

Logistic Regression

Dr. Chelsea Parlett-Pelleriti

Linear Regression in Disguise

PREDICT CATEGORY O CATEGORY O CATEGORY

Predictions

Linear Regression

Logistic Regression

Continuous Variable (can be -∞ to ∞)

Binary Categorical Variable (can be 0 or 1)

Linear Models don't predict categorical variables...so what's the closest thing? PROBABILITIES!

- 1. We want Probabilities
 - o But probabilities are bounded 0-1 🙁
- 2. Convert Probabilities to Odds
 - o But Odds only go down to 0, and are not symmetric 🙁
- 3. Convert Odds to Log Odds

Getting from Binary to Continuous

- 1. We want Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds

Getting from Binary to Continuous

- 1. We want Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds
- 4.

Getting from Binary to Continuous

- 1. We want Probabilities
- 2. Convert Probabilities to Odds
- 3. Convert Odds to Log Odds
- 4.

The Final Formula

$$\log(p/1-p) = mx + b$$

Assessing Model Performance

- Mainly worried about real world performance: did it make the correct prediction? (accuracy, sensitivity, specificity, F1 score)
- ROC/AUC

Accuracy

Predicted

"How often is the model correct?"

	Positive	Negative	
<i>Actual</i> Positive	True Positive (TP)	False Negative (FN)	
Actual Negative	False Positive (FP)	True Negative (TN)	

Predicted

Sensitivity/Recall

Correctly Predicted Positives

True Positive (TP)

"How often is the model correct for Positive Cases?"

	Predicted	Predicted
	Positive	Negative
<i>Actual</i> Positive	True Positive (TP)	False Negative (FN)
<i>Actual</i> Negative	False Positive (FP)	True Negative (TN)

Specificity

"How often is the model correct for Negative Cases?"

	Predicted Positive Predicted Negative	
<i>Actual</i> Positive	True Positive (TP)	False Negative (FN)
<i>Actual</i> Negative	False Positive (FP)	True Negative (TN)

Precision

"How many of the predicted Positives are correct?"

	Predicted Predicted Positive Negative	
<i>Actual</i> Positive	True Positive (TP)	False Negative (FN)
<i>Actual</i> Negative	False Positive (FP)	True Negative (TN)

F1 Score

2

1 1
Precision + Recall

Combination of Precision (how often predicted positives ARE positive) and Recall (how often we correctly predict actual positives)

	Predicted	Predicted	
	Positive	Negative	
<i>Actual</i> Positive	True Positive (TP)	False Negative (FN)	
<i>Actual</i> Negative	False Positive (FP)	True Negative (TN)	

ROC AUC

	Predicted Positive	Predicted Negative
<i>Actual</i> Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

ROC AUC

Loss Functions

$$(\hat{\gamma}_i - \gamma_i)^2$$

LOGISTIC:
$$\left(-\log(\hat{p}_i)\right)$$
 4 4 4 1 $-\log(1-\hat{p}_i)$ 4 4 1

Loss Functions

LINEAR:

LINEAR:
$$(\hat{y}_i - y_i)^2$$

LOGISTIC:
$$\left(-\log(\hat{p}_i)\right)$$
 $\frac{4}{4}$ $y=1$ $\left(-\log(1-\hat{p}_i)\right)$ $\frac{4}{4}$ $y=0$

Gradient Descent

PREDICT CONTACTOR CATEGORY OF STATEMENT OF

Linear Models don't predict categorical variables...so what's the closest thing? PROBABILITIES!

- 1. We want Probabilities
 - o But probabilities are bounded 0-1 🙁
- 2. Convert Probabilities to Odds
 - But Odds only go down to 0, and are not symmetric:
- 3. Convert Odds to Log Odds

All the Steps

Probability	Odds p/(1-p)	Log Odds log(p/1-p)
0.1	0.1111	-2.1972
0.5	1	0
0.9	9	2.1972

All the Steps

Probability	Odds p/(1-p)	Log Odds log(p/1-p)
0.1	0.1111	-2.1972
0.5	1	0
0.9	9	2.1972

Interpreting Coefficients

	coef
const	-2.9777
age	0.1445
income	-0.0066
months_subbed	0.0015

Interpreting Coefficients

	coef	e ^{coef}
const	-2.9777	0.05090979
age	0.1445	1.155462
income	-0.0066	0.9934217
months_subbed	0.0015	1.001501

Interpreting Coefficients

Probabilities*