MEM6810 Engineering Systems Modeling and Simulation 工程系统建模与仿真

Theory Analysis

Lecture 2: Elements of Probability and Statistics

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

* shenhaihui.github.io/teaching/mem6810f

shenhaihui@sjtu.edu.cn

Spring 2025 (full-time)

Contents

- Probability Space
- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- 5 Useful Inequalities
- 6 Convergence
- Properties of a Random Sample

- Probability Space
- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- 5 Useful Inequalities
- 6 Convergence
- 7 Properties of a Random Sample

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

• Ω , sample space: A set of *all* possible outcomes.

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
- \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
- \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
- \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $\mathbf{0} \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
- \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $\mathbf{0} \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
 - **3** Closed under countable unions: † If $A_i \in \mathcal{F}, i = 1, 2, ...,$ is a **countable** sequence of sets, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

The implies that $\mathcal F$ is also closed under countable intersections

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
- \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $\mathbf{0} \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
 - **3** Closed under countable unions: † If $A_i \in \mathcal{F}, i = 1, 2, ...$, is a **countable** sequence of sets, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.
- $\mathbb{P}: \mathcal{F} \to [0, 1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:

 $^{^{\}dagger}$ It implies that ${\cal F}$ is also closed under countable intersections.

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
- \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $\mathbf{0} \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
 - **3** Closed under countable unions: † If $A_i \in \mathcal{F}, i = 1, 2, ...,$ is a **countable** sequence of sets, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.
- $\mathbb{P}: \mathcal{F} \to [0,1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:

 $[\]dagger$ It implies that $\mathcal F$ is also closed under countable intersections.

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
- \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $\mathbf{0} \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$;
 - **3** Closed under countable unions: † If $A_i \in \mathcal{F}, i = 1, 2, ...,$ is a **countable** sequence of sets, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.
- $\mathbb{P}: \mathcal{F} \to [0, 1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:

 $^{^{\}dagger}$ It implies that ${\cal F}$ is also closed under countable intersections.

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
- \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $\mathbf{0} \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
 - **3** Closed under countable unions: † If $A_i \in \mathcal{F}, i = 1, 2, ...,$ is a **countable** sequence of sets, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.
- $\mathbb{P}: \mathcal{F} \to [0, 1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:

 - $\mathbb{P}(\Omega) = 1;$
 - **3** Countably additive: If $A_i \in \mathcal{F}$, i = 1, 2, ..., is a **countable** sequence of **disjoint** sets, then $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.

 $^{^{\}dagger}$ It implies that ${\cal F}$ is also closed under countable intersections.

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
 - $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \Omega\};$
 - $\mathbb{P}(\emptyset)=0$, $\mathbb{P}(\{\mathsf{H}\})=1/2$, $\mathbb{P}(\{\mathsf{T}\})=1/2$, and $\mathbb{P}(\Omega)=1$.

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
 - $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{H\}) = 1/2$, $\mathbb{P}(\{T\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
 - $\Omega = \{R \text{ (red)}, G \text{ (green)}, B \text{ (blue)}\};$
 - $\mathcal{F} = \{\emptyset, \{R\}, \{G\}, \{B\}, \{R,G\}, \{R,B\}, \{G,B\}, \Omega\};$
 - $\begin{array}{l} \bullet \ \mathbb{P}(\emptyset)=0, \ \mathbb{P}(\{\mathsf{R}\})=\mathbb{P}(\{\mathsf{G}\})=\mathbb{P}(\{\mathsf{B}\})=1/3, \\ \mathbb{P}(\{\mathsf{R},\mathsf{G}\})=\mathbb{P}(\{\mathsf{R},\mathsf{B}\})=\mathbb{P}(\{\mathsf{G},\mathsf{B}\})=2/3, \ \mathsf{and} \ \mathbb{P}(\Omega)=1; \end{array}$

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
 - $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{H\}) = 1/2$, $\mathbb{P}(\{T\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
 - $\Omega = \{R \text{ (red)}, G \text{ (green)}, B \text{ (blue)}\};$
 - $\mathcal{F} = \{\emptyset, \{R\}, \{G\}, \{B\}, \{R,G\}, \{R,B\}, \{G,B\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{R\}) = \mathbb{P}(\{G\}) = \mathbb{P}(\{B\}) = 1/3$, $\mathbb{P}(\{R,G\}) = \mathbb{P}(\{R,B\}) = \mathbb{P}(\{G,B\}) = 2/3$, and $\mathbb{P}(\Omega) = 1$;
 - $\mathcal{F}_1 = \{\emptyset, \{R\}, \{G,B\}, \Omega\}, \mathcal{F}_2 = \{\emptyset, \{G\}, \{R,B\}, \Omega\}...$

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
 - $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{H\}) = 1/2$, $\mathbb{P}(\{T\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
 - $\Omega = \{R \text{ (red)}, G \text{ (green)}, B \text{ (blue)}\};$
 - $\mathcal{F} = \{\emptyset, \{R\}, \{G\}, \{B\}, \{R,G\}, \{R,B\}, \{G,B\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{R\}) = \mathbb{P}(\{G\}) = \mathbb{P}(\{B\}) = 1/3$, $\mathbb{P}(\{R,G\}) = \mathbb{P}(\{R,B\}) = \mathbb{P}(\{G,B\}) = 2/3$ and $\mathbb{P}(\{B,G\}) = 2/3$
 - $\mathbb{P}(\{\mathsf{R},\mathsf{G}\}) = \mathbb{P}(\{\mathsf{R},\mathsf{B}\}) = \mathbb{P}(\{\mathsf{G},\mathsf{B}\}) = 2/3, \text{ and } \mathbb{P}(\Omega) = 1;$
 - $\mathcal{F}_1 = \{\emptyset, \{R\}, \{G,B\}, \Omega\}, \mathcal{F}_2 = \{\emptyset, \{G\}, \{R,B\}, \Omega\}...$
- Example 3: Randomly "draw" a number in [0, 1].
 - $\Omega = [0, 1];$
 - $\mathcal{F}_1 = \{\emptyset, [0, a), [a, 1], \Omega\}, \mathcal{F}_2 = \{\emptyset, (0, a), \{0\} \cup [a, 1], \Omega\}...$

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
 - $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{H\}) = 1/2$, $\mathbb{P}(\{T\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
 - $\Omega = \{R \text{ (red)}, G \text{ (green)}, B \text{ (blue)}\};$
 - $\mathcal{F} = \{\emptyset, \{R\}, \{G\}, \{B\}, \{R,G\}, \{R,B\}, \{G,B\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{\mathsf{R}\}) = \mathbb{P}(\{\mathsf{G}\}) = \mathbb{P}(\{\mathsf{B}\}) = 1/3$, $\mathbb{P}(\{\mathsf{R},\mathsf{G}\}) = \mathbb{P}(\{\mathsf{R},\mathsf{B}\}) = \mathbb{P}(\{\mathsf{G},\mathsf{B}\}) = 2/3$, and $\mathbb{P}(\Omega) = 1$;
 - $\mathcal{F}_1 = \{\emptyset, \{R\}, \{G,B\}, \Omega\}, \mathcal{F}_2 = \{\emptyset, \{G\}, \{R,B\}, \Omega\}...$
- Example 3: Randomly "draw" a number in [0, 1].
 - $\Omega = [0, 1];$
 - $\mathcal{F}_1 = \{\emptyset, [0, a), [a, 1], \Omega\}, \mathcal{F}_2 = \{\emptyset, (0, a), \{0\} \cup [a, 1], \Omega\}...$
 - A more practical and interesting \mathcal{F} is the one that contains all intervals (no matter open or closed) on [0,1].

 Independence of Events: Two events A and B in F are called statistically independent events when

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B).$$

 Independence of Events: Two events A and B in F are called statistically independent events when

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B).$$

• Conditional Probability: If A and B are events in \mathcal{F} and $\mathbb{P}(B)>0$, then the conditional probability of A given B, denoted as $\mathbb{P}(A|B)$, is

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

 Independence of Events: Two events A and B in F are called statistically independent events when

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B).$$

• Conditional Probability: If A and B are events in $\mathcal F$ and $\mathbb P(B)>0$, then the conditional probability of A given B, denoted as $\mathbb P(A|B)$, is

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

• Bayes' Rule:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\,\mathbb{P}(A)}{\mathbb{P}(B)}.$$

 Independence of Events: Two events A and B in F are called statistically independent events when

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B).$$

• Conditional Probability: If A and B are events in $\mathcal F$ and $\mathbb P(B)>0$, then the conditional probability of A given B, denoted as $\mathbb P(A|B)$, is

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Bayes' Rule:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\,\mathbb{P}(A)}{\mathbb{P}(B)}.$$

• Events A and B are independent $\iff \mathbb{P}(A|B) = \mathbb{P}(A)$.

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - Pairwise independence means any two events in the collection are independent of each other.

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - Pairwise independence means any two events in the collection are independent of each other.
- Sets A_1, \ldots, A_n are (mutually) independent if for any $I \subset \{1, \ldots, n\}$ we have $\mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - Pairwise independence means any two events in the collection are independent of each other.
- Sets A_1, \ldots, A_n are (mutually) independent if for any $I \subset \{1, \ldots, n\}$ we have $\mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.
- Warning: Only having $\mathbb{P}(\cap_{i=1}^n A_i) = \prod_{i=1}^n \mathbb{P}(A_i)$ is not sufficient!

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - Pairwise independence means any two events in the collection are independent of each other.
- Sets A_1, \ldots, A_n are (mutually) independent if for any $I \subset \{1, \ldots, n\}$ we have $\mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.
- Warning: Only having $\mathbb{P}(\cap_{i=1}^n A_i) = \prod_{i=1}^n \mathbb{P}(A_i)$ is not sufficient!
- Sets A_1, \ldots, A_n are pairwise independent if for any $i \neq j$ we have $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \mathbb{P}(A_j)$.

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - Pairwise independence means any two events in the collection are independent of each other.
- Sets A_1, \ldots, A_n are (mutually) independent if for any $I \subset \{1, \ldots, n\}$ we have $\mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.
- Warning: Only having $\mathbb{P}(\cap_{i=1}^n A_i) = \prod_{i=1}^n \mathbb{P}(A_i)$ is not sufficient!
- Sets A_1, \ldots, A_n are pairwise independent if for any $i \neq j$ we have $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \mathbb{P}(A_j)$.
- Clearly, mutual independence implies pairwise independence, but not vice versa!

► Borel-Cantelli Lemma

Consider a sequence of sets $\{A_n : n \geq 1\}$.

Consider a sequence of sets $\{A_n : n \ge 1\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^\infty \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(A_n \text{ i.o.}) = 0$, where "i.o." denotes "infinitely often".

Consider a sequence of sets $\{A_n : n \geq 1\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(A_n \text{ i.o.}) = 0$, where "i.o." denotes "infinitely often".

The Secon Borel-Cantelli Lemma

If $\sum_{n=1}^\infty \mathbb{P}(A_n)=\infty$ and $\{A_n\}$ are independent, † then $\mathbb{P}(A_n \text{ i.o.})=1.$

Consider a sequence of sets $\{A_n : n \ge 1\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^\infty \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(A_n \text{ i.o.}) = 0$, where "i.o." denotes "infinitely often".

The Secon Borel-Cantelli Lemma

If
$$\sum_{n=1}^\infty \mathbb{P}(A_n)=\infty$$
 and $\{A_n\}$ are independent, † then $\mathbb{P}(A_n \text{ i.o.})=1.$

• Remark: For event A, if $\mathbb{P}(A) = 1$, then we say A happens almost surely (a.s.).

[†]The assumption of independence can be weakened to pairwise independence, with more difficult proof.

- Probability Space
- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- 5 Useful Inequalities
- 6 Convergence
- 7 Properties of a Random Sample

Random Variables & Distributions

➤ Scalar

• A random variable (RV) is a function from a sample space Ω into the set of real numbers \mathbb{R} .

Random Variables & Distributions

- A random variable (RV) is a function from a sample space Ω into the set of real numbers R.
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X: \Omega \to \mathbb{R}$, such that for any $a \in \mathbb{R}$,

$$\{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}.$$

- A random variable (RV) is a function from a sample space Ω into the set of real numbers R.
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X: \Omega \to \mathbb{R}$, such that for any $a \in \mathbb{R}$,

$$\{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}.$$

• For a particular element $\omega \in \Omega$, $X(\omega)$ is called a *realization* of X.

- A random variable (RV) is a function from a sample space Ω into the set of real numbers R.
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X: \Omega \to \mathbb{R}$, such that for any $a \in \mathbb{R}$,

$$\{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}.$$

- For a particular element $\omega \in \Omega$, $X(\omega)$ is called a *realization* of X.
 - Usually, we will simply denote $X(\omega)$ as x when ω is not explicitly shown.

- A random variable (RV) is a function from a sample space Ω into the set of real numbers \mathbb{R} .
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X: \Omega \to \mathbb{R}$, such that for any $a \in \mathbb{R}$,

$$\{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}.$$

- For a particular element $\omega \in \Omega$, $X(\omega)$ is called a *realization* of X.
 - Usually, we will simply denote $X(\omega)$ as x when ω is not explicitly shown.
 - A popular convention is to denote the RVs by upper-case letters (e.g., X and Y) and their realizations by lower-case letters (e.g., x and y).

➤ Scalar

• Example 1': Let X(H) = 0, X(T) = 1.

- Example 1': Let X(H) = 0, X(T) = 1.
- Example 2':
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let X(R) = 0, X(G) = 1, and X(B) = 2.

- Example 1': Let X(H) = 0, X(T) = 1.
- Example 2':
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 2$.
 - Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 1$.

