AMENDMENTS TO THE CLAIMS

Claims 21-22 (cancelled).

23. (currently amended): The pharmaceutical composition according to claim 21 wherein said peptide analogue has the A pharmaceutical composition for the gastrointestinal delivery by oral administration of an LH-RH peptide analogue, said composition comprising a therapeutically effective amount of a peptide analogue in combination with α -cyclodextrin and excipients suitable for the gastrointestinal delivery of the peptide analogue, wherein the α -cyclodextrin enhances the biological activity of of the LH-RH peptide analogue when orally administered, said LH-RH peptide analogue having the formula (SEQ ID N°: 1):

A1-A2-A3-A4-A5-A6-A7-A8-Pro-Z (A)

- Al is pGlu; D-pGlu; Sar; AcSar; Pro or a derivative thereof; Ser; D-Ser; Ac-D-Ser; Thr; D-Thr; Ac-D-Thr; or an aromatic D-amino acid which may be acylated;
- A2 is a direct bond; His; or an aromatic D-amino acid;
- A3 is an aromatic L- or D-amino acid;
- A4 is Ala, Ser, D-Ser, MeSer, Ser(OBut), Ser(OBzl) or Thr;
- A5 is an aromatic L-amino acid; or a basic L- or D-amino acid;
- A6 is Gly; (S)-spirolactam-Pro; D-Pro; D-Ser; D-Thr; D-Cys; D-Met; D-Pen; D-(S-Me)Pen; D-(S-Et)Pen; D-Ser(OBu^t); D-Asp(OBu^t); D-Glu(OBu^t); D-Thr(OBu^t); D-Cys(OBu^t); D-Ser(OR₁) where R₁ is a sugar moiety; an aza-amino acid; D-His which may be substituted on the imidazole ring by a (C₁-C₆)alkyl, a (C₂-C₇)acyl or a benzyl group; an aliphatic D-amino acid with a (C₁-C₈)alkyl or a (C₃-C₆)cycloalkyl side

chain ; an aromatic D-amino acid ; D-cyclohexadienyl-Gly ; Dperhydronaphthyl-Ala; D-perhydrodiphenyl-Ala; or a basic Lor D-amino acid;

- A7 is a linear, branched or cyclic aliphatic L-amino acid of 3 to 20 carbon atoms which may be N-alpha-substituted by a (C_1-C_4) alkyl group optionally substituted by one or several fluorine atoms;
- A8 is a basic L- or D-amino acid;
- Z is $GlyNH_2$; D-AlaNH $_2$; aza $GlyNH_2$; or a group -NHR $_2$ where R_2 is a (C_1-C_4) alkyl which may be substituted by an hydroxy or one or several fluorine atoms; a (C_3-C_6) cycloalkyl; or a heterocyclic radical selected from morpholinyl, pyrrolidinyl and piperidyl.
- 24. (previously presented): The pharmaceutical composition according to claim 23 wherein said peptide analogue has the formula (SEQ ID N° : 2):

A1-His-A3-A4-A5-A6-A7-A8-Pro-Z

(I)

- Al is pGlu, Sar or AcSar;
- A3 is an aromatic L-amino acid;
- A4 is Ala, Ser, D-Ser, MeSer, Ser(OBut), Ser(OBzl) or Thr;
- A5 is an aromatic L-amino acid;
- A6 is Gly; D-Pro; (S)-spirolactam-Pro; D-Ser; D-Thr; D-Cys ; D-Met ; D-Pen ; D-(S-Me)Pen ; D-(S-Et)Pen ; D-Ser(OBu^t) ; D-Asp(OBu^t); D-Glu(OBu^t); D-Thr(OBu^t); D-Cys(OBu^t); D- $Ser(OR_1)$ where R_1 is a sugar moiety; an aza-amino acid; D-His which may be substituted on the imidazole ring by a $(C_1 C_6$) alkyl or a benzyl group ; an aliphatic D-amino acid with a (C_1-C_8) alkyl or a (C_3-C_6) cycloalkyl side chain; an aromatic Damino acid; D-cyclohexadienyl-Gly; D-perhydronaphtyl-Ala; Dperhydrodiphenyl-Ala ; or a basic D-amino acid ;

