Clasificación algorítmica en gráficas de tipo \mathbb{D}_n

Rey David Gutiérrez Torres Daniel Rivera López

Universidad Autónoma del Estado de Morelos

19 de marzo de 2022

Matriz de Cartan simétrica

Definición

- Una matriz $A \in \mathcal{M}_{n \times n}\left(\mathbb{Z}\right)$ es casi Cartan simétrica si A es simétrica y $(A)_{i\,i}=2$ para toda $i=1,\ldots,n$.
- Se denotan por sqC.

Eiemplo

$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Matriz de Cartan simétrica

Definición

- Una matriz $A \in \mathcal{M}_{n \times n}\left(\mathbb{Z}\right)$ es casi Cartan simétrica si A es simétrica y $(A)_{i\,i}=2$ para toda $i=1,\ldots,n$.
- Se denotan por sqC.

Fiemplo

$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Matriz de Cartan simétrica

Definición

- Una matriz $A \in \mathcal{M}_{n \times n}\left(\mathbb{Z}\right)$ es casi Cartan simétrica si A es simétrica y $(A)_{i\,i}=2$ para toda $i=1,\ldots,n$.
- Se denotan por sqC.

Ejemplo

$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Forma cuadrática

• Una forma cuadrática es un polinomio $q:\mathbb{R}^n \to \mathbb{R}$ con n>0 si cada monomio del mismo es una variable al cuadrado o la multiplicación de dos variables. Esto es equivalente a decir que q se puede expresar como:

$$q(x_1, x_2, \dots, x_n) = \sum_{i=1}^n q_{ii} x_i^2 + \sum_{1 \le i \le j \le n} q_{ij} x_i x_j$$

ullet Una forma cuadrática unitaria es un caso especial donde $q_{ii}=1$

$$\mathbf{q}_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} (\boldsymbol{A})_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \sum_{i=1}^{n} x_{i}^{2} + \sum_{1 \leq i \leq j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j}.$$

$$\mathbf{q}_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} (\boldsymbol{A})_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \sum_{i=1}^{n} x_{i}^{2} + \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j}.$$

$$\mathbf{q}_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} (\boldsymbol{A})_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \sum_{i=1}^{n} x_{i}^{2} + \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j}.$$

$$\mathbf{q}_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} (\boldsymbol{A})_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \sum_{i=1}^{n} x_{i}^{2} + \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j}.$$

Definición

Una matriz casi Cartan simétrica A es **definida positiva** si y sólo si $\mathbf{q}_{A}(x) = \frac{1}{2}x^{\mathrm{T}}Ax > 0$, para toda $x \in \mathbb{Z}$ con $x \neq 0$.

Bigráfica asociada a una matriz casi Cartan

 $\mathsf{Matriz}\ \mathsf{casi}\text{-}\mathsf{Cartan}\ \mathsf{sim\acute{e}trica}\ \leftrightarrow\ \mathsf{Bigr\'{a}fica}$

Teorema

Sea $A \in M_n(\mathbb{Z})$ una matriz casi Cartan simétrica y definida positiva sean $i, j \in \{1, 2...n\}$, entonces,

- (a) $0 \leqslant A_{ij}A_{ji} < 4$
- (b) $A_{ij} \in \{-1, 0, 1\}$

La bigráfica $\mathbf{bigr}(A)$ asociada a la matriz A tiene vértices $\{1, 2, \dots, n\}$, y para cada par de vértices i, j con $i \neq j$:

- ① Si $A_{ij} = -1 = A_{ji}$ trazamos una arista solida entre los vértices, (i)—(j)
- ② Si $A_{ij} = 1 = A_{ji}$ trazamos una arista punteada entre los vértices, $\widehat{(i)} \cdots \widehat{(j)}$

Bigráfica asociada a una matriz casi Cartan

 $\mathsf{Matriz}\ \mathsf{casi}\text{-}\mathsf{Cartan}\ \mathsf{sim\acute{e}trica}\ \leftrightarrow\ \mathsf{Bigr\'{a}fica}$

Teorema

Sea $A \in M_n(\mathbb{Z})$ una matriz casi Cartan simétrica y definida positiva sean $i, j \in \{1, 2...n\}$, entonces,

