

-1-

**VESICANT TREATMENT WITH PHENYL-PHENYL TYPE
VITAMIN D RECEPTOR MODULATORS**

5

CROSS REFERENCE TO RELATED APPLICATIONS

This patent applicaton claims the benefit of priority under Title 35 United States Code, section 119(e), of Provisional Patent Application No. 60/439,580 filed January 10, 2003; the disclosure of which is incorporated herein by reference.

Chemical vesicants are typified by bis(2-chloroethyl) sulfide (Chemical Agent Symbol HD), Cl(CH₂)₂S(CH₂)₂Cl a compound that forms blisters by either liquid or vapor contact. Related sulfur analogues of Agent HD are 1,2-bis(2-chloroethylthio)ethane (Chemical Agent Symbol Q), Cl(CH₂)₂S(CH₂)₂S(CH₂)₂Cl; and bis(2-chloroethylthioethyl) ether, (Chemical Agent Symbol T) Cl(CH₂)₂S(CH₂)O(CH₂)₂S(CH₂)₂Cl. Nitrogen analogues of the sulfur mustard are also vesicants and have the general formula RN(CH₂CH₂Cl)₂. Exemplary nitrogen mustards are tris(2-chloroethyl) amine (Chemical Agent Symbol HN3), N(CH₂CH₂Cl)₃; N-methyl-2,2'-dichlorodiethylamine (Chemical Agent Symbol NH2); and 2,2'-dichlorotriethylamine, CH₃CH₂N(CH₂CH₂Cl)₂ (Chemical Agent Symbol NH1).

The activity 1 α ,25-dihydroxyvitamin D₃ in various systems suggests wide clinical applications. Recently, chemical modifications of 1 α ,25(OH)₂D₃ have yielded analogs with attenuated calcium mobilization effects (R. Bouillon et. al., Endocrine Rev. 1995, 16, 200-257). One such analog, Dovonex ® pharmaceutical agent (product of Bristol-Meyers Squibb Co.), is currently used in Europe and the United States as a topical treatment for mild to moderate psoriasis (K. Kragballe et. al., Br. J. Dermatol. 1988, 119, 223-230).

Other Vitamin D₃ mimics have been described in the publication, Vitamin D Analogs: Mechanism of Action of Therapeutic Applications, by Nagpal, S.; Lu, J.; Boehm, M. F., Curr. Med. Chem. 2001, 8, 1661-1679.

-2-

Synthetic VDR ligands have been synthesized. For example, a class of bis-phenyl compounds stated to mimic 1α , 25-dihydroxyvitamin D₃ is described in US Patent No. 6,218,430 and the article; "Novel nonsecosteroidal vitamin D mimics exert VDR-

- 5 modulating activities with less calcium mobilization than 1α , 25-Dihydroxyvitamin D₃" by Marcus F. Boehm, et. al., Chemistry & Biology 1999, Vol 6, No. 5, pgs. 265-275.
- Synthetic VDR ligands with reduced calcemic potential have been synthesized. For example, a class of bis-phenyl compounds stated to mimic 1α , 25-dihydroxyvitamin D₃ is described in US Patent No. 6,218,430 and the article; "Novel nonsecosteroidal vitamin D
- 10 mimics exert VDR-modulating activities with less calcium mobilization than 1α , 25-Dihydroxyvitamin D₃" by Marcus F. Boehm, et. al., Chemistry & Biology 1999, Vol 6, No. 5, pgs. 265-275.

Synthetic VDR ligands having an aryl-thiophene nucleus are described in United States provisional patent application SN 60/384151, filed 29 May 2002.

- 15 Although 1α , 25-Dihydroxyvitamin D₃ has been suggested for treatment of vesicants, there remains a need for more effective agents.

SUMMARY OF THE INVENTION

- Treatment and prevention of human skin cell damage by Mustard is done by
 20 contacting the skin cells with a pharmaceutically effective amount a compound represented by formula (I)

- wherein the variables R, R', R₁, R₂, Z_B, and Z_C are as hereinafter defined. It is a discovery of this invention that compounds described herein display the desirable cell differentiation and antiproliferative effects of $1,25(\text{OH})_2\text{D}_3$ with reduced calcium mobilization (calcemic) effects if substituent Z_C possesses a carbon atom linked group
 25

-3-

that is directly connected (i.e., with no intervening non-carbon atom) to the aryl nucleus.

In another aspect, the compounds of Formula (I) are contacted with cutaneous lesions to ameliorate or eliminate the effects of vesicants, particularly Mustard.

5 In another aspect, the compounds of Formula (I) are applied to tissues to promote wound healing from trauma initiated by toxic chemicals such as Mustard.

In another aspect, all of the preceding treatments are accomplished with reduced hypercalciurea and hypercalcemia.

In another aspect, treatment and prevention of human skin cell damage by Mustard is done by contacting the skin cells with a pharmaceutically effective amount a 10 formulation containing; (i) vitamin D receptor modulator compound of formula (I) together with (ii) a topical steroid.

In another aspect, the compounds of Formula I are used for the manufacture of a medicament for preventing or alleviating the effect of Mustard.

15 DETAILED DESCRIPTION OF THE INVENTION

Definitions:

The term, "abscess" refers to adverse complications often associated with surgery, trama, or diseases that predispose the host to abscess formation from encapsulated bacteria lymphocytes, macrophages, and etc.

20 The term, "adhesion" refers to the adverse and abnormal union of surfaces normally separate by the formation of new fibrous tissue resulting from an inflammatory process.

25 The term, "Active Ingredient" refers to a compound of the invention represented by any of (i) formulae I, any compound of Tables 1, 2, or 3, formulae AA to CY, C-1 to C-55 or TBU-1 to TBU-86 or any structural formula identified herein as a preferred embodiment of the invention.

The phrase, "compounds of Formula I" refers to "Active Ingredient".

30 The term, "Mustard" is inclusive of both sulfur mustards and nitrogen mustard vesicants, either alone or in any combination. Exemplary of such compounds are the vesicants; bis(2-chloroethyl) sulfide (Chemical Agent Symbol HD), Cl(CH₂)₂S(CH₂)₂Cl 1,2-bis(2-chloroethylthio)ethane-(Chemical Agent Symbol Q), Cl(CH₂)₂S(CH₂)₂S(CH₂)₂Cl; bis(2-chloroethylthioethyl) ether,

-4-

$\text{Cl}(\text{CH}_2)_2\text{S}(\text{CH}_2)\text{O}(\text{CH}_2)_2\text{S}(\text{CH}_2)_2\text{Cl}$ (Chemical Agent Symbol T); tris(2-chloroethyl)amine (Chemical Agent Symbol HN3) $\text{N}(\text{CH}_2\text{CH}_2\text{Cl})_3$; N-methyl-2,2'-dichlorodiethylamine (Chemical Agent Symbol NH2); and 2,2'-dichlorotriethylamine, $\text{CH}_3\text{CH}_2\text{N}(\text{CH}_2\text{CH}_2\text{Cl})_2$ (Chemical Agent Symbol NH1).

5 The term "branched C₃-C₅ alkyl" is an alkyl group selected from 1-methylethyl; 1-methylpropyl; 2-methylpropyl; 1,1-dimethylethyl; 1,1-dimethylpropyl; 1,2-dimethylpropyl; or 2,2-dimethylpropyl. Preferred branched C₃-C₅ alkyl groups are 2-methylpropyl and 1,1-dimethylethyl, with the 1,1-dimethylethyl group being most preferred.

10 The term, "branched alkyl terminal group" is used to identify the substituent Z_B of Formula I of the Invention. The defining characteristic of the branched alkyl terminal group is that it is placed on the diphenyl nucleus other than on the phenyl ring bearing the substituent Z_C as shown, for example, in the structural formula (B);

15

The term, "carbon atom linked group" is used to identify the chemical substituent Z_C in the Formula I definition of compounds of the invention. Its defining characteristic is a carbon atom as the first atom and point of attachment to the aryl ring to which it is attached. For example in the structural formula (C):

20

the arrow identifies the carbon atom linked directly to the aryl nucleus of formula (I). All compounds of the invention contain a carbon atom linked group as the Z_C substituent.

-5-

The term "alkenyl" refers to aliphatic groups wherein the point of attachment is a carbon-carbon double bond, for example vinyl, 1-propenyl, and 1-cyclohexenyl. Alkenyl groups may be straight-chain, branched-chain, cyclic, or combinations thereof, and may be optionally substituted. Suitable alkenyl groups have from 2 to about 20 carbon atoms.

5 The term "C₁-C₅ alkyl" refers to saturated aliphatic groups including straight-chain, branched-chain, and cyclic groups and any combinations thereof. Alkyl groups may further be divided into "primary", "secondary", and "tertiary" alkyl groups. In primary alkyl groups, the carbon atom of attachment is substituted with zero (methyl) or one organic radical. In secondary alkyl groups, the carbon atom of attachment is substituted
10 with two organic radicals. In tertiary alkyl groups, the carbon atom of attachment is substituted with three organic radicals. Examples of C₁-C₅ alkyl groups are methyl, ethyl, n-propyl, 1-methylethyl; n-butyl, 1-methylpropyl; 2-methylpropyl; 1,1-dimethylethyl; n-amyl, 1,1-dimethylpropyl; 1,2-dimethylpropyl; and 2,2-dimethylpropyl.

15 The term, "bond" when used to describe a divalent linking group indicates the absence of a divalent atom, for example in the group

when L₁ is -O-, L₂ is a bond, L₃ is -CH₂-, and R_B is tBu the structural formula is

20 The term "cycloalkyl" includes organic radicals such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term, "cycloalkenyl" includes organic radicals such as cyclopropenyl, cyclobutenyl, cyclopentenyl and cyclohexenyl.

25 The term, "C₁-C₅ fluoroalkyl" is an alkyl group containing fluorine and includes organic radicals such as -CF₃, -CHF₂, -CH₂F, -CF₂CF₃, -CHFCF₃, -CH₂CF₃, -CH₂CHF₂, and -CH₂CH₂F, with -CF₃ being preferred.

The abbreviation, "Me" means methyl.

The abbreviation, "Et" means ethyl.

The abbreviation, "iPr" means 1-methylethyl.

The abbreviation, "tBu" means 1,1-dimethylethyl.

-6-

The abbreviation, "3Me3OH44DiMe-Pentyl" means 3-methyl-3-hydroxy-4,4-dimethylpentyl.

The abbreviation, "3Me3OH44DiMe-Pentenyl" means 3-methyl-3-hydroxy-4,4-dimethylpentenyl.

5 The abbreviation, "3Me3OH44DiMe-Pentynyl" means 3-methyl-3-hydroxy-4,4-dimethylpentyl.

The abbreviation, "3Et3OH44DiMe-Pentyl" means 3-ethyl-3-hydroxy-4,4-dimethylpentyl.

10 The abbreviation, "3Et3OH44DiMe-Pentenyl" means 3-ethyl-3-hydroxy-4,4-dimethylpentenyl.

The abbreviation, "3Et3OH44DiMe-Pentynyl" means 3-ethyl-3-hydroxy-4,4-dimethylpentynyl.

The term, "-CH₂-C(O)-N-pyrrolidine" refers to the radical represented by the structural formula:

15

The term, "-CH₂-N-pyrrolidin-2-one" refers to the radical represented by the structural formula:

20

The term, "-CH₂-(1-methylpyrrolidin-2-one-3-yl)" refers to the organic radical represented by the structural formula:

The term, "1,3,4-oxadiazolin-2-one-5-yl" refers to the organic radical represented by the structural formula:

-7-

The term, "1,3,4-oxadiazolin-2-thione-5-yl" refers to the organic radical represented by the structural formula:

5

The term, "imidazolidine-2,4-dione-5-yl" refers to the organic radical represented by the structural formula:

The term, "isoxazol-3-ol-5-yl" refers to the organic radical represented by the
10 structural formula:

The term, "3-methyl-3-hydroxy-4,4-dimethylpentyl" refers to the radical having
the structural formula:

15 The term, "3-methyl-3-hydroxy-4,4-dimethylpentenyl." refers to the radical having
the structural formula (both cis and trans isomers):

-8-

The term, “3-methyl-3-hydroxy-4,4-dimethylpentyl” refers to the radical having the structural formula:

- 5 The term, “3-ethyl-3-hydroxy-4,4-dimethylpentynyl” refers to the radical having the structural formula:

- 10 The term, “3-ethyl-3-hydroxy-4,4-dimethylpentenyl” refers to the radical having the structural formula (both cis and trans isomers):

- The term, “3-ethyl-3-hydroxy-4,4-dimethylpentynyl” refers to the radical having the structural formula:

-9-

The term, “-5-ethylidene-1,3-thiazolidine-2,4-dione, refers to the radical represented by the structural formula:

- 5 The dotted line symbol crossing a solid line representing a bond

means that the bond so marked is the bond of attachment.

The structural formula representing the compounds of the invention with or without open display of all pendant hydrogen atoms are equivalent, for example:

10

is the same compound as

The term, "mammal" includes humans.

- 15 The term "ester" refers to compounds of the general formula; RO-C(O)R', prepared for example, where a hydroxy group of an acid is replaced with an alkoxide group. For example, a carboxylic ester is one in which the hydroxy group of a carboxylic acid is replaced with an alkoxide. Esters may derive from any acid comprising one or more hydroxy groups: for example, carbonic acid, carbamic acids, phosphonic acids, and sulfonic acids.

- 20 The term "halo" refer to fluorine, chlorine, bromine, and iodine.

The term, “C₁-C₅ fluoroalkyl” is an alkyl group containing fluorine and includes

-10-

organic radicals such as -CF₃, -CHF₂, -CH₂F, -CF₂CF₃, -CHFCF₃, -CH₂CF₃, -CH₂CHF₂, and -CH₂CH₂F, with -CF₃ being preferred.

The term, "(Acidic Group)" means a carbon atom linked organic group that acts as a proton donor capable of hydrogen bonding. Illustrative of an (Acidic Group) is a

5 group selected from the following:

-11-

Compounds of the Invention:

- 5 The compounds used in the method of the invention with vitamin receptor modulating (VDRM) activities are represented by formula (I) or a pharmaceutically acceptable salt or a prodrug derivative thereof:

-12-

wherein;

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 5 to 8 carbon atoms;

R₁ and R₂ are independently selected from the group consisting of hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, and C₃-C₅ cycloalkenyl;

Z_B is a group represented by the formula:

wherein

-(L₁), -(L₂)-, and -(L₃)- is each a divalent linking groups independently selected 15 from the group consisting of

a bond

-13-

where m is 0, 1, or 2, and each R40 is independently hydrogen, C₁-C₅ alkyl, or C₁-C₅ fluoroalkyl;

R_B is a branched C₃-C₅ alkyl;

Z_C is a carbon atom linked group selected from

- CO₂H,
- CO₂Me,
- CO₂Et,
- C(O)CH₂S(O)Me,
- C(O)CH₂S(O)Et,
- C(O)CH₂S(O)₂Me,
- C(O)CH₂S(O)₂Et,
- C(O)CH₂CH₂S(O)Me,
- C(O)CH₂CH₂S(O)Et,
- C(O)CH₂CH₂S(O)₂Me,
- C(O)CH₂CH₂S(O)₂Et,
- C(O)CH(Me)CH₂CO₂H,

-14-

- C(O)CH(Me)CH₂CO₂Me,
- C(O)CH(Me)CH₂CO₂Et,
- C(O)CH(Me)CH₂CO₂iPr,
- C(O)CH(Me)CH₂CO₂tBu,
- 5 -C(O)CH(Me)CH(Me)CO₂H,
- C(O)CH(Me)CH(Me)CO₂Me,
- C(O)CH(Me)CH(Me)CO₂Et,
- C(O)CH(Me)CH(Me)CO₂iPr,
- C(O)CH(Me)CH(Me)CO₂tBu,
- 10 -C(O)CH(Me)C(Me)₂CO₂H,
- C(O)CH(Me)C(Me)₂CO₂Me,
- C(O)CH(Me)C(Me)₂CO₂Et,
- C(O)CH(Me)C(Me)₂CO₂iPr,
- C(O)CH(Me)C(Me)₂CO₂tBu,
- 15 -C(O)CH(Me)CH(Et)CO₂H,
- C(O)CH(Me)CH(Et)CO₂Me,
- C(O)CH(Me)CH(Et)CO₂Et,
- C(O)CH(Me)CH(Et)CO₂iPr,
- C(O)CH(Me)CH(Et)CO₂tBu,
- 20 -C(O)C(O)OH,
- C(O)C(O)NH₂,
- C(O)C(O)NHMe,
- C(O)C(O)NMe₂,

-15-

- C(O)NH₂,
- C(O)NMe₂,
- C(O)NH-CH₂-C(O)OH,
- C(O)NH-CH₂-C(O)OMe,
- 5 -C(O)NH-CH₂-C(O)OEt,
- C(O)NH-CH₂-C(O)OiPr,
- C(O)NH-CH₂-C(O)OtBu,
- C(O)NH-CH(Me)-C(O)OH,
- C(O)NH-CH(Me)-C(O)OMe,
- 10 -C(O)NH-CH(Me)-C(O)OEt,
- C(O)NH-CH(Me)-C(O)iPr,
- C(O)NH-CH(Me)-C(O)tBu,
- C(O)NH-CH(Et)-C(O)OH,
- C(O)NH-C(Me)₂-C(O)OH,
- 15 -C(O)NH-C(Me)₂-C(O)OMe,
- C(O)NH-C(Me)₂-C(O)OEt,
- C(O)NH-C(Me)₂-C(O)iPr,
- C(O)NH-C(Me)₂-C(O)tBu,
- C(O)NH-CMe(Et)-C(O)OH,
- 20 -C(O)NH-CH(F)-C(O)OH,
- C(O)NH-CH(CF₃)-C(O)OH,
- C(O)NH-CH(OH)-C(O)OH,
- C(O)NH-CH(cyclopropyl)-C(O)OH,
- C(O)NH-C(Me)₂-C(O)OH,
- 25 -C(O)NH-C(Me)₂-C(O)OH,
- C(O)NH-CF(Me)-C(O)OH,
- C(O)NH-C(Me)(CF₃)-C(O)OH,
- C(O)NH-C(Me)(OH)-C(O)OH,
- C(O)NH-C(Me)(cyclopropyl)CO₂H
- 30 -C(O)NMe-CH₂-C(O)OH,
- C(O)NMe-CH₂-C(O)OMe,
- C(O)NMe-CH₂-C(O)OEt,

-16-

- C(O)NMe-CH₂-C(O)O*i*Pr,
- C(O)NMe-CH₂-C(O)tBu,
- C(O)NMe-CH₂-C(O)OH,
- C(O)NMe-CH(Me)-C(O)OH,
- 5 -C(O)NMe-CH(F)-C(O)OH,
- C(O)NMe-CH(CF₃)-C(O)OH,
- C(O)NMe-CH(OH)-C(O)OH,
- C(O)NMe-CH(cyclopropyl)-C(O)OH,
- C(O)NMe-C(Me)₂-C(O)OH,
- 10 -C(O)NMe-CF(Me)-C(O)OH,
- C(O)NMe-C(Me)(CF₃)-C(O)OH,
- C(O)NMe-C(Me)(OH)-C(O)OH,
- C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- C(O)NHS(O)Me,
- 15 -C(O)NHSO₂Me,
- C(O)-NH-5-tetrazolyl,
- C(O)NHS(O)Me,
- C(O)NHS(O)Et,
- C(O)NHSO₂Me,
- 20 -C(O)NHSO₂Et,
- C(O)NHS(O)iPr,
- C(O)NHSO₂iPr,
- C(O)NHS(O)tBu,
- C(O)NHSO₂tBu,
- 25 -C(O)NHCH₂S(O)Me,
- C(O)NHCH₂S(O)Et,
- C(O)NHCH₂SO₂Me,
- C(O)NHCH₂SO₂Et,
- C(O)NHCH₂CH₂S(O)Me,
- 30 -C(O)NHCH₂CH₂S(O)Et,
- C(O)NHCH₂CH₂SO₂Me,
- C(O)NHCH₂CH₂SO₂Et,

-17-

- C(O)N(Me)S(O)Me,
- C(O)N(Me)SO₂Me,
- C(O)-N(Me)-5-tetrazolyl,
- C(O)N(Me)S(O)Me,
- 5 -C(O)N(Me)S(O)Et,
- C(O)N(Me)SO₂Me,
- C(O)N(Me)SO₂Et,
- C(O)N(Me)S(O)iPr,
- C(O)N(Me)SO₂iPr,
- 10 -C(O)N(Me)S(O)tBu,
- C(O)N(Me)SO₂tBu,
- C(O)N(Me)CH₂S(O)Me,
- C(O)N(Me)CH₂S(O)Et,
- C(O)N(Me)CH₂SO₂Me,
- 15 -C(O)N(Me)CH₂SO₂Et,
- C(O)N(Me)CH₂CH₂S(O)Me,
- C(O)N(Me)CH₂CH₂S(O)Et,
- C(O)N(Me)CH₂CH₂SO₂Me,
- C(O)N(Me)CH₂CH₂SO₂Et,
- 20 -CH₂CO₂H,
- CH₂-5-tetrazolyl,
- CH₂CO₂Me,
- CH₂CO₂Et,
- CH₂NHS(O)Me,
- 25 -CH₂NHS(O)Et,
- CH₂NHSO₂Me,
- CH₂NHSO₂Et,
- CH₂NHS(O)iPr,
- CH₂NHSO₂iPr,
- 30 -CH₂NHS(O)tBu,
- CH₂NHSO₂tBu,
- CH₂NHCH₂CH₂SO₂CH₃,

-18-

- CH₂NH(CH₂CO₂H),
- CH₂N(C(O)Me)(CH₂CO₂H),
- CH₂-N-pyrrolidin-2-one,
- CH₂-(1-methylpyrrolidin-2-one-3-yl),
- 5 -CH₂S(O)Me,
- CH₂S(O)Et,
- CH₂S(O)₂Me,
- CH₂S(O)₂Et,
- CH₂S(O)iPr,
- 10 -CH₂S(O)₂iPr,
- CH₂S(O)tBu,
- CH₂S(O)₂tBu,
- CH₂CO₂H, CH₂C(O)NH₂,
- CH₂C(O)NMe₂,
- 15 -CH₂C(O)NHMe,
- CH₂C(O)-N-pyrrolidine,
- CH₂S(O)₂Me, CH₂S(O)Me,
- CH(OH) CO₂H,
- CH(OH)C(O)NH₂,
- 20 -CH(OH)C(O)NHMe,
- CH(OH)C(O)NMe₂,
- CH(OH)C(O)NEt₂,
- CH₂CH₂CO₂H,
- CH₂CH₂CO₂Me,
- 25 -CH₂CH₂CO₂Et,
- CH₂CH₂C(O)NH₂,
- CH₂CH₂C(O)NHMe,
- CH₂CH₂C(O)NMe₂,
- CH₂CH₂-5-tetrazolyl,
- 30 -CH₂CH₂S(O)₂Me,
- CH₂CH₂S(O)Me,
- CH₂CH₂S(O)₂Et,

-19-

- CH₂CH₂S(O) Et,
- CH₂CH₂S(O)iPr,
- CH₂CH₂S(O)₂iPr,
- CH₂CH₂S(O)tBu,
- 5 -CH₂CH₂S(O)₂tBu,
- CH₂CH₂S(O)NH₂,
- CH₂CH₂S(O)NHMe,
- CH₂CH₂S(O)NMe₂,
- CH₂CH₂S(O)₂NH₂,
- 10 -CH₂CH₂S(O)₂NHMe
- CH₂CH₂S(O)₂NMe₂,
- CH₂CH₂CH₂S(O)Me,
- CH₂CH₂CH₂S(O)Et,
- CH₂CH₂CH₂S(O)₂Me,
- 15 -CH₂CH₂CH₂S(O)₂Et,
- C(O)OH,
- 5-tetrazolyl,
- C(O)-N(Me)-5-tetrazolyl,

20

-20-

-21-

- 1,3,4-oxadiazolin-2-one-5-yl,
-imidazolidine-2,4-dione-5-yl,
-isoxazol-3-ol-yl, or
-1,3,4-oxadiazolin-2-thione-5-yl.

5

In the preceding formula (I) the divalent linking groups -(L1)- and -(L2)- and -(L3)- are understood (in the case of those having more than one substituent) to be oriented in either direction, for example, where divalent linker (L1) has the identity -(CH₂)_m-O-, it may be configured:

10 - (CH₂)_m-O- , it may be configured:

-22-

or

Preferred compounds used in the method of the invention with VDR modulating activities are represented by formula (I) or a pharmaceutically acceptable salt or a prodrug derivative thereof:

wherein;

R and R' are independently methyl, ethyl, propyl, or 1-methylethyl;

R₁ and R₂ are independently selected from the group consisting of hydrogen, fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, ethyl, propyl, 1-methylethyl, 1,1-dimethylethyl, butyl, 1-methylpropyl, 2-methylpropyl, or cyclopropyl;

Z_B is a branched alkyl terminated group represented by the formula:

15 R_B is 1-methylethyl; 1-methylpropyl; 2-methylpropyl; 1,1-dimethylethyl; 1,1-dimethylpropyl; 1,2-dimethylpropyl; 2,2-dimethylpropyl;

3-methyl-3-hydroxy-4,4-dimethylpentyl; 3-methyl-3-hydroxy-4,4-dimethylpentenyl;

20 3-methyl-3-hydroxy-4,4-dimethylpentyl; 3-ethyl-3-hydroxy-4,4-dimethylpentenyl; 3-ethyl-3-hydroxy-4,4-dimethylpentenyl; or 3-ethyl-3-hydroxy-4,4-dimethylpentynyl;

(L₁) and (L₂) and (L₃) are independently divalent linking groups where

-23-

L₁ is -O-, -CH₂-, -CHOH-, -CH(Me)-, -C(O)-, or -C(Me)OH- ;

L₂ is -CH₂-, -CHOH-, -CH(Me)-, -C(O)-, or -C(Me)OH- ; or

L₁ and L₂ taken together is the group

5

L₃ is a bond, -CH₂-, -CHOH-, -CH(Me)-, -C(O)-, or -C(Me)OH- ;

Z_C is a group selected from

-C(O)CH₂S(O)Me,

-C(O)CH₂S(O)Et,

10 -C(O)CH₂S(O)₂Me,

-C(O)CH₂S(O)₂Et,

-C(O)CH₂CH₂S(O)Me,

-C(O)CH₂CH₂S(O)Et,

-C(O)CH₂CH₂S(O)₂Me,

15 -C(O)CH₂CH₂S(O)₂Et,

-C(O)CH(Me)CH₂CO₂H,

-C(O)CH(Me)CH₂CO₂Me,

-C(O)CH(Me)CH₂CO₂Et,

-C(O)CH(Me)CH₂CO₂iPr,

20 -C(O)CH(Me)CH₂CO₂tBu,

-C(O)CH(Me)CH(Me)CO₂H,

-C(O)CH(Me)CH(Me)CO₂Me,

-C(O)CH(Me)CH(Me)CO₂Et,

-C(O)CH(Me)CH(Me)CO₂iPr,

25 -C(O)CH(Me)CH(Me)CO₂tBu,

-C(O)CH(Me)C(Me)₂CO₂H,

-C(O)CH(Me)C(Me)₂CO₂Me,

-24-

- C(O)CH(Me)C(Me)₂CO₂Et,
- C(O)CH(Me)C(Me)₂CO₂iPr,
- C(O)CH(Me)C(Me)₂CO₂tBu,
- C(O)CH(Me)CH(Et)CO₂H,
- 5 -C(O)CH(Me)CH(Et)CO₂Me,
- C(O)CH(Me)CH(Et)CO₂Et,
- C(O)CH(Me)CH(Et)CO₂iPr,
- C(O)CH(Me)CH(Et)CO₂tBu,
- C(O)C(O)OH,
- 10 -C(O)C(O)NH₂,
- C(O)C(O)NHMe,
- C(O)C(O)NMe₂,
- C(O)NH₂,
- C(O)NMe₂,
- 15 -C(O)NH-CH₂-C(O)OH,
- C(O)NH-CH₂-C(O)OMe,
- C(O)NH-CH₂-C(O)OEt,
- C(O)NH-CH₂-C(O)OiPr,
- C(O)NH-CH₂-C(O)OtBu,
- 20 -C(O)NH-CH(Me)-C(O)OH,
- C(O)NH-CH(Me)-C(O)OMe,
- C(O)NH-CH(Me)-C(O)OEt,
- C(O)NH-CH(Me)-C(O)iPr,
- C(O)NH-CH(Me)-C(O)tBu,
- 25 -C(O)NH-CH(Et)-C(O)OH,
- C(O)NH-C(Me)₂-C(O)OH,
- C(O)NH-C(Me)₂-C(O)OMe,
- C(O)NH-C(Me)₂-C(O)OEt,
- C(O)NH-C(Me)₂-C(O)iPr,
- 30 -C(O)NH-C(Me)₂-C(O)tBu,
- C(O)NH-CMe(Et)-C(O)OH,
- C(O)NH-CH(F)-C(O)OH,

-25-

- C(O)NH-CH(CF₃)-C(O)OH,
- C(O)NH-CH(OH)-C(O)OH,
- C(O)NH-CH(cyclopropyl)-C(O)OH,
- C(O)NH-C(Me)₂-C(O)OH,
- 5 -C(O)NH-C(Me)₂-C(O)OH,
- C(O)NH-CF(Me)-C(O)OH,
- C(O)NH-C(Me)(CF₃)-C(O)OH,
- C(O)NH-C(Me)(OH)-C(O)OH,
- C(O)NH-C(Me)(cyclopropyl)CO₂H,
- 10 -C(O)NMe-CH₂-C(O)OH,
- C(O)NMe-CH₂-C(O)OMe,
- C(O)NMe-CH₂-C(O)OEt,
- C(O)NMe-CH₂-C(O)OiPr,
- C(O)NMe-CH₂-C(O)tBu,
- 15 -C(O)NMe-CH(Me)-C(O)OH,
- C(O)NMe-CH(F)-C(O)OH,
- C(O)NMe-CH(CF₃)-C(O)OH,
- C(O)NMe-CH(OH)-C(O)OH,
- C(O)NMe-CH(cyclopropyl)-C(O)OH,
- 20 -C(O)NMe-C(Me)₂-C(O)OH,
- C(O)NMe-CF(Me)-C(O)OH,
- C(O)NMe-C(Me)(CF₃)-C(O)OH,
- C(O)NMe-C(Me)(OH)-C(O)OH,
- C(O)NMe-C(Me)(cyclopropyl)-C(O)OH, or
- 25 -C(O)-N(Me)-5-tetrazolyl.

Other preferred compounds used in the method of the invention are those represented by formula (I) or a pharmaceutically acceptable salt or a prodrug derivative thereof:

-26-

wherein:

R and R' are independently methyl or ethyl;

R₁ and R₂ are independently selected from the group consisting of hydrogen,

5 fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, or cyclopropyl;

Z_B is a branched alkyl terminated selected from the formulae:

,

,

-27-

-28-

, or ;

 Z_C is selected from

- 5
- $-C(O)NH_2,$
 - $-C(O)NMe_2,$
 - $-C(O)NH-CH_2-C(O)OH,$
 - $-C(O)NH-CH_2-C(O)OMe,$
 - $-C(O)NH-CH_2-C(O)OEt,$
 - $-C(O)NH-CH_2-C(O)OiPr,$
 - $-C(O)NH-CH_2-C(O)OtBu,$
 - $-C(O)NH-CH(Me)-C(O)OH,$
 - $-C(O)NH-CH(Me)-C(O)OMe,$
 - $-C(O)NH-CH(Me)-C(O)OEt,$
 - $-C(O)NH-CH(Me)-C(O)iPr,$
 - $-C(O)NH-CH(Me)-C(O)tBu,$
 - $-C(O)NH-CH(Et)-C(O)OH,$
 - $-C(O)NH-C(Me)_2-C(O)OH,$
 - $-C(O)NH-C(Me)_2-C(O)OMe,$
 - $-C(O)NH-C(Me)_2-C(O)OEt,$
- 10
- 15

-29-

- C(O)NH-C(Me)₂-C(O)iPr,
- C(O)NH-C(Me)₂-C(O)tBu,
- C(O)NH-CMe(Et)-C(O)OH,
- C(O)NH-CH(F)-C(O)OH,
- 5 -C(O)NH-CH(CF₃)-C(O)OH,
- C(O)NH-CH(OH)-C(O)OH,
- C(O)NH-CH(cyclopropyl)-C(O)OH,
- C(O)NH-C(Me)₂-C(O)OH,
- C(O)NH-C(Me)₂-C(O)OH,
- 10 -C(O)NH-CF(Me)-C(O)OH,
- C(O)NH-C(Me)(CF₃)-C(O)OH,
- C(O)NH-C(Me)(OH)-C(O)OH,
- C(O)NH-C(Me)(cyclopropyl)CO₂H,
- C(O)NMe-CH₂-C(O)OH,
- 15 -C(O)NMe-CH₂-C(O)OMe,
- C(O)NMe-CH₂-C(O)OEt,
- C(O)NMe-CH₂-C(O)OiPr,
- C(O)NMe-CH₂-C(O)tBu,
- C(O)NMe-CH(Me)-C(O)OH,
- 20 -C(O)NMe-CH(F)-C(O)OH,
- C(O)NMe-CH(CF₃)-C(O)OH,
- C(O)NMe-CH(OH)-C(O)OH,

-30-

- C(O)NMe-CH(cyclopropyl)-C(O)OH,
- C(O)NMe-C(Me)₂-C(O)OH,
- C(O)NMe-CF(Me)-C(O)OH,
- C(O)NMe-C(Me)(CF₃)-C(O)OH,
- 5 -C(O)NMe-C(Me)(OH)-C(O)OH,
- C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- C(O)-N(Me)-5-tetrazolyl,

10 , or

Particularly preferred compounds used in the method of the invention is a compound or a pharmaceutically acceptable salt or ester prodrug derivative thereof represented by structural formulae (AA) to(DB) as follows:

15 AA)

-31-

AF)

AJ)

5

AP)

AR)

-32-

AS)

AT)

5

AW)

AZ)

-33-

BA)

BE)

5

BF)

BH)

-34-

,

BI)

,

BJ)

5

,

BK)

,

BN)

-35-

BP)

CA)

5.

CB)

CC)

10

CE)

-36-

CF)

CI)

5

CL)

-37-

DA)

5

, or

DB)

-38-

- Other particularly preferred compounds used in the method of the
5 invention are those shown by the structural formulae C-1 to C-54 set out below.
Pharmaceutically acceptable salts for prodrug derivatives of these compounds are also
preferred.

-39-

C-1)

C-2)

5

C-3)

C-4)

-40-

C-6)

5

C-7)

-41-

C-8)

C-9)

C-10)

-42-

C-12)

C-13)

5

C-15)

C-16)

-43-

C-17)

C-18)

5

C-19)

C-20)

10

-44-

C-21)

C-22)

5

C-25)

C-26)

10

-45-

C-29)

C-31)

5

C-35)

C-36)

10

C-39)

-46-

C-42)

5

C-43)

-47-

C-44)

5

C-45)

10

C-48)

-48-

C-52)

5

C-54)

C-55)

10

-49-

Most preferred are the individual enantiomers or a mixture of enantiomers represented by the formulae:

5

and

-50-

Additional particularly preferred compounds used in the method of the invention are compounds or a pharmaceutically acceptable salt or prodrug derivative thereof selected from (TBU-1) to (TBU-86), as follows:

5

TBU-1)

TBU-2)

TBU-3)

10

TBU-4)

-51-

TBU-5)

TBU-6)

5

TBU-7)

TBU-8)

-52-

TBU-9)

TBU-10)

5

TBU-11)

TBU-12)

-53-

TBU-13)

TBU-14)

5

TBU-15)

TBU-16)

-54-

TBU-17)

TBU-18)

5

TBU-19)

TBU-20)

-55-

TBU-21)

TBU-22)

5

TBU-23)

TBU-24)

-56-

TBU-25)

TBU-26)

5

TBU-27)

TBU-28)

-57-

TBU-29)

TBU-30)

5

TBU-31)

TBU-32)

-58-

TBU-33)

TBU-34)

5

TBU-35)

TBU-36)

-59-

TBU-37)

TBU-38)

5

TBU-39)

TBU-40)

-60-

TBU-41)

TBU-42)

5

TBU-43)

TBU-44)

-61-

TBU-45)

TBU-46)

5

TBU-47)

TBU-48)

-62-

TBU-49)

TBU-50)

5

TBU-51)

TBU-52)

-63-

TBU-53)

TBU-54)

5

TBU-55)

TBU-56)

-64-

TBU-57)

TBU-58)

5

TBU-59)

TBU-60)

-65-

TBU-61)

TBU-62)

5

TBU-63)

TBU-64)

-66-

TBU-65)

TBU-66)

5

TBU-67)

TBU-68)

-67-

TBU-69)

TBU-70)

5

TBU-71)

TBU-72)

-68-

TBU-73)

TBU-74)

5

TBU-75)

TBU-76)

-69-

TBU-77)

TBU-78)

5

TBU-79)

TBU-80)

-70-

TBU-81)

TBU-82)

5

TBU-83)

TBU-84)

-71-

TBU-85)

TBU-86)

5

Particularly preferred as a compound used in the method of the invention is the compound or a pharmaceutically acceptable salt or ester prodrug derivative of the compound represented by the formula:

-72-

or

5

or

Other particularly preferred compounds used in the method of the invention is the compound or a pharmaceutically acceptable salt or ester prodrug derivative of the compound represented by the formula:

-73-

or

5

For all of the above compounds of the invention defined by Formula (I) the preferred prodrug derivative is a methyl ester, ethyl ester N,N-diethylglycolamido ester or morpholinylethyl ester. In addition, for all of the above compounds of the invention the
10 preferred salt is sodium or potassium.

