- 1. Suppose your training examples are sentences (sequences of words). Which of the following 1 / 1 point refers to the j^{th} word in the i^{th} training example?

- $x^{(i) < j >}$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN: 1 / 1 point

This specific type of architecture is appropriate when:

- $T_x < T_y$

- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$
 - ✓ Correct

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1 / 1 point

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
 - Correct

Correct!

Image classification (input an image and output a label)

- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
 - ✓ Correct!
- 4. You are training this RNN language model.

1 / 1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- igcup Estimating $P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- $igcap Estimating P(y^{< t>})$
- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$
- igcup Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

✓ Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

1 / 1 point

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$.(ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$.(ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$.(ii) Then pass this selected word to the next time-step.

✓ Correct

6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

1 / 1 point

Vanishing gradient problem.

	Exploding gradient problem.	
	ReLU activation function g(.) used to compute g(z), where z is too large.	
	Sigmoid activation function g(.) used to compute g(z), where z is too large.	
	✓ Correct	
7.	Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?	1 / 1 point
	O 1	
	100	
	300	
	O 10000	
	\checkmark Correct Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.	
8.		1 / 1 point

Here're the update equations for the GRU.

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[\;c^{< t-1>},x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- O Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- igcomes Alice's model (removing Γ_u), because if $\Gamma_r pprox 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- igotimes Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \bigcirc Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

✓ Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependent on $c^{< t-1>}$.

9. 1 / 1 point

LSTM

Here are the equations for the GRU and the LSTM:

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the blanks?

- lacksquare Γ_u and $1-\Gamma_u$
- $\bigcap \ \Gamma_u$ and Γ_r
- $\bigcap \ 1 \Gamma_u$ and Γ_u
- \bigcap Γ_r and Γ_u

✓ Correct

Yes, correct!

10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

1 / 1 point

0	Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
0	Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
•	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>},\dots,x^{< t>}$, but not on $x^{< t+1>},\dots,x^{< 365>}$
0	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

✓ Correct

Yes!