Centralized State Estimation of Distributed Maritime Autonomous Surface Oceanographers

Rasmus L. Christensen Frederik Juul Nick Østergaard Attila Fodor Tudor Muresan {ralch,nickoe,fjuul,afodor12,tmures12}@es.aau.dk

Department of Electronic Systems, Aalborg University, Denmark

December 20, 2012

Agenda

Introduction Purpose AAUSHIP.01

Path planning
Waypoint generation
Verification

Modeling and Control Theory Verification

State estimation
Theory
Verification

Final test

Kalman estimator

Controller

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

Path planning

Waypoint generation Verification

Modeling and Control Theory

Verification

State estimation Theory

Verification

Final test Kalman estimator

Dept. of Electronic Systems,

Purpose

 Little to no research are currently devoted to maritime autonomous crafts.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Introduction

Purpose

ΔΔLISHIP 01

Path planning

Waypoint generation

Verification

Modeling and Control Theory

Verification

State estimation Theory

Verification

Kalman estimator

Purpose

▶ During the 2012 Fukushima accident in Japan, no measurements of the spread of radioactivity was available in the coastal zones, thus relying only on estimates.

Centralized State Estimation of Distributed Maritime Autonomous Surface Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

Modeling and Control

Verification

Purpose

- ► Little to no research are currently devoted to maritime autonomous crafts.
- During the 2012 Fukushima accident in Japan, no measurements of the spread of radioactivity was available in the coastal zones, thus relying only on estimates.
- ► The coastal area around Greenland has no up-to-date baymethric maps available, and with the growing interest in Greenland (both industrially and commercially) this poses a threat to the ships going in and out of the fjords.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

ΔΔLISHIP 01

AAUSHIP.01

Waypoint generation

Waypoint generation Verification

Modeling and Control

State estimation

Verification

Final test Kalman estimator

ONLY WAS ALBURED

Ship development

- ▶ During the project a ship was developed, using 3D modeling and rapid prototyping.
- ▶ The ship is developed as a non-planing displacement hull.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Introduction

4 AAUSHIP.01

Path planning
Waypoint generation

Waypoint generation Verification

Modeling and Control Theory

Verification

State estimation

Verification

Kalman estimator

Path Planning Considerations and Description

Considerations

- ▶ The path planner must be memory efficient.
- The path planner should consider the coastal line to be covered.
- ▶ The path planner should create an efficient path.

Straight and Turning segments

- ▶ Straight segments are generated by having a fixed minimum distance from the shore line, and then define a distance between the measuring lines. This cannot be optimized, as straight lines are, well straight lines.
- ► Turning segments are however more interesting, as these can be optimized.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

AAUSHIP.01

5 Path planning

Waypoint generation

Modeling and Control

Verification

Theory

Verification

Calman estimator

Theory

► The path planner is based around the Train transition problem, originally posed by ¹.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Introduction Purpose

AAUSHIP.01

6 Path planning
Waypoint generation

Waypoint generation Verification

Modeling and Control

Theory Verification

State estimation Theory

Verification

Final test
Kalman estimator

Controller

¹Arthur N. Talbot, *The Railway Transition Spiral*, 1901

Path Planning Theory

Theory

- ▶ The path planner is based around the Train transition problem, originally posed by 1.
- ▶ The problem describes that a vehicle in motion, can maintain a linear angular acceleration if the amount of jerk j experienced by the ship is kept constant.

Centralized State Estimation of Distributed Maritime Autonomous Surface Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Path planning

Modeling and Control

Verification

Kalman estimator

¹Arthur N. Talbot, The Railway Transition Spiral, 1901

Theory

- ► The path planner is based around the Train transition problem, originally posed by ¹.
- ► The problem describes that a vehicle in motion, can maintain a linear angular acceleration if the amount of jerk *j* experienced by the ship is kept constant.
- ► To keep the jerk *j* constant, the theory defines the path using the two normalized Fresnel integrals, that when plotted produces the Euler spiral. The Fresnel integrals are given as:

$$C_F(x) = \int_0^x \cos(t^2) dt, \quad S_F(x) = \int_0^x \sin(t^2) dt$$
 (1)

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

Path planning

Waypoint generation

Verification

Modeling and Control

.

itate estimat

Verification

Final test Kalman estimator

¹Arthur N. Talbot, *The Railway Transition Spiral*, 1901

Path Planning Threshold definition

- ▶ The path planner is also based on the curvature of the turn the ship is to make κ . This defines if the path should consist of a transition onto a circle, or two Euler spirals (dependent on the curvature).
- ▶ The threshold ε_{max} is defined to be:

$$\varepsilon_{\mathsf{max}} = \frac{\kappa_{\mathsf{max}}^2}{2 \cdot \eta} \tag{2}$$

ightharpoonup Where η is a function described by the highest amount acceleration the ship can experience and the velocity at which it traverses this.

$$\gamma = \frac{\alpha_{\text{max}}}{v_{\text{max}}^2} \tag{3}$$

► This function allows the ship to preserve as much energy as possible, without veering out of course.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface

Oceanographers
Rasmus L.
Christensen, Frederik
Juul, Nick Østergaard,
Attila Fodor, Tudor
Muresan

Purpose Purpose

Path planning

Waypoint generation

Modeling and Control

Contraction

Theory

Verification

Kalman estimator

3-point scenario

▶ The below figure shows the waypoints generated by the ship when $\varepsilon < \varepsilon_{\text{max}}$. This consists of an inward and an outward Euler spiral.

