# UNIVERSITY ADMIT ELIGIBILITY PREDICTOR PROJECT REPORT

**TEAM ID: PNT2022TMID53103** 

**Submitted by** 

Sahana N

Prasanna Hari

Pydipati Nikhitha

Shruti Susila Prasanna

SSN College of Engineering
NOV 2022

# **Contents**

### 1. INTRODUCTION

- 1.1Project Overview
- 1.2Purpose

### 2. LITERATURE

**SURVEY** 2.1Existing

problem 2.2References

2.3Problem Statement Definition

### 3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2Ideation & Brainstorming
- 3.3Proposed Solution
- 3.4Problem Solution fit

### 4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2Non-Functional requirements

### 5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical

Architecture 5.3User Stories

### 6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2Sprint Delivery Schedule
- 6.3Reports from JIRA

# 7. CODING & SOLUTIONING (Explain the features added in the project

# along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

### 8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing
- 9. RESULTS
  - 9.1 Performance Metrics
- 10.ADVANTAGES & DISADVANTAGES
- 11.CONCLUSION
- 12.FUTURE SCOPE
- 13.APPENDIX

Source Code

GitHub & Project Demo Link

### 1.Introduction

## **Project Overview**

University Admit Eligibility Predictor Students are often worried about their chances of admission to University. The aim of this project is to help students in shortlisting universities with their profiles. The predicted output gives them a fair idea about their admission chances in a particular university of a particular rank. This analysis should also help students who are currently preparing or will be preparing to get a better idea

### **Purpose**

The University Admission process can be quite a long and tedious process for anyone. There's multiple criteria and it is ever changing for multiple universities of different ranks. This web based application will take the input of multiple criterias to predict the chances of admission for the respective student.

2. Literature Survey

**Existing Problem** 

University admissions criteria are so vast and different for many universities.

How can we predict whether a student will get an admit or not? What are the

parameters for selection? Can it be mathematically expressed? This is the main

existing problem

References

1. "A Machine Learning Approach for Graduate Admission Prediction"

AUTHORS: Amal AlGhamdi, Amal Barsheed, Hanadi AlMshjary,

Hanan AlGhamdi

2. "Predicting Student University Admission Using Logistic

Regression" AUTHORS: Sharan Kumar Paratala Rajagopal

3. Applying A Hybrid Model Of Neural Network And Decision Tree Classifier

For Predicting University Admission

AUTHORS: Simon Fong, Yain-Whar Si, Robert P. Biuk-Aghai

 Design and Implementation of a Hybrid Recommender System for Predicting College Admission

AUTHORS: Abdul Hamid M. Ragab, Abdul Fatah S. Mashat, Ahmed M. Khedra

5. A Comparative Study on University Admission Predictions Using Machine Learning Techniques

AUTHORS : Prince Golden, Kasturi Mojesh, Lakshmi Madhavi Devarapalli, Pabbidi Naga Suba Reddy, Srigiri Rajesh, Ankita Chawla

6. Deep Learning in diverse Computing and Network ApplicationsStudent Admission Predictor using Deep Learning AUTHORS : P. Nandal

# **Problem Statement Definition**

| Problem | l am                               | I'm trying to                                                                             | But                                                                                                    | Because                                                                                            | Which makes me feel |
|---------|------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|
| PS-1    | A student                          | Get into the<br>university of<br>my choice                                                | I am not sure<br>whether I<br>will be<br>admitted                                                      | I lack<br>knowledge<br>regarding the<br>admission<br>process and<br>criteria                       | Anxious             |
| PS-2    | A teacher                          | Help my<br>students get<br>into the<br>university of<br>their choice                      | I am not sure<br>whether I am<br>doing my<br>best to<br>ensure their<br>admission                      | I need more<br>knowledge<br>regarding the<br>admission<br>process and<br>criteria to<br>guide them | Concerned           |
| PS-3    | a Career<br>consultancy<br>service | Guide<br>multiple<br>clients to get<br>admitted into<br>the university<br>of their choice | I cannot keep<br>up with the<br>changing<br>university<br>requirements<br>for multiple<br>universities | The university eligibility criteria keeps changing for many colleges every year                    | Overwhelmed         |

# Ideation Phase Empathize & Discover

| Date          | 19 September 2022                                |
|---------------|--------------------------------------------------|
| Team ID       | PNT2022TMID53103                                 |
| Project Name  | Project - University Admit Eligibility Predictor |
| Maximum Marks | 4 Marks                                          |

### **Empathy Map Canvas:**

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes.

It is a useful tool to help teams better understand their users.

Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.



Share your feedback

# **Empathy Map Canvas**

Gain insight and understanding on solving customer problems.



Build empathy and keep your focus on the user by putting yourself in their shoes.



# Ideation Phase Brainstorm & Idea Prioritization Template

| Date          | 19 September 2022                                |
|---------------|--------------------------------------------------|
| Team ID       | PNT2022TMID53103                                 |
| Project Name  | Project – University Admit Eligibility Predictor |
| Maximum Marks | 4 Marks                                          |

### **Brainstorm & Idea Prioritization Template:**

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Step-1: Team Gathering, Collaboration and Select the Problem Statement



### Step-2: Brainstorm, Idea Listing and Grouping



### **Brainstorm**

Write down any ideas that come to mind that address your problem statement.



You can select a sticky note and hit the pencil [switch to sketch] icon to start drawing!

### Shruti

### Web-based application using python flask,html,etc

The proposed solution should have good time complexity

User can upload their own realtime dataset for analyzing as a csv or excel file It examines user requirements and works in that direction

### Sahana

Preprocess the data and remove dirty data and replace missing values

Past college admission criteria are used to predict future admissions Equiped with latest ML and data science technologies

Chance of Admit of University Admission is displayed

A logistic

regression

model will be

applied for

analysis

### Prasanna

### Criteria of different university are checked at regular intervals

Evaluation

metrics of model

such as

accuracy,F1 score

etc should be

satisified

Crucial to maintain privacy and security in application

Feedback for improvement of Admission profile is given

### **Nikhitha**

Different test scores,grades and essays inputs are taken into consideration

User can get one time prediction without storing the data in the application

User friendly interface



### **Group ideas**

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.



### **Step-3: Idea Prioritization**



### **Prioritize**

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

① 20 minutes

Participants can use their cursors to point at where sticky notes should go on the grid. The facilitator can confirm the spot by using the laser pointer holding the H key on the keyboard.



# PROJECT DESIGN PHASE-I PROPOSED SOLUTION TEMPLATE

| Date          | 15 October 2022                                     |
|---------------|-----------------------------------------------------|
| Team ID       | PNT2022TMID53103                                    |
| Project Name  | Project - University Admit Eligibility<br>Predictor |
| Maximum Marks | 2 Marks                                             |

# **PROPOSED SOLUTION TEMPLATE:**

Project team shall fill the following information in the proposed solution template.

| <u>S.NO.</u> | <u>PARAMETER</u>                         | <u>DESCRIPTION</u>                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.           | Problem Statement (Problem to be solved) | University admissions is a very competitive field that is ever-changing. This causes students to worry a lot about their admissions. The aim of this project is to help students in shortlisting universities with their profiles. The predicted output gives them a fair idea about their admission chances in a particular university. The project helps students in search of colleges as well as those currently preparing. |
| 2.           | Idea / Solution description              | We collect several data points such as CGPA,SOP,LOR,GRE,TOEFL score etc.,. in order to examine the chances a student has to enter a given University. An updated database of different universities and their admit criteria is maintained in order to cross check and confirm the University Admit Eligibility.                                                                                                                |
| 3.           | Novelty / Uniqueness                     | University students find it difficult to get easy access to predictors and the accuracy of the predictions are often compromised. This model creates an accurate prediction regarding the eligibility of a given student in a university.                                                                                                                                                                                       |

| 4. | Social Impact / Customer<br>Satisfaction | Better interface for student satisfaction. Accurate results at good time complexity |
|----|------------------------------------------|-------------------------------------------------------------------------------------|
|    |                                          | Large database to ensure checks for different universities.                         |

|    |                                   | Better interaction between student and application                                                                                                                                                                                          |
|----|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. | Business Model (Revenue<br>Model) | The model serves as a revenue source to career consultancy services and schools aiming to have a large university turnover rate.  The easy and interactive UI makes it a selling point for all interested parties.                          |
| 6. | Scalability of the Solution       | The model can be expanded easily to include other data points based selectively on different regions and Universities.  Region specific data can be added to the database for eligibility checks to ensure worldwide usage of the solution. |

Team ID:

#### 3. TRIGGERS

What triggers customers to act? i.e. seeing their neighbour installing solar panels, reading about a more efficient solution in the news.

- Concern about future
- Peer pressure
- 3) Critical time period

### 4. EMOTIONS: BEFORE / AFTER

How do customers feel when they face a problem or a job and afterwards? i.e. lost, insecure > confident, in control - use it in your communication strategy & design.

Before: Anxious, Stressed, Concerned After: Relief, Confidence, Satisfaction

### **10. YOUR SOLUTION**

If you are working on an existing business, write down your current solution first, fill in the canvas, and check how much it fits reality.

