

- Мета: Розробка програми моделювання роботи віброгранулятора.
- Завдання:
 - Дослідити теоретичні основи моделювання.
 - Реалізувати програму на мові С.
 - Перевірити коректність роботи програми.

ПОСТАНОВКА ЗАДАЧІ

Варіант 4

Описати масив структур із трьох елементів. Кожна структура об'єднує параметри, що описують режим роботи окремого віброгранулятора. Віброгранулятор — це пристрій, призначений для отримання крапель рідини (розчину, сплаву). З цих крапель потім отримуються гранули сферичної форми. Віброгранулятор широко використовується в хімічній промисловості.

Діаметр краплі d_k обчислюється за формулою

$$d_k = \sqrt[3]{\frac{3d^2\varepsilon v}{2f}},$$

де *v* – швидкість витікання струменя рідини;

d – діаметр отвору для витікання;

 ε – коефіцієнт стискання струменя;

f — частота імпульсів тиску, що підводяться до розбризкуваної рідини.

Необхідно для кожного варіанта на проміжку часу від 0 до T з кроком Δt побудувати графік зміни значень d_k .

Параметри v і f змінюються з часом:

$$v = v_0 (1 + k \cdot \cos \frac{2\pi}{T} t), \text{ де } t - \text{час}; \ k \in [0,1];$$

$$f = \begin{cases} F + \frac{4A}{T} t \, \partial \pi t \in [0, T/4], \\ F + A - (t - T/4) \frac{4A}{T} \, \partial \pi t \in [T/4, \frac{3}{4} T], \\ F - A + (t - \frac{3}{4} T) \frac{4A}{T} \, \partial \pi t \in [\frac{3}{4} T, T], \end{cases}$$

де v_0 , k, F, A — задані константи. Вхідні дані зчитуються з файла. Результати обчислень занести до іншого файла. Передбачити під час уведення контроль за умови $k \in [0,1]$. Обчислення v і f оформити у вигляді окремих функцій.

Вхідні дані:

1. T = 600 c,
$$\Delta t = 20c$$
, $\varepsilon = 0,6$, $v_0 = 2,5$ м/c, F = 1 000 Гц, A = 250 Гц, $k = 0,8$, $d = 0,5$ мм.

2. F = 2000 Гц, A = 300 Гц,
$$k = 0.75$$
, $d = 1.0$ мм.

Решту даних див. пункт 1.

3.
$$F = 500 \Gamma \mu$$
, $A = 50 \Gamma \mu$, $k = 0.85$, $d = 2.0 \text{ мм}$.

Решта даних – див. пункт 1.

ТЕОРЕТИЧНИЙ МАТЕРІАЛ

- Віброгранулятор пристрій для створення гранул із рідини.
- Основні параметри:
 - Швидкість витікання (v).
 - Частота імпульсів (f).
 - Діаметр краплі (dk).
- Основні формули:
 - $v(t) = v0 \star (1 + k \star \cos(2\pi t/T))$
 - $dk = (3 \star d^2 \star \epsilon \star v / f)^(1/3)$

АЛГОРИТМ РОБОТИ ПРОГРАМИ

Функція calculateDk()

ОПИС ФУНКЦІЙ ТА СТРУКТУРИ ПРОГРАМИ

- Основні функції:
 - calculateV() обчислення швидкості.
 - calculateF() обчислення частоти.
 - calculateDk() обчислення діаметра краплі.
- Масив структур для зберігання параметрів віброгранулятора.

ПРИКЛАД ТЕСТУВАННЯ ТА РЕЗУЛЬТАТИ

PS C:\Users\lozov\Downloads\Telegram Desktop\programming> cd "c:\Users\lozov\Downloads\Telegram Desktop\programming\"; if (\$?) { gcc -std=c99 main.c -o main }; if (\$?) { .\main }
Обчислення завершено. Результати записано у файл results.txt

 $v(t) (m/c) f(t) (\Gamma \mu) dk(t) (mm)$

```
Варіант 1:

T = 600.0 c, \Delta t = 20.0 c, \epsilon = 0.6

v\theta = 2.5 м/c, F = 1000.0 Гц, A = 250.0 Гц

k = 0.80, d = 0.5 мм
```

