그리드 포밍 컨버터의 전류 제한을 통한 FRT 제어 전략

2023년도 전력전자학술대회 Wednesday, July. 5th, 2023

박가영,최성휘

SPEC (SNU Power Electronics Center)

Dept. of Electrical and Computer Engineering

Seoul National University, Seoul, S. Korea

OUTLINE

1 연구 배경 및 목적

계통 연계 FRT (Fault Ride-Through)

그리드 포밍 컨버터의 FRT 제어 전략

4 HILS 검증 결과

<u> </u> 결론

1. 연구 배경 및 목적

1 연구 배경 및 목적

❖ 전력 계통의 변화

- ▶ 신재생에너지 기반 분산 전원 증가 → 인버터 기반 전원(IBR)의 비중 증가
- ▶ 계통의 SCR (Short Circuit Ratio) 감소 및 계통 약화 추세

❖ 계통 연계 컨버터의 제어 토폴로지

- ▶ 그리드 팔로잉 (Grid-Following) 제어
 - ✓ 전류원 동작을 통해 계통에 유무효전력 주입
 - ✓ 약계통 (Low SCR) 연계 시 전압 기반 동기화 방식이 불안정성 야기
- ▶ 그리드 포밍 (Grid-Forming) 제어
 - ✓ 전압원 동작을 통해 계통 전압 형성 및 계통 안정화
 - ✓ 약계통 (Low SCR) 연계 시 파워 기반 동기화 방식으로 안정적 동작 가능

Future Grid

< 기존 동기 발전기 기반 계통과 전력 전자 발전원 기반 계통의 비교 [*][**] >

< 계통 연계형 컨버터 제어 방법 비교: (좌) GFL(우) GFM >

1 연구 배경 및 목적

❖ 계통 사고 시 FRT (Fault Ride-Through) 요구 사항

- ▶ 출력 전류 제한 (Current Limitation)
 - ✓ 컨버터 출력 전류를 제한치 이내로 제한하며 운전 유지 필요
- ▶ 무효 전류 주입 (Fault Current Contribution)
 - ✓ 계통에 요구되는 유무효 전류 주입 필요
- ▶ 사고 복구 동특성 (Fault Recovery Capability)
 - ✓ 사고 복구 직후 빠르게 정상상태 회복 필요

❖ 그리드 포밍 컨버터의 계통 사고 시 대응 방안

- ▶ 동기 발전기와 과전류 주입 한계에서의 차이점 존재
 - ✓ 동기 발전기: 5-7 p.u.의 과전류 주입 가능
 - ✓ 그리드 포밍 컨버터: 1.2-1.5 p.u.의 과전류 주입 가능

<계통 연계 컨버터의 계통 사고 시 FRT 비유>

→ 연구 목표: 그리드 포밍 컨버터의 과전류 주입 한계를 고려한 FRT 제어 전략 제안

2. 계통 연계 FRT (Fault Ride-Through)

계통 연계 FRT (Fault Ride-Through)

❖ 계통 연계 신재생발전기의 계통 연계 유지 조건

- ▶ 순시전압 강하시 고장 시 및 고장 발생 후 연계 운전 유지
- ▶ 고장 중 무효전류 공급
 - ✓ 고장 발생 후 3 cycle 이내에 요구되는 무효전류 공급
- ▶ 고장 후 유효전력 회복
 - ✓ 연속운전 전압유지 범위로 복구 이후 5초 이내에 정상 상태 회복

<한국전력공사 신재생발전기 계통연계기준: FRT 능력 곡선 [*]>

2 계통 연계 FRT (Fault Ride-Through)

 $\mathbf{E} = (R + jX)\mathbf{I} + \mathbf{V_q}$

- ❖ 그리드 포밍 컨버터의 제어 구조
 - ▶ 내부 제어 루프: 계통 접속점에서의 전압, 전류 제어
 - ✓ 동기발전기 전자기적 특성 모의
 - ✓ 가상 임피던스: 계통접속점 전압, 가상 EMF로부터 전류 지령 생성
 - ✓ 전류 제어기: 전압 변조 지령 생성
 - ✓ 상대적으로 빠른 동특성

- ▶ 외부 제어 루프: 계통에 주입되는 파워 제어
 - ✓ 동기발전기 전기기계적 특성 모의
 - ✓ 유효전력 제어: 파워 기반 동기화
 - 유효전력 지령과 출력의 차이로부터 컨버터 주파수 산출
 - $\Delta P \rightarrow 0$ 이면 $\omega_c \rightarrow \omega$ 로 수렴
 - ✓ 무효전력 제어: 가상 EMF 생성
 - ✓ 상대적으로 느린 동특성

<그리드 포밍 컨버터의 가상 EMF 페이저도>

Outer loop
Electromechanical interaction

2 계통 연계 FRT (Fault Ride-Through)

❖ 그리드 포밍 컨버터의 FRT

- ▶ 고장 중 무효전류 공급
 - \checkmark 컨버터 내부 가상 EMF E 유지
 - 외부 제어 루프의 느린 동특성 → 계통 사고 시 무효전류 주입 가능

