Cuerpo Rígido: ángulos y velocidades de Euler

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

18 de octubre de 2024

Agenda

- Definiciones
- Desplazamiento general del cuerpo rígido
- 3 Velocidades en un cuerpo rígido
- Precesión, nutación y rotación
- lacktriangle Velocidades de Euler
- 6 Sección
- Sección

Definiciones

• Un cuerpo rígido es un sistema de partículas cuyas distancias relativas son fijas

Definiciones

- Un cuerpo rígido es un sistema de partículas cuyas distancias relativas son fijas
- Su movimiento se describe en términos de la posición de su centro de masa y de la orientación relativa del cuerpo en el espacio

Definiciones

- Un cuerpo rígido es un sistema de partículas cuyas distancias relativas son fijas
- Su movimiento se describe en términos de la posición de su centro de masa y de la orientación relativa del cuerpo en el espacio

- Esto requiere de dos sistemas de coordenadas:
 - Un sistema inercial o laboratorio, denotado por (x, y, z) y con origen en un punto fijo O
 - Un sistema en movimiento, fijo en el cuerpo, con origen en el centro de masa (CM), identificado por (x_1, x_2, x_3)

- Un desplazamiento general del cuerpo rígido se representa como la suma de dos movimientos:
 - Translación del centro de masa, sin cambiar la orientación relativa entre (x, y, z) y (x_1, x_2, x_3) .

- Un desplazamiento general del cuerpo rígido se representa como la suma de dos movimientos:
 - Translación del centro de masa, sin cambiar la orientación relativa entre (x, y, z) y (x_1, x_2, x_3) .
 - Rotación de las coordenadas (x_1, x_2, x_3) alrededor de un eje que pasa por el centro de masa.
- La posición $\bf R$ de un punto P del cuerpo rígido con respecto al sistema de referencia del laboratorio (x,y,z) es $\bf R=\bf R_{\rm cm}+\bf r$

- Un desplazamiento general del cuerpo rígido se representa como la suma de dos movimientos:
 - Translación del centro de masa, sin cambiar la orientación relativa entre (x, y, z) y (x_1, x_2, x_3) .
 - Rotación de las coordenadas (x_1, x_2, x_3) alrededor de un eje que pasa por el centro de masa.
- La posición $\bf R$ de un punto P del cuerpo rígido con respecto al sistema de referencia del laboratorio (x,y,z) es $\bf R=\bf R_{\rm cm}+\bf r$
- ullet Un desplazamiento infinitesimal de P será $d{f R}=d{f R}_{
 m cm}+d{f r}$

- Un desplazamiento general del cuerpo rígido se representa como la suma de dos movimientos:
 - Translación del centro de masa, sin cambiar la orientación relativa entre (x, y, z) y (x_1, x_2, x_3) .
 - Rotación de las coordenadas (x_1, x_2, x_3) alrededor de un eje que pasa por el centro de masa.
- La posición $\bf R$ de un punto P del cuerpo rígido con respecto al sistema de referencia del laboratorio (x,y,z) es $\bf R=\bf R_{\rm cm}+\bf r$
- Un desplazamiento infinitesimal de P será $d\mathbf{R} = d\mathbf{R}_{\rm cm} + d\mathbf{r}$

 Un cambio infinitesimal dr sólo puede deberse a un cambio de dirección del vector r, no a un cambio de su magnitud

• Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.

- Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.
- Su magnitud es $d\mathbf{r} = (r \operatorname{sen} \theta) d\phi$ y su dirección $d\mathbf{r} = d\phi \times \mathbf{r}$

- Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.
- Su magnitud es $d\mathbf{r} = (r \operatorname{sen} \theta) d\phi$ y su dirección $d\mathbf{r} = d\phi \times \mathbf{r}$
- La velocidad de P, es $\mathbf{v}_P = \mathbf{v}_{\mathrm{cm}} + \mathbf{\Omega} \times \mathbf{r} \Leftrightarrow \frac{d\mathbf{R}}{dt} = \frac{d\mathbf{R}_{\mathrm{cm}}}{dt} + \frac{d\phi}{dt} \times \mathbf{r}$

- Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.
- Su magnitud es $d\mathbf{r} = (\mathbf{r} \operatorname{sen} \theta) d\phi$ y su dirección $d\mathbf{r} = d\phi \times \mathbf{r}$
- La velocidad de P, es $\mathbf{v}_P = \mathbf{v}_{\mathrm{cm}} + \mathbf{\Omega} \times \mathbf{r} \Leftrightarrow \frac{d\mathbf{R}}{dt} = \frac{d\mathbf{R}_{\mathrm{cm}}}{dt} + \frac{d\phi}{dt} \times \mathbf{r}$

• $\mathbf{v}_P = \frac{d\mathbf{R}}{dt}$: velocidad de P en el laboratorio (x,y,z), $\mathbf{v}_{\rm cm} = \frac{d\mathbf{R}_{\rm cm}}{dt}$ velocidad de traslación del centro de masa en (x,y,z), $\Omega = \frac{d\phi}{dt}$: velocidad angular instantánea de rotación.

- Si θ el ángulo entre la dirección $d\phi$ y el vector \mathbf{r} , entonces el vector $d\mathbf{r}$ es perpendicular al plano $(d\phi, \mathbf{r})$.
- Su magnitud es $d\mathbf{r} = (\mathbf{r} \operatorname{sen} \theta) d\phi$ y su dirección $d\mathbf{r} = d\phi \times \mathbf{r}$
- La velocidad de P, es $\mathbf{v}_P = \mathbf{v}_{\mathrm{cm}} + \mathbf{\Omega} \times \mathbf{r} \Leftrightarrow \frac{d\mathbf{R}}{dt} = \frac{d\mathbf{R}_{\mathrm{cm}}}{dt} + \frac{d\phi}{dt} \times \mathbf{r}$

- $\mathbf{v}_P = \frac{d\mathbf{R}}{dt}$: velocidad de P en el laboratorio (x, y, z), $\mathbf{v}_{\rm cm} = \frac{d\mathbf{R}_{\rm cm}}{dt}$ velocidad de traslación del centro de masa en (x, y, z), $\Omega = \frac{d\phi}{dt}$: velocidad angular instantánea de rotación.
- ullet La dirección de la velocidad angular instantánea $oldsymbol{\Omega}$ es la misma que la del vector $d\phi$

Precesión, nutación y rotación

- Distinguiremos tres movimientos en un cuerpo rígido
 - precesión: rotación alrededor de un eje fijo en el laboratorio,

Precesión, nutación y rotación

- Distinguiremos tres movimientos en un cuerpo rígido
 - precesión: rotación alrededor de un eje fijo en el laboratorio,
 - nutación: inclinación con respecto al eje fijo y

- Angulo Euler de precesión, $\phi \in [0, 2\pi]$: ángulo de rotación con respecto al eje z, sobre el plano (x, y),
 - Angulo Euler de nutación, $\theta \in [0, \pi]$: ángulo de rotación con respecto a la línea nodal N, medido desde z hasta x_3 .

Precesión, nutación y rotación

- Distinguiremos tres movimientos en un cuerpo rígido
 - precesión: rotación alrededor de un eje fijo en el laboratorio,
 - nutación: inclinación con respecto al eje fijo y
 - rotación: rotación del cuerpo sobre sí mismo.

- Angulo Euler de precesión, $\phi \in [0, 2\pi]$: ángulo de rotación con respecto al eje z, sobre el plano (x, y),
 - Angulo Euler de nutación, $\theta \in [0, \pi]$: ángulo de rotación con respecto a la línea nodal N, medido desde z hasta x_3 .
 - Angulo Euler de rotación, $\psi \in [0, 2\pi]$: ángulo de rotación con respecto al eje x_3 , sobre el plano (x_1, x_2) , medido desde N a x_1 .

- Las velocidades angulares $\dot{\phi}, \dot{\theta}$ y $\dot{\psi}$ pueden expresarse en términos de sus proyecciones sobre los ejes (x_1, x_2, x_3) como
 - $\dot{\psi}_1 = 0$, $\dot{\psi}_2 = 0$ y $\dot{\psi}_3 = \dot{\psi}$;
 - $\dot{\theta_1} = \dot{\theta} \cos \psi$, $\dot{\theta_2} = -\dot{\theta} \sin \psi$ y $\dot{\theta_3} = 0$, ya que $\dot{\theta}$ es perpendicular a x_3
 - $\dot{\phi}_1 = (\dot{\phi} \operatorname{sen} \theta) \operatorname{sen} \psi$, $\dot{\phi}_2 = (\dot{\phi} \operatorname{sen} \theta) \cos \psi$ y $\dot{\phi}_3 = \dot{\phi} \cos \theta$

