Multivariate: Latent class / profile analysis

Table of contents

_	Goa	····
	1.1	Goals
2	Late	ent class analysis 2
	2.1	Latent class analysis
		LCA example 1
	2.3	LCA example 2
	2.4	LPA example 3
3	Con	nclusion 15
	3.1	Summary of this week
	3.2	Summary of this section

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

- Latent class / profile analysis (LCA / LPA)
 - **Dimension reduction**: reduce number of variables
- A large set of (potentially correlated) observed variables
 - **Discrete** classes or profiles
 - Different **patterns** of responses

2 Latent class analysis

2.1 Latent class analysis

2.1.1 Latent class analysis

- Latent variable technique that **classifies** people into *previously unknown subgroups* based on their responses to a set of variables
 - Latent class = unknown / unobserved subgroups
 - LCA = only categorical variables; LPA = otherwise
- Groups of people have different patterns of responses
 - Not a single value on a single variable
 - e.g., people in group 1 are high on items 1-3, low on items 4-6 and people in group 2 are low on items 1-2 and high on items 3-6

2.1.2 What it looks like

- Latent class (C) is **categorical**: Typically nominal, not ordinal
- X_1 through X_4 are **indicators** of the latent class
- Note that the latent variable causes the indicator values

2.1.3 LCA is...

1. Data reduction $\text{Large number of items} \rightarrow \text{smaller number of classes}$

2. Mixture model Population is a "mixture" of subgroups, LCA "unmixes" them

3. Person-oriented approach

How do **people** have different *patterns*, rather than how are the **variables** related to one another for all *people*

2.1.4 LCA is similar to...

4. Factor analysis / measurement model Very similar, but latent factor is continuous while **latent class is categorical**

2.1.5 Selecting the number of classes

- We have some number of patterns (classes)?
 - How do we decide how many?
- Similar to exploratory factor analysis (EFA) methods
 - Run several models with different numbers of classes
 - Compare these models in terms of **model fit** and **theory**
 - Choose the model that has the **best fit** and **makes the most sense**

2.1.6 Model fit for LCA

- Chi-square test
 - Problematic for large samples, do not rely on it
- Likelihood ratio test (also bootstrap LR test)
 - Same as previous LR tests, compare two models
- AIC and BIC
 - Smaller is better, not a measure of absolute fit
- Entropy certainty of classification
 - Ranges from 0 to 1, closer to 1 is better

- Predicted vs observed means / probabilities
 - Mean for each item within each class do they match?

2.1.7 Model fit for LCA

- BIC and LR test are best for choosing the number of classes
- AIC and entropy are bad for choosing the correct number of classes
 - You can report AIC and entropy they tell you about the model but don't use them to decide on the number of classes

2.2 LCA example 1

2.2.1 Mplus example 7.9 (modified)

```
4 continuous indicators, 2 classes

DATA:
FILE IS ex7.9.dat;

VARIABLE:
NAMES ARE y1-y4 x;
USEVARIABLES ARE y1-y4;
CLASSES = c (2);

ANALYSIS:
TYPE = MIXTURE;

PLOT:
TYPE=PLOT3;
SERIES = y1(1) y2(2) y3(3) y4(4);
```

2.2.2 Model-implied response pattern

MODEL RESULTS

Two-Tailed Estimate S.E. Est./S.E. P-Value

Latent Class 1

Means				
Y1	-1.056	0.070	-15.030	0.000
Y2	-1.088	0.067	-16.255	0.000
ҮЗ	-0.943	0.063	-15.050	0.000
Y4	-1.093	0.074	-14.688	0.000

. . .

Latent Class 2

Means				
Y1	1.037	0.070	14.762	0.000
Y2	1.004	0.064	15.682	0.000
Y3	0.865	0.068	12.763	0.000
Y4	0.980	0.060	16.321	0.000

. . .

