Задачи к семинару №2

- 1. Пусть $Y_i, i=1,...,n$ являются независимыми одинаково распределенными случайными величинами с $E(Y_i)=\mu_{\scriptscriptstyle Y}$. Покажите, что выборочное среднее \overline{Y} является МНК оценкой генерального среднего.
- 2. Пусть Y_i , $i=1,\ldots,n$ являются независимыми одинаково распределенными случайными величинами с $E(Y_i)=\mu_Y$. Покажите, что выборочное среднее \overline{Y} является несмещенной и состоятельной оценкой генерального среднего. Найдите дисперсию этой оценки. Покажите, что медиана является несмещенной оценкой генерального среднего. Какая из двух оценок генерального среднего эффективнее? Покажите, что выборочная дисперсия является несмещенной оценкой σ^2 .
- 3. Пусть Y_i , i=1,...,n являются независимыми одинаково распределенными случайными величинами с $E(Y_i) = \mu_{\scriptscriptstyle Y}$. Пусть n четное. Рассмотрим три оценки математического ожидания:

$$\begin{split} \hat{\mu}_Y &= \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i \\ \bar{\mu}_Y &= Y_1 \\ \bar{\bar{\mu}}_Y &= \frac{1}{n} \Big(\frac{1}{2} Y_1 + \frac{3}{2} Y_2 + \frac{1}{2} Y_3 + \frac{3}{2} Y_4 + \dots + \frac{1}{2} Y_{n-1} + \frac{3}{2} Y_n \Big) \\ \text{Являются ли эти оценки несмещенными? Какая из них наиболее эффективна?} \end{split}$$

- 4. (СУ, Упр. 3.2) Пусть Y случайная величина Бернулли с вероятностью успеха Pr(Y=1)=p, и пусть случайные Y_1,\ldots,Y_n есть i.i.d. из этого распределения. Пусть \hat{p} доля успехов (т.е. число единиц) в этой выборке.
 - а. Покажите, что $\hat{p} = \overline{Y}$.
 - б. Покажите, что \hat{p} является несмещенной оценкой p.
 - в. Покажите, что $var(\hat{p}) = p(1-p)/n$.
- 5. (Ньюболд и др., Упр.7.7) Пусть X_1 и X_2 случайная выборка из генеральной совокупности с математическим ожиданием, равным m, и дисперсией, равной s^2 . Рассмотрим три точечные оценки (X,Y,Z) математического ожидания m:

$$X = \frac{1}{2}X_1 + \frac{1}{2}X_2$$

$$Y = \frac{1}{4}X_1 + \frac{3}{4}X_2$$

$$Z = \frac{1}{3}X_1 + \frac{2}{3}X_2$$

- а. Покажите, что все три оценки являются несмещенными.
- б. Какая из оценок наиболее эффективна?
- в. Найдите относительную эффективность (отношение дисперсий оценок) наиболее эффективной оценки относительно двух других.
- 6. (СУ, Упр. 4.6) Покажите, что первое предположение метода наименьших квадратов, т.е. $E(u_i \mid X_i) = 0$, предполагает, что $E(Y_i \mid X_i) = \beta_0 + \beta_1 X_i$.