2007 JRAHS Trial Extension 2

Question 1 Marks

(a) (i) Find the real numbers a, b and c such that
$$\frac{1}{x(4+x^2)} = \frac{a}{x} + \frac{bx+c}{4+x^2}.$$

(ii) Find
$$\int \frac{1}{x(4+x^2)} dx$$
.

(b) Evaluate
$$\int_{0}^{2} x\sqrt{2-x} dx$$
, leaving your answer in exact form.

(c) Find the zeros of
$$P(x) = x^4 - 5x^3 + 7x^2 + 3x - 10$$
 over the complex field if $2 - i$ is a zero.

(d) Given that
$$I_{2n+1} = \int_0^1 x^{2n+1} e^{x^2} dx$$
 where n is a positive integer, show that
$$I_{2n+1} = \frac{1}{2} e - nI_{2n-1}.$$

Hence, or otherwise, evaluate
$$\int_{0}^{1} x^{5} e^{x^{2}} dx$$
.

Question 2 (15 Marks) [START A NEW PAGE]

Marks

(a)(i)) Given that $z^2 = -3 - 4i$, find z.

4

(ii) Solve the equation $x^2 - 3x + 3 + i = 0$ over the complex field.

3

(b)

In the diagram above, $P(a\cos\theta, b\sin\theta)$ is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where P lies in the first quadrant.

A straight line through the origin parallel to the tangent at P meets the ellipse at the point Q, where P and Q both lie on the same side of the y-axis.

(i) Prove that the equation of the line OQ is $xb \cos \theta + ya \sin \theta = 0$.

2

(ii) Find the coordinates of the point Q given that Q lies in the fourth quadrant.

3

Prove that the area of $\triangle OPQ$ is independent of the position of P.

3

Question 3 (15 Marks) [START A NEW PAGE]

Marks

(a) A particle is projected from the origin with a speed V and an angle of elevation α on level ground.

3

A vertical wall of "unlimited" height is a distance d from the origin, and the plane of the wall is perpendicular to the plane of the particle's trajectory.

If $d < \frac{V^2}{\sigma}$, show that the particle will strike the wall before it hits the ground provided

that
$$\beta < \alpha < \frac{\pi}{2} - \beta$$
 where $\beta = \frac{1}{2} \sin^{-1} \left[\frac{gd}{V^2} \right]$.

You may assume that the range on the horizontal plane from the point of projection is $V^2 \frac{\sin 2\alpha}{\sin 2\alpha}$.

Express $z = \frac{\sqrt{2}}{1-z^5}$ in the modulus-argument form and hence find z^5 in the form of (b) 4

Question 3 continues on page 4

Question 3 cont'd

Marks

(c)

The diagram shows the graph of the continuous function y = f(x). Critical points occur at x = -2, -1, 0, 1, 2.

On the sheets provided draw separate sketches of the graphs of the following :

$$(i) y = |f(x)| 1$$

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y = \sqrt{f(x)}$$
 3

(iv)
$$y = xf(x)$$

Question 4 (15 Marks) [START A NEW PAGE]

Marks

(a) Find $\int \frac{1}{x(\ln x)^2} dx$.

2

(b) Five letters are chosen from the letters of the word MOBILITY. These five letters are then placed alongside each other to form a five-letter arrangement.

4

Find the number of different arrangements which are possible.

(c) $P\left(3p, \frac{3}{p}\right)$ and $Q\left(3q, \frac{3}{q}\right)$ are points on different branches of the hyperbola xy = 9.

2

(i) Find the equation of the tangent at P.

3

(ii) Find the point of intersection T, of the tangents at P and Q.

3

(iii) If the chord PQ passes through the point (0, 2), find the locus of T.

1

(iv) Find the restriction on the locus of T.

Question 5 (15 Marks) [START A NEW PAGE]

(a) (i) Find the volume generated when the area bounded by $y = \sin x$ and the x-axis, for $0 \le x \le \pi$, is rotated about the x-axis.

3

(ii) The area described in (i) is now rotated about the line $x = 2\pi$. Find the volume of the solid formed.

