

组合优化理论

第8章 作业调度问题

主讲教师, 陈安龙

第8章作业调度问题

- §1 单机调度问题
- § 2 平行机调度问题
- §3 车间作业调度问题

作业调度问题

Example 1 机械加工

一个机械加工车间要加工一批机器零件,每一个零件都具有相同的工序,即按相同的顺序在几个不同的机床上加工,但每个零件在每个机床上的加工时间可能不同。如何按排加工顺序才能以最短的时间加工完所有的零件。

这是一个流水线调度问题.

Example 2 进程调度

在计算机多道程序操作系统中,并发执行多个进程,任何时刻CPU只能执行一个进程,进程的到达时间是不同的,怎样调度这些进程才能使CPU的利用率最高或进程的平均周转时间最短?

事先不知道每个进程的到达时间和执行时间—— 在线调度

事先知道随机到达时间和执行时间的分布、数学期望、方差,目标是极小化平均周转时间的数学期望——随机调度

Example 3 机场调度

在一个飞机场,有几十个登机口,每天有几百架 飞机降落和起飞,登机口的种类和大小是不同的,而 班机的机型和大小也是不同的。

飞机按时刻表降落和起飞,当飞机占有登机口时,旅客上下飞机,飞机要接受加油、维护和装卸行李等服务.由于天气和机场的原因,飞机不能起飞,登机时间推迟.

调度人员如何制订一个登机口的分配方案,使机场的利用率最高或晚点起飞的飞机最少。

登机口——机器, 飞机——零件, 机场的规定——约束条件

用一台或一台以上的机器加工两个或两个以上的 零件(任务)时,确定加工顺序使效率最高。

——调度(Scheduling调度)问题

由于效率的度量方法的不同、引进不同的约束条件和机器的数量、类型等,使之得到不少的调度模型,也使调度问题有了更多的应用.

由于应用范围逐渐扩大,新的问题不断出现,因 而从事这一领域研究的人与日俱增,其内容也越来越 丰富,应用也越来越广泛.

确定性调度 (Deterministic Scheduling)

所有数据在进行决策前都是已知的

随机性调度 (Stochastic Scheduling)

有的数据在进行决策前是未知的,是随机变量, 但它们的分布是已知的

在线调度 (On-line Scheduling)

半在线调度 (Semi- On-line Scheduling)

离线调度 (Off-line Scheduling)

用 $C = (C_1, C_2, ..., C_n)$ 表示任务的完工时间,极小化的目标函数总是完工时间 C_i 的函数.

常见的目标函数(效率的度量方法)

(1) 时间表长

时间表长 (schedule length, makespan) 定义为

$$C_{\max} = \max_{j} \left\{ C_{j} \right\}$$

它等于最后一个被加工完任务的完工时间,小的时间表长意味着处理机的利用率高.

(2) 平均加权流时间和加权总完工时间

平均加权流时间 (mean weighted flow time) 是

$$F = \sum_{j=1}^{n} w_{j} F_{j} / \sum_{j=1}^{n} w_{j}$$

任务的到达时间

其中 $F_j = C_j - (r_j)$ 是任务 T_j 的流(周转)时间,

它等于任务在系统中等待时间和加工时间的和.

对平均加权流时间进行变形,可得极小化 F 相当于

极小化加权总完工时间(total weighted completion time)

$$C = \sum_{j=1}^{n} w_{j}C_{j}$$
 (如果 $w_{j} = 1$ $j = 1,2,...,n$ 即 为总完工时间)

$$F = \sum_{j=1}^{n} w_{j} F_{j} / \sum_{j=1}^{n} w_{j}$$

$$= \sum_{j=1}^{n} w_{j} C_{j} / \sum_{j=1}^{n} w_{j} - \sum_{j=1}^{n} w_{j} r_{j} / \sum_{j=1}^{n} w_{j}$$

式中的第一项的分母和第二项都是常数

(3) 最大延误

最大延误(maximum lateness)定义为

$$\boldsymbol{L}_{\max} = \max_{j} \left\{ \boldsymbol{L}_{j} \right\}$$

其中 $L_j = C_j - (d_j)$ 是任务 T_j 的延误时间.

