FORMULAIRE D'INTEGRATION

Primitives de fonctions usuelles

Fonction f	Continue (donc intégrable) sur :	Une primitive de f
$x \mapsto x^{n}$ $(n \in \mathbb{Z} \setminus \{-1\})$	\mathbb{R} si $n \ge 0$, \mathbb{R}^* si $n \le -2$	$x \mapsto \frac{x^{n+1}}{n+1}$
$x \mapsto x^{\alpha}, \ \alpha \in \mathbb{R} \setminus \{-1\}$]0;+∞[$x \mapsto \frac{x^{\alpha+1}}{\alpha+1}$
$x \mapsto \frac{1}{x}$	\mathbb{R}^*	$x \mapsto \ln(\mathbb{T}x\mathbb{T})$
$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto \sin(x)$
$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto -\cos(x)$
$x \mapsto e^x$	\mathbb{R}	$x \mapsto e^x$
$x \mapsto \frac{1}{\sqrt{1-x^2}}$]-1;1[$x \mapsto \operatorname{Arcsin}(x)$ ou $x \mapsto -\operatorname{Arccos}(x)$
$x \mapsto \frac{1}{1+x^2}$	\mathbb{R}	$x \mapsto Arctan(x)$

Primitives de fonctions composées

Soit u une fonction continue sur I.

Fonction f	Intervalle	Une primitive de f
$a \times u(ax + b)$	où ax+b∈ I	u'(ax+b)
$u^n \times u' \ (n \in \mathbb{Z} \setminus \{-1\})$	I si $n \ge 0$, où u ne s'annule pas si $n \le -2$	$\frac{u^{n+1}}{n+1}$
$u^{\alpha}u'(\alpha \in \mathbb{R}\setminus\{-1\})$	où u est strictement positive	$\frac{u^{\alpha+1}}{\alpha+1}$
e ^u ×u'	I	e^{u}
<u>u'</u> u	où u ne s'annule pas	In u
$\frac{u'}{\sqrt{1-u^2}}$	où u prend ses valeurs dans]-1; 1[Arcsin(u) ou – Arccos(u)
$\frac{u'}{1+u^2}$	I	Arctan(u)