1. Fibonacci series

```
--Fibonacci Series
declare
     a number := 0; --starting number
     b number :=1; -- second number
     c number; -- to store a addition of a,b values
     n number := :n; -- To Give the range for fibonacci
begin
DBMS OUTPUT.PUT LINE('First 10 Fibonacci Numbers');
DBMS OUTPUT. PUT LINE (a);
DBMS OUTPUT.PUT LINE(b);
    for i in 3..n
     loop
         c:=a+b;
        DBMS OUTPUT.PUT LINE(c);
        a := b;
         b := c;
     end loop;
 end;
```

```
First 10 Fibonacci Numbers

0
1
1
2
3
5
8
13
21
34
```

2. Palindrome number or not

```
--polindrome number or not
  declare
       num number := :n;
       rev num number;
       temp number:=0;
       rem number;
   begin
       rev num := num; --121, 12, 1, 0
       while num>0
       loop
            rem:=mod(num, 10); -- mod(121, 10) = 1, mod(21, 10) = 2, mod(1, 10) = 1
            temp:=(temp*10)+rem; -- 0*10+1=1, 1*10+2 = 12, 12*10+1 = 121
            num:=trunc(num/10); -- 121/10 =12, 12/10=1, 1/10 = 0
       end loop;
       if rev num = temp then
            dbms output.put line(temp||' is a polindrome');
       else
            dbms_output.put_line(temp||' is not a polindrome');
       end if;
   end;
Script Output ×
🌶 🧳 🖥 🚇 📔 | Task completed in 0.04 seconds
121 is a polindrome
PL/SQL procedure successfully completed.
   3. Reverse of an number
   -- Reverse a number
   declare
       num number := :n;
       rev_num number := 0;
   begin
```

```
-- Reverse a number

declare

num number := :n;

rev_num number := 0;

begin

while num>0

loop

rev_num := (rev_num *10) + mod(num,10);

num := trunc(num/10);

end loop;

dbms_output.put_line('Reverse of the number is '||rev_num);

end;

script Output *

PL/SQL procedure successfully completed.
```

4. Reverse of a string

```
--Reverse a string

declare

str varchar2(300):=:s;

rev_str varchar2(300);

begin

for i in reverse 1..length(str)

loop

rev_str :=rev_str || substr(str,i,1);

end loop;

dbms_output.put_line('Reversed string is: '||rev_str);
end;

script Output x

PL/SQL procedure successfully completed.
```

5. Armstrong Number

```
-- Armstrong Number
declare
    n number := :n; --153
    s number :=0;
    r number ;
    len number; --3
    m number; -- 153
begin
    m := n; --153
    len := length(to_char(n)); --3
    while n>0 --153, 15, 1, 0 = false loop over
        r := mod(n, 10); -- mod(153, 10) = 3 & mod(15, 10) = 5, mod(1, 10) = 1
        s := s + power(r,len); -- 0 + pow(3,3) = 27, 27 + pow(5,3) = 152, 152 + poe(1,3) = 153 s = 153
        n := trunc(n / 10); --153/10=15, 15/10=1, 1/10 = 0
    end loop;
    if m = s -- m = 153 and s = 153
        dbms_output.put_line(m ||' is a armstrong number');
        dbms_output.put_line(m ||' is not a armstrong number');
     end if;
end;
```

6. Sum of digits is equal to given number, here number = 25

```
1 set serveroutput on;
   -- Sum of digits is equal to gievn number, here number = 25
 3 declare
 4
        n number;
 5
        m number;
 6
        s number := 0;
 7
   begin
        for i in 1..999
 8 🖃
 9
        loop
10
            n := i;
11 =
            while n>0
12
            loop
13
                m := mod(n, 10);
14
                s := s + m;
15
                 n := trunc(n/10);
16
             end loop;
17
             if s = 25 then
18
                 dbms_output.put_line(i);
19
            end if;
20
        s := 0;
21
        end loop;
22 end;
Script Output ×
🥕 🥢 🖪 🚇 📓 | Task completed in 0.034 seconds
799
889
898
979
988
997
PL/SQL procedure successfully completed.
```

