CHAPTER 29: CONVECTIVE MASS TRANSFER BETWEEN PHASES

Introduction to Gas-Liquid Interphase Mass Transfer

The Wetted Wall Column

(a simple device to look at interphase mass transfer)

Introduction to Gas-Liquid Interphase Mass Transfer (cont.)

Gas Absorption Liquid Stripping
(Solute transferred from gas to liquid) (Solute transferred from liquid to gas)

• = solute molecule

Gas Phase: solute A + carrier gas

Liquid Phase: solute A + solvent

The carrier gas and solvent are considered immiscible in one another

Introduction to Gas-Liquid Interphase Mass Transfer (cont.)

Gas Absorption

Liquid Stripping

29.1 Equilibrium distribution curve and Henry's Law

 $C_{AL,i}$

$$P_A$$
 (or p_A) vs. C_{AL}

At interface:

$$P_{A,i} = H C_{AL,i}$$

At equilibrium $(P_A = P_{A,i}, C_{AL} = C_{AL,i})$:

$$P_A = H C_{AL}$$

H units: e.g. atm / (kgmole/m³)

 P_A (or p_A) vs. x_A

At interface:

$$P_{A,i} = H x_{A,i}$$

At equilibrium $(P_A = P_{A,i}, C_{AL} = C_{AL,I})$:

$$P_A = H x_A$$

_

H units: e.g. atm / mol fraction (atm) $y_A vs. x_A$

At interface:

$$y_{A,i} = m x_{A,i}$$

At equilibrium $(P_A = P_{A,i}, x_A = x_{A,i})$:

$$y_A = m x_A$$

m units: dimensionless

 $X_{A,i}$

29.1 Equilibrium distribution curve and Henry's Law (cont.)

Example:

Ammonia (NH₃, solute A) – Water (H₂O, solvent) – Air (Carrier Gas) System

Gas Phase: NH₃ vapor + Air

Liquid Phase: NH₃ dissolved in Water

CHE 333: Fundamentals of Mass Transfer

Gas Phase: NH₃ vapor + Air

Liquid Phase: NH3 dissolved in Water

Equilibrium Distribution Curve (*P_A-C_{AL}*) Low Concentration Range (Linear Region, Henry's Law)

Equilibrium Distribution Curve (P_A-x_A) Low Concentration Range (Linear Region, Henry's Law)

29.1 Equilibrium Distribution Curve and Henry's Law (continued)

- · Solute A distributed between gas phases and dissolved phase in inert solvent
- · Carrier gas and solvent are immiscible
- · Fixed total system pressure (P) and temperature (T)

Units of Equilibrium Distribution Coefficient

Relationship	Gas Phase Units	Liquid Phase Units	Distribution Coefficient	Units of Equilibrium Distribution Coefficient
$P_{A,i} = H C_{AL,i}$	atm	kgmole/m ³	$H=mP/C_L$	atm / (kgmole/m ³)
$P_{A,i} = H x_{A,i}$	atm	mol. fract.	H = m P	atm
$y_{A,i}=m\ x_{A,i}$	mol. fract.	mol. fract.	m	dimensionless

Gas Liquid

 $P_A = y_A P C_{AL} = x_A C_L$

 $P_{A,i} = y_{A,i} P \qquad C_{AL,i} = x_{A,i} C_L$

P = total system pressure in gas phase, atm

 C_L = total molar concentration of liquid phase, kgmol/m³ (solute-species A, plus solvent B)

Note for dilute solutions

 $C_L \cong \frac{\rho_B}{M_B}$

where

 ρ_B = mass density of solvent, kg/m³

 M_B = molecular weight of solvent, kg/kgmole

Typical Values for H as defined by $P_{l,i} = H x_{l,i}$ (for comparative purposes only, always look up and cite reference)

Sparingly Soluble ($H > 100$ atm)	Soluble (H < 1.0 atm)	
Dissolved O ₂ gas in water 293 K	Very highly soluble	
$H = 4.3 \times 10^4 \text{ atm}$	Ethanol vapor in water at 293 K,	
Dissolved CO ₂ gas in water 293 K	H = 0.30 atm	
$H = 1.6 \text{ x} 10^3 \text{ atm}$	NH ₃ vapor in water at 293 K,	
Dissolved trichloroethylene vapor in	H = 0.9 atm	
water 293 K, $H = 556$ atm	Intermediate solubility	
	SO_2 in water at 293 K, $H = 46$ atm	

