# HW 3 - Report

# **Table of Contents**

| 1. | Desig | n Discussion            | 2   |
|----|-------|-------------------------|-----|
|    | 1.1   | Pre-Processing Job      | 2   |
|    |       | Page Rank Job           |     |
|    |       | Top-K Job               |     |
|    |       | Data Transferred        |     |
| 2. | Perfo | rmance Comparison       | 10  |
|    | 2.1   | Running Time            | 10  |
|    | 2.2   | Running Time Comparison | .11 |
|    | 2.3   | Top-100 Wikipedia Pages | 12  |
| 3. |       | ergence Estimation      |     |

# 1. Design Discussion

# 1.1 Pre-Processing Job

I have followed the same per-processing approach as described in the Assignment. I have used given SAX XML Parser. I have modified three things in the given parser:

- 1. Do not include self links
- 2. Removed the duplicate nodes from the adjacency list
- 3. Fixed the " & " issue, some pages was not parsed due to this issue.

I have created my own input file which covers all cases required in assignment and calculated manual page ranks for this input for 10 iterations. And then compared each output of my all programs to the manual calculation and they are the same.

PreProcessingJob emits the nodeld and its adjacentList for all successfully parsed documents. And the job returns the total number of pages from global counter.

#### Psuedo-Code

```
class Reducer
        Long localNumberOfPages;
        setup()
        {
                localNumberOfPages = 0;
        }
        reduce(nodeld, [adjacencyList1, adjacencyList2,..])
                adjacencyList = EMPTY LIST;
                // get the first non empty adjacencyList if present
                // There can be multiple documents with same nodeld in input
                // so consider the first one only
                for each val in input list do
                {
                        if(val is not EMPTY_LIST)
                        {
                                adjacencyList = val;
                                break;
                        }
                }
                // increment the number of pages
                localNumberOfPages++;
                // emit nodeld, its adjacencyList and its default page rank
                emit((nodeId, adjacencyList), NULL);
        }
       // cleanup increments the global counter by localNumberOfPages count.
        cleanup()
        {
                increment global counter with localNumberOfPages;
        }
}
```

On successful completion of above job we will return the total number of pages from global counters. Total number of pages should be same as number of reduce outputs.

## 1.2 Page Rank Job

For calculating page rank (computing dangling factor delta), I have used Solution -2 (Merge computation of delta in previous reduce phase) approach as per Learning module 6 - Graph Algorithms. Below are the all three approaches for calculating delta and the reasons why I have choose solution 2.

## Solution-1 - Add a separate phase to each iteration to compute delta

During an iteration, first execute a Map Reduce program that computes delta. This is a simple global aggregation job, summing up Page Rank values for all dangling nodes. Then pass the newly computed delta as a parameter to modified Map Reduce program that updates all Page Ranks using new formula with delta. The drawback of this approach is that, in each iteration we are reading all the records in map to calculate the delta in global aggregation job. So here we have an overhead of reading all the inputs for each iteration.

### Solution-2: Merge computation of delta in previous reduce phase. (Used Approach)

In this approach, instead of computing delta in a separate job in the beginning of iteration (i+1), it could already be computed at the end of iteration i in reduce call. In this approach we don't need the extra reading of all input records as we need in above approach. Only problem with this approach is, the page rank emitted by the reducer is not the correct one so in last iteration we need to add one more map only job to correct the page ranks calculated by the last iteration. In our program, we have a PageRankCorrectionJob which does the same. So here we can argue that we need one extra map read of all the inputs per entire job, but this can also be eliminated. In our program, We just need TopK page ranks and we can correct the output emitted by the last iteration in TopK job. But this will give the correct page rank of only top K pages and it is possible that we might need other records in future. So for the safer side, I have provided PageRankCorrectionJob to run before TopKJob.

