Biology, Brain, and Behavior (Part 2)

Daniel C. Hyde Psychology 216

1

Child and Adolescent Brain Development

- Frontal lobe connection and development
- Myelination
- Excitability

Prefrontal cortical development

- Prefrontal cortex responsible for reasoning, problem solving, decision making, planning, inhibiting behavior, control of emotions
- These capacities are not fully developed in childhood or adolescence
 - Fully developed in early 20s
- Lack of development gives rise to many of the behaviors typically associated with teenagers
 - Risky behaviors and decisions
 - Lack of good judgment, focus, control of emotions, planning, foresight, etc.

3

Myelination

- Myelin-
 - fatty material that develops around axons
- Myelination is the formation of myelin around axons
 - Begins in brain before birth and continues in adulthood
 - Substantial myelination development in adolescence
- Myelination allows the brain to process and communicate information more quickly and efficiently

Excitability

- Some believe the brain is more "excitable"
- More easy stimulated for growth
- · Learning may be facilitated
 - Good and bad
 - · For example,
 - may be able to adapt and learn new skills easier
 - may be more susceptible to addictions

5

Core Knowledge Hypothesis

- Humans have a set of rich innate cognitive abilities
 - Language
 - Quantity
 - Spatial representation
 - Objects
 - Social thought/psychological reasoning
- Each is specialized and distinct from one another
- These specialized abilities, combined with our general ability to learn and remember, form the basis of further learning and cognitive development
- Spelke, Carey, Baillargeon

Conceptual Test Case: Face Processing Overview

- What portion of mature face processing abilities are innate?
- Which are present at birth?
- How does experience change face processing?
- What contribution do controlled rearing studies make?
- Is there a sensitive period for face processing?

7

Mature face processing system

- A specialized system for processing and recognizing faces
 - Differentiating faces from non-faces (objects, scenes, etc.)
 - Distinguishing between and remembering individual faces
 - Distinguishing complex social cues for interaction (emotion, threat, like me or not...)

Evidence for a specialized system: inversion

9

Evidence for a specialized system: configuration

Evidence for a specialized system: species-specificity

11

Evidence for a specialized system: face selective cortical regions

Evidence for a specialized system: prosopagnosia

- Significantly diminished ability to recognize and remember faces
- Often results from brain damage to face selective regions of the temporal lobe
 - Can not recognize own parent or siblings face
 - Have to rely on other social cues or "tricks" to navigate daily encounters.

13

The Pamela Anderson Neuron: Single cells respond most to certain faces:

Origins

- Where does sensitivity, selectivity, and specialization come from?
 - Develops through experience with faces?
 - Develops later in life through biological maturation?
 - Present from birth?

15

Neonatal facial preferences (Johnson et al., 1991) Face Confid Linear Scrambled 16

17

How specific is processing at birth?

• Cassia et al., 2004: preferential looking study

т8

Neonatal Face Preferences

- From birth attracted to and track things that resemble a face
- Top heaviness is important to determining what is a face

19

Infant Face Perception Development DVD Clip

Face processing changes over the first year of life

- Perceptual narrowing for familiar faces
- Abilities tuned to own race faces over the first year
 - Kelly et al., 2007
 - 3 months Caucasian infants can distinguish between multiple races
 - By 9 months, only Caucasian

21

Face processing changes over the first year of life

- Perceptual narrowing for familiar faces
- Abilities tuned to own species over the first year
- · Scott, Pascalis, and others
 - 3 month old infants can distinguish between faces of own species and between faces of other species (monkeys)
 - By 9 months, only human faces

Face discrimination example Same or different?

Same or different?	27
Ready?	

Same or different?

Ready?

Same or different?

37

Extended experience changes pruning for faces (Pascalis et al)

- Researchers asked if further exposure to monkey faces would prolong ability to discriminate between other-species faces
 - Pretest, training, and post-test
 - Training group/control group-6 months
 - Training group looked through a book of monkey faces everyday for
 - At 9 months, the training group retained the ability to discriminate between monkey faces where the control group did not
- Found that extended experience prolongs narrowing

What happens if you aren't exposed to faces?

- · Controlled-rearing study of monkeys (Sugita reading)
 - Deprived of face input for 6 months, 1 year, or 2 years
 - Then exposed to either monkey or human faces
 - Compared to a control group with typical monkey face experience
- · Tested on face processing abilities before, 1 month after and 1 year after deprivation

Pretest During Deprivation

- Preferential Looking
 - All preferred faces over non-faces
 - Deprivation groups had no species preference
 - Control group preferred monkey faces over human faces
- Visual paired comparison (familiarize and then test with 1 novel and 1 familiar)
 - Face-deprived monkeys could distinguish a novel and familiar face of either species
 - Control monkeys could only distinguish between novel and familiar monkey faces

41

After deprivation and subsequent 1 month first exposure

Visual preference

- Animals preferred to look at face-type to which they were first exposed (human or monkey)
- Did not prefer non-exposed type of face over objects after exposure
- Preferences did not change after a year of recovery
 - Evidence for strong role of earliest experiences
 - Imprinting?

