Introduction

L'électrocinétique est l'étude des circuits parcourus par des courants électriques c'est-à-dire des déplacements de particules chargées dans les milieux matériels.

C'est une branche de l'électricité qui étudie les circuits électriques dans le cadre de l'approximation des états (ou régimes) quasi-stationnaires (quasi-permanent) qu'on note **ARQP ou ARQS**.

ARQS? (1)

L'approximation des régimes quasi-stationnaires consiste à considérer <u>l'électricité comme un fluide parfait</u> et incompressible dont le débit (l'intensité) se conserve le long d'un conducteur. En d'autres termes, à t donné, l'intensité du courant qui entre à l'extrémité d'un conducteur est exactement identique à celle qui sort de l'autre extrémité.

Cette approximation consiste à dire que quel que soit le régime, l'intensité du courant est la même en tout point d'une branche de circuit.

ARQS? (2)

Par définition, on dira qu'un circuit de dimension L vérifie l'Approximation des Régimes Quasi-Stationnaires (ARQS) si la grandeur temporelle τ liée au circuit est négligeable devant la grandeur temporelle T (ce peut être une période, une fréquence ou une pulsation) caractéristique de l'évolution des grandeurs électriques :

$$T \gg \tau = \frac{L}{c} \text{ soit } L \ll cT$$

 $c = 3.10^8 ms^{-1}$ est la célérité de la lumière dans le vide

ARQS ? (3)

- T: temps de réponse du milieu conducteur lors de la mise sous tension du circuit c'est-à-dire le temps de propagation.
- \Box Pour un métal bon conducteur (cuivre) $\tau = 10^{-14} s$ pour produire un mouvement d'ensemble des porteurs

ARQS \Rightarrow $\begin{cases} i(t) \text{ identique en tout point du circuit pour une branche sans dérivation.} \\ u(t) \text{ identique en tout point du circuit aux bornes d'un dipôle.} \end{cases}$

Charges et Courants électriques (1)

- ☐ Courant de conduction: déplacement de charges électriques dans un support matériel conducteur.
 - \rightarrow électrons de charge négative (q = -e): conducteurs
 - \rightarrow trous de charge (q = +e): semi-conducteurs
 - → ions en solution (cations et ions): électrolytes
- ☐ Courant de convection: déplacement d'un objet luimême chargé
- Courant de particules: déplacement de particules chargées dans le vide.
- On s' intéressera au courant de conduction dans tout le reste du cours

Charges et Courants électriques (2)

FIGURE 2-16

Random motion of free electrons in a material.

FIGURE 2-17

Electrons flow from negative to positive when a voltage is applied across a conductive or semiconductive material.

Charges et Courants électriques (3)

Une charge électrique dq qui traverse une section de circuit S pendant un intervalle de temps dt crée un courant d'intensité i tel que :

$$i = \frac{dq}{dt} \quad \leftrightarrow q = \int idt$$

Charges et Courants électriques (4)

$$i = \frac{dq}{dt} = \vec{J}.\vec{dS}$$

 \tilde{J} représente le vecteur densité de courant exprimé en $A.m^{-2}$. Elle caractérise le mouvement d'ensemble des porteurs de charges dans un circuit électrique

$$\vec{J} = qn \vec{v} = \rho_v \cdot \vec{v} = \rho_v \cdot \mu \cdot \vec{E} = \sigma \cdot \vec{E}$$

 $\vec{j} \begin{cases} \text{direction: } celle \ de \ \vec{v} \\ \text{sens:} \end{cases} \begin{cases} celui \ de \ \vec{v} \ si \ q > 0 \\ \text{sens:} \end{cases}$ $celui \ de \ \vec{v} \ si \ q < 0$ norme: j = n |q| v

 μ peut être positive ou négative

Charges et Courants électriques (5)

☐ Lois des nœuds (1ère loi de Kirchhoff)

$$\sum_{arrivant} I_i = \sum_{sortant} I_j$$

$$i_1 + i_5 = i_2 + i_3 + i_4 + i_6$$

☐ Lois des mailles (2ème loi de Kirchhoff)

$$\sum_{maille} u_i = 0$$

Une maille peut être orientée arbitrairement

Charges et Courants électriques (6)

☐ Lois des branches

Dans le cadre de l'ARQS, l'intensité i est la même en tout point d'une branche : elle ne dépend pas de l'abscisse x le long de la branche.

