E.A.6.7 (HC-VIP)

1.1 Modellazione

Dati i parametri I, V, G = (I, bus) t.c.

- $casa \in I$
- $-\ V\subseteq I/\{casa\}$
- $\begin{array}{ccc} \ bus \subseteq I \times I \\ \ |V| \le \frac{|I|}{2} \end{array}$

Si definiscono le seguenti variabili:

- -P = |I| è il numero di bus da prendere in un percorso che parte da casa, visita tutti gli indirizzi esattamente una volta e ritorna a casa
 - servono |I| 1 bus per visitare tutti gli indirizzi esattamente una volta più 1 bus per tornare a casa a fine giornata
- $\mathcal{P} = \{1, ..., P\}$
- $-\mathcal{I} = \{1, ..., |I|\}$ l'insieme di identificatori per cui esiste una funzione id biettiva t.c. id : $\mathcal{I} \to I$ e id(1) = casa
- $\mathcal{V} = \{i \mid i \in \mathcal{I} \land \exists v \ v \in V \land \mathrm{id}(i) = v\}$
- $X = \{X_{i,j}^p \mid (i,j) \in bus \land p \in \mathcal{P}\}$ l'insieme di variabili dove $X_{i,j}^p$ è vera se l'arco $(i,j) \in bus$ è stato percorso al p-esimo passo

$$\phi = \phi_{\text{almeno_un_arco_per_passo}} \land$$

$$\phi_{\text{al_più_un_arco_per_passo}} \land$$

$$\phi_{\text{almeno_un_arco_per_indirizzo}} \land$$

$$\phi_{\text{al_più_un_arco_per_indirizzo}} \land$$

$$\phi_{\text{clienti_VIP_nella_prima_metà}} \land$$

$$\phi_{\text{partenza_da_casa}} \land$$

$$\phi_{\text{arrivo_a_casa}} \land$$

$$\phi_{\text{percorso_valido}}$$

$$(1)$$

$$\begin{split} \phi_{\text{almeno_un_arco_per_passo}} &= \bigwedge_{p \in \mathcal{P}} \bigvee_{\substack{i,j \in \mathcal{I} \\ (i,j) \in \ bus}} X_{i,j}^p \\ \phi_{\text{al_più_un_arco_per_passo}} &= \bigwedge_{\substack{p \in \mathcal{P} \\ (i_1,j_2,i_2,j_2 \in \mathcal{I} \\ (i_1,j_1),(i_2,j_2) \in \ bus \\ (i_1,j_1) < (i_2,j_2)}} X_{i_1,j_1}^p \to \neg X_{i_2,j_2}^p \end{split} \tag{2}$$

$$\begin{split} \phi_{\text{almeno_un_arco_per_indirizzo}} &= \bigwedge_{j \in \mathcal{I}} \bigvee_{\substack{i \in \mathcal{I} \\ p \in \mathcal{P} \\ (i,j) \in bus}} X_{i,j}^p \\ \phi_{\text{al_più_un_arco_per_indirizzo}} &= \bigwedge_{\substack{i_1, i_2, j \in \mathcal{I} \\ p \in \mathcal{P} \\ (i_1,j), (i_2,j) \in bus}} X_{i_1,j}^p \to \neg X_{i_2,j}^p \\ \phi_{\text{clienti_VIP_nella_prima_metà}} &= \bigwedge_{v \in \mathcal{V}} \bigvee_{\substack{i \in \mathcal{I} \\ p \in \mathcal{P} \\ p \in \mathcal{P} \\ p \leq \lceil \frac{p}{2} \rceil \\ (i,v) \in bus}} X_{i,v}^p \\ \phi_{\text{partenza_da_casa}} &= \bigvee_{\substack{i \in \mathcal{I} \setminus \{1\} \\ (1,i) \in bus}} X_{1,i}^1 \\ \begin{pmatrix} i \in \mathcal{I} \\ i \in \mathcal{I} \\$$

1.2 Istanziazione

il bro deve visitare una serire di clienti

- parte da casa sua
- li visita tutti
- torna a casa sua
- usa l'autobus
- l'ordine non conta
- ha solo biglietti per corsa semplice
 - quindi può raggiungere il cliente successivo usando un solo autobus
- trovare un itinerario tale che
 - 1. parte di casa la mattina
 - 2. torna a casa a fine giornata
 - 3. Raggiungere il cliente successivo (o casa sua, a fine giornata) dalla sua postazione corrente utilizzando un unico autobus;
 - 4. Visita un sottoinsieme V dei clienti nella prima metà del percorso
- ho un mega elenco di tutte le linee autobus della città
 - ricavo tutte le coppie (A, B) t.c. esiste un unico autobus che collega A, B

pazzerello, quindi:

- mi devo visistare questo bel grafo diretto
- devo visitare ogni indirizzo al più una volta
- non solo, gli indirizzi in V li devo visitare nella prima metà...

un bel parto, ok, ma forse ci siamo

- forse dovrei creare una variabile per ogni arco di «bus»
- in più devo tenere in considerazione il tempo
- quindi avrei tipo una variabile per ogni arco per ogni istante di tempo
- e supponiamo che il tempo massimo sia T = |I| + 1
 - non lo supponiamo, è così, ci deve mettere esattamente questo tempo
 - non ci può mettere di meno, perché vorrebbe dire che non ha visitato tutti
 - non ci può mettere di più, perché vorrebbe dire che ha fatto doppio giro
 - così è facile anche scrivere vincoli del tipo i clienti V stanno nella prima metà $\frac{T}{2}$
 - posso forzare che la casa iniziale sia a true? No, devo forzare che l'arco iniziale sia per forza con la casa a sinistra, tipo $X_{1,v}^1$ è true per ogni v (che poi sarebbe $i \in \mathcal{I}$, non v)
- 1. in un dato istante di tempo un solo arco è preso
- 2. in un dato istante di tempo al più un arco è preso
- 3. devo aver visitato tutti i nodi a fine giornata (hm...)
 - vabbeh, l'idea sarebbe «esiste almeno un arco attivo che porta in quel nodo» per ogni nodo, e non importa quando
 - in più rafforzo dicendo che se questo arco esiste, per i clienti vip deve essere nella prima metà
 - ah, non visito un arco più di una volta (questo va a due a due)
- 4. mi manca altro?

1.2.1 Variabili

1.2.2 Vincoli

1.3 Codifica SATCodec

1.3.1 ...

1.3.2 ...