IMAGE TRANSFORMS

By
Dr. Ratnakar Dash
CSE Dept. NIT Rourkela

Image Transforms

 Image transforms can be simple arithmetic or complex mathematical operations on images which convert images from one representation to another.

Applications

- Preprocessing
 - Filtering
 - Enhancement

- □ Image Compression
- □ Feature Extraction
 - Edge detection
 - Corner detection

Unitary Matrix

- □ Image transformation represents a given image into series sum of unitary matrices
- □ A matrix is called unitary if

$$A^{-1} = \underbrace{A^{*T} \equiv A^{H}}_{\text{Hermitian conjugate}}$$

Unitary Matrices are basis images

Properties of Unitary Transform y = Ax

- Energy Conservation
 - $\| y \|^2 = \| \underline{x} \|^2$
- Rotation
 - A unitary transformation is a rotation of a vector in an N-dimension space, i.e., a rotation of basis coordinates

Energy Compaction

- Many common unitary transforms (like DCT, KLT etc.) tend to pack a large fraction of signal energy into just a few transform coefficients
- Decorrelation
 - Highly correlated input elements → quite uncorrelated output coefficients
 - Covariance matrix $E[(\underline{y} E(\underline{y}))(\underline{y} E(\underline{y}))^{*T}]$

What is orthogonal?

□ A set of real valued continuous functions

$$\{a_n(t)\} = \{a_o(t), a_1(t),...\}$$
 is said to be orthogonal over $(t_0, t_0 + T)$ if

$$\int_{T} a_{m}(t). \ a_{n}(t) dt = \begin{cases} k \ if \ m = n \\ 0 \ if \ m \neq n \end{cases}$$

if k = 1 then $a_n(t)$ is orthonormal

Example

\square {sin ω t, sin 2ω t}

Orthogonal Expansion

Any arbitrary signal x(t); $\{t_0, t_0+T\}$

Can be represented by series summation of a set of orthogonal basis functions.

$$x(t) = \sum_{n=0}^{\infty} c_n a_n(t)$$

 $c_n \rightarrow$ nth coefficient of expansion

Contd..

$$x(t) = \sum_{n=0}^{\infty} c_n a_n(t), t_0 \le t < t_0 + T$$

$$\Rightarrow \int_T x(t) a_m(t) dt = \int_T \sum_{n=0}^{\infty} c_n a_n(t) a_m(t) dt$$

$$= c_0 \int_T a_0(t) a_m(t) dt + \cdots$$

$$c_1 \int_T a_1(t) a_m(t) dt + \cdots + \cdots$$

$$c_m \int_T a_m(t) a_m(t) dt + \cdots$$

$$\Rightarrow \int_{T} x(t)a_{m}(t)dt = kc_{m} \qquad \Rightarrow \int_{T} x(t)a_{m}(t)dt = c_{m}, \text{ if } k = 1$$
Orthonormal Set

Complete, Closed(orthogonal functions)

□ There is no signal x(t) with $\int x^2(t)dt < \infty$

such that

$$\int_{T} x(t)a_{n}(t)dt = 0, n = 0,1,...$$

$$\int_{T} x(t)a_{n}(t)dt = 0, n = 0$$

$$\mathbf{x}(t) \text{ with } \int_{T} x^{2}(t)dt < \infty$$

$$\hat{x}(t) = \sum_{n=0}^{N-1} c_{n}a_{n}(t)$$
Such that
$$\int_{T} |x(t)-\hat{x}(t)|^{2}dt < c = 0$$

Such that $\int |x(t) - \hat{x}(t)|^2 dt < \varepsilon \quad \varepsilon > 0$

Discrete Formulation

□ Let the set of samples represented by $\{u(n): 0 \le n \le N-1\}$ is a vector of dimension N

