Teoría de Decisión Bayesiana

BAYESIAN DECISION THEORY

VARIABLE CONTINUA

Reglas de Decisión

- Observando la cinta de traslado es difícil predecir que pez va pasar primero
 - o La secuencia de peces parece ser aleatoria.
- Terminología de teoría de decisión:
 - o la naturaleza presenta dos estados
 - Cada estado es impredecible, por lo cual debe ser descrito en forma probabilística
- Estado verdadero ω es una variable aleatoria
 - O Dos estados verdaderos posibles:

$$\omega_1 = \text{Salmon}, \omega_2 = \text{Mero}$$

Reglas de Decisión

- Las probabilidades de los estados reflejan el conocimiento previo sobre las características de los peces.
- Probabilidades a priori
 - o Pesca del Salmon $P(\omega_1)$
 - Pesca del Mero $P(\omega_2)$ $P(\omega_1) + P(\omega_2) = 1$
- Por ejemplo si se suelen obtener tantos salmones como meros en la región, se puede decir que igualmente probable pescar un salmón que un mero si uno tira una línea.
 - \circ $P(\omega_1) = P(\omega_2)$ equiprobables

4)

- Decide $\omega_1 \operatorname{si} P(\omega_1) > P(\omega_2)$
 - en otro caso decide ω_2
- Tiene sentido si solo juzgo el próximo pez.
- Error? Me equivoco con toda la clase menos probable!!!
- Sin embargo si no sé otra cosa, es la regla con menor error

Por eso es que necesitamos diseñar y calcular caracterizaciones discriminatorias de los estados

- O X es la luminosidad de las escamas del pez
- o $p_X(x \mid \omega_1)$ y $p_X(x \mid \omega_2)$ describen la diferencia en luminosidad de las escamas entre poblaciones de Mero y Salmón
- \circ $P(\omega_1)$ y $P(\omega_2)$ son las probabilidades a priori de la pesca
- o Evidencia es la densidad de la variable X

$$p_X(x) = \sum_{j=1}^{j=2} p(x \mid \omega_j) P(\omega_j)$$

Información condicional a la clase concentrada en una variable aleatoria X

- O X es una variable aleatoria
- o $p(x \mid \omega_1)$ y $p(x \mid \omega_2)$ probabilidades condicionadas a los estados
- \circ $P(\omega_1)$ y $P(\omega_2)$ son las probabilidades a priori
- O Evidencia es la densidad de la variable X

$$p_X(x) = \sum_{j=1}^{j=2} p(x \mid \omega_j) P(\omega_j)$$

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Observamos ahora una característica X y tiene el valor x. Como influye esto en la determinación del estado del pez?

- O X es una variable aleatoria que toma un valor x
- o $p(x \mid \omega_1)$ y $p(x \mid \omega_2)$ probabilidades condicionadas a los estados
- $\circ P(\omega_1)$ y $P(\omega_2)$ son las probabilidades a priori
- \circ La probabilidad conjunta de x y ω es

$$p(\omega_i, x) = P(\omega_i | x) \cdot p(x) = p(x | \omega_i) \cdot P(\omega_i)$$

Probabilidad del estado ω dado que se observa el valor x es llamada probabilidad a posteriori

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$$

- Posterior = (Verosimilitud condicional x Prior) / Evidencia
- La evidencia es la densidad de la variable X

$$p_X(x) = \sum_{j=1}^{j=2} p(x \mid \omega_j) P(\omega_j)$$

FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Decisión dadas las probabilidades a posteriori

x es una observación:

si
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 Decido estado natural = ω_1 si $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ Decido estado natural = ω_2

Error

- Verdadero = ω_1 Si me equivoco, decido por ω_2 es porque $P(\omega_1 \mid x) < P(\omega_2 \mid x)$. Por lo cual $P(error \mid x) = P(\omega_1 \mid x)$
- Verdadero = ω_2 Si me equivoco, decido por ω_1 es porque $P(\omega_1 \mid x) > P(\omega_2 \mid x)$. Por lo cual $P(error \mid x) = P(\omega_2 \mid x)$
- En ambos casos, la probabilidad a posteriori es la mas chica

$$P(error \mid x) = min [P(\omega_1 \mid x), P(\omega_2 \mid x)]$$

12

 La regla de Bayes es la regla que produce el mínimo error promedio

Produce la regla basada en las probabilidades a posteriori el mínimo error promedio??

