Section 1.3 Arithmetic operations on sequences. We now learn how to effectively take limits via arithmetic operations on sequences.

For example, suppose $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are sequences. Then what happens with $\{a_n+b_n\}_{n=1}^{\infty}$, $\{a_nb_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ (if b_n is never zero).

Theorem: If $\{a_n\}_{n=1}^{\infty}$ converges to A and $\{b_n\}_{n=1}^{\infty}$ converges to B, then $\{a_n+b_n\}_{n=1}^{\infty}$ converges to A+B.

Proof: Choose E>0 arbitrary. Then there's an integer N_1 such that $n \ge N_1$ implies $|a_n-A| < \frac{1}{2}$ and there's an integer N_2 such that $n \ge N_2$ implies $|b_n-B| < \frac{1}{2}$. Let $N=\max\{N_1,N_2\}$.

Then if $n \ge N$, we have both $|a_n - A| < \frac{\varepsilon}{2}$ and $|b_n - B| < \frac{\varepsilon}{2}$, so this lets us compute:

 $|(a_n+b_n)-(A+B)| = |a_n-A+b_n-B|$ $\leq |a_n-A|+|b_n-B|$ $\leq |a_n-A|+|b_n-B|$ $\leq |a_n-A|+|b_n-B|$

So overall, {antbn}, converges to A+B

We can do the same for lanbala=1. First, alesson in epsilon-picking: Here is how to write a nice proof that involves choosing by values of N.

Suppose $\{a_n\}_{n=1}^{\infty}$ converges to A and $\{b_n\}_{n=1}^{\infty}$ converges to B. We guess that $\{a_nb_n\}_{n=1}^{\infty}$ converges to AB. So we want

1anbn - AB1 < E

by choosing n to be large. Can we bound lanba-ABI above by the quantities lan-Al and |bn-B| Somehow?

 $|a_n b_n - AB| = |a_n b_n - a_n B + a_n B - AB|$ 4 | anbn-anB | + | anB-AB |

 $= |a_n||b_n - B| + |a_n B - AB|$

here is the quantity we wanted to see.

= |an||bn-B|+|B||an-A|

here is the other quantity we wanted to see.

Now by choosing in large, we can make both lan-Al and 16 Bl small. The constant 1B1 is negligible if we choose lan-Al small enough, but land is not negligible—it depends on n. However, convergent Sequences are bounded, so there exists M such that

lant & M for all n. (So lant 15 never too large). Now given E 20, we want to get |anbn-AB| \ lan | lbn-B| + |B||an-A| < E This will happen as long as $|b_n-B| < \frac{\varepsilon}{2|M|}$ and $|a_n-A| < \frac{\varepsilon}{2|B|}$. So we could choose n so large that these both hold, and get lanbn-AB| = |an| |bn-B| + |B| |an-A| < |Mllbn-Bl + |Bllan-Al $< |M| \frac{\varepsilon}{2|M|} + |B| \frac{\varepsilon}{2|B|} = \varepsilon_2 + \varepsilon_2 = \varepsilon.$ We could also choose n so large that $|b_n-B|<\frac{\varepsilon}{M+|B|}$ and $|a_n-A|<\frac{\varepsilon}{M+|B|}$, lanbn-AB| = M | bn-B| + |B| | an-A| $< M\left(\frac{\varepsilon}{M+|B|}\right) + |B|\left(\frac{\varepsilon}{M+|B|}\right)$ $= (M+IBI)\left(\frac{\mathcal{E}}{M+IBI}\right) = \mathcal{E}.$

The choice of how to bound it depends on personal choice. After deciding, we write a formal proof.

Theorem: If $\{a_n\}_{n=1}^{\infty}$ converges to A and $\{b_n\}_{n=1}^{\infty}$ converges to B, then $\{a_nb_n\}_{n=1}^{\infty}$ converges to AB.

Proof: Let E>0 be given. Since $\{a_n\}$ is bounded, there exists M such that $|a_n| \leq M$ for all n.

Choose N such that $|a_n-A| < \frac{E}{M+|B|}$ and $|b_n-B| < \frac{E}{M+|B|}$. Then $|a_nb_n-AB| = |a_nb_n-a_nB+a_nB-AB|$ $|\{a_n\|b_n-B\|+|B\|a_n-A\|\}$

 $|A \cap B| + |B| |A \cap A|$ $|A \cap B| + |A \cap B|$ $|A \cap B| + |B| + |B|$ $|A \cap B| + |B| + |B|$ $|A \cap B| + |A \cap B|$ $|A \cap B| + |B|$ $|A \cap B|$

We can do the same for division of sequences. There is a careful investigation in the book, but here we present the "cleaned up" proof. First we need a small lemma.

Lemma: If $\{b_n\}_{n=1}^\infty$ converges to B and B $\neq 0$ then there exists M>0 and an integer N such that if $n \ge N$ then $|b_n| \ge M$.

Proof: Set $\mathcal{E} = \frac{|B|}{2}$, note $\mathcal{E} > 0$.

For this particular ε , there exists N such that $n \ge N$ implies $|b_n - B| < \varepsilon$. Set $M = \frac{|B|}{2}$. Then for $n \ge N$, we have $|b_n| = |b_n - B + B| \ge |B| - |b_n - B| \ge |B| - |B| = \frac{|B|}{2} = M$.

Now we are ready to prove:

Theorem: Suppose $\{a_n\}_{n=1}^{\infty}$ converges to A and $\{b_n\}_{n=1}^{\infty}$ converges to B. If $B \neq 0$ and $b_n \neq 0$ for all n, then $\{a_n\}_{n=1}^{\infty}$ converges to A

Proof: Let $\varepsilon > 0$. By the previous Lemma, there exists M > 0 and an integer N_1 such that $|b_n| \ge M$ for all $n \ge N_1$. Set $\varepsilon' = \frac{M \varepsilon}{|+|\frac{\Delta}{B}|}$.

Now choose a positive integer N_2 such that $n \ge N_2$ implies $|a_n - A| < \varepsilon'$, and a positive integer N_3 such that $n \ge N_3$ implies $|b_n - B| < \varepsilon'$. Set $N = \max\{N_1, N_2, N_3\}$, so that for $n \ge N$ we have $|a_n - A| < \varepsilon'$, $|b_n - B| < \varepsilon'$, and $|b_n| \ge M$. Now comprete, for $n \ge N$:

$$\left|\frac{a_{n}}{b_{n}} - \frac{A}{B}\right| = \left|\frac{a_{n}B - b_{n}A}{b_{n}B}\right| = \left|\frac{a_{n}B - AB + AB - b_{n}A}{b_{n}B}\right|$$

$$\leq \left|\frac{a_{n} - A}{b_{n}}\right| + \frac{|A||b_{n} - B|}{|b_{n}||B|}$$

$$\leq \frac{1}{|b_{n}||B|} \varepsilon' + \frac{|A|}{|b_{n}||B|} \varepsilon'$$

$$\leq \varepsilon' \left(\frac{1}{M} \left(1 + \frac{|A|}{|B|}\right)\right)$$

$$= \frac{M\varepsilon}{(1 + \frac{|A|}{B})} \left(\frac{1}{M} \left(1 + \frac{|A|}{B}\right)\right) = \varepsilon.$$

Favourite quote from book:

"Your have now been instracted into the exclusive club of epsilon pickers".

MATH 2080

\$ 1.3 continued.

We can now use some familiar tricks for calculating dimets of sequences.

Example: What does $\left\{\frac{n^3-1}{2n^3+n^2}\right\}_{n=1}^{\infty}$ converge to?

Solution: Rewrite this

 $\frac{n^3-1}{2n^3+n^2}=\frac{1-\frac{1}{n^3}}{2+\frac{1}{n}}.$ We saw already that

 $\{\frac{1}{n}\}_{n=1}^{\infty}$ converges to 0. The sequence $\{\frac{1}{n^3}\}_{n=1}^{\infty}$ also converges to zero, being a product of $\{\frac{1}{n^3}\}_{n=1}^{\infty}$ with itself 3 times.

Thus the sequence $\{1-\frac{1}{n^3}\}_{n=1}^{\infty}$ converges to 1, and $\{2+\frac{1}{n}\}_{n=1}^{\infty}$ converges to 2. Thus $\{\frac{1-\frac{1}{n^3}}{2+\frac{1}{n}}\}_{n=1}^{\infty}$ converges to $\frac{1}{2}$, being a quotient of these two. So $\{\frac{n^3-1}{2n^3+n^2}\}_{n=1}^{\infty}$ converges to $\frac{1}{2}$.

Example: Consider the sequence $\{\sqrt{n+1}-\sqrt{n}\}_{n=1}^{\infty}$ Solution: We first multiply by the conjugate:

implies A-2 < an < A+E, and there's an

integer N_2 such that $n \ge N_2$ implies $B - \varepsilon < b_n < B + \varepsilon$. Choose $N - to be max § N_1, N_2 §, then for <math>n \ge N$ we have

 $b_N < B + \varepsilon = A - \varepsilon < a_N \le b_N$ because $\varepsilon = A - B$

But this inequality is impossible, a contradiction. Thus we cannot have B < A, so $A \le B$.

Example: If {an3n=1, and {cn3n=1, both converge to some number A, and if {bn3n=1, converges to some number B, then

an \leq bn \leq cn for all n implies $A \leq B \leq A$, i.e. A = B. This gives a sort of "squeeze theorem for sequences".

There is one weakness in the above squeeze theorem, however — with what we have done so fare, we need to know that the middle sequence $\{b_n\}_{n=1}^{\infty}$ converges. This information may not be available in pactice, and we'd like to be able to do a squeeze theorem in the absence of knowing a priori that $\{b_n\}_{n=1}^{\infty}$ converges.

Theorem: If {an}n=1 converges to O and {bn}_n= is bounded, then {anbn}_n= converges to O. Proof: Suppose M satisfies $|b_n| \leq M$ for all n. Now let 270, and set $\epsilon' = \frac{\epsilon}{M} > 0$. Then there exists N such that n > N implies $|a_n| = |a_n - O| < \mathcal{E}$ (since $\{a_n\}_{n=1}^{\infty}$ converges to O). Then we compute: $|anb_n-O|=|anb_n|=|a_n||b_n|\leq |a_n|M$ < E'M = 2. So fanbrin= converges to O. Example: Consider { 1+(-1)n} ~ This is a product of the sequences $\left\{ \frac{1+(-1)^n}{2} \right\}_{n=1}^{\infty}$ ={0,1,0,1,0,1...} and {\frac{1}{n}}_{n=1}. The Sequence $\left\{\frac{1+(-1)^n}{2}\right\}^{\infty}$ is bounded by 1, and

\$ 1.4 Subsequences and monotone sequences Definition: Let $\{a_n\}_{n=1}^{\infty}$ be a sequence and $\{n_k\}_{k=1}^{\infty}$ any sequence of positive integers with $n_1 < n_2 < n_3 < \dots$. The sequence $\{a_{n_k}\}_{k=1}^{\infty}$ is called a subsequence of {ansn=1. I've: A subsequence is an infinite subset of a sequence, listed in their original order. Court with new Eg: The sequence $\left\{\frac{1+(-1)^2}{2}\right\}_{n=1}^{\infty}$ is $\{0,1,0,1,...\}$. The sequence {0,0,0,...} is a subsequence of the original, as is {1, 1, 1, ... }. The original sequence does not converge, but each of the subsequences do. Thus a divergent sequence can have convergent subsequences. Question: Can a convergent sequence have divergent subsequences? If no, what do the subsequences converge to? Example: Consider the sequence & to ? . The sequences $\left\{\frac{1}{k^2}\right\}_{k=1}^{\infty}$, $\left\{\frac{1}{2^k}\right\}_{k=1}^{\infty}$ and $\left\{\frac{1}{2^k}\right\}_{k=1}^{\infty}$ are all subsequences of this. According to our previous work, these sequences all converge to O. So we guess:

Theorem: A sequence converges if and only if all of its subsequences converge, in which case they all converge to the same limit.