高等数学公式背诵

王泠风

2024年10月04日

1 极限

1.1 两个重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

1.2 泰勒公式极限应用 $(x\rightarrow 0)$

$$\sin x = x - \frac{x^3}{6} + o(x^3)$$

$$\tan x = x + \frac{x^3}{3} + o(x^3)$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$$

$$\arcsin x = x + \frac{x^3}{6} + o(x^3)$$

$$\arctan x = x - \frac{x^3}{3} + o(x^3)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$$

$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + o(x^2)$$

2 常用求导公式

$$(\sec x)' = \sec x \tan x \qquad (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\csc x)' = -\csc x \cot x \qquad (\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(\tan x)' = \sec^2 x \qquad (\arctan x)' = \frac{1}{1 + x^2}$$

$$(\cot x)' = -\csc^2 x \qquad (\operatorname{arccot} x)' = -\frac{1}{1 + x^2}$$

$$[\ln(x + \sqrt{x^2 + 1})]' = \frac{1}{\sqrt{x^2 + 1}} \qquad [\ln(x + \sqrt{x^2 - 1})]' = \frac{1}{\sqrt{x^2 - 1}}$$

3 常用积分公式

$$\int a^x dx = \frac{a^x}{\ln a} + C \qquad \qquad \int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C \quad (a > 0)$$

$$\int \tan x dx = -\ln|\cos x| + C \qquad \qquad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C \quad (a > 0)$$

$$\int \cot x dx = \ln|\sin x| + C \qquad \qquad \int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$$

$$\int \sec x dx = \ln|\sec x + \tan x| + C \qquad \qquad \int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left|x + \sqrt{x^2 - a^2}\right| + C \quad (|x| > |a|)$$

$$\int \csc x dx = \ln|\csc x - \cot x| + C \qquad \qquad \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| + C$$

$$\int \tan^2 x dx = \tan x - x + C \qquad \qquad \int \cot^2 x dx = -\cot x - x + C$$

4 反函数导数

5 中值定理

5.1 泰勒公式

5.1.1 泰勒原式

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

5.1.2 泰勒展开式

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) \quad (-\infty < x < +\infty)$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) \quad (-\infty < x < +\infty)$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n}) \quad (-\infty < x < +\infty)$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{3} + \dots + x^{n} + o(x^{n}) \quad (-1 < x < 1)$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} x^{n} = 1 - x + x^{2} - x^{3} + \dots + (-1)^{n} x^{n} + o(x^{n}) \quad (-1 < x < 1)$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{n} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n-1} \frac{x^{n}}{n} + o(x^{n}) \quad (-1 < x \le 1)$$

$$(1+x)^{a} = 1 + ax + \frac{a(a-1)}{2!}x^{2} + \dots + \frac{a(a-1)\cdots(a-n+1)}{n!}x^{n} + o(x^{n}) \begin{cases} x \in (-1,1), & \exists a \leq -1, \\ x \in (-1,1], & \exists -1 < a < 0, \\ x \in [-1,1], & \exists a > 0 \, \exists a \notin \mathbb{N}_{+}, \\ x \in \mathbb{R}, & \exists a \in \mathbb{N}_{+}. \end{cases}$$

- 6 罗尔定理
- 7 微分方程
- 8 欧拉方程
- 9 常用极数
- 10 曲率半径
- 11 形心公式
- 12 旋转曲面
- 13 空间曲线