- Example 1': Let X(H) = 0, X(T) = 1.
- Example 2':
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 2$.
 - Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 1$.
- Example 3':
 - Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\omega) \coloneqq \begin{cases} 0, & \text{if } \omega \in [0, a), \\ 1, & \text{if } \omega \in [a, 1]. \end{cases}$

- Example 1': Let X(H) = 0, X(T) = 1.
- Example 2':
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 2$.
 - Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 1$.
- Example 3':
 - Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\omega) := \begin{cases} 0, & \text{if } \omega \in [0, a), \\ 1, & \text{if } \omega \in [a, 1]. \end{cases}$
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\omega) = \omega$ for $\omega \in [0, 1]$.

$$F(x) := \mathbb{P}(X \le x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le x\}), \ \forall x \in \mathbb{R},$$

$$F(x) := \mathbb{P}(X \le x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le x\}), \ \forall x \in \mathbb{R},$$

$$F(x) := \mathbb{P}(X \le x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le x\}), \ \forall x \in \mathbb{R},$$

•
$$\lim_{x\to-\infty} F(x) = 0$$
 and $\lim_{x\to+\infty} F(x) = 1$;

$$F(x) := \mathbb{P}(X \le x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le x\}), \ \forall x \in \mathbb{R},$$

- $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$;
- F(x) is nondecreasing in x;

$$F(x) := \mathbb{P}(X \le x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le x\}), \ \forall x \in \mathbb{R},$$

- $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$;
- F(x) is nondecreasing in x;
- F(x) is right-continuous, that is, for any $x_0 \in \mathbb{R}$,

$$\lim_{x \downarrow x_0} F(x) = F(x_0).$$

 A RV X is said to be discrete if the set of its possible values is countable.

- A RV X is said to be discrete if the set of its possible values is countable.
- The **probability mass function** (pmf) of a discrete RV X is given by

$$p(x) := \mathbb{P}(X = x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\}), \ \forall x \in \mathbb{R},$$

- A RV X is said to be discrete if the set of its possible values is countable.
- The probability mass function (pmf) of a discrete RV X is given by

$$p(x) \coloneqq \mathbb{P}(X = x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\}), \ \forall x \in \mathbb{R},$$

- $p(x) \ge 0$ for all $x \in \mathbb{R}$;
- $\sum_{x \in \mathbb{R}} p(x) = 1$.

- A RV X is said to be discrete if the set of its possible values is countable.
- The probability mass function (pmf) of a discrete RV X is given by

$$p(x) := \mathbb{P}(X = x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\}), \ \forall x \in \mathbb{R},$$

- $p(x) \ge 0$ for all $x \in \mathbb{R}$;
- $\sum_{x \in \mathbb{R}} p(x) = 1$.
- It is easy to see that $F(x) = \sum_{y \in (-\infty, x]} p(y)$.

 A RV X is said to be continuous if there exists a probability density function (pdf) f(x) such that

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) dt, \ \forall x \in \mathbb{R},$$

 A RV X is said to be continuous if there exists a probability density function (pdf) f(x) such that

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) dt, \ \forall x \in \mathbb{R},$$

- $f(x) \ge 0$ for all $x \in \mathbb{R}$;
- $\int_{-\infty}^{+\infty} f(t) dt = 1$.

 A RV X is said to be continuous if there exists a probability density function (pdf) f(x) such that

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) dt, \ \forall x \in \mathbb{R},$$

- $f(x) \ge 0$ for all $x \in \mathbb{R}$;
- $\int_{-\infty}^{+\infty} f(t) dt = 1$.
- Observe that $\frac{\mathrm{d}}{\mathrm{d}x}F(x)=f(x)$.

• The joint CDF of RVs X and Y, denoted by $F: \mathbb{R} \times \mathbb{R} \to [0, 1]$, is defined by

$$F(x,y) := \mathbb{P}(X \le x, Y \le y)$$

= $\mathbb{P}(\{\omega : X(\omega) \le x\} \cap \{\omega : Y(\omega) \le y\}), \ \forall x, y \in \mathbb{R}.$

• The **joint** CDF of RVs X and Y, denoted by $F: \mathbb{R} \times \mathbb{R} \to [0, 1]$, is defined by

$$F(x,y) := \mathbb{P}(X \le x, Y \le y)$$

= $\mathbb{P}(\{\omega : X(\omega) \le x\} \cap \{\omega : Y(\omega) \le y\}), \ \forall x, y \in \mathbb{R}.$

For discrete RVs X and Y, the joint pmf is given by

$$\begin{split} p(x,y) &\coloneqq \mathbb{P}(X=x,X=y) \\ &= \mathbb{P}(\{\omega: X(\omega)=x\} \cap \{\omega: Y(\omega)=y\}), \ \forall x,y \in \mathbb{R}. \end{split}$$

• The joint CDF of RVs X and Y, denoted by $F: \mathbb{R} \times \mathbb{R} \to [0, 1]$, is defined by

$$\begin{split} F(x,y) &\coloneqq \mathbb{P}(X \leq x, Y \leq y) \\ &= \mathbb{P}(\{\omega: X(\omega) \leq x\} \cap \{\omega: Y(\omega) \leq y\}), \ \forall x,y \in \mathbb{R}. \end{split}$$

For discrete RVs X and Y, the joint pmf is given by

$$\begin{split} p(x,y) &\coloneqq \mathbb{P}(X=x,X=y) \\ &= \mathbb{P}(\{\omega: X(\omega)=x\} \cap \{\omega: Y(\omega)=y\}), \ \forall x,y \in \mathbb{R}. \end{split}$$

• For continuous RVs X and Y, the **joint** pdf is f(x,y) such that

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(t,u) dt du, \ \forall x, y \in \mathbb{R}.$$

• The joint CDF of RVs X and Y, denoted by $F: \mathbb{R} \times \mathbb{R} \to [0, 1]$, is defined by

$$\begin{split} F(x,y) &:= \mathbb{P}(X \leq x, Y \leq y) \\ &= \mathbb{P}(\{\omega: X(\omega) \leq x\} \cap \{\omega: Y(\omega) \leq y\}), \ \forall x,y \in \mathbb{R}. \end{split}$$

For discrete RVs X and Y, the joint pmf is given by

$$\begin{split} p(x,y) &\coloneqq \mathbb{P}(X=x,X=y) \\ &= \mathbb{P}(\{\omega: X(\omega)=x\} \cap \{\omega: Y(\omega)=y\}), \ \forall x,y \in \mathbb{R}. \end{split}$$

• For continuous RVs X and Y, the **joint** pdf is f(x,y) such that

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(t,u) dt du, \ \forall x, y \in \mathbb{R}.$$

• Observe that $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$.

- Given the random vector $(X, Y)^{\mathsf{T}}$, the distribution of X or Y is called the **marginal distribution**.
 - The marginal CDF of X is $F_X(x) = F(x, +\infty)$.

- Given the random vector (X, Y)^T, the distribution of X or Y is called the marginal distribution.
 - The marginal CDF of X is $F_X(x) = F(x, +\infty)$.
- If $(X,Y)^{\mathsf{T}}$ is discrete, the marginal pmf of X is

$$p_X(x) = \sum_{y \in \mathbb{R}} p(x, y).$$

- Given the random vector (X, Y)^T, the distribution of X or Y is called the marginal distribution.
 - The marginal CDF of X is $F_X(x) = F(x, +\infty)$.
- If $(X,Y)^{\mathsf{T}}$ is discrete, the marginal pmf of X is

$$p_X(x) = \sum_{y \in \mathbb{R}} p(x, y).$$

• If $(X,Y)^T$ is continuous, the marginal pdf of X is

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \mathrm{d}y.$$

- Given the random vector (X, Y)^T, the distribution of X or Y is called the marginal distribution.
 - The marginal CDF of X is $F_X(x) = F(x, +\infty)$.
- If $(X,Y)^T$ is discrete, the marginal pmf of X is

$$p_X(x) = \sum_{y \in \mathbb{R}} p(x, y).$$

• If $(X,Y)^T$ is continuous, the marginal pdf of X is

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \mathrm{d}y.$$

 For Y, its marginal CDF, and pmf or pdf, can be determined similarly.

Univariate Transformation - Continuous Case

Let X be a continuous RV, and Y=g(X), where g is a **monotone** function. Let

$$\mathcal{X} \coloneqq \{x: f_X(x) > 0\} \text{ and } \mathcal{Y} \coloneqq \{y: y = g(x) \text{ for some } x \in \mathcal{X}\}.$$

Suppose that $g^{-1}(y)$ has a continuous derivative on \mathcal{Y} . Then,

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right|, & y \in \mathcal{Y}, \\ 0, & \text{otherwise.} \end{cases}$$

Bivariate Transformation - Continuous Case

Let $(X,Y)^{\mathsf{T}}$ be a continuous bivariate random vector, and $U=g_1(X,Y)$ and $V=g_2(X,Y)$. Let

$$\begin{split} \mathcal{A} &\coloneqq \{(x,y): f_{X,Y}(x,y) > 0\},\\ \mathcal{B} &\coloneqq \{(u,v): u = g_1(x,y), v = g_2(x,y) \text{ for some } (x,y) \in \mathcal{A}\}. \end{split}$$

Suppose that $u=g_1(x,y)$ and $v=g_2(x,y)$ define a **one-to-one** transformation of $\mathcal A$ **onto** $\mathcal B$, and $x=h_1(u,v)$ and $y=h_2(u,v)$ have continuous partial derivatives on $\mathcal B$. Then,

$$f_{U,V}(u,v) = \begin{cases} f_{X,Y}(h_1(u,v),h_2(u,v)) \left| J \right|, & (u,v) \in \mathcal{B}, \\ 0, & \text{otherwise,} \end{cases}$$

given that J is not identically 0 on \mathcal{B} , where J is the Jacobian

Bivariate Transformation - Continuous Case (Cont'd)

of the transformation, i.e.,

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v},$$

and

$$\begin{split} \frac{\partial x}{\partial u} &= \frac{\partial h_1(u,v)}{\partial u}, \ \frac{\partial x}{\partial v} &= \frac{\partial h_1(u,v)}{\partial v}, \\ \frac{\partial y}{\partial u} &= \frac{\partial h_2(u,v)}{\partial u}, \ \frac{\partial y}{\partial v} &= \frac{\partial h_2(u,v)}{\partial v}. \end{split}$$

• If $(X,Y)^{\mathsf{T}}$ is discrete, for any y such that $\mathbb{P}(Y=y)=p_Y(y)$ > 0, the **conditional** pmf of X given that Y=y is defined as

$$p(x|y) \coloneqq \mathbb{P}(X = x|Y = y) = \frac{p(x,y)}{p_Y(y)}.$$

• If $(X, Y)^{\mathsf{T}}$ is discrete, for any y such that $\mathbb{P}(Y = y) = p_Y(y) > 0$, the **conditional** pmf of X given that Y = y is defined as

$$p(x|y) \coloneqq \mathbb{P}(X = x|Y = y) = \frac{p(x,y)}{p_Y(y)}.$$

• If $(X,Y)^{\mathsf{T}}$ is continuous, for any y such that $f_Y(y)>0$, the conditional pdf of X given that Y=y is defined as

$$f(x|y) := \frac{f(x,y)}{f_Y(y)}.$$

► Conditional Distribution

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

$$F(x|Y=y) = \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta)$$

$$\begin{split} F(x|Y=y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \end{split}$$

$$\begin{split} F(x|Y=y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)]/\Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)]/\Delta} \end{split}$$

$$\begin{split} F(x|Y=y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)]/\Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)]/\Delta} \\ &= \frac{\frac{\partial}{\partial y} F(x, y)}{\frac{\mathrm{d}}{\mathrm{d}y} F_Y(y)} \end{split}$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

• Note that

$$\begin{split} F(x|Y=y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)]/\Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)]/\Delta} \\ &= \frac{\frac{\partial}{\partial y} F(x, y)}{\frac{\mathrm{d}}{\mathrm{d}y} F_Y(y)} = \frac{\frac{\partial}{\partial y} \int_{-\infty}^y \int_{-\infty}^x f(t, u) \mathrm{d}t \mathrm{d}u}{f_Y(y)} \end{split}$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

• Note that

$$\begin{split} F(x|Y=y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)]/\Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)]/\Delta} \\ &= \frac{\frac{\partial}{\partial y} F(x, y)}{\frac{\mathrm{d}}{\partial y} F_Y(y)} = \frac{\frac{\partial}{\partial y} \int_{-\infty}^y \int_{-\infty}^x f(t, u) \mathrm{d}t \mathrm{d}u}{f_Y(y)} \\ &= \frac{\int_{-\infty}^x f(t, y) \mathrm{d}t}{f_Y(y)}. \end{split}$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

Note that

$$\begin{split} F(x|Y=y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)]/\Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)]/\Delta} \\ &= \frac{\frac{\partial}{\partial y} F(x, y)}{\frac{\mathrm{d}}{\mathrm{d} y} F_Y(y)} = \frac{\frac{\partial}{\partial y} \int_{-\infty}^y \int_{-\infty}^x f(t, u) \mathrm{d} t \mathrm{d} u}{f_Y(y)} \\ &= \frac{\int_{-\infty}^x f(t, y) \mathrm{d} t}{f_Y(y)}. \end{split}$$

2 Then, $f(x|y) = \frac{\partial}{\partial x} F(x|Y=y) = \frac{\frac{\partial}{\partial x} \int_{-\infty}^x f(t,y) dt}{f_Y(y)} = \frac{f(x,y)}{f_Y(y)}$

$$F(x,y) = F_X(x)F_Y(y),$$

$$F(x,y) = F_X(x)F_Y(y), \text{ or,}$$

$$p(x,y) = p_X(x)p_Y(y),$$

$$F(x,y) = F_X(x)F_Y(y), \text{ or,}$$

$$p(x,y) = p_X(x)p_Y(y), \text{ or,}$$

$$f(x,y) = f_X(x)f_Y(y).$$

$$\begin{split} F(x,y) &= F_X(x)F_Y(y), \text{ or,} \\ p(x,y) &= p_X(x)p_Y(y), \text{ or,} \\ f(x,y) &= f_X(x)f_Y(y). \end{split}$$

- X and Y are independent \iff
 - $p(x|y) \equiv p_X(x)$ or $f(x|y) \equiv f_X(x)$ regardless of the value y;

$$F(x,y) = F_X(x)F_Y(y), \text{ or,}$$

$$p(x,y) = p_X(x)p_Y(y), \text{ or,}$$

$$f(x,y) = f_X(x)f_Y(y).$$

- X and Y are independent \iff
 - $p(x|y) \equiv p_X(x)$ or $f(x|y) \equiv f_X(x)$ regardless of the value y;
 - $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \mathbb{P}(X \in B)$ for any $A, B \subset \mathbb{R}$.

