Lista 3 de Ejercicios Análisis Matemático IV

Cristo Daniel Alvarado

13 de mayo de 2024

Índice general

3. Ejercicios 2

Capítulo 3

Ejercicios

Ejercicio 3.1.1

Pruebe que, para todo $x \in]0, 2\pi[$,

$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin nx}{n}$$

Usando la identidad de Parseval, demuestre que

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Demostración:

Sea $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f(x) = \frac{\pi - x}{2}, \quad \forall x \in [0, 2\pi[$$

y extiéndase por periodicidad a todo \mathbb{R} . Es claro que $f \in \mathcal{L}_1^{2\pi}(\mathbb{R})$, sea ahora $x \in]0, 2\pi[$. Por el teorema fundamental para la convergencia puntual de una serie de Fourier hay que encontrar un $0 < \delta < \pi$ tal que

$$\lim_{m \to \infty} \int_0^{\delta} \frac{f(x+t) + f(x-t) - 2f(x)}{t} \sin\left(m + \frac{1}{2}\right) dt$$

tomemos $\delta = \min\{x, 2\pi - x\} > 0$. Se tienen dos casos:

1. $\delta = x$, entonces

$$\int_0^\delta \frac{f(x+t) + f(x-t) - 2f(x)}{t} \sin\left(m + \frac{1}{2}\right) dt$$

$$= \int_0^\delta \frac{1}{t} \left[\frac{\pi - x - t}{2} + \frac{\pi - x + t}{2} - \frac{2(\pi - x)}{2}\right] \sin\left(m + \frac{1}{2}\right) dt$$

$$= \int_0^\delta \frac{1}{t} \left[\pi - x - \pi + x\right] \sin\left(m + \frac{1}{2}\right) dt$$

$$= \int_0^\delta 0 dt$$

$$= 0$$

por tanto, el límite cuando $m \to \infty$ resulta que da cero.

2. $\delta = 2\pi x$. El caso es análogo al anterior.

por ambos incisos se concluye que

$$\lim_{m \to \infty} \int_0^{\delta} \frac{f(x+t) + f(x-t) - 2f(x)}{t} \sin\left(m + \frac{1}{2}\right) dt = 0$$

por tanto, la serie de Fourier de f converge a f puntualmente en x. Computemos ahora los coeficientes de la serie de Fourier de f. Si $n \ge 0$:

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx dx$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} \frac{\pi - x}{2} \cos nx dx$$

$$= \frac{1}{2} \int_{0}^{2\pi} \cos nx dx - \frac{1}{2\pi} \int_{0}^{2\pi} x \cos nx dx \text{ haciendo } u = nx$$

$$= \frac{1}{2} \int_{0}^{2n\pi} \cos u \frac{du}{n} - \frac{1}{2\pi} \int_{0}^{2n\pi} \frac{u}{n} \cos u \frac{du}{n}$$

$$= \frac{1}{2n} \sin u \Big|_{0}^{2n\pi} - \frac{1}{2\pi n^{2}} \int_{0}^{2n\pi} u \cos u du$$

$$= \frac{1}{2n} [\sin 2\pi n - \sin 0] - \frac{1}{2\pi n^{2}} \left(u \sin u \Big|_{0}^{2n\pi} + \int_{0}^{2n\pi} \sin u du \right)$$

$$= -\frac{1}{2\pi n^{2}} \left(u \sin u \Big|_{0}^{2n\pi} + \int_{0}^{2n\pi} \sin u du \right)$$

$$= -\frac{1}{2\pi n^{2}} \left([2n\pi \sin 2n\pi - 0] - \cos u \Big|_{0}^{2n\pi} \right)$$

$$-\frac{1}{2\pi n^{2}} (0 - 0 - 1 + 1)$$

$$= 0$$

para todo $n \geq 0$. Si $n \in \mathbb{N}$:

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx dx$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} \frac{\pi - x}{2} \sin nx dx$$

$$= \frac{1}{2} \int_{0}^{2\pi} \sin nx dx - \frac{1}{2\pi} \int_{0}^{2\pi} x \sin nx dx \text{ haciendo } u = nx$$

$$= \frac{1}{2} \int_{0}^{2n\pi} \sin u \frac{du}{n} - \frac{1}{2\pi} \int_{0}^{2n\pi} \frac{u}{n} \sin u \frac{du}{n}$$

$$= \frac{1}{2n} (-\cos u) \Big|_{0}^{2n\pi} - \frac{1}{2\pi n^{2}} \int_{0}^{2n\pi} u \sin u du$$

$$= \frac{1}{2n} (-\cos 2n\pi + 1) - \frac{1}{2\pi n^{2}} \left(-u \cos u \Big|_{0}^{2n\pi} + \int_{0}^{2n\pi} \cos u du \right)$$

$$= \frac{1}{2n} (-1 + 1) - \frac{1}{2\pi n^{2}} \left(-2n\pi \cos 2n\pi + 0 + \sin u \Big|_{0}^{2n\pi} \right)$$

$$= -\frac{1}{2\pi n^{2}} \left(-2n\pi \cos 2n\pi + \sin 2n\pi - \sin 0 \right)$$

$$= -\frac{1}{2\pi n^{2}} \left(-2n\pi + \sin 2n\pi - \sin 0 \right)$$

$$= -\frac{1}{2\pi n^{2}} \left(-2n\pi \right)$$

$$= \frac{1}{n}$$

Por tanto, la serie de Fourier de f en $x \in]0, 2\pi[$ está dada por:

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos kx + b_k \sin kx \right] = \sum_{n=1}^{\infty} b_n \sin nx = \sum_{n=1}^{\infty} \frac{\sin nx}{n}$$

Por el criterio de Dini se sigue que

$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin nx}{n}, \quad \forall x \in]0, 2\pi[$$

Ahora, como $x\mapsto \frac{\pi-x}{2}$ es una función en $\mathcal{L}_2^{2\pi}$, por Parseval se tiene que

$$\begin{split} \frac{|a_0|^2}{2} + \sum_{n=1}^{\infty} \left[|a_n|^2 + |b_n|^2 \right] &= \frac{1}{\pi} \int_{-\pi}^{\pi} \left| \frac{\pi - x}{2} \right|^2 \, dx \\ \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} &= \frac{1}{4\pi} \int_{0}^{2\pi} |\pi - x|^2 \, dx \\ &= \frac{1}{2\pi} \int_{0}^{\pi} |\pi - x|^2 \, dx \\ &= \frac{1}{2\pi} \int_{0}^{\pi} (\pi - x)^2 \, dx \text{ haciendo el cambio de variable } u = \pi - x \\ &= \frac{1}{2\pi} \int_{\pi}^{0} -u^2 \, du \\ &= \frac{1}{2\pi} \cdot \frac{-u^3}{3} \Big|_{\pi}^{0} \\ &= \frac{1}{2\pi} \cdot \left[-\frac{0}{3} + \frac{\pi^3}{3} \right] \\ &= \frac{1}{2\pi} \cdot \frac{\pi^3}{3} \\ &= \frac{\pi^2}{6} \\ \therefore \sum_{n=1}^{\infty} \frac{1}{n^2} &= \frac{\pi^2}{6} \end{split}$$

Como se quería demostrar.