- Las velocidades angulares $\dot{\phi}, \dot{\theta}$ y $\dot{\psi}$ pueden expresarse en términos de sus proyecciones sobre los ejes (x_1, x_2, x_3) como
 - $\dot{\psi}_1 = 0$, $\dot{\psi}_2 = 0$ y $\dot{\psi}_3 = \dot{\psi}$;
 - $\dot{\theta}_1 = \dot{\theta} \cos \psi$, $\dot{\theta}_2 = -\dot{\theta} \sin \psi$ y $\dot{\theta}_3 = 0$, ya que $\dot{\theta}$ es perpendicular a x_3
 - $\dot{\phi}_1 = (\dot{\phi} \operatorname{sen} \theta) \operatorname{sen} \psi$, $\dot{\phi}_2 = (\dot{\phi} \operatorname{sen} \theta) \cos \psi$ y $\dot{\phi}_3 = \dot{\phi} \cos \theta$
- La velocidad angular instantánea Ω es una combinación de rotaciones asociadas a los tres ángulos de Euler.

- Las velocidades angulares $\dot{\phi}, \dot{\theta}$ y $\dot{\psi}$ pueden expresarse en términos de sus proyecciones sobre los ejes (x_1, x_2, x_3) como
 - $\dot{\psi}_1 = 0$, $\dot{\psi}_2 = 0$ y $\dot{\psi}_3 = \dot{\psi}$;
 - $\dot{\theta}_1 = \dot{\theta}\cos\psi$, $\dot{\theta}_2 = -\dot{\theta}\sin\psi$ y $\dot{\theta}_3 = 0$, ya que $\dot{\theta}$ es perpendicular a x_3
 - $\dot{\phi}_1 = (\dot{\phi} \operatorname{sen} \theta) \operatorname{sen} \psi$, $\dot{\phi}_2 = (\dot{\phi} \operatorname{sen} \theta) \cos \psi$ y $\dot{\phi}_3 = \dot{\phi} \cos \theta$
- $oldsymbol{\circ}$ La velocidad angular instantánea $oldsymbol{\Omega}$ es una combinación de rotaciones asociadas a los tres ángulos de Euler.
- Las componentes del vector $\Omega = (\Omega_1, \Omega_2, \Omega_3)$ se expresan en términos de los ángulos de (θ, ϕ, ψ) y de sus velocidades angulares $(\dot{\theta}, \dot{\phi}, \dot{\psi})$.

- Las velocidades angulares $\dot{\phi}, \dot{\theta}$ y $\dot{\psi}$ pueden expresarse en términos de sus proyecciones sobre los ejes (x_1, x_2, x_3) como
 - $\dot{\psi}_1 = 0$, $\dot{\psi}_2 = 0$ y $\dot{\psi}_3 = \dot{\psi}$;
 - $\dot{\theta}_1 = \dot{\theta}\cos\psi$, $\dot{\theta}_2 = -\dot{\theta}\sin\psi$ y $\dot{\theta}_3 = 0$, ya que $\dot{\theta}$ es perpendicular a x_3
 - $\dot{\phi}_1 = (\dot{\phi} \operatorname{sen} \theta) \operatorname{sen} \psi$, $\dot{\phi}_2 = (\dot{\phi} \operatorname{sen} \theta) \cos \psi$ y $\dot{\phi}_3 = \dot{\phi} \cos \theta$
- La velocidad angular instantánea Ω es una combinación de rotaciones asociadas a los tres ángulos de Euler.
- Las componentes del vector $\Omega = (\Omega_1, \Omega_2, \Omega_3)$ se expresan en términos de los ángulos de (θ, ϕ, ψ) y de sus velocidades angulares $(\dot{\theta}, \dot{\phi}, \dot{\psi})$.
- Para cada componente Ω_i , tenemos $\Omega_i = \dot{\theta}_i + \dot{\phi}_i + \dot{\psi}_i$, i = 1, 2, 3. $\Omega_1 = \dot{\phi} \operatorname{sen} \theta \operatorname{sen} \psi + \dot{\theta} \cos \psi$ $\Omega_2 = \dot{\phi} \operatorname{sen} \theta \cos \psi \dot{\theta} \operatorname{sen} \psi$ $\Omega_3 = \dot{\psi} + \dot{\phi} \cos \theta$

Componentes y velocidades angulares

Título transparencia

Título transparencia

