Zadania spisane:

1	2	3	4	5	6	7	8	9	10
Х		Х	Х		Х	X	Х		X
				14					
X	X		X	Χ	Х	X		X	X

Zadanie 1

Co można powiedzieć o macierzy sąsiedstwa grafu G i macierzy sąsiedztwa jego dopełnienia G?

Dla macierzy sąsiedstwa Q grafu pełnego o takiej samej ilości wierzchołków co G, Q-G da macierz sąsiedstwa dopełnienia grafu G. O ile nie dopuszczamy krawędzi wielokrotnych.

Jeśli I_i jest wektorem jednostkowym, który na pozycji i-tej ma jedynkę a na pozostałych zero, to AI jest wektorem krawędzi wchodzących do v_i .

 A^2I_i natomiast, jest wektorem przedstawiającym liczbę różnych dróg długości 2 prowadzących do wierzchołka v_i .

Zadanie 3

- 3. (Grafy Mycielskiego) Graf M_2 to dwa wierzchołki połączone krawędzią. Graf M_{k+1} konstruujemy z M_k w ten sposób, że dokładamy dla każdego $v \in V(M_k)$ wierzchołek v' i łączymy go z wszystkimi sąsiadami v w M_k ; następnie dodajemy jeszcze jeden wierzchołek w i łączymy go z wszystkimi wierzchołkami v'. Pokaż przez indukcję po k, że
 - (a) graf M_k nie ma trójkątów (klik K_3);
 - (b) graf M_k jest k-kolorowalny;
 - (c) graf M_k nie jest (k-1)-kolorowalny.
- (a) graf M_k nie ma trójkątów.

$$1^{\circ}~k=2<3~\checkmark$$

 2° Załóżmy, że M_{k-1} nie posiada trójkątów.

Załóżmy nie wprost, że M_k (skonstruuowany z M_{k-1}) posiada jakiś trójkąt, a v' jest jednym z wierzchołków tego trójkąta (jeśli by nie był to by znaczyło, że M_{k-1} również zawiera trójkąt). Wierzchołek v' sąsiaduje z N(v). Zatem musi istnieć jakaś krawędź v_iv_j tworząca trójkąt z v'. Ale to znaczyłoby, że w grafie M_{k-1} istnieje trójkąt vv_iv_j , sprzeczność.

(b) graf M_k jest k-kolorowalny.

$$1^{\circ} k = 2 \checkmark$$

 2° Załóżmy, że M_{k-1} jest k-1-kolorowalny.

Niech $c_{M_{k-1}}$ będzie k-1-kolorowaniem grafu M_{k-1} . Możemy zdefiniować kolorowanie c_{M_k} jako rozszerzenie $c_{M_{k-1}}$.

Niech dla każdego dodanego wierzchołka v_i' zachodzi $c_{M_{k-1}}(v_i)=c_{M_k}(v_i')$ (wierzchołki nie łączy krawędź, stąd kolorowanie wciąż jest poprawne), a wierzchołek w pokolorujmy nowym kolorem c_k . Zatem M_k jest k-kolorowalny.

(c) graf M_k nie jest k-1-kolorowalny.

$$1^{\circ} k = 2 \checkmark$$

 2° Załóżmy, że M_{k-1} nie jest k-2-kolorowalny.

Załóżmy nie wprost, że M_k jest k-1 kolorowalny (w tym jego podgraf M_{k-1}). Weźmy to kolorowanie i pokażmy, że możemy pokolorować M_{k-2} na k-2 kolory.

Bez straty ogólności załóżmy, że kolor wierzchołka w to c_{k-1} . Wtedy wierzchołki v_i' mogą przyjąć kolory $c_1, c_2, ..., c_{k-2}$.

Weźmy A - zbiór wierzchołków v_i , które mają kolor c_{k-1} . Każdemu takiemu wierzchołkowi możemy zmienić kolor na kolor v_i' zachowując poprawne kolorowanie, bo skoro v_i są tego samego koloru to nie mogą ze sobą sąsiadować; Z kolei wierzchołki v_i oraz v_i' mają wspólnych sąsiadów, ale nie istnieje krawędź między nimi.