Other specific compounds that are preferred embodiments of this invention and are preferred for practicing the method of treatment of the invention are set out in the following Tables. All numbers in the Tables cells reciting chemical species are to be understood as subscripts in chemical formulae, for example, in the first row of Table 1,
15 Compound No. 1, the symbol, "CO₂Me" is to be understood as the conventional chemical nomenclature, -- CO₂H --. Each row of the Tables 1 and 2 represents a single compound having an identifying defining the specific substituents in the structural formula displayed above each Tables, as follows:

-74-

Among other preferred compounds used in the method of the invention are those represented by the formula:

- 5 and pharmaceutically acceptable salts thereof; wherein;
said compound is selected from a compound code numbered 1 thru 468, with each compound having the specific selection of substituents R_B , R_C , L_1 , L_2 , and L_3 shown in the row following the compound code number, as set out in the following Table 1 :

Table 1

No.	R_B	L_3	L_2	L_1	R_C
1	tBu	C(O)	CH2	O	C(O)CH(Me)CH2CO2H
2	tBu	CHOH	CH2	O	C(O)CH(Me)CH2CO2H
3	tBu	C(Me)OH	CH2	O	C(O)CH(Me)CH2CO2H
4	tBu	C(O)	CH(Me)	O	C(O)CH(Me)CH2CO2H
5	tBu	CHOH	CH(Me)	O	C(O)CH(Me)CH2CO2H
6	tBu	C(Me)OH	CH(Me)	O	C(O)CH(Me)CH2CO2H
7	tBu	C(O)	CH2	O	CO2H
8	tBu	CHOH	CH2	O	CO2H
9	tBu	C(Me)OH	CH2	O	CO2H
10	tBu	C(O)	CH(Me)	O	CO2H
11	tBu	CHOH	CH(Me)	O	CO2H
12	tBu	C(Me)OH	CH(Me)	O	CO2H
13	tBu	C(O)	CH2	O	C(O)NH2
14	tBu	CHOH	CH2	O	C(O)NH2
15	tBu	C(Me)OH	CH2	O	C(O)NH2
16	tBu	C(O)	CH(Me)	O	C(O)NH2
17	tBu	CHOH	CH(Me)	O	C(O)NH2

-75-

18	tBu	C(Me)OH	CH(Me)	O	C(O)NH2
19	tBu	C(O)	CH2	O	C(O)NMe2
20	tBu	CHOH	CH2	O	C(O)NMe2
21	tBu	C(Me)OH	CH2	O	C(O)NMe2
22	tBu	C(O)	CH(Me)	O	C(O)NMe2
23	tBu	CHOH	CH(Me)	O	C(O)NMe2
24	tBu	C(Me)OH	CH(Me)	O	C(O)NMe2
25	tBu	C(O)	CH2	O	5-tetrazolyl
26	tBu	CHOH	CH2	O	5-tetrazolyl
27	tBu	C(Me)OH	CH2	O	5-tetrazolyl
28	tBu	C(O)	CH(Me)	O	5-tetrazolyl
29	tBu	CHOH	CH(Me)	O	5-tetrazolyl
30	tBu	C(Me)OH	CH(Me)	O	5-tetrazolyl
31	tBu	C(O)	CH2	O	C(O)-NH-5-tetrazolyl
32	tBu	CHOH	CH2	O	C(O)-NH-5-tetrazolyl
33	tBu	C(Me)OH	CH2	O	C(O)-NH-5-tetrazolyl
34	tBu	C(O)	CH(Me)	O	C(O)-NH-5-tetrazolyl
35	tBu	CHOH	CH(Me)	O	C(O)-NH-5-tetrazolyl
36	tBu	C(Me)OH	CH(Me)	O	C(O)-NH-5-tetrazolyl
37	tBu	C(O)	CH2	O	C(O)NHCH2SO2Me
38	tBu	CHOH	CH2	O	C(O)NHCH2SO2Me
39	tBu	C(Me)OH	CH2	O	C(O)NHCH2SO2Me
40	tBu	C(O)	CH(Me)	O	C(O)NHCH2SO2Me
41	tBu	CHOH	CH(Me)	O	C(O)NHCH2SO2Me
42	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2SO2Me
43	tBu	C(O)	CH2	O	C(O)NHCH2S(O)Me
44	tBu	CHOH	CH2	O	C(O)NHCH2S(O)Me
45	tBu	C(Me)OH	CH2	O	C(O)NHCH2S(O)Me
46	tBu	C(O)	CH(Me)	O	C(O)NHCH2S(O)Me
47	tBu	CHOH	CH(Me)	O	C(O)NHCH2S(O)Me
48	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2S(O)Me

-76-

49	tBu	C(O)	CH2	O	C(O)NHCH2CH2SO2Me
50	tBu	CHOH	CH2	O	C(O)NHCH2CH2SO2Me
51	tBu	C(Me)OH	CH2	O	C(O)NHCH2CH2SO2Me
52	tBu	C(O)	CH(Me)	O	C(O)NHCH2CH2SO2Me
53	tBu	CHOH	CH(Me)	O	C(O)NHCH2CH2SO2Me
54	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2CH2SO2Me
55	tBu	C(O)	CH2	O	C(O)NHCH2CH2S(O)Me
56	tBu	CHOH	CH2	O	C(O)NHCH2CH2S(O)Me
57	tBu	C(Me)OH	CH2	O	C(O)NHCH2CH2S(O)Me
58	tBu	C(O)	CH(Me)	O	C(O)NHCH2CH2S(O)Me
59	tBu	CHOH	CH(Me)	O	C(O)NHCH2CH2S(O)Me
60	tBu	C(Me)OH	CH(Me)	O	C(O)NHCH2CH2S(O)Me
61	tBu	C(O)	CH2	O	C(O)NHSO2Me
62	tBu	CHOH	CH2	O	C(O)NHSO2Me
63	tBu	C(Me)OH	CH2	O	C(O)NHSO2Me
64	tBu	C(O)	CH(Me)	O	C(O)NHSO2Me
65	tBu	CHOH	CH(Me)	O	C(O)NHSO2Me
66	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2Me
67	tBu	C(O)	CH2	O	C(O)NHS(O)Me
68	tBu	CHOH	CH2	O	C(O)NHS(O)Me
69	tBu	C(Me)OH	CH2	O	C(O)NHS(O)Me
70	tBu	C(O)	CH(Me)	O	C(O)NHS(O)Me
71	tBu	CHOH	CH(Me)	O	C(O)NHS(O)Me
72	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)Me
73	tBu	C(O)	CH2	O	C(O)NHSO2Et
74	tBu	CHOH	CH2	O	C(O)NHSO2Et
75	tBu	C(Me)OH	CH2	O	C(O)NHSO2Et
76	tBu	C(O)	CH(Me)	O	C(O)NHSO2Et
77	tBu	CHOH	CH(Me)	O	C(O)NHSO2Et
78	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2Et
79	tBu	C(O)	CH2	O	C(O)NHS(O)Et

-77-

80	tBu	CHOH	CH2	O	C(O)NHS(O)Et
81	tBu	C(Me)OH	CH2	O	C(O)NHS(O)Et
82	tBu	C(O)	CH(Me)	O	C(O)NHS(O)Et
83	tBu	CHOH	CH(Me)	O	C(O)NHS(O)Et
84	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)Et
85	tBu	C(O)	CH2	O	C(O)NHSO2iPr
86	tBu	CHOH	CH2	O	C(O)NHSO2iPr
87	tBu	C(Me)OH	CH2	O	C(O)NHSO2iPr
88	tBu	C(O)	CH(Me)	O	C(O)NHSO2iPr
89	tBu	CHOH	CH(Me)	O	C(O)NHSO2iPr
90	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2iPr
91	tBu	C(O)	CH2	O	C(O)NHS(O)iPr
92	tBu	CHOH	CH2	O	C(O)NHS(O)iPr
93	tBu	C(Me)OH	CH2	O	C(O)NHS(O)iPr
94	tBu	C(O)	CH(Me)	O	C(O)NHS(O)iPr
95	tBu	CHOH	CH(Me)	O	C(O)NHS(O)iPr
96	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)iPr
97	tBu	C(O)	CH2	O	C(O)NHSO2tBu
98	tBu	CHOH	CH2	O	C(O)NHSO2tBu
99	tBu	C(Me)OH	CH2	O	C(O)NHSO2tBu
100	tBu	C(O)	CH(Me)	O	C(O)NHSO2tBu
101	tBu	CHOH	CH(Me)	O	C(O)NHSO2tBu
102	tBu	C(Me)OH	CH(Me)	O	C(O)NHSO2tBu
103	tBu	C(O)	CH2	O	C(O)NHS(O)tBu
104	tBu	CHOH	CH2	O	C(O)NHS(O)tBu
105	tBu	C(Me)OH	CH2	O	C(O)NHS(O)tBu
106	tBu	C(O)	CH(Me)	O	C(O)NHS(O)tBu
107	tBu	CHOH	CH(Me)	O	C(O)NHS(O)tBu
108	tBu	C(Me)OH	CH(Me)	O	C(O)NHS(O)tBu
109	tBu	C(O)	CH2	O	CH2NHSO2Me
110	tBu	CHOH	CH2	O	CH2NHSO2Me

-78-

111	tBu	C(Me)OH	CH2	O	CH2NHSO2Me
112	tBu	C(O)	CH(Me)	O	CH2NHSO2Me
113	tBu	CHOH	CH(Me)	O	CH2NHSO2Me
114	tBu	C(Me)OH	CH(Me)	O	CH2NHSO2Me
115	tBu	C(O)	CH2	O	CH2NHS(O)Me
116	tBu	CHOH	CH2	O	CH2NHS(O)Me
117	tBu	C(Me)OH	CH2	O	CH2NHS(O)Me
118	tBu	C(O)	CH(Me)	O	CH2NHS(O)Me
119	tBu	CHOH	CH(Me)	O	CH2NHS(O)Me
120	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)Me
121	tBu	C(O)	CH2	O	CH2NHSO2Et
122	tBu	CHOH	CH2	O	CH2NHSO2Et
123	tBu	C(Me)OH	CH2	O	CH2NHSO2Et
124	tBu	C(O)	CH(Me)	O	CH2NHSO2Et
125	tBu	CHOH	CH(Me)	O	CH2NHSO2Et
126	tBu	C(Me)OH	CH(Me)	O	CH2NHSO2Et
127	tBu	C(O)	CH2	O	CH2NHS(O)Et
128	tBu	CHOH	CH2	O	CH2NHS(O)Et
129	tBu	C(Me)OH	CH2	O	CH2NHS(O)Et
130	tBu	C(O)	CH(Me)	O	CH2NHS(O)Et
131	tBu	CHOH	CH(Me)	O	CH2NHS(O)Et
132	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)Et
133	tBu	C(O)	CH2	O	CH2NHSO2iPr
134	tBu	CHOH	CH2	O	CH2NHSO2iPr
135	tBu	C(Me)OH	CH2	O	CH2NHSO2iPr
136	tBu	C(O)	CH(Me)	O	CH2NHSO2iPr
137	tBu	CHOH	CH(Me)	O	CH2NHSO2iPr
138	tBu	C(Me)OH	CH(Me)	O	CH2NHSO2iPr
139	tBu	C(O)	CH2	O	CH2NHS(O)iPr
140	tBu	CHOH	CH2	O	CH2NHS(O)iPr
141	tBu	C(Me)OH	CH2	O	CH2NHS(O)iPr

-79-

142	tBu	C(O)	CH(Me)	O	CH2NHS(O)iPr
143	tBu	CHOH	CH(Me)	O	CH2NHS(O)iPr
144	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)iPr
145	tBu	C(O)	CH2	O	CH2NHSO2tBu
146	tBu	CHOH	CH2	O	CH2NHSO2tBu
147	tBu	C(Me)OH	CH2	O	CH2NHSO2tBu
148	tBu	C(O)	CH(Me)	O	CH2NHSO2tBu
149	tBu	CHOH	CH(Me)	O	CH2NHSO2tBu
150	tBu	C(Me)OH	CH(Me)	O	CH2NHSO2tBu
151	tBu	C(O)	CH2	O	CH2NHS(O)tBu
152	tBu	CHOH	CH2	O	CH2NHS(O)tBu
153	tBu	C(Me)OH	CH2	O	CH2NHS(O)tBu
154	tBu	C(O)	CH(Me)	O	CH2NHS(O)tBu
155	tBu	CHOH	CH(Me)	O	CH2NHS(O)tBu
156	tBu	C(Me)OH	CH(Me)	O	CH2NHS(O)tBu
157	tBu	C(O)	CH2	O	CH2-N-pyrrolidin-2-one
158	tBu	CHOH	CH2	O	CH2-N-pyrrolidin-2-one
159	tBu	C(Me)OH	CH2	O	CH2-N-pyrrolidin-2-one
160	tBu	C(O)	CH(Me)	O	CH2-N-pyrrolidin-2-one
161	tBu	CHOH	CH(Me)	O	CH2-N-pyrrolidin-2-one
162	tBu	C(Me)OH	CH(Me)	O	CH2-N-pyrrolidin-2-one
163	tBu	C(O)	CH2	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
164	tBu	CHOH	CH2	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
165	tBu	C(Me)OH	CH2	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
166	tBu	C(O)	CH(Me)	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
167	tBu	CHOH	CH(Me)	O	CH2-(1-methylpyrrolidin-2-one-3-yl)

-80-

168	tBu	C(Me)OH	CH(Me)	O	CH2-(1-methylpyrrolidin-2-one-3-yl)
169	tBu	C(O)	CH2	O	CH2CO2Me
170	tBu	CHOH	CH2	O	CH2CO2Me
171	tBu	C(Me)OH	CH2	O	CH2CO2Me
172	tBu	C(O)	CH(Me)	O	CH2CO2Me
173	tBu	CHOH	CH(Me)	O	CH2CO2Me
174	tBu	C(Me)OH	CH(Me)	O	CH2CO2Me
175	tBu	C(O)	CH2	O	CH2CO2H
176	tBu	CHOH	CH2	O	CH2CO2H
177	tBu	C(Me)OH	CH2	O	CH2CO2H
178	tBu	C(O)	CH(Me)	O	CH2CO2H
179	tBu	CHOH	CH(Me)	O	CH2CO2H
180	tBu	C(Me)OH	CH(Me)	O	CH2CO2H
181	tBu	C(O)	CH2	O	CH2C(O)NH2
182	tBu	CHOH	CH2	O	CH2C(O)NH2
183	tBu	C(Me)OH	CH2	O	CH2C(O)NH2
184	tBu	C(O)	CH(Me)	O	CH2C(O)NH2
185	tBu	CHOH	CH(Me)	O	CH2C(O)NH2
186	tBu	C(Me)OH	CH(Me)	O	CH2C(O)NH2
187	tBu	C(O)	CH2	O	CH2C(O)NMe2
188	tBu	CHOH	CH2	O	CH2C(O)NMe2
189	tBu	C(Me)OH	CH2	O	CH2C(O)NMe2
190	tBu	C(O)	CH(Me)	O	CH2C(O)NMe2
191	tBu	CHOH	CH(Me)	O	CH2C(O)NMe2
192	tBu	C(Me)OH	CH(Me)	O	CH2C(O)NMe2
193	tBu	C(O)	CH2	O	CH2C(O)-N-pyrrolidine
194	tBu	CHOH	CH2	O	CH2C(O)-N-pyrrolidine
195	tBu	C(Me)OH	CH2	O	CH2C(O)-N-pyrrolidine
196	tBu	C(O)	CH(Me)	O	CH2C(O)-N-pyrrolidine
197	tBu	CHOH	CH(Me)	O	CH2C(O)-N-pyrrolidine

-81-

198	tBu	C(Me)OH	CH(Me)	O	CH2C(O)-N-pyrrolidine
199	tBu	C(O)	CH2	O	CH2-5-tetrazolyl
200	tBu	CHOH	CH2	O	CH2-5-tetrazolyl
201	tBu	C(Me)OH	CH2	O	CH2-5-tetrazolyl
202	tBu	C(O)	CH(Me)	O	CH2-5-tetrazolyl
203	tBu	CHOH	CH(Me)	O	CH2-5-tetrazolyl
204	tBu	C(Me)OH	CH(Me)	O	CH2-5-tetrazolyl
205	tBu	C(O)	CH2	O	C(O)C(O)OH
206	tBu	CHOH	CH2	O	C(O)C(O)OH
207	tBu	C(Me)OH	CH2	O	C(O)C(O)OH
208	tBu	C(O)	CH(Me)	O	C(O)C(O)OH
209	tBu	CHOH	CH(Me)	O	C(O)C(O)OH
210	tBu	C(Me)OH	CH(Me)	O	C(O)C(O)OH
211	tBu	C(O)	CH2	O	CH(OH)C(O)OH
212	tBu	CHOH	CH2	O	CH(OH)C(O)OH
213	tBu	C(Me)OH	CH2	O	CH(OH)C(O)OH
214	tBu	C(O)	CH(Me)	O	CH(OH)C(O)OH
215	tBu	CHOH	CH(Me)	O	CH(OH)C(O)OH
216	tBu	C(Me)OH	CH(Me)	O	CH(OH)C(O)OH
217	tBu	C(O)	CH2	O	C(O)C(O)NH2
218	tBu	CHOH	CH2	O	C(O)C(O)NH2
219	tBu	C(Me)OH	CH2	O	C(O)C(O)NH2
220	tBu	C(O)	CH(Me)	O	C(O)C(O)NH2
221	tBu	CHOH	CH(Me)	O	C(O)C(O)NH2
222	tBu	C(Me)OH	CH(Me)	O	C(O)C(O)NH2
223	tBu	C(O)	CH2	O	CH(OH)C(O)NH2
224	tBu	CHOH	CH2	O	CH(OH)C(O)NH2
225	tBu	C(Me)OH	CH2	O	CH(OH)C(O)NH2
226	tBu	C(O)	CH(Me)	O	CH(OH)C(O)NH2
227	tBu	CHOH	CH(Me)	O	CH(OH)C(O)NH2
228	tBu	C(Me)OH	CH(Me)	O	CH(OH)C(O)NH2

-82-

229	tBu	C(O)	CH2	O	C(O)C(O)NMe2
230	tBu	CHOH	CH2	O	C(O)C(O)NMe2
231	tBu	C(Me)OH	CH2	O	C(O)C(O)NMe2
232	tBu	C(O)	CH(Me)	O	C(O)C(O)NMe2
233	tBu	CHOH	CH(Me)	O	C(O)C(O)NMe2
234	tBu	C(Me)OH	CH(Me)	O	C(O)C(O)NMe2
235	tBu	C(O)	CH2	O	CH(OH)C(O)NMe2
236	tBu	CHOH	CH2	O	CH(OH)C(O)NMe2
237	tBu	C(Me)OH	CH2	O	CH(OH)C(O)NMe2
238	tBu	C(O)	CH(Me)	O	CH(OH)C(O)NMe2
239	tBu	CHOH	CH(Me)	O	CH(OH)C(O)NMe2
240	tBu	C(Me)OH	CH(Me)	O	CH(OH)C(O)NMe2
241	tBu	C(O)	CH2	O	CH2CH2CO2H
242	tBu	CHOH	CH2	O	CH2CH2CO2H
243	tBu	C(Me)OH	CH2	O	CH2CH2CO2H
244	tBu	C(O)	CH(Me)	O	CH2CH2CO2H
245	tBu	CHOH	CH(Me)	O	CH2CH2CO2H
246	tBu	C(Me)OH	CH(Me)	O	CH2CH2CO2H
247	tBu	C(O)	CH2	O	CH2CH2C(O)NH2
248	tBu	CHOH	CH2	O	CH2CH2C(O)NH2
249	tBu	C(Me)OH	CH2	O	CH2CH2C(O)NH2
250	tBu	C(O)	CH(Me)	O	CH2CH2C(O)NH2
251	tBu	CHOH	CH(Me)	O	CH2CH2C(O)NH2
252	tBu	C(Me)OH	CH(Me)	O	CH2CH2C(O)NH2
253	tBu	C(O)	CH2	O	CH2CH2C(O)NMe2
254	tBu	CHOH	CH2	O	CH2CH2C(O)NMe2
255	tBu	C(Me)OH	CH2	O	CH2CH2C(O)NMe2
256	tBu	C(O)	CH(Me)	O	CH2CH2C(O)NMe2
257	tBu	CHOH	CH(Me)	O	CH2CH2C(O)NMe2
258	tBu	C(Me)OH	CH(Me)	O	CH2CH2C(O)NMe2
259	tBu	C(O)	CH2	O	CH2CH2-5-tetrazolyl

-83-

260	tBu	CHOH	CH2	O	CH2CH2-5-tetrazolyl
261	tBu	C(Me)OH	CH2	O	CH2CH2-5-tetrazolyl
262	tBu	C(O)	CH(Me)	O	CH2CH2-5-tetrazolyl
263	tBu	CHOH	CH(Me)	O	CH2CH2-5-tetrazolyl
264	tBu	C(Me)OH	CH(Me)	O	CH2CH2-5-tetrazolyl
265	tBu	C(O)	CH2	O	CH2S(O)2Me
266	tBu	CHOH	CH2	O	CH2S(O)2Me
267	tBu	C(Me)OH	CH2	O	CH2S(O)2Me
268	tBu	C(O)	CH(Me)	O	CH2S(O)2Me
269	tBu	CHOH	CH(Me)	O	CH2S(O)2Me
270	tBu	C(Me)OH	CH(Me)	O	CH2S(O)2Me
271	tBu	C(O)	CH2	O	CH2S(O)Me
272	tBu	CHOH	CH2	O	CH2S(O2)Me
273	tBu	C(Me)OH	CH2	O	CH2S(O)Me
274	tBu	C(O)	CH(Me)	O	CH2S(O)Me
275	tBu	CHOH	CH(Me)	O	CH2S(O)Me
276	tBu	C(Me)OH	CH(Me)	O	CH2S(O)Me
277	tBu	C(O)	CH2	O	CH2CH2S(O)2Me
278	tBu	CHOH	CH2	O	CH2CH2S(O)2Me
279	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2Me
280	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2Me
281	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2Me
282	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2Me
283	tBu	C(O)	CH2	O	CH2CH2S(O)Me
284	tBu	CHOH	CH2	O	CH2CH2S(O)Me
285	tBu	C(Me)OH	CH2	O	CH2CH2S(O)Me
286	tBu	C(O)	CH(Me)	O	CH2CH2S(O)Me
287	tBu	CHOH	CH(Me)	O	CH2CH2S(O)Me
288	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)Me
289	tBu	C(O)	CH2	O	CH2CH2CH2S(O)2Me
290	tBu	CHOH	CH2	O	CH2CH2CH2S(O)2Me

-84-

291	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)2Me
292	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)2Me
293	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)2Me
294	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)2Me
295	tBu	C(O)	CH2	O	CH2CH2CH2S(O)Me
296	tBu	CHOH	CH2	O	CH2CH2CH2S(O)Me
297	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)Me
298	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)Me
299	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)Me
300	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)Me
301	tBu	C(O)	CH2	O	CH2S(O)2Et
302	tBu	CHOH	CH2	O	CH2S(O)2Et
303	tBu	C(Me)OH	CH2	O	CH2S(O)2Et
304	tBu	C(O)	CH(Me)	O	CH2S(O)2Et
305	tBu	CHOH	CH(Me)	O	CH2S(O)2Et
306	tBu	C(Me)OH	CH(Me)	O	CH2S(O)2Et
307	tBu	C(O)	CH2	O	CH2S(O)Et
308	tBu	CHOH	CH2	O	CH2S(O)Et
309	tBu	C(Me)OH	CH2	O	CH2S(O)Et
310	tBu	C(O)	CH(Me)	O	CH2S(O)Et
311	tBu	CHOH	CH(Me)	O	CH2S(O)Et
312	tBu	C(Me)OH	CH(Me)	O	CH2S(O)Et
313	tBu	C(O)	CH2	O	CH2CH2S(O)2Et
314	tBu	CHOH	CH2	O	CH2CH2S(O)2Et
315	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2Et
316	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2Et
317	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2Et
318	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2Et
319	tBu	C(O)	CH2	O	CH2CH2S(O)Et
320	tBu	CHOH	CH2	O	CH2CH2S(O)Et
321	tBu	C(Me)OH	CH2	O	CH2CH2S(O)Et

-85-

322	tBu	C(O)	CH(Me)	O	CH2CH2S(O)Et
323	tBu	CHOH	CH(Me)	O	CH2CH2S(O)Et
324	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)Et
325	tBu	C(O)	CH2	O	CH2CH2CH2S(O)2Et
326	tBu	CHOH	CH2	O	CH2CH2CH2S(O)2Et
327	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)2Et
328	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)2Et
329	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)2Et
330	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)2Et
331	tBu	C(O)	CH2	O	CH2CH2CH2S(O)Et
332	tBu	CHOH	CH2	O	CH2CH2CH2S(O)Et
333	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)Et
334	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)Et
335	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)Et
336	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)Et
337	tBu	C(O)	CH2	O	CH2S(O)2iPr
338	tBu	CHOH	CH2	O	CH2S(O)2iPr
339	tBu	C(Me)OH	CH2	O	CH2S(O)2iPr
340	tBu	C(O)	CH(Me)	O	CH2S(O)2iPr
341	tBu	CHOH	CH(Me)	O	CH2S(O)2iPr
342	tBu	C(Me)OH	CH(Me)	O	CH2S(O)2iPr
343	tBu	C(O)	CH2	O	CH2S(O)iPr
344	tBu	CHOH	CH2	O	CH2S(O)iPr
345	tBu	C(Me)OH	CH2	O	CH2S(O)iPr
346	tBu	C(O)	CH(Me)	O	CH2S(O)iPr
347	tBu	CHOH	CH(Me)	O	CH2S(O)iPr
348	tBu	C(Me)OH	CH(Me)	O	CH2S(O)iPr
349	tBu	C(O)	CH2	O	CH2CH2S(O)2iPr
350	tBu	CHOH	CH2	O	CH2CH2S(O)2iPr
351	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2iPr
352	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2iPr

-86-

353	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2iPr
354	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2iPr
355	tBu	C(O)	CH2	O	CH2CH2S(O)iPr
356	tBu	CHOH	CH2	O	CH2CH2S(O)iPr
357	tBu	C(Me)OH	CH2	O	CH2CH2S(O)iPr
358	tBu	C(O)	CH(Me)	O	CH2CH2S(O)iPr
359	tBu	CHOH	CH(Me)	O	CH2CH2S(O)iPr
360	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)iPr
361	tBu	C(O)	CH2	O	CH2S(O)2tBu
362	tBu	CHOH	CH2	O	CH2S(O)2tBu
363	tBu	C(Me)OH	CH2	O	CH2S(O)2tBu
364	tBu	C(O)	CH(Me)	O	CH2S(O)2tBu
365	tBu	CHOH	CH(Me)	O	CH2S(O)2tBu
366	tBu	C(Me)OH	CH(Me)	O	CH2S(O)2tBu
367	tBu	C(O)	CH2	O	CH2S(O)tBu
368	tBu	CHOH	CH2	O	CH2S(O)tBu
369	tBu	C(Me)OH	CH2	O	CH2S(O)tBu
370	tBu	C(O)	CH(Me)	O	CH2S(O)tBu
371	tBu	CHOH	CH(Me)	O	CH2S(O)tBu
372	tBu	C(Me)OH	CH(Me)	O	CH2S(O)tBu
373	tBu	C(O)	CH2	O	CH2CH2S(O)2tBu
374	tBu	CHOH	CH2	O	CH2CH2S(O)2tBu
375	tBu	C(Me)OH	CH2	O	CH2CH2S(O)2tBu
376	tBu	C(O)	CH(Me)	O	CH2CH2S(O)2tBu
377	tBu	CHOH	CH(Me)	O	CH2CH2S(O)2tBu
378	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2tBu
379	tBu	C(O)	CH2	O	CH2CH2S(O)tBu
380	tBu	CHOH	CH2	O	CH2CH2S(O)tBu
381	tBu	C(Me)OH	CH2	O	CH2CH2S(O)tBu
382	tBu	C(O)	CH(Me)	O	CH2CH2S(O)tBu
383	tBu	CHOH	CH(Me)	O	CH2CH2S(O)tBu

384	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)tBu
385	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)2NH ₂
386	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)2NH ₂
387	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)2NH ₂
388	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)2NH ₂
389	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)2NH ₂
390	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)2NH ₂
391	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)NH ₂
392	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)NH ₂
393	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)NH ₂
394	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)NH ₂
395	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)NH ₂
396	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)NH ₂
397	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)2NMe ₂
398	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)2NMe ₂
399	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)2NMe ₂
400	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)2NMe ₂
401	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)2NMe ₂
402	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)2NMe ₂
403	tBu	C(O)	CH ₂	O	CH ₂ CH ₂ S(O)NMe ₂
404	tBu	CHOH	CH ₂	O	CH ₂ CH ₂ S(O)NMe ₂
405	tBu	C(Me)OH	CH ₂	O	CH ₂ CH ₂ S(O)NMe ₂
406	tBu	C(O)	CH(Me)	O	CH ₂ CH ₂ S(O)NMe ₂
407	tBu	CHOH	CH(Me)	O	CH ₂ CH ₂ S(O)NMe ₂
408	tBu	C(Me)OH	CH(Me)	O	CH ₂ CH ₂ S(O)NMe ₂
409	tBu	C(O)	CH ₂	O	C(O)CH ₂ S(O)2Me
410	tBu	CHOH	CH ₂	O	C(O)CH ₂ S(O)2Me
411	tBu	C(Me)OH	CH ₂	O	C(O)CH ₂ S(O)2Me
412	tBu	C(O)	CH(Me)	O	C(O)CH ₂ S(O)2Me
413	tBu	CHOH	CH(Me)	O	C(O)CH ₂ S(O)2Me
414	tBu	C(Me)OH	CH(Me)	O	C(O)CH ₂ S(O)2Me

-88-

415	tBu	C(O)	CH2	O	C(O)CH2S(O)Me
416	tBu	CHOH	CH2	O	C(O)CH2S(O)Me
417	tBu	C(Me)OH	CH2	O	C(O)CH2S(O)Me
418	tBu	C(O)	CH(Me)	O	C(O)CH2S(O)Me
419	tBu	CHOH	CH(Me)	O	C(O)CH2S(O)Me
420	tBu	C(Me)OH	CH(Me)	O	C(O)CH2S(O)Me
421	tBu	C(O)	CH2	O	C(O)CH2CH2S(O)2Me
422	tBu	CHOH	CH2	O	C(O)CH2CH2S(O)2Me
423	tBu	C(Me)OH	CH2	O	C(O)CH2CH2S(O)2Me
424	tBu	C(O)	CH(Me)	O	C(O)CH2CH2S(O)2Me
425	tBu	CHOH	CH(Me)	O	C(O)CH2CH2S(O)2Me
426	tBu	C(Me)OH	CH(Me)	O	C(O)CH2CH2S(O)2Me
427	tBu	C(O)	CH2	O	C(O)CH2CH2S(O)Me
428	tBu	CHOH	CH2	O	C(O)CH2CH2S(O)Me
429	tBu	C(Me)OH	CH2	O	C(O)CH2CH2S(O)Me
430	tBu	C(O)	CH(Me)	O	C(O)CH2CH2S(O)Me
431	tBu	CHOH	CH(Me)	O	C(O)CH2CH2S(O)Me
432	tBu	C(Me)OH	CH(Me)	O	C(O)CH2CH2S(O)Me
433	tBu	C(O)	CH2	O	CH2CH2CH2S(O)2NH2
434	tBu	CHOH	CH2	O	CH2CH2CH2S(O)2NH2
435	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)2NH2
436	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)2NH2
437	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)2NH2
438	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)2NH2
439	tBu	C(O)	CH2	O	CH2CH2CH2S(O)NH2
440	tBu	CHOH	CH2	O	CH2CH2CH2S(O)NH2
441	tBu	C(Me)OH	CH2	O	CH2CH2CH2S(O)NH2
442	tBu	C(O)	CH(Me)	O	CH2CH2CH2S(O)NH2
443	tBu	CHOH	CH(Me)	O	CH2CH2CH2S(O)NH2
444	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)NH2
445	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl

-89-

446	tBu	CHOH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
447	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
448	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
449	tBu	CHOH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
450	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
451	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
452	tBu	CHOH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
453	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
454	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
455	tBu	CHOH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
456	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
457	tBu	C(O)	CH2	CH2	imidazolidine-2,4-dione-5-yl
458	tBu	CHOH	CH2	CH2	imidazolidine-2,4-dione-5-yl
459	tBu	C(Me)OH	CH2	CH2	imidazolidine-2,4-dione-5-yl
460	tBu	C(O)	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
461	tBu	CHOH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
462	tBu	C(Me)OH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
463	tBu	C(O)	CH2	CH2	isoxazol-3-ol-5-yl
464	tBu	CHOH	CH2	CH2	isoxazol-3-ol-5-yl
465	tBu	C(Me)OH	CH2	CH2	isoxazol-3-ol-5-yl
466	tBu	C(O)	CH(Me)	CH2	isoxazol-3-ol-5-yl
467	tBu	CHOH	CH(Me)	CH2	isoxazol-3-ol-5-yl
468	tBu	C(Me)OH	CH(Me)	CH2	isoxazol-3-ol-5-yl

Among other preferred compounds used in the method of the invention are also those represented by the formula:

-90-

and pharmaceutically acceptable salts thereof; wherein;

said compound is selected from a compound code numbered 1A thru 468A, with each
5 compound having the specific selection of substituents R_B, R_C, L₁, L₂, and L₃ shown
in the row following the compound code number, as set out in the following Table 2 :

Table 2

	R _B	L ₃	L ₂	L ₁	R _C
1A	tBu	C(O)	CH2	CH2	C(O)CH(Me)CH ₂ CO ₂ H
2A	tBu	CHOH	CH2	CH2	C(O)CH(Me)CH ₂ CO ₂ H
3A	tBu	C(Me)OH	CH2	CH2	C(O)CH(Me)CH ₂ CO ₂ H
4A	tBu	C(O)	CH(Me)	CH2	C(O)CH(Me)CH ₂ CO ₂ H
5A	tBu	CHOH	CH(Me)	CH2	C(O)CH(Me)CH ₂ CO ₂ H
6A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH(Me)CH ₂ CO ₂ H
7A	tBu	C(O)	CH2	CH2	CO ₂ H
8A	tBu	CHOH	CH2	CH2	CO ₂ H
9A	tBu	C(Me)OH	CH2	CH2	CO ₂ H
10A	tBu	C(O)	CH(Me)	CH2	CO ₂ H
11A	tBu	CHOH	CH(Me)	CH2	CO ₂ H
12A	tBu	C(Me)OH	CH(Me)	CH2	CO ₂ H
13A	tBu	C(O)	CH2	CH2	C(O)NH ₂
14A	tBu	CHOH	CH2	CH2	C(O)NH ₂
15A	tBu	C(Me)OH	CH2	CH2	C(O)NH ₂
16A	tBu	C(O)	CH(Me)	CH2	C(O)NH ₂
17A	tBu	CHOH	CH(Me)	CH2	C(O)NH ₂
18A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NH ₂
19A	tBu	C(O)	CH2	CH2	C(O)NMe ₂

-91-

20A	tBu	CHOH	CH2	CH2	C(O)NMe2
21A	tBu	C(Me)OH	CH2	CH2	C(O)NMe2
22A	tBu	C(O)	CH(Me)	CH2	C(O)NMe2
23A	tBu	CHOH	CH(Me)	CH2	C(O)NMe2
24A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NMe2
25A	tBu	C(O)	CH2	CH2	5-tetrazolyl
26A	tBu	CHOH	CH2	CH2	5-tetrazolyl
27A	tBu	C(Me)OH	CH2	CH2	5-tetrazolyl
28A	tBu	C(O)	CH(Me)	CH2	5-tetrazolyl
29A	tBu	CHOH	CH(Me)	CH2	5-tetrazolyl
30A	tBu	C(Me)OH	CH(Me)	CH2	5-tetrazolyl
31A	tBu	C(O)	CH2	CH2	C(O)-NH-5-tetrazolyl
32A	tBu	CHOH	CH2	CH2	C(O)-NH-5-tetrazolyl
33A	tBu	C(Me)OH	CH2	CH2	C(O)-NH-5-tetrazolyl
34A	tBu	C(O)	CH(Me)	CH2	C(O)-NH-5-tetrazolyl
35A	tBu	CHOH	CH(Me)	CH2	C(O)-NH-5-tetrazolyl
36A	tBu	C(Me)OH	CH(Me)	CH2	C(O)-NH-5-tetrazolyl
37A	tBu	C(O)	CH2	CH2	C(O)NHCH2SO2Me
38A	tBu	CHOH	CH2	CH2	C(O)NHCH2SO2Me
39A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2SO2Me
40A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2SO2Me
41A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2SO2Me
42A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2SO2Me
43A	tBu	C(O)	CH2	CH2	C(O)NHCH2S(O)Me
44A	tBu	CHOH	CH2	CH2	C(O)NHCH2S(O)Me
45A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2S(O)Me
46A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2S(O)Me
47A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2S(O)Me
48A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2S(O)Me
49A	tBu	C(O)	CH2	CH2	C(O)NHCH2CH2SO2Me
50A	tBu	CHOH	CH2	CH2	C(O)NHCH2CH2SO2Me

-92-

51A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2CH2SO2Me
52A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
53A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
54A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
55A	tBu	C(O)	CH2	CH2	C(O)NHCH2CH2S(O)Me
56A	tBu	CHOH	CH2	CH2	C(O)NHCH2CH2S(O)Me
57A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2CH2S(O)Me
58A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
59A	tBu	CHOH	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
60A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
61A	tBu	C(O)	CH2	CH2	C(O)NHSO2Me
62A	tBu	CHOH	CH2	CH2	C(O)NHSO2Me
63A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2Me
64A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2Me
65A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2Me
66A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2Me
67A	tBu	C(O)	CH2	CH2	C(O)NHS(O)Me
68A	tBu	CHOH	CH2	CH2	C(O)NHS(O)Me
69A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)Me
70A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)Me
71A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)Me
72A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)Me
73A	tBu	C(O)	CH2	CH2	C(O)NHSO2Et
74A	tBu	CHOH	CH2	CH2	C(O)NHSO2Et
75A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2Et
76A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2Et
77A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2Et
78A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2Et
79A	tBu	C(O)	CH2	CH2	C(O)NHS(O)Et
80A	tBu	CHOH	CH2	CH2	C(O)NHS(O)Et
81A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)Et

-93-

82A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)Et
83A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)Et
84A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)Et
85A	tBu	C(O)	CH2	CH2	C(O)NHSO2iPr
86A	tBu	CHOH	CH2	CH2	C(O)NHSO2iPr
87A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2iPr
88A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2iPr
89A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2iPr
90A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2iPr
91A	tBu	C(O)	CH2	CH2	C(O)NHS(O)iPr
92A	tBu	CHOH	CH2	CH2	C(O)NHS(O)iPr
93A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)iPr
94A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)iPr
95A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)iPr
96A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)iPr
97A	tBu	C(O)	CH2	CH2	C(O)NHSO2tBu
98A	tBu	CHOH	CH2	CH2	C(O)NHSO2tBu
99A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2tBu
100A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2tBu
101A	tBu	CHOH	CH(Me)	CH2	C(O)NHSO2tBu
102A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2tBu
103A	tBu	C(O)	CH2	CH2	C(O)NHS(O)tBu
104A	tBu	CHOH	CH2	CH2	C(O)NHS(O)tBu
105A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)tBu
106A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)tBu
107A	tBu	CHOH	CH(Me)	CH2	C(O)NHS(O)tBu
108A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)tBu
109A	tBu	C(O)	CH2	CH2	CH2NHSO2Me
110A	tBu	CHOH	CH2	CH2	CH2NHSO2Me
111A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2Me
112A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2Me

-94-

113A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2Me
114A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2Me
115A	tBu	C(O)	CH2	CH2	CH2NHS(O)Me
116A	tBu	CHOH	CH2	CH2	CH2NHS(O)Me
117A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)Me
118A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)Me
119A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)Me
120A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)Me
121A	tBu	C(O)	CH2	CH2	CH2NHSO2Et
122A	tBu	CHOH	CH2	CH2	CH2NHSO2Et
123A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2Et
124A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2Et
125A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2Et
126A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2Et
127A	tBu	C(O)	CH2	CH2	CH2NHS(O)Et
128A	tBu	CHOH	CH2	CH2	CH2NHS(O)Et
129A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)Et
130A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)Et
131A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)Et
132A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)Et
133A	tBu	C(O)	CH2	CH2	CH2NHSO2iPr
134A	tBu	CHOH	CH2	CH2	CH2NHSO2iPr
135A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2iPr
136A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2iPr
137A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2iPr
138A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2iPr
139A	tBu	C(O)	CH2	CH2	CH2NHS(O)iPr
140A	tBu	CHOH	CH2	CH2	CH2NHS(O)iPr
141A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)iPr
142A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)iPr
143A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)iPr

-95-

144A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)iPr
145A	tBu	C(O)	CH2	CH2	CH2NHSO2tBu
146A	tBu	CHOH	CH2	CH2	CH2NHSO2tBu
147A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2tBu
148A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2tBu
149A	tBu	CHOH	CH(Me)	CH2	CH2NHSO2tBu
150A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2tBu
151A	tBu	C(O)	CH2	CH2	CH2NHS(O)tBu
152A	tBu	CHOH	CH2	CH2	CH2NHS(O)tBu
153A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)tBu
154A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)tBu
155A	tBu	CHOH	CH(Me)	CH2	CH2NHS(O)tBu
156A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)tBu
157A	tBu	C(O)	CH2	CH2	CH2-N-pyrrolidin-2-one
158A	tBu	CHOH	CH2	CH2	CH2-N-pyrrolidin-2-one
159A	tBu	C(Me)OH	CH2	CH2	CH2-N-pyrrolidin-2-one
160A	tBu	C(O)	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
161A	tBu	CHOH	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
162A	tBu	C(Me)OH	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
163A	tBu	C(O)	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
164A	tBu	CHOH	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
165A	tBu	C(Me)OH	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
166A	tBu	C(O)	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
167A	tBu	CHOH	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)
168A	tBu	C(Me)OH	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-yl)

