

- Tentative Specification
- □ Preliminary Specification
- □ Approval Specification

MODEL NO.: V460DC1 SUFFIX: LD1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your cosignature and comments.	onfirmation with your

Approved By	Checked By	Prepared By		
Chao-Chun Chung	Chao-Chun Chung	Michell Tsung		

CONTENTS

RE'	VISION	I HISTORY	4
1.	G	ENERAL DESCRIPTION	5
١.	1.1.	OVERVIEW	
	1.2.	FEATURES	
	1.3.	APPLICATION	
	1.4.	GENERAL SPECIFICATIONS	
	1.5.	MECHANICAL SPECIFICATIONS	
2.	AE	SSOLUTE MAXIMUM RATINGS <tbd></tbd>	7
	2.1.	ABSOLUTE RATINGS OF ENVIRONMENT	7
	2.2.	RATINGS OF IMAGE STICKING	8
	2.3.	PACKAGE STORAGE	8
3.	EL	ECTRICAL MAXIMUM RATINGS	9
	3.1.	TFT LCD MODULE	
	3.2.	BACKLIGHT UNIT	9
4.	EL	ECTRICAL CHARACTERISTICS	10
	4.1.	TFT LCD MODULE	
	4.2.	BACKLIGHT CONVERTER UNIT	13
	4	.2.1. CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)	
	4	.2.2. CONVERTER INTERFACE CHARACTERISTICS	14
5.	BL	OCK DIAGRAM	16
	5.1.	TFT LCD MODULE	16
6.	LC	D INPUT TERMINAL PIN ASSIGNMENT	17
	6.1.	TFT LCD MODULE L.V.D.S. INPUT	17
	6.2.	TFT LCD MODULE POWER INPUT	22
	6.3.	CONVERTER UNIT	23
	6.4.	BLOCK DIAGRAM OF IMAGE SIGNAL	24
	6.5.	BLOCK DIAGRAM OF L.V.D.S	24
	6.6.	L.V.D.S. INTERFACE	25
	6.7.	COLOR DATA INPUT ASSIGNMENT	26

7.	TIM	MING REQUIREMENTS OF IMAGE SIGNAL	
	7.1.	INPUT SIGNAL TIMING SPECIFICATIONS	27
8.	OP	TICAL CHARACTERISTICS <tbd></tbd>	30
	8.1.	TEST CONDITIONS	30
	8.2.	OPTICAL SPECIFICATIONS	30
9.	PR	ECAUTIONS <tbd></tbd>	34
	9.1.	ASSEMBLY AND HANDLING PRECAUTIONS	34
	9.2.	SAFETY PRECAUTIONS	34
	9.3.	SAFETY STANDARDS	34
10.	DE	FINITION OF LABELS	35
	10.1.	CMI MODULE LABEL	35
	10.2.	WARRANTY LABEL <tbd></tbd>	36
11.	PA	CKAGING <tbd></tbd>	37
	11.1.	PACKING SPECIFICATIONS	37
	11.2.	PACKING METHOD	37
12.	ME	CHANICAL CHARACTERISTIC <tbd></tbd>	39

REVISION HISTORY

Version	Date	Page(New)		Description
Ver 0.0	Jan.03,'12	All	All	Tentative Specification is first issued.
		>	/	
		. *		
			,	

奇美電子

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1. OVERVIEW

V460DC1-LD1 is a 46" Thin-Film-Transistor Liquid-Crystal (TFT-LCD) module with one direct LED backlight unit and 16ch-LVDS interface utilization. This module supports 3840 x 2160 120Hz Quad Full High Definition (QFHD) TV format and can display 1G colors (10-bit). The converter module for backlight is also built-in.

1.2. FEATURES

Ultra Wide Viewing Angle (176(H)/ 176(V) for CR>30)

High Brightness (450 nits)

High Contrast Ratio (1000:1)

Ultra Fast Response Time (Gray to gray average 6.5 ms)

High Color Saturation (NTSC 72%)

Contrasty Image (Gamma 2.5)

QFHD (3840 x 2160 pixels) Resolution

8ch-LVDS (Low Voltage Differential Signaling) Interface

RoHS Compliance

1.3. APPLICATION

Luxurious Living Room TVs

Public Display

Home Theater

Satellite Communication

Medical Analyses/ Instruction

Security and Monitoring

Industrial Design

3D Display

Digital Museum

Multi-Media Display

1.4. GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1019.52 (H) x 573.48(V) (46" diagonal)	mm	(2)
Bezel Opening Area	1025.92 (H) x 579.48 (V)	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	3840x R.G.B. x 2160	pixel	-
Pixel Pitch(Sub Pixel)	0.0885(H) x 0.2655(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1G colors (10-bit)	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 11%). Hardness 3H.	-	(1)

Note (1) The specifications of the surface treatment are temporarily for this phase. CMI reserves the rights to change this feature.