- A7 is a linear, branched or cyclic aliphatic L-amino acid of 3 to 20 carbon atoms which may be N-alpha-substituted by a (C_1-C_4) alkyl group optionally substituted by one or several fluorine atoms;
- A8 is a basic L-amino acid;
- Z is $GlyNH_2$; aza $GlyNH_2$; or a group -NHR $_2$ where R_2 is a (C_1 - C_4)alkyl which may be substituted by an hydroxy or one or several fluorine atoms; a (C_3 - C_6)cycloalkyl; or a heterocyclic radical selected from morpholinyl, pyrrolidinyl and piperidyl.
- 25. (previously presented): The pharmaceutical composition according to claim 24 wherein said peptide analogue has the formula (SEQ ID N° : 3):

pGlu-His-A3-Ser-A5-A6-A7-Arg-Pro-Z $\,$ (II) in which A7 is Leu, Tle, Nle, Hol, Npg, Cha or Ada, which may be N-alpha-substituted by a methyl or ethyl group optionally substituted by one or several fluorine atoms.

26. (previously presented): The pharmaceutical composition according to claim 24 wherein said peptide analogue has the formula (SEO ID N° : 4):

pGlu-His-A3-Ser-A5-A6-A7-Arg-Pro-Z (III) in which:

- A3 and A5 are each independently Phe, Tyr, Trp, 2MeTrp, HPhe, HTyr, Nal, 1Nal, Bal, Pal, 4Pal, or pClPhe;
- A6 is (S)-spirolactam-Pro; Gly; D-Pro; D-Ser(OBu^t); D-Asp(OBu^t); D-Glu(OBu^t); D-Thr(OBu^t); D-Cys(OBu^t); D-His or D-His(Bzl); D-Ala, D-Leu, D-Tle, D-Nle, D-Hol, D-Npg or D-Cha; D-Phe, D-HPhe, D-Tyr, D-HTyr, D-Trp, D-2MeTrp, D-Nal, D-1Nal, D-Bal, D-Pal, D-4Pal, or D-pClPhe; D-cyclohexadienyl-Gly; D-perhydronaphtyl-Ala; D-perhydrodiphenyl-Ala or D-APhe

optionally substituted by an aminotriazolyl group;

- A7 is Leu, Npg or Cha, which may be N-alpha-substituted by a methyl group;
- Z is $GlyNH_2$, $azaGlyNH_2$ or $-NC_2H_5$.
- 27. (previously presented): The pharmaceutical composition according to claim 24 wherein said peptide analogue has the formula (SEQ ID N° :5):

pGlu-His-Trp-Ser-Tyr-A6-A7-Arg-Pro-Z (IV) in which:

- A6 is (S)-spirolactam-Pro, D-Leu, D-Ala, D-Nal, D-Phe, D-Ser(OBu^t) or D-Trp;
- A7 is Leu, MeLeu, Npg or MeNpg;
- Z is $GlyNH_2$, $azaGlyNH_2$ or $-NC_2H_5$.
- 28. (previously presented): The pharmaceutical composition according to claim 24 wherein the peptide analogue is selected from the group consisting of leuprorelin, $[Npg^7]$ -leuprorelin, triptorelin, $[Npg^7]$ -triptorelin, goserelin, $[Npg^7]$ -goserelin, buserelin and $[Npg^7]$ -buserelin.
- 29. (withdrawn): The pharmaceutical composition according to claim 23 wherein said peptide analogue has the formula (SEQ ID N° :6):

A1-A2-A3-A4-A5-A6-A7-A8-Pro-Z (I')

- Al is pGlu; D-pGlu; Sar; AcSar; Pro or a derivative thereof; Ser; D-Ser; Ac-D-Ser; Thr; D-Thr; Ac-D-Thr; or an aromatic D-amino acid which may be acylated;
- A2 is a direct bond or an aromatic D-amino acid;
- A3 is an aromatic L- or D-amino acid;

- A4 is Ala, Ser, D-Ser, MeSer, Ser(OBut), Ser(OBzl) or Thr;
- A5 is an aromatic L-amino acid or a basic L- or D-amino acid;
- A6 is Gly; D-Pro; D-Ser; D-Thr; D-Cys; D-Met; D-Asn; D-Pen; D-(S-Me)Pen; D-(S-Et)Pen; D-Ser(OBu^t); D-Asp(OBu^t); D-Glu(O-Bu^t); D-Thr(O-Bu^t); D-Cys(O-Bu^t); D-Ser(O-R₁) where R₁ is a sugar moiety; an aliphatic D-amino acid with a (C₁-C₈)alkyl or a (C₃-C₆)cycloalkyl side chain; an aromatic D-amino acid; D-cyclohexadienyl-Gly; D-perhydronaphthyl-Ala; D-perhydrodiphenyl-Ala; or a basic L- or D-amino acid; A7 is a linear, branched or cyclic aliphatic L-amino acid of 3 to 20 carbon atoms which may be N-alpha-substituted by a

