Natural Language Processing

$$\begin{aligned} & \mathbf{x}_{\textit{shirt}} - \mathbf{x}_{\textit{clothing}} \approx \mathbf{x}_{\textit{chair}} - \mathbf{x}_{\textit{furniture}} \ \log p(o|c) = \log \frac{\exp \left(u_o^T v_c\right)}{\sum_{w=1}^{W} \exp \left(u_w^T v_c\right)} \\ & \mathbf{x}_{\textit{king}} - \mathbf{x}_{\textit{man}} \approx \mathbf{x}_{\textit{queen}} - \mathbf{x}_{\textit{woman}} \end{aligned}$$

Natural Language Processing

- Token Representation Word2Vec
- Sentence Representation CBOW, RN, CNN, Self Attention, RNN
- Language Model N-Gram LM, NNLM
- Neural Machine Translation

How to Represent a Token

- Intuitive embedding one hot encoding
 - Apple, Strawberry, Dog 세 단어가 있을 때,
 - Apple \rightarrow [1, 0, 0]
 - Strawberry \rightarrow [o, 1, o]
 - Dog \rightarrow [0, 0, 1]
- 장점
 - Easy!
- 단점
 - 단어들 간의 의미관계를 파악할 수 없음(apple과 strawberry, apple과 dog)
 - 단어가 많아지면?

We Want...

(Mikolov et al., NAACL HLT, 2013)

Let's Try It

http://w.elnn.kr/search/

CBOW & Skip-gram

CBOW

Skip-gram

CBOW – Continuous Bag of Words

- Fill the blank
 - 아이스크림을 사 먹었는데, ___ 시려서 먹기가 힘들었다.
- 앞 뒤로 C/2개의 단어를 input으로 하여 center 단어를 맞추도록 학습
- Input은 one-hot encoding
- Input → Hidden layer는 linear mapping(avg(Wx_{ik}))
- Hidden → Output layer는 Softmax(W'h_i)

Skip-gram

- CBOW와 반대로 중심 단어를 주고 주변 단어들에 대한 확률 값을 출력함
- Window 내에 있는 단어의 확률이 최대 가 되도록 학습
- Objective function
 - Maximize $J'(\theta) = \prod_{t=1}^{T} \prod_{-C/2 \le j \le C/2, j \ne 0} P(x_{t+j}|x_t; \theta)$
 - → Negative log likelihood
 - Minimize

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-C/2 \le j \le C/2, j \ne 0} log P(x_{t+j} | x_t; \theta)$$

How to Represent a Token

- How do should we represent a token so that it reflects its "meaning"?
- First, we assume nothing is known: use an one-hot encoding.
- Second, the neural network capture the token's meaning as a vector.
- This is done by a simple matrix multiplication: $Wx = W[\hat{x}]$, if x is one-hot, where $\hat{x} = \arg\max x_i$ is the token's index in the vocabulary.

How to Represent a Sentence

- 단어는 Word2Vec을 사용하면 될텐데, 문장은 어떻게 해야할까?
- 문장 = 단어들의 sequence
- Sequence의 길이가 문장마다 모두 다름 → fixed length vector로 표현하는 방법을 찾아야 함

How to Represent a Sentence - CBOW

• Continuous bag-of-words based multi-class text classifier

• With this DAG, you use automatic backpropagation and stochastic gradient descent to train the classifier.

How to Represent a Sentence - RN

- Relation Network [Santoro et al., 2017]: Skip Bigrams
 - Consider all possible pairs of tokens: $(x_i, x_j), \forall i \neq j$
 - Combine two token vectors with a neural network for each pair $f(x_i, x_j) = W\phi(U_{\text{left}}e_i + U_{\text{right}}e_j)$
 - ϕ is a element-wise nonlinear function, such as anh or ReLU $(\max(0,a))$
 - One subgraph in the DAG.

How to Represent a Sentence - RN

- Relation Network: Skip Bigrams
 - Considers all possible pairs of tokens: $(x_i, x_j), \forall i \neq j$
 - Considers an possible f $f(x_i, x_j) = W\phi(U_{\text{left}}e_i + U_{\text{right}}e_j)$ Considers the pair-wise "relation"ship $RN(X) = \frac{1}{2N(N-1)}\sum_{i=1}^{T-1}\sum_{j=i+1}^{T}f(x_i, x_j)$

How to Represent a Sentence - CNN

- Convolutional Networks [Kim, 2014; Kalchbrenner et al., 2015]
 - Captures k-grams hierarchically
 - One 1-D convolutional layer: considers all k-grams

$$h_t = \phi\left(\sum_{\tau=-k/2}^{k/2} W_{\tau} e_{t+\tau}\right)$$
, resulting in $H = (h_1, h_2, \dots, h_T)$.

- Stack more than one convolutional layers: progressively-growing window
- Fits our intuition of how sentence is understood: tokens→multi-word expressions→phrases→sentence

- Can we combine and generalize the relation network and the CNN?
- Relation Network:
 - Each token's representation is computed against all the other tokens $h_t = f(x_t, x_1) + \dots + f(x_t, x_{t-1}) + f(x_t, x_{t+1}) + \dots + f(x_t, x_T)$
- CNN:
 - Each token's representation is computed against neighbouring tokens $h_t = f(x_t, x_{t-k}) + \cdots + f(x_t, x_t) + \cdots + f(x_t, x_{t+k})$
- RN considers the entire sentence vs. CNN focuses on the local context.

- Can we combine and generalize the relation network and the CNN?
- CNN as a weighted relation network:
 - Original: $h_t = f(x_t, x_{t-k}) + \dots + f(x_t, x_t) + \dots + f(x_t, x_{t+k})$
 - Weighted:

$$h_t = \sum_{t'=1}^{I} \mathbb{I}(|t'-t| \le k) f(x_t, x_{t'})$$

where $\mathbb{I}(S) = 1$, if S is true, and 0, otherwise.

• Can we compute those weights instead of fixing them to 0 or 1?

- Can we compute those weights instead of fixing them to 0 or 1?
- That is, compute the weight of each pair $(x_t, x_{t'})$

$$h_t = \sum_{t'=1}^{T} \alpha(x_t, x_{t'}) f(x_t, x_{t'})$$

- The weighting function could be yet another neural network
 - Just another subgraph in a DAG: easy to use! $\alpha(x_t, x_{t'}) = \sigma(\text{RN}(x_t, x_{t'})) \in [0, 1]$
 - Perhaps we want to normalize them so that the weights sum to one

$$\alpha(x_t, x_{t'}) = \frac{\exp(\beta(x_t, x_{t'}))}{\sum_{t''=1}^{T} \exp(\beta(x_t, x_{t''}))}, \text{ where } \beta(x_t, x_{t'}) = \text{RN}(x_t, x_{t'}))$$

- Self-Attention: a generalization of CNN and RN.
- Able to capture long-range dependencies within a single layer.
- Able to ignore irrelevant long-range dependencies.

How to Represent a Sentence – RNN

- Recurrent neural network: online compression of a sequence O(T) $h_t = \text{RNN}(h_{t-1}, x_t)$, where $h_0 = 0$.
- Bidirectional RNN to account for both sides.
- Inherently sequential processing
 - Less desirable for modern, parallelized, distributed computing infrastructure.
- LSTM [Hochreiter&Schmidhuber, 1999] and GRU [Cho et al., 2014] have become de facto standard
 - All standard frameworks implement them.
 - Efficient GPU kernels are available.

Language Model

- Input: a sentence
- Output: the probability of the input sentence
- A language model captures the distribution over all possible sentences. $p(X) = p((x_1, x_2, ..., x_T))$
- Unlike text classification, it is unsupervised learning.
 - We will however turn the problem into a sequence of supervised learning.

Autoregressive Language Model

- Autoregressive sequence modelling
 - The distribution over the next token is based on all the previous tokens. $p(X) = p(x_1)p(x_2|x_1)\cdots p(x_T|x_1,\ldots,x_{T-1})$
 - This equality holds exactly due to the def. of conditional distribution*
- Unsupervised learning becomes a set of supervised problems.
 - Each conditional is a neural network classifier.
 - Input is all the previous tokens (a partial sentence).
 - Output is the distribution over all possible next tokens (classes).
 - It is a **text classification** problem.

Autoregressive Language Model

- Autoregressive sequence modelling
 - The distribution over the next token is based on all the previous tokens.

$$p(X) = p(x_1)p(x_2|x_1)\cdots p(x_T|x_1,\dots,x_{T-1})$$

• Each conditional is a sentence classifier:

Machine Translation

- Input: a sentence written in a source language L_S
- Output: a corresponding sentence in a target language L_T
- Problem statement:
 - Supervised learning: given the input sentence, output its translation
 - Compute the conditional distribution over all possible translation given the input $p(Y=(y_1,\ldots,y_T)|X=(x_1,\ldots,x_{T'}))$

• We have already learned every necessary ingredient for building a full neural machine translation system.

Encoder – Source Sentence Representation

- Encode the source sentence into a set of sentence representation vectors
 - # of encoded vectors is proportional to the source sentence length: often same. $H=(h_1,\ldots,h_{T'})$
 - Recurrent networks have been widely used [Cho et al., 2014; Sutskever et al., 2014], but CNN [Gehring et al., 2017; Kalchbrenner&Blunsom, 2013] and self-attention [Vaswani et al., 2017] are used increasingly more often. See Lecture 2 for details.
- We do not want to collapse them into a single vector.
 - Collapsing often corresponds to information loss.
 - Increasingly more difficult to encode the entire source sentence into a single vector, as the sentence length increases [Cho et al., 2014b].
 - We didn't know initially until [Bahdanau et al., 2015].

Encoder – Source Sentence Representation

- Encode the source sentence into a set of sentence representation vectors
- We do not want to collapse them into a single vector.
 - Increasingly more difficult to encode the entire source sentence into a single vector, as the sentence length increases [Cho et al., 2014b].

Decoder – Language Modelling

- Autoregressive Language modelling with an infinite context $n \rightarrow \infty$
 - Larger context is necessary to generate a coherent sentence.
 - Semantics could be largely provided by the source sentence, but syntactic properties need to be handled by the language model directly.
 - Recurrent networks, self-attention and (dilated) convolutional networks
 - Causal structure must be followed.
 - See Lecture 3.
- Conditional Language modelling
 - The context based on which the next token is predicted is **two-fold**

$$p(Y|X) = \prod_{t=1}^{I} p(y_t|y_{< t}, X)$$

Decoder – Language Modelling

• Conditional Language modelling $p(Y|X) = \prod_{t=1}^{\infty} p(y_t|y_{< t}, X)$

Neural Machine Translation (NMT)

Encoder RNN produces an encoding of the source sentence.

Note: This diagram shows **test time** behavior: decoder output is fed in ••••• as next step's input

Greedy Decoding

 We saw how to generate (or "decode") the target sentence by taking argmax on each step of the decoder

- This is greedy decoding (take most probable word on each step)
- Problems with this method?

Problems with Greedy Decoding

Greedy decoding has no way to undo decisions!

```
• Input: il a m'entarté (he hit me with a pie)
```

```
• → he ____
```

```
• \rightarrow he hit ____
```

```
• → he hit a ____ (whoops! no going back now...)
```

How to fix this?

Beam Search Decoding

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

Sequence-to-Sequence: the Bottleneck Problem

Attention

Attention provides a solution to the bottleneck problem.

 Core idea: on each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence

 First we will show via diagram (no equations), then we will show with equations

Sequence-to-Sequence with Attention

Sequence-to-Sequence with Attention

Sequence-to-Sequence with Attention

Decoder RNN

Decoder RNN

Attention: In Equation

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use $lpha^t$ to take a weighted sum of the encoder hidden states to get the attention output $m{a}_t$

$$\boldsymbol{a}_t = \sum_{i=1}^{N} \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output $m{a}_t$ with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t; oldsymbol{s}_t] \in \mathbb{R}^{2h}$$

Attention is Great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get (soft) alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself

RNN Neural Machine Translation

- **Source**: An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.
- When collapsed: Un privilège d'admission est le droit d'un médecin de reconnaître un patient à l'hôpital ou un centre médical <u>d'un diagnostic ou de prendre un diagnostic en fonction de son état de santé.</u>
- **RNNSearch**: Un privilège d'admission est le droit d'un médecin d'admettre un patient à un hôpital ou un centre médical <u>pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des soins de santé à l'hôpital.</u>

RNN Neural Machine Translation

- Sensible alignment between source and target tokens
- Capture long-range reordering/dependencies
- Without strong supervision on the alignment
 - Weakly supervised learning

RNN Neural Machine Translation

- Input: arbitrary as long as encoded into a set of continuous vectors
- Output: a corresponding sentence in a target language

Image Caption Generation

- Input: an image
- Output: an image caption
- Network Architecture
 - Encoder: deep convolution network
 - Decoder: recurrent language model with the attention mechanism.
- Data: image-caption pairs

Image Caption Generation

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Speech Recognition

• Input: Speech

• Output: transcription

