

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Домашнее задание № 1_

по курсу

«Системы ожижения и разделения газовых смесей»

Вариант __7__

Группа: Э4-101

Выполнил студент:

Жалялетдинов Р.Х

Проверил:

Куприянов М.Ю.

Дано:

Давление на входе:
$$p \coloneqq 3$$
 ama $p = 2.962$ **бар** $p = 0.296$ **МПа**

Компоненты в смеси и их Кислород O2 - 41%
$$O_2\!\coloneqq\!0.41$$
 $M_{O2}\!\coloneqq\!32\,\frac{\mathsf{z}}{\mathsf{моль}}$

концентрации:
 Аргон Ar - 59%
$$Ar \coloneqq 0.59$$
 $M_{Ar} \coloneqq 40 \frac{\mathsf{c}}{\mathsf{Modb}}$

Чистота получаемого продукта: марка - 2,2
$$Ar' \coloneqq 0.992$$

Получаемый продукт:
$$Ar$$

Фазовое состояние получаемого продукта:
$$* * *$$

Расход смеси:
$$G_{\mathit{cm0}} \coloneqq 19.19 \; \frac{\textit{m}}{\textit{день}}$$

Требуется: Выбрать ТМОА для разделения смеси испарительными методами. Составить и посчитать цикл для реализации процесса, конечные значения расходов. Привести к нормальным (начальные условия смеси по ГОСТ 2939-63). В условии указаны мольные концентрации. Сравнить полученный цикл с существующими аналогами.

1. Определим молярную массу, молярный расход смеси, приведенной к системе СИ:

$$M_{\text{CM}} \coloneqq M_{O2} \cdot O_2 + M_{Ar} \cdot Ar = 0.037 \frac{\text{K2}}{\text{MODB}}$$

$$G_{\text{\tiny CM}} \coloneqq \frac{G_{\text{\tiny CMO}}}{M_{\text{\tiny CM}}} = 5.487 \; \frac{\text{моль}}{\text{\tiny C}}$$

2. Смесь, подающаяся в колонну должна быть насыщенной (s - saturated), тогда:

	Temperature (K)	Pressure (MPa)	Density (kg/mi)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Molar Mass	Mole Frac. (argon)	Mole Frac. (oxygen)
1	99,592	0,29600	1227,9	-107,20	2,2483	36,689	0,59000	0,41000
2	99,604	0,29600	129,03	-90,565	2,4153	36,689	0,59000	0,41000
3	99,615	0,29600	68,025	-73,893	2,5827	36,689	0,59000	0,41000
4	99,627	0,29600	46,155	-57,181	2,7505	36,689	0,59000	0,41000
5	99,640	0,29600	34,907	-40,427	2,9186	36,689	0,59000	0,41000
6	99,653	0,29600	28,054	-23,629	3,0872	36,689	0,59000	0,41000
7	99,666	0,29600	23,440	-6,7860	3,2562	36,689	0,59000	0,41000
8	99,679	0,29600	20,123	10,105	3,4257	36,689	0,59000	0,41000
9	99,694	0,29600	17,622	27,045	3,5956	36,689	0,59000	0,41000
10	99,708	0,29600	15,669	44,036	3,7660	36,689	0,59000	0,41000
11	99,723	0,29600	14,102	61,080	3,9370	36,689	0,59000	0,41000

Диапазон температур на входе -99,6..99,7 К

3.1. Требуется подобрать цикл подготовки смеси перед ее подводом в ТМОА для разделения смеси:

Построил цикл, состоящий из основного и вспомогательного подциклов. Вспомогательный подцикл - идеальный парокомпрессионный, работает на R23.

Q - Т диаграммы теплообменных аппаратов :

Затраты работы, приведенные ко времени - $L_1 = \sum\limits_i L_{Ki}$ $L_1 \coloneqq \left(387.6 + 17.29\right)$ **кВт**

Холодопроизводительность - $\varepsilon_1 = \frac{G_{\mathit{CM}} \cdot x \cdot \left(h_{in} - h_{Lout}\right)}{L_1} \qquad \qquad h_{in} - h_{Lout} = \delta h$

 $\delta h\!\coloneqq\! \left(5162-133.4\right) \frac{\kappa \mathcal{A} \varkappa}{\kappa \text{моль}}$ $arepsilon_1\!\coloneqq\! \frac{G_{\scriptscriptstyle CM}\!\cdot\! \delta h}{L_1}\!=\!0.068$ Эффективность мала, нужен более энергоэффективный цикл

3.2. Альтернативный цикл

времени -

Холодопроизводительность цикла-

В качестве альтернативного цикла выбран цикл Гейланда, потоки на детандер и на прямой в отношении 0,55 к 0,45 соответственно.