Random Variables & Distributions

▶ Independence

• For more than two RVs X_1, \ldots, X_n , the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.

- For more than two RVs X_1, \ldots, X_n , the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.
- RVs X_1, \ldots, X_n are (mutually) independent if

$$F(x_1, \ldots, x_n) \equiv F_{X_1}(x_1) \times \cdots \times F_{X_n}(x_n), \text{ or,}$$

$$p(x_1, \ldots, x_n) \equiv p_{X_1}(x_1) \times \cdots \times p_{X_n}(x_n), \text{ or,}$$

$$f(x_1, \ldots, x_n) \equiv f_{X_1}(x_1) \times \cdots \times f_{X_n}(x_n).$$

- For more than two RVs X_1, \ldots, X_n , the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.
- RVs X_1, \ldots, X_n are (mutually) independent if

$$F(x_1,\ldots,x_n) \equiv F_{X_1}(x_1) \times \cdots \times F_{X_n}(x_n), \text{ or,}$$

$$p(x_1,\ldots,x_n) \equiv p_{X_1}(x_1) \times \cdots \times p_{X_n}(x_n), \text{ or,}$$

$$f(x_1,\ldots,x_n) \equiv f_{X_1}(x_1) \times \cdots \times f_{X_n}(x_n).$$

• RVs X_1, \ldots, X_n are pairwise independent if for any $i \neq j$, $X_i \perp X_j$.

- Probability Space
- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- 5 Useful Inequalities
- 6 Convergence
- 7 Properties of a Random Sample

Expectations

 The expectation, or expected value, or mean, of a RV X is defined as

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) d\mathbb{P}(\omega),$$

provided that $\int_{\Omega} |X(\omega)| \mathrm{d}\, \mathbb{P}(\omega) < \infty$ or $X \geq 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

 The expectation, or expected value, or mean, of a RV X is defined as

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) d \mathbb{P}(\omega),$$

provided that $\int_{\Omega} |X(\omega)| \mathrm{d}\, \mathbb{P}(\omega) < \infty$ or $X \geq 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

• For function $h: \mathbb{R} \to \mathbb{R}$, $\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) d\mathbb{P}(\omega)$.

 The expectation, or expected value, or mean, of a RV X is defined as

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) d \mathbb{P}(\omega),$$

provided that $\int_{\Omega} |X(\omega)| \mathrm{d}\, \mathbb{P}(\omega) < \infty$ or $X \geq 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

- For function $h: \mathbb{R} \to \mathbb{R}$, $\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) d\mathbb{P}(\omega)$.
- If X is a discrete RV:
 - $\mathbb{E}[X] = \sum_{x \in \mathbb{R}} xp(x)$;
 - $\mathbb{E}[h(X)] = \sum_{x \in \mathbb{R}} h(x)p(x)$.

 The expectation, or expected value, or mean, of a RV X is defined as

$$\mathbb{E}[X] \coloneqq \int_{\Omega} X(\omega) d \mathbb{P}(\omega),$$

provided that $\int_{\Omega} |X(\omega)| \mathrm{d}\, \mathbb{P}(\omega) < \infty$ or $X \geq 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

- For function $h: \mathbb{R} \to \mathbb{R}$, $\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) d\mathbb{P}(\omega)$.
- If X is a discrete RV:
 - $\mathbb{E}[X] = \sum_{x \in \mathbb{R}} xp(x)$;
 - $\mathbb{E}[h(X)] = \sum_{x \in \mathbb{R}} h(x)p(x)$.
- If X is a continuous RV:
 - $\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f(x) dx$;
 - $\mathbb{E}[h(X)] = \int_{-\infty}^{+\infty} h(x) f(x) dx$.

• For integer n, $\mathbb{E}[X^n]$ is called the nth moment of X, and $\mathbb{E}[(X - \mathbb{E}[X])^n]$ is called the nth central moment of X.

- For integer n, $\mathbb{E}[X^n]$ is called the nth moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the nth central moment of X.
- Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.

- For integer n, $\mathbb{E}[X^n]$ is called the nth moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the nth central moment of X.
- Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 \coloneqq \operatorname{Var}(X) \coloneqq \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2.$

- For integer n, $\mathbb{E}[X^n]$ is called the nth moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the nth central moment of X.
- Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 \coloneqq \operatorname{Var}(X) \coloneqq \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2.$
- Linear association:
 - Covariance:

$$Cov(X, Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

- For integer n, $\mathbb{E}[X^n]$ is called the nth moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the nth central moment of X.
- Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 \coloneqq \operatorname{Var}(X) \coloneqq \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2.$
- Linear association:
 - Covariance:

$$Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

• Correlation: $\rho(X,Y) := \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$.

- For integer n, $\mathbb{E}[X^n]$ is called the nth moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the nth central moment of X.
- Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 \coloneqq \operatorname{Var}(X) \coloneqq \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2.$
- Linear association:
 - Covariance:

$$Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$$

- Correlation: $\rho(X,Y) := \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$.
- In general, $X \perp Y \implies \rho(X,Y) = 0 \iff \operatorname{Cov}(X,Y) = 0.$

- For integer n, $\mathbb{E}[X^n]$ is called the nth moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the nth central moment of X.
- Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 \coloneqq \operatorname{Var}(X) \coloneqq \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] (\mathbb{E}[X])^2.$
- Linear association:
 - Covariance:

$$Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

- Correlation: $\rho(X,Y) := \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$.
- In general, $X \perp Y \iff \rho(X,Y) = 0 \iff \operatorname{Cov}(X,Y) = 0.$
- If $(X,Y)^{\mathsf{T}}$ follows a bivariate normal distribution,[†] then $X \perp Y \iff \rho(X,Y) = 0$.

 $^{^{\}dagger}$ CAUTION: It means MORE than that X and Y both follow a normal distribution! More details latter.

$$\mathbb{E}[X|y] := \begin{cases} \sum_{x \in \mathbb{R}} x p(x|y), & \text{if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} x f(x|y) \mathrm{d}x, & \text{if } X \text{ is continuous.} \end{cases}$$

$$\mathbb{E}[X|y] := \begin{cases} \sum_{x \in \mathbb{R}} x p(x|y), & \text{if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} x f(x|y) \mathrm{d}x, & \text{if } X \text{ is continuous.} \end{cases}$$

• The conditional variance of X given Y = y is

$$\operatorname{Var}(X|y) := \mathbb{E}[(X - \mathbb{E}[X])^2|y] = \mathbb{E}[X^2|y] - (\mathbb{E}[X|y])^2.$$

$$\mathbb{E}[X|y] := \begin{cases} \sum_{x \in \mathbb{R}} x p(x|y), & \text{if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} x f(x|y) \mathrm{d}x, & \text{if } X \text{ is continuous.} \end{cases}$$

ullet The conditional variance of X given Y=y is

$$\operatorname{Var}(X|y) := \mathbb{E}[(X - \mathbb{E}[X])^2|y] = \mathbb{E}[X^2|y] - (\mathbb{E}[X|y])^2.$$

• If $X \not\perp Y$, then $\mathbb{E}[X|y]$ and $\mathrm{Var}(X|y)$ are functions of y.

$$\mathbb{E}[X|y] \coloneqq \begin{cases} \sum_{x \in \mathbb{R}} x p(x|y), & \text{if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} x f(x|y) \mathrm{d}x, & \text{if } X \text{ is continuous.} \end{cases}$$

• The conditional variance of X given Y=y is

$$\operatorname{Var}(X|y) := \mathbb{E}[(X - \mathbb{E}[X])^2|y] = \mathbb{E}[X^2|y] - (\mathbb{E}[X|y])^2.$$

- If $X \not\perp Y$, then $\mathbb{E}[X|y]$ and $\mathrm{Var}(X|y)$ are functions of y.
- If $X \not\perp Y$, then $\mathbb{E}[X|Y]$ and $\mathrm{Var}(X|Y)$ are also RVs, whose value depends on the value of Y.

$$\mathbb{E}[X|y] := \begin{cases} \sum_{x \in \mathbb{R}} x p(x|y), & \text{if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} x f(x|y) \mathrm{d}x, & \text{if } X \text{ is continuous.} \end{cases}$$

ullet The conditional variance of X given Y=y is

$$\operatorname{Var}(X|y) := \mathbb{E}[(X - \mathbb{E}[X])^2|y] = \mathbb{E}[X^2|y] - (\mathbb{E}[X|y])^2.$$

- If $X \not\perp Y$, then $\mathbb{E}[X|y]$ and $\mathrm{Var}(X|y)$ are functions of y.
- If $X \not\perp Y$, then $\mathbb{E}[X|Y]$ and $\mathrm{Var}(X|Y)$ are also RVs, whose value depends on the value of Y.
- If $X \perp Y$, then $\mathbb{E}[X|y] = \mathbb{E}[X|Y] = \mathbb{E}[X]$, and $\mathrm{Var}(X|y) = \mathrm{Var}(X|Y) = \mathrm{Var}(X)$.

•
$$\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$$

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y)$.

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y)$.
- $\operatorname{Cov}(aX + bY, cW + dV) = ac \operatorname{Cov}(X, W) + ad \operatorname{Cov}(X, V) + bc \operatorname{Cov}(Y, W) + bd \operatorname{Cov}(Y, V).$

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y)$.
- $\operatorname{Cov}(aX + bY, cW + dV) = ac \operatorname{Cov}(X, W) + ad \operatorname{Cov}(X, V) + bc \operatorname{Cov}(Y, W) + bd \operatorname{Cov}(Y, V).$
- $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$.

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y)$.
- $\operatorname{Cov}(aX + bY, cW + dV) = ac \operatorname{Cov}(X, W) + ad \operatorname{Cov}(X, V) + bc \operatorname{Cov}(Y, W) + bd \operatorname{Cov}(Y, V).$
- $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$.
- $Var(X) = \mathbb{E}[Var(X|Y)] + Var(\mathbb{E}[X|Y]).$

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y)$.
- $\operatorname{Cov}(aX + bY, cW + dV) = ac \operatorname{Cov}(X, W) + ad \operatorname{Cov}(X, V) + bc \operatorname{Cov}(Y, W) + bd \operatorname{Cov}(Y, V).$
- $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$.
- $Var(X) = \mathbb{E}[Var(X|Y)] + Var(\mathbb{E}[X|Y]).$
- If $X \perp Y$, then $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.

• For a RV X, the moment generating function (mgf), denoted by $M_X(t)$, is

$$M_X(t) = \mathbb{E}\left[e^{tX}\right], \ t \in \mathbb{R}.$$

• For a RV X, the moment generating function (mgf), denoted by $M_X(t)$, is

$$M_X(t) = \mathbb{E}\left[e^{tX}\right], \ t \in \mathbb{R}.$$

• If $M_X(t)$ is finite for t in some neighborhood of 0 (i.e., there is an h>0 such that for all $t\in (-h,h),\ M_X(t)<\infty$), then,

$$\mathbb{E}[X^n] = \frac{\mathrm{d}^n}{\mathrm{d}t^n} M_X(t) \bigg|_{t=0}, \ n \in \mathbb{N}.$$

- Probability Space
- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- 5 Useful Inequalities
- **6** Convergence
- 7 Properties of a Random Sample

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1-p, \end{cases} \quad p \in [0,1].$$

• $X \sim \text{Bernoulli}(p)$ or Ber(p), if

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1-p, \end{cases} \quad p \in [0,1].$$

• $\mathbb{E}[X] = p$, Var(X) = p(1-p).

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1-p, \end{cases} \quad p \in [0,1].$$

- $\mathbb{E}[X] = p$, Var(X) = p(1-p).
- The value X=1 is often termed a "success" and p is referred to as the success probability.

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1-p, \end{cases} \quad p \in [0,1].$$

- $\mathbb{E}[X] = p$, Var(X) = p(1-p).
- The value X=1 is often termed a "success" and p is referred to as the success probability.
- $Y \sim \operatorname{binomial}(n,p)$ or $\operatorname{B}(n,p)$: The number of successes among n (mutually) independent and identically distributed (iid) $\operatorname{Ber}(p)$ trials.

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1-p, \end{cases} \quad p \in [0,1].$$

- $\mathbb{E}[X] = p$, Var(X) = p(1-p).
- The value X=1 is often termed a "success" and p is referred to as the success probability.
- $Y \sim \operatorname{binomial}(n, p)$ or B(n, p): The number of successes among n (mutually) independent and identically distributed (iid) $\operatorname{Ber}(p)$ trials.
 - $Y = \sum_{i=1}^{n} X_i$, where $X_i \sim \mathrm{Ber}(p)$ are iid.

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1-p, \end{cases} \quad p \in [0,1].$$

- $\mathbb{E}[X] = p$, Var(X) = p(1-p).
- The value X=1 is often termed a "success" and p is referred to as the success probability.
- Y ~ binomial(n, p) or B(n, p): The number of successes among n (mutually) independent and identically distributed (iid) Ber(p) trials.
 - $Y = \sum_{i=1}^{n} X_i$, where $X_i \sim \mathrm{Ber}(p)$ are iid.
 - $p(y) = \mathbb{P}(Y = y) = \binom{n}{y} p^y (1-p)^{n-y}, \quad y = 0, 1, \dots, n.$

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1-p, \end{cases} \quad p \in [0,1].$$

- $\mathbb{E}[X] = p$, Var(X) = p(1-p).
- The value X=1 is often termed a "success" and p is referred to as the success probability.
- Y ~ binomial(n, p) or B(n, p): The number of successes among n (mutually) independent and identically distributed (iid) Ber(p) trials.
 - $Y = \sum_{i=1}^{n} X_i$, where $X_i \sim \mathrm{Ber}(p)$ are iid.
 - $p(y) = \mathbb{P}(Y = y) = \binom{n}{y} p^y (1-p)^{n-y}, \quad y = 0, 1, \dots, n.$
 - $\mathbb{E}[Y] = np$, Var(Y) = np(1-p).