If you are working on a new business proposition, then keep it blank until you fill in the canvas and come up with a solution that fits within customer limitations, solves a problem and matches customer behaviour.

A user -friendly application which uses latest ML models to predict the chance of admission with high accuracy and good time complexity

### 8. CHANNELS of BEHAVIOUR

#### 8.1 ONLINE

SL

What kind of actions do customers take online? Extract online channels from #7

### Upload data into the predictor

What kind of actions do customers take offline? Extract offline channels from #7 and use them for customer development.

Gathers data on their academic profile



**EM** 











# Project Design Phase-II Solution Requirements (Functional & Non-functional)

| Date          | 15 October 2022                                  |
|---------------|--------------------------------------------------|
| Team ID       | PNT2022TMID53103                                 |
| Project Name  | Project - University Admit Eligibility Predictor |
| Maximum Marks | 4 Marks                                          |

## **Functional Requirements:**

Following are the functional requirements of the proposed solution.

| FR No. | Functional<br>Requirement (Epic) | Sub Requirement (Story / Sub-Task)                              |
|--------|----------------------------------|-----------------------------------------------------------------|
| FR-1   | User Registration                | Registration through Form                                       |
|        |                                  | <ul> <li>Registration through Gmail</li> </ul>                  |
|        |                                  | <ul> <li>Registration through LinkedIN</li> </ul>               |
| FR-2   | User Confirmation                | <ul> <li>Confirmation via Email</li> </ul>                      |
|        |                                  | <ul><li>Confirmation via OTP</li></ul>                          |
| FR-3   | User Details                     | Submit the documents                                            |
|        |                                  | <ul> <li>GRE or/and TOEFL score sheet</li> </ul>                |
|        |                                  | <ul><li>Curriculum Vitae (CV)</li></ul>                         |
|        |                                  | <ul><li>Statement of Purpose (SoP)</li></ul>                    |
|        |                                  | <ul> <li>Letter of Recommendation</li> </ul>                    |
| FR-4   | User Requirements                | <ul> <li>Upload all the relevant documents in</li> </ul>        |
|        |                                  | the appropriate location in the website                         |
|        |                                  | <ul> <li>The list of all possible university for the</li> </ul> |
|        |                                  | candidate would be displayed based on                           |
|        |                                  | the information                                                 |

# **Non-functional Requirements:**

Following are the non-functional requirements of the proposed solution.

| FR No. | Non-Functional Requirement | Description                                                                                                                                                                                                 |
|--------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-1  | Usability                  | <ul> <li>The system doesn't expect any technical pre-requisite from the user i.e.; even the naive user can access it</li> <li>User friendly</li> <li>The UI would focus on recognize over recall</li> </ul> |
| NFR-2  | Security                   | <ul> <li>User with valid login credentials will<br/>be able to access the site</li> </ul>                                                                                                                   |

|       |              | <ul> <li>Under any error, the system should be<br/>able to come back to normal<br/>operation in under an hour</li> </ul>                                                                                                   |
|-------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-3 | Reliability  | <ul> <li>Model accuracy is high</li> <li>The system would always strive for<br/>maximum reliability due to the<br/>importance of data and damages<br/>that could be caused by incomplete<br/>and incorrect data</li> </ul> |
| NFR-4 | Performance  | <ul> <li>The website can efficiently handle the traffic by servicing the request as soon as possible</li> <li>The response time is low</li> </ul>                                                                          |
| NFR-5 | Availability | <ul> <li>Minimal data redundancy</li> <li>Fast and efficient</li> <li>The system will run 7 days a week,</li> <li>24 hours a day</li> </ul>                                                                                |
| NFR-6 | Scalability  | Works well under multiple requests                                                                                                                                                                                         |

# Project Design Phase-II Data Flow Diagram & User Stories

| Date          | 03 October 2022                                  |
|---------------|--------------------------------------------------|
| Team ID       | PNT2022TMID53103                                 |
| Project Name  | Project - University Admit Eligibility Predictor |
| Maximum Marks | 4 Marks                                          |

### **Data Flow Diagrams:**

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.



### **User Stories**

Use the below template to list all the user stories for the product.

| User Type                | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story / Task                                                                                         | Acceptance criteria                                       | Priority | Release  |
|--------------------------|-------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|----------|
| Student<br>(Mobile user) | Registration                        | USN-1                   | As a user, I can register for the application by entering my email, password, and confirming my password. | I can access my account / dashboard                       | High     | Sprint-1 |
|                          |                                     | USN-2                   | As a user, I will receive a confirmation email once I have registered for the application.                | I can receive<br>confirmation email<br>& click confirm    | High     | Sprint-1 |
|                          |                                     | USN-3                   | As a user, I can register for the application through Facebook.                                           | I can register & access the dashboard with Facebook Login | Low      | Sprint-2 |
|                          |                                     | USN-4                   | As a user, I can register for the application through Gmail.                                              | I can register & access the dashboard with Gmail login.   | Medium   | Sprint-1 |
|                          | Login                               | USN-5                   | As a user, I can log into the application by entering email & password.                                   | I can log into my account                                 | High     | Sprint-1 |
|                          | Dashboard                           | USN-6                   | On entering the page, I can see the homepage, logout option and student details.                          | I can view all components and select what is necessary.   | High     | Sprint-1 |
| Student<br>(Web user)    | Registration                        | USN-7                   | As a user, I can register on the website by entering my email, password, and confirming my password.      | I can access my<br>account /<br>dashboard                 | High     | Sprint-1 |
|                          | Login                               | USN-8                   | As a user, I can log into the website by entering email & password.                                       | I can log into my account                                 | High     | Sprint-1 |
| Administrator            | Overview                            | USN-9                   | As an admin, I can view all the searches for eligibility.                                                 | I can view all<br>searches done so<br>far.                | Medium   | Sprint-2 |
|                          | Editing                             | USN-10                  | As an admin, I can edit working and details of the universities.                                          | I can edit any component and working of the model.        | High     | Sprint-1 |

## Project Design Phase-II Technology Stack (Architecture & Stack)

| Date          | 18 October 2022                                  |
|---------------|--------------------------------------------------|
| Team ID       | PNT2022TMID53103                                 |
| Project Name  | Project - University Admit Eligibility Predictor |
| Maximum Marks | 4 Marks                                          |

### **Technical Architecture:**



Table – 1: Components & Technologies

| S.No | Component             | Description                                         | Technology    |
|------|-----------------------|-----------------------------------------------------|---------------|
| 1.   | User Interface        | User interacts with the application by using Web UI | HTML, CSS, JS |
| 2.   | Application Logic - 1 | Collecting input from user                          | Python        |

| 3. | Application Logic – 2     | Integrating front-end and back-end             | Flask                  |
|----|---------------------------|------------------------------------------------|------------------------|
| 4. | Application Logic – 3     | Training and testing of model                  | IBM Watson             |
| 5. | Cloud Database            | Database service on cloud                      | IBM DB2                |
| 6. | Machine Learning<br>Model | Predicting chance of admission into university | Logistic<br>Regression |

**Table - 2: Application Characteristics** 

| S.No | Characteristics           | Description                                  | Technology       |  |
|------|---------------------------|----------------------------------------------|------------------|--|
| 1.   | Open-Source<br>Frameworks | Flask is used in back-end                    | Python           |  |
| 2.   | Security Implications     | Http authentication                          | Flask Security   |  |
| 3.   | Scalable Architecture     | Works well under multiple requests           | IBM Watson       |  |
| 4.   | Availability              | Available all the time                       | IBM Watson       |  |
| 5.   | Performance               | Time required to predict chance of admission | Machine Learning |  |

# Project Design Phase-I Solution Architecture

| Date          | 17 October 2022                                 |
|---------------|-------------------------------------------------|
| Team ID       | PNT2022TMID53103                                |
| Project Name  | Project -University Admit Eligibility Predictor |
| Maximum Marks | 4 Marks                                         |

### **User View:**

- 1. User enters the academic details in the UI
- 2. Entered input is sent to the regression model deployed through IBM Watson
- 3. The model predicts the chance of admission and sends it to the UI
- 4. The predicted value is displayed at the frontend

### **Model View:**

- 1. The dataset is pre-processed for handling missing values/categorical values
- 2. Feature extraction is performed
- 3. The data is split into dependent and independent variables
- 4. The dataset is split as train and test set
- 5. A logistic regression model is built and is trained with the training data
- 6. The model is evaluated using the testing data
- 7. The trained model is deployed in IBM Watson



# Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

| Date          | 18 October 2022                                  |
|---------------|--------------------------------------------------|
| Team ID       | PNT2022TMID53103                                 |
| Project Name  | Project - University Admit Eligibility Predictor |
| Maximum Marks | 8 Marks                                          |

