

Introduction aux télécommunications

Modulations « linéaires » sur fréquence porteuse

« L'enveloppe complexe associée au signal transmis dépend linéairement du message »

- 1) Modulations mono ou bi dimensionnelles
- 2) Enveloppe complexe associée au signal modulé
- 3) Chaine passe-bas équivalente
- 4) Performances

Nathalie Thomas

IRIT/ENSEEIHT
Nathalie.Thomas@enseeiht.fr

Modulations Linéaires sur fréquence porteuse Mono-dimensionnelles

Mono-dimensionnelles

M-ASK (Amplitude Shift Keying)

Exemple: 4-ASK, mise en forme rectangulaire

$$S_x(f) = \frac{5T_s}{4} \{ sinc^2(\pi(f - f_p)T_s) + sinc^2(\pi(f + f_p)T_s) \}$$

Modulations Linéaires sur fréquence porteuse Bi-dimensionnelles

Démodulation cohérente Voies orthogonales

Définition de l'enveloppe complexe associée au signal modulé

$$x(t) = \sum_k a_k h(t-kT_s) \cos{(2\pi f_p t)} - \sum_k b_k h(t-kT_s) \sin{(2\pi f_p t)}$$

I(t)

Composante en phase Composante en Quadrature

(In phase)

$$x(t) = \Re\left[\left(I(t) + jQ(t)\right)e^{j2\pi f_p t}\right]$$

$$x_e(t) = I(t) + jQ(t) = \sum_k d_k h(t - kT_s)$$

Enveloppe complexe associée à x(t)

Utilisation de l'enveloppe complexe associée au signal modulé

$$x(t) = \Re\left[x_e(t)e^{j2\pi f_p t}\right]$$

Utilisation de l'enveloppe complexe associée au signal modulé

→ <u>La DSP du signal modulé sur porteuse :</u>

$$x(t) = \Re\left[x_e(t)e^{j2\pi f_p t}\right] \longrightarrow R_x(\tau) = \frac{1}{2}\Re\left[R_{x_e}(\tau)e^{j2\pi f_p \tau}\right] \longrightarrow S_x(f) = \frac{1}{4}\left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p)\right)$$

est obtenue à partir de la DSP de son enveloppe complexe associée :

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2 \frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \mathfrak{Re} \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_{k} \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

Ré-utilisation des résultats obtenus en bande de base

Deux grandes classes de modulations bi-dimensionnelles

 \longrightarrow $\{a_k\}$ and $\{b_k\}$ symboles M-aires indépendants \in $\{\pm 1, \pm 3, ..., \pm (\sqrt{M}-1)\}$

M-QAM (Quadrature Amplitude Modulation) carrée

$$d_k \in \{e^{j(\frac{2\pi}{M}l + \frac{\pi}{M})}\}, l = 0, ..., M - 1$$

M-PSK (Phase Shift Keying)

Modulations Linéaires sur fréquence porteuse Constellation

Représentation des symboles $d_{\underline{k}}$ possibles dans le plan $(a_{\underline{k}}, b_{\underline{k}}) = « constellation » associée à la modulation$

Efficaces en puissance (DVB-C, DVB-T, xDSL)

Constellations PSK

Robustes aux non linéairités (DVB-S)

Modulations hybrides : APSK (DVB-S2, DVB-S2X)

→ <u>Modulations linéaires bi-dimensionnelles</u> : M-QAM

 $\{a_k\}$ et $\{b_k\}$ indépendants

Exemple: 4-QAM ou QPSK (DVB-S)

bits	a_k	b_k	d_k
00	-1	-1	-1-j
01	-1	+1	-1+j
10	+1	-1	1-ј
11	+1	+1	1+j

→ <u>Modulations linéaires bi-dimensionnelles</u> : M-QAM

Exemple: 16-QAM (DVB-C)

Bits	0000	0001	 1110	1111
a _k	+3	+3	-1	-1
b _k	+3	+1	-3	-1
d _k	3+3j	3+j	-1-3j	-1-j

 $\{a_k\}$ et $\{b_k\}$ indépendants

→ <u>Modulations linéaires bi-dimensionnelles</u> : M-PSK

Exemple: 8-PSK (DVB-S2)

$$d_k \in \{e^{j\left(\frac{2\pi}{8}l + \frac{\pi}{8}\right)}\}, \ l = 0, ..., 7$$

 $\{a_k\}$ et $\{b_k\}$ liés

12

→ Modulations hybrides : M-APSK (DVB-S2)

16-QAM

$$d_k \in \begin{cases} R_1 e^{j\left(\frac{2\pi}{n_1}i + \theta_1\right)}, & i = 0, ..., n_1 - 1 \\ R_2 e^{j\left(\frac{2\pi}{n_2}i + \theta_2\right)}, & i = 0, ..., n_2 - 1 \\ ... \\ R_R e^{j\left(\frac{2\pi}{n_R}i + \theta_R\right)}, & i = 0, ..., n_R - 1 \end{cases}$$

$$M = n_1 + n_2 + ... + n_R$$

16-APSK (4-12 APSK)

32-APSK (4-12-16 APSK)

→ Modulations hiérarchiques : DVB-T et T2, DVB-H, DVB-S2, DVB-SX

Exemple 1: 16-QAM hiérarchique (DVB-T, T2, H)

Exemple 2: 8-PSK hiérarchique (DVB-S2, SX)

