EXERCISE 1.5

Q.1 Draw the graphs of the following equations.

(i)
$$x^2 + y^2 = 9$$

(ii)
$$\frac{x^2}{16} + \frac{y^2}{4} = 1$$

(iii)
$$y = e^{2x}$$

(iv)
$$y = 3^x$$

Solution:

(i)
$$x^2 + y^2 = 9$$

 $y^2 = 9 - x^2$
 $y = \pm \sqrt{9 - x^2}$

Its domain is $-3 \le x \le 3+$

x	-3	-2	-1	0	1	2	3
$y = \pm \sqrt{9 - x^2}$	0	± 2.2	± 2.8	± 3	± 2.8	± 2.2	0

(ii)
$$\frac{x^2}{16} + \frac{y^2}{4} = 1$$
$$\frac{y^2}{4} = 1 - \frac{x^2}{16}$$
$$y^2 = 4\left(\frac{16 - x^2}{16}\right)$$
$$y^2 = \frac{16 - x^2}{4}$$
$$y = \pm \frac{\sqrt{16 - x^2}}{2}$$

Its domain is $-4 \le x \le 4$.

х	-4	-3	-2	-1	0	1	2	3	4
$y = \pm \frac{\sqrt{9 - x^2}}{2}$	0	± 1.3	± 1.7	± 1.9	± 2	± 1.9	± 1.7	± 1.3	0

(iii) $y = e^{2x}$

x	-1	-0.5	0	0.5	1
$y = e^{2x}$	0.1	0.4	1	2.7	7.4

(iv) $y = 3^x$

х	-2	-1.5	-1	-0.5	0	0.5	1	1.5
$y = 3^x$	0.1	0.2	0.3	0.6	1	1.7	3	5.2

53

Graph the curves that has the parametric equations given below. Q.2

(i)
$$x = t$$
 , $y = t^2$, $-3 \le t \le 3$ where 't' is a parameter

(ii)
$$x = t-1$$
, $y = 2t-1$, $-1 < t < 5$ where 't' is a parameter

(iii)
$$x = \sec\theta$$
, $y = \tan\theta$ where '\theta' is a parameter

Solution:

x = t, $y = t^2$, $-3 \le t \le 3$ where 't' is a parameter (i)

		, ,	,				
t	-3	-2	-1	0	1	2	3
x = t	-3	-2	-1	0	1	2	3
$y = t^2$	9	4	1	0	1	4	9

(ii)	x = t-1 ,	y = 2t - 1,	$-1 \le t \le 5$ wher	e 't' is a param	eter
t	0	1	2	3	4
x = t - 1	-1	0	1	2	3
y = 2t - 1	-1	1	3	5	7

(iii)
$$x = \sec\theta , y = \tan\theta \quad \text{where `θ' is a parameter}$$

$$x^2 = \sec^2\theta , y^2 = \tan^2\theta$$

$$x^2 - y^2 = \sec^2\theta - \tan^2\theta$$

$$x^2 - y^2 = 1 \qquad (\because 1 + \tan^2\theta = \sec^2\theta => 1 = \sec^2\theta - \tan^2\theta)$$

$$y^2 = x^2 - 1$$

$$y = \pm \sqrt{x^2 - 1}$$

X	-3	-2	-1	1	2	3
$y = \sqrt{x^2 - 1}$	± 2.8	± 1.7	0	0	± 1.7	± 2.8

Draw the graphs of the functions defined below and find whether they are Q.3 continuous.

(i)
$$y = \begin{cases} x-1 & \text{if } x < 3 \\ 2x+1 & \text{if } x \ge 3 \end{cases}$$
 (ii) $y = \frac{x^2-4}{x-2}$, $x \ne 2$ (iii) $y = \begin{cases} x+3 & \text{if } x \le 3 \\ 2 & \text{if } x = 3 \end{cases}$ (iv) $y = \frac{x^2-16}{x-4}$, $x \ne 4$

(ii)
$$y = \frac{x^2 - 4}{x - 2}$$
, $x \neq 2$

(iii)
$$y = \begin{cases} x+3 & , & x \neq 3 \\ 2 & , & x = 3 \end{cases}$$

(iv)
$$y = \frac{x^2 - 16}{x - 4}$$
, $x \neq 4$

Solution:

(i)
$$y = \begin{cases} x-1 & \text{if } x < 3 \\ 2x+1 & \text{if } x \ge 3 \end{cases}$$

 $y = x-1, x < 3$

X	-2	-1	0	1	2
y = x - 1	-3	-2	-1	0	1

$$y = 2x + 1$$
 , $x \ge 3$

X	3	4	5
y = 2x + 1	7	9	11

Since there is a break in a graph. So this function is not continuous.