### **Product Backlog, Sprint Schedule, and Estimation (4 Marks)**

Use the below template to create product backlog and sprint schedule

| Sprint   | Functional Requirement (Epic) | User Story<br>Number | User Story / Task                                                               | Story Points | Priority | Team<br>Members                          |
|----------|-------------------------------|----------------------|---------------------------------------------------------------------------------|--------------|----------|------------------------------------------|
| Sprint-1 | Registration                  | USN-1                | As a user, I need to collect the data and design User Interface                 | 2            | High     | Sahana<br>Nikhitha                       |
| Sprint-1 |                               | USN-2                | As a user, I need to collect the data and design User Interface                 | 1            | High     | Prasanna<br>Shruti                       |
| Sprint-1 |                               | USN-3                | As a user , I need to collect the data and design User Interface                | 2            | Low      | Shruti<br>Nikhitha                       |
| Sprint-1 |                               | USN-4                | As a user, I need to collect the data and design User Interface                 | 3            | Medium   | Sahana<br>Prasanna                       |
| Sprint-2 | User Action                   | USN-5                | As a user, I can access dataset of multiple universities                        | 1            | High     | Sahana<br>Nikhitha<br>Shruti             |
| Sprint-2 | Model Building                | USN-6                | As a user I need the machine learning model to pre-process the data             | 3            | High     | Nikhitha<br>Prasanna                     |
| Sprint-3 | Model Training and<br>Testing | USN-7                | As a user ,I need the machine learning model to predict the chance of admission | 3            | High     | Sahana<br>Shruti                         |
| Sprint-3 | Model Training and Testing    | USN-8                | As a user ,I need the machine learning model to predict the chance of admission | 2            | Medium   | Prasanna<br>Sahana<br>Nikhitha<br>Shruti |
| Sprint-4 | Deployment                    | USN-9                | As a user, I need the application to be accessible all over the world           | 1            | Medium   | Shruti<br>Prasanna                       |

| Sprint   | Functional<br>Requirement (Epic) | User Story<br>Number | User Story / Task                                                     | Story Points | Priority | Team<br>Members    |
|----------|----------------------------------|----------------------|-----------------------------------------------------------------------|--------------|----------|--------------------|
| Sprint-4 | Deployment                       | USN-10               | As a user, I need the application to be accessible all over the world | 2            | Medium   | Nikhitha<br>Shruti |

### **Project Tracker, Velocity & Burndown Chart: (4 Marks)**

| Sprint   | Total<br>Story<br>Points | Duration | Sprint Start Date | Sprint End Date<br>(Planned) | Story Points<br>Completed (as on<br>Planned End Date) | Sprint Release Date<br>(Actual) |
|----------|--------------------------|----------|-------------------|------------------------------|-------------------------------------------------------|---------------------------------|
| Sprint-1 | 20                       | 6 Days   | 24 Oct 2022       | 29 Oct 2022                  | 20                                                    | 29 Oct 2022                     |
| Sprint-2 | 20                       | 6 Days   | 31 Oct 2022       | 05 Nov 2022                  | 20                                                    | 7 Nov 2022                      |
| Sprint-3 | 20                       | 6 Days   | 07 Nov 2022       | 12 Nov 2022                  | 20                                                    | 10 Nov 2022                     |
| Sprint-4 | 20                       | 6 Days   | 14 Nov 2022       | 19 Nov 2022                  | 20                                                    | 13 Nov 2022                     |

### **Velocity:**

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

### **Burndown Chart:**

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.



https://www.visual-paradigm.com/scrum/scrum-burndown-chart/https://www.atlassian.com/agile/tutorials/burndown-charts

### Reference:

https://www.atlassian.com/agile/project-management

https://www.atlassian.com/agile/tutorials/how-to-do-scrum-with-

jira-software https://www.atlassian.com/agile/tutorials/epics

https://www.atlassian.com/agile/tutorials/sprints

https://www.atlassian.com/agile/project-management/estimation

https://www.atlassian.com/agile/tutorials/burndown-charts

# Jira Files

### Road Map

| Sprin | ts                                           |       |  |
|-------|----------------------------------------------|-------|--|
| v 🛂   | IBM-1 Sprint 1                               |       |  |
|       | ☑ IBM-2 Collect data                         | TO DO |  |
|       | ☑ IBM-6 Design the user Interface            | TO DO |  |
| v 🛂   | IBM-3 Sprint 2                               |       |  |
|       | ✓ IBM-7 Dataset preprocessing                | TO DO |  |
|       | ☑ IBM-9 Initial model building               | TO DO |  |
| v 🛂   | IBM-4 Sprint 3                               |       |  |
|       | ✓ IBM-10 Model training and testing          | TO DO |  |
|       | ✓ IBM-11 Model building with logistical reg. | TO DO |  |
| v 🛂   | IBM-5 Sprint 4                               |       |  |
|       | ☑ IBM-12 Deployment of model onto IBM        | TO DO |  |
|       | ☑ IBM-13 Integrating model with python fl    | TO DO |  |

### **Burndown Chart:**

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.



### **BackLogs**





### 7. Coding & Solutioning

### 7.1 Feature 1

This feature will predict the chances of admission in the university. The feature was designed in the html code connected with app.py as the backend.

### chance.html

```
<!DOCTYPE html>
<html>
<title>University Admit Eligibility Predictor</title>
<link rel = "icon" href = "/static/img/Logo.jpg" type = "image/x-icon">
<body style=" background-image:url('/static/img/background 1.jpg');background-repeat:</pre>
no-repeat;background-attachment:fixed;background-size: 100% 100%;'
<div style="position:absolute;left:1300px">
<img src="/static/img/Logo.jpg" alt="Website Logo" style="width:40px;height:40px;">
</div>
<div style="position:absolute;top:20px;left:280px">
decoration:underline;color:#F6E9F9">
<strong>University Admit Eligibility Predictor</strong>
<div style="position:absolute;top:70px;left:200px">
style="font-family:serif;font-size:80px;text-align:center;text-
decoration:underline;color:#F6E9F9">
<i><strong>You have a good chance of admit!
Congratulations!</strong><br>{{content}}%</i>
</div>
</body>
</html>
```

### 7.2 Feature 2

This feature will predict the low chances of admission in the university. The feature was designed in the html code connected with app.py as the backend.

### nochance.html

```
<!DOCTYPE html>
<html>
<head>
<title>University Admit Eligibility Predictor</title>
kerel = "icon" href = "/static/img/Logo.jpg" type = "image/x-icon">
<body style=" background-image:url('/static/img/background 1.jpg');background-repeat:
no-repeat;background-attachment:fixed;background-size: 100% 100%;" >
<div style="position:absolute;left:1300px"></div
```

```
<img src="/static/img/Logo.jpg" alt="Website Logo" style="width:40px;height:40px;">
</div>
<div style="position:absolute;top:20px;left:280px">

<strong>University Admit Eligibility Predictor</strong>
<div style="position:absolute;top:70px;left:200px">

<i><strong>You do not have a good chance of admit!
Sorry!</strong><br/>(/p></div></body></html>
```

### app.py

```
from flask import Flask, render_template, redirect, url_for, request, jsonify
import requests
API_KEY = "_jEZ9faTKtRDlZDFHcrrAbuQFdvxbBeiu8W1D8-4z7ng"
token_response = requests.post('https://iam.cloud.ibm.com/identity/token',
data={"apikey": API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token_response.json()["access_token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
app = Flask(__name__)
@app.route("/")
def home():
    return render_template("Main Page.html")
@app.route("/Page 1",methods = ['POST','GET'])
def input():
    return render_template("Page 1.html")
@app.route("/", methods = ['POST','GET'])
def prediction():
    if request.method == 'POST':
        arr = []
        for i in ["GRE Score","TOEFL Score","University
Rating","SOP","LOR","CGPA","Research"]:
            val = request.form[i]
            if val == '':
                 return redirect(url_for("Page 1.html"))
             arr.append(float(val))
        #print(arr)
        # deepcode ignore HardcodedNonCryptoSecret: <please specify a reason of
ignoring this>
        payload_scoring = {
```

```
"input_data": [{"fields":[
                                         'GRE Score',
                                         'TOEFL Score',
                                         'University Rating',
                                         'SOP',
'LOR',
                                         'CGPA',
                                         'Research'],
                            "values": [arr]
                            }]
        response scoring = requests.post('https://us-
south.ml.cloud.ibm.com/ml/v4/deployments/ed4ff532-801c-457b-85b9-
ffa103d3a064/predictions?version=2022-11-18',
json=payload_scoring,headers=header).json()
        print(response_scoring)
        result = response scoring['predictions'][0]['values']
        print(result)
        if result[0][0] > 0.5:
            return redirect(url_for('chance', percent=result[0][0]*100))
        else:
            return redirect(url_for('no_chance', percent=result[0][0]*100))
    else:
        return redirect(url for("Page 1"))
@app.route("/chance/<percent>")
def chance(percent):
    return render_template("chance.html", content=[percent])
@app.route("/nochance/<percent>")
def no_chance(percent):
    return render template("noChance.html", content=[percent])
@app.route('/<path:path>')
def catch all(path):
    return render_template("Page 1.html")
if __name__ == "__main__":
   app.run()
```

### 7.3 Database Schema

The database used in this project was Admission\_Predict.csv. Sample screenshot of the database:



# 8. Testing

### 8.1 Test Cases

report shows the number of test cases that have passed, failed, and untested

| Section             | Total<br>Cases | Not<br>Tested | F<br>ai<br>I | Pa<br>ss |
|---------------------|----------------|---------------|--------------|----------|
| Print Engine        | 10             | 0             | 0            | 10       |
| Client Application  | 50             | 0             | 0            | 50       |
| Model Connection    | 2              | 0             | 0            | 2        |
| Validity Reporting  | 10             | 0             | 0            | 10       |
| Exception Reporting | 10             | 0             | 0            | 10       |
| Final Report Output | 4              | 0             | 0            | 4        |
| Version Control     | 2              | 0             | 0            | 2        |

### 8.2 User Acceptance Testing

# 1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the University Admit Eligibility Predictor project at the time of the release to User Acceptance Testing (UAT).

