The Deep Learning Codelab

Jeff Abrahamson Hugo Mougard

19 octobre 2017

DevFest Nantes 2017

Machine Learning

Definition

- Supervised
- Unsupervised
- Reinforcement

What is ML?

Machine learning is not magic

What is ML?

Machine learning is mathematics

What is ML?

Mostly, it's these maths:

- Probability
- Statistics
- Linear algebra
- Optimisation theory
- Differential calculus

What is Statistics

- 1. Identify a question or problem.
- 2. Collect relevant data on the topic.
- 3. Analyze the data.
- 4. Form a conclusion.

What is Statistics

- 1. Identify a question or problem.
- 2. Collect relevant data on the topic.
- 3. Analyze the data.
- 4. Form a conclusion.

Sadly, sometimes people forget 1.

What is Statistics

- 1. Identify a question or problem.
- 2. Collect relevant data on the topic.
- 3. Analyze the data.
- 4. Form a conclusion.

Statistics is about making 2-4 efficient, rigorous, and meaningful.

OpenIntro Statistics, 2nd edition, D. Diez, C. Barr, M. Çetinkaya-Rundel, 2013.

(Exercise : Is this the same question as the last slide?)

- 1. Define the question of interest
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Fit statistical models
- 6. Communicate the results
- 7. Make your analysis reproducible

(Exercise : Is this the same question as the last slide?)

- 1. Define the question of interest
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Fit statistical models
- 6. Communicate the results
- 7. Make your analysis reproducible

What the public thinks.

(Exercise : Is this the same question as the last slide?)

- 1. Define the question of interest
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Fit statistical models
- 6. Communicate the results
- 7. Make your analysis reproducible

Where we spend most of our time.

(Exercise : Is this the same question as the last slide?)

- 1. Define the question of interest
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Fit statistical models
- 6. Communicate the results
- 7. Make your analysis reproducible

The easiest part to forget.

```
http://simplystatistics.\ org/2015/03/17/ data-science-done-well-looks-easy-and-that-is-a-big-problem-for-data-scientists/
```


Representation

Typically a vector space

Features are dimensions

Features

Feature extraction

Feature engineering, synthetic features

Feature Engineering

- 1. Brainstorm
- 2. Pick some
- 3. Make them
- 4. Evaluate
- 5. Repeat

Artificial Neural Networks

Neural Networks

Inspired by brain:

- 1 neuron = 1 simple computation
- 10M neurons = 10M simple computations
- 10M combined neurons = 10M simple computations combined = 1 interesting computation

Neural Networks — **Neural Network Example**

Neural Networks — Biological Neuron

Neural Networks — Artificial Neuron

Neural Networks — **Activation Function**

Neural Networks — So What's a Neuron Again?

- Neuron = Weighted averaged of its input + activation function
- Goal of learning = learn good weights.

Neural Networks — Neural Network Example Comeback

Neural Networks — How to know if they're good

- Find some good examples
- Compare network output and good examples (Loss function).

Neural Networks — How to Learn Weights?

- 1. A Neural Network loss is a function
- 2. You actually know how to minimize functions (derivatives)
- 3. . . .
- 4. Profit

Convolutionnal Neural Networks

Quel besoin?

 ${\sf R\'eseau\ standard} + {\sf images} = {\sf Too\ Much\ Information}.$

Keras

Start with a plan

- 1. Load Data.
- 2. Define Model.
- 3. Compile Model.
- 4. Fit Model.
- 5. Evaluate Model.
- 6. Tie It All Together.

MNIST

Hey I'm a frame

Hello, world!

Infra

Hey I'm a frame

Hello, world!

Model

Hey I'm a frame

Hello, world!

Resources

Resources

Hello, world!

Q & A