Московский физико-технический институт (государственный университет) Факультет молекулярной и химической физики

Лабораторная работа $N_{2}13$ «Изучение электронно-колебательных спектров поглощения двухатомных молекул на примере молекулы I_{2} »

Выполнили: студенты 3 курса 642 группы ФМХФ Шадымов Владимир Георгий Демьянов

Аннотация

В этом отчёте изложены результаты выполнения лабораторной работы «Кольца Ньютона». В установке кольца Ньютона образуются при интерференции световых волн, отражённых от границ тонкой воздушной прослойки, заключённой между выпуклой поверхностью линзы и плоской стеклянной пластинкой. Линии постоянной разности хода представляют собой концентрические кольца с центром в точке соприкосновения. Наблюдение ведется в отраженном свете. С помощью микроскопа мы измеряем радиусы темных и светлых колец.

Содержание

1	Введение	4
2	Теоретическое введение	5
3	Экспериментальная установка	6
4	Обработка результатов	7
5	Заключение	10

Введение

Цель работы: исследовать явление интерференции на тонких пленках на примере колец Ньютона. Проверить теоретическую зависимость радиуса колец Ньютона от их порядкового номера. Измерить кривизну линзы.

Оборудование: измерительный микроскоп с опак-иллюминатором, плосковыпуклая линза, пластинка из черного стекла, ртутная лампа ДРШ-250, щель, линзы, призма прямого зрения, объектная шкала.

Теоретическое введение

В данном опыте интерференция возникает между лучами, отраженными от нижней пластинки и от кривой поверхности. Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d.

Для точки на сферической поверхности, находящейся на расстоянии r, имеем $r^2 = R^2 - (R - r)^2 = 2Rd - d^2$, где R – радиус кривизны сферической поверхности (рис. 1).

кривизны сферической поверхности (рис. 1). При $R\gg d$ поучим $d=\frac{r^2}{2R}$. С учетом изменения фазы на π при отражении волны от оптически более плотной среды получим оптическую разность хода интерферирующих лучей:

$$\Delta = 2d + \frac{\lambda}{2} = \frac{r^2}{R} + \frac{\lambda}{2}.$$

Условие интерференционного минимума $\Delta=(2m+1)\frac{\lambda}{2};~(m=0,1,2,...),$ откуда получаем для радиуса темных колец

$$r_m = \sqrt{m\lambda R}. (1)$$

Аналогично для радиусов r'_m светлых колец

$$r_m' = \sqrt{\frac{(2m-1)\lambda R}{2}}. (2)$$

Таким образом, в отраженном свете центр колец темный (рис. 2). Заметим, что радиусы колец зависят от длины волны. Поэтому необходимо работать с достаточно узкой частью спектра, выделяя её светофильтрами, или подбирать источник света, который генерирует излучение в узкой части спектра. Последний способ используется в данной работе. Если же свет немонохроматический, то каждое кольцо будет иметь разную окраску в разных его точках.

Рис. 1. – Схема наблюдения колец Ньютона

Рис. 2. – Кольца Ньютона в отраженном свете [1]

Экспериментальная установка

В эксперименте используется установка, изображенная на рис. 3. Источником света служит ртутная лампа. Длины волн ярких линий в спектре ртутной лампы: $\lambda_1=579{,}07$ (желтый); $\lambda_2=546{,}07$ (зеленый). Данные взяты из [2] — с. 438. Кольца Ньютона в данной работе наблюдаем в желтом цвете.

Пучок света, излучаемый лампой, собирается конденсором K в щель S и преобразуется коллиматором (щель S и объектив O) в параллельный пучок. Параллельный пучок разлагается призмой прямого зрения на желтый и зеленый. Желтый свет направляется в опак-иллюминатор OM. Внутри опак-иллюминатора свет частично отражается от полупрозрачной пластинки P, проходит через объектив микроскопа и попадает на линзу. Свет, отраженный от зеркала под линзой, проходит обратно через объектив, полупрозрачную пластинку и окуляр. Так можно наблюдать кольца Ньютона в отраженном свете (рис. 2). Приборная погрешность измерения шкалы окуляра: $\sigma_m = 0.03$ мм.

Рис. 3. Схема установки для наблюдения колец Ньютона: \mathcal{I} – лампа, K – конденсор, S – щель, \mathcal{I} – призма прямого зрения, $\mathcal{O}U$ – опак-иллюминатор, P – полупрозрачная пластинка.

Обработка результатов

Небходимо проверить зависимость $r_m^2(m)$ для темных и светлых колец, где r_m – радиус кольца порядка m. Приборная погрешность измерения шкалы окуляра: $\sigma_r = 3 \cdot 10^{-2} \text{ мм}^1$.

Измеренные с установки данные занесем в таблицу 1.

Таблица 1. Экспериментальные данные

Темные кольца			Светлые кольца		
m	$r_m, 10^{-2} \text{ MM}$		m	$r_m, 10^{-2} \text{ MM}$	
1	9		1	7	
2	13		2	11	
3	15		3	14	
4	17		4	16	
5	19		5	18	
6	20		6	20	
7	22		7	21	
8	24		8	23	

Погрешность r_m^2 найдем по формуле:

$$\sigma_{r^2} = \left| \frac{\partial r_m^2}{\partial r_m} \right| \sigma_r = 2r_m \sigma_r.$$

Пересчитаем данные в удобные для обработки. Полученные результаты занесем в таблицу 2.

