零死角玩转STM32—M3系列

直接存储器访问

淘宝: fire-stm32.taobao.com

论坛: www.firebbs.cn

扫描进入淘宝店铺

主讲内容

01

DMA功能框图讲解

02

DMA相关库函数讲解

参考资料:《零死角玩转STM32》

"DMA—直接存储器访问"章节

DMA简介

DMA:Data Memory Access,直接存储器访问。主要功能是可以把数据从一个地方搬到另外一个地方,而且不占用CPU。

DMA1: 有7个通道,可以实现 P->M, M->P,

M -> M

DMA2: 有7个通道,可以实现 P->M, M->P,

M -> M

DMA功能框图讲解

1-DMA请求

2-通道

3-仲裁器

DMA请求+通道

DMA1请求映射

外设	通道1	通道2	通道3	通道4	通道5	通道6	通道7
ADC1	ADC1						
SPI/I ² S		SPI1_RX	SPI1_TX	SPI/I2S2_RX	SPI/I2S2_TX		
USART		USART3_TX	USART3_RX	USART1_TX	USART1_RX	USART2_RX	USART2_TX
I ² C				I2C2_TX	I2C2_RX	I2C1_TX	I2C1_RX
TIM1		TIM1_CH1	TIM1_CH2	TIM1_TX4 TIM1_TRIG TIM1_COM	TIM1_UP	TIM1_CH3	
TIM2	TIM2_CH3	TIM2_UP			TIM2_CH1		TIM2_CH2 TIM2_CH4
TIM3		тімз_снз	TIM3_CH4 TIM3_UP			TIM3_CH1 TIM3_TRIG	
TIM4	TIM4_CH1			TIM4_CH2	TIM4_CH3		TIM4_UP

DMA请求+通道

DMA2请求映射

外设	通道1	通道2	通道3	通道4	通道5
ADC3 ⁽¹⁾					ADC3
SPI/I2S3	SPI/I2S3_RX	SPI/I2S3_TX			
UART4			UART4_RX		UART4_TX
SDIO ⁽¹⁾				SDIO	
TIM5	TIM5_CH4 TIM5_TRIG	TIM5_CH3 TIM5_UP		TIM5_CH2	TIM5_CH1
TIM6/			TIM6_UP/		
DAC通道1			DAC通道1		
TIM7/ DAC通道2				TIM7_UP/ DAC通道2	
TIM8 ⁽¹⁾	TIM8_CH3 TIM8_UP	TIM8_CH4 TIM8_TRIG TIM8_COM	TIM8_CH1		TIM8_CH2

ADC3/SDIO/TIM8 的DMA请求只有大容量的单片机才有

仲裁器

多个DMA请求一起来,怎么办?

- □ 1、软件阶段, DMA_CCRx: PL[1:0]。
- □ 2、硬件阶段,通道编号小的优先级大,DM1 的优先级高于DMA2的优先级。

初始化结构体在固件库头文件中:stm32f10x_dma.h

■ DMA_ InitTypeDef 初始化结构体。

```
1 typedef struct₽
2 { ₽
      uint32 t DMA PeripheralBaseAddr;
                                     // 外设地址→
      uint32 t DMA MemoryBaseAddr;
                                     // 存储器地址↓
                                     // 传输方向↩
      uint32 t DMA DIR;
                                     // 传输数目↓
      uint32 t DMA BufferSize;
                                     // 外设地址增量模式↓
      uint32 t DMA PeripheralInc;
                                     // 存储器地址增量模式↓
      uint32 t DMA MemoryInc;
                                     // 外设数据宽度↓
      uint32 t DMA PeripheralDataSize;
                                     // 存储器数据宽度↓
10
      uint32 t DMA MemoryDataSize;
                                     // 模式选择↓
11
      uint32 t DMA Mode;
                                     // 诵道优先级↓
12
     uint32 t DMA Priority;
                                     // 存储器到存储器模式↓
      uint32 t DMA M2M;
13
    DMA InitTypeDef; ₽
```


一、数据从哪里来,要到哪里去

```
      uint32_t DMA_PeripheralBaseAddr;
      // 外设地址→

      uint32_t DMA_MemoryBaseAddr;
      // 存储器地址→

      uint32 t DMA DIR;
      // 传输方向→
```

- □ 1、外设地址, DMA_CPAR
- □ 2、存储器地址, DMA_CMAR
- □ 3、传输方向, DMA_CCR:DIR

二、数据要传多少,传的单位是什么

```
uint32_t DMA_BufferSize; // 传输数目↓
uint32_t DMA_PeripheralInc; // 外设地址增量模式↓
uint32_t DMA_MemoryInc; // 存储器地址增量模式↓
uint32_t DMA_PeripheralDataSize; // 外设数据宽度↓
uint32_t DMA_MemoryDataSize; // 存储器数据宽度↓
```

- □ 1、传输数目, DMA_CNDTR
- □ 2、外设地址是否递增,DMA_CCRx:PINC
- □ 3、存储器地址是否递增,DMA_CCRx:MINC
- □ 4、外设数据宽度, DMA_CCRx:PSIZE
- □ 5、存储器数据宽度 , DMA_CCRx:MSIZE

三、什么时候传输结束

uint32 t DMA Mode; // 模式选择→

- □ 1、模式选择,DMA_CCRx:CIRC
- □ 2、传输过半,传输完成,传输出错, DMA ISR

零死角玩转STM32—M3系列

论坛: www.firebbs.cn

淘宝: fire-stm32.taobao.com

扫描进入淘宝店铺