Package 'litteR'

October 13, 2022

Title Litter Analysis

Version 1.0.0

Date 2022-08-26

Description Data sets on various litter types like beach litter, riverain litter, floating litter, and seafloor litter are rapidly growing. This package offers a simple user interface to analyse these litter data in a consistent and reproducible way. It also provides functions to facilitate several kinds of litter analysis, e.g., trend analysis, power analysis, and baseline analysis. Under the hood, these functions are also used by the user interface. See Schulz et al. (2019) <doi:10.1016/j.envpol.2019.02.030> for details. MS-Windows users are advised to run 'litteR' in 'RStudio'. See our vignette: Installation manual for 'RStudio' and 'litteR'.

Depends R (>= 4.0.0)

Imports readr (>= 1.3.1), stringr (>= 1.4.0), dplyr (>= 1.0.0), tidyselect (>= 1.1.0), tidyr (>= 1.1.0), fs (>= 1.4.1), ggplot2 (>= 3.3.1), purrr (>= 0.3.4), rlang (>= 0.4.6), yaml (>= 2.2.1), rmarkdown (>= 2.2), tcltk

Suggests knitr, kableExtra, testthat (>= 2.3.2)

License GPL (>= 3)

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.2.1

NeedsCompilation no

Author Dennis Walvoort [aut, cre, cph],
Willem van Loon [aut, cph],
Rijkswaterstaat - The Netherlands [cph, fnd, dtc]

Maintainer Dennis Walvoort <dennis. Walvoort@wur.nl>

Repository CRAN

Date/Publication 2022-08-26 19:32:06 UTC

27

Index

R topics documented:

itteR-package	3
adj_boxplot_stats	4
create_litter_project	5
create_logger	5
ev	6
enumerate	6
enumerate.character	7
enumerate.sequenized	7
nas_write_access	8
ntercept	8
od	9
s_date_format	9
	10
	10
kendall_var_s	11
ist_duplicates	11
	12
-	13
1	14
· -	15
-	15
read_litter_types	16
read_settings	16
	17
<i>c</i> –	17
	18
	19
1	19
sequenize.integer	20
slope	20
stat_adj_boxplot	21
rest_statistic	22
heil_sen	22
	23
	24
wilcoxon	25

litteR-package 3

litteR-package

Litter Analysis

Description

A tool for the analysis of various litter types, e.g., beach litter, riverain litter, floating litter, and seafloor litter.

Details

The easiest way to get convenient with **litteR** is to create an empty project directory and fill it with example files by calling the function <code>create_litter_project</code>. The workhorse function in **litteR** is called <code>litter</code>. This function will start a simple user interface and lets you select an input file (*.csv) and a settings file (*.yaml). It will produce an HTML-report with litter analysis results according to the selected options in the settings file. See the package vignette for more details.

Author(s)

Maintainer: Dennis Walvoort <dennis. Walvoort@wur.nl> [copyright holder]

Authors:

• Willem van Loon <willem.van.loon@rws.nl> [copyright holder]

Other contributors:

• Rijkswaterstaat - The Netherlands [copyright holder, funder, data contributor]

References

Schulz, Marcus, Dennis J.J. Walvoort, Jon Barry, David M. Fleet & Willem M.G.M. van Loon, 2019. Baseline and power analyses for the assessment of beach litter reductions in the European OSPAR region. Environmental Pollution 248:555-564 <doi:10.1016/j.envpol.2019.02.030>

4 adj_boxplot_stats

adj_boxplot_stats

Adjusted Boxplot Statistics

Description

Adjusted boxplot statistics according to Hubert & Vandervieren (2008). The upper whisker extends from the hinge to the largest value no further than the upper fence. Similarly, the lower whisker extends from the hinge to the smallest value no further than the lower fence. See Hubert & Vandervieren (2008, p.5191, Eq.5).

Usage

```
adj_boxplot_stats(x, ...)
## Default S3 method:
adj_boxplot_stats(x, ...)
```

Arguments

x numeric vector

... further arguments passed to or from other methods.