Bits
$$A = \{d_k\} \Rightarrow \sum_k d_k \delta(t - kT_s) \Rightarrow h(t) \Rightarrow x_e(t) = \sum_k d_k h(t - kT_s)$$

Symboles complexes associée à $x(t)$:
$$a_k = a_k + jb_k$$

$$x_e(t) = I(t) + jQ(t)$$

Génération d'un message complexe en bande de base
$$fréquence$$

$$\begin{array}{ll} \to \operatorname{M-ASK}: & d_k = a_k \in \{\pm 1,...,\pm (M-1)\} \\ & x_e(t) = I(t) \\ & x(t) = I(t) \cos(2\pi f_p t) \\ \\ \to \operatorname{M-QAM}: & d_k = a_k + j b_k \ avec \ a_k \ et \ b_k \in \{\pm 1,...,\pm (\sqrt{M}-1)\} \\ \\ \to \operatorname{M-PSK}: & d_k \in \{e^{j\left(\frac{2\pi}{M}l + \frac{\pi}{M}\right)}\}, \ l = 0,...,M-1 \\ & x_e(t) = I(t) + j Q(t) \\ & x(t) = I(t) \cos(2\pi f_p t) - Q(t) \sin(2\pi f_p t) \end{array}$$

15

QUESTION

En supposant, dans tous les cas, des symboles indépendants, équiprobables, à moyenne nulle :

À débit binaire R_b fixé, une transmission utilisant la modulation 8-PSK avec un filtre de mise en forme rectangulaire sera plus efficace spectralement :

- qu'une transmission utilisant la modulation QPSK avec le même filtre de mise en forme en rectangulaire.
- qu'une transmission utilisant la modulation 8-PSK avec un filtre de mise en forme en racine de cosinus surélevé.
- qu'une transmission utilisant la modulation 16-QAM avec le même filtre de mise en forme en rectangulaire.

QUESTION

Une modulation QPSK est:

Une modulation de phase à 4 états :

B FAUX

Une modulation QAM à 4 états :

B FAUX

Moins efficace spectralement qu'une modulation BPSK utilisant le même filtre de mise en forme

B FAUX

Plus robuste au bruit qu'une modulation BPSK émise avec la même puissance :

VRAI

B FAUX

Modulation Linéaire sur fréquence porteuse Réception

Chaine passe-bas équivalente : Intérêt

Chaine passe-bas équivalente : Construction

Enveloppe complexe associée au signal modulé

→ DSP de l'envelope complexe correspondante :

Construction de la chaine passe-bas équivalente

Enveloppe complexe associée au canal de propagation de type passe-bande:

$$h_{c_e}(t) = I_{c_e}(t) + jQ_{c_e}(t)$$

(Remarque : le canal est supposé ideal dans la figure)

 f_p

 $-f_p$

Signal modulé sur porteuse :

Chaine passe-bas équivalente : Construction

→ Enveloppe complexe associée au bruit filtré :

$$b_e(t) = I_b(t) + jQ_b(t)$$

$$S_{I_b}(f) = S_{Q_b}(f) = S_{b_c}^+(f - f_p) + S_{b_c}^-(f + f_p) = N_0$$

 $x_e(t)$

Chaine passe-bas équivalente Construction

Chaine passe-bas équivalente

Les calculs de TES en bande de base peuvent être ré-utilisés

Performances (Hypothèses : Nyquist + Filtrage adapté)

→ M-QAM carrée (M>2)

$$d_k = a_k + jb_k \ avec \ a_k \ et \ b_k \in \{\pm 1, ..., \pm (\sqrt{M} - 1)\}$$

 \Leftrightarrow deux chaines \sqrt{M} - PAM indépendantes

Mais!! Es = paramètre physique = energie symbole moyenne à l'entrée du récepteur (M symboles d_k)!!

$$TES \simeq 2TES_I = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3\log_2(M)}{M-1}\frac{E_b}{N_0}}\right)$$

$$\rightarrow$$
 M-PSK (M>2)

$$TES = 2Q\left(\sqrt{\frac{2E_s}{N_0}}\sin\left(\frac{\pi}{M}\right)\right)$$

Modulation Linéaire sur fréquence porteuse Comparaison des TEBs pour les M-QAM et les M-PSK

Même efficacité spectrale

QUESTION

En supposant, dans tous les cas, que la mise en forme est identique et que la chaine de transmission est optimisée (Mapping de Gray, Nyquist, filtrage adapté, instants et seuils optimaux de décisions), utiliser une modulation 16-QAM est :

Plus efficace en puissance qu'utiliser une modulation 16-PSK :

VRAI

FAUX

Plus efficace spectralement qu'utiliser une modulation 16-PSK :

VRAI

FAUX

Plus efficace en puissance qu'utiliser une modulation QPSK :

VRAI

B FAUX

Plus efficace spectralement qu'utiliser unea modulation QPSK :

VRAI

B FAUX

QUESTION

En supposant, dans tous les cas que la chaine de transmission est optimisée (Mapping de Gray, Nyquist, filtrage adapté, instants et seuils optimaux de décisions), utilise une modulation 16-QAM avec filtrage de mise en forme rectangulaire est :

Plus efficace en puissance qu'utiliser une modulation 16-QAM avec filtrage de mise en forme en racine de cosinus surélevé :

- VRAI
- B FAUX

Plus efficace spectralement qu'utiliser une modulation 16-QAM avec filtrage de mise en forme en racine de cosinus surélevé :

- ✓ VRAI
- B FAUX