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1-p, \end{cases} \quad p \in [0,1].$$

- $\mathbb{E}[X] = p$, Var(X) = p(1-p).
- The value X=1 is often termed a "success" and p is referred to as the success probability.
- Y ~ binomial(n, p) or B(n, p): The number of successes among n (mutually) independent and identically distributed (iid) Ber(p) trials.
 - $Y = \sum_{i=1}^{n} X_i$, where $X_i \sim \mathrm{Ber}(p)$ are iid.
 - $p(y) = \mathbb{P}(Y = y) = \binom{n}{y} p^y (1-p)^{n-y}, \quad y = 0, 1, \dots, n.$
 - $\mathbb{E}[Y] = np$, $\operatorname{Var}(Y) = np(1-p)$.
- If $Y_1 \sim \mathrm{B}(n_1,p)$ and $Y_2 \sim \mathrm{B}(n_2,p)$ are independent, then $Y_1 + Y_2 \sim \mathrm{B}(n_1 + n_2,p)$.

• $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.

- $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$

- $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$
 - $\mathbb{E}[Y] = r + r(1-p)/p$, $Var(Y) = r(1-p)/p^2$.

- $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$
 - $\mathbb{E}[Y] = r + r(1-p)/p$, $Var(Y) = r(1-p)/p^2$.
 - When r = 1, it becomes the geometric distribution.

- $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$
 - $\mathbb{E}[Y] = r + r(1-p)/p$, $Var(Y) = r(1-p)/p^2$.
 - When r = 1, it becomes the geometric distribution.
- $Y \sim \operatorname{geometric}(p)$ or $\operatorname{Geo}(p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain the first success.

- $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$
 - $\mathbb{E}[Y] = r + r(1-p)/p$, $Var(Y) = r(1-p)/p^2$.
 - When r = 1, it becomes the geometric distribution.
- $Y \sim \text{geometric}(p)$ or Geo(p): The number of iid Ber(p) trials to obtain the first success.
 - $p(y) = \mathbb{P}(Y = y) = p(1 p)^{y-1}$, $y = 1, 2, \dots$
 - $\mathbb{E}[Y] = 1/p$, $Var(Y) = (1-p)/p^2$.

- $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$
 - $\mathbb{E}[Y] = r + r(1-p)/p$, $Var(Y) = r(1-p)/p^2$.
 - When r = 1, it becomes the geometric distribution.
- $Y \sim \text{geometric}(p)$ or Geo(p): The number of iid Ber(p) trials to obtain the first success.
 - $p(y) = \mathbb{P}(Y = y) = p(1 p)^{y-1}$, $y = 1, 2, \dots$
 - $\mathbb{E}[Y] = 1/p$, $Var(Y) = (1-p)/p^2$.
 - Memoryless Property: For integers s > t,

$$\mathbb{P}(Y > s | Y > t) = \frac{\mathbb{P}(Y > s, Y > t)}{\mathbb{P}(Y > t)} = \frac{\mathbb{P}(Y > s)}{\mathbb{P}(Y > t)} = \frac{(1 - p)^s}{(1 - p)^t} = (1 - p)^{s - t}$$
$$= \mathbb{P}(X > s - t).$$

- $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$
 - $\mathbb{E}[Y] = r + r(1-p)/p$, $Var(Y) = r(1-p)/p^2$.
 - When r=1, it becomes the geometric distribution.
- $Y \sim \operatorname{geometric}(p)$ or $\operatorname{Geo}(p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain the first success.
 - $p(y) = \mathbb{P}(Y = y) = p(1 p)^{y-1}$, $y = 1, 2, \dots$
 - $\mathbb{E}[Y] = 1/p$, $Var(Y) = (1-p)/p^2$.
 - Memoryless Property: For integers s > t,

$$\mathbb{P}(Y > s | Y > t) = \frac{\mathbb{P}(Y > s, Y > t)}{\mathbb{P}(Y > t)} = \frac{\mathbb{P}(Y > s)}{\mathbb{P}(Y > t)} = \frac{(1 - p)^s}{(1 - p)^t} = (1 - p)^{s - t}$$
$$= \mathbb{P}(X > s - t).$$

• If $Y_1 \sim \text{NB}(r_1, p)$ and $Y_2 \sim \text{NB}(r_2, p)$ are independent, then $Y_1 + Y_2 \sim \text{NB}(r_1 + r_2, p)$.

 Poisson distribution is often used to model the number of occurrence in a given time interval.

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]

TSee more detailed discussion in Lec 3.

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]
- $X \sim \text{Poisson}(\lambda)$ or $\text{Pois}(\lambda)$, with $\lambda > 0$, if

$$p(x) = \mathbb{P}(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, \dots$$

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]
- $X \sim \text{Poisson}(\lambda)$ or $\text{Pois}(\lambda)$, with $\lambda > 0$, if

$$p(x) = \mathbb{P}(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, \dots$$

• It can be verified that $\sum_{x=0}^{\infty} p(x) = 1$.

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]
- $X \sim \text{Poisson}(\lambda)$ or $\text{Pois}(\lambda)$, with $\lambda > 0$, if

$$p(x) = \mathbb{P}(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, \dots$$

- It can be verified that $\sum_{x=0}^{\infty} p(x) = 1$.
- $\mathbb{E}[X] = \lambda$, $Var(X) = \overline{\lambda}$.

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]
- $X \sim \text{Poisson}(\lambda)$ or $\text{Pois}(\lambda)$, with $\lambda > 0$, if

$$p(x) = \mathbb{P}(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$$
, $x = 0, 1, \dots$

- It can be verified that $\sum_{x=0}^{\infty} p(x) = 1$.
- $\mathbb{E}[X] = \lambda$, $Var(X) = \lambda$.
- If $X_1 \sim \operatorname{Pois}(\lambda_1)$ and $X_2 \sim \operatorname{Pois}(\lambda_2)$ are independent,
 - $X_1 + X_2 \sim \text{Pois}(\lambda_1 + \lambda_2)$:
 - Given $X_1 + X_2 = n$, $X_1 \sim B(n, \lambda_1/(\lambda_1 + \lambda_2))$.

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a,b], \\ 0, & \text{otherwise.} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{b+a}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$.

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a,b], \\ 0, & \text{otherwise.} \end{cases}$$

- $\mathbb{E}[X] = \frac{b+a}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- $X \sim \text{exponential}(\lambda)$ or $\text{Exp}(\lambda)$, with $\lambda > 0$, if its pdf is given by $f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$

• $X \sim \mathrm{uniform}(a,b)$ or $\mathrm{Unif}(a,b)$ with a < b, if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a,b], \\ 0, & \text{otherwise.} \end{cases}$$

- $\mathbb{E}[X] = \frac{b+a}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- $X \sim \operatorname{exponential}(\lambda)$ or $\operatorname{Exp}(\lambda)$, with $\lambda > 0$, if its pdf is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

• λ is called the rate parameter.

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a,b], \\ 0, & \text{otherwise.} \end{cases}$$

- $\mathbb{E}[X] = \frac{b+a}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- $X \sim \operatorname{exponential}(\lambda)$ or $\operatorname{Exp}(\lambda)$, with $\lambda > 0$, if its pdf is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

- ullet λ is called the rate parameter.
- $F(x) = 1 e^{-\lambda x}$, $\mathbb{P}(X > x) = 1 F(x) = e^{-\lambda x}$.

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a,b], \\ 0, & \text{otherwise.} \end{cases}$$

- $\mathbb{E}[X] = \frac{b+a}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- $X \sim \operatorname{exponential}(\lambda)$ or $\operatorname{Exp}(\lambda)$, with $\lambda > 0$, if its pdf is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

- λ is called the rate parameter.
- $F(x) = 1 e^{-\lambda x}$, $\mathbb{P}(X > x) = 1 F(x) = e^{-\lambda x}$.
- $\mathbb{E}[X] = 1/\lambda$, $\operatorname{Var}(X) = 1/\lambda^2$.

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a,b], \\ 0, & \text{otherwise.} \end{cases}$$

- $\mathbb{E}[X] = \frac{b+a}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- $X \sim \text{exponential}(\lambda)$ or $\text{Exp}(\lambda)$, with $\lambda > 0$, if its pdf is given by $f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$

- λ is called the rate parameter.
- $F(x) = 1 e^{-\lambda x}$, $\mathbb{P}(X > x) = 1 F(x) = e^{-\lambda x}$.
- $\mathbb{E}[X] = 1/\lambda$, $\operatorname{Var}(X) = 1/\lambda^2$.
- Memoryless Property: For $s > t \ge 0$,

$$\begin{split} \mathbb{P}(X>s|X>t) &= \frac{\mathbb{P}(X>s,X>t)}{\mathbb{P}(X>t)} = \frac{\mathbb{P}(X>s)}{\mathbb{P}(X>t)} = \frac{e^{-\lambda s}}{e^{-\lambda t}} = e^{-\lambda(s-t)} \\ &= \mathbb{P}(X>s-t). \end{split}$$

• If $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.

- If $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha > 0$, $Y := X^{1/\alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape & scale parametrization with $\beta = (1/\lambda)^{1/\alpha}$, whose pdf is $f(y) = \alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$

- If $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha > 0$, $Y := X^{1/\alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape & scale parametrization with $\beta = (1/\lambda)^{1/\alpha}$, whose pdf is $f(y) = \alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$
- $\operatorname{Erlang}(k,\lambda)$ or $\operatorname{Erl}(k,\lambda)$, with k being a positive integer, is a generalized version of $\operatorname{Exp}(\lambda)$, whose pdf is $f(x) = \frac{\lambda^k}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0,\infty).$

- If $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha > 0$, $Y := X^{1/\alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape & scale parametrization with $\beta = (1/\lambda)^{1/\alpha}$, whose pdf is $f(y) = \alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$
- $\operatorname{Erlang}(k,\lambda)$ or $\operatorname{Erl}(k,\lambda)$, with k being a positive integer, is a generalized version of $\operatorname{Exp}(\lambda)$, whose pdf is $f(x) = \frac{\lambda^k}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0,\infty).$
 - $\mathbb{E}[X] = k/\lambda$, $Var(X) = k/\lambda^2$.

- If $X_1 \sim \text{Exp}(\lambda_1)$ and $X_2 \sim \text{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2).$
- If $X \sim \text{Exp}(\lambda)$, then for $\alpha > 0$, $Y := X^{1/\alpha} \sim \text{Weibull}(\alpha, \beta)$ in shape & scale parametrization with $\beta = (1/\lambda)^{1/\alpha}$, whose pdf is $f(y) = \alpha \beta^{-\alpha} y^{\alpha - 1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$
- $\operatorname{Erlang}(k,\lambda)$ or $\operatorname{Erl}(k,\lambda)$, with k being a positive integer, is a generalized version of $\operatorname{Exp}(\lambda)$, whose pdf is $f(x)=\frac{\lambda^k}{(k-1)!}x^{k-1}e^{-\lambda x},\quad x\in[0,\infty).$

$$f(x) = \frac{\lambda^k}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0, \infty).$$

- $\mathbb{E}[X] = k/\lambda$, $Var(X) = k/\lambda^2$.
- $k = 1 \Longrightarrow \operatorname{Exp}(\lambda)$.

- If $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha > 0$, $Y := X^{1/\alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape & scale parametrization with $\beta = (1/\lambda)^{1/\alpha}$, whose pdf is $f(y) = \alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$

• $\operatorname{Erlang}(k,\lambda)$ or $\operatorname{Erl}(k,\lambda)$, with k being a positive integer, is a generalized version of $\operatorname{Exp}(\lambda)$, whose pdf is

generalized version of
$$\operatorname{Exp}(\lambda)$$
, whose pdf is
$$f(x) = \frac{\lambda^k}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0,\infty).$$

- $\mathbb{E}[X] = k/\lambda$, $Var(X) = k/\lambda^2$.
- $k = 1 \Longrightarrow \operatorname{Exp}(\lambda)$.
- If $X_1 \sim \operatorname{Erl}(k_1, \lambda)$ and $X_2 \sim \operatorname{Erl}(k_2, \lambda)$ are independent, then $X_1 + X_2 \sim \operatorname{Erl}(k_1 + k_2, \lambda)$.

- If $X_1 \sim \text{Exp}(\lambda_1)$ and $X_2 \sim \text{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2).$
- If $X \sim \text{Exp}(\lambda)$, then for $\alpha > 0$, $Y := X^{1/\alpha} \sim \text{Weibull}(\alpha, \beta)$ in shape & scale parametrization with $\beta = (1/\lambda)^{1/\alpha}$, whose pdf is $f(y) = \alpha \beta^{-\alpha} y^{\alpha - 1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$
- $\operatorname{Erlang}(k,\lambda)$ or $\operatorname{Erl}(k,\lambda)$, with k being a positive integer, is a

generalized version of
$$\operatorname{Exp}(\lambda)$$
, whose pdf is
$$f(x) = \frac{\lambda^k}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0,\infty).$$

- $\mathbb{E}[X] = k/\lambda$, $Var(X) = k/\lambda^2$.
- $k=1 \Longrightarrow \operatorname{Exp}(\lambda)$.
- If $X_1 \sim \operatorname{Erl}(k_1, \lambda)$ and $X_2 \sim \operatorname{Erl}(k_2, \lambda)$ are independent, then $X_1 + X_2 \sim \text{Erl}(k_1 + k_2, \lambda).$
- If $X \sim \mathrm{Erl}(k,\lambda)$, then $cX \sim \mathrm{Erl}(k,\lambda/c)$ for c>0.

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

• $X \sim \operatorname{Gamma}(\alpha, \lambda)$ in shape & rate parametrization with $\alpha, \lambda > 0$, if its pdf is given by

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

• $\mathbb{E}[X] = \alpha/\lambda$, $Var(X) = \alpha/\lambda^2$.

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

- $\mathbb{E}[X] = \alpha/\lambda$, $Var(X) = \alpha/\lambda^2$.
- $\Gamma(\alpha)\coloneqq\int_0^\infty t^{\alpha-1}e^{-t}\mathrm{d}t$ is known as the gamma function.
 - $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$; $\Gamma(n)=(n-1)!$, for integer n>0.

