

GPU: MEMORY MODEL - TILING

Dr. Steve Petruzza

Part of the material is © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 ECE408/CS483, University of Illinois, Urbana-Champaign

Programmer View of CUDA Memories

Each thread can:

- Read/write per-thread registers (~1 cycle)
- Read/write per-block shared memory (~5 cycles)
- Read/write per-grid global memory (~500 cycles)
- Read/only per-grid constant memory (~5 cycles with caching)

CUDA Variable Type Qualifiers

Variable declaration		Memory	Scope	Lifetime
int Local	lVar;	register	thread	thread
deviceshared int Share	edVar;	shared	block	block
device int Globa	alVar;	global	grid	application
deviceconstant int Const	tantVar;	constant	grid	application

- device is optional when used with shared , or constant
- Automatic variables without any qualifier reside in a register
 - Except per-thread arrays that reside in global memory

Matrix Multiplication -- Simple CPU Version

```
// Matrix multiplication on the (CPU) host in single precision
void MatrixMul(float *M, float *N, float *P, int Width)
   for (int i = 0; i < Width; ++i)
        for (int j = 0; j < Width; ++j) {
            float sum = 0;
            for (int k = 0; k < Width; ++k) {
                float a = M[i * Width + k];
               float b = N[k * Width + j];
               sum += a * b;
           P[i * Width + j] = sum;
```

Kernel Function - A Small Example

- Have each 2D thread block to compute a (BLOCK_WIDTH)² sub-matrix of the result matrix
- - Each block has (BLOCK_WIDTH)² threads
- Generate a 2D Grid of (WIDTH/BLOCK_WIDTH)² blocks
- This concept is called **tiling**. Each block represents a **tile**.

A Slightly Bigger Example (BLOCK_WIDTH =2)

P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	P _{0,4}	P _{0,5}	P _{0,6}	P _{0,7}
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	P _{1,4}	P _{1,5}	P _{1,6}	P _{1,7}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	P _{2,4}	P _{2,5}	P _{2,6}	P _{2,7}
P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	P _{3,4}	P _{3,5}	P _{3,6}	P _{3,7}
P _{4,0}	P _{4,1}	P _{4,2}	P _{4,3}	P _{4,4}	P _{4,5}	P _{4,6}	P _{4,7}
		P _{4,2}					
P _{5,0}	P _{5,1}		P _{5,3}	P _{5,4}	P _{5,5}	P _{5,6}	P _{5,7}

WIDTH = 8; BLOCK_WIDTH = 2 Each block has 2*2 = 4 threads

WIDTH/BLOCK_WIDTH = 4 Use 4* 4 = 16 blocks

A Slightly Bigger Example (cont.) (BLOCK_WIDTH = 4)

P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	P _{0,4}	P _{0,5}	P _{0,6}	P _{0,7}
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	P _{1,4}	P _{1,5}	P _{1,6}	P _{1,7}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	P _{2,4}	P _{2,5}	P _{2,6}	P _{2,7}
P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	P _{3,4}	P _{3,5}	P _{3,6}	P _{3,7}
P _{4,0}	P _{4,1}	P _{4,2}	P _{4,3}	P _{4,4}	P _{4,5}	P _{4,6}	P _{4,7}
				P _{4,4}			
P _{5,0}	P _{5,1}	P _{5,2}	P _{5,3}		P _{5,5}	P _{5,6}	P _{5,7}

WIDTH = 8; BLOCK_WIDTH = 4 Each block has 4*4 = 16 threads

WIDTH/BLOCK_WIDTH = 2 Use 2* 2 = 4 blocks

Kernel Invocation (Host-side Code)

Kernel Function

```
// Matrix multiplication kernel - per thread code
__global__
void MatrixMulKernel(float *d_M, float *d_N, float *d_P, int Width)
{
    // Pvalue is used to store the element of the matrix
    // that is computed by the thread
    float Pvalue = 0;
```

Work for Block (0,0) in a TILE_WIDTH = 2 Configuration

 $M_{3,0} | M_{3,1} | M_{3,2} | M_{3,3}$

 $P_{3,2} | P_{3,3}$

 $P_{3,0} | P_{3,1} |$

Work for Block (0,1)

blockldx.x

Col =
$$1 * 2 + \text{threadIdx.x}$$

Row = $0 * 2 + \text{threadIdx.y}$

blockldx.y

$$Row = 0$$

$$Row = 1$$

$\frac{1}{2}$	\int_{Ω}
7	ယ

N _{0,0}	N _{0,1}	N	J	,2	N	J	,3
N _{1,0}	N _{1,1}	N	Į	,2	1	J	.,3
N _{2,0}	N _{2,1}	N	\mathbb{J}_2	,2	1	J	2,3
N _{3,0}	N _{3,1}	N	\mathbf{J}_2	,3	l	J	,3