29.2 Two-Resistance Theory

29.2a Individual Film Mass Transfer Coefficients

Gas Film					
Driving Force	UMD Flux	Units of "k"			
Partial Pressure (P _A)	$N_A = k_G(P_A - P_{A,i})$	kgmole A/(m ² -sec-atm)			
Concentration (C _A)	$N_A = k_c(C_A - C_{A,i})$	kgmole A/(m²-sec-(kgmole/m³))			
Mole Fraction (y _A)	$N_A = k_y(y_A - y_{A,i})$	kgmole A/(m^2 -sec- Δy mole fract.)			
Liquid Film					
Concentration (C _{AL})	$N_{A} = k_{L}(C_{AL,i} - C_{AL})$	kgmole A/(m²-sec-(kgmole/m³))			
Mole Fraction (x _A)	$N_A = k_x(x_{A,i} - x_A)$	kgmole A/(m ² -sec- Δ x mole fract.)			

29.2b Overall Mass Transfer Coefficients

Two-Film Resistance Theory for Gas-Liquid Contacting

- 1. Solute is distributed between contacting gas and liquid phase
 - gas phase contains solute A + inert carrier gas
 - liquid phase contains solute A + inert solvent
 - carrier gas and solvent are immiscible
- 2. No accumulation of solute A within the gas or liquid film (nominal steady state)
- 3. The rate of mass transfer for a given solute is dependent on the concentration gradient of solute "A" which is localized in the film for each phase. At steady state, the flux through the gas film and the liquid film are equal $(N_{A,G} = N_{A,L} = N_A)$.
- 4. There is no mass transfer resistance at the gas-liquid interface: equilibrium distribution of solute A between gas and liquid exists only at the interface
- 5. Unimolecular mass transfer process: diffusion of solute A through nondiffusing B, where B is the carrier gas for the gas phase, or B is the solvent for the liquid phase.

29.2b Overall Mass Transfer Coefficients (cont.)

In convective gas-liquid interphase mass transfer, the thickness of the gas and liquid films is very small. Therefore, the "accumulation" of transferring solute A *within the film* (not the whole process) will be small, and so

$$N_A = N_{A,gas film} = N_{A,liquid film}$$

Big picture: develop an "overall mass transfer coefficient" to calculate N_A based on only bulk gas and bulk liquid "solute A" compositions

Gas Absorption

- Refer to P_A - C_{AL} and y_A - x_A diagrams
- The bulk gas composition of solute A (e.g. P_A or y_A) and bulk liquid composition of solute A (e.g. C_{AL} or x_A) are represented as a single point called the "operating point"... the operating point is not at equilibrium
 - Gas absorption: "operating point" is *above* the equilibrium line
 - Liquid stripping: "operating point" is below the equilibrium line

CHE 333: Fundamentals of Mass Transfer

29.2b Overall Mass Transfer Coefficients (cont.)

Gas Absorption - Overall Mass Transfer Coefficients

Gas Film
$$N_{A} = k_{G}(P_{A} - P_{A,i})$$

$$N_{A} = k_{L}(C_{AL,i} - C_{AL})$$

$$N_{A} = k_{x}(x_{A,i} - x_{A})$$

$$N_{A} = k_{x}(x_{A,i} - x_{A})$$

Equate Film Fluxes

$$-\frac{k_L}{k_G} = \frac{p_A - p_{A,i}}{C_{AL} - C_{AL,i}}$$
 or $-\frac{k_x}{k_y} = \frac{y_A - y_{A,i}}{x_A - x_{A,i}}$

We can graphically locate interphase compositions (e.g. $P_{A,i}$ - $C_{AL,i}$ and $y_{A,i}$ - $x_{A,i}$) using the point-slope formula above, with locus of intersection at the equilibrium line

