Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf Mauricio Tellechea Guido Ivetta

FaMAF, 17 de septiembre de 2021

Contenidos estimados para hoy

Repaso

- 2 Deducción natural
 - Reglas de inferencia
 - lacktriangle Cancelación de hipótesis: introducción de ightarrow
 - Ejemplos con cancelación
 - Reducción al absurdo y de eliminación de ∨
 - Ejemplos con RAA y $\lor E$

Tres componentes de la lógica

Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: sustitución $\varphi[\psi/p]$.

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: sustitución $\varphi[\psi/p]$.
- Semántica: cómo asignamos significado a las proposiciones.

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: sustitución $\varphi[\psi/p]$.
- Semántica: cómo asignamos significado a las proposiciones.
 - *Modelos* para dar sentido: **asignaciones** $v : \mathcal{V} \to \{0, 1\}$.
 - Se extienden a **valuaciones**: $\llbracket \cdot \rrbracket_{\nu} : PROP \rightarrow \{0,1\}$.
 - La verdad es información local sobre el modelo: Lema de Coincidencia y tablas de verdad.

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: sustitución $\varphi[\psi/p]$.
- Semántica: cómo asignamos significado a las proposiciones.
 - *Modelos* para dar sentido: **asignaciones** $v : \mathcal{V} \to \{0, 1\}$.
 - Se extienden a **valuaciones**: $\llbracket \cdot \rrbracket_{\nu} : PROP \rightarrow \{0,1\}$.
 - La verdad es información local sobre el modelo: Lema de Coincidencia y tablas de verdad.
- Cálculo: cómo se **deducen** proposiciones a partir de otras y se obtienen **teoremas**.

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: **sustitución** $\varphi[\psi/p]$.
- Semántica: cómo asignamos significado a las proposiciones.
 - *Modelos* para dar sentido: **asignaciones** $v : \mathcal{V} \to \{0, 1\}$.
 - Se extienden a **valuaciones**: $\llbracket \cdot \rrbracket_{\nu} : PROP \rightarrow \{0,1\}$.
 - La verdad es información local sobre el modelo: Lema de Coincidencia y tablas de verdad.
- Cálculo: cómo se deducen proposiciones a partir de otras y se obtienen teoremas.

 Ahora

Una demostración de Introducción a los Algoritmos.

Una demostración de Introducción a los Algoritmos.

Es un cálculo ecuacional:

$$q \lor q \equiv q$$

Una demostración de Introducción a los Algoritmos.

Es un cálculo ecuacional:

$$\frac{q \lor q \equiv q}{q \lor q \lor p \equiv q \lor p}$$

Una demostración de Introducción a los Algoritmos.

Es un cálculo ecuacional:

$$\frac{q \lor q \equiv q}{q \lor q \lor p \equiv q \lor p}$$

Deducción natural: un cálculo más parecido a los razonamientos "intuitivos".

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

Derivaciones: árboles punteados decorados

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

Derivaciones: árboles punteados decorados

Las hojas son las **hipótesis**. Las relevantes son las **hipótesis** no canceladas (Hip): $\{\varphi, \psi\}$.

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

Derivaciones: árboles punteados decorados

- Las hojas son las **hipótesis**. Las relevantes son las **hipótesis** no canceladas (Hip): $\{\varphi, \psi\}$.
- Nodo (raíz) distinguido conclusión (Concl): ($\varphi \wedge \psi$)

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

Derivaciones: árboles punteados decorados

- Las hojas son las **hipótesis**. Las relevantes son las **hipótesis** no canceladas (Hip): $\{\varphi, \psi\}$.
- Nodo (raíz) distinguido conclusión (Concl): $(\varphi \wedge \psi)$

"De $\{\varphi, \psi\}$ deduce $(\varphi \wedge \psi)$ "

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

Derivaciones: árboles punteados decorados

- Las hojas son las **hipótesis**. Las relevantes son las **hipótesis** no canceladas (Hip): $\{\varphi, \psi\}$.
- Nodo (raíz) distinguido conclusión (Concl): $(\varphi \wedge \psi)$

"De
$$\{\varphi, \psi\}$$
 deduce $(\varphi \land \psi)$ " $\{\varphi, \psi\} \vdash (\varphi \land \psi)$.

