Phylogenomics

Gene trees

- Most phylogenetic methods assume that there is a single tree that describes the evolution of the whole data set
- But recombination complicates this

Coalescent theory

Gene trees in a species

- Gene trees vary by chance among unlinked genes
 - Different trees
 - Different timescales

Gene trees are embedded in the species tree

• Gene trees are embedded in the species tree

Incomplete lineage sorting

Incomplete lineage sorting

Worse when ancestral population sizes are large

Incongruence among gene trees

- Phylogenetic analyses of genome-scale data sets must deal with incongruence among gene trees
 - Incomplete lineage sorting
 - Different direction and strength of selection
 - Stochastic variation in the mutational process
 - Biases in nucleotide composition

Species tree

- Incomplete lineage sorting can lead to gene trees that do not match the species tree
- We can infer the species tree from multiple gene trees even when they are incongruent
- Three approaches
 - 1. Consensus
 - 2. Concatenation
 - 3. Species-tree methods

Species tree

1. Consensus

Estimate genealogy from each gene and find the consensus

But the most frequent gene tree does not always match the true species tree ("anomaly zone")

Analysing multiple loci

2. Concatenation

Assume that all genes share the same evolutionary history

But this ignores the occurrence of different gene trees

Species tree

3. Species-tree methods

Estimate the species tree based on gene trees

- Gene trees are independent realisations of a stochastic process (the coalescent) on the same species tree
- Various methods
 - *BEAST co-estimates gene trees and the species tree

BIOINFORMATICS

Vol. 30 ECCB 2014, pages i541-i548 doi:10.1093/bioinformatics/btu462

ASTRAL: genome-scale coalescent-based species tree estimation

S. Mirarab¹, R. Reaz¹, Md. S. Bayzid¹, T. Zimmermann^{1,2}, M. S. Swenson³ and T. Warnow^{1,*}

ASTRAL

- Accurate Species TRee ALgorithm
- Can analyse a genome-scale data set in minutes
- Finds the species tree with the highest agreement with 'quartets' among the gene trees

Useful references

- Lineage sorting in apes
 Mailund et al. (2014) Annu Rev Genet, 48: 519–535.
- Estimating phylogenetic trees from genome-scale data Liu et al. (2015) Annals New York Acad Sci, 1360: 36–53.