

						D _C	w Dea							
						Ra	w Dat	la						
Accuracy %				Original Data						<u>Sca</u>	led and Balanced	<u>Data</u>		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	49.43	51.34	51.34	52.49	41	50.19	35.63	52.74	52.74	52.74	53.42	53.42	55.48	51.37
Imaging View	50.19	51.34	51.34	51.72	36.02	54.41	37.16	50	53.42	53.42	54.79	52.74	53.42	48.63
Genetic View	45.98	51.34	51.34	52.11	51.34	41.76	44.83	41.1	41.78	41.78	46.58	37.67	47.26	36.3
				47.73							49.09			
F1 Score				Original Data						<u>Sca</u>	led and Balanced	<u>Data</u>		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	49.33	34.83	34.83	50.66	42.26	49.05	36.94	49.42	49.49	49.49	48.51	50.2	54	45.29
Imaging View	49.99	34.83	34.83	50.47	36.02	53.82	37.73	47.8	51.12	51.12	52.39	49.16	51.13	47.39
Genetic View	41.28	34.83	34.83	46.71	34.83	38.39	40.74	38.78	40.71	40.71	36.82	37.13	42.44	32.59
				41.30							45.99			
Balanced Accuracy				Original Data						<u>Sca</u>	led and Balanced	<u>Data</u>		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	47.5	33.33	33.33	49.09	39.41	47.58	34.48	54.96	54.78	54.78	54.59	54.46	56.65	52.96
Imaging View	48.33	33.33	33.33	46.97	39.16	53.97	33.07	51.94	55.3	55.3	55.7	53.81	54.73	49.79
Genetic View	34.88	33.33	33.33	40.02	33.33	31.99	35.29	42.66	42.9	42.9	47.72	38.03	49.11	38.25
				38.81							50.54			

							DCCA							
						_								
Accuracy %				Original Data						Scal	ed and Balanced	<u>Data</u>		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	47.13	50.19	50.19	49.81	42.15	47.13	46.36	48.63	47.95	47.95	43.15	50	39.04	41.78
Imaging View	51.72	52.11	52.11	47.89	45.21	48.28	45.98	50	48.63	48.63	39.04	43.84	43.84	41.1
Genetic View	44.44	51.34	51.34	52.49	42.15	50.96	45.59	37.67	36.3	36.3	36.3	39.04	38.36	39.73
				48.31							42.73			
<u>F1 Score</u>				Original Data							ed and Balanced			
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	46.4	38.16	38.16	38.81	42.63	42.1	46.59	47.4	47.09	47.09	38.97	48.27	38.76	39.6
Imaging View	50.8	47.76	47.76	42.31	45.15	43.36	46.01	49.01	48.08	48.08	38.58	42.63	43.9	38.05
Genetic View	40.35	34.83	34.83	40.54	41.43	46.28	44.78	36.73	35.12	35.12	35.25	38.82	38.12	39.43
				42.81							41.62			
Balanced Accuracy				Original Data							ed and Balanced			
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	42.04	33.73	33.73	33.8	37.05	36.52	44.85	49.97	49.13	49.13	43.98	50.64	39.74	43.38
Imaging View	45.82	40.45	40.45	35.61	42.85	36.21	45.25	51.37	49.6	49.6	39.4	44.55	43.77	42.28
Genetic View	33.89	33.33	33.33	35.54	35.92	39.04	38.3	38.6	37.41	37.41	35.87	39.32	38.8	40.54
				37.99							43.55			

