
- Corresponding to an effective degree of freedom, $df_{\lambda} \in [2, n]$
- Closed form expression for df_{λ} (cf. ISLR 279)¹
- Choose λ (equivalently, df_{λ}) by CV

¹(Optional) For more mathematical details, see Sec 5.4.1 in *Elements of Statistical Learning* by T. Hastie, R. Tibshirani, J. Friedman.

$$\min_{g} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

(Recall: In regression splines, flexibility determined by # knots K, or equivalently DF = K + 4)

- Flexibility determined by λ
- Corresponding to an effective degree of freedom, $df_{\lambda} \in [2, n]$
- Closed form expression for df_{λ} (cf. ISLR 279)¹
- Choose λ (equivalently, df_{λ}) by CV
- LOOCV can be done very efficiently

¹(Optional) For more mathematical details, see Sec 5.4.1 in *Elements of Statistical Learning* by T. Hastie, R. Tibshirani, J. Friedman.

Smoothing Splines: Choosing λ , another example

Suppose data is generated from the true model

$$Y = f(X) + \epsilon,$$
 where
$$f(X) = \frac{\sin(12X + 2.4)}{X + 0.2}.$$

Not a polynomial.

- ▶ Our training set consists of n = 100 data points.
- ▶ We fit a smoothing spline different values of λ (i.e., different effect degrees of freedom df_{λ}).

Suppose you have a cubic spline with 5 knots. Which of the following splines have a similar model complexity?

- A. Smoothing spline with 100 knots and 5 degrees of freedom.
- **B.** Smoothing spline with 5 knots and 100 degrees of freedom.

How does a smoothing spline (with $\lambda>0$) decay outside the boundaries of a dataset?

- A. Linearly
- B. Cubically
- **C.** Either are possible, but it depends on λ .

Logistic Regression using Smoothing Splines

(Optional; cf. Sec 5.6 of ESL²)

▶ Also known as *Nonparametric Logistic Regression*

²ESL = Elements of Statistical Learning.

Logistic Regression using Smoothing Splines

(Optional; cf. Sec 5.6 of ESL2)

- Also known as Nonparametric Logistic Regression
- ► The model is

$$| \log \operatorname{odds} pprox g(X) |$$
 (compare to log odds $pprox \beta_0 + \beta_1 X$)

▶ where we fit *g* by solving the regularized maximum likelihood problem:

$$\max_{g} \quad \sum_{i=1}^{n} \left[y_{i}g(x_{i}) - \log\left(1 + e^{g(x_{i})}\right) \right] - \underbrace{\lambda \int g''(t)^{2} dt}_{\text{Regularization}}.$$

²ESL = Elements of Statistical Learning.

Logistic Regression using Smoothing Splines

(Optional; cf. Sec 5.6 of ESL2)

- ▶ Also known as Nonparametric Logistic Regression
- ▶ The model is

$$\log \operatorname{odds} \approx g(X)$$
 (compare to log odds $\approx \beta_0 + \beta_1 X$)

▶ where we fit g by solving the regularized maximum likelihood problem:

$$\max_{g} \quad \sum_{i=1}^{n} \left[y_{i}g(x_{i}) - \log\left(1 + e^{g(x_{i})}\right) \right] - \underbrace{\lambda \int g''(t)^{2} dt}_{\text{Regularization}}.$$

▶ The optimal $g(\cdot)$ is a natural cubic spline with knots at x_1, x_2, \dots, x_n !

Mystery of nonparametric models.

²ESL = Elements of Statistical Learning.

Local Regression

(Not covered; ISLR 7.6)

A third way of fitting smooth curves

- ► Flexibility determined by a tuning parameter s (span)
- ▶ Corresponding to some effective DF
- ▶ Limitation: Like KNN need all training data at testing time.

Δα۵

ю

(Not covered; ESL 5.9)

► Fitting/de-noising an NMR (nuclear magnetic resonance) signal using the Symmlet-8 wavelet basis

Application: MRI
 Principle: Use domain knowledge to choose basis functions!

▶ Wavelet basis are non-periodic and localized

(Not covered; ESL 5.9)

- Wavelet basis are non-periodic and localized
- ▶ They have the form

$$b_{i,k}(x) = 2^{j/2} \cdot b(2^j x - k), \quad j = 0, 1, 2, ..., \quad k = 0, 1, 2, ...$$

where $b(\cdot)$ (called *mother wavelet*) is some function that equals 0 outside the interval [0,1].

