questions from prev term

Chapter 1

① We learnt about sample variance (and sample standard deviation) on Wednesday.

How to interpret sample variance? What is it used for?

Answer: While sample mean illustrates central tendency (where the centre is), sample

variance shows you how spread out the data are.

For example, the numbers 1,2,3 have a sample mean of 2, and a sample standard

deviation of 1 (work it out yourself to confirm).

On the other hand, the numbers 0,2,4 also has a sample mean of 2, but the sample

standard deviation is larger than 1 since the data are more "spread out" (the sample standard

deviation is 2).

(Test: What do you think is the sample standard deviation of the numbers 7,7,7,7?)

Answer: It's 0. There is no variation in the numbers.

1

② A student asked "how do we get the median for a skewed distribution?"

Example, distribution looks like this:

Answer: Locate the point M on the x axis such that <u>half the area</u> is on the right of M and half the area is on the left of M. That is

③ If a distribution is symmetrical, note that the mean and median coincide.

mean=median for symmetrical distribution

⊕ We learnt quartiles (Q1, Q3) last lecture. Note that there are several algorithms for calculation of quartiles (we learnt just one). R software uses a different algorithm/formula by default, so don't be surprised if R software gives you a different Q1,Q3 value from what you expect.

[For students who are interested, in R,

quantile(data, type=1)
$$\leftarrow$$
 R will use method taught in class quantile(data, type=7) \leftarrow R's default (different from our method)]

⑤ We learnt mean and median in the previous lecture. What is the <u>mode</u> of a distribution?

Ans: It is the observation that occurs the most number of times.

median=5.5

$$\text{mean} = \frac{\sum_{i=1}^{10} x_i}{n} = \frac{65}{10} = 6.5$$

mode=5 (appears most frequently)

More on mode.

Graphically, if the distribution is

Idea: If the above curve is f(x), how to find the mode?

Set f'(x) = 0 [that is, $\frac{dy}{dx} = 0$] and solve for x. [Recall in calculus: finding maximum point]

© In previous lecture, it was mentioned that "median is resistant". What does that mean? Resistant to what?

Ans: Median is resistant to outliers. But what is an outlier?

This leads us to the beginning of today's lecture.

What are outliers

Outliers are observations that lie outside the overall pattern of a distribution.

That is quite vague, and statistical software often use the following rule to identify which observations are outliers.

The $1.5 \times IQR$ rule for outliers

Statistical software often use the $1.5 \times IQR$ rule. We call an observation a suspected outlier if it falls more than $1.5 \times IQR$ above Q3 (third quartile) or below Q1 (first quartile).

[Recall IQR=Q3-Q1]

Example: Here are 7 observations:

1	3	5	6	7	11	25
1	O.	· ·	U	- 1	11	20

	Our method to compute Q1, Q3	R's method to compute Q1,Q3
Mean	8.286	8.286
Q1	3	4
Q3	11	9
IQR	11-3=8	9-4=5
$1.5 \times IQR$	$1.5 \times 8 = 12$	$1.5 \times 5 = 7.5$

Any values below Q1- $(1.5 \times IQR)$ is an outlier.

Similarly, any value above $Q3+(1.5 \times IQR)$ is an outlier.

In this example, the observation 25 is above $Q3+(1.5 \times IQR)$, so it is an outlier.

We use R to find some statistics of the data and to draw a **modified boxplot** (with outliers).

$$> data <- c(1,3,5,6,7,11,25)$$

>summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 4.000 6.000 8.286 9.000 25.000

> boxplot(data)

When we have outliers, most software will produce a modified boxplot:

Remind students to register their iClickers before start of class next week. We are using iClickers starting next Wednesday.