

MATHS

Classe: Bac Maths

Sujet: Prototype N°3

Durée: 4 h

Nom du prof: Profs Takiacademy

Sousse (Khezama - Sahloul- Msaken) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan / Mahdia / Le Kef / Tataouine / Tozeur / kasserine

Exercice 1

0 60 min

3 pts

Le plan complexe muni d'un repère orthonormé $(O; \overrightarrow{u}, \overrightarrow{v})$.

On considère les points A, B et C d'affixes respectives $\alpha = e^{i\frac{5\pi}{6}}$, $\beta = \alpha - i$ et $\gamma = 2\operatorname{Im}(\alpha)i$.

- a Ecrire α sous la forme algébrique en déduire la forme exponentielle de β et γ .
 - b Construire les points A, B et C.
 - c Montrer que OBAC est un losange.
- 2 On considère l'équation (E): $z^3 + (\sqrt{3} i)z^2 + (1 i\sqrt{3})z i = 0$.
 - a Vérifier que γ est une solution de (E).
 - b Résoudre alors l'équation (E).
- Soit n un entier naturel, on pose $z_n = (-i\alpha)^n$ et le point A_n d'affixe z_n .
 - a Calculer les affixes z_0, z_1 et z_2 des points A_0, A_1 et A_2 .
 - **b** Montrer que pour tout entier naturel $\mathfrak n$ les points $A_\mathfrak n$ sont situés sur le cercle unité.
 - C Montrer que pour tout entier naturel $\mathfrak n$ on a $z_{n+1}-z_n=(z_1)^n imes z_2$
 - d En déduire que les triangles OA_nA_{n+1} sont équilatéraux.

Exercice 2

© 60 min

5 pts

Le plan est orienté dans le sense direct.

Dans la figure ci-contre :

- □ ABCD est un losange direct de coté 4 et $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{3}[2\pi]$.
- \Box G est le centre de gravité du triangle ABC.
- \square E est le symétrique de G par rapport à I.

- σ A I B
- Soit f la similitude directe qui envoie D sur A et J sur I.
 - a Montrer que f est de rapport $\frac{1}{\sqrt{3}}$ et d'angle $\frac{\pi}{6}$.
 - b Vérifier que B est le centre de f.

- 2 a Déterminer f((BC)) et f((AC)), en déduire f(C).
 - b Montrer que f(A) = E.
- On pose $g = f^{-1} \circ S_{(AB)}$.
 - a Déterminer g(B) et g(A).
 - f b Montrer que f g est une similitude indirecte dont on précisera le rapport et le centre.
 - \mathbf{c} Construire $\boldsymbol{\Delta}$ l'axe de \mathbf{g} .
- Soit $n \in \mathbb{N}$, on considère la suite des points (M_n) définie sur \mathbb{N} par : $\begin{cases} M_0 = D \\ \\ M_{n+1} = f(M_n), & n \in \mathbb{N} \end{cases} .$
 - a Préciser M_1 et M_2 .
 - b Montrer que pour tout $n \in \mathbb{N}$, $BM_{n+1} = M_n M_{n+1}$.
 - c Construire alors le point M_3 .
 - d Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n M_k M_{k+1}$.

Calculer S_n en fonction de n et en déduire que $\lim_{n \to +\infty} S_n = 6 + 2\sqrt{3}$.

Exercice 3

- **0** 60 min
- 5 pt
- Montrer que $8^{23} \equiv 17 \pmod{55}$ puis vérifier que $6^7 \equiv 41 \pmod{55}$.
- Dans cette question, on considère l'équation (E): 23x-40y=1, dont les solutions sont des couples (x;y) d'entiers relatifs.
 - a Vérifier que (7,4) est une solution l'équation (E) puis résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E).
 - b Montrer que 7 est l'unique entier d vérifiant les conditions 0 < d < 40 et $23 \ d \equiv 1 \pmod{40}$.
- 3 Cryptage dans le système RSA.

Une personne A choisit deux nombres premiers distincts p et \mathfrak{q} , puis calcule les produits

$$N=pq \ {\rm et} \ n=(p-1)(q-1).$$

Elle choisit également un entier naturel c premier avec n.

La personne A publie le couple (N;c), qui est une clé publique permettant à quiconque de lui envoyer un nombre crypté.

Les messages sont numérisés et transformés en une suite d'entiers compris entre 0 et N-1.

Pour crypter un entier a de cette suite, on procède ainsi : on calcule le reste b dans la division euclidienne par N du nombre a^c , et le nombre crypté est l'entier b.

Dans la pratique, cette méthode est sûre si la personne A choisit des nombres premiers p et q très grands, s'écrivant avec plusieurs dizaines de chiffres. On va l'envisager ici avec des nombres plus simples : p=5 et q=11. La personne A choisit également c=23.

