1 Filtros Ativos Em Sistemas Elétricos

30 Págs

1.1 Potência Ativa, Reativa e Fator de Potência

Como forma de entender melhor a qualidade de energia e a operação de filtros ativos é necessário ter os conceitos de potência ativa, reativa e fator de potência .

Para entender melhor a definição de potência em circuitos elétricos é necessário antes desenvolver alguns conceitos utilizados no desenvolvimento matemático para a interpretação das grandezas físicas. Ao longo da história várias teorias foram abordadas e importantes trabalhos são reconhecidamente aceitos para detalhar de melhor maneira casos desde específicos, quanto generalista no enfoque quanto a relação de tensão e corrente de um circuito elétrico. Esse estudo todo deu origem a área de teoria da potência, a qual vem sendo estudada até os dias de hoje para o aprofundamento e elaboração de novos conceitos para explicar fenômenos específicos [1] .

A teoria da potência tem o intuito de avaliar a troca de energia entre fonte de potência elétrica e a carga do ponto de vista das características dos valores de tensão corrente em seus terminais [2]. Esse estudo tem por finalidade aferir o fator de potência, a qual é um parâmetro intrínseco ao circuito e depende apenas das características da carga, independentemente da fonte. Cabe salientar que a carga possui características distintas ao circuito, de modo que a sua disposição na estrutura de diferentes sistemas leva a uma caracterização diferente do fator de potência. Ainda na avaliação de troca de energia entre os elementos do circuito, o estudo da teoria da potência tem por finalidade prover informações a respeito da eficiência na troca de energia entre fontes e cargas. A eficiência na troca de potência em circuitos é avaliada segundo a corrente que circula pelo mesmo. Esse conceito afere a mínima corrente necessária para transferir uma quantidade energia num determinado espaço de tempo dada uma tensão específica [2]. O fator de potência está intimamente ligado à eficiência na troca de energia, sendo que em circuitos a qual seu valor é baixo existe um alto valor de corrente a qual circula, porém não é convertido em trabalho na saída do sistema. A consequência da presença de uma corrente excedente circulante é dada pela sobrecarga da fonte, aumento das perdas nos condutores e degradação da qualidade de energia. Esta ultima é mostrada na seção ??. Nessa seção será mostrada que a incidência de correntes com distorção harmônica traz eleva a potência necessária extraída da fonte para uma determinada carga ativa do sistema. Com isso o

fator de potência é degradado, fazendo com que teu valor seja diminuído. Com isso será mostrado que para o caso onde o fator de potência é unitário tem-se que a qualidade de energia é tida como perfeita e há plena eficiência na troca de energia entre fontes e cargas.

Dentre as principais grandezas a ser estudada na Teoria da Potência elenca-se a potência ativa e aparente. É conhecido que na operação de um circuito elétrico que nem toda a corrente proveniente de uma fonte de tensão é convertida em trabalho para cada unidade de tempo. Nesse contexto aplica-se a definição de potência ativa, a qual é a corrente que efetivamente é transferida de uma fonte para a carga de maneira a gerar trabalho na saída do sistema. Há também a potência aparente que é definida com a potência que é gerada por uma fonte de energia e que circula pelo sistema na forma de corrente elétrica, sem necessariamente ser convertida em trabalho na saída do sistema. Esse contexto pode-se estender para o entendimento para qualidade de energia de um sistema

Para o estudo a seguir sobre a definição de potência é necessário antes ter conhecimento de alguns conceitos matemáticos. Dentre esses conceitos, tem-se a determinação de valores eficazes de funções. Dada uma função qualquer no domínio do tempo f(t), periódica e com período cujo valor é dado por T, a formulação matemática para encontrar seu valor eficaz recai segundo a norma Euclidiana [1], dada pela seguinte equação:

$$F_{ef} = \sqrt{\frac{1}{T} \int_0^T f(t)^2 dt}$$

$$\tag{1.1}$$

1.1.0.1 Monofásico

Dada uma função f(t) sinusoidal com a frequência angular ωt e amplitude cujo valor de pico é dado por F_p , tem-se que o valor eficaz de f(t) é dada segundo a equação:

$$F_{ef} = \sqrt{\frac{1}{T} \int_0^T [F_P \cos(\omega t + \phi)]^2 dt} = \frac{1}{\sqrt{2}} F_P$$
 (1.2)

Portanto tem-se que o valor de pico de uma função sinusoidal é $\sqrt{2}$ vezes maior que o valor eficaz. Cabe enfatizar que determinação desse valor é independente da frequência angular da função.

