You may use the following resources: EE/CS/CPE 3760 Final Exam 1. Textbook Winter 2020 2. Personal notes, graded homework assignments 3. Printouts of the course slides Name (hri3 Moreney 4. Calculator 5. Personal laptop or in-lab computer for the following purposes ONLY: a. Viewing course materials on Canvas b. Calculator application (not in browser) c. Online version of the textbook Begin exam at 1:00 PDT d. MIPS references - Wikipedia or U.Idaho End exam by 3:00 PDT Phones/smartphones are not allowed - not even for calculator apps Email questions to the instructor. Use of computers for purposes other than those listed is considered cheating. 1. A 128-byte cache is organized with 2-way set associativity and 2-word blocks. Each word is 4 bytes. Assume the addresses are 32 bits wide. $\frac{|2\mathcal{D} F | \mathcal{P} | |\mathcal{S} \mathcal{C}^{\dagger}|}{2 |\mathcal{S} | \mathcal{S} \mathcal{C}^{\dagger}|} = \frac{|\mathcal{S} \mathcal{C}^{\dagger}|}{2 |\mathcal{S} | \mathcal{C}^{\dagger}|} = \frac{|\mathcal{S} \mathcal{C}^{\dagger}|}{2 |\mathcal{C}^{\dagger}|} = \frac{|\mathcal{S} \mathcal{C}^{\dagger}|}{2 |\mathcal{C}^{\dagger}|} = \frac{|\mathcal{S} \mathcal{C}^{\dagger}|}{2 |\mathcal{C}^{\dagger}|} = \frac{|\mathcal{C}^{\dagger}|}{2 |\mathcal{C}^{\dagger}|} = \frac{|\mathcal{C}^{\dagger$ Determine which parts of the 32-bit address are the tag, index, block and byte offset. Mark each bit in the diagram below as T, I, BL or BY. b. A program accesses the following twelve 32-bit memory addresses (listed in binary). Identify each access as a hit or miss by circling the 'H' or 'M' to the left. Use a LRU block replacement policy. Note: In this problem, the high-order 20 bits of the address are always zero and may be ignored. Tank 12 1564 7

	2-40	TUTV.			100	9 12	. 46	ŧ
H(M) 0000	0000	0000	0000	0000	01.01	1010	0100)
H(M)0000	0000	0000	0000	0000	0010	0011	0010)
H(M)0000	0000	0000	0000	0000	0111	1100	1000)
H (M) 0000	0000	0000	0000	0000	0000	0110	0001	
(H)M 0000	0000	0000	0000	0000	0010	0011	0011	
H(M)0000	0000	0000	0000	0000	0011	0000	0100	
(H) M 0000	0000	0000	0000	0000	0011	0000	0010	
(H) M 0000	0000	0000	0000	0000	0101	1010	0111	
BM 0000	0000	0000	0000	0000	0010	0011	0000	
H (00000	0000	0000	0000	0000	0011	0110	0110	
(H) M 0000	0000	0000	0000	0000	0111	1100	1111	
H M 0000	0000	0000	0000	0000	opoo	0110	0000	
H/M 0000	0000	0000	0000	0000	0101	1010	0101	

		V	Tag
	000	1	01100 (LR4)
	000	0	
	001	1	11111 (LRU)
	001	0	
	010	0	
	010	0	
	011	0	
		0	
	100	1	00001 (LRU)
		J	10110
	101	0	
		0	
***	1	1	01000 (LR4)
	110	0	01000 (-164)
		0	
	111	190	
		0	

2.	a. Assume the minimum time required for each of the five stages of the original MIPS pipeline are as follows:
	IF: 0.275 ns
	RF: 0.250 ms 0.275+0.25+0.45+0.325+0.26 = 1.56
	EX: 0.450 ns
	M: 0.325 ns DF
	M: 0.325 ns WB: 0.260 ns \instruction RF
	What is the minimum clock period for this pipelined system? 0,25 ns
	What is the latency for one instruction (no stalls)? ns What is the throughput once the pipeline is full (no stalls)? instr/cycle = instr/cycle = instr/cycle = instr/ns
	b. You propose to split up the execute stage into two cycles (0.300 ns each), creating a six-stage pipeline, as
	shown below. In the illustration, two instructions are shown in the circular as you are the stores lies.
	up. 2 1/31-w0+10+2-5
	First Instruction (IF) + (RF) + (IX) EX2 + (M) + (WI)
	Second Instruction (IF) + (RF) + (RF) + (MF) + (MF)
	IF: 0.275 ms RF: 0.250 ns EXI: 0.300 ms 0.27 5 † 0.2 5 † 0.3 † 0.3 2 5 † 0.2 6 =
	RF: 0.250 ns
	EX1: 0.300 ns
	EAE: U.30U RS
	M: 0.325 ns RF
	WB: 0.260 ns
	No. 1 1.7145
	What is the minimum clock period for this pipelined system?
	What is the latency for one instruction (no stalls)? 1,71 ns
	What is the throughput once the pipeline is full (no stalls)? instr/cycle = 0.585 instr/ns
	c. With register forwarding in the original five-stage pipeline we found:
	No stall on a register-to-register data hazard (read after write).
	1 cycle stall for a LW hazard (read after load).
	3 cycle stall for branches (when we guess wrong).
	- The second of the facts would.
	Are any of these different in the six-stage pipeline described in part b? How?
	Register-to-Register Data Hazards Yes, the within 1913/65 1511+ writin upp 1 was 50 1 100 100
	Register-to-Register Data Hazards Yes, the within register isn't written uptil us so there must be record in the second in the
	Branch Hazard NO, it will always 3 cycle stalls read of just in over to
	if ve quess incorrectly on a brand from momory
	it is guess incorrectly on a branch, thus this pipeline hazard is no different.
	than the original

