Special Systems of ODE's. Phase Spaces Theory of System of Linear ODE's with Const. Coeff.

Keising Honn

March 20, 2024

- Prologue
- 2 Autonomous Systems
 - Trajectory
 - Phase portrait
 - Standard Example: $\dot{x} = f(x), x \in \mathbb{R}$ (regarding 2 problems raised)
- 3 Phase Plane for 2-dimension $\dot{x} = Ax$
- . noels
 - . saddle print (parabelie)
 - fecus to

Today's Topic

Today's Topic

• Autonomous Systems and Phase Spaces.

Today's Topic

- Autonomous Systems and Phase Spaces.
- Phase Plane of Systems of Homogenuous Linear Equations with Constant Coefficients.

Autonomus Systems

Autonomus Systems

Definition

A system of ODE's is said to be autonomus, if the independent variable t does not appear obviously in it.

$$\dot{x}^i = f^i(x^1, \dots, x^n), \quad i = 1, \dots, n \quad \text{in open } \Omega \subset \mathbb{R}^n,$$

$$f, \partial f / \partial x_i \in C(\Omega).$$

$$(1)$$

Autonomus Systems

Definition

A system of ODE's is said to be autonomus, if the independent variable t does not appear obviously in it.

$$\dot{x}^{i} = f^{i}(x^{1}, \dots, x^{n}), \quad i = 1, \dots, n \quad \text{in open } \Omega \subset \mathbb{R}^{n},$$

$$f, \partial f / \partial x_{i} \in C(\Omega). \tag{1}$$

Theorem

If

$$x^i = \varphi^i(t), \quad i = 1, \cdots, n$$

is a solution of (1), then $\varphi^i_*(t) = \varphi^i(t+c)$ is also a solution of (1), where c – constant.

4 D > 4 D > 4 E > 4 E > 9 Q P

For every solution of (1) $x^i=\varphi^i(t)$, we make the trajectories of points in \mathbb{R}^n correspond to them, i.e.,

Definition

Trajectory refers to $\{(t,x): x=(x^1,\cdots,x^n)\in\Omega\}$.

Can These Trajectories intersect themselves?

disjoint trajectories
$$\varphi(t+c) = \varphi(t)$$
, $c = t_1 - k_2$

Suppose for some $t_1 \neq t_2$ we have $\varphi^i(t_1) = \varphi^i(t_2)$. Solution $\varphi^i(t+c) = \varphi^i(t)$ can be extended to $t \in \mathbb{R}$. The c's so-called the period and we denote F the collection of c's.

Can These Trajectories intersect themselves?

Suppose for some $t_1 \neq t_2$ we have $\varphi^i(t_1) = \varphi^i(t_2)$. Solution $\varphi^i(t+c) =$ $\varphi^i(t)$ can be extended to $t \in \mathbb{R}$. The c's so-called the period and we denote F the collection of c's.

Theorem

1)
$$(c \in F) \Rightarrow (-c \in F);$$

2) $(c_1, c_2 \in F) \Rightarrow (c_1 + c_2 \in F);$ $\varphi()$

3) Suppose a sequence $(c_m) \in F$. If $c_m \to c_0$ as $m \to \infty$, then $c_0 \in F$.

In other word, F is closed in \mathbb{R} .

• $F=\mathbb{R}$. Then for all t and $i=1,\cdots,n$ we have $\varphi^i(t)=a^i$, where $a=(a^1,\cdots,a^n)\in\Omega$ does not depend on t. These a's so-called the fixed points.

- $F=\mathbb{R}$. Then for all t and $i=1,\cdots,n$ we have $\varphi^i(t)=a^i$, where $a=(a^1,\cdots,a^n)\in\Omega$ does not depend on t. These a's so-called the fixed points.
- ② $F=\{mT: m\in \mathbb{N}, T>0\}$. Then for all t we have $\varphi^i(t+T)=\varphi^i(t)$, but when $|\tau_1-\tau_2|< T$, at least for an $I\in \{1,\cdots,n\}$ there holds $\varphi^I(\tau_1)\neq \varphi^I(\tau_2)$ (so-called the periodic trajectory).
 - 1 disjoint
 - 3 fines points
 - 3 per isolu

- F = \mathbb{R} . Then for all t and $i=1,\cdots,n$ we have $\varphi^i(t)=a^i$, where $a=(a^1,\cdots,a^n)\in\Omega$ does not depend on t. These a's so-called the fixed points.
- $P = \{mT : m \in \mathbb{N}, T > 0\}$. Then for all t we have $\varphi^i(t+T) = \varphi^i(t)$, but when $|\tau_1 - \tau_2| < T$, at least for an $I \in \{1, \dots, n\}$ there holds $\varphi^I(\tau_1) \neq \varphi^I(\tau_2)$ (so-called the periodic trajectory).

In other words, trajectories can only be 3 kinds of morphologies: 1) Fixed point; 2) Periodic trajectory; 3) Self-disjointed trajectory.

