1 Problembeschreibung

Der quadratische Abstand einer Geraden $a \cdot x + b$ zur einer Menge von n Punkten (x_i, y_i) ist durch den Ausdruck

$$\sum_{i=1}^{n} (a \cdot x_i + b - y_i)^2$$

gegeben. Bei einer linearen Regression wird die Gerade gesucht, die diesen Abstand minimiert.

2 Aufgabenstellung und Anforderungen

Schreiben Sie eine Funktion

linear_regression(points, lines),

die den kleinsten quadratischen Abstand von gegebenen Geraden zu einer gegebenen Punktmenge bestimmt. Es sollen folgende Unterroutinen implementiert und verwendet werden:

- Die Funktion get_linedistance (points, line) soll den quadratischen Abstand der übergegebenen Geraden zur Punktmenge mit return zurückgeben.
- Die Funktion get_min(int_list) soll aus der übergebenen Liste ganzer Zahlen das Minimum mit return zurückgeben. Falls int_list leer ist, soll None zurückgegeben werden.

2.1 Eingabe

Der Funktion linear_regression werden die beiden Listen points und lines übergeben, welche jeweils aus Paaren ganzer Zahlen bestehen. Die Punkte werden in der Form $(x_i,y_i) \in \mathbb{Z}^2$ und die Geraden in der Form $(a,b) \in \mathbb{Z}^2$ dargestellt.

2.2 Rückgabewert

Die Funktion linear_regression soll den kleinsten quadratischen Abstand zur Punktmenge, der von den übergebenen Funktionen angenommen werden kann, mit return zurückgeben.

2.3 Beispielaufrufe

```
>>> linear_regression([(-1,1),(0,2),(1,1),(3,-1)],[(1,1)])
28
>>> linear_regression([(-1,1),(0,2),(1,1),(3,-1)],[(-1,2)])
4
>>> linear_regression([(-1,1),(0,2),(1,1),(3,-1)],[(1,1),(-1,2)])
4
```

3 Tipps und Anmerkungen

- \bullet Auf die Einträge eines Paares x kann mittels x[0] bzw. x[1] zugegriffen werden.
- Alle drei Funktionen linear_regression, get_linedistance und get_min werden vom Comajudge in ihrer beschriebenen Form verlangt und getestet.