Работа с векторами и матрицами в NumPy

Эти задания помогают студенту самостоятельно разобраться с библиотекой NumPy. Задания не проверяются.

Для импорта модуля numpy необходимо выполнить следующую
строку (модуль numpy импортируется с псевдонимом np, через
который в дальнейшем будет обращение к модулю):

		,

Генерация случайной матрицы

Сгенерируйте матрицу, состоящую из 1000 строк и 50 столбцов, элементы которой являются случайными из нормального распределения N(1,100).

Функция для генерации чисел из нормального распределения: np.random.normal

Параметры:

- loc: среднее нормального распределения (в нашем случае 1)
- scale: стандартное отклонение нормального распределения (в нашем случае 10)
- size: размер матрицы (в нашем случае (1000, 50))

Код для самопроверки

//

Нормировка матрицы

Произведите нормировку матрицы из предыдущего задания: вычтите из каждого столбца его среднее значение, а затем поделите на его стандартное отклонение.

Функция для вычисления среднего: <u>np.mean</u>

Функция для вычисления стандартного отклонения: <u>np.std</u>

Первый параметр — матрица, для которой производятся вычисления. Также полезным будет параметр axis, который указывает, по какому измерению вычисляются среднее и стандартное отклонение (если axis=0, то по столбцам, если axis=1, то по строкам; если его не указывать, то данные величины будут вычислены по всей матрице).

Код для самопроверки

Операции над элементами матрицы

Выведите для заданной матрицы номера строк, сумма элементов в которых превосходит 10.

Функция для подсчета суммы: <u>np.sum</u>

Аргументы аналогичны функциям <u>np.mean</u> и <u>np.std</u>.

К матрицам можно применять логические операции, которые будут применяться поэлементно. Соответственно, результатом такой операции будет матрица такого же размера, в ячейках которой будет записано либо True, либо False. Индексы элементов со значением True можно получить с помощью функции <u>np.nonzero</u>.

Заданная матрица

Код для самопроверки
Объединение матриц
Сгенерируйте две единичные матрицы (т.е. с единицами на диагонали) размера 3x3. Соедините две матрицы в одну размера 6x3.
Функция для генерации единичной матрицы: <u>np.eye</u>
Аргумент: число строк (или, что эквивалентно, столбцов).
Функция для вертикальной стыковки матриц: <u>np.vstack((A, B))</u>
Код для самопроверки