Nombres complexes: exercices

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Exercice 1: Équation dans $\mathbb C$

Déterminer la solution complexe z_0 de l'équation

$$\frac{z+1}{z-1}=1+i.$$

Exercice 2 : Système d'équations dans C

Déterminer les nombres complexes z_1 et z_2 tels que

$$\begin{cases} 2z_1 + z_2 = 4 \\ -2iz_1 + z_2 = 0 \end{cases}$$

Exercice 3: Impédance complexe

On note j le nombre complexe de module 1 et d'argument $\pi/2$.

On donne le nombre complexe

$$\underline{\alpha} = \frac{\underline{Z}_2}{\underline{Z}_1(\underline{Z}_2 + R) + \underline{Z}_2 R},$$

avec $R = 900, \underline{Z}_1 = 1100j, \underline{Z}_2 = -600j.$

Mettre le nombre complexe $\underline{\alpha}$ sous la forme algébrique a + bj.

Exercice 4: Impédance complexe

On note j le nombre complexe de module 1 et d'argument $\pi/2$.

L'impédance complexe d'un circuit est telle que

$$\underline{Z} = \frac{\underline{Z}_1 \times \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3},$$

avec $\underline{Z}_1 = 1 + 2j$, $\underline{Z}_2 = -1 + 3j$ et $\underline{Z}_3 = 4 + 5j$.

Mettre \underline{Z} sous la forme algébrique a + bj.

Exercice 5 : Écriture sous forme trigonométrique

Déterminer les formes trigonométriques des nombres

$$z_1 = 3i$$
, $z_2 = -5$, $z_3 = 2 - 2i$ $z_4 = 1 + i\sqrt{3}$

Exercice 6: Module et argument d'une puissance

On considère les nombres complexes :

$$z_1 = \sqrt{3} - i$$
, $z_2 = 2 - 2i$, $A = \frac{z_1^4}{z_2^3}$

(où i désigne lme nombre complexe de module 1 et d'argument $\pi/2$).

- 1. a) Déterminer le module et un argument des nombres complexes z_1 , z_2 , z_1^4 , z_2^3 et A.
 - b) En déduire la forme algébrique des nombres complexes z_1^4 , z_2^3 et A.
- 2. Déduire des questions précédentes les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$ Vérifie les résultats obtenus avec votre calculatrice.

Exercice 7: Équation trigonométrique et linéarisation

Le but de cet exercice est la résolution dans l'intervalle $[0, 2\pi[$ de l'équation

$$2\sin x - \sin 3x = 0.$$

- **1.** Soit *x* un nombre réel :
 - a) Développer $(e^{ix} e^{-ix})^3$ et montrer que

$$(e^{ix} - e^{-ix})^3 = (e^{3ix} - e^{-3ix}) - 3(e^{ix} - e^{-ix}).$$

b) Transformer l'égalité précédente à l'aide des formules d'Euler, et en déduire que :

$$4\sin^3 x - \sin x = 2\sin x - \sin 3x.$$

2. Résoudre dans l'intervalle $[0, 2\pi]$ les équations suivantes :

$$a) \sin x = 0,$$

$$\sin x = \frac{1}{2},$$

b)
$$\sin x = \frac{1}{2}$$
, c) $\sin x = -\frac{1}{2}$.

3. En déduire les solutions appartenant à l'intervalle $[0, 2\pi[$ de l'équation

$$2\sin x - \sin 3x = 0.$$

Exercice 8 : Racine carrée dans C

Résoudre dans C l'équation

$$z^2 = 3 - 4i$$
.

Exercice 9 : Èquation du second degré à coefficients dans $\mathbb R$

1. Résoudre dans C l'équation

$$z^2 - 2\sqrt{2}z + 4 = 0.$$

2. Déterminer le module et un argument de chacune des solutions.

Exercice 10 : Èquation du second degré à coefficients dans $\mathbb C$

Calculer $(3-2i)^2$ puis résoudre dans \mathbb{C} l'équation

$$z^2 + z - 1 + 3i = 0$$
.

Exercice 11 : Èquation du second degré à coefficients dans $\mathbb C$

Calculer $(5-3i)^2$ puis résoudre dans \mathbb{C} l'équation

$$z^2 + (5 - i)z + 2 + 5i = 0.$$

Exercice 12 : Équation du second degré dans $\mathbb{C}[X]$

Résoudre dans C l'équation

$$z^2 - (5+3i)z + 10 + 5i = 0.$$

Exercice 13 : Équation dans $\mathbb{C}[X]$ et triangle

On donne le polynôme de la variable complexe z :

$$P(z) = z^3 - (7+3i)z^2 + (16+15i)z + 2 - 36i$$

où *i* désigne le nombre complexe de module 1 et d'argument $\pi/2$.

- **1.** a) Calculer P(2i).
 - b) En déduire une factorisation de P(z) en admettant que, dans \mathbb{C} comme dans \mathbb{R} , si un polynôme s'annule pour z = a, alors il peut s'écrire sous la forme (z a)Q(z) où Q(z) est un polynôme.
- **2.** Résoudre dans \mathbb{C} l'équation P(z) = 0.
- 3. a) Placer dans le plan complexe les points A, B et C d'affi es respectives

$$z_1 = 2i$$
, $z_2 = 3 - 2i$, et $z_3 = 4 + 3i$.

b) Calculer la valeur exacte de la longueur de chaque côté du triangle ABC.

