ESPACES VECTORIELS

SOUS-ESPACE VECTORIEL

Définition 1 Soit E un \mathbb{K} -espace vectoriel. Une partie F de E est appelée **sous-espace vectoriel** de E ssi les propriétés suivantes sont vérifiées :

- 1. $0_E \in F$.
- 2. $\forall (u, v) \in F^2, u + v \in F$.
- 3. $\forall u \in F \text{ et } \forall \lambda \in \mathbb{K}, \lambda u \in F.$

Remarque 1 Pour démontrer qu'un sous-ensemble F de E est un sous-espace vectoriel de E, il suffit de vérifier que F est non vide et qu'il est stable pour l'addition et stable par la multiplication par un scalaire.

Théorème 1 Tout sous-espace vectoriel d'un espace vectoriel est un espace vectoriel.

1 IONISX