3. a) A virtual memory system has a 32GB virtual address space and 4GB of physical memory. Pages are 256 KB each. Determine the following:

Number of bits in virtual addresses:

3 5

7 5

Number of bits in physical addresses: $\frac{32}{8}$ Number of bits in the page offset: $\frac{18}{8}$ Number of bits in virtual page numbers: $\frac{17}{14}$ Number of bits in physical page numbers: $\frac{14}{2}$ Number of bits in physical page numbers: $\frac{14}{2}$ $\frac{189}{2}(3268) \approx 2$ $\frac{189}{32}(468) \approx 2$ $\frac{189}{2}(3268) \approx 2$

b) A <u>different</u> system has 32-bit virtual addresses, 256 MB of physical memory and 1 MB pages. The OS has the following page table for a process (only the first eight entries are shown). Assume that all physical memory is allocated and in use.

o kit	Virtual Page Number (binary)	Valid Bit	Physical Page Number (binary)/Disk Address
15 ma	0000 0000 0000	1	0111 0001
	0000 0000 0001	0	sector 23
-	0000 0000 0010	1	1111 0000) new LRU
	0000 0000 0011	0	sector 910
-5	0000 0000 0100	8 1	Sector 87. 77 1100 1100
-	.0000 0000 0101	XO	1100 1100 SLRU SECTOR
-	0000 0000 0110	1	0000 1101
	0000 0000 0111	0	sector \$6

25-31

1617

The following virtual memory addresses are accessed (read from) in the order presented. Show the physical addresses each one corresponds to. Make sure to show any changes to the page table. Assume that the virtual commonly system uses an LRU replacement policy. Be as specific as possible in your answer physical code (125)

100000 0000 0100 1010 0000 1111 0000 1010

1111 0000 0000 0110 1010 0110 1110 011

2 = 19. 13 1000 b) + physical abbess

Page offset follows 200 5,75

Assemble the following MIPS assembly-language code by writing out the corresponding machine language
instructions. The address of each instruction is given to the left of each instruction. Please fill out the decimal
values for each field, convert to binary, and then convert the whole instruction to hexadecimal.

Dec Bin O Hex	6 bits 8 0 0 0 0	5 bits f	5 bits	5 bits	bit 5 bits	6 bits	
Bin O	8	9	8	5 bits	5 bits	6 bits	
Bin O	2 000	01001	8				
Hex	2	01001	13 13 13 13 13 13 13 13 13 13 13 13 13 1		-9-		
	2		01000	00000	00000	001001	
0004		2	8	0	0 0	9	
0004					100		
The second second	frodo: sub \$						
Dec	Ò	4	5	3	0	34	
Bin (00000	00100	00101	00011	00000	100010	
Hex	0 () 8	5	1	8 2	. 2	
				•			
10008	D					erika	
Dec	(sam) sll \$2,	0		3		0	
Bin /	0	-1-1-1-1-1-1		2	Alal-lele		
	00000	00000	00001	00010	0 0 1 1 1	000000	
Hex	0 (1 0			1 (. 0	
		3					3:0011
10012	beq \$10, \$1						
Dec	4	11	10		3 —		-3-01100
Bin (00100	01011	01010	111111	11111	11101	->1101
Hex	A A I I I O I P	Ь	a	4	F 9	d	
					-		
	11	0008/4	2 6 30 6				
10016	j sam						
Dec	2	-		- 2502-			
Bin (010000	00000	00000	00001	00111	000110	
Hex	0 8	5 0	0	0	9 0	ь	

Honor Statement

Sign the following statement before scanning and submitting your exam.

On my honor, I have neither given nor received any unauthorized aid on this exam.

but

Stop working by 3pm PDT. Scan in your completed exam and submit on Canvas in pdf format by 3:15pm PDT. Any issues with scanning? Just take some photos and email them to the instructor by 3:15 and submit scans later.