Chapter 1

Differentiation

P Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 1

1.1 Limits: A Numerical and Graphical Approach

Objective

• Find limits of functions, if they exist, using numerical or graphical methods.

Example 1: For each sequence, determine its limit, and rewrite the sequence in the form $x \to a^-$ or $x \to a^+$.

- a) 2.24, 2.249, 2.2499, 2.24999, ...
- b) 5.51, 5.501, 5.5001, 5.50001,...
- c) $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \frac{31}{32}, \frac{63}{64}, \dots$

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 3

1.1 Limits: A Numerical and Graphical Approach

Example 1 (concluded):

- a) These numbers are approaching the limit 2.25. Since each number in the sequence is less than 2.25, we write $x \rightarrow 2.25^-$, read "x approaches 2.25 from the left."
- b) These numbers are approaching the limit 5.5. Since each number in the sequence is greater than 5.5, we write $x \rightarrow 5.5^+$, read "x approaches 5.5 from the right."
- c) These numbers are approaching the limit 1. Since each number in the sequence is less than 1, we write $x \rightarrow 1^-$, read "x approaches 1 from the left."

DEFINITION:

As x approaches a, the **limit** of f(x) is L, written

$$\lim_{x \to a} f(x) = L,$$

if all values of f(x) are close to L for values of x that are sufficiently close, but not equal to, a.

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 5

1.1 Limits: A Numerical and Graphical Approach

THEOREM 1

As x approaches a, the **limit** of f(x) is L, if the limit from the left exists and the limit from the right exists and both limits are L. That is, if

$$\lim_{x \to a^{-}} f(x) = L,$$

and

$$\lim_{x \to a^+} f(x) = L,$$

then

$$\lim_{x \to a} f(x) = L.$$

Quick Check 1

Let
$$f(x) = \frac{x^2 - 9}{x - 3}$$
.

- a) What is f(3)?
- b) What is the limit of f(x) as x approaches 3?

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc

Slide - 7

1.1 Limits: A Numerical and Graphical Approach

Quick Check 1 Solution a)

- 1.) Since $f(x) = \frac{x^2 9}{x 3}$, we will substitute 3 in for x, giving us the new equation $f(3) = \frac{3^2 9}{3 3}$.
- 2.) Solving for f(3), we get $f(3) = \frac{3^2 9}{3 3} = \frac{9 9}{3 3} = \frac{0}{0}$.

Thus f(3) does not exist.

Quick Check 1 Solution b)

First let x approach 3 from the left:

$x \rightarrow 3^-$	2	2.5	2.9	2.99	2.999
f(x)	5	5.5	5.9	5.99	5.999

Thus it appears that $\lim_{x\to 3^-} f(x)$ is 6.

Next let x approach 3 from the right:

$x \rightarrow 3^+$	4	3.5	3.1	3.01	3.001
f(x)	7	6.5	6.1	6.01	6.001

Thus it appears that $\lim_{x \to 3^+} f(x)$ is 6.

Since both the left-hand and right-hand limits agree, $\lim_{x \to 3} f(x) = 6$.

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 9

1.1 Limits: A Numerical and Graphical Approach

Example 2: Consider the function H given by

$$H(x) = \begin{cases} 2x + 2 & for & x < 1 \\ 2x - 4 & for & x \ge 1 \end{cases}.$$

Graph the function and find each of the following limits, if they exist. When necessary, state that the limit does not exist.

a)
$$\lim_{x\to 1} H(x)$$

b)
$$\lim_{x \to -3} H(x)$$

a) Limit Numerically

First, let *x* approach 1 from the left:

$x \rightarrow 1^-$	0	0.5	0.8	0.9	0.99	0.999
H(x)	2	3	3.6	3.8	3.98	3.998

Thus, it appears that $\lim_{x\to 1^-} H(x) = 4$.

