1 Pomiar okresu drgań wahadła prostego

1.1 Cel eksperymentu

Sprawdzić charakter teoretycznej zależności okresu drgań wahadła prostego *T* od jego długości *L* i wyznaczyć przyspieszenie ziemskie *g*.

1.2 Wiadomości teoretyczne

Wahadło fizyczne może być traktowane jako wahadło proste jeżeli cała masa ciężarka m jest skoncentrowana na końcu nierozciągliwej nici o długości L. Moment bezwładności I może być obliczony w tym przypadku jako: $I=mL^2$. Stąd ze wzoru na okres drgań wahadła fizycznego można wyznaczyć wzór na okres drgań wahadła prostego:

$$T = 2\pi \sqrt{\frac{I}{mgL}} = 2\pi \sqrt{\frac{L}{g}} \tag{1}$$

Ze wzoru (1) wynika, że okres drgań wahadła prostego zależy od długości nici L i od przyspieszenia ziemskiego g. Podany wzór na okres drgań jest poprawny dla małych wychyleń θ , co odpowiada warunkowi: $\sin \theta = \theta$.

1.3 Opis aparatury pomiarowej

Do eksperymentów wykorzystane jest stanowisko firmy COBRABID zawierające komputer z oprogramowaniem pomiarowym, interfejs pomiarowy, fotobramkę, stojak, ramię, obciążnik wahadła i nić.

W trakcie jednego okresu drgań, obciążnik wahadła wchodzi dwukrotnie w przestrzeń pomiarową fotobramki przesłaniając fototranzystor (stan wysoki). Okres drgań wahadła może być wyznaczony jako suma czasów, w których fototranzystor znajduje się dwukrotnie w stanie niskim i

dwukrotnie w stanie wysokim. Czasy te są w trakcie eksperymentu precyzyjnie mierzone i zapamiętywane w pamięci interfejsu pomiarowego. Jako wynik użytkownik otrzymuje wartość średnią okresu drgań wahadła zmierzoną dla kilku okresów drgań wahadła.

1.4 Przebieg ćwiczenia

Po uruchomieniu programu "Fizyka", wybraniu z menu opcji 2 i potwierdzeniu wyboru klawiszem Enter, wyświetlane są parametry istotne dla tego doświadczenia w formie następującej:

W pozycji 3 wpisać liczbę pomiarów (od 6 do 12) a w pozycji 4 długość wahadła. Po ustawieniu parametrów

eksperymentu wcisnąć klawisz '0', a następnie 'Enter' co powoduje pojawienie się napisu "wciśnij dowolny klawisz". Należy obecnie wprawić w ruch wahadło, odchylając jego obciążnik o niewielki kąt od pionu, i po kilku wahnięciach wcisnąć dowolny klawisz w celu uruchomienia rejestracji pomiaru.

Należy wykonać pomiary okresu drgań wahadła prostego T dla różnych długości nici L.

Tabela 1. Wyniki pomiarów i obliczeń dot. badań wahadła matematycznego

i	L/cm	T/s	g/ms ⁻²	$g_{sr} = \frac{\sum_{i=1}^{N} g_i}{N}$ /ms ⁻²	$\Delta g = \sqrt{\frac{\sum_{i=1}^{N} (g_i - g_{sr})^2}{N - 1}}$ /ms ⁻²	$\Delta g/g_{ m \acute{s}r}$
1	65,0					
2						
20						

W sprawozdaniu, wyniki pomiarów należy pokazać także w postaci punktów na wykresie zależności

1.5 Prezentacja wyników eksperymentu

- 1. Wykonaj wykresy zależności $T^2 = f(L)$.
- 2. Wyznacz doświadczalną wartość przyspieszenia ziemskiego g dla każdego pomiaru korzystając ze wzoru (1)
- 3. Wyznacz średnią wartość przyspieszenia ziemskiego gśr (wg wzoru podanego w tabeli).
- Wyznacz niepewność pomiaru przyspieszenia ziemskiego Δg (wg wzoru podanego w tabeli, N –ilość pomiarów).
- 5. Porównaj uzyskaną wartość przyspieszenia ziemskiego z wartością rzeczywistą.
- 6. Przeanalizuj otrzymane wyniki badań i sformułuj odpowiednie wnioski.

Protokół pomiarowy

	Laboratorium z fizyki							
Rok alkadem.:	Temat:							
	Pomiar okresu drgań wahadła prostego							
Kierunek:	Imię i Nazwisko:							
Grupa:								
	Ocena	Data Zaliczenia	Podpis					
L								
S								
K								

Tabela 1. Wyniki pomiarów i obliczeń dot. badań wahadła matematycznego

1 abela 1. Wyniki pomiarow i obliczen dot. badan wanadła matematycznego								
i	L/cm	T/s	g /ms ⁻²	$g_{sr} = \frac{\sum_{i=1}^{N} g_i}{N}$ /ms ⁻²	$\Delta g = \sqrt{\frac{\sum_{i=1}^{N} (g_i - g_{sr})^2}{N - 1}} / \text{ms}^{-2}$	$\Delta g/g_{ m \acute{s}r}$		
1	65,0							
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20	_							