Homomorfismo de Grupos - Continuação

José Antônio O. Freitas

MAT-UnB

5 de novembro de 2020

Sejam (G, *),

Sejam (G,*), (H, \triangle) grupos

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos.

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Chama-se de **núcleo**

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Chama-se de **núcleo** ou **kernel**

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Chama-se de **núcleo** ou **kernel** de f e denota-se por

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Chama-se de **núcleo** ou **kernel** de f e denota-se por N(f)

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Chama-se de **núcleo** ou **kernel** de f e denota-se por N(f) ou ker(f)

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Chama-se de **núcleo** ou **kernel** de f e denota-se por N(f) ou $\ker(f)$ o seguinte subconjunto de G:

Sejam (G,*), (H,\triangle) grupos e $f: G \to H$ um homomorfismo de grupos. Chama-se de **núcleo** ou **kernel** de f e denota-se por N(f) ou $\ker(f)$ o seguinte subconjunto de G:

$$ker(f) =$$

Sejam (G,*), (H,\triangle) grupos e $f: G \to H$ um homomorfismo de grupos. Chama-se de **núcleo** ou **kernel** de f e denota-se por N(f) ou $\ker(f)$ o seguinte subconjunto de G:

$$\ker(f) = \{x \in G$$

Sejam (G,*), (H,\triangle) grupos e $f: G \to H$ um homomorfismo de grupos. Chama-se de **núcleo** ou **kernel** de f e denota-se por N(f) ou $\ker(f)$ o seguinte subconjunto de G:

$$\ker(f) = \{x \in G \mid f(x) = 1_H\}.$$

1) Considere o homomorfismo $f:\mathbb{Z}\to\mathbb{C}^*$

1) Considere o homomorfismo $f: \mathbb{Z} \to \mathbb{C}^*$ dado por $f(x) = i^x$.

1) Considere o homomorfismo $f: \mathbb{Z} \to \mathbb{C}^*$ dado por $f(x) = i^x$. O kernel de $f \in \mathcal{C}$

2) Considere o homomorfismo g : $\mathbb{R}_+^* \to \mathbb{R}$

2) Considere o homomorfismo $g: \mathbb{R}_+^* \to \mathbb{R}$ dado por $g(x) = \ln(x)$.

2) Considere o homomorfismo $g: \mathbb{R}_+^* \to \mathbb{R}$ dado por $g(x) = \ln(x)$. O núcleo de g é:

3) Considere o homomorfismo $h: \mathbb{Z} \to \mathbb{Z}_m$

3) Considere o homomorfismo $h: \mathbb{Z} \to \mathbb{Z}_m$ dado por $h(x) = \overline{x}$,

3) Considere o homomorfismo $h: \mathbb{Z} \to \mathbb{Z}_m$ dado por $h(x) = \overline{x}$, m > 0 fixo.

3) Considere o homomorfismo $h: \mathbb{Z} \to \mathbb{Z}_m$ dado por $h(x) = \overline{x}, m > 0$ fixo. O kernel de h é:

Proposição Sejam (G, *),

Sejam (G,*), (H,\triangle) grupos

Sejam (G,*), (H,\triangle) grupos e $f: G \rightarrow H$ um homomorfismo de grupos.

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Então:

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Então:

i) ker(f) é um subgrupo de G.

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Então:

- i) ker(f) é um subgrupo de G.
- ii) $f \in um monomorfismo se, e somente se, ker(f) = \{1_G\}.$

Sejam H, J e L grupos.

Sejam H, J e L grupos. Se $f: H \rightarrow J$

Sejam H, J e L grupos. Se $f: H \rightarrow J$ e $g: J \rightarrow L$

Sejam H, J e L grupos. Se $f: H \rightarrow J$ e $g: J \rightarrow L$ são homomorfismos de grupos,

Sejam H, J e L grupos. Se $f: H \to J$ e $g: J \to L$ são homomorfismos de grupos, então $g \circ f: H \to L$

Sejam H, J e L grupos. Se $f: H \to J$ e $g: J \to L$ são homomorfismos de grupos, então $g \circ f: H \to L$ também é um homomorfismo de grupos.

Se f e g são homomorfismo

Se f e g são homomorfismo injetores

Se f e g são homomorfismo injetores (sobrejetores), então g o f

Se f e g são homomorfismo injetores (sobrejetores), então $g \circ f$ também é um homomorfismo injetor

Se f e g são homomorfismo injetores (sobrejetores), então $g \circ f$ também é um homomorfismo injetor (sobrejetor).

Se $f: G \rightarrow H$ é um isomorfismo de grupos,

Se $f: G \to H$ é um isomorfismo de grupos, então $f^{-1}: H \to G$

Se $f: G \to H$ é um isomorfismo de grupos, então $f^{-1}: H \to G$ também é um isomorfismo de grupos.