3.3. Алгоритм оптимальной компоновки программного ресурса для однородной системы конкурирующих процессов.

разработке При системного И прикладного обеспечения программного многопроцессорных систем возникают задачи эффективного управления множеством процессов, имеющих доступ к общим ресурсам, в том числе к программам [1]. Одним из методов решения таких задач называемый структурирования является так метод программных ресурсов на блоки с целью их параллельного использования множеством конкурирующих процессов [2].

Организация вычислений по этому методу позволяет существенно сократить суммарное время последовательного pecypca использования программного конкурирующими процессами путем конвейеризации выполнения блоков при линейном структурировании программного ресурса. В [3, 4] выигрыш наибольший показано, что достигается равномерном структурировании число блоков, на удовлетворяющих определенным соотношениям. В тоже время при имеющемся линейном структурировании программного ресурса общее время его использования можно блоков уменьшить за счет компоновки отдельных программного ресурса в один программный блок.

В данной главе предлагается алгоритм построения оптимальной компоновки линейно структурированного программного ресурса, требующий не более $O(s^3)$ элементарных операций, где s — число блоков исходного структурирования.

Основные понятия и постановка задачи

Пусть, как и в [3, 4], $P_r = (Q_1, Q_2, ..., Q_s)$ – линейно структурированный на s блоков (s \geq 2) программный ресурс, $\gamma_s = (t(Q_1), t(Q_2), ..., t(Q_s)) = (t_1, t_2, ..., t_s)$ – последовательность времен выполнения блоков линейно структурированного программного ресурса P_r , τ – время , характеризующее дополнительные системные расходы по организации структурирования и параллельного использования блоков программного ресурса P_r , n – число однородных относительно программного ресурса P, конкурирующих процессов ($n \geq 2$), p – число однородных процессов ($p \geq 2$).

Тогда общее время выполнения п конкурирующих процессов, использующий программный ресурс P_r в вычислительной среде с р однородными процессорами при асинхронном режиме взаимодействие процессов и в режиме непрерывного выполнения P_r , составляет величину [4].

$$T(p, n, \gamma_s) = \begin{cases} T' + (n-1)t_*, npu \ s = kp, \\ unu \ p = n, \ T' \le pt_*, \\ (k+1)T' + (r-1)t_*, \\ npu \ p = n, \ T' > pt_*, \end{cases}$$
(1)

Здесь
$$T^{'} = \sum_{j=1}^{s} t_{j} + s\tau$$
, $t_{*}^{'} = \max_{1 \leq j \leq s} \{t_{j}\} + \tau$, $n = kp + r$, $1 \leq r \leq p$.

С понятием линейного структурирования программного ресурсы свяжем понятие линейной упаковки.

Определение. Пусть $M = \{m_1, m_2, ..., m_s\}$ - конечная упорядоченное множество предметов разбиение множества M на l непересекающихся подмножеств $M_1, M_2..., M_l$, такое что каждая M_i есть объединение последовательных элементов множество M, будем называть линейной упаковкой множество M ранга l.u. обозначать q_l .

Элементы множества M будем рассматривать как последовательность блоков линейно структурированного программного ресурса $T^{'}=p(\mathbf{t}^{*}(q_{l})+\tau)$ в этом случае Линейная упаковка множество M получается объединением последовательных блоков исходного структурирования в один программный блок линейную упаковку программного ресурса P_{r} будем называть компоновкой.