O conceito mais simples para o estudo da transferência de potência pode ser aplicado ao circuito mais simples. Considerando um circuito monofásico, senoidal linear e operando em regime permanente, as equações da tensão e corrente são expressas por 1.3 e 1.4, respectivamente.

$$v(t) = \sqrt{2} V \cos(\omega t) \tag{1.3}$$

$$i(t) = \sqrt{2} I \cos(\omega t - \phi) \tag{1.4}$$

A potência instantânea em um circuito monofásico é definida segundo a equação 1.5.

$$p(t) = v(t)i(t)$$

$$= 2 V \cos(\omega t) I \cos(\omega t - \phi)$$

$$= V I [\cos(\phi) + \cos(2\omega t - \phi)]$$

$$= V I \cos(\phi) [1 + \cos(2\omega t)] + V I \sin(\phi) \sin(2\omega t)$$

$$(1.5)$$

A equação 1.5 pode ser dividido em dois termos variantes no tempo: o primeiro é dado por

$$VI\cos(\phi)[1+\cos(2\omega t)]\tag{1.6}$$

e o segundo por:

$$VI\sin(\phi)\sin(2\omega t) \tag{1.7}$$

Por definição, a potência ativa é definida pelo valor médio da equação 1.6, ou seja, pela expressão 1.8, e a potência reativa é definida pelo valor de pico da equação 1.7, ou pela expressão 1.9.

$$P = VI\cos\phi\tag{1.8}$$

$$Q = VI\sin\phi \tag{1.9}$$

Uma rápida análise nas equações 1.8 e 1.9 trazem importantes considerações a respeito do modo de operação de um circuito monofásico, senoidal, linear. Primeiramente pode-se observar que a equação 1.8 é oscilatória e apresenta valores sempre positivos. A porção de potência ativa pode ser interpretada como a que proporciona o fluxo de energia proveniente da fonte para ser transformada em trabalho na carga. Essa consideração é valida para potência ativa visto que seu valor nunca é negativo. Ainda, por ser oscilatória,

define-se o valor médio a qual é a média de transferência de potência da fonte para carga. Por outro lado, a equação 1.9 apresenta um valor senoidal centrado em zero. Sua interpretação vem do fato de que a carga hora age como consumidora, hora age como fornecedora de potência. Nesse caso linear esse efeito é causado pela inserção de elementos armazenadores de energia no circuito, como indutores e capacitores. A potência reativa é dada pela oscilação de energia entre a fonte e a carga, a qual não é transformada em trabalho na saída do sistema. Por existir um fluxo de potência de forma oscilatória com média zero, existe uma parcela da corrente que flui pelo sistema mas não age na transferência de potência entre a fonte e carga de modo a ser transformar em trabalho na saída do sistema.

As formas de onda que ilustram um caso específico dado por um sistema linear com tensão e correntes senoidais, com esta última defasada com relação à primeira, são mostrados na figura 2. Aqui são apresentados a tensão, a corrente, as potências instantânea, ativa e reativa. O gráfico superior apresenta a tensão, a corrente e a potência instantânea, que nada mais é que a multiplicação de v(t) por i(t). O gráfico inferior apresenta as formas de onda das expressões 1.6 e 1.7, além da potência instantânea. Aqui cabe observar também os valores de P e Q. Outra observação importante é o fato de a potência instantânea apresentar valores negativos em alguns intervalos de tempo. Durante esse intervalo tem-se que a carga está entregando potência para a fonte.

