

支配结点 (Dominators)

 \triangleright 如果从流图的入口结点到结点n的每条路径都经过结点d,则称结点d支配(dominate)结点n,记为d dom n

每个结点都支配它自己

支配结点	支配对象
1	1~10
2	2
3	3~10
4	4~10
5	5
6	6
7	7~10
8	8~10
9	9
10	10

▶支配结点树 (Dominator Tree)

每个结点只支配它和它的后代结点

▶支配结点树 (Dominator Tree)

▶直接支配结点 (Immediate Dominator)

▶从入口结点到达n的所有路径上,结点n的最后一个支配结点称为直接支配结点

寻找支配结点

- > 支配结点的数据流方程
 - $\triangleright IN[B]$: 在基本块B入口处的支配结点集合

OUT[B]: 在基本块B出口处的支配结点集合

> 方程

$$\triangleright OUT[B] = IN[B] \cup \{B\}$$
 $(B \neq ENTRY)$

计算支配结点的迭代算法

 \triangleright 输入: 流图G, G的结点集是N, 边集是E, 入口结点是ENTRY

 \triangleright 输出:对于N中的各个结点n,给出D(n),即支配n的所有结点的

集合

> 方法:

```
OUT[ENTRY] = \{ENTRY\}
for(除ENTRY) = \{ENTRY\}
OUT[B] = N
while(某个<math>OUT值发生了改变)
for(除ENTRY) + OUT0 每个基本块B0
\{IN[B] = \bigcap_{P \neq B} OUT[P]
OUT[B] = IN[B] \cup \{B\}
\}
```

$OUT[ENTRY] = \{ENTRY\}$

for(除ENTRY之外的每个基本块B) OUT[B]=N while(某个OUT值发生了改变)

for(除ENTRY之外的每个基本块B)

 $\{IN[B]=\bigcap_{P \not\in B} OUT[P]$

 $OUT[B]=IN[B] \cup \{B\}$

S
5
7
8
9 10

	$OUT^{\theta}[B]$	$IN^{I}[B]$	$OUT^{1}[B]$
E	$\{E\}$		
1	N	$\{E\}$	{ E ① }
2	N	$\{E \textcircled{1}\}$	{ E ① ② }
3	N	{ E ① }	{ E ① ③ }
4	N	{ E ① ③ }	{ E ① ③ ④ }
5	N	{ E ① ③ ④ }	{ E (1) (3) (4) (5) }
6	N	{ E (1) (3) (4) }	{ E ① ③ ④ ⑥ }
7	N	{ E ① ③ ④ }	{ E ① ③ ④ ⑦ }
8	N	{ E (1) (3) (4) (7) }	{ E ① ③ ④ ⑦ ⑧ }
9	N	{ E (1) (3) (4) (7) (8) }	{ E ① ③ ④ ⑦ ⑧ ⑨ }
10	N	$\{E \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	{ E (1) (3) (4) (7) (8) (10) }

回边 (Back Edges)

》假定流图中存在两个结点d和n满足d dom n。如果存在从结点 n到d的有向边 $n \rightarrow d$,那么这条边称为回边

自然循环 (Natural Loops) 自然循环是一种适合于优化的循环

- ▶从程序分析的角度来看,循环在代码中以什么形式出现 并不重要,重要的是它是否具有易于优化的性质
- 户自然循环是满足以下性质的循环
 - ▶有唯一的入口结点, 称为首结点(header)。首结点支配循环中的 所有结点, 否则, 它就不会成为循环的唯一入口
 - 》循环中至少有一条返回首结点的路径,否则,控制就不可能从 "循环"中直接回到循环头,也就无法构成循环
- > 非自然循环的例子

自然循环的识别

〉给定一个回边 $n \to d$,该回边的自然循环为: d,以及所有可以不经过d而到达n的结点。d为该循环的首结点。

回边	自然循环
4→3	34567810
7→4	4567810
8→3	34567810
9→1	① ~ ⑩
10→7	7810

算法:构造一条回边的自然循环

 \triangleright 输入: 流图 G和回边 $n \rightarrow d$

 \triangleright 输出:由回边 $n \rightarrow d$ 的自然循环中的所有结点组成的集合

>方法:

▶自然循环的一个重要性质

〉例

▶除非两个自然循环的首结点相同,否则,它们或者互不相交, 或者一个完全包含(嵌入)在另外一个里面

回边	自然循环	
4->3	3456781	
7->4	4567810	
8->3	34567810	
9->1	① ~ ⑩	
10->7	780	

最内循环 (Innermost Loops): 不包含其它循环的循环 ▶如果两个循环具有相同的首结点,那么很难说哪个是 最内循环。此时把两个循环合并

删除全局公共子表达式

▶可用表达式的数据流问题可以帮助确定位于流图中p点的 表达式是否为全局公共子表达式

〉例

全局公共子表达式删除算法

▶输入:带有可用表达式信息的流图

▶输出:修正后的流图

>方法:

 \triangleright 对于语句s: z = x op y, 如果x op y在s之前可用,那么执行如下步骤:

① 从s开始逆向搜索,但不穿过任何计算了x op y 的块,找到所有离 s最近的计算了x op y 的语句

- ② 建立新的临时变量u
- ③ 把步骤①中找到的语句w=x op y用下列语句代替:

$$u = x \text{ op } y$$
$$w = u$$

④ 用z = u替代s

删除复制语句

 \triangleright 对于复制语句s: x=y,如果在x的所有引用点都可以用对y的引用代替对x的引用(复制传播),那么可以删除复制语句x=y

- ► 在x的引用点u用y代替x(复制传播)的条件
 - ▶ 复制语句s: x=y在u点"可用"

删除复制语句的算法

 \triangleright 输入: 流图G、du链、各基本块B入口处的可用复制语句集合

▶输出:修改后的流图

> 方法:

▶对于每个复制语句x=y,执行下列步骤

- ①根据du链找出该定值所能够到达的那些对x的引用
- ②确定是否对于每个这样的引用, x=y都在 IN[B]中(B是包含这个引用的基本块),并且B中该引用的前面没有x或者y的定值
- ③如果x=y满足第②步的条件,删除x=y ,且把步骤①中找 到的对x的引用用y代替

代码移动

- ▶循环不变计算的检测
- ▶代码外提

循环不变计算检测算法

▶输入:循环L,每个三地址指令的ud链

▶ 输出: L的循环不变计算语句

> 方法

- 1. 将下面这样的语句标记为"不变":语句的运算分量或者是常数,或者其所有定值点都在循环L外部
- 2. 重复执行步骤(3), 直到某次没有新的语句可标记为"不变"为止
- 3. 将下面这样的语句标记为"不变": 先前没有被标记过, 且所有运算分量或者是常数,或者其所有定值点都在循环L外部,或者只有一个到达定值,该定值是循环中已经被标记为"不变"的语句

代码外提

- ▶前置首结点 (preheader)
 - ▶循环不变计算将被移至首结点之前,为此创建一个称为前置 首结点的新块。前置首结点的唯一后继是首结点,并且原来 从循环L外到达L首结点的边都改成进入前置首结点。 从循环

循环不变计算语句 s: x = y + z 移动的条件

(1) s所在的基本块是循环所有出口结点(有后继结点在循环外的结点)的支配结点

循环不变计算语句 s: x = y + z 移动的条件

(2) 循环中没有其它语句对x赋值

- ▶外提前
 - 》j的值是否等于2取决于循环最后一次迭代时,是否执行了B₃
- ▶外提后
 - ightharpoonup 只要 B_3 执行过一次,j 的值就等于2

循环不变计算语句 s: x = y + z 移动的条件

(3) 循环中对x的引用仅由s到达

代码移动算法

▶输入:循环L、ud链、支配结点信息

▶输出:修改后的循环

> 方法:

1. 寻找循环不变计算

- 2. 对于步骤(1)中找到的每个循环不变计算,检查是否满足上面的三个条件
- 3. 按照循环不变计算找出的次序,把所找到的满足上述条件的循环不 变计算外提到前置首结点中。如果循环不变计算有分量在循环中定 值,只有将定值点外提后,该循环不变计算才可以外提

作用于归纳变量的强度削弱

- \rightarrow 对于一个变量x,如果存在一个正的或负的常量c,使得每次x被赋值时,它的值总是增加c,则称x为归纳变量
- 》如果循环L中的变量i 只有形如i=i+c的定值(c是常量),则称i 为循环L的基本归纳变量
- ho如果j=c imes i+d,其中i是基本归纳变量,c和d是常量,则j也是一个归纳变量,称j属于i族
 - ▶基本归纳变量i属于它自己的族

作用于归纳变量的强度削弱

- \rightarrow 对于一个变量x,如果存在一个正的或负的常量c,使得每次x被赋值时,它的值总是增加c,则称x为归纳变量
- \triangleright 如果循环L中的变量i 只有形如i=i+c的定值(c是常量),则称i 为循环L的基本归纳变量
- ho如果j=c imes i+d,其中i是基本归纳变量,c和d是常量,则j也是一个归纳变量,称j属于i族
- 净每个归纳变量都关联一个三元组。如果 $j = c \times i + d$,其中i是基本归纳变量,c和d是常量,则与j相关联的三元组是(i, c, d)

例

归纳变量检测算法

▶输入: 带有循环不变计算信息和到达定值信息的循环L

▶输出:一组归纳变量

>方法:

1. 扫描L的语句, 找出所有基本归纳变量。在此要用到循环不变计算信息。与每个基本归纳变量i相关联的三元组是(i, 1, 0)

归纳变量检测算法(续)

- 2: 寻找L中只有一次定值的变量k, 它具有下面的形式: $k=c'\times j+d'$ 。其中c'和d'是常量,j是基本的或非基本的归纳变量
 - ▶如果j是基本归纳变量,那么k属于j族。k对应的三元组可以通过其定值语句确定
 - ▶如果j不是基本归纳变量,假设其属于i族,k的三元组可以通过j的三元组和k的定值语句来计算,此时我们还要求:
 - ▶循环L中对j的唯一定值和对k的定值之间没有对i的定值

 $i=c\times i+d$

 $k=c'\times j+d'$

▶循环L外没有j的定值可以到达k

这两个条件是为了保证对k进行赋值的时候,j当时的值一定等于c*(i当时的值)+d

作用于归纳变量的强度削弱算法

- ▶ 输入: 带有到达定值信息和已计算出的归纳变量族的循环L
- >输出:修改后的循环
- \triangleright 方法: 对于每个基本归纳变量i, 对其族中的每个归纳变量j: (i, c, d) 执行下列步骤
 - 1.建立新的临时变量t。如果变量 j_1 和 j_2 具有相同的三元组,则只为它们建立一个新变量
 - 2.用j=t代替对j的赋值
 - 3.在L中紧跟定值i=i+n之后,添加t=t+c*n。将t放入i族,其三元组为(i,c,d)
 - 4.在前置节点的末尾,添加语句 $t=c^*i$ 和t=t+d,使得在循环开始的时候 $t=c^*i+d=j$

例

 \boldsymbol{B}_1

 \boldsymbol{B}_2

 B_3

 B_6

归纳变量的删除

→对于在强度削弱算法中引入的复制语句j=t,如果在归纳变量j的所有引用点都可以用对t的引用代替对j的引用, 并且j在循环的出口处不活跃,则可以删除复制语句j=t 例

归纳变量的删除

- →对于在强度削弱算法中引入的复制语句j=t,如果在归纳变量j的所有引用点都可以用对t的引用代替对j的引用, 并且j在循环的出口处不活跃,则可以删除复制语句j=t
- ▶强度削弱后,有些归纳变量的作用只是用于测试。如果可以用对其它归纳变量的测试代替对这种归纳变量的测试,那么可以删除这种归纳变量

删除仅用于测试的归纳变量

- 》对于仅用于测试的基本归纳变量i,取i族的某个归纳变量j(尽量使得c、d简单,即c=1或d=0的情况)。把每个对i的测试替换成为对j的测试
 - \triangleright (relop i x B)替换为(relop j c*x+d B), 其中x不是归纳变量, 并假设c>0
 - 》 (relop $i_1 i_2 B$),如果能够找到三元组 $j_1(i_1, c, d)$ 和 $j_2(i_2, c, d)$,那么可以将其替换为(relop $j_1 j_2 B$)(假设c>0)。否则,测试的替换可能是没有价值的
- ▶如果归纳变量i不再被引用,那么可以删除和它相关的指令

i = m - 1例 \boldsymbol{B}_1 B_2 i = i + 1 $\begin{aligned}
s_2 &= s_2 + 4 \\
t_3 &= a[s_2] \\
\text{if } t_3 &< v \text{ goto } B_2
\end{aligned}$ if $t_5 > v$ goto B_3 if i >= j goto B_6 B_4

 \boldsymbol{B}_6

