Di Zhang

University of Science and Technology of China | zhd9702@mail.ustc.edu.cn | github.com/lavenklau

_ 1		. •	
	110	ati	^11
1.4		<i>a</i> 11	

University of Science and Technology of China

Sept 2019 – Current

PhD in Applied mathematics, advised by Ligang Liu

Wuhan University of Technology

Sept 2015 - May 2019

B.S. in Material Shaping & Control

Honors and Awards

2023 China National Scholarship

Peer-reviewed Publications

Modeling and fabrication with specified discrete equivalence classes

July 2021

Zhong-Yuan Liu, Zhan Zhang, Di Zhang, Chunyang Ye, Ligang Liu, Xiao-Ming Fu

ACM Transaction on Graphics (SIGGRAPH), 40(4)

Large-Scale Worst-Case Topology Optimization

Oct 2022

Di Zhang, Xiaoya Zhai, Xiao-Ming Fu, Heming Wang, Ligang Liu

Computer Graphics Forum (Pacific Graphics), 41(7)

An optimized, easy-to-use, open-source GPU solver for large-scale inverse homogenization problems

Sept 2023

nomogenization problems

Di Zhang, Xiaoya Zhai, Ligang Liu, Xiao-Ming Fu Structural and Multidisciplinary Optimization, 66(9)

Porous structure optimization via non-uniform thermal diffusion

Aug 2024

Hang Dong, **Di Zhang**, Xiaoya Zhai, Jian-Nan Xiao, Xiao-Ming Fu

Computer Methods in Applied Mechanics and Engineering, 428

Publications under review

The analytically optimal asymptotic bulk modulus of triply periodic minimal surfaces

Sept 2024

Di Zhang, Tian Wu, Qing Fang, Xiaoya Zhai, Xiao-Ming Fu, Ligang Liu

• Theoretical justification of the optimal bulk modulus observed in TPMS shell lattice

The optimal asymptotic conductivity of triply periodic minimal surfaces

Oct 2024

Di Zhang, Ligang Liu

• Theoretical justification of the optimal conductivity of TPMS

Projects

homo3d

github.com/lavenklau/homo3d

• An efficient parallel solver for inverse homogenization problem

• Tools Used: C++, CUDA

Technologies

Languages: C++, C, Python, MATLAB **Tools:** Rhino & Grasshopper, HPC/SLURM