Luz e Cores

RAFAEL TEIXEIRA

Espectro Eletromagnético

Distribuição espectral de fontes luminosas

Somando energias

Somando energias

Reflexão/absorção de luz

Reflexão/absorção de luz

$$R(\lambda) = r(\lambda)E(\lambda) = (1 - a(\lambda))E(\lambda)$$

$$a(\lambda) + r(\lambda) = 1, \qquad \le a(\lambda), r(\lambda) \le 1$$

Sensores de absorção

Sensores, cones, bastonetes, etc.

Função de resposta

Força do sinal

$$A = \int A(\lambda)E(\lambda)d\lambda$$

Column Decode

Sensores eletrônicos

Sensor fotoelétrico: materiais que geram elétrons quando atingidos por um fóton.

Charge-Coupled Device (CCD)

Olho humano

A retina possui dois tipos de sensores

- Bastonetes reconhecem a intensidade da luz
- Cones enxergam três cores (vermelho, verde e azul)

Cones e bastonetes

Quando o olho se fixa em um objeto a luz atinge o centro da retina (fóvea)

Os cones estão em grande número na fóvea, possibilitando uma visão aguçada

Durante o dia os sinais dos cones são saturados e fornecem nossa visão. Durante a noite usamos também os bastonetes.

Fig. 13. Tangential section through the human fovea. Larger cones (arrows) are blue cones.

Funções de resposta dos cones/bastonetes

Proteínas nas células dos cones/bastonetes alteram o potencial de absorção.

O olho absorve 4 tipos de sinais (vermelho, verde, azul e

bastonetes).

Teoria tricromática

Como o olho humano funciona com três sinais, nós também iremos trabalhar com 3 sinais em imagens, impressoras e monitores.

Imagens são armazenada com valores para os canais R, G e B;

- Os valores são entre 0 e 255
- Cada canal define uma cor e o valor a intensidade
- Similar aos cones

Os monitores podem aumentar ou reduzir a intensidade da imagem (brilho)

Similar aos bastonetes

Brilho (Luminecência)

O olho humano é mais sensível a variações espaciais no brilho (escala de cinza) do que nas cores.

As três imagens somadas formam a da esquerda

Qual das três possui mais detalhes espaciais?

Experimento da discriminação de brilho

I é a luminescência medida em cd/m²

$$\frac{\Delta I}{I} \approx K_{Weber} \approx 1 \dots 2\%$$
 Lei de Weber

Quantos níveis de cinza são necessários?

Como o olho humano enxerga pequenas diferenças no brilho, precisamos de muitos bits.

Caso contrário as mudanças no brilho criariam uma imagem com aparência descontinua.

Alcance dinâmico (Max/Min)

Mundo:

Possível: 100.000.000.000:1

(Do sol ao preto absoluto)

Cenas típicas: 100.000:1

Olho humano:

• Estático: 100:1

Dinâmico: 1.000.000:1

Como o olho se move, ele se adapta ajustando a exposição com a mudança de tamanho da pupila

Mídia

Jornal: 10:1

Impressão: 60:1

Monitor:

Dell UP2715K: 1000:1 (estático), 8.000.000:1 (dinâmico)

• Contraste estático é a diferença de luminescência entre um ponto mais claro e mais escuro em uma única imagem.

o Contraste dinâmico é a diferença entra a imagem mais clara possível e a mais escura

Mundo real

Alcance dinâmico do brilho

16 fotografias foram tiradas com diferentes tempos de exposição, de 30 s a 1/1000 s

Mapeamento de tons

Problema: Imagens armazenam um brilho com mais alcance do que os monitores conseguem exibir.

Solução 1: Mapeamento linear

Pequenas diferenças de intensidade serão quantizadas e detalhes perdidos.

Solução 2: Mapeamento Logarítmico

Similar a percepção humana

Solução 3: Operadores locais, etc.

Percepção humana de intensidades

$$S = I^p$$

Sensação	Expoente
Brilho	0,33
Som	0,60
Comprimento	1,00
Peso	1,45

O mapeamento logarítmico usa a maior parte do alcance de exibição do brilho para as baixas intensidades da imagem.

Mapeamento de tons

Linear

Logarítmico

Cubo RGB

Mapeia cada cor primária no espaço RGB para uma distância nos eixos x, y e z.