M	CA
	— —

Accuracy %			_	<u>Original Data</u>						<u>Scal</u>	ed and Balanced	<u>Data</u>		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	50.19	51.34	51.34	51.72	42.91	49.81	37.16	57.53	59.59	59.59	54.11	52.05	53.42	49.32
Imaging View														
Genetic View	49.04	51.34	51.34	51.72	49.81	48.28	49.81	37.67	30.14	30.14	31.51	35.62	30.82	38.36
				48.99							44.28	,		
F1 Score		•	•	Original Data	•	•			•	<u>Scal</u>	ed and Balanced	<u>Data</u>	•	•
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	49.99	34.83	34.83	49.25	43.96	49.62	36.25	52.6	57.85	57.85	50.29	48.15	52.36	48.43
Imaging View														
Genetic View	35.19	34.83	34.83	36.96	35.01	35.24	34.92	37.21	13.96	13.96	27.62	33.61	30.6	38.45
				38.98							40.21			
Balanced Accuracy		•	•	Original Data	•	•			•	<u>Scal</u>	ed and Balanced	<u>Data</u>		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	48.33	33.33	33.33	47.17	40.35	48.08	35.59	57.24	59.41	59.41	56.38	54.67	53.98	49.88
Imaging View														
Genetic View	32.17	33.33	33.33	34.38	32.5	31.83	32.5	37.4	33.33	33.33	33.69	37.37	30.72	38.3
				36.87							45.37			
		1	1	1	1				1		1			

MCA + DCCA

Accuracy %				Original Data		-				Scale	ed and Balanced	l Data		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	46.36	50.96	50.96	44.44	45.59	46.74	49.81	40.41	37.67	37.67	45.89	41.1	45.21	42.47
Imaging View	42.91	47.89	47.89	46.36	46.74	47.13	41.38	50	41.48	41.48	43.15	52.05	45.21	45.21
Genetic View	39.08	51.34	51.34	51.34	43.68	43.68	42.53	40.41	34.93	34.93	31.51	33.56	38.36	38.36
				46.58							41.00			
F1 Score				Original Data						Scale	ed and Balanced	l Data		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	46.75	36.52	36.52	38.82	46.03	41.42	49.71	39.99	37.69	37.69	35.49	40.55	35.86	42.08
Imaging View	41.7	40.13	40.13	41.77	46.92	39.33	41.1	48.48	40.4	40.4	42.82	50.1	35.86	36.71
Genetic View	39.39	34.83	34.83	35.5	43.45	38.87	42.86	40.14	34.88	34.88	29.45	33.73	37.57	37.65
				40.79							38.69			
Balanced Accuracy				Original Data						Scale	ed and Balanced	l Data		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	46.9	33.57	33.57	32.42	45.46	35.07	45.04	41.01	37.91	37.91	48.56	41.28	46.31	42.66
Imaging View	37.47	34.63	34.63	35.96	46.19	33.2	40.13	51.84	43.13	43.13	43.62	53.37	46.31	46.27
Genetic View	34.05	33.33	33.33	33.5	37.51	32.43	41.05	41.41	35.27	35.27	30.15	33.41	38.62	38.64
				37.12							41.72			