2.2.3 Model-implied response pattern

 ${\rm GRAPH} \to {\rm VIEW} \ {\rm GRAPHS} \to {\rm ESTIMATED} \ {\rm MEANS} \ ({\rm Windows} \ {\rm only})$

2.2.4 Model-implied response pattern

Figure 1: Response pattern

2.3 LCA example 2

2.3.1 Another example: Video game preferences

- Quaiser-Pohl, C., Geiser, C., & Lehmann, W. (2006). The relationship between computer-game preference, gender, and mental-rotation ability. Personality and Individual differences, 40(3), 609-619.
 - Classify people into types of video game players
 - -8 binary indicators (0 = never or rarely, 1 = often or very often)
 - 3 class solution

2.3.2 Indicators

- How often do you play the following types of computer games?
 - 1. Adventure
 - 2. Action
 - 3. Sport
 - 4. Fantasy role playing

- 5. Logic
- 6. Skill training
- 7. Simulation
- 8. Driving simulation

2.3.3 Mplus syntax

2.3.4 Model-implied response pattern

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Latent Class 1				
Thresholds				
C1\$1	0.555	0.144	3.852	0.000
C2\$1	-0.591	0.191	-3.101	0.002
C3\$1	-0.097	0.163	-0.593	0.553
C4\$1	0.463	0.143	3.244	0.001
C5\$1	1.154	0.247	4.680	0.000
C6\$1	1.542	0.291	5.290	0.000
C7\$1	-0.628	0.152	-4.134	0.000
C8\$1	-0.576	0.159	-3.633	0.000

Latent Class 2

Thi	resholds					
	C1\$1		1.398	0.506	2.761	0.006
	C2\$1		1.920	0.706	2.717	0.007
	C3\$1		1.675	0.423	3.961	0.000
	C4\$1		1.489	0.523	2.850	0.004
	C5\$1	-	-0.981	0.406	-2.413	0.016
	C6\$1		-1.480	0.654	-2.263	0.024
	C7\$1		0.187	0.357	0.524	0.600
	C8\$1		0.685	0.334	2.052	0.040
	·					
Late	ent Class	3				
Thi	resholds					
	C1\$1		4.582	0.780	5.872	0.000
	C2\$1		4.334	0.804	5.388	0.000
	C3\$1		2.723	0.322	8.455	0.000
	C4\$1		4.583	0.927	4.947	0.000
	C5\$1		2.216	0.300	7.391	0.000
	C6\$1		2.166	0.366	5.924	0.000
	C7\$1		2.873	0.326	8.817	0.000
	C8\$1		2.845	0.410	6.937	0.000
•••						
RESU	JLTS IN PF	ROBABILITY	SCALE			
Late	ent Class	1				
C1						
	Category	1	0.635	0.033	19.021	0.000
	Category	2	0.365	0.033	10.915	0.000
C2						
	Category	1	0.356	0.044	8.152	0.000
	Category	2	0.644	0.044	14.721	0.000
С3						
	Category	1	0.476	0.041	11.727	0.000
	Category	2	0.524	0.041	12.916	0.000
C4	- •					
	Category	1	0.614	0.034	18.144	0.000
	Category	2	0.386	0.034	11.423	0.000
	- •					

C5						
	Category	1	0.760	0.045	16.915	0.000
	${\tt Category}$	2	0.240	0.045	5.332	0.000
C6						
	${\tt Category}$		0.824	0.042	19.465	0.000
	Category	2	0.176	0.042	4.165	0.000
C7	_					
	Category		0.348	0.034	10.094	0.000
ao	Category	2	0.652	0.034	18.917	0.000
C8	Cotomomi	1	0.360	0 027	0.047	0.000
	Category Category		0.360 0.640	0.037	9.847 17.521	0.000
	category	2	0.040	0.037	17.521	0.000
Late	ent Class	2				
C1						
	Category	1	0.802	0.080	9.967	0.000
	Category	2	0.198	0.080	2.463	0.014
C2						
	${\tt Category}$	1	0.872	0.079	11.068	0.000
	${\tt Category}$	2	0.128	0.079	1.623	0.105
C3						
	Category		0.842	0.056	14.991	0.000
~ 4	Category	2	0.158	0.056	2.808	0.005
C4	Q-+	4	0.016	0.070	10.200	0 000
	Category		0.816 0.184	0.078 0.078	10.399 2.345	0.000
C5	Category	2	0.104	0.078	2.340	0.019
00	Category	1	0.273	0.081	3.383	0.001
	Category		0.727	0.081	9.020	0.000
C6	0000000	_		0.001	0.020	
	Category	1	0.185	0.099	1.877	0.060
	Category		0.815	0.099	8.247	0.000
C7						
	Category	1	0.547	0.088	6.179	0.000
	${\tt Category}$	2	0.453	0.088	5.125	0.000
C8						
	${\tt Category}$		0.665	0.074	8.941	0.000
	Category	2	0.335	0.074	4.508	0.000