Note: bulk compositions P_A - C_{AL} or y_A - x_A are easily determined

interphase compositions $P_{A i}$ - $C_{AL,i}$ or $y_{A,i}$ - $x_{A,i}$ are not easily determined

Rewrite driving force for N_A based on bulk compositions

Overall Gas Phase

Overall Liquid Phase

$$N_{A} = K_{G}(P_{A} - P_{A}^{*})$$

$$N_{A} = K_{L}(C_{AL}^{*} - C_{AL})$$

$$N_{A} = K_{v}(y_{A} - y_{A}^{*})$$

$$N_{A} = K_{x}(x_{A}^{*} - x_{A})$$

 P_A * = partial pressure of solute A in gas which "would be" in equilibrium with bulk liquid composition C_{AL}

 y_A * = mole fraction of solute A in gas which "would be" in equilibrium with bulk liquid mole fraction x_A

 C_{AL} * = molar concentration of solute A in liquid which "would be" in equilibrium with bulk gas partial pressure P_A

 x_A * = mole fraction of solute A in liquid which "would be" in equilibrium with bulk gas mole fraction y_A

Refer to P_A - C_{AL} or y_A - x_A diagrams

Approximate:
$$y_A^* = m' x_A$$
 and $y_{A,i} = m' x_{Ai}$

$$p_A^* = H'C_{AL}$$
 and $p_{A,i} = H'C_{AL,i}$

H' is a linear approximation of the equilibrium curve from C_{AL} to $C_{AL,i}$ m' is a linear approximation of the equilibrium curve from x_A to $x_{A,i}$

Therefore (finishing up with mole fraction coordinates as the example)

$$y_A - y_A^* = (y_A - y_{A,i}) + (y_{A,i} - y_A^*) = (y_A - y_{A,i}) + m'(x_{A,i} - x_A)$$
(1)

Recall

$$N_A = K_y (y_A - y_A^*)$$
 or $\frac{N_A}{K_y} = (y_A - y_A^*)$ (2)

$$N_A = k_y (y_A - y_{A,i})$$
 or $\frac{N_A}{k_y} = (y_A - y_{A,i})$ (3)

$$N_A = k_x (x_{A,i} - x_A)$$
 or $\frac{N_A}{k_x} = (x_{A,i} - x_A)$ (4)

Combine (2), (3) and (4) with (1)

$$\therefore \frac{N_A}{K_y} = \frac{N_A}{k_y} + m' \frac{N_A}{k_x}$$

Finally, the *Overall Gas Phase Mass Transfer Coefficients* based on an overall gas phase driving force $(y_A - y_A^*)$ or $(p_A - p_A^*)$

Nonlinear equilibrium Linear equilibrium Driving force (m'=m, H'=H)

$$\frac{1}{K_{v}} = \frac{1}{k_{v}} + \frac{m'}{k_{x}} \qquad \frac{1}{K_{v}} = \frac{1}{k_{v}} + \frac{m}{k_{x}} \qquad (y_{A} - y_{A}^{*})$$

$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{H'}{k_L} \qquad \frac{1}{K_G} = \frac{1}{k_G} + \frac{H}{k_L} \qquad (p_A - p_A^*)$$

By a similar analysis, the *Overall Liquid Phase Mass Transfer Coefficients* based on an overall liquid phase driving force $(x_A^* - x_A)$ or $(C_{AL}^* - C_{AL})$

Nonlinear equilibrium Linear equilibrium Driving force (m''=m, H''=H)

$$\frac{1}{K_x} = \frac{1}{k_x} + \frac{1}{m''k_y} \qquad \frac{1}{K_x} = \frac{1}{k_x} + \frac{1}{mk_y} \qquad (x_A^* - x_A)$$

$$\frac{1}{K_I} = \frac{1}{k_I} + \frac{1}{H''k_G} \qquad \frac{1}{K_I} = \frac{1}{k_I} + \frac{1}{H k_G} \qquad (C_{AL}^* - C_{AL})$$

Overall Mass Transfer Coefficients – Film Controlling Resistances

Define relative gas phase resistance

 $\frac{1/k_G}{1/K_G} = \frac{1/k_y}{1/K_y} = \frac{\text{resistance to solute A mass transfer in gas film}}{\text{total resistance based on overall gas phase driving force}}$

Define relative liquid phase resistance

$$\frac{1/k_L}{1/K_L} = \frac{1/k_x}{1/K_x} = \frac{\text{resistance to solute A mass transfer in liquid film}}{\text{total resistance based on overall liquid phase driving force}}$$

note
$$\frac{1/k_y}{1/K_y} = 1 - \frac{1/k_x}{1/K_x}$$
 only if equilibrium line is linear!

