Model Theory II Problem Sheet 2

Extra exercises are marked with a $\star\star$. I DO <u>NOT</u> EXPECT YOU TO ANSWER THEM. I hope they can bring you joy.

- **EXERCISE 1.** Prove the following: let \mathcal{M} be ω -saturated. Suppose that $\phi \in \mathcal{L}(M)$ is minimal in \mathcal{M} . Then ϕ is strongly minimal.
- **EXERCISE 2.** Show Neumann's Lemma: Let $A, B \subseteq \mathbb{M}$ and (c_1, \ldots, c_n) a sequence of elements not algebraic over A. Show that $\operatorname{tp}(c_1, \ldots, c_n/A)$ has a realisation which is disjoint from B.
- **EXERCISE 3.** Show that acl(A) is the intersection of all models containing A.
- **EXERCISE 4.** (a) Consider the theory of (\mathbb{Z}, s) , the integers with the successor operation s(x) = x + 1. This theory has quantifier elimination. What is algebraic closure in this theory? Is this theory minimal? is it strongly minimal?
 - (b) Consider the theory of $(\mathbb{N},<)$. This theory has quantifier elimination if we add a function symbol for the successor and a constant symbol for 0. What does algebraic closure look like in this theory? Show that x = x is minimal in $(\mathbb{N},<)$, but not strongly minimal?;
- ** **EXERCISE 5.** Consider the theory of Presburger arithmetic, i.e. of $(\mathbb{Z};+,-,<,0,1)$. This theory has quantifier elimination after adding for each $n \in \mathbb{N}$ a predicate P_n expressing divisibility by n. What does algebraic closure look like in this theory? What about definable closure (where a is definable over A if there is some $\mathcal{L}(A)$ -formula which is true only of a)?
- **Definition 1.** A set of definable subsets of \mathbb{M} in the variable x, $I \subseteq \mathrm{Def}_x(\mathbb{M})$ is an **ideal** if it contains \emptyset , and it is closed under (definable) subsets and finite unions.

EXERCISE 6. Prove the following:

Let $I \subseteq \operatorname{Def}_{x}(\mathbb{M})$ be an ideal. Let $\pi(x)$ be a partial type over A (closed under conjunctions) such that $p(\mathbb{M})$ is not contained in any set in I. Then, for every $B \supseteq A$, there is a type $q \in S(B)$ extending p and such that $q(\mathbb{M})$ is not contained in any set in I.