Source estimation - amplitudes

Amplitudes

The hyperbolic fit is,

$$a_h(\Delta sR) = \frac{d}{(\Delta sR + b)^c} \tag{1}$$

where ΔsR denotes distance from source to receivers.

Below is a table with values computed from the Groningen data *after* the 2d transform.

line $\#$	d	b	c	$a_h(0)$
1	8.11e+3	1.39	3.58	2.48e+3
7	3.82e+3	1.40	2.53	1.64e + 3
15	3.06e+4	1.39	4.42	7.08e + 3
18	1.56e+4	1.39	3.78	4.45e + 3
21	1.52e+4	1.39	3.78	4.34e + 3
30	1.54e+4	1.40	3.72	4.42e+3

Figure 1: Source amplitude estimation over source-receiver distance (ΔsR).

Figure 2: Source amplitude estimation over source-receiver distance (ΔsR).