Report on Simple Proofs of Sequential Work

Haikuo Yin and Sharon Zhen

March 11, 2019

1 Introduction

The main idea of this paper is a construction to prove sequential work. This was first done by Mahmoody, Moran and Vadhan at ITCS 2013 [MMV'13], and authors of the current paper–Cohen and Pietrzak [CP'18]–propose a new construction that's simpler and more efficient. This paper received the Best Paper Award at EuroCrypt 2018.

In this paper, proof of sequential work is roughly defined as a prover \mathcal{P} proving to a verifier \mathcal{V} that \mathcal{N} sequential queries have been made to a Random Oracle H.

[MMV'13]'s construction is based on repeatedly calling H on the nodes of a directed acyclic graph (DAG) to generate labels for each node in a sequential manner. [CP'18] improves upon their work by changing the underlying DAG to both simplify the proof and achieve more efficient performance.

2 Fundamental Concepts

Here we will describe the fundamental concepts used to construct [CP'18].

2.1 Definition of Proof of Sequential Work (PoSW)

Figure 1: Illustration of PosW protocol given in the paper [1]

In this paper, PoSW is specified using a set of three algorithms, PoSW, open, and verify, roughly defined as:

- ullet PoSW: ${\mathcal P}$ computes a proof and sends it to ${\mathcal V}$
- ullet open: ${\mathcal P}$ receives a challenge from ${\mathcal V}$ and computes the answer
- ullet verify: ${\cal V}$ receives answer from ${\cal P}$ and either accepts or rejects

Formally, the protocol is defined as:

- 1. **Common Inputs**: \mathcal{P} and \mathcal{V} receive as input statistical security parameters $w, t \in \mathbb{N}$, and a time parameter $N \in \mathbb{N}$. Both also has access to a random oracle $H : \{0, 1\}^* \to \{0, 1\}^w$.
- 2. **Statement**: \mathcal{V} generates random string $\chi \leftarrow \{0,1\}^w$ and sends it to \mathcal{P} .
- 3. **Compute PoSW**: \mathcal{P} computes a proof $(\phi, \phi_{\mathcal{P}}) := \text{PoSW}^{H}(\chi, N)$ (an honest \mathcal{P} would make N sequential queries to H), keeping ϕ and sends $\phi_{\mathcal{P}}$ to \mathcal{V} .
- 4. **Generating Challenge**: \mathcal{V} samples random challenge $\gamma \leftarrow \{0,1\}^{t \cdot w}$ (t strings of length w) and sends it to \mathcal{P} .
- 5. **Open**: \mathcal{P} opens challenge γ and computes response $\tau := \text{open}^H(\chi, N, \phi_{\mathcal{P}}, \gamma)$, sending τ back to \mathcal{V} .
- 6. **Verify**: V verifies τ by computing verify $(\chi, N, \phi, \gamma, \tau) \in \{\text{accept, reject}\}\$ and either accepts or rejects the proof.

The authors require:

- Perfect **Correctness**: V will accept honest P with probablility 1.
- Soundness: $\mathcal V$ will accept malicious prover $\widetilde{\mathcal P}$ with good probability ONLY IF $\widetilde{\mathcal P}$ has queried H "almost" N times.

2.2 Graph Definitions

Here we will define the graph properties used by [CP'18] in their construction.

Definition 1 (Graph Labelling): Given a DAG (directed acyclic graph) G = (V, E), where the set of vertices $V = \{0, ..., N-1\}$, and a hash function $H : \{0, 1\}^* \to \{0, 1\}^w$, the label $\ell_i \in \{0, 1\}^w$ for each vertex $i \in V$ is defined as $\ell_i = H(i, \ell_{p_1}, ..., \ell_{p_d})$, where $(p_1, ..., p_d) = \operatorname{parents}(i)$. Parents of a vertex i are defined as any node with an edge to vertex i.

As defined here, the labels can be computed by making a query to H for each vertex in the DAG, in topological order, resulting in N sequential queries to H.

Definition 2 (Depth-Robust DAG): A DAG is e, d depth-robust if for any subset S of its vertices V (i.e. $S \subset V$), where |S| < e, the subgraph V - S has a path of at least length d.

2.2.1 Graph Notations

Definition 3 ((\hat{S} , S^* , D_S)): Given a DAG G = (V, E) and subset of vertices $S \subseteq V$, the authors defined \hat{S} as the set of leaves under S i.e.

$$\hat{S} := \{ v | | u \in \{0, 1\}^n : v \in S, u \in \{0, 1\}^{n - |v|} \}$$

The authors defined S^* as the smallest set that share the same leaves of S, i.e.

$$S^* := \{S' : \hat{S}' = \hat{S} \text{ and } |S'| \le |K|, \forall \hat{K} = \hat{S}\}$$

The authors defined D_S as the nodes that are in S or below S, i.e.

$$D_S := \{ v | | v' : v \in S, v' \in \{0, 1\}^{n-|v|} \}$$

2.3 Random Orable Properties (RO)

Salting the RO: In all three algorithms PoSW, open, and verify, random string χ is used to sample a RO H_{χ}. One example [CP'18] provided is adding χ as a prefix to every call to H, i.e. $H_{\chi}(\cdot) \stackrel{\text{def}}{=} H(\chi, \cdot)$.

Definition 3 (H-Sequence): An H-sequence of length s is a sequence of s strings $x_0, \ldots, x_s \in \{0, 1\}^*$, where for each i < s, $H(x_i)$ is a substring of x_{i+1} .

3 Construction

3.1 Definition of Underlying DAG (G_n^{PoSW})

Figure 2: Example graph given in the paper [1]

First, the authors start with a complete binary tree of depth $n \in \mathbb{N}$, which they call $B_n = (V, E')$. This would mean that there are $N = 2^{n+1} - 1$ vertices in the graph, and each vertex is identified as a binary string where its length is equal to the depth of the vertex from the root. The root, at depth 0, is identified as the empty string ε , or $\{0,1\}^0$. More formally, the set of vertices V is equal to the set of strings $\{0,1\}^{\leq n}$.

The authors also define vertex v as above u if u = v||a (where || refers to concatenation) for some a. If v as above u, then u is below v.

All the edges in B_n go from the leaves to the root (which would mean that all the vertices below some vertex v are the ancestors of v. Formally, $E' = \{(x || b, x) : b \in \{0, 1\}, x \in \{0, 1\}^i, i < n\}$.

Now the authors add edges to B_n to turn it into G_n^{PoSW} used for their construction. They add edges E'' which, for all leaves $u \in \{0,1\}^n$, are edges (v,u), where v is the left sibling of any vertex on the path from u to the root. Formally, $E'' = \{(v,u) : u \in \{0,1\}^n, u = a || 1 || a', v = a || 0 \}$.

Thus formally, $G_n^{\text{PoSW}} = (V, E)$ where V are the vertices from B_n and $E = E' \cup E''$. This G_n^{PoSW} is what's used by the authors for PoSW.

3.2 Definition of PoSW

3.2.1 Parameters

To define these algorithms, there are 4 input parameters:

- 1. N: What the authors call the time parameter, which is the number of nodes in the DAG. $N = 2^{n+1} 1$ for some depth $n \in \mathbb{N}$.
- 2. H: $\{0,1\}^{\leq w(n+1)} \to \{0,1\}^w$ A hash function that takes inputs of length w(n+1) and outputs strings of length w. For this proof, they are modeled as random oracles.
- 3. t: A statistical security parameter
- 4. M: Amount of memory available to prover \mathcal{P} , which is assumed to be $M = (t + n \cdot t + 1 + 2^{m+1})w$, where m is an integer $0 \le m \le n$.

3.2.2 Definition of PoSW, open, and verify

- $(\phi, \phi_{\mathcal{P}}) := \mathsf{PoSW}^{\mathsf{H}_{\chi}}(N)$: Algorithm used by prover \mathcal{P} to generate labels $\{\ell_i\}_{i \in \{0,1\}^{\leq n}}$ for every vertex in the DAG G_n^{PosW} using H_{χ} . \mathcal{P} stores the labels of the m highest layers $(\{\ell_i\}_{i \in \{0,1\}^{\leq m}})$ as $\phi_{\mathcal{P}}$, and sends root label (ℓ_{ε}) to \mathcal{V} as ϕ , the proof.
- $\tau := \operatorname{open}^{\mathsf{H}_{\mathsf{X}}}(N, \phi_{\mathcal{P}}, \gamma)$: Upon receiving challenge $\gamma = (\gamma_1 \dots, \gamma_t)$ from verifier \mathcal{V} , where each $\gamma_i \in \{0, 1\}^n$ is a leaf node, prover \mathcal{P} generates response τ that contains, for every γ_i , the label ℓ_{γ_i} and the labels of the siblings of every node on the path from γ_i to the root, i.e. $\{\ell_k\}_{k \in \mathcal{S}_{\gamma_i}}$ where $\mathcal{S}_{\gamma_i} \stackrel{\mathrm{def}}{=} \{\gamma_i[1 \dots j-1] \| (1-\gamma_i[j])\}_{j=1\dots n}$.

Formally, au is defined as $au \stackrel{\text{def}}{=} \{\ell_{\gamma_i}, \{\ell_k\}_{k \in \mathcal{S}_{\gamma_i}}\}_{i=1...t}$.

• verify^{H_x}(N, ϕ, γ, τ): Algorithm used by verifier $\mathcal V$ to check that labels are correctly computed. Since $\mathcal S\gamma_i$ contains all the parents of γ_i , $\mathcal V$ first checks that ℓ_{γ_i} is correctly computed from its parents, i.e. that $\ell_{\gamma_i} \stackrel{?}{=} \mathsf{H}_{\chi}(i, \ell_{p_1}, \dots, \ell_{p_d})$ where $(p_1, \dots, p_d) = \mathsf{parents}(\gamma_i)$.

 $\mathcal V$ will then use that information to recursively compute the labels of all the vertices from on the path to the root. More formally, for $i=n-1,\,n-2,\,...,\,0,\,\mathcal V$ will compute $\ell_{\gamma_i[0...i]}:=\mathsf H_{\chi}(\gamma_i[0\,...\,i],\ell_{\gamma_i[0...i]\parallel 0},\ell_{\gamma_i[0...i]\parallel 1})$.

Finally, $\mathcal V$ will verify that the computed label of the root equals the ϕ received from $\mathcal P$ earlier, i.e. that $\ell_{\gamma_i[0...0]} = \ell_{\varepsilon}$.

4 Proofs

4.1 Lemmas

Lemma 1: Random Oracles are Collision Resistant

Consider an adversary \mathcal{A}^H which is given access to a random function $H:\{0,1\}^* \to \{0,1\}^w$. If \mathcal{A} makes at most q queries, the probability of two colliding queries $x \neq x'$, H(x) = H(x') is at most $\frac{q^2}{2^{w+1}}$

Proof. For individual queries $x_1 \le x_i \le x_q$, the probability of collision between the i^{th} query with a previous query , (i.e. $P(H(x_i) = H(x_{i-1}))$) is bounded by $\frac{i-1}{2^w}$. So the probability of collision for all q queries is bounded by $\sum_{i=1}^q \frac{i-1}{2^w} = \frac{q^2}{2^{w+1}}$.

Lemma 2: Random Oracles are Sequential

Consider an adversary \mathcal{A}^H which is given access to a random function $H:\{0,1\}^* \to \{0,1\}^w$ that it can query for at most s-1 rounds. Each round, \mathcal{A}^H can make arbitrarily many parallel queries. If A makes at most q queries of total length Q bits, then the probability that it outputs an H-sequence $x_0, ..., x_n$ is at most $q \cdot \frac{Q + \sum_{i=1}^s |x_i|}{2^w}$

Proof. We can divide this into two cases, where (1) A "gets lucky" with one x_i , or (2) there's collision, i.e. for some $x_i \neq x_j$, $H(x_i) = H(x_i)$.

- Case 1: for some $0 \le i < s$, $H(x_i)$ is a substring of x_{i+1} , but A did not query x_i . Since H is a uniformly random function, the probability that $H(x_i) \subseteq_{i+1}$ for some i and some a, b would at most $q \cdot \frac{|x_i|}{2^w}$. Thus the probability for any i is at most $q \cdot \frac{\sum_{i=0}^{s} |x_i|}{2^w}$, by union bound.
- Case 2: for some $1 \le i \le j \le s-1$ and some queries x_i , x_j , the probability of collision, i.e. that $x_i \supseteq H(x_j)$ is bounded by $q \cdot \frac{Q}{2w}$

Adding the two cases, we get $q \cdot \frac{Q + \sum_{i=1}^{s} |x_i|}{2^w}$.

Lemma 3: The labels of G_n^{PoSW} can be computed in topological order using only $w \cdot (n+1)$ bits of memory *Proof.* n is the depth of the graph and w is the output range of the hash function. The proof is a backward induction on the depth of G_n^{PoSW} .

- 1. First, separate G_n^{PoSW} into Right and Left subtrees. Each subtree is isomorphic to G_{n-1}^{PoSW} , if we don't take into account the edges going from $label_0$ to leaves on the Right subtree.
- 2. We calculate $label_0$ on the Left subtree using the space it would take to calculate G_{n-1}^{PoSW} , and keep $label_0$.
- 3. Then, to calculate $label_1$ on the Right subtree, we need the space it takes to calculate G_{n-1}^{PoSW} , plus w bits to store $label_1$.
- 4. Then, using only $label_0$ and $label_1$, we calculate the label of the root $label_{\epsilon} = H(\epsilon, label_0, label_1)$.

Thus, the memory required to compute G_n^{PoSW} is the memory it takes to compute $w+G_{n-1}^{\text{PoSW}}=w+w+G_{n-2}^{\text{PoSW}}=k\cdot w+G_{n-k}^{\text{PoSW}}$. For base case G_0^{PoSW} , theres only 1 node, meaning the root can be can be computed in w bits. So we get $w+G_{n-1}^{\text{PoSW}}=k\cdot w+G_{n-k}^{\text{PoSW}}=n\cdot w+G_0^{\text{PoSW}}=n\cdot w+w=w(n+1)$.

Lemma 4: Take a graph $G_n^{\text{PoSW}} = (V, E)$. For any $S \subseteq V$, the subgraph of G_n^{PoSW} consisting of nodes $V - D_{S^*}$ has a directed path going through all the leftover nodes (there are $|V| - |D_{S^*}| = N - |D_{S^*}|$ leftover nodes).

Proof. This proof is an induction on n for G_n^{PoSW} . G_0^{PoSW} is obviously true since it contains a single node. Suppose the lemma holds for G_i^{PoSW} . We now want to show it holds for G_{i+1}^{PoSW} . So pick some $G_{i+1}^{\text{PoSW}} = (V, E)$. G_{i+1}^{PoSW} has a Left and Right subgraph, and root ϵ . The Left and Right subgraphs are isomorphic to G_i^{PoSW} , except for extra edges from from $label_0$ to leaves of the Right subgraph. Consider an arbitrary $S \subseteq V$, and these four cases:

- case 1: If node $\epsilon \in S^*$ then we are done because D_{S^*} would be the whole graph and it is vacuously true that $V D_{S^*}$ has a directed path.
- case 2: Suppose nodes $0 \in S^*$, $1 \notin S^*$ then the whole Left subtree would be in D_{S^*} . The Right subtree would become equivalent to G_i^{PoSW} and by assumption the subgraph on $V D_{S^*}$ has a direct path to 1. Add an edge $1 \to \epsilon$ and we are done.
- case 3: Suppose $0 \notin S^*$, $1 \in S^*$. By the same argument as case 2, we can find a direct path going through the leftover nodes.
- case 4: Suppose $0 \notin S^*$, $1 \notin S^*$ Then, take the Left subgraph (equivalent to G_i^{PoSW}) and find a directed path ending in node 0. Take the Right subgraph (equivalent to G_i^{PoSW}) and find a directed path starting at leaf v. Then, link the Left and Right subgraph by adding edges to $0 \to v$ and $1 \to \epsilon$.

Lemma 5: For any S^* , $S \subset V$, D_{S^*} contains $|\{0,1\}^n \cap D_{S^*}| = \frac{|D_{S^*}| + |S^*|}{2}$ many leaves

Proof. Suppose $S^* = \{v_1, ..., v_k\}$. Then, $D_{v_i} \cap D_{v_j} = \text{for } i \neq j \text{ because } S^* \text{ is a minimal set.}$ Thus, to find the total number of leaves in D_{S^*} , we can sum the number of leaves in each D_{v_i} , which is easier since each D_{v_i} is a full binary tree with $\frac{|D_{v_i}|+1}{2}$ leaves. So

$$|\{0,1\}^n \cap D_{S^*}| = \sum_{i=1}^k |\{0,1\}^n \cap D_{v_i}|$$

$$= \sum_{i=1}^k \frac{|D_{v_i}|+1}{2}$$

$$= \frac{|D_{S^*}|+|S^*|}{2}$$

4.2 Proof of Security

Theorem 1: Consider a PoSW defined using parameters N, H, t, and M as defined above, with an additional parameter $\alpha>0$. α is what the authors call a "soundness gap", which is the percentage difference between N and how many queries to H a cheating prover $\widetilde{\mathcal{P}}$ actually makes, i.e. a cheating prover $\widetilde{\mathcal{P}}$ will make at most $(1-\alpha)N$ queries. For such a PoSW, the verifier \mathcal{V} will reject with probability $1-(1-\alpha)^t-\frac{2\cdot n\cdot w\cdot q^2}{2w}$.

Proof: First let us consider $\frac{2 \cdot n \cdot w \cdot q^2}{2^w}$, which is the probability that $\widetilde{\mathcal{P}}$ will find a collision in H (Lemma 1) and $\widetilde{\mathcal{P}}$ will find an H_{χ} sequence of length s making less than s queries to H_{χ} (Lemma 2). Note: $|x_i| = w$ because x is the output of the H function. Since the maximum input length of the H is w(n+1), Q, the total number of bits queried in q queries, is at most q(n+1)w. Since we assume that H is queried for s-1 rounds with arbitrarily many queries each round (Lemma 2), we can say that $s+1 \le q$, the total number of queries.

$$\begin{array}{ll} \frac{q^2}{2^{w+1}} + q^{\frac{Q + \sum_{i}^{s} |x_i|}{2^w}} & \leq q^{\frac{q \cdot w \cdot (n+1) + qw}{2^w}} + \frac{q^2/2}{2^w} \\ & = \frac{q^2 w (n+1) + q^2 w + q^2/2}{2^w} \\ & = \frac{q^2 (w (n+1) + w + 1/2)}{2^w} \\ & \leq \frac{q^2 (2wn)}{2^w} \end{array}$$

Now that we have accounted for the probability that $\widetilde{\mathcal{P}}$ will break the sequentiality of H, let us consider the probability that \mathcal{V} detects an inconsistent vertex (an inconsistent vertex being defined as a vertex with an incorrect label).

Let set $S \subseteq V = \{0,1\}^{\leq n}$ be the set of inconsistent vertices, and by Lemma 4 there is a path going through all the vertices of $V - D_{S^*}$, which are all consistent, so the path is an H_{χ} -sequence of length $N - |D_{S^*}|$. Now we can divide this into two cases:

Case 1 ($|D_{S^*}| \leq \alpha N$): $\widetilde{\mathcal{P}}$ must have made at least $(1-\alpha)N$ sequential queries to H_{χ} , to compute the H_{χ^-} sequence of length $N-|D_{S^*}|$.

Case 2 ($|D_{S^*}| > \alpha N$): By definition, $N = (2^{n+1} - 1)$, so $\alpha N = \alpha(2^{n+1} - 1)$. By Lemma 5, D_{S^*} contains $\frac{|D_{S^*}| + |S^*|}{2}$ leaves. Substituting this into $|D_{S^*}| > \alpha N$, we get the number of leaves $|\{0,1\}^n \cap D_{S^*}| = \frac{|D_{S^*}| + |S^*|}{2} > \alpha 2^n$.

 $\mathcal V$ will reject if any γ_i of the t challenges $\gamma=(\gamma_1,\ldots,\gamma_t)$ it gives $\mathcal P$ has a vertex in S on the path from γ_i to the root, or $\gamma\cap D_{S^*}=\gamma\cap \hat S^*=\gamma\cap \hat S\neq\emptyset$.

From the previous inequality on the number of leaves and assuming that all γ_i 's are sampled uniformly, we get $\Pr[\gamma_i \notin D_{S^*}] = 1 - |\{0,1\}^n \cap D_{S^*}|/2^n < 1 - \alpha$.

And since all γ_i 's are sampled independently, $\Pr[\gamma \cap D_{S^*} = \emptyset] = \prod_{i=1}^t \Pr[\gamma_i \notin D_{S^*}] < (1-\alpha)^t$.

Combined all together, a cheating prover $\tilde{\mathcal{P}}$ will have its proof rejected with probability $1-(1-\alpha)^t-\frac{2\cdot n\cdot w\cdot q^2}{2^w}$.

4.3 Proof of Efficiency

4.3.1 proof size

w bits specify a label and n bits specify a node. Thus, the exchanged messages and their lengths are as follows:

• $|\chi| = w$. χ is the initial statement that is a uniformly random w-bit string. It is initially communicated from Verifier \to Prover.

- $|\phi| = w$. ϕ and ϕ_p are proofs computed from PoSW. ϕ is the root label sent from Prover \to Verifier. It is a w-bit string, since labels are calculated using $H: \{0,1\}^{\leq w(n+1)} \to \{0,1\}^w$.
- $|\gamma| = t \cdot n$. $\gamma = (\gamma_1, ..., \gamma_t)$ is a challenge sent from Verifier \rightarrow Prover. It consists of t leaf nodes of n bits.
- $|\tau| \le t \cdot w \cdot n$. $\tau := \text{open}(\chi, N, \phi_p, \gamma)$ is the answer sent from Prover \to Verifier, which answers the challenge γ . The answer will contain the w-bit label for each n-bit γ_i .

4.3.2 prover efficiency

The prover \mathcal{P} 's efficiency depends queries made while computing the PoSW and open.

- PoSW^{H_{χ}(N) is computed using N sequential queries to H_{χ}. Each input has a length of at most $(n+1) \cdot w$ bits, by definition.}
- open^{H_{χ}} $(N, \phi, \gamma) = \tau$. open requires
 - 1. (n+1)w bits to compute each label of the challenge,
 - 2. $2^{m+1}w$ labels to be stored in ϕ_p , and
 - 3. $|\tau| \le t \cdot w \cdot n$ bits to send back.

Adding these, we need $(n+1+n\cdot t+2^{m+1})w$ bits of memory. We examine the different cases depending on m, i.e. how many levels are used to store ϕ_p :

Case $m = n \mathcal{P}$ stores all the labels computed by $PoSW^{H_X}(N)$, so no additional queries are needed **Case** m = 0, \mathcal{P} does not store any label computed by $PoSW^{H_X}(N)$, and needs to recompute all N queries

Case 0 < m < n Since \mathcal{P} stored the top m levels, it needs to recalculate any query between level n to m. This would require calculating the leaves starting from the $n - m^{th}$ level which would require $(2^{n-m+1}-1) \cdot t$ queries, for t challenges.

4.3.3 verifier efficiency

The verifier only needs to sample a random challenge of $|\gamma| = t \cdot n$, and computing verify $(\chi, N, \phi, \gamma, \tau)$. verify makes $t \cdot n$ queries (for each γ) each of length $n \cdot w$ bits (n leaf nodes' length and w label lengths).

References

 Cohen B., Pietrzak K. (2018) Simple Proofs of Sequential Work. In: Nielsen J., Rijmen V. (eds) Advances in Cryptology - EUROCRYPT 2018. EUROCRYPT 2018. Lecture Notes in Computer Science, vol 10821. Springer, Cham