Calculus III: Midterm I

February 21, 2013

Name: Anand Deopurkar (Solutions)

Circle one:

Section 6 (11:40 12:55)

Section 7 (2:40-3:55)

- Calculators or other computing devices are not allowed.
- Write your answers in the space provided. Use the backside if you need more space.
- You must show your work unless explicitly asked otherwise.
- Partial credit will be given for incomplete solutions.
- The exam contains 5 problems.
- Good luck!

Question	Points	Score
1	10	
2	10	
3	10)	
4	10	
5	10	
Total:	50	

False

- 1. Write true or false. No justification is needed.
 - (a) (2 points) If two lines in \mathbb{R}^3 do not intersect, they must be parallel.

True

They can be skew.

- (b) (2 points) The surface described by $x^2 + 2y^2 = z$ is a hyperbolic paraboloid. The traces when Z = k (constant)

 True False are ellipses.
- (c) (2 points) The two planes defined by x + 2y + z = 0 and x + y + z = 0 are perpendicular.

 The normal vectors are $\langle 1, 2, 1 \rangle$ and $\langle 1, 1, 1 \rangle$, whose

 dot product is not zero.
- (d) (2 points) If $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$ then we must have $\overrightarrow{b} = \overrightarrow{c}$. $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$ means $\overrightarrow{a} \cdot (\overrightarrow{b} \overrightarrow{c}) = 0$, that is $\overrightarrow{a} \quad \text{and} \quad \overrightarrow{b} \overrightarrow{c}$ are perpendicular. $\overrightarrow{b} \overrightarrow{c}$ need not be zero.
- (e) (2 points) $e^{3-4\pi i}$ is a real number.

 Argument of $e^{3-4\pi i}$ is $4\pi \pi$,

 which corresponds to the (positive)

 real direction.

- 2. Find the angle between
 - (a) (3 points) $\langle 1, 0, 1 \rangle \times \langle 0, 1, 1 \rangle$ and $\langle 1, -1, 0 \rangle$.

$$\langle 1,0,1\rangle \times \langle 0,1,1\rangle = \begin{vmatrix} i & j & k \\ i & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -i-j+k$$

$$\langle -1, -1, 1 \rangle \cdot \langle 1, -1, 0 \rangle = 0$$

So the angle is $\frac{\pi}{2}$.

(b) (3 points) $\mathbf{i} + \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$.

$$\cos\theta = \frac{(i+j)\cdot(j+k)}{|j+1|(j+k)|} = \frac{1}{\sqrt{2}\cdot\sqrt{2}} = \frac{1}{2} \Rightarrow \theta = \frac{11}{3}$$

(c) (4 points) The lines through the origin defined by $\frac{x}{2} = y = z$ and x = y, z = 0.

Writing the lines in parametric form:

$$\frac{2}{2} = y = z = t$$
 = $\begin{cases} 2 = 2t \\ y = t \\ z = t \end{cases}$ Direction $\begin{cases} 2 = 2t \\ z = t \end{cases}$ vector = $\langle 2, 1, 1 \rangle$

$$x=y=t$$
 $z=0$
 \Rightarrow
 $x=t$
 $y=t$
 $z=0$
 \Rightarrow
Direction
 \Rightarrow
Vector = $\langle 1,1,0 \rangle$

So the angle is given by

$$\cos\theta = \frac{\langle 2,1,1\rangle \cdot \langle 1,1,0\rangle}{|\langle 2,1,1\rangle| |\langle 1,1,0\rangle|} = \frac{3}{\sqrt{6}\sqrt{2}} = \frac{\sqrt{3}}{2}$$

that is
$$\Theta = \frac{\pi}{6}$$

3. Consider the following three points in \mathbb{R}^3

$$P = (1, 1, 1), \quad Q = (1, 3, 1) \quad R = (2, 1, 0).$$

(a) (5 points) Find the area of the triangle PQR.

Area of
$$\triangle PQR = \frac{1}{2}$$
 Area of parallelogram spanned by \overline{PQ} and \overline{PR}

$$= \frac{1}{2} | \overline{PQ} \times \overline{PR}|$$

$$\overline{PQ} = (1,3,1) - (1,1,1) = (0,2,0) = 2j$$
 $\overline{PR} = (2,1,0) - (1,1,1) = (1,0,-1) = i-K$

$$\overline{PQ} \times \overline{PR} = 2j \times (i-k) = 2j \times i - 2j \times k = -2k - 2i$$

(b) (5 points) Does the plane passing through P, Q and R also pass through the origin? Show your work.

We can take PQ x PR as the normal vector to this plane. From our previous work,

$$\overline{PQ} \times \overline{PR} = -2i - 2K = \langle -2, 0, -2 \rangle$$

So the plane through P,Q,R = Plane through (1,1,1)

perpendicular to <-2,0,-2>

For (x,y,z) to be on this plane,

$$(2x,y,z) - (1,1,1) \cdot (-2,0,-2) = 0$$

$$\Rightarrow \langle (a-1), (y-1), (z-1) \rangle \cdot \langle -2, 0, -2 \rangle = 0$$

$$=$$
 2(x-1)+2(2-1)=0 that is

2+7=2. The origin does not satisfy this equation. So the plane does not pass through the origin.

4. (a) (4 points) Find all the complex numbers satisfying

$$x^2 - x + 1 = 0.$$

Using the quadratic formula,
$$x = \frac{1 \pm \sqrt{1-4}}{2} = \frac{1 \pm \sqrt{-3}}{2}$$

$$= \frac{1}{2} \pm \frac{\sqrt{3}\sqrt{-1}}{2}$$

$$= \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

So the two solutions are
$$\frac{1}{2} + \frac{13}{2}i$$
 and $\frac{1}{2} - \frac{13}{2}i$.

(b) (6 points) Pick one x that you found in the previous part and calculate x^{66} .

We better write
$$\alpha$$
 in polar form.
Let us take $\alpha = \pm + 5i$.

Then
$$|x| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$

arg
$$X = \theta$$
 is such that $\cos \theta = \frac{1}{2}$, $\sin \theta = \frac{1}{2}$

$$= \frac{\pi}{3}.$$

That is
$$x = e^{i\pi/3} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$$

So $x^{66} = e^{i\pi} \times 66 = 22\pi i$
 $= \cos(22\pi) + i \sin(22\pi)$
 $= \cos(0) + i \sin(0)$
 $= 1$

5. (a) (3 points) Write parametric equations for the line L joining (0,1,2) and (2,1,0).

Direction Vector
$$V = (2,1,0) - (0,1,2)$$

 $= (2,0,-2)$.
Line: $(0,1,2) + t (2,0,-2)$ or
 $X = 2t$
 $Y = 1$
 $Z = 2-2t$.

(b) (3 points) Let P be the plane passing through the point (1,1,1) and perpendicular to the vector $\mathbf{i} + \mathbf{k}$. Write an equation for P.

For
$$\langle x,y,z \rangle$$
 to be on the plane,
 $((x,y,z) - (1,1,1)) \cdot (i+j) = 0$
=) $(x-1,y-1,z-1) \cdot (1,1,0) = 0$
=) $x-1+y-1=0$
=) $x+y=2$

(c) (4 points) Use your equations from the previous parts to find the point of intersection of L and P.

The point of intersection must satisfy the equations for L and the equations for P. Substituting π_1, y_1, z_2 from L: 2t + 1 = 2 \Rightarrow $t = \frac{1}{2}$

$$\Rightarrow (x,y,z) = (1,1,1).$$

So the point of intersection is (1,1,1).