UNIT-3

Network security

- · why is security needed
 - o protect vital information while still allowing access to those that need it
 - o provide auth and access control for resources
 - o guarantee availability of resources

anyone on the network is vulnerable to attacks

- common security attacks and countermeasures
 - o finding ways into a net firewall
 - exploiting S/W bugs IDS
 - O DoS IDS
 - TCP hijacking IPSec
 - o packet sniffing SSH, SSL, HTTPS
 - o social problems education
- firewall
 - o net sec device that prevents unauth access to a net
 - monitors incoming + outgoing traffic using a predefined set of security rules to detect and prevent threats
 - o separates a private net from the open Internet
 - H/W or S/W
 - filters incoming and outgoing traffic; if it goes down, the internal network is completely cut off and may also be suspceptible to congestion

- o types
 - packet filtering

- control net qaccess by monitoring outgoing and incoming packets and allowing them to pass or stop based on source and dest IP addresses, protocols, and ports
- treats each packet in isolation
- stateful inspection
 - able to determine state of network connection travelling across such as TCP streams
 - only allow inbound TCP apcekts that are in response to conn initiated from within the internal network
- stateless inspection
 - doesn't remember context wrt packets it processes
 - treats each packets in isolation, without considering previously processed packets
- application layers
 - works like a proxy
 - inspect contents of traffic, blocking what it views as inapporpriate
- software
 - set up locally or on cloud server
- hardware
 - halts malicious data before it reaches the network endpoint that is in danger
- DMZ(demilitarized zone)
 - phy or logical subnet that separates internal net from the Internet
 - exposes an org's external-facing services to an untrusted and larger net like the Internet
 - often found of corporate nets
 - net barrier b/w trusted and untrusted net
- filtering rules
 - blacklist
 - all packets allowed except for those that fit the rules defined in the list
 - flexible in ensuring taht service to internal net is not disrupted
 - unexpected forms of malicious traffic could go through
 - whitelist
 - packets are dropped unless they are specifically allowed by the firewall
 - safer approach
 - however, must consider all possible forms of legitimate traffic
- tunneling
 - tunneling protocols comm b/w client and server is automatically encrypted to prevent eavesdropping
 - end-to-end encryption + decryption
- IDS(intrusion detection systems)
 - o observes net traffic for malicious transactions and sends immediate alerts to the administrator
 - o analyzes data looking for patterns(intrusion signatures) or abnormal behaviour
 - IDS managers compile data from IDS sensors to determine if an intrusion has occurred; raises an alarm if one has occurred
 - o types
 - based on working
 - rule-based intrusion detection
 - rules and signatures identify the types of action that match known profiles of attacks

- cannot detect unknown attacks
- statistical
 - detremine when a user/host is acting unusually
 - alarm raised with host deviates significantly from teh stored profile for that person/machine
 - usually has a high false positive rate
- based on mode of deployment
 - NIDS(network)
 - set up at planned point within network to observe and examine traffic
 - HIDS(host)
 - run on independent hosts or devices on the net
 - only analyses incoming and outgoing net packets from that device
 - PIDS(protocol)
 - at the front end of a server, controlling and interpreting the protocol b/w a device and the server
 - APIDS(application protocol-based)
 - resides within a group of servers
 - interprets comm on application-specific protocols
 - hybrid
 - a combination of 2 or more of the types discussed above
- threats and vulnerabilities
 - threats
 - DoS(denial of service)
 - flooding target machine/server with surplus requests in an attempt to overload systems and rpevent some or all legitimate requests from being served
 - types
 - SYN attack
 - SMURF
 - how to handle
 - ingress filtering
 - process of monitoring, controlling and restricting traffic entering a net to ensure that only legitimate traffic enters and unauth/malicious traffic is not
 - have refular security patches to fix vulnerabilities on a network
 - DDoS(distributed denial of service)
 - variant of DoS where a botnet is used to flood a server with illegitimate requests
 - harder to address than its basic counterpart
 - malware
 - malicious S/W to damage and gain access to unauth comp sys
 - viruses, worms, Trojans
 - phishing attacks
 - fradulent attempts to obtain sensitive info by posing as a trustworthy entity
 - MiTM
 - attacker secretly intercepts and alters comm b/w parties that think they;re directly comm b/w each other