- ✓ 전압에 의해 결정되는 전류 / 변화
- ✓ 순시전압강하 및 위상 점프 시 과전류 위험 존재
 - 연계 운전 유지를 위해 컨버터 최대 허용 전류 I_M (통상 1.2 p.u.) 이내로 <mark>전류 제한 필요</mark>

- ✓ 전류 제한 시 외부 제어 루프에 포화 현상 발생
- ✓ 적절한 포화 현상 해소 (Anti-windup) 대책 필요

$$||\boldsymbol{I}|| = \frac{||\boldsymbol{E} - \boldsymbol{V}_{PCC}||}{||\boldsymbol{Z}_{C}||}$$

<그리드 포밍 컨버터의 사고 시 전압 페이저도>

❖ 그리드 포밍 컨버터의 전류 제한 기법

- ▶ 전류 제한기 (Current Limiter)
 - ✓ 전류 벡터의 크기를 직접 제한
 - ✓ 외부 제어 루프에서 포화 현상 발생
- ▶ 가상 임피던스 (Virtual Impedance)
 - ✓ 가상 임피던스의 크기를 증가시켜 전류의 크기 제한
 - ✓ 일정 수준 이상으로 증가 시 불안정성 야기
- ▶ 전압 제한기 (Voltage Limiter)
 - ✓ 가상 EMF와 컨버터 출력 전압의 차이 벡터를 제한
 - ✓ 가상 임피던스의 감쇠 특성 이용 X → 과전류 억제 능력 부족

❖ 전류 제한기 (Current Limiter)

- ▶ 전류 지령 벡터의 크기를 직접적으로 제한하여 전류 제어기에 전달
 - ✓ 직관적이며 사고 감지에 따른 제어방식의 절환 없이 빠르게 전류 제한 가능
 - \checkmark 전류 지령 벡터의 d, q축 성분 비를 유지하며 크기를 I_M 이내로 제한
 - ✓ 전류 제어기는 새로운 전류 지령을 추종

- ✓ 전류 제어기에서는 포화 현상 발생하지 않음
- ✓ 외부 제어 루프에서 포화 현상 발생

<그리드 포밍 컨버터의 전류 벡터 크기 제한>

$$\bar{\iota}_{ref,dq} = \begin{cases} i_{ref,dq}, & I_{ref,dq} \leq I_{M} \\ \frac{I_{M}}{I_{ref,dq}} i_{ref,dq}, & I_{ref,dq} > I_{M} \end{cases}$$

❖ 유무효전력 지령 변화 (Power Reference Modification)

- ▶ 사고 감지 알고리즘에 기반하여 동작
 - \checkmark 계통 접속점 전압 크기 V_{pu} 계산
 - \checkmark V_{pu} 에 따라 새로운 정격 파워 산출

- ▶ 순시전압강하 정도에 비례하여 유무효전력 지령을 변화
- <한국전력공사 신재생발전기 계통연계기준: 고장발생 후 무효전류 공급능력 [*]>
- ✓ 계통 접속점 전압 크기를 기준으로 새로운 정격 파워의 유무효전력 지령 분배비율 변화
 - $V_{pu} > 0.9$: 기존의 무효전력 지령 유지
 - $0.5 < V_{pu} < 0.9$: 순시전압강하에 비례하여 무효전력지령의 비중 증가
 - $V_{pu} < 0.5$: 새로운 정격 파워를 모두 무효전력에 할당

 $S_{new} = V_{pu}S_n$

- ▶ 무효전력에 우선적으로 정격 파워 분배
 - ✓ 순시전압강하 발생 시 빠르게 무효전류 주입 가능
 - ✓ 전류 제한기로 인한 외부 제어 루프에서의 포화 현상 완화

$$Q_{ref} = \begin{cases} Q_{droop} & if V_{pu} > 0.9 \\ 2S_{new} (1 - V_{pu}) & if 0.5 < V_{pu} < 0.9 \\ S_{new} & otherwise. \end{cases}$$

$$P_{ref} = \sqrt{S_{new}^2 - Q_{ref}^2}$$

❖ 계통 사고 시나리오

- ▶ 강계통 연계 (SCR = 20)
- ▶ 5초 이후 정상상태 진입 및 유무효전력 지령 추종
 - ✓ 유효전력 지령 1 p.u.
 - ✓ 무효전력 지령 0.2 p.u.
- ▶ 6초에 3상 순시전압강하 발생
 - ✓ 6.2초까지 200ms 간 50% 계통 전압 강하 후 복구

<계통 3상 순시전압강하 사고 시나리오>

❖ 그리드 포밍 컨버터 FRT 제어 전략의 성능 비교

- ▶ 전류 제한 기법을 적용하지 않은 경우
- ▶ 전류 제한기만을 적용한 경우 (1)
- ► 전류 제한기 + 유무효전력 지령 변화 모두 적용한 경우 (①+②)

