

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

Mar North Steel

HENRI MOISSAN, D.Sc.

BORN September 28, 1852 in Paris. Educated at the Musée de l'Histoire Naturelle. 1873, Assistant in the laboratory of Decaisne and Deherain. 1879, Instructor and Demonstrator in the laboratory of the Ecole superieure de Pharmacie. 1887, Professor of Toxicology and 1889, Professor of Mineralogical Chemistry in Ecole de Pharmacie. 1900, Professor of General Chemistry in the Sorbonne and Director of the Institute of Applied Chemistry. 1900, President International Congress of Applied Chemistry (Paris). 1906, Received Noble Prize. Died February 21, 1907.

Publications "Le Flour et ses Composes" 1897, "La Four Electrique," Editor Encyclopedia of Chemistry. Discoveries: Earliest papers on Compounds of Chromium. 1886, Isolated Fluorine. 1897, Liquefied Fluorine. 1892, Produced Calcium Carbide in electric furnace. 1893, Prepared Artificial Diamonds.

van nostrand's CHEMICAL ANNUAL

1913

A HAND-BOOK OF USEFUL DATA

FOR ANALYTICAL, MANUFACTURING, AND INVESTIGATING
CHEMISTS, AND CHEMICAL STUDENTS

THIRD ISSUE

Revised with addition of new tables and a section on STOICHIOMETRY

EDITED BY

JOHN C. OLSEN, A.M., Ph.D.

Member of American Institute of Chemical Engineers; Professor of Analytical Chemistry, Polytechnic Institute, Brooklyn; Formerly Fellow Johns Hookins University; Author of "Quantitative Chemical Analysis."

ASSISTANT EDITOR

ALFRED MELHADO, CH.E. Polytechnic Presedute of Brooklyn, N.Y.

NEW YORK

D. VAN NOSTRAND COMPANY

25 PARK PLACE

1914

HENRI MOISSAN, D.Sc.

ORN September 28, 1852 in Paris. D Educated at the Musée de l'Histoire Naturelle. 1873, Assistant in the laboratory of Decaisne and Deherain. Instructor and Demonstrator in the laboratory of the Ecole superieure de Phar-1887, Professor of Toxicology and 1880, Professor of Mineralogical Chemistry in Ecole de Pharmacie. 1900, Professor of General Chemistry in the Sorbonne and Director of the Institute of Applied Chemistry. 1000. President International Congress of Applied Chemistry (Paris). Received Noble Prize. Died February 21, 1907.

Publications "Le Flour et ses Composes" 1897, "La Four Electrique," Editor Encyclopedia of Chemistry. Discoveries: Earliest papers on Compounds of Chromium. 1886, Isolated Fluorine. 1897, Liquefied Fluorine. 1892, Produced Calcium Carbide in electric furnace. 1893, Prepared Artificial Diamonds.

VAN NOSTRAND'S CHEMICAL ANNUAL

1913

A HAND-BOOK OF USEFUL DATA

FOR ANALYTICAL, MANUFACTURING, AND INVESTIGATING CHEMISTS, AND CHEMICAL STUDENTS

THIRD ISSUE

Revised with addition of new tables and a section on STOICHIOMETRY

EDITED BY

JOHN C. OLSEN, A.M., Ph.D.

Member of American Institute of Chemical Engineers; Professor of Analytical Chemistry, Polytechnic Institute, Brooklyn; Formerly Fellow Johns Hookins University; Author of "Quantitative Chemical Analysis."

ASSISTANT EDITOR

ALFRED MELHADO. CH.E. Polytechnic Institute of Brooklyn, N. Y.

NEW YORK D. VAN NOSTRAND COMPANY 25 PARK PLACE 1914

HENRI MOISSAN, D.Sc.

BORN September 28, 1852 in Paris. Educated at the Musée de l'Histoire Naturelle. 1873, Assistant in the laboratory of Decaisne and Deherain. 1879, Instructor and Demonstrator in the laboratory of the Ecole superieure de Pharmacie. 1887, Professor of Toxicology and 1889, Professor of Mineralogical Chemistry in Ecole de Pharmacie. 1900, Professor of General Chemistry in the Sorbonne and Director of the Institute of Applied Chemistry. 1900, President International Congress of Applied Chemistry (Paris). 1906, Received Noble Prize. Died February 21, 1907.

Publications "Le Flour et ses Composes" 1897, "La Four Electrique," Editor Encyclopedia of Chemistry. Discoveries: Earliest papers on Compounds of Chromium. 1886, Isolated Fluorine. 1897, Liquefied Fluorine. 1892, Produced Calcium Carbide in electric furnace. 1893, Prepared Artificial Diamonds.

van nostrand's CHEMICAL ANNUAL

1913

A HAND-BOOK OF USEFUL DATA

FOR ANALYTICAL, MANUFACTURING, AND INVESTIGATING CHEMISTS, AND CHEMICAL STUDENTS

THIRD ISSUE

Revised with addition of new tables and a section on STOICHIOMETRY

EDITED BY

JOHN C. OLSEN, A.M., Ph.D.

Member of American Institute of Chemical Engineers; Professor of Analytical Chemistry, Polytechnic Institute, Brooklyn; Formerly Fellow Johns Hopkins University; Author of "Ownstitutive Chemical Analysis."

ASSISTANT EDITOR

ALFRED MELHADO, CH.E. Polytechnic Presedute of Brooklyn, N. Y.

NEW YORK
D. VAN NOSTRAND COMPANY
25 PARK PLACE

1914

THE NEW YORK
PUBLIC LIBRARY

55608

ASTOR, LENOR AND
TILDEN FOUNDATIONS
B

COPYRIGHT, 1909, BY
D. VAN NOSTRAND COMPANY
COPYRIGHT, 1914, BY
D. VAN NOSTRAND COMPANY

Stanbope Press
F. H. GILSON COMPANY
BOSTON, U.S.A.

PREFACE TO THE FIRST ISSUE

THE amount of chemical literature published each year has steadily increased at a very rapid rate. It has become more and more difficult for the busy worker to gather from this mass of literature the facts which are of interest and use to him. Much valuable material is of little use because scattered through the literature and therefore inaccessible.

The publication of the Chemical Annual was undertaken as an attempt to overcome this difficulty, at least in part. It has been limited in its scope almost entirely to numerical data, inasmuch as other year books have not aimed to cover this field, and inasmuch as such data cannot generally be carried in the mind, but must be readily accessible for use. To republish all matter of this kind would be both unnecessary and impracticable. The attempt has been made to select and tabulate only that which is of fairly general interest and utility. The investigator in a special field would probably always prefer to go to the original source for the information he wishes. In the preparation of the Chemical Annual the attempt has been made to produce a convenient reference book of numerical data. All tables and numerical data have been quoted from the original source wherever possible, notwithstanding the labor which this work involved.

The tables useful in the calculation of analytical results were first compiled. It is believed that this portion of the Annual is quite complete and will meet all ordinary requirements. All molecular weights as well as the factors for the calculation of analytical results have been calculated from the International Atomic Weights of 1906. As most of the numbers have been calculated several times it is believed that few errors will be found. The molecular weights and other figures have been carried out further beyond the decimal point than is necessary for most calculations. It was thought that the tables would be of more general use if

iii

each chemist were thus at liberty to round off the figures to suit the accuracy of the work in hand.

In collecting the specific gravity tables those most adapted to American practice have been selected. When the specific gravity is given in terms of the Baumé degrees, the so-called American standard as given in Table XXXIII has been adhered to. Where a different Baumé scale had been used in a table the figures have been recalculated to conform with the American standard.

In the review of chemical literature, which contains more than one thousand references to journal articles, the attempt has been made to tabulate and index the important articles of the year in such a manner that the progress made during the year on any given subject will be apparent and its literature easily and quickly found. Any attempt to give a synopsis of the articles would have made the Annual very bulky, and in any case is of doubtful utility.

In a similar manner a list has been made of the most important American and foreign books on chemical subjects which have been published during the year. While the preparation of this list has been somewhat difficult it is hoped that few if any important books have been omitted. Both this list and the list of journal articles include publications from January 1, 1905, to June 1, 1906.

The expense and labor involved in the publication of a book of this kind has been found to be very considerable, so that even with the assistance of a number of contributors, whose interest and cooperation it has been found possible to enlist, the scope of the first issue of the Annual is much more limited than it had been hoped possible to make it. If the demand for such a publication justifies it, the scope of the Annual will be considerably increased in future issues.

The editor desires to express his appreciation of the interest taken and encouragement given by many chemists who did not have the time to prepare matter for publication. He is especially grateful to those whose names appear on the list of contributors and who spared neither time nor labor in the effort to make their contributions accurate and complete.

November, 1906.

 $\mathsf{Digitized} \ \mathsf{by} \ Google$

PREFACE TO THE SECOND ISSUE

The favorable reception accorded the first issue of "The Chemical Annual" has encouraged the publishers to make a thorough revision for the second issue, which they feel will increase its value as a work of reference and extend its use amongst chemists. The revision of the tables published in the first issue has required a great deal more labor than had been anticipated, because of the surprisingly large number of determinations of the physical constants of the chemical elements and compounds published each year. The large number of changes made in the international table of atomic weights for 1909 also necessitated the recalculation of most of the molecular weights as well as of the chemical factors.

As a thorough revision of this kind could not be made in a year, it seemed advisable to abandon, at least temporarily, the original intention of issuing the volume annually. A number of entirely new tables have been added in the present issue. of the physical constants of the alkaloids has been prepared by Dr. Atherton Seidell, and a similar one of the essential oils by Albert E. Seeker. A greal deal of labor was involved in the preparation of these tables, as it was necessary to collect the data from many widely scattered sources. Mr. Seeker has also revised the tables on fats and oils. The recently calculated table of the density of carbon dioxide by Professor Parr, a table giving the melting points and the composition of fusible alloys, as well as a number of other tables of minor importance, have been introduced. Review of Chemical Literature, as well as the List of New Books, gives the important publications which have appeared since the first issue of "The Chemical Annual."

The table of Gravimetric Factors and their Logarithms has been entirely recalculated by Mr. M. C. Whipple, and it is hoped that this important table as well as the table of Molecular Weights and their Logarithms is free from error.

The editor desires to express his appreciation of the interest taken by many chemists who have called his attention to errors in the first issue, and who have made valuable suggestions of tables to be added. It is hoped that advantage can be taken in future editions of many of these suggestions which were not received early enough to be used in the present volume.

The editor desires to acknowledge the great obligation which he is under to the contributors who have prepared tables for the present issue. The greatest care and pains have been taken to secure accuracy and completeness of data.

The editor and publishers submit this volume with every confidence in its accuracy and value as a reference manual to the profession.

J. C. OLSEN.

June 21, 1909.

PREFACE TO THE THIRD ISSUE

In preparing the third issue of "The Chemical Annual" the standard adopted for the first and second issues has been maintained and the physical constants of the chemical elements and compounds have been revised in accordance with the new data published since the last issue. No change, however, has been made in the table of organic compounds. All other tables have been carefully revised and brought up to date. Molecular weights and factors have been recalculated in accordance with the 1913 table of atomic weights.

A considerable number of new tables have been added, such as the solubility of gases in water, fuming sulphuric acid, the alcohol tables of the Bureau of Standards, specific gravity tables of methyl alcohol, refractometer tables of methyl and ethyl alcohol and various other specific gravity tables.

The section on Thermochemistry has been increased by the addition of tables giving heats of formation solution, neutralization and avidity of acids.

The Review of Chemical Literature giving a list of the more important journal articles has been omitted because the field is now well covered by various abstract journals. At the suggestion of Dr. R. Harman Ashley a section on Stoichiometry has been added. The fundamental units of mass and weight, specific gravity and other physical constants have been defined and a full discussion given of the methods of solution of various problems often met by chemists. A considerable number of problems to be solved has been given, affording practice by students in chemical calculations involving the use of the tables published in the Chemical Annual. The entire field of chemical calculations has not been covered but additions may be made in future issues.

Brooklyn, N. Y. Nov. 1, 1913. J. C. OLSEN.

CONTRIBUTORS

- ALBERT F. SEEKER, B.S., Chemist United States Department of Agriculture. "Oils, Fats, and Waxes," Tables VI and XII-XXI, and "Physical and Chemical Constants of Essential Oils," Table XXXI.
- M. C. Whipple, Instructor in Sanitary Chemistry, Harvard University. "Gravimetric Factors and their Logarithms." Table V.
- *E. EMMET REID, Ph.D., Colgate and Co., formerly Professor of Chemistry, Baylor University, Waco, Texas, Johnson Scholar, Johns Hopkins University. "Physical Constants of Organic Compounds." Table XXIX.
 - C. A. F. KAHLBAUM, Chemische Fabrik, Berlin, Germany. "Physical Constants of Organic Compounds." Table XXIX.
 - ATHERTON SEIDELL, Ph.D., Division of Pharmacology, Hygienic Laboratory, U.S. Public Health and Marine Hospital Service, Washington, D.C. "Physical Constants of Alkaloids." Table XXX.
 - R. HARMAN ASHLEY, Ph.D., University of Maine. "Stoichiometry."
 - CARL H. LIPS, B.S., Ph.D., Brooklyn, N.Y. "Stoichiometry and Review of New Books, German."

CONTENTS

NO. OF TABLE		PAGE
I.	International Atomic Weights for 1913	1
II.	MENDELEEFF'S PERIODIC SYSTEM OF THE ELEMENTS	2
III.	Specific Gravity of Gases	3
IV.	PHYSICAL CONSTANTS OF THE ELEMENTS	4
v.	GRAVIMETRIC FACTORS AND THEIR LOGARITHMS	10
VI.	FACTORS FOR THE CALCULATION OF INDIRECT GRAVI- METRIC ANALYSES	37
VII.	MOLECULAR AND ATOMIC WEIGHTS AND THEIR LOGARITHMS	39
•	CALCULATION OF VOLUMETRIC ANALYSES	
VIII.	Basicity of Acids with Various Indicators According to Thompson	51
IX.	VALUE OF NORMAL SOLUTIONS OF ACIDS AND BASES	52
X.	Value of Normal Solutions of Oxidizing and Reducing Agents	54
XI.	VALUE OF NORMAL SOLUTIONS OF PRECIPITATION REAGENTS	56
XII.	PHYSICAL AND CHEMICAL CONSTANTS OF OILS	57
XIII.	PHYSICAL AND CHEMICAL CONSTANTS OF FATS AND WAXES	61
XIV.	PHYSICAL CONSTANTS OF LUBRICATING OILS	64
	PHYSICAL AND CHEMICAL CONSTANTS OF REPRESENTATIVE SAMPLES OF LUBRICATING OILS	65
XVI.	TEMPERATURE CORRECTION FOR REFRACTIVE INDICES OF OILS	67
XVII.	TEMPERATURE CORRECTION FOR SPECIFIC GRAVITY OF OILS	67
XVIII.	CONVERSION OF ACID VALUE INTO OLEIC ACID	67
	Table for Calculating the Specific Gravity of Oils at 15.5°	68
XX.	POLENSKE VALUE OF BUTTER FAT	68
	Conversion of Butyro-Refractometer Readings to	50
	Indices of Refraction	69

	CALCULATION OF GAS ANALYSES
O. OF TABLE	
	REDUCTION OF GAS VOLUMES TO 0° AND 760 MM
XXIII.	CORRECTIONS OF BAROMETER READINGS FOR TEMPERA-
XXIV	COEFFICIENT OF EXPANSION OF GASES
	Solubility of Gases in Water
	DENSITY OF NITROGEN
XXVII	Density of Carbon Dioxide
	LOGARITHMS
PHYS	SICAL CONSTANTS OF CHEMICAL COMPOUNDS
XXIX.	PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS
	PHYSICAL CONSTANTS OF ORGANIC COMPOUNDS
	PHYSICAL CONSTANTS OF ALKALOIDS
	PHYSICAL AND CHEMICAL CONSTANTS OF ESSENTIAL OILS .
	MELTING POINT AND COMPOSITION OF FUSIBLE ALLOYS.
	SPECIFIC GRAVITY TABLES
XXXIV	(a). Equivalent of Degrees Baumé (American Stand-
	ARD) AND SPECIFIC GRAVITY AT 60° F. FOR LIQ-
	UIDS HEAVIER THAN WATER
XXXIV	(b). Equivalent of Degrees Baumé (American Stand-
	ARD) WITH SPECIFIC GRAVITY AT 60° F. FOR LIQ-
	UIDS LIGHTER THAN WATER
XXXV.	SULPHURIC ACID. FERGUSON AND TALBOT
	Fuming Sulphuric Acid at 20°. Winkler
	Sulphuric Acid 94-100%. Bishop
	SULPHURIC ACID. LUNGE AND ISLER
	Fuming Sulphuric Acid. Bishop
XL.	NITRIC ACID AT 60° F. FERGUSON
	NITRIC ACID AT 15°. LUNGE AND REY
	Hydrochloric Acid. Ferguson
	Hydrochloric Acid. Lunge and Marchlewski
	ACETIC ACID AT 15°. OUDEMANS
XLV.	Phosphoric Acid at 17.5°. Hager
	AQUA AMMONIA. FERGUSON
	Sodium Hydroxide at 15°. Lunge
	Potassium Hydroxide at 15°. Lunge
	SORTIN CARRONAME AM 150 I TINGE

	CONTENTS	хi
OF TABLE		PAGE
	CONCENTRATED SODIUM CARBONATE SOLUTION AT 30°. LUNGE	414
LI.	CORRECTION OF SPECIFIC GRAVITY OF SODIUM CARBONATE FOR ± 1° C. LUNGE	415
LII.	POTASSIUM CARBONATE SOLUTION AT 15°. CALCULATED FROM GERLACH	416
	Specific Gravity and Percentage of Alcohol by Volume. Squibb	417
LIV.	PERCENTAGE OF ALCOHOL BY VOLUME AND BY WEIGHT. GILPIN, DRINKWATER, AND SQUIBB	418
ALCOH	OL TABLES OF THE BUREAU OF STANDARDS	
	DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER	423
	AT $\frac{20^{\circ}}{4^{\circ}}$ C	425
	Specific Gravity of Mixtures of Ethyl Alcohol and Water at $\frac{60^{\circ}}{60^{\circ}}$ F. $\left(\frac{15.55^{\circ}}{15.56^{\circ}}$ C. $\right)$	428
LVIII.	PER CENT OF ALCOHOL BY VOLUME AT 60° F., CORRESPONDING TO VARIOUS PER CENTS BY WEIGHT IN MIXTURES OF ETHYL ALCOHOL AND WATER	431
LIX.	REDUCTION OF MIXTURES OF ETHYL ALCOHOL AND WATER FROM PER CENTS BY VOLUME TO PER CENTS BY WEIGHT	434
	METHYL ALCOHOL AT 15.56°. DITTMAR AND FAWSITT	435
	SPECIFIC GRAVITY AND PERCENTAGE BY WEIGHT AND VOLUME OF METHYL ALCOHOL	436
LXII.	REFRACTOMETER READINGS OF METHYL AND ETHYL ALCOHOL	439
	CALCULATION OF THE AMOUNT OF ETHYL AND METHYL ALCOHOL IN DISTILLATES CONTAINING A MIXTURE OF	
LXIII.	THE TWO	441
	CERENE. GERLACH AND SKALWEIT	442
LXIV.	Ammonium Sulphate Solution at 19°. Schiff	443
LXV.	Ammonium Chloride Solution at 15°. Gerlach Available Chlorine in Bleaching Powder Solution	444
102 N T 1	AT 15°. LUNGE AND BACHOFFEN	444
LXVII	CUPRIC CHLORIDE SOLUTION AT 17.5°. FRANZ	444
	CUPRIC SULPHATE SOLUTION AT 18°	445
LXIX.	FERRIC CHLORIDE SOLUTION AT 17.5°. FRANZ	445

NO. OF TABLE		PAGE
LXX.	FERROUS SULPHATE AT 15°, GERLACH	446
LXXI.	FERRIC SULPHATE AT 18°. HAGER	446
LXXII.	Potassium Chromate Solution at 19.5°. Schiff	447
LXXIII.	Potassium Dichromate Solution at 19.5°. Kremers	
	AND GERLACH	447
LXXIV.	SODIUM CHLORIDE SOLUTION AT 15°. GERLACH	447
	SODIUM DICHROMATE SOLUTION. STANLEY	448
LXXVI.	SODIUM HYPOSULPHITE. BISHOP	448
LXXVII.	SODIUM SULPHITE. BISHOP	450
LXXVIII.	SODIUM BISULPHITE. BISHOP	451
LXXIX.	STANNIC CHLORIDE SOLUTION AT 15°. GERLACH	453
LXXX.	STANNOUS CHLORIDE SOLUTION AT 15°. GERLACH	454
LXXXI.	ZINC CHLORIDE. BISHOP	454
LXXXII.	ZINC, CADMIUM, AND LITHIUM CHLORIDE AT 19.5°.	
	Kramer	456
LXXXIII.	ZINC SULPHATE SOLUTION AT 15°	456
LXXXIV.	DENSITY OF WATER AT 0° TO 36°. THIESEN, SCHEEL,	
5 : .	AND DIESSELHORST	457
LXXXV.	Density of Water at 30° to 102°. Thiesen	458
ĽXXXVI.	DENSITY OF WATER AT 100° TO 320°. RAMSAY, YOUNG,	
	WATERSTON, AND HIRN	458
LXXXVII.	Volume of One Gram of Water at 0° to 36°. Thiesen,	
151	Scheel, and Diesselhorst	459
LXXXVIII.	VOLUME OF ONE GRAM OF WATER AT 30° TO 102°.	
	THIESEN	460
LXXXIX.	Volume of One Gram of Water at 100° to 320°. Ram-	
	SAY, YOUNG, WATERSTON, AND HIRN	460
XC.	Tension of Water Vapor over Ice at -50° to 0° .	
FM .	JUHLIN AND MARVIN	461
XCI.		
•	REGNAULT, Broch and Juhlin	461
XCII.	Tension of Water Vapor over Water at -2° to 36° .	
	REGNAULT, BROCH AND WEIBE	462
XCIII.	TENSION OF WATER VAPOR OVER WATER AT 30° TO 230°.	
	REGNAULT, BROCH AND WEIBE	463
	Vapor Pressure of Water at 0° to 229°. Regnault.	464
XCV.	BOILING POINT OF WATER AT 680 TO 800 MM. PRESSURE.	
	REGNAULT, BROCH AND WEIBE	467
XCVI.	VAPOR TENSION OF MERCURY AT 40° TO 520°. RAMSAY	
	AND YOUNG	468
XCVII.	VAPOR TENSION OF MERCURY AT 400° TO 880°. CAIL-	
	LETET CORLARDEAU AND RIVIÈRE	468

E	QUIVALENTS OF WEIGHTS AND MEASURES			
NO. OF TABLE		PAGE		
XCVIII.	FUNDAMENTAL EQUIVALENTS OF METRIC AND U. S.			
	WEIGHTS AND MEASURES	470		
XCIX.	Comparison of Metric and Customary (U. S.) Units			
~	FROM 1 TO 10	471		
C.	Conversion of Metric to British Imperial Weights			
	AND MEASURES	477		
CI.	Conversion of British Imperial to Metric Weights	450		
	AND MEASURES	479		
	THERMOCHEMISTRY	, ,		
CII	THERMOCHEMICAL UNITS	481		
		482		
	HEATS OF FORMATION	494		
	HEATS OF NEUTRALIZATION OF ACIDS WITH FORMATION	404		
CV.	OF SODIUM SALTS	500		
CVI	RELATIVE AVIDITY OF ACIDS	501		
	HEAT OF COMBUSTION OF VARIOUS SUBSTANCES	502		
	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	002		
0,111.	Anthracite Coal	504		
CIX.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	001		
	BITUMINOUS COAL	505		
CX.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF			
	Oven Cokes	506		
CXI.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF			
	LIGNITE	507		
CXII.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF			
	Wood	508		
CXIII.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF			
	Petroleum	508		
CXIV.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF			
	NATURAL GAS	509		
CXV.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF			
O	COAL GAS	510		
CXVI.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF			
	WATER GAS	511		
STOICHIOMETRY				
Weight and	Mass	515		
SPECIFIC GR	AVITY	519		
P _{ROBLEMS}	Digitized by Google	533		
	Digitized by GOOSTC .			

NO. OF TABLE	P
	FERROUS SULPHATE AT 15°. GERLACH
LXXI.	FERRIC SULPHATE AT 18°. HAGER
LXXII.	POTASSIUM CHROMATE SOLUTION AT 19.5°. SCHIFF
LXXIII.	Potassium Dichromate Solution at 19.5°. Kremers
	AND GERLACH
LXXIV.	SODIUM CHLORIDE SOLUTION AT 15°. GERLACH
LXXV.	SODIUM DICHROMATE SOLUTION. STANLEY
LXXVI.	SODIUM HYPOSULPHITE. BISHOP
LXXVII.	SODIUM SULPHITE. BISHOP
LXXVIII.	SODIUM BISULPHITE. BISHOP
	STANNIC CHLORIDE SOLUTION AT 15°. GERLACH
	STANNOUS CHLORIDE SOLUTION AT 15°. GERLACH
	ZINC CHLORIDE. BISHOP
	ZINC, CADMIUM, AND LITHIUM CHLORIDE AT 19.5°.
	Kramer
LXXXIII.	ZINC SULPHATE SOLUTION AT 15°
LXXXIV.	DENSITY OF WATER AT 0° TO 36°. THIESEN, SCHEEL,
No.	AND DIESSELHORST
LXXXV.	Density of Water at 30° to 102°. Thiesen
LXXXVI.	DENSITY OF WATER AT 100° TO 320°. RAMSAY, YOUNG,
	WATERSTON, AND HIRN
LXXXVII.	VOLUME OF ONE GRAM OF WATER AT 0° TO 36°. THIESEN,
1111	Scheel, and Diesselhorst
LXXXVIII.	VOLUME OF ONE GRAM OF WATER AT 30° TO 102°.
*`	THIESEN
LXXXIX.	VOLUME OF ONE GRAM OF WATER AT 100° TO 320°. RAM-
	SAY, YOUNG, WATERSTON, AND HIRN
XC.	Tension of Water Vapor over Ice at -50° to 0° .
74.7 J	JUHLIN AND MARVIN
· XCI.	
	REGNAULT, BROCH AND JUHLIN
XCII.	Tension of Water Vapor over Water at - 2° to 36°.
22321.	REGNAULT, BROCH AND WEIBE
XCIII	Tension of Water Vapor over Water at 30° to 230°.
-10111.	REGNAULT, BROCH AND WEIBE
XCIV	Vapor Pressure of Water at 0° to 229°. Regnault.
	BOILING POINT OF WATER AT 680 TO 800 MM. PRESSURE.
ACV.	REGNAULT, BROCH AND WEIBE
YCVI	Vapor Tension of Mercury at 40° to 520°. Ramsay
AUVI.	AND YOUNG
VOVII	Vapor Tension of Mercury at 400° to 880°. Cail-
	LETET CORLARDEAU AND RIVIÈRE
	LETER LARGARDEAU AND KIVIERE

CONTENTS

E	QUIVALENTS OF WEIGHTS AND MEASURES
NO. OF TABLE	
XCVIII.	FUNDAMENTAL EQUIVALENTS OF METRIC AND U. S. WEIGHTS AND MEASURES
XCIX.	COMPARISON OF METRIC AND CUSTOMARY (U. S.) UNITS FROM 1 TO 10
C.	CONVERSION OF METRIC TO BRITISH IMPERIAL WEIGHTS AND MEASURES
CI.	Conversion of British Imperial to Metric Weights and Measures
	THERMOCHEMISTRY
CII.	THERMOCHEMICAL UNITS
CIII.	HEATS OF FORMATION
	HEATS OF SOLUTION
	HEATS OF NEUTRALIZATION OF ACIDS WITH FORMATION
	of Sodium Salts
CVI.	RELATIVE AVIDITY OF ACIDS
	HEAT OF COMBUSTION OF VARIOUS SUBSTANCES
	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF ANTHRACITE COAL
CIX.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF BITUMINOUS COAL
CX.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF OVEN COKES
CXI.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF LIGHTE
	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF WOOD
	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF PETROLEUM
CXIV.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF NATURAL GAS
CXV.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF COAL GAS
CXVI.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF WATER GAS
	STOICHIOMETRY
EIGHT AND	Mass
PECIFIC GR.	AVITY
ROBLEMS	

xiv

CONTENTS

	PAGI
GAS AND MERCURY THERMOMETERS	539
Atmosphere Pressure, Barometer	54 1
GAS CALCULATIONS	
Problems	
Successive Reactions	
PROBLEMS	
Oleum Analysis	
FORMATION OF MIXTURES OF DEFINITE COMPOSITION	556
Problems	565
NEW BOOKS	
A LIST OF THE MORE IMPORTANT BOOKS WHICH HAVE BEEN PUBLISHED	
SINCE JULY, 1909	57
American and English Books	
Foreign Books, mostly German	

I. — INTERNATIONAL ATOMIC WEIGHTS

FOR 1913*

0 = 16

Name.	Symbol.	Atomic Weight.	Name.	Symbol.	Atomic Weight.
Aluminium	Al	27.1	Molybdenum	Mo	96.0
Antimony	Sb	120.2	Neodymium	Nd	144.3
Argon	A	39.88	Neon	Ne	20.2
Arsenic	As	74.96	Nickel	Ni	58 .68
Barium	Ba	137.37	Niton	Nt	222.4
Bismuth	Bi	208.0	Nitrogen	N	14.01
Boron	В	11.0	Osmium	Os	190.9
Bromine	Br	79.92	Oxygen	0	16.00
Cadmium	Cd	112.40	Palladium	Pd	106.7
Caesium	Cs	132.81	Phosphorus	P	31.04
Calcium	Ca	40.07	Platinum	Pt	195.2
Carbon	С	12.00	Potassium	K	39.10
Cerium	Ce	140.25	Praseodymium	Pr	140.6
Chlorine	Cl	35.46	Radium	Ra	226.4
Chromium	Cr	52 .0	Rhodium	Rh	102.9
Cobalt	Co	58.97	Rubidium	Rb	85.45
Columbium	Съ	93.5	Ruthenium	Ru	101.7
Copper	Cu	63.57	Samarium	Sm	150.4
Dysprosium	Dy	162.5	Scandium	Sc	44.1
Erbium	Er	167.7	Selenium	Se	79.2
Europium	Eu	152.0	Silicon	Si	28.3
Fluorine	F	19.0	Silver	Ag	107.88
Gadolinium	Gd	157.3	Sodium	Na	23.00
Gallium	Ga	6 9 . 9	Strontium	Sr	87.63
Germanium	Ge	72.5	Sulphur	S	32.07
Glucinum	Gl	9.1	Tantalum	Ta	181.5
Gold	Au	197.2	Tellurium	Te	127.5
Helium	He	3.99	Terbium	Tb	159.2
Holmium	Ho	163.5	Thallium	Tl	204.0
Hydrogen	H	1.008	Thorium	Th	232.4
Indium	In	114.8	Thulium	Tm	168.5
Iodine	I	126.92	Tin	Sn	119.0
Iridium	Ir	193.1	Titanium	Ti	48.1
Iron	Fe	55.84	Tungsten	w	184.0
Krypton	Kr	82.92	Uranium	σ	238.5
Lanthanum	La	139.0	Vanadium	v	51.0
Lead	Pb	207.10	Xenon	Хe	130.2
Lithium	Li	6.94	Ytterbium	Yb	172.0
Lutecium	Lu	174.0	(Neoytterbium)	1	
Magnesium	Mg	24.32	Yttrium	Yt	89.0
Manganese	Mn	54.9 3	Zinc	Zn	65.37
Mercury	Hg	200.6	Zirconium	Zr	90.6

^{*} Compiled by the International Committee on Atomic Weights consisting of F. W. Clarke, W. Ostwald, T. E. Thorpe, and G. Urbain.

ELEEFF'S	PERIODIC	SYSTEM	OF	OF THE	ELE
	Revised by CHARLES BASKERVILLE	LES BASKERVIL	LE		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Series.		Group I.	Group II.	Group III.	Group IV.	Group V.	Group VI.	Group VII.	
Ne=20.2 Na=23.00 Mg=24.32 Al=27.1 Si=28.3 P=31.04 S=32.07 Cl=35.46 A=39.9 K=39.10 Ca=40.07 Sc=44.1 Ti=48.1 V=51.0 Cr.=52.0 Mn=54.93 Kr=82.92 Kb=85.45 Zr=86.37 Ga=69.9 Ge=72.5 As=74.96 Se=79.2 Br=79.92 Kr=82.92 Rb=85.45 Sr=87.63 Yt=89.0 Zr=90.6 Cb=93.5 Mo=96.0 Mo=60.0 Ag=107.86 Cd=112.4 In=114.8 Sn=119.0 Sb=120.2 Te=127.5 I=126.92 Xe=130.2 Cs=132.81 Ba=137.37 La=139.0 Ce=140.25 (Pr=140.6) (Nd=144.3) Ch=126.92 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	10-0	1	H=1.008 Li=6.94	Gl=9.1	B=11.0		N=14.01	0=16.00	F=19	
	ഹ	Ne = 20.2	Na = 23.00	Mg = 24.32	Al = 27.1		P=31.04	S = 32.07	Cl = 35.46	
	ক	A=39.9		Ca=40.07						Co=58.97 Ni=58.68
	E3		Cu=63.57	Zn=65.37			$A_8 = 74.96$	Se=79.2		
	9	Kr=82.92	Rb=85.45					Mo=96.0	· ·	Ru = 101.7 Rh = 102.9 Pd = 106.7
	7.0		Ag=107.8	Cd=112.4			Sb=120.2	Te = 127.5) I=126.92	(Ag)
Ta=172.0	w ni	Xe=130.2	$C_{S} = 132.81$	Ba=137.37	La=139.0	Ce=140.25	(Pr = 140.6)	(Nd = 144.3)	<u>_</u>	Sa = 150.4 Eu = 152
Ta=181.5 W=184.0 Au=197.2 Hg=200.0 Tl=204.0 Pb=207.10 Bi=208 U=238.5	iaitized		l	1	Er=167.7		Yb=172.0	I	۱ -	Gd=157.3
Au=197.2 $\frac{\text{Hg}=200.0}{\text{Ra}=226.4}$ $\frac{\text{Tl}=204.0}{\text{Th}=232.4}$ $\frac{\text{Bi}=208}{\text{U}=238.5}$	hy GÖC	1	1	ı	ı		Ta=181.5	W=184.0	<u>ا</u>	0s = 190.9 1r = 193.1 Pt = 195.2
	ogle	 Nt=222.4	Au=197.2	Hg = 200.0 $Ra = 226.4$		Pb = 207.10 Th = 232.4		U=238.5	_	(Au)

Rare earth metals not placed: — Dy = 162.5, Lu = 174, Tb = 159.2, Tm = 168.5.

Name.	Formula.	Molecu-	Specific G	ravity, Air = 1.	Weight in Grams of 1 Liter at 0°,
		Weight.	Calcu- lated.	Observed.	760 mm. at Sea Level, lat. 45°.
Acetylene	C_2H_2	26.016	0.8988	0.92	1.1620
Air		1	1.0000		1.2926
Ammonia	NH_3	17.034	0.5895	0.5963	0.7708
Argon	A	39.88	1.379	1.3778	1.7828
Arsine	AsH_3	77.984	2.696	2.695	3.485
Bromine	$Br_2 \dots$	159.84	5.5249	5.524(227.9°)	7.1426
Butane	C_4H_{10}	58.08	2.0065	2.01	2.594
Carbon dioxide	CO_2	44.00	1.5201	1.52932	1.9768
Carbon monoxide	CO	28.00	0.9673	0.96735	1.2504
Carbon oxysulphide	cos	60.07	2.0749	2.1046	2.6825
Chlorine	$Cl_2 \dots$	70.92	2.489	2.491	3.1666
Cyanogen	C_2N_2	52.02	1.7993	1.8064	2.3261
Ethane	C_2H_6	30.048	1.0381	1.075	1.3421
Ethylene	$C_2H_4\dots$	28.032	0.9784	0.9852	1.2520
Fluorine	$\mathbf{F_2}$	38.0	1.313	1.26	1.697
Helium	He	3.99	0.1382	0.1368	0.1787
Hydrobromic acid	HBr	80.928	2.7973	2.71	3.6163
Hydrochloric acid	HCl	36.468	1.2595	1.2686	1.6398
Hydrofluoric acid	HF	20:008	0.691	0.7126	0.894
Hydroiodic acid	HI	127.928	4.4172	4.3757	5.7106
Hydrogen	H_2	2.016	0.06965	0.06953	0.089873
Hydrogen selenide.	H_2 Se	81.216	2.806	2.795	3.627
Hydrogen sulphide.	H_2S	34.086	1.1773	1.1895	1.5392
Hydrogen telluride.	H_2 Te	129.516	4.478	4.489	5.789
Krypton	Kr	82.92	2.826	2.818	3.654
Methane	CH_4	16.032	0.5539	0.5576	0.7168
Neon	Ne	20.2	0.691	0.674	0.893
Nitric oxide	NO	30.01	1.0378	1.0368	1.3402
Nitrous oxide	N_2O	44.02	1.5229	1.5300	1.9777
Nitrogen	N ₂	28.02	0.9701	0.96758	1.2507
atmospheric	$N_2 + A$ etc.		i	0.97209	1.25718
Nitrogen dioxide	$NO_2 \dots$	46.01	1.5906	1.60 (135°)	2.0563
" " …	N_2O_4	92.02	3.1812	2.65 (26.7°)	4.1126
Nitrosyl chloride	NOCI	65.47	2.2625	2.31	2.925 •
Oxygen	O ₂	32.00	1.1055	1.1055	1.4292
Phosphine	$PH_a \dots$	34.064	1.175	1.214	1.520
Propylene	C ₃ H ₆	42.048	1.4527	1.498	1.8780
Silicon fluoride	SiF ₄	104.3	3.607	3.60	4.663
Sulphur dioxide	so,	64.07	2.2131	2.2641	2.9266
Xenon	x	130.2	4.422	4.422	5.717
					

^{*} A considerable portion of this table is quoted from Landolt-Börnstein Phys-Chem. Tabellen, 1905, p. 222.

Hydrogen, gas	1.4	3.410
Second	1.4	U.TIV
Indium	1	6.
Iodine, gas	16.1	.05695
5 solid I 126.92 253.84 4.948176 6 Iridium, spongy Ir 193.1 15.86 7 crystalline Ir 193.1 22.42 Iron, pure Fe 55.84 7.85-7.88 9 wrought Fe 55.84 7.60-7.80 10 steel Fe 55.84 7.60-7.80 11 gray pig Fe 55.84 7.58-7.73 12 white pig Fe 55.84 7.58-7.73 13 Krypton, gas Kr 82.92 81.8 2.818 A. 40.78 D. 1.1 40.78 D. 2.155-152° 15 Lanthanum La 139.0 6.1545 16 Lead Pb 207.10 11.34 17 Lithium Li 6.94 0.5342°° 18 Magnesium Mg 24.32 1.69-1.75 19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.5953 21 <td>120.7</td> <td>. 0336²⁰⁶°</td>	120.7	. 0336 ²⁰⁶ °
Gridium, spongy	25.7	.05412
7 crystalline Ir 193.1 22.42 8 Iron, pure Fe 55.84 7.85–7.88 9 wrought Fe 55.84 7.86 10 steel Fe 55.84 7.60–7.80 11 gray pig Fe 55.84 7.33–7.13 12 white pig Fe 55.84 7.58–7.73 13 Krypton, gas Kr 82.92 81.8 { 40.78 D. 14 liquid Kr 82.92 81.8 { 40.78 D. 15 Lanthanum La 139.0 6.1545	12.2	.03412
S Iron, pure. Fe 55.84 7.85-7.88		0000
9 wrought. Fe steel. 7.86 10 steel. Fe 55.84 7.60-7.80 11 gray pig Fe 55.84 7.03-7.13 12 white pig Fe 55.84 7.58-7.73 13 Krypton, gas Kr 82.92 81.8 2.818 A. 40.78 D. 14 liquid. Kr 82.92 2.155-152° 15 Lanthanum La 139.0 6.1545 16 Lead Pb 207.10 11.34 17 Lithium Li 6.94 0.53420° 18 Magnesium Mg 24.32 1.69-1.75 19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.59538 21 Molybdenum Mo 96.0 8.6-9.01 22 Neodymium Nd 144.3 6.9563	8.6	.0323
10 steel Fe 55.84 7.60-7.80 11 gray pig Fe 55.84 7.03-7.13 12 white pig Fe 55.84 7.58-7.73 13 Krypton, gas Kr 82.92 81.8 { 40.78 D. 14 liquid Kr 82.92 2.155-152° 15 Lanthanum La 139.0 6.1545 16 Lead Pb 207.10 11.34 17 Lithium Li 6.94 0.5342° 18 Magnesium Mg 24.32 1.69-1.75 19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.59538 21 Molybdenum Mo 96.0 8.6-9.01 122 Neodymium Nd 144.3 6.9563 (0.674.4)	7.1	.1162
11 gray pig. Fe	7.1	.1130
12 white pig. Fe 55.84 7.58-7.73 13 Krypton, gas Kr 82.92 81.8 { 2.818 A. 40.78 D. 14 liquid Kr 82.92 2.155-152° 15 Lanthanum La 139.0 6.1545 16 Lead Pb 207.10 11.34 17 Lithium Li 6.94 0.53420° 18 Magnesium Mg 24.32 1.69-1.75 19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.5953\$ 21 Molybdenum Mo 96.0 8.6-9.01 22 Neodymium Nd 144.3 6.9563	7.3	.1066
13 Krypton, gas Kr 82.92 81.8 { 2.818 A. 40.78 D. 14 liquid Kr 82.92 2.155-152° 15 Lanthanum La 139.0 6.1545 16 Lead Pb 207.10 11.34 17 Lithium Li 6.94 0.53420° 18 Magnesium Mg 24.32 1.69-1.75 19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.5953\$ 21 Molybdenum Mo 96.0 8.6-9.01 22 Neodymium Nd 144.3 6.9563 (0.674 A	7.9	
13 krypton, gas Kr 82.92 81.8 40.78 D. 14 liquid Kr 82.92 2.155 ^{-152°} 15 Lanthanum La 139.0 6.1545 16 Lead Pb 207.10 11.34 17 Lithium Li 6.94 0.534 ^{20°} 18 Magnesium Mg 24.32 1.69-1.75 19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.5953² 21 Molybdenum Mo 96.0 8.6-9.01 22 Neodymium Nd 144.3 6.9563 1 10.78 D. 20.155 ^{-152°} 11.34 11.34 10.78 D. 20.750° 11.34 0.534 ^{20°} 12.34 0.78 D. 13.45 0.155 ^{-152°} 13.45 0.534 ^{20°} 14.43 0.674 A.	7.3	.1050
14 liquid Kr 82.92 2.155-152° 15 Lanthanum La 139.0 6.1545 16 Lead Pb 207.10 11.34 17 Lithium Li 6.94 0.53420° 18 Magnesium Mg 24.32 1.69-1.75 19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.5953² 21 Molybdenum Mo 96.0 8.6-9.01 22 Neodymium Nd 14.43 6.9563 10 6.744 6.744		
15 Lanthanum La 139.0 6.1545 16 Lead	38.5	
16 Lead Pb 207.10 11.34 17 Lithium Li 6.94 0.534200 18 Magnesium Mg 24.32 1.69-1.75 19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.5953\$ 21 Molybdenum Mo 96.0 8.6-9.01 22 Neodymium Nd 144.3 6.9563 10 6.74 A 1.674 A	22.6	.04485
17 Lithium Li 6.94 0.534 ^{20°} 18 Magnesium Mg 24.32 1.69–1.75 19 Manganese	18.2	.0310
18 Magnesium Mg 24.32 1.69-1.75 19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.5953\$ 21 Molybdenum Mo 96.0 8.6-9.01 22 Neodymium Nd 14.3 6.9563 1 0 674 A		0.8366
19 Manganese Mn 54.93 7.42 20 Mercury Hg 200.6 200.6 13.5953‡ 21 Molybdenum Mo 96.0 8.6-9.01 22 Neodymium Nd 14.3 6.9563		
20 Mercury Hg 200.6 200.6 13.5953\$ 21 Molybdenum Mo 96.0 8.6-9.01 22 Neodymium Nd 144.3 6.9563 10 6.74 A	14.3	. 2456
21 Molybdenum Mo 96.0 8.6–9.01 22 Neodymium Nd 144.3 6.9563	7.4	.1217
22 Neodymium Nd 144.3 6.9563	14.7	.03346
· (0.674.A	10.9	.0659
No. 10.674 A.	20.7	
23 Neon		
24 Nickel	6.7	.1084
25 Nitrogen, gas N 14.01 28.00 0.96737 A.		.2438
26 liquid N 14.01 0.8042-195.		
27 Osmium	8.5	.03113
28 Oxygen, gas O 16 32 1.10535 A.		.2175
29 liquidO 16 32 1.1181 ⁻¹⁸²		.2175
30 Ozone O ₃ 48 1.658 A.	14.0	
31 PalladiumPd 106.7 11.4-11.9	9.2	0500
	_	.0592
	17.0	.202
33 red	13.5	.1829 .
34 liquid P 31.04 1.76444.3°	11.9	
35 Platinum Pt 195.2 21.16 %	9.2	.0323
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44.6	.1662
37 Praseodymium Pr 140.6 6.4754	21.6	
38 Radium Ra		
39 Rhodium Rh 102.9 12.1	8.5	.05803
40 Rubidium Rb 85.45 1.53220°	55.85	5
		1

Digitized by GOOSIC

d 1	At. Heat Sp. Heat × At. Wt.	Electrical Conduc- tivity at o° C.	Thermal Conductivity K* at 0° C. Ag = 1.00.	Linear Coefficient of Expansion. Melting Point, °C.		Boiling Point, °C.	
-1					At °C.		
1	3.44		.0,3270			- 259°	-252.5°
2	6.05				1		1
		119500		.0,417	40°	115°	700°
	4.27						
- 1	6.86			.0₄837	-190-17	114.2°	184.35°
6		• • • • • • • • •		. 04001	100 1.	2250°	101.00
- 1	6.23	• • • • • • • •		.0,0700	40°	1950°	
		131000	1005	.0,1182	0°-100°	1505°	2450°
- 1		131000	.1665				2450
- 1	6.32		.2070	.0,11	0°-100°	1600°	
1	5.96	63000	.1300	.0,11	0°-100°	1375°	
11		§ 10200-		.041061	40°	1275°	
12	5.87	11300	.1490			1075°	
13				• • • • • • •		-16 9°	-151.7°
14					1	·	
	6.23					810°	1
16	3.52	50400	.0836	.0,2924	40°	327°	1525°
		119000	10000			186°	>1400°
1		230000	.3760	0,2694	40°	650°	1120°
	6.70	200000	.0,00	.042001	10	12 25°	1900°
1	6.69	10630	.0148	.0,182	0°-100°	-38.85°	357.33°
	6.33	10000	.0146	.08102	0 –100	2500°	307.33
	0.33					840°	· · · · · · · · ·
22	• • • •		• • • • • • • • • •	• • • • • • •	• • • • • • •	840	
23			• • • • • • • • •			- 253°	-243°
24	6.36	144200	.1420	.041279	40°	1450°	
25	3.42		.0₄524		.	-213°	-195.5°
26							l. .
	5.95	105300		.0,0657	40°	2700°	
	3.48		.0,563			-227°	-182.7°
29	0.10		.01000			22.	102
30						decomp. 270°	-119°
1	e 30	07000	1.000	0.1170	40°		-119
	6.32	97900	.1683	.0,1176	0°-44°	1550° 44.1°	290°
	6.26	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	$.0_{3}124$	U~44~		
	5.67	• • • • • • •	• • • • • • • • • • • • • • • • • • • •			725°	350° (yel.)
34	$\cdots $			• • • • • • • •	<u>.</u>		
	6.29	91200	.1664	.040899	40°	1753°	
36	6.51	150500		.0,83	0°-50°	62.5°	757.5°
37						940°	
38]					700°	
	5.97			.0,0850	40°	1970°	
10				. 540000		38.5°	696°

Digitized by GOOG

ä			Atomic	Molecu-	Specific Gravity.	Atomic	Specific
Number	Name.	bol.	Weight. 0=16.	lar	Water = 1. Air = 1 (A) Hydrogen = 1 (D).	Vol. At. Wt. Sp. Gr.	Specific Heat at o° C.
1	Ruthenium, spon	Ru	101.7		8.6	11.8	
2	melted	Ru	101.7		11.4	8.9	
3	cryst	Ru	101.7		12.268°	8.3	.0611
4	Samarium	Sm	150.4		7.7-7.8	19.4	
5	Scandium	Se	44.1			100/11	
	Selenium, amorph.	Se	79.2	633.6	4.26-4.28250	18.5	.09533
7	monoclinic	Se	79.2	633.6	4.47250		.08401
8	hexagonal	Se	79.2	633.6	4.8250	16.5	
-1	Silicon, amorph	Si	28.3		2.00		0.214210
10	cryst	Si	28.30		2.49100		.1697220
1	Silver	Ag	107.88	1	10.53		.0559
		Na.		1	0.973513.60		.2934
	Sodium		-0.00	1			
	Strontium	Sr	87.63		2.54	34.5	• • • • • • • • •
1	Sulphur,						
14	amorphous soft			256.56		16.4	
15	". yellow			256.56			• • • • • • • • • • • • • • • • • • •
16	rhombic	Sa	32.07	256.56	2.05-2.0700		.1728
17	monoclinic	Sβ	32.07	256.56	1.958	16.4	. 1809
18	plastic	S_{γ}	32.07	256.56	1.92	16.7	. 1902 ⁻
19	Tantalum	Ta	181.5		14.49 1 8°	12.5	.03017
20	Tellurium, amorp.	Те	127.5	255.0	6.015 ^{20°}	21.2	. 0525
21	cryst	Те	127.5	255.0	6.27	20.4	.0475
22	Terbium	Tb	159.2				
	Thallium	Tï	204.0		11.85	17.2	.0326
	Thorium, amorph.		232.40		11.00#°	21.1	
25	cryst	Th	232.40		11.23	20.7	
	Thulium	Tm	168.5		11.20	20.1	• • • • • • • • • • •
	Tin, gray	Sn	119.0		5.8466150	20. 3	.0545
28		Sn	119.0		6.53-6.56		.0559
29		Sn.	119.0				
1	tetragonal				7.2984150		.0559
- 1.	Titanium	Ti	48.1		4.5017.50		.1125
1.	Tungsten	W	184.0		18.77		.0336
- 1	Uranium	U	238.5		18.685		.0280
33	Vanadium	V	51.0		6.025ll°	8.5	. 1240
34	Xenon, gas	Xe	130.2		63.5 D		
35	liquid	Xe	130.2		3.52-100-10	37.0	
	Ytterbium	Yb	172.0		0.02	31.0	• • • • • • • • • •
1	Yttrium	Yt	89.0		3.80150	23.4	
	Zinc	Zn		65.37	7.142160		.09356
				00.37	1		
	,		90.6	• • • • • • • •	4.15	21.8	
40	cryst	Zr	90.6	• • • • • •	6 · 4018°	14.2	.0660

Number.	At. Heat Sp. Heat × At. Wt	Electrical Conduc- tivity at o° Wt.	Thermal Conductivity K* at 0° C. Ag = 1.00.	Li Coeffi Expa	near cient of nsion.	Melting Point, °C.	Boiling Point, °C.
—					At °C.		
1			· · · · · · · · ·			>1950°	
2			·			2000°	
3	6.21			.0₄0963	40°	2000°	
4						1350°	
5						1200°	
6	7.55					50°	690°
7	6.65			.0₄3680	40°	170°-180°	690°
8			[[.	l .	217°	690°
9	6.06						3500°
10	4.82	200-15600		.0,0763	40°	1450°	3500°
		681200	1.000	.0,1921	40°	961.5°	1955°
		211000	.365	.0,72	0°-50°	97.6°	877.5°
13		40300	.000		U -00	900°	
10		40300				300	
14				,		>120°	444.6°
15		,				>120	444.6°
	= =4		• • • • • • • •	0.6419	40°	114.5°	444.6°
	5.54		• • • • • • • • •	$.0_{4}6413$	40		444.6°
	5.80		• • • • • • • • •			119.25°	
	6.10		• • • • • • • • •				444.6°
	5.46	60600		.0408		2900°	
	6.69			$.0_{4}1675$	40°	446°	1390°
	6.07	46600		.043440	0°-20°	452°	1390°
22						• • • • • • • • • •	
	6.65	56800		.043021	40°	302°	1280°
24				'		>1700°	
25							
26]						 .
27	6.49					stable $< 20^{\circ}$	
	6.65					stable $> 170^{\circ}$	>2200°
	6.65	76600	.1528	.0,2234	40°	232°	1450-1600
	5.41		.1020	.04==01		2200°	
	6.18					2800°	
	6.68					800°	· · · · · · · · · · · ·
	5.90					1680°	• • • • • • • • • • • • • • • • • • •
33	5.90	• • • • • • • • • • • • • • • • • • • •				1000	· · · · · · · ·
34						-140°	-109.1°
35	- 1	1					
36						1800°	
37	• • • •			• • • • • • • •		1250°	
	6 10	186000	9659	.0,2918	40°	1250 419°	918°
(0.12	190000	.2653	.04ZAIQ	40	41A	919
39	: ::		• • • • • • • • •			02500	
(4()i	5.98					2350°	l

$\begin{array}{c} \text{V.} - \text{GRAVIMETRIC} \quad \text{FACTORS} \quad \text{AND} \quad \text{THEIR} \\ \quad \text{LOGARITHMS} \end{array}$

A	Weighed or Found.	Required.		A	. *	I	3†
В	Required.	Weighed or Found,	Fact	tor.	Loga- rithm.	Factor.	Loga- rithm.
	nium,						
	27.1						
Al ₂ (ე₃	Al					0.27545
		Al ₄ C ₃	0.70	646	1.84909	1.41550	0.15091
		AlCl ₃				0.38282	
		AlPO					I. 62166
		$Al_2(SO_4)_3 \dots$				0.29848	
		Al ₂ (SO ₄) ₃ .18H ₂ O	6.52	350	0.81448	0.15330	1.18552
		K ₂ SO ₄ .Äl ₂ (SO ₄) ₃ .				0 10700	T 0001 F
		24H ₂ O		650	0.96785	0.10768	1.03215
		(NH ₄) ₂ SO ₄ . Al ₂ (SO ₄) ₃					T 0240
		24H ₂ O				0.11269	
AIP	O ₄	Al				0.45060	
~ -	•	Al ₂ O ₃				0.23897	
	1 2·····	AlF.	0.71	817	1.85623	1.39242	0.14377
	5· · · · · · · · · · · · · · · · · · ·	AlPO	1.718	895	0.23526	0.58175	1.76474
	nium,			l			
	= 18.04				T		- 04-0-
Ag.	• • • • • • • • • • • • • • • • • • • •	NH ₄ Br				1.10110	
		NH Cl				2.01640	
		NH,I				0.74403	
	3r	NH Br				1.91690	
	я	NH ₄ Cl				2.67930	
		NH,I				1.61940	
_		(NH ₄) ₂ SO ₄				1.76630	
	· • • • • • • • • • • • • • • • • • • •	NH ₄ Br				0.81577	
CI.	• • • • • • • • • • • •	NH ₄				1.96560	
HO		NH Cl				0.66281	
	· · · · · · · · · · · · · · · · · · ·	NH ₄ Cl		1		0.68169	
1	UI DO CII O	NH.I				0.87535	
Mg	VH4PU4.6H2U	NH ₃				14.4160	
		NH				13.6085	
NT		(NH₄)₂O				9.42787	
N	••••••	NH ₃				0.82268	
		NH				0.77660	
		NH Cl				0.26187	
		(NH ₄) ₂ O				0.53802	
		(NH ₄) ₂ SO ₄	4./1	020	U.0/359	0.21203	1.32641

A	Weighed or Found.	Required.		A	1	3
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
	onium					
NH	. 3	(NH ₄) ₂ CO ₃	2.8201		0.35460	
-	•	NH ₄ HCO ₃	4.6419		0.21543	
		NH ₄ NO ₈	4.7005		0.21274	
		(NH ₄) ₂ O	1.5286		0.65418	
		NH ₄ OH	2.0582		0.48587	
NITI	CI	(NH ₄) ₂ SO ₄	3.8787		0.25782	
NH	[₄Cl	NH ₃	0.31831	1.00280	3.14150	0.49714
		NH ₄ (NH ₄) ₂ O	0.00120	1.02709	2.96560 2.05450	0.4/211
		NH ₄ OH	0.40070	T 91624	1.52640	U.312/1
(NI	H ₄) ₂ PtCl ₅	NH ₃	0.00010	2 88483	13.0372	1 11510
(141	14/21 0016	NH4	0.07070	2 00085	12.3068	1 00015
		NH ₄ Cl			4.14995	
		NH ₄ NO ₃			2.77351	
		(NH ₄) ₂ O			8.52600	
		NH ₄ OH			6.33429	
		(NH ₄) ₂ SO ₄			3.36016	
N ₂ C) ₅	NH ₃			3.17140	
	•	NH ₄ NO ₈	1.48210	0.17089	0.67470	$\bar{1}.82911$
		(NH ₄) ₂ O	0.48214	I.68317	2.07410	0.31683
$\mathbf{Pt}.$.	NH ₃	0.17449	1.24176	5.73113	0.75824
		NH ₄	0.18484	1.26679	5.41013	0.73321
		NH ₄ Cl	0.54815	1.73890	1.82429	0.26110
		NH ₄ NO ₃			1.21925	
		(NH ₄) ₂ O	0.26680			
		NH ₄ OH	0.35912	1.55524	2.78458	0.44476
		(NH ₄) ₂ SO ₄	0.67698			
SO		NH ₃	0.42550			
i :		$(NH_4)_2SO_4$	1.65040	0.21759	0.60591	1.78241
Antim			1		•	
	= 120.2	a o	1 10070	0 05005	0 000	T cocco
Sb.		Sb_2O_3			0.83355	
		Sb ₂ O ₅			0.75031	
QL.	0	KSbOC ₄ H ₄ O ₆ . ½ H ₂ O			0.36168 0.90014	
OD2	O ₃	$\begin{array}{c} \mathrm{Sb_2O_5} \\ \mathrm{Sb_2S_5} \end{array}$			0.90014 0.71966	
		KSbOC ₄ H ₄ O ₆ . ½ H ₂ O			0.71900	
Sh	O4	Sb			1.26623	
DU	4	Sb ₂ O ₃			1.05550	
		Sb ₂ O ₅			0.95006	
		Sb_2S_3	1.10580			
		1~~2~8	12.2000	0.01000	0.00101	

A	Weighed or Found.	Required.	A		В		
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.	
Antin	nony						
	$O_{\mathbf{A}}$	Sb_2S_5		0.11943	0.75952	T.88057	
	•	KSbOC, H,O6. H,O		0.33917	0.45796	T.66083	
Sb.	O_{5} .,	$\mathrm{Sb_2S_5}$	1.2507	0.09718	0.79949	I.90282	
Sb	S,	. Sb	0.71419	T.85381	1.40010	0.14619	
	,	Sb_2O_3	0.8568	T.93288	1.16720	0.06712	
		Sb_2O_5			1.05060		
		KSbOC ₄ H ₄ O ₆ . ½H ₂ O	1.97460	0.29548	0.50643	T.70452	
Sb,	S ₅	Sb	0.59987	T.77806	1.66710	0.22194	
Arser	ic,						
As:	=75					•	
As,	O_3	As	0.75748	T.87937	1.3202	0.12063	
		As ₂ O ₅	1.16164	0.06508	0.86083	T. 93492	
As,		As		T.81429		0.18571	
As,	$\mathbf{S_s}$	As			1.64170		
	-	As_2O_3			1.24545		
		As ₂ O ₅			1.07050		
		As ₂ S ₅	1.26062	0.10058	0.79327	T.89942	
As,	S ₅	As			2.06985		
_	-	As ₂ O ₃	0.63790	T.80475	1.56770	0.19526	
		As_2O_5	0.74101	T. 86983	1.34947	0.13017	
Ba	SO4	As	0.21408	T. 33060	4.6709	0.66940	
	•	As ₂ O ₃	0.28264	T.45123	3.5381	0.54877	
		As ₂ O ₅	0.32833	T.51631	3.04565	0.48369	
		AsO ₃		I.54553		0.45457	
		AsO ₄	0.39688	I.59866	2.51965	0.40134	
Mg	NH ₄ AsO ₄ .		}				
	H ₂ O	As		T.59532		0.40468	
	-	As_2O_3	0.51993	T.71595	1.9227	0.28405	
		AsO ₃		$\bar{1}.81025$		0.18975	
	•	As_2O_5			1.65563	0.21897	
		AsO ₄	0.72993	T.86328	1.370	0.13672	
Mg	As ₂ O ₇	As			2.07154	0.31629	
		As_2O_3	0.63730	T.80435	1.5691	0.19565	
		AsO ₃	0.79183	T. 89864	1.26290	0.10136	
		As ₂ O ₅		T.86943	1.3504	0.13057	
		AsO ₄	0.89490	T.95177	1.11745	0.04823	
		As ₂ S ₃	0.79253	T.89902	1.26176	0.10098	
Bariu		- "					
	=137.37						
	CO ₂	Ba	0.69611	T.84261	1.43680	0.15739	
	•	Ba(HCO ₃) ₂		0.11867			

A	Weighed or Found.	Required.	_	A.]	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Bariu	m					
Ba	CO ₂	BaCl	1.05510	0.02339	0.94757	I.97661
	•	BaO		T.89046		
Ba	CrO,	Ba		I.73396		
	•	BaCl		T.91474		
		BaCO ₃	0.77866	T.89135	1.28420	0.10865
		BaO	0.60507	I.78181	1.65260	0.21819
Bas	SiF	Ba		T.69124		
		BaF ₂		T.73909		
		BaO	0.54839	T.79730	1.82350	0.26091
Bas	80,	Ba	0.58851	T.76975	1.70100	0.23025
		BaCl,	0.89234	I.95054	1.12070	0.04947
		BaCl ₂ .2H ₂ O	1.04660	0.01982	0.95539	I.98018
		BaCO ₃		T.92714		
		$Ba(NO_3)_2$		0.04915		
		BaO		T.81760		
		BaO ₂		I.86070		
				1.86087		
CO.		BaO				
		BaCO,				
	i um, Be= 9.1 ee Glucinum	, •				
Bismı	th, Bi = 208.0					
		Bi ₂ O ₂	1.11540	0.04743	0.89654	I.95257
	sO,	Bi		T.77778		
		Bi ₂ O ₃		T.82521		
Bi.() ₂	Bi		T.95257		
	3	BiONO ₃		0.09090		
	*	$Bi(NO_3)_3.5H_2O$		0.31946		
BiO	Cl	Bi		T.90399		
-		BiONO		0.04232		
		$Bi(NO_3)_3.5H_2O$		0.27088		
		Bi ₂ O ₂	0.89417	T.95142	1.11840	0.04858
Bi.S	S _a	Bi	0.81215	T.90964	1.23130	0.09 36
2		$\mathrm{Bi_2O_3}$		T.95707		
Boron	B = 11					
	, — ₂ ,	В	0.31428	T.49732	3.18186	0.50268
- 20	0	H,BO,		0.24849		
		Na ₂ B ₄ O ₇ .10H ₂ O		0.43612		
KB	F	В	0.08723	2.94067	11,4640	T.05933

A	Weighed or Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Boro	n, B = 11					
	8 F	H ₃ BO ₃	0.49186	T.69184	2.03310	0.30816
	•	$Na_2B_4O_7.10H_2O$		T.87947		
Brom Br:	ine, = 79 . 9 2					
		Br	0.74083	T.86972	1.34980	0.13028
		BrO ₃		0.07400		
		HBr		T.87537		
Αø	Br	Br		T.62896		
		BrO ₃		T.83324		
		HBr		T.63461		
Br		0		T.00038		
	ium.				0.00200	0.00002
	=112.4			1		
		CdCl,	1 63077	0.21239	0 61391	T 78761
Ou		$Cd(NO_3)_2$		0.32292		
Cal	0	$Cd(1(O_3)_2$		T.94220		
Cu	0			0.15459		
		CdCl ₂				
0.1	~	$Cd(NO_3)_2$		0.26512		
Cai	§ <i></i>	Cd		T.89099		
		CdCl ₂		0.10338		
		$Cd(NO_3)_2$	1.63640	0.21391	0.61107	1.78609
~ .	~~	CdO	0.88884	I.94879	1.12508	0.0512
Cd	SO4	Cd		I.73172		
		CdCl ₂		T.94411		
		$Cd(NO_3)_2$		0.05464		
		CdO	[0.61592]	T.78952	1.62360	0.21048
Caesi			1			
	= 132.81		ŀ			_
$\mathbf{A}\mathbf{g}$	Cl	CsCl		0.06964		
Cl.		Cs		0.57349		
3		CsCl		0.67627		
C'È.	 .	CsCl		0.10278		
- /		Cs_2CO_3		0.08845		
<u>~</u> ′	į.	Cs_2O		0.02540		
Cs,	0.\	CsCl	1.19500	0.07738	0.83680	T.92262
2	نہ	Cs_2SO_4	1.28430	0.10868	0.77861	T.8913
Cs.	PtCl	Cs	0.39434	T.59587	2.53588	0.4041
	•	CsCl		T.69865		
		Cs,CO,		T.68432		
		Cs.O		T.62127		
						0.1340

A	Weighed or Found.	Required.		A		;
В	Required.	Weighed or Found.	Factor.	Loga- richas.	Paster.	and a
Caes	ium			ļ -	•	
Cs	₂ SO ₄	CsCl		1.96679		6.45:4.
	-	$\mathrm{Cs_2CO_3}$				1. 198.00
		$\mathrm{Cs_2O}\ldots\ldots$		1.89132		4 . 1999
SC	O ₃	$\mathbf{Cs_2O}\dots$	3.51710	0.54619	0 23430	1.5
	$\mathbf{ium, Ca} = 40.07$	~ ~				
B	aSO4	CaS		1.49004.		4.46
		CaSO ₄				61 '
~		CaSO ₄ .2H ₂ O				1
Ca	.	CaCl ₂				. ,
α.	an an	CaO				199
C	aCO ₃	Ca		1.60252		61 /
		$CaCl_2$ $Ca(HCO_3)_2$		0.04450		r 34
		CaO				122
		CaSO ₄				6,
		CaSO ₄ .2H ₂ O	1 72148	.() 3 <i>1)</i> 4444 .() 9864		17815
		HCl	0.72890	ررخيدوست ١٠٠٠ جورغط ١	. **	114
C	aO	Ca			60/2	, , , , , , , , , , , , , , , , , , ,
•		CaCl ₂				400
		CaCÓ,			ر روبع	21
		Ca(HCO3),				10
		CaSO ₄	2.42500		. 19	
		CaSO ₄ .2H ₂ O			120	1.
C	$a_2(PO_4)_2$	CaO	10.54251	104	1.1.1	4
		CaSO ₄				44
C	aSO ₄	Са		The state of	,	•
		CaCl ₂	مِن وَ فِي لِلْ	٠.	14 1.	, -
		CaCO ₃		1000	100	A.10
		CaF ₂		1.	/	
~1		CaO		•	41	
. U	l	Ca		<i>:</i>	40	
		CaCl ₂	بالمصوص		1 10 16	
. ~	^	CaO		1. 1	4	• "
	0,	2.00	سذہ ہے۔	" "	. –	
. м	g ₂ As ₂ O ₇	$Ca_3(AsO_4)_2$		11		3
	gO	CaO		•		•
	g,P,O,	Ca ₃ (PO ₄) ₂	د و مناون			Ŧ
	NH ₄) ₂ PO ₄ .	J-3(2 04/2	مرد محالاً .	•	-	
(*	12 MoO ₃	Ca ₃ (PO _{4/2}			~	- ?
N	,O ₅	Ca(NO _{3/2}	va.	,	-	
	z~b	(-, 08/2	1		-	

A	Weighed or Found.	Required.		A	В		
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.	
Calci	um	······································					
	O ₅	$Ca_3(PO_4)_2$	2.18400	0.33925	0.45787	I.66075	
),	CaO	0.70026	I.84526	1.42803	0.15474	
	***************************************	CaSO ₄		0.23053			
		CaSO ₄ .2H ₂ O		0.33248			
w	O ₃	CaWO ₄		0.09404			
	on, $C = 12.00$	04	1.21100	0.00101	0.0000		
		HCN	0 25061	T.39920	3 00027	റ ഭറവജന	
υŘ		KCN		T.78071			
۸ ۵	CN	HCN		T.30539			
Ag	ON			0.68690			
ъ.	00	KCN		$\frac{0.08090}{2.78390}$			
. Ва	CO ₃	C					
		CO_2		T.34817			
_		CO_3		I.48287			
Ва	,0	CO_2		I.45771			
		CO ₂	0.57377	T.75874	1.74280	0.24126	
		(bicarbonate)					
Ca	0	CO_2		T.89480			
		CO_2	1.56973	0.19575	0.63716	1.80425	
		(bicarbonate)					
CC) ₉	BaCO ₃	4.48570	0.65183	0.22293	T.34817	
	-	$Ba(HCO_3)_2 \dots$	2.94760	0.46947	0.33925	I.53053	
		C	0.27273	I.43573	3.66676	0.56427	
		CaCO ₃	2.27431	0.35685	0.43969	I.64315	
		$Ca(HCO_2)_2$		0.26517			
	İ	CO ₃		0.13470			
		Cs,CO ₃		0.86926			
		CsHCO ₃		0.64394			
		FeCO ₃		0.42041			
		$Fe(HCO_3)$,		0.30560			
		K ₂ CO ₃		0.49706			
		KHCO ₃		0.35702			
		K ₂ O		0.33060			
		Li ₂ CO ₃		0.22508			
		LiHCO ₃	1.54432	0.18874	0.64753	1.81126	
		Li ₂ O		T.83193			
		$MgCO_3 \dots \dots$		0.28248			
		$Mg(HCO_3)_2$		0.22088			
		MgO	0.91637	I.96207	1.09130	0.03793	
		$MnCO_3$		0.41698			
	ļ	$Mn(HCO_3)_2$	2.01080	0.30337	0.49731	T.69663	
		$Mn\dot{O}$		0.20738			

	Weighed or	Daniel de la constant		····	l ,	
A	Found.	Required.	A			
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Carbo	n					
CO	₃	Na_2CO_3	2.40910	0.38186	0.41509	T.61814
		NaHCO ₃		0.28087		
		Na ₂ O	1.40910	0.14894	0.70968	T.85106
		$(NH_4)_2CO_3$	2.18360	0.33918	0.45795	T.66082
	· ·	NH ₄ HCO ₃	1.79660	0.25445	0.55660	T.74555
		Pb ₃ CO ₃	6.07050	0.78322	0.16473	T.21678
		Rb_2CO_3	5.24770	0.71997	0.19056	T.28003
			3.32730	0.52209	0.30055	I.47791
		Rb,0	4.24780	0.62816	0.23542	I.37184
		SrCO ₃		0.52572		
		$Sr(HCO_3), \ldots$		0.37699		
		SrÒ		0.37205		
Ceriu	m.					
	=140.25					ļ
Ce.		$Ce(NO_3)_4$	2.76850	0.44225	0.36120	I.55775
		$Ce(NO_3)_4$				
		(NH,NO ₃) ₂ .H ₂ O	4.03870	0.60624	0.24760	I.39376
	•	Ce_2O_3				
		CeO ₂				
		$Ce(SO_4)_3$				
Cea	0,	$Ce(NO_3)_4$	2.36390	0.37364	0.42302	I.62636
002	08	$Ce(NO_3)_4$		0.0.002	0.12002	0200
		(NH ₄ NO ₃) ₂ .H ₂ O	3 44850	0 53763	0 28998	T 46237
		CeO_2				
		$Ce_{2}(SO_{4})_{3}$				
CeC),	$Ce(NO_3)_4$				
000	2	$Ce(NO_3)_4$	2.20120	0.00200	0.11002	1.01.01
		(NH ₄ NO ₃) ₂ .H ₂ O	3 28840	0 51698	0 30401	T 48302
Co.	(C ₂ O ₄) ₃ .3H ₂ O.	$Ce_{\mathfrak{g}}(SO_{\mathfrak{g}})_{\mathfrak{g}},\ldots$				
002	(0204)8.01120.	Ce				
Chlor	ine, Cl = 35.46	00	0.10000	1.0.000	2.10000	0.02011
		Cl	0 32870	T.51680	3 04230	0 48320
**5		HCl				0.47114
Aort	C1	Cl				
**5	01			T.40543		
Ros	CrO4	Cl				
			1	0.24795		
		Cl				
	i	Cl				
		Cl				
		Cl				
	Cla	Cl				
		Cl				
MIL	0_2	OI	10.01000	11.91100	14.440(0	U- U004U

A	Weighed or Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Chlor	ine					
Na		Cl				T.81199
	C1	Cl				0.21712
NH	4	Cl				T.70650
	.Cl	HCl		T.83359		
	$(H_4)_2SO_4$	HCl				0.25809
	CrO₄	Cl	0.21950	T.34143	4.55584	0.65857
Chron Cr=	nium, = 52.0					
Bac	CrO4	Cr	0.20529	I.31236	4.87122	0.68764
	-	Cr_2O_3				0.52293
		CrO ₃				0.40374
		CrO_4				0.33928
		$Cr_2(SO_4)_3.18H_2O$				T.84955
Cr ₂ (O ₈	Cr		T.83519		
		CrO_3		0.11919		
	CrO₄	CrO ₃				0.28825
	Cr_2O_7	CrO_3				0.16731
Pb(CrO₄	Cr				0.79334
		Cr_2O_3				0.62853
		CrO ₃				0.50934
	i	CrO ₄				0.44488
		$Cr_2(SO_4)_3.18H_2O$.				T. 95515
		K_2CrO_4				
		$K_2Cr_2O_7$	0.45495	1.65797	2.19800	0.34203
	t, $Co = 58.97$	~ ^				T
Co.		CoO				
		$Co(NO_3)_2.6H_2O$				
~ .		$CoSO_4.7H_2O$	4.76770	0.67831	0.20974	T.32169
	NO ₂) ₃	0		T		00400
(KNO ₂) ₃	Co				0.88483
~	_	C ₀ O				0.78057
Co3	O ₄	Co				0.13411
0-0		C ₀ O				0.02985
Cos	80₄	Co				0.41981
/C-	80) (K 80)	CoO.,				0.31555 0.84893
(00	$SO_4)_2(K_2SO_4)_3$	Co				
Colum	[93.5]	CoO	0.18002	1.20533	o. 3048 0	0.74467
	nbium,Cb=	Cb	0 70029	T 04500	1 49700	0 15467
Coppe	O ₅	OD	0.70038	1.84033	1.42780	0.15467
	r, Cu=63.57	CuO	1.25170	0.09750	0.79891	T. 90250

A	Weighed or Found.	Required.	A	1	F	3
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Coppe	er					
Ĉū		CuSO ₄ .5H ₂ O	3.92830	0.59420	0.25457	T.40580
		$\operatorname{Cu}_{2}\left\{ \begin{pmatrix} \operatorname{C}_{2}\operatorname{H}_{3}\operatorname{O}_{2} \\ (\operatorname{AsO}_{2})_{3} \end{pmatrix} \ldots \right\}$	3.98800	0.60076	0.25075	T.39924
Cu	CNS	Cu	0.52257	T.71814	1.91370	0.28186
		CuO			1.52880	
Cu	0	Cu			1.25170	
		CuSO ₄ .5H ₂ O			0.31864	
Cu_2	0	Cu,			1.12580	
Cu ₂	,S	Cu	0.79859	T.90232	1.25220	0.09768
		CuO	0.99956	T.99981	1.00040	0.00019
		Cu_2O	0.89907	T.95379	1.11220	0.04621
		CuSO ₄ .5H ₂ O	1	i	0.63756	1
Mg	2As ₂ O ₇	$\operatorname{Cu}_{2}\left\{ egin{matrix} \hat{\operatorname{C}}_{2}\operatorname{H}_{3}\hat{\operatorname{O}}_{2} \\ (\operatorname{AsO}_{2})_{3} \end{smallmatrix} \right\} \cdots .$	1.08845	0.03681	0.91874	T. 96319
Erbiu	m, Er = 167.4		Ì			ļ
Er,	O_3	Er	0.87462	T.94182	1.14330	0.05818
Fluor F=						
Bas	Si Fa	BaF,	0.62705	T.79730	1.59480	0.20270
	-	F	0.40762	I.61025	2.45330	0.38975
		HF	0.42924	T.63270	2.32970	0.36730
		H_2SiF_6	0.51602	T.71267	1.93790	0.28733
	_	SiF4	0.37294	T.57163	2.68140	0.42837
	•	SiF ₆	0.50880	T.70655	1.96540	0.29348
Cal	F ₂	F	0.48675	T.68730	2.05447	0.31270
	-	HF	0.51258	I.70976	1.95091	0.29024
		H_2SiF_6			0.61620	
Cas	SO ₄	F	0.27913	T.44580	3.58258	0.55420
		HF			3.40208	
$\mathbf{K_{2}}^{\mathbf{S}}$	SiF ₆	F			1.93420	
		HF			1 . 83680	
		H_2SiF_6			1.52790	
		KF			1.89760	
		SiF_6			1.54950	
$\mathbf{H}_{2}^{\mathbf{J}}$	Si F ₆	F			1.26600	
		2HF			3.60650	
		6HF			1.20220	
		SiF ₄			1.38370	
Gallin	ım, Ga=69.9	SiF ₆	0.98601	1.99388	1.01410	0.00612
	,O _.	Ga	0 74441	T 87181	1.34340	0.12819
~ a	2~3			T.77258		

A	Weighed or Found.	Required.		1	A	1	3
В	Required.	Weighed or Found.]	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Germa	nium,		-				
Ge=	=72.5		1		_	'	
	0,				T.84122		
	}eF₀	Ge	0	. 27390	T.43759	3.65100	0.56241
Glucir	num, $Gl = 9.1$				<u> </u> _		
GlC) <u> </u>	Gl					
		$GlCl_2$					
		GISO ₄ .4H ₂ O	7	. 06070	0.84885	0.14163	T.15115
Gold,	Au = 197.2						
Au		AuCl ₃					
		HAuCl₄.4H₂O	2	. 08980	0.32010	0.47852	T.67990
`		KAu(CN)4.H2O	1	.81720	0.25941	0.55028	T.74059
Hydro	gen, H = 1.008						
H ₂ C)	Н	0	. 11190	T.04884	8.93630	0.95116
Indiu	m, In = 114.8		ļ			'	
In ₂ (O ₃	In	0	.82709	T.91755	1.20900	0.08245
	S ₃	In	0	.70472	T.84801	1.41870	0.15199
Iodine	I = 126.92						
Ag	·	HI	1	.18590	0.07403	0.84328	T.92597
		I	1	.17650	0.07059	0.84998	T.92941
Agl	[HI	0	. 54484	1.73627	1.83540	0.26373
	•	I	0	. 54055	T.73283	1.85000	0.26717
		IO ₃	0	.74497	T.87214	1.34230	0.12786
		IO,	0	.81313	T.91016	1.22980	0.08984
		I_2O_5	0	.71091	T.85181	1.40670	0.14819
		I,O,	0	.77904	T.89156	1.28360	0.10844
Pd		ĤI	2	.39790	0.37984	0.41703	T.62016
		I	2	.37900	0.37640	0.42034	T.62360
PdI	[,	HI			I.85104		
	•	I	0	.70404	T.84760	1.42040	0.15240
		IO ₃	0	.97031	T. 98691	1.03060	0.01309
		IO,		.05910	0.02493	0.94421	I.97507
		I,O,	0	. 92593	T. 96658	1.07990	0.03342
		I,O,	1	.01470	0.00633	0.98553	T.99367
TlI		ĤІ	0	. 38658	T.58724	2.58680	0.41276
		I	0	. 38353	T. 58380	2.60740	0.41620
		IO ₃	0	.52858	T.72311	1.89190	0.27689
		IO,			T.76113		
		I_2O_5			T.70278		
		I,O,			T.74253		
Iron.	Fe = 55.84	• •		_			
		$Fe_7(CN)_{18} \dots \dots$	0	.44240	T.64582	2.26036	0.35418
		(Prussian blue)	1			т т	
CN		$Fe_7(CN)_{18}$	1	.83492	0.26362	0.54496	T.73637
021		2 07 (O21)18 · · · · · · · ·	-		,		

A	Weighed or Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Iron						
CO.		FeO	1.63300	0.21298	0.61238	I.78702
		FeCO ₃		0.42041		
		$Fe(HCO_3)_2$		0.30560		
Fe		$Fe(HCO_3)_2$	3.18514	0.50313	0.31396	T. 49687
		FeO		0.10942		
		Fe ₂ O ₂		0.15527		
		FeSO ₄		0.43464		
		$FeSO_4.7H_2O$		0.69715		
		FeSO ₄ .(NH ₄) ₂ SO ₄ .		0.84651		
		$6H_2O$		_		
FeC)	Fe		I.89058		
		FeCO ₃		0.20749		
		$Fe(HCO_3)_2$		0.39371		
		$\mathrm{Fe_2O_3}$		0.04585		
Fe ₂	03	Fe		T.84473		
		$\operatorname{FeCl}_3 \ldots \ldots$		0.30788		
		$FeCO_3$	1.45090	0.16164	0.68924	1.83836
		$Fe(HCO_3)_2$		0.34786		
		FeO		T.95415		
		Fe ₃ O ₄	0.96657	T.98523	1.03460	0.01477
		FeSO ₄		0.27937		
		FeSO ₄ .7H ₂ O	3.48224	0.54186	0.28717	T.45814
		$FeSO_4$. $(NH_4)_2SO_4$. 6H,O	4.91177	0.69124	0.20351	T.30876
		$Fe_2(SO_4)_3$	2 50435	0.39869	0 30040	T 60131
		FePO ₄		0.33663		
E-1	20	Fe		I.56832		
rer	20₄	FeO		I.67774		
Tr-0	,	Fe		T.80252		
FeS		FeO	0.00400	T.91234	1 99970	0.19140
				T.95819		
36		2 0				
	As ₂ O ₇	FeAsO ₄		0.09838 T.95290		
80,		FeO				
		FeSO ₄	1.89744	0.27812	0.52709	1.72100
	anum,	,			i	
	= 139.0	· •	0.000-	T		0.0000
	0_3	La	0.85275	1.93082	1.17270	0.06918
	Pb = 207.1	D. 0				T
Pb.		PbO	1.07720	0.03232	0.92828	1.96768
		PbCO ₃	1 . 28970	0.11049	0.77537	1.88951
		(PbCO ₃) ₂ Pb(OH) ₂	1.24790	0.09618	0.80135	1.90382
		Pb(OH),	1.16430	0.06606	0.85890	J. 93394

A	Weighed or Found.	Required.	1	A	В		
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.	
Lead	•						
PbC	Cl ₂	Pb			1.34240		
		PbO			1.24610		
PbC	CrO₄	Pb			1.56011	_	
		$Pb(C_2H_3O_2)_2.3H_2O$			0.85206		
		$(PbCO_3)_2Pb(OH)_2$			1.19980		
		PbO			1.44823		
		Pb₃O ₄			1.41424		
		PbSO ₄	0.93832				
PbC) 	Pb			1.07720		
		PbCO ₃			0.83528		
		Pb(NO ₃) ₂			0.67377		
PbC)2•	Pb			1.15450		
		$Pb(NO_3)_2$			0.72209		
PbS	O ₄	BaSO4	0.76998	1.88648	1.29880	0. 11352	
		Pb	0.68311	1.83449	1.46390	0.16551	
	,	$Pb(C_2H_3O_2)_2.3H_2O$			0.79947		
		PbCO ₃			1.13510		
		$(PbCO_3)_2Pb(OH)_2$	0.85245	1.93067	1.17310	0.06933	
	•	$Pb(NO_3)_2$	1.09220	0.03830	0.91559	ī . 961 7 0	
		PbO	0.73589	1.86681	1.35890	0.13319	
		PbO ₂	0.78866	$\bar{1}.89689$	1.26790	0.10311	
		Pb ₈ O ₄	0.75348	1.87707	1.32720	0.12293	
PbS	}		0.86591	$\bar{1}.93747$	1.15490	0.06253	
		PbO	0.93280	1.96979	1.07200	0.03021	
		PbSO ₄	1.26760	0.10298	0.78890	$\bar{1},89702$	
Lithiu	m, Li = 6.94	•					
	,	Li ₂ CO ₃	1.68123	0.22568	0.59555	77492	
00,		LiHCO ₃			0.64753		
		Li ₂ O			1.47255		
LiC	1	Li			6.10958		
23.0	• · · · · · · · · · · · · · · · · · · ·	Li ₂ O			2.83807		
Lia	203	Li			5.32273		
13120		LiCl			0.87124		
		LiHCO ₃			0.54366		
		Li ₂ O			2.46300		
Lin	(CO ₃				4.54821		
)	1			2.15389		
1120	·····	Li ₂ SO ₄			0.27176		
T: 1	204	Li			5.56287		
1181	04	LiCl			0.91052		
			0.95689				
		Li ₂ CO ₃			0.56815		
		LiHCO ₃	1.40008	U. 44000	C.OUOLO	1.10441	

A Weighed or Found.		Required.	A		В		
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.	
Lithit	ım						
Li.	ΡΟ₄	Li ₂ O	0.38700	T.58769	2.58419	0.41231	
•		Li ₂ SO ₄		0.15351			
		Li ₂ SO ₄ .H ₂ O		0.21942			
Lis	804	Li		T.10119			
		LiCl		T.88720			
80.	<i></i> .	Li ₂ O	-	T.57191		l .	
~03		Li ₂ SO ₄		0.13773			
Magn	esium,			0.100	0.,2020		
	= 24.32	•					
	804	MgSO ₄	0 51576	T.71245	1 93890	0 28755	
200	,0,1	MgSO ₄ .7H ₂ O		0.02368			
Rr		Mg		T.18222			
Di.		MgBr ₂		0.06145			
		MgBr ₂ .6H ₂ O		0.26203			
CI		Mg		T.53519			
01	• • • • • • • • • • • • • • • • • • • •	MgCl.		0.12805			
	ł	MgCl ₂ .6H ₂ O		0.12303			
CO		MgCO ₃		0.28248	ľ	l	
CO ₂				T. 96207			
т		MgO	0.91037	2.98140	10 4200	1 01060	
1		Mg		0.03973			
M		MgI ₂		0.53973			
		MgCO ₃					
	CO₃	$Mg(HCO_3)_2 \dots$		0.23943			
Mg	0	Mg		I.78044			
	İ	MgCO ₃		0.32041			
		0 \ 0/2		0.55984			
3.6	D O	MgSO ₄		0.47507			
Mg ₂	P ₂ O ₇	Mg		T. 33923			
		MgCl ₂		T. 93209			
		MgCl ₂ .6H ₂ O		0.26150			
	•	MgCl ₂ .KCl.6H ₂ O		0.39716			
		MgCO ₃		1.87920			
		$Mg(HCO_3)_2 \dots$		0.11862			
		MgO		I.55879			
		MgSO ₄		0.03386			
		MgSO ₄ .7H ₂ O		0.34509			
Mg	SO₄	Mg		I.30537			
	Ì	MgO		T. 52493			
SO,		MgO		I.70205			
		MgSO ₄		0.17712			
		MgSO ₄ .7H ₂ O	13.07860	0.48835	0.32483	11.51165	

A	Weighed or Found.	Required.		A	1	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm,
	anese, = 54.93					
Ba	804	MnSO ₄	0.64690	T 81084	1.54580	0 1801R
	•••••••	MnCO ₁	2 61210	0.41698		
	2	MnO		0.20738		
Mn		MnCO.		0.32062		
		MnO		0.32002		
		Mn ₂ O ₃		0.11102		
Mn	(HCO ₃) ₂	MnCO ₃			1. 5397 0	
	O	MnCO,		0.20960		
14111						
		Mn(HCO ₃) ₂		0.39702		
M	^	Mn ₂ O ₃	P .	0.04641		
MIII	₃ O ₄	Mn			1.38840	
		MnCO ₃		0.17811		
		Mn(HČO ₃) ₂		0.36553		
			0.93006		1.07520	
		Mn ₂ O ₃		0.01492		
		MnO_2	1.13980	0.05685	0.87730	I.94315
		MnSO ₄	1.98000		0.50506	
Mn	₂ P ₂ O ₇	Mn			2.58460	
		MnCO ₃		T.90823	1.23528	0.09177
		MnO	0.49961	T.69863	2.00156	0.30137
		MnO ₂	0.61231	T.78697	1.63315	0.21303
		$MnSO_4$	1.06344	0.02678	0.94020	I.97322
Mn	S	Mn	0.63138	T.80029	1.58380	0:19971
		MnCO ₃	1.32100	0.12091	0.75699	I.87909
		MnO		T. 91131	1.22660	0.08869
		MnSO,	1.73560		0.57615	
SO.	· · · · · · · · · · · · · · · · · · ·	MnO			1.12890	
	•	MnSO ₄	1.88580		0.53026	
Mercu	ıry,	•				
	=200.6					
Hø		HgCl	1.35353	0.13147	0.73880	T. 86853
6		HgO			0.92612	
		HgS	1 156825			
Hø	Cl	Hg			1.17676	
		HgCl,			0.86940	
		HgNO ₃			0.90078	
		Hg ₂ O			1.13165	
		HgO				
					1.08983	
17-4	o .	HgS		1.90458	1.01256	U.00542
пg	s	HgCl ₂			0.85468	
		$Hg(CN)_2 \dots$	U0880.1	IO.03687	0.91860	1.96313

A	Weighed or Found.	Required.	A		В	
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm,
Mercu	ry,					
Hgs	S	HgNO ₃	1.12949	0.05282	0.88508	T. 94718
		$Hg(NO_3)_2$				
		$Hg(NO_3)_2.H_2O$	1.47400	0.16850	0.67842	T.83150
		Hg ₂ O	0.89890	T. 95371	1.11250	0.0462
		HgO	0.93339	T. 97006	1.07138	0.02994
		HgSO ₄	1.27579	0.10578	0.78382	T.8942
	denum, = 96.0	-				
	O ₈	Mo	0.66667	T.82391	1.50000	0.1760
	•	$(NH_4)_2MoO_4$				
Mos	8,	Mo				
		MoO ₃				
		$(NH_4)_2MoO_4$	1.02020	0.00867	0.98024	T. 9913
(NI	$H_4)_3PO_4$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
``($MoO_3)_{12} \cdot \cdot \cdot \cdot$	MoO ₃	0.92053	T.96404	1.08630	0.0359
`	0,12	(NH ₄) ₂ MoO ₄				
Pbl	MoO ₄	Мо				
	•	MoO ₃	0.39226	I.59358	2.54936	0.4064
		$(NH_4)_2MoO_4$	0.53414	I.72766	1.87220	0.2723
Neody	mium,				1	
	$O_3 = 143.3$	Nd	0.85655	T.93275	1.16740	0.0672
Nicke	Ni = 58.68	•				}
Ni.		$Ni(NO_3)_2.6H_2O$	4.95560	0.69510	0.20179	I.3049
		NiO				
		NiSO ₄ .7H ₂ O	4.78630	0.68000	0.20893	T.3200
NiC) 	$Ni(NO_3)_2.6H_2O$	3.89390	0.59039	0.25681	T.4096
		NiSO ₄ .7H ₂ O	3.76090	0.57529	0.26590	T.4247
Nis	0,	Ni	0.37919	T. 57886	2.63710	0.4211
		Ni(NO ₃) ₂ .6H ₂ O	1.87920	0.27396	0.53216	I.7260
		NiO				
		NiSO ₄ .7H ₂ O	1.81500	0.25886	0.55098	T.7411
Nitrog	m = 14.01			ļ		1
	NO ₂	HNO ₂				
		N ₂ O ₃	0.24699	T.39269	4.04870	0.6073
	O ₃	N_2O_5	0.53417	T.72768	1.87210	[0.2723]
N.		HNO ₃	4.49820	0.65304	0.22231	T.3469
		NO ₂	3.28410	0.51641	0.30450	T.4835
,	77 4 7),	N_2O_3				
		NO ₃	4.42610	0.64602	0.22593	1.3539
		N_2O_5				
M-1	NO	l N	0 16/91	T 21807	6.06780	in 7830

A	Weighed or Found.	Required.		A	1	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm,
Nitrog	en					
	NOO	N_2O_5	0.63533	T.80300	1.57400	0.19700
NH		HNÖ,	3.70060	0.56827	0.27023	I.43173
	•	N		T.91523		
		N_2O_5	3.17140	0.50126	0.31531	T.49874
NH	C1	HNÖ,		0.07113		
	•	N		T.41809		
(NI	$H_4)_2 PtCl_6 \dots$	HNO ₃		T. 45309		
\	-4/2	N	0.06310	2.80005	15.8469	1 19995
		N ₂ O ₅		T.38608		
(NF	$I_{\lambda})_{2}SO_{\lambda}$	N		T.32641		
(-1-	24/2004	N ₂ O ₅		T.91244		
Pt.		HNO ₃		T.81003		
		N	0.01010	T. 15699	R ORRAG	0.10001
		N ₂ O ₅				
80		HNO ₃		0.19704		
DO3		N	0 34005	T 54400	9 85760	0 45600
		N ₂ O ₅		0.13003		
Ocmic	m Oc - 100 0	11205	1.04910	0.10000	0.74120	1.00991
	$\mathbf{m}, \mathbf{Os} = 190.9$	Os	0 74902	T 07444	1 22520	A 19558
Pallad		OB	0.14090	1.01777	1.00000	0.12000
	= 106.7				1	
	edCl _a	Pd	0 00001	T 40004	9 70700	0 27100
$\mathbf{K_{2}I}$	acı,	Id	0.20001	T 72010	1 00100	0.07100
D.I		PdCl ₂ .2H ₂ O	0.00120	0.00154	1.80130	U.20982
Pa.	• • • • • • • • • • • •	PdCl ₂ .2H ₂ O	2.00240	0.30134	0.49941	1.09840
D 11		$Pd(NO_3)_2$				
	2	Pd	0.29594	1.47120	3.37910	0.52880
	horus,	•				
	31.04	TD	0 0744	T 0=004		
Ag_3	ΡΟ₄	P		2.87004		
		PO	0.22700	I.35603	4.40520	0.64397
	D 0	P_2O_5		I. 22962		
Ag_4	P_2O_7	P	0.10251	I.01077		
		PO ₄	0.31388	I.49676		
	_	P_2O_5	0.23461	T.37035		
	O ₃	P_2O_5				
AlP	°O₄	PO ₄	0.77830	1.89115	1.28453	0.10885
		P_2O_5		I.76474		
	$(PO_4)_2 \dots$	P_2O_5	0.45787	T. 66075	2.18400	0.33925
Fel	20₄	PO ₄	0.62991	T.79928	1.58751	0.20072
		$P_2O_5 \dots \dots$	0.47080	I.67289	2.12380	0.32711
Mg_2	P ₂ O ₇		1.27559			
	•	Na ₂ HPO ₄ .12H ₂ O	3.21638	0.50744	0.31006	T 49256