1.5. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	1060.9	1061.9	1062.9	mm	
Module Size	Vertical(V)	613.5	614.5	615.5	mm	
	Depth(D)	49.2	49.2	49.2	mm	To rear
Weight			13010		g	

2. ABSOLUTE MAXIMUM RATINGS <TBD>

2.1. ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol		Va	lue	Unit	Note		
item			Min.	Max.	Offic			
Storage Temperature	T _{ST}		T_{ST}		-20	+55	°C	(1)
Operating Ambient Temperature	T _{OP}		0	45	°C	(1), (2)		
Shock (Non-Operating)	0	X, Y axis	-	30	G	(3), (5)		
Shock (Non-Operating)	S _{NOP}	Z axis	-	30	G	(3), (5)		
Vibration (Non-Operating)	V	NOP	-	1.0	G	(4), (5)		

- Note (1) Temperature and relative humidity range is shown in the figure below.
 - (a) 90 %RH Max. (Ta \leq 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, and $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. The module would not be twisted or bent by the fixture.

2.2. RATINGS OF IMAGE STICKING

Item	Symbol	Value	Unit	Note
Room Temperature Image Sticking	RT IS	Invisibility	6% ND (%)	(1)(3)
High Temperature Image Sticking	HT IS	Invisibility	6% ND (%)	(2)(3)

- Note (1) Room temperature image sticking test is at 25±3 °C environment and fix the pattern A (checker pattern) for 12 hours.
- Note (2) High temperature image sticking test is at 50±3 °C environment and fix the pattern A for 12 hours.
- Note (3) Inspection condition is at pattern B (512grade) after 5 mins from pattern A.

B. Pattern B (512grade)

2.3. PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 ℃ at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

3. ELECTRICAL MAXIMUM RATINGS

3.1. TFT LCD MODULE

lto m	Cumbal	Va	lue	Lloit	Note	
Item	Symbol	Min.	Max.	Unit	Note	
Power Supply Voltage	VCC	-0.3	13.5	V	(1)	
Logic Input Voltage	VIN	-0.3	3.6	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

3.2. BACKLIGHT UNIT

Itom	Cymbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Offic		
Lamp Voltage	V_W		5000	V_{RMS}		
Power Supply Voltage	V_{BL}	0	30	V	(1)	
Control Signal Level		-0.3	7	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

4. ELECTRICAL CHARACTERISTICS

4.1. TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

December:				Value		11.7	N	
Parameter			Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage			VCC	10.8	12	13.2	V	(1)
Rush Curre	ent		IRUSH	_	3.18	_	A (2)	
		White Pattern			11.2	_		
Power Cor	sumption	Black Pattern	PT		11.1	_	W	(3)
		Horizontal Pattern	•	_	28	_	•	
		White Pattern	_		0.93			
Power Supply Current		Black Pattern	_	_	0.92	_	Α	(3)
		Horizontal Pattern	_	_	2.34	_	ı	
	Differential Input High Threshold Voltage Differential Input Low Threshold Voltage		VLVTH	+100	_	_	mV	
			VLVTL	_	_	-100	mV	
LVDS interface	Common Inp	ut Voltage	VCM	1.0	1.2	1.4	V	(4)
	Differential in (single-end)	Differential input voltage (single-end)		200	_	600	mV	
	Terminating Resistor		RT	_	100	_	ohm	
CMOS	Input High Th	nreshold Voltage	VIH	2.7	_	3.3	V	
interface	Input Low Th	reshold Voltage	VIL	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Vcc rising time is at least 470µs

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, fv = 120 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The LVDS input characteristics are as follows:

4.2. BACKLIGHT CONVERTER UNIT

4.2.1. CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value		Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note	
Power Consumption	PBL	•	164	180	W	(1),(2) IL = 80 mA	
Converter Input Voltage	VBL	22.8	24	25.2	VDC		
Converter Input Current	IBL	-	6.8	7.5	Α	Non Dimming	
Input Rush current	•	-	ı	10.6	Α	(3)	
Dimming Frequency	FB	150	160	170	Hz		
Minimum Duty Ratio	DMIN	10	ı	100	%	(4)	

- Note (1) The power supply capacity should be higher than the total converter power consumption PBL. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when converter dimming.
- Note (2) The measurement condition of Max. value is based on 46" backlight unit under input voltage 24V, average LED current 80 mA and lighting 1 hour later.
- Note (3) The duration of Input Rush Current is about 30ms.
- Note (4) 10% minimum duty ratio is only valid for electrical operation.

