Обзор задач и используемых пакетов

В представленном коде решаются две главные задачи на основе статистического эксперимента:

- 1. Задача 1 исследование зависимости непрерывной отклика Y от ковариаты X путём построения
 - линейной модели $Y \sim X$;
 - квадратичной модели $Y \sim X + X^2$;
 - анализа остатков (гистограммы, тесты нормальности);
 - доверительных интервалов (ДИ) для коэффициентов;
 - проверки гипотез о линейности и о значимости коэффициентов;
 - сравнения моделей по информационным критериям AIC и BIC;
 - интерпретации полученных результатов (R^2 и выводы об адекватности).
- 2. **Задача 2** двухфакторный дисперсионный анализ (ANOVA) отклика Y при факторах A,B:
 - полная модель с взаимодействием $Y \sim A * B$;
 - аддитивная модель $Y \sim A + B$;
 - модель только по фактору A;
 - оценка значимости эффектов ($A, B, A \times B$) через F-тест;
 - сравнение моделей по AIC и BIC;
 - профильные графики взаимодействия;
 - анализ остатков (гистограммы, тест Жарка-Бера);
 - итоговая интерпретация ($\hat{\sigma}^2$, лучшая модель).

Для расчётов применяются:

- numpy, pandas работа с данными;
- statsmodels MHK-оценка регрессий, ANOVA;
- \bullet scipy.stats распределения F, t, χ^2 , тест JB;
- matplotlib графики (скаттеры, гистограммы, эллипсоиды).

Ниже подробно разберём каждый блок кода, формулы из .tex-файла и результаты.

1 Задача 1: зависимость Y от X

1.1 Исходные данные

Листинг 1: Фрагмент кода (данные задачи 1)

$$Y1 = [9.61, 9.22, 4.76, ..., 12.99]$$

X1 = [2, 4, 2, ..., 2]

- n = 50 объём выборки;
- y_i, x_i наблюдения отклика и ковариаты;
- $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$
- $S_{xx} = \sum_{i=1}^{n} (x_i \bar{x})^2$, $S_{xy} = \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$.

Численные итоги:

$$\sum x_i = 99$$
, $\sum y_i = 456.95$, $\bar{x} = 1.98$, $\bar{y} = 9.139$, $S_{xx} = 40.98$, $S_{xy} = -31.23$.

1.2 Линейная регрессия

Модель

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2).$$

МНК-оценки

$$\hat{\beta}_2 = \frac{S_{xy}}{S_{xx}} = -0.762, \qquad \hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x} = 10.648.$$

Качество $RSS_{lin} = 312.50, R_{lin}^2 = 0.071.$

Информационные критерии $AIC_{\rm lin} = 237.5, \ BIC_{\rm lin}$ (рассчитан кодом).

1.3 Квадратичная регрессия

Модель $y_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2 + \varepsilon_i$.

МНК-оценки $\hat{\beta}_1 = 11.004, \ \hat{\beta}_2 = -1.238, \ \hat{\beta}_3 = 0.124.$

Качество $RSS_{quad} = 309.92, R_{quad}^2 = 0.074.$

Информационные критерии $AIC_{\rm quad}=239.36,~\Delta AIC=1.84<2\Rightarrow$ модели почти эквивалентны, линейная предпочтительнее.

2

1.4 Нормальность остатков

Гистограммы + плотность $N(\hat{\mu}, \hat{\sigma}^2)$.

- $\chi^2 = 9.50, \ p = 0.091$ (нормальность ne отвергается при $\alpha = 0.01$);
- Jarque-Bera: JB = 6.72, p = 0.035 (при $\alpha = 0.01$ также не отвергается).

1.5 Доверительные интервалы (99 %)

$$\hat{\sigma}^2 = \frac{RSS_{\text{quad}}}{n-k} = 6.603,$$

$$t_{0.995}(47) = 2.69,$$

$$CI_{99\%}(\beta_2) = (-4.68; 2.20),$$

$$CI_{99\%}(\beta_3) = (-0.72; 0.97).$$

Совместный эллипсоид: $(\beta - \hat{\beta})^{\top}(X^{\top}X)(\beta - \hat{\beta}) \leq 67.43$.

1.6 Проверка гипотез

- Линейность $(H_0: \beta_3 = 0)$: $F = 0.153, \ p = 0.697$ не отвергаем.
- Независимость $(H_0: \beta_2=0)$: $t=-1.912, \ p=0.062$ не отвергаем $(\alpha=0.01)$.

1.7 Итог задачи 1

Линейная модель достаточна, но объясняет лишь $\approx 7\%$ вариации $Y; \beta_2, \beta_3$ статистически незначимы.

2 Задача 2: двухфакторный ANOVA (A, B)

2.1 Модели

- Полная: $Y \sim A * B \ (k = 16);$
- Аддитивная: $Y \sim A + B \ (k = 7);$
- Только A (k = 4).

2.2 ANOVA-таблица (ручной расчёт)

Источник				
\overline{A}	979.34	3	326.45	118.30
B	513.23	3	171.08	61.99
$A \times B$	979.34 513.23 1047.67	9	116.41	42.18
	88.30	32	2.76	

Все $p \ll 0.01$ — эффекты значимы.

2.3 Информационные критерии

Модель	k	$\hat{\sigma}^2$	AIC	BIC
A * B	16	2.76	197.5	227.4
A + B	7	10.45	302.1	315.2
A	4	21.66	314.0	321.5

Лучшая — полная модель A*B.

2.4 Нормальность остатков

Jarque-Bera: $JB = 1.10, \ p = 0.576 \ (\alpha = 0.10 - \text{нормальность принимается}).$

2.5 Итог задачи 2

- \bullet Значимы главные эффекты A,B и взаимодействие $A\times B.$
- Лучшая модель: $Y \sim A * B$.
- Остатки нормальны, $\hat{\sigma}^2 = 2.76$.

Сводка ключевых понятий

	100		
Понятие	Обозначение/переменная	Смысл	Формула/примечание
x_i, y_i	df1.X, df1.Y	наблюдения	$n=50$ пар (x_i,y_i)
$ar{x},ar{y}$	mean()	выборочные средние	$\bar{x} = \frac{1}{n} \sum x_i$ и т.д.
S_{xx}, S_{xy}	Sxx,Sxy	суммарные квадраты/-	$S_{xx} = 40.98, S_{xy} =$
		произведения	-31.23
\hat{eta}_1,\hat{eta}_2	lin.params	МНК-оценки лин. моде-	$\hat{eta}_2 = S_{xy}/S_{xx}$ и т.д.
		ли	
RSS	.ssr	сумма квадратов остат-	$RSS_{\text{lin}} = 312.50$
		КОВ	
R^2	.rsquared	коэффициент детерми-	0.071 лин., 0.074 квадр.
		нации	
AIC,BIC	.aic,.bic	инфо-критерии	$n \ln(\hat{\sigma}^2) + 2k$ и $+k \ln n$
F-тест	F_lin,p_lin	значимость доп. пара-	см. формулу в тексте
		метров	
t-тест	lin.tvalues,pvalues	значимость β_2	t = -1.912, p = 0.062
99% ДИ	ci_b2,ci_b3	интервалы для $\beta_{2,3}$	(-4.68; 2.20),
			(-0.72; 0.97)
Эллипсоид	график	совместный ДИ	$\left (\beta - \hat{\beta})^{\top} (X^{\top} X) (\beta - \hat{\beta}) \le \right $
			67.43
ЈВ-тест	см. код	нормальность остатков	JB = 6.72, p = 0.035
			(lin./quad.)

Φ актор A	C(A)	4 уровня	$\sum \alpha_i = 0$
Взаим. $A \times B$	C(A)*C(B)	пересечение эффектов	см. ANOVA

Заключение

- 1. В задаче 1 зависимость Y от X слаба ($R^2 \approx 7\%$); линейная модель достаточна, но статистически незначима при $\alpha=0.01.$
- 2. В задаче 2 факторы A,B и их взаимодействие оказывают сильное влияние; лучшая модель полная A*B; остатки нормальны, $\hat{\sigma}^2=2.76$.

