Бабушкин А.

Домашнее задание

1.

l) $\log(n^{\log n}) = \log n * \log\log n < \log^2 n < n = \log_2 1.1 \cdot \log(1.1^n) \to \text{True.}$ m) $\frac{n^3}{n^2 + n\log n} = \frac{n^3}{n^2 + o(n^2)} = \frac{n^3}{\Theta(n^2)} = \Theta(\frac{n^3}{n^2}) = \Theta(n) < O(n\log n) \to \text{True.}$ n) Пусть $f(n) = 2^n$. Тогда $f(n) = (f(\frac{n}{2}))^2, x \neq O(x^2) \to \text{False.}$

m)
$$\frac{n^3}{n^2 + n \log n} = \frac{n^3}{n^2 + o(n^2)} = \frac{n^3}{\Theta(n^2)} = \Theta(\frac{n^3}{n^2}) = \Theta(n) < O(n \log n) \to \text{True}.$$

о) $f(n) - o(f(n)) \le f(n) \to f(n) - 0(f(n)) = O(f(n))$ $f(n) - o(f(n)) \ge f(n) - \frac{f(n)}{C} = \frac{1-C}{C}f(n) \to \frac{C}{1-C}(f(n) - o(f(n)) \ge f(n) \to f(n) - o(f(n)) = \Omega(f(n)) \to \text{True}$. Для f(n) + o(f(n)) аналогично.

p) $2^{\log n!} = n! < n^n = 2^{n \log n} \to \log n! < n \log n \to \log n! = O(n \log n)$.

Теперь докажем Ω . $\log n! = \sum \log i : i \le n$. Возьмём первые $\frac{n}{2}$ из них. Каждое из слагаемых не меньше $\log \frac{n}{2} = \log(n-1)$, то есть их сумма $\geq \frac{n}{2}(\log n - 1) =$ $\Theta(n \log n) \to \text{True}$.

2.

g) Докажем, что $T(n) = \Theta(n)$ по индукции. База очевидна, теперь переход. Пусть это верно $\forall i < n$. Сначала докажем O. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + n \le n$ $C\frac{n}{2}+C\frac{n}{3}+n=\frac{(5C+6)}{6}n$. Если $\exists C:\frac{5C+6}{6}\leq C$, то мы победили. Это равенство верно для $C\geq 6$ \to True. Ω доказывается точно так же, только там нужно будет $\exists C: \frac{5C+6}{6} \geq C \rightarrow C \leq 6.$ h) $T(n) = \Theta(n^2)$ по мастер-теореме (a=4,b=2,c=1,d=2).

i) $T(n) = \Theta(n^{\log_3 2})$ по мастер-теореме (a = 2, b = 3, c = 0, d = 0).

Если без обобщённой мастер-теоремы, то можно так:

 $\Theta(n^2) = 4T(\frac{n}{2}) + n < 4T(\frac{n}{2}) + n \log^2 n \to T(n) = \Omega(n^2)$. Докажем O.

 $T(n) < 4T(\frac{n}{2}) + n^{\frac{3}{2}} = \Theta(n^2)$, (последнее равенство – по обычной мастер-теореме). $\rightarrow T(n) = \tilde{O}(n^2), \#.$

 \mathbf{j}) $T(n) = \Theta(n^{\frac{\sqrt{5}+1}{2}})$, т.к. это числа Фибоначчи.

k) $T(n) = T(n-1) + n \to T(n) = \frac{n(n+1)}{2} = \Theta(n^2)$.

3.

A	В	O	0	Θ	ω	Ω
n	n^2	+	+	_	_	_
$\log^k n$	n^{ϵ}	+	+	_	_	
n^k	c^n	+	+	_	_	_
\sqrt{n}	$n^{\sin n}$	_	_	_	_	_
2^n	$2^{n/2}$	_	_	_	+	+
$n^{\log m}$	$m^{\log n}$	+	_	+	_	+
$\log(n!)$	$\log(n^n)$	+	_	_	_	+

- 4. Разобьём на классы эквивалентности (если функции вместе, то они Θ друг от друга) и упорядочим по возрастанию.
 - (a) $1, n^{1/\log n}$
 - (b) $\log(\log^* n)$

- (c) $\log^* n, \log^* \log n$
- (d) $2^{\log^* n}$
- (e) $\ln \ln n$
- (f) $\sqrt{\log n}$
- (g) $\ln n$
- (h) $\log^2 n$
- (i) $2^{\sqrt{2\log n}}$
- (j) $2^{\ln n}$
- (k) n
- (l) $n \log n, \log n!$
- (m) $n^2, 4^{\log n}$
- (n) n^{3}
- (o) $(\log n)!$
- (p) $n^{\log \log n}$, $\log n^{\log n}$
- (q) $(\sqrt{n})^{\log n}$
- $(\mathbf{r}) \left(\frac{3}{2}\right)^n$
- (s) 2^n
- (t) $n \cdot 2^n$
- (u) e^n
- (v) n!
- (w) (n+1)!
- $(x) 2^{2^n}$
- (y) $2^{2^{n+1}}$

- 5. Сумма бесконечной геометрической прогрессии $=\frac{b}{1-q}$.
 - a) $b = 1, q = \frac{1}{2} \to \text{ ответ} = 2.$
 - b) Это сумма двух прогрессий. У одной $b=1, q=\frac{1}{4},$ у другой $b=-\frac{1}{2}, q=\frac{1}{4}\to$ ответ $=\frac{2}{3}.$

2 Дополнительные задачи

1.

q) False. Докажем о/п. Пусть $\exists C: \forall n>Nn^n\leq Cn!$. Подставим в качестве nX=max([C]+1,N).

 $X^X < CX!$, поделим на X слева и на C справа. $X > C \to$ если после этого левая часть будет \ge правой, то до такого деления она была >.

 $X^{X-1} < X!$, в правой части можно убрать из произведения 1, тогда останется X-1 множителей $\leq X$, а слева X-1 множителей X. Значит, левая часть > правой. Противоречие. #

2.

- 1) Докажем, что $\forall T(n) = 2F_n 1$, где $F_n n$ -ое число Фибоначчи. Очевидно, для n = 0, n = 1 выполняется $(1 = 2 \cdot 1 1)$, теперь переход.
- $T(n)=T(n-1)+T(n-2)+1=2F_{n-1}-1+2F_{n-2}-1+1=2F_n-1\to {\rm True}.$ Тогда $T(n)=\Theta((\frac{\sqrt{5}+1}{2})^n).$
- m) По теореме об эксп. рек. соотн. $T(n) = \Theta(\alpha^n)$, где α корень уравнения $1 = \alpha^{-1} + \alpha^{-3} \Leftrightarrow \alpha^3 \alpha^2 1 = 0$. Можно взять формулы Кардано, можно бинпоиск на отрезке $[1, +\infty)$, ответ будет ≈ 1.4656 .