HW2 Solutions

October 15,2019

1. Let $x_1, x_2 \in f^{-1}(C)$, and $f(x_1) = Ax_1 + b \in C$, $f(x_2) = Ax_2 + b \in C$, where $0 \le \theta \le 1$.

$$f(\theta x_1 + (1 - \theta)x_2) = A(\theta x_1 + (1 - \theta)x_2) + b$$

$$= \theta Ax_1 + (1 - \theta)Ax_2 + (1 - \theta)b$$

$$= \theta (Ax_1 + b) + (1 - \theta)(Ax_2 + b)$$

$$= \theta f(x_1) + (1 - \theta)f(x_2).$$

Because C is convex, $\theta f(x_1) + (1 - \theta)f(x_2) \in C$, and hence $\theta x_1 + (1 - \theta)x_2 \in f^{-1}(C)$. $\Rightarrow f^{-1}(C)$ is convex.

2. Let $(x_1, t), (x_2, s) \in C$, and then $||x_1||_2 \le t, ||x_2||_2 \le s$, where t, $s \ge 0$. We show that $(\theta x_1 + (1 - \theta)x_2, \theta t + (1 - \theta)s) \in C$, where $0 \le \theta \le 1$.

$$\begin{split} \|\theta x_1 + (1-\theta) x_2\|_2 &\leq \|\theta x_1\|_2 + \|(1-\theta) x_2\|_2 \text{ (triangle inequlity)} \\ &= \theta \|x_1\|_2 + (1-\theta) \|x_2\|_2 \\ &\leq \theta t + (1-\theta) s. \end{split}$$

Hence $\theta(x_1, t) + (1 - \theta)(x_2, s) = (\theta x_1 + (1 - \theta)x_2, \theta t + (1 - \theta)s) \in C$. \Rightarrow C is convex.

3. The distance between the two hyperplanes is also the distance between the two points x_1 and x_2 where the hyperplane intersects the line through the origin and parallel to the normal vector a. These points are given by

$$x_1 = (b_1/\|a\|_2^2)a, \qquad x_2 = (b_2/\|a\|_2^2)a,$$

and the distance is

$$||x_1 - x_2||_2 = |b_1 - b_2| / ||a||_2.$$

4. (a) Consider a convex combination z of two points (x_1, x_2) and (y_1, y_2) in the set. If $x \succeq y$, then $z = \theta x + (1 - \theta)y \succeq y$ and obviously $z_1 z_2 \geq y_1 y_2 \geq 1$. Similar proof if $y \succeq x$. Suppose $y \not\succeq x$ and $x \not\succeq y$, i.e., $(y_1 - x_1)(y_2 - x_2) < 0$. Then

$$(\theta x_1 + (1 - \theta)y_1)(\theta x_2 + (1 - \theta)y_2)$$

$$= \theta^2 x_1 x_2 + (1 - \theta)^2 y_1 y_2 + \theta (1 - \theta)x_1 y_2 + \theta (1 - \theta)x_2 y_1$$

$$= \theta x_1 x_2 + (1 - \theta)y_1 y_2 - \theta (1 - \theta)(y_1 - x_1)(y_2 - x_2)$$

$$> 1.$$

(We can also use the hint for(a).)

(b) Assume that $\prod_i x_i \ge 1$ and $\prod_i y_i \ge 1$. Using the inequality in the hint, we have

$$\prod_{i} (\theta x_i + (1 - \theta)y_i) \ge \prod_{i} x_i^{\theta} y_i^{1 - \theta} = (\prod_{i} x_i)^{\theta} (\prod_{i} y_i)^{1 - \theta} \ge 1.$$

5. We consider two points $(\bar{x}, \bar{y}_1 + \bar{y}_2), (\tilde{x}, \tilde{y}_1 + \tilde{y}_2) \in S$, i.e., with

$$(\bar{x}, \bar{y}_1) \in S_1, \quad (\bar{x}, \bar{y}_2) \in S_2, \quad (\tilde{x}, \tilde{y}_1) \in S_1, \quad (\tilde{x}, \tilde{y}_2) \in S_2.$$

