Actor-Critic Algorithms

CS 285

Instructor: Sergey Levine UC Berkeley

Recap: policy gradients

REINFORCE algorithm:

1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)

2.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}^{i}, \mathbf{a}_{t'}^{i}) \right) \right)$$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

"reward to go"

Improving the policy gradient

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

"reward to go"

 $\hat{Q}_{i,t}$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$

can we get a better estimate?

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

What about the baseline?

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \underbrace{(Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - V(\mathbf{s}_{i,t}))}_{(Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - V(\mathbf{s}_{i,t}))}$$

$$b_t = \frac{1}{N} \sum_{i} Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$
 average what?

$$V(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q(\mathbf{s}_t, \mathbf{a}_t)]$$

State & state-action value functions

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right] \text{: total reward from taking } \mathbf{a}_t \text{ in } \mathbf{s}_t$$
 fit $Q^{\pi}, V^{\pi}, \text{ or } A^{\pi}$
$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)} [Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)] \text{: total reward from } \mathbf{s}_t$$
 fit a model to estimate return
$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t) \text{: how much better } \mathbf{a}_t \text{ is } V^{\pi}$$
 samples (i.e. run the policy)
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$
 improve the policy
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$
 the better this estimate, the lower the variance

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) - b \right) \underline{\qquad}$$

unbiased, but high variance single-sample estimate

Value function fitting

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$

$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$$

$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

fit what to what?

$$Q^{\pi}, V^{\pi}, A^{\pi}$$
?

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \sum_{t'=t+1}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]$$

$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \approx r(\mathbf{s}_t, \mathbf{a}_t) + V^{\pi}(\mathbf{s}_{t+1}) - V^{\pi}(\mathbf{s}_{t+1})$$

let's just fit $V^{\pi}(\mathbf{s})!$

Policy evaluation

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

$$J(\theta) = E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}[V^{\pi}(\mathbf{s}_1)]$$

how can we perform policy evaluation?

Monte Carlo policy evaluation (this is what policy gradient does)

$$V^{\pi}(\mathbf{s}_t) \approx \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

$$V^{\pi}(\mathbf{s}_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$
(requires us to reset the simulator)

Monte Carlo evaluation with function approximation

$$V^{\pi}(\mathbf{s}_t) \approx \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

not as good as this: $V^{\pi}(\mathbf{s}_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$

but still pretty good!

training data: $\left\{ \left(\mathbf{s}_{i,t}, \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) \right\}$ $y_{i,t}$

supervised regression: $\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$

the same function should fit multiple samples!

Can we do better?

ideal target:
$$y_{i,t} = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{i,t} \right] \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + V^{\pi}(\mathbf{s}_{i,t+1}) \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}^{\pi}_{\phi}(\mathbf{s}_{i,t+1})$$

Monte Carlo target: $y_{i,t} = \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$

directly use previous fitted value function!

Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992

AlphaGo, Silver et al. 2016

Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-9, 6-5, to TD-Gammon's preference, 13-9, 24-23. TD-Gammon's analysis is given in Table 2.

Figure 1. An illustration of the multilayer perception architecture used in TD-Gammon's neural network. This architecture is also used in the popular backpropagation learning procedure. Figure reproduced from [9]

reward: game outcome

value function $\hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$:

expected outcome given board state

reward: game outcome

value function $\hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$:

expected outcome given board state

From Evaluation to Actor Critic

An actor-critic algorithm)

batch actor-critic algorithm:

2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums

3. evaluate
$$\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') - \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$$

4.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$$

5.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

$$V^{\pi}(\mathbf{s}_{t}) = \sum_{i}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t} \right]$$

$$V^{\pi}(\mathbf{s}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t} \right]$$

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

Aside: discount factors

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

what if T (episode length) is ∞ ?

 \hat{V}_{ϕ}^{π} can get infinitely large in many cases

episodic tasks

continuous/cyclical tasks

simple trick: better to get rewards sooner than later

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$
discount factor $\gamma \in [0,1]$ (0.99 works well)

 γ changes the MDP:

 $= (1 - \gamma)$ $= (1 - \gamma)$ $= (3 - \gamma)$

Aside: discount factors for policy gradients

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$
with critic:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

what about (Monte Carlo) policy gradients?

option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
option 2:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} \gamma^{t-1} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-1} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
(later steps matter less)

Which version is the right one?

option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

option 2:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

later steps don't matter if you're dead!

this is what we actually use... why?

