Aula - Computação Gráfica

Domínio do Espaço: Transformação de Intensidade e Filtragem

Slides para uso pessoal e exclusivo durante o período de aula. Distribuição ou qualquer uso fora do escopo da disciplina é expressamente proibido.

1

Introdução

O que é o domínio do espaço?

- Processamento de sinais estuda o domínio do tempo
 - Exemplo de um sensor de temperatura

- Processamento de imagens estuda o domínio do espaço
 - Exemplo de um imagem

2

Introdução

Processamento de imagens

- Transforma imagens
 - Dada uma imagem como entrada f(x, y)
 - Gera uma imagem como saída g(x, y)
- Transformar uma imagem de entrada em uma de saída
 - Significa computar um valor de para cada pixel (x,y) de g
 - Considerando uma região em torno de cada pixel (x,y) de f

Introdução

FIGURE 3.1 A 3×3 neighborhood about a point (x, y) in an image in the spatial domain. The neighborhood is moved from pixel to pixel in the image to generate an output image.

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

4

Introdução

5

Transformações de Intensidade Básicas

Função de transformação

• Transforma a intensidade de uma imagem

$$s = T(r)$$

a b

FIGURE 3.2

Intensity transformation functions.
(a) Contrast-stretching function.
(b) Thresholding function.

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

Transformações de Intensidade Básicas

Funções de transformação

FIGURE 3.3 Some basic intensity transformation functions. All curves were scaled to fit in the range shown.

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

7

Transformações de Intensidade Básicas

Imagem Negativa

s = L - 1 - r

Útil para realçar regiões brancas/cinzas imersas em grandes regiões pretas

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

8

Transformações de Intensidade Básicas

Imagem Negativa

FIGURE 3.4
(a) Original digital mammogram.
(b) Negative image obtained using the negative transformation in Eq. (3.2-1).
(Courtesy of G.E. Medical Systems.)

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

Transformações de Intensidade Básicas

Transformação Logarítmica

 $s = c \log(1 + r)$

Útil para enfatizar imagens com muitos pixels de intensidade baixa e poucos de intensidade muito alta Melhora a visualização

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

10

Transformações de Intensidade Básicas

Transformação Logarítmica

a b

FIGURE 3.5
(a) Fourier spectrum.
(b) Result of applying the log transformation in Eq. (3.2-2) with c = 1.

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

11

Transformações de Intensidade Básicas

Correção Gama

 $s = cr^{\gamma}$

- Usada para fazer correção gama em vários dispositivos
 - Ex. monitores CRT

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

Transformações de Intensidade Básicas

13

Transformações de Intensidade Básicas

Imagem de: Processamento de imagens digitais, $\ensuremath{\mathsf{GONZALEZ}}$ e $\ensuremath{\mathsf{WOODS}}$

14

Transformações de Intensidade Básicas

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

Transformações de Intensidade por Partes (Piecewise)	
Alongamento de Contraste	_
Aumenta a gama de valores de intensidade utilizados	
Distancia as intensidades entre os pixels	
 Tende a melhorar a visualização Dado o aumento da percepção da diferença entre os pixels 	
	16
16	
Transformações de Intensidade por Partes (Piecewise)	
<u> </u>	_
Alongamento de Contraste	
L-1 c. d. Figure 3.10 Contrast stretching.	
L/2 -	
$ \int\limits_{\mathbb{R}}^{\mathbb{R}} L/4 - \int\limits_{(r_1,r_1)}^{\text{function. (b) } A} \int\limits_{0}^{\text{function. Table 3}} (c) \text{ Result of } $	
0 0 $1/4$ $1/2$ $3\ell/4$ $\ell-1$ contrast stretching. (d) Result of thresholding.	
(Original image courtesy of Dr. Roger Heady,	
Research School of Biological Sciences, Australian National	
University, Canberra, Australia,	
	17
17	
	
Transformações de Intensidade por Partes	
(Piecewise)	
Particionamento dos níveis de intensidade	_
Enfatiza uma região específica de intensidade de uma imager	m

Transformações de Intensidade por Partes (Piecewise)

Particionamento dos níveis de intensidade

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

19

Transformações de Intensidade por Partes (Piecewise)

Particionamento dos níveis de intensidade

FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig. 3.11(a), with the range of intensities of interest selected in the upper end of the gray scale, (c) Result of using the transformation in Fig. 3.11(b), with the selected area set to black, so that grays in the area of the blood vessels and kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of Michigan Medical Rebook)

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

20

Processamento de Histograma

O que é o histograma de uma imagem?

