1. Write a pois.prob() function that computes P(X=x), $P(X \neq x)$, P(X < x), $P(X \le x)$, P(X > x), and $P(X \ge x)$. Enable the user to specify the rate parameter λ .

```
pois.prob = function(x, lambda, type = "<="){</pre>
  input -> x (value), lambda (avg rate or mean of events), type
  output -> Probability
  computes: P(X=x), P(X!=x), P(X<x), P(X<=x), P(X>x), or P(X>=x)
  default is P(X<=x)</pre>
  if (type == "="){
    P = dpois(x, lambda)
  if (type == "!="){
   P = 1 - dpois(x, lambda)
  if (type == "<") {
   P = ppois(x-1, lambda)</pre>
  if (type == "<="){
   P = ppois(x, lambda)
  if (type == ">"){
    P = 1 - ppois(x, lambda)
  if (type == ">="){
   P = 1 - ppois(x-1, lambda)
  return(P)
```

2. Write a beta.prob() function that computes P(X = x), $P(X \neq x)$, P(X < x), $P(X \leq x)$, P(X > x), and $P(X \geq x)$ for a beta distribution. Enable the user to specify the shape parameters α and β .

```
beta.prob <- function(x, size, prob, type="<=") {
    # Use dbeta and pbeta to conditionally return the correct probability
}</pre>
```