- (a) $0 \leqslant A_{ij}A_{ji} < 4$
- (b) $A_{ij} \in \{-1, 0, 1\}$

La bigráfica $\mathbf{bigr}(A)$ asociada a la matriz A tiene vértices $\{1,2,\ldots,n\}$, y para cada par de vértices i,j con $i\neq j$:

- ① Si $A_{ij} = -1 = A_{ji}$ trazamos una arista solida entre los vértices, (i)—(j)
- ② Si $A_{ij} = 1 = A_{ji}$ trazamos una arista punteada entre los vértices, $\widehat{(i)} \cdots \widehat{(j)}$

Bigráfica asociada a una matriz casi Cartan

 $\mathsf{Matriz}\ \mathsf{casi}\text{-}\mathsf{Cartan}\ \mathsf{sim\acute{e}trica}\ \leftrightarrow\ \mathsf{Bigr\'{a}fica}$

Teorema

Sea $A \in M_n(\mathbb{Z})$ una matriz casi Cartan simétrica y definida positiva sean $i, j \in \{1, 2...n\}$, entonces,

- (a) $0 \leqslant A_{ij}A_{ji} < 4$
- (b) $A_{ij} \in \{-1, 0, 1\}$

La bigráfica $\mathbf{bigr}(A)$ asociada a la matriz A tiene vértices $\{1, 2, \dots, n\}$, y para cada par de vértices i, j con $i \neq j$:

- Si $A_{ij} = -1 = A_{ji}$ trazamos una arista solida entre los vértices, (i)—(j)
- ② Si $A_{ij} = 1 = A_{ji}$ trazamos una arista punteada entre los vértices, $\widehat{(i)} \cdots \widehat{(j)}$

Bigráfica asociada a una matriz casi Cartan Matriz casi-Cartan simétrica ↔ Bigráfica

Teorema

Sea $A \in M_n(\mathbb{Z})$ una matriz casi Cartan simétrica y definida positiva sean $i, j \in \{1, 2...n\}$, entonces,

- (a) $0 \leqslant A_{ij}A_{ji} < 4$
- (b) $A_{ij} \in \{-1,0,1\}$

La bigráfica $\mathbf{bigr}(A)$ asociada a la matriz A tiene vértices $\{1, 2, \dots, n\}$, y para cada par de vértices i, j con $i \neq j$:

- Si $A_{ij} = -1 = A_{ji}$ trazamos una arista solida entre los vértices, (i)—(j)
- ② Si $A_{ij} = 1 = A_{ji}$ trazamos una arista punteada entre los vértices, (i).....(j)

Equivalencia de conceptos Ejemplo

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 1 \\ -1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{q}_{A}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} - x_{1}x_{2} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4}$$

Equivalencia de conceptos Ejemplo

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 1 \\ -1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{q}_{A}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} - x_{1}x_{2} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4}$$

Equivalencia de conceptos

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 1 \\ -1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{q}_{A}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} - x_{1}x_{2} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4}$$

Z-equivalencia

- Una matriz $M \in \mathcal{M}_{n \times n}\left(\mathbb{Z}\right)$ es **Z**-invertible si tiene inversa $M^{-1} \in \mathcal{M}_{n \times n}\left(\mathbb{Z}\right)$.
- $A, A' \in \operatorname{sqC}$ son **Z**-equivalentes si existe una matriz **Z**-invertible M tal que $A' = M^{\mathrm{T}}AM$.

Z-equivalencia

- Una matriz $M \in \mathcal{M}_{n \times n}\left(\mathbb{Z}\right)$ es **Z**-invertible si tiene inversa $M^{-1} \in \mathcal{M}_{n \times n}\left(\mathbb{Z}\right)$.
- ullet $A,A'\in\operatorname{sqC}$ son ${f Z}$ -equivalentes si existe una matriz ${f Z}$ -invertible ${f M}$ tal que $A'={f M}^{\operatorname{T}}A{f M}.$

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

Familia Gráfica $\mathbb{A}_n, \ n \geqslant 1 \qquad \boxed{1 - 2 - \cdots - n}$ $\boxed{1}$ $\mathbb{D}_n, \ n \geqslant 4 \qquad \boxed{2 - 3 - 4 - \cdots - n}$ $\boxed{1}$ $\boxed{1}$ $\boxed{1}$ $\boxed{1}$ $\boxed{2}$ $\boxed{3}$ $\boxed{4}$ $\boxed{5}$ \cdots \boxed{n}