### Solution-3 - Order Inversion

The order inversion pattern can be applied to make sure each Reducer receives the old PageRank values of all dangling nodes. Each reducer can then compute delta right before executing any of the normal reduce calls. This approach has the drawback same as what we have seen in other Order Inversion algorithms. We need to have one reduce task only so we cannot have reduce task granularity. We can overcome this issue by emitting multiple copies of same dangling node's page rank such that all reducers receive exact one copy of it. But this creates map output duplication issue. We can overcome this output duplication issue in some extent by in-mapper combining. So this approach with in-mapper combining to dangling factor output in each map task and emitting that combined delta to all reducer (multiple reduce tasks) can be a good solution. But as per our problem needs we required only top k page ranks and in our solution 2 approach we can do that without using PageRankCorrectionJob which makes Solution 2 better than other two approaches.

# **Pseudo Code:**

```
// Map processes the node with id n.
// N stores node n's current PageRank and its adjacency list
map(nid n, node N)
{
       if(isfirstIteration)
              N.pageRank = 1/|V|
       else
       {
               delta = getDeltaFromConfiguration()
              N.pageRank = alpha/|V| + (1-alpha)(delta/|V| + N.pageRank)
       }
       // Pass along the graph structure
       emit(nid n, N)
       if(|N.adjacencyList| != 0)
              //compute contributions to send along outgoing links
              p = N.pageRank / | N.adjacencyList |
              for all nid m in N.adjacencyList do
                      emit(nid m, p)
       }
       else
       {
              emit("Delta", N.pageRank)
       }
}
// In code, I have used In-mapper combining to combine delta and also used Combiner to
// combine the map outputs
// Reduce receives the node object from node m and
// the PageRank contributions for all m's inlinks
reduce(nid m, [p1, p2,...])
{
       s=0
       M=NULL
       for all p in [p1,p2,...] do
              if isNode(p) then
```

```
// The node object was found : recover graph structure M = p
else
// A PageRank contribution from an inlink was
// found : add it to the running sum
s += p1

if (m == "Delta")
    incrementGlobalCounter("Delta", s)
else
    M.pageRank = s
    emit(nid m, node M)
}
// After each iteration we will pass computed delta from global counters to next job's configuration.
```

## 1.3 Top-K Job

There are two approaches to find the top-K elements. First is to sort the input data and then the K largest records can easily be selected from the sorted file. This is an efficient method for very large K. Second approach is to avoid sorting if we have smaller value of K. The idea is to scan the input only once and use in-mapper combining to keep track of the top-K records in each map task. A single reduce call receives these local top-k lists and merges them into final result.

In our assignment K=100 which is a very small number, So I have used the second approach and not sorting as we do not need to transfer all input records from map to reduce, read again in reduce and write from reduce to file.

#### Pseudo-Code:

Pseudo code is same as the pseudo code given in Module -5: Basic Algorithms.

[2.13: Top-K records – Second Approach – find the local TopK in each Map task and merge them into global TopK in one reduce task.]

Addition to the given code, I have implemented MyTreeMap to handle the different pages with same page rank issue.

#### 1.4 Data Transferred

Below table shows the amount of data transferred from Mappers to Reducers, and from Reducers to S3 (on AWS, job has configured to write on S3 instead of HDFS) in each phase of the entire program execution and in each iteration of page rank job. Data from syslog file of AWS EMR run of Wikipedia-full-html input execution on 11 machines (1 master and 10 workers).

