Exercícios de logaritmos

Trabalhando com expoentes

1. Simplifique as expressões, supondo $a \cdot b \neq 0$.

a)
$$(a^2 \cdot b^3)^2 \cdot (a^3 \cdot b^2)^3$$

b)
$$\frac{(a^4 \cdot b^2)^3}{(a \cdot b^2)^2}$$

c)
$$[(a^3 \cdot b^2)^2]^3$$

d)
$$\left(\frac{a^4 \cdot b^3}{a^2 \cdot b}\right)^5$$

e)
$$\frac{(a^2 \cdot b^3)^4 \cdot (a^3 \cdot b^4)^2}{(a^3 \cdot b^2)^3}$$

2. Calcule o valor das expressões:

a)
$$\frac{2^{-1} - (-2)^2 + (-2)^{-1}}{2^2 - 2^{-2}}$$
 b) $\frac{3^2 - 3^{-2}}{3^2 + 3^{-2}}$

b)
$$\frac{3^2 - 3^{-2}}{3^2 + 3^{-2}}$$

c)
$$\frac{\left(-\frac{1}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^3}{\left[\left(-\frac{1}{2}\right)^2\right]^3}$$

- 3. Remova os expoentes negativos e simplifique a expressão $\frac{x^{-1}+y^{-1}}{(xy)^{-1}}$, em que $x,y\in\mathbb{R}^*$.
- 4. Se $a \cdot b \neq 0$, simplifique as expressões:

a)
$$(a^{-2} \cdot b^3)^{-2} \cdot (a^3 \cdot b^{-2})^3$$

e)
$$\frac{(a^3 \cdot b^{-2})^{-2} \cdot (a \cdot b^{-2})^3}{(a^{-1} \cdot b^2)^{-3}}$$

b)
$$\frac{(a^5 \cdot b^3)^2}{(a^{-4} \cdot b)^{-3}}$$

f)
$$(a^{-1} + b^{-1}) \cdot (a+b)^{-1}$$

c)
$$[(a^2 \cdot b^{-3})^2]^{-3}$$

g)
$$(a^{-2} - b^{-2}) \cdot (a^{-1} - b^{-1})^{-1}$$

$$d) \quad \left(\frac{a^3 \cdot b^{-4}}{a^{-2} \cdot b^2}\right)^3$$

Trabalhando com radicais

- 1. sdikas
- 2. daasd

Trabalhando com logaritmos

- 1. Calcule pela definição os seguintes logaritmos:
 - a) $\log_2 \frac{1}{8}$

b) $\log_8 4$

c) $\log_{0.25} 32$

2.	Calcule pela definição os seguintes logaritmos:					
	a)	b)	c)			
3.	Calcule pela definição o	os seguintes logaritmos:				

4. Calcule o valor de:

a)

a) b) c)

b)

5. Calcule o valor de:
a)
b)
c)

Desafios

1. Determine o menor número inteiro positivo x para que $2940x=M^3,$ em que M é um número inteiro

c)

2. Qual o último algarismo do número $(14)^{(14)^{14}}$

Exercícios de vestibulares

1. (UFPB) A metade do número $2^{21}+4^{12}$ é:

a) $2^{20} + 2^{23}$ b) $2^{\frac{21}{2}} + 4^6$ c) $2^{12} + 4^{21}$ d) $2^{20} + 4^6$ e) $2^{22} + 4^{13}$

2. (ENEM) A cor de uma estrela tem relação com a temperatura em sua superfície. Estrelas não muito quentes (cerca de 3.000 K) nos parecem avermelhadas. Já as estrelas amarelas, como o Sol, possuem temperatura em torno dos 6000 K; as mais quentes são brancas ou azuis porque sua temperatura fica acima dos 10000 K.

A tabela apresenta uma classificação espectral e outros dados para as estrelas dessas classes.

Estrelas da Sequência Principal

Classe espectral	Temperatura (K)	Luminosidade	Massa	Raio
05	40.000	$5 \cdot 10^5$	40	18
B0	28.000	$2 \cdot 10^4$	18	7
A0	9.900	80	3	2,5
G2	5.770	1	1	1
M0	3.480	0,06	0,5	0,6

Luminosidade, massa e raio tomando o Sol como unidade Se tomarmos uma estrela que tenha temperatura 5 vezes maior que a temperatura do Sol, qual será a ordem de grandeza de sua

luminosidade?