Обозначение	Расшифровка	Что показывает / как вычисляется
<i>p</i> -value	«уровень значимости, достигнутый данными»	Вероятность при нулевой гипотезе H_0 получить наблюдаемую (или ещё более экстремальную) статистику. Считается по табличному распределению (например, F, t, χ^2). Если $p < \alpha$ — отвергаем H_0 .
SS (Sum of Squares)	Сумма квадратов отклонений	В ANOVA — 4 источника: $SS_A,SS_B,SS_{AB},SS_E.$ В регрессии — SS_{Reg} и $RSS.$
df (degrees of freedom)	Степени свободы	Число «независимых кусков информации» после учёта оценённых параметров. Примеры: $df_A=a-1, df_E=n-k.$
MS (Mean Square)	Средний квадрат	MS = SS/df. Нужно, чтобы привести все суммы квадратов к одной шкале.
F	Статистика Фишера	Отношение двух средних квадратов: $F=MS_H/MS_E$ (ANOVA) или формула $rac{(RSS_R-RSS_F)/q}{RSS_F/df_F}$ (вложенные регрессии).
k	Число оценённых параметров в модели	В линейной регрессии «константа + угловые коэффициенты», в ANOVA включает эффекты и их условия идентификации.
$\widehat{\sigma}^2$	Оценка дисперсии ошибок	В регрессии $-\widehat{\sigma}^2 = RSS/(n-k)$; в полной ANOVA $-MS_E$.
AIC / BIC	Информационные критерии Акаике / Байеса	$AIC=n\ln\widehat{\sigma}^2+2k$, $BIC=n\ln\widehat{\sigma}^2+k\ln n$. Чем ниже, тем модель лучше (учёт «качество – сложность»).
α	Заданный уровень риска ошибки I рода	В задаче 2 преподаватель потребовал $lpha=0,\!10$ для проверки нормальности ЈВ, поэтому используем именно 0.10.
X^{\top}	Транспонированная матрица признаков	В МНК решение $\hat{oldsymbol{eta}} = (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{y}.$
β	Истинный (неизвестный) параметр модели	Например, наклон прямой.
ĝ	Оценка $oldsymbol{eta}$ по данным	Выдаёт алгоритм МНК.

Модели факторного анализа

Обозначение	Формула	Смысл
A	$Y \sim A$	Учитываем только главный эффект фактора $oldsymbol{A}$.
A + B	$Y \sim A + B$	Два главных эффекта, без взаимодействия. Аддитивная модель— влияние каждого фактора независимо суммируется.
A*B	$Y \sim A + B + A : B$	Главные эффекты и взаимодействие $A imes B$. Полная модель.

Аддитивная модель «предполагает параллельность» профилей (линии не пересекутся). Модель с взаимодействием допускает, что эффект A зависит от того, какой уровень B выбран (линии пересекаются).

Как решаем, что нужна A st B

- 1. F-тест сравнивает A+B (огр.) и A*B (полная).
- 2. Если $p \ll lpha$ (в примере $p_{AB} = 3 \cdot 10^{-15}$), взаимодействие значимо ightarrow берём A * B.
- 3. AIC/BIC у A*B минимальны \rightarrow дополнительно подтверждает выбор.

Доверительный эллипсоид

- Для двух коэффициентов (β_2,β_3) строит **совместный** 99 %-интервал: все точки внутри эллипса правдоподобные истинные значения обеих β одновременно.
- Полезен, когда одиночные интервалы широкие: визуально показывает, какие комбинации eta_2,eta_3 ещё допускаются данными.

Гипотезы, проверяемые в отчёте

Nº	Гипотеза H_0	Статистика	Где встречается
1	$oldsymbol{eta_3} = 0$ (квадратичный член не нужен)	$m{F}$ — сравнение лин. и квадр. моделей	Задача 1 «линейность»
2	$eta_2 = 0$ (Y не зависит от X)	t-тест	Задача 1
3	Остатки $\sim N(0,\sigma^2)$	JB, χ^2	Задачи 1 и 2
4	Нет взаимодействия $A imes B$	F — сравнение $A+B$ и $Ast B$	Задача 2
5	Нет эффекта $oldsymbol{A}$	$F_A=MS_A/MS_E$	Задача 2
6	Нет эффекта $oldsymbol{B}$	$F_B=MS_B/MS_E$	Задача 2

Почему в ЈВ-тесте lpha=0.10

Преподаватель в условии задачи 2 поставил именно такое требование (доверие 90 %). Мы подчиняемся: тест нормальности проверяется при $\alpha=0,10$. Для остальных проверок (эффекты факторов) использовалось $\alpha=0,01$.

Итоговое понимание

- p-value мы \emph{сами вычисляем} по наблюдаемой статистике и табличному распределению.
- SS, df, MS, F кирпичики ANOVA и F-тестов.
- $k,\widehat{\sigma}^2,AIC,BIC$ нужны для «штрафа за сложность» и выбора лучшей модели.
- Модели A, A+B, A*B различаются тем, позволяют ли факторам «взаимодействовать».
- Доверительный эллипсоид даёт совместную область допустимых β .
- Проверяемые гипотезы сводятся к трем классам: значимость параметров, необходимость взаимодействий, нормальность ошибок.