<제안하는 전류 제한을 통한 FRT 제어 전략이 적용된 제어 개략도>

❖ Hardware-In-the-Loop Simulation 구성 및 Hardware Setup

▶ HILS 실시간 시뮬레이션을 통한 제어 성능 검증

<hii s<="" th=""><th>실시간</th><th>시뮬레이션</th><th>하드웨어</th><th>구성></th></hii>	실시간	시뮬레이션	하드웨어	구성>
>111L 3	크시난	기월네이근	~ 100	10/

Simulation Parameters											
Converter		Controller		LC Filter		Grid					
$S_{conv} \ V_{dc} \ V_{ac}$	250 1100 690	kW Vdc Vac	f _{sw} f _s	4.5 9	kHz kHz	$L_f \\ Z_{L_f} \\ C_f \\ G_{C_f}$	300 0.059 40 0.029	μΗ (p.u.) μF (p.u.)	SCR V_{pn} V_{sn} f_o	20 22900 690 60	Vac Vac Hz

<그리드 포밍 컨버터 및 계통 파라미터>

❖ 전류 제한 기법을 적용하지 않은 경우

- ▶ 과전류 최대 2.8 p.u. 발생
 - ✓ 컨버터 허용 전류 초과
- ▶ 무효전력 0.1초 이내로 추종
 - ✓ 외부 제어 루프에 포화 현상 발생하지 않음
- ▶ 전압강하 복구 후 정상상태 회복에 0.8초 소요

❖ 전류 제한기만을 적용한 경우

- ▶ 과전류 1.2 p.u. 이내로 제한
- ▶ 무효전력 0.2초 이내로 추종
 - ✓ 외부 제어 루프에 포화 현상 발생
 - ✓ 고장 중 무효전류 공급 위해 지령 변화 필요
- ▶ 전압강하 복구 후 정상상태 회복에 4.3초 소요
 - ✓ 정상상태 회복에 요구되는 시간 증가

❖ 전류 제한기 + 유무효전력 지령 변화를 모두 적용한 경우

- ▶ 과전류 1.2 p.u. 이내로 제한
- ▶ 변화된 무효전력을 0.1초 이내로 추종
 - ✓ 외부 제어 루프의 포화 현상 완화
 - ✓ 고장 중 무효전류 공급 가능
- ▶ 전압강하 복구 후 정상상태 회복에 1.7초 소요
 - ✓ 정상상태 회복에 요구되는 시간 감소

5. 결론

결론

❖ 계통 연계 유지 조건

- ▶ 순시전압 강하시 고장 시 및 고장 발생 후 연계 운전 유지
- ▶ 고장 중 무효전류 공급
- ▶ 고장 후 유효전력 주입 정상상태 회복

❖ 그리드 포밍 컨버터의 제어 특성

- ▶ 내부 제어 루프: 전자기적 특성 모의, 전류 및 전압 제어
- ▶ 외부 제어 루프: 전기기계적 특성 모의, 유무효전력 제어
- ▶ 전압원과 등가 직렬 임피던스를 모의
 - ✓ 순시전압강하 및 위상 점프 시 과전류 위험 존재
 - ✓ 연계 운전 유지를 위해 컨버터 최대 허용 전류 I_M (통상 1.2 p.u.) 이내로 <mark>전류 제한 필요</mark>

❖ 그리드 포밍 컨버터의 전류 제한 기법

- ▶ 전류 제한기
- ▶ 가상 임피던스
- ▶ 전압 제한기

$$\|\boldsymbol{I}\| = \frac{\|\boldsymbol{E} - \boldsymbol{V}_{PCC}\|}{\|\boldsymbol{Z}_{C}\|}$$

<그리드 포밍 컨버터의 계통 연계 등가 회로 모델>

<그리드 포밍 컨버터의 사고 시 전압 페이저도>

❖ 그리드 포밍 컨버터의 전류 제한을 통한 FRT 제어 전략

- ▶ 전류 제한기
 - ✓ 직관적이며 빠르게 전류 제한 가능
 - ✓ 외부 제어 루프에 포화 현상 (Wind-up) 발생
- ▶ 유무효전력 지령 변화
 - ✓ 계통 사고 시 유무효전력 지령 분배비율 변화

<HILS 실시간 시뮬레이션 하드웨어 구성>

❖ HILS 검증 결과

- ▶ 계통 3상 순시전압강하 사고 모의 시 전류 제한기와 유무효전력 지령 변화의 효과 확인
- ▶ FRT 제어 전략을 적용하지 않은 경우
 - ✓ 과전류 발생
- ▶ 전류 제한기만을 사용한 경우
 - ✓ 출력 전류를 제한
 - ✓ 외부 제어 루프의 포화 현상 발생
- ▶ 제안하는 FRT 제어 전략을 사용한 경우
 - ✓ 출력 전류를 제한하여 연계 운전 유지
 - ✓ 외부 제어 루프의 포화 현상 완화로 빠른 정상상태 복구 능력
 - ✓ 계통 순시전압강하 시 빠르게 무효전류 공급

<제안하는 전류 제한 및 유무효전력 지령 변화를 통한 FRT 전략이 적용된 제어 개략도>

