Projet de construction 3 : Dimensionnement d'un réducteur de vitesse par engrenage à axe parallèle.

1. Description technique

Effectué obligatoirement en binôme, ce projet vis à concevoir un réducteur de vitesse composé de deux étages de réduction voir schéma cinématique en annexe.

- Un étage réalisé par un engrenage hélicoïdal (1-21)
- Un étage réalisé par un train épicycloïdal a engrenages droits comportant 3 satellites.

Données du problème :

- o Moteur lié à l'arbre d'entrée du réducteur(6):
 - Vitesse d'entrée Ne
 - Puissance d'entrée notée Pe
- Couple disponible en sortie du réducteur noté Cs
- o Module des engrenages : choisir un multiple de 0,5.
- Rendement des engrenages : 0,95

Chaque groupe projet (binôme) travaillera avec des données différentes qui figureront en annexe de ce document.

Travail à réaliser

1. <u>Dimensionnement mécanique de la solution :</u>

1.1 Dimensionnement des engrenages :

Pour chaque étage de réduction, proposez en les justifiant, les caractéristiques des engrenages :

Matériaux, traitements, module, angle d'inclinaison d'hélice, nombre de dents et entraxe.

Pour le train épicycloïdal, vous validerez les conditions de montage.

1.2 Dimensionnement des arbres de transmissions :

Pour les arbres de transmission (6 et 7), valider le choix du matériau, des traitements associés et le diamètre minimal.

1.3 Eléments de liaison :

Choisir et justifier le choix des éléments de liaison du système :

• Liaisons pivot mise en rotation des arbres et liaisons encastrement (carter, pignon-roue/arbres...).

2. Lubrification et étanchéité :

- 2.1 Proposer une solution de lubrification à l'huile (grade ISO VG huile, et référence commerciale d'une huile compatible) par barbotage à la fois pour les engrenages et les roulements. On supposera une température ambiante de 20°C et une température de fonctionnement de 40°C. Le système fonctionne sous chocs modérés.
- 2.2 Proposer et justifier les solutions d'étanchéité. Préciser les éléments permettant d'assurer la maintenance de la lubrification.

3. Modélisation numérique du réducteur

3.1 Proposer un plan d'ensemble du réducteur selon toutes vues utiles.

4. Livrables:

- Une note de calcul limitée à 10 pages maximum explicitant la démarche de calcul et les modèles utilisés dans les parties 1 et 2. (format pdf).
- Un fichier Excel dynamique et structuré (1 onglet par élément traité) explicitant les résultats des parties 1 et 2.
- Un plan d'ensemble format papier 5/5 du réducteur avec les coupes associées permettant de comprendre le fonctionnement du système et les solutions technologiques adoptées (format pdf). Y figureront notamment les jeux de fonctionnement et les ajustements adaptés ainsi qu'une nomenclature.

A rendre pour le 20/12/2020 au plus tard par mail adressé à Hakim Remita et Hervé Pelletier.

Sous forme de fichier ZIP comprenant l'ensemble des livrables énoncés cidessus. Et déposés dans nos casiers électroniques respectifs de la PFM.

ANNEXES
Annexe 1 : Schéma technologique du réducteur de vitesse.

Annexe 2 : Données numériques

Classe		NE	PE	Cs
	Groupe	(tr/min)	(Watt)	(N.m)
	1	750	250	30
GM4-A	2	750	250	40
	3	750	250	50
	4	750	250	60
	5	750	250	70
	6	1500	500	30
	7	1500	500	40
	8	1500	500	50
	9	1500	500	60
	10	1500	500	70
	11	1500	500	80
	12	1500	1000	60
	13	1500	1000	70
	14	1500	1000	80
	15	1500	1000	90
GM4-B	16	1500	1000	100
	17	1500	1000	110
	18	1500	1000	120
	19	1500	1000	130
	20	1500	1000	140
	21	1500	1000	150
	22	1500	1000	160
	23	1500	1000	170
	24	1500	1500	100
	25	1500	1500	110
	26	1500	1500	120
	27	1500	1500	130
	28	1500	1500	140
	29	1500	1500	150
	30	1500	1500	160

Classe		NE	PE	Cs
	Groupe	(tr/min)	(Watt)	(N.m)
MIQ4	31	1500	2000	120
	32	1500	2000	140
	33	1500	2000	160
	34	1500	2000	180
	35	1500	2000	200
	36	1500	2000	220
	37	1500	2000	240
	38	1500	2000	260
	39	1500	2000	280
	40	1500	3000	200
	41	1500	3000	220
	42	1500	3000	240
	43	1500	3000	260
	44	1500	3000	280
	45	1500	3000	300
	46	1500	3000	320
PL4	47	1500	3000	340
	48	1500	3000	360
	49	1500	3000	380
	50	1500	3000	400
	51	1500	3000	420
	52	1500	3000	440
	53	1500	3000	460
	54	1500	4000	240
	55	1500	4000	260
	56	1500	4000	280
	57	1500	4000	300
	58	1500	4000	320
	59	1500	4000	340
	60	1500	4000	360