4.2.2. CONVERTER INTERFACE CHARACTERISTICS

Parameter		Oah al	Test		Value		11:4	Note1~3
		Symbol Condition		Min.	Тур.	Max.	Unit	Note 1~3
On /Off Control Voltage	ON	VDLON	_	2.0	_	5.0	V	
On/Off Control Voltage	OFF	VBLON	_	0	_	0.8	V	
External PWM Control	Н	\/ED\\/\\		2.0		5.0	V	Duty on
Voltage	LO	VEPWM	_	0	_	0.8	V	Duty off
Error Signal		ERR	_	_	_	_		Abnormal: Open collector Normal: GND (4)
VBL Rising Time	VBL Rising Time			30	-		ms	10%-90%VBL
Control Signal Rising Time		Tr		_		100	ms	
Control Signal Falling Tir	ne	Tf	_	_	Ţ	100	ms	
PWM Signal Rising Time		TPWMR				50	us	
PWM Signal Falling Time	9	TPWMF	_	_	,	50	us	
Input Impedance		Rin	_	1	_	_	МΩ	
PWM Delay Time		TPWM	_	100	_	_	ms	
BLON Delay Time		Ton	_	300	_	_	ms	
		Ton1	_	300		_	ms	
BLON Off Time		Toff	_	300	_	_	ms	

Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the external PWM signal during backlight turn on period.

Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.

Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: $VBL \rightarrow PWM \text{ signal} \rightarrow BLON$

Turn OFF sequence: $BLOFF \rightarrow PWM \text{ signal} \rightarrow VBL$

Note (4) When converter protective function is triggered, ERR will output open collector status.

BLOCK DIAGRAM

5.1. TFT LCD MODULE

6. LCD INPUT TERMINAL PIN ASSIGNMENT

6.1. TFT LCD MODULE L.V.D.S. INPUT

CN4 Connector Pin Assignment

Pin No.	Name	Description	Note
1	GND	Ground.	
2	1B_FRX0-	Negative transmission data of First pixel 0.	
3	1B_FRX0+	Positive transmission data of First pixel 0.	
4	1B_FRX1-	Negative transmission data of First pixel 1.	
5	1B_FRX1+	Positive transmission data of First pixel 1.	
6	1B_FRX2-	Negative transmission data of First pixel 2.	
7	1B_FRX2+	Positive transmission data of First pixel 2.	
8	1B_FRCLK-	Negative of First clock.	
9	1B_FRCLK+	Positive of First clock.	
10	1B_FRX3-	Negative transmission data of First pixel 3.	
11	1B_FRX3+	Positive transmission data of First pixel 3.	
12	1B_FRX4-	Negative transmission data of First pixel 4.	
13	1B_FRX4+	Positive transmission data of First pixel 4.	
14	1B_SRX0-	Negative transmission data of Second pixel 0.	
15	1B_SRX0+	Positive transmission data of Second pixel 0.	
16	1B_SRX1-	Negative transmission data of Second pixel 1.	
17	1B_SRX1+	Positive transmission data of Second pixel 1.	
18	1B_SRX2-	Negative transmission data of Second pixel 2.	
19	1B_SRX2+	Positive transmission data of Second pixel 2.	
20	1B_SRCLK-	Negative of Second clock.	
21	1B_SRCLK+	Positive of Second clock.	
22	1B_SRX3-	Negative transmission data of Second pixel 3.	
23	1B_SRX3+	Positive transmission data of Second pixel 3.	
24	1B_SRX4-	Negative transmission data of Second pixel 4.	
25	1B_SRX4+	Positive transmission data of Second pixel 4.	
26	GND	Ground.	
27	1A_FRX0-	Negative transmission data of First pixel 0.	
28	1A_FRX0+	Positive transmission data of First pixel 0.	
29	1A_FRX1-	Negative transmission data of First pixel 1.	
30	1A_FRX1+	Positive transmission data of First pixel 1.	
31	1A_FRX2-	Negative transmission data of First pixel 2.	
32	1A_FRX2+	Positive transmission data of First pixel 2.	
33	1A_FRCLK-	Negative of First clock.	
34	1A_FRCLK+	Positive of First clock.	
35	1A_FRX3-	Negative transmission data of First pixel 3.	
36	1A_FRX3+	Positive transmission data of First pixel 3.	
37	1A_FRX4-	Negative transmission data of First pixel 4.	
38	1A_FRX4+	Positive transmission data of First pixel 4.	
39	1A_SRX0-	Negative transmission data of Second pixel 0.	
40	1A_SRX0+	Positive transmission data of Second pixel 0.	
41	1A_SRX1-	Negative transmission data of Second pixel 1.	
42	1A_SRX1+	Positive transmission data of Second pixel 1.	
43	1A_SRX2-	Negative transmission data of Second pixel 2.	
44	1A_SRX2+	Positive transmission data of Second pixel 2.	
45	1A_SRCLK-	Negative of Second clock.	
46	1A_SRCLK+	Positive of Second clock.	

