

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin

[31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.]

2024년 8월 13일

이규원

Data Mining & Intelligence Systems Lab
Department of Computer Science and Engineering
Chung-Ang University

Background

• Sequence transduction

o Translation, Speech to Text, Summarize ... etc.

• Sequence transduction models

- RNN(Recurrent Neural Network) base model
- Convolution base model

Motivation

• Limitation of existing models

Hard to parallelize

- Difficult to learn dependencies between distant positions
 - Gradient vanishing problem
 - Increased computational complexity with positional distance

Motivation

Purpose

- Parallelize sequence transduction model
- Learn dependencies between distant positions(faster)

Figure 1: The Transformer - model architecture.

Proposed Model

Transformer

- Without RNN, Convolution
- Self Attention
- Multi-Head Attention
- Positional Embedding

Scaled Dot-Product Attention

Figure 1: The Transformer - model architecture.

Scaled Dot-Product Attention

 $\bigcirc \ \, \text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Multi-Head Attention

 $\begin{tabular}{ll} \hline & Oncat(head_1, ..., head_h)W^O \\ \\ & where \ head_i = Attention(QW_i^Q, KW_i^K, VW_i^V) \\ \hline \end{tabular}$

Scaled Dot-Product Attention

Encoder Layer

- Positional Encoding
- Self Attention
- Feed Forward
- Residual Connection

Figure 1: The Transformer - model architecture.

Output

Probabilities Softmax

Decoder Layer

- Positional Encoding
- Masked Self Attention
- Encoder Decoder Attention
- Feed Forward
- Residual Connection

Figure 1: The Transformer - model architecture.

Output

Transformer Model Architecture

Decoder Layer

- Positional Encoding
- Masked Self Attention
- Encoder Decoder Attention
- Feed Forward
- Residual Connection

Masked Attention

*instead of words there will be attention weight

Masked Self Attention

Figure 1: The Transformer - model architecture.

Output

Linear

Decoder Layer

- Positional Encoding
- Masked Self Attention
- Encoder Decoder Attention
- Feed Forward
- Residual Connection

Experimental Results

• Translation quality and training costs

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

N/- 1-1	BL	EU	Training Co	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}		
Transformer (big)	28.4	41.8	2.3 \cdot	10^{19}		

BLEU: Bilingual Language Evaluation Understudy (The higher the better)

FLOPs: Floating point operations (The lower the better)

Variations on the Transformer architecture

Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base model. All metrics are on the English-to-German translation development set, newstest2013. Listed perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to per-word perplexities.

	N	$d_{ m model}$	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params ×10 ⁶
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedo	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

PPL: Perplexity(the lower the better) / 헷갈리는 정도

 ϵ_{ls} : Label smoothing epsilon / 정답에 1 대신 $1-\epsilon$

● English constituency parsing(영어 구성 구문 분석)

Table 4: The Transformer generalizes well to English constituency parsing (Results are on Section 23 of WSJ)

Parser	Training	WSJ 23 F1	
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative	88.3 —	
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4	55.15.1
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4	RNN base
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7	
Transformer (4 layers)	WSJ only, discriminative	91.3 —	
Zhu et al. (2013) [40]	semi-supervised	91.3	
Huang & Harper (2009) [14]	semi-supervised	91.3	
McClosky et al. (2006) [26]	semi-supervised	92.1	
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1 ——	
Transformer (4 layers)	semi-supervised	92.7 —	
Luong et al. (2015) [23]	multi-task	93.0	
Dyer et al. (2016) [8]	generative	93.3	

Conclusion

Existing Problems

- Hard to Parallelize
- Difficult to Learn Dependencies Between Distant Positions

Proposed Model

- Without Recurrent, Convolution Layers
- Multi-Head Self-Attention
- Positional Encoding

Experiments

- WMT 2014 Performance: BLEU 점수에서 기존 모델을 능가 / 적은 연산
- English Constituency Parsing: 이전 모델 대부분을 능가