

DIGITAL IMAGE PROCESSING

Image Restoration: Session 1

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology Sri City, Andhra Pradesh

Today's Lecture

- Image Restoration
 - Noise Model

- It is a process to recover an image that has been degraded by using a prior knowledge of the degradation phenomenon.
- Model the degradation and applying the inverse process in order to recover the original image.
- Image enhancement is largely a subjective process, while image restoration is mostly a objective process.

A Model of Image Degradation/Restoration Process

FIGURE 5.1

A model of the image degradation/ restoration process.

Degradation Model

- Degradation Function H
- Additive noise $\eta(x, y)$

RESTORATION

A Model of Image Degradation/Restoration Process

If *H* is a **linear**, **position invariant** process, then the degraded image is given in the spatial domain by

$$g(x,y) = h(x,y) * f(x,y) + \eta(x,y),$$

where h(x, y) is the spatial representation of the degradation function and the symbol "*" indicates evaluation.

DEGRADATION

The model of the degraded image is given in the frequency domain

$$G(u,v) = H(u,v)F(u,v) + N(u,v),$$

where the terms in capital letters are the Fourier transforms of the corresponding terms in the previous equation.

Image Restoration Noise Sources

- The principal sources of noise in digital images arise during image acquisition and/or transmission
- Image acquisition: Depends on the quality of the sensing elements
 - e.g., sensor temperature, light levels etc.
- ✓ Transmission: Due to interference in the channel used for transmission
 - e.g., lightning or other atmospheric disturbance in wireless network

Noise Model 1

- White noise
 - The Fourier spectrum of noise is constant
 - The terminology "white" comes from the physical properties of white light, which contains nearly all frequencies in the visible spectrum in equal proportions.

- With the exception of spatially periodic noise, we assume
 - Noise is independent of spatial coordinates
 - Noise is uncorrelated with respect to the image itself

SRICITY SRICITY

Noise Model 2

Gaussian noise

Electronic circuit noise, sensor noise due to poor illumination and/or high temperature

Rayleigh noise

Range imaging

Gaussian Noise

The PDF of Gaussian random variable, z, is given by

$$p(z) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(z-z)^2/2\sigma^2}$$

where, z represents intensity

z is the mean (average) value of z

 σ is the standard deviation

Gaussian Noise

The PDF of Gaussian random variable, z, is given by

$$p(z) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(z-z)^2/2\sigma^2}$$

70% of its values will be in the range

$$[(\mu-\sigma),(\mu+\sigma)]$$

95% of its values will be in the range

$$[(\mu-2\sigma),(\mu+2\sigma)]$$

Rayleigh Noise

The PDF of Rayleigh noise is given by

$$p(z) = \begin{cases} \frac{2}{b}(z-a)e^{-(z-a)^2/b} & \text{for } z \ge a\\ 0 & \text{for } z < a \end{cases}$$

$$\overline{z} = a + \sqrt{\pi b / 4}$$

$$\sigma^2 = \frac{b(4 - \pi)}{4}$$

SRICITY SRICITY

Noise Model 3

- Erlang (gamma) noise: Laser imaging
- Exponential noise: Laser imaging
- Uniform noise: Least descriptive; Basis for numerous random number generators
- Impulse noise: Quick transients, such as faulty switching

Erlang (Gamma) Noise

The PDF of Erlang noise is given by

$$p(z) = \begin{cases} \frac{a^b z^{b-1}}{(b-1)!} e^{-az} & \text{for } z \ge 0\\ 0 & \text{for } z < a \end{cases}$$

Here *a>0* and *b* is an integer

$$\overline{z} = b / a$$

$$\sigma^2 = b / a^2$$

Exponential Noise

The PDF of exponential noise is given by

$$p(z) = \begin{cases} ae^{-az} & \text{for } z \ge 0\\ 0 & \text{for } z < a \end{cases}$$

$$\overline{z} = 1/a$$

$$\sigma^2 = 1/a^2$$

Uniform Noise

The PDF of uniform noise is given by

$$p(z) = \begin{cases} \frac{1}{b-a} & \text{for } a \le z \le b \\ 0 & \text{otherwise} \end{cases}$$

$$\overline{z} = (a+b)/2$$

$$\sigma^2 = (b-a)^2/12$$

Impulse (Salt-and-Pepper) Noise

The PDF of (bipolar) impulse noise is given by

$$p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$$

if b > a, gray-level b will appear as a light dot, while level a will appear like a dark dot.