FIGURA 1 – Circuito real monofásico

A definição de potência aparente é dada pela multiplicação dos valores eficazes da tensão e corrente, respectivamente, ou seja:

$$S = VI \tag{1.10}$$

A expressão de S pode ser avinda através dos valores de P e Q. Considerando as mesmas referencias de defasagem de angulo das expressões 1.3 e 1.4, tem-se que a segunte

FIGURA 2 - Circuito real monofásico

expressão pode ser concebida:

$$S = \sqrt{P^2 + Q^2} = \sqrt{(VI\cos\phi)^2 + (VI\sin\phi)^2} = VI \tag{1.11}$$

Com isso pode inferir o triangulo de cargas. isso vem também do fato dos fasores serem legais, pode cre.____

1.1.0.2 Monofásico

Para o estudo proposto nesse trabalho a teoria da potência proposta por Stanislaw Fryze é suficientemente completa para o entendimento da questão de potência.

Segundo Fryze [1] em sinais periódicos com forma de onda qualquer, define-se que a potência ativa de um sistema é dado segundo o valor médio da potência instantânea. A potência instantânea é definida pela multiplicação da tensão e corrente instantâneas, representadas por v(t) e i(t), respectivamente. Sendo assim define-se a potência ativa por:

$$P = \frac{1}{T} \int_0^T p(t)dt = \frac{1}{T} \int_0^T v(t)i(t)dt$$
 (1.12)

O definição de potência aparente então pode ser expressa segundo a equação:

$$S = VI \tag{1.13}$$

Falar brevemente do bagulho de Budeanu, mas que não
é muito mais
aceito devido
ao fato
de que
leva as
interpretações
erroneas

Enfatizando que V e I da equação $\ref{eq:sample}$ são os valores eficazes de encontrados nas equações $\ref{eq:sample}$ e $\ref{eq:sample}$, respectivamente.

Outra definição importante na teoria da potência vem da relação entre os valores S e P para a determinação de potência reativa, ou seja, aquela que circula pela rede porém sem contribuir para a geração de trabalho na saída do sistema. A definição de potência reativa é dada a seguir:

$$Q = \sqrt{S^2 - P^2} \tag{1.14}$$

Com essas definições como base, Fryze propôs a decomposição de corrente total em componentes de corrente ativa e reativa. Essa definição separa da corrente circulante aquelas que realmente transfere energia para a carga. Tal corrente é determinada segundo uma condutância equivalente G_P da carga monofásica. A interpretação de tal condutância equivalente representa uma carga puramente resistiva, a qual para uma mesma tensão, absorve a mesma potência ativa da carga realmente utilizada. A definição da corrente ativa, juntamente com a inclusão da condutância equivalente é dada a seguir:

$$i_p(t) = \frac{P}{V^2}v(t); \qquad G_P = \frac{P}{V^2} \rightarrow i_p(t) = G_P v(t)$$
 (1.15)

Como explicado anteriormente, $i_p(t)$ é apenas uma componente da corrente total instantânea. Existe ainda uma parcela da corrente a qual não contribui para a transferência de potência para a carga, denominada corrente reativa, e que pode ser definida a partir da equação:

$$i_q(t) = i(t) - i_p(t)$$
 (1.16)

Uma característica importante a ressaltar é a ortogonalidade apresentada entre i_p e i_q . Esse fato vem do desenvolvimento das equações que definem a potência e demonstram importante característica ao sistema. Por ser ortogonais as correntes i_p e i_q existe a seguinte implicação:

$$\frac{1}{T} \int_0^T i_p(t) i_q(t) = 0 \iff I^2 = I_p^2 + I_q^2$$
 (1.17)

1.1.0.3 Trifásico

1.1.1 Definição de Potências em Sistemas Não-Senoidais

1.1.2 Potência Instantânea Utilizando a Teoria P-Q

1.1.2.1 considerando coordenadas abc

Tendo o sistema com as tensões e correntes definidas por:

$$\mathbf{v} = \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} \tag{1.18}$$

$$\mathbf{i} = \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} \tag{1.19}$$