$$\neg \varphi \land (\psi \lor \varphi) \to \chi := \big(((\neg \varphi) \land (\psi \lor \varphi)) \to \chi \big).$$

$$\neg \varphi \land (\psi \lor \varphi) \to \chi := \big(((\neg \varphi) \land (\psi \lor \varphi)) \to \chi \big).$$

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I$$

$$\neg \varphi \land (\psi \lor \varphi) \to \chi := \big(((\neg \varphi) \land (\psi \lor \varphi)) \to \chi \big).$$

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I \qquad \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge E$$

$$\neg \varphi \land (\psi \lor \varphi) \to \chi := \big(((\neg \varphi) \land (\psi \lor \varphi)) \to \chi \big).$$

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I \qquad \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge E \qquad \qquad \frac{\varphi \wedge \psi}{\psi} \wedge E$$

$$\neg \varphi \wedge (\psi \vee \varphi) \to \chi := \big(((\neg \varphi) \wedge (\psi \vee \varphi)) \to \chi \big).$$

$$\begin{array}{cccc} \frac{\varphi & \psi}{\varphi \wedge \psi} \wedge I & & \frac{\varphi \wedge \psi}{\varphi} \wedge E & & \frac{\varphi \wedge \psi}{\psi} \wedge E \\ & & \frac{\varphi}{\varphi \vee \psi} \vee I & & \frac{\psi}{\varphi \vee \psi} \vee I \end{array}$$

Notación. Usaremos precedencia para eliminar paréntesis:

$$\neg \varphi \wedge (\psi \vee \varphi) \to \chi := (((\neg \varphi) \wedge (\psi \vee \varphi)) \to \chi).$$

$$\frac{\varphi}{\varphi} \frac{\psi}{\wedge \psi} \wedge I \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge E \qquad \frac{\varphi \wedge \psi}{\psi} \wedge E$$

$$\frac{\varphi}{\varphi \vee \psi} \vee I \qquad \frac{\psi}{\varphi \vee \psi} \vee I$$

$$\frac{\varphi}{\varphi} \frac{\varphi \to \psi}{\psi} \to E$$

Ejemplo

De $\{\varphi, \varphi \lor \psi \to \chi\}$ se deduce χ .

$$\frac{\varphi}{\varphi \vee \psi} \vee I \qquad \frac{\psi}{\varphi \vee \psi} \vee I \qquad \frac{\varphi \quad \varphi \to \psi}{\psi} \to E$$

Ejemplo

De $\{\varphi, \varphi \lor \psi \to \chi\}$ se deduce χ .

Pensemos en una demostración matemática simple.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

Supongamos que n es múltiplo de 4.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que n es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que *n* es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.
- Luego, $n = 2 \cdot (2 \cdot k)$.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que *n* es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.
- Luego, $n = 2 \cdot (2 \cdot k)$.
- Luego, $n = 2 \cdot k'$ para cierto k'.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que n es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.
- Luego, $n = 2 \cdot (2 \cdot k)$.
- Luego, $n = 2 \cdot k'$ para cierto k'.
- Luego, n es par.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que n es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.
- Luego, $n = 2 \cdot (2 \cdot k)$.
- Luego, $n = 2 \cdot k'$ para cierto k'.
- Luego, n es par.

Luego, (n es múltiplo de 4) implica (n es par).

$$\begin{array}{c}
[\varphi] \\
\vdots \\
\psi \\
\varphi \to \psi
\end{array} \to I$$

$$\begin{aligned} & & [\varphi] \\ & \vdots \\ & & \psi \\ & \varphi \to \psi \end{aligned} \to I$$

Introducción de la implicación

$$\frac{ [\varphi]_1}{\vdots } \\
\frac{\psi}{\varphi \to \psi} \to I_1$$

Introducción de la implicación

■ Hipótesis cancelada: φ .

$$D \ := \ \frac{\frac{\psi \wedge \chi}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \rightarrow \psi} \rightarrow I}$$

Introducción de la implicación

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

■ Hipótesis cancelada: $\psi \wedge \chi$.

