Dennis Kuzminer CSCI-UA 310-001 PS1

6. n=leaves and m=internal nodes

Q0 \rightarrow For a 2-3 tree of height zero, n = 1 and m = 0; therefore, the assertion holds for h = 0, as $0 \le 0$.

Inductive step: Assume that $m \le n-1$ holds for all $h-1 \ge 0 \to S$ how it holds for h. For a tree of height h, this would mean that the number of internal nodes would increase

by n and the number of leaves would increase by at least $2n_{h-1}$ and at most $3n_{h-1}$.

New internal nodes:
$$m_{h-1} + n_{h-1} = m_h \rightarrow m_{h-1} = m_h - n_{h-1} \rightarrow$$

$$m_h - n_{h-1} \le n_{h-1} - 1 \longrightarrow m_h \le 2n_{h-1} - 1$$

New leaves:
$$2 n_{h-1} \le n_h \le 3 n_{h-1} \rightarrow 2 n_{h-1} - 1 \le n_h - 1 \le 3 n_{h-1} - 1 \rightarrow$$

$$m_h \le 2 n_{h-1} - 1 \le n_h - 1 \le 3 n_{h-1} - 1 \longrightarrow m_h \le n_h - 1$$

$$\therefore m_h \le n_h$$
-1holds for all $h \ge 0$.