ĐẠI HỌC QUỐC GIA TP. HỎ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN **BỘ MÔN TOÁN – LÝ**

ĐỂ THI GIỮA KỲ MÔN ĐẠI SỐ TUYẾN TÍNH

Học kỳ I, năm học 2017-2018

Ngày thi:

01/11/2018

Thời gian làm bài: 60 phút

Không được sử dụng tài liệu

<u>Câu 1</u>. (3 điểm)

Cho các ma trận thực:
$$A = \begin{pmatrix} 1 & -2 & -1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

a/Dặt D = AB - BA. Tính det(D)

b/Tìm ma trận vuông X thỏa $C^TX = B$.

Câu 2. (3,5 điểm)

Hãy giải và biện luận hệ phương trình tuyến tính sau, trên trường số thực:

$$\begin{cases} x_1 + x_2 + x_3 + mx_4 = 1 \\ x_1 + x_2 + mx_3 + x_4 = 1 \\ x_1 + mx_2 + x_3 + x_4 = 1 \\ mx_1 + x_2 + x_3 + x_4 = 1 \end{cases}$$
, với m là tham số thực.

Câu 3. (2 điểm)

Trên $M_2(\mathbb{R})$ là không gian các ma trận vuông, thực, cấp 2, cho tập hợp

$$W = \left\{ A = \begin{pmatrix} 5a & -3b \\ 2b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}.$$

Hỏi W có phải là không gian véc tơ con của $M_2(\mathbb{R})$ hay không? Vì sao?

Câu 4. (1,5 điểm)

Trên \mathbb{R}^4 cho tập hợp $S = \{\alpha_1 = (1,1,1,1), \alpha_2 = (1,m,2,3), \alpha_3 = (2,1,0,m), \alpha_4 = (0,2,-1,-1)\}$. Tìm điều kiện của m để S là độc lập tuyến tính.

Hết

Cán bộ coi thi không giải thích gì thêm

ĐẠI HỌC QUỐC GIA TP. HÔ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN **BỘ MÔN TOÁN – LÝ**

ĐÈ THI GIỮA KỲ MÔN ĐẠI SỐ TUYẾN TÍNH

Học kỳ I, năm học 2017-2018

Ngày thi:

03/11/2017

Thời gian làm bài: **60** phút Không được sử dụng tài liêu

<u>Câu 1</u>. (3 điểm)

Cho các ma trận thực:
$$A = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 4 \\ 3 & 2 & 2 \end{pmatrix}, B = \begin{pmatrix} 4 & -1 & 2 \\ -6 & 7 & -3 \\ 1 & 0 & -8 \end{pmatrix}, C = \begin{pmatrix} 3 & -2 & -1 \\ -4 & 0 & 9 \\ 2 & -7 & 5 \end{pmatrix}$$

a/ Tính $det(AB - A^{T}C)$.

b/ Tìm ma trận vuông X thỏa AX = B.

Câu 2. (3,5 điểm)

Hãy giải và biện luận hệ phương trình tuyến tính sau, trên trường số thực:

$$\begin{cases} x_1 + 5x_3 + 5x_2 = 0\\ (m - 26)x_3 - 5x_1 - (27 - m)x_2 = 5\\ 28x_2 + mx_1 + (m + 28)x_3 = -5 \end{cases}$$
, với m là tham số thực.

Câu 3. (2 điểm)

Trên \mathbb{R}^4 cho tập hợp $\mathbb{W} = \{X = (a,b,c,d) \mid a-2b+c-4d=0\}$. Hỏi \mathbb{W} có phải là không gian véc tơ con của \mathbb{R}^4 hay không? Vì sao?

Câu 4. (1,5 điểm)

Trên \mathbf{R}^3 cho tập hợp $\mathbf{S} = \{\alpha_1 = (2,-1,3), \alpha_2 = (-1,0,-2), \alpha_3 = (3,2,m)\}$. Tìm điều kiện của m để \mathbf{S} là độc lập tuyến tính.