A potência ativa instantânea do sistema é definida por

$$p \triangleq \mathbf{v} \cdot \mathbf{i} \tag{1.20}$$

e a potência reativa instantânea do sistema é definido por

$$q \triangleq \mathbf{v} \times \mathbf{i} \tag{1.21}$$

A potência **q** é dada por um vetor na forma:

$$\mathbf{q} = \begin{bmatrix} q_a \\ q_b \\ q_c \end{bmatrix} = \begin{bmatrix} v_b i_c - v_c i_b \\ v_c i_a - v_a i_c \\ v_a i_b - v_b i_a \end{bmatrix}$$
(1.22)

Ainda é defnido a corente ativa instantanea por:

$$\mathbf{i_p} = \begin{bmatrix} i_{ap} \\ i_{bp} \\ i_{cp} \end{bmatrix} \triangleq \frac{p}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$$
 (1.23)

Ainda é defnido a corente reativa instantanea por:

$$\mathbf{i_q} = \begin{bmatrix} i_{aq} \\ i_{bq} \\ i_{cq} \end{bmatrix} \triangleq \frac{\mathbf{q} \times \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$$
 (1.24)

$$\mathbf{i_p} = \begin{bmatrix} i_{ap} \\ i_{bp} \\ i_{cp} \end{bmatrix} = \begin{bmatrix} v_a \left(\frac{v_a i_a + v_b i_b + v_c i_c}{v_a^2 + v_b^2 + v_c^2} \right) \\ v_b \left(\frac{v_a i_a + v_b i_b + v_c i_c}{v_a^2 + v_b^2 + v_c^2} \right) \\ v_c \left(\frac{v_a i_a + v_b i_b + v_c i_c}{v_a^2 + v_b^2 + v_c^2} \right) \end{bmatrix}$$

$$(1.25)$$

$$\mathbf{i_{q}} = \begin{bmatrix} i_{aq} \\ i_{bq} \\ i_{cq} \end{bmatrix} = \begin{bmatrix} \frac{v_{c}(v_{c}i_{a} - v_{a}i_{c}) - v_{b}(v_{a}i_{b} - v_{b}i_{a})}{v_{a}^{2} + v_{b}^{2} + v_{c}^{2}} \\ \frac{v_{a}(v_{a}i_{b} - v_{b}i_{a}) - v_{c}(v_{b}i_{c} - v_{c}i_{b})}{v_{a}^{2} + v_{b}^{2} + v_{c}^{2}} \\ \frac{v_{b}(v_{b}i_{c} - v_{c}i_{b}) - v_{a}(v_{c}i_{a} - v_{a}i_{v})}{v_{a}^{2} + v_{b}^{2} + v_{c}^{2}} \end{bmatrix}$$

$$(1.26)$$

Fazendo a soma de i_p com i_q obtém-se a seguinte relação:

$$\mathbf{i_p} + \mathbf{i_q} = \begin{bmatrix} \frac{v_a(v_ai_a + v_bi_b + v_ci_c)}{v_a^2 + v_b^2 + v_c^2} + \frac{v_c(v_ci_a - v_ai_c) - v_b(v_ai_b - v_bi_a)}{v_a^2 + v_b^2 + v_c^2} \\ \frac{v_b(v_ai_a + v_bi_b + v_ci_c)}{v_a^2 + v_b^2 + v_c^2} + \frac{v_a(v_ai_b - v_bi_a) - v_c(v_bi_c - v_ci_b)}{v_a^2 + v_b^2 + v_c^2} \\ \frac{v_c(v_ai_a + v_bi_b + v_ci_c)}{v_a^2 + v_b^2 + v_c^2} + \frac{v_b(v_bi_c - v_ci_b) - v_a(v_ci_a - v_ai_v)}{v_a^2 + v_b^2 + v_c^2} \end{bmatrix} = \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \mathbf{i} \quad (1.27)$$