Digitized by GOOGIC

A	Weighed or Found.	Requ	ired.	1	1] ']	3
В	Required.	Weighed	or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Phos	horus						
	P_2O_7	NaNH ₄ H	PO				
Ů.	• • •	4H ₂ O		1.87713	0.27373	0.53244	T.72627
		P				3.58766	
	•	PO4				1.17116	
		P_2O_5				1.56615	
(N)	$H_4)_3 PO_4$						
	$MoO_3)_{12}$	P.,		0.01654	2.21842	60.4755	1.78158
`	3/12	PO				19.7591	
		P.O				26.4243	
P. C) <u>.</u>	Na ₂ HPO				0.50010	
- 20		Na ₂ HPO				0.19830	
		NaNH H	PO. 4H.O.			0.33966	
		P				2.28863	
II. I	P ₂ O ₁	P				11.5185	
021	201	PO				3.76196	
		P.O				5.03300	
Platin	111m	205		0.15005	1.23011	0.00000	0.70100
	= 195.0	ļ				[
	= 193.0 PtCl ₆	H2PtCl6.6	ш О	1 00564	0 00761	0.93844	T 07020
17.21	tO16	Pt		0 40151	U.U2701	2.49057	1.91209 0.20620
		PtCl ₄				1.44243	
		DACI EU	0			1.13823	
/3/1	T / DAOI	PtCl ₄ .5H ₂	0			2.27478	
(141)	$(H_4)_2$ PtCl ₆	Pt				1.31745	
		PtCl ₄					
T) 4		PtCl ₆				1.08843	
Pt.	· · · · · · · · · · · · ·	H ₂ PtCl ₆ .6				0.37654	
		PtCl				0.57917	
D	•	PtCl ₄ .5H ₂	9	2.18810	0.34007	0.45701	1.65993
Potass							
	39.10	TZD		1 10000	0.04000	00040	TOFFOO
Ag.	· · · · · · · · · · · · · ·	KBr				0.90640	
		KCl				1.44690	
		KClO ₃				0.88022	
		KClO				0.77857	
		KCN				1.65680	
		KI				0.64981	
Agl	Br	KBr				1.57790	
		KBrO ₃				1.12440	
AgC	N	KCl				1.92250	
		KClO ₃				1.16960	
		KClO4				1.03450	
Ag(N	$ \mathbf{KCN}$		0.48630	1.68690	2.05640	Q. 31310

A	Weighed or Found.	Required.		A	,	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Potas	sium					l
Ag		кі	0 70707	T.84946	1 41430	0 15054
**B		KIO ₃		I.95975		
Ra	CrO,	K ₂ CrO ₄		I.88451		
Da	0.04	K ₂ Cr ₂ O ₇		T.76357		
Ro	so ₄	KHSO ₄		I.76597		
Da	004	K ₂ S		I.67439		
		K ₂ SO ₄		T.87308		
Br		K		T.68952		
		KBr		0.17296		
Ca	F	KF.2H,O		0.38216		
	SO ₄	KF.2H,O		0.14071		
		K		0.04244		
٠	• • • • • • • • • • • • •	KCl		0.32277		
		KClO ₃	1	0.53861	1	l
		KClO4		0.59190		
		K.O		0.12328		
CO		K,O		0.33060		
-	2	K ₂ CO ₃		0.49706		
T		KI		0.11663		
	• • • • • • • • • • • • • • • • • • • •	KIO,		0.22692		
K.		K ₂ O	I .	0.08084		I
		KNO		0.41261		
KI	3r	K		T.51656		
		K,0		T.59740		
K	1	К		T.71967		
		K ₂ CO ₃	0.92677	T.96697	1.07900	0.03303
		K,Cr,O,	1.97050	0.29480	0.50699	I.70500
		KHCO,		0.12796		
		KNO,	1.35600	0.13228	0.73742	I.86772
		K,O	0.63169	T.80051	1.58300	0.19949
KO	1	K,SO,	1.16860	0.06768	0.85570	T.93232
KI		K	0.23551	T.37202	4.24600	0.62798
		K ₂ O		T.45286		
K)H	K ₂ CO ₃	1.23150	0.09044	0.81201	T.90956
		K ₂ O	0.83942	T. 92398	1.19130	0.07602
\mathbf{K}_{2}	0	К		T. 91916		
•		K ₂ CO ₃		0.16646		
		K ₂ Cr ₂ O ₇		0.49459		
		KHCO ₃		0.02642		
		KNO₃		0.33177		
		K ₂ SO ₄		0.26717		
K.	PtCl	К	0.16084	T. 20643	16.21686	0.79357

Digitized by GOOGLE

A	Weighed or Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Potas	sium					
K,	PtCla	K,CO,	0.28427	T.45373	3.51781	0.54627
-	_	KCl		T.48676		
		KHCO ₃	0.20591	T.31369	4.85634	0.68631
		KNO ₃		T.61904		
		K ₂ O		T.28727		
		K ₂ SO ₄	0.35846	T.55444	2.78971	0.44556
		$K_2SO_4.Al_2(SO_4)_3.$				
		24H ₂ O	1.95218	0.29052	0.51225	I.70948
		$\mathrm{K_2SO_4.Cr_2(SO_4)_8}$				
		24H ₂ O	2.05547	0.31282	0.48661	T.68718
K.S	804	K	0.44873	T.65199	2.22850	0.34801
2-		K ₂ CO ₃		T.89929		
		KCl	0.85570	T.93232	1.16860	0.06768
		KHCO ₃	1 14890	0.06028	0.87040	T 93972
		KHSO	1 56290	0.19393	0.63983	T 80607
		KNO	0 97679	T.98980	1.02380	0.01020
		KNO ₃		0.06460		
		K ₂ O		T.73283		
		K ₂ S	0.04000	T.80134	1 58000	0 19866
Ma	As ₂ O ₇	K ₃ AsO ₄	1 65031	0.21756	0 60596	T 78244
me.	2225207			0.14768		
Mn	₂ O ₃	K ₂ MnO ₄		0.41244		
MIII	303	KMnO ₄		0.31642		
Mn	s	K ₂ MnO ₄		0.35524		
MIII	D	KMnO ₄		$0.35324 \\ 0.25922$		
N		KNO ₃		0.85835		
	[g	KNO ₃		0.77358		
	· a			0.52752		
) ₃			0.35008		
) ₈			I.94055		
1436	8	KNO,		0.27232		
104		K				
10.		KCl				
9:0		K ₂ SiO ₃				
	92	K ₂ SiO ₃	2.00220	0.40001	0.38028	T GROOF
		M ₂ SU ₄	2.17030	0.55775	0.40940	1.00220
	odymium,					
	= 140.6	Pr	0 05400	T 021 50	1 17070	0 08844
	0,	Ef	0.80420	T.93156	1.11070	0.00044
Rhodi					1	1
	=102.9	N- DLCI	9 70000	0 57000	0 00751	T 40704
Kh		Na ₃ RhCl ₆	3.73820	0.5/266	U. 20751	T 00100
		RhCl ₃	2.03380	₩.3U831	M. 49169	Tr. oares

A Weighed or Found.		Required.	A]	В	
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.	
Rubidi	um,						
Rb=	= 85 .45						
AgC	1	Rb	0.59612	T.77534	1.67750	0.22466	
		RbCl		T.92610			
Cl		Rb		0.38197			
		RbCl		0.53273			
Rb.		RbCl		0.15076			
		$\mathrm{Rb_2CO_3}$		0.13068			
		Rb_2O		0.03887			
		$\mathrm{Rb}_{2}\mathrm{SO}_{4}$		0.19372			
RbC	1	$\mathrm{Rb_2CO_3}$		T.97992			
		Rb_2SO_4		0.04296			
Rb_2	CO ₃	RbHCO₃		0.10333			
Rb_2	O	RbCl		0.11189			
		$\mathrm{Rb_2SO_4}$		0.15484			
Rb_2	$PtCl_6 \dots$	Rb		I.47016			
		RbCl		I.62092			
		$Rb_2CO \dots$		T.60084			
		RbHCO ₃		T.70417			
		$Rb_2O \dots \dots$		T.50903			
$\mathbf{Rb_2}$	80₄	Rb_2CO_3		T.93696			
		RbHCO ₃	1.09720	0.04029	0.91140	T.95971	
Seleniu	$\mathbf{m}, \mathbf{Se} = 79.2$						
Se		H_2SeO_3		0.21258			
		H_2SeO_4		0.26329			
		SeO_2		0.14737			
		$\mathrm{SeO}_3\ldots\ldots$	1.60600	0.20576	0.62265	T.79424	
Silicon	, Si = 28.3						
BaS	iF ₆	SiF_4	0.37294	T.57163	2.68140	0.42837	
		SiO_2		T.33367			
K ₂ Si	$[\mathbf{F_6}, \dots,]$	SiF ₄	0.47301	T.67487	2.11410	0.32513	
		$\mathrm{SiO}_2 \ldots \ldots$		T.43691			
SiO ₂		H_2SiO_3	1.29880	0.11355	0.76993	T.88645	
		Si	0.46933	I.67147	2.13070	0.32853	
		SiF ₄		0.23796			
		SiO ₃		0.10220			
		SiO4		0.18488			
		$\mathrm{Si}_{2}\mathrm{O}$		0.14551			
		Si(OH) ₄	1.59750	0.20344	0.62598	I.79656	
Silver,	Ag = 107.88						
Ag.	•	AgNO ₃		0.19723			
_		Ag₂ O	1.07420	0.03107	0.93095	T.96893	

Digitized by GOOGIC

A	Weighed or Found.	Required.		A	В	
В	Required.	Weighed or Found.	Factor.	Loga- rithm,	Factor.	Loga- rithm.
Silver						
Ag	Br	Ag	0.57443	I.75924	1.74080	0.24076
Ag(C1	Ag	0.75261	I.87657	1.32870	0.12343
•		AgNO ₃			0.84372	
		Ag_2O	0.80842	T.90764	1.23700	0.09236
Ag(ON	Ag	0.80573	I.90619	1.24110	0.09381
	[Ag	0.45945	I.66224	2.17650	33776
	PO	Ag	0.77317	T.88828	1.29318	11182
Ag	P_2O_7	Ag			1.40342	
		Ag	1.34980	0.13028	0.74083	.86972
		AgBr			0.42556	
CL.		Ag			0.32870	
0		AgCl			0.24738	
Ţ		Ag			1.17650	
		AgI			0.54055	
Sodim	m, Na=23.00	2262	1.0000	0.20.1.	0.01000	
		NaBr	0.95622	T 02056	1.04580	01944
41g.		NaCl			1.84530	
		NaI			0.71958	
۸ <i>م</i> ۱	Br	NaBr			1.82470	
	C1	NaCl			2.45200	
		NaI			1.56610	
					1.94400	
Dag	SO ₄	NaHSO,			1.69040	
		$NaHSO_4.H_2O$ Na_2S			2.99010	
					1.85150	
		Na_2SO_3			0.92568	
		$Na_2SO_3.7H_2O$			1.64320	
		Na_2SO_4				
D O		$Na_2SO_4.10H_2O$	1 44000	0.14000	0.72444 0.69308	04070
$\mathbf{b_2}$) ₃	$Na_2B_4O_7$	1.44290	0.10922	0.36634	F6900
D-		$Na_2B_4O_7.10H_2O$				
Br.		Na			3.47480	
		NaBr			0.77654	
		Na ₂ O			2.57810	
	$\left[O_{a} \ldots \ldots \right]$	Na ₂ CO ₃			0.94423 1	
Cal	2	NaF			0.92965	
	2	Na ₂ CO ₃			0.52915	
	O ₄	Na ₂ CO ₃			1.28450	
CI.		Na			1.54170	
		NaCl			0.60657 I	
~~	. 1	Na ₂ O			1.14390	
CO2		Na_2CO_3	2.40910	0.38186	0.41509	.61814
_	1		1 1	. 1		

A	Weighed or Found.	Required.		A]	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Sodiu	<u> </u>		ļ			
		Na ₂ O	1 40010	0.14894	0.70968	I.85106
),	$Na_2B_4O_7$	0 81420	T.91073	1 22820	0.08927
118	DO3	$Na_2B_4O_7.10H_2O$	1 54040	0.18763	0 64918	I.81237
т		Na		T. 25820		
1	· • • • • • • • • • • • • • • • • • • •	NaI		0.07233		
		Na ₂ O		1.38783		
1/1	BF4	Na ₂ B ₄ O ₇		T.60257		
17.1	DF4	$Na_2B_4O_7.10H_2O$	0.10011	T.87947	1 31990	0.12053
M-	32As2O7	Na_2HAsO_3	1 00471	0.03930	0 91348	0.96070
MIS	₂ A8 ₂ O ₇	Na ₂ HAsO ₄	1 10777	0.07837	0.83490	T 92163
34.	. D O	Na ₂ HPO ₄	1.27559		0.78395	
IAT	$g_2P_2O_7$	$Na_2HPO_4.12H_2O$	3.21689			T.49256
		$Na_{2}P_{2}O_{7}.10H_{2}O$		0.30181		
		NH ₄ NaHPO ₄ .4H ₂ O		0.27373		
AT.	Br	Na		T.34923		
N 8	Br	Na ₂ O		T.47886		
NT.	. CI	1 4		T.59487		
IN 8	ıCl	Na	0.09640	T.95742	1 10200	0.40010
		Na,CO ₃		0.15746		
		NaHCO ₃		0.13740		
		Na ₂ HPO ₄	0 52000	T.72451	1 00500	0 27540
		Na ₂ O	1 91590	0.08462	0.00000	T 01529
3.7	a 0	Na ₂ SO ₄	0 42204	I.63745	2 20440	0 36255
Na	1 2CO₃	Na		0.2004		
		NaHCO ₃		1.76708		
		Na ₂ O		I.87787		
37	1100	NaOH	0.70400	I.43741	2 65050	0.12210
Na	rHCO3	Na	0.2/3/9	T.56704	2 71000	0.00208
3.7	T	Na ₂ O		T.18587		
Na	·I	Na		T.31550		
NT.	NO	Na ₂ O		T.56189		
	NO ₃	Na ₂ O		T.87037		
Na	ւ₂O	Na ₂ HPO ₄	2.29111	1	0.43646	
		NaOH		0.11079		
NT.	D.O.		1.06774	l .	0.93656	
IN 8	1 ₄ P ₂ O ₇	Na ₂ HPO ₄		0.02840		
NT -	90	Na ₂ HPO ₄ .12H ₂ O		T.51026		
1/18	ւ₂SO₄	Na		T.87281		
		Na ₂ CO ₃		0.30411		
		$Na_2CO_3.10H_2O$		T.63989		
3.7		Na ₂ O	6.06780		0.16481	
	· · · · · · · · · · · · · · · · · · ·	NaNO ₃	4.99180			T.30174
Ni	H ₃	NaNO ₃	4.99190	gitized by	0.20033	1.30174

A	Weighed or Found.	Required.		A	. 1	3
В	Required,	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Sodiur	n			•		
NH		NaNH ₄ HPO ₄ .	ĺ			i
•	•	4H ₂ O	12.2790	1.08916	0.08144	2.91084
NO		NaNO ₃	2.83270	0.45220	0.35302	T.54780
N,O),	NaNO ₃				T.80300
-	•	Na ₂ O				0.24111
P,O	g	Na ₂ HPO ₄	1.99960	0.30094	0.50010	T.69906
•	•	Na ₂ HPO ₄ .12H ₂ O	5.04282	0.70267	0.19830	I.29733
		NaNH, HPO, 4H, O	2.94414	0.46896	0.33966	T.53104
SO,		NaHSO,	1.62440	0.21071	0.61559	I.78929
-		Na ₂ SO ₃	1.96780	0.29399	0.50817	T.70601
		$Na_2SO_3.7H_2O$	3.93600	0.59506	0.25406	T.40494
so.	 .		0.77432	T.88892	1.29140	0.11108
•		Na ₂ SO ₄	1.77430	0.24903	0.56360	I.75097
Stront	ium, : 87 . 62					
		9-00	2.25502	0 50570	0.0004	T.47428
		SrCO ₃				I.88797
203	<u>.</u>					I.63937
9-0	^	SrSO ₄				0.22652
SIC	O ₃	Sr				
		SrCl ₂		0.03100		
		$Sr(HCO_3)_2 \dots \dots$		0.15232 0.15645		I —
		$Sr(NO_3)_2$				I . 84355
g-0		SrO		T.84633 T.92715		
SrU		Sr				
				0.18467		
0-04	^	$Sr(HCO_3)_2 \dots$		0.30599		
SIS	O ₄	Sr		T . 67855 T . 93607		
		SrCl ₂		I.93507		
		$SrCO_3Sr(NO_s)_s$				T.93848
		$Sr(NO_3)_2$		T.75140		
Sulphu	ır, S=32.07	Sr0	0.30413	1.75140	1.77257	0.24800
	8 _a	H_2S		T.61845		
-	=	S	0.39077	T.59192	[2.55910]	0.40808
BaS	O ₄	H ₂ S	0.14604	T.16446	6.84760	0.83554
	- ,		0.35166	T.54612	2.84370	0.45388
				I.62345		
		s		T.13793		
		SO ₂	0.27446	T.43848	3.64350	0.56152
		SO ₃	0.34300	T.53530	2.91540	0.46470
		80	0.41155	T.61442	2.42980	0.38558
			-			

Digitized by GOOGLO

A	Weighed or Found.	Required.	4	A .	1	3
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Sulph	ur	•				
-	3	H ₂ S	0.23597	I.37285	4.23790	0.62715
		8	0.22198	T.34632	4.50480	0.65368
(NI	H ₄) ₂ SO ₄	80,		T.78241		
•	***	H_2SO_4		I.87056		
SO.		H,S	0.42576	T.62916	2.34880	0.37084
	,	H ₂ SO ₄		0.08815		
Tanta	lum, Ta = 181.5				•	
		Ta ₂ O ₅	1.21622	0.08501	0.82072	T.91419
	•	TaCl ₅	1.97668	0.29594	0.50590	T.70406
Ta.	O ₅	TaCl ₅				
•		Ta_2O_4				
Tellur	ium,	- 1				
	= 127.5					
Te.		H_2TeO_4	1.51770	0.18121	0.65886	T.81879
		H_2 TeO ₄ .2 H_2 O	1.80030	0.25536	0.55544	I.74464
		TeO,				
		TeO ₃				
(Te	$O_2)_2SO_3$	Te				0.19451
TOL 111						
Thalli					j	
	= 204.0	mid			0.05400	T 00040
11.		TICI		0.06960		
		Tl ₂ CO ₃		0.05959		
		TII		0.21010		
				0.11527		
m .				0.01671		
	CrO₄			T.89133		
TIH	[SO₄	<u>Tl</u>		T.83094		
				T.78990		
Tl_2	PtCl ₆			T.69899		
				T.76859		
		Tl ₂ CO ₃	0.57383	T.75878	1.74348	0.24142
		TlI		T.90909		
				T.81426		
	1	Tl₂O	0.51964	T.71570	1.92444	0.28430
		Tl ₂ SO ₄	0.61777	T.79083	1.61870	0.20917
Tl_2S	80	Tl	0.80939	T.90816	1.23550	0.09184
Thori t				-	-	
Th=	= 232.40]		
Th	0,	Th	0.87898	T.94398	1.13793	0.05602
	-	ThCl4	1.41546	0.15089	0.70650	T.84911
	i	Th(NO ₃) ₄ .6H ₂ O	2 22260	0 24759	0 44094	T 65040

Digitized by GOOGIC

A	Weighed or Found.	Required.	A		В	
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Tin, Sn = 119.0						
Sn		SnCl ₂	1.59600	0.20303	0.62657	I.79697
$\mathrm{SnO}_2 \dots \dots$		SnCl ₂ .2H ₂ O			0.52666	
		SnCl	2.19200	0.34083	0.45621	I.65917
		SnCl ₄ .(NH ₄ Cl) ₂	3.09110	0.49011	0.32351	T.50989
		SnO	1.13440	0.05478	0.88149	I.94522
		SnO_2	1.26891	0.10343	0.78808	T.89657
		Sn	0.78808	T.89657	1.26891	0.10343
		$SnCl_2 \dots \dots$	1.25780	0.09960	0.79506	T.90040
		$SnCl_2.2H_2O$			0.66828	
		SnCl ₄			0.57890	
		$SnCl_4.(NH_4Cl)_2$	2.43600			
		SnO	0.89402	I.95135	1.11854	0.04865
Titanium, $Ti = 48.1$						
)2	Ti	0.60051	T.77852	1.66520	0.22148
Tungsten, W=184					•	
WC)2	W	0.85187			
WO ₃		W	0.79310	T.89933	1.26090	0.10067
Uranium, $U = 238.5$						
UO	2		0.88170			
$U_{a}C$) ₈	.U			1.17892	
		$UO_2 \dots \dots$			1.03944	
	ĺ	$UO_2(NO_3)_2.6H_2O$.			0.55941	
$\mathbf{U_2}\mathbf{F}$	P ₂ O ₁₁	U			1.49897	
		UO ₂	0.75664	I.87889	1.32164	0.12111
Vanadium, V=51.0						
) ₆	V	0.56045	I.74853	1.78428	0.25147
•	•	VO4	1.26376			
Ytterbium, Yb=172		-				
		Yb	0.87754	T 04207	1 12060	0 05672
Yb_2O_3 Yttrium, $Y=89$		10	0.01104	1.94321	1.13900	0.00073
Y,O,		Y	0.78761	T 90621	1 26074	0 10260
Zinc, Zn = 65.37		*	0.10101	1.09091	1.20514	0.10008
BaSO ₄		ZnSO ₄ .7H ₂ O	1.23180	0 00055	0 81180	T 90945
	504	$ZnO_4.7\Pi_2O$			0.80338	
	D	ZnCO ₃			0.64903	
		ZnCl,			0.59702	
		ZnSO ₄ .7H ₂ O			0.28297	
Zn.	P ₂ O ₇	Zn			2.33148	
	- 3 - 7	ZnO			1.87730	
· '			1			1

A	Weighed or Found.	Required.	Required. A		В		
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.	
Zinc,							
ZnS		BaSO ₄	2.39570	0.37943	0.41742	I.62057	
		Zn	0.67087	T.82664	1.49060	0.17336	
		Z nO	0.83507	T.92172	1.19750	0.07828	
	•	ZnSO ₄ .7H ₂ O	2.95100	0.46998	0.33886	T.53002	
Zircor Zr =	nium, =90.6						
ZrO	2	Zr	0.73899	I.86864	1.35320	0.13136	

^{*} The factors and logarithms in this column are used when the substances given in the first column are weighed or found, while those in the second column are required.

[†] The factors and logarithms in this column are used when the substances given in the second column are weighed or found, and those in the first column are required.

VI.—FACTORS FOR THE CALCULATION OF INDIRECT GRAVIMETRIC ANALYSES

Found.		ght.	Factors and Their Logarithms.
a.	b.	Sought.	
AgBr+AgCl	Ag		1.7993 (log .25511) a-2.3884 (log .37811) b
	1	Cl	1.3884 (log .14252) $b79930$ (log I.90142) a
	AgCl	Br	
		Cl	1.0552 (log .02334) $b-0.7995$ (log T.90282) a
AgBr + AgI	Ag	Br	3.7005 (log .56826) b-1.7022 (log .23101) a
	1	I	$ 2.7022 \text{ (log } .43172) a-4.7025 \text{ (log } .67233) \ b$
	AgCl	\mathbf{Br}	
		I	2.7023 (log .43173) $a - 3.6398$ (log .56108) b
AgCl+AgI	Ag	Cl	.84380 (log T.92624) b38739 (log T.58815) a
		I	$1.38777(\log14230)$ $a-1.84380(\log .26571)$ b
	AgCl	Cl	$0.63507 (\log T.80281) b38739 (\log T.58815) a$
		I	1.38777(log .14230) $(a-b)$
KCl+NaCl	AgCl	K	 2.43195(log .38595)
	1		$.74490 \; (\log 1.87210) b - 1.4318 \; (\log .15589) \; a$
•	C1		$2.43195 (\log .38595)$ $a - 4.0127 (\log .60344) b$
	i	Na	$3.0126 (\log .47894) b - 1.4318 (\log .15589) a$
•	K ₂ SO ₄ +		13.752 (log 1.13837) $a-11.3201$ (log 1.05386) b
	Na ₂ SO ₄	Na	8.4900 (log .92891) $b - 9.9260$ (log .99677) a
KCl+KBr	AgCl+	Cı	1.3803 (log .13991) $b-2.1811$ (log .33867) a
	AgBr		3.7461 (log .57358) $a-1.9486$ (log .28972) b
	AgCl		$.66173 \pmod{1.82067} \ b7993 \pmod{1.90271} \ a$
			1.7993 (log .25511) $a93476$ (log T.97070) b
	KCl		1.27213(log .10506) $b7992$ (log T.90270) a
			1.7995 (log .25510) $a-1.79930(\log .25510) b$
	K ₂ SO ₄		1.08792(log .03659) $b79928$ (log T.90270) a
		Br	1.7993 (log .25511) $a - 1.5923$ (log .18725) b
KCI+KI	AgCl+	Cl	.93678 (log T.97164) b - 1.3178 (log .11985) a
	AgI		2.8921 (log .46122) $a-1.5055$ (log .17769) b
	AgCl	C1	.44902 (log T.65227) $b = .38777$ (log T.58858) a
		I	1.38777(log .14230) $a72170$ (log I.85836) b
	KCI	Cl	.86230 (log T.93566) $b38777$ (log T.58858) a
	1	I	1.3878 (log .14231) $a-1.38777$ (log .14230) b

Found.		Sought.	Factors and Their Logarithms.
a.	b.	Sou	
KCI+KI	K ₂ SO ₄	C1 I	7.3810(log I.86812) b38746 (log I.58825)a 1.3875(log .14222) a - 1.18723(log .07455) b
KBr+KI	AgBr+ AgI		4.1052(log .61333) b-5.8071 (log .76396) a 7.3764(log .86784) a-4.6757 (log .66984) b
	AgCl	Br I	1.9710(log .29469) b-1.7011 (log .23073) a 2.7020(log .43169) a-2.2441 (log .35111) b
	KCI	Br I	3.7881(log .57842) b-1.7011 (log .23073) a 2.7020(log .43169) a-4.3127 (log .63475) b
	K ₂ SO ₄	Br I	3.2415(log .51075) b-1.7011 (log .23073) a 2.7020(log .43169) a-3.6901 (log .56704) b
K ₂ SO ₄ + Na ₂ SO ₄	BaSO ₄	K Na	2.4368(log .38681) a-1.4766 (log .16926) b 1.0682(log .0265) b-1.4267 (log .15433) a
Na ₂ SO ₄ +Li ₂ SO ₄	BaSO ₄	Na Li	$\begin{array}{c} 1.39603(\log\ .14488)\ a65754\ (\log\ \mathrm{I}.81793)b \\ .256355(\log\ \mathrm{I}.40885)\ b42112\ (\log\ \mathrm{I}.62441)a \end{array}$
LiCl + NaCl	AgCl	Li Na	.17616(log $\bar{1}$.24591) b – .43195 (log $\bar{1}$.63543) a 1 .4322(log .15600) a – .42363 (log $\bar{1}$.62699) b
$\begin{matrix} \mathrm{K_2PtCl_6} + \\ \mathrm{Rb_2PtCl_6} \end{matrix}$	Pt K ₂ SO ₄ +	K Rb K	2.5106(log .39978) b – .84720 (log T.92798) a 1.8502(log .26721) a – 4.6080 (log .66351) b .72295(log T.85911) a – 1.5680 (log .19537) b
Rb₂PtCl₅+	Rb₂SO₄ Pt	Rb Rb	2.8780(log .45910) b-1.0315 (log .01354) a 6.2232(log .79402) b-1.8047 (log .25642) a
Cs ₂ PtCl ₆	Rb ₂ SO ₄ + Cs ₂ SO ₄	Cs Rb	2.8050(log .44793) a - 8.3123 (log .91973) b 2.0915(log .32048) a - 3.8964 (log .59066) b 5.2044(log .71637) b - 2.3994 (log .38011) a
CaCO ₃ +SrCO ₃	CO ₂	Ca. Sr	2.8230(log .45071) b84252 (log T.92558)a 1.8469(log .26643) a - 4.1905 (log .62226) b
	CaSO ₄ + SrSO ₄	Ca	3.4548(log .53844) b - 4.2995 (log .63341) a 6.9660(log .84304) a - 5.1220 (log .70944) b
CaCO ₃ +BaCO ₃	CO ₂	Ca Ba	1.8395(log .26470) b41010 (log T.61287)a 1.4065(log .14804) a - 3.1980 (log .50489) b
·	CaSO ₄ + BaSO ₄	Ca Ba	2.2447(log .35116) b-2.6684 (log .42625) a 5.3247(log .72630) a-3.9329 (log .59471) b
BaCO ₃ +SrCO ₃	CO_2	Ba Sr	2.7485(log .43909) a-9.2694 (log .96705) b 7.8961(log .89736) b-1.7603 (log .24559) a
	BaSO ₄ + SrSO ₄	Ba Sr	$\begin{array}{l} 14.085 \ (\log 1.14895)a - 11.341 \ (\log 1.05465)b \\ 9.6371 (\log .98395) \ b - 11.435 \ (\log 1.05824)a \end{array}$

VII.—MOLECULAR AND ATOMIC WEIGHTS AND THEIR LOGARITHMS

	Formul	a Weight.		Formula	Weight.
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.
Ag	107.88	2.03294	AsCl,	181.34	2.25849
Ag ₂	215.76	2.33397	$\frac{1}{2}$ As ₂ O ₃	98.96	1.99546
Ag ₃ AsO ₄	462.60	2.66521	As_2O_3	197.92	2.29649
AgBr	187.80	2.27370	AsO ₈	122.96	2.08976
AgCN	133.89	2.12675	$(AsO_3)_2$	245.92	2.39079
AgCl	143.34	2.15637	As ₂ O ₅	229.92	2.36157
AgI	234.80	2.37070	AsO4	138.96	2.14289
AgIO ₃	282.80	2.45148	$(AsO_4)_2 \dots$	277.92	2.44392
AgNO ₂	153.89	2.18721	As ₂ S ₃	246.13	2.39116
AgNO ₃	169.89	2.23017	As ₂ S ₅	310.27	2.49174
¹ / ₂ Ag ₂ O	115.88	2.06401			
Ag ₂ O	231.76	2.36504	Au	197.2	2.29491
Ag ₃ PO ₄	418.68	2.62188	AuCl ₃	303.58	2.48227
$\frac{1}{2}$ Ag ₄ P ₂ O ₇	302 . 80	2.48115	AuCl ₈ .2H ₂ O	339.61	2.53098
$Ag_{4}P_{2}O_{7}$	605.60	2.78219			
Ag ₂ S	247.83	2.39415	B	11.0	1.04139
Al	27.1	1.43297	B ₂	22.0	1.34242
Al ₂	54.2	1.73400	B ₂ O ₃	70.0	1.84510
Al ₄ C ₃	144.4	2.15957	$(B_2O_3)_2$	140.0	2.14613
AlCl ₃	133.48	2.12542			
(AlCl ₂),	266.96	2.42645	⅓Ba	68.68	1.83683
AlCl ₃ .6H ₂ O	241.58	2.38306	Ba	137.37	2.13789
AlF _a	84.1	1.92480	BaCl ₂	208.29	2.31867
$(AlF_3)_2$	168.2	2.22583	BaCl ₂ .2H ₂ O	244.32	2.38796
$AlK(SO_4)_2$.			BaCO ₃	197.37	2.29528
12H,O	474.53	2.67627	BaCrO ₄	253.37	2.40374
AlnH ₄ (SO ₄) ₂ .			BaF ₂	175.37	2.24395
12H ₂ O	453.47	2.65655	Ba(HCO ₃) ₂	259.39	2.41395
AlNa ₃ F ₆	210.10	2.32243	$Ba(NO_3)_2$	261.39	2.41729
¹ ⁄ ₂ Al ₂ O ₃	51.1	1.70842	BaO	153.37	2.18574
Al ₂ O ₃	102.2	2.00945	BaO ₂	169.37	2.22884
AlPO ₄	122.14	2.08676	BaO ₂ .8H ₂ O	313.50	2.49624
$(A1PO_4)_2 \dots$	244 .28	2.38789	Ba(OH) ₂	171.386	2.23398
$Al_2(SO_4)_3$	342.41	2.53454	Ba(OH) ₂ .8H ₂ O	315.52	2.49903
Al ₂ (SO ₄) ₃ .18H ₂ O	666.70	2.82393	BaS	169.44	2.22901
	74.00	1 07400	BaSiF ₆	279.67	2.44665
As	74.96	1.87483	BaSO ₄	233.44	2.36814
As ₂	149.92	2.17586	$(BaSO_4)_2$	466.88	2.66920
		<u>' </u>	Dig	itized by GO	bgle -

_	Formula	Weight.		Formula Weight.		
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.	
(BaSO ₄),	700.32	2.84529	Са	40.07	1.60282	
BaS,O,H,O	267.53	2.42737	Ca ₃ (AsO ₄) ₂	398.17	2.60007	
			CaC,	64.07	1.80665	
Be	9.1	0.95904	CaCl ₂	110.99	2.04528	
BeCl	80.02	1.90320	CaCl ₂ .6H ₂ O	219.09	2.34062	
BeO	25.1	1.39967	CaCO ₂	100.07	2.00030	
$BeSO_4.4H_2O$	177.234	2.24852	CaF ₂	78.07	1.89248	
•			$(Ca\tilde{\mathbf{F}}_{2})_{2}$	156.14	2.19351	
Bi	208.0	2.31806	$(CaF_2)_3 \dots$	234.21	2.36960	
Bi,	416.0	2.61909	Ca(HCO ₂) ₂	162.09	2.20975	
BiAsO ₄	346.96	2.54028	Ca(NO ₂) ₂	164.09	2.21508	
$Bi(NO_3)_3.5H_2O$.	484.11	2.68495	CaO	56.07	1.74873	
$\frac{1}{2}$ Bi ₂ O ₃	232.0	2.36549	(CaO) ₂	112.14	2.04976	
Bi ₂ O ₃	464.0	2.66652	(CaO) ₃	168.21	2.22585	
BiOČl	259.46	2.41407	CaOCl,	126.98	2.10374	
BiONO ₃	286.01	2.45639	Ca(OH),	74.096	1.86979	
Bi ₂ S ₃	512.21	2.70945	$Ca_3(PO_4)_2$	310.29	2.49178	
			CaS	72.14	1.85818	
Br	79.92	1.90266	CaSO4	136.14	2.13398	
Br,	159.84	2.20369	(CaSO ₄) ₂	272.28	2.43501	
Br_a	239.76	2.37978	(CaSO ₄),	408.42	2.61107	
Br	319.68	2.50472	CaSO ₄ .2H ₂ O	172.17	2.23598	
BrO	127.92	2.10694	CaSiO ₃	116.37	2.06584	
•	'		CaWO4	288.07	2.45950	
C	12.00	1.07918	<u>-</u>			
C,	24.00	1.38021	Cd	112.4	2.05077	
CH ₃	15.024	1.17689	CdCl,	183.32	2.2631	
CH	16.032	1.20498	CdCl ₂ .2H ₂ O	219.33	2.34110	
С,Н,	26.016	1.41524	CdCO ₃	172.4	2.2365	
$C_2H_4\dots$	28.032	1.44765	Cd(NO ₃) ₂	236.42	2.37369	
C,H,	29.04	1.46300	Cd(NO ₂) ₂ .4H ₂ O	308.48	2.4892	
C, H, \ldots	30.048	1.47781	CdO	128.4	2.1085	
$C_{\bullet}H_{\bullet}\dots$	78.05	1.89237	CdS	144.46	2.1597	
CN	26.01	1.41514	CdSO ₄	208.47	2.3190	
CNS	58.08	1.76403	CdSO ₄ .23H ₂ O.	256.51	2.4091	
co	28.00	1.44716	Ce	140.25	2.1469	
CO ₂	44.00	1.64345	Ce ₂	280.5	2.4479	
$(C\tilde{O_2})_2 \dots \dots$	88.00	1.94448	Ce(NO ₃) ₄	388.29	2.5891	
CO ₃	60.00	1.77815	$Ce(NO_3)_4.(NH_4)$			
CS ₂	76.14	1.88161	$NO_3)_2.H_2O$	566.41	2.7531	
-			CeO ₂	172.25	2.2361	
}Ca	20.04	1.30190	$(CeO_2)_2$	344.5	2.5371	

		- W7-1-1-A		Paraula Walaha		
Formula.	Formul	a Weight.	Formula.	Formula Weight.		
	Number.	Logarithm.		Number.	Logarithm.	
Ce ₂ O ₃	328.5	2.51654	(CsCl) ₂	336.54	2.52704	
$Ce_2(SO_4)_3$	568.71	2.75489	Cs ₂ CO ₃	325,62	2.51271	
-			CsHCO ₃	193.82	2.28739	
<u>Cl</u>	35.46	1.54974	Cs ₂ O	281.62	2.44966	
Cl ₂	70.92	1.85077	Cs ₂ PtCl ₄	673.58	2.82839	
Cl ₃	106.38	2.02686	Cs ₂ SO ₄	361.69	2.55834	
Cl ₄	141.84	2.15180				
Cl ₅	177.30	2.24871	Cu	63.57	1.80325	
Cl_2O_5	150.92	2.17875	Cu ₂	127.14	2.10429	
C10 ₃	83.46	1.92148	$rac{1}{2} ext{Cu}_2 \left\{ egin{matrix} ext{C}_2 ext{H}_3 ext{O}_2 \\ ext{As}_3 ext{O}_6 \end{matrix} ight\}$	253.52	2.40401	
Cl_2O_7	182.92	2.26226	(As ₃ O ₆)			
C1O ₄	99.46	1.99765	CuCl	99.03	1.99577	
	***		CuCl ₂	134.49	2.12869	
Ço	58.97	1.77063	CuCl ₂ .2H ₂ O	170.52	2.23177	
Co ₂	117.94	2.07166	CuCNS	121.65	2.08511	
Co ₃	176.91	2.24775	CuI	190.49	2.27988	
CoCl ₂ .6H ₂ O	238.00	2.37658	CuFeS ₂	183.56	2.26378	
$Co(NO_3)_2.6H_2O$	291.09	2.46402	$\parallel \mathrm{Cu(NO_3)_2.6H_2O} \parallel$	295 .69	2.47083	
$Co(NO_2)_3$.		_	Cu ₂ O	143.14	2.15576	
$(KNO_2)_3$	452.33	2.65546	CuO	79.57	1.90075	
CoO	74.97	1.87489	Cu ₂ S	159.21	2.20197	
(CoO) ₂	149.94	2.17592	CuSO ₄	159.64	2.20314	
Co ₃ O ₄	240.91	2.38186	CuSO.5H.O	249.72	2.39745	
CoSO ₄	155.04	2.19044	70	10		
$CoSO_4.7H_2O$ $(CoSO_4)_2.$	281.15	2.44894	F	19	1.27875	
(K ₂ SO ₄) ₃	832.89	2.92059	Fe	55.84	1.74695	
(==3.5 = 4/3 - 1 - 1	002.00		Fe ₂	111.68	2.04798	
Cr	52 .0	1.71600	FeAsO4	194.81	2.28960	
Cr ₂	104.0	2.01703	FeCl ₃	162.22	2.21010	
½Cr₂O₃	76.0	1.88081	FeCl ₃ .6H ₂ O····	270.32	2.43189	
Cr.O	152.0	2.18184	Fe ₇ (CN) ₁₈	859.06	2.93403	
CrO ₃	100.0	2.00000	FeCO	115.84	2.06386	
(CrO) ₂	200.0	2.30103	Fe(HCO ₃) ₂	88.93	1.94905	
CrO	116.0	2.06446	Fe(HCO ₃) ₂	177.86	2.25008	
Cr ₂ O ₇	216.0	2.33445	FeO	71.84	1.85637	
$\frac{1}{2}Cr_2(SO_4)_3$.		1	$\frac{1}{2}$ Fe ₂ O ₃	79.84	1.90222	
18H ₂ O	358.25	2.55419	Fe ₂ O ₃ ·····	159.68	2.20325	
			$\frac{1}{3}$ Fe ₃ O ₄	77.17	1.88745	
Cs	132.81	2.12323	Fe ₈ O ₄ ·····	231.52	2.36459	
Cs ₂	265.62	2.42426	FePO ₄	150.88	2.17863	
$C8Al(SO_4)_2$.			FeS	87.91	1.94403	
12H,O	568.24	2.75453	FeS ₂	119.99	2.07914	
CsCl	168.27	2.22601	FeSO ₄	151,91	2.18159	

Parmula	Formula	Weight.	Parmula	Formula Weight.		
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.	
FeSO ₄ .7H ₂ O	278.02	2.44408	HNO ₂	47.02	1.67228	
$FeSO_4.(NH_4)_2$			HNO ₃	63.02	1.79948	
$SO_4.6H_2O$	392.16	2.59346	$(HNO_3)_2$	126.04	2.10051	
$\frac{1}{2}$ Fe ₂ (SO ₄) ₃	199.95	2.30092	HNaCO ₃	84.08	1.92432	
$Fe_2(SO_4)_3$	399.89	2.60194	HNa ₂ PO ₄ . 12H ₂ O	358.24	2.55417	
Ga	69.9	1.84448	HO	17.008	1.23065	
Ga ₂ O ₃	187.8	2.27370	H,O	18.016	1.25565	
$Ga_2O_3Ga_2S_3Ga_2$	236.01	2.37293	H_2O_2	34.016	1.53168	
Ua ₂ D ₃	230.01	2.31283	H_3PO_4	98.06	1.99149	
Ge:	72.5	1.86034	H ₂ PtCl ₆ .6H ₂ O	518.072		
GeO ₂	104.5			34.09	1.53263	
GeO ₂	104.5	2.01912	$\parallel \text{H}_2\text{S}$	82.09	1.91429	
TJ .	1 000	0 00246	H ₂ SO ₃		1	
H	1.008		H ₂ SO ₄	98.09	1.99162	
H ₂	2.016		⅓H₂SO₄	49.04	1.69055	
H ₃	3.024	0.48058	H_2SeO_3	129.22	2.11131	
H ₄	4.032	0.60552	H ₂ SeO ₄	145.22	2.16202	
H ₅	5.040	0.70243	H ₂ SiF ₆	144.32	2.15932	
H ₆	6.048		H_2SiO_3	78.32	1.89387	
H_3AsO_3	125.984	2.10032	H ₂ TeO ₄	193.52	2.28672	
H ₃ AsO ₄	141.98	2.15235	$H_2\text{TeO}_4.2H_2\text{O}.$	29 9.55	2.36087	
HAuCl ₄ .4H ₂ O	412.11	2.61501		000 0	0.0000	
H ₃ BO ₃	62.024	1.79256	Hg	200.6	2.30233	
$(H_3BO_3)_2$	124.05	2.09359	HgCl	236.06	2.37302	
$(H_8BO_8)_3$	186.07	2.26968	HgCl ₂	271.52	2.43380	
$(H_3BO_3)_4$	248.10	2.39462	$Hg(CN)_2$	252.62	2.40247	
HBr	80.93	1.90811	HgI ₂	454.44	2.65748	
$\frac{1}{2}$ H ₂ C ₂ O ₄	45.008	1.65329	HgNO ₃	262.61	2.41840	
$H_2C_2O_4$	90.016	1.95432	$Hg(NO_3)_2$	324.62	2.51062	
$\frac{1}{2}$ H ₂ C ₂ O ₄ .2H ₂ O .	63.025	1.79952	$Hg(NO_3)_2.H_2O$.	342.64	2.53410	
$H_2C_2O_4.2H_2O$	126.05	2.10054	12 Hg₂O	208.6	2.31931	
$H.C_2H_3O_2$	60.032	1.77838	Hg_2O	417.2	2.62034	
$H.C_3H_5O_3$	90.05	1.95447	HgO	216.6	2.33566	
$H_2.C_4H_4O_6$	150.05	2.17623	HgS	232.67	2.36560	
$H_3.C_6H_6O_7$	192.06	2.28345	HgSO ₄	296.67	2.47138	
HCl	36.47	1.56194	_			
HClO ₃	84.47	1.92670	<u>I</u>	126.92	2.10353	
HCN	27.02	1.43169	<u> </u>	253.84	2.40456	
HCO ₂	45.008	1.65329	<u>I</u> ₃	380.76	2.58065	
HF	20.008	1.30121	I ₄	507.68	2.70559	
HI	127.93	2.10697	IO ₃	174.92	2.24284	
$(HI)_2$	255.86	2.40800	$(IO_3)_2$	349.84	2.54387	
HKCO ₃	100.11	2.00047	$\frac{1}{2}I_2O_5$	166.92	2.22251	

Digitized by GOOGIG

	Formula	Weight.		Formula Weight.		
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.	
I_2O_5	333.84	2.52354	KHCO ₃	100.11	2.00047	
IO	190.92	2.28086	(KHCO ₃) ₂	200.22	2.30150	
$(IO_4)_2$	381.84	2.58189	$KH_3(C_2O_4)_2$.		ł	
11,0,	182.92	2.26226	2H ₂ O	254.16	2.40510	
Ĭ ₂ O ₇	365.84	2.56329	KH(IO ₃) ₂	389.95	2.59101	
			KHSO ₄	136.18	2.13411	
In	114.8	2.05994	(KHSO ₄) ₂	272.36	2.43515	
In,	229.6	2.36097	KI	166.02	2.22016	
In ₂ O ₂	277.6	2.44342	kIO ₃	35.67	1.55230	
In_2S_3	325.81	2.51296	KIO,	214.02	2.33045	
111203	020.01	2.01230	½KMnO	31.61	1.49982	
			KMnO ₄	158.03	2.19874	
<u>K</u>	39.10	1.59218	K ₂ MnO ₄	197.13	2.29476	
K ₂	78.20	1.89321	KNO,	85.13	1.93008	
$KAl(SO_4)_2$.			(KNO ₂) ₂	170.22	2.23101	
12H ₂ O	474.53	2.67627	KNO,	101.11	2.00479	
K_3AsO_4	256.26	2.40868	KNaC ₄ H ₄ O ₆	210.15	2.32253	
KAu(CN) ₄ .H ₂ O	358.36	2.55432	½K,0	47.10	1.67302	
KBF ₄	126.10	2.10072	K,O	94.20	1.97405	
(KBF ₄) ₄	504.40	2.70278	Кон	56.11	1.74904	
KBr	119.02	2.07562	K,PdCl,	397.66	2.59952	
KBrO ₃	167.02	2.22277	K ₂ PtCl ₆ ······	486.16	2.68678	
$K_2C_4H_4O_6$	226.23	2.35455	K ₂ S	110.27	2.04256	
KCl	74.56	1.87251	K ₂ SO ₄	174.27	2.24122	
(KCl) ₂	149.12	2.17354	KSbOC ₄ H ₄ O ₆ .			
KClO ₃	122.56	2.08835	}H₂O	332.34	2.52158	
KClO ₄	138.56	2.14164	K,SiF,	220.50	2.34341	
KCN	65.11	1.81365	K ₂ SiO ₃	154.50	2.18893	
KCNS	97.18	1.98758				
K_2CO_3	138.20	2.14051	La	139.0	2.14301	
K ₂ CrO ₄	194.2	2.28825	La ₂ O ₃	326.0	2.51322	
$\frac{1}{6}$ K ₂ Cr ₂ O ₇	49.04	1.69055	124203	020.0	2.01022	
$\frac{1}{2}$ K ₂ Cr ₂ O ₇	147.10	2.16731		2 2 4	0.04400	
$K_2Cr_2O_7$	294.2	2.46864	Li	6.94	0.84136	
KCr(SO ₄) ₂ .	100 10		Li ₂	13.88	1.14239	
$12\mathrm{H}_2\mathrm{O}\ldots$	499.43	2.69847	LiCl	42.40	1.62737	
KF.2H ₂ O	94.13	1.97373	Li ₂ CO ₃	73.88	1.86853	
K_3 Fe(CN) ₆	329.20	2.51746	LiHCO ₃	67.95	1.83219	
K ₄ Fe(CN) ₆	368.33	2.56624	$\frac{1}{2}$ Li ₂ O	14.94	1.17435	
K ₄ Fe(CN) ₆ .	400.07		Li ₂ O	29.88	1.47538	
3H ₂ O	422.35	2.62567	Li ₃ PO ₄ ······	115.82	2.06378	
K_2GeF_6	264.7	2.42275	Li ₂ SO ₄	109.95	2.04120	
K ₂ HAsO ₄	218.17	2.33880	Li ₂ SO ₄ .H ₂ O	127.97	2.10711	
KHC ₄ H ₄ O ₆	188.14	2.27448	½ Li ₂ SO ₄ .H ₂ O	63.98	1.80608	
		l	Digitize	ed by GOO	gie_	