Iteration 2000

 $\tilde{p}(\mathbf{s'}|\mathbf{s}, \mathbf{a}) = (1 - \gamma)$ $\tilde{p}(\mathbf{s'}|\mathbf{s}, \mathbf{a}) = \gamma p(\mathbf{s'}|\mathbf{s}, \mathbf{a})$

Further reading: Philip Thomas, Bias in natural actor-critic algorithms. ICML 2014

Actor-critic algorithms (with discount)

batch actor-critic algorithm:

- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

online actor-critic algorithm;

- 2. update \hat{V}_{ϕ}^{π} using target $(r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}'))$
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma V_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Actor-Critic Design Decisions

Architecture design

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

- + simple & stable
- no shared features between actor & critic

Online actor-critic in practice

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$ 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$ works best with a batch (e.g., parallel workers)

 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$ 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

synchronized parallel actor-critic

get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$ get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$ update $\theta \leftarrow$ asynchronous parallel actor-critic

Can we **remove** the on-policy assumption entirely?

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$ 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

form a **batch** by using old previously seen transitions

Let's see what that looks like

online actor-critic algorithm:

3. update
$$\hat{V}_{\phi}^{\pi}$$
 using targets $y_i \in r_i + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i')$ for each \mathbf{s}_i

4. evaluate
$$\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$$

5.
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{\boldsymbol{\beta}}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$$

6.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

not the right target value

not the action π_{θ} would have taken!

This algorithm is broken!

Can you spot the problems?

$$\mathcal{L}(\phi) = \frac{1}{N} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

batch size

Sample are not flow are to 1000

Fixing the value function

online actor-critic algorithm:

2. sample a batch
$$\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$$
 from buffer \mathcal{R}

3. update
$$\hat{V}_{\phi}^{\pi}$$
 using targets $y_i \in r_i + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i')$ for each \mathbf{s}_i

4. evaluate
$$\hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}) = r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}') - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i})$$

5. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i})$

6. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

not the right target value

5.
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{\boldsymbol{\beta}}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$$

not the action π_{θ} would have taken!

where does this come from?

3. update
$$\hat{Q}_{\phi}^{\pi}$$
 using targets $y_i = r_i + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i')$ for each \mathbf{s}_i , \mathbf{a}_i

$$= r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$$

$$\mathcal{L}(\phi) = \frac{1}{N} \sum_i \left\| \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) - y_i \right\|^2$$

not from replay buffer $\mathcal{R}!$

$$\mathbf{a}_i' \sim \pi_{\theta}(\mathbf{a}_i'|\mathbf{s}_i')$$

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right] = E_{\mathbf{a} \sim \pi(\mathbf{a}_t | \mathbf{s}_t)} [Q(\mathbf{s}_t, \mathbf{a}_t)]$$

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]$$

"total reward we get if we take \mathbf{a}_t in \mathbf{s}_t ...

... and then follow the policy π "

$$\mathcal{L}(\phi) = \frac{1}{N} \sum_{i} \left\| \hat{Q}_{\phi}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - y_{i} \right\|^{2}$$

Fixing the policy update

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$, store in \mathcal{R}
- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{Q}_{ϕ}^{π} using targets $y_i = r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$ for each $\mathbf{s}_i, \mathbf{a}_i$
- 4. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = Q(\mathbf{s}_i, \mathbf{a}_i) \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 5. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{\boldsymbol{\beta}}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 6. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

not the action π_{θ} would have taken!

use the same trick, but this time for \mathbf{a}_i rather than \mathbf{a}_i' !

sample $\mathbf{a}_i^{\pi} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}_i)$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi})$$

not from replay buffer R!

higher variance, but convenient / why is higher variance OK here?

in practice: $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi} | \mathbf{s}_{i}) \hat{Q}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi})$

What else is left?

The state of the s

Policy

Acts (viti L

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$, store in \mathcal{R}
- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{Q}_{ϕ}^{π} using targets $y_i = r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$ for each $\mathbf{s}_i, \mathbf{a}_i$
- 4. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi}|\mathbf{s}_{i}) \hat{Q}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi}) \text{ where } \mathbf{a}_{i}^{\pi} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Is there any remaining problem?

 \mathbf{s}_i didn't come from $p_{\theta}(\mathbf{s})$

nothing we can do here, just accept it

intuition: we want optimal policy on $p_{\theta}(\mathbf{s})$

but we get optimal policy on a broader distribution

Some implementation details

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$, store in \mathcal{R}
- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{Q}_{ϕ}^{π} using targets $y_i = r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$ for each $\mathbf{s}_i, \mathbf{a}_i$
- 4. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi}|\mathbf{s}_{i}) \hat{Q}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi}) \text{ where } \mathbf{a}_{i}^{\pi} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

could also use **reparameterization trick** to better estimate the integral

Example <u>practical</u> algorithm:

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, Sergey Levine. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. 2018.

