CH-231-A Algorithms and Data Structures ADS

Lecture 33

Dr. Kinga Lipskoch

Spring 2022

Graph Representations: Directed and Undirected Graphs

Definition:

- A directed graph (digraph) G = (V, E) is an ordered pair consisting of
 - a set V of vertices and
 - ▶ a set $E \subset V \times V$ of edges.
- ▶ In an undirected graph G = (V, E), the edge set E consists of unordered pairs of vertices.

ADS Spring 2022 2 / 7

Number of Edges and Vertices

- ▶ In a graph, the number of edges is bound by $|E| = O(|V|^2)$.
- ▶ If G is connected, then $|E| \ge |V| 1$.
- ▶ Hence, for a connected graph we get $\lg |E| = \Theta(\lg |V|)$.

ADS Spring 2022 3/7

Adjacency Matrices

Definition:

The adjacency matrix of a graph G = (V, E) with $V = \{1, ..., n\}$ is the $n \times n$ matrix A given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

Dense representation: Storage requirements are $\Theta(|V|^2)$.

Example:

◆□▶◆□▶◆壹▶◆壹▶ 壹 めの○

Adjacency List

Definition:

An adjacency list of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

Example:

Sparse representation:

- Storage requirements for Adj[v] is $\Theta(|\text{outgoing edges from } v|)$.
- ▶ Storage requirement for Adj[v] for all $v \in V$ is $\Theta(|E|)$.
- ▶ Overall storage requirement is $\Theta(|V| + |E|)$.

Examples for Undirected & Directed Graphs

ADS Spring 2022 6 / 7

Application Example: Neighboring States

