A Geometric Perspective on False Discovery Control

Armeen Taeb (Caltech)

Joint with:

Venkat Chandrasekaran (Caltech), Parikshit Shah (Facebook)

What is the Goal in Model Selection?

A common objective - prediction

Other related but distinct objectives

- Discovery useful in scientific contexts
- Fairness useful to mitigate bias across subpopulations
- Privacy relevant in contexts in which anonymity is important

Need model selection approaches that address these latter objectives

A Case Study – Variable Selection

From a collection of p features, identify those that influence a response

- e.g., response may be a disease and features may be genes
- p is often very large

Goal: Estimate subset $\hat{S} \subseteq \{1, 2, \dots, p\}$ from data so that $\hat{S} \approx S^*$

- $S^\star \subseteq \{1,2,\ldots,p\}$ is the true collection of relevant features
- Control for false discoveries $|\hat{S} \cap S^{*c}|$
- Neyman-Pearson: maximize $|\hat{S}|$ s.t. $\mathbb{E}|\hat{S} \cap S^{\star c}| \leq \delta$

Controlling False Discoveries in Other Settings

Previous approach relevant in 'discrete' model selection problems

• e.g., graph structure estimation

How about controlling false discoveries / false positives more generally?

• What might discoveries (true or false) even mean?

Test case for today: low-rank estimation

- Ubiquitous in many applications
- As we'll see, generalizes variable selection nicely

Hyperspectral Imaging

Data: Reflectance properties of a scene across multiple wavelengths

image collection comprises of a mix of material signatures

Hyperspectral Imaging

Goal: Identify materials present in the scene (unmixing)

Challenge: Both the material signatures and mixing coefficients are unknown

Structure: # materials ≪ # of wavelengths

Unmixing in Hyperspectral Imaging

Form reflectance matrix:

$$Y \in \mathbb{R}^{p \times n}$$

 $p: \# \text{ of wavelengths} \quad ; \quad n: \# \text{ of pixels}$

Find low-rank decomposition:

$$Y \approx WH$$

 $W \in \mathbb{R}^{p \times k}$: material matrix ; $H \in \mathbb{R}^{k \times n}$: mixing matrix column-space(W) : linear span of materials

Unmixing in Hyperspectral Imaging

Form reflectance matrix:

$$Y \in \mathbb{R}^{p \times n}$$

p: # of wavelengths ; n: # of pixels

Find low-rank decomposition:

$$Y \approx WH$$

 $W \in \mathbb{R}^{p \times k}$: material matrix ; $H \in \mathbb{R}^{k \times n}$: mixing matrix column-space(W) : linear span of materials

column-space is the key structural attribute of interest

Implications of Mistakes in Column-Space

Urban Hyperspectral Imaging Dataset

Reflectance data $Y \in \mathbb{R}^{p \times n}$ with p = 162, n = 94000

Implications of Mistakes in Column-Space

We estimate a column-space with false discovery proportion * = 0.45

Methane is incorrectly labeled as present

Row/Column Spaces Signify Discoveries

Radar

• Row/column spaces: direction of moving targets

Phase Retrieval

• Row/column spaces: phase of underlying signal

Recommender systems

• Row/column spaces: latent spaces of user preferences and item attributes

Objective

Evaluate & control for false discoveries in row/column spaces

Prior work:

- Significance testing of the singular values of an observed matrix (Choi et al (2017); Song & Shin (2018); ...)
- Shortcoming: do not control for deviation of row/column space
- Shortcoming: rely on full observations of underlying matrix

False Discovery Framework

Variable Selection

Discovery:

estimated subset

Number of True Discoveries:

estimated subset ∩ population subset

Number of False Discoveries:

estimated subset | — number of true discoveries

Question: Generalize to row/column spaces of low-rank matrices?

A First Attempt...

