Binary Multipliers

The key trick of multiplication is memorizing a digit-to-digit table... Everything else was just adding

×	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

×	0	1
0	0	0
1	0	1

You've got to be kidding... It can't be that easy

Reading: Study Chapter 3.

Have We Forgotten Something?

Our ALU can add, subtract, shift, and perform Boolean functions. But, even rabbits know how to multiply...

But, it is a huge step in terms of logic... Including a multiplier unit in an ALU doubles the number of gates used.

A good (compact and high performance) multiplier can also be tricky to design. Here we will give an overview of some of the tricks used.

Binary Multiplication The "Binary"

Binary multiplication is implemented using the same basic longhand algorithm that you learned in grade school.

$$A_3$$
 A_2 A_1 A_o
 x B_3 B_2 B_1 B_o

Multiplying N-digit number by M-digit number gives (N+M)-digit result

Easy part: forming partial products (just an AND gate since B_l is either 0 or 1)

Hard part: adding M, N-bit partial products

Sequential Multiplier

Assume the multiplicand (A) has N bits and the multiplier (B) has M bits. If we only want to invest in a single N-bit adder, we can build a sequential circuit that processes a single partial product at a time and then cycle the circuit M times:

Init: $P \leftarrow O$, load A&B

Repeat M times { $P \leftarrow P + (B_{LSB} = = 1? A : O)$ shift P/B right one bit
}

Done: (N+M)-bit result in P/B

Simple Combinational Multiplier

Carry-Save Combinational Multiplier

Higher-Radix Multiplication

Idea: If we could use, say, 2 bits of the multiplier in generating each partial product we would halve the number of columns and halve the latency of the multiplier!

Comp 411 – Spring 2013 2/27/13 L10 – Multiplication 7

Booth Recoding

A "1" in this bit means the previous stage needed to add 4*A. Since this stage is shifted by 2 bits with respect to the previous stage, adding 4*A in the previous stage is like adding A in this stage!

Booth Recoding

Logic surrounding each basic adder:

- Control lines (x2, Sub, Zero) are shared across each row
- Must handle the "+1" when Sub is 1 (extra half adders in a carry save array)

Sub Zero A B CI S

NOTE:

- Booth recoding can be used to implement signed multiplications

B _{2K+}	1 B _{2K}	B _{2K-1}	x2 Sub Zero			
0	0	0	Χ	Χ	1	
0	0	1	0	0	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	1	1	0	
1	0	1	0	1	0	
1	1	0	1	1	0	
1	1	1	Χ	X	1	

Bigger Multipliers

- Using the approaches described we can construct multipliers of arbitrary sizes, by considering every adder at the "bit" level
- We can also, build bigger multipliers using smaller ones

 Considering this problem at a higher-level leads to more "non-obvious" optimizations

Can We Multiply With Less?

- How many operations are needed to multiply 2, 2-digit numbers?
- 4 multipliers4 Adders

- This technique generalizes
 - You can build an 8-bit multiplier using
 4 4-bit multipliers and 4 8-bit adders
 - $O(N^2 + N) = O(N^2)$

An O(N²) Multiplier In Logic

The functional blocks would look like

A Trick

 The two middle partial products can be computed using a single multiplier and other partial products

•
$$DA + CB = (C + D)(A + B) - (CA + DB)$$

3 multipliers8 adders

- This can be applied recursively

 (i.e. applied within each partial product)
- Leads to O(N^{1.58}) adders
- This trick is becoming more popular as N grows. However, it is less regular, and the overhead of the extra adders is high for small N

Let's Try it By Hand

1) Choose 2, 2 digit numbers to multiply $ab \times cd$

- 3) Find partial subtracted sum, $55 = p_3 (p_1 + p_2)$ 55 = 60 - (12 + 14) = 34
- 4) Add to find product, $p = 100*p_1 + 10*55 + p_2$ $p = 1200 + 340 + 14 = 1554 = 42 \times 37$

An O(N^{1.58}) Multiplier In Logic

The functional blocks would look like

Where
$$SS = (C+D)(A+B) - (CA+DB)$$

Binary Division

- Division merely reverses the process
 - Rather than adding successively larger partial products,
 subtract successively smaller divisors
 - When multiplying, we knew which partial products to actually add (based on the whether the corresponding bit was a O or a 1)
 - In division, we have to try *both ways*

Restoring Division

Division Example

Start:

$$Q = 0 = 00000000$$

$$R = 42 = 00101010$$

$$D = (7*8) = 00111000$$

Note: K = 3, so repeat 4 times

Subtract:

$$R = 42 = 00101010$$

$$D = -(7*8) = 00111000$$

 $-14 = 11110001$

Restore:

$$R = 42 = 00101010$$

Shifts:

$$Q = 00000000$$

$$D = 00011100$$

Step 2:

R D Q

$$42 \div 7 = 6$$

Start: Align bittle of Divisor and Remainder, K = number of bits shifted. Quotient = 0

Q = 0 in the Rem 0000000000

R = 42 = 00101010

D = $(7*4)$ = 00011100

Chiff Quotient left one bit set rightmost bit = 1

Subtract:

R = 42 = 00101010

D = $-(7*4)$ = 00011100

D = $-(7*4)$ = 00011100

R = 14 = 000011100

Shifts:

$$Q = 00000001$$

Division Example (cont)

Subtract:

$$R = 14 = 00001110$$

 $D = -(7*2) = 00001110$
 $0 = 00000000$

No Restore Shifts:

$$Q = 00000011$$

 $D = 00000111$

Next Time

• We dive into floating point arithmetic

