```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')

df=pd.read_csv('/Churn_Modelling.csv')
```

df.head()

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Es
0	619	42	2	0.00	1.0	1	1	
1	608	41	1	83807.86	1.0	0	1	
2	502	42	8	159660.80	3.0	1	0	
3	699	39	1	0.00	2.0	0	0	
4	850	43	2	125510.82	1.0	1	1	
4								•

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Bala
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090
4						•

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64

2	Surname	10000	non-null	object
3	CreditScore	10000	non-null	int64
4	Geography	10000	non-null	object
5	Gender	10000	non-null	object
6	Age	10000	non-null	int64
7	Tenure	10000	non-null	int64
8	Balance	10000	non-null	float64
9	NumOfProducts	10000	non-null	int64
10	HasCrCard	10000	non-null	int64
11	IsActiveMember	10000	non-null	int64
12	EstimatedSalary	10000	non-null	float64
13	Exited	10000	non-null	int64
d+vn/	$ac \cdot f(a) + 64(2) i$	1+6//0	\ object()	2 \

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

df.head(2)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bal
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380

sns.distplot(df.CreditScore)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78f236090>

sns.distplot(df.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78dce3a10>

df.Gender.value counts().plot(kind='barh')

```
AttributeError
                                           Traceback (most recent call last)
<ipython-input-60-863b90bae51d> in <module>
---> 1 df.Gender.value_counts().plot(kind='barh')
/usr/local/lib/python3.7/dist-packages/pandas/core/generic.py in __getattr__(self, n
   5485
                ):
   5486
                    return self[name]
                return object.__getattribute__(self, name)
-> 5487
   5488
            def __setattr__(self, name: str, value) -> None:
   5489
AttributeError: 'DataFrame' object has no attribute 'Gender'
 SEARCH STACK OVERFLOW
```

df.Geography.value_counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78d7012d0>

df.Tenure.value_counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78d6e4290>

sns.distplot(df.EstimatedSalary)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78d611810>

sns.barplot(df.Geography, df.Exited)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78d548750>

df.head(2)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bal
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380

sns.barplot(x='Geography',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78d4aa850>

sns.barplot(x='Gender',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78d50ee50>

sns.barplot(x='NumOfProducts',y='Exited',data=df)

rmathlatlih avas subalats AvasCubalat at Av7fa70Efd0cEA

sns.barplot(x='HasCrCard',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785fb4b50>

sns.barplot(x='IsActiveMember',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78603dcd0>

sns.pairplot(df)

plt.figure(figsize=(8,5))
sns.heatmap(df.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78d49c9d0>

df.Exited.value_counts()

0 79631 2037

Name: Exited, dtype: int64

df.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

#No missing values

df.head(2)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bal
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380

sns.boxplot(df.CreditScore)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785f1f9d0>

sns.boxplot(df.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785ee05d0>

sns.boxplot(df.NumOfProducts)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785e5d2d0>

sns.boxplot(df.HasCrCard)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785dd1650>

sns.boxplot(df.IsActiveMember)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785d37d10>

sns.boxplot(df.EstimatedSalary)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785cb58d0>

sns.boxplot(df.Tenure)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785c6d210>

sns.boxplot(df.Balance)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe786b4be10>

#Outlier Removal

```
def outlier_credit_score(df):
    IQR = df['CreditScore'].quantile(0.75) - df['CreditScore'].quantile(0.25)
    lower_range = df['CreditScore'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['CreditScore'].quantile(0.75) + (1.5 * IQR)

    df.loc[df['CreditScore'] <= lower_range, 'CreditScore'] = lower_range
    df.loc[df['CreditScore'] >= upper_range, 'CreditScore'] = upper_range

outlier_credit_score(df)

sns.boxplot(df.CreditScore)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785d3f790>


```
def outlier_NOP(df):
    IQR = df['NumOfProducts'].quantile(0.75) - df['NumOfProducts'].quantile(0.25)

lower_range = df['NumOfProducts'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['NumOfProducts'].quantile(0.75) + (1.5 * IQR)

df.loc[df['NumOfProducts'] <= lower_range, 'NumOfProducts'] = lower_range
    df.loc[df['NumOfProducts'] >= upper_range, 'NumOfProducts'] = upper_range
```

outlier NOP(df)

sns.boxplot(df.NumOfProducts)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe785b5a0d0>


```
def outlier_age(df):
    IQR = df['Age'].quantile(0.75) - df['Age'].quantile(0.25)

lower_range = df['Age'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['Age'].quantile(0.75) + (1.5 * IQR)

df.loc[df['Age'] <= lower_range, 'Age'] = lower_range
    df.loc[df['Age'] >= upper_range, 'Age'] = upper_range

outlier_age(df)
```

sns.boxplot(df.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78509fbd0>

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 10000 entries, 0 to 9999 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	CreditScore	10000 non-null	int64
1	Geography	10000 non-null	object
2	Gender	10000 non-null	object
3	Age	10000 non-null	int64
4	Tenure	10000 non-null	int64
5	Balance	10000 non-null	float64
6	NumOfProducts	10000 non-null	float64
7	HasCrCard	10000 non-null	int64
8	IsActiveMember	10000 non-null	int64
9	EstimatedSalary	10000 non-null	float64
10	Exited	10000 non-null	int64
d+vn	$as \cdot float64(3) i$	n+64(6) object(21

dtypes: float64(3), int64(6), object(2)

memory usage: 859.5+ KB

df.head(2)

	RowNumber	mber CustomerId Surname Cred		CreditScore	Geography	Gender	Age	Tenure	Bal
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380

df.drop(['CustomerId','RowNumber','Surname'],axis=1,inplace=True)

df.head(2)

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	
0	619	France	Female	42	2	0.00	1.0	1	
1	608	Spain	Female	41	1	83807.86	1.0	0	

```
from sklearn.preprocessing import LabelEncoder
le_geo = LabelEncoder()
le_gen = LabelEncoder()
df['Sex']=le_gen.fit_transform(df.Gender)
df['Country']=le_geo.fit_transform(df.Geography)
df.drop(['Geography','Gender'],axis=1,inplace=True)
```

df.head(2)

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	
0	619	France	Female	42	2	0.00	1.0	1	
1	608	Spain	Female	41	1	83807.86	1.0	0	

X=df.drop('Exited',axis=1)
y=df.Exited

Χ

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
0	619	42	2	0.00	1.0	1	1
1	608	41	1	83807.86	1.0	0	1
2	502	42	8	159660.80	3.0	1	0
3	699	39	1	0.00	2.0	0	0
4	850	43	2	125510.82	1.0	1	1
9995	771	39	5	0.00	2.0	1	0
9996	516	35	10	57369.61	1.0	1	1
9997	709	36	7	0.00	1.0	0	1
9998	772	42	3	75075.31	2.0	1	0
9999	792	28	4	130142.79	1.0	1	0

10000 rows × 10 columns

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X = sc.fit_transform(X)
```

Colab paid products - Cancel contracts here