	WHAT IS CLAIMED IS:
1	1. An image processing method comprising:
2	providing a first signal representing color separation continuous
3	tone gray level image data of pixels;
4	providing an operator adjustable color tweaking input data second
5	signal representing an adjustment in color saturation;
6	in response to the first and second signals providing a third signal
7	that represents an adjustment in color saturation in accordance with the
8	operator adjustable color tweaking input; and
9	subjecting data represented by the third signal to a halftone process
10	to generate halftone rendered gray level data values for the pixels.
1	2. The method according to claim 1 and including subjecting data
2	represented by the third signal to first and second halftone processes and then
3	blending the respective outputs from the first and second halftone processes.
1	3. The method according to claim 2 wherein third signals representing
2	adjustment in color saturation in accordance with the operator adjustable color
3	tweaking inputs of plural neighboring pixels are examined for determination of
4	blending coefficients and in the step of blending is obtained in accordance with
5	respective blending coefficients.
1	4. The method according to claim 3 and including the step of
2	modifying the output of the blending operation into a binary image file and
3	subjecting the binary image file to an edge enhancement process to reduce
4	jaggedness/in the image.
1	5. The method according claim 2 and including the step of modifying
2	the output of the blending operation into a binary image file and subjecting the
3	binary image file to an edge enhancement process to reduce jaggedness in the
4	image.
1	6. The method according to claim 1 and including modifying image
2	data subsequent to color tweaking to an edge enhancement process to reduce
3	jaggedness in the image.
1	7. The method according to claim 1 and including modifying image

data subsequent to color tweaking to form a binary image data file and subjecting

15

3 ·	the binary image file to an edge enhancement process to reduce jaggedness in the
4	image.
1	8. The method according to claim 7 wherein the first and second
2	signals are input into a lookup table.
1	9. The method according to claim 1 wherein the first and second
2	signals are input into a lookup table.
1	10. The method according to claim 9 wherein image data is recorded
2	on an electrostatographic recording surface as a color separation image, and plural
3	color separation images are recorded and eventually transferred to a receiver sheet
4	in superposed registered relationship.
1	11. The method according to claim 1 wherein image data is recorded
2	on an electrostatographic recording surface as a color separation image, and plural
3	color separation images are recorded and eventually transferred to a receiver sheet
4	in superposed registered relationship to form a process color image.
1	12. An image processing system comprising:
2	a lookup table that stores image data suited to adjust color
3	saturation of an input image in accordance with a personal preference of an
4	operator;
5	a first input for providing continuous tone gray level image data of
6	pixels forming a part of a color separation image;
7	a second input for providing a color tweaking input by an operator
8	representing an adjustment to color saturation in accordance with a
9	personal preference of the operator; and
10	wherein the lookup table is responsive to the first input and the
11	second input to provide image data adjusted in color saturation for the
12	pixels in accordance with the preference as represented by the color
13	tweaking input; and
14	a processing device that subjects the adjusted image data to render
15	the adjusted data in accordance with a halftone algorithm.