Saturday, 7 March 2020 6:20 pm

Students may alraw logic diagram to determine the GIC.

(i) Students can use the K-map to find the minterns for F or use algebraic expansion

OR

ASC.					
	10	٠,	13	1	L
	14	5	17	1 6	В
Α	12.	13	15	114	
	18	ľ	"	ا	
	L		$\overline{}$		

$$F = \overline{A}(CD + \overline{D}) + A(\overline{BC} + C\overline{D})$$

 $= \overline{ACD} + \overline{AD} + A\overline{BC} + AC\overline{D}$

 $= \overline{A} CD(B+\overline{B}) + \overline{AD}(B+\overline{B})(C+\overline{C}) + A\overline{B} C(D+\overline{D}) + AC\overline{D}(B+\overline{B})$

 $F = \Sigma_m(0, 2, 3, 4, 6, 7, 8, 9, 10, 14)$

iti)	A	В	٥	D	F	m;
•	0	0	0	0	t	Mp
	0	0	0	١	0	mı
	0	0	١	0	Ţ	Mz
	0	0	١	l	l	M_3
	0	l	0	0	l	Mf
	0	١	٥	1	0	Ms
	O	ı	l	0	1	Me
	0	Ţ	l	ı	1	m ₇
	l	0	0	0	ι	₩ŝ
	ι	0	O	ı	l	Mq
	l	0	١	0	l	Ww
	١	0	ι	l	0	W"
	l	l	0	٥	000	MIZ
	l	1	0	1	٥	M ₁₃
	1	١	l	D	1	M ₁₄
	l	l	١	1	0	W'2

F= AD+ AC+CD, ABC O-SOP

PI: BD, AD, AC, CD, ABC EPI: AD, A,C, CD, ABC

F= (A+C+D)(A+B+C)(A+E+D) 4-POS

 $PI = (\underbrace{A + C + \overline{D}}_{A}), (\overline{B} + C + \overline{D}), (\overline{A} + \overline{B} + C), (\overline{A} + \overline{C} + D)$

EPI = (A+C+B), (A+B+C), (A+C+B)

Vi) literals = 9 tems = 4 complements = 4 GIC=17

Reduction of 3 GIC after optimisation

b) binary hexodecimal octol

Octal -> Birany

Binary -> Hexadecimal

C) A - D latch

B - Positive edge triggered D-flip flop

Question 2 A

Saturday, 7 March 2020 8:31 pm

a) i)
$$x+y=x\oplus y+xy$$

$$\times \oplus \vee + \times \vee = \times + \times \vee + \times \vee$$

$$= \times \wedge + \times \wedge + \times \wedge + \times \wedge$$

$$=\sum(0,1,2,5,6,8,9,10)$$

Io=AB

I. = A+B

Iz= AB

Is = A+B

Note: Using CD as select would not give the simplest design.

d) Not required!

13 13

12 AND gates

Block diagram

Refer to Week3 stide51

- Input n is even, n=4. Use 2^n AND gates driven by two decoders of output Size $2^{n/2}=4$

Since BCD is only from 0 to X, 16-X-1 AND gates will be

redundant.