# 2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

| Resolution     | Severit<br>y 1 | Severity 2 | Severity<br>3 | Severity<br>4 | Subtotal |
|----------------|----------------|------------|---------------|---------------|----------|
| By Design      | 12             | 3          | 1             | 4             | 20       |
| Duplicate      | 1              | 1          | 2             | 0             | 4        |
| External       | 2              | 3          | 0             | 1             | 6        |
| Fixed          | 15             | 3          | 2             | 17            | 37       |
| Not Reproduced | 1              | 0          | 0             | 0             | 1        |
| Skipped        | 0              | 0          | 1             | 1             | 2        |
| Won't Fix      | 0              | 4          | 3             | 1             | 8        |
| Totals         | 31             | 14         | 9             | 24            | 7<br>7   |

# 3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

| Section             | Total<br>Cases | Not<br>Tested | F<br>ai<br>I | Pa<br>ss |
|---------------------|----------------|---------------|--------------|----------|
| Print Engine        | 10             | 0             | 0            | 10       |
| Client Application  | 50             | 0             | 0            | 50       |
| Model Connection    | 2              | 0             | 0            | 2        |
| Validity Reporting  | 10             | 0             | 0            | 10       |
| Exception Reporting | 10             | 0             | 0            | 10       |

| Final Report Output | 4 | 0 | 0 | 4 |
|---------------------|---|---|---|---|
| Version Control     | 2 | 0 | 0 | 2 |

### 9. Results

### 9.1 Performance Metrics

### **Model Performance Testing:**

Project team shall fill the following information in model performance testing template.

| S.No. | Parameter              | Screenshot / Values                                     |
|-------|------------------------|---------------------------------------------------------|
| 1.    | Dashboard design       | No of Visulizations / Graphs - 9                        |
| 2.    | Data Responsiveness    | Given data has been checked for responsiveness 15 times |
|       |                        | and all data validation testing has been done           |
| 3.    | Amount Data to         | 9 data points                                           |
|       | Rendered (DB2 Metrics) |                                                         |
| 4.    | Utilization of Data    | Data preprocessing has been done                        |
|       | Filters                | 6 data filters have been used                           |
| 5.    | Effective User Story   | No of Scene Added - 10                                  |
| 6.    | Descriptive Reports    | No of Visulizations / Graphs - 8                        |

# 10.Advantages and Disadvantages

### **ADVANTAGES:**

- User Friendly The UI of the application is highly user friendly and the navigation in the website is smooth.
- Fast Results The response time of the application is negligible and makes the whole plasma donation process hassle-free.

- Speed This website is fast and offers great accuracy as compared to manual registered keeping.
- Maintenance This website runs with relatively low maintenance under IBM Cloud.

#### **DISADVANTAGES:**

- Vulnerable This application is vulnerable to the downtime of IBM Cloud and Database.
- Fake Information This application cannot distinguish fake information.
- Auto Verification This application does not have the facility of auto verifying genuine users.
- Internet The working of the application requires an established internet connection.

#### 11.Conclusion

An efficient and user-friendly way of predicting the chance of admission is implemented using the University Admit Eligibility Predictor website deployed on the IBM Cloud Platform.

To ensure smooth functioning of the website operation, it has been deployed on IBM Watson & User Interface is designed using Flask.

Machine Learning model is used to predict the Chance of admission.

## 12.Future Scope

Upgrading to a smoother user interface helps users understand how our website works. It will definitely help more users predict their chances of admission.

Using an Elastic Load Balancer can also help you handle excessive numbers of concurrent users and keep your website available with negligible downtime.

## 13.Appendix

#### Source code:

## **UniversityAdmitPredictor.ipynb**

```
##Importing necessary header files
                                                                                In [118]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
                                                                                In [119]:
#Data Reading and analysis
                                                                                In [120]:
import os, types
import pandas as pd
from botocore.client import Config
import ibm boto3
def iter (self): return 0
# @hidden cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes
your credentials.
# You might want to remove those credentials before you share the notebook.
cos client = ibm boto3.client(service name='s3',
    ibm_api_key_id='V_5EQADphmCBJ_7pZlCDNapB1MvUskv-Sfnoo0-SRpgG',
    ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
    config=Config(signature version='oauth'),
    endpoint url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'uniadmit-donotdelete-pr-6xc3ejhu53roqc'
object key = 'Admission Predict.csv'
body = cos client.get object(Bucket=bucket, Key=object key)['Body']
# add missing __iter__ method, so pandas accepts body as file-like object
if not hasattr(body, " iter "): body. iter = types.MethodType( iter , body
data = pd.read csv(body)
data.head()
                                                                               Out[120]:
  Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit
        1
                337
                                               4.5
                                                    4.5
                                                          9.65
                                                                    1
                                                                                0.92
0
                            118
        2
1
                324
                            107
                                               4.0
                                                     4.5
                                                          8.87
                                                                     1
                                                                                0.76
```

|         | Serial No.                                                           | GRE Sco     | ore TO       | EFL Score  | Univer              | sity Ra | ting           | SOP | LOR     | CGPA      | Research  | Chan    | ace of Admit    |
|---------|----------------------------------------------------------------------|-------------|--------------|------------|---------------------|---------|----------------|-----|---------|-----------|-----------|---------|-----------------|
| 2       | 3                                                                    | 3           | 316          | 104        |                     |         | 3              | 3.0 | 3.5     | 8.00      | 1         |         | 0.72            |
| 3       | 4                                                                    | 3           | 322          | 110        |                     |         | 3              | 3.5 | 2.5     | 8.67      | 1         |         | 0.80            |
| 4       | 5                                                                    | 3           | 314          | 103        |                     |         | 2              | 2.0 | 3.0     | 8.21      | 0         |         | 0.65            |
| da+     | <pre>In [121]: data.drop(["Serial No."], axis=1, inplace=True)</pre> |             |              |            |                     |         |                |     |         | In [121]: |           |         |                 |
|         |                                                                      |             | ai NO.       | ], axis    | <b>-</b> 1, 11      | гртас   | e <b>-</b> 110 | ie) |         |           |           |         | In [122]:       |
| dat     | a.head(                                                              | )           |              |            |                     |         |                |     |         |           |           |         | Out[122]:       |
|         | GRE Score                                                            | TOEFI       | Score        | University | Rating              | SOP     | LOR            | CG  | PA I    | Research  | Chance of | Admit   |                 |
| 0       | 337                                                                  |             | 118          |            | 4                   | 4.5     | 4.5            | 9   | 0.65    | 1         |           | 0.92    |                 |
| 1       | 324                                                                  |             | 107          |            | 4                   | 4.0     | 4.5            | 8   | 3.87    | 1         |           | 0.76    |                 |
| 2       | 316                                                                  |             | 104          |            | 3                   | 3.0     | 3.5            | 8   | 3.00    | 1         |           | 0.72    |                 |
| 3       | 322                                                                  |             | 110          |            | 3                   | 3.5     | 2.5            | 8   | 3.67    | 1         |           | 0.80    |                 |
| 4       | 314                                                                  |             | 103          |            | 2                   | 2.0     | 3.0            | 8   | 3.21    | 0         |           | 0.65    |                 |
| -1 - +- | - 1                                                                  |             |              |            |                     |         |                |     |         |           |           |         | In [123]:       |
| aat     | a.descr                                                              | ibe()       |              |            |                     |         |                |     |         |           |           |         | Out[123]:       |
|         |                                                                      | GRE<br>core | TOEF<br>Scor |            | niversity<br>Rating |         | SOP            |     | LOR     | CG        | PA R      | esearch | Chance of Admit |
| cour    | at 400.000                                                           | 0000 4      | 100.00000    | 0 400      | 0.000000            | 400.0   | 000000         | 400 | .000000 | 400.000   | 000 400.  | 000000  | 400.000000      |
| mea     | n 316.80°                                                            | 7500        | 107.41000    | 0 3        | 3.087500            | 3.4     | 400000         | 3   | .452500 | 8.598     | 925 0.    | 547500  | 0.724350        |
| st      | <b>d</b> 11.473                                                      | 3646        | 6.06951      | 4 1        | .143728             | 1.0     | 006869         | 0   | .898478 | 0.596     | 317 0.    | 498362  | 0.142609        |
| mi      | n 290.000                                                            | 0000        | 92.00000     | 0 1        | .000000             | 1.0     | 000000         | 1   | .000000 | 6.800     | 000 0.    | 000000  | 0.340000        |
| 25%     | <b>6</b> 308.000                                                     | 0000        | 103.00000    | 0 2        | 2.000000            | 2.:     | 500000         | 3   | .000000 | 8.170     | 000 0.    | 000000  | 0.640000        |

