School: Advanced Informatics School (UTM AIS) Universiti Teknologi Malaysia		Page	: 1 of 6
Code & Course Name	: MANB 1153 : Data Mining & Business Analytics	Semester Academic Session	: 1 : 2016/2017
Total Hours	: 42		

Lecturer

Room No. : Sekolah Informatik Termaju, UTM International Campus, JalanSemarak 54100

Kuala Lumpur

Telephone No. : E-mail :

Synopsis : This course is about data mining and business analytics, the computational

paradigm to find pattern and regularities in databases, perform prediction and forecasting, and generally improve their performance through the interaction with data. Business analytics allows discovering, analyzing and acting on data in business domain. It is about learning from the past to uncover trends and predict likely outcomes. Moreover, in data mining analytics it gives a framework to analyze data over time, leading to more refined outcomes and corrective actions. This course will cover the issues related to the key element of general process of Knowledge Discovery and predictive analytics that deals with extracting useful knowledge from raw data. The process includes data selection, cleaning, coding, using different statistical and machine learning techniques and visualization of the generated structures. This course will also cover the techniques and topics that are widely used in real-world data mining projects including classification, clustering, feature selection and etc. At the end of this course, students are able to understand the principles of data mining and the business analytics and obtaining hands-on experience of implementing data mining projects and therefore will greatly improve the competitiveness of students in business intelligence and analytics career as well

as enhance their research skills.

LEARNING OUTCOMES

By the end of the course, students should be able to:

N	lo.	Course Learning Outcome	Programme Outcome	Taxonomies (C, P, A)	Weightage (%)	Assessment Methods
С	01	Combine techniques, strategies, and methodologies to construct of data mining and predictive analytics.	PO1	C6	A, F	F = 15% A = 15%
C	:02	Master the data mining and analytic application software and tools for analyzing structured data.	PO3	C6	A, F, PR	A = 15% PR = 10% F = 15%
С	:03	Demonstrate an appropriate mining strategy for given real		A4 CS1 - CS5	PR, Pr	PR = 10% Pr = 5%

School: Advanced Informatics School (UTM AIS)		Page	: 2 of 6
Universiti Te	eknologi Malaysia		
Code &	: MANB 1153		
Course Name	: Data Mining & Business	Semester	: 1
	Analytics	Academic Session	: 2016/2017
Total Hours	: 42		

	data set in order to solve real world problems and research by finding new ideas and alternative solutions.	PO5			
CO4	Complete a project to solve a case study problem using lifelong learning skills to find and manage relevant information from many sources.	PO6	A4 LL1-LL3	PR, Pr	PR = 10% Pr = 5%

Legend:

PO: Program Outcome A: Affective P: Psychomotor Ob: Observation AP: Academic Publication SR: Self- Reflection LL: Lifelong Learning C: Cognitive CTPS: Critical Thinking and Problem Solving As: Assignment Pr: Presentation F: Final Exam T: Test Q: Quiz PR: Project Report PA: Peer-Assessment SA: Self-Assessment LS: Leadership Skill SP: Seminar Paper

STUDENT LEARNING TIME (SLT)

Teaching (and Learning Activities	Student Learning Time (hours)	
I. Face-t	o-Face Learning		
a.	Lecturer-Centered Learning		
	i. Lecture	22	
b.	Student-Centered Learning (SCL)		
	i. Laboratory/Tutorial	-	
	ii. Student-centered learning activities - Active Learning, Project Based Learning	20	
2. Self-Directed Learning			
a.	Non-face-to-face learning or student-centered learning (SCL) such as manual, assignment, module, etc.		
	a. NALI	22	
	b. MOOCS	-	
	c. Blended Learning	25	
b.	Revision	10	
c.	Assessment Preparations	10	
3. Forma	l Assessment		
a.	Continuous Assessment	8.5	

School: Advanced Informatics School (UTM AIS) Universiti Teknologi Malaysia		Page	: 3 of 6
Code & Course Name	: MANB 1153 : Data Mining & Business Analytics	Semester Academic Session	: 1 : 2016/2017
Total Hours	: 42		

b. Final Examination	2.5
Total (SLT)	120

PO1	Possessed detail and in depth knowledge and specific discipline or professional area including relevant professional knowledge and skills with global perspective	 Involve discussions Critic ideas Create hypothesis Seek opinion from others 	 Knowledge sharing Cooperative learning 	Subject Knowledge
PO3	Ability to demonstrate critical thinking and creative problem solving;	 Involve discussions Critic ideas Seek opinion from others Think scholarly 	 Guided Lectures Group Discussion Paper Critique Knowledge sharing 	Subject Knowledge
PO5	 Ability to acquire, organize, evaluate and present ideas using appropriate technology; Ability to demonstrate openmindedness and receptiveness to new ideas. 	 Express ideas in oral and written communication Peers involvement Defend idea 	 Problem Based Learning Project based learning 	InteractionPresentation
PO6	Ability to conduct independent work or studies.	Independent and interdependent works	Problem based learning	 Knowledge acquisition Curiosity of the latest knowledge

WEEKLY SCHEDULE

	Week	Topics			
	Week 1	Principle of Data Mining			
		Stages Of Data Mining Process			
		OLAP (Online Analytical Analytics Processing) - the Motivations			
		Data Cube Implementation and Operations			
		Data Mining Software and Applications			

School: Advanced Informatics School (UTM AIS) Universiti Teknologi Malaysia		Page	: 4 of 6
Code & Course Name	: MANB 1153 : Data Mining & Business Analytics	Semester Academic Session	: 1 : 2016/2017
Total Hours	: 42		

	Data Pre-Processing
	Data Cleaning
	Data Transformation
	Data Reduction
	Discretization and Generating Concept Hierarchies
	Introduction to WEKA - the Data Mining Systems
Week 2 -3	 Experiment with WEKA - filters and discretization Data Mining Knowledge Representation
2 -3	Task Relevant Data
	Background Knowledge
	Interestingness Measures
	Representing Input Data and Output Knowledge
	Visualization
	Experiment with WEKA - visualization Attribute-Oriented Analysis
	Attribute-oriented Anatysis Attribute Generalization
	Attribute Generalization Attribute Relevance
	Class Comparison
	·
Week 4-5	 Experiment with data mining tools - filters and statistics Association Rules
4-3	
	 Generating Item Sets and Rules Efficiently Correlation Analysis
	· ·
	Example: Mining Weather Data Experiment with data mining tools, mining association rules.
	 Experiment with data mining tools - mining association rules Business Analytics - Classification (Decision Trees)
	Decision Tree Induction - Basic Principle
	Measures of Diversity
	Decision Tree Algorithms
	Business Analytics - Classification (Decision Trees)
	Decision Tree Induction - Basic Principle
	Measures of Diversity
\\\ I-	Decision Tree Algorithms
Week 6-7	Experiment with data mining tools - decision tree
0-7	Business Analytics - Prediction
	The Prediction Task
	Statistical (Bayesian) Classification
	Bayesian Networks
	Instance-Based Methods (nearest-neighbor)
	Linear Model
	Experiment with data mining tools - prediction
Week	SEMESTER BREAK
8	
Week	Business Analytics - Classification (Multi - Instant Learning)
9-11	Aggregating the Input

School: Advanced Informatics School (UTM AIS) Universiti Teknologi Malaysia		Page	: 5 of 6
Code & Course Name	: MANB 1153 : Data Mining & Business Analytics	Semester Academic Session	: 1 : 2016/2017
Total Hours	: 42		

•	Aggregating the Output
	Business Analytics - Clustering
	Basic Issues in Clustering
	Partitioning Methods: K-Means, Expectation Maximization (EM)
	Hierarchical Methods: Distance-Based Agglomerative and Divisible Clustering
	Conceptual Clustering: Cobweb
	Experiment with data mining tools - k-means, Cobweb, EM
Week 12-13	Evaluating What Have Been Learned
	Basic Issues
	Training and Testing
	Estimating Classifier Accuracy (Holdout, cross-validation, leave-one-out)
	Combining Multiple Models (Bagging, Boosting, Stacking)
	Experiment with data mining tools - Training and Testing
	Mining Real Data
	Pre Processing data from real domain (for example: patient's data)
	Applying various data mining techniques to create a comprehensive and accurate model of the
	CASE STUDY PROJECT REVIEW AND DISCUSSION
Week	
14 -	Project Presentation and Examination Review
15	

REFERENCES:

- 1) F. Provost and T. Fawsett (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking: O' Reilley Media
- 2) J. Ledolter (2013). Data Mining and Business Analytics with R: John Wiley & Sons
- 3) G. K. Gupta (2011). Introduction to Data Mining with Case Studies. (Second Edition): Prentice Hall
- 4) Bing Liu. (2007). Web Data Mining: Exploring Hyperlinks, Contents and Usage Data: Springer-Verlag Berlin
- 5) Ian H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques (Second Edition): Morgan Kaufmann.
- 6) David J. Hand, H. Manilla, P. Smyth (2001). Principle of Data Mining: MIT Press.

GRADING:

No	Assessment	Quantity	% Each	%Total
1	Assignment	3	10	30
2	Case Study Project	1	30	30
3	Project presentation (Oral)	1	10	10
4	Final Exam	1	30	30
			TOTAL	100%

School: Advanced Informatics School (UTM AIS) Universiti Teknologi Malaysia		Page	: 6 of 6
Code & Course Name	: MANB 1153 : Data Mining & Business Analytics	Semester Academic Session	: 1 : 2016/2017
Total Hours	: 42		