Infinitesimal Calculus 3

Lecture 21, Wednsday January 11, 2023 Ari Feiglin

Theorem 21.1:

Our goal is to find a critical point for $f(x, y, z) \in C^1$ with constraint h(x, y, z) = 0. Then there is a $\lambda \in \mathbb{R}$ such that $\nabla f = \lambda \nabla g$ at the critical point.

Proof:

By the implicit function theorem there is a function $\varphi(x,y) \in C^1$ such that $z = \varphi(x,y)$ and the constraint is $h(x,y,\varphi(x,y)) = 0$ in a neighborhood. So our function becomes $f(x,y,\varphi(x,y))$. And so by the chain rule at the critical point

$$\begin{cases} f_x + f_z \cdot \frac{\partial \varphi}{\partial x} = 0 \\ f_y + f_z \cdot \frac{\partial \varphi}{\partial y} = 0 \end{cases}$$

So

$$f_x = -f_z \frac{\partial \varphi}{\partial x}$$
$$f_y = -f_z \frac{\partial \varphi}{\partial y}$$

since $h(x, y, \varphi(x, y)) = 0$ in a neighborhood, it is constant and therefore we must have

$$h_x = -h_z \frac{\partial \varphi}{\partial x}$$
$$h_y = -h_z \frac{\partial \varphi}{\partial y}$$

And so we have that

$$\frac{\partial \varphi}{\partial x} = -\frac{h_x}{h_z} \qquad \frac{\partial \varphi}{\partial y} = -\frac{h_y}{h_z}$$

And so

$$f_x = f_z \cdot \frac{h_x}{h_z} = h_x \cdot \frac{f_z}{h_z}$$
$$f_y = f_z \cdot \frac{h_y}{h_z} = h_y \cdot \frac{f_z}{h_z}$$

So if we define $\lambda = \frac{f_z}{h_z}$ at the critical point then we have that

$$f_x = \lambda h_x$$

$$f_y = \lambda h_y$$

$$f_z = \lambda h_z$$

at the critical point, so $\nabla f = \lambda \nabla h$.

Lemma 21.2:

Suppose a curve $\lambda \in C^1$ is parameterized by $x(t) = (x_1(t), \dots, x_n(t))$, and its tangent is $(x_1'(t), \dots, x_n'(t))$ (λ is the image of the parameterization).

- Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is defined and in C^1 in some neighborhood of λ . If the restriction of f onto λ has a critical point at $x(t_0)$, then $x'(t_0) \perp \nabla f(x(t_0))$.
- (2) If $k \in C^1$ is constant in λ then $\nabla \perp x'(t)$ in λ .

Proof:

(1) Let g(t) = f(x(t)), so g has a critical point at t_0 , so $\frac{d}{dt}g(t_0) = 0$ so by the chain rule $I_{s}(x(t_0)) I_{s}(t_0) = \nabla f(x(t_0)) = 0$

$$J_f(x(t_0))J_x(t_0) = \nabla f(x(t_0)) \cdot x'(t_0) = 0$$

This is true since every point in λ is a crtitical point of k's.

Theorem 21.3:

If $f, h_1, h_2 : \mathbb{R}^3 \longrightarrow \mathbb{R}$ are functions in C^1 , if f has a critical point under the constraints $h_1, h_2 = 0$, if $\nabla h_1|_P$ and $\nabla h_1|_P$ are linearly independent then $\nabla f|_P = \lambda_1 \nabla h_1 + \lambda_2 \nabla h_2$ for some $\lambda_1, \lambda_2 \in \mathbb{R}$.

Proof:

Let $\lambda = \{x \in \mathbb{R}^3 \mid h_1(x) = h_2(x) = 0\}$, then this is the contour of $x = (h_1, h_2)$, we can