Chapter 4

Context Free Languages and Context Free Grammars

Grammar (Review)

- A grammar is a 4-tuple G = (NT, T, S, P), where
 - **NT**: a finite set of *non-terminal* symbols
 - T: a finite set of terminal (alphabet) symbols
 - S: is the starting symbol S ∈ NT
 - **P**: a finite set of production rules: $x \rightarrow y$

```
• x \in NT y \in (NT \cup T)^*
```

- Derivation of $w \in T^*$:
 - $S \Rightarrow w_1 \cdots \Rightarrow w_n \Rightarrow w \text{ (written as } S \Rightarrow^* w\text{)}$
- The language generated by the grammar is
 - $L(G) = \{ W \in T^* : S \Rightarrow^* W \}$

Context-Free Grammars (CFG)

• Context-Free Grammars (CFG) are language-description mechanisms used to generate the strings of a language.

- A grammar is said to be context-free if every rule has a single non-terminal on the left-hand side.
 - $A \rightarrow \alpha$
 - $A \in NT$: single non-terminal on the left hand side
 - $\alpha \in (NT \cup T)^*$: string of terminals and non-terminals
- A language L is called **context-free language** (**CFL**) if and only if there is a context-free grammar G (**CFG**) that generates it (i.e., L = L(G)).

Context-Free Grammars.... Examples

Example

- $G = (\{S\}, \{a, b\}, S, \{S \rightarrow aSa \mid bSb \mid \epsilon\})$
 - For aabbaa, typical derivation might be:
 - $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aabbaa$
 - Grammar generates language
 - $L(G)=\{ww^R: w \in \{a, b\}^*\}$

- What is the language of this grammar?
 - $G = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow ab\})$
 - $L(G) = \{a^n b^n \mid n \ge 1\}$

- What is the language of this grammar?
 - $G = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow \varepsilon\})$
 - $L(G) = \{a^n b^n \mid n \ge 0\}$

What is the language of this grammar?

What is the language of this grammar?

```
    G₁ = ({S, A, B}, {a, b}, S, {S → AB} A → aA | a B → bB | ε}
    G₂ = ({S, B}, {a, b}, S, {S → aS | aB B → bB | ε}
    L(G) = {a+b*} = {anbm | n ≥ 1, m ≥ 0}
```

- What is the grammar of this language?
 - L = {a*ba*ba*}
 G₁ = ({S, A}, {a, b}, S, {S → AbAbA}
 A → aA | E }
 - $G_2 = (\{S, A, C\}, \{a, b\}, S, \{S \rightarrow aS \mid bA A \rightarrow aA \mid bC\}$ $C \rightarrow aC \mid \varepsilon$

- What is the grammar of this language?
 - A language over {a, b} with at least 2 b's

•
$$G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow AbAbA\})$$

$$A \rightarrow aA \mid bA \mid \mathcal{E}$$

•
$$G_2 = (\{S, A, C\}, \{a, b\}, S, \{S \rightarrow aS \mid bA A \rightarrow aA \mid bC C \rightarrow aC \mid bC \mid \epsilon \}$$

- What is the grammar of this language?
 - A language over {a, b} of even-length strings.

•
$$G = (\{S, O\}, \{a, b\}, S, \{S \rightarrow aO \mid bO \mid E \ O \rightarrow aS \mid bS \}$$

- What is the grammar of this language?
 - A language over $\{a, b\}$ of an even no. of b's

•
$$G = (\{S, B, C\}, \{a, b\}, S, \{S \rightarrow aS \mid bA \mid \mathcal{E} A \rightarrow aA \mid bS \}$$

Context-Free Grammars....Exercise

- What is the grammar of this language?
 - A language over {a, b, c} that do not contain the substring abc.

Write a CFG for the following Languages

```
L_{1} = \{wcw^{R} \mid w \in \{a, b\}^{*}\}
S \rightarrow aSa \mid bSb \mid c
L_{2} = \{a^{n}b^{n}c^{m}d^{m} \mid n \geq 1, m \geq 1\}
S \rightarrow XY
X \rightarrow aXb \mid ab
Y \rightarrow cYd \mid cd
```

- $G = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb \mid bSa \mid SS \mid \epsilon\})$
 - is this grammar context-free?
 - Yes, there is a single variable on the left hand side.

- Are regular languages context-free? Why?
 - Yes.
 - But, **not all** context-free grammars are regular.
- Regular languages are a proper subset of the class of context-free languages.
 - Regular grammars are a proper subset of context-free grammars.
- Non-regular languages can be generated by context-free grammars,
 - so the term context-free generally includes non-regular languages and regular languages.