Discovery:

estimated row/column space

Number of True Discoveries:

 $\dim\left(estimated\ row/column\ space\cap population\ row/column\ space\right)$

Number of False Discoveries:

 $dim(estimated\ row/column\ space) - number\ of\ true\ discoveries$

Shortcoming: number of true discoveries = 0 (generically)

Geometric Picture: Variable Selection

Estimated/population subset

$$\hat{S} \subseteq \{1, 2, \dots, p\}$$
; $S^* \subseteq \{1, 2, \dots, p\}$

Estimated/population subspaces

$$T(\hat{S}) = \{x \in \mathbb{R}^p \mid x_i = 0 \text{ for all } i \in \hat{S}^c\}$$

$$T(S^*) = \{x \in \mathbb{R}^p \mid x_i = 0 \text{ for all } i \in S^{*c}\}$$

Geometric Picture: Variable Selection

Estimated/population subset

$$\hat{S} \subseteq \{1, 2, \dots, p\}$$
; $S^* \subseteq \{1, 2, \dots, p\}$

Estimated/population subspaces

Discovery:
$$T(\hat{S})$$
; Population: $T(S^*)$

Number of True Discoveries

$$\dim \left(T(\hat{S}) \cap T(S^{\star}) \right)$$

Number of False Discoveries

$$\dim\left(T(\hat{S})\cap T(S^{\star})^{\perp}\right)$$

Geometric Picture: Variable Selection

Estimated/population subset

$$\hat{S} \subseteq \{1, 2, \dots, p\}$$
; $S^* \subseteq \{1, 2, \dots, p\}$

Estimated/population subspaces

Discovery:
$$T(\hat{S})$$
; Population: $T(S^*)$

Number of True Discoveries

$$\dim \left(\mathcal{T}(\hat{S}) \cap \mathcal{T}(S^{\star}) \right) = \operatorname{trace} \left(\mathcal{P}_{\mathcal{T}(\hat{S})} \mathcal{P}_{\mathcal{T}(S^{\star})} \right)$$

Number of False Discoveries

$$\dim \left(T(\hat{S}) \cap T(S^*)^{\perp} \right) = \operatorname{trace} \left(\mathcal{P}_{T(\hat{S})} \mathcal{P}_{T(S^*)^{\perp}} \right)$$

Variety of sparse vectors V(k) where k = |S|:

$$\mathcal{V}(k) = \{z \mid |\mathsf{support}(z)| \le k\}$$

$$T(S) =$$
 Tangent space w.r.t. $V(k)$ at x with support $(x) = S$

Variety of sparse vectors V(k) where k = |S|:

$$V(k) = \{z \mid |\mathsf{support}(z)| \leq k\}$$

T(S) = **Tangent space** w.r.t. V(k) at x with support(x) = S

Variety of sparse vectors V(k) where k = |S|:

$$\mathcal{V}(k) = \{ z \mid |\mathsf{support}(z)| \le k \}$$

T(S) = **Tangent space** w.r.t. V(k) at x with support(x) = S

Variety of sparse vectors V(k) where k = |S|:

$$V(k) = \{z \mid |\mathsf{support}(z)| \leq k\}$$

$$T(S) =$$
 Tangent space w.r.t. $V(k)$ at x with support $(x) = S$

Variety of sparse vectors V(k) where k = |S|:

$$\mathcal{V}(k) = \{z \mid |\mathsf{support}(z)| \le k\}$$

T(S) = **Tangent space** w.r.t. V(k) at x with support(x) = S

A Geometric Recipe

Takeaway: recipe to assess true/false discoveries

- 1. Identify structured variety
- 2. Determine tangent space w.r.t. variety
- 3. Compute inner-product between associated projection matrices

Generalization to Low-Rank Matrices

Variety: determinantal variety (space of low-rank matrices)

$$\mathcal{V}(r) \triangleq \{Z \mid \mathrm{rk}(Z) \leq r\}$$

Tangent Space: at a rank-r L w.r.t. V(r):

$$T(C, R)$$
: $\{P_C Y_1 + Y_2 P_R\}$; where $C = \text{col-space}$; $R = \text{row-space}$

One-to-one mapping between (C, R) and T(C, R)

