Online Computation and Competitive Analysis

Allan Borodin

Ran El-Yaniv

University of Toronto

Technion - Israel Institute of Technology

Contents

Pre	face		page xiii
1		oduction to Competitive Analysis: The List Accessing	1
	1.1	Basic Ideas and Terminology	1
	1.2	The List Accessing Problem	4
	1.3	The Sleator-Tarjan Result	6
	1.4	The Potential Function Method	9
	1.5	Some Lower Bounds	10
	1.6	The List Factoring Technique	13
	1.7	Historical Notes and Open Questions	19
2	Introduction to Randomized Algorithms: The List Accessing Problem		23
	2.1	The Competitive Ratio of Randomized Algorithms	23
	2.2	Algorithm BIT	24
	2.3	Algorithm RMTF: Barely Random Versus Random	26
	2.4	List Factoring-Phase Partitioning Revisited	27
	2.5	COMB: An $\frac{8}{5}$ -Competitive Algorithm	29
	2.6	Historical Notes and Open Questions	29
3	Pagi	ng: Deterministic Algorithms	32
	3.1	Some Paging Algorithms	33
	3.2	The (h, k) -Paging Problem	34
	3.3	List Accessing Algorithms as Paging Algorithms	35
	3.4	LFD - An Optimal Offline Paging Algorithm	35
	3.5	Marking and Conservative Algorithms and the Competitiveness of LRU, CLOCK, FIFO, and FWF	36
	3.6	LIFO and LFU Are Not Competitive	39
	3.7	The Full Access Cost Model	40

	3.8	Theory Versus Practice	41
	3.9	Historical Notes and Open Questions	42
4	Pagi	ing: Randomized Algorithms	44
	4.1	Randomized Competitive Analysis	44
	4.2	The Competitiveness of RANDOM	46
	4.3	The MARK Algorithm	49
	4.4	A Lower Bound for Randomized Paging Algorithms	51
	4.5	Historical Notes and Open Questions	52
5	Alte	rnative Paging Models: Beyond Pure Competitive Analysis	54
	5.1	The Access Graph Model	54
	5.2	Dynamic Access Graphs and Experimental Studies	65
	5.3	Distributional Paging Models	68
	5.4	Historical Notes and Open Questions	75
6	Gan	ne Theoretic Foundations	78
	6.1	Games in Extensive and Strategic Forms	78
	6.2	Randomized Strategies: Mixed, Behavioral, and General	83
	6.3	Equivalence Theorems for Linear Games and Games of Perfect Recall	89
	6.4	An Application to Paging and Competitive Analysis	93
	6.5	Historical Notes and Open Questions	95
7	Req	uest-Answer Games	98
	7.1	Request-Answer Games	98
	7.2	Randomized Adversaries	102
	7.3	Relating the Adversaries	104
	7.4	Historical Notes and Open Questions	107
8	Con	npetitive Analysis and Zero-Sum Games	109
	8.1	Two-Person Zero-Sum Games	109
	8.2	On Generalizations of the Minimax Theorem for Infinite Games	114
	8.3	Yao's Principle: A Technique for Obtaining Lower Bounds	115
	8.4	Paging Revisited	120
	8.5	Historical Notes	122
9	Met	rical Task Systems	123
	9.1	Formulation of (Metrical) Task Systems	123
	9.2	An $8(N-1)$ -Competitive Traversal Algorithm	127
	9.3	A $2N - 1$ Lower Bound	128

