الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة		/ t "\$t1 - · · t1\ I 1 bt1 1 · -
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التمرين الأوّل: (04 نقاط)
1	2x0.5	. الاقتراح الصحيح: ج $E(X) = -rac{3}{20}$ ، التبرير (1
1.5	0.5+1	$5^{n+1}-n^2$ (الاقتراح الصحيح: ب) (2 $S_n=4(1+5^1+5^2++5^n)-2(1+2++n)+(n+1)=5^{n+1}-n^2$ التّبرير:
1.5	0.5+1	[-ln 2; ln 2] (3) الاقتراح الصحيح: أ) $(e^x - 2)(2e^x - 1) \le 0$ تكافئ $(e^x - 2)(2e^x - 1) \le 0$ تكافئ
		التّمرين الثّاني: (04 نقاط)
0.5	0.5	$P(\overline{A}) = \frac{4}{6} = \frac{2}{3} (1)$
0.75	0.75	$P_A(M) = \frac{C_4^2 + C_6^2}{C_{10}^2} = \frac{6+15}{45} = \frac{7}{15}$ (2)
1.75	1	$\frac{7}{15}$ شجرة الاحتمالات: $\frac{7}{15}$ $\frac{8}{15}$ $\frac{1}{3}$ 1
	0.75	$P(M) = P(A) \times P_A(M) + P(\overline{A}) \times P_{\overline{A}}(M) = \frac{1}{3} \times \frac{7}{15} + \frac{2}{3} \times \frac{13}{28} = \frac{293}{630}$
1	0.25x4	$P_{\overline{M}}(A) = \frac{P(A \cap \overline{M})}{P(\overline{M})} = \frac{\frac{1}{3} \times \frac{8}{15}}{1 - \frac{293}{630}} = \frac{8}{45} \times \frac{630}{337} = \frac{112}{337} $ (4)
		التّمرين الثّالث: (05 نقاط)
1	0.25 + 0.75	: نجد: $u_n=-4$ نفرض أنّ: $u_n=-4$ نجد: $u_n=-4$ نجد: $u_n=-4$ نجد: $u_n=-4$ نجل كل $u_n=-4$ نجل كل $u_n=-4$

العلامة		/ 1 " Ext
مجموعة	مجموعة	عناصر الإجابة (الموضوع الأوّل)
4	0.75	$v_{n+1} = u_{n+1} + 4 = \frac{3}{4}(u_n + 4) = \frac{3}{4}v_n$ لدينا: (أ (2)
	0.5+0.25	$v_n = (\alpha + 4) \left(\frac{3}{4}\right)^n$ و $v_0 = \alpha + 4$:
	0.5	$u_n = (\alpha + 4) \left(\frac{3}{4}\right)^n - 4$ ومنه:
	0.5	$u_n = (u + 4) \binom{4}{4} + 4$ دينا: $\lim_{n \to +\infty} u_n = -4$ أي (u_n) متقاربة.
	1	$S_n = 4\left[(\alpha+4)\left(1-\left(\frac{3}{4}\right)^{n+1}\right)-(n+1)\right]$ نجد: (ج
	0.5	$\lim_{n\to+\infty} S_n = -\infty \text{o}$
		التّمرين الرابع: (07 نقاط)
	0.5	$\lim_{x \to 0} f(x) = +\infty : 1$ (1) أ) بالحساب نجد:
	0.25	(C_f) التّفسير: المستقيم ذو المعادلة $x=0$ مقارب لـ
	0.5	. $\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0$: لأنّ $\lim_{x \to +\infty} f(x) = +\infty$ ولدينا:
2	0.25	ب) لدينا: $\lim_{x \to +\infty} \left[f(x) - (x-1) \right] = \lim_{x \to +\infty} -\frac{\ln x}{x^2} = 0$ بالدينا: $\lim_{x \to +\infty} \left[f(x) - (x-1) \right] = \lim_{x \to +\infty} -\frac{\ln x}{x^2} = 0$
		$+\infty$ عند (C_f) مائل للمنحنى
	0.5	(Δ) المنحنى (C_f) فوق (Δ) على المجال $[0;1[$ ، المنحنى (C_f) تحت (Δ)
		$(C_f) \cap (\Delta) = \left\{A(1;0)\right\}$ على المجال $[1;+\infty[$ و
	0.25x2	$g'(x) > 0$ و $g'(x) = 3x^2 + \frac{2}{x} :]0; + \infty[$ و $g'(x) > 0$ و $g'(x) = 3x^2 + \frac{2}{x} :]0; + \infty[$
1.5	0.25	بالتّالي g متزايدة تماما على المجال $]\infty+;0[$
	0.25	ب) لدينا: $g(1) = g$ و بما أنّ g متزايدة تماما على المجال $g(1) = 0$ نجد:
	0.5	$]1;+\infty[$ على المجال $[0;1]$ و $g(x)>0$ على المجال $[0;1]$
	0.5	$f'(x) = 1 - \frac{1 - 2\ln x}{x^3} = \frac{g(x)}{x^3} :]0; +\infty[$ من أجل كلّ x من أجل كلّ (3)
1.25	0.5	$[1;+\infty[$ الدّالة f متناقصة تماما على $[0;1]$ ومتزايدة تمامًا على الدّالة f
	0.25	جدول التّغيرات
	0.25	$x=\sqrt{e}$ ادينا $f'(x)=1$ تعني $f'(x)=1$ أي $f'(x)=1$
0.5	0.25	$y=x-1-rac{1}{2e}$ بالتّالي (C_f) يقبل مماسا

