IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) A dual-stack optical data storage medium for at least read out using a focused radiation beam with a wavelength λ between 400 nm and 410 nm and an Numerical Aperture (NA) between 0.84 and 0.86, entering through an entrance face of the medium during read out, comprising:
 - -a substrate with present on a side thereof:
- -a first stack of layers named L0 comprising a first information layer,
- -a second stack of layers named L1, comprising a second information layer, L1 being present at a position closest to the entrance face and L0 more remote from the entrance face than L1,
- -a radiation beam transparent spacer layer between LO and L1,
- -a radiation beam transparent cover layer between the entrance face and L1
- -a transmission stack named TSO with a thickness d_{TSO} and an effective refractive index n_{TSO} containing all layers between LO and the entrance face,

-a transmission stack named TS1 with a thickness d_{TS1} and an effective refractive index n_{TS1} containing all layers between L1 and the entrance face,

characterized in that

the spacer layer has a thickness selected from the range 20 - 30 μ m, the thickness d_{TS0} in dependence on the refractive index n_{TS0} is within the upper shaded area in Fig.1 and the thickness d_{TS1} in dependence on the refractive index n_{TS0} is within the lower shaded area in Fig.1.

- 2. (original) An optical data storage medium according to claim 1, wherein the maximum deviations of d_{TS0} and d_{TS1} from respectively the average values of d_{TS0} and d_{TS1} between a radius of 23mm and 24 mm of the medium do not exceed \pm 2 μ m measured over the whole area of the medium.
- 3. (currently amended) An optical data storage medium according to claim 1—or 2, wherein n_{TS0} and n_{TS1} both have a value of 1.6 and the following conditions are fullfilled: 95 μ m \leq $d_{TS0} \leq$ 105 μ m and 70 μ m \leq $d_{TS1} \leq$ 80 μ m.
- 4. (currently amended) An optical data storage medium according to any one of claims 1 3 claim 1, wherein the spacer layer

thickness is 25 μm or substantially close to 25 μm and the cover layer thickness is 75 μm or substantially close to 75 μm .

5. (currently amended) Use of an optical data storage medium as claimed in any one of the preceding claims claim 1 for reliable data read out from both the first information layer and the second information layer.