

Greeks, Hedging and Implied Volatility

Vejledningsmøde 5

Laurs R. Leth

Department of Mathematical Sciences University of Copenhagen leth.laurs@gmail.com

21. april 2020

Greeks (European Options)

 The definition of Greeks are given in definition 9.4, while proposition 9.5 states the quantities for a European call in the Black-Scholes model:

$$\begin{split} &\Delta_t = C_s(t,s) = N(d_1(t,s)) > 0 \\ &\Gamma_t = C_{ss}(t,s) = \frac{\phi(d_1(t,s))}{s\sigma\sqrt{T-t}} > 0 \\ &\rho_t = C_r(t,s) > 0 \\ &\theta_t = C_t(t,s) < 0 \\ &\mathcal{V}_t = C_\sigma(t,s) = s\phi(d_1(t,s))\sqrt{T-t} \end{split}$$

with $\phi(\cdot)$ being the density for the standard normal distribution

We may utilize the put-call parity to compute Greeks for the European put.
Recall that

$$P(t,s) = Ke^{-r(T-t)} + C(t,s) - s$$

•for instance

$$P_s(t,s) = C_s(t,s) - 1$$
, $P_{ss}(t,s) = C_{ss}(t,s)$ and $P_{\sigma} = C_{\sigma}$.

Self-Financing Portfolios

• Let $h(t)=(h^0_t,h^1_t)$ be a self-financing portfolio with value process $(V^h_t)_{0\leq t\leq T}$:

$$V_t^h = h_t^0 B_t + h_t^1 S_t$$

• We will focus on self-financing portfolios, that is

$$dV_t^h = h_t^0 dB_t + h_t^1 dS_t$$

• Dynamics of V_t^h under P and Q, respectively,

$$P: dV_t^h = ?$$

$$Q: dV_t^h = ?$$

• Dynamics of V_t^h/B_t under P and Q, respectively,

$$P: d(e^{-rt}V_t^h) = ?$$

$$Q: d(e^{-rt}V_t^h) = ?$$

Self-Financing Portfolios — (No-)Arbitrage

 Definition 7.5: Markedet indeholder arbitrage-muligheder, hvis der eksiterer en selv-finansierende portefølje, hvor

$$V_0^h = 0, (1)$$

$$P(V_T^h \ge 0) = 1, (2)$$

$$P(V_T^h > 0) > 0 \tag{3}$$

• Proposition 7.6: Lad h_t være en selv-finansierende portefølje med

$$dV_t^h = k_t V_t^h dt,$$

hvor k_t er en tilpasset proces. Så er $k_t = r$ — ellers eksisterer der arbitrage-muligheder.

Self-Financing Portfolios — Completeness

• Definition 8.1: Lad \mathcal{X} være et T-claim. Den selvf-finansierende portefølje h_t hedger \mathcal{X} , hvis

$$V_T^h = \mathcal{X}$$

P-næsten-sikkert.

- Sætning 8.3: Black-Scholes modellen er complete (alle T-claims kan hedges)
- Intuition: Antag at porteføljen (h_t) hedger \mathcal{X}
 - 1. Antag at vi til tid t har beløbet V_t^h
 - 2. For V_t^h køber vi portefølen h_t
 - 3. Mellem [t,T] holder vi nu h_t , hvilket ikke koster os noget, da porteføljen er selv-finansierende. Bemærk h_t stadig ændrer sig dynamiks over tid
 - 4. Til tid T har vi, at $V_T^h = \mathcal{X}$, da h_t hedger \mathcal{X}
- Specielt gælder der, at $\pi(t|\mathcal{X}) = V_t^h$ at holde hedging porteføljen er ækvivalent med at holde \mathcal{X} !

Δ -Neutrality

• Lad h_t være hedging portefølje for \mathcal{X} med

$$V_t^h = h_t^0 B_t + h_1^t S_t$$

• Ofte er det belejligt at betragte den justerede portefølje, hvor vi sælger \mathcal{X} , $h_t = (h_t^0, h_t^1, -1)$, med

$$V_t^h = h_t^0 B_t + h_1^t S_t - F(t, S_t).$$

Her er F(t,s) prisfunktionen for \mathcal{X} . Bemærk at $V_T^h = 0$.

