Tabla de distribuciones utilizadas en el curso

Septiembre de 2021

1. Distribuciones discretas univariadas

Distribución	Notación	$p_X(x)$	Soporte	Parámetros	$\mathbf{E}[X]$	$\mathbf{var}(X)$
Bernoulli	Ber(p)	$p^x(1-p)^{1-x}$	{0, 1}	$p \in (0,1)$	p	p(1-p)
Binomial	$\mathcal{B}(n,p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	$\llbracket 0,n rbracket$	$p \in (0,1), n \in \mathbb{N}$	np	np(1-p)
Geométrica	$\mathcal{G}(p)$	$(1-p)^{x-1}p$	N	$p \in (0,1)$	1/p	$(1-p)/p^2$
Pascal	Pas(k, p)	$\begin{pmatrix} \binom{x-1}{k-1}(1-p)^{x-k}p^k \end{pmatrix}$	\mathbb{Z}_k	$p \in (0,1), k \in \mathbb{N}$	k/p	$k(1-p)/p^2$
Poisson	$\operatorname{Poi}(\mu)$	$(\mu^x e^{-\mu})/x!$	\mathbb{Z}_0	$\mu > 0$	μ	μ
Hipergeométrica	$\mathcal{H}(N,d,n)$	$\frac{\binom{d}{x}\binom{N-d}{n-x}}{\binom{N}{n}}$	$[\![m,M]\!]^\dagger$	$d \le N, n \le N \in \mathbb{N}$	$\frac{nd}{N}$	$\frac{nd(N-d)(N-n)}{N^2(N-1)}$

 $^{^{\}dagger}m=\max\{0,d+n-N\},M=\min\{n,d\}$

Notación:

$$[a, b] := \{x \in \mathbb{Z} : a \le x \le b\}$$

$$\mathbb{Z}_k := \{ x \in \mathbb{Z} : x \ge k \}$$

1.1. Notas

- La función de probabilidad $p_X(x) = \mathbf{P}(X = x)$ en la tabla vale para x en el soporte indicado, y vale 0 para cualquier otro valor de x.
- La forma de definir los parámetros de las variables aleatorias no tiene una convención universal. En las tablas se intentó respetar el siguiente orden de prioridad: [1], [2], [3]. Al consultar un libro o usar funciones de un software lea atentamente la definición que usa para los parámetros de cada distribución.
- El número combinatorio (binomial coefficient) se define como

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} \qquad n \in \mathbb{N}, \ r = 0, \ 1 \dots n$$

y el combinatorio generalizado (multinomial coefficient):

$$\binom{n}{r_1 \, r_2 \dots r_k} = \frac{n!}{r_1! r_2! \dots r_k!} \qquad n \in \mathbb{N}, \ r_i = 0, 1 \dots n, \ \sum_{i=1}^k r_i = n.$$

Algunos autores llaman "binomial negativa" a la distribución Pascal.

1.2. Algunos modelos

Una variable aleatoria con distribución:

- Bernoulli modela un experimento con dos resultados posibles, asignando el valor 1 a la ocurrencia del evento estudiado (que en general se lo llama éxito y tiene probabilidad p) y 0 a la no ocurrencia del mismo (con probabilidad 1-p).
- Binomial modela la cantidad de $\acute{e}xitos$ obtenidos al repetir n veces de forma independiente un experimento de Bernoulli con probabilidad p de $\acute{e}xito$.
- \blacksquare Geométrica modela la cantidad de ensayos necesarios hasta obtener el primer éxito si se repite de forma independiente un experimento de Bernoulli con probabilidad p de éxito.
- lacktriangle Pascal modela la cantidad de ensayos necesarios hasta obtener k éxitos si se repite de forma independiente un experimento de Bernoulli con probabilidad p de éxito.
- Hipergeométrica modela la cantidad de éxitos en n extracciones sin reposición de una población de tamaño total N, de los cuales d individuos son éxito y N-d individuos no lo son.