Dipôles électriques (1)

- Dipôle: tout composant électrique relié à l'extérieur en 2 points seulement appelés bornes du dipôle.
 - Dipôles passifs (résistances, four électrique, radiateur)
 - Dipôles actifs (générateurs, récepteurs)
- ☐ Caractéristique tension-courant d'un dipôle : courbe donnant la tension à ses bornes en fonction de l'intensité qui le parcourt. La caractéristique courant-tension est la courbe inverse.
- □ Point de fonctionnement du circuit : point d'intersection des caractéristiques des deux dipôles

Dipôles électriques (2)

- ☐ Point de fonctionnement: Un point de coordonnées (u_1, i_1) , données de la caractéristique correspondant aux conditions de fonctionnement du dipôle
 - La résistance statique du dipôle au point de fonctionnement

$$R_s = \frac{u_1}{i_1}$$

s'écrit : $\left| \frac{R_s}{R_s} = \frac{u_1}{i_1} \right|$ Elle suffit à l'étude des régimes continus.

-La résistance dynamique du dipôle au point de fonctionnement

s'écrit :
$$R_d = \left(\frac{du}{di}\right)_{u_1, i_1}$$
 Elle est utile pour aborder l'étude des

régimes sinusoïdaux.

Dipôles électriques (3)

☐ Association série

$$u(t) = \sum_{k} u_{k}(t)$$
 et $i_{k}(t) = i(t)$, $\forall k$

☐ Association parallèle

$$i(t) = \sum_{k} i_k(t)$$
 et $u_k(t) = u(t)$, $\forall k$

Dipôles électriques (4)

☐ Puissance électromagnétique reçue par un dipôle

$$\mathcal{P} = u(t).i(t)$$

$$\mathcal{E} = \int_{t_i}^{t_f} u(t) \cdot i(t) dt$$

Dipôles électriques (5)

☐ Convention générateur et récepteur

Convention récepteur

Convention générateur

$$i(t) = i_{AB}(t); \quad u(t) = V_A - V_B \qquad i(t) = i_{AB}(t); \quad u(t) = V_B - V_A$$

Ne pas confondre convention récepteur (ou générateur) et caractère récepteur (ou générateur)

Dipôles électriques (6)

Tableau récapitulatif des conventions

u	+	_	+	_
i	+	+	_	_
Convention récepteur	Le dipôle réel est un récepteur $\mathcal{P} > 0$	Le dipôle réel est un générateur $\mathcal{P} < 0$	Le dipôle réel est un générateur $\mathcal{P} < 0$	Le dipôle réel est un récepteur $\mathcal{P} > 0$
Convention générateur	Le dipôle réel est un générateur $\mathcal{P} > 0$	Le dipôle réel est un récepteur $\mathcal{P} < 0$	Le dipôle réel est un récepteur $\mathcal{P} < 0$	Le dipôle réel est un générateur $\mathcal{P} > 0$

Dipôles électriques (7)

Détermination du caractère générateur/récepteur d'un dipôle

- 1) Identifier une convention pour l'étude de ce dipôle :
- \triangleright si u et i sont orientés dans le même sens, on identifie la convention générateur ;
- \triangleright si u et i sont orientés en sens inverse, on identifie la convention récepteur.
- 2) Déterminer le signe de la puissance algébrique $\mathcal{P} = ui$ dans la convention choisie :
- $ightharpoonup si \mathcal{P} > 0$, alors le dipôle est de même nature que la convention (générateur -générateur ou récepteur récepteur);
- $ightharpoonup si \mathcal{P} < 0$, alors le dipôle est de nature opposée à la convention (générateur récepteur ou récepteur générateur).

Dipôles électriques (8)

☐ Dipôle résistif idéal

Un résistor est modélisé par une résistance R telle que :

- en convention récepteur, il vérifie u = Ri
- en convention générateur, il vérifie u = -Ri

$$R = \frac{1}{G} = \rho \frac{\ell}{S} = \frac{1}{\sigma} \frac{\ell}{S} \qquad G(S); \rho (\Omega.m); \sigma(S.m^{-1})$$

 ρ représente la résistance du fil de section de $1 m^2$ et de longueur 1 m. Il en est de même pour σ .