Premultiply U by a unitary matrix A of dimension N*N,
 we get another vector

Ratnakar Dash,
Assistant Professor, CSE dept. of NIT Rourkela

In the form of series summation

$$v(k) = \sum_{n=0}^{N-1} a(k,n)u(n) \qquad 0 \le k \le N-1$$

where $A^{-1} = A^{*T}$

As A is a unitary matrix we can get back u as

$$u(n) = \sum_{k=0}^{N-1} a^*(k,n)v(k) \qquad 0 \le n \le N-1$$

The columns of A^{*T}

i.e.,
$$(a_k^* \approx \{a^*(k,n), 0 \le n \le N-1\}^T)$$
 are called the basis vectors of A_k

Example

Let
$$U = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix} \quad V = \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix} \quad A = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$$
$$A^{-1} = A^{*T} = \begin{bmatrix} a_{00} & a_{10} & a_{20} \\ a_{01} & a_{11} & a_{21} \\ a_{02} & a_{12} & a_{22} \end{bmatrix}^*$$
$$U = A^{-1}V = A^{*T}V$$
$$U = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix} = A^{-1} \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} a_{00} \\ a_{01} \\ a_{01} \end{bmatrix}^* \quad v_0 + \begin{bmatrix} a_{10} \\ a_{11} \\ a_{12} \end{bmatrix}^* \quad v_1 + \begin{bmatrix} a_{20} \\ a_{21} \\ a_{22} \end{bmatrix}^* \quad v_2$$

basis vectors \longrightarrow b₁

Contd...

In case of an image, an image can be represented by a set of basis images

Image
$$u(m,n)$$
 $0 \le m, n \le N-1$

$$v(k,l) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} a_{k,l}(m,n)u(m,n) \quad 0 \le k,l \le N-1$$

$$a_{k,l}(m,n) \longrightarrow N \times N \text{ matrix/ } N^2 \text{ numbers of such matrices}$$

Inverse Transform

$$u(m,n) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} a_{k,l}^*(m,n) v(k,l) \quad 0 \le m, n \le N-1$$

Contd...

 Set of complete orthonormal discrete basis function satisfies the following properties

$$a_{k,l}(m,n)$$
 — Orthonormality

$$\sum_{m=0}^{N-1} \sum_{n=0}^{N-1} a_{k,l}(m,n) a_{k',l'}^*(m,n) = \delta(k-k',l-l')$$

Completeness

$$\sum_{k=0}^{N-1} \sum_{l=0}^{N-1} a_{k,l}(m,n) a_{k,l}^*(m',n') = \delta(m-m',n-n')$$

Computational Complexity

 \square To Compute transform coefficient v(k, l)

$$v(k,l) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} a_{k,l}(m,n)u(m,n) \quad 0 \le k,l \le N-1$$

- \square For each v(k,l) no. of complex multiplications and additions
 - ~ O(N²), so for all v(k,l)~O(N⁴) which is quite expensive for practical size Images.
- □ How to reduce computation time??
- Using separable unitary transforms

$$a_{k,l}(m,n) = a_k(m)b_l(n) \approx a(k,m)b(l,n)$$

Separable Transforms

where $\{a_k(m), k = 0,1,...N-1\}$ are 1D orthonormal sets of basis vectors $\{b_l(n), l = 0,1,...N-1\}$

should be unitary matrices themselves

In most cases we choose A & B to be same. $A \approx \{a(k,m)\}\ and \ B = \{a(l,n)\}\$

$$v(k,l) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} a(k,m)u(m,n)a(l,n); V = AUA^{T}$$

$$u(m,n) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} a^{*}(k,m)v(k,l) \ a^{*}(l,n); \ U = A^{*T}VA^{*}$$

$$V = AUA^{T}$$

$$V^{T} = A[AU]^{T}$$

- □ These are called 2D separable transformation
- □ The 2D transform can be performed first by transforming each column of U and then transforming each row of the result to obtain rows of V complexity is 2N³

Concept of Basis Images

- \Box Let a_k^* denotes the kth column of A^{*T}
- Define the matrices

$$A_{k,l}^* = a_k^* a_l^{*T}$$

Define the inner product of two NxN matrices F and G

$$\langle F,G\rangle = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} f(m,n)g^*(m,n)$$