After Deprivation (1 month and 1 year)

Visual Paired Comparison

- Animals distinguished only between species of first exposure
- No difference in groups by length of deprivation
- No change after a year of recovery

43

What conclusions can we draw from the Sugita controlled rearing study?

- Bias for faces over non-faces is innate
- Ability to tell the difference between different faces is innate and broadly tuned to (all) plausible faces
- Specificity for own-species is based on early experience
- Plasticity in the system allows for prolonged deprivation (at least up to 2 years in monkeys)
- First exposure/early experience, when it occurs, has long lasting effects on neural tuning

Implications of face processing for clinical child development and education

- · Cases of impaired face processing
 - Autism
 - Prosopagnosia/Developmental prosopagnosia
 - Congenital cataracts
 - Neglected Orphans (e.g. Romania)

45

Autism

- Autism-disorder of neural development
 - characterized by
 - Impaired social interaction
 - Impaired communication
 - · Restricted or repetitive behaviors
 - Autistic children often have difficulty making eye contact
 - Many autistic children appear to be uninterested in typical social interaction or social play
 - Prefer to look at geometric shapes or mechanical items over faces/social stimuli
- Currently 1 in 88 children receive a diagnosis on the Autism Spectrum (CDC, 2012)

Behavioral clip of children with Autism (DVD)

47

Is face processing impaired in Autism?

- Autistic individuals appear to go about it in the same way when encouraged to do so
- Spontaneous face processing may be different
 - Tend to spontaneously look at different regions of the face/head
 - Tend to spontaneously engage different brain regions
 - Do not (or do not the same extent) spontaneously engage fusiform face regions (FFA) of the temporal lobe typically associated with face processing
 - Autistic individuals are quantitatively worse at it than typical peers
- May spontaneously receive a different amount and/or type of input
- Many open questions

Limitations to our understanding

- Non-representative samples
 - Almost all studies use high-functioning Autistic individuals
 - Must include those that are willing to cooperate, can understand all the directions
 - Usually includes only the least severely impaired and most intelligent
- · Very limited knowledge of
 - the origin of Autism
 - the role of face deprivation on further development
 - early brain and behavioral development
 - the best course of treatment

49

Using lack of interest in face processing to diagnose?

- Eye-tracking study by Pierce et al., 2010
- Method
 - 14 month olds allowed to watch a movie with geometric patterns or children dancing
 - Measured proportion of looking to each video
- Results
 - 100% of children watching the shape video more than 70% were classified as having an Autism spectrum disorder
 - 50 out of 51 typically developing children preferred the video of children dancing

Use heightened interest in mechanical/geometric objects to encourage face processing

- Simon Baron-Cohen and colleagues
- The Transporters DVD
- Take advantage of interest in moving/ working parts and objects
- Encourage interest in faces by placing faces on trains

51

Prosopagnosia/face-blindness

- Neuropsychological disorder characterized by impaired ability to recognize faces
- Can be caused by brain damage
 - Damage to fusiform brain regions
- Can be genetic (some appear to be born with it)
 - Possibly about 2%-2.5% (maybe ~5 people in this class?)
- · No systematic form of therapy
 - Often alleviated by alternative strategies

Cataracts

- Congenital cataracts impair vision from birth
- 1-6 cases per 10,000 births
- Most common treatable cause of visual impairment
 - Earlier removal leads to better developmental outcomes
 - Face processing is often impaired dependent on the duration of deprivation

53

Cataracts

- Project Prakash
- Partnership of scientists and doctors from U.S. (Pawan Sinha-MIT) and India
- Goal is to help alleviate curable blindness in India
 - Help disadvantaged receive surgery
- Learn about the visual processing after deprivation
 - Study consequences of surgery for the development of vision

Romanian Orphans

- Romania has vast number of unwanted children institutionalized in orphanages
 - About 20,000 children in orphanages as of 2010
- Resulted in a severe lack of physical care/attention for orphans
 - Ratio of 1 caregiver to up to 20 infants
 - Spend a majority of time laying in crib without human contact
 - Deprived of typical levels of facial content and expression
 - Impaired ability to recognize emotional facial expression and those expressions to appropriate social contexts.

55

Natural study of social deprivation (Nelson et al., 2007)

- Randomly assigned children to foster care or remain in institutions/compared to children growing up in typical family environment
- · Measured cognitive, physical, and behavioral development
- Three main findings
 - Children reared in institutions showed diminished intellectual performance (often mental retardation) compared to controls
 - Foster care children made significant gains in development
 - Sensitive period of intervention (applies to face processing)
 - Generally those that were adopted before 2 years had much better outcomes than those adopted after 2 years
 - · Younger placed in foster care, better the outcome

Conclusions

- Humans start out life with biases that turn attention towards faces as well as the ability to distinguish between all faces
- Over the first year of life, our brain tunes itself to the type of face we are familiar with
- Controlled rearing studies show us that nature controls the initial biases and experience further specializes the brain
- Information learned from studies of face processing is applicable to clinical and education settings