7b. Nichtlineare Optimierung Optimalitätsbedingungen

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Optimalitätsbedingungen
- Regularitätsvoraussetzungen
- Dualität für konvexe Programme

Mathematisches Programm

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ u.d.N. $g_i(x) \leq 0$, $i=1,\ldots,m_U$ $f,g_i,h_i \in C^1(\mathbb{R}^n)$ $h_i(x)=0,\;i=1,\ldots,m_G$

- Setze $\mathcal{F} = \{x \in \mathbb{R}^n : g_i(x) \le 0 \ i = 1, ..., m_{II}, h_i(x) = 0 \ i = 1, ..., m_C \}$
- Angenommen, x_* ist eine optimale Lösung
- Wie kann man x_* charakterisieren und bestimmen?

Tangentialkegel

• $d \in \mathbb{R}^n$ heißt Tangentialvektor zu \mathcal{F} in x_* falls:

$$\exists (x_k) \subseteq \mathcal{F} \text{ mit } x_k = x_* + d/k + o(1/k), \ k \to \infty$$

• Tangentialvektoren bilden Tangentialkegel $\mathcal{T}_{\mathcal{F}}(x_*)$

Lemma 7.4. Optimalitätsbedingung

Sei x_* ein lokales Minimum von f auf \mathcal{F} . Dann $-\nabla f(x_*)^T d \leq 0 \ \forall d \in \mathcal{T}_{\mathcal{F}}(x_*)$ Beweis.

Sei
$$d \in \mathcal{T}_{\mathcal{F}}(x_*)$$
 und $x_k = x_* + d/k + o(1/k) \in \mathcal{F}$
$$f(x_*) \leq f(x_k) \qquad \text{ für alle } k \geq K$$

$$= f(x_* + d/k + o(1/k))$$
 subtrahiere $f(x_*) = f(x_*) + \nabla f(x_*)^T d/k + o(1/k)$ multipliziere mit $k \to \infty$
$$-\nabla f(x_*)^T d \leq 0$$

Linearisierter Tangentialkegel

$$\mathcal{A}(x_*) = \{i = 1, ..., m_U: g_i(x_*) = 0\}$$
 Aktive Menge bei x_*

• Sei $d \in \mathcal{T}_{\mathcal{F}}(x_*)$ sodass $\exists (x_k) \in \mathcal{F}$ mit $x_k = x_* + d/k + o(1/k)$

$$h_i(x_k) = h_i(x_*) + \nabla h_i(x_*)^T d/k + o(1/k), \ i = 1, ..., m_G \implies \nabla h_i(x_*)^T d = 0$$

= 0 = 0

Linearisierter Tangentialkegel

$$\mathcal{A}(x_*) = \{i = 1, ..., m_U: g_i(x_*) = 0\}$$
 Aktive Menge bei x_*

• Sei $d \in \mathcal{T}_{\mathcal{F}}(x_*)$ sodass $\exists (x_k) \in \mathcal{F}$ mit $x_k = x_* + d/k + o(1/k)$

$$h_i(x_k) = h_i(x_*) + \nabla h_i(x_*)^T d/k + o(1/k), i = 1, ..., m_G \implies \nabla h_i(x_*)^T d = 0$$

= 0 = 0

$$g_i(x_k) = g_i(x_*) + \nabla g_i(x_*)^T d/k + o(1/k), \ i \in \mathcal{A}(x_*) \quad \Rightarrow \quad \nabla g_i(x_*)^T d \le 0$$

$$\le 0 \qquad = 0$$

• Also $\mathcal{T}_{\mathcal{F}}(x_*) \subseteq \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$, wobei $\mathcal{T}^{lin}_{\mathcal{F}}(x_*)$ ist der linearisierte Tangentialkegel:

$$\mathcal{T}^{lin}_{\mathcal{F}}(x_*) = \{d \colon \nabla g_i(x_*)^T d \le 0 \ i \in \mathcal{A}(x_*), \ \nabla h_i(x_*)^T d = 0 \ i = 1, \dots, m_G \}$$

Abadie Constraint Qualification (Abadie CQ)

