Some Own Problems

NAVNEEL SINGHAL

August 26, 2016

1 Problem 1

¹ Part 1: Let ABC be a triangle with all angles> 45° and circumcenter O. D, E, F are the feet of the altitudes from A, B, C. G is the centroid. Intersection of DG and (ABC) is A'. Define B' and C' analogously. A'B' intersects with AC at L_{ac} and A'B' with BC at L_{bc} . Define the L's with other subscripts similarly. Let (O_a) be the circle passing through A and L_{ac} and tangent to A'B'. Let (O'_a) be the circle through A and A' and tangent to C'A'. Here we denote by (X) a circle with center as X. Define the circles with the other subscripts in the same manner. Let the circumcentre of $AO_aO'_a$ be O''_a . Define other centres similarly, using a cyclic shift of variable names. Extend $A'O''_a$, $B'O''_b$ and $C'O''_c$ to form a triangle $A_1B_1C_1$. Let the mixtilinear incircle touch points with its circumcircle be X, Y, and Z. Prove that the cevians A_1X etc concur at the point P such that the circumcentre of the cevian triangle of the isotomic conjugate of isogonal conjugate of P with respect to $A_1B_1C_1$ is the circumcentre of ABC.

Part 2: Prove that the point O is the radical center of the circles $(O_aO_bO_a'O_b')$ etc, $(O_aO_a'A')$ etc, $(O_aO_a'B')$ etc, and $(O_aO_a'C')$ etc. after showing that they exist.

2 Problem 2

Let the perimeter of a triangle ABC be 2 and let BC be the smallest side. Let P and Q be on AC and AB such that AP + PB = AQ + QC = 1. A line parallel to the internal angle bisector of B through P meets the perpendicular bisector of BC at T. BP intersects QC at W. Prove that A, W, T are collinear iff AB = AC.

¹A bit hard, so you may consider solving this later.

Navneel Singhal 6 Problem 6

Figure 1: Problem 2

3 Problem 3

Let H be the orthocenter of a $\triangle ABC$, T being its isotomic conjugate. Let the cevian triangle of T be DEF with D, E, F on \overline{BC} , \overline{CA} , \overline{AB} respectively. Let the reflections of A, B, C over the centroid G be D_1, E_1, F_1 respectively. Let the ray $\overline{DD_1}$ intersect the circumcircle of BHC at D_2 . Let the circumcenter of ABC be O. Let the midpoint of OD_2 be D_3 . Define E_3, F_3 in a similar manner. Prove that $\angle BD_3C - \angle E_3D_3F_3 = \angle BAC$.

4 Problem 4

Let H be the orthocenter of a triangle ABC. Let M be the midpoint of BC, and let E, F be the feet of the B and the C altitudes onto the opposite sides. Let X be the intersection of ray MA with the circumcircle of BHC. Prove that HX, EF and BC concur at a point and also show that the line joining that point and A is perpendicular to the line HM.

5 Problem 5

Let I be the incenter of a triangle ABC and let the A, B and C mixtilinear incircles touch the circumcircle of ABC at T_A , T_B and T_C respectively. Let IT_A , IT_B , IT_C cut BC, CA, AB at X, Y and Z respectively. Prove that AX, BY and CZ concur at a point joining the centroid of ABC to the Gergonne point of ABC.

6 Problem 6

Let ABC be a triangle with the midpoints of the sides \overline{BC} , \overline{CA} , \overline{AB} being A', B', C' respectively. Let the circle tangent to the circumcircle of AB'C' internally, to the circumcircles of

Navneel Singhal 8 Problem 8

Figure 2: Problem 4

BC'A' and CA'B' externally be tangent to the circumcircle of AB'C' at X. Define Y, Z similarly. Prove that A'X, B'Y and C'Z are concurrent.

7 Problem 7

Let $\triangle ABC$ be a triangle with circumcircle Γ . Let M_A, M_B, M_C be the midpoints of the arcs BC, CA, AB of Γ containing exactly 2 points of the triangle. Let the reflections of A, B, C over M_A, M_B, M_C respectively be D, E, F. Let BC meet DE, DF in K, L. Let $KF \cap LE = X$. Define Y, Z similarly. Prove that DX, EY, FZ concur at a point.

8 Problem 8

 2 Find all functions $f: [\mathbb{R}^+ \cup \{0\}]^2 \longrightarrow [\mathbb{R}^+ \cup \{0\}]^2$ in 2 variables satisfying the following properties:

- 1. $f(\sqrt{ab}, f(\frac{a-b}{2}, x)) = f(x, \frac{a+b}{2}) \ \forall a, b \in \mathbb{R}^+ \cup \{0\} \text{ with } a > b.$
- 2. $f(\alpha, 0) = \alpha \ \forall \alpha \in \mathbb{R}^+ \cup \{0\}$
- 3. f(x,y) is continuous as a function of x and as a function of $y \ \forall x,y \in \mathbb{R}^+ \cup \{0\}$.

²This functional equation can be used to give a proof of the Pythagoras' Theorem too!

Navneel Singhal 9 Problem 9

Figure 3: Problem 6

- 4. $f(x,y) = f(y,x) \ \forall x, y \in \mathbb{R}^+ \cup \{0\}.$
- 5. $f(x, f(y, z)) = f(f(x, y), z) \ \forall x, y, z \in \mathbb{R}^+ \cup \{0\}.$

9 Problem 9

Part 1:(Along with Sutanay Bhattacharya) Suppose n is a composite number. Does there exist a function $f: \{1, 2, \dots n\} \longrightarrow \{1, 2, \dots n\}$ satisfying all the following conditions?

- 1. $\sum_{i=1}^{n} f(i)^3 = \left(\sum_{i=1}^{n} f(i)\right)^2$
- 2. f is non decreasing
- 3. f has a unique minimum and a unique maximum
- 4. f is neither injective nor surjective ³

Part 2: The third condition in the above is changed to "f has a unique minimum and a non-unique maximum".

³This dashes all the solver's hopes...

Navneel Singhal 9 Problem 9

Figure 4: Problem 7