| Phase -<br>Iteration | S3: Number of bytes<br>read<br>(S3 to Mappers) | Map output bytes                           | Reduce shuffle bytes<br>(Combiner/Mapper to<br>Reducer) | S3: Number of bytes written<br>(Reducer to S3) |
|----------------------|------------------------------------------------|--------------------------------------------|---------------------------------------------------------|------------------------------------------------|
| Pre-Pro.             | 7091101822                                     | 2088430787                                 | 1008848757                                              | 1057795115                                     |
| 1                    | 1057795115                                     | 3210315684                                 | 1217336429                                              | 1180704724                                     |
| 2                    | 1180704724                                     | 3214348041                                 | 1317781918                                              | 1182955026                                     |
| 3                    | 1182955026                                     | 3212780522                                 | 1317996064                                              | 1181970571                                     |
| 4                    | 1181970571                                     | 3213168630                                 | 1318206121                                              | 1183014094                                     |
| 5                    | 1183014094                                     | 3213382361                                 | 1318341266                                              | 1183023055                                     |
| 6                    | 1183023055                                     | 3213765772                                 | 1318386360                                              | 1183036262                                     |
| 7                    | 1183036262                                     | 3212932819                                 | 1318206906                                              | 1181992025                                     |
| 8                    | 1181992025                                     | 3212833986                                 | 1318236724                                              | 1181995559                                     |
| 9                    | 1181995559                                     | 3214408272                                 | 1318455864                                              | 1183051088                                     |
| 10                   | 1183051088                                     | 3213143682                                 | 1318350598                                              | 1181993998                                     |
| Correction           | 1181993998                                     | Map Only Job, Mapper to S3: 142752032 byte |                                                         | 752032 bytes                                   |
| ТорК                 | 142752032                                      | 65692                                      | 59740                                                   | 3211                                           |

Below table shows the number of records transferred between mapper, combiner and reducer. Data from syslog file of AWS EMR run of Wikipedia-full-html input execution on 11 machines (1 master and 10 workers).

| Iteration                  | Map input records | Map output records | Combine input records | Combine output records | Reduce input records | Reduce output records |
|----------------------------|-------------------|--------------------|-----------------------|------------------------|----------------------|-----------------------|
| Pre-Pro.                   | 7012253           | 54626996           | 54626996              | 19434887               | 19434887             | 3178227               |
| 1                          | 3178227           | 54718394           | 54718394              | 19556653               | 19556653             | 3178227               |
| 2                          | 3178227           | 54718394           | 54718394              | 19562914               | 19562914             | 3178227               |
| 3                          | 3178227           | 54718394           | 54718394              | 19559839               | 19559839             | 3178227               |
| 4                          | 3178227           | 54718394           | 54718394              | 19560635               | 19560635             | 3178227               |
| 5                          | 3178227           | 54718394           | 54718394              | 19561348               | 19561348             | 3178227               |
| 6                          | 3178227           | 54718394           | 54718394              | 19561719               | 19561719             | 3178227               |
| 7                          | 3178227           | 54718394           | 54718394              | 19560157               | 19560157             | 3178227               |
| 8                          | 3178227           | 54718394           | 54718394              | 19560043               | 19560043             | 3178227               |
| 9                          | 3178227           | 54718394           | 54718394              | 19562772               | 19562772             | 3178227               |
| 10                         | 3178227           | 54718394           | 54718394              | 19560535               | 19560535             | 3178227               |
| Correction 3178227 3178227 |                   |                    | Map Onl               | y Job                  |                      |                       |
| ТорК                       | 3178227           | 1900               | 0                     | 0                      | 1900                 | 100                   |

In pre-processing, the input document size is very high. But in pre-processing, we discard most of the data from document and end up to only graph representation (nodeld : Adjacency List ). So output of the reducer to S3 is comparatively smaller.

In first iteration, in input file (S3 to mapper), we have only nodeld and adjacencyList, but after processing the first iteration of page rank, reducers emit the page rank of each page along with its nodeld and adjacencyList. This increases the number of bytes written to S3 from reducers for first iteration.

For all other iteration, there is no bigger difference in amount of data transferred in each step, as we are processing & passing the kind of same data and just modifying the page rank values. In each iteration, amount of data transferred from Mapper to Reducer increases because we are passing the page rank contribution to each adjacent node along with node structure entries. Though Combiner helped a lot to reduce the reduce shuffle bytes from original Map output bytes. Reducer combines the map outputs and writes it to S3 so the number of bytes reduces again.

Last Correction job writes only Nodeld and PageRank values amount of data transferred to S3 from reducer drastically reduced same for TopK(only K=100 records written) job as well.

# 2. Performance Comparison

# 2.1 Running Time

I have executed program on AWS EMR for both the inputs. I have used alpha = 0.15 for my page rank calculations (Source: Wikipedia page of page rank algorithm). Though the value of alpha is not hardcoded and you can configure in Makefile.

