Numerical Linear Algebra Exam 1 Study Guide

Nathan Warner

Computer Science Northern Illinois University United States

Contents

1	Chapter one: Gaussian Elimination and variants		
	1.1	Concepts	2
	1.2	Definitions	2
	1.3	Properties	3
	1.4	Theorems / Propositions	4
	1.5	Algorithms / Flop counts	4
2	$\mathbf{C}\mathbf{h}$	apter 2: Sensitivity of linear systems	5
	2.1	Concepts	5
	2.2	Definitions	5
	2.3	Properties	7
	2.3 2.4	Properties	

Chapter one: Gaussian Elimination and variants

1.1 Concepts

- Matrix multiplication: Know how to do matrix-vector, and matrix-matrix multiplication.
- Block decompositions
- Systems of linear equations
- · Singularity, properties of nonsingular matrices
- Triangular systems
- Properties of triangular matrices / systems
- Forward and backward substitution, flop counts
- Positive definite matrices / systems
- Properties of positive definite matrices
- Principal submatrices, leading principal submatrices, principal minors
- · Cholesky decomposition and the cholesky factor
- Algorithms to compute the Cholesky factor and flop counts
- Cholesky factor in a diagonal matrix
- Banded matrix
- Column envelope
- Envelope of Choleksy factor
- Elementary operations on a system
- LU decomposition without row interchanges (and criterion for this to be possible)
- Algorithms to find LU decomposition without row interchanges and flop counts
- Partial pivoting
- Permutation matrix
- Gaussian elimination with partial pivoting
- LU decomposition with partial pivoting

1.2 Definitions

- Positive definite matrix: A matrix A is positive definite provided that the following two conditions are satisfied
 - 1. A is symmetric. That is, $A = A^{\top}$
 - 2. $x^{\top}Ax > 0$ for all $x \neq 0$
- Banded matrix, lower and upper bandwidths: A banded matrix is a sparse matrix whose nonzero entries are confined to a diagonal band, consisting of the main diagonal and a fixed number of diagonals on either side of it.

Let $A \in \mathbb{R}^{m \times n}$. Then A is called a **banded matrix** if there exist nonnegative integers p, q (called the *lower* and *upper bandwidths*) such that

$$a_{ij} = 0$$
 whenever $i - j > p$ or $j - i > q$.

- The *lower bandwidth* p is the number of subdiagonals (below the main diagonal) that may contain nonzero entries.
- The $upper\ bandwidth\ q$ is the number of superdiagonals (above the main diagonal) that may contain nonzero entries.

The total bandwidth is sometimes defined as p + q + 1, counting the main diagonal as well

• Column envelope: The column envelope of A is the set of indices (i, j) in the upper triangular part of A (including the main diagonal). Define

$$\operatorname{colenv}\{A\} = \{(i,j)\}: i \leq j \text{ and } a_{kj} \neq 0 \text{ for } k \leq i\}$$

1.3 Properties

• Singularity: A singular matrix is a square matrix that does not have an inverse.

A **nonsingular** matrix is a square matrix that does have an inverse.

The following are equivalent, if any one holds, they all hold

- -Ax = b has a unique solution
- $-\det(A) \neq 0$
- $-A^{-1}$ exists
- There is no nonzero vector $y \in \mathbb{R}^m$ such that Ay = 0
- The columns of A are linearly independent
- The rows of A are linearly independent
- Given any vector b, there is exactly one vector x such that Ax = b

If any one of the following are true, they all are true, and A is nonsingular

- Properties of positive definite (p.d) matrices:
 - 1. If A is p.d then A is nonsingular

Note: Since A is nonsingular there is no $y \in \mathbb{R}^n$, $y \neq 0$ such that Ay = 0

