



Moritz Stiefel & Ngoc Thang Vu

Enriching ASR Lattices with POS Tags for Dependency Parsing

### Motivation

# Parsing speech

- POS tags (or other labels) are helpful to downstream tasks
- Lattice-level tags allow for further task integration



**Motivation** Parsing speech

- POS tags (or other labels) are helpful to downstream tasks
- Lattice-level tags allow for further task integration

First step POS-enriched ASR word lattices



Motivation

Parsing speech

- POS tags (or other labels) are helpful to downstream tasks
- Lattice-level tags allow for further task integration

First step

POS-enriched ASR word lattices

A pipeline approach:





Motivation

Parsing speech

- POS tags (or other labels) are helpful to downstream tasks
- Lattice-level tags allow for further task integration

First step

POS-enriched ASR word lattices

Our approach:





## Method

Using the Kaldi ASR toolkit (Povey et al., 2011)





### Method

Using the Kaldi ASR toolkit (Povey et al., 2011)





### Method

Using the Kaldi ASR toolkit (Povey et al., 2011)





# A word-POS paired lexicon





# A word-POS paired lexicon





### A word-POS paired lexicon





## **Data: Switchboard splits**

- North-American English
- Treebank-3 transcription (not MS-State transcription!)

| Set   | Conversations | Utterances | Tokens | Avg. tok./utt. | Vocabulary |
|-------|---------------|------------|--------|----------------|------------|
| train | 2xxx-3xxx     | 90823      | 677160 | 7.46           | 14759      |
| dev   | 4519-4936     | 5697       | 50148  | 8.80           | 3761       |
| eval  | 4004-4153     | 5822       | 48320  | 8.30           | 3695       |
| Imdev | 4154-4483     | 5949       | 50017  | 8.41           | 3742       |

Table: Summary of SWBD data splits



## **Data: Switchboard splits**

- North-American English
- Treebank-3 transcription (not MS-State transcription!)

| Set   | Conversations | Utterances | Tokens | Avg. tok./utt. | Vocabulary |
|-------|---------------|------------|--------|----------------|------------|
| train | 2xxx-3xxx     | 90823      | 677160 | 7.46           | 14759      |
| dev   | 4519-4936     | 5697       | 50148  | 8.80           | 3761       |
| eval  | 4004-4153     | 5822       | 48320  | 8.30           | 3695       |
| Imdev | 4154-4483     | 5949       | 50017  | 8.41           | 3742       |

Table: Summary of SWBD data splits

| LM  | Baseline 2-gram | Baseline 3-gram | Joint 2-gram | Joint 3-gram |
|-----|-----------------|-----------------|--------------|--------------|
| PPL | 89.4            | 76.3            | 96.4         | 84.2         |

Table: Language model (LM) perplexities (PPL) on Imdev.



# **Data: Switchboard POS-enriched transcription**





# **Data: Switchboard POS-enriched transcription**



- Orthography/tokenization and POS tags from the Treebank data (word)
- Timestamps from linked MS-State transcriptions (phonword)



#### Intermediate results: ASR

tri4





#### Intermediate results: ASR

tri4



Joint-POS





#### Intermediate results: ASR

tri4



### Joint-POS



| Set  | tri4                 | Joint-POS            |
|------|----------------------|----------------------|
| dev  | <b>28.75</b> (65.83) | 28.93 <b>(65.28)</b> |
| test | 29.41 (64.41)        | 29.26 (64.15)        |



Table: ASR results: numbers are WER (SER)

### Intermediate results: POS





#### Intermediate results: POS



### Joint-POS





#### Intermediate results: POS



Joint-POS



| Set  | tri4+ME.pre   | tri4+AP.pre   | tri4+spaCy.pre | tri4+ME.70k   | tri4+AP       | Joint-POS     |
|------|---------------|---------------|----------------|---------------|---------------|---------------|
| dev  | 43.29 (94.23) | 45.46 (95.84) | 39.17 (82.38)  | 33.24 (68.18) | 32.30 (67.67) | 32.05 (67.32) |
| test | 44.49 (94.19) | 46.18 (95.74) | 40.42 (81.86)  | 36.23 (67.26) | 33.10 (66.85) | 32.52 (66.52) |

Table: POS tagging results: numbers are WER (SER)



#### **DP** results

- 1-best hypotheses of standard Kaldi tri4 setup plus AP tagger vs our Joint-POS
- Xiang Yu's parser after (Weiss et al., 2015): greedy neural transition-based parser, uses word and POS features



#### **DP** results

- 1-best hypotheses of standard Kaldi *tri4* setup plus AP tagger vs our Joint-POS
- Xiang Yu's parser after (Weiss et al., 2015): greedy neural transition-based parser, uses word and POS features

|      |       |         | tri4+AP |       | Joint- | POS   |
|------|-------|---------|---------|-------|--------|-------|
| Set  | #utts | #tokens | UAS     | LAS   | UAS    | LAS   |
| dev  | 900   | 4881    | 94.30   | 92.71 | 95.41  | 93.63 |
| test | 882   | 4827    | 94.68   | 93.06 | 94.92  | 93.52 |

Table: Parsing results for subsets of correct tokenizations. Labeled attachment scores (LAS) and unlabeled attachment scores (UAS) given as percentages.



