A Book of Abstract Algebra (2nd Edition)

≡	Chapter 27, Problem 1ED	K 71
	Problem	
<	Let F be any field. Prove part: If c is algebraic over F , so are $c+1$ and kc (where $k \in F$).	>
	Step-by-step solution	
	Step 1 of 4 ^	
	Let F be any field. If c is algebraic over F , so are $c+1$ and kc where $k \in F$.	
	Comment	
	Step 2 of 4 ^	
	Since c is algebraic over F , there exists a polynomial $f(x) \in F[x]$ such that $f(c) = 0$. We need to find a polynomial over F such that $c+1$ is root of that polynomial. Consider the polynomial $g(x) = f(x-1)$ in $F[x]$. Then, $g(1+c) = f(1+c-1)$ $= f(c)$ $= 0$	
	Therefore, $1+c$ is also algebraic over ${\it F}$. Comment	
	Step 3 of 4 A	
	Now for any $k \neq 0$ in F , k^{-1} exist in F as F is field. Consider $h(x) = f(xk^{-1})$ in $F[x]$. Then, $h(ck) = f(ckk^{-1})$ $= f(c \cdot 1)[1]$ is unity in $F[x]$ $= f(c)$ $= 0$ Therefore, ck is also algebraic over F	
	Comment	
	Step 4 of 4 A	
	Comment	

2 4 B