Abstract Algebra: Introduction to Rings

Arjun Vardhan

†

Created: 9th January 2022 Last updated: 21st June 2022

1 Basic Definitions

- $(R, +, \cdot)$ is a ring if:
 - 1. R is an abelian group with respect to +.
 - 2. $(a \cdot b) \cdot c = (a \cdot b) \cdot c$ for all $a, b, c \in R$.
 - 3. $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in R$.
 - 4. $(b+c) \cdot a = b \cdot a + c \cdot a$ for all $a, b, c \in R$.
- R is a commutative ring if $a \cdot b = b \cdot a$ for all $a, b \in R$.
- R is said to have an identity if there exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$. In such a case R is also called a ring with unity.
- A ring R with identity 1, where $1 \neq 0$, is called a division ring or a skew field if for all $a \neq 0$, $a \in R$, there exists $b \in R$ such that $a \cdot b = b \cdot a = 1$.
- Trivial rings are those obtained by taking any abelian group and letting $a \cdot b = 0$ for all $a, b \in R$. The simplest example is the zero ring, $\{0\}$. Trivial rings are commutative.
- \bullet Let R be a ring. Then:
 - 1. $a \cdot 0 = 0$ for all $a \in R$. Proof: $a \cdot 0 = a \cdot (0 + 0) = a \cdot + a \cdot 0$. So $a \cdot 0 = 0$.
 - 2. $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$, for all $a, b \in R$. Proof: $a \cdot b + (-a) \cdot b = b \cdot (a + (-a)) = b \cdot 0 = 0$. So $(-a) \cdot b = -(a \cdot b)$.
 - 3. $(-a) \cdot (-b) = ab$ for all $a, b \in \mathbb{R}$. Proof: $(-a) \cdot (-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b$.
 - 4. If R has an identity 1, then that identity is unique and $-a = (-1) \cdot a$. Proof: Suppose there exists another identity $\psi \in R$. Then $\psi \cdot 1 = 1 \cdot \psi = \psi = 1$. $a + (-1) \cdot a = a \cdot (1 + (-1)) = a \cdot 0 = 0$. So $-a = (-1) \cdot a$.
- $a \in R$, $a \neq 0$ is called a zero divisor if there exists $b \in R$ such that ab = 0 or ba = 0.
- Let R have an identity $1 \neq 0$. $u \in R$ is called a unit in R if there exists $v \in R$ such that uv = vu = 1.
- The set of all units in a ring R is a group under multiplication. It is denoted R^{\times} .
- If u is a unit in R, then so is -u. Proof: There exists $v \in R$ such that uv = vu = 1. Then (-u)(-v) = uv = 1.
- Let R be a ring with identity and let S be a subring of R such that $1 \in S$. If u is a unit in S then u is a unit in R. The converse is not necessarily true. Proof: Let u be a unit in S. Then there exists $v \in S$ such that uv = 1. Since $u, v \in S$, $u, v \in R$ and thus u is a unit in R. Consider \mathbb{R} and \mathbb{Z} . \mathbb{Z} is a subring of \mathbb{R} . 2 is a unit in \mathbb{R} but not in \mathbb{Z} .
- A zero divisor cannot be a unit. Proof: Suppose a is a unit in R and that ab = 0 for some $b \in R$, $b \neq 0$. Then va = 1 for some $v \in R$, so b = 1b = vab = v(ab) = v0 = 0, which is a contradiction. Similarly, if ba = 0 then a cannot be a unit.

