

SEQUENCE LISTING

<110> Wands, Jack R.
de la Monte, Suzanne M
Deutch, Alan H
Ghanbari, Hossein A

<120> DIAGNOSIS AND TREATMENT OF MALIGNANT NEOPLASMS

<130> 21486-032 CIP

<140> USSN 09/859,604

<141> 2001-05-17

<150> 09/436,184

<151> 1999-11-08

<160> 13

<170> PatentIn Ver. 2.1

<210> 1

<211> 36

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
EGF-like domain

<220>

<221> VARIANT

<222> (2)..(8)

<223> Wherein any Xaa may be any amino acid

<220>

<221> VARIANT

<222> (10)..(13)

<223> Wherein Xaa is any amino acid.

<220>

<221> VARIANT

<222> (15)..(24)

<223> Wherein Xaa is any amino acid.

<220>

<221> VARIANT

<222> (26)

<223> Wherein Xaa is any amino acid.

<220>

<221> VARIANT

<222> (28)..(35)

<223> Wherein Xaa is any amino acid.

<400> 1

Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Cys Xaa Xaa
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Cys Xaa Xaa Xaa Xaa
20 25 30

Xaa Xaa Xaa Cys

35

<210> 2

<211> 758

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Gln Arg Lys Asn Ala Lys Ser Ser Gly Asn Ser Ser Ser
1 5 10 15