False/True Discoveries: Low Rank Estimation

Discovery: $\mathcal{T}(\hat{\mathcal{C}},\hat{\mathcal{R}})$

"Number" of True Discoveries: $\operatorname{trace}\left(\mathcal{P}_{\mathcal{T}(\hat{\mathcal{C}},\hat{\mathcal{R}})}\mathcal{P}_{\mathcal{T}(\mathcal{C}^{\star},\mathcal{R}^{\star})}\right)$

"Number" of False Discoveries: $\operatorname{trace}\left(\mathcal{P}_{\mathcal{T}(\hat{\mathcal{C}},\hat{\mathcal{R}})}\mathcal{P}_{\mathcal{T}(\mathcal{C}^{\star},\mathcal{R}^{\star})^{\perp}}\right)$

False/True Discoveries: Low Rank Estimation

Discovery: $T(\hat{C}, \hat{R})$

"Number" of True Discoveries:
$$\operatorname{trace}\left(\mathcal{P}_{\mathcal{T}(\hat{\mathcal{C}},\hat{\mathcal{R}})}\mathcal{P}_{\mathcal{T}(\mathcal{C}^{\star},\mathcal{R}^{\star})}\right)$$

"Number" of False Discoveries: $\operatorname{trace}\left(\mathcal{P}_{\mathcal{T}(\hat{\mathcal{C}},\hat{\mathcal{R}})}\mathcal{P}_{\mathcal{T}(\mathcal{C}^{\star},\mathcal{R}^{\star})^{\perp}}\right)$

Interpretations of False Discovery

- Total energy of discovery in bad directions
- $\sum \cos(\angle T^{\star \perp}, \hat{T})^2$
- Specializes to variable selection if matrices are diagonal

False/True Discoveries: Column-space

What if we care only about column-space?

• e.g. hyperspectral imaging

Tangent spaces with respect to quotients of determinantal variety

• Quotient V(r)/[L] where [L] is equivalence class

Using same machinery:

- "Number" of True Discoveries: $\operatorname{trace}\left(\mathcal{P}_{\hat{\mathcal{C}}}\mathcal{P}_{\mathcal{C}^{\star}}\right)$
- "Number" of False Discoveries: $\operatorname{trace}\left(\mathcal{P}_{\hat{\mathcal{C}}}\mathcal{P}_{\mathcal{C}^{\star\perp}}\right)$

Formal Definitions

Definition: Let \hat{T} be tangent space estimate of a population tangent space T^* . Then,

$$FD = \mathbb{E} \left[\operatorname{trace} \left(\mathcal{P}_{\hat{T}} \mathcal{P}_{T^{\star \perp}} \right) \right]$$

$$PW = \mathbb{E} \left[\operatorname{trace} \left(\mathcal{P}_{\hat{T}} \mathcal{P}_{T^{\star}} \right) \right]$$

$$FDR = \mathbb{E} \left[\frac{\operatorname{trace} \left(\mathcal{P}_{\hat{T}} \mathcal{P}_{T^{\star \perp}} \right)}{\operatorname{dim}(\hat{T})} \right]$$

where expectation is w.r.t randomness of the data

Formal Definitions

Definition: Let \hat{T} be tangent space estimate of a population tangent space T^* . Then,

$$FD = \mathbb{E} \left[\operatorname{trace} \left(\mathcal{P}_{\hat{T}} \mathcal{P}_{T^{\star \perp}} \right) \right]$$

$$PW = \mathbb{E} \left[\operatorname{trace} \left(\mathcal{P}_{\hat{T}} \mathcal{P}_{T^{\star}} \right) \right]$$

$$FDR = \mathbb{E} \left[\frac{\operatorname{trace} \left(\mathcal{P}_{\hat{T}} \mathcal{P}_{T^{\star \perp}} \right)}{\operatorname{dim}(\hat{T})} \right]$$

where expectation is w.r.t randomness of the data

Properties:

1.
$$0 \le FD \le \dim(T^{\star \perp})$$
 & $0 \le PW \le \dim(T^{\star})$
2. $FD + PW = \mathbb{E} \left[\dim(\hat{T})\right]$ & $0 \le FDR \le 1$

Formal Definitions

Definition: Let \hat{T} be tangent space estimate of a population tangent space T^* . Then,

$$\begin{split} \mathrm{FD} &= & \mathbb{E}\left[\mathrm{trace}\left(\mathcal{P}_{\hat{T}}\mathcal{P}_{\mathcal{T}^{\star\perp}}\right)\right] & \text{control for this} \\ \mathrm{PW} &= & \mathbb{E}\left[\mathrm{trace}\left(\mathcal{P}_{\hat{T}}\mathcal{P}_{\mathcal{T}^{\star}}\right)\right] \\ \mathrm{FDR} &= & \mathbb{E}\left[\frac{\mathrm{trace}\left(\mathcal{P}_{\hat{T}}\mathcal{P}_{\mathcal{T}^{\star\perp}}\right)}{\dim(\hat{T})}\right] \end{split}$$

where expectation is w.r.t randomness of the data

Properties:

$$1. \ 0 \leq \mathrm{FD} \leq \dim(\mathcal{T}^{\star \perp}) \qquad \qquad \& \qquad 0 \leq \mathrm{PW} \leq \dim(\mathcal{T}^{\star})$$

2.
$$FD + PW = \mathbb{E}\left[\dim(\hat{T})\right]$$
 & $0 \le FDR \le 1$

Algorithm

Stability Selection [Meinshausen & Bühlmann '12]

Algorithm: General-purpose approach based on bagging

Inputs: your favorite variable selection method; a threshold $\alpha \in (0,1)$

- 1. Bagging: use variable selection method to estimate significant subset for each bag
- 2. Aggregate: compute frequency with which each variable is selected
- 3. Output: choose all variables that are selected with frequency at least α (maximize number of discoveries)

Theory: False discovery control as a function of α

• Further analysis by Shah & Samworth (2013)

Stability Selection [Meinshausen & Bühlmann '12]

Algorithm: General-purpose approach based on bagging

Inputs: your favorite variable selection method; a threshold $\alpha \in (0,1)$

- Bagging: use variable selection method to estimate significant subset for each bag
- 2. Aggregate: compute frequency with which each variable is selected
- 3. Output: choose all variables that are selected with frequency at least α (maximize number of discoveries)

Theory: False discovery control as a function of α

• Further analysis by Shah & Samworth (2013)

Develop a geometric analog: Subspace Stability Selection

Ingredients for Subspace Stability Selection

Subspace Stability Selection Algorithm:

- 1. Bagging: compute tangent spaces for each bag
- 2. Aggregate: fuse information from all tangent spaces
- 3. Output: produce a tangent space well-aligned to aggregate

Aggregation Step

Bagging: collection of tangent spaces $\{\hat{T}^{(i)}\}_{i=1}^B$

Aggregate: compute average projection operator

$$\mathcal{P}_{\mathtt{avg}} = rac{1}{B} \sum_{i=1}^{B} \mathcal{P}_{\hat{\mathcal{T}}^{(i)}}$$

Intuition: most of energy in \mathcal{P}_{avg} is in \mathcal{T}^{\star}

Properties:

- 1. \mathcal{P}_{avg} is self-adjoint
- 2. Eigenvalues of \mathcal{P}_{avg} lie in [0,1]

Output Step

Given fixed $\alpha \in (0,1)$

 $\it Output:$ choose largest tangent space $\it T$ to determinantal variety s.t.:

$$\sigma_{\min}\left(\mathcal{P}_{\mathcal{T}}\mathcal{P}_{\text{avg}}\mathcal{P}_{\mathcal{T}}\right) \geq \alpha$$

- 1. T well-aligned with $\mathcal{P}_{\mathsf{avg}}$
- 2. Efficient approach to find T that satisfies criterion