- 2. If $A = M^{\top}M$ for some M nonsingular than A is p.d
- 3. If A is p.d than det(A) > 0
- 4. If A is p.d then all principal submatrices are p.d
- 5. If A is p.d then $a_{ii} > 0$ for i = 1, 2, ..., n. So, if any $a_{ii} \leq 0$, A is not p.d.
- 6. A is p.d if and only if all leading principal minors are positive
- 7. A is p.d if and only if there exists a unique upper triangular matrix R such that $A = R^{\top}R$ (Cholesky factorization described below)
- 8. A is p.d if and only if all eigenvalues of A are positive

Recall that λ is an eigenvalue of A if there exists $x_{\lambda} \neq 0$ such that $Ax_{\lambda} = \lambda x_{\lambda}$

- Properties of a permutation matrix:
 - 1. Orthogonal: $P^T = P^{-1}$
 - 2. **Determinant:**: $det(P) = \pm 1$, depending on whether the permutation is even or odd.
 - 3. Action on vectors:: Px permutes the coordinates of x
 - 4. **Action on matrices:** Left multiplication permutes rows; right multiplication permutes columns.

Note: Property two is a key property.

1.4 Theorems / Propositions

• Theorem 1.4.7 (*Cholesky Decomposition Theorem*): Let A be positive definite. Then A can be decomposed in exactly one way into a product

$$A = R^{\top}R$$

such that R is upper triangular and has all main diagonal entries r_{ii} positive. R is called the Cholesky factor of A.

- Theorem: Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Then, we can solve the system Ax = b, $b \in \mathbb{R}^n$ using Gaussian Elimination without row interchanges if and only if all landing principal sub-matrices of A are nonsingular.
- Theorem 1.7.19 (LU Decomposition Theorem): Let A be an $n \times n$ matrix whose leading principal submatrices are all nonsingular. Then, A can be decomposed in exactly one way into a product A = LU such that L is unit lower triangular and U is upper triangular.

1.5 Algorithms / Flop counts

Chapter 2: Sensitivity of linear systems

2.1 Concepts

- Norms
- Vector norms
- Properties of vector norms
- · Cauchy-schwarz inequality
- Entrywise matrix norms
- Properties of matrix norms
- Induced matrix norms
- Properties of induced matrix norms
- Induced matrix-norms special cases
- · Numerical error when solving systems
- Residual vector
- Relative error
- Pertubation
- Condition number
- Properties of the condition number
- Relative error bound I
- Relative error bound II
- Condition for singularity in \hat{A}
- κ , well-conditioned, ill-conditioned

2.2 Definitions

- Norm: A norm is an operation $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}_+: x \to \|x\| \geqslant 0$ that satisfies
 - 1. $||x|| = 0 \iff x = 0$
 - 2. $\|\alpha x\| = |\alpha| \|x\|$
 - 3. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- Euclidean norm (2-norm): The standard Euclidean distance. For $x \in \mathbb{R}^n$,

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• Manhattan norm (1-norm): Denoted L^1 , and also called Taxicab norm. For $x \in \mathbb{R}^n$,

$$||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$
.

• L-Infinity (max) norm (∞ -norm): Denoted L^{∞} . for $x \in \mathbb{R}^n$,

$$\left\Vert x\right\Vert _{\infty}=\max_{1\leqslant i\leqslant n}\left|x_{i}\right|=\max\{\left|x_{1}\right|,\left|x_{2}\right|,...,\left|x_{n}\right|\}.$$

• p-norm: In \mathbb{R}^n , A more general norm is

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} = (|x_1^p| + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$

for $1 \le p < \infty$. The general p-norm satisfies all three properties of a norm only when $p \ge 1$. For smaller p, the triangle inequality does not hold.