Below is the screenshot of AWS EMR successful run:



1<sup>st</sup> row: Wikipedia-full-html input run on 11 m4.large machines (1 master and 10 workers)

2<sup>nd</sup> row: Wikipedia-full-html input run on 6 m4.large machines (1 master and 5 workers)

Below is the running time of full Wikipedia input on both configurations:

(Time in Seconds)

| Job                                     | 6 m4.large Machine | 11 m4.large Machines |
|-----------------------------------------|--------------------|----------------------|
| Pre-Processing Time                     | 1021               | 631                  |
| Time to Run ten Iterations Of Page Rank | 1532               | 947                  |
| Time to Find The Top -100 Pages         | 40                 | 29                   |

<sup>3&</sup>lt;sup>rd</sup> row: Wikipedia-simple-html input run on 6 m4.large machines (1 master and 5 workers)

## 2.2 Running Time Comparison

As we see in running times, all the computation phases shown good speed up by increasing machines as expected. With higher number of machines, our work load is divided among them and due to parallel work overall time is reduced.

If we compare the speed up of all computational phases then first two phases (PreProcessing and PageRank) has shown higher speed up then the last phase (TopK). The running time decreased to 38% in first to phases while it reduced 27% in last phase. I have also expected the same as in first two phases our MapReduce framework utilizes all the machines whereas in TopK job we are creating only on reduce task so we cannot get advantage of increase in machines in reduce work of TopK job.

Number of reduce task depends on the available nodes to MapReduce framework. As per hadoop documentation "The right number of reduces seems to be 0.95 or 1.75 multiplied by (<no. of nodes> \* <no. of maximum containers per node>)." If we have higher number of machines then it will create more reduce task and we will get good parallelism which will reduce the time taken and increase the performance.

In our case for first two phases, for 11 machines, total number of reduce task is 20 whereas for 6 machines they are reduced to 10. So in first two phases, higher machine gave better performance as the load is distributed among them nicely. For last phase, number of reduce tasks are independent of machines as we are setting it manually to 1. So here we are not getting advantage of increase in machines in reduce phase and it shows lesser speed up then above two phases. Adding to

# 2.3 Top-100 Wikipedia Pages

Below is the top-100 Wikipedia pages with highest page rank along with their page values sorted from highest to lowest for both the simple and full datasets. I find them reasonable as I guess there will be higher in links to the pages like United\_States\_09d4 from the other pages which result into higher page rank of this page. And we can see other countries as well in the list this means, the other wiki pages will have links in their web page to the related country page and which will boost the page rank of the country pages.