- É a quantidade de pixels com as diferentes intensidades
- Definido por $h(r_k) = n_k$
 - $-\ r_k$ é a intensidade k de uma imagem com L intensidades
 - $-\ n_k$ é o número de pixels com intensidade r_k em uma imagem
- Sua versão normalizada é dada por $h(r_k) = n_k/MN$
 - Sendo M e N as dimensões da imagem

Processamento de Histograma

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

22

Processamento de Histograma

Equalização de histograma

- Melhora a distribuição das intensidades entre os pixels
- Aproveita melhor os valores de intensidade disponíveis
- Tem um proposito parecido com o alongamento de contraste
 - Porém, é feito sem interação o usuário (sem parâmetros)

23

Processamento de Histograma

Equalização de histograma

- $\begin{aligned} & \cdot & s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) \\ & \cdot & = (L-1) \sum_{j=0}^k \frac{n_j}{MN} = \frac{(L-1)}{MN} \sum_{j=0}^k n_j, \, \mathbf{k} = 0, 1, \dots, L-1 \end{aligned}$

Processamento de Histograma

Equalização de histograma

- Exemplo
 - Suponha uma imagem com dimensões 64x64
 - Ou seja, 4096 pixels
 - Com intensidades representadas por 3 bits
 - Ou seja, 8 intensidades
 - A distribuição das intensidades é representada pela tabela
 - Faça a equalização

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

25

Processamento de Histograma

Equalização de histograma

- Exemplo
 - $s_0 = T(r_0) = 7\sum_{j=0}^k p_r(r_j) = 7 \times 0.19 = 1.33 \rightarrow 1$
 - $s_1 = T(r_1) = 7\sum_{j=0}^{k} p_r(r_j) = 7 \times (0.19 + 0.25) = 3.08$ → 3
 - $-s_2 = 4.55 \rightarrow 5$
 - $-s_2 = 5.67 \rightarrow 6$
 - $-\ s_2=6.23\ \rightarrow 6$
 - $-s_2 = 6.65 \rightarrow 7$
 - $-s_2 = 6.86 \rightarrow 7$

	-			
_	Sa	=	7.00	→ 7

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

26

Processamento de Histograma

Equalização de histograma

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

Processamento o	le Histograma
-----------------	---------------

Equalização de histograma

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

28

Processamento de Histograma

Equalização de histograma

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

29

Processamento de Histograma

Equalização de histograma

Problemas

Equalização é calculada com a distribuição global da imagem

a b c

FIGURE 3.26 (a) Original image. (b) Result of global histogram histogram equalization applied to (a), using a neighborhood of size

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

Processamento o	de Histograma
-----------------	---------------

Equalização de histograma local

- Considera apenas uma vizinhança para medir a distribuição
 - Para cada pixel (pixel central)
 - · Calcula a distribuição utilizando sua vizinhança
 - Tamanho da região considerada é um parâmetro
 - Ex. uma janela 11x11 em torno do pixel central
 - Atualiza o valor do pixel central na imagem de saída

31

Processamento de Histograma

Equalização de histograma local

a b c

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3 .

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

32

Filtragem no Domínio do Espaço

Fundamentos

• É feita com uma vizinhança e uma operação pré-definida

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

Filtro linear espacial

- O filtragem espacial de uma imagem f MxN
 - Usando um filtro w mxn

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

34

Filtragem no Domínio do Espaço

Filtro linear espacial

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

35

Filtragem no Domínio do Espaço

Correlação espacial

• Definido por

$$w(s,t) \triangle f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolução espacial

• Definido por

$$w(s,t) \blacktriangle f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

36

		Padded f
Filtro linear espacial		0 0 0 0 0 0 0 0 0
i iitio iiiitai espaciai		0 0 0 0 0 0 0 0 0
	0-1-1- (/)	0 0 0 0 0 0 0 0 0
FIGURE 3.30	Origin f(x, y)	0 0 0 0 0 0 0 0 0
Correlation	0 0 0 0 0 w(x, y)	0 0 0 0 1 0 0 0 0
(middle row) and	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	0 0 0 0 0 0 4 5 6	0 0 0 0 0 0 0 0 0
convolution (last	0 0 0 0 0 0 7 8 9	0 0 0 0 0 0 0 0 0
row) of a 2-D	(a)	(b)
filter with a 2-D	Initial position for w	Full correlation result Cropped correlation result
	1 2 3 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
discrete, unit	14 5 610 0 0 0 0 0	00000000000000870
impulse. The 0s	7 8 9 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
are shown in gray	0 0 0 0 1 0 0 0 0	0 0 0 6 5 4 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0	0 0 0 3 2 1 0 0 0
to simplify visual	0000000000	0 0 0 0 0 0 0 0 0
analysis.	000000000	0 0 0 0 0 0 0 0 0
,	0000000000	(d) (e)
	(c)	
	Rotated w	Full convolution result Cropped convolution result
	987000000	0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0
	3 4 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 4 5 6 0
	0 0 0 0 0 0 0 0 0	0 0 0 1 2 3 0 0 0 0 7 8 9 0
	0 0 0 0 1 0 0 0 0	0 0 0 4 5 6 0 0 0 0 0 0 0 0
nagem de: Processamento	0000000000	0 0 0 7 8 9 0 0 0
e imagens digitais,	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
ONZALEZ e WOODS	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0

37

Filtragem no Domínio do Espaço

Filtro de suavização

- São usados para borrar a imagem e para reduzir ruído
- · Remove detalhes pequenos
 - Como consequência pode remover partes de interesse
 - Diminui o contraste das arestas
- Conecta pequenos buracos em linhas e curvas
- Existem vários tipos de filtros de suavização
 - Lineares
 - Não lineares

3

38

Filtragem no Domínio do Espaço

Filtro de suavização

- Implementação geral para filtrar uma imagem MxN
 - Com um filtro (kernel) mxn

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

- Onde, m = 2a + 1 e n = 2b + 1

Imagem de:
Processamento
de imagens
digitais,
GONZALEZ e
WOODS

0	1	1	1
$\frac{1}{9}$ ×	1	1	1
•	1	1	1

2b + 1				
	1	2	1	
$\frac{1}{16}$ ×	2	4	2	
	1	2	1	

a b

FIGURE 3.32 Two
3 × 3 smoothing
(averaging) filter
masks. The
constant multiplier in front of each
mask is equal to 1
divided by the
sum of the values
of its coefficients,
as is required to
compute an
average.

Filtro de suavização

• Exemplo

... a ...a 1111111 2000 2000 вааааааа аааааааа ...a ...a 11111111 8 a a a a a a.... ----...a

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

Filtragem no Domínio do Espaço

Filtro de suavização

Exemplo

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

41

Filtragem no Domínio do Espaço

Filtro estatísticos

- Não lineares
- Baseado na ordenação dos pixels contidos na vizinhança
- · Coloca o valor selecionado no pixel central
- Existem vários métodos de seleção
 - Mediana
 - Máximo
 - Mínimo
 - Entre outros

Filtro estatísticos

• Exemplo de filtro da mediana para redução de ruídos

a b c

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (6) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

43

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

- Objetiva aumentar a nitidez da imagem
- Enfatiza as arestas
- Pode enfatizar partes que não são de interesse
 - Por exemplo, pode enfatizar ruídos da imagem

44

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

- Fundamentos
 - Derivada de primeira ordem de uma função de uma dimensão f(x) $\frac{\partial f}{\partial x} = f(x+1) f(x)$
 - Derivada de segunda ordem de uma função de uma dimensão f(x)
 - $\frac{\partial f}{\partial x} = f(x+1) + f(x-1) 2f(x)$

Filtro de nitidez (sharpening)

Fundamentos

a b c

re FIGURE 3.36
Illustration of the first and second derivatives of a 1-D digital function representing a section of a horizontal intensity profile from an image. In (a) and (c) data points are joined by dashed lines as a visualization aid. a visualization aid.

46

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

- · Operador de segunda ordem de Laplace
 - Para uma imagem f(x, y)

$$- \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$-\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$-\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

$$-\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

$$-\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

47

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

	0	1	0	1	1	1	
	1	-4	1	1	-8	1	
	0	1	0	1	1	1	
	0	-1	0	-1	-1	-1	
Imagem de: Processamento de imagens	-1	4	-1	-1	8	-1	
digitais, GONZALEZ e WOODS	0	-1	0	-1	-1	-1	

c d FIGURE 3.37 (a) Filter mask used to implement Eq. (3.6-6).
(b) Mask used to implement an extension of this equation that includes the diagonal terms. (c) and (d) Two other implementa-tions of the Laplacian found frequently in practice.

48

WOODS

Filtragem	no Do	mínio	dο	Fsnaco
ııııagcııı	110 00	,,,,,,,,,	uu	LJDACU

Filtro de nitidez (sharpening)

- Aumentando a nitidez da imagem com o filtro de Laplace
 - $-\ g(x,y) = f(x,y) + c[\nabla^2 f(x,y)]$
 - Sendo,
 - f(x,y) a imagem de entrada
 - g(x,y) a imagem de saída
 - ullet $c \in 1$ ou -1 dependendo do sinal dos filtros do slide anterior

49

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

• Aumentando a nitidez da imagem com o filtro de Laplace

B c d e C d

50

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

- Máscara de suavização (unsharpening)
- Passos

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

- Suavizar a imagem original
- Subtrair a imagem suavizada da original
 - Restará apenas a parte de alta frequência
- Adicionar a imagem original
- $g(x,y) = f(x,y) + k(f(x,y) \overline{f(x,y)})$
- Sendo,
 - -f(x,y) e g(x,y), as imagens de entrada e saída respectivamente
 - k, o fator de nitidez
 - -f(x,y), a imagem original suavizada

Filtro de nitidez (sharpening)

• Máscara de suavização (unsharpening)

52

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

• Máscara de suavização (unsharpening)

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

53

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

- Derivadas de primeira ordem
- Para uma imagem f(x,y)

$$- \nabla f \equiv grad(f) \equiv \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

- A magnitude de um vetor ∇f será denotada como $\mathbf{M}(\mathbf{x},\mathbf{y})$

$$- M(\mathbf{x}, \mathbf{y}) = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2} \approx |g_x| + |g_y|$$

z_1	Z ₂	Z ₃
Z ₄	Z ₅	z ₆
Z	Zo	Zo

$$M(x,y) = |z_8 - z_5| + |z_6 - z_5|$$

Filtro de nitidez (sharpening)

• Operador de Robert Cross-Gradient

$$M(x,y) = |z_9 - z_5| + |z_8 - z_6|$$

• Operador de Sobel

$$\begin{array}{l} M(x,y) \\ = |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)| \end{array}$$

z_1	Z ₂	Z ₃
Z 4	Z ₅	z ₆
Z ₇	Z ₈	Zg

55

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

imagens digitais, GONZALEZ e WOODS

56

Filtragem no Domínio do Espaço

Filtro de nitidez (sharpening)

Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS

Filtragem no Domínio do Espaço Combinação de fitros Exemplo Imagem de: Processamento de inagens digitals, GONZALEZ e WOODS Exemplo Combinação de fitros Exemplo Combinação de fitros Exemplo Combinação de fitros Exemplo Combinação de fitros Exemplo Imagem de: Processamento de inagens digitals, GONZALEZ e WOODS Tombinação de fitros Exemplo Combinação de fitros Exemplo Combinação de fitros Exemplo Combinação de fitros Exemplo Combinação de fitros Exemplo Imagem de: Processamento de inagens digitals, GONZALEZ e WOODS Tombinação de fitros Exemplo Imagem de: Processamento de inagens digitals, GONZALEZ e WOODS Tombinação de fitros Exemplo		
Combinação de filtros • Exemplo Ged Hours 3.43	Ethan Barista La	
Filtragem no Domínio do Espaço Combinação de filtros Exemplo Figure 3.43 (a) Image of whole body bone scan. (b) Laplacian of (a). (c) Sharpened image obtained by adding (a) and (b). (d) Sobel gradient of (a). (e) Sharpened image obtained by adding (a) and (b). (d) Sobel gradient of (a). Combinação de filtros Exemplo Figure 3.43 (Combinado de Sobel de Sobe	Filtragem no Dominio do Espaço	
Filtragem no Domínio do Espaço Combinação de filtros Exemplo Filtragem no Domínio do Espaço Combinação de filtros Exemplo E	Combinação do filtros	
Filtragem no Domínio do Espaço Combinação de filtros Exemplo Exemplo Combinação de filtros Exemplo Exemp		
Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS **Exemplo** **Exemplo** **Exemplo** **Interpretation of (a), (c) Sharpened image obtained by adding (a) and (b). (c) Sobel gradient of (a). (c) Sobel image management of (a). (d). (d). (d). (d). (e). (e). (e). (e). (e). (e). (e). (e	FIGURE 3.43	
(a), (c) Sharpened image obtained by adding (a) and (b). (d) Sobel gradient of (a). (a) Sharpened image obtained by adding (a) and (b). (d) Sobel gradient of (a). Filtragem no Domínio do Espaço Combinação de filtros • Exemplo Figure 1.43 (Continued) (c) Sobel mange a servenjug filter (b) Mask the product of (c) and (b). The product of (c) and (b). The product of (c) and (b). The product of (c) and (c). The product	(a) Image of whole body bone	
Image obtained by adding (a) and (b). (d) Sobel gradient of (a). Filtragem no Domínio do Espaço Combinação de filtros Exemplo Figure 3.43 (Continue) (C) Sobel mage 3.5 x s sureping filter (b) Mask (b) the product of (c) of (c) of the product of (c) of ((b) Laplacian of	
Imagem de: Processamento de imagens digitals, GONZALEZ e WOODS 58 Filtragem no Domínio do Espaço Combinação de filtros • Exemplo Filtragem no Domínio do Espaço	image obtained by	
Filtragem no Domínio do Espaço Combinação de filtros • Exemplo Floure 3.43 (Continued) (2) Soft Image 18 (2) Soft I	(d) Sobel gradient	
Filtragem no Domínio do Espaço Combinação de filtros • Exemplo Filtragem no Domínio do Espaço		
Filtragem no Domínio do Espaço Combinação de filtros • Exemplo Floure 3.43 (Continued) (2) Soft Image 18 (2) Soft I	P	
Filtragem no Domínio do Espaço Combinação de filtros • Exemplo Figure 3.3 (Continued) (c) Sobel image sancoted with a simple formed by the product of (c) and (c). and (d). and (d). final via applying a power-law transformation to (g. Compare law transformation to (g. Compar	Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS 58	
Filtragem no Domínio do Espaço Combinação de filtros • Exemplo Englist 3.43 (Continued) (c) Sobel image sentented with a surfactor de la mage formed by the product of (c) and (c). In	58	
Combinação de filtros • Exemplo Figure 3.43 (Commund)		
Combinação de filtros • Exemplo Figure 3.43 (Continued) (Sobbel Image 8) (Sobbel Image		
Combinação de filtros • Exemplo Figure 3.43 (Continued) (Sobbel Image 8) (Sobbel Image		
Combinação de filtros • Exemplo Figure 3.43 (Continue) Figure 3.4	Filtragem no Domínio do Espaço	
Figure 3.43 (Continued) (c) Sobel image smoothed with a 15 × S averaging image formed by the product of (c) and (e). (g) Sharpened ipythe sum of (a) and (f) (h) Final result obtained by applying a power (g) and (f) with (a) (Original image corretey of (E) Medical Systems (D) Imagem de: Processamento de imagens digitals, GONZALEZ e WOODS 59		
Gould Continued Gould Cont	Combinação de filtros	
(Continued) (Continued) (Costel mage is a second of the continued of the cost	• Exemplo	
5 × S sweraging filter. (1) Masky times formed by times formed by times for (c) (g) Sharpened times obtained by the sum of (a) result obtained by apphys a power- time for the formed by apphys a power- time for the	(Continued) (e) Sobel image emosthed with a	
Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS 59 Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS	5 × 5 averaging filter. (f) Mask image formed by	
aresult obtained by applying a power of the compare		-
apphing a power law transformation (p) and (h) with (g) a	image obtained by the sum of (a) and (f) , (h) Final	
(c) and (h) with (a) (Original Image courters of Court Image courters of Court Image	applying a power- law transformation	
Imagem de: Processamento de imagens digitais, GONZALEZ e WOODS 59	(g) and (h) with (a). (Original	
59	Systems.)	
Perguntas ?????	59	
Perguntas ?????		
Perguntas ?????		
Perguntas ?????		
	Perguntas ?????	