Flexible modeling of conditional distributions using smooth mixtures of asymmetric student t densities

Feng Li (joint with Mattias Villani and Robert Kohn)

Department of Statistics Stockholm University

September 16, 2009

Outline of the talk

- Mixture distributions
- 2 ME, SMR and SAGM models
- 3 Smooth mixture of asymmetric student's t densities
- 4 Application to daily S&P 500 returns

Mixture distributions

• For a given x, a mixture distribution p(y|x) is a finite mixture

$$\sum_{k=1}^{K} \omega_k f_k \left(y_i | \theta_k \right), \ i = 1, ..., n.$$

• Latent variable formulation for MCMC

$$\Pr(s_i = k) = \omega_k$$
$$y_i | (s_i = k) \sim f_k (y_i | \theta_i)$$

- Two-block Gibbs sampler
 - ▶ Sample $s = (s_1, ..., s_n)$ conditional on $(\theta_1, ..., \theta_k)$.
 - ▶ Sample each θ_k conditional on the allocation s.
- A smooth mixture model is a finite mixture density with weights that are smooth function of the covariates, e.g

$$\omega_{k}\left(x\right) = \frac{\exp\left(x'\gamma_{k}\right)}{\sum_{r=1}^{K} \exp\left(x'\gamma_{r}\right)}$$

ME, SMR and SAGM models

- Mixture-of-Experts (ME) (Jacobs et al. (1991))
 - A mixture of regressions where the mixing probabilities are functions of covariates.
 - ► Flexibly model the mean regression and frequently used in the machine learning literature.
 - The components are often linear homoscedastic regressions or even constant functions.
 - ► simple-and-many approach.
- Smoothly Mixing Regression (SMR) (Geweke & Keane (2007))
 - \blacktriangleright A generalization of the ME model for regression density estimation
 - ► Fail to fit heteroscedastic data even with a very large number of components
- Smooth Adaptive Gaussian Mixtures (SAGM) (Villani et al. (2008))
 - A smooth finite mixture of Gaussian densities with the mixing probabilities.
 - ► The mixing probabilities, the components means and components variances modeled as functions of the covariates.
 - ▶ Bayesian variable selection are in all three sets of covariates.
 - ► complex-but-few approach Enough flexibility is used within the mixture components so that the number of components can be kept to a minimum sixther.

Smooth mixture of asymmetric student's t densities

The model

 \bullet The split-t density is

$$c \cdot \kappa \left(\mu, \phi, v\right) I\left(y \leq \mu\right) + c \cdot \kappa \left(\mu, \lambda \phi, v\right) I\left(y > \mu\right),$$
 where
$$\kappa \left(\mu, \phi, v\right) = \left(\frac{v}{v + \frac{(y - \mu)^2}{\phi^2}}\right)^{(v + 1)/2} \text{ is the kernel of student } t \text{ density and } c \text{ is the normalization constant.}$$

• Each of the four parameters μ, ϕ, λ and ν are connected to covariates as

$$\mu = \beta_{\mu 0} + x_t' \beta_{\mu}$$

$$\ln \phi = \beta_{\phi 0} + x_t' \beta_{\phi}$$

$$\ln \lambda = \beta_{\lambda 0} + x_t' \beta_{\lambda}$$

$$\ln v = \beta_{v 0} + x_t' \beta_{v}$$

but any smooth link function can equally well be used in the MCMC methodology.

- This make it possible e.g. to have the degrees of freedom smoothly varying over covariate space; to capture skewness and excess kurtosis with the components.
- Common components if $\beta_{\mu} = \beta_{\phi} = \beta_{\lambda} = \beta_{v}$, else separate components. Stockholm

Figure: Graphical display of the split-t density with location parameter $\mu=0$ and scale parameter $\lambda=1.8.$

Smooth mixture of asymmetric student's t densities

Discussion — Why not over-fit?

- The prior
 - We use an easy specified prior, $\beta | \mathcal{I} \sim N(0, \tau_{\beta}^2 I)$, where \mathcal{I} is the covariate indicators.
 - We investigate the sensitivity of the posterior inferences and model comparison with respect to τ_{β} .
 - ▶ One can use the g-prior $\beta \sim N(0, \tau_{\beta}^2(X'X)^{-1})$ (Zellner, 1986) which is less appealing in a mixture context.
- Variable selection (details in next page)
 - ► Investigate the importance of covariates.
 - ▶ More efficient.
- Automatically add components to make each component simpler.
- \bullet Evaluating the out-of-sample log predictive density score (LPDS) – details in "model comparison" .

Smooth mixture of asymmetric student's t densities

Inference — Finite Newton Proposals

- In a general regression model, the likelihood function is $p(y|\beta) = \prod_{i=1}^{n} p(y_i|\phi_i)$ where $k(\phi_i) = x_i'\beta$ (link function).
- We need first two derivatives of $\ln p(y_i|\phi_i)$ with respect to ϕ_i .
- We do Bayesian variable selection within MCMC.
 - ▶ Set up variable selection indicator $\mathcal{I} = (I_1, ..., I_n)$ where $I_i = 1$ indicates X_i are in the model and $I_i = 0$ means $\beta_i = 0$.
 - ▶ Sample β and I by using finite-step Newton's method. We only iterate a few steps(≤ 3).
 - ▶ Dimension might change here. But exploits that $k(\phi_i) = x_i'\beta$ always has the same dimension (Villani *et at.* 2008).