• Den justerede portefølje siges at være Δ -neutral, hvis

$$\frac{\partial V_t^h}{\partial s} = 0 \qquad \Leftrightarrow \qquad h_t^1 = F_s(t, S_t),$$

hvor $F_s(t,s)$ er optionens Δ til tid t

Δ -Hedging (se note)

- For hvert t beregnes Δ_t (antal aktier), mens h_t^0 vælges til at finansiere $\Delta_t S_t$. Størrelsen h_0^t er både givet i github-noten samt sætning 8.5
- I praksis hedger vi i diskret tid (fx daglig basis)
- Lad $0 = t_0 < t_1 < ... < t_n = T$ være et time-grid over [0, T] med dt = 1/n
 - 1. $t_0=0$: Vi sælger \mathcal{X} , modtager $F(0,S_0)$ og køber $\Delta_0=F_s(0,S_0)$ aktier, mens

$$h_0^0 = V_0^h + F(0, S_0) - \Delta_0 S_0$$

 $\mod V_0^h = 0$

2. Porteføljens (justeret) værdi (hedging error) næste dag $\left(t_{1}\right)$ er da

$$V_{t_1}^h = h_0^0 e^{rdt} + \Delta_0 S_{t_1} - F(t_1, S_{t_1}),$$

3. Nu rebalanceres porteføljen: $\Delta_1 = F_s(t_1, S_{t_1})$ og

$$h_{t_1}^0 = V_{t_1}^h + F(t_1, S_{t_1}) - \Delta_1 S_{t_1}$$

4. Dette gentages for $t_2, t_3, ..., t_{n-1}$: Beregn Δ_t, h_t^0 og hedging fejlen V_t^h . Strategiens peformance/hedging error er til tid T, da givet ved

$$V_T^h = h_{t_{n-1}}^0 e^{rdt} + \Delta_{t_{n-1}} S_T - F(T, S_T)$$

Mere om Δ -Hedging...

- Bemærk i diskret tid: $dV^h_{ti}=V^h_{ti}-V^h_{ti-1}$ er hedging fejlen ved at holde h_{ti-1} mellem t_{i-1}
- Hvis vi summer daglige hedging errors fås samlet hedring error:

$$\sum_{i=1}^{n} dV_{t_i}^h = V_T^h$$

• Proposition 9.7: I kontinuert tid $(dt \to 0)$ vil værdien af (h_t^0, Δ_t) hedge \mathcal{X} , altså

$$V_T^h = 0$$

, hvor (V_t^h) er værdiprocessen for den justerede portefølje

- Overvejelser/problemer:
 - Vi hedger ikke i kontinuert tid (men måske på daglig basis)
 - Vi har antaget, at transaktionsomkostninger er 0
 - Vi har antaget, at BS-modellen beskriver virkeligheden
 - Vi har antaget, at vi kender alle BS-parametre (vi kender ikke σ)

Example: Spot Price and Call Price

Model parameters: $S_0=100, \, \mu=0.07$ and $\sigma=2$. Market parameters: $r=0.02, \, K=100$ and T=1. Finally dt=1/1000.

$....\Delta_t$ of the European Option

Call Price vs. Value of Δ -hedging Portfolio

Hedging Errors

Implied Volatility

- On $0 = t_0 < t_1 < \dots < t_n = T$ assume that we observe market prices $\hat{C}_0, \dots, \hat{C}_{n-1}$ for a European call with strike K and maturity T
- The market implied volatility at time t_j , σ_j^i , is then expressed through the BS-formula and solves

$$C(t_i, S_{t_i}, r, \sigma_j^i, K) = \hat{C}_j$$

- Recall that $V_t = C_{\sigma}(t,s) > 0$: the solution to the above expression is unique
- The volatility skew: The market implied volatility depends on the strike level (or moneyness $M_t = K/S_t$). Typically decreasing in K.
- \bullet The volatility term structure: The market implied volatility depends on time-to-maturity T-t
- Combining the two observations yields the implied volatility surface

The volatility Skew (3-months European Option)

The volatility Term Structure

The volatility Surface

Summary

- If BS-model describes reality, market implied volatilities shouldn't depend on the option's moneyness and time-to-maturity
- Observed market prices show that this is clearly not the case (volatility surface)
- Focal point for option pricing models: Describe the observed volatility surface (for instance by including stochastic volatility)
- Regarding hedging European Option, we can't expect a perfect hedge the option because
 - Hedging is not conducted in continuous time
 - Option prices contradict the BS-model \sim even in continuous time, the BS Δ -hedge wouldn't replicate the option. However, this may imply that we can make profit when hedging the option (volatility arbitrage)
- Practical considerations: We need to pick a hedging volatility
 - True model volatility (σ) requires estimation
 - Market implied volatility (σ^i) observed from market prices