W ten sposób kolor k-1 w grafie M_{k-2} nie jest już używany, co oznacza, że można pokolorować go na k-2 kolory. Sprzeczność.

Zadanie 4

4. Niech G będzie grafem o 2n wierzchołkach, którego wszystkie stopnie wierzchołków wynoszą co najmniej n. Pokaż, że G ma pełne skojarzenie tzn. skojarzenie n-krawędziowe.

Z twierdzenia Diraca graf G zawiera cykl Hamiltona. Weżmy zatem cykl Hamiltona zaczynający się w wierzchołku v_0 . Do skojarzenia M dodawajmy krawędzie wychodzące z wierzchołka o indeksie nieparzystym, czyli $v_1-v_2, v_3-v_4, ..., v_{2n-1}-v_0$. Jest to doskonałe skojarzenie G.

Zadanie 6

6. Mamy daną grupę n dziewcząt i m chłopców. Pokaż, że warunkiem koniecznym i dostatecznym na to, by k dziewcząt mogło znaleźć męża (wewnątrz grupy), jest to, by każde r dziewcząt znało przynajmniej k+r-n chłopców.

Wsk.: Dodaj n-k chłopców akceptowanych przez wszystkie dziewczyny i zastosuj tw. Halla

Szukamy zatem warunku koniecznego i dostatecznego na istnienie skojarzenia o mocy k w grafie dwudzielnym $G=(C\cup D,E)$. Niech D to zbiór dziewcząt, a C – chłopców.

Poszerzmy więc zbiór C o C' – n-k wierzchołków połączonych z każdym wierzchołkiem z D. Nazwijmy tak utworzony graf G'.

Tw. W G istnieje skojarzenie o mocy $k \iff w G'$ istnieje skojarzenie o mocy n.

 \Longrightarrow

Jeśli w G istnieje skojarzenie o mocy k to możemy wybrać takie wierzchołki ze zbioru D, które nie zostały jeszcze pokryte żadnymi krawędziami ze skojarzenia. Jest ich dokładnie n-k. Skoro w zbiorze C' mamy dokładnie n-k wierzchołków, każdy z nich połączony z każdym wcześniej wymienionym wierzchołkiem z D, to możemy uzyskać w G' skojarzenie łącząc każdy niepokryty wierzchołek z D z jednym dowolnym wierzchołkiem z C'. Tak otrzymamy skojarzenie o mocy n.

 \Leftarrow

Jeśli w grafie G' istnieje skojarzenie o mocy n to co najwyżej n-k krawędzi tego skojarzenia jest incydentna do wierzchołków z C'. W takim razie, w grafie G istnieje skojarzenie o mocy co najmniej k.

Z tw. Halla, skojarzenie mocy |D| istnieje \iff dla każdego $X\subseteq D:|N_{G'}(X)|\geq |X|$

$$|X| \leq |N_{G'}(X)| = |N_{G'}(X) \cap C| + |N_{G'}(X) \cap C'| = |N_G(X)| + n - k \iff N_G(X) \geq |X| + k - n$$

Zadanie 7

7. W niektórych krajach mężczyzna może mieć do czterech żon. Pokaż, że warunkiem koniecznym i dostatecznym w takim kraju na to, aby n dziewcząt mogło znaleźć mężów, jest to by każde k z nich znało w sumie przynajmniej k/4 chłopców.

Niech $G = (D \cup C, E)$ graf dwudzielny, w którym |D| = n.

Utwórzmy graf $G'=(D\cup C',E')$ w taki sposób, aby każdy wierzchołek z c sklonować 3 razy (żeby łącznie było ich po 4). Natomiast każda krawędź incydentna do wierzchołka c_i w C, będzie incydentna do dokładnie jednego wierzchołka $c_{i,j}$ ($1\leq j\leq 4$).

W G' istnieje skojarzenie mocy $k \iff$ w G istnieje k małżeństw, takich że każda kobieta ma jednego męża, a mężczyzna co najwyżej 4 żony.

