APPLICATION SCORING MODEL

'Data analysis in business'

PRESENTATION

OURTEAM

Alena Iakovleva

Anastasiia Prokhorova

Vadim Khanin

DATA PREPROCESSING main steps

- data understanding
- data cleaning and manipulation
- portraits

- replaced values "XNA" and "XAP" with NaN
- replaced empty values in OCCUPATION_TYPE by "NaN" value
- created new variables:
 - CREDIT_ACTIVE_CLOSED
 - CREDIT_ACTIVE_ACTIVE
 - CREDIT_ACTIVE_SOLD
 - CREDIT_ACTIVE_BAD_DEBT
 - CREDIT_DAY_OVERDUE
 - AVG_AMT_CREDIT_SUM
 - AMT_APPLICATION_APPROVED
 - AMT_APPLICATION_REFUSED
 - AMT_APPLICATION_CANCELED
 - AMT_APPLICATION_UNUSED

distribution of data

DATA PREPROCESSING outliers

percentile[5,95]

- days columns -> to positive
- Age , Working_Exp , Id Doc Age Registration_Age column -> positive Years
- Income, Loan_Credit, Loan_Annuity, Total_Goods_Price into more understandable 'datasize' (/100000, round(2))
- created a age bucket column with values "20-30","30-40","40-50","50-60","60-70"

dataset info

12 object variables

12 binary varibles

58 numeric variable

initially

307511 rows & 132 columns

cleaning

304531 rows & 81 columns

outliers

258061 rows & 81 columns

final

210843 rows & 81 columns

- amount of active credits
- credit day overdue
- average amount of credit
- amount of applications refused
- age
- registration

LOGISTIC REGRESSION

	modification	ROC-AUC_liblinear	ROC-AUC_newton	Score_liblinear	Score_newton
0	base	0.605348	0.516300	0.920718	0.920723
1	PCA	0.711417	0.711417	0.920500	0.920500
2	balanced	0.597816	0.721580	0.572091	0.663087
3	balanced + PCA	0.708307	0.708307	0.653964	0.653964

LDA & QDA ACCURACY SCORE

LDA

```
#evaluate model
scores = cross_val_score(lda, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
print(np.mean(scores))
0.9918280042201194
```

QDA

```
#evaluate model
scores = cross_val_score(qda, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
print(np.mean(scores))
```


KNN

raw data with and without PCA

balanced data no PCA

GRADIENT BOOSTING

Result for gradboost(sklearn) for raw data

- 0.920296900566767
- 0.5049846734656602
- 0.7301664450540971

Result for gradboost(sklearn) for balanced data

- 0.6639246186060425
- 0.6640655986757982
- 0.7276554376323593

GRADIENT BOOSTING

Results of catboost on raw data Accuracy - 0.9202731864639901 Balanced Accuracy - 0.5085577137348056 ROC-AUC - 0.7373347323666608

Results of catboost on balanced data

Accuracy - 0.947711582715418

Balanced Accuracy - 0.9394890788281144

ROC-AUC - 0.9621702040929335

INTEGRATING INTO THE COMPANY

- 1. RETRAIN THE MODEL ON COMPANY DATA.
- 2. Determine how the interaction between the model and existing systems of the company will be carried out.
 - 3. Automation of the data update process.
 - 4. Performance monitoring
 - 5. staff training
 - **B** HSEUNIVERSITY

THANK YOU! WE ARE READY TO ANSWER YOUR QUESTIONS!

