$\star \star$ Exercice 1

Calculer les développements limités suivants

1) DL à l'ordre 3 en 0 de $\mathrm{e}^{\sin x}$

3) DL à l'ordre 3 en 0 de $\frac{1}{1 + e^x}$

2) DL à l'ordre 3 en 0 de $(1+x)^{\frac{1}{x}}$

4) DL à l'ordre 3 en 0 de $\frac{\sin(x)}{e^x}$

Déterminer les limites suivantes à l'aide de développements limités

1)
$$\lim_{x \to +\infty} (2^{1/x} + 3^{1/x} - 5^{1/x})^x$$

3)
$$\lim_{x \to 1} \frac{\sin 5\pi x}{\sin 4\pi x}$$

$$2) \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$$

4)
$$\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x} \right)$$

Exercice 3 -

On considère la fonction $f: x \mapsto \frac{x e^x - \sin(x) - x^2}{\ln(1+x) - x}$.

- 1) Déterminer l'ensemble de définition de f.
- 2) Donner un développement limité d'ordre 2 en 0 de f.
- 3) Montrer que f est prolongeable par continuité en 0. On appelle g ce prolongement.
- 4) Montrer que g est dérivable en 0, et déterminer g'(0).
- 5) Déterminer l'équation de la tangente T en 0 au graphe Γ de g et préciser les positions relatives de Γ et de T au voisinage de 0

Exercice 4

On considère la fonction $f: x \longmapsto \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ définie sur \mathbb{R} .

- 1) Montrer que f est continue sur \mathbb{R} .
- 2) Montrer que f est dérivable sur \mathbb{R} , et préciser f'(0).
- 3) Montrer que f n'est pas \mathcal{C}^1 sur \mathbb{R} .

Exercice 5 -

- 1) Soit f la fonction réelle de la variable réelle définie par $f(x) = \sqrt{x^2 9x + 8}$. Après avoir étudier l'ensemble de définition de f, déterminer deux asymptotes oblique en $+\infty$ et en $-\infty$ à \mathcal{C}_f , la courbe représentative de f.
- 2) Mêmes questions avec la fonction g définie par $g(x) = x \exp\left(\frac{2x}{x^2 1}\right)$.

Soit n un entier pair et soit $P: x \longmapsto \sum_{k=1}^{n} \frac{x^k}{k}$. Montrer que P n'a pas de racine multiple.

Soit P un polynôme à coefficients réels.

- 1) Montrer que si λ est une racine complexe de P, alors $\overline{\lambda}$ est racine de P avec la même multiplicité que λ .
- 2) Supposons que toutes les racines réelles de P soient de multiplicité paire. Montrer que n est pair.

(ENS 2021) On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par $u_n = \int_0^{+\infty} \frac{\mathrm{e}^{-x}}{x + \frac{1}{x}} \, \mathrm{d}x$.

- 1) Justifier que (u_n) est bien définie et étudier son sens de variations.
- 2) On définit, pour tout $n \in \mathbb{N}^*$, $v_n = \int_0^1 \frac{e^{-x}}{x + \frac{1}{n}} dx$ et $w_n = \int_1^{+\infty} \frac{e^{-x}}{x + \frac{1}{n}} dx$. Montrer que, pour tout $n \in \mathbb{N}^*$, $\frac{\ln(n+1)}{e} \le v_n$ et $0 \le w_n \le \frac{1}{e}$.
- 3) En déduire la limite de la suite (u_n)
- 4) On cherche maintenant à obtenir un résultat plus précis.
 - a) Montrer que l'intégrale $I = \int_0^1 \frac{1 e^{-x}}{x} dx$ est convergente.
 - b) Montrer que, pour tout $n \in \mathbb{N}^*$, $0 \le \int_0^1 \frac{1 e^{-x}}{x + \frac{1}{n}} dx \le I$
 - c) En déduire que $u_n \underset{n \to +\infty}{\sim} \ln(n)$.

Soit f la fonction définie par $f(x) = \int_{x}^{x^{2}} \frac{dt}{\ln t}$.

- 1) Donner l'ensemble D des réels pour lesquels cette intégrale a un sens.
- 2) Montrer que f est dérivable sur D et que sa dérivée est $f'(x) = \frac{x-1}{\ln x}$. En déduire les variations de f.
- 3) Soit g la fonction définie par $g(x) = \int_x^{x^2} \frac{\mathrm{d}t}{t-1}$. Montrer que f(x) g(x) tend vers 0 quand x tend vers 1, et en déduire la limite de f(x) quand x tend vers 1.
- 4) On prolonge alors f par continuité en 1 (on note encore f ce prolongement). Étudier la dérivabilité de f en 1.

Soit f une fonction définie et continue sur [0,1], à valeurs dans [0,1], dérivable sur]0,1[, et vérifiant $f \circ f = f$. On note $a = \min \{f(x), x \in [0,1]\}$ et $b = \max \{f(x), x \in [0,1]\}$.

- 1) Justifier l'existence de a et de b.
- 2) Quelle est la restriction de f à [a, b]?
- 3) Quelles sont toutes les fonctions non constantes vérifiant toutes les hypothèses ci-dessus? On pourra considérer les valeurs de f'(a) et de f'(b).
- 4) Quelles sont toutes les fonctions f continues de [0,1] dans [0,1] vérifiant $f \circ f = f$?

Le coin des Khûbes

* * * Exercice 11

Soit f la fonction définie par :

$$\begin{array}{cccc} f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & & \\ x & \longmapsto & \left\{ \begin{array}{ccc} \mathrm{e}^{-1/x} & \mathrm{si} \ x > 0 \\ 0 & \mathrm{si} \ x \leq 0 \end{array} \right. \end{array}$$

- 1) Montrer que f est continue sur \mathbb{R}
- 2) Justifier que la restriction de $f \ à \]0; +\infty[$ est de classe \mathcal{C}^{∞} .
- 3) Montrer que pour tout entier naturel $n \ge 1$ il existe un polynôme P_n tel que

$$\forall x > 0, \quad f^{(n)}(x) = P_n\left(\frac{1}{x}\right)e^{-1/x}$$

4) En déduire que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

(D'après ESCP 1994) Pour tout entier naturel n, on pose

$$u_n = \int_0^1 x^n e^{1-x} dx$$

- 1) Calculer u_0 et u_1 .
- 2) a) Montrer que, pour tout entier naturel $n, \frac{1}{n+1} \le u_n \le \frac{e}{n+1}$.
 - b) Calculer la limite de la suite $(u_n)_{n\geq 0}$.
- 3) a) Exprimer, pour tout $n \ge 1$, u_n en fonction de u_{n-1} et de n.
 - b) En déduire que, pour tout entier $n \ge 0$, $u_n = n! \left(e \sum_{k=0}^n \frac{1}{k!} \right)$
- 4) Soit a un nombre réel et soit $(v_n)_{n\geq 0}$ la suite définie par les conditions :

$$v_0 = a$$
 et pour tout entier $n \ge 1$, $v_n = nv_{n-1} - 1$

Montrer que si $a \neq u_0$, la suite $(v_n)_{n\geq 0}$ est divergente.

5) a) Montrer que, pour tout entier naturel n,

$$u_n = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \frac{u_{n+2}}{(n+1)(n+2)}$$

b) En déduire qu'il existe deux constantes c_1 et c_2 , que l'on déterminera, telles qu'on ait

$$u_n \underset{n \to +\infty}{=} \frac{c_1}{n} + \frac{c_2}{n^2} + o\left(\frac{1}{n^2}\right)$$