Analiza Algorytmów 2016/2017 (zadania na laboratorium)

Wybór lidera (do 15 III)

Zadanie 1 — W dowolnym języku programowania zaimplementuj symulator umożliwiający przetestowanie algorytmu wyboru lidera $ELECTION(\vec{P})$ opisanego na pierwszym wykładzie. Niech L będzie zmienną losową oznaczającą liczę slotów potrzebnych do czasu wyboru lidera. Dla scenariuszy: 1) liczba stacji n jest znana, 2) znane jest jedynie górne ograniczenie $u \geq n$, a faktyczna liczba stacji to n=2, n=u/2, n=u, wykorzystaj symulator aby

- a. narysować rozkład empiryczny (histogram) dla zmiennej L,
- b. oszacować $\mathbb{E}[L]$ oraz $\mathbb{V}ar[L]$.

Czy wyniki symulacji są zgodne z wynikami teoretycznymi? (10p.)

Zadanie 2 — Za pomocą symulacji potwierdź wynik Lematu 3 z pierwszego wykładu (10p.):

$$Pr[S_{L.u.n}] \ge \lambda \approx 0.579$$
.

Przybliżone zliczanie (do 29 III)

Zadanie 3 — Zaimplementuj algorytm $COUNTING(k,\mathcal{M})$ podany na wykładzie. Dla k=2 i multizbiorów \mathcal{M} zawierających $n=1,2,\ldots,10^4$ różnych elementów narysuj wykres (wystarczą same punkty) mający na osi poziomej prawdziwą wartości n a na osi pionowej stosunek \hat{n}/n , gdzie \hat{n} oznacza estymację otrzymaną z algorytmu. Narysuj podobne wykresy dla k=2,3,10,100,400. Dla uproszczenia możesz przyjąć, że \mathcal{M} nie zawiera powtórzeń i składa się z kolejnych liczb naturalnych. Czy obecność powtórzeń ma wpływ na wartość estymacji \hat{n} ? (10p.)

Zadanie 4 — Dobierz wartość parametru k tak by w 95% przypadków $|\frac{\hat{n}}{n}-1|<10\%$. (5p.)

Zadanie 5 — Przetestuj działanie algorytmu dla różnych funkcji haszujących $h: S \to \{0,1\}^B$ i różnych wartości parametru B. Postaraj się znaleźć funkcję haszującą h dla której wyniki algorytmu są istotnie gorsze. Postaw hipotezę jaka powinna być wartość parametru B w zależności od liczby różnych elementów |S|=n, aby wyniki estymacji były istotnie zaburzone. (10p.)

Zadanie 6 — (do 5 IV) Twoim zadaniem jest porównanie teoretycznych wyników dotyczących koncentracji estymatora \hat{n} wykorzystanego w algorytmie $COUNTING(k,\mathcal{M})$ uzyskanych przez a) nierówność Czebyszewa oraz b) nierówność Chernoffa, z wynikami symulacji. Dla $n=1,2,\ldots 10^4, k=400$ i trzech poziomów istotności $\alpha=5\%, 1\%, 0.5\%$ przedstaw na wykresie wartości \hat{n}/n oraz wartości $1-\delta$ i $1+\delta$ takie, że (10p.)

$$Pr\left[1-\delta<\frac{\hat{n}}{n}<1+\delta\right]>1-\alpha$$
.

Samostabilizacja

Zadanie 7 — (**do 26 IV**) Zaimplementuj symulator algorytmu Mutual Exclusion z wykładu. Dla ustalonego n oznaczającego liczbę procesów w pierścieniu, zweryfikuj, że startując z dowolnej konfiguracji początkowej algorytm przejdzie do legalnej konfiguracji. Jeśli z pewnej konfiguracji można przejść do kilku możliwych konfiguracji w zależności od tego, który proces wykona krok jako pierwszy, każde wykonanie powinno zostać zweryfikowane. Jaka jest największa liczba kroków do czasu osiągnięcia legalnej konfiguracji dla ustalonego n? Dla jakich wartości n możesz uzyskać odpowiedź w sensownym czasie? **Do zdobycia jest** f(N) **punktów***.

Zadanie 8 — (**do 10 V**) Rozważmy graf G = (V, E). Dwa wierzchołki $v, w \in V$ nazywamy niezależnymi, jeśli $\{v, w\} \notin E$. Podzbiór $S \subseteq V$ wierzchołków nazywamy niezależnym, jeśli wszystkie jego elementy są parami niezależne. Wzorując się na algorytmie Maximal Machting podanym na wykładzie zaprojektuj, zaimplementuj i przetestuj samo-stabilizujący algorytm znajdujący maksymalny zbiór niezależny w nieskierowanym grafie spójnym[†]. Podaj przekonywujące uzasadnienie poprawności algorytmu (formalny dowód zrobimy na ćwiczeniach). (**15p.**)