- If $\overline{a} \neq \overline{0}$ and $\gcd(a, n) \neq 1$, then \overline{a} is a zero divisor in $\mathbb{Z}/n\mathbb{Z}$. Proof: Let $d = \gcd(a, n)$ and let $b = \frac{n}{d}$. d > 1 so 0 < b < n and thus $\overline{b} \neq \overline{0}$. But since $\frac{ab}{bd} = \frac{a}{d}$, $n \mid ab$ and so $\overline{ab} = \overline{0}$. Thus \overline{a} is a zero divisor.
- A field is a commutative ring with identity $1 \neq 0$ where every nonzero element is a unit.
- A commutative ring with identity $1 \neq 0$ is called an integral domain if it has no zero divisors.
- Suppose a, b, c belong to a ring R such that a is not a zero divisor and ab = ac. Then, either a = 0 or b = c. In particular, if R is an integral domain, then a = 0 or b = c. Proof: If ab = ac then a(b-c) = 0. Since a is not a zero divisor, a = 0 or b c = 0. The second part follows from the definition of an integral domain.
- Any finite integral domain is a field. *Proof:* Let R be a finite integral domain and let $a \in R$, $a \neq 0$. By the cancellation law, the map $f: R \to R$, f(x) = ax is an injective function. Since R is finite this map is also surjective. So there exists some $b \in R$ such that ab = 1, thus a is a unit. \blacksquare
- \bullet A subring of R is a subgroup of R that is closed under multiplication.
- To check that $S \subset R$ is a subring of R, it suffices to check that $S \neq \phi$ and that S is closed under subtraction and multiplication.
- Let $\{S_i\}$ be a nonempty collection of subrings of R. Then $\bigcap_i S_i$ is also a subring of R. Proof: Every subring of R must contain 0, so $\bigcap_i S_i$ is nonempty. Suppose $a, b \in \bigcap_i S_i$. Then $a, b \in S_i$ for all i, so a b, $ab \in S_i$ for all i.
- The center of a ring R is the set of all elements that commute with every element of R, i.e, $\{z \in R : zr = rz, \ \forall r \in R\}.$
- The center of a ring R is a subring of R. Proof: Let the center of R be denoted by C. 0r = r0 = 0 for all $r \in R$ so $0 \in C$. Suppose $a, b \in C$. Then (a b)r = ar br = ra + (-1)br = ra + (-1)rb = ra rb = r(a b) for all $r \in R$. So $a b \in C$. Also, abr = arb = rab for all $r \in R$. Thus $ab \in C$. ■
- The center of a division ring is a field. Proof: Let R be a division ring and let C be the center of R. Every nonzero element in R is a unit so the same is true for C. 1r = r1 = r for all $r \in R$ so $1 \in C$. C is commutative by definition. Therefore C is a field.
- Any subring of a field which contains 1 is an integral domain. *Proof:* Let F be a field and let $S \subset F$ be a subring of F such that $1 \in S$. Since F is commutative, so is S. Every nonzero element in F is a unit in F, and a unit cannot be a zero divisor, so S has no zero divisors. Thus S is an integral domain. \blacksquare
- An element $x \in R$ is called nilpotent if $x^m = 0$ for some $m \in \mathbb{Z}^+$.
- Let x be a nilpotent element of a commutative ring R. Then,
 - 1. x is either 0 or a zero divisor. Proof: Suppose $x \neq 0$ and $x^n = 0$, where n is the smallest such integer. Then $xx^{n-1} = 0$, where $x^{n-1} \neq 0$. So x is a zero divisor. Now suppose that x is not a zero divisor and $x^n = 0$ and n is the smallest such integer. Then $xx^{n-1} = 0$ where $x^{n-1} \neq 0$. If $x \neq 0$ then x would be a zero divisor, which is a contradiction. So x = 0.
 - 2. rx is nilpotent for all $r \in R$. Proof: Suppose $x^n = 0$. Then $(rx)^n = r^n x^n = r^n 0 = 0$. So rx is nilpotent.
 - 3. 1 + x is a unit in R. Proof: Suppose $x^k = 0$, where k is the smallest such integer. Then $(1 x)(1 x + x^2 x^3 + ... + (-1)^k x^{k+1}) = 1 + (-1)^k x^{k+1} = 1 + 0 = 1$.
 - 4. If u is a unit, then u + x is a unit. Proof: Suppose $x^k = 0$, where k is the smallest such integer and uv = vu = 1. Then (u + x)v = 1 + vx. Since vx is nilpotent, 1 + vx is a unit. So u + x = u(1 + vx). Since the set of all units is closed under multiplication, u + x is a unit.
- A ring R is called a Boolean ring if $a^2 = a$ for all $a \in R$.
- Every Boolean ring is commutative. *Proof:* Let $a, b \in R$, where R is a boolean ring. First we show that every element in a Boolean ring is its own additive inverse. $(a + a) = (a + a)^2 = a^2 + 2a^2 + a^2 = (a + a) + (a + a) \implies a + a = 0$. Now, $a + b = (a + b)^2 = a^2 + ab + ba + b^2 = (a + b) + (ab + ba) \implies ab = -ba = ba$. ■

