625.661 Statistical Models and Regression

Module 5 Discussion Question

H.M. James Hung

Let y be a continuous random variable, x_1 be a categorical variable that has 3 levels (L1, L2, L3), x_2 be a categorical variable that has 2 levels ("yes" or "no"), x_3 be a continuous variable. Construct a multiple linear regression model such that we can study the effect of x_3 on y and study whether the effect of x_3 on y is equal across all levels of x_1 and x_2 .

For x_1 , select L1 to be the reference level. For x_2 , select "no" to be the reference level.

Define $x_{12} = 1$ if L2 and 0 otherwise. Define $x_{13} = 1$ if L3 and 0 otherwise. Immediately, we have coding in the following table.

	X ₁₂	X ₁₃
L1	0	0
L2	1	0
L3	0	1

Likewise, for x_2 ,

	X ₂
yes	1
no	0

The regression model needed is

$$E(y \mid x_3, x_{12}, x_{13}, x_2) = \beta_0 + \beta_3 x_3 + \beta_{12} x_{12} + \beta_{13} x_{13} + \beta_2 x_2 + \gamma_{312} x_3 x_{12} + \gamma_{313} x_3 x_{13} + \gamma_{212} x_2 x_{12} + \gamma_{213} x_2 x_{13} + \gamma_{32} x_3 x_2 + \lambda_1 x_3 x_{12} x_2 + \lambda_2 x_3 x_{13} x_2$$

That is, the regression model needs to contain two-way interactions (γ 's coefficients) and three-way interactions (λ 's coefficients).