Gly Ser Gly Ser Gly Ser Thr Ser Ala Gly Ser Ser Ser Pro Gly Ala
20 25 30

Arg Arg Glu Thr Lys His Gly Gly His Lys Asn Gly Arg Lys Gly Gly
35 40 45

Leu Ser Gly Thr Ser Phe Phe Thr Trp Phe Met Val Ile Ala Leu Leu
50 55 60

Gly Val Trp Thr Ser Val Ala Val Val Trp Phe Asp Leu Val Asp Tyr
65 70 75 80

Glu Glu Val Leu Gly Lys Leu Gly Ile Tyr Asp Ala Asp Gly Asp Gly
85 90 95

Asp Phe Asp Val Asp Asp Ala Lys Val Leu Leu Gly Leu Lys Glu Arg
100 105 110

Ser Thr Ser Glu Pro Ala Val Pro Pro Glu Glu Ala Glu Pro His Thr
115 120 125

Glu Pro Glu Glu Gln Val Pro Val Glu Ala Glu Pro Gln Asn Ile Glu
130 135 140

Asp Glu Ala Lys Glu Gln Ile Gln Ser Leu Leu His Glu Met Val His
145 150 155 160

Ala Glu His Val Glu Gly Glu Asp Leu Gln Gln Glu Asp Gly Pro Thr
165 170 175

Gly Glu Pro Gln Gln Glu Asp Asp Glu Phe Leu Met Ala Thr Asp Val
180 185 190

Asp Asp Arg Phe Glu Thr Leu Glu Pro Glu Val Ser His Glu Glu Thr
195 200 205

Glu His Ser Tyr His Val Glu Glu Thr Val Ser Gln Asp Cys Asn Gln
210 215 220

Asp Met Glu Glu Met Met Ser Glu Gln Glu Asn Pro Asp Ser Ser Glu
225 230 235 240

Pro Val Val Glu Asp Glu Arg Leu His His Asp Thr Asp Asp Val Thr
245 250 255

Tyr Gln Val Tyr Glu Glu Gln Ala Val Tyr Glu Pro Leu Glu Asn Glu
260 265 270

Gly Ile Glu Ile Thr Glu Val Thr Ala Pro Pro Glu Asp Asn Pro Val
275 280 285

Glu Asp Ser Gln Val Ile Val Glu Glu Val Ser Ile Phe Pro Val Glu
290 295 300

Glu Gln Gln Glu Val Pro Pro Glu Thr Asn Arg Lys Thr Asp Asp Pro
305 310 315 320

Glu Gln Lys Ala Lys Val Lys Lys Lys Pro Lys Leu Leu Asn Lys
325 330 335

Phe Asp Lys Thr Ile Lys Ala Glu Leu Asp Ala Ala Glu Lys Leu Arg
340 345 350

Lys Arg Gly Lys Ile Glu Glu Ala Val Asn Ala Phe Lys Glu Leu Val
355 360 365

Arg Lys Tyr Pro Gln Ser Pro Arg Ala Arg Tyr Gly Lys Ala Gln Cys
370 375 380

Glu Asp Asp Leu Ala Glu Lys Arg Arg Ser Asn Glu Val Leu Arg Gly
385 390 395 400

Ala Ile Glu Thr Tyr Gln Glu Val Ala Ser Leu Pro Asp Val Pro Ala
405 410 415

Asp Leu Leu Lys Leu Ser Leu Lys Arg Arg Ser Asp Arg Gln Gln Phe
420 425 430

Leu Gly His Met Arg Gly Ser Leu Leu Thr Leu Gln Arg Leu Val Gln
435 440 445

Leu Phe Pro Asn Asp Thr Ser Leu Lys Asn Asp Leu Gly Val Gly Tyr
450 455 460

Leu Leu Ile Gly Asp Asn Asp Asn Ala Lys Lys Val Tyr Glu Glu Val
465 470 475 480

Leu Ser Val Thr Pro Asn Asp Gly Phe Ala Lys Val His Tyr Gly Phe
485 490 495

Ile Leu Lys Ala Gln Asn Lys Ile Ala Glu Ser Ile Pro Tyr Leu Lys
500 505 510

Glu Gly Ile Glu Ser Gly Asp Pro Gly Thr Asp Asp Gly Arg Phe Tyr
515 520 525

Phe His Leu Gly Asp Ala Met Gln Arg Val Gly Asn Lys Glu Ala Tyr
530 535 540

Lys Trp Tyr Glu Leu Gly His Lys Arg Gly His Phe Ala Ser Val Trp
545 550 555 560

Gln Arg Ser Leu Tyr Asn Val Asn Gly Leu Lys Ala Gln Pro Trp Trp
565 570 575

Thr Pro Lys Glu Thr Gly Tyr Thr Glu Leu Val Lys Ser Leu Glu Arg
580 585 590

Asn Trp Lys Leu Ile Arg Asp Glu Gly Leu Ala Val Met Asp Lys Ala
595 600 605

Lys Gly Leu Phe Leu Pro Glu Asp Glu Asn Leu Arg Glu Lys Gly Asp
610 615 620

Trp Ser Gln Phe Thr Leu Trp Gln Gln Gly Arg Arg Asn Glu Asn Ala
625 630 635 640

Cys Lys Gly Ala Pro Lys Thr Cys Thr Leu Leu Glu Lys Phe Pro Glu
645 650 655

Thr Thr Gly Cys Arg Arg Gly Gln Ile Lys Tyr Ser Ile Met His Pro
660 665 670

Gly Thr His Val Trp Pro His Thr Gly Pro Thr Asn Cys Arg Leu Arg
675 680 685

Met His Leu Gly Leu Val Ile Pro Lys Glu Gly Cys Lys Ile Arg Cys
690 695 700

Ala Asn Glu Thr Arg Thr Trp Glu Glu Gly Lys Val Leu Ile Phe Asp
705 710 715 720

Asp Ser Phe Glu His Glu Val Trp Gln Asp Ala Ser Ser Phe Arg Leu
725 730 735

Ile Phe Ile Val Asp Val Trp His Pro Glu Leu Thr Pro Gln Gln Arg
740 745 750

Arg Ser Leu Pro Ala Ile
755

<210> 3
<211> 2324
<212> DNA
<213> Homo sapiens

<400> 3
cggaccgtgc aatggcccag cgtaagaatg ccaagagcag cggcaacagc agcagcagcg 60
gctccggcag cggttagcact agtgcgggca gcagcagccc cggggcccg agagagacaa 120
agcatggagg acacaagaat gggaggaaag gcggactctc gggacttca ttcttcacgt 180
ggtttatggt gattgcattt ctgggcgtct ggacatctgt agctgtcgtt tggtttgcgt 240
ttgttgcata tgaggaagtt ctagggaaac taggaatcta tgatgctgtat ggtgatggag 300
attttgatgtt ggtatgtgcc aaagttttat taggacttaa agagagatct acttcagagc 360
cagcagtccc gccagaagag gctgagccac acactgagcc cgaggagcag gttcctgtgg 420
agcagaacc ccagaatatac gaagatgaag caaaaagaaca aattcagttcc cttctccatg 480
aaatggtaca cgcagaacat gttgagggag aagacttgca acaagaagat ggacccacag 540
gagaaccaca acaagaggat gatgagtttc ttatggcgtac tgatgtat gatagattt 600
agacccttgg aacctgaagta tctcatgaag aaaccggcgtac tagttaccac gtggaaagaga 660
cagtttcaca agactgtaat caggatatgg aagagatgtat gtctgagcag gaaaatccag 720
atccactgtca accagtagta gaagatgaaa gattgcacca tgatacagat gatgtacat 780
accaagtctta tgaggaacaa gcagtatatg aacctctaga aatgaaggg atagaatca 840
cagaagtaac tgctccccctt gaggataatc ctgttagaaga ttcacaggtt attgttagaag 900
aagtaagcat ttttcctgtg gaagaacagc aggaagtacc accagaaaca aatagaaaaa 960
cagatgatcc agaacaaaaa gcaaaaagtta agaaaaagaa gcctaaactt ttaaataat 1020

