

Pauta Ayudantía 5 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

21 de abril de 2023

Durante todo el curso A denotará un anillo conmutativo con unidad.

Problema 1. Sea G un grupo finito y $H \subseteq G$ un subgrupo normal. Probar que G admite una serie de composición

$$G =: G_0 \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_r = \{e\}$$

tal que $H = G_i$ para cierto $i \in \{0, \dots, r\}$.

Indicación: Probar que si $K \leq L \leq G/H$, entonces $\pi^{-1}(L)/\pi^{-1}(K) \cong L/K$, donde $\pi: G \to G/H$ es la proyección al cociente. Para esto último, determinar el kernel de la composición $\pi^{-1}(L) \to L \to L/K$.

Demostración. Sean $K \leq L \leq G/H$ y consideremos las proyecciones canónicas $\pi : \pi^{-1}(L) \twoheadrightarrow L, \widetilde{\pi} : L \twoheadrightarrow L/K$. Calculamos el kernel de esta composición como sigue:

$$\ker(\widetilde{\pi} \circ \pi) = \{ x \in \pi^{-1}(L) | \widetilde{\pi}(\pi(x)) = K \}$$

$$= \{ x \in \pi^{-1}(L) | \pi(x)K = K \}$$

$$= \{ x \in \pi^{-1}(L) | \pi(x) \in K \}$$

$$= \pi^{-1}(K)$$

El teorema del isomorfismo de Noether nos entrega entonces un isomorfismo $\pi^{-1}(L)/\pi^{-1}(K) \cong L/K$. Consideremos ahora G grupo finito y $H \leq G$ subgrupo normal. El teorema de Jordan Hölder asegura entonces la existencia de series de composición para H y para G/H pues ambos son grupos finitos. Denotaremos estas series de la siguiente manera:

$$\{e\} \subseteq H_1 \subseteq \ldots \subseteq H_m \subseteq H, \qquad \{e\} \subseteq L_1 \subseteq \ldots \subseteq L_n \subseteq G/H$$

Tomando preimagen mediante la proyección canónica $\pi: G \twoheadrightarrow G/H$ de la serie de composición de G/H obtenemos una serie de subgrupos normales en G que contienen a H (imagen inversa de subgrupos normales es normal):

$$H \subseteq \pi^{-1}(L_1) \subseteq \ldots \subseteq \pi^{-1}(L_n) \subseteq G$$

Podemos entonces conectar las dos series para obtener:

$$\{e\} \subseteq H_1 \subseteq \ldots \subseteq H_m \subseteq H \subseteq \pi^{-1}(L_1) \subseteq \ldots \subseteq \pi^{-1}(L_n) \subseteq G$$

y únicamente restará verificar que los cocientes sucesivos son grupos simples. Para los factores H_i sabemos que esto es cierto pues son una serie de composición de H. Ahora, para $1 \le i \le n$ tenemos $\pi^{-1}(L_{i+1})/\pi^{-1}(L_i) \cong L_{i+1}/L_i$ y los cocientes de la derecha son simples pues corresponden a los términos de una serie de composición de G/H. \square

Problema 2. Sea A dominio de integridad, Fr(A) su cuerpo de fracciones y $\iota_A:A\hookrightarrow Fr(A),a\mapsto \frac{a}{1}$ el morfismo de inclusión asociado. Demuestre que Fr(A) satisface la siguiente propiedad universal: Para todo cuerpo K y todo $morfismo\ de\ anillos\ \varphi:A\hookrightarrow K\ inyectivo\ existe\ un\ único\ morfismo\ de\ anillos\ \varphi:Fr(A)\to K\ tal\ que\ el\ siquiente$ diagrama es conmutativo:

MAT214 UTFSM

Demostración. Suponer que existe el morfismo $\overline{\varphi}$ con la propiedad del enunciado y sea $\frac{a}{b} \in Fr(A)$. Tenemos entonces que $\overline{\varphi}(\frac{a}{1}) = \overline{\varphi}(\iota_A(a)) = \varphi(a)$, y similar $\overline{\varphi}(\frac{b}{1}) = \varphi(b)$. Entonces tendríamos que:

$$\varphi(a) = \overline{\varphi}\left(\frac{a}{1}\right) = \overline{\varphi}\left(\frac{a}{b}\right)\overline{\varphi}\left(\frac{b}{1}\right) = \overline{\varphi}\left(\frac{a}{b}\right)\varphi(b)$$