Es la regla basada en las probabilidades a posteriori la regla de Bayes??

Error promedio

13

La probabilidad de error promedio es

$$P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error \mid x) p(x) dx$$

• Y si *P(error* | *x)* es lo mas chico posible, la integral es la mas chica posible.

Error promedio

- Ahora, para cualquier regla, en cuanto observamos un x particular, P(error | x) es:
 - $P(error \mid x) = P(\omega_1 \mid x)$ si decidimos por ω_2 si era ω_1
 - $P(error \mid x) = P(\omega_2 \mid x)$ si decidimos por ω_1 si era ω_2
- Por lo cual la regla cuyo error es

$$P(error \mid x) = min [P(\omega_1 \mid x), P(\omega_2 \mid x)]$$

Es la regla con mínimo error promedio

15

 En este contexto (conocemos probabilidades a priori y a posteriori)

La regla de Bayes es la regla basada en las probabilidades a posteriori

16

La regla de Bayes

si
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 Decido estado natural = ω_1 si $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ Decido estado natural = ω_2

puede expresarse como

Decidir ω_1 si $p(x \mid \omega_1) P(\omega_1) > p(x \mid \omega_2) P(\omega_2)$; en otro caso decidir ω_2

Generalización de las ideas precedentes

- Usar más de una característica
- Usar más de dos estados verdaderos
- Permitir acciones y no solo decidir el estado verdadero
- Introducir una función de pérdida que es mas general que la probabilidad de error

Generalizaciones

- Permitir otras acciones además que la clasificación
 - Permitir la posibilidad de rechazo:
 - Esto es, no tomar una decisión en casos cercanos o en malos casos!

- Introducir una función de pérdida :
 - La función de perdida dice cuanto cuesta cada acción que se toma

Generalizaciones

- Sea $\{\omega_1, \omega_2, ..., \omega_c\}$ el conjunto de c estados verdaderos (o "categorías")
- Sea $\{\alpha_1, \alpha_2, ..., \alpha_a\}$ el conjunto de posibles acciones
- Sea $\lambda(\alpha_i \mid \omega_j)$ la pérdida incurrida por tomar la acción α_i cuando el estado verdadero es ω_i
- X es un vector aleatorio y $p(x|\omega_j)$ es la probabilidad condicional de X cuando ω_i es verdadero

Posterior, verosimilitud, evidencia

20)

Posterior = (Verosimilitud x Prior) / Evidencia

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{P(x)}$$

Evidencia

$$P(x) = \sum_{j=1}^{c} p(x \mid \omega_j) P(\omega_j)$$

Riesgo condicional

- Sea $\lambda(\alpha_i \mid \omega_j)$ la pérdida incurrida por tomar la acción α_i cuando el estado verdadero es ω_j ,
- La pérdida esperada dada la observación x es

$$R(\alpha_i \mid x) = \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid x) \quad i = 1, ..., a$$

Y se llama Riesgo condicional

22

Se busca una regla $\alpha(x)$ que minimice el Riesgo

$$R = \int R(\alpha(x) \mid x) p(x) dx$$

Minimizar R \longleftrightarrow Minimizar $R(\alpha_i \mid x)$ para i = 1,..., a

Por lo cual se busca un conjunto de acciones α_i para las cuales $R(\alpha_i \mid x)$ es mínimo

Riesgo de Bayes es el error de la Regla de Bayes

- Ese conjunto de acciones α*(x) es la regla de decisión de Bayes
- Para ese conjunto de acciones $\alpha^*(x)$, el valor de la integral

$$R^* = \int R(\alpha^*(x) \mid x) p(x) dx$$

se llama riesgo de Bayes y es el mejor desempeño posible!

