STOCHASTIC PROGRAMMING FOR ASSET ALLOCATION IN PENSION FUNDS

IEGOR RUDNYTSKYI JOINT WORK WITH JOËL WAGNER

Vienna 2017 July 5

INTRODUCTION

Common approaches for asset allocation / ALM in pension funds:

- Immunization methods
- Asset optimization
- Surplus optimization
- Liability-driven investment strategies
- Stochastic control
- Stochastic programming (SP)
- Monte-Carlo simulation methods (MC)

RESEARCH PURPOSE

- Review possible models
- Build a scalable model (in R)
- Analyze the convergence
- Analyze the sensitivity
- Compare the performance of the SP approach with MC methods

OPTIMIZATION PROBLEM

Possible objective functions:

- Maximize the total value of assets
- Maximize the expected value of the utility
- Maximize the funding ratio
- Minimize the contribution rate or the capital injection, etc.

Risk constraints:

- Chance constraints (ruin probability)
- Integrated chance constraints (TVaR)

Optimize values:

- At the final nodes
- Also at intermediate nodes

EXAMPLE OF SP

Based on J.R. Birge and F. Louveaux Introduction to Stochastic Programming, p. 21

Problem framework:

- T: planning horizon
- A_0 : initial wealth (assets)
- A_T : wealth at T (depending on an economic model)
- *L_T*: target wealth linked to the liabilities
- Two asset classes available for investment

Problem: find the optimal asset allocation Challenge: stochastic returns

EXAMPLE OF SP (CONT'D)

(Linear) utility function:

- $U(A_T, L_T) = q \cdot (A_T L_T)^+ p \cdot (L_T A_T)^+$
- q: surplus reward
- p: shortage penalty

EXAMPLE OF SCENARIO TREE

UNDERLYING ECONOMIC MODEL

Estimation of A_T :

Vector-autoregressive model (of order *p* in matrix form)

$$\mathbf{r}_t = \boldsymbol{\mu} + \Theta_1 \mathbf{r}_{t-1} + \Theta_2 \mathbf{r}_{t-2} + \dots + \Theta_p \mathbf{r}_{t-p} + \boldsymbol{\epsilon}_t$$

Example of VAR(1) for two assets:

$$r_t = \mu + \Theta r_{t-1} + \epsilon_t$$

$$r_{1,t} = m_1 + \theta_{1,1} \cdot r_{1,t-1} + \theta_{1,2} \cdot r_{2,t-1} + \epsilon_{1,t}$$

$$r_{2,t} = m_2 + \theta_{2,1} \cdot r_{1,t-1} + \theta_{2,2} \cdot r_{2,t-1} + \epsilon_{2,t}$$

APPLICATION: MONTHLY RETURNS

Descriptive statistics

Returns	Bonds	Stocks	
Mean	0.0034	0.0071	
Std. dev.	0.0108	0.0444	
Correlation matrix of returns			
Bonds	1	-0.1803	
Stocks	-0.1803	1	

VAR CALIBRATION

$$r_{1,t} = 0.0035 + 0.0126 \cdot r_{1,t-1} - 0.0141 \cdot r_{2,t-1} + \epsilon_{1,t}$$

$$r_{2,t} = 0.0064 - 0.1270 \cdot r_{1,t-1} + 0.1605 \cdot r_{2,t-1} + \epsilon_{2,t}$$

	$\epsilon_{1,t}$, bonds	$\epsilon_{2,t}$, stocks
$\epsilon_{1,t}$, bonds	1	-0.1743
$\epsilon_{2,t}$, stocks	-0.1743	1
Std. dev., $\sigma(\epsilon_{i,t})$	0.0107	0.0438

SCENARIO TREE GENERATION METHODS

- Sampling methods (Kouwenberg (2001))
- "Bracket-mean" and "bracket-median" (Miller III and Rice (1983), Smith (1993))
- Moment matching method via integration quadratures (Miller III and Rice (1983), Smith (1993))
- "Optimal discretization" (Pflug (2001))
- Other more exotic methods (e.g. Hibiki (2006))

"BRACKET-MEAN" FOR $(\epsilon_{1,t}, \epsilon_{2,t})$

CONVERGENCE & SENSITIVITY ANALYSES

- Convergence of the optimal solution with respect to the number of outcomes
- Sensitivity of the optimal solution to changes in parameters of the model

Optimization problem:

- Utility function: $U(A_T, L_T) = q \cdot (A_T L_T)^+ p \cdot (L_T A_T)^+$
- Optimized only at final nodes

CONVERGENCE ANALYSIS

CONVERGENCE ANALYSIS (CONT'D)

Key performance indicators:

- Probability of excess: $\mathbb{P}(A_T L_T > 0)$
- Probability of deficit: $\mathbb{P}(A_T L_T < 0)$
- Mean of surplus given excess: $\mathbb{E}(A_T L_T | A_T L_T > 0)$
- Mean of shortage given deficit: $\mathbb{E}(A_T L_T | A_T L_T < 0)$

CONVERGENCE ANALYSIS (CONT'D)

SENSITIVITY ANALYSIS

- Planning horizon T
- Target wealth L_T (T=2)
- Shortage penalty p
- Bond's mean return μ_1
- Volatility of stocks' residuals $\sigma(\epsilon_{2,t})$

SENSITIVITY ANALYSIS: T

SENSITIVITY ANALYSIS: L_T (T=2)

SENSITIVITY ANALYSIS: p

SENSITIVITY ANALYSIS: μ_1

SENSITIVITY ANALYSIS: $\sigma(\epsilon_{2,t})$

COMPARISON WITH MONTE CARLO

- Simulate N = 10000 paths of VAR model.
- Fix the initial asset allocation at t=0. Using "Buy&Hold" strategy calculate the final wealth for each of the simulated path.
- Estimate quantities of interest.

RESEARCH SUMMARY

We have studied:

- Various scenario tree generation techniques
- Possible software and solvers
- The convergence of the optimal solution with respect to the bushiness of the scenario tree
- The relation between the optimal solution and model's characteristics (planning horizon T, target wealth L_T , etc)

Possible extensions:

- Use more sophisticated economic models
- Use stochastic liabilities
- Impose regulatory constraints

THANK YOU!