

# **Chapter 10**

Verification and Validation of Simulation Models



## Contents

- Model-Building, Verification, and Validation
- Verification of Simulation Models
- Calibration and Validation

## Purpose & Overview

- The goal of the validation process is:
  - To produce a model that represents true behavior closely enough for decision-making purposes
  - To increase the model's credibility to an acceptable level
- Validation is an integral part of model development:
  - Verification: building the model correctly, correctly implemented with good input and structure
  - Validation: building the correct model, an accurate representation of the real system
- Most methods are informal subjective comparisons while a few are formal statistical procedures



# Modeling-Building, Verification & Validation

# Modeling-Building, Verification & Validation

- Steps in Model-Building
  - Real system
    - Observe the real system
    - Interactions among the components
    - Collecting data on the behavior
  - Conceptual model
     Construction of a conceptual model
  - Simulation program
     Implementation of an operational model



## Verification

- Purpose: ensure the conceptual model is reflected accurately in the computerized representation.
- Many common-sense suggestions, for example:
  - Have someone else check the model.
  - Make a flow diagram that includes each logically possible action a system can take when an event occurs.
  - Closely examine the model output for reasonableness under a variety of input parameter settings.
  - Print the input parameters at the end of the simulation, make sure they have not been changed inadvertently.
  - Make the operational model as self-documenting as possible.
  - If the operational model is animated, verify that what is seen in the animation imitates the actual system.
  - Use the debugger.
  - If possible use a graphical representation of the model.

# Examination of Model Output for Reasonableness

- Two statistics that give a quick indication of model reasonableness are current contents and total counts
  - Current content: The number of items in each component of the system at a given time.
  - Total counts: Total number of items that have entered each component of the system by a given time.
- Compute certain long-run measures of performance, e.g. compute the long-run server utilization and compare to simulation results.

# Examination of Model Output for Reasonableness

- A model of a complex network of queues consisting of many service centers.
  - If the current content grows in a more or less linear fashion as the simulation run time increases, it is likely that a queue is unstable
  - If the total count for some subsystem is zero, indicates no items entered that subsystem, a highly suspect occurrence
  - If the total and current count are equal to one, can indicate that an entity has captured a resource but never freed that resource.



#### Documentation

- Documentation
  - A means of clarifying the logic of a model and verifying its completeness.
  - Comment the operational model
    - definition of all variables (default values?)
    - definition of all constants (default values?)
    - functions and parameters
    - relationship of objects
    - etc.
- Default values should be explained!

#### Trace

- A trace is a detailed printout of the state of the simulation model over time.
- Can be very labor intensive if the programming language does not support statistic collection.
- Labor can be reduced by a centralized tracing mechanism
- In object-oriented simulation framework, trace support can be integrated into class hierarchy. New classes need only to add little for the trace support.

## Trace: Example

- Simple queue from Chapter 2
- Trace over a time interval [0, 16]
- Allows the test of the results by pen-and-paper method

```
Definition of Variables:
CLOCK = Simulation clock
EVTYP = Event type (Start, Arrival, Departure, Stop)
NCUST = Number of customers in system at time CLOCK
STATUS = Status of server (1=busy, 0=idle)
State of System Just After the Named Event Occurs:
CLOCK = 0 EVTYP = Start
                            NCUST=0 STATUS = 0
CLOCK = 3 EVTYP = Arrival NCUST=1 STATUS = 0
CLOCK = 5 EVTYP = Depart NCUST=0 STATUS = 0
                                                             There is a customer.
CLOCK = 11 EVTYP = Arrival NCUST=1 STATUS = 0
                                                             but the status is 0
CLOCK = 12 EVTYP = Arrival NCUST=2 STATUS = 1
CLOCK = 16 EVTYP = Depart NCUST=1
                                     STATUS = 1
```

- Validation: the overall process of comparing the model and its behavior to the real system.
- Calibration: the iterative process of comparing the model to the real system and making adjustments.
- Comparison of the model to real system
  - Subjective tests
    - People who are knowledgeable about the system
  - Objective tests
    - Requires data on the real system's behavior and the output of the model



- Danger during the calibration phase
  - Typically few data sets are available, in the worst case only one, and the model is only validated for these.
  - Solution: If possible collect new data sets
- No model is ever a perfect representation of the system
  - The modeler must weigh the possible, but not guaranteed, increase in model accuracy versus the cost of increased validation effort.

- Three-step approach for validation:
  - 1. Build a model that has high face validity
  - 2. Validate model assumptions
  - 3. Compare the model input-output transformations with the real system's data

# Validation: 1. High Face Validity

- Ensure a high degree of realism:
  - Potential users should be involved in model construction from its conceptualization to its implementation.
- Sensitivity analysis can also be used to check a model's face validity.
  - Example: In most queueing systems, if the arrival rate of customers were to increase, it would be expected that server utilization, queue length and delays would tend to increase.
  - For large-scale simulation models, there are many input variables and thus possibly many sensitivity tests.
    - Sometimes not possible to perform all of theses tests, select the most critical ones.