Phase Space. Portrait. etc

On the other hand, each point $x_0=(x_0^1,\cdots,x_0^n)$ can be correspond to the vector $f(x_0)=(f^1(x_0^1,\cdots,x_0^n),\cdots,f^n(x_0^1,\cdots,x_0^n))$. Clearly, the velocity vector of the corresponding point $x^i=\varphi^i(t)$ through x_0 coincides with $f(x_0)$.

Phase Space. Portrait. etc

On the other hand, each point $x_0=(x_0^1,\cdots,x_0^n)$ can be correspond to the vector $f(x_0)=(f^1(x_0^1,\cdots,x_0^n),\cdots,f^n(x_0^1,\cdots,x_0^n))$. Clearly, the velocity vector of the corresponding point $x^i=\varphi^i(t)$ through x_0 coincides with $f(x_0)$.

Definition

Phase portrait refers to a sketch of the phase space (i.e., the space where vector field f is located) together with "directions". f so-called the phase velocity.

Phase Space. Portrait. etc

On the other hand, each point $x_0=(x_0^1,\cdots,x_0^n)$ can be correspond to the vector $f(x_0)=(f^1(x_0^1,\cdots,x_0^n),\cdots,f^n(x_0^1,\cdots,x_0^n))$. Clearly, the velocity vector of the corresponding point $x^i=\varphi^i(t)$ through x_0 coincides with $f(x_0)$.

Definition

Phase portrait refers to a sketch of the phase space (i.e., the space where vector field f is located) together with "directions". f so-called the phase velocity.

Theorem

 $a=(a^1,\cdots,a^n)\in\Omega$ is a fixed point, i.e., $\varphi(t)=a$, iff f(a)=0.

$$\int_{a}^{b} (a) = \dot{q}^{\dot{c}}(t) = \frac{d}{dx} \dot{a}^{\dot{c}} = 0$$

Suppose this ODE has fixed points $N=\{a,b,c,d,e,\cdots\}$, hence $\mathbb R$ can be parted to unions of some disjoint intervals $\Sigma=\{(-\infty,a),(a,b),\cdots\}$.

$$a + b + c \circ c \quad d \quad e \quad f$$

Suppose this ODE has fixed points $N=\{a,b,c,d,e,\cdots\}$, hence $\mathbb R$ can be parted to unions of some disjoint intervals $\Sigma=\{(-\infty,a),(a,b),\cdots\}$.

Consider a interval, e.g., (a,b) and fix $x_0 \in (a,b)$ satisfies $f(x_0) > 0$. Suppose

$$\begin{cases} x = \varphi(t), & t \in [r_1, r_2], \\ x|_{t=0} = x_0 & \text{initial} & \text{undition} \end{cases}$$

is a solution of this ODE.

9/12

Suppose this ODE has fixed points $N = \{a, b, c, d, e, \dots\}$, hence \mathbb{R} can be parted to unions of some disjoint intervals $\Sigma = \{(-\infty, a), (a, b), \dots\}.$

Consider a interval, e.g., (a,b) and fix $x_0 \in (a,b)$ satisfies $f(x_0) > 0$. Suppose

$$x = \varphi(t), \quad t \in [r_1, r_2],$$

$$x =$$

Theorem

In this situation, when $t \in (r_1, r_2)$, we have

$$\varphi(t) \in (a,b), \quad \lim_{t \to r_1} \varphi(t) = a,$$

$$\lim_{t\to\infty} g(t) = \infty$$

$$\lim_{t\to\infty} \varphi(t) = b.$$

- Stable (b, d), i.e., portraits approach it from both sides;
- ② Unstable (a, c, e), i.e., portraits from both sides away from it;
- ullet Semi-stable (f), i.e., portraits approach it from one side, and move away from it from the other side.

- Stable (b,d), i.e., portraits approach it from both sides;
- ② Unstable (a, c, e), i.e., portraits from both sides away from it;
- \odot Semi-stable (f), i.e., portraits approach it from one side, and move away from it from the other side.

A fixed point is stable (unstable, semi-stable, resp.) iff ...?

- Stable (b, d), i.e., portraits approach it from both sides;
- **②** Unstable (a, c, e), i.e., portraits from both sides away from it;
- \bullet Semi-stable (f), i.e., portraits approach it from one side, and move away from it from the other side.

A fixed point is stable (unstable, semi-stable, resp.) iff ...? Finally, for fixed point g suppose $\dot{f}(g) \neq 0$, then has the same symbol as $\dot{f}(g)(x-g)$. Hence g is stable (unstable, resp.) if $\dot{f}(g) < 0$ (> 0, resp.).

Case of fixed-point (0,0)

Jambian

see Pontryagin[1], also see [3].

$$\dot{x} = Ax$$

$$\dot{x} = J\left(\frac{x^{1}-c^{1}}{x^{2}-c^{2}}\right)$$

$$\begin{cases}
f'(x',x') \\
f'(x',x')
\end{cases}$$

3. W.Walter, *Ordinary Differential Equations*. (GTM) Springer, New York, 1998.

f. V.I. Arnold, O.D.E.

$$\begin{aligned}
\lambda &= Af(x) \\
&= A\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right) \\
&= A\left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}\right) \\
&= A\left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial y}\right) \\
&= A\left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial y}\right)$$