-96-

169A	tBu	C(O)	CH2	CH2	CH2CO2Me
170A	tBu	CHOH	CH2	CH2	CH2CO2Me
171A	tBu	C(Me)OH	CH2	CH2	CH2CO2Me
172A	tBu	C(O)	CH(Me)	CH2	CH2CO2Me
173A	tBu	CHOH	CH(Me)	CH2	CH2CO2Me
174A	tBu	C(Me)OH	CH(Me)	CH2	CH2CO2Me
175A	tBu	C(O)	CH2	CH2	CH2CO2H
176A	tBu	CHOH	CH2	CH2	CH2CO2H
177A	tBu	C(Me)OH	CH2	CH2	CH2CO2H
178A	tBu	C(O)	CH(Me)	CH2	CH2CO2H
179A	tBu	CHOH	CH(Me)	CH2	CH2CO2H
180A	tBu	C(Me)OH	CH(Me)	CH2	CH2CO2H
181A	tBu	C(O)	CH2	CH2	CH2C(O)NH2
182A	tBu	CHOH	CH2	CH2	CH2C(O)NH2
183A	tBu	C(Me)OH	CH2	CH2	CH2C(O)NH2
184A	tBu	C(O)	CH(Me)	CH2	CH2C(O)NH2
185A	tBu	CHOH	CH(Me)	CH2	CH2C(O)NH2
186A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)NH2
187A	tBu	C(O)	CH2	CH2	CH2C(O)NMe2
188A	tBu	CHOH	CH2	CH2	CH2C(O)NMe2
189A	tBu	C(Me)OH	CH2	CH2	CH2C(O)NMe2
190A	tBu	C(O)	CH(Me)	CH2	CH2C(O)NMe2
191A	tBu	CHOH	CH(Me)	CH2	CH2C(O)NMe2
192A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)NMe2
193A	tBu	C(O)	CH2	CH2	CH2C(O)-N-pyrrolidine
194A	tBu	CHOH	CH2	CH2	CH2C(O)-N-pyrrolidine
195A	tBu	C(Me)OH	CH2	CH2	CH2C(O)-N-pyrrolidine
196A	tBu	C(O)	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
197A	tBu	CHOH	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
198A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
199A	tBu	C(O)	CH2	CH2	CH2-5-tetrazolyl

-97-

200A	tBu	CHOH	CH2	CH2	CH2-5-tetrazolyl
201A	tBu	C(Me)OH	CH2	CH2	CH2-5-tetrazolyl
202A	tBu	C(O)	CH(Me)	CH2	CH2-5-tetrazolyl
203A	tBu	CHOH	CH(Me)	CH2	CH2-5-tetrazolyl
204A	tBu	C(Me)OH	CH(Me)	CH2	CH2-5-tetrazolyl
205A	tBu	C(O)	CH2	CH2	C(O)C(O)OH
206A	tBu	CHOH	CH2	CH2	C(O)C(O)OH
207A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)OH
208A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)OH
209A	tBu	CHOH	CH(Me)	CH2	C(O)C(O)OH
210A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)OH
211A	tBu	C(O)	CH2	CH2	CH(OH)C(O)OH
212A	tBu	CHOH	CH2	CH2	CH(OH)C(O)OH
213A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)OH
214A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)OH
215A	tBu	CHOH	CH(Me)	CH2	CH(OH)C(O)OH
216A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)OH
217A	tBu	C(O)	CH2	CH2	C(O)C(O)NH2
218A	tBu	CHOH	CH2	CH2	C(O)C(O)NH2
219A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)NH2
220A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)NH2
221A	tBu	CHOH	CH(Me)	CH2	C(O)C(O)NH2
222A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)NH2
223A	tBu	C(O)	CH2	CH2	CH(OH)C(O)NH2
224A	tBu	CHOH	CH2	CH2	CH(OH)C(O)NH2
225A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)NH2
226A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)NH2
227A	tBu	CHOH	CH(Me)	CH2	CH(OH)C(O)NH2
228A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)NH2
229A	tBu	C(O)	CH2	CH2	C(O)C(O)NMe2
230A	tBu	CHOH	CH2	CH2	C(O)C(O)NMe2

-98-

231A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)NMe2
232A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)NMe2
233A	tBu	CHOH	CH(Me)	CH2	C(O)C(O)NMe2
234A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)NMe2
235A	tBu	C(O)	CH2	CH2	CH(OH)C(O)NMe2
236A	tBu	CHOH	CH2	CH2	CH(OH)C(O)NMe2
237A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)NMe2
238A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)NMe2
239A	tBu	CHOH	CH(Me)	CH2	CH(OH)C(O)NMe2
240A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)NMe2
241A	tBu	C(O)	CH2	CH2	CH2CH2CO2H
242A	tBu	CHOH	CH2	CH2	CH2CH2CO2H
243A	tBu	C(Me)OH	CH2	CH2	CH2CH2CO2H
244A	tBu	C(O)	CH(Me)	CH2	CH2CH2CO2H
245A	tBu	CHOH	CH(Me)	CH2	CH2CH2CO2H
246A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CO2H
247A	tBu	C(O)	CH2	CH2	CH2CH2C(O)NH2
248A	tBu	CHOH	CH2	CH2	CH2CH2C(O)NH2
249A	tBu	C(Me)OH	CH2	CH2	CH2CH2C(O)NH2
250A	tBu	C(O)	CH(Me)	CH2	CH2CH2C(O)NH2
251A	tBu	CHOH	CH(Me)	CH2	CH2CH2C(O)NH2
252A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2C(O)NH2
253A	tBu	C(O)	CH2	CH2	CH2CH2C(O)NMe2
254A	tBu	CHOH	CH2	CH2	CH2CH2C(O)NMe2
255A	tBu	C(Me)OH	CH2	CH2	CH2CH2C(O)NMe2
256A	tBu	C(O)	CH(Me)	CH2	CH2CH2C(O)NMe2
257A	tBu	CHOH	CH(Me)	CH2	CH2CH2C(O)NMe2
258A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2C(O)NMe2
259A	tBu	C(O)	CH2	CH2	CH2CH2-5-tetrazolyl
260A	tBu	CHOH	CH2	CH2	CH2CH2-5-tetrazolyl
261A	tBu	C(Me)OH	CH2	CH2	CH2CH2-5-tetrazolyl

-99-

262A	tBu	C(O)	CH(Me)	CH2	CH2CH2-5-tetrazolyl
263A	tBu	CHOH	CH(Me)	CH2	CH2CH2-5-tetrazolyl
264A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2-5-tetrazolyl
265A	tBu	C(O)	CH2	CH2	CH2S(O)2Me
266A	tBu	CHOH	CH2	CH2	CH2S(O)2Me
267A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2Me
268A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2Me
269A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2Me
270A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2Me
271A	tBu	C(O)	CH2	CH2	CH2S(O)Me
272A	tBu	CHOH	CH2	CH2	CH2S(O2Me)
273A	tBu	C(Me)OH	CH2	CH2	CH2S(O)Me
274A	tBu	C(O)	CH(Me)	CH2	CH2S(O)Me
275A	tBu	CHOH	CH(Me)	CH2	CH2S(O)Me
276A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)Me
277A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2Me
278A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2Me
279A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2Me
280A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2Me
281A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2Me
282A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2Me
283A	tBu	C(O)	CH2	CH2	CH2CH2S(O)Me
284A	tBu	CHOH	CH2	CH2	CH2CH2S(O)Me
285A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)Me
286A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)Me
287A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)Me
288A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)Me
289A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2Me
290A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)2Me
291A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2Me
292A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2Me

-100-

293A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)2Me
294A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2Me
295A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)Me
296A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)Me
297A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)Me
298A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)Me
299A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)Me
300A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)Me
301A	tBu	C(O)	CH2	CH2	CH2S(O)2Et
302A	tBu	CHOH	CH2	CH2	CH2S(O)2Et
303A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2Et
304A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2Et
305A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2Et
306A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2Et
307A	tBu	C(O)	CH2	CH2	CH2S(O)Et
308A	tBu	CHOH	CH2	CH2	CH2S(O)Et
309A	tBu	C(Me)OH	CH2	CH2	CH2S(O)Et
310A	tBu	C(O)	CH(Me)	CH2	CH2S(O)Et
311A	tBu	CHOH	CH(Me)	CH2	CH2S(O)Et
312A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)Et
313A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2Et
314A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2Et
315A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2Et
316A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2Et
317A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2Et
318A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2Et
319A	tBu	C(O)	CH2	CH2	CH2CH2S(O)Et
320A	tBu	CHOH	CH2	CH2	CH2CH2S(O)Et
321A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)Et
322A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)Et
323A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)Et

-101-

324A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)Et
325A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2Et
326A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)2Et
327A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2Et
328A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2Et
329A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)2Et
330A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2Et
331A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)Et
332A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)Et
333A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)Et
334A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)Et
335A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)Et
336A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)Et
337A	tBu	C(O)	CH2	CH2	CH2S(O)2iPr
338A	tBu	CHOH	CH2	CH2	CH2S(O)2iPr
339A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2iPr
340A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2iPr
341A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2iPr
342A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2iPr
343A	tBu	C(O)	CH2	CH2	CH2S(O)iPr
344A	tBu	CHOH	CH2	CH2	CH2S(O)iPr
345A	tBu	C(Me)OH	CH2	CH2	CH2S(O)iPr
346A	tBu	C(O)	CH(Me)	CH2	CH2S(O)iPr
347A	tBu	CHOH	CH(Me)	CH2	CH2S(O)iPr
348A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)iPr
349A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2iPr
350A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2iPr
351A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2iPr
352A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2iPr
353A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2iPr
354A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2iPr

-102-

355A	tBu	C(O)	CH2	CH2	CH2CH2S(O)iPr
356A	tBu	CHOH	CH2	CH2	CH2CH2S(O)iPr
357A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)iPr
358A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)iPr
359A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)iPr
360A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)iPr
361A	tBu	C(O)	CH2	CH2	CH2S(O)2tBu
362A	tBu	CHOH	CH2	CH2	CH2S(O)2tBu
363A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2tBu
364A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2tBu
365A	tBu	CHOH	CH(Me)	CH2	CH2S(O)2tBu
366A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2tBu
367A	tBu	C(O)	CH2	CH2	CH2S(O)tBu
368A	tBu	CHOH	CH2	CH2	CH2S(O)tBu
369A	tBu	C(Me)OH	CH2	CH2	CH2S(O)tBu
370A	tBu	C(O)	CH(Me)	CH2	CH2S(O)tBu
371A	tBu	CHOH	CH(Me)	CH2	CH2S(O)tBu
372A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)tBu
373A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2tBu
374A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2tBu
375A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2tBu
376A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2tBu
377A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2tBu
378A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2tBu
379A	tBu	C(O)	CH2	CH2	CH2CH2S(O)tBu
380A	tBu	CHOH	CH2	CH2	CH2CH2S(O)tBu
381A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)tBu
382A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)tBu
383A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)tBu
384A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)tBu
385A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2NH2

-103-

386A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2NH2
387A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2NH2
388A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2NH2
389A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2NH2
390A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2NH2
391A	tBu	C(O)	CH2	CH2	CH2CH2S(O)NH2
392A	tBu	CHOH	CH2	CH2	CH2CH2S(O)NH2
393A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)NH2
394A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)NH2
395A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)NH2
396A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)NH2
397A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2NMe2
398A	tBu	CHOH	CH2	CH2	CH2CH2S(O)2NMe2
399A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2NMe2
400A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2NMe2
401A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)2NMe2
402A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2NMe2
403A	tBu	C(O)	CH2	CH2	CH2CH2S(O)NMe2
404A	tBu	CHOH	CH2	CH2	CH2CH2S(O)NMe2
405A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)NMe2
406A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)NMe2
407A	tBu	CHOH	CH(Me)	CH2	CH2CH2S(O)NMe2
408A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)NMe2
409A	tBu	C(O)	CH2	CH2	C(O)CH2S(O)2Me
410A	tBu	CHOH	CH2	CH2	C(O)CH2S(O)2Me
411A	tBu	C(Me)OH	CH2	CH2	C(O)CH2S(O)2Me
412A	tBu	C(O)	CH(Me)	CH2	C(O)CH2S(O)2Me
413A	tBu	CHOH	CH(Me)	CH2	C(O)CH2S(O)2Me
414A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2S(O)2Me
415A	tBu	C(O)	CH2	CH2	C(O)CH2S(O)Me
416A	tBu	CHOH	CH2	CH2	C(O)CH2S(O)Me

-104-

417A	tBu	C(Me)OH	CH2	CH2	C(O)CH2S(O)Me
418A	tBu	C(O)	CH(Me)	CH2	C(O)CH2S(O)Me
419A	tBu	CHOH	CH(Me)	CH2	C(O)CH2S(O)Me
420A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2S(O)Me
421A	tBu	C(O)	CH2	CH2	C(O)CH2CH2S(O)2Me
422A	tBu	CHOH	CH2	CH2	C(O)CH2CH2S(O)2Me
423A	tBu	C(Me)OH	CH2	CH2	C(O)CH2CH2S(O)2Me
424A	tBu	C(O)	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
425A	tBu	CHOH	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
426A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
427A	tBu	C(O)	CH2	CH2	C(O)CH2CH2S(O)Me
428A	tBu	CHOH	CH2	CH2	C(O)CH2CH2S(O)Me
429A	tBu	C(Me)OH	CH2	CH2	C(O)CH2CH2S(O)Me
430A	tBu	C(O)	CH(Me)	CH2	C(O)CH2CH2S(O)Me
431A	tBu	CHOH	CH(Me)	CH2	C(O)CH2CH2S(O)Me
432A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2CH2S(O)Me
433A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2NH2
434A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)2NH2
435A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2NH2
436A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
437A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
438A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
439A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)NH2
440A	tBu	CHOH	CH2	CH2	CH2CH2CH2S(O)NH2
441A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)NH2
442A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)NH2
443A	tBu	CHOH	CH(Me)	CH2	CH2CH2CH2S(O)NH2
444A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)NH2
445A	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
446A	tBu	CHOH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
447A	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl

-105-

448A	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
449A	tBu	CHOH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
450A	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
451A	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
452A	tBu	CHOH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
453A	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
454A	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
455A	tBu	CHOH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
456A	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
457A	tBu	C(O)	CH2	CH2	imidazolidine-2,4-dione-5-yl
458A	tBu	CHOH	CH2	CH2	imidazolidine-2,4-dione-5-yl
459A	tBu	C(Me)OH	CH2	CH2	imidazolidine-2,4-dione-5-yl
460A	tBu	C(O)	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
461A	tBu	CHOH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
462A	tBu	C(Me)OH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
463A	tBu	C(O)	CH2	CH2	isoxazol-3-ol-5-yl
464A	tBu	CHOH	CH2	CH2	isoxazol-3-ol-5-yl
465A	tBu	C(Me)OH	CH2	CH2	isoxazol-3-ol-5-yl
466A	tBu	C(O)	CH(Me)	CH2	isoxazol-3-ol-5-yl
467A	tBu	CHOH	CH(Me)	CH2	isoxazol-3-ol-5-yl
468A	tBu	C(Me)OH	CH(Me)	CH2	isoxazol-3-ol-5-yl

Among other preferred compounds used in the method of the invention are also those represented by the formula:

-106-

wherein;

said compound is selected from a compound code numbered 1B thru 81B, with each compound having the specific selection of substituents R_B, R_C, L₁, L₂, and L₃ shown

- 5 in the row following the compound code number, as set out in the following Table 3 :

Table 3

	R _B	L ₃	L ₂	L ₁	R _C
1B	tBu	C(O)	CH2	O	-C(O)NH-CH ₂ -C(O)OH
2B	tBu	CHOH	CH2	O	-C(O)NH-CH ₂ -C(O)OH
3B	tBu	C(Me)OH	CH2	O	-C(O)NH-CH ₂ -C(O)OH
4B	tBu	C(O)	CH(Me)	O	-C(O)NH-CH ₂ -C(O)OH
5B	tBu	CHOH	CH(Me)	O	-C(O)NH-CH ₂ -C(O)OH
6B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CH ₂ -C(O)OH
7B	tBu	C(O)	CH2	O	-C(O)NH-CH(Me)-C(O)OH
8B	tBu	CHOH	CH2	O	-C(O)NH-CH(Me)-C(O)OH
9B	tBu	C(Me)OH	CH2	O	-C(O)NH-CH(Me)-C(O)OH
10B	tBu	C(O)	CH(Me)	O	-C(O)NH-CH(Me)-C(O)OH
11B	tBu	CHOH	CH(Me)	O	-C(O)NH-CH(Me)-C(O)OH
12B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CH(Me)-C(O)OH
13B	tBu	C(O)	CH2	O	-C(O)NH-CH(Et)-C(O)OH
14B	tBu	CHOH	CH2	O	-C(O)NH-CH(Et)-C(O)OH
15B	tBu	C(Me)OH	CH2	O	-C(O)NH-CH(Et)-C(O)OH
16B	tBu	C(O)	CH(Me)	O	-C(O)NH-CH(Et)-C(O)OH
17B	tBu	CHOH	CH(Me)	O	-C(O)NH-CH(Et)-C(O)OH
18B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CH(Et)-C(O)OH
19B	tBu	C(O)	CH2	O	-C(O)NH-C(Me) ₂ -C(O)OH
20B	tBu	CHOH	CH2	O	-C(O)NH-C(Me) ₂ -C(O)OH
21B	tBu	C(Me)OH	CH2	O	-C(O)NH-C(Me) ₂ -C(O)OH
22B	tBu	C(O)	CH(Me)	O	-C(O)NH-C(Me) ₂ -C(O)OH
23B	tBu	CHOH	CH(Me)	O	-C(O)NH-C(Me) ₂ -C(O)OH
24B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-C(Me) ₂ -C(O)OH

-107-

25B	tBu	C(O)	CH2	O	-C(O)NH-CMe(Et)-C(O)OH
26B	tBu	CHOH	CH2	O	-C(O)NH-CMe(Et)-C(O)OH
27B	tBu	C(Me)OH	CH2	O	-C(O)NH-CMe(Et)-C(O)OH
28B	tBu	C(O)	CH(Me)	O	-C(O)NH-CMe(Et)-C(O)OH
29B	tBu	CHOH	CH(Me)	O	-C(O)NH-CMe(Et)-C(O)OH
30B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CMe(Et)-C(O)OH
31B	tBu	C(O)	CH2	O	-C(O)NH-CH(F)-C(O)OH
32B	tBu	CHOH	CH2	O	-C(O)NH-CH(F)-C(O)OH
33B	tBu	C(Me)OH	CH2	O	-C(O)NH-CH(F)-C(O)OH
34B	tBu	C(O)	CH(Me)	O	-C(O)NH-CH(F)-C(O)OH
35B	tBu	CHOH	CH(Me)	O	-C(O)NH-CH(F)-C(O)OH
36B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CH(F)-C(O)OH
37B	tBu	C(O)	CH2	O	-C(O)NH-CH(CF ₃)-C(O)OH
38B	tBu	CHOH	CH2	O	-C(O)NH-CH(CF ₃)-C(O)OH
39B	tBu	C(Me)OH	CH2	O	-C(O)NH-CH(CF ₃)-C(O)OH
40B	tBu	C(O)	CH(Me)	O	-C(O)NH-CH(CF ₃)-C(O)OH
41B	tBu	CHOH	CH(Me)	O	-C(O)NH-CH(CF ₃)-C(O)OH
42B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CH(CF ₃)-C(O)OH
43B	tBu	C(O)	CH2	O	-C(O)NH-CH(OH)-C(O)OH
44B	tBu	CHOH	CH2	O	-C(O)NH-CH(OH)-C(O)OH
45B	tBu	C(Me)OH	CH2	O	-C(O)NH-CH(OH)-C(O)OH
46B	tBu	C(O)	CH(Me)	O	-C(O)NH-CH(OH)-C(O)OH
47B	tBu	CHOH	CH(Me)	O	-C(O)NH-CH(OH)-C(O)OH
48B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CH(OH)-C(O)OH
49B	tBu	C(O)	CH2	O	-C(O)NH-CH(cyclopropyl)-C(O)OH
50B	tBu	CHOH	CH2	O	-C(O)NH-CH(cyclopropyl)-C(O)OH
51B	tBu	C(Me)OH	CH2	O	-C(O)NH-CH(cyclopropyl)-C(O)OH
52B	tBu	C(O)	CH(Me)	O	-C(O)NH-CH(cyclopropyl)-C(O)OH
53B	tBu	CHOH	CH(Me)	O	-C(O)NH-CH(cyclopropyl)-C(O)OH
54B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CH(cyclopropyl)-C(O)OH
55B	tBu	C(O)	CH2	O	-C(O)NH-CH(Me)-C(O)OH

-108-

56B	tBu	CHOH	CH2	O	-C(O)NH-CH(Me)-C(O)OH
57B	tBu	C(Me)OH	CH2	O	-C(O)NH-CH(Me)-C(O)OH
58B	tBu	C(O)	CH(Me)	O	-C(O)NH-CH(Me)-C(O)OH
59B	tBu	CHOH	CH(Me)	O	-C(O)NH-CH(Me)-C(O)OH
60B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CH(Me)-C(O)OH
61B	tBu	C(O)	CH2	O	-C(O)NH-C(Me) ₂ -C(O)OH
62B	tBu	CHOH	CH2	O	-C(O)NH-C(Me) ₂ -C(O)OH
63B	tBu	C(Me)OH	CH2	O	-C(O)NH-C(Me) ₂ -C(O)OH
64B	tBu	C(O)	CH(Me)	O	-C(O)NH-C(Me) ₂ -C(O)OH
65B	tBu	CHOH	CH(Me)	O	-C(O)NH-C(Me) ₂ -C(O)OH
66B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-C(Me) ₂ -C(O)OH
67B	tBu	C(O)	CH2	O	-C(O)NH-CF(Me)-C(O)OH
68B	tBu	CHOH	CH2	O	-C(O)NH-CF(Me)-C(O)OH
69B	tBu	C(Me)OH	CH2	O	-C(O)NH-CF(Me)-C(O)OH
70B	tBu	C(O)	CH(Me)	O	-C(O)NH-CF(Me)-C(O)OH
71B	tBu	CHOH	CH(Me)	O	-C(O)NH-CF(Me)-C(O)OH
72B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CF(Me)-C(O)OH
73B	tBu	C(O)	CH2	O	-C(O)NH-C(Me)(CF ₃)-C(O)OH
74B	tBu	CHOH	CH2	O	-C(O)NH-C(Me)(CF ₃)-C(O)OH
75B	tBu	C(Me)OH	CH2	O	-C(O)NH-C(Me)(CF ₃)-C(O)OH
76B	tBu	C(O)	CH(Me)	O	-C(O)NH-C(Me)(CF ₃)-C(O)OH
77B	tBu	CHOH	CH(Me)	O	-C(O)NH-C(Me)(CF ₃)-C(O)OH
78B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-C(Me)(CF ₃)-C(O)OH
79B	tBu	C(O)	CH2	O	-C(O)NH-C(Me)(OH)-C(O)OH
80B	tBu	CHOH	CH2	O	-C(O)NH-C(Me)(OH)-C(O)OH
81B	tBu	C(Me)OH	CH2	O	-C(O)NH-C(Me)(OH)-C(O)OH
82B	tBu	C(O)	CH(Me)	O	-C(O)NH-C(Me)(OH)-C(O)OH
83B	tBu	CHOH	CH(Me)	O	-C(O)NH-C(Me)(OH)-C(O)OH
84B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-C(Me)(OH)-C(O)OH
85B	tBu	C(O)	CH2	O	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H

-109-

86B	tBu	CHOH	CH2	O	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
87B	tBu	C(Me)OH	CH2	O	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
88B	tBu	C(O)	CH(Me)	O	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
89B	tBu	CHOH	CH(Me)	O	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
90B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
91B	tBu	C(O)	CH2	O	-C(O)NMe-CH ₂ -C(O)OH
92B	tBu	CHOH	CH2	O	-C(O)NMe-CH ₂ -C(O)OH
93B	tBu	C(Me)OH	CH2	O	-C(O)NMe-CH ₂ -C(O)OH
94B	tBu	C(O)	CH(Me)	O	-C(O)NMe-CH ₂ -C(O)OH
95B	tBu	CHOH	CH(Me)	O	-C(O)NMe-CH ₂ -C(O)OH
96B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-CH ₂ -C(O)OH
97B	tBu	C(O)	CH2	O	-C(O)NMe-CH(Me)-C(O)OH
98B	tBu	CHOH	CH2	O	-C(O)NMe-CH(Me)-C(O)OH
99B	tBu	C(Me)OH	CH2	O	-C(O)NMe-CH(Me)-C(O)OH
100B	tBu	C(O)	CH(Me)	O	-C(O)NMe-CH(Me)-C(O)OH
101B	tBu	CHOH	CH(Me)	O	-C(O)NMe-CH(Me)-C(O)OH
102B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-CH(Me)-C(O)OH
103B	tBu	C(O)	CH2	O	-C(O)NMe-CH(F)-C(O)OH
104B	tBu	CHOH	CH2	O	-C(O)NMe-CH(F)-C(O)OH
105B	tBu	C(Me)OH	CH2	O	-C(O)NMe-CH(F)-C(O)OH
106B	tBu	C(O)	CH(Me)	O	-C(O)NMe-CH(F)-C(O)OH
107B	tBu	CHOH	CH(Me)	O	-C(O)NMe-CH(F)-C(O)OH
108B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-CH(F)-C(O)OH
109B	tBu	C(O)	CH2	O	-C(O)NMe-CH(CF ₃)-C(O)OH
110B	tBu	CHOH	CH2	O	-C(O)NMe-CH(CF ₃)-C(O)OH
111B	tBu	C(Me)OH	CH2	O	-C(O)NMe-CH(CF ₃)-C(O)OH

-110-

112B	tBu	C(O)	CH(Me)	O	-C(O)NMe-CH(CF ₃)-C(O)OH
113B	tBu	CHOH	CH(Me)	O	-C(O)NMe-CH(CF ₃)-C(O)OH
114B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-CH(CF ₃)-C(O)OH
115B	tBu	C(O)	CH ₂	O	-C(O)NMe-CH(OH)-C(O)OH
116B	tBu	CHOH	CH ₂	O	-C(O)NMe-CH(OH)-C(O)OH
117B	tBu	C(Me)OH	CH ₂	O	-C(O)NMe-CH(OH)-C(O)OH
118B	tBu	C(O)	CH(Me)	O	-C(O)NMe-CH(OH)-C(O)OH
119B	tBu	CHOH	CH(Me)	O	-C(O)NMe-CH(OH)-C(O)OH
120B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-CH(OH)-C(O)OH
121B	tBu	C(O)	CH ₂	O	-C(O)NMe-CH(cyclopropyl)-C(O)OH
122B	tBu	CHOH	CH ₂	O	-C(O)NMe-CH(cyclopropyl)-C(O)OH
123B	tBu	C(Me)OH	CH ₂	O	-C(O)NMe-CH(cyclopropyl)-C(O)OH
124B	tBu	C(O)	CH(Me)	O	-C(O)NMe-CH(cyclopropyl)-C(O)OH
125B	tBu	CHOH	CH(Me)	O	-C(O)NMe-CH(cyclopropyl)-C(O)OH
126B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-CH(cyclopropyl)-C(O)OH
127B	tBu	C(O)	CH ₂	O	-C(O)NMe-C(Me) ₂ -C(O)OH
128B	tBu	CHOH	CH ₂	O	-C(O)NMe-C(Me) ₂ -C(O)OH
129B	tBu	C(Me)OH	CH ₂	O	-C(O)NMe-C(Me) ₂ -C(O)OH
130B	tBu	C(O)	CH(Me)	O	-C(O)NMe-C(Me) ₂ -C(O)OH
131B	tBu	CHOH	CH(Me)	O	-C(O)NMe-C(Me) ₂ -C(O)OH
132B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-C(Me) ₂ -C(O)OH
133B	tBu	C(O)	CH ₂	O	-C(O)NMe-CF(Me)-C(O)OH
134B	tBu	CHOH	CH ₂	O	-C(O)NMe-CF(Me)-C(O)OH
135B	tBu	C(Me)OH	CH ₂	O	-C(O)NMe-CF(Me)-C(O)OH
136B	tBu	C(O)	CH(Me)	O	-C(O)NMe-CF(Me)-C(O)OH

-111-

137B	tBu	CHOH	CH(Me)	O	-C(O)NMe-CF(Me)-C(O)OH
138B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-CF(Me)-C(O)OH
139B	tBu	C(O)	CH2	O	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
140B	tBu	CHOH	CH2	O	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
141B	tBu	C(Me)OH	CH2	O	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
142B	tBu	C(O)	CH(Me)	O	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
143B	tBu	CHOH	CH(Me)	O	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
144B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
145B	tBu	C(O)	CH2	O	-C(O)NMe-C(Me)(OH)-C(O)OH
146B	tBu	CHOH	CH2	O	-C(O)NMe-C(Me)(OH)-C(O)OH
147B	tBu	C(Me)OH	CH2	O	-C(O)NMe-C(Me)(OH)-C(O)OH
148B	tBu	C(O)	CH(Me)	O	-C(O)NMe-C(Me)(OH)-C(O)OH
149B	tBu	CHOH	CH(Me)	O	-C(O)NMe-C(Me)(OH)-C(O)OH
150B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-C(Me)(OH)-C(O)OH
151B	tBu	C(O)	CH2	O	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
152B	tBu	CHOH	CH2	O	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
153B	tBu	C(Me)OH	CH2	O	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
154B	tBu	C(O)	CH(Me)	O	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
155B	tBu	CHOH	CH(Me)	O	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
156B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
157B	tBu	C(O)	CH2	O	-C(O)-N(Me)-5-tetrazolyl
158B	tBu	CHOH	CH2	O	-C(O)-N(Me)-5-tetrazolyl
159B	tBu	C(Me)OH	CH2	O	-C(O)-N(Me)-5-tetrazolyl
160B	tBu	C(O)	CH(Me)	O	-C(O)-N(Me)-5-tetrazolyl
161B	tBu	CHOH	CH(Me)	O	-C(O)-N(Me)-5-tetrazolyl

-112-

162B	tBu	C(Me)OH	CH(Me)	O	-C(O)-N(Me)-5-tetrazolyl
------	-----	---------	--------	---	--------------------------

Among other preferred compounds used in the method of the invention are also those represented by the formula:

5

and pharmaceutically acceptable salts thereof;
wherein;

10 said compound is selected from a compound code number 1C thru 162C, with each compound having the specific selection of substituents R_B, R_C, L_1, L_2, and L_3 shown

in the row following the compound code number, as set out in the following Table 4 :

Table 4

	R_B	L_3	L_2	L_1	R_C
1C	tBu	C(O)	CH2	CH2	-C(O)NH-CH ₂ -C(O)OH
2C	tBu	CHOH	CH2	CH2	-C(O)NH-CH ₂ -C(O)OH
3C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH ₂ -C(O)OH
4C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH ₂ -C(O)OH
5C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CH ₂ -C(O)OH
6C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH ₂ -C(O)OH
7C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
8C	tBu	CHOH	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
9C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
10C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
11C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
12C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
13C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(Et)-C(O)OH

-113-

14C	tBu	CHOH	CH2	CH2	-C(O)NH-CH(Et)-C(O)OH
15C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(Et)-C(O)OH
16C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(Et)-C(O)OH
17C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CH(Et)-C(O)OH
18C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(Et)-C(O)OH
19C	tBu	C(O)	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
20C	tBu	CHOH	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
21C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
22C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
23C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
24C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
25C	tBu	C(O)	CH2	CH2	-C(O)NH-CMe(Et)-C(O)OH
26C	tBu	CHOH	CH2	CH2	-C(O)NH-CMe(Et)-C(O)OH
27C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CMe(Et)-C(O)OH
28C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CMe(Et)-C(O)OH
29C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CMe(Et)-C(O)OH
30C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CMe(Et)-C(O)OH
31C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(F)-C(O)OH
32C	tBu	CHOH	CH2	CH2	-C(O)NH-CH(F)-C(O)OH
33C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(F)-C(O)OH
34C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(F)-C(O)OH
35C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CH(F)-C(O)OH
36C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(F)-C(O)OH
37C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
38C	tBu	CHOH	CH2	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
39C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
40C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
41C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
42C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
43C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(OH)-C(O)OH
44C	tBu	CHOH	CH2	CH2	-C(O)NH-CH(OH)-C(O)OH

-114-

45C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(OH)-C(O)OH
46C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(OH)-C(O)OH
47C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CH(OH)-C(O)OH
48C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(OH)-C(O)OH
49C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
50C	tBu	CHOH	CH2	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
51C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
52C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
53C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
54C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
55C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
56C	tBu	CHOH	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
57C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
58C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
59C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
60C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
61C	tBu	C(O)	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
62C	tBu	CHOH	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
63C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
64C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
65C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
66C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
67C	tBu	C(O)	CH2	CH2	-C(O)NH-CF(Me)-C(O)OH
68C	tBu	CHOH	CH2	CH2	-C(O)NH-CF(Me)-C(O)OH
69C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CF(Me)-C(O)OH
70C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CF(Me)-C(O)OH
71C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-CF(Me)-C(O)OH
72C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CF(Me)-C(O)OH
73C	tBu	C(O)	CH2	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
74C	tBu	CHOH	CH2	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
75C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH

-115-

76C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
77C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
78C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
79C	tBu	C(O)	CH2	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
80C	tBu	CHOH	CH2	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
81C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
82C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
83C	tBu	CHOH	CH(Me)	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
84C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
85C	tBu	C(O)	CH2	CH2	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
86C	tBu	CHOH	CH2	CH2	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
87C	tBu	C(Me)OH	CH2	CH2	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
88C	tBu	C(O)	CH(Me)	CH2	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
89C	tBu	CHOH	CH(Me)	CH2	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
90C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH- C(Me)(cyclopropyl)CO ₂ H
91C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH ₂ -C(O)OH
92C	tBu	CHOH	CH2	CH2	-C(O)NMe-CH ₂ -C(O)OH
93C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH ₂ -C(O)OH
94C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH ₂ -C(O)OH
95C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-CH ₂ -C(O)OH
96C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH ₂ -C(O)OH
97C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(Me)-C(O)OH
98C	tBu	CHOH	CH2	CH2	-C(O)NMe-CH(Me)-C(O)OH
99C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(Me)-C(O)OH
100C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(Me)-C(O)OH

-116-

101C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-CH(Me)-C(O)OH
102C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(Me)-C(O)OH
103C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(F)-C(O)OH
104C	tBu	CHOH	CH2	CH2	-C(O)NMe-CH(F)-C(O)OH
105C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(F)-C(O)OH
106C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(F)-C(O)OH
107C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-CH(F)-C(O)OH
108C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(F)-C(O)OH
109C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
110C	tBu	CHOH	CH2	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
111C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
112C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
113C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
114C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
115C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(OH)-C(O)OH
116C	tBu	CHOH	CH2	CH2	-C(O)NMe-CH(OH)-C(O)OH
117C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(OH)-C(O)OH
118C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(OH)-C(O)OH
119C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-CH(OH)-C(O)OH
120C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(OH)-C(O)OH
121C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(cyclopropyl)-C(O)OH
122C	tBu	CHOH	CH2	CH2	-C(O)NMe-CH(cyclopropyl)-C(O)OH
123C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(cyclopropyl)-C(O)OH
124C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(cyclopropyl)-C(O)OH
125C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-CH(cyclopropyl)-C(O)OH
126C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(cyclopropyl)-

-117-

					C(O)OH
127C	tBu	C(O)	CH2	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
128C	tBu	CHOH	CH2	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
129C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
130C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
131C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
132C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
133C	tBu	C(O)	CH2	CH2	-C(O)NMe-CF(Me)-C(O)OH
134C	tBu	CHOH	CH2	CH2	-C(O)NMe-CF(Me)-C(O)OH
135C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CF(Me)-C(O)OH
136C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CF(Me)-C(O)OH
137C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-CF(Me)-C(O)OH
138C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CF(Me)-C(O)OH
139C	tBu	C(O)	CH2	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
140C	tBu	CHOH	CH2	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
141C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
142C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
143C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
144C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
145C	tBu	C(O)	CH2	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
146C	tBu	CHOH	CH2	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
147C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
148C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
149C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
150C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
151C	tBu	C(O)	CH2	CH2	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
152C	tBu	CHOH	CH2	CH2	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
153C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH

154C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
155C	tBu	CHOH	CH(Me)	CH2	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
156C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH
157C	tBu	C(O)	CH2	CH2	-C(O)-N(Me)-5-tetrazolyl
158C	tBu	CHOH	CH2	CH2	-C(O)-N(Me)-5-tetrazolyl
159C	tBu	C(Me)OH	CH2	CH2	-C(O)-N(Me)-5-tetrazolyl
160C	tBu	C(O)	CH(Me)	CH2	-C(O)-N(Me)-5-tetrazolyl
161C	tBu	CHOH	CH(Me)	CH2	-C(O)-N(Me)-5-tetrazolyl
162C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)-N(Me)-5-tetrazolyl

Method of Making the Compounds Used in the Method of the Invention:

Compounds used in the method of the invention represented by formula (I) may be prepared by the methods set out below. It will be understood by one skilled in the chemical arts that the reactants may be varied to analogous molecules to provide desired substitutions in the final reaction product.

Definitions of symbols used in the Schemes:

- (PhO)₂P(O)N₃ – diphenyl phosphorus azide
 BBr₃ – boron tribromide
 BF₃-OEt₂ – boron trifluoride etherate
 BnBr – benzyl bromide
 CH₃CN – acetonitrile
 DMAP - 4-(dimethylamino)pyridine
 DMF – N,N-dimethylformamide
 DMSO – dimethylsulfoxide
 DPPF – dichloro[1,1'-bis(diphenylphosphino)ferrocene]
 DPPB – 1,4-bis(diphenylphosphino)butane
 EDCI – 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide hydrochloride
 Et₃N – triethylamine
 EtOH – ethanol

-119-

	H2NCH2CO2Me – methyl glycinate
	HN(OMe)Me – N-methyl-O-methyl hydroxylamine
	HNMe2 – dimethyl amine
	K2CO3 – potassium carbonate
5	KOH – potassium hydroxide
	LAH – lithium aluminum hydride
	LiHMDS – lithium hexamethyldisilazide
	mCPBA – meta-chloroperbenzoic acid
	MeI – methyl iodide
10	MeOH – methanol
	NaBH4 – sodium borohydride
	NaH – sodium hydride
	NaI – sodium iodide
	NMP - N-methylpyrrolidin-2-one
15	Na-S-R3 – sodium alkylmercaptide
	PBr3 – phosphorus tribromide
	Pd(OAc)2 – palladium (II) acetate
	Pd-C – palladium on carbon
	pTSA – para-toluenesulfonic acid
20	Pyr - pyridine
	R2MgBr – alkyl magnesium bromide
	R3MgBr – alkyl magnesium bromide
	R5MgBr – alkyl magnesium bromide
	R2S(O)2NH2 – alkylsulfonamide
25	tBuC(O)CH2Br – 2-bromopinacolone
	Tf2O – triflic anhydride
	TFA – trifluoroacetic acid
	THF – tetrahydrofuran

30 Description of the Schemes:

Preparation of diphenyl acid and diphenyl acylaminotetrazole (Scheme 1).

-120-

A mixture of 3-substituted-4-hydroxy benzoic acid 1a and methanol is treated with HCl (gas) to yield methyl benzoate ester 1. Methyl benzoate ester 1 is reacted with excess alkyl magnesium bromide to produce tertiary alcohol 2. Tertiary alcohol 2 is converted to phenol 4 by reaction with O-benzyl-2-substituted phenol 3a and BF₃-Et₂O. O-benzyl-2-
5 substituted phenol 3a is derived from the reaction of 2-substituted phenol 3 with benzylbromide and NaH. Phenol 4 is reacted with triflic anhydride/pyridine to give triflate 5 which is subjected to methoxycarbonylation with Pd(OAc)₂, DPPF, CO (689-
6895 KPa), methanol and triethylamine in either DMF or DMSO at 80-100 °C to yield
methyl ester 6. DPPB may be used instead of DPPF for the methoxycarbonylation
10 reaction. Methyl ester 6 is subjected to palladium catalyzed hydrogenolysis and alkylated with NaH/pinacolone bromide to give ketone 7. Ketone 7 is sequentially reacted with sodium borohydride/MeOH and potassium hydroxide/EtOH/H₂O/ 80 °C to produce acid 8. Acid 8 is coupled with EDCI, DMAP and 5-aminotetrazole to give acylamino tetrazole 9. Acid 8 is also coupled with EDCI, DMAP and alkylsulfonamide to give
15 acylsulfonamide 9a.