Exercice 14: Linéarisation

Utiliser les formules d'Euler pour transformer en somme l'expression suivante :

$$f(x) = \sin(2x)\sin(3x)$$

Exercice 15: Linéarisation

Linéariser l'expression $\sin^3(2x)$.

Exercice 16: Ligne de niveau

Quel est l'ensemble des points M d'affi e z du plan vérifian |z-3|=2?

Exercice 17: Ligne de niveau

Quel est l'ensemble des points M d'affi e z du plan vérifian $Arg(z - (3 - i)) = \pi/3$?

Exercice 18: Ligne de niveau

On désigne par j le nombre complexe de module 1 et d'argument $\pi/2$.

Déterminer l'ensemble des points M d'affi e z du plan tels que

$$z = 1 - j\frac{L}{C\omega}$$

où L et C sont deux contantes réelles strictement positives et où ω est un réel variant dans l'intervalle $]0, +\infty[$.

Exercice 19: Fonction de transfert en électronique

En électronique, on utilise la « fonction de transfert » \underline{T} de la pulsation ω , défini quand ω décrit l'intervalle $[0, +\infty[$ par :

$$\underline{\mathbf{T}}(\mathbf{\omega}) = \frac{1}{1+j\mathbf{\omega}}.$$

1. Montrer que pour tout nombre réel ω de $[0, +\infty[$, on a :

$$\underline{\mathbf{T}}(\omega) = \frac{1 - j\omega}{1 + \omega^2}.$$

2. Le plan complexe est muni du repère orthonormal (O, \vec{u}, \vec{v}) , unité 20 cm (ou 20 grands carreaux). Placer les points A, B, C, D, E et F d'affi es respectives

$$\underline{T}(0)$$
, $\underline{T}(0,3)$, $\underline{T}(0,5)$, $\underline{T}(1)$, $\underline{T}(2)$, $\underline{T}(3)$.

- 3. Montrer que, pour tout nombre réel ω de $[0, +\infty[$, le point M d'affi e $\underline{T}(\omega)$ est situé sur le demi-cercle inférieur de diamètre [OA].
- **4.** Quel est l'ensemble des points m d'affi e $1 j\omega$ quand ω varie dans $[0, +\infty[$?

Exercice 20: Fonction de transfert en électronique

En électronique, sur un montage, on utilise la « fonction de transfert » \underline{T} de la pulsation ω , défini quand ω décrit l'intervalle $[0, +\infty[$ par :

$$\underline{\mathbf{T}}(\omega) = \frac{4}{(1+j\omega)^3}.$$

1. Calculer

$$\underline{\mathbf{T}}(0), \qquad \underline{\mathbf{T}}\left(\frac{1}{\sqrt{3}}\right), \qquad \underline{\mathbf{T}}(1), \qquad \underline{\mathbf{T}}(\sqrt{3}).$$

2. On modifi le montage précédent et on obtient alors la « nouvelle fonction de transfert » \underline{H} défini par :

$$\underline{\mathbf{H}}(\omega) = \frac{\underline{\mathbf{T}}(\omega)}{1 + \underline{\mathbf{T}}(\omega)}$$

Calculer les modules et argument de $\underline{H}(0)$, $\underline{H}(1)$ et $\underline{H}(\sqrt{3})$.

- 3. Le plan complexe est muni du repère orthonormal (O, \vec{u}, \vec{v}) . Soit A le point d'affi e-1 et M le point d'affi $e \underline{T}(\omega)$.
 - a) Montrer que le module de $\underline{H}(\omega)$ est égal à MO/MA.
 - b) Montrer qu'un argument de $\underline{\underline{H}}(\omega)$ est égal à l'angle $(\overrightarrow{MA}, \overrightarrow{MO})$.
 - c) Utiliser a) et b) pour retrouver les résultats du 2.

Exercice 21 : Une fonction de $\mathbb C$ dans $\mathbb C$, interprétation géométrique

À tout nombre complexe z, on associe le nombre complexe Z défin par

$$Z = z^2 - z + 2$$

(on défini ainsi une fonction de \mathbb{C} vers \mathbb{C}). On appelle respectivement M et M' les images de z et Z dans le plan rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) .

- 1. a) Si M a pour affi e z = -2 + i, quel est l'affi e du point M'?
 - b) Si le point M' a pour affi e Z = 1, quels sont les affi es des points M qui ont M' pour associé?
- 2. a) On pose z = x + iy où x et y sont des nombres réels. Exprimer en fonction de x et y les parties réelles et imaginaires X et Y de Z.
 - b) Quels sont les points M du plan pour lesquels M' appartient à la droite de vecteur directeur \vec{u} passant par O?

Exercice 22: Fonction de $\mathbb C$ dans $\mathbb C$ – Ensembles de points

On pose z = x + iy où x et y sont des nombres réels, et on appelle M l'image de z dans le plan complexe.

À tout nombre complexe $z \neq -i$, on associe le nombre complexe

$$Z = \frac{z + 2i}{1 - iz}.$$

- 1. Déterminer, en fonction de x et y, la partie réelle et la partie imaginaire de Z.
- **2.** Quel est l'ensemble E des points tels que Z soit imaginaire pur ? Tracer E.
- **3.** a) Déterminer une relation entre x et y afi que Z soit réel. Démontrer que cette relation s'écrit qussi sous la forme

$$(x-a)^2 + (y-b)^2 = \frac{1}{4},$$

où a et b sont des réels que l'on déterminera.

b) Quel est l'ensemble F des points M correspondant ? Tracer F.