EXAMEN PARTIEL

IFT-2002 : Informatique théorique A 2013 Vendredi 25 octobre 2013, **18h30-21h20** Enseignant : Hans Bherer

NOM	MATRICULE

DIRECTIVES:

- RÉPONDEZ À TOUTES LES QUESTIONS SUR CE QUESTIONNAIRE.
 - SI NÉCESSAIRE, UTILISEZ LES VERSOS, MAIS INDIQUEZ AU RECTO Suite au verso.
- L'étudiant doit inscrire son nom et son matricule sur CHAQUE page.
- Aucune documentation n'est permise et les calculatrices et portables sont interdits.
- Toutes les réponses doivent être justifiées.
- Vérifiez que le questionnaire a 10 pages (6 questions).

ATTENTION:

- Sauf indications contraires, tous les théorèmes, lemmes et résultats vus au cours peuvent être cités sans démonstration.
- Le complément d'un langage L (par rapport à $\Sigma^*)$ est noté $\overline{L}.$
- L'ensemble puissance d'un ensemble E est noté $\mathcal{P}(E)$.
- Si un automate doit être exhibé, son diagramme de transition suffit.
- Si une grammaire doit être exhibée, il est suffisant de seulement donner ses règles de réécriture (avec les conventions vues au cours).
- $-A \cap B = \overline{\overline{A} \cup \overline{B}} \text{ et } A B = A \cap \overline{B}$
- La longueur d'un mot w est notée |w|.
- Lemme de pompage : Si L est un langage régulier, alors il existe un entier $p \geq 1$ tel que pour tout mot $w \in L$ avec $|w| \geq p$ il existe des mots x, y, z tels que $w = xyz, |xy| \leq p$, |y| > 0 et pour tout entier $i \geq 0$ on a $xy^iz \in L$.

NOM MATRICULE

Question 1 (10 points)

Décrivez, en mots ou bien par une expression ensembliste, le langage L(M) sur $\Sigma = \{a,b\}$ où M est l'automate représenté par le diagramme de transitions suivant.

NOM	

MATRICULE

Question 2 (10 points)

Montrez, en utilisant le lemme de pompage, que le langage $L=\{a^nb^m:n>m\}$ sur $\Sigma=\{a,b\}$ n'est pas régulier.

NOM	MATRICULE
110111	

Question 2 (suite)

NOM MATRIC	CULE

Question 3 (20 points)

Soit $L = \{w_1w_2 : w_1, w_2 \in \{a, b\}^* \text{ et } |w_1| = |w_2|\}$ un langage sur $\Sigma = \{a, b\}$. Si L est régulier, construisez un automate fini déterministe M tel que L(M) = L. Sinon, montrez, à l'aide du lemme de pompage, que L n'est pas régulier.

NOM	MATRICULE

Question 3 (suite)

NOM MATRICULE

Question 4 (20 points)

Soit G la grammaire suivante :

$$\begin{array}{lll} S \rightarrow 0A & S \rightarrow 1S \\ S \rightarrow \lambda & A \rightarrow 0A \\ A \rightarrow 1B & A \rightarrow \lambda \\ B \rightarrow 0A & B \rightarrow 1S \end{array}$$

Exhibez un automate M tel que L(M)=L(G) et dites, en mots ou bien par une expression ensembliste, quel est le langage accepté par M.

NOM	MATRICULE

Question 4 (suite)

NOM

MATRICULE

Question 5 (2 x 10 = 20 points)

- 1. Donnez une expression régulière r telle que $L(r) = L_1 \cup L_2$ où $L_1 = \{w : w \in \{a,b\}^* \text{ et } w \text{ débute par } aa\} \text{ et } L_2 = \{w : w \in \{a,b\}^* \text{ et } w \text{ se termine par } bb\}$ sont deux langages réguliers sur $\Sigma = \{a,b\}$.
- 2. Soit $r = (1 \circ (1 \cup 0)^* \circ 0) \cup 0$ une expression régulière. Construisez un automate M de trois états tel que L(M) = L(r).

Question 6 (5 x 4 = 20 points)

Dites pour chacune des affirmations suivantes si elle est vraie ou fausse. Justifier **brièvement** (preuve, contre-exemple, explication etc.). Les L_i sont des langages sur $\Sigma = \{0, 1\}$.

1. Si $L_1 \cup L_2$ est un langage régulier et que L_1 n'est pas régulier, alors L_2 est régulier.

2. Si $L_1 \cup L_2$ est un langage régulier et que L_1 est régulier, alors L_2 est régulier.

3. Si $L_1 \neq L_2$, alors $L_1^* \neq L_2^*$.

4. Si L est un langage régulier, alors $L\subseteq L^*\circ L$.

5. Si L_1^* est régulier, alors L_1 est régulier.