Analyse factorielle exploratoire

Mireille AGBLA, Achille GAUSSERES, Nel HERVÉ

Sommaire

- **1.** Introduction : analyse factorielle, analyse factorielle exploratoire et ACP
- 2. Modèle mathématique et estimation des paramètres
- 3. Exemple d'application sur R

Analyse factorielle

Analyse factorielle:

Une famille de techniques statistiques visant à **réduire** un ensemble important de variables mesurées en un plus petit nombre de variables.

⇒ Objectif principal : réduction ou synthèse de données

Analyse factorielle

Analyse factorielle exploratoire (EFA)

- Découvrir la structure sous-jacente (variables latentes) d'un ensemble de variables manifestes
- Ou simplement synthétiser le jeu de données

Analyse factorielle confirmatoire (CFA)

- Déterminer si le nombre de facteurs et leurs saturations correspondent à ce qui est attendu à partir de la théorie
- Pas abordée dans ce cours

Analyse factorielle exploratoire

→ Quels facteurs peuvent expliquer nos observations ?

Comparaison: principe de l'ACP

- \rightarrow c₁ et c₂ sont les **composantes principales**
- → c₁ et c₂ sont obtenues par **combinaison linéaire** des y₁
- → maximisent la **variance** des données projetées
- → forme:

$$c_{1} = \lambda_{11} y_{1} + \lambda_{12} y_{2} + \lambda_{13} y_{3} + \lambda_{14} y_{4}$$

$$c_{2} = \lambda_{21} y_{1} + \lambda_{22} y_{2} + \lambda_{23} y_{3} + \lambda_{24} y_{4}$$

Comparaison : principe de l'EFA

- \rightarrow f₁ et f₂ sont les **facteurs latents** ; les δ_i sont les **variances spécifiques** des y_i
- \rightarrow les y_i sont obtenus par **combinaison linéaire** de f_1 et f_2
- → forme :

$$y_{1} = \lambda_{11} f_{1} + \lambda_{12} f_{2} + \delta_{1}$$

$$y_{2} = \lambda_{21} f_{1} + \lambda_{21} f_{2} + \delta_{2}$$

$$y_{3} = \lambda_{31} f_{1} + \lambda_{32} f_{2} + \delta_{3}$$

$$y_{4} = \lambda_{41} f_{1} + \lambda_{42} f_{2} + \delta_{4}$$

Comparaison: EFA vs ACP

EFA:

→ modèle à variables latentes

→ explique les corrélations

→ infinité de solutions pour un jeu de données

ACP:

→ procédure de calcul

→ explique la variance

→ une seule solution par jeu de données

→ Forme matricielle :

$$\begin{split} Y_{1} &= \lambda_{11} F_{1} + \lambda_{12} F_{2} + ... + \lambda_{1m} F_{m} + \delta_{1} \\ Y_{2} &= \lambda_{21} F_{1} + \lambda_{22} F_{2} + ... + \lambda_{2m} F_{m} + \delta_{2} \\ ... \\ Y_{n} &= \lambda_{n1} F_{1} + \lambda_{n2} F_{2} + ... + \lambda_{nm} F_{m} + \delta_{n} \end{split}$$

$$Y = \Lambda F + \delta$$

$$Y = \Lambda F + \delta$$

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \dots & \lambda_{1m} \\ \vdots & \ddots & \vdots \\ \lambda_{n1} & \dots & \lambda_{nm} \end{bmatrix}_{n \times m} \times \begin{bmatrix} F_1 \\ \vdots \\ F_m \end{bmatrix}_{m \times 1} + \begin{bmatrix} \delta_1 \\ \vdots \\ \delta_n \end{bmatrix}_{n \times 1}$$

$$Y = \Lambda F + \delta$$

sous les hypothèses suivantes :

- Y est centrée : E(Y) = 0
- Les facteurs F_i sont **centrés-réduits** et **orthogonaux** ; pour tout i ≠ j :
 - $E(F_i) = 0$ et $V(F_i) = I_m$
 - $cov(F_i, F_j) = 0$
- Les erreurs sont **centrées** et **décorrélées** : $E(\delta) = 0$ et $V(\delta) = diag(\psi)$
- Les facteurs F et les erreurs δ sont **indépendants**

