Discreta II: Pasos para las demos

Mansilla, Kevin Gaston*

18 de junio de 2023

- 1) Cual es la complejidad del algoritmo de Edmonds-Karp? Probarlo (Nota: en la prueba se definen unas distancias, y se prueba que esas distancias no disminuyen en pasos sucesivos de EK. Ud. puede usar esto sin necesidad de probarlo.)
- 2) Probar que si, dados vértices x, z y flujo f definimos a la distancia entre x y z relativa a f como la longitud del menor f-camino aumentante entre x y z, si es que existe tal camino, o infinito si no existe o 0 si x=z, denotandola por $d_f(x,z)$, y definimos $d_k(x)=d_{f_k}(s,x)$, donde f_k es el k-ésimo flujo en una corrida de Edmonds-Karp, entonces $d_k(x) \leq d_{k+1}(x)$
- 3) Cual es la complejidad del algoritmo de Dinic? Probarla en ambas versiones: Dinitz original y Dinic-Even. (no hace falta probar que la distancia en networks auxiliares sucesivos aumenta)
- 4) Cual es la complejidad del algoritmo de Wave? Probarla. (no hace falta probar que la distancia en networks auxiliares sucesivos aumenta).
- 5) Probar que la distancia en networks auxiliares sucesivos aumenta.
- 6) Si f es flujo las siguientes son equivalentes:
 - 1. $\exists S \text{ corte: } v(f) = cap(S)$ 2. f es maximal. (1 = 2) dice:" $f \text{ maximal} \iff \exists S \text{ corte } v(f) = cap(S)$ "
 y se suele llamar 'max-flow-min-cut theorem'.
 - 3. $\nexists f$ —caminos aumentanes entre s y t y si se cumplen, el s es minimal.
- 7) Probar que 2-COLOR es polinomial.
- 8) Enunciar y probar el Teorema de Hall.
- 9) Enunciar y probar el teorema del matrimonio de Konig

^{*}kevingston47@gmail.com

- 10) Probar que si G es bipartito entonces $\chi'(G) = \Delta(G)$
- 11) Probar la complejidad $O(n^4)$ del algoritmo Hungaro y dar una idea de como se la puede reducir a $O(n^3)$.
- 12) Enunciar el teorema de la cota de Hamming y probarlo
- 13) Probar que si H es matriz de chequeo de C, entonces

$$\delta(C) = \min j : \exists$$
 un conjunto de j columnas LD de H

(LD es linealmente dependiente)

- 14) (Fundamental de código ciclico) Sea C un código ciclico de longitud n con generador g(x) entonces:
 - 1) $C = \{p(x) \in \mathbb{Z}_2(x) : gr(p) < n \land g(x)|p(x)\}$ por esto se dice que C es generador (son los multiplicos de g(x) de menor grado).
 - 2) $C = \{v(x) \odot g(x) : v \in \mathbb{Z}_2(x)\}$ son los multiplos de g modulares.
 - 3) Si k = Dim(C) entonces gr(g) = n k.
 - **4)** $g(x)|(1+x^n)$.
 - 5) Si $g(x) = g_0 + g_1 x + \ldots +$ entonces $g_0 = 1$.
- 15) Probar que 3SAT es NP-completo
- 16) Probar que 3-COLOR es NP-completo