C477: One-Dimensional Optimisation

Ruth Misener r.misener@imperial.ac.uk

Panos Parpas p.parpas@imperial.ac.uk

Computational Optimisation Group
Department of Computing

Imperial College London

22 October 2018

Trade-offs in Optimisation Algorithms

Traveling Salesman Problem:

- Effectiveness: Does the algorithm find what we want?
- Efficiency: What is the computation cost for doing it?

effectiveness

Find a point with as good objective value as possible

Find at least one global optimum point

Find all global optimum points

efficiency

Outline

Topics

Golden Section Search Method

- Oth Order Method 2nd Order Method
- One Dimensional Newton's Method
 Newton's Method for computing Roots of Equations
 - ★ Convergence issues (cycling, local maxima, sensitivity to initial conditions)
 - ★ Fractal behaviour of Newton's Method (optional)
- Secant Method

Quasi-Newton Method

Shubert's algorithm

Deterministic Global Optimisation

- Definition: Lipschitz Continuity
- Reading
 - ► Chapters 7 (One-Dimensional Search Methods) & 14 (Global Search Algorithms) in *An Introduction to Optimization*, Chong & Żak, Third Edition.
- Acknowledgements
 - ► Parts of these slides were originally developed by Benoit Chachuat and Panos Parpas. LATEX design and proof reading by Miten Mistry. Mistakes by Ruth Misener.

This sounds boring

Why only 1D? I want to solve problems in many dimensions!

Why we study optimisation problems in 1D

- Get insight into multivariable solution techniques;
- Single-variable optimisation is a subproblem for many nonlinear optimisation methods and software, e.g., linesearch;
- Mastering this lecture will help a lot with understanding the multivariate case.

0^{th} Order, 1^{st} Order, 2^{nd} Order, & Deterministic Global Optimisation Methods

0th Order Methods

- Only evaluate function f(x);
- Pro: Best possible solution method for difficult-to-evaluate functions, e.g., black-box optimisation;[†]
- Con: Not great for many dimensions.[†]

†Exceptions exist; problem dependent

Examples of 0th Order Methods

Nedler-Mead, Bayesian Optimisation

0th Order, 1st Order, 2nd Order, & Deterministic Global Optimisation Methods

1st Order Methods

- Function evaluations f(x) & first-order derivatives $\nabla f(x)$;
- Pro: Only reasonable method for big problems;[†]
- Con: May converge slowly (compared to 2nd order methods).[†]

†Exceptions exist; problem dependent

Examples of 1st Order Methods

Steepest descent, Stochastic gradient descent, Alternating direction method of multipliers

0^{th} Order, 1^{st} Order, 2^{nd} Order, & Deterministic Global Optimisation Methods

2nd Order Methods

- Function evals f(x), 1st & 2nd derivatives $\nabla f(x)$, $\nabla^2 f(x)$;
- Pro: Possibly quadratic (nice) convergence;[†]
- Con: May not be able to calculate second order derivatives for big problems.[†]

†Exceptions exist; problem dependent

Examples of 2nd Order Methods

Newton Methods, Quasi-Newton Methods*, BFGS* (*Approximate the Hessian)

0th Order, 1st Order, 2nd Order, & Deterministic Global Optimisation Methods

Deterministic Global Optimisation

- Global information, e.g. # local minima, convexity properties;
- Pro: Guarantee best possible solution;
- Con: May not be appropriate for large problems.[†]

†Exceptions exist; problem dependent

Deterministic Global Methods

Branch & Cut, Branch & Bound, DIRECT, Lipschitz optimisation

Assumptions

- Unimodal (unique global minimum x^* in a given range $[a_0,b_0]$)
- ② If $a_1 < a_2 < x^*$ then $f(x^*) < f(a_2) < f(a_1)$; If $x^* < a_1 < a_2$ then $f(x^*) < f(a_1) < f(a_2)$.

- Select two points such that $a_1 > a_0$, and $b_1 < b_0$.
- 2 Symmetric reduction: $(a_1 a_0) = b_0 b_1 = \varrho(b_0 a_0)$, with $\varrho < \frac{1}{2}$.

• Since $f(a_1) < f(b_1)$, reduce the search space to $[a_0, b_1]$.

Summary

- Unique minimum between a known range;
- ② 2 function evals reduce space: $(a_1 a_0) = (b_0 b_1) = \varrho(b_0 a_0)$ $a_1 = a_0 + \varrho(b_0 - a_0), \ b_1 = a_0 + (1 - \varrho)(b_0 - a_0)$
- On we reduce the space with a single function evaluation?

- ② After one iteration, assume $f(a_1) < f(b_1)$, reduce the search space to $[a_0,b_1]$

- Place a_2 such that $a_0 < a_2 < a_1$,
- **2** What about b_2 ?

- **1** Take $b_2 = a_1$ to save one function evaluation.
- ${f 2}$ Choose ${\it \varrho}$ for symmetric search space reduction.

- How to chose ϱ ?
- In first iteration

$$a_1 - a_0 = b_0 - b_1 = \varrho(b_0 - a_0)$$

- How to chose ϱ ?
- In first iteration

$$a_1 - a_0 = b_0 - b_1 = \varrho(b_0 - a_0)$$

3 Choose ϱ such that

$$b_1 - b_2 = \varrho(b_1 - a_0)$$

1 Choose ϱ such that

$$b_1 - b_2 = \varrho(b_1 - a_0)$$

- **2** But $b_1 b_2 = 1 2\varrho$ & $b_1 a_0 = 1 \varrho$
- $1 2\varrho = \varrho(1 \varrho)$

1 Choose ϱ such that $1-2\varrho=\varrho(1-\varrho)$,

$$\varrho^2 - 3\varrho + 1 = 0$$

- $\varrho = \frac{3\pm\sqrt{5}}{2}$

Summary

- Main Assumption: Unique minimum between a known range
- 2 Use one function evaluation to reduce search space
- 3 Search space is reduced by $1 \varrho \approx 0.61803$ at every iteration

- $f(x) = x^4 14x^3 + 60x^2 70x$, $x^* \in [0, 2]$
- Locate x^* with an error tolerance of 0.3.

- Iteration 1: $a_1 = a_0 + \varrho(b_0 a_0)$, $b_1 = b_0 \varrho(b_0 a_0)$
- $f(a_1) = -24.36 < f(b_1) = -18.96 \implies x^* \in [a_0, b_1 = 1.24].$

- Iteration 2: $x^* \in [0, 1.24]$, $a_1 = 0.76, b_1 = 1.24$
- $a_2 = a_0 + \varrho(b_1 a_0), b_2 = a_1$.

- $a_2 = a_0 + \varrho(b_1 a_0) = 0.47$, $b_2 = a_1 = 0.76$.
- $f(b_2) = -24.36 < f(a_2) = -21.10 \implies x^* \in [0.47, 1.24]$

- Iteration 3: $x^* \in [0.47, 1.24], a_2 = 0.47, b_2 = 0.76$
- $a_3 = b_2$, $b_3 = b_1 \varrho(b_1 a_2)$

- $a_3 = b_2 = 0.76$, $b_3 = b_1 \varrho(b_1 a_2) = 0.94$
- $f(b_3) = -23.59 > f(a_3) = f(b_2) = -24.36 \implies x^* \in [0.47, 0.94]$

- Iteration 4: $x^* \in [0.47, 0.94]$, $a_3 = 0.76, b_3 = 0.94$
- $a_4 = a_2 + \varrho(b_3 a_2)$, $b_4 = a_3$

- $a_4 = a_2 + \varrho(b_3 a_2) = 0.65$, $b_4 = a_3 = 0.76$
- $f(a_4) = -23.84 > f(b_4) = f(a_3) = -24.36 \implies x^* \in [0.65, 0.94]$

