Этакое большое ничего и матстат

Белкин Дмитрий, U-1152 Бертыш Вадим, СПБГЭТУ «ЛЭТИ» 4373

15 июня 2016

Основные определения

Определение 1 (Статистический эксперимент). Тройка $(\mathfrak{X}, \mathfrak{F}, \mathcal{P})$ называется статистическим экспериментом

- \mathfrak{X} Множество результатов эксперимента
- 👸 Савокупность наблюдаемых событий
- $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ Семейство вероятностных распределений

Дальше положим $\mathfrak{X} = \mathbb{R}^n$, $\mathfrak{F} = \sigma(\mathfrak{F}_1 \times \cdots \times \mathfrak{F}_n) = \mathfrak{B}_n$

Определение 2 (Статистика). Измеримая функция $T:\mathfrak{X}\to E$ называется статистикой

Определение 3 (Подчиненная статистика). Статистика T называется подчиненной, если её распределение не зависит от параметра

$$P_{\theta}(T \in A) = P_{T}(A)$$

Определение 4 (Достаточная статистика). Статистика T назвается достаточной, если условное распределение X при условии T не зависит от параметра

$$P_{\theta}(X \in A|T) = P_{X|T}(A), \forall \theta \in \Theta$$

Подчиненная не содержит информации о параметре, достаточная содержит всю информацию о параметре

Определение 5 (Минимальная достаточная статистика). Достаточная статистика T называется минимальной, если, $\forall T_1$ достаточной $\exists g: T = g(T_1)$

Использование МДС максимально редуцирует имеющиеся данные

Основные типы задачь статистики

- Точечное оценивание (статистики $\delta: \mathfrak{X} \to \Theta$)
- Доверительное оценивание с уровнеи доверия $1-\alpha$ (${\cal Y}$ семейство подмножеств Θ)

$$\Delta: \mathfrak{X} \to \mathcal{Y}$$

такие, что $P_{\theta}(\theta \in \Delta(\vec{X})) > 1 - \alpha, \forall \theta \in \Theta$

• Проверка гипотез (принятие решений) $H:\theta\in\Theta_*,\Theta_*\subset\Theta$ - Гипотеза. Выдвигают $H_0:\theta\in\Theta_0$ и $H_A:\theta\in\Theta$ Решающее правило - критерий

$$\phi: \mathfrak{X} \to [0;1]$$

 $\phi(\vec{X})$ - вероятность выбрать альтернативу (отвергнуть H_0)

Асимптотический подход Пусть $(\mathfrak{X}^{(n)},\mathfrak{F}^{(n)},\mathcal{P}^{(n)})$ последовательность статистичиеских экспериментов $\mathcal{P}^{(n)}=\{p_{\theta}^{(n)},\theta\in\Theta\}$

Определение 6 (Состоятельность оценки). *Точечная оценка* $\delta^{(n)}(\vec{X})$ называется состоятельной, если

$$\delta^{(n)}(\vec{X}) \xrightarrow{p_{\theta}} \theta, \forall \theta \in \Theta$$

Определение 7 (Сильная состоятельность оценки). *Точечная оценка* $\delta^{(n)}(\vec{X})$ называется сильно состоятельной, если

$$\delta^{(n)}(\vec{X}) \xrightarrow[n \to \infty]{p_{\theta} = 1} \theta, \forall \theta \in \Theta$$

Определение 8 (Асимптотическая нормальность). *Точечьная оценка* $\delta^{(n)}(\vec{X})$ называется асимптотически нормальной, если

$$\sqrt{n}(\delta^{(n)}(\vec{X}) - \theta) \underset{P_{\theta}}{\Rightarrow} \mathcal{N}(0, \sigma^{2}(\theta))$$

Определение 9 (Точечная оценка). Статистика $\delta(\vec{X}),\ \delta:\mathfrak{X}\to\Theta$ наызвается точечной оценкой

Определение 10 (Функция потерь). *пусть* θ *реально значение параметра, тогда* $W(\delta(\vec{X}), \theta)$ *функция потерь, если*

- $W(\delta(\vec{X}), \theta) > 0, \forall \vec{X}$
- $W(\theta, \theta) = 0$

Используют различные функции потерь (в дальнейшем используем функцию Γ аусса)

$$W(\delta, \theta) = |\delta - \theta|$$
 (Лаплас)

$$W(\delta, \theta) = (\delta - \theta)^2$$
 (Fayce)