Nom:	Caractéristiques du	Cla
Prénom :	Moteur Asynchrone	S03 : Machi
Date :	Applications numériques	in.

sse : T ELEEC

nes électromagnètiques

LYCEE Pierre EOREST

suce .	Applications numériques	MAUBEUGE MAUBEUGE
Activité 1		
avec un couple de 15,7 vitesse de rotation.	e la pompe ci-contre fournit une puissance de 5, N.m sur un réseau 3 × 400 V - 50 Hz. Calcu	ler la
2. Un moteur asynchrone Calculer la puissance ut	fournit un couple de 72,2 N.m à une vitesse lile qu'il fournit.	de rotation de 1 454 min-1.
	(1 470 min ⁻¹) fournit une puissance utile de 3	
Activité 2	* LIEROY® 3	~LS 100 L - TR

La plaque signalétique ci-contre est celle d'un moteur équipant un motoréducteur. Ce moteur est alimenté par un réseau 230 V - 400 V - 50 Hz.

- 1. Surligner la ligne correspondant aux conditions de fonctionnement.
- 2. D'après la plaque signalétique, déterminer les valeurs nominales de :
 - a. L'intensité:
 - b. La puissance utile :
 - c. Le facteur de puissance :
 - d. La vitesse de rotation :
- 3. Déterminer :
 - a. La valeur de la puissance absorbée.
 - **b.** Le rendement du moteur.
 - c. La puissance perdue.
 - d. Le couple utile.

IP 55	IK OS					
			40C			kg 18
	٧	Hz	min ⁻¹	kW	cos φ	Α
Δ	380	50	2840	3	0.89	6.4
	400	-	2860	-	0.83	6.3
	690	-	-	-	- 70	3.6 6.7
	415 440	60	2870 3430	3.6	0.79 0.90	6.5
	460	-	3455	-	0.87	6.3
						-1 - 1
						1 -1

Activité 3_

On désire trouver le point de fonctionnement du moteur (22 kW, 1 000 min⁻¹) de la bande transporteuse ci-contre dont le couple résistant est modélisé par l'équation :

$$Tr = \frac{22 + 11,5 \times N}{60}$$
 avec N en min⁻¹

1. Compléter le tableau avec les valeurs du couple résistant (faire les calculs sur une feuille séparée).

N (min ⁻¹)	0	250	500	750	1 000
T (N.m)					

2. Tracer la caractéristique du couple résistant sur l'allure du couple moteur ci-dessous.

3. Entourer le point de fonctionnement et donner ses coordonnées.

Vitesse de rotation :	Couple: