Jinxiong Zhang

December 5, 2019

- 1 Motivation
- 2 Parameterization of Decision Trees
- 3 Extension
- 4 Current Results

Decision Trees are not described in the language of computational graph

- Different inputs, different path and depth;
- Difficult to optimize;
- Logical rather than arithmetical;
- Natural to deal with categorical features and missing data;
- Many ensemble methods applied to decision trees.

Bitvectors in QuickScorer

Parameterization of Decision Trees

There are 3 phases of such parameterization as following:

- Test phase: find the false nodes of a specific input sample;
- Traversal phase: apply the logical AND \(\triangle \) to the bitvectors of the false nodes of the sample;
- Output phase: find the terminal node according to the leftmost element of the result at the last step.

In the test phase, it is the 'if-then' sentence or 'yes or no' question that matters rather than the features are numerical or not. If it is false, we select the corresponding bitvectors of false node.

How to digitalize the test phase?

For simplicity, we only consider the numerical features. We call the node is true if the feature x_i is less than the threshold value v_i .

- If $x_i \le v_i$, the node is true and we do not select its bitvector b_i.
- Otherwise we do select its bitvector b_i.
- In short, we can express it as $\sigma(x_i v_i)b_i$ where σ is the binarized ReLU or step function.
- The test phase is $B\sigma(Sx-t)$ where S is the selection matrix and t is the threshold vector; B is the bitvector matrix.
- Each column of S is elementary vector(also called one-hot vector); each column of B is the bitvector of the corresponding node.

$$v[i], i = \arg\max(B\sigma(Sx - t))$$
 (1)

Extension

The Research Goals

- How can we deal with the categorical attribute?
- Why it is the step function?
- Can we optimize the decision trees with gradient-based methods?
- What is the bitvector matrix B?
- Can we extend the binary matrix S to more general real matrices?
- Can we replace the arg max operator?
- What are the boosted decision trees?

- We can consider the categorical attribute as numb variable.
- \blacksquare ReLU can play the role of step function σ
- In some special case, we can optimize the decision trees with gradient-based methods.
- We also can describe the oblique decision tree in the similar way.

Thanks.