Concept of Basis Images

□ Then the transformation equation can be written as

$$v(k,l) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} a_{k,l}(m,n)u(m,n) \approx \langle U, A_{k,l}^* \rangle$$

$$u(m,n) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} a_{k,l}^*(m,n)v(k,l)$$

$$\Rightarrow U = u(m,n) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} v(k,l) A_{k,l}^*$$

- \square U is represented by linear combination of N² Matrices.
- These matrices are called basis images

$$A_{k,l}^*$$
 k , $l = 0,1,2..N-1$

Example

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad U = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
Transformed Image $V = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

$$= \frac{1}{2} \begin{pmatrix} 4 & 6 \\ -2 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 5 & -1 \\ -2 & 0 \end{pmatrix}$$

To get basis images, take outer product of the columns of $oldsymbol{A}^{*T}$

$$A_{0,0}^* = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} (1 \quad 1) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$A_{0,1}^* = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} = A_{1,0}^{*T}$$

$$A_{1,1}^* = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Contd...

□ Inverse Transform gives

$$A^{*T}VA^{*} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 3 & -1 \\ 7 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
$$= U \Rightarrow \text{Original Image}$$

Some Transformation Techniques

- Discrete Fourier Transform
- □ Discrete Cosine Transform
- Karhunen-Loeve Transform
- □ Haar Transform
- □ Walsh Transform
- Hadamard Transform

Fourier Transform (1D)

Continuous Fourier Transform (CFT)

$$W(f) = \mathcal{F}\{w(t)\} = \int_{-\infty}^{\infty} w(t) e^{-j2\pi f t} dt$$

$$W(f) = X(f) + j Y(f)$$

$$W(f) = |W(f)| e^{j\theta(f)}$$
Phase
Amplitude Spectrum
Spectrum

Inverse Fourier Transform (IFT)

$$\mathbf{w}(t) = \mathbf{\mathcal{F}}^{-1} \{ \mathbf{W}(f) \} = \int_{-\infty}^{\infty} \mathbf{W}(f) e^{+j2\pi f t} df$$

Discrete Fourier Transform (1D)

Discrete Domains

Discrete Time:

Equal time intervals

Equal frequency intervals

Discrete Fourier Transform

$$X[K] = \sum_{n=0}^{N-1} x[n] e^{-j\left(\frac{2\pi}{N}\right)nk};$$
 $K = 0, 1, 2, ..., N-1$

Inverse DFT

$$x[n] = \frac{1}{N} \sum_{K=0}^{N-1} X[K] e^{j\left(\frac{2\pi}{N}\right)nk}; \quad n = 0, 1, 2, \dots, N-1$$

2D – Discrete Fourier Transform

■ Image: f(x, y), $0 \le x \le N-1$, $0 \le y \le N-1$

Transform kernel:
$$g(x, y, u, v) = e^{-j2\pi \left(\frac{xu}{N} + \frac{yv}{N}\right)}$$

• Discrete Fourier Transform of f(x, y) is

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{ux}{N} + \frac{vy}{N}\right)}$$

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi \left(\frac{ux}{N} + \frac{vy}{N}\right)}$$

Contd...

■ In general, Transform kernel can be represented as:

$$w_N = e^{-j\frac{2\pi}{N}}$$
 $w_N^{ux+vy} = e^{-j\frac{2\pi}{N}(ux+vy)}$

Discrete Fourier Transform of f(x, y) can be represented as

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) w_N^{ux+vy}$$

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) w_N^{-(ux+vy)}$$

Contd...

