COS/MOS INTEGRATED CIRCUIT

4013B

DUAL 'D' - TYPE FLIP-FLOP

- SET-RESET CAPABILITY
- STATIC FLIP-FLOP OPERATION RETAINS STATE INDEFINITELY WITH CLOCK LEVEL EITHER "HIGH" OR "LOW"
- MEDIUM-SPEED OPERATION 16 MHz (TYP.) CLOCK TOGGLE RATE AT 10V
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100 nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TENTATIVE STANDARD No. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

The HCC 4013B (extended temperature range) and HCF 4013B (intermediate temperature range) are monolithic integrated circuits, available in 14-lead dual in-line plastic or ceramic package, ceramic flat package and plastic micropackage.

The **HCC/HCF** 4013B consists of two identical, independent data-type flip-flops. Each flip-flop has independent data, set, reset, and clock inputs and Q and \overline{Q} outputs. These devices can be used for shift register applications, and, by connecting \overline{Q} output to the data input, for counter and toggle applications. The logic level present at the D input is transferred to the Q output during the positive-going transition of the clock pulse. Setting or resetting is independent of the clock and is accomplished by a high level on the set or reset line, respectively.

ABSOLUTE MAXIMUM RATINGS

V _{DD} *	Supply voltage: HCC types	-0.5 to 20 V
00	HCF types	-0.5 to 18 V
V_i	Input voltage	-0.5 to V _{DD} +0.5 V
$\mathbf{I}_{\mathbf{I}}$	DC input current (any one input)	± 10 mA
P _{tot}	Total power dissipation (per package)	200 mW
	Dissipation per output transistor	
	for Too = full package-temperature range	100 mW
Top	Operating temperature: HCC types	-55 to 125 °C
	HCF types	-40 to 85 °C
T_{stg}	Storage temperature	−65 to 150 °C

^{*} All voltage values are referred to V_{SS} pin voltage

ORDERING NUMBERS:

HCC 4013 BD for dual in-line ceramic package
HCC 4013 BF for dual in-line ceramic package, frit seal
HCC 4013 BK for ceramic flat package
HCF 4013 BE for dual in-line plastic package
HCF 4013 BF for dual in-line ceramic package, frit seal

HCF 4013 BM for plastic micropackage

61

HCC/HCF 4013B

MECHANICAL DATA (dimensions in mm)

Dual in-line ceramic package for HCC 4013 BD

Dual in-line ceramic package for HCC/HCF 4013 BF

Dual in-line plastic package for HCF 4013 BE

Ceramic flat package for

Plastic micropackage for HCF 4013 BM

CONNECTION DIAGRAM

RECOMMENDED OPERATING CONDITIONS

IIL CO	WINIERDED OF ETHICK	
V _{DD}	Supply voltage: HCC types HCF types	3 to 18 V 3 to 15 V
V_{l} T_{op}	Input voltage Operating temperature: HCC types HCF types	0 to V _{DD} V -55 to 125 °C -40 to 85 °C

LOGIC DIAGRAM AND TRUTH TABLE

(one of two identical flip-flops)

						1
CL*	D	R	S	α	ā	
	0	0	0	0	1	
/	1	0	0	1	0	
$\overline{}$	x	0	0	a	ā	CHANGE
×	×	1	0	0	1	
×	×	0	1	1	0	
×	×	1	1	1	1	
LOGIC	o=LC 1=Hi	GH N	××××××××××××××××××××××××××××××××××××××	EVEL ON'T F1/FF SSIGN	CHAN CARE 2 TER IEMEN	IGE RMINAL IT

TEST CIRCUITS

Quiescent device current

Noise immunity

Input leakage current

63

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

				Test condi	tions	ions Values								
Parameter		V _i (V)	v _o li _o	10		T _{Low} *		25° C			T _{High} *		Unit	
			(v)	(μ A)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.		
11	Quiescent		0/ 5			5		1		0.02	1_		30	
· L.	current	нсс	0/10			10		2		0.02	2		60	
		types	0/15			15		4		0.02	4		120	
			0/20			20		20		0.04	20		600	μΑ
			0/ 5			5		4		0.02	4		30	
		HCF	0/10			10		8		0.02	8		60	
	'	types	0/15			15		16		0.02	16		120	
V _{OH}	Output high		0/ 5		< 1	5	4.95		4.95			4.95		
011	voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
VOL	Output low		5/0		< 1	5		0.05			0.05		0.05	
OL	voltage	,	10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
VIH	Input high			0.5/4.5	< 1	5	3.5		3.5			3.5		
,	voltage	-		1/9	< 1	10	7		7			7		\ \
				1.5/13.5	< 1	15	11		11			11		
VIL	Input low	_		4.5/0.5	< 1	5		1.5			1.5		1.5	
	voltage			9/1	< 1	10		3	•		3		3	V
				13.5/1.5	< 1	15		4	f		4		4	1
Тон	Output		0/ 5	2.5		5	-2		-1.6	-3.2		-1.15		
	drive	нсс	0/ 5	4.6		5	-0.64		-0.51	-1		-0.36		}
	current	types	0/10	9.5		10	-1.6		-1.3	-2.6		-0.9		
			0/15	13.5		15	-4.2		-3.4	-6.8		-2.4]
			0/ 5	2.5		5	-1.53		-1.36	-3.2		-1.1		mΑ
		HCF	0/ 5	4.6		5	-0.52		-0.44	-1		-0.36		
		types	0/10	9.5		10	-1.3		-1.1	-2.6		-0.9	l	1
			0/15	13.5		15	-3.6		-3.0	-6.8		-2.4	Ĭ	L
loL	Output		0/ 5	0.4		5	0.64		0.51	1		0.36]
-	sink current	HCC types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	current	types	0/15	1.5		15	4.2		3.4	6.8	İ	2.4	<u> </u>	mA.
			0/ 5	0.4		5	0.52		0.44	1		0.36	ļ	J '''^
		HCF types	0/10	0.5		10	1.3		1,1	2.6		0.9	↓	1
İ		.,,,,,	0/15	1.5		15	3.6		3.0	6.8	L	2.4		<u> </u>
אן יאון	Input leakage	HCC types	0/18	Anvina	nput	18		±0.1		± 10 ⁻⁵	±0.1		± 1	μΑ
	current	HCF types	0/15	Any input		15		±0.3		± 10 ⁻⁵	±0.3		± 1	ļ <u>.</u>
Cı	Input capacit	ance	ļ	.Any ir	put		L		<u> </u>	5	7.5	L		pF

 T_{Low} = - 55°C for HCC device: -40°C for HCF device. T_{High} = +125°C for HCC device: +85°C for HCF device.

¹V min, with V_{DD} = 5V 2V min, with V_{DD} = 10V 2.5V min, with V_{DD} = 15V The Noise Margin for both "1" and "0" level is:

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50$ pF, $R_{L} = 200$ k Ω , typical temperature coefficient for all $V_{DD} = 0.3\%$ /°C values, all input rise and fall time = 20 ns)

		Test conditions			Values		
Parameter		•	V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLH} ,	Propagation delay time		5		150	300	
^t PHL	(clock to Q or Q outputs)		10		65	130	ns
			15		45	90	
t _{PLH}	Propagation delay time		5		150	300	
	(Set to Q or Reset to Q)		10		65	130	ns
			15		45	90	
t _{PHL}	Propagation delay time		5		200	400	ns
	(Set to Q or Reset to Q)		10		85	170	
			15		60	120	
t _{THL} ,	Transition time		5		100	200	ns
			10		50	100	
			15		40	80	
fcL*	Maximum clock input frequency		5	3.5	7		MHz
			10	8	16		
			15	12	24		
tw	Clock pulse width		5	140	70		
			10	60	30		ns
			15	40	20		
t _r ,t _f **	Clock input rise or fall time		5			15	
			10		_	4	μς
			15			1	
tw	Set or reset pulse width		5	180	90		1
			10	80	40		ns
			15	50	25		
t _{setup}	Data setup time		5	40	20]
	1		10	20	10		ns
			15	15	7		

^{*} Input t_r , $t_f = 5$ ns.

^{**} If more than one unit is cascaded in a parallel clocked operation, t_r should be made less than or equal to the sum of the fixed propagation delay time at 15 pF and the transition time of the output driving stage for the estimated capacitive load.

Minimum output low (sink) current characteristics

Typical output high (source) current characteristics

Minimum output high (source) current character-

Typical propagation delay time vs. load capacitance (CLOCK or SET to Q

Typical propagation delay time vs. load capacitance (SET to $\overline{\Omega}$ or RESET to Ω)

Typical maximum clock frequency vs. supply voltage

Typical power dissipation device vs. frequency

