Universidad de San Carlos de Guatemala Facultad de Ingeniería Investigación de Operaciones 1 A-

TEORÍA DE JUEGOS

Sergio Emilio de León Búcaro 201800673 Angie Gabriela Bejarano Rodas 201801035 Emanuel Guillermo Arbizu Hernandez 202006673 Guatemala 17 de octubre de 2022

INTRODUCCIÓN:

La teoría de juegos es una rama de las matemáticas y de la economía que estudia la elección de la conducta óptima de un individuo cuando los costes y los beneficios de cada opción no están fijados de antemano, sino que dependen de las elecciones de otros individuos.

En la vida económica se dan infinidad de situaciones en las que dos o más personas, empresas o países tienen que elegir estrategias y tomar decisiones en las que se ven afectadas mutuamente. La teoría de juegos intenta analizar estos casos y se utiliza especialmente en economía para estudiar los mercados de oligopolio y duopolio, en los que dos o más agentes adoptan unas decisiones que afectan conjuntamente a todos los participantes.

OBJETIVOS:

- Aprender sobre el criterio de Hurwicz y Competición de Court.
- Analizar problemas económicos.
- Estudiar la interacción de las decisiones de individuos o agentes económicos que participan en los juegos.
- Estudiar la influencia que tendrán estas decisiones sobre el resultado de los participantes.
- Obtener una nueva visión sobre el análisis de situaciones económicas.

CRITERIO DE HURWICZ

Se trata de un criterio intermedio entre el criterio de Wald y el criterio maximax, esto ya que muy pocas personas son tan extremadamente pesimistas u optimistas como recomiendan dichos criterios, entonces Hurwicz considera que el decisor debe ordenar las alternativas de acuerdo con una media ponderada de los niveles de seguridad y optimismo.

$$T(a_i) = \alpha S_1 + (1 - \alpha)O_i \qquad 0 \le \alpha \le 1$$

Donde α es un valor específico, el cual es elegido por el decisor y es aplicable a cualquier problema de decisión abordado por él. Por lo tanto, así es como resulta ser la regla de decisión de Hurwicz:

Elegir la alternativa
$$a_k$$
 tal que $T(a_k) = \alpha s_k + (1 - \alpha)o_k$
= $\max_{1 \le i \le m} (\alpha s_i + (1 - \alpha)o_i)$

Así mismo, los valores de α que sean próximos a 0 corresponden a un pensamiento optimista, obteniéndose en el caso extremo α =0 que es el criterio maximax como bien se mencionó anteriormente.

Los valores de α próximos a 1 corresponderán a un pensamiento pesimista obteniéndose en el caso extremo α =1 qué es el criterio de Wald.

En palabras más simples, al utilizar este criterio se consideran sólo los valores máximos y mínimos de cada estrategia, ya que se suma el mejor resultado de cada estrategia ponderado con el coeficiente de optimismo (α), con el peor resultado de cada estrategia ponderado con el coeficiente de pesimismo ($1 - \alpha$). El coeficiente de optimismo es subjetivo en la medida en que lo decide la persona que toma las decisiones, cabe resaltar que el criterio de Hurwicz puede conducir en ocasiones a decisiones poco razonables.

MODELO DE COMPETICIÓN O DUOPÓLIO DE COURT

La competencia de Cournot es un modelo económico, también es conocido como duopolio de Cournot el cual es usado para describir una estructura de industrias en la que las compañías que compiten en las cantidades que van a producir. Este modelo de competencia imperfecta es donde dos empresas con funciones de costes idénticas compiten con bienes homogéneos en un entorno estático. Fue desarrollado por Antoine Cournot en su obra "Researches Into the Mathematical principles of the Theory of Wealth" (Investigaciones acerca de los principios matemáticos de la teoría de las riquezas), publicado en 1838. El duopolio de Cournot representa el comienzo del estudio de los oligopolios, específicamente con los duopolios, y este se amplía al análisis de las estructuras de mercado. Cournot inventó el concepto de teoría de juegos casi 100 años antes de John Nash. Cournot aplicó el concepto cuando trató el caso de cómo las empresas se comportarían en caso de duopolios.