 \Longrightarrow

Jeśli istnieje skojarzenie o mocy k w G' oznacza to, że dokładnie k wierzchołków z D jest pokryte, a po suma krawędzi incydentnych do $c_{i,1}...c_{i,4}$ (czyli wierzchołka w G) nie przekracza 4.

 \leftarrow

Analogicznie, jeśli istnieje k takich małżeństw to do każdego wierzchołka c_i incydentnych jest co najwyżej 4, a do d_i co najwyżej jedna. Stąd po rozdzieleniu wierzchołka c_i otrzymamy G' ze skojarzeniem o mocy k.

Korzystając z tw. Halla, w G' będzie istnieć skojarzenie o mocy $n\iff$ każdy z k wierzchołków w D ma co najmniej k sąsiadów. Oznacza to, że w grafie G każdy wierzchołek z D musi mieć przynajmniej $\frac{k}{4}$ sąsiadów (znać chłopców).

Zadanie 8

 Udowodnij, że drzewo ma co najwyżej jedno pełne skojarzenie.

Weźmy drzewo T i jego doskonałe skojarzenie M. Załóżmy nie wprost, że istnieje doskonałe skojarzenie M', takie że $M \neq M'$.

Utwórzmy graf G o wierzchołkach T i krawędziach z różnicy symetrycznej M i M'. Musi być to podgraf T. Zauważmy, że jeśli krawędź e (z v do v') należy jednocześnie do M i M' to wierzchołki incydentne do krawędzi e będą stopnia zerowego. Jeśli e należy tylko do jednego skojarzenia, to istnieją krawędzie: e' incydentna do v i e" incydentna do v w drugim skojarzeniu. Wtedy wierzchołki v i v' będą miały stopień dwa w grafie G.

Usuńmy teraz wszystkie wierzchołki stopnia zerowego z grafu G i nazwijmy ten graf G'.

Jeśli G' jest pusty to oznacza to, że M=M', sprzeczność.

Wpp. wszystkie wierzchołki w tym grafie są stopnia dwa. Zatem w G' istnieje cykl. Ale G' jest podgrafem T. Sprzeczność.

Zadanie 10

 Pokaż, że dwudzielny graf d–regularny posiada pełne skojarzenie.

Niech G – d-regularny graf dwudzielny składa się z rozłącznych zbiorów wierzchołków X i Y oraz krawędzi między nimi.

1.
$$|Y| = |X|$$

Wynika z regularności G. Z X wychodzi dokładnie d|X| krawędzi i do Y wchodzi dokładnie d|X| krawędzi. Analogicznie z Y wychodzi d|Y| krawędzi. Stąd $d|X|=d|Y|\iff |X|=|Y|$.

2. G posiada pełne skojarzenie.

Weźmy (bez straty ogólności) $S\subseteq X$. Zauważmy, że liczba krawędzi między S a N(S) to dokładnie d|S|. Z drugiej strony, liczba krawędzi wchodzących do N(S) to d|N(S)|, wśród nich znajdują się krawędzie wychodzące z podzbioru S. Zatem $d|S| \leq d|N(S)| \iff |S| \leq |N(S)|$. Na mocy twierdzenia Halla, w grafie G istnieje doskonałe skojarzenie.

Zadanie 11

 Pokaż, że graf 3-regularny posiadający cykl Hamiltona ma indeks chromatyczny równy 3.

Niech G – 3-regularny graf Hamiltona.

Korzystając z lematu o uściskach dłoni wiemy, że G musi mieć parzystą liczbę wierzchołków (2m=3n). Zatem cykl Hamiltona w tym grafie musi być parzystej długości. Weźmy ten cykl Hamiltona i pokolorujmy jego krawędzie naprzemian kolorami c_1 i c_2 . Pozostałe krawędzie tworzą doskonałe skojarzenie (każdy wierzchołek w tym grafie ma stopień 3, a każdy jest incydentny do dwóch krawędzi z cyklu Hamiltona), pokolorujmy je kolorem c_3 . Wtedy każdy wierzchołek będzie incydentny do dokładnie jednej krawędź każdego z kolorów.

Zadanie 12

- 12. (a) Niech wszystkie wierzchołki G poza v mają stopień d i niech indeks chromatyczny G wynosi d. Pokaż, że n = |V(G)| jest nieparzyste i $\deg(v) = 0$.
 - (b) Pokaż, że graf d-regularny G posiadający wierzchołek rozcinajający ma indeks chromatyczny równy d+1.

$$(a) \ deg(v) \neq d \implies deg(v) < d$$

Skoro $\chi'(G)=d$ to weźmy optymalne kolorowanie i rozważmy krawędzie incydentne do v. Skoro deg(v)< d to istnieje kolor c_1 taki, że żadna krawędź incydentna do v nie ma tego koloru. Krawędzie koloru c_1 po usunięciu wierzchołka v w grafie G' utworzą doskonałe skojarzenie. W szczególności, liczba wierzchołków w G' musi być parzysta.

Załóżmy nie wprost, że deg(v)>0 i rozważmy krawędź koloru c_2 incydentną do v. Krawędzie koloru c_2 tworzą skojarzenie doskonałe w G, tzn. G ma parzystą liczbę wierzchołków. Sprzeczność. Zatem deg(v)=0.

Załóżmy nie wprost, że $\chi'(G)=d$. Wtedy dla ustalonego d-optymalnego kolorowania krawędzie dowolnego koloru tworzą skojarzenie doskonałe.

Niech v – wierzchołek rozcinający. Niech v łączy dwie spójne składowe (które powstałyby w grafie G po jego usunięciu) H_1, H_2 , takie, że nie ma krawędzi między H_1 a H_2 .

Weźmy krawędź koloru c_k łączącą wierzchołek v z wierzchołkiem w H_1 . Skoro krawędzie c_k tworzą doskonałe skojarzenie, to liczba wierzchołków w H_1 musi być nieparzysta, natomiast liczba wierzchołków w H_2 – parzysta.

Analogicznie, weźmy krawędź koloru c_t , która łączy wierzchołek v z wierzchołkiem w H_2 . Skoro krawędzie o kolorze c_t tworzą doskonałe skojarzenie to H_2 zawiera nieparzystą liczbę wierzchołków, a H_1 – parzystą. Sprzeczność.

Skoro
$$\chi'(G) \leq d+1$$
 to $\chi'(G) = d+1$.

Zadanie 13

13. Pokaż, że indeks chromatyczny $\chi'(K_n)$ jest równy n-1, gdy n jest parzyste i n, gdy n jest nieparzyste.

Nazwijmy wierzchołki w K_n (gdzie n jest nieparzyste) jako $v_0, v_1, ..., v_{n-1}$

Teraz pokolorujmy każdą krawędź $\{v_i, v_j\} = \{v_j, v_i\}$ kolorem $i + j \pmod{n}$. Pokażmy, że żaden wierzchołek nie ma dwóch incydentnych krawędzi tego samego koloru.

Załóżmy nie wprost, że istnieje wierzchołek v_k , w którym dwie z krawędzi do niego incydentnych jest tego samego koloru. Tzn, istnieją $v_m \neq v_t$ takie, że $k+t \equiv k+m \pmod n \iff t \equiv m \pmod n$, ale wiemy, że t, m < n, zatem n = m, sprzeczność.

Z drugiej strony, ze względu na to, że zbiór krawędzi jest zawsze skojarzeniem, a każdy wierzchołek w K_n ma stopień n-1 to chcąc pokolorować K_n n-1 kolorami to każdy z tych kolorów musiałby być incydentny do każdego z wierzchołków, czyli musiałyby istnieć n-1 skojarzenia doskonałe, co sprzeczne jest z nieparzystością wierzchołków.

Teraz rozważmy graf K_{n+1} i kolorowanie wyznaczone wyżej. Zauważmy, że dla każdy z wierzchołków nie używa dokładnie jednego koloru. Dokładniej, każdy v_i nie ma incydentnej krawędzi koloru $2i \pmod n$. Wpp. musiałyby istnieć takie wierzchołki $v_i, v_j, i \neq j$, że $i+j \equiv 2i \pmod n \iff j \equiv i \pmod n$. Tzn, j=i lub j=n+i.

