2438.
$$x = a \ln \frac{a + \sqrt{a^2 - y^2}}{y} - \sqrt{a^2 - y^2} \quad (0 < b \le y \le a).$$

2439.
$$y^2 = \frac{x^3}{2a-x} \quad \left(0 \le x \le \frac{5}{3}a\right).$$

2440.
$$x^{2/3} + y^{2/3} = a^{2/3}$$
 (астроида).

2441. $x = \frac{c^2}{a}\cos^3 t$, $y = \frac{c^2}{b}\sin^3 t$, $c^2 = a^2 - b^2$ (эволюта эллипса).

2442. $x = \cos^4 t$, $y = \sin^4 t$.

2443. $x = a (t - \sin t), y = a (1 - \cos t) (0 \le t \le 2\pi)$

2444. $x = a (\cos t + t \sin t)$, $y = a (\sin t - t \cos t)$ при $0 \le t \le 2\pi$ (развертка окружности).

2445.
$$x = a \text{ (sh } t-t), y = a \text{ (ch } t-1) (0 \le t \le T).$$

2445.1.
$$x = \cosh^3 t$$
, $y = \sinh^3 t$ $(0 \le t \le T)$.

2446. $r = a \varphi$ (спираль Архимеда) при $0 \le \varphi \le 2\pi$

2447. $r = ae^{m\phi} (m > 0)$ при 0 < r < a.

2448. $r = a (1 + \cos \varphi)$.

2449.
$$r = \frac{\rho}{1 + \cos \varphi} \quad \left(|\varphi| \leqslant \frac{\pi}{2} \right).$$

2450.
$$r = a \sin^3 \frac{\varphi}{3}$$
.

2451.
$$r = a \operatorname{th} \frac{\varphi}{2}$$
 $(0 \leqslant \varphi \leqslant 2\pi)$.

2452.
$$\varphi = \frac{1}{2} \left(r + \frac{1}{r} \right) \quad (1 \le r \le 3).$$

2452.1.
$$\varphi = \sqrt{r}$$
 $(0 \le r \le 5)$.

2452.2.
$$\varphi = \int_{R}^{r} \frac{\sinh \rho}{\rho} d\rho \quad (0 \leqslant r \leqslant R).$$

2452.3.
$$r = 1 + \cos t$$
, $\varphi = t - tg \frac{t}{2}$ $(0 \le t \le T < \pi)$.

2453. Доказать, что длина дуги эллипса

$$x = a \cos t$$
, $y = b \sin t$

равна длине одной волны синусоиды $y = c \sin \frac{x}{b}$, где $c = \sqrt{a^2 - b^2}$.

2454. Парабола $4ay = x^2$ катится по оси Ox. Доказать, что фокус параболы описывает цецную линию.