Обозначим \mathcal{G} , \mathcal{G}_{t} соответственно множество всевозможных компоновок P_{r} и компоновок P_{t} ранга $l(l=\overline{1,s})$. Отметим, что что компоновкой ранга s является исходное структурирование $q_{s}=(Q_{1},Q_{2},...,Q_{s})$, ранга 1 - компоновка блоков P_{r} в один программный

блок $\mathbf{q}_s = (\mathbf{Q}_1 \cup \mathbf{Q}_2 \cup ... \cup \mathbf{Q}_s)$ Нетрудно подсчитать, что $|\mathcal{P}| = 2^{s-1}$, $|\mathcal{P}|$ $= C_{s-1}^{l-1} = \frac{(s-1)!}{(l-1)!(s-l)!}.$

Пусть $\mathbf{q}_s = (\mathbf{Q}_1^{'}, \mathbf{Q}_2^{'}, ..., \mathbf{Q}_s^{'})$ - компоновка программного ресурса P_r . Обозначим $\mathbf{t}(\mathbf{Q}_j^{'}) = \sum_{\mathbf{Q} \in \mathbf{Q}_j^{'}} t(\mathbf{Q})$ - время выполнения \mathbf{j} -го элемента компоновки \mathbf{q}_l $(j=\overline{\mathbf{1},\mathbf{s}})$, $\gamma(\mathbf{q}_1) = (\mathbf{t}(\mathbf{Q}_1^{'}),\mathbf{t}(\mathbf{Q}_2^{'}),...,\mathbf{t}(\mathbf{Q}_l^{'}))$ последовательность времен выполнение блоков $\mathbf{Q}_j^{'}$, $\mathbf{t}_l^{*}(q_i) = \max_{\mathbf{1} \leq j \leq l} \{t(\mathbf{Q}_l^{'}) \text{ время выполнения максимального блока компоновки } \mathbf{q}_j^{'}$, $\mathbf{t}_l^0 = \min\{t(\mathbf{q}_l) \,|\, \mathbf{q}_l \in P_l^{l}\}$

Задача оптимальной компоновки линейно структурированного программного ресурса равняется $P_r = (Q_1, Q_2, ..., Q_s)$ состоит в том чтобы при заданных $\tau, p \geq 2, n \geq 2, \gamma_s, s \geq 2$ найти и компоновку q_t исходного структурирования при которой достигается минимум функционала (1). Такую компоновку будем называть оптимальной.

Свойства оптимальных компоновок и вспомогательные результаты

Для решения поставленной задачи потребуются следующие результаты.

Теорема 1. Если q_l оптимальная компоновка программного ресурса P_r , то компоновка $q_l^{'}$ такая что $i^{*}(q_l^{'}) = t_l^0$ также является оптимальной.

Доказательство. Из определения t_I^0 следует что

$$i^{*}(q_{l}) = t_{l}^{0}(2)$$

Покажем, что при выполнении условий теоремы компоновка q_1 оптимальная т. е. при заданных τ, p, n

$$T(p, n, \gamma(q_i)) = T(p, n, \gamma(q_i)) \quad (3)$$

При n=p для оптимальной компоновки q_l i $(q_l)=t_l^0$ (2) и теорема выполняется. Пусть $p < n, n = kp + r, 1 \le r \le p$. Рассмотрим возможные случаи.

 $i) \qquad T^{'} \leq p(\mathbf{t}_{l}^{0}+\tau), T^{'} \leq p(\mathbf{t}^{*}(q_{l})+\tau), \quad \text{тогда} \quad \text{из} \quad (1) \quad \text{и} \quad \text{условия}$ оптимальности q_{l} следует

$$T(\mathbf{p}, \mathbf{n}, \gamma(\mathbf{q}_{l}^{'})) - T(\mathbf{p}, \mathbf{n}, \gamma(\mathbf{q}_{l})) = T^{'} + (\mathbf{n} - 1)(\mathbf{t}_{l}^{0} + \tau) - T^{'} - (\mathbf{n} - 1)(\mathbf{t}^{*}(q_{l}) + \tau) = (\mathbf{n} - 1)(\mathbf{t}_{l}^{0} - \mathbf{t}^{*}(q_{l})) \ge 0$$

Отсюда в силу (2) следует, что $i^*(q_l) = t_l^0$ (3) выполняется.

