Derivation of the OLS Estimator, $\widehat{\beta}$, in Matrix Form

What do we know?

Population equation: $y = X\beta + u$

Sample equation: $y = X\hat{\beta} + \hat{u}$

Regression assumptions, MLR.1 - MLR.6

 $var - cov \ matrix \ of \ true \ errors = Var(u) = E(uu') = \sigma^2 I_n$

 $u \sim Normal(0, \sigma^2 I_n)$

 $y \sim Normal(X\beta, \sigma^2 I_n)$

E(u) = 0 and $E(y) = X\beta$

Mission: Minimize the sum of squared residuals (SSR) with respect to $\hat{\beta}$. How do we write SSR in matrix form?

 $SSR = \hat{u}' \hat{u}$

Thus, our OLS solution will the partial derivative of SSR with respect to $\hat{\beta}$

 $\frac{\partial \hat{u}' \, \hat{u}}{\partial \hat{\beta}}$

First, rewrite \hat{u}' \hat{u} in terms of y, x, and $\hat{\beta}$.

1.
$$\hat{u}'\hat{u} = (y - X\hat{\beta})'(y - X\hat{\beta})$$

$$2. = (y' - (X\hat{\beta})')(y - X\hat{\beta})$$

3. =
$$(y' - \hat{\beta}'X')(y - X\hat{\beta})$$

4.
$$= y'y - \hat{\beta}'X'y - y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}$$
 [the 2nd and 3rd products are scalars, so $\hat{\beta}'X'y = y'X\hat{\beta}$]

5. =
$$y'y - (2y'X)\hat{\beta} + \hat{\beta}'(X'X)\hat{\beta}$$
 [1st phrase is a constant w.r.t. $\hat{\beta}$; 2nd phrase is linear w.r.t. $\hat{\beta}$; 3rd is the quadratic w.r.t. $\hat{\beta}$]

Find partial derivative of function w.r.t. $\hat{\beta}$:

6.
$$\frac{\partial \hat{u}' \hat{u}}{\partial \hat{\beta}} = 0 - 2X'y + 2X'X\hat{\beta}$$
 [follows rules of matrix differentiation]

Set this function equal to 0 to find minimum of function; solve for $\hat{\beta}$:

$$7. \quad 0 = -2X'y + 2X'X\hat{\beta}$$

8.
$$2X'y = 2X'X\hat{\beta}$$

9.
$$X'y = X'X\hat{\beta}$$
 [pre-multiply both sides by $(X'X)^{-1}$; see Matrix Rules handout]

10.
$$(X'X)^{-1}X'y = (X'X)^{-1}X'X\hat{\beta}$$

11.
$$(X'X)^{-1}X'y=I\hat{\beta}$$

This is the solution for the OLS estimator in matrix form:

12.
$$\hat{\beta} = (X'X)^{-1}X'y$$

Proof that OLS Estimator is Unbiased

Unbiasedness means:

$$E(\hat{\beta}) = \beta$$

We need to prove that this statement is true, given what we know. Begin by rewriting $E(\hat{\beta})$:

- 1. $E(\hat{\beta}) = E[(X'X)^{-1}X'y]$
- 2. = $(X'X)^{-1}X'E(y)$ [Expectation operator moves through non-random variables]
- 3. = $(X'X)^{-1}X'X\beta$ [We already know that $E(y) = X\beta$]
- 4. $E(\hat{\beta}) = I\beta$
- 5. $E(\hat{\beta}) = \beta$