This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-206638

(43)Date of publication of application: 28.07.2000

(51)Int.CI.

G03B 42/02 5/06 B65H 1/00 HO4N HO4N 1/04

(21)Application number: 11-322215

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

12.11.1999

(72)Inventor: KATO KENICHI

TANABE TAKESHI

(30)Priority

Priority number: 10322093

Priority date: 12.11.1998

Priority country: JP

(54) SHEET BODY CARRYING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To smoothly and accurately sub-scan and carry a sheet body and to eliminate the influence of the curl, etc., of the sheet body by disposing a positional deviation preventing means for preventing the positional deviation in the depth direction from the optical scanning position of the sheet body between a 1st pair of rollers and a 2nd pair of rollers.

SOLUTION: In a subscanning carrying means 16, a pair of carrying rollers 36 on an upstream side and a pair of carrying rollers 38 on a downstream side are disposed at a shorter distance than the length in a subscanning direction of sheet type photosensitive material while putting a recording position X where a main scanning line is formed in between. An optical scanning guide 40 is disposed at the position X between two pairs of carrying rollers 36 and 38 and a pair of presser rollers 42 is disposed between the pair of rollers 36 on the upstream side and the position X

proximately to the position X. Then, the deviation in the depth direction such as floating from the position X caused by the curl of the sheet type photosensitive material is prevented by the pair of presser rollers 42, and the sheet type photosensitive material is exactly held at the position X on the guide 40.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2000-206638

(P2000-206638A)

(43) 公開日 平成12年7月28日(2000.7.28)

(51) Int. Cl. 7	識別記号	F I デーマコート' (参考
G03B 42/02		G03B 42/02 B
		E
B65H 5/06		B65H 5/06 D
H04N 1/00	108	H04N 1/00 108 Q
1/04		1/12 7
		審査請求 未請求 請求項の数23 〇L (全18頁)
(21)出願番号	特願平11-322215	(71)出願人 000005201
		富士写真フイルム株式会社
(22)出願日	平成11年11月12日(1999.11.12)	神奈川県南足柄市中沼210番地
		(72)発明者 加藤 賢一
(31)優先権主張番号	特願平10-322093	神奈川県足柄上郡開成町宮台798番地 富
(32)優先日	平成10年11月12日(1998.11.12)	士写真フイルム株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者 田辺 剛
		神奈川県足柄上郡開成町宮台798番地 富
		士写真フイルム株式会社内
		(74)代理人 100080159
		弁理士 渡辺 望稔

(54) 【発明の名称】シート体搬送装置

(57) 【要約】

【課題】シート体のカール等の影響を排し、先端部分や後端部分の光走査位置からの浮きなどの深度方向の位置ずれを排し、シート体に十分なる平面性を確保しつつ副走査搬送を行うことができる、簡単な構成で小型コンパクトで低コストで、高精度の画像読取や画像記録に最適なシート体搬送装置を提供する。

【解決手段】光ピーム走査におけるシート体の副走査搬送手段として用いられる2組のローラ対と、この両ローラ対間に配設され、シート体の光走査位置からの深度方向の位置ずれを防止する位置ずれ防止手段、例えば固定コロとこれに対する付勢力が調整可能な押さえコロを持つ押さえコロ対と、好ましくは、シート体の搬送に同期して各々のローラ対の一方のローラを他方の固定型のローラに対してそれぞれ独立して進退自在とする各々の開閉手段およびそれらの駆動手段とを有することにより、上記課題を解決する。

【特許請求の範囲】

. 11

【請求項1】1次元方向に光走査されるシート体を前記 1次元方向に略直交する副走査方向に前記シート体の副 走査方向の長さより短い間隔で配設される第1ローラ対 と第2ローラ対とによって挟持して副走査搬送するシー ト体搬送装置であって、

前記第1ローラ対と第2ローラ対との間に配設され、前記シート体の光走査位置からの深度方向の位置ずれを防止する位置ずれ防止手段を有することを特徴とするシート体搬送装置。

【請求項2】前記位置ずれ防止手段は、前記第1ローラ対と第2ローラ対との間であって、前記シート体の光走査位置より上流側および下流側の少なくとも一方に配設されることを特徴とする請求項1に記載のシート体搬送装置。

【請求項3】前記位置ずれ防止手段は、前記第1ローラ対と第2ローラ対との間であって、前記シート体の光走査位置より上流側に配設されることを特徴とする請求項1または2に記載のシート体搬送装置。

【請求項4】請求項 $1\sim3$ のいずれかに記載のシート体 20 搬送装置であって、

さらに、前記第1ローラ対と第2ローラ対との間に配設され、前記光走査位置に前記シート体をその下面から支持する光走査ガイドを有し、

前記位置ずれ防止手段は、前記光走査ガイドからの前記 シート体の浮きを防止する手段であることを特徴とする シート体搬送装置。

【請求項5】請求項1~4のいずれかに記載のシート体 搬送装置であって、

前記第1ローラ対は、前記第2ローラ対の上流側に配置 30 され、回転駆動される第1ローラおよびこの第1ローラ に対して進退自在な第1ニップローラから構成され、前 記第1ニップローラに係合し、この第1ニップローラを 前記シート体の搬送に合わせて進退させて前記第1ロー ラ対を開閉する第1開閉手段と、

前記第2ローラ対は、前記第1ローラ対の下流側に配置され、回転駆動される第2ローラおよびこの第2ローラに対して進退自在な第2ニップローラから構成され、前記第2ニップローラに係合し、この第2ニップローラを前記シート体の搬送に合わせて進退させて前記第2ロー 40ラ対を開閉する第2開閉手段とを、さらに有することを特徴とするシート体搬送装置。

【請求項6】前記第1開閉手段は、カム機構とその駆動手段、ソレノイド、ロータリソレノイド、ラックアンドピニオン機構とその駆動手段およびリニアガイド機構とその駆動手段のいずれか1つであり、前記第2開閉手段は、カム機構とその駆動手段、ソレノイド、ロータリソレノイド、ラックアンドピニオン機構とその駆動手段およびリニアガイド機構とその駆動手段のいずれか1つであることを特徴とする請求項5に記載のシート体搬送装50

置。

【請求項7】前記第1開閉手段は、第1カム機構とこの第1カム機構の駆動手段であり、前記第2開閉手段は、第2カム機構とこの第2カム機構の駆動手段である請求項5または6に記載のシート体搬送装置。

【請求項8】前記第1カム機構の駆動手段および前記第2カム機構の駆動手段は、前記第1カム機構および前記第2カム機構を一体的に駆動させて前記第1ローラ対と前記第2ローラ対を選択的に開閉させる単一な共通駆動源であることを特徴とする請求項7に記載のシート体搬送装置。

【請求項9】前記第1カム機構は、前記第1ニップローラを回転自在に支持する第1揺動部材と、この第1揺動部材に係合して前記第1ニップローラを前記第1ローラに対して進退させる第1カム部材とを備え、

前記第2カム機構は、前記第2ニップローラを回転自在 に支持する第2揺動部材と、この第2揺動部材に係合し て前記第2ニップローラを前記第2ローラに対して進退 させる第2カム部材とを備え、

0 前記第1カム部材および前記第2カム部材は、単一な共通回転軸を有し、この共通回転軸に回転駆動源である前記共通駆動源を連結することを特徴とする請求項8に記載のシート体搬送装置。

【請求項10】前記第1揺動部材は、前記第1ニップローラを回転自在に支持し、前記第1ローラに対して接離方向に往復動する第1ブラケットと、この第1ブラケットおよび前記第1カム部材と係合して回動する第1回動部材と、前記第1ニップローラを前記第1ローラに押圧するように前記第1ブラケットを付勢する第1付勢手段とを備え、

前記第2揺動部材は、前記第2ニップローラを回転自在に支持し、前記第2ローラに対して接離方向に往復動する第2ブラケットと、この第2ブラケットおよび前記第2カム部材と係合して回動する第2回動部材と、前記第2ニップローラを前記第2ローラに押圧するように前記第2ブラケットを付勢する第2付勢手段とを備えることを特徴とする請求項9に記載のシート体搬送装置。

【請求項11】前記第1カム部材および前記第2カム部材は、単一な共通偏芯カムであり、前記第1回動部材および前記第2回動部材は、単一な共通回動軸を有することを特徴とする請求項10に記載のシート体搬送装置。 【請求項12】前記位置ずれ防止手段は、

回転可能な固定コロおよびこの固定コロとの間の前記シート体の挟持力を調整可能かつ回転可能な押さえコロから構成され、前記シート体を挟持して前記光走査位置に 保持する押さえコロ対と、

前記押さえコロに係合し、この押さえコロと前記固定コロとの間の前記シート体の挟持力を調整する挟持力調整機構とを有することを特徴とする請求項1~11のいずれかに記載のシート体搬送装置。

【請求項13】前記挟持力調整機構は、前記押さえコロ を回転自在に支持する第3揺動部材と、前記押さえコロ を前記固定コロに押圧するように前記第3揺動部材を付 勢する第3付勢手段と、この第3付勢手段による前記第 3 揺動部材の付勢力の付加と開放とを行う付勢力付加手 段とを備えることを特徴とする請求項12に記載のシー ト体搬送装置。

【請求項14】前記付勢力付加手段は、前記第1カム機 構による前記第1ニップローラの前記第1ローラに対す る進退に応じて、前記第3付勢手段による前記第3揺動 10 部材の付勢力の付加と開放とを行うことを特徴とする請 求項13に記載のシート体搬送装置。

【請求項15】前記付勢力付加手段は、前記第1カム機 構の前記第1揺動部材によって前記第3付勢手段による 前記第3揺動部材の付勢力の付加と開放とを行うことを 特徴とする請求項13に記載のシート体搬送装置。

【請求項16】前記付勢力付加手段は、さらに前記第1 カム機構の前記第1揺動部材の前記第1ブラケットと係 合する前記第4揺動部材を有し、前記第3揺動部材は、 前記第4揺動部材に揺動軸を有し、前記第3付勢手段 は、前記第3揺動部材を前記第4揺動部材に対して付勢 するものであり、前記第1ブラケットの往復動によって 前記第3付勢手段による前記第3揺動部材の付勢力の付 加と開放とを行うことを特徴とする請求項13に記載の シート体搬送装置。

【請求項17】前記第3揺動部材は、前記主走査方向に 対して複数個に分割され、各第3揺動部材毎に前記押さ えコロ、前記固定コロおよび前記第3付勢手段を有する ことを特徴とする請求項13~16のいずれかに記載の シート体搬送装置。

【請求項18】前記第3揺動部材毎の前記押さえコロ は、さらに小サイズに細分割された細分割コロであり、 前記固定コロは、前記第3揺動部材の両端のみに設けら れ、前記押さえコロの両端の細分割コロと当接する2個 の細分割コロであることを特徴とする請求項17に記載 のシート体搬送装置。

【請求項19】前記押さえコロおよび固定コロは、分割 コロであることを特徴とする請求項12~18のいずれ かに記載のシート体搬送装置。

【請求項20】前記固定コロは、前記光走査ガイドに回 40 転可能に支持されることを特徴とする請求項12~19 のいずれかに記載のシート体搬送装置。

【請求項21】前記シート体搬送装置が画像記録装置の 副走査搬送機構であり、前記シート体が感光材料であ り、前記画像記録装置が裏印字手段を備えている時、前 記固定コロは、前記裏印字手段による裏印字位置を外し た位置に設けられることを特徴とする請求項12~20 のいずれかに記載のシート体搬送装置。

【請求項22】前記光走査ガイドは、前記1次元方向に 複数個設けられ、前記副走査方向の上流側に延在し、先 50 は、このような2組のローラ対を用いる副走査搬送機構

端が内側に湾曲する櫛葉状の曲爪を有することを特徴と する請求項12~21のいずれかに記載のシート体搬送

【請求項23】前記光走査ガイドは、前記1次元方向に 複数個設けられ、前記副走査方向の下流側に延在する櫛 葉状の直爪を有することを特徴とする請求項22に記載 のシート体搬送装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、シート状の被走査 体、すなわちシート体に対して光ピームを照射して画像 の記録または読取を行うためにシート体を2組のローラ 対で副走査搬送するシート体搬送装置、詳しくは、シー ト体を1次元方向に偏向または配列された光ビーム等に よって光走査して、シート体に画像を記録する画像記録 装置またはシート体の記録画像を読み取る画像読取装置 などの光ビーム走査装置のシート体搬送装置の技術分野 に属する。

[0002]

20

【従来の技術】現在、放射線画像情報読取装置において は、放射線エネルギが画像情報として蓄積された蓄積性 蛍光体シートにレーザ光などの励起光を照射して、蓄積 された放射線エネルギを輝尽発光させ、この輝尽発光光 をフォトマルチプライヤなどの光検出器によって検出 し、放射線画像情報を光電的に読み取ることが行われて いる。この際に、放射線画像情報読取装置の光ビーム走 査装置においては、蓄積性蛍光体シートに蓄積された放 射線画像情報を2次元的に読み取るために、1次元方向 に偏向されたレーザ光を蓄積性蛍光体シートに照射して 30 主走査するとともに主走査方向と略直交する方向に蓄積 性蛍光体シートを副走査搬送している。この光ビーム走 査装置における副走査搬送機構として蓄積性蛍光体シー トなどのシート体をその副走査方向の長さより短い間隔 で配設された2組のローラ対で副走査搬送するシート体 搬送装置が用いられている(例えば、特開昭62-13 5064号公報、同62-167150号公報、同63 -67859号公報参照)。

【0003】このようなシート体搬送装置においては、 所定の厚みを有している蓄積性蛍光体シートなどのシー ト体がローラ対の間に進入する際およびローラ対の間か ら離脱する際に受け易い衝撃の発生を阻止するために、 シート体のローラ対間への進入およびローラ対間からの 離脱時にローラ対の一方のローラ、すなわちニップロー ラを他方のローラ、すなわち固定型のローラから退避さ せている。こうして、シート体の衝撃の発生を阻止し、 その結果、シート体の振動や位置ずれなどの惹起を阻止 し、シート体の円滑かつ髙精度な副走査搬送を達成し、 髙精度な画像情報の読み取りを可能にしている。さら に、本出願人に係る特開平5-281635号公報に

におけるシート体のローラ対間への進入およびローラ対間からの離脱時におけるニップローラの退避を1つのアクチュエータで選択的に行う簡単な構成のコンパクトなシート体搬送装置が開示されている。

【0004】一方、画像記録の分野においては、ネガフ ィルム、リバーサルフィルム等の写真フィルム(以下、 フィルムとする)に撮影された画像を印画紙等の感光材 料に焼き付けた後に現像して仕上がり写真プリントを得 るフォトプリンタとして、今まで、フィルムの担持画像 を感光材料に面露光(直接露光)するアナログフォトプ 10 リンタが用いられてきているが、現在、フィルムの担持 画像をスキャナなどの画像読取装置のCCDなどのイメ ージセンサによって光電的に読み取り、デジタル画像デ ータに変換し、このデジタル画像データを画像処理装置 によって所定の画像処理を施した後、画像記録装置(焼 付装置)の光ピーム走査装置において、得られたデジタ ル画像データに基づいて変調された記録光ピームによっ て感光材料を走査露光して画像(潜像)を記録し、現像 装置によって現像処理を施して、仕上がり写真プリント として出力するデジタルフォトプリンタが本出願人によ 20 って実用化されている。

【0005】このデジタルフォトプリンタでは、フィル ムを光電的に読み取り、デジタル画像情報(データ)に 変換した後、デジタル画像処理によって階調補正等が行 われて露光条件が決定される。そのため、デジタル画像 処理による複数画像の合成や画像分割等のプリント画像 の編集や、色/濃度調整、輪郭強調、覆い焼き、周辺光 量補正、歪曲収差補正や色収差補正等の各種の画像処理 も自由に行うことができ、用途に応じて自由に処理した プリントを出力できるなどの優れた特徴を有している。 また、プリント画像の画像データをコンピュータ等に供 給することができ、また、フロッピーディスク等の記録 媒体に保存しておくこともできるなどの優れた特徴を有 している。さらに、デジタルフォトプリンタによれば、 従来の直接露光によるプリントに比して、分解能、色/ 濃度再現性等に優れた、より画質の良好なプリントが出 力可能であるなどの優れた特徴を有している。

【0006】しかしながら、本出願人に係るデジタルフォトプリンタは、このような優れた特徴を有しているもの、画像記録装置として、ロール状に巻回された長尺状 40の感光材料をそのまま副走査搬送しながら1次元方向に偏向された光ビームによって主走査することを連続的に繰り返して、長尺状の感光材料を途中で切断することはなく、多数の画像を記録する画像焼付装置を用い、露光済感光材料を長尺なまま現像した後に、最後に長尺状の感光材料を画像に応じた所定長に切断して1枚の仕上がりブリントとするものであるので、極めて高い効率で大量処理ができるものの、装置構成が大型化するため少量処理を行うには操作が大変であるし、装置として高価で大型となり、少量処理のための装置としては不向きであ 50

るという問題があった。

【0007】このため、デジタルフォトプリンタにおいても、長尺状の感光材料をプリント1枚に対応して切断してカットシートとした後に、カットシート状の感光材料に光ビーム走査露光を行う構成とした、装置構成の小型化、装置コストやランニングコストの大幅な低減が可能な焼付装置(以下、シートタイプの画像記録装置という)の実現が強く望まれている。このようなシートタイプの画像記録装置においては、前述した特開平5-281635号公報に開示された放射線画像情報読取装置の光ビーム走査装置の副走査搬送機構として用いられる2組のローラ対を用いるシート体搬送装置の適用が考えられている。

[0008]

30

【発明が解決しようとする課題】ところで、このような シートタイプの画像記録装置においては、ロール状に巻 回されていた感光材料が、所定長のシート状に切断され るため、1枚のシート状感光材料は、完全な平面状では なく、若干ではあるがカールを帯びている。すなわち、 感光材料は乳剤面を外側にしてロール状に巻回されてい るのが、慣例となっており、これをシート状に切断する と、乳剤面を外側とした凸状のカールが残ってしまう。 【0009】このようにカールを帯びたシート状感光材 料を上述した特開平5-281635号公報に開示の所 定間隔離間して配置された2組のローラ対を用いるシー ト体搬送装置で副走査搬送すると、シート状感光材料の 先端から画像露光が行われる場合には、シート状感光材 料の先端が上流側のローラ対を通過し、ローラ対間の露 光位置から下流側のローラ対に到達するまでの間および シート状感光材料の後端が上流側のローラ対を通過し、 露光位置から下流側のローラ対に到達するまでの間、そ れぞれシート状感光材料が上流側および下流側のローラ 対のみの片側だけが挟持された、いわゆる片持状態で副 走査搬送されつつ、画像記録(露光)位置において画像 走査露光が行われるため、感光材料のカールを帯びた先 端部分および後端部分では、深度方向に光路長が変動す るため、露光ムラ、従って濃度ムラが生じるという問題 があった。

【0010】すなわち、このようなシート体搬送装置を用いることにより、シート状感光材料のローラ対間の突入時や離脱時衝撃や振動や位置ずれなどの負荷変動による露光ムラ(濃度ムラ)をある程度まで低減できるものの、シート状被走査体である感光材料のカールを防止するものではないため、露光位置での平面性が十分に確保できず、露光ムラが発生するという問題が依然として存在する。このように2組のローラ対でシート状感光材料を副走査搬送する際には、2組のローラ対間の間隔が広いと、シート状感光材料が片持状態で搬送される部分が多くなるため、シート状感光材料の持つカールが露光位置においてそれだけ顕著に現れてしまい、このカールし

て浮き上がった部分に走査露光が行われ、均一かつ適切 な光路長で露光することができずに、この感光材料の先端部分および後端部分において露光ムラが生じやすく、 高画質なブリントが得られなくなるという問題があった。

【0011】本発明の目的は、上記従来技術の問題点を解消し、光ピーム走査装置の副走査搬送機構として2組のローラ対を用い、シート状感光材料などのシート状の被走査体、すなわちシート体を円滑かつ高精度に副走査搬送することができるとともに、シート体のカール等の影響を排し、すなわちカール等によるシート体の先端部分や後端部分の光走査位置からの浮きなどの深度方向の位置ずれを排し、または極めて小さい許容限度まで低減し、シート体に十分なる平面性を確保しつつ副走査搬送を行うことができる、簡単な構成で小型コンパクトで低コストで、高精度の画像読取や画像記録に最適なシート体搬送装置を提供することにある。

[0012]

【課題を解決するための手段】前記目的を達成するために、本発明は、1次元方向に光走査されるシート体を前20記1次元方向に略直交する副走査方向に前記シート体の副走査方向の長さより短い間隔で配設される第1ローラ対と第2ローラ対とによって挟持して副走査搬送するシート体搬送装置であって、前記第1ローラ対と第2ローラ対との間に配設され、前記シート体の光走査位置からの深度方向の位置ずれを防止する位置ずれ防止手段を有することを特徴とするシート体搬送装置を提供するものである。