іі)
$$T^{'} > p(\mathbf{t}_{l}^{0} + \tau), T^{'} > p(\mathbf{t}^{*}(q_{l}) + \tau),$$
 тогда

 $T(\mathbf{p}, \mathbf{n}, \gamma(\mathbf{q}_l^{'})) - T(\mathbf{p}, \mathbf{n}, \gamma(\mathbf{q}_l)) = T^{'}(k-1) + (r-1)(\mathbf{t}_l^0 + \tau) - T^{'}(k-1) - (r-1)(\mathbf{t}^*(q_l) + \tau) = (r-1)(\mathbf{t}_l^0 - \mathbf{t}^*(q_l)) \ge 0$

Отсюда в силу (2) и $r \ge 1$ следует (3).

ііі)
$$T' > p(t_l^0 + \tau), T' \le p(t^*(q_l) + \tau),$$
 тогда

 $T(\mathbf{p},\mathbf{n},\gamma(\mathbf{q}_l^{'}))-T(\mathbf{p},\mathbf{n},\gamma(\mathbf{q}_l))=T^{'}(k+1)+(r-1)(\mathbf{t}_l^0+\tau)-T^{'}-(\mathbf{n}-1)(\mathbf{t}^*(q_l)+\tau)=\\ \mathbf{k}T^{'}+(r-1)(\mathbf{t}_l^0+\tau)-(\mathbf{k}\mathbf{p}+\mathbf{r}-1)(\mathbf{t}^*(q_l)+\tau)=\mathbf{k}(T^{'}-p(\mathbf{t}^*(q_l)+\tau)+(r-1)(\mathbf{t}_l^0+\mathbf{t}^*(q_l))\geq0 \\ \text{что возможно лишь при }r=1\quad\text{и }T^{'}=p(\mathbf{t}^*(q_l)+\tau)\text{ . Отсюда следует справедливость (3).}$

Теорема доказана.

Теорема 2. Если для компоновок q_l , q_{l-1} (l < 2)

$$i^*$$
 i^* $(q_{l}) = i^*$ (q_{l-1}) , то

$$T(p, n, \gamma(q_i) > T(p, n, \gamma(q'_{i-1}))$$

Из теоремы 1 следует, что если для каждого ранга l=2,...,s, можно «эффективно» строить компоновку q_l программного ресурса P_r с наименьшим максимальным элементом среди компоновок этого ранга $\stackrel{*}{(i\ (q_l)=t_l^0)}$, то «эффективно» будет решена исходная задача, поскольку в этом случае оптимальную компоновку необходимо будет выбрать в худшем случае среди (s-1) компоновки. Очевидно также, что наименьший максимальный элемент среди компоновок ранга l с убыванием l не убывает, т. е.

$$t_{l_1}^0 \ge t_{l_2}^0 \text{ при } 1 < l_1 < l_2 \le s.$$
 (4)

С практической точки зрения является естественным предположение

$$\tau \le t_i$$
, $i = \overline{1, s}$, (5)

что позволяет при решении задачи оптимальной компоновки исключить из рассмотрения компоновку в один программный блок.

Наряду с исходной задачей рассмотрим следующую оптимизационную задачу «линейной упаковки в контейнеры».

Для заданных предметов конечного упорядоченного множества $M=\{m_1,\ m_2,...,m_s\}$ и соответствующей последовательности их размеров $v(m_1),\ v(m_2),...,v(m_s)$ $(v(m_i)>0)$, числа B>0 — вместимости контейнера $(B\geq \max_{1\leq i\leq s}\{v(m_i)\})$, требуется найти такую линейную упаковку

 $q_l = (M_1, \, M_2, \, \dots \, , \, M_l)$ множества M, чтобы размер каждого элемента упаковки $v(M_i)$ не превосходил B и l было наименьшим.

