

OVID

n-th partial sum

convergent

divergent

series

Given a series
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_2 + \cdots$$
 we let s_n denote its n -th partial sum $s_n = a_1 + a_2 + a_3 + \cdots + a_n$

If the sequence s_n is convergent and $\lim_{n\to\infty} s_n = S$ then the series $\sum_{n=1}^{\infty} a_n$ is convergent and we let

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{i=1}^{n} a_i = \lim_{n \to \infty} s_n = S \longrightarrow \text{sum of the series}$$

Otherwise the series is divergent

determine convergence/divergence using limit of Sn