- (a) Calculer les nombres N et n, puis justifier que la valeur de c vérifie la condition voulue.
- b Un émetteur souhaite envoyer à la personne A le nombre $\alpha=8$. Déterminer la valeur du nombre crypté b.

Décryptage dans le système RSA.

La personne A calcule dans un premier temps l'unique entier naturel d vérifiant les conditions 0 < d < n et $cd \equiv 1 \pmod{n}$.

Elle garde secret ce nombre d qui lui permet, et à elle seule, de décrypter les nombres qui lui ont été envoyés cryptés avec sa clé publique.

- a Montrer que d existe et unique et que cd = 1 + kn où k est un entier naturel.
- b Montrer que pour tout entier $m, \ m^{1+kn} \equiv m \pmod p$ et $m^{1+kn} \equiv m \pmod q$. En déduire que $m^{1+kn} \equiv m \pmod N$
- C Montrer que $a^c \equiv b \pmod{N}$ si et seulement si $b^d \equiv a \pmod{N}$.
- d Pour décrypter un nombre crypté b, la personne A calcule le reste α dans la division euclidienne par N du nombre b^d , et le nombre en clair c'est-à-dire le nombre avant cryptage est le nombre α . Les nombres choisis par A sont encore p=5, q=11 et c=23. Déterminer la valeur de d puis En appliquant la règle de décryptage, retrouver le nombre en clair lorsque le nombre crypté est b=6.

n étant un entier naturel tel que n > 2.

On considère la fonction f_n définie sur [0,1] par : $f_n: x \longmapsto \begin{cases} x \sqrt[n]{-\ln x} & \text{si} & x \neq 0 \\ 0 & \text{si} & x = 0 \end{cases}$

On désigne par (\mathfrak{C}_n) la courbe de f_n dans un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$.

- 1 a Justifier que f_n est continue sur [0,1].
 - **b** Étudier la dérivabilité de f_n à droite en 0. Interpréter graphiquement.
 - C Montrer que pour tout réel $x \in]0,1[$, on a :

$$\frac{f_{n}(x) - f_{n}(1)}{x - 1} = -\frac{x}{\sqrt[n]{(-\ln x)^{n - 1}}} \times \frac{\ln x}{x - 1}$$

Étudier alors la dérivabilité de f_n à gauche en 1. Interpréter graphiquement.

2 Justifier que f_n est dérivable sur]0, 1[et que pour tout réel $x \in$]0, 1[, on a :

$$f'_{n}(x) = \frac{\sqrt[n]{-\ln x}}{n \ln x} (n \ln x + 1)$$

- b On pose $v_n=\frac{e^{-\frac{1}{n}}}{\sqrt[n]{n}}$. Montrer que v_n est un maximum de f_n sur [0,1]. Déterminer $\lim_{n\to +\infty}v_n$.
- f c Dresser le tableau de variations de f_n .
- d Montrer que \mathscr{C}_n passe par exactement trois points de coordonnées (0,0) et (1,0) et $(\frac{1}{e},\frac{1}{e})$.
- e On note A le point de coordonnées $(\frac{1}{e}, \frac{1}{e})$.

Montrer que $y = \left(1 - \frac{1}{n}\right)x + \frac{1}{ne}$ est une équation de la tangente T_n à \mathscr{C}_n au point A.

- **f** Étudier la position relative de (\mathcal{C}_n) et la droite Δ d'équation y = x.
- On considère la fonction g_n définie sur [0,1] par : $g_n(x) = e^{-\frac{1}{n}} \sqrt[n]{x^{n-1}}$. On désigne par Γ_n la courbe de g_n dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$.
 - a Justifier que Γ_n passe par les points O et A.
 - f b Justifier que $f g_n$ est dérivable sur]0,1] et que pour tout réel f x de]0,1], on a :

$$g'_n(x) = \frac{n-1}{n} \times \frac{e^{-\frac{1}{n}}}{\sqrt[n]{x}}$$

- C Montrer que T_n est la tangente à Γ_n au point A.
- d Montrer que pour tout réel t > 0, on a : $\ln t \le t 1$.

Montrer alors que pour tout réel $x \in [0, 1]$, on a :

$$f_n(x) \le g_n(x)$$

- Dans la figure jointe on donne les courbes Γ_2 et la courbe γ de la fonction \ln
 - a Construite le point B de (\mathscr{C}_2) d'ordonnée ν_2 .
 - **b** Construire le point **A**.
 - c Construire T_2 .
 - d Tracer (%₂)

- $\text{ a Montrer que la fonction } G_n: x \mapsto \frac{n}{2n-1} e^{-\frac{1}{n}} \sqrt[n]{x^{2n-1}} \text{ est la primitive de } g_n \text{ sur } [0,1] \text{ qui s'annule en } 0.$
- **b** Montrer que

$$\frac{1}{2e^2} \leq U_n \leq \frac{n}{2n-1} \times \frac{1}{e^2}$$

c Déterminer $\underset{n \rightarrow +\infty}{lim} U_n.$

