ГЕОМЕТРИЯ В КОМПЬЮТЕРНЫХ ПРИЛОЖЕНИЯХ

Лекция 3: Топология и гладкие поверхности

Богачев Николай Владимирович

15 сентября 2021

MIPT & Skoltech

Экскурс в топологию

Топологическое пространство

Топологическое пространство — множество X с выделенным семейством au его подмножеств, для которого верно

(1)
$$\emptyset, X \in \tau$$
; (2) $A, B \in \tau \Rightarrow A \cap B \in \tau$;
(3) $\forall \alpha \ X_{\alpha} \in \tau \Rightarrow \bigcup_{\alpha} X_{\alpha} \in \tau$.

Множества из au — **открытыми**, а само au — **топология.**

1

Топологическое пространство

Примеры

- (1) $\tau = (\emptyset, X)$ **минимальная (тривиальная)** топология
- (2) $\tau = 2^{X}$ максимальная (дискретная) топология
- (3) топология **метрического** пространства (стандартный пример \mathbb{R}^n).

Хаусдорфово топологическое пространство

Топологическое пространство (X, τ) называется **отделимым** или **хаусдорфовым**, если для всяких двух различных точек $x, y \in X$ найдутся такие непересекающиеся открытые множества A и B, что $x \in A$, $y \in B$.

Хаусдорфово топологическое пространство

Примеры

- (1) $\tau = (\emptyset, X)$ тривиальная топология **не** хаусдорфова
- (2) $\tau = 2^{X}$ максимальная (дискретная) топология хаусдорфова
- (3) метрические пространства всегда хаусдорфовы.

Основные понятия

- Замкнутое множество дополнение к открытому;
- Замыкание \overline{A} множества A есть пересечение всех замкнутых множеств, содержащих A.
- Если $\overline{A} = X$, то A называют всюду плотным в X.
- Отображение топологических пространств $f: X \to Y$ непрерывно в точке $x \in X$, если для всякого открытого $V \subset Y$, такого что $f(x) \in V$, найдется такое открытое $U \subset X$, что $f(U) \subset V$.

Основные понятия

- $f: X \to Y$ **непрерывно**, если оно непрерывно в каждой точке.
- Отображение $f: X \to Y$ **гомеоморфизм**, если оно биективно, непрерывно и f^{-1} непрерывно.
- Множество компактно (или компакт), если из всякого его покрытия открытыми множествами можно выбрать конечное подпокрытие.

Многообразия

- **Карта** на M гомеоморфизм φ некоторого открытого $U \subset M$ на некоторую открытую область в \mathbb{R}^n .
- Карты (U,φ) и (V,ψ) согласованы, если

$$\psi\varphi^{-1}\colon \varphi(U\cap V)\to \psi(U\cap V)$$

гладкое.

Многообразия

- **Атлас** система согласованных карт, $(U_{\alpha}, \varphi_{\alpha})$ покрывающих пространство M.
- Два атласа $(U_{\alpha}, \varphi_{\alpha})$ и $(V_{\beta}, \psi_{\beta})$ эквивалентны, если карты одного согласованы со всеми картами второго, то есть функции "склейки"

$$\psi_{\beta}\varphi_{\alpha}^{-1}\colon \varphi_{\alpha}(U_{\alpha}\cap V_{\beta})\to \psi_{\beta}(U_{\alpha}\cap V_{\beta})$$

гладкие.

Многообразия

Хаусдорфово пространство с классом эквивалентных атласов — **гладкое** *п*-мерное многообразие.

Примеры многообразий

- (1) \mathbb{R}^n . Здесь достаточно взять карту (\mathbb{R}^n , id);
- (2) Можно взять произвольную открытую область $U \subset \mathbb{R}^n$;

(3)
$$\mathbb{S}^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{k=1}^{n+1} x_k^2 = 1\}.$$

Доказательство.

Пусть $N = \{0, ..., 0, 1\}$ и $S = \{0, ..., 0, -1\}$. Рассмотрим стереографические проекции ϕ_N и ϕ_S из точек N и S соответственно. Имеем две карты $(\mathbb{S}^n \setminus \{S\}, \phi_S)$.

Поверхности

Гладкая регулярная поверхность в \mathbb{R}^n — гладкое отображение $f: U \to \mathbb{R}^n$ — тоже многообразие!!

Касательное пространство

Касательное пространство к поверхности — множество всех касательных векторов.

Дифференциал отображения (поверхности)

Дифференциал отображения — это линейное отображение на касательных векторах

Касательное пространство

Канонический базис — векторы $e_1 = \frac{\partial f}{\partial u}, e_2 = \frac{\partial f}{\partial v}.$

Риманова метрика

- Большинство вычислений сводятся к метрическим.
- Это позволяет сделать риманова метрика
- Абстрактно: положительно определённая билинейная форма, гладко зависящая от точки.

Евклидова риманова метрика, индуцированная вложением

- Обычно поверхность задана вложением $f: U \to \mathbb{R}^n$. Как вычислить g(X,Y)?
- Нельзя использовать $\langle \cdot, \cdot \rangle$ на $T_p M$. Почему?
- Индуцированная метрика: $g(X,Y) := \langle df(X), df(Y) \rangle$

I квадратичная форма

Пусть M = f(U), $p \in M$. Тогда на $T_p M$ есть (\cdot, \cdot) .

Матрица I квадратичной формы:

$$G = \begin{pmatrix} (e_1, e_1) & (e_1, e_2) \\ (e_1, e_2) & (e_2, e_2) \end{pmatrix}$$

Отображение Гаусса

- Вектор нормали перпендикуляр к $T_p M!$
- Отображение Гаусса: $N: M \to \mathbb{S}^2$
- Оно непрерывное!

Отображение Вайнгартена

· Отображение Вайнгартена:

 $dN: TM \rightarrow T\mathbb{S}^2$

- В каждой точке это изменение вектора N вдоль X!
- Касательный к поверхности (и сфере)

Нормальная кривизна

$$k_n(X) := \frac{(df(X), dN(X))}{(df(X), df(X))}$$

Главные кривизны

$$dN(X_j) = k_j df(X_j)$$

Оператор формы (Shape Operator)

$$S: T_pM \to T_pM, \quad df(SX) = dN(X)$$

Главные направления — собственные векторы S!

Главные кривизны — собственные значения S!

Гауссова и средняя кривизны

$$K := k_1 k_2, \qquad H = k_1 + k_2$$

Список литературы:

- [1] Keenan Crane Discrete Differential Geometry: An Applied Introduction, 2018.
- [2] А.О. Иванов, А.А. Тужилин Лекции по классической дифференциальной геометрии, 2009, Москва, Логос.

Лекция 1, cmp. 5 – 14

[3] А.И. Шафаревич — Курс лекций по классической дифференциальной геометрии, 2007, Москва, МГУ, Механико-математический факультет. *Лекция 1, стр. 3 – 10*