ou seja, prova-se que pela definição de corrente ip e iq que a composição estas é dada pela corrente suprida pelo fonte à carga do sistema. Ainda pela definição de ip e iq, utilizando a definição em (EQUACAO p) porém utilizando $p = \mathbf{v} \cdot \mathbf{i_q}$ temos:

$$\mathbf{v} \cdot \mathbf{i_q} = \mathbf{v} \cdot \left(\frac{\mathbf{q} \times \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right)$$

$$= \mathbf{v} \cdot \left(\frac{(\mathbf{v} \times \mathbf{i}) \times \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right)$$

$$= \mathbf{v} \cdot \left(\frac{-(\mathbf{i} \cdot \mathbf{v})\mathbf{v} + (\mathbf{v} \cdot \mathbf{v})\mathbf{i}}{\mathbf{v} \cdot \mathbf{v}}\right)$$

$$= \frac{-(\mathbf{i} \cdot \mathbf{v})(\mathbf{v} \cdot \mathbf{v}) + (\mathbf{v} \cdot \mathbf{v})(\mathbf{i} \cdot \mathbf{v})}{\mathbf{v} \cdot \mathbf{v}}$$

$$= 0$$
(1.28)

ou seja, prova-se que pela definição de corrente ip e iq que a composição estas é dada pela corrente suprida pelo fonte à carga do sistema. Ainda pela definição de ip e iq, utilizando a definição em (EQUACAO p) porém utilizando $p = \mathbf{v} \cdot \mathbf{i_q}$ temos:

$$\mathbf{v} \times \mathbf{i_p} = \mathbf{v} \times \left(\frac{p}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}\right)$$

$$= \mathbf{0}$$
(1.29)

isto tambem implica que as correntes $\mathbf{i_q}$ são ortogonais à \mathbf{v} , ou seja $\mathbf{v} \cdot \mathbf{i_q} \equiv 0$ e que as correntes $\mathbf{i_p}$ são paralelas à \mathbf{v} , ou então $\mathbf{v} \times \mathbf{i_p} \equiv 0$. Isto trás uma implicação importante que é a ortogonalidade entre as correntes $\mathbf{i_p}$ e $\mathbf{i_q}$ no sistema, ou seja:

$$\mathbf{i_p} \cdot \mathbf{i_q} \equiv 0 \tag{1.30}$$

Com isso, também é mostrado que a parcela da corrente $\mathbf{i_p}$ corresponde apenas a transferência de potência ativa instantânea no sistema. Por outro lado tem-se que a corrente $\mathbf{i_q}$ corresponde apenas a parcela da potência reativa instantânea do sistema

A teoria p-q é baseada na transformação das tensões e correntes das coordenadas abc para $\alpha\beta0$

[3] [4]

1.1.2.2 considerando coordenadas $\alpha\beta0$

1.1.2.3 Transformada de Clarke

$$\begin{bmatrix} v_0 \\ v_{\alpha} \\ v_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix}$$
(1.31)

1.2 Filtros Ativos

1.2.1 Filtros Ativo Empregando a Teoria P-Q

Referências Bibliográficas

- [1] PAREDES, H. K. M. Eletrônica de Potência para Geração, Transmissão e Distribuição de Energia Elétrica: Tópicos em teorias de potência em condições não ideais de operação. Acessado em 24/06/2016. Disponível em: http://www.dsce.fee.unicamp.br/ antenor/pdffiles/it744/CAP6.pdf>.
- [2] STAUDT, V. Fryze-buchholz-depenbrock: A time-domain power theory. In: IEEE. 2008 International School on Nonsinusoidal Currents and Compensation. [S.l.], 2008. p. 1–12.
- [3] PENG, F. Z.; LAI, J.-S. Generalized instantaneous reactive power theory for three-phase power systems. *IEEE Transactions on Instrumentation and Measurement*, IEEE, v. 45, n. 1, p. 293–297, 1996.
- [4] AKAGI, H.; KANAZAWA, Y.; NABAE, A. Instantaneous reactive power compensators comprising switching devices without energy storage components. *IEEE Transactions on industry applications*, IEEE, n. 3, p. 625–630, 1984.