Хаусхолдеров метод

Алгоритам за наоѓање корени на функции

Дарио Ѓорѓевски¹ gjorgjevski.dario@students.finki.ukim.mk

¹ Факултет за компјутерски науки и инженерство Универзитет Св. Кирил и Методиј, Скопје

31 јануари 2017 год.

Содржина

- Вовед и опис на методот
- Пример на употреба
- 3 Формално изведување

Мотивација

Апроксимација на (1/f)(x) со геометриски ред

Нека $f(x): \mathbb{R} \to \mathbb{R}$ е непрекинато диференцијабилна функција со корен со кратност 1 во x=a.

Со други зборови, f(a) = 0 и $f'(a) \neq 0$.

Ова значи дека (1/f)(x) има пол со кратност 1 во x=a, и во околината на a се однесува како 1/(x-a).

Приближно добиваме

$$\frac{1}{f(x)} = \frac{1}{f(x) - f(a)} = \frac{x - a}{f(x) - f(a)} \frac{-1}{a(1 - x/a)}$$

$$\approx \frac{-1}{af'(a)} \sum_{k=0}^{\infty} \left(\frac{x}{a}\right)^k.$$
(1)

Мотивација

Наоѓање на а

Коефициентот пред x^d во (1) е $Ca^{-d} \Rightarrow$ вредноста на a можеме да ја добиеме така што коефициентот пред x^{d-1} ќе го поделиме со коефициентот пред x^d .

Клучна идеја

Геометрискиот ред од (1) дава апроксимација на Тајлоровата експанзија на (1/f)(x) во околината на a. Ова ни овозможува да го апроксимираме a со делење на соодветните коефициенти во Тајлоровата експанзија на (1/f)(b+x):

$$a \approx b + \frac{(1/f)^{(d-1)}(b)}{(d-1)!} \frac{d!}{(1/f)^{(d)}(b)} = b + d \frac{(1/f)^{(d-1)}(b)}{(1/f)^{(d)}(b)}.$$

Опис на Хаусхолдеровиот метод

Дефиниција (Хаусхолдеров метод од ред d)

Нека е дадена непрекинато диференција
билна функција $f(x)\colon \mathbb{R} \to \mathbb{R}.$ За наоѓање на корен на f, вршиме низа итерации

$$x_{n+1} = x_n + d \frac{(1/f)^{(d-1)}(x_n)}{(1/f)^{(d)}(x_n)},$$
(1)

почнувајќи од претпоставка x_0 .

Доколку f е (d+1) пат непрекинато диференцијабилна и a е корен со кратност 1, тогаш

$$|x_{n+1} - a| \le K|x_n - a|^{d+1}$$
, за некое $K > 0$.

Врска со други методи

Хаусхолдеровиот метод е генерален; други методи се негови специјални случаи.

• Кога d=1 го добиваме Њутн-Рафсоновиот метод:

$$x_{n+1} = x_n + \frac{(1/f)(x_n)}{(1/f)'(x_n)}$$

$$= x_n + \frac{1}{f(x_n)} \left(\frac{-f'(x_n)}{f(x_n)^2}\right)^{-1}$$

$$= x_n - \frac{f(x_n)}{f'(x_n)}.$$

• Кога d=2 го добиваме Халеевиот метод.

Содржина

- Вовед и опис на методот
- Пример на употреба
- ③ Формално изведување

Решавање на $y^3 - 2y - 5 = 0$

Употреба на Хаусхолдеровиот метод

Да претпоставиме дека сакаме да најдеме нула на равенката $y^3-2y-5=0$. Графички можеме да забележиме дека една нула се наоѓа во околината на y=2. Оттука, земајки $y\coloneqq x+2$, равенката станува

$$0 = f(x) = -1 + 10x + 6x^2 + x^3. (2)$$

Следен чекор е наоѓање на Тајлорова експанзија на (1/f)(x) околу 0, каде што f(x) е дадена со (2).

График на $y^3 - 2y - 5$

Тајлорова експанзија на (1/f)(x)

Лесно е да се пресмета дека ако $f(x) = -1 + 10x + 6x^2 + x^3$, тогаш Тајлоровата експанзија на (1/f)(x) околу 0 е

$$(1/f)(x) = -1 - 10x - 106x^{2} - 1121x^{3} - 11856x^{4}$$
$$-125392x^{5} - 1326177x^{6} - 14025978x^{7} - 148342234x^{8}$$
$$-1568904385x^{9} - 16593123232x^{10} + \mathcal{O}(x^{11}).$$

Примената на Хаусхолдеровиот метод од различен ред во x=0 се сведува на делење соседни коефициенти во Тајлоровата експанзија.