В общем случае, т. е. когда отсутствует условие линейности упаковки, эта задача является NP-трудной в сильном смысле, поскольку при $v(m_i) \in (0,1)$ $(i=\overline{1,s})$ В = 1 дает классическую оптимизационную задачу упаковки в контейнеры [5]. Условие линейности упаковки, связанное с задачей оптимальной компоновки линейно структурированных программных ресурсов, существенно упрощает ее решение.

Задача линейной упаковки в контейнеры эффективно решается с помощью следующего LF-алгоритма (last—fit).

- 1. Первый предмет m_1 загружается в первый контейнер, а остальные предметы в порядке возрастания их номеров.
- 2. Предмет m_i $(i=\overline{2,s})$ загружается в последний контейнер из числа частично упакованных, если сумма помещенных в него предметов не превосходит $B-v(m_i)$, в противном случае он загружается в следующий пустой контейнер.

Оптимальность линейной упаковки, которую строит LF - алгоритм, легко доказывается методом от противного. LF -алгоритм требует не более 3s элементарных операций и является составной частью алгоритма решения исходной задачи оптимальной компоновки.

АЛГОРИТМ ПОСТРОЕНИЯ ОПТИМАЛЬНОЙ КОМПОНОВКИ

Пусть $\gamma_s = (t_1, t_2, ..., t_s)$ — последовательность времен выполнения блоков заданного линейно структурированного программного ресурса $P_r = (Q_1, Q_2, ..., Q_s) \quad (s \ge 3) \quad \text{n}$ —число конкурирующих процессов, р —

число однородных процессоров, τ — время, характеризующее дополнительные системные расходы по организации структурирования на каждый блок ($\tau \le t_i$, $i=\overline{1,s}$).

Алгоритм построения оптимальной компоновки программного ресурса P, состоит из следующих этапов.

1. Строим массив из $\frac{s(s+1)}{2}-1$ чисел $\mathbf{t}_{ij}(i=\overline{2,s},\mathbf{j}=\overline{1,i})$ по правилу:

$$t_{sj} = t_{j}, \quad j = \overline{1, s},$$

$$t_{s-1j} = t_{sj} + t_{j+1}, \quad j = \overline{1, s-1},$$

$$\vdots$$

$$t_{s-1j} = t_{sj} + t_{j+1}, \quad j = \overline{1, s-1},$$

$$t_{s-1j} = t_{sj} + t_{j+1}, \quad j = \overline{1, s-1},$$

$$t_{s-k,j} = t_{s-h+1,j} + t_{j+k}, \quad j = \overline{1, s-k},$$

$$\vdots$$

$$t_{ij} = t_{sj} + t_{j+1}, \quad j = 1, 2...$$
(6)

Здесь числа $\mathbf{t}_{ij} = \mathbf{t}_{sj} + t_{_{i+1}} + \ldots + \mathbf{t}_{_{j+s-1}}$ представляют собой длительности блоков всевозможных линейных компоновок P_r .

- 2. Упорядочиваем числа \mathbf{t}_{ij} по возрастанию с одновременным удалением избыточных одинаковых элементов и элементов $\mathbf{t}_{ij} \leq \max_{1 \leq i \leq s} \{\mathbf{t}_j\}$ В результате получим возрастающую последовательность чисел $v_1 < v_2 < v_3 < ... < v_k$, для которой $v_1 \leq \max_{1 \leq i \leq s} \{\mathbf{t}_j\}$, $s-1 \leq k < \frac{s(s+1)}{2} 1$.
 - 3. Полагаем $T_0 = T(p, n, \gamma_s), \ \gamma_0 = \gamma_s, \ l_0 = s, \ i = 1.$

- 4. Принимая вместимость В равной v_i , к исходному структурированию применяем LF -алгоритм линейной упаковки. Пусть l_i ранг полученной компоновки P_r
- 5. Если $l_i = l_{i-1}$, то полученную компоновку q_i не принимаем в рассмотрение, вычисляем i = i+1 и переходим к п. 4
- 6. Вычисляем значение $T_0 = T(p,n,\gamma(\mathbf{q}_{ij}))$. Если $T_i < T_0$, то полагаем $T_0 = T_i$, $\gamma_0 = \gamma(q_{ij})$, иначе T_0 , γ_0 оставляем без изменений.
- 7. Если $l_i > 2$, то вычисляем i = i + 1 н переходим к п. 4, иначе ($l_i = 2$) алгоритм заканчивает работу.