Ejercicio 3.1.2

Sea $f \in \mathcal{L}_2^{2\pi}(\mathbb{R})$ y sean a_n, b_n los coeficientes de Fourier de f. **Pruebe** que

$$\frac{1}{\pi} \int_0^{2\pi} x f(x) dx = \pi a_0 - 2 \sum_{n=1}^{\infty} \frac{b_n}{n}.$$

Demostración:

Veamos que

$$\int_0^{2\pi} x f(x) \, dx = x f(x)$$

Recordemos que

$$b_1 = \int_0^{2\pi} \sin x f(x) \, dx$$

Ejercicio 3.1.3

Sea $f: \mathbb{R} \to \mathbb{R}$ periódica de periodo 2π definida como

$$f(x) = \begin{cases} \pi^2 & \text{si} \quad -\pi \le x < 0, \\ (x - \pi)^2 & \text{si} \quad 0 \le x < \pi. \end{cases}$$

calcule los coeficientes de Fourier a_n , con n = 0, 1, 2, ... de f y **pruebe** las fórmulas

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \quad \text{y} \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}.$$

Demostración:

Ejercicio 3.1.4

Pruebe que

$$\frac{1}{3}x(\pi - x)(\pi - 2x) = \sum_{n=1}^{\infty} \frac{\sin 2nx}{n^3}, \quad 0 \le x \le \pi.$$

Deduzca el valor de

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3}.$$

Demostración:

Ejercicio 3.1.5

Haga lo siguiente:

i. Pruebe que

$$\int_0^{\pi} \log \sin \frac{x}{2} dx = -\pi \log 2.$$

Sugerencia. Haga el cambio de variables x=2t y escriba sen $t=2\operatorname{sen}\frac{t}{2}\cos\frac{t}{2}$.

ii. Muestre que

$$-\log\left|2\operatorname{sen}\frac{x}{2}\right| = \sum_{n=1}^{\infty} \frac{\cos nx}{n}, \quad \text{ si } x \neq 2k\pi, k \in \mathbb{Z}.$$

Sugerencia. Use el inciso (i) para probar que $a_0 = 0$. A fin de calcular a_n para $n \in \mathbb{N}$, escriba $a_n = \frac{2}{\pi} \int_0^{\pi} \log \cos \frac{x}{2} dx$, efectúe una integración por partes y transforme el nuevo integrando de suerte que aparezca el núcleo de Dirichlet.

iii. Deduzca de (ii) la fórmula

$$\log 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}.$$

iv. Desarrolle en serie de Fourier la función

$$x \mapsto \log \left| 2\cos\frac{x}{2} \right|$$

6

Solución:

De (i): (justificar porqué esa función es integrable). Veamos que

$$\int_{0}^{\pi} \log \sin \frac{x}{2} \, dx = 2 \int_{0}^{\frac{\pi}{2}} \log \sin t \, dt$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \log \left(2 \sin \frac{t}{2} \cos \frac{t}{2} \right) \, dt$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \left[\log 2 + \log \sin \frac{t}{2} + \log \cos \frac{t}{2} \right] \, dt$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \left[\log 2 + \log \sin \frac{t}{2} + \log \cos \frac{t}{2} \right] \, dt$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \log 2 \, dt + 2 \int_{0}^{\frac{\pi}{2}} \log \sin \frac{t}{2} \, dt + 2 \int_{0}^{\frac{\pi}{2}} \log \cos \frac{t}{2} \, dt$$

$$= \pi \log 2 + 2 \int_{0}^{\frac{\pi}{2}} \log \sin \frac{t}{2} \, dt + 2 \int_{0}^{\frac{\pi}{2}} \log \cos \frac{t}{2} \, dt$$

donde,

$$\int_0^{\frac{\pi}{2}} \log \cos \frac{t}{2} dt = \int_0^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - \frac{t}{2}\right) dt$$
$$= \int_{\pi}^{\frac{\pi}{2}} -\log \sin \left(\frac{u}{2}\right) dt$$
$$= \int_{\frac{\pi}{2}}^{\pi} \log \sin \left(\frac{u}{2}\right) dt$$

haciendo el cambio de variable $u = \pi - t$. Por ende,

$$\int_0^{\pi} \log \operatorname{sen} \frac{x}{2} \, dx = \pi \log 2 + 2 \int_0^{\frac{\pi}{2}} \log \operatorname{sin} \frac{t}{2} \, dt + 2 \int_{\frac{\pi}{2}}^{\pi} \log \operatorname{sin} \frac{u}{2} \, du$$
$$= \pi \log 2 + 2 \int_0^{\pi} \log \operatorname{sen} \frac{x}{2} \, dx$$
$$\Rightarrow \int_0^{\pi} \log \operatorname{sen} \frac{x}{2} \, dx = -\pi \log 2$$