Clasificación de dos categorías

(24)

Reglas de decisión

 α_1 : decide por ω_1

 α_2 : decide por ω_2

ightharpoonup Perdida incurrida al decidir por ω_i cuando el verdadero estado natural es ω_i es

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$$

•Riesgo condicional:

$$R(\alpha_1 \mid x) = \lambda_{11} P(\omega_1 \mid x) + \lambda_{12} P(\omega_2 \mid x)$$

$$R(\alpha_2 \mid x) = \lambda_{21} P(\omega_1 \mid x) + \lambda_{22} P(\omega_2 \mid x)$$

La regla de Bayes minimiza el riesgo condicional

La regla es la siguiente :

$$\operatorname{si} R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

se toma la acción α_1 : "decide por ω_1 " Si no se toma la acción α_2 : "decide por ω_2 "

Pruebe que minimiza el riesgo!!!

26

Reemplazando....

" Decidir por ω_1 si:

$$(\lambda_{21} - \lambda_{11})p(x \mid \omega_1)P(\omega_1) > (\lambda_{12} - \lambda_{22})p(x \mid \omega_2).P(\omega_2)$$

decidir por ω_2 en otro caso"

Si además suponemos que $\lambda_{21} > \lambda_{11}$

Si ocurre que

$$\frac{p(x \mid \omega_{1})}{p(x \mid \omega_{2})} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_{2})}{P(\omega_{1})} = T^{*}$$

tome acción α_1 (decida por ω_1)

• En otro caso tome acción α_2 (decida por ω_2)

Propiedad de decisión optima

(28)

"Si el cociente de verosimilitudes excede el valor de un umbral T * que es independiente del patrón ingresado *x*, se pueden tomar decisiones optimas"

Densidad Normal

- Densidad analíticamente manejable
- Densidad continua
- Muchos procesos son asintóticamente Gaussianos
- Caracteres escritos a mano, sonidos del habla se modelan como prototipos corruptos por un proceso aleatorio

$$P(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right],$$

$$\mu$$
 = esperanza de X
 σ^2 = varianza

Densidad Normal

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range $|x - \mu| \le 2\sigma$, as shown. The peak of the distribution has value $p(\mu) = 1/\sqrt{2\pi}\sigma$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Ejemplo

Seleccionar la decisión optima cuando:

$$p(x \mid \omega_1)$$
 N(2, 0.5) (distribución Normal)
 $p(x \mid \omega_2)$ N(1.5, 0.2)

$$P(\omega_1) = 2/3$$

$$P(\omega_2) = 1/3$$

$$\lambda = \begin{bmatrix} 1 & 2 \\ 3 & 0.4 \end{bmatrix}$$

La condición que deben cumplir los λ son $\lambda_{21} > \lambda_{11}$, $\lambda_{12} > \lambda_{22}$

Ejemplo

(32)

$$\frac{p(x \mid \omega_{1})}{p(x \mid \omega_{2})} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_{2})}{P(\omega_{1})}$$

$$\frac{1}{\sqrt{2\pi} \cdot 0.5} \exp\left[-\frac{1}{2} \left(\frac{x - 2}{0.5}\right)^{2}\right]$$

$$\frac{1}{\sqrt{2\pi} \cdot 0.2} \exp\left[-\frac{1}{2} \left(\frac{x - 1.5}{0.2}\right)^{2}\right] > \frac{2 - 0.4}{3 - 1} \cdot \frac{2/3}{1/3}$$

Ejemplo

33)

Si ocurre que

$$2*\ln(0.2/0.5) - \left(\frac{x-2}{0.5}\right)^2 + \left(\frac{x-1.5}{0.2}\right)^2 > 1.6$$

tome acción α_1 (decida por ω_1)

• En otro caso tome acción α_2 (decida por α_2)