Matematika pro informatiku (NI-MPI)

Domácí úkol ZS 2022/2023

Napište program pro iterační řešení soustavy rovnic

$$Ax = b$$
,

kde

- A je zadaná matice soustavy,
- b je zadaný vektor pravé strany,
- x je hledaný vektor řešení.

Pro řešení soustavy využijte

- J) Jacobiho metodu,
- GS) Gaussovu-Seidelovu metodu.

Zastavovací kritérium vašeho programu nastavte tak, aby (v konvergentím případě) program vracel přibližné řešení $\tilde{\mathbf{x}}$ splňující

$$\frac{\|\mathbf{A}\widetilde{\mathbf{x}} - \mathbf{b}\|_2}{\|\mathbf{b}\|_2} < 10^{-6}$$

 $(\|\cdot\|_2)$ je eukleidovská norma).

Pro váš program použijte následující vstupy:

$$\mathbf{A} = \begin{pmatrix} \gamma & -1 & & & \\ -1 & \gamma & -1 & & & \\ & -1 & \gamma & \ddots & & \\ & & \ddots & \ddots & -1 \\ & & & -1 & \gamma \end{pmatrix} \in \mathbb{R}^{20,20}, \quad \mathbf{b} = \begin{pmatrix} \gamma - 1 \\ \gamma - 2 \\ \gamma - 2 \\ \vdots \\ \gamma - 2 \\ \gamma - 2 \\ \gamma - 1 \end{pmatrix} \in \mathbb{R}^{20},$$

kde na prázdných místech v matici ${\bf A}$ jsou nuly. Jako startovací vektor volte ${\bf x}_0={\bf 0}.$

Proveďte výpočet pro tři následující hodnoty parametru γ :

a)
$$\gamma = 10$$
,

b)
$$\gamma = 2$$
,

c)
$$\gamma = \frac{4}{5}$$
.

Pro výpočty užijte **dvojitou** přesnost (double precision).

Jak splnit úkol?

Naprogramujte obě varianty J) a GS), a otestujte je pro dané hodnoty parametru γ . Ve všech testech změřte počet potřebných iterací všech variant potřebný k získání předepsané přesnosti, nebo konstatujte, že iterační metoda pravděpodobně nekonverguje.

Programovací jazyk pro zpracování práce si zvolte z množiny {C, C++, Python, Fortran, SageMath, Matlab, Julia}. Zdrojový kód musí obsahovat nějaké minimum komentářů pro pochopení, co se v programu děje. Na začátku by měl být alespoň minimální návod umožnující úspěšné znovupoužití vašeho kódu (tj. informace, jak jej má opravující spustit).

Co odevzdat?

Do přiložené tabulky dostupné na Teams nebo pod tímto odkazem vyplňte počet potřebných iterací k dosažení požadované přesnosti všech variant. (Udělejte si kopii tabulky a odevzdejte na ni odkaz, nebo tabulku přiložte jako soubor.) Můžete metody naprogramovat různě a sledovat změny (pak pište např. "Ja1", "Ja2" ... a varianty popište.)

Mimo počtu iterací do tabulky vyplňte také:

- 1. stručný popis varianty;
- 2. komentář k získaným výsledkům soustřeďte se na souvislost s teorií a splnění či nesplnění podmínek pro konvergenci;

Spolu s tabulkou odevzdejte i zdrojový kód.

Jak odevzdat?

K odevzdání bude použito odevzdávání úkolů přes MS Teams "Zadání" ("Assignments") – k nalezení v horní liště *cvičebního* týmu, tedy tam je třeba **v termínu** nahrát vyplněnou tabulku a zdrojový kód. (Pokud to není extra nutné, tak bez komprimace.)

(K odevzdávání: prosím, dejte pozor, abyste zadání finálně odevzdali, je možno mít odevzdání v nějakém mezistavu, ke kterému se vyučující nedostane. Na finální odevzdání by mělo být tlačítko "Odevzdat" ("Turn in").)

Jak bude úkol hodnocen?

- 0 až 1 bod za obdržené výsledky (tabulku);
- 0 až 2 body za program (1 bod za variantu);

• 0 až 3 body za komentář.

Případné neexplicitně požadované a vyhodnocené varianty mohou být ohodnoceny navíc bonusovými body.

Základní iterační metoda by měla být vámi naprogramována, tj. nestačí zavolat jeden příkaz z nějaké knihovny. Na druhou stranu není samozřejmě nutné dělat vše od nuly, tedy např. lze použít maticové násobení z nějaké knihovny, pokud jej budete potřebovat. Obdobně lze použít i maticovou inverzi, ale v ten okamžik silně doporučujeme se podívat, jak je tato inverze spočtena.

"Skupinová práce"

Úkol je koncipován tak, aby si ho každý vyzkoušel sám, tj. vřele doporučujeme si to opravdu zkusit naprogramovat a vyhodnotit.

Minimalistické řešení

Ano, stačí, když naprogramujete pouze jednu variantu, získáte tím však max. 3 body.