Constrained probabilistic modeling with OpenTURNS

R. Lebrun (Airbus)

User Day #17, June 14th 2024, EDF Lab

Overview

Taking constraints into account:

- Order statistics
- Distributions over meshes
- Meshing capabilities

OpenTURN!

Order statistics I

Let F_X be the CDF of a continuous random variable X and (X_1, \ldots, X_n) a sample of size n of X.

The order statistics associated to this sample is the (almost surely) unique increasing reordering $(X_{(1)},\ldots,X_{(n)})$ of this sample: there exists a permutation $\sigma\in\mathfrak{t}_n$ such that $X_{(k)}=X_{\sigma(k)}$ and

$$X_{(1)} \leq \cdots \leq X_{(n)}$$

It can be shown that the joint CDF of $(X_{(1)}, \ldots, X_{(n)})$ writes:

$$F_{(X)}(x_1,\ldots,x_n)=F_{(U)}(F_X(x_1),\ldots,F_X(x_n))$$

where $F_{(U)}$ is the joint CDF of the order statistics associated to a sample of size n of $U \simeq \mathcal{U}(0,1)$.

This relation is exactly the relation between a joint CDF, its copula and its marginal distributions.

Order statistics II

 \implies the ComposedDistribution class has been renamed to JointDistribution and has been extended to define a multivariate CDF F given n univariate CDFs F_1, \ldots, F_n and a core K, which is a multivariate CDF of dimension n which range is included into $[0,1]^n$:

$$F(x_1,\ldots,x_n)=K(F_1(x_1),\ldots,F_n(x_n))$$

If K is a copula, then F_1, \ldots, F_n are the marginal distributions of F.

The specific choice $K = F_{(U)}$ and $F_1 = \cdots = F_n = F_X$ leads to the joint distribution of the order n statistics associated to F_X .

The new UniformOrderStatistics class corresponds to $F_{(U)}$.

Order statistics III

The computation of $F_{(U)}$ is tricky. The associated support is the simplex

 $\mathcal{S} = \{(u_1, \dots, u_n) \in [0, 1]^n \, | \, 0 \leq u_1 \leq \dots \leq u_n \}$ and the computation resorts to compute the volume of the intersction between \mathcal{S} and $[0, u_1] \times \dots \times [0, u_n]$, which can be done recursively.

OpenTURN:

Distributions over a mesh I

Let $\mathcal{D} \subset \mathbb{R}^d$ be a complex domain given as a Mesh.

- How to sample it uniformly? See the UniformOverMesh distribution.
 - Sampling cost constant wrt the number of simplices
 - Sampling cost proportional to the dimension
 - ullet PDF computed using an efficient kd-tree $o \mathcal{O}(n_{vertices})$
 - \bullet CDF computed using numerical integration \to limited to low dimension

can be used in high dimension settings.

- How to sample it nonuniformly? See the TruncatedOverMesh distribution.
 - ullet Sampling done using rejection o limited to low dimension
 - PDF computed using an efficient kd-tree $\to \mathcal{O}(n_{vertices})$ then a numerical integration using SimplicialCubature limited to low dimension
 - \bullet CDF computed using numerical integration over the PDF computation \to very expansive

4 D > 4 D > 4 E > 4 E > E 9 9 0

OpenTURNS et al.

OpenTURNS

OpenTURNS OpenTURNS

OpenTURNS OpenTURNS

New meshing capabilities I

- The IntervalMesher class has been extended to any dimension
- The LevelSetMesher class has been extended to any dimension
- A new projection algorithm has been added to the LevelSetMesher class to get a an accuracy of the order of the machine precision (mandatory for some applications)
- The BoundaryMesher class allows to extract the boundary mesh of dimension d-1 of any mesh of dimension d. It also proposes a "thick" version, where the faces are replaced by simplices of given height.

OpenTURNS et al.

OpenTURNS OpenTURNS