Structured Query Language SQL - DDL

- SOL Overview
- SQL Datatypes
- DDL statements

CS1555/2055, Panos K, Chrysanthis - University of Pittsburgh

. .

SQL Datatypes

- Numeric
 - Fixed numbers, approximate numbers, formatted numbers
- Character Strings
 - fixed & varying length, CLOBS [SQL99], foreign language
- Bit Strings
 - fixed & varying length, BLOBS [SQL99]
- Temporal Data
 - date, time and timestamp, intervals
- □ **NULL** value valid for all types

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

13

Basic SQL-DDL COMMANDS

For database schemas:

CREATE SCHEMA, DROP SCHEMA

For tables:

CREATE TABLE, DROP TABLE, ALTER TABLE

For domains:

CREATE DOMAIN, DROP DOMAIN [SQL99]

For views:

CREATE VIEW, DROP VIEW

For integrity constraints

CREATE IC, DROP IC

For Indexes [defunct in SQL2]

CS1555/2055. Panos K. Chrysanthis - University of Pittsburgh

SQL Numeric Data

- □ Exact Numbers: Two integer types with different ranges:
 - INTEGER (or INT) and SMALLINT
 - The range of numeric types is implementation dependent
- Approximate Numbers: Three floating point types:
 - FLOAT[precision], REAL, and DOUBLE PRECISION
 - Users can define the precision for FLOAT
 - The precision of REAL and DOUBLE PRECISION is fixed
 - Floating point numbers can in decimal or scientific notation
- □ Formatted Numbers: These are decimal numbers
 - DECIMAL(i,j), DEC(i,j) or NUMERIC(i,j)
 - i = precision (the total # of digits excluding decimal point)
 - j = scale (the # of fractional digits. The default is zero)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Observations on Numeric types

- □ They are like the datatype in C
 - BIGINT for long integer or integer
- □ Truncation is towards 0
- □ Rounding is business instead of Scientific

• [0..4] ↓ 0

[0..4] ↓ 0

• [6..9] ↑ 1

[5..9] 1

- Half times of 5 is 0 and half 1
- Some systems use Number() for floating
- Money or Currency data are numeric data with a currency sign: \$, £, €, ¥

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

15

SQL Character Strings

- □ A character string is a sequence of *printable* chars
- In SQL, a character string is denoted by enclosing it in single quotes: 'Hello SQL'
- Character strings types
 - Fixed length n: CHAR(n) or CHARACTER(n)
 - Varying length of maximum n: VARCHAR(n) or CHAR VARYING (n)
 - -VARCHAR2(n) in Oracle
 - The default value of n is 1, representing a single character.
 Also, CHAR or CHARACTER
 - CLOBS(Size): Character Large Objects [SQL99]
 - size specified in kilobytes (K), megabytes (M), or gigabytes (G)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

40

SQL Character Strings

- Concatenation operator: II
 - 'abc' II 'XYZ' results in 'abcXYZ'
- □ Foreign-language characters (ISO-defined chars):
 - NATIONAL CHAR(n)
 - NATIONAL VARCHAR(n)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

17

SQL Bit Strings

- □ Bit strings are sequences of binary digits, or bits
- □ In SQL, a bit string is denoted by enclosing it in *single quotes*: B'0101100110'
- Bit String types
 - Fixed length n: BIT(n)
 - Varying length of maximum n: VARBIT(n) or BIT VARYING (n)
- The default value for n is 1
 - BLOBS (size): Binary Large Objects [SQL99]
 - size specified in kilobytes (K), megabytes (M), or gigabytes (G)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

SQL Temporal Data

- DATE data type
- □ TIME and TIMESTAMP data types
- INTERVAL data type.
 - INTERVAL data type represents periods of time

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

19

Date and Time

- DATE (10 positions) stores calendar values representing YEAR, MONTH, and DAY: YYYY-MM-DD
- TIME defines HOURS, MINUTES, and SECONDS in a twenty-four-hour notation: HH:MM:SS
- TIME(i) defines / additional decimal fractions of seconds: HH:MM:SS:ddd...d
- □ TIME WITH TIME ZONE includes the displacement [+13:00 to -12:59] from standard universal time zone: HH:MM:SS{+/-}hh:mm
 - hh are the two digits for the TIMEZONE_HOUR and mm the two digits for TIMEZONE_MINUTE
- □ TIMESTAMP represents a complete date and time with 6 fractions of seconds and optional time zone.

