

Prof. Dr. Peter Thiemann Luminous Fennell 25.11.2016 Abgabe bis spätestens Freitag 02.12.2016, 14 Uhr in Briefkasten "Informatik III WS2016/17" in Gebäude 51

5. Übungsblatt zur Vorlesung Theoretische Informatik

Hinweise

- Übungsblätter erscheinen in der Regel freitags nach der Vorlesung.
- Übungsblätter müssen von jedem Studenten selbstständig bearbeitet werden
- Abgabe in $\bf Briefkasten$ "Informatik III WS2016/17" in Geb. 51
- Die abgegebenen Lösungen werden von den Tutoren mit Punkten bewertet und in den Übungsgruppen besprochen.
- Schreiben Sie unbedingt die Nummer ihrer Übungsgruppe auf die Lösung!

Aufgabe 1: Reguläre Ausdrücke

2 Punkte

Die Funktion nullable : $Reg(\Sigma) \to \{ \texttt{true}, \texttt{false} \}$ wurde in der Vorlesung wie folgt definiert:

```
\begin{aligned} & \text{nullable}(\mathbf{0}) = \texttt{false} \\ & \text{nullable}(\mathbf{1}) = \texttt{true} \\ & \text{nullable}(\sigma) = \texttt{false} \text{ wobei } \sigma \in \Sigma \\ & \text{nullable}(r_1 \cdot r_2) = \text{nullable}(r_1) \land \text{nullable}(r_2) \\ & \text{nullable}(r_1 + r_2) = \text{nullable}(r_1) \lor \text{nullable}(r_2) \\ & \text{nullable}(r^*) = true \end{aligned}
```

Hierbei sind \wedge und \vee die üblichen logischen Operationen. Zeigen Sie per Induktion über den Ausdruck r, dass gilt

$$\varepsilon \in [r]$$
 gdw nullable $(r) =$ true

Sie dürfen, zusätzlich zu den Ergebnissen aus Vorlesung und Übung, folgendes Lemma ohne Beweis verwenden:

Für alle $x, y \in \Sigma^*$ gilt: wenn $x \cdot y = \varepsilon$, dann ist $x = y = \varepsilon$.

Aufgabe 2: Reguläre Grammatiken

6 Punkte

(a) Wenden Sie das Verfahren der Vorlesung an um aus der folgenden regulären Grammatik G einen NEA zu konstruieren.

$$G = (\{S, T, W\}, \{a, b\}, P, S)$$

mit P =

$$S \to aT$$

$$T \to bT$$

$$T \to a$$

$$T \to aW$$

$$W \to \varepsilon$$

$$W \to aT$$

(b) Betrachten Sie folgenden DEA A:

Konstruieren Sie mit dem Verfahren der Vorlesung eine reguläre Grammatik für A.

Aufgabe 3: Kontextfreie Sprachen I

4 Punkte

Die folgende kontextfreie Grammatik G soll genau die Sprache $L=\{a^ncb^n\mid n\in\mathbb{N}\}$ erzeugen:

$$G = (\{S\}, \{a, b, c\}, P, S)$$

mit P =

$$S \to c$$
$$S \to aSb$$

Beweisen Sie durch Induktion, dass L(G) = L gilt. *Hinweis:* Beweisen Sie die Richtung \supseteq per Induktion über das n von $a^n c b^n$.

Aufgabe 4: Kontextfreie Sprachen II

4 Punkte

Geben Sie zu den folgenden zwei Sprachen Beispielen jeweils eine kontextfreie Grammatik an:

- (a) $L_1 = \{a^n b^m \mid m \ge n, m n \text{ gerade}\}$
- (b) $L_2 = \{w \in \{a,b\}^* \mid w = w^R \text{ und jedem Vorkommen von } a \text{ in } w \text{ folgt ein } b\}$

Hinweis: Der Rückwärtsoperator $\cdot^R:\Sigma^*\to\Sigma^*$ ist definiert als:

$$\varepsilon^R = \varepsilon$$
$$(aw)^R = w^R a$$