Poetry

Structure engineering: The art and science of designing and making structures with economy and elegance so they can safely resist the forces to which they may be subjected.

Three principles of engineering

- F = ma
- You cannot push or a rope
- To get the answer you must know the answer

3.5 sig figs, engineering notation.

Equilibrium

$$\sum F=0$$
 , $\sum M=0$. FBD.

Uniform loads (W); Moment = moment calculated from all forces acting on the centroid; $M=WL(L/2)=\frac{1}{2}WL^2$.

Vertical load on a hanging cable: WL/2Horizontal load on a hanging cable: $\frac{WL^2}{8h}$ Don't forget a sus bridge has 2 cables.

Deformation

Hooke's law: $F=k\Delta L$, k is axial stiffness. Stress: $\sigma=F/A$; Strain: $\epsilon=\Delta l/l_0$; $\sigma=E\epsilon$, E is Young's modulus (or material stiffness); $F=EA\Delta l/l_0$, $k=AE/l_0$.

Stress-strain curve of low-alloy steel

- Small strain: linearly elastic, Hooke's law applies
- Yield: plastic deformation occurs, σ_{yield} changes little as ϵ increases
- Strain hardening, necking, fracture

Strain energy: area under stress-strain curve, energy per unit volume

- Resilience: energy of the elastic part
- Toughness: energy until breaks (elastic+plastic)

Compressive strength;

Ductility: strain at fracture;

Coefficient of thermal expansion (thermal strain) $10^{-6}/K$;

Allowable stress design: $\sigma_{allowed} = \sigma_{yield}/\text{FoS}$; $\sigma_{applied} < \sigma_{allowed}$ = safe.

Limit states design: probability of failure is low enough.

Dynamics

A mass on a spring being pulled downward

- $m\ddot{x} + kx = 0$
- $x(t) = A\sin(\omega t + \phi) + \Delta_0$
- $\omega=\sqrt{k/m}$, $f=\frac{1}{2\pi}\sqrt{k/m}$, $T=f^{-1}=2\pi\sqrt{m/k}$, $\Delta_0=mg/k$, A and ϕ depends on initial conditions
- $fpprox 15.76/\sqrt{\Delta_0}$, f in Hz and Δ_0 in mm

Free vibration

- $m\ddot{x}+c\dot{x}+kx=mg$ • $c=2eta\sqrt{mk}$, eta is the fraction compared to critical damping
- $x(t) = Ae^{-\beta\omega_n t}\sin(\omega_n t\sqrt{1-\beta^2} + \phi) + \Delta_0$
- ullet Single DoF: $fpprox 15.76/\sqrt{\Delta_0}$
- Multi-DoF: $f_n pprox 17.76/\sqrt{\Delta_0}$, use Δ_0 in the middle

Forced vibration

- Force $F(t) = F_0 \sin(\omega_t) + mg$
- Steady state: $x(t) = DAF \cdot F_0/k\sin(\omega t + \phi) + \Delta_0$
- $DAF = 1/\text{hypot}(1 (f/f_n)^2, 2\beta f/f_n)$
- f is based on ω , f_n is resonance frequency
- $f/f_n=0$: DAF = 1; $f/f_n=1$: goes to infinity for $\beta=0$
- Experienced force: $mg + DAF \cdot F_0$

Geometry

Centroidal axis: $ar{y} = \sum Ay/\sum A$

Second moment of area $I{:}\int y^2 dA$ where y is related to \bar{y}

Second moment of area of a rectangle with width b and height h: $bh^3/12$

- Add/subtract primitives
- After translation: $I=I_{ar{y}}+Ad^2$

Bending of beams: $\phi = d\theta/dl$, $r = \phi^{-1}$, $\epsilon = \phi y$, $M = EI\phi$

First moment of area Q(y): $\int y dA$, y is related to \bar{y} , integral starts from the top/bottom

• Maximized at $y=ar{y}$

Buckling

FoS = 3.0.

Euler buckling load:
$$P=rac{\pi^2 EI}{L^2}$$

ullet Use the direction with the smallest I

Buckling of thin plates:
$$\sigma = rac{k\pi^2 E}{12(1-\mu^2)} \left(rac{t}{b}
ight)^2$$

- Free edges: use the Euler buckling formula
- Two fixed edges + uniform stress: k=4
- One fixed edge + uniform stress: k=0.425
- Two fixed edges + "triangle" stress: k=6

Shear buckling of webs:
$$au=rac{5\pi^2 E}{12(1-\mu^2)}\Biggl(\left(rac{t}{h}
ight)^2+\left(rac{t}{a}
ight)^2\Biggr)$$

Truss

Truss design iteration

- Geometry
- Determine applied loads
- Analyze internal forces
- Select members
- Determine maximum displacement
- Check dynamic properties