ttgataagac tattaaagct gaacttgatg ctgcagaaaa actccgtaaa agggaaaaaa 1080
ttgaggaagc agtgaatgca tttaaagaac tagtacgcaa ataccctcag agtccacgag 1140
caagatatgg gaaggcgcag tgtgaggatg atttggctga gaagaggaga agtaatgagg 1200
tgctacgtgg agccatcgag acctaccaag aggtggccag cctacctgat gtccctgcag 1260
acctgctgaa gctgagttt aagcgtcgt cagacaggca acaatttcta ggtcatatga 1320
gagggtccct gcttaccctg cagagattag ttcaactatt tcccaatgat acttccttaa 1380
aaaatgacct tggcgtggta tacctcttga taggagataa tgacaatgca aagaaagttt 1440
atgaagaggt gctgagtgatg acacctaatg atggcttgc taaagtccat tatggcttca 1500
tcctgaaggc acagaacaaa attgctgaga gcatccata tttaaaggaa ggaatagaat 1560
ccggagatcc tggcactgat gatggagat tttatttcca cctggggat gccatgcaga 1620
gggttggaa caaagaggca tataagtggt atgagcttgg gcacaagaga ggacactttg 1680
catctgtctg gcaacgctca ctctacaatg tgaatggact gaaagcacag cttgggtgga 1740
ccccaaaaga aacgggctac acagagttt taaagtcttt agaaagaaac tggaagttaa 1800
tccgagatga aggccctgca gtgatggata aagccaaagg tctcttcctg cctgaggatg 1860
aaaacctgag ggaaaaaggg gactggagcc agttcacgct gtggcagcaa ggaagaagaa 1920
atgaaaatgc ctgcaagga gctcctaaaa cctgtacctt actagaaaag ttccccgaga 1980
caacaggatg cagaagagga cagatcaaatttccatcat gcaccccccggg actcacgtgt 2040
ggccgcacac agggcccaca aactgcaggc tccgaatgca cctggcttg gtgattccca 2100
aggaaggctg caagattcga tgtgccaacg agaccaggac ctgggagggaa ggcaaggtgc 2160
tcatcttta tgactccctt gggcacgagg tatggcagga tgcctcatct ttccggctgaa 2220
tattcatcg tggatgtgtgg catccggaaac tgacaccaca gcagagacgc agccttccag 2280
caatttagca tgaattcatg caagcttggg aaactctgga gaga 2324

<210> 4
<211> 31
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: EGF-like
cysteine-rich repeat

<220>
<221> VARIANT
<222> (2)..(5)
<223> Wherein any Xaa may be any amino acid

<220>
<221> VARIANT
<222> (7)..(8)
<223> Wherein Xaa is any amino acid.

<220>
<221> VARIANT
<222> (10)
<223> Wherein Xaa is any amino acid.

<220>
<221> VARIANT
<222> (14)
<223> Wherein Xaa is any amino acid.

<220>
<221> VARIANT
<222> (17) .. (18)
<223> Wherein Xaa is any amino acid.

<220>
<221> VARIANT
<222> (25) .. (26)
<223> Wherein Xaa is any amino acid.

<220>
<221> VARIANT
<222> (29)
<223> Wherein Xaa is any amino acid.

