## Day 5 Boolean algebra

Lecturer: Msc. Minh Tan Le

#### Outline

- I. Operators, expressions, functions
- II. Logic gates & layout tips
- III. Minimization
- IV. SOP expansion

#### Warm up

- What is Boolean actually?
- In which scenarios Boolean is useful?

## Some operators in Boolean algebra

| Order | Propositional logic | Boolean algebra       | Definition          |
|-------|---------------------|-----------------------|---------------------|
| 1     | ¬, −                | _                     | NOT/Complementation |
| 2     | ^                   | ·<br>(Can be omitted) | AND/Boolean product |
| 3     | V                   | +                     | OR/Boolean sum      |

Note: Calculate by order

### Expression vs. function

$$x \cdot 0 + \overline{0 + y}$$

An expression with variables

$$f(x,y) = x \cdot 0 + \overline{0 + y}$$
A function

#### Find all values of Boolean function

| $\boldsymbol{x}$ | y | 0+y | $\overline{0+y}$ | $x \cdot 0$ | f(x,y) |
|------------------|---|-----|------------------|-------------|--------|
| 1                | 1 | 1   | 0                | 0           | 0      |
| 1                | 0 | 0   | 1                | 0           | 1      |
| 0                | 1 | 1   | 0                | 0           | 0      |
| 0                | 0 | 0   | 1                | 0           | 1      |

$$f(x,y) = x \cdot 0 + \overline{0+y}$$

## Laws (identities)

| No. | Law                                                            | Expression                               |
|-----|----------------------------------------------------------------|------------------------------------------|
| 1   | $\overline{\overline{x}} = x$                                  | Negative of negative (double complement) |
| 2   | $ \begin{aligned} x + x &= x \\ x \cdot x &= x \end{aligned} $ | Idempotent                               |
| 3   | $ \begin{aligned} x + 0 &= x \\ x \cdot 1 &= x \end{aligned} $ | Identity                                 |
| 4   | $ \begin{aligned} x + 1 &= 1 \\ x \cdot 0 &= 0 \end{aligned} $ | Domination                               |
| 5   | x + y = y + x $xy = yx$                                        | Commutative                              |

| No. | Law                                                                           | Expression    |
|-----|-------------------------------------------------------------------------------|---------------|
| 6   | x + (y + z) = (x + y) + z $x(yz) = (xy)z$                                     | Associative   |
| 7   | x + yz = (x + y)(x + z) $x(y + z) = xy + xz$                                  | Distributive  |
| 8   | $\frac{\overline{(xy)} = \overline{x} + \overline{y}}{(x+y)} = \overline{xy}$ | De Morgan     |
| 9   | x + xy = x $x(x + y) = x$                                                     | Absorption    |
| 10  | $x + \overline{x} = 1$                                                        | Unit property |
| 11  | $x\overline{x}=0$                                                             | Zero property |

A *Boolean algebra* is a set B with two binary operations  $\vee$  and  $\wedge$ , elements 0 and 1, and a unary operation  $\overline{\phantom{a}}$  such that these properties hold for all x, y, and z in B:

$$x \lor 0 = x \\ x \land 1 = x$$
 Identity laws 
$$x \lor \overline{x} = 1 \\ x \land \overline{x} = 0$$
 Complement laws 
$$(x \lor y) \lor z = x \lor (y \lor z) \\ (x \land y) \land z = x \land (y \land z)$$
 Associative laws 
$$x \lor y = y \lor x \\ x \land y = y \land x$$
 Commutative laws 
$$x \lor (y \land z) = (x \lor y) \land (x \lor z) \\ x \land (y \lor z) = (x \land y) \lor (x \land z)$$
 Distributive laws







$$f(x,y) = x \cdot 0 + \overline{0+y}$$

## Layout problems

- How to improve readability?
  - Easier for student to double-check.
  - Easier for teacher to grade.
  - => Best of both worlds!

## #1. Use bridge



#### #2. Estimate the complexity

• Tips: First calculated variables should have enough spaces.



#### #3. Initial lines can be horizontal/vertical

- Vertical layout is for function with reused variable(s).
- This is to make sure the circuit is readable.



#### Exercise

Draw the circuit of the below function:

$$f(x, y, z) = xy + \overline{x}z$$

### It's quite obvious...

- The more complicated the function is, the bigger the circuit is.
- Can we minimize the circuit by simplifying the function?
- Let's try this function:

$$f(x, y, z) = xyz + x\overline{y}z$$



$$f(x, y, z) = xyz + x\overline{y}z$$



#### **Function types**

- A **sum of products** (SOP) are multiple product terms (\*) which are added (+) later.
  - Also called sum of minterm.
- A **product of sum** (POS) are multiple sum terms (+) which are producted (\*) later.
  - Also called product of maxterm.