|                                                                         | GRE<br>Score                                                                                         | TOEFL<br>Score            | University<br>Rating                                                                                                   | SOP                                                     | LOR      | CGPA     | Research | Chance of<br>Admit |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|----------|----------|--------------------|
| 50%                                                                     | 317.000000                                                                                           | 107.000000                | 3.000000                                                                                                               | 3.500000                                                | 3.500000 | 8.610000 | 1.000000 | 0.730000           |
| 75%                                                                     | 325.000000                                                                                           | 112.000000                | 4.000000                                                                                                               | 4.000000                                                | 4.000000 | 9.062500 | 1.000000 | 0.830000           |
| max                                                                     | 340.000000                                                                                           | 120.000000                | 5.000000                                                                                                               | 5.000000                                                | 5.000000 | 9.920000 | 1.000000 | 0.970000           |
| Range<br>Data<br>#<br><br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>dtype | info() eIndex: 400 columns (t Column GRE Score TOEFL Scor University SOP LOR CGPA Research Chance of | e Rating  Admit (4), inte | Non-Null Count 400 non-null | Dtype int64 int64 int64 float64 float64 float64 float64 |          |          |          | In [124]:          |
|                                                                         | ry usage: 2                                                                                          |                           |                                                                                                                        |                                                         |          |          |          | In [125]:          |
|                                                                         | isnull().s.                                                                                          | um()                      |                                                                                                                        |                                                         |          |          |          | Out[125]:          |
| Unive<br>SOP<br>LOR<br>CGPA<br>Resea                                    | Score ersity Rati                                                                                    | 0<br>0<br>0               |                                                                                                                        |                                                         |          |          |          |                    |
| plt.s<br>plt.t<br>plt.x                                                 | e: int64 scatter(dat title('CGPA klabel('GRE ylabel('CGP                                             | vs GRE S<br>Score')       | core'],data['CG<br>Score')                                                                                             | PA'])                                                   |          |          |          | In [126]:          |
| plt.t<br>plt.x<br>plt.y                                                 | scatter(dat<br>zitle('SOP<br>klabel('CGP<br>ylabel('SOP<br>Bhow()                                    | for CGPA'<br>A')          | ,data['SOP'])<br>')                                                                                                    |                                                         |          |          |          | In [127]:          |

```
data[data.CGPA >= 8.5].plot(kind='scatter', x='GRE Score', y='TOEFL
Score',color="BLUE")
plt.xlabel("GRE Score")
plt.ylabel("TOEFL SCORE")
plt.title("CGPA>=8.5")
plt.grid(True)
plt.show()
                                                                                In [129]:
data["GRE Score"].plot(kind = 'hist',bins = 200,figsize = (6,6))
plt.title("GRE Scores")
plt.xlabel("GRE Score")
plt.ylabel("Frequency")
plt.show()
                                                                                In [130]:
p = np.array([data["TOEFL Score"].min(),data["TOEFL Score"].mean(),data["TOEFL
Score"].max()])
r = ["Worst", "Average", "Best"]
plt.bar(p,r)
plt.title("TOEFL Scores")
plt.xlabel("Level")
plt.ylabel("TOEFL Score")
plt.show()
                                                                                In [131]:
g = np.array([data["GRE Score"].min(),data["GRE Score"].mean(),data["GRE
Score"].max()])
h = ["Worst", "Average", "Best"]
plt.bar(g,h)
plt.title("GRE Scores")
plt.xlabel("Level")
plt.ylabel("GRE Score")
plt.show()
                                                                                In [132]:
plt.figure(figsize=(10, 10))
sns.heatmap(data.corr(), annot=True, linewidths=0.05, fmt= '.2f',cmap="magma")
plt.show()
                                                                                 In [133]:
data.Research.value_counts()
sns.countplot(x="University Rating", data=data)
                                                                                Out[133]:
```

```
In [134]:
sns.barplot(x="University Rating", y="Chance of Admit ", data=data)
                                                                                     Out[134]:
                                                                                      In [135]:
#Train-test split
                                                                                      In [136]:
X=data.drop(['Chance of Admit '],axis=1) #input data set
y=data['Chance of Admit '] #output labels
                                                                                      In [137]:
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=0.15)
                                                                                      In [138]:
#Modelling and training
                                                                                      In [139]:
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
X train[X train.columns] = scaler.fit transform(X train[X train.columns])
X_test[X_test.columns] = scaler.transform(X_test[X_test.columns])
X train.head()
                                                                                     Out[139]:
    GRE Score TOEFL Score University Rating
                                          SOP
                                              LOR
                                                       CGPA Research
114
         0.42
                  0.464286
                                    0.50
                                         0.625
                                                0.500
                                                     0.461255
                                                                   1.0
171
         0.88
                  0.892857
                                     1.00
                                         0.750
                                               0.875
                                                     0.690037
                                                                   1.0
322
         0.48
                  0.535714
                                    0.25
                                         0.375
                                               0.750
                                                     0.394834
                                                                   0.0
291
                                    0.25
                                                     0.247232
         0.20
                  0.357143
                                               0.250
                                                                   0.0
                                         0.125
                                    0.75 0.750 0.625
         0.98
                  0.857143
                                                    0.959410
                                                                   1.0
148
                                                                                      In [140]:
from sklearn.ensemble import GradientBoostingRegressor
rgr = GradientBoostingRegressor()
rgr.fit(X train,y train)
                                                                                     Out[140]:
GradientBoostingRegressor()
                                                                                      In [141]:
rgr.score(X_test,y_test)
                                                                                     Out[141]:
0.6734968747397405
                                                                                      In [142]:
y_predict=rgr.predict(X_test)
                                                                                      In [143]:
from sklearn.metrics import mean_squared_error, r2_score,mean_absolute_error
import numpy as np
print('Mean Absolute Error:', mean absolute error(y test, y predict))
```

```
print('Root Mean Squared Error:', np.sqrt(mean squared error(y test, y predict)))
Mean Absolute Error: 0.06339105941564477
Mean Squared Error: 0.007488349177844049
Root Mean Squared Error: 0.08653524818155922
                                                                               In [144]:
y train = (y train>0.5)
y \text{ test} = (y \text{ test} > 0.5)
                                                                               In [145]:
from sklearn.linear model. logistic import LogisticRegression
lore = LogisticRegression(random state=0, max iter=1000)
lr = lore.fit(X_train, y_train)
                                                                               In [146]:
y pred = lr.predict(X test)
                                                                               In [147]:
#Performance Metrics
                                                                               In [148]:
from sklearn.metrics import accuracy score, recall score, roc auc score,
confusion matrix
print('Accuracy Score:', accuracy_score(y_test, y_pred))
print('Recall Score:', recall_score(y_test, y_pred))
print('ROC AUC Score:', roc_auc_score(y_test, y_pred))
print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred))
Accuracy Score: 0.85
Recall Score: 1.0
ROC AUC Score: 0.5
Confusion Matrix:
[[ 0 9]
 [ 0 51]]
                                                                               In [149]:
#IBM Deployment
                                                                               In [150]:
!pip install -U ibm-watson-machine-learning
Requirement already satisfied: ibm-watson-machine-learning in /opt/conda/envs/Pytho
n-3.9/lib/python3.9/site-packages (1.0.257)
Requirement already satisfied: importlib-metadata in /opt/conda/envs/Python-3.9/lib
/python3.9/site-packages (from ibm-watson-machine-learning) (4.8.2)
Requirement already satisfied: lomond in /opt/conda/envs/Python-3.9/lib/python3.9/s
ite-packages (from ibm-watson-machine-learning) (0.3.3)
Requirement already satisfied: packaging in /opt/conda/envs/Python-3.9/lib/python3.
9/site-packages (from ibm-watson-machine-learning) (21.3)
Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/
site-packages (from ibm-watson-machine-learning) (1.26.7)
Requirement already satisfied: pandas<1.5.0,>=0.24.2 in /opt/conda/envs/Python-3.9/
lib/python3.9/site-packages (from ibm-watson-machine-learning) (1.3.4)
Requirement already satisfied: ibm-cos-sdk==2.11.* in /opt/conda/envs/Python-3.9/li
b/python3.9/site-packages (from ibm-watson-machine-learning) (2.11.0)
Requirement already satisfied: certifi in /opt/conda/envs/Python-3.9/lib/python3.9/
site-packages (from ibm-watson-machine-learning) (2022.9.24)
Requirement already satisfied: requests in /opt/conda/envs/Python-3.9/lib/python3.9
/site-packages (from ibm-watson-machine-learning) (2.26.0)
Requirement already satisfied: tabulate in /opt/conda/envs/Python-3.9/lib/python3.9
/site-packages (from ibm-watson-machine-learning) (0.8.9)
```