Preto no (0,0,0) e branco no (1,1,1)

Modelos de Iluminação em CG

Tipicamente, luz é amostrada em um número discreto de primárias (cor)

Modelos locais

- \circ Apenas caminhos do tipo *fonte luminosa* \rightarrow *superfície* \rightarrow *olho* são tratados
- Simples
- Ex.: Pipeline clássico do OpenGL

Modelos globais

- Muitos caminhos (ray tracing, path tracing)
- Complexos

Iluminação em OpenGL

Assume fontes pontuais de luz

- Omnidirecionais
- Spot

Interações de luz com superfície modeladas em componentes (modelo de *Phong*):

- Emissão
- Ambiente
- Difusa
- Especular

Iluminação em OpenGL

Suporte a efeitos atmosféricos como

- Fog
- Atenuação

Modelo de iluminação é computado apenas nos vértices das superfícies

Cor dos demais pixels é interpolada linearmente (sombreamento Gouraud)

Componentes do Modelo de Phong

Fontes de Luz

```
Para ligar uma fonte: glEnable (source);
```

- $^{\circ}$ source é uma constante cujo nome é GL_LIGHT_{i} , começando com GL_LIGHT0
- Quantas? Pelo menos 8, mas para ter certeza:

```
o glGetIntegerv( GL_MAX_LIGHTS, &n );
```

Não esquecer de ligar o cálculo de cores pelo modelo de iluminação

```
oglEnable (GL_LIGHTING);
```

Fontes de Luz

Para configurar as propriedades de cada fonte: glLightfv(source, property, value);

- **Property** é uma constante designando:
 - Coeficientes de cor usados no modelo de iluminação:
 - GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR
 - Geometria da fonte
 - GL_POSITION, GL_SPOT_DIRECTION, GL_SPOT_CUTOFF, GL_SPOT_EXPONENT
 - Coeficientes de atenuação
 - GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, GL_QUADRATIC_ATTENUATION

Propriedades de Material

Especificados por

```
glMaterialfv (face, property, value)
```

- Face designa quais lados da superfície se quer configurar:
 - GL FRONT, GL BACK, GL FRONT AND BACK
- **Property** designa a propriedade do modelo de iluminação:
 - GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_EMISSION, GL_SHININESS

Geometria

Além das propriedades da luz e do material, a geometria do objeto é também importante

- A posição dos vértices com relação ao olho e à fonte luminosa contribui no cálculo dos efeitos atmosféricos
- A normal é fundamental
 - Não é calculada automaticamente
 - Precisa ser especificada com glNormal ()

Computando o Vetor Normal

Triângulo

Dados três vértices,

$$\vec{n} = \text{normalizar}((A - B) \times (C - A))$$

Polígono planar

- Uma opção é usar a fórmula do triângulo para quaisquer 3 vértices
 - Sujeito a erros (vetores pequenos ou quase colineares)
- Outra opção é determinar a equação do plano
 - $\circ \ ax + by + cz + d = 0$
 - Normal tem coordenadas (a, b, c)

Componentes do Modelo de Phong

Emissão: contribuição que não depende de fontes de luz (fluorescência)

Ambiente: contribuição que não depende da geometria

Difusa: contribuição correspondente ao espalhamento da reflexão *lambertiano* (independe da posição do observador)

Especular: contribuição referente ao comportamento de superfícies polidas

Iluminação Ambiente

Componente que modela como uma constante o efeito da reflexão de outros objetos do ambiente

Depende dos coeficientes GL_AMBIENT tanto das fontes luminosas quanto dos materiais

É ainda possível usar luminosidade ambiente não relacionada com fontes luminosas

o glLightMaterialfv (GL_LIGHT_MODEL_AMBIENT, params)

Contribuição é dada por $A = I_A M_A$

Iluminação Difusa

Iluminação recebida por uma superfície e que é refletida uniformemente em todas as direções

Característica de materiais foscos

Esse tipo de reflexão é também chamada de reflexão lambertiana

A luminosidade aparente da superfície não depende do observador mas apenas do cosseno do ângulo de incidência da luz

Iluminação Difusa

Contribuição é dada por

$$D = I_D M_D \cos \theta = I_D M_D (N \cdot L)$$

Iluminação Especular

Simula a reflexão à maneira de um espelho (objetos altamente polidos)

Depende da disposição entre observador, objeto e fonte de luz

Em um espelho perfeito, a reflexão se dá em ângulos iguais

 Observador só enxergaria reflexão de uma fonte pontual se estivesse na direção certa

No modelo de Phong simula-se refletores imperfeitos assumindo que luz é refletida segundo um *cone* cujo eixo passa pelo observador

Iluminação Especular

Contribuição é dada por

$$S = I_S M_S \cos^n \varphi = I_S M_S (R \cdot E)^n$$

Coeficiente de Especularidade

Indica quão polida é a superfície

- Espelho ideal tem coef. especularidade infinito
- Na prática, usa-se valores entre 5 e 100

Atenuação

Para fontes de luz posicionais (w = 1), é possível definir um fator de atenuação que leva em conta a distância d entre a fonte de luz e o objeto sendo iluminado

Coeficientes são definidos pela função glLight()

Por default, não há atenuação (c_0 =1, c_1 = c_2 =0)

$$aten = \frac{1}{c_0 + c_1 d + c_2 d^2}$$

Juntando tudo

A atenuação só é aplicada sobre às componentes difusa e especular

A fórmula que calcula a cor de um vértice devida a uma fonte luminosa i é dada por

$$C_i = aten\left(D_i + S_i\right)$$

Portanto, no total, a cor é dada pela contribuição da iluminação ambiente (parcela não associada com fontes de luz) somada à luz emitida e às contribuições Ci

$$C = A + E + \sum aten(D_i + S_i)$$