| No | Wikipedia-full-html-output-11-machines |                  | Wikipedia-simple-html-o | utput-6-machines |
|----|----------------------------------------|------------------|-------------------------|------------------|
| •  | Page Name                              | Page Rank        | Page Name               | Page Rank        |
|    |                                        | 0.00262288934616 |                         | 0.00518900900027 |
| 1  | United_States_09d4                     | 4360             | United_States_09d4      | 2900             |
|    |                                        | 0.00122849783940 |                         | 0.00480676647470 |
| 2  | 2006                                   | 2600             | Wikimedia_Commons_7b57  | 8800             |
|    |                                        | 0.00120313676095 |                         | 0.00394028468771 |
| 3  | United_Kingdom_5ad7                    | 6090             | Country                 | 2630             |
|    |                                        | 0.00098207155818 |                         | 0.00275248143611 |
| 4  | Biography                              | 9593             | England                 | 0630             |
|    |                                        | 0.00091705986394 |                         | 0.00268780962344 |
| 5  | 2005                                   | 1628             | Water                   | 6530             |
|    |                                        | 0.00088020713412 |                         | 0.00255408756514 |
| 6  | England                                | 7707             | Animal                  | 9160             |
|    |                                        | 0.00085590507934 |                         | 0.00251082408078 |
| 7  | Canada                                 | 7993             | City                    | 2450             |
|    | Geo-                                   | 0.00077172622988 |                         | 0.00235864709361 |
| 8  | graphic_coordinate_system              | 9266             | United_Kingdom_5ad7     | 2220             |
|    |                                        | 0.00072502418722 |                         | 0.00235040169771 |
| 9  | France                                 | 5341             | Germany                 | 1510             |
|    |                                        | 0.00071989680727 |                         | 0.00232473485995 |
| 10 | 2004                                   | 9462             | Earth                   | 4630             |
|    |                                        | 0.00068047669529 |                         | 0.00232360794714 |
| 11 | Australia                              | 2216             | France                  | 2090             |
|    |                                        | 0.00065434528014 |                         | 0.00203809703716 |
| 12 | Germany                                | 1820             | Europe                  | 7730             |
|    |                                        | 0.00058738697782 |                         | 0.00175388421427 |
| 13 | 2003                                   | 8930             | Wiktionary              | 6070             |
|    |                                        | 0.00058341977400 |                         | 0.00174967712175 |
| 14 | India                                  | 5353             | English_language        | 4420             |
|    |                                        | 0.00058285604737 |                         | 0.00173234465210 |
| 15 | Japan                                  | 3971             | Government              | 3290             |
|    | Inter-                                 | 0.00053350696600 |                         | 0.00171684048471 |
| 16 | net_Movie_Database_7ea7                | 3842             | Computer                | 3360             |
| 17 | Europe                                 | 0.00050926763789 | India                   | 0.00171317091838 |

|    |                        | 9670                     |                | 4910                     |
|----|------------------------|--------------------------|----------------|--------------------------|
|    |                        | 0.00049145956758         |                | 0.00166738369802         |
| 18 | Record_label           | 4876                     | Money          | 2790                     |
|    |                        | 0.00048701215830         |                | 0.00155169056853         |
| 19 | 2001                   | 3275                     | Japan          | 5440                     |
|    |                        | 0.00048286324681         |                | 0.00152355950935         |
| 20 | 2002                   | 9372                     | Plant          | 9920                     |
|    |                        | 0.00047805043674         |                | 0.00150743309049         |
| 21 | World_War_II_d045      | 7285                     | Italy          | 7990                     |
|    |                        | 0.00047034299613         |                | 0.00148140734345         |
| 22 | Population_density     | 8859                     | Canada         | 2890                     |
| 22 | Music gonro            | 0.00046721175179         | Casia          | 0.00147112369222         |
| 23 | Music_genre            | 0.00046466103240         | Spain          | 3520                     |
| 24 | 2000                   | 1972                     | Food           | 0.00142468684896<br>7640 |
|    | 2000                   | 0.00044579274603         | FOOU           | 0.00141209700626         |
| 25 | Italy                  | 5966                     | Human          | 9630                     |
|    | reary                  | 0.00043620978702         | Haman          | 0.00139671506127         |
| 26 | Wiktionary             | 9988                     | China          | 2910                     |
|    | ,                      | 0.00043529472397         |                | 0.00138224852505         |
| 27 | Wikimedia_Commons_7b57 | 9010                     | People         | 5760                     |
|    |                        | 0.00043480265906         | ·              | 0.00132985424075         |
| 28 | London                 | 0111                     | Australia      | 0500                     |
|    |                        | 0.00041850352295         |                | 0.00128443617113         |
| 29 | English_language       | 4299                     | Asia           | 6100                     |
|    |                        | 0.00040593698578         |                | 0.00127426842125         |
| 30 | 1999                   | 7724                     | Capital_(city) | 1940                     |
|    |                        | 0.00036295379192         |                | 0.00126499722576         |
| 31 | Spain                  | 9990                     | Television     | 0360                     |
|    |                        | 0.00035631063673         |                | 0.00126021008117         |
| 32 | 1998                   | 4167                     | Sun            | 8010                     |
| 22 | Bussia                 | 0.00034390662497         | Number         | 0.00124323622892         |
| 33 | Russia                 | 8832<br>0.00033728202493 | Number         | 0.00124037568145         |
| 34 | 1997                   | 3117                     | State          | 4610                     |
|    | 1337                   | 0.00033629712380         | Juic           | 0.00123521166722         |
| 35 | Television             | 0.00033023712380         | Sound          | 1920                     |
|    |                        | 0.00033462877684         |                | 0.00123254317535         |
| 36 | New York City 1428     | 3839                     | Science        | 9430                     |
|    |                        | 0.00032614642134         |                | 0.00123105663929         |
| 37 | Football_(soccer)      | 4763                     | Mathematics    | 5570                     |
|    |                        | 0.00032362786609         |                | 0.00119230462374         |
| 38 | 1996                   | 1999                     | Metal          | 9440                     |
|    |                        | 0.00032355337188         |                | 0.00117709258351         |
| 39 | Census                 | 6843                     | Year           | 0610                     |
|    |                        | 0.00032218915558         |                | 0.00117335731376         |
| 40 | Scotland               | 6006                     | 2004           | 8480                     |

|    |                             | 0.00031015464104 |                           | 0.00115016588485 |
|----|-----------------------------|------------------|---------------------------|------------------|
| 41 | 1995                        | 7029             | Language                  | 7740             |
|    |                             | 0.00030864301289 |                           | 0.00114618177921 |
| 42 | China                       | 6061             | Russia                    | 2580             |
|    |                             | 0.00030432048264 |                           | 0.00112333028098 |
| 43 | Population                  | 0489             | Wikipedia                 | 8190             |
|    |                             | 0.00030405610072 |                           | 0.00109856669996 |
| 44 | Square_mile                 | 0908             | Religion                  | 6040             |
|    | -                           | 0.00030401196802 | _                         | 0.00109653914178 |
| 45 | Scientific_classification   | 8030             | 19th_century              | 0080             |
|    |                             | 0.00030166740429 |                           | 0.00108743132321 |
| 46 | California                  | 4186             | Music                     | 4420             |
|    |                             | 0.00029069115857 |                           | 0.00105480073500 |
| 47 | 1994                        | 5429             | Scotland                  | 6320             |
|    |                             | 0.00028762080340 |                           | 0.00105370498325 |
| 48 | Sweden                      | 1212             | 20th_century              | 8870             |
|    |                             | 0.00028741610678 |                           | 0.00104922273293 |
| 49 | Public_domain               | 1891             | Greece                    | 4630             |
|    |                             | 0.00028626913927 |                           | 0.00102986061318 |
| 50 | Film                        | 5013             | Latin                     | 7450             |
|    |                             | 0.00028411019015 |                           | 0.00102735544285 |
| 51 | Record_producer             | 9314             | London                    | 1320             |
|    |                             | 0.00028310205424 |                           | 0.00100435725665 |
| 52 | New_Zealand_2311            | 5546             | Greek_language            | 0290             |
|    |                             | 0.00027888263555 |                           | 0.00099901181037 |
| 53 | New_York_3da4               | 7677             | Energy                    | 9402             |
|    |                             | 0.00027667367831 |                           | 0.00098635084799 |
| 54 | Netherlands                 | 8118             | World                     | 7666             |
|    |                             | 0.00027581329226 |                           | 0.00097590586513 |
| 55 | Marriage                    | 8387             | Centuries                 | 6575             |
|    |                             | 0.00027482489872 |                           | 0.00094520396521 |
| 56 | 1993                        | 0027             | Culture                   | 1297             |
| l  | United_States_Census_Bureau | 0.00027466710694 |                           | 0.00093646960342 |
| 57 | _2c85                       | 8521             | History                   | 5431             |
|    | 1001                        | 0.00027189525612 | 11. 1.1                   | 0.00091452309680 |
| 58 | 1991                        | 9761             | Liquid                    | 0025             |
|    | 1000                        | 0.00026832611879 | Ni a tila a vil a va al a | 0.00090572450764 |
| 59 | 1990                        | 8734             | Netherlands               | 8975             |
|    | 1003                        | 0.00026636924637 | Dlanat                    | 0.00090493226223 |
| 60 | 1992                        | 7862             | Planet                    | 9007             |
| 61 | Dolitician                  | 0.00026489490763 | Light                     | 0.00090167635268 |
| 61 | Politician                  | 6039             | Light                     | 6388             |
| 62 | Album                       | 0.00026056445391 | Society                   | 0.00090149206214 |
| 62 | Album                       | 8753             | Society                   | 5202             |
| 62 | Latin                       | 0.00026045636147 | Atom                      | 0.00089002264065 |
| 63 | Latin                       | 8826             | Atom                      | 2958             |
| 64 | Actor                       | 0.00025833956084 | Wikime-                   | 0.00088844007077 |

