Answer 1 (20 points). (a) Yes. Proof: clearly S is a subset of \mathbb{R}^3 , so we need only check that: (i) if $u, v \in S$ then u = v = (0, 0, 0), so $u+v = (0, 0, 0) \in S$; (ii) if $u \in S$ and $\alpha \in \mathbb{R}$ then $\alpha u = (0, 0, 0) \in S$.

- (b) No. Justification: (0,0,0) is not in S.
- (c) No. Justification: $x = (1,0,0) \in S$, however $-x = (-1,0,0) \notin S$.
- (d) Yes. Proof: Clearly S is a subset of $\mathbb{R}^{n \times n}$, so we need only check that: (i) if $A, B \in S$ then $A + B = (-A^T) + (-B^T) = -(A+B)^T$, so $A+B \in S$; (ii) if $A \in S$ and $\alpha \in \mathbb{R}$ then $\alpha A = \alpha (-A^T) = -(\alpha A)^T$, so $\alpha A \in S$.
- Answer 2 (20 points). (a) True. Proof: Ker(A) is a subspace, and in class we proved that any subspace admits an orthonormal basis. (Note: although incorrect, we also accepted "False" with a certain justification, see footnote¹.)
 - (b) False. Justification: A linear system can never have exactly two solutions, whereas there exist matrices with dimKerA = 2. (For example the 2×2 zero matrix.)
 - (c) True. Proof: If λ is an eigenvalue of A, then there is some corresponding eigenvector $x \neq 0$, and therefore every scaling αx is an eigenvector too for every $\alpha \neq 0$.
 - (d) True. Proof: In lecture, we proved (i) $\operatorname{rank}(XY) \leq \operatorname{rank}(X)$, and (ii) $\operatorname{rank}(XY) \leq \operatorname{rank}(Y)$ for any matrices X, Y of compatible dimension. Thus $\operatorname{rank}(ABC) \leq \operatorname{rank}(AB) \leq \operatorname{rank}(B)$ by applying (i) with X = AB, Y = C, and then applying (ii) with X = A and Y = B.
- **Answer 3** (20 points). (a) True. If A is invertible, then A^{-1} exists, thus so does A^{-2} . Note that $A^2A^{-2} = AAA^{-1}A^{-1} = AIA^{-1} = AA^{-1} = I$, thus A^{-2} is the inverse of A^2 .
 - (b) True. Proof: If A is invertible, then A^{-1} exists and $AA^{-1} = I$. This implies that A^{-1} is invertible with inverse A.
 - (c) True. If A and B are invertible, then A^{-1} and B^{-1} exist, and thus so does $B^{-1}A^{-1}$. Observe that $B^{-1}A^{-1}AB = B^{-1}IB = I$, thus $B^{-1}A^{-1}$ is the inverse of AB.
- (d) False. Counterexample: $A = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$. This is not invertible since it has rank 1.
- **Answer 4** (15 points). (a) The rank of A is at least 1 since the first column is non-zero. The rank is 1 (else 2) if and only if the two columns are linearly dependent, i.e., if the columns are scalar multiples of each other, i.e., if k = 6. We conclude that A has rank 1 if k = 6, and otherwise has rank 2.
 - (b) In lecture, we proved that for a square matrix A, the linear system Ax = b has exactly one solution if and only if A has full rank. Thus by part (a), Ax = b has exactly one solution if and only if $k \neq 6$. (Note that this answer is independent of the value of the vector b.)

Answer 5 (15 points). $J = vv^T$ where $v \in \mathbb{R}^n$ is the vector with all entries 1. Thus by HW6, J has eigenvalue $||v||^2 = n$ with multiplicity 1, and eigenvalue 0 with multiplicity n - 1.

Answer 6 (10 points). From lecture, P_S can only have eigenvalues that are 0 and 1. Thus $Id_n - 2P_S$ can only have eigenvalues that are 1 - 2 * 0 = 1 or 1 - 2 * 1 = -1.

Answer 7 (Bonus: 3 points). For example, consider $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Answer 8 (Bonus: 3 points). Apply the Cauchy-Schwarz inequality $\langle x, v \rangle^2 \leq ||x||^2 ||v||^2$ where $v \in \mathbb{R}^n$ is the vector with all entries equal to 1.

Answer 9 (Bonus: 4 points). Since A is stochastic and has strictly positive entries, 1 is an eigenvalue of A. Thus 1-1=0 is an eigenvalue of A-Id by what was shown in lecture. Since 0 is an eigenvalue of A-Id, this matrix is not invertible.

¹Alternative answer: "False. Justification: For some matrices (e.g., the identity), $Ker(A) = \{0\}$ which is a 0-dimensional subspace and thus doesn't admit an orthonormal basis." This is incorrect (since the empty set is technically an orthonormal basis of the set $\{0\}$), but we gave full marks for this since it demonstrates understanding of the main concepts.