Introducción a los Sistemas Operativos

Anexo I Arquitectura de Entrada/Salida

I.S.O.

☑Versión: Octubre 2017

☑Palabras Claves: Dispositivos de IO, Hardware de IO, IO programada, Polling, Interrupciones, DMA

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

Variedad en los dispositivos de I/O

✓ Legible para el usuario

- ✓ Usados para comunicarse con el usuario
 - Impresoras, Terminales: Pantalla, Teclado, Mouse

✓ Legible para la máquina

- ✓ Utilizados para comunicarse con los componentes electrónicos
 - Discos, Cintas, Sensores, etc.

☑Comunicación

- ✓ Usados para comunicarse con dispositivos remotos
 - Líneas Digitales, Modems, Interfaces de red, etc.

Problemas que surgen

- ✓ Amplia Variedad
 - ✓ Manejan diferentes cantidad de datos
 - ✓ En Velocidades Diferentes
 - ✓ En Formatos Diferentes
- ✓ La gran mayoría de los dispositivos de E/S son más lentos que la CPU y la RAM

Hardware y software involucrado

- **☑**Buses
- ✓Controladores
- **☑**Dispositivos
- ✓ Puertos de E/S Registros
- **☑**Drivers
- ☑Comunicación con controlador del dispositivo: I/O Programada, Interrupciones, DMA

Estructura de Bus de una PC

Comunicación: CPU - Controladora

- ☑¿Cómo puede la CPU ejecutar comandos o enviar/recibir datos de una controladora de un dispositivo?
 - ✓ La controladora tiene uno o mas registros:
 - Registros para señales de control
 - Registros para datos
- ☑La CPU se comunica con la controladora escribiendo y leyendo en dichos registros

Comandos de I/O

- **☑**CPU emite direcciones
 - ✓ Para identificar el dispositivo
- **☑**CPU emite comandos
 - ✓ Control Que hacer?
 - Ej. Girar el disco
 - ✓ Test Controlar el estado
 - Ej. power? Error?
 - ✓ Read/Write
 - Transferir información desde/hacia el dispositivo

Mapeo de E/S y E/S aislada

- ☑ Correspondencia en memoria (Memory mapped I/O)
 - ✓ Dispositivos y memoria comparten el espacio de direcciones.
 - ✓ I/O es como escribir/leer en la memoria.
 - ✓ No hay instrucciones especiales para I/O
 - Ya se dispone de muchas instrucciones para la memoria
- ☑ Isolated I/O (Aislada, uso de Puertos de E/S)
 - ✓ Espacio separado de direcciones
 - ✓ Se necesitan líneas de I/O. Puertos de E/S
 - ✓ Instrucciones especiales
 - Conjunto Limitado

Memory Mapped and Isolated I/O

ADDRESS 200 202	INSTRUCTION Load AC Store AC Load AC Branch if Sign = 0 Load AC	OPERAND "1" 517 517 202 516	COMMENT Load accumulator Initiate keyboard read Get status byte Loop until ready Load data byte
	(a) Mem	nory-mapped I/	0

ADDRESS	INSTRUCTION	OPERAND	COMMENT	
200	Load I/O	5	Initiate keyboard read	
201	Test I/O	5	Check for completion	
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	Branch Not Ready	201	Loop until complete	
	In	5	Load data byte	
	(b) Isolated I/O			

Técnicas de I/O - Programada

- ☑ CPU tiene control directo sobre la I/O
 - ✓ Controla el estado
 - ✓ Comandos para leer y escribir
 - ✓ Transfiere los datos
- ☑ CPU espera que el componente de I/O complete la operación
- ✓ Se desperdician ciclos de CPU

Polling

- ☑En la I/O Programada, es necesario hacer polling del dispositivo para determinar el estado del mismo
 - ✓ Listo para recibir comandos
 - ✓ Ocupado
 - ✓ Error
- ☑Ciclo de "Busy-wait" para realizar la I/O
- ☑Puede ser muy costoso si la espera es muy larga

Técnicas de I/O - Manejada por Interrupciones

- ☑Soluciona el problema de la espera de la CPU
- ✓ La CPU no repite el chequeo sobre el dispositivo
- ☑ El procesador continúa la ejecución de instrucciones
- ☑ El componente de I/O envía una interrupción cuando termina

Técnicas de I/O - DMA

DMA (Direct Memory Access)

- ☑Un componente de DMA controla el intercambio de datos entre la memoria principal y el dispositivo
- ☑El procesador es interrumpido luego de que el bloque entero fue transferido.

Pasos para una transferencia DMA