print('Mean Squared Error:', mean squared error(y test, y predict))

```
Requirement already satisfied: ibm-cos-sdk-s3transfer==2.11.0 in /opt/conda/envs/Py
thon-3.9/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm-watson-machine-
learning) (2.11.0)
Requirement already satisfied: ibm-cos-sdk-core==2.11.0 in /opt/conda/envs/Python-3
.9/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm-watson-machine-learni
ng) (2.11.0)
Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /opt/conda/envs/Python-3.9
/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm-watson-machine-learning
Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /opt/conda/envs/Pytho
n-3.9/lib/python3.9/site-packages (from ibm-cos-sdk-core==2.11.0->ibm-cos-sdk==2.11
.*->ibm-watson-machine-learning) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /opt/conda/envs/Python-3.9/lib/pytho
n3.9/site-packages (from pandas<1.5.0,>=0.24.2->ibm-watson-machine-learning) (2021.
Requirement already satisfied: numpy>=1.17.3 in /opt/conda/envs/Python-3.9/lib/pyth
on 3.9/\text{site-packages} (from pandas <1.5.0, >=0.24.2 > ibm-watson-machine-learning) (1.20)
Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-3.9/lib/python3.9
/site-packages (from python-dateutil<3.0.0,>=2.1->ibm-cos-sdk-core==2.11.0->ibm-cos
-sdk==2.11.*->ibm-watson-machine-learning) (1.15.0)
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/Python-3.9/lib/pytho
n3.9/site-packages (from requests->ibm-watson-machine-learning) (3.3)
Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/envs/Python-
3.9/lib/python3.9/site-packages (from requests->ibm-watson-machine-learning) (2.0.4
Requirement already satisfied: zipp>=0.5 in /opt/conda/envs/Python-3.9/lib/python3.
9/site-packages (from importlib-metadata->ibm-watson-machine-learning) (3.6.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/envs/Python-3
.9/lib/python3.9/site-packages (from packaging->ibm-watson-machine-learning) (3.0.4
                                                                               In [151]:
from ibm watson machine learning import APIClient
import json
                                                                               In [152]:
#Authenticate and set space
                                                                               In [153]:
wml credentials = {
    "apikey":" jEZ9faTKtRDlZDFHcrrAbuQFdvxbBeiu8W1D8-4z7ng",
    "url": "https://us-south.ml.cloud.ibm.com"
                                                                               In [154]:
wml client = APIClient(wml credentials)
                                                                               In [155]:
wml client.spaces.list()
Note: 'limit' is not provided. Only first 50 records will be displayed if the numbe
r of records exceed 50
                                      NAME
                                                            CREATED
85ccaf78-6115-4614-b3ad-9b389883e43d UniversityPredictor 2022-11-18T08:48:38.039Z
                                                                               In [156]:
SPACE ID= "85ccaf78-6115-4614-b3ad-9b389883e43d"
                                                                               In [157]:
wml client.set.default space(SPACE ID)
```

Out[157]:

# wml\_client.software\_specifications.list(100)

| NAME                                       | ASSET ID                             | TYPE |
|--------------------------------------------|--------------------------------------|------|
| default py3.6                              | 0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 | base |
| kernel-spark3.2-scala2.12                  | 020d69ce-7ac1-5e68-ac1a-31189867356a | base |
| pytorch-onnx 1.3-py3.7-edt                 | 069ea134-3346-5748-b513-49120e15d288 | base |
| scikit-learn 0.20-py3.6                    | 09c5a1d0-9c1e-4473-a344-eb7b665ff687 | base |
| spark-mllib 3.0-scala 2.12                 | 09f4cff0-90a7-5899-b9ed-1ef348aebdee | base |
| pytorch-onnx rt22.1-py3.9                  | 0b848dd4-e681-5599-be41-b5f6fccc6471 | base |
| ai-function 0.1-py3.6                      | 0cdb0f1e-5376-4f4d-92dd-da3b69aa9bda | base |
| shiny-r3.6                                 | 0e6e79df-875e-4f24-8ae9-62dcc2148306 | base |
| tensorflow 2.4-py3.7-horovod               | 1092590a-307d-563d-9b62-4eb7d64b3f22 | base |
| pytorch 1.1-py3.6                          | 10ac12d6-6b30-4ccd-8392-3e922c096a92 | base |
| tensorflow 1.15-py3.6-ddl                  | 111e41b3-de2d-5422-a4d6-bf776828c4b7 | base |
| autoai-kb rt22.2-py3.10                    | 125b6d9a-5b1f-5e8d-972a-b251688ccf40 | base |
| runtime-22.1-py3.9                         | 12b83a17-24d8-5082-900f-0ab31fbfd3cb | base |
| scikit-learn 0.22-py3.6                    | 154010fa-5b3b-4ac1-82af-4d5ee5abbc85 | base |
| default r3.6                               | 1b70aec3-ab34-4b87-8aa0-a4a3c8296a36 | base |
| pytorch-onnx 1.3-py3.6                     | 1bc6029a-cc97-56da-b8e0-39c3880dbbe7 | base |
| kernel-spark3.3-r3.6                       | 1c9e5454-f216-59dd-a20e-474a5cdf5988 | base |
| pytorch-onnx rt22.1-py3.9-edt              | 1d362186-7ad5-5b59-8b6c-9d0880bde37f | base |
| tensorflow 2.1-py3.6                       | 1eb25b84-d6ed-5dde-b6a5-3fbdf1665666 | base |
| spark-mllib 3.2                            | 20047f72-0a98-58c7-9ff5-a77b012eb8f5 | base |
| tensorflow 2.4-py3.8-horovod               | 217c16f6-178f-56bf-824a-b19f20564c49 | base |
| runtime-22.1-py3.9-cuda                    | 26215f05-08c3-5a41-a1b0-da66306ce658 | base |
| do py3.8                                   | 295addb5-9ef9-547e-9bf4-92ae3563e720 | base |
| autoai-ts 3.8-py3.8                        | 2aa0c932-798f-5ae9-abd6-15e0c2402fb5 | base |
| tensorflow 1.15-py3.6                      | 2b73a275-7cbf-420b-a912-eae7f436e0bc | base |
| kernel-spark3.3-py3.9                      | 2b7961e2-e3b1-5a8c-a491-482c8368839a | base |
| pytorch 1.2-py3.6                          | 2c8ef57d-2687-4b7d-acce-01f94976dac1 | base |
| spark-mllib 2.3                            | 2e51f700-bca0-4b0d-88dc-5c6791338875 | base |
| pytorch-onnx 1.1-py3.6-edt                 | 32983cea-3f32-4400-8965-dde874a8d67e | base |
| spark-mllib 3.0-py37                       | 36507ebe-8770-55ba-ab2a-eafe787600e9 | base |
| spark-milib_3.0 py37 spark-milib 2.4       | 390d21f8-e58b-4fac-9c55-d7ceda621326 | base |
| autoai-ts rt22.2-py3.10                    | 396b2e83-0953-5b86-9a55-7ce1628a406f | base |
| xgboost 0.82-py3.6                         | 39e31acd-5f30-41dc-ae44-60233c80306e | base |
| pytorch-onnx 1.2-py3.6-edt                 | 40589d0e-7019-4e28-8daa-fb03b6f4fe12 | base |
| pytorch-onnx rt22.2-py3.10                 | 40e73f55-783a-5535-b3fa-0c8b94291431 | base |
| default r36py38                            | 41c247d3-45f8-5a71-b065-8580229facf0 | base |
| autoai-ts rt22.1-py3.9                     | 4269d26e-07ba-5d40-8f66-2d495b0c71f7 | base |
| autoai-obm 3.0                             | 42b92e18-d9ab-567f-988a-4240ba1ed5f7 | base |
| pmm1-3.0 4.3                               | 493bcb95-16f1-5bc5-bee8-81b8af80e9c7 | base |
| spark-mllib 2.4-r 3.6                      | 49403dff-92e9-4c87-a3d7-a42d0021c095 | base |
| xgboost 0.90-py3.6                         | 4ff8d6c2-1343-4c18-85e1-689c965304d3 | base |
| pytorch-onnx 1.1-py3.6                     | 50f95b2a-bc16-43bb-bc94-b0bed208c60b | base |
| autoai-ts 3.9-py3.8                        | 52c57136-80fa-572e-8728-a5e7cbb42cde | base |
| spark-mllib 2.4-scala 2.11                 | 55a70f99-7320-4be5-9fb9-9edb5a443af5 | base |
| spark-milib_2.4-scala_2.11 spark-mllib 3.0 | 5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9 | base |
| <del>-</del>                               | 5c2e37fa-80b8-5e77-840f-d912469614ee | base |
| autoai-obm_2.0                             |                                      |      |
| spss-modeler_18.1                          | 5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b | base |
| cuda-py3.8                                 | 5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e | base |
| runtime-22.2-py3.10-xc                     | 5e8cddff-db4a-5a6a-b8aa-2d4af9864dab | base |
| autoai-kb_3.1-py3.7                        | 632d4b22-10aa-5180-88f0-f52dfb6444d7 | base |
| pytorch-onnx_1.7-py3.8                     | 634d3cdc-b562-5bf9-a2d4-ea90a478456b | base |
| spark-mllib_2.3-r_3.6                      | 6586b9e3-ccd6-4f92-900f-0f8cb2bd6f0c | base |
|                                            |                                      |      |

```
spss-modeler 18.2
                                 687eddc9-028a-4117-b9dd-e57b36f1efa5 base
pytorch-onnx 1.2-py3.6
                                 692a6a4d-2c4d-45ff-a1ed-b167ee55469a base
spark-mllib 2.3-scala 2.11
                                7963efe5-bbec-417e-92cf-0574e21b4e8d base
spark-mllib 2.4-py37
                                7abc992b-b685-532b-a122-a396a3cdbaab base
caffe 1.0-py3.6
                                7bb3dbe2-da6e-4145-918d-b6d84aa93b6b base
pytorch-onnx 1.7-py3.7
                                 812c6631-42b7-5613-982b-02098e6c909c base
                                 82c79ece-4d12-40e6-8787-a7b9e0f62770 base
cuda-py3.6
                                 8964680e-d5e4-5bb8-919b-8342c6c0dfd8 base
tensorflow 1.15-py3.6-horovod
hybrid 0.1
                                 8c1a58c6-62b5-4dc4-987a-df751c2756b6 base
pytorch-onnx 1.3-py3.7
                                 8d5d8a87-a912-54cf-81ec-3914adaa988d base
caffe-ibm 1.0-py3.6
                                 8d863266-7927-4d1e-97d7-56a7f4c0a19b base
runtime-22.2-py3.10-cuda
                                 8ef391e4-ef58-5d46-b078-a82c211c1058 base
spss-modeler 17.1
                                 902d0051-84bd-4af6-ab6b-8f6aa6fdeabb base
do 12.10
                                 9100fd72-8159-4eb9-8a0b-a87e12eefa36 base
                                 9447fa8b-2051-4d24-9eef-5acb0e3c59f8 base
do py3.7
spark-mllib 3.0-r 3.6
                                 94bb6052-c837-589d-83f1-f4142f219e32 base
cuda-py3.7-opence
                                 94e9652b-7f2d-59d5-ba5a-23a414ea488f base
nlp-py3.8
                                 96e60351-99d4-5a1c-9cc0-473ac1b5a864 base
cuda-py3.7
                                 9a44990c-laal-4c7d-baf8-c4099011741c base
hybrid 0.2
                                 9b3f9040-9cee-4ead-8d7a-780600f542f7 base
spark-mllib 3.0-py38
                                9f7a8fc1-4d3c-5e65-ab90-41fa8de2d418 base
autoai-kb_3.3-py3.7
                                a545cca3-02df-5c61-9e88-998b09dc79af base
spark-mllib 3.0-py39
                                a6082a27-5acc-5163-b02c-6b96916eb5e0 base
runtime-22.1-py3.9-do
                                a7e7dbf1-1d03-5544-994d-e5ec845ce99a base
default py3.8
                                ab9e1b80-f2ce-592c-a7d2-4f2344f77194 base
tensorflow rt22.1-py3.9
                                acd9c798-6974-5d2f-a657-ce06e986df4d base
kernel-spark3.2-py3.9
                                ad7033ee-794e-58cf-812e-a95f4b64b207 base
autoai-obm 2.0 with Spark 3.0
                                af10f35f-69fa-5d66-9bf5-acb58434263a base
runtime-22.2-py3.10
                                b56101f1-309d-549b-a849-eaa63f77b2fb base
default py3.7 opence
                                c2057dd4-f42c-5f77-a02f-72bdbd3282c9 base
tensorflow 2.1-py3.7
                                 c4032338-2a40-500a-beef-b01ab2667e27 base
do py3.7 opence
                                 cc8f8976-b74a-551a-bb66-6377f8d865b4 base
spark-mllib 3.3
                                d11f2434-4fc7-58b7-8a62-755da64fdaf8 base
autoai-kb 3.0-py3.6
                                d139f196-e04b-5d8b-9140-9a10ca1fa91a base
                                d82546d5-dd78-5fbb-9131-2ec309bc56ed base
spark-mllib 3.0-py36
autoai-kb 3.4-py3.8
                                da9b39c3-758c-5a4f-9cfd-457dd4d8c395 base
kernel-spark3.2-r3.6
                                db2fe4d6-d641-5d05-9972-73c654c60e0a base
autoai-kb rt22.1-py3.9
                                 db6afe93-665f-5910-b117-d879897404d9 base
tensorflow rt22.1-py3.9-horovod dda170cc-ca67-5da7-9b7a-cf84c6987fae base
autoai-ts 1.0-py3.7
                                 deef04f0-0c42-5147-9711-89f9904299db base
tensorflow 2.1-py3.7-horovod
                                 e384fce5-fdd1-53f8-bc71-11326c9c635f base
default py3.7
                                 e4429883-c883-42b6-87a8-f419d64088cd base
do 22.1
                                 e51999ba-6452-5f1f-8287-17228b88b652 base
autoai-obm 3.2
                                 eae86aab-da30-5229-a6a6-1d0d4e368983 base
runtime-22.2-r4.2
                                ec0a3d28-08f7-556c-9674-ca7c2dba30bd base
tensorflow rt22.2-py3.10
                                f65bd165-f057-55de-b5cb-f97cf2c0f393 base
do 20.1
                                 f686cdd9-7904-5f9d-a732-01b0d6b10dc5 base
                                                                             In [159]:
import sklearn
sklearn. version
                                                                            Out[159]:
'1.0.2'
```