Hết

Cán bộ coi thi không giải thích gì thêm

Trưởng BM Toán - Lý

CAO THANH TÌNH

ĐẠI HỌC QUỐC GIA TP. HỎ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN **BỘ MÔN TOÁN – LÝ**

ĐỂ THI CUỐI KỲ MÔN ĐẠI SỐ TUYỂN TÍNH

Học kỳ III, năm học 2018-2019

Ngày thi:

/08/2019

Thời gian làm bài: 90 phút

Không được sử dụng tài liệu

Câu 1. (2 điểm)

Cho các ma trận thực
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ -2 & 3 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 & 3 \\ 4 & -2 & -5 \\ 6 & 1 & 7 \end{pmatrix}$$

a/ Tìm ma trận $A^TB - 2I_3$, với I_3 là ma trận đơn vị thực, cấp 3. b/ Tìm ma trận X thỏa AX = B.

Câu 2. (3 điểm)

Trên R⁶ cho tập hợp
$$W = \left\{ (x_1, x_2, x_3, x_4, x_5, x_6) \middle| \begin{array}{l} 3x_4 - 5x_5 + 2x_2 + x_6 - x_1 = 0 \\ 2x_5 + x_1 - 3x_2 - x_6 + x_3 = 0 \\ x_4 + 2x_6 - x_2 + x_1 - 2x_3 = 0 \end{array} \right\}$$

Hãy tìm tập sinh (hệ sinh), cơ sở và xác định số chiều cho W.

Câu 3. (3 điểm)

Cho ma trận thực
$$A = \begin{pmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{pmatrix}$$
.

Hãy chéo hóa A, rồi sau đó tìm A^m , với mọi m nguyên, $m \ge 0$.

<u>Câu 4</u>. (2 điểm)

Cho dạng toàn phương $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$,

và $\beta_0 = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ là cơ sở chính tắc của \mathbb{R}^3 sao cho:

$$\forall X \in \mathbb{R}^3$$
, ta có $[X]_{\beta_0} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, và $f(X, X) = 2x_1^2 - x_2^2 + 10x_3^2 - 4x_1x_2 - 8x_1x_3 + 14x_2x_3$.

a/ Hãy chính tắc hóa đạng toàn phương f.

b/ Chỉ ra một cơ sở β ứng với dạng chính tắc này.

Hết

Cán bộ coi thi không giải thích gì thêm

Trưởng BM Toán - Lý 🗽

CAO THANH TÌNH

ĐẠI HỌC QUỐC GIA TP. HÒ CHÍ MINH * TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN BỘ MÔN TOÁN – LÝ

ĐÈ THI CUỐI KỲ MÔN ĐẠI SỐ TUYẾN TÍNH

Học kỳ I, năm học 2018-2019

Ngày thi:

22/01/2019

Thời gian làm bài: 90 phút

Không được sử dụng tài liệu

<u>Câu 1</u>. (2,5 điểm)

Trên
$$\mathbb{R}^6$$
 cho tập hợp $W = \left\{ (x_1, x_2, x_3, x_4, x_5, x_6) \middle| \begin{array}{l} 2x_5 + 3x_4 - x_3 + 2x_1 - x_2 = 0 \\ x_2 - x_4 + x_6 - x_1 = 0 \\ 2x_3 - 4x_5 - 2x_6 - 4x_2 + 3x_1 = 0 \end{array} \right\}$

a/ Hãy chứng minh rằng W là không gian véc tơ con của \mathbb{R}^6 . b/ Hãy tìm hệ sinh, cơ sở và xác định số chiều cho W.

<u>Câu 2</u>. (3,0 điểm)

Trên
$$\mathbb{R}^3$$
 cho tập hợp $\alpha = \{\alpha_1 = (1, -1, 2), \alpha_2 = (-1, 2, -3), \alpha_3 = (2, 1, 2)\}$ và tập hợp $\beta = \{\beta_1 = (1, 2, 1), \beta_2 = (1, 3, 3), \beta_3 = (2, 2, -1)\}$.

a/ Chứng tổ rằng a và β là cơ sở của \mathbb{R}^3 .

b/ Cho vector $\alpha = (-3, -12, 5) \in \mathbb{R}^3$. Hãy tìm tọa độ của α theo cơ sở α .

c/ Gọi $\beta_0 = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ là cơ sở chính tắc của \mathbb{R}^3 . Hãy tìm các ma trận chuyển cơ sở:

$$P=P_{\beta_0\to a}\,;\ Q=P_{\beta_0\to\beta}\,;\, {\rm và}\ S=P_{a\to\beta}\,.$$

Câu 3. (2,5 điểm)

Cho ma trận thực
$$A = \begin{pmatrix} 4 & 2 \\ -4 & -5 \end{pmatrix}$$
.

Hãy chéo hóa A, rồi sau đó tìm A^m , $\forall m$ nguyên, $m \ge 0$.

<u>Câu 4</u>. (2,0 điểm)

Cho dạng toàn phương $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$,

và $\beta_0 = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ là cơ sở chính tắc của \mathbb{R}^3

sao cho:
$$\forall X \in \mathbb{R}^3$$
, ta có $[X]_{\beta_0} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, và $f(X, X) = 8x_1x_2 - 4x_1x_3 + 12x_2x_3$.

a/ Tây chính tắc hóa dạng toàn phương f.

b/ Hãy chỉ ra một cơ sở β ứng với đạng chính tắc tìm được ở câu a/.

Hất

Cán bộ coi thi không giải thích gì thêm

ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN **BỘ MÔN TOÁN – LÝ**

ĐÈ THI CUỐI KỲ MÔN ĐẠI SỐ TUYẾN TÍNH

Học kỳ I, năm học 2017-2018

Ngày thi:

16/01/2018

Thời gian làm bài: 90 phút

Không được sử dụng tài liệu

<u>Câu 1</u>. (2,5 điểm)

Trên
$$\mathbf{R}^5$$
 cho tập hợp $W = \left\{ (x_1, x_2, x_3, x_4, x_5) \middle| \begin{array}{l} 4x_5 - 3x_4 - 2x_1 - x_2 = 0 \\ 3x_1 + 5x_4 - 3x_5 - x_3 + 2x_2 = 0 \\ x_3 - x_5 + 2x_1 + x_4 + 2x_2 = 0 \end{array} \right\}$

Hãy tìm cơ sở và xác định số chiều cho W

Câu 2. (3,5 điểm)

Trên \mathbb{R}^3 cho tập hợp $a = \{\alpha_1 = (1, 2, -3), \alpha_2 = (0, 1, -2), \alpha_3 = (2, 6, -11)\}$ và tập hợp $\beta = \{\beta_1 = (-6, 16, -7), \beta_2 = (-2, 5, -2), \beta_3 = (1, -2, 1)\}$.

a/ Chứng tỏ rằng a và β là cơ sở của \mathbb{R}^3 .

b/ Cho vector $\alpha = (-1, -10, 21) \in \mathbb{R}^3$. Hãy tìm tọa độ của α theo cơ sở α .

c/ Gọi $\beta_0 = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ là cơ sở chính tắc của \mathbb{R}^3 . Hãy tìm các ma trận chuyển cơ sở:

$$P = P_{\beta_0 \to a} \; ; \; Q = P_{\beta_0 \to \beta} \; ; \; \text{và} \; S = P_{a \to \beta} \, .$$

<u>Câu 3</u>. (2,5 điểm)

Cho ma trận thực $A = \begin{pmatrix} 3 & -4 \\ -5 & 2 \end{pmatrix}$.

Hãy chéo hóa A, rồi sau đó tìm A^m , với mọi m nguyên, $m \ge 0$.