47	1A_SRX3-	Negative transmission data of Second pixel 3.	
48	1A_SRX3+	Positive transmission data of Second pixel 3.	
49	1A_SRX4-	Negative transmission data of Second pixel 4.	
50	1A_SRX4+	Positive transmission data of Second pixel 4.	
51	GND	Ground.	

CN3 Connector Pin Assignment

Pin No.	Name	Description	Note
1	GND	Ground.	
2	2B FRX0-	Negative transmission data of First pixel 0.	
3	2B FRX0+	Positive transmission data of First pixel 0.	
4	2B FRX1-	Negative transmission data of First pixel 1.	
5	2B FRX1+	Positive transmission data of First pixel 1.	
6	2B FRX2-	Negative transmission data of First pixel 2.	
7	2B FRX2+	Positive transmission data of First pixel 2.	
8	2B FRCLK-	Negative of First clock.	
9	2B FRCLK+	Positive of First clock.	
10	2B FRX3-	Negative transmission data of First pixel 3.	
11	2B_FRX3+	Positive transmission data of First pixel 3.	
12	2B_FRX4-	Negative transmission data of First pixel 4.	
13	2B_FRX4+	Positive transmission data of First pixel 4.	
14	2B_SRX0-	Negative transmission data of Second pixel 0.	
15	2B_SRX0+	Positive transmission data of Second pixel 0.	
16	2B_SRX1-	Negative transmission data of Second pixel 1.	
17	2B_SRX1+	Positive transmission data of Second pixel 1.	
18	2B_SRX2-	Negative transmission data of Second pixel 2.	
19	2B_SRX2+	Positive transmission data of Second pixel 2.	
20	2B_SRCLK-	Negative of Second clock.	
21	2B_SRCLK+	Positive of Second clock.	
22	2B_SRX3-	Negative transmission data of Second pixel 3.	
23	2B_SRX3+	Positive transmission data of Second pixel 3.	
24	2B_SRX4-	Negative transmission data of Second pixel 4.	
25	2B_SRX4+	Positive transmission data of Second pixel 4.	
26	GND	Ground.	
27	2A_FRX0-	Negative transmission data of First pixel 0.	
28	2A_FRX0+	Positive transmission data of First pixel 0.	
29	2A_FRX1-	Negative transmission data of First pixel 1.	
30	2A_FRX1+	Positive transmission data of First pixel 1.	
31	2A_FRX2-	Negative transmission data of First pixel 2.	
32	2A_FRX2+	Positive transmission data of First pixel 2.	
33	2A_FRCLK-	Negative of First clock.	
34	2A_FRCLK+	Positive of First clock.	
35	2A_FRX3-	Negative transmission data of First pixel 3.	
36	2A_FRX3+	Positive transmission data of First pixel 3.	
37	2A_FRX4-	Negative transmission data of First pixel 4.	
38	2A_FRX4+	Positive transmission data of First pixel 4.	
39	2A_SRX0-	Negative transmission data of Second pixel 0.	
40	2A_SRX0+	Positive transmission data of Second pixel 0.	
41	2A_SRX1-	Negative transmission data of Second pixel 1.	
42	2A_SRX1+	Positive transmission data of Second pixel 1.	
43	2A_SRX2-	Negative transmission data of Second pixel 2.	

44	2A_SRX2+	Positive transmission data of Second pixel 2.	
45	2A_SRCLK-	Negative of Second clock.	
46	2A_SRCLK+	Positive of Second clock.	
47	2A_SRX3-	Negative transmission data of Second pixel 3.	
48	2A_SRX3+	Positive transmission data of Second pixel 3.	
49	2A_SRX4-	Negative transmission data of Second pixel 4.	
50	2A_SRX4+	Positive transmission data of Second pixel 4.	
51	GND	Ground.	

