GANs

https://github.com/timestocome/DeepLearning-Talks

AutoEncoders

- Compression, noise removal
- Z space, Latent Space, Bottleneck

- data need not be labeled
- still used internally in complex GANS
- ... and other neural networds

Latent Space, Z space

Not continuous

Can be mapped onto data but poorly grouped, can't create similar data

Variational Auto Encoders

- Continuous Z Space, learns distribution
- Binary Cross Entropy + KL Divergence
- Similar data grouped together
- Can create similar data

How VanGogh is it?

How is this measured?

$$D(p||q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}.$$

GANs

- Discriminator (Critic) determines error
- Generator can be used to create new data (medical imaging)

Training GANs

for each batch:

take a random real example, and generated fake and classify them compute error and update Discriminator

take random noise and create fake example for Discriminator to classify compute error and update Generator

Semi Supervised GAN

Can be used with partially labeled data (Kannada/MNIST)

(different distribution btwn train/test/val data, used only 4k labeled images of 40k, 81% accuracy)

Things to remember

Changing the cost function has led to big breakthroughs in ML (GANS, RL)

Compound cost functions are difficult to train (mode collapse - mae)

None of the above can be a useful class (image recognition)

Networks can be designed to label data, or augment data

Code

Semi Supervised GAN Kannada code https://github.com/timestocome/DeepLearning-Talks/tree/master/GAN%20Talk

- RL GANs —- World Models https://worldmodels.github.io/
- Really Awesome GAN resources
 https://github.com/nightrome/really-awesome-gan
- Keras GANs https://github.com/eriklindernoren/Keras-GAN
- Numpy GAN https://github.com/shinseung428/gan_numpy

Resources

Paper

Generative Adversarial Nets

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Books

- Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play (O'Reilly)
- GANs in Action (Manning)

Misc

Papers with Code: https://paperswithcode.com