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة		(t : \$t)
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
1	0.25x2 0.5	(C _f) g (Δ) ·(T) ε limil (5
	0.25	6) أ) بيان أنّ h دالة زوجية
0.75	0.25	ادینا $h(x) = -f(x)$; $x > 0$ $h(x) = x + 1 + \frac{\ln(-x)}{x^2}$; $x < 0$
	0.25	على المجال $]0;+\infty$ يكون (C_h) نظير (C_f) بالنسبة إلى حامل محور الفواصل ونحصل على (C_h) على المجال $]-\infty;0$ بالتّناظر بالنسبة إلى حامل محور التّراتيب.

العلامة		/ 0,50 - 0 til 7 1 bbt 10 -		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)		
		التمرين الأوّل: (04 نقاط)		
1.5		1) الاقتراح الصحيح: ج) غير رتيبة.		
	1+0.5	$]0;+\infty[$ التّبرير: $f'(x)=\frac{1-x}{x}$ و $f'(x)=\frac{1-x}{x}$		
1	0.5+0.5	$P = \frac{C_3^1 \times C_4^2 + C_3^2 \times C_4^1}{C_7^3} = \frac{6}{7}$: الاقتراح الصحيح: أ) التبرير (2)		
1.5	1+0.5	$\ln(u_n) = n - \frac{1}{2}$: الاقتراح الصحيح: أ		
1.5	1+0.5	$S_n = (0 - \frac{1}{2}) + (1 - \frac{1}{2}) + (2 - \frac{1}{2}) + \dots + (n - \frac{1}{2}) = \frac{n(n+1)}{2} - \frac{n+1}{2} = \frac{n^2 - 1}{2}$		
	التّمرين الثّاني: (04 نقاط)			
1.5	0.25x4	$\frac{3}{5}$ هجرة الاحتمالات: $\frac{3}{5}$ R $\frac{3}{5}$ R $\frac{3}{5}$ R $\frac{2}{5}$ R $\frac{3}{4}$ R R		
	0.5	$P = \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{1}{4} = \frac{17}{50}$: ب) احتمال أنّ تكون الكريّة المسحوبة الثّانية حمراء:		
	0.5	(2) أ) مجموعة قيم المتغيّر العشوائي X هي: $\{0;1;2\}$.		
2.5	3x0.5	$P(X=1) = \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{3}{4} = \frac{27}{50}$ ادینا: $P(X=2) = \frac{1}{10}$ ونجد: $P(X=0) = \frac{9}{25}$		
	0.25x2	$E(X) = \frac{37}{50}$ نجد: (ج		
		التّمرين الثّالث: (05 نقاط)		
0.75	0.25x3	نجد: 3 = u_1 و $u_2 = 9$ ، التّخمين: u_n متزايدة تماما.		
	0.25+1	$v_0=1$ نجد: (v_n) بالتّالي (v_n) هندسية أساسها $v_{n+1}=u_{n+1}-(n+1)-1=3$ نجد: (1 و $v_0=1$		
2.75	0.5+0.5	$u_n = 3^n + n - 1$ و $v_n = 3^n$ نجد: (ب		
	0.25x2	جـ) لدینا: $u_{n+1} - u_n = 2 \times 3^n + 1$ نجد: $u_{n+1} - u_n = 2 \times 3^n + 1$ نجد:		

العلامة		/ a. 5 t
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
		اً) من أجل كل عدد طبيعي n لدينا: n
	0.25x2	$S_n = (v_0 + v_1 + v_2 + \dots + v_n) + (-1 + 0 + 1 + \dots + (n-1))$
1.5	0.5	$S_n = \frac{1}{2} (3^{n+1} + n^2 - n - 3)$ إذن:
	0.5	$\lim_{n\to +\infty} S_n = +\infty (\dot{\mathbf{\varphi}})$
		التّمرين الرابع: (07 نقاط)
0.25	0.25	$\mathbb R$ لأنّ (γ) يقع فوق (Δ) على الدينا: من أجل كل x من x من $e^x-x>0$ لأنّ e^x
0.25	0.25	$g(x) < 0$: على $]0;+\infty$ لدينا: $g(x) > 0$ و على $]0;+\infty$ لدينا
1	2x0.25	$\lim_{x \to -\infty} f(x) = -1 int_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 + \frac{2}{1 - xe^{-x}} \right) = 1$ لدينا: 1 (1(III)
	2x0.25	(C_f) : التّفسير $y=-1$ و $y=-1$ معادلتا مستقيمين مقاربين ل
	0.5	ا) من أجل كل عدد حقيقي x لدينا: $f'(x) = \frac{2e^{x}(e^{x} - x) - 2e^{x}(e^{x} - 1)}{(e^{x} - x)^{2}} = \frac{2e^{x}(1 - x)}{(e^{x} - x)^{2}}$
1.75	0.5	(1-x) من إشارة $f'(x)$ من إشارة $f'(x)$
	2x0.25	بالتّالي: الدّالة f متزايدة تماما على $[1;+\infty[$ ومتناقصة تماما على $[1;+\infty[$.
	0.25	. جدول التّغيرات، $f(1) = \frac{e+1}{e-1}$
	0.5	y = 2x + 1 : (T) أ) معادلة للمماس $y = 2x + 1 : (T)$
1.75	0.5	$f(x) - (2x+1) = \frac{g(x)}{e^x - x} : x$ بیان أنّه من أجل كل عدد حقیقي
	0.5	(T) المنحنى (C_f) فوق (T) على المجال $]-\infty;0$ ، المنحنى (C_f) تحت (T)
		$(C_f) \cap (T) = ig\{A(0;1)ig\}$ و $ig]0;+\inftyig[$ على المجال
	0.25	(C_f) نقطة انعطاف للمنحنى A
0.75	0.5	$]-\infty;1]$ بيان أنّ المعادلة $f(x)=0$ تقبل حلا وحيدا $lpha$ في المجال (4
0.75	0.25	$-0.6\langlelpha\langle-0.5$ التّحقق أنّ $-0.6\langlelpha\langle-0.5$

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة		/ *!**ti	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثَّاني)	
1.25	0.25 2x0.25 0.5	(C_f) cimil (T) elimil (T) limil (T) limil (T) limil (T) limit $($	
		•	