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 11

1.1 Limits: A Numerical and Graphical Approach

a) Limit Numerically (continued)

Then, let x approach 1 from the right:

$x \rightarrow 1^+$	2	1.8	1.1	1.01	1.001	1.0001
H(x)	0	-0.4	-1.8	-1.98	-1.998	-1.9998

Thus, it appears that $\lim_{x\to 1^+} H(x) = -2$.

a) Limit Numerically (concluded)

1)
$$\lim_{x \to 1^{-}} H(x) = 4$$

and

2)
$$\lim_{x \to 1^{+}} H(x) = -2,$$

then, $\lim_{x\to 1} H(x)$ does not exist.

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 13

1.1 Limits: A Numerical and Graphical Approach

a) Limit Graphically

Observe on the graph that

$$\lim_{x \to 1^{-}} H(x) = 4$$

and

2)
$$\lim_{x \to 1^+} H(x) = -2.$$

Therefore,

 $\lim_{x\to 1} H(x)$ does not exist.

b) Limit Numerically

First, let *x* approach –3 from the left:

$x \rightarrow -3^-$	-4	-3.5	-3.1	-3.01	-3.001
H(x)	-6	-5	-4.2	-4.02	-4.002

Thus, it appears that $\lim_{x\to -3^-} H(x) = -4$.

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 15

1.1 Limits: A Numerical and Graphical Approach

b) Limit Numerically (continued)

Then, let x approach -3 from the right:

$x \rightarrow -3^+$	-2	-2.5	-2.9	-2.99	-2.999
H(x)	-2	-3	-3.8	-3.98	-3.998

Thus, it appears that $\lim_{x\to -3^+} H(x) = -4$.

b) Limit Numerically (concluded)

1)
$$\lim_{x \to -3^{-}} H(x) = -4$$

and

2)
$$\lim_{x \to -3^+} H(x) = -4,$$

then,
$$\lim_{x \to -3} H(x) = -4$$
.

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 17

1.1 Limits: A Numerical and Graphical Approach

b) Limit Graphically

Observe on the graph that

1)
$$\lim_{x \to -3^{-}} H(x) = -4$$

and

2)
$$\lim_{x \to -3^+} H(x) = -4.$$

Therefore,

$$\lim_{x \to -3} H(x) = -4.$$

Quick Check 2

Calculate the following limits based on the graph of f.

- $a.) \lim_{x \to 2^-} f(x)$
- $b.) \lim_{x \to 2^+} f(x)$
- $c.) \lim_{x\to 2} f(x)$

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc

Slide - 19

1.1 Limits: A Numerical and Graphical Approach

Quick Check 2 Solution

- a.) $\lim_{x\to 2^{-}} f(x)$: By looking at the graph, as x approaches 2 from the left, we can see that the $\lim_{x\to 2^{-}} f(x) = 3$.
- b.) $\lim_{x \to 2^+} f(x)$: By looking at the graph, as x approaches 2 from the right, we can see that the $\lim_{x \to 2^+} f(x) = 3$.
- c.) Based on the solutions to parts a.) and b.), we know that the $\lim_{x\to 2} f(x) = 3$.

The "Wall" Method:

As an alternative approach to Example 1, we can draw a "wall" at x = 1, as shown in blue on the following graphs. We then follow the curve from left to right with pencil until we hit the wall and mark the location with an ×, assuming it can be determined. Then we follow the curve from right to left until we hit the wall and mark that location with an ×. If the locations are the same, we have a limit. Otherwise, the limit does not exist.

P Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 21

1.1 Limits: A Numerical and Graphical Approach

Thus, for Example 2:

 $\lim H(x)$ does not exist

 $\lim H(x) = -4$

Example 3: Consider the function f given by

$$f(x) = \frac{1}{x-2} + 3.$$

Graph the function, and find each of the following limits, if they exist. If necessary, state that the limit does not exist.

a)
$$\lim_{x\to 3} f(x)$$

b)
$$\lim_{x\to 2} f(x)$$

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 23

1.1 Limits: A Numerical and Graphical Approach

a) Limit Numerically

Let *x* approach 3 from the left and right:

$x \rightarrow 3^-$	2.1	2.5	2.9	2.99
f(x)	13	5	4.11	$4.\overline{01}$

$$\Rightarrow \lim_{x \to 3^{-}} f(x) = 4$$

$$x \to 3^{+}$$
 3.5 3.2 3.1 3.01
 $f(x)$ 3.66 3.83 3.9090 3.9900

$$\Rightarrow \lim_{x \to 3^+} f(x) = 4$$

Thus,
$$\lim_{x\to 3} f(x) = 4$$
.

a) Limit Graphically

Observe on the graph that:

1)
$$\lim_{x \to 3^{-}} f(x) = 4$$

and

2)
$$\lim_{x \to 3^{+}} f(x) = 4$$

Therefore,

$$\lim_{x\to 3} f(x) = 4.$$

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 25

1.1 Limits: A Numerical and Graphical Approach

b) Limit Numerically

Let *x* approach 2 from the left and right:

$x \rightarrow 2^-$	1.5	1.9	1.99	1.999
f(x)	1	– 7	-97	-997

$$x \to 2^{+}$$
 2.5 2.1 2.01 2.001 $f(x)$ 5 13 103 1003

$$\Rightarrow \lim_{x \to 2^{-}} f(x) = -\infty$$

$$\Rightarrow \lim_{x \to 2^+} f(x) = \infty$$

Thus, $\lim_{x\to 2} f(x)$ does not exist.

b) Limit Graphically

Observe on the graph that

$$1) \lim_{x\to 2^{-}} f(x) = -\infty$$

and

$$2) \quad \lim_{x \to 2^+} f(x) = \infty.$$

Therefore,

 $\lim_{x\to 2} f(x)$ does not exist.

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 27

1.1 Limits: A Numerical and Graphical Approach

Example 4: Consider again the function f given by

$$f(x) = \frac{1}{x-2} + 3.$$

Find $\lim_{x\to\infty} f(x)$.

Limit Numerically

Note that you can only approach ∞ from the left:

$X \to \infty$	5	10	100	1000
f(x)	3.3	3.125	3.0102	3.001

Thus,
$$\lim_{x\to\infty} f(x) = 3$$
.

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 29

1.1 Limits: A Numerical and Graphical Approach

Limit Graphically

Observe on the graph that, again, you can only approach ∞ from the left.

Therefore,

$$\lim_{x\to\infty}f(x)=3.$$

Quick Check 3

Let $h(x) = \frac{1}{1-x} + 6$. Find the following limits:

- a.) $\lim_{x\to 1} h(x)$
- b.) $\lim_{x\to 2} h(x)$
- c.) $\lim_{x\to\infty}h(x)$

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 31

1.1 Limits: A Numerical and Graphical Approach

Quick Check 3 Solution

a.) $\lim_{x\to 1} h(x)$: Find the left-hand and right-hand limits as x approaches 1:

Left-hand Limit

$x \rightarrow 1^-$	h(x)
0	7
0.5	8
0.9	16
0.99	106
0.999	1006

Right-hand Limit

$x \rightarrow 1^+$	h(x)
2	5
1.5	4
1.1	-4
1.01	-94
1.001	-994

Since the Left-Hand Limit goes to ∞ and the Right-Side Limit goes to $-\infty$,

the
$$\lim_{x \to 1} h(x) = \text{does not exist.}$$

Quick Check Solution Continued

b.) $\lim_{x\to 2} h(x)$: Find both the left-hand and right-hand limits as x approaches 2.

Left-Hand Limit

$x \rightarrow 2^-$	h(x)
1.1	-4
1.5	4
1.9	$4.\overline{8}$
1.99	4.98
1.999	4.998

Right-Hand Limit

$x \rightarrow 2^+$	h(x)
3	5.5
2.5	5.3
2.1	5.09
2.01	5.0099
2.001	5.000999

Since both the Left-Side Limit and Right-Side Limit agree, the $\lim_{x\to 2} h(x) = 5$.

