

Emotion Detection Sentiment Analysis

It helps to detect and understand the emotions of the people.

Aspect based Sentiment Analysis

It is more focused on the aspects of a particular product or service.

Types of Sentiment Analysis

Fine Grained Sentiment Analysis

It helps in studying the ratings and reviews given by the customers.

Intent based Sentiment Analysis

To know the intent of the customers, whether they are looking to buy the product or just browsing around, is achievable through intent analysis.

3. text: the text of the tweet (Lyx is cool)

miro

Vectorization Bag of Words Word2Vec

miro

Term Frequency - Inverse Document Frequency

Word	TF		IDF	TF*IDF	
word	AB		IL/F	A B	
The	1/7	1/7	log(2/2) = 0	0	0
Car	1/7	0	log(2/1) = 0.3	0.043	0
Truck	0	1/7	log(2/1) = 0.3	0	0.043
Is	1/7	1/7	log(2/2) = 0	0	0
Driven	1/7	1/7	log(2/2) = 0	0	0
On	1/7	1/7	log(2/2) = 0 0	0	0
The	1/7	1/7	log(2/2) = 0	0	0
Road	1/7	0	log(2/1) = 0.3	0.043	0
Highway	ghway 0 1/7 lo		log(2/1) = 0.3	0	0.043

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

Term x within document y N = total number of documents

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x

In TF, we are giving some scoring for each word or token based on the frequency of that word. The frequency of a word is dependent on the length of the document. Means in large size of document a word occurs more than a small or medium size of the documents.

Why Classification Model?

- Classification models learn patterns in text data indicative of sentiment.
- They capture linguistic cues, contextual information, and sentiment-related features.
- Classification models generalize well to unseen data, making them applicable to different datasets and real-world scenarios.
- They offer flexibility in model selection and feature engineering.
- Algorithms like Naive Bayes, Random Forest, and Logistic Regression have different strengths for text classification tasks.
- Techniques like TF-IDF vectorization and word embeddings can enhance model performance.

Other Techniques

- 1. **Rule-based approaches**: These methods use predefined linguistic rules or sentiment lexicons to determine sentiment. While interpretable, they may struggle to capture complex relationships in the data.
- 2. Deep learning models: Models like RNNs, CNNs, and Transformer-based architectures (e.g., BERT) have shown promise in sentiment analysis. They automatically learn hierarchical representations and capture intricate dependencies, but require substantial labeled data and computational resources for training.
- 3. **Ensemble methods**: Techniques like Bagging and Boosting combine multiple models or predictions to enhance performance. They can be applied to sentiment analysis by aggregating predictions from multiple classifiers, improving accuracy.
- 4. Hybrid approaches: These methods combine rule-based, machine learning, or deep learning techniques to leverage their respective strengths. By blending interpretability and predictive power, they aim to improve sentiment analysis results.

Random Forest

- Random Forest: Ensemble learning algorithm for classification and regression.
- · Combines decision trees for improved accuracy.
- Uses random subsets of features and samples for each tree.
- Final prediction obtained through averaging or voting.
- Handles high-dimensional data, mitigates overfitting.
- Provides feature importance rankings.

Naive Bayes

- · Naive Bayes is a simple and efficient classification algorithm.
- It is based on Bayes' theorem and assumes independence between features.
- Naive Bayes is particularly effective for text classification tasks.
- It calculates the probability of each class given the input features.
- Naive Bayes handles high-dimensional data and is computationally efficient.
- Despite its "naive" assumption, Naive Bayes often performs well in practice.

Logistic Regression

- · Logistic Regression is a widely used statistical model for binary classification.
- It estimates the probability of an instance belonging to a certain class.
- It uses a logistic function (sigmoid) to model the relationship between input variables and the predicted probability.
- Logistic Regression can handle both numerical and categorical input features.
- It is interpretable, allowing for easy understanding of the impact of input variables.
- Logistic Regression is computationally efficient and can handle large datasets.
- It is commonly used in various domains, including sentiment analysis, disease prediction, and customer churn analysis.
- Logistic Regression is a powerful tool for binary classification tasks, providing insights and predictive capabilities.
- Overall, Logistic Regression is a reliable and interpretable method for making binary predictions based on input features.

```
Library Used :
 2
 3
      1. re
      2. numpy (np)
 4
 5
      3. pandas (pd)
      4. seaborn
 6
      5. wordcloud
      matplotlib.pyplot
 8
      7. nltk
 9
      8. sklearn
10
         - sklearn.svm
11
         - sklearn.naive_bayes
12
13
         - sklearn.linear_model
         - sklearn.model_selection
14
         sklearn.feature_extraction.text
15
16
         - sklearn.metrics
17
         - sklearn.svm (SVC)
         - sklearn.naive_bayes (MultinomialNB)
18
         - sklearn.ensemble (RandomForestClassifier)
19
20
      9. string
      10. nltk.tokenize
21
22
      11. nltk.stem
23
      12. pickle
```

miro

Research Conclusion

	Model	Accuracy	Precision	Recall	f-l score
T	Logistic Regression	0.83	0.83	0.82	0.83
	Naïve Bayes	0.81	0.80	0.82	0.81
	Random Forest	0.74	0.74	0.73	0.74

Application of Text based Sentiment Analysis in Real Word

Project

Deployed ML based Application depicting the use case of Sentiment Analysis.

Here we start with Audio Modality Sentiment Analysis