 (C_1-C_4) alkyl group optionally substituted by one or several

- A8 is a basic L- or D-amino acid;
- Z is GlyNH₂ or D-AlaNH₂.

fluorine atoms:

30. (withdrawn): The pharmaceutical composition according to claim 29 wherein the peptide analogue has the formula (SEQ ID N° :7):

Ac-D-Nal-D-pClPhe-D-Pal-Ser-A5-A6-A7-A8-Pro-D-AlaNH₂ (II') in which:

- A5 is Tyr, HTyr, MeTyr, MeHTyr, NicLys or IprLys;
- A6 is (S)spirolactam-Pro, D-Arg, D-NicLys, D-IprLys, D-Cit, D-HCit or D-Asn;
- A7 is Leu, MeLeu, Npg or MeNpg;
- A8 is Arg, NicLys or IprLys.
- 31. (withdrawn): The pharmaceutical composition according to claim 29 wherein the peptide analogue is selected from the group consisting of antide, $[Npg^7]$ -antide, cetrorelix, $[Npg^7]$ -

cetrorelix, abarelix and $[Npg^7]$ -abarelix.

- 32. (previously presented): The pharmaceutical composition according to claim 21 wherein the α -cyclodextrin derivative is selected from the group consisting of methylated α -cyclodextrin, hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin, carboxy-methylated α -cyclodextrin and phosphated α -cyclodextrin.
- 33. (previously presented): The pharmaceutical composition according to claim 32 wherein the α -cyclodextrin derivative is hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin.
- 34. (currently amended): The pharmaceutical composition according to claim $\frac{21}{23}$ which further comprises a compound selected from the group consisting of a protease inhibitor, an absorption enhancer, and mixtures thereof.
- 35. (currently amended): A method of enhancing the biological activity of a LH-RH peptide analogue which comprises orally administering to a patient in need thereof a pharmaceutical composition comprising a therapeutically effective amount of a peptide analogue in combination with α -cyclodextrin and excipients suitable for the gastrointestinal delivery of the peptide analogue, wherein the α -cyclodextrin enhances the biological activity of the LH-RH peptide analogue when orally administered a therapeutically effective amount of said analogue in combination with α -cyclodextrin or a derivative thereof.
 - 36. (previously presented): The method according to claim

35, wherein said peptide analogue has the formula (SEQ ID $N^{\circ}:1$):

A1-A2-A3-A4-A5-A6-A7-A8-Pro-Z (A)

- Al is pGlu; D-pGlu; Sar; AcSar; Pro or a derivative thereof; Ser; D-Ser; Ac-D-Ser; Thr; D-Thr; Ac-D-Thr; or an aromatic D-amino acid which may be acylated;
- A2 is a direct bond; His; or an aromatic D-amino acid;
- A3 is an aromatic L- or D-amino acid;
- A4 is Ala, Ser, D-Ser, MeSer, Ser(OBut), Ser(OBzl) or Thr;
- A5 is an aromatic L-amino acid or a basic L- or D-amino acid ;
- A6 is Gly; (S)-spirolactam-Pro; D-Pro; D-Ser; D-Thr; D-Cys; D-Met; D-Asn; D-Pen; D-(S-Me)Pen; D-(S-Et)Pen; D-Ser(OBu^t); D-Asp(OBu^t); D-Glu(OBu^t); D-Thr(OBu^t); D-Cys(OBu^t); D-Ser(OR₁) where R₁ is a sugar moiety; an aza-amino acid; D-His which may be substituted on the imidazole ring by a (C_1-C_6) alkyl, a (C_2-C_7) acyl or a benzyl group; an aliphatic D-amino acid with a (C_1-C_8) alkyl or a (C_3-C_6) cycloalkyl side chain; an aromatic D-amino acid; D-cyclohexadienyl-Gly; D-perhydronaphthyl-Ala; D-perhydrodiphenyl-Ala; or a basic L- or D-amino acid; A7 is a linear, branched or cyclic aliphatic L-amino acid of
- 3 to 20 carbon atoms which may be N-alpha-substituted by a (C_1-C_4) alkyl group optionally substituted by one or several fluorine atoms;
- A8 is a basic L- or D-amino acid;
- Z is $GlyNH_2$; D-Ala NH_2 ; aza $GlyNH_2$; or a group -NHR $_2$ where R_2 is a (C_1-C_4) alkyl which may be substituted by an hydroxy or one or several fluorine atoms; a (C_3-C_6) cycloalkyl; or a heterocyclic radical selected from morpholinyl, pyrrolidinyl and piperidyl.

