Assignment 4 - Decision Tree

Keith G. Williams - 800690755

Friday, June 12, 2015

Problem Description

A company sent out some promotion to various houses and recorded a few facts about each house and also whether the people responded or not. Please create a Decision Tree (similar to one discussed in class) for the dataset below.

##		district	house_type	income	<pre>previous_customer</pre>	outcome
##	1	suburban	detached	high	no	nothing
##	2	suburban	detached	high	yes	nothing
##	3	rural	detached	high	no	responded
##	4	urban	semi-detached	high	no	responded
##	5	urban	semi-detached	low	no	responded
##	6	urban	semi-detached	low	yes	nothing
##	7	rural	semi-detached	low	yes	responded
##	8	suburban	terrace	high	no	nothing
##	9	suburban	semi-detached	low	no	responded
##	10	urban	terrace	low	no	responded
##	11	suburban	terrace	low	yes	responded
##	12	rural	terrace	high	yes	responded
##	13	rural	detached	low	no	responded
##	14	urban	terrace	high	yes	nothing

Information Content *I(C;F)* Calculations

Each node will be split based on the information content calculation:

$$I(C;F) = \sum_{i=1}^{m} \sum_{j=1}^{d} P(C = c_i, F = f_j) log_2 \frac{P(C = c_i, F = f_j)}{P(C = c_i)P(F = f_j)}$$

where C is the class (in this cases outcome), and F is the feature matrix (in this case district, house_type, income, previous_customer)

Root Node

I(outcome, district) =

$$P(outcome = nothing, district = suburban)log_2 \\ \frac{P(outcome = nothing, district = suburban)}{P(outcome = nothing)P(district = suburban)} \\ +P(outcome = nothing, district = rural)log_2 \\ \frac{P(outcome = nothing, district = rural)}{P(outcome = nothing)P(district = rural)} \\ +P(outcome = nothing, district = urban)log_2 \\ \frac{P(outcome = nothing)P(district = urban)}{P(outcome = nothing)P(district = urban)} \\ +P(outcome = responded, district = suburban)log_2 \\ \frac{P(outcome = nothing)P(district = urban)}{P(outcome = responded, district = suburban)} \\ +P(outcome = responded, district = suburban)log_2 \\ \frac{P(outcome = responded)P(district = suburban)}{P(outcome = responded)P(district = rural)} \\ +P(outcome = responded, district = urban)log_2 \\ \frac{P(outcome = responded)P(district = urban)}{P(outcome = responded)P(district = urban)} \\ = \frac{3}{14}log_2 \\ \frac{\frac{3}{14}}{\frac{5}{14}} \\ \frac{3}{14}log_2 \\ \frac{\frac{7}{14}}{\frac{5}{14}} \\ \frac{1}{14}log_2 \\ \frac{\frac{7}{14}}{\frac{14}{14}} \\ \frac{3}{14}log_2 \\ \frac{7}{14}log_2 \\ \frac{7}{14}log_2$$

I(outcome, housetype) =

$$P(outcome = nothing, housetype = detached)log_2 \\ \frac{P(outcome = nothing, housetype = detached)}{P(outcome = nothing, housetype = detached)} \\ +P(outcome = nothing, housetype = semidetached)log_2 \\ \frac{P(outcome = nothing, housetype = semidetached)}{P(outcome = nothing, housetype = semidetached)} \\ +P(outcome = nothing, housetype = terrace)log_2 \\ \frac{P(outcome = nothing, housetype = terrace)}{P(outcome = nothing, housetype = terrace)} \\ +P(outcome = responded, housetype = detached)log_2 \\ \frac{P(outcome = nothing)P(housetype = terrace)}{P(outcome = responded, housetype = detached)} \\ +P(outcome = responded, housetype = semidetached)log_2 \\ \frac{P(outcome = responded, housetype = detached)}{P(outcome = responded, housetype = semidetached)} \\ +P(outcome = responded, housetype = terrace)log_2 \\ \frac{P(outcome = responded, housetype = terrace)}{P(outcome = responded, housetype = terrace)} \\ = \frac{2}{14}log_2 \\ \frac{2}{14} \\ \frac{1}{5} \\ \frac{4}{14} \\ \frac{1}{14} \\ \frac{1}{14}log_2 \\ \frac{1}{14} \\ \frac{$$

