

Department of Electrical Engineering and Computer Science

Faculty Member: Dr. Salman Ghafoor Da	ted:	: 19	/09	/2022	2
---------------------------------------	------	------	-----	-------	---

Semester: 5th Section: BEE 12C

EE-232: Signals and Systems

Lab 2: Plotting and Array processing in MATLAB

Group Members

		PL04 -	PL05 -	PL08 -	PL09 -
		CL03	CL03	CL04	CL04
Name	Reg. No	Viva / Quiz / Lab Performa nce	Analysis of data in Lab Report	Modern Tool Usage	Ethics and Safety
		5 Marks	5 Marks	5 Marks	5 Marks
Danial Ahmad	331388				
Muhammad Umer	345834				
Syeda Fatima Zahra	334379				

1 Table of Contents

2	I	Intr	oduction to MATLAB	3
	2.1		Objectives	3
	2.2		Equipment	
			Lab Instructions	
3			rcise	
	3.1		Task 1	
	3.2		Task 2	
	3.3		Task 3	
	3		$1 y = \sin(x)/x $	
			$2 u = (1/(x-1)^2) + x$	
	3	3.3.3	$v = (x^2+1)/(x^2-4)$	7
	3	3.3.4	$4 z = ((10-x)^{1/3}-1)/(4-x^2)^{1/2}$	7
4	(Con	clusion	8

2 Introduction to MATLAB

2.1 Objectives

This Lab experiment has been designed to familiarize students with operations on arrays in MATLAB, plotting elementary functions, as well as manipulating plotting interface.

- Familiarization with array specific operators in MATLAB
- How to plot with different styles
- How to handle matrices and vectors in MATLAB

2.2 Equipment

Software

MATLAB

2.3 Lab Instructions

All questions should be answered precisely to get maximum credit. Lab report must ensure following items:

- Lab objectives
- MATLAB codes
- Results (Graphs/Tables) duly commented and discussed
- Conclusion

3 Exercise

3.1 Task 1

```
Draw x(t) = 2 \sin (2\pi t - \pi/2) for 0 \le t \le 4.
```

```
function exercise_1()
    t = 0:0.01:4;
    x = 2 * sin(2 * pi * t - (pi / 2));
    plot(t, x, '-r');
    grid
    title('Exercise 1')
    xlabel('t')
    ylabel('x = 2 * sin(2 * pi * t - (pi / 2))')
end
```


3.2 Task 2

Draw graphs of the functions; $[y = \cos(x), y = x]$

for $0 \le x \le 2$ in the same window. Use the zoom facility to determine the point of intersection of the two curves (and, hence, the root of $x = \cos(x)$) to two significant figures.

```
function exercise_2()
    x = 0:0.001:2;
    y = cos(x);
    hold
    plot(x, y, '-r');
    y = x;
    plot(x, y, '-b');
```

```
grid
    title('Exercise 2')
    xlabel('x')
    ylabel('y = cos(x)')
    legend('cos(x)', 'x');
end
```


Intersection: Zooming to a suitable level, we find the intersection of the two curves to be **0.7391**, which rounded to two significant figures is **0.74**.

3.3 Task 3

Draw graphs of the functions for x = 0:0.1:10 and label your graph properly.

$3.3.1 \quad y = \sin(x)/x$

```
function exercise_3()
    x = 0:0.1:10;
    y = sin(x) ./ x;
    hold
    plot(x, y, '-r');
    grid
    title('Exercise 3.1')
    xlabel('x')
    ylabel('y = sin(x)/x')
    legend('sin(x)/x');
end
```


3.3.2 $u = (1/(x-1)^2) + x$

```
function exercise_3()
    x = 0:0.1:10;
    u = (1 ./ (x - 1).^2) + x;
    hold
    plot(x, u, '-r');
    grid
    title('Exercise 3.2')
    xlabel('x')
    ylabel('u = (1/(x-1)^{2})+x')
    legend('(1/(x-1)^{2})+x');
end
```


3.3.3 $\mathbf{v} = (\mathbf{x}^2 + 1)/(\mathbf{x}^2 - 4)$

```
function exercise_3()
    x = 0:0.1:10;
    v = ((x.^2) + 1) ./ ((x.^2) - 4);
    hold
    plot(x, v, '-r');
    grid
    title('Exercise 3.3')
    xlabel('x')
    ylabel('v = (x^{2}+1)/(x^{2}-4)')
    legend('(x^{2}+1)/(x^{2}-4)');
end
```


3.3.4 $z = ((10-x)^{1/3}-1)/(4-x^2)^{1/2}$

```
function exercise_3()
    x = 0:0.1:10;
    z = (((10 - x).^(1/3)) - 1) ./ (4 - (x.^2)).^(1/2);
    hold
    plot(x, z, '-r');
    grid
    title('Exercise 3.4')
    xlabel('x')
    ylabel('z = ((10-x)^{1/3}-1)/(4 - x^{2})^{1/2}')
    legend('((10-x)^{1/3}-1)/(4 - x^{2})^{1/2}');
end
```


4 Conclusion

In this lab, we further extended our knowledge of MATLAB and learned array-specific operations. We familiarized ourselves with the syntax of the plot() function; how to add more traces on a same plot window, subplots, etc. We also familiarized ourselves with element wise operations, without which MATLAB will throw an error, as elements of a mat-array are immutable otherwise.