	Formula Weight.		1	Formula	Formula Weight.		
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.		
Mg	24.36	1.38596	MoO	144	2.15836		
Mg	48.64	1.68699	MoS _a	192.21	2.28377		
Mg,As,O,	155.28	2.19112	1		1		
Mg ₂ As ₂ O ₇	310.56	2.49214	N	14.01	1.14644		
MgBr	184.16	2.26519	N ₂	28.02	1.44747		
MgBr ₂ .6H ₂ O	292.26	2.46577	NH	16.03	1.20493		
MgCl ₂	95.24	1.97882	NH	17.03	1.23121		
MgCl,.6H,O	203.34	2.30823	(NH ₂) ₂	34.07	1.53237		
MgCl ₂ .KCl			NH.	18.04	1.25624		
,6H ₂ O	277.90	2.44389	(NH ₄)	36.08	1.55727		
MgCO ₃	84.32	1.92593	NHAI(SO.).				
Mg(HCO ₃) ₂	146.34	2.16536	12H,O	453.47	2.65655		
MgI,	278.16	2.44429	NH ₄ Br	97.96	1.99109		
MgNH ₄ AsO ₄ .			NH,Cl	53.50	1.72835		
H,O	190.33	2.27951	(NH ₄ Cl) ₂	107.00	2.02938		
[MgNH ₄ AsO ₄ .			(NH ₄),CO ₃	96.08	1.98263		
	380.66	2.58054	(NH ₄) ₂ C ₂ O ₄ .				
⅓H₂O]₂ MgNH₄PO₄.	000.00		2H,O	160.11	2.20442		
6H ₂ O	245.50	2.39005	NH4HCO3	79.05	1.89790		
MgO	40.32	1.60552	$NH_4Fe(SO_4)_2$.				
	111.36	2.04673	12H,O	482.21	2.68324		
$\frac{1}{2}$ Mg ₂ P ₂ O ₇ Mg ₂ P ₂ O ₇	222.72	2.34776	(NH,) Fe(SO,)				
MgSO ₄	120.39	2.08059	6H ₂ O	392.16	2.59346		
MgSO ₄ .7H ₂ O	246.50	2.39182	NH,I	144.96	2.16135		
MgSiO	100.62	2.00269	(NH ₄) ₂ MoO ₄	196.08	2.29244		
mgolo ₈	100.02	2.00200	NH,NO	80.05	1.90336		
M-	54.93	1.73981	(NH,NO,)	160.10	2.20439		
Mn	109.86	2.04084	NH NaHPO.	100.10	2.20100		
Mn ₂	114.93	2.06043	4H,O	209.15	2.32046		
MnCO ₃	197.91	2.29647	(NH ₄) ₂ O	52.08	1.71667		
MnCl ₂ .4H ₂ O	176.95	2.24785	NH,OH	35.05	1.54469		
$M_n(HCO_3)_2$	70.93	1.85083	1/2(NH ₄),PO ₄ .	00.00			
MnO	86.93	1.93917	12MoO,	156.43	2.19432		
MnO_2	157.86	2.19828	(NH ₄) ₃ PO ₄ .	100.40	2.10702		
Mn_2O_3	228.79	2.35944		1877.17	3.27350		
Mn_3O_4	141.97	2.15220	½(NH ₄) ₂ PtCl ₆	222.02	2.34639		
$\frac{1}{2}$ Mn ₂ P ₂ O ₇	283.94	2.15220	$(NH_4)_2$ PtCl ₆	444.04	2.64742		
$Mn_2P_2O_7$	87.00	1.93952	NH ₄ CNS	76.12	1.88150		
MnS	151.00	2.17898	(NH ₄) ₂ SO ₄	132.15	2.12106		
MnSO.		2.34842	N_2O	44.02	1.64365		
MnSO ₄ .4H ₂ O	223.06	2.44266	NO	30.01	1.47727		
MnSO ₄ .7H ₂ O	277.11	2.41200	NO				
36	ne	1 00007	$\frac{1}{2}N_2O_3$	46.01	1.66285		
Mo	96	1.98227	7 N 2 U 8	38.01	1.57990		

Digitized by GOOGLO

	Formul	Weight.		Formula Weight.	
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.
N ₂ O ₃	76.02	1.88093	Na ₄ P ₂ O ₇	266.08	2.42501
NO ₃	62.01	1.79246	¹ / ₂ Na ₄ P ₂ O ₇ .10H ₂ O	223.12	2.34854
$\frac{1}{2}$ N ₂ O ₅	54.01	1.73247	Na ₃ RhCl ₆	384 . 66	2.58508
N_2O_5	108.02	2.03350	Na ₂ S	78.07	1.89248
			Na ₂ SO ₃	126.07	2.10064
Na	23.00	1.36173	$Na_2SO_3.7H_2O$	252.18	2.40171
Na ₂	46.00	1.66276	$Na_2S_2O_3.5H_2O$	248.22	2.39483
Na_3AlF_6	210.10	2.32243	Na_2SO_4	142.07	2.15250
$Na_2B_4O_7$	202.00	2.30535	$Na_2SO_4.10H_2O$.	322.23	2.50817
$Na_2B_4O_7.10H_2O$	382.16	2.58225]		
NaBr	102.92	2.01250	Ni	58.68	1.76849
$NaC_2H_3O_2$	82.02	1.91392	NiCl ₂ .6H ₂ O	237.68	2.37603
$NaC_2H_3O_2.3H_2O$	136.07	2.13376	Ni(NO ₃) ₂ .6H ₂ O	290.80	2.46359
NaCl	58 . 46	1.76686	NiO	74.68	1.87320
$(NaCl)_2 \dots$	116.92	2.06788	NiSO ₄	154.75	2.18963
NaClO ₄	122.46	2.08799	NiSO ₄ .6H ₂ O	262.85	2.41971
NaCN	49.01	1.69028	NiSO ₄ .7H ₂ O	280.86	2.44849
$\frac{1}{2}$ Na ₂ CO ₃	53.00	1.72428			
Na ₂ CO ₃	106.00	2.02531	0	16.00	1.20412
Na ₂ CO ₃ .10H ₂ O	286.16	2.45661	O ₂	32.00	1.50515
NaF	42.00	1.62325	O ₃	48.00,	1.68124
$(NaF)_2$	84.00	1.92428	O ₄	64.00	1.80618
$Na_4Fe(CN)_6$	303.90	2.48273	O ₅	80.00	1.90309
Na ₂ HAsO ₃	169.99	2.23042	O ₆	96.00	1.98227
Na_2HAsO_4	185.99	2.26949	OH	17.008	1.23065
NaHCO ₃	84.01	1.92432	!		
Na ₂ HPO ₄	142:05	2.15244	Os	190.9	2.28081
Na ₂ HPO ₄ .			OsO4	254.9	2.40637
12H ₂ O	358.24	2.55417	_		
NaHSO ₃	104.08	2.01736	<u>P</u>	31.04	1.49192
NaHSO	120.08	2.07947	P ₂	62.08	1.79295
NaHSO ₄ .H ₂ O	138.09	2.14016	PCl ₃ ·····	137.42	2.13806
NaI	149.92	2.17586	PCl ₅	208.34	2.31867
NaNH ₄ HPO ₄ .			$\frac{1}{2}P_2O_5$	71.04	1.85150
4H ₂ O	209.15	2.32046	P_2O_5	142.08	2.15253
NaNO ₂	69.01	1.83891	PO	95.04	1.97791
NaNO ₃	85.01	1.92947	2PO ₄	190.08	2.27894
$\frac{1}{2}$ Na ₂ O	31.00	1.49136	P ₂ O ₃	110.08	2.04171
Na ₂ O	62.00	1.79239	l		
Na ₂ O ₂	78.00	1.89209	Pb	207.1	2.31618
NaOH	40.01	1.60215	$Pb(C_2H_3O_2)_2$.		
NaPO ₃	102.04	2.00877	3H ₂ O		2.57887
Na ₃ PO ₄	164.04	2.21495	PbCl ₂ ·····	277.02	2.44407

Digitized by GOOGLE

	Formula	a Weight.	Formula.	Formula Weight.	
Formula.	Number.	Logarithm.		Number.	Logarithm
PbCO ₃	267.1	2.42667	SCN	58.08	1.76403
⅓(PbCO₃)₂.			SO ₂	64.07	1.80665
$Pb(OH)_2 \dots$	258.44	2.41236	80,	80.07	1.90347
(PbCO ₃) ₂ .			SO4	96.07	1.98259
$Pb(OH)_2$	775.31	2.88948			
PbCrO ₄	323.1	2.50934	Sb	120.2	2.07990
PbI_2	460.94	2.66365	$Sb_2 \dots \dots$	240.4	2.38093
PbMoO ₄	367.1	2.56478	SbCl ₃	226.58	27.35522
$Pb(NO_3)_2$	331.12	2.51999	SbCl ₅	297.50	2.47349
PbO	223.1	2.34850	12Sb ₂ O ₃	144.2	2.15897
PbO ₂	239.1	2.37858	Sb_2O_3	288.4	2.46000
$Pb_8O_4 \cdots \cdots$	6 85.3	2.83588	Sb_2O_4	304.4	2.48344
PbS	239.17	2.37871	13Sb₂O₅	160.2	2.20466
PbSO ₄	303.17	2.48169	Sb_2O_5	320.4	2.50569
			SbOCl	171.66	2.2346
Pd	106.7	2.02816	SbOKC ₄ H ₄ O ₆ .		
PdCl ₂ .2H ₂ O	213.65	2.32970	⅓H₂O	332.34	2.5215
PdI,	360.54	2.55696	Sb_2S_3	336.61	2.5271
Pd(NO ₃) ₂	230.72	2.36309	$\mathrm{Sb}_{2}\mathrm{S}_{5}$	400.75	2.6028
Pt	195.2	2.29048	Se	79.2	1.8987
PtCl ₄	337.04	2.52768	SeO ₂	111.2	2.0461
PtCl ₄ .5H ₂ O	427.12	2.63055	SeO ₃	127.2	2.1044
PtCl ₆	407.96	2.61062			
			Si	28.3	1.4517
$\operatorname{Rb} \ldots \ldots $	85.45	1.93171	Si ₂	56 .6	1.7528
Rb_2	170.90	2.23274	SiF ₄	104.3	2.0182
$RbAl(SO_4)_2$.			SiF ₆	142.3	2.1532
12H ₂ O	520.98	2.71682	SiO ₂	60.3	1.7803
RbCl	120.91	2.08247	$ \operatorname{SiO}_3.\ldots. $	76.3	1.8825
$(RbCl)_2 \dots$	241.82	2.38350	SiO ₄	92.3	1.9652
Rb_2CO_3	230.9	2.36342	Si_2O_7	168.6	2.2268
RbHCO ₃	146.46	2.16554	Si(OH)₄	96.33	1.9837
$(RbHCO_3)_2$	292.92	2.46675			
$Rb_2O \dots \dots$	186.9	2.27161	Sn	119.0	2.0755
Rb_2PtCl_6	578.86	2.76258	SnCl ₂	189.92	2.2785
Rb_2SO_4	266.97	2.42646	SnCl ₂ .2H ₂ O	225.95	2.3540
·			SnCl ₄	260.84	2.4163
Rh	102.9	2.01242	SnCl ₄ .(NH ₄ Cl) ₂ .	367.84	2.5656
RhCl ₃	209.28	2.32073	SnO	135.0	2.1303
			SnO_2	151.0	2.1789
S	32.07	1.50610	SnS	151.07	2.1791
S,	64.14	1.80713	$\operatorname{SnS}_2 \dots \dots$	183.14	2.2627

	Formula W				Formula Weight.	
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.	
Sr	87.63	1.94265	Tl ₂ O	424.00	2.62737	
SrCl ₂	158.55	2.20017	Tl ₂ PtCl ₆	815.96	2.91167	
$SrCl_2.6H_2O$	266 .65	2.42594	½Tl₂SO₄	252.04	2.40147	
SrCO ₃	147.63	2.16917	Tl ₂ SO ₄	504.07	2.70249	
$\frac{1}{2}$ Sr(HCO ₃) ₂	104.82	2.02044				
$Sr(HCO_3)_2$	209.65	2.32149	U	238.5	2.37749	
$Sr(NO_3)_2$	211.65	2.32562	U ₂	477.0	2.67852	
Sr0	103.63	2.01550	UO ₂	270.5	2.43217	
$Sr(OH)_2.8H_2O$.	265.77	2.42451	$(UO_2)_2$	541.0	2.73320	
SrSO ₄	183.70	2.26410	$\frac{1}{3}U_3O_8$	281.17	2.44897	
			$\bigcup_{\mathbf{U_3O_8}} \mathbf{O_8O_8} \cdots$	843 .5	2.92609	
Ta	181.5	2.25888	$UO_2(C_2H_3O_2)_2$.	101 70	0.0000	
TaCl ₅	358.80	2.55485	2H ₂ O	424.58	2.62796	
$(TaCl_5)_2 \dots$	717.60	2.85588	$UO_2(UO_3)_2$.	* 00 00	0 70100	
Ta_2O_4	427.0	2.63012	6H ₂ O	502.68	2.70129	
Ta ₂ O ₅	443.0	2.64572	$\frac{1}{2}$ U ₂ P ₂ O ₁₁	357.54	2.55332	
			$U_2P_2O_{11}$	715.08	2.85436	
Te	127.5	2.10551	v	51.0	1.70757	
TeO,	159.5	2.20276	vo	115.0	2.06070	
TeO ₃	175.5	2.24428	(VO ₄) ₂	230.0	2.36173	
TeO ₃ .3H ₂ O	229.55	2.36087	V ₂ O ₅	182.0	2.26007	
		l l	2-6			
Th	232.40	2.36624	W	184	2.26482	
ThCl	374.24	2.57315	WO ₂	216	2.33445	
Th(NO ₃) ₄ .6H ₂ O	588.54	2.76978	WO ₃	232	2.36549	
ThO ₂	264 .40	2.42226	371	170	0.00550	
_			Yb	172	2.23553	
Ti	48.1	1.68215	Yb ₂ O ₃	392	2.59329	
TiO ₂	80.1	1.90363	Yt	89	1.94939	
•			Yt ₂ O ₃	226	2.35411	
Tl	204.00	2.30963				
Tl ₂	408.00	2.61066	Zn	65.37	1.81538	
TiCi	239.46	2.37923	ZnCl ₂	136.29	2.13447	
(TlCl) ₂	478.92	2.68026	ZnCO ₃	125.37	2.09819	
$\frac{1}{2}$ Tl ₂ CO ₃	230.00	2.36922	ZnO	81.37	1.91046	
Tl ₂ CO ₃	468.00	2.67025	$Zn_2P_2O_7$	304.82	2.48404	
½Tl ₂ CrO ₄	262.00	2.41830	$\frac{1}{2}$ Zn ₂ P ₂ O ₇	152.41	2.18301	
Tl,CrO	524.00	2.71933	ZnS	97.44	1.98874	
TIHSO	301.08	2.47869	ZnSO ₄	161.44	2.20801	
TII	330.92	2.51973	ZnSO ₄ .7H ₂ O	287.55	2.45872	
$(T11)_2,\ldots$	661.84	2.82076				
ŤINŐ ₃	266.01	2.42490	Zr	90.6	1.95713	
½Tl₂O	212.00	2.32634	ZrO ₂	122.6	₽ 2.08849	
30			- Z · · · · · · · · · · · · · · · · · ·	a by GOO	Pre	

CALCULATION OF VOLUMETRIC ANALYSES

VIII.—BASICITY OF ACIDS WITH VARIOUS INDI-CATORS ACCORDING TO R. T. THOMPSON *

The numbers indicate in each case the number of molecules of a univalent base, such as caustic soda, which will have combined with one molecule of the acid when the solution reacts neutral to the indicator given. Thomson divided indicators into three classes. Methyl orange is typical of the first class which also includes lacmoid, dimethyl amidobenzene, cochineal, iodeosine, and congo red. Phenolphthalein is typical of the second class which includes turmeric, curcuma, and flavescin. Litmus is typical of the third class, which includes rosolic acid, phenacetolin, fluorescein, gallein, and hematoxylin.

Acids.		Methyl Orange. Phenolpht		nthalein.	Litm	Litmus.	
Name.	Formula.	Cold.	Cold.	Boiling.	Cold.	Boiling	
Sulphuric	H,SO,	2	2	2	2	2	
Hydrochloric	HCl	1	1	1	1	1	
Nitric	HNO,	1†	1	1	1	1	
Thiosulphuric	H ₂ S ₂ O ₃	2	2	2	2	2	
Carbonic		0	1 dilute	0		0	
Sulphurous	H ₂ SO ₃	1	2				
Hydrosulphuric	H ₂ S	0	1 dilute	0		0	
Phosphoric	H ₃ PO ₄	1	2				
Arsenic	H ₃ AsO ₄	1	2				
Arsenous	H _a AsO _a	0			0	0	
Nitrous	HNO,	†	1		1		
Silicic	H ₄ SiO ₄	0			0	0	
Boric		0					
Chromic		1	2	2			
Oxalic	H ₂ C ₂ O ₄		2	2	2	2	
Acetic	HC,H,O,		1		1 nearly		
Butyric	HC4H7O2]	1		1 nearly		
Succinic			2		2 nearly		
Lactic	HC ₃ H ₅ O ₃		1		1 1		
Tartaric	H ₂ C ₄ H ₄ O ₆		2		2		
Citric	H,C,H,O		3				

^{*} C. N., 47, pp. 123, 185; 49, pp. 32, 119. J. S. C. I., 6, p. 195.

[†] Concentrated nitric acid sometimes contains oxides of nitrogen producing on dilution nitrous acid, which destroys methyl orange

IX.—VALUE OF NORMAL SOLUTIONS OF 'ACIDS AND BASES

In the following table the amount of each chemical compound which is equal to one c.c. of a normal solution is given. The indicator given in the last column or an indicator belonging to the same class, as given by Thompson, must be used. When no indicator is specified any one of the three classes of indicators may be used.

For fifth or tenth normal solutions or other strengths the number given in the table must be multiplied by $\frac{1}{5}$ or $\frac{1}{10}$ or the number expressing in terms of normal the strength of the solution used. If the amount of any chemical compound corresponding to 100 c.c. is weighed out and titrated with a normal solution the number of c.c. of solution used will be equal to the percentage of the constituent titrated. If a one tenth normal solution is used only one tenth of this amount need be weighed out.

Substance.	Substance. Formula. M		Atomic Grams Neutralizer C.C. Normal Sol		Indi- cator.
		Weight.	Number.	Logarithm.	*
Acetic acid	$H.C_2H_3O_2$	60.032	.06003	2.77838	P
Ammonia	NH_3	17.034	.01703	2.23132	M., L.
Ammonium	NH	18.042	.01804	2.25624	M., L.
chloride	NH ₄ Cl	53.502	.05350	2.72835	M., L.
hydroxide	NH ₄ OH	35.05	.03505	2.54469	M., L.
nitrate	NH_4NO_3	80 . 052	.08011	2.90370	M., L.
sulphate	$(NH_4)_2SO_4$	132.154	.06608	2.82007	M., L.
Barium	Ba	137.37	.06869	2.83689	
carbonate	$BaCO_a \dots \dots$	197.37	.09869	2.99427	M.
chloride	BaCl ₂ .2H ₂ O	244.322	.12216	T.08693	
hydroxide	Ba(OH)	171.386	.08570	2.93298	
oxide	BaO	153.37	.07669	2.88474	
Boric acid	H_3BO_3	62.024	.06202	2.79256	Ρ.
Calcium	Ca	40.07	.02004	2.30190	
carbonate	CaCO ₃	100.07	.05004	2.69932	M. .
chloride	CaCl ₂	110.99	.05550	2.74429	
chloride	CaCl, 6H,O	219.086	.10954	T.03957	.
hydroxide	$Ca(OH)_2$	74.086	.03704	2.56876	. .
oxide	CaO	56.07	.02804	2.44778	
Carbon dioxide	CO ₂	44.00	.04400	2.64345	P.
Citric acid	$H_3\tilde{C}_6H_5O_7$	192.064	.06402	2.80633	
Hydrobromic acid	HBr	80.928	.08093	2.90811	
Hydrochloric acid	HCl	36.468	.03647	2.56194	
-					

^{*} M.= Methyl orange; L.= Litmus; P.= Phenolthalein.

Substance.	Formula.	Molecular or Atomic	Grams Ne 1 c.c. Norn	Indica- tor.	
		Weight.	Number.	Logarithm.	
Hydroiodic acid	н1	127.928	.12793	T.10697	
Lactic acid	$H.C_2H_5O_3$	90.048	.09005	2.95447	Ρ.
Lead	Pb	207.10	.10355	1.01515	
carbonate	PbCO ₃	267.10	. 13355	I.12561	Μ.
oxide	PbO	223.10	.11155	1.04747	
Magnesium	Mg	24.32	.01216	$[\bar{2}.08493]$	M.
carbonate	MgCO,	84.32	.04216	2.62490	M.
chloride	MgCl ₂	95.24	.04762	2.67779	M.
oxide	MgO	40.32	.02016	2.30449	M.
Nitric acid	HNO,	63.018	.06302	2 79948	
oxide	N ₂ O ₅	108.02	.05401	2.73247	
Nitrous acid	HNO	47.018	.04702	2.67228	Ρ.
Nitrogen	N	14.01	.01401	2.14644	
Oxalic acid	H,C,O,	90.016	.04501	2.65329	
" "	$H_2C_2O_4.2H_2O$.	126.048	.06302	2.79951	
Phosphoric acid	H,PO	98.064	.09806	2.99151	M.
" "	H,PO,	98.064	.04903	2.69048	P.
Potassium	К	39.10	.03910	2.59218	
bicarbonate	KHCO	100.108	.10011	T.00048	M.
bitartrate	KHC₄H₄O₀	188.14	.18814	T.27448	P.
carbonate	K,CO,	138.20	.06910	2.83948	M.
dichromate	K ₂ Cr ₂ O ₇	294.20	.14710	T.16761	Ρ.
hydroxide	Кон	56.108	.05611	2.74904	
oxide	K,O	94.20	.04710	2.67302	 .
tartrate	K ₂ C ₄ H ₄ O ₆	226.232	.11312	T.05354	
tetroxalate	KH ₃ (C ₂ O ₄) ₂ .	254.16	.08472	2.92799	
Sodium	Na [2H ₂ O	23.00	.02300	2.36173	
bicarbonate	NaHCO ₃	84.008	.08401	2.92433	M.
carbonate	Na ₂ CO ₃	106.00	.05300	2.72428	M.
diphosphate	Na,HPO,	142.048	.14205	T.15244	Ρ.
· "	Na ₂ HPO ₄	358.24	.35824	T.55417	Ρ.
hydroxide	NaOH.[12H,O	40.008	.04001	2.60217	
oxide	Na ₂ O	62.00	.03100	2.49136	
tetraborate	$Na_2B_4O_7$	202.00	.10100	T.00432	P.
"	Na ₂ B ₄ O ₇ .10H ₂ O	382.16	.19108	T.28157	Ρ.
triphosphate	Na ₃ PO ₄	164.04	.16404	T.21495	M.
	Na ₃ PO ₄	164.04	.08202	2.91392	P.
Sulphur trioxide	80,	80.07	.04004	2.60249	
Sulphuric acid	H,ŠO,	98.086	.04904	2.69053	
Tartaric acid	$H_2^2C_4H_4O_6$	150.048	.07502	2.87520	P.

X.—VALUE OF NORMAL SOLUTIONS OF OXIDIZING AND REDUCING AGENTS

Substance T	Atomic or Molecular	r c.c. of Normal Solution is Equal to Grams.		
Name.	Formula.	Weight.	Number.	Logarithm.
Ammonium oxalate	(NH ₄) ₂ C ₂ O ₄	124.084	.06204	2.79267
Antimony	Sb	120.2	.06010	$\bar{2}.77887$
Arsenic		74.96	.03748	$\bar{2}.57380$
Arsenous acid	H ₂ AsO ₃	125.984	.06299	$\bar{2}.79927$
oxide	As ₂ O ₃	197.04	.04926	$\bar{2}.69249$
sulphide	As ₂ S ₂	246.13	.06153	$\bar{2}.78909$
Barium peroxide	BaO ₂	169.37	.08469	$\bar{2}.92783$
peroxide		313.498	.15675	$\bar{1}.19521$
thiosulphate	BaS ₂ O ₂ .H ₂ O	267.526	.26753	$\bar{1}.42737$
	CaOCl2	126.99	.06349	$\bar{2}.80271$
	Br	79.92	.07992	$\bar{2}.90266$
Calcium	Са	40.07	.02004	$\bar{2}.30190$
	CaCO ₃	100.07	.05004	2.69932
oxide	CaO	56.07	.02804	2.44778
Chlorine	C1	35.46	.03546	$\bar{2}.54974$
	CrO ₂	100.0	.03333	$\bar{2}.52284$
oxide	Cr ₂ O ₃	152.0	:02533	$\bar{2}.40364$
Copper	Cu	63.57	.06357	$\bar{2}.80325$
oxide	CuO	79.57	.0796	2.90091
sulphate	CuSO4	159.64	. 15964	1.20314
	CuSO ₄ .5H ₂ O	249.72	.24972	1.39745
Ferric oxide		159.68	.07984	$\bar{2}.90222$
Ferrous oxide	FeO	71.84	.0719	$\bar{2}.85673$
sulphate	FeSO ₄ .7H ₂ O	278.031	.27803	Ī.44409
ammonium sulphate				
•	6H ₂ O	392.16	.39222	1.59353
Hydrogen peroxide	H ₂ O ₂	34.016	.01701	$\bar{2}.23065$
Hydrogen sulphide	H ₂ S	34.086	.01704	$\bar{2}.23142$
	I	126.92	.12692	Ī.10353
Iron	Fe	55.84	.05584	$\bar{2}.74695$
Lead peroxide	PbO ₂	239.10	.11955	1.07755
Manganese peroxide	MnO ₂	86.93	.04346	$\bar{2}.63809$
Nitrous acid	HNO2	47.018	.04702	$\bar{2}.67228$
Oxalic acid	H ₂ C ₂ O ₄	90.016	.04501	$\bar{2}.65329$
	H ₂ C ₂ O ₄ .2H ₂ O	126.048	.06302	$\bar{2}.79951$

Digitized by GOOgle

			I c.c. of Normal Solution is Equal to Grams.		
Formula.	Weight.	Number.	Logarithm .		
KH(IO ₃) ₂	389.94	.03249	2.51175		
			$\frac{2}{2}.31033$ $\frac{2}{2}.81111$		
K ₂ Cr ₂ O ₇	294.2	.04903	2.69046		
			1.56620 1.62581		
KIO ₂	214.02	.03567	2.55230		
KNO2	85.11	.08511	2.92998 2.23855		
	158.03	.03160	2.28833		
$KH_{3}(C_{2}O_{4})_{2}.2H_{2}O.$	254.16	.06354	2.80305		
			2.24895 1.48273		
$Na_2S_2O_3.5H_2O$	248.22	.24822	I.39484		
			2.97754 1.05300		
Sn	119.0	.0595	2.77452		
	KClO ₃ K ₂ CrO ₄ K ₄ Cr ₂ O ₇ K ₄ Fe(CN) ₆ KIO ₈ KNO ₂ KClO ₄ KMnO ₄ KMnO ₄ KH ₃ (C ₂ O ₄) ₂ .2H ₂ O NaClO ₃ Na ₄ Fe(CN) ₆ Na ₄ Se ₂ O ₃ .5H ₂ O SnCl ₂ SnCl ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

XI.—VALUE OF NORMAL SOLUTIONS OF PRECIPITATION REAGENTS

Substance T	Atomic or Molecular	r c.c. of Normal Solution is Equal to Grams.		
Name.	Formula.	Weight.	Number.	Logarithm.
Ammonium				
sulphocyanate	NH ₄ CNS	76.12	.07612	$\bar{2}.88150$
Arsenic acid	H ₃ AsO ₄	141.98	.04733	$\bar{2}.67514$
oxide	As ₂ O ₅	229.92	.03832	2.58343
Arsenous acid	H ₃ AsO ₃	125.98	.04199	2.62315
oxide	As ₂ O ₃	197.92	.03299	2 .51838
Bromine	Br	79.92	.07992	2.90266
Carbon dioxide	CO ₂	44.00	.02200	2.34242
Chlorine	Cl	35.46	.03546	$\bar{2}.54974$
Copper	Cu	63.57	.06357	$\bar{2}.80325$
oxide	CuO	79.57	.07957	$\bar{2}.90075$
sulphate		159.64	. 15964	1.20314
	CuSO ₄ .5H ₂ O	249.72	.24972	1.39745
Cyanogen		26.01	.02601	2.41514
Hydrobromic acid	HRr	80.928	.08093	$\bar{2}.90811$
Hydrochloric acid	HCI	36.468	.03647	2.56194
Hydrocyanic acid	HCN	27.018	.02702	$\bar{2}.43169$
Hydroiodic acid	н	127.928	.12793	Ī.10697
Iodine		126.92	.12692	Ī.10353
Potassium bromide	KB.	119.02	.11902	1.10555
chloride		74.56	.07456	2.87251
cyanide	KCN	65.11	.06511	2.81365
iodide	KUN	166.03	.16603	Ī.22019
		110.27	.05513	2.74139
sulphide	TZONO			2.74139 2.98758
sulphocyanate	KUNS	97.18 107.88	.09718	1.03294
Silver	Ag		.10788	
nitrate	AgNO ₃	169.89	.16989	1.23017
Sodium bromide		102.92	.10292	1.01250
chloride	NaCl	58. 46	.05846	2.76686
cyanide	NaCN	49.01	.04901	$\bar{2}.69029$
iodide	NaI	149.92	.14992	1.17586
_ sulphide	Na ₂ S	78.07	.03903	$\bar{2}.59140$
Zinc		65.37	.0327	$\bar{2}.51455$
	ZnO	81.37	.0407	2.60959
sulphate		161.44	.08072	$\bar{2}.90698$
"	ZnSO ₄ .7H ₂ O	287.55	14377	ī.15767

Digitized by GOOGLE

XII. — PHYSICAL AND CHEMICAL CONSTANTS OF OILS. By ALBERT F. SEEKER

Name.	°C.	Specific Gravity.*	Solidifying Point, °C.	Hehner Value.
Almond	15°	0.9175-0.9195	-10 to -20	96.2
Beech nut	15°	0.9200-0.9225	-17	95.2
Black mustard	15°	0.916-0.920	-17	95.1
Candlenut	15.5°	0.920-0.926	below -18	95.5
Castor	15.5°	0.9600-0.9679	-10 to -18	
Cherry laurel	15°	0.9230	-19 to -20	
Cocoanut	40°	0.9115	22-14	88. 6-90
Cod liver	15°	0.9210-0.9280	0 to -10	95. 3-97.5
Corn (Maize)	15.5°	0.9213-0.9250	-10 to -15	93-96
Cottonseed	15°	0.9220-0.9250	-1 to 0	95-96
Croton	15°	0.9375-0.9428	-16	89.0
Fir seed	15°	0.9215-0.9285	-18 to -30	
Grape seed	15°	0.9350-0.9260	-10 to -13	
Hazel nut	15°	0.9146-0.9170	-10 to -20	95.6
Hemp seed	15°	0.9255-0.9280	-27	
Herring	15.5°	0.9202-0.9390		95.6
Lard oil	15.5°	0.9148-0.9175	-4 to +10	96.2
Linseed	15°	0.9310-0.9380	-17 to -27	95.5
Menhaden	15.5°	0.927-0.933	-4	
Neat's foot	15°	0.9133-0.9174	0 to 1.5	
Olive	15.5°	0.9140-0.9180	-6 to 2	95
Olive kernel	15°	0.9184-0.9191		
Palm	15°	0.9210-0.9470		91-95
Palm nut	40°	0.9119	20.5 to 24	87.6-96
Peach kernel	15°	0.9180-0.9215	below -20	
Peanut (Arachis)	15.5°	0.9110-0.9220	-3 to +3	95.8
Poppy seed	15.5°	0.9240-0.9270		95.2
Porpoise (body oil)	15°	0.9258-0.9350	-16	85.5
Porpoise (jaw oil)	15°	0.9258		70.2
Pumpkin seed	15°	0.920-0.925	-15.5	96.2
Rape (Colza)	15.5%			95.1
Safflower	15.5°		-13 to -18	1
Sardine	15°	0.9274-0.9330		95–97
Seal	15°	0.9155-0.9263	-2 to -3	95.45
Sesame	15.5°	0.9210-0.9244	-5	95.7
Shark liver (Arctic)	15°	0.9163-0.9290		86.9
Soja bean	15°	0.924-0.929	-15 to 8	94-96
Sperm oil[nose]	15°	0.8781-0.8835	15.5	
Sperm Oil, Arctic (Bottle-	15°	0.8764	10.5	
Sunflower.	15°	0.9240-0.9258	-18.5	95.0
Tung (Chinese Wood oil)	15°	0.9360-0.9432	below -17	96.2
Walnut (Nut)	15°	0.9250-0.9260	-15 to -27	95.4
Whale	15.5°	0.922-0.926	below -2	93.5
White Mustard	15.5°	0.914-0.916	-8 to -16	96.2

^{*} Water at $15.5^{\circ} = 1$,

Name.	Saponifica- tion Value.	Iodine Value.	Maumené Number.	°C.	Refractive Index.
Almond	189–195	93-104	51-54	25	1.4685-1.4693
Beech nut	191–196	111-120	64		
Black mustard	174-176	96-117	43	15.5	1.4740-1.4770
Candlenut	189-195	153-164		25	1.4760
Castor	177-186	83-88.5	46-47	15	1.4799-1.4803
Cherry laurel	194	108.9	44.5		
Cocoanut	246-268	8-12	21	40	1.4481-1.4497
Cod liver	182-189	135–168(181)	102-113		1.4790-1.4822
Corn (Maize)	188-193	113-129	74-86	15.5	1.4760-1.4768
Cottonseed	191-195	106-115	55-77	15.5	1.4737-1.4757
Croton	210-215	102-107		27	1.4757-1.4768
Fir seed		119.5	98.5		
Grape seed	178.5	96	53		
Hazel nut	192	83-90	36		
Hemp seed	192.5	148-160	97		
Herring	167-194	123.5-142			
	195-198	65-80	40-47	15.5	1.4702-1.4720
Linseed	190-195	171-201	103-126	15	1.4820-1.4852
Menhaden	189-193	139-173	l	25	1.4787
Neat's foot	192-197	66-73.2	47-58.5	15	1.4695-1.4708
Olive	189-196	77.5-91	35-52		1.4703-1.4718
Olive kernel	183	82-87		25	1.4682-1.4688
Palm	196-205	51.5-57		60	1.4510
	242-250	10-17		60	1.4431
Peach kernal	189-193	93-109	42.5	25	1.4697-1.4705
Peanut (Arachis)	186-197	85-103	44-67	15.5	1.4707-1.4731
Poppy seed		133-157.5	71-88		1.4766-1.4774
	195-224.8		50	25	1.4677
Porpoise (jaw oil)		22-50			
Pumpkin seed	188 4-195		[: : : : : : :	25	1.4724-1.4738
Rape (Colza)	167-179	93-104	50-67		1.4720-1.4752
Safflower				40	1.4693
Sardine		160–193		20	1.4802-1.4808
	189-196	127-159			1.4741
Sesame		103-114			1.4748-1.4762
Shark liver (Arctic)				10.0	1.1110 1.4702
	190-200	121-139	59–61	15 5	1.4760-1.4775
Sperm oil [nose]		81–90	51		1.4665-1.4672
Sperm oil, Arctic (Bottle-	122_135 0	67-82.1	31 41–47		1.3000-1.40/Z
	188-194	119-135	60-75	 25	1.4736
Tung (Chinese Wood oil)		119-135 150-165	00-75	19	1.503
Walnut (Nut)	190–197 195	130–163 142–152	103	19 40	1.4690
Whale		142-152 110-128	109	40 25	1.4723
White Mustard		110-128 92-97	44–49		1.4649
w nice Mustard	170-176	92-97	44-49	40	1.4049

Name.	Acid Value.	% Unsaponifi- able Matter.	Other Values.
Almond	1.5		
Black mustard	1.36-7.35		.
Candlenut	8.1	0.76	
Castor	0.14-14.61		Acl. V. 153-156*
	5-50		(R.M. 6.8-8.4
Cocoanut	3-30		P.V. 12-18
Cod liver	0.36-25	0.54-9.87	Acl. V. 4-8
Corn (Maize)	1.7-20.6	1.35-2.86	
Cottonseed	0.0	0.73-1.64	Acl. V. 7.6-18
Croton	ľ	0.55	(R.M. 12-13.6
		0.55	(Acl. V. 20-39
Grape seed			Acl. V. 144.5
Hazel nut	I.	0.5	
Hemp seed		1.08	
Herring	1.8-44	0.99-10.7	
Lard oil			
Linseed	0.8-8.4	0.42-1.9	
Menhaden	3–11.6	1.6-6.7	
Neat's foot			Acl. V. 22.0
Olive	1.9-50	0.46-1.0	
Olive kernel	2-3.5	.	
Palm	24-200		R.M. 0.7-1.9
Palm nut	8.4		R.M. 5-6.8
Peanut (Arachis)	1.2-32	0.54-0.94	
Poppy seed	0.7-11.0	0.43	D N 00 #
Porpoise (body oil)	1.2	3.7	R. No. 23.5
Porpoise (jaw oil)	5.0	16.4	R. No. 47.8-65
Rape (Colza) · · · · · · · · · · · · · · · · · · ·	1.4-13.2	0.58-1.0	Acl. V. 16.1
Safflower	0.33-20		Aci. V. 10.1
Sardine	4-25	0.5-1.4	Acl. V. 33-34
Seal	1.9-40 0.2-46	0.38-1.4	
Sesame	3-7	0.95-1.32 5.46-10.2	
Shark liver (Arctic)	13.2	37-41)	M D4 (25.5–25.7
Sperm oil Arctic (Pottler ogs)		31.7-42.6	M. Pt. $\begin{cases} 25.5-25.7 \\ 23.5-26.5 \end{cases}$
Sperm oil, Arctic (Bottlenose) Sunflower	11.2	0.31	(23.5–20.5
Tung (Chinese Wood oil)	7.6–12	0.31	
Whale	0.5-37	0.92-3.72	†Acl. V. 11.6-17.2
White Mustard	5.4	0.82-3.12	Au. v. 11.0-17.2
" moe Musiaru	0.4		

^{*} Polarizes (200 mm.) +21.9 to +28°V.

Acl. V. = Acetyl Value. R.M. = Reichert-Meissl Value.

P.V. = Polenske Value.

† Old oil has acetyl value at 23.

R. No. = Reichert Value. M. Pt. = Melting Point.

	Mixed Fatty Acids.						
Name.	Melting Point, °C.	Acid Value.	Iodine Value.	Other Values.			
Almond	13-14	196-207	93-96.5	R.I. (60°) 1.4461			
Beech nut	23-24	}	114				
Black mustard	16	187.1	109.6				
Candlenut	20-21						
Castor	13	192.1	87-93	R.I. (60°) 1.4546			
Cherry laurel	20-22		112.1				
Cocoanut	25-27	258-273	8.4-9.3	R.I. (60°) 1.4295			
Cod liver	21-25	204-207	130.5-170	R.I. (60°) 1.4521			
Corn (Maize)	17–23	198.4	113-126				
Cottonseed	34-40	202-208	111-115	R.I. (60°) 1.4460			
Croton	18.6–19	201	111.5	S.P. 16.7-19			
Fir seed	16-19		121.5				
Grape seed	24	187.4	99				
Hazel nut	17-24	200.6	91.3-97.6				
Hemp seed	18-19		141				
Herring		178.5					
Lard oil	33.2-38.4						
Linseed	17-24	197	179–192	R.I. (60°) 1.4546			
Neat's foot	28.5-30.8		62-76				
Olive	19.2-31.0		86-90	R.I. (60°) 1.4410			
Palm	47-50	204-207	53.3	Titer 36-45.5			
Palm nut	25-28.5	258-264	12.0	R.I. (60°) 1.4310			
Peach kernel	10-18	200.9	94-101				
Peanut (Arachis)	26-36.4	201.6	96-103	R.I. (60°) 1.4461			
Poppy seed	20-25.8		139	R.I. (60°) 1.4506			
Porpoise (body oil)		207	126	R.I. (25°) 1.4622			
Pumpkin seed	28-29	197	133.6				
Rape (Colza)	17-22	185	99-106	R.I. (60°) 1.4991			
Safflower	17	199	148	Titer 16° C.			
Sardine	28-36	177-185					
Seal	22–33	193.2					
Sesame	26-32	200.4	110-116	R.I. (60°) 1.4461			
Soia bean	22-31	198	115-140				
Sperm oil [nose]	13.3			F.A. 60-64%			
Sperm oil, Arctic (Bottle-			82.7	F.A. 61–65%			
Sunflower	22–24	201.6	124-134	R.I. (60°) 1.4531			
Tung (Chinese Wood oil)	31-43.8						
Walnut (Nut)	16-20		150				
Whale	14-27.0		131.2				
White Mustard		185.8	95.3				
TT III OC ITI UDUQI U	10 10						

 $R.I. = Refractive \ Index. \quad S.P. = Solidifying \ Point. \quad F.A. = Fatty \ Acids.$

XIII. — PHYSICAL AND CHEMICAL CONSTANTS OF FATS AND WAXES

BY ALBERT F. SEEKER

Name.	°c.	Specific Gravity.*	Solidifying Point, °C.	Hehner Value.	Saponifica- tion Value.
Beef marrow	15	0.9311-0.9380	31–29		196-199
Beef tallow	15	0.943-0.952	27-38	95.6	193.2-200
Beeswax	15	0.958-0.970	60.5-62.8		90-102
Bone fat	15	0.914-0.916	15-17	.	190.9
Butter fat	40	0.904-0.908	20-23	86.5-89.8	216-233
Carnaüba wax	15	0.990-0.999	80–87	l <i>.</i>	79-95
Chicken fat	15	0.9241	21-27		193.5
Chinese wax (insect wax)	15	0.926-0.970	80.5-81		78 -9 3
Cocoa butter	15	0.9500-0.9760	21.5-23	94.6	192-202
Cottonseed Stearine	15	0.9188-0.9230	16-22	95.9	195
Dog fat	15	0.9229	20-26	95	195.4
Goose (domestic)	15	0.9274-0.9227	18-20	95	193.1
Goose (wild)	15	0.9158	18-20		196
Hare fat	15	0.9288-0.9397	17-23	95.4	198-206
Horse fat	15	0.916-0.922	20-45	9596	195-200
Human fat	25	0.9033	15	.	193-200
Japan wax	15	0.9700-0.9800	48.5-53	90.6	210-222
Lard	100	0.859-0.864	27.1-29.9	93– 9 6	193-200
Laurel oil	15	0.9332	25		197.9
Mutton tallow	15	0.937-0.952	32-41	95.5	192-195.2
Myrtle wax	15	0.995	39-43		206-217
Nutmeg butter (Mace butter)	15	0.945-0.996	41–42		154–191
Rabbit fat (tame)	15	0.9342	22-24	95.5	202.6
Rabbit fat (wild)	15	0.9393	17-22		199.3
Spermaceti	15	0.905-0.960	42-47		123-135
Vegetable tallow (Chin.)	15	0.9180-0.9186	27-31	93	198-206
Wool fat (purified)	17	0.9322-0.9449	38-40	91	84–127

^{*} Water at $15.5^{\circ} = 1$.

XIII. — PHYSICAL AND CHEMICAL CONSTANTS OF FATS AND WAXES — (Continued)

Name.	Iodine Value.	ċ.	Refractive Index.	Acid Value.	% Unsaponi- fiable Matter.
Beef marrow	39-55.4			1.6	
Beef tallow	35-46	40	1.4586	3.5-50	
Beeswax	7.9-13.8	75	1.4398-1.4451	16.8-21.2	52-55*
Bone fat	46-55.8			29.6-53	0.5-1.8
Butter fat	26-38	25	1.4590-1.4620	0.45-35.4	
Carnaüba wax	13.5		1.4520-1.4541		55*
Chicken fat	58-77	١		1.2	
Chinese wax (insect wax)	1.4		 	traces	
Cocoa butter	32-41	60	1.4496	1.1-1.88	
Cottonseed Stearine	90-103	١			
Dog fat	58.5(41-83)				
Goose (domestic)		40	1.4593-1.4596	0.59	
Goose (wild)	99.6				
Hare fat		40	1.4586	2.73	
Horse fat	71-86	40	1.4603-1.4717	0.0-2.44	
Human fat	57-73				
Japan wax	5-12	65	1.4477-1.4492	7.33	1.1-1.63
Lard	50-70		1.4584-1.4601		0.23
Laurel oil	68-80			26.3	
Mutton tallow	35-46	60	1.4510	1.7-14.0	
Myrtle wax	1-10.7			3-4.4	
Nutmeg butter (Mace butter)	40–52	40	1 . 4700-1 . 4812	17-44.8	
Rabbit fat (tame)	67.6	40	1.4586	6.2	
Rabbit fat (wild)				7.2	
Spermaceti	3.8-9.5			0.5-1.35†	51.5*
Vegetable tallow (Chinese)	28-50	 		2.2-7.5	
Wool fat	15-18	40	1.4781-1.4822		43.1-51.8*

^{*} Plus Alcohols.

[†] Commercial Samples.

• XIII. — PHYSICAL AND CHEMICAL CONSTANTS OF FATS

AND WAXES — (Concluded)

			Mixed F	atty Acids.	•
Name.	Other Values.	Melting Point, °C.	Acid Value	Iodine Value.	Other Values.
Beef marrowBeef tallow	1	· 44–46 43–44	204.5 197.2	44–56 41.3	[46.2 Titer 37.9–
Beeswax	R.V.3.5-4.2				
Bone fat	Àcl. V. 11.3	30	200	55.7-57.4	
Butter fat	(R.M.20.0-33 (P.V.1.3-3.5	38-40	210–233	28–31	R.I. (60°) 1.437
	R. No. 1.0	38–40	200.8	64.6	Acl.V. 45.2
Cocoa butter	M. Pt. 28–33	48-52	190–198	33–39	(R.I. (60°) (1.4220
Cottonseed Stearine.		27-45		94	Titer 42-44
Dog fat		39-40.5	$199.2 \\ 202.4$	$50.2 \\ 65.3$	
Goose (domestic) Goose (wild)		35-41 34-40	196.4	65.1	
Hare fat		44-47	209.0	88-98	{R.I. (40°) 1.4495
Horse fat			202.6	72–87 64	Titer 33.7
Japan wax		56-62	213.7		
Lard	Acl. V. 2.6	40–47	201.8	64	R.I. (60°) 1.4395
Laurel oil				81.8	Titer 15.1
Mutton tallow		46–54	210	34.8	Titer 40.15; 48.02
Myrtle wax. [butter) Nutmeg butter (Mace		47.5 42.5	230.9		Titer 35.9
Rabbit fat (tame)			218.1	64.4	(R.I. (40°) 1.4495
Rabbit fat (wild)	R. No. 0.7	39-41	209.5	101.1	(1.1100
Spermaceti Vegetable tallow (Chinese)	Acl. V. 2.63	39–57	182–208		
Wool fot	Acl.V.109-123 R.M. 8	41.8		17	

E.V. = Ether Value = Saponification Value minus Acid Value.