37. (previously presented): The method according to claim 36 wherein said peptide analogue has the formula (SEQ ID N $^{\circ}$: 2):

A1-His-A3-A4-A5-A6-A7-A8-Pro-Z (I)

- Al is pGlu, Sar or AcSar;
- A3 is an aromatic L-amino acid;
- A4 is Ala, Ser, D-Ser, MeSer, Ser(OBut), Ser(OBzl) or Thr;
- A5 is an aromatic L-amino acid;
- A6 is Gly; D-Pro; (S)-spirolactam-Pro; D-Ser; D-Thr; D-Cys; D-Met; D-Pen; D-(S-Me)Pen; D-(S-Et)Pen; D-Ser(OBu^t); D-Asp(OBu^t); D-Glu(OBu^t); D-Thr(OBu^t); D-Cys(OBu^t); D-Ser(OR₁) where R₁ is a sugar moiety; an aza-amino acid; D-His which may be substituted on the imidazole ring by a (C₁-C₆)alkyl or a benzyl group; an aliphatic D-amino acid with a (C₁-C₆)alkyl or a (C₃-C₆)cycloalkyl side chain; an aromatic D-amino acid; D-cyclohexadienyl-Gly; D-perhydronaphtyl-Ala; D-perhydrodiphenyl-Ala; or a basic D-amino acid;
- A7 is a linear, branched or cyclic aliphatic L-amino acid of 3 to 20 carbon atoms which may be N-alpha-substituted by a (C_1-C_4) alkyl group optionally substituted by one or several fluorine atoms;
- A8 is a basic L-amino acid;
- Z is $GlyNH_2$; aza $GlyNH_2$; or a group -NHR₂ where R₂ is a (C₁-C₄)alkyl which may be substituted by an hydroxy or one or several fluorine atoms; a (C₃-C₆)cycloalkyl; or a heterocyclic radical selected from morpholinyl, pyrrolidinyl and piperidyl.
- 38. (previously presented): The method according to claim 37 wherein said peptide analogue has the formula (SEQ ID N° :

3):

pGlu-His-A3-Ser-A5-A6-A7-Arg-Pro-Z (II) in which A7 is Leu, Tle, Nle, Hol, Npg, Cha or Ada, which may be N-alpha-substituted by a methyl or ethyl group optionally substituted by one or several fluorine atoms.

39. (previously presented): The method according to claim 37 wherein said peptide analogue has the formula (SEQ ID N° :

pGlu-His-A3-Ser-A5-A6-A7-Arg-Pro-Z (III) in which:

- A3 and A5 are each independently Phe, Tyr, Trp, 2MeTrp, HPhe, HTyr, Nal, 1Nal, Bal, Pal, 4Pal, or pClPhe;
 A6 is (S)-spirolactam-Pro; Gly; D-Pro; D-Ser(OBu^t); D-Asp(OBu^t); D-Glu(OBu^t); D-Thr(OBu^t); D-Cys(OBu^t); D-His or D-His(Bzl); D-Ala, D-Leu, D-Tle, D-Nle, D-Hol, D-Npg or D-Cha; D-Phe, D-HPhe, D-Tyr, D-HTyr, D-Trp, D-2MeTrp, D-Nal, D-1Nal, D-Bal, D-Pal, D-4Pal, or D-pClPhe; D-cyclohexadienyl-Gly; D-perhydronaphtyl-Ala; D-perhydrodiphenyl-Ala; or D-APhe optionally substituted by an aminotriazolyl group;
 A7 is Leu, Npg or Cha, which may be N-alpha-substituted by a methyl group;
- Z is $GlyNH_2$; $azaGlyNH_2$ or $-NC_2H_5$.
- 40. (previously presented): The method according to claim 37 wherein said peptide analogue has the formula (SEQ ID N° : 5):

pGlu-His-Trp-Ser-Tyr-A6-A7-Arg-Pro-Z (IV) in which:

- A6 is (S)-spirolactam-Pro, D-Leu, D-Ala, D-Nal, D-Phe, D-Ser(OBu^t) or D-Trp;
- A7 is Leu, MeLeu, Npg or MeNpg;

- Z is $GlyNH_2$; $azaGlyNH_2$ or $-NC_2H_5$.
- 41. (previously presented): The method according to claim 37 wherein the peptide analogue is selected from the group consisting of leuprorelin, $[Npg^7]$ -leuprorelin, triptorelin, $[Npg^7]$ -triptorelin, goserelin, $[Npg^7]$ -goserelin, buserelin and $[Npg^7]$ -buserelin.
- 42. (withdrawn): The method according to claim 36 wherein said peptide analogue has the formula (SEQ ID N° : 6):

A1-A2-A3-A4-A5-A6-A7-A8-Pro-Z (I')

- Al is pGlu; D-pGlu; Sar; AcSar; Pro or a derivative thereof; Ser; D-Ser; Ac-D-Ser; Thr; D-Thr; Ac-D-Thr; or an aromatic D-amino acid which may be acylated;
- A2 is a direct bond or an aromatic D-amino acid;
- A3 is an aromatic L- or D-amino acid;
- A4 is Ala, Ser, D-Ser, MeSer, Ser(OBu^t), Ser(OBzl) or Thr;
- A5 is an aromatic L-amino acid or a basic L- or D-amino acid;
- A6 is Gly; D-Pro; D-Ser; D-Thr; D-Cys; D-Met; D-Asn; D-Pen; D-(S-Me)Pen; D-(S-Et)Pen; D-Ser(OBu^t); D-Asp(OBu^t); D-Glu(O-Bu^t); D-Thr(O-Bu^t); D-Cys(O-Bu^t); D-Ser(O-R₁) where R₁ is a sugar moiety; an aliphatic D-amino acid with a (C₁-C₈)alkyl or a (C₃-C₆)cycloalkyl side chain; an aromatic D-amino acid; D-cyclohexadienyl-Gly; D-perhydronaphthyl-Ala; D-perhydrodiphenyl-Ala; or a basic L- or D-amino acid; A7 is a linear, branched or cyclic aliphatic L-amino acid of 3 to 20 carbon atoms which may be N-alpha-substituted by a (C₁-C₄)alkyl group optionally substituted by one or several fluorine atoms;

- A8 is a basic L- or D-amino acid;
- Z is GlyNH₂ or D-AlaNH₂.
- 43. (withdrawn): The method according to claim 42 wherein the peptide analogue has the formula (SEQ ID N $^{\circ}$: 7): Ac-D-Nal-D-pClPhe-D-Pal-Ser-A5-A6-A7-A8-Pro-D-AlaNH $_2$ (II') in which:
- A5 is Tyr, HTyr, MeTyr, MeHTyr, NicLys or IprLys;
- A6 is (S)spirolactam-Pro, D-Arg, D-NicLys, D-IprLys, D-Cit, D-HCit or D-Asn;
- A7 is Leu, MeLeu, Npg or MeNpg;
- A8 is Arg, NicLys or IprLys.
- 44. (withdrawn): The method according to claim 42 wherein the peptide analogue is selected from the group consisting of antide, $[Npg^7]$ -antide, cetrorelix, $[Npg^7]$ -cetrorelix, abarelix and $[Npg^7]$ -abarelix.
- 45. (previously presented): The method according to claim 35 wherein the α -cyclodextrin derivative is selected from the group consisting of methylated α -cyclodextrin, hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin, carboxymethylated α -cyclodextrin and phosphated α -cyclodextrin.
- 46. (previously presented): The method according to claim 45 wherein the α -cyclodextrin derivative is hexakis(2,3,6-tri-0-methyl)- α -cyclodextrin.
- 47. (previously presented): A method of treating a disease wherein a LH-RH agonist or antagonist action is required which comprises orally administering to a patient in need thereof a

therapeutically effective amount of a LH-RH peptide analogue in combination with $\alpha\text{-cyclodextrin}$ or a derivative thereof, wherein said peptide analogue has the formula (SEQ ID N°: 1)

A1-A2-A3-A4-A5-A6-A7-A8-Pro-Z (A)