(4) 加权总误工

任务的截 止期限

加权总误工(total weighted tardiness)是

$$D = \sum_{j=1}^{n} w_j D_j$$

其中 $D_j = max\{C_j - d_j, 0\}$ 是任务 T_j 的误工时间.

(5) 加权误工任务数

加权误工任务数(weighted number of tardy tasks)是

$$U = \sum_{j=1}^{n} w_{j} U_{j}$$

其中
$$U_j = \begin{cases} 1 & C_j > d_j \\ 0 & C_j \le d_j \end{cases}$$
是对任务 T_j 误工的单位惩罚

调度问题的三要素:

机器(处理机)、作业(任务)、目标函数

用三元组 $\alpha \mid \beta \mid \gamma$ 描述一个调度模型

α: 机器的数量和类型;

 β : 作业的约束条件;

y: 优化的目标函数.

基本假设: (1) 任务或作业和处理机都是有限的;

- (2) 在任一时刻, 任何处理机只能加工一个任务或工序;
- (3) 极小化单一目标函数.

Definition 1 对于一个可行调度,如果有准备好被加工的任务或工序,不准有空闲的处理机,称这种可行排序为无耽搁调度 (nondelay schedule); 否则称为耽搁排序 (delay schedule)。

无耽搁调度相当于**有工作可做就不能闲着**. 对于大多数调度问题,包括所有的可中断调度,最优调度是无耽搁调度,然而也有一些不可中断调度问题的最优调度是耽搁调度.

Example 4 调度问题

1: 表示一台机器

r_j: 表示任务有不同的到达时间

$$n=2$$
, $t=(10, 5)$, $r=(0, 1)$, $w=(1, 5)$

该问题有两个可行调度,用 Gantt Charts 表示:

nondelay schedule:

A B 0 10 15

$$Z_1 = 10*1+15*5 = 85$$

delay schedule:

$$Z_2 = 6*5 + 16*1 = 46$$

Example 5 阿克米自行车的装配问题

工序	紧前工序	加工时间	工序	紧前工序	加工时间	
A		8	$oldsymbol{F}$	D	2	
В	\boldsymbol{A}	7	\boldsymbol{G}	F	2	
C	A, E	7	H	E, G	8	
D		2	I	E, G	8	
E	D	3	J	B , C	15	

由两名熟练工人进行装配,要求装完时间最早.

这是一个 P2 prec C max 调度问题.

如果每道工序的加工时间减少1,最优时间表会小于31吗?是26吗?

工序	紧前工序	加工时间	工序	紧前工序	加工时间
\boldsymbol{A}		7	$oldsymbol{F}$	D	1
В	\boldsymbol{A}	6	\boldsymbol{G}	F	1
C	A, E	6	H	E, G	7
D		1	I	E, G	7
E	D	2	J	B , C	14

最优耽搁调度

工序	紧前工序	加工时间	工序	紧前工序	加工时间
\boldsymbol{A}		7	$oldsymbol{F}$	D	1
В	\boldsymbol{A}	6	G	$oldsymbol{F}$	1
C	A, E	6	H	E, G	7
D		1	I	E, G	7
E	D	2	J	B , C	14

最优无耽搁调度

如果加工时间不变而增加一个装配工人,最优时间表会小于31 吗?

工序	紧前工序	加工时间	工 序	紧前工序	加工时间	
\boldsymbol{A}		8	$oldsymbol{F}$	D	2	
В	A	7	\boldsymbol{G}	$oldsymbol{F}$	2	
\boldsymbol{C}	A, E	7	H	E, G	8	
D		2	I	E, G	8	
\boldsymbol{E}	D	3	J	B, C	15	

工序	紧前工序	加工时间	工 序	紧前工序	加工时间	
A		8	F	D	2	
В	\boldsymbol{A}	7	G	F	2	
<i>C</i>	A, E	7	Н	E, G	8	
D		2	I	E, G	8	
E	D	3	J	B , C	15	

§1 单机调度问题

单机调度问题是最简单的一类调度问题,同时也 是最重要的调度问题之一. 首先单机调度问题比较容 易求出解决方法,这些方法对于研究较复杂的调度问 题具有指导作用,可为处理复杂调度问题提供近似算 法: 其次, 单机调度问题大量存在于现实生活中, 具 有广泛的实际背景, 许多实际问题都可以归结为单机 调度问题.

