Chapitre 3 : Propriétés de l'intégrale sur un segment d'une fonction continue par morceaux

Notations et remarques :

- Toutes les fonctions considérées sont à valeurs dans R.
- Soit S un segment de \mathbb{R} .

Soit $f: I \to \mathbb{R}$, continue par morceaux (noté parfois c.p.m.)

Alors f est continue par morceaux sur tout segment contenu dans S (évident).

Pour a, b de I, on note :

$$\int_{a}^{b} f = \begin{cases} \int_{[a,b]} f \sin a < b \\ 0 \sin a = b \\ -\int_{[a,b]} f \sin a > b \end{cases}$$

I Premières propriétés

Ici, a et b désignent deux réels quelconques

A) Positivité

Soit f continue par morceaux sur [a,b], avec $a \le b$.

Si
$$f \ge 0$$
 sur $[a,b]$, alors $\int_a^b f \ge 0$.

Démonstration :

La fonction nulle appartient à $\varepsilon^-(f)$.

Or, par définition,
$$\int_a^b f = \sup \left\{ \int_a^b \varphi, \ \varphi \in \varepsilon^-(f) \right\}$$
. Donc $\int_a^b f \ge \int_a^b 0 = 0$.

B) Linéarité

Soient f_1, f_2 continues par morceaux sur un segment [a,b], et $\lambda \in \mathbb{R}$.

Alors:

$$\bullet \int_{a}^{b} (f_1 + f_2) = \int_{a}^{b} f_1 + \int_{a}^{b} f_2$$
 (1)

$$\bullet \int_{a}^{b} \lambda f_{1} = \lambda \int_{a}^{b} f_{1} \tag{2}$$

Autrement dit, l'application $f \mapsto \int_a^b f$, définie sur l'ensemble des fonctions continues sur [a,b], est linéaire (rappel : cet ensemble est un sev de $\mathfrak{F}([a,b],\mathbb{R})$).

Démonstration : dans le cas a > b

(1) : soit $\varepsilon > 0$

Il existe $\varphi_1 \in \mathcal{E}^-(f_1)$ et $\psi_1 \in \mathcal{E}^+(f_1)$ telles que :

$$\left(\int_{a}^{b} f_{1}\right) - \varepsilon \leq \int_{a}^{b} \varphi_{1} \leq \int_{a}^{b} f_{1} \leq \int_{a}^{b} \psi_{1} \leq \left(\int_{a}^{b} f_{1}\right) + \varepsilon \quad (1)$$

En effet :
$$\int_a^b f_1 = \sup \left\{ \int_a^b \varphi, \ \varphi \in \mathcal{E}^-(f_1) \right\}$$

Donc $\left(\int_a^b f_1\right) - \varepsilon$ n'est pas un majorant de $\sup \left\{\int_a^b \varphi, \varphi \in \varepsilon^-(f_1)\right\}$. Il existe donc $\varphi_1 \in \varepsilon^-(f_1)$ tel que $\left(\int_a^b f_1\right) - \varepsilon < \int_a^b \varphi_1$

Et comme $\int_a^b f_1$ est un majorant de cet ensemble, on a $\int_a^b \varphi_1 \le \int_a^b f_1$

Mais, par ailleurs, $\int_a^b f_1 = \inf \left\{ \int_a^b \psi, \psi \in \mathcal{E}^+(f_1) \right\}$. Donc en raisonnant de la même façon, on trouve les deux dernières inégalités de (1)

De même, il existe $\varphi_2 \in \varepsilon^-(f_2)$ et $\psi_2 \in \varepsilon^+(f_2)$ telles que :

$$\left(\int_{a}^{b} f_{2}\right) - \varepsilon \leq \int_{a}^{b} \varphi_{2} \leq \int_{a}^{b} f_{2} \leq \int_{a}^{b} \psi_{2} \leq \left(\int_{a}^{b} f_{2}\right) + \varepsilon \quad (2)$$