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

20

DATETIME Type & Oracle DATE

- □ DATETIME is not a valid ANSI SQL type
- Not supported by Oracle Oracle DATE = ANSI TIMESTAMP
- MySQL DATETIME is used as a TIMESTAMP
 - MySQL DATETIME supported range is '1000-01-01 00:00:00' to '9999-12-31 23:59:59'
 - MySQL TIMESTAMP supported range is '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC
 - has varying properties, depending on the MySQL version and the SQL mode the server is running in.
- Transarc-SQL: No TIMESTAMP
 - DATETIME: 1753-01-01 to 9999-12-31[hh:mm:ss:nnn]
 - DATETIME2: 0001-01-01 00:00:00.00000000 to 9999-12-31 23:59:59.9999999

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

21

Functions on Dates

- All systems provide functions under different names
 - for constructing a date from strings or integers
 - for extracting out the month, day, or year from a date
 - for displaying dates in different ways
- Examples,
 - CAST(string AS DATE) [SQL2: CAST(<value> AS <type>)]
 e.g., CAST('2002-02-18' AS DATE)
 - MAKEDATE (int year, int month, int day) or DATE (int year, int month, int day)
 e.g., MAKEDATE(1999, 12, 31)
 - EXTRACT (MONTH/DAY/YEAR FROM <date>) [SQL3]
 - YEAR(<date>), MONTH(<date>), DAY(<date>)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Constructing Date Functions in Oracle

Oracle	Returns
TO_CHAR(d,format)	character-string equivalent of d based on format
TO_DATE(s,format)	date corresponding to s based on format
TO_TIMESTAMP(s, format)	date corresponding to s based on format

Examples:

- •TO_DATE('2011-FEB-18', 'YYYY-MON-DD')
- •TO_DATE('02182011' , 'MMDDYYYY')
- •TO_CHAR(mydate, DY) → returns sun, mon, tue, wed, thu, fri, sat

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Description MM Month number MON 3-letter abbreviation of month MONTH Fully spelled-out month Number of days in the week DD Number of days in the month DDD Number of days in the year DY 3-letter abbreviation of day of week DAY Fully spelled-out day of week Y, YY, YYY, Last 1, 2, 3 or 4 digits of year YYYY HH12, HH24 Hours of the day (1-12 or 0-23) Minutes of hour SS Seconds of minute AM Display AM or PM depending on time

25

Resolving Spec Ambiguity

- TO_DATE('02182011' , 'MMDDYYYY')
- □ It parses to the longest keyword.
- Examples:
 - 'DYY' = DY and Y
 TO_DATE('WED7', 'DYY') = 01-FEB-17
 - 'DDDYYYY' = DDD and YYYYTO_DATE('3232017', 'DDDYYYY') = 19-NOV-17
 - 'DYYY' = DY and YY TO_DATE('WED17', 'DYYY') = 01-FEB-17

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

24

Example of Date Functions

Oracle	SQLServer	MySQL		Returns
SYSDATE ADD_MONTHS(d,n) MONTHS_BETWEEN(d2,d1) NEXT_DAY(d, weekday)	CURRENT_TIMESTAMP GETDATE() DATEADD(datepart,n,d) DATEDIFF(datepart,d1,d2)	month,mm,m, dayofyear,dy,y, day,dd,d, week,wk,ww, hour,hh, minute,mi,n,	STAMP ERVAL n u) ERVAL n u)	current date and time on the server $d+n$ $d-n$ months after d $d2-d1$ in months next date after d that
LAST_DAY(d)		second,ss,s,		falls on weekday last day of the month to which d belongs

CS1555/2055, Panos K. Chrysanthis – University of Pittsburgh

Example of Date Functions

Oracle	SQLServer	MySQL	Returns	
SYSDATE	CURRENT_TIMESTAMP GETDATE() DATEADD(datepart,n,d)	CURRENT_TIMESTAMP SYSDATE() NOW() DATE_ADD(d,INTERVAL n u7	SECOND MINUTE HOUR	
ADD_MONTHS(d,n) MONTHS_BETWEEN(d2,d1)	DATEDIFF(datepart,d1,d2)	DATE_SUB(d,INTERVAL n u)	d DAY DAY MONTH d YEAR d DAY HOUR	
NEXT_DAY(d, weekday)			ne DAY_MINUTE fa DAY_SECOND	
LAST_DAY(d)			la HOUR_MINUTE W HOUR_SECOND	
	l	ı	MINUTE_SECOND YEAR_MONTH	

