CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: DECISION MAKING UNDER UNCERTAINTY

♦ http://www.cs.iit.edu/~mbilgic

MOTIVATION

- The agent needs reason in an uncertain world
- Uncertainty can be due to
 - Noisy sensors (e.g., temperature, GPS, camera, etc.)
 - Imperfect data (e.g., low resolution image)
 - Missing data (e.g., lab tests)
 - Imperfect knowledge (e.g., medical diagnosis)
 - Exceptions (e.g., all birds fly except ostriches, penguins, birds with injured wings, dead birds, ...)
 - Changing data (e.g., flu seasons, traffic conditions during rush hour, etc.)
 - •
- The agent still must act (e.g., step on the breaks, diagnose a patient, order a lab test, ...)

WHAT TO DO?

- Probability of a given email being spam is 0.6. Where should that email be delivered?
- Probability of rain is 0.6. I don't like carrying my umbrella around, but I also don't like getting wet. Should I take my umbrella?
- Probability of a given patient suffering from a heart disease is 0.6. Should more tests be conducted and if so, which ones and in which order? What should the treatment plan be?
- Probability of the product selling is 0.6. If we spend \$100K in ads, the probability goes up to 0.7. Is \$100K on ads justified?

RATIONAL AGENT

- Given world states, a utility function, actions, transitions, evidence, and probabilities,
- A rational agent chooses the action that maximizes expected utility

$$action = \underset{a}{\operatorname{argmax}} EU(a|e)$$

4

UNCERTAINTY REPRESENTATION

Covered

- Probability background (marginal, conditional, independence, Bayes rule, ...)
- Probabilistic classification (naïve Bayes, logistic regression, neural networks)

Skipped

Bayesian networks (covered in CS 480 and CS 583)

UTILITY THEORY

- Lottery: *n* possible outcomes with probabilities
 - $[p_1, S_1; p_2, S_2; \dots p_n, S_n]$
 - Each S_i can be an atomic state or another lottery
- Expected utility of a lottery
 - $EU([p_1, S_1; p_2, S_2; ... pn, Sn]) = \sum_{i=1}^{n} p_i U(S_i)$

UTILITY THEORY

- Lottery: *n* possible outcomes with probabilities
 - $[p_1, S_1; p_2, S_2; \dots p_n, S_n]$
 - Each S_i can be an atomic state or another lottery
- Expected utility of a lottery
 - $EU([p_1, S_1; p_2, S_2; ... pn, Sn]) = \sum_{i=1}^{n} p_i U(S_i)$

$$(0.651.50.452)$$

$$0.452$$

$$0.452$$

$$0.452$$

$$0.452$$

$$U(S_1):10$$
 $U(S_2):5$
 $-60+20$
 -40

UTILITY ≠ MONEY

- Most agents prefer more money to less money,
 - But this does not mean money behaves as a utility function
- For example, which lottery would you prefer
 - L₁: [1, \$1 Million]
 - L₂: [0.5, \$0; 0.5, \$2.5 Million]
- If money served as a utility function, then you'd prefer L_2 no matter what, but the answer *often* depends on how much money you currently have
 - The utility of money depends on what you <u>prefer</u>
 - If you are short on cash, a little more certain money can help
 - If you are already billionaire, you might take the risk
 - o Or if you are swimming in debt, you might like to gamble

UTILITY ≠ MONEY

- \bullet Let's say you currently have k and let S_k represent the state of having k
- $\bullet \ \mathrm{EU}(\mathrm{L}_1) = \mathrm{U}(\mathrm{S}_{\mathrm{k+1M}})$
- \bullet EU(L₂) = 0.5*U(S_k) + 0.5*U(S_{k+2.5M})
- \bullet The rational choice depends on your preferences for $S_k,$ $S_{k+1M},$ and $S_{k+2.5M}$
 - i.e, it depends on the values of $U(S_k)$, $U(S_{k+1M})$, and $U(S_{k+2.5M})$
- U(S_i) does not have to be a linear function of i, and for people it often is not

WHICH ACTION TO TAKE?

Given

- A probability distribution
- Choice of actions and their effects on the distribution
- Evidence
- A utility function (as a function of states and possibly actions)

Find

Which action maximizes the expected utility?

