BMA

Vor.: $(R, +, \cdot)$ ein kommutativer Ring mit Eins, den wir im Folgenden mit R bezeichnen. Ein Element $x \in R$ heißt Nullteiler von R, wenn es ein $y \in R, y \neq 0$ mit $x \cdot y = 0$ gibt. Der Ring R heißt nullteilerfrei, wenn 0 der einzieger Nullteiler von R ist. Ein Element $x \in R$ heißt Einheit von R, wenn es ein $y \in R$ mit $x \cdot y = 1$ gibt.

(a) **Beh.:** Es sei $x \in R, x \neq 0$. Betrachte die Abbildung $f : R \to R$ mit $f(r) = x \cdot r$ für $r \in R$. Zeige: Ist x kein Nullteiler von R, dann ist die Abbildung f injektiv.

Proof

Zu zeigen, x kein Nullteiler, dann f injektiv.

Sei $x \in R$ gegeben und x kein Nullteiler, zu zeigen f injektiv. Also zu zeigen $\forall r_1, r_2 \in R$: $f(r_1) = f(r_2) \implies r_1 = r_2$.

Seien $r_1, r_2 \in R$ gegeben, zu zeigen $f(r_1) = f(r_2) \implies r_1 = r_2$. Sei $f(r_1) = f(r_2)$ gegeben, zu zeigen $r_1 = r_2$.

$$f(r_1) = f(r_2)$$

$$x \cdot r_1 = x \cdot r_2$$

$$x \cdot r_1 + (-(x \cdot r_2)) = x \cdot r_2 + (-(x \cdot r_2))$$

$$x \cdot r_1 + x \cdot (-r_2) = 0$$

$$x \cdot (r_1 - r_2) = 0$$

Und da x kein Nullteiler, muss $r_1 - r_2$ gleich 0 sein, damit $x \cdot (r_1 - r_2) = 0$.

(b) **Beh.:** Ist $x \in R$ eine Einheit von R, dann ist x kein Nullteiler von R.

Proof

Zu zeigen, wenn $x \in R$ eine Einheit von R, dann ist x kein Nullteiler von R.

Sei $x \in R$ eine Einheit von R, so zeigen, x kein Nullteiler von R.

Nach Vorraussetzung $\exists y_1 \in R : x \cdot y_1 = 1$. Wähle ein solches y_1 .

Wir führen einen Beweis durch Widerspruch und nehmen dazu an, dass x ein Nullteiler ist, also $\exists y_0: x\cdot y_0=0 \land y_0\neq 0$

Da die Assoziativität in Ringen gilt, folgt:

$$(y_0 \cdot x) \cdot y_1 = y_0 \cdot (x \cdot y_1)$$
$$0 \cdot y_1 = y_0 \cdot 1$$
$$0 = y_0$$

Da aber $0 \neq y_0$, führt dies zu einem Widerspruch, also war unsere Annahme falsch, dass x ein Nullteiler ist, also kann x kein Nullteiler sein

(c) Beh.: Ist R ein Körper, dann ist R nullteilerfrei.

Proof

Zu zeigen, wenn R ein Körper, dann ist R nullteilerfrei. Also zu zeigen $\forall x \in R: x$ ist kein Nullteiler, oder x=0

Fall 1: x = 0, dann gilt trivialer weiße die Aussage

Fall 2: $x \neq 0$, dann gilt $x \in R \setminus 0$, und da R ein Körper $\exists x^{-1}mitx \cdot x^{-1} = 1$, also ist x eine Einheit von R, also gilt nach der b), dass x kein Nullteiler