Un punto esencial del modelo son las variaciones conjeturales nulas, de esta manera, cada firma tiene como objetivo la maximización de beneficio propio, basándose en la expectativa de que su propia decisión no tendrá efecto en las decisiones de su competencia. El precio es una función decreciente de la oferta total. Además, todas las firmas conocen que existe la misma cantidad de firmas en el mercado. Cada firma tiene una función de costo Ci(qi). Normalmente las funciones de costos son tomadas como conocimiento general, esto quiere decir que todas las firmas conocen las funciones de costos de las demás firmas. Las funciones de costos pueden ser iguales o diferentes. El precio del mercado es tal que la demanda es igual a la cantidad producida por todas las firmas. Cada una de las firmas toma la cantidad a producir de sus competidores como dada, evalúa la demanda residual y se comporta como un monopolio.

CRITERIO DE HURWICZ

Ejemplo 1:

La siguiente tabla muestra las recompensas obtenidas junto con la media ponderada de los niveles de optimismo y pesimismo de las diferentes alternativas para un valor α = 0.4

Alternativas	Estados de l				
Terreno comprado	Aeropuerto en A	Aeropuerto en B	s _i	o _i	S(a _i)
A	13	-12	-12	13	3
B 🤏	-8	11	-8	11	3.4
АуВ	5	-1	-1	5	2.6
Ninguno	0	0	0	0	0

La alternativa óptima según el criterio de Hurwicz sería comprar la parcela en la ubicación B, pues proporciona la mayor de las medias ponderadas para el valor de α seleccionado.

Crítica al criterio de Hurwicz:

Así mismo el criterio de Hurwicz puede conducir en ocasiones a decisiones poco razonables, como se muestra en la siguiente tabla:

	Esta	idos de l	a natur				
Alternativas	e ₁	e ₂		e ₅₀	s _i	oj	S(a _i)
a ₁ 🕰	0	1		1	0	1	1-α
a ₂ 🕰	1	0		0	0	1	1-α

Según el criterio de Hurwicz ambas alternativas son equivalentes, aunque racionalmente la alternativa a1 es preferible a la a2, Más aún, si el resultado de la

elección de la alternativa a2 cuando la naturaleza presenta el estado e1 fuese 1.001, se seleccionaría la segunda alternativa, lo cual parece poco razonable.

Ejemplo 2:

Una empresa puede construir una nueva fábrica en Alemania, China o España, sabiendo que los beneficios esperados van a depender de que la demanda futura suba, baje o permanezca constante, los beneficios esperados (en miles de euros) son:

Alemania: 300 / 200 / 100

China: 250 / 240 / 160

España: 225 / 205 / 175

Aplicando criterio de Hurwicz, con optimismo α = 0.65 aplicado a la mejor opción, por lo tanto el pesimismo = 1- α = 0.35 es aplicado a la peor, tal que así:

Alemania: $(300 \cdot 0.65) + (100 \cdot 0.35) = 230$

China: $(250 \cdot 0.65) + (160 \cdot 0.35) = 283.5$

España: $(225 \cdot 0.65) + (175 \cdot 0.35) = 272.5$

Según este criterio, la mejor opción sería China (283,500.00 Euros)

En este ejemplo cabe resaltar que si tuviéramos costes, el mejor desenlace serían los costes bajos.

MODELO DE COMPETICIÓN O DUOPÓLIO DE COURT

Costo de las empresas:

 $C_1 = 24x_1 \longrightarrow x_1$ es la cantidad de producto que produce la empresa 1 $C_2 = 24x_2 \longrightarrow x_2$ es la cantidad de producto que produce la empresa 2

Curva de demanda:

$$P = 240 - 2x$$
$$x = x_1 + x_2$$

Se comienza con la empresa 1 y se trata de maximizar su beneficio

 $B_1 = I_1 - C_1$ donde I son los ingresos y C son los costes de la empresa $B_1 = Px_1 - 24x_1$ donde P es el precio único de mercado

se sustituyen valores y se desarrolla:

$$B_{1} = (240 - 2x)x_{1} - 24x_{1}$$

$$B_{1} = (240 - 2(x_{1} + x_{2}))x_{1} - 24x_{1}$$

$$B_{1} = (240 - 2x_{1} - 2x_{2})x_{1} - 24x_{1}$$

$$B_{1} = 240x_{1} - 2x_{1}^{2} - 2x_{2}x_{1} - 24x_{1}$$

$$B_{1} = 216x_{1} - 2x_{1}^{2} - 2x_{2}x_{1}$$

cuando se tiene la función de beneficio, se maximiza derivando la función

$$\begin{array}{l} \frac{dB}{dx_1} = 0 \\ \frac{dB}{dx_1} = 216 - 4x_1 - 2x_2 \\ 0 = 216 - 4x_1 - 2x_2 \longrightarrow \text{se despeja para } x_1 \\ 4x_1 = 216 - 2x_2 \\ x_1 = \frac{216 - 2x_2}{4} \end{array}$$

$$x_1 = \frac{108 - x_2}{2}$$
 ---> Función de respuesta de empresa 1

ahora se repite el mismo proceso para la empresa 2, se busca función de beneficio maximizarla y obtener su función de respuesta para la empresa 2, pero ya que las 2 empresas tienen costo igual por simetría se obtiene:

$$x_2 = \frac{108-x_1}{2}$$
 ---> Función de respuesta de empresa 2

Luego de obtener las funciones de respuesta se busca el equilibrio.

$$x_1 = \frac{108 - x_2}{2}$$
$$x_2 = \frac{108 - x_1}{2}$$

sustituyendo

$$2x_1 = 108 - x_2$$

$$2x_1 = 108 - \frac{108 - x_1}{2} \text{ se despeja}$$

$$2x_1 = \frac{216 - 108 + x_1}{2}$$

$$4x_1 = 216 - 108 + x_1$$

$$3x_1 = 108$$

$$x_1 = 36$$

$$2(36) = 108 - x_2$$

$$x_2 = 108 - 72$$

$$x_2 = 36$$

Graficando

al momento de realizar la gráfica de ambas funciones de reacción el punto de corte de ambas nos da lo que produce cada una de las empresas

por lo tanto la cantidad total de unidades de x en este mercado es de

$$x = x_1 + x_2$$

$$x = 36 + 36$$

$$x = 72$$

y por último el precio de venta es

$$P = 240 - 2(72)$$

$$P = 240 - 144$$

CONCLUSIONES:

- La teoría de juegos tiene numerosas aplicaciones en la vida cotidiana, en el análisis económico de estructuras de mercado y en la elaboración de estrategias empresariales.
- Las decisiones propias están condicionadas por las decisiones que creamos que tomarán los otros actores del mercado.
- La Teoría de Juegos consiste en razonamientos circulares, los cuales no pueden ser evitados al considerar cuestiones estratégicas.

Bibliografía / e-grafía

- colaboradores de Wikipedia. (2021, 2 junio). Competencia de Cournot.
 Wikipedia, la enciclopedia libre. Recuperado 16 de octubre de 2022, de https://es.wikipedia.org/wiki/Competencia_de_Cournot
- Gallego, L. (2018, 6 marzo). Duopolio de Cournot. Policonomics. Recuperado 16 de octubre de 2022, de https://policonomics.com/es/duopolio-cournot/
- SoloPapelyBoli. (2017, 2 julio). Oligopolio: El duopolio de Cournot. Explicación y
 ejemplo completo. YouTube. Recuperado 16 de octubre de 2022, de
 https://www.youtube.com/watch?v=F7aSNY_rSSU
- Enconfinados (2020, 2 Septiembre). Recuperado el 16 de Octubre de 2022, de https://www.econfinados.com/post/la-toma-de-decisiones-en-la-empresa
- Tareas Universitarias (2021) Explicación y ejemplos completos. Recuperado el
 16 de Octubre de 2022, de
 https://tareasuniversitarias.com/criterio-de-hurwicz.html