Sinais e Sistemas 1 - Atividade P4

Prof. Igor Peretta

Entrega: 25/mai/2018

1 Recursos computacionais

O curso terá como base o software multi-plataforma wxMaxima:

http://andrejv.github.io/wxmaxima/

Um tutorial em português:

http://maxima.sourceforge.net/docs/tutorial/pt/max.pdf

Outros softwares poderão compor os recursos do curso, mas serão anunciados a seu tempo.

2 Instruções

2.1 Constantes

As constantes que serão utilizadas nessa etapa avaliativa $(M_1, M_2, M_3 e M_4)$ tem relação direta com a sua matrícula. Para encontrar seus valores, utilize o seguinte procedimento:

- Sua matrícula tem o formato 00000 EEE000, onde θ é um dígito e E um caractere alfabético.
- A constante M_1 é igual ao número representado pelos 3 primeiros dígitos dos 5 primeiros dígitos de sua matrícula.
- A constante M_2 é igual ao número representado pelos 2 últimos dígitos dos 5 primeiros dígitos de sua matrícula.
- A constante M_3 depende do curso no qual você está matriculado, de acordo com a seguinte tabela:

Curso	M_3
EAU	1
ECP	5
EEL	10
ETE	15
Outros	20

• A constante M_4 é igual ao número representado pelos 3 últimos dígitos de sua matrícula.

Considere o exemplo de uma matrícula 11112ECP029. Logo, para a matrícula exemplo, $M_1=111,\ M_2=12,\ M_3=5$ e $M_4=29.$

2.2 Entrega da atividade

A entrega da presente atividade avaliativa será feita através de envio pelo Moodle, em local indicado.

3 Calcule usando o wxMaxima:

3.1 Transformadas de Laplace

3.1.1 Questão única

Considere um sistema cuja função de transferência é igual a

$$H(s) = \frac{M_4}{(s+M_2)^2}$$

- a) Calcule os polos e zeros do sistema (note que o wxMaxima não irá calcular allroots por conta de não reconhecer %pi como constante, um bug até onde entendo; use solve(denom(Y(s))=0,[s]); para encontrar as raízes do denominador, por exemplo, ou solve(num(Y(s))=0,[s]); do numerador, se necessário).
- b) Calcule a saída y(t) do sistema quando a entrada for igual ao sinal $x(t) = M_3 \exp(-M_2 t) \cos(2\pi M_2 t) u(t)$. Considere u(t) como a função degrau
- c) Gere o gráfico de Y(s) com plot3d([sigma, omega, cabs(Y(sigma + %i*omega))], [sigma,-C,C], [omega,-K,K]); escolhendo as constantes C e K de acordo com os polos e zeros encontrados na letra \mathbf{a} .