

Redes de Computadores I

Endereçamento IP

Prof. Fernando Parente Garcia

- Para que dois sistemas quaisquer comuniquem-se, eles precisam ser capazes de se identificar e localizar um ao outro;
- Cada computador em uma rede TCP/IP deve receber um identificador exclusivo, ou endereço IP;
 - Esse endereço permite que um computador localize outro computador na rede;
 - Um endereço IP é uma seqüência de 32 bits;
 - Para facilitar a utilização do endereço IP, geralmente ele é escrito como quatro números decimais separados por pontos (formato decimal pontuado).

192.168.1.2

11000000 10101000 00000001 000000010

- Para rotear os datagramas, os roteadores analisam os endereços IP no header do datagrama;
 - O endereço IP é uma palavra de 32 bits, estruturado em classes (A, B,
 C, D e E), que identifica a rede (NetId) e a estação na rede (HostId);
 - 2³² bits = aproximadamente 4 bilhões de endereços distintos
 - Endereços de rede são atribuídos de forma única por um órgão central;
 - NIC Network Information Center;
 - Endereços de estação são de responsabilidade da própria entidade.

Os endereços IP são associado às interfaces e não aos hosts

Endereçamento IP Classes de endereços

- Para acomodar redes de diferentes tamanhos e ajudar na classificação dessas redes, os endereços IP são divididos em grupos chamados classes;
 - A classe a ser utilizada é determinada em função do número de estações ligadas às redes e do número de redes interconectadas;
 - Cada endereço IP é dividido em uma parte da rede e uma parte do host;
 - Existem cinco classes (A, B, C, D e E).
 - As classes A, B e C permitem o endereçamento direto à estação;
 - A classe D permite efetuar multicasting;
 - A classe E é reservada.

Endereçamento IP Classe A

- O endereço de classe A foi criado para suportar poucas redes extremamente grandes.
 - Até 126 redes
 - Até 2²⁴ 2 hosts ≅ 16 milhões de hosts

0	1 7		31
0	netid (7)	hostid	(24)

Classe	1º Octeto	Rede	Host
А	1-126	N	н.н.н

Endereçamento IP Classe B

- O endereço classe B foi criado para dar conta das necessidades de redes de porte médio a grande.
 - Até 16.382 redes
 - Até 65.534 hosts

0	1	2 15	16 31
1	0	netid (14)	hostid (16)

Classe	1º Octeto	Rede	Host
В	128-192	N.N	н.н

Endereçamento IP Classe C

- A classe C tem como objetivo suportar muitas redes pequenas.
 - É a classe mais usada
 - Até $2^{21} 2 \approx 2$ milhões de redes
 - Até 254 hosts

0	1	2	3	15 23	24 31
1	1	0		netid (21)	hostid (8)

Classe	1º Octeto	Rede	Host
С	192-223	N.N.N	Н

Endereçamento IP Classe D

- O endereço classe D foi criado para permitir multicasting em um endereço IP.
 - Um endereço de multicast é um endereço de rede exclusivo que direciona os pacotes com esse endereço de destino para grupos predefinidos de endereços IP.

1	1	1	0	endereço multicast
---	---	---	---	--------------------

Classe	1º Octeto
D	224-239

Endereçamento IP Classe E

- A IETF (*Internet Engineering Task Force*) reserva os endereços da classe E para suas próprias pesquisas.
 - Nenhum endereço classe E foi liberado para uso na Internet.

1	1 1	1	0	reservado	
---	-----	---	---	-----------	--

Classe 1º Octeto
E 240-247

0 significa "este"

1 significa "todos" (255 - broadcast)

rede	de 00000000000		Esta estação
000000 host		host	Uma estação desta rede
11111	111	11111111	Difusão na rede local
rede	1	1111111	Difusão na rede específica
127	qua	Iquer coisa	Loopback

CIDR: Classless InterDomain Routing (roteamento interdomínio sem classes)

- parte de sub-rede do endereço de tamanho arbitrário
- formato do endereço: a.b.c.d/x, onde x é # bits na parte de sub-rede do endereço

11001000 00010111 00010000 00000000

200.23.16.0/23

Endereçamento IP Loopback

- 127.xx.yy.zz (exemplo: 127.0.0.0);
- São reservados para teste de loopback;
- Datagramas com este endereço não trafegam na rede;
- É utilizado pela máquina local para testar sua interface de comunicação.

Endereçamento IP Máscaras de sub-rede

- Identifica quais bits de um endereço IP designam a rede e quais designam os hosts;
- Sub-redes
 - São apenas divisões internas;
 - São criadas pelo administrador de rede;
 - Externamente s\u00e3o transparentes.

Endereço IP: 192.59.66.200

Máscara: 255.255.255.0

Host 200 da Sub-Rede 192.59.66

11000000 00111011 01000010 11001000

AND

11111111 11111111 11111111 00000000

11000000 00111011 01000010 00000000 Rede Hosts

Endereçamento IP Endereços públicos e privados

- Endereços IP públicos:
 - São exclusivos.
 - Nunca pode haver mais de uma máquina que se conecte a uma rede pública com o mesmo endereço IP.
 - Precisam ser obtidos de um provedor de serviços de Internet (ISP)
 ou através de registro a um certo custo.
 - Devido ao crescimento da Internet, os endereços IP estão se tornando escassos.

Endereçamento IP Endereços públicos e privados

- Endereços IP privados:
 - O RFC 1918 reserva três blocos de endereços IP para uso interno e privado.
 - Os endereços dentro desses intervalos não são roteados no backbone da Internet.
 - Os roteadores da Internet descartam imediatamente os endereços privados.

Classe	Intervalo de endereços Internos
Α	10.0.0.0 até 10.255.255.255
В	172.16.0.0 até 172.31.255.255
С	192.168.0.0 até 192.168.255.255

Endereçamento IP Formas de atribuição

- Existem duas formas básicas de se distribuir um endereço IP para uma estação:
 - Atribuição Manual
 - Atribuição Automática
 - DHCP

Endereçamento IP Atribuição manual

- O administrador da rede atribui e rastreia manualmente os endereços IP de cada estação;
- Funciona bem em redes pequenas,
 que mudam pouco;
- Gerenciamento complicado.

DHCP: Dynamic Host Configuration Protocol

Objetivo: permitir que o hospedeiro obtenha *dinamicamente* seu endereço IP do servidor de rede quando se conectar à rede

pode renovar seu prazo no endereço utilizado

permite reutilização de endereços (só mantém endereço enquanto conectado e "ligado")

aceita usuários móveis que queiram se juntar à rede

Visão geral do DHCP:

- host broadcasts "DHCP discover" msg [optional]
- servidor DHCP responde com msg "DHCP offer" [opcional]
- hospedeiro requer endereço IP: msg "DHCP request"
- servidor DHCP envia endereço: msg "DHCP ack"

DHCP pode retornar mais do que apenas o endereço IP alocado na sub-rede:

- endereço do roteador do primeiro salto para o cliente
- nome e endereço IP do servidor DNS
- máscara de rede

- conexão de laptop precisa do seu endereço IP, endereço do roteador do primeiro salto, endereço do servidor DNS: use DHCP
- solicitação DHCP encapsulada no UDP, encapsulada no IP, encapsulado no Ethernet 802.1
- broadcast de quadro Ethernet (dest: FFFFFFFFFFFFFF) na LAN, recebido no roteador rodando DHCP
- Ethernet demultiplexado para IP demultiplexado, UDP demultiplexado para DHCP

- servidor DCP formula DHCP ACK contendo endereço IP do cliente, endereço IP do roteador do primeiro salto para cliente, nome & endereço IP do servidor DNS
- encapsulamento do servidor
 DHCP, quadro repassado ao
 cliente, demultiplexando para
 DHCP no cliente
- cliente agora sabe seu endereço IP, nome e endereço IP do servidor DSN, endereço IP do seu roteador do primeiro salto

todos os datagramas saindo da rede local têm mesmo endereço IP NAT de origem: 138.76.29.7, mas diferentes números de porta de origem

datagramas com origem ou destino nesta rede têm endereço 10.0.0/24 para origem/destino

- motivação: rede local usa apenas um endereço IP no que se refere ao mundo exterior:
 - intervalo de endereços não necessário pelo ISP: apenas um endereço IP para todos os dispositivos
 - pode mudar os endereços dos dispositivos na rede local sem notificar o mundo exterior
 - pode mudar de ISP sem alterar os endereços dos dispositivos na rede local
 - dispositivos dentro da rede local não precisam ser explicitamente endereçáveis ou visíveis pelo mundo exterior (uma questão de segurança).

Implementação: roteador NAT deve:

- enviando datagramas: substituir (endereço IP de origem, # porta) de cada datagrama saindo por (endereço IP da NAT, novo # porta)
 - . . . clientes/servidores remotos responderão usando (endereço IP da NAT, novo # porta) como endereço de destino
- lembrar (na tabela de tradução NAT) de cada par de tradução (endereço IP de origem, # porta) para (endereço IP da NAT, novo # porta)
- recebendo datagramas: substituir (endereço IP da NAT, novo # porta) nos campos de destino de cada datagrama chegando por (endereço IP origem, # porta) correspondente, armazenado na tabela NAT

2: roteador NAT muda endereço de origem do datagrama de 10.0.0.1, 3345 para 138.76.29.7, 5001, atualiza tabela

Tabela de tradução NAT							
Lado da WAN	Lado da LAN						
138.76.29.7, 5001	10.0.0.1, 3345						

1: hospedeiro 10.0.0.1 envia datagrama para 128.119.40.186, 80

3: Resposta chega endereço destino: 138.76.29.7, 5001

4: roteador NAT muda endereço de destino do datagrama de 138.76.29.7, 5001 para 10.0.0.1, 3345

- campo de número de porta de 16 bits:
 - Mais de 65.000 conexões simultâneas com um único endereço no lado da LAN!
- NAT é controvertido:
 - roteadores só devem processar até a camada 3
 - viola argumento de fim a fim
 - a possibilidade de NAT deve ser levada em conta pelos projetistas da aplicação, p. e., aplicações P2P

NAT - Problema da travessia

- cliente quer se conectar ao servidor com endereço 10.0.0.1
 - endereço do servidor 10.0.0.1 local à LAN (cliente não pode usá-lo como endereço destino)
 - apenas um endereço NAT visível externamente: 138.76.29.7
- solução 1: configure a NAT estaticamente para repassar as solicitações de conexão que chegam a determinada porta ao servidor
 - p. e., (123.76.29.7, porta 2500)
 sempre repassado para 10.0.0.1
 porta 25000

NAT - Problema da travessia

- Solução 2: repasse (usado no Skype)
 - cliente com NAT estabelece conexão com repasse
 - cliente externo se conecta ao repasse
 - repasse liga pacotes entre duas conexões

IPv6

- motivação inicial: espaço de endereço de 32 bit logo estará completamente alocado
- motivação adicional:
 - formato de cabeçalho ajuda a agilizar processamento e repasse
 - mudanças no cabeçalho para facilitar QoS
- formato de datagrama IPv6:
 - cabeçalho de 40 bytes de tamanho fixo
 - fragmentação não permitida

Mudanças em relação ao IPv4

Classe de tráfego: identificar prioridade entre datagramas no fluxo rótulo de fluxo: identificar datagramas no mesmo "fluxo." (conceito de "fluxo" não bem definido) próximo cabeçalho: identificar protocolo da camada superior

Mudanças em relação ao IPv4

- soma de verificação: removida inteiramente para reduzir tempo de processamento em cada salto
- opões: permitidas, mas fora do cabeçalho, indicadas pelo campo de "Próximo Cabeçalho"
- ICMPv6: nova versão do ICMP
 - tipos de mensagem adicionais, p. e. "Pacote Muito Grande"
 - funções de gerenciamento de grupo multicast

Transição de IPv4 para IPv6

- nem todos os roteadores podem ser atualizados simultaneamente
 - sem "dia de conversão"
 - como a rede operará com roteadores IPv4 e IPv6 misturados?
- implantação de túnel: IPv6 transportado como carga útil no datagrama IPv4 entre roteadores IPv4

Transição de IPv4 para IPv6

Transição de IPv4 para IPv6

IPv/6

IPv6

Visão lógica:

IPv4

Visão física:

IPv4

IPv6

IPv6

