# Méthodes mathématiques de la théorie quantique - 2022 Bases de l'Information quantique - Day 3

#### Nana Engo

Department of Physics Faculty of Science University of Yaounde I

https://github.com/NanaEngo/Memaquan2022

Porto-Novo - 11-15 Juillet 2022











# Sommaire - Day 3 - 13 Juillet 2022

- Généralités et notion de calculateur
- Portes single-qubit
- Portes de contrôle
- Portes quantiques universelles



Calculateur classique

000 = 0

## Definition (Calculateur classique)

001 = 1

Un état de n bits d'un calculateur classique ou registre classique de taille n, ne peut stocker, en instant donné, qu'un seul entier  $i \in [0, 2^n - 1]$ , correspondant à  $2^n$  configurations, décrit en notation binaire par

$$i = i_{n-1}2^{n-1} + \dots + i_12^1 + i_02^0 = \sum_{m=0}^{n-1} i_m 2^m$$
  $i_m \in [0, 1]$ 

Exemple : 3 bits physiques  $\Rightarrow 2^3 = 8$  configurations différentes (0 à 7 en binaire)

$$010 \equiv 2$$
  $011 \equiv 3$   $100 \equiv 4$   $101 \equiv 5$   $110 \equiv 6$   $111 \equiv 7$ 





Calculateur classique - Contraintes

#### Principe de Landauer (dissipation de la chaleur)



Chaque fois qu'un bit d'information est effacé, son entropie augmente d'au moins  $k_B \ln 2$  et la quantité d'énergie dissipée dans l'environnement (circuit) vaut au moins  $k_B T \ln 2$ , T étant la température absolue de l'environnement.

## Theorem (Théorème de Margolus-Levitin)

La vitesse ou le nombre d'opérations effectuées dans un temps donné, à laquelle toute machine ou tout autre procédé réalisable permettant de calculer, et utilisant une quantité d'énergie E donnée, ne peut pas être supérieur à  $6 \times 10^{33}$  opérations par seconde par joule d'énergie.

• Le Théorème de Margolus-Levitin, tout comme le Principe de Landauer, constitue une limite fondamentale à la loi de Koomey selon laquelle le nombre de calculs, pour une quantité d'énergie dépensée donnée, double les 18 mois

Qubit

## Definition (Bit quantique ou qubit)

Le qubit est l'unité de traitement de l'information quantique.

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$\alpha, \beta \in \mathbb{C}$$

$$|\alpha|^2 + |\beta|^2 = 1$$

#### Qubit sur la sphere de Bloch



- Pour  $0 \le \theta \le \pi$  et  $0 \le \phi < 2\pi$ ,  $|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$
- Pour  $\theta=0$  et  $\phi$ ,  $|\psi\rangle=|0\rangle$
- Pour  $\theta=\pi$  et  $\phi$ ,  $|\psi\rangle=|1\rangle$
- Pour  $\theta=\frac{\pi}{2}$  et  $\phi=$  0,  $|\psi\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$
- Pour  $\theta = \frac{\pi}{2}$  et  $\phi = \frac{\pi}{2}$ ,  $|\psi\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$

Calculateur quantique et parallélisme quantique

## Definition (Calculateur quantique)

Un calculateur quantique est une collection de n qubits qui représente un registre quantique de taille n

$$\begin{split} |\psi\rangle &= \sum_{i=0}^{2^{n}-1} c_{i} |i\rangle = \sum_{i_{n-1}=0}^{1} \cdots \sum_{i_{1}=0}^{1} \sum_{i_{0}=0}^{1} c_{i_{n-1}, \dots i_{1}, i_{0}} |i_{n-1}\rangle \otimes \cdots \otimes |i_{1}\rangle \otimes |i_{0}\rangle \\ &= \sum_{i_{n-1}, \dots i_{1}, i_{0}=0}^{1} c_{i_{n-1}, \dots i_{1}, i_{0}} |i_{n-1} \cdots i_{1} i_{0}\rangle \qquad \sum_{i=0}^{2^{n}-1} |c_{i}|^{2} = 1 \end{split}$$