En sommant (1) et (2), on obtient alors:

$$\int_{a}^{b} f_{1} + \int_{a}^{b} f_{2} - 2\varepsilon \le \int_{a}^{b} \varphi_{1} + \int_{a}^{b} \varphi_{2} \le \int_{a}^{b} f_{1} + \int_{a}^{b} f_{2} \le \int_{a}^{b} \psi_{1} + \int_{a}^{b} \psi_{2} \le \int_{a}^{b} f_{1} + \int_{a}^{b} f_{2} + 2\varepsilon$$
 (3)

Par ailleurs:

 $\varphi_1 + \varphi_2$ est une fonction en escalier, et $\varphi_1 + \varphi_2 \le f_1 + f_2$

Donc $\varphi_1 + \varphi_2 \in \mathcal{E}^-(f_1 + f_2)$.

De même, $\psi_1 + \psi_2 \in \mathcal{E}^+(f_1 + f_2)$

Donc
$$\int_{a}^{b} (\varphi_1 + \varphi_2) \le \int_{a}^{b} (f_1 + f_2) \le \int_{a}^{b} (\psi_1 + \psi_2)$$
 (4)

En effet, $\int_a^b (f_1 + f_2)$ est la borne supérieure de l'ensemble des $\int_a^b \varphi$ pour $\varphi \in \varepsilon^-(f_1 + f_2)$ et la borne inférieure de l'ensemble des $\int_a^b \psi$ pour $\psi \in \varepsilon^+(f_1 + f_2)$.

Or, comme $\varphi_1 + \varphi_2$ est une fonction en escaliers, $\int_a^b (\varphi_1 + \varphi_2) = \int_a^b \varphi_1 + \int_a^b \varphi_2$.

Il résulte alors de (3) et (4) que
$$\left| \int_a^b (f_1 + f_2) - \int_a^b f_1 - \int_a^b f_2 \right| \le 4\varepsilon$$

Enfin, comme c'est valable pour tout arepsilon , on obtient, en le faisant tendre vers 0 :

$$\int_{a}^{b} (f_1 + f_2) = \int_{a}^{b} f_1 + \int_{a}^{b} f_2$$

Remarque : seule l'intégrabilité a ici été utilisée.

(2) 1^{er} cas : $\lambda \ge 0$

Avec les mêmes notations que précédemment :

$$\left(\int_{a}^{b} f_{1}\right) - \varepsilon \leq \int_{a}^{b} \varphi_{1} \leq \int_{a}^{b} f_{1} \leq \int_{a}^{b} \psi_{1} \leq \left(\int_{a}^{b} f_{1}\right) + \varepsilon$$

D'où
$$\lambda \int_a^b f_1 - \lambda \varepsilon \le \lambda \int_a^b \varphi_1 \le \lambda \int_a^b f_1 \le \lambda \int_a^b \psi_1 \le \lambda \int_a^b f_1 + \lambda \varepsilon$$

Par ailleurs, $\lambda \varphi_1$ et $\lambda \psi_1$ sont en escalier et $\lambda \varphi_1 \leq \lambda f_1 \leq \lambda \psi_1$.

Donc
$$\lambda \varphi_1 \in \varepsilon^-(\lambda f_1)$$
 et $\lambda \psi_1 \in \varepsilon^+(\lambda f_1)$

Donc
$$\int_a^b \lambda \varphi_1 \le \int_a^b \lambda f_1 \le \int_a^b \lambda \psi_1$$

Il en résulte que :

 $\left| \int_{a}^{b} \lambda f_{1} - \lambda \int_{a}^{b} f_{1} \right| \leq 2\varepsilon \text{ d'où le résultat cherché en faisant tendre } \varepsilon \text{ vers } 0.$

 $2^{\text{ème}}$ cas : $\lambda < 0$, la démonstration est analogue en « retournant » les inégalités.

Le cas où a = b est immédiat.

Le cas où a > b peut être traité en écrivant les résultats montrés pour le cas où a < b et en multipliant les inégalités par -1.

C) Additivité par rapport aux intervalles, théorème de Chasles

Théorème:

Soit S un segment de \mathbb{R} , et f une fonction définie sur S.

Alors, pour tous a, b, c de S, on a :

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Démonstration :

 1^{er} cas : si a < c < b

Soit $\varepsilon > 0$.

On note $\varepsilon^-(f)$ et $\varepsilon^+(f)$ les ensembles des fonctions φ et ψ en escalier sur [a,b] telles que $\varphi \leq f \leq \psi$

On introduit alors $\varphi \in \varepsilon^-(f)$ et $\psi \in \varepsilon^+(f)$ telles que :

$$\left(\int_{a}^{b} f\right) - \varepsilon \leq \int_{a}^{b} \varphi \leq \int_{a}^{b} f \leq \int_{a}^{b} \psi \leq \left(\int_{a}^{b} f\right) + \varepsilon$$

On a alors : $\int_a^c \varphi \le \int_a^c f \le \int_a^c \psi$.

En effet, $\varphi_{/[a,c]}$ est en escalier sur [a,c]

Et
$$\varphi_{/[a,c]} \leq f_{/[a,c]}$$

D'où, d'après la définition de $\int_a^c f$, $\int_a^c \varphi \leq \int_a^c f$, et, de même, on montre la deuxième inégalité.

De même, on a aussi : $\int_{c}^{b} \varphi \le \int_{c}^{b} f \le \int_{c}^{b} \psi$

Ainsi, en sommant (et en prenant en compte les propriétés des fonctions en escalier) : $\int_a^b \varphi \le \int_a^c f + \int_c^b f \le \int_a^b \psi$

On montre ensuite le résultat de la même manière que dans les autres théorèmes.

Pour les autres cas, on montre aisément le résultat grâce à celui-ci, par exemple :

- Si a = b < c, immédiat...
- Si b < a < c, alors $\int_b^a f = \int_b^c f + \int_c^a f$

D'où
$$\int_b^a f = \int_b^c f - \int_a^c f$$
, soit $\int_a^b f = \int_a^c f + \int_c^b f$

D) Croissance

Si f, g sont continues par morceaux sur [a,b] avec a < b, et si f < g, alors: $\int_a^b f < \int_a^b g$.

La démonstration est immédiate en utilisant la linéarité et la positivité.

II Majorations, minorations d'intégrales

Théorème:

Soit f continue par morceaux sur un segment [a,b], avec $a \le b$.

(Alors f est bornée sur [a,b]).

On a:

(1)
$$(b-a)\inf f \le \int_a^b f \le (b-a)\sup f$$

$$(2) \left| \int_a^b f \right| \le \int_a^b \left| f \right|$$

Démonstration : (cas où a = b évident)

(1) inf $f \le f \le \sup f$, donc, par croissance (puisque a < b):

$$\int_a^b \inf f \le \int_a^b f \le \int_a^b \sup f$$
, d'où l'inégalité (puisque inf f et $\sup f$ sont constantes)

(2) On a :
$$-|f| \le f \le |f|$$

Donc $\int_a^b -|f| \le \int_a^b f \le \int_a^b |f|$, soit $-\int_a^b |f| \le \int_a^b f \le \int_a^b |f|$, d'où le résultat (on utilise le fait que si $-A \le X \le A$, alors $|X| \le A$)

Conséquences:

Si f et g sont continues par morceaux sur [a,b] avec $a \le b$:

$$\bullet \left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx \le (b - a) \inf_{x \in [a, b]} \left| f(x) \right|$$

$$\bullet \left| \int_a^b f(x)g(x)dx \right| \le \int_a^b \left| f(x)g(x) \right| dx \le \sup_{x \in [a,b]} \left| g(x) \right| \int_a^b \left| f(x) \right| dx$$

Pour la dernière inégalité : on a en effet : $\forall x \in [a,b], |f(x)g(x)| \leq \sup_{t \in [a,b]} |g(t)| \times |f(x)|$, et la croissance de l'intégrale.

Remarque à propos de la croissance :

- La théorie, c'est $f \le g \Rightarrow \int_a^b f \le \int_a^b g$.
- En pratique, on utilise : $(\forall x \in [a,b], f(x) \le g(x)) \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$ On dit « intégrer une inégalité »

Dans les cas où a > b, en pratique, on « retourne » : $\int_a^b f(x)dx = -\int_b^a f(x)dx$

Il peut cependant être utile de savoir que $\left| \int_a^b f(x) dx \right| \le \left| \int_a^b |f(x)| dx \right|$ (même quand $a \ge b$)

III Considérations à propos de l'intégrale des fonctions continues par morceaux

Proposition:

Si \hat{f} et g sont deux fonctions continues par morceaux sur [a,b] qui ne diffèrent que sur un nombre fini de points, alors $\int_a^b f = \int_a^b g$.

