

SCORING METRICS

SCORING METRIC

In machine learning, a scoring metric is the method by which a machine learning model is given a score.

There are many different ways to score machine learning models, hence many different scoring metrics.

REGRESSION: R2

The default classification scoring metric in sklearn is called "R2."

R2, properly pronounced "R-squared," is a measure of how well the data fits the regression line.

- ▶ 1.0 is perfect.
- 0.5 indicates half the data is explained by the line, half isn't.
- 0 means none of the data is explained by the line.
- A negative score means the data runs opposite to the line!

REGRESSION: RMSE

RMSE, the Root Mean Squared Error, is a more common scoring metric.

The RMSE is the average distance that each point is from the regression line.

- Assume the Bike Rental dataset has an RMSE of 21.
- On average the predictions are 21 rentals off from the predictions.
- by sklearn requires taking the negative square root of the

ADDITIONAL REGRESSION SCORING METRICS

Regression	
'explained_variance'	metrics.explained_variance_score
'max_error'	metrics.max_error
'neg_mean_absolute_error'	metrics.mean_absolute_error
'neg_mean_squared_error'	metrics.mean_squared_error
'neg_root_mean_squared_error'	metrics.mean_squared_error
'neg_mean_squared_log_error'	metrics.mean_squared_log_error
'neg_median_absolute_error'	metrics.median_absolute_error
'r2'	metrics.r2_score
'neg_mean_poisson_deviance'	metrics.mean_poisson_deviance
'neg_mean_gamma_deviance'	metrics.mean_gamma_deviance
'neg_mean_absolute_percentage_er- ror'	metrics.mean_absolute_percentage_error

CLASSIFICATION: ACCURACY

The default classification scoring metric is called "accuracy."

Accuracy is the number of correct predictions divided by the number of total predictions:

Accuracy = Correct / Total

IMBALANCED DATA

In imbalanced data, accuracy is not good enough.

- Assume that 1% of stars have detectable exoplanets.
- It's easy to build a machine learning classifier with 99% accuracy.
- Just say that no stars have exoplanets!

POSITIVES & NEGATIVES

In machine learning, a positive case has a value of 1, and a negative case has a value of 0.

- Stars with exoplanets are positive (1% of data).
 - True positives exoplanet stars correctly predicted.
 - False positives exoplanet stars incorrectly predicted.

POSITIVES & NEGATIVES

Example Cont'd:

- Stars without exoplanets are negative (99% of data).
 - True negatives stars without exoplanets correctly predicted.
 - False negatives stars without exoplanets incorrectly predicted.

CLASSIFICATION: PRECISION

- The goal of precision is accuracy of positive predictions.
- Precision = True Pos / Total Pos

- What percentage of predicted exoplanets were actually exoplanets?
- Useful to publicize exoplanet verification.

CLASSIFICATION: RECALL

- The goal of recall is to find all the positive predictions.
- Recall = True Pos / (True Pos + False Neg)

- Did we find all the exoplanet stars?
- Useful to try and find all the exoplanets.

CLASSIFICATION: F1-SCORE

The F1-Score is a balance between Precision and Recall.

ADDITIONAL CLASSIFICATION SCORING METRICS

Scoring	Function	Comment
Classification		
'accuracy'	metrics.accuracy_score	
'balanced_accuracy'	<pre>metrics.balanced_accuracy_score</pre>	
'top_k_accuracy'	<pre>metrics.top_k_accuracy_score</pre>	
'average_precision'	<pre>metrics.average_precision_score</pre>	
'neg_brier_score'	metrics.brier_score_loss	
'f1'	metrics.fl_score	for binary targets
'f1_micro'	metrics.fl_score	micro-averaged
'f1_macro'	metrics.fl_score	macro-averaged
'f1_weighted'	metrics.fl_score	weighted average
'f1_samples'	metrics.fl_score	by multilabel sample
'neg_log_loss'	metrics.log_loss	requires predict_proba support
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'
'jaccard' etc.	metrics.jaccard_score	suffixes apply as with 'f1'
'roc_auc'	metrics.roc_auc_score	
'roc_auc_ovr'	metrics.roc_auc_score	
'roc_auc_ovo'	metrics.roc_auc_score	
'roc_auc_ovr_weighted'	metrics.roc_auc_score	
'roc_auc_ovo_weighted'	metrics.roc_auc_score	

HAPPY CODING!