Modeling hw3

10170437 Mark Taylor

Problems

Solution

5. (1) 尾数
$$n(t)$$
 满足 $\dot{n} = -\lambda n(\lambda > 0)$, $n(0) = n_0$ 得 $n(t) = n_0 e^{-\lambda t}$. 每尾鱼重 $w(t)$ 满足 $\dot{w} = \alpha w^{2/3} - \beta w$, 不妨近似设 $w(0) = 0$, 得 $w(t) = \left(\frac{\alpha}{\beta}\right)^3 (1 - e^{-\beta t/3})^3$.

(2) 设 $t = T$ 时开始捕捞,且单位时间捕捞率为 E , 则 $t \ge T$ 时有 $\dot{n} = -(\lambda + E)n$, 因此得 $n(t) = n_0 e^{-\lambda T} e^{-(\lambda + E)(t-T)}$, 单位时间捕捞鱼的尾数为 $En(t)$, 每尾鱼重 $w(t)$, 所以从 T 开始的总捕捞量是 $y = \int_{T}^{\infty} w(t) En(t) dt = \int_{0}^{\infty} \left(\frac{\alpha}{\beta}\right)^3 [1 - e^{-\beta(\tau + T)/3}]^3 En_0 e^{-\lambda T} e^{-(\lambda + E)\tau} d\tau$, 问题为求 λ , E 使 y 最大,可用数值法求解.

Okay, now let's try to figure out how to numerically solve this problem.

$$y = \int_0^\infty \left(\frac{\alpha}{\beta}\right)^3 \left[1 - e^{-\frac{\beta(\tau + T)}{3}}\right]^3 E n_0 e^{-\lambda T} e^{-(\lambda + E)\tau} d\tau,$$
 Let $\tau = \frac{t}{1 - t^2}$, $0 < t < 1$, $d\tau = \frac{1 + t^2}{(1 - t^2)^2} dt$, thus
$$y = \int_0^1 \left(\frac{\alpha}{\beta}\right)^3 \left[1 - e^{-\frac{\beta\left(\frac{t}{1 - t^2} + T\right)}{3}}\right]^3 E n_0 e^{-\lambda T} e^{-(\lambda + E)\frac{t}{1 - t^2}} \frac{1 + t^2}{(1 - t^2)^2} dt.$$

Then we need to find out the critical point (λ, E) such that y_{max} .

Visualization

See https://www.geogebra.org/m/uwnwfmze for the dynamic graph.

In this graph, g is the goal function to be integrated, i.e.

$$g = \left(\frac{\alpha}{\beta}\right)^3 \left[1 - e^{-\frac{\beta\left(\frac{t}{1-t^2} + T\right)}{3}}\right]^3 * E * e^{-\lambda T} e^{-(\lambda + E)\frac{t}{1-t^2}} \frac{1+t^2}{(1-t^2)^2}, \qquad 0 \le t < 1.$$

Note that we omit the positive constant n_0 , for it has no contribution to the critical point. The blue sliders are constants as well, you can set those as you like. Since t = 1 is a discontinuous point, we can only numerically integrate g by interval $[0, 1 - \varepsilon]$, you can set the ε as well at the right side of the graph.

Apparently, $g \ge 0$, $0 \le x < 1$, and g decays as λ increases (you can verify it by dragging slider λ and keeping the rest static). In practical terms, λ is the rate of decrement of fry number that as time goes on (as they grow). The smaller λ is, the more fry will remain. Reasonable.

The critical point might be $(\lambda, E) = (0.075, 0.01)$ under the conditions that $T = 3.7, \alpha = 2, \beta = 1, \varepsilon = 0.001$

We can also approximate the critical point by writing a simple MATLAB program, letting λ and E be two vectors, consisting of a series of (evenly spaced) elements, say linspace(0,1,100). Afterwards, get the maximum numerical integral by Simpson's method or Gaussian quadrature formula, and return this pair of values.