Inference Summary

How to Organize a Statistical Problem: A Four-Step Process

Confidence intervals (CIs)

What hypotheses do you want to test, and at what significance

Significance tests

STATE:

What parameter do you want to estimate, and at what

level? Define any parameters you use.

Choose the appropriate inference method. Check conditions.

Choose the appropriate inference method. Check conditions.

PLAN:

D0:

If the conditions are met, perform calculations.

confidence level?

If the conditions are met, perform calculations.

· Compute the test statistic. • Find the P-value.

CONCLUDE:

Interpret your interval in the context of the problem.

Make a decision about the hypotheses in the context of the problem.

CI: statistic \pm (critical value)-(standard deviation of statistic)

statistic - parameter Standardized test statistic = standard deviation of statistic

Inference about	Number of samples (groups)	Interval or test	Name of procedure (TI Calculator function) Formula	Conditions
Proportions	1	Interval	One-sample z interval for p $(1-\text{PropZInt})$ $\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	Random Data from a random sample or randomized experiment \circ 10%: $n \leq 0.10N$ if sampling without replacement Large Counts At least 10 successes and failures; that is, $n\hat{p} \geq 10$ and $n(1 - \hat{p}) \geq 10$
		Test	One-sample z test for p $(1-\text{PropZTest})$ $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	Random Data from a random sample or randomized experiment \circ 10% : $n \le 0.10N$ if sampling without replacement Large Counts $np_0 \ge 10$ and $n(1-p_0) \ge 10$
	2	Interval	Two-sample z interval for p_1-p_2 (2-PropZInt) $(\hat{p}_1-\hat{p}_2) \pm z^*\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	Random Data from independent random samples or randomized experiment \circ 10% : $n_1 \leq 0.10N_1$ and $n_2 \leq 0.10N_2$ if sampling without replacement Large Counts At least 10 successes and failures in both samples/groups; that is, $n_1\hat{\rho}_1 \geq 10, n_1(1-\hat{\rho}_1) \geq 10, n_2\hat{\rho}_2 \geq 10, n_2(1-\hat{\rho}_2) \geq 10$
		Test	Two-sample z test for $p_1 - p_2$ $(2-\text{PropZTest})$ $z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\frac{\hat{p}_c(1 - \hat{p}_c)}{n_1} + \frac{\hat{p}_c(1 - \hat{p}_c)}{n_2}}}$ where	Random Data from independent random samples or randomized experiment \circ 10%: $n_1 \leq 0.10N_1$ and $n_2 \leq 0.10N_2$ if sampling without replacement Large Counts At least 10 successes and failures in both samples/groups; that is,
			$\hat{\rho}_c = \frac{\text{total successes}}{\text{total sample size}} = \frac{X_1 + X_2}{n_1 + n_2}$	$n_1 \hat{p}_c \ge 10, n_1 (1 - \hat{p}_c) \ge 10$ $n_2 \hat{p}_c \ge 10, n_2 (1 - \hat{p}_c) \ge 10$

Inference about	Number of samples (groups)	Estimate or test	Name of procedure (Tl Calculator function) Formula	Conditions
Means	1 (or paired data)	Interval	One-sample t interval for μ (TInterval) $\bar{x} \pm t^* \frac{s_\chi}{\sqrt{n}} \text{ with df} = n-1$	Random Data from a random sample or randomized experiment \circ 10%: $n \leq 0.10N$ if sampling without replacement Normal/Large Sample Population distribution Normal or large sample ($n \geq 30$); no strong skewness or outliers if $n < 30$ and population distribution has unknown shape
		Test	One-sample t test for μ (T-Test) $t = \frac{\bar{x} - \mu_0}{\frac{s_x}{\sqrt{n}}} \text{ with df } = n-1$	Random Data from a random sample or randomized experiment \circ 10%: $n \leq 0.10N$ if sampling without replacement Normal/Large Sample Population distribution Normal or large sample ($n \geq 30$); no strong skewness or outliers if $n < 30$ and population distribution has unknown shape
	2	Interval	Two-sample t interval for $\mu_1 - \mu_2$ (2-SampTint) $ (\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} $ df from technology or $ \min(n_1 - 1, n_2 - 1) $	Random Data from independent random samples or randomized experiment $ \circ \ \textbf{10\%:} \ n_1 \leq 0.10 \textit{N}_1 \ \text{and} \ n_2 \leq 0.10 \textit{N}_2 \ \text{if sampling without replacement} $ Normal/Large Sample Population distributions Normal or large samples ($n_1 \geq 30$ and $n_2 \geq 30$); no strong skewness or outliers if sample size < 30 and population distribution has unknown shape
		Test	Two-sample t test for $\mu_1 - \mu_2$ (2-SampTTest) $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ df from technology or $\min(n_1 - 1, n_2 - 1)$	Random Data from independent random samples or randomized experiment • 10%: $n_1 \le 0.10N_1$ and $n_2 \le 0.10N_2$ if sampling without replacement Normal/Large Sample Population distributions Normal or large samples ($n_1 \ge 30$ and $n_2 \ge 30$); no strong skewness or outliers if sample size < 30 and population distribution has unknown shape
Distribution of categorical variables	1	Test	Chi-square test for goodness of fit $(x^2\text{GOF-Test})$ $\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$ with df = number of categories -1	Random Data from a random sample or randomized experiment ○ 10%: n ≤ 0.10N if sampling without replacement Large Counts All expected counts at least 5
	2 or more	Test	Chi-square test for homogeneity $(x^2\text{-Test})$ $\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$ $\text{df} = (\text{# of rows} - 1)(\text{# of columns} - 1)$	 Random Data from independent random samples or randomized experiment ○ 10%: n₁ ≤ 0.10N₁, n₂ ≤ 0.10N₂, and so on if sampling without replacement Large Counts All expected counts at least 5
Relationship between 2 categorical variables	1	Test	Chi-square test for independence $(x^2\text{-Test})$ $\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$ $\text{df} = (\text{# of rows} - 1)(\text{# of columns} - 1)$	Random Data from a random sample or randomized experiment \circ 10% : $n \le 0.10N$ if sampling without replacement Large Counts All <i>expected counts</i> at least 5
Relationship between 2 quantitative variables (slope)	1 -	Interval	One-sample t interval for eta (LinRegTInt) $b \pm t^*(SE_b)$ with $df = n-2$	Linear Relationship between the variables is linear Independent observations; check the 10% condition if sampling without replacement. Normal Responses vary Normally around regression line for all
		Test	One-sample t test for β (LinRegTTest) $t = \frac{b - \beta_0}{SE_b} \text{ with df} = n - 2$	x-values Equal SD around regression line for all x-values Random Data from a random sample or randomized experiment