- Our 1st goal is to find the simplest SOP expression.
- There's a graphical method known as Karnaugh map or K-map.
- Drawback: Function with 4 variables or less is recommended.

$$f(x,y) = xy + \overline{x}y$$

### Step 1: Truth table (optional)

$$f(x,y) = xy + \overline{x}y$$

| X | y | $\overline{x}$ | xy | $\overline{x}y$ | f(x,y) |
|---|---|----------------|----|-----------------|--------|
| 1 | 1 | 0              | 1  | 0               | 1      |
| 1 | 0 | 0              | 0  | 0               | 0      |
| 0 | 1 | 1              | 0  | 1               | 1      |
| 0 | 0 | 1              | 0  | 0               | 0      |

## Step 2: Create Karnaugh map

$$f(x,y) = xy + \overline{x}y$$

| x | y | $\overline{x}$ | xy | $\overline{x}y$ | f |
|---|---|----------------|----|-----------------|---|
| 1 | 1 | 0              | 1  | 0               | 1 |
| 1 | 0 | 0              | 0  | 0               | 0 |
| 0 | 1 | 1              | 0  | 1               | 1 |
| 0 | 0 | 1              | 0  | 0               | 0 |



## Step 3: Find the (large) cell (1's area)

$$f(x,y) = xy + \overline{x}y$$

| x | y | $\overline{x}$ | xy | $\overline{x}y$ | f |
|---|---|----------------|----|-----------------|---|
| 1 | 1 | 0              | 1  | 0               | 1 |
| 1 | 0 | 0              | 0  | 0               | 0 |
| 0 | 1 | 1              | 0  | 1               | 1 |
| 0 | 0 | 1              | 0  | 0               | 0 |



## Step 4: Find the minimum sum-of-product that satisfies the map

$$f(x,y) = xy + \overline{x}y$$

| x | y | $\overline{x}$ | xy | $\overline{x}y$ | f |
|---|---|----------------|----|-----------------|---|
| 1 | 1 | 0              | 1  | 0               | 1 |
| 1 | 0 | 0              | 0  | 0               | 0 |
| 0 | 1 | 1              | 0  | 1               | 1 |
| 0 | 0 | 1              | 0  | 0               | 0 |



### Map with n variables





$$f(x,y,z) = xyz + x\overline{y}z$$

$$f(x,y,z) = xyz + x\overline{y}z$$



| 1 | 1 | 0 | 0 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |

$$f(x,y,z) = xyz + x\overline{y}z$$

|                  | <i>λ</i>                  | C        | 3   | <u>c</u> |
|------------------|---------------------------|----------|-----|----------|
| $\boldsymbol{Z}$ | 1                         | 1        | 0   | 0        |
| $\overline{Z}$   | 0                         | 0        | 0   | 0        |
|                  | $\overline{\overline{y}}$ | <b>3</b> | 7 3 | 7        |

#### Exercise



Notes: Large cells in same 1's area are overlapped.

#### **Notes**

- Cells must be formed by squares in horizontal or vertical.
- Cells can be partially or fully overlapped.
- Combine multiple large cells using + (OR) => SOP.



#### Summary of grouping rules

- No zeros allowed.
- 2. No diagonals.
- 3. Only power of 2  $(2^n)$  number of cells in each group.
- 4. Group is expanded as large as possible.
- 5. Every 1 (black) must be in at least one group.
- 6. Overlapping allowed.
- 7. Wrapping around is allowed.
- 8. Fewest number of groups possible.

#### So... how to find POS?

- Our 2nd goal: Find POS.
- Every Karnaugh steps are kept, except:
  - For POS, we put 0 in grouped blocks.

$$f(x,y) = x\overline{y} + \overline{x}y + \overline{x}y$$

Simplify the above function using Karnaugh map

So far, we are solving problems with predefined SOP expression

But some may ask you to find one.

Example: Find the function F(x, y, z) satisfying the truth table.

| x | y | z | F |
|---|---|---|---|
| 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 |

# #1 assuming F(x, y, z) only has AND and negation

- Something like:
  - xyz
  - $\overline{x}yz$
  - $\overline{xy}z$
  - •

#2: Assuming F(x, y, z) =

xyz, which one is wrong?

Tips: Focus rows that F = 1

| x | y | z | F |
|---|---|---|---|
| 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 |

| x | y | z | $\boldsymbol{G}$ |
|---|---|---|------------------|
| 1 | 1 | 1 | 0                |
| 1 | 1 | 0 | 1                |
| 1 | 0 | 1 | 0                |
| 1 | 0 | 0 | 0                |
| 0 | 1 | 1 | 0                |
| 0 | 1 | 0 | 1                |
| 0 | 0 | 1 | 0                |
| 0 | 0 | 0 | 0                |

#2: Assuming G(x, y, z) = xyz, which one is wrong?



#### Homework

- 6, 7, 12, 13/841, 842 (group)
- Submission: Docx file.