4

Question 5 continues on page 6

(b) A boat showroom is built on level ground. The length of the showroom is 100m. At one end of the showroom the shape is a square measuring 20m by 20m and at the other end an isosceles triangle of height 20m and base 10m.

- (i) If EF is x m in length, show that the length of DC is $\left[20 \frac{x}{10}\right]$ m.
- (ii) By considering trapezoidal slices parallel to the ends of the showroom, find the volume enclosed by the showroom in m³.

Question 6 (15 Marks) [START A NEW PAGE]

Marks

(a) Find $\int \frac{dx}{x^2 - 6x + 13}$.

2

(b) A food parcel of 1 kg is dropped from a helicopter which is hovering 800 metres above a group of stranded bushwalkers. After 10 seconds a parachute opens automatically. Air resistance is neglected for the first 10 seconds but the effect of the open parachute is to cause a retardation of 2v newtons where v ms⁻¹ is the velocity of the parcel after t seconds ($t \ge 10$).

Take the position of the helicopter as the origin, the downwards direction as positive and the value of g, the acceleration due to gravity as 10m s^{-2} .

(i) Write down the equation of motion of the parcel before the parachute opens.

1

(ii) Determine the velocity and the distance fallen by the parcel at the end of the 10 seconds.

4

(iii) Write down the equation of motion for $t \ge 10$.

1

(iv) What is the terminal velocity of the parcel?

1

(v) Show that the velocity of the parcel after the parachute has opened is given by:

3

$$v = 5 + 95e^{-2(t-10)}, \quad t \ge 10.$$

(vi) Find the distance fallen, x, as a function of t and hence find the distance the parcel has fallen 1 minute after it leaves the helicopter.

3

Question 7 (15 Marks) [START A NEW PAGE]

Marks

(a)

PQR is a triangle inscribed in a circle. W is a point on the arc QR. From W, perpendiculars are drawn to PR (produced), QR and PQ, meeting them at X, Y and Z respectively.

Copy the diagram.

(i) Explain why WXRY and WYZQ are cyclic quadrilaterals.

2

(ii) Prove that the points X, Y and Z are collinear.

4

(b)(i) By considering the expansion of $(\cos \theta + i \sin \theta)^5$ and by using De Moivre's Theorem show that

 $\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$.

2

2

$$16x^4 - 20x^2 + 5 = 0.$$

(iii) Hence or otherwise, show that $\cos \frac{\pi}{10} \cos \frac{3\pi}{10} = \frac{\sqrt{5}}{4}$.

3

(iv) Find the exact value of $\sin \frac{3\pi}{5} \sin \frac{6\pi}{5}$.

2

Question 8 (15 Marks) [START A NEW PAGE]

Marks

(a) The region R in the Argand diagram is defined by:

$$|z-1| \le |z-i|$$
 and $|z-2-2i| \le 1$.

(i) Sketch the region R.

3

(ii) If z describes the boundary of the region R, find

2

- (α) the value of |z| when arg(z) has the smallest value.
- (β) z in the form of a+ib when $arg(z-1) = \frac{\pi}{4}$.

3

(b) A certain type of merry go-round consists of seats hung from pivots attached to the rim of a horizontal circular disc. The disc is rotated by a motor attached to the vertical axle. As the angular velocity increases, the seats swing out and move up. The seat is represented by a point with mass *m* kg suspended by a rod of length *h* metres below the pivot, which is *a* metres from the axle of rotation.

Neglecting the mass of the rod, assume that when the disc rotates with constant angular velocity w radians per second, there is an equilibrium position such that the rod makes an angle θ with the vertical as shown in the diagram on the following page.

Question 8 continues on page 10

Diagram not to scale

(i) Show that w and θ satisfy the equation

$$(a + h\sin\theta)w^2 = g\tan\theta$$

where g is the acceleration due to gravity.

- (ii) Use graphical methods to show that for a given w, there is only one value of θ in the domain $0 \le \theta \le \frac{\pi}{2}$, which satisfies the above equation.
- (iii) Given a = 4, h = 2.5, $\theta = 30^{\circ}$ and using $g = 10 \text{ms}^{-2}$, find the angular velocity w correct to 3 significant figures when the merry-go-round is in equilibrium.

END