CN2 Connector Pin Assignment

Pin No.	Name	Description	Note
1	GND	Ground.	11010
2	3B FRX0-	Negative transmission data of First pixel 0.	
3	3B FRX0+	Positive transmission data of First pixel 0.	
4	3B FRX1-	Negative transmission data of First pixel 1.	
5	3B FRX1+	Positive transmission data of First pixel 1.	
6	3B FRX2-	Negative transmission data of First pixel 2.	
7	3B FRX2+	Positive transmission data of First pixel 2.	<u> </u>
8	3B FRCLK-	Negative of First clock.	
9	3B FRCLK+	Positive of First clock.	
10	3B FRX3-	Negative transmission data of First pixel 3.	
11	3B FRX3+	Positive transmission data of First pixel 3.	
12	3B FRX4-	Negative transmission data of First pixel 4.	
13	3B FRX4+	Positive transmission data of First pixel 4.	
14	3B SRX0-	Negative transmission data of Second pixel 0.	
15	3B SRX0+	Positive transmission data of Second pixel 0.	
16	3B SRX1-	Negative transmission data of Second pixel 1.	
17	3B_SRX1+	Positive transmission data of Second pixel 1.	
18	3B_SRX2-	Negative transmission data of Second pixel 2.	
19	3B_SRX2+	Positive transmission data of Second pixel 2.	
20	3B_SRCLK-	Negative of Second clock.	
21	3B_SRCLK+	Positive of Second clock.	
22	3B_SRX3-	Negative transmission data of Second pixel 3.	
23	3B_SRX3+	Positive transmission data of Second pixel 3.	
24	3B_SRX4-	Negative transmission data of Second pixel 4.	
25	3B_SRX4+	Positive transmission data of Second pixel 4.	
26	GND	Ground.	
27	3A_FRX0-	Negative transmission data of First pixel 0.	
28	3A_FRX0+	Positive transmission data of First pixel 0.	
29	3A_FRX1-	Negative transmission data of First pixel 1.	
30	3A_FRX1+	Positive transmission data of First pixel 1.	
31	3A_FRX2-	Negative transmission data of First pixel 2.	
32	3A_FRX2+	Positive transmission data of First pixel 2.	
33	3A_FRCLK-	Negative of First clock.	
34	3A_FRCLK+	Positive of First clock.	
35	3A_FRX3-	Negative transmission data of First pixel 3.	
36	3A_FRX3+	Positive transmission data of First pixel 3.	
37	3A_FRX4-	Negative transmission data of First pixel 4.	
38	3A_FRX4+	Positive transmission data of First pixel 4.	
39	3A_SRX0-	Negative transmission data of Second pixel 0.	
40	3A_SRX0+	Positive transmission data of Second pixel 0.	

41	3A_SRX1-	Negative transmission data of Second pixel 1.	
42	3A_SRX1+	Positive transmission data of Second pixel 1.	
43	3A_SRX2-	Negative transmission data of Second pixel 2.	
44	3A_SRX2+	Positive transmission data of Second pixel 2.	
45	3A_SRCLK-	Negative of Second clock.	
46	3A_SRCLK+	Positive of Second clock.	
47	3A_SRX3-	Negative transmission data of Second pixel 3.	
48	3A_SRX3+	Positive transmission data of Second pixel 3.	
49	3A_SRX4-	Negative transmission data of Second pixel 4.	
50	3A_SRX4+	Positive transmission data of Second pixel 4.	
51	GND	Ground.	