- packet sniffing/eavesdropping
 - unauth interception of net traffic to capture data transmitted over a net
 - attacker can learn sensitive info
 - how to protect yourself against such attacks
 - SSH over Telnet
 - provides encryption
 - HTTP over SSL
 - SFTP over FTP
 - IPSec
- zero-day exploits
 - target S/W vulnerabilities that are unknown to the S/W vendor or developer
 - attack performed before a fix or patch is available
- TCP attacks
 - attacker intrudes in between a conn and sends false packets on the TCP connection
 - alters source IP, uses same sequence number and port numbers to pose as the legitimate source
 - mitigation
 - IPSec
 - set of protools to provide confidentiality and authenticity for IP packets
 - provides source authentication
 - encrypts data before transporting it
 - auth header provides integrity and data origin auth for IP datagrams
 - ESP(encapsulating security payload) headers provide confidentiality, integrity and data origin auth
 - modes
 - transport mode
 - tunnel mode
- social engineering
- vulnerabilities
 - weak passwords
 - unpatched S/W
 - leaving sys vulnerable to known exploits
 - insufficient net segmentation
 - allows attacker sto move within a network laterally if they compromise one such part
 - lack of encryption
 - not encrpyting sensitive data that is transmitted and stored on a network leaves it vulnerable to interception
 - outdated/unsupported sys
 - running S/W that is no longer supported/maintained exposes sys to known vulnerabilities
- VPN(virtual private network)
 - allows private nets to secruely comm b/w each other via a potentially unsecure public net, like the Internet
 - o ensures data confidentiality, integrity and auth

- constructed on top of existing protocols
- types
 - remote access
 - allow authorized clients to access a priv net(intranet)
 - makes use of internal IPs
 - site-to-site
 - secure bridge b/w 2 or more physically distant nets

- IKE(Internet key exchange)
- secure network design

1. Network Segmentation:

- Purpose: Divide the network into smaller segments to reduce the attack surface and limit the impact of breaches.
- Implementation: Use VLANs (Virtual Local Area Networks) to logically segment traffic based on departments, functions, or security levels.
- Benefits: Isolation of critical assets, easier enforcement of security policies, and containment of threats.

2. Secure Perimeter:

- Purpose: Establish a strong boundary to protect internal resources from external threats.
- Implementation: Deploy firewalls, intrusion detection/prevention systems (IDS/IPS), and secure
 gateway devices.
- Benefits: Control inbound and outbound traffic, block unauthorized access attempts, and detect/ prevent malicious activities.

3. Access Control:

- Purpose: Ensure that only authorized users and devices can access network resources.
- Implementation: Use authentication methods such as strong passwords, multi-factor authentication (MFA), and certificates.
- Benefits: Prevent unauthorized access, enforce least privilege principle, and track user activities for auditing purposes.

4. Encryption:

- Purpose: Protect data confidentiality and integrity, especially over untrusted networks.
- Implementation: Utilize protocols like SSL/TLS for securing data in transit, and encrypt sensitive data at rest using strong algorithms.
- Benefits: Mitigate risks of eavesdropping, data tampering, and unauthorized access to sensitive information.

5. Network Monitoring and Logging:

- Purpose: Detect and respond to security incidents in real-time.
- Implementation: Deploy monitoring tools to analyze network traffic, detect anomalies, and generate alerts.
- Benefits: Early detection of threats, rapid incident response, and forensic analysis for post-incident investigations.

6. Regular Patch Management:

- Purpose: Address vulnerabilities in software and devices promptly.
- Implementation: Establish a process to regularly apply security patches and updates to all network components.
- Benefits: Minimize exposure to known vulnerabilities and reduce the risk of exploitation by attackers.

7. Redundancy and High Availability:

- Purpose: Ensure continuity of operations and resilience against failures or attacks.
- Implementation: Deploy redundant network paths, backup systems, and failover mechanisms.
- Benefits: Minimize downtime, maintain service availability during disruptions, and improve overall network reliability.

8. Secure Remote Access:

- Purpose: Enable secure access for remote users without compromising network security.
- Implementation: Use VPN (Virtual Private Network) technologies with strong encryption and access controls.
- Benefits: Securely extend the corporate network to remote locations or telecommuters, protecting
 data in transit.

9. Endpoint Security:

- Purpose: Protect devices (e.g., PCs, laptops, smartphones) connected to the network.
- Implementation: Install and maintain endpoint security solutions such as antivirus software,
 endpoint detection and response (EDR) tools, and mobile device management (MDM) systems.
- Benefits: Prevent malware infections, enforce security policies on endpoints, and detect/respond to suspicious activities.

10. User Awareness and Training:

- . Purpose: Educate users about security best practices and potential threats.
- Implementation: Conduct regular security awareness training sessions, simulate phishing attacks,
 and provide guidelines for safe computing.
- Benefits: Enhance overall security posture by reducing human errors, improving incident reporting, and fostering a security-conscious culture.