Errata for Simon et al. (1994)

Participants of Mathmatics for Economics Classes

2017년 4월 11일

1 p.13

• $f_2(x) - x^7$ in caption for figure 2.2 should be $f_2(x) = -x^7$ (2017sp 백지연)

2 p.16

 $y = (x-1)/(x^3 + 3x + 2)$ is just a typo. This equation should be

$$y = \frac{x-1}{x^2 + 3x + 2}$$

3 p.49

• 6th line: 5x + 6 should be 5x - 6 (2016f 송영석)

4 p.57

In example 3.6,

$$f(20) = 4500$$

(2017sp 백지연)

5 p.67

• Figure 3.20: y intercept is a (not b) (2016sp 이준현)

6 p.71

• In the Equation (2) of Example 4.2, $P(L) = \Pi(f(L))$ (2016f 송영석)

7 p.177

• The last equation

$$\mathbf{x} = (I - A)^{-1}$$

should be

$$\mathbf{x} = (I - A)^{-1}\mathbf{c}$$

(2016f 배근태)

8 p.192: Theorem 9.2

• Theorem 9.2 should be modified:

Let A be an $n \times n$ matrix and let R be its row echelon form by only using ERO_1, ERO_2 . Then:

$$\det A = \pm \det R$$

If no row interchanges (i.e., ERO_1) and ERO_3 are used to compute R from A, (or equivalently, if only ERO_2 are used,) then $\det A = \det R$

Proof sketch: $\det(EM_1(R_i \leftrightarrow R_j)) = -1, \det(EM_2(R_i \leftarrow R_i + kR_j)) = 1, \det(EM_3(R_i \leftarrow kR_i)) = k$ and use Theorem 9.5(b)

9 p.195

• In example 9.4, "Example 7.1" ⇒ "Exercise 7.2(b)" (2017sp 백지연)

10 p.275

• q₁ should be q₂ (2016sp 이준현)

$$\mathbf{q} = (q_1, q_2) = (f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3)) \equiv F(x_1, x_2, x_3)$$

11 p.321

The first equation should be:

$$\begin{pmatrix} \frac{\partial F}{\partial x_1}(\mathbf{x}^*) \\ \vdots \\ \frac{\partial F}{\partial x_n}(\mathbf{x}^*) \end{pmatrix}$$

12 p.327

In theorem 14.4,

$$H = F \circ A : \mathbb{R}^s \to \mathbb{R}^m$$

(2016su 박준현)

13 p.337

In Figure 15.2, two axis should be x, y, not x_1, x_2 (2016su 이가영)

14 p.342

In Theorem 15.2,

Then, there is a C^1 function $y=y(x_1,\cdots,x_k)$ defined on an open ball B about ...

(2016su 박준후)

15 p.349

In Example 15.12, .. is perpendicular (or normal) to the plane

$$Ax + By + Cz = D$$

(2016su 이가영)

16 p.400

(In Theorem 17.3) Let $F: U \to \mathbb{R}^1$ be a C^2 function whose domain is an open set U in \mathbb{R}^n . (2016su $\mathcal{P} \to \mathbb{R}^n$)

17 p.455

In Equation 11,

$$f(x^*(a); a) = f(a; a) = \cdots$$

18 p.458

• D^2 should be: (2016sp 이준현)

$$D^{2}f(\mathbf{x}^{*}) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}x_{1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}x_{n}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{pmatrix}$$