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 33

1.1 Limits: A Numerical and Graphical Approach

Quick Check Solution Concluded

c.) $\lim_{x\to\infty} h(x)$: Find the limit as x approaches ∞ :

$x \rightarrow \infty$	h(x)
5	5.75
10	5.8
100	5.98
1000	5.998

Since both the Left-Side Limit and Right-Side Limit agree, the $\lim_{x \to \infty} h(x) = 6$.

Section Summary

•The *limit* of a function f, as x approaches a, is written $\lim_{x\to a} f(x) = L$.

This means that as the values of x approach a the corresponding values of f(x) approach a. The value of a must be a unique, finite number.

• A *left-hand limit* is written $\lim_{x \to a^{-}} f(x)$.

The values of x are approaching a from the left, that is, x < a.

•A right-hand limit is written $\lim_{x \to a^+} f(x)$.

The values of x are approaching a from the right, that is, x > a.

- If the left-hand and right-hand limits (as *x* approaches *a*) are *not* equal, the limit does *not* exist. On the other hand, if the left-hand and right-hand limits are equal, the limit does exist.
- A limit $\lim_{x\to a} f(x)$ may exist even though the function value f(a) does not. (See Example 1.)
- A limit $\lim_{x\to a} f(x)$ may exist and be different from the function value f(a). (See Example 3b.)
- Graphs and tables are useful tools in determining limits.

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 35

Chapter 1

Differentiation

OBJECTIVE

- Develop and use the Limit Principles to calculate limits.
- Determine whether a function is continuous at a point.

Pearson ALWAYS LEARNING Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 2

1.2 Algebraic Limits and Continuity

LIMIT PROPERTIES:

If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, and c is any constant, then we have the following:

L.1

The limit of a constant is the constant: $\lim_{x\to a} c = c$

LIMIT PROPERTIES (continued):

L.2 The limit of a power function is the limit of the base, raised to that power.

That is, for any positive integer n,

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n = L^n,$$

and

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L},$$

assuming that $L \ge 0$ when n is even.

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 4

1.2 Algebraic Limits and Continuity

LIMIT PROPERTIES (continued):

L.3 The limit of a sum or difference is the sum or difference of the limits.

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = L \pm M.$$

L.4 The limit of a product is the product of the limits.

$$\lim_{x \to a} [f(x) \cdot g(x)] = \left[\lim_{x \to a} f(x) \right] \cdot \left[\lim_{x \to a} g(x) \right] = L \cdot M.$$

LIMIT PROPERTIES (concluded):

L.5 The limit of a quotient is the quotient of the limits.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}, \quad M \neq 0.$$

L.6 The limit of a constant times a function is the constant times the limit.

$$\lim_{x \to a} [cf(x)] = c \cdot \lim_{x \to a} f(x) = cL.$$

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 6

1.2 Algebraic Limits and Continuity

Example 1: Use the limit properties to find

$$\lim_{x \to 4} \left(x^2 - 3x + 7 \right)$$

We know that $\lim_{x\to 4} x = 4$.

By Limit Property L4,

$$\lim_{x \to 4} x^2 = \lim_{x \to 4} x \cdot \lim_{x \to 4} x = 4 \cdot 4 = 16.$$

Example 1 (concluded):

By Limit Property L6,

$$\lim_{x \to 4} \left(-3x \right) = -3 \cdot \lim_{x \to 4} x = -3 \cdot 4 = -12.$$