Таблица 2. Обработанные результаты

Темные кольца				
m	$r_m^2, 10^{-3} \text{ mm}^2$	$\sigma_{r^2}, 10^{-3} \text{ mm}^2$		
1	8	2		
2	16	3		
3	22	3		
4	29	3		
5	35	4		
6	42	4		
7	49	4		
8	58	5		

Светлые кольца				
m	$r_m^2, 10^{-3} \text{ mm}^2$	$\sigma_{r^2}, 10^{-3} \text{ mm}^2$		
1	5	1		
2	11	2		
3	19	3		
4	24	3		
5	32	4		
6	39	4		
7	45	4		
8	52	5		

Согласно теории (формулы (1) и (2)) квадрат радиуса кольца r_m^2 линейно зависит от его номера m. Оценим 2 эту зависимость через коэффициент корреляции Пирсона.

- Для темных колец: $\rho_{dark} = 0.9991$; уровень значимости p < 1%.
- Для светлых колец: $\rho_{light} = 0.9994$; уровень значимости p < 1%.

Видно, что данные сильно коррелируют. Построим³ графики зависимостей $r_m^2(m)$ для темных и светлых колец (рис. 4). Проведем⁴ МНК для этих зависимостей. Согласно теории необходимо наложить некоторые ограничения на регрессию. Для темных колец проводим МНК через точку $r_m^2=0,\ m=0\ (1);$ для светлых $-r_m^2=0,\ m=\frac{1}{2}\ (2).$

 $^{^{1}}$ Так как не было возможности измерить радиус кольца m-го порядка несколько раз, для оценки случайной погрешности, то далее при расчетах будем использовать приборную погрешность как полную погрешность радиуса.

²Расчеты коэффициентов проводились с помощью библиотеки Scipy.

 $^{^3}$ Графики построены с помощью библиотеки Matplotlib.

⁴Регрессия методом наименьших квадратов вычислена с помощью библиотеки Statsmodels.

- Из МНК для темных колец по формуле (1): $\lambda R_1 = (7.15 \pm 0.09) \cdot 10^{-3} \text{ мм}^2$.
- Из МНК для светлых колец по формуле (2): $\lambda R_2 = (6.99 \pm 0.08) \cdot 10^{-3} \text{ мм}^2$.

Сделаем проверку на выбросы, считая статистику для критерия Стьюдента следующим образом:

$$S_m = \frac{r_m^2 - \mu_0}{\sigma_{r_m^2} / \sqrt{n}} \sim t(n_{\Sigma} - 2),$$

где r_m^2 – квадрат радиус m-го кольца; μ_0 – значение регрессии в данной точке; $\sigma_{r_m^2}$ – среднеквадратичное отклонение в данной точке, ошибка; n – число измерений в данной точке, в данном случае равно 1; n_{Σ} – полное число измерений, в данном случае равно 8. Есть два зависимых параметра (степени свободы): коэффициент регрессии МНК через фиксированную точку, оценочное среднеквадратичное отклонение. Соответствующие уровни значимости 5 занесем в таблицу 3. Считаем критический уровень значимости 5%.

Рис. 4. Зависимость квадрата радиуса колец $r_m^2(m)$ от порядкового номера m.

Таким образом, выбросов не оказалось. Вычислим радиус кривизны линзы.

$$R = \frac{R_1 + R_2}{2}.$$

Соответствующая погрешность:

$$\sigma_R = \sqrt{\sigma_{Rrand}^2 + \sigma_{Rindirect}^2}.$$

⁵Расчеты уровней значимости проводились с помощью библиотеки Scipy.

Таблица 3. Значения статистик и уровней значимости

Темные кольца

$r_m^2, 10^{-3} \text{ mm}^2$ $\overline{S_m}$ p-value Итог 1 0,696 0,256 Не выброс 2 16 0,291 Не выброс 0,583 3 22 0,247 Не выброс 0,407 4 29 0,098 0,462 Не выброс 5 35 0,189 0,428 Не выброс 6 42 0,239 0,410 Не выброс 7 49 0,142 0,446 Не выброс 58 8 0,158 0,440 Не выброс

Светлые кольца

m	$r_m^2, 10^{-3} \text{ mm}^2$	S_m	p-value	Итог
1	5	1,020	0,174	Не выброс
2	11	0,176	0,433	Не выброс
3	19	0,451	0,334	Не выброс
4	24	0,324	0,378	Не выброс
5	32	0,142	0,446	Не выброс
6	39	0,188	0,429	Не выброс
7	45	0,432	0,340	Не выброс
8	52	0,318	0,381	Не выброс

Получаем $R = (1.22 \pm 0.03)$ см. Значение со среднеквадратичным отклонением.

Так как было два измерения радиуса, то доверительному интервалу с вероятностью 0,95, соответствует коэффициент Стьюдента t(1-0,95;2)=4,3. Итоговое значение радиуса с вероятностью 0,95 находится в интервале: $R=(1,22\pm0,12)$ см.

Заключение

- Данный эксперимент с достаточно высокой точностью подтверждает теоретическую зависимость радиуса колец Ньютона от их порядкового номера $r_m(m)$. Уровни значимости корреляции p < 1%.
- Радиус кривизны линзы: $R = (1.22 \pm 0.12)$ см. Относительная ошибка $\varepsilon = 9.8\%$.

Список литературы

- [1] Кириченко Н. А. Принципы оптики. Москва: МФТИ, 2016.
- [2] Максимычев А.В., Александров Д.А., Брюлёва Н.С. и др. Лабораторный практикум по общей физике: Учебное пособие. В трех томах. Т. 2. Оптика. Москва: МФТИ, 2014.