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

Familia Gráfica $\mathbb{A}_n, \ n \geqslant 1$ ① ② \cdots ① $\mathbb{D}_n, \ n \geqslant 4$ ② ③ ④ \cdots ①

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

Familia Gráfica $\mathbb{A}_n, \ n \geqslant 1 \qquad \qquad \boxed{1} \qquad \boxed{2} \qquad \cdots \qquad \boxed{n}$ $\mathbb{D}_n, \ n \geqslant 4 \qquad \qquad \boxed{2} \qquad \boxed{3} \qquad \boxed{4} \qquad \cdots \qquad \boxed{n}$

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

Familia Gráfica $\mathbb{A}_n,\ n\geqslant 1 \qquad \boxed{1} \qquad \boxed{2} \qquad \cdots \qquad \boxed{n}$ $\mathbb{D}_n,\ n\geqslant 4 \qquad \boxed{2} \qquad \boxed{3} \qquad \boxed{4} \qquad \cdots \qquad \boxed{n}$ $\mathbb{E}_n,\ 6\leqslant n\leqslant 8 \qquad \boxed{2} \qquad \boxed{3} \qquad \boxed{4} \qquad \boxed{5} \qquad \cdots \qquad \boxed{n}$

La clasificación $\mathbb{A} - \mathbb{D} - \mathbb{E}$

Teorema (S. Ovsienko – 1978)

Toda bigráfica G conexa y definida positiva es ${\bf Z}$ -equivalente a un diagrama de Dynkin.

Demostración.

Demostración constructiva mediante el **algoritmo de las inflaciones**.

Inflaciones

- ullet I denota la matriz identidad con vectores columna e_j .
- $E_{s\,r}^{\sigma} := I + \sigma\,e_s\,e_r^{\,\mathrm{T}}\,\left(s,r\in\{1,\ldots,n\},\,\sigma\in\mathbb{R}\right)$ denota una matriz elemental de suma de renglones/columnas.
- Si $A \in \mathbf{sqC}$ y $(A)_{s\,r} = 1$ entonces $\left(E_{s\,r}^{-1}\right)^{\mathrm{T}} A \left(E_{s\,r}^{-1}\right)$ es una inflación de A.

Inflaciones

- ullet I denota la matriz identidad con vectores columna e_j .
- $E_{s\,r}^{\sigma} := I + \sigma\,e_s\,e_r^{\,\mathrm{T}}\,\left(s,r\in\{1,\ldots,n\},\,\sigma\in\mathbb{R}\right)$ denota una matriz elemental de suma de renglones/columnas.
- Si $A \in \operatorname{sqC}$ y $(A)_{s\,r}=1$ entonces $\left(E_{s\,r}^{-1}\right)^{\mathrm{T}}A\left(E_{s\,r}^{-1}\right)$ es una inflación de A.

Inflaciones

- ullet I denota la matriz identidad con vectores columna e_i .
- $E_{s\,r}^{\sigma} := I + \sigma\,e_s\,e_r^{\,\mathrm{T}}\,\left(s,r\in\{1,\ldots,n\},\,\sigma\in\mathbb{R}\right)$ denota una matriz elemental de suma de renglones/columnas.
- Si $m{A} \in \mathbf{sqC}$ y $(m{A})_{s\,r} = 1$ entonces $\left(m{E}_{s\,r}^{-1}\right)^{\mathrm{T}} m{A} \left(m{E}_{s\,r}^{-1}\right)$ es una inflación de $m{A}$.

Algoritmo de las inflaciones

Algoritmo de las inflaciones

función inflaciones(A):

repetir mientras exista una entrada no diagonal

$$(oldsymbol{A})_{s\,r}=1$$
:
 $oldsymbol{A}:=\left(oldsymbol{E}_{s\,r}^{-1}
ight)^{\mathrm{T}}oldsymbol{A}\left(oldsymbol{E}_{s\,r}^{-1}
ight)$

- Se justifica en que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\right|<\infty$ permanece constante en cada iteración mientras que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\cap\mathbf{N}^{n}\right|$ crece.
- Cota superior del número de raíces positivas $O(n \cdot 6^n)$ (Kosakowska 2012).