2 Polynomial Rings, Matrix Rings, Group Rings

- Let R be a commutative ring with unity. Let x be an indeterminate. A polynomial is a sum of the form $a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$, where $n \ge 0$ and $a_i \in R$.
- If $n \neq 0$, then the polynomial is said to be of degree n, $a_n x^n$ is called the leading term, and a_n is called the leading coefficient. If $a_n = 1$, the polynomial is said to be monic.
- The set of all such polynomials is called the ring of polynomials in the variable x with coefficients in R, and denoted R[x].
- Addition in R[x] is component-wise, so $(a_0 + a_1x + ... + a_nx^n) + (b_0 + b_1x + ... + b_nx^n) = (a_0 + b_0) + (a_1 + b_1)x + ... + (a_n + b_n)x^n$. When multiplying the previous two polynomials, the coefficient of x^k in the product will be $\sum_{i=0}^k a_i b_{k-i}$.
- The set of all constant polynomials in R[x] is just R. So $R \subset R[x]$.
- Since R is commutative with identity, so is R[x].
- Let R be an integral domain and let p(x), q(x) be non-zero elements of R. Then, $\deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x))$, the units of R[x] are the same as the units of R, and R[x] is also an integral domain. Proof: If the leading terms of p(x) and q(x) are a_nx^n and b_mx^m respectively, then the leading term of their product will be $a_nb_mx^{m+n}$, where $a_nb_m \neq 0$, since R is an integral domain. If p(x) is a unit, then p(x)f(x) = 1 for some $f \in R[x]$, then $\deg(p(x)f(x)) = \deg(p(x)) + \deg(f(x)) = 0$, thus $\deg(p(x)) = 0$ and so $p(x) \in R$. Suppose p(x)f(x) = 0 for some $f \in R[x]$, $f \neq 0$. Then $a_nb_m = 0$, which is a contradiction since R is an integral domain. So R[x] has no zero divisors. \blacksquare
- Let R be a ring and $n \in \mathbb{N}$. Then, $M_n(R)$ denotes the set of all $n \times n$ matrices with elements from R. $M_n(R)$ is a ring.
- If R is a non-trivial ring and $n \geq 2$, even if R is commutative, $M_n(R)$ is not commutative.
- An element (a_{ij}) of $M_n(R)$ is called a scalar matrix if for some $a \in R$, $a_{ii} = a$ for all $1 \le i \le n$ and $a_{ij} = 0$ when $i \ne j$. That is, all diagonal entries are the same and all non-diagonal entries are 0. The set of scalar matrices is a subring of $M_n(R)$.
- If R is commutative, then scalar matrices commute with all elements of $M_n(R)$.
- If R has 1, then the scalar matrix with all diagonal entries equal to 1 is the identity of $M_n(R)$. In this case the units of $M_n(R)$ are all invertible $n \times n$ matrices.