R.V. = Ratio Value = Ether Value divided by Acid Value.

Acl. V. = Acetyl Value.

M. Pt. = Melting Point.

R.M. = Reichert-Meissl Value.

R.I. = Refractive Index. P.V. = Polenske Value

R. No. = Reichert Value.

XIV.—PHYSICAL CONSTANTS OF LUBRICATING OILS

LEWKOWITSCH

Oil.	Specific Gravity	Viscosi Redwood's meter. Sta Viscosity; S at 70° C.	Viscosi- ndard for perm Oil	Flash Point. Close Test.	Cold Test.
Refined Mineral Oils	60° F .	70° F.	120° F.	∘ F .	∘F .
Scotch	0 890-0 895	100-130	40-50	320-350	32
Scotch			35-40	300-325	
Scotch			25-30	300-325	1
American		1		375-425	1
American				350-400	1
	0.885-0.890		35-40	325-350	1
American	10.000		30–35	325-350	1
Russian					1
Russian				350-375	
Russian				325-350	
Russian			00 00	300-325	
Southern Sperm Oil		100.1	45.4	457.5	41.7
Arctic Sperm Oil		105.3	47.2	446.2	39.2
White Whale Oil		187.7	71.3	476.0	27.2
Neat's Foot Oil	0.9178	247	82.4	470.3	34.4
Lard Oil	0.9172	223.2	79.4	493.9	39.6
Olive Oil	0.9167	213.2	75.0	437.5	27
Rape Oil, East India, refined .	0.916	250.4	88.1	478.6	26.4
Rape Oil, Black Sea, refined		226.9	78.8	465.4	27
Cottonseed Oil, refined		190.4	69.8	523	30
Castor Oil		2500	390	487	0

XV.—PHYSICAL AND CHEMICAL CONSTANTS OF REPRESENTATIVE SAMPLES OF LUBRICATING OILS

BY ALBERT F. SEEKER

Name.	Sp. Gr. 60° F.	Flash Test °F.	Fire Test °F.	Cold Test	Saponifi- able Matter.*	Asi	Acidity or Alkalinity.	Other Tests.
Air Compressor Oil	0.8857	455	525	25	trace	none	neutral	No rosin oil. Vis. 261.7.\$
Air Compressor Oil	0.8654	410	460	12		none	neutral	No rosin oil.
Car Oil.	0.8824	354	400	20		none	neutral	T. S. M. 1%.+
Cutting Oil	0.9036	345	425	31	82.9%	none	3.16%∥	Mixture lard and min. oils. Vis. 8.6
Cylinder Oil	0.8921	535	₽009	8		trace	neutral	T. S. M. less than 5%.
Cylinder Oil	0.9020	545	₽009	31	2.4%	none	neutral	T. S. M. trace. Vol. 1.43%.
Cylinder Oil	0.8993	290	600€	:		0.06%	neutra	T. S. M. none. Vol. 9.74%.
Cylinder Oil	0.8992	555	₽009	:	none	0.08%	neutra	T. S. M. 2%. Vol. 9.12%.
Engine Oil.	0.9163	430	480	27	1.5%	trace	neutra	No rosin oil. Vis. 28.4.6
Engine Oil	0.8845	360	415	2	10%	none	0.05%	T. S. M. none.

by Google

TABLE XV. -- LUBRICATING OILS (Continued)

Иате.	Sp. Gr. 60° F.	Flash Fire Test Test 'F.	Fire Test °F.	Cold Fest F.	Saponifi- able Matter.*	Ash	Acidity or Alkalin- ity.	Other Tests.
Engine Oil	0.8970	400	465		none	none	neutral	T. S. M. none. No rosin oil.
Engine Oil	0.8810	405	470	14	none	0.02%	neutral	T. S. M. none. No rosin oil.
150° Fire Test Oil	0.7864	140	180	:	none	none	neutral	T. S. M. none.
300° Fire Test Oil	0.8206	566	300	32	none	none	neutral	T. S. M. none.
High Speed Engine Oil	0.9152	400	465	'n		0.06%	1.09%	T. S. M. none. No rosin oil.
High Speed Engine Oil	0.9149	400	475	က	15.3%	0.04%	1.06%	T. S. M. none. No rosin oil.
Ice Machine Oil	0.8941	430	495	4-	none	0.13%	neutra]	T. S. M. trace. No rosin oil.
Machine Oil	0.8689	420	480	0	trace	none	neutral	No rosin oil. Vis. 11.7.\$
Marine Engine Oil	0.8812	405	440	17	none	trace	neutral	No rosin oil.
Marine Engine Oil	0.8765	435	200	20	none	0.03%	neutra	No rosin oil.
Marine Engine Oil	0.0000	405	465	0	12.0%	0	0.75%	No rosin oil.
Marine Machine Oil	0.9054	400	470	6	9.0%	_	0.50%	No rosin oil.
Screw-Cutting Oil	0.9002	380	425	15	25%	none	1.02%	T. S. M. none.
Transformer Oil	0.8646	365	430	2	none	none	neutral	T. S. M. none.

† T. S. M.=Tarry or suspended matter. Treat 5 c.c. of oil in a graduated tube with 100 c.c. 88° gasoline and * Saponifiable Matter. Obtain saponification value in usual way and calculate to rape oil, taking 175 as a mean

‡ Vol. = Volatility. Heat 5 grams of oil in a tarred dish at 400° F. for 2 hours and calculate loss in weight to allow to settle, reading off the sediment by the graduations.

|| Calculated to oleic acid.

Viscosity. Taken at 70° F. in Engler viscosimeter, water at 70° F.= 1.

§ Viscosity.

XVI. — TEMPERATURE CORRECTION FOR RE-FRACTIVE INDICES OF OILS

Bul. No. 77, U.S. Dept. Agr.

Substance.	Correction for 1° C.	Substance.	Correction for 1° C.
Black mustard oil Corn oil Cottonseed oil Lard oil Mustard oil Olive oil	0.000361 0.000366 0.000368 0.000368 0.000360 0.000365	Peanut oil	0.000366 0.000369 0.000364 0.000370 0.000368

XVII.—TEMPERATURE CORRECTION FOR SPECIFIC GRAVITY OF OILS AND FATS

ALLEN, Com. Org. Anal.

Substance.	Correction for 1° C.	Substance.	Correction for 1° C.
Butter fat	. 0.000617	Olive oil	0.000629
Cocoa butter	. 0.000717	Palm nut oil	0.000657
Cocoanut oil	. 0.000642	Peanut oil	0.000655
Cod-liver oil	. 0.000646	Rape oil	0.000620
Cottonseed oil	. 0.000629	Sesame oil	0.000624
Lard		Tallow	0.000675
Lard oil	0.000658	Whale oil	0.000697

XVIII. — CONVERSION OF ACID VALUE INTO OLEIC ACID

BY ALBERT F. SEEKER

Acid Value.	Oleic Acid, Per cent.	Acid Value.	Oleic Acid, Per cent.
1	1.5081 2.0108	6 7 8 9	3.0162 3.5189 4.0216 4.5243

XIX.—TABLE FOR CALCULATING THE SPECIFIC GRAVITY OF OILS AT 15.5°*

C. H. WRIGHT, Jour. Soc. Chem. Ind., 26, 513. Example: $A = \text{sp. gr. at } 20^{\circ}$. $A \times 1.00319 = \text{sp. gr. at } 15.5^{\circ}$ C.

Tem- pera- ture.	Factor.	Tem- pera- ture.	Factor.	Tem- pera- ture.	Factor.	Tem- pera- ture.	Factor.
10	1 1.00389	14	$\frac{1}{1.00106}$	18	1.00177	22	1.00462
11	$\frac{1}{1.00318}$	15	$\frac{1}{1.00035}$	19	1.00248	23	1.00534
12	$\frac{1}{1.00248}$	16	1.0035	20	1.00319	24	1.00605
13	$\frac{1}{1.00177}$	17	1.00106	21	1.00391	25	1.00677

XX.—POLENSKE VALUE OF BUTTER FAT

Zeit. Nahrungs und Genussm., 7; 273 and 15, 193.

E. Polenske

M. FRITZSCHE (Dutch Butter)

Reichert- Meissl Value.	Polenske Value.	Maximum Limit.	Reichert- Meissl Value.	Polenske Value.	Maximum Limit.
20-21 21-22 22-23 24-25 25-26 26-27 27-28 28-29 29-30	1.3-1.7 1.4-1.8 1.5-1.9 1.7-1.8 1.8-1.9 1.9-2.0 2.0-2.2 2.2-2.5 2.5-3.0	2.1 2.2 2.3 2.3 2.4 2.5 2.7 3.0 3.5	24-25 25-26 26-27 27-28 28-29 29-30 30-31 31-32 32-33 33-34	1.6-1.7 1.7-1.8 1.8-1.9 1.9-2.0 2.0-2.2 2.2-2.4 2.4-2.5 2.4-2.5 2.5-2.7 2.5-2.7	2.0 2.2 2.4 2.7 2.8 3.0 3.2 3.2 3.4

^{*} These factors may be used for the common fats and oils and are accurate enough for all except the most accurate work.

XXI.—CONVERSION OF BUTYRO-REFRACT-OMETER READINGS TO INDICES OF REFRACTION.

BY ALBERT F. SEEKER

Butyro-R. Reading.	Index of Refraction.	Differ- ence.	Butyro-R. Reading.	Index of Refraction.	Differ- ence.	Butyro-R. Reading.	Index of Refraction.	Differ- ence.
0	1.4220		34	1.4481	7	68	1.4710	6
1	1.4228	8	35	1.4488	7	69	1.4717	7
2	1.4236	8	36	1.4495	7	70	1.4723	6
3	1.4244	8	37	1.4502	7	71	1.4729	6
4	1.4252	8	38	1.4510	8	72	1.4736	7
5	1.4260	8	39	1.4517	7	73	1.4742	6
6	1.4268	8	40	1.4524	7	74	1.4748	6
7	1.4276	8	41	1.4531	7	75	1.4754	6
8	1.4284	8	42	1.4538	7	76	1.4760	6
9	1.4292	8	43	1.4545	7	77	1.4766	6
10	1.4300	8	44	1.4552	7	78	1.4772	6
11	1.4308	8	45	1.4559	7	79	1.4778	6
12	1.4316	8	46	1.4566	7	80	1.4783	5
13	1.4324	8	47	1.4573	7	81	1.4789	6
14	1.4331	7	48	1.4580	7	82	1.4795	6
15	1.4339	8	49	1.4587	7	83	1.4801	6
16	1.4347	8	50	1.4593	6	84	1.4807	6
17	1.4354	7	51	1.4600	7	85	1.4812	5
18	1.4362	8	52	1.4607	7	86	1.4818	6
19	1.4370	- 8	53	1.4613	6	87	1.4824	6
20	1.4377	7	54	1.4620	7	88	1.4829	5
21	1.4385	8	55	1.4626	6	89	1.4835	6
22	1.4392	7	56	1.4633	7	90	1.4840	5
23	1.4400	- 8	57	1.4640	7	91	1.4846	6
24	1.4408	8	58	1.4646	6	92	1.4851	5
25	1.4415	7	59	1.4653	7	93	1.4857	6
26	1.4423	8	60	1.4659	6	94	1.4862	5
27	1.4430	7	61	1.4666	7	95	1.4868	6
28	1.4438	8	62	1.4672	6	96	1.4873	5
29	1.4445	7	63	1.4679	7	97	1.4879	6
30	1.4452	7	64	1.4685	6	98	1.4884	5
31	1.4460	8	65	1.4691	6	99	1.4890	6
32	1.4467	7	66	1.4698	7	100	1.4895	5
33	1.4474	7	67	1.4704	6			
	<u> </u>	<u> </u>	H	<u></u>	<u> </u>		·	

XXII. — REDUCTION OF GAS. VOLUMES TO 0° AND 760 MM.

Volume at 0° and 750 mm. =
$$v\left(\frac{1}{760 (1 + .00367 t)}\right)$$
 and $(P-p)$.

v =observed volume of gas

t = observed temperature of gas in degrees Centigrade

P = observed barometric pressure, corrected, in millimeters

p =tension of aqueous vapor in millimeters

The logarithm of the volume at 0° and 76 mm. is obtained by adding the logs of v and $\left(\frac{1}{760 \ (1+.00367 \ t)}\right)$ and (P-p).

°C.	Logarithm of	Tension aqueous vapor.	°C.	Logarithm of	Tension aqueous vapor.	°C.	Logarithm of	Tension aqueous vapor,
	760(1+.00367t)	Tenaqu		760(1+.00367t)	Ter		760(1+.00367t)	Ten
0.	3.11919	mm. 4.60	5.8	3.11004	mm. 6.90	11.6	3.10108	mm. 10.21
).).2		4.65	6.0	3.1004	7.00	11.8	3.10178	10.2
0.4		4.05 4.71	6.2	3.10943	7.09	12.0	3.10178	10.34
0.40		4.78	6.4	3.10911	7.19	12.2	3.10017	10.4
).8).8		4.85	6.6	3.10880	7.29	12.4	3.09986	10.0
1.0		4.92	6.8	3.10848	7.39	12.6	3.09956	10.7
$1.0 \\ 1.2$		4.92 4.99	7.0	3.10818	7.49	12.8	3.09925	11.04
$\frac{1.2}{1.4}$		5.06	7.2	3.10786	7.60	13.0	3.09895	11.19
$\frac{1.4}{1.6}$		$5.00 \\ 5.14$	7.4	3.10755	7.70	13.2	3.09864	11.13
$1.8 \\ 1.8$		$5.14 \\ 5.21$	7.6	3.10724	7.81	13.4	3.09834	11.4
$\frac{1.0}{2.0}$		$5.21 \\ 5.29$	7.8	3.10693	7.91	13.6	3.09804	11.6
$\frac{2.0}{2.2}$		5.36	8.0	3.10662	8.02	13.8	3.09773	11.7
$\frac{2.4}{2.4}$		5.44	8.2	3.10631	8.13	14.0	3.09743	11.9
$\frac{2.6}{2.6}$		5.52	8.4	3.10600	8.24	14.2	3.09713	12.0
2.8		5.60	8.6	3.10570	8.36	14.4	3.09682	12.2
3.0		5.68	8.8	3.10538	8.47	14.6	3.09652	12.4
3.2		5.76	9.0	3.10508	8.58	14.8	3.09622	12.5
3.4		5.84	9.2	3.10477	8.70	15.0	3.09592	12.7
3.6		5.92	9.4	3.10446	8.82	15.2	3.09561	12.8
3.8		6.00	9.6	3.10415	8.94	15.4	3.09531	13.0
4.0		6.09	9.8	3.10384	9.06	15.6	3.09501	13.2
4.2		6.17	10.0	3.10354	9.18	15.8	3.09471	13.3
4.4	3.11223	6.26	10.2	3.10323	9.30	16.0	3.09441	13.5
4.6	3.11192	6.35	10.4	3.10292	9.43	16.2	3.09411	13.7
4.8	3.11160	6.44	10.6	3.10262	9.55	16.4	3.09381	13.9
5.0	3.11129	6.53	10.8	3.10231	9.68	16.6	3.09351	14.0
5.2	3.11098	6.62	11.0	3.10200	9.81	16.8	3.09321	14.2
5.4		6.71	11.2	3.10170	9.94	17.0	3.09291	14.4
5.6		6.81	11.4	3.10139	10.07	17.2	3.09261	14.6

°C.	Logarithm of	Tension aqueous vapor.	∘c.	Logarithm of	Tension aqueous vapor.	∘c.	Logarithm of	Tension aqueous vapor.
	760(1+.00367t)	Ter aqu	ļ	760(1+.00367t)	T a v	i	760(1+.00367t)	Te.
17.4	3.09231	mm. 14.82	23.4	3.08341	mm. 21.39	29.4	3.07469	mm. 30.48
17.6	3.09201	15.00	23.6		21.65	29.6	3.07440	30.84
17.8	3.09201	15.19	23.8		21.03	29.8	3.07411	31.19
18.0	3:09141	15.38	24.0	3.08253	22.18	30.0	3.07383	31.56
18.2	3.09111	15.58	24.2	3.08224	22.45	30.2	3.07354	31.92
18.4	$\frac{3.09111}{3.09081}$	15.77	24.4	3.08194	22.72	30.4	3.07325	32.29
18.6	3.09051	15.97	24.6	3.08165	22.99	30.6	3.07297	32.66
18.8	3.09021	16.17	24.8	3.08136	23.27	30.8	3.07268	33.04
19.0	3.08992	16.37	25.0	3.08107	23.55	31.0	3.07239	33.42
19.2	3.08962	16.57	25.2	3.08078	23.83	31.2	3.07211	33.80
19.4	3.08932	16.78	25.4	3.08048	24.11	31.4	3.07182	34.19
19.6	3.08902	16.98	25.6	3.08019	24.40	31.6	3.07154	34.58
19.8	3.08873	17.19	25.8	3.07990	24.69	31.8	3.07125	34.97
20.0	3.08843	17.41	26.0	3.07961	24.99	32.0	3.07097	35.37
20.2	3.08813	17.62	26.2	3.07932	25.28	32.2	3.07068	35.77
20.4	3.08783	17.84	26.4	3.07903	25.58	32.4	3.07039	36.18
20.6	3.08754	18.06	26.6	3.07874	25.89	32.6	3.07011	36.59
20.8	3.08724	18.28	26.8	3.07844	26.19	32.8	3.06983	37.01
21.0	3.08695	18.50	27.0	3.07816	26.50	33.0	3.06954	37.43
21.2	3.08665	18.73	27.2	3.07787	26.82	33.2	3.06926	37.85
21.4	3.08635	18.96	27.4	3.07758	27.13	33.4	3.06897	38.28
21.6	3.08606	19.19	27.6	3.07729	27.45	33.6	3.06869	38.71
21.8	3.08576	19.42	27.8	3.07700	27.78	33.8	3.06841	39.15
22.0	3.08547	19.66	28.0	3.07671	28.10	34.0	3.06812	39.59
22.2	3.08517	19.90	28.2	3.07642	28.43	34.2	3.06784	40.03
22.4	3.08488	20.14	28.4	3.07613	28.77	34.4	3.06756	40.48
22.6	3.08458	20.39	28.6	3.07584	29.10	34.6	3.06727	40.93
22.8	3.08429	20.63	28.8	3.07555	29.44	34.8	3.06699	41.39
23.0	3.08400	20.88	29.0	3.07527	29.78	35.0	3.06671	41.85
23.2	3.08370	21.14	29.2	3.07498	30.13)		

XXIII. — CORRECTIONS OF BAROMETER READ-INGS FOR TEMPERATURE

GLASS SCALE (BUNSEN) M.M. TO BE DEDUCTED

Barom- eter Reading, mm.	1°	2°	3°	4°	5°	6°	7°	80	9°	10°
700	0.120	0.240	0.359	0.479	0.599	0.719	0.838	0.958	1.078	1.198
705	0.121	0.241	0.362	0.483	0.603	0.724	0.844	0.965	1.086	1.206
710	0.121	0.243	0.364	0.486	0.607	0.729	0.850	0.972	1.093	1.215
715	0.122	0.245	0.367	0.489	0.612	0.734	0.856	0.979	1.101	1.223
720	0.123	0.246	0.370	0.493	0.616	0.739	0.862	0.986	1.109	1.232
							ļ			
725	0.124	0.248	0.372	0.496	0.620	0.744	0.868	0.992	1.116	1.240
730	0.125	0.250	0.375	0.500	0.625	0.749	0.874	0.999	1.124	1.249
735	0.126	0.252	0.377	0.503	0.629	0.755	0.880	1.006	1.132	1.258
740	0.127	0.253	0.380	0.506	0.633	0.760	0.886	1.013	1.140	1.266
745	0.127	0.255	0.382	0.510	0.637	0.765	0.892	1.020	1.147	1.275
										İ
750	0.128	0.257	0.385	0.513	0.642	0.770	0.898	1.027	1.155	1.283
						0.775			1.163	1.292
760	0.130	0.260	0.390	0.520	0.650	0.780	0.910	1.040	1.170	0.300
765	0.131	0.262	0.393	0.524	0.654	0.785	0.916	1.047	1.178	1.309
770	0.132	0.264	0.395	0.527	0.659	0.790	0.922	1.054	1.186	1.317
775	0.133	0.265	0.398	0.530	0.663	0.796	0.928	1.061	1.193	1.326
						0.801		1.068	1.201	1.335
785	0.134	0.269	0.403	0.537	0.672	0.806	0.940	1.075	1.209	1.343
790	0.135	0.270	0.406	0.541	0.676	0.811	0.946	1.081	1.217	1.352
795	0.136	0.272	0.407	0.544	0.680	0.816	0.952		1.224	
800	0.137	0.274	0.411	0.548	0.684	0.821	0.958	1.095	1.232	1.396
										1

XXIV.—COEFFICIENT OF EXPANSION OF GASES*

	•	Constant Volu	ıme.		Constant Pres	sure.
Gas.	Temp.	Pressure, mm.	Coef. of Expansion.	Temp. °C.	Pressure, mm.	Coef. of Expansion.
Air	0–100		.0037666			.0036706
	0-100	1	.0036660	0–100	1001	.0036728
	0–100	756-833	. 0036700	0-100	2620 {	.0036964
	0-100	1001	.0036744	0-100	2020 }	.003681
	0-100	2000	. 0036903	į		
	0-100	20000	.0038866	1		İ
	0-100	100000	.0041001			
Argon	0-100	517	.003668			
Carbon dioxide	0-100	18.1	.0036753	0-40	518-760	.0037099
	20-98	760	.0037060	0-40	998	.0037536
	0-100	1743-2388	.0037523	0-40	1377	.0037906
	0-100	7927	.0042519	0-100	2520	.0038455
	0-64	19661	.005728	0-64	12988	.005136
	64-100	35-40†	.003956	0-64	18856	.006204
	64-100		.007018	64-100	46.5*	.004946
Carbon monoxide	0-100	760	.0036667	0-100	760	.0036688
Helium	0-100		.0036627			
Hydrogen	16-132		.003328	0-100	760	.0036613
,	12-185		.003656	0-100		.00332
	0-100		.0036626	1		.00295
	0-100		.0036627	0-100		.00218
Nitrogen	13-132		.003021	0-100		.0036732
	9-133		.003290	0-100		.00434
	0-100		.0036682			.00282
		1002	.0036752			.00218
Oxygen	11-132		.004161	0-100		.00486
/64	9-132		.003984	0-100		.00534
	"	354	.00367	0-100		.00459
	21-98	760	.0036743	11		.00357
	53		. 5000, 10	0-100		.00241
Nitric oxide	22-98	760 }	.0036757	0–100	760	.0037195
Sulphur dioxide .	0-100	760	.0038453	0-100	760	.0039028
•	0-100		.0038591	0-100		.0039804
Water vapor	1 2 230	.50 2500		0-119		.004187
· · · · · · · · · · · · · · · · · · ·	1		,			.003938
				0–200	760	.003

^{*} The data of this Table are quoted from Sandolt-Börnstein, Phys. Chem. Tabellen, 1905, p. 215.

[†] Atmospheres.

TABLE XXV.—SOLUBILITY OF GASES IN WATER*

T.	Oxyge	en, W.	Hydro	gen, W.	Nitrogen	, B. & B.	Chlori	ne, W.
-	a.	q.	a.	q.	a.	q.	a.	q.
0	.04890	.006948	.02148	.0001922	.02388	.002977		
1	.04759	.006758	.02126	.0001902	.02337	.002912		
2	.04633	.006576	.02105	.0001882	.02288	.002843		
3	.04512	.006401	.02084	.0001862	.02241	.002790		
4	.04397	.006234	.02064	.0001843	.02196	.002732		
5	.04286	.006074	.02044	.0001824	.02153	.002677		
6	.04181	.005920	.02025	.0001806	.02111	.002624		
7	.04080	.005775	.02007	.0001789	.02070	.002570		:
8	.03983	.005633	.01989	.0001772	.02031	.002520		
9	.03891	.005499	.01972	.0001756	.01993	.002472		
10	.03802	.005370	.01955	.0001739	. 01956	.002424	3.095	.9969
11	.03718	.005248	.01940	.0001725	.01920	.002378	2.996	.9652
12	.03637	.005129	.01925	.0001710	.01885	.002333	2.900	.9344
13	.03560	.005011	.01911	.0001696	.01851	.002289	2.808	.9048
14	.03486	.004908	.01897	.0001682	.01818	.002246	2.720	.8766
15	.03415	.004804	.01883	.0001669	.01786	.002205	2.635	.8493
16	.03347	.004703	.01869	.0001654	.01755	.002164	2.553	.8230
17	.03283	.004609	.01856	.0001641	.01725	.002125	2.474	.7977
18	.03220	.004515	.01844	.0001630	.01698	.002089	2.399	.7736
19	.03161	.004428	.01831	.0001616	.01667	.002049	2.328	.7508
20	.03102	.004339	.01819	.0001604	.01639	.002012	2.260	.7291
21	.03044	.004253	.01805	.0001590	.01611	.001975	2.200	.7098
22	.02988	.004169	.01792	.0001575	.01584	.001940	2.143	.6916
23	.02934	.004088	.01779	.0001561	.01557	.001903	2.087	.6737
24	.02881	.004009	.01766	.0001548	.01530	.001868	2.035	. 6570
25	.02831	.003932	.01754	.0001534	.01504	.001832	1.985	.6411
26	.02783	.003859	.01742	.0001522	.01478	.001798	1.937	. 6257
27	.02736	.003787	.01731	.0001509	.01453	.001764	1.891	.6110
28	.02691	.003717	.01720	.0001497	.01428	.001731	1.848	. 5973
29	.02649	.003653	.01709	.0001485	.01404	.001699	1.808	.5845
30	.02608	.003588	.01699	.0001470	.01380	.001666	1.769	.5722
35	.02440	.003315	.01666	.0001426	.01271	.001516	1.575	.5103
40	.02306	.003081	.01644	.0001385	.01182	.001386	1.414	. 4589
45	.02187	.002860	.01624	.0001338	.01111	.001275	1.300	. 4227
50	.02090	.002657	.01608	.0001288	.01061	.001184	1.204	.3927
60	.01946	.002274	.01600	.0001178	.01000	.001026	1.006	. 3294
70	.01833	.001857	.01600	.0001021			0.848	.2792
80	.01761	.001381	.01600	.0000790			0.672	.2226
90	.01723	.000787	.01600	.0000461			0.380	. 1268
100	.01700	.000000	.01600	.00000000	.01000	.000000	10.000	.0000

^{*} From Technical Chemists' Handbook, Lunge.

Column a gives the volume of gas (reduced to 0° and 760 mm.) dissolved by one volume of the liquid at the temperature indicated, if the partial pressure of the gas =760 mm. Hg.

T.	Carbon Mo	noxide, W.	Carbon B.	Dioxide, & B.	Hydrogen S	sulphide, F.	Ammor	nia, R.
	a.	q.	a.	q.	a.	q.	a.	q.
0	0.03537	0.004397	1.713	0.3347	4.686	0.710	1298.9	98.7
1	0.03455	0.004293	1.646	0.3214	4.555	0.689	1220.2	92.7
2	0.03375	0.004192	1.584	0.3091	4.428	0.670	1154.7	87.7
3	0.03297	0.004092	1.527	0.2979	4.303	0.651	1100.9	83.6
4	0.03222	0.003997	1.473	0.2872	4.182	0.632	1053.0	79.9
5	0.03149	0.003904	1.424	0.2774	4.063	0.615	1019.5	77.3
6	0.03078	0.003814	1.377	0.2681	3.948	0.596	997.2	75.6
7	0.03009	0.003726	1.331	0.2590	3.836	0.579	974.9	73.9
8'	0.02942	0.003641	1.282	0.2494	3.728	0.562	954.5	72.3
9	0.02878	0.003560	1.237	0.2404	3.622	0.546	933.0	70.6
10	0.02816	0.003481	1.194	0.2319	3.520	0.530	910.4	68.9
11	0.02757	0.003416		0.2240	3.421	0.515	888.0	67.2
12	0.02701	0.003333	1.117	0.2166	3.325	0.500	865.6	65.5
13	0.02646	0.003260	1.083	0.2099	3.232	0.485	843.2	63.7
14	0.02593	0.003188	1.050	0.2033	3.142	0.471	822.1	62.1
15	0.02543	0.003130		0.1971	3.056	0.458	802.4	60.6
16	0.02494	0.003065	0.985	0.1904	2.973	0.445	783.2	59.1
17	0.02448	0.003007	0.956	0.1845	2.893	0.433	764.1	57.6
18	0.02402	0.002943	0.928	0.1789	2.816	0.421	744.3	56.1
19	0.02360	0.002893	0.902	0.1736	2.742	0.409	725.8	54.7
20	0.02319	0.002839	0.878	0.1689	2.672	0.398	710.6	53.5
21	0.02281	0.002789	0.854	0.1641			690.2	51.9
22	0.02244	0.002739	0.829	0.1591			674.3	50.6
23	0.02208	0.002691	0.804	0.1541			661.0	49.6
24	0.02174	0.002647	0.781	0.1494			647.8	48.6
25	0.02142	0.002603	0.759	0.1450	:		634.6	47.6
26	0.02110	0.002560	0.738	0.1407			621.3	46.5
27	0.02080	0.002519	0.718	0.1367			608.1	45.5
28	0.02051	0.002479	0.699	0.1328			594.8	44.4
29	0.02024	0.002442	0.682	0.1293				
30	0.01998	0.002405	0.665	0.1259				
35	0.01877	0.002231	0.592	0.1106				
40	0.01775	0.002076	0.530	0.0974				
45	0.01690	0.001934	0.479	0.0862				
50	0.01615	0.001797	0.436	0.0762				
60	0.01488	0.001521	0.359	0.0577				
70	0.01440	0.001276						
80	0.01430	0.000981						
90	0.01420	0.000568						
100	0.01410	0.000000			<u> </u>	· · · · · · ·	1	<u> </u>

the partial pressure of the gas + the vapor pressure of the liquid at the temperature indicated = 760 mm. Hg.

The letters following the name of the gas indicate the observer, viz., W.=Winkler; B. & B.=Bohr & Bock; F.=Fauser; R.=Raoult; S.=Schönfeld; R.-D.=Roscoe-Dittmar; B.=Bunsen.

T.	Sulphur d S.	ioxide,	Hydrogen R.	n chloride, -D.	Metha	une, W.
••	a.	q.	a.	q.	a.	q.
0	79.789	22.83	506.7	82.5	0.05563	0.003959
ĭ	77.210	22.09			0.05401	0.003842
2	74.691	21.37	499.8	81.4	0.05244	0.003729
3	72.230	20.67	1		0.05093	0.003620
4	69.828	19.98	493.7	80.4	0.04946	0.003514
5	67.485	19.31			0.04805	0.003411
6	65.200	18.66	486.9	79.3	0.04669	0.003312
7	62.973	18.02			0.04539	0.003218
8	60.805	17.40	480.8	78.3	0.04413	0.003127
9	58.697	16.80	[0.04292	0.003039
10	56.647	16.21	473.9	77.2	0.04177	0.002956
11	54.655	15.64			0.04072	0.002880
12	52.723	15.09	467.7	76.2	0.03970	0.002805
13	50.849	14.56			0.03872	0.002733
14	49.033	14.04	461.5	75.2	0.03779	0.002666
15	47.276	13.54			0.03690	0.002600
16	45.578	13.05	455.2	74.2	0.03606	0.002538
17	43.939	12.59]	0.03525	0.002479
18	43.360	12.14	448.3	73.1	0.03446	0.002422
19	40.838	11.70			0.03376	0.002369
20	39.374	11.29	442.0	72.1	0.03308	0.002319
21	37.970	10.89			0.03243	0.002270
22	36.617	10.50	435.0	71.0	0.03180	0.002223
23	35.302	10.13			0.03119	0.002178
24	34.026	9.76	428.7	70.0	0.03061	0.002134
25	32.786	9.41			0.03006	0.002092
26	31.584	9.07	423.0	69.1	0.02952	0.002051
27	30.422	8.43		[.	0.02901	0.002012
2 8	29.314	8.42	417.2	68.2	0.02852	0.001974
2 9	28.210	8.10		[]	0.02806	0.001939
3 0	27.161	7.81	411.5	67.3	0.02762	0.001905
35	22.489	6.47			0.02546	0.001732
4 0	18.766	5.41	387.7	63.3	0.02369	0.001586
50			361.6	59.6	0.02134	0.001359
60			338.7	56.1	0.01954	0.001145
70		· · · · · · · · ·			0.01825	0.000926
80					0.01770	0.000695
90				[0.01735	0.000398
100					0.01700	0.000000

Digitized by Google

т.	Ethyle	ne, W.	Acetyle	ne, W.	Air	, w.	Nitrous Ox- ide, in Alcohol, B.
	a.	q.	a.	q.	a.	q.	a.
0	0.226	0.0281	1.73	0.20	0.02881		4.1780
1	0.219	0.0272	1.68	0.19	0.02808		4.1088
2	0.211	0.0262	1.63	0.19	0.02738		4.0409
3	0.204	0.0254	1.58	0.18	0.02670		3.9741
4	0.197	0.0245	1.53	0.18	0.02606		3.9085
5	0.191	0.0237	1.49	0.17	0.02543		3.8442
6	0.184	0.0228	1.45	0.17	0.02482		3.7811
7	0.178	0.0221	1.41	0.16	0.02424		3.7192
8	0.173	0.0214	1.37	0.16	0.02369		3.6585
9	0.167	0.0207	1.34	0.15	0.02316		3.5990
10	0.162	0.0200	1.31	0.15	0.02264		3.5408
11	0.157	0.0194	1.27	0.15	0.02217		3.4838
12	0.152	0.0188	1.24	0.14	0.02171		3.4279
13	0.148	0.0183	1.21	0.14	0.02127		3.3734
14	0.143	0.0176	1.18	0.14	0.02085		3.3200
15	0.139	0.0171	1.15	0.13	0.02045		3.2678
16	0.136	0.0167	1.13	0.13	0.02005		3.2169
17	0.132	0.0162	1.10	0.13	0.01970		3.1672
18	0.102	0.0158	1.08	0.12	0.01935		3.1187
19	0.125	0.0153	1.05	0.12	0.01901		3.0714
20	0.120	0.0150	1.03	0.12	0.01869		3.0253
21	0.122	0.0146	1.01	0.12	0.01838		2.9805
22	0.116	0.0142	0.99	0.11	0.01808		2.9368
23	0.114	0.0139	0.97	0.11	0.01779		2.8944
24	0.111	0.0135	0.95	0.11	0.01751		2.8532
25	0.108	0.0131	0.93	0.11	0.01724		2.0002
26	0.106	0.0131	0.91	0.11	0.01724		
27	0.104	0.0126	0.89	0.10	0.01674		
28	0.102	0.0123	0.87	0.10	0.01650		
29	0.102	0.0120	0.85	0.10	0.01627		
30	0.100	0.0121	0.84	0.10	0.01606		
00	0.088	0.0116	0.01	0.03	0.01503		
• • • • • •	1				0.01303		
•••••					0.01418		
• • • • • •			1		0.01297		
• • • • • •	1				0.01210	[1
•••••	1				0.01136		
•••••	1		1		0.01120]
•••••					0.01115		
•••••					0.01100		1
	I	į.	1	1	I	1	1

Digitized by Google

XXVI.—DENSITY OF

WEIGHT IN MILLIGRAMS OF 1 CC. AT 720 TO

								
mm.	10°	11°	12°	13°	14°	15°	16°	17°
720	1.13380	1.12881	1.12376	1.11875	1.11369	1.10859	1.10346	1.09828
722	1.13699	1.13199	1.12693	1.12191	1.11684	1.11172	1.10658	1.10139
724	1.14018	1.13517	1.13010	1.12506	1.11999	1.11486	1.10971	1.10450
726	1.14337	1.13835	1.13326	1.12822	1.12313	1.11799	1.11283	1.10761
728	1.14656	1.14153	1.13643	1.13138	1.12628	1.12113	1.11596	1.11073
730	1.14975	1.14471	1.13960	1.13454	1.12942	1.12426	1.11908	1.11384
732	1.15294	1.14789	1.14277	1.13769	1.13257	1.12739	1.12220	1.11695
734	1.15613	1.15107	1.14593	1.14085	1.13572	1.13053	1.12533	1.12006
736	1.15932	1.15424	1.14910	1.14401	1.13886	1.13366	1.12845	1.12317
738	1.16251	1.15742	1.15227	1.14716	1.14201	1.13680	1.13158	1.12629
740	1.16570	1.16060	1.15543	1.15032	1.14515	1.13993	1.13470	1.12940
742	1.16889	1.16378	1.15860	1.15348	1.14830	1.14306	1.13782	1.13251
744	1.17208	1.16696	1.16177	1.15663	1.15145	1.14620	1.14095	1.13562
746	1.17527	1.17014	1.16493	1.15979	1.15459	1.14933	1.14407	1.13873
748	1.17846	1.17332	1.16810	1.16295	1.15774	1.15247	1.14720	1.14185
750	1.18165	1.17650	1.17127	1.16611	1.16088	1.15560	1.15032	1.14496
752	1	1	1					1.14807
754	1.18803	1.18286	1.17760	1.17242	1.16718	1.16187	1.15657	1.15118
756	1	1	i	1		1	1	1.15429
758	I	1	t .					1.15741
760	1.19760	1.19239	1.18710	1.18189	1.17661	1.17127	1.16594	1.16052
762	1	l .			1	1		1.16363
764	1		l					1.16674
76 6		ì	l .	1	Í	l .	l	1.16985
768	1.21036	1.20511	1.19977	1.19452	1.18920	1.18381	1.17844	1.17297
770	1.21355	1.20829	1.20294	1.19768	1.19234	1.18694	1.18156	1.17608
	1	,	l	1	:	·		1

Digitized by GOOGIC

NITROGEN (DIETRICH)

770 mm, Pressure and 10° to 25° Centigrade

mm.	18°	19°	20°	21°	22°	23°	24°	25°
720	1.09304	1.08774	1.08246	1.07708	1.07166	1.06616	1.06061	1.05499
722	1.09614	1.09083	1:08554	1.08015	1.07472	1.06921	1.06365	1.05801
724	1.09924	1.09392	1.08862	1.08322	1.07778	1.07226	1.06669	1.06104
726	1	1.09702		i		1		1.
728	1.10544	1.10011	1.09478	1.08936	1.08390	1.07836	1.07277	1.06710
730	1.10854	1.10320	1.09786	1.09243	1.08696	1.08141	1.07581	1.07013
732	1.11165	1		1				
734	1.11475							
736	1.11785	1.11248	1.10710	1.10165	1.09614	1.09056	1.08493	1.07922
738	1.12095	1.11557	1.11018	1.10472	1.09921	1.09361	1.08796	1.08225
740	1.12405	1.11866	1.11327	1.10799	1.10227	1.09666	1.09100	1.08528
742	1.12715	l l	- 1	1				
744	1.13025	1						
746	1.13335	1.12794	1.12251	1.11700	1.11145	1.10581	1.10012	1.09437
748	1.13645	1.13103	1.12559	1.12007	1.11451	1.10886	1.10316	1.09740
750	1.13955	1.13412	1.12867	1.12314	1.11757	1.11191	1.10620	1.10043
752	1.14266		- 1				- 1	
	1.14576	1.14030	1.13483	1.12928	1.12369	1.11801	1.11228	1.10649
	1.14886	1.14340	1.13791	1.13236	1.12675	1.12106	1.11532	1.10952
758	1.15196	1.14649	1.13999	1.13543	1.12982	1.12411	1.11835	1.11255
760	1.15506	1.14958	1.14408	1.13850	1.13288	1.12716	1.12139	1.11558
762	1.15816	ı						
764	1.16126							
766	1.16436							
768	1.16746	1.16195	1.15640	1.15078	1.14512	1.13936	1.13355	1.12770
770	1.17056	1.16504	1.15948	1.15385	1.14818	1.14241	1.13659	1.13073

Digitized by Google

XXVII.—DENSITY OF CARBON

Weight in milligrames of 1 c.c. carbon dioxide at 720 to 770 mm. pressure ings on glass scale. Calculated from 1.976 = weight of 1 liter CO₂ at 0° Cen-

mm.	10°	11°	12°	13°	14°	15°	16°	17°	18°	19°
722 724 726	1.7838 1.7888 1.7938 1.7988	1.7756 1.7806 1.7856 1.7905	1.7673 1.7723 1.7773 1.7822	1.7590 1.7639 1.7689 1.7738	1.7506 1.7555 1.7605 1.7654	1 . 7422 1 . 7471 1 . 7520 1 . 7569	1.7337 1.7386 1.7435 1.7484	1.7252 1.7301 1.7349 1.7398	1.7166 1.7215 1.7263 1.7312	1.7031 1.7079 1.7128 1.7176 1.7225 1.7273
732	1.8089 1.8139 1.8189 1.8239	1.8005 1.8055 1.8105 1.8155	1.7921 1.7971 1.8021 1.8071	1.7837 1.7887 1.7936 1.7986	1 . 7752 1 . 7802 1 . 7851 1 . 7901	1.7667 1.7717 1.7766 1.7815	1.7582 1.7631 1.7680 1.7729	1.7496 1.7545 1.7593 1.7642	1.7409 1.7458 1.7506 1.7555	1.7321 1.7370 1.7418 1.7467 1.7515
744 746 748	1 .8388 1 .8439 1 .8489	1 .8304 1 .8354 1 .8404	1.8219 1.8269 1.8319	1.8134 1.8184 1.8233	1 .8048 1 .8098 1 .8147	1.7962 1.8011 1.8060	1.7875 1.7924 1.7973	1.7788 1.7837 1.7886	1.7700 1.7749 1.7798	1.7564 1.7612 1.7661 1.7709 1.7757
754	1.8639 1.8689 1.8739	1.8554 1.8603 1.8653	1 .8468 1 .8517 1 .8567	1.8382 1.8431 1.8481	1 .8295 1 .8344 1 .8394	1 .8208 1 .8257 1 .8306	1.8120 1.8169 1.8218	1.8032 1.8081 1.8130	1.7944 1.7992 1.8041	1.7806 1.7854 1.7902 1.7951 1.7999
762 764 766 768 770	1.8890 1.8940 1.8990	1 .8803 1 .8853 1 .8903	1.8716 1.8766 1.8816	1.8629 1.8679 1.8728	1.8541 1.8591 1.8640	1 .8453 1 .8503 1 .8552	1.8365 1.8414 1.8463	1.8276 1.8325 1.8374	1 .8187 1 .8235 1 .8284	1 .8048 1 .8096 1 .8144 1 .8193 1 .8241

* S. W. Parr, Jour. Am.

DIOXIDE (PARR*)

and 10° to 30° Centigrade. Corrected for aqueous vapor and barometer readtigrade, 760 $\,$ mm. pressure and 41° latitude

20°	21°	22°	23°	24°	25°	26°	27°	28°	29°	30°
1.6992 1.7041 1.7089 1.7137	1:6904 1:6953 1:7001 1:7049	1.6815 1.6863 1.6911 1.6959	1.6726 1.6773 1.6821 1.6869	1.6635 1.6682 1.6730 1.6778	1.6543 1.6590 1.6638 1.6685	1.6450 1.6497 1.6544 1.6591	1.6356 1.6403 1.6450 1.6497	1 . 6213 1 . 6260 1 . 6307 1 . 6354 1 . 6401 1 . 6448	1 6163 1 6210 1 6256 1 6303	1.6065 1.6111 1.6157 1.6204
1.7282 1.7330 1.7378	1.7193 1.7241 1.7289	1.7103 1.7151 1.7199	1.7012 1.7060 1.7107	1.6920 1.6968 1.7015	1.6827 1.6875 1.6922	1.6733 1.6780 1.6827	1.6638 1.6685 1.6732	1 . 6494 1 . 6541 1 . 6588 1 . 6635 1 . 6681	1.6443 1.6490 1.6537	1.6343 1.6390 1.6437
1 .7523 1 .7571 1 .7619 1 .7667	1.7433 1.7481 1.7529 1.7577	1.7342 1.7390 1.7438 1.7486	1.7250 1.7298 1.7346 1.7394	1 7158 1 7206 1 7253 1 7301	1.7064 1.7112 1.7159 1.7206	1.6969 1.7016 1.7063 1.7110	1.6873 1.6920 1.6967 1.7014	1 . 6729 1 . 6776 1 . 6822 1 . 6869 1 . 6916	1.6677 1.6723 1.6770 1.6817	1.6577 1.6623 1.6670 1.6716
1 . 7764 1 . 7812 1 . 7861 1 . 7909	1.7673 1.7721 1.7770 1.7818	1.7582 1.7630 1.7678 1.7725	1.7489 1.7537 1.7585 1.7632	1.7396 1.7443 1.7491 1.7538	1.7301 1.7348 1.7396 1.7443	1.7205 1.7252 1.7300 1.7347	1.7108 1.7155 1.7202 1.7249	1.6963 1.7010 1.7057 1.7104 1.7150	1.6910 1.6957 1.7004 1.7050	1.6809 1.6856 1.6903 1.6949
1 .8005 1 .8053 1 .8102	1.7914 1.7962 1.8010	1.7821 1.7869 1.7917	1.7728 1.7776 1.7823	1.7633 1.7681 1.7728	1.7538 1.7585 1.7633	1.7441 1.7488 1.7535	1.7343 1.7390 1.7437	1 .7197 1 .7244 1 .7291 1 .7338 1 .7385	1 .7144 1 .7191 1 .7237	1.7042 1.7089 1.7135

Chem. Soc. 31, 237.

XXVIII TABLE OF LOGARITHMS

N.	0	1	2	3	4	5	8	7	8	9		P.	P.	
100	00 000	043	087	130	173	217	260	303	346	389				
101	432	475	518	561	604	647	689	732	775	817		44	43	42
102	860	903	945	988	*030	*072	*115	*157	*199	*242	1	4	4	4
103	01 284	326	368	410	452	494	536	578	620	662	2	9	· ĝ	8
104	703	745	787	828	870	912	953	995	*036	*078	3	13	13	13
		1 10	,	020,	3,0	7.2	300	1 000	000	1010	4	18	17	17
105	02 119	160	202	243	284	325	366	407	449	490	5	22	22	21
106	531	572	612	653	694	735	776	816	857	898	6	26	26	25
107	938	979	*019	*060	*100	*141	*181	*222	*262	*302	7	31	30	29
108	03 342	383	423	463	503	543	583	623	663	703	8	35	34	29 34
109	743	782	822	862	902	941	981	*021	*060	*100	9	40	39	38
100	170	102	024	002	902	841	901	1021	+000	+100	•	*0	38	90
110	04 139	179	218	258	296	336	376	415	454	493				
111	532	571	610	650	689	727	766	805	844	883		41	40	39
112	.922	961	999	*038	*077*	*115	*154	*192	*231	*269	1	4	4	4
113	05 308	346	3 85	423	461	500	538	576	614	652	2	8	8	8
114	690	729	767	805	843	881	918	956	994	*032	3	12	12	12
			l	١.		i	ł	l			4	. 16	16	16
115	06 070	108	145	183	221	258	296	333	371	408	5	21	20	20
116	446	483	521	558	595	633	670	707	744	781	6	25	24	23
117	819	856	893	930	967	*004	*041	*078	*115	*151	7	29	28	27
118	07 188	225	262	298	335	372	408	445	482	518	8	33	.32	31
119	555	591	628	664	700	737	773	809	846	882	9	37	36	35
120	918	954	990	*027	*063	*099	*135	*171	*207	*243				
121	08 279	314	350	386	422	458	493	529	565	600		38	37	36
122	636	672	707	743	778	814	849	884	920	955	1	4	4	4
123	991	*026.	*061	*096	*132	*167	*202	*237	*272	*307	2	8	7	7
124	09 342	377	412	447	482	517	552	5 87	621		3		11	11
122	09 342	3//	412	44/	482	517	002	987	021	656		11		
		1									4	15	15	14
125	691 -	726	760	795	830	864	899	934	968	*003	5	19	19	18
126	10 037	072	106	140	175	209	243	278	312	346	6	23	22	22
127	380	415	449	483	517	551	585	619	653	687	7	27	26	25
128	721	755	789	823	857	890	924	958	992	*025	8	30	30	29
129	11 059	093	126	160	193	227	261	294	327	361	9	34	33	32
130	394	428	461	494	528	561	594	628	661	694				
131	727	760	793	826	860	893	926	959	992	*024		35	34	33
132	12 057	090	123	156	189	222	254	287	320	352	1	4	3	3
133	385	418	450	483	516	548	581	613	646	678	2	7	7	7
134	710	743	775	808	840	872	905	937	969	*001	3	11	10	10
ĺ			ļ								4	14	14	13
135	13 033	066	098	130	162	194	226	258	290	322	5	18	17	17
136	354	386	418	450	481	513	545	577	609	640	6	21	20	20
137	672	704	735	767	79 9	830	862	893	925	956	7	25	24	23
138	988	*019	*051	*082	*114	*145	*176	*208	*239	*270	8	28	27	26
139	14 301	333	364	395	426	457	489	520	551	582	9	32	31	30
140	613	644	675	706	737	768	799	829	860	891				
141	922	953	983	*014	*045	*076	*106	*137	*168	*198		32	31	30
142	15 229	259	290	320	351	381	412	442	473	503	1	3	3	3
143	534	564	594	625	655	685	715	746	776	806	2	. 6	6	6
144	836	866	897	927	957	987	*017	*047	+077	*107	3	10	9	9
	000	000	091	821	901	901	-017	7011	017	107	4	13	12	12
145	16 137	167	197	227	256	286	316	346	376	406	5	16	16	15
146	435	465	495	524	554	584	613	643	673	702	6	19	19	18
4400	732	761	791	820	850	879	909	938	967	997	7	22	22	21
147 148	17 026	056	685	114	143	173	202	231	260	289	8	26	25	24
	17 026 319	056 348	085 377	114 406	143 435	173 464	202 493	231 522	260 551	289 580	8 9	26 29	25 28	24 27

N.		0	1	2	3	4	5	6	7	8	9	İ	P.	P.
150	17	609	638	667	696	725	754	782	811	840	869			
51		898	926	955	984	*013	*041	*070	*099	*127	*156	ł	29	28
52	18	184	213	241	270	298	327	355	384	412	441	1	1 3	3
53		469	498	526	554	583	611	639	667	696	724	2	6	6
54		752	780	808	837	865	893	921	949	977	*005	3	9	8
			***	000	"					1		4	12	11
55	19	033	061	089	117	145	173	201	229	257	285	5	15	14
56	10	312	340	368	396	424	451	479	507	535	562	6	17	17
57		590	618	645	673	700	728	756	783	811	838	7	20	20
58		866	893	921	948	976	*003	*030	*058	*085	*112	8	23	22
59	20	140	167	194	222	249	276	303	330	358	385	9	26	25
												l		
60		412	439	466	493	520	548	575	602	629	656		917	
51		683	710	737	763	790	817	844	871	898	925		27	26
62		952	978	*005	*032	*059	*085	*112	*139	*165	*192	1	3	3
53	21	219	245	272	299	325	352	378	405	431	458	2	5	5
84		484	511	537	564	590	617	643	669	696	722	3 4	8 11	8 10
85		748	775	801	827	854	880	906	932	958	985	5	14	13
66	22	011	037	063	089	1115	141	167	194	220	246	6	16	16
67		272	298	324	350	376	401	427	453	479	505	7	19	18
68		531	557	583	608	634	660	686	712	737	763	8	22	21
69		789	814	840	866	891	917	943	968	994	*019	9	24	23
. 1				1	ŀ	ĺ	ł		1		1		•	•
70	23	045	070	096	121	147	172	198	223	249	274	l		
71		300	325	350	376	401	426	452	477	502	528			25
72		553	578	603	629	654	679	704	729	754	779		1	3
78		805	830	855	880	905	930	955	980	*005	*030		2	5
74	24	055	080	105	130	155	180	204	229	254	279		3	8 10
75		304	329	353	378	403	428	452	477	502	527			13
76		551	576	601	625	650	674	699	724	748	773	,		15
77		797	822	846	871	895	920	944	969	993	*018			įš
78	25	042	066	091	115	139	164	188	212	237	261			20
79		285	310	334	358	382	406	431	465	479	503			23
_					200	004	040	070	600	700	744			
80		527 768	551 792	575	600 840	624 864	648 888	672 912	696 935	720 959	744 983	ł	24	23
81	00	007	031	816	079	102	126	150	174	198	221		2	70
82	20			055			364	387	411			1	5	2 5
B3		245	269	293	316	340				435	458	2		7
84		482	505	529	553	576	600	623	647	670	694	3	7	9
		717	744	704	700		004	OFO	881	005	928	4	10	
85		717	741	764	788	811	834	858		905		5	12	12
86		951	975	998	*021	*045	*068	*091	*114	*138	*161	6	14	14
87	27	184	207	231	254	277	300	323	346	870	393	7	17	16
88		416	439	462	485	508	531	554	577	600	623	8	19	18
89		646	669	692	715	7 3 8	761	784	807	830	852	9	22	21
90		875	898	921	944	967	989	*012	*035	*058	*081			
91	28	103	126	149	171	194	217	240	262	285	307		22	21
92		330	353	375	398	421	443	466	488	511	533	1	2	2
93		556	578	601	623	646	668	691	713	735	758	2	4	4
94		780	803	825	847	870	892	914	937	959	981	3	7	6
	00	003	026	040	070	092	115	197	159	101	203	4	9	8 11
95	29		248	048	070		115	137 358	380	181 403	425	5	11	13
96		226		270	292	314	336							
97		447	469	491	513	535	557	579	601	623	645	7	15	15
98 99		667 88 5	688 907	710 929	732 951	754 973	776	798 *016	820 *038	842 *060	863 *081	8 .0.90	18 20	17 19
		000	וטע	929	801	813	994	-010	090	1 700	100 V	1009	1 60	19
						·	l			<u> </u>	<u> </u>		_	

1					1	1	1	1	1	1		
00	30 10		146	168	190	211	233	255	276	298		
01	32	341	363	384	406	428	449	471	492	514		22 21
02	53	5 557	578	600	621	643	664	685	707	728	1 1	2 2
03	75		792	814	835	856	878	899	920	942	2	4 4
04	96		*006	*027	*048	*069	*091	*112	*133	*154	3	7 6
_	9 0.	, 90x	1.000	1021	010	1000	1001	112	100	101	4	9 8
)5	31 17	5 197	218	239	260	281	302	323	345	366	5	11 11
6	38		429	450	471	492	513	534	555	576	6	13 13
	59		639	660	681	702	723	744	765	785	7	15 15
7							931	952		994		
8	80		848	869	890	911			973		8	
9	32 01	5 035	056	077	098	118	139	160	181	201	9	20 19
0	22	2 243	263	284	305	325	346	366	387	408		
1	42		469	490	510	531	552	572	593	613		20
	63		675	695	715	736	756	777	797	818	1	1 2
.2						940		980	*001	*021	2	4
3	83		879	899	919		960					
4	33 04	1 062	082	102	122	143	163	183	203	224	3 4	8
.5	24	4 264	284	304	325	345	365	385	405	425	5	10
	44		486	506	526	546	566	586	606	626	6	12
6			686	706	726	746	766	786	806	826	7	14
7	64								*005	*025	8	
.8	84		885	905	925	945	965	985				16
.9	34 04	4 064	084	104	124	143	163	183	203	223	9	18
0	24	2 262	282	301	321	341	361	380	400	420		
1	43		479	498	518	537	557	577	596	616		19
	63		674	694	713	733	753	772	792	811	1	1 2
2			869	889	908	928	947	967	986	*005	2	1 4
3	83										3	6
4	35 02	5 044	064	083	102	122	141	160	180	199	1	8
_	01	8 238	257	276	295	315	334	353	372	392	5	10
5	21		449	468	488	507	526	545	564	583	6	ii
6	41										7	13
7	′ 60		641	660	679	698	717	736	755	774		
8	79		832	851	870	889	908	927	946	965	8	15
9	98	4 *003	*021	*040	*059	*0 78	*097	*116	*135	*154	9	17
0	36 17	3 192	211	229	248	267	286	305	324	342		
1	36		399	418	436	455	474	493	511	530		18
2	54		586	605	624	642	661	680	698	717	1	1 2
			773	791	810	829	847	866	884	903	2	2 4
3	73							*051	*070	*088	3	5
4	92	2 940	959	977	996	*014	*033	-001	1.010	1.000	4	7
5	37 10	7 125	144	162	181	199	218	236	254	273	5	9
6	29		328	346	365	383	401	420	438	457	6	11
7	47		511	530	548	566	585	603	621	639	7	13
8	65		694	712	731	749	767	785	803	822	8	14
	84		876	894	912	931	949	967	985	*003	9	16
9	84	0 858	0,0	094	912	991	040	"	505	000	1	
0	38 02	1 039	057	075	093	112	130	148	166	184	1	
1	20		238	256	274	292	310	328	346	364	ł	17
2	38		417	435	453	471	489	507	525	543	1	, 2
3	56		596	614	632	650	668	686	703	721	2	3
4	73		775	792	810	828	846	863	881	899	3	5
-				1		ļ	1			l	4.	7
5	91		952	970	987	*005	*023	*041	*058	*076	5	9
6	39 09	4 111	129	146	164	182	199	217	235	252	6	10
7	27	0 287	305	322	340	358	375	393	410	428	7	12
8	44		480	498	515	533	550	568	585	602	8 T 8	14
•												
9	62	0 637	655	672	690	707	724	742	gi 7.59 b	7770	ogle	15

251 40 255 256 256 256 256 256 256 256 256 256	794 967 140 312 483 654 8824 993 162 330 497 664 830 996 160 325 488 651 813 975 136 297 457 6616	811 985 157 329 500 671 *010 179 347 514 681 *012 177 341 504 667 830 991 152	829 *002 175 346 518 688 858 *027 196 363 531 697 863 *029 193 357 521 684 846 *008	846 *019 192 364 535 705 *044 212 380 547 714 880 *045 210 374 537 700 862	863 *037 209 381 552 722 892 *061 229 397 564 731 896 *062 226 390 553 716	881 *054 226 398 569 739 909 *078 246 414 581 747 913 *078 243 406 570	898 *071 243 415 586 756 926 *095 263 430 597 764 929 *095 259	915 *088 261 432 603 773 943 *111 280 447 614 780 946 *111 275	933 *106 278 449 620 790 960 *128 296 464 631 797 963 *127 292	950 *123 295 466 637 807 976 *145 313 481 647 814 979 *144 308	1 2 3 4 5 6 7 8 9	18 2 4 5 7 9 11 13 14 16 17 2 3 5
152 40 153 154 155 155 155 155 155 155 155 155 155	140 312 483 654 824 993 162 330 497 664 830 996 160 325 488 651 813 975 136 297 457	157 329 500 671 841 *010 179 347 514 681 *012 177 341 504 667 830 991	175 346 518 688 858 *027 196 363 531 697 863 *029 193 357 521 684 846	192 364 535 705 875 *044 212 380 547 714 8045 210 374 537 700 862	209 381 552 722 892 *061 229 397 564 731 896 *062 226 390 553	226 398 569 739 909 *078 246 414 581 747 913 *078 243	243 415 586 756 926 *095 263 430 597 764 929 *095 259	261 432 603 773 943 *111 280 447 614 780 946 *111	278 449 620 790 960 *128 296 464 631 797 963 *127	295 466 637 807 976 *145 313 481 647 814 979 *144	2 3 4 5 6 7 8 9	2 4 5 7 9 11 13 14 16 17 2 3 5
553 554 555 557 558 41 50 50 51 52 53 53 54 42 55 56 57 70 71 73 74 43 77 77 77 78 77 78 79 90 90 90 90 90 90 90 90 90 9	312 483 654 824 993 162 330 497 664 830 996 160 325 488 651 813 975	329 500 671 841 *010 179 347 514 681 847 *012 177 341 504 667 830 991	346 518 688 858 *027 196 363 531 697 863 *029 193 357 521 684 846	364 535 705 875 *044 212 380 547 714 880 *045 210 374 537 700 862	381 552 722 892 *061 229 397 564 731 896 *062 226 390 553	398 569 739 909 *078 246 414 581 747 913 *078 243	415 586 756 926 *095 263 430 597 764 929 *095 259	432 603 773 943 *111 280 447 614 780 946 *111	449 620 790 960 *128 296 464 631 797 963 *127	466 637 807 976 *145 313 481 647 814 979 *144	2 3 4 5 6 7 8 9	11 13 14 16 17 2 3 5
55	483 654 824 993 162 330 497 664 830 996 160 325 488 651 813 975	500 671 841 *010 179 347 514 681 847 *012 177 341 504 667 830 991	688 858 *027 196 363 531 697 863 *029 193 357 521 684 846	535 705 875 *044 212 380 547 714 880 *045 210 374 537 700 862	722 892 *061 229 397 564 731 896 *062 226 390 553	739 909 *078 246 414 581 747 913 *078 243	586 756 926 *095 263 430 597 764 929 *095 259	603 773 943 *111 280 447 614 780 946 *111	790 960 *128 296 464 631 797 963 *127	807 976 *145 313 481 647 814 979 *144	3 4 5 6 7 8 9	5 7 9 11 13 14 16 17 2 3 5
55 56 57 58 41 59 60 60 61 52 53 54 42 55 56 57 78 58 59 70 43 77 72 73 77 78 79 90 90	654 824 993 162 330 497 664 830 996 160 325 488 651 813 975 136 297 457	671 841 *010 179 347 514 681 847 *012 177 341 504 667 830 991	688 858 *027 196 363 531 697 863 *029 193 357 521 684 846	705 875 *044 212 380 547 714 880 *045 210 374 537 700 862	722 892 *061 229 397 564 731 896 *062 226 390 553	739 909 *078 246 414 581 747 913 *078 243	756 926 *095 263 430 597 764 929 *095 259	773 943 *111 280 447 614 780 946 *111	790 960 *128 296 464 631 797 963 *127	807 976 *145 313 481 647 814 979 *144	1 2 3	7 9 11 13 14 16 17 2 3 5
566 577 558 41 559 60 61 62 63 63 63 64 42 65 66 68 77 78 78 78 79 44	824 993 162 330 497 664 830 996 160 325 488 651 813 975 136 297 457	841 *010 179 347 514 681 847 *012 177 341 504 667 830 991	858 *027 196 363 531 697 863 *029 193 357 521 684 846	875 *044 212 380 547 714 880 *045 210 374 537 700 862	892 *061 229 397 564 731 896 *062 226 390 553	909 *078 246 414 581 747 913 *078 243	926 *095 263 430 597 764 929 *095 259	943 *111 280 447 614 780 946 *111	960 *128 296 464 631 797 963 *127	976 *145 313 481 647 814 979 *144	5 6 7 8 9	9 11 13 14 16 17 2 3 5
57 41 58 41 59 50 51 52 53 54 42 55 56 57 58 59 70 43 77 77 78 79 90 90	993 162 330 497 664 830 996 160 325 488 651 813 975 136 297 457	*010 179 347 514 681 847 *012 177 341 504 667 830 991	*027 196 363 531 697 863 *029 193 357 521 684 846	*044 212 380 547 714 880 *045 210 374 537 700 862	*061 229 397 564 731 896 *062 226 390 553	*078 246 414 581 747 913 *078 243 406	*095 263 430 597 764 929 *095 259	*111 280 447 614 780 946 *111	*128 296 464 631 797 963 *127	*145 313 481 647 814 979 *144	7 8 9 1 2 3	13 14 16 17 2 3 5
588 41 509 50 51 52 52 53 53 42 42 55 56 56 77 78 88 57 77 77 77 77 77 77 77 77 77 77 77 77 77 77 78	162 330 497 664 830 996 160 325 488 651 813 975 136 297 457	179 347 514 681 847 *012 177 341 504 667 830 991	196 363 531 697 863 *029 193 357 521 684 846	212 380 547 714 880 *045 210 374 537 700 862	229 397 564 731 896 *062 226 390 553	246 414 581 747 913 *078 243 406	263 430 597 764 929 *095 259	280 447 614 780 946 *111	296 464 631 797 963 *127	313 481 647 814 979 *144	1 2 3	13 14 16 17 2 3 5
59 60 61 62 63 63 64 42 65 66 66 67 70 43 771 772 773 74 75 777 78 79 60 60 60 60 60 60 60 60 60 60 60 60 60	330 497 664 830 996 160 325 488 651 813 975 136 297 457	347 514 681 847 *012 177 341 504 667 830 991	363 531 697 863 *029 193 357 521 684 846	380 547 714 880 *045 210 374 537 700 862	397 564 731 896 *062 226 390 553	581 747 913 *078 243 406	597 764 929 *095 259	614 780 946 *111	631 797 963 *127	647 814 979 *144	1 2 3	14 16 17 2 3 5
59 60 61 62 63 64 42 65 66 67 70 43 77 78 77 78 79 60 60 60 60 60 60 60 6	330 497 664 830 996 160 325 488 651 813 975 136 297 457	347 514 681 847 *012 177 341 504 667 830 991	363 531 697 863 *029 193 357 521 684 846	380 547 714 880 *045 210 374 537 700 862	397 564 731 896 *062 226 390 553	581 747 913 *078 243 406	597 764 929 *095 259	614 780 946 *111	631 797 963 *127	647 814 979 *144	1 2 3	17 2 3 5
81	664 830 996 160 325 488 651 813 975 136 297 457	681 847 *012 177 341 504 667 830 991	697 863 *029 193 357 521 684 846	714 880 *045 210 374 537 700 862	731 896 *062 226 390 553	747 913 *078 243 406	764 929 *095 259	780 946 *111	797 963 *127	814 979 *144	2 3	3 5
52 53 53 54 42 55 56 57 70 43 77 77 78 77 78 79	830 996 160 325 488 651 813 975 136 297 457	847 *012 177 341 504 667 830 991	863 *029 193 357 521 684 846	880 *045 210 374 537 700 862	896 *062 226 390 553	913 *078 243 406	929 *095 259	946 *111	963 *127	979 *144	2 3	3 5
62 63 64 42 65 66 66 66 67 70 43 77 77 77 77 77 78	996 160 325 488 651 813 975 136 297 457	*012 177 341 504 667 830 991	*029 193 357 521 684 846	*045 210 374 537 700 862	*062 226 390 553	*078 243 406	*095 259	*111	*127	*144	2 3	3 5
63 42 65 66 66 67 68 69 70 43 771 773 774 44 775 776 44 777 778 779 80 80	996 160 325 488 651 813 975 136 297 457	*012 177 341 504 667 830 991	*029 193 357 521 684 846	*045 210 374 537 700 862	*062 226 390 553	*078 243 406	*095 259	*111	*127	*144	2 3	3 5
84 42 85 66 87 88 85 9 70 43 71 72 73 74 44 175 77 78 79 80 80	160 325 488 651 813 975 136 297 457	341 504 667 830 991	357 521 684 846	374 537 700 862	226 390 553	243 406	259				8	5
70 43 77 43 77 78 78 80 80 80	488 651 813 975 136 297 457	504 667 830 991	521 684 846	537 700 862	553		400	1	i	1		
70 43 77 43 77 78 78 80 80 80	488 651 813 975 136 297 457	504 667 830 991	521 684 846	537 700 862	553		1 423	439	455	472	4 5	7 9
67 68 69 70 43 71 72 73 74 75 76 44 777 78 79 60 60	651 813 975 136 297 457	667 830 991 152	684 846	700 862		1 0/0	586	602	619	635	6	10
68 69 43 771 43 771 772 773 74 44 1777 78 44 177 78 80	813 975 136 297 457	830 991 152	846	862		732	749	765	781	797	7	12
70 43 71 43 72 73 74 74 75 76 44 77 77 78 79 80	975 136 297 457	991 152			878	894	911	927	943	959	8	14
71 72 73 74 75 76 44 77 78 79	297 457		ĺ	*024	*040	*056	*072	*088	*104	*120	9	15
71 72 73 74 75 76 44 77 78 79	297 457		169	185	201	217	233	249	265	281	1	
72 73 74 75 76 76 77 78 79	457		329	345	361	377	393	409	425	441		16
78 74 75 76 76 77 78 79		473	489	505	521	537	553	569	584	600	1	2
74 75 76 77 78 79 80 80		632	648	664	680	696	712	727	743	759	2	3
76 44 77 78 79	775	791	807	823	838	854	870	886	902	917	3	5
76 44 77 78 79 80	933	949	965	981	996	*012	*028	*044	*059	*075	4 5	6 8
77 78 79		107	122	138	154	170	185	201	217	232	6	10
78 79 80	248	264	279	295	311	326	342	358	373	389	7	11
79 80 S	404	420	436	451	467	483	498	514	529	545	8	13
	560	576	592	607	623	638	654	669	685	700	9	14
	716	731	747	762	778	793	809	824	840	855		
81	871	886	902	917	932	948	963	979	994	*010	l	15
82 45		040	056	071	086	102	117	133	148	163	1	2
	179	194	209	225	240	255	271	286	301	317	2	3
	332	347	362	378	393	408	423	439	454	469	8	5
85	484	500	515	530	545	561	576	591	606	621	4 5	8
	484 637	652	667	682	697	712	728	743	758	773	6	9
	788 -	803	818	834	849	864	879	894	909	924	7	11
	939	954	969	984	*000	*015	*030	*045	*060	*075	8	12
89 46		105	120	135	150	165	180	195	210	225	9	14
90	240	255	270	285	300	315	330	345	359	374		
	389	404	419	434	449	464	479	494	509	523		14
	538	553	568	583	\$ 98	613	627	642	657	672	1	1
	687	702	716	731	746	761	776	790	805	820	2	3
	835	850	864	879	894	909	923	938	953	967	8	4
95	000	007	*010	*006	+041	*056	*070	*002	*100	*114	4	6
	982	997	*012	*026	*041	*056	*070	*085	*100	*114	5	7
(144	159	173	188	202	217	232	246	261	6	8
! '	276	290	305	319	334	349	363	378	392	407	7	10
	422 567	436 582	451 596	465 611	480 625	494 640	509 654	524 669	538 683	553 698	- 8 - 0 095	11
N. 0	-0,	1	2	3	4	5	6	7	8	zedroy N	3008	. P.

N.	()	1	2	3	4	5	6	7	8	9	P. P.
00	47	712	727	741	756	770	784	799	813	828	842	
01		857	871	885	900	914	929	943	958	972	986	15
02	48		015	029	044	058	073	087	101	116	130	1 2
03		144	159	173	187	202	216	230	244	259	273	2 3
04		287	302	316	330	344	359	373	387	401	416	8 5
					-					1	1	4 6
05		430	444	458	473	487	501	515	530	544	558	5 8
06		572	586	601	615	629	643	657	671	686	700	6 9
07		714	728	742	756	770	785	799	813	827	841	7 11
08		855	869	883	897	911	926	940	954	968	982	8 12
09		996	*010	*024	*038	*052	*066	*080	*094	*108	*122	9 14
					1.00							
10	49	136	150	164	178	192	206	220	234	248	262	Į.
11		276	290	304	318	332	346	360	374	388	402	
12		415	429	443	457	471	485	499	513	527	541	1
13		554	568	582	596	610	624	638	651	665	679	1
14		693	707	721	734	748	762	776	790	803	817	14
15	•	831	845	859	872	886	900	914	927	941	955	1 1
16		969	982	996	*010	*024	*037	*051	*065	*079	*092	2 3
17		106	120	133	147	161	174	188	202	215	229	3 4
18	-	243	256	270	284	297	311	325	338	352	365	4 6
19		379	393	406	420	433	447	461	474	488	501	5 7
1							-00	***		000	497	6 8
20		515	529	542	556	569	583	596	610	623	637	
21		651	664	678	691	705	718	732	745	759	772	
22		786	799	813	826	840	853	866	880	893	907	9 13
23		920	934	947	961	974	987	*001	*014	*028	*041	i
24	51	055	068	081	095	108	121	135	148	162	175	ı
25		188	202	215	228	242	255	268	282	295	308	l
26		322	335	348	362	375	388	402	415	428	441	i
27		455	468	481	495	508	521	534	548	561	574	
28		587	601	614	627	640	654	667	680	693	706	18
29		720	733	746	759	772	786	799	812	825	838	1 1
_		0.24	007	070	891	004	917	930	943	957	970	2 3 3
30		851	865	878		904		*061	*075	*088	*101	4 5
31		983	996	*009	*022	*035	*048				231	5 7
32		114	127	140	153	166	179	192	205	218	362	6 8
33		244	257	270	284	297	310	323	336	349 479	492	7 9
34		375	388	401	414	427	440	453	466	4/9	192	8 10
35		504	517	530	543	556	569	582	595	608	621	9 12
36		634	647	660	673	686	699	711	724	737	750	i i
37		763	776	789	802	815	827	840	853	866	879	1
38		892	905	917	930	943	956	969	982	994	*007	1
39		020	033	046	058	071	084	097	110	122	135	
		140	101	172	186	199	212	224	237	250	263	1
40		148	161 288	173 301	314	326	339	352	364	377	390	12
41		275		428	441	453	466	479	491	504	517	1 1
42		403	415				593	605	618	631	643	2 2
43		529	542	555	567	580		732	744	757	769	8 4
44		656	668	681	694	706	719	132	/ 12/2	101	108	4 5
45		782	794	807	820	832	845	857	870	882	895	5 6
46		908	920	933	945	958	970	983	995	*008	*020	. 6 7
47		033	045	058	070	083	095	108	120	133	145	7 8
48		158	170	183	195	208	220	233	245	258	270	8 10
49		283	295	307	320	332	345	357	370	382	394C	og (9 11
			i		i	i	1	1	1	1	1	

N. 350 351 352 353	0	1	i .	i	i	1	i	1			
351 352 353		1	2	8	4	5	6	7	8	9	P. P.
352 353	54 407	419	432	444	456	469	481	494	506	518	
353	531	543	555	568	580	593	605	617	630	642	18
	654	667	679	691	704	716	728	741	753	765	1 1
	777	790	802	814	827	839	851	864	876	888	2 3
54	900	913	925	937	949	962	974	986	998	*011	8 4
	l	1	į.	i	l	l	1		1	1	4 5
55	55 023	035	047	060	072	084	096	108	121	133	5 7
56	145	157	169	182	194	206	218	230	242	255	6 8
57	267	279	291	303	315	328	340	352	364	376	7 9
158	388	400	413	425	437	449	461	473	485	497	8 10
159	509	522	534	546	559	570	582	594	606	618	9 12
60	630	642	654	666	678	691	703	715	727	739	
161	751	763	775	787	799	811	823	835	847	859	
362	871	883	895	907	919	931	943	955	967	979	
368	991	*003	*015	*027	*038	*050	*062	*074	*086	*098	
164	56 110	122	134	146	158	170	182	194	205	217	12
165	229	241	253	265	277	289	301	312	324	336	1 1
166	348	360	372	384	396	407	419	431	443	455	2 2
67	467	478	490	502	514	526	538	549	561	573	8 4
168	585	597	608	620	632	644	656	667	679	691	4 5
169	703	714	726	738	750	761	773	785	797	808	5 6 6 7
70	820	832	844	855	867	879	891	902	914	926	7 8
371	937	949	961	972	984	996	*008	*019	*031	*043	8 10
72	57 054	066	078	089	101	113	124	136	148	159	9 11
378	171	183	194	206	217	229	241	252	264	276	
374	287	299	310	322	334	345	357	368	380	392	
375	403	415	426	438	449	461	473	484	496	507	
376	519	530	542	553	565	576	588	600	611	623	'
377	634	646	657	669	680	692	703	715	726	738	
378	749	761	772	784	795	807	818	830	841	852	11
179	864	875	887	898	910	921	933	944	955	967	1 1 2 2
80	978	990	*001	*013	*024	*035	*047	*058	*070	*081	3 3
81	58 092	104	115	127	138	149	161	172	184	195	4 4
82	206	218	229	240	252	263	274	286	297.	309	5 6
83	320	331	343	354	365	377	388	399	410	422	6 7
84	433	444	456	467	478	490	501	512	524	535	7 8 8 9
185	546	557	569	580	591	602	614	625	636	647	9 10
186	659	670	681	692	704	715	726	737	749	760	·
87	771	782	794	805	816	827	838	850	861	872	
88	883	894	906	917	928	939	950	961	973	984	
89	995	*006	*017	*028	*040	*051	*062	*073	*084	*095	
90	59 106	118	129	140	151	162	173	184	195	207	
91	218	229	240	251	262	273	284	295	306	318	10
192	329	340	351	362	373	384	395	406	417	428	1 1
98	439	450	461	472	483	494	506	517	528	539	2 2
94	550	561	572	583	7594	605	616	627	638	649	3 3 4 4
95	660	671	682	693	704	715	726	737	748	759	5 5
96	770	780	791	802	813	824	835	846	857	868	6 6
97	879	890	901	912	923	934	945	956	966	977	7 7
98	988	999	*010	*021	*032	*043	*054	*065	*076	*086	8 8
99	60 097	108	119	130	141	152	163	173	184 _g	z 195 (1003168
N.	0	1	2	/ 3	4	5	6	7	8	9	P. P.

N.		0	1	·2	. 3	4	5	6	7	8	9	1	P. P.
00	60	206	217	228	239	249	260	271	282	293	304		
01		314	325	336	347	358	369	379	390	401	412	ı	
02		423	433	444	455	466	477	487	498	509	520	į.	
03		531	541	552	5 63	574	584	595	606	617	627	l	
04		638	649	660	670	681	692	703	713	724	735		
05		746	756	767	778	788	799	810	821	831	842	l	
.06		853	863	874	885	895	906	917	927	938	949		11
07		959	970	981	991	*002	*013	*023	*034	*045	*055	1	1
08	61	066	077	087	098	109	119	130	140	151	162	2	2
09		172	183	194	204	215	225	236	247	257	268	3 4	3 4
10		278	289	300	310	321	331	342	352	363	374	5	6
11		384	395	405	416	426	437	448	458	469	479	6	7
12		490	500	511	521	532	542	553	563	574	584	7	8
13		595	606	616	627	637	648	658	669	679	690	8	9
14		700	711	721	731	742	752	763	773	784	794	9	10
115		805	815	826	836	847	857	868	878	888	899		
116		909,	920	930	941	951	962	972	982	993	*003	i	
117	62	014	024	034	045	055	066	076	086	097	107	l	
118		118	128	138	149	159	170	180	190	201	211	i	
119		221	232	242	252	263	273	284	294	304	315		
20		325	335	346	356	366	377	387	397	408	418		
21		428	439	449	459	469	480	490	500	511	521	1	10
22		531	542	552	562	572	583	593	603	613	624	1	1
23		634	644	655	665	675	685	696	706	716	726	2	2
24		737	747	757	767	778	788	798	808	818	829	3 4	3 4
25		839	849	859	870	880	890	900	910	921	931	5	5
126		941	951	961	972	982	992	*002	*012	*022	*033	6	6
27	63	043	053	063	073	083	094	104	114	124	134	7	7
128		144	155	165	175	185	195	205	215	225	236	8	8
29		246	256	266	276	286	296	306	317	327	337	9	9
30		347	357	367	377	387	397	407	417	428	438		
31		448	458	468	478	488	498	508	518	528	538		
32		548	558	568	579	589	599	609	619	629	639	ł	
33		649	659	669	679	689	699	709	719	729	739	i	
134		749	759	769	779	789	799	809	819	829	839		
135		849	859	869	879	889	899	909	919	929	939		
36		949	959	969	979	988	998	*008	*018	*028	*038		9
137	64	048	058	068	078	088	098	108	118	128	137	1	1
138	0.2	147	157	167	177	187	197	207	217	227	237	2	2
139		246	256	266	276	286	296	306	316	326	335	8 4	3 4
140		345	355	365	375	385	395	404	414	424	434	5	5
41		444	454	464	473	483	493	503	513	523	532	6	5
42		542	552	562	572	582	591	601	611	621	631	7	6
43		640	650	660	670	680	689	699	709	719	729	8	7
44		738	748	758	768	777	787	797	807	816	826	9	8
45		836	846	856	865	875	885	895	904	914	924	1	
46		933	943	953	963	972	982	992	*002	*011	*021	l	
	AK	031	040	050	060	070	079	089	099	108	118	1	
47	UU	OOT				167	176	186	196	205	215	!	
47		198	137	14/								_	
47 48 49		128 225	137 234	147 244	157 254	263	273	283	292	302 y		ogle	

N.		0	1	2	3	4	5	6	7	8	9	P	. P.
150	65	321	331	341	350	360	369	379	389	398	408	1	
51	"	418	427	437	447	456	466	475	485	495	504	i	
52	1	514	523	533	543	552	562	571	581	591	600	1	
53	l	610	619	629	639	648	658	667	677	686	696	1	
54		706	715	725	734	744	753	763	772	782	792		
55		801	811	820	830	839	849	858	868	877	887		
56		896	906	916	925	935	944	954	963	973	982		10
57		992	*001	*011	*020	*030	*039	*049	*058	*068	*077	1	1
158	66	087	096	106	115	124	134	143	153	162	172	2	2
59		181	191	200	210	219	229	238	247	257	266	8	3
60		276	285	295	304	314	323	332	342	351	361	4 5	5
61		370	380	389	398	408	417	427	436	445	455	6	6
62		464	474	483	492	502	511	521	530	539	549	. 7	7
63		558	567	577	586	596	605	614	624	633	642	8	8
64		652	661	671	680	689	699	708	717	727	736	9	g
65		745	755	764	773	783	792	801	811	820	829		
66		839	848	857	867	876	885	894	904	913	922	1	
67		932	941	950	960	969	978	987	997	*006	*015	1	
68	67	025	034	043	052	062	071	080	089	099	108		
69		117	127	136	145	154	164	173	182	191	201		
70		210	219	228	237	247	256	265	274	284	293		
71		302	311	321	330	339	348	357	367	376	385	1	9
72		394	403	413	422	431	440	449	459	468	477	1	1
73		486	495	504	514	523	532	541	550	560	569	2	2
74		578	587	596	605	614	624	633	642	651	660	3	3
75		669	679	688	697	706	715	724	733	742	752	· 4	4 5
76		761	770	779	788	797	806	815	825	834	843	6	5
77		852	861	870	879	888	897	906	916	925	934	7	6
78		943	952	961	970	979	988	997	*006	*015	*024	8	7 8
79	68	034	043	052	061	0 70	079	088	097	106	115	9	8
80		124	133	142	151	160	169	178	187	196	205		
81		215	224	233	242	251	260	269	278	287	296	[
82		305	314	323	332	341	350	359	368	377	386	1	
B3		395	404	413	422	431	440	449	458	467	476	l	
84			. 494	502	511	520	529	53 8	547	556	565		
85		574	583	592	601	610	619	628	637	646	655		
85		664	673	681	690	699	708	717	726	735	744		8
87		753	762	771	780	789	797	806	815	824	833	1	1
88		842	851	860	869	878	886	895	904	913	922	2	2
89		931	940	949	958	966	975	984	993	*002	*011	8	2 3
10	69	020	028	037	046	055	064	073	082	090	099	4 5	4
1		108	117	126	135	144	152	161	170	179	188	6	5
2		197	205	214	223	232	241	249	258	267	276	7	6
3		285	294	302	311	320	329	338	346	355	364	8	6
M		373	381	390	399	408	417	425	434	443	452	9	7
15		461	469	478	487	496	504	513	522	531	539		
6		548	557	566	574	583	592	601	609	618	627		
77		836	644	653	662	671	679	688	697	705	714		
8		723	732	740	749	758	767	775	784	793	801	, т	
19		310	819	827	836	845	854	862	871	880	888	boogl	e

_											
n.	0	1	2	8	4	5	6	7	8	9	P. P.
500	69 897	906	914	923	932	940	949	958	966	975	
501	984	992	*001	*010	*018	*027	*036	*044	*053	*062	
502	70 070	079	088	096	105	114	122	131	140	148	
503	157	165	174	183	191	200	209	217	226	234	
504	243	252	260	269	278	286	295	303	312	321	
505	329	338	346	355	364	372	381	389	398	406	
506	415	424	432	441	449	458	467	475	484	492	9
507	501	509	518	526	535	544	552	561	569	578	1 1
506	586	595	603	612	621	629	638	646	655	663	2 2
509	672	680	689	697	706	714	723	731	740	749	8 3
510	757	766	774	783	791	800	808	817	825	834	4 4 5 5
511	842	851	859	868	876	885	893	902	910	919	6 5
512	927	935	944	952	961	969	978	986	995	*003	7 6
513	71 012	020	029	037	046	054	063	071	079	088	8 7
514	096	105	113	122	130	139	147	155	164	172	9 8
515	181	189	198	206	214	223	231	240	248	257	
516	265	273	282	290	299	307	315	324	332	341	
517	349	357	366	374	383	391	399	408	416	425	
518	433	441	450	458	466	475	483	492	500	508	
519	517	525	533	542	550	559	567	575	584	592	
520	600	609	617	625	634	642	650	659	667	675	
521	684	692	700	709	717	725	734	742	750	759	8
522	767	775	784	792	800	809	817	825	834	842	1, 1
523	850	858	867	875.	883	892	900	908	917	925	2 2
524	933	941	950	958	966	975	983	991	999	*008	3 2
525	72 016	024	032	041	049	057	066	074	082	090	4 3 5 4
526	099	107	115	123	132	140	148	156	165	173	6 5
527	181	189	198	206	214	222	230	239	247	255	7 6
528	263	272	280	288	296	304	313	321	329	337	8 6
529	346	354	362	370	378	387	395	403	411	419	9 7
530	428	436	444	452	460	469	477	485	493	501	
531	509	518	526	534	542	550	558	567	575	583	
532	591	599	607	616	624	632	640	648	656	665	
533	673	681	689	697	705	713	722	730	738	746	
534	754	762	770	779	787	795	803	811	819	827	•
535	835	843	852	860	868	876	884	892	900	908	
536	916	925	933	941	949	957	965	973	981	989	7
537	997	*006	*014	*022	*030	*038	*046	*054	*062	*070	1 1
538	73 078	086	094	102	111	119	127	135	143	151	2 1
539	159	167	175	183	191	199	207	215	223	231	3 2 4 3
540	239	247	255	263	272	280	288	296	304	312	5 4
541	320	328	336	344	352	360	368	376	384	392	6 4
542	400	408	416	424	432	440	448	456	464	472	7 5
548	480 560	488	496	504	512 592	520 600	528 608	536	624	552 632	8 6
544	300	568	576	584	002	000	000	616	024	032	, ,
545	640	648	656	664	672	679	687	695	703	711	
546	719 ·	727	735	743	751	759	767	775	783	791	
547	799	807	815	823	830	838	846	854	862	870	
548 549	878 957	886 965	894 973	902 981	910 989	918 997	926 *005	933 *013	941 *020	949 *028	ogle
		I		l		<u> </u>		l	<u> </u>		
N.	0	1	2	3	4	5	6	7	8	9	P. P.

N.	0	1	2	3	4	5	6	7	8	9	_ p	P.
					·	·	·	.		ļ		
50 51	74 036	044 123	052	060	068	076	084	092	099	107		
52	115		131	139	147	155	162	170	178	186		
	194	202	210	218	225	233	241	249	257	265	1	
53	273	280	288	296	304	312	320	327	335	343	l	
54	351	359	367	374	382	390	398	406	414	421		
55	429	437	445	453	461	468	476	484	492	500 °		
56	507	515	523	531	539	547	554	562	570	578	1	
57	5 86	593	601	609	617	624	632	640	648	656	1	
58	663	671	679	687	695	702	710	718	726	733	1	
59	741	749	757	764	772	780	788	796	803	811		
50	819	827	834	842	850	858	865	873	881	889		
61	896	904	912	920	927	935	943	950	958	966		8
62	974	981	989	997	*005	*012	*020	*028	*035	*043	1 1	1
63	75 051	059	066	074	082	089	097	105	113	120	2	2
84	128	136	143	151	159	166	174	182	189	197	3	2
65	205	213	220	228	236	243	251	259	266	274	4 5	3 4
66	282	289	297	305	312	320	328	335	343	351	6	5
67	358	366	374	381	389	397	404	412	420	427	7	6
68	435	442	450	458	465	473	481	488	496	504	8	6
69	511	519	526	534	542	549	557	565	572	580	9	7
70	587	595	603	610	618	626	633	641	648	656		
71	664	671	679	686	694	702	709	717	724	732		
72	740	747	755	762	770	778	785	793	800	808		
73	815	823	831	838	846	853	861	868	876	884		
74	891	899	906	914	921	929	937	944	952	959		
75	967	974	982	989	997	*005	*012	*020	*027	*035		
76	76 042	050	057	065	072	080	087	095	103	110		
77	118	125	133	140	148	155	163	170	178	185		
78	193	200	208	215	223	230	238	245	253	260		
79	268	275	283	290	298	305	313	820	328	335		
80	343	350	358	365	373	380	388	395	403	410		
81	418	425	433	440	448	455	462	470	477	485		7
82	492	500	507	515	522	530	537	545	552	559	1,	i
83	567	574	582	589	597	604	612	619	626	634	2	i
84	641	649	656	664	671	678	686	693	701	708	8	2
85	716	723	730	738	745	753	760	768	775	782	4 5	3 4
86	710	797	805	812	819	827	834	842	849	856	6	4
87				886	893	901	908	916	923	930	7	5
188 188	864	871 945	879	960	967	975	982	989	997	*004	8	6
189	938 77 012	019	953 026	034	041	048	056	063	070	078	9	6
			1		ļ			l	l	l		
90	085	093	100	107	115	122	129	137	144	151		
91	159	166	173	181	188	195	203	210	217	225	1	
92	232	240	247	254	262	269	276	283	291	298		
93	305	313	320	327	335	342	349	357	364	371		
94	379	386	393	401	408	415	422	430	437	444		
95	452	459	466	474	481	488	495	503	510	517		
96	525	532	539	546	554	561	568	576	583	590	1	
97	597	605	612	619	627	634	641	648	656	663	1	
98	670	677	685	692	699	706	714	721	728	735		
99	743	750	757	764	772	779	786	793	801	808	Google	0
								·I	Digiti	accordy -	20071	

	1	0	1	2	8	4	5	6	7	8	9	1 .	P. P.
N.			ļ		!			-	-	·	-	-	
300	77	815	822	830	837	844	851	859	866	873	880	1	
101	ŀ	887	895	902	909	916	924	931	938	945	952	1	
302		960	967	974	981	988	996	*003	*010	*017	*025	İ	
303	78	032	039	046	053	061	068	075	082	089	097	1	
104		104	111	118	125	132	140	147	154	161	168		
505		176	183	190	197	204	211	219	226	233	240	1	_
506		247	254	262	269	276	283	290	297	305	312	1 -	. 8
B07		319	326	333	340	347	355	362	369	376	383	1	1
808	1	390 462	398	405	412	419	426	433	440	447	455	3	2
309		402	469	476	483	490	497	504	512	519	526	8	3
510	İ	533	540	547	554	561	569	576	583	590	597	5	4
B11		604	611	618	625	633	640	647	654	661	668	6	5
512	Ī	675	682	689	696	704	711	718	725	732	739	7	6
13	ŀ	746	753	760	767	774	781	789	796	803	810	8	6
14		817	824	831	838	845	852	859	866	873	880	9	7
515		888	895	902	909	916	923	930	937	944	951		
316	١.	958	965	972	979	986	993	*000	*007	*014	*021		
517	79	029	036	043	050	057	064	071	078	085	092	1	
318		099	106	113	120	127	134	141	148	155	162		
51 9	l	169	176	183	190	197	204	211	218	225	232	1	
320		239	246	253	260	267	274	281	288	295	302		
621	l	309	316	323	330	337	344	351	358	365	372	1	. 7
322	1	379	386	393	400	407	414	421	428	435	442	1	1
323	l	449	456	463	470	477	484	491	498	505	511	2	1
324		518	525	532	539	546	553	560	567	574	581	8	3
325		588	595	602	609	616	623	630	637	644	650	5	4
326		657	664	671	678	685	692	699	706	713	720	6	4
527	l	727	734	741	748	754	761	768	775	782	789	7	5
528	l	796	803	810	817	824	831	837	844	851	858	8	6
3 29		865	872	879	886	893	900	906	913	920	927	9	6
30		934	941	948	955	962	969	975	982	989	996	1	
331	80	003	010	017	024	030	037	044	051	058	065	1	
332		072	079	085	092	099	106	113	120	127	134		
333		140	147	154	161	168	175	182	188	195	202	1	
34		209	216	223	229	236	243	250	257	264	271	ĺ	
35		277	284	291	298	305	312	318	325	332	339		
36		346	353	359	366	373	380	387	393	400	407	1	6
37		414	421	428	434	441	448	455	462	468	475	1 1	1
38		482	489	496	502	509	516	523	530	536	543	2	1
39		550	557	564	570	577	584	591	598	604	611	.3	2 2
340		618	625	632	638	645	652	659	665	672	679	5	3
341		686	693	699	706	713	720	726	733	740	747	6	4
342		754	760	767	774	781	787	794	801	808	814	7	4
43		821	828	835	841	848	855	862	868	875	882	8	5 5
44		889	895	902	909	916	922	929	936	943	949	9	5
45		956	963	969	976	983	990	996	*003	*010	*017	}	
46	81	023	030	037	043	050	057	064	070	077	084	1	
47	٠.	090	097	104	111	117	124	131	137	144	151	l	
48		158	164	171	178	184	191	198	204	211	218	ŀ	
49		224	231	238	245	251	258	265	271	278	285	مراه	
										المصحنتهما			

٧.	L	0	1	2	3	4	5	6	7	8	9	P. P.
0	81	291	298	305	311	318	325	331	338	345	351	
1	ı	35 8	365	371	378	385	391	398	405	411	418	
2		425	431	438	445	451	458	465	471	478	485	
3		491	498	505	511	518	525	531	538	544	551	1
4		55 8	564	571	578	584	591	598	604	611	617	
5		624	631	637	644	651	657	664	671	677	684	
6		690	697	704	710	717	723	730	737	743	750	İ
7		757	763	770	776	783	790	796	803	809	816	1
B		823 889	829 895	836 902	908	849 915	856 921	862 928	869 935	875 941	882 948	
			ł	1		1	1	1	1	1		
9		954	961	968	974	981	987	994	*000	*007	*014	1 _
L	82	020	027	033	040	046	053	060	066	073	079	7
2		086	092	099	105	112	119	125	132	138	145	1 1
3		151	158	164	171	178	184	191	197	204	210	3 1
١		217	223	230	236	243	249	256	263	269	276	3 2 4 3
:		282	289	295	302	308	315	321	328	334	341	5 4
3		347	354	360	367	373	380	387	393	400	406	6 4
		413	419	426	432	439	445	452	458	465	471	7 5
		478 543	484 549	491 556	497 562	504 569	510 575	517 582	523 588	530 595	536 601	8 6
-			ŀ		l			İ		ł		• •
1		607	614	620	627	633	640	646	653	659	666	
.		672	679	685	692	698	705	711	718	724	730	1
!!		737	743	750	756	763	769	776	782	789	795	1
		802	808	814	821	827	834	840	847	853	860	
		866	872	879	885	892	898	905	911	918	924	
		930	937	943	950	956	963	969	975	982	988	
	~~	995	*001	*008	*014	*020	*027	*033	*040	*046	+052	1
	83	059	065	072	078	085	091	097	104	110	117	1
		123 187	129 193	136 200	142 206	149 213	155 219	161 225	168 232	174 238	181 245	
.			057	004	070	070			296	200	200	
		251	257 321	264 327	270	276	283	289		302 366	308 372	
		315 378	385	391	334 398	340 404	347	353 417	359 423	429	436	1 1
		442	448	455	461	467	410 474	480	481	493	499	1 1 2 1
		506	512	518	525	531	537	544	550	556	563	8 2
		569	575	582	588	594	601	607	613	620	626	4 2 5 3
		632	639	645	651	658	664	670	677	683	689	6 4
		696	702	708	715	721	727	734	740	746	753	7 4
		759	765	771	778	784	790	797	803	809	816	8 5
		822	828	835	841	847	853	860	866	872	879	9 5
		885	891	897	904	910	916	923	929	935	942	
		948	954	960	967	973	979	985	992	998	*004	
	84	011	017	023	029	036	042	048	055	061	067	
	,-	073	080	086	092	098	105	111	117	123	130	
1		136	142	148	155	161	167	173	180	186	192	
;		198	205	211	217	223	230	236	242	248	255	
1		261	267	273	280	286	292	298	305	311	317	
۲ I		323	330	336	342	348	354	361	367	373	379	
1		386	392	398	404	410	417	423	429	435	442	
		448	454	460	466	473	479	485	491	497	504	D
-1-		,	1						7	8 igit	zedoy	300gle.

