Linearno programiranje s dvije varijable

Matematika za ekonomiste 1

Damir Horvat

FOI, Varaždin

Rješenje

Oznake

 $x \longrightarrow \text{broj komada igrački } A$

 $y \longrightarrow \text{broj komada igrački } B$

Funkcija prihoda

$$P = 20x + 18y$$

Ograničenja

• broj komada igrački je broj ≥ 0

$$x \geqslant 0, \quad y \geqslant 0$$

potrebno je najviše 400 komada igrački A

x ≤ 400

• igrački *B* ne treba više od 960 komada

 poduzeće ima na raspolaganju 45 sati

1 sat ⟨w→ 10 igrački *A* /: 10

1 sat ← 24 igrački *B* /: 24

 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka $A/\cdot x$

 $\frac{1}{24}$ sati \longleftrightarrow 1 igračka $B / \cdot y$

 $\frac{1}{10}x$ sati \longleftrightarrow x igrački A

 $\frac{1}{24}y$ sati \longleftrightarrow y igrački B

$$\boxed{\frac{1}{10}x + \frac{1}{24}y \leqslant 45}$$

2 / 13

Zadatak 1

Poduzeće se bavi prodajom igračaka. Na tržište želi plasirati dvije nove igračke A i B. Obje igračke trebaju proći završnu fazu montaže. U jednom satu napravi se 10 igrački A i 24 igrački B. Poduzeće ima na raspolaganju samo 45 radnih sati. Istraživanje tržišta je pokazalo da je potrebno najviše 400 komada igrački A, dok je igrački B potrebno napraviti u količini ne većoj od 960 komada. Prihod po igrački A je 20 €, a po igrački B 18 €. Odredite u kojem slučaju poduzeće ostvaruje maksimalni prihod uz navedena ograničenja.

1/13

Rješenje

Oznake

 $p \longrightarrow \text{broj komada tableti } P$ $q \longrightarrow \text{broj komada tableti } Q$

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

• broj komada tableti je broj $\geqslant 0$

$$p \geqslant 0, \quad q \geqslant 0$$

$$\begin{array}{c|cccc}
 & P & Q & \Sigma \\
\hline
A & 1 & 3 & \geqslant 10 \\
B & 4 & 4 & \geqslant 24 \\
\hline
 & & / \cdot p & / \cdot q
\end{array}$$

• potrebno je barem 10 jedinica vitamina *A*

$$p+3q\geqslant 10$$

• potrebno je barem 24 jedinica vitamina *B*

$$4p + 4q \geqslant 24$$

6 / 13

Zadatak 2

Vitamini A i B nalaze se u dvije vrste tableta P i Q. Tableta P ima jednu jedinicu vitamina A i četiri jedinice vitamina B. Tableta Q ima tri jedinice vitamina A i četiri jedinice vitamina B. Cijena jedne tablete P je 10 novčanih jedinica, a jedne tablete Q je 12 novčanih jedinica. Koliko tableta P i koliko tableta Q treba kupiti da bi se dobilo najmanje 10 jedinica vitamina A i najmanje 24 jedinice vitamina B tako da su troškovi nabave najmanji?

5 / 13

Rješenje

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond $12-x-y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 3. fond

Ograničenja

novčani iznosi su ≥ 0

$$x \geqslant 0$$
, $y \geqslant 0$, $12 - x - y \geqslant 0$

• U 3. fond je uloženo najviše 2000€

$$12 - x - y \leqslant 2$$

• U 1. fond je uložen barem trostruko veći iznos u odnosu na 2. fond

$$x \geqslant 3y$$

10 / 13

Ograničenja

Zadatak 3

Novčani iznos od 12 000 € može se investirati u tri različita fonda. U prvom fondu godišnja zarada je 7%, u drugom fondu 8%, a u trećem visokorizičnom fondu 12%. Kako bi se smanjio rizik, u visokorizični fond uložit će se najviše 2000 €. Iz određenih ekonomskih razloga bolje je uložiti barem tri puta veći novčani iznos u prvi fond u odnosu na uloženi iznos u drugom fondu. Koje je optimalno ulaganje navedenog iznosa u spomenuta tri fonda kako bi se ostvarila maksimalna godišnja zarada? Koliko iznosi maksimalna godišnja zarada?

 $\begin{array}{c}
x \geqslant 0 \\
y \geqslant 0
\end{array}$ $\begin{array}{c}
x \geqslant 0 \\
y \geqslant 0
\end{array}$

Funkcija zarade (u tisućama eura)

$$K = 0.07x + 0.08y + 0.12 \cdot (12 - x - y)$$

$$K = 1.44 - 0.05x - 0.04y$$

8 / 13

