Travaux dirigés nº 3: Séparateurs linéaires

Stephan Clémençon <stephan.clemencon@telecom-paris.fr> Ekhine Irurozki <irurozki@telecom-paris.fr>

EXERCICE 1. On se place dans le cadre de la classification binaire : soient un descripteur aléatoire X à valeurs dans \mathbb{R} muni de sa tribu des Boréliens, et un label aléatoire Y valant 0 ou 1.

Soit $\mathcal{G} \coloneqq \big\{g: \mathbb{R} \to \{0,1\}\big\}$ l'ensemble des classifieurs adaptés à ce contexte. L'erreur de classification est définie comme l'application $\mathsf{L}: g \in \mathcal{G} \mapsto \mathbb{P} \ (\mathsf{Y} \neq g(\mathsf{X})) \in [0,1]$ et on note $\mathsf{L}^* \coloneqq \inf_{g \in \mathcal{G}} \mathsf{L}(g)$.

Dans cet exercice, on s'intéresse à la famille \mathcal{G}_0 des classifieurs linéaires sur $\mathbb R$ de la forme :

$$g_{(x_0,y_0)}: x \in \mathbb{R} \mapsto \begin{cases} y_0 & \text{si } x \leq x_0, \\ 1-y_0 & \text{sinon,} \end{cases}$$

avec $(x_0, y_0) \in \mathbb{R} \times \{0, 1\}$. L'erreur de classification d'un tel $g_{(x_0, y_0)}$ est notée plus simplement $L(x_0, y_0)$ et on pose $L_0 := \inf_{(x_0, y_0)} L(x_0, y_0)$.

- 1) Exprimer l'erreur de classification d'un élément quelconque de \mathcal{G}_0 en fonction des lois conditionnelles de X sachant Y. On utilisera les notations $F_y(x) := \mathbb{P}\{X \le x \mid Y = y\}$ pour $(x, y) \in \mathbb{R} \times \{0, 1\}$ et $p := \mathbb{P}(Y = 1)$.
- 2) En considérant les points $(x_0, y_0) = (-\infty, 0)$ et $(x_0, y_0) = (-\infty, 1)$, montrer que $L_0 \le \frac{1}{2}$.
- 3) Montrer que $L_0 = \frac{1}{2} \sup_{x} \left| p F_1(x) (1-p) F_0(x) p + \frac{1}{2} \right|$. Simplifier l'expression quand $p = \frac{1}{2}$.

Indication. Pour tout $(a, b) \in \mathbb{R}^2$ on peut écrire $\min(a, b) = \frac{a + b - |a - b|}{2}$.

- 4) Montrer que $L_0 = \frac{1}{2}$ si et seulement si $L^* = \frac{1}{2}$.
- 5) Montrer l'inégalité de Chebychev-Cantelli : pour toute variable aléatoire réelle Z et tout $t \ge 0$,

$$\mathbb{P}\left(Z - \mathbb{E}\left(Z\right) \geq t\right) \leq \frac{\mathbb{V}\left(Z\right)}{\mathbb{V}\left(Z\right) + t^{2}}.$$

6) On note respectivement m_y et σ_y^2 l'espérance et la variance de la loi conditionnelle de X sachant Y = y, avec $y \in \{0, 1\}$. Montrer que :

$$L_0 \le \left(1 + \frac{(m_0 - m_1)^2}{(\sigma_0 + \sigma_1)^2}\right)^{-1}$$
.

Indication. Utiliser l'inégalité démontrée à la question précédente.

7) Discuter de la performance du minimiseur empirique pris dans la classe G_0 et des limites des classifieurs linéaires.