→ <u>Proposition</u>:

$$\forall i \in \{1, ..., n\}, \ V(Y_i) = \sum_{j=1}^k \lambda_{ij}^2 + \psi_i^2 \qquad \text{avec} \qquad \psi_i^2 = V(\delta_i)$$
 et $\forall i, j \in \{1, ..., n\}, \ cov(Y_i, Y_j) = \sum_{l=1}^k \lambda_{il} \lambda_{jl}$

→ <u>Proposition</u>:

La matrice Σ des variances-covariances de Y_i est donnée par :

$$\Sigma = \Lambda \Lambda' + \Psi$$
 avec $\Psi = diag(\psi_i)$

Cette forme nous permettra d'estimer les saturations λ_{ij} .

Estimation des saturations

\rightarrow Méthodes possibles pour estimer \land :

Composantes principales

- Avec la matrice des variances-covariances observée : $S \approx \hat{\Lambda} \hat{\Lambda}'$
- Une SVD sur S donne $S=CDC'=(CD^{1/2})(CD^{1/2})'$
- On définit $\hat{\Lambda}$ par les m premières colonnes de $C\hat{D}^{1/2}$ (rangées dans l'ordre décroissant des valeurs propres)

Facteurs principaux (itérés)

- Estimer $S^* = S \hat{\Psi}$, puis $\hat{\Lambda}$ avec une SVD
- Réestimer $\hat{\Psi} = S \hat{\Lambda} \hat{\Lambda}'$ et itérer jusqu'à convergence

Maximum de vraisemblance

- Hypothèse : les facteurs suivent une loi normale centrée-réduite
- Estimation de $\hat{\Lambda}$ et $\hat{\Psi}$ par maximum de vraisemblance (méthodes itératives)

Estimation des facteurs

 \rightarrow <u>Méthode</u>: on reprend le modèle $Y = \Lambda F + \delta$ qui devient $Y = \hat{\Lambda} F + \delta$. On peut alors estimer F par :

- Les MCO : $\hat{F} = (\hat{\Lambda}'\hat{\Lambda})^{-1}\hat{\Lambda}'Y$
- Maximum de vraisemblance
- •
- → <u>Remarque</u>: en EFA, il n'est généralement pas utile d'estimer les facteurs. Tout repose sur la valeur des saturations.

Rotation des facteurs

→ <u>Remarque</u>: les facteurs et saturations associées ne sont pas uniques.

On peut ainsi **pivoter les facteurs** pour faciliter l'interprétation des résultats.

Rotation des facteurs

- → Méthode la plus courante : *varimax*
- → Objectifs :
 - Quelques saturations très élevées
 - Autant de saturations quasi-nulles que possible
- → <u>Méthode</u>: optimisation itérative d'une fonction quadratique des saturations...
- → Autres options :
 - Autres rotations orthogonales : quartimax, equamax...
 - Rotations obliques : *oblimin*, *promax*...

Cas concret : traits de personnalité

→ Contexte:

1 015 341 personnes ont répondu à un questionnaire qui évalue leurs traits de personnalité :

- Questions: "Je ne parle pas beaucoup", "J'aime les enfants"...
- Réponses : échelle de 1 ("Pas d'accord") à 5 ("D'accord").

Cas concret : traits de personnalité

→ Contexte:

1 015 341 personnes ont répondu à un questionnaire qui évalue leurs traits de personnalité :

- Questions: "Je ne parle pas beaucoup", "J'aime les enfants"...
- Réponses : échelle de 1 ("Pas d'accord") à 5 ("D'accord").

⇒ Existe-t-il des **types de personnalités sous-jacents** qui permettent d'expliquer les réponses des participants quant à leurs traits de personnalité?

Cas concret : traits de personnalité

Existe-t-il des **types de personnalités sous-jacents** qui permettent d'expliquer les réponses des participants quant à leurs traits de personnalité?

Types de personnalité (?)

Traits de personnalité (50)

Cas concret : le modèle à 5 facteurs