7. Sum of digits in a given number

```
3 -- sum of digits in a given number
  4 declare
  5
         n number:= :num;
  6
         total sum number := 0;
  7
         rem number;
  8
         num number;
  9
    begin
 10
         num := n;
 119
         while num <> 0
 12
         loop
 13
             rem := mod(num, 10);
 14
             total sum := total sum + rem ;
 15
             num := trunc(num/10);
 16
         end loop;
         dbms output.put line('the sum of digits in '||n||' is '||total sum);
 17
 18 end;
Script Output ×
📌 🥢 🖪 🚇 星 | Task completed in 0.06 seconds
the sum of digits in 1235897 is 35
PL/SQL procedure successfully completed.
```

8. Perfect number or not

```
-- Perfect Number or not
  declare
       num number:= :n;
       sum of divisors number :=0;
       for i in 1..num/2
       loop
           if num mod i = 0 then
               sum of divisors := sum of divisors + i;
           end if;
       end loop;
       if sum of divisors = num then
           dbms output.put line(num|| ' is a perfect number');
           dbms output.put line(num|| ' is not a perfect number');
       end if;
   end;
Script Output ×
📌 🧽 🔒 📓 📗 Task completed in 0.069 seconds
496 is a perfect number
PL/SQL procedure successfully completed.
```

9. First 20 even numbers

```
-- first 20 even numbers

declare
    num number := 0;
    counter number :=0;

begin
    while counter < 20
    loop
        num := num + 2;
        dbms_output.put_line(num);
        counter := counter + 1;
    end loop;
end;
```

PL/SQL procedure successfully completed.

10. First 20 odd numbers

```
-- first 20 odd numbers

declare
    num number := 1;
    counter number := 0;

begin
    while counter < 20
    loop
    if num mod 2 <> 0 then
        dbms_output.put_line(num);
        counter := counter + 1;
    end if;
    num := num + 1;
    end loop;
end;
```

```
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
```

11. Retrieve all employee details using for loop

emp_no	Emp_nam	e Job Nmae	Manage	r_Id	Salary	Commision	deptno		
7369	SMITH	CLERK	7902 26000			20			
7499	ALLEN	SALESMAN	76	98	25000	300		30	
7521	WARD	SALESMAN	76	7698 1250		500		30	
7566	JONES	MANAGER	7839	297	5		20		
7654	MARTIN	SALESMAN	76	698 1250		140	400		30
7698	BLAKE	MANAGER	7839	285	0	30			
7782	CLARK	MANAGER	7839	2450			10		
7788	SCOTT	ANALYST	7566	3000			20		
7839	KING	PRESIDENT	5000		0	10			
7844	TURNER	SALESMAN	76	98	1500	0		30	
7876	ADAMS	CLERK	7788	110	0		20		
7900	JAMES	CLERK	7698	950		30			
7902	FORD	ANALYST	7566	300	0		20		
7934	MILLER	CLERK	7782	130	0		10		

12. Triangle pattern

```
Worksheet Query Builder
   -- Triangle Pattern
  declare
        num number := :n;
        i number ;
        j number ;
   begin
        for i in 1..num
        loop
             for j in 1..i
             loop
                 dbms_output.put('*');
             end loop;
        dbms_output.new_line;
        end loop;
   end;
Script Output ×
🌶 🥜 🖥 🖺 📗 Task completed in 0.211 seconds
```

13. Triangle pattern in reverse

```
Dec Derverouepue on,
  -- Triangle Pattern in reverse
  declare
     num number := :n;
      i number ;
     j number ;
  begin
      for i in reverse 1..num
      loop
         for j in 1..i
         loop
            dbms_output.put('*');
         end loop;
      dbms output.new line;
      end loop;
  end;
****
***
```