Gas film controlling resistance

Liquid film controlling resistance

m is very small (highly soluble A)

m is very large (sparingly soluble A)

and/or $k_x >> k_v$

and/or $k_v >> k_x$

$$K_v \rightarrow k_v$$
 or $K_G \rightarrow k_G$

$$K_x \rightarrow k_x$$
 or $K_L \rightarrow k_L$

$$y_{Ai} \rightarrow y_A *$$
 and $(x_{Ai} - x_A) \rightarrow 0$ $x_{Ai} \rightarrow x_A *$ and $(y_A - y_{Ai}) \rightarrow 0$

$$x_{Ai} \rightarrow x_A * \text{ and } (y_A - y_{Ai}) \rightarrow 0$$

Gas Absorption vs. Liquid Stripping

Liquid Stripping – Overall Mass Transfer Coefficients

Liquid Stripping

Overall Gas Phase Mass Transfer Coefficients based on an overall gas phase driving force $(y_A^*-y_A)$ or $(p_A^*-p_A)$

Nonlinear equilibrium

Linear equilibrium
$$(m''=m, H''=H)$$

Driving force

$$\frac{1}{K_v} = \frac{1}{k_v} + \frac{m''}{k_x}$$

$$\frac{1}{K_v} = \frac{1}{k_v} + \frac{m}{k_x}$$

$$(y_A^*-y_A)$$

$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{H''}{k_L}$$

$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{H}{k_I}$$

$$(P_A*-P_A)$$

Overall Liquid Phase Mass Transfer Coefficients based on an overall liquid phase driving force $(x_A - x_A^*)$ or $(C_{AL} - C_{AL}^*)$

Nonlinear equilibrium

Linear equilibrium
$$(m' = m, H' = H)$$

Driving force

$$\frac{1}{K_x} = \frac{1}{k_x} + \frac{1}{m'k_y}$$

$$\frac{1}{K_x} = \frac{1}{k_x} + \frac{1}{m \, k_y} \qquad (x_A - x_A^*)$$

$$(x_A - x_A^*)$$

$$\frac{1}{K_L} = \frac{1}{k_L} + \frac{1}{H'k_G}$$

$$\frac{1}{K_L} = \frac{1}{k_L} + \frac{1}{H'k_G} \qquad \frac{1}{K_L} = \frac{1}{k_L} + \frac{1}{H k_G} \qquad (C_{AL} - C_{AL}^*)$$

$$(C_{AL} - C_{AL}^*)$$

17

More Definitions

Nonlinear equilibrium line definitions of "m", the local equilibrium near operating point x_A , y_A

Gas Absorption

Liquid Stripping

$$m' = \frac{y_{A,i} - y_A^*}{x_{A,i} - x_A}$$

$$m' = \frac{y_{A,i} - y_A}{x_{A,i} - x_A^*}$$

$$m'' = \frac{y_A - y_{A,i}}{x_A^* - x_{A,i}}$$

$$m'' = \frac{y_A^* - y_{A,i}}{x_A - x_{A,i}}$$

Inter-Conversion of Film Mass Transfer Coefficients (Solute A)

Gas Film

$$k_G = \frac{k_c}{RT}$$
 $k_G = \frac{k_y}{P}$ $k_y = \frac{P}{RT}k_c$

Liquid Film

$$k_x = C_L k_L \cong \frac{\rho_B}{M_B} k_L$$

29.2 cont.

Process examples of steady-state, well-mixed, gas-liquid mass transfer process across a defined interface

Closed Tank

Open Tank (or pond)

