More on Symmetric Cipher

Lecture 6
Hazem Said

Agenda

- Multiple Encryption and Triple DES
- Block Cipher Modes
- Other Topics

Multiple Encryption and Triple DES

Double DES

$$C = E(K_2, E(K_1, P))$$
 $P = D(K_1, D(K_2, C))$

(a) Double encryption

Double DES Brute force Attack

- For known plaintext attack with P and C
- Each P needs 2⁶⁴ key alternatives to produce 2⁶⁴ Unique C value.
- The reset $2^{(112-64)} = 2^{48}$ key alternatives will produce a redundant values.
- This means, more than one key map the same P and C. This will lead to false cryptanalysis results.

Double DES Brute force Attack

- Example, there is:
 - $-C = E(K_2, E(K_1, P))$
 - $-C = E(K_4, E(K_3, P))$
 - and more
 - If cryptanalyst find K₁, K₂ this does not mean that the key is found
- For pair $\{P_1,C_1\}, \{P_2,C_2\}$
- The number of false keys is reduced to
 - $-2^{(112-2\times64)}=2^{-16}$

Double DES Brute force Attack

 What is the number of required pairs P,C to apply Brute force Attack?

 What is the complexity of Brute force Attack?

Double DES MIM Attack

- MIM stands for Meet In the Middle
- $X = E(K_1, P) \text{ also } X = D(K_2, C)$

(a) Double encryption

Double DES MIM Attack

- Generate E(K₁, P) for all K1 alternatives 2⁵⁶.
- Store the result in a Table.
- Try $X = D(K_2, C)$ for all K2 alternatives 2^{56} .
- Search for X in the table.
- Repeat again for another pairs P`, C`.

- Why repeat?
- What is the complexity of MIM Attack?

Double DES MIM Attack

• What is the required storage?

Tipple DES with Two Keys

$$C = E(K_1, D(K_2, E(K_1, P)))$$
 $P = D(K_1, E(K_2, D(K_1, C)))$

Single DES if $K_1 = K_2$

(b) Triple encryption

Tipple DES with Three Keys

$$C = E(K_3, D(K_2, E(K_1, P)))$$
 $P = D(K_1, E(K_2, D(K_3, C)))$

Key Size 168

Single DES if $K_1=K_2$ or $K_2=K_3$

Block Cipher Modes

ECB, CBC, CFB, OFB, CTR

ECB: Electronic Code Book Mode

ECB D

- Normal Block Encryption
- Not recommended for:
 - Structured data with repeated sections, Why?
- Recommended for:
 - Small data
 - Keys whiles secure key exchange
 - Single values (numeric, string, single structures)

CBC: Cipher Block Chaining Mode

CBC

Recommended for long data

$$C_{j} = E(K, [C_{j-1} \oplus P_{j}])$$

$$P_{j} = D(K, C_{j}) \oplus C_{j-1}$$

$$\text{where } C_{0} = IV$$

$$(1)$$

Proof

$$\begin{split} P_{j} &= D(K, C_{j}) \oplus C_{j-1} \\ P_{j} &= D(K, E(K, \begin{bmatrix} C_{j-1} \oplus P_{j} \end{bmatrix})) \oplus C_{j-1} \\ P_{j} &= C_{j-1} \oplus P_{j} \oplus C_{j-1} = P_{j} \end{split}$$

CFB: Cipher Feedback Mode

Stream Cipher applied to s Bits

CFB

- Let S_s(X) return the most significant x bits
- Let Shl_s(X) return the x shifted to left s bits

$$C_{j} = P_{j} \oplus S_{s} (E(K, IV_{j-1}))$$

$$P_{j} = C_{j} \oplus S_{s} (E(K, IV_{j-1}))$$
where $IV_{0} = IV$ $IV_{j} = [Shl_{s}(IV_{j-1}) \quad C_{j}]$

- Problem:
 - Transmission error lead to false construction

OFB: Output Feedback Mode

- Stream Cipher applied to b Bits
- Resolve error propagation while transmission

CFB vs.. OFB

- Which is more reliable?
- Which is more secure?

CTR: Counter Mode

CTR

- Suitable for long data without error propagation
- No need for decryption
- Allow Parallel SW/HW Implementation
- Allow Preprocessing, Why?
- Allow Random Access
- Can be used for Blocks or Streams

Other Topics

- When an application communicate with another application, example email system
- Email software send Email contents using TCP/IP protocol
- TCP/IP divide email contents into packets and add some headers for each
- Network card create network packet and add some hearers for each

Link-H	Net-H	IP-H	TCP-H	Data	Link-T

(a) Application-level encryption (on links and at routers and gateways)

Link-H	Net-H	IP-H	ТСР-Н	Data	Link-T			
On links and at routers								
Link-H	Net-H	IP-H	ТСР-Н	Data	Link-T			

In gateways

(b) TCP-level encryption

Link-H	Net-H	IP-H	ТСР-Н	Data	Link-T			
On links								
Link-H	Net-H	IP-H	ТСР-Н	Data	Link-T			

In routers and gateways

(c) Link-level encryption

Shading indicates encryption. TO

TCP-H = TCP header

IP-H = IP header

Net-H = Network-level header (e.g., X.25 packet header, LLC header)

Link-H = Data link control protocol header Link-T = Data link control protocol trailer

Key Distribution

- How to distribute the key to A and B
 - A generate a key then physically deliver it to B
 - Third party generate a key then physically deliver it to A and B
 - Using old key A and B can exchange the new key encrypted with old key
 - A and B has encrypted link with C, C can deliver the key to A and B

Decentralized Key Distribution

Centralized Key Distribution

Next Step

Next Step

- Key distribution is not safe
- For Decentralized Solution
 - Keys are distributed using previously shared keys
 - Shared keys is unsecure
- For Centralized Solution
 - Keys are distributed using KDC who use shared keys
 - Shared keys is unsecure
 - KDC is un-trusted

Next Step

- We need
- A can send the key to B without using any shared keys
- B must be the only one who can retrieve the key
- B can make sure that A is the sender of the key