CN1 Connector Pin Assignment

Pin No.	Name	Description	Note
1	GND	Ground.	
2	4B_FRX0-	Negative transmission data of First pixel 0.	
3	4B_FRX0+	Positive transmission data of First pixel 0.	
4	4B_FRX1-	Negative transmission data of First pixel 1.	
5	4B_FRX1+	Positive transmission data of First pixel 1.	
6	4B_FRX2-	Negative transmission data of First pixel 2.	
7	4B_FRX2+	Positive transmission data of First pixel 2.	
8	4B_FRCLK-	Negative of First clock.	
9	4B_FRCLK+	Positive of First clock.	
10	4B_FRX3-	Negative transmission data of First pixel 3.	
11	4B_FRX3+	Positive transmission data of First pixel 3.	
12	4B_FRX4-	Negative transmission data of First pixel 4.	
13	4B_FRX4+	Positive transmission data of First pixel 4.	
14	4B_SRX0-	Negative transmission data of Second pixel 0.	
15	4B_SRX0+	Positive transmission data of Second pixel 0.	
16	4B_SRX1-	Negative transmission data of Second pixel 1.	
17	4B_SRX1+	Positive transmission data of Second pixel 1.	
18	4B_SRX2-	Negative transmission data of Second pixel 2.	
19	4B_SRX2+	Positive transmission data of Second pixel 2.	
20	4B_SRCLK-	Negative of Second clock.	
21	4B_SRCLK+	Positive of Second clock.	
22	4B_SRX3-	Negative transmission data of Second pixel 3.	
23	4B_SRX3+	Positive transmission data of Second pixel 3.	
24	4B_SRX4-	Negative transmission data of Second pixel 4.	
25	4B_SRX4+	Positive transmission data of Second pixel 4.	
26	GND	Ground.	
27	4A_FRX0-	Negative transmission data of First pixel 0.	
28	4A_FRX0+	Positive transmission data of First pixel 0.	
29	4A_FRX1-	Negative transmission data of First pixel 1.	
30	4A_FRX1+	Positive transmission data of First pixel 1.	
31	4A_FRX2-	Negative transmission data of First pixel 2.	
32	4A_FRX2+	Positive transmission data of First pixel 2.	
33	4A_FRCLK-	Negative of First clock.	
34	4A_FRCLK+	Positive of First clock.	
35	4A_FRX3-	Negative transmission data of First pixel 3.	
36	4A_FRX3+	Positive transmission data of First pixel 3.	
37	4A_FRX4-	Negative transmission data of First pixel 4.	

38	4A_FRX4+	Positive transmission data of First pixel 4.	
39	4A_SRX0-	Negative transmission data of Second pixel 0.	
40	4A_SRX0+	Positive transmission data of Second pixel 0.	
41	4A_SRX1-	Negative transmission data of Second pixel 1.	
42	4A_SRX1+	Positive transmission data of Second pixel 1.	
43	4A_SRX2-	Negative transmission data of Second pixel 2.	
44	4A_SRX2+	Positive transmission data of Second pixel 2.	
45	4A_SRCLK-	Negative of Second clock.	
46	4A_SRCLK+	Positive of Second clock.	
47	4A_SRX3-	Negative transmission data of Second pixel 3.	
48	4A_SRX3+	Positive transmission data of Second pixel 3.	
49	4A_SRX4-	Negative transmission data of Second pixel 4.	
50	4A_SRX4+	Positive transmission data of Second pixel 4.	
51	GND	Ground.	

Note (1) CN4 · CN3 · CN2 · CN1 connector part no.: FI-RE51S-HF,JAE Taiwan.

Note (2) LVDS 4-Port Data Mapping

Port	CH of LVDS	Data Stream
1st Port	First pixel	1, 5, 9,, 1913, 1917
2nd Port	Second pixel	2, 6, 10,, 1914, 1918
3rd Port	Third pixel	3, 7, 11,, 1915, 1919
4th Port	Fourth pixel	4, 8, 12,, 1916, 1920

6.2. TFT LCD MODULE POWER INPUT

CN9 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	NC	Not connection	(2)
2	NC	Not connection	(2)
3	VCC	+12.0V power supply	
4	VCC	+12.0V power supply	
5	VCC	+12.0V power supply	
6	NC	Not connection	(2)
7	VCC	+12.0V power supply	
8	NC	Not connection	(2)
9	VCC	+12.0V power supply	
10	NC	Not connection	(2)
11	GND	Ground	
12	NC	Not connection	(2)
13	GND	Ground	
14	NC	Not connection	(2)
15	NC	Not connection	(2)
16	NC	Not connection	(2)
17	NC	Not connection	(2)
18	GND	Ground	
19	GND	Ground	
20	GND	Ground	

Note (1) CN9 connector part no.: S20B-PHDSS-B(LF)(SN), JST(日本壓著端子),德通端子 or equivalent.

Note (2) Reserved for internal use. Please leave it open.

