Definition 1.1 Dynamic weakly verifiable puzzle

A dynamic weakly verifiable puzzle (DWVP) is defined by a protocol between probabilistic algorithms $P(\pi)$ and $S(\rho)$. The algorithm P, called a problem poser, takes as input chosen uniformly at random bitstring π . The problem solver S takes as input a uniform random bitstring ρ . As the result of the protocols execution between P and S, P produces circuits Γ_V , Γ_H and a puzzle $x \in \{0,1\}^*$, S produces no output. The circuit Γ_V takes as input $q \in Q$ and an answer $y \in \{0,1\}^*$. If $\Gamma_V(q,y) = 1$ then y is a correct solution of a puzzle x for q. The circuit Γ_H on input q provides a hint such that $\Gamma_V(q,\Gamma_H(q))=1$. The solver S has oracle access to Γ_V and Γ_H . The calls of S to Γ_V are verification queries and to Γ_H are hint queries. The solver S can ask at most h hint queries, v verification queries, and successfully solves DWVP if and only if it makes a verification query (q, y) such that $\Gamma_V(q, y) = 1$, when it has not previously asked for a hint query on this q.

Definition 1.2 k-wise direct product of dynamic weakly verifiable puzzles

Let $g:\{0,1\}^k \to \{0,1\}$ be a monotone function and $P^{(1)}$ a problem poser used to generate an instance of DWVP. A k-wise direct product of dynamic weakly verifiable puzzles is defined by a protocol between a probabilistic algorithms $P^{(g)}(\pi^{(k)})$ and $S(\rho)$, where $\pi^{(k)} := (\pi_1, \dots, \pi_k) \in$ $\{0,1\}^{kl}$ and ρ are chosen uniformly at random. The protocol execution $\langle P^{(g)}(\pi^{(k)}), S(\rho^{(k)}) \rangle$ generates sequentially k independent instances of dynamic weakly verifiable puzzles, where the i-th instance $(x_i, \Gamma_V^i, \Gamma_H^i)$ is produced by $S(\rho)$ interacting with $P^{(1)}(\pi_i)$. Finally, $P^{(g)}$ outputs a verification circuit

$$\Gamma_V^{(g)}(q, y_1, \dots, y_k) := g(\Gamma_V^1(q, y_1), \dots, \Gamma_V^k(q, y_k)),$$

a hint circuit

$$\Gamma_H^{(k)}(q) := (\Gamma_H^1(q), \dots, \Gamma_H^k(q)),$$

and a puzzle $x^{(k)} := (x_1, \dots, x_k)$.

The solver S, has oracle access to $\Gamma_V^{(g)}, \Gamma_H^{(k)}$, and can ask at most v verification queries to $\Gamma_V^{(g)}$, h hint queries to $\Gamma_H^{(k)}$, and successfully solves the puzzle $x^{(k)}$ if and only if it asks a verification query $(q, y^{(k)}) := (q, y_1, \dots, y_k)$ such that $\Gamma_V^{(g)}(q, y^{(k)}) = 1$, and has not previously asked for a hint query on this q.

TODO: We abuse notation slightly, by denoting (in the execution of the protocol between) the input of C as $C(\rho)$, in the second phase the C gets as input $C(x^{(k)}, \rho)$

Experiment $A^{P^{(k)},C^{(\cdot,\cdot)}}(\pi^{(k)},\rho)$

Solving a k-wise direct product of DWVP

Oracle: A problem poser $P^{(k)}$, a solver circuit $C^{(\cdot,\cdot)}$.

Input: Bitstrings $\pi^{(k)}$, ρ .

$$\begin{array}{l} (x^{(k)},\Gamma_{V}^{(g)},\Gamma_{H}^{(k)}) := \langle P^{(k)}(\pi^{(k)}),C(\rho)\rangle \\ \text{Run } C^{\Gamma_{V}^{(g)},\Gamma_{H}^{(k)}}(x^{(k)},\rho) \end{array}$$

Let $Q_{Solved} := \{q : C^{\Gamma_V^{(g)}, \Gamma_H^{(k)}} \text{ asked a verification query } (q, y^{(k)}) \text{ and } \Gamma_V^{(g)}(q, y^{(k)}) = 1\}$

Let $Q_{Hint} := \{q : C^{\Gamma_V^{(g)}, \Gamma_H^{(k)}} \text{ asked a hint query on q} \}$

If $\exists q \in Q_{solved} : q \notin Q_{Hint}$ then

return 1

else

Theorem 1.3 Security amplification for a dynamic weakly verifiable puzzle.

For a fixed problem poser $P^{(1)}$ there exists a probabilistic algorithm $Gen(C, g, \varepsilon, \delta, n, v, h)$ which takes as input a solver circuit C for a k-wise direct product of DWVP, a monotone function g, parameters ε, δ, n , the number of verification v, and hint h queries asked by C, and outputs a circuit D such that following holds:

If C is such that

$$\Pr_{\pi^{(k)}, \rho}[A^{P^{(g)}, C}(\pi^{(k)}, \rho) = 1] \ge \frac{(h+v)}{8} \left(\Pr_{\mu \leftarrow \mu_{\delta}^{k}}[g(\mu) = 1] + \varepsilon \right)$$

then D satisfies almost surely

$$\Pr_{\pi,\rho}[A^{P^{(1)},D}(\pi,\rho)=1] \ge (\delta + \frac{\varepsilon}{6k})$$

Additionally, D and Gen require only oracle access to g and C. Furthermore, D asks at most h hint queries, v verification queries and $Size(D) \leq Size(C) \cdot \Theta(\frac{6k}{\varepsilon})$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

Experiment $E^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi^{(k)},\rho)$

Oracle: A problem poser $P^{(g)}$ for a k-wise direct product.