2. Distribuciones continuas univariadas

Distribución	Notación	$f_X(x)$	Soporte	Parámetros	$\mathbf{E}[X]$	$\mathbf{var}(X)$
Uniforme	$\mathcal{U}[a,b]$	1/(b-a)	[a,b]	a < b	(a+b)/2	$(b-a)^2/12$
Exponencial	$\mathcal{E}(\lambda)$	$\lambda e^{-\lambda x}$	$[0,+\infty)$	$\lambda > 0$	$1/\lambda$	$1/\lambda^2$
Gamma	$\Gamma(u,\lambda)$	$\frac{\lambda^{\nu}}{\Gamma(\nu)} x^{\nu-1} e^{-\lambda x}$	$[0,+\infty)$	$\nu > 0, \lambda > 0$	$ u/\lambda $	$ u/\lambda^2$
Normal	$\mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	\mathbb{R}	$\mu \in \mathbb{R}, \sigma^2 > 0$	μ	σ^2
Chi cuadrado	χ_k^2	$\frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}x^{\frac{k}{2}-1}e^{-\frac{x}{2}}$	$[0,+\infty)$	$k \in \mathbb{N}$	k	2k
t-Student	$t_{ u}$	$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	\mathbb{R}	$\nu > 0$	0	$\frac{\nu}{\nu-2}*$
Weibull	$\mathrm{Wei}(c, lpha)$	$\frac{c}{\alpha} \left(\frac{x}{\alpha}\right)^{c-1} e^{-\left(\frac{x}{\alpha}\right)^c}$	$[0,+\infty)$	$c > 0, \alpha > 0$	$\alpha\Gamma(1+\frac{1}{c})$	$\alpha^2 \left[\Gamma (1 + \frac{2}{c}) - \Gamma^2 (1 + \frac{1}{c}) \right]$
Rayleigh	$\operatorname{Ray}(\sigma)$	$\frac{x}{\sigma^2}e^{-x^2/(2\sigma^2)}$	$[0,+\infty)$	$\sigma > 0$	$\sigma\sqrt{\pi/2}$	$\frac{4-\pi}{2}\sigma^2$
Pareto	$\operatorname{Par}(m, \alpha)$	$rac{lpha m^{lpha}}{x^{lpha+1}}$	$[m, +\infty)$	$m > 0, \alpha > 0$	$\frac{\alpha m}{\alpha - 1}$ †	$\frac{m^2\alpha}{(\alpha-1)^2(\alpha-2)} \ddagger$
Beta	$\beta(a,b)$	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$	(0,1)	a > 0, b > 0	a/(a+b)	$\frac{ab}{(a+b)^2(a+b+1)}$
Cauchy	$\mathrm{Cau}(x_0,\gamma)$	$\frac{1}{\pi\gamma} \left[\frac{\gamma^2}{(x-x_0)^2 + \gamma^2} \right]$	\mathbb{R}	$x_0 \in \mathbb{R}, \gamma > 0$	no existe	no existe

 $^{^{\}dagger}$ Válida si $\alpha>1.$ ‡ Válida si $\alpha>2.$ * Válida si $\nu>2$

2.1. Notas

- La función de densidad $f_X(x)$ en la tabla vale para todo x real en el soporte indicado, y vale 0 para cualquier otro valor de x.
- La forma de definir los parámetros de las variables aleatorias no tiene una convención universal. En las tablas se intentó respetar el siguiente orden de prioridad: [1], [2], [3]. Al consultar un libro o usar funciones de un software lea atentamente la definición que usa para los parámetros de cada distribución.
- La función Gamma se define $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$. Crece muy rápidamente, y para evitar problemas numéricos en algunos algoritmos conviene adaptar las fórmulas para que aparezca el logaritmo de la función $\log |\Gamma(t)|$ (las barras de módulo no molestan pues usaremos habitualmente valores positivos). Algunas propiedades:

$$\Gamma(n) = (n-1)!$$
 para $n \in \mathbb{N}$

$$\Gamma(t+1) = t\Gamma(t)$$
 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

2.2. Algunas funciones de supervivencia

Sea T una variable aleatoria continua, $S(t) = \mathbf{P}(T > t)$ (función de supervivencia o *survival function*), vale que:

- si $T \sim \mathcal{E}(\lambda)$ entonces $S(t) = e^{-\lambda t}$ para $t \geq 0$.
- si $T \sim \Gamma(k, \lambda)$ con $k \in \mathbb{N}$ entonces $S(t) = \sum_{n=0}^{k-1} \frac{e^{-\lambda t} (\lambda t)^n}{n!}$ para t > 0.
- \bullet si $T \sim \mathrm{Wei}(c,\alpha)$ entonces $S(t) = e^{-(t/\alpha)^c}$ para $t \geq 0.$
- si $T \sim \text{Ray}(\sigma)$ entonces $S(t) = e^{-t^2/(2\sigma^2)}$ para $t \ge 0$.
- si $T \sim \operatorname{Par}(m, \alpha)$ entonces $S(t) = (m/t)^{\alpha}$ para $t \geq m$.