Démonstration

f-g est une fonction en escalier dont l'intégrale est évidemment nulle. (car sa valeur constante sur chaque intervalle ouvert d'une subdivision subordonnée est nulle).

Etude:

Soit f continue par morceaux sur [a,b] (et non continue)

Soit $\sigma = (x_0, x_1, \dots, x_n)$ une subdivision subordonnée à f.

On sait que pour tout $i \in [1, n]$, on peut introduire f_i , prolongement par continuité de $f_{i|x_{i-1},x_i|}$ à $[x_{i-1},x_i]$.

Alors
$$\int_{x_{i-1}}^{x_i} f = \int_{x_{i-1}}^{x_i} f_i$$

Donc
$$\int_a^b f = \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f = \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f_i$$
.

Ce qui ramène l'intégrale d'une fonction continue par morceaux sur un segment à une somme d'intégrales de fonctions continues sur des segments.

IV Positivité stricte

Théorème:

Soit f une fonction <u>continue</u> sur un segment [a,b] avec a < b.

Si f est positive et non identiquement nulle, alors $\int_a^b f > 0$

Remarque: c'est faux pour une fonction continue par morceaux et non continue.

Démonstration:

On se place dans les hypothèses du théorème : il existe alors $c \in [a,b]$ tel que f(c) > 0.

Comme f est continue en c, il existe $\alpha > 0$ tel que :

$$\forall x \in \underbrace{[a,b] \cap [c-\alpha,c+\alpha]}_{\substack{\text{segment du type}[c',c''] \\ \text{avec } a \le c' < c' \le b}}, f(x) \ge \frac{f(c)}{2}$$

Alors
$$\int_{a}^{b} f = \underbrace{\int_{a}^{c'} f}_{\geq 0} + \underbrace{\int_{c'}^{c''} f}_{\geq (c''-c')\frac{f(c)}{2} > 0} + \underbrace{\int_{c''}^{b} f}_{\geq 0} > 0$$

V Inégalité de Cauchy–Schwartz pour les intégrales

Dans ce paragraphe, a et b sont deux réels tels que a < bA) Un produit scalaire sur $C^0([a,b],\mathbb{R})$

(Rappel: $C^0([a,b],\mathbb{R})$ est un \mathbb{R} -ev)

Proposition:

L'application $C^0([a,b],\mathbb{R}) \times C^0([a,b],\mathbb{R}) \to R$ $(f,g) \mapsto \int_a^b f \times g$ est un produit scalaire.

Démonstration:

• Pour tous $f, f', g, g' \in C^0([a,b], \mathbb{R})$ et $\lambda \in \mathbb{R}$, on a:

$$\int_{a}^{b} f(g + \lambda g') = \int_{a}^{b} fg + \lambda fg' = \int_{a}^{b} fg + \lambda \int_{a}^{b} fg'$$

et
$$\int_a^b (f + \lambda f')g = \int_a^b fg + \lambda f'g = \int_a^b fg + \lambda \int_a^b f'g$$

D'où la bilinéarité.

• Pour tous $f, g \in C^0([a,b], \mathbb{R})$, on a:

$$\int_{a}^{b} fg = \int_{a}^{b} gf$$

D'où la symétrie

• Pour tout $f \in C^0([a,b],\mathbb{R})$, on a:

$$\int_{a}^{b} f^{2} \ge 0 \text{ car } \forall x[a,b], f(x)^{2} \ge 0 \text{ (d'où la positivité)}$$

Si
$$\int_a^b f^2 = 0$$
, alors $f^2 = 0$ (positivité stricte puisque f^2 est positive et continue)
D'où $f = 0$

L'application est donc bien définie-positive.

