大学物理实验报告

第一部分 (实验目的与原理)

学部 (院) 电子信息学院 姓名乔洪煜寒 学号 2028410073 专业 电科

实验日期

成绩

【实验名称】

用笼球法测液体的黏度

【实验目的】

- 1.观察夜体的黏性现象
- 2. 学习用落球法测液体的粘滞系数

【实验原理】

黏性力:

在稳定流动的流体中,由于平行于流动方向的各层流体速度不同,在相互接触的两层液体之间就有力的作用。流建较快的一层使流速较慢的一层加速,流速较慢的一层使流速较快的一层减速.于是在各层之间就有摩擦力产生,这一作用力和为内摩擦力或黏性力,液体的这一性质和为黏性.

黏性力的方向平行于接触面,其大小与建度梯度及接触面积成正比,比例系数(积效程度(粘滞系数),它由液体的特性和湿度所决定,且随着温度的活面而减小,是表征液体黏性强弱的重要参数。

没体粘滞性的测量是非常重要的,对没体粘滞性的研究在医疗、航空、水利、机械、润滑和液压传动等领域有广泛的应用。

测量液体粘滞系数的方法有多种,如落球法(斯托克斯法)、毛细管法,转商法,于和法和振动法等,其中落球法是最基本的一种,它可用于测量粘度较大的透明或丰适明液体,如蓖麻油、变压器油、甘油等。本实验采用落球法测量液体的黏度系数。粘滞系数的测量:

落球法是将小球放入液体中让其落下,以测定液体的粘滞系段,此方法适用于系数较

苏州大学物理实验教学示范中心制

大的液体的测量。

假设小球在无限了延的液体中下落,由于附着于球面的液层与周围其他液层之间存在看相对运动,产生摩擦力,即小球受到黏性力。它的大小与小球下落的速度有关。

根据斯托克斯定律,小球所受到的黏性力十为:

 $f = 6\pi\eta r V = 3\pi\eta dV$

式中d是小球的直径,以是小球的速度,1为液体粘滞系数

斯托克斯定律要求液体是无限广延的且无旅游产生。故所用的小球是光滑的,而且半径应直适当小。

淞滞系款的测量:

古金属小球 在粘性液体中下落时

受到三个报 / 小球的重力mg 直方向的力 液体作用于小球的浮力f 黏性阻力F(其方向5小球运动方向相反)

粒滞系致的测量:

实验时,待测液体盛于暑器中,故不能满足无限深广的条件,实验上式飞该进行修正。

测量表达式力:

182(1+2.4号) 式中D为名器的阶径

【实验仪器】

FD-VM-II型卷球法液体粘带系数测定仪、螺旋测微器、钢尺、水银温度计、安度计、接条、N钢球等

大学物理实验报告

第二部分 (实验记录)

专业电科 学部 (院) 电话息学院 姓名 乔洪煜寒 学号 2028410073

实验日期 __2011.4.15

成绩_

【原始实验数据及实验现象记录】 千分尺初读数d。= -o.olaym

亭号	l	2	3	4	5	6
末读教(mm)	2.475	2.360	2.480	2.465	2.475	2.476
小球直径di(mm)	2.485	2. 370	2.490	2.475	2.485	2.486
下落时间ti(s)	11.55	11.43	11.42	11.45	12.50	11.48
NIN2 (cm)	25.70	25.60	25.65	25.68	25.72	25.70

P級=7.800g/cm³
P級=0.961×103 kg/m³
T被=22.05°C

大学物理实验报告

第三部分(实验方法与结果讨论)

