Recommender Systems

Hüsnü Sensoy, Global Maksimum Al Team

Recommender Systems

- Overview Wednesday
- Content-based Systems Wednesday
- Collaborative Filtering Friday & Saturday
- Evaluating Recommender Systems Friday & Saturday

This section is based on Jeff Ullmanns MMDS Course

Overview

Long Tail Distribution

How **Into the Air** made More choice **Touching the Void** a bestseller better filters

More choices necessitates better filters

- Books, movies, music, news articles
- Fashion
- Bids
- People (friend recommendations of social media)

Read the Article

Type of Recommendations

- Editorial and hand curated
 - List of favorites
 - List of "essential" items
- Simple Aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual user
 - Netflix, Trendyol, Sahibinden.com...

Formal Model

- C = set of Customers
- S = set of Items
- Utility Function $u: C \times S \rightarrow R$
 - R = set of Ratings
 - R is a totally ordered set
 - e.g., **0-5** stars, real numbers in [**0,1**]

Totally Ordered Set

A Short Update on Classification vs Regression

- How does it sound to compare different y values of a regression problem?
 - Rental Price: [1000₺, 10000₺]
 - Dam Capacity: [0,100]
- How does it sound to compare different y values of a classification problem?
 - Sentiment: Positive, Negative
 - Image classification: Cat, Dog

Utility Matrix

	Avatar	BladeRunner	Matrix	Pirates
Alice	1		.2	
Bob		0.5		0.3
Carol	.2		$1^{Carol \bigotimes Matrix}$	
David				0.4

Extrapolating Utility Matrix

Utility Matrix

	Avatar	Blade Runner	Matrix	Pirates
Alice	1		.2	
Bob		0.5		0.3
Carol	.2		1	
David				0.4

Problems to Address

- 1. Building Utility Matrix
 - How to collect data?
- 2. Extrapolate unknown ratings usign the known ones
 - Note that utility matrix is highly sparse.
- 3. Evaluating extrapolation methods
 - How to measure the performance of a recommender system?

Building Utility Matrix

- Explicit: Ask people to rate items
 - description
 descript
 - Doesn't scale very well (think of utility matrix size)
- Implicit: Learn ratings from user actions
 - description<l
 - Poefining rules might be challenging
 - \(\forall \) How about low ratings?
- Explicit + Implicit: Combine two

Extrapolating Utility Matrix

- Key Problem: Matrix U is sparse
 - r value is missing for most (u, s) pair. 9
 - Cold Start Problem
 - A row of U is completely empty
 - A column of U is completely empty
- Three main approaches
 - 1. Content-based
 - 2. Collaborative
 - 3. Latent factor based

Content-based Systems

Content-based Recommendations

Main Idea: Recommend items to customer c similar to previous items rated higly by c

- Movie
 - Same actor(s), director, genre...
- Website, blog, news or any document
 - Documents with similar content
- People
 - Recommend people with many common friends, common hobbies, etc.

Item Profiles

- For each item, create an item profile
- Convenient way to think of the item profile as a vector
 - One entry per feature
 - Vector might be boolean/real-valued

Item Profiles

How to incorporate Text Features

- Important words in text features
- Defining importance of a word as the combination (multiplication) of two
 - Presence of a word in a document (tf)
 - A word is trivial if it occurs in many documents (idf)

Term Frequency (tf)

 f_{ij} = frequency of $word_i$ in $document_j$

We obtain term frequency by normalizing with frequency of the most frequent word in that sentences.

$$tf_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Refer Term Frequency for more term frequency calculation heuristics.

Inverse Document Frequency (idf)

 n_i = Number of documents in which $word_i$ is mentioned.

N = Total number of documents.

$$idf_i = \frac{N}{n_i}$$

Refer Inverse Document Frequency for more idf calculation heuristics.

Learn tf-idf by example

- For a simple case let's assume we have 2 text items to be profiled
 - s1: this1 is2 a3 sample4
 - s²: this¹ is² another⁵ sample⁴
- tf
 - $tf_{11} = \frac{1}{1}, tf_{21} = \frac{1}{1}, tf_{31} = \frac{1}{1}, tf_{41} = \frac{1}{1}, tf_{51} = \frac{0}{1}$
 - $tf_{12} = \frac{1}{1}$, $tf_{22} = \frac{1}{1}$, $tf_{32} = \frac{0}{1}$, $tf_{42} = \frac{1}{1}$, $tf_{52} = \frac{1}{1}$
- $idf_1 = log\frac{2}{2}$, $idf_2 = log\frac{2}{2}$, $idf_3 = log\frac{2}{1}$, $idf_4 = log\frac{2}{2}$, $idf_5 = log\frac{2}{1}$
- $p(s_1) = \langle 0, 0, 1, 0, 0 \rangle$
- $p(s_2) = \langle 0, 0, 0, 0, 1 \rangle$

Boolean Utility Matrix

- Assume customer c has watched 5 movies (remember implicit building of utility matrix.)
 - 2 movies featuring actor A
 - 3 movies featuring actor B
- Profile of user is [0.4 0.6]

Star Rating

Making Recommendations

- We have user profiles
- We have item profiles
- We can generate prediction by using vector similarity between two
 - $U(w_1, w_2) = \frac{w_1 w_2}{|w_1| |w_2|}$

Pros: Content-based Approach

- No need for data on other users
- Able to recommend to users with unique tastes
- Able to recommend new & unpopular items
- Explanations for recommended items

Cons: Content-based Approach

- Finding the appropriate featurse is hard <a>
 - Images
 - Movies
 - Music
- Overspecialization
 - Never recommends items outside user's content profile
 - Unable to exploit quality judgements of other users
- Cold-start problem for new users