Q - Т диаграммы теплообменных аппаратов:

 $\varepsilon_{2} = \frac{G_{\text{\tiny CM}} \boldsymbol{\cdot} x \boldsymbol{\cdot} \left(h_{in} - h_{Lout}\right)}{L_{2}}$

 $h_{in} - h_{Lout} = \delta h$

$$\delta h := (5262 - 133.4) \frac{\kappa \text{Дж}}{\kappa \text{моль}}$$

$$\varepsilon_2\!\coloneqq\!\frac{G_{\scriptscriptstyle CM}\!\cdot\!\delta h}{L_2}\!=\!0.067$$

Эффективность меньше чем в предыдущем цикле

4. В качестве ТМОА для разделения смеси выбрана двухсекционная ректификационная колонна.

Т.к. смесь состоит из аргона (Т. кип - 87,29 К) и кислорода (Т. кип - 90,2 К), смесь разделяется сложно, "рыбки - узкие".

Предположительно, разделяемый поток можно подать в нижнюю часть колонны в жидком виде (так точка ввода будет на кривой кипения и процесс массообмена будет проходить легче, и будет меньше нагрузки на конденсатор).

Далее приводятся схема колонны, уравнения баланса (3) для колонны, к-т извлечения по компонентам, выходящих из колонны:

$$M = Ap + R \tag{1}$$

$$M \cdot y_M = Ap \cdot x_{Ap} + R \cdot y_R \tag{2}$$

$$M \cdot y_M \cdot i_M = Ap \cdot x_{Ap} \cdot i'_{Ap} + R \cdot x_R \cdot i''_R + Q_k \tag{3}$$

Зададимся к-том извлечения по аргону равным: $\beta := 0.6$

$$\frac{x_{Ap} \cdot Ap}{y_M \cdot M} = \beta$$

$$Ap\!\coloneqq\!rac{eta\!\cdot\!y_M\!\cdot\!M}{x_{\!Ap}}\!=\!1.958\,rac{ extbf{моль}}{ extbf{c}}$$

$$R := M - Ap = 3.529 \frac{\text{моль}}{c}$$

Тогда
$$y_R \coloneqq \frac{M \cdot y_M - Ap \cdot x_{Ap}}{R} = 0.367$$

Зная фазовый состав по компоненту, давление в колонне, можно определить энтальпии потоков, и определить Qk:

$$i_M\!\coloneqq\!-5162\boldsymbol{\cdot}\frac{\mathbf{\textit{к}}\mathcal{\textit{Д}}\mathbf{\textit{ж}}}{\mathbf{\textit{кмоль}}}\quad i'_{Ap}\!\coloneqq\!-10310\;\frac{\mathbf{\textit{к}}\mathcal{\textit{Д}}\mathbf{\textit{ж}}}{\mathbf{\textit{кмоль}}}\qquad i''_R\!\coloneqq\!-5133\boldsymbol{\cdot}\frac{\mathbf{\textit{к}}\mathcal{\textit{Д}}\mathbf{\textit{ж}}}{\mathbf{\textit{кмоль}}}$$

$$Q_k$$
:= $M \cdot y_M \cdot i_M - Ap \cdot x_{Ap} \cdot i'_{Ap} - R \cdot y_R \cdot i''_R$ = 9.962 кВт

5. Уравнения баланса в конденсаторе:

$$R+G=R+Ap+q$$

$$R \cdot y_R + G \cdot y = R \cdot y_R + Ap \cdot x_{Ap} + g \cdot x$$

$$R \cdot y_R \cdot i_R + G \cdot y \cdot i'' = R \cdot y_R \cdot i''_R + Ap \cdot x_{Ar} \cdot i'_{Ar} + g \cdot x \cdot i' + Q_k \quad (3)$$

$$G \cdot y \cdot i'' = R \cdot y_R \cdot i'_R + Ap \cdot x_{Ar} \cdot i'_{Ar} + g \cdot x \cdot i' + Q_k$$

Отсюда можно вывести уравнение рабочей линии колонны (С учетом приближений Мак-Кеба и Тиле):

$$y = \frac{g}{G} \cdot x + \frac{Ap \cdot x_{Ap}}{G}$$
 $\qquad \qquad e \partial e \quad G = \frac{q_k}{r_{Ar}}$

$$e \partial e \quad G = \frac{q_k}{r_{Ar}}$$

$$F = \frac{g}{G} = tg(\alpha)$$
 - флегмововое отношение

$(1) \stackrel{R, y_R, i_R^{-}}{\longleftarrow} (2) \stackrel{Ap, x_{Ap}, i_{Ap}^{-}}{\longleftarrow}$ $M, y_M, i_M \longrightarrow \bigcirc$ R, x_R, i_R

5.1. Проверка полученного расчетного значения ук:

В идеальном случае F будет стремиться к 1, т.е. будет совпадать с диагональю y = x.

