Laws of Logical Equivalences and Implications

Let p, q and r be atomic statements, T be a tautology and F be a contradiction. Suppose the variable x has no free occurrences in ξ and is substitutable for x in ξ . Then

- 1. Double negative law: $\sim (\sim p) \equiv p$.
- 2. Idempotent laws: $p \wedge p \equiv p$; $p \vee p \equiv p$.
- 3. Universal bound laws: $p \lor T \equiv T$; $p \land F \equiv F$.
- 4. Identity laws: $p \wedge T \equiv p$; $p \vee F \equiv p$.
- 5. Negation laws: $p \lor \sim p \equiv T; \quad p \land \sim p \equiv F.$
- 6. Commutative laws: $p \land q \equiv q \land p$; $p \lor q \equiv q \lor p$.
- 7. Absorption laws: $p \lor (p \land q) \equiv p; \ p \land (p \lor q) \equiv p.$
- 8. Associative laws: $(p \land q) \land r \equiv p \land (q \land r);$
 - $(p \lor q) \lor r \equiv p \lor (q \lor r).$
- 9. Distributive laws: $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r);$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r).$
- 10. De Morgan's laws: $\sim (p \land q) \equiv \sim p \lor \sim q;$
 - $\sim (p \lor q) \equiv \sim p \land \sim q.$
- 11. Implication law: $p \to q \equiv \sim p \lor q$
- 12. Biconditional law: $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$.
- 13. Modus Ponens (MP in short): $p \to q, p \models q$
- 14. Modus Tollens (MT in short): $p \to q, \sim q \models \sim p$
- 15. Generalisation: $p \models p \lor q$; $q \models p \lor q$
- 16. Specialisation: $p \land q \models p; p \land q \models q$
- 17. Conjunction: $p, q \models p \land q$
- 18. Elimination: $p \lor q, \sim q \models p; p \lor q, \sim p \models q$
- 19. Transitivity: $p \to q, q \to r \models p \to r$
- 20. Contradiction Rule: $\sim p \rightarrow F \models p$
- 21. Quantified de Morgan laws: $\sim \forall x \phi \equiv \exists x \sim \phi; \sim \exists x \phi \equiv \forall x \sim \phi;$
- 22. Quantified conjunctive law: $\forall x(\phi \land \psi) \equiv (\forall x \ \phi) \land (\forall x \ \psi);$
- 23. Quantified disjunctive law: $\exists x(\phi \lor \psi) \equiv (\exists x \ \phi) \lor (\exists x \ \psi);$
- 24. Universal quantifiers swapping law: $\forall x \forall y \phi \equiv \forall y \forall x \phi$;
- 25. Existential quantifiers swapping law: $\exists x \exists y \phi \equiv \exists y \exists x \phi$;
- 26. Independent quantifier law: $\xi \equiv \forall x \xi \equiv \exists x \xi$;
- 27. Variable renaming laws: $\forall x \phi \equiv \forall y \phi[y/x]; \quad \exists x \phi \equiv \exists y \phi[y/x];$

28. Free variable laws: $\forall x(\xi \wedge \psi) \equiv \xi \wedge (\forall x\psi); \quad \exists x(\xi \wedge \psi) \equiv \xi \wedge (\exists x\psi);$

 $\forall x(\xi \lor \psi) \equiv \xi \lor (\forall x\psi); \quad \exists x(\xi \lor \psi) \equiv \xi \lor (\exists x\psi);$

29. Universal instantiation: $\forall x \phi \Rightarrow \phi[a/x];$

30. Universal generalisation: $\phi[a/x] \Rightarrow \forall x \phi;$

31. Existential instantiation: $\exists x \phi \Rightarrow \phi[s/x];$

32. Existential generalisation: $\phi[s/x] \Rightarrow \exists x \phi$.

Rules of Inference

Let ϕ , ψ , ξ be any well-formed formulae. Then

1.
$$\wedge$$
-introduction: $\phi, \ \psi \vdash \phi \land \psi$

2.
$$\land$$
-elimination: $\phi \land \psi \vdash \phi$ or $\phi \land \psi \vdash \psi$

3.
$$\rightarrow$$
-introduction: $\phi, \dots, \psi \vdash (\phi \rightarrow \psi)$

4.
$$\rightarrow$$
-elimination: $\phi \rightarrow \psi, \ \phi \vdash \psi$

5. V-introduction:
$$\phi \vdash \phi \lor \psi$$
 or $\psi \vdash \phi \lor \psi$

6.
$$\forall$$
-elimination: $\phi \lor \psi, \ \phi, \ \cdots, \ \xi, \ \psi, \ \cdots, \ \xi \vdash \xi$

7.
$$\neg$$
-introduction or \sim -introduction: $[\sim \phi, \ \cdots, \ \bot] \vdash \phi$ or $[\phi, \ \cdots, \ \bot] \vdash \sim \phi$

8.
$$\neg$$
-elimination or \sim -elimination: $\phi, \sim \phi \vdash \bot$

9.
$$\perp$$
-elimination: $\perp \vdash \phi$

10.
$$\forall$$
-introduction: ${}^t\phi(t) \vdash \forall x\phi(x)$

11.
$$\forall$$
-elimination: $\forall x \phi(x) \vdash \phi(t)$

12.
$$\exists$$
-introduction: $\phi(s) \vdash \exists x \phi(x)$

13.
$$\exists$$
-elimination: $\exists x \phi(x), \boxed{\phi(s) \cdots \xi} \vdash \xi$

The term t is free with respect to x in ϕ and [t/x] means "t replaces x".