Aplicações em meteorologia usando Python

Cheat Sheet

Rafael Cesario de Abreu, Natália Machado Crespo, Marcia Akemi Yamasoe, Rita Yuri Ynoue

Conda	
LIstar pacotes instalados no ambiente atual	conda list
Instalar um pacote	conda install PACOTE
Instalar um pacote de um canal específico	conda install -c CANAL PACOTE
Instalar a versão específica de um pacote	conda install PACOTE=VERSAO
Criar um ambiente novo	conda createname NOME
Ativar um ambiente	conda activate NOME
Desativar o ambiente atual	conda deactivate
Remover um ambiente	conda env removename NOME
Listar ambientes	conda env list

Básico da linguagem	
Definição de variáveis	x = 0
Imprimir alguma variável ou expressão	<pre>print(x)</pre>
Retorna o tipo da variável	type(x)
Lista	x = [1, 2, 3, 7, 10]
Adicionar elemento ao final da lista	x.append(11)
Selecionar elemento da lista (Nota: No python a contagem é feita de 0 a n-1, onde n é o tamanho da lista, ou seja, o índice 2 se refere ao terceiro elemento de \times)	x[2]
Tamanho da lista	len(x)

```
Importar pacotes (Nota: o nome as dá um apelido para
                                                  import pacote as pt
o pacote, para não precisarmos digitar o nome inteiro
do pacote quando formos usá-lo)
                                                  np.sqrt(x)
Utilizar uma função de um pacote
                                                  for i in range(10):
Loop for
                                                      print(i)
                                                  x = 10
                                                  while i < 10:
Loop while (Nota: a expressão i +=1 é equivalente a i
= i + 1)
                                                      print(i)
                                                      i += 1
                                                  x = 10
                                                  if x == 10:
                                                      print('x e igual a 10')
Condicional (Nota:
                    o comando elif
                                             um
                                                  elif x == 5:
encurtamento para a expressão else if)
                                                      print('x e igual a 5')
                                                  else:
                                                      print('x nao e nem 5 nem 10')
                                                  def minha_funcao(x):
Função
                                                      x = x + x
                                                      return x_squared
Criar função anônima
                                                  minha_funcao = lambda x: x * x
```

Nota: Se define os blocos de código através da indentação do código.

número de elementos definido

Numpy	
Importar o numpy	<pre>import numpy as np</pre>
Tamanho de uma matriz	x.shape
Número de dimensões da matriz	x.ndim
Criar array	x = np.array([[1., 0., 0.], [0., 1., 2.]])
Criar matriz de 1s	x = np.ones((3, 4))
Criar matriz de 0s	x = np.zeros((3, 4))
Criar matriz de um número até outro com um espaçamento definido	np.arange(INICIO, FIM, ESPACAMENTO)
Criar matriz entre um número até outro com um	np.linspace(INICIO, FIM, N°ELEMENTOS)

Selecionar primeira linha de uma matriz de duas dimensões (Nota: o : (dois pontos) indica que todos os elementos daquela dimensão serão utilizados)	x[0, :]
Selecionar segunda coluna de uma matriz de duas dimensões	x[:, 1]
Criar filtro com base em uma condição (Nota: Retorna um array de booleanos (True/False))	x > 1
Multiplicação de matrizes ponto a ponto	C = A * B
Multiplicação matricial (ou produto interno)	C = np.dot(A, B)
Calcular média da matriz inteira	x.mean()
Calcular média de cada coluna	x.mean(axis=0)

Matplotlib	
Importar o matplotlib	<pre>import matplotlib.pyplot as plt</pre>
Criar um gráfico de linhas	<pre>plt.plot(x,y)</pre>
Criar um scatter plot	<pre>plt.scatter(x,y)</pre>
Cria um gráfico de contornos preenchidos (shaded)	<pre>plt.contourf(x, y, z)</pre>
Criar uma figura com subplots (duas linhas e duas colunas)	<pre>fig, axes = plt.subplots(2, 2)</pre>
Cria um gráfico de contornos preenchidos (shaded)	<pre>ax.set_title('TITULO')</pre>
Adicionar um título no eixo x do subplot	<pre>ax.set_xlabel('TITULO') ax.set_ylabel('TITULO')</pre>
Adicionar uma legenda ao subplot	<pre>ax.legend()</pre>

Pandas	
Importar o pandas	<pre>import pandas as pd</pre>
Criar uma série	s = pd.Series([1, 3, 5, np.nan, 6, 8])
Criar um dataframe	<pre>df = pd.DataFrame({'A': [3, 4], 'B': [6, 8]}, index=pd.to_datetime(['2021-01-01', '2021-01-02']))</pre>

Ler dados em texto	<pre>df = pd.read_csv(NOME_DO_ARQUIVO)</pre>
Visualizar as primeiras linhas	<pre>df.head()</pre>
Visualizar as últimas linhas	df.tail()
Acessar uma coluna específica	<pre>df['A'] ou df.loc[:, 'A']</pre>
Acessar uma linha específica	df.loc['2021-01-01']
Fazer média mensal (e.g., 2019-12-31, 2021-01-31, 2021-02-28,)	<pre>df.resample('M').mean()</pre>
Calcular a média dos meses (1, 2,, 12)	<pre>df.groupby(df.index.month).mean()</pre>
Converte os dados em uma tabela do tipo planilha, com um índice, coluna e os valores	<pre>df.pivot_table(index='INDEX', columns='COLUMN', values='VALUE')</pre>
Aplicar uma função específica em todos os valores (no caso a raiz quadrada)	df.apply(np.sqrt)
Transformar o dataframe em um dataset do xarray	<pre>df.to_xarray()</pre>
Selecionar todas ocorrências do valor 2 na coluna A	df.query('A==2') ou df[df['A'] == 2]

Xarray	
Importar o xarray	<pre>import xarray as xr</pre>
Ler arquivo netcdf	<pre>ds = xr.open_dataset(NOME_DO_ARQUIVO)</pre>
Selecionar ponto mais próximo	ds.sel(lat=-23.6, lon=-46, method='nearest')
Selecionar um range de datas	<pre>ds.sel(time=slice('2019-01-01', '2019-01-05'))</pre>
Calcular média mensal (análogo ao caso do pandas)	<pre>ds.resample(time='M').mean(dim='time')</pre>
Calcular média dos meses (análogo ao caso do pandas)	<pre>ds.groupby('time.month').mean(dim='time')</pre>
Calcular a média de todos os pontos para cada tempo	<pre>ds.mean(dim=['lat', 'lon'])</pre>

Cartopy	
Importar o cartopy	<pre>import cartopy.crs as ccrs</pre>

Criar uma figura com um subplot e projeção	<pre>fig, ax = plt.subplots(subplot_kw={'projection': ccrs.PlateCarree()})</pre>
Adicionar linhas de costas	<pre>ax.coastlines('RESOLUTION')</pre>
Ajustando os eixos de longitude e latitude no mapa de acordo com a projeção desejada	<pre>ax.set_xticks(INTERVALOS_DESEJADOS_EM_X, crs=ccrs.PlateCarree()) ax.set_yticks(INTERVALOS_DESEJADOS_EM_Y, crs=ccrs.PlateCarree())</pre>
Adicionando contorno de países	<pre>ax.add_feature(ccrs.feature.BORDERS)</pre>
Inserindo linhas de grade no mapa	ax.grid()
Fazendo o plot preenchido	<pre>ax.contourf(LON, LAT, DATA, levels=INTERVALO_DESEJADO, cmap='CÓDIGO_COLORMAP_MATPLOTLIB')</pre>