Lecture 4

Hans Halvorson

Princeton University

September 29, 2025

Midterm Exam

- Monday, October 6 at 1:20pm
- 80 minutes to complete exam
- Cheat sheet: You may bring one sheet of paper with whatever information you can fit on it (front and back)
- No precepts next week (after exam)
- No pset this week
- To do: Work on practice midterm
- To do: Practice problems

Plan for today

- Not much new content mostly stuff that will help you become more confident with proofs.
- Semantics (truth-tables) again
 - New: Biconditional
 - New: Classification of sentences
- Meta-rules for proofs
- Inferring the semantic type of compound sentences

Semantics

Truth table: Biconditional

Р	Q	$P \leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

The biconditional $P \leftrightarrow Q$ is true (1) exactly when P and Q have the same truth value.

Semantic classification of sentences

Tautology: The column under the main connective is always

True (1)

Inconsistency: The column under the main connective is always

False (0)

Contingency: The column under the main connective is a mix of

True (1) and False (0)

Semantic classification of sentences

$$(P \leftrightarrow Q) \lor ((Q \leftrightarrow R) \lor (P \leftrightarrow R))$$

This sentence is a tautology: for any three sentences P, Q, R, at least two must have the same truth-value.

Two sentences are said to be **logically equivalent** just in case they have the same truth-value in all rows of their joint truth table.

P	Q	P	\rightarrow	Q	\neg	Ρ	\bigvee	Q
1	1	1	1	1	0	1	1	1
1	0	1	0	0	0	1	0	0
0	1	0	1	1	1	0	1	1
0	1 0 1 0	0	1	0	1	0	1	0

Ρ	Q	\neg	(P	\rightarrow	Q)	$P \land \neg Q$
1	1	0	1	1	1	1 0 0 1
1	0	1	1	0	0	1 1 1 0
0	1	0	0	1	1	0 0 0 1
0	0	0	0	1	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$$P \to Q \equiv \neg P \lor Q$$
$$\neg (P \to Q) \equiv P \land \neg Q$$
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$
$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$P \wedge Q \equiv Q \wedge P$$

 $P \wedge P \equiv P$
 $P \vee P \equiv P$
 $P \rightarrow \neg P \equiv \neg P$

Meta-theorems

Summary

- Soundness: If an argument form has a counterexample, then it cannot be proven.
- Completeness: If an argument form has no counterexample, then it can be proven.
- Cut: Proven sequents can act as derived rules.
- Replacement: Replacing a subformula of φ with an equivalent subformula results in an equivalent formula φ' .

Soundness

If the argument from A_1, \ldots, A_j to B is **not** truth-functionally valid (if it has a counterexample), then $A_1, \ldots, A_j \vdash B$ can **not** be proven.

Completeness

If the argument from A_1, \ldots, A_j to B is truth-functionally valid, then there is a proof of $A_1, \ldots, A_j \vdash B$.

- If $A_1, \ldots, A_j \not\models B$, then no correct proof can end with A_1, \ldots, A_i (n) B.
- If $A_1, \ldots, A_j \models B$, then there is a correct proof that ends with that line.

Consequences of soundness and completeness

Two sentences are **logically equivalent** if and only if they are **inter-derivable**.

$$P \to Q \equiv \neg P \lor Q$$
$$\neg (P \to Q) \equiv P \land \neg Q$$
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$
$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

Fragment check I

Can there be a correct proof with these line fragments?

1 (1)
$$P \lor Q$$
 A
2 (2) $P \lor \neg Q$ A
:
1,2 (n) P

Yes, $P \lor Q$, $P \lor \neg Q \vDash P$ (easy truth-table reasoning). By completeness, some proof exists.

Fragment check II: Explosion from inconsistency

Line 1 is inconsistent. From an inconsistency one can derive any formula. By completeness, there is a correct proof to $P \land \neg P$ depending only on 1.

Fragment check III: Tautology does not entail contingency

 $P \vee \neg P$ is a tautology; Q is a contingency. Since $P \vee \neg P \nvDash Q$, soundness forbids such a proof.

Derived rules

Derived rules

- The relationship between the basic rules and derived rules is like the relationship between machine language and a high-level programming language (such as Python).
- Your thinking can operate at two levels: you can use derived rules to find a path to a proof, and then fill out the details with basic rules.
- Two kinds of derived rules:
 - Cut: Inference rules that operate on entire lines
 - Replacement: Inference rules that operate on subformulas

Ex Falso Quodlibet is a derived inference rule

Τ	(1)	$\neg P$	А
2	(2)	P	Α
3	(3)	$\neg Q$	Α
1,2	(4)	$P \wedge \neg P$	2,1 ∧I
1,2	(5)	eg eg Q	3,4 RA
1,2	(6)	Q	5 DN

Negative paradox is a derived inference rule

Τ	(1)	$\neg P$	А
2	(2)	P	Α
1,2	(3)	Q	1,2 EFQ
1	(4)	P o Q	2,3 CP

Chain order from derived rules

Using derived rules

Using derived rules

$$(P \land Q) \rightarrow R \vdash (P \rightarrow R) \lor (Q \rightarrow R)$$

Substitution instances

Substitution instances

We implicitly assumed that proof rules should be read **schematically**: while written as $P \to Q$, $P \vdash P$ with specific propositional constants P and Q, it applies to any sentences of these forms.

$$\begin{array}{cccc} 1 & (1) & (P \wedge Q) \rightarrow (Q \rightarrow R) & \mathsf{A} \\ 2 & (2) & P \wedge Q & \mathsf{A} \\ 1,2 & (3) & Q \rightarrow R & 1,2 \; \mathsf{MP} \end{array}$$

More precisely: the rule applies to **substitution instance** of $P \rightarrow Q$ and P.

Substitution Instances

Definition

A **substitution instance** of a formula schema is obtained by uniformly replacing its propositional variables with arbitrary sentences of propositional logic.

Schema: $P \rightarrow Q$

• Substitution $P := R \wedge S$, Q := T

$$(R \wedge S) \rightarrow T$$

• Substitution $P := \neg R$, $Q := (S \lor T)$

$$\neg R \rightarrow (S \lor T)$$

Each of these is a substitution instance of the schema $P \rightarrow Q$.

28 / 50

What is *not* a substitution instance?

Reminder

A substitution instance of a formula results from *uniformly replacing* its propositional variables with formulas. It does *not* allow adding, deleting, or re-arranging structure.

Not substitution instances:

- Q is not a substitution instance of $\neg P$. (We cannot "drop" the negation sign by substitution.)
- $S \to T$ is not a substitution instance of $P \to (Q \to P)$. (No substitution for P, Q will collapse the schema into $S \to T$.)

Moral: Substitution preserves the *tail form* of the formula.

Parse trees

A substitution instance of a formula results from extending the leaves in that formula's parse tree.

How to generate a substitution instance

Idea

A substitution maps each propositional variable to a formula. To generate a substitution instance, recursively replace variables.

Pseudo-Python:

```
def substitute(formula, mapping):
    if is var(formula):
        return mapping[formula]
    elif is neg(formula):
        return Neg(substitute(formula.arg, mapping))
    elif is and(formula):
                                   # w ^ w
        return And(substitute(formula.left, mapping),
                   substitute(formula.right, mapping))
    elif is or(formula):
        return Or(substitute(formula.left, mapping),
                  substitute(formula.right, mapping))
```

A substitution consequence

Substitution of $R \mapsto P \wedge Q$ in the provable sequent

$$(P \land Q) \rightarrow R \vdash (P \rightarrow R) \lor (Q \rightarrow R),$$

yields

$$(P \wedge Q) \rightarrow (P \wedge Q) \vdash (P \rightarrow (P \wedge Q)) \vee (Q \rightarrow (P \wedge Q)).$$

Since the premise of the latter sequent is a tautology, its conclusion is a tautology.