I(outcome, income) =

$$P(outcome = nothing, income = high)log_{2} \\ \frac{P(outcome = nothing, income = high)}{P(outcome = nothing)P(income = high)} \\ +P(outcome = nothing, income = low)log_{2} \\ \frac{P(outcome = nothing)P(income = high)}{P(outcome = nothing)P(income = low)} \\ +P(outcome = responded, income = high)log_{2} \\ \frac{P(outcome = responded, income = high)}{P(outcome = responded, income = high)} \\ +P(outcome = responded, income = low)log_{2} \\ \frac{P(outcome = responded, income = low)}{P(outcome = responded, income = low)} \\ = \\ \frac{4}{14}log_{2} \\ \frac{\frac{4}{14}}{\frac{5}{14}} \\ + \\ \frac{1}{14}log_{2} \\ \frac{\frac{1}{14}}{\frac{5}{14}} \\ + \\ \frac{3}{14}log_{2} \\ \frac{\frac{3}{14}}{\frac{9}{14}} \\ + \\ \frac{6}{14}log_{2} \\ \frac{\frac{6}{14}}{\frac{9}{14}} \\ - \\ \frac{1}{14}log_{2} \\ \frac{1}{14} \\ - \\ \frac{1}{14}log_{2} \\ \frac{1}{14} \\ - \\ \frac{1}{14}log_{2} \\ - \\ \frac{1}{14}l$$

$$P(outcome = nothing, previous customer = no) log_2 \\ \frac{P(outcome = nothing, previous customer = no)}{P(outcome = nothing) P(previous customer = no)} \\ + P(outcome = nothing, previous customer = yes) log_2 \\ \frac{P(outcome = nothing, previous customer = yes)}{P(outcome = nothing) P(previous customer = yes)} \\ + P(outcome = responded, previous customer = no) log_2 \\ \frac{P(outcome = responded, previous customer = no)}{P(outcome = responded) P(previous customer = no)} \\ + P(outcome = responded, previous customer = yes) log_2 \\ \frac{P(outcome = responded, previous customer = yes)}{P(outcome = responded, previous customer = yes)} \\ = \frac{2}{14} log_2 \\ \frac{\frac{2}{14}}{\frac{5}{14}} \\ + \\ \frac{3}{14} log_2 \\ \frac{\frac{3}{14}}{\frac{5}{14}} \\ + \\ \frac{6}{14} log_2 \\ \frac{\frac{6}{14}}{\frac{9}{14}} \\ + \\ \frac{3}{14} log_2 \\ \frac{\frac{3}{14}}{\frac{14}{14}} \\ + \\ \frac{3}{14} log_2 \\ \frac{3}{14} \\ \frac{1}{14} \\ \frac{1}{14} \\ + \\ \frac{3}{14} log_2 \\ \frac{3}{14} \\ \frac{1}{14} \\ \frac{1}{14} \\ + \\ \frac{3}{14} log_2 \\ \frac{3}{14} \\ \frac{1}{14} \\ \frac{3}{14} log_2 \\ \frac{3}{14} \\ \frac{3}{14} \\ \frac{3}{14} log_2 \\ \frac{3}{14} \\ \frac{3}{14} \\ \frac{3}{14} log_2 \\ \frac{3}{14} \\ \frac{3}{14} log_2$$

The greatest information content is I(outcome, district) = 0.247, so the first internal node will split outcome three ways on district.

