Visit www.DeepL.com/pro for more information.

Visual Computing

Graphic objects and their programming

Darmstadt University

Prof. Dr Elke Hergenröther Björn Frömmer Prof. Dr Benjamin Meyer

CHAPTER 5

Transformations

Mathematical basics: Transformations

Points:

- Points (or vertices) in the plane are defined by their x and y coordinates.
 set.
 - In three-dimensional space corresponding to their x, y and z coordinates
- We write down points as column vectors:

$$ph = \begin{bmatrix} ? \\ y \end{bmatrix} \quad \text{resp} \quad ph = \begin{bmatrix} ? \\ y \\ ? \end{bmatrix}$$

Arrangement of the objects in the room

Arrangement of the objects in the room II

Affine transformations

- The transformations used here
 - Translation
 - Rotation (Rotation)
 - Scaling (resizing)
- ... are also called affine transformations

Affin:

- What is parallel remains parallel
- The ratio of length, area and volume remains constant.

Example of a translation

- Reminder: Only the corner points of the geometry are moved!
- Mathematically, this is an addition of a Translation vector th to the original point

$$\overrightarrow{p'}$$
 $th + ph$

*p*Է :

• Example for the top right corner at the coordinates (0.3, 0.1, 0)^t:

10.04.2023

Neutral element of translation

$$th + ph = \begin{bmatrix} 0.5 \\ 0.7 \\ 0 \end{bmatrix} + \begin{bmatrix} 0.3 \\ 0.1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.8 \\ 0.8 \\ 0 \end{bmatrix} = \overrightarrow{p'}$$

Example of scaling

• It applies for each point ph at a scaling to move sx along the X-, sy along the Y- and sz along the of the Z-axis:

$$p = s * p$$
 , $p = s * p$ and $p = s * p$

 These equations can be calculated by a Summarise matrix multiplication!

Attention! Observe the order of multiplication!

Example of scaling 10

Example for the coordinates (0.3, 0.1, 0)^t:

$$sh * ph = \begin{bmatrix} ?? & 0 & 0 \\ 0 & ?? & 0 \\ 0 & 0 & ? \end{bmatrix} * \begin{bmatrix} ?? \\ py \\ ?? \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.3 \\ 0.1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.3 \\ 0.2 \\ 0 \end{bmatrix} = p$$

neutral element of the scaling!

Example of scaling III

Y Scaling by 2 around the Y-axis

Again for the upper right corner, now at (0.6, 0.4, 0)^t

$$sh * ph = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.6 \\ 0.4 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix} = \overrightarrow{p}'$$

- Observation: The object is not only moved in the Ydirection.
 scaled, but also changes the position
 - → the distance to the zero point is also scaled!
- Therefore: The scaling is only valid in relation to the Zero point invariant!

Example of scaling III

Example of scaling III

What does the geometry look like after scaling with these factors?

$$x = 3$$
, $y = 0.3$ and $z = 1$

Example of scaling III

What does the geometry look like after scaling with these factors?

$$x = 3$$
, $y = 1$ and $z = 1$

Example of a rotation

- The rotation can also be formulated as a matrix multiplication of the individual corner points
- Rotation around the Z-axis by the angle α :

$$rh * ph = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \overrightarrow{p'}$$

Example for the coordinates (0.3, 0.1, 0)^t and 90°:

$$rh * ph = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0.3 \\ 0.1 \\ 0 \end{bmatrix} = \begin{bmatrix} -0.1 \\ 0.3 \\ 0 \end{bmatrix}$$

Derivation of the rotation matrix (in 2D)

It is not the object that is rotated, but the coordinate system:

When rotating by the angle α , the unit vectors of the Cartesian coordinate system $_{ex}$ and $_{ey\,are}$ mapped onto the base vectors of the e'_x and $e'_{y\,of}$ the affine coordinate system:

$$e = T * e$$

$$\begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & 2 \cdot 2 \cdot \\ \sin(\alpha) & 2 \cdot 2 \cdot \end{pmatrix} * \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Derivation of the rotation matrix (in 2D)

It is not the object that is rotated, but the coordinate system:

When rotating by the angle α , the unit vectors of the Cartesian coordinate system $_{ex}$ and $_{ey\,are}$ mapped onto the base vectors of the e'_x and $e'_{y\,of}$ the affine coordinate system:

$$e = T * e$$

$$\begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} * \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Example in

What transformation is being sought?

Without labelling the corner points, there are several solutions!

Which?

Example in

Complex transformations

• What transformations are necessary to rotate the rectangle as given?

- 3. transformation back to the original position
- 2. rotation around the Z-axis
- Transformation into the origin
- $\rightarrow \Box\Box\Box$ order in which the transformations are applied is important!

Summary up to here...

- The rotation and scaling is always relative to the origin.
- Rotate/Scale with Reference Point is a three-step algorithm:
 - Moving the reference point to the origin
 - Apply transformation
 - Moving the reference point back to the original position
- Chaining of transformations necessary......
- but applying one transformation after the other to each vertex takes long and leads to rounding errors
- Better concept: Summarise transformations and focus on the original Apply corner points → accumulated transformation matrix

```
Matrix4f m = new Matrix4f();
m.translate(2, 0, 0);
m.rotate(30, 0, 0, 1);
```

```
Matrix4f m = new Matrix4f();
m.rotate(30, 0, 0, 1);
m.translate(2, 0, 0);
```


"The geometry moves backwards through the programme and collects the transformations".

Example: Rotating a square by 60°.

Transformations are given in **reverse** order:

```
transformations are
applied to the square:
```

```
Matrix4f m = new Matrix4f();  // create new Mattix
Order in which, the ↑ m.translate( 0.5, 0.7, 0.); // Back transformation
               m.rotate( 60., 0., 0., 1.); // Rotation
               m.translate( -0.5, -0.7, 0.); // To the origin
```


Why are the transformations given in reverse order?

- Matrix multiplications are not commutative (i.e. they are not in their sequence interchangeable)
- Example: a) does <u>not give</u> the same result as b)

a)
$$\begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 & 8 & 00 \end{bmatrix} \begin{bmatrix} 8 & 8 & 4 \end{bmatrix} \begin{bmatrix} 9 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

Why are the transformations given in reverse order?

- Matrix multiplications are not commutative (i.e. they are not in their sequence interchangeable)
- Equivalent calculations of P':

$$P' = M_2 \cdot (M_1 \cdot \Leftrightarrow P' = (M_2 \cdot M_1) \cdot P$$
 $\Leftrightarrow P$

Intuitive approach when you transformed "by hand":
P is first multiplied by M₁ and then the result vector is multiplied by M₂

Procedure of OpenGL: Create an accumulated matrix ($_{\rm M2}$ is multiplied by $_{\rm M1}$).

Example: Rotating a square by 60°.

Transformations are given in reverse order:

Order in which, the transformations are multiplied onto the accumulated matrix M:

```
M=M<sub>T2</sub> * M<sub>R</sub> *
M<sub>T1</sub>
```


Homogeneous

Problem:

Translation = vector addition Scaling & Rotation = Matrix Multiplication

Since it makes sense to "calculate" the different transformations with each other to an accumulated matrix and then apply it to all vertices (see OpenGL), there must be a way to link the additive part (translation) and the multiplicative part (rotation, scaling) with each other.

10.04.2023

Homogeneous

Problem:

- Rotation and scaling can be expressed by matrix multiplication
- To create the accumulated matrix we need a corresponding Representation of the translation (i.e. a vector addition)
- This is what such a matrix would have to look like, so that the following applies:

$$\begin{pmatrix} p'_x \\ p'_y \\ p'_z \end{pmatrix} = \begin{pmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \end{pmatrix}$$

- Unfortunately, such a 3x3 matrix does not exist.
- Solution: Homogeneous coordinates

Homogeneous coordinates II

Mathematical trick: adding a 4th coordinate!

$$\mathbb{R}^3 \ni \left(\begin{array}{c} x \\ y \\ z \end{array}\right) \to \left(\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right) \in \mathbb{P}^3 \ ,$$

Homogenisation (back to Euclidean space)

$$\begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix} = \begin{pmatrix} X/W \\ Y/W \\ Z/W \end{pmatrix} , \forall W \neq 0$$

Divide by the 4th coordinate

Homogeneous coordinates in

• The vectors x', y' and th become a matrix T (transformation matrix) summarised

$$\begin{cases} p'_{1} = \begin{pmatrix} x'_{1} & y'_{1} \end{pmatrix} & (p_{1})_{1} + \begin{pmatrix} t_{1} \\ p'_{1} \end{pmatrix} \Leftrightarrow \begin{cases} x'_{1} & y'_{1} & t'_{1} \\ y'_{1} & y'_{1} & t'_{1} \end{pmatrix} & (p_{1})_{1} \\ y'_{1} & y'_{1} & t'_{1} & y'_{1} & t'_{1} \\ y'_{1} & y'_{1} & t'_{1} & y'_{1} \\ y'_{1} & t'_{1} & y'_{1} & t'_{1} \\ y'_{1} & t'_{1} & y'_{1} & t'_{1} \\ y'_{1} & t'_{1} & y'_{1} & t'_{1} \\ y'_{1} & t'_{1} & t'_{1} \\ y'_{1} & t'_{1} & t'_{1} & t'_{1} \\ y'_{1} & t'_{1} & t'_{1} \\ y'_{1} & t'_{1} & t'_{1} \\ y'_{1} & t'_{1} & t'_{1} & t'_{1} \\ y'_{1} & t'_{1} & t'_{1} & t'_{1} \\ y'_{1} & t'_{1} & t'_{1$$

Homogeneous coordinates

Homogeneous coordinates in

Homogeneous coordinates in

• The vectors $\overrightarrow{x'}$, $\overrightarrow{y'}$ and th become a matrix T (transformation matrix) summarised

5. transformations ogeneous coordinates

litive part

Homogeneous coordinates in

Overview of all transformations (in 4D)

Rotation:

$$(?) = \begin{pmatrix} \cos(?) & 0 & \sin(?) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(a) & 0 & \cos(?) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
 - Translation:

Scaling:

Implementation of the scene graph

- In which order must the transformations of the scene graph be considered?
- Child objects inherit the transformations of their parents
 - → the scene graph is scrolled from bottom to top!

Applied transformations:

Scene graph -

Task: Miniature solar system

- Sun rotates around its Y-axis.
- As it rotates, it inflates and collapses again.
- The Earth rotates at some distance with the same angular velocity (i.e. swept angle per time unit is equal) around the Y-axis of the sun.
- In addition, the Earth rotates around its own Y-axis.
- Earth and sun are angular ;-)

Scene graph -

- The sun and the earth rotate at the same angular velocity around the sun's Y-axis
- But only the sun pumps up and collapses

Scene graph -

Earth additionally rotates around its own Y-axis

Scene graph -

Scene graph - example

Pseudocode:

logical order

Scaling (pumps)

Sun

Translation

Rotation around the Y-axis of the earth

Scene graph - example

Accumulated matrix for.

the
$$_{ME} = T1* T3;$$

the sun:
$$_{MS} = T1* T2;$$