<400> 4
Cys Asp Xaa Xaa Xaa Cys Xaa Xaa Lys Xaa Gly Asn Gly Xaa Cys Asp
1 5 10 15

Xaa Xaa Cys Asn Asn Ala Ala Cys Xaa Xaa Asp Gly Xaa Asp Cys
20 25 30

<210> 5
<211> 1242
<212> PRT
<213> Homo sapiens

<400> 5
Met Ala Ser Pro Pro Glu Ser Asp Gly Phe Ser Asp Val Arg Lys Val
1 5 10 15

Gly Tyr Leu Arg Lys Pro Lys Ser Met His Lys Arg Phe Phe Val Leu
20 25 30

Arg Ala Ala Ser Glu Ala Gly Gly Pro Ala Arg Leu Glu Tyr Tyr Glu
35 40 45

Asn Glu Lys Lys Trp Arg His Lys Ser Ser Ala Pro Lys Arg Ser Ile
50 55 60

Pro Leu Glu Ser Cys Phe Asn Ile Asn Lys Arg Ala Asp Ser Lys Asn
65 70 75 80

Lys His Leu Val Ala Leu Tyr Thr Arg Asp Glu His Phe Ala Ile Ala
85 90 95

Ala Asp Ser Glu Ala Glu Gln Asp Ser Trp Tyr Gln Ala Leu Leu Gln
100 105 110

Leu His Asn Arg Ala Lys Gly His His Asp Gly Ala Ala Ala Leu Gly
115 120 125

Ala Gly Gly Gly Gly Ser Cys Ser Gly Ser Ser Gly Leu Gly Glu
130 135 140

Ala Gly Glu Asp Leu Ser Tyr Gly Asp Val Pro Pro Gly Pro Ala Phe
145 150 155 160

Lys Glu Val Trp Gln Val Ile Leu Lys Pro Lys Gly Leu Gly Gln Thr
165 170 175

Lys Asn Leu Ile Gly Ile Tyr Arg Leu Cys Leu Thr Ser Lys Thr Ile
180 185 190

Ser Phe Val Lys Leu Asn Ser Glu Ala Ala Ala Val Val Leu Gln Leu
195 200 205

Met Asn Ile Arg Arg Cys Gly His Ser Glu Asn Phe Phe Phe Ile Glu
210 215 220

Val Gly Arg Ser Ala Val Thr Gly Pro Gly Glu Phe Trp Met Gln Val
225 230 235 240

Asp Asp Ser Val Val Ala Gln Asn Met His Glu Thr Ile Leu Glu Ala
245 250 255

Met Arg Ala Met Ser Asp Glu Phe Arg Pro Arg Ser Lys Ser Gln Ser
260 265 270

Ser Ser Asn Cys Ser Asn Pro Ile Ser Val Pro Leu Arg Arg His His
275 280 285

Leu Asn Asn Pro Pro Pro Ser Gln Val Gly Leu Thr Arg Arg Ser Arg
290 295 300

Thr Glu Ser Ile Thr Ala Thr Ser Pro Ala Ser Met Val Gly Gly Lys
305 310 315 320

Pro Gly Ser Phe Arg Val Arg Ala Ser Ser Asp Gly Glu Gly Thr Met
325 330 335

Ser Arg Pro Ala Ser Val Asp Gly Ser Pro Val Ser Pro Ser Thr Asn
340 345 350

Arg Thr His Ala His Arg His Arg Gly Ser Ala Arg Leu His Pro Pro
355 360 365

Leu Asn His Ser Arg Ser Ile Pro Met Pro Ala Ser Arg Cys Ser Pro
370 375 380

Ser Ala Thr Ser Pro Val Ser Leu Ser Ser Ser Thr Ser Gly His
385 390 395 400

Gly Ser Thr Ser Asp Cys Leu Phe Pro Arg Arg Ser Ser Ala Ser Val
405 410 415

Ser Gly Ser Pro Ser Asp Gly Gly Phe Ile Ser Ser Asp Glu Tyr Gly
420 425 430

Ser Ser Pro Cys Asp Phe Arg Ser Ser Phe Arg Ser Val Thr Pro Asp
435 440 445

Ser Leu Gly His Thr Pro Pro Ala Arg Gly Glu Glu Glu Leu Ser Asn
450 455 460

Tyr Ile Cys Met Gly Gly Lys Gly Pro Ser Thr Leu Thr Ala Pro Asn
465 470 475 480

Gly His Tyr Ile Leu Ser Arg Gly Gly Asn Gly His Arg Cys Thr Pro
485 490 495

Gly Thr Gly Leu Gly Thr Ser Pro Ala Leu Ala Gly Asp Glu Ala Ala
500 505 510

Ser Ala Ala Asp Leu Asp Asn Arg Phe Arg Lys Arg Thr His Ser Ala
515 520 525

Gly Thr Ser Pro Thr Ile Thr His Gln Lys Thr Pro Ser Gln Ser Ser