Let R(u,v), I(u,v) be real part and imaginary part of F(u,v)

Modulus: $|F(u,v)| = (R^2(u,v) + I^2(u,v))^{1/2}$

Phase: $\Phi(u,v) = \tan^{-1} \left(\frac{I(u,v)}{R(u,v)} \right)$

Power Spectrum: $E(u, v) = R^2(u, v) + I^2(u, v)$

Amplitude and Phase

Images and their spectrums

Properties of 2-D Fourier Transform

- Separability
- Linearity
- Scaling
- Shift Theorem
- Rotation
- Periodicity and conjugation
- Convolution
- Correlation
- Average

Separability

 The implementation steps for the two-dimensional DFT may be visualized as shown in the diagram below

Separability (contd.)

Linearity

DFT is a linear operator

$$F[a f_1(x,y) + b f_2(x,y)] = a F_1(u,v) + b F_2(u,v)$$

Linearity (contd..)

Scaling

$$f(ax,by) \xrightarrow{DFT} \frac{1}{|ab|} F\left(\frac{u}{a},\frac{v}{b}\right)$$

Scaling (contd..)

Image Transforms

Ratnakar Dash, Assistant Professor, CSE dept. of NIT Rourkela

Shift Theorem

$$f(x-x_0, y-y_0) \iff F(u,v) \exp[-j2\pi(ux_0+vy_0)/N]$$

$$f(x,y) \exp[j2\pi(u_0x + v_0y)/N] \iff F(u - u_0, v - v_0)$$

Shift Theorem (contd..)

Original Image

 $T_x = 50, T_y = 50$

Spectrum Image

Spectrum Image

Ratnakar Dash, Assistant Professor, CSE dept. of NIT Rourkela

Rotation

In polar coordinates, f(x,y) and F(u,v) can be represented by $f(r,\theta)$ and $F(w,\phi)$ alternatively. Then

$$f(r, \theta + \theta_0)$$
 $F(w, \varphi + \theta_0)$

Periodicity and conjugation

Periodicity:

$$F(u,v) = F(u+aN,v+bN)$$

$$f(x,y) = f(x+aN,y+bN)$$

Where a, b = 0, ± 1 , ± 2 ,.....

Conjugation:

$$F(u,v) = F*(-u,-v)$$

$$|F(u,v)| = |F(-u,-v)|$$

Convolution

2-D convolution is defined as:

$$f_e(x,y) * g_e(x,y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_e(m,n) g_e(x-m,y-n)$$

Then: $f(x, y)*g(x, y) \Leftrightarrow F(u, v)G(u, v)$

$$f(x, y)g(x, y) \Leftrightarrow F(u, v)*G(u, v)$$

Convolution (contd..)

Original image

Convolved image(convolved with mean filter) **Image Transforms**

Spectrum

Spectrum

Correlation

2-D correlation is defined as:

$$f_e(x,y) \circ g_e(x,y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_e^*(m,n) g_e(x+m,y+n)$$

Correlation Theorems:

$$f(x,y) \circ g(x,y) \Leftrightarrow F^*(u,v)G(u,v)$$

$$f^*(x,y)g(x,y) \Leftrightarrow F(u,v) \circ G(u,v)$$

Average

Average of 2D image f(x, y) is defined as:

$$\bar{f}(x,y) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$

Let u=v=0, then:

$$F(0,0) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$

$$\bar{f}(x,y) = \frac{1}{N}F(0,0)$$

$$f(x,y) = rect(x,y) = \begin{cases} 1 & |x| & 1/2, |y| & 1/2 \\ 0 & otherwise \end{cases}$$

$$F(u,v) = sinc(u) sinc(v) = sinc(u,v)$$

Contd..

image

and its spectrum

Fast Fourier Transform

- decimation in time = odd even in freq. domain
- decimation in freq. domain = odd even in time

$$N^4 \rightarrow N^2 \log N$$

Visualizing the DFT

Consider the power spectrum of the 1D square wave

Visualizing the DFT(circular shifting)

- □ The FT is centered about the origin
- □ But the DFT is centered about N/2
- We need to correct with a circular shift operation
- \Box Or, multiply by $(-1)^k$ prior to taking the transform