Subspace Stability Selection in Variable Selection

Subspace Stability Selection = Stability Selection

Proof:

- $\mathcal{P}_{T(S)}$: diagonal with $\{0,1\}$
- \bullet \mathcal{P}_{avg} : diagonal; elements encode frequency of variables
- Key: these two matrices commute

$$T(S)$$
 such that $\sigma_{\min}(\mathcal{P}_{T(S)}\mathcal{P}_{\mathsf{avg}}\mathcal{P}_{T(S)}) \geq \alpha$ \Leftrightarrow for all $i \in S$: $(\mathcal{P}_{\mathsf{avg}})_{i,i} \geq \alpha$

Theoretical Support

Assumptions

Conditions on the estimator and the data generation process

• $\hat{T}(n/2)$: tangent space from [n/2] observations

Assumption 1: "better than random guessing"

$$\underbrace{\frac{\mathbb{E}\left[\mathsf{trace}\left(\mathcal{P}_{\mathcal{T}^{\star}} \bot \mathcal{P}_{\hat{\mathcal{T}}(n/2)}\right)\right]}{\mathsf{dim}(\mathcal{T}^{\star}^{\bot})}}_{\mathsf{normalized false discovery}} \leq \underbrace{\frac{\mathbb{E}\left[\mathsf{trace}\left(\mathcal{P}_{\mathcal{T}^{\star}} \mathcal{P}_{\hat{\mathcal{T}}(n/2)}\right)\right]}{\mathsf{dim}(\mathcal{T}^{\star})}}_{\mathsf{normalized power}}$$

where expectation is w.r.t to randomness of the data

Assumptions

Conditions on the estimator and the data generation process

• $\hat{T}(n/2)$: tangent space from [n/2] observations

Assumption 1: "better than random guessing"

Assumption 2: exchangeability in rank-1 directions of $T^{\star\perp}$

distribution of
$$\|\mathcal{P}_{\hat{T}(n/2)}(M)\|_F$$
 is the same $\forall~M\in T^{\star\perp}$ with $\mathrm{rank}(M)=1$ & $\|M\|_F=1$

Assumptions

Assumption 1: "better than random guessing"

Assumption 2: exchangeability in rank-1 directions of $T^{\star\perp}$

Natural model ensembles and estimators satisfy both assumptions

- e.g. matrix denoising with Gaussian noise
- e.g. linear measurements with Gaussian design & noise

- Reduce to [Meinshausen & Bühlmann '12] for sparse variety
- A less interpretable bound without these assumptions in the paper

Commutator

Def: For self-adjoint operators A, B, commutator: [A, B] = AB - BA

Important quantities in our analysis:

$$\kappa_{\mathrm{bag}} \ = \ \mathbb{E}\left[\sqrt{\frac{1}{B}\sum_{j=1}^{B}\left\|\left[\mathcal{P}_{\hat{T}^{(j)}},\mathcal{P}_{T^{\star\perp}}\right]\right\|_{F}^{2}}\right]$$

$$\kappa_{\mathrm{indiv}} = \min_{i} \mathbb{E} \left\| \left[\mathcal{P}_{\hat{T}(n/2)}, \mathcal{P}_{\mathrm{span}(M_i)} \right] \right\|_{F}; \{M_i\}_{i=1}^{\dim(T^{\star \perp})} \text{ rank-1 basis for } T^{\star \perp}$$

- 1. $\|[\mathcal{P}_{\hat{T}^{(j)}}, \mathcal{P}_{T^{\star \perp}}]\|_F^2 = \sum_i \sin(2\theta_i)^2$; θ_i : principal angles
- 2. $\kappa_{\mathsf{bag}} = \kappa_{\mathsf{indiv}} = 0$ for sparse variety

Theoretical Results

Theorem

Given n i.i.d data points, and input $\alpha \in (0,1)$

- ullet population tang. space T^\star of $p_1 \times p_2$ low-rank matrix
- final output based on aggregating estimates from bags of size $\lfloor n/2 \rfloor$
- Assumptions 1 & 2