Т.о. получился к-т запаса:

$$\frac{F}{F_{min}} = 1.0286$$

6. Приведение конечных расходов к нормальным величинам:

Согласно ГОСТ 2939-63 объем газов должен быть при температуре 20 °C, давлении 760 мм рт. ст., и влажностью $\psi = 0$, тогда:

и к-ты сжимаемости (Z-factor):

Молярный объем газа при н.у.
$$V_0 \coloneqq 24 \frac{\textbf{л}}{\textbf{моль}} \quad z_M \coloneqq 0.9301 \qquad z_{Ap} \coloneqq 0.9295 \qquad z_R \coloneqq 0.9307$$

$$z_{An} = 0.9295$$

$$z_R \coloneqq 0.9307$$

$$V_M = z_M \cdot M \cdot V_0 = 0.122 \frac{m^3}{8}$$

$$V_M := z_M \cdot M \cdot V_0 = 0.122 \frac{m^3}{8}$$
 $V_{Ap} := z_{Ap} \cdot Ap \cdot V_0 = 0.044 \frac{m^3}{8}$ $V_R := z_R \cdot R \cdot V_0 = 0.079 \frac{m^3}{8}$

$$V_R \coloneqq z_R \cdot R \cdot V_0 = 0.079 \frac{m^3}{s}$$

Проверка
$$V_M - V_{Ap} - V_R = 0$$
 $\frac{{m m}^3}{8}$

7. Сравнение выбранного цикла с промышленными аналогами:

Данный цикл не имеет существующих в реальности аналогов, так как специфичен. Обычно ректификат аргона является попутным продуктов ВРУ высокой производительности.

В книге А.М. Архарова и др - "Криогенные системы. Том 2" приведен ряд существующих ВРУ, попутно производящих аргон. Их энергетические показатели приведены ниже:

Установка	Затраты энергии па единицу объема (массы) гизообраз- ного (жидкого) продукта, кВт • ч/м ³	Удельная* работа разделения, Дж/моль		Степень термодинами- ческого совершенства, %	Примечание	
	(KBT · 4/KT)	действительная	минимальная	70		
			ВРУ низкого	давления		
Гехнологического (ислорода (Кт—70, Кт—35, КтК—35, КТ—30 и др.)			1150—1350		Цикл низкого давления воздуха с турбодетандером, турбодетандеры регулируемые с поворотными долитками направляющего аппарата	
Технического кислорода (КА—32, КААр—32, КАр—30, КААр—15, КА—15, КА—5, АКАр—6, АК—15П, АК—7П и др.)	0,44-0,48	6800—7000	1050—1150		Очистка и осушка воздуха в регенераторах. Предварительное азотоводяное оклаждение. Изоляция — перлитовый порошок. Установки вытоматизированы В ВРУ АК—15П и АК—7П очистка и осушка воздуха — адсорбционная на	
Азотные (А—8, ААж-6, ААж-0,6)	0,22-0,27	6700 — 8200	2100 — 2200	(-//)	цеолитах, предварительное охлаждение во внешнем цикле толодильной фреоновой установки	

Определение степени термодинамического совершенства выбранного цикла:

$$T_0\!\coloneqq\!293.1~ extbf{K}$$
 $s_1\!\coloneqq\!133.4~rac{ extbf{кДж}}{ extbf{кмоль·K}}$ $s_f\!\coloneqq\!97.11\cdotrac{ extbf{кДж}}{ extbf{кмоль·K}}$

$$\varepsilon_{u\partial} \coloneqq \frac{\delta h}{T_0 \cdot \left(s_1 - s_f\right) - \delta h} = 0.931 \qquad \qquad \eta_t \coloneqq \frac{\varepsilon_1}{\varepsilon_{u\partial}} \cdot 100 = 7.319\%$$

Что в 2 раза менее эффективно в сравнении с 15-17% у ВРУ, находящихся в эксплуатации.

Такая неэффективность оправдана простотой цикла, недостаточной его целевой оптимизацией, использования дросселирования в качестве процесса разряжения потока.

Т-ху диаграмма равновесия:

