We claim:

- 1. An apparatus for non-contact three-dimensional measurement of bodies consisting of a turntable to receive the body and an optical triangulation sensor with at least one radiation/ source, radiation detector, and an optical system, characterized in that said triangulation sensor (2) As placed above said turntable (1) and can be moved along an axis using a driving mechanism so that radiation from the radiation source hits said body, that said body is located on the turntable (1) in a system of coordinates determined, on the one hand, by at least two parallel lines (g1, g2) or body edges with a known spacing (d) and angles (α, β) of the furntable (1) and, on the other hand, by at least two measuring points at known distances (R1, R2) from the center (M) and known displacement (c) of the triangulation sensor (2) between these measuring points, and that said turntable (1), the driving mechanism and said triangulation sensor (2) are connected to a data processing and control unit.
- 2. The apparatus according to claim 1, characterized in that said radiation source (3) of said triangulation sensor (2) is placed in such a way that the radiation from the radiation source (3) is perpendicular to the surface of said turntable (1).
- 3. The apparatus according to claim 1, characterized in that said triangulation sensor (2) is placed on a hinge or ball-and-socket joint above said turntable (1) and can be moved along an axis using the driving mechanism, and that there is at least one sensor that directly and/or indirectly measures the angle between the radiation (9) and the workpiece.

- 4. The apparatus according to claim 1, characterized in that at least some areas of the surface of a body that produces excessive scattering in the form of multiple reflections of the radiation (9) from said radiation source (3) are fixedly and/or removably covered by a covering body of known thickness and with low-scattering surfaces.
- 5. The apparatus according to claim 1, characterized in that the parallel lines or body edges of a measuring body are straight or annular on said turntable (1).
- 6. The apparatus according to claim 1, characterized in that a measuring body with at least two edges or a measuring body with at least two lines is placed on said turntable (1) when determining a system of coordinates only.
- 7. The apparatus according to claim 1, characterized in that said turntable (1) has at least two end stops for bodies placed at a distance from each other.
- 8. The apparatus according to claim 1, characterized in that at least one magnet is integrated into said turntable (1).
- 9. A method for determining a system of coordinates for measuring points on an apparatus for non-contact three-dimensional measuring of bodies comprising
- a turntable (1) to receive said body,
- an optical triangulation sensor (2) with at least one radiation source (3), radiation detector (4), and an optical system that is placed above said turntable (1) and can be moved

along an axis using a driving mechanism so that the radiation (9) from said radiation source (3) hits said body, and – a data processing and control unit for turntable (1), driving mechanism and triangulation sensor (2), wherein at least two lines (g1, g2) or body edges running in parallel at a known distance (d) are used to determine angles (α, β) of turntable (1) by rotating said lines and subsequently capturing them in the measuring spot of said triangulation sensor (2) in a first and a second position of said triangulation sensor (2) displaced from said first position by the known dislocation c, said angles being used to calculate the distances R1, R2 of said triangulation sensor (2) from the center (M) of said turntable and to further calculate the coordinates x, y of said triangulation sensor (2) relative to the turntable center (M) as coordinates of origin.

- 10. The method according to claim 9, characterized in that said radiation source (3) of said triangulation sensor (2) is placed in such a way that the radiation from the radiation source (3) is perpendicular to the surface of said turntable (1).
- 11. The method according to claims 9 or 10, characterized in that the parallel lines or body edges of a measuring body are arranged straightly or annularly on said turntable (1).
- 12. The method according to any one of claims 9 through 11, characterized in that a measuring body with at least two edges or a measuring body with at least two lines is placed on said turntable (1) when determining a system of coordinates only.