Smooth mixture of asymmetric student's t densities Model comparison

- Why not marginal likelihood?
 - ▶ The key quantity is Bayesian model comparison is the marginal likelihood.
 - ► The marginal likelihood is sensitive to the choice of prior, which is especially true when the prior is not very informative (Kass, 1993).
- We use B-fold cross-validation of the log predictive density score(LPDS)
 - $\blacktriangleright B^{-1} \sum_{b=1}^{B} \ln p \left(\tilde{y}_b | \tilde{y}_{-b}, x \right)$
 - ► Compute the LPDS for ME, SMR, SAGM and our split model with different components.
 - ► Compare the differences of LPDS.

Application to daily S&P 500 returns

The data

- Response variable: Daily returns from S&P 500 index.
- Covariates
 - ▶ LastDay, LastWeek, LastMonth, Moving average of returns from the previous one, five and 20 trading days respectively.
 - ▶ CloseAbs80, CloseAbs95, Geometrically declining average of past returns $(1 \varphi) \sum_{s=0}^{\infty} \varphi^s | y_{t-2-s}|$ with φ of .80 and .95 respectively.
 - ▶ CloseSqr80, CloseSqr95, The square root of $(1 \varphi) \sum_{s=0}^{\infty} \varphi^s y_{t-2-s}^2$ with φ of .80 and .95 respectively.
 - ▶ MaxMin80, Maxmin95, Information of volatility $(1-\varphi)\sum_{s=0}^{\infty} \varphi^{s} \left(\ln p_{t-1-s}^{(h)} \ln p_{t-1-s}^{(l)} \right)$ with φ of .80 and .95 respectively.
- The models are estimated using 4646 trading days from 1990-Jan-01 to 2008-May-29(before finical crisis).
- The models are evaluated out-of-sample on the 199 trading days from 2008-May-30 to 2009-Mar-13(finical crisis period).

Figure: Time series plot of Return(up-left) and scatter plots of Return against a covariate(others) for S&P500 (1990-Jan-01 – 2009-Mar-13).

Application to daily S&P 500 returns Results

- A normalized residuals is defined as $\Phi^{-1}(F(y_t))$, where $F(y_t)$ is the cumulative predictive distribution. If the model is correct, the normalized residuals should be *iid* N(0,1).
- The LPDS is reported for different models.
- Posterior summary of the one-component split-t model

Figure: The 199 normalized residuals in the evaluation sample over time and the 99% probability intervals under the N(0, 1).

SAGM Separate + Skew + DF + Skew + DF		-469.21 -468.48 -469.08 -466.84	-469.50 -466.93 -469.24 -462.56	-470.53 -467.48 -462.03 -462.47	-471.02 -468.02 -467.78 -474.58	0.49 (3) 0.58 (4) 0.72 (5) 0.74 (5)
$\begin{array}{c} \operatorname{GARCH}(1,1) \\ t\text{-}\operatorname{GARCH}(1,1) \end{array}$	-479.03 -477.39					
-		_		_		

Model

SMR.

+ DF

+ Skew

+ Skew

+ DF

+ Skew + DF

+ Skew + DF

SAGM Common

K = 1

-1044.78

-540.91

-544.00

-530.86

-477.73

-474.18

-474.74

-472.37

K = 2

-638.89

-525.07

-518.71

-504.63

-473.10

-467.29

-472.92

-468.92

K = 3

-505.74

-513.85

-498.93

-498.03

-473.12

-468.75

-470.51

-469.30

K = 4

-487.11

-506.68

-500.14

-498.83

-470.30

-467.93

-469.40

-466.21

K = 5

-489.19

-506.13

-494.29

-496.87

-472.86

-467.22

-468.87

-465.86

Max n.s.e.

0.98(3)

0.82(2)

0.89(1)

0.88(5)

0.26(2)

0.35(4)

0.34(4)

0.53(4)

Table: Evaluating the out-of-sample log predictive density score (LPDS)

Parameters	Mean	Stdev	Post.Incl.	IF						
Location μ										
Const	0.084	0.019	_	9.919						
Scale ϕ										
Const	0.402	0.035	_	7.125						
LastDay	-0.190	0.120	0.036	0.903						
LastWeek	-0.738	0.193	0.985	18.519						
LastMonth	-0.444	0.086	0.999	4.133						
CloseAbs95	0.194	0.233	0.035	1.445						
CloseSqr95	0.107	0.226	0.023	2.715						
MaxMin95	1.124	0.086	1.000	6.012						
CloseAbs80	0.097	0.153	0.013	-						
CloseSqr80	0.143	0.143	0.021	-						
MaxMin80	-0.022	0.200	0.017	_						
Degrees of freedom ν										
Const	2.482	0.238	_	5.708						
LastDay	0.504	0.997	0.112	2.899						
LastWeek	-2.158	0.926	0.638	5.463						
LastMonth	0.307	0.833	0.089	5.560						
CloseAbs95	0.718	1.437	0.229	3.020						
CloseSqr95	1.350	1.280	0.279	2.758						
MaxMin95	1.130	1.488	0.222	6.564						
CloseAbs80	0.035	1.205	0.101	2.789						
CloseSqr80	0.363	1.211	0.112	3.330						
MaxMin80	-1.672	1.172	0.254	4.178						
Skewness λ										
Const	-0.104	0.033	_	10.423						
LastDay	-0.159	0.140	0.027	1.170						
LastWeek	-0.341	0.170	0.135	8.909						
LastMonth	-0.076	0.112	0.016							
CloseAbs95	-0.021	0.096	0.008	_						
CloseSqr95	-0.003	0.108	0.006	_						
MaxMin95	0.016	0.075	0.008	_						
CloseAbs80	0.060	0.115	0.009	_						
CloseSqr80	0.059	0.111	0.010	_						
MaxMin80	0.093	0.096	0.013	_						

Table: Posterior summary of the one-component split-t model

Figure: Time series plot of the posterior median and 95% probability intervals for some moments of the return distribution. The posterior distribution is based on the full sample up to March 13, 2009.

Thank you!