► The waypoints are computed as follows:

$$A_3 = (-X_1, Y_1), C_3 = (0, \frac{y_d}{\cos(\varepsilon)}), E_3 = (X_1, Y_1)$$
 (4)

▶ Where X_1 and Y_1 can be computed as functions of the normalized Euler spirals, with x_d and y_d representing the length:

$$X_1 = x_d \cdot \cos(\varepsilon) + y_d \cdot \sin(\varepsilon), \ Y_1 = X_1 \cdot \tan(\varepsilon)$$
 (5)

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Introduction
Purpose
AAUSHIP 01

Path planning

Waypoint generation

Modeling and Control Theory

State estimation

Verification

Kalman estimator

5-point scenario

ON IN THE STRAIGHT

▶ The below figure shows the waypoints generated by the ship when $\varepsilon > \varepsilon_{\text{max}}$. This consists of a transition from an inward Euler spiral, onto a circle and then a transition from the circle onto an outward Euler spiral.

▶ Adding the two points B_5 and D_5 given as:

$$B_5 = (-R_{\min} \cdot \sin(\varepsilon - \varepsilon_{\max}), \ Y_1 - x_d \cdot \sin(\varepsilon))$$
 (6)

$$D_5 = (R_{\min} \cdot \sin(\varepsilon - \varepsilon_{\max}), \ Y_1 - x_d \cdot \sin(\varepsilon)) \tag{7}$$

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Introduction Purpose

Path planning

Waypoint generation

Verification

Modeling and Control
Theory

State estimation

Verification

Final test

Kalman estimator Controller

► To verify that the planner works properly, a random shoreline have been generated using a random walk, and a bounding box was drawn, the algorithm was then programmed to generate a shoreline, producing the following results:

▶ The dots on the figure represent the waypoints.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

AAUSHIP.01

Path planning

Verification

Verification

Modeling and Control Theory

Verification

Theory

Verification

Kalman estim Controller

Consideration and Description

Considerations

The model is built using a top-down approach, running the main controls on a high-level interface (HLI). A low-level interface (LLI) handles the actuators and reads all the sensors. The link between these are a simplex 19.2 kbps radio link.

Top layer - HLI

Receives the sensor readings from the LLI and computes actuator set-points which are transmitted to the LLI.

Bottom layer - LLI

Receives the actuator set-points and sets these, then reads the sensors and transmit these readings back.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

AAUSHIP.01

Path planning Waypoint generation

11 Modeling and Control

11 Modeling and Control

Verification

State estimation

Verification

Final test

Calman estimator Controller

State space representation

Assumptions

The model is simplified to a 3-DOF model, with only motion in the x and y direction, as well as rotation about the z-axis defined as θ . The model does not take into account the surge generated by the ship as it moves in the water, and the effects of planing is not taken into account, as the ship is not moving faster than ≈ 1 m/s. With these assumptions the following continuous time state space model have been derived:

$$\begin{bmatrix} \dot{\mathbf{v}} \\ \theta \\ \omega \end{bmatrix} = \begin{bmatrix} -\beta_{\mathbf{v}} & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -\beta_{\omega} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \theta \\ \omega \end{bmatrix} + \begin{bmatrix} m^{-1} & 0 \\ 0 & 0 \\ 0 & I^{-1} \end{bmatrix} \begin{bmatrix} F \\ \tau \end{bmatrix}$$
(8)

4 non-linear terms appear in the equation. Namely the β terms and the computations of the forward force F and the torque τ .

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

AAUSHIP 01

Path planning

Waypoint generation Verification

Modeling and Control

Theory
Verification

Theory

Verification

-inal test

Kalman estimator

Controller

F and τ terms

The force F and torque τ are dependent on the same variables, namely the number of revolutions of the propellers n_1 and n_2 . These can be computed by:

$$\begin{bmatrix} n_1^2 \\ n_2^2 \end{bmatrix} = \begin{bmatrix} C_1 & C_1 \\ C_1 \cdot I \cdot \sin(\theta_{\text{stbd.}}) & C_1 \cdot I \cdot \sin(\theta_{\text{port}}) \end{bmatrix}^{-1} \begin{bmatrix} F_{\text{desired}} \\ \tau_{\text{desired}} \end{bmatrix}$$
(9)

Solving for n_1 and n_2 produces:

$$n_1 = \frac{n_1^2}{\mathsf{abs}\{n_1^2\}} \cdot \sqrt{n_1^2}, \ n_2 = \frac{n_2^2}{\mathsf{abs}\{n_2^2\}} \cdot \sqrt{n_2^2}$$
 (10)

β term

The β terms are linearized using a Taylor approximation. The constant term is removed in the reference gain of the controller.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Introduction Purpose