DFT basis images

Procedure for Filtering in the Frequency Domain

- Multiply the input image by (-1)^{x+y} to center the transform
- 2. Compute the DFT F(u,v) of the resulting image
- Multiply F(u,v) by a filter G(u,v)
- Computer the inverse DFT transform h*(x,y)
- 5. Obtain the real part h(x,y) of 4
- 6. Multiply the result by $(-1)^{x+y}$

Filtering Example Smooth an Image with a Gaussian Kernel

Traditionally, we would just convolve the image with the a gaussian kernel

 Instead, we will perform multiplication in the frequency domain to achieve the same effect

Filtering Example Smooth an Image with a Gaussian Kernel

Multiply the input image by (-1)^{x+y} to center the transform

2. Compute the DFT F(u,v) of the resulting image

3. Multiply F(u,v) by a filter G(u,v)

3. Multiply F(u,v) by a filter G(u,v)

- 4. Computer the inverse DFT transform h*(x,y)
- 5. Obtain the real part h(x,y) of 4
- 6. Multiply the result by (-1)x+y

Example

```
img=imread('lena.bmp','bmp');
subplot(121);imshow(img);
title('original image ')
fimg=fftshift(fft2(img));
subplot(122); imshow(abs(fimg)/10000)
title(' transformed image ')
original image
```

Image Transforms

transformed image

Discrete Cosine Transform (DCT)

- DCT expresses a sequence of finite data points in terms of a sum of cosine functions oscillating at different frequencies.
- □ These cosine functions are treated as its basis function.
- Fast algorithm exists.
- Most popular in image compression application because of its energy compaction property.
- Adopted in JPEG.
- □ The periodicity implied by DCT implies that it causes less blocking effect than DFT.
- \square Can be implemented by 2n points FFT.

Contd...

Transform kernel of two-dimensional DCT is

$$C(x, y, u, v) = \alpha(u) \cdot \alpha(v) \cdot \cos \left[\frac{\pi(2x+1)u}{2N} \right] \cdot \cos \left[\frac{\pi(2y+1)v}{2N} \right]$$

where $\alpha(0) = \sqrt{\frac{1}{N}}, \quad \alpha(i) = \sqrt{\frac{2}{N}}, \ 1 \le i \le N$

Clearly, the kernel for the DCT is both separable and symmetric, and hence the DCT may be implemented as a series of one dimensional DCTs.

Contd...

Forward transform

$$F(u,v) = \alpha(u)\alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \left[\frac{\pi(2x+1)u}{2N} \right] \cos \left[\frac{\pi(2y+1)v}{2N} \right]$$

Inverse Transform

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u)\alpha(v)F(u,v)\cos\left[\frac{\pi(2x+1)u}{2N}\right] \cos\left[\frac{\pi(2y+1)v}{2N}\right]$$

where u, v, x, y = 0, 1, 2, ..., N-1

Forward and inverse transformations are same

- □ clc;
- □ clear
- □ N=8
- x=(0:N-1)';
- $\Box C = \cos((2*x+1)*x'*pi/(2*N))*sqrt(2/N);$
- \Box C(:,1)=C(:,1)/sqrt(2);

Kernel matrix to generate DCT Basis Images

0.353553	0.490393	0.46194	0.415735	0.353553	0.277785	0.191342	0.097545
0.353553	0.415735	0.191342	-0.09755	-0.35355	-0.49039	-0.46194	-0.27779
0.353553	0.277785	-0.19134	-0.49039	-0.35355	0.097545	0.46194	0.415735
0.353553	0.097545	-0.46194	-0.27779	0.353553	0.415735	-0.19134	-0.49039
0.353553	-0.09755	-0.46194	0.277785	0.353553	-0.41573	-0.19134	0.490393
0.353553	-0.27779	-0.19134	0.490393	-0.35355	-0.09755	0.46194	-0.41573
0.353553	-0.41573	0.191342	0.097545	-0.35355	0.490393	-0.46194	0.277785
0.353553	-0.49039	0.46194	-0.41573	0.353553	-0.27779	0.191342	-0.09755

