Attrition Prevention

0

Team 11 : Najah Ismail, Apurva Mishra, Sanjay Pramod

TABLE OF CONTENTS

01 Motivation

Dataset, Background, Problem Definition

Exploring The Data Set

Cleaning and Exploratory Data Analysis

03

Model

Deciding on the prediction model

Hypothesis Verification

Running DataSet with Recommendations through model 05

Conclusion

Results and Recommendations

01

Motivation

Background

- Attrition: Employees leaving a company for various reasons.
- > Naturally occurs in workforce.
- Needs to be understood and embraced by the management and HR to avoid setbacks.

Chosen Dataset

'IBM HR Analytics Employee Attrition & Performance'

by Pavan Subhash on Kaggle

Problem Statement

Identify factors that affect Attrition, predict optimal conditions to make people stay, and devise recommendations.

02

Exploring the Data Set

1. Data Preparation

Cleaning the Data

- > Drop columns irrelevant to problem
- > Check to filter-out unsuitable rows
 - o Retirement
 - Duplicates
 - NULL values
- Modify names convenience and homogeneity

Feature Engineering

> JobSwitchRate:

How frequently each employee switched jobs wrt years in workforce

> RelIncAtLevel:

Standardising income across levels using median

.

0

EDA Overview

- 1. Attrition Value Imbalance
- 2. Bi-Variate Exploration : HeatMap
- 3. Attrition and Categorical Values
- 4. Attrition and Numerical Values
- 5. JobSatisfaction and Attrition
- 6. MonthlyIncome
- 7. Age and Gender Statistics

Mini EDA Questions

- 1. Employee Stagnation
- 2. Exploring Job Environment
- 3. Evaluation in a Work Space
- 4. Potential New Hiring

1. Class Imbalance

Exploring attrition rate in the whole data set, we observe the data is imbalanced.

Attrition=Yes has 237 data points (16.12%) while Attrition=NO has 1233 data points (83.88%)

Rectifying Class imbalance

Bivariate Exploration HeatMap

TotalWorkin gYears

- Age
- Joblevel
- MonthlyIncome

employees who have worked longer have higher salaries and are in higher positions.

YearsSinceLast Promotion —

- Joblevel
- YearsAtCompany

employee face **stagnation** after reaching a threshold number of years. Usually those in higher job level. To be explored further in exploration question.

O

Categorical Variables

Summary:

Highest attrition Rates across categorical variables

Department :Sales : 21%

Gender : **Male** : 17%

JobRole : **LabTechniacian** : 23%

MaritalStatus: Single: 19%

OverTime : Yes :

PerformanceRating: Low and High equal: 16%

Lowest attrition Rates across categorical variables

- Higher job levels & educational levels have lower attrition rate
- BusinessTravel: None: 8%

Numerical Variables

Attrition=YES for:

- Lower JobSatisfaction
- Higher JobSwitchRate
- Lower YearsWithCurrentManager, YearsInCompany,totalWorkingYears and Age
- Lower JobLevels
- Lower MonthlyIncome

Variables that seem to have little effect on attrition:

- StockOptionLevel
- employee number
- trainingTimesSinceLastYear
- RelationshipSatisfaction

Younger employees and **newer** employees are more likely to leave. Perhaps for better job prospects.

Employees at **lower JobLevels** and **lower income** are more likely to leave.

JobSatisfaction show a strong relation with Attrition. Attrited employees have **lower JobSatisfaction**

JobSatifaction and Attrition

Performance Rating

From the employers perspective the **problem** becomes clear, attrited employees with **higher PerformanceRating had lower JobSatisfaction**.

Gender

Males who left have lower JobSatisfaction as compared to Females.

Department

Departments **HR** and **Sales** have lower JobSatisfaction for Attrited employees while it is equally high for all non-Attrited employees.

MonthlyIncome and Attrition

lower MonthlyIncome is a common trait in Mid-Level(JobLevel = 3/4) attrited employees. These are employees who probably have the experience and skill-set to find jobs elsewhere at higher pay.

For different levels of

JobSatisfaction, Lower

MonthlyIncome is a clear
reason behind Attrition while
median is similar for attrited
and non-attrited employees

On Average:

- 1. Women make more money than men
- 2. Sales Department has highest salary
- Research Directors and Managers make the most while Sales Representative make the least

Age

The **average age** for data set is around **37**

Overall Average Age : 36.923809523809524

Average Age by :

Gender

Female 37.329932 Male 36.653061

Name: Age, dtype: float64

Average Age by :

Department

HR 37.809524 RnD 37.042664 Sales 36.542601

Name: Age, dtype: float64

Age vs JobSwitchRate

Which Age group switches jobs most frequently? Are they likely to leave the company?

In all three department employees between the age of **25 to 35** have a general **highest switch rates** for both Attrition=Yes and Attrition=No

But overall there is little difference in the JobSwitchRates between the attrited and non attrited employees in each Department.