После окончания работы алгоритма T_0 будет давать минимальное значение функционала (1), γ_0 — оптимальную компоновку P_r . Правильность его работы следует из теорем 1, 2 и соотношений (4), (5).

Приведенный алгоритм требует не более $O(s^3)$ элементарных операций, поскольку на первом этапе для построения \mathbf{t}_{ij} требуется $O(s^3)$ элементарных операций, на втором, используя быстрые алгоритмы сортировки, — $O(s^3\log_2 s)$, на этапах 4 в цикле по v_i — не более $O(s^3)$.

Пример. Пусть , $\gamma_{10}=\left(10,\ 20,\ 5,\ 20,\ 5,\ 10,\ 10,\ 5,\ 10,\ 5\right)$ — последовательность времен выполнения блоков линейно структурированного программного ресурса $P_r=\left(Q_1,Q_2,...,Q_{10}\right)$, n-5- число конкурирующих процессов, p=3 — число однородных

процессоров, i=4 — дополнительнь1е системные накладные расходы на каждый блок, связанные со структурированием P_r . Поскольку в этом случае:

$$T' = \sum_{j=1}^{s} t_j + s\tau = 100 + 10 \cdot 4 > p(t_* + \tau) = 3(20 + 4),$$

то общее время использования программного ресурса P_r заданным числом конкурирующих процессов (1) составит величину $T_{10} = T(3,5,\gamma_{10}) = 2(100+10\cdot4)+1(20+4)=304\,\mathrm{T}10=\mathrm{T}(3,5,"10)=2$ (100 + 10.4) + 1 (20 + 4) _ = 304 единиц времени. Найдем компоновку программного ресурса P_r , при которой достигается минимум функционала (1) с помощью приведенного выше алгоритма.

1. Строим массив из
$$\frac{10-11}{2}-1=54$$
 чисел t_{ij} ($i=\overline{2,10},\ j=\overline{1,i}$), согласно правилу (6). На рис. 1 дана схема формирования этих чисел. Они представляют собой сумму чисел, стоящих у основания соответствующего треугольника, образованного выходящими из t_{ij} стрелками.

2. Упорядочивая t_{ij} по возрастанию с одновременным удаением избыточных одинаковых элементов и элементов $t_{ij} < 20$, получим следующую возрастающую последовательность чисел

Принимая последовательно вместимость В равной значениям элементов последовательности (7), к исходному структурированию применяем LF-алгоритм до тех пор, пока он не даст компоновку ранга 2. Вычисления, проводимые на каждом шаге этого этапа, приведены в

табл. 1, где прочерк означает, что нет необходимости вычислять соответствующее значение $T_0 = T(p,n,\gamma(\mathbf{q}_i))$. Как видно из табл. 1, оптимальной компоновкой будет

$$\mathbf{q}_4=((Q_1\cup Q_2),(Q_3\cup Q_4\cup Q_5),(Q_6\cup Q_7\cup Q_8),(Q_9\cup Q_{10})), \quad \text{для которой y}$$

$$\gamma(\mathbf{q}_4)=(30,30,25,15),\ T(3,5\gamma(q_5))=256.$$

Таким образом, общее время использования исходного линейно структурированного программного ресурса Р улучшено за счет оптимальной компоновки на 304 - 266 = 38 единиц времени или на $\frac{38}{308} \cdot 100 \approx 12\%$.