For $0 \le \theta \le 1$,

$$\theta(\bar{x}, \bar{y}_1 + \bar{y}_2) + (1 - \theta)(\tilde{x}, \tilde{y}_1 + \tilde{y}_2) = (\theta \bar{x} + (1 - \theta)\tilde{x}, (\theta \bar{y}_1 + (1 - \theta)\tilde{y}_1) + (\theta \bar{y}_2 + (1 - \theta)\tilde{y}_2))$$
 is in S because by convexity of S_1 and S_2 ,

$$(\theta \bar{x} + (1 - \theta)\tilde{x}, (\theta \bar{y}_1 + (1 - \theta)\tilde{y}_1) \in S_1, \quad (\theta \bar{x} + (1 - \theta)\tilde{x}, (\theta \bar{y}_2 + (1 - \theta)\tilde{y}_2) \in S_2.$$

6. (a)
$$f^{-1}(C) = \{x \in \operatorname{dom} f \mid g^T f(x) \leq h\}$$

 $= \{x \mid g^T (Ax + b) / (c^T x + d) \leq h, \ c^T x + d > 0\}$
 $= \{x \mid (A^T g - hc)^T x \leq hd - g^T b, \ c^T x + d > 0\},$
which is another halfspace, intersected with $\operatorname{dom} f$.

(b)
$$f^{-1}(C) = \{x \in \text{dom } f \mid f(x)^T P^{-1} f(x) \leq 1\}$$

 $= \{x \mid (Ax+b)^T P^{-1} (Ax+b) \leq (c^T x + d)^2\}$
 $= \{x \mid x^T Q x + 2q^T x \leq r, \ c^T x + d > 0\},$
where $Q = A^T P^{-1} A - cc^T, \ q = A^T P^{-1} b - dc, \ r = d^2 - b^T P^{-1} b$. If $A^T P^{-1} A \succ cc^T$, this is an ellipsoid intersected with $\text{dom } f$.

- 7. Take $C = \{x \in \mathbb{R}^2 \mid x_2 \leq 0\}$ and $D = \{x \in \mathbb{R}^2_+ \mid x_1 x_2 \geq 1\}$. (D is convex from Problem 4.)
- 8. We denote by K the set of copositive matrices in S^n . K is a closed convex cone because it is the intersection of (infinitely many) halfspaces defined by homogeneous inequalities

$$z^T X z = \sum_{i,j} z_i z_j X_{ij} \ge 0.$$

K has nonempty interior, because it includes the cone of positive semidefinite matrices, which has nonempty interior. K is pointed because $X \in K, -X \in K$ means $z^T X z = 0$ for all $z \succeq 0$, hence X = 0.

By definition, the dual cone of a cone K is the set of normal vectors of all homogeneous halfspaces containing K (plus the origin). Therefore,

$$K^* = \mathbf{conv}\{zz^T \mid z \succeq 0\}.$$

- 9. (a) K^* is the intersection of a set of homogeneous halfspaces (meaning, halfspaces that include the origin as a boundary point). Hence it is a closed convex cone.
 - (b) $y \in K_2^*$ means $x^T y \ge 0$ for all $x \in K_2$, which is includes K_1 , therefore $x^T y \ge 0$ for all $x \in K_1$.
 - (c) See part (a).
 - (d) Suppose K^* is not pointed, *i.e.*, there exists a nonzero $y \in K^*$ such that $-y \in K^*$. This means $y^Tx \ge 0$ and $-y^Tx \ge 0$ for all $x \in K$, *i.e.*, $y^Tx = 0$ for all $x \in K$, hence K has empty interior.
 - (e) By definition of K^* , $y \neq 0$ is the normal vector of a (homogeneous) halfspace containing K if and only if $y \in K^*$. The intersection of all homogeneous halfspaces containing a convex cone K is the closure of K. Therefore the closure of K is

$$\operatorname{cl} K = \bigcap_{y \in K^*} \{ x \mid y^T x \ge 0 \} = \{ x \mid y^T x \ge 0 \text{ for all } y \in K^* \} = K^{**}.$$