Example: Golden Section Search Method Summary:

k	a_k	b_k	Interval
1	0.76	1.23	[0 , 1.23]
2	$a_2 = a_0 + \varrho(b_1 - a_0) = 0.47$	$b_2 = a_1 = 0.76$	[0.47, 1.23]
3	$b_2 = 0.76$	$b_3 = b_1 - \varrho(b_1 - a_2) = 0.94$	[0.47, 0.94]
4	$a_4 = a_2 + \varrho(b_3 - a_2) = 0.65$	$b_4 = a_3 = 0.76$	[0.65, 0.94]

One Dimensional Newton's Method (2nd Order)

- Minimising a general non-linear function is difficult $\min f(x)$
- Basic idea: minimise a quadratic approximation

$$\min \ q(x)$$
 where $q(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$

Minimise quadratic approximation

$$0 = q'(x) = f'(x_k) + f''(x_k)(x - x_k)$$

Use approximate minimiser as new starting point

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Example

Use Newton's Method to find a minimiser of,

$$f(x) = x^4 - 14x^3 + 60x^2 - 70x.$$

Start at x(0) = -0.5

$$q(x) = f(-0.5) + f'(-0.5)(x+0.5) + \frac{1}{2}f''(-0.5)(x+0.5)^{2}$$

$$\downarrow^{140}$$

$$\downarrow^{120}$$

$$\downarrow^{100}$$

$$\downarrow^{20}$$

$$\downarrow^{40}$$

$$\downarrow^{20}$$

$$\downarrow^{-1}$$

$$\downarrow^{-0.5}$$

$$\downarrow^{0}$$

$$x_{k+1} = \arg\min f(-0.5) + f'(-0.5)(x+0.5) + \frac{1}{2}f''(-0.5)(x+0.5)^2$$

$$q(x) = f(0.35) + f'(0.35)(x - 0.35) + \frac{1}{2}f''(0.35)(x - 0.35)^{2}$$

$$\stackrel{140}{\underset{120}{\underset{100}{|}}}$$

$$\stackrel{140}{\underset{120}{\underset{100}{|}}}$$

$$\stackrel{1}{\underset{100}{\underset{100}{|}}}$$

$$\stackrel{1}{\underset{100}{\underset{100}{|}}}$$

$$\stackrel{1}{\underset{100}{\underset{100}{|}}}$$

Example: 1D Newton's Method (2nd Order)

$$x_{k+2} = \arg\min f(0.35) + f'(0.35)(x - 0.35) + \frac{1}{2}f''(0.35)(x - 0.35)^2$$

Example: 1D Newton's Method (2nd Order)

$$q(x) = f(0.71) + f'(0.71)(x - 0.71) + \frac{1}{2}f''(0.71)(x - 0.71)^{2}$$

$$\stackrel{140}{\underset{120}{\underset{100}{|}}}$$

$$\underset{80}{\underset{100}{\underset{100}{|}}}$$

$$\underset{100}{\underset{100}{\underset{100}{|}}}$$

$$\underset{100}{\underset{100}{\underset{100}{|}}}$$

$$\underset{100}{\underset{100}{\underset{100}{|}}}$$

$$\underset{100}{\underset{100}{\underset{100}{|}}}$$

Example: 1D Newton's Method (2nd Order)

$$x_{k+3} = \arg\min \ f(0.71) + f'(0.71)(x - 0.71) + \frac{1}{2}f''(0.71)(x - 0.71)^2$$

Convergence after 3 iterations!

Newton's Method for computing Roots of Equations

Drive the first derivative of f to 0

Newton's method can also be seen as a way to solve for

$$f'(x) = 0$$

using the iterative procedure,

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

• But if we set g(x) = f'(x) then we obtain an algorithm for solving for g(x) = 0:

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$

Example: Roots of Equations

Example

Use Newton's Method to find a root of,

$$f(x) = x^3 - 12.2x^2 + 7.45x + 42 = 0$$

Start at x(0) = 12. Perform two iterations.