В	$\gamma({ m q}_i)$		$T(3,5\gamma(q_5))$
20	(10, 20, 5, 20, 15, 15, 15)	7	280
25	(10, 25, 25, 10, 25, 5)	6	277
30	(30, 30, 25, 15)	4	266
35	(35, 35, 30)	3	268
40	(35, 35, 30)	3	-
45	(35, 35, 30)	3	1
50	(35, 45, 20)	3	-
55	(55, 45)	2	344

Теорема. Для того, чтобы эффективная одинаково распределенная система конкурирующих процессов в случае ограниченного параллелизма в асинхронном и втором синхронном режимах была оптимальной при заданных $p \ge 2$, T_{ε}^n , $\varepsilon > 0$, необходимо и достаточно, чтобы она была стационарной и число процессов n_0 в системе равнялось одному из чисел:

$$1) \left[\left[\sqrt{\frac{(p-1)T_{\varepsilon}^{n}}{k\varepsilon}} \right], \left[\sqrt{\frac{(p-1)T_{\varepsilon}^{n}}{k\varepsilon}} \right] + 1 \right] \cap [2, n], \text{ при } s = kp, \ k > 1,$$

$$2) \left[\left[\sqrt{\frac{(r-1)T_{\varepsilon}^{n}}{(k+1)\varepsilon}} \right], \left[\sqrt{\frac{(r-1)T_{\varepsilon}^{n}}{(k+1)\varepsilon}} \right] + 1 \right] \cap [2, n], \text{ при }$$

 $s = kp + r, \ k \ge 1, \ 1 \le r < p,$

в котором функция $\overline{\Delta}_{\varepsilon}(x) = (s-1)T^n \left(1-\frac{1}{x}\right) - (x+s-1)\varepsilon$, $x \ge 1$, достигает наибольшего значения, где [z] — наибольшее целое, не превосходящее z, n — заданное число.

$$n_0 = \left[\sqrt{\frac{(r-1)T_\varepsilon^n}{(k+1)\varepsilon}} \right] + 1 = \left[\sqrt{\frac{40}{2}} \right] + 1 = \left[4,47 \right] + 1 = 5, \text{ что подтверждает ранг}$$

полученной оптимальной компоновки блоков. **Теорема.** Для того, чтобы эффективная одинаково распределенная система конкурирующих процессов в случае ограниченного параллелизма в асинхронном и втором синхронном режимах была оптимальной при заданных $p \ge 2$, T_ε^n , $\varepsilon > 0$, необходимо и достаточно, чтобы она была стационарной и число процессов n_0 в системе равнялось одному из чисел:

$$1)\left[\left[\sqrt{\frac{(p-1)T_{\varepsilon}^{n}}{k\varepsilon}}\right],\left[\sqrt{\frac{(p-1)T_{\varepsilon}^{n}}{k\varepsilon}}\right]+1\right]\cap\left[2,n\right],\text{ при }s=kp,\ k>1,$$

$$2)\left[\left[\sqrt{\frac{(r-1)T_{\varepsilon}^n}{(k+1)\varepsilon}}\right],\left[\sqrt{\frac{(r-1)T_{\varepsilon}^n}{(k+1)\varepsilon}}\right]+1\right] \cap \left[2,n\right], \ \text{при}$$
 $s=kp+r,\ k\geq 1,\ 1\leq r< p,$

в котором функция $\overset{-}{\Delta}_{\varepsilon}(x)=(s-1)T^n\bigg(1-\frac{1}{x}\bigg)-(x+s-1)\varepsilon\,,\;\;x\ge 1,\;$ достигает наибольшего значения, где [z] — наибольшее целое, не превосходящее $z,\;$ n- заданное число.

По данным примера число процессов
$$n_0 = \left[\sqrt{\frac{(r-1)T_\varepsilon^n}{(k+1)\varepsilon}} \right] + 1 = \left[\sqrt{\frac{40}{2}} \right] + 1 = \left[4,47 \right] + 1 = 5 \,, \qquad \text{что}$$

подтверждает ранг полученной оптимальной компоновки блоков.