1. p-value

Для любой тестовой статистики $T_{ ext{\tiny Ha6}\Pi}$ с известным при H_0 распределением $F_T(t) = P(T \leq t)$

$$oxed{p=\ Pig(T\geq T_{ ext{ iny Ha6}\Pi}\mid H_0ig)=\ 1-F_Tig(T_{ ext{ iny Ha6}\Pi}ig)}\,.$$

• Если тест двусторонний для статистики симметричного закона (например, t),

$$p_{ ext{ iny BYCTOP}} = 2 \left[1 - F_T (|T_{ ext{ iny Hafn}}|)
ight].$$

2. Матрица признаков и транспонирование

Для выборки $\{x_i\}_{i=1}^n$ с полиномиальной регрессией второго порядка:

$$X = egin{bmatrix} 1 & x_1 & x_1^2 \ 1 & x_2 & x_2^2 \ dots & dots & dots \ 1 & x_n & x_n^2 \end{bmatrix}, egin{bmatrix} X^ op & ext{просто та же матрица «повёрнутая» на } 90^\circ \end{bmatrix}$$

т. е. $X^ op$ имеет размер k imes n (здесь k=3).

3. t-тест для одного коэффициента

Гипотезы

 $H_0:\; \overline{eta_j}=0 \quad$ (или любое фиксированное eta_0), $H_1:\; eta_j
eq 0.$

Статистика

$$egin{aligned} egin{aligned} eg$$

p-value (двусторонний)

$$p = 2 \Big[1 - F_{t_{n-k}} \big(|t_{{\scriptscriptstyle HA}\delta_{\Pi}}| \big) \Big].$$

4. Остатки и RSS

$$egin{aligned} \hat{y}_i &= \mathbf{x}_i^ op \hat{oldsymbol{eta}}, & egin{aligned} oldsymbol{r}_i &= y_i - \hat{y}_i \end{bmatrix} & (i = 1, \ldots, n), \ RSS &= \sum_{i=1}^n r_i^2 = ig\| \mathbf{y} - X \hat{oldsymbol{eta}} ig\|^2, \ &\hat{oldsymbol{eta}} &= (X^ op X)^{-1} X^ op \mathbf{y}. \end{aligned}$$

От остатков r_i напрямую зависят:

- $\hat{\sigma}^2 = RSS/(n-k)$;
- все стандартные ошибки $ext{SE}(\hat{eta}_j)$;
- статистики t, F, тесты нормальности и пр.

Эти формулы полностью описывают:

- вычисление р-значения,
- построение $X^{ op}$,
- статистику $oldsymbol{t}$ и её стандартную ошибку,
- получение остатков и RSS.

Думал на протяжении 5 секунд >						
Перечень всех ста	тистических гипотез, про	веренных в работе				
(формула ↔ словесное	описание ↔ какой критерий исг	іользуется)				
Nº	Формальная запись нулевой гипотезы $oldsymbol{H}_0$	Словами	Проверочный тест / статистика			
Задача 1 (регрессия Y от X)						
	$H_0:~eta_3=0$	квадратичный член не нужен, зависимость линейна	F-тест для вложенных моделей $F = rac{(RSS_{ m lin} - RSS_{ m quad})/1}{RSS_{ m quad}/(n-3)}$			
2	$H_0:~oldsymbol{eta}_2=0$	наклон равен нулю $\Rightarrow Y$ не зависит от X	t-тест: $m{t} = rac{m{\hat{eta}_2}}{ ext{SE}(m{\hat{eta}_2})}$			
3	$H_0:~arepsilon_i \sim N(0,\sigma^2)$	ошибки регрессии нормальны	(a) χ^2 по бинам, (b) Jarque-Bera $JB=rac{n}{6}ig(s^2+rac{1}{4}k^2ig)$			
Задача 2 (ANOVA по ϕ акторам A,B)						
4	$H_0:\ (lphaeta)_{ij}=0\ orall i,j$	нет взаимодействия факторов $A imes B$	F-тест: $F_{AB}=rac{MS_{AB}}{MS_E}\circ df=(a-1)(b-1), df_E$			
5	$H_0:\ lpha_i=0\ orall i$	фактор A не влияет	F-тест: $F_A = MS_A/MS_E$			
6	$H_0:~oldsymbol{eta}_j=0~orall j$	фактор $oldsymbol{B}$ не влияет	F-тест: $F_B = MS_B/MS_E$			
7	$H_0:~arepsilon_{ijk} \sim N(0,\sigma^2)$	ошибки полной модели нормальны	Jarque-Bera $JB=rac{n}{6}(s^2+rac{1}{4}k^2)$ (здесь $lpha=0.10$ — так задано в условии)			

Пояснения к каждой группе гипотез

№ 1 – 2 (коэффициенты β)

Проверяем, нужны ли конкретные регрессоры.

проверяется именно при 10 %-м риске ошибки І рода.