(Not covered; ESL 5.9)

▶ Popular in signal and image processing

(Not covered; ESL 5.9)

- Popular in signal and image processing
- Fourier basis are periodic (sines and cosines)

Mini Summary

```
1 predictor: Y = f(X)
```

- Basis function approach: $f(X) = \sum_{i} \beta_{i} b_{j}(X)$
- Regression Splines: f(X) = piecewise polynomials joined smoothly
- Smoothing Splines: $f(X) = \text{solution to } f''(\cdot)$ -regularized least squares

Mini Summary

```
1 predictor: Y = f(X)
```

- Basis function approach: $f(X) = \sum_{i} \beta_{i} b_{j}(X)$
- \blacksquare Regression Splines: f(X) = piecewise polynomials joined smoothly
- Smoothing Splines: $f(X) = \text{solution to } f''(\cdot) \text{regularized least squares}$

Principle: Ridge regression is to least squares as smoothing splines are to natural cubic splines.

Mini Summary

```
1 predictor: Y = f(X)
```

- Basis function approach: $f(X) = \sum_{i} \beta_{i} b_{j}(X)$
- Regression Splines: f(X) = piecewise polynomials joined smoothly
- Smoothing Splines: $f(X) = \text{solution to } f''(\cdot)\text{-regularized least squares}$

Principle: Ridge regression is to least squares as smoothing splines are to natural cubic splines.

```
p predictors: Y = f(X_1, X_2, \dots, X_p)
```

■ Generalized Additive Models (GAMs)

Generalized Additive Models (ISLR 7.7)

Recall: Multiple linear regression

$$Y \approx \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

Generalized Additive Models (ISLR 7.7)

Recall: Multiple linear regression

$$Y \approx \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

Generalized Additive Model: Maintains only additivity

$$Y \approx \beta_0 + f_1(X_1) + \cdots + f_p(X_p)$$

Generalized Additive Models (ISLR 7.7)

Recall: Multiple linear regression

$$Y \approx \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

Generalized Additive Model: Maintains only additivity

$$Y \approx \beta_0 + f_1(X_1) + \cdots + f_p(X_p)$$

- $f_i(\cdot)$: Any of the univariate nonlinear functions we just learned
- E.g. polynomials, linear combination of basis functions, cubic/smoothing splines
- Build multivariate nonlinear models by adding up univariate ones

Example: Wage Dataset

Fit a GAM of the form

wage
$$\approx \beta_0 + f_1(year) + f_2(age) + f_3(education)$$

Example: Wage Dataset

Fit a GAM of the form

wage
$$\approx \beta_0 + f_1(year) + f_2(age) + f_3(education)$$

where

- \blacksquare $f_1(\cdot), f_2(\cdot)$: natural cubic splines
- education: categorical w/ 5 levels <HS, HS, <Coll, Coll, >Coll
- \blacksquare $f_3(\cdot) =$ a different value for each level of education
 - i.e., encode education w/ 4 four dummy variables and fit a usual linear model

Interpretable: See contribution of each variable to the overall model.

What can't we conclude from these plots?

- A. There was a downturn in wages in 2008
- B. Most people's salaries peak around age 40
- C. One must do well in college to get a higher wage
- **D.** People who do not finish college, generally have lower wages.

Interpretable: See contribution of each variable to the overall model.

What can't we conclude from these plots?

- A. There was a downturn in wages in 2008
- B. Most people's salaries peak around age 40
- C. One must do well in college to get a higher wage
- **D.** People who do not finish college, generally have lower wages.
- Easy to fit: A big regression onto spline basis and dummy variables.

GAMs for Classification

Recall: Logistic regression

$$\log\left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)}\right)\approx\beta_0+\beta_1X_1+\cdots+\beta_pX_p$$

GAMs for Classification

Recall: Logistic regression

$$\log\left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)}\right)\approx\beta_0+\beta_1X_1+\cdots+\beta_pX_p$$

Logistic regression GAM:

$$\log\left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)}\right)\approx\beta_0+f_1(X_1)+\cdots+f_p(X_p)$$

GAMs for Classification

Recall: Logistic regression

$$\log\left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)}\right)\approx\beta_0+\beta_1X_1+\cdots+\beta_pX_p$$

Logistic regression GAM:

$$\log\left(\frac{\Pr(Y=1|X)}{1-\Pr(Y=1|X)}\right)\approx\beta_0+f_1(X_1)+\cdots+f_p(X_p)$$

Example: Wage Dataset

Fit a GAM of the form

$$\log\left(\frac{\Pr(\mathsf{wage} > 250)}{\Pr(\mathsf{wage} \leq 250)}\right) \approx \beta_0 + \beta_1 \times \mathsf{year} + \mathit{f}_2(\mathsf{age}) + \mathit{f}_3(\mathsf{education})$$

where

- $f_2(\cdot)$: smoothing splines with df = 5
- \blacksquare $f_3(\cdot)$ constant for each level of education

What's more likely?

