

planetmath.org

Math for the people, by the people.

L^p -norm is dual to L^q

Canonical name LpnormIsDualToLq Date of creation 2013-03-22 18:38:13 Last modified on 2013-03-22 18:38:13

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282)
Entry type Theorem
Classification msc 28A25
Classification msc 46E30
Related topic LpSpace

Related topic HolderInequality

Related topic BoundedLinearFunctionalsOnLinftymu Related topic BoundedLinearFunctionalsOnLpmu If (X, \mathfrak{M}, μ) is any measure space and $1 \leq p, q \leq \infty$ are http://planetmath.org/ConjugateInconjugates then, for $f \in L^p$, the following linear function can be defined

$$\Phi_f \colon L^q \to \mathbb{C},$$
 $g \mapsto \Phi_f(g) \equiv \int fg \, d\mu.$

The http://planetmath.org/HolderInequalityHölder inequality shows that this gives a well defined and bounded linear map. Its operator norm is given by

$$\|\Phi_f\| = \{\|fg\|_1 : g \in L^q, \|g\|_q = 1\}.$$

The following theorem shows that the operator norm of Φ_f is equal to the L^p -norm of f.

Theorem. Let (X, \mathfrak{M}, μ) be a σ -finite measure space and p, q be Hölder conjugates. Then, any measurable function $f: X \to \mathbb{C}$ has L^p -norm

$$||f||_p = \sup \{||fg||_1 : g \in L^q, ||g||_q = 1\}.$$
 (1)

Furthermore, if either $p < \infty$ and $||f||_p < \infty$ or p = 1 then μ is not required to be σ -finite.

Note that the σ -finite condition is required, except in the cases mentioned. For example, if μ is the measure satisfying $\mu(A) = \infty$ for every nonempty set A, then $L^p(\mu) = \{0\}$ for $p < \infty$ and it is easily checked that equality (??) fails whenever f = 1 and p > 1.