Answer

$$x_1 = 12.00 - \frac{102.6}{146.65} = 11.30$$

 $x_2 = 11.30 - \frac{14.73}{116.11} = 11.20$

Equivalent Matlab Code

$$x = 12$$

 $f = x^3 - 12.2 * x^2 + 7.45 * x + 42$
 $fprime = 3 * x^2 - 12.2 * 2 * x + 7.45$
 $x_new = x - f/fprime$

Failure to Converge (1D Newton's Method)

Warning!

- The algorithm can fail to converge if f''(x) < 0;
- Algorithm may find a point that satisfies the first order condition, not necessarily a minimiser;
- Algorithm may cycle;
- These issues will be addressed later on in the course.

 $\min \sin(x) + \sin(3x/2)$, Initial Point $x_0 = 12.65$ -8 -1010 15 20 25 5 30 Х

min $\sin(x) + \sin(3x/2)$, Initial Point $x_0 = 12.65$ 12.66

$$x_3 = -0.01, \ x_4 = -3.00 = x_0$$

The algorithm returns to the initial point!

Newton's Method the complex case (Optional)

- Newton's method can be used to find complex roots
- Same algorithm, but z may be complex i.e. z = x + iy

$$z_{k+1} = z_k - \frac{g(z_k)}{g'(z_k)}$$

• Hint: Starting point must be complex, otherwise algorithm will never leave the real plane.

(Optional) Example: fractal.m

Use Newton's Algorithm to find all roots of the equation,

$$g(z) = z^3 + 1$$

- The roots are given by, $\{\exp(i\pi/3), \exp(i\pi), \exp(5i\pi/3)\}$
- Initialise the algorithm from different points in the complex plane
- Set the initial condition to $z_0 = x_0 + iy_0$, and let x_0 , y_0 range from -1 to 1 with an interval of 0.01.
- Use different colour to colour each of the different roots
- The result is a fractal.

(Optional) Example: fractal.m

Secant Method (Quasi-Newton Method)

Newton's Method

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

- Newton's Method uses first & second derivatives.
- We can approximate the second derivative with,

$$\frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}.$$

Secant Method Uses this approximation into Newton's iteration.

Secant Method

$$x_{k+1} = x_k - f'(x_k) \frac{(x_k - x_{k-1})}{f'(x_k) - f'(x_{k-1})}$$

Global Information

Level of Information

Without global information, no algorithm can provide a certificate of global optimality, unless it generates a dense sample

Examples of Global Information:

- Number of local optima
- Global optimum value
- Convexity of the objective function and feasible region
- Lipschitz constant L,

$$\|f(\mathbf{x}) - f(\mathbf{y})\|_2 \le L \|\mathbf{x} - \mathbf{y}\|_2, \quad \forall \mathbf{x}, \mathbf{y} \in S$$

Algorithmic Strategies:

- Unstructured Problems: Global information unavailable
 - Global optimum certificate is hopeless!
- Structured Problems: Global information available
 - Global optimality may be certified, but...

Lipschitz Continuity

Definition: Lipschitz Continuity

A function $f: S \mapsto \mathbb{R}^m$ where $S \subseteq \mathbb{R}^n$ is called Lipschitz continuous if there is a constant $L \in \mathbb{R}$ such that:

$$||f(\mathbf{x}) - f(\mathbf{y})||_2 \le L ||\mathbf{x} - \mathbf{y}||_2, \quad \forall \mathbf{x}, \mathbf{y} \in S$$

Intuition?

A function is not allowed to change too quickly.

Sanity Check

Are the following functions Lipschitz continuous?

