

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA MECÂNICA

P1

Tópicos Especiais em Engenharia Mecânica I FEN03-05100 — Período 2020/1

Prof.: José da Rocha Miranda Pontes

Mestrandos: Daniel Lessa Coelho e Luís Henrique Carnevale

Avaliação

A primeira avaliação (P1) da disciplina corresponde ao conteúdo relativo à Parte I - Método de diferenças Finitas e vale **10,0 pontos**. Essa avaliação consiste na elaboração de um relatório a ser **entregue** até a data da última aula prevista no calendário acadêmico 2020 da UERJ, isto é, **08 de dezembro de 2020**. O aluno deverá elaborar um relatório que responda aos dois itens (A e B) do trabalho proposto, valendo **5,0 pontos** cada.

Organização

O relatório elaborado deve apresentar:

- Introdução: enunciado do(s) modelo(s) matemático(s) (equações, variáveis, hipóteses).
- Objetivo(s): "resolver numericamente ... utilizando o método ...".
- **Metodologia(s)**: esquema(s) numérico(s), parâmetros, dados e a verificação do código (curvas de convergência).
- **Resultados**: no mínimo os exigidos em enunciados.
- Conclusão: breve discussão sobre os resultados obtidos.

OBS: Os arquivos dos códigos em *PYTHON* com a implementação dos métodos devem ser enviados juntamente ao .pdf do relatório.

Entrega

Os relatórios devem ser enviados para um dos seguintes e-mails: danielcoelho.uerj@gmail.com ou daniel.coelho@mail.mcgill.ca.

Trabalho

A. Sistema massa-mola-amortecedor (5,0 pontos)

Um sistema massa-mola-amortecedor pode ser modelado matematicamente pela seguinte equação diferencial ordinária (EDO) de segunda ordem:

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0,$$

onde as variáveis x(t) e v(t) são posição e velocidade, respectivamente. As constantes positivas m, c e k correspondem à massa do corpo, coeficiente de amortecimento do amortecedor e constante da mola, respectivamente. Esse modelo pode ser representado como um sistema de duas EDOs de primeira ordem. Portanto, considere o seguinte problema de valor inicial (PVI):

$$\begin{split} \dot{x}(t) &= v(t) \; ; \\ \dot{v}(t) &= -\frac{c}{m} v(t) - \frac{k}{m} x(t) \quad , \; t \geqslant 0 \; , \\ x(0) &= 1 \; ; \; v(0) = 5 \; . \end{split}$$

O modelo matemático acima admite a solução analítica

$$x(t) = 2,79e^{-1.5t} \operatorname{sen}(2,5t+0,367)$$

para as seguintes constantes (unidades no S.I.): m = 1 [kg], c = 3 [N.s/m], e k = 8.5 [N/m]. Utilizando o modelo, os dados do problema e considerando apenas o intervalo $t \in [0, 4]$:

- (a) Construa os métodos de Euler explícito e de Crank-Nicolson;
- (b) Faça um código¹ em *PYTHON* para implementar ambos os métodos acima, **plotando** as soluções numéricas de x(t) e v(t) em um gráfico $x \times t$ e $v \times t$ (considerar $\Delta t = 10^{-1}$);
- (c) Compare qualitativamente a solução numérica com a solução analítica dada de x(t) através de um gráfico $x \times t$ (considerar $\Delta t = 10^{-1}$);
- (d) Calcule a norma L_2 do erro entre a solução numérica e a solução analítica dada para $\Delta t = 10^{-1}$, 10^{-2} , 10^{-3} , 10^{-4} e 10^{-5} , utilizando AMBOS os métodos. **Plote** os resultados de convergência obtidos e **compare** o comportamento dos erros com as curvas de $O(\Delta t)$ e $O(\Delta t^2)$ em um gráfico $\log(L_2) \times \log(\Delta t)$.

¹Os arquivos dos códigos em *PYTHON* com a implementação dos métodos devem ser enviados juntamente ao .pdf do relatório.

B. Condução de calor unidimensional em regime permanente (5,0 pontos)

Na modelagem da transferência de calor em um determinado sistema, realiza-se o balanço de energia interna para se obter a seguinte equação de evolução da temperatura $T \equiv T(x, y, z, t)$:

$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \alpha \nabla^2 T + \frac{\dot{Q}}{\rho C_v} ,$$

onde v é o campo de velocidades do meio, α é o coeficiente de difusividade do material e \dot{Q} uma fonte térmica. Os operadores diferenciais são: $\nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z)$ e $\nabla^2 = \partial^2/\partial x^2, \partial^2/\partial y^2, \partial^2/\partial z^2$.

Considere a transferência de calor unidimensional (apenas em x) em uma barra metálica (sólido, i.e., $\mathbf{v} \equiv 0$), com fonte térmica constante ($\dot{Q}/\rho c_v = F$) e em regime permanente ($\partial T/\partial t = 0$). A condução de calor na barra é então descrita por uma equação diferencial ordinária de segunda ordem para a temperatura, T(x). Portanto, o modelo matemático pode ser representado pelo seguinte problema de valor de contorno (PVC):

$$\frac{d^2T}{dx^2} = F \quad , \ x \in [0, L] ,$$

$$T(0) = T_1 , \ T(L) = T_2 ,$$

onde L é o comprimento da barra, e as temperaturas T_1 e T_2 são as condições de contorno de Dirichlet nas extremidades x=0 e x=L, respectivamente. A solução analítica desse PVC pode ser facilmente extraída e é dada por: $T(x)=(F/2)x^2+[(T_2-T_1-FL^2/2)/L]x+T_1$. Os domínios físico e computacional estão ilustrados na seguinte Figura 1:

Figura 1: Esquema de uma barra metálica submetida à diferentes temperaturas nas suas extremidades. É importante notar que pelo fato de $L \gg d$, é factível aproximarmos a geometria da barra à uma dimensão apenas, o que facilita a modelagem computacional (ou seja, é uma boa hipótese neste caso).

Utilizando o modelo, os dados do problema, considerando apenas o domínio $x \in [0, L]$, adotando L = 1.:

- (a) Construa o método de diferenças centradas (segunda ordem) para o PVC;
- (b) Faça um código² em *PYTHON* para implementar o método de diferenças centradas, **plotando** as soluções numéricas de T(x) em um gráfico $T \times x$ (considerar $\Delta x = 10^{-2}$);
- (c) Compare qualitativamente a solução numérica com a solução analítica de T(x) através de um gráfico

²Os arquivos dos códigos em *PYTHON* com a implementação dos métodos devem ser enviados juntamente ao .pdf do relatório.

 $T \times x$ (considerar $\Delta x = 10^{-2}$);

(d) Calcule a norma L_2 do erro entre a solução numérica e a solução analítica dada para $\Delta x = 10^{-1}$, 10^{-2} , 10^{-3} , 10^{-4} e 10^{-5} . Plote os resultados de convergência obtidos e **compare** o comportamento do erro com a curva $O(\Delta x^2)$ em um gráfico $\log(L_2) \times \log(\Delta x)$.