B) Conséquence : inégalité de Cauchy–Schwartz

Pour tous $f, g \in C^0([a,b], \mathbb{R})$, on a:

$$\left(\int_a^b fg\right)^2 \le \int_a^b f^2 \times \int_a^b g^2$$

$$\left(\int_{a}^{b} fg\right)^{2} \leq \int_{a}^{b} f^{2} \times \int_{a}^{b} g^{2}$$
Variante:
$$\left|\int_{a}^{b} fg\right| \leq \sqrt{\int_{a}^{b} f^{2}} \times \sqrt{\int_{a}^{b} g^{2}}.$$

VI Sommes de Riemann

Dans ce paragraphe, a et b désignent deux réels, avec a < b.

A) Le théorème

Définition:

Soit f continue sur [a,b], et $\sigma = (a_0, \dots a_n)$ une subdivision de [a,b].

Une somme de Riemann attachée à f et σ , c'est une somme du type :

 $S_{f,\sigma,x} = \sum_{k=1}^{n} (a_k - a_{k-1}) f(x_k), \text{ où } x = (x_1, \dots x_n) \text{ est une famille de points de } [a,b]$ telle que $\forall k \in [1,n], x_k \in [a_{k-1},a_k].$

Visualisation:

Théorème:

Soit f continue sur [a,b].

Soit $\varepsilon > 0$.

Alors il existe $\alpha > 0$ tel que, pour toute subdivision σ de pas inférieur à α et toute somme de Riemann S attachée à f et σ , $\left| S - \int_a^b f \right| < \varepsilon$

(Le pas d'une subdivision $\sigma = (a_0, ... a_n)$ est la valeur de $\max_{i \in [[1,n]]} (a_i - a_{i-1})$)

Démonstration:

Soit $\varepsilon > 0$.

On introduit alors $\alpha > 0$ tel que $\forall x, x' \in [a,b], (|x-x'| < \alpha \Rightarrow |f(x) - f(x')| < \varepsilon)$ (ce qui est possible car f est continue sur le segment [a,b], donc elle y est uniformément continue)

Soit $\sigma = (a_0, \dots a_n)$ une subdivision de pas inférieur à α .

Pour chaque $k \in [1, n]$, on prend $x_k \in [a_{i-1}, a_i]$

Soit alors
$$S = \sum_{k=1}^{n} (a_k - a_{k-1}) f(x_k)$$

Soit $k \in [1, n]$. On a:

$$\left| \int_{a_{k-1}}^{a_k} f(x) dx - (a_k - a_{k-1}) f(x_k) \right| = \left| \int_{a_{k-1}}^{a_k} f(x) dx - \int_{a_{k-1}}^{a_k} f(x_k) dx \right|$$

$$= \left| \int_{a_{k-1}}^{a_k} (f(x) - f(x_k)) dx \right| \le \int_{a_{k-1}}^{a_k} |f(x) - f(x_k)| dx$$

Pour tout $x \in [a_{k-1}, a_k]$, on a $|f(x) - f(x_k)| \le \varepsilon$ puisque $|x - x_k| \le a_k - a_{k-1} < \alpha$

Donc
$$\left| \int_{a_{k-1}}^{a_k} f(x) dx - (a_k - a_{k-1}) f(x_k) \right| \le \int_{a_{k-1}}^{a_k} \varepsilon . dx = (a_k - a_{k-1}) \varepsilon$$

De plus, on a:

$$\left| \int_{a}^{b} f(x)dx - S \right| = \left| \sum_{k=1}^{n} \int_{a_{k-1}}^{a_{k}} f(x)dx - \sum_{k=1}^{n} (a_{k} - a_{k-1}) f(x_{k}) \right|$$
$$= \left| \sum_{k=1}^{n} \left(\int_{a_{k-1}}^{a_{k}} f(x)dx - (a_{k} - a_{k-1}) f(x_{k}) \right) \right|$$

D'où:

$$\left| \int_{a}^{b} f(x) dx - S \right| \le \sum_{k=1}^{n} \left| \int_{a_{k-1}}^{a_k} f(x) dx - (a_k - a_{k-1}) f(x_k) \right| \le \sum_{k=1}^{n} (a_k - a_{k-1}) \mathcal{E} = (b - a) \mathcal{E}$$

B) Cas particulier : les sommes S_n , s_n , M_n .

