Homework Assignment #3

1. Iterate by hand to find the first few values of y(k) for the following difference equations:

(a)
$$y(k+1) + y(k) = x(k)$$
, $y(0) = 0$, $x(k) = \begin{cases} 1, & k \ge 0 \\ 0, & k < 0 \end{cases}$.

(b)
$$y(k+1) + y(k) = 0$$
, $y(0) = 1$.

(c)
$$y(k+2) - y(k+1) - 2y(k) = x(k+1) + x(k)$$
, $y(0) = y(1) = 0$, $x(k) = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$.

(d)
$$y(k+2) - y(k+1) - 2y(k) = 0$$
, $y(0) = 1$, $y(1) = 0$.

2. For each difference equation or operational relation, draw a corresponding simulation diagram having the minimum possible number of delay blocks:

(a)
$$y(k+1) + y(k) = x(k)$$

(b)
$$y(k+2) - y(k+1) = 1.5x(k+1) - 0.5x(k)$$

(c)
$$(E^2-1)\{y(k)\}=(E+2)\{x(k)\}$$

(d)
$$\{y(k)\}=\frac{6E^2+2E}{E^2+5E+4}\{x(k)\}$$

(e)
$$\{y(k)\} = \frac{6E^3 + 2}{E^3} \{x(k)\}$$

3. Find the operational transfer function for each of the following simulation diagrams:

- 4. (a) Write a computer program to simulate the discrete-time system shown below and plot its output. Make your program correspond to the given simulation diagram; that is, program coupled difference equations in variables that correspond to the outputs of the delay blocks.
 - (b) Run your program to obtain the sequence y(k), assuming x(k) is the unit step sequence and given zero initial conditions in all delay blocks.

