MATEMATIKA

7. razred – osnovna šola

Jan Kastelic

Fakulteta za matematiko in fiziko, Univerza v Ljubljani

14. december 2023

Vsebina

Računanje z ulomki

2/19

Jan Kastelic (FMF) MATEMATIKA

Section 1

Računanje z ulomki

Jan Kastelic (FMF)

- 🚺 Računanje z ulomki
 - Ulomki z enakimi imenovalci
 - Seštevanje ulomkov
 - Odštevanje ulomkov
 - Množenje ulomka z naravnim številom
 - Množenje ulomka z ulomkom
 - Deljenje ulomka z naravnim številom
 - Deljenje ulomka z ulomkom
 - Številski izrazi
 - Naloge z besedilo
 - Izrazi s spremenljivkami
 - Enačbe in neenačbe

4/19

Ulomki z enakimi imenovalci

Ulomke z enakimi imenovalci **seštevamo** tako, da **seštejemo števce**, **imenovalce** pa **prepišemo**.

$$\frac{\mathbf{a}}{\mathbf{c}} + \frac{\mathbf{b}}{\mathbf{c}} = \frac{\mathbf{a} + \mathbf{b}}{\mathbf{c}},$$

pri pogoju, da $c \neq 0$.

Ulomke z enakimi imenovalci **odštevamo** tako, da **imenovalec prepišemo**, števec pa izračunamo tako, da **od števca prvega ulomka odštejemo števec drugega ulomka**.

$$\frac{\mathbf{a}}{\mathbf{c}} - \frac{\mathbf{b}}{\mathbf{c}} = \frac{\mathbf{a} - \mathbf{b}}{\mathbf{c}},$$

pri pogoju, da $a \le b$ in $c \ne 0$.

5/19

POMNI

Rezultat zapišemo s celim delom in delom manjšim od 1 ter ga okrajšamo.

6/19

Seštevanje ulomkov

Seštevanje ulomkov z različnimi imenovalci

Ulomke z različnimi imenovalci seštevamo tako, da jih najprej razširimo na skupni imenovalec, imenovalec prepišemo, števce pa seštejemo.

POMNI

Dobljeni rezultat zapišemo s celim delom in delom, manjšim od 1.

POMNI

Rezultat vedno zapišemo kot okrajšan ulomek.

7/19

Odštevanje ulomkov

Odštevanje ulomkov z različnimi imenovalci

Ulomke z **različnimi imenovalci odštevamo** tako, da jih najprej **razširimo na skupni imenovalec**, imenovalec prepišemo, od števca zmanjševanca (prvega ulomka) pa odštejemo števec odštevanca (drugega ulomka).

POMNI

Če moramo zaporedoma odšteti več odštevancev, odštevance seštejemo in nato odštejemo njihovo vsoto.

8 / 19

Množenje ulomka z naravnim številom

Ulomek množimo z naravnim številom tako, da števec pomnožimo z naravnim številom, imenovalec pa prepišemo.

$$\mathbf{n} \cdot \frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{n} \cdot \mathbf{a}}{\mathbf{b}},$$

pri pogoju, da $b \neq 0$.

POZOR

$$n \cdot \frac{a}{b} \neq n \frac{a}{b}$$

Jan Kastelic (FMF)

Množenje ulomka z ulomkom

Ulomek **množimo** z ulomkom tako, da **pomnožimo števec s števcem** in **imenovalec z imenovalcem**.

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d},$$

pri pogoju, da $b \neq 0, d \neq 0$.

PO70R

$$m\frac{a}{b} \cdot n\frac{c}{d} \neq m \cdot n\frac{a \cdot c}{b \cdot d}$$

POMNI

Rezultat naj bo vedno okrajšani ulomek. Če je mogoče, naj bo zapisan s celim delom in ulomkom, manjšim od 1.

10 / 19

11 / 19

Deljenje ulomka z naravnim številom

Ulomek delimo z naravnim številom na dva načina:

• števec ulomka delimo z naravnim številom:

$$\frac{\mathbf{a}}{\mathbf{b}}:\mathbf{n}=\frac{\mathbf{a}:\mathbf{n}}{\mathbf{b}};$$

imenovalec ulomka **pomnožimo** z naravnim številom:

$$\frac{\mathbf{a}}{\mathbf{b}} : \mathbf{n} = \frac{\mathbf{a}}{\mathbf{b} \cdot \mathbf{n}}.$$

POZOR

Drugi način je vedno mogoč, prvi pa le, če je števec ulomka deljiv z danim naravnim številom.