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

- $\mathbb{E}[X] = \alpha/\lambda$, $Var(X) = \alpha/\lambda^2$.
- $\Gamma(\alpha)\coloneqq\int_0^\infty t^{\alpha-1}e^{-t}\mathrm{d}t$ is known as the gamma function.
 - $\Gamma(\alpha+1)=\alpha\Gamma(\alpha); \ \Gamma(n)=(n-1)!, \ \text{for integer} \ n>0.$
- If $X_1 \sim \operatorname{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \operatorname{Gamma}(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim \operatorname{Gamma}(\alpha_1 + \alpha_2, \lambda)$.

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

- $\mathbb{E}[X] = \alpha/\lambda$, $Var(X) = \alpha/\lambda^2$.
- $\Gamma(\alpha) \coloneqq \int_0^\infty t^{\alpha-1} e^{-t} \mathrm{d}t$ is known as the gamma function.
 - $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$; $\Gamma(n)=(n-1)!$, for integer n>0.
- If $X_1 \sim \operatorname{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \operatorname{Gamma}(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim \operatorname{Gamma}(\alpha_1 + \alpha_2, \lambda)$.
- If $X \sim \text{Gamma}(\alpha, \lambda)$, then $cX \sim \text{Gamma}(\alpha, \lambda/c)$ for c > 0.

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

- $\mathbb{E}[X] = \alpha/\lambda$, $Var(X) = \alpha/\lambda^2$.
- $\Gamma(\alpha)\coloneqq\int_0^\infty t^{\alpha-1}e^{-t}\mathrm{d}t$ is known as the gamma function.
 - $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$; $\Gamma(n)=(n-1)!$, for integer n>0.
- If $X_1 \sim \operatorname{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \operatorname{Gamma}(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim \operatorname{Gamma}(\alpha_1 + \alpha_2, \lambda)$.
- If $X \sim \operatorname{Gamma}(\alpha, \lambda)$, then $cX \sim \operatorname{Gamma}(\alpha, \lambda/c)$ for c > 0.
- Important special cases of $Gamma(\alpha, \lambda)$:
 - α is an integer $\Longrightarrow \operatorname{Erl}(\alpha, \lambda)$; $\alpha = 1 \Longrightarrow \operatorname{Exp}(\lambda)$;

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

- $\mathbb{E}[X] = \alpha/\lambda$, $Var(X) = \alpha/\lambda^2$.
- $\Gamma(\alpha)\coloneqq\int_0^\infty t^{\alpha-1}e^{-t}\mathrm{d}t$ is known as the gamma function.
 - $\Gamma(\alpha+1)=\alpha\Gamma(\alpha);\ \Gamma(n)=(n-1)!,\ \text{for integer }n>0.$
- If $X_1 \sim \operatorname{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \operatorname{Gamma}(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim \operatorname{Gamma}(\alpha_1 + \alpha_2, \lambda)$.
- If $X \sim \operatorname{Gamma}(\alpha, \lambda)$, then $cX \sim \operatorname{Gamma}(\alpha, \lambda/c)$ for c > 0.
- Important special cases of $Gamma(\alpha, \lambda)$:
 - α is an integer $\Longrightarrow \operatorname{Erl}(\alpha, \lambda)$; $\alpha = 1 \Longrightarrow \operatorname{Exp}(\lambda)$;
 - $\alpha = p/2$, where p is an integer, and $\lambda = 1/2 \Longrightarrow$ chi-square distribution with p degrees of freedom, denoted as χ_p^2 .

► Continuous

 Beta distribution is a very flexible distribution that in a finite interval.

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \text{Beta}(\alpha, \beta)$ with $\alpha, \beta > 0$, if its pdf is given by

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in (0, 1).$$

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \text{Beta}(\alpha, \beta)$ with $\alpha, \beta > 0$, if its pdf is given by

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in (0, 1).$$

•
$$\mathbb{E}[X] = \alpha/(\alpha + \beta)$$
, $Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \text{Beta}(\alpha, \beta)$ with $\alpha, \beta > 0$, if its pdf is given by

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in (0, 1).$$

- $\mathbb{E}[X] = \alpha/(\alpha + \beta)$, $\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.
- $B(\alpha, \beta) := \int_0^1 t^{\alpha 1} (1 t)^{\beta 1} dt$ is known as the beta function.

•
$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
.

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \text{Beta}(\alpha, \beta)$ with $\alpha, \beta > 0$, if its pdf is given by

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in (0, 1).$$

- $\mathbb{E}[X] = \alpha/(\alpha + \beta)$, $\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.
- $B(\alpha, \beta) := \int_0^1 t^{\alpha 1} (1 t)^{\beta 1} dt$ is known as the beta function.
 - $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$.
- The $Beta(\alpha, \beta)$ pdf is quite flexible
 - $\alpha = 1$, $\beta = 1 \Longrightarrow \text{Unif}(0,1)$
 - $\alpha > 1$, $\beta = 1 \Longrightarrow$ strictly increasing
 - $\alpha=1$, $\beta>1$ \Longrightarrow strictly decreasing
 - $\alpha < 1$, $\beta < 1 \Longrightarrow U$ -shaped
 - $\alpha > 1, \beta > 1 \Longrightarrow unimodal$

• $X \sim \text{Student's } t$ distribution with p degrees of freedom, denoted as t_p , where p is an integer, if its pdf is given by

$$f(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+x^2/p)^{(p+1)/2}}, \ x \in \mathbb{R}.$$

• $X \sim \text{Student's } t$ distribution with p degrees of freedom, denoted as t_p , where p is an integer, if its pdf is given by

$$f(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+x^2/p)^{(p+1)/2}}, \ x \in \mathbb{R}.$$

• $\mathbb{E}[X] = 0$ if p > 1;

• $X \sim \text{Student's } t$ distribution with p degrees of freedom, denoted as t_p , where p is an integer, if its pdf is given by

$$f(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+x^2/p)^{(p+1)/2}}, \ x \in \mathbb{R}.$$

- $\mathbb{E}[X] = 0 \text{ if } p > 1;$
- Var(X) = p/(p-2) if p > 2.

• $X \sim \text{Student's } t$ distribution with p degrees of freedom, denoted as t_p , where p is an integer, if its pdf is given by

$$f(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+x^2/p)^{(p+1)/2}}, \ x \in \mathbb{R}.$$

- $\mathbb{E}[X] = 0 \text{ if } p > 1;$
- Var(X) = p/(p-2) if p > 2.
- t₁ is also known as the standard Cauchy distribution, or Cauchy(0, 1), whose pdf is simply

$$f(x) = \frac{1}{\pi(1+x^2)}, \ x \in \mathbb{R}.$$

► Normal Distribution

• The **normal distribution** (sometimes called the Gaussian distribution) plays a **central role** in a large body of statistics.

- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

•
$$\mathbb{E}[X] = \mu$$
, $\operatorname{Var}(X) = \sigma^2$.

- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

- $\mathbb{E}[X] = \mu$, $\operatorname{Var}(X) = \sigma^2$.
- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z \coloneqq (X \mu)/\sigma \sim \mathcal{N}(0, 1)$.
 - ullet Z is also known as the **standard normal** RV.
 - We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.
 - $\mathbb{P}(X \le x) = \Phi((x \mu)/\sigma)$.

- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

- $\mathbb{E}[X] = \mu$, $\operatorname{Var}(X) = \sigma^2$.
- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z \coloneqq (X \mu)/\sigma \sim \mathcal{N}(0, 1)$.
 - ullet Z is also known as the **standard normal** RV.
 - We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.
 - $\mathbb{P}(X \le x) = \Phi((x \mu)/\sigma)$.
- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $a + bX \sim \mathcal{N}(a + b\mu, b^2\sigma^2)$ for b > 0.

- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

- $\mathbb{E}[X] = \mu$, $\operatorname{Var}(X) = \sigma^2$.
- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z := (X \mu)/\sigma \sim \mathcal{N}(0, 1)$.
 - ullet Z is also known as the **standard normal** RV.
 - We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.
 - $\mathbb{P}(X \le x) = \Phi((x \mu)/\sigma)$.
- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $a + bX \sim \mathcal{N}(a + b\mu, b^2\sigma^2)$ for b > 0.
- If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ are independent, then $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

► Normal Distribution

• If $Z \sim \mathcal{N}(0,1)$, then $Z^2 \sim \chi_1^2$.

$$\underline{\textit{Proof.}} \quad \mathsf{Let} \ Y \coloneqq Z^2. \ \mathsf{For} \ y \in [0, \infty),$$

$$\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y).$$

Proof. Let
$$Y := Z^2$$
. For $y \in [0, \infty)$,

$$\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y).$$

Then,

$$f(y) = \frac{\mathrm{d}}{\mathrm{d}y} F(y) = \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} - \phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} (-\sqrt{y})$$

$$\underline{\textit{Proof.}} \quad \mathsf{Let} \ Y \coloneqq Z^2. \ \mathsf{For} \ y \in [0, \infty),$$

$$\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y).$$

Then,

$$f(y) = \frac{\mathrm{d}}{\mathrm{d}y} F(y) = \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} - \phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} (-\sqrt{y})$$
$$= 2\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}}.$$

Proof. Let $Y := Z^2$. For $y \in [0, \infty)$,

$$\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y).$$

Then,

$$f(y) = \frac{\mathrm{d}}{\mathrm{d}y} F(y) = \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} - \phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} (-\sqrt{y})$$
$$= 2\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}}.$$

If $Y \sim \chi_1^2$, i.e., $Y \sim \operatorname{Gamma}(1/2,1/2)$, it means its pdf is

$$f(y) = \frac{1}{\sqrt{2}\Gamma(\frac{1}{2})}y^{-\frac{1}{2}}e^{-\frac{y}{2}}.$$

 $\underline{\textit{Proof.}} \quad \mathsf{Let} \; Y \coloneqq Z^2. \; \mathsf{For} \; y \in [0, \infty),$

$$\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y).$$

Then,

$$f(y) = \frac{\mathrm{d}}{\mathrm{d}y} F(y) = \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} - \phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} (-\sqrt{y})$$
$$= 2\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}}.$$

If $Y \sim \chi_1^2$, i.e., $Y \sim \text{Gamma}(1/2, 1/2)$, it means its pdf is

$$f(y) = \frac{1}{\sqrt{2}\Gamma(\frac{1}{\alpha})}y^{-\frac{1}{2}}e^{-\frac{y}{2}}.$$

The proof is completed by showing that $\Gamma(\frac{1}{2})=\int_0^\infty t^{-\frac{1}{2}}e^{-t}\mathrm{d}t=\sqrt{\pi}$, which can be seen if we convert to polar coordinates.

► Normal Distribution

• If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_p^2$ are independent, then $\frac{Z}{\sqrt{V/p}} \sim t_p$.

<u>Proof.</u> Since $V \sim \chi_p^2$, by definition, its pdf is

$$f_V(v) = \frac{(\frac{1}{2})^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} v^{\frac{p}{2} - 1} e^{-\frac{1}{2}v}, \quad v \in (0, \infty).$$

<u>Proof.</u> Since $V \sim \chi_p^2$, by definition, its pdf is

$$f_V(v) = \frac{(\frac{1}{2})^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} v^{\frac{p}{2}-1} e^{-\frac{1}{2}v}, \quad v \in (0, \infty).$$

Let $Y := \sqrt{V/p}$. For $y \in (0, \infty)$,

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \, \mathbb{P}(Y \le y) = \frac{\mathrm{d}}{\mathrm{d}y} \, \mathbb{P}(V \le py^2) = \frac{\mathrm{d}}{\mathrm{d}y} \int_0^{py^2} f_V(v) \mathrm{d}v = 2py f_V(py^2).$$

<u>Proof.</u> Since $V \sim \chi_p^2$, by definition, its pdf is

$$f_V(v) = \frac{(\frac{1}{2})^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} v^{\frac{p}{2}-1} e^{-\frac{1}{2}v}, \quad v \in (0, \infty).$$

Let $Y := \sqrt{V/p}$. For $y \in (0, \infty)$,

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \, \mathbb{P}(Y \le y) = \frac{\mathrm{d}}{\mathrm{d}y} \, \mathbb{P}(V \le py^2) = \frac{\mathrm{d}}{\mathrm{d}y} \int_0^{py^2} f_V(v) \mathrm{d}v = 2py f_V(py^2).$$

Let
$$T\coloneqq \frac{Z}{\sqrt{V/p}}=\frac{Z}{Y}.$$
 For $t\in\mathbb{R}$,

$$\mathbb{P}(T \le t) = \mathbb{P}\left(\frac{Z}{Y} \le t\right) = \mathbb{P}(Z \le tY) = \int_0^\infty \mathbb{P}(Z \le ty) f_Y(y) \mathrm{d}y. \quad \text{(Why?)}$$

<u>Proof.</u> Since $V \sim \chi_p^2$, by definition, its pdf is

$$f_V(v) = \frac{(\frac{1}{2})^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} v^{\frac{p}{2}-1} e^{-\frac{1}{2}v}, \quad v \in (0, \infty).$$

Let $Y := \sqrt{V/p}$. For $y \in (0, \infty)$,

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \, \mathbb{P}(Y \le y) = \frac{\mathrm{d}}{\mathrm{d}y} \, \mathbb{P}(V \le py^2) = \frac{\mathrm{d}}{\mathrm{d}y} \int_0^{py^2} f_V(v) \mathrm{d}v = 2py f_V(py^2).$$

Let $T\coloneqq \frac{Z}{\sqrt{V/p}}=\frac{Z}{Y}.$ For $t\in\mathbb{R}$,

$$\mathbb{P}(T \le t) = \mathbb{P}\left(\frac{Z}{Y} \le t\right) = \mathbb{P}(Z \le tY) = \int_0^\infty \mathbb{P}(Z \le ty) f_Y(y) dy. \quad \text{(Why?)}$$

Then,

$$f_T(t) = \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(T \le t) = \int_0^\infty \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \le ty) f_Y(y) \mathrm{d}y.$$

► Normal Distribution

<u>Proof.</u> (Cont'd) Note that $\frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \leq ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y \phi(ty)$.

