Sampling

- Sampling is a lot like repeated simulation
- Predicting the weather, basketball games, ...
- Basic idea
- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P

Why sample?

- Learning: get samples from a distribution you don't know
- Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Sampling

- Sampling from given distribution
- Step 1: Get sample u from uniform distribution over [0, 1)
- E.g. random() in python
- Step 2: Convert this sample *u* into an outcome for the given distribution
- Each target outcome is associated with a sub-interval of [0,1)
- Sub-interval size is equal to probability of the outcome.

Φ	
\Box	4
H	
Ka	
会	

0.6				
P(C)	0.6	0.1	0.3	
С	red	green	plue	

red	green	blue
11	11	
\mathcal{O}	O	O
\uparrow	\uparrow	\uparrow
0.6,	0.7,	H
0	0	V
V	V	n
7	n	V
	VI	1
0	9.	0.7
	0	

- If random() returns u = 0.83, then our sample is C =blue
- E.g. after sampling 8 times:

Sampling in Bayes' Nets

Prior Sampling

-Rejection Sampling

Likelihood Weighting

Gibbs Sampling