Pokażmy teraz, że dla każdej pary wierzchołków, brakujący kolor krawędzi incydentnej nie jest taki sam, tj. dla $v_i \neq v_j$ zachodzi $2j \not\equiv 2i \pmod n$. Załóżmy nie wprost, że $2j \equiv 2i \pmod n \iff j \equiv i \pmod n \implies j=i$, sprzeczność.

Wystarczy zatem pokolorować krawędzie w taki sposób, że krawędź łącząca dołączony wierzchołek z wierzchołkiem v_i pokolorowana zostanie na kolor $2i \pmod{n}$.

Zadanie 14

14. Pokaż wielomianową redukcję problemu istnienia w grafie G pokrycia wierzchołkowego rozmiaru k do problemu istnienia w grafie H kliki rozmiaru k'.

Transformacja $f:G \to \overset{-}{G}$.

W G istnieje pokrycie wierzchołkowe wielkości $k \iff$ W G istnieje klika wielkości |V|-k.

 \Longrightarrow

Załóżmy, że w G istnieje pokrycie wierzchołkowe S wielkości k. Niech $S'=V\setminus S$. Wtedy |S'|=|V|-k. Weźmy dowolną krawędź $e=uw\in E(S)$.

Skoro $e \in E(S)$, tzn, że $u \in S$ lub $w \in S$.

W przypadku, gdy żaden z wierzchołków nie należy do S to krawędź leży w S^\prime .

Zatem S' jest kliką

 \leftarrow

Niech $\overset{-}{G}$ zawiera klikę S' wielkości |V|-k. Rozważmy $S=V\setminus S'$. Wtedy |S|=|V|-(|V|-k)=k. Pokażmy, że S jest pokryciem wierzchołkowym.

Weźmy dowolna krawedź G - e = uv:

- \overline{e} nie jest krawędzią w G,
- przynajmniej jeden z wierzchołków u,v nie należy do S^\prime (bo S^\prime jest kliką),
- ullet przynajmniej jeden z wierzchołków u,v jest w S

Zatem S jest pokryciem wierzchołkowym rozmiaru k.

Zadanie 15

15. Pokaż, że jeśli można rozstrzygnąć, czy graf dowolny graf jest 4-kolorowalny w czasie wielomianowym, to da się również rozstrzygnąć, czy dowolny graf jest 3-kolorowalny w czasie wielomianowym. Niech $f:G\to G'$, taka że do G' kopiujemy G i dołączamy wierzchołek y incydentny do każdego innego wierzchołka w G'.

G jest 3-kolorowalny $\iff G'$ jest 4-kolorowalny

 \Longrightarrow

Jeśli G jest 3-kolorowalny to w grafie G' y będzie musiał być pokolorowany 4 kolorem, ponieważ jest incydentny do wszystkich pozostałych wierzchołków. Zatem G' jest 4-kolorowalny.

 \leftarrow

Jeśli G' jest 4-kolorowalny to istnieje taki wierzchołek y połączony krawędzią ze wszystkimi innymi wierzchołkami, co oznacza, że ma inny kolor niż wszystkie pozostałe wierzchołki. Stąd G jest 3-kolorowalny.

Zadanie 16

 Pokaż wielomianową transformację sprowadzającą problem izomorfizmu grafów do problemu izomorfizmu grafów dwudzielnych.

Zdefiniujmy transformację f, która zachowuje wierzchołki z G, a dla każdej krawędzi uv utworzy wierzchołek w. Wtedy f(G) będzie dwudzielny.

Pokażmy, że G jest izomorficzne z $H \iff f(G)$ jest izomorficzne z f(H)

 \Longrightarrow

Jeśli G jest izomorficzne z H to po dodaniu wierzchołka na krawędzi uv w G, wierzchołek przejdzie na krawędź u'v' w G

Wystarczy rozważyć grafy spójne (jeśli nie są spójne to możemy rozważyć problem izomorizmu dla każdej ze spójnych składowych osobno).

