Discourse Structure in Dialogue

Lecture 2: Discourse and Coherence Julian J. Schlöder

DRT

The Syntax-Semantics Interface (simple)

- "x is P" $\rightsquigarrow P(x)$
- "x is y" \rightsquigarrow x = y
- "an x is P" $\rightsquigarrow \exists x.(P(x))$
- "all x are P" $\rightsquigarrow \forall x.(P(x))$
- "all P are Q" $\rightsquigarrow \forall x.(P(x) \rightarrow Q(x))$
- "If p, then q" $\rightsquigarrow p \rightarrow q$

The Syntax-Semantics Interface (simple)

- "x is P" $\rightsquigarrow P(x)$
- "x is y" $\rightsquigarrow x = y$
- "an x is P" $\rightsquigarrow \exists x.(P(x))$
- "all x are P" $\rightsquigarrow \forall x.(P(x))$
- "all P are Q" $\rightsquigarrow \forall x.(P(x) \rightarrow Q(x))$
- "If p, then q" $\rightsquigarrow p \rightarrow q$
- "If x is y and x is P, then y is P" \rightsquigarrow $(x = y \land P(x)) \rightarrow P(y)$.
- "If all x are P and a y is Q, then an x is P and Q" \rightarrow (∀x.(P(x)) \land ∃y.(Q(y))) \rightarrow ∃x.(P(x) \land Q(x)).

- It should be simple to integrate "he", "she", "it" etc.

- It should be simple to integrate "he", "she", "it" etc.
- Donkey Sentences (Geach, 1962)
- (1) Every farmer who owns a donkey beats it.

- It should be simple to integrate "he", "she", "it" etc.
- Donkey Sentences (Geach, 1962)
- (1) Every farmer who owns a donkey beats it.

 $\forall x.(farmer(x) \land \exists y.(donkey(y) \land own(x,y)) \rightarrow beat(x, \#y)$

- It should be simple to integrate "he", "she", "it" etc.
- Donkey Sentences (Geach, 1962)
- (1) Every farmer who owns a donkey beats it.
 - X $\forall x.(farmer(x) \land \exists y.(donkey(y) \land own(x,y)) → beat(x, #y)$
 - X $\forall x \exists y . ((farmer(x) \land donkey(y) \land own(x,y)) → beat(x,y))$

- It should be simple to integrate "he", "she", "it" etc.
- Donkey Sentences (Geach, 1962)
- (1) Every farmer who owns a donkey beats it.
 - $\forall x.(\texttt{farmer}(x) \land \exists y.(\texttt{donkey}(y) \land \texttt{own}(x,y)) \rightarrow \texttt{beat}(x,\#y)$
 - $\forall x \exists y. ((farmer(x) \land donkey(y) \land own(x,y)) \rightarrow beat(x,y))$
 - ✓ $\forall x \forall y.((farmer(x) \land donkey(y) \land own(x,y)) \rightarrow beat(x,y))$

- It should be simple to integrate "he", "she", "it" etc.
- Donkey Sentences (Geach, 1962)
- (1) Every farmer who owns a donkey beats it.
 - $\forall x.(\texttt{farmer}(x) \land \exists y.(\texttt{donkey}(y) \land \texttt{own}(x,y)) \rightarrow \texttt{beat}(x,\#y)$
 - $\forall x \exists y. ((farmer(x) \land donkey(y) \land own(x,y)) \rightarrow beat(x,y))$
 - \checkmark $\forall x \forall y.((farmer(x) \land donkey(y) \land own(x,y)) → beat(x,y))$
 - BUT:
- (2) Every farmer who owns a donkey (also) owns a pig.
- \checkmark $\forall x.(farmer(x) ∧ ∃y.(donkey(y) ∧ own(x,y))$
 - $\rightarrow \exists y.(pig(y) \land own(x,y))$

(3) If a farmer owns a donkey, he beats it.

(3) If a farmer owns a donkey, he beats it.

 $\textbf{\textit{X}} \ (\exists x. (\mathtt{farmer}(x) \ \land \ \exists y. (\mathtt{donkey}(y) \ \land \ \mathtt{own}(x,y)))) \rightarrow \mathtt{beat}(^\#x, ^\#y)$

(3) If a farmer owns a donkey, he beats it.