A solver circuit $C^{(\cdot,\cdot)}$ for a k-wise direct product.

A function $hash: Q \leftarrow \{0, \dots, 2(h+v) - 1\}.$

Input: Random bitstrings: $\pi^{(k)}$, ρ .

$$(x^{(k)}, \Gamma_V^{(g)}, \Gamma_H^{(k)}) := \langle P^{(g)}(\pi^{(k)}), C(\rho) \rangle$$

Run $C^{\Gamma_V^{(g)}, \Gamma_H^{(k)}}(x^{(k)}, \rho)$

Let $(q_j, y_j^{(k)})$ be the first successful verification query if $C^{\Gamma_V^{(g)}, \Gamma_H^{(k)}}$ succeeds or an arbitrary verification query when it fails.

If
$$(\forall i < j : q_i \notin P_{hash}) \land q_j \in P_{hash} \land \Gamma_V^{(g)}(q_j, y_j^{(k)}) = 1$$

return 1

else

return 0

Algorithm: FindHash

Oracle: A solver circuit $C^{(\cdot,\cdot)}$ for a k-wise direct product of DWVP.

A problem poser $P^{(g)}$ for a k-wise direct product.

Input: A set \mathcal{H} .

For
$$i = 1$$
 to $32(h+v)^2/\gamma^2$
 $hash \stackrel{\$}{\leftarrow} \mathcal{H}$
 $count := 0$
For $j := 1$ to $32(h+v)^2/\gamma^2$
 $\pi^{(k)} \stackrel{\$}{\leftarrow} \{0,1\}^{kl}$

```
ho \overset{\$}{\leftarrow} \{0,1\}^*
If E^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi^{(k)},
ho) = 1 then
count := count + 1
If \frac{\gamma^2}{32(h+v)^2}count \geq \frac{\gamma}{6(h+v)}
return hash
```

```
Algorithm Gen(C, g, \varepsilon, \delta, n, v, h, hash)
Oracle: \widetilde{C}, g
Input: \varepsilon, \delta, n
Output: A circuit D
If the number of puzzles to solve equals one then
For i := 1 to \frac{6k}{\varepsilon} \log(n)
\pi^* \leftarrow \{0, 1\}^l
          \widetilde{S}_{\pi^*,0} := EvaluateSurplus(\pi^*,0)
         \widetilde{S}_{\pi^*,1} := EvaluateSurplus(\pi^*,1)
         If \widetilde{\widetilde{S}}_{\pi^*,0} \ge (1 - \frac{3}{4k})\varepsilon or \widetilde{S}_{\pi^*,1} \ge (1 - \frac{3}{4k})\varepsilon
                   \widetilde{C}' := \widetilde{C} with the first input fixed on \pi^*
                   return Gen(\widetilde{C}', g, \varepsilon, \delta, n)
// all estimates are lower than (1-\frac{3}{4k})\varepsilon
return D^{\tilde{C}}
EvaluateSurplus(\pi^*, b)
         For i := 1 to N_k
                   (\pi_2,\ldots,\pi_k) \stackrel{\$}{\leftarrow} \{0,1\}^{(k-1)l}
                  (c_1, \dots, c_k) := EvalutePuzzles(\pi^*, \pi_2, \dots, \pi_k)
\widetilde{S}_{\pi^*, b}^i := g(b, c_2, \dots, c_k) - \Pr_{(u_2, \dots, u_k)}[g(b, u_2, \dots, u_k) = 1]
         return \frac{1}{N_k} \sum_{i=1}^{N_k} \widetilde{S}_{\pi^*,b}^i
\begin{aligned} \textbf{EvalutePuzzles}(\pi^{(k)}) \\ (x^{(k)}, \Gamma_V^{(g)}, \Gamma_H^{(k)}) &:= P^{(g)}(\pi^{(k)}) \\ \textbf{For } i &:= 1 \text{ to } k \end{aligned}
                  (x_i, \Gamma_V^i, \Gamma_H^i) := P^{(1)}(\pi_i)
         (q, y^k) := \widetilde{C}^{\Gamma_V^{(g)}, \Gamma_H^{(k)}}(x_1, x_2, \dots, x_k)
         For i := 1 to k
                   c_i := \Gamma_v^i(q, y_i)
         return (c_1,\ldots,c_k)
```

```
Circuit D^{\widetilde{C},P^{(1)}}
```

Oracle: A circuit \widetilde{C} with the first n puzzles fixed, $P^{(1)}$ **Input:** A puzzle x^* , a random bitstring $r \in \{0,1\}^*$

```
For i:=1 to \frac{6k}{\varepsilon}\log(\frac{6k}{\varepsilon})

\pi^{(k)} \leftarrow \{0,1\}^{(k-n-1)l} //read bits from r

(c_1,\ldots,c_{k-n-1}):=EvaluatePuzzles(\pi^{(k-n-1)})

If g(1,c_2,\ldots,c_k)=1 \wedge g(0,c_2,\ldots,c_k)=0

For i:=1 to k-n-1

(x_i,\Gamma_V^i,\Gamma_H^i):=P^{(1)}(\pi_i)

(q,y_1,\ldots,y_{k-n-1}):=\widetilde{C}(x^*,x_2,\ldots,x_{k-n-1})

return y_1
```