ONE ACTION EXAMPLE

Two Actions Example

A SIMPLE SPAM FILTERING EXAMPLE

• Given an email:

- $P(s \mid e) = 0.6$
- $P(\sim s \mid e) = 0.4$

• Actions:

- deliverIntoSpamFolder (dS)
- deliverIntoInboxFolder (dI)

• Utility function:

- U(dS, s) = 200
- $U(dI, \sim s) = 100$
- U(dI, s) = -100
- $U(dS, \sim s) = -500$
- Where should this email be delivered and why?

A SIMPLE SPAM FILTERING EXAMPLE

• Given an email:

$$dS \Rightarrow$$

$$dS \Rightarrow 0.6 \times 200 + 0.4 \times (-500)$$

$$120 - 200 = -80$$

•
$$P(s | e) = 0.6$$

•
$$P(\sim s \mid e) = 0.4$$

• Actions:

• deliverIntoSpamFolder (dS)

deliverIntoInboxFolder (dI)

• Utility function:

- U(dS, s) = 200
- $U(dI, \sim s) = 100$
- U(dI, s) = -100
- $U(dS, \sim s) = -500$
- Where should this email be delivered and why?

Umbrella Example

- Check the weather:
 - P(r) = p
 - $P(\sim r) = 1-p$
- Actions:
 - takeUmbrella (t)
 - ~takeUmbrella (~t)
- Utility function:
 - $U(\sim r, \sim t) = a$
 - $U(\sim r, t) = b$
 - U(r, t) = c
 - $U(r, \sim t) = d$
- When should you take the umbrella?

Umbrella Example

• Check the weather:

- P(r) = p
- $P(\sim r) = 1-p$
- Actions:
 - takeUmbrella (t)
 - ~takeUmbrella (~t)
- Utility function:
 - $U(\sim r, \sim t) = a$
 - $U(\sim r, t) = b$
 - U(r, t) = c
 - $U(r, \sim t) = d$
- When should you take the umbrella?

VALUE OF INFORMATION

- If I can buy more information to help with my decision, up to how much should I pay for that information?
 - Currency here is in "utility" units
- Value of information
 - Expected utility after the information is acquired
 - Minus
 - Expected utility before the information is acquired
- There is one catch: we do not know the content of the information before we acquire it
 - Solution: take an expectation over the possible outcomes

Value of Information – All Binary

- Probability of state:
 - $P(s) = p, P(\sim s) = 1-p$
- Actions
 - a, ~a
- Additional info, E
 - $P(s \mid e) = q, P(\sim s \mid e) = 1-q$
 - $P(s \mid \sim e) = r, P(\sim s \mid \sim e) = 1-r$
 - $P(e) = v, P(\sim e) = 1-v$
- Utilities
 - U(s, a) = u1
 - $U(s, \sim a) = u2$
 - $U(\sim s, a) = u3$
 - $U(\sim s, \sim a) = u4$
- What is the value of E? VOI(E)?

NEXT

- Multi-armed bandit
- Markov decision processes
- Reading
 - Chapter 17 of the AI book by Stuart & Russel (http://aima.cs.berkeley.edu/)
 - Chapters 2 and 3 of the RL book by Sutton & Barto (http://www.incompleteideas.net/book/the-book-2nd.html)

Multi-armed Bandit

SETUP

- K slot machines
 - Each one is a one-armed bandit
- Unknown reward functions
 - The distribution of rewards for each machine are unknown
- Limited resources
 - Have a limited number of tries (or alternatively, future rewards are discounted)
- Can gather information
 - Each try gives a (potentially) zero/negative reward, but also is useful for information gathering purposes
- Main objective
 - Maximize rewards
- Exploration vs exploitation trade-off
 - How should you balance exploitation (sticking with a machine that looks good) versus exploration (trying new machines)?

NOTATION

- \circ A_t : action at time t
- \circ R_t : reward at time t
- Sequence of actions and rewards:

$$A_1, R_1, A_2, R_2, \cdots, A_T, R_T$$

- $q_*(a) = E[R_t \mid A_t = a]$
 - Not given; otherwise, the solution is trivial
- $Q_t(a)$: Average reward for action a, up to, excluding, time t
 - Estimated using prior experiences
 - If action a has never been taken before time t, $Q_t(a)$ is initialized to a default value

OPTIMAL STRATEGY

- \circ argmax $q_*(a)$
- At time *t*, choose the action that has the highest expected reward
- Challenge
 - We do not know $q_*(a)$

GREEDY STRATEGY (EXPLOIT ONLY)

- \circ argmax $Q_t(a)$
- Calculate the average reward for each action, up to time *t*, and choose the maximum one
- Problems
 - Initial values of $Q_t(a)$ plays a big role
 - It simply tries the best action it has found; purely exploitation
 - Could easily miss other actions that are better but not tried

RANDOM STRATEGY (EXPLORE ONLY)

- Choose an action at random
- Good
 - Explores all the time
- Bad
 - Does not exploit; does not learn

EPSILON GREEDY

- \circ Given an exploration parameter ϵ
- At each step t:
 - With probability ϵ , choose a random action (explore)
 - With probability 1ϵ , choose the current best action: $argmax Q_t(a)$ (exploit)
- $\circ \epsilon = 0$ is fully greedy, and $\epsilon = 1$ is fully random

SIMULATION SETUP

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$, unit-variance normal distribution, as suggested by these gray distributions.

Figure from http://www.incompleteideas.net/book/the-book-2nd.html

SIMULATION RESULTS

Figure 2.2: Average performance of ε -greedy action-value methods on the 10-armed testbed. These data are averages over 2000 runs with different bandit problems. All methods used sample averages as their action-value estimates.

Figure from http://www.incompleteideas.net/book/the-book-2nd.html

28

UCB

- The upper-confidence bound (UCB) method calculates the upper bound on the mean for each slot and chooses the machine with max value
 - $Q_t(a) + c\sqrt{\frac{\ln(t)}{N_t(a)}}$, where $N_t(a)$ is the number of times the action a is tried and c is the trade-off parameter
- The term in the square root is a measure of uncertainty in $Q_t(a)$; and hence the name upper confidence bound
 - The upper confidence is derived using the Chernoff-Hoeffding bound
- The exploration grows with ln(t), shrinks with $N_t(a)$
- We've seen this before; where?

SIMULATION RESULTS

Figure 2.4: Average performance of UCB action selection on the 10-armed testbed. As shown, UCB generally performs better than ε -greedy action selection, except in the first k steps, when it selects randomly among the as-yet-untried actions.

A RUNNING AVERAGE COMPUTATION

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right)$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right],$$

31

UPDATE RULE

- $Q_{n+1} = Q_n + \frac{1}{n}(R_n Q_n)$
- new = old + stepSize*(target old)
- For computing the exact average, stepSize is a function of *n*

Non-stationary Rewards

- What if the reward distribution changes over time?
- We'd like to give recent rewards more weight
- A simple approach

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

• Earlier rewards have lower weights

$$Q_{n+1} = Q_n + \alpha(R_n - Q_n)$$

$$= \alpha R_n + (1 - \alpha)Q_n$$

$$= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$$

$$= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$$

MARKOV DECISION PROCESSES

PROBLEM SETTING

- The world is represented through states
- At each state, an agent is given 0 (terminal states) or more actions to choose from
- Each action moves the agent, probabilistically, to a state (could be the current state) and results, probabilistically, in a reward (could be zero, negative, positive)
- The agent needs to maximize the sum of the rewards it accumulates over time
- Greedy strategy with respect to immediate rewards often do not work; the agent needs to consider the long-term consequences of its actions

Markov Decision Process

- A sequential decision-making process
- Stochastic environment
- Markov transition model
- Additive rewards

MDP DIAGRAM EXAMPLE

MDP DIAGRAM EXAMPLE

NOTATION

- o P(s'|s,a) Probability of arriving at state s' given we are at state s and take action a
- o R(s, a, s') The reward the agent receives when it transitions from state s to state s' via action a
- \circ $\pi(s)$ The action recommended by policy π at state s
- \circ π^* Optimal policy
- $U^{\pi}(s)$ The expected utility obtained via executing policy π starting at state s
- o $U^{\pi^*}(s)$ is often abbreviated as U(s)
- $\mathcal{O}(s,a)$ The expected utility of taking action a at state s
- o γ Discount factor [0, 1]

UP, DOWN, LEFT, 216 MT

RUNNING EXAMPLE

Figure 17.1 (a) A simple, stochastic 4×3 environment that presents the agent with a sequential decision problem. (b) Illustration of the transition model of the environment: the "intended" outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results in no movement. Transitions into the two terminal states have reward +1 and -1, respectively, and all other transitions have a reward of -0.04.

SOLUTION?