► Normal Distribution

Proof. (Cont'd) Note that
$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \leq ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y\phi(ty)$$
. So, $f_T(t) = \int_0^{\infty} y\phi(ty)f_Y(y)\mathrm{d}y = \int_0^{\infty} y\phi(ty)2pyf_V(py^2)\mathrm{d}y$

Proof. (Cont'd) Note that
$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \leq ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y\phi(ty)$$
. So,
$$f_T(t) = \int_0^\infty y\phi(ty)f_Y(y)\mathrm{d}y = \int_0^\infty y\phi(ty)2pyf_V(py^2)\mathrm{d}y$$
$$= \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} (py^2)^{\frac{p}{2}-1} e^{-\frac{1}{2}py^2} \mathrm{d}y$$

$$\begin{split} & \underline{Proof.} \; (\textit{Cont'd}) \quad \text{Note that } \tfrac{\mathrm{d}}{\mathrm{d}t} \, \mathbb{P}(Z \leq ty) = \tfrac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y \phi(ty). \; \text{So,} \\ & f_T(t) = \int_0^\infty y \phi(ty) f_Y(y) \mathrm{d}y = \int_0^\infty y \phi(ty) 2py f_V(py^2) \mathrm{d}y \\ & = \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)} (py^2)^{\frac{p}{2} - 1} e^{-\frac{1}{2}py^2} \mathrm{d}y \\ & = \frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_0^\infty y^p e^{-\frac{1}{2}(t^2 + p)y^2} \mathrm{d}y. \end{split}$$

$$\begin{split} & \underline{Proof.} \; \textit{(Cont'd)} \quad \text{Note that } \frac{\mathrm{d}}{\mathrm{d}t} \, \mathbb{P}(Z \leq ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y \phi(ty). \; \text{So,} \\ & f_T(t) = \int_0^\infty y \phi(ty) f_Y(y) \mathrm{d}y = \int_0^\infty y \phi(ty) 2py f_V(py^2) \mathrm{d}y \\ & = \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)} (py^2)^{\frac{p}{2} - 1} e^{-\frac{1}{2}py^2} \mathrm{d}y \\ & = \frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_0^\infty y^p e^{-\frac{1}{2}(t^2 + p)y^2} \mathrm{d}y. \end{split}$$

Let $x := y^2$. Then, integration by substitution shows that

$$\int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} \mathrm{d}y = \frac{1}{2} \int_0^\infty x^{\frac{p-1}{2}} e^{-\frac{1}{2}(t^2+p)x} \mathrm{d}x =: \frac{1}{2} \int_0^\infty x^{\alpha-1} e^{-\lambda x} \mathrm{d}x,$$

where $\alpha := \frac{p+1}{2}$ and $\lambda := \frac{1}{2}(t^2 + p)$.

$$\begin{split} & \underline{Proof.} \; \textit{(Cont'd)} \quad \text{Note that } \frac{\mathrm{d}}{\mathrm{d}t} \, \mathbb{P}(Z \leq ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y \phi(ty). \; \text{So,} \\ & f_T(t) = \int_0^\infty y \phi(ty) f_Y(y) \mathrm{d}y = \int_0^\infty y \phi(ty) 2py f_V(py^2) \mathrm{d}y \\ & = \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)} (py^2)^{\frac{p}{2} - 1} e^{-\frac{1}{2}py^2} \mathrm{d}y \\ & = \frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_0^\infty y^p e^{-\frac{1}{2}(t^2 + p)y^2} \mathrm{d}y. \end{split}$$

Let $x := y^2$. Then, integration by substitution shows that

$$\int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} dy = \frac{1}{2} \int_0^\infty x^{\frac{p-1}{2}} e^{-\frac{1}{2}(t^2+p)x} dx =: \frac{1}{2} \int_0^\infty x^{\alpha-1} e^{-\lambda x} dx,$$

where $\alpha \coloneqq \frac{p+1}{2}$ and $\lambda \coloneqq \frac{1}{2}(t^2+p)$. Recalling the pdf of $\Gamma(\alpha,\lambda)$, it is easy to see that $\int_0^\infty x^{\alpha-1}e^{-\lambda x}\mathrm{d}x = \Gamma(\alpha)/\lambda^\alpha$.

$$\begin{split} & \underline{Proof.} \; (\textit{Cont'd}) \quad \text{Note that } \frac{\mathrm{d}}{\mathrm{d}t} \, \mathbb{P}(Z \leq ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y \phi(ty). \; \text{So,} \\ & f_T(t) = \int_0^\infty y \phi(ty) f_Y(y) \mathrm{d}y = \int_0^\infty y \phi(ty) 2py f_V(py^2) \mathrm{d}y \\ & = \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)} (py^2)^{\frac{p}{2} - 1} e^{-\frac{1}{2}py^2} \mathrm{d}y \\ & = \frac{1}{\Gamma(\mathcal{P})} \frac{1}{(n\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_0^\infty y^p e^{-\frac{1}{2}(t^2 + p)y^2} \mathrm{d}y. \end{split}$$

Let $x := y^2$. Then, integration by substitution shows that

$$\int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} dy = \frac{1}{2} \int_0^\infty x^{\frac{p-1}{2}} e^{-\frac{1}{2}(t^2+p)x} dx =: \frac{1}{2} \int_0^\infty x^{\alpha-1} e^{-\lambda x} dx,$$

where $\alpha \coloneqq \frac{p+1}{2}$ and $\lambda \coloneqq \frac{1}{2}(t^2+p)$. Recalling the pdf of $\Gamma(\alpha,\lambda)$, it is easy to see that $\int_0^\infty x^{\alpha-1}e^{-\lambda x}\mathrm{d}x = \Gamma(\alpha)/\lambda^\alpha$. Finally,

$$f_T(t) = \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \cdot \frac{1}{2} \frac{\Gamma(\frac{p+1}{2})}{(1/2)^{(p+1)/2} (t^2 + p)^{(p+1)/2}}$$
$$= \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+t^2/p)^{(p+1)/2}}.$$

► Normal Distribution

• $X := (X_1, \dots, X_k)^{\mathsf{T}}$ is said to follow a k-variate normal distribution, if **every** linear combination of X_1, \dots, X_k follows a (univariate) normal distribution.

- $X := (X_1, \dots, X_k)^{\mathsf{T}}$ is said to follow a k-variate normal distribution, if **every** linear combination of X_1, \dots, X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.

- $X := (X_1, \dots, X_k)^{\mathsf{T}}$ is said to follow a k-variate normal distribution, if **every** linear combination of X_1, \dots, X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, $\mathbf{X} = (X_1, X_2)^\mathsf{T}$ is also said to follow a *bivariate* normal distribution.

- $X := (X_1, \dots, X_k)^{\mathsf{T}}$ is said to follow a k-variate normal distribution, if **every** linear combination of X_1, \dots, X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, $\mathbf{X} = (X_1, X_2)^\mathsf{T}$ is also said to follow a *bivariate* normal distribution.
- $m{X}\sim$ a k-variate normal distribution, denoted as $\mathcal{N}(m{\mu},m{\Sigma})$, if its joint pdf is given by

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})}, \ \boldsymbol{x} \in \mathbb{R}^k,$$

- $X := (X_1, \dots, X_k)^{\mathsf{T}}$ is said to follow a k-variate normal distribution, if **every** linear combination of X_1, \dots, X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, $X = (X_1, X_2)^T$ is also said to follow a *bivariate* normal distribution.
- $m{X}\sim$ a k-variate normal distribution, denoted as $\mathcal{N}(m{\mu},m{\Sigma})$, if its joint pdf is given by

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})}, \ \boldsymbol{x} \in \mathbb{R}^k,$$

- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)^{\mathsf{T}} = \mathbb{E}[\boldsymbol{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_k])^{\mathsf{T}} \in \mathbb{R}^k$.
- $\Sigma = (\Sigma_{ij}) = \text{Cov}(X, X) = (\text{Cov}(X_i, X_j)) \in \mathbb{R}^{k \times k}$.

- $X := (X_1, \dots, X_k)^{\mathsf{T}}$ is said to follow a k-variate normal distribution, if **every** linear combination of X_1, \dots, X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, $X = (X_1, X_2)^T$ is also said to follow a *bivariate* normal distribution.
- $m{X}\sim$ a k-variate normal distribution, denoted as $\mathcal{N}(m{\mu}, m{\Sigma})$, if its joint pdf is given by

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})}, \ \boldsymbol{x} \in \mathbb{R}^k,$$

- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)^{\mathsf{T}} = \mathbb{E}[\boldsymbol{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_k])^{\mathsf{T}} \in \mathbb{R}^k$.
- $\Sigma = (\Sigma_{ij}) = \text{Cov}(X, X) = (\text{Cov}(X_i, X_i)) \in \mathbb{R}^{k \times k}$.
- Σ is a symmetric and positive definite matrix.

- $X := (X_1, \dots, X_k)^{\mathsf{T}}$ is said to follow a k-variate normal distribution, if **every** linear combination of X_1, \dots, X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, $X = (X_1, X_2)^T$ is also said to follow a *bivariate* normal distribution.
- $m{X}\sim$ a k-variate normal distribution, denoted as $\mathcal{N}(m{\mu}, m{\Sigma})$, if its joint pdf is given by

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})}, \ \boldsymbol{x} \in \mathbb{R}^k,$$

- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)^{\mathsf{T}} = \mathbb{E}[\boldsymbol{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_k])^{\mathsf{T}} \in \mathbb{R}^k$.
- $\Sigma = (\Sigma_{ij}) = \text{Cov}(X, X) = (\text{Cov}(X_i, X_i)) \in \mathbb{R}^{k \times k}$.
- Σ is a symmetric and positive definite matrix.
- $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2), i = 1, \dots, k.$

- If $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is k dimensional, then
 - $\pmb{Z} \coloneqq \pmb{A}^{-1}(\pmb{X} \pmb{\mu}) \sim \mathcal{N}(\pmb{0}, \pmb{I})$, where \pmb{A} satisfies $\pmb{\Sigma} = \pmb{A}\pmb{A}^\mathsf{T}$ (Cholesky decomposition), $\pmb{0} \in \mathbb{R}^k$, and $\pmb{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix.

- If $X \sim \mathcal{N}(\mu, \Sigma)$ is k dimensional, then
 - $\pmb{Z} \coloneqq \pmb{A}^{-1}(\pmb{X} \pmb{\mu}) \sim \mathcal{N}(\pmb{0}, \pmb{I})$, where \pmb{A} satisfies $\pmb{\Sigma} = \pmb{A}\pmb{A}^\mathsf{T}$ (Cholesky decomposition), $\pmb{0} \in \mathbb{R}^k$, and $\pmb{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
 - $\mathbf{Z} = (Z_1, \dots, Z_k)^\mathsf{T}$, where $Z_i \sim \mathcal{N}(0, 1)$, $i = 1, \dots, k$, iid.

Normal Distribution

- If $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is k dimensional, then
 - $\pmb{Z} \coloneqq \pmb{A}^{-1}(\pmb{X} \pmb{\mu}) \sim \mathcal{N}(\pmb{0}, \pmb{I})$, where \pmb{A} satisfies $\pmb{\Sigma} = \pmb{A}\pmb{A}^\mathsf{T}$ (Cholesky decomposition), $\pmb{0} \in \mathbb{R}^k$, and $\pmb{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
 - $Z = (Z_1, ..., Z_k)^T$, where $Z_i \sim \mathcal{N}(0, 1)$, i = 1, ..., k, iid.
 - $ullet \ a + BX \sim \mathcal{N}(a + B\mu, B\Sigma B^\intercal).^\dagger$

[†]The multivariate normal distribution will be degenerate if B does not have full row rank (B不行满秩).

- If $X \sim \mathcal{N}(\mu, \Sigma)$ is k dimensional, then
 - $\pmb{Z} \coloneqq \pmb{A}^{-1}(\pmb{X} \pmb{\mu}) \sim \mathcal{N}(\pmb{0}, \pmb{I})$, where \pmb{A} satisfies $\pmb{\Sigma} = \pmb{A}\pmb{A}^\mathsf{T}$ (Cholesky decomposition), $\pmb{0} \in \mathbb{R}^k$, and $\pmb{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
 - $Z = (Z_1, ..., Z_k)^T$, where $Z_i \sim \mathcal{N}(0, 1)$, i = 1, ..., k, iid.
 - $ullet \ a + BX \sim \mathcal{N}(a + B\mu, B\Sigma B^\intercal).^\dagger$
- Suppose $m{X}$ is a k dimensional random vector. Then, $m{X} \sim \mathcal{N}(m{\mu}, m{\Sigma}) \Longleftrightarrow$ There exist $m{\mu} \in \mathbb{R}^k$ and $m{A} \in \mathbb{R}^{k imes \ell}$ such that $m{X} = m{\mu} + m{A} m{Z}$, where $m{Z} \sim \mathcal{N}(\mathbf{0}, m{I})$ with $m{0} \in \mathbb{R}^\ell$ and $m{I} \in \mathbb{R}^{\ell imes \ell}$.

 $^{^\}dagger$ The multivariate normal distribution will be degenerate if B does not have full row rank (B不行满秩).

- If $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is k dimensional, then
 - $\pmb{Z} \coloneqq \pmb{A}^{-1}(\pmb{X} \pmb{\mu}) \sim \mathcal{N}(\pmb{0}, \pmb{I})$, where \pmb{A} satisfies $\pmb{\Sigma} = \pmb{A}\pmb{A}^\mathsf{T}$ (Cholesky decomposition), $\pmb{0} \in \mathbb{R}^k$, and $\pmb{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
 - $Z = (Z_1, ..., Z_k)^T$, where $Z_i \sim \mathcal{N}(0, 1)$, i = 1, ..., k, iid.
 - $ullet \ a + BX \sim \mathcal{N}(a + B\mu, B\Sigma B^\intercal).^\dagger$
- Suppose $m{X}$ is a k dimensional random vector. Then, $m{X} \sim \mathcal{N}(m{\mu}, m{\Sigma}) \Longleftrightarrow$ There exist $m{\mu} \in \mathbb{R}^k$ and $m{A} \in \mathbb{R}^{k imes \ell}$ such that $m{X} = m{\mu} + m{A} m{Z}$, where $m{Z} \sim \mathcal{N}(m{0}, m{I})$ with $m{0} \in \mathbb{R}^\ell$ and $m{I} \in \mathbb{R}^{\ell imes \ell}$.
 - Such $oldsymbol{A}$ must satisfy $oldsymbol{\Sigma} = oldsymbol{A} oldsymbol{A}^\intercal$.

