Calculus I - MAC 2311 - Section 003

Quiz 6 - Solutions 10/31/2018

Instructions: The total number of points of this quiz is 10. You will get an extra point if you solve correctly the last exercise.

1) [5 points] The graph of the derivative f' of a function f is shown below.

a) What are the critical numbers of f?

Since the function f' is defined everywhere (i.e. f is differentiable), then c is a critical number if and only if f'(c) = 0. Hence the critical numbers of f are the x-coordinates of the points at which the graph of f' crosses the x-axis:

critical numbers :
$$x = -4$$
, $x = 0$, $x = 3$.

b) Over which intervals is the function f increasing/decreasing?

We have f'(x) > 0 on $(-\infty, -4) \cup (0, 3)$ and f'(x) < 0 on $(-4, 0) \cup (3, \infty)$. Then f is increasing on $(-\infty, -4) \cup (0, 3)$ and decreasing on $(-4, 0) \cup (3, \infty)$:

c) At what numbers does f have a local minimum/maximum value?

From (b) we get that f has a local minimum value at x = 0, and a local maximum value at x = -4 and x = 3.

d) Over which intervals is f concave down/up?

We have f''(x) > 0 on (-2,1) and f''(x) < 0 on $(-\infty,-2) \cup (1,\infty)$. Then f is concave up on (-2,1) and concave down on $(-\infty,-2) \cup (1,\infty)$.

e) What are the x-coordinates of the inflection points?

Since f''(x) changes sign at x = -2 and at x = 1 and f is continuous everywhere, then x = -2 and x = 1 are the coordinates of the two inflection points.

- 2) [5 points] Sketch the graph of a function f that satisfies all of the given conditions:
 - a) f is continuous on $(-\infty, \infty)$;
 - b) f(-4) = f(4) = -3;
 - c) f has an inflection point at (-2,0); f changes concavity at d) f''(x) < 0 on (-2,2); f is concave down on (-2,2) e) f'(0) = 0; horizontal tongent at (-2,10)

 - f) f'(x) < 0 on $(0, \infty)$. \longrightarrow } decreasing on $(0, \infty)$

Make sure that your graph is the graph of a function, i.e. it passes the vertical line test.

3) Let f be a function such that $f'(x_0) = 0$ and f''(x) > 0 near x_0 . Show that f has a local minimum at x_0 .

First of all, notice that f is continuous at x_0 (since f is differentiable at x_0). Since f''(x) > 0 near x_0 , then f'(x) is increasing near x_0 . As $f'(x_0) = 0$ this implies that $f'(x_0) < 0$ before x_0 and $f'(x_0) > 0$ after x_0 , so that f is decreasing before x_0 and increasing after x_0 . Then f has a local minimum at x_0 .