Supplementary material for

Local and Global Structure-Guided

No-Reference Point Cloud Quality Assessment

Zhouyan He, *Member, IEEE*, Qihao Liang, Gangyi Jiang, *Senior Member, IEEE*, Mei Yu, Yeyao Chen, *Member, IEEE*, Ting Luo, *Member, IEEE*, Wujie Zhou, *Member, IEEE*

In this supplementary material, to express the influence of different feature combinations $F_1 \sim F_4$ (i.e., F_1 is geometry + color, F_2 is geometry + curvature, F_3 is curvature + color, F_4 is geometry + color + curvature) on quality prediction performance more intuitively, we have provided the scatter plots shown in Fig. 9 for all four feature combinations. The performance with feature combination F_1 is better than that with F_4 in terms of "Statue". However, for most of the samples, F_4 , represented by the black curve, is closer to the red perfect-prediction line than the other curves are. This finding demonstrates that F_4 is the most effective and characterizes the PC quality more comprehensively.

1

Fig. 9: Objective scores for different input feature sets in the SJTU-PCQA database, where the red line indicates that the objective scores are closer to the MOS.

Additionally, to verify whether the selection of θ demonstrates generalizability across other datasets, we conducted experiments on the CPCD2.0 dataset. As shown in the Table XI, the performance of the high-pass2 method with θ set to N/1000 consistently outperforms that with θ set to N/5000 and N/10000. This suggests that the selection of θ as N/1000 is not only optimal for the SJTU-PCQA dataset but also demonstrates strong performance on the CPCD2.0 dataset.

TABLE XI: EXPERIMENTAL RESULTS USING THE CPCD2.0 DATASET FOR DIFFERENT SAMPLING RATES UNDER HIGH-PASS2 METHOD

$\boldsymbol{\theta}$	N/1000	N/5000	N/10000
SROCC	0.848	0.801	0.757
PLCC	0.832	0.752	0.749