Lecture 11: Course Review

Ziyu Shao

School of Information Science and Technology ShanghaiTech University

January 11, 2024

Final Exam

- Nine problems
- Closed book without cheating sheets
- 2:00pm-5:00pm in the afternoon of Jan. 19

Course Reward

- Gauss Award
- Bernoulli Award
- Laplace Award
- Poisson Award
- Markov Award

Final Exam

In My Beginning is My End

The Role of This Course

Teaching Philosophy of This Course

Monte Carlo Computing

Science

The Role of Probability & Statistics

A framework for analyzing phenomena with uncertain outcomes:

- Rules for consistent reasoning
- Used for predictions and decisions

Typical Distributions

Name	Param.	PMF or PDF	Mean	Variance
Bernoulli	p	P(X=1) = p, P(X=0) = q	p	pq
Binomial	n, p	$\binom{n}{k}p^kq^{n-k}, \text{ for } k \in \{0, 1, \dots, n\}$	np	npq
FS	p	pq^{k-1} , for $k \in \{1, 2, \dots\}$	1/p	q/p^2
Geom	p	pq^k , for $k \in \{0, 1, 2, \dots\}$	q/p	q/p^2
NBinom	r, p	$\binom{r+n-1}{r-1} p^r q^n, n \in \{0, 1, 2, \dots\}$	rq/p	rq/p^2
HGeom	w, b, n	$\frac{\binom{w}{k}\binom{b}{n-k}}{\binom{w+b}{k}}$, for $k \in \{0, 1, \dots, n\}$	$\mu = \frac{nw}{w+b}$	$(\tfrac{w+b-n}{w+b-1})n\tfrac{\mu}{n}(1-\tfrac{\mu}{n})$
Poisson	λ	$\frac{e^{-\lambda}\lambda^k}{k!}, \text{ for } k \in \{0, 1, 2, \dots\}$	λ	λ
Uniform	a < b	$\frac{1}{b-a}$, for $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal	μ, σ^2	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$	μ	σ^2
Log-Normal	μ, σ^2	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-(\log x - \mu)^2/(2\sigma^2)}, x > 0$	$\theta = e^{\mu + \sigma^2/2}$	$\theta^2(e^{\sigma^2}-1)$
Expo	λ	$\lambda e^{-\lambda x}$, for $x > 0$	$1/\lambda$	$1/\lambda^2$
Gamma	a, λ	$\Gamma(a)^{-1}(\lambda x)^a e^{-\lambda x} x^{-1}$, for $x > 0$	a/λ	a/λ^2
Beta	a, b	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$, for $0 < x < 1$	$\mu = \frac{a}{a+b}$	$\frac{\mu(1-\mu)}{a+b+1}$
Chi-Square	n	$\frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}$, for $x > 0$	n	2n
Student- t	n	$\frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)}(1+x^2/n)^{-(n+1)/2}$	0 if $n > 1$	$\frac{n}{n-2}$ if $n > 2$

Relationship Among Distributions

Part I: Univariate Distribution

- Probability and Counting: Definition of Probability, Counting, Bose-Einstein Model, Birthday Match Problem, Hash Table.
- Conditional Probability: Bayes'rule, LOTP, Conditioning, Gambler's ruin, Simpson's Paradox, Monty Hall.
- Random Variables and Distributions: Bernoulli, Binomial, Story for distributions, entropy.
- Expectation: Indicator r.v., Geometric, Coupon Collector, Poisson, Probability Generating Function.
- Continuous Random Variables: Universality of the Uniform, Normal, Exponential, Memoryless, Moment Generating Function. Central Limit Theorem.

Part II: Multivariate Distribution

- Joint Distributions: Joint/Marginal distribution, chicken-egg model, Poisson, meaning of conditioning on zero-probability event, Four Forms of Bayes' Rule, Four Forms of LOTP, Covariance, Correlation, Multivariate Normal Distribution.
- Transformations: Change of Variables, Jacobian Matrix, Convolution, Order Statistics

Part III: Monte Carlo Statistical Methods

- Random Variable Generation: Inverse Transform Method,
 Acceptance-Rejection Method
- Monte Carlo Integration: Sample Average, Importance Sampling
- Asymptotic Analysis: Law of Large Numbers, night model of Smartphone
- Inequality: Cauchy-Schwarz Inequality, Jensen's Inequality, Kullback-Leibler Divergence (Entropy), Markov's Inequality, Chebyshev's Inequality, Chernoff's Inequality (related to MGF), Chernoff's Technique, Hoeffding Bound, Parameter Estimation (confidence interval), Monte Carlo Method for Estimation π .

Part IV: Statistical Inference

- Frequency Perspective: Maximum Likelihood Estimation
- Conditional Expectation: Conditional Expectation Given An Event, Conditional Expectation Given An R.V., LOTE Adam's s Law, Eve's law, Projection Interpretation, Minimum Mean Square Error Estimator (MMSE), Prediction Perspective (MMSE).
- Bayesian Perspective: Bayesian Inference and the Posterior Distribution, The Maximum A Posteriori Probability (MAP) Rule, Conjugate-Prior, Beta-Binomial Conjugacy, Dirichlet-Multinomial Conjugacy, Bayesian Ranking.

Part V: Markov Chain

- Basic Conception: Stochastic Processes, Markov Model, Markov Chain (Discrete-Time & Discrete State Space)
- Markov Chain: Markov property, Time-Homogeneous Markov Chains, Graphical Representation of Markov Chain (State-Transition Diagram), Matrix Representation of Markov Chain (Transition Matrix), n-step Transition Probability, Chapman-Kolmogorov Relationship
- Classification: Recurrent and Transient States, Irreducible and Reducible Chain, Period, Periodic & Aperiodic Markov Chain
- Long-Term Property: Stationary Distribution, Reversibility,
 Detailed Balance Equation, Random Walk on Undirected Graph,
 Google PageRank

In My End is My Beginning

- Now this is not the end. It is not even the beginning of the end.
- But it is, perhaps, the end of the beginning.

The End of Adventure in Probability & Statistics

A New Adventure: Welcome to Join IID Lab!

In My End is My Beginning