$M_{0.0}$	$N_{0.1}$	N_{02}	$N_{0.3}$	$P_{0.0}$	$P_{0.1}$	P_{02}	$P_{0,3}$
Mio	N/I a a	N/I 1 2	N/I 1 2	$P_{0.1}$	24.4	PV.	PY.
1 V1 1()	M _{1 1}	1 V1 [7	1 V1 1 3				,
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$	P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$	P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}

A Simple Matrix Multiplication Kernel

```
global
void MatrixMulKernel(float *d M, float *d N, float *d P, int Width)
   // Calculate the row index of the d P element and d M
   int Row = blockIdx.y*blockDim.y+threadIdx.y;
   // Calculate the column idenx of d P and d N
   int Col = blockIdx.x*blockDim.x+threadIdx.x;
   if ((Row < Width) && (Col < Width)) {
      float Pvalue = 0:
      // each thread computes one element of the block sub-matrix
      for (int k = 0; k < Width; ++k)
          Pvalue += d M[Row*Width+k] * d N[k*Width+Col];
      d P[Row*Width+Col] = Pvalue;
```

How about performance on a device with 150 GB/s memory bandwidth?

- All threads access global memory for their input matrix elements
 - Two memory accesses (8 bytes) per floating point multiply-add (2 fp ops)
 - 4B/s of memory bandwidth/FLOPS
 - 150 GB/s limits the code at 37.5 GFLOPS
- The actual code runs at about 25 GFLOPS
- Need to drastically cut down memory accesses to get closer to the peak of more than 1,000 GFLOPS

Grid Block (0, 0) Block (1, 0) **Shared Memory Shared Memory** read (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0) **Global Memory** Host 4 **Constant Memory**

What would happen instead on a CPU?

A Common Programming Strategy

- Global memory is implemented with DRAM slow
- To avoid Global Memory bottleneck, tile the input data to take advantage of Shared Memory:
 - Partition data into subsets (tiles) that fit into the (smaller but faster) shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism
 - Performing the computation on the subset from shared memory; each thread can efficiently access any data element
 - Copying results from shared memory to global memory
 - Tiles are also called blocks in the literature

Declaring Shared Memory Arrays

```
global void MatrixMulKernel(float* M, float* N, float* P, int Width)
{
    __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
    __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];
```

Shared Memory Tiling Basic Idea

Outline of Technique

- Identify a tile of global data that are accessed by multiple threads
- Load the tile from global memory into on-chip memory
- Have the multiple threads to access their data from the on-chip memory
- Move on to the next block/tile

Use Shared Memory for data that will be reused

Tiled Multiply

- Break up the execution of the kernel into phases so that the data accesses in each phase are focused on one tile of M and N
- For each tile:
 - Phase 1: Load tiles of M & N into share memory
 - Phase 2: Calculate partial dot product for tile of P

Step 0

Shared Memory

Shared Memory

P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}
P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}

N _{0,0}	N _{0,1}	N _{0,2}	N _{0,3}
N _{1,0}	N _{1,1}	N _{1,2}	N _{1,3}
$N_{2,0}$	N _{2,1}	$N_{2,2}$	N _{2,3}

$M_{0,0}$	M _{0,1}	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	M _{1,1}	M _{1,2}	M _{1,3}
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
M _{3,0}	M _{3,1}	M _{3,2}	M _{3,3}

N _{0,0}	N _{0,1}	N _{0,2}	N _{0,3}
N _{1,0}	N _{1,1}	N _{1,2}	N _{1,3}
$N_{2,0}$	N _{2,1}	N _{2,2}	N _{2,3}
2,0	- 12,1	1 12,2	1 12,3

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
M _{1,0}	M _{1,1}	M _{1,2}	M _{1,3}
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	M _{3,1}	M _{3,2}	M _{3,3}

N _{0,0}	N _{0,1}	N _{0,2}	N _{0,3}
N _{1,0}	N _{1,1}	N _{1,2}	N _{1,3}
N _{2,0}	N _{2,1}	N _{2,2}	N _{2,3}
	_,1	- 12,2	1 12,3

$M_{0,0}$	M _{0,1}	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	M _{1,1}	M _{1,2}	M _{1,3}
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	M _{2,3}
$M_{3,0}$	M _{3,1}	M _{3,2}	M _{3,3}

N _{0,0}	N _{0,1}	N _{0,2}	N _{0,3}
N _{1,0}	N _{1,1}	N _{1,2}	N _{1,3}
$N_{2,0}$	N _{2,1}	$N_{2,2}$	N _{2,3}

$M_{0,0}$	M _{0,1}	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	M _{1,1}	M _{1,2}	M _{1,3}
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	M _{3,1}	M _{3,2}	M _{3,3}

Phase 1: Loading a Tile

- All threads in a block participate
 - Each thread loads one M element and one N element in basic tiling code
- Assign the loaded element to each thread such that the accesses within each warp is coalesced (more later).

