

CS-11xx:ArhCalc

Lecţia 13:

Interfata: procesor - periferice I

G Stefănescu — Universitatea București

Arhitectura sistemelor de calcul, Sem.1 Octombrie 2016—Februarie 2017

După: D. Patterson and J. Hennessy, Computer Organisation and Design

Interfata: procesor - periferice

Cuprins:

- Generalitati
- Performanta
- Tipuri de dispozitive I/O
- Magistrale
- Interfata: I/O procesor/memorie/OS
- Concluzii, diverse, etc.

Generalitati

Generalitati:

- Efortul major a fost de a face procesoarele cânt mai performante, *perifericele* (ori sistemele I/O) rămânând pe *locul doi*.
- Exemple de periferice: disc floppy, hard-disc, CD, memorie flask, tastatură, mouse, display, printer, scanner, router, switch, magistrală de comunicare, placă de reţea/sunet/grafică, etc.
- Dincolo de performanțe (e.g., viteză, capacitate), la periferice este importantă *flexibilitatea*, *siguranța*, *capacitatea de adaptate* la diverse configurații.
- Dată fiind varietatea lor, *performanța* perifericelor este mai *greu de determinat* decât la un procesor: uneori primordială este *viteza*, alteori *performanța* (*throughput*), i.e., câte sarcini pot fi procesate simultan.

..Generalitati

O colecție tipică de dispozitive I/O:

Comunicarea cu procesorul folosește *protocoale pe bus* și *întreruperi*.

..Generalitati

Impactul I/O asupra performantei:

Problemă: Pe un set de joburi, un sistem consumă 90s CPU şi 10s I/O. Dacă procesorul devine cu 50% mai performant pe an, cu cât este calculul mai performant în 5 ani?

Răspuns:

Dupa <i>n</i> ani	timp CPU	timp I/O	Timp total	Impact I/O
0	90	10	100	10%
1	90/1.5=60	10	70	14%
2	60/1.5=40	10	50	20%
3	40/1.5=27	10	37	27%
4	27/1.5=18	10	28	36%
5	18/1.5=12	10	22	45%

Deşi procesorul devine de 7.5 (=90/12) ori mai performant, performanţa totală este *doar 4.5* (=100/22), impactul I/O crescând *de la 10% la 45%*!

Interfata: procesor - periferice

Cuprins:

- Generalitati
- Performanta
- Tipuri de dispozitive I/O
- Magistrale
- Interfata: I/O procesor/memorie/OS
- Concluzii, diverse, etc.

Generalitati:

Varietate mare: Chiar rezumat la o caracteristică precum "capacitatea de transport" pot apare diverse măsuri de performanță:

- capacitatea totală de transport măsură utilă la comunicații în calculator ori în rețea când se transferă fișiere mari;
- numărul de operații I/O procesate în unitatea de timp măsură utilă la interacții relativ simple, ca accesări de bancomate, rezervări online, etc.

In al 2-lea caz, de obicei se pune o *limită maximă admisibilă* pentru procesarea fiecărui job.

Generalitati (cont.)

Confuzie: Rata de transfer, uzual exprimată în MB/sec., vine în contradicție cu măsurile de memorie exprimate în MB:

• prima folosește puteri ale lui 10:

$$1 \text{ MB} = 10^6 \text{ B} = 1 000 000 \text{ B}$$

• a două folosește puteri ale lui 2:

$$1 \text{ MB} = 2^{20} \text{ B} = 1 \text{ 048 576 B}$$

Folosim prima variantă, mai simplă, deşi poate conţine erori (deseori pachetele transmise au lungime corelată cu puteri ale lui 2).

Benchmark - supercalculatoare:

- Supercalculatoarele au ca I/O dominant *accesul la fişiere mari* pe discuri magnetice;
- Activitate tipică: citit un fişier mare, rulat ore întregi, salvând periodic configurația (spre a putea fi continuat calculul în caz de eşec);
- Măsura adecvată este *performanța de transfer*, i.e., *numărul de octeți/sec* transferați la un acces de fișier mare pe disc.

Benchmark - procesare de tranzactii:

- Performanţa *procesării de tranzacţii (TP)* se stabileşte folosind atât *timpul total de răspuns* cât şi *numărul de joburi procesate odată*;
- Mai importantă este *rata I/O* (= numărul de accese I/O pe unitatea de timp) decât *rata datelor* (= numărul de octeți transferați pe secundă);
- TP de obicei implică acces multiplu la baze mari de date, fiecare job fiind relativ simplu;
- Caracteristici necesare: siguranță (să nu se piardă tranzacțiile), rapiditate, minimizarea costurilor pe tranzacție;

Benchmark - procesare de tranzactii (cont.)

