Tarea 10: Métodos Numéricos para la Ciencia e Ingeniería

Alumna: Constanza Urzúa Cisterna Prof: Valentino Contreras prof. Aux: Felipe Pesce

2 de Diciembre del 2015

1 Introducción

El objetivo de esta tarea es modelar la linea del espectro de radiación (figura 1), através de dos métodos: El primero es asumir que el espectro tiene forma Gaussiana y el segundo método corresponde al perfil de Lorenz. Finalmente se debe obtener el valor de χ^2

Figure 1: Espectro sin ajustes

Para la segunda parte de la tarea se debe verificar si el fit realizado por los modelos anteriormente mencionados son aceptables, vale decir calcular Dn

2 Procedimiento

Se procede por la creación de 3 funciones; la primera modela una línea

$$y = ax + b$$

La segunda modela la función gaussiana

A*scipy.stats.norm(loc = mu, scale = sigma).pdf(x)

Finalmente la última modela el perfil de Lorenz

A*scipy.stats.cauchy(loc = mu, scale = sigma).pdf(x)

La finalidad de tener estas 3 funciones, es que luego se crea una nueva función a la cual se le aplicará el curvefit, esta función se denomirá modelo y retorna la resta entre la Recta y alguna función (Gaussiana o Lorenz).

Finalmente se crean las últimas 3 funciones que tienen como finalidad la obtención de χ^2 y Dn tanto el cálculado como el crítico para saber si la aproximación realizada es aceptable.

3 Resultados

El gráfico obtenido con los respectivos ajuste es el de la figura 2

En donde los resultados son los siguientes:

Método	a	b	A	μ	σ	χ^2
Gaussiana	8.9e-17	7.8e-21	8.2e-17	6563.2	3.6	5.2e-30
Lorenz	8.8e-17	7.9e-21	1.1e-16	6563.2	3.2	5.2e-30

Table 1: Datos obtenidos por el fit

Se sabe que el Dn crítico es: 0.12

Método	dn	Nivel de confianza
Gaussiana	0.16	0.002
Lorenz	0.17	0.002

Table 2: Datos sobre Dn.

Figure 2: Espectro con ajustes

4 Conclusiones

Con respecto a los resultados obtenidos quien tiene una mejor aproximación es el método Gausssiana debido a que χ^2 tiene un valor menor que Lorenz(difiren del orden de la milésima), pero cómo ambos valores son muy bajos, se podría decir que se está realizando una buena minimización de χ^2 .

En cambio al realizar la segunda parte para obtener Dn, se obtiene que el valor crítico (Dn_c) , o sea el máximo valor que debe tener Dn, para que el fit realizado sea realmente bueno, tiene un valor muchos mayor que Dn_c haciendo del fit una mala aproximación.