6.3. CONVERTER UNIT

CN1: CI0114M1HR0-LF (CvilLux) or S14B-PH-SM4-TB(LF)(SN) (JST)

Pin №	Signal name	Feature							
1									
2									
3	V_{BL}	+24 V							
4									
5									
6									
7									
8	GND	GND							
9									
10									
11	ERR	Normal (GND) Abnormal (Open collector)							
12	BLON	BL ON/OFF							
13	NC	NC							
14	E_PWM	External PWM Control							

CN2- CN3: 51281-1094 (Molex) or 7083K-F10N-00L (E&T)

Pin №	Symbol	Feature					
1	VLED+	Positivo of LED String					
2	VLED+	Positive of LED String					
3							
4	NC	NC					
5		INC					
6							
7	N1						
8	N2	Negative of LED String					
9	N3	Negative of LED String					
10	N4						

6.4. BLOCK DIAGRAM OF IMAGE SIGNAL

The video picture (3840x2160) should be divided into four parts: each one is 960x2160 resolution. Signals of these four parts should be delivered into the module individually through each 4-channel LVDS interface. But it must be "synchronous" mutually between signals from these four 4-channel LVDS interfaces. And the protocol is specified in the LVDS interface specification.

6.5. BLOCK DIAGRAM OF L.V.D.S.

LVDS Input

6.6. L.V.D.S. INTERFACE

LVDS interface receiver required input data mapping table										
LVDS Channel E0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0		
LVD3 Charmer E0	Data order	FG0	FR5	FR4	FR3	FR2	FR1	FR0		
LVDS Channel E1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0		
LVD3 Charmer E1	Data order	FB1	FB0	FG5	FG4	FG3	FG2	FG1		
LVDS Channel E2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0		
LVD3 Charmer E2	Data order	DE	NA	NA	FB5	FB4	FB3	FB2		
LVDS Channel E3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0		
LVD3 Charmer E3	Data order	NA	FB7	FB6	FG7	FG6	FR7	FR6		
LVDS Channel E4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0		
LVD3 Charmer E4	Data order	NA	FB9	FB8	FG9	FG8	FR9	FR8		
LVDS Channel O0	LVDS output	TA6	TA5	TA4	TA3	TA2	TA1	TA0		
LVD3 Charmer 00	Data order	SG0	SR5	SR4	SR3	SR2	FR7 FF TE1 TE FR9 FF TA1 TA SR1 SF TB1 TE SG2 SG	SR0		
LVDS Channel O1	LVDS output	TB6	TB5	TB4	TB3	TB2	TB1	TB0		
LVD3 Charmer O1	Data order	SB1	SB0	SG5	SG4	SG3	SG2	SG1		
LVDS Channel O2	LVDS output	TC6	TC5	TC4	TC3	TC2	TC1	TC0		
LVD3 Charmer 02	Data order	DE	NA	NA	SB5	SB4	SB3	SB2		
LVDS Channel O3	LVDS output	TD6	TD5	TD4	TD3	TD2	TD1	TD0		
LVD3 Charmel O3	Data order	NA	SB7	SB6	SG7	SG6	SR7	SR6		
LVDS Channel O4	LVDS output	TE6	TE5	TE4	TE3	TE2	TE1	TE0		
LVD3 Charmer 04	Data order	NA	SB9	SB8	SG9	SG8	SR9	SR8		

R0~R9 : Pixel R Data (9; MSB, 0; LSB) G0~G9 : Pixel G Data (9; MSB, 0; LSB) B0~B9 : Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal

6.7. COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

															С)ata		nal													
	Color					R										Gre											ue				
		R9	R8	R7	R6	R5			R2		R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	- 1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Neu	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Crov	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
Green	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
Blue	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

7. TIMING REQUIREMENTS OF IMAGE SIGNAL

7.1. INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	50	74.25	80	MHz	(1)(5)
LVDS	Input cycle to cycle jitter	Trcl	_		200	ps	(3)
Receiver Clock	Spread spectrum	Fclkin_mod	F _{clkin} -2%		F _{clkin} +2%	MHz	(4)
	Spread spectrum	F _{SSM}	_		200	KHz	(4)
LVDS Receiver Data	Receiver Skew Margin	T_{RSKM}	-400	_	400	ps	
	Frame Rate	Fr		120		Hz	
Vertical Active Display Term	Tramo rato			120		Hz	
(4-CH LVDS,960X2160 Active Area)	Total	Tv	2168	_	3160	Th	Tv=Tvd+Tvb
(4-011 EV DO, 300/2100 Active Area)	Display	Tvd	_	2160	_	Th	
	Blank	Tvb	8	_	1000	Th	
Horizontal Active Display Term	Total	Th	1100	_	1800	Тс	Th=Thd+Thb
(4-CH LVDS,960X2160 Active Area)	Display	Thd		960	_	Тс	
(4 OTTEV BO, SOOKE TOO Active Area)	Blank	Thb	140	420	840	Тс	