Por tanto, la única manera de definir $\overline{\varphi}$ sería mediante:

$$\overline{\varphi}\left(\frac{a}{b}\right) = \varphi(a)\varphi(b)^{-1} \qquad \forall a, b \in A, b \neq 0$$

Notar en primer lugar que la definición anterior tiene sentido pues si $b \neq 0$, como φ es inyectivo entonces $\varphi(b) \in K \setminus \{0\}$ y dado que K es cuerpo este elemento posee inverso. Restaría ver simplemente si la definición de φ es independiente de la fracción equivalente escogida, y que $\overline{\varphi}$ es morfismo de anillos. Para ello vemos que si $\frac{a}{b} = \frac{a'}{b'}$, es decir, ab' = a'b, entonces tenemos:

$$\overline{\varphi}\left(\frac{a}{b}\right) = \varphi(a)\varphi(a'b)\varphi(ab')^{-1}\varphi(b)^{-1}$$

$$= \varphi(a)\varphi(a')\varphi(b)\varphi(a)^{-1}\varphi(b')^{-1}\varphi(b)^{-1}$$

$$= [\varphi(a)\varphi(a)^{-1}]\varphi(a')[\varphi(b)\varphi(b)^{-1}]\varphi(b')^{-1}$$

$$= \varphi(a')\varphi(b')^{-1} = \overline{\varphi}\left(\frac{a'}{b'}\right)$$

Para probar que $\overline{\varphi}$ consideremos $\frac{a}{b}, \frac{c}{d} \in Fr(A)$. Vemos entonces que:

$$\overline{\varphi}\left(\frac{a}{b} + \frac{c}{d}\right) = \overline{\varphi}\left(\frac{ad + bc}{bd}\right)$$

$$= \varphi(ad + bc)\varphi(bd)^{-1}$$

$$= \varphi(ad)\varphi(bd)^{-1} + \varphi(bc)\varphi(bd)^{-1}$$

$$= \overline{\varphi}\left(\frac{ad}{bd}\right) + \overline{\varphi}\left(\frac{bc}{bd}\right)$$

$$= \overline{\varphi}\left(\frac{a}{b}\right) + \overline{\varphi}\left(\frac{c}{d}\right)$$

Para el producto la demostración es similar (ejercicio).

Problema 3. Sea A anillo. Demuestre el Teorema del binomio:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \qquad \forall a, b \in A, \forall n \in \mathbb{N}$$

Indicación: Muestre primero la relación $\binom{n}{k+1} + \binom{n}{k} = \binom{n+1}{k+1}$

Demostración. Note en primer lugar que

$$\begin{pmatrix} n \\ k+1 \end{pmatrix} + \begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{(k+1)!(n-(k+1))!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{n!(n-k)}{(k+1)!(n-k)!} + \frac{n!(k+1)}{(k+1)!(n-k)!}$$

$$= \frac{(n+1)!}{(k+1)!((n+1)-(k+1))!}$$

$$= \begin{pmatrix} n+1 \\ k+1 \end{pmatrix}$$

MAT214 UTFSM

Demostramos ahora el resultado. Sean $a, b \in A$. Para n = 0 es trivial que $(a + b)^0 = 1$. Por inducción suponemos verdadero para n y calculamos como sigue:

$$(a+b)^{n+1} = (a+b)(a+b)^{n}$$

$$= (a+b) \left[\sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} \right]$$

$$= \left[\sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} \right] + \left[\sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k+1} \right]$$

$$= a^{n+1} + \left[\sum_{k=0}^{n-1} \binom{n}{k} a^{k+1} b^{n-k} \right] + b^{n+1} + \left[\sum_{k=1}^{n} \binom{n}{k} a^{k} b^{n-k+1} \right]$$

$$= a^{n+1} + \left[\sum_{k=1}^{n} \binom{n}{k-1} + \binom{n}{k} a^{k} b^{(n+1)-k} \right] + b^{n+1}$$

$$= \binom{n+1}{n+1} a^{n+1} b^{(n+1)-(n+1)} + \left[\sum_{k=1}^{n} \binom{n+1}{k} a^{k} b^{(n+1)-k} \right] + \binom{n+1}{0} a^{0} b^{(n+1)-0}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^{k} b^{(n+1)-k}$$