If either P_a or P_b is zero, the impulse noise is called unipolar

FIGURE 5.2 Some important probability density functions.

Examples of Noise: Original Image

pattern used to illustrate the characteristics of the noise PDFs shown in Fig. 5.2.

Image Restoration Examples of Noise: Noisy Images

a b c d e f

FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image in Fig. 5.3.

Image Restoration Examples of Noise: Noisy Images

g h 1 j k l

FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt and pepper noise to the image in Fig. 5.3.

Periodic Noise

- Periodic noise in an image arises typically from electrical or electromechanical interference during image acquisition.
- It is a type of spatially dependent noise
- Periodic noise can be reduced significantly via frequency domain filtering

Example of Periodic Noise

FIGURE 5.5

(a) Image corrupted by sinusoidal noise.(b) Spectrum (each pair of conjugate impulses

corresponds to

one sine wave). (Original image courtesy of NASA.)

Estimation of Noise Parameters

a b c

FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Rayleigh, and (c) the uniform noisy images in Fig. 5.4.

Estimation of Noise Parameters

Consider a subimage denoted by S, and let $p_s(z_i)$, i = 0, 1, ..., L-1, denote the probability estimates of the intensities of the pixels in S. The mean and variance of the pixels in S:

$$\overline{z} = \sum_{i=0}^{L-1} z_i p_s(z_i)$$

and

$$\sigma^2 = \sum_{i=0}^{L-1} (z_i - \overline{z})^2 p_s(z_i)$$

Restoration in the Presence of Noise Only

Spatial Filtering

Noise model without degradation

$$g(x,y) = f(x,y) + \eta(x,y)$$

and

$$G(u, v) = F(u, v) + N(u, v)$$

Spatial Filtering: Mean Filters(1)

Let S_{xy} represent the set of coordinates in a rectangle subimage window of size $m \times n$, centered at (x, y).

Arithmetic mean filter

Spatial Filtering: Mean Filters(2)

Geometric mean filter

$$\mathcal{F}(x,y) = \left[\prod_{(s,t)\in S_{xy}} g(s,t)\right]^{\frac{1}{mn}}$$

Generally, a geometric mean filter achieves smoothing comparable to the arithmetic mean filter, but it tends to lose less image detail in the process

Spatial Filtering: Mean Filters(3)

Harmonic mean filter

$$f(x,y) = \frac{mn}{\sum_{(s,t)\in S_{xy}} \frac{1}{g(s,t)}}$$

It works well for salt noise, but fails for pepper noise. It does well also with other types of noise like Gaussian noise.

Spatial Filtering: Mean Filters(4)

Contraharmonic mean filter

$$f(x,y) = \frac{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q+1}}{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q}}$$

Q is the order of the filter.

It is well suited for reducing the effects of salt-and-pepper noise. Q>0 for pepper noise and Q<0 for salt noise.

Spatial Filtering: Example(1)

a b c d

FIGURE 5.7

(a) X-ray image. (b) Image corrupted by additive Gaussian noise. (c) Result of filtering with an arithmetic mean filter of size 3×3 . (d) Result of filtering with a geometric mean filter of the same size.

(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Spatial Filtering: Example(2)

a b c d

FIGURE 5.8

(a) Image corrupted by pepper noise with a probability of 0.1. (b) Image corrupted by salt noise with the same probability. (c) Result of filtering (a) with a 3×3 contraharmonic filter of order 1.5. (d) Result of filtering (b) with Q = -1.5.

Spatial Filtering: Example(3)

a b

FIGURE 5.9

Results of selecting the wrong sign in contraharmonic filtering.
(a) Result of filtering
Fig. 5.8(a) with a contraharmonic filter of size 3×3 and Q = -1.5.
(b) Result of

filtering 5.8(b) with Q = 1.5.

Next Class

- ☐ Image Restoration
 - More Filters

Thank you: Question?