Latent Class 3

C1

	Category	1	0.990	0.008	126.531	0.000
	Category	2	0.010	0.008	1.295	0.195
C2	0 3					
-	Category	1	0.987	0.010	96.062	0.000
	0 0					
	Category	2	0.013	0.010	1.259	0.208
C3						
	Category	1	0.938	0.019	50.383	0.000
	Category	2	0.062	0.019	3.309	0.001
C4						
	Category	1	0.990	0.009	106.680	0.000
	Category	2	0.010	0.009	1.090	0.276
C5	0 3					
00	Category	1	0.902	0.027	33.919	0.000
	0 0					
	Category	2	0.098	0.027	3.699	0.000
C6						
	Category	1	0.897	0.034	26.596	0.000
	Category	2	0.103	0.034	3.049	0.002
C7						
	Category	1	0.947	0.017	57.362	0.000
	Category	2	0.053	0.017	3.242	0.001
C8	0 3					
30	Category	1	0.945	0.021	44.386	0.000
	0 1					
	Category	2	0.055	0.021	2.580	0.010

2.3.5 Model-implied response pattern

 ${\sf GRAPH} \to {\sf VIEW} \ {\sf GRAPHS} \to {\sf ESTIMATED} \ {\sf PROBABILITIES} \ ({\sf Windows} \ {\sf only})$

Figure 2: Three class binary

2.3.6 Model-implied response pattern

2.3.7 Model-implied response pattern

2.3.8 Model-implied response pattern

2.3.9 Model-implied response pattern

2.4 LPA example 3

2.4.1 Another example: ADHD subtypes

- Coxe, S., Sibley, M. H., & Becker, S. P. (2021). Presenting problem profiles for adolescents with ADHD: differences by sex, age, race, and family adversity. Child and Adolescent Mental Health, 26(3), 228-237.
 - Characterize adolescents seeking treatment for ADHD
 - 8 indicators (next slide)
 - 3 class solution

2.4.2 Indicators

- Opposition-defiant disorder / conduct disorder: Binary
- ADHD combined subtype (inattention and hyperactivity): Binary
- Depression diagnosis: Binary
- Anxiety diagnosis: Binary
- Organization problems: 0 to 3 (higher is worse, continuous)
- **Discipline problems**: 0 to 3 (higher is worse, continuous)
- **GPA**: 0 to 4 (higher is better)
- IQ: divided by 100 (population mean = 1.0, population SD = 0.15)

2.4.3 Model-implied response pattern

2.4.4 Model-implied response pattern

2.4.5 Model-implied response pattern

3 Conclusion

3.1 Summary of this week

3.1.1 Summary of this week

- Latent class / profile analysis
 - Latent or unknown groups

- Discrete groups
 - * Generally not just high, medium, low
 - * Patterns of responses
- Conceptually similar to factor analysis
 - Only with a discrete factor

3.2 Summary of this section

3.2.1 Summary of this section

- There are a lot of ways to reduce the dimension of your data
- Which one you use depends on (among other things)
 - What you think about measurement error
 - Which way the causal arrow is pointing
 - Whether the reduced dimension is continuous or categorical