Problema 4. Sea A un anillo y A[X] su anillo de polinomios. Sea $P(X) = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in A[X]$

- 1. Muestre que P es nilpotente $\Leftrightarrow a_0, a_1, \ldots, a_n$ son nilpotentes.
- 2. Pruebe que P es una unidad en $A[X] \Leftrightarrow a_0$ es una unidad en A y a_1, \ldots, a_n son nilpotentes. Indicación: Demuestre en primer lugar que si $x \in A$ es nilpotente entonces $1 + x \in A^{\times}$.
- 3. Demuestre que P es un divisor de cero \Leftrightarrow existe $a \neq 0$ en A tal que aP = 0.

Demostración.

- 1. (\Leftarrow) Notar que si $a \in A$ es nilpotente, entonces aX^n es nilpotente en A[X]. Además, el Teorema del binomio nos permite probar de manera directa que la suma de elementos nilpotentes es nilpotente, por lo que si $P \in A[X]$ posee coeficientes nilpotentes entonces será nilpotente en A[X].
 - (⇒) Sea $P \in A[X]$ nilpotente. Sea $n = \deg(P)$ y probemos por inducción. El caso n = 0 es trivial. Suponemos entonces que el resultado es cierto para polinomios de grado menor a n. Si $P(X)^k = 0$ entonces es claro que $a_n^k = 0$, ie, el coeficiente principal es nilpotente. Ahora, el polinomio $P(X) a_n X^n$ es de grado menor a n y la hipótesis de inducción permite concluir.
- 2. Mostremos primero la indicación. Si $x^n = 0$ entonces vemos que

$$(1+x)(1-x+x^2-\ldots+(-1)^{n-1}x^{n-1})=1$$

así que $1 + x \in A^{\times}$. Ahora, si $a \in A^{\times}$ y x nilpotente entonces $a^{-1}x$ es nilpotente, de manera que $1 + a^{-1}x$ es una unidad de A y luego a + x también.

(⇒) Si P es una unidad entonces existe $Q \in A[X]$ tal que PQ = 1. Escribiendo $Q(X) = b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0$ vemos entonces que $PQ = a_0 b_0 = 1$, es decir, $a_0 \in A^{\times}$. Para demostrar que los otros coeficientes son nilpotentes usaremos inducción en el grado de P. Suponer entonces que esto es cierto para polinomios de grado menor a n. Notemos entonces que la multiplicación de polinomios resulta en

$$P(X)Q(X) = \sum_{k=0}^{n+m} \left(\sum_{i+j=k} a_i b_j\right) X^k = 1$$

MAT214

Probaremos por inducción también que

$$a_n^{t+1}b_{m-t} = 0 \qquad \forall 0 \le t \le m$$

Si t=0 entonces simplemente tenemos la relación $a_nb_m=0$. Ahora, suponer que para cierto t tenemos que si $0 \le s < t \le m$ entonces se cumple $a_n^{s+1}b_{m-s}=0$. Multiplicando el coeficiente de X^{n+m-t} por a_n^t tenemos:

$$\sum_{i+j=n+m-t} a_i a_n^t b_j = 0$$

Si j>m-t entonces por hipótesis de inducción $a_n^tb_j=0$. Por otro lado, si j< m-t entonces i>n, lo cual no tiene sentido en este caso. Únicamente nos queda entonces el coeficiente $a_n^{t+1}b_{m-t}=0$ lo que prueba la primera parte. Teniendo esto entonces resta notar que tomando t=m tenemos $a_n^{m+1}b_0=0$, pero $b_0\in A^\times$ así que $a_n^{m+1}=0$, ie, a_n es nilpotente. Considerando ahora el polinomio $P(X)-a_nX^n$, como este tiene grado n-1, la hipótesis de inducción concluye la demostración.

