

Due: Wednesday, November 21, 2018

1. Simplify the following expressions using Boolean algebra:

a.
$$(B + \overline{C})(\overline{B} + C) + \overline{A} + \overline{B} + \overline{C}$$

b.
$$\overline{(\bar{A}+B+\bar{C})(A+B+\bar{C})(\bar{A}+B+C)}\overline{(BC+\bar{A}\bar{B}\bar{C})}$$

2. Suppose a Boolean variable *Z* is described by the following Karnaugh map:

AB	00	01	11	10
00	X	X	X	0
01	0	X	1	1
11	0	1	1	X
10	0	X	X	0

- a. Construct a minimum SOP expression for Z.
- b. Construct a minimum POS expression for Z.
- c. Implement Z using NAND gates.
- d. Implement Z using NOR gates.
- 3. For the following logic circuit, draw the output waveform in proper relationship to the inputs.

4. Design a logic circuit whose output *Z* is HIGH only when a majority of its inputs *A*, *B*, and *C* are LOW.