INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4516B MSI Binary up/down counter

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4516B MSI

DESCRIPTION

The HEF4516B is an edge-triggered synchronous up/down 4-bit binary counter with a clock input (CP), an up/down count control input (UP/ \overline{DN}), an active LOW count enable input (\overline{CE}), an asynchronous active HIGH parallel load input (PL), four parallel inputs (P $_0$ to P $_3$), four parallel outputs (O $_0$ to O $_3$), an active LOW terminal count output (\overline{TC}), and an overriding asynchronous master reset input (MR).

Information on P_0 to P_3 is loaded into the counter while PL is HIGH, independent of all other input conditions except MR which must be LOW. When PL and \overline{CE} are LOW, the counter changes on the LOW to HIGH transition of CP. Input UP/ \overline{DN} determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, \overline{TC} is LOW when O_0 and O_3 are HIGH and \overline{CE} is LOW. When counting down, \overline{TC} is LOW when O_0 to O_3 and \overline{CE} are LOW. A HIGH on MR resets the counter (O_0 to O_3 = LOW) independent of all other input conditions.

HEF4516BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4516BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4516BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

PL parallel load input (active HIGH)

P₀ to P₃ parallel inputs

CE count enable input (active LOW)
CP clock pulse input (LOW to HIGH,

edge triggered)

UP/DN up/down count control input

MR master reset input

TC terminal count output (active LOW)

O₀ to O₃ parallel outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4516B MSI

FUNCTION TABLE

MR	PL	UP/DN	CE	СР	MODE
L	Н	Х	Х	Х	parallel load
L	L	X	Н	X	no change
L	L	L	L		count down
L	L	Н	L		count up
Н	X	X	X	X	reset

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

Logic equation for terminal count:

$$\overline{\mathsf{TC}} = \overline{\overline{\mathsf{CE}}} \cdot \{ (\mathsf{UP}/\overline{\mathsf{DN}}) \cdot \mathsf{O}_0 \cdot \mathsf{O}_1 \cdot \mathsf{O}_2 \cdot \mathsf{O}_3 + \left(\overline{\mathsf{UP}/\overline{\mathsf{DN}}} \right) \cdot \overline{\mathsf{O}}_0 \cdot \overline{\mathsf{O}}_1 \cdot \overline{\mathsf{O}}_2 \cdot \overline{\mathsf{O}}_3 \}$$

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$1000 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	$f_i = input freq. (MHz)$
package (P)	15	11 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

Binary up/down counter

HEF4516B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \rightarrow O_n$	5			145	290	ns	118 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		60	120	ns	49 ns + (0,23 ns/pF) C _L
	15			45	90	ns	37 ns + (0,16 ns/pF) C _L
	5			155	310	ns	128 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65	130	ns	54 ns + (0,23 ns/pF) C _L
	15			45	90	ns	37 ns + (0,16 ns/pF) C _L
$CP \rightarrow \overline{TC}$	5			260	525	ns	233 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		105	210	ns	94 ns + (0,23 ns/pF) C _L
	15			75	150	ns	67 ns + (0,16 ns/pF) C _L
	5			180	360	ns	153 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		75	150	ns	64 ns + (0,23 ns/pF) C _L
	15			55	115	ns	47 ns + (0,16 ns/pF) C _L
$PL \to O_n$	5			125	255	ns	98 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	85	ns	32 ns + (0,16 ns/pF) C _L
	5			170	340	ns	143 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		70	140	ns	59 ns + (0,23 ns/pF) C _L
	15			50	105	ns	42 ns + (0,16 ns/pF) C _L
$PL \rightarrow \overline{TC}$	5			250	500	ns	223 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		110	220	ns	99 ns + (0,23 ns/pF) C _L
	15			80	160	ns	72 ns + (0,16 ns/pF) C _L
	5			250	500	ns	223 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		110	220	ns	99 ns + (0,23 ns/pF) C _L
	15			80	160	ns	72 ns + (0,16 ns/pF) C _L
$\overline{CE} \to \overline{TC}$	5			165	330	ns	138 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		65	135	ns	54 ns + (0,23 ns/pF) C _L
	15			50	100	ns	42 ns + (0,16 ns/pF) C _L
	5			145	290	ns	118 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		60	125	ns	49 ns + (0,23 ns/pF) C _L
	15			45	95	ns	37 ns + (0,16 ns/pF) C _L
$MR \rightarrow O_n, \overline{TC}$	5			205	405	ns	178 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		65	130	ns	54 ns + (0,23 ns/pF) C _L
	15			45	85	ns	37 ns + (0,16 ns/pF) C _L
$MR \rightarrow \overline{TC}$	5			225	450	ns	198 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		75	150	ns	64 ns + (0,23 ns/pF) C _L
	15			50	100	ns	42 ns + (0,16 ns/pF) C _L

Philips Semiconductors Product specification

Binary up/down counter

HEF4516B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

Philips Semiconductors Product specification

Binary up/down counter

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Minimum clock	5		95	45	ns	
pulse width; LOW	10	t _{WCPL}	35	20	ns	
	15		25	15	ns	
Minimum PL	5		105	55	ns	
pulse width; HIGH	10	t _{WPLH}	45	25	ns	
	15		35	15	ns	
Minimum MR	5		120	60	ns	
pulse width; HIGH	10	t _{WMRH}	50	25	ns	
	15		40	20	ns	
Recovery time	5		130	65	ns	
for MR	10	t _{RMR}	45	20	ns	
	15		30	15	ns	
Recovery time	5		150	75	ns	
for PL	10	t _{RPL}	50	25	ns	
	15		30	15	ns	
Set-up times	5		100	50	ns	
$P_n \to PL$	10	t _{su}	50	25	ns	see also waveforms
	15		40	20	ns	Figs 6 and 7
	5		250	125	ns	
$UP/\overline{DN} \to CP$	10	t _{su}	100	50	ns	
	15		75	35	ns	
	5		120	60	ns	
$\overline{\sf CE} \to \sf CP$	10	t _{su}	40	20	ns	
	15		25	10	ns	
Hold times	5		10	-40	ns	
$P_n \to PL$	10	t _{hold}	5	-20	ns	
	15		0	-20	ns	
	5		35	-90	ns	
$UP/\overline{DN} \to CP$	10	t _{hold}	15	-35	ns	
	15		15	-25	ns	
	5		20	-40	ns	
$\overline{\sf CE} \to \sf CP$	10	t _{hold}	5	-15	ns	
	15		5	-10	ns	
Maximum clock	5		3	6	MHz	
pulse frequency	10	f _{max}	7	14	MHz	
	15		9	18	MHz	

NSI

Product specification

Philips Semiconductors