【0013】上記態様のシート体搬送装置において、前記位置ずれ防止手段は、前記第1ローラ対と第2ローラ 30対との間であって、前記シート体の光走査位置より上流側および下流側の少なくとも一方に配設されるのが好ましく、より好ましくは、前記第1ローラ対と第2ローラ対との間であって、前記シート体の光走査位置より上流側に配設されるのがよい。また、本発明は、上記シート体搬送装置であって、さらに、前記第1ローラ対と第2ローラ対との間に配設され、前記光走査位置に前記シート体をその下面から支持する光走査ガイドを有し、前記位置ずれ防止手段は、前記光走査ガイドからの前記シート体の浮きを防止する手段であることを特徴とするシー 40ト体搬送装置を提供するものである。

【0014】また、本発明は、上記シート体搬送装置であって、前記第1ローラ対は、前記第2ローラ対の上流側に配置され、回転駆動される第1ローラおよびこの第1ローラに対して進退自在な第1ニップローラから構成され、前記第1ニップローラに係合し、この第1ニップローラを前記シート体の搬送に合わせて進退させて前記第1ローラ対を開閉する第1開閉手段と、前記第2ローラ対は、前記第1ローラ対の下流側に配置され、回転駆動される第2ローラおよびこの第2ローラに対して進退50

自在な第2ニップローラから構成され、前記第2ニップローラに係合し、この第2ニップローラを前記シート体の搬送に合わせて進退させて前記第2ローラ対を開閉する第2開閉手段とを、さらに有することを特徴とするシート体搬送装置を提供するものである。

【0015】上記各態様のシート体搬送装置において、前記第1開閉手段は、カム機構とその駆動手段、ソレノイド、ロータリソレノイド、ラックアンドピニオン機構とその駆動手段およびリニアガイド機構とその駆動手段のいずれか1つであり、前記第2開閉手段は、カム機構とその駆動手段、ソレノイド、ロータリソレノイド、ラックアンドピニオン機構とその駆動手段およびリニアガイド機構とその駆動手段のいずれか1つであるのが好ましい。また、前記第1開閉手段は、第1カム機構とこの第1カム機構の駆動手段であり、前記第2開閉手段は、第2カム機構とこの第2カム機構の駆動手段であるのが好ましい。

【0016】また、前記第1カム機構の駆動手段および前記第2カム機構の駆動手段は、前記第1カム機構および前記第2カム機構を一体的に駆動させて前記第1ローラ対と前記第2ローラ対を選択的に開閉させる単一な共通駆動源であるのが好ましい。また、前記第1カム機構は、前記第1ニップローラを回転自在に支持する第1居動部材と、この第1居動部材に係合して前記第1ニップローラを前記第1ローラに対して進退させる第1カム部材とを備え、前記第2カム機構は、前記第2ニップローラを前記第1ローラに対して進退させる第2カム部材と、この第2揺動部材に係合して前記第2ニップローラを前記第2ローラに対して進退させる第2カム部材とを備え、前記第1カム部材および前記第2カム部材は、単一な共通回転軸を有し、この共通回転軸に回転駆動源である前記共通駆動源を連結するのが好ましい。

【0017】ここで、前記第1揺動部材は、前記第1二 ップローラを回転自在に支持し、前記第1ローラに対し て接離方向に往復動する第1ブラケットと、この第1ブ ラケットおよび前記第1カム部材と係合して回動する第 1回動部材と、前記第1ニップローラを前記第1ローラ に押圧するように前記第1ブラケットを付勢する第1付 勢手段とを備え、前記第2揺動部材は、前記第2ニップ ローラを回転自在に支持し、前記第2ローラに対して接 離方向に往復動する第2ブラケットと、この第2ブラケ ットおよび前記第2カム部材と係合して回動する第2回 動部材と、前記第2ニップローラを前記第2ローラに押 圧するように前記第2プラケットを付勢する第2付勢手 段とを備えるのが好ましい。また、前記第1カム部材お よび前記第2カム部材は、単一な共通偏芯カムであり、 前記第1回動部材および前記第2回動部材は、単一な共 通回動軸を有するのが好ましい。

【0018】また、前記位置ずれ防止手段は、回転可能な固定コロおよびこの固定コロとの間の前記シート体の

a 1 1

挟持力を調整可能かつ回転可能な押さえコロから構成され、前記シート体を挟持して前記光走査位置に保持する押さえコロ対と、前記押さえコロに係合し、この押さえコロと前記固定コロとの間の前記シート体の挟持力を調整する挟持力調整機構とを有するのが好ましい。ここで、前記挟持力調整機構は、前記押さえコロを回転自在に支持する第3揺動部材と、前記押さえコロを前記固定コロに押圧するように前記第3揺動部材を付勢する第3付勢手段と、この第3付勢手段による前記第3揺動部材の付勢力の付加と開放とを行う付勢力付加手段とを備え 10 るのが好ましい。

【0019】ここで、前記付勢力付加手段は、前記第1 力ム機構による前記第1ニップローラの前記第1ローラ に対する進退に従って前記第3付勢手段による前記第3 揺動部材の付勢力の付加と開放とを行うのが好ましい。 また、前記付勢力付加手段は、前記第1力ム機構の前記 第1揺動部材によって前記第3付勢手段による前記第3 揺動部材の付勢力の付加と開放とを行うのが好ましい。 また、前記付勢力付加手段は、さらに前記第1力ム機構 の前記第1揺動部材の前記第1ブラケットと係合する前 記第4揺動部材を有し、前記第3揺動部材は、前記第4 揺動部材に揺動軸を有し、前記第3付勢手段は、前記第 3揺動部材を前記第4揺動部材に対して付勢するもので あり、前記第1ブラケットの往復動によって前記第3付 勢手段による前記第3揺動部材の付勢力の付加と開放と を行うのが好ましい。

【0020】また、前記第3揺動部材は、前記主走査方向に対して複数個に分割され、各第3揺動部材毎に前記押さえコロ、前記固定コロおよび前記第3付勢手段を有するのが好ましい。また、前記第3揺動部材毎の前記押30さえコロは、さらに小サイズに細分割されてた細分割コロであり、前記固定コロは、前記第3揺動部材の両端のみに設けられ、前記押さえコロの両端の細分割コロと当接する2個の細分割コロであるのが好ましい。また、前記押さえコロおよび固定コロは、分割コロであるのが好ましい。また、前記固定コロは、前記光走査ガイドに回転可能に支持されるのが好ましい。

【0021】また、前記シート体搬送装置が画像記録装置の副走査搬送機構であり、前記シート体が感光材料であり、前記画像記録装置が裏印字手段を備えている時、前記固定コロは、前記裏印字手段による裏印字位置を外した位置に設けられるのが好ましい。また、前記光走査ガイドは、前記1次元方向に複数個設けられ、前記副走査方向の上流側に延在し、先端が内側に湾曲する櫛葉状の曲爪を有するのが好ましく、さらに、前記1次元方向に複数個設けられ、前記副走査方向の下流側に延在する櫛葉状の直爪を有するのが好ましい。

[0022]

【発明の実施の形態】本発明に係るシート体搬送装置を bによって対応するマガジンの感光材料2を引き出し 添付の図面に示す好適な実施の形態に基づいて、以下に 50 て、下流の裏印字部14に搬送する。この搬送は、カッ

詳細に説明する。

【0023】図1に、本発明のシート体搬送装置を副走 査搬送機構として適用する画像記録装置の基本構成を示 す。図1に示される画像記録装置(以下、記録装置とす る)10は、ロール状に券回されてマガジン内に収納さ れた長尺な写真感光材料を、作製すべきブリントに応じ た所定長に切断してカットシートとした後に、バックブ リント(裏印字)を行い、次いで本発明のシート体搬送 装置により2組のローラ対によって副走査搬送しながら デジタル走査露光を行い、露光済感光材料2を現像機 (プロセッサ)に供給する装置であって、感光材料供給 部12、裏印字部14、本発明のシート体搬送装置を適 用する副走査搬送手段16を有する記録部18および振 分手段20を有する。

【0024】なお、装置の基本的な構成を明瞭にするために図示を省略しているが、記録装置10には、搬送ローラ等の感光材料2の搬送手段や搬送ガイド、感光材料検出のためのセンサ等、公知の画像記録装置に配置される各種の部材が、必要に応じて配置されている。ここで、搬送手段として設けられる搬送ローラの間隔は、感光材料2の搬送方向に支障がないように、切断後のシート状感光材料2のとりうる最小長さよりも小さく設定されていることはいうまでもない。

【0025】感光材料供給部12には、乳剤面(感光面)を外側にしてロール状に巻回された長尺な感光材料 Zを遮光性の筺体に収納してなるマガジン22aおよび24bが配置される。ここで、マガジン22aおよび22b内にはそれぞれ感光材料 Zの引き出し口に対応する位置に引き出しローラ対26aおよび24bにそれぞれ対応するカッタ28aおよび24bにそれぞれ対応するカッタ28aおよび28bが、それぞれ装填部24aおよび24bに装填されたマガジン222aおよび24bに装填されたマガジン222aおよび22bの引出しローラ対26aおよび26bの下流側に近接するように配置される。図1に示されるように、記録装置10においては、装填部24aの下方に装填部24bが配置されており、記録位置 X はその上方に位置している

【0026】図示例の記録装置10は、2つのマガジン22aおよび22bを装填可能な装置であって、両者は通常、サイズ(幅)、面種(シルクやマット等)、仕様(厚さやベースの種類等)等、互いに種類の異なる感光材料Zを収納するが、同種類の感光材料Zでもよいことはもちろんである。なお、図示例の記録装置10においては、装填可能なマガジン数は図示例の2個に限定されず、1個であってもよいし、あるいは3個以上のマガジンが装填可能であってもよい。このような感光材料供給部12においては、引き出しローラ対26aおよび26bによって対応するマガジンの感光材料Zを引き出して、下流の裏印字部14に搬送する。この搬送は、カッ

4.9

タ28a, 28bより下流に搬送された感光材料 Z が作成するプリントに応じた長さになった時点で停止し、次いで、カッタ28a, 28bが作動して、感光材料 Z が所定長のカットシートとされる。

【0027】図1に示される記録装置10は、2つのマガジン22aおよび22bの個々に対してカッタ28a および28bを設け、これらのマガジンから引き出された感光材料Zを別個のカッタ28a,28bでそれぞれ切断する構成としているが、本発明はこれに限定はされず、共通の1つのカッタで切断する構成としてもよい。このように感光材料供給部12から引き出されて、切断されたシート状感光材料Zは、上方の裏印字部14に搬送される。

【0028】裏印字部14は、感光材料2の裏面(非乳 剤面) に、写真の撮影日、プリント焼付日、コマ番号、 フィルムID番号(符号)、撮影に使用したカメラのI D番号、フォトプリンタの I D番号等の各種の情報、い わゆるバックプリント情報(裏印字情報)を記録(裏印 字) する部分である。このような裏印字部14は、例え ば、接触型の印字装置として、ドットインパクト方式の 20 裏印字ブリンタ30を用いることができ、ガイド32に 案内されて搬送される感光材料Zに裏印字情報を記録す るが、裏印字情報の記録方法および装置(プリンタ)は これに限定されず、インクジェットプリンタ、熱転写プ リンタ等、公知のフォトプリンタに用いられる裏印字情 報の記録方法および装置が各種利用可能である。中で も、非接触であるために裏印字情報の記録が走査搬送に 与える負荷変動を無くすことができる点で、インクジェ ットプリンタのような非接触型の記録方法および装置は 好適に利用可能であり、特に、非水溶性で常温で固体の 30 熱溶融性インクを用いたインクジェットプリンタは好ま しく例示される。また、裏印字部14は、新規格の新写 真システム(Advanced Photo System) に対応して、2行 以上の印字が可能に構成するのが好ましい。

【0029】このようにして、所定長に切断され、裏印字情報が記録された感光材料 Z は、次いで、記録部18 (副走査搬送手段16)に搬送される。記録部18は、露光光学ユニット(以下、露光ユニットという)34および本発明のシート体搬送装置を適用する副走査搬送手段16を有する。図示例の記録装置10において、露光40ユニット34による画像記録は、シート状感光材料 Z を走査搬送しつつ、デジタル画像データに応じて変調され、副走査搬送手段16による副走査搬送方向と略直交する主走査方向(図1の紙面と垂直方向)に偏向される光ビームを記録光Lとして、記録(露光)位置 X において感光材料 Z を走査露光する、いわゆるデジタル走査露光によって行われる。

【0030】露光ユニット34は、このようなデジタル 材料 Z を光走査ガイド40上の記録位置 X に正確に保持露光を行う光学ユニットであって、図示しないが、例え しつつ、搬送ローラ対36および38によって、主走登ば、感光材料 Z の赤(R)露光、緑(G)露光および青 50 方向と略直交する副走査方向に挟持搬送する。ここで、

(B) 露光のそれぞれに対応する光ビームを射出する光源、前記光源から射出された光ビームをデジタルの画像データに応じて変調するAOM(音響光学変調器)等の変調手段、変調された光ビームを副走査搬送方向と略直交する主走査方向に偏向するポリゴンミラー等の光偏向器、主走査方向に偏向された光ビームを記録位置X(走査線)上の所定位置に所定のビーム系で結像させる f θ (走査) レンズ等によって構成される、公知の光ビーム走査装置を用いることができる。

【0031】なお、露光ユニット34は、このような光ビーム走査装置に限定されず、副走査搬送方向と直交する主走査方向に延在する各種の発光アレイや空間変調素子アレイ等を用いて、主走査方向に配列されるデジタル画像信号によって変調された複数の光ビームによって感光材料Zを露光する、デジタルの露光手段が各種利用可能である。具体的には、PDP(プラズマディスプレイ)アレイ、ELD(エレクトロルミネセントディスプレイ)アレイ、LED(発光ダイオード)アレイ、LCD(液晶ディスプレイ)アレイ、DMD(デジタルマイクロミラーデバイス)アレイ、レーザアレイ等を用いるデジタル露光手段などが例示される。

【0032】図2に、副走査搬送手段16の概略側面図 を示す。副走査搬送手段16は、本発明のシート体搬送 装置が適用され、本発明のシート状被走査体、すなわち シート体であるシート状感光材料 Z を露光ユニット 3 4 の主走査方向の光走査に同期して主走査方向と略直交す る副走査方向に挟持搬送するものであって、主走査線が 画成される記録(主走査)位置Xを挟んでシート状感光 材料2の副走査方向の長さよりも短い間隔で配設される 2組の上流側の搬送ローラ対(以下、第1ローラ対とも いう)36および下流側の搬送ローラ対(以下、第2ロ ーラ対ともいう)38と、これらの2組の搬送ローラ対 36と38との間の記録位置Xに配設される光走査ガイ ド40と、この記録位置Xに近接して上流側の第1ロー ラ対36と記録位置Xとの間に配設される、本発明の特 徴とする押さえコロ対42と、2組の搬送ローラ対36 と38とをシート状感光材料2の進入・排出に合わせて 開閉する開閉手段44と、押さえコロ対42の挟持力調 整機構46と、搬送ガイド48と、第1および第2ロー ラ対36および38を同期駆動する同期駆動手段(図示 せず)と、第1ローラ対36の上流側の所定位置に配設 され、シート状感光材料Zの先端を検出する先端検出セ ンサ(図示せず)を有する。

【0033】図示例の本発明のシート体搬送装置を適用する副走査搬送手段16は、押さえコロ対42によってシート状感光材料Zのカールなどによる記録位置Xからの浮き等の深度方向の位置ずれを防止し、シート状感光材料Zを光走査ガイド40上の記録位置Xに正確に保持しつつ、搬送ローラ対36および38によって、主走査方向と略直交する副走査方向に挟持搬送する。ここで、

前述のように、光ピームレは主走査方向に偏向されており、感光材料 2 は、光ピームレによって 2 次元的に走査 露光され、潜像が形成される。

a 1.1 t

【0034】第1ローラ対36は、回転駆動される固定 型の第1駆動ローラ36 aとこれに摺接して従動回転す る第1ニップローラ36bとを有し、第2ローラ対38 は、回転駆動される固定型の第2駆動ローラ38aとこ れに摺接して従動回転する第2ニップローラ38bとを 有する。光走査ガイド40は、搬送ローラ対36および 38の間に配置され、第1ローラ対36によって搬送さ 10 れる感光材料乙の先端をカールがあっても載置できるよ うに低い位置から搬送下流側に向かって記録位置Xの高 さ近傍まで上昇するとともに感光材料乙の先端を押さえ コロ対42に案内する傾斜面部40aと押さえコロ対4 2に挟持されて搬送される感光材料 Z を記録位置 X にお いて平面状に載置するための平面部40bとを持つ部材 である。第1駆動ローラ36aと第2駆動ローラ38a とは、図示しない同期駆動手段によって同期駆動され る。例えば、図示しないが、第1および第2駆動ローラ 36 a および38 a をタイミングベルトで連結し、一方 20 の駆動ローラを駆動源に直接または変速機構を介して連 結することにより、同期駆動されるが、その具体的構成 は特に限定されない。一方、第1および第2ニップロー ラ36 bおよび38 bは、タイミングベルト37で連結 され、一方のニップローラが駆動ローラと当接して従動 する際には、開放されたローラ対の退避したニップロー ラも同期駆動される駆動ローラも同様に回転する。

【0035】押さえコロ対42は、第1ローラ対36と 光走査ガイド40上の記録位置Xとの間、すなわち記録 位置Xの上流側に配設され、搬送される感光材料Zに摺 30 接して従動回転可能な小径の固定型のコロ(以下、固定 コロという)42aと搬送される感光材料Zを固定コロ 42aとの間で挟持しつつ感光材料Zに摺接して従動回 転するとともに、感光材料Zの挟持力を調整可能な小径 の押さえコロ42bとを有する。なお、押さえコロ対4 2は、可能な限り記録位置Xの近傍に配置されるのが好ましい。

【0036】第1および第2ローラ対36および38の開閉手段44は、第1ローラ対36の第1ニップローラ36bに係合し、第1ニップローラ36bを第1駆動口40ーラ36aに対して進退させる第1カム機構50と、第2ローラ対38の第2ニップローラ38bに係合し、第2ニップローラ38bを第1駆動ローラ38aに対して進退させる第2カム機構52と、第1カム機構50および第2カム機構52を駆動する駆動機構54とを有する

【0037】第1カム機構50は、第1ニップローラ3 る。すなわち第2ブラケット64の図中上方向の移動6bを回転可能に支持するとともに第1ニップローラ3 は、偏芯カム62による第2回動部材68の回動によっ6bの進退方向、すなわち図中上下方向に往復動する第 て第2付勢ばね66の付勢力に抗して行われ、第2ブラ1ブラケット56と、第1ニップローラ36bを第1駆 50 ケット64の図中下方向の移動は、始めは偏芯カム62

動ローラ36aに押圧する方向、すなわち図中下方向に 第1ブラケット56を付勢する第1付勢ばね58と、第 1ブラケット56に係合して固定軸59に対して回動す る第1回動部材60と、この第1回動部材60に係合し て第1プラケット56を第1ニップローラ36bの退避 方向、すなわち図中上方向に移動させるように第1回動 部材60を回動させる偏芯カム62とを有する。第1ブ ラケット56と第1回動部材60との係合は、第1ブラ ケット56が図中上下方向にのみに往復するように第1 ブラケット56に設けられた少し大きい長孔56aと第 1回動部材60の一端に設けられたピン60aとによっ て行われる。その結果、第1ニップローラ36bの退避 (離隔)、すなわち第1ブラケット56の図中上方向の 移動は、偏芯カム62による第1回動部材60の回動に よってそのピン60aが第1ブラケット56の長孔56 aの図中上辺に当接して第1付勢ばね58の付勢力に抗 して第1プラケット56を持ち上げることによって行わ れるが、第1ニップローラ36bの進入(当接)、すな わち第1ブラケット56の図中下方向の移動は、偏芯力 ム62による第1回動部材60の回動とともに第1付勢 ばね58による第1ブラケット56の図中下方向への付 勢によって行われ、第1回動部材60のピン60aが第 1プラケット56の長孔56aの図中上辺から離れた後 は第1付勢ばね58の付勢力のみによって行われる。

【0038】第2カム機構52は、第2ニップローラ3 8 b を回転可能に支持するとともに第2ニップローラ3 8 b の進退方向、すなわち図中上下方向に往復動する第 2ブラケット64と、第2ニップローラ38bを第2駆 動ローラ38aに押圧する方向、すなわち図中下方向に 第2ブラケット64を付勢する第2付勢ばね66と、第 2ブラケット64に係合して固定軸59に対して回動す る第2回動部材68と、この第2回動部材68に係合し て第2ブラケット64を第2ニップローラ38bの退避 方向、すなわち図中上方向に移動させるように第2回動 部材68を回動させる、第1カム機構50と共通な偏芯 カム62とを有する。すなわち第1カム機構50と第2 カム機構52とは、1つの共通な偏芯カム62によって 駆動される。共通な偏芯カム62は、第1二ップローラ 36bと第2ニップローラ38bとを感光材料2の搬送 と同期して進退させるカムプロファイルを有する。ま た、第2ブラケット64と第2回動部材68との係合 は、第2ブラケット64が図中上下方向にのみに往復す るように第2ブラケット64に設けられた少し大きい長 孔64aと第2回動部材68の一端に設けられたピン6 8 aによって行われる。その結果、第2ニップローラ3 8 bの進退も、第1ニップローラ36 bと同様に行われ る。すなわち第2ブラケット64の図中上方向の移動 は、偏芯カム62による第2回動部材68の回動によっ て第2付勢ばね66の付勢力に抗して行われ、第2ブラ . .

による第2回動部材68の回動と第2付勢ばね66によ る付勢とによって行われ、最後は第2付勢ばね66の付 勢力のみによって行われる。

【0039】駆動機構54は、駆動源となる駆動モータ 70と、駆動モータ70の駆動軸70aに取り付けられ た歯車70 bと噛合する大径歯車72 a および大径歯車 72aと同軸の小径歯車72bを持つ変速歯車72と、 偏芯カム62の回動軸62aと同軸に設けられ、変速歯 車72の小径歯車72bと噛合する歯車62bと、偏芯 カム62の初期位置を検出する始点検出センサ74とを 10 有し、感光材料2の先端検出センサ(図示せず)による 検出に同期して駆動モータ70が正逆回転して偏芯カム 62を正逆回転させ、第1および第2回動部材60およ び68をそれぞれ回動し、第1および第2ブラケット5 6および64を上下動させる。こうして、第1および第 2ローラ対36および38は、第1ニップローラ36b の第1駆動ローラ36 aからの退避ならびに第2ニップ ローラ38bの第1駆動ローラ36aからの退避および それへの当接を行い、感光材料 Z の先端の第1ローラ対 36からの離脱およびその後端の第2ローラ対38への 20 突入時の衝撃を防止して感光材料2の挟持して副走査搬 送する、いわゆるソフトランディング動作またはソフト ニップ動作を行うことができる。

【0040】押さえコロ対42およびその挟持力調整機 構46は、本発明の最も特徴的な部分であって、シート 状感光材料2のカールによるその先端部分および後端部 分の記録位置Xからの浮きを防止し、走査露光のための 光ピームしの深度方向の位置ずれを排し、または極めて 小さい許容限度まで低減してシート状感光材料Zの先端 部分および後端部分であっても十分なる平面性を確保し 30 て副走査搬送を行い、髙精度の画像記録を可能にするも のである。以下に、図2~図6を参照して、押さえコロ 対42およびその挟持力調整機構46をより詳細に説明 する。

【0041】まず、これらの図に示すように、挟持力調 整機構46は、押さえコロ42aを回転自在に支持する 第3揺動部材76と、押さえコロ42aを固定コロ42 bに押圧するように第3揺動部材76を付勢する第3付 勢ばね78と、この第3付勢ばね78の他端を固定する とともに第3揺動部材76の揺動軸76aを枢支し、第 1カム機構50の第1ブラケット56に係合し固定揺動 軸80aを中心にして揺動する第4揺動部材80とを有 し、偏芯カム62による第1回動部材の回動を介した第 1ブラケット56の上下動に同期して第3揺動部材76 への第3付勢ばね78の付勢力の付加と開放とを行い、 押さえコロ42aの固定コロ42bに対する押圧力の付 加と開放、従って押さえコロ対42の感光材料2の挟持 力を調整するものである。

【0042】次に、図3は、図2に示す挟持力調整機構 46の部分断面斜視図である。図3に示すように、第4 50 れ、図示しない部材で固定される。このように固定コロ・

揺動部材80は、複数、例えば5個の第3揺動部材76 とそれぞれ係合する複数の第3付勢ばね78がそれぞれ 配置される複数の開口80bと、各開口80bの一辺

16

(第4揺動部材80の長手方向の一辺) に設けられ、第 3付勢ばね78の一端を係止する突起状係止部80c と、これらの開口80bの他辺(第4揺動部材80の短 手方向の一辺)から垂下し、複数の第3揺動部材76の 揺動軸76aを取付ける開孔部80dを持つ複数の垂下 片80eと、短手方向の両端から垂下し、固定揺動軸8 0 a に枢支される軸受用開孔部80 f および第1ブラケ ット56との係合部80gを持つL字状のブラケット部 80hとを有する。

【0043】続いて、図4は、図3に示す押さえコロ対 42および第3揺動部材76の斜視図である。図3およ び図4に示すように、第3揺動部材76は、内部に第1 ローラ対36の複数個に分割された第1ニップローラ3 6 bの1つが挿入される開口部76 bを持つコの字状本 体76cと、本体76cの開放された両先端(図4中前 方) の外側側面に立設され、押さえコロ42bを回転可 能に支持する押さえコロ支持部76dと、本体76cの 後端側(図4中後方)の両外側側面に立設され、第4揺 動部材80の開孔部80dに取付けられる揺動軸76a. を枢支する軸受用開孔部76eを持つブラケット部76 fと、本体76cの後端側(図4中後方)から所定角度 傾斜して立設され、開口部76bと逆側の背面で第3付 勢ばね78の他端を係止する凸状係止部76gを持つ傾 斜部76 hとを有する。図3に示すように、第3揺動部 材76は、第4揺動部材80に図中下側から組み込ま れ、第3揺動部材76の傾斜部76hの凸状係止部76 gは、第4揺動部材80の開口80bから突出し、開口 80 b の突起状係止部80 c にその一端が係止され、開 口80bに配置される第3付勢ばね78の他端を係止す

【0044】図3および図4に示す例においては、押さ えコロ対42の固定コロ42aおよび押さえコロ42b は、複数の小サイズの細分割コロに分割されており、固 定コロ42 aは、第3揺動部材76の両押さえコロ支持 部76dで支持される押さえコロ42bの両端のみに設 けられる2個の細分割コロである。なお、図3には第3 揺動部材76および押さえコロ対42は、簡略化のた め、1組しか図示されていないが、第4揺動部材80の 全長に渡って複数組が設けられているのはもちろんであ る。図5は、図3に示す押さえコロ対42の固定コロ4 2 a と光走査ガイド40との関係を示す分解斜視図であ る。同図に示すように、細分割コロからなる固定コロ4 2 a は、光走査ガイド40の傾斜面部40 a および平面 部40bの一部に穿設される凹部40cに回転可能に埋 め込まれる。固定コロ42aを回転可能に支持する軸

(固定ピン43)は、凹部40cの段部40dに載置さ

42 aを光走査ガイド40の凹部40cに埋め込むように支承することにより、また、固定コロ42aおよび押さえコロ42bの径をできるだけ小さくすることにより、押さえコロ対42の配設位置を可能な限り記録位置Xに近づけることができる。もちろん、固定コロ42aは光走査ガイド40の凹部40cに回転可能に埋め込まれれば、固定コロ42aと軸とを一体としてこの軸を回転可能に支持して良いなど、どのような構成としても良い。この時、細分割コロからなる複数の固定コロ42aは、図1に示す裏印字ブリンタ30による感光材料Zの10裏印字の転写がおこらないように、裏印字位置を外すように設けられるのが好ましい。

【0045】その結果、副走査搬送される感光材料乙 は、その裏面(乳剤面と逆側)が所定間隔で固定コロ4 2 a に支持され、固定コロ42 a 間は光走査ガイド40 の傾斜面部によって支持される一方、その乳剤面は記録 位置Xの近傍の主走査線に沿った全長が押さえコロ42 bによって押さえられるので、記録位置Xでのカール等 による浮きなどの深度方向の位置ずれがほとんど防止で きる。なお、本発明において、固定コロ42aおよび押 さえコロ42bの径や長さなどの寸法や形状や材質など は特に制限的ではない。しかし、図示例の記録装置10 の場合には、押さえコロ42bは、直接感光材料2の乳 剤面に接触するので、乳剤面に影響を及ぼさない材質と する必要がある。従って、固定コロ42aおよび押さえ コロ42bの径や長さなどの寸法や形状や材質などは、 使用されるシート体やその使用目的に応じて適宜選択す ればよい。

【0046】図示例の押さえコロ対42の挟持力調整機構46は、副走査搬送手段16の2組の搬送ローラ対36および38による感光材料2のソフトニップ動作を行う開閉手段44の第1カム機構50の第1ブラケット56の上下動に同期して駆動される。図6(a)および(b)は、それぞれ第1ブラケット56による第4揺動部材80を介した第3揺動部材76の作用を示す概略部

部材80を介した第3揺動部材76の作用を示す概略部分側面図である。図2および図6を参照して、開閉手段44による2組の搬送ローラ対36および38の感光材料2のソフトニップ動作およびこれに同期した挟持力調整機構46による押さえコロ対42の感光材料2の挟持力の調整について説明する。

【0047】まず、記録装置10の記録動作に先立って、開閉手段44の駆動機構54の駆動モータ70が駆動され、始点検出センサ74によって検出される初期位置に偏芯カム62が設定される。この時、副走査搬送手段16の2組の搬送ローラ対36と38および押さえコロ対42は、いずれも図2に示すように閉じて付勢された状態にあり、開閉手段44および挟持カ調整機構46の各部材も図2に示す状態にある。すなわち、挟持カ調整機構46の第4揺動部材80の係合部80gは第1カム機構50の第1ブラケット56と係合し、第1付勢ば50

ね58によって下方向に付勢され、その結果、第4揺動 部材80で支持される第3付勢ばね78によって付勢さ れた第3揺動部材76によって押さえコロ対42の押さ えコロ42bは固定コロ42aに押圧される。その後、 図示しない先端検出センサによって、感光材料2の先端 が副走査搬送手段16の第1ローラ対36の上流の所定 位置に来たことが検出されると、図示しない同期駆動手 段によって同期駆動される第1および第2ローラ対36 および38の回転数、従って感光材料2の搬送量のカウ ントを開始する。なお、記録さるべき感光材料Zが一連 の記録動作の最初である場合には、感光材料2の先端検 出センサの出力を基準として、駆動機構54の駆動モー タ70も所定量図中左方向に回転し、偏芯カム62を所 定量図中左方向に回転して第2回動部材68を図中左方 向に回動させ、第2ブラケット64を図中上方向に移動 させ、第2ニップローラ38bを第2駆動ローラ38a から退避させた初期状態となる。

【0048】所定搬送量のカウント後、感光材料2の先 端は、付勢された第1ローラ対36の第1駆動ローラ3 6 a とニップローラ36 b と間に付勢力に抗して進入 し、両ローラ36 aと36 bとによって挟持され、その 結果、感光材料 Z は同期駆動される第1駆動ローラ36 aの回転に伴って下流側に搬送される。さらに感光材料 乙が搬送されると、その先端は付勢された押さえコロ対 42の固定コロ42aと押さえコロ42bとの間に付勢 力に抗して進入する。さらに搬送されて、感光材料2の 先端が記録位置Xに達すると、露光ユニット34から射 出される光ビームしによって露光走査が開始される。こ の時感光材料 Z はその先端部分であっても、記録位置 X の直上流側において主走査線に沿った全長が押さえコロ 対42の押さえコロ42bによって固定コロ42aおよ び光走査ガイド40の平面部40 b近傍の傾斜面部40 aに押圧されているので、たとえ感光材料Zの先端部分 がカールしていたとしても、記録位置Xではそこからの 浮きを防止し、十分に平面状を保持することができるの で、高い精度での露光走査ができ、高画質画像の記録が できる。このような高精度の露光走査が副走査搬送され る感光材料乙に続行される。

【0049】感光材料Zへの高精度の露光走査の開始から所定量搬送されると、感光材料Zの先端が第2ローラ対38に近づき、感光材料Zの先端が、開放された第2ニップローラ38bと第2駆動ローラ38aとの間に進入する。それに同期して、駆動モータ70は逆転して所定量図中右方向に回転し、第2回動部材の逆方向の回動とともに第2付勢ばね66の付勢力によって第2ブラケット64を図中下方向に移動させ、搬送される感光材料Zの先端が第2ローラ対38の挟持点を越えると、第2ニップローラ38bを第2駆動ローラ38aに向かって付勢し、感光材料Zを確実に挟持する。この時、第2ニップローラ38bは、第2駆動ローラ38aと同期駆動

される第1駆動ローラ36aによって従動回転される第1ニップローラ36bによってタイミングベルト37を介して同期回転されているので、感光材料2と第2ニップローラ38bとの接触による衝撃が極めて小さく、位置ずれ等を生じさせることなく、感光材料2をソフトに挟持することができる。こうして、偏芯カム62は始点位置に戻り、第2ローラ対38は閉じ、第2ローラ対38および第2カム機構52は、図2に示す状態となる。

【0050】さらに、感光材料Zが走査露光されつつ搬 送され、感光材料2の後端が、第1ローラ対36に近づ 10 き、上述した図示しない先端検出センサによって検出さ れると、駆動機構54の駆動モータ70が所定量図中左 方向に回転し、偏芯カム62を所定量図中左方向に回転 して第1回動部材60を図中左方向に回動させ、第1ブ ラケット56を図中上方向に移動させ、感光材料2の後 端の第1ローラ対36からの離脱に同期して、第1二ッ プローラ36bが第1駆動ローラ36aから退避して第 1ローラ対36による感光材料2の挟持を開放する。そ の結果、感光材料とは第1ローラ対36から排出される 時、第1ローラ対36は感光材料2の挟持を開放してい 20 るので、感光材料 Z の後端の第 1 ローラ対 3 6 の挟持か らの離脱に伴う衝撃や位置ずれ等が発生することがな い。こうして、第1ローラ対36から感光材料2をソフ トに離脱させ、排出することができる。

【0051】この後、感光材料2は、走査露光されつつ さらに下流に搬送され、感光材料Zの後端が押さえコロ 対42に近づく。この時、図6(a)に示すように、第 1ブラケット56の図中上方向への移動に伴って挟持力 調整機構46の第4揺動部材80の係合部80gも上昇 し、第4揺動部材80はその固定揺動軸80aを中心に 図中左方向に回動し、第3揺動部材76の傾斜部76h の凸状係止部76gが、感光材料2の後端の押さえコロ 対42からの離脱に同期して、第4揺動部材80の側面 部に当接する。このため、第3揺動部材76の傾斜部7 6 h の凸状係止部 7 6 g と第 4 揺動部材 8 0 の開口 8 0 bの突起状係止部80cとの間に配置された第3付勢ば ね78による第3揺動部材76の付勢力が解除される。 その結果、第3揺動部材76はその揺動軸76aを中心 に自由に揺動可能な状態となり、押さえコロ対42の押 さえコロ42bの固定コロ42aへの付勢力、すなわち 40 固定コロ42a上の感光材料Zへの押圧力は解除され、 押さえコロ42bは固定コロ42a上の感光材料Zを押 圧しない状態になる。なお、この時、押さえコロ42b は、固定コロ42a上の感光材料Zを自重で押さえる状 態であってもよいし、固定コロ42a上の感光材料2か ら完全に離れ、自重もかからない状態であってもよい。 こうして、感光材料2は、押さえコロ対42から離脱 し、排出される。この時にも、押さえコロ対42の感光 材料Zの挟持力は、解除されているので、感光材料Zの 後端の押さえコロ対42の挟持からの離脱に伴う衝撃や 50

位置ずれ等が発生することがない。こうして、押さえコロ対42から感光材料Zをソフトに離脱させ、排出させることができる。

【0052】この後、感光材料2は、走査露光されつつ さらに下流に搬送され、感光材料2の後端が記録位置X を越えると、露光ユニット34による光ピームの射出は 停止し、感光材料2の露光走査は終了する。露光走査が 終了した後も、感光材料Zは第2ローラ対38によって 下流に搬送されるが、それに同期して、駆動モータ70 は逆転して所定量図中左方向に回転し、第1回動部材6 0の逆方向の回動とともに第1付勢ばね58の付勢力に よって第1ブラケット56を図中下方向に移動させ、第 1ニップローラ36bを第1駆動ローラ36aに当接さ せ、付勢する。この時、図6(b)に示すように、第1 プラケット56の図中下方向への移動に伴って、第4揺 動部材80を図中右方向に回動させ、第3付勢ばね58 の付勢力によって第3揺動部材76を図中右方向に回動 するように付勢し、押さえコロ対42の押さえコロ42 bを固定コロ42aに当接させ、付勢する。こうして偏 芯カム62は始点位置に戻り、第1ローラ対36および 押さえコロ対42は閉じ、第1ローラ対36、押さえコ 口対42および第1カム機構50は、図2に示す状態と なる。

【0053】この後、感光材料 Z はさらに下流に搬送さ れ、第2ローラ対38から排出されると、直ちに、駆動 機構54の駆動モータ70も所定量図中左方向に回転 し、偏芯カム62を所定量図中左方向に回転して第2回 動部材68を図中左方向に回動させ、第2ブラケット6 4を図中上方向に移動させ、第2ニップローラ38bを 第2駆動ローラ38aから退避させ、初期状態に戻る。 すなわち、第1および第2ローラ対36および38なら びに第1および第2カム機構50および52などを始め として副走査搬送手段16は、初期状態に戻る。こうし て本発明のシート体搬送装置を適用する副走査搬送手段 16の副走査搬送は行われる。なお、搬送ローラ対36 および38のニップローラ36aおよび38aを、少な くとも一方の搬送ローラ対の2個のローラが離間状態に あっても、駆動ローラ36bおよび38bと同期回転さ せる手段は、図示例のタイミングベルト37とプーリの 組み合わせに限定されず、ニップローラ36aおよび3 8 a を同期回転できるのであれば何でもよく、チェーン とスプロケットなどの組み合わせで連結してもよいし、 アイドラや歯車などを用いるものであってもよい。

【0054】このように、上流側の第1ローラ対36のみに挟持搬送される感光材料2の先端や下流側の第2ローラ対38のみに挟持搬送される感光材料2の後端が、カール等を有していたとしても、光走査ガイド40の記録位置Xの上流側の極近傍において押さえコロ対42によってカール等による浮きや深度方向の位置ずれを排し、感光材料2を正確な記録位置Xにおいて常に平面状

に保持することができるので、露光ユニット34からの 射出光ビームしによって髙精度に走査露光することがで き、髙画質画像を得ることができる。さらに、感光材料 Zの先端が下流側の第2ローラ対38に突入する際に、 および、感光材料2の後端が上流側の第1ローラ対36 および押さえコロ対42から離脱する際に、感光材料ス の先端または後端に対応する位置の搬送ローラ対38ま たは36の両ローラを同期回転させつつ離間させて挟持 を開放し、次に接触させて挟持し、また押さえコロ対4 2の両コロの付勢力を解除して挟持を開放し、次に付勢 10 力を付加して挟持する構成とすることにより、感光材料 Zの先端が下流側の第2ローラ対38に突入する際、お よび感光材料 Z の後端が上流側の第1ローラ対36およ び押さえコロ対42を離脱する際における負荷変動を防 止し、この負荷変動に起因する露光位置ずれや露光ムラ を防止し、さらに高画質画像を得ることができる。

【0055】なお、第1および第2ローラ対36および 38の開閉ならびに押さえコロ対42の挟持力の調整の シーケンスは、上記例に限定されず、種々のシーケンス で行うことができる。例えば、感光材料2の先端の通過 時に、第1ローラ対36の開閉を行ってもよいし、押さ えコロ対42の挟持力の調整を行ってもよいし、感光材 料2の後端の通過時に、第2ローラ対38の開閉を行っ てもよいし、さらには感光材料Zの先後端の通過による 負荷変動の記録画像に与える影響が小さければ、第1お よび第2ローラ対36および38を予め接触させてお き、感光材料2をその後端が離脱するまで挟持する構成 としてもよい。このようにして、高精度の走査露光が行 われた感光材料 Z は、副走査搬送手段 16 から排出され て、その下流側に位置する振分手段20に搬送される。 【0056】振分手段20は、感光材料2を搬送方向 (現像機92による搬送方向に対応)と直交する方向 (以下、横方向とする) に振り分けるものである。現 在、写真のプリントに利用される一般的な銀塩写真感光 材料では、現像処理と露光とでは現像処理のほうが時間 がかかるため、連続的に露光を行うと、現像処理が間に 合わない。振分手段20は、この不都合を解消するため に配置されるものであり、感光材料2を横方向に振り分 けて、搬送方向には重なる複数列にすることにより、現 像装置における処理能力の向上、例えば、2列であれば 40 単列の2倍弱、3列であれば3倍弱の処理を行うことを 可能とし、現像処理と露光との処理時間差を相殺するこ とができる。

【0057】振分手段20における振分方法としては、 各種のシート材の振分方法が利用可能であり、例えば、 軸を中心に回転するターレットを用いて振り分ける方法 や、感光材料2の搬送手段を複数、例えば3つのブロッ クに分けて、その内の真ん中のブロックを横方向に移動 して振り分ける方法等が例示される。また、感光材料 2 を載置して搬送する下流方向への搬送手段としてのベル 50 取り付けるようにしても良い。これらの図に示す光走査

トコンベアと、吸盤等を利用して感光材料Zを持ち上げ て横方向に搬送するリフト搬送手段とを用い、上流から ベルトコンベアに搬入され所定位置に搬送された感光材 料2を、リフト搬送手段によって横あるいは斜め横(下 流側) 方向に搬送して、振り分ける方法も例示される。 【0058】このようにして、振分手段20において、 必要に応じて複数列に振り分けられた感光材料2は、次 いで、搬送ローラ対90によって現像機92に搬送さ れ、感光材料とに応じた、現像、定着、水洗等の各処理 が施され、乾燥され、プリントとされる。

【0059】本発明に係るシート体搬送装置を副走査搬 送手段16として適用する記録装置10は、基本的に以 上のように構成されるが、本発明はこれに限定されな い。例えば、副走査搬送手段16において記録位置Xの 上流側近傍で記録位置Xからの光ピームLの深度方向の 位置ずれを防止する手段は、図示例の押さえコロ対42 およびその挟持力調整手段46に限定されず、光走査ガ イド40に搬送される感光材料Zを搬送に合わせて押圧 し、また押圧を開放する手段であれば何でもよいし、ま た、押さえコロ対42およびその挟持力調整手段46な どの位置ずれ防止手段が記録位置Xを規定できれば、光 走査ガイド40はなくてもよい。

【0060】また、上述例においては、図1および図2 に示すように、感光材料 2 等のシート体の記録位置(光 走査位置) Xからの深度方向の位置ずれを防止する位置 ずれ防止手段である押さえコロ対42を、記録位置Xの 上流側に設け、記録位置Xの上流側近傍で感光材料2の 浮き上がりなどを防止して、感光材料Zの記録位置Xか らの光ビームLの深度方向の位置ずれを防止している 30 が、本発明はこれに限定されず、押さえコロ対42など の位置ずれ防止手段を下流側に設けてもよいし、上流側 および下流側の両側に設けてもよい。しかし、ジャム等 の懸念が減少し、画像記録ムラ等も発生しにくいので、 押さえコロ対42などの位置ずれ防止手段を上流側に設 けるのが好ましい。ここで、ジャムの懸念が減少するの は、下流側だとカールしているシート状感光材料2の先 端がぶつかり易いのに対し、上流側だと直前までガイド があるからである。また、ムラが発生しにくいのは、押 さえコロ対42がシート状感光材料2を挟持した瞬間や 挟持を開放する瞬間がムラになり易いが、挟持を開放す る瞬間の方がムラに対して感度が低いので、上流側に設 ける方がムラとして視認しにくいからである。

【0061】また、上述した例においては、図2および 図5に示すように、押さえコロ対42の固定コロ42a は、個々に傾斜面部40aおよび平面部40bを持つ光 走査ガイド40に穿設される凹部40cに回転可能に埋 め込まれているが、本発明はこれに限定されず、光走査 ガイド40の代わりに、図7 (a), (b), (c)お よび(d)に示すような光走査ガイド94に回転可能に

ガイド94は、傾斜面部94a、平面部94b、平面部 94 bから上流側に延出し、その先端側が下方に向かっ て湾曲する櫛葉状の曲爪94c、平面部94bから下流 側に真っ直ぐ延出した櫛葉状の直爪94dおよび固定コ ロ42aを回転可能に埋め込む複数の凹部94eを備え ている。

【0062】光走査ガイド94の傾斜面部94aおよび 平面部94bは、光走査ガイド40の傾斜面部40aお よび平面部40bとほぼ同じ形状を持つ。平面部94b は、感光材料2を正確に記録位置Xに載置し、この記録 10 位置Xにおいて感光材料 Z上に露光ユニット 3 4 から射 出される記録光ビームしによる主走査線を画成させるた めのもので、平面部94bの中央部には、主走査方向に 沿って主走査線となる記録位置Xが形成される。櫛葉状 に形成された複数の曲爪94cは、図2に示す副走査搬 送手段16の第1ローラ対36のニップ点 (駆動ローラ 36aとニップローラ36bとの接触点)まで、平面部 94 bからぼぼ同一平面で上流側に延在し、このニップ 点を越えて下方に湾曲してさらに上流まで延出する。ま た、図示例では、後端(先端側)が面取りされた直爪9 4 dが、複数の曲爪94 cに対応して平面部94 bから ぼぼ同一平面で下流側に延出するように櫛葉状に形成さ れている。なお、その両側に凹部94eが設けられ、固 定コロ42 aが取り付けられる曲爪94 c およびこの曲 爪94cに対応する直爪94dは、他の曲爪94cおよ び直爪94dより幅広に形成される。

【0063】ところで、光走査ガイド94の平面部94 bと第1ローラ対36のニップ点(駆動ローラ36aの 頂点)との間、または光走査ガイド94の平面部94b と第2ローラ対38のニップ点(駆動ローラ38aの頂 30 点)との間に段差があると、画像記録ムラを発生させる 原因となる。このため、光走査ガイド94の平面部94 bは、第1ローラ対のニップ点、第2ローラ対のニップ 点に対してそれぞれ同じまたは僅かに低くなるように設 計されていると共に、櫛歯状の曲爪94cおよび直爪9 4 dを設けることにより、感光材料 Zを第1ローラ対 3 6のニップ点において光走査ガイド94の曲爪94cに スムーズに載置して、先端の湾曲部分で平面部94bと 同じ髙さに案内し、そのまま髙さを変えずに記録位置X を規定する平面部94b上をスライドさせ、最終的に第 40 2 ローラ対のニップ点まで案内するので、段差によって 記録位置Xでの感光材料Zの変動を生じさせることがな くなり、画像記録ムラの発生を防止することができる。

【0064】凹部94eは、固定コロ42aを回転可能 に埋め込むために、光走査ガイド94の基部に、かつ所 定の広幅の曲爪94cの両側に設けられる。その一方の 凹部94eには、図3に示す1組の押さえコロ42bの 一方の端部の固定コロ42aが、他方の凹部94eは、 隣の1組の押さえコロ42bの他方の端部の固定コロ4 2 aが取り付けられる。なお、図3~図5に示す例で

は、固定コロ42 aは、個々に、光走査ガイド40の凹 部40 cの段部40 dに固定された固定ピン43に回転 可能に支持されるが、図7(a)~(d)に示す例で は、曲爪94cの両側に設けられる一対の凹部94eに それぞれ埋め込まれる一対の固定コロ42 a は、光走査 ガイド94の曲爪94cの裏側に固定される固定ピン4 3の両端に回転可能に支持される。固定ピン43は、光 走査ガイド94の曲爪94cの裏面に設けられ、一対の 凹部94 e を連絡する窪みに、固定部材95によって固 定される。この固定部材95は、その長孔95aを光走 査ガイド94に設けられたネジ孔94fにネジ96によ ってねじ止めすることにより、光走査ガイド94に固定 される。この固定部材95は、複数の固定ピン43を同 時に固定できるように一体の部材で構成されているが、 個々に固定するようにしてもよい。また、一対の固定コ ロ42aを1個の固定ピン43で回転可能に支持してい るが、個々に支持する構成であってもよいし、固定コロ 42aを軸を取り付け、この軸を回転可能に支持する構 成であってもよい。

【0065】また、図示例の副走査搬送手段16におい ては、第1および第2ローラ対36および38の開閉手 段44の第1および第2カム機構50および52は、共 通の偏芯カム62を有し、この共通の偏芯カム62を1 つの駆動モータ70を持つ駆動機構54によって駆動し ているけれども、本発明はこれに限定されず、第1およ び第2カム機構50および52がそれぞれ個々に所定の カムプロファイルを持つカム部材を有し、個々のカム部 材を1つの駆動源によって駆動するようにしてもよい し、各々のカム部材をそれぞれ独立した駆動源によって 駆動するようにしてもよい。また、上述した例では、第 1および第2カム機構50および52では、各ローラ対 のニップローラを回転自在に支持するブラケットを回動 部材によって上下動させる構成としているが、本発明は これに限定されず、ブラケットと回動部材とを一体化し た揺動部材を用い、ニップローラの回転自在な支持と上 下動とを同時におこなってもよい。また、図示例の開閉 手段44では、第1カム機構50の第1回動部材60と 第2カム機構52の第2回動部材68とを共通な固定軸 59を中心にして回動しているが、別々の回転中心を有 していてもよい。

【0066】さらに、図示例では、深度方向位置ずれ防 止手段である押さえコロ対42の挟持力調整手段46 は、開閉手段44の第1カム機構50のブラケット56 の上下動によって駆動されるように構成されるが、本発 明はこれに限定されず、他の部材によって駆動されても よいし、開閉手段44と独立した駆動源によって駆動さ れてもよい。また、図示例の押さえコロ対42の挟持力 調整手段46は、第3揺動部材76によって押さえコロ 対42の押さえコロ42bを回転自在に支持し、第4揺 50 動部材80によって第3揺動部材76を揺動自在に支持 する構成であるが、本発明はこれに限定されず、1つの 揺動部材によって押さえコロ42bを回転自在に支持す るとともに揺動して押さえコロ対42の挟持力を第1カ ム機構50による第1ローラ対36の開閉に合わせて、 例えば、第1ブラケット56や第1回動部材60や両者 を一体化した揺動部材、あるいは全く別の部材や駆動源 によって駆動して調整するようにしてもよい。

【0067】さらにまた、上述した図2、図6(a)お よび(b)に示す例においては、2組の第1および第2 搬送ローラ対36および38の開閉手段44を、第1お 10 よび第2カム機構50および52ならびに駆動機構54 によって構成しているが、本発明は、これに限定され ず、2組の搬送ローラ対36と38とをシート状感光材 料2の進入・排出に合わせて開閉できれば、どのような もの(機構、手段、方法)でもよく、例えば、ソレノイ ドを用いる機構、ラックアンドピニオン機構(とその駆 動機構)、リニアガイド機構(とその駆動機構)および ロータリソレノイドを用いる機構などで構成してもよ い。これらの機構を、第1搬送ローラ対36の搬送ロー ラ36bを接離方向、図示例では略上下に移動させる例 20 を代表例として図8(a)~図12に示し、これらの図 を参照して以下に説明するが、第1搬送ローラ対36の 駆動ローラ36a、第1搬送ローラ対36の両ローラ3 6a、36bを移動させる場合にも、第2搬送ローラ対 38の駆動ローラ38aおよび搬送ローラ38bの少な くとも一方を移動させる場合にも適用可能なことは、も ちろんである。