Let $q \triangleq \mathbb{E}[\dim(\hat{T}(n/2))]$. Then for any T s.t. $\sigma_{\min}(\mathcal{P}_T \mathcal{P}_{\mathsf{avg}} \mathcal{P}_T) \geq \alpha$

$$\mathrm{FD} \leq rac{q^2}{p_1 p_2} + rac{2(1-lpha)}{lpha} q + f(\kappa_{\mathsf{bag}}, \kappa_{\mathsf{indiv}}),$$

where
$$f(\kappa_{\text{bag}}, \kappa_{\text{indiv}}) = p_1 p_2 \kappa_{\text{indiv}}^2 + 2q \kappa_{\text{indiv}} + \frac{4\sqrt{1-\alpha}}{\alpha} \sqrt{q \kappa_{\text{bag}}}$$

Remark: a tighter (but less interpretable) bound in paper

Theoretical Results

Theorem bound:

$$ext{FD} \leq rac{oldsymbol{q}^2}{oldsymbol{
ho}_1 oldsymbol{
ho}_2} + rac{2(1-lpha)}{lpha} oldsymbol{q} + fig(\kappa_{ ext{bag}}, \kappa_{ ext{indiv}}ig)$$

- 1. large p_1, p_2 reduce false discovery
- 2. α chosen close to 1 reduces false discovery

Theoretical Results

Theorem bound:

$$\mathrm{FD} \leq rac{q^2}{p_1 p_2} + rac{2(1-lpha)}{lpha} q + f(\kappa_{\mathsf{bag}}, \kappa_{\mathsf{indiv}}),$$

where
$$f(\kappa_{\mathsf{bag}}, \kappa_{\mathsf{indiv}}) = p_1 p_2 \kappa_{\mathsf{indiv}}^2 + 2q \kappa_{\mathsf{indiv}} + \frac{4\sqrt{1-\alpha}}{\alpha} \sqrt{q \kappa_{\mathsf{bag}}}$$

- 1. f: increasing function of arguments with f(0,0) = 0.
- 2. influence of # bags via $\kappa_{\rm bag};\,\kappa_{\rm bag}\leq \frac{q}{2}$ for bag independent bound
- 3. $f(\kappa_{\text{bag}}, \kappa_{\text{indiv}}) = 0$ for variable selection refined analysis replaces $\frac{q^2}{p_1p_2} + \frac{2(1-\alpha)}{\alpha}q \to \frac{q^2}{p_1p_2(2\alpha-1)}$

Experiments

Synthetic Simulations

Matrix Completion

- dimension = 50,rank = {1, 2, 3, 4}
- SNR = [1, 5], 10% obs.

Linear measurements

- dimension = 50,rank = {1, 2, 3, 4}
- SNR = [1, 5], 10% meas.

Urban Hyperspectral Imaging Dataset

Reflectance data $Y \in \mathbb{R}^{p \times n}$ with p = 162, n = 94000

Experiment: randomly subsample 10% data

Factorization of $Y \approx WH$ from incomplete obs.

Known: column-space of W^*

Estimator: alternating least-squares

$$(\hat{W} , \hat{H}) = \underset{W \in \mathbb{R}^{p \times k}, H \in \mathbb{R}^{q \times k}}{\arg \min} \ \|(Y - WH^T)_{\mathsf{obs}}\|_F^2 + \lambda \ (\|W\|_F^2 + \|H\|_F^2)$$

Factorization of $Y \approx WH$ from incomplete obs.

Known: column-space of W^*

Estimator: alternating least-squares

$$(\hat{W}, \hat{H}) = \underset{W \in \mathbb{R}^{p \times k}, H \in \mathbb{R}^{q \times k}}{\mathsf{arg} \, \min} \quad \|(Y - WH^T)_{\mathsf{obs}}\|_F^2 + \lambda \, (\|W\|_F^2 + \|H\|_F^2)$$

Result: for CV λ

• ALS:
$$rk = 20; \ \tfrac{FD}{dim(\mathcal{C}^{\star\perp})} \approx 0.1 \ \& \ \tfrac{PW}{dim(\mathcal{C}^{\star})} \approx 0.98$$

• Stability + ALS:
$$rk = 3$$
; $\frac{FD}{dim(\mathcal{C}^{\star \perp})} \approx 0.0005 \& \frac{PW}{dim(\mathcal{C}^{\star})} \approx 0.96$

Factorization of $Y \approx WH$ from incomplete obs.