- (\Leftarrow) Suponer que a_0 es una unidad y que a_1, \ldots, a_n son nilpotentes. Gracias al punto anterior, P es la suma de una unidad y de un polinomio nilpotente, y por lo tanto es una unidad en A[X].
- 3. Si P es divisor de cero, sea $Q \in A[X]$ de grado minimal tal que PQ = 0. Si Q no es de grado 0, el producto de los coeficientes principales es 0 y por lo tanto a_nQ es un polinomio de grado estrictamente menor al de Q y $a_nPQ = 0$, lo que contradice la minimalidad. Necesariamente entonces $\deg(Q) = 0$. El recíproco es evidente.

Problema 5. Un anillo A (no necesariamente conmutativo) es Booleano si $x^2 = x$ para todo $x \in A$. En un anillo Booleano A, demuestre que

- 1. Muestre que todo anillo Booleano es conmutativo.
- 2. 2x = 0 para todo $x \in A$.
- 3. Todo ideal primo \mathfrak{p} es maximal, y A/\mathfrak{p} es un cuerpo con dos elementos.
- 4. Todo ideal finitamente generado en A es principal.

Demostración.

1. Notar primero que

$$-x = (-x)^2 = x^2 = x$$

Entonces para $x, y \in A$ tendremos

$$x + y = (x + y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y \implies xy = -yx$$

y juntando lo anterior xy = -yx = yx.

2. Basta con calcular que:

$$x + x = (x + x)^2 = x^2 + 2x^2 + x^2 = x + x + 2x \implies 2x = 0$$

3. Sea $\mathfrak{p} \subseteq A$ ideal primo. Entonces A/\mathfrak{p} es un dominio, y dado $x + \mathfrak{p} \in A/\mathfrak{p}$ tendremos que $[x]^2 = [x]$ así que [x]([x] - [1]) = 0 y por lo tanto tendremos [x] = 0 o bien [x] = [1]. De esta manera vemos que A/\mathfrak{p} tiene dos elementos y el elemento no nulo es invertible, es decir, A/\mathfrak{p} es cuerpo y en consecuencia \mathfrak{p} es maximal.

UTFSM

MAT214 UTFSM

4. Para esta propiedad procedemos por inducción en el número de generadores, y entonces basta probar para n=2. Si $x,y\in A$ probemos que $\langle x,y\rangle=\langle x+y+xy\rangle$. En efecto, es directo que $\langle x,y\rangle\supseteq\langle x+y+xy\rangle$, y por otro lado

$$x(x+y+xy) = x^2 + xy + x^2y = x + 2xy = x, \quad (x+y+xy)y = xy + y^2 + xy^2 = y + 2xy = y$$

de donde se obtiene la conclusión.

Problema 6. Sea A un dominio entero. Decimos que A es un dominio euclideano 2 si existe una función (euclideana) $\varphi: A\setminus\{0\} \to \mathbb{N}$ tal que para todos $a, b \in A$ con $b \neq 0$ existe una escritura (no necesariamente única)

$$a = bq + r$$
 donde $r = 0$, o bien $r \neq 0$ y $\varphi(r) < \varphi(b)$.

Probar que un dominio euclideano es un dominio de ideales principales.

Demostración. Sea $I \subseteq A$ un ideal de A. Dado que $\mathbb N$ es un conjunto bien ordenado, $\varphi(I)$ posee un mínimo. Sea $\varphi(x)$ dicho mínimo. Tomemos $a \in I$. Dado que A es un dominio euclídeo, existen $q, r \in A$ de tal suerte que a = xq + r con r = 0 o bien $r \neq 0$ y $\varphi(r) < \varphi(x)$. Notemos que como I es ideal, entonces $xq \in I$ y $a \in I$, y luego $r = a - xq \in I$ ya que los ideales son cerrados bajo la suma. No obstante, como $\varphi(x)$ es minimal en $\varphi(I)$, no puede ocurrir que $\varphi(r) < \varphi(x)$ y $r \neq 0$, por lo cual r = 0 y por lo tanto a = xq. Se sigue que $I = \langle x \rangle$.