Deljenje ulomka z ulomkom

Obratni ulomek

Obratna ulomka sta ulomka, katerih produkt je enak 1.

$$\frac{a}{b} \cdot \frac{b}{a} = 1$$

Deljenje ulomkov

Ulomek delimo z drugim ulomkom tako, da ga pomnožimo z obratno vrednostjo drugega ulomka.

$$\frac{\mathbf{a}}{\mathbf{b}} : \frac{\mathbf{c}}{\mathbf{d}} = \frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{d}}{\mathbf{c}} = \frac{\mathbf{a} \cdot \mathbf{d}}{\mathbf{b} \cdot \mathbf{c}}$$

< ロ ト ◆ 個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q で

12 / 19

Številski izrazi

Vrstni red operacij

Pri številskih izrazih z oklepaji **izračunamo najprej računske operacije v oklepaju**. Vedno najprej v najbolj notranjem oklepaju.

Pri številskih izrazih brez oklepajev upoštevamo običajni vrstni red, po katerem množimo in delimo pred seštevanjem in odštevanjem.

◆□▶ ◆圖▶ ◆園▶ ◆園▶ ■ めの@

13 / 19

Naloge z besedilom

DOGOVOR

Vsaka naloga z besedilom zahteva tudi zapisan odgovor.

POMNI

operacija	rezultat
+ seštevanje	vsota
odštevanje	razlika
· množenje	produkt
: deljenje	kvocient

Izrazi s spremenljivkami

15 / 19

Enačbe in neenačbe

Reševanje enačb in neenačb

Besedilne naloge, ki vsebujejo neznane količine (enačbe ali neenačbe) rešujemo tako, da najprej **določimo neznanko**, nato **sklepamo**, nakar **rešimo nalogo** s preglednico, diagramom ali enačbo, na koncu **preverimo rezultat** in **zapišemo odgovor**.

16 / 19

Neenakost je izjavna oblika, v kateri nastopajo znaki <, >, \le ali \ge .

17 / 19

Neenakost je izjavna oblika, v kateri nastopajo znaki <, >, \le ali \ge .

<	manjše
>	večje
<	manjše ali enako
\geq	večje ali enako

17 / 19

Neenakost je izjavna oblika, v kateri nastopajo znaki <, >, \le ali \ge .

$$12.5 - 2 > 8$$

 $3 + 6 < 9$

<	manjše
>	večje
<u> </u>	manjše ali enako
>	večje ali enako

17 / 19

Neenakost je izjavna oblika, v kateri nastopajo znaki <, >, \le ali \ge .

$$12.5 - 2 > 8$$

 $3 + 6 < 9$

<	manjše
>	večje
<u> </u>	manjše ali enako
<u>></u>	večje ali enako

Neenačba je neenakost, v kateri nastopa neznanka.

Jan Kastelic (FMF)

Neenakost je izjavna oblika, v kateri nastopajo znaki <, >, \le ali \ge .

$$12.5 - 2 > 8$$

 $3 + 6 < 9$

<	manjše
>	večje
<u> </u>	manjše ali enako
<u>></u>	večje ali enako

Neenačba je neenakost, v kateri nastopa neznanka.

$$0.7 + x \ge 4$$

 $3 \cdot x + 5 < 17.6$

18 / 19

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

18 / 19

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

$$x-3\frac{1}{4}<9$$

$$\mathcal{R} = \{1, 2, 3, 4, 5\}$$

18 / 19

Enačbe in neenačbe

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

$$x-3rac{1}{4} < 9$$
 $\mathcal{R} = \{1,2,3,4,5\}$ $\mathcal{U} = \{2,3,4\}$ $x-3rac{1}{4} < 9$ $\mathcal{R} = \{2,3,4\}$

Jan Kastelic (FMF) MATEMATIKA 14. december 2023 18 / 19

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

$$x-3\frac{1}{4} < 9$$
 $\mathcal{R} = \{1, 2, 3, 4, 5\}$ $\mathcal{U} = \{2, 3, 4\}$ $x-3\frac{1}{4} < 9$ $\mathcal{R} = \{2, 3, 4\}$

Množica rešitev je odvisna od osnovne množice. Kadar v osnovni množici ni števila, ki reši enačbo ali neenačbo, je množica rešitev prazna. Kar zapišemo $\mathcal{R} = \emptyset$ ali $\mathcal{R} = \{\}$.

18 / 19

Rešitev neenačbe je vsako število, za katero dobimo iz izjavne oblike pravilno izjavo. Zapišemo množico rešitev, ki jo označimo z \mathcal{R} .

$$\begin{array}{c} x-3\frac{1}{4}<9 \\ \mathcal{R}=\{1,2,3,4,5\} \end{array} \qquad \begin{array}{c} \mathcal{U}=\{2,3,4\} \\ x-3\frac{1}{4}<9 \\ \mathcal{R}=\{2,3,4\} \end{array} \qquad \begin{array}{c} \mathcal{U}=\{10,11,12,13,14,15\} \\ x-3\frac{1}{4}<9 \\ \mathcal{R}=\{2,3,4\} \end{array}$$

Množica rešitev je odvisna od osnovne množice. Kadar v osnovni množici ni števila, ki reši enačbo ali neenačbo, je množica rešitev prazna. Kar zapišemo $\mathcal{R}=\emptyset$ ali $\mathcal{R}=\{\}$.

Reševanje neenačb s preglednico

19 / 19