METHOD OF LEAST SQUARES

By: Varun Luthra 11CSU163

INTRODUCTION

In engineering, two types of applications are encountered:

- **Trend analysis**. Predicting values of dependent variable, may include extrapolation beyond data points or interpolation between data points.
- •Hypothesis testing. Comparing existing mathematical model with measured data.

CURVE FITTING

There are two general approaches for curve fitting:

•Least Squares regression:

Data exhibit a significant degree of scatter. The strategy is to derive a single curve that represents the general trend of the data.

•Interpolation:

Data is very precise. The strategy is to pass a curve or a series of curves through each of the points.

OVERVIEW

- •The method of **least squares** is a standard approach to the approximate solution of **overdetermined systems**, i.e., sets of equations in which there are more equations than unknowns.
- •"Least squares" means that the overall solution minimizes the sum of the squares of the errors made in the results of every single equation.
- •The least-squares method is usually credited to **Carl Friedrich Gauss** (1795), but it was first published by **Adrien-Marie Legendre**.

Scatter Diagram:

To find a relationship b/w the set of paired observations x and y(say), we plot their corresponding values on the graph, taking one of the variables along the x-axis and other along the y-axis i.e. $(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$.

The resulting diagram showing a collection of dots is called a <u>scatter diagram</u>. A smooth curve that approximate the above set of points is known as the <u>approximate curve</u>.

WORKING PROCEDURE

- ☐ To fit the straight line y=a+bx
- Substitute the observed set of n values in this equation.
- Form the normal equations for each constant i.e. $\sum y=na+b\sum x$, $\sum xy=a\sum x+b\sum x^2$.
- Solve these normal equations as simultaneous equations of a and b.
- Substitute the values of a and b in y=a+bx, which is the required line of best fit.

 \Box To fit the parabola: y=a+bx+cx²:

- Form the normal equations $\sum y=na+b\sum x+c\sum x^2$, $\sum xy=a\sum x+b\sum x^2+c\sum x^3$ and $\sum x^2y=a\sum x^2+b\sum x^3+c\sum x^4$.
- Solve these as simultaneous equations for a,b,c.
- Substitute the values of a,b,c in y=a+bx+cx², which is the required parabola of the best fit.

☐ In general, the curve $y=a+bx+cx^2+.....+kx^{m-1}$ can be fitted to a given data by writing m normal equations.

- ☐ The normal equation for the unknown <u>a</u> is obtained by multiplying the equations by the coefficient of <u>a</u> and adding.
- ☐ The normal equation for **b** is obtained by multiplying the equations by the coefficients of **b** (i.e. x) and adding.

☐ The normal equation for $\underline{\mathbf{c}}$ has been obtained by multiplying the equations by the coefficients of $\underline{\mathbf{c}}$ (i.e. \mathbf{x}^2) and adding.

Example of a Straight Line

Fit a straight line to the x and y values in the following Table:

$\mathbf{X_{i}}$	\mathbf{y}_{i}	$\mathbf{X_i}\mathbf{Y_i}$	X_i^2	2
1	0.5	0.5	1	_
2	2.5	5	4	2
3	2	6	9	
4	4	16	16	
5	3.5	17.5	25	
6	6	36	36	
7	5.5	38.5	49	
28	24	119.5	140_	

$$\sum x_i = 28 \quad \sum y_i = 24.0$$

$$\sum x_i^2 = 140$$
 $\sum x_i y_i = 119.5$

$$\overline{x} = \frac{28}{7} = 4$$

$$\overline{y} = \frac{24}{7} = 3.428571$$

$$a_{1} = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$= \frac{7 \times 119.5 - 28 \times 24}{7 \times 140 - 28^{2}} = 0.8392857$$

$$a_{0} = \bar{y} - a_{1}\bar{x}$$

$$= 3.428571 - 0.8392857 \times 4 = 0.07142857$$

Y = 0.07142857 + 0.8392857 x

Example Of Other Curve

Fit the following Equation:

$$y = a_2 x^{b_2}$$

to the data in the following table:

X _i	\mathbf{y}_{i}	X*=log x _i	Y*=logy _i
1	0.5	0	-0.301
2	1.7	0.301	0.226
3	3.4	0.477	0.534
4	5.7	0.602	0.753
5	8.4	0.699	0.922
15	19.7	2.079	2.141

$$\log y = \log(a_{2}x^{b_{2}})$$

$$\log y = \log a_{2} + b_{2} \log x$$

$$\det Y^{*} = \log y, X^{*} = \log x,$$

$$a_{0} = \log a_{2}, a_{1} = b_{2}$$

$$Y^{*} = a_{0} + a_{1}X^{*}$$

	Xi	Yi	X* _i =Log(X)	Y* _i =Log(Y)	X*Y*	X*^2	
	1	0.5	0.0000	-0.3010	0.0000	0.0000	
	2	1.7	0.3010	0.2304	0.0694	0.0906	
	3	3.4	0.4771	0.5315	0.2536	0.2276	
	4	5.7	0.6021	0.7559	0.4551	0.3625	
	5	8.4	0.6990	0.9243	0.6460	0.4886	
Sum	15	19.700	2.079	2.141	1.424	1.169	

$$\begin{cases} a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2} = \frac{5 \times 1.424 - 2.079 \times 2.141}{5 \times 1.169 - 2.079^2} = 1.75 \\ a_0 = \overline{y} - a_1 \overline{x} = 0.4282 - 1.75 \times 0.41584 = -0.334 \end{cases}$$

Curve Fitting

 $\log y = -0.334 + 1.75 \log x$

$$y = 0.46x^{1.75}$$

APPLICATION

- •The most important application is in **data fitting**. The best fit in the least-squares sense minimizes the sum of squared **residuals**, a residual being the difference between an observed value and the fitted value provided by a model.
- •When the problem has substantial uncertainties in the **independent variable** (the 'x' variable), then simple regression and least squares methods have problems; in such cases, the methodology required for fitting **errorsin-variables models** may be considered instead of that for least squares.

Thank You!

Have a nice day. ©