Using already proven results

Replacement rules

An unsound rule

 $\wedge E^+$: Any subformula $P \wedge Q$ may be replaced by P.

 $\begin{array}{cccc} 1 & (1) & (P \wedge Q) \rightarrow R & & \mathsf{A} \\ 1 & (2) & P \rightarrow R & & 1 \wedge \mathsf{E}^+ \end{array}$

Line (2) is not semantically valid: if P is true and Q and R are false, then the dependency is true but $P \to R$ is false.

A sound rule

Material conditional: Any occurrence of $P \to Q$ as a subformula may be replaced by $\neg P \lor Q$.

Why is this sound?

$$m_1,\ldots,m_j$$
 (m) φ
 \vdots m_1,\ldots,m_j (n) $\varphi[\neg P\vee Q/P\to Q]$ Material conditional

36 / 50

Replacement meta-rule

Statement

 $\Gamma \vdash \varphi$ is provable if and only if $\Gamma \vdash \varphi'$ is provable, where φ' is the result of replacing some **subformula** of φ with a logically equivalent subformula.

Example:

$$\neg (P \to Q) \equiv P \land \neg Q$$

So
$$\Gamma \vdash \neg (P \rightarrow Q) \rightarrow R$$
 if and only if $\Gamma \vdash (P \land \neg Q) \rightarrow R$.

Useful equivalences

$$P \to Q \equiv \neg P \lor Q$$

$$\neg (P \to Q) \equiv P \land \neg Q$$

$$P \to Q \equiv \neg Q \to \neg P$$

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

Useful equivalences

$$P \lor Q \equiv Q \lor P$$

$$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$$

$$P \lor P \equiv P$$

Useful equivalences

$$P \to (Q \to R) \equiv (P \land Q) \to R$$
$$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$$
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

Chain of equivalences

$$(P \land Q) \rightarrow R \equiv P \rightarrow (Q \rightarrow R)$$

$$\equiv \neg P \lor (\neg Q \lor R)$$

$$\equiv \neg P \lor (\neg Q \lor (R \lor R))$$

$$\equiv (\neg P \lor R) \lor (\neg Q \lor R)$$

$$\equiv (P \rightarrow R) \lor (Q \rightarrow R)$$

Proofs with replacement rules

Translation aided by semantics

I will leave Princeton unless they give me a substantial raise.

Option 1: $R \vee \neg P$

Option 2: $\neg R \rightarrow \neg P$

Option 3: $R \rightarrow P$

Option 4: $\neg R \leftrightarrow \neg P$

Option 5: $R \leftrightarrow P$

I will stay at Princeton only if they give me a substantial raise.

Option 1: $P \rightarrow R$

Option 2: $R \rightarrow P$

Option 3: $P \leftrightarrow R$

Desmond is either in Princeton or in Queens.

Option 1: $P \vee Q$

Option 2: $P \leftrightarrow \neg Q$

Option 3: $(P \lor Q) \land \neg (P \land Q)$

Inferring types of sentences

Type of $\Phi \vee \Psi$ when both contingencies

- Cannot be an inconsistency (since Φ is true on some row, making $\Phi \vee \Psi$ true there).
- Could be a contingency (e.g. $P \vee Q$).
- Could be a tautology (e.g. $P \vee \neg P$).

Type of $\Phi \to \Psi$ when Φ is a tautology

If Φ is a tautology, then $\Phi \to \Psi \equiv \Psi$. Therefore $\Phi \to \Psi$ has the same type as Ψ (contingency if Ψ is).

Exercise. Build a 3×3 table for $\Phi\to\Psi$ over the cases where each of Φ,Ψ is a tautology, inconsistency, or contingency.

Wrap-up

- Soundness/Completeness connect proofs to truth-tables, giving another way to discern logical relations.
- Using standard moves (e.g. material conditional) plus cut/replacement can transform difficult proofs into routine exercises.
- When translating, consider whether the target sentence has the intended logical relations.