

Introducción a la Visión Computacional y Procesamiento Gráfico

I Unidad

Ms. Ing. Liz Sofia Pedro H.

Contenidos.

- 1. Introducción
- 2. Sistemas de Visión Computacional
- 3. Procesamiento Digital de Imágenes.
 - Operaciones estadísticas.
 - 2. Binarización.

3. IMÁGENES DIGITALES

3.1. El espectro electromagnético

- Imágenes basadas en radiación del espectro EM.
- Cada partícula contiene energía.

3.3. Formación de la imagen

- 中国 prioceso de formación de la imagen se da en dos parites:
 - Geometría: Determina donde se localizará cada punto de escena en el plano de la imagen.
 - La física de la luz determina el brillo de un punto en el plano de la imagen

$$f(x,y) = i(x,y)r(x,y)$$

dondende ilura i hacritar gi cersyre feet refleiatancia

intensionación o intensionado haduatino intensionado la luz incidente ; (Reflectangia o reflectangia o reflecta

Ensituaciones reales: $L_{min} \leq f(x,y) \leq L_{max}$

- The imagen es una función bidimensional, f(x,y) constructor x e gostoletos de resulta ciales.

Ejemplo. Primera fotografía digitalizada.

- Muestreo. Mide el valor de una imagen en un numero finito de puntos. (Resolución)
 - Efecto muestreo.

- Cuantización. Imposibilidad de tener um ramgo imfinito de valores.
 - **Efecto Cuantización** f(x,y)

3.3. Imagen digital

- Una imagen análoga es una función bidimensional continua.
- □ tha thagen digital es una función discreta vista como donde
- \square \$\text{\$\text{than compart}} \text{\$\text{\$\text{comp}} \text{\$\text{\$\text{\$\text{comp}}} \text{\$\tex
- Unadate (gen) dignitabendeleadas especiales antización.
- Elnælonadæendiestadrepopoleiamallastratloydælæntinaagiennen ese
- □ 四喃or de f(x, y) en (x, y) es proporcional al brillo de la imagen en ese punto.

- Una imagen digital se puede representar como una colección de puntos dispuestos en un arreglo matricial, cada uno con un nivel de gris determinado por f(x, y).
- Los elementos de dicha matriz son conocidos como pixels.
- Un pixel es conocido como picture element, la menor unidad de mismo color en una imagen.
- Um pixel en escala de grises tiene valores de pixel entre 0 y 255.

 $I = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \end{bmatrix}$

En algunos casos, es necesario considerer a la imagen como una función de variables continuas. En algunos casos, es necesario considerer a la imagen como una

En algunos casos, es necesario considerer a la imagen como una función de variables continuas.

Donde I(x,y) es un valor de intensidad

- Una imagen digital es un arreglo de .
- masidades discretas se
- rlepps é s territaird ædie so désossiellads esse en preparementen 2en intensidades en potencia de 2
 - $L=2^k$ El intervalo de intensidad es El intervalo de intensidad es [0, L-1]Almacenamiento= Almacenamiento= $m \times n \times k$ bits

Imágenes de Color. Las imágenes en color se componen de tres canales de color (rojo, verde y azul) que se combinan para crear la mayoría de los colores que podemos ver.

3.4. Formatos de archivo de imagen

- Muchos formatos de imagen se adhieren al modelo simple.
 - El encabezado contiene al menos el ancho y el alto de la imagen.
 - La mayoría de los encabezados comienzan con una firma o un "número mágico" (secuencia corta de bytes para identificar el formato de archivo)

3.4. Formatos de archivo de imagen (Cont.)

- Algunos formatos de imagen
 - GIF (Graphic Interchange Format) -
 - PNG (Portable Network Graphics)
 - JPEG (Joint Photographic Experts Group)
 - TIFF (Tagged Image File Format)
 - PGM (Portable Gray Map)
 - FITS (Flexible Image Transport System)
 - RAW

3.5. Histograma de una imagen

Sea Lunaamageneenssurepressentaaióónmaatrioitaleentomoasssuu hiistograma será un vector hdeellementos.

$$h = \{ h(i) \mid h(i) = \sum_{i=1}^{n} 1, \quad 0 \le i \le 255 \}$$

- \Box representa la frecuencia de e^{i} \overline{a} \overline{p} \overline{a} \overline{n} \overline{c} ión de el tono de gris en la
- \square in a presenta la frecuencia de aparición de el tono i de gris
- □ Ejehapinaspesignifica que hay 39 pixeles de tono de gris 150.
- □ *Ejemplo.* Si h(150) = 39 significa que hay 39 pixeles de tono de gris 150.

3.5. Histograma de una imagen (Cont.)

Esa una amaggereers surepresentación matricia de eta ones su histograma será um vector hole elementos.

3.5. Histograma de una imagen (Cont.)

3.6. Acumulación de una imagen

- Esa unaamagearears sur eppesealtas ióón maditivida lentoncess su hiistograma será un vector Holele Menten en tos.
- representa la frecuencia p(e) aparici $p(n_j)$ de tonos de gris menores que
- Ejempepresienganterende den 120apixales de 150 menores. que i.
- □ *Ejemplo.* Si H(150) = 120 significa que hay 120 pixeles de tono de gris 150 menores.

4. PROCESAMIENTO DIGITAL DE IMÁGENES

4.1. Introducción

4.1. Introducción (Cont.)

Lo que distinguió la visión por computadora del campo del procesamiento de imágenes digitales fue el deseo de recuperar la estructura tridimensional del mundo a partir de imágenes y usarlo como trampolín hacia la comprensión completa de la escena.

4.2. Definición

- □ El procesamiento digital de imágenes se centra en dos tareas principales
 - Mejora de la información pictórica para la interpretación humana.
 - Procesamiento de datos de una imagen para almacenamiento, transmisión y representación para que sean percibidos por una máquina autónoma.
- Existen discusiones sobre dónde termina el procesamiento de imágenes y campos como el análisis de imágenes y visión computacional.

4.2. Definición (Cont.)

Visión

Procesamiento de imágenes

Bajo nivel

- Fitros
- Mejoramiento
- Restauración
- Detección de bordes
- Compresión

Entrada: Imagen Salida : Imagen Análisis de imágenes

Nivel medio

- Segmentación*
- Clasificación

Entrada: Imagen

Salida: Características

Visión Computacional

Alto nivel

- Reconocimiento
- •IA

Entrada: Imagen Salida: Desición

4.3. Historia

- □ 1920's: una de las primeras aplicaciones de imágenes digitales fue en la industria de los periódicos.
 - El servicio de transmisión de imágenes por cable de Bartlane.
 - Las imágenes fueron transferidas por cable submarino entre Londres y Nueva York.
 - Las imágenes se codificaron para la transferencia por cable y se reconstruyeron en el extremo receptor en una impresora telegráfica
 - 1920: 5 tonos
 - 1929 : 15 tonos de gris

4.3. Historia (Cont.)

- □ 1950-1960 : verdadero inicio de PDI
 - Objetivo Inicial : mejorar calidad visual de imágenes espaciales
 - 1960's: Mejoras en la tecnología informática y el inicio de la carrera espacial.
 - 1964: Mejoro la calidad de las imágenes de la luna tomadas por la sonda Ranger 7, usándose posteriormente en otras misiones espaciales.

4.3. Historia (Cont.)

- □ 1970: Uso en aplicaciones médicas.
 - 1979: Sir Godfrey N. Hounsfield y el Prof. Allan M. Cormack inventan la tomografía, precursor de la tomografía axial computarizada (TAC).
- En1990: el telescopio Hubble puede tomar imágenes de objetos muy distantes, pero las imágenes tenían fallas fueron apoyados por PDI.

4.3. Historia (Cont.)

Tarea

- □ 1980 hasta hoy: las técnicas de procesamiento se utilizan para todo tipo de tareas en todo tipo de áreas:
 - Mejora de imagen / restauración,
 - Efectos artísticos,
 - Visualización médica,
 - Inspección industrial,
 - Interfaces de ordenador humano,
 - entre otros.

4.4. Áreas relacionadas (Cont.)

4.5. Tipos de Operaciones

□ Las operaciones sobre imágenes se pueden clasificar en tres

tipos:

Punto

Local

Global

4.6. Operaciones (Cont.)

□ Binarización

4.6. Operaciones (Cont.)

□ Filtrado

4.6. Operaciones (Cont.)

Detección de bordes

4.6. Operaciones (Cont.)

Mejoramiento de contraste

4.6. Operaciones (Cont.)

Morfología Matemática

4.6. Operaciones (Cont.)

Segmentación

5. BINARIZACIÓN

5.1. Binarización.

- Separar el objeto del fondo de la imagen.
- La entrada es una imagen en escala de gris.
- ☐ La salida es una imagen binaria.
- □ Una imagen binaría es una imagen que tiene solo dos tonos de gris (negro:0 y blanco:1).
- Utiliza un valor umbral, el cual es calculado empleando diversos métodos.
- Thresholding

El histograma de la imagen crea contenedores de intensidades y cuenta número de píxeles en cada nivel, también se puede emplear normalizado.

□ El histograma de la imagen se puede ver afectado por el ruido.

La binarización puede ser vista como:

$$G(x,y) = \begin{cases} 0, & si\ I(x,y) \le T \\ 1, & si\ I(x,y) > T \end{cases}$$

$$Para\ I_{m\times n}\to G_{m\times n}$$

$$T = 150$$

$$T = 200$$

$$T = 250$$

- □ Problema: ¿Cómo encontrar el umbral adecuado?
 - Usando el histograma de la imagen
 - Existen varios métodos.

- Suposición: histograma bimodal
- Uso de frecuencias relativas
- Histograma normalizado.
- Valor umbral debe ubicarse entre 2 máximos

- Procedimiento no paramétrico.
- Considera histograma bimodal.
- Considera dos grupos o clases.
- Selecciona el umbral óptimo maximizando la varianza entre clases mediante una búsqueda exhaustiva y minimiza la suma ponderada de las variaciones dentro de cada.
- □ Tipo:_____

Ventajas:

- Buena respuesta del método frente condiciones inadecuadas: ruido, sin máximos y mínimos diferenciados, mala iluminación, entre otros.
- No precisa de supervisión humana, preprocesamiento u otro tipo de información acerca de la misma.