Postgres Functions on Dates Subtract arguments, producing a "symbolic" result that uses years and month current_date time with time zone Current time of day; see Section 9.9.4 current time current_timestamp timestamp with time zone Current date and time (start of current transaction); see Section 9.9.4 date_part(text, timestamp) double precision Get subfield (equivalent to extract); see Section 9.9.1 date part(text, interval) double precision Get subfield (equivalent to extract); see Section 9.9.1 date trunc(text, timestamp) timestamp Truncate to specified precision: see also Section 9.9.2 extract(field from timestamp) double precision Get subfield: see Section 9.9.1 extract(field from interval) double precision Get subfield: see Section 9.9.1 isfinite(date) Test for finite date (not +/-infinity) Test for finite time stamp (not +/-infinity isfinite(timestamo) Test for finite interval isfinite(interval) justify_days(interval) Adjust interval so 30-day time periods are represented as months Adjust interval so 24-hour time periods are represented as days justify_interval(interval) interval Adjust interval using justify days and justify hours, with additional sign adju-Current time of day; see Section 9.9.4 timestamp with time zone Current date and time (start of current transaction); see Section 9.9.4 statement_timestamp() timestamp with time zone Current date and time (start of current statement); see Section 9.9.4 Current date and time (like clock_timestamp, but as a text string); see Section 9.9.4 timestamp with time zone Current date and time (start of current transaction); see Section 9.9.4 27 CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Operations on Dates Datetime (+ or -) Interval = Datetime Datetime - Datetime = Interval Interval (* or /) Number = Interval Interval (+ or -) Interval = Interval Examples (ANSI SQL): (CURRENT_DATE + INTERVAL '1' MONTH) (CURRENT_DATE - INTERVAL '18' DAY) (CURRENT_DATE - BirthDate)

Example Postgres Functions on Dates age(timestamp '2001-04-10', timestamp '1957-06-13') 43 years 9 mons 27 days age(timestamp '1957-06-13') 43 years 8 mons 3 days date_part('hour', timestamp '2001-02-16 20:38:40') 20 date_part('month', interval '2 years 3 months') date_trunc('hour', timestamp '2001-02-16 20:38:40') 2001-02-16 20:00:00 extract(hour from timestamp '2001-02-16 20:38:40') 20 extract(month from interval '2 years 3 months') isfinite(date '2001-02-16') isfinite(timestamp '2001-02-16 21:28:30') isfinite(interval '4 hours') justify days(interval '35 days') 1 mon 5 days justify_hours(interval '27 hours') 1 day 03:00:00 s justify_interval(interval '1 mon -1 hour') 28 CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Intervals

- An interval results when two dates are subtracted.
 E.g., AdmitDate DischargeDate
- □ Two interval data types: **Year-Month** & **Day-Time**
- Format: INTERVAL start-field(p) [TO end-field(fs)]
 - p is the precision (default is 2 digits)
 - fs is the fractional second precision, which is only applicable to DAY/TIME (default is 6 digits)
- Year-Month intervals:
 - INTERVAL YEAR, INTERVAL YEAR(p), INTERVAL MONTH, INTERVAL MONTH(p), INTERVAL YEAR TO MONTH, INTERVAL YEAR(p) TO MONTH
 - E.g., INTERVAL YEAR (2) to MONTH could be [0-0, 99-11]

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Intervals...

- □ DAY-TIME intervals: the fields can be a contiguous selection from DAY, HOUR, MINUTE, SECOND
- □ E.g.,
 - INTERVAL DAY TO HOUR
 - -[0:0, 99:23] (day:hours)
 - INTERVAL DAY(1) TO HOUR
 - -[0:0, 9:23] (days:hours)
 - INTERVAL DAY TO MINUTE
 - -[0:0:0, 99:23:59] (days:hours:minutes)
 - INTERVAL SECOND(8)
 - INTERVAL DAY(5) to SECOND(10)
 - INTERVAL MINUTE(3) to SECOND

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Intervals...