# Validation: 2. Validate Model Assumptions

- General classes of model assumptions:
  - Structural assumptions: how the system operates.
  - Data assumptions: reliability of data and its statistical analysis.
- Bank example: customer queueing and service facility in a bank.
  - Structural assumptions
    - Customer waiting in one line versus many lines
    - Customers are served according FCFS versus priority
  - Data assumptions, e.g., interarrival time of customers, service times for commercial accounts.
    - Verify data reliability with bank managers
    - Test correlation and goodness of fit for data

### Validation:

## 3. Validate Input-Output Transformation

- Goal: Validate the model's ability to predict future behavior
  - The only objective test of the model.
  - The structure of the model should be accurate enough to make good predictions for the range of input data sets of interest.
- One possible approach: use historical data that have been reserved for validation purposes only.
- Criteria: use the main responses of interest.



# Bank Example

Example: One drive-in window serviced by one teller, only one or two transactions are allowed.

- Data collection: 90 customers during 11am to 1pm
  - Observed service times  $\{S_i, i=1,2,...,90\}$
  - Observed interarrival times  $\{A_i, i=1,2,...,90\}$
- Data analysis let to the conclusion that:
  - Interarrival times: exponentially distributed with rate  $\lambda = 45/\text{hour}$
  - Service times: *N*(1.1, 0.2<sup>2</sup>)

-Input variables

# Bank Example: The Black Box

- A model was developed in close consultation with bank management and employees
- Model assumptions were validated
- Resulting model is now viewed as a "black box":



# Bank Example: Comparison with Real System Data

- Real system data are necessary for validation.
  - System responses should have been collected during the same time period (from 11am to 1pm on the same day.)
- Compare average delay from the model  $Y_2$  with actual delay  $Z_2$ :
  - Average delay observed  $Z_2 = 4.3$  minutes
  - Consider this to be the true mean value  $\mu_0 = 4.3$
  - When the model is run with generated random variates  $X_{1n}$  and  $X_{2n}$ ,  $Y_2$  should be close to  $Z_2$

# Bank Example: Comparison with Real System Data

 Six statistically independent replications of the model, each of 2-hour duration, are run.

| Replication                | Y <sub>4</sub> Arrivals/Hour | $Y_5$ Service Time [Minutes] | $Y_2$ Average Delay [Minutes] |
|----------------------------|------------------------------|------------------------------|-------------------------------|
| 1                          | 51.0                         | 1.07                         | 2.79                          |
| 2                          | 40.0                         | 1.12                         | 1.12                          |
| 3                          | 45.5                         | 1.06                         | 2.24                          |
| 4                          | 50.5                         | 1.10                         | 3.45                          |
| 5                          | 53.0                         | 1.09                         | 3.13                          |
| 6                          | 49.0                         | 1.07                         | 2.38                          |
| Sample mean [Delay]        |                              |                              |                               |
| Standard deviation [Delay] |                              |                              |                               |

# Bank Example: Hypothesis Testing

- Compare the average delay from the model  $Y_2$  with the actual delay  $Z_2$ 
  - Null hypothesis testing: evaluate whether the simulation and the real system are the same (w.r.t. output measures):

$$H_0$$
:  $E(Y_2) = 4.3$  minutes  
 $H_1$ :  $E(Y_2) \neq 4.3$  minutes

- If  $H_0$  is not rejected, then, there is no reason to consider the model invalid
- If  $H_0$  is rejected, the current version of the model is rejected, and the modeler needs to improve the model

# Bank Example: Hypothesis Testing

- Conduct the t test:
  - Chose level of significance ( $\alpha = 0.05$ ) and sample size (n = 6).
  - Compute the sample mean and sample standard deviation over the n replications:

$$\overline{Y}_2 = \frac{1}{n} \sum_{i=1}^n Y_{2i} = 2.51 \text{ minutes}$$

$$S = \sqrt{\frac{\sum_{i=1}^n (Y_{2i} - \overline{Y}_2)^2}{n-1}} = 0.82 \text{ minutes}$$

Compute test statistics:

$$\left| t_0 \right| = \left| \frac{\overline{Y}_2 - \mu_0}{S / \sqrt{n}} \right| = \left| \frac{2.51 - 4.3}{0.82 / \sqrt{6}} \right| = 5.34$$
 >  $t_{0.025,5} = 2.571$  (for a 2-sided test)

- Hence, reject  $H_0$ .
  - Conclude that the model is inadequate.
- Check: the assumptions justifying a t test, that the observations  $(Y_{2i})$  are normally and independently distributed.

# Bank Example: Hypothesis Testing

 Similarly, compare the model output with the observed output for other measures:

$$Y_4 \Leftrightarrow Z_4$$

$$Y_5 \Leftrightarrow Z_5$$

$$Y_6 \Leftrightarrow Z_6$$

For validation:

The power of a test is the probability of detecting an invalid model.