530 535 540

Val Ala Ser Ile Glu Glu Tyr Thr Glu Met Met Pro Ala Tyr Pro Pro
545 550 555 560

Gly Gly Gly Ser Gly Gly Arg Leu Pro Gly His Arg His Ser Ala Phe
565 570 575

Val Pro Thr Arg Ser Tyr Pro Glu Glu Gly Leu Glu Met His Pro Leu
580 585 590

Glu Arg Arg Gly Gly His His Arg Pro Asp Ser Ser Thr Leu His Thr
595 600 605

Asp Asp Gly Tyr Met Pro Met Ser Pro Gly Val Ala Pro Val Pro Ser
610 615 620

Gly Arg Lys Gly Ser Gly Asp Tyr Met Pro Met Ser Pro Lys Ser Val
625 630 635 640

Ser Ala Pro Gln Gln Ile Ile Asn Pro Ile Arg Arg His Pro Gln Arg
645 650 655

Val Asp Pro Asn Gly Tyr Met Met Ser Pro Ser Gly Gly Cys Ser
660 665 670

Pro Asp Ile Gly Gly Pro Ser Ser Ser Ser Ser Asn Ala
675 680 685

Val Pro Ser Gly Thr Ser Tyr Gly Lys Leu Trp Thr Asn Gly Val Gly
690 695 700

Gly His His Ser His Val Leu Pro His Pro Lys Pro Pro Val Glu Ser
705 710 715 720

Ser Gly Gly Lys Leu Leu Pro Cys Thr Gly Asp Tyr Met Asn Met Ser
725 730 735

Pro Val Gly Asp Ser Asn Thr Ser Ser Pro Ser Asp Cys Tyr Tyr Gly
740 745 750

Pro Glu Asp Pro Gln His Lys Pro Val Leu Ser Tyr Tyr Ser Leu Pro
755 760 765

Arg Ser Phe Lys His Thr Gln Arg Pro Gly Glu Pro Glu Glu Gly Ala
770 775 780

Arg His Gln His Leu Arg Leu Ser Thr Ser Ser Gly Arg Leu Leu Tyr
785 790 795 800

Ala Ala Thr Ala Asp Asp Ser Ser Ser Ser Thr Ser Ser Asp Ser Leu
805 810 815

Gly Gly Gly Tyr Cys Gly Ala Arg Leu Glu Pro Ser Leu Pro His Pro
820 825 830

His His Gln Val Leu Gln Pro His Leu Pro Arg Lys Val Asp Thr Ala
835 840 845

Ala Gln Thr Asn Ser Arg Leu Ala Arg Pro Thr Arg Leu Ser Leu Gly
850 855 860

Asp Pro Lys Ala Ser Thr Leu Pro Arg Ala Arg Glu Gln Gln Gln
865 870 875 880

Gln Gln Pro Leu Leu His Pro Pro Glu Pro Lys Ser Pro Gly Glu Tyr
885 890 895

Val Asn Ile Glu Phe Gly Ser Asp Gln Ser Gly Tyr Leu Ser Gly Pro
900 905 910

Val Ala Phe His Ser Ser Pro Ser Val Arg Cys Pro Ser Gln Leu Gln
915 920 925

Pro Ala Pro Arg Glu Glu Glu Thr Gly Thr Glu Glu Tyr Met Lys Met
930 935 940

Asp Leu Gly Pro Gly Arg Arg Ala Ala Trp Gln Glu Ser Thr Gly Val
945 950 955 960

Glu Met Gly Arg Leu Gly Pro Ala Pro Pro Gly Ala Ala Ser Ile Cys
965 970 975

Arg Pro Thr Arg Ala Val Pro Ser Ser Arg Gly Asp Tyr Met Thr Met
980 985 990

Gln Met Ser Cys Pro Arg Gln Ser Tyr Val Asp Thr Ser Pro Ala Ala
995 1000 1005

Pro Val Ser Tyr Ala Asp Met Arg Thr Gly Ile Ala Ala Glu Glu Val
1010 1015 1020

Ser Leu Pro Arg Ala Thr Met Ala Ala Ala Ser Ser Ser Ala Ala
1025 1030 1035 1040

Ser Ala Ser Pro Thr Gly Pro Gln Gly Ala Ala Glu Leu Ala Ala His
1045 1050 1055

Ser Ser Leu Leu Gly Gly Pro Gln Gly Pro Gly Gly Met Ser Ala Phe
1060 1065 1070

Thr Arg Val Asn Leu Ser Pro Asn Arg Asn Gln Ser Ala Lys Val Ile
1075 1080 1085

Arg Ala Asp Pro Gln Gly Cys Arg Arg Arg His Ser Ser Glu Thr Phe
1090 1095 1100

Ser Ser Thr Pro Ser Ala Thr Arg Val Gly Asn Thr Val Pro Phe Gly
1105 1110 1115 1120