Desventajas:

A mayor número número de clases en la imagen aumenta, el método necesita mucho más tiempo para seleccionar un umbral multinivel adeacuado.

Funcionamiento:

- Sea la imagen reresolatade de girs con pixola els posibleantes.
- Probabilidad de ocurrencia del nivel de gris icentainnagen:

$$p_i = \frac{f_i}{N}$$

Donde:

 f_i : retrue no income de prepietóri de de income de que i grisé sies imo con $i=1,2,\ldots,L$.

Es similar a _____

Funcionamiento:

Los pixeles se dividen en dos clases () , y co 2, nive les des dis gris y 1 es, peçtiva pente, t do 2 de. las reispreioto comente por de habital distributos de ses la ses son:

Funcionamiento:

El promedio ponderado para cada una de las clases se definen como:

$$\mu_1 = \sum_{i=1}^{t} \frac{i.p_i}{\omega_1(t)}$$

$$\mu_2 = \sum_{i=t+1}^{L} \frac{i.p_i}{\omega_2(t)}$$

La intensidad media total de la imagen es:

$$\omega_1.\mu_1 + \omega_2.\mu_2 = \mu_T \qquad \omega_1 + \omega_2 = 1$$

Funcionamiento:

El promedio ponderado para cada una de las clases se definen como:

$$\mu_1 = \sum_{i=1}^{t} \frac{i.p_i}{\omega_1(t)}$$

$$\mu_2 = \sum_{i=t+1}^{L} \frac{i.p_i}{\omega_2(t)}$$

La intensidad media total de la imagen es:

$$\omega_1.\mu_1 + \omega_2.\mu_2 = \mu_T \qquad \omega_1 + \omega_2 = 1$$

Euncionamiento:

Por medio del análisis discriminante, la varianza entre clases de una imagen umbralizada se define como:

$$\sigma_B^2 = \omega_1 \cdot (\mu_1 - \mu_T)^2 + \omega_2 \cdot (\mu_2 - \mu_T)^2$$

Luego, se debe encontrar el umbral, t, que maximice la varianza (umbral luego, se debe encontrar el umbral, , que maximice la varianza (umbral óptimo):

$$t^* = \max_{t} \{\sigma_B^2(t)\}$$

Ejemplo:

Sea la siguiente imagen con 4 tonalidades de gris.

$$L = 4 \rightarrow [0,85,171,255]$$

 $f_0 = 10$,
 $f_{85} = 20$,
 $f_{171} = 30$,
 $f_{255} = 40$
 $N = 10 \times 10 = 100$

Ejemplo:

 \blacksquare Calcular los valores ψ_1 para t=85

$$\boldsymbol{c}_1 \leftrightarrow [0.85]$$
 $\boldsymbol{c}_2 \leftrightarrow [171.255]$

$$\boldsymbol{C}_2 \leftrightarrow [171,255]$$

$$\omega_1(t=2) = \sum_{i=1}^t p_i = \frac{1}{10} + \frac{1}{5} = \frac{3}{10}$$
 $\omega_2(t=2) = \sum_{i=t+1}^L p_i = \frac{3}{10} + \frac{4}{10} = \frac{7}{10}$

''|||||||||| 5.1.1. Método Otsu (Cont.)

Calcular la varianza entre clases para todo valor de umbral posible ($t = \frac{1}{2}$ @alcular la varianza entre clases para todo valor de umbral posible :

$$c_1: \frac{p_1}{\omega_1(t=2)}, \frac{p_2}{\omega_1(t=2)} = \{\frac{1}{3}, \frac{2}{3}\}$$
 $c_2: \frac{p_3}{\omega_2(t=2)}, \frac{p_4}{\omega_2(t=2)} = \{\frac{3}{7}, \frac{4}{7}\}$

$$\mu_1 = \sum_{i=1}^{t} \frac{ip_i}{\omega_1(t=2)} = \frac{1}{3} + 2 \times \frac{2}{3} = \frac{5}{3} \qquad \mu_2 = \sum_{i=t+1}^{L} \frac{ip_i}{\omega_2(t=2)} = 3 \times \frac{3}{7} + 4 \times \frac{4}{7} = \frac{25}{7}$$

Calcular la varianza entre clases para todo valor de umbral posible ($t = \frac{1}{2}$) clases para todo valor de umbral posible : @alcular la varianza entre clases para todo valor de umbral posible :

$$\mu_T = \omega_1(t=2)\mu_1 + \omega_2(t=2)\mu_2 = 3$$

$$\sigma_B^2 = \omega_1(t=2)(\mu_1 - \mu_T)^2 + \omega_2(t=2)(\mu_2 - \mu_T)^2 \approx 0.7619$$

$$\sigma_B^2(t=1) = 0.4444$$

$$\sigma_B^2(t=3) = 0.66667$$

- Ejemplo:
 - \blacksquare Imagior umbral para Otsu es: t = 85

GRACIAS...