Soit f continue sur [a,b]

On note:

$$S_n = \sum_{k=1}^n \frac{b-a}{n} f\left(a + k \frac{b-a}{n}\right)$$

C'est-à-dire :

On prend pour σ la subdivision régulière de [a,b] en n segments, et, en notant $\sigma = (a_0,...a_n)$, on prend les $x_k = a_k$

$$s_n = \sum_{k=1}^{n} \frac{b-a}{n} f\left(a + (k-1)\frac{b-a}{n}\right) = \sum_{k=0}^{n-1} \frac{b-a}{n} f\left(a + k\frac{b-a}{n}\right)$$

(Même subdivision, mais $x_k = a_{k-1}$)

$$M_n = \sum_{k=1}^n \frac{b-a}{n} f\left(a + (k - \frac{1}{2}) \frac{b-a}{n}\right)$$

$$(x_k = \frac{a_k + a_{k-1}}{2})$$

Théorème:

Les suites $(S_n), (s_n), (M_n)$ convergent vers $\int_a^b f$.

Démonstration:

Soit $\varepsilon > 0$, soit $\alpha > 0$ comme dans le théorème précédent.

Soit
$$N \in \mathbb{N}^*$$
 tel que $\frac{b-a}{N} < \alpha$

Alors, pour tout $n \in \mathbb{N}$ tel que $n \ge N$, la subdivision régulière de [a,b] en n parties est de pas $\frac{b-a}{n} < \alpha$, donc $\left| s_n - \int_a^b f \right| < \varepsilon$

Ainsi,
$$\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n \ge N, \left| s_n - \int_a^b f \right| < \varepsilon$$

(pour les autres suites remplacer simplement s_n)

Exemple:

$$u_n = \sum_{k=1}^n \frac{1}{n+k}$$
 (pour $k \ge 1$). Montrer que (u_n) converge.

On a, pour tout $n \in \mathbb{N}^*$:

$$u_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{k}{n}} = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}) \text{ avec } f: [0,1] \to \mathbb{R}$$

$$x \mapsto \frac{1}{1 + x}$$

Les $\frac{k}{n}$ sont les points de la subdivision régulière de [0,1] en n parties : on reconnaît alors une somme de Riemann :

$$S_n = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n})$$

f étant continue sur [0,1], u_n tend vers $\int_{\frac{\ln 2}{n}}^{1} f$ lorsque n tend vers $+\infty$.

C) Retour aux sommes de Riemann générales

Majoration de l'erreur quand f est lipschitzienne :

On suppose ici l'existence de $M \in \mathbb{R}^+$ tel que :

$$\forall x, x' \in [a, b], |f(x) - f(x')| \le M|x - x'|$$

Soit S une somme de Riemann attachée à f et $\sigma = (a_0,...a_n)$ avec le choix

$$x = (x_1, ... x_n)$$
 des points $x_k \in [a_{k-1}, a_k]$. Majorons $\left| \int_a^b f - S \right|$

En reprenant la démonstration du A):

$$\left| \int_{a_{k-1}}^{a_k} f(x) dx - (a_k - a_{k-1}) f(x_k) \right| \le \int_{a_{k-1}}^{a_k} |f(x) - f(x_k)| dx$$

$$\le M \int_{a_{k-1}}^{a_k} |x - x_k| dx$$

$$\le M \int_{a_{k-1}}^{a_k} (a_k - a_{k-1}) dx$$

$$\le M (a_k - a_{k-1})^2$$

$$\le M \delta^2$$

Où on a noté δ le pas de la subdivision.