- A. Almost no one in the data set makes more than 250K a year.
- **B.** Almost no one with a college education makes more than 250K a year.
- **C.** Almost no one with less than a high school education makes more than 250K a year.

biplot

- ► Fitting: Backfitting (Optional):
 - First fit linear model to year and dummy education variables.
 - Then fit residual using smoothing spline.

GAMs: Pros and Cons

Y or log-odds(Y)
$$\approx \beta_0 + f_1(X_1) + \cdots + f_p(X_p)$$

- Combine simple univariate nonlinear models $f_j(\cdot)$ to build p-variate models
- Flexible choices for each $f_i(\cdot)$
- (Natural) Cubic Spline is a popular choice
- Control flexibility by specifying degrees-of-freedom
- Interaction/synergy effects b/w predictors not captured

▶ Polynomial Regression

```
> fit.1 = lm(wage~age, data=Wage)
> fit.4 = lm(wage~poly(age,4), data=Wage)
```

Polynomial Regression

```
> fit.1 = lm(wage~age, data=Wage)
> fit.4 = lm(wage~poly(age,4), data=Wage)
```

▶ Polynomial Logistic Regression

```
> fit = glm(I(wage>250)\simpoly(age,3), data=Wage, family=binomial)
```

Regression with step functions of a numeric predictor

Regression with step functions of a numeric predictor

► Regression with step functions of a categorical predictor

Cubic Splines with pre-specified knots

```
> library(splines)
> fit1 = lm(wage~bs(age, knots=c(25,40,60)), data=Wage) # DF= 7
```

► Cubic Splines with df = 6 (plus 1 intercept) Knots at 3 uniform quantiles (25%, 50%, 75%)

```
> fit2 = lm(wage \sim bs(age, df=6), data=Wage)
```

Cubic Splines with pre-specified knots

```
> library(splines)
> fit1 = lm(wage~bs(age, knots=c(25,40,60)), data=Wage) # DF= 7
```

► Cubic Splines with df = 6 (plus 1 intercept) Knots at 3 uniform quantiles (25%, 50%, 75%)

```
> fit2 = lm(wage~bs(age, df=6), data=Wage)
```

► Natural Cubic Splines *df* = 4 (plus 1 intercept) Knots at uniform quantiles

```
> fit3 = lm(wage \sim ns(age, df=4), data=Wage)
```

Cubic Splines with pre-specified knots

```
> library(splines)
> fit1 = lm(wage~bs(age, knots=c(25,40,60)), data=Wage) # DF= 7
```

► Cubic Splines with df = 6 (plus 1 intercept) Knots at 3 uniform quantiles (25%, 50%, 75%)

```
> fit2 = lm(wage~bs(age, df=6), data=Wage)
```

► Natural Cubic Splines *df* = 4 (plus 1 intercept) Knots at uniform quantiles

```
> fit3 = lm(wage \sim ns(age, df=4), data=Wage)
```

► Smoothing Splines *df* = 16

```
> fit4 = smooth.spline(age, wage, df=16)
```

Cubic Splines with pre-specified knots

```
> library(splines)
> fit1 = lm(wage~bs(age, knots=c(25,40,60)), data=Wage) # DF= 7
```

► Cubic Splines with *df* = 6 (plus 1 intercept) Knots at 3 uniform quantiles (25%, 50%, 75%)

```
> fit2 = lm(wage~bs(age, df=6), data=Wage)
```

Natural Cubic Splines df = 4 (plus 1 intercept)

Knots at uniform quantiles

```
> fit3 = lm(wage \sim ns(age, df=4), data=Wage)
```

▶ Smoothing Splines df = 16

```
> fit4 = smooth.spline(age, wage, df=16)
```

Smoothing Splines with df chosen by CV

```
> fit5 = smooth.spline(Wage$age, Wage$wage, cv=TRUE)
> fit5$df
[1] 6.794596
```

▶ GAM with (natural) cubic splines

```
> gam1 = lm(wage~bs(year,4)+ns(age,5)+education, data=Wage )
> library(gam)
> plot.gam(gam1, se=TRUE, col="blue")
```


GAM with smoothing splines

```
> library(gam)
> gam2 = gam(wage~s(year,4)+s(age,5)+education, data=Wage)
> plot(gam2, se=TRUE, col="red")
```


► Logistic regression GAM with smoothing splines Excluding observations with less than a high school education

```
> library(gam)
> gam.lr = gam(I(wage>250)~year+s(age,5)+education, family=
+ binomial, data=Wage, subset=(education!="1. < HS Grad"))
> plot(gam.lr, se=TRUE, col="green")
```


Model Selection using ANOVA (ISLR 7.8.3; Lab 5)

(Optional)

▶ We can fit 2-variable nonlinear functions that capture their interaction / synergy effect.