Ala Gly Ala Ala Val Gly Gly Gly Ser Ser Ser Ser Glu
1125 1130 1135

Asp Val Lys Arg His Ser Ser Ala Ser Phe Glu Asn Val Trp Leu Arg
1140 1145 1150

Pro Gly Glu Leu Gly Gly Ala Pro Lys Glu Pro Ala Lys Leu Cys Gly
1155 1160 1165

Ala Ala Gly Gly Leu Glu Asn Gly Leu Asn Tyr Ile Asp Leu Asp Leu
1170 1175 1180

Val Lys Asp Phe Lys Gln Cys Pro Gln Glu Cys Thr Pro Glu Pro Gln
1185 1190 1195 1200

Pro Pro Pro Pro Pro Pro His Gln Pro Leu Gly Ser Gly Glu Ser
1205 1210 1215

Ser Ser Thr Arg Arg Ser Ser Glu Asp Leu Ser Ala Tyr Ala Ser Ile
1220 1225 1230

Ser Phe Gln Lys Gln Pro Glu Asp Arg Gln
1235 1240

<210> 6

<211> 5828

<212> DNA

<213> Homo sapiens

<400> 6

cggcggcgcg gtcggagggg gccggcgcg agagccagac gcccggctt gttttggttg 60
gggctctcg caactctccg aggaggagga ggaggaggga ggaggggaga agtaactgca 120
gcccccgacgc cctcccgagg aacaggcgctc ttccccgaac cttcccaaa cttccccat 180
ccccctctcg cttgtcccc tccccctcctc cccagccgccc tggagcgagg ggcaggatg 240
agtctgtccc tccggccggt cccagctgc agtggctgcc cggtatcggt tcgcattggaa 300
aagccacttt ctccacccgc cgagatgggc ccggatgggg ctgcagagga cgcggccg 360
ggcggcgca gcagcagcag cagcagcagc agcaacagca acagccgca cggccggc 420
tctgcactg agctggatt tggcggtctg gtggcggtctg ggacggttgg ggggtggag 480
gaggcgaagg aggaggaga accccgtgca acgttggac ttggcaaccc gcctccccc 540
gccccaaaggat attaaatttgc cctcgaaat cgctgcttcc agaggggaaac tcaggaggga 600
aggcgcgcgc ggcgcgcgc tcctggagg gcaccgcagg gaccccccac tgcgcctcc 660
ctgtgcccga ctccagccgg ggcgacgaga gatgcattt cgctccttcc tggcggcggc 720
ggcggctgag aggagacttgc gtcctcgagg gatcggggctt gcccctcaccc cggacgact 780

