

분석주제선정보고서

4주차 다이캐스팅 실습 프로젝트

LS Big Data School Group 4 김서정, 박성민, 서성호, 윤주영, 이채원, 임유빈

01	02	03

문제정의	데이터 탐색	
문제장의	네이다 닌센	EDA
1. / 11 () — 1	-11 - 1 - 1 - 1	

CONTENTS

다이캐스팅(Die Castings)

다이캐스팅은 액체화된 금속을 주조(틀, Frame)에 넣고 원하는 모양의 금속부품을 생산하는 방법이다.

프로젝트 주제 및 선정배경

1. 문제상황

문제1

데이터 제공 기업의 경우 일일 또는 주간 단위로 품질 이슈 현황을 파악하고 있으며 불량원인을 수작업으로 분석하고 있다.

2 문제 2

각 불량에 대한 발생원인과 대책이 정의되어 있으나 이를 적용하여 해결하지 못하고 있는 실정이다.

3 문제 3

대부분의 중소기업에서는 관리자 및 작업자의 경험에 의 해 설비를 운용하고 있어 체계적인 관리를 하지 못한다.

일정한 공정 환경 및 공정 변수 관리 통해 불량에 대응하는 것이 필요!

데이터 탐색

1. 제조데이터 소개

구분	명칭							
	molten_temp							
	production_CycleTime low_section_speed							
	high_section_speed							
	cast_pressure							
	biscuit_thickness							
	upper_mold_temp1							
독립변수	upper_mold_temp2 upper_mold_temp3							
	lower_mold_temp1							
	lower_mold_temp2							
	lower_mold_temp3 sleeve_temperature							
	physical_strength							
	Coolant_temperature							
종속변수	passorfail							

- 데이터 수집 방법
 - 주조 분야 : 다이캐스팅
- 수집장비 : 주조 설비 내 PLC
- 수집 기간 : 2019년 01월 02일 ~ 2019년 03월 31일
- 데이터 유형/구조
 - 데이터셋 구조 : 테이블 형식
 - 데이터 개수 : 총 2,852,465개(row 92,015개, column 31개)
- 변수 유형
 - object : line, name, mold_name, time, date, working, emergency_stop, registration_time
 - int64 : count, facility_operation_CycleTime,
 production_Cycletime, EMS_operation time, mold_code
 - float64: molten_temp, low_section_speed, high_section_speed, molten_volume, cast_pressure, biscuit_thickness, upper_mold_temp1-3, lower_mold_temp1-3, sleeve_temperature, physical_strength, Coolant_temperature, passorfail

데이터 탐색

2. 히스토그램

히스토그램으로 데이터 값 분포 확인

본 시각화를 통해 정규분포에서 크게 벗어난 경우 이상치 존재여부를 확인할 수 있다!

데이터 전처리 및 시각화

1. 양품 및 불량 개수 확인

2. 숫자형 변수만 사용하기

숫자형이 아닌 변수 → 학습 불가능 필요한 데이터가 숫자형이므로 'object' 타입이 아닌 변수로 데이터를 재구성한다.

		nunt original	molten_temp	facility_operation_cycleTime	production_cycletime to	m section speed	high section speed	molten_volume	cast_pressure	biscuit fhickness	upper_mold_temp1	_ upper_mold_temp3	lower_mold_temp1	lower_mold_temp?	lower_mold_temp3	sleeve_temperature	physical_strength	Coolant temperature	BIG operation time	persortail	mold_code
											1980	. 14490	294.0	3160	14490	5500	700.0	340			8722
				98		1090	109.0	Nati	3090	48.0	2500	NaN	206.0		NaN			300			8412
				9.		1090	109.0	Nati	3890	48.0	2500	NaM	208.0		NaN	481.0		300			8412
							109.0	Nati	308.0	49.0	268.0	NaM		1790	NaN	4830		300			8412
		246				1090		Nati	3090	49.0	2760	NaM	2160	167.0	NaN	4860		300			8412
																					_
92	010					100.0		Naki		49.0	830	. 1490			14490	279.0	7260	30.0			8917
92	011					100.0		Net		SAI		1490	232.0		14490	2790					8917
92	012					100.0		Net				. 1490			14490			300			8917
92	013							Nati				_ 1490		1990	14490	288.0					8917
92	014					1000		NAN		560	84.0	14490	228.0	2000	14490	2890		300			8917
520	15 rows	s = 21 columns																			

3. 데이터 탐색

데이터 사본 생성 → 칼럼 목록 확인 → 데이터프레임 크기 확인 → 데이터프레임 null값 개수 확인 → 데이터프레임 통계 확인 → 데이터프레임 정보 확인

데이터 전처리 및 시각화

4. 상관행렬 분석

→ 저속구간속도와 고속구간속도가 주조 공정 내 밀접한 연관을 가진다!

결과 분석 및 해석

1. LightGBM 모델의 Permutation Importance 확인

'cast_pressure'와 'lower_mold_temp2' 변수 중요도가 높다.

→ 해당 변수들이 주조 제품을 <u>양품 or 불량</u>으로 분류하는데 영향력이 높다.

결과 분석 및 해석

2. LightGBM 모델 트리 시각화 및 최적화

- 1. 사용된 샘플 55845개 중 cast_pressure = 299.5를 기준으로 54700개를 양품으로(>299.5), 1145개를 불량으로(<299.5) 분류하였다.
- 2. cast_pressure, upper_mold_tmp1 등 주요변수들이 양품과 불량을 판정하는데 영향을 미쳤음을 확인할 수 있다.

결과 분석 및 해석

3. SHAP 시각화

- 1. Shapley 값을 통해 각 특성이 예측에 기여하는 정도를 알 수 있다.
- 2. cast_pressure의 수치가 작은 값을 가질수록 불량률은 높아진다.
- 3. high_section_speed의 수치가 높은 값을 가질수록, low_section_speed의 수치가 낮은 값을 가질수록 불량률은 높아진다.

인사이트 도출하기

1. 결측치 처리 및 이상치

결측치 및 이상치 처리 여부

INSIGHT 1

<기존 보고서>

50% 결측인 molten_volume칼럼은 제거하고 나머지 칼럼의 결측행을 제거하는 방식을 택함.

변수들에 존재하는 이상치를 상·하한 0.1% 해당하는 값으로 제거하였음.

<수정 방향>

☑ 결측치를 제거하는 대신 <mark>평균값이나 보간법</mark> 등을 활용하여 채운 뒤, 모델의 성능을 비교하여 최적의 결측치 처리 방법을 알아보고자 한다.

☑이상치의 상·하한 설정 범위를 조정해서 최적의 성능을 나타내는 범위를 결정하는 방법에 대해 알아보고자 한다.

2. F1 score 향상

F1 score 향상할 수 있는 방법

INSIGHT 2

<기존 보고서>

모델링을 통해 생성된 모델의 평균 F1 스코어가 가장 높았던 것은
'LightGBM'이다. 해당 모델의 F1 스코어는 split 1에서 0.895로 테스트 데이터에서 가장 높은 정확도를 보였다

<수정 방향>

✔ AutoML을 통해 F1 스코어가 가장 높게 나온 모델은 'XGBoost'이다. 하이퍼파라미터 조정 등을 통해 F1 스코어를 향상시킬 수 있는 방법에 대해 알아보고자 한다.

자체 평가 보완할 점

감사합니다