【0068】図8(a)および(b)に示すソレノイド を用いる機構(電磁アクチュエータ)100は、ソレノ イド102と、開閉手段44の搬送ローラ対36の搬送 30 ローラ36bを回転可能に支持する第1ブラケット56 と直接連結されるソレノイド102の可動ロッド104 とを有する。図8(a)に示すように、第1ブラケット 56が、非通電の状態で、図示しない付勢手段によって 付勢され(例えば、図2に示すばね58によってばね付 勢され)ていることにより、搬送ローラ対36の搬送口 ーラ36bと駆動ローラ36aとを互いに当接させるこ とができる。一方、ソレノイド102に通電することに より、図8(b)に示すように、電磁力によって可動口 ッド104をばね付勢力に抗して上方に所定距離引き上 40 げ、可動ロッド104に係合された第1ブラケット56 を引き上げて、搬送ローラ対36の搬送ローラ36bを その駆動ローラ36aから離脱させ、両ローラ36a、 36 b間を開くことができる。なお、この機構100で は、搬送ローラ36bと駆動ローラ36aとの離脱方向 に第1ブラケット56を付勢し、非通電の状態で両ロー ラ36b、36a間を開き、通電状態で両ローラ36 b、36 a間を互いに当接させるように構成してもよ い。また、ソレノイド102自体が往復方向のいずれか

を付勢する手段を設けなくてもよい。

【0069】また、図9に示すソレノイドを用いる機構 (電磁アクチュエータ) 106のように、図8に示すソ レノイドを用いる機構100で第1ブラケット56を直 接上下に往復動させる代わりに、搖動部材108を介し て第1プラケット56を上下に往復動させてもよい。図 9に示す機構106では、搖動部材108は中央側に支 点109を有し、搖動部材108の一端にソレノイド1 02の可動ロッド104の先端が係合され、支点109 に対して搖動部材108の他端に設けられたピン108 aを第1プラケット56の長孔56aに係合させてい る。この機構106では、ソレノイド102の通電、非 通電により、可動ロッド104を上下動させ、揺動部材 108を支点109として上下に揺動して、第1ブラケ ット56を上下動させ、第1搬送ローラ対36の搬送口 ーラ36bを駆動ローラ36aから接離させることがで

【0070】また、図10に示すラックアンドピニオン 機構110は、図2、図6(a)および(b)に示す第 1ブラケット56の代わりに用いられ、第1搬送ローラ 対36の搬送ローラ36bを回転可能に支持するととも に、一側端に歯を有するラックブラケット112と、こ のラックブラケット112の歯と噛合するピニオン11 4と、このピニオン114とを有し、この機構110 は、ピニオン114と噛合する歯車116aと、この歯 車116aを駆動する駆動モータ116とを有する駆動 機構によって駆動される。この機構110では、駆動モ ータ116の時計回り(例えば正転)または反時計回り (例えば逆転)の回転に伴って、歯車116aが正逆回 転し、歯車116aと噛合するピニオン114が逆正回 転して、ピニオン114と噛合するラックブラケット1 12が上下に往復動することにより、第1搬送ローラ対 36の搬送ローラ36bを駆動ローラ36aから接離さ せることができる。

【0071】また、図11に示すリニアガイド機構11 8は、図2、図6 (a) および(b) に示す第1ブラケ ット56の代わりに用いられ、第1搬送ローラ対36の 搬送ローラ36 bを回転可能に支持するプラケット12 0の一側端に固定されるトラベリングナット122と、 このトラベリングナット122の雌ねじ部と螺合するド ライブスクリュー124とを有し、この機構118は、 ドライブスクリュー124の一端(上端)に取り付けら れ、このドライブスクリュー124を回転する駆動モー タ126からなる駆動機構によって駆動される。この機 構110では、駆動モータ126の時計回り(例えば正 転)または反時計回り(例えば逆転)の回転に伴って、 その回転軸に直結されたドライブスクリュー124が正 逆回転し、これに螺合するトラベリングナット122が 上下に往復動して、ブラケット120を上下動させるこ の方向に付勢されている場合には、第1ブラケット56 50 とにより、第1搬送ローラ対36の搬送ローラ36bを 駆動ローラ36aから接雕させることができる。

【0072】また、図12に示すロータリーソレノイド を用いる機構(電磁アクチュエータ)128は、ロータ リーソレノイド130と、このロータリーソレノイド1 30の回転軸130aにその一端が固定され、その他端 に設けられたピン132aが第1ブラケット56の長孔 56aに係合される搖動部材132とを有する。ここ で、搖動部材132は、直接、ロータリーソレノイド1 30の回転軸130aを中心にして回動するように、そ の一端が直接回転軸130aに固定される。この機構1 28では、ロータリーソレノイド130の通電、非通電 により、回転軸130a回動させ、揺動部材132を回 転軸132aを中心にして直接回動させて揺動部材13 2の他端(係合ピン132a)を略う上下方向に揺動し て、第1ブラケット56を上下動させ、第1搬送ローラ 対36の搬送ローラ36bを駆動ローラ36aから接離 させることができる。

【0073】また、上述した例では、光走査位置(記録 位置X)から深度方向の位置ずれを防止する、本発明の 特徴とする位置ずれ防止手段として、シート状感光材料 20 2を副走査搬送する2組の搬送ローラ対36と38との 間の記録位置 X に近接して配設される押さえコロ対 42 を、開閉手段44によって2組の搬送ローラ対36と3 8とがそれぞれ感光材料 Z の進入・排出に合わせて開閉 される副走査搬送手段16に設けているが、本発明はこ れに限定されず、2組の搬送ローラ対の間に配設され、 記録位置Xからの深度方向の位置ずれを防止できれば、 押さえコロ対42などの位置ずれ防止手段が設けられる 2組の搬送ローラ対は個々に開閉手段を有せず、それぞ れ独立して開閉する副走査搬送手段でなくてもよく、例 30 えば、一方のみが開閉されてもよいし、両方とも開閉し ないものであってもよい。さらにまた、上述した例で は、本発明のシート体搬送装置を副走査搬送手段16と して記録装置10に適用しているが、本発明はこれに限 定されず、画像読取装置などのように光ピーム走査等の 光走査を行う光走査装置の副走査搬送手段や副走査搬送 機構として適用可能なことはもちろんである。

【0074】以上、本発明に係るシート体搬送装置について好適な実施の形態を挙げて詳細に説明したが、本発明はこれらの実施の形態に限定はされず、本発明の要旨 40 を逸脱しない範囲において、種々の改良や設計の変更を行ってもよいのはもちろんである。

[0075]

【発明の効果】以上詳述したように、本発明によれば、 所定位置において、シート状感光材料などのシート体に 対してレーザビームなどの光ビームによる光走査を行っ て、画像読取や画像記録等を行う光ビーム走査装置に用 いられる副走査搬送機構として好適なものであって、シ ート体の先端部分および後端部分においても、シート体 の有するカールの影響を排し、カール等によるシート体 50

の先端部分や後端部分の光走査位置からの浮きなどの深度方向の位置ずれを排し、または極めて小さい許容限度まで低減し、シート体に十分なる平面性を確保しつつ円滑かつ高精度に副走査搬送を行うことができる。しかも、本発明によれば、このような十分な平面性が確保された円滑かつ高精度なシート体の副走査搬送を、複雑な機構を必要とせず、簡単かつ小型コンパクトで安価な装置構成で実現できる。その結果、本発明によれば、高精度の画像読取や画像記録を能率良く、かつ低コストで実10 現できる。

【0076】特に、感光材料をカットシートとした後に、デジタル走査露光や裏印字情報の記録等を行う、デジタルフォトプリンタ等に利用される画像記録装置に適用すれば、シート状感光材料の先端部分および/または後端部分においても濃度ムラの無い、高画質な画像記録を行うことができる。

【図面の簡単な説明】

【図1】 本発明のシート体搬送装置が副走査搬送手段 として適用される画像記録装置の一実施の形態の基本構 成を示す概念図である。

【図2】 図1に示す画像記録装置の副走査搬送手段の 概略側面図である。

【図3】 図2に示す副走査搬送手段の挟持力調整機構の部分断面斜視図である。

【図4】 図3に示す挟持力調整機構の押さえコロ対および第3揺動部材の斜視図である。

【図5】 図3に示す押さえコロ対の固定コロと光走査 ガイドとの関係を示す分解斜視図である。

【図6】 (a) および(b) は、それぞれ図2に示す 副走査搬送手段の第1ブラケットによる第4揺動部材を 介した第3揺動部材の作用を示す概略部分側面図であ る。

【図7】 (a)、(b)、(c)および(d)は、それぞれ図3に示す押さえコロ対の固定コロの光走査ガイドへの別の取付け状態を示す概略上面図、概略正面図、図7(a)の7C-7C線概略断面図および図7(a)の7D-7D線概略断面図である。

【図8】 (a) および(b) は、それぞれ図2に示す第1ローラ対の開閉手段の駆動系の別の実施例の作用を示す概略部分側面図である。

【図9】 図2に示す第1ローラ対の開閉手段の駆動系の別の実施例の作用を示す概略部分側面図である。

【図10】 図2に示す第1ローラ対の開閉手段の駆動系の別の実施例の作用を示す概略部分側面図である。

【図11】 図2に示す第1ローラ対の開閉手段の駆動系の別の実施例の作用を示す概略部分側面図である。

【図12】 図2に示す第1ローラ対の開閉手段の駆動系の別の実施例の作用を示す概略部分側面図である。

【符号の説明】

10 (画像) 記録装置

- 12 感光材料供給部
- 14 裏印字部
- 16 副走查搬送手段
- 18 記録部
- 20 振分手段
- 22a, 22b マガジン
- 24a, 24b 装填部
- 26a, 26b 引き出しローラ対
- 28a, 28b カッタ
- 30 裏印字プリンタ
- 32 ガイド
- 34 露光ユニット
- 36, 38, 84, 86 搬送ローラ対
- 36a, 38a 駆動ローラ
- 36b, 38b ニップローラ
- 40,94 光走査ガイド
- 42 押さえコロ対
- 42a 固定コロ

42b 押さえコロ

- 44 開閉手段
- 46 挟持力調整機構
- 48 搬送ガイド
- 50,52 カム機構
- 54 駆動機構
- 56,64 ブラケット
- 58,66,78 付勢ばね
- 59,62a,70a 軸
- 10 60,68 回動部材
 - 62 偏芯カム
 - 62a, 70b, 72a, 72b 歯車
 - 70 駆動モータ
 - 72 変速歯車
 - 74 始点検出センサ
 - 76,80 摇動部材
 - 90 搬送ローラ対
 - 92 現像機

【図1】

132 132a 128 130a 130a 36a