Value

Numeric vector consisting of respectively the lower whisker/fence, the first quartile/hinge, the median, the third quartile/hinge, and the upper whisker/fence.

Methods (by class)

• adj_boxplot_stats(default): Adjusted Boxplot Statistics

References

Hubert, M., and E. Vandervieren, 2008. An adjusted boxplot for skewed distributions. Computational Statistics and Data Analysis 52:5186-5201 doi:10.1016/j.csda.2007.11.008

See Also

```
stat_adj_boxplot
```

```
adj_boxplot_stats(rlnorm(100))
```

create_litter_project 5

```
create_litter_project Create Project Directory
```

Description

Fills an empty directory (path) with example files. If the path' argument is missing or NULL, a Tcl/Tk dialogue will be started.

Usage

```
create_litter_project(path = NULL)
```

Arguments

path

(Existing) directory name

create_logger

Simple Logger

Description

Logger, in the spirit of loggers like log4j. Implemented logging levels are DEBUG, INFO, WARN, ERROR (in increasing order of specificity. Logging events can be filtered to show only events with a minimum specificity.

Usage

```
create_logger(con = stdout(), level = c("DEBUG", "INFO", "WARN", "ERROR"))
```

Arguments

con co

connection to write logging data to

level

log only events of this level and those that are more specific (see details)

Value

Anonymous logging functions

```
logger <- create_logger(level = "INFO")
logger$info("starting specific computation")
logger$info("Today is {Sys.Date()}")</pre>
```

6 enumerate

cv

Coefficient of Variation

Description

Coefficient of Variation

Usage

```
cv(x, na.rm = FALSE)
```

Arguments

x a numeric vector

na.rm logical. Should missing values be removed?

Value

coefficient of variation (numeric vector of length 1).

References

https://en.wikipedia.org/wiki/Coefficient_of_variation

enumerate

Enumerate Objects

Description

Generic function for enumerating objects

Usage

```
enumerate(x, ...)
## S3 method for class 'numeric'
enumerate(x, ...)
```

Arguments

x object to enumerate

... further arguments passed to or from other methods.

Methods (by class)

• enumerate(numeric): enumerate numeric vector.

enumerate.character 7

See Also

enumerate.character

enumerate.character

Enumerate Character Vector

Description

Collapsing a character vector of length n, to a character vector of length 1.

Usage

```
## S3 method for class 'character'
enumerate(x, ...)
```

Arguments

- Х character vector
- further arguments passed to or from other methods.

Value

character vector of length 1, with elements separated by a comma except for the last element which is prepended by "and".

Examples

```
enumerate("apples")
enumerate(c("apples", "oranges"))
enumerate(c("apples", "oranges", "pears"))
```

enumerate.sequenized Convert Sequenized Output to Character String

Description

Convert Sequenized Output to Character String

Usage

```
## S3 method for class 'sequenized'
enumerate(x, ...)
```

Arguments

- object of class sequenized.
- further arguments passed to or from other methods.

8 intercept

Value

string representation (character vector of length 1) of a sequenized object

See Also

```
sequenize.integer
```

has_write_access

Check Write Permission

Description

Simple wrapper for file.access with mode=2

Usage

```
has_write_access(path)
```

Arguments

path

filename

Value

TRUE if write access, FALSE if not

intercept

Intercept

Description

Extract the intercept from object x.

Usage

```
intercept(x, ...)
```

Arguments

c object

... further arguments passed to or from other methods.

Value

estimate of the intercept (numeric vector of length 1).

iod 9

iod

Index of Dispersion

Description

A normalized measure of the dispersion of a probability distribution.

Usage

```
iod(x, na.rm = FALSE)
```

Arguments

x a numeric vector

na.rm logical. Should missing values be removed?

Value

index of dispersion (numeric vector of length 1).

References

```
https://en.wikipedia.org/wiki/Index_of_dispersion
```

is_date_format

Check Date Format

Description

Checks if the data format x complies with format.

Usage

```
is_date_format(x, format = "%Y-%m-%d")
```

Arguments

x object of class character or Date format required date format (see strptime)

Value

TRUE if x complies with format, and FALSE otherwise.

```
is_date_format("2019-05-14", "%Y-%m-%d")
```

10 kendall_s

is_natural_number

Test for Natural Numbers

Description

Test for natural numbers according to ISO 80000-2, that is the set 0, 1, 2, ...

Usage

```
is_natural_number(x)
```

Arguments

Х

numeric vector

Value

TRUE in case x is a natural number, FALSE otherwise.

Examples

```
stopifnot(!is_natural_number(3.1))
stopifnot(!is_natural_number(2.99))
stopifnot(is_natural_number(3))
stopifnot(all(is_natural_number(0:9)))
stopifnot(sum(is_natural_number(c(1, 2.5, 3))) == 2)
```

kendall_s

Mann-Kendall S Statistic

Description

Mann-Kendall S Statistic

Usage

```
kendall_s(x, t = seq_along(x))
```

Arguments

x observations t time index

References

Gilbert, R.O., 1987. Statistical methods for environmental pollution monitoring.

kendall_var_s

See Also

```
kendall_var_s
```

kendall_var_s

Mann-Kendall Variance of S Statistic

Description

Mann-Kendall Variance of S Statistic

Usage

```
kendall_var_s(x, t = seq_along(x))
```

Arguments

x observations

t time index

References

Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring.

Van Belle and Hughes, 1984, Nonparametric Tests for Trend in Water Quality. Water Resources Research 20:127-136

list_duplicates

List Duplicates

Description

Lists all duplicates as a list of tuples.

Usage

```
list_duplicates(x, ...)
## S3 method for class 'character'
list_duplicates(x, ...)
## S3 method for class 'tbl'
list_duplicates(x, ...)
## S3 method for class 'data.frame'
list_duplicates(x, ...)
```

12 litter

Arguments

```
x object of class character, tibble or data.frame)... further arguments passed to or from other methods.
```

Value

list of row numbers with duplicates

Methods (by class)

- list_duplicates(character): list duplicates for a character vector.
- list_duplicates(tbl): lists duplicates for a tibble.
- list_duplicates(data.frame): lists duplicates for a data.frame.

Examples

```
list_duplicates(c("a", "b", "c")) # list()
list_duplicates(c("a", "b", "a", "c")) # list(c(1, 3))
```

litter

Graphical User Interface to the litteR-package

Description

Starts a graphical user interface for analysing litter data. A Tcl/Tk-dialogue will be started if one or more arguments are missing.

Usage

```
litter(filename = NULL)
```

Arguments

filename

name of file containing settings (see vignette for details)

Details

For details, see our vignette by typing: vignette("litter-manual")

Value

directory name (invisibly) where all results are stored.

mann_kendall 13

mann_kendall

Mann Kendall

Description

Performs Mann-Kendall non-parametric test for trend.

Usage

```
mann_kendall(x, t = seq_along(x), type = c("both", "increasing", "decreasing"))
## S3 method for class 'mann_kendall'
test_statistic(x, ...)
## S3 method for class 'mann_kendall'
p_value(x, ...)
```

Arguments

x numeric vector representing a time-series.
 t time index (a numeric vector, or a vector of class Date).

type direction to test (both, increasing, or decreasing).... further arguments passed to or from other methods.

Value

object of class Mann-Kendall.

Methods (by generic)

- test_statistic(mann_kendall): Extracts Mann Kendall tau
- p_value(mann_kendall): Extract p-value

See Also

```
test_statistic, p_value, cor.test, regional_kendall
```

```
# create mann_kendall object
mk <- mann_kendall(c(9, 4, 7, 5, 3), type = "decreasing")
mk <- mann_kendall(
    x = c(9, 4, 7, 5, 3),
    t = c(1, 3, 2, 5, 9),
    type = "decreasing")</pre>
```

14 medcouple

```
# get test statistic tau
test_statistic(mk)

# get p-value
p_value(mk)
```

medcouple

Medcouple

Description

Robust statistic that quantifies the skewness of univariate distributions.

Usage

```
medcouple(x, ...)
## Default S3 method:
medcouple(x, ...)
```

Arguments

x numeric vector

... further arguments passed to or from other methods.

Value

medcouple (numeric vector of length 1).

Methods (by class)

• medcouple(default): default method

Note

This is a naive, but robust en simple implementation. For a more efficient implementation see package robustbase and the references section below.

References

Brys, G., M. Hubert, A. Struyf, 2004. A Robust Measure of Skewness. Journal of Computational and Graphical Statistics 13: 996-1017. doi:10.1198/106186004X12632.

p_value 15

p_value *p-value*

Description

Extract p-value.

Usage

```
p_value(x, ...)
```

Arguments

x object

... further arguments passed to or from other methods.

Value

p-value of a test (numeric vector of length 1).

read_litter

Read Litter Data

Description

Reads litter data from various formats. Currently only the OSPAR data snapshot format, and a wide format are supported. See the package vignette for more details.

Usage

```
read_litter(filename, logger = create_logger(level = "INFO"), type_names)
```

Arguments

filename name of litter file

logger optional logger object (see create_logger)
type_names character vector of allowed type_names

Value

tibble with litter data in long format

read_settings

read_litter_types

Read Type Names

Description

Read the file that links type names to group codes See the package vignette for more details.

Usage

```
read_litter_types(filename, logger = create_logger(level = "INFO"))
```

Arguments

filename

name of type file

logger

optional logger object (see create_logger)

Value

tibble with look-up-table of type names and group codes

read_settings

Read Settings File

Description

Reads settings file. See tutorial for its format.

Usage

```
read_settings(filename, logger = create_logger(level = "INFO"))
```

Arguments

filename

name of litter file

logger

optional logger object (see create_logger)

Value

validated settings file

recdf 17

recdf

Sample From an ECDF

Description

Type stable implementation of an Empirical Cumulative Distribution Function (ECDF) sampler.

Usage

```
recdf(x, n)
```

Arguments

```
x numeric vector
n number of draws
```

Value

vector of n elements of the same type as x

See Also

ecdf

Examples

```
recdf(1:5, 10)
```

regional_kendall

Regional Kendall Test for Trend

Description

Performs Regional Kendall non-parametric test for trend.

Usage

```
regional_kendall(
    x,
    t = seq_along(x),
    r = rep.int(1, length(x)),
    type = c("both", "increasing", "decreasing")
)
## S3 method for class 'regional_kendall'
test_statistic(x, ...)
```

18 rmad

```
## S3 method for class 'regional_kendall' p_value(x, ...)
```

Arguments

x observations
t time index
r region index

type direction to test (both, increasing, or decreasing).... further arguments passed to or from other methods.

Methods (by generic)

- test_statistic(regional_kendall): Extracts Regional Kendall Z
- p_value(regional_kendall): Extract Regional Kendall p-value

References

Gilbert, R.O., 1987. Statistical methods for environmental pollution monitoring.

See Also

```
mann_kendall
```

rmad

Relative Median Absolute Deviation

Description

This is the Median Absolute Deviation divided by the median and is similar to the coefficient of variation.

Usage

```
rmad(x, na.rm = FALSE)
```

Arguments

x a numeric vector

na.rm logical. Should missing values be removed?

Value

Relative median absolute deviation (numeric vector of length 1).

References

https://en.wikipedia.org/wiki/Median_absolute_deviation

roll 19

roll

Rolling Statistics

Description

Applies function fun within a rolling (moving) window of size w to vector numeric vector x.

Usage

```
roll(x, w = 3, fun = mean)
```

Arguments

x numeric vector (time-series)w width of moving windowfun function to be applied

Value

vector of length length(x)-w

sequenize

Sequenize Objects

Description

Generic function for sequenizing objects

Usage

```
sequenize(x, ...)
```

Arguments

x object to sequenize

... further arguments passed to or from other methods.

See Also

```
sequenize.integer
```

20 slope

sequenize.integer

Sequenize Integer Sequence

Description

Compression of integer sequences to 'start-end' notation. For instance c(1:5, 8:9) becomes "1-5, 8-9".

Usage

```
## S3 method for class 'integer'
sequenize(x, ...)
```

Arguments

x vector of integers.

... further arguments passed to or from other methods.

Value

object of class sequenized

Note

The elements of x should be unique and in ascending order.

Examples

```
sequenize(c(1:4, 8:9))
```

slope

Slope

Description

Extract slope.

Usage

```
slope(x, ...)
```

Arguments

x object

... further arguments passed to or from other methods.

stat_adj_boxplot 21

Value

estimate of the slope (numeric vector of length 1).

stat_adj_boxplot

Adjusted Boxplot Statistics for ggplot2

Description

Computes adjusted boxplot statistics to be used by ggplot2. See Hubert & Vandervieren (2008, p.5191, Eq.5).

Usage

```
stat_adj_boxplot()
stat_adj_boxplot_outlier()
```

Functions

• stat_adj_boxplot_outlier(): add outliers to adjusted boxplot

References

Hubert, M., and E. Vandervieren, 2008. An adjusted boxplot for skewed distributions. Computational Statistics and Data Analysis 52:5186-5201 doi:10.1016/j.csda.2007.11.008

See Also

```
adj_boxplot_stats, stat_adj_boxplot_outlier
```

```
library(ggplot2)

d <- data.frame(x = gl(2, 50), y = rnorm(100))
ggplot(data = d, mapping = aes(x = x, y = y)) +
    stat_adj_boxplot()</pre>
```

theil_sen

test_statistic

Test Statistic

Description

Extract test_statistic.

Usage

```
test_statistic(x, ...)
```

Arguments

x object

... further arguments passed to or from other methods.

Value

test statistic of a test (numeric vector of length 1).

See Also

```
test_statistic.wilcoxon, test_statistic.mann_kendall
```

theil_sen

Theil Sen Slope Estimator

Description

Theil Sen Slope Estimator

Usage

```
theil_sen(x, y, ...)
## S3 method for class 'theil_sen'
slope(x, ...)
## S3 method for class 'theil_sen'
intercept(x, ...)
```

Arguments

```
x time vector (numeric, or Date).
```

y numeric value.

. . . further arguments passed to or from other methods.

trimean 23

Value

```
object of class Theil_Sen.
```

Methods (by generic)

- slope(theil_sen): Extract slope.
- intercept(theil_sen): Extract intercept.

References

```
https://en.wikipedia.org/wiki/Theil-Sen_estimator
```

Examples

```
# create theil_sen object
ts <- theil_sen(1:5, c(1, 2, 3, 5, 9))
# get slope
slope(ts)
# get intercept
intercept(ts)</pre>
```

trimean

Tukey's Trimean

Description

Robust centrality measure estimated as the weighted average of the three quartiles: $(Q_1+2Q_2+Q_3)/4$, where Q_1,Q_2 and Q_3 are the first, second and third quartiles respectively.

Usage

```
trimean(x, ...)
## Default S3 method:
trimean(x, ...)
```

Arguments

x numeric vector

... further arguments passed to or from other methods.

Value

trimean (numeric value of length 1).

24 validate

Methods (by class)

• trimean(default): Tukey's trimean

References

```
https://en.wikipedia.org/wiki/Trimean
```

Examples

```
stopifnot(trimean(0:100) == mean(0:100))
stopifnot(trimean(0:100) == median(0:100))
```

validate

Validation of LitteR File Formats

Description

Generic function for validation of file formats.