Operator	Example	Result
+	date '2001-09-28' + integer '7'	date '2001-10-05'
+	date '2001-09-28' + interval '1 hour'	timestamp '2001-09-28 01:00:00'
+	date '2001-09-28' + time '03:00'	timestamp '2001-09-28 03:00:00'
+	interval '1 day' + interval '1 hour'	interval '1 day 01:00:00'
+	timestamp '2001-09-28 01:00' + interval '23 hours'	timestamp '2001-09-29 00:00:00'
+	time '01:00' + interval '3 hours'	time '04:00:00'
-	- interval '23 hours'	interval '-23:00:00'
-	date '2001-10-01' - date '2001-09-28'	integer '3' (days)
-	date '2001-10-01' - integer '7'	date '2001-09-24'
-	date '2001-09-28' - interval '1 hour'	timestamp '2001-09-27 23:00:00'
-	time '05:00' - time '03:00'	interval '02:00:00'
-	time '05:00' - interval '2 hours'	time '03:00:00'
-	timestamp '2001-09-28 23:00' - interval '23 hours'	timestamp '2001-09-28 00:00:00'
-	interval '1 day' - interval '1 hour'	interval '1 day -01:00:00'
-	timestamp '2001-09-29 03:00' - timestamp '2001-09-27 12:00'	interval '1 day 15:00:00'
*	900 * interval '1 second'	interval '00:15:00'
	21 * interval '1 day'	interval '21 days'
	double precision '3.5' * interval '1 hour'	interval '03:30:00'
/	interval '1 hour' / double precision '1.5'	interval '00:40:00'

33

Quick Example.. Student Table

SID	Name	PSID	Age	GPA
546007	Jones	689065	18	3.4
546100	Smith	987452	18	3.2
546500	Smith	342875	19	3.8

CREATE TABLE Student (sid CHAR (20), name CHAR (20), psid INTEGER, age INTEGER, gpa REAL, Constraint Student PK PRIMARY KEY (sid));

```
CREATE TABLE Student
  sid CHAR (20)
   Constraint Student PK
    PRIMARY KEY,
  name CHAR (20),
  psid INTEGER,
  age INTEGER,
  gpa REAL );
```

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Table Schema Storing Option

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

```
CREATE TABLE STUDENT
       ( SID INTEGER,
          Name CHAR (20),
          PSID INTEGER NOT NULL,
          AGE INTEGER,
      GPA REAL,
      CONSTRAINT STUDENT PK
         PRIMARY KEY (SID),
      CONSTRAINT STUDENT AK
         UNIQUE (PSID))
       TABLESPACE
                                              -- In postgres
        IS TABLESPACE {tablespace | users};
                                              -- In Oracle
        ON {filegroup | DEFAULT};
                                              -- In SQLServer
CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh
```

Table Schema (MySQL)

```
CREATE TABLE STUDENT

( SID INTEGER,
   Name CHAR (20),
   PSID INTEGER NOT NULL,
   AGE INTEGER,
   GPA REAL,
   CONSTRAINT STUDENT_PK
   PRIMARY KEY (SID),
   CONSTRAINT STUDENT_AK
   UNIQUE (PSID)

) Engine = INNODB; -- Required in MySQL to support FK

Other options: ARCHIVE, CSV, HEAP, Memory, myisam, ndbcluster
```

Discarding a Table

- □ DROP TABLE <db-name> [RESTRICT | CASCADE];
 - Restrict: removes the table it is not referenced
 - Cascade: removes the table and all references to it
- Oracle Example:
 - DROP TABLE Student CASCADE CONSTRAINTS;
 - DROP TABLE Student PURGE;
 - PURGE RECYCLEBIN;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

20

Table Schema (DB2)

```
CREATE TABLE STUDENT

( SID INTEGER NOT NULL, -- REQUIRED for PK, Name CHAR (20),

PSID INTEGER NOT NULL, -- REQUIRED for AK, AGE INTEGER,

GPA REAL,

CONSTRAINT STUDENT_PK

PRIMARY KEY (SID),

CONSTRAINT STUDENT_AK

UNIQUE (PSID)

) IN userspace1;
```

CS1555/2055. Panos K. Chrysanthis - University of Pittsburgh

37

Creating Domains

- Domain is a schema component for defining datatype macros
 - Basic datatype
 - DEFAULT value
 - CHECK (validity conditions)
- Examples:

CREATE DOMAIN sectno_dom AS SMALLINT;

CREATE DOMAIN gpa_dom DECIMAL (3,2) DEFAULT 0.00;

CREATE DOMAIN ssn_dom CHAR(11)

CONSTRAINT ssn_dom_value

CHECK (VALUE BETWEEN '000-00-0000' AND '999-99-9999');

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Removing a Domain

- □ DROP DOMAIN <dname> [RESTRICT | CASCADE];
 - Restrict: removes the domain it is not used
 - Cascade: removes the domain and replaces all its uses to its underlying datatype
- Example:
 - CREATE DOMAIN gender_dom AS CHAR(1)
 CONSTRAINT gender_dom_value
 CHECK ((VALUE IN ('F', 'f', 'M', 'm')) OR (VALUE IS NULL));
 - DROP DOMAIN gender_dom CASCADE;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

40

Example Schema

```
CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL,
Major CHAR (10),

CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));
```