3 Ring Homomorphisms and Quotient Rings

- Let R and S be rings. A ring homomorphism is a map $\gamma: R \to S$ such that $\gamma(a+b) = \gamma(a) + \gamma(b)$ and $\gamma(ab) = \gamma(a)\gamma(b)$ for all $a, b \in R$.
- The kernel of the ring homomorphism γ , denoted $\text{Ker}(\gamma)$, is the set of all elements in R that map to 0 in S.
- A bijective ring homomorphism is called an isomorphism.
- If $\gamma: R \to S$ is a homomorphism, then the image of γ is a subring of S. Proof: $\operatorname{Im}(\gamma) = \{s \in S: \exists \ r \in R, \ \gamma(r) = s\}$. Let $a, b \in \operatorname{Im}(\gamma)$. Then there exist $r_1, r_2 \in R$ such that $\gamma(r_1) = a$ and $\gamma(r_2) = b$. Then, $a b = \gamma(r_1) \gamma(r_2) = \gamma(r_1 r_2)$, so $a b \in \operatorname{Im}(\gamma)$. Also, $ab = \gamma(r_1)\gamma(r_2) = \gamma(r_1r_2)$, so $a, b \in \operatorname{Im}(\gamma)$.
- If $\gamma: R \to S$ is a homomorphism, then the kernel of γ is a subring of R. Proof: $\operatorname{Ker}(\gamma) = \{r \in R: \gamma(r) = 0\}$. Let $a, b \in \operatorname{Ker}(\gamma)$. Then $\gamma(a b) = \gamma(a) \gamma(b) = 0$ and $\gamma(ab) = \gamma(a)\gamma(b) = 0$. So $a b, ab \in \operatorname{Ker}(\gamma)$.
- Let R be a ring, $I \subseteq R$ and $r \in R$. Then,
 - 1. $rI = \{ra : a \in I\}$ and $Ir = \{ar : a \in I\}$