Procesy stochastyczne

Zadanie 9 — (**do 17 V**) Dla danego grafu skierowanego o *n* wierzchołkach definiujemy macierz PageRank jako

$$P = (1 - \alpha)A + \alpha \frac{1}{n}B,$$

gdzie $\alpha \in [0,1]$ to tzw. współczynnik tłumienia, A to macierz $n \times n$ przedstawiająca prawdopodobieństwa przejścia między wierzchołkami grafu[‡], a B to macierz $n \times n$ złożona z samych jedynek. Poniższy graf przedstawia schemat połączeń między sześcioma stronami internetowymi. Wyznacz PageRank (czyli rozkład stacjonarny dla łańcucha Markowa związanego z macierzą P) dla $\alpha = 0, 0.15, 0.5, 1$. Co się zmieni jeśli zlikwidujemy połączenie między stanem 2 i 3? Jaki jest cel wprowadzania macierzy B? (10p.)

 $^{^*}$ Gdzie N oznacza rozmiar największego pierścienia, który udało Ci się zweryfikować, a funkcja f zostanie ustalona przez prowadzącego w stosownym czasie.

[†]Zobacz: Maximal Independent Set. Algorytmy znajdowania Maximal Independent Set mają wiele zastosowań, np. w algorytmach przydziału częstotliwości w sieciach bezprzewodowych.

[‡]Przyjmujemy, że dla danego wierzchołka prawdopodobieństwo przejścia do każdego z sąsiadów w grafie skierowanym jest takie samo

Zadanie 10 — (**do 17 V**) Rozważ łańcuch Markowa o zbiorze stanów $\{0,1,2,3\}$ i macierzy przejścia

$$P = \begin{pmatrix} 0 & 3/10 & 1/10 & 3/5 \\ 1/10 & 1/10 & 7/10 & 1/10 \\ 1/10 & 7/10 & 1/10 & 1/10 \\ 9/10 & 1/10 & 0 & 0 \end{pmatrix}.$$

- a) Znajdź rozkład stacjonarny $(\pi_0, \pi_1, \pi_2, \pi_3)$ dla tego łańcucha Markowa.
- b) Znajdź prawdopodobieństwo znalezienia się w stanie 3 po 32 krokach, jeśli zaczynamy w stanie 0.
- c) Znajdź prawdopodobieństwo znalezienia się w stanie 3 po 128 krokach, jeśli łańcuch zaczyna się w stanie wybranym losowo w sposób jednostajny ze wszystkich czterech stanów.
- d) Przypuśćmy, że zaczynamy w stanie 0. Jaka jest najmniejsza wartość liczby kroków t, dla której

$$\max_{s} |P_{0,s}^t - \pi_s| \le \varepsilon$$

dla $\varepsilon = 1/10, 1/100, 1/1000.$

Kiedy przydaje się możliwość tego rodzaju aproksymacji rozkładu stacjonarnego? (15p.)

Zadanie 11 — (**do 24** V) Zaimplementuj symulator prostej kolejki z czasem dyskretnym i bez ograniczenia rozmiaru (model z wykładu) dla różnych wartości parametrów λ i μ , takich, że $\lambda > \mu$, $\lambda < \mu$ oraz $\lambda = \mu$. Dla dużej liczby kroków sprawdź, jak często łańcuch przebywa w danym stanie i jaka jest średnia liczba kroków do chwili powrotu do danego stanu. Porównaj swoje wyniki z wynikami teoretycznymi. (**10p.**)

Zadanie 12 — (**do 7 VI**) Zaimplementuj symulator opisany w Zadaniu 8.26 w książce "Metody probabilistyczne i obliczenia" (Mitzenmacher, Upfal) i wykonaj opisane w tym zdaniu polecenia. Można łatwo uzyskać dostęp do angielskojęzycznej wersji książki: "Probability and Computing: Randomized Algorithms and Probabilistic Analysis". W razie problemów z dostępem chętnie użyczę swój egzemplarz (proszę o maila). Treść Sekcji 8.4.2 (łączenie i rozdzielanie procesów Poissona) omówię jeszcze szybko na najbliższym wykładzie. (**25p.**)

Zadanie 13 — (**do 21 VI**) Wykorzystując funkcje tworzące wyznacz liczbę wywołań linii 6 dla danego n

```
1: f(int n) {
2: int s = 0;
3: if ( n == 0 ) then return 1;
4: else
5: for int i = 0; i < n; i++ do
6: s += f(i);
7: end for
8: return s;
9: end if
10: }
(10p.)
```

Zadanie 14 — (**do 21 VI**) Algorytm otrzymuje na wejściu tablicę długości $n \ge 0$. Jeśli $n \ge 2$ dla każdego $k \in \{1, 2, 3, \dots, n\}$ algorytm z prawdopodobieństwem 1/2 wywołuje się rekurencyjnie na pewnej losowej "podtablicy" długości k. Wykorzystując funkcje tworzące wyznacz średnią liczbę wywołań algorytmu dla danego n. Zweryfikuj odpowiedź eksperymentalnie. (**10p.**)