

Week 1 (today)

GPT-3 and why we needed GPT-4

- GPT-3, GPT-3.5, GPT-4, GPT-4-turbo
- Limitations of GPT-4
- RLHF
- Q&A
- Break

Transfer learning and fine-tuning

- BER^T
- Transfer learning and fine-tuning
- Q&A
- Break

Transformer architecture overview

- Encoders and decoders
- Attention mechanism
- Q&A

Week 2 (next week)

LLM embeddings lab

- What are they?
- Exercises and demos
- Q&A
- Break

Benchmarks

- LLMs HELM
- Q&A
- Break

LLMs 1-2 years after GPT-3

- Scaling laws Chinchilla
- BIG-Bench
- PaLM
- OPT and BLOOM and Llama2
- Mistral
- Q&A

This online training is always being updated. Previous versions:

- Falcon -> Llama 2 -> Mistral 7B
- GPT-4 -> GPT-4-turbo (today)

■ Live Course

Hands-on GPT-4-Turbo
With Jonathan Fernandes

① 3h 0m 🛗 April 25 • 5pm-8pm GMT+1

■ Live Course

Hands-on Retrieval Augmented Generation (RAG)
With Jonathan Fernandes

② 3h 0m 🛗 April 29 • 5pm-8pm GMT+1

About me

What does GPT stand for?

Generative Pre-trained Transformer General Pre-trained Transformer

What are the parameters for a Large Language Model?

h The size of the model

The variables that get adjusted during the training

What are tokens for a Large Language Model?

What is the size of the GPT-4 model?

How is GPT-4 different from GPT-3 and GPT-3.5?

O.

How can you ensure that GPT-4 won't hallucinate?

Give it more training dataNo way to do this at the moment.

What Are Large Language Models and GPT?

Parameters or Learnable parameters

Initial model (Before training Language model)

Random weights (Learnable parameters)

Initial model (Before training Language model)

After training

What are these (learnable) parameters?

hidden layer 1 hidden layer 2

Weights: Inputs x Outputs

Bias

Number of parameters: Number of weights + Biases (3 x 4) + 4

What are tokens?

What are tokens?

GPT-3 Codex

Tokenization is the process of splitting words into smaller chunks or tokens. These tokens are then converted into token ids. These are numbers that are inputted into a language model.

9 (9

Clear Show example

Tokens Characters 37 185

Tokenization is the process of splitting words into smaller chunks or tokens. These tokens are then converted into token ids. These are numbers that are inputted into a language model.

TEXT TOKENIDS

Generative

Pre-trained

Transformer

Generative – predicting a future token, given past tokens

Pre-trained

Transformer

Generative – predicting a future token, given past tokens

Pre-trained – trained on a large corpus of data

Transformer

Generative – predicting a future token, given past tokens

Pre-trained – trained on a large corpus of data

Transformer – portion of transformer architecture

Objectives of GPT-3

- Predict the next token, given preceding tokens
- Causal language models
- Autoregressive language models

Roses_

Roses are _

Roses are red _

Roses are red violets _

Roses are red violets are _

Roses are red violets are blue _

GPT-4

College level exams

- GPT-4 matching human level performance at some exams
- Model performance progressing quickly

College level exams

GPT-4 technical report: https://arxiv.org/pdf/2303.08774.pdf

MMLU – Massive Multitask Language Understanding

- Multiple-choice questions in 57 subjects
- Includes STEM, humanities and the social sciences.

GPT-4 technical report: https://arxiv.org/pdf/2303.08774.pdf

MMLU: Physics

O.

When you drop a ball from rest it accelerates downward at 9.8 m/s². If you instead throw it downward assuming no air resistance its acceleration immediately after leaving your hand is (A) 9.8 m/s²

- (B) more than 9.8 m/s²
- (C) less than 9.8 m/s²
- (D) Cannot say unless the speed of throw is given.

MMLU: Physics

O.

When you drop a ball from rest it accelerates downward at 9.8 m/s². If you instead throw it downward assuming no air resistance its acceleration immediately after leaving your hand is

- (A) 9.8 m/s^2
- (B) more than 9.8 m/s²
- (C) less than 9.8 m/s²
- (D) Cannot say unless the speed of throw is given.

MMLU: Microeconomics

One of the reasons that the government discourages and regulates monopolies is that

- (A) producer surplus is lost and consumer surplus is gained.
- (B) monopoly prices ensure productive efficiency but cost society allocative efficiency.
- (C) monopoly firms do not engage in significant research and development.
- (D) consumer surplus is lost with higher prices and lower levels of output.

