

This work is also supported by the

NIDILRR grant 90DPGE0019

Danyi Chen¹, Ivan Lopez¹, Menghan Jiang¹, Sainan Zhang¹, Israel Dominguez¹, Thomas H. Taylor¹, Nikhil Kantu¹ and Hao Su¹*

Learning in Simulation for Exoskeleton-Assisted

Versatile Walking in Community Settings

¹Biomechatronics and Intelligent Robotics lab, Department of Mechanical and Aerospace Engineering, North Carolina State University and Joint NCSU/UNC Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ²Johns Hopkins University School of Nursing

Objectives and Challenges

- Wearable robots like lower-limb exoskeletons have great potential for mobility restoration and human augmentation
- Challenge 1: Required intensive human testing
- Challenge 2: Required handcrafted control laws

Our Lightweight and High Torque Soft Exoskeleton

Advantages of Our Soft Exoskeleton

Our Portable and Tethered Soft Exoskeleton **Systems**

Omni-Knee72

72 Nm peak torque

Knee (tethered)

Omni-Hip72

72 Nm peak torque Hip (tethered)

QDD Actuation Paradigm for Exoskeleton

New Actuation Paradigm for Co-Robots

Lightweight, Compliant, and Smart Exoskeletons

Experiment-free Learning of Exoskeleton Controller In Simulation

- Drawbacks of state-of-the-art methods to get exoskeleton controllers:
 - Requires intensive human experiments for training → This adds formidable cost when applied to another activity or participant
 - Typically for a single activity with steady-state motion → It cannot handle versatile activities or transitions between different activities
- Learning controllers entirely in simulation eliminates the need for human experiments. However, it is still unavailable for wearable robotics community. Key challenges are:
 - Incorporating controller design in the simulation
 - Incorporating human-robot interaction in the simulation
- Our Solution:
 - Eliminates the need for human experiments, learns the exoskeleton controller purely from simulation, and provides immediate energetic benefit to humans
 - Provides synergistic assistance to different subjects for walking, running and stair-climbing

Physics-informed And Data-driven Reinforcement Learning

- Our learning method incorporates both physics-informed modeling and data-driven learning:
 - Physics-informed modeling of human musculoskeletal dynamics, exoskeleton, and human-robot interaction
 - Data-driven learning through publicly available human kinematic motion capture dataset
- Our learning method consists of three neural networks that are trained simultaneously for co-evolution:
 - Motion imitation network
 - Muscle coordination network
 - Exoskeleton control network
- Dynamics randomization was used to facilitate Sim-to-real transfer of the trained control policy

Portable Mechatronics Architecture

 Powerful electronics architecture using a hierarchical structure with a high-level computer and a low-level microcontroller

System Control Architecture

 Able to run complex control algorithms and improve the accuracy, speed, and efficiency of the exoskeleton's control system, leading to better performance, user comfort, and safety

Significant Energetic Cost Reductions on Versatile Activities

- 8 human subject (5 males, 3 females) experiments utilizing a lightweight, untethered and compliant hip exoskeleton
- Reduced significant metabolic cost by 24.3% for walking, 15.2% for running, and 14.5% for stair climbing

More metabolic cost reduction than state-of-the-art robots

Provides smooth transitions between different activities

References

[1] Luo, Shuzhen, et al. "Robust Walking Control of a Lower Limb Rehabilitation Exoskeleton Coupled with a Musculoskeletal Model via Deep Reinforcement Learning." Journal of neuroengineering and rehabilitation (2023). [2] Luo S, Androwis G, Adamovich S, Su H, Nunez E, Zhou X. Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance. Front Robot Al. 2021;8:702845.

[3] Yang, Huang, Hu, Yu, Zhang, Carriero, Yue, Su. Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance. IEEE Robotics and Automation Letters, 2019

[4] Yu, Huang, Lynn, Sayd, Silivanov, Park, Tian, Su. Design and Control of a High-Torque and Highly-Backdrivable Hybrid Soft Exoskeleton for Knee Injury Prevention during Squatting. IEEE Robotics and Automation Letters, 2019

[5] Yu, Huang, Yang, Jiao, Yang, Chen, Yi, Su. Quasi-direct drive actuation for a lightweight hip exoskeleton with high backdrivability and high bandwidth. IEEE Transactions on Mechatronics, 2020. (Best student paper award) [6] Huang, Zhang, Yu, MacLean, Zhu, Di Lallo, Jiao, Bulea, Zheng, & Su, Modeling and Stiffness-based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking

Assistance. IEEE Transactions on Robotics. 2022 [7] Zhu, Jiao, Dominguez, Yu and Su, "Design and Backdrivability Modeling of a Portable High Torque Robotic Knee Prosthesis With Intrinsic Compliance for Agile Activities," in IEEE/ASME Transactions on Mechatronics, vol. 27, no. 4, pp. 1837-1845, Aug. 2022 (2022 Best Paper in Mechatronics Award)

[8] Awad, Bae, O'donnell, De Rossi, Hendron, Sloot, Kudzia, Allen, Holt, Ellis and Walsh. A soft robotic exosuit improves walking in patients after stroke. Science Translational Medicine, 9(400), p.eaai9084 (2017). [9] Veneman et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE

Transactions on Neural Systems and Rehabilitation Engineering 15, 379-386 (2007). [10] Slade, Kochenderfer, Delp and Collins. Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277-282 (2022)