Preparation of functionalized sidechain analogs (Scheme 2).

Ester 6 is reduced with LAH to give benzyl alcohol 10. Benzyl alcohol 10 is converted to benzylic bromide 11 with PBr₃ and alkylated with the enolate of pinacolone to afford
20 ketone 12. Ketone 12 is transformed into keto-ester 14 via Pd-C catalyzed hydrogenolysis, triflate formation with triflic anhydride/pyridine and palladium catalyzed methoxycarbonylation. Keto-ester 14 is subjected to sodium borohydride reduction and potassium hydroxide hydrolysis to produce alcohol-acid 15. Alcohol-acid 15 is coupled with EDCI/Et₃N/DMAP/R4NHCH₂CO₂Me and hydrolyzed with LiOH/EtOH/H₂O to
25 afford amide-acid 15a.

Preparation of alkylated pinacol sidechain (Scheme 3).

Ketone 7 is alkylated with LiHMDS/MeI and reduced with NaBH₄/MeOH to give alcohol 16. Alcohol 16 is hydrolyzed with potassium hydroxide to afford alcohol-acid 17.
30 Alcohol-acid 17 is reacted sequentially with 1) EDCI/Et₃N/DMAP/R4NHCH₂CO₂Me; and 2) LiOH/EtOH/H₂O to give amide-acid 17a.

-121-

Preparation of alkylsulfonylmethyl sidechain analogs (Scheme 4).

Benzyl bromide 11 is reacted with sodium alkylmercaptide and oxidized with mCPBA to give sulfone 18. Sulfone 18 is hydrogenolyzed with Pd-C/H₂ and alkylated with pinacolone chloride, potassium carbonate and sodium iodide to produce ketone sulfone

5 19. Ketone sulfone 19 is reduced with sodium borohydride to afford alcohol sulfone 20.

Preparation of unsymmetrical central link diphenyl scaffold (Scheme 5).

3-Substituted-4-hydroxybenzoic acid is coupled with EDCI/N-methy-N-methoxyamine/DMAP and alkylated with benzyl bromide to give amide 21. Amide 21 is sequentially reacted with R₂MgBr and R₃MgBr Grignard reagents to afford tertiary

10 alcohol 23. Alcohol 23 is reacted with 2-substituted phenol 3 and BF₃-OEt₂ to produce diphenylalkane 24. Diphenylalkane 24 is reacted with triflic anhydride/pyridine and methoxycarbonylated with Pd(OAc)₂, (DPPF or DPPB), carbon monoxide, MeOH, and Et₃N to give ester 26. Ester 26 is hydrogenolyzed with Pd-C/H₂ and alkylated with

15 pinacolone bromide to yield ketone ester 27. Ketone ester 27 is reduced with sodium borohydride and hydrolyzed with potassium hydroxide to afford alcohol-acid 28.

Alcohol-acid 28 is coupled with EDCI/Et₃N/DMAP/R4NHCH₂CO₂Me and hydrolyzed with LiOH/EtOH/H₂O to afford amide-acid 28a.

20 Preparation of tertiary alcohol sidechain analog (Scheme 6).

Phenol 4 is alkylated with pinacolone bromide and reacted with MeMgBr or EtMgBr to give alcohol 29. Alcohol 29 is hydrogenolyzed with Pd-C/H₂, reacted with triflic anhydride/pyridine and methoxycarbonylated to afford ester 30. Ester 30 is hydrolyzed with potassium hydroxide, coupled with EDCI/Et₃N/DMAP/R4NHCH₂CO₂Me, and

25 hydrolyzed to produce tertiary alcohol amide-acid 31.

Preparation of direct linked tetrazole (Scheme 7).

Acid 8 is reacted with formamide and sodium methoxide to give primary amide 32.

Primary amide 32 is treated with trifluoroacetic acid and methylene chloride followed by

30 2-chloro-1,3-dimethyl-2-imidazolinium hexafluorophosphate to give nitrile 33. Nitrile 33 is reacted with sodium azide and triethylammonium hydrochloride in N-methylpyrrolidin-2-one to afford tetrazole 34.

-122-

Preparation of amide (Scheme 8).

Acid 8 is reacted with diphenyl phosphorus azide and triethylamine followed by treatment with dimethylamine and 4-(dimethylamino)pyridine to yield amide 35.

5

Preparation of esters (Scheme 9).

Acid 8 is treated with sodium iodide and N,N-dimethyl-2-chloroacetamide to give ester 36. Acid 8 is treated with sodium iodide and N-morpholinocarbonylmethyl chloride to give ester 37.

10

Alternative Synthesis of Diphenylalkyl Scaffold (Scheme 10).

Phenol 2 is heated with pTSA to give olefin 38. Olefin 38 is alkylated with 2-chloropinacolone and reacted with a 2-substituted phenol/BF₃-OEt₂ to yield phenol 40.

Phenol 40 is converted to the corresponding phenolic triflate and reduced to alcohol 41.

15 Alcohol 41 is methoxycarbonylated to afford ester 42. Ester 42 is hydrolyzed to produce acid 8.

Synthesis of Pentynol Phenyl alkyl Phenyl Acids (Scheme 11).

Ester 26 is hydrogenolyzed with Pd-C/H₂ and reacted with Tf₂O/pyridine to give triflate 43. Triflate 43 is sequentially reacted with 1) TMS-acetylene, PdCl₂(PPh₃)₂, Et₃N, and DMF and 2) CsF and water to afford acetylene 44. Acetylene 44 is treated with Zn(OTf)₂/t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 46.

Alternatively, acetylene 44 is reacted with LiHMDS/ketone 45 to give alcohol 46.

Alcohol 46 is hydrolyzed with KOH/EtOH/H₂O to afford acid 47. Acid 47 is sequentially reacted with 1) EDCI/Et₃N/DMAP/R4NHCH₂CO₂Me and 2) LiOH/EtOH/H₂O to give amide-acid 48.

Synthesis of Cis-Pentenol Phenyl alkyl Phenyl Acids (Scheme 12).

Amide-acid 48 is hydrogenated with Lindlar catalyst to afford cis-pentenol amide-acid 49.

30

Synthesis of trans-Pentenol Phenyl Alkyl Phenyl Acids (Scheme 13).

-123-

Triflate 25 is sequentially reacted with 1) TMS-acetylene, PdCl₂(PPh₃)₂, Et₃N, and DMF and 2) CsF and water to afford acetylene 50. Acetylene 50 is treated with Zn(OTf)₂/t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 51. Alternatively, acetylene 50 is reacted with LiHMDS/ketone 45 to give alcohol 51. Alcohol 51 is reduced with LAH or DiBAH to afford trans-pentenol 52. Trans-pentenol 52 is sequentially reacted with 1) Pd-C/H₂; 2) Tf₂O/pyridine; 3) Pd(OAc)₂, DPPF, CO, MeOH, Et₃N, DMF; 4) KOH/EtOH/H₂O; 5) EDCI/Et₃N/DMAP/R4NHCH₂CO₂Me; and 6) LiOH/EtOH/H₂O to give trans-pentenol amide-acid 53. For reaction step 3, DPPB and DMSO.

10

-124-

Scheme 1: Synthesis of Diphenyl Scaffold

-125-

Scheme 2: Synthesis of Functionalized Sidechain Analogs

-126-

Scheme 3: Synthesis of Alkyl Pinacolol Sidechain

Scheme 4: Synthesis of Alkylsulfonylmethyl Sidechain Analogs

-127-

Scheme 5: Synthesis of Unsymmetrical Central Link Diphenyl Scaffold

-128-

Scheme 6: Synthesis of Tertiary Alcohol Sidechain

-129-

Scheme 7: Synthesis of Direct Linked Tetrazole

Scheme 8: Synthesis of Amide

Scheme 9: Synthesis of Ester Prodrugs

-130-

Scheme 10: Alternative Synthesis of Diphenyl Alkyl Scaffold

-131-

Scheme 11: Synthesis of Pentynol Phenyl Alkyl Phenyl Acids

-132-

Scheme 12: Synthesis of Cis-Pentenol Phenyl Alkyl Phenyl Amide-Acids

Scheme 13: Synthesis of Trans-Pentenol Phenyl Alkyl Phenyl Amide-Acids

EXAMPLES

Abbreviations:

- 5 The following examples use several standard abbreviations, for example;
“RT” is room temperature, “R_t” or t_{ret} are symbols for retention time, and “Hex”
refers to hexanes

Concentration is performed by evaporation from RT to about 70°C under vacuum (1-
10mm)

Example 1

Preparation of racemic 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane.

- 15 A. 3',3'-Bis[4-hydroxy-3-methylphenyl]pentane.

To a mixture of o-cresol (196 g, 1.81 mol) and 3-pentanone (60 ml, 0.57 mol) is added methanesulfonic acid (45 ml, 0.69 mol) and stirred for 3 days. The reaction is basified to pH 8 with satd Na_2CO_3 and extracted with EtOAc. The organic layer is washed with water (6 X 500 ml), Na_2SO_4 dried, concentrated, chromatographed (2 kg SiO_2 , Hex to 80% EtOAc/Hex), and triturated with Hex to give the title compound as a white solid (100 g, 61%).

-134-

NMR 400 mHz(DMSO): δ 0.49 (t, J = 7.3 Hz, 6H), 1.91 (q, J = 7.3 Hz, 4H), 2.02 (s, 6H), 6.61 (d, J = 8.3 Hz, 2H), 6.73 (d, J = 8.3 Hz, 2H), 6.76 (s, 2H), 8.94 (s, 2H).

High Res. EI-MS: 284.1794; calc. for C₁₉H₂₄O₂: 284.1776

- 5 B. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl])-3'-[4-hydroxy-3-methylphenyl]pentane.

To a mixture of 60% NaH disp (8.0 g, 200 mmol) and DMF (600 ml) is added 3,3-bis[4-hydroxy-3-methylphenyl]pentane (56.88 g, 200 mmol) and stirred for 2 h.

- 10 To the reaction is added 3,3-dimethyl-1-bromo-2-butanone (26.93 ml, 200 mmol) dropwise and stirred overnight. The solvent is removed in-vacuo. To the resulting residue is added EtOAc/water (800 ml/200 ml), acidified to pH 3 with 5N HCl, and partitioned. The organic layer is washed with water (2X), brine, Na₂SO₄ dried, concentrated, and chromatographed (3 kg SiO₂, hex to 15% EtOAc/hex) to give the title compound as a white solid (35 g, 46%).

NMR (300mHz, DMSO): δ 0.52 (t, J = 7.3 Hz, 6H), 1.16 (s, 9H), 1.95 (q, J = 7.3 Hz, 4H), 2.04 (s, 3H), 2.12 (s, 3H), 5.05 (s, 2H), 6.57 (d, J = 9.1 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 6.81 (m, 2H), 8.97 (s, 1H).

ES-MS: 400(M+NH4).

-135-

C. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-trifluoromethylsulfonyloxy-3-methylphenyl]pentane

To a 0 °C solution of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-

5 [4-hydroxy-3-methylphenyl]pentane(20 g, 52 mmol), pyridine (30 ml) is added Tf₂O (9.7 ml, 57 mmol). The mixture is warmed to RT and stirred 14 h. The reaction is concentrated. The residue is partitioned between Et₂O/1N HCl. The organic layer is washed with water, brine, Na₂SO₄ dried, concentrated, and chromatographed (hex to 10% EtOAc/hex) to give the title compound as an oil (26.3 g, 98%).

10 NMR (300MHz, DMSO): δ 0.53 (t, J = 7.3 Hz, 6H), 1.16 (s, 9H), 2.04 (q, J = 7.3 Hz, 4H), 2.14 (s, 3H), 2.28 (s, 3H), 5.07 (s, 2H), 6.61 (d, J = 8.8 Hz, 1H), 6.86 (dd, J = 2.2, 8.8 Hz, 1H), 6.91 (d, J = 1.8 Hz, 1H), 7.10 (dd, J = 2.2, 8.8 Hz, 1H), 7.25 (m, 2H).

ES-MS: 532.5 (M+NH₄).

15

D. 3'-(4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl)pentane.

-136-

- To a 0 °C mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl]pentane (25.5 g, 49.5 mmol) and MeOH (200 ml) is added NaBH₄ (2.63 g, 59.4 mol) in portions. After stirring for 15 m, the reaction is allowed to warm to RT and stirred for 16 h. The reaction is concentrated and partitioned
5 between Et₂O/1N HCl. The organic layer is washed with water, Na₂SO₄ dried, and concentrated to give the title compound as an oil(26.0 g, quant).
- NMR (300MHz, DMSO): δ 0.55 (t, J = 7.3 Hz, 6H), 0.92 (s, 9H), 2.04 (q, J = 7.3 Hz, 4H), 2.11 (s, 3H), 2.28 (s, 3H), 3.46 (m, 1H), 3.76 (m, 1H), 4.03 (m, 1H), 4.78 (d, J = 5.5 Hz, 1H), 6.89 (m, 3H), 7.10 (dd, J = 1.8, 8.8 Hz, 1H), 7.23 (m, 2H).
10 High Res. EI-MS, m/e: 516.2171; calc. for C₂₆H₃₅F₃O₅S: 516.2157.

E. 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-methoxycarbonyl-3-methylphenyl]pentane.

- 15 A mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl]pentane (27 g, 52.2 mmol), Pd(OAc)₂ (1.2 g, 5.22 mmol), Dppf (5.8 g, 10.4 mmol), MeOH (21 ml, 522 mmol), Et₃N (22 ml, 157 mmol), and DMF (100 ml) is pressurized with carbon monoxide (1000 psi) and heated to 110 °C for 48 h. After cooling, the reaction is filtered through diatomaceous earth
20 with EtOAc wash. The filtrate is diluted with 1:1 Et₂O:EtOAc, washed with 1N HCl, and filtered through diatomaceous earth, Na₂SO₄ dried, concentrated, and chromatographed (hex to 10% EtOAc/hex) to give the title compound (14 g, 63%).
25 NMR 300 MHz(DMSO): δ 0.54 (t, J = 7.3 Hz, 6H), 0.92 (s, 9H), 2.04 (q, J = 7.3 Hz, 4H), 2.09 (s, 3H), 2.46 (s, 3H), 3.45 (m, 1H), 3.76 (m, 4H), 4.02 (m, 1H), 4.78 (d, J = 5.5 Hz, 1H), 6.83 (m, 2H), 6.92 (dd, J = 2.2, 8.4 Hz, 1H), 7.07 (m, 2H), 7.74 (d, J = 8.1 Hz, 1H).
High Res. FAB-MS: 426.2750; calc. for C₂₇H₃₈O₄: 426.2770.

-137-

Example 2

Preparation of racemic 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-carboxyl-3-methylphenyl)pentane.

5

A mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-methoxycarbonyl-3-methylphenyl)pentane (8.3 g, 19.4 mmol), EtOH (100 ml), water (100 ml) is added KOH (10.8 g, 97 mmol) and heated to 75 °C for 8 h. The reaction is concentrated with a stream of nitrogen and the residue is partitioned between 1:1
10 Et₂O:EtOAc and 1N HCl. The organic layer is washed with water, Na₂SO₄ dried, concentrated, and chromatographed (gradient 20% EtOAc/MeCl₂ to 30% EtOAc/CHCl₃) to give the title compound as a white foam (7.85 g, 95%).

NMR mHz(DMSO): δ 0.54 (t, J = 7.3 Hz, 6H), 0.92 (s, 9H), 2.05 (q, J = 7.3 Hz, 4H), 2.10 (s, 3H), 2.47 (s, 3H), 3.45 (m, 1H), 3.76 (m, 1H), 4.02 (dd, J = 3.3, 9.9 Hz, 1H),
15 4.78 (d, J = 5.1 Hz, 1H), 6.83 (m, 2H), 6.92 (dd, J = 1.8, 8.4 Hz, 1H), 7.05 (m, 2H), 7.72 (d, J = 8.1 Hz, 1H), 12.60 (br s, 1H).

High Res. ES-MS: 435.2498; calc. for C₂₆H₃₆O₄+Na: 435.2511

Example 3A and Example 3B

20 Preparation of enantiomers of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-carboxyl-3-methylphenyl)pentane.

-138-

A mixture of racemic 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-carboxyl-3-methylphenyl]pentane, Example 3, is chromatographed with a ChiralPak

- 5 AD column to give enantiomer 1, Example 3A (110 mg, 37%) and enantiomer 2, Example 3B (110 mg, 37%).

Enantiomer 1, Example 3A

HPLC: ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m
10 (flow rate); Rt = 6.2 m

NMR eq. To Example 2.

High Res. ES-MS: 411.2521; calc. for C₂₆H₃₆O₄-H: 411.2535

Enantiomer 2, Example 3B

15 HPLC: ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m
(flow rate); Rt = 7.3 m

NMR eq. To Example 2.

High Res. ES-MS: 413.2728; calc. for C₂₆H₃₆O₄+H: 413.2692

20 **Example 3A Alternate method**

Preparation of enantiomer 1 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-carboxyl-3-methylphenyl]pentane from enantiomer 1 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-methoxycarbonyl-3-methylphenyl)pentane.

-139-

Using a procedure analogous to Example 2, enantiomer 1 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-methoxycarbonyl-3-methylphenyl]pentane, Example 4A, gave the title compound as a glassy solid (1.3 g, quant).

5 Enantiomer 1, Example 3A

HPLC: ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); Rt = 7.0 m

NMR eq. To Example 2.

High Res. ES-MS: 435.2533; calc. for C₂₆H₃₆O₄+Na: 435.2511

10 High Res. ES-MS: 430.2943; calc. for C₂₆H₃₆O₄+NH₄: 430.2943

HPLC correlation of Example 3A (derived from chiral HPLC of 2) and 3A (derived from the hydrolysis of 4A):

A mixture of Example 3A (1 mg) (derived from chiral HPLC of 2) and 3A (1 mg)(derived from the hydrolysis of 4A) is dissolved in TFA/20% IPA/80% and analyzed by HPLC;

15 ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); to give a single peak with Rt = 7.0 m.

Example 3B alternate method

Preparation of enantiomer 2 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-

20 3'-(4-carboxyl-3-methylphenyl]pentane from enantiomer 2 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-methoxycarbonyl-3-methylphenyl]pentane.

Using a procedure analogous to Example 2, enantiomer 2 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-methoxycarbonyl-3-methylphenyl]pentane, Example 4B, gave the title compound as a glassy solid (1.3 g, quant).

25 Enantiomer 2, Example 3B

HPLC: ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); Rt = 8.0 m

NMR eq. To Example 2.

High Res. ES-MS: 435.2536; calc. for C₂₆H₃₆O₄+Na: 435.2511

30 HPLC correlation of Example 3B (derived from chiral HPLC of 2) and 3B (derived from the hydrolysis of 4B):

-140-

A mixture of Example 3B (1 mg) (derived from chiral HPLC of 2) and 3B (1 mg)(derived from the hydrolysis of 4B) is dissolved in TFA/20% IPA/80% and analyzed by HPLC; ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); to give a single peak with Rt = 8.16 m.

5

Example 4A and 4B

Preparation of enantiomers of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-methoxycarbonyl-3-methylphenyl]pentane.

10

(enantiomer 1)

(enantiomer 2)

A mixture of racemic 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-methoxycarbonyl-3-methylphenyl]pentane, Example 1, is chromatographed with a ChiralPak AD column to give enantiomer 1, Example 4A (1.72 g, 49%) and enantiomer 2, Example 4B (1.72 g, 49%).

Enantiomer 1, Example 4A

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/80% heptane; 1 ml/m (flow rate); Rt = 5.4 m

20 NMR eq. To Example 1.

High Res. ES-MS: 444.3130; calc. for C₂₇H₃₈O₄+NH₄: 444.3114

Enantiomer 2, Example 4B

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/80% heptane; 1 ml/m (flow rate); Rt = 8.0 m

NMR eq. To Example 1.

High Res. ES-MS: 444.3134; calc. for C₂₇H₃₈O₄+NH₄: 444.3114

-141-

Example 5

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-methylsulfonylaminocarbonyl-3-methylphenyl]pentane.

5

To a mixture of methane sulfonamide (92 mg, 0.97 mmol), EDCI (186 mg, 0.97 mmol), DMAP (118 mg, 0.97 mmol) and CH₂Cl₂ (7 ml) is added 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-carboxyl-3-methylphenyl)pentane, Example 1, (400 mg, 0.97 mmol) and stirred overnight. The reaction is diluted with CH₂Cl₂, washed

10 with 1N HCl (4 X 20 ml), Na₂SO₄ dried, concentrated, and chromatographed (gradient CHCl₃ to 10% CH₃CN/CHCl₃) to give the title compound as a solid (240 mg, 51%).

NMR mHz(DMSO): δ 0.60 (t, J = 7.3 Hz, 6H), 1.01 (s, 9H), 2.06 (q, J = 7.3 Hz, 4H), 2.17 (s, 3H), 2.42 (d, J = 2.9 Hz, 1H), 2.49 (s, 3H), 3.43 (s, 3H), 3.70 (d, J = 8.8 Hz, 1H), 3.86 (t, J = 8.8 Hz, 1H), 4.09 (dd, J = 2.4, 9.3 Hz, 1H), 6.71 (d, 8.8 Hz, 1H), 6.82 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 2.4, 8.8 Hz, 1H), 7.09 (m, 2H), 7.37 (d, J = 7.8 Hz, 1H), 12.30 (s, 1H).

High Res. ES-MS: 490.2633; calc. for C₂₇H₃₉NO₅S+H: 490.2627

Example 6

20 Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-carboxylethyl)-3-methylphenyl)pentane.

-142-

A. 3'-[4-Benzylxy-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane.

5 To a solution of 3,3-bis[4-hydroxy-3-methylphenyl]pentane (10 g, 35.2 mmol) and DMF (180 ml) is added 60% NaH disp (1.4 g, 35.2 mmol). After stirring for 30 m, to the reaction is added benzyl bromide (4.2 ml, 35.2 mmol). The mixture is stirred for 14 h and concentrated in vacuo. The residue is partitioned between Et₂O/water. The organic layer is washed with 1N HCl, water, brine, Na₂SO₄ dried, concentrated, and chromatographed

10 (MeCl₂) to give the title compound as an oil (6.5 g, 49%).

NMR 300 MHz(DMSO): δ 0.52 (t, J = 7.3 Hz, 6H), 1.96 (q, J = 7.3 Hz, 4H), 2.04 (s, 3H), 2.12 (s, 3H), 5.05 (s, 2H), 6.63 (d, J = 8.1 Hz, 1H), 6.75 (dd, J = 2.2, 8.1 Hz, 1H), 6.79 (s, 1H), 6.89 (m, 3H), 7.44 (m, 5H), 8.96 (s, 1H).

High Res. FAB-MS: 374.2237; calc. for C₂₆H₃₀O₂: 374.2246

15

B. 3'-[4-Benzylxy-3-methylphenyl]-3'-[4-trifluoromethylsulfonyloxy-3-methylphenyl]pentane.

-143-

Using a procedure analogous to Example 1C, 3'-[4-benzyloxy-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane gives the title compound as an oil (21.5 g, 91%).
 NMR 300 MHz(DMSO): δ 0.54 (t, J = 7.3 Hz, 6H), 2.05 (q, J = 7.3 Hz, 4H), 2.14 (s, 3H), 2.28 (s, 3H), 5.06 (s, 2H), 7.10 (dd, J = 2.2, 8.8 Hz, 1H), 7.26 (m, 2H), 7.34 (d, J = 7.0 Hz, 1H), 7.39 (m, 4H).

5 High Res. FAB-MS: 506.1743; calc. for C₂₇H₂₉F₃O₄S: 506.1739

C. 3'-[4-Benzylxy-3-methylphenyl]-3'-[4-(2-ethoxycarbonylethyl)-3-methylphenyl]pentane.

10

To a mixture of 3'-[4-benzyloxy-3-methylphenyl]-3'-[4-trifluoromethylsulfonyloxy-3-methylphenyl]pentane (5.3 g, 10.5 mmol) and THF (5 ml) is sequentially added Pd(dppf)Cl₂ (860 mg, 1.05 mmol), LiCl (1.78 g, 42 mmol), and 0.5 M BrZnCH₂CH₂CO₂Et in THF (63 ml, 31.4 mmol). The mixture is heated to 60 °C for 18 h. After cooling to RT, the mixture is concentrated in-vacuo, partitioned between Et₂O/EtOAc/1N HCl. The organic layer is washed with 1N HCl, water, Na₂SO₄ dried, concentrated, and chromatographed (hex to 10% EtOAc/hex) to give the title compound (2.5 g, 52%).

15 NMR 400 MHz(DMSO): δ 0.51 (t, J = 7.3 Hz, 6H), 1.14 (t, J = 7.1 Hz, 3H), 2.00 (q, J = 7.3 Hz, 4H), 2.10 (s, 3H), 2.18 (s, 3H), 2.52 (t, J = 8.1 Hz, 2H), 2.75 (t, J = 8.1 Hz, 2H), 4.01 (q, J = 7.1 Hz, 2H), 5.03 (s, 2H), 6.87 (m, 5H), 6.98 (d, J = 7.8 Hz, 1H), 7.31 (d, J = 7.3 Hz, 1H), 7.37 (m, 2H), 7.43 (d, J = 7.1 Hz, 2H).

20 25 High Res. ES-MS: 476.3178; calc. for C₃₁H₃₈O₃+NH₄: 476.3165

D. 3'-[4-Hydroxy-3-methylphenyl]-3'-[4-(2-ethoxycarbonylethyl)-3-methylphenyl]pentane

-144-

A mixture of 3'-(4-benzyloxy-3-methylphenyl)-3'-(4-(2-ethoxycarbonyl)ethyl)-3-methylphenyl]pentane (2.4 g, 5.45 mmol), EtOH (20 ml), and 10% Pd/C (250 mg) is hydrogenated at atmospheric pressure for 18 h. The reaction is filtered through diatomaceous earth with EtOAc wash. The filtrate is concentrated to give the title compound (2 g, quant).

NMR 400 MHz(DMSO): δ 0.49 (t, J = 7.3 Hz, 6H), 1.12 (t, J = 7.1 Hz, 3H), 1.95 (q, J = 7.3 Hz, 4H), 2.01 (s, 3H), 2.18 (s, 3H), 2.52 (t, J = 7.7 Hz, 2H), 2.75 (t, J = 7.7 Hz, 2H), 4.01 (q, J = 7.1 Hz, 2H), 6.61 (d, J = 8.3 Hz, 1H), 6.73 (d, J = 8.3 Hz, 1H), 6.77 (s, 1H), 6.86 (m, 2H), 6.97 (d, J = 7.8 Hz, 1H), 8.98 (s, 1H).

High Res. ES-MS: 391.2218; calc. for C₂₄H₃₂O₃+Na: 391.2249

E. 3'-(4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-ethoxycarbonylethyl)-3-methylphenyl]pentane

15

Using a procedure analogous to Example 1B, 3'-(4-hydroxy-3-methylphenyl)-3'-(4-(2-ethoxycarbonylethyl)-3-methylphenyl]pentane and 1-bromo-3,3-dimethyl-2-butanone gave the title compound (2.1 g, 83%).

¹H NMR 400 MHz (DMSO-d₆): δ 0.50 (t, J = 7.3 Hz, 6H), 1.05-1.14 (m, 12H), 1.98 (q, J = 7.3 Hz, 4H), 2.10 (s, 3H), 2.18 (s, 3H), 2.52 (t, J = 7.7, 2H), 2.75 (t, J = 7.7, 2H), 4.02

-145-

(q, $J = 7.2$ Hz, 2H), 5.04 (s, 2H), 6.55 (d, $J = 8.3$ Hz, 1H), 6.82-6.89 (m, 4H), 6.98 (d, $J = 8.1$, 1H).

High Res. ES-MS: 489.2990; calc. for $C_{30}H_{42}O_4+Na$: 489.2981

5 F. 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-carboxylethyl-3-methylphenyl]pentane

Using a procedure analogous to Example 2, 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-ethoxycarbonylethyl)-3-methylphenyl]pentane gives the title compound (1.8 g, 95%).

1H NMR 300 MHz (DMSO- d_6): δ 0.52 (t, $J = 7.3$ Hz, 6H), 1.16 (s, 9H), 2.01 (q, $J = 7.32$ Hz, 4H), 2.13 (s, 3H), 2.20 (s, 3H), 2.46 (t, $J = 7.3$ Hz, 2H), 2.74 (t, $J = 7.3$ Hz, 2H), 5.06 (s, 2H), 6.58 (d, $J = 8.4$ Hz, 1H), 6.89 (m, 4H), 7.01 (d, $J = 7.7$ Hz, 1H).

High Res. ES-MS: 461.2669; calc. for $C_{28}H_{38}O_4+Na$: 461.2668

15

Example 7

Preparation of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-dimethylcarbamoylethyl)-3-methylphenyl]pentane.

20

To a 0 °C mixture of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-carboxylethyl)-3-methylphenyl]pentane (500 mg, 1.14 mmol), pyridine (101 μ l, 1.25 mmol), DMF (4.4 μ l, 0.057 mmol) and $MeCl_2$ (4 ml) is added oxalyl chloride (104 μ l, 1.2 mmol). After stirring for 10 m, to the mixture is added 2M Me_2NH/THF (2.3 ml, 4.56 mmol). To the reaction is added $MeCl_2$ (4 ml) and stirred at RT for 2 h.

25

-146-

The mixture is concentrated and partitioned between Et₂O/1N HCl. The organic layer is washed with water, Na₂SO₄ dried, concentrated, and chromatographed (hex to CH₂Cl₂ to 15% EtOAc/MeCl₂) to give the title compound as a solid (85 mg, 16%).

¹H NMR 400 MHz (DMSO-d₆): δ 0.51 (t, J = 7.3 Hz, 6H), 1.14 (s, 9H), 1.96 (q, J = 7.3

5 Hz, 4H), 2.11 (s, 3H), 2.19 (s, 3H), 2.48 (t, J = 7.2, J = 8.8 Hz, 2H, under DMSO peak), 2.69 (t, J = 7.2, J = 8.8 Hz, 2H), 2.79 (s, 3H), 2.88 (s, 3H), 5.05 (s, 2H), 6.55 (d, J = 8.8 Hz, 1H), 6.84-6.87 (m, 4H), 6.99 (d, J = 8.3 Hz, 1H).

ES-MS: 466.2 (M+H)

10

Example 8

Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-dimethylcarbamoylethyl)-3-methylphenyl)pentane.

Using a procedure analogous to Example 1D, 3'-(4-(2-oxo-3,3-

15 dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-dimethylcarbamoylethyl)-3-methylphenyl) gives the title compound as a white glassy solid (65 mg, quant).

¹H NMR 300 MHz (DMSO-d₆): δ 0.53 (t, J = 7.0 Hz, 6H), 0.92 (s, 9H), 6.96 (q, J = 6.96 Hz, 4H), 2.10 (s, 3H), 2.20 (s, 3H), 2.50 (t, J = 6.9, J = 8.4 Hz, 2H, under DMSO peak), 2.71 (t, J = 6.9, J = 8.4 Hz, 2H), 2.80 (s, 3H), 2.90 (s, 3H), 3.45 (m, 1H), 3.75

20 (m, 1H), 4.01(dd; J = 2.9, J = 6.9 Hz, 1H), 6.80 (d, J = 8.4, 1H), 6.89 (m, 4H), 7.01 (d, J = 8.0 Hz, 1H).

High Res. ES-MS: 490.3301; calc. for C₃₀H₄₅NO₃+Na: 490.3297

-147-

Example 9

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(2-dimethylcarbamoyl-t-ethylidene)-3-methylphenyl]pentane.

- 5 To a mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl)pentane (640 mg, 1.24 mmol), Pd(OAc)₂ (14 mg, 0.062), DPPP (51 mg, 0.124 mmol), and DMF (2.5 ml) is added Et₃N (0.69 ml, 4.96 mmol). The mixture is purged with N₂ and N,N-dimethylacrylamide (0.39 ml, 3.71 mmol) is added. The reaction is heated to 80 °C for 14 h and then cooled.
- 10 The mixture is partitioned between EtOAc/water. The organic layer is washed with 1N HCl, water, brine, Na₂SO₄ dried, concentrated, and chromatographed (MeCl₂ to 60% EtOAc/MeCl₂) to give the title compound as a white foam (90 mg, 16%).
- 15 ¹H NMR 300 MHz (DMSO-d₆): δ 0.55 (t, J = 7.0 Hz, 6H), 0.92 (s, 9H), 2.04 (q, J = 7.0 Hz, 4H), 2.10 (s, 3H), 2.31 (s, 3H), 2.92 (s, 3H), 3.13 (s, 3H), 3.45 (m, 1H), 3.75 (dd, J = 7.4, 9.9 Hz, 1H), 4.02 (dd, J = 3.3, 9.9 Hz, 1H), 4.78 (d, J = 5.1 Hz, 1H), 6.81 (d, J = 8.8 Hz, 1H), 6.87 (s, 1H), 6.96 (m, 3H), 7.01 (s, 1H), 7.62 (m, 2H).
- High Res. ES-MS: 466.3328; calc. for C₃₀H₄₄NO₃+H: 466.3321

- 20 Preparation of enantiomers of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane.

(enantiomer 1) Example 10Da

-148-

JB5-A03275-45-1

(enantiomer 2) Example 10Db

- A. 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-methoxycarbonyl-3-methylphenyl]pentane.

5

Using a procedure analogous to Example 1B, 3'-(4-hydroxy)-3-methylphenyl]-3'-(4-methoxycarbonyl-3-methylphenyl)pentane gave the title compound as a white solid (19.5 g, 88%).

NMR 300 MHz(DMSO): δ 0.54 (t, J = 7.3 Hz, 6H), 1.16 (s, 9H), 2.05 (q, J = 7.3 Hz, 4H),
10 2.13 (s, 3H), 2.47 (s, 3H), 3.79 (s, 3H), 5.07 (s, 2H), 6.59 (d, J = 9.1 Hz, 1H), 6.86 (m, 2H), 7.06 (d, J = 8.1 Hz, 1H), 7.11 (s, 1H), 7.72 (d, J = 8.1 Hz, 1H).
High Res. ES-MS: 442.2953; calc. for C₂₇H₃₆O₄+NH₄: 442.2957.

- B. 3'-(4-(2-oxo-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane.

To a -78 °C mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(2-methoxycarbonyl-3-methylphenyl))pentane (2.0 g, 4.7 mmol) in THF (10 ml) is added 1M LiHMDS/THF (5.2 ml, 5.2 mmol). The reaction is warmed to -45 °C, stirred for 1.25
20 h, added MeI (351 ul, 5.6 mmol). After warming to RT and stirred overnight, the reaction is diluted with Et₂O, washed with 1N HCl, water, and Na₂SO₄ dried. The organic solution is concentrated and chromatographed (50% CHCl₃/hex) to give the title compound (1.75 g, 85%).

-149-

NMR 300 mHz(DMSO): δ 0.53 (t, J = 7.3 Hz, 6H), 1.10 (s, 9H), 1.34 (d, J = 6.6 Hz, 3H), 2.04 (q, J = 7.3 Hz, 4H), 2.10 (s, 3H), 2.46 (s, 3H), 3.79 (s, 3H), 5.32 (q, J = 6.6 Hz, 1H), 6.88 (m, 3H), 7.05 (d, J = 8.4 Hz, 1H), 7.10 (s, 1H), 7.71 (d, J = 8.1 Hz, 1H).

High Res. ES-MS: 456.3107; calc. for $C_{28}H_{38}O_4+NH_4$: 456.3114

5

C. 3'-[4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[4-methoxycarbonyl-3-methylphenyl]pentane.

Using a procedure analogous to Example 1D, 3'-(4-(2-oxo-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane gives the title compound (1.6 g, 100%).

NMR 300 mHz(DMSO): δ 0.54 (t, J = 7.3 Hz, 6H), 0.91 (s, 9H), 1.19 (d, J = 5.9 Hz, 3H), 2.07 (m, 7H), 2.48 (s, 3H), 3.08 (dd, J = 1.1, 7.7 Hz, 1H), 3.79 (s, 3H), 4.35 (d, J = 7.7 Hz, 1H), 4.57 (br q, J = 5.9 Hz, 1H), 6.84 (m, 3H), 7.06 (br d, J = 8.4 Hz, 1H), 7.14 (s, 1H), 7.72 (d, J = 8.4 Hz, 1H).

High Res. ES-MS: 456.3107; calc. for $C_{28}H_{38}O_4+NH_4$: 456.3114.

D. Enantiomers of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane.

Using a procedure analogous to Example 1D, 3'-(4-(2-oxo-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane gave a racemic mixture of the title compound. The mixture is chromatographed (Chiralpak AD) to give enantiomer 1 (543 mg, 36%, R_t =) and enantiomer 2 (822 mg, 55%, R_t =).

Enantiomer 1 Example 10Da

NMR 300 mHz (DMSO): δ 0.54 (t, J = 7.3 Hz, 6H), 0.91 (s, 9H), 1.20 (d, J = 6.2 Hz, 3H), 2.07 (m, 7H), 2.48 (s, 3H), 3.08 (dd, J = 1.5, 7.7 Hz, 1H), 3.79 (s, 3H), 4.35 (d, J = 7.7 Hz, 1H), 4.57 (m, 1H), 6.84 (m, 3H), 7.06 (dd, J = 1.1, 8.4 Hz, 1H), 7.14 (s, 1H), 7.72 (d, J = 8.4 Hz, 1H).

-150-

High Res. ES-MS: 458.3257; calc. for C₂₈H₄₀O₄+NH₄: 458.3270.

Enantiomer 2 Example 10Db

NMR 300 mHz (DMSO): eq. to enantiomer 1.

5 MS: 440.29 (M+).

High Res. ES-MS: ; calc. for C₂₇H₃₉NO₅S+H:

Example 11

Preparation of enantiomer 1 of 3'-[4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-10 3'-[4-carboxyl-3-methylphenyl]pentane.

(enantiomer 1)

Using a procedure analogous to Example 2, enantiomer 1 of 3'-[4-(1-methyl-2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-methoxycarbonyl-3-

15 methylphenyl]pentane, Example 10Da, gave the title compound (420 mg, 96%).

HPLC: ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); Rt = m

NMR 300 mHz (DMSO): δ 0.54 (t, J = 7.3 Hz, 6H), 0.91 (s, 9H), d, J = 5.9 Hz, 3H), 2.07 (m, 7H), 2.48 (s, 3H), 3.08 (dd, J = 1.1, 7.7 Hz, 1H), 4.35 (d, J = 7.7 Hz, 1H), 4.57 (m, 1H), 6.84 (m, 3H), 7.04 (d, J = 8.1 Hz, 1H), 7.10 (s, 1H), 7.72 (d, J = 8.1 Hz, 1H), 12.60 (br s, 1H).

High Res. ES-MS: 875.5439; calc. for [C₂₇H₃₈O₄+Na] + C₂₇H₃₈O₄: 875.5438.

-151-

Example 12

Preparation of enantiomer 2 of 3'-[4-(2-hydroxy-3,3-trimethylbutoxy)-3-methylphenyl]-3'-[4-carboxyl-3-methylphenyl]pentane.

5 (enantiomer 2)

Using a procedure analogous to Example 2, enantiomer 2 of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane, Example 10Db, gave the title compound (680 mg, 94%).

10 HPLC: ChiralPak AD (4.6X250 mm); 0.1% TFA/20% IPA/80% heptane; 1 ml/m (flow rate); Rt = m

NMR 300 MHz (DMSO): eq. to enantiomer 1.

High Res. ES-MS: 449.2657; calc. for C₂₇H₃₈O₄+Na: 449.2668.

Example 12a

15 Preparation enantiomer 1 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(tetrazol-5-ylaminocarbonyl)-3-methylphenyl)pentane.

Using a procedure analogous to Example 5, enantiomer 1 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-carboxyl-3-methylphenyl)pentane, Example 3A, 20 and 5-aminotetrazole give the title compound (440 mg, 95%).

NMR 300 MHz (DMSO): 0.57 (t, J = 7.3 Hz, 6H), 0.92 (s, 9H), 2.09 (m, 7H), 2.40 (s, 3H), 3.46 (m, 1H), 3.76 (dd, J = 7.3, 10.2 Hz, 1H), 4.03 (dd, J = 3.3, 10.2 Hz, 1H),

-152-

4.79 (d, $J = 5.5$ Hz, 1H), 6.83 (d, $J = 8.4$ Hz, 1H), 6.89 (s, 1H), 6.95 (d, $J = 8.4$ Hz, 1H), 7.08 (d, $J = 8.1$ Hz, 1H), 7.12 (s, 1H), 7.52 (d, $J = 8.1$ Hz, 1H), 12.23 (s, 1H), 16.00 (br s, 1H).

High Res. ES-MS: 480.2983; calc. for $C_{27}H_{37}N_5O_3+H$: 480.2975.

5

Example 12b

Preparation enantiomer 2 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(tetrazol-5-ylaminocarbonyl)-3-methylphenyl]pentane.

10 Using a procedure analogous to Example 5, enantiomer 2 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-carboxyl-3-methylphenyl)pentane, Example 3B, and 5-aminotetrazole gives the title compound (385 mg, 83%).

NMR 300 MHz (DMSO): eq. to enantiomer of 1.

High Res. ES-MS: 480.2968; calc. for $C_{27}H_{37}N_5O_3+H$: 480.2975.

15

Example 13

Preparation of 1-[4-(1-ethyl-1-{4-[(2-methanesulfonyl-ethylamino)-methyl]-3-methyl-phenyl}-propyl)-2-methyl-phenoxy]-3,3-dimethyl-butan-2-one.

20 A. Methyl 4-(1-{4-[2-(tert-Butyldimethylsilyloxy)-3,3-dimethyl-butoxy]-3-methylphenyl}-1-ethylpropyl)-2-methyl-benzoate.

-153-

To a solution of the methyl 4-(1-{4-[2-(hydroxy)-3,3-dimethylbutoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzoate (4.79 g, 11.24 mmol), Example 1, in DMF (40 mL) is added imidazole (1.14 g, 16.87 mmol) followed by the addition of TBSCl (1.78 g, 11.80 mmol). The mixture is stirred at RT overnight and concentrated.

The mixture is partitioned between 0.1 M HCl (100 mL) and EtOAc (100 mL). The aqueous layer is extracted with EtOAc. The combined organic layers is MgSO₄ dried, concentrated, and chromatographed (10% EtOAc/Hex) to give the title compound (4.37 g, 72%).

¹H NMR (CDCl₃): δ 0.04 (s, 3H), 0.10 (s, 3H), 0.60 (t, J = 7.0 Hz, 6H), 0.89 (s, 9H), 0.96 (s, 9H), 2.04-2.09 (m, 4H), 2.16 (s, 3H), 2.55 (s, 3H), 3.66 (dd, J = 5.6, 3.6 Hz, 1H), 3.82-3.86 (m, 4H), 3.97 (dd, J = 10.0, 3.2 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 6.83-7.06 (m, 4H), 7.79 (d, J = 7.6 Hz, 1H). ES-MS (m/z): calcd for C₃₃H₅₂O₄Si (M⁺): 540.9; found: 541.2.

B. [4-(1-{4-[2-(tert-Butyldimethylsilyloxy)-3,3-dimethylbutoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylphenyl]-methanol.

To a 0 °C solution of the methyl 4-(1-{4-[2-(tert-butyldimethylsilyloxy)-3,3-dimethylbutoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzoate (4.37 g, 8.09 mmol) in THF (50 mL) is added LiAlH₄ (0.31 g, 8.09 mmol). The reaction is stirred for 10 m and allowed to warm to RT overnight. The mixture is cooled to 0 °C and quenched successively with H₂O (0.3 mL), 15 % NaOH (0.3 mL) and H₂O (0.9 mL). The mixture is stirred for 10 m, warmed to RT, stirred for 20 m, filtered through celite with EtOAc (100 mL) wash, and concentrated to give the title compound (4.14 g, 8.08 mmol, 99%).

-154-

¹H NMR (CDCl₃): δ 0.04 (s, 3H), 0.10 (s, 3H), 0.59 (t, J = 7.1 Hz, 6H), 0.89 (s, 9H), 0.94 (s, 9H), 2.05 (q, J = 7.1 Hz, 4H), 2.17 (s, 3H), 2.31 (s, 3H), 3.66 (dd, J = 6.0, 3.6 Hz, 1H), 3.70 (t, J = 5.6 Hz, 1H), 3.84 (dd, J = 9.8, 5.2 Hz, 1H), 3.97 (dd, J = 9.8, 3.6 Hz, 1H), 4.67 (s, 2H), 6.65 (d, J = 8.4 Hz, 1H), 6.88-7.02 (m, 4H), 7.21 (d, J = 8.0 Hz, 1H). ES-
5 MS (m/z): calcd for C₃₂H₅₆NO₃Si (M+NH₄)⁺: 530.9; found: 530.2.

C. 4-(1-{4-[2-(t-Butyldimethylsilanyloxy)-3,3-dimethylbutoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzaldehyde.

10 To a solution of [4-(1-{4-[2-(t-butyldimethylsilanyloxy)-3,3-dimethylbutoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylphenyl]methanol (0.25 g, 0.48 mmol) in CH₂Cl₂ (4 mL) is added powdered 4Å molecular sieves (250 mg) followed by the addition of NMO (84 mg, 0.72 mmol), and TPAP (8.4 mg, 0.02 mmol). The resulting mixture is stirred at RT for 5 m, filtered through silica gel, washed with EtOAc, and the combined
15 filtrate is concentrated to give the title compound (0.20 g, 83%).

¹H NMR (CDCl₃): δ 0.04 (s, 3H), 0.10 (s, 3H), 0.61 (t, J = 7.2 Hz, 6H), 0.89 (s, 9H), 0.96 (s, 9H), 2.09 (q, J = 7.2 Hz, 4H), 2.17 (s, 3H), 2.62 (s, 3H), 3.67 (dd, J = 5.4, 3.4 Hz, 1H), 3.85 (dd, J = 9.8, 5.4 Hz, 1H), 3.97 (dd, J = 9.8, 3.4 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 6.84-6.92 (m, 2H), 7.08 (s, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 10.21 (s, 1H). ES-MS (m/z): calcd for C₃₂H₅₁O₃Si (M+H)⁺: 511.8; found: 511.2.

D. [4-(1-{4-[2-(t-Butyldimethylsilanyloxy)-3,3-dimethylbutoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzyl]-[2-methanesulfonylethyl]amine.

-155-

To a mixture of 4-(1-{4-[2-(t-butyldimethylsilanyloxy)-3,3-dimethylbutoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzaldehyde (2.40 g, 4.71 mmol), Et₃N (0.9 ml, 6.12 mmol), and 2-aminoethylmethylsulfone hydrochloride (0.78 g, 5.18 mmol) is treated with Ti(O*i*Pr)₄ (1.8 ml, 6.12 mmol). The mixture is stirred for 1 h, diluted with CH₃OH (20 mL), then NaBCN_H₃ (0.33 g, 5.18 mmol) is added. The mixture is stirred overnight, quenched with H₂O (3 mL), stirred for 1 h., and filtered through SiO₂ with EtOAc (100 mL) wash. The filtrate is concentrated and chromatographed (75-80%EtOAc) to give the title compound (1.47 g, 2.38 mmol, 51%).

¹H NMR (CDCl₃), δ 0.05 (s, 3H), 0.12 (s, 3H), 0.61 (t, *J* = 7.4 Hz, 6H), 0.91 (s, 9H), 0.97 (s, 9H), 2.05 (q, *J* = 7.4 Hz, 4H), 2.19 (s, 3H), 2.33 (s, 3H), 2.99 (s, 3H), 3.21-3.27 (m, 3.5 H), 3.66-3.72 (m, 1.5 H), 3.83 (s, 2H), 3.86 (t, *J* = 5.9 Hz, 1H), 3.98 (dd, *J* = 9.8, 3.4 Hz, 1H), 6.65 (d, *J* = 8.3 Hz, 1H), 6.86-6.88 (m, 1H), 6.92 (dd, *J* = 8.3, 2.4 Hz, 1H), 6.99 (s, 1H), 7.00 (bs, 1H), 7.14 (d, *J* = 8.2 Hz, 1H). ES-MS (m/z): calcd for C₃₅H₆₀O₄SSi (M+H)⁺: 619.0; found: 619.6.

15

E. 1-[4-(1-Ethyl-1-{4-[2-methanesulfonylethylamino)methyl]-3-methylphenyl}propyl)-2-methylphenoxy]-3,3-dimethylbutan-2-ol.

To a mixture of [4-(1-{4-[2-(t-butyldimethylsilanyloxy)-3,3-dimethylbutoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzyl]-(2-methanesulfonylethyl)amine (1.47 g, 2.43 mmol) in THF (30 mL) is added 1M TBAF (2.7 mL, 2.7 mmol), and refluxed for 2 h. After cooling to RT, the mixture is diluted with H₂O (20 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers are MgSO₄ dried, concentrated, and chromatographed (80% EtOAc/Hex) to give the title compound (0.97 g, 1.93 mmol, 79%).

¹H NMR (CDCl₃), δ 0.60 (t, *J* = 7.4 Hz, 6H), 1.02 (s, 9H), 2.05 (q, *J* = 7.4 Hz, 4H), 2.18 (s, 3H), 2.34 (s, 3H), 3.01 (s, 3H), 3.32 (bs, 4H), 3.71 (dd, *J* = 8.8, 2.4 Hz, 1H), 3.86 (t, *J* = 9.3 Hz, 1H), 3.88 (s, 2H), 4.09 (dd, *J* = 9.3, 2.4 Hz, 1H), 6.70 (d, *J* = 8.3 Hz, 1H), 6.89

-156-

(bs, 1H), 6.90-6.96 (m, 1H), 6.98 (s, 1H), 7.00 (s, 1H), 7.13 (d, $J = 7.5$ Hz, 1H). ES-MS (m/z): calcd for $C_{29}H_{46}O_4S$ ($M+H$) $^+$: 504.8; found: 504.4.

F. t-Butyl (4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}-2-

5 methylbenzyl)-(2-methanesulfonylethyl)carbamate.

To a mixture of of 1-[4-(1-ethyl-1-{4-[(2-methanesulfonylethyl-amino)methyl]-3-methylphenyl}propyl)-2-methylphenoxy]-3,3-dimethylbutan-2-ol (0.97 g, 1.92 mmol), NaHCO₃ (0.32 g, 3.84 mmol), H₂O(10 mL), and THF (5 mL), is added (Boc)₂O (0.46 g, 2.11 mmol). The reaction is stirred overnight, diluted with H₂O (10 mL), and extracted with EtOAc (2 x 20 mL). The combined organic layers are washed with 0.1 M HCl (15 mL), brine (10 mL); MgSO₄ dried, and chromatographed (40% EtOAc/Hex) to give the title compound (0.86 g, 1.43 mmol, 74%).

¹H NMR (CDCl₃), δ 0.61 (t, $J = 7.3$ Hz, 6H), 1.02 (s, 9H), 1.45 (bs, 9H), 2.05 (q, $J = 7.3$ Hz, 4H), 2.19 (s, 3H), 2.24 (s, 3H), 2.44 (bs, 1H), 2.70-3.20 (b, 5H), 3.58 (bs, 2H), 3.71 (dd, $J = 8.8, 2.9$ Hz, 1H), 3.86 (t, $J = 8.8$ Hz, 1H), 4.10 (dd, $J = 8.8, 2.9$ Hz, 1H), 4.47 (s, 2H), 6.71 (d, $J = 8.4$ Hz, 1H), 6.80-7.01 (m, 5H). ES-MS (m/z): calcd for $C_{34}H_{57}N_2O_6S$ ($M+NH_4$) $^+$: 621.9; found: 621.3.

20 G. t-Butyl (4-{1-[4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl]-1-ethylpropyl}-2-methylbenzyl)-(2-methanesulfonylethyl)carbamate.

Using a procedure analogous to Example 13C, from t-butyl (4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}-2-methylbenzyl)-(2-

25 methanesulfonylethyl)carbamate (0.26 g, 0.43 mmol) to give the title compound (0.25 g, 0.42 mmol, 95%).

-157-

¹H NMR (CDCl₃), δ 0.60 (t, J = 7.5 Hz, 6H), 1.26 (s, 9H), 1.48 (bs, 9H), 2.05 (q, J = 7.5 Hz, 4H), 2.23 (s, 3H), 2.25 (s, 3H), 2.60-3.20 (m, 5H), 3.57 (bs, 2H), 4.46 (s, 2H), 4.84 (s, 2H), 6.50 (d, J = 8.1 Hz, 1H), 6.80-7.01 (m, 5H). ES-MS (m/z): calcd for C₃₄H₅₁O₆S: 601.9; found: 602.2.

5

H. 1-[4-(1-Ethyl-1-{4-[(2-methanesulfonylethylamino)-methyl]-3-methylphenyl}propyl)-2-methylphenoxy]-3,3-dimethylbutan-2-one.

To a mixture of t-butyl (4-{1-[4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl]-1-ethylpropyl}-2-methylbenzyl)-(2-methanesulfonylethyl)carbamate (0.25, g, 0.41 mmol) and CH₂Cl₂ (5 mL) is added TFA (5 mL,), stirred for 10 m, and concentrated. The residue is diluted with EtOAc (100 mL), washed with sat.d NaHCO₃ (2 x 30 mL); MgSO₄ dried, and chromatographed (90% EtOAc) to give the title compound (0.19 g, 0.39 mmol, 95%).

¹H NMR (CDCl₃), δ 0.61 (t, J = 7.2 Hz, 6H), 1.27 (s, 9H), 2.05 (q, J = 7.2 Hz, 4H), 2.25 (s, 3H), 2.32 (s, 3H), 2.99 (s, 3H), 3.25 (s, 4H), 3.81 (s, 2H), 4.84 (s, 2H), 6.49 (d, J = 8.3 Hz, 1H), 6.85-7.00 (m, 4H), 7.13 (d, J = 7.7 Hz, 1H). ES-MS (m/z): calcd for C₂₉H₄₄NO₄S (M+H)⁺: 502.7; found: 502.2.

20

Example 14

Preparation of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl] propyl}-N-(2-methanesulfonylethyl)-2-methylbenzamide.

25

-158-

To a mixture of 4-(1-{4-[2-(hydroxy)-3,3-dimethyl-butoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzoic acid, Example 1, (0.53 g, 1.29 mmol), 2-aminoethylmethysulfone hydrochloride (0.21 g, 1.29 mmol), HOEt (0.19 g, 1.43 mmol), Et₃N (0.72 mL, 5.19 mmol) and CH₂Cl₂ (10 mL) is added EDCI (0.249 g, 1.29 mmol) and stirred overnight. The reaction is diluted with CH₂Cl₂ (50 mL), washed with 1M HCl (2 x 30 mL), H₂O (20 mL), satd NaHCO₃ (2 x 20 mL), and brine (20 mL). The organic layer is MgSO₄ dried, concentrated, and chromatographed (75% EtOAc/Hex) to give the title compound (0.51 g, 76%).

¹H NMR (CDCl₃), δ 0.59 (t, J = 7.8 Hz, 6H), 1.01 (s, 9H), 2.00-2.28 (m, 4H), 2.17 (s, 3H), 2.41 (s, 3H), 3.00 (s, 3H), 3.35 (t, J = 5.6 Hz, 1H), 3.70 (bd, J = 8.6 Hz, 1H), 3.85 (t, J = 9.1 Hz, 1H), 3.97 (dd, J = 12.3, 5.6 Hz, 2H), 4.09 (dd, J = 9.1, 3.0 Hz, 1H), 6.53 (t, J = 5.9 Hz, 1H), 6.69 (d, J = 7.8 Hz, 1H), 6.85 (s, 1H), 6.91-7.01 (m, 2H), 7.25-7.29 (m, 2H). ES-MS (m/z): calcd for C₂₉H₄₄NO₅S (M + H)⁺: 518.7; found: 518.3.

15

Example 15A & 15B

Preparation of enantiomer 1 and 2 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]propyl}-N-(2-methanesulfonylethyl)-2-methylbenzamide.

20

(Enantiomer 1)

(Enantiomer 2)

A racemic mixture of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]propyl}-N-(2-methanesulfonylethyl)-2-methylbenzamide (0.34 g), Example 14, is chromatographed (HPLC: ChiralPak AD, 60% EtOH/Hept) to give enantiomer 1 (0.10 g, 29%, rt = 4.9 m) and enantiomer 2 (0.125 g, 37%, rt = 6.3 m).

Example 15A, 2071445 (enantiomer 1):

HPLC: ChiralPak AD (4.6 X 250 mm); 60% EtOH/Hept; 1.0 mL/m (flow rate); rt = 4.9 m; @ 240 nm.

-159-

NMR & LC/MS: equivalent to the racemate, Example 14.

Example 15B, 2071447 (enantiomer 2):

HPLC: ChiralPak AD (4.6 X 250 mm); 60% EtOH/Hept; 1.0 mL/m (flow rate); rt = 6.3
5 m; @ 240 nm.

NMR & LC/MS: equivalent to the racemate, Example 14.

Example 16

Preparation of 4-{1-[4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl]-1-ethylpropyl}-N-(2-methanesulfonylethyl)-2-methylbenzamide.
10

Using a procedure analogous to Example 13C, from 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]propyl}-N-(2-methanesulfonylethyl)-2-methylbenzamide, Example 14, (0.08 g, 0.16 mmol), NMO (27 mg, 0.24 mmol), and
15 TPAP (2.8 mg, 0.08 mmol) are reacted for 1 h to give the title compound (0.06g, 76%).
¹H NMR (CDCl₃): δ 0.60 (t, J = 7.4 Hz, 6H), 1.27 (s, 9H), 2.05 (q, J = 7.4 Hz, 4H), 2.24 (s, 3H), 2.42 (s, 3H), 3.01 (s, 3H), 3.36 (t, J = 6.0 Hz, 2H), 3.94-4.02, (m, 2H), 4.82 (s, 2H), 6.46-6.57 (m, 2H), 6.82-7.23 (m, 5H). ES-MS (m/z): calcd for C₂₉H₄₂NO₅S (M + H)⁺: 516.7; found: 516.4.

20

Example 17

Preparation of 4-{1-[4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl]-1-ethylpropyl}-2-methylbenzoic acid.

25 To a mixture of 4-{1-[4-(3,3-dimethyl-2-hydroxybutoxy)-3-methylphenyl]-1-ethylpropyl}-2-methylbenzoic acid, Example 1, (0.50 g, 1.22 mmol) in CH₂Cl₂ (10 mL)

-160-

is added a solution of the Dess-Martin reagent (0.57 g, 1.34 mmol) in CH₂Cl₂ (10 mL) dropwise and stirred for 2 h. The reaction is diluted with EtOAc (100 mL), washed with 10% Na₂SO₃ (2 x 20 mL), 0.1 M HCl (20 mL), and H₂O (20 mL). The organic layer is MgSO₄ dried, and concentrated to give the title compound (0.48 g, 1.17 mmol, 95%).

5 ¹H NMR (CDCl₃), δ 0.62 (t, J = 7.2 Hz, 6H), 1.27 (s, 9H), 2.09 (q, J = 7.2 Hz, 4H), 2.25 (s, 3H), 2.61 (s, 3H), 4.85 (s, 2H), 6.51 (d, J = 8.8 Hz, 1H), 6.85-6.91 (m, 2H), 7.05-7.10 (m, 2H), 7.93 (d, J = 9.0 Hz, 1H). ES-MS (m/z): calcd for C₂₆H₃₈NO₄ (M + NH₄)⁺: 428.6; found: 428.3.

10

Example 18

Preparation of enantiomer 1 of [(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid.

(Enantiomer 1)

15 A. Enantiomer 1 of [(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid methyl ester.

(Enantiomer-1)

Using a procedure analogous to Example 5, from enantiomer 1 of 4-(1-{4-[2-(hydroxy)-3,3-dimethyl-butoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzoic acid, Example 3A, (1.28 g, 3.17 mmol) and N-methyl glycine methyl ester hydrochloride (0.48 g, 3.41 mmol) to give the title compound (1.43 g, 2.88 mmol, 93%). ¹H NMR (CDCl₃), δ 0.57-0.65 (m, 6H), 1.02 (s, 9H), 2.00-2.11 (m, 4H), 2.18 (s, 3H), 2.25 (s, 0.80H), 2.32 (s, 2.20H), 2.89 (s, 2.20H), 3.15 (s, 0.80H), 3.70 (s, 0.8H), 3.72 (d, J = 2.6 Hz, 1H), 3.79 (s, 2.2H), 3.86 (t, J = 8.8 Hz, 1H), 3.91 (s, 0.52H), 4.09 (dd, J = 7.0, 2.6 Hz, 1H), 4.32 (bs,

-161-

1.48H), 6.70 (d, J = 8.3 Hz, 1H), 6.85-7.11 (m, 5H). ES-MS (m/z): calcd for $C_{30}H_{44}NO_5$ ($M + H$)⁺: 498.7; found: 498.3.

B. Enantiomer 1 of [(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid

(Enantiomer 1)

Using a procedure analogous to Example 2, from enantiomer 1 of [(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid methyl ester (1.43 g, 2.88 mmol) to give the title compound (1.24 g, 2.57 mmol, 90%). 1H NMR ($CDCl_3$), δ 0.56-0.63 (m, 6H), 1.02 (s, 9H), 2.01-2.09 (m, 4H), 2.11 (s, 0.7H), 2.18 (s, 2.3H), 2.23 (s, 0.70H), 2.29 (s, 2.30H), 2.91 (s, 2.30H), 3.14 (s, 0.70H), 3.71 (dd, J = 8.8, 2.6 Hz, 1H), 3.86 (t, J = 8.8 Hz, 1H), 3.92(s, 0.47H), 4.09 (dd, J = 8.8, 2.6 Hz, 1H), 4.33 (bs, 1.53H), 6.69 (d, J = 8.8 Hz, 0.23H), 6.70 (d, J = 8.3 Hz, 0.77H), 6.85-7.11 (m, 5H). ES-MS (m/z): calcd for $C_{29}H_{40}NO_5$ ($M - H$)⁻: 482.7; found: 482.3.

20

Example 19

Enantiomer 2 of [(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid.

25

(Enantiomer 2)

-162-

A. Enantiomer 2 of [(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid methyl ester.

(Enantiomer 2)

5 Using a procedure analogous to Example 5, from enantiomer 2 of 4-(1-{4-[2-¹ (hydroxy)-3,3-dimethyl-butoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzoic acid, Example 3B, (1.08 g, 2.62 mmol) to give the title compound (1.16 g, 2.33 mmol, 89%).
¹H NMR & LC/MS: equivalent to Example 18A.

10 B. Enantiomer 2 of [(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid.

Using a procedure analogous to Example 2, from enantiomer 2 of [(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid methyl ester (0.58 g, 1.16 mmol) gives the title compound (0.53 g, 1.10 mmol, 95%). ¹H NMR & LC/MS: equivalent to Example 18B.

20

Example 20

A. 2-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-2-methyl-propionic acid methyl ester.

25

-163-

Using the procedure analogous to Example 5, from enantiomer 1 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid, Example 3A, (0.40 g, 0.97 mmol) and 2-aminoisobutyric acid methyl ester hydrochloride (0.15 g, 1.07 mmol) to furnish the title compound (0.36 g, 0.70 mmol, 72 %). ^1H NMR (CDCl₃), δ 0.60 (t, J = 7.6 Hz, 6H), 1.01 (s, 9H), 1.64 (s, 6H), 2.01-2.09 (m, 4H), 2.17 (s, 3H), 2.40 (s, 3H), 2.70 (d, J = 9.0 Hz, 1H), 3.77 (s, 3H), 3.85 (t, J = 9.1 Hz, 1H), 4.09 (d, J = 9.6 Hz, 1H), 6.28 (s, 1H), 6.70 (dd, J = 8.9, 2.6 Hz, 1H), 6.85 (s, 1H), 6.93 (d, J = 8.6 Hz, 1H), 6.95-7.02 (m, 2H), 7.27 (dd, J = 7.9, 2.6 Hz, 1H). ES-MS (m/z): calcd. for C₃₁H₄₆NO₅ (M+H)⁺: 512.3; found: 512.3.

10

B. 2-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-2-methyl-propionic acid.

(Enantiomer 1)

15 Using a procedure analogous to Example 2, from enantiomer 1 of 2-(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-2-methyl-propionic acid methyl ester (0.36 g, 0.70 mmol) to furnish the titled compound (0.35 g, 0.70 mmol, 92%). ^1H NMR (CDCl₃), δ 0.59 (t, J = 7.3 Hz, 6H), 1.01 (s, 9H), 1.67 (s, 6H), 2.05 (q, J = 7.3 Hz, 4H), 2.17 (s, 3H), 2.40 (s, 3H), 3.70 (dd, J = 8.7, 2.7 Hz, 1H), 3.86 (t, J = 8.9 Hz, 1H), 4.09 (dd, J = 9.1, 2.7 Hz, 1H), 6.28 (s, 1H), 6.70 (d, J = 8.5 Hz, 1H), 6.85 (d, J = 2.3 Hz, 1H), 6.93 (dd, J = 8.5, 2.3 Hz, 1H), 6.98-7.03 (m, 2H), 7.26 (d, J = 7.9 Hz, 1H). ES-MS (m/z): calcd. for C₃₀H₄₄NO₅ (M+H)⁺: 498.3; found: 498.3.

20

Example 21
25 Preparation of 4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-benzoic acid.

-164-

A. 4-(Z/E-2-Penten-3-yl)-O-trifluoromethylsulfonyl-phenol.

To a mixture of 4-(Z/E-2-penten-3-yl)phenol (7.45 g, 45.9 mmol), CH₂Cl₂ (150 mL), and Tf₂O (13.4 g, 47.5 mmol) is added DIPEA (6.13 g, 47.5 mol) drop wise. After stirring overnight, the reaction is poured into ice water (100 mL) and separated. The organic layer is washed with cold water (2 x 50 mL), Na₂SO₄ dried, filtered and concentrated to give the title compound as an oil (10.5 g, 78%) which is used as is.

10

B. 4-[{(1-Ethyl-1-(3-methyl-4-hydroxyphenyl)propyl]-O-trifluoromethylsulfonylphenol.

To 4-(Z/E-2-penten-3-yl)-O-trifluoromethylsulfonyl-phenol (5.25 g, 17.8 mmol) and *O*-cresol (7.7 g, 71.4 mmol) in CH₂Cl₂ (20 mL) at -20 °C is added BF₃·Et₂O (240 μL, 1.9 mmol), and the mixture is allowed to come to RT and stirred 16 h. To the reaction is added ethylene glycol (5 mL), and the CH₂Cl₂ is evaporated under vacuum. The residue is vacuum distilled up to 70 °C at 0.116 mm to remove the excess phenol and ethylene glycol. The residue is partitioned between Et₂O (50 mL) 15 and water (50 mL). The organic layer is washed with water (3 x 50 mL), saturated

20

-165-

brine, Na_2SO_4 dried, filtered and concentrated. The residue is chromatographed to give the title compound (3.9 g, 54%).

H-NMR ppm in CDCl_3 : 7.24 (2H, d, $J = 9.0$ Hz); 7.14 (2H, d, $J = 9.2$ Hz); 6.84 (1H, s); 6.83 (1H, d, $J = 8.0$ Hz); 6.66 (1H, d, $J = 8.0$ Hz); 4.70 (1H, s); 2.20 (3H, s); 2.05

5 (4H, q, $J = 7.2$ Hz); 0.61 (6H, t, $J = 7.2$ Hz). LC-MS: 401.1 (M-1).

C. 4-[(1-Ethyl-1-(3-methyl-4-hydroxyphenyl)propyl]-benzoic acid, methyl ester.

Using a procedure analogous to Example 1E, from 4-[(1-ethyl-1-(3-methyl-4-hydroxyphenyl)propyl]-O-trifluoromethylsulfonylphenol (2.5 g, 6.2 mmol) gives the title compound (1.08 g, 56%).

H-NMR ppm in CDCl_3 : 7.89 (2H, d, $J = 8.0$ Hz); 7.23 (2H, d, $J = 8.0$ Hz); 6.84 (1H, s); 6.83 (1H, d, $J = 8.2$ Hz); 6.65 (1H, d, $J = 8.2$ Hz); 4.58 (1H, s); 3.89 (3H, s); 2.18 (3H, s); 2.08 (4H, q, $J = 7.2$ Hz); 0.61 (6H, t, $J = 7.2$ Hz). LC/MS: 313.1 (M+1), 311.1

15 (M-1).

D. 4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-benzoic acid methyl ester.

20

Using a procedure analogous to Example 1B, from 4-[(1-ethyl-1-(3-methyl-4-hydroxyphenyl)propyl]-benzoic acid, methyl ester (0.88 g, 2.81 mmol) gives the title compound (0.95 g, 2.32 mmol, 95%). ^1H NMR (CDCl_3), δ 0.61 (t, $J = 7.4$ Hz, 6H), 1.26 (s, 9H), 2.09 (q, $J = 7.4$ Hz, 4H), 2.24 (s, 3H), 3.89 (s, 3H), 4.84 (s, 2H), 6.49 (d, $J = 8.8$

-166-

Hz, 1H), 6.85-6.89 (m, 2H), 7.24 (d, $J = 8.4$ Hz, 2H), 7.91 (d, $J = 9.4$ Hz, 2H). ES-MS (m/z): calcd for $C_{26}H_{38}NO_4$ ($M+NH_4$) $^+$: 428.6; found: 428.3.

E. 4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-benzoic

5 acid methyl ester.

Using a procedure analogous to Example 1D, from 4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-benzoic acid methyl ester (0.94 g, 2.29 mmol) to give the title compound (0.93 g, 2.26 mmol, 99%). 1H NMR ($CDCl_3$), δ

10 0.62 (t, $J = 7.6$ Hz, 6H), 1.02 (s, 9H), 2.10 (q, $J = 7.6$ Hz, 4H), 2.17 (s, 3H), 3.71 (dd, $J = 8.8, 2.9$ Hz, 1H), 3.86 (t, $J = 8.6$ Hz, 1H), 3.90 (s, 3H), 4.09 (dd, $J = 9.3, 2.9$ Hz, 1H), 6.71 (d, $J = 8.3$ Hz, 1H), 6.86 (d, $J = 2.1$ Hz, 1H), 6.92 (d, $J = 2.4$ Hz, 1H), 6.94 (d, $J = 2.6$ Hz, 1H), 7.25 (d, $J = 8.3$ Hz, 1H), 7.91 (d, $J = 8.6$ Hz, 2H). ES-MS (m/z): calcd for $C_{26}H_{37}O_4$ ($M+H$) $^+$: 413.6; found: 413.3.

15

F. 4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}benzoic acid.

Using a procedure analogous to Example 2, from 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-benzoic acid methyl ester (0.93 g, 2.25 mmol) gives the title compound (0.81 mmol, 2.02 mmol, 90%). 1H NMR ($CDCl_3$), δ 0.63 (t, $J = 7.2$ Hz, 6H), 1.02 (s, 9H), 2.12 (q, $J = 7.2$ Hz, 4H), 2.18 (s, 3H), 3.71 (dd, $J = 8.7, 2.4$ Hz, 1H), 3.86 (t, $J = 9.3$ Hz, 1H), 4.09 (dd, $J = 9.3, 2.4$ Hz, 1H), 6.71 (d, $J = 8.3$ Hz, 1H), 6.87 (d, $J = 1.9$ Hz, 1H), 6.93 (d, $J = 2.4$ Hz, 1H), 6.95

-167-

(d, $J = 2.0$ Hz, 1H), 7.28 (d, $J = 8.4$ Hz, 1H), 7.97 (d, $J = 8.8$ Hz, 2H). ES-MS (m/z): calcd for $C_{25}H_{33}O_4$ (M-H) $^-$: 397.6; found: 397.2.

G. 4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-benzoic acid.

Using a procedure analogous to Example 17, from 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}benzoic acid (0.31 g, 0.79 mmol) and Dess-Martin reagent (366 mg, 0.86 mmol) gives the title compound (0.27 g, 0.69 mmol, 88%). %). 1H NMR ($CDCl_3$), δ 0.62 (t, $J = 7.0$ Hz, 6H), 1.27 (s, 9H), 2.10 (q, $J = 7.0$ Hz, 4H), 2.24 (s, 3H), 4.85 (s, 2H), 6.50 (d, $J = 9.1$ Hz, 1H), 6.85-6.90 (m, 2H), 7.28 (d, $J = 8.1$ Hz, 2H), 7.96 (d, $J = 8.2$ Hz, 2H). ES-MS (m/z): calcd for $C_{25}H_{31}O_4$ (M-H) $^-$: 395.6; found: 395.2.

Example 22 and 23

Preparation of enantiomer 1 and 2 of 4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}benzoic acid.

(Enantiomer-1)

(Enantiomer-2)

A racemic mixture of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}benzoic acid (500 mg) is chromatographed (CHIRALPAK AD column, Heptane, 90 %; EtOH, 9.5%, CH_3OH , 0.5%, TFA, 0.1%) to give enantiomer 1 ($rt = 7.4$ m), Example 22 (231 mg, 46%) and enantiomer 2 ($rt = 9.4$ m), Example 23 (230 mg, 46%).

Example 22, (Enantiomer 1):

$rt = 7.4$ m

NMR & LC/MS: Identical to the racemic material, Example 21F.

Example 23, (Enantiomer 2)

-168-

rt = 9.4 m

NMR & LC/MS: Identical to the racemic material, Example 21F.

Example 24

- 5 Preparation of (4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}-2-methylbenzoylamino)acetic acid.

A. Methyl (4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl] propyl}-2-methylbenzoylamino)acetate.

10

Using a procedure analogous to Example 5, from 4-{4-[2-(hydroxy)-3,3-dimethyl-butoxy]-3-methylphenyl}-1-ethylpropyl)-2-methylbenzoic acid (0.50 g, 1.22 mmol) and glycine methyl ester hydrochloride (0.15 g, 1.22 mmol) give the title compound (0.587 g, 1.21 mmol, 99%).

15 ^1H NMR (CDCl_3), δ 0.62 (t, J = 7.5 Hz, 6H), 1.03 (s, 9H), 2.07 (q, J = 7.5 Hz, 4H), 2.19 (s, 3H), 2.43 (s, 3H), 3.71 (dd, J = 8.8, 2.9 Hz, 1H), 3.80 (s, 3H), 3.87 (t, J = 8.8 Hz, 1H), 4.08-4.12 (m, 1H), 4.24 (d, J = 5.4 Hz, 1H), 6.26 (t, J = 5.4 Hz, 1H), 6.71 (d, J = 8.8 Hz, 1H), 6.88 (d, J = 2.0 Hz, 1H), 6.94 (dd, J = 8.5, 2.5 Hz, 1H), 6.99-7.04 (m, 2H), 7.32 (d, J = 7.8 Hz, 1H). ES-MS (m/z): calcd for $\text{C}_{29}\text{H}_{42}\text{NO}_5$ ($M + \text{H}$) $^+$: 484.7; found: 484.2.

20

B. (4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}-2-methylbenzoylamino)acetic acid.

25 A mixture of methyl (4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]propyl}-2-methylbenzoylamino)acetate (0.43 g, 0.89 mmol), CH_3OH (10 ml), NaOH (0.18 g, 4.46 mmol), and H_2O (1 mL) is refluxed for 2 h. The reaction is

-169-

concentrated, diluted with H₂O (5 ml), acidified (pH 3-4) with 0.1 M HCl and extracted with EtOAc (3 x 15 mL). The combined organic layers are MgSO₄ dried, and concentrated to give the title compound (0.29 g, 71%).

¹H NMR (CD₃OD), δ 0.66 (t, J = 7.2 Hz, 6H), 1.05 (s, 9H), 2.15 (q, J = 7.2 Hz, 4H), 2.20 (s, 3H), 2.42 (s, 3H), 3.63-3.68 (m, 1H), 3.91 (dd, J = 10.0, 7.8 Hz, 1H), 4.09 (s, 2H), 4.16 (dd, J = 10.0, 2.9 Hz, 1H), 6.81 (d, J = 9.3 Hz, 1H), 6.86 (d, J = 2.1 Hz, 1H), 7.02 (dd, J = 8.4, 2.1 Hz, 1H), 7.09 (s, 1H), 7.11 (s, 1H), 7.37 (d, J = 8.1 Hz, 1H). ES-MS (m/z): calcd for C₂₈H₄₀NO₅ (M + H)⁺: 470.6; found: 470.2.

10 Example 25A and Example 25B

Preparation of enantiomer 1 and 2 of (4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}-2-methylbenzoylamino)acetic acid.

(Enantiomer 1)

(Enantiomer 2)

15 A racemic mixture of (4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-propyl}-2-methylbenzoylamino)acetic acid (0.217 g), Example 24, is chromatographed (HPLC: ChiralPak AD, 0.1% TFA in 0.75:14.25:85 CH₃OH:EtOH:Hept) to give enantiomer 1 (80.6 mg, 37%, rt = 8.0 m) and enantiomer 2 (81.1 mg, 37%, rt = 10.1 m).

20 (Enantiomer 1), Example 25A:

HPLC: ChiralPak AD (4.6 X 250 mm); 0.1% TFA in 0.75:14.25:85 CH₃OH:EtOH:Hept; 1.0 mL/m (flow rate); rt = 8.0 m; @ 280 nm; 97.8% ee.

25 NMR & LC/MS: equivalent to the racemate, Example 24.

(Enantiomer 2), Example 25B:

HPLC: ChiralPak AD (4.6 X 250 mm); 0.1% TFA in 0.75:14.25:85 CH₃OH:EtOH:Hept; 1.0 mL/m (flow rate); rt = 10.1 m; @ 280 nm; 95.2% ee.

-170-

NMR & LC/MS: equivalent to the racemate, Example 24.

Example 26

Preparation enantiomer 1 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-

5 [4-(tetrazol-5-ylaminocarbonyl)-3-methylphenyl]pentane.

(enantiomer 1)

Using a procedure analogous to Example 5, enantiomer 1 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-carboxyl-3-methylphenyl]pentane and 5-

10 aminotetrazole give the title compound (440 mg, 95%).

NMR 300 MHz (DMSO): 0.57 (t, $J = 7.3$ Hz, 6H), 0.92 (s, 9H), 2.09 (m, 7H), 2.40 (s, 3H), 3.46 (m, 1H), 3.76 (dd, $J = 7.3, 10.2$ Hz, 1H), 4.03 (dd, $J = 3.3, 10.2$ Hz, 1H), 4.79 (d, $J = 5.5$ Hz, 1H), 6.83 (d, $J = 8.4$ Hz, 1H), 6.89 (s, 1H), 6.95 (d, $J = 8.4$ Hz, 1H), 7.08 (d, $J = 8.1$ Hz, 1H), 7.12 (s, 1H), 7.52 (d, $J = 8.1$ Hz, 1H), 12.23 (s, 1H), 15 16.00 (br s, 1H).

High Res. ES-MS: 480.2983; calc. for $C_{27}H_{37}N_5O_3+H$: 480.2975.

Example 27

Preparation enantiomer 2 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-

20 [4-(tetrazol-5-ylaminocarbonyl)-3-methylphenyl]pentane.

(enantiomer 2)

-171-

Using a procedure analogous to Example 5, enantiomer 2 of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-carboxyl-3-methylphenyl]pentane and 5-aminotetrazole gives the title compound (385 mg, 83%).

NMR 300 mHz (DMSO): eq. to enantiomer of 1.

- 5 High Res. ES-MS: 480.2968; calc. for C₂₇H₃₇N₅O₃+H: 480.2975.

Preparation of 4-{1-Ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid.

10

(Racemic)

Using a procedure analogous to Example 2, from racemic 4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid methyl ester, Example 10C, (4.70 g, 10.68 mmol) gives the title compound (2.93 g, 6.87 mmol, 64%).

- 15 ¹H NMR and ES-MS: equivalent to the pure enantiomer 1, Example 11.

Example 29

Preparation enantiomer 1 of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-(4-(tetrazol-5-ylaminocarbonyl)-3-methylphenyl]pentane.

20

(enantiomer 1)

Using a procedure analogous to Example 5, enantiomer 1 of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-(4-carboxyl-3-methylphenyl]pentane, Example 11, and 5-aminotetrazole give the title compound (125 mg, 72%).

-172-

¹H NMR 400 MHz (DMSO-d₆): δ 0.57 (t, J = 7.3 Hz, 6H), 0.91 (s, 9H), 1.20 (d, J = 6.3 Hz, 3H), 2.07 (m, 7H), 2.41 (s, 3H), 3.07 (br s, 1H), 4.37 (br s, 1H), 4.57 (q, J = 5.8, 1H), 6.87 (m, 3H), 7.06 (d, J = 7.8 Hz, 1H), 7.15 (s, 1H), 7.50 (d, J = 7.8 Hz, 1H), 12.24 (s, 1H), 16.0 (s, 1H).

5 High Res ES(+)MS *m/z*: 494.3127; calc. for C₂₈H₃₉N₅O₃ + H: 494.3131

Example 30

Preparation enantiomer 2 of 3'-[4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[4-(tetrazol-5-ylaminocarbonyl)-3-methylphenyl]pentane.

10

(enantiomer 2)

Using a procedure analogous to Example 5, enantiomer 2 of 3'-[4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[4-carboxyl-3-methylphenyl]pentane, Example 12, and 5-aminotetrazole give the title compound (150 mg, 74%).

15 High Res ES(+)MS *m/z*: 494.3144; calc. for C₂₈H₃₉N₅O₃ + H: 494.3131

Example 31

Preparation enantiomer 1 of 3'-[4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[4-(carboxymethylaminocarbonyl)-3-methylphenyl]pentane.

(enantiomer 1)

-173-

A. Enantiomer 1 of 3'-[4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane.

(enantiomer 1)

5 Using a procedure analogous to Example 5, enantiomer 1 of 3'-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-(4-carboxyl-3-methylphenyl)pentane, methyl glycinate hydrochloride, and DMAP (2.5 eq) give the title compound (150 mg, 86%).

10 ^1H NMR 400 MHz (DMSO-d₆): δ 0.55 (t, J = 7.3 Hz, 6H), 0.91 (s, 9H), 1.20 (d, J = 5.9 Hz, 3H), 1.98-2.07 (m, 7H), 2.32 (s, 3H), 3.07 (s, 1H), 3.65 (s, 3H), 3.93 (d, J = 6.3 Hz, 2H), 4.36 (br s, 1H), 4.55 (q, J = 7.2 Hz, 1H), 6.80-6.84 (m, 2H), 6.89 (d, J = 8.3 Hz, 1H), 7.00 (d, J = 7.8 Hz, 1H), 7.05 (s, 1H), 7.24 (d, J = 8.3 Hz, 1H), 8.61 (t, J = 5.9 Hz, 1H). High Res ES(+)MS m/z: 498.3224; calc. for C₃₀H₄₃NO₅ + H: 498.3219.

15 B. Enantiomer 1 of 3'-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-(4-carboxymethylaminocarbonyl)-3-methylphenyl]pentane.

Using a procedure analogous to Example 2 but reacted at RT, enantiomer 1 of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane gives the title 20 compound (130 mg, 99%).

^1H NMR 400 MHz (DMSO-d₆): δ 0.55 (t, J = 7.3 Hz, 6H), 0.91 (s, 9H), 1.20 (d, J = 5.9 Hz, 3H), 1.98-2.07 (m, 7H), 2.32 (s, 3H), 3.07 (s, 1H), 3.84 (d, J = 5.8 Hz, 2H), 4.37 (br s, 1H), 4.56 (q, J = 6.3 Hz, 1H), 6.80-6.84 (m, 2H), 6.89 (dd, J = 2.4, J = 8.3 Hz, 1H), 7.00 (d, J = 8.3 Hz, 1H), 7.04 (s, 1H), 7.25 (d, J = 7.8 Hz, 1H), 8.48 (t, J = 5.9 Hz, 1H). 25 High Res ES(+)MS m/z: 484.3041; calc. for C₂₉H₄₁NO₅ + H: 484.3063

-174-

Example 32

Preparation enantiomer 2 of 3'-[4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[4-(carboxymethylaminocarbonyl)-3-methylphenyl]pentane.

5

(enantiomer 2)

A. Enantiomer 2 of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl)pentane.

(enantiomer 2)

10

Using a procedure analogous to Example 5, enantiomer 2 of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-carboxyl-3-methylphenyl)pentane, methyl glycinate hydrochloride, and DMAP (2.5 eq) give the title compound (160 mg, 78%).

NMR equivalent to Example 31A.

High Res ES(+)MS *m/z*: 498.3200; calc. for C₃₀H₄₃NO₅ + H: 498.3219

15

B. Enantiomer 2 of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-(carboxymethylaminocarbonyl)-3-methylphenyl)pentane.

Using a procedure analogous to Example 2 but reacted at RT, enantiomer 2 of 3'-(4-(2-hydroxy-1,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl)pentane gives the title compound (145 mg, quant).

NMR equivalent to Example 31B.

High Res ES(+)MS *m/z*: 484.3080; calc. for C₂₉H₄₁NO₅ + H: 484.3063

-175-

Example 33

Preparation of enantiomer 1 of (4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzyloxy)-acetic acid.

5

(enantiomer 1)

A. Enantiomer 1 of 4-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-2-methyl-benzoic acid methyl ester.

10

(enantiomer 1)

Using a procedure analogous to Example 13A, from enantiomer 1 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid methyl ester (1.90 g, 4.45 mmol) to furnish the title compound (2.40 g, 4.45 mmol, >99%).

15 ^1H NMR & ES-MS: equivalent to (Example 13A).

B. Enantiomer 1 of [4-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-2-methyl-phenyl]-methanol.

20

(enantiomer 1)

Using a procedure analogous to 13B, from enantiomer 1 of 4-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-2-methyl-

-176-

benzoic acid methyl ester (2.40 g, 4.45 mmol) to furnish the title compound (2.10 g, 4.09 mmol, 91%).

¹H NMR & ES-MS: equivalent to (Example 13B).

- 5 C. [4-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-2-methyl-benzyloxy]-acetic acid methyl ester.

(enantiomer 1)

- 10 To a solution of enantiomer 1 of [4-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-2-methyl-benzyloxy]-methanol, (2.10 g, 4.10 mmol) and PhCH₃ (10 mL) is added methyl glycolate (6.5 mL, 81.89 mmol) and MeReO₃ (0.02 g, 0.082 mmol). The solution is heated at a reflux for 2 hours with the use of a Dean-Stark trap. The solution is concentrated and chromatographed to give the title compound (0.96 g, 1.64 mmol, 40%).

15 ¹H NMR (CDCl₃), δ 0.06 (s, 3H), 0.11 (s, 3H), 0.61 (t, *J* = 7.3 Hz, 6H), 0.90 (s, 9H), 0.97 (s, 9H), 2.05 (q, *J* = 7.3 Hz, 4H), 2.18 (s, 3H), 2.33 (s, 3H), 3.67 (dd, *J* = 5.7, 3.2 Hz, 1H), 3.77 (s, 3H), 3.85 (dd, *J* = 9.7, 5.7 Hz, 1H), 3.98 (dd, *J* = 9.7, 3.5 Hz, 1H), 4.12 (s, 2H), 4.60 (s, 2H), 6.65 (d, *J* = 8.4 Hz, 1H), 6.87 (d, *J* = 2.1 Hz, 1H), 6.92 (dd, *J* = 8.4, 2.6 Hz, 2H), 6.97-7.01 (m, 2H), 7.17 (d, *J* = 8.4 Hz, 1H).).

D. Enantiomer 1 of (4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzyloxy)-acetic acid.

- 25 To a solution of enantiomer 1 of [4-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-2-methyl-benzyloxy]-acetic acid methyl ester (0.96 g, 1.64 mmol) and THF (10 mL) is added 1M TBAF (3.3 mL, 3.28 mmol). The solution is heated at a reflux overnight and concentrated. The residue is dissolved in MeOH (5 mL) and water (1 mL), NaOH (0.33 g, 8.21 mmol) is added and the

-177-

solution is heated at reflux for 3 hours. The solution is concentrated, dissolved in EtOAc (20 mL), washed with 1M HCl (15 mL), water (15 mL), brine (15 mL), dried over MgSO₄, and concentrated. The residue is chromatographed to furnish the title compound (0.45 g, 0.99 mmol, 60%).

5 ¹H NMR (CDCl₃), δ 0.60 (t, J = 7.3 Hz, 6H), 1.02 (s, 9H), 2.05 (q, J = 7.3 Hz, 4H), 2.17 (s, 3H), 2.31 (s, 3H), 3.71 (dd, J = 8.8, 2.6 Hz, 1H), 3.86 (t, J = 8.8 Hz, 1H), 4.09 (dd, J = 8.8, 2.6 Hz, 1H), 4.13 (s, 2H), 4.62 (s, 2H), 6.70 (d, J = 8.3 Hz, 1H), 6.90-7.02 (m, 4H), 7.16 (d, J = 7.5 Hz, 1H).

ES-MS (m/z): calcd. for C₂₈H₄₁O₆ (M-H)⁺: 455.6; found: 455.2.

10

Example 34

Preparation of epimer 1 of *D*-2-(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid.

15

(D-Epimer 1)

A. Epimer 1 of *D*-2-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid methyl ester.

(D-Epimer 1)

20

Using a procedure analogous to Example 5, from enantiomer 1 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid (0.40 g, 0.97 mmol) and *D*-alanine methyl ester hydrochloride (0.15 g, 1.07 mmol) to furnish the title compound (0.36 g, 0.72 mmol, 75%).

25

¹H NMR (CDCl₃), δ 0.60 (t, J = 7.2 Hz, 6H), 1.00 (s, 9H), 1.49 (d, J = 7.1 Hz, 3H), 2.05 (q, J = 7.2 Hz, 4H), 2.17 (s, 3H), 2.40 (s, 3H), 3.69 (dd, J = 8.5, 2.7 Hz, 1H), 3.76 (s, 3H), 3.84 (t, J = 9.1 Hz, 1H), 4.07 (dd, J = 9.1, 2.5 Hz, 1H), 4.72-4.81 (m, 1H), 6.42 (d, J = 7.9 Hz, 1H), 6.68 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 2.4 Hz, 1H), 6.92 (dd, J = 8.4, 2.4 Hz, 1H), 6.96-7.01 (m, 2H), 7.28 (d, J = 8.1 Hz, 1H).

ES-MS (m/z): calcd. for C₃₀H₄₄NO₅ (M+H)⁺: 498.3; found: 498.3.

B. Epimer 1 of *D*-2-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid.

5 Using a procedure analogous to Example 2, from epimer 1 of *D*-2-(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid methyl ester (0.36 g, 0.72 mmol) to furnish the titled compound (0.31 g, 0.64 mmol, 89 %).

10 ^1H NMR (CDCl_3), δ 0.60 (t, $J = 7.5$ Hz, 6H), 1.01 (s, 9H), 1.50 (d, $J = 7.3$ Hz, 3H), 2.05 (q, $J = 7.5$ Hz, 4H), 2.17 (s, 3H), 2.41 (s, 3H), 3.71 (dd, $J = 8.4, 2.5$ Hz, 1H), 3.85 (t, $J = 8.9$ Hz, 1H), 4.09 (dd, $J = 9.3, 2.7$ Hz, 1H), 4.74-4.83 (m, 1H), 6.33 (d, $J = 7.8$ Hz, 1H), 6.70 (d, $J = 8.5$ Hz, 1H), 6.85 (d, $J = 2.2$ Hz, 1H), 6.93 (dd, $J = 8.2, 2.2$ Hz), 6.98-7.03 (m, 1H), 7.01 (s, 1H), 7.30 (d, $J = 8.0$ Hz, 1H).

15 ES-MS (m/z): calcd. for $\text{C}_{29}\text{H}_{42}\text{NO}_5$ ($\text{M}+\text{H}$) $^+$: 484.3; found: 484.3.

15

Example 35.

Preparation of racemic 3'-[3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-[4-carboxyphenyl]pentane.

20

A. 3-(3-Chloro-4-hydroxyphenyl)-3-pentanol.

To a solution of methyl 3-chloro-4-hydroxybenzoate (25.0 g, 133 mmol) in THF (250 mL) is added dropwise 1.0 M ethylmagnesium bromide/THF (442 mL, 442 mmol) at

-179-

a rate maintaining the temperature below 27 °C. The brownish grey reaction is stirred for 72 h. The reaction mixture is cooled in an ice bath and quenched with satd ammonium chloride (1 ml portions) until evolution of ethane subsides. Additional satd NH₄Cl solution is added (total of 50mL) and the mixture is concentrated to remove most of the
 5 THF. The residue is added to water and ether, filtered through diatomaceous earth, and partitioned. The organic layer is washed with brine (3 X), MgSO₄ dried, and concentrated to give the title compound (28.6 g, 99%).

H-NMR (300 mHz, CDCl₃): δ 7.38 (1H, d, J = 1.6 Hz), 7.07 (1H, dd, J = 8.4 Hz, J = 1.6 Hz), 6.95 (1H, d, J = 8.4 Hz), 5.53 (1H, br s), 1.80 (4H, m), 0.76 (6H, t, J = 7.6 Hz).

10 IR (CHCl₃): 3600 cm⁻¹, 3540 cm⁻¹.

EI (+) TOF MS: Observed m/z 214.076; Calc. m/z. 214.0761

B. [E, Z]-3-(3-Chloro-4-hydroxyphenyl)-3-pentene

15 A mixture of 3-(3-chloro-4-hydroxyphenyl)-3-pentanol (10.0 g, 46.5 mmol), pTSA monohydrate (20 mg, catalytic amount), and toluene (300 mL) is heated on a steam bath for 3 h. Analysis by TLC indicates the loss of starting material and formation of a much less polar compound. The toluene solution is cooled to RT, washed with satd sodium carbonate solution (25 mL), MgSO₄ dried, and concentrated
 20 to give the title compounds as a [E:Z] isomeric mixture of [85:15] (9.2 g, quant).

TLC (CHCl₃): R_f ~0.7

H-NMR (300 mHz, DMSO-d₆): δ 6.85-7.30 (3H, m), 5.65 (0.85H, q, J = 6.8 Hz), 5.43 (0.15H, q, J = 6.8 Hz), 2.43((1.7H, q, J = 7.6 Hz), 2.28 (0.3H, q, J = 7.6 Hz), 1.72 (2.55H, d, J = 7.6 Hz), 1.52 (0.45H, d, J = 7.6 Hz), 0.90 (2.55H, t, J = 7.6 Hz)
 25 0.85 (0.45H, t, J = 7.6 Hz)

C. [E,Z]-3-[3-Chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl]-3-pentene

-180-

A mixture of [E,Z]-3-(3-chloro-4-hydroxyphenyl)-3-pentene (4.00 g, 20.3 mmol) and 1-chloropinacolone (2.73 g, 20.3 mmol), anhydrous KI (0.17 g, 1.0 mmol), K₂CO₃ (14.0 g, 102 mmol) and acetonitrile (80 mL) is refluxed for 3 h. The reaction is cooled to RT and concentrated. The residue is partitioned between methylene chloride (50 mL) and ice water (50 mL). The organic layer is MgSO₄ dried, concentrated, and chromatographed (40% to 70% chloroform in hexane) to give the title compounds as an 85 : 15 [E, Z] mixture (5.07 g, 85%).

H-NMR (300 MHz, DMSO-d₆): δ 7.37 (0.85H, d, J = 2.1 Hz), 7.22 (0.85H, dd, J=2.1, J = 8.6 Hz), 7.18 (0.15H, d, J = 2.1 Hz), 7.03 (0.15H, dd, J = 2.0 Hz, J = 8.4 Hz), 6.88 (0.15H, d, J = 8.4 Hz), 6.85 (0.85H, d, J = 8.6 Hz), 5.71 (0.85H, m), 5.52 (0.15H, m), 5.25 (2H, s), 2.45 (1.70H, q, J = 7.6 Hz), 2.30 (0.30H, q, J = 7.6 Hz), 1.75 (2.55H, d, J = 7.6 Hz), 1.53 (0.45H, d, J = 7.6 Hz), 1.17 (9H, s), 0.91 (2.55H, t, J = 7.6 Hz), 0.88 (0.45H, t, J = 7.6 Hz).

EI (+) TOF MS: Observed m/z 294.139; Calc. m/z 294.1387.

D. 3'-[3-Chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl]-3'-(4-hydroxyphenyl)pentane.

A -20 °C solution of [E,Z]-3-[3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl]-3-pentene (4.5 g, 15.2 mmol), phenol (17.2 g, 183 mmol) and methylene chloride (30 mL) is treated with BF₃-etherate (0.863 g, 6.1 mmol) and stirred for 30 m while maintaining the temperature near -20 °C. The resulting light reddish brown solution is allowed to warm to 0 °C and kept at that temperature for 16 h. The reaction is distilled at 45 °C/0.04

-181-

mm to remove most of the excess phenol. The residue is treated with powdered NaHCO₃ (600 mg), ethylene glycol (15 ml), and distilled to remove the last of the phenol and almost all of the glycol. The resulting viscous tan oily residue is cooled to RT and distributed between sat NaHCO₃ (25 mL) and ethyl acetate (200 mL). The organic layer

5 is separated, washed with water (5 x 50 mL), Na₂SO₄ dried, and concentrated to give the title compound as an oil (5.8 g, 98%).

H-NMR (300 mHz, CDCl₃): 7.21 (1H, d, J = 2.3 Hz), 6.99 (2H, d, J = 8.7 Hz), 6.95 (1H, dd, J = 2.3 Hz, J = 8.6 Hz), 6.75 (2H, d, J = 8.7 Hz), 6.62 (1H, d, J = 8.6 Hz), 4.91 (2H, s), 4.86 (1H, s), 2.02 (4H, q, J = 7.3 Hz), 1.28 (9H, s), 0.62 (6H, t, J = 7.3 Hz).

10 ES(+) MS m/z: 389.3 [M+H]; calc. m/z 389.1883 [M+H].

E. 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy))-3'-(4-trifluoromethylsulfonyloxyphenyl)pentane.

15 Using a procedure analogous to Example 1C with isopropyl diethylamine as the base, allowing the reaction to warm from 0 to RT overnight, and with potassium phosphate monobasic/sodium hydroxide buffer quench, 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-hydroxyphenyl)pentane and triflic anhydride give the title compound as a colorless oil (3.7g, 69%).

20 H-NMR (300 mHz, DMSO-D₆): δ 7.40 (2H, d, J = 8.7 Hz), 7.33 (2H, d, J = 8.7 Hz), 7.15 (1H, d, J = 2.1 Hz), 6.98 (1H, dd, J = 2.1 Hz, J = 8.6 Hz), 6.78 (2H, d, J = 8.6 Hz), 5.22 (2H, s), 2.07 (4H, q, J = 7.3 Hz), 1.17 (9H, s), 0.55 (6H, t, J = 7.3 Hz).

FAB+ MS m/z: 521.0 [M+H]; calc. 521.1376 [M+H].

ES MS: 521.3 [M+1], 538.3 [M+NH₄], 543.2 [M+Na].

25

F. 3'-(4-(2-oxo-3,3-trimethylbutoxy)-3-chloro-phenyl)-3'-4-carbomethoxyphenyl)-pentane.

-182-

To 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-chlorophenyl]-3'-(4-trifluoromethylsulfonyloxy-phenyl)-pentane (3.7 g 7.1 mmol), palladium acetate (64 mg, 0.28 mmol), dppf (315 mg, 0.28 mmol), and triethylamine (4 mL) are heated in the absence of air

5 under an atmosphere of carbon monoxide (initial 100 psig) in DMF (20 mL) and methanol (2 mL) at 110 °C for 48 h. The reaction mixture is cooled to room temperature, vented, and filtered. The filtrate is partitioned between EtOAc and water. The organic phase is washed 3 times with water, once with sat brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue is chromatographed on 10 g silica gel with 10 8% EtOAc in hexanes to give the title compound (1.12 g, 37%).

H-NMR (400 MHz, CDCl₃): δ 7.91 (2H, d, J = 8.8 Hz), 7.21 (2H, d, J = 8.8 Hz), 7.16 (1H, s), 6.88 (1H, d, J = 8.8 Hz), 6.59 (1H, d, J = 8.8 Hz), 4.90 (2H, s), 3.89 (3H, s), 2.07 (4H, q, J = 7.2 Hz), 1.25 (9H, s), 0.61 (6H, t, J = 7.2 Hz).

FAB(+) MS m/z [M]: 431.1; calc. m/z 431.3.

15 ES (+) MS: m/z 431.3 [M+H], 448.3 [M+NH₄].

G. Racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-carbomethoxyphenyl)pentane.

20 A solution of 3'-(4-(2-oxo-3,3-trimethylbutoxy)-3-chlorophenyl]-3'-(4-methoxycarbonyl-phenyl)-pentane (0.825 g, 1.91 mmol) in MeOH (10 mL) under a N₂ atmosphere is cooled to 0 °C. Sodium borohydride (0.076g, 2.01 mmol) is added in one portion and the reaction mixture is stirred for 15 minutes. Acetone (1 mL) followed by

-183-

potassium phosphate monobasic/sodium hydroxide buffer (3 mL) are added and the resulting mixture is concentrated to remove most of the MeOH. The residue is distributed into water and CH₂Cl₂ and the organic layer is separated and dried over anhydrous MgSO₄. The desired product is obtained as a colorless oil, (0.816 g, 98.5%).

- 5 H-NMR (300 mHz, CDCl₃): δ 7.92 (2H, d, J = 8.8 Hz), 7.22 (2H, m), 7.15 (1H, d, J = 2.3), 6.93 (1H, dd, J = 2.3 Hz, J = 8.8 Hz), 6.84 (1H, d, J = 8.8 Hz), 4.17 (1H, dd, J = 2.6 Hz, J = 9.0 Hz), 3.89 (s, 3H), 3.87 (t, J = 8.9 Hz,), 3.62 (1H, dt, J = 2.6, J = 8.9, J = 3.0), 2.60, (1H, d, J = 3.0 Hz), 2.09 (4H, q, J = 7.3 Hz), 1.01 (9H, s), 0.61 (6H, t, J = 7.3 Hz). FAB(+) MS m/z [M]: 432.2; calc. for C₂₅H₃₃ClO₄: m/z 432.2.
- 10 IR (CHCl₃): 1718 cm⁻¹

H. Racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-carboxyphenyl)pentane, sodium salt.

- 15 The methyl ester of 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-(carboxy)phenyl)pentane (0.600 g, 1.38 mmol) and 2N NaOH (3.46 mL, 6.93 mmol) are refluxed in EtOH (15mL) under a N₂ atmosphere for 1 h. TLC (SiO₂; CHCl₃) shows the loss of the starting material and appearance of a more polar compound spot near the origin. The reaction is allowed to cool to near RT and subsequently it is concentrated under reduced pressure to remove EtOH and provide a white residue. The residue is dissolved in a minimum amount of hot water (approx. 20 mL) and cooled and scratched to provide the desired sodium salt as white crystals (0.582 g, 96%).
- 20

H-NMR (300 mHz, DMSO): δ 7.73 (2H, d, J = 8.7 Hz), 7.00 to 7.06 (5H, m), 4.88 (1H, d, J = 5.1 Hz), 4.10 (1H, dd, J = 3.0 Hz, J = 10.2 Hz), 3.86 (1H, dd, J = 3.1 Hz, J = 10.2 Hz), 3.47 (1H, m), 2.04 (4H, q, J = 7.3 Hz), 0.92 (9H, s), 0.55 (6H, t, J = 7.3 Hz). ES (+) MS m/z 436.2 [M+NH₄], 441.1 [M+Na]
ES (-) MS m/z 417.2 [M-H].

-184-

IR (CHCl₃): 1601 cm⁻¹.

I. Racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-carboxyphenyl)pentane.

5

A portion of the above 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-carboxyphenyl)pentane, sodium salt (0.182 g, 0.413 mmol) is dissolved in 50 ml of hot water. After the solution is allowed to cool to near to RT it is acidified with dropwise addition of 5N HCl. The resulting white precipitate is collected and washed with ice water and subsequently vacuum dried to provide the desired free acid (0.169 g, 98%).

H-NMR (300 mHz, DMSO): δ 7.85 (2H, d, J = 8.3 Hz), 7.27 (2H, d, J = 8.3) 7.00 to 7.12 (3H, m), 4.85 (1H, d, J = 5.1 Hz), 4.11 (1H, dd, J = 3.0 Hz, J = 10.2 Hz), 3.87 (1H, dd, J = 3.1 Hz, J = 10.2 Hz), 3.47 (1H, m), 2.08 (4H, q, J = 7.3 Hz), 0.94 (9H, s), 0.56 (6H, t, J = 7.3 Hz).

ES (+) MS: 436.2 [M+NH₄], 441.1 [M+Na]

ES (-) MS: 417.2 [M-1].

IR (CHCl₃): 1691 cm⁻¹.

20

Example 36 and 37

Separation of optical isomers of 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-carboxyphenyl)pentane.

(isomer 1)

(isomer 2)

25

A racemic mixture of the Na salt of 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-carboxyphenyl)pentane (350 mg) is chromatographed

-185-

with a Chiralpak AD column to give enantiomer 1, Example 36 (120 mg, 36%) and enantiomer 2, Example 37 (117 mg, 35%).

Example 36, Enantiomer 1

- 5 HPLC: Chiralpak AD (4.6 X 150 mm); 100% 3A Alcohol; 0.6 mL/m (flow rate); rt = 7.3 m; 240 nm; ee 99.7% by HPLC.
 H-NMR (300 mHz, DMSO): δ 7.85 (2H, d, J = 8.3 Hz), 7.27 (2H, d, J = 8.3) 7.00 to 7.12 (3H, m), 4.85 (1H, d, J = 5.1 Hz), 4.11 (1H, dd, J = 3.0 Hz, J = 10.2 Hz), 3.87 (1H, dd, J = 3.1 Hz, J = 10.2 Hz), 3.47 (1H, m), 2.08 (4H, q, J = 7.3 Hz), 0.94 (9H, s),
 10 0.56 (6H, t, J = 7.3 Hz).
 ES (+) MS: 436.2 [M+NH4], 441.1 [M+Na]
 ES (-) MS: 417.2 [M-1].

Example 37, Enantiomer 2

- 15 HPLC: Chiralpak AD (4.6 X 150 mm); 100% 3A Alcohol; 0.6 mL/m (flow rate); rt = 10.5 m; 240 nm; ee 99.0% by HPLC.
 H-NMR (300 mHz, DMSO): δ 7.85 (2H, d, J = 8.3 Hz), 7.27 (2H, d, J = 8.3) 7.00 to 7.12 (3H, m), 4.85 (1H, d, J = 5.1 Hz), 4.11 (1H, dd, J = 3.0 Hz, J = 10.2 Hz), 3.87 (1H, dd, J = 3.1 Hz, J = 10.2 Hz), 3.47 (1H, m), 2.08 (4H, q, J = 7.3 Hz), 0.94 (9H, s),
 20 0.56 (6H, t, J = 7.3 Hz).
 ES (+) MS: 436.2 [M+NH4], 441.1 [M+Na]
 ES (-) MS: 417.2 [M-1].

Example 38

- 25 Preparation of racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(carboxy)phenyl)pentane.

A. [E,Z]-3-[3-Chloro-4-(trifluoromethylsulfonyloxy)phenyl]-3-pentene.

-186-

Using a procedure analogous to Example 1C, [E, Z]-3-(3-chloro-4-hydroxyphenyl)-3-pentene, triflic anhydride, and diisopropylethylamine are reacted at RT for 3 h to give the title compound as a yellow oil in a [E:Z] ratio of 9:1 (16.7 g, 98%). Chromatography over silica gel using 10% chloroform in hexane as the eluent provided 11.72 g (71.%) of purified material.

H-NMR (300 mHz, CDCl₃): δ 7.01-7.39 (3H, m), 5.70 (0.9H, q, J = 6.9 Hz), 5.53 (0.1H, q, J = 6.9 Hz), 2.41 (1.8H, q, J = 7.6 Hz), 2.24 (0.2H, q, J = 7.6 Hz), 1.74 (2.7H, d, J = 7.6 Hz), 1.48 (0.3H, d, J = 7.6 Hz), 0.91 (2.7H, t, J = 7.6 Hz), 0.89 (0.3H, t, J = 7.6 Hz).

ES GC MS m/z 328.0 ; Calc. for C₁₂H₁₂ClF₃O₃S m/z 328.0148.

B. 3'-(4-hydroxy-3-methylphenyl)-3'-[3-chloro-4-(trifluoromethylsulfonyloxy)phenyl]pentane.

Using a procedure analogous to Example 35D, [E,Z]-3-[3-chloro-4-(trifluoromethylsulfonyloxy)phenyl]-3-pentene and o-cresol are reacted at RT overnight to give the title compound as a pale tan oil (4.29g, 38%).

-187-

H-NMR (300 mHz, CDCl₃): 6.5 to 7.3 (6H, m) 4.57 (1H,s), 2.21 (3H, s), 2.05 (4H, q, J = 7.3 Hz), 0.62 (6H, t, J = 7.3 Hz).

ES (-) MS m/z 435.1 [M-H].

- 5 C. 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)-phenyl)-3'-(3-methyl-4-(trifluoromethylsulfonyloxy)phenyl)pentane.

Triflate Rearrangement Procedure.

Using a procedure analogous to Example 35C, 3'-(3-chloro-4-hydroxyphenyl)-3'-[3-methyl-4-(trifluoromethylsulfonyloxy)phenyl]pentane, 1-chloropinacolone, anhydrous KI, and K₂CO₃ are reacted in acetonitrile to give the title compound (2.61 g, 53%) following chromatographies (30% to 50% chloroform/Hex; Hex to 10% EtOAc/Hex).

H-NMR (300 mHz, CDCl₃): δ 7.15 (1H, d, J = 2.3 Hz), 7.11 (1H, d, J = 8.4 Hz), 7.04 (1H, d, J = 2.3 Hz), 7.02 (1H, dd, J = 2.3 Hz, J = 8.4 Hz), 6.89 (1H, dd, J = 8.6 Hz, J = 2.3 Hz), 6.62 (1H, d, J = 8.6 Hz), 4.91 (2H, s), 2.32 (3H, s), 2.03 (4H, q, J = 7.2 Hz), 1.26 (9H, s), 0.60 (6H, t, J = 7.2 Hz).

ES (+) MS m/z, [M+NH₄]: 552.2.

Further NMR data: COSY data allowed the spin systems of the two aromatic rings to be grouped together. When the OCH₂ was selectively excited, a NOE is observed with a resonance at 6.62 δ which is ortho only coupled. When the aromatic methyl (at 2.32 δ) was excited, a NOE is observed to a meta coupled proton at 7.04 δ. These resonances are not part of the same spin system, requiring the OCH₂ and aromatic methyl to be on different rings. Therefore the triflate has migrated during the reaction and the isolated product has the structure shown above. (HMBC data also supports this conclusion.)

-188-

D. 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(carbomethoxy)phenyl)pentane.

- 5 Using a procedure analogous to Example 35F, 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(trifluoromethylsulfonyloxy)phenyl)pentane, MeOH, dppb, DMSO, Et₃N, and Pd(OAc)₂ under an atmosphere of CO are reacted to provide the title compound as a colorless oil (938 mg, 73%).
H-NMR (300 MHz, CDCl₃): δ 7.82 (1H, d, J = 8.8 Hz), 7.20 (1H, d, J = 2.3 Hz), 7.03 – 10 7.05 (2H, m), 6.92 (1H, dd, J = 2.3 Hz, J = 8.6 Hz), 6.63 (1H, d, J = 8.6 Hz), 4.92 (2H, s), 3.89 (3H, s), 2.57 (3H, s), 2.08 (4H, q, J = 7.3 Hz), 1.27 (9H, s), 0.63 (6H, t, J = 7.3 Hz).
ES (+) MS m/z: 462.4 [M+NH₄].
FAB (+) MS m/z [M+H]: 445.2; calc. m/z 445.1.

- 15 E. Racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(carbomethoxy)phenyl)pentane.

- Using a procedure analogous to Example 35G, 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(carbomethoxy)phenyl)pentane was reduced
20 by NaBH₄ to provide the title compound as a colorless oil (735 mg, 98%).
H-NMR (300 MHz, CDCl₃): δ 7.89 (1H, d, J = 8.8 Hz), 7.13 (1H, d, J = 1.78 Hz), 7.00 (2H, m), 6.93 (1H, dd, J = 2.2 Hz, J = 8.8 Hz), 6.80 (1H, d, J = 8.8 Hz), (4.17 (1H, dd, J

-189-

= 2.6 Hz, J = 9.0 Hz), 3.86 (1H, m), 3.85 (3H, s), 3.74 (1H, m), 2.60, (1H, d, J = 3.0 Hz), 2.54 (3H, s), 2.06 (4H, q, J = 7.3 Hz), 1.01 (9H, s), 0.61 (6H, t, J = 7.3 Hz).

FAB (+) MS m/z [M+H]: 447.1; calc m/z 447.2.

IR (CHCl₃): 1717 cm⁻¹

5

F. Racemic 3'-[3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-[3-methyl-4-(carboxy)phenyl]pentane.

Using a procedure analogous to Example 35 H&I, racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(carbomethoxy)-phenyl)pentane was saponified by aqueous NaOH in EtOH to form the Na salt corresponding to the desired compound. After removal of the EtOH under reduced pressure, the residue containing the Na salt was dissolved in water and acidified in a manner analogous to the procedure of Example CDJ-3 to provide the title compound as a white solid (470 mg, 97%).

- H-NMR (300 mHz, DMSO): δ 7.72 (1H, d, J = 8.0 Hz), 7.00 to 7.10 (5H, m), 4.84 (1H, d, J = 5.6 Hz), 4.09 (1H, dd, J = 2.8 Hz, J = 10.4 Hz), 3.85 (1H, dd, J = 7.0 Hz, J = 10.4 Hz), 3.45 (1H, m), 2.47 (3H, s), 2.06 (4H, q, J = 7.3 Hz), 0.91 (9H, s), 0.55 (6H, t, J = 7.3 Hz).
- ES (+) MS m/z 450.2 [M+NH₄], 455.2 [M+Na].
- ES (-) MS m/z 431.1 [M-1].
- IR (CHCl₃): 1689 cm⁻¹.

Example 39

-190-

Preparation of Racemic 3'-(3-methyl-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(3-chloro-4-carboxyphenyl)pentane.

5 A. [E,Z]-3-[3-Chloro-4-carbomethoxyphenyl]-3-pentene.

Using a procedure similar to Example 35F, a mixture of [E,Z]-3-[3-chloro-4-(trifluoromethylsulfonyloxy)phenyl]-3-pentene, MeOH, dppb, DMSO (instead of DMF), Et₃N, and Pd(OAc)₂ under an atmosphere of CO at 80 °C for 4 h are reacted
10 to provide the title compound as a colorless liquid in a [E:Z] ratio of 9:1 (1.99 g, 92%).

H-NMR (300 mHz, CDCl₃): δ 7.06-7.85 (3H, m), 5.85 (0.9H, q, J = 6.9 Hz), 5.60 (0.1H, q, J = 6.9 Hz), 3.94 (0.3H, s), 3.93 (2.7H, s), 2.50 (1.8H, q, J = 7.6 Hz), 2.32 (0.2H, q, J = 7.6 Hz), 1.82 (2.7H, d, J = 7.6 Hz), 1.53 (0.3H, d, J = 7.6 Hz), 0.97 (2.7H, t, J = 7.6 Hz), 0.94 (0.3H, t, J = 7.6 Hz).

IR (CHCl₃): 1726 cm⁻¹

ES GC MS m/z 238.1, M+; Calc. C₁₃H₁₅ClO₂ m/z 238.1

B. 3'-(4-hydroxy-3-methylphenyl)-3'-(3-chloro-4-carbomethoxyphenyl)pentane.

-191-

Using a procedure analogous to Example 35D, [E,Z]-3-[3-chloro-4-carbomethoxyphenyl]-3-pentene and o-cresol are reacted at RT overnight to give the title compound as a thick, pale yellow oil (3.54g, 99%).

H-NMR (300 mHz, CDCl₃): δ 7.74 (1H, d, J = 8.2 Hz), 7.29 (1H, d, J= 1.7 Hz), 7.08 (1H, dd, J = 1.7 Hz, J = 8.2 Hz), 6.81 (2H, m), 6.63 (1H, d, J = 8.9 Hz), 3.91 (3H, s), 2.20 (3H, s), 2.09 (4H, q, J = 7.3 Hz), 1.27 (9H, s), 0.70 (6H, t, J = 7.3 Hz).

ES (+) MS m/z 347.1 [M+1].

IR (CHCl₃): 1725 cm⁻¹.

- 10 C. 3'-(4-(2-oxo-3,3-trimethylbutoxy)-3-methyl-phenyl]-3'-(3-chloro-4-carbomethoxyphenyl)-pentane.

- Using a procedure analogous to Example 35C, 3'-(4-hydroxy-3-methylphenyl)-3'-(3-chloro-4-carbomethoxyphenyl]pentane, 1-chloropinacolone, anhydrous KI, and 15 K₂CO₃ are reacted in acetonitrile to give the title compound as a clear colorless oil (3.46g, 90%).

- H-NMR (300 mHz, CDCl₃): δ 7.70 (1H, d, J = 8.2 Hz), 7.28 (1H, d, J= 1.8 Hz), 7.07 (1H, dd, J =1.8, J =8.2), 6.858 – 6.87 (2H, m), 6.50 (1H, d, J = 9.2 Hz), 4.84 (2H, s), 3.91 (3H, s), 2.23 (3H, s), 2.05 (4H, q, J = 7.3 Hz), 1.53 (9H, s), 0.61 (6H, t, J = 7.3 Hz).
20 FAB(+) MS m/z [M+H]: 445.2 Calc. m/z 445.2.
IR (CHCl₃): 1725 cm⁻¹.

-192-

D. Racemic 3'-(3-methyl-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(3-chloro-4-carbomethoxyoxyphenyl)pentane.

Using a procedure analogous to Example 35G, 3'-(4-(2-oxo-3,3-

- 5 trimethylbutoxy)-3-methyl-phenyl]-3'-(3-chloro-4-carbomethoxyphenyl)-pentane was reduced by NaBH₄ to provide the title compound as a colorless oil (2.75 g, 91%).

H-NMR (300 mHz, CDCl₃): δ 7.75 (1H, d, J = 8.8 Hz), 7.27 (1H, d, J = 1.8 Hz), 7.16 (1H, d, J = 2.0 Hz), 7.07 (1H, dd, J = 1.8 Hz, J = 8.8 Hz), 6.94 (1H, dd, J = 2.0 Hz, J = 8.8 Hz), 6.83 (1H, d, J = 8.8 Hz), 4.18 (1H, dd, J = 2.6 Hz, J = 9.0 Hz), 3.92 (3H, s), 3.89

- 10 (1H, m), 3.74 (1H, m), 2.60, (1H, broad s), 2.06 (4H, q, J = 7.3 Hz), 1.04 (9H, s), 0.63 (6H, t, J = 7.3 Hz).

FAB(+) MS m/z [M+H]: 447.3; calc. m/z 447.2

IR (CHCl₃): 1733 cm⁻¹

- 15 E. Racemic 3'-(3-methyl-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(3-chloro-4-carboxyphenyl)pentane..

Using a procedure analogous to Example 35H, racemic 3'-(3-methyl-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(3-chloro-4-carbomethoxyoxyphenyl)pentane

- 20 was saponified by aqueous NaOH in EtOH to form the Na salt corresponding to the desired compound. After removal of the EtOH under reduced pressure, the residue containing the Na salt was dissolved in water and acidified in a manner analogous to the procedure of Example 39I to provide the title compound as a white solid (1.84 g, 93%).

- 25 H-NMR (300 mHz, DMSO): δ 7.69 (1H, d, J = 8.0 Hz), 7.10 to 7.20 (2H, m), 6.80 to 6.95 (3H, m), 4.78 (1H, d, J = 5.6 Hz), 4.02 (1H, dd, J = 2.8 Hz, J = 10.4 Hz), 3.76 (1H, dd, J = 7.0 Hz, J = 10.4 Hz), 3.44 (1H, m), 2.10 (3H, s), 2.04 (4H, q, J = 7.3 Hz), 0.93 (9H, s), 0.56 (6H, t, J = 7.3 Hz).

-193-

ES (+) MS m/z 433.2 [M+H], 450.1 [M+NH₄], 455.1 [M+Na].

ES (-) MS m/z 431.2 [M-H].

IR (CHCl₃): 1701 cm⁻¹.

5

Example 40

Preparation of racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(3-chloro-4-carboxyphenyl)pentane.

A. 3'-(4-hydroxy-3-chlorophenyl)-3'-(3-chloro-4-carbomethoxy-phenyl)pentane.

10

Using a procedure analogous to Example 35D, [E,Z]-3-[3-chloro-4-carbomethoxyphenyl]-3-pentene and o-chlorophenol are reacted (initially at RT overnight, then at 70 °C for 20 h, and finally at 90 °C overnight) to give the title compound as an oil (886 mg, 58%).

- 15 H-NMR (300 MHz, CDCl₃): 6.90 to 7.76 (6H, m), 5.45 (1H, s), 3.93 (3H, s), 2.06 (4H, q, J = 7.3 Hz), 0.64 (6H, t, J = 7.3 Hz).
 ES (+) MS m/z 367.0 [M+H].
 IR (CHCl₃): 1726 cm⁻¹

- 20 B. 3'-(4-(2-oxo-3,3-trimethylbutoxy)-3-chlorophenyl)-3'-(3-chloro-4-carbomethoxyphenyl)-pentane.

-194-

Using a procedure analogous to Example 35C, 3'-(4-hydroxy-3-chlorophenyl)-3'-(3-chloro-4-carbomethoxy-phenyl)pentane, 1-chloropinacolone, anhydrous KI, and K2CO3 are reacted in acetonitrile to give the title compound as a clear, nearly colorless oil (919 mg, 89%).

H-NMR (300 MHz, CDCl3): δ 7.72 (1H, d, J = 8.2 Hz), 7.26 (1H, m), 7.17 (1H, d, J = 2.3, 7.06 (1H, dd, J = 1.8 Hz, J = 8.2 Hz), 6.90 (1H, dd, J = 8.7 Hz, J = 2.3 Hz), 4.91 (2H, s), 3.92 (3H, s), 2.05 (4H, q, J = 7.3 Hz), 1.26 (9H, s), 0.62 (6H, t, J = 7.3 Hz).
ES (+) MS m/z 465.1 [M+H], 482.1 [M+NH4].

10

C. Racemic 3'-[3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(3-chloro-4-carbomethoxyphenyl)pentane.

Using a procedure analogous to Example 35G, 3'-(4-(2-oxo-3,3-trimethylbutoxy)-3-chlorophenyl)-3'-(3-chloro-4-carbomethoxyphenyl)-pentane was reduced by NaBH4 to provide the title compound as a colorless oil (738 mg, 98%).
H-NMR (300 MHz, CDCl3): δ 7.89 (1H, d, J = 8.8 Hz), 7.13 (1H, d, J = 1.78 Hz), 7.00 (2H, m), 6.93 (1H, dd, J = 2.2 Hz, J = 8.8 Hz), 6.80 (1H, d, J = 8.8 Hz), (4.17 (1H, dd, J = 2.6 Hz, J = 9.0 Hz), 3.86 (1H, m), 3.85 (3H, s), 3.74 (1H, m), 2.60, (1H, d, J = 3.0 Hz), 2.06 (4H, q, J = 7.3 Hz), 1.01 (9H, s), 0.61 (6H, t, J = 7.3 Hz).
ES (+) MS m/z 489.2 (M+Na).

IR (CHCl3): 1717 cm⁻¹

-195-

D. Racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(3-chloro-4-carboxyphenyl)pentane.

Using a procedure analogous to Example 35H, racemic 3'-(3-methyl-4-(2-

5 hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(3-chloro-4-carbomethoxy-phenyl)pentane was saponified by aqueous NaOH in EtOH to form the Na salt corresponding to the desired compound. After removal of the EtOH under reduced pressure, the residue containing the Na salt was dissolved in water and acidified in a manner analogous to the procedure of Example 39I to provide the title compound as a white solid (517 mg,

10 94%).

H-NMR (300 mHz, DMSO): δ 7.74 (1H, d, J = 8.0 Hz), 7.04 to 7.30 (5H, m), 4.88 (1H, d, J = 5.6 Hz), 4.14 (1H, dd, J = 2.8 Hz, J = 10.4 Hz), 3.89 (1H, dd, J = 7.0 Hz, J = 10.4 Hz), 3.49 (1H, m), 2.04 (4H, q, J = 7.3 Hz), 0.95 (9H, s), 0.58 (6H, t, J = 7.3 Hz).

ES (+) MS m/z 475.2 [M+Na].

15 IR (CHCl₃): 1701 cm⁻¹.

Example 41 and Example 42

Separation of optical isomers of 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(3-chloro-4-carboxyphenyl)pentane.

20

(isomer 1)

(isomer 2)

A racemic mixture 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)-phenyl]-3'-(3-chloro-4-carboxyphenyl)pentane. (490 mg) is chromatographed with a ChiralpakAD column to give enantiomer 1, Example 41 (192 mg, 39%) and enantiomer 2, Example 42 (185 mg, 38%).

-196-

Enantiomer 1, Example 41

HPLC: Chiralpak AD (4.6 X 250 mm); 3:2 heptane: isopropyl alcohol with 0.1% TFA; 1.0 mL/m (flow rate); rt = 7.8 m; 270 nm; ee 99.9% by HPLC.

H-NMR (300 mHz, DMSO): δ 7.74 (1H, d, J = 8.0 Hz), 7.04 to 7.30 (5H, m), 4.88 (1H, d, J = 5.6 Hz), 4.14 (1H, dd, J = 2.8 Hz, J = 10.4 Hz), 3.89 (1H, dd, J = 7.0 Hz, J = 10.4 Hz), 3.49 (1H, m), 2.04 (4H, q, J = 7.3 Hz), 0.95 (9H, s), 0.58 (6H, t, J = 7.3 Hz).
 ES (+) MS m/z 475.2 [M+Na].

Enantiomer 2, Example 42

HPLC: Chiralpak AD (4.6 X 250 mm); 3:2 heptane: isopropyl alcohol with 0.1% TFA; 1.0 mL/m (flow rate); rt = 10.6 m; 270 nm; ee 99.5% by HPLC.
 H-NMR (300 mHz, DMSO): δ 7.74 (1H, d, J = 8.0 Hz), 7.04 to 7.30 (5H, m), 4.88 (1H, d, J = 5.6 Hz), 4.14 (1H, dd, J = 2.8 Hz, J = 10.4 Hz), 3.89 (1H, dd, J = 7.0 Hz, J = 10.4 Hz), 3.49 (1H, m), 2.04 (4H, q, J = 7.3 Hz), 0.95 (9H, s), 0.58 (6H, t, J = 7.3 Hz).
 ES (+) MS m/z 475.1 [M+Na].

Example 43

Preparation of racemic 1-(4-{1-Ethyl-1-[4-(1H-tetrazol-5-yl)-phenyl]-propyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-ol.

20

A. 3'-(4-Iodophenyl)-3'-pentanol.

To ethyl, p-iodobenzoate (11.04 g, 40 mmol) in diethylether (100 mL) at -20° C. under nitrogen is added 1M ethylmagnesium bromide (91 mL, 91 mmol) dropwise with mechanical stirring, and the mixture is allowed to come to R.T. and stirred over

-197-

night. The mixture is quenched with satd. sodium bicarbonate and triturated with diethylether six times. The organic layers are combined; washed with water; dried over anhydrous sodium sulfate; and evaporated under vacuum to give the title compound as an oil (10.4 g, 90%) which is used as is.

5 ¹H NMR (400 mHz, CDCl₃), δ 7.64 (d, J = 8.8 Hz, 2H), 7.11 (d, J = 8.8 Hz, 2H), 1.74-1.85 (m, 4H), 0.75 (t, J = 7.4 Hz, 6H).

B. 1-{4-[1-Ethyl-1-(4-iodophenyl)-propyl]}-2-methyl-phenol.

10 To 3'-(4-iodophenyl)-3'-pentanol (10.4 g, 36 mmol) and o-cresol (15.5 g, 143 mmol) in methylene chloride (5 mL) is added borontrifluoride etherate (0.96 mL, 7.2 mmol), and the mixture is allowed to stir at room temperature overnight. The mixture is quenched with satd. sodium bicarbonate, and extracted into diethylether. The organic phase is washed with water; dried over anhydrous sodium sulfate; and evaporated under vacuum. The residue is vacuum distilled (0.5 mm) to 80 °C. to remove excess o-cresol, and the residue is partitioned between diethylether and water. The organic layer is dried over anhydrous sodium sulfate, and evaporated under vacuum to give the title compound as an oil (13 g, 95%) which is used as is.

15 ¹H NMR (400 mHz, CDCl₃), δ 7.53 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 6.84 (s, 1H), 6.83 (d, J = 8.9 Hz, 1H), 6.64 (d, J = 8.9 Hz, 1H), 4.50 (s, 1H), 2.20 (s, 3H), 2.01 (q, J = 7.2 Hz, 4H), 0.60 (t, J = 7.2 Hz, 6H).

C. 1-{4-[1-Ethyl-1-(4-iodophenyl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one.

-198-

In a procedure analogous to Example 35C, 1-{4-[1-Ethyl-1-(4-iodophenyl)-propyl]-2-methyl-phenol (13 g, 34 mmol) gave the title compound as an oil (13.9 g, 85%) which is used as is.

¹H NMR (400 mHz, CDCl₃), δ 7.53 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.87 (s, 1H), 6.86 (d, J = 8.8 Hz, 1H), 6.48 (d, J = 8.8 Hz, 1H), 4.83 (s, 2H), 2.23 (s, 3H), 2.01 (q, J = 7.2 Hz, 4H), 1.25 (s, 9H).

D. 4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-benzonitrile.

To a mixture of 1-{4-[1-ethyl-1-(4-iodo-phenyl)-propyl]-2-methoxy-3,3-dimethyl-butan-2-one (3.0 g 6.27 mmol) and DMF (30 mL) is added Zn(CN)₂ (0.44 g, 3.76 mmol), Pd₂(dba)₃ (0.29 g, 0.31 mmol), and DPPF (0.42 g, 0.75 mmol). The solution is heated at 100 °C overnight, diluted with Et₂O (200 mL), washed with 4:1:4 sat NH₄Cl:Conc. NH₄OH:water (100 mL), water (100 mL), brine (100 mL), dried MgSO₄, filtered and concentrated. The residue is purified by ISCO (10%-2-% EtOAc gradient) to furnish the title compound (1.1 g, 2.91 mmol, 46%).

¹H NMR (CDCl₃), δ 0.52-0.63 (m, 6H), 1.26 (s, 9H), 2.03-2.10 (m, 4H), 2.24 (s, 3H), 4.85 (s, 2H), 6.50 (d, J = 9.4 Hz, 1H), 6.82-6.86 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.9 Hz, 2H).

LC/MS (m/z): calcd. for C₂₅H₃₁NO₂ (M+H)⁺: 378.6; found: 395.3.

E 1-(4-{1-Ethyl-1-[4-(1H-tetrazol-5-yl)-phenyl]-propyl}-2-methoxy-3,3-dimethyl-butan-2-one.

-199-

To a mixture of 4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-benzonitrile (0.50 g, 1.32 mmol), and DMF (5 mL) is added NaN₃ (0.26 g, 3.95 mmol) and Et₃N•HCl (0.54 g, 3.95 mmol). The slurry is heated at 110 °C overnight. The slurry is diluted with EtOAc (50 mL), washed with 1M HCl (40 mL) water (40 mL), brine (40 mL), dried over MgSO₄, filtered and concentrated. The residue is purified by ISCO (20%- 40% [89% EtOAc: 10% MeOH: 1% AcOH] gradient) to furnish the title compound (0.37g, 0.88 mmol, 66%).

¹H NMR (CDCl₃), δ 0.57-0.62 (m, 6H), 1.27 (s, 9H), 2.02-2.11 (m, 4H), 2.17 (s, 3H), 4.87 (s, 2H), 6.50 (d, *J* = 9.4 Hz, 1H), 6.82-6.88 (m, 2H), 7.22-7.28 (m, 3H), 7.94 (d, *J* = 7.9 Hz, 2H).

LC/MS (m/z): calcd. for C₂₅H₃₂N₄O₂ (M+H)⁺: 421.7; found: 421.2.

F. 1-(4-{1-Ethyl-1-[4-(1H-tetrazol-5-yl)-phenyl]-propyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-ol.

To a mixture of 1-(4-{1-Ethyl-1-[4-(1H-tetrazol-5-yl)-phenyl]-propyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-one (0.37 g, 0.88 mmol) and EtOH (5 mL) was added NaBH₄ (0.037 g, 0.97 mmol) and the solution stirred for 1 hour. The solids were removed by filtration and the solution concentrated. The residue was purified by ISCO (10- 30 [89% EtOAc:10% MeOH: 1% AcOH] gradient) to furnish the title compound (0.32 g, 0.76 mmol, 86%).

¹H NMR (CDCl₃), δ 0.59-0.64 (m, 6H), 1.02 (s, 9H), 2.05-2.12 (m, 4H), 2.13 (s, 3H), 3.75 (dd, *J* = 2.8, 8.8 Hz, 1H), 3.89 (t, *J* = 8.8 Hz, 1H), 4.10 (dd, *J* = 2.8, 8.8 Hz, 1H), 6.68 (d, *J* = 8.2 Hz, 1H), 6.85 (d, *J* = 2.2 Hz, 1H), 6.92 (dd, *J* = 2.2, 8.7 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 2H), 8.01 (d, *J* = 8.4 Hz, 2H).

LC/MS (m/z): calcd. for C₂₅H₃₄N₄O₂ (M+H)⁺: 423.7; found: 423.2.

-200-

Example 44 and Example 45

Separation of enantiomers of 1-(4-{1-Ethyl-1-[4-(1H-tetrazol-5-yl)-phenyl]-propyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-ol.

enantiomer 1

enantiomer 2

A racemic mixture of 1-(4-{1-Ethyl-1-[4-(1H-tetrazol-5-yl)-phenyl]-propyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-ol (0.32 g) is chromatographed (CHIRALPAK ADH column, 0.1% TFA, 20% *i*-PrOH/Hept) to give enantiomer 1, (0.168 g, 0.40 mmol, 45 %) and enantiomer 2, (0.150 g, 0.35 mmol, 41 %).

Example 44, enantiomer 1

R_t = 7.7 m

¹H NMR (CDCl₃), δ 0.57-0.67 (m, 6H), 1.02 (s, 9H), 2.05-2.12 (m, 4H), 2.14 (s, 3H), 3.74 (dd, *J* = 2.2, 8.8 Hz, 1H), 3.89 (t, *J* = 8.8 Hz, 1H), 4.10 (dd, *J* = 2.2, 8.8 Hz, 1H), 6.69 (d, *J* = 8.8 Hz, 1H), 6.86 (s, 1H), 6.93 (d, *J* = 8.8 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.99 (d, *J* = 8.0 Hz, 2H). LC/MS (m/z): calcd. for C₂₅H₃₄N₄O₂ (M+H)⁺: 423.7; found:

20 423.3.

Example 45, enantiomer 2

R_t = 11.6 m

¹H NMR (CDCl₃), δ 0.59-0.66 (m, 6H), 1.01 (s, 9H), 2.05-2.15 (m, 4H), 2.16 (s, 3H), 25 3.71 (dd, *J* = 2.5, 8.7 Hz, 1H), 3.87 (t, *J* = 9.0 Hz, 1H), 4.09 (dd, *J* = 2.5, 9.0 Hz, 1H), 6.71 (d, *J* = 8.8 Hz, 1H), 6.87 (d, *J* = 1.7 Hz, 1H), 6.95 (dd, *J* = 2.2, 8.5 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 2H), 8.01 (d, *J* = 8.2 Hz, 2H). LC/MS (m/z): calcd. for C₂₅H₃₄N₄O₂ (M+H)⁺: 423.7; found: 423.3.

-201-

Example 46

Preparation of epimer 1 of (*D*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid

5

(Epimer 1, *D*-)

A. Preparation of epimer 1 of (*D*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid methyl ester.

(Epimer 1, *D*-)

10

Using a procedure analogous to Example 5, isomer 1 of 4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid (0.55 g, 1.29 mmol), (*D*)-alananine methyl ester hydrochloride (198 mg, 1.42 mmol), EDCI (276 mg, 1.44 mmol), and 1-hydroxybenzotriazole hydrate (195 mg, 1.44 mmol) furnish the title compound (0.42 g, 0.82 mmol, 63%).

15

¹H NMR (CDCl₃), δ 0.62 (t, *J* = 7.3 Hz, 6H), 0.97 (s, 9H), 1.35 (d, *J* = 6.3 Hz, 3H), 1.51 (d, *J* = 7.5 Hz, 3H), 2.06 (q, *J* = 7.3 Hz, 4H), 2.14 (s, 3H), 2.43 (s, 3H), 3.18 (bs, 1H), 3.79 (s, 3H), 4.58 (q, *J* = 6.3 Hz, 1H), 4.79 (m, 1H), 6.32 (d, *J* = 8.1 Hz, 1H), 6.69 (d, *J* = 8.3 Hz, 1H), 6.84-7.05 (m, 4H), 7.30 (d, *J* = 8.3 Hz, 1H).

ES-MS (m/z): calcd. for C₃₁H₄₆NO₅ (M+H)⁺: 511.7; found: 512.3.

20

B. Preparation of epimer 1 of (*D*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid.

-202-

Using a procedure analogous to Example 2, epimer 1 of (*D*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid methyl ester (0.42 g, 0.82 mmol) and LiOH give the title compound (0.41 g, 0.82 mmol, 100%).

- 5 ¹H NMR (CDCl₃), δ 0.62 (t, J = 7.5 Hz, 6H), 0.97 (s, 9H), 1.36 (d, J = 6.2 Hz, 3H), 1.57 (d, J = 7.0 Hz, 3H), 2.06 (q, J = 7.5 Hz, 4H), 2.14 (s, 3H), 2.44 (s, 3H), 3.19 (d, J = 0.9 Hz, 1H), 4.58 (dq, J = 6.2, 0.9 Hz, 1H), 4.74-4.82 (m, 1H), 6.28 (d, J = 7.0 Hz, 1H), 6.69 (d, J = 8.8 Hz, 1H), 6.84-7.06 (m, 4H), 7.31 (d, J = 7.9 Hz, 1H). ES-MS (m/z): calcd. for C₃₁H₄₆NO₅ (M+H)⁺: 511.7; found: 512.3.).
- 10 ES-MS (m/z): calcd for C₃₀H₄₂NO₅ (M-H)⁻: 496.7; found: 496.3.

Example 47

Preparation of epimer 1 of (*L*)-2-(4-{1-Ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid.

15

(Epimer-1, L-)

- A. Preparation of epimer 1 of (*L*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid methyl ester.

20

(Epimer-1, L-)

Using the procedure analogous to Example 46A, isomer 1 of 4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid (0.55 g, 1.29 mmol) and (*L*)-alananine methyl ester hydrochloride (198 mg, 1.42 mmol) furnish the title compound (0.56 g, 1.09 mmol, 85%).

-203-

¹H NMR (CDCl₃), δ 0.62 (t, J = 7.2 Hz, 6H), 0.97 (s, 9H), 1.36 (d, J = 6.1 Hz, 3H), 1.51 (d, J = 7.4 Hz, 3H), 2.06 (q, J = 7.2 Hz, 4H), 2.15 (s, 3H), 2.43 (s, 3H), 3.18 (bs, 1H), 3.79 (s, 3H), 4.58 (dq, J = 6.1, 0.9 Hz, 1H), 4.79 (m, 1H), 6.32 (d, J = 7.3 Hz, 1H), 6.69 (d, J = 8.5 Hz, 1H), 6.84-7.05 (m, 4H), 7.30 (d, J = 8.3 Hz, 1H).

- 5 ES-MS (m/z): calcd. for C₃₁H₄₆NO₅ (M+H)⁺: 511.7; found: 512.3.

B. Preparation of epimer 1 of (*L*)-2-(4-{1-Ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid.

Using a procedure analogous to Example 46B, epimer 1 of (*D*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid methyl ester (0.56 g, 1.09 mmol) gives the title compound (0.54 g, 1.09 mmol, 100%).

¹H NMR (CDCl₃), δ 0.62 (t, J = 7.0 Hz, 6H), 0.97 (s, 9H), 1.36 (d, J = 6.1 Hz, 3H), 1.57 (d, J = 7.4 Hz, 3H), 2.06 (q, J = 7.0 Hz, 4H), 2.14 (s, 3H), 2.44 (s, 3H), 3.19 (d, J = 1.3 Hz, 1H), 4.59 (q, J = 6.1, Hz, 1H), 4.74-4.82 (m, 1H), 6.29 (d, J = 7.0 Hz, 1H), 6.69 (d, J = 8.8 Hz, 1H), 6.84-7.07 (m, 4H), 7.31 (d, J = 8.4 Hz, 1H).

ES-MS (m/z): calcd for C₃₀H₄₂NO₅ (M-H)⁻: 496.7; found: 496.3.

Example 48

- 20 Preparation of epimer 2 of (*D*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid.

(Epimer-2, D-)

- A. Preparation of epimer 2 of (*D*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid methyl ester.

-204-

(*Epimer-2, D-*)

Using the procedure analogous to Example 46A, isomer 2 of 4-(1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl)-2-methyl-benzoic acid (0.50 g, 1.17 mmol) and (D)-alananine methyl ester hydrochloride (180 mg, 1.29 mmol) furnish the title compound (0.47 g, 0.92 mmol, 79%). ^1H NMR & ES-MS (m/z): identical to that of Example 47A.

B. Preparation of epimer 2 of (*D*)-2-(4-(1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl)-2-methyl-benzoylamino)-propionic acid.

Using a procedure analogous to Example 46B, from epimer 2 of (*D*)-2-(4-(1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl)-2-methyl-benzoylamino)-propionic acid methyl ester (0.47 g, 0.92 mmol) to give the title compound (0.39 g, 0.79 mmol, 86%). ^1H NMR & ES-MS : identical to that of Example 47B.

Example 49

Preparation of epimer 2 of (*L*)-2-(4-(1-Ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl)-2-methyl-benzoylamino)-propionic acid.

(*Epimer-2, L-*)

A. Preparation of epimer 2 of (*L*)-2-(4-(1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl)-2-methyl-benzoylamino)-propionic acid methyl ester.

-205-

(*Epimer-2, L-*)

Using the procedure analogous to Example 46A, isomer 2 of 4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid (0.50 g, 1.17 mmol) and (L)-alananine methyl ester hydrochloride (180 mg, 1.29 mmol) furnish the title compound (0.47 g, 0.92 mmol, 79%). ¹H NMR & ES-MS (m/z): identical to that of Example 46A.

B. Preparation of epimer 2 of (*L*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid.

Using a procedure analogous to Example 24B, epimer 2 of (*L*)-2-(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoylamino)-propionic acid methyl ester (0.47 g, 0.92 mmol) give the title compound (0.44 g, 0.88 mmol, 96%). ¹H NMR & ES-MS: identical to that of Example 46B.

Example 50

Preparation of enantiomer 1 of 5-(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzyl)-thiazolidine-2,4-dione.

20

A. Enantiomer 1 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-N-methoxy-2,N-dimethyl-benzamide.

-206-

To a mixture of enantiomer 1 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid (1.11 g, 2.69 mmol) and DMF (5 mL) is added hydroxylamine hydrochloride (0.29 g, 2.96 mmol), EDCI (0.57 g, 2.96 mmol), HOBr (0.40 g, 2.96 mmol), and NEt₃ (1.65 mL, 11.84 mmol). The mixture is stirred at ambient temperature overnight, diluted with EtOAc (40 mL), washed with 1M HCl (40 mL), water (40 mL), brine (40 mL), dried over MgSO₄, filtered and concentrated. The residue is purified by ISCO (10%-40% EtOAc gradient) to furnish the title compound (1.0 g, 2.19 mmol, 81%).

10 ¹H NMR (CDCl₃), δ 0.57-0.64 (m, 6H), 1.02 (s, 9H), 2.02-2.10 (m, 4H), 2.17 (s, 3H), 2.29 (s, 3H), 3.28 (bs, 3H), 3.53 (bs, 1H), 3.71 (dd, *J* = 2.7, 8.8 Hz, 1H), 3.86 (t, *J* = 8.8 Hz, 1H), 4.10 (dd, *J* = 2.7, 8.8 Hz, 1H), 6.70 (d, *J* = 8.6 Hz, 1H), 6.86 (d, *J* = 2.0 Hz, 1H), 6.94 (dd, *J* = 2.2, 8.1 Hz, 1H), 6.97-7.02 (m, 3H), 7.14 (d, *J* = 8.4 Hz, 1H). LC/MS (m/z): calcd. for C₂₈H₄₁NO₄ (M+H)⁺: 456.7; found: 456.2.

15

B. Enantiomer 1 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzaldehyde.

20 To a mixture of enantiomer 1 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-N-methoxy-2,N-dimethyl-benzamide (1.0 g, 2.42 mmol) and THF (10 mL) is added 1M in THF LAH (2.5 mL, 2.55 mmol) with cooling. THF (5 mL) was added and the solution stirred for 1 hour. The solution is diluted with Et₂O (100 mL) and washed with 1M HCl (50 mL). The aqueous phase is extracted with Et₂O (50 mL). The combined organic layers are washed with 1M HCl (50 mL), brine (50

-207-

mL), dried over MgSO₄, filtered and concentrated to furnish the title compound (0.64 g, 1.61 mmol, 67%).

¹H NMR (CDCl₃), δ 0.59-0.66 (m, 6H), 1.02 (s, 9H), 2.05-2.15 (m, 4H), 2.18 (s, 3H), 2.62 (s, 3H), 3.71 (dd, *J* = 1.9, 9.1 Hz, 1H), 3.86 (t, *J* = 9.1 Hz, 1H), 4.10 (dd, *J* = 1.9, 9.1 Hz, 1H), 6.72 (d, *J* = 8.2 Hz, 1H), 6.87 (s, 1H), 6.93 (d, *J* = 8.7 Hz, 1H), 7.06 (s, 1H), 7.17 (d, *J* = 8.2 Hz, 1H) 7.67 (dd, *J* = 1.7, 8.0, 1H), 10.20 (s, 1H).

LC/MS (m/z): calcd. for C₂₆H₃₆O₃ (M+H)⁺: 397.7.; found: N/A.

C. Enantiomer 1 of 5-(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-

10 phenyl]-propyl}-2-methyl-benzylidene)-thiazolidine-2,4-dione.

To a mixture of enantiomer 1 of 4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzaldehyde (0.64 g, 1.61 mmol) and toluene (20 mL) is added 90 % 2,4-thiazolidinedione (0.25 g, 1.94 mmol), and piperidine acetate (0.04 g, 0.24 mmol). The solution is heated to a reflux overnight and the water removed by a Dean-Stark trap. The solution is diluted with EtOAc (60 mL), washed with water (50 mL), saturated NaHCO₃ (50 mL), dried over MgSO₄, filtered and concentrated. Purified by ISCO (20% -50% EtOAc gradient) to furnish the title compound (0.75 g, 1.51 mmol, 94%).

20 ¹H NMR (CDCl₃), δ 0.60-0.67 (m, 6H), 1.03 (s, 9H), 2.04-2.13 (m, 4H), 2.19 (s, 3H), 2.42 (s, 3H), 2.50 (d, *J* = 2.0 Hz, 1H), 3.72 (d, *J* = 8.8 Hz, 1H), 3.86 (t, *J* = 8.9 Hz, 1H), 4.10 (dd, *J* = 2.7, 9.4 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 1H), 6.88 (d, *J* = 1.7 Hz, 1H), 6.94 (dd, *J* = 2.3, 8.7 Hz, 1H), 7.08 (s, 1H), 7.11 (dd, *J* = 1.8, 8.4 Hz, 1H), 7.33 (d, *J* = 8.4, 1H), 8.06 (s, 1H), 8.97 (bs, 1H).

25 LC/MS (m/z): calcd. for C₂₉H₃₇NO₄S (M+H)⁺: 494.5; found: 494.2.

D. Enantiomer 1 of 5-(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzyl)-thiazolidine-2,4-dione.

-208-

To a mixture of enantiomer 1 of 5-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzylidene)-thiazolidine-2,4-dione (0.35 g, 0.71 mmol) and MeOH (10 mL) is added Mg (0.17 g, 7.1 mmol). The solution is heated at a reflux for 4 hours. The solution is filtered thru celite®, rinsed with MeOH (2 mL),

- 5 and the solution concentrated. The residue is purified by ISCO (15%-30% EtOAc gradient) to furnish the title compound (0.13 g, 0.26 mmol, 37%).

¹H NMR (CDCl₃), δ 0.57-0.65 (m, 6H), 1.02 (s, 9H), 2.01-2.10 (m, 4H), 2.19 (s, 3H), 2.31 (s, 3H), 2.50 (d, J = 2.6 Hz, 1H), 2.97-3.06 (m, 1H), 3.65 (dd, J = 3.8, 14.5 Hz, 1H), 3.69-3.75 (m, 1H), 3.87 (t, J = 8.8 Hz, 1H), 4.10 (dd, J = 2.7, 9.3 Hz, 1H), 4.52 (dd, J = 3.8, 11.2 Hz, 1H), 6.70 (dd, J = 2.3, 8.5 Hz, 1H), 6.87-7.04 (m, 5H), 8.56 (bs, 1H).

10 LC/MS (m/z): calcd. for C₂₉H₃₉NO₄S (M+H)⁺: 496.6; found: 496.2.

Example 51

Preparation of enantiomer 2 of 5-(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzyl)-thiazolidine-2,4-dione.

A. Enantiomer 2 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-N-methoxy-2,N-dimethyl-benzamide.

- 20 To mixture of enantiomer 2 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid (0.70 g, 1.70 mmol) and DMF (5 mL) is added hydroxylamine hydrochloride (0.18 g, 1.87 mmol), EDCI (0.33 g, 1.87 mmol), HOEt (0.23 g, 1.87 mmol), and NEt₃ (0.95 mL, 6.79 mmol). The mixture is stirred at ambient temperature overnight, diluted with EtOAc (40 mL), washed with 1M HCl (40

-209-

mL), water (40 mL), brine (40 mL), dried over MgSO₄, filtered and concentrated to furnish the title compound (0.76 g, 2.19 mmol, 81%).

¹H NMR (CDCl₃), δ 0.57-0.64 (m, 6H), 1.02 (s, 9H), 2.01-2.10 (m, 4H), 2.17 (s, 3H), 2.28 (s, 3H), 3.28 (bs, 3H), 3.54 (bs, 1H), 3.71 (dd, *J* = 2.6, 8.8 Hz, 1H), 3.86 (t, *J* = 8.8 Hz, 1H), 4.10 (dd, *J* = 2.6, 8.8 Hz, 1H), 6.70 (d, *J* = 8.3 Hz, 1H), 6.86 (d, *J* = 2.2 Hz, 1H), 6.94 (dd, *J* = 2.2, 8.6 Hz, 1H), 6.97-7.02 (m, 3H), 7.13 (d, *J* = 8.3 Hz, 1H). LC/MS (m/z): calcd. for C₂₈H₄₁NO₄ (M+H)⁺: 456.7; found: 456.3.

B. Enantiomer 2 of 4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzaldehyde.

To a mixture of enantiomer 2 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-N-methoxy-2,N-dimethyl-benzamide (0.76 g, 1.75 mmol) and THF (20 mL) is added 1M LAH in THF (1.75mL, 1.75 mmol) with cooling, and the solution stirred for 1 hour. The solution is diluted with Et₂O (100 mL) and washed with 1M HCl (50 mL). The aqueous phase is extracted with Et₂O (50 mL). The combined organic layers are washed with 1M HCl (50 mL), brine (50 mL), dried over MgSO₄, filtered and concentrated to furnish the title compound (0.48 g, 1.21 mmol, 73%).

¹H NMR (CDCl₃), δ 0.60-0.65 (m, 6H), 1.02 (s, 9H), 2.07-2.14 (m, 4H), 2.18 (s, 3H), 2.62 (s, 3H), 3.58-3.74 (m, 1H), 3.87 (t, *J* = 8.9 Hz, 1H), 4.10 (dd, *J* = 2.6, 9.2 Hz, 1H), 6.72 (d, *J* = 8.6 Hz, 1H), 6.87 (d, *J* = 2.5, 8.6, 1H), 7.06 (s, 1H), 7.17 (dd, *J* = 1.8, 8.2 Hz, 1H), 7.67 (d, *J* = 8.4, 1H), 10.20 (s, 1H).

LC/MS (m/z): calcd. for C₂₆H₃₆O₃ (M+H)⁺: 397.7.; found: 397.3.

C. Enantiomer 2 of 5-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzylidene)-thiazolidine-2,4-dione.

-210-

To a mixture of enantiomer 2 of 4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzaldehyde (048 g, 1.21 mmol) and toluene (15 mL) is added 90 % 2,4-thiazolidinedione (0.19 g, 1.45 mmol), and piperidine acetate (0.03 g, 0.18 mmol). The solution is heated to a reflux overnight and the water removed by a Dean-Stark trap. The solution is diluted with EtOAc (60 mL), washed with water (50 mL), brine (50 mL), dried over MgSO₄, filtered and concentrated. Purified by ISCO (20% –40% EtOAc gradient) to furnish the title compound (0.50 g, 1.00 mmol, 83%).

- 10 ¹H NMR (CDCl₃), δ 0.60-0.67 (m, 6H), 1.03 (s, 9H), 2.05-2.12 (m, 4H), 2.19 (s, 3H), 2.42 (s, 3H), 2.51 (d, J = 2.5 Hz, 1H), 3.70-3.75 (m, 1H), 3.88 (t, J = 8.8 Hz, 1H), 4.10 (dd, J = 2.7, 9.2 Hz, 1H), 6.72 (d, J = 8.3 Hz, 1H), 6.88 (d, J = 1.8 Hz, 1H), 6.94 (dd, J = 2.2, 8.6 Hz, 1H), 7.08 (s, 1H), 7.11 (dd, J = 1.8, 8.0 Hz, 1H), 7.33 (d, J = 8.0, 1H), 8.06 (s, 1H), 9.02 (bs, 1H).
- 15 LC/MS (m/z): calcd. for C₂₉H₃₇NO₄S (M+H)⁺: 494.5; found: 494.2.

D. Enantiomer 2_of 5-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzyl)-thiazolidine-2,4-dione.

- 20 To a mixture of enantiomer 2 of 5-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzylidene)-thiazolidine-2,4-dione (example Rupp-7) (0.25 g, 0.50 mmol) and MeOH (10 mL) is added Mg (0.12 g, 5.04 mmol). The solution is heated at a reflux for 4 hours. The solution is filtered thru celite®, rinsed with MeOH (2 mL), and the solution concentrated. The residue is purified by ISCO (15%-30% EtOAc gradient) to furnish the title compound (0.084 g, 0.17 mmol, 34%).

¹H NMR (CDCl₃), δ 0.56-0.63 (m, 6H), 1.02 (s, 9H), 2.00-2.10 (m, 4H), 2.18 (s, 3H), 2.31 (s, 3H), 2.51 (d, J = 2.1 Hz, 1H), 2.97-3.06 (m, 1H), 3.65 (dd, J = 3.9, 14.7 Hz, 1H), 3.69-3.75 (m, 1H), 3.86 (t, J = 8.9 Hz, 1H), 4.09 (dd, J = 2.7, 9.4 Hz, 1H), 4.52 (dd, J =

-211-

3.8, 11.2 Hz, 1H), 6.70 (d, J = 8.5 Hz, 1H), 6.86-7.03 (m, 5H), 8.56 (bs, 1H). LC/MS (m/z): calcd. for $C_{29}H_{39}NO_4S$ ($M+H$)⁺: 496.6.; found: 496.2.

5

Example 52 and 53

Enantiomer 1 and 2 of [(4-{1-Ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid.
10

(Enantiomer 1)

(Enantiomer 2)

A. Racemic [(4-{1-Ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid methyl ester.
15

Using a procedure analogous to Example 46A, from racemic 4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoic acid (1.46 g, 3.43 mmol) and sascoine methyl ester hydrochloride (0.52 g, 3.76 mmol) to give the title compound (1.74 g, 3.40 mmol, 99%).
20

¹H NMR ($CDCl_3$), δ 0.58-0.65 (m, 6H), 0.97 (s, 6H), 1.02 (s, 3H), 1.33 (d, J = 6.2 Hz, 1H), 1.36 (d, J = 6.2 Hz, 2H), 2.00-2.10 (m, 4H), 2.14 (s, 3H), 2.25 (s, 1H), 2.33 (s, 2H), 2.57 (d, J = 9.6 Hz, 0.33H), 2.58 (d, J = 9.6 Hz, 0.66H), 2.89 (s, 3H), 3.18 (dd, J = 9.6,

-212-

1.3 Hz, 1H), 3.69 (s, 1H), 3.79 (s, 2H), 3.91 (s, 0.66H), 4.32 (bs, 1.34H), 4.59 (dq, $J = 6.2, 1.3$ Hz, 1H), 6.69 (d, $J = 8.3$ Hz, 1H), 6.84-7.11 (m, 5H).

ES-MS (m/z): calcd for $C_{31}H_{45}NO_5$ ($M+H$)⁺: 512.7; found: 512.3.

- 5 B. Separation of enantiomers of [(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid methyl ester.

A racemic mixture of [(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid methyl ester (1.73 g), is chromatographed (HPLC: ChiralPak AD, 0.1% TFA in iPrOH:Hept = 5 : 95) to give enantiomer 1 (0.636 g, 38%, rt = 21.8 m) and enantiomer 2 (0.72 g, 42%, rt = 26.7 m).

(Enantiomer 1)

HPLC: ChiralPak AD, 0.1% TFA in iPrOH:Hept = 5 : 95; 0.6 mL/m (flow rate); rt = 21.8 m; @ 240 nm;

NMR & LC/MS: equivalent to the racemate.

(Enantiomer 2)

HPLC: ChiralPak AD, 0.1% TFA in iPrOH:Hept = 5 : 95; 0.60 mL/m (flow rate); rt = 26.7 m; @ 240 nm;

NMR & LC/MS: equivalent to the racemate

C. Enantiomer 1 of [(4-{1-Ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid.

25

Using a procedure analogous to Example 46B, enantiomer 1 of [(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid methyl ester (0.63 g, 1.24 mmol) gives the title compound (0.58 g, 1.16 mmol, 93%).

30 1H NMR (CDCl₃), δ 0.58-0.65 (m, 6H), 0.98 (s, 9H), 1.36 (d, $J = 6.2$ Hz, 3H), 2.06 (q, $J = 7.1$ Hz, 4H), 2.14 (s, 3H), 2.25 (s, 0.9H), 2.31 (s, 2.1H), 2.93 (s, 3H), 3.16 (bs, 1H), 3.18

-213-

(d, $J = 1.3$ Hz, 1H), 3.95 (s, 1H), 4.35 (s, 1H), 4.59 (q, $J = 6.2$ Hz, 1H), 6.68-7.11 (m, 6H).

ES-MS (m/z): calcd for $C_{30}H_{42}NO_5$ ($M-H^-$): 496.7; found: 496.3.

- 5 D. Enantiomer 2 of [(4-{1-Ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid.

Using a procedure analogous to Example 46B, enantiomer 2 of [(4-{1-ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid methyl ester (0.72 g, 1.41 mmol) gives the title compound (0.64 g, 1.28 mmol, 91%). 1H NMR & ES-MS (m/z): identical to enantiomer 1 of [(4-{1-Ethyl-1-[4-(2-hydroxy-1,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-benzoyl)-methyl-amino]-acetic acid.

15

Example 54

Preparation of 3'-[4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl]-3'-[4-carboxyl-3-methylphenyl]pentane.

- 20 A. 3'-[4-benzyloxy-3-methylphenyl]-3'-[4-methoxycarbonyl-3-methylphenyl]pentane.

Using a procedure analogous to Example 1E, 3'-[4-benzyloxy-3-methylphenyl]-3'-[4-trifluoromethanesulfonyloxy-3-methylphenyl]pentane gives the title compound (30 g, 77%).

