

Speech Recognition Part 3

Dr Philip Jackson

- **G.** Grammars for speech recognition
- H. HMM likelihoods: tasks 1 & 2
- I. Vocal-tract acoustics

Grammar outline

• Isolated word recognizer

- Isolated digit recognition
- Building the grammar
- Training & testing

• Task grammars

- Connected word recognition
- Null states and word networks
- Continuous speech recognition

Key concept:

use a task's syntax to connect models that comprise a complete utterance

Isolated word recognizer development

- Data preparation
- Training
- Testing
- Analysis

Message encoding and decoding.*

Isolated Word Recognition (IWR) task

The problem is to find

$$\widehat{w} = \arg\max_{i} \left\{ P\left(w_{i} | \mathcal{O}\right) \right\} \tag{1}$$

where according to Bayes

$$P(w_i|\mathcal{O}) = \frac{P(\mathcal{O}|w_i)P(w_i)}{P(\mathcal{O})}$$
(2)

Gsolated word problem.*

The hidden Markov model

(3)

In IWR, we treat each HMM as a word template

$$P(\mathcal{O}|w_i) \approx P(\mathcal{O}|\lambda_i)$$

$$\approx \max_{X} \left[\left(\prod_{t=1}^{T} a_{x_{t-1}x_t} b_{x_t}(o_t) \right) \eta_{x_T} \right]$$

 a_{11} a_{22} a_{33} a_{44} π_1 a_{12} a_{23} a_{34} a_{45} $b_1(o_1)$ $b_2(o_3)$ $b_3(o_4)$ $b_4(o_6)$ $b_1(o_2)$ $b_3(o_4)$ $b_4(o_6)$ c_1 c_2 c_3 c_4 c_5 c_6

The HMM generation model.

Null states in an HMM

Properties of non-emitting null states:

- determine beginning and end of a model
- do not generate any observations
- can align a given model with an isolated test utterance
- useful for joining models together in a grammar
- transitions associated with null states can be modified to incorporate language model

IWR: Building the grammar

Example utterances:

- eight
- oh
- six

Task grammar:

Key:

| alternatives

Grammar for IWR

Connected HMMs.

Training and test data

(a) Training

Training Examples

(b) Recognition

Using HMMs for isolated word recognition.*

Calculating recognition performance

Types of recognition error (e.g., for ground truth "A-B-C"):

- Substitution, S (e.g., "A-D-C")
- Deletion, *D* (e.g., "A-C")
- Insertion, I (e.g., "A-B-E-C")

% Correct =
$$100 \times \frac{N - S - D}{N}$$
 (4)

% Accuracy =
$$100 \times \frac{N - S - D - I}{N}$$
 (5)

Error rate % =
$$100 \times \frac{S+D+I}{N}$$
 (6)

Task grammars

IWR: Binary word grammar

Example utterances:

- yes
- no

Task grammar:

```
$answer = YES | NO;
( SENT-START $answer SENT-END )
```

Key:

| alternatives

Binary IWR grammar.

Connected HMMs.

IWR: binary word trellis

Trellis (left) and grammar (right) for a two-word IWR network.

IWR: Isolated digit grammar

Example utterances:

- eight
- oh
- six

Task grammar:

Key:

| alternatives

Grammar for isolated digit recognition.

CWR: Connected digit grammar

Example utterances:

- six eight six zero three one
- one oh one
- six oh four four

Task grammar:

Key:

alternativesone or more reps

Grammar for connected digit recognition.

Connected HMMs.

CWR: connected-digit trellis

Grammar (left) and trellis (right) for connected-digit recognition.

Isolated- & connected-digit grammars

Example networks for digit recognition tasks:* (a) IWR, (b) IWR with end-point adjustment using silence model, (c) CWR with silence model, (d) with optional silence.

CWR: Connected word grammar

Example utterances:

Dial three three two six five four
Phone Woodland
Call Steve Young

Grammar for voice dialling.*

Task grammar:

Key: | alternatives, [⋅] optional, <⋅> one or more reps

CWR: context-free grammars

Example grammars (from top): date, day and year.

G.17

Towards large-vocabulary speech recognition

By nesting small models to make templates for larger units, we can exploit phonetics and word morphology

Recognition network levels.*

IWR: Phone-based digit dictionary

ONE	w ah n	SIX	s ih k s
TWO	t uw	SEVEN	s eh v n
THREE	th r iy	EIGHT	ey t
FOUR	f ao	NINE	n ay n
FOUR	f ao r	OH	OW
FIVE	f ay v	ZERO	z ia r ow

Grammar for phone-based isolated digit recognition.

CSR: continuous-speech grammar and trellis

Continuous speech recognition networks (left) & trellis (right). G.20

Large-vocabulary continuous speech recognition (LVCSR)

A pronunciation dictionary of phonemes and labels enables the recognition grammar to incorporate a long list of words

Word network for continuous speech recognition.*

CSR: recognition and traceback

During decoding, the recognizer records the scores as loglikelihoods and outputs labels at the word boundaries

Recording word-boundary decisions during continuous recognition.*

Grammar summary

- Isolated digit recognition
 - Null states connect grammars
 - Trellis diagrams
 - Correctness, accuracy & error rate
- Task grammars
 - Isolated word recognition (IWR)
 - Connected word recognition (CWR)
 - Context-free grammar
 - Enlarging vocabulary exploiting word structure
 - Building templates from phone models
 - Continuous speech recognition (CSR)