gcctccccgc cggcgtgaag cgccccaaaa ctccggtcgg gctctctcct gggctcagca 840
gtgcgtcct cttcagctg cccctcccg gcgcgggggg cggcgtggat ttcagagtcg 900
gggttctgc tgcctccagc cctgtttgca tgtgccggc cgccggcagg agcctccgccc 960
ccccacccgg ttgttttcg gagcctccct ctgctcagcg ttggtggtgg cggtggcagc 1020
atggcgagcc ctccggagag cgatggctc tcggacgtgc gcaaggtggg ctacctgcgc 1080
aaacccaaga gcatgcacaa acgcttcttc gtactgcgcg cggccagcga ggctgggggc 1140
ccggcgcgccc tcgagttacta cgagaacgag aagaagtggc ggcacaagtc gagcgcgggg 1200
aaacgctcga tcccccttga gagtgcgttc aacatcaaca agcgggctga ctccaagaac 1260
aagcacctgg tggctctcta caccgggac gggactttg ccatgcgcg ggacagcgg 1320
gccgagcaag acagctggta ccaggctctc ctacagctgc acaaccgtgc taagggccac 1380
cacgacggag ctgcggccct cggggcggga ggtggtgggg gcagctgcag cggcagctcc 1440
ggccttgggt aggctggggaa ggacttgagc tacggtgacg tgcccccagg acccgcattc 1500
aaagaggtct ggcaagtgtat cctgaagccc aaggccctgg gtcagacaaa gaacctgatt 1560
ggtatctacc gccttgcct gaccagcaag accatcagct tcgtgaagct gaactcggag 1620
gcagcggcccg tggtgctgca gctgatgaac atcaggcgct gtggccactc ggaaaacttc 1680
ttttcatcg aggtggcccg ttctgccgtg acggggcccg gggagttctg gatcaggtg 1740
gatgactctg tggtgccca gaacatgcac gagaccatcc tggaggccat gcgggcccatt 1800
agtgatgagt tccgcctcg cagcaagagc cagtcctcgta ccaactgcctc taacccatc 1860
agcgtcccccc tgcgcggca ccatctcaac aatccccccgc ccagccaggt ggggctgacc 1920
cgccgatcac gcactgagag catcaccggc acctccccgg ccagcatggt gggcgggaag 1980
ccaggctcct tccgtgtccg cgcctccagt gacggcgaag gcaccatgtc ccccccagcc 2040
tcggtgacg gcagccctgt gaggcccgacc accaacagaa cccacgcaca cgggcatcg 2100
ggcagcgcggcc ggctgcaccc cccgctcaac cacagccgct ccatccccat gcccgttcc 2160
cgctgctcg cttcggccac cagccggcgtc agtctgtcg ccagtagcac cagtgccat 2220
ggctccaccc cggattgtct cttccacgg cagatctatgt cttcggtgcc tggcccccc 2280
agcgatggcg gtttcatctc ctcggatgag tatggctcca gtccctgcga tttccggagt 2340
tcctccgca gtgtcaactcc ggattccctg ggccacaccc caccagcccg cggtgaggag 2400
gagctaagca actatatctg catgggtggc aaggggccct ccaccctgac cccccccaaac 2460
ggtcactaca ttttgcgtcg gggtgcaat ggccaccgct gcaccggagg aacaggctt 2520
ggcacgagtc cagccttggc tggggatgaa gcagccagt ctgcagatct ggataatcg 2580
ttccgaaaga gaactcaactc ggcaggcaca tcccttacca ttacccacca gaagaccccg 2640
tcccagtccct cagtggcttc cattgaggag tacacagaga tggatgcctgc ctacccacca 2700
ggaggtggca gtggaggccg actgcggggc cacaggcaact ccgccttcgt gcccacccgc 2760
tcctaccccg aggagggtct ggaaatgcac cccttggagc gtcggggggg gcaccaccgc 2820
ccagacagct ccaccctcca cacggatgat ggctacatgc ccatgtcccc aggggtggcc 2880
ccagtgccca gtggccggaa gggcagtggc gactatatgc ccatgagccc caagagcgta 2940
tctgccccac agcagatcat caatcccattc agacgcccattc cccagagagt ggaccccaat 3000
ggctacatga tggatgtcccc cagcgggtggc tgctctcctg acattggagg tggccccagc 3060
agcagcagca gcagcagcaa cggcgtccct tccgggacca gctatggaaa gctgtggaca 3120
aacggggtag gggccacca ctctcatgtc ttgcctcacc ccaaacccccc agtggagagc 3180
agcggtggta agtcttacc ttgcacaggt gactacatga acatgtcacc agtgggggac 3240
tccaacacca gcagccctc cggactgtac tacggccctg aggacccca gcacaagcca 3300
gtcctctccct actactcatt gccaagatcc tttaagcaca cccagcgcgg cggggagccg 3360
gaggagggtg cccggcatca gcacctccgc ctttccacta gctctggtcg ctttctctat 3420
gctgcaacag cagatgattc ttccctttcc accagcagcg acagcctggg tgggggatac 3480
tgcggggcta ggctggagcc cagccttcca catccccacc atcagggttct gcagcccat 3540
ctgcctcgaa aggtggacac agtgcgtcag accaatacgcc gcctggcccg gcccacgagg 3600
ctgtccctgg gggatccaa ggccagcacc ttacctcggg cccgagagca gcagcagcg 3660

