# **Email Spam Detection with Machine Learning**

### 1.1 Importing libraries in this enviroment.

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
```

### 1.2 Importing skleran models for prediction.

```
In [2]:

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
```

### 2.1 Reading the "spam (1).csv" dataset using python's pandas libraries.

```
In [3]: spam = pd.read_csv("spam (1).csv",encoding = 'ISO-8859-1')
In [4]: spam.head()
```

#### Out[4]:

|   | V1   | V2                                             | Unnamed: 2 | Unnamed: 3 | Unnamed: 4 |
|---|------|------------------------------------------------|------------|------------|------------|
| 0 | ham  | Go until jurong point, crazy Available only    | NaN        | NaN        | NaN        |
| 1 | ham  | Ok lar Joking wif u oni                        | NaN        | NaN        | NaN        |
| 2 | spam | Free entry in 2 a wkly comp to win FA Cup fina | NaN        | NaN        | NaN        |
| 3 | ham  | U dun say so early hor U c already then say    | NaN        | NaN        | NaN        |
| 4 | ham  | Nah I don't think he goes to usf, he lives aro | NaN        | NaN        | NaN        |

```
In [5]: shape =spam.shape
shape
```

Out[5]: (5572, 5)

The above dataframe shows that 3rd, 4th, and 5th column doesn't contain any data. So, dropping these columns.

```
In [6]: spam.drop(['Unnamed: 2','Unnamed: 3','Unnamed: 4'],inplace =True,axis =1)
In [7]: spam.head()
```

## Out[7]:

|   | v1   | v2                                             |
|---|------|------------------------------------------------|
| 0 | ham  | Go until jurong point, crazy Available only    |
| 1 | ham  | Ok lar Joking wif u oni                        |
| 2 | spam | Free entry in 2 a wkly comp to win FA Cup fina |
| 3 | ham  | U dun say so early hor U c already then say    |
| 4 | ham  | Nah I don't think he goes to usf, he lives aro |

!!! Columns dropped successfully.

```
In [8]: spam.columns = ['type', 'message']
 In [9]: spam.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5572 entries, 0 to 5571
         Data columns (total 2 columns):
         # Column Non-Null Count Dtype
                      5572 non-null object
          0 type
          1 message 5572 non-null object
         dtypes: object(2)
         memory usage: 87.2+ KB
         2.3 Removing duplicates from the dataset.
In [10]: spam.drop_duplicates(inplace = True)
In [11]: new = spam.shape
         new
Out[11]: (5169, 2)
In [12]: duplicates = shape[0]-new[0]
         print("Numbers of duplicates :",duplicates)
         Numbers of duplicates : 403
          2.4 Statistical measure of the dataset.
In [13]: spam.describe()
Out[13]:
                 type
                                               message
           count 5169
                                                  5169
          unique
                   2
                                                  5169
             top ham Go until jurong point, crazy.. Available only ...
            freq 4516
In [14]: spam['type'].value_counts()
Out[14]: type
                  4516
         ham
          spam
                  653
         Name: count, dtype: int64
```

```
In [15]: sns.countplot(x='type',data =spam,palette = 'cool')
plt.title('Mail Received Types')
```

# Out[15]: Text(0.5, 1.0, 'Mail Received Types')



### 3.1 Data preparing for models.

\*3.2 Naive Bayes's model building , training and testing.

```
In [23]: nv =MultinomialNB()
         nv.fit(X_train_new,y_train)
Out[23]: wMultinomialNB
         MultinomialNB()
In [24]: y_nv = nv.predict(X_test_new)
In [25]: print('Accuracy of the Navie Bayes Model on the trian dataset: {:0.2f}%'.format((nv.score(X_train_new,y_trai
         Accuracy of the Navie Bayes Model on the trian dataset: 97.87%
In [26]: print('Accuracy of the Navie Bayes Model on the test dataset: {:0.2f}%'.format((nv.score(X_test_new,y_test)*
         Accuracy of the Navie Bayes Model on the test dataset: 96.62%
In [27]: cm_nv =confusion_matrix(y_test,y_nv)
         sns.heatmap(cm_nv,annot =True,fmt ='d',cmap= 'Blues',cbar =False)
         plt.title("Confusion Matix")
Out[27]: Text(0.5, 1.0, 'Confusion Matix')
                                     Confusion Matix
          0
                            889
                                                             0
```



```
In [28]: print("Classification Report of Navie Bayes Model :\n\n",classification_report(y_test,y_nv))
```

Classification Report of Navie Bayes Model :

```
precision
                            recall f1-score
                                               support
                   0.96
           0
                             1.00
                                       0.98
                                                  889
                   1.00
                             0.76
                                       0.86
                                                  145
    accuracy
                                       0.97
                                                 1034
  macro avg
                   0.98
                             0.88
                                       0.92
                                                 1034
weighted avg
                   0.97
                             0.97
                                       0.96
                                                 1034
```

### 3.3 Logistic Regression model building, training and testing.

