1) Comparison: Flat File Systems vs. Relational Databases:

Feature	Flat File Systems	Relational Databases	
Structure	Data stored in a signal table or text file	Data stored in multiple related tables	
Data Redundancy	duplicate data appears in multiple files	normalization minimizes redundancy	
Relationships	all data kept separately	Supports relationships using primary and foreign keys	
Example Usage	Small applications (configuration files)	Business applications (banking systems)	
Drawbacks	Hard to update, lacks security and poor scalability	More complex setup, requires database software and management	

2) DBMS Advantages – Mind Map:

3) Roles in a Database System:

	Role	Key Responsibilities:
System Analyst	Bridge between business needs and technical solutions	 Gathers and analyses business requirements from stakeholders Identifies data needs and system workflows Creates functional specifications and use cases
Database Designer	Architect of the database structure	 Designs the logical and physical data model Applies normalization to reduce redundancy Defines constraints, data types, and referential integrity rules
Database Developer	Builder of database logic and objects	 Writes and optimizes SQL scripts Implements the database schema designed
Database Administrator (DBA)	Guardian of the database environment	 Installs, configures, and maintains DBMS software Manages user accounts, roles, and security permissions Performs backups, recovery, and disaster planning
Application Developer	Creator of software that uses the database	 Develops front-end or back-end applications Writes code to query, insert, update, or delete data Collaborates with Database Developers
BI (Business Intelligence) Developer	Data storyteller and analytics enabler	 Creates dashboards, reports, and visualizations Transforms raw operational data into actionable business insights Works with aggregated, historical, and dimensional data models

4) Types of Databases:

1. Relational vs. Non-Relational Databases:

• Relational Databases:

- ✓ **Structure:** Data stored in tables (rows and columns) with predefined schemas.
- ✓ **Relationships:** Tables linked via keys (primary/foreign keys).
- ✓ Query Language: SQL (Structured Query Language).
- ✓ Examples: MySQL, PostgreSQL, Oracle, Microsoft SQL Server.

• Non- Relational Databases:

- ✓ **Structure:** Flexible schemas; data stored as documents, key-value pairs, columns, or graphs.
- ✓ **Scalability:** Designed for horizontal scaling (adding more servers).

✓ Examples:

- MongoDB → Document-based (stores JSON-like documents)
- **Apache Cassandra** → Wide-column store (optimized for high write throughput & availability)

Relational Databases

Non-Relational Databases

Data Model	Tables Document		
Schema	Fixed	Dynamic	
Relationships	Native support via foreign keys	Not natively supported	
Query Language	SQL	Varies by type (e.g., MongoDB Query	
		Language, CQL, etc.)	
Performance	Optimized for complex queries &	Optimized for high-speed reads/writes on	
	joins	large datasets	
Examples	MySQL, PostgreSQL, Oracle, SQL	MongoDB (document), Cassandra	
	Server	(column), Redis (key-value), Neo4j (graph)	
Best Use Cases	Banking, ERP, payroll, inventory	Real-time analytics, IoT, content	
	systems	management, social media, gaming	

2. Centralized vs. Distributed vs. Cloud Databases:

• Centralized Databases:

- ✓ **Definition:** Stored and maintained on a single server or location.
- ✓ Control: One point of management and access.
- ✓ **Pros:** Simpler security, easier backup, consistent state.
- ✓ Cons: Single point of failure; limited scalability.

Distributed Databases:

- ✓ **Definition:** Data spread across multiple physical locations (servers, regions, or countries), but logically interconnected.
- ✓ **Types:** Homogeneous (same DBMS everywhere) or heterogeneous (different systems).
- ✓ **Pros:** High availability, fault tolerance, local data access.
- ✓ Cons: Complex synchronization, network dependency.

Cloud Databases:

- ✓ **Definition:** Hosted on cloud platforms (e.g., AWS, Azure, Google Cloud); can be relational or NoSQL.
- **✓** Deployment Models:
 - DBaaS (Database as a Service): Fully managed (e.g., Amazon RDS, Azure Cosmos DB)
 - Self-managed on cloud VMs
- ✓ **Pros:** Elastic scaling, pay-as-you-go pricing, automatic backups, high availability
- ✓ Cons: Ongoing costs, potential vendor lock-in, security considerations

Centralized Databases	Distributed Databases	Cloud Databases
Data stored and managed on a	Data stored across multiple	Database hosted, managed,
single server	physical locations	and accessed over the
		internet via cloud platforms
Single-node system	Multi-node, often	Can be centralized or
	geographically dispersed	distributed—but hosted in
		the cloud
All users connect to one central	Users access local or remote	Accessed via APIs or
system	nodes; system appears unified	internet; location abstracted
		from user
Limited	High	Very high
Fast for local users; slows with	Optimized for local access;	Depends on cloud provider;
high load or remote access	latency depends on network	global CDNs and edge
		locations reduce latency
Easier to secure (one location)	Harder (data in transit,	Shared responsibility
	multiple entry points)	(provider secures
		infrastructure; user secures
		data/access)
Legacy ERP on a company server,	Google Spanner, Apache	Amazon RDS, Google
local school database	Cassandra (multi-region),	Cloud Fire store, Azure
	airline reservation systems	Cosmos DB, MongoDB
		Atlas
Small businesses, departmental	Global enterprises needing	Startups, SaaS apps, scalable
systems, local applications	local data access and high	web services, remote teams
	availability (e.g., banking,	
	telecom)	
	Data stored and managed on a single server Single-node system All users connect to one central system Limited Fast for local users; slows with high load or remote access Easier to secure (one location) Legacy ERP on a company server, local school database Small businesses, departmental	Data stored and managed on a single server Data stored across multiple physical locations

5) Cloud Storage and Databases:

Concept	Explanation
	A service that stores data online, accessible via the internet (e.g.,
What is Cloud Storage	Google Drive, Amazon S3).
	Cloud storage provides the infrastructure for hosting cloud databases,
How it supports databases?	ensuring scalability, availability, and remote access.
	Rapid Deployment: Launch a production-ready database in
	minutes—no hardware setup or software installation.
	• Elastic Scalability: Easily scale compute and storage up or
Advantages	down based on demand (e.g., handle Black Friday traffic
	spikes).
	• Automated Management: patching, backups, monitoring,
	and updates.
	• Integrated Security: Built-in features like encryption at
	rest/in transit.
	Ongoing Costs: Can become expensive over time—
	especially with egress fees, premium features, or idle
	resources.
Disadvantages	• Limited Control: Less access to OS, file system, or low-
	level tuning (in fully managed services like RDS).
	Network Dependency: Performance and availability depend
	on internet connectivity and cloud provider uptime.
	• Latency for Global Apps: Even with replication, cross-
	region queries may introduce latency unless using globally
	distributed databases (e.g., Spanner).