Apellido y Nombre:	
Carrera:	DNI:
[Llenar con letra mayúscu	la de imprenta GRANDE]

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática

Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. Examen Final. [12 de Febrero de 2004]

- Ej. 1.- [Primitivas (20 puntos)] Escribir las funciones del TAD DICCIONARIO listadas a continuación, implementado por tabla de dispersión cerrada con resolución lineal de colisiones ANULA(D), INSERTA(x,D), MIEMBRO(x,D) y SUPRIME(x,D). Escribir todos los tipos, definiciones, funciones y procedimientos auxiliares necesarios.
- Ej. 2.- [Ejercicios de programación (total 80 puntos)]
 - a) Escribir un procedimiento procedure KRONECKER(LA,LB: lista; var L:lista); que, dadas dos listas LA= $\{a_1,a_2,...,a_N\}$ y LB= $\{b_1,b_2,...,b_M\}$ retorna otra lista L con $N\times M$ valores de la siguiente forma:

$$L = \{a_1b_1, a_1b_2, ..., a_1b_M, a_2b_1, a_2b_2, ..., a_2b_M, ... a_Nb_1, a_Nb_2, ..., a_Nb_M\}$$
(1)

Por ejemplo, si $LA=\{1,3,5,0\}$ y $LB=\{1,2,3,4\}$ entonces KRONECKER(LA,LB,L) debe hacer que

$$L = \{1, 2, 3, 4, 3, 6, 9, 12, 5, 10, 15, 20, 0, 0, 0, 0\}.$$
(2)

Usar las siguientes primitivas del TAD LISTA: INSERTA(x,p,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L). No usar ninguna estructura auxiliar.

- b) [cant-hojas (20 puntos)] Escribir una función recursiva function CANT_HOJAS(a:nodo; A:arbol):integer que retorna la cantidad de hojas del árbol cuya raíz es a. Usar las funciones del TAD ARBOL ORDENADO ORIENTADO: HIJO_MAS_IZQ(n,A)}, HERMANO_DER(n,A), ETIQUETA(n,A).
- c) [iguales (35 puntos)] Escribir una función recursiva function IGUALES(n,m: nodo; A: arbol) : boolean que retorna verdadero (true) si dos árboles ordenados y orientados son iguales y falso (false) si no lo son. Dos ríboles son iguales si tienen la misma estructura y contenido (etiquetas). Usar las funciones del TAD ARBOL ORDENADO ORIENTADO: HIJO_MAS_IZQ(n,A)}, HERMANO_DER(n,A), ETIQUETA(n,A).
- Ej. 3.- [LIBRES] Ejercicios operativos (total 80 puntos)
 - a) [colorear-grafo (20 puntos)] Colorear el siguiente grafo, utilizando una estrategia heurística para tratar de usar el menor número de colores posibles.

Carrer	a:	DNI:	Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática
[Llenar o	con letra	a mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos
	b)	[reconstruir-arbol (20 puntos)] Dibujar el árbo orden previo y posterior son ■ ORD_PRE ={15, 22, 3, 14, 6, 7, 81, 9, 11, 12, 10, 5}. ■ ORD_POST ={22, 81, 7, 6, 12, 11, 9, 10, 14, 5, 3, 15}	
	c)	[abb (20 puntos)] Dados los caracteres $\{z, t, a, l, a\}$ "árbol binario de búsqueda". Mostrar las operacion	
	d)	[tablas de dispersión (20 puntos)] Insertar los tabla de dispersión cerrada con $B=10$ cubetas, co estrategia de redispersión lineal.	
Ej. 4	deci	IBRES] preguntas (total 20ptos, 5ptos/preg): [cir marcar con una cruz el casillero apropiado. Atence escabelladas" y tienen puntajes negativos!!]	
	a)	Las operaciones INSERTA y SUPRIME_MIN sobre el T. montículos requiere un número de operaciones que	1 1
		la longitud del camino en el àrbol desde la r el número de elementos en el montículo n el cuadrado del número de elementos en el n el logaritmo de la semilla.	
	b)	El algoritmo de clasificación por urnas tiene un tiene está restringido a que el número de claves posibles	
		sea finito sea delgado sea una potencia de 2 sea infinito.	
	c)	La ventaja de la representación del TAD COLA por a por celdas enlazadas es que	arreglo circular con respecto a la representación
		requiere menos memoria ya que no necesita el orden de las operaciones FRENTE, QUITA, permite inserciones/supresiones en el medio es más simple.	PONE es $O(\log n)$.
	<i>d</i>)	La búsqueda exhaustiva del camino de longitud mín (PAV) tiene un tiempo de ejecución (n es el núm: $O(n)$ $O(1)$ $O(n\$O(n^2)$	

2

Universidad Nacional del Litoral

Examen Final. [12 de Febrero de 2004]

Apellido y Nombre: _