Dipôles électriques (9)

✓ Association en série

$$R_{eq} = \sum_{i=1}^{N} R_i$$

✓ Association en parallèle

$$\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i}$$

- Cette loi sera généralisable aux autres dipôles linéaires une fois la notion d'impédance introduite.
- ☐ Aspect énergétique: effet joule

$$|P_{reçue} = Ri^2|$$

La résistance absorbe de l'énergie

Dipôles électriques (10)

☐ Dipôle auto-inductif

• En convention récepteur, il vérifie :

$$\left\| \boldsymbol{u} = L\frac{di}{dt} + Ri \right|$$

• En convention générateur, il vérifie : $u = -L \frac{di}{dt}$

$$u = -L\frac{di}{dt} - Ri$$

Pour une bobine idéale R=0.

Dipôles électriques (11)

✓ Association en série

$$L_{eq} = \sum_{i=1}^{N} L_i = L_1 + L_2 + L_3 + \dots + L_N$$

✓ Association en parallèle

$$\frac{1}{L_{eq}} = \sum_{i=1}^{N} \frac{1}{L_i} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_N}$$

✓ Aspect énergétique:

$$\mathcal{E}_L = \frac{1}{2}Li^2$$

- L'inductance se comporte comme un réservoir d'énergie électromagnétique.
- l'intensité du courant traversant une inductance ne peut subir de discontinuité (varier instantanément). En revanche la tension aux bornes de la bobine peut parfaitement varier d'une façon discontinue.

Dipôles électriques (12)

☐ Dipôle capacitif

Le condensateur se comporte comme un réservoir d'énergie électrostatique

Dipôles électriques (13)

La capacité du condensateur est donnée par l'expression suivante :

$$C = \frac{\varepsilon_0 \varepsilon_r S}{e} \quad avec \ \varepsilon_0 = \frac{1}{36 \times \pi \times 10^9} = 8,854\ 187.\ 10^{-12}\ F.\ m^{-1}$$

 ε_0 est la permittivité du vide et ε_r est la permittivité relative. S est m^2 , e en m.

Dipôles électriques (14)

Convention récepteur

$$u=\frac{q}{C}$$
; $i=\frac{dq}{dt}=C\frac{du}{dt}>0$

Le condensateur se charge

Convention générateur

$$u=rac{q}{C}$$
; $i=-rac{dq}{dt}=-Crac{du}{dt}<0$

Le condensateur se décharge

Dipôles électriques (15)

Association en série
$$\frac{1}{C_{eq}} = \sum_{i=1}^{N} \frac{1}{C_i} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

Association en parallèle
$$C_{eq} = \sum_{i=1}^{N} C_i = C_1 + C_2 + C_3 + \cdots + C_N$$

✓ Aspect énergétique:

$$\mathcal{E}_{\mathcal{C}} = \frac{1}{2} C u^2$$

ni la charge, ni la tension aux bornes d'un condensateur ne peuvent varier instantanément. En revanche, le courant qui traverse le condensateur peut subir une discontinuité (varier instantanément).

Dipôles électriques (16)

Association en série
$$\frac{1}{C_{eq}} = \sum_{i=1}^{N} \frac{1}{C_i} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

✓ Association en parallèle
$$C_{eq} = \sum_{i=1}^{N} C_i = C_1 + C_2 + C_3 + \cdots + C_N$$

✓ Aspect énergétique: effet joule

$$\mathcal{E}_{\mathcal{C}} = \frac{1}{2} C u^2$$

ni la charge, ni la tension aux bornes d'un condensateur ne peuvent varier instantanément. En revanche, le courant qui traverse le condensateur peut subir une discontinuité (varier instantanément).

Dipôles électriques (17)

☐ Générateur de tension idéal

Un générateur idéal de tension impose une tension constante E à ses bornes quel que soit le courant i, positif ou negatif débité par celui-ci. La caractéristique u = f(i) d'un générateur idéal de tension est une droite horizontale. La puissance fournie par un tel générateur est $\mathcal{P}_g = Ei$.