```
In [29]: lm = LogisticRegression()
```

```
In [30]: lm.fit(X_train_new,y_train)
Out[30]:
         ▼ LogisticRegression
         LogisticRegression()
In [31]: y_lm = lm.predict(X_test_new)
In [32]: print('Accuracy of Logistic Regression on the trian data: {:0.2f}%'.format((lm.score(X_train_new,y_train)*10
         print('Accuracy of Logistic Regression on the test data: {:0.2f}%'.format((lm.score(X_test_new,y_test)*100))
         Accuracy of Logistic Regression on the trian data: 96.13%
         Accuracy of Logistic Regression on the test data: 96.42%
In [33]: cm_lm = confusion_matrix(y_test, y_lm)
         plt.figure(figsize=(6, 4))
         sns.heatmap(cm_lm, annot=True, fmt="d", cmap='Greens', cbar=False)
         plt.xlabel('Predicted')
         plt.ylabel('True')
         plt.title('Confusion Matrix for Navie Bayes')
         plt.show()
                            Confusion Matrix for Navie Bayes
                             887
                                                             2
             0
          True
```

# In [34]: print("Classification Report of Logistic Regerssion Model :\n\n",classification\_report(y\_test,y\_lm))

Predicted

110

1

Classification Report of Logistic Regerssion Model :

35

0

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.96      | 1.00   | 0.98     | 889     |
| 1            | 0.98      | 0.76   | 0.86     | 145     |
| accuracy     |           |        | 0.96     | 1034    |
| macro avg    | 0.97      | 0.88   | 0.92     | 1034    |
| weighted avg | 0.96      | 0.96   | 0.96     | 1034    |

### 3.4 Random Forest Classifer model building, training and testing.

RandomForestClassifier()

Out[39]: Text(50.7222222222214, 0.5, 'True')



Predicted

Accuracy of Random Forest Classifier on the test data: 97.10%

In [40]: print("Classification Report of Random Forest Model :\n\n",classification\_report(y\_test,y\_for))

1

Classification Report of Random Forest Model :

0

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.97      | 1.00   | 0.98     | 889     |
| 1            | 0.99      | 0.80   | 0.89     | 145     |
| accuracy     |           |        | 0.97     | 1034    |
| macro avg    | 0.98      | 0.90   | 0.93     | 1034    |
| weighted avg | 0.97      | 0.97   | 0.97     | 1034    |
|              |           |        |          |         |

### 3.5 Decision Tree Classifier model building, training, and testing.

```
In [41]: tree = DecisionTreeClassifier()

In [42]: tree.fit(X_train_new,y_train)
    y_tree =tree.predict(X_test_new)

In [43]: print("Accuracy of the Decision Tree Classifier on train set: {:0.1f}%".format(tree.score(X_train_new,y_train_print("Accuracy of the Decision Tree Classifier on test set: {:0.2f}%".format(tree.score(X_test_new,y_test)*
```

Accuracy of the Decision Tree Classifier on train set: 100.0% Accuracy of the Decision Tree Classifier on test set: 96.32%

### Out[44]: Text(50.7222222222214, 0.5, 'True')

### Confusion Matrix for Decision Tree



In [45]: print("Classification Report of Decision Tree Model :\n\n",classification\_report(y\_test,y\_tree))

Classification Report of Decision Tree Model :

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.97      | 0.98   | 0.98     | 889     |
| 1            | 0.89      | 0.84   | 0.87     | 145     |
| accuracy     |           |        | 0.96     | 1034    |
| macro avg    | 0.93      | 0.91   | 0.92     | 1034    |
| weighted avg | 0.96      | 0.96   | 0.96     | 1034    |

### 3.6 Gradient Boosting Classifer model building, training and testing.

```
In [46]: boost =GradientBoostingClassifier()
```

```
In [47]: boost.fit(X_train_new,y_train)
y_boost = boost.predict(X_test_new)
```

```
In [48]: print("Accuracy of the Gradient Boosting on train set: {:0.2f}%".format(boost.score(X_train_new,y_train)*100
    print("Accuracy of the Gradient Boosting on test set: {:0.2f}%".format(boost.score(X_test_new,y_test)*100))
```

Accuracy of the Gradient Boosting on train set: 97.39% Accuracy of the Gradient Boosting on test set: 96.23%

```
In [49]: cm_boost = confusion_matrix(y_test,y_boost)
    sns.heatmap(cm_boost,annot= True,cbar = False, fmt ='d',cmap = 'Reds')
    plt.title("Confusion Matrix for Gradient Boosting")
    plt.xlabel('Predicted')
    plt.ylabel('True')
```

Out[49]: Text(50.7222222222214, 0.5, 'True')

# Confusion Matrix for Gradient Boosting



In [50]: print("Classification Report of Gradient Boosting model :\n\n", classification\_report(y\_test,y\_boost))

Classification Report of Gradient Boosting model :

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.96      | 1.00   | 0.98     | 889     |
| 1            | 0.98      | 0.74   | 0.85     | 145     |
| accuracy     |           |        | 0.96     | 1034    |
| macro avg    | 0.97      | 0.87   | 0.91     | 1034    |
| weighted avg | 0.96      | 0.96   | 0.96     | 1034    |

## 4. Conclusion

From all the above models, Radom Forest Classifier model gives precise output.

# !!! Thank You.

In [ ]: