

Games: overview

Course plan

CS221

A simple game

Example: game 1-

You choose one of the three bins.

I choose a number from that bin.

Your goal is to maximize the chosen number.

Δ

-50 50

B

1 3

5 15

Roadmap

Modeling

Learning

Modeling Games

Temporal Difference Learning

Algorithms

Other Topics

Game Evaluation

Simultaneous Games

Expectimax

Non-Zero-Sum Games

Minimax

Expectiminimax

Evaluation Functions

Alpha-Beta Pruning

Games: modeling

Game tree

Key idea: game tree-

Each node is a decision point for a player.

Each root-to-leaf path is a possible outcome of the game.

Two-player zero-sum games

 $Players = \{agent, opp\}$

Definition: two-player zero-sum game-

 s_{start} : starting state

Actions(s): possible actions from state s

Succ(s, a): resulting state if choose action a in state s

 $\mathsf{IsEnd}(s)$: whether s is an end state (game over)

Utility(s): agent's utility for end state s

 $Player(s) \in Players$: player who controls state s

Example: chess

 $Players = \{white, black\}$

State s: (position of all pieces, whose turn it is)

 $\mathsf{Actions}(s)$: legal chess moves that $\mathsf{Player}(s)$ can make

 $\mathsf{IsEnd}(s)$: whether s is checkmate or draw

Utility(s): $+\infty$ if white wins, 0 if draw, $-\infty$ if black wins

6

Characteristics of games

• All the utility is at the end state

• Different players in control at different states

The halving game

Problem: halving game-

Start with a number N.

Players take turns either decrementing N or replacing it with $\lfloor \frac{N}{2} \rfloor$.

The player that is left with 0 wins.

[semi-live solution: HalvingGame]

Policies

Deterministic policies: $\pi_p(s) \in \mathsf{Actions}(s)$

action that player p takes in state s

Stochastic policies $\pi_p(s, a) \in [0, 1]$:

probability of player p taking action a in state s

[semi-live solution: humanPolicy]

CS221