MMLU: Microeconomics

One of the reasons that the government discourages and regulates monopolies is that

- (A) producer surplus is lost and consumer surplus is gained.
- (B) monopoly prices ensure productive efficiency but cost society allocative efficiency.
- (C) monopoly firms do not engage in significant research and development.
- (D) consumer surplus is lost with higher prices and lower levels of output.

MMLU: Medicine

A 33-year-old man undergoes a radical thyroidectomy for thyroid cancer. During the operation, moderate hemorrhaging requires ligation of several vessels in the left side of the neck. Postoperatively, serum studies show a calcium concentration of 7.5 mg/dL, albumin concentration of 4 g/dL, and parathyroid hormone concentration of 200 pg/mL. Damage to which of the following vessels caused the findings in this patient?

- (A) Branch of the costocervical trunk
- (B) Branch of the external carotid artery
- (C) Branch of the thyrocervical trunk
- (D) Tributary of the internal jugular vein

MMLU: Medicine

A 33-year-old man undergoes a radical thyroidectomy for thyroid cancer. During the operation, moderate hemorrhaging requires ligation of several vessels in the left side of the neck. Postoperatively, serum studies show a calcium concentration of 7.5 mg/dL, albumin concentration of 4 g/dL, and parathyroid hormone concentration of 200 pg/mL. Damage to which of the following vessels caused the findings in this patient?

(A) Branch of the costocervical trunk

(B) Branch of the external carotid artery

(C) Branch of the thyrocervical trunk

(D) Tributary of the internal jugular vein

Given both the competitive landscape and the safety implications of large-scale models like GPT-4, this report contains no further details about the architecture (including model size), hardware, training compute, dataset construction, training method, or similar

Source: GPT-4 Technical Report

Why GPT-4?

Objectives of GPT-3

Predict the next word

Challenges with GPT-3

- Doesn't follow user instructions
- Can generate toxic language
- Can make up facts

Objectives of GPT-3.5 / GPT-4

- Helpful and able to follow instructions
- Not toxic for example, hateful speech, foul language
- Less likely to fabricate information or hallucinate

OpenAl playground

Create a shopping list

Comparing GPT-4 to GPT-3 and GPT-3.5

GPT-3?

davinci

GPT-3.5

- text-davinci-002
- text-davinci-003
- code-davinci-002
- gpt-3.5-turbo

What Is GPT-3.5?

- text-davinci-002
- text-davinci-003
- code-davinci-002
- gpt-3.5-turbo

What Is GPT-3.5?

- text-davinci-002
- text-davinci-003
- code-davinci-002
- gpt-3.5-turbo

What Is GPT-3.5?

- text-davinci-002
- text-davinci-003
- code-davinci-002
- gpt-3.5-turbo

GPT-4

- gpt-4
- Gpt-4-32k
- gpt-4-turbo

What Is GPT-4?

Differences between the GPT-4 models

Prompt

Differences between the GPT-4 models

Prompt	Completion	

Differences between the GPT-4 models

Prompt	Completion
	Context window

Differences between the GPT-4 models

gpt-4: 8,000 tokens gpt-4-32k: 32,000 tokens

Differences between the GPT-4 models

gpt-4: 8,000 tokens gpt-4-32k: 32,000 tokens

gpt-3: 2,000 tokens gpt-3.5: 4,000 tokens

claude-3?

Thumbs up - Just right

Thumbs down - Too technical / Not technical enough

Pricing

Model	PROMPT Price per 1,000 Tokens (About 750 words)	COMPLETION Price per 1,000 Tokens (About 750 words)
text-davinci-002 text-davinci-003 code-davinci-002	\$0.02	\$0.02
gpt-3.5-turbo	\$0.002	\$0.002
gpt-4 (8K context)	\$0.03	\$0.06
gpt-4 (32K context)	\$0.06	\$0.12

Model Architecture Differences

Model	COMPLETIONS: Price per 1,000 Tokens (About 750 words)	Model Size (Number of Parameters)
text-davinci-002 text-davinci-003 code-davinci-002	\$0.02	
gpt-3.5-turbo	\$0.002	
gpt-4	\$0.06/\$0.12	Unknown

How Was GPT-4 Trained?

How ML models are trained

Reinforcement Learning

Reinforcement Learning from Human Feedback

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Training language models to follow instructions with human feedback - Long et al (Open AI)

Example: Summarize a News Article

Training language models to follow instructions with human feedback - Long et al (Open AI)

Training language models to follow instructions with human feedback - Long et al (Open AI)

and 1.5 years later ...

Supervised Finetuning Stage **Pretraining** Raw internet **Demonstrations** text trillions of words Ideal Assistant responses, **Dataset** low-quality, large quantity ~10-100K (prompt, response) written by contractors low quantity, high quality

State of GPT - Karpathy

State of GPT - Karpathy

Limitations of GPT-4

Model Weaknesses

- Only recently been able to fine-tune (Not possible on release)
- Doesn't update its knowledge in real-time.
- Makes up facts.

Markets

Tech

Media

Calculators

Videos

Lawyer apologizes for fake court citations from ChatGPT

By <u>Ramishah Maruf</u>, CNN Updated 3:28 PM EDT, Sun May 28, 2023

Why fine-tuning?

The Journal of Infectious Diseases

EDITORIAL COMMENTARY

Pneumococcal Carriage and Seroepidemiology Studies to Measure Current and Future Pneumococcal Conjugate Vaccine Effectiveness

Keith P. Klugman and Gail L. Rodgers

Pneumonia, Surveillance and Epidemic Control Programs, Bill & Melinda Gates Foundation, Seattle, Washington, USA

Two current questions in pneumococcal conjugate vaccine (PCV) development for children are whether immunization schedules are optimal to maintain direct and indirect protection of licensed vaccines, and what are the potential roles of next-generation higher-valent vaccines to further reduce pediatric pneumococcal disease.

invasive pneumococcal disease (IPD) due to the vaccine serotypes, but this measure has been frustrated by the coronavirus disease 2019 (COVID-19) pandemic, which has reduced the incidence of IPD in the United Kingdom and many other countries, largely as a result of masking and restrictions on indoor

children is that potentially key invasive serotypes, such as serotypes 8 and 12F, which have dominated adult disease after PCV13 introduction in children in the United Kingdom, were only rarely detected in carriage in this study. So while carriage among healthy children is useful to describe the potential distribution of

GPT-4 - hallucination

These are the topics that I am covering in an O'reilly online training on GPT-4. Write a catchy introduction.

What is GPT-4

Why GPT-4?

Comparing GPT-4 to GPT-3 and GPT-3.5

How was GPT-4 trained?

What are the limitations of GPT-4?

HELM

Colab notebook: GPT exercises

O.

GPT-4 Turbo

GPT-4 Turbo with 128K context

- Knowledge of world events up to April 2023.
- 128k context window (300 pages of text)
- gpt-4-1106-preview
- Multiple function calls
- Respond with JSON mode
- Assistants API
 - Function calling (multiple function calling)
 - Code Interpreter
 - Retrieval
- GPT-4 Turbo with vision

Next week

■ Live Course

Hands-on GPT-4-Turbo
With Jonathan Fernandes

② 3h 0m April 25 • 5pm-8pm GMT+1

Pricing

Model	PROMPT Price per 1,000 Tokens (About 750 words)	COMPLETION Price per 1,000 Tokens (About 750 words)
GPT-3.5 Turbo 4K	\$0.0015	\$0.002
GPT-3.5 Turbo 16K	\$0.001	\$0.002
GPT-3.5 Turbo 4K fine-tuning	\$0.012 (Training \$0.008)	\$0.003
GPT-3.5 Turbo 16K fine-tuning	\$0.003 (Training \$0.008)	\$0.006

Pricing

Model	PROMPT Price per 1,000 Tokens (About 750 words)	COMPLETION Price per 1,000 Tokens (About 750 words)
GPT-4 Turbo 8K	\$0.03	\$0.06
GPT-4 Turbo 16K	\$0.06	\$0.12
GPT-4 Turbo 128K	\$0.01	\$0.03

Model Architecture Differences

Model	Model Size (Number of Parameters)
text-davinci-002 text-davinci-003 code-davinci-002	
gpt-3.5-turbo	
gpt-4	Unknown
gpt-4-turbo	Unknown

Transformers in production

curling objective

BERT

Bidirectional Encoder Representations from Transformers

Where are Transformers used in production?