- 25 1H NMR 300 MHz (DMSO- d_6): δ 0.54 (t, $J = 6.9$ Hz, 6H), 2.05 (q, $J = 6.9$ Hz, 4H), 2.12 (s, 3H), 2.47 (s, 3H), 3.78 (s, 3H), 5.06 (s, 2H), 6.91 (m, 3H), 7.05 (d, $J = 8.41$ Hz, 1H), 7.11 (s, 1H), 7.29-7.47 (m, 5H), 7.72 (d, $J = 8.05$, 1H)

-214-

B. 3'-[4-benzyloxy-3-methylphenyl]-3'-[4-hydroxymethyl-3-methylphenyl]pentane.

5 Using a procedure analogous to Example 13B, 3'-[4-benzyloxy-3-methylphenyl]-3'-[4-methoxycarbonyl-3-methylphenyl]pentane gives the title compound (6.0 g, quant).

¹H NMR 400 MHz (DMSO-d₆): δ 0.54 (t, J = 7.2 Hz, 6H), 2.02 (q, J = 7.2 Hz, 4H), 2.12 (s, 3H), 2.17 (s, 3H), 4.42 (d, J = 6.0 Hz, 2H), 4.94 (t, J = 5.6 Hz, 1H), 5.05 (s, 2H), 6.87-6.94 (m, 5H), 7.19 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 7.6, 1H), 7.38 (t, J = 7.2 Hz, 2H), 7.44(d, J = 7.2 Hz, 2H)

High Res. FAB-MS: 388.2397; calc. for C₂₇H₃₂O₂: 388.2402.

C. 3'-[4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl]-3'-[4-benzyloxy-3-methylphenyl]pentane.

15 To a 0 °C mixture of 3'-[4-benzyloxy-3-methylphenyl]-3'-[4-hydroxymethyl-3-methylphenyl]pentane (6.0 g, 15.4 mmol) and Et₂O (40 ml) is added PBr₃ (1.6 ml, 17.0 mmol). The reaction is stirred for 2 h and allowed to warm to RT. The reaction is diluted with Et₂O, washed with minimal amount of water, brine, Na₂SO₄ dried, concentrated, and azeotrope to dryness with toluene. The resulting residue is dissolved in THF (4 ml) and cooled to -78 °C to afford the bromide/THF solution. In a separate flask is charged with 1M LiHMDS (31 ml, 30.8 mmol), cooled to -78 C, and added pinacolone (3.9 ml, 30.8 mmol). The reaction is stirred for 1.5 h, warmed to -55 C and transferred (via syringe) to the -78 °C solution of bromide/THF. The reaction is allowed to warm to RT and stirred for 16 h. The reaction is diluted with Et₂O and washed with 1N HCl. The organic layer

-215-

is Na₂SO₄ dried and chromatographed (70% CHCl₃/Hex) to give the title compound (5.2 g, 71%).

¹H NMR 400 MHz (DMSO-d₆): δ 0.48 (t, J = 7.6 Hz, 6H), 0.97 (s, 9H), 1.93 (q, J = 7.2 Hz, 4H), 2.05 (s, 3H), 2.13 (s, 3H), 2.60 (t, J = 8.0 Hz, 2H), 2.69 (t, J = 8.4 Hz, 2H), 4.98 (d, J = 4.4 Hz, 2H), 6.77-6.84 (m, 5H), 6.90 (d, J = 8.0 Hz, 1H), 7.24-7.26 (m, 1H), 7.32 (t, J = 7.2 Hz, 2H), 7.38 (d, J = 7.2 Hz, 2H).

D. 3'-[4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane.

10

JB5-A03275-010-1

Using a procedure analogous to Example 6D, 3'-(4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl)-3'-(4-benzyloxy-3-methylphenyl)pentane gives the title compound (3.1 g,

15 74%).

¹H NMR 400 MHz (DMSO-d₆): δ 0.51 (t, J = 6.8 Hz, 6H), 1.03 (s, 9H), 1.96 (q, J = 7.2 Hz, 4H), 2.03 (s, 3H), 2.19 (s, 3H), 2.66 (t, J = 6.4 Hz, 2H), 2.74 (t, J = 6.4 Hz, 2H), 6.61 (d, J = 8.0 Hz, 1H), 6.73 (dd, J = 2.0 Hz, J = 8.0 Hz, 2H), 6.83-6.86 (m, 2H), 6.95 (d, J = 8.0 Hz, 1H), 8.97 (s, J = 8.0 Hz, 1H).

20

E. 3'-(4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl)-3'-(4-(trifluoromethylsulfonyloxy)-3-methylphenyl)pentane.

25 Using a procedure analogous to Example 1C, 3'-(4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl)-3'-(4-hydroxy-3-methylphenyl)pentane gives the title compound (4.2 g, quant).

-216-

¹H NMR 400 MHz (DMSO-d₆): δ 0.53 (t, J = 7.2 Hz, 6H), 1.03 (s, 9H), 2.05 (q, J = 7.2 Hz, 4H), 2.21 (s, 3H), 2.27 (s, 3H), 2.66 (t, J = 8.4 Hz, 2H), 2.74 (t, J = 8.0 Hz, 2H), 6.84 (dd, J = 1.6 Hz, J = 6.4 Hz, 1H), 6.91 (s, 1H), 7.00 (d, J = 7.6 Hz, 1H), 7.07 (dd, J = 2.0 Hz, J = 6.4 Hz, 1H), 7.21-7.24 (m, 2H).

5 ES-MS: 530.25 (M+NH₄).

F. 3'-[4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl]-3'-[4-(methoxycarboxyl)-3-methylphenyl]pentane.

10

Using a procedure analogous to Example 1E, 3'-[4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl]-3'-[4-(trifluoromethylsulfonyloxy)-3-methylphenyl]pentane gives the title compound as a white foam (2.1 g, 67%).

15 ¹H NMR 400 MHz (DMSO-d₆): δ 0.53 (t, J = 7.2 Hz, 6H), 1.03 (s, 9H), 2.07 (q, J = 7.2 Hz, 4H), 2.20 (s, 3H), 2.46 (s, 3H), 2.69 (t, J = 7.6 Hz, 2H), 2.75 (t, J = 6.4 Hz, 2H), 3.78 (s, 3H), 6.84 (d, J = 8.4 Hz, 1H), 6.88 (s, 1H), 6.98 (d, J = 8.0 Hz, 1H), 7.03 (dd, J = 1.6 Hz, J = 6.8 Hz, 1H), 7.08 (s, 1H), 7.70 (d, J = 8.4 Hz, 1H).

High Res ES(+)MS m/z: 440.3167; calc. for C₂₈H₃₈O₃ + NH₄: 440.3165

20 G. 3'-[4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl]-3'-[4-carboxyl-3-methylphenyl]pentane.

Using a procedure analogous to Example 2, 3'-[4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl]-3'-[4-(methoxycarboxyl)-3-methylphenyl]pentane gives the title compound as a white foam (1.5 g, 97%).

25 ¹H NMR 300 MHz (DMSO-d₆): δ 0.54 (t, J = 7.0 Hz, 6H), 1.03 (s, 9H), 2.07 (q, J = 6.6 Hz, 4H), 2.20 (s, 3H), 2.46 (s, 3H), 2.68 (d, J = 7.0 Hz, 2H), 2.73 (d, J = 5.9, 2H), 6.85-6.90 (m, 2H), 6.99-7.06 (m, 3H), 7.72 (d, J = 8.4 Hz, 1H).

High Res ES(+)MS m/z: 426.3003; calc. for C₂₇H₃₆O₃ + NH₄: 426.3008

30

5

10

Example 55

Preparation of racemic 3'-(4-(3-hydroxy-4,4-dimethylpentyl)-3-methylphenyl]-3'-(4-carboxyl-3-methylphenyl]pentane.

15

Using a procedure analogous to Example 1D, 3'-(4-(3-oxo-4,4-dimethylpentyl)-3-methylphenyl]-3'-(4-carboxyl-3-methylphenyl]pentane gives the title compound as a white foam (1.5 g, quant).

20 ^1H NMR 300 MHz (DMSO- d_6): δ 0.54 (t, $J = 7.3$ Hz, 6H), 0.80 (s, 9H), 1.30-1.36 (m, 1H), 1.58-1.64 (m, 1H), 2.07 (q, $J = 6.9$ Hz, 4H), 2.20 (s, 3H), 2.47 (s, 3H), 2.74-2.82 (m, 1H), 2.99-3.04 (m, 1H), 4.41 (d, $J = 6.2$, 1H), 6.85-6.89 (m, 2H), 7.02-7.08 (m, 3H), 7.72 (d, $J = 8.0$ Hz, 1H),

25 High Res ES(+)MS m/z : 428.3145; calc. for $C_{27}H_{38}O_3 + NH_4$: 428.3165

Compounds Used in the Method of the Invention – Salts, Stereoisomers, & Prodrugs:

Salts of the compounds represented by formulae (I) are an additional aspect of the invention. The skilled artisan will also appreciate that the family of compounds of formulae I include acidic and basic members and that the present invention includes 30 pharmaceutically acceptable salts thereof.

In those instances where the compounds used in the method of the invention possess acidic or basic functional groups various salts may be formed which are more water soluble and physiologically suitable than the parent compound. Representative

-218-

pharmaceutically acceptable salts, include but are not limited to, the alkali and alkaline earth salts such as lithium, sodium, potassium, ammonium, calcium, magnesium, aluminum, zinc, and the like. Salts are conveniently prepared from the free acid by treating the acid in solution with a base or by exposing the acid to an ion exchange resin.

- 5 For example, a carboxylic acid substituent on the compound of Formula I may be selected as -CO₂H and salts may be formed by reaction with appropriate bases (e.g., NaOH, KOH) to yield the corresponding sodium and potassium salt.

Included within the definition of pharmaceutically acceptable salts are the relatively non-toxic, inorganic and organic base addition salts of compounds of the 10 present invention, for example, ammonium, quaternary ammonium, and amine cations, derived from nitrogenous bases of sufficient basicity to form salts with the compounds of this invention (see, for example, S. M. Berge, *et al.*, "Pharmaceutical Salts," *J. Pharm. Sci.*, 66: 1-19 (1977)). Moreover, the basic group(s) of the compound of the invention may be reacted with suitable organic or inorganic acids to form salts such as acetate, 15 benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, camsylate, carbonate, chloride, choline, clavulanate, citrate, chloride, chloroprocaine, choline, diethanolamine, dihydrochloride, diphosphate, edetate, edisylate, estolate, esylate, ethylenediamine, fluoride, fumarate, gluceptate, gluconate, glutamate, glycolylarsanilate, hexylresorcinate, hydrabamine, bromide, chloride, hydrobromide, hydrochloride, 20 hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, maleate, malseate, mandelate, meglumine, mesylate, mesviate, methylbromide, methylnitrate, methylsulfate, mucate, napsylate, nitrate, oleate, oxalate, palmitate, pamoate, pantothenate, phosphate, polygalacturonate, procane, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, teoclolate, tosylate, trifluoroacetate, trifluoromethane 25 sulfonate, and valerate.

Certain compounds of the invention may possess one or more chiral centers and may thus exist in optically active forms. Likewise, when the compounds contain an alkenyl or alkenylene group there exists the possibility of cis- and trans- isomeric forms of the compounds. The R- and S- isomers and mixtures thereof, including racemic mixtures 30 as well as mixtures of cis- and trans- isomers, are contemplated by this invention.

Additional asymmetric carbon atoms can be present in a substituent group such as an alkyl group. All such isomers as well as the mixtures thereof are intended to be included

-219-

in the invention. If a particular stereoisomer is desired, it can be prepared by methods well known in the art by using stereospecific reactions with starting materials which contain the asymmetric centers and are already resolved or, alternatively by methods which lead to mixtures of the stereoisomers and subsequent resolution by known

5 methods. For example, a chiral column may be used such as those sold by Daicel Chemical Industries identified by the trademarks:

CHIRALPAK AD, CHIRALPAK AS, CHIRALPAK OD, CHIRALPAK OJ,
CHIRALPAK OA, CHIRALPAK OB, CHIRALPAK OC, CHIRALPAK OF,
CHIRALPAK OG, CHIRALPAK OK, and

10 CHIRALPAK CA-1.

By another conventional method, a racemic mixture may be reacted with a single enantiomer of some other compound. This changes the racemic form into a mixture of diastereomers. These diastereomers, because they have different melting points, different boiling points, and different solubilities can be separated by conventional means, such as
15 crystallization.

The present invention is also embodied in mixtures of compounds of formulae I .

Prodrugs are derivatives of the compounds of the invention which have chemically or metabolically cleavable groups and become by solvolysis or under physiological conditions the compounds of the invention which are pharmaceutically active in vivo.

20 Derivatives of the compounds of this invention have activity in both their acid and base derivative forms, but the acid derivative form often offers advantages of solubility, tissue compatibility, or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of
25 the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a suitable amine. Simple aliphatic or aromatic esters derived from acidic groups pendent on the compounds of this invention are preferred prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy) alkyl esters or ((alkoxycarbonyl)oxy)alkyl esters. Particularly preferred esters to use as
30 prodrugs are; methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, morpholinoethyl, and N,N-diethylglycolamido.

-220-

N,N-diethylglycolamido ester prodrugs may be prepared by reaction of the sodium salt of a compound of Formula (I) (in a medium such as dimethylformamide) with 2-chloro-N,N-diethylacetamide (available from Aldrich Chemical Co., Milwaukee, Wisconsin USA; Item No.25,099-6).

5 Morpholinylethyl ester prodrugs may be prepared by reaction of the sodium salt of a compound of Formula (I) (in a medium such as dimethylformamide) 4-(2-chloroethyl)morpholine hydrochloride (available from Aldrich Chemical Co., Milwaukee, Wisconsin USA, Item No. C5,220-3).

10 Morpholinylethyl ester prodrugs may be prepared by reaction of the sodium salt of a compound of Formula I (in a medium such as dimethylformamide) 4-(2-chloroethyl)morpholine hydrochloride (available from Aldrich Chemical Co., Milwaukee, Wisconsin USA, Item No. C5,220-3). The prodrugs, for example, may be prepared by reaction of the sodium salt for a compound of Formula I with;

15 and sodium iodide to provide the ester prodrug pendent group

Also, lower alkyl (viz., C₁-C₈) ester prodrugs may be prepared by conventional means such as reacting the sodium or potassium salt (derived by forming the salt of any acidic compound of the invention, viz., reaction of a base such as KOH with an acidic group such as -CO₂H) of a compound of Formula I with an alkyl iodide such as methyl iodide, ethyl iodide, n-propyl iodide, isopropyl iodide. Typical ester prodrug substituents are

or

Pharmaceutical Formulations containing Compounds Used in the Method of the Invention:

5 Pharmaceutical formulations used in the method of the invention are prepared by combining (e.g., mixing) a therapeutically effective amount of the Active Ingredient (e.g., compounds of Formula I) together with a pharmaceutically acceptable carrier or diluent. The present pharmaceutical formulations are prepared by known procedures using well-known and readily available ingredients.

10 In making the compositions used in the method of the present invention, the Active Ingredient will usually be admixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a capsule, sachet, paper or other container. When the carrier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, or can be in the form of tablets, pills, powders, lozenges, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a 15 liquid medium), or ointment, containing, for example, up to 10% by weight of the compound. The compounds of the present invention are preferably formulated prior to administration.

20 The Active Ingredient may also be delivered by suitable formulations contained in a transderm patch. Alternatively, the compounds of the invention may be delivered to a patient by sublingual administration.

25 For the pharmaceutical formulations used in the method of the invention any suitable carrier known in the art can be used. In such a formulation, the carrier may be a solid, liquid, or mixture of a solid and a liquid. Solid form formulations include powders, tablets and capsules. A solid carrier can be one or more substances which may also act as flavoring agents, lubricants, solubilisers, suspending agents, binders, tablet disintegrating agents and encapsulating material.

30 Tablets for oral administration used in the method of the invention may contain suitable excipients such as calcium carbonate, sodium carbonate, lactose, calcium phosphate, together with disintegrating agents, such as maize, starch, or alginic acid, and/or binding agents, for example, gelatin or acacia, and lubricating agents such as magnesium stearate, stearic acid, or talc.

-222-

In powders the carrier is a finely divided solid which is in admixture with the finely divided Active ingredient. In tablets the compound of Formula I is mixed with a carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain from about 1 to 5 about 99 weight percent of the compound which is the novel compound of this invention. Suitable solid carriers are magnesium carbonate, magnesium stearate, talc, sugar lactose, pectin, dextrin, starch, gelatin, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, low melting waxes, and cocoa butter.

10 Sterile liquid form formulations include suspensions, emulsions, syrups and elixirs.

The compounds of the invention may be dissolved or suspended in a pharmaceutically acceptable carrier, such as sterile water, sterile organic solvent or a mixture of both. The compounds can often be dissolved in a suitable organic solvent, for instance aqueous propylene glycol. Other compositions can be made by dispersing the 15 finely divided compounds of the invention in aqueous starch or sodium carboxymethyl cellulose solution or in a suitable oil.

Methods of Using Compounds in the Method of the Invention:

The specific dose of a compound administered according to this invention to 20 obtain therapeutic or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration and the condition being treated. Typical daily doses will contain a pharmaceutically effective amount typically in the range of from about 0.0001 mg/kg/day to about 50 mg/kg/day of body weight of an active compound 25 of this invention. Preferably the dose of compounds of the invention will be from 0.0001 to 5 mg/kg/day of body weight.

30 Preferably compounds used in the method of the invention (e.g., per Formula I) or pharmaceutical formulations containing these compounds are in unit dosage form for administration to a mammal. The unit dosage form can be a capsule or tablet itself, or the appropriate number of any of these. The quantity of Active ingredient in a unit dose of composition may be varied or adjusted from about 0.0001 to about 1000 milligrams or more according to the particular treatment involved. It may be

-223-

appreciated that it is necessary to make routine variations to the dosage depending on the age and condition of the patient. Dosage will also depend on the route of administration. The compounds of the invention may be administered by a variety of routes including oral, aerosol, rectal, transdermal, sublingual, subcutaneous, 5 intravenous, intramuscular, and intranasal. Particularly preferred is the treatment of psoriasis with an ointment type formulation containing the compounds of the invention. The ointment formulation may be applied as needed, typically from one to 6 times daily.

Ointment Formulation for Prevention or Treatment Vesicant Damage:

10 Treatment of skin damage from vesicants or as a preventative for damage is preferably done with topical application by a formulation in the form of a cream, oil, emulsion, paste or ointment containing a therapeutically effective amount of a compound defined by Formula (I), and in particular those compounds set out in Tables 1 or 2 or those compounds identified as "AA" to "BQ", supra. The formulation for 15 topical treatment contains from 0.5 to 0.00005 weight percent, preferably from .05 to 0.0005 weight percent, and most preferably from 0.025 to 0.001 of a compound defined by formula (I).

For example, two semisolid topical preparations useful as vehicles for VDR modulators in treatment and prevention of psoriasis are as follows:

20 Polyethylene Glycol Ointment USP (p. 2495)

Prepare Polyethylene Glycol Ointment as follows:

Polyethylene Glycol 3350 400 g.

Polyethylene Glycol 400 600 g.

To make 1000 g.

25 Heat the two ingredients on a water bath to 65C. Allow to cool, and stir until congealed. If a firmer preparation is desired, replace up to 100 g of the polyethylene glycol 400 with an equal amount of polyethylene glycol 3350.

Hydrophilic Ointment USP (p. 1216)

30 Prepare Hydrophilic Ointment as follows:

Methylparaben 0.25 g.

Propylparaben 0.15 g.

-224-

	Sodium Lauryl Sulfate	10 g.
	Propylene Glycol	120 g.
	Stearyl Alcohol	250 g.
	White Petrolatum	250 g.
5	Purified Water	<u>370 g.</u>
	To make about	1000 g.

The Stearyl Alcohol and White Petrolatum are melted on a steam bath, and warmed to about 75C. The other ingredients, previously dissolved in the water are added, warmed to 75C, and the mixture stirred until it congeals.

10 For each of the above formulations the compound of formula (I) - Active Ingredient - is added during the heating step in an amount that is from 0.5 to 0.00005 weight percent, preferably from .05 to 0.0005 weight percent, and most preferably from 0.025 to 0.001 weight percent of the total ointment weight. (Source: - United States Pharmacopoeia 24, United States Pharmacopeial Convention, 1999).

15 Combination Therapy for Vesicant Damage:

Therapy for vesicants may, in addition to Active Ingredient, optionally include topical steroids; for example, betamethasone dipropionate, betamethasone valerate, clobetasol propionate, desonide, desoximetasone, dexamethasone, dexamethasone sodium phosphate, diflorasone diacetate, fluocinonide, flurandrenolide, fluticasone propionate, 20 halcinonide, hydrocortisone, hydrocortisone acetate, hydrocortisone butyrate, hydrocortisone valerate, mometasone furoate, and triamcinolone acetonide.

A combination of (i) Active Ingredient, and (ii) a topical steroid may be used for treatment or prevention of vesicant damage.

25 Experimental Results:

Table 3
Summary of Experimental Results

Test Cmpd. ¹	RXR-VDR heterodimer ² EC ₅₀ (nM)	VDR EC ₅₀ (nM) (Caco-2 cells) ³	OCN Promoter ⁴ EC ₅₀ (nM)	Mouse Hypercal ⁵ μg/Kg/d

-225-

Ex. 1			21	
Ex. 3A	149/51	1261	15/18	1000
Ex. 3B	396/292	2869	57/83	3000
Ex. 4A			3	
Ex. 4B			15	
Ex. 5		3000	42	100
Ex. 6	20/1	300	0.3	10
Ex. 7		63	4	
Ex. 8	1	35	4/1	100
Ex. 9	4	4	7/6	
Ex. 10Da	218/25	538	8/46	
Ex. 10Db	86	935	15	
Ex. 11	186	1011	7	3000
Ex. 12	562/206	1261	20/25	4000
Ex. 12a	67	651	1	300
Ex. 12b	335/55	960	13/23	300
Ex. 13	22/30	1009	89/167	3000
Ex. 14			306	3000
Ex. 15A	229/17	662	35/43	1500
Ex. 15B			163	
Ex. 16			35	>5000
Ex. 17	275/101	990	56/15	>3000
Ex. 18	38/4	430	1/3	1000

-226-

Ex. 19	96/12	613	12/16	2000
Ex. 20B	9/3	101	0.8/0.2	300
Ex. 21	226/77	935	8/27	6000
Ex. 22	80/23	467	7/3	1000
Ex. 23	283/230	805	13/40	3000
Ex. 24	3	368	0.2	
Ex. 25A	8/2	340	0.4	<300
Ex. 25B	83/25	982	2/3	1000
Ex. 26	6/67	651	1	300
Ex. 27	335/55	960	13/23	300
Ex. 28	171/337	72	106/84	
Ex. 29	93/60	958	2/11	3000
Ex. 30	101/48	698	1/3	1000
Ex. 31	19/33	410	1	3000
Ex. 32	89/9	345	4/1	1000
Ex. 33	1/55	418	3/1	<300
Ex. 34	15/5	303	9/1	<300
Ex. 35			27	
Ex. 36	242/293	698	135/37	>300
Ex. 37	60	698	12	1000
Ex. 38	266/137	863	41	
Ex. 39	302/204	979	74/61	
Ex. 40	138	694	70	

-227-

Ex. 41	523		421	
Ex. 42	56/316	1227	98/19	
Ex. 44	0.4		0.1	<300
Ex. 45	2		0.7	300
Ex. 46	6	400	2/3	3000
Ex. 47	59	816	22/6	3000
Ex. 48	44	433	9/4	<1000
Ex. 49	92	859	14/40	
Ex. 50	10	83	0.2	300
Ex. 51	4		1.4	300
Ex. 52	81	813	4	>3000
Ex. 53	236/210		12/34	>3000
Ex. 54	396		119	>3000
Ex. 55	9	920	6	
AA	5.02	16	5	0.06
BB	10.32	169.81	8.24	20
CC	2427.7		>1000	
DD	109.44		31.1	1000
EE	429.99	891.16	341.25	1000
FF	3	57		

Table 4
Summary of Experimental Results

Test Cmpd. ¹	Kera. Prolif. IC ₅₀ (nM)	IL-10. IC ₅₀ (nM)

-228-

Ex. 1		
Ex. 3A		
Ex. 3B		
Ex. 4A		
Ex. 4B		
Ex. 5	375	
Ex. 6	2	55
Ex. 7	18	
Ex. 8	330	
Ex. 9	985	
Ex. 10Da	1000	
Ex. 10Db	1000	
Ex. 11	308	478
Ex. 12		
Ex. 12a	4	52
Ex. 12b		
Ex. 13		
Ex. 14		
Ex. 15A	117	
Ex. 15B		
Ex. 16		
Ex. 17	1000	
Ex. 18	1000	47

-229-

Ex. 19	82	142
Ex. 20B	3	4
Ex. 21	223	1050
Ex. 22	4	39
Ex. 23	40	27
Ex. 24		
Ex. 25A	1105	40
Ex. 25B	26	158
Ex. 26	4	52
Ex. 27		
Ex. 28	240	
Ex. 29	49	153
Ex. 30	20	123
Ex. 31	21	295
Ex. 32	1000	106
Ex. 33	6	19
Ex. 34	25	45
Ex. 35	40	
Ex. 36	139	
Ex. 37	55	229
Ex. 38		
Ex. 39	508	
Ex. 40	1000	

-230-

Ex. 41		
Ex. 42	50	
Ex. 44	28	6
Ex. 45	32	15
Ex. 46	21	33
Ex. 47	1000	
Ex. 48	1000	
Ex. 49	1000	
Ex. 50	3	4
Ex. 51	26	19
Ex. 52	52	154
Ex. 53	224	
Ex. 54		
Ex. 55		
AA	120	1.2
BB	10	28
CC		
DD	1060	
EE		
FF	103	0.5

Explanation of Table 5 and 6 column numerical superscripts:

1. Test Compound numbers refer to the products of the corresponding Example Nos. that is, compounds within the scope of the invention. For example, the number "Ex. 2" refers to the compound, 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-

-231-

methoxycarbonyl-4-methylthiophen-2-yl]pentane, prepared in Example 2. The control experiments are done with the double letter coded compounds identified as follows:

“AA” = 1 α ,25-dihydroxyvitamin D₃

“BB” = 3-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-

5 propyl}-2-methyl-phenoxy)-propane-1,2-diol

“CC” = 1-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-cyclohexyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-one

“DD” = compound represented by the formula:

10

“EE” = compound represented by the formula:

15

“FF” = calcipotriol (structural formula below):

2. The RXR-VDR heterodimerization (SaOS-2 cells) test is described in the

“Assay” section of the Description, infra.

3. The VDR CTF (Caco-2 cells) test is described in the “Assay” section of the

20 Description, infra.

4. The OCN Promoter test is described in the “Assay” section of the Description, infra.

-232-

5. The Mouse Hypercalcemia test is described in the "Assay" section of the Description, infra.

6. The keratinocyte proliferation assay is described in the "Assay" section of the Description, infra.

5 7. The IL-10 induction assay is described in the "Assay" section of the Description, infra.

Assay Methods

Use of the Assay Methods:

10 The evaluation of the novel compounds of the invention for osteoporosis and other related diseases is done using a plurality of test results. The use of multiple assays is necessary since the combined properties of (i) high activity for the vitamin D receptor, and (ii) prevention of hypercalcemia must be achieved to have utility for the methods of treating diseases, which are also, aspects of this invention. Some of the tests described
15 below are believed related to other tests and measure related properties of compounds. Consequently, a compound may be considered to have utility in the practice of the invention if it meets most, if not all, of the acceptance criteria for the above described tests.

20 The evaluation of the novel compounds of the invention for psoriasis is done using the Keratinocyte Proliferation Assay in combination with other assays that measure inhibition of IL-2 production and stimulation of IL-10 production in peripheral blood mononuclear cells (PBMCs).

Brief Description, Utility and Acceptance Criteria for the Assay Methods:

25 1. The RXR-VDR heterodimer Assay:

This assay provides the VDR activity of a test compound. It is desirable to have low EC₅₀ values for a compound in this assay. The lower the EC₅₀ value, the more active the compound will be as a VDR agonist. Desired assay results are EC₅₀ values less than or equal to 600 nM. Preferred assay results are less than
30 250 nM, and most preferably less than 150 nM.

2. The Caco-2 cell Co-transfection Assay:

-233-

The Caco-2 cell assay is an indicator for the undesirable condition of hypercalcemia. This co-transfection assay is a surrogate assay for in vivo calcemic activity of VDR ligands. It is desirable to have high EC50 values for a test compound in this assay. The higher the EC50 values for a compound the less calcemic it will be
5 in vivo. Desired assay results are EC50 greater than or equal to 300 nM. Preferred assay results are greater than 1000 nM.

3. The OCN (osteocalcin) Promoter Assay

The OCN Promoter Assay is an indicator and marker for osteoporosis.
10 Desired assay results are EC50 less than or equal to 325 nM. Preferred assay results are less than 50 nM.

15 4. The Mouse Hypercalcemia Assay

The Mouse Hypercalcemia Assay is a six day hypercalcemia test for toxicity and selectivity. Acceptable test results are levels greater than 300 µg/kg/day. Preferred assay results are levels greater than 1000 µg/kg/day.

20 5. The Keratinocyte Proliferation Assay

This Assay is indicative for the treatment of psoriasis. An acceptable test result is IC50 value of less than or equal to 300 nM. Preferred assay results are IC50 values of less than 100 nM.

25 6. The IL-10 induction Assay

This is an in vitro efficacy assay for psoriasis, abscess and adhesion. Psoriasis involves both keratinocytes and immune cells. IL-10 is a unique cytokine because it is anti-inflammatory and immunosuppressive. This assay tells us whether a VDRM is able to function as an agonist in PBMCs (primary blood mononuclear cells) or not. A lower
30 EC50 value is desirable in this assay since a compound with a lower EC50 value will be a better agonist in PBMCs. An acceptable test result is an EC50 value of less than 200 nM. Preferred assay results are EC50 values of less than 100 nM.

-234-

7. Other Compound Assay Standards

An alternative measure of the therapeutic index (bone efficacy vs. Hypervcalcemia) of compounds of the invention for treatment of osteoporosis is a numerical ratio

5 calculated as follows:

Dose Threshold needed to induce hypercalcemia

divided by

Dose Threshold needed for bone efficacy

10 An alternative measure of the therapeutic index (in vivo keratinocyte proliferation vs. hypercalcemia) of compounds of the invention for treatment of psoriasis is a numerical ratio calculated as follows:

15 **Dose Threshold needed to induce hypercalcemia**
 divided by

Dose Threshold needed to induce keratinocyte proliferation

For the above ratios, Dose Thresholds are determined from dose response curve data.

20 Details of the Assay Methods:

(1) Materials and Method for RXR-VDR Heterodimerization Assay:

Transfection Method:

- FuGENE 6 Transfection Reagent (Roche Cat # 1 814 443)

Growth Media:

25 • D-MEM High Glucose (Gibco BRL Cat # 11054-020), 10% FBS, 1% antibiotic-antimycotic (Ab-Am)

FBS heat inactivated (Gibco BRL Cat # 10092-147)

Ab-Am (Gibco BRL Cat # 15240-062)

Cells:

30 • Grow SaOs-2 cells in T-152 cm² culture flasks in *growth media*.

- Keep the density at 5-6 x 10⁵ cells/ml

- Passage cells 1:3 twice a week

-235-

- Add Trypsin EDTA (Gibco BRL Cat # 25300-020) and incubate
- Resuspend cells in plating media and transfer into growth media.

Wash Media:

- HBSS Low Glucose Without Phenol Red (Gibco BRL Cat # 14175-095), 1% Ab-Am

5 Plating Media:

- D-MEM Low Glucose Without Phenol Red (Gibco BRL Cat # 11054-020), 1% Ab-Am

D-MEM

Stripped FBS (Hyclone Cat# SH30068.03 Lot # AHM9371)

Ab-Am

10 Transfection / Treatment Media:

- D-MEM Low Glucose Without Phenol Red only

T-152 cm² culture flask:

- Use Corning Coastar T-152 cm² culture flask (Cat # 430825) to grow the cells

Flat well Plates:

15 • Use well plate to plate cells

- Use Deep well plate sterile to make up treatment media.

Luciferase Assay Reagent:

- Use Steady-Glo Luciferase Reagent from Promega (Cat # E2550) Consists of:

20 a. E2533 Assay Substrate, lyophilized product and

- b. E2543 Assay Buffer.

- Thaw at room temperature

- Store

DAY 1: Cell Plating:

25 Cell Harvesting

Aspirate media from culture flask, rinse cells with HBSS and aspirate.

Add trypsin and incubate.

When cells appear detached, resuspend cells in *growth media*.

Transfer into a new flask with fresh *growth media* for passaging the cells.

30 Plate well plates and two extra plates

D. Cell Count

Mix the cell suspension using pipette

-236-

Use *Hematocytometer* to count the cells

Load cell suspension onto the hemocytometer chamber

Count cells.

Plate seeding:

- 5 Use plating media 10 % Stripped FBS in D-MEM Low Glucose, Without Phenol Red, 1% Ab-Am

Plate 14 plates @ 165 µl / well.

In sterile flask add cell suspension
to *plating media*.

- 10 Mix .

Add cells / well.

Place the cells in the incubator.

Cells should be about 75 % confluent prior to transfection.

- 15 Step 1: DNA and Media

Add plain DMEM media to tubes for mixing the DNA

Add the Reporter gene pFR-LUC

Add the Gal4-RXR-DEF and VP16-VDR-LBD

- 20 Step 2: FuGENE and Media

Prepare plain DMEM media in a tubes for mixing FuGENE

Add *FuGENE 6 Transfection Reagent*

Incubate

- 25 Step 3: FuGENE , DNA and Media Complex

Add FuGENE Media complex from step 2 to DNA Media complex from step1

Incubate

Step 4: FuGENE , DNA and Media Complex to-well plate

- 30 Add FuGENE-DNA-Media complex from step 3 to each plate

Incubate.

-237-

Day 3: Dosing
Treatment preparation

Allow for transfection time

- 5 Make a stock solution of the compounds in DMSO
Vortex until all the compounds has been dissolved.
Further dilute in D-MEM (Low Glucose – With out Phenol Red)
Add compounds in quadruplicate to give final volume
Incubate.

10 Day 4: Luciferase Assay

- Read the plates after drug treatment
Remove part of media from all the wells and leave remainder
Add Steady-Glo Luciferase Reagent mixture / wells
Incubate
- 15 Count each well using a Luminescence counter, Top Count NXT by Packard
Set a delay between plates to reduce the background.

(2) Materials and Method for The Caco-2 Cell Assay:

- Caco-2 cells, grown in phenol red free, DMEM (Invitrogen, Carlsbad, CA)
20 containing 10 % charcoal-stripped FCS (Hyclone, Logan, UT), were transfected
with Fugene 6 reagent (Roche Diagnostics, Indianapolis, IN). Cells (5000/well)
were plated 18 h before transfection in a 96 well plate. The Cells were transfected
with Gal4-responsive reporter pFRLuc (150 ng, Stratagene, La Jolla CA) and the
receptor expression vector pGal4-VDR-LBD (10 ng), along with Fugene 6
25 reagent (0.2 μ l/well). The DNA-Fugene complex was formed by incubating the
mixture for 30 min at room temperature. The cells were transfected in triplicate
for 5 h, and treated with various concentrations of VDR ligands (form 0.01 nM to
10,000 nM concentration range) 18h post-transfection. The luciferase activity
was quantified using Steady-Glo reagent kit (Promega, Madison, WI) as per
30 manufacturer's specifications.

(3) Materials and Method for The OCN Promoter Assay:

The activation of osteocalcin by VDR ligands was evaluated in a rat osteoblast-like cell line RG-15 (ROS 17/2.8) stably expressing rat osteocalcin promoter fused with luciferase reporter gene. The stable cell lines were established as reported before (Activation of Osteocalcin Transcription involves interaction of protein kinase A- and Protein kinase C-dependent pathways. Boguslawski, G., Hale, L. V., Yu, X.-P., Miles, R. R., Onyia, J. E., Santerre R. F., Chandrasekhar, S. J Biol. Chem. 275, 999-1006, 2000). Confluent RG-15 cells maintained in DMEM/F-12 medium (3:1) containing 5% FBS, 300 µg/ml G418 and at 37°C under 5% CO₂/95% air atmosphere were trypsinized (0.25% trypsin) and plated into white opaque 96-well cell culture plates (25000 cells/well). After 24 hr, cells (in DMEM/F-12 medium + 2% FBS) were treated with various concentrations of compounds, dissolved in DMSO. The final DMSO concentration remained at 0.01% (v/v). After 48 hr treatment, the medium was removed, cells were lysed with 50 µl of lysis buffer (From Luciferase reporter assay system, Roche Diagnostics, Indianapolis, IN) and assayed for luciferase activity using the Luciferase Reporter Gene Assay kit from Boehringer Mannheim as per manufacturer's specifications.

20 (4) Materials and Method for The Mouse Hypercalcemia Assay:

Weanling, virus -antibody-free, five to six weeks old female DBF mice (Harlan, Indianapolis, IN) are used for all the studies. Animals are allowed to acclimate to local vivarium conditions for 2 days. Mice are maintained on a 12 hr light/dark cycle at 22°C with ad lib access to food (TD 5001 with 1.2% Ca and 0.9%P, Teklad, Madison, WI) and water. The animals then are divided into groups with 4-5 mice per group. Different doses of test compounds prepared in 10% Ethanol and 90% sesame oil are administered to mice orally via gavage for 6 days. 1α-25(OH)₂D₃ 0.5µg/kg/d was also given to one group of mice as the positive control. Serum ionized calcium is evaluated at 6 hours after the last dosing under isoflurane anesthesia by Ciba-Corning Ca++/PH Analyzer, (Model 634, Chiron Diagnostics Corp., East Walpole, MA). Raw data of group differences is assessed by analysis of variance (ANOVA) using Fisher's protected least significant difference (PLSD) where the significance level was P< 0.05.

(5) The Keratinocyte Proliferation Assay:

KERtr cells (Human skin keratinocyte transformed with a retrovirus vector, obtained from ATCC) were plated in 96-well flat-bottomed plates (3000 cells/well) in 100

5 µl keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF (Life Technologies, Rockville, MD) and incubated at 37°C for two days.

The cells were treated with various concentrations of VDR ligands (ten-fold serial dilution from 10,000 nM to 0.1 nM in triplicate), dissolved in 100 µl keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF and

10 incubated at 37°C for 72hr. BrdU (5-bromo-2'-deoxyuridine) incorporation was analyzed as a measure of DNA replication (Cell proliferation ELISA kit, Roche Diagnostics, Indianapolis, IN) and absorbance was measured at 405 nm. Potency values (IC₅₀) values were determined as the concentration (nM) of compound that elicited a half-maximal response.

15

(6) Materials and Method for human IL-10 Induction Assay:

Isolation of peripheral blood mononuclear cells (PBMCs):

A. Collect 50 ml of human blood and dilute with media, RPMI-1640.

B. Prepare sterile tubes with ficol.

20 C. Add diluted blood to tubes.

D. Centrifuge.

E. Discard the top layer and collect the cells from middle layer.

F. Divide all cells into four tubes and add media.

G. Centrifuge.

25 H. Aspirate off media and resuspend.

I. Collect all cells

J. Centrifuge. at 1200 rpm for 10 minutes.

K. Resuspend in RPMI-1640 with 2% FBS and count cells

Stimulation of PBMC:

30 L. Prepare TPA in DMSO.

M. Dissolve PHA in water .

N. Plate TPA/PHA treated PBMCs in well plates.

-240-

O. Incubate.

Treatment:

P. Prepare all compound dilutions in plain RPMI- 1640 media.

Q. Add diluted compound.

5 R. Incubate.

Sample Collection and assay:

S. Remove all the cells by centrifugation and assay the supernatant for IL-10 by immunoassay.

- 10 1) T. Perform IL-10 assay using anti-human IL-10 antibody coated beads, as described by the manufacturer (Linco Research Inc., St. Charles, MO).