N.	0	1	2	3	4	5	6	7	8	9	P.	P.
00	84 510	516	522	528	535	541	547	553	559	566		
01	572	5 78	534	590	597	603	609	615	621	628		
02	634	640	646	652	658	665	671	677	683	689		
03	696	702	708	714	720	726	733	739	745	751		
04	757	763	770	776	782	788	794	800	807	813		
05	819	825	831	837	844	850	856	862	868	874		
06	880	887	893	899	905	911	917	924	930	936		7
07	942	948	954	960	967	973	979	985	991	997	1 i	1
08	85 003	009	016	022	028	034	040	046	052	058	2	1
09	065	071	077	083	089	095	101	107	114	120	3 4	2 3
10	126	132	138	144	150	156	163	169	175	181	5	4 .
11	187	193	199	205	211	217	224	230	236	242	6	4
12	248	254	260	266	272	278	285	291	297	303	7	5
13	309	315	321	327	333	339	345	352	358	364	8	6
14	370	376	382	388	394	400	406	412	418	425	9	6
15	431	437	443	449	455	461	467	473	479	485		
16	491	497	503	509	516	522	528	534	540	546		
17	552	558	564	570	576	582	588	594	600	• 606		
18	612	618	625	631	637	643	649	655	661	667		
19	673	679	685	691	697	703	709	715	721	727		
20	733	739	745	751	757	763	769	775	781	788		_
21	794	800	806	812	818	824	830	836	842	848		6
22	854	860	866	872	878	884	890	896	902	908	1	1
23	914	920	926	932	938	944	950	956	962	968	2	1
24	974	980	986	992	998	*004	*010	*016	*022	*028	8 4	2 2
25	86 034	040	046	052	058	064	070	076	082	088	5	3
26	094	100	106	112	118	124	130	136	141	147	6	4
27	153	159	165	171	177	183	189	195	201	207	7	4
28	213	219	225	231	237	243	249	255	261	267	8	5
29	273	279	285	291	297	303	308	314	320	326	9	5
30	332	338	344	350	356	362	368	374	380	386		
731	392	398	404	410	415	421	427	433	439	445		
132	451	457	463	469	475	481	487	493	499	504	1	
733	510	516	522	528	534	540	546	552	558	564		
734	570	576	581	587	593	599	605	611	617	623		
35	629	635	641	646	652	658	664	670	676	682	ł	
36	688	694	700	705	711	717	723	729	735	741	1	5
737	747	753	759	764	770	776	782	788	794	800	1	1
738	806	812	817	823	829	. 835	841	847	853	859	2	1
739	864	870	876	882	888	894	900	906	911	917	3 4	2 2
40	923	929	935	941	947	953	958	964	970	976	5	3
41.	982	988	994	999	*005	*011	*017	*023	*029	*035	6	3
42	87 040	046	052	058	• 064	070	075	081	087	093	7	4
43	099	105	111	116	122	128	134	140	146	151	8	4
44	157	163	169	175	181	186	192	198	204	210	9	5
45	216	221	227	233	239	245	251	256	262	268		
46	274	280	286	291	297	303	309	315	320	326		
47	332	338	344	349	355	361	367	373	379	384	1	
48	390	396	402	408	413	419	425	431	437	442	1	
49	448	454	460	466	471	477	483	489	495	500	_1_	
						I				(300)	181C P	

N.	0	1	2	3	4	5	6	7	8	9	P. P.
50	87 506	512	518	523	529	535	541	547	552	558	
51	564	570	576	581	587	593	599	604	610	616	
52	622	628	633	639	645	651	656	662	668	674	
53	679	685	691	697	703	708	714	720	726	731	•
54	737	743	749	754	760	766	772	777	783	789	
55	795	800	806	812	818	823	829	835	841	846	
56	852	858	864	869	875	881	887	892	898	904	•
57	910	915	921	927	933	938	944	950	955	961	
58	967	973	978	984	990	996	*001	*007	*013	*018	
59	88 024	030	036	041	047	053	058	064	070	076	
60	081	087	093	098	104	110	116	121	127	133	
61	138	144	150	156	161	167	173	178	184	190	6
62	195	201	207	213	218	224	230	235	241	247	1 1
63	252	258	264	270	275	281	287	292	298	304	2 1
84	309	315	321	326	332	338	343	349	355	360	3 2 4 2
65	366	372	377	383	389	395	400	406	412	417	5 3
66	423	429	434	440	446	451	457	463	468	474	6 4
67	480	485	491	497	502	508	513	519	525	530	7 4
88	536	542	547	553	559	564	570	576	581	587	8 5
69	593	59 8	604	610	615	621	627	632	638	643	9 5
70	649	655	660	666	672	677	683	689	694	700	
71	705	711	717	722	728	734	739	745	750	756	
72	762	767	773	779	784	790	795	801	807	812	
73	818	824	829	835	840	846	852	857	863	868	
14	874	, 880	885	891	897	902	908	913	919	925	
75	930	936	941	947	953	958	964	969	975	981	
76	986	992	997	*003	*009	*014	*020	*025	*031	*037	
77 70	89 042	048	053	059	064	070	076	081	087	092	
78 79 .	098	104	109	115	120	126	131	137	143 .	148	
	154	159	165	170	176	182	187	193	198	204	
B0	209	215	221	226	232	237	243	248	254	260	_
81	265	271	276	282	287	293	298	304	310	315	5
82	321	326	332	337	343	348	354	360	365	371	1 1
88	376	382	387	393	398	404	409	415	421	426	2 1 2
84	432	437	443	448	454	459	465	470	476	481	4 2
85	487	492	498	504	509	515	520	526	531	537	5 3
86	542	548	553	559	564	570	575	581	.586	592	6 3
87	597	603	609	614	620	625	631	636	642	647	7 4 8 4
88 89	653	658	664	669	675	680	686	691	697	702	8 4 9 5
	708	713	719	724	730	735	741	746	752	757	7 5
90	763	768	774	779	785	790	796	801	807	812	
91	818	823	829	834	840	845	851	856	862	867	
92	873	878	883	889	894	900	905	911	916	922	
93	927	933	938	944	949	955	960	966	971	977	
H	982	988	993	998	*004	*009	*015	*020	*026	*031	
95	90 037	042	048	053	059	064	069	075	080	086	
96	091	097	102	108	113	119	124	129	135	140	
97	146	151	157	162	168	173	179	184	189	195	
18 19	200	206	211	217	222	227	233	238	244	249	
,,	255	260	266	271	276	282	287	293	298	304	loogle_
N.	0	1	2	3	4	5	6	7	8	9	℃P. P .

N.	0	1	2	3	4	5	6	7	8	9	P.	Р.
ю	90 309	314	320	325	331	336	342	347	352	358		
1	363	369	374	380	385	390	396	401	407	412		
)2	417	423	428	434	439	445	450	455	461	466		
03	472	477	482	488	493	499	504	509	515	520		
04	526	531	536	542	547	55 3	558	563	569	574		
05	580	585	590	596	601	607	612	617	623	628		
06	634	639	644	650	655	660	666	671	677	682	ı	
07	687	693	698	703	709	714	720	725	730	736	(
08	741	747	752	757	763	768	773	779	784	789		
09	795	800	806	811	816	822	827	832	838	843		
10	849	854	859	865	870	875	881	886	891	897		
11	902	907	913	918	924	929	934	940	945	950	ľ	6
12	956	961	966	972	977	982	988	993	998	*004	1	1
13	91 009	014	020	025	030	036	041	046	052	057	2	1
14	062	068	073	078	084	089	094	100	105	110	3	2
315	116	121	126	132	137	142	148	153	158	164	4 5	2 3
316	169	174	180	185	190	196	201	206	212	217	6	4
317	222	228	233	238	243	249	254	259	265	270	7	4
118	275	281	286	291	297	302	307	312	318	323	8	5
19	328	334	339	344	350	355	360	365	371	376	9	5
320	381	387	392	397	403	408	413	418	424	429		
321	434	440	445	450	455	461	466	471	477	482		
322	487	492	498	503	508	514	519	524	529	535		
323	540	545	551	556	561	566	572	577	582	587		
324	593	598	603	609	614	619	624	630	635	640		
325	645.	651	656	661	666	672	677	682	687	693		
326	698	703	709	714	719	724	730	735	740	745		
327	751	756	761	766	772	777	782	787	793	798		
328	803	808	814	819	824	829	834	840	845	850		
329	855	861	866	871	876	882	887	892	897	903		
30	908	913	918	924	929	934	939	944	950	955		
331	960	965	971	976	981	986	991	997	*002	*007		5
332	92 012	018	023	028	033	038	044	049	054	059	1	ĩ
333	065	070	075	080	085	091	096	101	106	111	2	î
34	117	122	127	132	137	143	148	153	158	163	3	2
335	169	174	179	184	189	195	200	205	210	215	4 5	2 3
336	221	226	231	236	241	247	252	257	262	267	6	3
337	273	278	283	288	293	298	304	309	314	319	7	4
338	324	330	335	340	345	350	355	361	366	371	8	4
339	376	381	387	392	397	402	407	412	418	423	9	5
340	428	433	438	443	449	454	459	464	469	474		
B41	480	485	490	495	500	505	511	516	521	526	1	
842	531	536	542	547	552	557	562	567	572	578		
343	583	588	593	598	603	609	614	619	624	629	1	
344	634	639	645	650	655	660	665	670	675	681		
45	686	691	696	701	706	711	716	722	727	732		
346	737	742	747	752	758	763	768	773	778	783	l	
47	788	793	799	804	809	814	819	824	829	834	1	
48	840	845	850	855	860	865	870	875	881	886	l	
149	891	896	901	906	911	916	921	927	932	937	مملم	
N.	0	1	2	3	4	5	6	7) igitizea 8	9	OSIC D	. P.

N.	0	1	2	3	4	5	6	7	8	9	P. P.
50	92 942	947	952	957	962	967	973	978	983	988	
51	993	998	*003	*008	*013	*018	*024	*029	*034	*039	ł
52	93 044	049	054	059	064	069	075	080	085	090	ì
53	095	100	105	110	115	120	125	131	136	141	
4	146		156	161	166	171	176	181	186	192	
_			1				ł	1.	1	1	I
5	197		207	212	217	222	227	232	237	242	1
6	247		258	263	268	273	278	283	288	293	6
57	298		308	313	318	323	328	334	339	344	1 1
8	349		359	364	369	374	379	384	389	394	2 1
9	399	404	409	414	420	425	430	435	440	445	3 2 4 2
10	450	455	460	465	470	475	480	485	490	495	5 3
51	500		510	515	520	526	531	536	541	546	6 4
52	551	556	561	566	571	576	581	586	591	596	7 4
33	601	606	611	616	621	626	631	636	641	646	8 5
14	651	656	661	666	671	676	682	687	692	697	9 5
-	1 301	000	""	000	""	0,0	002	001	1 002	1	" "
35	702	707	712	717	722	727	732	737	742	747	
56	752	757	762	767	772	777	782	787	792	797	1
57	802	807	812	817	822	827	832	837	842	847	1
63	852	857	862	867	872	877	882	887	892	897	1
69	902	907	912	917	922	927	932	937	942	947	
70	952	957	962	967	972	977	982	987	992	997	
70 71	94 002	007	012	017	022	027	032	037	042	047	5
72	052	057	062	067	072	077	082	086	091	096	1 1
78	101	106			121	126	131	136	141	146	
74	151		111	116							
"	101	156	161	166	171	176	181	186	191	196	3 2 4 2
75	201	206	211	216	221	226	231	236	240	245	6 3
76	250	255	260	265	270	275	280	285	290	295	6 3
77	300	305	310	315	320	325	330	335	340	345	7 4
78	349	354	359	364	369	374	379	384	389	394	8 4
79	399	404	409	414	419	424	429	433	438	443	9 5
30		1		400	100		450	400	400		
81	448 498	453	458	463	468	473	478	483	488	493	
82 81		503	507	512	517	522	527	532	537	542	
83	547	552	557	562	567	571	576	581	586	591	
84	596	601	606	611	616	621	626	630	635	640	
UT.	645	650	655	660	665	670	675	680	685	689	
B 5	694	699	704	709	714	719	724	729	734	738	
86	743	748	753	758	763	768	773	778	783	787	4
87	792	797	802	807	812	817	822	827	832	836	1 0
88	841	846	851	856	861	866	871	876	880	885	2 1
89	890	895	900	905	910	915	919	924	929	934	8 1
	200		040		050	000	000	070	050	000	4 2
90 91	939	944	949	954	959	963	968	973	978	983	5 2
92 92	988	993	998	*002	*007	*012	*017	*022	*027	*032	6 2
13	95 036	041	046	051	056	061	066	071	075	080	7 3
13 14	085	090	095	100	105	109	114	119	124	129	8 3
-	134	139	143	148	153	158	163	168	173	177	9 4
15	182	187	192	197	202	207	211	216	221	226	
16	231	236	240	245	250	255	260	265	270	274	}
7	279	284	289	294	299	303	308	313	318	323	(
98	328	332	337	342	347	352	357	361	366	371	
9	376	381	386	390	395	400	405	410	415	419 (Google
_	0	-					I		Digi	ized by	P. P.
٧.		1	2	3	4	5	6	7	1 8	9	

ī.	0	1	2	3	4	5	6	7	8	9	I	P. P.
0	95 424	429	434	439	444	448	453	458	463	468		
1	472	477	482	487	492	497	501	506	511	516		
2	521	525	530	535	540	545	550	554	559	564	l	
3	569	574	578	583	588	593	598	602	607	612	ŀ	
4	617	622	626	631	636	641	646	650	655	660	Ì	
5	665	670	674	679	684	689	694	698	703	708		
6	713	718	722	727	732	737	742	746	751	756		
7	761	766	770	775	780	785	789	794	799	804		
В	809	813	818	823	828	832	837	842	847	852		
9	856	861	866	871	875	880	885	890	895	899		
0	904	909	914	918	923	928	933	938	942	947		
1	952	957	961	966	971	976	980	985	990	995		5
2	999	*004	*009	*014	*019	*023	*028	*033	*038	*042	1	. 1
3	96 047	052	057	061	066	071	076	080	085	090	2	1
4	095	099	104	109	114	118	123	128	133	137	3	2
5	142	147	152	156	161	166	171	175	180	185	4 5	3
6	190	194	199	204	209	213	218	223	227	232	6	3
7	237	242	246	251	256	261	265	270	275	280	7	4
8	284	289	294	298	303	308	313	317	322	327	8	4
9	332	336	341	346	350	355	360	365	369	374	9	5
0	379	384	388	393	398	402	407	412	417	421		
1	426	431	435	440	445	450	454	459	464	468		
2	473	478	483	487	492	497	501	506	511	515		
3	520	525	530	534	539	544	548	553	558	562		
4	567	572	577	5 81	536	591	595	600	605	609		
5	614	619	624	628	633 680	638 685	642 689	647	652 699	656		
6	661	666	670	675		1		694		703		
7	708	713	717	722	727	731 778	736	741	745	750		
В	755	759	764		820	825	783 830	788	792 839	797 844		
9	802	806	811	816	020	020		834	009	044		
0	848 895	853 900	858 904	862 909	867 914	872 918	876 923	881 928	886 932	890 937		4
2	942	946	951	956	960	965	970	974	979	984	1	0
8	988	993	997	+002	*007	*011	*016	*021	*025	*030	2	1
4	97 035	039	044	049	053	058	063	067	072	077	3	1
5	081	086	090	095	100	104	109	114	118	123	4 5	2 2
8	128	132	137	142	146	151	155	160	165	169	6	2
7	174	179	183	188	192	197	202	206	211	216	7	3
3	220	225	230	234	239	243	248	253	257	262	8	3
•	267	271	276	280	285	290	294	299	304	308	9	4
,	313	317	322	327	331	336	340	345	350	354		
L	359	364	368	373	377	382	387	391	396	400		
:	405	410	414	419	424	428	433	437	442	447		
3	451	456	460	465	470	474	479	483	488	493		
4	497	502	506	511	516	520	525	529	534	539		
5	543	548	552	557	562	5 66	571	575	580	585		
3	589	594	59 8	603	607	612	617	621	626	630		
r	635	640	644	649	653	658	663	667	672	676		
:	681	685	690	695	699	704	708	713	717	722		
	727	731	736	740	745	749	754	759	763	768	معلم	
	0	1	2	3	4	5	6	7	Digitized 8	by 🕶 🗘	ogic.	-

961	_											
951	N.	0	1	2	3	4	5	6	7	8	9	P. P.
952												
985 996 914 918 923 928 932 937 941 946 950 955 956 964 968 973 978 982 987 991 996 985 985 985 987 991 996 985 985 986 986 986 973 978 982 987 991 996 985 985 987 991 996 985 985 987 991 996 985 986 986 986 986 9874 988 987 991 996 986 986 987 982 987 991 986 987 991 986 986 987 981 982 987 991 986 987 991 986 987 981 982 987 991 986 987 981 982 988 987 981 982 988 987 981 982 988 983 981 982 987 981 982 988 983 981 982 987 981 982 988 983 981 982 987 981 982 988 981 982 987 981 982 983 984 983 981 982 987 981 988 984 983 983 981 982 987 981 988 984 983 983 981 982 987 981 988 984 983 984 983 987 981 988 984 983 987 981 988 984 983 987 981 982 987 981 982 983 987 981 982 987 981 982 983 987 981 982 987 981 982 983 987 981 982 987 981 982 983 987 981 983 987 982 987 983 984 983 987 982 987 983 984 983 987 982 987 983 984 983 984 983 987 982 987 983 984 983 984 983 987 982 987 983 984 983 984 983 984 983 987 987 983 984 983 984 983 984 983 987 987 983 984 984 984 984 984 984 984 984 984 984												l
954 955 969 964 968 973 978 982 987 991 996 955 98 000 005 005 009 014 019 023 028 032 037 041 956 046 050 055 059 064 068 073 078 082 087 957 091 966 100 105 109 114 118 123 127 132 958 137 141 146 150 155 159 164 168 173 177 959 182 186 191 195 200 204 209 214 218 223 950 227 232 236 241 245 250 254 259 263 268 951 272 277 281 286 290 295 299 304 308 313 952 363 363 367 372 376 381 385 390 394 399 403 22 1 953 363 367 372 376 381 385 390 394 399 403 22 1 954 408 412 417 421 426 430 435 439 444 448 3 2 2 956 458 453 457 462 466 471 475 480 484 489 493 5 3 956 498 502 507 511 516 520 525 529 534 538 6 3 957 543 547 552 556 561 566 570 574 579 583 7 4 958 592 677 601 605 610 614 619 623 623 8 8 4 959 632 637 641 646 650 655 659 664 668 673 9 5 970 677 682 682 686 691 695 700 704 709 713 717 971 722 726 771 776 780 784 789 793 798 802 807 971 722 726 771 776 780 784 789 793 798 802 807 972 677 771 776 780 784 789 793 798 802 807 973 811 816 820 825 829 839 897 972 076 981 985 974 856 880 856 889 803 967 972 076 981 985 977 978 99 44 98 803 807 902 966 100 105 105 109 114 118 988 123 127 131 136 140 145 149 154 188 162 977 978 99 04 988 903 907 972 976 981 985 978 99 04 484 485 499 493 498 493 54 188 989 189 183 123 127 131 136 140 145 149 154 158 162 980 123 127 131 136 140 145 149 154 158 162 980 124 224 229 233 233 238 242 247 251 1 0 980 123 127 131 136 140 145 149 154 158 162 980 124 244 299 233 233 238 242 247 251 1 0 980 124 248 299 233 233 238 242 247 251 1 0 980 124 248 248 489 493 498 502 807 980 124 248 259 248 259 253 359 844 888 867 891 995 980 124 388 382 396 396 401 405 410 414 419 423 427 6 2 980 124 124 126 166 660 660 660 660 673 77 682 866 691 691 691 695 700 704 709 774 778 980 124 125 126 126 126 126 126 126 126 126 126 126												
985 98 000 005 009 014 019 023 028 032 037 041 986 986 046 050 055 059 064 068 073 078 082 087 987 091 096 100 105 109 114 118 123 127 132 187 141 146 150 155 159 164 168 173 177 989 182 186 191 195 200 204 209 214 218 223 980 227 232 236 241 245 250 254 259 263 268 363 367 372 277 281 286 290 295 299 304 308 313 5 3 983 383 383 383 383 383 383 384 384 385 390 394 399 403 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												{
986	954	955	959	964	968	973	978	982	987	991	996	
987 091 096 100 105 109 114 118 123 127 132 137 141 146 150 155 159 164 168 173 177 177 182 186 191 195 200 204 209 214 218 223 186 191 195 200 204 209 214 218 223 186 191 195 200 204 209 214 218 223 186 191 195 200 204 209 214 218 223 186 191 195 200 205 209 304 308 313 318 312 327 331 336 340 345 349 354 358 1 1 1 138 322 327 331 336 340 345 349 354 358 1 1 1 189 363 363 367 372 376 381 385 390 394 399 403 2 1 1 189 408 412 417 421 426 430 435 439 444 448 3 2 2 2 2 2 2 2 2 2		1										
988 137												ì
182 186 191 195 200 204 209 214 218 223												
960												1
961 272 277 281 286 290 295 299 304 308 313 5 5 962 318 322 327 331 336 340 345 349 354 358 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	959	182	186	191	195	200	204	209	214	218	223	
962 318 322 327 331 336 340 345 349 354 358 1 1 1 994 408 412 417 421 428 430 435 439 403 2 1 1 994 408 412 417 421 428 430 435 439 440 438 3 2 4 2 2 1 484 448 489 493 5 3 2 4 2 486 471 475 480 484 489 493 5 3 3 6 3 3 6 3 4 42 486 486 471 475 480 484 489 493 5 3 9 4 2 44 2 44 486 489 493 5 3 9 4 488 489 493 5 3 9 4 488 <th>960</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	960											
984												
964 408 412 417 421 426 430 435 439 444 448 3 2 2 4 4												
965												
985	964	408	412	417	421	426	430	435	439	444	448	
9867 543 547 552 556 661 665 670 674 879 583 7 4 9968 588 592 597 601 605 610 614 619 623 628 8 4 970 677 682 686 691 695 700 704 709 713 717 971 722 726 731 735 740 744 749 753 758 762 972 767 771 776 780 784 789 793 798 802 807 973 811 816 820 825 829 834 838 843 847 851 973 811 816 820 825 829 834 838 843 847 851 974 858 863 867 972 976 981 985 977	965											5 3
968 588 592 597 601 605 610 614 619 623 628 8 4 969 632 637 641 646 650 655 659 664 668 673 9 5 970 677 682 686 691 695 700 704 709 713 717 722 726 731 735 740 744 749 753 758 762 777 771 776 780 784 789 793 798 802 807 973 811 816 820 825 829 834 838 843 847 851 974 945 949 954 958 963 967 972 976 981 985 975 945 949 954 958 963 967 972 976 981 985 977 989 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6 3</td>												6 3
969 632 637 641 646 650 655 659 664 668 673 9 5 970 677 682 686 691 695 700 704 709 713 717 971 722 726 731 735 740 744 749 753 758 762 972 767 771 776 780 784 789 793 798 802 807 973 811 816 820 825 829 834 838 843 847 851 974 856 860 865 869 874 878 883 887 892 896 975 900 905 909 914 918 923 927 932 936 941 976 945 949 954 958 963 967 972 976 981 985 977 989 994 998 *003 *007 *012 *016 *021 *025 *029 978 99 034 038 043 047 052 056 061 065 069 074 979 078 083 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 991 167 171 176 180 185 189 193 198 202 207 992 211 216 220 224 229 233 238 242 247 251 1 0 993 255 260 264 269 273 277 282 286 291 295 2 1 994 300 304 308 313 317 322 326 330 335 339 3 1 998 34 34 348 352 357 361 366 370 374 379 383 5 2 985 344 348 352 357 361 366 370 374 379 383 5 2 986 388 392 396 401 405 410 414 419 423 427 6 2 987 432 436 441 445 449 454 458 463 467 471 7 3 988 476 480 484 489 493 498 502 506 515 555 59 9 4 994 595 699 704 708 712 717 721 726 730 734 747 752 756 760 765 769 774 778 990 564 568 572 577 581 585 590 594 599 603 991 607 612 616 621 625 629 634 638 642 647 679 679 744 778 991 564 568 660 664 669 673 677 682 686 691 734 747 752 756 760 765 769 774 778 991 789 789 789 791 795 800 804 808 813 817 822 989 994 994 998 995 995 995 995 995 995 995 995 995												
970 677 682 686 691 695 700 704 709 713 717 971 722 726 731 735 740 744 749 753 758 762 972 767 771 776 780 784 789 793 798 802 807 973 811 816 820 825 829 834 838 843 847 851 974 856 860 865 869 874 878 883 887 892 896 975 900 905 909 914 918 923 927 927 96 981 985 976 945 949 954 958 963 967 972 976 981 985 977 989 994 998 *003 *007 *012 *016 *021 *025 *029 978 99 034 038 043 047 052 056 061 065 069 074 979 078 083 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 981 167 171 176 180 185 189 193 198 202 207 982 211 216 220 224 229 233 238 242 247 251 1 0 983 255 260 264 269 273 277 282 286 291 295 2 1 984 300 304 308 313 317 322 326 330 335 339 3 1 984 300 304 308 313 317 322 326 330 335 339 3 1 985 344 348 352 357 361 366 370 374 379 383 5 2 986 388 392 396 401 405 410 414 419 423 427 6 2 987 432 436 441 445 449 454 458 463 467 471 7 3 988 476 480 484 489 493 498 502 506 511 515 8 3 989 695 699 704 708 712 717 721 726 730 734 778 999 605 524 528 533 537 542 546 550 555 559 9 4												
971 722 726 731 735 740 744 749 753 758 762 777 776 780 784 789 793 798 802 807 811 816 820 825 829 834 838 843 847 851 856 860 865 869 874 878 883 887 892 896 875 976 945 949 954 958 963 967 972 976 981 985 977 989 994 998 *003 *007 *012 *016 *021 *025 *029 978 99 34 038 043 047 052 056 061 065 069 074 978 981 983 083 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 991 167 171 176 180 185 189 193 198 202 207 4 992 211 216 220 224 229 233 238 242 247 251 1 0 992 211 216 220 224 229 233 238 242 247 251 1 0 992 211 216 220 264 269 273 277 282 286 291 295 2 1 1 3984 300 304 308 313 317 322 326 330 335 339 3 1 4 28 388 392 396 401 405 410 414 419 423 427 6 2 2 987 432 436 441 445 449 454 458 463 467 471 7 3 3 988 476 480 484 489 493 498 502 506 515 555 559 9 4 999 56 564 565 660 664 669 673 677 682 686 691 697 674 778 779 778 779 778 779 778 779 778 779 779	969	632	637	641	646	650	655	659	664	668	673	9 ' 5
9773 767 771 776 780 784 789 793 798 802 807 973 811 816 820 825 829 834 838 843 847 851 974 856 860 865 869 874 878 883 887 892 896 975 900 905 909 914 918 923 927 932 936 941 977 989 994 998 *003 *007 *012 *016 *021 *025 *029 978 99 034 033 043 047 052 056 061 065 069 074 979 078 063 087 092 096 100 105 109 114 118 980 123 127 131 136 185 189 193 198 202 207 4 <th>970</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	970											
974 856 860 865 869 874 878 883 843 847 851 855 869 874 878 883 887 892 896 975 900 905 909 914 918 923 927 932 936 941 927 989 994 998 *003 *007 *012 *016 *021 *025 *029 978 979 078 083 087 092 096 100 105 109 114 118 980 167 171 176 180 185 189 193 198 202 207 4 118 180 167 171 176 180 185 189 193 198 202 207 4 18 18 18 18 18 18 18 18 18 18 18 18 18												1
974 856 860 865 869 874 878 883 887 892 896 975 900 905 909 914 918 923 927 932 936 941 976 945 949 954 -958 963 967 972 976 981 985 977 989 994 998 *003 *047 *052 056 061 *061 *0621 *025 *029 978 99 344 038 043 047 *052 056 061 *065 069 074 979 078 083 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 991 167 171 176 180 185 189 193 198 202 207 4 992 211 216 220 224 229												
975 900 905 909 914 918 923 927 932 936 941 9276 945 949 954 958 963 967 972 976 981 985 9278 99 994 998 *003 *007 *012 *016 *021 *025 *029 978 99 034 038 043 047 052 056 061 065 069 074 979 979 078 083 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 981 167 171 176 180 185 189 193 198 202 207 4 982 211 216 220 224 229 233 238 242 247 251 1 0 982 255 260 264 269 273 277 282 286 291 295 2 1 3984 300 304 308 313 317 322 326 330 335 339 3 1 984 300 304 308 313 317 322 326 330 335 339 3 1 985 388 392 396 401 405 410 414 419 423 427 6 2 987 432 436 441 445 449 454 458 463 467 471 7 3 3 988 476 480 484 489 493 498 502 506 511 515 8 3 989 520 524 528 533 537 542 546 550 555 559 9 4 996 603 695 699 704 708 712 717 721 726 730 734 979 143 747 752 756 760 765 769 774 778 989 996 997 743 747 752 756 760 765 769 774 778 998 999 997 997 997 997 997 997 997												
977 987 949 949 958 *003 *007 *012 *016 *021 *025 *029 978 9994 998 *003 *007 *012 *016 *021 *025 *029 979 978 99 034 038 043 047 052 056 061 065 069 074 979 979 978 983 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 981 167 171 176 180 185 189 193 198 202 207 4 982 211 216 220 224 229 233 238 242 247 251 1 0 982 211 216 220 224 229 233 238 242 247 251 1 0 982 325 260 264 269 273 277 282 286 291 295 2 1 984 300 304 308 313 317 322 336 330 335 339 3 1 988 302 304 308 313 317 322 336 330 335 339 3 1 988 392 396 401 405 410 414 419 423 427 6 2 2 987 432 436 441 445 449 454 458 463 467 471 7 3 983 476 480 484 489 493 498 502 506 511 515 8 3 989 520 524 528 533 537 542 546 550 555 559 9 4 999 520 524 528 533 537 542 546 550 555 559 9 4 999 57 961 965 970 974 978 983 987 991 996 999 999 997 994 998 993 994 994 999 999 997 996 997 994 978 983 987 991 996 999 997 996 997 994 978 983 987 991 996 999 999 997 997 978 983 987 991 996 999 997 997 978 983 987 991 996 999 999 997 997 978 983 987 991 996 999 999 997 997 978 983 987 991 996 999 999 997 997 978 983 987 991 996 999 997 996 997 997 978 983 987 991 996 999 997 997 997 997 998 998 997 997 997	974	856	860	865	869	874	878	883	887	892	896	
9778 989 994 998 *003 *007 *012 *016 *021 *025 *029 979 979 978 083 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 981 167 171 176 180 185 189 193 198 202 207 4 982 211 216 220 224 229 233 238 242 247 251 1 0 983 255 260 264 269 273 277 282 286 291 295 2 1 3984 300 304 308 313 317 322 326 330 335 339 3 1 984 300 304 308 313 317 322 326 330 335 339 3 1 985 388 392 396 401 405 410 414 419 423 427 6 2 9867 432 436 441 445 449 454 458 463 467 471 7 3 3 988 476 480 484 489 493 498 502 506 511 515 8 3 989 520 524 528 533 537 542 546 550 555 559 9 4 991 993 695 699 704 708 712 717 721 726 730 734 747 778 993 695 699 704 708 712 717 721 726 730 734 778 993 695 699 704 708 712 717 721 726 730 734 909 909 993 997 997 997 997 998 993 997 997 997 998 998 997 996 909 999 999 997 996 999 999 999 997 996 999 999	975											
978 99 034 038 043 047 052 056 061 065 069 074 118 1897 078 083 087 092 096 100 105 109 114 118 118 18980 123 127 131 136 140 145 149 154 158 162 167 171 176 180 185 189 193 198 202 207 4 180 185 189 193 198 202 207 180 180 185 189 193 198 202 207 180 180 185 189 193 198 202 207 180 180 185 189 193 198 202 207 180 180 185 189 193 198 202 207 180 180 180 180 180 180 180 180 180 180												İ
979 078 083 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 981 167 171 176 180 185 189 193 198 202 207 4 992 211 216 220 224 229 233 238 242 247 251 1 0 982 255 260 264 269 273 277 282 286 291 295 2 1 983 255 260 264 269 273 277 282 286 291 295 2 1 984 300 304 308 313 317 322 326 330 335 339 3 1 985 344 348 352 357 361 366 370 374 379 383 5 2 985 344 348 352 357 361 366 370 374 379 383 5 2 986 388 392 396 401 405 410 414 419 423 427 6 2 987 432 436 441 445 449 454 458 463 467 471 7 3 988 476 480 484 489 493 498 502 506 511 515 8 3 989 520 524 528 533 537 542 546 550 555 559 9 4 990 564 568 572 577 581 585 590 594 599 603 991 607 612 616 621 625 629 634 638 642 647 992 651 656 660 664 669 673 677 682 686 691 993 695 699 704 708 712 717 721 726 730 734 994 739 743 747 752 756 760 765 769 774 778 995 782 787 791 795 800 804 808 813 817 822 996 826 830 835 839 843 848 852 856 861 865 997 870 874 878 883 887 891 896 900 904 909 998 913 917 922 926 930 935 939 944 948 952 999 957 961 965 970 974 978 983 987 991 996												
980 123 127 131 136 140 145 149 154 158 162 981 167 171 176 180 185 189 193 198 202 207 4 982 211 216 220 224 229 233 238 242 247 251 1 0 983 255 260 264 269 273 277 282 286 291 295 2 1 984 300 304 308 313 317 322 326 330 335 339 3 1 985 344 348 352 357 361 366 370 374 379 383 5 2 986 388 392 396 401 405 410 414 419 423 427 6 2 9877 432 436												
981 167 171 176 180 185 189 193 198 202 207 4 9982 211 216 220 224 229 233 238 242 247 251 1 0 9884 300 304 308 313 317 322 326 330 335 339 3 1 988 302 304 308 313 317 322 326 330 335 339 3 1 9885 344 348 352 357 361 366 370 374 379 383 5 2 9865 388 392 396 401 405 410 414 419 423 427 6 2 9867 432 436 441 445 449 454 458 463 467 471 7 3 988 476 480 484 489 493 498 502 506 511 515 8 3 989 520 524 528 533 537 542 546 550 555 559 9 4 999 1 607 612 616 621 625 629 634 638 642 647 999 1 999 999 704 708 712 717 721 726 730 734 778 999 1 996 999 1 996 999 997 947 978 983 987 991 996 999 997 996 998 34 888 887 891 896 900 904 909 999 999 997 961 965 970 974 978 983 987 991 996 991 996 999 957 961 965 970 974 978 983 987 991 996 999 999 999 997 996 970 974 978 983 987 991 996 999 999 999 997 996 970 974 978 983 987 991 996	ľ		i	l						1		
983												
983												
984 300 304 308 313 317 322 326 330 335 339 \$ 1 985 344 348 352 357 361 366 370 374 379 383 5 2 986 388 392 396 401 405 410 414 419 423 427 6 2 987 432 436 441 445 449 454 458 463 467 471 7 3 988 476 480 484 489 493 502 506 511 515 8 3 989 520 524 528 533 537 542 546 550 551 559 9 4 990 564 568 572 577 581 585 590 594 599 603 991 607 612 616 <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
985 344 348 352 357 361 366 370 374 379 383 5 2 986 388 392 396 401 405 410 414 419 423 427 6 2 987 432 436 441 445 449 454 458 463 467 471 7 3 988 476 480 484 489 493 498 502 506 511 515 8 3 989 520 524 528 533 537 542 546 550 555 559 9 4 990 564 568 572 577 581 585 590 594 599 603 991 607 612 616 621 625 629 634 638 642 647 992 651 656 660 <th< td=""><th>984</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	984											
388 392 396 401 405 410 414 419 423 427 6 2 387 432 436 441 445 449 454 458 463 467 471 7 3 388 476 480 484 489 493 498 502 506 511 515 8 3 389 520 524 528 533 537 542 546 550 555 559 9 4 390 564 568 572 577 581 585 590 594 599 603 391 607 612 616 621 625 629 634 638 642 647 392 651 656 660 664 669 673 677 682 686 691 393 743 747 752 756 760 765									ļ		1	4 2
987 432 436 441 445 449 454 458 463 467 471 7 3 898 476 480 484 489 493 498 502 506 511 515 8 3 989 520 524 528 533 537 542 546 550 555 559 9 4 999 9 9 9 9 9 9 9 9 9 9 9 9												
988 476 480 484 489 493 498 502 506 511 515 8 3 989 520 524 528 533 537 542 546 550 555 559 9 4 990 564 568 572 577 581 585 590 594 599 603 991 607 612 616 621 625 629 634 638 642 647 992 651 656 660 664 669 673 677 782 787 791 795 776 765 769 774 778 993 695 699 704 708 712 726 760 765 769 774 778 994 739 743 747 752 756 760 765 769 774 778 996 82 830												
989 520 524 528 533 537 542 546 550 555 559 9 4 990 564 568 572 577 581 585 590 594 599 603 991 607 612 616 621 625 629 634 638 642 647 992 651 656 660 664 669 673 677 682 686 691 993 743 747 752 756 760 765 769 774 778 994 739 743 747 752 756 760 765 769 774 778 995 782 787 791 795 800 804 808 813 817 822 990 826 830 835 839 843 848 852 356 861 865 997 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
990 564 568 572 577 581 585 590 594 599 603 991 607 612 616 621 625 629 634 638 642 647 992 651 656 660 664 669 673 677 682 686 691 993 695 699 704 708 712 717 721 726 730 734 994 739 743 747 752 756 760 765 769 774 778 994 739 743 83 839 843 848 852 86 891 996 826 830 835 839 843 848 852 86 861 865 997 870 874 878 883 887 891 896 900 904 909 993 913 917 </td <th>989</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	989											
991 607 612 616 621 625 629 634 638 642 647 992 651 656 660 664 669 673 677 682 686 691 993 695 699 704 708 712 717 721 726 730 734 739 743 747 752 756 760 765 769 774 778 995 782 787 791 795 800 804 808 813 817 822 996 826 830 835 839 843 848 852 856 861 865 997 870 874 878 883 887 891 896 900 904 909 998 913 917 922 926 930 935 939 944 948 952 999 957 961 965 970 974 978 983 987 991 996	امم		200		· ·		ECE	ļ.	l	į .	1	
992 651 656 660 664 669 673 677 682 686 691 993 695 699 704 708 712 717 721 726 730 734 994 739 743 747 752 756 760 765 769 774 778 995 782 787 791 795 800 804 808 813 817 822 990 826 830 835 839 843 848 852 856 861 865 997 870 874 878 883 887 891 896 900 904 909 998 913 917 922 926 930 935 939 944 948 952 999 957 961 965 970 974 978 983 987 991 996												
993 695 699 704 708 712 717 721 726 730 734 7994 739 743 747 752 756 760 765 769 774 778 9995 782 787 791 795 800 804 808 813 817 822 9990 826 830 835 839 843 848 852 856 861 865 9997 870 874 878 883 887 891 896 900 904 909 908 913 917 922 926 930 935 939 944 948 952 9999 957 961 965 970 974 978 983 987 991 996												
994 739 743 747 752 756 760 765 769 774 778 995 782 787 791 795 800 804 808 813 817 822 990 826 830 835 839 843 848 852 856 861 865 997 870 874 878 883 887 891 896 900 904 909 993 913 917 922 926 930 935 939 944 948 952 999 957 961 965 970 974 978 983 987 991 996												
995 782 787 791 795 800 804 808 813 817 822 990 826 830 835 839 843 848 852 856 861 865 997 870 874 878 883 887 891 896 900 904 909 998 913 917 922 926 930 935 939 944 948 952 999 957 961 965 970 974 978 983 987 991 996	994											
826 830 835 839 843 848 852 856 861 865 997 870 874 878 883 887 891 896 900 904 909 998 913 917 922 926 930 935 939 944 948 952 999 957 961 965 970 974 978 983 987 991 996	996	799	797	701	705	900	904	909	019			
997 870 874 878 883 887 891 896 900 904 909 998 913 917 922 926 930 935 939 944 948 952 999 957 961 965 970 974 978 983 987 991 996												
998 913 917 922 926 930 935 939 944 948 952 999 957 961 965 970 974 978 983 987 991 996												
999 957 961 965 970 974 978 983 987 991 996												
	999											I-
V A A A A A A A A A	-			•	-					- Digit i	z ed by A	200gle
	n.	U	•	**	3	•	5	•	'	8	y	P. P.