Path planning

Waypoint generation Verification

Modeling and Control

Theory

Verification

State estima

Verification

Final test

ontroller

Optimal feedback gain and reference tracking The optimal state feedback gain is computed by minimizing the cost function \mathcal{J} , given as:

$$\mathcal{J} = \int_0^\infty (x^T(t) \cdot Q \cdot x(t) + u^T(t) \cdot R \cdot u(t)) dt \qquad (11)$$

Producing the following feedback gain:

$$F_{\text{opt}} = \begin{bmatrix} 15.1668 & 0 & 0\\ 0 & 2.5165 & 0.7134 \end{bmatrix} \tag{12}$$

The reference gain is computed by augmenting the system as in 2 ., thus producing the reference gain:

$$N_{\text{reference}} = \begin{bmatrix} 24.0668 & 0\\ 0 & 2.5165 \end{bmatrix} \tag{13}$$

Estimation of Distributed Maritime Autonomous Surface Oceanographers

Centralized State

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Introduction Purpose

Purpose AAUSHIP.01

Waypoint generation

Modeling and Control

Theory

Verification

Theory

Verification

Final test

Kalman estimator

²Franklin et. al., Feedback Control of Dynamic Systems, 2010

Modeling and Control Verification

Through simulations, the system have produced the following figures used to verify wether the controller strategy.

Centralized State Estimation of Distributed Maritime Autonomous Surface Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Path planning

Waypoint generation

Modeling and Control Theory

Verification

Verification

Modeling and Control Verification

And testing if the conversion from desired force to revolutions work.

Centralized State Estimation of Distributed Maritime Autonomous Surface Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Waypoint generation Verification

Modeling and Control Theory

Verification

State estimation

Verification

Kalman estimator

Estimated states and input state model

The estimated states are defined as:

$${}^{b}\hat{x_{k}} = \begin{bmatrix} x & \dot{x} & y & \dot{y} & \theta & \omega \end{bmatrix}^{T} \tag{14}$$

As the ship is fitted with an IMU and a GPS, the measured states becomes:

$$v_k = \begin{bmatrix} x & \dot{x} & \ddot{x} & y & \dot{y} & \ddot{y} & \theta & \omega & \alpha \end{bmatrix}^T$$
 (15)

Giving the state model of the system as (ts = 20 Hz):

$$\Phi = diag\{\Phi_x, \Phi_y, \Phi_\omega\} \tag{16}$$

Where the individual Φs are given as:

$$\Phi_{x,y,\omega}(k) = \begin{bmatrix} 1 & t_s & 0\\ 0 & 1 & t_s\\ 0 & -\beta_{x,y,\omega} & 0 \end{bmatrix}$$

$$\tag{17}$$

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

AAUSHIP 01

Path planning

Vaypoint generation Verification

Modeling and Control Theory

State estimation

Theory

Verification

Final test

Kalman estimator

Controller

Theory - zero gaining

As the LLI and HLI are run on two seperate computers, the Kalman filter needs to filter out the measurements which are invalid. This is done by multiplying the Kalman gain \bar{K} by a validity mask-matrix Λ , given as:

$$\Lambda = diag\{\lambda_{x}, \lambda_{\dot{x}}, \lambda_{\ddot{x}}, \lambda_{y}, \lambda_{\dot{y}}, \lambda_{\ddot{y}}, \lambda_{\theta}, \lambda_{\omega}, \lambda_{\alpha}\}$$
(18)

Where the λ s are defined as:

$$\lambda = \begin{cases} 1 & \text{if checksum is valid} \\ 0 & \text{otherwise} \end{cases}$$
 (19)

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

AAUSHIP.01

Waypoint generation

Waypoint generation Verification

Modeling and Control Theory

State estimation

Theory

Verification

Kalman estimato

Verification of State estimator

A test of the Kalman filter, to see if it estimates lost packages was carried out producing. Figure (b) represents the case where GPS measurements are lost for 60 seconds:

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Introduction Purpose

AAUSHIP.01

Waypoint generation

Modeling and Control

Theory

State estimation Theory

19 Verification

Final test Kalman estimator

Verification of State estimator

The absolute error of the position are depicted on the figure below:

Centralized State Estimation of Distributed Maritime Autonomous Surface

Oceanographers Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Path planning

Waypoint generation

Modeling and Control Theory

Verification

Final test

Kalman estimator verification

As the waters around Aalborg have frozen solid, final tests in water have not been carried out, however, tests on land have been carried out, producing the following:

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Introductio

Purpose AAUSHIP 01

Path planning Waypoint generation

Modeling and Control

Verification

State estimation Theory

Verification

Final test

Kalman estimator

Controller

Final test

Engine input verification

UNIVERSITAS ALBURUS

Producing the engine inputs from the controller.

Centralized State
Estimation
of Distributed
Maritime Autonomous
Surface
Oceanographers

Rasmus L. Christensen, Frederik Juul, Nick Østergaard, Attila Fodor, Tudor Muresan

Purpose

Purpose AAUSHIP.01

Path planning Waypoint generation

Waypoint generation Verification

Modeling and Control Theory

State estimation

Theory Verification

Final test

Kalman estimator

Controller

22