Known: column-space of W^*

Estimator: alternating least-squares

$$(\hat{W} \ , \ \hat{H}) = \underset{W \in \mathbb{R}^{p \times k}, H \in \mathbb{R}^{q \times k}}{\operatorname{arg\,min}} \quad \|(Y - WH^T)_{\operatorname{obs}}\|_F^2 + \lambda \ (\|W\|_F^2 + \|H\|_F^2)$$

Result: for CV λ

• ALS:
$$rk = 20; \ \frac{FD}{dim(\mathcal{C}^{\star\perp})} \approx 0.1 \ \& \ \frac{PW}{dim(\mathcal{C}^{\star})} \approx 0.98$$

• Stability + ALS:
$$rk = 3$$
; $\frac{FD}{\dim(\mathcal{C}^{\star \perp})} \approx 0.0005 \& \frac{PW}{\dim(\mathcal{C}^{\star})} \approx 0.96$

$$\frac{\text{FD}}{\text{dim}(\mathcal{C}^{\star\,\perp})} = 0.003$$
 when rank (ALS) $= 3$

Recommendation System: Amazon Book

Dataset: 1245 users, 1054 items, 6.1% observed

Estimator: ALS with fixed embedding dimension k = 80

Result: for CV λ

- ALS: rk = 80, $sing(\hat{L})_{1:3} = 4300, 125, 63$
- Stability + ALS: rk = 2; performance boost of 2.4%

Recommendation System: Amazon Video Games

Dataset: 482 users, 520 items, 3.5% observed

Estimator: ALS with fixed embedding dimension k = 80

Result: for CV λ

• ALS: rk = 39, $sing(\hat{L})_{1.5} = 913, 49, 43, 28, 27$

• Stability + ALS: rk = 4; performance boost of 17%

Summary

Agenda: testing for continuous decision spaces

- low-rank estimation in this talk
- proposed subspace stability selection to control false discoveries

Future: perspective immediately useful in related problems

• latent variable graphical modeling; tensors; manifold learning

Future: False Discovery Rate control

$$FDR = \mathbb{E}\left[\frac{\operatorname{trace}\left(\mathcal{P}_{\hat{T}}\mathcal{P}_{\mathcal{T}^{\star\perp}}\right)}{\operatorname{dim}(\hat{T})}\right]$$

http://www.its.caltech.edu/ ataeb/index.html

Selecting a Tangent Space

Goal: Select T from the determinantal variety s.t.

$$\sigma_{\min} \left(\mathcal{P}_T \mathcal{P}_{avg} \mathcal{P}_T \right) \geq \alpha$$

Compute average projection row/column spaces

$$\mathcal{P}_{\text{avg}}^{\mathcal{C}} = \frac{1}{B} \sum_{i=1}^{B} \mathcal{P}_{\hat{\mathcal{C}}^{(i)}} \qquad \mathcal{P}_{\text{avg}}^{R} = \frac{1}{B} \sum_{i=1}^{B} \mathcal{P}_{\hat{\mathcal{R}}^{(i)}}$$

Find closest row/col space

$$\hat{\mathcal{C}}(r) = \underset{\mathcal{C} \text{ subspace of dimension } r}{\arg\max} \sigma_{\min} \left(\mathcal{P}_{\mathcal{C}} \mathcal{P}_{\text{avg}}^{\mathcal{C}} \mathcal{P}_{\mathcal{C}} \right)$$

Output largest r so that $T \triangleq T(\hat{C}(r), \hat{R}(r))$ satisfies criterion.