Continuous Random Variables

- Probability **Density** functions instead of PMFs
- Mean, Variance
- Cumulative Distribution Functions (CDF)

PDF

PDF tells you relative likelihood in different neighborhoods. If you just try to find the pdf at a single point, it is 0. It needs to sum over some region. That is because in a map of the PDF, these are densities. They need to be multiplied by the width of the summing region (integrated).

```
Pr(x < X \le x+d_alpha) = f_x(x) * d_alpha
```

PDFs are values >= 0 (because they are density, obviously).

When you sum PMF, it is 1. The PDF needs to integrate to 1. PDF does not need to be <=1!! Because we're looking at total area under the curve, not the individual values.

Example:

Verify that the integral sum is 1.

(it is)

Expected Value

That makes this the weighted average, because for every possible value you're multiplying the value by its weight

Example

What is the expected value of the previous example?

(1/3)

Example: Uniform PDF

f(x) is a box from -1/2 to 1/2

```
f_x(x) = {
    1 | -1/2 <= x <= 1/2
    0 | e/w
}</pre>
```

E(x) of it?

0, by symmetry.

Variance

Remember, if you know PMF, then Expected value is still obtained by using PMF and you plug in the function

```
Discrete : E[g(\mathbf{x})] = SUM(\mathbf{x}, g(\mathbf{x}) * P_x(\mathbf{x}))

Continuous : E[g(\mathbf{x})] = Integral(-inf, inf, g(\mathbf{x}) * f_x(\mathbf{x}) dx)

Variance = E(X^2) - E(X)^2
```

Just like in discrete, that's good.

Example: variance of same example

Second term drops out because it is 0. First term, calculates to (1/12)

wat

```
Y = sigma * X + mu
```

sigma dilates the distribution, but a dilation means shorter mu shifts distribution so that E(x) now = mu

```
Pr(y <= Y <= y+dy) = f_y(y) dy

= Pr(y <= sigma * X + mu <= y + dy)
= Pr((y-mu)/sigma <= X <= (y-mu)/sigma + dy/sigma)
= f_x((y-mu)/sigma) * dy/sigma

d_y(y)=1/sigma * f_x((y-mu)/sigma)</pre>
```