 $m{X} \ (\exists x. (\mathtt{farmer}(x) \land \exists y. (\mathtt{donkey}(y) \land \mathtt{own}(x,y)))) \rightarrow \mathtt{beat}(\#x, \#y)$

 $X \exists x \exists y. ((farmer(x) \land donkey(y) \land own(x,y)) \rightarrow beat(x,y))$

(3) If a farmer owns a donkey, he beats it.

```
 \textbf{\textit{X}} \ (\exists x. (\texttt{farmer}(x) \land \exists y. (\texttt{donkey}(y) \land \texttt{own}(x,y)))) \rightarrow \texttt{beat}(^\#x, ^\#y)
```

$$X \exists x \exists y. ((farmer(x) \land donkey(y) \land own(x,y)) \rightarrow beat(x,y))$$

 \checkmark $\forall x \forall y.((farmer(x) \land donkey(y) \land own(x,y)) → beat(x,y))$

- (3) If a farmer owns a donkey, he beats it.
 - $X (\exists x.(farmer(x) \land \exists y.(donkey(y) \land own(x,y)))) \rightarrow beat(\#x,\#y)$
 - $X \exists x \exists y. ((farmer(x) \land donkey(y) \land own(x,y)) \rightarrow beat(x,y))$
 - \checkmark $\forall x \forall y.((farmer(x) \land donkey(y) \land own(x,y)) → beat(x,y))$
 - There's really no end to this.
- (4) If a donkey is not beaten, it's happy.
 - A farmer beats his donkeys.
 - If someone loves something, he won't beat it.

Storyboard Again

- The idea:
- "If a farmer owns a donkey, he beats it" is a bit like Whenever a farmer owns a donkey, he beats it.
- Better yet, write Whenever the situation [the current scene in the story] is such that it contains a farmer, a donkey and the farmer owns the donkey, then the situation [scene] is such that the farmer beats the donkey.
- Or for every situation...

Discourse Representation Theory

- The sentence "He beats it" does not really have truth-conditions.
- Rather, it is embedded in a discourse and only has definite truth-conditions when interpreted in that discourse.

Discourse Representation Theory

- The sentence "He beats it" does not really have truth-conditions.
- Rather, it is embedded in a discourse and only has definite truth-conditions when interpreted in that discourse.
- Information states *K* are structures *representing* the contents of a discourse under interpretation.
- And these representations can be evaluated (truth-conditionally, if you like).
- If we cannot construct a representation, then the discourse is incoherent.

DRT Architecture

Natural Language Sentences \leadsto DR Structures \Longrightarrow First Order Models ,

where:

→:= the discourse representation construction algorithm,

 \mapsto := a truth-conditional model-theoretic *evaluation*.

Discourse Representation Structures

- Discourse representation structures (DRSs) function as partial descriptions of particular situations/scenes.
- They consist of a universe of things and a set of conditions attributed to them.

$$\rightarrow K := \langle U, CON \rangle.$$

$x_1, x_2,, x_n$	
arphi1	
$arphi_2$	
:	
$arphi_n$	

← the things we talk about

 \leftarrow what we say about these things

The Language of DRSs

for
$$x \in VAR, N \in NAME, P^k \in REL$$
,

Con :=
$$N(x) \mid P^{k}(x_{1},...,x_{k}) \mid x_{i} = x_{j} \mid \neg K \mid K \lor K \mid K \Rightarrow K,$$

$$\boxed{x_{1},...,x_{n}}$$

$$K := \begin{bmatrix} \frac{x_1, \dots, x_n}{\mathsf{Con}_1} \\ \vdots \\ \mathsf{Con}_m \end{bmatrix}$$

$$(=\langle \{x_1,\ldots,x_n\},\{\mathsf{Con}_1,\ldots,\mathsf{Con}_m\}\rangle)$$

A Simple DRS

- "A farmer beats a donkey."
- $\langle \{f,d\}, \{\mathtt{farmer}(f), \mathtt{donkey}(d), \mathtt{beat}(f,d)\} \rangle$.

A Less Simple DRS

- "If a farmer owns a donkey, he beats it."

every vs some

"A man walks."

"Every man walks."

Accessibility (not as bad as it looks)

A DRS K is **immediately accessible** to a DRS K' iff:

- 1. K contains the condition $\neg K'$; or
- 2. K contains a condition of the form $K' \bigvee K''$ or $K'' \bigvee K'$.
- 3. K contains a condition of the form $K' \Rightarrow K''$.
- 4. There is a DRS K'' that contains the condition $K \Rightarrow K'$.

Accessibility (not as bad as it looks)

A DRS K is immediately accessible to a DRS K' iff:

- 1. *K* contains the condition $\neg K'$; or
- 2. K contains a condition of the form $K' \bigvee K''$ or $K'' \bigvee K'$.
- 3. K contains a condition of the form $K' \Rightarrow K''$.
- 4. There is a DRS K'' that contains the condition $K \Rightarrow K'$.