• Induced (operator) matrix norms: For all $A \in \mathbb{R}^{n \times m}$, we define

$$||A||_p := \max_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Ax||_p}{||x||_p}.$$

• Induced matrix norms special cases:

\overline{p}	Name	Explicit formula
1	Maximum column sum	$ A _1 = \max_{1 \le j \le n} \sum_{i=1}^m a_{ij} $
2	Spectral norm	$ A _2 = \sqrt{\lambda_{\max}(A^T A)}$
∞	Maximum row sum	$ A _{\infty} = \max_{1 \leqslant i \leqslant m} \sum_{j=1}^{n} a_{ij} $

• Cauchy Schwarz inequality for 2-norm (vector norm): states

$$|x^T y| \le ||x||_2 ||y||_2$$
.

• Residual vector: Suppose Ax = b yields \hat{x} via numerical methods, then define the residual vector as

$$\hat{r} = b - A\hat{x}.$$

Which, by the way, implies that

$$b = \hat{r} + A\hat{x}$$
.

• Intro to measuring solutions: Consider a problem (P), where

$$(P): Ax = b.$$

Numerical techniques yields a solution \hat{x} , which may or may not be the true solution to (P). Let x be the true solution to the system. So, x solves Ax = b.

We want to measure the distance between the numerical solution \hat{x} and the true solution x, we hope that the numerical solution \hat{x} is close to x. If the distance is small, then \hat{x} is a good solution.

• Relative error: The relative error in \hat{x} is given by

$$\frac{\|\hat{x} - x\|}{\|x\|} = \frac{\|\delta x\|}{\|x\|}$$

where $\hat{x} = x + \delta x$, which implies $x = \hat{x} - \delta x$.

• **Perturbation**: If numerical methods to solve a linear system Ax = b yields \hat{x} , then \hat{x} solves $\hat{A}\hat{x} = \hat{b}$. Note that it is possible for $\hat{A} = A$ or $\hat{b} = b$. If both $\hat{A} = A$ and $\hat{b} = b$, then $\hat{x} = x$.

 \hat{A} and \hat{b} are called perturbed if they are modified versions of the original. If \hat{A} is a perturbed matrix A, and \hat{b} is a perturbed vector b, then

$$\hat{A} = A + \delta A,$$

$$\hat{b} = b + \delta b.$$

• Condition number: We define the condition number

$$\kappa(A) = \left\| A^{-1} \right\| \left\| A \right\|,$$

which measures how sensitive the system is to perturbations in A or b, and how close A is to being singular.

2.3 Properties

- Properties of vector norms:
 - 1. $||x|| \ge 0$
 - 2. $||x|| = 0 \iff x = 0$
 - 3. $\|\alpha x\| = |\alpha| \|x\|$
 - 4. $||x+y|| \le ||x|| + ||y||$ (Triangle inequality)
- **Properties of matrix norms**: Matrix norms satisfy the three required properties of norms.
 - 1. $||A|| = 0 \iff A = 0$
 - 2. $\|\alpha A\| = |\alpha| \|A\|$
 - 3. $||A + B|| \le ||A|| + ||B||$ (Triangle inequality)
- Properties of induced matrix norms
 - Sub-multiplicativity: $||AB||_p \leq ||A||_p ||B||_p$
 - Consistency: $||Ax||_p \leqslant ||A||_p ||x||_p$
 - Normalization: $||I||_p = 1$

These are what entrywise ("flattened") norms lack.

- Properties of the condition number: Let A be a matrix, and $\kappa(A)$ be the condition number that measures the system Ax = b. The following two properties hold
 - 1. $\kappa(A) \geqslant 1$
 - 2. $\kappa(I) = 1$
 - 3. $\kappa(A) = \kappa(A^{-1})$

2.4 Theorems / Propositions

• Theorem (Relative Error Bound I): Let A be nonsingular, $b \neq 0$, and Ax = b. If $A(x + \delta x) = b + \delta b$, then

$$\frac{\|\delta x\|}{\|x\|} \leqslant \kappa(A) \frac{\|\delta b\|}{\|b\|}$$

• Theorem (Singularity of perturbed A): If

$$\frac{\|\delta A\|}{\|A\|} < \frac{1}{\kappa(A)}$$

then $A + \delta A$ is nonsingular.

• Theorem (Relative error bound II): Let A be nonsingular, $b \neq 0$, and Ax = b. If $(A + \delta A)(x + \delta x) = b$, and

$$\frac{\|\delta A\|}{\|A\|} < \frac{1}{\kappa(A)},$$

then

$$\frac{\|\delta x\|}{\|x\|} \leqslant \frac{\kappa(A)\frac{\|\delta A\|}{\|A\|}}{1 - \kappa(A)\frac{\|\delta A\|}{\|A\|}}.$$

• Theorem (*Relative error bound III*): Let A be nonsingular, $b \neq 0$, and Ax = b. If $(A + \delta A)(x + \delta x) = b + \delta b$, and

$$\frac{\|\delta A\|}{\|A\|} < \frac{1}{\kappa(A)},$$

then

$$\frac{\|\delta x\|}{\|x\|} \leqslant \frac{\kappa(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|}\right)}{1 - \kappa(A) \frac{\|\delta A\|}{\|A\|}}.$$

2.5 Algorithms

• Iterative approach to improve \hat{x} : Suppose for a system Ax = b numerical techniques yields an approximation \hat{x}_1 . Then, the residual vector $\hat{r}_1 = b - A\hat{x}_1$, which implies that $b = \hat{r}_1 + A\hat{x}_1$. If \hat{x}_2 is a different approximation, where $\hat{x}_2 = \hat{x}_1 + \delta\hat{x}_1$, then

$$A\hat{x}_2 = b = \hat{r}_1 + A\hat{x}_1$$

$$\implies A(\hat{x}_1 + \delta\hat{x}_1) = \hat{r}_1 + A\hat{x}_1$$

$$\implies A\hat{x}_1 + A\delta\hat{x}_1 = \hat{r}_1 + A\hat{x}_1$$

$$\implies A\delta\hat{x}_1 = \hat{r}_1.$$

So, we solve the system for $\delta \hat{x}_1$. Then, since $\hat{x}_2 = \hat{x}_1 + \delta \hat{x}_1$, we see that we need to update the first solution by adding the computed $\delta \hat{x}_1$.

In general, if \hat{x}_i is the i^{th} numerical solution to Ax = b, and \hat{r}_i is the residual vector to the i^{th} solution, then

$$\hat{x}_{i+1} = \hat{x}_i + A^{-1}\hat{r}_i.$$

In practice, we don't compute $A^{-1}\hat{r}_i$, as we know that this is an expensive task. Instead, we solve the system correction system

$$A\delta\hat{x}_i = \hat{r}_i$$
.

In exact arithmetic,

$$A\delta\hat{x} = b - A\hat{x}$$

$$\implies \delta\hat{x} = A^{-1} (b - A\hat{x})$$

$$= A^{-1}b - A^{-1}A\hat{x}$$

$$= x - \hat{x}.$$

So,

$$\hat{x}_{\text{new}} = \hat{x} + \delta \hat{x} = \hat{x} + x - \hat{x} = x.$$

Thus, in exact arithmetic, we converge to the true solution in one step.

In practice, computations are done in floating-point arithmetic, so both the residual and the correction are computed approximately. Let

$$A \,\delta \hat{x} = r + \delta r$$

where δr represents rounding or truncation errors. When we update

$$\hat{x}_{\text{new}} = \hat{x} + \delta \hat{x},$$

we hope that the new residual

$$r_{\text{new}} = b - A\hat{x}_{\text{new}}$$

is smaller than the previous residual. Each iteration ideally improves the approximation because

$$\delta \hat{x} \approx A^{-1}(b - A\hat{x}) = x - \hat{x}.$$

When floating-point errors are small enough relative to the conditioning of A, this correction moves \hat{x} closer to x. But, if A is ill-conditioned, the corrections may no longer reduce the error — in fact, they can make it worse.