Constructing (right linear) CFG from DFA

- 1. Each state of the DFA will be represented by a non-terminal
- 2. The initial state will correspond to the start non-terminal
- 3. For each transition $\delta(q_i, a) = q_j$, add a rule $q_i \rightarrow aq_j$
- 4. For each accepting state q_f , add a rule $q_f \rightarrow \epsilon$

Leftmost & Rightmost Derivations

- Given the grammar:
 - $S \rightarrow aAB$, $A \rightarrow bBb$, $B \rightarrow A \mid \varepsilon$

$$B \rightarrow A \mid \varepsilon$$

- String abbbb can be derived in different ways:
- Left-most derivation:
 - always replace the leftmost NT in each sentential form
 - $S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB \Rightarrow abbbbB \Rightarrow abbbb$
- Right-most derivation:
 - always replace the rightmost NT in each sentential form
 - $S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb \Rightarrow abbBbb \Rightarrow abbbb$

Definition:

- $\stackrel{+}{\Rightarrow}$ derives in one step
- $\underset{G}{\overset{*}{\Longrightarrow}}$ derives in \geq one step
- \Rightarrow indicates that the derivation utilizes the rules of grammar G.

Example

- $S \rightarrow S + E \mid E$
- $E \rightarrow number \mid (S)$
- Left-most derivation
 - $S \Rightarrow S+E \Rightarrow E+E \Rightarrow (S)+E \Rightarrow (S+E)+E \Rightarrow (S+E+E)+E \Rightarrow (E+E+E)+E \Rightarrow (1+E+E)+E \Rightarrow (1+2+E)+E \Rightarrow (1+2+(S))+E \Rightarrow (1+2+(S+E))+E \Rightarrow (1+2+(S+E)$
- Right-most derivation
 - $S \Rightarrow S+E \Rightarrow E+5 \Rightarrow (S)+5 \Rightarrow (S+E)+5 \Rightarrow (S+(S))+5 \Rightarrow (S+(S+E))+5 \Rightarrow (S+(S+4))+5 \Rightarrow (S+(E+4))+5 \Rightarrow (S+(3+4))+5 \Rightarrow (S+E+(3+4))+5 \Rightarrow (S+2+(3+4))+5 \Rightarrow (E+2+(3+4))+5 \Rightarrow (1+2+(3+4))+5$

Derivation (Parsing) Trees

- Given the grammar
 - $S \rightarrow aaSB \mid \varepsilon$, $B \rightarrow bB \mid b$
 - A leftmost derivation
 - $S \Rightarrow aaSB \Rightarrow aaB \Rightarrow aab$
 - A rightmost derivation
 - $S \Rightarrow aaSB \Rightarrow aaSb \Rightarrow aab$

 Both derivations correspond to the parse (or derivation) tree above.

- In a parse tree, the nodes labeled with NTs correspond to the left side of a production rule and the children of that node correspond to the right side of the rule, e.g., S → aaSB.
- The tree structure shows the rule that is applied to each NT (for a specific derivation), without showing the order of rule application.
- Each internal node of the tree corresponds to a NT, and the leaves of the derivation tree represent the string of terminals.
- Note the tree applies to a **specific derivation** and may **not include all rules**, e.g., $B \rightarrow bB$ is not shown above.

- **Definition**: Let G = (NT, T, S, P) be a context-free grammar. An ordered tree is a **derivation tree** for G if and only if it has the following properties:
 - **1**. The root is labeled *S*.
 - **2**. Every leaf has a label from $T \cup \{\epsilon\}$.
 - **3**. Every non-leaf (interior) vertex has a label from *NT*.
 - **4**. If a vertex has label $A \in NT$, and its children are labeled (left to right) $a_1, a_2, ..., a_n$, then P contain a production of the form $A \rightarrow a_1 a_2 ... a_n$.
 - **5**. A leaf labeled ϵ has no siblings; that is, a vertex with a child labeled ϵ can have no other children.
- Partial derivation tree: a tree having properties 3–5, but for which property 1 may not hold, and for which property 2 is replaced with:
 - **2a**. every leaf has a label from $NT \cup T \cup \{\epsilon\}$.

<u>Derivation</u> ← → <u>Parse Tree</u> - Example

Derivation

$$S \Rightarrow S + E \Rightarrow E + E \Rightarrow (S) + E \Rightarrow (S + E) + E \Rightarrow (S + E + E) + E \Rightarrow (1 + E + E) + E \Rightarrow (1 + 2 + E) + E \Rightarrow (1$$

$$E \rightarrow E \text{ op } E \mid (E) \mid -E \mid id$$

op $\rightarrow + \mid -\mid *\mid /\mid \uparrow$

• A derivation tree for grammar G yields a sentence of the language L(G).

A partial derivation tree yields a sentential form.