- Benchmark popular oferit de TCP (Transaction Processing Council):
 - TCP-C: cereri uşoare-medii la o baza de date (relevante pentru: rezervări online, acces sistem bancar);
 - TCP-D: cereri mai complexe la o baza de date (relevante pentru: suport în luarea deciziilor);
 - Timpul include: timpul de calcul, timpul de access I/O la disk, timpul pentru terminal;

Benchmark - Sisteme de fisiere:

- Accesul la sistemele de fişiere poate avea caracteristici variate;
- Exemplu la Unix:
 - 80% acces la fişiere \leq 10 KB;
 - 90% acces la date cu adrese apropiate pe disk;
 - 67% read, 27% write, 6% read-modify-write;
- Exemplu de benchmark popular 5 faze:
 - MakeDir (construieşte arborele director);
 - Copy (copiază fișierele: dir. sursă \mapsto dir. destinație);
 - ScanDir (examinează starea fişierelor);
 - ReadAll (scanează toți octeții);
 - Make (compile + link pentru toate fişierele din director).
- Rezultatele depind mult de tipul de încărcare a sistemului.

Interfata: procesor - periferice

Cuprins:

- Generalitati
- Performanta
- Tipuri de dispozitive I/O
- Magistrale
- Interfata: I/O procesor/memorie/OS
- Concluzii, diverse, etc.

Tipuri de dispozitive I/O

Generalitati:

Dispozitivele I/O sunt extrem de diverse; pot fi clasificate după:

Comportament: intrare (citit o dată), ieșire (scris, nu poate fi citit), ori memorie (poate fi recitit și, uzual, recris);

Partener: cel ce introduce datele ori citeşte rezultatul este *om* ori *maşină*;

Rata datelor: rata de vârf la care dispozitivul I/O poate comunica cu memoria ori procesorul;

Exemple: vezi tabelul următor.

..Tipuri de dispozitive I/O

Dispozitive I/O (cu caracteristici, 1997):

Dispozitiv	Comportament	Partener	Rata datelor (KB/sec)
Tastatura	intrare	om	0.01
Mouse	intrare	om	0.02
Intrare voce	input	om	0.02
Scanner	input	om	400.00
Iesire voce	iesire	om	0.60
Printer matricial	iesire	om	1.00
Printer laser	iesire	om	200.00
Display grafic	iesire	om	60000.00
Modem	intrare & iesire	masina	2.00-8.00
Retea/LAN	intrare & iesire	masina	500-6000.00
Disc floppy	memorie	masina	100.00
Disc optic	memorie	masina	1 000.00
Banda magnetica	memorie	masina	2 000.00
Disk magnetic	memorie	masina	2 000-10 000.00

Mouse

Mouse:

Interfața mouse-sistem se poate face astfel:

• (1) mouse-ul generează o serie de *impulsuri* când se mişcă (folosind un LED şi un detector), care sunt preluate de procesor;

• ori (2) mouse-ul creşte/scade nişte contori de poziție citiți pe-

riodic de procesor

.. Mouse

- Sistemul mută cursorul pe ecran, cu o mutare lină (procesorul fiind mult mai rapid);
- Mouse-ul are *butoane*, al căror statut este monitorizat de sistem la apăsare și eliberare (diferențiind între "apăsat" și "ținut apăsat");
- Legătura dintre poziția mouse-ului și coordonatele de pe ecran este complet gestionată de *software*;
- Metoda de comunicare în care procesorul citeşte periodic semnale din dispozitivul I/O se numeşte *polling* (interogaare periodică).

Disc magnetic:

- Discurile magnetice au *memorie nevolatilă*, anume informația persistă când dispozitivul nu mai este alimentat;
- Populare sunt (au fost) *discurile floppy* şi *hard-discurile*; ultimile au avantaje semnificative:
 - pot fi mai mari, fiind rigide;
 - pot avea densitate mai mare, accesul fiind controlat mai precis;
 - pot fi accesate mai rapid, învârtindu-se mai repede;
 - pot fi "suprapuse", un hard-disk având mai multe platane;
- Hard-discurile se organizează în *platane*, *piste* și *sectoare*.

platane (platters), piste (tracks), și sectoare.