|          |                                       | 6043                     | dia_Foundation_83d9      | 6097                     |
|----------|---------------------------------------|--------------------------|--------------------------|--------------------------|
|          |                                       | 0.00025810638770         |                          | 0.00088838361057         |
| 65       | Ireland                               | 3505                     | Scientist                | 3494                     |
|          |                                       | 0.00025564272454         |                          | 0.00088768848602         |
| 66       | Per_capita_income                     | 9733                     | Image                    | 1999                     |
|          |                                       | 0.00025186026160         |                          | 0.00088629080559         |
| 67       | Studio_album                          | 0276                     | Law                      | 8419                     |
|          |                                       | 0.00025116500863         |                          | 0.00087884516145         |
| 68       | Poverty_line                          | 4912                     | Geography                | 4898                     |
|          | 2                                     | 0.00024950659722         |                          | 0.00087857429428         |
| 69       | Km²                                   | 5139                     | List_of_decades          | 3701                     |
|          |                                       | 0.00024600272252         | Uni-                     | 0.000004.00450036        |
| 70       | 1000                                  | 0.00024689373252         | form_Resource_Locator_1b | 0.00086188450636         |
| 70       | 1989                                  | 3362<br>0.00024092192871 | 4e                       | 3216                     |
| 71       | Norway                                | 2262                     | Africa                   | 0.00086056996715<br>2458 |
|          | NOI Way                               | 0.00023901785842         | Airica                   | 0.00084488636788         |
| 72       | Website                               | 5252                     | Turkey                   | 9011                     |
| <u> </u> | · · · · · · · · · · · · · · · · · · · | 0.00023532199065         | rancy                    | 0.00083047948823         |
| 73       | 1980                                  | 3687                     | Inhabitant               | 2369                     |
|          |                                       | 0.00022937863976         |                          | 0.00082304881404         |
| 74       | Animal                                | 8423                     | Capital_city             | 3760                     |
|          |                                       | 0.00022920870296         | · = /                    | 0.00082151559551         |
| 75       | Area                                  | 2197                     | Plural                   | 0230                     |
|          |                                       | 0.00022703304683         |                          | 0.00081372300166         |
| 76       | 1986                                  | 4427                     | Electricity              | 6497                     |
|          |                                       | 0.00022623653898         |                          | 0.00079723790431         |
| 77       | Personal_name                         | 7703                     | Poland                   | 5345                     |
|          |                                       | 0.00022611544290         |                          | 0.00079712389257         |
| 78       | Poland                                | 5689                     | Building                 | 2039                     |
|          |                                       | 0.00022568426663         |                          | 0.00079465406062         |
| 79       | Brazil                                | 7636                     | Car                      | 3909                     |
| 90       | 1005                                  | 0.00022402906904         | Swadan                   | 0.00079171255623<br>4121 |
| 80       | 1985                                  | 2517<br>0.00022330540325 | Sweden                   | 0.00079148847053         |
| 81       | 1987                                  | 8049                     | Book                     | 1959                     |
| - 51     | 1507                                  | 0.00022175338663         | BOOK                     | 0.00078693289643         |
| 82       | 1983                                  | 6217                     | Biology                  | 1402                     |
|          |                                       | 0.00022109653273         | 01                       | 0.00077081729454         |
| 83       | 1982                                  | 6380                     | War                      | 8049                     |
|          |                                       | 0.00021938452665         |                          | 0.00076816079591         |
| 84       | French_language                       | 4706                     | Chemical_element         | 9691                     |
|          |                                       | 0.00021934801195         |                          | 0.00076093572189         |
| 85       | 1981                                  | 2457                     | God                      | 1388                     |
|          |                                       | 0.00021932859347         |                          | 0.00075628686441         |
| 86       | 1979                                  | 5849                     | North_America_e7c4       | 6695                     |
| 87       | 1984                                  | 0.00021879019421         | September_7              | 0.00075477818126         |