Note (1) Please make sure the range of pixel clock has follow the below equation:

 $Fclkin(max) \ge Fr \times Tv \times Th$

 $Fr \times Tv \times Th \ge Fclkin (min)$

INPUT SIGNAL TIMING DIAGRAM

Note (2) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = \mid T1 - T \mid Tc

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (4) LVDS receiver skew margin is defined and shown as below.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Version 0.0 28 Date : 3 Jan 2012

7.2. POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failures.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

8. OPTICAL CHARACTERISTICS <TBD>

8.1. TEST CONDITIONS

Item	Symbol	Value	Unit					
Ambient Temperature	Та	25±2	°C					
Ambient Humidity	На	50±10	%RH					
Supply Voltage	V _{CC}	5.0	V					
Input Signal	According to typical value	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
Frame Rate	F _r	60	Hz					

8.2. OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 8.2 Notes. The following items should be measured under the test conditions described in 8.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		800	1000		-	Note (2)	
Response Time Center Luminance of White White Variation Cross Talk		Gray to gray			6.5	12	ms	Note (3)	
Center Lumina	nce of White	L _C		400	450		cd/m ²	Note (4)	
White Variation	า	δW				1.6	-	Note (7)	
Cross Talk		CT				2	%	Note (5)	
	Dod	Rx	θ_x =0°, θ_Y =0°		0.663		-		
	Red	Ry	Viewing angle at		0.330		-		
Color Chromaticity	Croon	Gx	normal direction		0.184	Тур.	-		
	Green	Gy		Тур.	0.691		-	Note (6)	
	Blue	Вх		-0.03	0.149	+0.03	-	Note (6)	
		Ву			0.043		-		
	\	Wx			0.280		-		
	White	Wy		800 1000 - Note 6.5 12 ms Note 400 450 cd/m² Note 1.6 - Note 2 % Note 0.663 0.330 0.184 Typ. 0.691 -0.03 0.149 0.280 0.290 - 72 % NTS 80 88 80 88					
	Color Gamut	C.G		-	72		%	NTSC	
	l lovi-outol	θ_x +		80	88				
Viewing Angle	Horizontal	θ_{x} -	OD: 20	80	88				
	Vortical	θ _Y +	CR≥30	80	88		Deg.	Note (1)	
	Vertical	θ _Y -		80	88				

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L1023 / L0

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR (7), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892, and 1023. Gray to gray. Average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892, and 1023 to each other.

Note (4) Definition of Luminance of White (Lc):

Measure the luminance of gray level 1023 at center point

$$L_{C} = L(7)$$

Where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 1023 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 1023 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 512 at 13 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), \dots, L (13)] / Minimum [L (1), L (2), L (3), L (4), \dots, L (13)]$

Version 0.0 33 Date: 3 Jan 2012

9. PRECAUTIONS <TBD>

9.1. ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Bezel of Set can not press or touch the panel surface. It will make light leakage or scrape.
- (6) Do not plug in or pull out the I/F connector while the module is in operation.
- (7) Do not disassemble the module.
- (8) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (9) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (10) When storing modules as spares for a long time, the following precaution is necessary.
 - a. Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C at normal humidity without condensation.
 - b. The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- (11) When ambient temperature is lower than 10 °C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

9.2. SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

9.3. SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.
- (3) UL60065 or updated standard.
- (4) IEC60065 or updated standard.

10. DEFINITION OF LABELS

10.1. CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V460DC1-LD1

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No. : Manufacturing sequence of product Product Line : $1 \rightarrow \text{Line}1$, $2 \rightarrow \text{Line}2$, ...etc.

10.2. WARRANTY LABEL <TBD>

Warranty labels are pasted on the rear of the BLU. This warranty label is defined to recognized if the module ever disassembled or not. If the module was dismounted, then it will be out of warranty. When remove the warranty label, there are prints will remain on the surface of the BLU. If the label was removed or it has the imprint by tearing, it will be treated as disassembled.

11. PACKAGING <TBD>

11.1. PACKING SPECIFICATIONS

(1) 2 LCD TV modules / 1 Box

(2) Box dimensions: 1448(L) X 372 (W) X 901 (H)

(3) Weight: approximately 56Kg (2 modules per box)

(4) One protective film is attached on the LCD TV

11.2. PACKING METHOD

Figures 11-1 and 11-2 are the packing method

Figure.11-1 packing method

Figure.11-2 Packing method

12. MECHANICAL CHARACTERISTIC <TBD>

Version 0.0 40 Date : 3 Jan 2012