

BLM3620 Digital Signal Processing

Dr. Ali Can KARACA

ackaraca@yildiz.edu.tr

Yıldız Technical University – Computer Engineering

Lecture #3 – Spectrum Representation (for continuous-time signals)

- Spectrum of a Sum of Sinusoids
- Fourier Series Analysis and Synthesis
- Example: Amplitude Modulation
- Spectrogram
- MATLAB Applications

Course Materials

Important Materials:

- James H. McClellan, R. W. Schafer, M. A. Yoder, DSP First Second Edition, Pearson, 2015.
- Lizhe Tan, Jean Jiang, *Digital Signal Processing: Fundamentals and Applications*, Third Edition, Academic Press, 2019.

Auxilary Materials:

- Prof. Sarp Ertürk, Sayısal İşaret İşleme, Birsen Yayınevi.
- Prof. Nizamettin Aydin, DSP Lecture Notes.
- J. G. Proakis, D. K. Manolakis, *Digital Signal Processing Fourth Edition*, Peason, 2014.
- J. K. Perin, *Digital Signal Processing, Lecture Notes,* Standford University, 2018.

Syllabus

Week	Lectures
1	Introduction to DSP and MATLAB
2	Sinuzoids and Complex Exponentials
3	Spectrum Representation
4	Sampling and Aliasing
5	Discrete Time Signal Properties and Convolution
6	Convolution and FIR Filters
7	Frequency Response of FIR Filters
8	Midterm Exam
9	Discrete Time Fourier Transform and Properties
10	Discrete Fourier Transform and Properties
11	Fast Fourier Transform and Windowing
12	z- Transforms
13	FIR Filter Design and Applications
14	IIR Filter Design and Applications
15	Final Exam

For more details -> Bologna page: $\underline{ \text{http://www.bologna.yildiz.edu.tr/index.php?r=course/view&id=5730\&aid=3} }$

Recall: Sum of Phasors and Fourier Series

$$x(t) = \sum_{k=-M}^{M} a_k e^{j2\pi f_k t}$$

Demo Link: https://dspfirst.gatech.edu/chapters/02sines/demos/phasors/index.html

Fourier Series

- Sinusoids with DIFFERENT Frequencies
 - SYNTHESIZE by Adding Sinusoids

Harmonic freqs:
$$f_k = k f_0$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k F_0 t}$$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k F_0 t + \varphi_k)$$

- SPECTRUM Representation
 - Graphical Form shows <u>DIFFERENT</u> Freqs

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi k/T_0)t} dt$$

Fourier Series Summary

Strategies to Find Fourier Series Coefficients

Some thoughts:

- Starting from signal, x(t), which frequencies and complex amplitudes are required?
- ONLY FOR PERIODIC SIGNALS!
- Two possible analysis methods:
 - 1. Read off coefficients from inverse Euler's
 - 2. Evaluate Fourier series integral
- Can plot the spectrum for the Fourier Series
 - Equally spaced lines at kF₀

STRATEGY 1:

$$x(t) = \sin^3(3\pi t)$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

$$x(t) = \left(\frac{1}{2j}(e^{j\omega t} - e^{-j\omega t})\right)^3 = \frac{j}{8}\left(e^{j\omega t} - e^{-j\omega t}\right)^3$$

Example

$$x(t) = \sin^3(3\pi t)$$

$$x(t) = \left(\frac{j}{8}\right)e^{j9\pi t} + \left(\frac{-3j}{8}\right)e^{j3\pi t} + \left(\frac{3j}{8}\right)e^{-j3\pi t} + \left(\frac{-j}{8}\right)e^{-j9\pi t}$$

Aug 2016

STRATEGY 2: $x(t) \rightarrow a_k$

ANALYSIS

- Get representation from the signal
- Works for **PERIODIC** Signals
- Fourier Series
 - Answer is: an INTEGRAL over one period

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\omega_0 kt} dt$$

SQUARE WAVE EXAMPLE

$$x(t) = \begin{cases} 1 & 0 \le t < \frac{1}{2}T_0 \\ 0 & \frac{1}{2}T_0 \le t < T_0 \end{cases}$$
 for $T_0 = 0.04$ sec.

FS for a SQUARE WAVE {a_k}

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} dt \qquad (k \neq 0)$$

$$x(t) = \begin{cases} 1 & 0 \le t < .02 \\ 0 & .02 \le t < .04 \end{cases}$$

$$a_{k} = \frac{1}{0.04} \int_{0}^{0.02} 1 e^{-j(2\pi/.04)kt} dt = \frac{1}{0.04(-j2\pi k/.04)} e^{-j(2\pi/.04)kt} \Big|_{0}^{0.02}$$

$$1 = \frac{1}{0.04} \int_{0}^{0.02} 1 e^{-j(2\pi/.04)kt} dt = \frac{1}{0.04(-j2\pi k/.04)} e^{-j(2\pi/.04)kt} \Big|_{0}^{0.02}$$

$$= \frac{1}{(-j2\pi k)}(e^{-j(\pi)k} - 1) = \frac{1 - (-1)^k}{j2\pi k} \qquad (k \neq 0)$$

- Complex Amplitude a_k for k-th Harmonic
 - Does not depend on the period, T₀
 - DC value is 0.5

$$a_k = \frac{1 - (-1)^k}{j2\pi k} = \begin{cases} \frac{1}{j\pi k} & k = \pm 1, \pm 3, \dots \\ 0 & k = \pm 2, \pm 4, \dots \\ \frac{1}{2} & k = 0 \end{cases}$$

Spectrum from Fourier Series

$$T_0 = 0.04 \implies$$

 $\omega_0 = 2\pi/(0.04) = 2\pi(25)$

Synthesis: 1st & 3rd Harmonics

$$y(t) = \frac{1}{2} + \frac{2}{\pi}\cos(2\pi(25)t - \frac{\pi}{2}) + \frac{2}{3\pi}\cos(2\pi(75)t - \frac{\pi}{2})$$

Aug 2016

Synthesis: up to 7th Harmonic

$$y(t) = \frac{1}{2} + \frac{2}{\pi}\cos(50\pi t - \frac{\pi}{2}) + \frac{2}{3\pi}\sin(150\pi t) + \frac{2}{5\pi}\sin(250\pi t) + \frac{2}{7\pi}\sin(350\pi t)$$

Fourier Series Demo

https://dspfirst.gatech.edu/chapters/03spect/demosLV/fseries/index.html

More Examples for Strategy -1

$$x(t) = 10 + 14\cos(200\pi t - \pi/3) + 8\cos(500\pi t + \pi/2)$$

Find spectrum of signal x(t).

Apply inverse Euler formula:

$$x(t) = 10 + 7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t}$$
$$+ 4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$
$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$

Find the complex amplitude and frequency of these phasors:

$$\{(0, 10), (100, 7e^{-j\pi/3}), (-100, 7e^{j\pi/3}), (250, 4e^{j\pi/2}), (-250, 4e^{-j\pi/2})\}$$

 $f_0 \ a_0 \ f_2 \ a_2 \ f_{-2} \ a_{-2}$

Spectrum Representation

Spectrum Interpretation

$$A\cos(7\pi t + 0.1) = \frac{A}{2} e^{j0.1} e^{j7\pi t} + \frac{A}{2} e^{-j0.1} e^{-j7\pi t}$$

$$\frac{A}{2} e^{j0.1}$$

$$\frac{A}{2} e^{j0.1}$$

$$\frac{A}{2} e^{j0.1}$$
Freq. in rad/s

- One has a positive frequency
- The other has negative freq.
- Amplitude of each is half as big

$$A\cos(\omega t + \varphi) = \frac{1}{2}Ae^{j\varphi}e^{j\omega t} + \frac{1}{2}Ae^{-j\varphi}e^{-j\omega t}$$

Example: Sythetic Vowel

Table 3-1 Complex amplitudes for the periodic signal that approximates a complicated waveform like a vowel, such as "ah." The a_k coefficients are given for positive indices k, but the values for negative k are the conjugates, $a_{-k} = a_k^*$.

k	f_k (Hz)	a_k	Mag	Phase
1	100	0	0	0
2	200	0.00772 + j0.122	0.1223	1.508
3	300	0	0	0
4	400	-0.08866 + j0.2805	0.2942	1.877
5	500	0.48 - j0.08996	0.4884	-0.185
6	600	0	0	0
:	:	:	:	:
15	1500	0	0	0
16	1600	0.01656 - j0.1352	0.1362	-1.449
17	1700	0.04724 + j0	0.04724	0

Vowel Waveform

THE ROLL OF THE STATE OF THE ST

(a) The 200-Hz term alone. (b) Sum of the 400-Hz and 200-Hz terms. Additional terms are added one at a time until the entire synthetic vowel signal is created in (e). (c) Adding the 500-Hz term, which changes the fundamental period, (d) adding the 1600-Hz term, and (e) adding the 1700-Hz term.

FREQUENCY ANALYSIS

Now, a much HARDER problem

Given a recording of a song, have the computer write the music

- Can a machine extract frequencies?
 - Yes, if we COMPUTE the spectrum for x(t)
 - During short intervals

Frequency can change with time 😊 What can we do?

SIMPLE TEST SIGNAL

- C-major SCALE: stepped frequencies
 - Frequency is constant for each note

Middle C	D_4	E ₄	F ₄	G ₄	A_4	B ₄	C_5
262 Hz	294	330	349	392	440	494	523

SPECTROGRAM

- SPECTROGRAM Tool
 - MATLAB function is spectrogram.m
 - SP-First has plotspec.m & spectgr.m
- ANALYSIS program
 - Takes x(t) as input
 - Produces spectrum values X_k
 - Breaks x(t) into SHORT TIME SEGMENTS
 - Then uses the FFT (<u>Fast Fourier Transform</u>)

SPECTROGRAM EXAMPLE

• Two **Constant** Frequencies: Beats

 $\cos(2\pi(672)t) + \cos(2\pi(648)t)$ $= 2\cos(2\pi(12)t)\cos(2\pi(660)t)$

Ilan & RW Schafer

28

AM Radio Signal

Same form as BEAT Notes, but <u>higher in freq</u>

$\cos(2\pi(\underline{660})t)\sin(2\pi(12)t)$

$$\frac{1}{2} \left(e^{j2\pi(660)t} + e^{-j2\pi(660)t} \right) \frac{1}{2j} \left(e^{j2\pi(12)t} - e^{-j2\pi(12)t} \right)$$

$$\frac{1}{4j} \left(e^{j2\pi(672)t} - e^{-j2\pi(672)t} - e^{j2\pi(648)t} + e^{-j2\pi(648)t} \right)$$

$$\frac{1}{2}\cos(2\pi(672)t - \frac{\pi}{2}) + \frac{1}{2}\cos(2\pi(648)t + \frac{\pi}{2})$$

SPECTRUM of AM (Amplitude Modulation)

• **SUM** of 4 complex exponentials:

What is the fundamental frequency?

648 Hz?

24 Hz?

STEPPED FREQUENCIES

- C-major SCALE: successive sinusoids
 - Frequency is constant for each note

Aug 2016

BLM3620 Digital Signal Processing

SPECTROGRAM of C-Scale

Aug 2016

32

Example 1

PROBLEM:

A real signal x(t) has the following two-sided spectrum:

- (a) Write an equation for x(t) as a sum of cosines.
- (b) Plot the spectrum of the signal $y(t) = 2x(t) 3\cos(5000\pi(t 0.002))$.

a)
$$\infty(t) = 5 + (2.5 \times 2) \cos(3000\pi t - \frac{\pi}{6}) + (2 \times 2) \cos(3000\pi t + \frac{\pi}{2})$$

careful! do not forget this factor 2!

b)
$$Y(t) = 2x(t) - 3\cos(5000\pi(t-0.002))$$

= $2x(t) - 3\cos(5000\pi t - 10\pi)$
= $2x(t) - 3\cos(5000\pi t)$
= $2x(t) + 3\cos(5000\pi t + \pi)$

Example 2

A signal composed of sinusoids is given by the equation

$$x(t) = 3\cos(50\pi t - \pi/8) - 5\cos(150\pi t + \pi/6)$$

- (a) Sketch the spectrum of this signal indicating the complex amplitude of each frequency component. You do not have to make separate plots for real/imaginary parts or magnitude/phase. Just indicate the complex amplitude value at the appropriate frequency.
- (b) Is x(t) periodic? If so, what is the period? Which harmonics are present?

Answer

a)
$$x(+) = \frac{3}{2}e^{-j\frac{\pi}{8}$$

b) Yes, x(+) is periodic: $T = \frac{1}{25} = 40 \text{ ms}$ First and third larmonics are present.

Example 3

A periodic signal, x(t), is given by

$$x(t) = 2 + \sin(300\pi t) + 3\cos(600\pi t + \pi/3)$$

(a) What is the period of x(t)?

FUNDAMENTAL FREQ.:
$$\omega_0 = 300\pi = \frac{2\pi}{T}$$

$$\Rightarrow T = \frac{1}{150} \text{ SEC.}$$

(b) Find the Fourier series coefficients of x(t) for $-6 \le k \le 6$.

Using Euler's Relation $(x|t) = 2 + \frac{1}{2}e^{i\frac{\pi}{2}} e^{i\frac{\pi}{2}} e^{i\frac{300\pi t}{2}} + \frac{1}{2}e^{i\frac{\pi}{2}} e^{i\frac{300\pi t}{2}} + \frac{3}{2}e^{i\frac{\pi}{3}} e^{i\frac{2(300\pi)t}{2}} + \frac{3}{3}e^{i\frac{\pi}{3}} e^{i\frac{2(300\pi)t}{2}}$

$$a_0 = 2$$
 $a_2 = \frac{3}{2} e^{j \pi/3}$
 $a_1 = \frac{1}{2} e^{j \pi/2}$
 $a_2 = \frac{3}{2} e^{j \pi/3}$
 $a_2 = \frac{3}{2} e^{j \pi/3}$
 $a_1 = \frac{1}{2} e^{j \pi/2}$
 $a_2 = 0$ FOR ALL OTHER k

Example 4

(a) 4 (b) 1 (c) 2 (d) 5 (e) 3

Several signals are plotted below along with their corresponding spectra. However, they are in a randon order. For each of the signals (a)–(e), determine the correct spectrum (1)–(5). Write your answers in the following table:

/a\	/h\	/a\	/4 \	(0)	
(a)	(b)	(C)	(d)	(e)	

More Examples

Can be found here:

https://dspfirst.gatech.edu/database/?d=homework&chap=3

https://dspfirst.gatech.edu/chapters/03spect/demos/spectrog/index.html