#### **DP** results

- 1-best hypotheses of standard Kaldi tri4 setup plus AP tagger vs our Joint-POS
- Xiang Yu's parser after (Weiss et al., 2015): greedy neural transition-based parser, uses word and POS features

|      |       |         | tri4+AP |       | Joint- | POS   |
|------|-------|---------|---------|-------|--------|-------|
| Set  | #utts | #tokens | UAS     | LAS   | UAS    | LAS   |
| dev  | 900   | 4881    | 94.30   | 92.71 | 95.41  | 93.63 |
| test | 882   | 4827    | 94.68   | 93.06 | 94.92  | 93.52 |

Table: Parsing results for subsets of correct tokenizations. Labeled attachment scores (LAS) and unlabeled attachment scores (UAS) given as percentages.

High scores, but only on utterances with correct tokenizations



Number of correctly tokenized utterances ≠ number of utterances



- Number of correctly tokenized utterances ≠ number of utterances
  - How can we evaluate incorrectly recognized utterances?



- Number of correctly tokenized utterances ≠ number of utterances
  - How can we evaluate incorrectly recognized utterances?
  - Our answer: fuzzy relation-based measure that ignores word position altogether



### DP results extended: fuzzy relation-based measure for US and LS

Initialize UAS, LAS, US and LS with zero count For all reference utterances R that have a hypothesis H For all tokens R. in R





- Number of correctly tokenized utterances ≠ number of utterances
  - How can we evaluate incorrectly recognized utterances?
  - Our answer: fuzzy relation-based measure that ignores word position altogether



- Number of correctly tokenized utterances ≠ number of utterances
  - How can we evaluate incorrectly recognized utterances?
  - Our answer: fuzzy relation-based measure that ignores word position altogether

| Model     | Set         | UAS            | LAS            | US             | LS             |
|-----------|-------------|----------------|----------------|----------------|----------------|
| tri4+AP   |             |                |                | 52.02<br>50.72 |                |
| Joint-POS | dev<br>test | 32.41<br>31.56 | 31.43<br>30.73 | 52.21<br>51.21 | 49.71<br>48.99 |

Table: Parsing results on full *dev* and *test* sets. LAS and UAS given as percentages. LS (labeled score) and US (unlabeled score) are a fuzzy evaluation metric devised to be able to evaluate tokenization mismatches between the ASR hypotheses and the corresponding treebank data. LS and US are also given as percentages. The *dev* set has 3994 utterances with 44760 tokens and the *test* set has 3912 utterances with 43277 tokens. Best scores per set are bold-faced.



## DP-based error analysis 1/3

tri4 token incorrect, subsequent POS tag, too



Figure: Correct Joint-POS tree on the left, incorrect *tri4* tree on the right.



### DP-based error analysis 2/3

tri4 ASR deletion error



Figure: Correct Joint-POS tree on the left, incorrect tri4 tree on the right.



### DP-based error analysis 3/3

Joint-POS token sequence incorrect resulting in erroneous parse



Figure: Correct tri4 tree on the left, incorrect Joint-POS tree on the right.



#### **Conclusions**

- Successful joint ASR and POS tagging
  - Increased search space in the decoding graph
  - No performance loss compared to pipeline approach

### ⇒ POS tags in an ASR lattice structure

- Possible avenues of exploration:
  - Systematic error analysis
  - Use transcriptions tagged with a POS-tagger and compare results
  - Comparison against the approach of Velikovich (2016), who tag lattices







Moritz Stiefel & Ngoc Thang Vu Institut für Maschinelle Sprachverarbeitung (IMS), Universität Stuttgart

eMail moritz.stiefel@ims.uni-stuttgart.de

Telefon +49-711-685 813 60 Fax +49-711-685 813 66

#### References

- Sasha Calhoun, Jean Carletta, Jason M. Brenier, Neil Mayo, Dan Jurafsky, Mark Steedman, and David Beaver. The NXT-format switchboard corpus: a rich resource for investigating the syntax, semantics, pragmatics and prosody of dialogue. Language Resources and Evaluation, 44(4):387–419, 2010. ISSN 1574-0218. doi: 10.1007/s10579-010-9120-1. URL http://dx.doi.org/10.1007/s10579-010-9120-1.
- Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely. The kaldi speech recognition toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society, December 2011. IEEE Catalon No.: CFP1SRW-USB.
- Leonid Velikovich. Semantic model for fast tagging of word lattices. In 2016 IEEE Spoken Language Technology Workshop, SLT 2016, San Diego, CA, USA, December 13-16, 2016, pages 398-405. IEEE, 2016. doi: 10.1109/SLT.2016.7846295. URL https://doi.org/10.1109/SLT.2016.7846295.
- David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. Structured training for neural network transition-based parsing. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 323–333. The Association for Computer Linguistics, 2015. ISBN 978-1-941643-72-3. URL http://aclweb.org/anthology/P/P15/P15-1032.pdf.

This work was funded by the German Research Foundation (DFG) through the Collaborative Research Center (SFB) 732, project A8, at the University of Stuttgart.



## DP-based error analysis extra 1/2

tri4 token incorrect, subsequent POS tag, too



Figure: Correct Joint-POS tree on the left, incorrect tri4 tree on the right.



### DP-based error analysis extra 2/2

tri4 with correct tokenization, but POS tagging error



Figure: Correct Joint-POS tree on the left, incorrect tri4 tree on the right.

