Magic States Distillation Using Δ -Toric (good qLDPC?).

David Ponarovsky

January 1, 2024

Let $|f\rangle$ be a codeword in C_X , and let X_g be the indicator that equals 1 if f has support on X_g , and 0 otherwise. Observes that applying T^{\otimes} on $|f\rangle$ yilds the state:

$$\begin{split} T^{\otimes n} \left| f \right\rangle &= T^{\otimes n} \left| \sum_{g} X_g g \right\rangle = \exp \left(i \pi / 4 \sum_{g} X_g |g| - 2 \cdot i \pi / 4 \sum_{g,h} X_g X_h |g \cdot h| \right. \\ &+ 4 \cdot i \pi / 4 \sum_{g,h} X_g X_h X_l |g \cdot h \cdot l| - 8 \cdot i \pi / 4 \cdot \text{ integers } \right) \left| f \right\rangle \\ &= \exp \left(i \pi / 4 \sum_{g} X_g |g| - 2 \cdot \pi / 4 \sum_{g,h} X_g X_h |g \cdot h| + 4 \cdot i \pi / 4 \sum_{g,h} X_g X_h X_l |g \cdot h \cdot l| \right) \left| f \right\rangle \end{split}$$

Now assume that the code C_X is the quantum Tanner code, denote by G,A,B the group and the two generator sets that are used for constructing the square complex. In addition, let us assume the existence of $d \in G$ such that d is non-identity and commutes with any element in $A \cup B$. Then, observe that multiplying by d preserves adjacency on the complex. Namely, if $\{u,v\} \in E$ then also $\{du,dv\} \in E$.

Consider $|f\rangle$ such that if X_g is not zero, and g is associated with a local codeword $c \in C_A \otimes C_B$ on vertex v, then the generator associated with the local codeword c on vertex $d \cdot v$ also supports f, denoted by g'. Thus, the exponent above becomes:

$$\begin{split} &= \exp \left(i \pi / 4 \sum_{g} X_{g} |g| - 2 \cdot \pi / 4 \sum_{g,h \in G/a} X_{g} X_{h} |g \cdot h| + X_{g'} X_{h'} |g \cdot h| \right. \\ &+ 4 \cdot i \pi / 4 \sum_{g,h \in G/a} X_{g} X_{h} X_{l} |g \cdot h \cdot l| + X_{g'} X_{h'} X_{l'} |g \cdot h \cdot l| \right) |f\rangle \\ &= \exp \left(i \pi / 4 \sum_{g} X_{g} |g| - 2 \cdot 2 \cdot \pi / 4 \sum_{g,h \in G/a} X_{g} X_{h} |g \cdot h| + 2 \cdot 4 \cdot i \pi / 4 \sum_{g,h \in G/a} X_{g} X_{h} X_{l} |g \cdot h \cdot l| \right) |f\rangle \\ &= \exp \left(i \pi / 4 \sum_{g} X_{g} |g| - i \pi \sum_{g,h \in G/a} X_{g} X_{h} |g \cdot h| \right) |f\rangle \end{split}$$

Claim 0.1. The gate
$$|f\rangle \mapsto \exp\left(-i\pi \sum_{g,h\in G/a} X_g X_h |g\cdot h|\right) |f\rangle$$
 is in the Clifford.

Proof. Just decode f and apply $\mathbb{C}\mathbf{Z}$ between any pair of qubits corresponding to the generators g,h such that $g \cap h = 1$. Then encode the state again. Observes that $\mathbb{C}\mathbf{Z}$ is a Clifford gate, and by the fact that the code is a CSS code then the decoder and the encoder are both in the Clifford.

Let's denote the circuit defined in Claim 0.1 by Λ . So we have that:

$$\Lambda^{\dagger} \exp\left(i\pi/4\sum_{g} X_{g}|g| - i\pi\sum_{g,h \in G/a} X_{g}X_{h}|g \cdot h|\right)|f\rangle$$
$$= \exp\left(i\pi/4\sum_{g} X_{g}|g|\right)|f\rangle$$

Figure 1: Quantum Circuit for distillation.