We'll also learn about algorithms that do this with deterministic policies later!

lots of fancier ways to fit Q-functions (more on this in next two lectures)

Critics as Baselines

Critics as state-dependent baselines

Actor-critic:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

+ lower variance (due to critic)

- not unbiased (if the critic is not perfect)

Policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) \right)$$

+ no bias

- higher variance (because single-sample estimate)

can we use \hat{V}_{ϕ}^{π} and still keep the estimator unbiased?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$
+ no bias

+ lower variance (baseline is closer to rewards)

Control variates: action-dependent baselines

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]$$

$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$$

$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$$

$$\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - V_{\phi}^{\pi}(\mathbf{s}_t)$$

 $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - Q_{\phi}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ $= \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - Q_{\phi}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$

$$\nabla_{\theta} J(\theta) \approx \underbrace{\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\hat{Q}_{i,t} - Q_{\phi}^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)}_{l} + \underbrace{\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} E_{\mathbf{a} \sim \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{i,t})} \left[Q_{\phi}^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{t}) \right]}_{l}$$

use a critic without the bias (still unbiased), provided second term can be evaluated Gu et al. 2016 (Q-Prop

+ no bias

- higher variance (because single-sample estimate)

$$+\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} E_{\mathbf{a} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{i,t})} \left[Q_{\phi}^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{t}) \right]$$

baleli mand of it

Eligibility traces & n-step returns

$$\hat{A}_{\mathrm{C}}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$$

$$\hat{A}_{\mathrm{MC}}^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t})$$

- + lower variance
- higher bias if value is wrong (it always is)
- + no bias
- higher variance (because single-sample estimate)

Can we combine these two, to control bias/variance tradeoff?

cut here before variance gets too big!

smaller variance

bigger variance

$$\hat{A}_n^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t) + \gamma^n \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+n})$$

choosing n > 1 often works better!

Generalized advantage estimation

Do we have to choose just one n?

Cut everywhere all at once!

$$\hat{A}_n^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t) + \gamma^n \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+n})$$

weighted combination of n-step returns

How to weight?

Mostly prefer cutting earlier (less variance)

$$w_n \propto \lambda^{n-1}$$

 $w_n \propto \lambda^{n-1}$ exponential falloff

$$\hat{A}_{\text{GAE}}^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma((1 - \lambda)\hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+1}) + \lambda(r(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) + \gamma((1 - \lambda)\hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+2}) + \lambda r(\mathbf{s}_{t+2}, \mathbf{a}_{t+2}) + \dots)$$

$$\hat{A}_{\mathrm{GAE}}^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{\infty} (\gamma \lambda)^{t'-1} \hat{\delta}_{t'}$$

$$\delta_{t'} = r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t'+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t'})$$
 similar effect as discount!

option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

remember this?

discount = variance reduction!

Review, Examples, and Additional Readings

Review

- Actor-critic algorithms:
 - Actor: the policy
 - Critic: value function
 - Reduce variance of policy gradient
- Policy evaluation
 - Fitting value function to policy
- Discount factors
 - Carpe diem Mr. Robot 🐯

- ...but also a variance reduction trick
- Actor-critic algorithm design
 - One network (with two heads) or two networks
 - Batch-mode, or online (+ parallel)
- State-dependent baselines
 - Another way to use the critic
 - Can combine: n-step returns or GAE

Actor-critic examples

- High dimensional continuous control with generalized advantage estimation (Schulman, Moritz, L., Jordan, Abbeel '16)
- Batch-mode actor-critic
- Blends Monte Carlo and function approximator estimators (GAE)

Iteration 0

Actor-critic examples

Asynchronous methods for deep reinforcement learning (Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu '16)

- Online actor-critic, parallelized batch
- N-step returns with N = 4
- Single network for actor and critic

Actor-critic suggested readings

Classic papers

- Sutton, McAllester, Singh, Mansour (1999). Policy gradient methods for reinforcement learning with function approximation: actor-critic algorithms with value function approximation
- Deep reinforcement learning actor-critic papers
 - Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu (2016).
 Asynchronous methods for deep reinforcement learning: A3C -- parallel online actor-critic
 - Schulman, Moritz, L., Jordan, Abbeel (2016). High-dimensional continuous control using generalized advantage estimation: batch-mode actor-critic with blended Monte Carlo and function approximator returns
 - Gu, Lillicrap, Ghahramani, Turner, L. (2017). Q-Prop: sample-efficient policy-gradient with an off-policy critic: policy gradient with Q-function control variate