<u>Câu 4</u>. (1,5 điểm)

Cho dạng toàn phương $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$,

và $\beta_0 = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}\$ là cơ sở chính tắc của \mathbb{R}^3 sao cho:

$$\forall X \in \mathbb{R}^3, \text{ ta có } [X]_{\beta_0} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \text{ và } f(X, X) = 2x_1x_2 - 6x_2x_3 + 2x_1x_3.$$

Hãy chính tắc hóa dạng toàn phương f.

Hết

Cán bộ coi thi không giải thích gì thêm

ĐẠI HỌC QUỐC GIA TP.HÔ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN **BỘ MÔN TOÁN – LÝ**

ĐỂ THI CUỐI KỲ MÔN ĐỊTT

Học kỳ 3, năm học 2016-2017

Ngày thi: /08/2017

Thời gian làm bài: 90 phút Không được sử dung tài liệu

Câu 1. (2 điểm) Tính định thức
$$D = \begin{vmatrix} x & 1 & 1 & 1 & 1 \\ 1 & x & 1 & 1 & 1 \\ 1 & 1 & x & 1 & 1 \\ 1 & 1 & 1 & x & 1 \\ 1 & 1 & 1 & x & 1 \end{vmatrix}$$
.

Câu 2. (2 điểm) Tìm số chiều và một cơ sở của không gian nghiệm của hệ phương trình

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0 \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0 \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0 \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0 \end{cases}$$

Câu 3. (2 diểm) Trong R³ cho 2 hệ vector $\alpha = \{\alpha_1 = (1,0,1), \alpha_2 = (0,-1,1), \alpha_3 = (2,0,3)\},$ $\beta = \{\beta_1 = (1,1,1), \beta_2 = (2,-1,0), \beta_3 = (2,2,1)\}.$

- a) Chứng minh rằng hệ α,β là các cơ sở của R³.
- b) Cho biết $[x]_{/8} = (1, 2, -1)$. Hãy tìm $[x]_{/\alpha} = ?$.

Câu 4. (2 điểm) Tính $A^n (n \in N \setminus \{0\})$ với

$$A = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}.$$

Câu 5. (2 điểm) Trong R3 cho dạng toàn phương

$$f(x,x) = x_1^2 + 4x_2^2 + x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3.$$

Hãy đưa dạng toàn phương trên về dạng chính tắc bằng phương pháp Lagrange.

Cán bộ coi thi không giải thích gì thêm

Q.Trưởng BM Toán - Lý

Cao Thanh Tình

ĐẠI HỌC QUỐC GIA TP.HÔ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN **BỘ MÔN TOÁN – LÝ**

ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ TT

Học kỳ I, năm học 2015-2016

Ngày thi:

/01/2016

Thời gian làm bài: 90 phút

Không được sử dụng tài liệu

Câu 1. (4 điểm)

Trên không gian \mathbb{R}^3 , cho các vector: $\alpha_1 = (1, -2, 2), \alpha_2 = (2, 0, 1), \alpha_3 = (2, -3, 3), \alpha_4 = (1, 2, -3), \alpha_5 = (0, 1, 2), \alpha_6 = (0, 1, 2), \alpha_7 = (0, 1, 2), \alpha_8 = (0,$

 $\alpha_5 = (0,1,-2), \alpha_6 = (2,6,-11) \;,\; \text{và} \;\; a = \{\alpha_1,\alpha_2,\alpha_3\}, \beta = \{\alpha_4,\alpha_5,\alpha_6\} \;.$

a/ Chứng minh rằng a và β là cơ sở của \mathbb{R}^3 .

b/ Tìm ma trận chuyển cơ sở $P(a \rightarrow \beta)$.

c/ Cho vector $\alpha \in \mathbb{R}^3$ thỏa $[\alpha]_{\beta} = \begin{pmatrix} 5 \\ 2 \\ -8 \end{pmatrix}$, hãy tìm $[\alpha]_a$

<u>Câu 2</u>. (3 điểm)

Cho ma trận thực: $A = \begin{pmatrix} 7 & -12 & -2 \\ 3 & -4 & 0 \\ -2 & 0 & -2 \end{pmatrix}$

Hãy chéo hóa A, rồi sau đó tìm A^n , với $n \ge 0$, n nguyên.

