and

$$\varphi(\psi(u)) = \varphi(\overline{1} \otimes u)$$

$$= 1u$$

$$= u,$$

which shows that φ and ψ are mutual inverses.

We now develop the theory necessary to understand the structure of finitely generated modules over a PID.

35.4 Torsion Modules over a PID; The Primary Decomposition

We begin by considering modules over a product ring obtained from a direct decomposition, as in Definition 32.3. In this section and the next, we closely follow Bourbaki [26] (Chapter VII). Let A be a commutative ring and let $(\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ be ideals in A such that there is an isomorphism $A \approx A/\mathfrak{b}_1 \times \cdots \times A/\mathfrak{b}_n$. From Theorem 32.16 part (b), there exist some elements e_1, \ldots, e_n of A such that

$$e_i^2 = e_i$$

$$e_i e_j = 0, \quad i \neq j$$

$$e_1 + \dots + e_n = 1_A,$$

and $b_i = (1_A - e_i)A$, for i, j = 1, ..., n.

Given an A-module M with $A \approx A/\mathfrak{b}_1 \times \cdots \times A/\mathfrak{b}_n$, let M_i be the subset of M annihilated by \mathfrak{b}_i ; that is,

$$M_i = \{ x \in M \mid bx = 0, \text{ for all } b \in \mathfrak{b}_i \}.$$

Because \mathfrak{b}_i is an ideal, each M_i is a submodule of M. Observe that if $\lambda, \mu \in A, b \in \mathfrak{b}_i$, and if $\lambda - \mu = b$, then for any $x \in M_i$, since bx = 0,

$$\lambda x = (\mu + b)x = \mu x + bx = \mu x,$$

so M_i can be viewed as a A/\mathfrak{b}_i - module.

Proposition 35.15. Given a ring $A \approx A/\mathfrak{b}_1 \times \cdots \times A/\mathfrak{b}_n$ as above, the A-module M is the direct sum

$$M = M_1 \oplus \cdots \oplus M_n,$$

where M_i is the submodule of M annihilated by \mathfrak{b}_i .