Sei die *Abadie Constraint Qualification* $\mathcal{T}_{\mathcal{F}}(x_*) = \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$ erfüllt \sum Lemma 7.4 $-\nabla f(x_*)^T d \leq 0$ für alle d mit $\nabla g_i(x_*)^T d \leq 0$, $i \in \mathcal{A}(x_*)$, $\nabla h_i(x_*)^T d = 0$, $i = 1, \dots, m_G$ Farkas Lemma $-\nabla f(x_*) = \sum_{i \in \mathcal{A}(x_*)} \mu_i^* \nabla g_i(x_*) + \sum_{i=1}^{m_G} \eta_i^* \nabla h_i(x_*) + \sum_{i=1}^{m_G} \theta_i^* \left(-\nabla h_i(x_*)\right)$ $\geq 0 \qquad \geq 0$

Abadie Constraint Qualification (Abadie CQ)

Sei die *Abadie Constraint Qualification* $\mathcal{T}_{\mathcal{F}}(x_*) = \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$ erfüllt \sum Lemma 7.4 $-\nabla f(x_*)^T d \leq 0$ für alle d mit $\nabla g_i(x_*)^T d \leq 0$, $i \in \mathcal{A}(x_*)$, $\nabla h_i(x_*)^T d = 0$, $i = 1, \dots, m_G$ $-\nabla f(x_*) = \sum_{i \in \mathcal{A}(x_*)} \mu_i^* \nabla g_i(x_*) + \sum_{i=1}^{m_G} \eta_i^* \nabla h_i(x_*) + \sum_{i=1}^{m_G} \theta_i^* \left(-\nabla h_i(x_*)\right)$ $\geq 0 \qquad \geq 0$ $\geq 0 \qquad \qquad \lambda_i^* \coloneqq \eta_i^* - \theta_i^*$ $\mu_i^* \coloneqq 0 \text{ für } i \in \mathcal{A}(x_*)^c$ $\nabla f(x_*) + \sum_{i=1}^{m_U} \mu_i^* \nabla g_i(x_*) + \sum_{i=1}^{m_G} \lambda_i^* \nabla h_i(x_*),$ $\mu_i^* g_i(x_*) = 0, \ i = 1, ..., m_U$ Komplementaritätsbedingung

KKT-Punkt

• Wir bezeichnen $(x, \mu, \lambda) \in \mathbb{R}^{n \times m_U \times m_G}$ als KKT-Punkt (nach Karush-Kuhn-Tucker) falls die KKT-Bedingungen gelten:

$$\nabla f(x) + \sum_{i=1}^{m_U} \mu_i \nabla g_i(x) + \sum_{i=1}^{m_G} \lambda_i \nabla h_i(x) = 0$$

$$g_i(x) \le 0, \ h_i(x) = 0 \ \forall i$$

$$\mu \ge 0$$

$$\mu_i g_i(x) = 0, \ i = 1, \dots, m_U$$

 $\mathcal{L}(x,\mu,\lambda) = f(x) + \sum_{i=1}^{m_U} \mu_i g_i(x) + \sum_{i=1}^{m_G} \lambda_i h_i(x)$ Lagrange-Funktion

Satz 7.5. Optimalitätsbedingungen

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ u.d.N. $g_i(x) \leq 0$, $i=1,\ldots,m_U$ $f,g_i,h_i \in \mathcal{C}^1(\mathbb{R}^n)$ $h_i(x)=0,\;i=1,\ldots,m_G$

Sei x_* ein lokales Minimum und sei die Abadie CQ bei x_* erfüllt:

$$\mathcal{T}_{\mathcal{F}}(x_*) = \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$$

Dann gibt es (μ_*, λ_*) sodass (x_*, μ_*, λ_*) ein KKT-Punkt ist Lagrange-Multiplikatoren

Beispiel 7.6. Problem ohne Lagrange-Multiplikatoren

Minimiere
$$f(x) = x_1 + x_2$$

u.d.N. $h_1(x) = (x_1 - 1)^2 + x_2^2 - 1 = 0$
 $h_2(x) = (x_1 - 2)^2 + x_2^2 - 4 = 0$

$$\nabla f(0) + \lambda_1 \nabla h_1(0) + \lambda_2 \nabla h_2(0) = 0$$

•
$$\mathcal{T}_{\mathcal{F}}(0) = \{0\} \neq \mathcal{T}_{\mathcal{F}}^{lin}(0) = \{0\} \times \mathbb{R}$$

Plan

- Optimalitätsbedingungen
- Regularitätsvoraussetzungen
- Dualität für konvexe Programme