K is **accessible** to K' if K' is connected to K via immediate accessibility ("up or left in conditionals").

That is, if there is a chain $K' = K_1, K_2, ..., K_{n-1}, K_n = K$ where for all i, K_i is immediately accessible to K_{i-1} .

 Now, a pronoun in K' can access referents in the universes of all DRSs K that are accessible to K'.

(5) It is not the case that a man is running. #He takes his time.

(5) It is not the case that a man is running. $^{\#}$ He takes his time.

- This is actually fine, but for different reasons (later!):
- (6) It is not the case that John is running. He takes his time.

(7) A man is not running. He takes his time.

(8) Not every man is running. #He takes his time.

Accessibility (Disjunction)

- Can't go left or right in disjunction (controversial).
- (9) Either a man is having tea or ?he is having coffee.

Accessibility (Disjunction)

- Can't go left or right in disjunction (controversial).
- (9) Either a man is having tea or ?he is having coffee.

- This is actually fine, but for different reasons:
- (10) Either John is having tea or he is having coffee.

Interpretation of DRSs: Referent Extension

- The idea is this: DRSs tell us something about who's who.
- Every DRS can introduce new referents and impose conditions on (new or previous) referents.

Interpretation of DRSs: Referent Extension

- The idea is this: DRSs tell us something about who's who.
- Every DRS can introduce new referents and impose conditions on (new or previous) referents.

Referent System Extension

Let $M = (D_M, I_M)$ be a FOL model. Let $f, g : VAR \to D_M$ be partial functions (referent systems). Let $K = \langle U, Conds \rangle$ be a DRS.

-
$$f[K]_M g$$
 iff $dom(g) = dom(f) \cup U$; and $\forall x \in dom(f) : f(x) = g(x)$.

Interpretation of DRSs: Truth 1

- The conditions on the referents impose tests.

DRS Semantics

By simultaneous recursion:

1. $f[\langle U, Cons \rangle]_M g$ iff $f[\langle U, Cons \rangle]_M g$ and $M, g \models_{DRT} C$ for all $C \in Cons$.

Interpretation of DRSs: Truth 1

The conditions on the referents impose tests.

DRS Semantics

By simultaneous recursion:

- 1. $f[\langle U, Cons \rangle]_{M}g$ iff $f[\langle U, Cons \rangle]_{M}g$ and $M, g \models_{DRT} C$ for all $C \in Cons$.
 - a. $M, f \models_{DRT} x = y \text{ iff } f(x) = f(y).$
 - b. $M, f \models_{DRT} N(x)$ iff $M, f \models N(f(x))$.
 - c. $M, f \models_{DRT} R(x_1, \dots, x_n) \text{ iff } M, f \models R(f(x_1), \dots, f(x_n)).$

Interpretation of DRSs: Truth 1

- The conditions on the referents impose tests.

DRS Semantics

By simultaneous recursion:

- 1. $f[\![\langle U, Cons \rangle]\!]_M g$ iff $f[\![\langle U, Cons \rangle]\!]_M g$ and $M, g \models_{DRT} C$ for all $C \in Cons$.
 - a. $M, f \models_{DRT} x = y \text{ iff } f(x) = f(y).$
 - b. $M, f \models_{DRT} N(x)$ iff $M, f \models N(f(x))$.
 - c. $M, f \models_{DRT} R(x_1, \dots, x_n)$ iff $M, f \models R(f(x_1), \dots, f(x_n))$.
- 2. $M, f \models_{DRT} \neg K$ iff there is no g with $f[K]_M g$.
- 3. $M, f \models_{DRT} K_1 \vee K_2$ iff there is a g with $f[K_1]_m g$ or $f[K_2]_M g$.
- 4. $M, f \models_{DRT} K_1 \Rightarrow K_2$ iff for every g with $f[K_1]_M g$ there is a h with $g[K_2]_M h$.

Donkey Sentences

- "If a farmer owns a donkey, he beats it."

 $- \approx$ Whenever we have a farmer and we have a donkey and the farmer owns the donkey, then the farmer beats the donkey.

- DRT embeds into classical (Tarskian) First Order Semantics.