- The **yield** of a parse tree is the string of leaf symbols obtained by reading the tree **left-to-right**.
 - The order they are encountered when the tree is traversed in a depth-first manner, always taking the leftmost unexplored branch.

- Given the grammar:
 - $S \rightarrow aAB$ $A \rightarrow bBb$

$$A \rightarrow bBb$$

$$B \rightarrow A \mid \varepsilon$$
,

• The yield of the partial derivation tree is the sentential form abBbB.

- Given the grammar"
 - $S \rightarrow aAB$ $A \rightarrow bBb$

$$A \rightarrow bBb$$

$$B \rightarrow A \mid \varepsilon$$
,

• The yield of the **derivation tree** is the **sentence** $abbbb \in L(G)$.

- Theorem (Relationship between Sentential Forms & Derivation Trees)
- Let G = (NT, T, S, P) be a CFG. Then,
 - for every $w \in L(G)$, there exists a derivation tree of G whose yield is w.
 - the yield, w, of any derivation tree of G is such that $w \in L(G)$.
 - if t_G is any partial derivation tree for G whose root is labeled S, then the yield of t_G is a **sentential** form of G.
- As a side note, any $w \in L(G)$ has a **leftmost** and a **rightmost** derivation.

- In practical applications, it is usually not enough to decide whether a string belongs to a language.
- It is also important to know how to derive the string from the language.
- Parsing uncovers the syntactical structure of a string, which is represented by a parse tree.
- The syntactical structure is important for **assigning semantics** to the string -- for example, if it is a computer program.

Application of parsing (Compilers):

- Let G be a context-free grammar for the C language. Let the string w be a C program.
- One thing a compiler does in particular, the part of the compiler called the "parser" - is determine whether w is a syntactically correct C program.
- It also constructs a **parse tree** for the program that is used in code generation.
- There are many sophisticated and efficient algorithms for parsing.
 You may study them in more advanced classes (for example, on compilers).

S-grammars

- **Definition**: A context-free grammar G = (NT, T, S, P) is said to be a simple grammar or **s-grammar** if all of its productions are of the form:
 - $A \rightarrow ax$ where $A \in NT$, $a \in T$, $x \in NT^*$, and any pair (A, a) occurs at most once in P.

• Examples:

- $S \rightarrow aS \mid bSS \mid c$ is an s-grammar.
- $S \rightarrow aS \mid bSS \mid aSB \mid c$ is not an s-grammar.
- because pair (*S*, *a*) occurs in two productions:
 - $S \rightarrow aS$, and $S \rightarrow aSB$

Example:

- Given s-grammar *G* with production:
 - $S \rightarrow aS \mid bSS \mid c$
- Show the derivation of the string w = abcc.
- Since G is an s-grammar,
 - the only way to get the a up front is via rule,
 - $S \rightarrow aS$
 - the only way to get the b is via rule,
 - $S \rightarrow bSS$
 - the only way to get each c is via rule,
 - $S \rightarrow c$
 - Thus, we have parsed the string in 4 steps as,
 - $S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$

- Find an s-grammar for
 - aaa*b | b
- We need to start with an **a** or have only the **b**.
 - $S \rightarrow aA$
 - $S \rightarrow b$
 - $A \rightarrow aB$
 - $B \rightarrow aB$
 - $B \rightarrow b$

 A terminal string may be generated by a number of different derivations.

- Let G be a CFG. A string w is in L(G), iff there is
 - a **leftmost derivation** of w from S. $(S \stackrel{*}{\Longrightarrow} w)$
- Question:
 - Is there a **unique leftmost derivation** of **every** sentence (string) in the language of a grammar?
 - NO

Consider the expression grammar:

$$E \rightarrow E+E \mid E*E \mid (E) \mid -E \mid id$$

Two different leftmost derivations of id + id * id

$$\underline{E} \Rightarrow \underline{E} + E$$

$$\Rightarrow id + \underline{E}$$

$$\Rightarrow id + \underline{E} * E$$

$$\Rightarrow id + id * \underline{E}$$

$$\Rightarrow id + id * id$$

Consider the expression grammar:

$$E \rightarrow E+E \mid E*E \mid (E) \mid -E \mid id$$

• **Two** different **leftmost** derivations of id + id * id

$$\underline{E} \Rightarrow \underline{E} * E$$

$$\Rightarrow \underline{E} + E * E$$

$$\Rightarrow id + \underline{E} * E$$

$$\Rightarrow id + id * \underline{E}$$

$$\Rightarrow id + id * id$$

Definition:

- a grammar G is **ambiguous** if there is a string with at least **two parse trees**,
 - two or more leftmost or rightmost derivations.

• Example: CFG G with productions $S \rightarrow aSb \mid SS \mid \varepsilon$ is ambiguous because there are **two parse tree** for w = aabb as shown below.

- A CFG is **ambiguous** if there is a string $w \in L(G)$ that can be derived by **two distinct leftmost derivations.**
- A grammar G is ambiguous if there exists a sentence in G with more than one derivation (parsing) tree.
- A grammar that is not ambiguous is called unambiguous.
- If G is ambiguous then L(G) is **not** necessarily ambiguous.
- A language *L* is **inherently ambiguous** if there is **no** unambiguous grammar that generates it.

- Let G be $S \rightarrow aS \mid Sa \mid a$.
- G is ambiguous since the string aa has 2 distinct leftmost derivation.
 - $S \Rightarrow aS \Rightarrow aa$
 - $S \Rightarrow Sa \Rightarrow aa$
- $L(G) = a^+$
- This language is also generated by the unambiguous grammar $S \rightarrow aS \mid a$.
- *L*(*G*) is **not** ambiguous. **Why**?

- Let G be $S \rightarrow bS \mid Sb \mid a$ $L(G) = b^*ab^*$
- G is **ambiguous** since the string bab has 2 distinct **leftmost derivation**.
 - $S \Rightarrow bS \Rightarrow bSb \Rightarrow bab$
 - $S \Rightarrow Sb \Rightarrow bSb \Rightarrow bab$
- The ability to generate the b's in either order must be eliminated to obtain an unambiguous grammar.
- This language is also generated by the unambiguous grammars.

$$G_1$$
: $S \rightarrow bS \mid aA$ G_2 : $S \rightarrow bS \mid A$ $A \rightarrow bA \mid e$ $A \rightarrow Ab \mid a$

Eliminating Ambiguity

- Consider the following grammar,
 - $E \rightarrow E + E \mid E * E \mid num$
- Consider the sentence 1 + 2 * 3
- Leftmost Derivation 1

• E
$$\Rightarrow$$
 E + E
 \Rightarrow 1 + E
 \Rightarrow 1 + E * E
 \Rightarrow 1 + 2 * E
 \Rightarrow 1 + 2 * 3

Leftmost Derivation 2

• E
$$\Rightarrow$$
 E * E
 \Rightarrow E + E * E
 \Rightarrow 1 + E * E
 \Rightarrow 1 + 2 * E
 \Rightarrow 1 + 2 * 3

 Different parse trees correspond to different evaluations (meaning).

- Ambiguous: $E \rightarrow E + E \mid E * E \mid number$.
- Both + and * have the same precedence.
- To remove ambiguity, you have to give + and * different precedence.
- Let us say * has higher precedence than +.
 - $E \rightarrow E + T \mid T$
 - $T \rightarrow T^*$ num | num

Eliminating Ambiguity

- $E \rightarrow E + T \mid T$
- $T \rightarrow T * num \mid num$
- Consider the sentence 1 + 2 * 3.
- Leftmost Derivation (only one LMD).

• E
$$\Rightarrow$$
 E + T
 \Rightarrow T + T
 \Rightarrow num + T
 \Rightarrow 1 + T
 \Rightarrow 1 + T * num
 \Rightarrow 1 + num * num
 \Rightarrow 1 + 2 * num
 \Rightarrow 1 + 2 * 3

- Let us say + has higher precedence than *.
 - $E \rightarrow E * T \mid T$
 - T \rightarrow T + num | num
 - Consider the sentence 1 + 2 * 3.
 - Leftmost Derivation (only one LMD).

```
• E \Rightarrow E * T

\Rightarrow T * T

\Rightarrow T + num * T

\Rightarrow num + num * T

\Rightarrow 1 + num * T

\Rightarrow 1 + 2 * T

\Rightarrow 1 + 2 * num

\Rightarrow 1 + 2 * 3
```


- A derivation tree...
 - Corresponds to exactly one leftmost derivation.
 - Corresponds to exactly one rightmost derivation.
- CFG <u>ambiguous</u> ⇔ any of following equivalent statements:
 - ∃ string w with multiple derivation trees.
 - ∃ string w with multiple leftmost derivations.
 - ∃ string w with multiple rightmost derivations.

Note: Defining grammar, not language, ambiguity.

CFGs & Programming Languages

• Programming languages are context-free, but not regular.

- Programming languages have the following features that require infinite "stack memory".
 - matching parentheses in algebraic expressions.
 - nested if .. then .. else statements.
 - nested loops.
 - block structure.

CFGs & Programming Languages...

```
<unsigned constant> \rightarrow <unsigned number>
<constant> \rightarrow <unsigned number> | <sign> <unsigned number> |
<unsigned number> → <unsigned integer> | <unsigned real>
<unsigned integer> → <digit> <unsigned integer> | <digit>
\langle unsigned \ real \rangle \rightarrow \langle unsigned \ integer \rangle. \langle unsigned \ integer \rangle \mid
                          <unsigned integer> . <unsigned integer> E <exp> |
                          <unsigned integer> E <exp>
                       → <unsigned integer> | <sign> <unsigned integer>
<exp>
                       \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit>
                       → a | b | c | ... | y | z | A | B | C | ... | Y | Z
<letter>
                       \rightarrow + | -
<siqn>
<identifier>
               → <letter> <identifier tail>
<identifier tail> → <letter> <identifier tail> | <digit> <identifier tail> |
```

CFGs & Programming Languages...

```
→ <simple expression>
<expression>
\langle simple\ expression \rangle \rightarrow \langle term \rangle \mid \langle sign\ term \rangle \mid
                 <simple expression> <adding operator> <term>
                          \rightarrow <factor> |
<term>
                          <term> <multiplying operator> <factor>
<factor>
                          → <variable> | <unsigned constant> |
                          (<expression>)
                                   \rightarrow + | -
<adding operator>
                                   → * | / | div | mod
<multiplying operator>
```

Simplification of CFGs and Normal Forms

Methods for Transforming Grammars

A Useful Substitution Rule

Theorem

- This intuitive theorem allows us to simplify grammars.
- Let G = (NT, T, S, P) be a context-free grammar. Suppose that P contains a production rule of the form,
 - $A \rightarrow xBz$
 - Assume that A and B are different NT and that,
 - $B \rightarrow y_1 \mid y_2 \mid ... \mid y_n$ is the set of all productions in P which have B as the left side.
- Let G' = (NT, T, S, P') be the grammar in which P' is constructed from P by replacing rule,
 - $A \rightarrow xBz$ with $A \rightarrow x y_1 z \mid xy_2 z \mid ... \mid xy_n z$
- Then L(G') = L(G).

Methods for Transforming Grammars... A Useful Substitution Rule

- Let *G* be
 - $S \rightarrow a \mid aaS \mid abBc$
 - $B \rightarrow abbS \mid b$
- Applying theorem 6.1 (on Textbook) results in
 - $S \rightarrow a \mid aaS \mid ababbSc \mid abbc$
 - $B \rightarrow abbS \mid b$

- The rules $B \rightarrow abbS \mid b$, which are still part of the grammar, no longer serve any purpose.
 - Both of these useless rules may be deleted without effectively changing the grammar.

- A non-terminal A is useful (it occurs in at least one derivation) if:
 - it is **reachable**: occurs in a sentential form $S \Rightarrow^* \alpha A \beta$.
 - it is **live**: generates a terminal string $A \Rightarrow^* w \in T^*$
- A non-terminal A is useless if:
 - A does not occur in any sentential form.
 - It cannot be reached from start symbol.

OR

- A does not generate any **string of terminals**.
 - It cannot derive a terminal string.
- A **terminal** is useful if it occurs in a sentence $w \in L(G)$.
- Any production involving a useless symbol is a useless production.

- To eliminate useless symbols:
 - First: Find the set TERM that contains all non-terminals that derive a terminal string.
 - $A \Rightarrow^* w$, where $w \in T^*$
 - Non-terminals NOT in TERM are **useless**, they cannot contribute to generate strings in L(G).
 - Second: Find the set REACH that contains all non-terminals $A \in TERM$ that are reachable from S.
 - $S \Rightarrow^* \alpha A \beta$

Example 1

```
• G: S \rightarrow AC \mid BS \mid B

A \rightarrow aA \mid aF

B \rightarrow CF \mid b

C \rightarrow cC \mid D

D \rightarrow aD \mid BD \mid C

E \rightarrow aA \mid BSA

F \rightarrow bB \mid b
```

- *L*(*G*) is *b*⁺
- $B, F \in TERM$, since both generate terminals
- $S \in \text{TERM}$, since $S \rightarrow B$ and hence $S \Rightarrow^* b$
- $A \in TERM$, since $A \rightarrow aF$ and hence $A \Rightarrow^* ab$
- $E \in \text{TERM}$, since $E \rightarrow aA$ and hence $E \Rightarrow^* aab$

- C and D do not belong to TERM, so all rules containing C and D are removed.
- The new grammar is:

•
$$G_T$$
: $S \rightarrow BS \mid B$
 $A \rightarrow aA \mid aF$
 $B \rightarrow b$
 $E \rightarrow aA \mid BSA$
 $F \rightarrow bB \mid b$

- All non-terminals in G_{τ} derive terminal strings.
- Now, we must remove the non-terminals that do not occur in sentential forms of the grammar.
- A set **REACH** is built that contains all non-terminals ∈ TERM derivable from *S*.

•
$$G_T$$
: $S \rightarrow BS \mid B$
 $A \rightarrow aA \mid aF$
 $B \rightarrow b$
 $E \rightarrow aA \mid BSA$
 $F \rightarrow bB \mid b$

- $S \in \mathbf{REACH}$, since it is the start symbol.
 - $B \in REACH$, since $S \rightarrow BS$, and hence B is derivable from S.
 - A, E, and F can not be derived from S or B, so all rules containing A, E and F are removed.

The new grammar is,

•
$$G_U$$
: $S \to BS \mid B$
 $B \to b$

- $L(G_U) = b^+$
- The set of terminals of G_U is $\{b\}$, a is removed since it does not occur in any string in the language of G_U .

- The order is important:
 - Applying **Second Step** (REACH) before **First Step** (TERM) may not remove all useless symbols.

Remove all useless productions.

- $S \rightarrow AB \mid CD \mid ADF \mid CF \mid EA$
- $A \rightarrow abA \mid ab$
- $B \rightarrow bB \mid aD \mid BF \mid aF$
- $C \rightarrow cB \mid EC \mid Ab$
- $D \rightarrow bB \mid FFB$
- $E \rightarrow bC \mid AB$
- $F \rightarrow abbF \mid baF \mid bD \mid BB$
- $G \rightarrow EbE \mid CE \mid ba$

Remove all useless productions.

- Let $G = (\{S, A, B, C\}, \{a, b\}, S, \{S \rightarrow aS \mid A \mid C, A \rightarrow a, B \rightarrow aa, C \rightarrow aCb\})$ be a CFG.
- Final grammar is
 - $G' = (\{S\}, \{a\}, S, \{S \rightarrow aS \mid a\})$

- Let G be $S \rightarrow SaB \mid aB \quad B \rightarrow bB \mid \varepsilon$
- A non-terminal symbol that can **derive** the *null string* (ϵ) is called **nullable**.
- For example, in G above, B is nullable since $B \rightarrow \varepsilon$
- A grammar without nullable non-terminals is called noncontracting.
- G, above, is not non-contracting, since it has one nullable non-terminal, which is B.

How to find nullable non-terminals?

- Mark all non-terminals A for which there exists a production of the form $A \rightarrow \varepsilon$.
- Repeat
 - Mark non-terminal X for which there exists $X \to \beta$ and all symbols in β have been marked as nullable.
- Until no new non-terminal is marked.

- The set of nullable non-terminals of the grammar.
 - $S \rightarrow ACA$ $A \rightarrow aAa \mid B \mid C$ $B \rightarrow bB \mid b$ $C \rightarrow cC \mid \varepsilon$
 - is {*S*, *A*, *C*}
 - C is nullable
 - since $C \rightarrow \varepsilon$ and hence $C \Rightarrow^* \varepsilon$.
 - A is nullable
 - since $A \rightarrow C$, and C is nullable.
 - S is nullable
 - since $S \rightarrow ACA$, and A and C are nullable.

Methods for Transforming Grammars... Removing ϵ -Productions-Exercise

• Find nullable non-terminals.

$$S \rightarrow aS \mid SS \mid bA$$

 $A \rightarrow BB$
 $B \rightarrow CC \mid ab \mid aAbC$
 $C \rightarrow \varepsilon$

- If $\varepsilon \notin L(G)$, we can eliminate all productions $A \to \varepsilon$.
- For every *B* referring to *A*:

$$B \rightarrow \alpha A \beta \mid \dots$$
 $A \rightarrow \epsilon \mid \dots$
 $A \rightarrow \dots$
 $B \rightarrow \alpha \beta \mid \alpha A \beta \mid \dots$

- For example, if $B \rightarrow \varepsilon$ and $A \rightarrow BABa$.
- Then after eliminating the rule $B \rightarrow \varepsilon$, new rules for A will be added,
 - $A \rightarrow BABa$
 - $A \rightarrow ABa$
 - $A \rightarrow BAa$
 - $A \rightarrow Aa$

- Let *G* be
 - $S \rightarrow SaB \mid aB$ $B \rightarrow bB \mid \varepsilon$
- After removing ε -productions, the new grammar will be,
 - $S \rightarrow SaB \mid Sa \mid aB \mid a$ $B \rightarrow bB \mid b$
- The removal of ϵ -productions increases the number of rules but reduces the length of derivations.

• Let
$$G$$
 $S \rightarrow ACA$ $A \rightarrow aAa \mid B \mid C$ $B \rightarrow bB \mid b$ $C \rightarrow cC \mid \epsilon$

• The equivalent essentially **non-contracting** grammar G_i is

```
• G_L: S \rightarrow ACA \mid CA \mid AA \mid AC \mid A \mid C \mid \varepsilon

A \rightarrow aAa \mid aa \mid B \mid C

B \rightarrow bB \mid b

C \rightarrow cC \mid c
```

- Since $S \Rightarrow^* \varepsilon$ in G, the rule $S \to \varepsilon$ is allowed in G_L , but all other ε -productions are replaced.
- A grammar satisfying these conditions is called essentially noncontracting (only start symbol is nullable).

- Let *G* be,
 - $S \rightarrow aS \mid SS \mid bA$ $A \rightarrow BB$

 - $B \rightarrow ab \mid aAbC \mid aAb \mid CC$
 - $C \rightarrow \varepsilon$
- We eliminate $C \rightarrow \varepsilon$ by replacing:

 - $B \to CC$ into $B \to CC$, $B \to CC$, and $B \to \varepsilon$ $B \to aAbC$ into $B \to aAbC$ and $B \to aAbC$
- Since $C \rightarrow \varepsilon$ is only C production
 - only $B \rightarrow \varepsilon$ and $B \rightarrow aAb$ retained.
- The new grammar:
 - $S \rightarrow aS \mid SS \mid bA$
 - $A \rightarrow BB$
 - $B \rightarrow \varepsilon$ | ab | aAb

- The new grammar:
 - $S \rightarrow aS \mid SS \mid bA$
 - $A \rightarrow BB$
 - $B \rightarrow \varepsilon \mid ab \mid aAb$
- We eliminate $B \rightarrow \varepsilon$ by replacing,
 - $A \rightarrow BB$ into $A \rightarrow BB$, $A \rightarrow B$, and $A \rightarrow \varepsilon$
- Since there are other B productions, these are all retained.
- The new grammar:
 - $S \rightarrow aS \mid SS \mid bA$
 - $A \rightarrow BB \mid B \mid \varepsilon$
 - $B \rightarrow ab \mid aAb$

- The new grammar:
 - $S \rightarrow aS \mid SS \mid bA$
 - $A \rightarrow BB \mid B \mid \varepsilon$
 - $B \rightarrow ab \mid aAb$
- Finally we eliminate $A \rightarrow \varepsilon$ by replacing
 - $B \rightarrow aAb$ into $B \rightarrow aAb$, $B \rightarrow ab$
 - $S \rightarrow bA$ into $S \rightarrow bA \mid b$
- The final CFG is:
 - $S \rightarrow aS \mid SS \mid bA \mid b$
 - $A \rightarrow BB \mid B$
 - $B \rightarrow ab \mid aAb$

- Rules having this form $A \rightarrow B$ are called **unit rules**.
- Consider the rules,
 - $A \rightarrow aA \mid a \mid B$
 - $B \rightarrow bB \mid b \mid C$
- The unit rule $A \rightarrow B$ indicates that any string derivable from B is also derivable from A.
- The **removal of unit** rules *increases the number of rules* but reduces the length of derivations.

- To eliminate the unit rule, add A rules that directly generate the same strings as B.
 - Add a rule $A \rightarrow u$ for each $B \rightarrow u$ and deleting $A \rightarrow B$ from the grammar.

$$A \rightarrow B$$
 $B \rightarrow \alpha \mid \dots$
 $A \rightarrow \alpha \mid \dots$
 $A \rightarrow \alpha \mid \dots$

- Consider the rules,
 - $A \rightarrow aA \mid a \mid B$
 - $B \rightarrow bB \mid b \mid C$
- The new rules after eliminating the unit rule $A \rightarrow B$.
 - $A \rightarrow aA \mid a \mid bB \mid b \mid C$
 - $B \rightarrow bB \mid b \mid C$
- We add new rules to A by replacing B in A with all its RHS rules.

•
$$G_L$$
: $S \rightarrow ACA \mid CA \mid AA \mid AC \mid A \mid C \mid \varepsilon$
 $A \rightarrow aAa \mid aa \mid B \mid C$
 $B \rightarrow bB \mid b$
 $C \rightarrow cC \mid c$

The new equivalent grammar (without unit rules)

```
• G_C: S \rightarrow ACA \mid CA \mid AA \mid AC \mid
aAa \mid aa \mid bB \mid b \mid cC \mid c \mid \epsilon
A \rightarrow aAa \mid aa \mid bB \mid b \mid cC \mid c
B \rightarrow bB \mid b
C \rightarrow cC \mid c
```

Remove unit rules:

- $S \rightarrow T \mid S + T$
- $T \rightarrow F \mid F * T$
- $F \rightarrow a \mid (S)$
- $S \rightarrow T \mid S + T$
- $T \rightarrow a \mid (S) \mid F * T$
- $F \rightarrow a \mid (S)$
- $S \rightarrow a \mid (S) \mid F * T \mid S + T$
- $T \rightarrow a \mid (S) \mid F * T$
- $F \rightarrow a \mid (S)$

Chomsky Normal Form (CNF)

 The Chomsky normal form places restrictions on the length and the composition of the right-hand side of a rule.

Definition

- A CFG is in Chomsky normal form if each production rule has one of the following forms:
 - $A \rightarrow a$
 - $A \rightarrow BC$
 - $S \rightarrow \varepsilon$
 - where $B, C \in NT$

Chomsky Normal Form... Converting CFG to CNF

Algorithm Step 1

- Make sure that the following are satisfied:
 - No ε -productions (other than $S \to \varepsilon$)
 - No chain rules
 - No useless symbols

Chomsky Normal Form... Converting CFG to CNF

Algorithm Step 2

- Eliminate terminals from RHS of productions.
 - For each production $A \rightarrow X_1 X_2 ... X_m$
 - where $X_i \in NT \cup T$
 - If m > 1, replace each **terminal** $a \in RHS$ of A
 - Add (if needed) $C_a \rightarrow a$ for each $a \in T$, where each C_a is new non-terminal.
 - In production A, replace terminal a with corresponding C_{a} .

Chomsky Normal Form... Converting CFG to CNF

Algorithm Step 3

- Eliminate productions with long RHS:
 - For each production:
 - $A \rightarrow B_1 B_2 ... B_m$, m > 2, where $B_i \in NT$
 - replace with productions
 - $A \rightarrow B_1D_1$
 - $D_1 \rightarrow B_2 D_2$
 - ...
 - $D_{m-2} \rightarrow B_{m-1}B_m$
 - where $D_1...D_{m-2}$ are new non-terminals.

Chomsky Normal Form... Converting CFG to CNF: Examples

1. Original grammar (no chain rules, useless symbols, or ε -productions):

$$S \rightarrow X a Y \mid Y b$$

 $X \rightarrow Y X a Y \mid a$
 $Y \rightarrow S S \mid a X \mid b$

2. Grammar after eliminating terminals from RHSs:

$$S \rightarrow X A Y \mid Y B$$
 $A \rightarrow a$
 $X \rightarrow Y X A Y \mid a$ $B \rightarrow b$
 $Y \rightarrow S S \mid A X \mid b$

3. Grammar after eliminating long RHSs:

$$S \rightarrow X T \mid Y B$$
 $T \rightarrow A Y$ $A \rightarrow a$
 $X \rightarrow Y F \mid a$ $F \rightarrow X G$ $B \rightarrow b$
 $Y \rightarrow S S \mid A X \mid b$ $G \rightarrow A Y$

Note: Could simplify by combining redundant variables *T* and *G*.

Chomsky Normal Form... Converting CFG to CNF

1. Original grammar (no chain rules, useless symbols, or ε -productions):

$$S \rightarrow aXYZ \mid a$$
 $X \rightarrow aX \mid a$
 $Y \rightarrow bcY \mid bc$ $Z \rightarrow cZ \mid c$

2. Grammar after eliminating terminals from RHSs:

$$S \rightarrow AXYZ \mid a$$
 $A \rightarrow a$
 $X \rightarrow AX \mid a$ $B \rightarrow b$
 $Y \rightarrow BCY \mid BC$ $C \rightarrow c$
 $Z \rightarrow CZ \mid c$

3. Grammar after eliminating long RHSs:

$$S \rightarrow AF \mid a$$
 $A \rightarrow a$ $F \rightarrow XG$
 $X \rightarrow AX \mid a$ $B \rightarrow b$ $G \rightarrow YZ$
 $Y \rightarrow BH \mid BC$ $C \rightarrow c$ $H \rightarrow CY$
 $Z \rightarrow CZ \mid c$

Greibach Normal Form (GNF)

- A context-free grammar is in Greibach Normal Form if every production is of the form $A \rightarrow aX$.
 - where $A \in NT$, $X \in NT^*$, and $a \in \Sigma$.
- Examples:
 - $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aSA \mid a, A \rightarrow aA \mid b\})$
 - GNF
 - $G_2 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow AS \mid AAS, A \rightarrow SA \mid aa\})$
 - not GNF
- This grammar

$$S \rightarrow AB \qquad A \rightarrow aA \mid b$$

$$S \rightarrow AB$$
 $A \rightarrow aA \mid bB \mid b$ $B \rightarrow b$

- is not in GNF
- This grammar

$$S \rightarrow aAB \mid bBB \mid bB$$

$$A \rightarrow aA \mid bB \mid b$$

$$B \rightarrow b$$

is in GNF

Reading (Self-Study)

• Conversion from CFG to GNF.