

SJTU SpeechLab E2E ASR System for the ASRU2019 Code-Switching Challenge

卢怡宙,李豪,黄明坤,钱彦旻
{luyizhou4, lh575526, mingkunhuang, yanminqian}@sjtu.edu.cn
Speech Lab,
Shanghai Jiao Tong University

Outline

- Brief Introduction:
 - Overall System
 - Data Preparation
- E2E ASR System
 - Model Structure
 - Data Augmentation & Training Strategies
 - Leverage Monolingual & Code-Switching Data
- Experiments
 - LSTM VS Transformer
 - Leverage Monolingual & Code-Switching Data
 - Data Augmentation
 - Summary

Brief Introduction: Overall System

Track 3 E2E-ASR: Overall System

Data Preparation

16kHz wav文件: 500h 中文数据、960h Librispeech数据、 200h 中英混合数据 20h 中英混合的dev集(新、旧) 20h 中英混合的测试集

Data Preparation

80维logmel filter bank特征, Per Speaker CMVN / Per Utterance CMVN

E2E-ASR Model

Sequence-to-Sequence Modeling Task: Alignment & Classification

SAN based Joint CTC/Attention Model^[1]

$$L_{MTL} = -\lambda log P_{ctc}(C|X) - (1 - \lambda) log P_{att}(C|X)$$

$$\hat{C} = rg \max_{C \in U^*} \{\lambda \ log P_{ctc}(C|X) + (1-\lambda) log P_{att}(C|X) \}$$

Data Preparation

中文用单字建模,词频>=25,3006个字+UNK; 英文用BPE建模,1k个建模单元;

Universal character set;

例: __CO DE __SW IT CH ING 识别文本

Outline

- Brief Introduction:
 - Overall System
 - Data Preparation
- E2E ASR System
 - Model Structure
 - Data Augmentation & Training Strategies
 - Leverage Monolingual & Code-Switching Data
- Experiments
 - LSTM VS Transformer
 - Leverage Monolingual & Code-Switching Data
 - Data Augmentation
 - Summary

E2E ASR System

- ➤ Transformer^[2]结构
 - ➤ 12层Encoder, 6层Decoder
 - Convolutional DownSampling
 - Pre Layer Normalization

Transformer Structure in [2]

E2E ASR System

- ➤ Joint CTC/Attention Model^[1]
 - \triangleright Training λ =0.3
 - \triangleright Decoding λ =0.4

$$L_{MTL} = -\lambda log P_{ctc}(C|X) - (1-\lambda)log P_{att}(C|X)$$

$$\hat{C} = rg \max_{C \in U^*} \{ \lambda \ log P_{ctc}(C|X) + (1-\lambda) log P_{att}(C|X) \}$$

Transformer Structure in [2]

Data Augmentation

- ➤ Task-Independent augmentation
 - > Specaugmentation^[3]
 - > Speed Perturbation (0.9x, 1.0x, 1.1x speed)
 - → 混响
- Task-Related augmentation
 - → code-switching数据风格数据(裁剪、拼接)

Specaugmentation^[3] example

Training Strategies

- Training Strategies
 - Uniform Label Smoothing
 - Gradient Clipping
 - Large Batch Size to Stabilize Training
 - > Average Checkpoint
 - Learning Rate Schedule (warmup and decay)

$$lrate = d_{\text{model}}^{-0.5} \cdot \min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$$

- ➤ Transfer Learning^[5]:
 - ➤ Step1: 预训练Librispeech模型M1
 - ➤ Step2: M1模型作为初始化,拿全部中文+**部分英文数据**+全部中英文混合数据训练模型M2
 - ➤ Step3: 用M2模型在200h中英文混合数据上fine tune

- ► LID Multitask^[5,6]
 - ➤ Language ID Multitask Training Using Attention Context Vector

LID-MTL^[6] example

Outline

- Brief Introduction:
 - Overall System
 - Data Preparation
- E2E ASR System
 - Model Structure
 - Data Augmentation & Training Strategies
 - Leverage Monolingual & Code-Switching Data
- Experiments
 - LSTM VS Transformer
 - Leverage Monolingual & Code-Switching Data
 - Data Augmentation
 - Summary

Experiments: LSTM VS Transformer

我们在比赛中尝试了两种结构: LSTM、Transformer...