Applied loads: Uniformly distributed load equally distributed on each joint by area/length

Solve for reaction forces using equilibrium;

Method of sections: isolate, F/M equlibrium

Method of joints: start at one end and solve for reactions for each member

Positive for tension, negative for compression

Slenderness ratio $r=\sqrt{I/A}$

Select members: FoS = 2.0, L/r < 200, $\sigma_y = 350 \mathrm{MPa}$ if not given;

Wind pressure: $1/2 \rho v^2 c_D$, $c_D=1.5$ for bridge;

 $W_{wind}=2.0 {
m KPa}$; Area to consider: truss, handrail, etc.; Only consider one face.

Truss deflection

- ullet Solve the truss, F for each member
- ullet Each member's elongation $\Delta L = \epsilon L = FL/EA$
- Apply a dummy load P^* in the same direction of deflection to solve for
- Solve the truss under the dummy load, each F^*
- ullet Virtual work $P^*\delta = \sum F^*\Delta L$, solve for deflection δ

Beam

Axial N(x), shear V(x), bending M(x), deflection $\delta(x)$

Solve for reaction forces;

SFD: integrate applied loads (including reaction forces, up is positive), endpoints are zero; positive y up; BMD: integrate SFD, endpoints are zero; Bottom tension = positive, positive y down;

Flexural stress: $\sigma = My/I$

Beam deflection

- $\phi = M/EI$, integrate $\phi ext{ -> } heta = rac{dy}{dx}$, integrate $heta ext{ -> } \delta$
- Moment area theorem 1: $\Delta \theta$ = area under ϕ
- Moment area theorem 2: tangential deviation equals the area under the Mx/EI graph

Shear: au = VQ/Ib

- Definition: force divided by parallel area
- In the material vs. At glue/nail joints

Concrete

 $\mathrm{FoS} = 2.0$ concrete and 1/0.6 for steel. $E_s = 200000\mathrm{MPa}$ and $\sigma_y = 400\mathrm{MPa}$ for steel.

Reinforced concrete beam, maximum width b_r , minimum width b_w , height h_r , distance from max compression to the centroid of tensile reinforcement steels d_r , stirrups (shear reinforcement) spacing s_r .

Concrete compressive strength in MPa f_c' , $E_c=4730\sqrt{f_c'}$ in MPa, tensile $f_t'=0.33\sqrt{f_c'}$ in MPa.

$$n=E_s/E_c$$
 , $ho=A_s/bd$, $k=\sqrt{(n
ho)^2+2n
ho}-n
ho$, $j=1-k/3$, all dimensionless.

Calculate
$$jd$$
. Experienced stress $\sigma_s=rac{M}{A_sjd}$, $\sigma_c=rac{M}{A_sjd}rac{k}{1-k}rac{1}{n}$. Steel yield at $M_y=A_sf_yjd$.

 $d_v = 0.9d$. Yield strength $f_y = \sigma_y$.

 A_v : for example, two 10M stirrups in the cross section means a A_v of $2 imes 100 \mathrm{mm}$.

Failure shear: crushing $V_{max}=0.25f_c'b_wjd$; without stirrups $V_c=rac{230\sqrt{f_c'}}{1000+0.9d}b_wjd$, with stirrups $V_c=0.18\sqrt{f_c'}b_wjd$;

$$V_s = rac{A_v f_y j d}{s} {
m cot}\, 35^\circ$$
 , failure $V_t = V_c + V_s$, safe $V_r = 0.5 V_c + 0.6 V_s$.

Safe
$$s$$
 : $s = rac{0.6 \cdot A_v f_y j d \cot 35^\circ}{V - 0.5 \cdot 0.18 \sqrt{f_c'} \, b_w j d}$

Evaluating concrete:

- SFD, BMD
- Evaluate flexural + rebars
- ullet Use V_c without strirrups when $rac{A_v f_y}{b_w s} < 0.06 \sqrt{f_c'}$ and with stirrups otherwise

• Calculate V_s , V_t , V_{max} , capacity $V = \min(V_{max}, V_t)$

Concrete design

- SFD, BMD
- ullet Check if $V_{max}/2.0$ works, else change b_w and/or d
- Check if $V_c/2.0$ without stirrups works, good => design complete
- ullet Calculate V_s with minimum s, calculate V_c and V_r and see if it works
 - \circ OR: directly calculate s from the V_r equation
- ullet Not working: reiterate the previous step with safe s

Timber

Anisotropic material, stiffer + higher strength at "vertical" direction in a tree.

Use the 5th-percentile strength in design with FoS = 1.5.

Use the 50th-pencentile strength in deflection calculation.