CNN 알고리즘

MLP의 문제점

이미지 데이터

- 컬러 이미지는 3개의 채널로 표현됩니다.
- 3개의 채널은 Red, Green, Blue 3원색입니다.

color image

■ 각 채널은 0~255사이의 값으로 빨강의 정도, 녹색의 정도, 파랑의 정도를 각각 나타냅니다.

이미지 데이터 처리

- 200x200x3 크기 이미지는 첫 번째 hidden layer의 1개의 뉴런에 대해 200x200x3=120,000개의가중치를 필요로 하여, 일반 신경망은 이미지를 다루기에 적합하지 않습니다.
- ConvNet은 입력이 이미지로 이뤄져 있다는 특징을 살려 좀 더 합리적인 방향으로 아키텍처를 구성하였습니다.
- CNN과 MLP의 가장 큰 차이점은 이미지 Feature 추출방법입니다. MLP는 이미지의 픽셀 값을 Input으로 사용하는 것이고, CNN은 이미지의 Region Feature를 Convolution Layer와 Pooling Layer를 이용해 추출하고 그 Feature를 MLP의 Input으로 사용하는 것입니다.
- CNN이 Computer Vision에서 성능이 좋은 이유는 Region Feature를 추출할 수 있기 때문입니다.

hidden layer 1 hidden layer 2

CNN(Convolutional Neural Network)

사람의 시각 피질 메커니즘에 영감을 받아 설계된 이미지, 영상등을 인식하는 신경망 모델 Convolution Layer(합성곱층)에서는 각 filter가 입력 이미지의 픽셀 전체를 차례로 훓고 지나가며 linear combination을 진행하고 Feature Map을 구성합니다.

출처: https://wonwooddo.tistory.com/47

CNN 모델 개념

CNN은 뇌가 사물을 구별하듯 생김새 정보로 사물을 학습하고 구별해 낸다.

■ 숫자 2에서 공통적으로 얻을 수 있는 생김새 정보

■ CNN은 어떻게 특징을 찾아 내는가?

대각선 필터는 숫자 2로부터 두 곳의 대각선 특징을 감지하지만, 숫자 1에서는 대각선 특징을 발견하지 못한다.

CNN 모델 개념

1 _{x1}	1 _{x0}	1 _{x1}	0	0
O _{x0}	1 _{x1}	1 _{x0}	1	0
0 _{x1}	0 _{x0}	1 x1	1	1
0	0	1	1	1
0	1	1	0	0

4	

1	1 _{x1}	1 _{x0}	0 _{x1}	0
0	1 _{x0}	1 _{x1}	1 _{x0}	0
0	0 _{x1}	1 _{x0}	1 _{x1}	1
0	0	1	1	1
0	1	1	0	0

4	3	

1	1	1 _{x1}	0 _{x0}	Q _{x1}
0	1	1 _{x0}	1 _{x1}	O _{x0}
0	0	1 _{x1}	1 _{x0}	1 _{x1}
0	0	1	1	1
0	1	1	0	0

4	3	4

1	1	1	0	0
0 _{x1}	1 _{x0}	1 _{x1}	1	0
0 _{x0}	0 _{x1}	1 _{×0}	1	1
0 _{x1}	0 _{x0}	1 x1	1	1
0	1	1	0	0

4	3	4
2		

1	1	1	0	0
0	1 _{x1}	1 _{x0}	1 _{x1}	0
0	0 _{x0}	1 _{x1}	1 _{x0}	1
0	0 _{x1}	1 _{x0}	1 _{x1}	1
0	1	1	0	0

4	3	4
2	4	

1	1	1	0	0
0	1	1 _{x1}	1 _{x0}	Q _{x1}
0	0	1 _{x0}	1 _{x1}	1 _{x0}
0	0	1 _{x1}	1 _{x0}	1 _{x1}
0	1	1	0	0

4	3	4
2	4	3

1	1	1	0	0
0	1	1	1	0
0 _{x1}	O _{x0}	1 _{x1}	1	1
O _{x0}		1 _{x0}	1	1
0 _{x1}	1 ×0	1 _{x1}	0	0

4	3	4
2	4	3
2		

1	1	1	0	0
0	1	1	1	0
0	0 _{x1}	1 _{x0}	1 _{x1}	1
0	0 _{x0}	1 _{x1}	1 _{x0}	1
0	1 _{x1}	1 _{x0}	0 _{x1}	0

4	3	4
2	4	3
2	3	

1	1	1	0	0
0	1	1	1	0
0	0	1 _{x1}	1 _{x0}	1 _{x1}
0	0	1 _{x0}	1	1 _{×0}
0	1	1 _{x1}	0 _{x0}	0 _{×1}

4	3	4
2	4	3
2	3	4

Padding

패딩(padding)을 1만큼 적용한 이미지 데이터 행렬

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	1	0
0	0	7	1	0	0	0
0	0	0	0	0	0	0

Pooling

1	4	8	3
6	9	2	1
11	13	6	7
8	19	8	2

CNN

CNN

ConvNet 필요 이유

1
1
0
4
2
1
0
2
1

Input Image

Convolution Layer - Kernel

1,	1,	1,	0	0
0 _{×0}	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature Convolution Layer - Kernel

0	0	0	0	0	0	
0	156	155	156	158	158	
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	
0	145	143	143	148	158	

0	0	0	0	0	0	S. 17.
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

Kernel Channel #2

Kernel Channel #3

https://bit.ly/2RVDoFl

Convolution Layer - Kernel

Convolution Layer

SAME padding Convolution Operation with Stride Length = 2

y/2RVDoFI

Convolution Layer - The Kernel

No padding, no strides Arbitrary padding, no strides

Half padding, no strides

Full padding, no strides

Convolution Layer - The Kernel

Pooling Layer

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Pooling Layer

FC Layer(Fully Connected Layer)

CNN 아키텍처

CNN 아키텍처 - Feature Extraction

CNN 아키텍처 - Classification

Thank you