|    |                   | 2315             |                   | 4075             |
|----|-------------------|------------------|-------------------|------------------|
|    |                   | 0.00021869239369 |                   | 0.00074629735006 |
| 88 | World_War_I_9429  | 5080             | Website           | 0417             |
|    |                   | 0.00021857418021 |                   | 0.00074266715264 |
| 89 | 1988              | 8445             | Nation            | 0605             |
|    |                   | 0.00021801968011 |                   | 0.00073971037875 |
| 90 | Paris             | 5686             | Politics          | 8902             |
|    |                   | 0.00021797486466 |                   | 0.00073329001722 |
| 91 | 1974              | 4915             | 2006              | 5940             |
|    |                   | 0.00021567359642 |                   | 0.00073223711129 |
| 92 | Mexico            | 7163             | Fish              | 0969             |
|    |                   | 0.00021185635773 |                   | 0.00073087111762 |
| 93 | 19th_century      | 6199             | Species           | 9328             |
|    |                   | 0.00021132429567 |                   | 0.00072167441359 |
| 94 | 1970              | 9975             | Mammal            | 4913             |
|    |                   | 0.00021086426991 |                   | 0.00071780902030 |
| 95 | January_1         | 0462             | Island            | 3589             |
|    |                   | 0.00021070868243 |                   | 0.00071710705966 |
| 96 | USA_f75d          | 2733             | Portugal          | 0586             |
|    |                   | 0.00020860183512 |                   | 0.00071555153665 |
| 97 | 1975              | 0045             | Gas               | 3913             |
|    |                   | 0.00020846744997 |                   | 0.00071157775130 |
| 98 | 1976              | 3305             | River             | 0913             |
|    |                   | 0.00020779805256 |                   | 0.00070610750743 |
| 99 | Africa            | 2159             | Switzerland       | 8502             |
| 10 |                   | 0.00020736244197 |                   | 0.00070203049315 |
| 0  | South_Africa_1287 | 3637             | World_War_II_d045 | 8166             |

# 3. Convergence Estimation

I have coded to measure the convergence achieved after each iteration of page rank calculation. In each iteration, program calculates the absolute difference in old and new page rank of each node and sums it up. And at the end of iteration, the sum is divided by the number of total pages to get the average difference per node and logs it to log file.

Below is the convergence output from logs of AWS EMR execution of Wikipedia-full-html input with both configurations:

| Iteration | 6 m4.large Machine   | 11 m4.large Machines |
|-----------|----------------------|----------------------|
| 1         | 0.000000184996236977 | 0.000000184996609594 |
| 2         | 0.000000076656124798 | 0.000000076656300012 |
| 3         | 0.000000030632383622 | 0.000000030632328128 |
| 4         | 0.000000013365304956 | 0.000000013365282971 |
| 5         | 0.000000006365162230 | 0.000000006365152615 |
| 6         | 0.000000003233759976 | 0.000000003233754581 |
| 7         | 0.000000001721090299 | 0.000000001721086772 |
| 8         | 0.000000000951050433 | 0.000000000951048336 |
| 9         | 0.000000000543148803 | 0.000000000543147593 |

(Note: It doesn't calculate for last iteration, as last page rank is corrected in PageRankCorrectionJob)

As we can see in above diagram, average difference in page rank in each iteration reduces which means page ranks are converging.

If we need the convergence up to specific decimal point then we can count the number of nodes whose page rank change is higher than specified margin in each iteration. This count will decrease in each iteration and when it reaches to zero, we will stop calculating the page rank.