<u>Câu 3</u>. (3 điểm)

Cho dạng toàn phương: $f: \mathbb{R}^3 \to \mathbb{R}$, với

$$f(X) = f(x_1, x_2, x_3) = 3x_1^2 + 4x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_2x_3$$

trong đó: $\forall X \in \mathbb{R}^3$, ta có $[X]_{\beta_0} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, và β_0 là cơ sở chính tắc của \mathbb{R}^3 .

a/ Hãy đưa dạng toàn phương f về dạng chính tắc.

b/ Hãy tìm một cơ sở tương ứng với dạng chính tắc đó.

Hết

Cán bộ coi thi không giải thích gì thêm

Trưởng BM Toán, Lý

TS. DƯƠNG TỐN ĐẢM

DẠI BỌC QUỐC GIA TP.HỖ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN B<mark>Ộ MÔN TOÁN – LÝ</mark>

ĐỂ THI CUỐI KỲ MÔN ĐẠI SỐ TT

Học kỳ I, năm học 2016-2017

Ngày thi: 27/12/2016

Thời gian làm bài: 90 phút

Không được sử dụng tài liệu

Câu 1. (3 diêm)

Trên không gian R6, cho tập hợp:

$$W = \left\{ X = (x_1, x_2, x_3, x_4, x_5, x_6) \middle| \begin{array}{l} 3x_3 + x_6 + x_1 - 2x_2 = 0 \\ 3x_2 + x_5 + x_4 - 2x_1 - 5x_3 = 0 \\ 4x_6 - 8x_3 - 3x_1 + 4x_2 = 0 \end{array} \right\}$$

a/ Chứng minh rằng W là không gian vector con của R6.

b/ Hày tìm cơ sở và số chiều cho W.

Câu 2. (2.5 diêm)

 $ilde{\mathcal{X}}$ rên không gian \mathbb{R}^3 , cho các vector:

$$\alpha_1 = (1,2,4), \alpha_2 = (0,-1,1), \alpha_3 = (2,3,8), \beta_1 = (1,2,-7), \beta_2 = (3,1,1), \beta_3 = (7,2,4)$$

và tập hợp $a = {\alpha_1, \alpha_2, \alpha_3}, \beta = {\beta_1, \beta_2, \beta_3}$

a/ Chứng minh rằng a và β là cơ sở của \mathbb{R}^3 .

b/ Hãy tìm ma trận chuyển cơ sở $S = P(a \rightarrow \beta)$.

c/ Cho vector
$$\lambda \in \mathbb{R}^3$$
 thỏa $[\lambda]_{\beta} = \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$. Tim $[\lambda]_a = ?$

Câu 3. (3 điểm)

Cho ma trận thực: $A = \begin{pmatrix} 4 & 2 \\ 11 & -5 \end{pmatrix}$

Hây chéo hóa ma trận A, rồi sau đó tìm A^{2017} .

Câu 4. (1,5 điểm)

Cho dạng toàn phương $f: \mathbb{R}^3 \to \mathbb{R}$, đồng thời β_0 là cơ sở chính tắc của \mathbb{R}^3 sao cho

$$\forall X \in \mathbb{R}^3 \text{ thỏa } [X]_{\beta_0} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \text{ và } f(X) \equiv f(X, X) = 3x_1^2 - 12x_1x_2 - 6x_1x_3 + 9x_2^2 + 6x_2x_3 + 5x_3^2$$

a Hãy đưa đạng toàn phương f về đạng chính tắc.

b/ Hãy tìm một cơ sở β ứng với dạng chính tắc đó.

Hết

Cán bộ coi thi không giải thích gì thêm

Trưởng BM Toán - Lý