Usage

```
validate(x, ...)
## S3 method for class 'litter'
validate(x, type_names, logger = create_logger(level = "INFO"), ...)
## S3 method for class 'litter_types'
validate(x, logger = create_logger(level = "INFO"), ...)
## S3 method for class 'settings'
validate(x, logger = create_logger(level = "INFO"), ...)
```

Arguments

```
    x object to validate
    ... further arguments passed to or from other methods.
    type_names character vector of permissible types
    logger optional logger object (see create_logger)
```

Value

```
validated object of class wide
validated object of class litter_types
validated settings (list)
```

wilcoxon 25

Methods (by class)

- validate(litter): validate litter data.
- validate(litter_types): validate litter_types file
- validate(settings): validate settings file

wilcoxon

Wilcoxon Test

Description

Constructor for a Wilcoxon test (simple wrapper for wilcox.test).

Usage

```
wilcoxon(x, type = c("both", "greater", "less"), mu = 0)
## S3 method for class 'wilcoxon'
test_statistic(x, ...)
## S3 method for class 'wilcoxon'
p_value(x, ...)
```

Arguments

```
    x numeric vector representing a time-series.
    type direction to test (both, increasing, or decreasing).
    mu baseline value (null hypothesis)
    ... further arguments passed to or from other methods.
```

Value

object of class wilcoxon.

Methods (by generic)

- test_statistic(wilcoxon): Extract test statistic V
- p_value(wilcoxon): Extract p-value

See Also

```
wilcox.test, p_value, test_statistic
```

26 wilcoxon

```
# create wilcoxon object
w <- wilcoxon(c(9, 4, 7, 5, 3), type = "less")
# get test statistic V
test_statistic(w)
# get p-value
p_value(w)</pre>
```

Index

adj_boxplot_stats, 4, 21	p_value.regional_kendall
character 12	(regional_kendall), 17
character, 12	<pre>p_value.wilcoxon(wilcoxon), 25</pre>
connection, 5	mand litter 15
cor.test, <i>13</i>	read_litter, 15
create_litter_project, 3, 5	read_litter_types, 16
create_logger, 5, 15, 16, 24	read_settings, 16
cv, 6	recdf, 17
	regional_kendall, 13, 17
data.frame, 12	rmad, 18
Date, <i>13</i>	roll, 19
ecdf, <i>17</i>	sequenize, 19
enumerate, 6	sequenize.integer, 8, 19, 20
enumerate.character, 7, 7	slope, 20
enumerate.sequenized,7	<pre>slope.theil_sen(theil_sen), 22</pre>
	stat_adj_boxplot, 4, 21
file.access, 8	<pre>stat_adj_boxplot_outlier, 21</pre>
	stat_adj_boxplot_outlier
has_write_access, 8	(stat_adj_boxplot), 21
	strptime, 9
intercept, 8	•
<pre>intercept.theil_sen(theil_sen), 22</pre>	test_statistic, <i>13</i> , 22, <i>25</i>
iod, 9	<pre>test_statistic.mann_kendall, 22</pre>
is_date_format, 9	<pre>test_statistic.mann_kendall</pre>
is_natural_number, 10	(mann_kendall), 13
	<pre>test_statistic.regional_kendall</pre>
kendall_s, 10	(regional_kendall), 17
kendall_var_s, <i>11</i> , 11	test_statistic.wilcoxon, 22
	test_statistic.wilcoxon(wilcoxon), 25
list, <i>12</i>	theil_sen, 22
list_duplicates, 11	tibble, 12
litteR (litteR-package), 3	trimean, 23
litter, <i>3</i> , 12	ti ilican, 25
litteR-package, 3	validate, 24
mann_kendall, 13, 18	wilcox.test, 25
medcouple, 14	wilcoxon, 25
p_value, <i>13</i> , 15, <i>25</i>	•
p_value, 73, 13, 23 p_value.mann_kendall(mann_kendall). 13	