DRT embeds into FOL

Define recursively:

-
$$(P^k(x_1, \dots, x_k))^{FOL} = P^k x_1, \dots, x_k;$$

 $(x_i = x_j)^{FOL} = (x_i = x_j);$
 $(\neg K)^{FOL} = \neg K^{FOL};$
 $(K_1 \lor K_2)^{FOL} = (K_1^{FOL} \lor K_2^{FOL});$
- If $K_1 = \langle \{x_1, \dots, x_n\}, \{Con_1, \dots, Con_m\} \rangle$, then
$$K_1^{FOL} = \exists x_1 \dots \exists x_n (Con_1^{FOL} \land \dots \land Con_m^{FOL});$$
 $(K_1 \Rightarrow K_2)^{FOL} = \forall x_1 \dots \forall x_n ((Con_1^{FOL} \land \dots \land Con_m^{FOL}) \rightarrow K_2^{FOL}).$

Interpretation of DRSs: Truth 2

- DRT embeds into classical (Tarskian) First Order Semantics.

DRT embeds into FOL

Define recursively:

$$- (P^{k}(x_{1},...,x_{k}))^{FOL} = P^{k}x_{1},...,x_{k};$$

$$(x_{i} = x_{j})^{FOL} = (x_{i} = x_{j});$$

$$(\neg K)^{FOL} = \neg K^{FOL};$$

$$(K_{1} \vee K_{2})^{FOL} = (K_{1}^{FOL} \vee K_{2}^{FOL});$$

- If $K_1 = \langle \{x_1, \dots, x_n\}, \{\mathsf{Con}_1, \dots, \mathsf{Con}_m\} \rangle$, then

$$K_1^{\mathsf{FOL}} = \exists x_1 \dots \exists x_n (\mathsf{Con}_1^{\mathsf{FOL}} \wedge \dots \wedge \mathsf{Con}_m^{\mathsf{FOL}});$$

 $(K_1 \Rightarrow K_2)^{\mathsf{FOL}} = \forall x_1 \dots \forall x_n ((\mathsf{Con}_1^{\mathsf{FOL}} \wedge \dots \wedge \mathsf{Con}_m^{\mathsf{FOL}}) \to K_2^{\mathsf{FOL}}).$

- For all $f: M, f \models_{DRT} K$ iff $M, f \models_{FOL} K^{FOL}$.

DRS Construction Algorithm (Kamp and Reyle 1993)

DRS-Construction Algorithm

Input: a discourse $D = S_1, ..., S_i, S_{i+1}, ..., S_n$

the empty DRS K₀

Keep repeating for i = 1, ..., n:

- (i) add the syntactic analysis $[S_i]$ of (the next) sentence S_i to the conditions of K_{i-1} ; call this DRS K_i^* . Go to (ii).
- (ii) Input: a set of reducible conditions of K_i* Keep on applying construction principles to each reducible condition of K_i* until a DRS K_i is obtained that only contains irreducible conditions. Go to (i).

 (It's a shift-reduce algorithm, in case that means something to someone.)

S-DRT will do away with this simple construction!

 If this stops before all S have been dealt with, the discourse is uninterpretable.

DRS Construction Algorithm: Names

Example: Names

Julian smiled. He saw a cat.

Example: Names

Julian smiled. He saw a cat.

DRS Construction Algorithm: Pronouns

Example: Pronouns

Example: Pronouns

Example: Pronouns

smile(j)

He saw a cat.

 \rightsquigarrow

Julian(*j*) \bigoplus He saw a cat. Gen(j) = msmile(j)j, u Julian(*j*) Julian(*j*) Gen(j) = mGen(j) = msmile(j) \rightsquigarrow

u = j

Gen(u) = mu saw a cat.

DRS Construction Algorithm: Indefinites

Example: Indefinites

```
j,u

Julian(j)

Gen(j) = m

smile(j)

u = j

Gen(u) = m

u saw a cat.
```

Example: Indefinites

```
j,u,v
    j,u
                            Julian(j)
 Julian(j)
                           Gen(j) = m
Gen(j) = m
                            smile(j)
 smile(j)
                              u = j
   u = i
                           Gen(u) = m
Gen(u) = m
                           Gen(v) = n
                             [cat](v)
u saw a cat.
                            u saw v.
```

Example: Indefinites

j,u

Julian(j)

Gen(j) = m

smile(j)

u = j

Gen(u) = m

u saw a cat.

j,u,v Julian(*j*) Gen(j) = msmile(j)u = iGen(u) = mGen(v) = n[cat](*v*) u saw v.

j,u,v Julian(*j*) Gen(j) = msmile(i)u = iGen(u) = mGen(v) = ncat(v)u saw v.

DRS Construction Algorithm: Negation

Example: Negation

(11) A man is not seeing a cat. He smiles, #it does not.