- Parallélisme quantique. Grâce à la superposition d'états, un registre quantique de n qubits peut stocker 2<sup>n</sup> nombres et effectuer en parallèle un grand nombre d'opérations simultanément
- Exemple : Pour n = 2, un état générique de 2-qubits s'écrit

$$|\psi\rangle = c_0 |0\rangle + c_1 |1\rangle + c_2 |2\rangle + c_3 |3\rangle = c_{00} |00\rangle + c_{01} |01\rangle + c_{10} |10\rangle + c_{11} |11\rangle$$



Principe du calcul quantique

•  $i \in \{0,1\}^n$  est une chaîne binaire de taille  $n \Rightarrow |i\rangle \in \mathcal{H}^{\otimes n}$  (2<sup>n</sup> dim)

## Principe d'un calcul quantique

- Préparation de n qubits dans l'état  $|\psi_i(t_0)\rangle$
- **1** Implémentation de la transformation unitaire désirée ou souhaitée  $U(t, t_0)$ ,  $|\psi_f(t)\rangle = U(t, t_0) |\psi_i(t_0)\rangle$
- Mesure sur les n qubits afin d'obtenir  $|\psi_f(t)\rangle$



• L'évolution unitaire  $U(t, t_0)$  est réversible : connaissant le vecteur d'état au temps t, on peut remonter à celui au temps  $t_0$  par  $U^{-1}(t, t_0) = U(t_0, t)$ 

Calcul quantique  $\equiv$  évolution quantique réversible  $\Rightarrow$  dissipation de chaleur

#### Éléments d'un circuit quantique

- Porte logique quantique : dispositif qui réalise une opération unitaire fixe sur un qubit donné, pendant une période de temps donnée
- Réseau ou circuit quantique : dispositif constitué de portes logiques quantiques dont les séquences de calculs sont synchronisées dans le temps
- Taille du circuit : nombre de portes logiques quantiques du réseau
- Largeur du circuit : nombre de fils du réseau



Circuit quantique de 7 portes logiques et de taille 3



# Portes single-qubit

Portes unitaires single-qubit les plus usuelles

| Porte            | Diagramme                                                     | Matrice dans $\{\ket{0},\ket{1}\}$                            |
|------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Pauli X          | k⟩                                                            | $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$                |
| Pauli Y          | $ k\rangle$ Y $i(-1)^k  1-k\rangle$                           | $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$               |
| Pauli Z          | $ k\rangle$ Z $(-1)^k  k\rangle$                              | $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$               |
| Walsh-Hadamard W | $ k\rangle$ $\frac{1}{\sqrt{2}}[(-1)^k k\rangle+ 1-k\rangle]$ | $rac{1}{\sqrt{2}}egin{pmatrix}1&1\1&-1\end{pmatrix}$         |
| Phase-Shift      | $ k\rangle \stackrel{\delta}{$                                | $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\delta} \end{pmatrix}$      |
| Phase            | $ k\rangle$ S $(i)^k  k\rangle$                               | $\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$                |
| $\frac{\pi}{8}$  | $ k\rangle$ T $e^{ik\pi/4} k\rangle$                          | $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$       |
| square root NOT  | $ k\rangle$ $\frac{1+i}{2}[ k\rangle - i 1-k\rangle]$         | $\frac{1+i}{2}\begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}$ |

## Definition (Porte de Walsh-Hadamard W)

La porte de Walsh-Hadamard définie par la matrice

$$W = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

permet de transformer les états de base  $\{|0\rangle,|1\rangle\}$  en état superposés

$$\mathbb{W}\ket{0} = rac{1}{\sqrt{2}}(\ket{0} + \ket{1})$$

$$\mathbb{W}\ket{1} = \frac{1}{\sqrt{2}}(\ket{0} - \ket{1})$$

$$\mathbb{W}\ket{k} = \frac{1}{\sqrt{2}}((-1)^k\ket{k} + \ket{1-k})$$

$$|k\rangle \longrightarrow \mathbb{V} \longrightarrow \frac{1}{\sqrt{2}}((-1)^k |k\rangle + |1-k\rangle)$$

## Portes single-qubit II

#### Porte Walsh-Hadamard W

 La porte W permet d'implémenter le parallélisme quantique à l'origine de l'accélération exponentielle d'un calcul quantique pour la résolution de certains problèmes

$$|0\rangle^{\otimes 3} \left\{ \begin{array}{c} \hline \mathbb{W} \\ \hline \mathbb{W} \\ \hline \mathbb{W} \end{array} \right\} \left( \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \right)^{\otimes 3} = \frac{1}{\sqrt{2^3}} (|0\rangle + |1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle + |7\rangle)$$

• Si initialement on a un registre de taille n dans un état  $y \in \{0,1\}^n$ , alors

$$W^{\otimes n} |y\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} (-1)^{yx} |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} e^{i\pi yx} |x\rangle$$

où le produit de  $y=(y_{n-1}y_{n-2}\cdots y_1y_0)$  et de  $x=(x_{n-1}x_{n-2}\cdots x_1x_0)$  est fait bit par bit

$$yx = (y_{n-1}x_{n-1} + y_{n-2}x_{n-2} + \cdots + y_1x_1 + y_0x_0)$$



## Portes single-qubit I

Implémentation du 1-qubit générique

Les portes W et  $P(\delta)$  suffisent pour construire toute opération unitaire sur un 1-qubit



• Il est à noter que le diagramme se lit de gauche à droite alors que le produit d'opérateurs se lit de droite à gauche



• Ce circuit quantique s'écrit vectoriellement sous la forme

$$\begin{split} |\psi\rangle &= \underbrace{\mathbb{P}(\frac{\pi}{2} + \varphi)}_{4} \underbrace{\mathbb{W}}_{3} \underbrace{\mathbb{P}(\theta)}_{2} \underbrace{\mathbb{W}}_{1} |0\rangle \\ &\stackrel{!}{=} \underbrace{\mathbb{P}(\frac{\pi}{2} + \varphi)}_{4} \underbrace{\mathbb{W}}_{3} \underbrace{\frac{\mathbb{P}(\theta)}{2}}_{2} \underbrace{\mathbb{P}(\theta)}_{1} \underbrace{\mathbb{W}}_{2} (|0\rangle + |1\rangle) \\ &\stackrel{?}{=} \underbrace{\mathbb{P}(\frac{\pi}{2} + \varphi)}_{4} \underbrace{\mathbb{W}}_{3} \underbrace{\frac{1}{\sqrt{2}}}_{2} (|0\rangle + e^{i\theta} |1\rangle) = \underbrace{\mathbb{P}(\frac{\pi}{2} + \varphi)}_{4} \underbrace{\mathbb{W}}_{3} \underbrace{\frac{e^{i\frac{\theta}{2}}}{\sqrt{2}}}_{2} (e^{-i\frac{\theta}{2}} |0\rangle + e^{i\frac{\theta}{2}} |1\rangle) \\ &\stackrel{?}{=} \underbrace{\mathbb{P}(\frac{\pi}{2} + \varphi)}_{4} \underbrace{e^{i\frac{\theta}{2}}}_{2} \left( \cos \frac{\theta}{2} |0\rangle - i \sin \frac{\theta}{2} |1\rangle \right) \\ &= \underbrace{\mathbb{P}(\frac{\pi}{2} + \varphi)}_{4} e^{i\frac{\theta}{2}} \left( \cos \frac{\theta}{2} |0\rangle - i \sin \frac{\theta}{2} |1\rangle \right) \\ &\stackrel{4}{=} e^{i\frac{\theta}{2}} \left( \cos \frac{\theta}{2} |0\rangle + e^{i\varphi} \sin \frac{\theta}{2} |1\rangle \right) \equiv \cos \frac{\theta}{2} |0\rangle + e^{i\varphi} \sin \frac{\theta}{2} |1\rangle \end{split}$$



• Les portes CU sont des portes de contrôle U qui traduisent quantiquement if ( x ) then  $y \leftarrow U^x y$  par

$$|x\rangle |y\rangle \mapsto |x\rangle \mathbf{U}^{\mathsf{x}} |y\rangle$$

qui correspond, pour  $x,y\in\{0,1\}$ , à

$$\left. |0\rangle \left. |0\rangle \rightarrow \left. |0\rangle \left. |0\rangle \right. \right. \\ \left. |0\rangle \left. |1\rangle \rightarrow \left. |0\rangle \left. |1\rangle \right. \\ \left. |1\rangle \left. |0\rangle \rightarrow \left. |1\rangle \frac{\text{U}}{\text{U}} \left. |0\rangle \right. \\ \left. |1\rangle \left. |1\rangle \rightarrow \left. |1\rangle \frac{\text{U}}{\text{U}} \left. |1\rangle \right. \\ \left. |1\rangle \left. |1\rangle \rightarrow \left. |1\rangle \right. |1\rangle \right. |1\rangle \right. |1\rangle \left. |1\rangle \left. |1\rangle \left. |1\rangle \left. |1\rangle \left. |1\rangle \left. |1\rangle \left.$$

Dans la base  $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ , où  $\mathbb{I}$ ,  $\mathbb{O}$  et U sont des matrices  $2 \times 2$ 

$$\mathtt{CU} = \ket{0}ra{0} \otimes \mathbb{I} + \ket{1}ra{1} \otimes \mathbf{U} = \begin{pmatrix} \mathbb{I} & \mathbb{O} \\ \mathbb{O} & \mathbf{U} \end{pmatrix}$$
  $\ket{x} - \ket{x} = \ket{x} + \ket{y} = \mathbb{U} + \mathbb{U}$ 

 Le 1er bit |x> agit comme contrôle et sa valeur reste inchangée à la sortie. Le 2e bit |y> est appelé cible. Sur le diagramme, le contrôle est représenté le point noir

#### Une porte CU applique

- la transformation identité  $\mathbb{I}$  au bit cible lorsque le bit de contrôle est dans l'état  $|0\rangle$
- ullet la transformation  ${ t U}$  au bit cible lorsque le bit de contrôle est dans l'état |1
  angle
- Puisque pour  $x \in \{0,1\}$ ,  $U^{2x} = I$  et les opérateurs CU sont unitaires
- Pour une transformation unitaire quelconque  $U: (x,y) \rightarrow (x,y \oplus f(x))$ , on a

$$|\psi\rangle = \text{CU}(\alpha |0\rangle + \beta |1\rangle) |0\rangle = \alpha |0f(0)\rangle + \beta |1f(1)\rangle$$

qui contient à la fois l'information sur f(0) et sur f(1)



## Definition (Porte CNOT)

CNOT ou CX est la plus populaire des portes CU

$$CX = |0\rangle \langle 0| \otimes \mathbb{I} + |1\rangle \langle 1| \otimes X = \begin{pmatrix} \mathbb{I} & \mathbb{O} \\ \mathbb{O} & X \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

qui inverse le bit cible  $|y\rangle$  lorsque le bit de contrôle  $|x\rangle\equiv|1\rangle$ 

$$\mathtt{CX}\ket{x}\ket{y}=\ket{x}\ket{ extbf{x}\oplus y}$$



| <i>y</i> ⟩ | $-  x \oplus y\rangle$ |
|------------|------------------------|
|            |                        |

| X | у | X | $x \oplus y$ |
|---|---|---|--------------|
| 0 | 0 | 0 | 0            |
| 0 | 1 | 0 | 1            |
| 1 | 0 | 1 | 1            |
| 1 | 1 | 1 | 0            |

## Portes de contrôle II

Porte CNOT

• On note sur la table de vérité que lorsque la cible  $|y\rangle \equiv |0\rangle$  la porte CX devient la porte COPY (clonage de  $|x\rangle$ ) :  $|x\rangle |0\rangle \mapsto |x\rangle |x\rangle$ ,  $x \in \{0,1\}$ 

$$CX(\alpha |0\rangle + \beta |1\rangle) |0\rangle = \alpha |00\rangle + \beta |11\rangle$$

qui est non factorisable pour  $\alpha, \beta \neq 0$ .

La porte CNOT génère des états intriqués

#### **Theorem**

Toute opération unitaire sur  $\mathcal{H}^{\otimes n}$  peut se décomposer en produit d'opérations unitaires single qubit (1-qubit) et de CNOT.

• Nous utiliserons la notation abrégée CU<sub>[ij]</sub> pour indiquer que le qubits i est le contrôle et le qubits j la cible. Par exemple,

$$\mathtt{CX}_{\texttt{[12]}}\ket{xy}=\mathtt{CX}\ket{xy}=\ket{x}\ket{x\oplus y}$$

 $\mathtt{CX}_{[21]} |xy\rangle = |x \oplus y\rangle |y\rangle$ 

#### Portes de contrôle III

#### Porte CNOT

• Ainsi, les trois autres matrices CNOT sont, pour  $P_0=|0\rangle\langle 0|$  et  $P_1=|1\rangle\langle 1|$ 

| $\mathtt{CX}_{[12]}^- = P_{0} \otimes \mathtt{X} + P_{1} \otimes \mathbb{I}$                     | $\mathtt{CX}_{\mathtt{[21]}} = \mathtt{X} \otimes P_{\mathtt{1}} + \mathbb{I} \otimes P_{\mathtt{0}}$   | $\mathtt{CX}_{[21]}^- = \mathbb{I} \otimes P_1 + \mathtt{X} \otimes P_0$                         |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ | $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ | $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |
| x                                                                                                | x                                                                                                       | x                                                                                                |
| $CX_{[12]}^-$ inverse le 2e qubit lorsque le 1er est dans l'état $ 0\rangle$                     | ${ m CX}_{[21]}$ inverse le 1er qubit lorsque le 2e est dans l'état $ 1 angle$                          | $CX_{[21]}^{-1}$ inverse le 1er qubit lorsque le 2e est dans l'état $ 0\rangle$                  |

- cercle noir= opération de contrôle positif ou qubit cible inversé lorsque le contrôle est  $|1\rangle$
- • cercle vide= opération de contrôle négatif ou qubit cible inversé lorsque le contrôle est  $|0\rangle$

## Portes de contrôle

#### Génération des états de Bell - États maximalement intriqués

• Circuit générant les états intriqués de Bell



$$|\mathcal{B}_{xy}\rangle = \mathtt{CX}(\mathtt{W}\otimes \mathtt{I})|xy\rangle \quad x,y\in\{0,1\}$$

$$= \frac{1}{\sqrt{2}}(|0y\rangle + (-1)^x |1(1-y)\rangle)$$

Ainsi,

$$|00\rangle \rightarrow |B_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \qquad |10\rangle \rightarrow |B_{10}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$
  
 $|01\rangle \rightarrow |B_{01}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \qquad |11\rangle \rightarrow |B_{11}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$ 



## Definition (Porte SWAP)

La porte SWAP permute ou intervertit deux qubits

$$SWAP = CXCX_{[21]}CX = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{vmatrix} |x\rangle & \longrightarrow & |y\rangle \\ |y\rangle & \longrightarrow & |x\rangle \end{vmatrix} = \begin{vmatrix} |x\rangle & \longrightarrow & |y\rangle \\ |y\rangle & \longrightarrow & |x\rangle \end{vmatrix}$$

• Par exemple, pour 
$$|\psi\rangle = (\alpha |0\rangle + \beta |1\rangle)$$
 et  $|\phi\rangle = (\delta |0\rangle + \gamma |1\rangle)$  on a  $\mathrm{CXCX}_{[21]}\mathrm{CX}\,|\psi\rangle\,|\phi\rangle = \mathrm{CXCX}_{[21]}\mathrm{CX}(\alpha |0\rangle + \beta |1\rangle)(\delta |0\rangle + \gamma |1\rangle)$  
$$= \mathrm{CXCX}_{[21]}(\alpha\delta |00\rangle + \alpha\gamma |01\rangle + \beta\delta |11\rangle + \beta\gamma |10\rangle)$$
 
$$= \mathrm{CX}(\alpha\delta |00\rangle + \alpha\gamma |11\rangle + \beta\delta |01\rangle + \beta\gamma |10\rangle)$$
 
$$= (\alpha\delta |00\rangle + \alpha\gamma |10\rangle + \beta\delta |01\rangle + \beta\gamma |11\rangle)$$
 
$$= \delta |0\rangle (\alpha |0\rangle + \beta |1\rangle) + \gamma |1\rangle (\alpha |0\rangle + \beta |1\rangle)$$
 
$$= |\phi\rangle |\psi\rangle$$



# Portes quantiques universelles

Porte √SWAP

- Les portes universelles facilitent l'intégration à partir de portes pré-caractérisées
- Comme n'importe quelle fonction peut être synthétisée à l'aide des CNOT et 1-qubits W,  $P(\delta)$ : (CNOT, W,  $P(\delta)$ ) forme un ensemble infini de portes quantiques universelles
- La porte √SWAP qui effectue la moitié des chemins de deux qubits swap est universelle : n'importe quelle porte logique quantique peut être construite à partir de seulement la porte √SWAP, et des portes 1-qubit

$$\sqrt{\text{SWAP}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2}(1+i) & \frac{1}{2}(1-i) & 0 \\ 0 & \frac{1}{2}(1-i) & \frac{1}{2}(1+i) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



## Portes quantiques universelles I

Porte de TOFFOLI

La porte TOFFOLI ou porte Controlled-Controlled-NOT (CCNOT,  $C^2NOT$ ) est une porte à trois bits d'entrée et de sortie



| Ν° | X | У | z | x | У | $z \oplus x \wedge y$ |
|----|---|---|---|---|---|-----------------------|
| 1  | 0 | 0 | 0 | 0 | 0 | 0                     |
| 2  | 0 | 0 | 1 | 0 | 0 | 1                     |
| 3  | 0 | 1 | 0 | 0 | 1 | 0                     |
| 4  | 0 | 1 | 1 | 0 | 1 | 1                     |
| 5  | 1 | 0 | 0 | 1 | 0 | 0                     |
| 6  | 1 | 0 | 1 | 1 | 0 | 1                     |
| 7  | 1 | 1 | 0 | 1 | 1 | 1                     |
| 8  | 1 | 1 | 1 | 1 | 1 | 0                     |

La porte CCNOT nous donne la connectivité logique nécessaire à l'arithmétique

• Lorsque le qubit cible  $|z\rangle$  est dans l'état  $|0\rangle$  (lignes 1, 3, 5, 7), la porte de CCNOT effectue l'opération AND

$$\mathtt{CCNOT} \ket{x} \ket{y} \ket{0} = \ket{x} \ket{y} \ket{x} \land y$$



## Portes quantiques universelles II

#### Porte de TOFFOLI

• Lorsque le qubit cible  $|z\rangle$  est dans l'état  $|1\rangle$  (lignes 2, 4, 6, 7), la porte de CCNOT effectue l'opération NAND

$$\mathtt{CCNOT} \ket{x} \ket{y} \ket{1} = \ket{x} \ket{y} \ket{x \mathbin{\overline{\wedge}} y}$$

• Lorsque le premier qubit de contrôle  $|x\rangle$  est dans l'état  $|1\rangle$  (lignes 5-8), la porte de CCNOT effectue l'opération CNOT

$$\mathtt{CCNOT} \ket{1}\ket{y}\ket{z} = \ket{1}\ket{y}\ket{z \oplus y}$$

• Lorsque le premier qubit de contrôle  $|x\rangle$  est dans l'état  $|1\rangle$  et le qubit cible  $|z\rangle$  est dans l'état  $|0\rangle$  (lignes 5 et 7), la porte de CCNOT effectue l'opération COPY

$$\mathtt{CCNOT}\ket{1}\ket{y}\ket{0}=\ket{1}\ket{y}\ket{y}$$

La porte de CCNOT, avec l'initialisation de valeur constante, est une porte universelle pour toutes les opérations réversibles de la logique booléenne.