Loading an Input Tile O

012 TILE WIDTH-1

2D indexing for Tile 0

M[Row][tx] N[ty][Col]

Loading an Input Tile 1

bx0 1 2

012 TILE WIDTH-1

Accessing tile 1 in 2D indexing:

```
M[Row][1*TILE_WIDTH+tx]
N[1*TILE_WIDTH+ty][Col]
```

TILE WIDTH!

Loading an Input Tile q

However, recall that M and N are dynamically allocated and can only use 1D indexing:

```
M[Row] [m*TILE_WIDTH+tx]
M[Row*Width + q*TILE_WIDTH + tx]

N[q*TILE_WIDTH+ty] [Col]
N[(q*TILE_WIDTH+ty) * Width + Col]
```


012 TILE WIDTH-1

Phase 2: Compute partial product

To perform the kth step of the product within the tile:

subTileM[ty][k]
subTileN[k][tx]

Barrier Synchronization

- An API function call in CUDA __syncthreads()
- All threads in the same block must reach the. __syncthreads()
 before any can move on

- Can be used to coordinate tiled algorithms
 - To ensure that all elements of a tile are loaded
 - To ensure that certain computation on elements is complete

Tiled Matrix Multiplication Kernel

```
global void MatrixMulKernel(float* M, float* N, float* P, int Width)
1. shared float subTileM[TILE WIDTH];
2. shared float subTileN[TILE WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;
   // Identify the row and column of the P element to work on
5. int Row = by * TILE WIDTH + ty;
6. int Col = bx * TILE WIDTH + tx;
7. float Pvalue = 0;
   // Loop over the M and N tiles required to compute the P element
   // The code assumes that the Width is a multiple of TILE WIDTH!
8. for (int q = 0; q < Width/TILE WIDTH; ++q) {
      // Collaborative loading of M and N tiles into shared memory
      subTileM[ty][tx] = M[Row*Width + q*TILE WIDTH+tx];
9.
      subTileN[ty][tx] = N[(q*TILE WIDTH+ty)*Width+Col];
10.
      __syncthreads();
11.
     for (int k = 0; k < TILE WIDTH; ++k)
12.
13.
          Pvalue += subTileM[ty][k] * subTileN[k][tx];
14.
      syncthreads();
15. }
16. P[Row*Width+Col] = Pvalue;
```

Compare with Basic MM Kernel

```
global void MatrixMulKernel(float* M, float* N, float* P, int Width)
// Calculate the row index of the P element and M
int Row = blockIdx.y * blockDim.y + threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x * blockDim.x + threadIdx.x;
if ((Row < Width) && (Col < Width)) {
  float Pvalue = 0;
  // each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k)
     Pvalue += M[Row*Width+k] * N[k*Width+Col];
   P[Row*Width+Col] = Pvalue;
```

Shared Memory and Threading

- Each SM in Maxwell has 64KB shared memory (48KB max per block)
 - Shared memory size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory
 - Shared memory can potentially support up to 32 active blocks
 - The threads per SM constraint (2048) will limit the number of blocks to 8
 - This allows up to 8*512 = 4096 pending loads. (2 per thread, 256 threads per block)
 - TILE_WIDTH = 32 would lead to 2*32*32*4B= 8KB shared memory per thread block
 - Shared memory can potentially support up to 8 active blocks
 - The threads per SM constraint (2048) will limit the number of blocks to 2
 - This allows up to 2*2048 = 4096 pending loads (2 per thread, 1024 threads per block)

Memory Bandwidth Consumption

- Using 16x16 tiling, we reduce the global memory by a factor of 16
 - Each float is now used by 16 floating-point operations
 - The 150GB/s bandwidth can now support (150/4)*16 = 600 GFLOPS!
- Using 32x32 tiling, we reduce the global memory accesses by a factor of 32
 - Each float is now used by 32 floating-point operations
 - The 150 GB/s bandwidth can now support (150/4)*32 = 1200 GFLOPS!
 - The memory bandwidth is no longer a limiting factor for performance!