Caracteristici - disc magnetic, 1997:

- Are o colecție de 1-15 platane, fiecare înregistrabil pe ambele suprafețe;
- Are viteze de rotații între 3600-7200 rotații/min.; diametrul este între 8-20cm;
- Are 1000-5000 piste (cercuri concentrice); fiecare pistă conţine 64-200 sectoare;
- Uzual, cea mai mică cantitate de citit/scris era 1 sector; cu tehnologie LBA (Logical Block Access), blocul este informația minimă adresabilă;
- Secvenţa de date memorată este:

adresă sector, spațiu, info; adresă sector, spațiu, info; ...;

Caracteristici - disc magnetic, 1997 (cont.)

- Iniţial numărul de sectoare era acelaşi pe toate pistele; cu tehnologie ZBT (Zone Bit Recording) numărul de sectoare este variabil pe piste, spaţiul dintre biţi fiind constant;
- Capetele de citire se mişcă coordonat pe toate platanele, pozițiile scanate odată alcătuind un *cilindru*;
- Accesarea discului trece prin 3 faze:
 - 1. poziționarea capului pe pistă;
 - 2. rotirea pentru accesarea sectorului;
 - 3. transferul blocului de biţi;

Accesarea discului:

- Poziționarea capului pe pistă seek
 - timpul necesar este *seek time*;
 - producătorii indică în manual timpii de poziționare minim,
 maxim, şi mediu;
 - timpul de poziționare mediu este între 8-20 ms (1997);
 - în aplicați, din cauza localizării acceselor, timpul mediu actual este 25-33% din cel listat;
- Rotirea pentru accesarea sectorului:
 - timpul de rotire este *latența* (întârzierea) rotațională;
 - cu 3600 RPM (rotații/min.) latența rotațională medie este
 - $0.5/3600 \, \text{min.} = (0.5/3600) \times 60 \, \text{s} = 0.0083 \, \text{s} = 8.3 \, \text{ms}$
 - cu 7200 RPM latenţa devine 4.2 ms

Accesarea discului (cont.)

- Transferul blocului de biţi:
 - Timpul de transfer depinde de: (1) mărimea sectorului, (2) viteza de rotație, și (3) densitatea întregistrării datelor;
 - In 1997, ratele erau între 2-15 MB/s;
 - Majoritatea discurilor au memorii cache integrate care măresc semnificativ rata de transfer; în 1997, cu memorii cache rata ajungea la 40 MB/s;
- Unitatea de control a discului:
 - Un timp final este adăugat de unitatea de control;

Accesarea discului (cont.)

Problemă: Se dau: timp seek (la pistă) = 12 ms; rata de transfer = 5 MB/s; timp pentru control = 2 ms; un disc liber. Care este timpul mediu de citire a unui sector cu 512 b la viteza de 5400 RPM?

Răspuns:

• Adunăm timpii celor 4 activități:

$$12 \text{ ms} + 5.6 \text{ ms} + 0.5 \text{ KB/}(5 \text{ MB/s}) + 2 \text{ ms} = 19.7 \text{ ms}$$

• Dacă timpul mediu de poziționare este 25% din cel listat, obținem:

$$12/4 \text{ ms} + 5.6 \text{ ms} + 0.5 \text{ KB/}(5 \text{ MB/s}) + 2 \text{ ms} = 10.7 \text{ ms}$$

Discuri Seagate (cu caracteristici, 1997):

Caracteristici	ST423451	ST19171	ST92255
Diametru (inch)	5.25	3.50	2.50
Capacitate disc formatat (MB)	23 200	9 100	2 250
MTBF - timp garantat (ore)	500 000	1 000 000	300 000
Numar de suprafete	28	20	10
Viteza de rotatie (RPM)	5 400	7 200	4 500
Rata de transfer interna (Mb/s)	86-124	80-124	≤ 60.8
Interfata externa	Fast SCSI-2 (8-16b)	Fast SCSI-2 (8-16b)	Fast ATA
Rata de transfer externa (MB/s)	20-40	20-40	≤ 16.6
Seek minim (ms)	0.9	0.6	4
Seek mediu + latenta rotatie (ms)	11	9	14
Putere (W)	26	13	2.6
MB/W	892	700	865
Volum (in ³)	322	37	8
MB/in ³	72	246	273

