- 1. Пусть $\varphi: \mathbb{Z} \to \mathbb{Z}/(6)$ гомоморфизм, который $n \mapsto n \pmod{6}$. Является ли он изоморфизмом? Найдите $\ker \varphi$ и опишите, чем являются элементы $\operatorname{im} \varphi$?
- 2. Пусть $H = \{e, |12\}$ подгруппа S_3 . Постройте гомоморфизм $\psi \colon S_3 \to H$, такой что четные перестановки он переводит в e. А нечетные в $|12\rangle$.
 - (a) Проверьте, что гомоморфизм ψ сохраняет композицию.
 - (b) Найдите $\ker \psi$.
 - (c) Проверьте, что $S_3 / \ker \psi \cong H$.
- 3. Группа D_4 действует на множестве вершин квадрата $\{1, 2, 3, 4\}$.
 - (а) Сколько орбит у этого действия?
 - (b) Найдите стабилизатор вершины 1. Какой группе он изоморфен?
 - (c) Проверьте, что $|D_4| = |\operatorname{Stab}(1)| \cdot |\operatorname{Orb}(1)|$.
- 4. Группа S_3 действует на многочлене $P(x_1, x_2, x_3) = x_1^2 + x_2x_3$, переставляя переменные. Найдите орбиты этого действия. Какой стабилизатор у P?
- 5. Пусть задан гомоморфизм $\mu: \mathbb{Z}/(12) \to \mathbb{Z}/(12)$, который $z \mapsto 3z$.
 - (a) Найдите ker μ.
 - (b) Постройте таблицу Кэли для $\operatorname{im} \mu$.
 - (c) Изоморфна ли іт μ какой-то известной группе?
- 6. Группа $G=\mathbb{Z}/(4)$ действует на множестве $X=\{1,2,3,4\}$ циклическими сдвигами. Запишите соответствующий гомоморфизм $\varphi\colon G\to \mathcal{S}_4$. Чему равно $\ker \varphi$?
- 7. Группа $\mathbb{Z}/(6)$ действует на множестве $X = \{A, B, C\}$ по правилу

$$k \cdot A = A$$
, $k \cdot B = C$, $k \cdot C = B$, $\forall k \in \mathbb{Z}/(6)$.

Найдите орбиты и стабилизаторы элементов Х.

- 8. Пусть задан гомоморфизм групп $\varphi \colon G \to M$. Докажите, что для любого элемента $h \in \ker \varphi$ и произвольного $g \in G$ выполняется $ghg^{-1} \in \ker \varphi$.
- 9. Постройте группу A_n с помощью какого-то эндоморфизма \mathcal{S}_n

¹Этим доказательством вы покажете, что ядра гомоморфизмов являются *нормальными* подгруппами.

²Эндоморфизм – гомоморфизм в себя, т.е. ψ : G → G.