Hac (c) $v(t) (m/c) f(t) (\Gamma \mu) dk(t) (mm)$

0.0	4.5000	1000.0	0.1265
20.0	4.4563	1033.3	0.1247
40.0	4.3271	1066.7	0.1222
60.0	4.1180	1100.0	0.1190
80.0	3.8383	1133.3	0.1151
100.0	3.5000	1166.7	0.1105
120.0	3.1180	1200.0	0.1054
140.0	2.7091	1233.3	0.0996
160.0	2.2909	1233.3	0.0942
180.0	1.8820	1200.0	0.0890
200.0	1.5000	1166.7	0.0833
220.0	1.1617	1133.3	0.0773
240.0	0.8820	1100.0	0.0712
260.0	0.6729	1066.7	0.0657
280.0	0.5437	1033.3	0.0619
300.0	0.5000	1000.0	0.0608
320.0	0.5437	966.7	0.0633
340.0	0.6729	933.3	0.0687
360.0	0.8820	900.0	0.0761
380.0	1.1617	866.7	0.0845
400.0	1.5000	833.3	0.0932
420.0	1.8820	800.0	0.1019
440.0	2.2909	766.7	0.1104
460.0	2.7091	766.7	0.1167
480.0	3.1180	800.0	0.1206
500.0	3.5000	833.3	0.1236
520.0	3.8383	866.7	0.1258
540.0	4.1180	900.0	0.1272
560.0	4.3271	933.3	0.1278
580.0	4.4563	966.7	0.1275
COO 0	4 5000	4000 0	0 4055

```
Bapiaнτ 2:

T = 600.0 c, Δt = 20.0 c, ε = 0.6

v0 = 2.5 m/c, F = 2000.0 Γц, A = 300.0 Γц

k = 0.75, d = 1.0 мм
```

Час (с)

0.0	4.3750	2000.0	0.1579
20.0	4.3340	2040.0	0.1564
40.0	4.2129	2080.0	0.1539
60.0	4.0169	2120.0	0.1505
80.0	3.7546	2160.0	0.1463
100.0	3.4375	2200.0	0.1412
120.0	3.0794	2240.0	0.1353
140.0	2.6960	2280.0	0.1286
160.0	2.3040	2280.0	0.1221
180.0	1.9206	2240.0	0.1156
200.0	1.5625	2200.0	0.1085
220.0	1.2454	2160.0	0.1012
240.0	0.9831	2120.0	0.0942
260.0	0.7871	2080.0	0.0880
280.0	0.6660	2040.0	0.0838
300.0	0.6250	2000.0	0.0825
320.0	0.6660	1960.0	0.0849
340.0	0.7871	1920.0	0.0904
360.0	0.9831	1880.0	0.0980
380.0	1.2454	1840.0	0.1068
400.0	1.5625	1800.0	0.1160
420.0	1.9206	1760.0	0.1252
440.0	2.3040	1720.0	0.1341
460.0	2.6960	1720.0	0.1413
480.0	3.0794	1760.0	0.1466
500.0	3.4375	1800.0	0.1509
520.0	3.7546	1840.0	0.1543
540.0	4.0169	1880.0	0.1567

1920.0

2000.0

0.1581

0.1585

0.1579

4.2129

4.3340

4.3750

580.0

600.0

Bapiaнτ 3: T = 600.0 c, Δt = 20.0 c, ε = 0.6 v0 = 2.5 m/c, F = 500.0 Γμ, A = 50.0 Γμ k = 0.85, d = 2.0 mm

Yac (c) $v(t) (m/c) f(t) (\Gamma y) dk(t) (mm)$

0.0	4.6250	500.0	0.4053
20.0	4.5786	506.7	0.4022
40.0	4.4413	513.3	0.3964
60.0	4.2192	520.0	0.3880
80.0	3.9219	526.7	0.3771
100.0	3.5625	533.3	0.3637
120.0	3.1567	540.0	0.3478
140.0	2.7221	546.7	0.3297
160.0	2.2779	546.7	0.3107
180.0	1.8433	540.0	0.2907
200.0	1.4375	533.3	0.2687
220.0	1.0781	526.7	0.2452
240.0	0.7808	520.0	0.2211
260.0	0.5587	513.3	0.1986
280.0	0.4214	506.7	0.1816
300.0	0.3750	500.0	0.1754
320.0	0.4214	493.3	0.1832
340.0	0.5587	486.7	0.2022
360.0	0.7808	480.0	0.2271
380.0	1.0781	473.3	0.2541
400.0	1.4375	466.7	0.2810
420.0	1.8433	460.0	0.3067
440.0	2.2779	453.3	0.3307
460.0	2.7221	453.3	0.3510
480.0	3.1567	460.0	0.3669
500.0	3.5625	466.7	0.3802
520.0	3.9219	473.3	0.3907
540.0	4.2192	480.0	0.3985
560.0	4.4413	486.7	0.4035
580.0	4.5786	493.3	0.4058
600.0	4.6250	500.0	0.4053

ГРАФІКИ