- a) 20.000 vezes a luminosidade do Sol
- b) 28.000 vezes a luminosidade do Sol
- b) 28.850 vezes a luminosidade do Sol
- b) 30.000 vezes a luminosidade do Sol
- b) 50.000 vezes a luminosidade do Sol
- 3. (UFPR) Quando escrevemos 4.307, por exemplo, no sistema de numeração decimal, estamos nos referindo ao número $4 \cdot 10^3 + 3 \cdot 10^2 + 0 \cdot 10^1 + 7 \cdot 10^0$. Seguindo essa mesma ideia, podemos representar qualquer número inteiro positivo utilizando apenas os dígitos 1 e 0, bastando escrever o número como soma de potncias de 2. Por exemplo, $13 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$ e por isso a notação [1101]₂ é usada para representar 13 nesse outro sistema. Note que os algarismos que ali aparecem são os coeficientes das potências de 2 na mesma ordem em que estão na expressão. Com base nessas informações, considere as seguintes afirmativas:
 - I. $[111]_2 = 7$
 - II. $[110]_2 + [101]_2 = [1010]_2$
 - III. Independentemente do número inteiro positivo k, a expressão de 2^k em potências de 2 tem apenas um dígito diferente de 0.
 - IV. Se $a = [\underbrace{111\ldots 11}_{20 \text{ dígitos}}]_2$, então $2\cdot a = [\underbrace{111\ldots 110}_{21 \text{ dígitos}}]_2$.
 - a) Somente as afirmativas I e III são verdadeiras.
 - b) Somente as afirmativas II e III são verdadeiras.
 - c) Somente as afirmativas I e IV são verdadeiras.
 - d) Somente as afirmativas I, III e IV são verdadeiras.
 - e) Somente as afirmativas II, III e IV são verdadeiras.
- 4. (PUC-PR) O valor de x que satisfaz a equação $\frac{0,2^{x-0,5}}{\sqrt{5}}=5\cdot 0,04^{x-1}$ está compreendido no intervalo: a) $x\leq 0$ b) $0< x\leq 1$ c) $1< x\leq 4$ d) $4< x\leq 20$ e) x>20
- 5. (EsPCEx-SP) A soma das raízes da equação $3^x + 3^{1-x} = 4$ é:
 - a) 2

- b) -2 c) 0 d) -1
- e) 1
- 6. (ITA-SP) Considere a equação $\frac{(a^x-a^{-x})}{(a^x+a^{-x})}=m$, na variável real x, com $0 < a \ne 1$. O conjunto de todos os valores de m para os quais esta equação admite solução real é:

e) $(-\infty, +\infty)$

- a) $(-1, 0) \cup (0, 1)$ c) (-1, 1)b) $(-\infty, -1) \cup (1, +\infty)$ d) $(0, \infty)$
- 7. (UFRR) Dados os conjuntos A = $\{x \in \mathbb{R} | 9^{x^2} \le 243^{1-x} \}$ e B = $\{x \in \mathbb{R} | x^2 + 6x + 9 > 0 \}$, o conjunto A - B é igual a:
 - a) Ø

b) -3

- c) $\left[-3, \frac{1}{2}\right]$ e) $\frac{1}{2}$ d) $\left[-\infty, -3\right] \cup \left[-3, +\infty\right]$
- 8. (PUC-PR) Sejam x e y dois números reais positivos tais que $\log x$ $\log y = z$, então $\log \frac{1}{x}$ $\log x$ $\frac{1}{y}$ vale:

- a) z
- b) -z
- c) z + 1
- d) -z+1
- e) (
- 9. (Fuvest) Se x é um número real, x>2 e $\log_2(x-2)-\log_4x=1$, então o valor de x é:
 - a) $4 2\sqrt{3}$
- b) $4 \sqrt{3}$
- c) $2 + 2\sqrt{3}$
- d) $4 + 2\sqrt{3}$
- e) $2 + 4\sqrt{3}$
- 10. (UFPR) Suponha que o tempo t (em minutos) necessário para ferver água em um forno de micro-ondas seja dado pela função $t(n) = a \cdot n^b$, sendo a e b constantes e n o número de copos de água que se deseja aquecer.

Número de copos	Tempo de aquecimento
1	1 minuto e 30 segundos
2	2 minutos

- a) Com base nos dados da tabela acima, determine os valores de a e b. Sugestão: use log 2 = 0.3 e log 3 = 0.45.
- b) Qual é o tempo necessário para se ferverem 4 copos de água nesse forno de micro-ondas?