Regularitätsvoraussetzungen

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ u.d.N. $g_i(x) \leq 0$, $i=1,\ldots,m_U$ $f,g_i,h_i \in C^1(\mathbb{R}^n)$ $h_i(x)=0,\;i=1,\ldots,m_G$

- Sei x_* eine optimale Lösung Engl. Constraint Qualifications (CQ)
- Regularitätsvoraussetzungen garantieren, dass es Lagrange-Multiplikatoren (μ_*, λ_*) gibt, sodass (x_*, μ_*, λ_*) ein KKT-Punkt ist

Satz 7.7. LICQ (Linear Independence CQ)

• Sei $x_* \in \mathcal{F}$ und $\mathcal{A}(x_*)$ die aktive Menge bei x_* :

$$\mathcal{A}(x_*) = \{i = 1, ..., m_U : g_i(x_*) = 0\}$$
$$= \{i_1, ..., i_k\}$$

• Angenommen, x_* erfüllt die LICQ:

$$\nabla g_{i_1}(x_*), \dots, \nabla g_{i_k}(x_*), \nabla h_1(x_*), \dots, \nabla h_{m_G}(x_*)$$
 sind linear unabhängig

• Dann erfüllt x_* die Abadie CQ:

$$\mathcal{T}_{\mathcal{F}}(x_*) = \mathcal{T}_{\mathcal{F}}^{lin}(x_*)$$

$$h(x) = \begin{vmatrix} h_1(x) \\ \vdots \\ h_{m_G}(x) \end{vmatrix}$$

$$g_{\mathcal{A}(x_*)}(x) \coloneqq \begin{bmatrix} g_{i_1}(x) \\ \vdots \\ g_{i_k}(x) \end{bmatrix}, \ Dg_{\mathcal{A}(x_*)}(x) = \begin{bmatrix} \nabla g_{i_1}(x)^T \\ \vdots \\ \nabla g_{i_k}(x)^T \end{bmatrix}, \ Dh(x) = \begin{bmatrix} \nabla h_1(x)^T \\ \vdots \\ \nabla h_{m_G}(x)^T \end{bmatrix}$$

$$F(x) \coloneqq \begin{bmatrix} g_{\mathcal{A}(x_*)}(x) \\ h(x) \end{bmatrix} x_* \text{ erfüllt LICQ}$$

$$DF(x_*) = \begin{bmatrix} Dg_{\mathcal{A}(x_*)}(x_*) \\ Dh(x_*) \end{bmatrix} \text{ hat vollen Zeilenrang}$$

Sei
$$d \in \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$$
 und $R(x,t) \coloneqq F(x) - tDF(x_*)d$
$$D_x R(x_*,0) = DF(x_*) \text{ hat vollen Zeilenrang und } R(x_*,0) = 0$$
 Satz von der impliziten Funktion
$$\exists \varepsilon > 0, \exists y(t) \in \mathcal{C}^1([0,\varepsilon),\mathbb{R}^n) \colon R(y(t),t) \equiv 0 \text{ und } y(0) = x_*$$

Sei
$$d \in \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$$
 und $R(x,t) \coloneqq F(x) - tDF(x_*)d$

 $D_x R(x_*, 0) = DF(x_*)$ hat vollen Zeilenrang und $R(x_*, 0) = 0$ Satz von der impliziten Funktion

$$\exists \varepsilon > 0, \exists y(t) \in C^1([0, \varepsilon), \mathbb{R}^n): \quad R(y(t), t) \equiv 0 \text{ und } y(0) = x_*$$

$$g_{\mathcal{A}(x_*)^c}(x_*) < 0$$

$$g_{\mathcal{A}(x_*)}(y(t)) = tDg_{\mathcal{A}(x_*)}(x_*)^T d \le 0$$

$$\exists \eta \in (0, \varepsilon): y(t) \in \mathcal{F} \ \forall t \in [0, \eta]$$

$$d \in \mathcal{T}_{\mathcal{F}}(x_*)$$

$$d \in \mathcal{T}_{\mathcal{F}}(x_*)$$

$$\exists \theta \in \mathcal{T}_{\mathcal{F}}(x_*)$$

$$d \in \mathcal{T}_{\mathcal{F}}(x_*)$$

$$d \in \mathcal{T}_{\mathcal{F}}(x_*)$$

Satz 7.8. Slater-Bedingung

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ u.d.N. $g_i(x) \le 0, i = 1, ..., m_U$ $f, g_i \in C^1(\mathbb{R}^n)$ konvex $Ax = b$

