Chapter 12

Question B.3

Reflexive: $\forall x \in R, \lceil x \rceil = \lceil x \rceil$. Thus reflexive.

Symmetric: $\forall x, y \in R$, if [x] = [y], then [y] = [x]. Thus symmetric.

Transitive: Given that $x \sim y, y \sim z$. Then $\lceil x \rceil = \lceil y \rceil, \lceil y \rceil = \lceil z \rceil$. Therefore

 $\lceil x \rceil = \lceil z \rceil$. Thus $x \sim z$.

The partition is $[i, i+1) \ \forall i \in \mathbb{Z}$.

Question B.4

Reflexive: Let x = x, then x - x = 0. 0 is a multiple of 10.

Symmetric: Let $x, y \in \mathbb{Z}$ and $x \sim y$. Thus x - y = 10k where $k \in \mathbb{Z}$. y - x = -10k. -10k is a multiple of 10.

Transitive: Given that $x \sim y$, $y \sim z$. Then x - y = 10k, y - z = 10k' where $k, k' \in \mathbb{Z}$. x - z = 10k + 10k' = 10(k + k'). 10(k + k') is a multiple of 10.

The partition is $\{i+10k: \forall k \in \mathbb{Z}\} \forall i \in [0,10) \cap \mathbb{Z}$

Question D.1

Reflexive: $aa^{-1} = e$ Since H is a subgroup $e \in H$.

Symmetric: $ab^{-1} \in H$. Since H is a subgroup which is closed under inverses. $(ab^{-1})^{-1} \in H$, $ba^{-1} \in H$.

Transitive: Given that $x \sim y$, $y \sim z$. $xy^{-1} \in H$, $yz^{-1} \in H$. H is closed under multiplication, thus $xy^{-1}yz^{-1} \in H$, also $xz^{-1} \in H$.

The equivalence class of e is H. Since $x \in H$ implies $xe \in H$.

Question D.2

Reflexive: $a^{-1}a = e$ Since H is a subgroup $e \in H$.

Symmetric: $a^{-1}b \in H$. Since H is a subgroup which is closed under inverses. $(a^{-1}b)^{-1} \in H, b^{-1}a \in H$.

Transitive: Given that $x \sim y, \ y \sim z$. $x^{-1}y \in H, \ y^{-1}z \in H$. H is closed under multiplication, thus $x^{-1}yy^{-1}z \in H$, also $x^{-1}z \in H$.

The equivalence class of e is H. Since $x \in H$ implies $xe \in H$.

No they are not equivalent.

They are not the same.

Counter example:

Let G be S_3 , $H = \{e, (1.2)\}$ a = (1.3) b = (1.3,2) b' = (1,2,3) $ab' = (1,2) \in H$ if and, from D1's equivalence relation a' = (1,3) $a'b = (1,3) \cdot (1.3,2) = (2.3) \notin H$.

Or and b are not equivalent in D2's equivalence relation,