Digital Electronics and Microprocessor Systems (ELEC211)

Dave McIntosh and Valerio Selis

dmc@liverpool.ac.uk

V.Selis@liverpool.ac.uk

Outline

- Introduction
- General purpose processor
- Examples
- Functional units of a processor
 - Input/output unit
 - Bus architecture
 - Central Processing Unit (CPU)
 - Memory and memory organization
- Data Formats and definitions

Computer as a processor

- A computer processes data to provide information
 - E.g. a computer in a supermarket which controls the check-out tills.
 - When the bar code of a bag of sugar is passed over the bar code reader the data it contains is processed by the computer.
 - The computer provides information such as price and description to show on the till display and to print on the receipt.

Computer versus human

- A human can perform the same functions as a computer
 - E.g. the human could read the number next to the bar code, look that number up in a table, read out the price and description to the customer and write them down on the receipt.
- The only difference is computers can do this much more quickly and they don't make mistakes when they get tired.

Instructions

- For a human to perform a task she/he needs instructions
 - E.g. to knit a jumper the instructions are the knitting pattern or to bake a cake the instructions are in the recipe.
- Computers also need instructions so that the data is processed into information correctly.

General purpose processor

A processor is a device that runs a set of instructions (program)

- Reads input data
 - Keyboard, mouse, camera, microphone
- Processes data
 - Registers, Control Unit, ALU
- Stores data
 - Memory, hard-drive
- Send output data to different peripherals
 - Screen, speakers

Example 1: video game

- Input data
 - Joystick movement, button presses
- Output data
 - Pictures from the screen, sounds from the speakers

Example 2: automatic pilot

- Input data
 - Aircraft speed, height, direction and course
- Output data
 - Signal to control the engines, flaps and rudder

A simple computer

- So a simple computer needs to be able to receive data, process it and return information back.
- In addition the computer must be able to store instructions.
- A keyboard can receive data into the computer.
- A CPU (central processing unit) can process it.
- A VDU (visual display unit) can return the information to the user.
- And computer memory can store instructions

A simple computer architecture

 A simple computer layout or 'architecture' could be as shown below. Data and information pass between the blocks as electrical signals.

The Bus Architecture

 The bus architecture can be extended over any number of devices. All devices have only one connection onto the 'bus'.

The Bus Architecture

- A bus is a collection of electrical connections normally 8, 16, 32 or 64 individual wires.
- 32 bits of data and information can pass along a 32 bit bus at the same time
 - E.g. the codes of 4 ASCII characters could go from CPU to VDU.

Controlling the Bus

- It is important that signals do not collide on the bus only one device at a time can send data.
- The CPU controls all movements on the bus using special wires to activate devices and to synchronise the sending and receiving devices.
- These special connections are known as the control bus and they are completely independent of the bus along which data is passed.
- To avoid confusion this is called the data bus.

A Third Bus

 In addition to the data bus and control bus there is a third bus called the address bus. The address bus is used by the CPU to determine which location in memory is sending or receiving data.

What is in memory?

- Memory is used to store the instructions which the CPU uses to process the data.
- Memory can also be used to store data in the form of numbers or characters.
- All computer memories work in binary so that instructions and data must be coded in binary
 - E.g. characters can be coded in ASCII
- Instructions are coded in 'machine code'.

What is computer memory?

- Computer memory is a very big sequential logic circuit made up of thousands or millions of simple logic gates, such as a D type latch, which can remember a 0 or a 1, that is one bit of data. Groups of these gates are collected together in a memory 'location'.
- There are typically 8 bits of data in one location.
- Each memory location has a unique memory address
 - E.g. 512 ROM Street, L'pool, L16 3PC

Memory organization

- Taking the ARM7TDMI microprocessor as an example at each memory location it has 8 bits of data - 8 bits is known as a byte.
- The ARM is a 32 bit processor and addresses are 32 bits long from 0x00000000 to 0xFFFFFFF.
- That means there can be up to 4,294,967,296 (or 2³²) different memory locations all with a unique memory address.
- In practice not all addresses are used for memory.

Memory storage capacity

- The size of memory can be expressed using two different systems and these are often confused.
 - Kilobytes (kB), megabytes (MB) and gigabytes (GB)
 - Refers to multiples of 1000 like other SI units
 - Typically used for HDD and DVDs.
 - Kibibytes (KiB or KB), mebibytes (MiB) and gibibytes (GiB)
 - Refers to multiples of 1024 (= 2¹⁰)
 - Typically used for semiconductor memory storage, capacity and sizes of computer files / software.

Some definitions

- A byte is equal to 8 bits.
- A kibibyte is equal to 1024 bytes (1024 = 2^{10}).
- A mebibyte (MiB) is equal to 1024 kibibytes or 1048576 bytes (1048576 = 2²⁰).
- A gibibyte (GiB) is equal to 1024 mebibytes or 1073741824 bytes (1073741824 = 2³⁰).
- A 32 bit processor could be directly connected to 4 GiB of memory using a 32 bit address bus if every memory address had memory connected.

Some definitions

Decimal term	Abbreviation	Value	Binary term	Abbreviation	Value
kilobyte	kB	10 ³	kibibyte	KiB	2 ¹⁰
megabyte	MB	10 ⁶	mebibyte	MiB	2 ²⁰
gigabyte	GB	10 ⁹	gibibyte	GiB	2 ³⁰
terabyte	ТВ	10 ¹²	tebibyte	TiB	2 ⁴⁰
petabyte	РВ	10 ¹⁵	pebibyte	PiB	2 ⁵⁰
exabyte	EB	10 ¹⁸	exbibyte	EiB	2 ⁶⁰
zettabyte	ZB	10 ²¹	zebibyte	ZiB	2 ⁷⁰
yottabyte	YB	10 ²⁴	yobibyte	YiB	2 ⁸⁰

Poll locked. Responses not accepted.

How many kibibytes are there in a gibibyte?

32768

1048576

1024

 2^{30}

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Some more definitions

- Another term which is commonly used is a 'word'.
- The 'word' depends upon the processor used and for a 32 bit processor like the ARM a word is equal to 32 bits or 4 bytes.
- Similarly a 'half word' is 16 bits or 2 bytes.
- Another way to say this is that the 'word length' is 32.

Poll locked. Responses not accepted.

For the ARM processor, how many words are there in a kibibyte?

2048

1024

512

256

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Poll locked. Responses not accepted.

How many bits are there in a kibibyte?

512

4096

8192

1024

Poll locked. Responses not accepted.

How many bytes are there in 31 kibibytes?

21504

41984

32768

31744

Summary

General purpose processor

A simple computer architecture

Functional units of a processor

Data formats and definitions

Next class?

Tomorrow at 2 p.m. in the Building 502, Lecture Theatre 2 (502-LT2)