 $^{^\}dagger$ The multivariate normal distribution will be degenerate if B does not have full row rank (B 不行满秩).

• Bivariate normal distribution: $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\mathsf{T}}$, and

$$\boldsymbol{\Sigma} = \left[\begin{array}{cc} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{array} \right] =: \left[\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right],$$

and the joint pdf is

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \times e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right]}.$$

• Bivariate normal distribution: $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\mathsf{T}}$, and

$$\boldsymbol{\Sigma} = \left[\begin{array}{cc} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{array} \right] =: \left[\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right],$$

and the joint pdf is

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \times e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right]}$$

• To see $\rho = 0 \Longrightarrow X_1 \perp X_2$, let $\rho = 0$, and note

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{1}{2} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right]}$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}} \times \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_2 - \mu_2)^2}{2\sigma_2^2}} = f_{X_1}(x_1) f_{X_2}(x_2).$$

► Normal Distribution

• If $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_i \sim \mathcal{N}(\mu_i, \sigma^2)$, i = 1, 2, then $X_1 + X_2 \perp X_1 - X_2$.

Proof. Note that

$$m{Y} \coloneqq \left[egin{array}{c} X_1 + X_2 \ X_1 - X_2 \end{array}
ight] = \left[egin{array}{c} 1 & 1 \ 1 & -1 \end{array}
ight] \left[egin{array}{c} X_1 \ X_2 \end{array}
ight] \eqqcolon m{B} \left[egin{array}{c} X_1 \ X_2 \end{array}
ight].$$

Proof. Note that

$$m{Y} \coloneqq \left[egin{array}{c} X_1 + X_2 \ X_1 - X_2 \end{array}
ight] = \left[egin{array}{c} 1 & 1 \ 1 & -1 \end{array}
ight] \left[egin{array}{c} X_1 \ X_2 \end{array}
ight] \eqqcolon m{B} \left[egin{array}{c} X_1 \ X_2 \end{array}
ight].$$

Since B has full row rank, $Y \sim \mathcal{N}(B\mu, B\Sigma B^{\mathsf{T}})$, which is non-degenerate.

Proof. Note that

$$\boldsymbol{Y} \coloneqq \left[egin{array}{c} X_1 + X_2 \ X_1 - X_2 \end{array}
ight] = \left[egin{array}{c} 1 & 1 \ 1 & -1 \end{array}
ight] \left[egin{array}{c} X_1 \ X_2 \end{array}
ight] \eqqcolon \boldsymbol{B} \left[egin{array}{c} X_1 \ X_2 \end{array}
ight].$$

Since ${\pmb B}$ has full row rank, ${\pmb Y} \sim {\cal N}({\pmb B}{\pmb \mu}, {\pmb B}{\pmb \Sigma}{\pmb B}^{\sf T})$, which is non-degenerate. Hence, to prove $X_1 + X_2 \perp X_1 - X_2$, it suffices to show ${\rm Cov}(X_1 + X_2, X_1 - X_2) = 0$.

Proof. Note that

$$\boldsymbol{Y} \coloneqq \left[egin{array}{c} X_1 + X_2 \ X_1 - X_2 \end{array}
ight] = \left[egin{array}{c} 1 & 1 \ 1 & -1 \end{array}
ight] \left[egin{array}{c} X_1 \ X_2 \end{array}
ight] \eqqcolon \boldsymbol{B} \left[egin{array}{c} X_1 \ X_2 \end{array}
ight].$$

Since ${\pmb B}$ has full row rank, ${\pmb Y} \sim \mathcal{N}({\pmb B}{\pmb \mu}, {\pmb B}{\pmb \Sigma}{\pmb B}^{\mathsf T})$, which is non-degenerate. Hence, to prove $X_1 + X_2 \perp X_1 - X_2$, it suffices to show $\mathrm{Cov}(X_1 + X_2, X_1 - X_2) = 0$. Note that

$$Cov(X_1 + X_2, X_1 - X_2) = Cov(X_1, X_1) - Cov(X_2, X_2)$$

= $\sigma^2 - \sigma^2 = 0$.

- There are many other relationships among various probability distributions.
 - See, for example, Song (2005);
 - Or, Leemis & McQueston (2008) and their online interactive graph http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

Figure: Relationships Among 35 Distributions (from Song (2005))

Figure: Relationships Among 76
Distributions (from Leemis & McQueston (2008))

- Probability Space
- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- 5 Useful Inequalities
- 6 Convergence
- Properties of a Random Sample

Markov's Inequality

Let X be a RV. If $\mathbb{P}(X \geq 0) = 1$ and $\mathbb{P}(X = 0) < 1$, then, for any r > 0,

$$\mathbb{P}(X \ge r) \le \frac{\mathbb{E}[X]}{r},$$

with equality if and only if

$$X = \begin{cases} r, & \text{with probability } p, \\ 0, & \text{with probability } 1-p. \end{cases}$$

Markov's Inequality

Let X be a RV. If $\mathbb{P}(X\geq 0)=1$ and $\mathbb{P}(X=0)<1$, then, for any r>0, $\mathbb{P}(X\geq r)\leq \frac{\mathbb{E}[X]}{r},$

with equality if and only if

$$X = \begin{cases} r, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p. \end{cases}$$

 Markov's Inequality has many variations, which are usually called Chebyshev's Inequality.

Chebyshev's Inequality

Let X be a RV and $g(\boldsymbol{x})$ be a nonnegative function. Then, for any r>0,

$$\mathbb{P}(g(X) \ge r) \le \frac{\mathbb{E}[g(X)]}{r}.$$

Chebyshev's Inequality

Let X be a RV and $g(\boldsymbol{x})$ be a nonnegative function. Then, for any r>0,

$$\mathbb{P}(g(X) \ge r) \le \frac{\mathbb{E}[g(X)]}{r}.$$

Chebyshev's Inequality

Let X be a RV. Then, for any r, p > 0,

$$\mathbb{P}(|X| \ge r) \le \frac{\mathbb{E}[|X|^p]}{r^p}$$
,

$$\mathbb{P}(|X - \mu| \ge r) \le \frac{\sigma^2}{r^2},$$

where $\mu := \mathbb{E}[X]$, and $\sigma^2 := \operatorname{Var}(X)$.

Useful Inequalities

ightharpoonup Tighter Bound for Z

• Chebyshev's Inequality is typically very conservative.

- Chebyshev's Inequality is typically very conservative.
- If $Z \sim \mathcal{N}(0,1)$, a tighter bound is available: For any t > 0,

$$2\Phi(-t) = \mathbb{P}(|Z| \ge t) \le \sqrt{\frac{2}{\pi}} \frac{1}{t} e^{-t^2/2},$$
$$2\Phi(-t) = \mathbb{P}(|Z| \ge t) \ge \sqrt{\frac{2}{\pi}} \frac{t}{1+t^2} e^{-t^2/2}.$$

- Chebyshev's Inequality is typically very conservative.
- If $Z \sim \mathcal{N}(0, 1)$, a tighter bound is available: For any t > 0,

$$2\Phi(-t) = \mathbb{P}(|Z| \ge t) \le \sqrt{\frac{2}{\pi}} \frac{1}{t} e^{-t^2/2},$$
$$2\Phi(-t) = \mathbb{P}(|Z| \ge t) \ge \sqrt{\frac{2}{\pi}} \frac{t}{1+t^2} e^{-t^2/2}.$$

• A function g(x) is **convex** if

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y),$$

for all x and y, and $\lambda \in (0,1)$.

• A function g(x) is **convex** if

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y),$$

for all x and y, and $\lambda \in (0, 1)$.

• A function g(x) is concave if -g(x) is convex.

• A function g(x) is **convex** if

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y),$$

for all x and y, and $\lambda \in (0, 1)$.

• A function g(x) is concave if -g(x) is convex.

Jensen's Inequality

Let X be a RV. If g(x) is a convex function, then

$$\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$$
,

with equality if and only if g(x) is a linear function on some set A such that $\mathbb{P}(X \in A) = 1$.

Hölder's Inequality

Let X and Y be any two RVs, and let p and q be any two positive numbers (necessarily greater than 1) satisfying

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Then,

$$|\mathbb{E}[XY]| \le \mathbb{E}[|XY|] \le {\mathbb{E}[|X|^p]}^{1/p} {\mathbb{E}[|Y|^q]}^{1/q}.$$

Cauchy-Schwarz Inequality (p = q = 2)

Let X and Y be any two RVs, then

$$|\operatorname{\mathbb{E}}[XY]| \leq \operatorname{\mathbb{E}}[|XY|] \leq \{\operatorname{\mathbb{E}}[|X|^2]\}^{1/2} \{\operatorname{\mathbb{E}}[|Y|^2]\}^{1/2}.$$

Cauchy-Schwarz Inequality (p = q = 2)

Let X and Y be any two RVs, then

$$|\operatorname{\mathbb{E}}[XY]| \leq \operatorname{\mathbb{E}}[|XY|] \leq \{\operatorname{\mathbb{E}}[|X|^2]\}^{1/2} \{\operatorname{\mathbb{E}}[|Y|^2]\}^{1/2}.$$

Liapounov's Inequality $(Y \equiv 1)$

Let X be a RV, then for any s > r > 1,

$$\{\mathbb{E}[|X|^r]\}^{1/r} \le \{\mathbb{E}[|X|^s]\}^{1/s}.$$

Minkowski's Inequality

Let X and Y be any two RVs. Then, for $p \ge 1$,

$$\{\mathbb{E}[|X+Y|^p]\}^{1/p} \le \{\mathbb{E}[|X|^p]\}^{1/p} + \{\mathbb{E}[|Y|^p]\}^{1/p}.$$

Minkowski's Inequality

Let X and Y be any two RVs. Then, for $p \ge 1$,

$$\{\mathbb{E}[|X+Y|^p]\}^{1/p} \le \{\mathbb{E}[|X|^p]\}^{1/p} + \{\mathbb{E}[|Y|^p]\}^{1/p}.$$

 Remark: The preceding Hölder's Inequality (including its special cases) and Minkowski's Inequality also apply to numerical sums where there is no explicit reference to an expectation.

- Probability Space
- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- 5 Useful Inequalities
- 6 Convergence
- Properties of a Random Sample

Consider a sequence of RVs $\{X_n : n \geq 1\}$ and another RV X.

• Convergence Almost Surely (a.s.), $X_n \stackrel{a.s.}{\longrightarrow} X$:

$$\mathbb{P}\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1.$$

• Convergence Almost Surely (a.s.), $X_n \xrightarrow{a.s.} X$:

$$\mathbb{P}\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1.$$

• Convergence in Probability, $X_n \stackrel{p}{\longrightarrow} X$:

$$\lim_{n\to\infty}\mathbb{P}\left(\left\{\omega:\left|X_n(\omega)-X(\omega)\right|>\epsilon\right\}\right)=0, \text{ for any }\epsilon>0.$$

• Convergence Almost Surely (a.s.), $X_n \xrightarrow{a.s.} X$:

$$\mathbb{P}\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1.$$

- Convergence in Probability, $X_n \stackrel{p}{\longrightarrow} X$: $\lim_{n \to \infty} \mathbb{P}\left(\{\omega: |X_n(\omega) X(\omega)| > \epsilon\}\right) = 0, \text{ for any } \epsilon > 0.$
- Convergence in Distribution, $X_n \stackrel{d}{\longrightarrow} X$, $X_n \Rightarrow X$, or $X_n \stackrel{d}{\longrightarrow} \text{distribution of } X$: $\lim_{n \to \infty} F_n(x) = F(x), \text{ for any continuous point } x \text{ of } F(x),$ where F_n and F are CDF of X_n and X, respectively.

• Convergence Almost Surely (a.s.), $X_n \stackrel{a.s.}{\longrightarrow} X$:

$$\mathbb{P}\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1.$$

- Convergence in Probability, $X_n \stackrel{p}{\longrightarrow} X$: $\lim_{n \to \infty} \mathbb{P}\left(\{\omega: |X_n(\omega) X(\omega)| > \epsilon\}\right) = 0, \text{ for any } \epsilon > 0.$
- Convergence in Distribution, $X_n \stackrel{d}{\longrightarrow} X$, $X_n \Rightarrow X$, or $X_n \stackrel{d}{\longrightarrow} \text{distribution of } X$: $\lim_{n \to \infty} F_n(x) = F(x), \text{ for any continuous point } x \text{ of } F(x),$ where F_n and F are CDF of X_n and X, respectively.
- Convergence in L^r Norm $(r \in [1, \infty))$, $X_n \xrightarrow{L^r} X$: $\lim_{n \to \infty} \mathbb{E}(|X_n X|^r) = 0,$ given $\mathbb{E}[|X_n|^r] < \infty$ for any $n \ge 1$ and $\mathbb{E}[|X|^r] < \infty$.

• Simple relationships:

• Simple relationships:

• $X_n \stackrel{d}{\longrightarrow}$ a constant $c \implies X_n \stackrel{p}{\longrightarrow} c$.

Simple relationships:

- $X_n \xrightarrow{d}$ a constant $c \implies X_n \xrightarrow{p} c$.
- $X_n \xrightarrow{L^1} X \implies \mathbb{E}[X_n] \to \mathbb{E}[X].$

• Simple relationships:

- $\bullet \ X_n \stackrel{d}{\longrightarrow} \ \text{a constant} \ c \quad \Longrightarrow \quad X_n \stackrel{p}{\longrightarrow} c.$
- $X_n \xrightarrow{L^1} X \implies \mathbb{E}[X_n] \to \mathbb{E}[X].$
- $X_n \xrightarrow{a.s.} X \iff \sup_{j \ge n} |X_j X| \xrightarrow{p} 0.$

Simple relationships:

- $X_n \xrightarrow{d}$ a constant $c \implies X_n \xrightarrow{p} c$.
- $X_n \xrightarrow{L^1} X \implies \mathbb{E}[X_n] \to \mathbb{E}[X].$
- $X_n \xrightarrow{a.s.} X \iff \sup_{j \ge n} |X_j X| \xrightarrow{p} 0.$
- $X_n \xrightarrow{p} X \iff$ For every subsequence $X_n(m)$ there is a further subsequence $X_n(m_k)$ such that $X_n(m_k) \xrightarrow{a.s.} X$.