65e171d7-72d1-55d9-8ebb-f813d620c9bb base

In [160]:

tensorflow 2.4-py3.7

MODEL NAME = 'UniPredictorJupyter'

```
DEPLOYMENT NAME = 'UniversityPredictor'
DEMO MODEL = lr
                                                                                In [161]:
# Set Python Version
software spec uid = wml client.software specifications.get id by name('runtime-
22.1-py3.9')
                                                                                In [162]:
# Setup model meta
model props = {
    wml client.repository.ModelMetaNames.NAME: MODEL NAME,
    wml client.repository.ModelMetaNames.TYPE: 'scikit-learn 1.0',
    wml client.repository.ModelMetaNames.SOFTWARE SPEC UID: software spec uid
}
                                                                                In [163]:
#Save model
model details = wml client.repository.store model(
    model=DEMO MODEL,
    meta props=model props,
    training data=X train,
    training target=y train
)
                                                                                In [164]:
model details
                                                                               Out[164]:
{'entity': {'hybrid pipeline software specs': [],
  'label_column': 'Chance of Admit ',
  'schemas': {'input': [{'fields': [{'name': 'GRE Score', 'type': 'float64'},
      {'name': 'TOEFL Score', 'type': 'float64'},
      {'name': 'University Rating', 'type': 'float64'},
      {'name': 'SOP', 'type': 'float64'},
      {'name': 'LOR ', 'type': 'float64'},
      {'name': 'CGPA', 'type': 'float64'},
      {'name': 'Research', 'type': 'float64'}],
     'id': '1',
     'type': 'struct'}],
   'output': []},
  'software spec': {'id': '12b83a17-24d8-5082-900f-0ab31fbfd3cb',
   'name': 'runtime-22.1-py3.9'},
  'type': 'scikit-learn 1.0'},
 'metadata': {'created at': '2022-11-18T13:54:15.992Z',
  'id': 'e025bab3-1cee-46fe-a3c5-496d408eb8c2',
  'modified at': '2022-11-18T13:54:18.680Z',
  'name': 'UniPredictorJupyter',
  'owner': 'IBMid-667000FKLK',
  'resource_key': '8eb0c55a-2f23-4034-8caf-8e6deb5434fe',
  'space id': '85ccaf78-6115-4614-b3ad-9b389883e43d'},
 'system': {'warnings': []}}
                                                                                In [165]:
model id = wml client.repository.get model id(model details)
model id
                                                                               Out[165]:
'e025bab3-1cee-46fe-a3c5-496d408eb8c2'
                                                                                In [166]:
#X train
```

```
In [167]:
#from sklearn.linear model import LinearRegression
multiple_lin_reg = LinearRegression()
multiple lin reg.fit(X train, y train)
y pred mlr = multiple lin reg.predict(X test)
r2 score mlr = r2 score(y test, y pred mlr)
print("Mutiple Linear Regression's Score = {:.3f}".format(r2 score mlr))
Mutiple Linear Regression's Score = 0.258
                                                               In [168]:
#multiple lin reg.predict(X train)
                                                               In [169]:
# Set meta
deployment props = {
   wml client.deployments.ConfigurationMetaNames.NAME:DEPLOYMENT NAME,
   wml client.deployments.ConfigurationMetaNames.ONLINE: {}
                                                               In [170]:
# Deploy
deployment = wml client.deployments.create(
   artifact uid=model id,
   meta props=deployment props
####
Synchronous deployment creation for uid: 'e025bab3-1cee-46fe-a3c5-496d408eb8c2' sta
initializing
Note: online url is deprecated and will be removed in a future release. Use serving
urls instead.
ready
  ______
Successfully finished deployment creation, deployment uid='04d68702-0270-4707-b4e1-
505e1f90de26'
_____
```