学部 (院)	电子信息等院_姓名_乔洪煜寒	学号_2028410073	专业电科
实验日期			

【实验方法及步骤】

- 1.1各小钢球及镊子用乙醚、酒精混台液清洗干净(或用干净的纱布或软纸揉搭其表面使 其洁净), 擦干备用。用干分尺测量小球的直径,共测6个小钢球,每个球从不同的方向测 量3次,成出小钢球的平均直径,并将6个小钢球编号待用。
- 2. 调整粘滞系数测量装置及实验仪器
 - 小调节黏度仪的底板至水平,从保证玻璃圆筒中心轴线处于铅直状态。
 - 四启动激光计时器,先选用一个没有测量直径的外球从钢球导管中沿量简轴线下落, 观察小球能在阻断上下两束激光,如没有阻断激光束,则适当调整激光器位置,再 调节接受器的位置,使激光束透过量简的液体后到达激光接受器
 - 3.将小球放入钢球导管,当小球落下,阻挡上面的红色激光束,激光计时器开始记时, 到小球落到阻挡下面的红色激光束时,停止记时读出下落时间。 按复位键 继续下 了N钢球的测量,直至测剂6分外钢球
 - 4.用湿度计测量油温,在全部小球下落完后再测量一次油湿,取平均值作为实际油温。
 - 5.用液体癌度计测量蓖麻油的密度
 - 6. 利用钢尺测量上下两个激光束之间的距离
 - 7.计算液体的粘度及标准不确定度

【实验数据处理及实验结果】

序号	1	2	3	4	5	6
末读软(mm)	2.475	2.360	2.480	2.465	2.475	2.476
小球直径di(mm)	2.485	2.370	2.490	2.475	2.485	2.486
下落时间 ti (s)	11.55	11.43	11.42	11.45	12.50	11.48
NIN2 (cm)	25.70	25.60	25.65	25.68	25.72	25.70

小球直径d

A美: Sā =
$$\frac{\sum (di-\bar{d})^2}{n(n+1)} = 1.91 \times 10^{-2} \text{ mm}$$

$$B^*$$
: $6d = \frac{\Delta d.1}{\sqrt{3}} = \frac{0.004 \text{ mm}}{\sqrt{3}} = 1.31 \times 10^{-3} \text{ mm}$

$$4c_{5}d = \sqrt{5a^{2}+6a^{2}} = 1.93 \times 10^{-2} \text{ mm}$$

山下落时间t

A美:
$$S\bar{t} = \sqrt{\frac{2(t)+\bar{t}^2}{n(u+1)}} = 1.99 \times 10^{-2} \text{S}$$

 $\text{Hc.t} = S\bar{t} = 1.99 \times 10^{-2} \text{S}$

的 下落距离 NiNg

A美:
$$S_{NIN2} = \frac{\Sigma(NIN_2 - NIN_2)^2}{n_1 u + 1} = 1.78 \times 10^{-2} \text{ cm}$$

B美: $S_{NIN2} = \frac{\Delta_{NIN2} \cdot 1 \times}{n_1 u + 1} = \frac{0.1}{\sqrt{3}} \text{ cm} = 0.0577 \text{ cm}$
 $M_{C.NIN2} = \frac{1.78 \times 10^{-2}}{\sqrt{3}} = \frac{0.04 \times 10^{-2}}{1.00} \text{ cm}$

影挺祖或能

$$\frac{U(1)}{\overline{\eta}} = \sqrt{\frac{|u_{cd}|^2 + (\frac{|u_{ct}|^2}{\overline{t}})^2 + (\frac{|u_{c.\overline{NN}}|^2}{\overline{N_{1}N_{2}}})^2} = 9 \times 10^{-3}$$

$$U(1) = 8.304 \times 10^{-3} (Pa.s)$$

$$U(1) = \sqrt{\frac{1}{2}} \times 10^{-3} (Pa.s)$$

$$U(1) = \sqrt{\frac{1}{2}} \times 10^{-3} (Pa.s)$$

$$U(1) = \sqrt{\frac{1}{2}} \times 10^{-3} (Pa.s)$$

【问题讨论】

()如何判断小球过到闭透运动状态?

窟: 降低上面激光器的高度,测量小球通下面一段液体所用的时间.

27分细观察验体密度计的结构,说明它的工作原理。

答: 旁力与浸入液体的体积呈正比关系。由于密度计所受的深动一定(等于重力),所以液体密度和浸入液体的体积成反比关系,这样造成了密度计的刻度上小下大。而且刻度的变化不应主是线性的,即如果密度计的租细是均匀的,刻度的变化不应当是均匀的。但是看到实验室的密度计基本是均匀的,这可能是因为其范围化较小,不均匀性没有明显地被察觉。