By Limit Property L1,

$$\lim_{x\to 4} 7 = 7.$$

Thus, using Limit Property L3, we have

$$\lim_{x \to 4} \left(x^2 - 3x + 7 \right) = 16 - 12 + 7 = 11.$$

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 8

1.2 Algebraic Limits and Continuity

THEOREM 2: LIMITS OF RATIONAL FUNCTIONS

For any rational function F, with a in the domain of F,

$$\lim_{x \to a} F(x) = F(a).$$

Example 2: Find
$$\lim_{x\to 0} \sqrt{(x^2-3x+2)}$$

The Theorem on Limits of Rational Functions and Limit Property L2 tell us that we can substitute to find the limit:

$$\lim_{x \to 0} \sqrt{(x^2 - 3x + 2)} = \sqrt{0^2 - 3 \cdot 0 + 2} = \sqrt{2}$$

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 10

1.2 Algebraic Limits and Continuity

Quick Check 1

Find the following limits and note the Limit Property you use at each step:

a.)
$$\lim_{x \to 1} 2x^3 + 3x^2 - 6$$

b.)
$$\lim_{x \to 4} \frac{2x^2 + 5x - 1}{3x - 2}$$

c.)
$$\lim_{x\to 2} \sqrt{1+3x^2}$$

Quick Check 1 Solution a.) $\lim_{x\to 1} 2x^3 + 3x^2 - 6$

We know that the $\lim_{x\to 1} x = 1$.

1.)
$$\lim_{x \to 1} x^3 = \lim_{x \to 1} x \cdot \lim_{x \to 1} x \cdot \lim_{x \to 1} x = 1 \cdot 1 \cdot 1 = 1$$
 Limit Property L4

2.)
$$\lim_{x \to 1} 2x^3 = 2(\lim_{x \to 1} x \cdot \lim_{x \to 1} x \cdot \lim_{x \to 1} x) = 2$$
 Limit Property L6

3.)
$$\lim_{x \to 1} x^2 = \lim_{x \to 1} x \cdot \lim_{x \to 1} x = 1 \cdot 1 = 1$$
 Limit Property L4

4.)
$$\lim_{x \to 1} 3x^2 = 3(\lim_{x \to 1} x \cdot \lim_{x \to 1} x) = 3$$
 Limit Property L6

5.)
$$\lim_{r \to 1} 6 = 6$$
 Limit Property L1

$$\lim_{x \to 1} 2x^3 + 3x^2 - 6 = 2 + 3 - 6 = -1$$
 Limit Property L3

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 12

1.2 Algebraic Limits and Continuity

Quick Check 1 solution b.) $\lim_{x\to 4} \frac{2x^2 + 5x - 1}{3x - 2}$

We know that $\lim_{x\to 4} x = 4$.

1.)
$$\lim_{x \to 4} 2x^2 = 2(\lim_{x \to 4} x \cdot \lim_{x \to 4} x) = 2(4 \cdot 4) = 2 \cdot 16 = 32$$
 Limit Properties L4 and L6

2.)
$$\lim_{x \to 4} 5x = 5 \cdot \lim_{x \to 4} x = 5 \cdot 4 = 20$$
 Limit Property L6

3.)
$$\lim_{x\to 4} 1 = 1$$
 Limit Property L1

4.) Combine above steps:
$$\lim_{x\to 4} 2x^2 + 5x - 1 = 32 + 20 - 1 = 51$$
 Limit Property L3

5.)
$$\lim_{x \to 4} 3x = 3 \cdot \lim_{x \to 4} x = 3 \cdot 4 = 12$$
 Limit Property L6

6.)
$$\lim_{x\to 4} 2 = 2$$
 Limit Property L1

7.) Combine above steps:
$$\lim_{x\to 4} 3x - 2 = 12 - 2 = 10$$
 Limit Property L3

$$\lim_{x \to 4} \frac{2x^2 + 5x - 1}{3x - 2} = \frac{51}{10} = 5.1$$
 Limit Property L5

Quick Check 1 solution c.) $\lim_{x\to 2} \sqrt{1+3x^2}$

We know that $\lim_{x\to 2} x = 2$.