Вредности на x_1 за различни редови на методот

\overline{d}	x_1
1	0,100 000 000 000 000 000 000 000 000 00
2	0,094339622641509433962264150943396
3	0,094558429973238180196253345227476
4	0,094551282051282051282051282051282
5	0,094551486538216154140615031261963
6	0,094551481438752142436492263099119
7	0,094551481543746895938379484125813
8	0,094551481542336756233561913325371
9	0,094551481542324837086869382419375
10	0,094551481542326678478801765822985

Експлицитни формули за x_{n+1} за пониски редови

Доколку наоѓаме изводи на f(x), можеме да видиме дека

$$f'(x) = 10 + 12x + 3x^{2}$$

$$f''(x) = 12 + 6x$$

$$f'''(x) = 6.$$

Од друга страна, може да се изведат експлицитни формули за x_{n+1} за пониски редови:

- Kora d = 1, $x_{n+1} = x_n f/f'$.
- Kora d = 2, $x_{n+1} = x_n + (-2ff')/(2f'^2 ff'')$.
- Kora d = 3, $x_{n+1} = x_n \frac{6ff'^2 3f^2f''}{6f'^3 6ff'f'' + f^2f'''}$.

Вредности на x_2, x_3, x_4, x_5, x_6 за d = 1

x_n	Вредност
x_1	0,1
x_2	0,09456812110419
x_3	0,09455148169819930297
x_4	0,09455148154232659149606485
x_5	0,09455148154232659148238654057931
x_6	0,09455148154232659148238654057931

Вредности на x_2, x_3, x_4, x_5 за d = 2

x_n	Вредност
x_1	0,09433962264151
x_2	0,09455148154016421472
x_3	0,09455148154232659148238654
x_4	0,0945514815423265914823865405793
x_5	0,0945514815423265914823865405793

Вредности на x_2, x_3, x_4 за d = 3

x_n	Вредност
x_1	0,09455842997324
x_2	0,094551481542326591482567
x_3	0,09455148154232659148238654057931
x_4	0,09455148154232659148238654057931

Содржина

- Вовед и опис на методот
- Пример на употреба
- Оправот предостава предостава

Падеева апроксимација

Дефиниција (Падеева апроксимација)

За дадена функција f и два цели броја $m \geq 0$ и $n \geq 1$, $\Pi a dee ba$ апроксимација од ред [m/n] е рационалната функција

$$R(x) = \frac{\sum_{i=0}^{m} a_i x^i}{1 + \sum_{j=1}^{n} b_j x^j},$$

која со f "се согласува" до највисок можен ред, односно $f^{(k)}(0)=R^{(k)}(0)$ за сите $0\leq k\leq m+n$.

Bottom line: апроксимацијата може да се најде преку решавање систем равенки добиен од Тајлоровата експанзија на f околу 0.

Дефинирање на итерацијата

За да го изведеме Хаусхолдеровиот метод од ред d, ќе започнеме со Падеева апроксимација на f(x+h) од ред [1/(d-1)]. Таа има облик

$$f(x+h) = \frac{a_0 + h}{b_0 + b_1 h + \dots + b_{d-1} h^{d-1}} + \mathcal{O}(h^{d+1}).$$
 (3)

Имено, знаеме дека $b_d=0$. Итерацијата на Хаусхолдеровиот метод се добива преку наоѓање на нулата во $h=-a_0$.

Наоѓање на Падеевата апроксимација

Најлесен начин за наоѓање на потребната Падеева апроксимација е преку Тајлорова експанзија на (1/f)(x+h) околу 0:

$$(1/f)(x+h) = (1/f)(x) + (1/f)'(x)h + \dots + (1/f)^{(d-1)}(x)\frac{h^{d-1}}{(d-1)!} + (1/f)^{(d)}(x)\frac{h^d}{d!}.$$
(4)

Можеме да воочиме дека (4) треба да биде еднакво на реципрочната вредност на (3).

Наоѓање на нулата во $h = -a_0$

Користејќи ги својствата на Падеевата апроксимација, добиваме

$$0 = b_d = a_0(1/f)^{(d)}(x)\frac{1}{d!} + (1/f)^{(d-1)}(x)\frac{1}{(d-1)!}.$$

Оттука веднаш се добива

$$h = -a_0 = d \frac{(1/f)^{(d-1)}(x)}{(1/f)^{(d)}(x)},$$

што ја дава итерацијата во Хаусхолдеровиот метод.

КРАЈ Прашања?