3. Distribuciones multivariadas

3.1. Variable Multinomial

La variable aleatoria Multinomial $\mathcal{M}(n, p_1, p_2, \dots p_k)$ modela la cantidad de observaciones de cada resultado posible al repetir n veces de forma independiente un experimento que toma valores en $\{1 \dots k\}$ (variable categórica o Bernoulli generalizada) con probabilidades p_i para cada resultado $i \in \{1 \dots k\}$.

Su función de probabilidad es

$$p_{\mathbf{X}}(n, x_1, x_2 \dots x_k) = \binom{n}{x_1 \, x_2 \dots x_k} p_1^{x_1} \cdot p_2^{x_2} \cdots p_k^{x_k}$$

con soporte $\{\mathbf{x} \in \{0 \dots n\}^k, \sum_{i=1}^k x_i = n\}$ y parámetros:

$$0 < p_i < 1, \qquad \sum_{i=1}^k p_i = 1, \qquad n \in \mathbb{N}.$$

Se tiene que para cada una de las variables aleatorias que componen al vector, sus distribuciones marginales estan dadas por

$$X_i \sim \mathcal{B}(n, p_i)$$

El vector aleatorio condicionado por $X_1 = x_1$ tiene distribución

$$(X_2, X_3, \dots, X_k)|X_1 = x_1 \sim \text{Mul}\left(n - x_1, \frac{p_2}{1 - p_1}, \frac{p_3}{1 - p_1}, \dots, \frac{p_k}{1 - p_1}\right)$$

Además, se tiene que

$$\mathbf{E}(X_i) = np_i, \qquad \mathbf{cov}(X_i, X_j) = \left\{ \begin{array}{ll} np_i(1-p_i) & i=j \\ -np_ip_j & i \neq j \end{array} \right..$$

3.2. Variable Normal bivariada

Se dice que el vector aleatorio (X_1, X_2) tiene distribución normal bivariada $(X_1, X_2) \sim \mathcal{N}_2(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ si su función de densidad es de la forma

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(\frac{-1}{2(1-\rho^2)} \left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2} - \frac{2\rho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} \right] \right)$$

con soporte \mathbb{R}^2 y parámetros:

$$\mu_1$$
, μ_2 , $\sigma_1^2 > 0$, $\sigma_2^2 > 0$, $-1 \le \rho \le 1$.

Los parámetros se pueden presentar en forma matricial como el vector μ y la matriz de covarianzas Σ definida positiva, dados por

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}.$$

Algunas propiedades:

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$$

$$X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

$$X_1 | X_2 = x_2 \sim \mathcal{N}\left(\mu_1 + \rho\sigma_1\left(\frac{x_2 - \mu_2}{\sigma_2}\right), (1 - \rho^2)\sigma_1^2\right)$$

$$X_2 | X_1 = x_1 \sim \mathcal{N}\left(\mu_2 + \rho\sigma_2\left(\frac{x_1 - \mu_1}{\sigma_1}\right), (1 - \rho^2)\sigma_2^2\right)$$

Si el vector aleatorio es de dimensión n, entonces se tendrá la distribución Normal multivariada.

4. Equivalencias

Se usa como notación el signo equivalente \equiv para indicar que dos distribuciones coinciden para determinados parámetros. Se indican sólo algunas equivalencias que se dan en el curso.

4.1. Discretas

- $Ber(p) \equiv \mathcal{B}(1,p)$
- $\mathcal{G}(p) \equiv \operatorname{Pas}(1,p)$

4.2. Continuas

- $\mathcal{U}(0,1) \equiv \beta(1,1)$
- $\mathcal{E}(\lambda) \equiv \Gamma(1,\lambda) \equiv \text{Wei}(1,\frac{1}{\lambda})$
- $\chi_k^2 \equiv \Gamma(\frac{k}{2}, \frac{1}{2}) \text{ con } k \in \mathbb{N}$

Referencias

- [1] Grynberg, S. Variables Aleatorias: momentos (Borradores, Curso 23). Buenos Aires: [digital], 27 de marzo de 2013
- [2] Maronna, R. Probabilidad y Estadística Elementales para Estudiantes de Ciencia. 1ra ed. La Plata: [digital], 1995
- [3] Varios artículos ['· distribution', 'Gamma function']. En Wikipedia, The Free Encyclopedia. Consultados en Julio 2016.
- [4] DeGroot, M. H. Probability and Statistics. 2nd. ed. EE.UU.: Addison-Wesley Publishing Company, 1989.
- [5] Feller, W. An Introduction to Probability Theory and Its Applications, Vol. I. 2da ed. New York: John Wiley & Sons, 1957.