Algoritmo de las inflaciones

Algoritmo de las inflaciones

función inflaciones (A):

repetir mientras exista una entrada no diagonal

$$(oldsymbol{A})_{s\,r}=1$$
:
 $oldsymbol{A}:=\left(oldsymbol{E}_{s\,r}^{-1}
ight)^{\mathrm{T}}oldsymbol{A}\left(oldsymbol{E}_{s\,r}^{-1}
ight)$

- Se justifica en que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\right|<\infty$ permanece constante en cada iteración mientras que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\cap\mathbf{N}^{n}\right|$ crece.
- Cota superior del número de raíces positivas $O(n \cdot 6^n)$ (Kosakowska 2012).

Algoritmo de las inflaciones

Algoritmo de las inflaciones

función inflaciones(A):

repetir mientras exista una entrada no diagonal

$$(oldsymbol{A})_{s\,r}=1:$$
 $oldsymbol{A}:=\left(oldsymbol{E}_{s\,r}^{-1}
ight)^{\mathrm{T}}oldsymbol{A}\left(oldsymbol{E}_{s\,r}^{-1}
ight)$

- Se justifica en que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\right|<\infty$ permanece constante en cada iteración mientras que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\cap\mathbf{N}^{n}\right|$ crece.
- Cota superior del número de raíces positivas $O(n \cdot 6^n)$ (Kosakowska 2012).

A-bloques

Definiciones

• Sean X y Y conjuntos disjuntos de vértices. Denotamos por F[X,Y] el bigrafo no separable obtenido uniendo cada par de vértices (x,y) con $x\in X$ e $y\in Y$ por una arista sólida, y todos los demás pares de vértices por una arista punteada, tal bigrafo se llama un $\mathbb A$ bloque.

Ejemplo

A-bloques

Definiciones

• Sean X y Y conjuntos disjuntos de vértices. Denotamos por F[X,Y] el bigrafo no separable obtenido uniendo cada par de vértices (x,y) con $x\in X$ e $y\in Y$ por una arista sólida, y todos los demás pares de vértices por una arista punteada, tal bigrafo se llama un $\mathbb A$ bloque.

Ejemplo $F_{1,1}$ $F_{1,2}$ $F_{1,2}$

Vértices de corte

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G-v)$.

Ejemplo

Vértices de corte

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G v)$.

Vértices de corte

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G-v)$.

Vértices de corte

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G-v)$.

Definiciones

Una bigráfica cumple la condición de ciclo si todo ciclo tiene un número impar de aristas punteadas.

D-nucleo

- Una bigráfica cíclica $H=x_1-x_2-\cdots-x_h-x_1$ (todos los x_i distintos para $1 \le i \le h$) que satisface la condición de ciclo.
- A esta bigráfica H le llamaremos el \mathbb{D} -núcleo.

Descripción de el problema

- El problema propuesto es la clasificación algorítmica en gráficas de tipo \mathbb{D}_n
- Para esto se propone usar el algoritmo de componentes triconexas para caracterizar las de tipo \mathbb{D}_n

Componentes triconexas

Sea G=(V,E) un multigráfo y sea H=(W,F) un subgráfo de G, definimos una relación de equivalencia sobre E-F como sigue:

Definiciones

- $\bullet \quad \forall e \in E F, \ e = e.$
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

Componentes triconexas

Si $H = \{\{a,b\},\emptyset\}$, las clases de equivalencia son llamadas clases de separación relativas al par $\{a,b\}$.

Definiciones

• Sean S_1, S_2, \ldots, S_k , las clases de separación relativas al par (a,b). Si existe una partición (A,B) de $\{1,2,\ldots,k\}$ tal que $|E_1=\bigcup_{i\in A}S_i|\geqslant 2$ y $|E_2=\bigcup_{j\in B}S_j|\geqslant 2$, decimos que $\{a,b\}$ es un par de separación.

Componentes triconexas

Definiciones

ullet Si G es biconexa y G no tiene par de separación entonces G es triconexa.

Algoritmo de descomposición en componentes triconexas

- Divide las aristas múltiples para formar enlaces triples y un grafo biconexo simple G'.
- 2 Encuentra los componentes de separación de G'.
- 3 Combina los enlaces triples y triángulos en enlaces y polígonos.