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

■ Hipótesis cancelada: $\psi \wedge \chi$. **Hipótesis no canceladas** $Hip(D) = \emptyset$.

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

- Hipótesis cancelada: $\psi \wedge \chi$. **Hipótesis no canceladas** $Hip(D) = \emptyset$.
- Conclusión $Concl(D) = \psi \land \chi \to \psi$.

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

- Hipótesis cancelada: $\psi \wedge \chi$. **Hipótesis no canceladas** $Hip(D) = \emptyset$.
- Conclusión $Concl(D) = \psi \land \chi \rightarrow \psi$.

" $\psi \wedge \chi \rightarrow \psi$ es un **teorema** ".

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

- Hipótesis cancelada: $\psi \wedge \chi$. **Hipótesis no canceladas** $Hip(D) = \emptyset$.
- Conclusión $Concl(D) = \psi \land \chi \rightarrow \psi$.

" $\psi \land \chi \to \psi$ es un **teorema**". $\vdash \psi \land \chi \to \psi$.

$$\vdash \varphi \land \psi \to \psi \land \varphi$$

$$\vdash \varphi \land \psi \to \psi \land \varphi$$

$$\frac{\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge E}{\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1}$$

1 $\varphi \wedge \psi \rightarrow \psi \wedge \varphi$ es un teorema. 2 De $\{\varphi \rightarrow \psi, \neg \psi\}$ se deduce $\neg \varphi$.

$$\vdash \varphi \land \psi \rightarrow \psi \land \varphi$$

$$\{\varphi \to \psi, \neg \psi\} \vdash \neg \varphi$$

$$\frac{\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge E}{\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1}$$

$$\vdash \varphi \land \psi \rightarrow \psi \land \varphi$$

$$\frac{\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge E}{\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1}$$

1 $\varphi \wedge \psi \rightarrow \psi \wedge \varphi$ es un teorema. **2** De $\{\varphi \rightarrow \psi, \neg \psi\}$ se deduce $\neg \varphi$.

$$\{\varphi \to \psi, \neg \psi\} \vdash \neg \varphi$$

$$\frac{[\varphi]_1 \quad \varphi \to \psi}{\frac{\psi}{\frac{\bot}{\neg \varphi} \to I_1}} \to E$$

Más reglas con cancelación de hipótesis

Son las reglas de *reducción al absurdo* y de *eliminación de* ∨.

Más reglas con cancelación de hipótesis

Son las reglas de *reducción al absurdo* y de *eliminación de* ∨.

$$egin{array}{l} [\neg arphi] & dots \ rac{\bot}{arphi} \mathit{RAA} \end{array}$$

Más reglas con cancelación de hipótesis

Son las reglas de *reducción al absurdo* y de *eliminación de* ∨.

Ejemplo usando RAA

De $\{\varphi, \neg \psi \to \neg \varphi\}$ se deduce ψ .

Ejemplo usando RAA

De $\{\varphi, \neg \psi \to \neg \varphi\}$ se deduce ψ .

$$\frac{\varphi \qquad \dfrac{[\neg \psi]_1 \quad \neg \psi \rightarrow \neg \varphi}{\neg \varphi} \rightarrow E}{\dfrac{\bot}{\psi} \mathit{RAA}_1}$$

Ejemplo usando $\lor E$

Introducimos la última regla, con \perp como protagonista:

$$\frac{\perp}{\varphi} \perp$$

Ejemplo usando $\lor E$

Introducimos la última regla, con \perp como protagonista:

$$\frac{\bot}{\varphi}\,\bot$$

Veamos ahora que de $\neg \varphi \lor \psi$ se deduce $\varphi \to \psi$.

Ejemplo usando $\vee E$

Introducimos la última regla, con \perp como protagonista:

$$\frac{\perp}{\varphi} \perp$$

Veamos ahora que de $\neg \varphi \lor \psi$ se deduce $\varphi \to \psi$.

$$\frac{ \begin{array}{ccc} [\varphi]_1 & [\neg \varphi]_2 \\ \hline \frac{\bot}{\psi} \bot & [\psi]_2 \\ \hline \frac{\psi}{\varphi \to \psi} \to I_1 \end{array}}{ } \lor E_2$$