Second Node Layer

• district == suburban

##	district	house_type	income	<pre>previous_customer</pre>	outcome
## 3	L suburban	detached	high	no	nothing
## 2	2 suburban	detached	high	yes	nothing
## 3	3 suburban	terrace	high	no	nothing
## 4	l suburban	semi-detached	low	no	responded
## 5	suburban	terrace	low	yes	responded

$$P(outcome = nothing, housetype = detached)log_2 \\ \frac{P(outcome = nothing, housetype = detached)}{P(outcome = nothing)P(housetype = detached)} \\ +P(outcome = nothing, housetype = semidetached)log_2 \\ \frac{P(outcome = nothing, housetype = semidetached)}{P(outcome = nothing)P(housetype = semidetached)} \\ +P(outcome = nothing, housetype = terrace)log_2 \\ \frac{P(outcome = nothing)P(housetype = terrace)}{P(outcome = nothing)P(housetype = terrace)} \\ +P(outcome = responded, housetype = detached)log_2 \\ \frac{P(outcome = responded, housetype = detached)}{P(outcome = responded, housetype = detached)} \\ +P(outcome = responded, housetype = semidetached)log_2 \\ \frac{P(outcome = responded, housetype = semidetached)}{P(outcome = responded, housetype = semidetached)} \\ +P(outcome = responded, housetype = terrace)log_2 \\ \frac{P(outcome = responded, housetype = terrace)}{P(outcome = responded, housetype = terrace)} \\ = \frac{2}{5}log_2 \\ \frac{2}{32} \\ \frac{1}{55} \\ \frac{1}{55}$$

 $I(outcome, income \mid district = suburban) =$

$$P(outcome = nothing, income = high)log_2 \\ \frac{P(outcome = nothing, income = high)}{P(outcome = nothing)P(income = high)} \\ +P(outcome = nothing, income = low)log_2 \\ \frac{P(outcome = nothing, income = low)}{P(outcome = nothing)P(income = low)} \\ +P(outcome = responded, income = high)log_2 \\ \frac{P(outcome = responded, income = high)}{P(outcome = responded, income = high)} \\ +P(outcome = responded, income = low)log_2 \\ \frac{P(outcome = responded, income = low)}{P(outcome = responded, income = low)} \\ = \frac{3}{5}log_2 \\ \frac{3}{5} \\ \frac{1}{5} \\ \frac{3}{5} \\ \frac{3}{5} \\ \frac{1}{5} \\ \frac{$$

 $I(outcome, previous customer \mid district = suburban) =$

$$P(outcome = nothing, previous customer = no)log_2 \\ \frac{P(outcome = nothing, previous customer = no)}{P(outcome = nothing)P(previous customer = no)} \\ + P(outcome = nothing, previous customer = yes)log_2 \\ \frac{P(outcome = nothing, previous customer = yes)}{P(outcome = nothing)P(previous customer = yes)} \\ + P(outcome = responded, previous customer = no)log_2 \\ \frac{P(outcome = responded, previous customer = no)}{P(outcome = responded)P(previous customer = no)} \\ + P(outcome = responded, previous customer = yes)log_2 \\ \frac{P(outcome = responded, previous customer = yes)}{P(outcome = responded)P(previous customer = yes)} \\ = \frac{2}{5}log_2 \\ \frac{2}{5} \\ \frac{1}{5} \\ \frac{1}{5}$$

The greatest information content is $I(outcome, income \mid district = suburban) = 0.971$, so the suburban internal node will split outcome on income. In fact, this split gives perfect separation, so this split will result in two leaf nodes.

district == rural

#	#	district	house_type	income	<pre>previous_customer</pre>	outcome
#	# 1	rural	detached	high	no	responded
#	# 2	rural	semi-detached	low	yes	responded
#	# 3	rural	terrace	high	yes	responded
#	# 4	rural	detached	low	no	responded

