

Introduction to CUDA II

Ivan Girotto – igirotto@ictp.it

Information & Communication Technology Section (ICTS)
International Centre for Theoretical Physics (ICTP)

Scuola Internazionale Superiore di Studi Avanzati

GPU Work Abstraction

- CUDA Kernels can be thought of as telling a GPU to compute all iterations of a set of nested loops concurrently
- Threads are dynamically scheduled onto hardware according to a hierarchy of thread groupings

CPU: Cache heavy, focused on individual thread performance

GPU: ALU heavy, massively parallel, throughput oriented

Grids, Thread Blocks, Threads

Built-in Variables to manage grids and blocks

dim3 => a new datatype defined by CUDA:

- struct dim3 { unsigned int x, y, z };
- three unsigned ints where any unspecified component defaults to 1.
 - dim3 gridDim;
 - Dimensions of the grid in blocks
 - dim3 blockDim;
 - Dimensions of the block in threads
 - dim3 blockIdx;
 - Block index within the grid
 - dim3 threadIdx;
 - Thread index within the block

Bi-dimensional threads configuration: set the elements of a square matrix

```
__global___ void kernel( int *a, int dimx, int dimy ) {
   int ix = blockldx.x*blockDim.x + threadldx.x;
   int iy = blockldx.y*blockDim.y + threadldx.y;
   int idx = iy*dimx + ix;

a[idx] = idx+1;
}
```

```
int main() {
  int dimx = 16;
  int dimy = 16;
  int num bytes = dimx*dimy*sizeof(int);
 int *d a=0, *h a=0; // device and host pointers
  h a = (int*)malloc(num bytes);
  cudaMalloc( (void**)&d a, num bytes );
  dim3 grid, block;
  block.x = 4;
  block.y = 4;
  grid.x = dimx / block.x;
  grid.y = dimy / block.y;
  kernel<<<grid, block>>>( d a, dimx, dimy );
  cudaMemcpy(h_a,d_a,num_bytes,
                cudaMemcpyDeviceToHost);
 for(int row=0; row<dimy; row++) {
    for(int col=0; col<dimx; col++)
      printf("%d", h a[row*dimx+col]);
    printf("\n");
  free(ha);
  cudaFree( d a );
  return 0;
```


Transparent Scalability

- Hardware is free to assigns blocks to any processor at any time
 - A kernel scales across any number of parallel processors

Each block can execute in any order relative to other blocks!

Block 6

Block 7

GPU Thread Block Execution

- Thread blocks are decomposed onto hardware in 32thread "warps"
- Hardware execution is scheduled in units of warps
 - an SM can execute warps from several thread blocks
- Warps run in SIMD-style execution:
 - All threads execute the same instruction in lock-step
 - If one thread stalls, the entire warp stalls...
 - A branch taken by a thread has to be taken by all threads...
 (divergence is bad)

Thread blocks are multiplexed onto pool of GPU SMs...

1-D, 2-D, 3-D thread block:

multiplexed onto GPU Warp Branch Divergence pool of GPU SMs...

- Branch divergence: when not all threads take the same branch, the entire warp has to **execute both sides of the branch**
- Branch divergence issue not unique to GPUs, affects all SIMD hardware platforms...
- On GPUs, we get fast **hardware-based** implementation of predication/masking/etc...
- GPU blocks memory writes from disabled threads in the "if then" branch, then inverts all thread enable states and runs the "else" branch
- GPU hardware detects warp re-convergence and then runs with all threads enabled...

SM

Thread blocks are

1-D, 2-D, 3-D thread block:

GPU Warp Branch Divergence

- Threads within the same thread block can communicate with each other in fast on-chip shared memory
- Once scheduled on an SM, thread blocks run until completion
- Because the order of thread block execution is arbitrary and blocks cannot be stopped, they cannot communicate or synchronize with other thread blocks (*)
- (*) Atomic memory ops are an exception wrt/communication

Thread blocks are multiplexed onto pool of GPU SMs...

1-D, 2-D, 3-D thread block:

Execution Model

Software

Thread

Hardware

Scalar **Processor**

Threads are executed by scalar processors

Thread Block

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

Grid

A kernel is launched as a grid of thread blocks

Memory Hierarchy

- Registers (fast up to availability)
 - Limited num. registers available per block
- Shared Memory: per-block
 - Shared by threads of the same block
 - Fast inter-thread communication
- Global Memory: per-application
 - Shared by all threads
 - Inter-Grid communication

Sequential Grids Execution in Time

Synchronization

- GPU blocks to not synch each other (except using atomic operations)
- Threads within a block can cooperate by sharing data through some shared memory and by synchronizing their execution to coordinate memory accesses
- one can specify synchronization points in the kernel by calling the __syncthreads() intrinsic function
- __syncthreads() acts as a barrier at which all threads in the block must wait before any is allowed to proceed
- cudaDeviceSychronize() can be used on host to synch the host with a GPU.
- Kernels are asynchronous to the host, cudaMemcpy is not (blocking)

Atomic Operations

- Terminology: Read-modify-write uninterruptible when atomic
- Many atomic operations on memory available with CUDA C

```
atomicAdd()  atomicInc()
```

atomicSub() atomicDec()

atomicMin()
Other atomic ...

atomicMax()

Predictable result when simultaneous access to memory required

Multiblock Dot Product: dot()

```
global void dot( int *a, int *b, int *c ) {
   shared int temp[THREADS PER BLOCK];
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 temp[threadIdx.x] = a[index] * b[index];
  syncthreads();
 if( 0 == threadIdx.x ) {
     int sum = 0;
     for( int i = 0; i < THREADS PER BLOCK; i++ ) sum += temp[i];</pre>
     atomicAdd( c , sum );
```

We need to atomically add sum to c in our multiblock dot product

GPU On-Board Global Memory

GPU arithmetic rates dwarf memory bandwidth For Kepler K40 hardware:

~4.3 SP TFLOPS vs. ~288 GB/sec

The ratio is roughly **60 FLOPS per memory reference** for single-precision floating point

Peak performance achieved with "coalesced" memory access patterns – patterns that result in a single hardware memory transaction for a SIMD "warp" – a contiguous group of 32 threads

Memory Coalescing (Oversimplified explanation)

- Threads in a warp perform a read/write operation that can be serviced in a single hardware transaction
- Rules vary slightly between hardware generations, but new GPUs are much more flexible than old ones
- If all threads in a warp read from a contiguous region that's 32 items of 4, 8, or 16 bytes in size, that's an example of a coalesced access
- Multiple threads reading the same data are handled by a hardware broadcast
- Writes are similar, but multiple writes to the same location yields undefined results

CUDA Grid/Block/Thread Decomposition

CUDA Compiler: nvcc basic options

- -arch=sm_35 → enable code for a given capability
- G → enable debug for device code
- --ptxas-options=-v → show register and memory usage
- --maxrregcount <N> → limit the number of registers
- -use_fast_math → use fast math library
- -O3 → Enables compiler optimization

Scuola Internazionale Superiore di Studi Avanzati

- -ccbin compiler_path → use a different C compiler
- --compiler-options -> Specify options directly to the compiler/preprocessor.

Getting Performance From GPUs

- Don't worry (much) about counting arithmetic operations...at least until you have nothing else left to do
- GPUs provide tremendous memory bandwidth, but even so, memory bandwidth often ends up being the performance limiter
- Keep/reuse data in **registers** as long as possible
- The main consideration when programming GPUs is accessing memory efficiently, and storing operands in the most appropriate memory system according to data size and access pattern

Getting Performance From GPUs

- Don't worry (much) about counting arithmetic operations...at least until you have nothing else left to do
- GPUs provide tremendous memory bandwidth, but even so, memory bandwidth often ends up being the performance limiter
- Keep/reuse data in **registers** as long as possible
- The main consideration when programming GPUs is accessing memory efficiently, and storing operands in the most appropriate memory system according to data size and access pattern

Why Does GPU Accelerate Computing?

Highly scalable design

Higher aggregate memory bandwidth

Huge number of low frequency cores

Higher aggregate computational power

Massively parallel processors for data processing

Why Does GPU Accelerate Computing?

Highly scalable design

Higher aggregate memory bandwidth

Huge number of low frequency cores

Higher aggregate computational power

Massively parallel processors for data processing

Why Does GPU Not Accelerate Computing?

PCI Bus bottleneck
Synchronization weakness
Extremely slow serialized execution
High complexity, SPMD + SIMT + Memory Model

People forget about the Amdahl's law: accelerating only the 50% of the original code, the expected speedup can get at most a value of 2!!

CPU & GPU

The Intel Xeon E5-2665 Sandy Bridge-EP 2.4GHz

CPU & GPU

The Intel Xeon E5-2665 Sandy Bridge-EP 2.4GHz

CPU & GPU

The Intel Xeon E5-2665 Sandy Bridge-EP 2.4GHz

Scuola Internazionale Superiore di Studi Avanzati

References

- http://www.ks.uiuc.edu/Research/gpu/
- http://indico.ictp.it/event/a14302/otherview?view=ictptimetable (ICTP - SMR2760)
- http://www.iac.rm.cnr.it/~massimo/PMC.html
- CUDA Zone: https://developer.nvidia.com/cuda-zone
- CUDA by Example