§ 1 单机调度问题

一、问题 $1 \sum w_j C_j$

Example 6 设一个机修车间有 n台不同的机床要进行大修,它们的维修时间已知为 t_1 , t_2 ,..., t_n , 而机床 A_i 在车间逗留的过程中每单位时间的损失费为 w_i (i=1,...,n) 试求一种调度,使得 n台机床在修理完毕时,总的损失为最小.

Solution:

令:
$$H = \{(k_1, k_2, ..., k_n) | (k_1, k_2, ..., k_n)$$
为 $1 \sim n$ 的一种排序 $\}$

设n台机床维修的调度为 $(k_1, k_2, ..., k_n)$ 则机床

S的维修完毕的时间为
$$C_{k_s} = \sum_{i=1}^{s} t_{k_i}$$

n 台机床按此调度维修完时,总的损失费为

$$\sum_{i=1}^n w_{k_i} C_{k_i}$$

本题要寻找一种调度 $(r_1, r_2, ..., r_n)$ 满足

$$\sum_{i=1}^{n} w_{r_i} C_{r_i} = \min \left\{ \sum_{i=1}^{n} w_{k_i} C_{k_i} \left| (k_1, k_2, ..., k_n) \in H \right. \right\}$$

§ 1 单机调度问题

$$(k_1, \cdots k_m, k_{m+1}, \cdots k_n)$$

(1)

$$(k_1, \cdots k_{m+1}, k_m, \cdots k_n)$$

(2)

分析调度(1)与(2)的优劣

总损失费仅在 k_m,k_{m+1} 处有区别

按(1)调度

 $A_{k_{m}}$ 和 $A_{k_{m+1}}$ 的损失费

 $A_{k_{m-1}}$ A_{k_m} $A_{k_{m+1}}$ $A_{k_{m+2}}$

$$(w_{k_m}C_{k_{m-1}})+(w_{k_m}t_{k_m})+(w_{k_{m+1}}C_{k_{m-1}})+w_{k_{m+1}}t_{k_m}+(w_{k_{m+1}}t_{k_{m+1}})$$

按(2)调度

 A_{k_m} 和 $A_{k_{m+1}}$ 的损失费

$$A_{k_{m-1}}$$
 $A_{k_{m+1}}$ A_{k_m} $A_{k_{m+2}}$

$$(w_{k_{m+1}}C_{k_{m-1}})+(w_{k_{m+1}}t_{k_{m+1}})+(w_{k_{m}}C_{k_{m-1}})+(w_{k_{m}}t_{k_{m+1}})+(w_{k_{m}}t_{k_{m+1}})$$

当
$$w_{k_{m+1}}t_{k_m} > w_{k_m}t_{k_{m+1}}$$
 即 $\frac{t_{k_m}}{w_{k_m}} > \frac{t_{k_{m+1}}}{w_{k_{m+1}}}$ 时,

调度(2)优于调度(1).

Theorem 1 满足下列条件的调度 $(r_1,r_2,...,r_n)$

$$\frac{t_{r_1}}{w_{r_1}} \leq \frac{t_{r_2}}{w_{r_2}} \leq \ldots \leq \frac{t_{r_n}}{w_{r_n}}$$

为问题 $1 \sum w_j C_j$ 的最优调度.

如:考虑调度问题 $1 \sum_{w_i C_i}$ 其中 n = 5,

$$t = (12, 4, 7, 11, 6), w = (4, 2, 5, 5, 6)$$

$$\pm \frac{t_1}{w_1} = 3, \frac{t_2}{w_2} = 2, \frac{t_3}{w_3} = 1.4, \frac{t_4}{w_4} = 2.2, \frac{t_5}{w_5} = 1$$

得最优调度为 $(A_5, A_3, A_2, A_4, A_1)$

此时
$$\sum w_j C_j = 6 \times 6 + 5 \times 13 + 2 \times 17$$
$$+ 5 \times 28 + 4 \times 40 = 435$$

在 上例中, 如果考虑各待维修的机床在机修车

间平均逗留时间(或总逗留时间)最短,

或
$$\frac{1}{n}\sum C_j$$
 (或 $\sum C_j$)

$$\sum C_j$$

如何调度?

这只是上例中 $w_i = 1$ 的特例

所以,满足下列条件的调度 $(r_1, r_2, ..., r_n)$

$$t_{r_1} \leq t_{r_2} \leq \ldots \leq t_{r_n}$$

为最优调度.

§1 单机调度问题

以下讨论的调度问题都与工期有关,即每个任务均有一个工期。工期 d_j 表示对任务 T_j 限定的完工时间. 如果不按期完工,应受到一定的惩罚.

二、问题
$$1$$
 $L_{max} = max\{C_j - d_j\}$

任务没有准备时间的最大延误的调度问题比较简单,只需将任务按最早工期优先(Earliest Due Date first,简记 EDD)规则,就可以得到最优调度. 按照这一规则,任务按 d_i 不减的顺序进行调度.

Theorem 2: 对于问题1 L_{max} , EDD 规则可以得到最优调度.

Example 7 考虑调度问题 1 L_{max} , 其中 n=6, t=(3,1,4,1,3,2), d=(2,10,6,4,11,12)

由EDD规则可以求得最优调度

$$(T_1, T_4, T_3, T_2, T_5, T_6)$$

最大延误为 $L_{max} = 2$

Theorem 2 的证明

设某一调度s违反了EDD规则,则在此调度中,至少有两个相邻任务

只需证明任何不满足 EDD规则的调度,均 可转化为满足EDD规 则而目标函数不增。

$$T_j$$
、 T_k , T_j 排在 T_k 之前,而 $d_j > d_k$

设 T_i 在时间 p 时开始加工,则

$$L_{j} = p + t_{j} - d_{j}, L_{k} = p + t_{j} + t_{k} - d_{k}$$

对调 T_j T_k 的位置 其余任务位置不变,得一排序S'.

在这排序中
$$L_j = p + t_j + t_k - d_j$$
, $L_k = p + t_k - d_k$

因为 $d_j > d_k$,所以 $L_k > L_j, L_k > L_k$ 从而 $L_{\max} \ge L_{\max}$

在许多情况下,延误时间的长短不重要。只要延误 发生,造成同样影响。更多关注**延误的最少任务数**。

Example 8 设有 n 个工件 $T_1, T_2, ..., T_n$ 要在一台机器上加工,加工时间分别为 $t_1, t_2, ..., t_n$,要求的交货日期分别为 $d_1, d_2, ..., d_n$. 试求一种加工调度,使得误期交货的工件最少 .

算法:

- (1) 将任务按 最早工期优先升序排序建立调度任 务队列,同时建立一个延期任务队列;
 - (2) 计算各任务的完工时间,如果当前调度已无延 误任务,则转(5),否则转(3);
 - (3) 从开始查找到第1个延误任务,设该延误是**第** *k* **个任务**;
 - (4) 从前 k 个任务中, 选取加工时间最长的任务, 移入延期任务队列, 剩下的形成部分调度序列, 转(2);
- (5) 将**延期任务队列的任务**放在所得的**部分调度之** 后,得到最优调度.

Theorem 3: 对于问题 $1|\sum U_j$, 上述算法给出最优调度证明: 假定 $d_1 \leq d_2 \leq ... \leq d_n$, 令 F_k 表示前 k 个任务构成的集合是 $\{T_1, T_2, ..., T_n\}$ 的子集,满足下述两个条件:

- 1、在任务集 $\{T_1, T_2, ..., T_k\}$ 的所有子集中, F_k 具有最多按期完工的任务,按期完工的任务数记为 N_k ;
- 2、在 $\{T_1,T_2,...,T_k\}$ 的所有含有 N_k 个按期完工任务的子集中, F_k 中的任务所用的总加工时间最少。

集合 F_n 与最优调度相对应.下面用数学归纳法证明算法产生的调度就是 F_n .

当k=1时,显然满足;

假设对前k个任务算法产生的调度是 F_k , F_k 满足上述两个条件;

对前 k+1 个任务,由 F_k 出发,按算法要求可产生满足上述两个条件的 F_{k+1} ,

分两种情况讨论:

Case 1 将任务 T_{k+1} 加入 F_k 后, T_{k+1} 按期完工. 此时, $N_{k+1} = N_k + 1$, $F_{k+1} = F_k \cup \{T_{k+1}\}$,显然上述 两个条件满足:

Case 2 将 T_{k+1} 加入 F_k 后,任务 T_{k+1} 没有按期完工。

由 N_k 是任务集 { $T_1, T_2, \dots T_k$ } 的子集中按期完工任 务数最大的一个,以及 F_k 是含有 N_k 个任务的子集中 加工总时间最少的一个,可知 $N_{k+1} = N_k$. 将 T_{k+1} 加入 F_{k} 中没有增加按期完工的任务数,但应从任务集 F_{k} $\bigcup\{T_{k+1}\}$ 中删除加工时间最大的一个任务,因此 F_{k+1} 满足上述两个条件.□

Example 9 考虑调度问题 $1 \sum U_j$, 其中 n=8

$$t = (10, 6, 3, 1, 4, 8, 7, 6), d = (35, 20, 11, 8, 6, 25, 28, 9)$$

Solution: 按EDD规则,重新调度得右表。

此时,任务 T_{8} 延误,而在前三 项任务中, T_{∞} 的加工时间最长, 所以将 T_8 放至最 后,得一新表.

i	1	2	3	4	5	6	7	8
T_{ri}	T_5	<i>T</i> ₄	<i>T</i> ₈	T_3	T_2	T_6	T ₇	T_1
t _{ri}	4	1	6	3	6	8	7	10
C_{ri}	4	5	11	14	20	28	35	45
d_{ri}	6	8	9	11	20	25	28	35

此时,任务 T_7 延误,而在前六项任务中, T_6 的加工时间最长,所以将 T_6 放至最后,得一新表.

i	1	2	3	4	5	6	7	8
T _{ri}	T_5	T_4	T_3	T_2	T_6	<i>T</i> ₇	T_1	T ₈
t _{ri}	4	1	3	6	8	7	10	6
C _{ri}	4	5	8	14	22	29	39	45
d_{ri}	6	8	11	20	25	28	35	9

目前,前六项任务中已没有延误任务,所以此时为最优调度。

有两个任务 T_8 、 T_6 延误.

i	1	2	3	4	5	6	7	8
T _{ri}	T_5	T_4	T_3	T_2	T ₇	T_1	<i>T</i> ₈	T_6
t _{ri}	4	1	3	6	7	10	6	8
C_{ri}	4	5	8	14	21	31	37	45
d_{ri}	6	8	11	20	28	35	9	25

设 D_j 表示任务 T_j 的误工时间,使整个误工 $\sum D_j$ 最小的调度是十分重要的.因为单纯讨论使**误工任务**数最少可能会使有些任务的**等待时间变得很长**.如果将目标函数换成 $\sum D_j$,研究它的极小化,则不会产生上述现象,这也很有应用背景.

自然会想到能否按EDD规则调度,即按 d_j 不减的顺序进行调度.能得到最优调度吗?

设调度 $(r_1, r_2, ..., r_n)$ (1) 满足 $d_{r_1} \leq d_{r_2} \leq ... \leq d_{r_n}$ 与调度 $(r_1, ..., r_{i+1}, r_i, ..., r_n)$ (2),进行比较:

若 T_{r_i} , $T_{r_{i+1}}$ 在 (1) 中不误期,则在 (2) 中 $T_{r_{i+1}}$ 不误期,而在 T_{r_i} 前插入 $t_{r_{i+1}}$ 单位时间,就有误期的可能;

若 T_{r_i} 在(1)中不误期,而 $T_{r_{i+1}}$ 在(1)中误期 l单位时间,则由于 $d_{r_i} \leq d_{r_{i+1}}$,任务 T_{r_i} 在(2)的误期 $\geq l$;

若 T_{r_i} 在(1)中有误期 l 单位时间,而 $T_{r_{i+1}}$ 在(1)中没有误期,则在(2)中 $T_{r_{i+1}}$ 仍没有误期,而在 T_{r_i} 前插入 $t_{r_{i+1}}$ 单位时间,任务 T_{r_i} 在(2)中的误期 $l+t_{r_{i+1}} \geq l$;

若 T_{r_i} 、 $T_{r_{i+1}}$ 在(1)中都有误期 l、s 单位时间,则

§ 2 平行机调度问题

平行机调度问题(Parallel Machine Scheduling)

是多处理机调度问题的一种情况.所谓平行机是指参与完成任务的的处理机具有完全相同的作用,即任务在任一处理机上处理都可以. *PMS* 是调度中研究较早,很有代表性的一个问题,在理论上它是单机调度问题的推广,在应用上则具有更广泛的实际背景.

 大理机 恒速机 变速机

一、问题 $Pm \mid C_{\max}$

可中断如何?

同速机不可中断地处理无关任务集的时间表长问题. 设有m台完全相同的处理机 $P_j(j=1\sim m)$,n个相互独立的任务 $J_i(i=1\sim n)$, J_i 的加工时间为 $t_i(i=1\sim n)$

则问题 Pm | C_{max}

可用 IP 描述如下:

$$\min \quad f = C_{\max}$$

$$s.t.$$
 $\sum_{j=1}^{m} x_{ij} = 1$ $i = 1 \sim n$

$$C_{\max} \ge \sum_{i=1}^{n} t_i x_{ij} \quad j = 1 \sim m$$

§ 2 平行机调度问题

该问题与装箱问题是密切相关的,有相同的判定问题,常互称为对偶问题. 把箱子与处理机对应,物品与任务对应, 装箱问题是箱长给定,目标是箱子数最少. 平行机问题是箱子数给定,而使箱子长度最短.

Theorem 4 问题 $P2 \parallel C_{\text{max}} \in NP - hard$.

- (1)考察它的连续松弛问题 $0 \le x_{ij} \le 1$ $(i = 1 \sim n, j = 1 \sim m)$ 则松弛问题的最优值 $\frac{1}{m} \sum_{i=1}^{n} t_i$
- (2) 对原问题的任一实例 I, 一定有 $f_{opt}(I) \ge \max_{1 \le i \le n} \{t_i\}$

Theorem 5 问题 $Pm \mid C_{max}$ 最优值的一个下界为

$$L = \max\{\frac{1}{m}\sum_{i=1}^{n} t_{i}, \max_{1 \le i \le n}\{t_{i}\}\}.$$

二、近似算法

1、LS 算法 (List Scheduling)

LS算法是由Graham于1966年首先提出,他在研究LS算法的近似程度时,第一次提出了近似算法的最坏情况进行分析的办法. 从此讨论近似算法的绝对性能比, 就广泛地应用于组合优化的研究中.

绝对性能比
$$R = \max \left\{ \frac{z(I)}{z_{opt}(I)} | \forall 实例 I \right\}$$

§ 2 平行机调度问题

LS算法的思想是按任务给定的顺序,将每一个工件分给最早空闲的机器(也即使该工件最早完工的机器)加工,在安排当前任务的加工时,不要求知道下一个工件的信息,所以特别适用于在线调度问题.

LS算法

step 1 设
$$L_j = 0$$
 $j = 1 \sim m$ $k = 1$

step 2 若 $L_{j_0} = \min_{1 \leq j \leq m} \{ L_j \}$ 令 $x_{kj_0} = 1$,

 $x_{kj} = 0$ $j \neq j_0, j \in \{1, 2, ..., m\}$ $L_{j_0} = L_{j_0} + t_k$ $k = k+1$

若
$$k=n+1$$
 时,停止;否则 重复 step 2.

$$R_{LS} = 2 - \frac{1}{m}$$

Example 10 考虑调度问题 $Pm \mid C_{max}$, 其中

$$m = 3$$
, $n = 7$, $t = (1, 4, 2, 8, 6, 3, 7)$.

Solution:

Theorem 6 的证明

Proof: 分两步

- (1) 证明对任意的实例 I, $\frac{f_{LS}(I)}{f_{opt}(I)} \leq 2 \frac{1}{m}$
- (2) 说明该界不可改进.
- (1) 用反证法证明

$$\frac{f_{LS}(I)}{f_{opt}(I)} \leq 2 - \frac{1}{m}$$

假设该结论不成立,则存在反例 I 使 $\frac{f_{LS}(I)}{f_{opt}(I)} > 2 - \frac{1}{m}$

考虑反例中任务数最少的一个(称为最小反例).

由于I为最小反例,具有性质 $f_{LS}(I)$ 等于最后一个任务 J_n 的完工时间。

下面证明最小反例的该性质成立。

因为若不然,设 J_k 的完工时间等于 $f_{LS}(I)$,k < n.

考虑新的任务集 $J_1, J_2, ..., J_k$,则对由此任务得到的新实例 I^* 有 $f_{LS}(I^*) = f_{LS}(I)$,而且 $f_{opt}(I^*) \leq f_{opt}(I)$,

因此 有
$$\frac{f_{LS}(I^*)}{f_{opt}(I^*)} \ge \frac{f_{LS}(I)}{f_{opt}(I)} > 2 - \frac{1}{m}$$

说明 I* 是一个更小的反例.

由 s 为开始加工 J_n 时刻,则 $f_{LS}(I) = s + t_n$.

由 LS 规则, J_n 是分给最早空闲的机器加工, $s \leq \frac{1}{m} \sum_{i=1}^{m} t_i$

由 Th 5 知
$$f_{opt}(I) \ge t_n$$
 及 $f_{opt}(I) \ge \frac{1}{m} \sum_{i=1}^n t_i$

因此

$$\frac{f_{LS}(I)}{f_{opt}(I)} = \frac{s + t_n}{f_{opt}(I)} \le \frac{\frac{1}{m} \sum_{i=1}^{n-1} t_i + t_n}{f_{opt}(I)} = \frac{\frac{1}{m} \sum_{i=1}^{n} t_i + (1 - \frac{1}{m})t_n}{f_{opt}(I)}$$

$$\leq 1 + (1 - \frac{1}{m}) = 2 - \frac{1}{m}$$

这与I是反例矛盾,此矛盾说明 $R_{LS} \leq 2-\frac{1}{2}$.

$$R_{LS} \leq 2 - \frac{1}{m}$$
.

(2) 考虑任务集 { J_1 , J_2 , ..., J_{m^2-m+1} }, 其加工时

间分别为: $t_1 = t_2 = \dots = t_{m^2-m} = 1$, $t_{m^2-m+1} = m$,

需分给 m 台机器加工,易证 $f_{LS}(I) = 2m - 1, f_{opt}(I) = m$.

故
$$\frac{f_{LS}(I)}{f_{opt}(I)} = 2 - \frac{1}{m}$$

因此 有
$$R_{LS} = 2 - \frac{1}{m}$$

2、LPT 算法 (Largest Processing Time)

LPT 算法思想是先将任务按其加工时间从大到小的

顺序排列,然后用LS算法调度。这也是Graham 给出的, 它要求任务的信息全部已知后才开始加工。

Theorem 7
$$R_{LPT} = \frac{4}{3} - \frac{1}{3m}$$

见前例 t=(1,4,2,8,6,3,7)

按加工时间重新排列

$$J = (J_4, J_7, J_5, J_2, J_6, J_3, J_1)$$
 $t = (8, 7, 6, 4, 3, 2, 1)$

 $J = (J_4, J_7, J_5, J_2, J_6, J_3, J_1)$ t = (8, 7, 6, 4, 3, 2, 1)

§ 3 车间作业调度问题

车间作业调度问题是多处理机中多类型机调度问题

$$J = \{J_1, J_2, ..., J_n\}$$

m个处理机具 有不同的功能

处理机集
$$P = \{P_1, P_2, ..., P_m\}$$

每个作业 J_i 有 m 道工序: T_{1j} , T_{2j} , ..., T_{mj} ,

工序 T_{ii} 的加工时间为 t_{ij} $(t_{ii} \ge 0)$.

各作业分别在处理机 P_1, P_2, \dots, P_m 上完成各道工序.

车间作业调度问题: 1、同顺序(流水)作业调度问题

- 2、异顺序作业调度问题
- 3、自由(开放)作业调度问题

Note: 在流水作业调度问题中,各作业均依次在处理机 $P_1, P_2, ..., P_m$ 上完成各道工序. 但对于同一台处理机,各作业在其上的加工顺序可能不同.

排列调度 (permutation schedule)

各作业在全部处理机上的加工顺序相同的调度

所有调度共有调度数 $(n!)^m$ 其中排列调度共有 n! 对于 $m \ge 4$ 的情况,同顺序作业调度问题的最优调度 未必是排列调度. 即排列调度中可能不含有最优调度.

Example 11 考虑调度问题

$$t = \begin{pmatrix} 1 & 4 \\ 4 & 1 \\ 4 & 1 \\ 1 & 4 \end{pmatrix}$$

m 个处理机, 流水作业

排列调度共有两个, 调度时间表长均为

最优调度不是排列调度,也不是无耽搁调度

Theorem 8 对于流水作业调度问题,至少存在一个最优调度,在此最优调度中,其最前面两台处理 P_1 , P_2 上各作业的加工顺序相同.

Theorem 9 对于流水作业调度问题,至少存在一个最优调度,在此最优调度中,其最后两台处理 P_{m-1} , P_m 上各作业的加工顺序相同.

一定有在第一台处理机上无耽搁的最优调度

§ 3 车间作业调度问题

问题
$$F2 \mid C_{\max} (\in P)$$
 1

Johnson 算法 ((SPT-LPT))

Shortest Processing
Time first
Longest Processing
Time first

(1) 把作业按工序加工时间分成两个子集:

$$J1 = \{J_j | t_{1j} < t_{2j}\}, \quad J2 = \{J_j | t_{1j} > t_{2j}\}$$

对于满足 $t_{1j} = t_{2j}$ 的作业可分在任一集中;

- (2) 先将集 J1 中的作业按 t_{1j} 不减排列 (SPT 规则), 再将集 J2 中的作业按 t_{2j} 不增排列 (LPT 规则).
- Theorem 10 对于调度问题 ①, Johnson 算法产生最优调度.

Example 12 考虑调度 $F2 \parallel C_{\text{max}}$ 其中 n=5

$$t = \begin{pmatrix} 4 & 4 & 30 & 6 & 2 \\ 5 & 1 & 4 & 30 & 3 \end{pmatrix}$$

Solution: 由 **Johnson** 算法可得:

$$J1 = \{ J_1, J_4, J_5 \}, J2 = \{ J_2, J_3 \}.$$

J1 中的作业按 t_{1j} 不减排列: J_5,J_1,J_4 ; J2 中的作业按 t_{2j} 不增排列: J_3,J_2 , 所以最优调度为 $[J_5,J_1,J_4,J_3,J_2]$, 时间表长为 $C_{max} = 47$.

Example 13 考虑调度 $F4 \mid C_{max}$ 其中 n=3

$$t = egin{pmatrix} 8 & 5 & 0 \\ 0 & 9 & 2 \\ 1 & 0 & 10 \\ 2 & 6 & 0 \end{pmatrix}$$
 建立整数规划模型.

时间, 第一组约束为每一作业在处理机上加工顺序:

$$J_1: x_{11} + 8 \le x_{13} \quad x_{13} + 1 \le x_{14}$$

$$J_2$$
: $x_{21} + 5 \le x_{22}$ $x_{22} + 9 \le x_{24}$ J_3 : $x_{32} + 2 \le x_{33}$

第二组约束为一族选择性的约束条件,以保证每一处理机同一时间只能处理一个作业:如对 P_1

类似 y_2, y_3, y_4 为 0-1 变量,对处理机 P_2, P_3 . P_4 有

$$x_{22} + 9 \le x_{32} + My_2$$
 $x_{32} + 2 \le x_{22} + M(1 - y_2)$
 $x_{13} + 1 \le x_{33} + My_3$ $x_{33} + 10 \le x_{13} + M(1 - y_3)$
 $x_{14} + 2 \le x_{24} + My_4$ $x_{24} + 6 \le x_{14} + M(1 - y_4)$

第三组约束条件为三个作业的完工时间

$$C_{\text{max}} = \max \{x_{14} + 2, x_{24} + 6, x_{33} + 10\}$$

将它化为线性约束

$$t = \begin{pmatrix} 8 & 5 & 0 \\ 0 & 9 & 2 \\ 1 & 0 & 10 \\ 2 & 6 & 0 \end{pmatrix}$$

$$C \geq x_{14} + 2, \quad C \geq x_{24} + 6, \quad C \geq x_{33} + 10$$

目标函数为

$$\min f = C$$

若在原问题上再要求作业 J₂ 在各处理机上的加工和等待时间总和不超过 21.

$$x_{24} + 6 - x_{21} \le 21$$

本章结束