Math 1710 Tutorial 5. Centroids. Moments of Inertia.

Problem 1. Find the first moment of a plate with constant mass per area ρ that is bounded by the given curves about the specified line:

- (a) $y = x^5$, $x = y^5$ (the part of the region in the first quadrant only) about y = 0;
- (b) $x = y^2 2y + 4$, x 3y + 2 = 0 about x = 1;
- (c) $x = y^2 2y + 4$, x 3y + 2 = 0 about y = -1;
- (d) $y = \sin x^2 (0 \le x \le \sqrt{\pi}), y = 0$, about x = 0.

Problem 2. Find the centroid of the region bounded by the curves:

- (a) $x = y^2 2y + 4$, x 3y + 2 = 0; (can you obtain the answer using 1(b) and 1(c)?)
- (b) $y = \sin x \ (0 \le x \le \pi), \ y = 0$; (use symmetry to find \bar{x})
- (c) $y = \sqrt{x}, x = y + 2, y = 0;$
- (d) $y = \sqrt{1 x^2} (0 \le x \le 1), x = 0, y = 0.$

Problem 3. The given curves determine a thin plate with constant mass per unit area ρ . Find its moment of inertia about the given line.

- (a) $y = \sin x$ ($0 \le x \le \pi/2$), $x = \pi/2$, y = 0 about y = -1 (set up a definite integral only);
- (b) $y = 3e^{-2x}$, y = 3, x = 2 about x = -1 (set up a definite integral only).

Problem 4. Triangular thin plate with constant mass per unit area ρ has vertices (2,0), (0,1), (-1,-1). Find its moment of inertia about the line y=2.