Retele

Retele:

Generalități: Se pot clasifica după

- *Distanță*: 0.01 10 000 Km;
- *Viteză*: 0.001 MB/s 100 MB/s;
- *Topologie:* bus, ring, star, tree
- *Linii partajate (shared):* P2P (point-to-point, nimic partajat), ori linii partajate (multidrop);

Rețea terminală:

- distanța: 10 100 m;
- viteza: 0.3 19.2 Kb/s;
- topologie: star (calculator central + terminale);
- conexiuni: point-to-point

Retele

Tipuri de retele:

- LAN: Local Area Network
 - Rețea locală în clădire, un campus, etc;
- MAN: Metropolitan Area Network
 - Reţea pentru birouri învecinate, care poate fi extinsă la nivel de oraş;
- WAN: Wide Area Network
 - Reţea pe zonă largă, care poate acoperi o ţară, un continent, etc;
- LHN(?): Long-Haul Networks
 - Reţea pe distanţe lungi 10 km 10 000 km;

Rețea LAN (Local Area Network)

- LAN foloseşte protocolul *Ethernet* (cuvintele LAN şi Ethernet sunt deseori interchimbabile);
- Vitezele erau (1997) 10 Mb/s 100 Mb/s; acum există *Gigabit Ethernet*, i.e., cu viteză de 1 Gb/s (10⁹ b/s);
- Există un unic bus, fără control central, pe care calculatoarele comunică; se transmit *pachete* de 64 B 1518 B;
- Rata de transfer este uşor degradată din cauza *coliziunii* mesajelor;
- "Switched networks" (reţelele comutate) evita degradarea folosind switch-uri pentru a micşora numărul de calculatoare pe un segment Ethernet;

Rețea LHN (Long-Haul Network)

- Prima rețea a fost faimoasa *ARPANET* (*Advanced Research Projects Agency Network*):
 - ARPANET transfera date cu 56 Kb/s folosind linii telefonice, comunicații P2P şi IMP-uri (Interface Message Processors)
 - In ARPANET comunicarea folosea package swiched techniques, anume mesajul era spart în pachete de 1 Kb, care puteau ajunge pe căi diferite la destinație;
 - ARPANET a fost precursorul Internet-ului;

- Standardizarea rețelelor:
 - Se foloseşte o unică familie de portocolale *TCP/IP* (*Trans-mission Control Protocol/Internet Protocol*):
 - * IP asigură realizarea conexiunii;
 - * TCP garantează transmiterea corectă a datelor;
 - Se formează o pilă de protocoale, pachetele TCP fiind încapsulate în pachete IP;
 - Există conexiuni rapide cu cablu coaxial (100 Mb/s) ori fibră optică (1 Gb/s);
 - ATM (Asynchronous Transfer Mode) tehnologie care permite transmiterea simultană de voce și date;

Performanța rețelelor

Problemă: Se folosesc 2 rețele de stații SPARC-10 cu Solaris 2.3 și TCP/IP cu următoarele caracteristici:

Caracteristici	Ethernet	ATM
Banda pentru conexiunea nod-retea	1.125 Mb/s	10 Mb/s
Latenta de interconectare	15 μs	50 μs
Latenta hardware la/de la retea	6 μs	6 μs
Latenta software la/de la retea	$200 \mu \mathrm{s}$	$207 \mu s$
Adaus latenta software pentru retea	241 μs	360 μs

Care este latența pentru a transmite un mesaj de 250 B între două calculatoare în fiecare rețea?

Performanța rețelelor (cont.)

Răspuns:

- Timp de transmitere:
 - Ethernet = $250 \, \text{B}/(1.125 \times 10^6 \, \text{B/s}) = 222 \, \mu \text{s}$
 - ATM = $250 \text{ B}/(10 \times 10^6 \text{ B/s}) = 25 \,\mu\text{s}$
- Timp total:
 - Ethernet = $15 + 6 + 200 + 241 + 222 = 684 \mu s$
 - ATM = $50 + 6 + 360 + 25 = 648 \,\mu\text{s}$
- ATM transmite de 9 ori mai rapid, dar per global este aproape la fel!

Interfata: procesor - periferice

Cuprins:

- Generalitati
- Performanta
- Tipuri de dispozitive I/O
- Magistrale
- Interfata: I/O procesor/memorie/OS
- Concluzii, diverse, etc.