- Al is pGlu; D-pGlu; Sar; AcSar; Pro or a derivative thereof; Ser; D-Ser; Ac-D-Ser; Thr; D-Thr; Ac-D-Thr; or an aromatic D-amino acid which may be acylated;
- A2 is a direct bond; His; or an aromatic D-amino acid;
- A3 is an aromatic L- or D-amino acid;
- A4 is Ala, Ser, D-Ser, MeSer, Ser(OBut), Ser(OBzl) or Thr;
- A5 is an aromatic L-amino acid or a basic L- or D-amino acid :
- A6 is Gly; (S)-spirolactam-Pro; D-Pro; D-Ser; D-Thr; D-Cys; D-Met; D-Asn; D-Pen; D-(S-Me)Pen; D-(S-Et)Pen; D-Ser(OBu^t); D-Asp(OBu^t); D-Glu(OBu^t); D-Thr(OBu^t); D-Cys(OBu^t); D-Ser(OR₁) where R₁ is a sugar moiety; an aza-amino acid; D-His which may be substituted on the imidazole ring by a (C₁-C₆)alkyl, a (C₂-C₇)acyl or a benzyl group; an aliphatic D-amino acid with a (C₁-C₈)alkyl or a (C₃-C₆)cycloalkyl side chain; an aromatic D-amino acid; D-cyclohexadienyl-Gly; D-perhydronaphthyl-Ala; D-perhydrodiphenyl-Ala; or a basic L- or D-amino acid;
- A7 is a linear, branched or cyclic aliphatic L-amino acid of 3 to 20 carbon atoms which may be N-alpha-substituted by a (C_1-C_4) alkyl group optionally substituted by one or several fluorine atoms;
- A8 is a basic L- or D-amino acid;
- Z is $GlyNH_2$; D-Ala NH_2 ; aza $GlyNH_2$; or a group -NHR $_2$ where R_2 is a (C_1-C_4) alkyl which may be substituted by an hydroxy or one or several fluorine atoms; a (C_3-C_6) cycloalkyl; or a

heterocyclic radical selected from morpholinyl, pyrrolidinyl and piperidyl.

48. (previously presented): The method according to claim 47 wherein said peptide analogue has the formula (SEQ ID N° : 2):

A1-His-A3-A4-A5-A6-A7-A8-Pro-Z (I)

- Al is pGlu, Sar or AcSar;
- A3 is an aromatic L-amino acid;
- A4 is Ala, Ser, D-Ser, MeSer, Ser(OBut), Ser(OBzl) or Thr;
- A5 is an aromatic L-amino acid;
- A6 is Gly; D-Pro; (S)-spirolactam-Pro; D-Ser; D-Thr; D-Cys; D-Met; D-Pen; D-(S-Me)Pen; D-(S-Et)Pen; D-Ser(OBu^t); D-Asp(OBu^t); D-Glu(OBu^t); D-Thr(OBu^t); D-Cys(OBu^t); D-Ser(OR₁) where R₁ is a sugar moiety; an aza-amino acid; D-His which may be substituted on the imidazole ring by a (C₁-C₆)alkyl or a benzyl group; an aliphatic D-amino acid with a (C₁-C₈)alkyl or a (C₃-C₆)cycloalkyl side chain; an aromatic D-amino acid; D-cyclohexadienyl-Gly; D-perhydronaphtyl-Ala; D-perhydrodiphenyl-Ala; or a basic D-amino acid;
- A7 is a linear, branched or cyclic aliphatic L-amino acid of 3 to 20 carbon atoms which may be N-alpha-substituted by a (C_1-C_4) alkyl group optionally substituted by one or several fluorine atoms;
- A8 is a basic L-amino acid;
- Z is $GlyNH_2$; aza $GlyNH_2$; or a group -NHR₂ where R₂ is a (C₁-C₄)alkyl which may be substituted by an hydroxy or one or several fluorine atoms; a (C₃-C₆)cycloalkyl; or a heterocyclic radical selected from morpholinyl, pyrrolidinyl and piperidyl.

49. (previously presented): The method according to claim 48 wherein said peptide analogue has the formula (SEQ ID $N^{\circ}:3$):

pGlu-His-A3-Ser-A5-A6-A7-Arg-Pro-Z (II) in which A7 is Leu, Tle, Nle, Hol, Npg, Cha or Ada, which may be N-alpha-substituted by a methyl or ethyl group optionally substituted by one or several fluorine atoms.

50. (previously presented): The method according to claim 48 wherein said peptide analogue has the formula (SEQ ID N° : 4):

pGlu-His-A3-Ser-A5-A6-A7-Arg-Pro-Z (III) in which:

- A3 and A5 are each independently Phe, Tyr, Trp, 2MeTrp,
 HPhe, HTyr, Nal, 1Nal, Bal, Pal, 4Pal, or pClPhe;
 A6 is (S)-spirolactam-Pro; Gly; D-Pro; D-Ser(OBu^t); DAsp(OBu^t); D-Glu(OBu^t); D-Thr(OBu^t); D-Cys(OBu^t); D-His or
 D-His(Bzl); D-Ala, D-Leu, D-Tle, D-Nle, D-Hol, D-Npg or D-Cha; D-Phe, D-HPhe, D-Tyr, D-HTyr, D-Trp, D-2MeTrp, D-Nal, D1Nal, D-Bal, D-Pal, D-4Pal, or D-pClPhe; D-cyclohexadienyl-Gly; D-perhydronaphtyl-Ala; D-perhydrodiphenyl-Ala; or D-APhe
 optionally substituted by an aminotriazolyl group;
 A7 is Leu, Npg or Cha, which may be N-alpha-substituted by a
 methyl group;
- Z is $GlyNH_2$; $azaGlyNH_2$ or $-NC_2H_5$.
- 51. (previously presented): The method according to claim 48 wherein said peptide analogue has the formula (SEQ ID N° : 5):

pGlu-His-Trp-Ser-Tyr-A6-A7-Arg-Pro-Z (IV) in which:

- A6 is (S)-spirolactam-Pro, D-Leu, D-Ala, D-Nal, D-Phe, D-

Ser(OBut) or D-Trp;

- A7 is Leu, MeLeu, Npg or MeNpg;
- Z is $GlyNH_2$; $azaGlyNH_2$ or $-NC_2H_5$.
- 52. (previously presented): The method according to claim 48 wherein the peptide analogue is selected from the group consisting of leuprorelin, [Npg⁷]-leuprorelin, triptorelin, $[Npg^7]$ -triptorelin, goserelin, $[Npg^7]$ -goserelin, buserelin and [Npq⁷]-buserelin.
- 53. (withdrawn): The method according to claim 47 wherein said peptide analogue has the formula (SEQ ID N°: 6):

A1-A2-A3-A4-A5-A6-A7-A8-Pro-Z (I')

- Al is pGlu; D-pGlu; Sar; AcSar; Pro or a derivative thereof; Ser; D-Ser; Ac-D-Ser; Thr; D-Thr; Ac-D-Thr; or an aromatic D-amino acid which may be acylated;
- A2 is a direct bond or an aromatic D-amino acid;
- A3 is an aromatic L- or D-amino acid;
- A4 is Ala, Ser, D-Ser, MeSer, Ser(OBut), Ser(OBzl) or Thr;
- A5 is an aromatic L-amino acid or a basic L- or D-amino acid;
- A6 is Gly; D-Pro; D-Ser; D-Thr; D-Cys; D-Met; D-Asn; D-Pen; D-(S-Me)Pen; D-(S-Et)Pen; D-Ser(OBut); D-Asp(OBut); $D-Glu(O-Bu^t)$; $D-Thr(O-Bu^t)$; $D-Cys(O-Bu^t)$; $D-Ser(O-R_1)$ where R_1 is a sugar moiety; an aliphatic D-amino acid with a $(C_1$ - C_8) alkyl or a (C_3-C_6) cycloalkyl side chain; an aromatic Damino acid; D-cyclohexadienyl-Gly; D-perhydronaphthyl-Ala; D-perhydrodiphenyl-Ala; or a basic L- or D-amino acid; - A7 is a linear, branched or cyclic aliphatic L-amino acid of
- 3 to 20 carbon atoms which may be N-alpha-substituted by a

 (C_1-C_4) alkyl group optionally substituted by one or several fluorine atoms;