Angenommen, die Slater-Bedingung erfüllt ist:

Es gibt
$$\bar{x} \in \mathbb{R}^n$$
 so, dass $g_i(\bar{x}) < 0$, $i = 1, ..., m_U$ und $A\bar{x} = b$
Slater-Punkt

• Dann ist für alle $x_* \in \mathcal{F}$ die Abadie CQ erfüllt:

$$\mathcal{T}_{\mathcal{F}}(x_*) = \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$$

$$\mathcal{T}_{\mathcal{F}}(x_*) \subseteq \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$$
 im Allgemeinen

$$\mathcal{T}_{\mathcal{F}}^{<}(x_*) \coloneqq \{d: Dg_{\mathcal{A}(x_*)}(x_*)d < 0, Dh(x_*)^Td = 0\}$$

Wir beweisen, dass unter der Slater-Bedingung:

1.
$$\mathcal{T}^{lin}_{\mathcal{F}}(x_*) \subseteq \overline{\mathcal{T}^{<}_{\mathcal{F}}(x_*)}$$

2.
$$\mathcal{T}_{\mathcal{F}}^{<}(x_*) \subseteq \mathcal{T}_{\mathcal{F}}(x_*)$$

Somit erhalten wir, dass $\mathcal{T}_{\mathcal{F}}(x_*) = \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$

Slater-Punkt \bar{x} : $g(\bar{x}) < 0$ und $A\bar{x} = b$

Behauptung: $\mathcal{T}_{\mathcal{F}}^{lin}(x_*) \subseteq \mathcal{T}_{\mathcal{F}}^{<}(x_*)$ für alle $x_* \in \mathcal{F}$

Sei
$$d \in \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$$
 und setze: $\bar{d}(t) = d + t(\bar{x} - x_*), \ t > 0$

$$A\bar{d}(t) = Ad + t(A\bar{x} - Ax_*) = 0$$

Slater-Punkt \bar{x} : $g(\bar{x}) < 0$ und $A\bar{x} = b$

Behauptung: $\mathcal{T}^{lin}_{\mathcal{F}}(x_*) \subseteq \overline{\mathcal{T}^{<}_{\mathcal{F}}(x_*)}$ für alle $x_* \in \mathcal{F}$

Sei
$$d \in \mathcal{T}^{lin}_{\mathcal{F}}(x_*)$$
 und setze:

$$\bar{d}(t) = d + t(\bar{x} - x_*), \ t > 0$$

$$A\bar{d}(t) = Ad + t(A\bar{x} - Ax_*) = 0$$

$$i \in \mathcal{A}(x_*): \nabla g_i(x_*)^T \bar{d}(t) = \nabla g_i(x_*)^T d + t \nabla g_i(x_*)^T (\bar{x} - x_*)$$
 Satz 2.17
$$\leq \underline{\nabla g_i(x_*)^T d} + t \left(g_i(\bar{x}) - g_i(x_*)\right) < 0$$

$$\leq 0 < 0 = 0$$

$$\bar{d}(t) \in \mathcal{T}_{\mathcal{F}}^{>}(x_*) \text{ und } \bar{d}(t) \to d \text{ für } t \to +0$$

$$\Rightarrow d \in \overline{\mathcal{T}_{\mathcal{F}}^{<}(x_*)}$$

Behauptung:
$$\mathcal{T}_{\mathcal{F}}^{<}(x_*) \subseteq \mathcal{T}_{\mathcal{F}}(x_*)$$
 für alle $x_* \in \mathcal{F}$

Sei
$$d \in \mathcal{T}_{\mathcal{F}}^{<}(x_*)$$
 und setze $x(t) = x_* + td$

$$g_i(x(t)) = g_i(x_*) + t\nabla g_i(x_*)^T d + o(t) \qquad i \in \mathcal{A}(x_*)$$

$$= t \left(\nabla g_i(x_*)^T d + o(1) \right) \setminus$$

$$\exists \varepsilon > 0: \ g_i(x(t)) < 0 \ \forall t \in (0, \varepsilon)$$

$$x(t)$$
 ist zulässig $\forall t \in (0, \varepsilon)$

$$\Rightarrow d \in \mathcal{T}_{\mathcal{F}}(x_*)$$

$$Ax(t) = Ax_* = b$$

Aufgabe 7.9. Snelliussches Brechungsgesetz

- Die Kurve h(x) = 0 mit $h \in C^1(\mathbb{R}^2)$ trennt zwei Medien mit Lichtgeschwind. v_{v} bzw. v_{z}
- Ein Lichtstrahl reist von y nach z entlang des Pfads der minimalen Laufzeit