▶ LSTM Based LAS[4]结构

➤ Encoder: VGGBN + 5层512BLSTM (4x sampling)

➤ Decoder: 2层1024LSTM

Attention: Location-Aware Attention

$$P(\mathbf{y}|\mathbf{x}) = \prod_{u} P(y_u|\mathbf{h}, \mathbf{y}_{< u})$$

• 300h Switchboard

S2S Model Structure^[7]

Model	SWBD/CALLHM	
Our VGGBLSTM*	9.2/18.2	
ESPnet Transformer	9.0/18.1	

Experiments: LSTM VS Transformer

Code-Switching Task (mix200h raw, specaug, speed perturb):

Model	DevSet_prev
VGGBLSTM	6.22/18.96~(8.17)
+ large bs, Noam schedule	5.68/17.01~(7.41)
Transformer Base	4.76/15.34~(6.38)

Transformer wins, but... (model size, hyper-parameters)

• 我们发现把全部中文、英文、中英混合数据放一起训练,并没有得到很好的效果 (在新的dev集合测试)

Model	Data	Dev MER
Transformer Big	Mix200	9.90/30.86~(12.21)
Transformer Big	all data	9.53/29.10~(11.68)

可能的原因:

- a) Librispeech数据都是长语音(10几秒),而中文/中英文混合数据都是短语音
- b) 中式英语和美式英语的差异

Tricks in Our Transfer Learning experiments:

- ➤ Librispeech数据没利用上 ==> 丢掉过长的librispeech数据
- ➤ 丢掉过长的句子又没法全部利用上lib数据 ==> librispeech pretrain后初始化
- > 同样的结论在LSTM结构下也适用
- > Adaptation?

Model	Dev MER
Transformer Big	9.53/29.10~(11.68)
+ 丢掉过长的lib数据	7.56 /27.20~(9.73)
++ librispeech pre-train	7.68/ 25.60~(9.66)

i-vector (mix200h fine tune)

Model	DevSet_Prev
VGGBLSTM	4.60/15.32~(6.24)
+ ivector	4.62/15.01~(6.21)
++ FiLM ivector	4.61/15.03~(6.20)

Speaker Adaptation: 只在mix200h上测试i-vector实验, 当时没做进一步实验(全部数据上的

speaker adaptation)

Dataset Adaptation: Domain Adversarial Training?

LID-MTL (mix200h fine tune)

Model	DevSet_Prev
VGGBLSTM	4.79/16.08~(6.52)
+ LID-MTL	4.73/15.81~(6.43)

LID-MTL只有很小的提升

Experiments: Data Augmentation

- ➤ Specaugment提升很大;
- ▶ 做完specaug后, Speed perturb改进有限,加混响没效果;
- ▶ 造code-switching数据在mix200训时有效,但是fine tune没做出来

造Code-Switching风格数据

Model	DevSet_New
MSS	10.16/30.93~(12.45)
+ 1x sync_CS	9.60/29.85~(11.83)

Experiments: Summary

Experiment Summary:

Model	Data	Init.	Dev_new MER	Dev MER(Old Dev)
VGGBLSTM	All data*	LSTM librispeech	N/A	4.99/17.86~(6.96)
VGGBLSTM	mix200h	-	N/A	6.22/18.96~(8.17)
+ All data Init.	mix200h	LSTM all_data*	N/A	4.59/15.87~(6.31)
++ LID Multitask	mix200h	LSTM all_data*	8.96/28.45~(11.11)	4.53/15.21~(6.16)
Transformer Big	mix200h	-	9.90/30.86~(12.21)	4.44/14.77~(6.02)
Transformer Big	All data*	TF_Big librispeech	7.68/25.60~(9.66)	3.86/15.41~(5.63)
Transformer Big	mix200h	TF_Big all_data*	7.34/27.16~(9.52)	3.66/14.91~(5.38)

测试集结果: 6.93/24.35~(8.82), Track 3第二名:

- ➤ Transformer实验由于时间原因没训完, fine tune没调好;
- ➤ Language Model (rescore、LM fusion、spell correction)
- > Others:
 - ➤ data augmentation, LID-MTL, i-vector
 - > mWER, DAT...

Reference

- [1] Hori T, Watanabe S, Zhang Y, et al. Advances in joint CTC-attention based end-to-end speech recognition with a deep CNN encoder and RNN-LM[J]. arXiv preprint arXiv:1706.02737, 2017.
- [2] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.
- [3] Park D S, Chan W, Zhang Y, et al. Specaugment: A simple data augmentation method for automatic speech recognition[J]. arXiv preprint arXiv:1904.08779, 2019.
- [4] Chan W, Jaitly N, Le Q V, et al. Listen, attend and spell[J]. arXiv preprint arXiv:1508.01211, 2015.
- [5] Shan C, Weng C, Wang G, et al. Investigating End-to-end Speech Recognition for Mandarin-english Code-switching[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019: 6056-6060.
- [6] Zeng Z, Khassanov Y, Pham V T, et al. On the end-to-end solution to mandarin-english code-switching speech recognition[J]. arXiv preprint arXiv:1811.00241, 2018.
- [7] Prabhavalkar R, Rao K, Sainath T N, et al. A Comparison of Sequence-to-Sequence Models for Speech Recognition[C]//Interspeech. 2017: 939-943.

Thank you!

Q&A