Zastosowanie arkusza kalkulacyjnego do analizy danych

Cel ćwiczenia

Praktyczne zastosowanie arkusza kalkulacyjnego:

- analiza statystycznych danych i wykonywanie obliczeń z zastosowaniem formuł, funkcji arkusza oraz różnych typów adresowania komórek,
- formatowanie komórek arkusza, w tym formatowanie warunkowe,
- wizualizacji wyników obliczeń na wykresach różnych typów oraz formatowanie wykresu.

Zadanie 1

- 1.1. Należy przeprowadzić import danych pomiarowych poboru mocy elektrycznej przez różnych odbiorców. Dane te zapisane są w plikach tekstowych.
- 1.2. Obliczyć wartość średnią (P_{sr}), minimalną (P_{min}) i maksymalną (P_{max}) poboru mocy dla poszczególnych odbiorców.
- 1.3. Obliczyć średni stopień obciążenia dla poszczególnych odbiorców zgodnie z zależnością: $m = P_{sr}/P_{max}$.
- 1.4. Za pomocą opcji formatowania warunkowego zaznaczyć kolorową czcionką zawartość komórek których wartość jest większa od wartości średniej poboru mocy dla poszczególnych odbiorców.
- 1.5. Na wykresie słupkowym przedstawić wartości średnią (P_{sr}), minimalną (P_{min}) i maksymalną (P_{max}) dla poszczególnych odbiorców.

Przykładowy wygląd arkusza pokazano na rys. 1.1.

Rys. 1.1. Wygląd przykładowego arkusza do zad. 1

Funkcja arkusza	Opis						
=SUMA()	Obliczanie sumy podanych argumentów. Jako argument podaje się						
	zwykle adres zakresu komórek, np.						
	=SUMA(A5:A25)						
₹ REDNIA()	Obliczanie średnie arytmetycznej podanych argumentów. Jako argument podaje się zwykle adres zakresu komórek, np. =ŚREDNIA(A5:A25)						
=MIN()	Zwraca najmniejszą wartość ze zbioru wartości. Jako argument podaje się zwykle adres zakresu komórek, np. =MIN(A5:A25)						
=MAX()	Zwraca największą wartość ze zbioru wartości. Jako argument podaje się zwykle adres zakresu komórek, np. =MAX(A5:A25)						

Zadanie 2

2.1. Zależność ciśnienia od temperatury i objętości pewnych gazów opisuje równanie:

$$P = \frac{RTV^{2} - x(V - y)}{(V - y)V^{2}},$$
(1)

gdzie: P – ciśnienie, T – temperatura, V – objętość, R = 0,08206 – stała gazowa, x = 3,7; y = 0,05.

2.2 Należy sporządzić w arkuszu tablice prezentujące ciśnienie w zależności od objętości zakresie $0.1-1~\text{m}^3$ z krokiem $0.1~\text{m}^3$ i temperatury w zakresie 30-100~C z krokiem 10~C.

Uwaga: temperatura we wzorze (1) jest podana w K. Zależność między skalami temperatury:

$$T[K] = t[^{\circ}C] + 273,16.$$

2.3. Sporządzić na jednym wykresie zależność P = f(V) dla temperatur 30, 60 i 100 °C.

Uwaga: wykorzystać różne rodzaje adresowania komórek (względne, bezwzględne i mieszane

Przykładowy wygląd arkusza pokazano na rys. 2.1.

I	В	С	D	Е	F	G	Н	
1								
1								
1			R=	0,08206	a=	3,7	b=	0,05
4								
1			_					
\perp			t ,st C	30	40	50		
		V	T, K	303,16	313,16			
		0,1		127,5462	143,9582	160,3702		
		0,2		73,34873	78,8194	84,29006		
		0,3		58,39813				
		0,4		47,95303				
		0,5		40,48291	42,30647	44,13002		

Rys. 2.1. Wygląd przykładowego arkusza do zad. 2