We define
$$\hat{D}_{\bar{p}}$$
: $\hat{\mathcal{E}}_{k}$ - Set as the functor

*
$$\widehat{D}_{\overline{g}}(A) := \left\{ \frac{\text{deformations of}}{p \text{ to } A} \right\}$$
 strict equivalence

* Dg(f) maps a deformation p: G->GLn(A) to the class of fep f: A-> 8 maphism in Ex

(We obtain a functor Dg: Ck - Set by restricting Dg to Ck)

Goal: show that Dg is "pro-represented" by some RE Ek, in the sense that $D_{\overline{S}} \cong \operatorname{Hom}_{\widehat{\mathcal{E}}_{\kappa}}(R, \cdot)$

Fix any $\Lambda \in \mathcal{E}_{k}$. We define \mathcal{E}_{Λ} as the category of local Arbinian Λ -algebras with residue field to and local morphisms of 1-algebras (that induce the identity on the). * E = category of complete local Noetherian 1-algebras with residue field to Mosphisms as above The natural choice for Λ (when working in char $\Lambda=0$) is the ring of Witt vectors of k. (= unique complete discrete valuation ring with residue field k and uniformizer p). (Mézard's notes, Serve "Local fields")

We only need
$$W(F_{pn}) = \mathbb{Z}_{pn} \quad \text{ring of integers in } \quad \mathbb{O}_{pn}$$

Deformation functors Fix $\bar{p}:G \to GL_n(k)$; We defined $D_{\bar{p}}:C_{\bar{k}} \to Set$, $\hat{D}_{\bar{p}}:C_{\bar{k}} \to Set$. One defines

$$\mathcal{D}_{\overline{P},\Lambda}: \mathcal{E}_{\Lambda} \longrightarrow \operatorname{Set}$$
 by $\mathcal{D}_{\overline{P},\Lambda}(A) = \left\{\begin{array}{c} \operatorname{deformations} & \operatorname{of} \\ \overline{P} & \operatorname{to} & A \end{array}\right\}$ strict equivalence

Representable Functors.

Let & be any cakyory, F: E -> set any functor.

* F is called representable : C=7 $\exists A \in C$: $F\cong Hom_{e}(A, \cdot)$, as functors.

For our categories Ek, Ek, we define the following:

* F: E -> Set is pro-representable :==> I RE E and an iso morphism of

Home (R,) -> F (as a functor En - Set)

Why representability? Assume DFIN is (pro-) representable by some R in En: means that there is a Home (R,A) -> D= (A) for every A ∈ En.

Take A=R. Then there is a strict equivalence class g in D=, 1 (R) corresponding to id R.

Then the bijection

$$Hom_{\mathcal{E}_{\Lambda}}(R,A) \longrightarrow D_{\mathcal{F}_{\Lambda}\Lambda}(A)$$

 $(f:R \rightarrow A) \longmapsto class of fog: G \rightarrow GL_n(A)$

We call (R, PR) a universal couple, R is the universal deformation ring of P, PR is the universal deformation of P.

Properties of representable functors & Frset. In this section F is a prorepresentable-Functor E, - Set, F = Home (R..)

· left exact

· F(k) = {*}, since the only

element of $Hom_{\tilde{e}_{\Lambda}}(R, k)$ is $R \to R/m_R (\tilde{e}_{\tilde{e}_{\Lambda}}(R))$ is $R \to R/m_R (\tilde{e}_{\tilde{e}_{\Lambda}}(R))$ one fixed idealy fication

· F is continuous (laker)

· F behaves well with respect to fiber products

$$k[\varepsilon] = k[\tau]$$

$$= \begin{cases} \chi(\varepsilon) = \frac{1}{2}, & \varepsilon = \tau \end{cases} \quad (\text{ring with } \varepsilon^2 = 0)$$

$$= \begin{cases} \chi(\varepsilon) = \frac{1}{2}, & \varepsilon = \tau \end{cases} \quad (\text{ring with } \varepsilon^2 = 0)$$

· F(R[E]) is a finite dimensional k-vector space.

Remark: fiber products don't always exist in En 1 = W(k)

Example A= k[X, Y], C= k[X], B= k

A -> C B -> C Y HOO R COR[[X]]

Check: the fiber product Axe B is not in the category & (the fiber product as mings is not Noetherian ... this argument should not work)

Fiber products exist in Ey.

F has the Mayer-Victoris property if the map F(A×cB) -> F(A) X F(C) F(B) is a bijection.

Remark: F pro-representable -> Flus the Mayer-Vietoris - property.

· F(A[e]) is a k-vector space:

Why is it a k-vector space? It is when the map F(k[e] x k[e])

F(k[e]) X F(k[e])

is a bijection. (induced by kee) - k = kee)

R - scalar multiplication is induced by

kxk[e] - k[e]

(2, a+be) -> (a+ lbe)

addition is induced by kel skej - kel

(athe, utbe) - a+ (batbe) e

In this case we call F(k[e]) the tangent space of F. Why?

When F is pro-representable, $F \cong Hom_{\mathcal{C}_{\Lambda}}(R, \cdot)$ then there is an isomorphism of k-vector spaces

Recall: for R a local Noetherian 1-algebra with maximal ideal m_R , then $t_R^* = m_R (m_R^2, m_L)$ is the cotangent space of R, $t_R = \text{Hom}_R(t_R^*, k)$.

Idea of proof: $f \in F(k[\epsilon]) = \text{Hom}_{\mathcal{L}_{\Lambda}}(R, k[\epsilon])$ then $f(r) = \overline{r} + f'(r) \in I$ for $r \in R$ image mod m_R

Criteria for representability:

Criterion. (Grothendieck) Let F: En -> Set be a functor such that F(1/2)= {*}.

Then F is pro-representable if and only if the following hold:

- i) F has the Mayer Victoris property
- ii) F(k[E]) is a finite dimensional vector space /k.

We will use a refined version: Criterion. (Schlessinger)

Def. If $R_1S \in \mathcal{E}_1$, $f: R \rightarrow S$ a merphism. We say that f is small if it is surjective and if kerf is amnihilated by m_R (m_R -kerf =0) (Exp.: $k[e] \rightarrow k$) $E \rightarrow 0$

We introduce the Schlessinger conditions. Ro, R1, R2 & C/1, 41: R1-7R0, 42: R2-7R0,

R3:= R1 XR0Rz.; (*): F(R3) -> F(R1) XF(R2)

The conditions are

H1: If 42: R2-Ro is small, then (*) is surjective

H2: If Ro=k, R2=k[e] with R2-Ro, then (*) is bijective

H3: F(k[∈3) is finite-dimensional over k.

H4: If R=Rz, 4=42 is small, then (*) is bijective.

Theorem of Schlessinger: If F(k) = {*} and it satisfies H1-Hy, then F is pro-representable.