1.)
$$\lim_{x\to 2} 1 = 1$$

Limit Property L1

2.)
$$\lim_{x \to 2} 3x^2 = 3(\lim_{x \to 2} x \cdot \lim_{x \to 2} x) = 3(2 \cdot 2) = 3 \cdot 4 = 12$$

Limit Properties L4 and L6

3.) Combine above steps:
$$\lim_{x\to 2} 1 + 3x^2 = 1 + 12 = 13$$

Limit Property L3

$$\lim_{x \to 2} \sqrt{1 + 3x^2} = \sqrt{1 + 12} = \sqrt{13}$$

Limit Property L2

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 14

1.2 Algebraic Limits and Continuity

Example 3: Find $\lim_{x \to -3} \frac{x^2 - 9}{x + 3}$

Note that the Theorem on Limits of Rational Functions does not immediately apply because –3 is not in the

domain of $\frac{x^2-9}{x+3}$.

However, if we simplify $\frac{x^2-9}{x+3}$ first, the result can be evaluated at x=-3.

Example 3 (concluded):

$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = \lim_{x \to -3} \frac{(x + 3)(x - 3)}{x + 3}$$

$$= \lim_{x \to -3} x - 3$$

$$= -3 - 3$$

$$= -6$$

This means that the limit exists as x approaches -3, but the actual point (from previous slide) does not.

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 16

1.2 Algebraic Limits and Continuity

Example 4: Find
$$\lim_{x \to \infty} \left(\frac{x^2 + 4x - 5}{2x^2 + x + 1} \right)$$

First, divide the numerator and the denominator by the highest power of the denominator, x^2 .

$$\lim_{x \to \infty} \left(\frac{x^2 + 4x - 5}{2x^2 + x + 1} \right) = \lim_{x \to \infty} \left(\frac{1 + \frac{4}{x} - \frac{5}{x^2}}{2 + \frac{1}{x} + \frac{1}{x^2}} \right)$$

Using our Limit Properties, we get:

$$= \frac{\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{4}{x} - \lim_{x \to \infty} \frac{5}{x^2}}{\lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}} = \frac{1 + 0 - 0}{2 + 0 + 0} = \frac{1}{2}$$

Quick Check 2:

Find
$$\lim_{x\to\infty} \frac{2x^3 + 5x^2 + 4x - 1}{3x^3 + 6x^2 - 7}$$
.

First, divide the numerator and the denominator by the highest power of the denominator, x^3 .

$$\lim_{x \to \infty} \frac{2x^3 + 5x^2 + 4x - 1}{3x^3 + 6x^2 - 7} = \lim_{x \to \infty} \left(\frac{2 + \frac{5}{x} + \frac{4}{x^2} - \frac{1}{x^3}}{3 + \frac{6}{x} - \frac{7}{x^3}} \right)$$

Using our Limit Properties, we get:

$$= \frac{\lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{5}{x} + \lim_{x \to \infty} \frac{4}{x^2} - \lim_{x \to \infty} \frac{1}{x^3}}{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{6}{x} - \lim_{x \to \infty} \frac{7}{x^3}} = \frac{2 + 0 + 0 - 0}{3 + 0 - 0} = \frac{2}{3}$$

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 18

1.2 Algebraic Limits and Continuity

DEFINITION:

A function f is **continuous** at x = a if:

- 1) f(a) exists, (The output at a exists.)
- 2) $\lim_{x\to a} f(x)$ exists, (The limit as $x\to a$ exists.)
- 3) $\lim_{x\to a} f(x) = f(a)$. (The limit is the same as the output.)

A function is **continuous over an interval** c < x < d if it is continuous at each point in that interval.

Example 5: Is the function f given by

$$f(x) = x^2 - 5$$

continuous at x = 3? Why or why not?

1)
$$f(3) = 3^2 - 5 = 9 - 5 = 4$$

2) By the Theorem on Limits of Rational Functions,

$$\lim_{x \to 3} x^2 - 5 = 3^2 - 5 = 9 - 5 = 4$$

3) Since $\lim_{x\to 3} f(x) = f(3)$ f is continuous at x = 3.

Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 20

1.2 Algebraic Limits and Continuity

Example 6: Is the function g given by

$$g(x) = \begin{cases} \frac{1}{2}x + 3, & \text{for } x < -2\\ x - 1, & \text{for } x \ge -2 \end{cases}$$

continuous at x = -2? Why or why not?

