

Triadic Closure

Triadic closure: The tendency for people who share connections in a social network to become connected.

How can we measure the prevalence of triadic closure in a network?

Local clustering coefficient of a node:

Fraction of pairs of the node's friends that are friends with each other.

Compute the local clustering coefficient of node C:

of pairs of C's friends who are friends

of pairs of C's friends

of C's friends = $d_c = 4$ (the "degree" of C)

of pairs of C's friends =

Compute the local clustering coefficient of node C:

of pairs of C's friends who are friends

of pairs of C's friends

of pairs of C's friends =
$$\frac{d_c(d_c - 1)}{2}$$

Compute the local clustering coefficient of node C:

of pairs of C's friends who are friends

of pairs of C's friends

of pairs of C's friends =
$$\frac{d_c(d_c-1)}{2} = \frac{12}{2} = 6$$

Compute the local clustering coefficient of node C:

of pairs of C's friends who are friends

of pairs of C's friends

of pairs of C's friends =
$$\frac{d_c(d_c-1)}{2} = \frac{12}{2} = 6$$

of pairs of C's friends who are friends =

Compute the local clustering coefficient of node C:

of pairs of C's friends who are friends

of pairs of C's friends

of pairs of C's friends =
$$\frac{d_c(d_c-1)}{2} = \frac{12}{2} = 6$$

of pairs of C's friends who are friends = 2

Compute the local clustering coefficient of node C:

of pairs of C's friends who are friends

of pairs of C's friends

of C's friends = $d_c = 4$ (the "degree" of C)

of pairs of C's friends =
$$\frac{d_c(d_c-1)}{2} = \frac{12}{2} = 6$$

of pairs of C's friends who are friends = 2

Local clustering coefficient of C =
$$\frac{2}{6} = \frac{1}{3}$$

Compute the local clustering coefficient of node F:

of pairs of F's friends who are friends

of pairs of F's friends

$$d_F=3$$
of pairs of F's friends = $\frac{d_F(d_F-1)}{2}=\frac{6}{2}=3$
of pairs of F's friends who are friends = 1
Local clustering coefficent of F = $\frac{1}{3}$

Compute the local clustering coefficient of node J:

of pairs of J's friends who are friends

of pairs of J's friends

of pairs of J's friends = 0 (Can not divide by 0)

We will assume that the local clustering coefficient of a node of degree less than 2 to be 0.

Local clustering coefficient in NetworkX:

G = nx.Graph()
G.add_edges_from([('A', 'K'), ('A', 'B'), ('A', 'C'), ('B', 'C'), ('B', 'K'), ('C', 'E'), ('C', 'F'), ('D', 'E'), ('E', 'F'), ('E', 'H'), ('F', 'G'), ('I', 'J')])

In: nx.clustering(G, 'J')

Out: 0.0

Measuring clustering on the whole network:

Approach I: Average local clustering coefficient over all nodes in the graph.

In: nx.average clustering(G)

Out: 0.287878787878785

Measuring clustering on the whole network (Approach 2):

Percentage of "open triads" that are triangles in a network.

Triangles:

Transitivity =
$$\frac{3*Number of closed triads}{Number of open triads}$$

Open triads:

Measuring clustering on the whole network:

Transitivity: Ratio of number of triangles and number of "open triads" in a network.

In: nx.transitivity(G)
Out: 0.409090909091

Transitivity vs. Average Clustering Coefficient

Both measure the tendency for edges to form triangles.

Transitivity weights nodes with large degree higher.

- Most nodes have high LCC
- The high degree node has low LCC

- Most nodes have low LCC
- High degree node have high LCC

Ave. clustering coeff. = 0.93 Transitivity = 0.23

30 b

Ave. clustering coeff. = 0.25 Transitivity = 0.86

Summary

Clustering coefficient measures the degree to which nodes in a network tend to "cluster" or form triangles.

Local Clustering Coefficient

Fraction of pairs of the node's friends that are friends with each other.

LCC of C =
$$\frac{2}{6} = \frac{1}{3}$$

LCC of C = $\frac{1}{3}$

LCC of C = $\frac{1}{4}$

LCC of C = $\frac{1}{4}$

Global Clustering Coefficient

Average Local Clustering Coefficient

nx.average_clustering(G)

Transitivity

Ratio of number of triangles and number of "open triads".

Puts larger weight on high degree nodes.

nx.transitivity(G)