- 2. I is a left ideal of R if I is a subring of R and if it is closed under left multiplication by elements from R, i.e, $rI \subseteq I$.
- 3. I is a right ideal of R if I is a subring of R and if it is closed under right multiplication by elements from R, i.e, $Ir \subseteq I$.
- 4. If I is both a left and right ideal, we say it is an ideal of R.
- 5. In a commutative ring, the above three notions are the same thing.
- Let $f: R \to S$ be a ring homomorphism. Let A be a subring of R and B be an ideal of S. Then,
 - 1. If A is an ideal and f is surjective, then f(A) is an ideal. Proof:
 - 2. $f^{-1}(B) = \{r \in R : f(r) \in B\}$ is an ideal of R. *Proof:*
 - 3. If R is commutative, then f(R) is commutative. *Proof:*
 - 4. If R has unity, $S \neq \{0\}$, and f is surjective, then f(1) is the identity of S. Proof:
 - 5. f is injective if and only if $Ker(f) = \{0\}$. Proof:
 - 6. If f is an isomorphism, then $f^{-1}: S \to R$ is an isomorphism. *Proof:*
- Let R be a ring and I be an ideal of R. Then $R/I = \{r+I: r \in R\}$ is a ring under the binary operations: (r+I)+(s+I)=(r+s)+I and (r+I)(s+I)=rs+I, for all $r,s \in R$. R/I is called the quotient ring or factor ring of R by I. Proof: We know cosets form an additive group and it can easily be checked that multiplication is associative and distributive. Suppose s+I=s'+I and t+I=t'+I. Then $s \in s+I \implies s \in s'+I \implies s=s'+a$ for some $a \in I$. Similarly t=t'+b for some $b \in I$. Then $s \in (s'+a)(t'+b)=s't'+s'b+at'+ab \implies st+I=s't'+I$ as s'b+at'+ab will be absorbed by I. So multiplication here is well defined. Now suppose that I is only a subring but not an ideal of R. Then there exist $a \in I$, $r \in R$ such that $ar \notin I$. Then a+I=0+I and so (a+I)(r+I)=ar+I but (0+I)(r+I)=0+I=I. But $ar \notin I$ so $ar+I \ne I$ and the multiplication is not well defined. So I is an ideal if and only if the multiplication in R/I is well defined. ■
- First Isomorphism Theorem for Rings: If $f: R \to S$ is a ring homomorphism, then $\operatorname{Ker}(f)$ is an ideal of R and f(R) is isomorphic to $R/\operatorname{Ker}(f)$. Proof: We have already shown that $\operatorname{Ker}(f)$ is a subring of R. Let $a \in \operatorname{Ker}(f)$, $b \in R$. Then $f(a) = 0 \Longrightarrow f(ba) = f(b)f(a) = 0$ so $ba \in \operatorname{Ker}(f)$. Thus $\operatorname{Ker}(f)$ is an ideal of R. Let $g: R/\operatorname{Ker}(f) \to f(R)$; $g(x+\operatorname{Ker}(f)) = f(x)$. Easy to see that g is a homomorphism. g is also well defined as if $r+\operatorname{Ker}(f) = r'+\operatorname{Ker}(f)$, then $r-r' \in \operatorname{Ker}(f) \Longrightarrow g(r+\operatorname{Ker}(f)) = g(r'+\operatorname{Ker}(f))$. Now g is clearly surjective as for every $g \in f(R)$ there exists $f \in R$ such that $f \in R$
- If I is an ideal of R, then the map $f: R \to R/I$ defined by f(r) = r + I for all $r \in R$ is a surjective ring homomorphism with kernel I. Thus every ideal is the kernel of a ring homomorphism. *Proof:* Easy to see that f is a ring homomorphism. f is surjective as for every $y = r + I \in R/I$ there exists $r \in R$ such that f(r) = y. Suppose $r \in I$. Then r + I = I so $r \in Ker(f)$. Now let $r \in Ker(f)$. Then $f(r) = I \implies r + I = I \implies r \in I$. Thus Ker(f) = I.
- An ideal I of R is called proper if $I \neq R$.
- Let I and J be ideals of R. Then,
 - 1. The sum of I and J is defined as $I + J = \{a + b : a \in I, b \in J\}$.
 - 2. The product of I and J, denoted IJ, is the set of all finite sums of elements of the form ab, where $a \in I, b \in J$.
 - 3. $I \cap J$ is an ideal. Proof: We know that $I \cap J$ is a subring of R. Let $a \in I \cap J$ and $r \in R$. Since $a \in I$, $ra \in I$ and similarly $ra \in J$. So $ra \in I \cap J$.
- I+J is the smallest ideal of R containing both I and J. Proof: Let K be an ideal of R containing both I and J. Let $r \in I+J$. Then r=a+b, where $a \in I$, $b \in J$. As $a,b \in K$, $r=a+b \in K$. Thus $I+J \subseteq K$.

- The characteristic of a ring R, denoted $\operatorname{char}(R)$, is the smallest positive integer n such that $n \cdot x = 0$ for all $x \in R$ (where $n \cdot x$ is defined as n added to itself n times). If no such integer exists, then we say $\operatorname{char}(R) = 0$.
- Let R be a ring with unity. If 1 has infinite order under addition, then char(R) = 0. If 1 has order n under addition, then char(R) = n. Proof: If 1 has infinite order under addition, then there exists no such n such that $n \cdot 1 = 0$. So char(R) = 0. Now let $n \cdot 1 = 0$. Then $n \cdot x = x + x + \dots + x = 1x + 1x + \dots + 1x = (1 + 1 + \dots + 1)x = (n \cdot 1)x = 0$. So char(R) = n.
- If R is an integral domain, then $\operatorname{char}(R) = 0$ or $\operatorname{char}(R) = p$, where p is prime. Proof: Let R be an integral domain. It suffices to show that if R has nonzero characteristic n then n is prime. Let $\operatorname{char}(R) = n$. Suppose n = st, where $1 \le s, t \le n$. Then $0 = n \cdot 1 = (s \cdot 1)(t \cdot 1)$, thus either $s \cdot 1 = 0$ or $t \cdot 1 = 0$. Since n is the least integer with that property, n = s or n = t. Thus n is prime.

