Algorithmen und Wahrscheinlichkeit Theorie-Aufgaben 1

Lösung zu Aufgabe 1

(a) Wir präsentieren zwei verschiedene Arten, diese Aussage zu zeigen. Die erste Art beruht auf elementaren Methoden und die zweite verwendet das Theorem aus der Vorlesung zu Eulertouren.

Variante 1: Wir zeigen zunächst die elementare Methode. Per Annahme ist G zusammenhängend. Wir führen einen Widerspruchsbeweis und nehmen daher an, dass G nicht 2-Kantenzusammenhängend ist. Das heisst nach Definition, dass es $e=\{u,v\}\in E$ gibt, sodass G-e nicht zuammenhängend ist. Seien $A,B\subset V$ die Zusammenhangskomponenten von G-e und sei ohne Beschränkung der Allgemeinheit $u\in A$ und $v\in B$ (ansonsten vertauschen wir die Namen). Für einen Knoten $w\in A$ bezeichnen wir mit $deg_A(w)$ die Anzahl der Nachbarn von w, die in A enthalten sind. Wir betrachten nun die Summe $S=\sum_{w\in A}deg_A(w)$. Einerseits wissen wir, dass S=2e(A), wobei e(A) die Anzahl der Kanten in der Zusammenhangskomponente A bezeichnet. Insbesondere ist S also eine gerade Zahl (jede Kante in A wird exakt zweimal gezählt - von jedem Endpunkt aus einmal).

Andererseits wissen wir, dass $S = deg_A(u) + \sum_{w \in A \setminus \{u\}} deg_A(w)$. Für den Grad von u wissen wir, dass $deg_A(u) = deg_G(u) - 1$ (da genau einer der Nachbarn von u, und zwar v, nicht in A enthalten ist) und $deg_A(w) = deg_G(w)$ für $w \in A \setminus \{u\}$. Daraus folgt $S = \left(\sum_{w \in A} deg_G(w)\right) - 1$. Da deg(w) für alle Knoten $w \in V$ eine gerade Zahl ist, ist S also eine ungerade Zahl. Dies widerspricht dem Fakt, dass S eine gerade Zahl ist und schliesst den Beweis ab.

Variante 2: Wir zeigen nun wie man das Resultat über Eulertouren aus der Vorlesung verweden kann. Da G zusammenhängend ist und alle Knoten geraden Grad haben, gibt es eine Eulertour in G. Wir betrachten nun zwei beliebige Knoten $u,v\in V,\ u\neq v.$ Sei $v_0,v_1\ldots,v_m$ eine Eulertour in G mit $v_0=v_m=u.$ Sei i der kleinste Index sodass $v_i=v$ (der Knoten v wird also im i-ten Schritt zum ersten Mal besucht). Dann sind v_0,\ldots,v_i und v_i,\ldots,v_m zwei kantendisjunkte Wege zwischen u und v. Daraus folgt, dass u und v auch dann verbunden sind, wenn wir eine beliebige Kante aus G löschen. Da u und v beliebige Knoten waren folgt dass G 2-Kanten-zusammenhängend ist.

Wir widmen uns nun der umgekehrten Implikation. Diese ist falsch, wie wir an folgendem Gegenbeispiel sehen können: Der vollständige Graph K_4 mit 4 Knoten ist 2-Kanten-zusammenhängend. Allerdings hat keiner der Knoten einen geraden Grad.

- (b) Beachte, dass der Graph in dieser Aufgabe 2-zusammenhängend ist (also 2-Knoten-zusammenhängend, und nicht wie in Teil (a) 2-Kanten-zusammenhängend.)
 - (i) Diese Aussage ist wahr. Der Beweis ist ähnlich zum Beweis "Variante 2" oben: Es genügt zu zeigen, dass es für jedes Paar u,v zweier verschiedener Knoten zwei inter-knotendisjunkte Pfade zwischen u,v gibt. Wir können einen Hamiltonkreis in G verwenden um solche Pfade zu finden, indem wir den Kreis bei u und v in zwei Pfade teilen.
 - (ii) Diese Aussage ist falsch, wie man anhand folgenden Gegenbeispiels sehen kann: Sei $G=K_{2,3}$ ein vollständiger bipartite Graph, dessen Knotenklassen 2 bzw. 3 Knoten enthalten. G is offensichtlich 2-zusammenhängend (durch entfernen eines Knotens erhält man entweder $K_{1,3}$ oder $K_{2,2}$). Ausserdem hat G offensichtlich keinen Hamiltonkreis, da die beiden Knotenklassen eine verschiedene Anzahl Knoten enthalten.

(c) Da G 2-zuammenhängend ist, können wir zwei intern-knoten-disjunkte Pfade P_1, P_2 zwischen u und w finden. Da die Pfade intern-knoten-disjunkt sind, enthält höchstens einer der Pfade den Knoten v. Sei o.B.d.A. P_1 ein Pfad, der v nicht enthält. Indem wir P_1 und u, v, w zusammenfügen erhalten wir einen Kreis, wie er in der Aufgabensteillung gefordert ist.