De (ii): Por lo anterior, $f \in \mathcal{L}_1^{2\pi}$ donde $f(x) = -\log |2\sin \frac{x}{2}|$ para todo $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. Ahora, como f es par, se tiene que

$$b_n = 0, \quad \forall n \in \mathbb{N}$$

Ahora, veamos que

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$$

$$= -\frac{2}{\pi} \int_0^{\pi} -\log\left|2\sin\frac{x}{2}\right| dx$$

$$= \frac{2}{\pi} \int_0^{\pi} \left[\log 2 + \log\sin\frac{x}{2}\right] dx$$

$$= \frac{2}{\pi} \left[\int_0^{\pi} \log 2 + \int_0^{\pi} \log\sin\frac{x}{2}\right] dx$$

$$= \frac{2}{\pi} \left[\pi \log 2 - \pi \log 2\right]$$

$$= 0$$

Ahora, si $n \in \mathbb{N}$:

$$a_n = -\frac{2}{\pi} \int_0^{\pi} \log\left|2\sin\frac{x}{2}\right| \cos nx \, dx$$

$$= -\frac{2}{\pi} \int_0^{\pi} \log\left(2\sin\frac{x}{2}\right) \cos nx \, dx$$

$$= \frac{2}{\pi} \left[-\log\left(2\sin\frac{x}{2}\right) \frac{1}{n} \sin nx\right]_0^{\pi} + \frac{1}{2n} \int_0^{\pi} \frac{\cos\frac{x}{2} \sin nx}{\sin\frac{x}{2}} \, dx\right]$$

$$= \frac{1}{\pi n} \int_0^{\pi} \frac{\cos\frac{x}{2} \sin nx}{\sin\frac{x}{2}} \, dx$$

pero,

$$\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$$

Por ende,

$$a_n = \frac{1}{2\pi n} \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)x + \sin\left(n - \frac{1}{2}\right)x}{\sin\frac{x}{2}} dx$$
$$= \frac{1}{n} \int_0^{\frac{\pi}{2}} \left[D_n(x) + D_{n-1}(x)\right] dx$$
$$= \frac{1}{n}$$

De (iii): Veamos la convergencia (usar el teorema de Carleson y más cosas), de donde se deduce el hecho sorprendente que

$$\int_0^{\pi} \left(\log \left| 2 \cos \frac{x}{2} \right| \right)^2 dx = \frac{\pi^2}{6}$$

Ejercicio 3.1.6

Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{R})$ y sea $x \in \mathbb{R}$. Se supone que para algúun $\alpha > 0$ se cumple

$$f(x+t) - f(x) = O(|t^{\alpha}|), \quad \text{cuando}t \to 0$$

Demuestre que la serie de Fourier de f en x converge a f(x).

Demostración:

Ejercicio 3.1.7

Por el problema 3.1.1 se sabe que

$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin nx}{n}$$

i. Póngase

$$s_n(x) = \sum_{k=1}^{\infty} \frac{\sin kx}{k}.$$

Muestre que

$$\frac{x}{2} + s_n(x) = \pi \int_0^{\pi} D_n(t)dt,$$

donde D_n es el núcleo de Dirichlet.

ii. Si $x \in]0, 2\pi[$, **pruebe** que

$$\lim_{n \to \infty} \left[\pi \int_0^x D_n(t)dt - \int_0^x \frac{\sin nt}{t} dt \right] = 0.$$

iii. Deduzca una nueva demostración de la fórmula

$$\int_0^{-\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$

Demostración:

Ejercicio 3.1.8

Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$ y sean $\{c_k\}_{k \in \mathbb{Z}}$ los coeficientes de Fourier de f. **Demuestre** que

$$\int_0^x f = c + c_0 x + \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{c_k e^{ikx}}{ik}, \quad \forall x \in \mathbb{R}.$$

donde c es una constante, la convergencia siendo uniforme en \mathbb{R} .