Sea G el bigrafo y $H = \{\{2,3\},\emptyset\}$

Ejemplo

La clase de equivalencia de 2—5 es el conjunto:

$$S_1 = \{2-5, 5 - 3\}$$

La clase de equivalencia de 1·····4 es el conjunto:

$$S_2 = \{2 \cdots 1, 1 - 4, 4 - 3\}$$

La clase de equivalencia de 2—3 es el conjunto:

$$S_3 = \{2 - 3\}$$

Para saber si $\{2,3\}$ es un par de separación hay que encontrar una partición de $\{1,2,3\}=A\cup B$, $A\cap B=\{\emptyset\}$ tal que se cumple que $|E_1=\bigcup_{i\in A}S_i|\geqslant 2$ y $|E_2=\bigcup_{j\in B}S_j|\geqslant 2$.

En este caso $A=\{1,3\}$, $B=\{2\}$ es una partición posible que buscamos y entonces $\{2,3\}$ es un par de separación.

Ahora supongamos $\{a,b\}$ es un par de separación. Si $H=\{\{a,b\},\emptyset\}$ y S_1,S_2,\ldots,S_k son las clases de separación del par $\{a,b\}$ (las clases de equivalencia definidas por H).

Sea A,B la partición del conjunto $\{1,2,\ldots,k\}$ tal que $|E_1=\bigcup_{i\in A}S_i|\geqslant 2$ y $|E_2=\bigcup_{j\in B}S_j|\geqslant 2$.

Si
$$H_1=(V(E_1),E_1)$$
 y $H_2=(V(E_2),E_2)$ entonces, $V(E_1)\cap V(E_1)=\{a,b\}$ donde la arista a — b es llamada arista virtual.

Sea
$$G_i = H_i + a - b$$
 para $i \in \{1, 2\}$.
Las G_i son los bigrafos de división de G en $\{a, b\}$.

Donde
$$A = \{1, 3\}$$
 y $B = \{2\}$

• Como G_1 y G_2 no son triconexas(tiene pares de separación) entonces, supongamos que sabemos que $\{1,3\}$ es un par de separación de G_2 y el mismo par $\{2,3\}$ es un par de separación de G_1 entonces,

 Ahora tenemos componentes triconexos. Estos son llamados componentes de división.

El siguiente resultado es debido a Hopcroft and Tarjan.

Lema

El número total de aristas en todos los componentes de división no excede $3 \vert E \vert - 6$

La operación de unión

- Sean H_1 y H_2 componentes de división de G tal que ambas contengan la misma arista virtual \underbrace{a}_n \underbrace{n}
- Combinamos estos dejando que $H = H_1 + H_2 (a, b, n)$.

La operación de unión

Pero solo vamos a fusionar los componentes de división de la siguiente forma:

- Fusionamos tanto como sea posible
- 2 Fusionamos tanto como sea posible.

El conjunto final de grafos es llamado conjunto completo de componentes de triconexas.

Lema

Un conjunto completo de componentes triconexas es único hasta isomorfismo.

• Del conjunto de componentes triconexas nos interesa recuperar los componentes biconexas, por ejemplo de

- en este caso el conjunto completo de componentes biconexas.
- De este ejemplo tenemos que una subgráfica cumple la condición de ciclo y una que es un \mathbb{A} -bloque. por lo tanto G es de tipo \mathbb{D}_5 .

• Finalmente para poder hacer la clasificación de las de tipo \mathbb{D}_n lo que se hace es tomar un grafo compruebo que todas sus componentes biconexas excepto una son \mathbb{A} -bloques y compruebo que esta componente biconexa es de tipo \mathbb{D}_n usando el algoritmo de descomposición en componentes triconexas.

Bibiográfia I

M. Abarca & D. Rivera
Graph Theoretical and Algorithmic Characterizations of
Positive Definite Symmetric Quasi-Cartan Matrices.
Fundamenta Informaticae. 149(3):241–261, 2016.

Kiem-Phong Vo Finding triconnected components of graphs. Linear and Multilinear Algebra. 13:2, 143-165, 1983

M. Abarca.
Algoritmo Para Decidir si una Forma Unitaria es de Tipo \mathbb{A}_n (Tesis de Licenciatura). 2011