Basis images of an 8x8 DCT

Properties of DCT

Separability

2D DCT/IDCT expression shows that they are separable. So they can be implemented as two 1-D DCT/IDCT

Fast DCT

FDCT is possible in the same manner as FFT

Periodicity

Magnitude of DCT coefficient is periodic with period 2N

Example

Original Image

DCT Coefficients (Zoomed)

DCT Coefficients

Image Reconstruction in DCT

Original image

Coefficients are selected out of 8x8 window

Reconstructed image

Using only 1 DCT coefficient

Using 3 DCT coefficients

Contd...

Using 6 DCT coefficients

Using 15 DCT coefficients

Using 10 DCT coefficients

Using 64 DCT coefficients

Karhunen-Loeve Transform

- K-L transform is a linear combination of orthogonal functions of ensembles of input images.
- Basis functions are image dependent
- No fast algorithm exists
- Usually used for comparison
- Transform kernel is not fixed unlike other transforms
- Based on second order statistical properties of image
- Also called Hotelling transform or method of principal components

70

Covariance matrix of a population of vectors

riance matrix of a population of vectors
$$X = \begin{bmatrix} x \\ z \end{bmatrix}$$
:
$$C_x = E\left\{ (X - \mu_x)(X - \mu_x)^T \right\}$$

$$\mu_{x} = \frac{1}{M} \sum_{k=1}^{M} X_{k}$$

 $C_r \Rightarrow \text{real \& symmetric}$

So, Orthogonal vectors of C_x can be calculated

Contd...

- Calculate eigenvectors and eigen values of C_x
- Sort eigen vectors depending on decreasing values of eigen values
- Select some of the eigenvectors
- □ These eigenvectors are considered as transformed matrix
- Calculate the transformed images

$$Y = A(X - \mu_x)$$

- Y is called as principal component coefficients.
- □This transformation is called K-L transform

Properties of Y

$$\mu_y = 0$$

$$C_{y} = AC_{x}A^{T}$$

Example

Input matrix

$$x = \left\{ \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \right\}$$

$$\mu_x = \begin{pmatrix} 4.5 \\ 4.5 \end{pmatrix}$$

Contd...

$$C_{x} = \begin{pmatrix} 0.75 & 0.375 \\ 0.375 & 0.75 \end{pmatrix}$$

Compute Eigen values

$$(0.75 - \lambda)^2 = (0.375)^2$$

$$\Rightarrow 0.75 - \lambda = \pm 0.375$$

$$\Rightarrow \lambda = 0.75 \pm 0.375$$

$$\lambda_1 = 1.125$$

$$\lambda_2 = 0.375$$

Contd...

We get two Eigen vectors

$$e_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$e_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Transform Matrix

$$\rightarrow A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Contd.

Reconstructed

$$X = A^T Y + \mu_X$$

■ K no of Eigen vectors

$$Y = A_k (X - \mu_X)$$

$$\hat{X} = A_k^T Y + \mu_X$$

$$A_k = k \times n$$

$$Y = k \times 1$$

$$X = n \times 1$$

Properties of K-L Transform

Decorrelation

- Note: Other matrices (unitary or nonunitary) may also decorrelate the transformed sequence
- Minimizing MSE under basis restriction
 - If only allow to keep m coefficients for any $1 \le m \le N$, what's the best way to minimize reconstruction error?
 - → Keep the coefficients w.r.t. the eigenvectors of the first m largest Eigen values

Principal Component Coefficients

Lena image

Energy compaction in lena image

Image Reconstruction in K-L Transform

Haar Wavelet Transform

- One dimensional transformation on each row followed by one dimensional transformation of each column.
- Extracted coefficients would be
 - Approximation
 - Vertical
 - Horizontal
 - Diagonal
- Approximation coefficients are further decomposed into the next level
- 4 level decomposition is used

Contd...