OPNMF

			Original Data						<u>Scale</u>	ed and Balanced	l Data		
Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
51.74	51.35	51.35	47.49	52.9	48.26	53.28	48.28	28.97	28.97	49.66	55.17	48.26	53.28
53.28	51.35	51.35	46.33	51.35	51.74	53.28	51.03	28.97	28.97	55.86	58.62	51.74	53.28
			51.08							45.79			
			Original Data						Scale	ed and Balanced	l Data		
Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
51.51	34.85	34.85	46.33	50.03	47.98	51.46	44.16	13.01	13.01	47.28	49.4	47.98	51.46
53.16	34.85	34.85	45.86	50.52	51.46	51.46	48.08	13.01	13.01	53.45	54.2	51.46	51.46
			45.66							39.36			
			Original Data					•	<u>Scale</u>	ed and Balanced	l Data		
Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
48.64	33.33	33.33	41.57	44.51	46.72	45.3	52.55	33.33	33.33	50.93	57.69	46.72	45.3
50.26	33.33	33.33	42.9	45.78	48.71	45.3	54.79	33.33	33.33	57.57	61.01	48.71	45.3
			42.36							46.71			
	51.74 53.28 Linear K 51.51 53.16 Linear K 48.64	51.74 51.35 53.28 51.35 Linear K Poly K 51.51 34.85 53.16 34.85 Linear K Poly K 48.64 33.33	51.74 51.35 51.35 53.28 51.35 51.35 Linear K Poly K RBF K 51.51 34.85 34.85 53.16 34.85 34.85 Linear K Poly K RBF K 48.64 33.33 33.33	Linear K Poly K RBF K Bagging DT 51.74 51.35 51.35 47.49 53.28 51.35 51.35 46.33 Original Data Linear K Poly K RBF K Bagging DT 51.51 34.85 34.85 45.86 53.16 34.85 34.85 45.86 Original Data Linear K Poly K RBF K Bagging DT 48.64 33.33 33.33 41.57 50.26 33.33 33.33 42.9	Linear K Poly K RBF K Bagging DT Bagging SVM 51.74 51.35 51.35 47.49 52.9 53.28 51.35 51.35 46.33 51.35 Original Data Linear K Poly K RBF K Bagging DT Bagging SVM 51.51 34.85 34.85 45.86 50.52 Original Data Linear K Poly K RBF K Bagging DT Bagging SVM 48.64 33.33 33.33 41.57 44.51	Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT 51.74 51.35 51.35 47.49 52.9 48.26 53.28 51.35 51.35 46.33 51.35 51.74 Original Data Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT 51.51 34.85 34.85 45.86 50.52 51.46 53.16 34.85 45.86 50.52 51.46 Original Data Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT 48.64 33.33 33.33 41.57 44.51 46.72 50.26 33.33 33.33 42.9 45.78 48.71	Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT AdaBoost SVM 51.74 51.35 51.35 47.49 52.9 48.26 53.28 53.28 51.35 51.35 46.33 51.35 51.74 53.28 Original Data Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT AdaBoost SVM 51.51 34.85 34.85 46.33 50.03 47.98 51.46 53.16 34.85 34.85 45.86 50.52 51.46 51.46 Original Data Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT AdaBoost SVM 48.64 33.33 33.33 41.57 44.51 46.72 45.3 50.26 33.33 33.33 42.9 45.78 48.71 45.3	Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT AdaBoost SVM Linear K	Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT AdaBoost SVM Linear K Poly K	Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT AdaBoost SVM Linear K Poly K RBF K	Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT AdaBoost SVM Linear K Poly K RBF K Bagging DT	Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT AdaBoost SVM Linear K Poly K RBF K Bagging DT Bagging SVM S1.74 S1.35 S1.35 S1.35 47.49 S2.9 48.26 S3.28 48.28 28.97 28.97 49.66 S5.17	Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT AdaBoost SVM Linear K Poly K RBF K Bagging DT Bagging SVM AdaBoost DT

OPNMF + DCCA

Accuracy %				Original Data						<u>Scale</u>	ed and Balanced	l Data		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	45.95	47.88	47.88	50.58	40.93	52.9	46.33	49.66	49.66	49.66	44.14	46.9	48.97	53.79
Imaging View	48.65	49.42	49.42	50.97	47.49	43.24	50.19	49.66	49.66	49.66	43.45	50.34	47.59	51.03
Genetic View	45.95	45.56	45.56	50.58	45.17	51.35	45.56	40.69	40.69	40.69	35.86	35.17	38.62	45.52
				47.69							45.78			
F1 Score				Original Data						<u>Scale</u>	ed and Balanced	l Data		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	46.08	47.25	47.25	42.38	40.56	50.14	46.2	46.52	49.03	49.03	43.68	42.04	48.93	53.38
Imaging View	48.78	48.36	48.36	48.27	47.33	40.79	50.06	45.55	48.54	48.54	42.13	46.74	46.81	48.01
Genetic View	44.72	43.87	43.87	36.34	43.71	46.94	43.69	40.69	40.7	40.7	35.86	34.52	38.28	45.52
				45.47							44.53			
Balanced Accuracy				Original Data						<u>Scale</u>	ed and Balanced	l Data		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	44.5	43.08	43.08	36.1	38.11	43.42	47.34	51.4	50.95	50.95	45.2	49.62	49.56	55.03
Imaging View	47.06	43.25	43.25	41.55	46.86	34.14	53.33	51.45	50.95	50.95	45.2	52.71	49.17	48.01
Genetic View	38.6	37.57	37.57	33.33	37.15	39.38	37.38	41.2	40.97	40.97	35.95	36.29	39.45	45.33
				41.24							46.73			