• Question: If $X_n \stackrel{d}{\longrightarrow} X$ or $X_n \stackrel{p}{\longrightarrow} X$ or $X_n \stackrel{a.s.}{\longrightarrow} X$, does it imply $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

• Question: If $X_n \xrightarrow{d} X$ or $X_n \xrightarrow{p} X$ or $X_n \xrightarrow{a.s.} X$, does it imply $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

Monotone Convergence Theorem (MCT)

Suppose
$$X_n \xrightarrow{a.s.} X$$
, and $0 \le X_1 \le X_2 \le \cdots$ a.s.. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

• Question: If $X_n \xrightarrow{d} X$ or $X_n \xrightarrow{p} X$ or $X_n \xrightarrow{a.s.} X$, does it imply $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

Monotone Convergence Theorem (MCT)

Suppose $X_n \xrightarrow{a.s.} X$, and $0 \le X_1 \le X_2 \le \cdots$ a.s.. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

Fatou's Lemma

Suppose $X_n \geq Y$ a.s. for all n where $\mathbb{E}[|Y|] < \infty$. Then $\mathbb{E}[\liminf_{n \to \infty} X_n] \leq \liminf_{n \to \infty} \mathbb{E}[X_n]$. In particular, if $X_n \geq 0$ a.s. for all n, then the result holds.

Dominated Convergence Theorem (DCT)

Suppose $X_n \xrightarrow{a.s.} X$, $|X_n| \leq Y$ a.s. for all n, and $\mathbb{E}[|Y|] < \infty$. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

Dominated Convergence Theorem (DCT)

Suppose
$$X_n \xrightarrow{a.s.} X$$
, $|X_n| \leq Y$ a.s. for all n , and $\mathbb{E}[|Y|] < \infty$. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

• The DCT is still true if $\stackrel{a.s.}{\longrightarrow}$ is replaced by $\stackrel{p}{\longrightarrow}$.

Dominated Convergence Theorem (DCT)

Suppose $X_n \xrightarrow{a.s.} X$, $|X_n| \leq Y$ a.s. for all n, and $\mathbb{E}[|Y|] < \infty$. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

- The DCT is still true if $\stackrel{a.s.}{\longrightarrow}$ is replaced by $\stackrel{p}{\longrightarrow}$.
- An **even more general** result: Suppose $X_n \stackrel{p}{\longrightarrow} X$, $|X_n| \leq Y$ a.s. for all n, and $\mathbb{E}[|Y|^r] < \infty$ with $r \geq 1$. Then, $\mathbb{E}[|X_n|^r] < \infty$, $\mathbb{E}[|X|^r] < \infty$, and $X_n \stackrel{L^r}{\longrightarrow} X$.

- X = Y a.s., if any one of the following holds:
 - $X_n \xrightarrow{a.s.}_n X$ and $X_n \xrightarrow{a.s.}_n Y$;
 - $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$;
 - $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.

- ► More Properties
- X = Y a.s., if any one of the following holds:
 - $X_n \xrightarrow{a.s.}_n X$ and $X_n \xrightarrow{a.s.}_n Y$;
 - $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$;
 - $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.
- If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$.

- X = Y a.s., if any one of the following holds:
 - $X_n \xrightarrow{a.s.} X$ and $X_n \xrightarrow{a.s.} Y$;
 - $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$;
 - $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.
- If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{a.s.} aX + bY$; $X_nY_n \xrightarrow{a.s.} XY$. (Due to CMT)

- ► More Properties
- X = Y a.s., if any one of the following holds:
 - $X_n \xrightarrow{a.s.} X$ and $X_n \xrightarrow{a.s.} Y$;
 - $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$;
 - $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.
- If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{a.s.} aX + bY$; $X_nY_n \xrightarrow{a.s.} XY$. (Due to CMT)
- If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{p} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{p} aX + bY$; $X_nY_n \xrightarrow{p} XY$. (Due to CMT)

- X = Y a.s., if any one of the following holds:
 - $X_n \xrightarrow{a.s.} X$ and $X_n \xrightarrow{a.s.} Y$;
 - $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$;
 - $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.
- If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{a.s.} aX + bY$; $X_nY_n \xrightarrow{a.s.} XY$. (Due to CMT)
- If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{p} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{p} aX + bY$; $X_nY_n \xrightarrow{p} XY$. (Due to CMT)
- If $X_n \xrightarrow{L^r} X$ and $Y_n \xrightarrow{L^r} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{L^r} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{L^r} aX + bY$.

- X = Y a.s., if any one of the following holds:
 - $X_n \xrightarrow{a.s.} X$ and $X_n \xrightarrow{a.s.} Y$;
 - $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$;
 - $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.
- If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{a.s.} aX + bY$; $X_nY_n \xrightarrow{a.s.} XY$. (Due to CMT)
- If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{p} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{p} aX + bY$; $X_nY_n \xrightarrow{p} XY$. (Due to CMT)
- If $X_n \xrightarrow{L^r} X$ and $Y_n \xrightarrow{L^r} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{L^r} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{L^r} aX + bY$.
- None of the above are true for convergence in distribution.

- ► More Properties
- X = Y a.s., if any one of the following holds:
 - $X_n \xrightarrow{a.s.} X$ and $X_n \xrightarrow{a.s.} Y$;
 - $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$;
 - $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.
- If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{a.s.} aX + bY$; $X_nY_n \xrightarrow{a.s.} XY$. (Due to CMT)
- If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{p} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{p} aX + bY$; $X_nY_n \xrightarrow{p} XY$. (Due to CMT)
- If $X_n \xrightarrow{L^r} X$ and $Y_n \xrightarrow{L^r} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{L^r} (X, Y)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{L^r} aX + bY$.
- None of the above are true for convergence in distribution.
- If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d}$ constant c, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{d} (X, c)^{\mathsf{T}}$. $\Longrightarrow aX_n + bY_n \xrightarrow{d} aX + bc$; $X_nY_n \xrightarrow{d} cX$. (Due to CMT; also known as Slutsky's theorem)

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs $\{X_n:n\geq 1\}$ and another RV X. Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X\in D)=0$. Then,

$$X_n \xrightarrow{a.s.} X \implies g(X_n) \xrightarrow{a.s.} g(X);$$

 $X_n \xrightarrow{p} X \implies g(X_n) \xrightarrow{p} g(X);$
 $X_n \xrightarrow{d} X \implies g(X_n) \xrightarrow{d} g(X).$

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs $\{X_n:n\geq 1\}$ and another RV X. Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X\in D)=0$. Then,

$$X_n \xrightarrow{a.s.} X \implies g(X_n) \xrightarrow{a.s.} g(X);$$

 $X_n \xrightarrow{p} X \implies g(X_n) \xrightarrow{p} g(X);$
 $X_n \xrightarrow{d} X \implies g(X_n) \xrightarrow{d} g(X).$

CMT also holds for random vectors.

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs $\{X_n:n\geq 1\}$ and another RV X. Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X\in D)=0$. Then,

$$X_n \xrightarrow{a.s.} X \implies g(X_n) \xrightarrow{a.s.} g(X);$$

 $X_n \xrightarrow{p} X \implies g(X_n) \xrightarrow{p} g(X);$
 $X_n \xrightarrow{d} X \implies g(X_n) \xrightarrow{d} g(X).$

- CMT also holds for random vectors.
- Caution: For convergence in L^r norm, stronger assumption of g than continuity is required to ensure $g(X_n) \xrightarrow{L^r} g(X)$.

- Probability Space
- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- 5 Useful Inequalities
- 6 Convergence
- 7 Properties of a Random Sample

Properties of a Random Sample

• Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.

Properties of a Random Sample

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$ar{X}\coloneqq rac{1}{n}\sum_{i=1}^n X_i$$
, and $S^2\coloneqq rac{\sum_{i=1}^n (X_i-ar{X})^2}{n-1}$.

Properties of a Random Sample

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$ar{X}\coloneqq rac{1}{n}\sum_{i=1}^n X_i$$
, and $S^2\coloneqq rac{\sum_{i=1}^n (X_i-ar{X})^2}{n-1}$.

For a general distribution, the following is true:

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$ar{X}\coloneqq rac{1}{n}\sum_{i=1}^n X_i$$
, and $S^2\coloneqq rac{\sum_{i=1}^n (X_i-ar{X})^2}{n-1}$.

- For a **general** distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^n X_i$$
, and $S^2 \coloneqq \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$.

- For a **general** distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - **2** S^2 is an **unbiased** estimator of σ^2 , i.e, $\mathbb{E}[S^2] = \sigma^2$;

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^n X_i$$
, and $S^2 \coloneqq \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - **2** S^2 is an **unbiased** estimator of σ^2 , i.e, $\mathbb{E}[S^2] = \sigma^2$;

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$ar{X}\coloneqq rac{1}{n}\sum_{i=1}^n X_i$$
, and $S^2\coloneqq rac{\sum_{i=1}^n (X_i-ar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - **2** S^2 is an **unbiased** estimator of σ^2 , i.e, $\mathbb{E}[S^2] = \sigma^2$;
- If the distribution is $\mathcal{N}(\mu, \sigma^2)$, we further have:

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$ar{X}\coloneqq rac{1}{n}\sum_{i=1}^n X_i$$
, and $S^2\coloneqq rac{\sum_{i=1}^n (X_i-ar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - **2** S^2 is an **unbiased** estimator of σ^2 , i.e, $\mathbb{E}[S^2] = \sigma^2$;
- If the distribution is $\mathcal{N}(\mu, \sigma^2)$, we further have:
 - **4** $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, i.e., $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$;

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$ar{X}\coloneqq rac{1}{n}\sum_{i=1}^n X_i$$
, and $S^2\coloneqq rac{\sum_{i=1}^n (X_i-ar{X})^2}{n-1}$.

- For a **general** distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - **2** S^2 is an **unbiased** estimator of σ^2 , i.e, $\mathbb{E}[S^2] = \sigma^2$;
- If the distribution is $\mathcal{N}(\mu, \sigma^2)$, we further have:
 - **4** $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, i.e., $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$;
 - **5** $\bar{X} \perp S^2$;

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$ar{X}\coloneqq rac{1}{n}\sum_{i=1}^n X_i$$
, and $S^2\coloneqq rac{\sum_{i=1}^n (X_i-ar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - **2** S^2 is an **unbiased** estimator of σ^2 , i.e, $\mathbb{E}[S^2] = \sigma^2$;
- If the distribution is $\mathcal{N}(\mu, \sigma^2)$, we further have:
 - **4** $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, i.e., $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$;
 - **5** $\bar{X} \perp S^2$;
 - **6** $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$;

- Let X_1, \ldots, X_n be a **random sample** from a distribution with mean μ and variance σ^2 , i.e., X_1, \ldots, X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma^2$, $i = 1, \ldots, n$.
- Define

$$\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^n X_i$$
, and $S^2 \coloneqq \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - **2** S^2 is an **unbiased** estimator of σ^2 , i.e, $\mathbb{E}[S^2] = \sigma^2$;
- If the distribution is $\mathcal{N}(\mu, \sigma^2)$, we further have:
 - **4** $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, i.e., $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$;
 - **6** $\bar{X} \perp S^2$:
 - **6** $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$;
 - $\sqrt{\frac{\bar{X}-\mu}{S/\sqrt{n}}} \sim t_{n-1}$.

► Law of Large Numbers

• For a general distribution, what can we say about the distribution of \bar{X} ?

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $\mathrm{Var}(\bar{X}) = \sigma^2/n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $\mathrm{Var}(\bar{X}) = \sigma^2/n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- Denote \bar{X} as \bar{X}_n , to explicitly indicate the effect of sample size n.

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $Var(\bar{X}) = \sigma^2/n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- Denote X as X_n, to explicitly indicate the effect of sample size n.

Weak Law of Large Numbers (WLLN)

Suppose X_1, \ldots, X_n are iid with mean μ and variance $\sigma^2 <$ ∞ . Then, $\bar{X}_n \stackrel{p}{\longrightarrow} \mu$, as $n \to \infty$.

[†]Mutual independence can be weakened to pairwise independence; $\sigma^2 < \infty$ can be weakened to $\mathbb{E}[|X_i|] < \infty$. SHEN Haihui MEM6810 Modeling and Simulation, Lec 2

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $Var(\bar{X}) = \sigma^2/n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- Denote X as X_n, to explicitly indicate the effect of sample size n.

Weak Law of Large Numbers (WLLN)

Suppose X_1, \ldots, X_n are iid with mean μ and variance σ^2 ∞ . Then, $\bar{X}_n \stackrel{p}{\longrightarrow} \mu$, as $n \to \infty$.

Strong Law of Large Numbers (SLLN)

Suppose X_1, \ldots, X_n are iid with mean μ and variance σ^2 ∞ . Then, $\bar{X}_n \xrightarrow{a.s.} \mu$, as $n \to \infty$.

- Note that for **normal** distribution, $\frac{X_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$, regardless of the value of n.
- For a general distribution, what can we say about the distribution of $\frac{\bar{X}_n \mu}{\sigma / \sqrt{n}}$?

- Note that for normal distribution, $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$, regardless of the value of n.
- For a general distribution, what can we say about the distribution of $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}}$?
- Note that $\mathbb{E}\left[\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right]=0$ and $\mathrm{Var}\left(\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right)=1$, regardless of the distribution and the value of n.

- Note that for normal distribution, $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$, regardless of the value of n.
- For a general distribution, what can we say about the distribution of $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}}$?
- Note that $\mathbb{E}\left[\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right]=0$ and $\mathrm{Var}\left(\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right)=1$, regardless of the distribution and the value of n.

Central Limit Theorem (CLT)

Suppose X_1,\ldots,X_n are iid with mean μ and variance $\sigma^2\in(0,\infty).$ Then, as $n\to\infty$,

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1).$$