Ainsi, en continuant la démonstration comme au $\underline{\mathbf{A}}$:

$$\left| \int_{a}^{b} f - S \right| \le nM\delta^{2}$$

Ou, lorsque la subdivision est régulière :

$$\left| \int_{a}^{b} f - S \right| \le M \frac{(b - a)^{2}}{n}$$

D) Remarque sur la méthode des trapèzes

Prendre (S_n) ou (s_n) comme approximation de $\int_a^b f$, c'est appliquer la méthode des rectangles. (pour (M_n) aussi)

Prendre $\left(\frac{S_n + s_n}{2}\right)$ comme approximation de $\int_a^b f$ s'appelle appliquer la méthode des trapèzes :

E) Cas où f est monotone (et toujours continue)

Supposons f croissante; alors, en notant toujours $(a_0,...a_n)$ la subdivision régulière de [a,b] en n parties: $\forall x \in [a_{k-1},a_k], f(a_{k-1}) \leq f(x) \leq f(a_k)$

Donc
$$\underbrace{\int_{a_{k-1}}^{a_k} f(a_{k-1}) dx}_{(a_k - a_{k-1}) f(a_{k-1})} \le \int_{a_{k-1}}^{a_k} f(x) dx \le \underbrace{\int_{a_{k-1}}^{a_k} f(a_k) dx}_{(a_k - a_{k-1}) f(a_k)}$$

D'où, en sommant :

$$s_n \le \int_a^b f(x) dx \le S_n$$

Il en est de même quand f est décroissante (en retournant les inégalités)

Application:

$$\left| \int_{a}^{b} f - S_{n} \right| \leq \left| S_{n} - S_{n} \right|$$

$$\left| \int_{a}^{b} f - S_{n} \right| \leq \left| S_{n} - S_{n} \right|$$

$$S_{n} - S_{n} = \frac{b - a}{n} \sum_{k=1}^{n} f(a_{k}) - \frac{b - a}{n} \sum_{k=0}^{n-1} f(a_{k}) = \frac{b - a}{n} (f(b) - f(a))$$

Exemple numérique :

Donner une approximation à 2.10^{-1} près de $I = \int_0^1 \frac{dx}{1+x^4}$.

On note
$$f: x \mapsto \frac{1}{1+x^4}$$
.

f est décroissante. Donc $S_n \le I \le s_n$

$$s_n - S_n = \frac{1}{n}(f(0) - f(1)) = \frac{1}{2n}$$

On encadre *I* par S_n et s_n avec *n* tel que $\frac{1}{2n} \le 2.10^{-1}$; on prend ainsi n = 3.

$$s_3 = \frac{1}{3} \left(f(0) + f(\frac{1}{3}) + f(\frac{2}{3}) \right) = 0.94...$$

$$S_3 = S_3 - \frac{1}{6} = 0,77...$$

D'où $0.77 \le I \le 0.95$

Donc $I \approx 0.85 \text{ à } 10^{-1} \text{ près}$

ou $I \approx 0.8 \text{ à } 2.10^{-1} \text{ près.}$

F) Remarque

La théorie parle de $S_n = \frac{b-a}{n} \sum_{k=1}^n f\left(a+k\frac{b-a}{n}\right)$ pour f continue sur [a,b].

En pratique, on reconnaît le plus souvent $\frac{1}{n}\sum_{k=1}^{n}\varphi(\frac{k}{n})$ où φ est continue sur [0,1].

Et, en effet,
$$\frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) = (b-a) \times \frac{1}{n} \sum_{k=1}^{n} \varphi(\frac{k}{n}) \text{ avec} :$$

$$\varphi: [0,1] \to \mathbb{R}$$

$$t \mapsto f(a+t(b-a))$$

VII Valeur moyenne d'une fonction continue sur un segment

Soit $f: [a,b] \to \mathbb{R}$, continue, avec a < b.

On définit la valeur moyenne de f sur [a,b]: $\frac{1}{b-a} \int_a^b f(t) dt$

Explication:

La valeur moyenne h de f sur [a,b] est le réel h tel que l'aire hachurée soit l'aire correspondante pour la fonction constante égale à h.

Ou:

Soit $(a_0,...a_n)$ la subdivision régulière de [a,b].

Moyenne arithmétique des $f(a_i), i \in [1, n]$:

$$\frac{f(a_1) + f(a_2) + \dots + f(a_n)}{n} = \frac{1}{b - a} \times \underbrace{\frac{b - a}{n} \sum_{k=1}^{n} f(a_k)}_{\text{tend vers } \int_{a}^{b} f(t) dt}$$