EE341 Fall 2019 HW 2

Lewis Collum

Updated: September 25, 2019

github.com/LewisCollum/microelectronics

Problem 4.35

4.35 Use the iterative-analysis procedure to determine the diode current and voltage in the circuit of Fig. 4.10 for $V_{DD} = 1 \text{ V}$, $R = 1 \text{ k}\Omega$, and a diode having $I_S = 10^{-15} \text{ A}$.

Given:

```
import numpy
import pint
unit = pint.UnitRegistry()

R = 1 * unit.kohm
v = {'DD': 1 * unit.V}
i = {'S': 10e-15 * unit.A, 'D': []}
```

Algebraically solve for I_D :

$$\begin{split} V_{DD} &= I_D R + V_D \\ \text{So, } I_D &= \frac{V_{DD} - V_D}{R} \text{ (by KVL)}. \end{split}$$
 And, $I_D = I_S \cdot e^{V_D/V_T} \text{ (by diode characteristics)}$

Solve for V_D

From above,

$$\frac{V_{DD} - V_D}{R} = I_S \cdot e^{V_D/V_T}$$
$$a = 2$$

$$I_D = 0.014 \,\mathrm{A}$$

Iterative solution for V_D and I_D :

Assume $V_T = 25 \text{mV}$ (Thermal voltage at room temperature).

$$V_1 - V_0 = V_T \ln \frac{I_1}{I_0}$$

```
.title dual rc ladder
R1 int in 5k
V1 in 0 dc 0 ac 1 PULSE (0 10 1u 1u 1u 1 1)
R2 out int 1k
C1 int 0 10u
C2 out 0 100n
.control
ac dec 10 1 100k
set gnuplot_terminal=png/quit
gnuplot $file v(out)
.endc
.end
```

dual rc ladder

