Transgénicos

Definición

Los animales transgénicos son organismos manipulados genéticamente para incorporar un **gen foráneo** en su genoma.

Impacto de los transgénicos

- El impacto que los animales transgénicos o knockout han tenido en las biociencias es innegable
 - Estudio de la función y la regulación de los genes
 - Simulación de enfermedades humanas
 - Búsqueda de nuevas terapéuticas.

Terapia génica -

- 3 componentes indisociables y necesarios:
 - 1. Un **gen de interés** del cual se espera que la expresión en una célula normal se acompañe de un efecto terapéutico
 - 2. La célula blanco, sobre la cual hay que realizar la modificación
 - 3. El **vector**, vehículo que transporta el material genético y permite su introducción en la célula blanco sistemas que que se usan como ayuda en el proceso de transferencia de un gen exógeno al

interior de la célula

Tabla 2. Vectores utilizados en terapia génica					
Vectores no virales					
Físicos	Químicos	Vectores virales			
Biobalística Electroporación Microinyección	Fosfato cálcico Liposomas Receptores	Retrovirus Adenovirus Virus asociados a adenovirus Herpes simples			

Aplicaciones

- Estudio del desarrollo embrionario y su regulación a nivel molecular .
- Manipulación específica de la expresión génica in vivo
- Estudio de la función de genes específicos.
- Uso de mamíferos como biorreactores para la producción de proteínas humanas.
- Tratamientos de enfermedades mediante terapia génica.

Sistemas de producción de proteínas recombinantes humana para la industria farmacéutica

Sistema	Coste	Tiempo producción	Capacidad de producción	Glicosilación	Riesgo de contaminación
Bacterias	Bajo	Corto	Baja	Ninguna	Endotoxinas
Levaduras	Medio	Medio	Media	Incorrecta	Bajo riesgo
Cultivo células mamífero	Alto	Largo	Muy alta	Correcta	Virus, priones y ADN oncogénico
Plantas transgénicas	Muy bajo	Corto	Alta	Pocas diferencias	Bajo riesgo
Animales transgénicos	Alto	Muy largo	Muy alta	Correcta	Virus, priones y ADN oncogénico

Proteínas utilizadas con fines terapéuticos obtenidas mediante el uso de **plantas**

Proteína recombinante	Tipo proteína	Especie
Albimumina sérica humana	Proteína sanguínea	Solanum tuberosum
Factor de crecimiento epidermal	Proteína de crecimiento	Nicotiana tabacum
Interleucina-12	Citoquina	Nicotiana tabacum
Factor intrínseco humano	Terapéutico oral	Nicotiana tabacum

Proteínas recombinantes humanas obtenidas mediante la utilización de **cultivo de células** de mamíferos

Nombre comercial	Proteína recombinante	Sistema expresión	Indicaciones
TNKase	Tenecteplasa (Activador tisular del plaminógeno)	СНО	Reducción de la mortalidad asociada al infarto de miocardio
Re Facto	Factor antihemofilico	СНО	Control de episodios hemorrágicos
NovoSeven	Factor de coagulación VIIa	ВНК	Tratamiento para pacientes con hemofilia A o B
Enbrel	Etanercept (inhibidor del factor de crecimiento tumoral)	СНО	Tratamiento para artritis reumatoide
Herceptin	Trastuzumab (anticuerpo monoclonal)	СНО	Tratamientos en cáncer de mama metastásicos
Rituxan	Rituximab (anticuerpo monoclonal)	СНО	Tratamiento en linfomas no Hodgkin

Proteínas producidas por animales transgénicos

- Más de 100 proteínas han sido producidas en leche de forma experimental
- Antitrombina III ← leche de cabra transgénica

Profilaxis de trombo embolismo venosos en pacientes con deficiencia congénita de antitrombina sometidos a cirugía

• Inhibidor de la esterasa C1 (INH C1) ← leche de los conejos transgénicos

Tratamiento para la deficiencia congénita del factor C1INH que produce el angioedema hereditario (HAE)

Inyección pronucleation (Gordon y cols, 1980)

- Inserción al azar del transgen
- Animales quiméricos si se integra el ADN después de la primera división
- Desventaja: Inserción al azar

Construcción con el gen de interés Microinyección en el pronúcleo de un ovocito fertilizado Transferencia del cigoto a una hembra seudopreñada Primera generación: animal fundador Segunda generación: animal transgénico Recombinación homóloga en células madre embrionarias

• Esta técnica emplea regiones de homología entre el ADN endógeno (cromosómico) y el exógeno (transgén), para insertar el gen de interés en un área específica del cromosoma

• Ventajas:

- Se puede escoger el sitio específico de inserción del transgén
- Se puede prescindir del promotor en la construcción, ya que se hace uso de las regiones reguladoras (promotores, enhancers, etc.) endógenas.
- Desventaja: eficiencia baja (no permite su empleo directo en embriones) → Cultivos de células madres embrionarias

Recombinación homóloga en células madre embrionarias

A. Gene targeting of embryonic stem cells

Una vez seleccionadas las células que incorporaron correctamente el gen de interés, se las inyecta en un embrión huésped

B. Generation of gene targeted mice

Mutagénesis de células somáticas y transferencia nuclear

Vectores retrovirales

- Los retrovirus siempre fueron candidatos para la transgénesis viral debido a la capacidad de integrar su material genético al de la célula huésped, luego de la transcripción inversa
- Transgén incorporado al genoma del embrión por un mecanismo intrínseco al virus

 TAREA: Investigar los diferentes tipos de virus (Retrovirus, Adenovirus, virus adeno-asociado (AAV), lentivirus)

Vectores retrovirales

- Desventajas:
 - Tamaño del transgén limitado (menor a 8 Kb) 👨
 - Integración del genoma viral con el transgén se produce en diferentes etapas del desarrollo del embrión (por lo que el transgén no siempre involucra a la línea germinal, en cuyo caso no existe transferencia a la descendencia)
 - Integración del transgén en más de un sitio diferente

Expresión inducible de transgenes: sistema regulado por tetraciclina

• Con el sistema TetOff existe una expresión permanente del gen, el cual "se apaga" cuando el ratón bebe doxiciclina.

Expresión inducible de transgenes: sistema regulado por tetraciclina

Expresión del gen

В

• Con el sistema TetOn no existe una expresión basal del gen, pero éste "se enciende" cuando el ratón bebe doxiciclina.

Como generar una memoria de miedo "falsa"?

• Solamente las neuronas activas durante un periodo definido se etiqueten para su posterior control mediante estimulación con luz

Nucleasas

Dedos de zinc (Zinc Fingers, ZF)

- Módulos de unión al ADN que se encuentran en factores de transcripción específicos de secuencia en todos los organismos eucariotas
- Los dedos de zinc coordinan iones de zinc con una combinación de residuos de cisteína e histidina

Nucleasas dedos de zinc (ZFNs)

- Las ZFNs son endonucleasas artificiales que se han sintetizado combinando dedos de zinc a un dominio de escisión de ADN inespecífico del tipo IIS de la enzima de restricción FokI (acción endonucleasa)
- Los dedos de zinc pueden ser modificados para reconocer secuencias de ADN específicas que permitan a las nucleasas con dedos de zinc procesar secuencias únicas en un genoma completo
- Como cada módulo ZF reconoce 3 pb, se necesitan varios dedos de zinc en cada monómero ZFN para reconocer y unirse a secuencias más largas del DNA.

(Bibikova et al. 2001)

Nucleasas dedos de zinc

- Uno de los dominios de ruptura inespecífica de ADN más empleados en los ZFNs es la enzima de restricción Fokl
- DBS: double-strand break (ruptura de la doble cadena)

Fusión no homóloga de extremos

https://www.youtube.com/watch?v=bJig_9Rp0Xw

ZFNs

1. Recombinación no homóloga

 La unión /fusión no no homóloga de extremos (NHEJ) induce errores en el genoma a través de INDELs (pequeñas inserciones o deleciones)

2. Recombinación homóloga

 La RH con un fragmento de ADN → reemplazo

ZFNs

Ventajas:

- Las ZFN reparan la secuencia del gen sin integrar ninguna secuencia en el genoma
- La eficiencia es muy alta
- No es necesario mantener la expresión de un gen a lo largo del tiempo.

Desventajas:

- No es posible apuntar a cualquier secuencia de ADN deseada
- Terapias ex vivo (alto poder inmunogénico)

Transcription activator-like effector nuclease, (TALENs)

- Las nucleasas efectoras similares a las del activador de la transcripción (TALE) son proteínas producidas por bacterias fitopatógenas para regular la expresión génica del huésped
- TALENs son endonucleasas artificiales formadas mediante la fusión del dominio de unión al DNA (TAL está compuesto por 33-35 repeticiones de aminoácidos) al dominio de escisión de la endonucleasa Fokl
- Cada repetición TALE reconoce de manera independiente su correspondiente nucleótido → las repeticiones representan linealmente la secuencia de nucleótidos del sitio de unión

TALENS

Ventajas:

- Mayor capacidad de edición del genoma
- Menos tóxicos que los ZFN
- Para dimerizarse tienen una especificidad mejorada

Desventajas:

• Terapias ex vivo, efecto in vivo limitado (tamaño grande)

Zinc Finger Nuclease (ZFN)

1. Association with target DNA

Zinc Finger Nuclease (ZFN) Fokl Zinc finger array DNA binding domain Fartial nuclease domain Left ZFN recognition Sequence Alight ZFN recognition Sequence

2. Induction of double-strand breaks

Transcription Activator-Like Effector Nuclease (TALEN)

2. Induction of double-strand breaks

DREADDs

Designer Receptors Exclusively Activated by Designer Drugs

DREADDs: Designer Receptors Exclusively Activated by Designer Drugs

- Receptores sintéticos y ligandos selectivos para la activación o inactivación transitoria de áreas cerebrales específicas
- Receptores derivados de mutagénesis dirigida del ADN del receptor acoplado a la proteína G endógeno → receptores sintéticos
- Estos receptores se expresan fácilmente en las membranas neuronales, pero carecen de un ligando endógeno para activarlos
- Son sensibles al fármaco clozapine-n-oxide (CNO), que de otra manera sería inerte, que puede administrarse sistémicamente y se une a los receptores DREADD

F

 Otro DREADD: forma mutada del receptor opioide kappa acoplado a Gi (KORD), que se activa por el ligando inerte salvinorina B, pero no por la dinorfina endógena > inhibición

hM4Di: Versión modificada del receptor de acetilcolina muscarínico M4 → hiperpolarización

hM3Dq: Versión modificada del receptor muscarínico M3 → ráfagas de PA

DREADDs: Designer Receptors Exclusively Activated by Designer Drugs

- Los DREADDs tienen muchas de las mismas ventajas que la optogenética para preguntar la función de un circuito neural en una conducta
- Desventaja: carecen de la precisión temporal de la optogenética
- Ventajas:
 - relativa no invasividad
 - efectos más naturalistas sobre la actividad cerebral.