Jeśli G nie jest cyklem to w f(G) możemy rozróżnić wierzchołki dodane do grafu f(G) od tych z grafu G. Wystarczy znaleźć wierzchołek v stopnia nieparzystego i zastosować algorytm, który podzieli wierzchołki w taki sposób, że sąsiedzi v będą dodanymi wierzchołkami, z kolei ich sąsiedzi będą wierzchołkami z G etc. (na każdej krawedzi dodany był jeden wierzchołek).

Wtedy jeśli w grafie G istniała krawędź uv to w grafie f(G) istnieje krawędź ux i xv. Jeśli f(G) jest izomorficzne z f(H) to krawędź ux przechodzi na u'x' w f(H), a xv na x'v' w f(H). Stąd jeśli pominiemy wierzchołek v (dodany poprzez transformację) to będzie zachodzić, iż jeśli istniała krawędź uv w grafie G to przejdzie ona na u'v' w H.

Zatem izomorfizm f(G) o f(H) obcięty do wierzchołków G definiuje G o H.

Jeśli G jest cyklem o n wierzchołkach to jeśli f(G) jest izomorficzny z f(H) oznacza to, że zarówno f(G) jak i f(H) są cyklami o 2n wierzchołkach. Jeśli f(H) jest cyklem o 2n wierzchołkach to powstał z H - cyklu o n wierzchołkach. Stąd G jest izomorficzne z H.

Zadanie 17

 Pokaż wielomianową transformację sprowadzającą problem istnienia drogi Hamiltona w grafie do problemu istnienia w nim drzewa spinającego o stopniu nie większym, niż 2021.

Zdafiniujmy transformację f:G o G', taką że w G' mamy graf G i dla każdego wierzchołka $v\in V(G),v$ ma w G' 2019 nowych sąsiadów

W grafie G istnieje droga Hamiltona \iff w G' istnieje drzewo rozpinające o stopniu nie większym niż 2021

Jeśli w grafie istnieje droga Hamiltona to w szczególności jest ona drzewem rozpinającym tego grafu o stopniu co najwyżej 2021.

Drzewo rozpinające dla G' musi zawierać dla każdego $v\in V(G)$ po 2019 krawędzi łączących v z tymi wierzchołkami. Czyli pozostała jego część drzewa, czyli drzewo rozpinające dla grafu G ma stopień nie większy niż 2, tzn. jest ścieżką Hamiltona w G.

Zadanie 18

18. Pokaż wielomianową transformację sprowadzającą problem istnienia cyklu Hamiltona w dowolnym digrafie do problemu istnienia cyklu Hamiltona w nieskierowanym grafie dwudzielnym.

Zdefiniujmy transformację f, która jeśli w G istnieje wierzchołek u to przekształca go na cztery wierzchołki u_l, u_0, u_1, u_r i łączy u_l, u_0, u_0, u_1 oraz u_0, u_r nieskierowanymi krawędziami. W przypadku, gdy w G istnieje skierowana krawędź (u, v) to w f(G) powstanie nieskierowana krawędź $u_r v_l$.

Pokażmy, że w digrafie G istnieje cykl Hamiltona \iff w grafie f(G) istnieje cykl Hamiltona.

Jeśli w G istnieje cykl Hamiltona, to w f(G) również istnieje, z tą różnicą, że dla każdej przechodzonej krawędzi (u,v) w grafie G przechodzimy przez drogę $u_l,u_0,u_1,u_r,v_l,v_0,v_1,v_r$ w grafie f(G).

 \leftarrow

Jeśli w f(G) istnieje cykl to musi być on postaci $u_l, u_0, u_1, u_r, v_l, v_0, v_1, v_r, \ldots$ lub $u_r, u_1, u_0, u_l, v_r, v_1, v_0, v_l \ldots$ Ponieważ porządek przechodzonych kolejno wierzchołków odpowiada skierowaniu krawędzi w grafie G to w przypadku 1 cyklu zamieniając wierzchołki od vl do vr na v dostaniemy cykl Hamiltona w G. W przypadku drugiego cyklu, skoro f(G) jest nieskierowany, wystarczy go odwórcić.

Obserwujemy, że nigdy nie zdarzy się sytuacja w której przejdziemy raz z prawego do lewego wierzchołka a następnie z prawego do lewego (wynika z definicji transformacji).

tags: mdm