	the main obj		3	7		5.3	Ť .
Q All	Images	■ News	▶ Videos	Shopping	: More		Tools
About 1	8,900,000 res	ults (0.65 sec	conds)				
The go	al for each te	am is to ge	et stones as	close to the c	enter of the	house as po	ssible
		and the contract of		close to the o			
and ea	rn points ba , and points a	ased on the	e positioning arded if the s	g of their ston stones are touc	es. Only one	team can sco	ore in
and ea	rn points ba	ased on the	e positioning arded if the s	g of their ston stones are touc	es. Only one	team can sco	ore in
and ea an end the mo	rn points ba , and points a	ased on the are only awar r 10 ends is	e positioning arded if the s the winner.	g of their ston stones are touc 14 Feb 2022	es. Only one	team can sco	ore in
and ea an end the mo	rn points ba , and points a st points afte	ased on the are only awar 10 ends is	e positioning arded if the s s the winner.	g of their ston stones are touc 14 Feb 2022	es . Only one hing the hous	team can sco	ore in

Transformers in production

Transformers in production

What was BERT trained on?

BERT - Wikipedia and BooksCorpus (11,000 unpublished books)

What tasks was BERT trained?

- Masked Language Model (MLM)
- Next Sentence Prediction (NSP)

The Tokyo Olympic games were <masked> from 2020 to 2021.

Masked Language Modelling (MLM)

The Tokyo Olympic games were <masked> from 2020 to 2021.

Masked Language Modelling (MLM)

O.

The Tokyo Olympic games were postponed from 2020 to 2021.

Next sentence prediction (NSP)

The Tokyo Olympic games were postponed from 2020 to 2021. This is the first instance in the history of the Olympics as previous games had been cancelled but not rescheduled.

Why MLM and NSP?

BERT gets a good understanding of English language.

O.

Transfer Learning

Transfer Learning

Transfer Learning is made up of 2 components.

- Pre-training
- Fine-tuning

Transfer Learning

Model architecture with random weights

Transfer Learning

Model architecture with random weights

No knowledge of language

Transfer Learning

Model architecture with random weights

Training

Pre-trained model

No knowledge of language

Transfer Learning

Transfer Learning

Fine-tuning

<i>J</i> .	

Text	Label
I love this place. It has just the right	positive
This was a disappointing experience	negative
I did not enjoy my time here	negative

Transfer Learning

Model architecture with random weights

Pre-training

Pre-trained model

Fine-tuning

Fine-tuned model NLP task-specific model (text-classification, NER, QA ...)

No knowledge of language Very good understanding of language

Benefits of transfer learning

- Faster development
- Less data to fine-tune
- Excellent results

Pre-training: BERT

	BERT
Year	2018
Number of parameters	109M
Training time	12 days
Infrastructure	8 x V100 GPUs (*)
Size of dataset used for training	16GB
Training tokens (dataset)	250B
Dataset source	Wikipedia
	Book corpus

What are tokens?

1500 words is approximately equivalent to 2400 tokens

What are tokens?

O.

1500 words is approximately equivalent to 2400 tokens

A word is approximately 1.4 tokens

What are tokens?

1500 words is approximately equivalent to 2400 tokens

A word is approximately 1.4 tokens

A novel is 100,000 words, or 140,000 tokens

What are tokens?

BERT was trained on 250B tokens or:

1.8 million novels

Transformer: Architecture Overview

Transformer architecture

Transformer overview

Transformer overview

Encoder-decoder model

O.

- Generative tasks
- BART
- T5

Encoder-only model

Understanding of input

- Sentence classification
- Named Entity Recognition

Family of BERT models:

- BERT, RoBERTa, DistilBERT ...

Decoder-only model

- Generative tasks

Examples:

- GPT
- GPT-2
- GPT-3

self-attention

O.

Attention has 3 inputs:

- Q (query)
- K (key)
- V (value)

self-attention

O.

 $Attention(\mathbf{Q}, \mathbf{K}, \mathbf{V})$

$$\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) =$$

$$\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{n}}$$

self-attention

$$\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{n}})$$

$$\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{n}})\mathbf{V}$$

O.

Multi-headed attention

Multi-headed attention

Multi-Head Attention

Week 1 (today)

O.

GPT-3 and why we needed GPT-4

- GPT-3, GPT-3.5 and GPT-4
- Limitations of GPT-4
- RLHF
- Q&A
- Break

Transfer learning and fine-tuning

- BER1
- Transfer learning and fine-tuning
- Q&A
- Break

Transformer architecture overview

- Encoders and decoders
- Attention mechanism
- Q&A
- Break

O'REILLY®