Optical Fourier Transforms

Jacky Cao, Room 205, Friday, Lab Partners: Thomas Spriggs Date of experiment: 10/02/2017 to , Date of report: 20/11/2016

Through the study of the Fourier Transforms of blah blah blah. [4].

I. INTRODUCTION

Method

Intro

$$35000 \times \left[\frac{\sin\left[\frac{1}{47} \times (x - 690)\right]}{\frac{1}{47} \times (x - 690)}\right]^2 \tag{1}$$

III. RESULTS

Results

Tube	Radius, a [mm]	$\eta \ [\mathrm{mPa\ s}]$	$\chi^2_ u$
Blue	0.55 ± 0.03	1.0 ± 0.2	11.0
Red	0.47 ± 0.03	1.1 ± 0.3	5.31
Black	0.46 ± 0.03	1.0 ± 0.3	1.94

TABLE I: For each tube is shown its radius, their respective calculated value for the viscosity of water η , and the reduced chi-squared statistic, χ^2_{ν} .

II. METHOD

Method

FIG. 1: A schematic of the experimental set-up used to collect data

IV. DISCUSSION

Discussion

V. CONCLUSIONS

Conclusion

- [1] Salvatore P. Sutera and Richard Skalak *The History of Poiseuille's Law*. Annu. Rev. Fluid Mech., 1993.
- [2] Raymond A. Serway, Chris Vuille, and Jerry S. Faughin College Physics, 8th Edition. Brooks/Cole, Belmont, CA, USA, 2009.
- [3] Hugh D. Young and Roger A. Freedman. University Physics with Modern Physics, 13th Edition. Pearson Education Limited, Essex, UK, 2015.
- [4] W. M. Haynes. CRC Handbook of Chemistry and Physics, 92nd Edition. CRC Press, Florida, USA, 2011.
- [5] J. L. Martin and S. C. McCutcheon Hydrodynamics and Transport for Water Quality Modelling. CRC Press, Florida, USA, 1999.
- [6] I. G. Hughes and T. P. A. Hase Measurements and their Uncertainties. Oxford University Press, Oxford, UK, 2010.

Appendix

Appendix