(level = 2)

Approach

□ For a 2X2 matrix

$$x = \begin{pmatrix} \overrightarrow{ab} \\ cd \end{pmatrix} \qquad \qquad x = \begin{pmatrix} a+b & a-b \\ c+d & c-d \end{pmatrix} \downarrow$$

$$y = \frac{1}{2} \begin{pmatrix} a+b+c+d & a-b+c-d \\ a+b-c-d & a-b-c+d \end{pmatrix}$$

Example

Column wise Summation

	4	14	0	4	
•	2	7	2	3	
	13	11	-]	-3	
	7	16	-1	0	

Row wise Summation

Λn	nrc	vin	a ati	on
Λh	ρic	oxin	ıaıı	OH

Horizonta	1
-----------	---

3	10.5	1	3.5
10	13.5	-1	-1.5
1	3.5	-1	0.5
3	-2.5	0	-1.5

Finding Average

6	21	2	7	
20	27	-2	-3	
2	7	-2	1	
6	-5	0	-3	

Vertical

Diagonal

Properties of Haar transform

- □ The Haar transform is real and orthogonal. Therefore, $\mathbf{H_r} = \mathbf{H_r}^*$
- □ The Haar transform is a very fast transform.
- \square On an Nx1 vector it can be implemented in O(N) operations
- □ The Haar transform has poor energy compaction for Images

- MInitialization
- □ H=[1]; NC=1/sqrt(2);%normalization constant LP=[1 1]; HP=[1 -1]; % iteration from H=[1]
- □ for i=1:Level H=NC*[kron(H,LP);kron(eye(size(H)),HP)];
- end
- □ HaarTransformationMatrix=H;

$$\mathbf{H}_2 = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

$$\mathbf{H}_4 = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{bmatrix}$$

Basis images of Haar Transform

Ratnakar Dash,

1-step Haar Decomposition

Original image

Haar transformed image

2-step Haar Decomposition

Discrete Walsh Transform (1-D)

$$g(x,u) = \frac{1}{N} \prod_{i=0}^{n-1} (-1)^{b_i(x)b_{n-1-i}(u)}$$

1–D Forward Kernel

where,

 $N \rightarrow \text{No.of Samples}$

 $n \rightarrow No.$ of bits needed to represent x and u

 $b_k(z) \rightarrow k^{th}$ bit in digital representation of z

$$W(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \prod_{i=0}^{n-1} (-1)^{b_i(x)b_{n-1-i}(u)}$$

Contd...

$$h(x,u) = \prod_{i=0}^{n-1} (-1)^{b_i(x)b_{n-1-i}(u)}$$

1–D Inverse Kernel

Difference
lies in
Multiplicative
Factor

$$f(x) = \sum_{x=0}^{N-1} W(u) \prod_{i=0}^{n-1} (-1)^{b_i(x)b_{n-1-i}(u)}$$

1–D Inverse Transform

Discrete Walsh Transform (2-D)

$$g(x, y, u, v) = \frac{1}{N} \prod_{i=0}^{n-1} (-1)^{\{b_i(x)b_{n-1-i}(u) + b_i(y)b_{n-1-i}(v)\}}$$

2-D Forward Kernel

$$W(u,v) = \frac{1}{N} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} f(x,y) \prod_{i=0}^{n-1} (-1)^{\{b_i(x)b_{n-1-i}(u)+b_i(y)b_{n-1-i}(v)\}}$$

2-D Forward Transform

Contd...

$$h(x, y, u, v) = \frac{1}{N} \prod_{i=0}^{n-1} (-1)^{\{b_i(x)b_{n-1-i}(u) + b_i(y)b_{n-1-i}(v)\}}$$

2-D Inverse Kernel

 $\{b_i(x)b_{n-1-i}(u)+b_i(y)b_{n-1-i}(v)\}$

$$f(x,y) = \frac{1}{N} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} W(u,v) \prod_{i=0}^{n-1} (-1)^{\{b_i(x)b_{n-1-i}(u)+b_i(y)b_{n-1-i}(v)\}}$$