Since $P(outcome = responded \mid district = rural) = 1$, no information can be gained by splitting this node further, so this path will terminate in a leaf node.

district == urban

##		district	house_type	income	previous_	_customer	outcome
##	1	urban	semi-detached	high		no	responded
##	2	urban	semi-detached	low		no	responded
##	3	urban	semi-detached	low		yes	nothing
##	4	urban	terrace	low		no	responded
##	5	urban	terrace	high		yes	nothing

 $I(outcome, housetype \mid district = urban) =$

$$P(outcome = nothing, housetype = semidetached)log_{2} \\ \frac{P(outcome = nothing, housetype = semidetached)}{P(outcome = nothing)P(housetype = semidetached)} \\ +P(outcome = nothing, housetype = terrace)log_{2} \\ \frac{P(outcome = nothing, housetype = terrace)}{P(outcome = nothing)P(housetype = terrace)} \\ +P(outcome = responded, housetype = semidetached)log_{2} \\ \frac{P(outcome = responded, housetype = semidetached)}{P(outcome = responded)P(housetype = semidetached)} \\ +P(outcome = responded, housetype = terrace)log_{2} \\ \frac{P(outcome = responded, housetype = terrace)}{P(outcome = responded, housetype = terrace)} \\ = \frac{1}{5}log_{2} \\ \frac{1}{5} \\ \frac{1$$

 $I(outcome, income \mid district = urban) =$

$$P(outcome = nothing, income = high)log_{2} \frac{P(outcome = nothing, income = high)}{P(outcome = nothing)P(income = high)} \\ +P(outcome = nothing, income = low)log_{2} \frac{P(outcome = nothing, income = low)}{P(outcome = nothing)P(income = low)} \\ +P(outcome = responded, income = high)log_{2} \frac{P(outcome = responded, income = high)}{P(outcome = responded)P(income = high)} \\ +P(outcome = responded, income = low)log_{2} \frac{P(outcome = responded)P(income = low)}{P(outcome = responded)P(income = low)} \\ = \frac{1}{5}log_{2} \frac{\frac{1}{5}}{\frac{1}{55}} + \frac{1}{5}log_{2} \frac{\frac{1}{5}}{\frac{1}{55}} + \frac{1}{5}log_{2} \frac{\frac{1}{5}}{\frac{3}{55}} + \frac{2}{5}log_{2} \frac{\frac{2}{5}}{\frac{3}{55}} \\ = \mathbf{0.020}$$

 $I(outcome, previous customer \mid district = urban) =$

$$P(outcome = nothing, previous customer = no)log_{2} \frac{P(outcome = nothing, previous customer = no)}{P(outcome = nothing)P(previous customer = no)} \\ +P(outcome = nothing, previous customer = yes)log_{2} \frac{P(outcome = nothing, previous customer = yes)}{P(outcome = nothing)P(previous customer = yes)} \\ +P(outcome = responded, previous customer = no)log_{2} \frac{P(outcome = responded, previous customer = no)}{P(outcome = responded)P(previous customer = no)} \\ +P(outcome = responded, previous customer = yes)log_{2} \frac{P(outcome = responded, previous customer = yes)}{P(outcome = responded, previous customer = yes)} \\ = \frac{0}{5}log_{2} \frac{\frac{5}{5}}{\frac{23}{5}} + \frac{2}{5}log_{2} \frac{\frac{5}{5}}{\frac{22}{5}} + \frac{3}{5}log_{2} \frac{\frac{3}{5}}{\frac{32}{5}} + \frac{0}{5}log_{2} \frac{\frac{5}{5}}{\frac{32}{55}} \\ -\frac{0}{5} \frac{971}{5} \\ -\frac{0}{5} \frac{97$$

The greatest information content is $I(outcome, previous \mid district = urban) = 0.971$, so the urban internal node will split outcome on previous customer. In fact, this split gives perfect separation, so this split will result in the final two leaf nodes.

Final Decision Tree