(Optional)

- ► We can fit 2-variable nonlinear functions that capture their interaction / synergy effect.
- ► For example, a two-dimensional spline that is the product of two one-dimensional splines

$$b(X_1, X_2) = g(X_1)h(X_2).$$

(Optional; ESL 5.8)

Generalization to k-variable (kth-order) splines

$$b(X_1,X_2,X_3,\dots,X_k)$$

(Optional; ESL 5.8)

Generalization to k-variable (kth-order) splines

$$b(X_1, X_2, X_3, \ldots, X_k)$$

Can build multi-variable models similarly to GAMs:

$$f(X_1, X_2, \dots, X_p) = \beta_0 + b_1(X_1, X_2) + b_2(X_2, X_3X_4) + b_3(X_9) + \cdots$$

(Optional; ESL 5.8)

Generalization to k-variable (kth-order) splines

$$b(X_1,X_2,X_3,\ldots,X_k)$$

Can build multi-variable models similarly to GAMs:

$$f(X_1, X_2, ..., X_p) = \beta_0 + b_1(X_1, X_2) + b_2(X_2, X_3X_4) + b_3(X_9) + \cdots$$

Danger of overfitting!

(Optional; ESL 5.8)

Generalization to *k*-variable (*k*th-order) splines

$$b(X_1, X_2, X_3, \ldots, X_k)$$

Can build multi-variable models similarly to GAMs:

$$f(X_1, X_2, \dots, X_p) = \beta_0 + b_1(X_1, X_2) + b_2(X_2, X_3X_4) + b_3(X_9) + \cdots$$

Danger of overfitting!

Need to choose carefully:

- \blacksquare Maximum order of interaction k;
- Which terms to include;
- What functions b_i 's to use.

(Optional; ESL 5.8)

Generalization to *k*-variable (*k*th-order) splines

$$b(X_1, X_2, X_3, \ldots, X_k)$$

Can build multi-variable models similarly to GAMs:

$$f(X_1, X_2, \ldots, X_p) = \beta_0 + b_1(X_1, X_2) + b_2(X_2, X_3X_4) + b_3(X_9) + \cdots$$

Danger of overfitting!

Need to choose carefully:

- \blacksquare Maximum order of interaction k;
- Which terms to include;
- What functions b_i 's to use.

Automatic procedure: MARS (Multivariate Adaptive Regression Splines), implemented in R package <code>earth</code>

(Optional; ESL 5.8)

Generalization to *k*-variable (*k*th-order) splines

$$b(X_1, X_2, X_3, \ldots, X_k)$$

Can build multi-variable models similarly to GAMs:

$$f(X_1, X_2, \ldots, X_p) = \beta_0 + b_1(X_1, X_2) + b_2(X_2, X_3X_4) + b_3(X_9) + \cdots$$

Danger of overfitting!

Need to choose carefully:

- \blacksquare Maximum order of interaction k;
- Which terms to include;
- What functions b_i 's to use.

Automatic procedure: MARS (Multivariate Adaptive Regression Splines), implemented in R package earth

Or, use decision trees and random forests (next week).

Nonlinear Modeling Summary

- 1 predictor: Y = f(X)
 - Basis function approach: $f(X) = \sum_{i} \beta_{i} b_{i}(X)$
 - \blacksquare Regression Splines: f(X) = piecewise polynomials joint smoothly
 - Smoothing Splines: $f(X) = \text{solution to } f''(\cdot) \text{regularized least squares}$
 - Local Regression

Nonlinear Modeling Summary

- 1 predictor: Y = f(X)
 - Basis function approach: $f(X) = \sum_{i} \beta_{i} b_{j}(X)$
 - Regression Splines: f(X) = piecewise polynomials joint smoothly
 - Smoothing Splines: $f(X) = \text{solution to } f''(\cdot) \text{regularized least squares}$
 - Local Regression

p predictors:
$$Y = f(X_1, X_2, \dots, X_p)$$

■ Generalized Additive Models (GAMs)

Y or log-odds(Y)
$$\approx \beta_0 + f_1(X_1) + \cdots + f_p(X_p)$$

where $f_i(\cdot)$ is a polynomial, step function, cubic/smoothing spline, local regression,

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani Slides based on Yudong Chen's slides.