4 Properties of Ideals

- Let R be a commutative ring with unity, and $A \subseteq R$. Then,
 - 1. The smallest ideal of R containing A is called the ideal generated by A, and denoted (A).
 - 2. An ideal generated by a single element is called a principal ideal.
 - 3. An ideal generated by a finite set is called a finitely generated ideal.
- Let I be an ideal of R. Then I=R if and only if I contains a unit. Proof: Suppose $u \in I$ where u is a unit. So there exists $v \in R$ such that uv=1. Thus $1=uv \in I \implies r=1r \in I$ for all $r \in R$. So I=R. Conversely let I=R. Since $1 \in R$, $1 \in I$.
- Let R be a commutative ring with unity. Then R is a field if and only if its only ideals are $\{0\}$ and R. Proof: Let I be an ideal of R, and suppose that R is a field. Then $\{0\}$ and R itself are both obviously ideals of R. Suppose $I \neq \{0\}$. Then there exists $r \in I$ such that $r \neq 0$. But then r is a unit, so I = R. So these are the only two ideals of a field. Conversely let $\{0\}$ and R be the only two ideals of R. Let $u \in R$ such that $u \neq 0$. As $\langle u \rangle = R$, $1 \in \langle u \rangle$ and thus there exists $v \in R$ such that uv = 1. So every nonzero element is a unit and thus R is a field.
- If R is a field then any nonzero ring homomorphism from R into another ring is injective. *Proof:* The kernel of every ring homomorphism is an ideal, and when nonzero, it is a proper ideal. Since $\{0\}$ is the only proper ideal of a field, it is the kernel.
- An ideal M in a ring S is called a maximal ideal if M is proper and the only ideals containing M are M and S.
- In a ring with identity, every proper ideal is contained in a maximal ideal. *Proof:*
- Let R be commutative. Then A is a maximal ideal if and only if R/A is a field. Proof: Suppose R/A is a field and that A is contained in a proper ideal B. Let $b \in B$, $b \notin A$. Then b+A is a nonzero element of R/A, and thus there exists $c+A \in R/A$ such that (b+A)(c+A) = 1+A, the multiplicative identity of R/A. Since $b \in B$, $bc \in B$. As 1+A=bc+A, $1-bc \in A \subset B$. Thus $1=1-bc+bc \in B \implies B=R$. Thus A is maximal. Conversely, let A be maximal and let $b \in R$, $b \notin A$. We need to show that b+A is a unit. Consider $B=\{br+a: r \in R, a \in A\}$. This is an ideal of R that properly contains A, and thus B=R. So $1 \in B$, and so 1=bc+a', where $a' \in A$. Finally, 1+A=bc+a'+A=bc+A=(b+A)(c+A). ■
- Let R be commutative. An ideal P is a called a prime ideal if P is proper and whenever $ab \in P$, either $a \in P$ or $b \in P$, where a, b are elements of R.
- Let R be commutative. Then A is a prime ideal if and only if R/A is an integral domain. Proof: Suppose R/A is an integral domain and $ab \in A$. Then (a+A)(b+A) = ab+A = A. Thus either a+A=A or b+A=A, i.e, either $a \in A$ or $b \in A$. Therefore A is prime. Conversely let A be prime. We know that R/A is a commutative ring with unity with unity for any proper ideal A. Let (a+A)(b+A) = 0+A=A. Then $ab \in A$ and thus $a \in A$ or $b \in A \implies a+A=A$ or b+A=A.

- $\bullet\,$ In a commutative ring, every maximal ideal is a prime ideal.
- R is a field if and only if $\{0\}$ is a maximal ideal.
- ullet A commutative ring R is called a local ring if it has a unique maximal ideal.

5 Rings of Fractions

•

6 Chinese Remainder Theorem