- A8 is a basic L- or D-amino acid;
- Z is GlyNH₂ or D-AlaNH₂.
- 54. (withdrawn): The method according to claim 53 wherein the peptide analogue has the formula (SEQ ID N $^{\circ}$: 7): Ac-D-Nal-D-pClPhe-D-Pal-Ser-A5-A6-A7-A8-Pro-D-AlaNH $_2$ (II') in which:
- A5 is Tyr, HTyr, MeTyr, MeHTyr, NicLys or IprLys;
- A6 is (S)spirolactam-Pro, D-Arg, D-NicLys, D-IprLys, D-Cit, D-HCit or D-Asn;
- A7 is Leu, MeLeu, Npg or MeNpg;
- A8 is Arg, NicLys or IprLys.
- 55. (withdrawn): The method according to claim 53 wherein the peptide analogue is selected from the group consisting of antide, $[Npg^7]$ -antide, cetrorelix, $[Npg^7]$ -cetrorelix, abarelix and $[Npg^7]$ -abarelix.
- 56. (withdrawn): The method according to claim 47 wherein the α -cyclodextrin derivative is selected from the group consisting of methylated α -cyclodextrin, hexakis(2,3,6-tri-0-methyl)- α -cyclodextrin, carboxymethylated α -cyclodextrin and phosphated α -cyclodextrin.
- 57. (withdrawn): The method according to claim 56 wherein the α -cyclodextrin derivative is hexakis(2,3,6-tri-0-methyl)- α -cyclodextrin.
 - 58. (previously presented): The method according to claim

- 47 for the treatment or prevention of breast cancer.
- 59. (previously presented): The method according to claim 58 which further comprises the sequential, parallel or over a period of time administration of at least one compound selected from the group consisting of an antiestrogen, an aromatase inhibitor and a C_{17-20} lyase inhibitor.
- 60. (previously presented): The method according to claim 47 for the treatment or prevention of prostate cancer or benign prostatic hypertrophy.
- 61. (previously presented): The method according to claim 60 which further comprises the sequential, parallel or over a period of time administration of at least one compound selected from the group consisting of an antiandrogen, a 5α -reductase inhibitor and a C_{17-20} lyase inhibitor.
- 62. (previously presented): The method according to claim 47 wherein the peptide analogue is delivered to the gastrointestinal tract of the patient.
- 63. (previously presented): The pharmaceutical composition according to claim 28 wherein the α -cyclodextrin derivative is selected from the group consisting of methylated α -cyclodextrin, hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin, carboxy-methylated α -cyclodextrin and phosphated α -cyclodextrin.
- 64. (previously presented): The pharmaceutical composition according to claim 28 comprising $\alpha\text{-cyclodextrin}$ or

hexakis(2,3,6-tri-0-methyl)- α -cyclodextrin.

- 65. (previously presented): The pharmaceutical composition according to claim 64 wherein the peptide analogue is leuprorelin.
- 66. (previously presented): The pharmaceutical composition according to claim 64 wherein the peptide analogue is $[Npg^7]$ -leuprorelin.
- 67. (previously presented): The method according to claim 41 wherein the α -cyclodextrin derivative is selected from the group consisting of methylated α -cyclodextrin, hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin, carboxymethylated α -cyclodextrin and phosphated α -cyclodextrin.
- 68. (previously presented): The method according to claim 67 wherein the α -cyclodextrin derivative is hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin.
- 69. (previously presented): The method according to claim 35, which comprises orally administering a therapeutically effective amount of leuprorelin in combination with α -cyclodextrin or hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin.
- 70. (previously presented): The method according to claim 35, which comprises orally administering a therapeutically effective amount of [Npg⁷]-leuprorelin in combination with α -cyclodextrin or hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin.

- 71. (previously presented): The method according to claim 52 wherein the α -cyclodextrin derivative is selected from the group consisting of methylated α -cyclodextrin, hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin, carboxymethylated α -cyclodextrin and phosphated α -cyclodextrin.
- 72. (previously presented): The method according to claim 71 wherein the α -cyclodextrin derivative is hexakis(2,3,6-tri-0-methyl)- α -cyclodextrin.
- 73. (previously presented): The method according to claim 47, which comprises orally administering a therapeutically effective amount of leuprorelin in combination with α -cyclodextrin or hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin.
- 74. (previously presented): The method according to claim 47, which comprises orally administering a therapeutically effective amount of $[Npg^7]$ -leuprorelin in combination with α -cyclodextrin or hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin.
- 75. (previously presented): The method according to claim 62 wherein the α -cyclodextrin derivative is selected from the group consisting of methylated α -cyclodextrin, hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin, carboxymethylated α -cyclodextrin and phosphated α -cyclodextrin.
- 76. (previously presented): The method according to claim 71 wherein the α -cyclodextrin derivative is hexakis(2,3,6-tri-O-methyl)- α -cyclodextrin.

- 77. (previously presented): The method according to claim 76 wherein the peptide analogue is leuprorelin.
- 78. (previously presented): The method according to claim 76 wherein the peptide analogue is $[Npg^7]$ -leuprorelin.