CHECK Constraint and DOMAIN

```
CREATE DOMAIN M_Code AS CHAR(10)
CHECK (Value IN ('CS', 'Film', 'History'));

CREATE TABLE Student (
Sid INTEGER, Name CHAR(20),
Age INTEGER,
GPA REAL,
Major M_Code,

CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh 42
```

Example... Minor & Constraints

```
CREATE DOMAIN M_Code AS CHAR(10)
CHECK (value IN ('CS', 'Film', 'History'));

CREATE TABLE Student (
Sid INTEGER, Name CHAR(20),
Age INTEGER,
GPA REAL,
Major M_Code,
Minor ..., what constraints are needed for Minor?
CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));

CS15555/2055, Panos K. Chrysanthis - University of Pittsburgh
```

Example: attribute-based CREATE DOMAIN M Code AS CHAR(10) CHECK (value IN ('CS', 'Film', 'History')): CREATE TABLE Student (Sid INTEGER, Name CHAR (20), Age INTEGER, IC1: attribute-GPA REAL, Major M Code, Minor M Code, CONSTRAINT STUDENT_PK PRIMARY KEY (Sid)); CS1555/2055. Panos K. Chrysanthis - University of Pittsburgh

CHECK Constraint Major in-line

```
CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL,
Major CHAR (10)
CHECK (Major IN ('CS', 'Film', 'History')),

CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));
```

Specify Constraints Separately

```
CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER, GPA REAL,
Major CHAR (10), Minor CHAR (10),
CONSTRAINT STUDENT_PK

PRIMARY KEY (Sid),
CONSTRAINT STUDENT_Major
CHECK (Major IN ('CS', 'Film', 'History')),
CONSTRAINT STUDENT_Minor
CHECK (Minor IN ('CS', 'Film', 'History')),
CONSTRAINT STUDENT_Major_Minor
CHECK (Major!= Minor));

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh
```

CHECK Constraint Minor in-line

```
CREATE TABLE Student (

Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL,
Major CHAR (10)

CHECK (Major IN ('CS', 'Film', 'History')),
Minor CHAR (10)

CHECK ((Minor IN ('CS', 'Film', 'History')

AND (Major != Minor)),

CONSTRAINT STUDENT_PK

PRIMARY KEY (Sid));

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh
```

CHECK Constraint 2

```
No Create Domain in Oracle, so ...

CREATE TABLE Student (
Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL
CHECK (GPA>=0.0 AND GPA <= 4.0);
Major CHAR (10)
CHECK (Major IN ('CS', 'Film', 'History'));
CONSTRAINT STUDENT_PK
PRIMARY KEY (Sid));
```

Constraint Management

ALTER TABLE Student **DROP CONSTRAINT** STUDENT_Major_Minor;

alter table Student add
 constraint STUDENT_Major_Minor
 CHECK (Major != Minor);

- To modify a constraint:
 - drop it first then add a new one

CS1555/2055. Panos K. Chrysanthis - University of Pittsburgh

52

Table Schema Evolution

- The ALTER command allows to alter the domain of an attribute, add and drop an attribute or constraint
- □ ALTER TABLE <table-name> ALTER [COLUMN]
 - Domain change of an attribute

E.g., ALTER TABLE Student

ALTER QPA DECIMAL(4,2);

- Warning: Type Narrowing is possible as in C/C++
- Set or drop the default value of an attribute

E.g.1, ALTER TABLE SECTION

ALTER COLUMN Head DROP DEFAULT;

E.g.2, ALTER TABLE SECTION

ALTER Head SET DEFAULT NULL;

CS1555/2055, Panos K, Chrysanthis - University of Pittsburgh

Table Schema Evolution in Oracle

- □ ALTER TABLE <table-name> MODIFY [COLUMN]
 - Domain change of an attribute

E.g., ALTER TABLE Student

MODIFY QPA DECIMAL(4,2);

• Set or drop the default value of an attribute

E.g.1, ALTER TABLE SECTION

MODIFY COLUMN Head DROP DEFAULT;

E.g.2, ALTER TABLE SECTION

MODIFY Head SET DEFAULT NULL;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

54

Modifying a Table Schema...

■ ALTER TABLE <table-name> ADD [COLUMN]

ALTER TABLE LIBRARIAN

ADD Gender gender_dom;

- ALTER TABLE <tbl-name> DROP [COLUMN]... [Option]
 - CASCADE option

ALTER TABLE SECTION

DROP COLUMN Head CASCADE:

RESTRICT option (default)

ALTER TABLE SECTION

DROP Head RESTRICT;

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh