Name: J#: Dr. Clontz Date:

MASTERY QUIZ DAY 13

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Mark: Standard V2. Determine if $\begin{bmatrix} 4 \\ -1 \\ 6 \\ -7 \end{bmatrix}$ belongs to the span of the set $\left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 4 \\ 3 \end{bmatrix} \right\}$.

Solution: Since

$$RREF \left(\begin{bmatrix} 2 & 4 & | & 4 \\ 0 & -1 & | & -1 \\ -1 & 4 & | & 6 \\ 5 & 3 & | & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \\ 0 & 0 & | & 0 \end{bmatrix}$$

contains the contradiction 0 = 1, $\begin{bmatrix} 4 \\ -1 \\ 6 \\ 7 \end{bmatrix}$ is not a linear combination of the three vectors.

Standard S1.

Determine if the vectors
$$\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$
, $\begin{bmatrix} 3\\-1\\1 \end{bmatrix}$, and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are linearly dependent or linearly independent

Solution:

RREF $\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Since each column is a pivot column, the vectors are linearly independent.

Additional Notes/Marks