	CO	NT	ENT	S
--	----	----	-----	---

ix

	9.4	An Optimal Work Function MTS Algorithm	131
	9.5	A Randomized Algorithm for a Uniform MTS	134
	9.6	A Randomized Polylogarithmic Competitive Algorithm for	
		Any MTS	135
	9.7	Historical Notes and Open Questions	146
10	The I	k-Server Problem	150
	10.1	The Formulation of the Model	150
	10.2	Some Basic Aspects of the k-Server Problem	151
	10.3	A Deterministic Lower Bound	153
	10.4	k-Servers on a Line and a Tree	155
	10.5	An Efficient 3-Competitive 2-Server Algorithm for Euclidean Spaces	159
	10.6	Balancing Algorithms	161
	10.7	The k-Server Work Function Algorithm	164
	10.8	On Generalizations of the k-Server Conjecture That Fail	175
	10.9	Historical Notes and Open Questions	178
11	Ranc	lomized k-Server Algorithms	182
	11.1	Oblivious Adversaries and Two Randomized <i>k</i> -Server Algorithms for the Circle	182
	11.2	A Lower Bound Against an Adaptive-Online Adversary	185
	11.3	The Cat and Rat Game and Applications to Randomized <i>k</i> -Server Algorithms	186
	11.4	The Harmonic Random Walk	191
	11.5	The HARMONIC k-Server Algorithm on an Arbitrary Metric Space	192
	11.6	The Resistive Approach	196
	11.7	Historical Notes and Open Questions	199
10		•	
12		Balancing	201
	12.1	Defining the Problem	201
	12.2	Online Algorithms for Load Balancing of Permanent Jobs	204
	12.3	Formulating the Machine Assignment Problem as a Generalized Virtual Circuit Routing Problem	210
	12.4	Load Balancing of Temporary Jobs	213
	12.5	Bin Packing	218
	12.6	Historical Notes and Open Questions	222
13	Call	Admission and Circuit Routing	226
	13.1	Specifying the Problem	226

X CONTENTS

C		Harmonic Random Walk and Its Connection to	361
В	Stock	nastic Analyses for List Accessing Algorithms	357
A	Gloss	sary	355
	15.9	Historical Notes and Open Questions	348
	15.8	Bayesian Approaches for Decision Making Under Uncertainty	346
	15.7	Decision Making Under Risk	339
	15.6	An Example – The Leasing Problem	335
	15.5	Characterizations of the Classical Criteria for Strict Uncertainty	333
	15.4	Characterization of the Competitive Ratio	325
	15.3	The Competitive Ratio Axioms	321
	15.2	Decision Making Under Strict Uncertainty	315
	15.1	Certainty, Risk, and Strict Uncertainty	312
15	On D	Decision Theories and the Competitive Ratio	312
	14.6	Historical Notes and Open Questions	307
	14.5	Weighted Portfolio Selection Algorithms	290
	14.4	Two-Way Trading and the Fixed Fluctuation Model	281
	14.3	Two-Way Trading: Statistical Adversaries and "Money Making" Algorithms	277
	14.2	Online Portfolio Selection	273
	14.1	Online Search and One-Way Trading	264
14	Searc	ch, Trading, and Portfolio Selection	264
	13.10	Historical Notes and Open Problems	260
	13.9	A Lower Bound for Path Coloring on the Brick Wall Graph	259
	13.8	Path Coloring for Particular Networks	253
	13.7	Network Routing on Optical Networks	245 250
	13.6	The Disjoint Paths Problem: A Lower Bound for a Difficult	
	13.5	Call Admission for Particular Networks: The Disjoint Paths Problem	237
	13.4	Experimental Results	234
	13.3	Throughput Maximization for Limited Duration Calls	232
	13.2	Throughput Maximization for Permanent Calls in Networks with Large Edge Capacities	227

CONTENTS	xi

D	-	of of Lemmas 5.4 and 5.5 in Theorem 5.11: FAR Is a formly Optimal Online Paging Algorithm	364
	D.1	Proof of Lemma 5.4: Type 1 Reps and the Construction of T'	364
	D.2	Proof of Lemma 5.5: Type 2 Reps and the Construction of H	365
E	Son	ne Tools from Renewal Theory	369
	E.1	Renewal Processes	369
	E.2	Wald's Equation	370
	E.3	The Elementary Renewal Theorem	373
F	Pro	of of Theorem 13.14: Disjoint Paths in an Array	375
	F.1	Short Distance Calls	375
	F.2	Long Distance Calls	376
G	Son	ne Tools from the Theory of Types	379
H	Two	Technical Lemmas	382
Bib	liogra _l	phy	389
Inde	ex		403