- A fixed action sequence is not the answer due to stochasticity
 - For example, [Up, Up, Right, Right, Right] is not a solution
 - It would be a solution if the environment was deterministic
- A solution must specify the agent should do in any state that the agent might reach
 - This is called a **policy**
- Policy notation: π
 - $\pi(s)$ specifies what action the agent should take at state s
- An **optimal policy** is the one that maximizes the expected utility
 - π*

RUNNING EXAMPLE

Figure 17.2 (a) The optimal policies for the stochastic environment with r = -0.04 for transitions between nonterminal states. There are two policies because in state (3,1) both Left and Up are optimal. (b) Optimal policies for four different ranges of r.

UTILITY OF STATES

- The agent receives a reward at each state
- Utility of a state s given a policy π is the expected reward that the agent will get starting from state s and taking actions according to policy π
- Let S_t denote the state that the agent reaches at time t
- $U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t}, \pi(S_{t}), S_{t+1})\right]$
- The expectation is with respect to the transition probabilities

U(s) vs R(s, A, s')

- R(s, a, s') is the short-term immediate reward the agent receives when it transitions from state s to state s' via action a
- \circ U(s) is the long-term cumulative reward from s onward
- $U^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t}, \pi(S_{t}), S_{t+1})]$

BELLMAN EQUATION

$$U^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma U^{\pi}(s')]$$

BELLMAN OPTIMALITY EQUATION

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$$

THE OPTIMAL POLICY

- The optimal policy is the one that maximizes the expected utility
 - $\pi_s^* = \operatorname*{argmax} U^{\pi}(s)$
- Remember that π_s^* is a policy; that is, it recommends an action for each state, regardless of whether it is the starting state or not
- It is optimal when the starting state is s
- When the rewards are discounted, the optimal policy is independent of the start state
 - The optimality of the policy does not depend on the starting state but of course the action sequence depends on the starting state
- True utility of each state is defined as $U^{\pi^*}(s)$ -- the expected rewards the agent will receive if it executes the optimal policy starting at s

ACTION-UTILITY FUNCTION Q(s, a)

- $Q^{\pi}(s, a)$ The expected utility of taking action a at state s and then following policy π
- Bellman equation
 - $Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U^{\pi}(s')]$

$$Yd(s',\pi(s'))$$

Bellman Optimality Equation For Q(s, a)

$$Q^{\pi^*}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a' \in A(s')} Q^{\pi^*}(s',a')]$$

$$U^{\pi^*}(s) = \max_{a \in A(s)} Q^{\pi^*}(s, a)$$

$$Q(S, \pi(S)) = U(S)$$

RUNNING EXAMPLE

Figure 17.3 The utilities of the states in the 4×3 world with $\gamma = 1$ and r = -0.04 for transitions to nonterminal states.

$(T_s) = 0$

RUNNING EXAMPLE

Figure 17.3 The utilities of the states in the 4×3 world with $\gamma = 1$ and r = -0.04 for transitions to nonterminal states.

EXERCISE

• Confirm that the utilities given in the previous slide satisfy the Bellman equations

How to Find π^*

- However, we are not given $U^{\pi^*}(s)$
- Two algorithms for finding optimal policies
- 1. Policy iteration
- 2. Value iteration

POLICY ITERATION

- Start with an initial policy π_0
- Alternate between
- 1. Policy evaluation: given policy π_i , calculate U^{π_i}
 - Can be calculated exactly (linear equations) or iteratively
- Policy improvement: Calculate a new MEU policy π_{i+1} , using the utilities calculated in the previous step
- Stop when policy no longer changes

ITERATIVE POLICY EVALUATION

- \circ Given a policy π
- Initialize *U*
- loop until convergence
 - for each state 5
 - Update U using the Bellman equation
 - $U^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma U^{\pi}(s')]$

POLICY IMPROVEMENT

• Given *U*

POLICY ITERATION

Loop

- Given π , run iterative policy evaluation to calculate U
- Given U, run policy improvement to update π

VALUE ITERATION

• Intuitively, perform policy evaluation and policy iteration at the same time

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$$

FINDING OPTIMAL POLICIES

- The previous two slides computed U
 - Many people find the concept of U more intuitive than the concept of Q
- Using Q to find the optimal policy makes more sense
 - $\pi^*(s) = argmax_a Q^{\pi^*}(s, a)$

NEXT

- Reinforcement learning
 - In fact, we already covered many of the fundamentals of RL
 - Value iteration, policy iteration, exploration vs exploitation trade-off
 - We are now ready to make the leap from MDPs to RL
 - RL can be considered as solving an MDP where the transition and reward dynamics are unknown