1)
$$g(-2) = -2 - 1 = -3$$

2) To find the limit, we look at left and right-side limits.

$$\lim_{x \to -2^{-}} g(x) = \frac{1}{2} \cdot -2 + 3 = -1 + 3 = 2$$

Example 6 (concluded):

3)
$$\lim_{x \to -2^+} g(x) = -2 - 1 = -3$$

Since $\lim_{x \to -2^{-}} g(x) \neq \lim_{x \to -2^{+}} g(x)$ we see that the

 $\lim_{x \to -2} g(x) \text{ does not exist.}$

Therefore, g is not continuous at x = -2.

Pearson.

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 22

1.2 Algebraic Limits and Continuity

Quick Check 3

Let
$$g(x) = \begin{cases} 3x - 5, & \text{for } x < 2 \\ 2x + 1, & \text{for } x \ge 2 \end{cases}$$

Let $g(x) = \begin{cases} 3x - 5, & \text{for } x < 2 \\ 2x + 1, & \text{for } x \ge 2 \end{cases}$ Is g = 2? Why or why not?

1.)
$$g(2) = 2(2) + 1 = 4 + 1 = 5$$

2.) To find the limit, we look at both the left-hand and right-hand limits:

Left-hand: $\lim_{x\to 2^{-}} g(x) = 3(2) - 5 = 6 - 5 = 1$

Right-hand: $\lim_{x\to 2^+} g(x) = 2(2) + 1 = 4 + 1 = 5$

Since $\lim_{x\to 2^-} g(x) \neq \lim_{x\to 2^+} g(x)$ we see that $\lim_{x\to 2} g(x)$ does not exist.

Therefore g is not continuous at x = 2.

Quick Check 4a

Let
$$h(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & \text{for } x \neq 3 \\ 7, & \text{for } x = 3 \end{cases}$$
 Is h continuous at $x = 3$? Why or why not?

In order for h(x) to continuous, $\lim_{x\to 3} h(x) = h(3)$. So lets start by finding $\lim_{x\to 3} h(x)$.

$$\lim_{x \to 3} h(x) = \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} x + 3 = 6$$

So the $\lim_{x\to 3} h(x) = 6$. However, h(3) = 7, and thus $\lim_{x\to 3} h(x) \neq h(3)$. Therefore h(x) is not continuous at x = 3.

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 24

1.2 Algebraic Limits and Continuity

Quick Check 4b

Let
$$p(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, & \text{for } x \neq 5 \\ c, & \text{for } x = 5 \end{cases}$$
 Determine c such that p is continuous at $x = 5$.

In order for p to be continuous at x = 5, $\lim_{x \to 5} p(x) = p(5) = c$. So if we find $\lim_{x \to 5} p(x)$, we can determine what c is. Let's find $\lim_{x \to 5} p(x)$:

$$\lim_{x \to 5} p(x) = \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x + 5)}{x - 5} = \lim_{x \to 5} x + 5 = 10$$

So $\lim_{x \to 5} p(x) = 10$. Therefore, in order for p to be continuous at x = 5, c = 10.

Section Summary

- For a rational function for which a is in the domain, the limit as x approaches a can be found by direct evaluation of the function at a.
- If direct evaluation leads to the *indeterminate form* 0/0, the limit may still exist: algebraic simplification and/or a table and graph are used to find the limit.
- Informally, a function is *continuous* if its graph can be sketched without lifting the pencil off the paper.

? Pearson

Copyright © 2020, 2016, 2012 Pearson Education, Inc.

Slide - 26

1.2 Algebraic Limits and Continuity

Section Summary Continued

- Formally, a function is continuous at x = a if:
 - 1. The function value f(a) exists
 - 2. The limit as x approaches a exists
 - 3. The function value and the limit are equal
 - 4. This can be summarized as $\lim_{x\to a} f(x) = f(a)$.
- If any part of the continuity definition fails, then the function is discontinuous at x = a.