安徽大学 2016—2017 学年第一学期

《高等数学 A (三)》(线性代数) 考试试卷 (A 卷) 时间 120 分钟) (闭卷

考场登记表序号

题 号	 11	三	四	总分
得 分				
阅卷人				

一、选择题(每小题2分,共10分)

得 分

1. 排列 $135\cdots(2n-1)246\cdots(2n)$ 的逆序数为().

A.
$$\frac{n(n-1)}{2}$$

B.
$$\frac{n(n+1)}{2}$$

C.
$$n^2$$

D.
$$n^2 - n$$

- 2. 设A,B均为n阶方阵,下列结论正确的是().
- A. $AB \neq 0 \Leftrightarrow A \neq 0 \perp B \neq 0$

- B. $|A|=0 \Leftrightarrow A=0$
- C. $|AB| = 0 \Leftrightarrow |A| = 0$ $\Rightarrow |B| = 0$
- D. $A = E \Leftrightarrow |A| = 1$
- 3. 若n阶矩阵A与B相似,则().
- A. A 与 B 的特征矩阵相同

- B. A 与 B 的特征多项式相同
- C. A 与 B 相似于同一个对角阵
- D. 存在正交阵T,使得 $T^{-1}AT = B$
- 4. 设 $A \neq m \times n$ 矩阵, AX = 0 是非齐次线性方程组 $AX = \beta$ 的导出组, 下列结论正确的是().
- B. 若 AX = 0 有非零解,则 $AX = \beta$ 有无穷多解
- C. 若 $AX = \beta$ 有无穷多解,则 AX = 0 仅有零解
- D. 若 $AX = \beta$ 有无穷多解,则 AX = 0 有非零解
- 5. 已知三阶方阵 A 的特征值为 1, 1, -5 , $B = A^3 5A^2$,则 $\left| E + A^{-1} \right| = ($).

C.
$$\frac{16}{5}$$
 D. $\frac{4}{5}$

D.
$$\frac{4}{5}$$

二、填空题(每小题2分,共10分)

得 分

6.
$$\begin{vmatrix} 0 & 1 & 2 & 3 \\ -1 & 0 & 1 & 2 \\ -2 & -1 & 0 & 1 \\ -3 & -2 & -1 & 0 \end{vmatrix}$$
的第 1 行第 2 列元素 1 的代数余子式为______.

- 7. 若矩阵 A 满足方程 $A^2+2A+3E=0$,则 $A^{-1}=$ ______.
- 8. 已知 2 是矩阵 $A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & t & 3 \\ 1 & 2 & 3 \end{pmatrix}$ 的一个特征值,则 t =______.
- 9. 在 R^3 中,由基底 β_1 , β_2 , β_3 到基底 α_1 , α_2 , α_3 的过渡矩阵为______. 其中 β_1 = α_1 + $3\alpha_2$ - $5\alpha_3$, β_2 = α_2 + $2\alpha_3$, β_3 = α_3 .
- 10. 二次曲面 $x^2 + (2 + \lambda) y^2 + \lambda z^2 + 2xy 2xz yz 5 = 0$ 中, λ 取值为______时, 曲面是椭球面.
- 三、计算题(每小题13分,共65分)

得分

11. 计算
$$D = \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & -2 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & n-1 & 1-n \end{vmatrix}$$
.

礟

袎

12. 设
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
, 已知 $AB = 2B + A$, 求矩阵 B .

- 13. 己知 $\alpha_1 = (1+\lambda,1,1), \alpha_2 = (1,1+\lambda,1), \quad \alpha_3 = (1,1,1+\lambda), \beta = (0,\lambda,\lambda^2).$
 - 问(1) λ 为何值时, β 可由 α_1 , α_2 , α_3 线性表示,且表示法唯一;
 - (2) λ 为何值时, β 可由 α_1 , α_2 , α_3 线性表示,且表示法不唯一;
 - (3) λ 为何值时, β 不能由 α_1 , α_2 , α_3 线性表示.

- 14. 设矩阵 A与B 相似,且 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & a \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -1 \end{pmatrix}.$
- (1) 求a,b的值; (2) 求可逆矩阵Q, 使得 $Q^{-1}AQ=B$.

15. 将实二次型 $f=x_1^2+x_2^2+x_3^2+2x_1x_2+2x_1x_3+2x_2x_3$ 用正交变换化成标准形,并求所用的正交变换的矩阵.

四、证明题(第16题8分,第17题7分,共15分)

得分

16.设 α_0 是非齐次线性方程组 $AX = \beta$ 的一个解, α_1 , α_2 ,… α_{n-r} 是其导出组的一个基础解系,证明: α_0 , $\alpha_0+\alpha_1$, $\alpha_0+\alpha_2$,… $\alpha_0+\alpha_{n-r}$ 线性无关.

17. 设A为 $m \times n$ 的实矩阵,若r(A) = n,则 $A^T A$ 为正定矩阵. 其中r(A)为A的秩.