DRS Construction Algorithm: Conditionals

Example: Conditionals

(12) If a farmer owns a donkey, he beats it.

Quantifier Constructions (Schematic)

Quantifier Constructions (Schematic)

DRS Construction Algorithm: 'Every'

Event Anaphora

(13) John screamed. That scared Max.

- Include *event indexes* in the referents, and have verb phrases denote events.

```
\frac{j,m,e^{\text{scream}},e^{\text{scare}},e}{\text{John(j)}}
\text{scream}(e^{\text{scream}},j)
\text{Max}(m)
\text{scare}(e^{\text{scare}},e,m)
e=e^{\text{scream}}
```

Tense

- Add referents for times and a special constant n (=now)
- (14) It is sunny now, but it will be raining.
- (15) It was sunny.

DRT

DRT to SDRT

DRT

DRT to SDRT

Segmentation

- What just happened?
- We have taken the units of the DRS and assigned labels to them.
- Then we stated how the labels relate.

SDRSs

- Let DRSs denote the set of well-formed DRSs..
- Let Rel be a set of coherence relations.
- An SDRS is a super-DRS describing the rhetorical structure of many normal DRSs (aka the "microstructure").

Segmented Discourse Representation Structure

An *SDRS* is a tuple (Π, \mathcal{F}, L) with

- Π a set of labels,
- Let REL^{Π} be the set $\{R(\alpha, \beta) \mid R \in \text{Rel } \land \alpha, \beta \in \Pi\}$ closed under conjunction.
- \mathcal{F} is a function, Π → DRSs ∪ REL^Π.
- L ∈ Π (the *last* label).

Example

$$K = (\Pi, \mathcal{F}, L), \text{ where:}$$

$$- \Pi = \{\pi_1, \pi_2, \pi\}$$

$$- \mathcal{F} = \left\{ \pi_1 \mapsto \begin{array}{c} f, d \\ \hline farmer(f) \\ donkey(d) \\ own(f, d) \end{array} \right., \quad \pi_2 \mapsto \begin{array}{c} \hline \\ beats(f, d) \\ \hline \\ \pi \mapsto Consequence(\pi_1, \pi_2) \end{array} \right\}$$

Bigger Example

(18) π_1 : John had a great day.

 π_2 : He had a great lunch.

 π_3 : He had soup.

 π_4 : Then he had salmon.

 π_5 : Afterwards, he visited his girlfriend.

- $\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \lambda, \rho\}.$
- $L = \pi_5$.
- $\mathcal{F}(\pi_1),...,\mathcal{F}(\pi_5)$ are (microstructure) DRSs.
- $\mathcal{F}(\lambda) = Elaboration(\pi_2, \rho) \land Narration(\pi_2, \pi_4)$
- $\mathcal{F}(\rho) = Narration(\pi_3, \pi_4)$
- $\mathcal{F}(\pi_0) = \textit{Elaboration}(\pi_1, \lambda)$

Boxes and Boxes

```
(19) \pi_1: John had a great day.
```

 π_2 : He had a great lunch .

 π_3 : He had soup.

 π_4 : Then he had salmon.

 π_5 : Afterwards, he visited his girlfriend.

What about the Right Frontier?

- Some more definitions:

Outscoping

- Note that \mathcal{F} induces an order on Π .
- Say that $\alpha < \beta$ iff α occurs in $\mathcal{F}(\beta)$.
- Let < denote the reflexive transitive closure of <.
- Call this relation "outscoping".

Interpretable SDRS

- A SDRS (Π, \mathcal{F}, L) is well formed if:
- There is a unique outscoping-maximal label in Π ("root").
- < is anti-symmetric (in particular, then, it has no circles)

The Right Frontier (formally)

– Let (Π, \mathcal{F}, L) be a well-formed SDRS.

SDRT-Accessibility

Accessibility is defined recursively:

- L is accessible.
- If α is accessible and $\alpha < \beta$, then β is accessible.
- If (i) α is accessible, and (ii) $R(\beta,\alpha)$ occurs in some $\mathcal{F}(\gamma)$, and (iii) R is subordinating then β is accessible.

Summary

- Elementary Discourse Units are Discourse Representation Structures.
- Segmented Discourse Representation Structures are narrative structures on top of these EDUs
- EDUs (microstructure) are constructed by the DRS construction algorithm.
- Within EDUs, anaphora are guided by DRT-accessibility.
- Across EDUs, anaphora are guided by the right frontier.
- Next week: *interpretation* of SDRSs and *construction* of SDRSs.