(ii)
$$y = \frac{x^2 - 4}{x - 2}, x \neq 2$$

= $\frac{(x + 2)(x - 2)}{x - 2}, x \neq 2$
y = $x + 2, x \neq 2$

X	- 3	-2	- 1	0	1	3	4	5
у	- 1	0	1	2	3	5	6	7

Since there is a break in a graph so this function is not continuous.

(iii)
$$y = \begin{cases} x+3 & \text{if } x \neq 3 \\ 2 & \text{if } x = 3 \end{cases}$$

$$y = x + 3 \qquad \text{if} \quad x \neq 3$$

if
$$x \neq 3$$

x	- 3	- 2	- 1	0	1	3	4	5
у	0	1	2	3	4	5	7	8

$$y = 2 if x = 3$$

Since there is a break in a graph. So this function is not continuous at x = 3.

(iv)
$$y = \frac{x^2 - 16}{x - 4}$$
, $x \neq 4$
= $\frac{(x + 4)(x - 4)}{x - 4}$, $x \neq 4$

x	- 3	-2	- 1	0	1	2	3	5	6
у	1	2	3	4	5	6	7	9	10

Since there is a break in a graph. So this function is not continuous at x = 4.

Find the graphical solution of the following equations. Q.4

(i)
$$x = \sin 2x$$

(i)
$$x = \sin 2x$$
 (ii) $\frac{x}{2} = \cos x$ (iii) $2x = \tan x$

(iii)
$$2x = \tan x$$

Solution:

(i) Let
$$y = x = \sin 2x$$

Therefore y = x and $y = \sin 2x$

X	- 90°	- 60°	- 30°	0°	30°	60°	90°
y = x	$-\pi/2 = -$	$-\pi/3 = -$	$-\pi/6 = -$	0	$\pi/6 =$	$\pi/3 =$	$\pi/2 = 1.6$
	1.6	1.05	0.52		0.52	1.05	

 $y = \sin 2x$

X	- 90°	- 60°	- 30°	0°	30°	60°	90°
$y = \sin 2x$	0	- 0.87	- 0.87	0	0.87	0.87	0

The graphical solution is the points of intersection of two graphs, i.e. $x=0^{\circ}$, 54°

(ii) Let
$$y = \frac{x}{2} = \cos x$$

Therefore $y = \frac{x}{2}$ and $y = \cos x$

$$y = \frac{x}{2}$$

X	- 90°	- 60°	- 30°	0°	30°	60°	90°
$v = \frac{x}{a}$	$-\pi/4$	$-\pi/6$	$-\pi/12$	0	$\pi/6$	$\pi/6$	$\pi/4$
y - 2	=79	=-0.52	=-0.26		= 0.26	= 0.52	= 0.79

 $y = \cos x$

X	- 90°	- 60°	- 30°	0°	30°	60°	90°
$y = \cos x$	0	0.5	0.87	1	0.87	0.5	0

The graphical solution is the point on x-axis, which is just below the point of intersection of two graphs. Hence $x = 60^{\circ}$.

(iii) Let
$$y = 2x = \tan x$$

Therefore $y = 2x$ and $y = \tan x$
 $y = 2x$

X	- 90°	- 60°	- 30°	0°	30°	60°	90°
y = 2x	$-\pi = -3.14$	$-2\pi/3 = -2.09$	$-\pi/3 = -1.05$	0	$\pi/3 = 1.05$	$2\pi/3 = 2.09$	$\pi = 3.14$

$$y = \tan x$$

X	- 90°	- 60°	- 30°	0°	30°	60°	90°
y = tan x	∞	- 1.73	- 0.58	0	0.58	1.73	∞

The graphical solution is the point of intersection of two graphs, i.e. $x = 0^{\circ}$.