- Если $H_0: eta_3 = 0$ не отвергнут, оставляем только линейный член.
- ullet Если $H_0:eta_2=0$ не отвергнут, считаем, что X вообще не объясняет Y.
- № 3 и 7 (нормальность ошибок)

Нужна для корректности доверительных интервалов, F- и t-тестов. В задаче 2 преподаватель потребовал уровень $lpha=0,\!10$ — поэтому нормальность там

№ 4 (взаимодействие)

Сравниваем аддитивную модель A+B и полную A*B. Если H_0 отвергнут, используем A*B (линии на interaction-plot пересекаются).

№ 5–6 (главные эффекты A, B)

Стандартные F-тесты «средний квадрат эффекта / средний квадрат ошибки». Критические значения берутся из распределения $F(df_H, df_E)$.

Остатки, RSS и стандартная ошибка

$$\hat{y}_i = \mathbf{x}_i^ op \hat{oldsymbol{eta}}, \qquad r_i = y_i - \hat{y}_i, \qquad RSS = \sum_{i=1}^n r_i^2, \qquad \hat{\sigma}^2 = RSS/(n-k).$$

Именно $\hat{\sigma}^2$ входит в t-, F-, AIC, BIC и формулы доверительных интервалов.

Доверительный эллипсоид

$$(oldsymbol{eta} - \hat{oldsymbol{eta}})^{ op} (X^{ op} X) (oldsymbol{eta} - \hat{oldsymbol{eta}}) \ \leq \ 2 \, \hat{\sigma}^2 \, F_{2,n-k} (1-lpha).$$

Даёт \textbf{совместную} область доверия для пары (β_2,β_3) ; если точка (0,0) лежала бы вне эллипса, обе коэффициента сразу были бы значимы.

Nº	Название проверки	Формулировка гипотез	Тест-статистика (теория)	Наблюд-ное значение	<i>p</i> -value	α	Решение 🗇
Задача 1: регрессия Y от X							
	Линейность	$H_0:eta_3=0$ (квадратичный член не нужен) $H_1:eta_3 eq 0$	$F=rac{(RSS_R-RSS_F)/q}{RSS_F/df_F}, \ q=1$	$F=0{,}153;\ df_1=1,\ df_2=47$	0,697	0,01	$p>lpha$ → не отвергаем H_0
	Значимость наклона	$H_0:eta_2=0$ (-нет связи $Y\!\leftrightarrow\! X$) $H_1:eta_2 eq 0$	$t = rac{\hat{eta}_2}{\mathrm{SE}(\hat{eta}_2)} \ \sim t_{n-k}$	$t=-1,912;\ df=48$	0,062	0,01	Не отвергаем
3-a	Нормальность остатков (χ²)	$H_0: arepsilon_i \sim N(0, \sigma^2)$	$\chi^2 = \sum rac{(O-E)^2}{E}$	$\chi^2=9,50$	0,091	0,01	Не отвергаем
3-b	Нормальность (Jarque-Bera)	то же H_0	$JB=rac{n}{6}(s^2+k^2/4)\sim \chi_2^2$	JB=6,72	0,035	0,01	Не отвергаем
Задача 2: двухфакторный ANOVA (A,B)							
4	Взаимодействие $A imes B$	$egin{aligned} H_0: (lphaeta)_{ij} &= 0 \ orall i,j \ H_1: \exists \ (lphaeta)_{ij} eq 0 \end{aligned}$	$F_{AB} = rac{MS_{AB}}{MS_E}, \; df_1 = (a - 1)(b - 1), \; df_2 = df_E$	$F_{AB}=42{,}18;\;df_1=9,\;df_2=32$	$3\cdot 10^{-15}$	0,01	$p < lpha ightarrow$ отвергаем $H_0 ightarrow$ взаимодействие ЕСТЬ
5	Эффект фактора А	$H_0:lpha_i=0\ orall i$	$F_A=MS_A/MS_E$	$F_A=118,30;\ df_1=3,\ df_2=32$	< 10 ⁻¹⁵	0,01	Отвергаем ⇒ фактор А значим
6	Эффект фактора В	$H_0:eta_j=0\ orall j$	$F_B=MS_B/MS_E$	$F_B=61,99;\ df_1=3,\ df_2=32$	< 10 ⁻¹²	0,01	Отвергаем ⇒ фактор В значим
7	Нормальность остатков полной модели	$H_0: arepsilon_{ijk} \sim N(0, \sigma^2)$	Jarque-Bera $JB=rac{n}{6}(s^2+k^2/4)$	JB = 1,10	0,576	0,10*	$p>lpha$ → не отвергаем H_0