Licence 3 informatique - 2010-2011

Intelligence artificielle

21 juin 2011

1h30 - Aucun document autorisé Le barême est donné à titre indicatif et peut être modifié

Exercice 1 (5 points)

Considérez l'arbre de jeu suivant. La racine est un nœud MAX, et les valeurs aux feuilles correspondent à l'utilité obtenue par le joueur MAX. Si MAX gagne la valeur x, le joueur MIN gagnera la valeur -x.

- 1. Appliquez l'algorithme α - β sur cet arbre de jeu. Quelles branches seront coupées?
- 2. Quelle est l'utilité obtenue par le joueur MAX?

Exercice 2 (5 points)

Soit la base de connaissances suivante

1.
$$\forall x \ P(x) \Rightarrow \exists y \ Q(y,x)$$

2.
$$\exists y \ P(y) \land \forall x \forall z \ (\neg R(x) \Rightarrow \neg Q(z, x))$$

3.
$$\forall x \forall y \forall z \ P(x) \Rightarrow M(x, y, z)$$

4.
$$\exists y \forall x \exists z \ \neg S(y) \Rightarrow \neg T(x, y, z)$$

5.
$$\forall x \forall y \forall z \ R(x) \land M(x,y,z) \Rightarrow T(x,y,z)$$

Prouvez par résolution que $\forall x \ S(x)$

Exercice 3 (7 points)

Considérez la carte suivante. Le but est de trouver le chemin le plus court de A vers I.

Le coût de chaque connexion est indiqué. Deux heuristiques h_1 et h_2 sont données comme suit:

Nœud	A	В	С	D	E	F	G	Н	I
h_1	19	10	13	13	14	8	6	8	0
h_2	21	11	12	13	13	6	7	5	0

- 1. Est-ce que h_1 et h_2 sont admissibles? Justifier.
- 2. Est-ce que h_1 domine h_2 ou bien h_2 domine h_1 ? Justifier.
- 3. Appliquer la recherche gloutonne en utilisant h_2 . Donner la suite des nœuds développés.
- 4. Appliquer la recherche A^* en utilisant h_1 . Donner la suite des nœuds développés.
- 5. Appliquer la recherche A^* en utilisant h_2 . Donner la suite des nœuds développés.
- 6. Montrer que pour deux heuristiques admissible h_1 et h_2 , $h_3 = max(h_1, h_2)$ est admissible.
- 7. Si vous avez le choix entre trois heuristiques admissibles h_1 , h_2 et $h_3 = max(h_1, h_2)$ laquelle choisissez vous ? Justifier.

Exercice 4 (3 points)

Traduire en logique des prédicats les phrases suivantes. N'oubliez pas de préciser le vocabulaire utilisé.

- 1. Certains étudiants sont sérieux
- 2. Tous les étudiants ne sont pas sérieux
- 3. Aucun étudiant n'est stupide
- 4. Personne n'achète de fleurs à un banquier
- 5. Toutes les personnes qui ont acheté des fleurs sont ravies
- 6. Il existe un fleuriste qui vend des fleurs à tous les banquiers