Gesture Recognition – Deep Learning

Problem Statement:

You want to develop a cool feature in the smart-TV that can recognize five different gestures performed by the user which will help users control the TV without using a remote

In this group project, you are going to build a 3D Conv model that will be able to predict the 5 gestures correctly. Please import the following libraries to get started.

- Thumbs up: Increase the volume.
- Thumbs down: Decrease the volume.
- Left swipe: 'Jump' backwards 10 seconds.
- Right swipe: 'Jump' forward 10 seconds.
- Stop: Pause the movie.

Experimental Tabular:

EXP.NO	Model	Result	Explanation + Decision
	Description		
1	3D CNN Model	Accuracy:	Accuracy is less than 50 percentage
	without batch	0.3650	and model is underfit. Accuracy needs
	normalization,	Val_Accuracy:	to improve. Decision to add batch
	Drop out and	0.3300	normalization, dropout, and
	regularization		regularization
2	3D CNN Model	Accuracy:	The accuracy of training increase to
	with batch	0.8582	0.94 and validation accuracy is 0.62.
	normalization,	Val_Accuracy:	there is quite improvement in
	Drop out and	0.4600	accuracy in the model but overfitted
	regularization		
3	3D CNN Model	Accuracy:	Accuracy is less than 50 percentage
	without batch	0.3741	and model is underfit with data
	normalization,	Val_Accuracy:	augmentation there is not much
	Drop out and	0.3400	improve
	regularization		
	with data		
	augmentation		
4	3D CNN Model	Accuracy:	The Accuracy is quite good but it's also
	with batch	0.8115	a overfitted model. did well on train
	normalization,	Val_Accuracy:	and not good on validation even with
	Drop out and	0.6100	data augmentation.
	regularization		
	with data		
	augmentation		
5	2D RNN with	Accuracy:	The Accuracy is good, and model
	LSTM	0.8356	seems to be performed well on the
			validation. quite reliable model

		Val_Accuracy:	
		0.7100	
6	2d RNN with GRU	Accuracy:	Val_Accuracy is less than 50
		0.6305	percentage and model is underfit.
		Val_Accuracy:	There is not much improvement in
		0.4900	model

Conclusion:

The 2D RNN with LSTM Model gives good accuracy in training around 83% and validation around 71% and it choose as final model (model-00030-1.36046-0.83560-1.65134-0.71000.h5) for predictions.