Dipôles électriques (18)

☐ Générateur de tension réel

Un générateur de tension réel est une source d'énergie caractérisée par une force électromotrice (f.é.m.) E en série avec une résistance interne R. Lorsqu'il est parcouru par un courant i, la ddp à ses

bornes est :
$$u = E - Ri$$

E est aussi appelée ddp à vide, c'est-à-dire le générateur ne débite pas de courant.

Dipôles électriques (19)

✓ Puissance fournie par un générateur de tension

La puissance fournie par un tel générateur est

$$\mathcal{P}_g = ui = Ei - Ri^2$$

- Le terme **Ei** représente la puissance fournie par le générateur idéal de tension
- Le terme \mathbf{Ri}^2 représente la puissance dissipée par effet joule dans la résistance interne.

Dipôles électriques (20)

✓ Association de générateurs de tension en série

$$E_{eq} = \sum_{k=1}^{N} E_k \quad \text{et} \quad R_{eq} = \sum_{k=1}^{N} R_k$$

Dipôles électriques (21)

✓ Association de générateurs de tension en parallèle

On suppose que les 2 générateurs de tension sont identiques d'amplitude E et de résistance interne R (condition à respecter pour la mise en pratique de 2 générateurs, de tension en

$$E_{eq} = E \quad et \quad R_{eq} = \frac{R}{2}$$

Dipôles électriques (22)

Générateur de courant idéal

Un générateur idéal de courant délivre un courant d'intensité constante η quelle que soit la tension, positive ou négative, aux bornes de celui-ci. La caractéristique d'un générateur idéal de courant est une droite verticale. La puissance fournie par un tel générateur est $\mathcal{P}_g = \eta u$

Dipôles électriques (23)

☐ Générateur de courant réel

Un générateur de courant réel est une source d'énergie comme le générateur de tension. Il est caractérisé par une source de courant idéal ou courant électromoteur η en parallèle avec une résistance interne R. Le courant η est aussi appelé courant de court-circuit. Il est constant quelque soit la ddp u aux bornes du générateur de courant. Lorsque le générateur de courant débite un courant i dans un circuit, i

$$i = \eta - \frac{u}{R}$$

Dipôles électriques (24)

✓ Association de générateurs de courant en parallèle

$$i_{eq} = \sum_{k=1}^{N} i_k$$
 et $G_{eq} = \sum_{k=1}^{N} G_k$

Dipôles électriques (25)

☐ Dipôles récepteurs

Dans un domaine où elle est linéaire, la caractéristique d'un récepteur réel à pour équation (en convention récepteur) :

$$u = E' + R'i$$

Où E' est la force contre-électromotrice (fcém) du récepteur et R' sa résistance interne en ohm.

Dipôles électriques (26)

✓ Puissance fournie par un générateur de tension

La puissance fournie par un tel récepteur est

$$\mathcal{P}_g = ui = E'i + R'i^2$$

- Le terme **E'i** représente la puissance utile du récepteur, c'est à dire la fraction de la puissance électrique reçue par le récepteur pouvant être convertie en une forme d'énergie non thermique.
- Le terme $R'i^2$ représente la puissance dissipée par effet joule dans la résistance interne.

Application des lois de Kirchhoff (1)

Lorsqu'un circuit est constitué de plusieurs mailles, l'écriture systématique des lois de Kirchhoff conduit généralement à un excès d'information. Pour n'écrire que des relations nécessaires il faut :

- 1. Dénombrer les nœuds (n) et les mailles indépendantes (m) dans le circuit.
- 2. Ecrire (n-1) lois des nœuds entre les intensités. Le dernier nœud conduit à une relation redondante. (le nœud inutilisé est indifférent.)

Application des lois de Kirchhoff (2)

- **3.** Ecrire (*m*) lois de mailles. (des mailles sont indépendantes si elles comportent chacune un dipôle que ne comportent pas les autres)
- 4. Injecter les caractéristiques des dipôles dans les lois de mailles, de façon à n'obtenir que des relations entre les intensités (et les grandeurs caractéristiques des dipôles).
- 5. Résoudre le système constitué de b équations dont les b intensités sont les inconnues avec b = n + m 1.