cagcagccct tgctgcaccc tccagagccc aagagcccg gggaatatgt caatattgaa 3720
tttgggagtg atcagtctgg ctacttgtct ggcccggtgg ctttccacag ctcacccct 3780
gtcagggtgc catcccgact ccagccagct cccagagagg aagagactgg cactgaggag 3840
tacatgaaga tggacctggg gccgggcccgg agggcagcct ggcaggagag cactggggtc 3900
gagatgggca gactgggccc tgcacccccc ggggctgcta gcatttgcag gcctaccgg 3960
gcagtgcaca gcagccgggg tgactacatg accatgcaga tgagttgtcc ccgtcagagc 4020
tacgtggaca cctcggccagc tgccccctgta agctatgctg acatgcgaac aggcattgct 4080
gcagaggagg tgagcctgcc cagggccacc atggctgctg ctcctctatc ctcagcagcc 4140
tctgcttccc cgactgggccc tcaagggca gcagagctgg ctgcccactc gtccctgctg 4200
ggggggccac aaggacctgg gggcatgagc gccttcaccc gggtaacact cagtcctaac 4260
cgcaaccaga gtgccaaagt gatccgtgca gaccacaaag ggtgccggcg gaggcatagc 4320
tccgagactt tctcctcaac acccagtgcc acccgggtgg gcaacacagt gccctttgga 4380
gcccccccgag cagtgggggg cggtggcggt agcagcagca gcagcgagga tgtgaaacgc 4440
cacagctctg ctcccttga gaatgtgtgg ctgaggcctg gggagcttgg gggagcccc 4500
aaggagccag ccaaactgtg tggggctgct gggggtttgg agaatggct taactacata 4560
gacctggatt tggtaagga cttcaaacag tgccctcagg agtgcaccc tgaaccgcag 4620
cctccccccac ccccccccccc tcatcaaccc ctggcgacgc gtgagagcag ctccacccgc 4680
cgctcaagtg aggatttaag cgcctatgcc agcatcagtt tccagaagca gccagaggac 4740
cgtcagtagc tcaactggac atcacagcag aatgaagacc taaatgacact cagcaaatcc 4800
tcttctaact catgggtacc cagactctaa atatttcattt attcacaact aggacctcat 4860
atcttcctca tcagtagatg gtacgatgca tccatttcag tttgtttact ttatccaatc 4920
ctcaggattt cattgactga actgcacgtt ctatattgtg ccaagcgaaa aaaaaaaatg 4980
caactgtgaca ccagaataat gagtctgcat aaacttcattc ttcaacctta aggacttagc 5040
tggccacagt gagctgatgt gcccaccacc gtgtcatgag agaatgggt tactctcaat 5100
gcattttcaa gatacatttc atctgctgct gaaactgtgt acgacaaagc atcattgtaa 5160
attatttcattt acaaaaactgt tcacggttgg tggagagagt attaaatatt taacataggt 5220
tttgatttat atgtgtatt tttaaatga aaatgttaact tttcttacag cacatcttt 5280
tttgatgtt gggatggagg tatacaatgt tctgtgtaa agagtggagc aaatgcttaa 5340
aacaaggctt aaaagagtag aatagggtat gatccttgg ttaagattgt aattcagaaa 5400
acataatata agaatcatag tgccatagat ggttctcaat tggatgtta tatttgctga 5460
tactatctct tggatgtt acctgatgtt gagctgagtt ccttataaga attaatctta 5520
attttgtatt ttttctgtt agacaatagg ccatgttaat taaactgaag aaggatata 5580
ttggctgggt gtttcaat gtcagcttaa aattggtaat tgaatggaa caaaattata 5640
agaagaggaa attaaagtct tccattgcat gtattgtaaa cagaaggaga tgggtgattc 5700
cttcaattca aaagctctt ttggaaatgaa caatgtggc gtttgttaat tctggaaatg 5760
tctttctatt cataataaac tagatactgt tgatcttttta aaaaaaaaaa aaaaaaaaaa 5820
aaaaaaaaa 5828

<210> 7
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FLAG epitope

<400> 7

Asp Tyr Lys Asp Asp Asp Lys
1 5

<210> 8
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Mutagenesis
primer

<400> 8
gggggaattt gtcaata 17

<210> 9
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Mutagenesis
primer

<400> 9
gaatttgtta atattg 16

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Location (-1)
oligonucleotide

<400> 10
cattcttacg ctgggccatt 20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Location (-6)
oligonucleotide

<400> 11
ttacgctggg ccattgcacg 20

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Locations (-11)
oligonucleotide

<400> 12
ctgggccatt gcacggtccg 20

<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Sense
Oligonucleotide

<400> 13
atcatgaat ggcccagcgt aa 22