Minimiere
$$\frac{\|x-y\|_2}{v_y} + \frac{\|x-z\|_2}{v_z}$$
 über $x \in \mathbb{R}^2$ u.d.N. $h(x) = 0$

Plan

- KKT-Bedingungen
- Regularitätsvoraussetzungen
- Dualität für konvexe Programme

Konvexes Programm

 $f \in C^1(\mathbb{R}^n)$ konvex Minimiere f(x) über $x \in \mathbb{R}^n$ Lagrange-Funktion $g_i(x) \leq 0, \ i=1,\ldots,m_G \qquad a_i \in \mathbb{R}^n, b_i \in \mathbb{R}$ $g_i(x) \leq 0, \ i=1,\ldots,m_U \qquad g_i \in C^1(\mathbb{R}^n) \text{ konvex}$ ≥ 0 $\mathcal{L}(x,\mu,\lambda) = f(x) + \sum_{i=1}^{m_U} \mu_i g_i(x) + \sum_{i=1}^{m_G} \lambda_i (b_i - a_i^T x)$

Das duale Problem

$$G(\mu,\lambda) := \inf_{x \in \mathbb{R}^n} \mathcal{L}(x,\mu,\lambda)$$

 $G(\mu,\lambda)\coloneqq \inf_{x\in\mathbb{R}^n}\mathcal{L}(x,\mu,\lambda)$ Die duale Funktion Maximiere $G(\mu,\lambda)$ über $\mu\in\mathbb{R}^{m_U},\lambda\in\mathbb{R}^{m_G}$ u.d.N. $\mu \geq 0$

Satz 7.10. Dualität für konvexe Programme

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ $f \in C^1(\mathbb{R}^n)$ konvex u.d.N. $a_i^T x = b_i, \ i = 1, ..., m_G$ $a_i \in \mathbb{R}^n, b_i \in \mathbb{R}$ $g_i(x) \leq 0, \ i = 1, ..., m_U$ $g_i \in C^1(\mathbb{R}^n)$ konvex

- Angenommen, die Slater-Bedingung ist erfüllt
- Sei x_* eine optimale Lösung und μ_* , λ_* die zugehörigen Lagrange-Multiplikatoren, sodass (x_*, μ_*, λ_*) ein KKT-Punkt ist (Sätze 8.2, 8.4)
- Dann ist μ_* , λ_* eine optimale Lösung des dualen Problems und die optimalen Werte im Primalen und im Dualen übereinstimmen

Sei
$$(x_*, \mu_*, \lambda_*)$$
 ein KKT-Punkt
$$\nabla_x \mathcal{L}(x_*, \mu_*, \lambda_*) = 0 \qquad \mathcal{L}(\cdot, \mu_*, \lambda_*) \text{ ist konvex}$$

$$\mathcal{L}(x_*, \mu_*, \lambda_*) \leq \mathcal{L}(x, \mu_*, \lambda_*) \ \forall x \in \mathbb{R}^n$$

$$= 0 \qquad \qquad = 0$$

$$\mathcal{L}(x_*, \mu_*, \lambda_*) = f(x_*) + \sum_{i=1}^{m_U} \mu_{*,i} g_i(x_*) + \sum_{i=1}^{m_G} \lambda_{*,i} (b_i - a_i^T x_*)$$

Sei
$$(x_*, \mu_*, \lambda_*)$$
 ein KKT-Punkt
$$\nabla_x \mathcal{L}(x_*, \mu_*, \lambda_*) = 0 \qquad \mathcal{L}(\cdot, \mu_*, \lambda_*) \text{ ist konvex}$$

$$\mathcal{L}(x_*, \mu_*, \lambda_*) \leq \mathcal{L}(x, \mu_*, \lambda_*) \quad \forall x \in \mathbb{R}^n$$

$$= 0 \qquad \qquad = 0$$

$$\mathcal{L}(x_*, \mu_*, \lambda_*) = f(x_*) + \sum_{i=1}^{m_U} \mu_{*,i} g_i(x_*) + \sum_{i=1}^{m_G} \lambda_{*,i} (b_i - a_i^T x_*)$$

$$\geq f(x_*) + \sum_{i=1}^{m_U} \mu_i g_i(x_*) + \sum_{i=1}^{m_G} \lambda_i (b_i - a_i^T x_*) \quad \forall \mu \geq 0, \forall \lambda$$

$$= \mathcal{L}(x_*, \mu, \lambda) \qquad \leq 0 \qquad = 0$$

$$\Rightarrow (x_*, \mu_*, \lambda_*) \text{ ist ein Sattelpunkt von } \mathcal{L}$$

 $\Rightarrow (\mu_*, \lambda_*)$ ist dual optimal und optimale Werte übereinstimmen (Satz 5. \mathbb{R})

Satz 7.11. Hinreichende Optimalitätsbedingung

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ $f \in C^1(\mathbb{R}^n)$ konvex u.d.N. $a_i^T x = b_i, \ i = 1, ..., m_G$ $a_i \in \mathbb{R}^n, b_i \in \mathbb{R}$ $g_i(x) \leq 0, \ i = 1, ..., m_U$ $g_i \in C^1(\mathbb{R}^n)$ konvex

- Angenommen, die Slater-Bedingung ist erfüllt
- Sei (x_*, μ_*, λ_*) ein KKT-Punkt
- Dann ist x_* eine optimale Lösung des Primalen und (μ_*, λ_*) eine optimale Lösung des Dualen. Außerdem ist die starke Dualität erfüllt

Sei (x_*, μ_*, λ_*) ein KKT-Punkt und sei x zulässig

$$f(x) \ge f(x_*) + \nabla f(x_*)^T (x - x_*) = 0$$

$$= f(x_*) - \sum_{i=1}^{m_U} \mu_{*,i} \nabla g_i(x_*)^T (x - x_*) + \sum_{i=1}^{m_G} \lambda_{*,i} a_i^T (x - x_*)$$

Sei (x_*, μ_*, λ_*) ein KKT-Punkt und sei x zulässig

$$f(x) \ge f(x_*) + \nabla f(x_*)^T (x - x_*) = 0$$

$$= f(x_*) - \sum_{i=1}^{m_U} \mu_{*,i} \nabla g_i(x_*)^T (x - x_*) + \sum_{i=1}^{m_G} \overline{\lambda_{*,i}} \ a_i^T (x - x_*)$$

$$\le \mu_{*,i} (g_i(x) - g_i(x_*)) = \mu_{*,i} g_i(x) \le 0$$

$$\Rightarrow f(x) \ge f(x_*) \quad \text{Komplementaritätsbedingung}$$

 $\Rightarrow x_*$ ist eine optimale Lösung des primalen Problems μ_* , λ_* ist eine optimale Lösung des Dualen nach Satz 7.10

Kleinste Umschließende Kugel

- Seien $x_1, ..., x_m \in \mathbb{R}^n$ gegeben
- Finde die kleinste Kugel $B_{R_*}(x_*)=\{x\colon \|x-x_*\|_2\leq R_*\}$, die alle Punkte x_1,\ldots,x_m enthält
- Optimaler Standort einer Notfall-Einrichtung

Aufgabe 7.12. Kleinste Umschließende Kugel

Minimiere
$$\gamma$$
 über $\gamma > 0, x \in \mathbb{R}^n$
u.d.N. $||x_i - x||_2^2 \le \gamma$, $i = 1, ..., m$ $\gamma = R^2$

- Formulieren Sie das duale Problem und klassifizieren Sie sie
- Zeigen Sie, dass die Slater-Bedingung erfüllt ist
- Sei μ_* eine optimale Lösung des Dualen. Zeigen Sie, dass die optimale Lösung des primalen ist gegeben durch:

$$x_* = \sum_{i=1}^{m} \mu_{*,i} x_i$$
 ähnlich zu SVN

Zusammenfassung

- Optimalitätsbedingungen
- Regularitätsvoraussetzungen
- Dualität für konvexe Programme

Nächstes Video

• 7c. Nichtlineare Optimierung: Algorithmen