MAT 2362 Notes

Nicholas Sales

November 5, 2024

Contents

1	Lecture 4	2
2	Lecture 5	3

1 Lecture 4

Definition 4.1.1: Let $\{A_i : i \in \mathbb{N}\}$ be a set with sets in it. We can union and intersect sets with specified indices (like summations):

$$\bigcup_{i=1}^{n\in\mathbb{N}} A_i = A_1 \cup A_2 \cup \dots \cup A_n$$

$$\bigcap_{i=1}^{n\in\mathbb{N}} A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

Example 4.1.1: Prove that $\bigcup_{n=2}^{\infty}(0,1-\frac{1}{n})=(0,1)$. **Proof:** We first prove $(0,1)\subseteq\bigcup_{n=2}^{\infty}(0,1-\frac{1}{n})$. Let $x\in(0,1)$. Since x is strictly less than 1, it follows that there will exist some $n\in\mathbb{N}$ where $1-\frac{1}{n}>x$ as $1-\frac{1}{n}=1$ for $n\to\infty$. So for any x in (0,1) we can find an n that is large enough such that $x\in(0,1-\frac{1}{n})$.

To prove the converse in $\bigcup_{n=2}^{\infty}(0,1-\frac{1}{n})\subseteq(0,1)$ we can use the same reasoning. Let $x\in(0,1-\frac{1}{n})$. Since $1-\frac{1}{n}=1$ as $n\to\infty$ and since any element in (0,1) is strictly less than 1, it follows there is some large enough n such that $x \in (0,1)$.

Since $(0,1) \subseteq \bigcup_{n=2}^{\infty} (0,1-\frac{1}{n})$ and $\bigcup_{n=2}^{\infty} (0,1-\frac{1}{n}) \subseteq (0,1)$, they are both equal. QED.

Definition 4.1.2: If $f: X \to Y$ and $A \subseteq X$, we can "restrict" the domain of X to A using the notation $f|_A$ where $f|_A(a) = f(a)$ for all $a \in A$. This is called the restriction of f to A.

Remark 4.1.1: It is not really clear why restricting f to A is useful, and the I have no idea. But, (maybe interestingly?) given the mapping $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ it is clear this is not injective as f(-1) = f(1) = 1 and so on with every number and its negative counterpart. However, the restriction of f to $[0,\infty)$ where $f|_{[0,\infty)}(x)=x^2$ is injective! Also, restricting the codomain to $[0,\infty)$ makes f surjective.

Lemma 4.1.1: If $f: X \to Y$ and $g: Y \to Z$ are both surjective mappings, then so is $g \circ f : X \to Z$.

Proof: Assume f, g are both surjective mappings and let $z \in Z$ such that $(g \circ f) = z$. Since f is surjective, for any $y \in Y$ there is a corresponding $x \in X$ such that f(x) = y. So we have g(f(x)) = g(y). Further, since g is surjective, for any $z \in Z$ there is a corresponding $y \in Y$ such that g(y) = z. So we have g(f(x)) = g(y) = z. Therefore $g \circ f$ is surjective. QED.

Theorem 4.1.1: For a mapping $f: X \to Y$, f is an injection iff for all $A \subseteq X(f^{-1}(f(A)) = A)$. **Proof:** We prove this statement in two directions. We will first show if $f: X \to Y$ is an injection, then $f^{-1}(f(A)) = A$. Assume that f is injective.

Prove $f^{-1}(f(A)) \subseteq A$: Let $x \in f^{-1}(f(A))$. This implies we have:

$$f(x) \in f(f^{-1}(f(A))) \implies f(x) \in f(A) \implies f(x) = f(a) \text{ for some } a \in A$$

Since f is injective, it must hold that x = a and so $x \in A$. Thus $f^{-1}(f(A)) \subseteq A$. **Prove** $A \subseteq f^{-1}(f(A))$: Let $x \in A$. This implies we have:

$$f(x) \in f(A) \implies f^{-1}(f(x)) \in A \implies x \in f^{-1}(f(A))$$

Thus $A \subseteq f^{-1}(f(A))$. We can therefore conclude if $f: X \to Y$ is an injection, then $f^{-1}(f(A)) = A$.

We now prove the statement that if $f^{-1}(f(A)) = A$, then f is injective. Assume $f^{-1}(f(A)) = A$ and that $a, b \in X$ such that f(a) = f(b). Consider the set $A = \{a\} \subseteq X$, by our assumption, it follows that $f^{-1}(f(A)) = \{a\}$. Since f(a) = f(b), it follows $b \in f^{-1}(f(A)) = \{a\}$ and thus a = b. This concludes the proof in both directions. QED.

2 Lecture 5

Definition 5.1.1: If $R \subseteq X \times X$, that is, R is a set of relations on X, we can define the "reflexive closure" of R. This is the "smallest" reflexive relation that contains R:

$$S = R \cup \{(x, x) \mid x \in X\} \tag{1}$$

The symmetric and transitive closures are defined similarily.

Example 5.1.1: Let $R \subseteq \mathbb{Z} \times \mathbb{Z} = \{(1,1), (1,2), (4,5), (3,3), (4,4), (2,2), (5,5)\}$ be a reflexive set. The reflexive closure of R would be the set $S \subseteq R = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}$.

Example 5.1.2: If n is a positive integer, then the realtion \equiv_n on \mathbb{Z} that is defined by $x \equiv_n y \iff (x - y)$ is divisible by n is an equivalence relation.

Proof: We must prove this relation is reflexive, symmetric, and transitive.

Reflexivity: Let $x \in \mathbb{Z}$. (x - x) is divisible by n implies x - x = nm for some $n \in \mathbb{Z}$. Since this simplifies to 0 = nm, it is clear this is true for m = 0. Thus $x \equiv_n x$.

Symmetry: Let $x, y \in \mathbb{Z}$ and assume $x \equiv_n y$. This implies that x - y = nm for some $m \in \mathbb{Z}$. We can manipulate this a bit to get $y - x = -nm \implies y - x = n(-m)$. Since $(-m) \in \mathbb{Z}$, (y - x) is divisble by n using our assumption and therefore $x \equiv_n y \implies y \equiv_n x$.

Transitivity: Let $x, y, z \in \mathbb{Z}$ and assume $x \equiv_n y$ and $y \equiv_n z$. Using our assumption it follows that $y - z = nm \implies y = nm + z$ for some $m \in \mathbb{Z}$. Since we have x - y = nv for some $v \in \mathbb{Z}$, we substitute our y to get $x - (nm + z) = nv \implies x - z = nv + nm \implies x - z = n(v + m)$. Since $v, m \in \mathbb{Z}$ and adding two integers gives you another integer, x - z is divisible by n. Thus $x \equiv_n y \land y \equiv_n z \implies x \equiv_n z$.

Since \equiv_n is reflexive, transitive, and symmetric, it is an equivalence relation. QED.

Definition 5.1.2: If \equiv is an equivalence relation on a set X, for every $a \in X$ we define the equivalence class of a (denoted \overline{a} or [a]) to be the set:

$$[a] = \{ x \in X \mid x \equiv a \} \tag{2}$$