Gender

The **Female Employee count is lower** across
Departments and JobLevels

Women Earn more than Men

Gender Count at Job Levels

Gender Proportion

Gender Count in Departments

Mini EDA Questions

- 1. Employee Stagnation
- 2. Immediate Job Environment
- 3. Evaluation in a Work Space
- 4. Potential New Hiring

1- Stagnation - Definition

+

0

1- Stagnation - Relation to Attrition

- Attrition rate is lower for 'stagnant' employees
- Examining relation with job level and age

0

Conclusion: 'Stagnation' can be interpreted as settling into high of level job.

2- Immediate Job Environment

Current Manager impact on EnvPlusRel

Examining Environment Satisfaction, Relationship Satisfaction and New Manager

0

- ➤ EnvPlusRel <= 1 is very atrisk
- See if employee's discontentment (and attrition) is caused by current team
- > No direct relation detected
 - Reshuffling futile
 - Overall issue with IBM, not team-specific

3- Evaluation in Workspace

- Compare how employee and employer rate each other
- Attrition Yes employees often follow pattern Employer rating is lower in proportion to Employee rating
- Well-rated employees may rate IBM low and leave

4- Potential New Hiring

- Examining Overtime and Attrition per Job Role
- Correspondence suggests some job roles are overworked
- New Hires to distribute workload
- Target highest attrition rate roles — Sales Executive, Laboratory Technician, and Human Resources

Tools and Techniques Learnt

Plotly

Used plotly for more insightful and easier to read graphs

Feature Engineering

Scaling and Altering existing variables to create new meaning.

03 Model - Predicting Attrition

Data Prep For Model

0

3 model candidates

DecisionTreeClassifier

Decision tree classifier splits dataset along feature values to isolate data points belonging to each class.

XGBoost

Ensemble method that combines several weak tree based models, and focuses on optimizing an arbitrary loss function.

Balanced Bagging Tree Classifier

Ensemble method that fits base estimator on subsets of original data and aggregate the predictions. Also balances dataset to resolve class imbalance.

Decision Tree Classifier

- Tried different tree depths and found that depth=4 gave optimum values on the train and test data.
- Modified the class_weight attribute to "balanced" to tackle data imbalance. This ensures that the model assigns class weights inversely proportional to frequency of the class. Therefore, the model penalizes wrong predictions of the minority class more stringently.
- Train accuracy 79.25%
- Test Accuracy 74.15 %

BalancedBaggingClassifier

- Used base estimator as Decision Tree Classifier to improve upon previous model. The model aggregates predictions from multiple base estimator instances.
- Classifier includes an additional step to balance the training set at fit time using a given sampler.
- Sample method "Not majority" to resample from minority class to solve class imbalance.
- Tried different tree depths and found that depth=4 gave optimum values on the train and test data.
- Train accuracy 86.9%
- Test Accuracy 84.3 %

XGBoost - XGBClossifier

- We wanted to try a different ensemble method to test performance, so we chose gradient boosting.
- XGB uses ensemble of weaker Decision Trees to update the weights in the model and accurately predict classes.
- Tried different tree depths and found that depth=2 gave optimum values on the train and test data.
- Objective function of "logitraw" gave optimum accuracy with the log loss function
- Train accuracy 88.4%
- Test Accuracy 84.35 %

Tools/ Techniques Used

We used Decision Trees and and tweaked the max_depth attribute as learned from the lectures to get better accuracy across the board. We also changed the class_weight attribute to counter class imbalance in our dataset.

We tried out 2 ensemble methods to learn and apply something new. Both methods had parameters to help prevent overfitting and improve accuracy on imbalanced data.

- Balanced Bagging Tree Classifier used Oversampling.
- XGB Classifier from XGBoost

Most important feature employers can change:

- 1. OverTime
- 2. BusinessTravel
- 3. RelincAtLev

Feature importance from XGBoost

+

0

4 Recommendations — 4 New Datasets

Idealised DataSet

Taking the ideal values for each variable, using Attrition==No values

OverTime: Mode
BusinessTravel: Mode

0

RelincAtLev: Mean for each JobLevel

02

Ideal Inc Only

BusinessTravel and OverTime may be non-negotiable for some roles.

Only change RelincAtLev to the ideal **mean value** at each JobLevel

10% Increase

Increase their salary by 5% and keep original OverTime and BusinessTravel values

5% Salary Increase

Increase their salary by 5% and keep original OverTime and BusinessTravel values

Confusion Matrix Results

DataSet1

0

False Negative: 235

False Negative: 169

DataSet3

DataSet2

03

False Negative: 187

False Negative: 169

DataSet4

05

Conclusion

Recommendations and Data Insights

Key Recommendations

Income

For employer, 5% increase is most preferable. >5% does not improve attrition rate as much.

The ideal value is average of Attrition No employees at that level.

OverTime and BusinessTravel

Reduce OverTime and BusinessTravel or Hire more employees for even work distribution.

Data Insight — At Risk Employees

High Performance and Low Satisfaction

Overworked Job Roles

Sales Executive, Laboratory Technician, and Human Resources

Mid-level Employees
Job Level 3/4

Younger Employees Age 25-30

