Essay title Machine Learning, Advanced Course/DD2434/mladv24

Aurhor KTH Royal Institute of Technology School of Engineering Sciences in Chemistry, Biotechnology and Health

November 20, 2024

Contents

1.1

- Yes.
- No.
- Yes.
- Yes
- No.
- Yes.

1.2

1.2.7

We implement a function that generates a dataset of N points in the plane, where each point is drawn from a normal distribution with mean μ and precision τ . For reproducability we set the seed of the random number generator to 0. We generate datasets for N=10,100,1000 and plot the generated values as histograms, which results in figure Figure 4.

Figure 1: N=10

Figure 2: N=100

Figure 3: N=1000

Figure 4: Histograms of generated datasets

We see that the more datapoints we have the more the histogram resembles a normal distribution which is as expected.

1.2.8

We compute the ML estimates as follows:

$$\mu_{ML} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

$$\tau_{ML} = \frac{N}{\sum_{i=1}^{N} \left(X_i - \mu_{ML}\right)^2}.$$

We get our results for the different datasets, with random seed 0 as shown in table Table 1.

N	μ_{ML}	$ au_{ML}$
10	2.043	0.535
100	1.085	0.492
1000	0.936	0.513

Table 1: ML estimates for different datasets

We see, that the higher the number of datapoints, the closer the ML estimates are to the true values of $\mu=1$ and $\tau=0.5$.

1.2.9

We derive an expression for the exact posterior. We have the likelihood function $p(X|\mu,\tau)$ and the prior distributions $p(\mu|\tau)$ and $p(\tau)$. We can write the joint posterior as:

$$p(\mu, \tau | X) \propto p(X | \mu, \tau) p(\mu | \tau) p(\tau)$$
 (1)

The likelihood is given by:

$$p(X|\mu,\tau) = \prod_{i=1}^{N} p(X_i|\mu,\tau) = \prod_{i=1}^{N} \sqrt{\frac{\tau}{2\pi}} e^{-\frac{\tau}{2}(X_i - \mu)^2}$$
(2)

where we assume $X_i|\mu, \tau \sim N(\mu, \frac{1}{\tau})$. The prior distributions are:

$$p(\mu|\tau) = N(\mu_0, \frac{1}{\lambda_0 \tau}); \quad p(\tau) = \text{Gamma}(\alpha_0, \beta_0) \quad (3)$$

This gives the joint posterior:

$$p(\mu, \tau | X) \propto \prod_{i=1}^{N} \sqrt{\frac{\tau}{2\pi}} e^{-\frac{\tau}{2}(X_i - \mu)^2} \times \sqrt{\frac{\lambda_0 \tau}{2\pi}} e^{-\frac{\lambda_0 \tau}{2}(\mu - \mu_0)^2} \times \frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \tau^{\alpha_0 - 1} e^{-\beta_0 \tau}$$
(4)

Simplifying, we get:

$$p(\mu, \tau | X) \propto \left(\frac{\tau}{2\pi}\right)^{\frac{N+1}{2}} e^{-\frac{\tau}{2} \left(\sum_{i=1}^{N} (X_i - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 + 2\beta_0\right)} \tau^{\alpha_0 + \frac{N}{2} - 1}$$
(5)

After completing the square for terms involving μ and simplifying, the posterior distribution of μ given X and τ is:

$$p(\mu|X,\tau) \sim N\left(\frac{\sum X_i + \lambda_0 \mu_0}{N + \lambda_0}, \frac{1}{(N + \lambda_0)\tau}\right).$$
 (6)

The implementation in Code is given under 1.2.9 in the appended Jupiter Notebook.

1.2.10

We implement the CAVI algorithm for the system described in Bishop 10.24. We introduce the prior parameters as:

$$\mu_0 = 0$$
; $\lambda_0 = 0.1$; $a_0 = 0.1$; $b_0 = 0.1$

We choose these values for the prior parametes, as we want a more data driven approach for the sake of this exercise. A small value for the prior precision λ_0 and the shape parameter a_0 will make the prior less informative. μ_0 is set to zero, as our guess for the mean and we set b_0 to a small value to indicate a broader prior.

We run the CAVI algorithm with a tolerance of 10^{-12} and plot the ELBO at each iteration for every dataset. The results are shown in figure Figure 8. We see that the ELBO converges to a local maximum for all datasets while being monotonically increasing.

Figure 5: N=10

Figure 6: N=100

Figure 7: N=1000

Figure 8: ELBO for different datasets

We also plot the posterior mean and variance for μ and τ for each dataset. The results are shown in figure Figure 12.

Figure 9: N=10

Figure 10: N=100

Figure 11: N=1000

Figure 12: Posterior for different datasets $\,$

We see, that the exact posterior is well approximated by the CAVI algorithm. The posterior mean and variance for μ and τ converge to the true values as the number of datapoints increases.