Sugerencia. Considere la función $F(x) = \int_0^x (f - c_0)$.

Deduzca que los coeficientes de Fourier b_n de cualquier función $f \in \mathcal{L}_1^{2\pi}(\mathbb{C})$ satisfacen la condición de que la serie

$$\sum_{n=1}^{\infty} \frac{b_n}{n}$$

es convergente. Concluya que la aplicación $f \mapsto \{c_n\}_{n \in \mathbb{Z}}$ no es una aplicación suprayectiva de $\mathcal{L}_1^{2\pi}(\mathbb{C})$ en $c_0(\mathbb{Z})$.

Demostración:

Ejercicio 3.1.9

Haga lo siguiente:

i. Sea α un número real no entero. **Pruebe** que

$$\pi \cos \alpha x = 2\alpha \sin \pi \alpha \left(\frac{1}{2\alpha^2} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{\alpha^2 - n^2} \right), \quad \forall x \in [-\pi, \pi].$$

De ahí obtenga las fórmulas clásicas

$$\frac{\pi\alpha}{\operatorname{sen}\pi\alpha} = 1 + 2\alpha^2 \sum_{n=1}^{\infty} \frac{(-1)^n}{\alpha^2 - n^2} \quad \text{y} \quad \pi\alpha \cot \pi\alpha = 1 + 2\alpha^2 \sum_{n=1}^{\infty} \frac{1}{\alpha^2 - n^2}.$$

ii. Sea $x \in]0,1[$. **Pruebe** que la serie

$$\sum_{n=1}^{\infty} \frac{2\alpha}{n^2 - \alpha^2}$$

se puede integrar término por término en el intervalo [0, x]. De la última fórmula del inciso (i) **deduzca** la fórmula

$$\sin \pi x = \pi x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2} \right), \quad \forall x \in]-1, 1[.s]$$

Demostración:

Ejercicio 3.1.10

Se supone que la serie de Fourier de una función $f \in \mathcal{L}_1^{2\pi}(\mathbb{K})$ converge en el sentido de Cesáro uniformemente en \mathbb{R} . **Pruebe** que f es equivalente a una función continua de \mathbb{R} en \mathbb{K} .

Demostración:

Ejercicio 3.1.11

Sea $f \in \mathcal{C}^{2\pi}(\mathbb{R})$ la función

$$f(x) = \pi - |2x|, \quad -\pi \le x \le \pi$$

Aplique el teorema 3.9 para mostrar que la serie de Fourier de f converge a f uniformemente en \mathbb{R} . Calcule

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \quad y \quad \sum_{k=1}^{\infty} \frac{1}{(2k-1)^4}.$$

Solución:

Ejercicio 3.1.12

Sea $f \in \mathcal{L}_1^{2\pi}(\mathbb{R})$ la función

$$f(x) = \left\{ \begin{array}{ll} 0 & \text{si} & -\pi \le x < 0, \\ x^2 & \text{si} & 0 \le x < \pi. \end{array} \right\}$$

Calcule la serie de Fourier de f. Usando el teorema fundamental para la convergencia de una serie de Fourier, muestre que la serie de Fourier de f converge a alguna suma s(x) para todo $x \in [-\pi, \pi]$. Calcule s(x) para todo $x \in [-\pi, \pi]$.

Solución:

Ejercicio 3.1.13

Haga lo mismo que en el problema 3.12 con $f \in \mathcal{L}_1^{2\pi}(\mathbb{R})$ dada por

$$f(x) = \begin{cases} 0 & \text{si} & -\pi \le x < 0, \\ x & \text{si} & 0 \le x < \pi. \end{cases}$$

Solución: