L11: Algebraic Path Problems with applications to Internet Routing Lectures 5 and 6 An introduction to Combinators for Algebraic Systems (CAS)

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2017

◆□▶◆□▶◆≣▶ ■ り९℃

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica T.G.Griffin©2017 1 / 40

Combinators for Algebraic Structures (CAS)

Basic idea

Instead of proving all the required properties for a defined algebraic structure, we will define a language of combinators in which we can simultaneously defines an algebraic structure and then automatically compute, for a fixed set of properties \mathbb{P} , which of these properties holds.

For every *n*-ary combinator *C*,

$$\forall i \in \{1, 2, \dots, n\}, \ \forall P \in \mathbb{P}, \ P(E_i) \vee \neg P(E_i)$$

$$\Longrightarrow$$

$$\forall P \in \mathbb{P}, \ P(C(E_1, E_2, \dots E_n)) \vee \neg P(C(E_1, E_2, \dots E_n))$$

We will be working in **constructive logic** where $P \vee \neg P$ is **not** an axiom!

> 990

Base sets of properties

For Semigroups, \mathbb{P}_0^{SG} $\mathbb{AS}(S, \bullet) \equiv \forall a, b, c \in S, \ a \bullet (b \bullet c) = (a \bullet b) \bullet c$ $\mathbb{ID}(S, \bullet) \equiv \exists \alpha \in S, \ \mathbb{IID}(S, \bullet, \alpha)$ $\mathbb{AN}(S, \bullet) \equiv \exists \omega \in S, \ \mathbb{IAN}(S, \bullet, \omega)$ $\mathbb{CM}(S, \bullet) \equiv \forall a, b \in S, \ a \bullet b = b \bullet a$ $\mathbb{SL}(S, \bullet) \equiv \forall a, b \in S, \ a \bullet b \in \{a, b\}$ $\mathbb{IP}(S, \bullet) \equiv \forall a \in S, \ a \bullet a = a$

```
\mathbb{IID}(S, \bullet, \alpha) \equiv \alpha \in S \land \forall a \in S, \ a = \alpha \bullet a = a \bullet \alpha\mathbb{IAN}(S, \bullet, \omega) \equiv \omega \in S \land \forall a \in S, \ \omega = \omega \bullet a = a \bullet \omega
```

(ロ > ←昼 > ← ≧ > ← ≧ → へへの

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

3 / 40

Base sets of properties

```
For Bi-Semigroup, \mathbb{P}_0^{BS}
\mathbb{P}_0^{BS}
\mathbb{Z}\mathbb{A}(S,\,\oplus,\,\otimes) \equiv \exists \overline{0} \in S, \, \mathbb{IID}(S,\,\oplus,\,\overline{0}) \land \mathbb{IAN}(S,\,\otimes,\,\overline{0})
\mathbb{O}\mathbb{A}(S,\,\oplus,\,\otimes) \equiv \exists \overline{1} \in S, \, \mathbb{IID}(S,\,\otimes,\,\overline{1}) \land \mathbb{IAN}(S,\,\oplus,\,\overline{1})
\mathbb{L}\mathbb{D}(S,\,\oplus,\,\otimes) \equiv \forall a,b,c \in S, \, a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)
\mathbb{R}\mathbb{D}(S,\,\oplus,\,\otimes) \equiv \forall a,b,c \in S, \, (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)
```

Why are we starting with \mathbb{P}_0^{SG} and \mathbb{P}_0^{BS} instead of some other properties? Because we want to solve matrix equations with the algebraic structures that we can define in CAS.

Add identity

$$AddId(\alpha, (S, \bullet)) \equiv (S \uplus \{\alpha\}, \bullet_{\alpha}^{id})$$

where

$$a \bullet_{\alpha}^{\mathrm{id}} b \equiv \begin{cases} a & (\text{if } b = \mathrm{inr}(\alpha)) \\ b & (\text{if } a = \mathrm{inr}(\alpha)) \\ \mathrm{inl}(x \bullet y) & (\text{if } a = \mathrm{inl}(x), b = \mathrm{inl}(y)) \end{cases}$$

disjoint union

$$A \uplus B \equiv \{ \operatorname{inl}(a) \mid a \in A \} \cup \{ \operatorname{inr}(b) \mid b \in B \}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

5 / 40

Add identity

Easy Exercises

 $\mathbb{AS}(\mathsf{AddId}(\alpha,\;(\mathcal{S},\;\bullet))) \;\;\Leftrightarrow\;\; \mathbb{AS}(\mathcal{S},\bullet)$

 $\mathbb{ID}(\mathrm{AddId}(\alpha,\ (\mathcal{S},\ ullet))) \Leftrightarrow \mathbb{TRUE}$

 $\mathbb{AN}(\mathrm{AddId}(\alpha, (S, \bullet))) \Leftrightarrow \mathbb{AN}(S, \bullet)$

 $\mathbb{CM}(\mathrm{AddId}(\alpha,\ (\mathcal{S},\ ullet))) \Leftrightarrow \mathbb{CM}(\mathcal{S},ullet)$

 $\mathbb{IP}(AddId(\alpha, (S, \bullet))) \Leftrightarrow \mathbb{IP}(S, \bullet)$

 $\mathbb{SL}(\mathrm{AddId}(\alpha,\ (\mathcal{S},\ ullet))) \Leftrightarrow \mathbb{SL}(\mathcal{S},ullet)$

Inserting an annihilator

$$\operatorname{AddAn}(\omega,\ (\mathcal{S},\ \bullet)) \equiv (\mathcal{S} \uplus \{\omega\}, \bullet_{\omega}^{\operatorname{an}})$$
 where
$$a \bullet_{\omega}^{\operatorname{an}} b \ \equiv \ \begin{cases} \operatorname{inr}(\omega) & (\text{if } b = \operatorname{inr}(\omega)) \\ \operatorname{inr}(\omega) & (\text{if } a = \operatorname{inr}(\omega)) \\ \operatorname{inl}(x \bullet y) & (\text{if } a = \operatorname{inl}(x), \ b = \operatorname{inl}(y)) \end{cases}$$

(ロ) 4回 4 ほ 4 ほ 1 目 り90

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

7 / 40

Add annihilator

Easy Exercises

 $\begin{array}{llll} \mathbb{AS}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{AS}(S,\bullet) \\ \mathbb{ID}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{ID}(S,\bullet) \\ \mathbb{AN}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{TRUE} \\ \mathbb{CM}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{CM}(S,\bullet) \\ \mathbb{IP}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{IP}(S,\bullet) \\ \mathbb{SL}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{SL}(S,\bullet) \end{array}$

Operations for adding a zero, a one

$$\text{AddZero}(\overline{0},\;(\textbf{\textit{S}},\;\oplus,\;\otimes))\;\;\equiv\;\;(\textbf{\textit{S}}\uplus\{\overline{0}\},\;\oplus_{\overline{0}}^{\text{id}},\;\otimes_{\overline{0}}^{\text{an}})$$

$$\mathsf{AddOne}(\overline{1},\; (\boldsymbol{\mathcal{S}},\; \boldsymbol{\oplus},\; \boldsymbol{\otimes})) \;\; \equiv \;\; (\boldsymbol{\mathcal{S}} \uplus \{\overline{1}\},\; \boldsymbol{\oplus}_{\overline{1}}^{an},\; \boldsymbol{\otimes}_{\overline{1}}^{id})$$

$$a \bullet_{\alpha}^{id} b \equiv \begin{cases} a & \text{(if } b = \inf(\alpha)) \\ b & \text{(if } a = \inf(\alpha)) \\ \inf(x \bullet y) & \text{(if } a = \inf(x), b = \inf(y)) \end{cases}$$

$$\begin{cases} \inf(\omega) & \text{(if } b = \inf(\omega)) \\ \inf(x \bullet y) & \text{(if } b = \inf(\omega)) \end{cases}$$

$$a \bullet_{\omega}^{\mathrm{an}} b \equiv \begin{cases} \mathrm{inr}(\omega) & (\mathrm{if} \ b = \mathrm{inr}(\omega)) \\ \mathrm{inr}(\omega) & (\mathrm{if} \ a = \mathrm{inr}(\omega)) \\ \mathrm{inl}(x \bullet y) & (\mathrm{if} \ a = \mathrm{inl}(x), \ b = \mathrm{inl}(y)) \end{cases}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

Property management for AddZero

Easy Exercises

$$\mathbb{L}\mathbb{D}(\text{AddZero}(\overline{\underline{0}},\;(\textbf{\textit{S}},\;\oplus,\;\otimes))) \;\;\Leftrightarrow\;\; \mathbb{L}\mathbb{D}(\textbf{\textit{S}},\;\oplus,\;\otimes)$$

$$\begin{array}{lll} \mathbb{RD}(\mathrm{AddZero}(\overline{\mathbf{0}},\ (\mathcal{S},\ \oplus,\ \otimes))) &\Leftrightarrow & \mathbb{RD}(\mathcal{S},\ \oplus,\ \otimes) \\ \mathbb{ZA}(\mathrm{AddZero}(\overline{\mathbf{0}},\ (\mathcal{S},\ \oplus,\ \otimes))) &\Leftrightarrow & \mathbb{TRUE} \end{array}$$

$$\mathbb{Z}\mathbb{A}(\mathrm{AddZero}(0,\ (\mathcal{S},\ \oplus,\ \otimes))) \Leftrightarrow \mathbb{TRUE}$$

$$\mathbb{O}\mathbb{A}(\mathrm{AddZero}(\overline{0},\ (S,\ \oplus,\ \otimes))) \Leftrightarrow \mathbb{O}\mathbb{A}(S,\ \oplus,\ \otimes)$$

Why Easy Exercises?

Consider left distributivity ($\mathbb{L}\mathbb{D}$)								
a	b	С	$a \otimes_{\overline{0}}^{\mathrm{an}} (b \oplus_{\overline{0}}^{\mathrm{id}} c)$	$(a \otimes_{\overline{0}}^{\operatorname{an}} b) \oplus_{\overline{0}}^{\operatorname{id}} (a \otimes_{\overline{0}}^{\operatorname{an}} c)$				
$\operatorname{inl}(a')$	$\operatorname{inl}(b')$	inl(<i>c</i> ')	$\operatorname{inl}(a'\otimes(b'\oplus c'))$	$\operatorname{inl}((a'\otimes b')\oplus (a'\otimes c'))$				
$inr(\overline{0})$	$\operatorname{inl}(b')$	$ \operatorname{inl}(c') $	$inr(\overline{0})$	$\operatorname{inr}(\overline{0})$				
$\operatorname{inl}(a')$	$inr(\overline{0})$	$ \operatorname{inl}(c') $	$\operatorname{inl}(\pmb{a}'\oplus\pmb{c}')$	$inl(\pmb{a}'\oplus\pmb{c}')$				
$\operatorname{inl}(a')$	$\operatorname{inl}(b')$	$\operatorname{inr}(\overline{0})$	$\operatorname{inl}(a' \oplus b')$	$\operatorname{inl}(\pmb{a}'\oplus \pmb{b}')$				
$\operatorname{inl}(a')$	$inr(\overline{0})$	$\operatorname{inr}(\overline{0})$	$inr(\overline{0})$	$\operatorname{inr}(\overline{0})$				
$inr(\overline{0})$	$inr(\overline{0})$	$\left inr(\overline{0}) \right $	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$				

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

11 / 40

However, adding a one is more complicated!

Consider left distributivity (\mathbb{LD}) $a \otimes_{\overline{1}}^{\operatorname{id}} (b \oplus_{\overline{1}}^{\operatorname{an}} c) \qquad (a \otimes_{\overline{1}}^{\operatorname{id}} b) \oplus_{\overline{1}}^{\operatorname{an}} (a \otimes_{\overline{1}}^{\operatorname{id}} c)$ а b $\operatorname{inl}(b')$ $\operatorname{inl}(\mathbf{a}'\otimes(\mathbf{b}'\oplus\mathbf{c}')) \mid \operatorname{inl}((\mathbf{a}'\otimes\mathbf{b}')\oplus(\mathbf{a}'\otimes\mathbf{c}'))$ inl(a') $\operatorname{inl}(\mathbf{c}')$ $\text{inr}(\overline{1})$ inl(b') $\operatorname{inl}(\mathbf{c}')$ $\operatorname{inl}(\textit{b}' \oplus \textit{c}')$ $\operatorname{inl}(\emph{b}' \oplus \emph{c}')$ $\operatorname{inl}((\mathbf{a}' \oplus (\mathbf{a}' \otimes \mathbf{c}'))$ $inr(\overline{1})$ inl(c')inl(a')inl(a') $\text{inr}(\overline{1})$ inl(a')inl(*b*′) inl(*a*′) $\operatorname{inl}((a' \otimes b') \oplus a')$ inl(a') $inr(\overline{1})$ $inr(\overline{1})$ inl(a') $\operatorname{inl}(a' \oplus a')$ $inr(\overline{1})$ $inr(\overline{1})$ $inr(\overline{1})$ $inr(\overline{1})$ $inr(\overline{1})$

What is this?

$$a = (a \otimes b) \oplus a$$

Suppose \oplus is idempotent and commutative and we let $a \le b \equiv a = a \oplus b$. We know that

$$b \leqslant c \Rightarrow a \otimes b \leqslant a \otimes c$$

since $b = b \oplus c$ implies $a \otimes b = a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$. That is \otimes is order preserving.

Now $a = (a \otimes b) \oplus a$ is telling us something else, that

$$a \leq a \otimes b$$
.

That is, that multiplication is inflationary.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

13 / 40

Absorption

ABsorption properties (name is from lattice theory)

$$\mathbb{RAB}(S, \oplus, \otimes) \equiv \forall a, b \in S, \ a = (a \otimes b) \oplus a = a \oplus (a \otimes b)$$

$$\mathbb{LAB}(S, \oplus, \otimes) \equiv \forall a, b \in S, \ a = (b \otimes a) \oplus a = a \oplus (b \otimes a)$$

If we want to **close** our simple language of combinators $\{AddZero, AddOne\}$ with respect to \mathbb{P}_0^{SG} and \mathbb{P}_0^{BS} , we are forced to add $\{\mathbb{RAB}, \mathbb{LAB}\}.$

Rules for absorption for AddZero? Consider RAB

AddZer	0				
	a	b	$(a\otimes_{\overline{0}}^{\operatorname{an}}b)\oplus_{\overline{0}}^{\operatorname{id}}a$	$a \oplus_{\overline{0}}^{\mathrm{id}} (a \otimes_{\overline{0}}^{\mathrm{an}} b)$	
	inl(a')	$\operatorname{inl}(b')$	$\operatorname{inl}((a'\otimes b')\oplus a)$	$\operatorname{inl}(a' \oplus (a' \otimes b'))$	
	$inr(\overline{0})$	inl(<i>b</i> ′)	$inr(\overline{0})$	$inr(\overline{0})$	
	inl(a')	$inr(\overline{0})$	inl(<i>a</i> ′)	$\operatorname{inl}(a')$	
	$inr(\overline{0})$	$inr(\overline{0})$	$\operatorname{inr}(\overline{0})$	$inr(\overline{0})$	

$$\begin{array}{lll} \mathbb{RAB}(\mathrm{AddZero}(\overline{\mathbf{0}},\;(\mathcal{S},\;\oplus,\;\otimes))) &\Leftrightarrow & \mathbb{RAB}(\mathcal{S},\;\oplus,\;\otimes) \\ \mathbb{LAB}(\mathrm{AddZero}(\overline{\mathbf{0}},\;(\mathcal{S},\;\oplus,\;\otimes))) &\Leftrightarrow & \mathbb{LAB}(\mathcal{S},\;\oplus,\;\otimes) \end{array}$$

4□ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ⊙

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applicն

T.G.Griffin@2017

15 / 40

Rules for absorption for AddOne? Consider RAB

AddOne)						
	а	b	$(a \otimes_{\overline{1}}^{\operatorname{id}} b) \oplus_{\overline{1}}^{\operatorname{an}} a$	$\bigoplus_{\overline{1}}^{\operatorname{an}} a \mid a \bigoplus_{\overline{1}}^{\operatorname{an}} (a \otimes_{\overline{1}}^{\operatorname{id}} b)$			
	inl(a')	inl(b')	$\operatorname{inl}((a'\otimes b')\oplus a)$	$\operatorname{inl}(a' \oplus (a' \otimes b'))$			
	$inr(\overline{\bf 1})$	$\operatorname{inl}(b')$	$inr(\overline{1})$	$\operatorname{inr}(\overline{1})$			
	inl(a')	$inr(\overline{1})$	inl(<i>a</i> ′)	$\operatorname{inl}({\it a}'\oplus{\it a}')$			
	$inr(\overline{\bf 1})$	$\left inr(\overline{1}) \right $	$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$			

Property management for AddOne

$$\mathbb{L}\mathbb{D}(\mathrm{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{L}\mathbb{D}(S,\,\oplus,\,\otimes) \wedge \mathbb{RAB}(S,\,\oplus,\,\otimes) \\ \wedge \mathbb{IP}(S,\,\oplus) \\ \mathbb{R}\mathbb{D}(\mathrm{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{R}\mathbb{D}(S,\,\oplus,\,\otimes) \wedge \mathbb{LAB}(S,\,\oplus,\,\otimes) \\ \wedge \mathbb{IP}(S,\,\oplus) \\ \mathbb{Z}\mathbb{A}(\mathrm{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{Z}\mathbb{A}(S,\,\oplus,\,\otimes) \\ \mathbb{O}\mathbb{A}(\mathrm{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{TRUE} \\ \mathbb{R}\mathbb{A}\mathbb{B}(\mathrm{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{R}\mathbb{AB}(S,\,\oplus,\,\otimes) \wedge \mathbb{IP}(S,\,\oplus) \\ \mathbb{L}\mathbb{A}\mathbb{B}(\mathrm{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{L}\mathbb{AB}(S,\,\oplus,\,\otimes) \wedge \mathbb{IP}(S,\,\oplus)$$

(ロ▶→昼▶→重▶ ● りへ○

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

17 / 40

Direct Product of Semigroups

Let (S, \bullet) and (T, \diamond) be semigroups.

Definition (Direct product semigroup)

The direct product is denoted

$$(S, \bullet) \times (T, \diamond) \equiv (S \times T, \star)$$

where

$$\star = \bullet \times \diamond$$

is defined as

$$(s_1, t_1) \star (s_2, t_2) = (s_1 \bullet s_2, t_1 \diamond t_2).$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Easy exercises

What about SL?

Consider the product of two selective semigroups, such as $(\mathbb{N}, \min) \times (\mathbb{N}, \max)$.

$$(10, 10) \star (1, 3) = (1, 10) \notin \{(10, 10), (1, 3)\}$$

The result in this case is not selective!

(ロ▶→昼▶→重▶ ● りへ○

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

19 / 40

Direct product and SL?

$$\mathbb{SL}((\mathcal{S}, \bullet) \times (\mathcal{T}, \diamond)) \quad \Leftrightarrow \quad (\mathbb{IR}(\mathcal{S}, \bullet) \wedge \mathbb{IR}(\mathcal{T}, \diamond)) \vee (\mathbb{IL}(\mathcal{S}, \bullet) \wedge \mathbb{IL}(\mathcal{T}, \diamond))$$

IR is right
$$\equiv \forall s, t \in S, s \bullet t = t$$
IL is left $\equiv \forall s, t \in S, s \bullet t = s$

Adding direct product to our semigroup combinators forces us to add \mathbb{IR} and \mathbb{IR} to our properties.

Revisit all combinators seen so far ...

$$\begin{split} &\mathbb{IR}(\mathsf{AddId}(\alpha,\,(S,\,\bullet))) \;\Leftrightarrow\; \mathbb{FALSE} \\ &\mathbb{IL}(\mathsf{AddId}(\alpha,\,(S,\,\bullet))) \;\Leftrightarrow\; \mathbb{FALSE} \\ &\mathbb{IR}(\mathsf{AddAn}(\alpha,\,(S,\,\bullet))) \;\Leftrightarrow\; \mathbb{FALSE} \\ &\mathbb{IL}(\mathsf{AddAn}(\alpha,\,(S,\,\bullet))) \;\Leftrightarrow\; \mathbb{FALSE} \\ &\mathbb{IR}((S,\bullet)\times(T,\diamond)) \;\Leftrightarrow\; \mathbb{IR}(S,\bullet)\wedge\mathbb{IR}(T,\diamond) \\ &\mathbb{IL}((S,\bullet)\times(T,\diamond)) \;\Leftrightarrow\; \mathbb{IL}(S,\bullet)\wedge\mathbb{IL}(T,\diamond) \end{split}$$

◆ロト ◆部 ト ◆ 重 ト ◆ 重 ・ 夕 Q ○

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

21 / 40

Lexicographic Product of Semigroups

Lexicographic product semigroup

Suppose that semigroup (S, \bullet) is commutative, and selective and that (T, \diamond) is a semigroup.

$$(S, \bullet) \stackrel{?}{\times} (T, \diamond) \equiv (S \times T, \star)$$

where $\star \equiv \bullet \stackrel{\rightarrow}{\times} \diamond$ is defined as

$$(s_1, t_1) \star (s_2, t_2) = \begin{cases} (s_1 \bullet s_2, t_1 \diamond t_2) & s_1 = s_1 \bullet s_2 = s_2 \\ (s_1 \bullet s_2, t_1) & s_1 = s_1 \bullet s_2 \neq s_2 \\ (s_1 \bullet s_2, t_2) & s_1 \neq s_1 \bullet s_2 = s_2 \end{cases}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めへぐ

Examples

$$(\mathbb{N}, \max) \stackrel{?}{\times} (\mathbb{N}, \min)$$

$$(1, 17) \star (2,3) = (2,3)$$

$$(2, 17) \star (2,3) = (2,3)$$

$$(2, 3) \star (2,3) = (2,3)$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

23 / 40

Assuming $AS(S, \bullet) \wedge CM(S, \bullet) \wedge SL(S, \bullet)$

```
\begin{array}{llll} \mathbb{AS}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{AS}(T,\diamond) \\ \mathbb{ID}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{ID}(S,\bullet) \wedge \mathbb{ID}(T,\diamond) \\ \mathbb{AN}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{AN}(S,\bullet) \wedge \mathbb{AN}(T,\diamond) \\ \mathbb{CM}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{CM}(T,\diamond) \\ \mathbb{IP}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{IP}(T,\diamond) \\ \mathbb{SL}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{SL}(T,\diamond) \\ \mathbb{IR}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{FALSE} \\ \mathbb{IL}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{FALSE} \end{array}
```

All easy, except for \mathbb{AS} ! We are assuming commutativity and selectivity in order to guarantee associativity.

Lexicographic product for Bi-Semigroups

Assume $\mathbb{AS}(S, \oplus_S) \wedge \mathbb{AS}(T, \oplus_T) \wedge \mathbb{CM}(S, \oplus_S) \wedge \mathbb{SL}(S, \oplus_S)$

Let

$$(S, \oplus_S, \otimes_S) \stackrel{\vec{\times}}{\times} (T, \oplus_T, \otimes_T) \equiv (S \times T, \oplus_S \stackrel{\vec{\times}}{\times} \oplus_T, \otimes_S \times \otimes_T)$$

That is, the additive component is a lexicographic product, and the multiplicative component is a direct product.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

25 / 40

Examples

$$\oplus = \min \vec{\times} \max, \otimes = + \times \min$$

$$\begin{array}{rcl} (3,10) \otimes ((17,21) \oplus (11,4)) & = & (3,10) \otimes (11,4) \\ & = & (14,4) \end{array}$$

$$\begin{array}{lcl} ((3,10)\otimes (17,21))\oplus ((3,10)\otimes (11,4)) & = & (20,10)\oplus (14,4) \\ & = & (14,4) \end{array}$$

$$\oplus = \max \vec{\times} \min, \otimes = \min \times +$$

$$(3,10) \otimes ((17,21) \oplus (11,4)) = (3,10) \otimes (17,21) = (3,31)$$

$$((3,10) \otimes (17,21)) \oplus ((3,10) \otimes (11,4)) = (3,31) \oplus (3,14)$$

= $(3,14)$

◀ □ ▶ ◀ □ ▶ ◀ 를 ▶ ◀ 를 ▶ ♥) ♥(○)

Distributivity?

Theorem: If \bigoplus_S is commutative and selective, then

$$\begin{split} \mathbb{LD}((\mathcal{S}, \, \oplus_{\mathcal{S}}, \, \otimes_{\mathcal{S}}) \, \vec{\times} \, (\mathcal{T}, \, \oplus_{\mathcal{T}}, \, \otimes_{\mathcal{T}})) \, \Leftrightarrow \\ \mathbb{LD}(\mathcal{S}, \, \oplus_{\mathcal{S}}, \, \otimes_{\mathcal{S}}) \wedge \mathbb{LD}(\mathcal{T}, \, \oplus_{\mathcal{T}}, \, \otimes_{\mathcal{T}}) \wedge (\mathbb{LC}(\mathcal{S}, \, \otimes_{\mathcal{S}}) \vee \mathbb{LK}(\mathcal{T}, \, \otimes_{\mathcal{T}})) \end{split}$$

$$\mathbb{RD}((S, \oplus_{S}, \otimes_{S}) \times (T, \oplus_{T}, \otimes_{T})) \Leftrightarrow \\ \mathbb{RD}(S, \oplus_{S}, \otimes_{S}) \wedge \mathbb{RD}(T, \oplus_{T}, \otimes_{T}) \wedge (\mathbb{RC}(S, \otimes_{S}) \vee \mathbb{RK}(T, \otimes_{T}))$$

Left and Right Cancellative

$$\mathbb{LC}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b \Rightarrow a = b$$

$$\mathbb{RC}(X, \bullet) \equiv \forall a, b, c \in X, a \bullet c = b \bullet c \Rightarrow a = b$$

Left and Right Constant

$$\mathbb{LK}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b$$

$$\mathbb{RK}(X, \bullet) \equiv \forall a, b, c \in X, a \bullet c = b \bullet c$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

27 / 40

Why bisemigroups?

But wait! How could any semiring satisfy either of these properties?

$$\mathbb{LC}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b \Rightarrow a = b$$

$$\mathbb{LK}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b$$

- For \mathbb{LC} , note that we always have $\overline{0} \otimes a = \overline{0} \otimes b$, so \mathbb{LC} could only hold when $S = {\overline{0}}$.
- For \mathbb{LK} , let $a = \overline{1}$ and $b = \overline{0}$ and \mathbb{LK} leads to the conclusion that every c is equal to $\overline{0}$ (again!).

Normally we will add a zero and/or a one as the last step(s) of constructing a semiring. Alternatively, we might want to complicate our properties so that things work for semirings. A design trade-off!

Proof of \Leftarrow for $\mathbb{L}\mathbb{D}$

Assume

(1) $\mathbb{LD}(S, \oplus_{S}, \otimes_{S})$

(2) $\mathbb{LD}(T, \oplus_T, \otimes_T)$

(3) $\mathbb{LC}(S, \otimes_S) \vee \mathbb{LK}(T, \otimes_T)$

(4) $\mathbb{IP}(S, \oplus_{S})$.

Let $\oplus \equiv \oplus_S \times \oplus_T$ and $\otimes \equiv \otimes_S \times \otimes_T$. Suppose

$$(s_1,t_1),\;(s_2,t_2),\;(s_3,t_3)\in S\times \,T.$$

We want to show that

lhs
$$\equiv$$
 $(s_1, t_1) \otimes ((s_2, t_2) \oplus (s_3, t_3))$
 $=$ $((s_1, t_1) \otimes (s_2, t_2)) \oplus ((s_1, t_1) \otimes (s_3, t_3))$
 \equiv rhs

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

29 / 40

Proof of \Leftarrow for \mathbb{LD}

We have

lhs
$$\equiv (s_{1}, t_{1}) \otimes ((s_{2}, t_{2}) \oplus (s_{3}, t_{3}))$$

 $= (s_{1}, t_{1}) \otimes (s_{2} \oplus_{S} s_{3}, t_{lhs})$
 $= (s_{1} \otimes_{S} (s_{2} \oplus_{S} s_{3}), t_{1} \otimes_{T} t_{lhs})$
rhs $\equiv ((s_{1}, t_{1}) \otimes (s_{2}, t_{2})) \oplus ((s_{1}, t_{1}) \otimes (s_{3}, t_{3}))$
 $= (s_{1} \otimes_{S} s_{2}, t_{1} \otimes_{T} t_{2}) \oplus (s_{1} \otimes_{S} s_{3}, t_{1} \otimes_{T} t_{3})$
 $= ((s_{1} \otimes_{S} s_{2}) \oplus_{S} (s_{1} \otimes_{S} s_{3}), t_{rhs})$
 $= (s_{1} \otimes_{S} (s_{2} \oplus_{S} s_{3}), t_{rhs})$

where $t_{\rm lhs}$ and $t_{\rm rhs}$ are determined by the appropriate case in the definition of \oplus . Finally, note that

 $lhs = rhs \Leftrightarrow t_{rhs} = t_1 \otimes t_{lhs}.$

Proof by cases on $s_2 \oplus_S s_3$

Case 1 : $s_2 = s_2 \oplus_S s_3 = s_3$. Then $t_{lhs} = t_2 \oplus_T t_3$ and

$$t_1 \otimes_{\mathcal{T}} t_{\text{lhs}} = t_1 \otimes_{\mathcal{T}} (t_2 \oplus_{\mathcal{T}} t_3) =_{(2)} (t_1 \otimes_{\mathcal{T}} t_2) \oplus_{\mathcal{T}} (t_1 \otimes_{\mathcal{T}} t_3).$$

Since $s_2 = s_3$ we have $s_1 \otimes_S s_2 = s_1 \otimes_S s_3$ and

$$s_1 \otimes_S s_2 =_{(4)} (s_1 \otimes_S s_2) \oplus_S (s_1 \otimes_S s_3) =_{(4)} s_1 \otimes_S s_3.$$

Therefore.

$$t_{\text{rhs}} = (t_1 \otimes_{\mathcal{T}} t_2) \oplus (t_1 \otimes_{\mathcal{T}} t_3) = t_1 \otimes_{\mathcal{T}} t_{\text{lhs}}.$$

Case 2 : $s_2 = s_2 \oplus_S s_3 \neq s_3$. Then $t_{lhs} = t_2$ and

$$t_1 \otimes_T t_{lhs} = t_1 \otimes_T t_2$$
.

Since $s_2 = s_2 \oplus_S s_3$ we have

$$s_1 \otimes_{\mathcal{S}} s_2 = s_1 \otimes_{\mathcal{S}} (s_2 \oplus_{\mathcal{S}} s_3) =_{(1)} (s_1 \otimes_{\mathcal{S}} s_2) \oplus_{\mathcal{S}} (s_1 \otimes_{\mathcal{S}} s_3).$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

31 / 40

Case 2.1 $s_1 \otimes_S s_2 \neq s_1 \otimes_S s_3$. Then $t_{\text{rhs}} = t_1 \otimes_T t_2 = t_1 \otimes_T t_{\text{lhs}}$.

Case 2.2 $s_1 \otimes_S s_2 = s_1 \otimes_S s_3$. Then

$$t_{\text{rhs}} = (t_1 \otimes_T t_2) \oplus_T (t_1 \otimes_T t_3) =_{(2)} t_1 \otimes_T (t_2 \oplus_T t_3)$$

We need to consider two subcases.

Case 2.2.1: Assume $\mathbb{LC}(S, \otimes_S)$. But $s_1 \otimes_S s_2 = s_1 \otimes_S s_3 \Rightarrow s_2 = s_3$, which is a contradiction.

Case 2.2.2 : Assume $\mathbb{LK}(T, \otimes_T)$. In this case we know

$$\forall a, b \in X, \ t_1 \otimes_T a = t_1 \otimes_T b.$$

Letting $a = t_2 \oplus_T t_3$ and $b = t_2$ we have

$$t_{\text{rhs}} = t_1 \otimes_{\mathcal{T}} (t_2 \oplus_{\mathcal{T}} t_3) = t_1 \otimes_{\mathcal{T}} t_2 = t_1 \otimes_{\mathcal{T}} t_{\text{lhs}}.$$

Case 3 : $s_2 \neq s_2 \oplus_S s_3 = s_3$. Similar to Case 2.

Other direction, ⇒

Prove this:

$$\neg \mathbb{LD}(S, \oplus_{S}, \otimes_{S}) \vee \neg \mathbb{LD}(T, \oplus_{T}, \otimes_{T}) \vee (\neg \mathbb{LC}(S, \otimes_{S}) \wedge \neg \mathbb{LK}(T, \otimes_{T}))$$

$$\Rightarrow \neg \mathbb{LD}((S, \oplus_{S}, \otimes_{S}) \times (T, \oplus_{T}, \otimes_{T})).$$

Case 1: $\neg \mathbb{LD}(S, \oplus_S, \otimes_S)$. That is

$$\exists a, b, c \in S, \ a \otimes_S (b \oplus_S c) \neq (a \otimes_S b) \oplus_S (a \otimes_S c).$$

Pick any $t \in T$. Then for some $t_1, t_2, t_3 \in T$ we have

$$(a, t) \otimes ((b, t) \oplus (c, t))$$

$$= (a, t) \otimes (b \oplus_{S} c, t_{1})$$

$$= (a, \otimes_{S} (b \oplus_{S} c), t_{2})$$

$$\neq ((a \otimes_{S} b) \oplus_{S} (a \otimes_{S} c), t_{3})$$

$$= (a \otimes_{S} b, t \otimes_{T} t) \oplus (a \otimes_{S} c, t \otimes_{T} t)$$

$$= ((a, t) \otimes (b, t)) \oplus ((a, t) \otimes (c, t))$$

Case 2: $\neg \mathbb{LD}(T, \oplus_T, \otimes_T)$. Similar.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applica

Case 3: $(\neg \mathbb{LC}(S, \otimes_S) \land \neg \mathbb{LK}(T, \otimes_T))$. That is

$$\exists a, b, c \in S, c \otimes_S a = c \otimes_S b \land a \neq b$$

and

$$\exists x,y,z\in T,\ z\otimes_T x\neq z\otimes_T y.$$

Since \bigoplus_S is selective and $a \neq b$, we have $a = a \bigoplus_S b$ or $b = a \bigoplus_S b$. Assume without loss of generality that $a = a \oplus_S b \neq b$. Suppose that $t_1, t_2, t_3 \in T$. Then

lhs
$$\equiv$$
 $(c, t_1) \otimes ((a, t_2) \oplus (b, t_3))$
= $(c, t_1) \otimes (a, t_2)$
= $(c \otimes_S a, t_1 \otimes_T t_2)$

rhs
$$\equiv ((c, t_1) \otimes (a, t_2)) \oplus ((c, t_1) \otimes (b, t_3))$$

 $= (c \otimes_S a, t_1 \otimes_T t_2) \oplus (c \otimes_S b, t_1 \otimes_T t_3)$
 $= (c \otimes_S a, (t_1 \otimes_T t_2) \oplus_T (t_1 \otimes_T t_3))$

Our job now is to select t_1 , t_2 , t_3 so that

$$t_{\text{lhs}} \equiv t_1 \otimes_{\mathcal{T}} t_2 \neq (t_1 \otimes_{\mathcal{T}} t_2) \oplus_{\mathcal{T}} (t_1 \otimes_{\mathcal{T}} t_3) \equiv t_{\text{rhs}}.$$

We don't have very much to work with! Only

$$\exists x, y, z \in T, \ z \otimes_T x \neq z \otimes_T y.$$

In addition, we can assume $\mathbb{LD}(T, \oplus_T, \otimes_T)$ (otherwise, use Case 2!), so

$$t_{\rm rhs} = t_1 \otimes_{\mathcal{T}} (t_2 \oplus_{\mathcal{T}} t_3).$$

< ロ ト ∢ 昼 ト ∢ 重 ト → 重 ・ 夕 Q (~)

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

35 / 40

We need to select t_1 , t_2 , t_3 so that

$$t_{\text{lhs}} \equiv t_1 \otimes_T t_2 \neq t_1 \otimes_T (t_2 \oplus_T t_3) \equiv t_{\text{rhs}}.$$

Case 3.1: $z \otimes_T x = z \otimes_T (x \oplus_T y)$. Then letting $t_1 = z$, $t_2 = y$, and $t_3 = x$ we have

$$t_{lhs} = z \otimes_T y \neq z \otimes_T x = z \otimes_T (x \oplus_T y) = t_{rhs}.$$

Case 3.2: $z \otimes_T y = z \otimes_T (x \oplus_T y)$. Then letting $t_1 = z$, $t_2 = x$, and $t_3 = y$ we have

$$t_{\text{lhs}} = z \otimes_{\mathcal{T}} x \neq z \otimes_{\mathcal{T}} y = z \otimes_{\mathcal{T}} (x \oplus_{\mathcal{T}} y) = t_{\text{rhs}}.$$

Case 3.3: $z \otimes_T x \neq z \otimes_T (x \oplus_T y) \neq z \otimes_T y$. Then letting $t_1 = z$, $t_2 = x$, and $t_3 = y$ we have

$$t_{\text{lhs}} = z \otimes_T x \neq z \otimes_T (x \oplus_T y) = t_{\text{rhs}}.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めへぐ

We have to start somewhere!

S	\oplus	\otimes	0	1	$\mathbb{L}\mathbb{D}$	\mathbb{RD}	$\mathbb{Z}\mathbb{A}$	$\mathbb{O}\mathbb{A}$	LAB	RAB
$\overline{\mathbb{N}}$	min	+		0	*	*		*	*	*
\mathbb{N}	max	+	0	0	*	*			*	*
\mathbb{N}	max	min	0		*	*	*		*	*
\mathbb{N}	min	max		0	*	*		*	*	*

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

37 / 40

Widest shortest paths

$$\begin{array}{lll} wsp &\equiv & AddZero(\infty_2,\; (\mathbb{N},\; min,\; +)\; \vec{\times}\; AddOne(\infty_1,\; (\mathbb{N},\; max,\; min))) \\ \\ &=& \left((\mathbb{N}\times (\mathbb{N}\oplus \{\infty_1\}))\oplus \{\infty_2\},\; \oplus,\; \otimes,\; inr(\infty_2),\; inl(0,\; inr(\infty_1))\right) \\ \\ \text{where} \\ \\ &\oplus &=& (min\; \vec{\times}\; max^{an}_{\infty_1})^{id}_{\infty_2} \\ \\ &\otimes &=& (+\times min^{id}_{\infty_1})^{an}_{\infty_2} \end{array}$$

Example

```
\begin{array}{ll} & \operatorname{inl}(3,\operatorname{inl}(10))\otimes (\operatorname{inl}(17,\operatorname{inl}(21))\oplus\operatorname{inl}(11,\operatorname{inl}(4))) \\ = & \operatorname{inl}(3,\operatorname{inl}(10))\otimes\operatorname{inl}(11,\operatorname{inl}(4)) \\ = & \operatorname{inl}(14,\operatorname{inl}(4)) \\ & & (\operatorname{inl}(3,\operatorname{inl}(10))\otimes\operatorname{inl}(17,\operatorname{inl}(21)))\oplus (\operatorname{inl}(3,\operatorname{inl}(10))\otimes\operatorname{inl}(11,\operatorname{inl}(4))) \\ = & \operatorname{inl}(20,\operatorname{inl}(10))\oplus\operatorname{inl}(14,\operatorname{inl}(4)) \\ = & \operatorname{inl}(14,\operatorname{inl}(4)) \end{array}
```

But is wsp a semiring?

4□▶ 4₫▶ 4½▶ ½ 900

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

39 / 40

Turn the cranks!

Turning the crank for LD:

```
\mathbb{L}\mathbb{D}(\text{AddZero}(\infty_2,\;(\mathbb{N},\;\text{min},\;+)\;\vec{\times}\;\text{AddOne}(\infty_1,\;(\mathbb{N},\;\text{max},\;\text{min}))))
```

- $\Leftrightarrow \mathbb{LD}((\mathbb{N}, \min, +) \times AddOne(\infty_1, (\mathbb{N}, \max, \min)))$
- $\Leftrightarrow \quad \mathbb{L}\mathbb{D}(\mathbb{N}, \, \text{min}, \, +) \wedge \mathbb{L}\mathbb{D}(\text{AddOne}(\infty_1, \, (\mathbb{N}, \, \text{max}, \, \text{min}))) \\ \\ \wedge \, (\mathbb{L}\mathbb{C}(\mathbb{N}, \, +) \vee \mathbb{L}\mathbb{K}(\text{AddID}(\infty_1, \, (\mathbb{N}, \, \text{min})))$
- $\Leftrightarrow \quad \mathbb{TRUE} \wedge (\mathbb{LD}(\mathbb{N}, \ max, \ min) \wedge \mathbb{RAB}(\mathbb{N}, \ max, \ min) \wedge \mathbb{IP}(\mathbb{N}, \ max)) \\ \wedge (\mathbb{TRUE} \vee \mathbb{LK}(AddID(\infty_1, \ (\mathbb{N}, \ min)))$
- $\Leftrightarrow \quad \mathbb{TRUE} \wedge (\mathbb{TRUE} \wedge \mathbb{TRUE} \wedge \mathbb{TRUE}) \\ \wedge (\mathbb{TRUE} \vee \mathbb{LK}(AddID(\infty_1, (\mathbb{N}, min)))$
- \Leftrightarrow TRUE