- **1** $f(x) = x^{1/3}$ on the domain $x \in [0, 1]$;
- 2 $f(x) = x^2$ on the domain $x \in (-\infty, \infty)$;
- $f(x) = \exp(x)$ on the domain $x \in (-\infty, 1]$;

Lipschitz Continuity

1.
$$f(x) = x^{1/3}$$
 on the domain $x \in [0, 1]$

Not Lipschitz continuous!

$$f'(x) = \frac{1}{3}x^{-2/3} \implies \lim_{x \to 0^+} f'(x) = \infty,$$

and there is no finite value of L we can select.

2.
$$f(x) = x^2$$
 on the domain $x \in (-\infty, \infty)$

Not Lipschitz continuous! Given any L, chose, to get a counter-example, x=0 and $y=L+\epsilon$ where $\epsilon>0$. Then:

$$\frac{\|f(\mathbf{x}) - f(\mathbf{y})\|_2}{\|\mathbf{x} - \mathbf{y}\|_2} = \frac{(L + \epsilon)^2}{L + \epsilon} = L + \epsilon \nleq L.$$

Since we have found a counterexample violating the definition, the function is not Lipschitz continuous on the domain.

Lipschitz Continuity

3. $f(x) = \exp(x)$ on the domain $x \in (-\infty, 1]$

Lipschitz continuous!

$$f'(x) = \exp(x) \implies f'(x) \in (0, e]$$

on the domain $x \in (-\infty, 1]$. The Lipschitz constant is L = e since the slope of any secant line is bounded between 0 and e.

4.
$$f(x) = |x|$$
 on the domain $x \in (-\infty, \infty)$

Lipschitz continuous!

$$||x| - |y|| \le L \, ||x - y||_2 \iff |||x||_2 - ||y||_2| \le L \, ||x - y||_2$$

since $|x| = \sqrt{x^2} = \|x\|_2$. Exercise 5 of Tutorial 1 (on convexity) proves that the inequality holds.

Lipschitz Optimisation

$$f(x) = (x-2) + (x-3)^2 + (x-1)^3, x \in [-1, 2]$$

- What are the local minima? What is the global minimum?
- Convex function?
- Satisfies conditions for Golden Section method?
- What is the Lipschitz constant?

$$f(x) = (x-2) + (x-3)^2 + (x-1)^3$$
 $f'(x) = 1 + 2(x-3) + 3(x-1)^2$

Deduce lower bounds on the global solution!!

$$f(x) = (x-2) + (x-3)^2 + (x-1)^3$$

$$f(x) \ge -5(x - x_1) + y_1$$

= -5(x + 1) + 5

$$f(x) \ge 5(x - x_2) + y_2$$

= 5(x - 2) + 2

Intersection Point? $\hat{x} = [0.8, -4]$

Converged? $f(\spadesuit) - f(\spadesuit) < \epsilon$?

Initiate divide and conquer algorithm similar to Branch & Bound

Key Observations

- This is Shubert's algorithm;
- Easy to find intersection of two lines!
- Typical convergence criteria? $f^{\rm UB} - f^{\rm LB} < \epsilon$
- Is this as bad as complete search?

Initiate divide and conquer algorithm similar to Branch & Bound

Key Observations

- This is Shubert's algorithm;
- Easy to find intersection of two lines!
- Typical convergence criteria? $f^{\rm UB} - f^{\rm LB} < \epsilon$
- Is this as bad as complete search?

Initiate divide and conquer algorithm similar to Branch & Bound

Key Observations

- This is Shubert's algorithm;
- Easy to find intersection of two lines!
- Typical convergence criteria? $f^{\rm UB} - f^{\rm LB} < \epsilon$
- Is this as bad as complete search?

Initiate divide and conquer algorithm similar to Branch & Bound

Key Observations

- This is Shubert's algorithm;
- Easy to find intersection of two lines!
- Typical convergence criteria? $f^{\rm UB} - f^{\rm LB} < \epsilon$
- Is this as bad as complete search?

Lipschitz Optimisation: Shubert's Algorithm in 1D

Summary

 0^{th} Order Methods

 2^{nd} Order Methods

1st Order Methods

Deterministic Global Methods