Power = 
$$1 - P(\text{failing to reject } H_0 \mid H_1 \text{ is true})$$
  
=  $1 - P(\text{Type II error})$   
=  $1 - \beta$ 

• Consider failure to reject  $H_0$  as a strong conclusion, the modeler would want  $\beta$  to be small.

- Value of  $\beta$  depends on:
  - Sample size *n*
  - The true difference,  $\delta$ , between E(Y) and  $\mu$

$$\delta = \frac{|E(Y) - \mu|}{\sigma}$$

- In general, the best approach to control  $\beta$  is:
  - Specify the critical difference,  $\delta$ .
  - Choose a sample size, *n*, by making use of the operating characteristics curve (OC curve).

- Operating characteristics curve (OC curve).
  - Graphs of the probability of a Type II Error  $\beta(\delta)$  versus  $\delta$  for a given sample size n

For the same error probability with smaller difference the required sample size increases!



- Type I error ( $\alpha$ ):
  - Error of rejecting a valid model.
  - Controlled by specifying a small level of significance  $\alpha$ .
- Type II error  $(\beta)$ :
  - Error of accepting a model as valid when it is invalid.
  - Controlled by specifying critical difference and find the n.
- For a fixed sample size n, increasing  $\alpha$  will decrease  $\beta$ .

| Statistical Terminology                                      | Modeling Terminology               | <b>Associated Risk</b> |
|--------------------------------------------------------------|------------------------------------|------------------------|
| Type I: rejecting H <sub>0</sub> when H <sub>0</sub> is true | Rejecting a valid model            | α                      |
| Type II: failure to reject H₀ when H₁ is true                | Failure to reject an invalid model | β                      |

## **Confidence interval testing**

# Confidence Interval Testing

- Confidence interval testing: evaluate whether the simulation and the real system performance measures are close enough.
- If Y is the simulation output and  $\mu = E(Y)$
- The confidence interval (CI) for  $\mu$  is:

$$\left[\overline{Y} - t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}, \overline{Y} + t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}\right]$$

# Confidence Interval Testing

- CI does not contain  $\mu_0$ :
  - If the best-case error is  $> \varepsilon$ , model needs to be refined.
  - If the worst-case error is  $\leq \varepsilon$ , accept the model.
  - If best-case error is  $\leq \varepsilon$ , additional replications are necessary.

- CI contains  $\mu_0$ :
  - If either the best-case or worst-case error is  $> \varepsilon$ , additional replications are necessary.
  - If the worst-case error is ≤ ε, accept the model.

ε is a difference value chosen by the analyst, that is small enough to allow valid decisions to be based on simulations!



# Confidence Interval Testing

- Bank example:  $\mu_0 = 4.3$ , and "close enough" is  $\epsilon = 1$  minute of expected customer delay.
  - A 95% confidence interval, based on the 6 replications is [1.65, 3.37] because:

$$\overline{Y} \pm t_{0.025,5} \frac{S}{\sqrt{n}}$$
$$2.51 \pm 2.571 \frac{0.82}{\sqrt{6}}$$

- $\mu_0 = 4.3$  falls outside the confidence interval,
  - the best case |3.37 4.3| = 0.93 < 1, but
  - the worst case |1.65 4.3| = 2.65 > 1
- Additional replications are needed to reach a decision.

# **Other approaches**

# Using Historical Output Data

- An alternative to generating input data:
  - Use the actual historical record.
  - Drive the simulation model with the historical record and then compare model output to system data.
  - In the bank example, use the recorded interarrival and service times for the customers  $\{A_n, S_n, n = 1, 2, ...\}$ .
- Procedure and validation process: similar to the approach used for system generated input data.

# Using a Turing Test

 Use in addition to statistical test, or when no statistical test is readily applicable.

#### **Turing Test**

Described by Alan Turing in 1950. A human jugde is involved in a natural language conversation with a human and a machine. If the judge cannot reliably tell which of the partners is the machine, then the machine has passed the test.

- Utilize persons' knowledge about the system.
- For example:
  - Present 10 system performance reports to a manager of the system. Five of them are from the real system and the rest are "fake" reports based on simulation output data.
  - If the person identifies a substantial number of the fake reports, interview the person to get information for model improvement.
  - If the person cannot distinguish between fake and real reports with consistency, conclude that the test gives no evidence of model inadequacy.

## Summary

- Model validation is essential:
  - Model verification
  - Calibration and validation
  - Conceptual validation
- Best to compare system data to model data, and make comparison using a wide variety of techniques.
- Some techniques that we covered:
  - Insure high face validity by consulting knowledgeable persons.
  - Conduct simple statistical tests on assumed distributional forms.
  - Conduct a Turing test.
  - Compare model output to system output by statistical tests.