2–D Inverse Transform

Property

Separable

$$W(u) = \frac{1}{2}[W_{even}(u) + W_{odd}(u)]$$

$$W(u+M) = \frac{1}{2}[W_{even}(u) - W_{odd}(u)]$$

where,

$$u = 0,1,...,\frac{N}{2}-1$$

$$M = \frac{N}{2}$$

Basis images of Walsh Transform

Hadamard Transfrom

$$g(x, y, u, v) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} \{b_i(x)b_i(u) + b_i(y)b_i(v)\}}$$

2D Forward Kernel

$$h(x, y, u, v) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} \{b_i(x)b_i(u) + b_i(y)b_i(v)\}}$$

2D Inverse Kernel

Hadamard Matrix

$$g(x,u) = \frac{1}{N} \underbrace{(-1)^{\sum_{i=0}^{n-1} b_i(x)b_i(u)}}_{Hadamard\ Matrix}$$

		0(0)	1(7)	2(3)	3(4)	4(1)	5(6)	6(2)	7(5)
	0	+	+	+	+	+	+	+	+
	1	+	1	+	1	+	-	+	-
	2	+	+	1	1	+	+	-	-
$x \mid \cdot \mid$	3	+	1	1	+	+	-	1	+
	4	+	+	+	+	-	-	-	-
\downarrow	5	+	1	+	ı	1	+	1	+
	6	+	+	-	-	-	-	+	+
	7	+	-	-	+	-	+	+	-

sign changes are not ordered (shown in backet)

Ratnakar Dash,

Image Transforms

Assistant Professor, CSE dept. of NIT Rourkela

Hadamard transform

Transform matrices can be recursively generated

$$H_{2} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H_{n} = H_{n-1} \otimes H_{1}$$

$$H_{3} = H_{1} \otimes H_{2}, \ H_{2} = H_{1} \otimes H_{1}$$

Note: Hadamard Coefficients need reordering to concentrate energy

Contd..

 \square N=2

$$\boldsymbol{H}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$egin{aligned} m{H}_{2N} = egin{bmatrix} m{H}_N & m{H}_N \ m{H}_N & m{H}_{-N} \end{bmatrix} \end{aligned}$$

Ordered Hadamard Transformation

$$g(x,u) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} b_i(x) p_i(u)}$$

where,

$$p_0(u) = b_{n-1}(u)$$

$$p_1(u) = b_{n-1}(u) + b_{n-2}(u)$$

$$p_2(u) = b_{n-2}(u) + b_{n-3}(u)$$

 $b_i(u)$ is changed to $p_i(u)$

•

•

•

$$p_{n-1}(u) = b_{1}(u) + b_{0}(u)$$

Contd...

N = 8

			_		и	>			
		0	1	2	3	4	5	6	7
	0	+	+	+	+	+	+	+	+
ı	1	+	+	+	+	1	1	1	1
	2	+	+	ı	ı	1	ı	+	+
x	3	+	+	ı	ı	+	+	ı	ı
	4	+	ı	ı	+	+	1	1	+
V	5	+	ı	ı	+	ı	+	+	ı
	6	+	ı	+	-	ı	+	ı	+
	7	+	-	+	-	+	-	+	-

Basis images of Hadamard Transform

Properties of Hadamard Transform

- □ Unlike Other Transform, the elements of the basis vectors of the Hadamard transform take only the binary values +1, -1, therefore well suited for DSP.
- Hadamard transform H is real, symmetric, and orthogonal
- □ Hadamard transform is a fast transform. The one dimensional transform can be implemented in $O(N \log_2 N)$ additions and subtractions

Similarity between Walsh and Hadamard Transform

- Basis images of Walsh and Hadamard transforms are same.
- □ So Hadamard transform is also known as Walsh transform or Hadamard-Walsh transform.

Image Reconstruction

Original image

Reconstructed image

Image Reconstruction

Original image

Reconstructed image