## Main Page.html

```
<!DOCTYPE html>
<html>
<title>University Admit Eligibility Predictor</title>
<link rel = "icon" href = "/static/img/Logo.jpg" type = "image/x-icon">
<body style=" background-image:url('/static/img/background 1.jpg');background-repeat:
no-repeat;background-attachment:fixed;background-size: 100% 100%;" >
<div style="position:absolute;left:1300px">
<img src="/static/img/Logo.jpg" alt="Website Logo" style="width:40px;height:40px;">
</div>
<div style="position:absolute;top:20px;left:280px">
decoration:underline;color:#F6E9F9">
<strong>University Admit Eligibility Predictor</strong>
</div>
<div style="position:absolute;top:150px;left:220px">
decoration:underline;color:#F6E9F9">
<i>Students are often worried about their chances of
admission to University. The aim of this project is to help students in shortlisting
universities with their profiles. The predicted output gives them a fair idea about
their admission chances in a particular university. This analysis should also help
students who are currently preparing or will be preparing to get a better
idea.</i>
</div>
<div style="position:absolute;top:450px;left:470px">
decoration:underline;color:#F6E9F9">
<a style="color:#F6E9F9" href="/Page 1" target=" blank"><i>Proceed to check
Eligibility</i>
</div>
</body>
</html>
```

## Page 1.html

```
<!DOCTYPE html>
<html>
<head>
<title>University Admit Eligibility Predictor</title>
link rel = "icon" href = "/static/img/Logo.jpg" type = "image/x-icon">
<!--<li>rel="stylesheet" href="style.css">-->
```

```
<style>
h1{
font-family:Verdana;
font-size:1.7rem;
color:#d77fa1;
text-align:center;
#div1{
padding-left:400px;
.nameip
background-color: black;
color: White ;
.draglist{
width: max-content;
height: max-content;
color: black;
background-color:#F3E9DD;
border: 1px solid orange;
border-radius: 5%;
margin: 5px;
input, select{
margin: 10px;
</style>
</head>
<body style=" background-image: url('/static/img/background.jpg' ); background-
repeat:no-repeat;background-attachment: fixed;background-size: 100% 100%;" ></body>
<br><br><br><
<header>
<div style="position:absolute;left:1310px;top:0">
<img src="/static/img/Logo.jpg" alt="Website Logo"</pre>
style="width:40px;height:40px;">
</div>
</header>
style="font-family:serif;font-size:40px;text-align:center;text-
decoration:underline;color: white">UNIVERSITY ADMIT ELIGIBILITY PREDICTOR<br>></br>>/h1>
<div id="div1">
<form id="warship" method="post" action="."</pre>
style="position:absolute;top:140px;left:350px;font-family:serif;font-
size:20px;color:black">
<label style="margin-top:10px;" for="name">Name : </label>
<input type="text" id="name" name="name" onfocus="changeBorder(this)"</pre>
```

```
onblur="reverseChange(this)" pattern="[a-zA-Z]+" oninvalid="alert('Enter ValidName')"
required/><br />
<label for="GRE Score">GRE Score : </label>
<input type="text" id="GRE Score" name="GRE Score" onfocus="changeBorder(this)"><br>
<label for="TOEFL Score">TOEFL Score : </label>
<input type="text" id="TOEFL Score" name="TOEFL Score"</pre>
onfocus="changeBorder(this)"><br>
<label for="University Rating">University Rating : </label>
<select id="University Rating" name="University Rating" required>
<option value="1">1</option>
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5">5</option>
</select><br/>
<label for="SOP">SOP : </label>
<select id="SOP" name="SOP" required>
<option value="1">1</option>
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5">5</option>
</select><br/>
<label for="LOR">LOR : </label>
<select id="LOR" name="LOR" required>
<option value="1">1</option>
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5">5</option>
</select><br/>
<label for="CGPA">CGPA : </label>
<input type="text" id="CGPA" name="CGPA" onfocus="changeBorder(this)"><br>
<label for="Research">Research : </label>
<select id="Research" name="Research" required>
<option value="0">0</option>
<option value="1">1</option>
</select><br/>
<input type="submit" value="Submit">
<input type="reset">
</form></div>
</body>
</html>
```

#### chance.html

```
<!DOCTYPE html>
<html>
<title>University Admit Eligibility Predictor</title>
<link rel = "icon" href = "/static/img/Logo.jpg" type = "image/x-icon">
<body style=" background-image:url('/static/img/background 1.jpg');background-repeat:
no-repeat;background-attachment:fixed;background-size: 100% 100%;" >
<div style="position:absolute;left:1300px">
<img src="/static/img/Logo.jpg" alt="Website Logo" style="width:40px;height:40px;">
</div>
<div style="position:absolute;top:20px;left:280px">
decoration:underline;color:#F6E9F9">
<strong>University Admit Eligibility Predictor</strong>
<div style="position:absolute;top:70px;left:200px">
<p style="font-family:serif;font-size:80px;text-align:center;text-
decoration:underline;color:#F6E9F9">
<i><strong>You have a good chance of admit!
Congratulations!</strong><br>{{content}}%</i>
</div>
</body>
</html>
```

### nochance.html

```
<!DOCTYPE html>
<html>
<title>University Admit Eligibility Predictor</title>
<link rel = "icon" href = "/static/img/Logo.jpg" type = "image/x-icon">
<body style=" background-image:url('/static/img/background 1.jpg');background-repeat:
no-repeat;background-attachment:fixed;background-size: 100% 100%;" >
<div style="position:absolute;left:1300px">
<img src="/static/img/Logo.jpg" alt="Website Logo" style="width:40px;height:40px;">
</div>
<div style="position:absolute;top:20px;left:280px">
decoration:underline;color:#F6E9F9">
<strong>University Admit Eligibility Predictor</strong>
<div style="position:absolute;top:70px;left:200px">
<p style="font-family:serif;font-size:80px;text-align:center;text-
decoration:underline;color:#F6E9F9">
```

```
<i><strong>You do not have a good chance of admit!
Sorry!</strong><br>{{content}}%</i>

</div>
</body>
</html>
```

#### app.py

```
from flask import Flask, render_template, redirect, url_for, request, jsonify
import requests
API KEY = " jEZ9faTKtRDlZDFHcrrAbuQFdvxbBeiu8W1D8-4z7ng"
token response = requests.post('https://iam.cloud.ibm.com/identity/token',
data={"apikey": API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token_response.json()["access_token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
app = Flask( name )
@app.route("/")
def home():
    return render_template("Main Page.html")
@app.route("/Page 1",methods = ['POST','GET'])
def input():
    return render_template("Page 1.html")
@app.route("/", methods = ['POST','GET'])
def prediction():
    if request.method == 'POST':
        arr = []
        for i in ["GRE Score","TOEFL Score","University
Rating","SOP","LOR","CGPA","Research"]:
            val = request.form[i]
            if val == '':
                return redirect(url_for("Page 1.html"))
            arr.append(float(val))
        #print(arr)
        # deepcode ignore HardcodedNonCryptoSecret: <please specify a reason of
ignoring this>
        payload_scoring = {
            "input_data": [{"fields":[
                                         'GRE Score',
                                         'TOEFL Score',
                                         'University Rating',
                                         'SOP',
                                         'LOR '
                                         'CGPA',
                                         'Research'],
```

```
"values": [arr]
                            }]
        response scoring = requests.post('https://us-
south.ml.cloud.ibm.com/ml/v4/deployments/ed4ff532-801c-457b-85b9-
ffa103d3a064/predictions?version=2022-11-18',
json=payload scoring,headers=header).json()
        print(response scoring)
        result = response_scoring['predictions'][0]['values']
        print(result)
        if result[0][0] > 0.5:
            return redirect(url_for('chance', percent=result[0][0]*100))
        else:
            return redirect(url_for('no_chance', percent=result[0][0]*100))
    else:
        return redirect(url_for("Page 1"))
    return ""
@app.route("/chance/<percent>")
def chance(percent):
    return render_template("chance.html", content=[percent])
@app.route("/nochance/<percent>")
def no_chance(percent):
    return render_template("noChance.html", content=[percent])
@app.route('/<path:path>')
def catch_all(path):
    return render_template("Page 1.html")
if __name__ == "__main__":
    app.run()
```

# Images used in the html pages

background.jpg



# background1.jpg



## logo.jpg



GIT Link: <a href="https://github.com/IBM-EPBL/IBM-Project-17372-1659636785">https://github.com/IBM-EPBL/IBM-Project-17372-1659636785</a>

Project Demo Link: https://drive.google.com/file/d/1HEBNs7B-pCA2mftMgsjLqepSI\_O3j8yK/view?usp=sharing