MCA + OPNMF

Accuracy %				Original Data						Scalo	d and Balanced	Data		
Accuracy 76		•												
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	52.12	51.35	51.35	48.26	55.6	44.79	53.28	56.55	54.48	54.48	46.9	55.86	55.17	57.24
Imaging View														
Genetic View														
				50.96							54.38			
<u>F1 Score</u>				Original Data						<u>Scale</u>	d and Balanced	<u>Data</u>		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	51.94	34.85	34.85	47.26	52.56	43.94	51.46	53.78	53.25	53.25	38.87	52.91	54.79	53.68
Imaging View														
Genetic View														
				45.27							51.50			
Balanced Accuracy				Original Data						<u>Scale</u>	d and Balanced	<u>Data</u>		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	49.03	33.33	33.33	42.35	45.5	39.15	45.3	58.18	55.72	55.72	49.58	57.86	54.87	58.25
Imaging View														
Genetic View														
				41.14							55.74			

FAMD

Accuracy %				Original Data						<u>Scale</u>	d and Balanced	<u>Data</u>		
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	54.41	55.17	55.17	49.43	53.26	52.87	53.26	51.37	48.63	48.63	43.84	50.68	47.26	50.68
Imaging View														
Genetic View														
				53.37							48.73			
<u>F1 Score</u>			1	Original Data	1					<u>Scale</u>	d and Balanced	Data	1	1
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	52.05	44.42	44.42	48.31	49.5	51.75	51.83	45.71	43.26	43.26	41.6	46.81	44.53	46.21
Imaging View														
Genetic View														
				48.90							44.48			
Balanced Accuracy				Original Data			·			<u>Scale</u>	d and Balanced	Data		'
	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM	Linear K	Poly K	RBF K	Bagging DT	Bagging SVM	AdaBoost DT	AdaBoost SVM
Both Views	45.82	50.87	50.87	43.52	42.33	46.57	45.98	53.88	51.24	51.24	45.41	52.66	49.73	53.77
Imaging View														
Genetic View														
				46.57							51.13			
				46.57							51.13			

		Conci	se Results	
25.11		2 (2)	(0)	
Model RAW DATA	Best Accuracy (%) 55.48	Best F1 Score (%) 54.00	Best Balanced Accuracy (%) 56.65	Notes 145 ROIs (Scaled) and 54 SNPs (Balanced). Both AdaBoost DT.
DCCA-150-3	51.72	50.80	45.82	Output Dimension 150, 3 Hidden Layers, no scaling or balancing. Imaging Linear.
OPNMF	58.62	54.02	61.01	30 Imaging Components (After OPNMF) Balanced only. Imaging Bagging SVM.
OPNMF + DCCA-150-3	53.79	53.38	55.03	30 Imaging Components (After OPNMF) and 54 SNPs, then DCCA, then scaled and balanced. Both AdaBoost SVM.
MCA	59.59	57.85	59.41	145 ROIs (Scaled), 10 Genetic components, Balanced only. Both Poly SVM.
MCA + DCCA-150-3	52.05	50.10	53.37	145 ROIs and 10 Genetic components (After MCA), then DCCA, then scaled and balanced. Imaging Bagging SVM.
MCA + OPNMF	57.24	53.68	53.77	30 Imaging Components (After OPNMF) and 10 Genetic components (After MCA), Balanced only Both AdaBoost SVM.
FAMD	55.17	44.42	50.87	10 Components, no scaling, no balancing. Both Poly / RBF SVM.

