$O\Pi$ «Политология», 2020-21

Введение в ТВиМС

Дискретные случайные величины: математическое ожидание и дисперсия (20.01.2021 или 22.01.2021)

А. А. Макаров, А. А. Тамбовцева

Задача 1. Дан ряд распределения случайной величины X.

X	-5	-1	0	1	2
p	1/5		1/10	1/10	1/5

Найдите математическое ожидание, дисперсию и стандартное отклонение случайной величины X.

Задача 2. Представьте, что перед вами стоит такая задача: необходимо сравнить успеваемость студентов в двух группах. Распределение оценок студентов в первой и второй группах описывается следующими законами:

X	2	3	4	5	Y	2	3	4	5
p	0.2	0.3	0.25	0.25	p	0.5	0.05	0.05	0.4

У какой группы средний ожидаемый балл выше? А в какой группе оценки можно считать более дифференцированными?

Задача 3. Случайные величины X и Y независимы. Известно, что $\mathrm{E}(X)=2$, $\mathrm{E}(Y)=4$, $\mathrm{D}(X)=4$, $\mathrm{D}(Y)=9$. Найдите математическое ожидание и дисперсию случайной величины W.

- (a) W = 5X + 2Y
- (b) W = 4X 7Y 2
- (c) W = 2Y + 5
- (d) W = -3X Y + 6.

Задача 4. Известно, что карточка с Годриком Гриффиндором попадается в коробочке с шоколадной лягушкой в 30% случаев. У Невилла Долгопупса есть запас из 6 шоколадных лягушек, купленных в разное время в разных местах. С какой вероятностью среди них попадётся:

- (а) ровно 3 карточки с Годриком Гриффиндором;
- (b) менее 2 карточек с Годриком Гриффиндором;
- (с) не менее 4 карточек с Годриком Гриффиндором?

Пусть X — число шоколадных лягушек с карточкой, на которой изображён Годрик Гриффиндор. Найдите математическое ожидание и дисперсию X.