PHYSICAL CONSTANTS OF CHEMICAL COMPOUNDS

556608

N.	0	1	2	3	4	5	6	7	8	9	P.	P.
00	84 510	516	522	528	535	541	547	553	559	566		
1	572	578	534	590	597	603	609	615	621	628		
2	634	640	646	652	658	665	671	677	683	689		
3	696	702	708	714	720	726	733	739	745	751		
)4	757	763	770	776	782	788	794	800	807	813		
)5	819	825	831	837	844	850	856	862	868	874		
06	880	887	893	899	905	911	917	924	930	936		7
07	942	948	954	960	967	973	979	985	991	997	1	i
08	85 003	009	016	022	028	034	040	046	052	058	2	ī
09	065	071	077	083	089	095	101	107	114	120	8	2
10	126	132	138	144	150	156	163	169	175	181	4 5	3 4
11	187	193	199	205	211	217	224	230	236	242	6	4
12	248	254	260	266	272	278	285	291	297	303	7	5
13	309	315	321	327	333	339	345	352	358	364	8	6
14	370	376	382	388	394	400	406	412	418	425	9	6
15	431	437	443	449	455	461	467	473	479	485		
116	491	497	503	509	516	522	528	534	540	546		
17	552	558	564	570	576	582	588	594	600	· 606		
18	612	618	625	631	637	643	649	655	661	667		
119	673	679	685	691	697	703	709	715	721	727		
20	733	739	745	751	757	763	769	775	781	788		
21	794	800	806	812	818	824	830	836	842	848		6
22	854	860	866	872	878	884	890	896	902	908	1	1
23	914	920	926	932	938	944	950	956	962	968	2	1
24	974	980	986	992	998	*004	*010	*016	*022	*028	8 4	2 2
25	86 034	040	046	052	058	064	070	076	082	088	5	3
26	094	100	106	112	118	124	130	136	141	147	6	4
127	153	159	165	171	177	183	189	195	201	207	7	4
728	213	219	225	231	237	243	249	255	261	267	8	5
29	273	279	285	291	297	303	308	314	320	326	9	5
30	332	338	344	350	356	362	368	374	380	386		
731	392	398	404	410	415	421	427	433	439	445	ł	
732	451	457	463	469	475	481	487	493	499	504	1	
733	510	516	522	528	534	540	546	552	558	564	1	
734	570	576	581	587	593	599	605	611	617	623		
735	629	635	641	646	652	658	664	670	676	682	1	
736	688	694	700	705	711	717	723	729	735	741		5
137	747	753	759	764	770	776	782	788	794	800	1	1
738	806	812	817	823	829	. 835	841	847	853	859	2	1
139	864	870	876	882	888	894	900	906	911	917	3 4	2 2
40	923	929	935	941	947	953	958	964	970	976	5	3
41.	982	988	994	999	*005	*011	*017	*023	*029	*035	6	3
142	87 040	046	052	058	•064	070	075	081	087	093	7	4
43	099	105	111	116	122	128	134	140	146	151	8	4
144	157	163	169	175	181	186	192	198	204	210	9	5
45	216	221	227	233	239	245	251	256	262	268		
46	274	280	286	291	297	303	309	315	320	326		
47	332	338	344	349	355	361	367	373	379	384	1	
48	390	396	402	408	413	419	425	431	437	442		
49	448	454	460	466	471	477	483	489	495	500	σlo	

N.	0	1	2	3	4	5	6	7	8	9	P. P.
50	87 506	512	518	523	529	535	541	547	552	558	
51	564	570	576	581	587	593	599	604	610	616	
52	622	628	633	639	645	651	656	662	668	674	i .
53	679	685	691	697	703	708	714	720	726	731	'
54	737	743	749	754	760	766	772	777	783	789	
i 5	795	800	806	812	818	823	829	835	841	846	
56	852	858	864	869	875	881	887	892	898	904	•
57	910	915	921	927	933	938	944	950	955	961	
58	967	973	978	984	990	996	*001	*007	*013	*018	
59	88 024	030	036	041	047	053	058	064	070	076	
30	081	087	093	098	104	110	116	121	127	133	
51	138	144	150	156	161	167	173	178	184	190	6
32	195	201	207	213	218	224	230	235	241	247	1 1
13	252	258	264	270	275	281	287	292	298	304	2 1
14	309	315	321	326	332	338	343	349	355	360	3 2 4 2
5 5	366	372	377	383	389	395	400	406	412	417	5 3
86	423	429	434	440	446	451	457	463	468	474	6 4
87	480	485	491	497	502	508	513	519	525	530	7 4
88	536	542	547	553	559	564	570	576	581	587	8 5
69	593	598	604	610	615	621	627	632	638	643	9 5
70	649	655	660	666	672	677	683	689	694	700	
71	705	711	717	722	728	734	739	745	750	756	
72	762	767	773	779	784	790	795	801	807	812	
73	818	824	829	835	840	846	852	857	863	868	
74	874	880	885	891	897	902	908	913	919	925	
75	930	936	941	947	953	958	964	969	975	981	
76	986	992	997	*003	*009	*014	*020	*025	*031	*037	l
17	89 042	048	053	059	064	070	076	081	087	092	
78	098	104	109	115	120	126	131	137	143	148	
79	154	159	165	170	176	182	187	193	198	204	
10	209	215	221	226	232	237	243	248	254	260	
81	265	271	276	282	287	293	298	304	310	315	5
32	321	326	332	337	343	348	354	360	365	371	1 1
83	376	382	387	393	398	404	409	415	421	426	2 1
84	432	437	443	448	454	459	465	470	476	481	3 2 4 2
35	487	492	498	504	509	515	520	526	531	537	5 3
36	542	548	553	559	564	570	575	581	.586	592	6 3
87	597	603	609	614	620	625	631	636	642	647	7 4
88	653	658	664	669	675	680	686	691	697	702	8 4
89	708	713	719	724	730	735	741	746	752	757	9 5
90	763	768	774	779	785	790	796	801	807	812	
91	818	823	829	834	840	845	851	856	862	867	
92	873	878	883	889	894	900	905	911	916	922	1
93	927	933	938	944	949	955	960	966	971	977	
94	982	988	993	998	*004	*009	*015	*020	*026	*031	
95	90 037	042	048	053	059	064	069	075	080	086	
96	091	097	102	108	113	119	124	129	135	140	1
97	146	151	157	162	168	173	179	184	189	195	1
98	200	206	211	217	222	227	233	238	244	249	1
	255	260	266	271	276	282	287	293	298	304	4 -
99	200								-		oogle

N.	0	1	2	3	4	5	6	7	8	9	P	P.
00	90 309	314	320	325	331	336	342	347	352	358		
01	36,3	369	374	380	385	390	396	401	407	412		
02	417	423	428	434	439	445	450	455	461	466		
03	472	477	482	488	493	499	504	509	515	520		
04	52 6	531	536	542	547	5 53	558	563	569	574		
05	580	585	590	596	601	607	612	617	623	628		
06	634	639	644	650	655	660	666	671	677	682		
07	687	693	698	703	709	714	720	725	730	736		
08	741	747	752	757	763	768	773	779	784	789		
09	795	800	806	811	816	822	827	832	838	843		
10	849	854	859	865	870	875	881	886	891	897		_
11	902	907	913	918	924	929	934	940	945	950		6
12	956	961	966	972	977	982	988	993	998	*004	1	1
13	91 009	014	020	025	030	036	041	046	052	057	2	1
14	062	068	073	078	084	089	094	100	105	110	3 4	2 2
15	116	121	126	132	137	142	148	153	158	164	5	3
16	169	174	180	185	190	196	201	206	212	217	6	4
17	222	228	233	238	243	249	254	259	265	270	7	4
18	275	281	286	291	297	302	307	312	318	323	8	5
19	328	334	339	344	350	355	360	365	371	376	9	5
20	381	387	392	397	403	408	413	418	424	429		
21	434	440	445	450	455	461	466	471	477	482		
22	487	492	498	503	508	514	519	524	529	535		
23	540	545	551	556	561	566	572	577	582	587		
24	593	598	603	609	614	619	624	630	635	640		
25	645_	651	656	661	666	672	677	682	687	693		
26	698	703	709	714	719	724	730	735	740	745		
27 28	751	756	761	766	772	777	782	787	793	798		
29	803 855	808 861	814 866	819 871	824 876	829 882	834 887	840 892	845 897	850 903		
	000	901	800	8/1	870	002	001	092	991	800		
30 31	908 960	913	918	924	929	934	939	944	950 *002	955 *007		5
32	92 012	965 018	971 023	976 028	981 033	986 038	991 044	997 049	054	059	1	1
33	065	070	075	080	085	091	096	101	106	111	2	i
34	117	122	127	132	137	143	148	153	158	163	8	2 2
35	169	174	179	184	189	195	200	205	210	215	4 5	2 3
36	221	226	231	236	241	247	252	257	262	267	6	3
37	273	278	283	288	293	298	304	309	314	319	7	4
38	324	330	335	340	345	350	355	361	366	371	8	4
339	376	381	387	392	397	402	407	412	418	423	9	5
40	428	433	438	443	449	454	459	464	469	474		
41	480	485	490	495	500	505	511	516	521	526		
42	531	536	542	547	552	557	562	567	572	578		
43	583	588	593	598	603	609	614	619	624	629		
44	634	639	645	650	655	660	665	670	675	681		
45	686	691	696	701	706	711	716	722	727	732		
46	737	742	747	752	758	763	768	773	778	783	l	
47	788	793	799	804	809	814	819	824	829	834		
48	840	845	850	855	860	865	870	875	881	886		
49	891	896	901	906	911	916	921	927	932	937	ogle_	
	,							7	igitized t	1	O P	

N.	0)	1	2	3	4	5	6	7	8	9	P.	P.
350	92 8	942	947	952	957	962	967	973	978	983	988		
51	9	993	998	*003	*008	*013	*018	*024	*029	*034	*039	1	
52	93 (044	049	054	059	064	069	075	080	085	090	1	
53	(095	100	105	110	115	120	125	131	136	141	1	
54	i	146	151	156	161	166	171	176	181	186	192		
55	١,	197	202	207	212	217	222	227	232	237	242		
56		247	252	258	263	268	273	278	283	288	293	1	6
57		298	303	308	313	318	323	328	334	339	344	1 1	ī
58		349	354	359	364	369	374	379	384	389	394	2	ī
59		399	404	409	414	420	425	430	435	440	445	3	2
50	4	150	455	460	465	470	475	480	485	490	495	4 5	2 3
61	5	500	505	510	515	520	526	531	536	541	546	6	4
62		551	556	561	566	571	576	581	586	591	596	7	4
63		301	606	611	616	621	626	631	636	641	646	8	5
64	6	351	656	661	666	671	676	682	687	692	697	9	5
65	7	02	707	712	717	722	727	732	737	742	747		
66	7	52	757	762	767	772	777	782	787	792	797	1	
67		302	807	812	817	822	827	832	837	842	847	1	
68		52	857	862	867	872	877	882	887	892	897	1	
69	9	02	907	912	917	922	927	932	937	942	947		
70	9	52	957	962	967	972	977	982	987	992	997		
71	94 0		007	012	017	022	027	032	037	042	047	1	5
72		52	057	062	067	072	077	082	086	091	096	11	ĭ
73		01	106	111	116	121	126	131	136	141	146	2	ī
74		51	156	161	166	171	176	181	186	191	196	3	2
75	2	01	206	211	216	221	226	231	236	240	245	4 6	2
76		50	255	260	265	270	275	280	285	290	295	6	3
77		00	305	310	315	320	325	330	335	340	345	7	4
78		49	354	359	364	369	374	379	384	389	394	8	4
79		99	404	409	414	419	424	429	433	438	443	9	5
10	4	48	453	458	463	468	473	478	483	488	493		
31		98	503	507	512	517	522	527	532	537	542		
82		47	552	557	562	567	571	576	581	586	591	1	
33	5	96	601	606	611	616	621	626	630	635	640		
34		45	650	655	660	665	670	675	680	685	689		
15	69	94	699	704	709	714	719	724	729	734	738		
36		43	748	753	758	763	768	773	778	783	787		4
37		92	797	802	807	812	817	822	827	832	836	1	ō
88		41	846	851	856	861	866	871	876	880	885	2	1
39	89	90	895	900	905	910	915	919	924	929	934	3	1 2
ю	93	39	944	949	954	959	963	968	973	978	983	4 5	2
11	98	88	993	998	*002	*007	*012	*017	*022	*027	*032	6	2
2	95 03	36	041	046	051	056	061	066	071	075	080	7	3
13		85	090	095	100	105	109	114	119	124	129	8	3
M4	13	34	139	143	148	153	158	163	168	173	177	9	4
5	18	32	187	192	197	202	207	211	216	221	226		
5	. 28		236	240	245	250	255	260	265	270	274		
7	27		284	289	294	299	303	308	313	318	323		
8	32		332	337	342	347	352	357	361	366	371		
- 1	37		381	386	390	395	400	405	410	415	419		
9	01	١ ٧		000	000	000	200	100	210	210	210	Loogle	

N.	0	1	2	3	4	5	6	7	8	9	P. P.
00	95 424	429	434	439	444	448	453	458	463	468	
01	472	477	482	487	492	497	501	506	511	516	l
02	521	525	530	535	540	545	550	554	559	564	
08	569	574	578	583	588	593	598	602	607	612	1
04	617	622	626	631	636	641	646	650	655	660	
	005	070	074	470	684	689	204	200	700	700	
05 06	665 713	670 718	674 722	679 727	732	737	694 742	698 746	703 751	708 756	
07	761	766	770	775	780	785	789	794	799	804	
08	809	813	818	823	828	832	837	842	847	852	
09	856	861	866	871	875	880	885	890	895	899	
10	904	909	914	918	923	928	933	938	942	947	
11	952	957	961	966	971	976	980	985	990	995	5
12	999	*004	*009	*014	*019	*023	*028	*033	*038	*042	1 1
13	96 047	052	057	061	066	071	076	080	085	090	2 1
14	095	099	104	109	114	118	123	128	133	137	8 2
15	142	147	152	156	161	166	171	175	180	185	4 2 5 3
	190	194	199	204	209	213	218	223	227	232	
16					256						
17	237	242	246	251		261	265	270	275	280	7 4
18 19	284 332	289 336	294 341	298 346	303 350	308 355	313	317 365	322 369	327 374	8 4 9 5
			1		1	1	1				• • •
20	379	384	388	393	398	402	407	412	417	421	
21	426	431	435	440	445	450	454	459	464	468	
22	473	478	483	487	492	497	501	506	511	515	
23	520	525	530	534	539	544	548	553	558	562	
24	567	572	577	581	586	591	595	600	605	609	
25	614	619	624	628	633	638	642	647	652	656	
26	661	666	670	675	680	685	689	694	699	703	
27	708	713	717	722	727	731	736	741	745	750	
28	755	759	764	769	774	778	783	788	792	797	
29	802	806	811	816	820	825	830	834	839	844	
30	848	853	858	862	867	872	876	881	886	890	
31	895	900	904	909	914	918	923	928	932	937	4
32	942	946	951	956	960	965	970	974	979	984	1 0
33	988	993	997	*002	*007	*011	*016	*021	*025	*030	2 1
34	97 035	039	044	049	053	058	063	067	072	077	3 1
35	081	086	090	095	100	104	109	114	118	123	4 2 5 2
36	128	132	137	142	146	151	155	160	165	169	6 2
37	174	179	183	188	192	197	202	206	211	216	7 3
38	220	225	230	234	239	243	248	253	257	262	8 3
39	267	271	276	280	285	290	294	299	304	308	9 4
40	313	317	322	327	331	336	340	345	350	354	
41	359	364	368	373	377	382	387	391	396	400	
42	405	410	414	419	424	428	433	437	442	447	
43	451	456	460	465	470	474	479	483	488	493	
14	497	502	506	511	516	520	525	529	534	539	
15	543	548	552	557	562	566	571	575	580	585	
	589	594	598	603	607	612	617	621	626	630	
46			644	649	653	658	663	667	672		
47	635	640			699	704	708			676	
48 49	681 727	685 731	690 736	695 740	745	749	708 7 54	713 759	717 763	722 768	T
.	0	1	2	3		5	6	7	Diamzea	ы С Ф	ogle P. P.

_											
N.	0	1	2	3	4	5	6	7	8	9	P. P.
950	97 772	777	782	786	791	795	800	804	809	813	
951	818	823	827	832	836	841	845	850	855	859	
952	864	868	873	877	882	886	891	896	900	905	1
953	909	914	918	923	928	932	937	941	946	950	1
954	955	959	964	968	973	978	982	987	991	996	
55	98 000	005	009	014	019	023	028	032	037	041	1
956	046	050	055	059	064	068	073	078	082	087	
57	091	096	100	105	109	114	118	123	127	132	
58	137	141	146	150	155	159	164	168	173	177	
59	182	186	191	195	200	204	209	214	218	223	1
60	227	232	236	241	245	250	254	259	263	268	
961	272	277	281	286	290	295	299	304	308	313	5
962 963	318 363	322 367	327 372	331 376	336 381	340 385	345	349 394	354 399	358 403	1 1 1 2 1
763 764	303 408	412	417	421	426	430	435	439	399 444	448	3 2
		412	1	321		ł	1	1	***		4 2
65	453	457	462	466	471	475	480	484	489	493	5 3
966	498	502	507	511	516	520	525	529	534	538	6 3
967	543	547	552	556	561	565	570	574	579	583	7 4
88	588	592	597	601	605	610	614	619	623	628	8 4
69	632	637	641	646	650	655	659	664	668	673	9 5
70	677	682	686	691	695	700	704	709	713	717	
971	72 2	726	731	735	740	744	749	753	758	762	Į.
72	767	771	776	780	784	789	793	798	802	807	
973	811	816	820	825	829	834	838	843	847	851	
974	856	860	865	869	874	878	883	887	892	896	
975	900	905	909	914	918	923	927	932	936	941	1
976 977	945	949	954	958	963	967	972	976 *021	981	985	
978	989 99 034	994 038	998 043	*003 047	*007 052	*012 056	*016 061	065	*025	*029	
979	078	083	087	092	096	100	105	109	069 114	074 118	
980		127	131	120	140	145	140		150		1
981	123 167	171	176	136 180	185	145 189	149 193	154 198	158 202	162 207	4
982	211	216	220	224	229	233	238	242	247	251	1 1 0
983	255	260	264	269	273	277	282	286	291	295	2 1
984	300	304	308	313	317	322	326	330	335	339	3 1
985	344	348	352	357	361	366	370	374	379	383	4 2 5 2
986	388	392	396	401	405	410	414	419	423	427	6 2
987	432	436	441	445	449	454	458	463	467	471	7 3
988	476	480	484	489	493	498	502	506	511	515	8 3
989	520	524	528	533	537	542	546	550	555	559	9 4
990	564	568	572	577	5 81	585	590	594	599	603	
991	607	612	616	621	625	629	634	638	642	647	
992	651	656	660	664	669	673	677	682	686	691	l
993	695	699	704	708	712	717	721	726	730	734	· .
994	739	743	747	752	756	760	765	769	774	778	
995	782	787	791	795	800	804	808	813	817	822	
995	826	830	835	839	843	848	852	856	861	865	
997	870	874	878	883	887	891	896	900	904	909	
998	913	917	922	926	930	935	939	944	948	952	
999	957	961	965	970	974	978	983	987	991	996	I -
									Digit	ized by	3000le

PHYSICAL CONSTANTS OF CHEMICAL COMPOUNDS

556608

Number.	Name.	Formula .	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1 2	Aluminium, sulphate	Al ₂ (SO ₄) ₃	342.41	2.71 1.62	dec. 770°
3		ALS	150.41	2.0240	decomp. 1100°
4	Alum, ammonium	24H.O	906.95	1.645 %°	94.5°
5	ammonium chrom.	$Cr_2(SO_4)_8.(NH_4)_2SO_4.$	956.75		
6	ammonium iron	24H ₂ O Fe ₂ (SO ₄) ₃ .(NH ₄) ₂ SO ₄ .			
7	cæsium	24H ₂ O	964 . 43	1.712	• • • • • • • •
8	potassium	24H ₂ O	1136.5	2.02150°	105–106°
9		24H ₂ O	949.06	1.7571 ₹°	84.5°
	potassium chrom	24H ₂ O	998.86	1.81278°°	89°
10	potassium iron	$Fe_2(SO_4)_3.K_2SO_4.$ 24H ₂ O	1006.5	1.806	
11	potassium manga- nese	$ Mn_2(SO_4)_3.K_2SO_4. $ $ 24H_2O$	1004.7		
12	rubidium	Al ₂ (SO ₄) ₃ .Rb ₂ SO ₄ . 24H ₂ O		1 07	99°
13	sodium	$Al_2(SO_4)_3.Na_2SO_4.$	1041.8		
14	thallium	$24H_2O$ Al ₂ (SO ₄) ₃ .Tl ₂ SO ₄ .		1.675 ∜°	61°
,		24H ₂ O		2.32 (0.5971A.	• • • • • • • • • • • • • • • • • • • •
		NH _s		0.62340° lq	-77.34°
	Ammonium acetate.				89°
17 18		NH ₄ SbO ₃ .2H ₂ O	222.27 337.30	,	decomp.
10	auricyaniue	H ₂ O	337.30		decomp. 200°
19		AuCN.NH ₄ CN			decomp. 150–200°
20	arsenate	$(NH_4)_3AsO_4.3H_2O$	247.19		
21	arsenite	NH ₄ AsO ₂	125.00		
22	benzoate	NH ₄ C ₇ H ₅ O ₂	139.082		dec. 193.5°
23		NH ₄ BF ₄			
24	bromide	NH₄Br	97.96	2.327¥°	sublimes
25	bromoplatinate	(NH ₄)PtBr ₆ [NH ₂	710.43	4.265**°	decomp.
26	carbamate	NH4HCO3.NH4CO2.	157.15		sublimes
27	carbonate	$(NH_4)_2CO_3.H_2O$	114.10		dec. 85°
28	" acid	NH ₄ HCO ₃	•		dec.36-60°
			Digitize	ed by Google	<u> </u>

ber.	Boiling		Solubility is	1 100 Parts.	Crystalline Form	
Mumper	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.	
1 2 3		87 decomp.	89.1 ¹⁰⁰ ° 1132 ¹⁰⁰ °	sol. a	octahedral hexagonal needles	
4	23H ₂ O, 190°	3.90°	357100°	insoluble alcohol	regular	
5		3.95°	15 ¹⁵ °	soluble alcohol	vio. or green regular	
6		40 ¹⁵ °	400	insoluble alcohol	regular	
7		0.300	42.54 ¹⁰⁰ °			
8	23H,O, 190°	5.200	422100°		regular	
9		20	50	insoluble alcohol	green regular .	
10		20 ^{12.5°}	v. soluble	insoluble alcohol	violet regular .	
11		decomp.	soluble		violet regular.	
12		1.30°	43.25 ^{80°}			
13		103.1 ^{10°} .	146.3 ^{30°}	insoluble alcohol	regular	
14 15 16 17		4.84° 104960c.c.° 89.9° 1484° insoluble soluble	65.19 ^{60°} 72722c.c ^{15°} 57.8 ^{16°}	14.8 ^{20°} alcohol, ether	crystalline	
19		soluble		soluble alkalies		
10 21 22 23 24 25 26 27 28		soluble v. soluble 95225 soluble 66 · 210° 0 · 5920° 2515° · 10015° 11 · 90°	83.3100 128.2100° 6765° 2730°	insoluble alcohol, ether insoluble alcohol	crystals hexag. prisms regular red regular	

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ =1 (D).	Melting Point, °C.
1	Ammonium carbon-	(NH ₄),CO ₂ ,			
	ate, sesqui	2NH,HCO,H,O	272.23		decomp.
2	citrate	$(NH_4)_3C_6H_5O_7$	243.17	·	
3	chloraurate	(NH ₄ AuCl ₄) ₄ .5H ₂ O			5H ₂ O, 100
4	chlorate	NH ₄ ClO ₃	101.50		expl. 102°
5		NH₄Cl	1	1.520 ^{17°}	
6	chloroiridate	(NH ₄) ₂ IrCl ₆	441.94		
7	chloropalladate	(NH ₄) ₂ PdCl ₆	355.54		decomp.
8	chloropalladite	(NH ₄) ₂ PdCl ₄	284.62		decomp.
9	chloroplatinate	(NH ₄) ₂ PtCl ₈		3.034¥°	decomp.
10	chloroplatinite	(NH ₄) ₂ PtCl ₄	373.12		decomp.
11 12	chlorostannate	(NH ₄) ₂ SnCl ₆	367.84		dec. 185°
13	chromate	(NH₄)₂CrO₄ NH₄CNO		81.886 ^{11°}	
14	cyanate cyanide	NH ₂ CNONH ₂ CN	44.05		decomp. dec. 36°
15	dichromate	(NH ₄),Cr,O,	252.08		decomp.
16	dithionate	$(NH_4)_2S_2O_6$	196.22		decomp.
17	ferric oxalate	$(NH_4)_3Fe(C_2O_4)_3$.	100.22	21.701	
	ICITIC ORGINOC	$4H_2O$	446 03	1.7785 ^{17.5} °	3H ₂ O,100°
18	ferrocyanide	$(NH_4)_4$ Fe $(CN)_6$.	110.00	1.1100	01120,100
	Totalog annacit tive .	6H,O	261.96		
19	fluoride	NH,F	37.04		
20		NH F.HF	57.05	1.211 H°	<i>.</i>
21		NH CHO,	63.05	1.266	decomp.
22	gallate	$NH_4C_7O_8O_8.H_2O$			
23		NH ₄ H ₂ PO ₂	83.10		100°
24	iodate	NH₄IO₃		3.31-3.34	dec. 150°
25	iodide	NH ₄ 1	144.96		sublimes
26		NH ₄ VO ₃			decomp.
27	molybdate	$(NH_4)_2MoO_4$		2.38-2.95	decomp.
28	" hepta	(NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O.	1236.3		
29		NH4NO ₈		1.725 ^{15°}	153°-166°
30	nitrite		64.05		decomp.
31	oxalate	(NH ₄) ₂ C ₄ O ₄ .H ₂ O	142.10		• • • • • • • •
32		NH,HC,O,.H,O	125.07		J
33 34	perchlorate		117.50 234.13		decomp. dec. 50°
35	percuromate	(NH ₄) ₃ CrO ₈ NH ₄ MnO ₄		2.2076 ^{10.25°}	decomp.
36	permanganare	$(NH_4)_2S_2O_4$	228.20		decomp.
37	phoenhate di-	(NH ₄) ₂ S ₂ O ₄ (NH ₄) ₂ HPO ₄	132.13		decomp.
38		NH ₄ H ₂ PO ₄	115.10		
ا	1110110				ا ا

Digitized by GOOST

ber.	Boiling		Solubilit y in	Solubility in 100 Parts.					
Number.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.				
1		25 ^{13°}	50 ^{49°}						
2	. .	deliques.							
3		soluble		soluble alcohol	yellow monocl				
4		soluble		soluble alcohol	monoclinic				
5		29.40°	77 . 3 ¹⁰⁰ °	s. sol. al, NH ₃ , Methyl al.	reg. or tetrag				
6		0.7 ^{14°}	2.869°		reddish-brown.				
7		soluble			bright red				
8		v. soluble		insoluble alcohol	olive gr. needles				
9		0.67 ²⁰ °	1.25 ¹⁰⁰ °	0.005 alcohol	yellow regular .				
		soluble	v. soluble		tetragonal				
11		33.33 ¹⁵ °							
		40 ³⁰ °	decomp.		yellow monocl. \				
		soluble	decomp.	s. soluble alcohol					
		soluble	v. soluble	soluble alcohol	regular				
15		47.1 ^{30°}	v. soluble		orange monocl				
16	. .	v. soluble		insoluble alcohol	monoclinic				
17	dec. 165°	42.80°	345100°		light green crys.				
18		soluble		insoluble alcohol	monoelinic				
19		v. soluble	decomp.	s. soluble alcohol	hexagonal				
20		v. soluble							
		1020°	53180°		monoclinic				
22		soluble		l:					
23		soluble	soluble	v. soluble alcohol	rhombic tablets				
24		2.6 ^{15°}	14.5 ^{100°}		rhombic				
25		v. soluble	v. soluble	v. soluble alcohol					
26		s. soluble	v. soluble	insol. NH ₄ Cl	crystalline				
27		decomposes	decomp.		monoclinic				
28		soluble	.		monoclinic				
29	dec. 210°	1180°	871 100°	3.820° alcohol	rh'b. or tetrag				
30		soluble	decomp.	soluble alcohol					
31		4.2 ^{15°}	41.34		trimet. prisms .				
32		soluble		:	trimet. prisms .				
33		soluble	v. soluble		rhombic				
34		s. soluble		s. sol. NH ₃ ; insol.al., ether	red octahedral .				
35		8150			rhombic				
36		58.2°			monoclinic				
37		25	decomp.	insoluble alcohol					
38		171°	260 ^{31°}		tetragonal				
	1	1	1	1	1				

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H ₂ = 1 (D).	Melting Point, °C.
	Ammonium				
1	phosphate meta	(NH ₄) ₄ P ₄ O ₁₂	388.33	l i	
2		NH,H,PO,	99.10		123°
3	phosphomolybdate	(NH ₄) ₃ PO ₄ .12MoO ₃ .			1
		3H.O	1931.24		
4	salicylate	NH ₄ C ₇ H ₅ O ₈	155.08		
5	selenate	(NH ₄) ₂ SeO ₄	179.28	2.197 ^{18°}	decomp.
6	stannic chloride	(NH ₄) ₂ SnCl ₆	367.84	2.511	
7	sulphate	(NH ₄) ₂ SO ₄	132.14	1.7687*	140°
8	" acid	NH ₄ HSO ₄	115.12	1.787	
9	sulphite	1 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	134.17	 .	decomp.
10	sulphite acid	NH ₄ HSO ₃	99.12		decomp.
11		(NH ₄) ₂ S	68.15		decomp.
12		(NH ₄) ₂ S ₅	196.43		
13		NH,HS	51.12		decomp.
14	sulphocyanate	NH,CNS		1.3057 ^{13°}	159°
15		(NH ₄) ₂ C ₄ H ₄ O ₆	184.12	1.601	
16	aciu	NH ₄ HC ₄ H ₄ O ₆	167.08	1.680	
17		(NH ₄) ₂ CS ₃	144.29		sublimes
18 19	tniosuipnate	(NH ₄) ₂ S ₂ O ₃	148.22 1124.2		7H O 1000
20	tungstate meta	(NH ₄) ₂ W ₄ O ₁₃ .8H ₂ O (NH ₄) ₆ W ₇ O ₂₄ .6H ₂ O	1888.3		7H₂O,100° 4H₂O,100°
21	Antimonic Acid		169.21	6.6	decomp.
22	" " * " pvro	H ₄ Sb ₂ O ₇	356.43	0.0	H ₂ O, 200°
23	Antimonous Acid		153.21		$\frac{11_20}{\text{decomp.}}$
	Antimonv		120.2	6.62	630°
25		SbBr ₂	359.98	4.14823°	94.2°
26		SbCl ₃	226.58	3.06426°	73.2°
27	" penta-	SbCl ₅	297.50	2.34618	2.8°
28		SbF.	177.2	4.37920.9°	292°
29		SbF ₅	215.2	2.99022.80	l
30		SbH,	123.22	4.344 ^{15°} A:	-91.5°
31		SbI,	500.96	4.848260	170.8°
32	" "	SbI 3	500.96		170.8
33		SbI ₃	500.96	4.768220	170.8°
34	oxide tri	Sb ₂ O ₃	288.4	5.2-5.67	red heat
35	" tetr	Sb_2O_4	304.4	4.07	O. 1060°
36	oxide pent-	$\mathrm{Sb_2O_5}$		3.78	O, 450°
37	oxychloride (-ous)	SbOCl	171.66		
38	(-ic)	SbOCl _a	242.58		decomp.
	```				1

Digitized by Google

ber.	Boiling	<del></del>	Solubility is	n 100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2	dec. 150°	soluble 171 ^{0°}	260 ³¹ °		tetragonal
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32	dec. 280° dec. 170°	.03 ^{15°} .111.1 ^{25°} .117 ^{7°} .33 .710° .100 .1001 ^{2°} soluble v. soluble v. soluble v. soluble soluble v. soluble soluble soluble soluble soluble soluble insoluble insoluble insoluble insoluble decomp. 601.6° decomp. soluble soluble decomp. decomp. decomp. decomp. decomp.	insoluble  197100°  103.3100°  16220°  4.522° s. soluble insoluble decomp. 453160° decomp. decomp. decomp. decomp. decomp. decomp. decomp.	insoluble alcoholinsoluble alcohol	monoclinic rh'b. or monocl. regular rhombic monoclinic [prisms orange red rhombic monoclinic yellow rhombic yellow rhombic octahedra. rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic rhombic red hexagonal yellow rhomb. red monoclinic
35 36		.00182 ^{15°} insoluble insoluble insoluble insoluble	insoluble insoluble decomp.	sol. HCl, KOH, H ₂ C ₄ H ₄ O ₆ sol. hot conc. HCl soluble HCl, KOH, HI. insol. al.; sol. HCl, CS ₂ . soluble alcohol	yellow

^{*} At 68 mm.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
	Antimony sulphate	Sb ₂ (SO ₄ ) ₃	528.41	4.89 /	decomp.
2	sulphide tri	Sb ₂ S ₃	336.61	4.652	fusible
3		Sb ₂ S ₅	400.75	4.1200°	fusible
	Antimonyl				
4	potassium tartrate.	K(SbO)C,H,O,.1H2O	332.33	2.6	½H₂O,100°
5	sulphate basic	(SbO) ₂ SO ₄ .Sb ₂ (OH) ₄	676.50		
Í	Argon		<b>39</b> .88	{1.379 A. }19.96 D.	-187.9°
7	Arsenic crystalline	As		5.727 ¹⁴ °	850°
8	" amorphous	As	299.84	4.716 ^{14°}	l
9	acid	$H_3AsO_4.\frac{1}{2}H_2O$	150.99	2.5	35.5°
10	fluoride	AsF ₅	169.96	5.964 D.	-80°
11			328.80		decomp. 135.5°
12	pentoxide	As ₂ O ₅	229.92	3.99-4.25	red heat
13		As ₂ S ₂			307°
14	" penta	As ₂ S ₅	310.27		v. fusible
15	Arsenous bromide		314.72		31°
16	chloride	AsCl ₃	181.34		-18°
17	fluoride	AsF ₃			-8.5°
18	hydride (arsine)	AsH	77.98	2.695 A.	-113.5°
19	iodide	AsH ₃	455.72		140.7°
20	oxide			3.65-4.15	sublimes
21	46	As ₄ O ₆			200°
22	oxychloride	AsOCl			fusible
23		AsP			1 431510
24	selenide	As ₂ Se ₃	386 52		360°
25		As ₂ S ₃			310°
	Auric bromide				
27		AuCl ₃			288° *
28		AuCl ₃ .2H ₂ O			
29	cvanide	Au(CN) ₃ .6H ₂ O	383 33		decomp.
30	hydroxide	$Au(OH)_3$	248 22		14H.0 100
31	iodide	AuI3	577 96		131120,100
32	hydrogen nitrate	Au(NO.). HNO	500.30	2.58	decomp.
	-	3H ₂ O.			-
33	oxide	Au ₂ O ₃	442.4		U.160°†
34	sulphate	Au ₂ O ₃ .2SO ₃ .H ₂ O	620.54		
35	sulphide	Au ₂ S ₃	490.61		
	Auricyanhydric Acid				
277	Aurichlorobudric Acid	HAuCl ₄ .4H ₂ O	412.11	l <b></b> .	l

^{*} Under a pressure of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of Chlorine of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of two atmospheres of

-	Boiling		Solubilit <b>y</b> in	100 Parts.	Crystalline Form
-	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3	vo <b>latile</b>	decomp. .000175 insoluble	decomp. decomp. insoluble	sol. H ₂ SO ₄ sol.alk.,NH ₄ HS,K ₂ S,HCl sol. alk., NH ₄ HS, HCl	black hexag
<b>4</b> 5		5 . 26 ^{8.7°} insoluble	35.7 ^{100°} decomp.	insol. al., sol. glyc 5.5 ^{15°} glycerene	octahedral
6	-186.1°	5.6c.c.1°	3.43c.c. ^{50°}		
3	Subl. 554° <360° H ₂ O, 160° -53°	insoluble insoluble 16.7 soluble	insoluble insoluble 50	{sol. HNO ₃ , Cl ₂ .H ₂ O {aq. r., hot alksoluble alkaliessoluble alk., al., ether	gray rhomboh. black amor- [phous
373371331	decomp. 565° sublimes 221° 130.2° 63° -54.8° ‡ 394°-414° 125°-150°	150 insoluble insoluble decomp. decomp. decomp.  1.716° 3.7 decomp. decomp. insoluble 0.00005 soluble 68 soluble v. soluble insoluble insoluble insoluble decomp. insoluble decomp.	v. soluble insoluble insoluble decomp. decomp. 30100° 10.14 11.46 decomp. decomp. s. soluble v. soluble insoluble decomp.		red monoclinic yellow
	decomp.	insoluble soluble v. soluble	v. soluble	sol. Na ₂ S, K ₂ S; insof. a soluble alcohol, ether	brown

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A). H ₂ =1(D).	Melting Point, °C.
1	Auroauric bromide	AuBr	357 04		dec. 115°
2	chloride				
3	oxide	Au ₂ O			
4	sulphide	AuS	229.27		
	Aurobromhydric Acid	HAuBr ₄ .5H ₂ O	607.96		27°
	Aurous bromide				dec. 115°
7	chloride				
8					
9		AuI			dec. 120°
10	oxide				dec. 250°
11					
12	Barium	Ва	137.37	3.78	850°
13	acetate	Ba(C ₂ H ₃ O ₂ ) ₂ .H ₂ O	273.43	2 02	decomp.
14			690.07		decomp.
15			295.35		H₂O, 150°
16	boride	BaB ₆	203.37		1120, 100
17	bromate		411.23		decomp.
18	bromide	BaBr ₂		4.781*	880°
19			333.24		2H ₂ O,100°
20			161.37		
21			197.37		1380°
22		Ba(ClO ₃ ) ₂ .H ₂ O	322.31	3.179	414° †
23	chloride	BaCl	208.29	3.856*	960°
24	"	BaCl ₂ .2H ₂ O	244.32	3.097♥	860° ‡
25	chloroplatinate	BaPtCl ₆ .4H ₂ O	617.39	2.86	
26	chloroplatinite	BaPtCl ₄ .3H ₂ O	528.46	2.868	
27	chromate	BaCrO	253.47	4.498 ¹⁵ °	
28	cyanide	Ba(CN) ₂	189.39		
29	dichromate	BaCr ₂ O ₇	353.37		
30		BaCr ₂ O ₇ .2H ₂ O			
31	dithionate	$BaS_2O_6.2H_2O$	333.54	5.6	• • • • • • • • •
32	ferrocyanide	$Ba_2Fe(CN)_6.6H_2O$	594 . 74		
33	fluoride	BaF ₂	175.37	4.828	1280°
34	fluosilicate	BaSiF ₆	279.67	4.2815	• • • • • • • • •
اء	ab	D-D- D-E	470 50	4.00	
35	fluobromide	BaBr ₂ .BaF ₂	4/2.58	4.90 4 5118°	• • • • • • • • •
36	fluochloride	BaCl ₂ .BaF ₂	oco . 00	4.0120	• • • • • • • • •
37	fluoiodide	BaI ₂ .BaF ₂	566 60	5 91	
38	formate	Ba(CHO ₂ ) ₂	227 30	3 919	••••••
00	TOTHIAVE	Da(O11O2/2	221.00		••••••

^{. *} For other compounds see "Gold."

F	<del>,</del>			<del></del>	
Number.	Boiling		Solubility in	100 Parts.	Crystalline Form
Mun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		decomp.			black
2		decomp.		l <del>.</del>	dark red
3		insoluble	insoluble	soluble cold HCl	
4		insoluble	insoluble	insol. acids; sol. (NH4),S	black
5		v. soluble			red crystals
6		insoluble		decomp. by acid	grayish yellow
7		insoluble	decomp.		yellowish white
8		insoluble	insoluble	insol. acids; sol. KCN	yellow crystals
9		insoluble	s. soluble		yellow
10		s. soluble	insoluble		violet
11		insoluble		insoluble acids	black
12	vol. 950°	decomp.	decomp.	sol. al., a.; insol. b'z'l,	
1		_	· -	petroleum	tals
13		62.9.3°	80.5 ^{99°}	insoluble alcohol	prisms
14		0.055		soluble acids, NH ₄ Cl	
15	14H ₂ O, 225°	<del>.</del>		l	pearly crystals
16		insoluble	insoluble	soluble HNO ₃	black regular
17		0.30°	5.67 ^{100°}		monoclinic
18		980°	149 ¹⁰⁰ °		
		1250°	181 .7 ¹⁰⁰ °	v. soluble methyl al	monoclinic
20		dec. to C ₂ H ₂		decomp. by acids	gray crystals
21	dec. 1450°	$0.0022^{20^{\circ}}$	0.0065 ¹⁰⁰ °	sol. a., NH Cl	rhombic
22		19.23°	111.2100°		monoclinic
23		30.9°°	62.7 ¹⁰⁰ ° (	insol. al.; s. sol. HCl,	
24		36.20°	73.5 ¹⁰⁰ ° }	HNO ₂	
25		soluble		decomp. by acids	red monoclinic.
26		soluble		v. soluble 93% al	[plates
27	<b></b>	0.0003818°	0.0043	soluble HCl, HNO ₃	yellow rhombic
28		80 ^{14°}			
29		s. soluble			red monocl. pr.
30		decomp.			yellow needles
31		24.75 ^{18°}	90.9 ¹⁰⁰ °		rhombic
32		0.1 ^{15°}	1 ^{75°}		yellow monocl.
		0.163 ¹⁸ °	s. soluble		reg. octahedral
34		0.026 ^{17°}	0.09100°	insol. al.; s. sol. HCl,	
		•		NH ₄ Cl. [HNO ₃ ]	
<b>B</b> 5		decomp.	decomp.	insol. al.; sol. conc. HCl,	plates
86		decomp.	decomp.	insol. al.; sol. conc. HCl,	plates
_		_		HNO ₃ [HNO ₃	
37		decomp.	decomp.	insol. al.; sol. conc. HCl,	plates
38		27.76 ^{0°}	39.71 ⁸⁰ °	insoluble alcohol, ether.	monoclinic
_					

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Barium hexanitride	BaN. H.O	239.45		explodes
2	hydride		139.39		volatile
3	hydroxide	Ba(OH) ₂ .8H ₂ O	315.51		78° *
4	hypophosphate		432.82		
5	hypophosphite	$Ba(H_2PO_2)_2.H_2O$	285.50		
6	iodate	$Ba(IO_2)_2.H_2O$	505.23		H ₂ O, 130°
7	iodide	BaI		5.150 <b>¥</b>	539°-740°
8	manganate	BaMnO ₄		4.85	008 ,-140
9	metatungstate		1243.5		
10	nitrate	$Ba(NO_2)_2$		3.244 <b>23°</b>	575°
11	nitrite	`		3.173 ²⁹ °	dec. 115°
	oxalate			2.6578	uec. 115
12					PaO 4500
13	oxide	BaO		4.73-5.46	BaO ₂ .450°
14	114	BaO		5.32-5.74	
15		Ba(ClO ₄ ) ₂ .4H ₂ O			†
16	periodate	Ba ₅ (IO ₆ ) ₂			· · · · · · · ·
17		Ba(MnO ₄ ) ₂	375.3		
18	peroxide	BaO ₂	169.37		O, 450°
19	", ,	BaO ₂ .8H ₂ O		• • • • • • • • • • • • • • • • • • • •	
20	persulphate	$Ba(SO_4)_2.4H_2O$			
21		Ba ₃ (PO ₄ ) ₂			
22	mono		331.48		<b></b>
23	ui			4.165 ¹⁵ °	· · · · · · · · · · · ·
24	pyro		448.80		
25		BaPt(CN) ₄ .4H ₂ O			····
26		BaSeO ₄			
27	silicate	BaSiO ₃		4.4418	1470°
<b>2</b> 8	••	BaSiO ₃ .6H ₂ O	321.87		: : : : : : : : :
29	sulphate	BaSO4	233.44	{4.476	) 1580°
	•	1		(4.330	decomp.
30			331.53		• • • • • • • • •
31		$Ba(SH)_2.4H_2O$	275.59		
32			169.44		infusible
33	" tri		201.52		
34	" tetra	BaS.H.O			dec. 300°
35	sulphite				· · · · · · · · · · · ·
36	sulpho <b>cyanate</b>				• • • • • • • • • • • • • • • • • • • •
37				2.980 <b>20.8</b> °	
38		$BaS_2O_3.H_2O$	267.53	3.447	[
39	Beryllium (See Glu-				
	cinum)				
40	Bismuth	Bi	208.0	9.7474	270°

^{*} Loses 7H,O at 95°; 8H,O at 780°.

<u> </u>	Rolling Solubility in 100 Parts.				
Boiling			Crystalline Form		
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		v. soluble	v. soluble		crystalline
2	1400°	decomp.	decomp.	1	crystalline
3	103°	5.56 ^{15°}	182.780°	soluble al.; insol. ether.	tetragonal
4		s. soluble		soluble alcohol	needles
5		29	33	insoluble alcohol	monoclinic
		0.0080	0.21100°	insol. al.; sol. HCl, HNO,	
		17000	272100°	v. soluble alcohol	rhombic
	· · · · · · · · · · · · · ·	insoluble		decomp. by acids	green hexag
9		decomp.	v. soluble	decomp. by acids	tetragonal
	de <b>comp.</b>	5.20°	32.2100°	insol. al.; s. sol. acids	regular
		580°	9735°	1.6, 94% alcohol	hexag. needles .
9		0.0093 ^{18°}	0.0228100	sol.acids NH ₄ Cl; insol.al.	nexag. needles .
2	· · · · · · · · · · · · · · · · · · ·	1.50°	90.880°	soluble HCl, HNO ₃	amorphous
4	• • • • • • • • • •	1.0	90.000	soluble HOI, HNO ₃	regular
5	• • • • • • • • • •	v. soluble		v. soluble alcohol	hexagonal
B		v. soluble			nexagonai
7	• • • • • • • • • •	62.5 ¹¹ °	72.4 ^{25°}	soluble HNO ₃	
	· · · · · · · · · · · · · · ·				
0	• • • • • • • • • •	insoluble	decomp.	soluble dilute acids	
	· · · · · · · · · · · · · · ·	insoluble	decomp.	soluble dilute acids	
U	• • • • • • • • • •	52.2°°	• • • • • • • • • • • • • • • • • • •	soluble alcohol	prisms
1	• • • • • • • • • •	insoluble		soluble	
Z	• • • • • • • • • •	soluble			triclinic
3	· · · · · · · · · · · · · · · · · · ·	0.0102		soluble acids, NH, salts	
4	• • • • • • • • • •	0.01		soluble acids, NH ₄ salts	
5	• • • • • • • • • •	316°			gray to yel. mon.
8	· · · · · · · · · · · ·	0.0118	0.0138	insoluble HNO ₃ ; sol.HCl	
7	· · · · · · · · · · · ·	soluble	decomp.	soluble HCl	rhombic
3					
9	İ	0.0001720	0.0003 ³⁴ °	0.006, 3% HCl; sol.	
	•	0.000112	0.000	conc. H ₂ SO ₄	amorphous
D	· · · · · · · · · · · ·				
l	· • • • • • • • • • • • • • • • • • • •	soluble		insoluble alcohol	rhombic
2		decomp.		insoluble alcohol	white amorph
3	· · · · · · · · · · · ·	soluble		}	yellow green
1		41 ^{15°}	v. soluble		red rhombic
5	· • • • • • • • • • • • • • • • • • • •	0.0197 ²⁰ °	0.0017780°	v. soluble HCl	hexagonal
В	· · · · · · · · · · · · ·	soluble	[		needles
7		0.02618°	0.05890°	0.03218° alcohol	
3	· • • • • • • • • • •	0.267517.5°	1	insoluble alcohol	
9					
1			i	TH.SO.	[bohedral
0	1 <b>420°</b>	insoluble	insoluble	sol. HNO ₃ , aq. r., conc.	
		I	<u> </u>	1 27 27 27 27	Dooglo

[†] The anhydrous salt melts at 505°. ‡ Volatilizes slowly at 1300°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= I. Air= I (A). H ₂ = I (D).	Melting Point, °C.
_	Diamenth houselds	D:D-	447.76		219°
2	Bismuth bromide	Bi ₂ O ₃ .CO ₂ .H ₂ O	526.02		
3	carbonate sub	BiCl ₂	278.9	4.86	decomp. 163°
4	" tri	BiCl ₃	314.38		227°
5		BiC ₆ H ₆ O ₇	397.040		$ \frac{221}{\text{decomp}} $
6	dishromata hasia	(BiO) ₂ Cr ₂ O ₇	764.0	• • • • • • • • • • • • •	decomp.
7		Bi(OH) ₂	259.02		H ₂ O,100°
8	iodide	BiI,	588.76		>439°
9	nitrate	Bi(NO ₃ ) ₃ .5H ₂ O	484.11		74°
10	" sub	BiONO ₃ .H ₂ O:		4.928 ^{15°}	dec. 260°
11		$\text{Bi}_2(\text{C}_2\text{O}_4)_3$	680.0		
12		Bi ₂ O ₃		8.8-9.0	820°-860°
13		Bi ₂ O ₄ .2H ₂ O	516.03		O, 305°
14		Bi ₂ O ₅	496.00		O, 150°
15		Bi ₂ O ₅ .H ₂ O	514.02		H,O, 120°
16		BiOBr		8.082 ^{15°}	
17		BiOCl	259.46	7.717 ^{15°}	red heat
18	oxyfluoride	BiOF	243.0	7.55 ^{20°}	
19	oxyiodide	BiOI	350.92	7.922 ^{15°}	
20		BiPO4	303.04		
21	selenide	Bi ₂ Se ₃	653.6	6.82	decomp.
22	sulphate	$Bi_2(SO_4)_2$	704.21		
23	sulphide	Bi ₂ S ₃	512.21	7.00-7.81	decomp.
24	Boric Acid		62.02	1 . 4347 ^{15°}	184°–186°
25	Boron		11.0	(2.45 (2.554 ¹ / ₂ °	2200°- 2500°
26	bromide	BBr ₈	250.76		
27		$\mathbf{B}_{6}\mathbf{C}$		2.51	
28		BCl ₃	117.38		• • • • • • • • •
29		BF ₃	68.00	2.3 A.	-127°
30		BH ₃	14.02		• • • • • • • • • •
31		BI ₃	391.76		43°
32		$B_2O_3$		1.75–1.83	577°
33		BP	42.04		burns 200
34		$B_2S_3$	118.21		310°
35		B ₂ S ₅	182.35		390°
	Borofluohydric Acid			• • • • • • • • • • •	
37	Bromic Acid	HRLO3	128.97		dec. 100°
38	Bromine	Br ₂	159.84	3.18830°	-7.3°
	11. 11.	D-CI IOII O	005 50		70
39		BrCl.IOH ₂ O	295.58		7°
40	nuoriae	BrF ₃	130.92	: Google	o-

^{*} Loses 11 H2O at 150°.

[†] Loses 11 H2O at 300°,

Number.	Boiling		Solubility in 100 Parts.		
1400	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
- 1	453°–498°	decomp.			yellow cryst
2		insoluble		sol. a.; insol. Na ₂ CO ₂	
	dec. 300°	decomp			black needles.
4	435°–447°	decomp.		sol. al., a., acetone	
5		insoluble	,	insol. al., sol. NH ₃ aq	
6	<b></b>	insoluble	insoluble	soluble acids; insol. alk.	
7	*	insoluble		soluble acids; insol. alk.	
8		insoluble	decomp.	35.20°alcohol; sol. HI,KI	black hexag
9	dec. 75°-80°	decomp.		sol. a., 40 ^{19°} acetone	
.0		insoluble		soluble acids	hexag. plates.
11		insoluble	insoluble	soluble acids	
12		insoluble		soluble acids; insol. alk.	yellow tetrag.
13		insoluble	1	soluble acids	brownish yel
14	O ₂ , 357°	insoluble	l	soluble a., conc. KOH	brown
	O ₂ , 357°	insoluble			red
16		insoluble		soluble acids	
17		insoluble		sol. a.; insol. H ₂ C ₄ H ₄ O ₆	quadratic
18		insoluble		soluble acids $\dots$	crystalline
19		insoluble			red crystalline.
10		insoluble	insoluble	sol. HCl; insol. dil. HNO ₃	
21	· · · · · · · · · · · · ·	insoluble	lisoluble	insoluble alkalies	
22	· · · · · · · · · · · · ·	msoluble	J		
23		000010	decomp.		needles
ω	· · · · · · · · · · · ·	000018			brown rhomb.
24	t	4.9 ^{21°}	28.7100°	0.24 ^{25°} ether, sol. al. 28 ^{20°} , 72 ^{100°} glycerene	clinic mono-
	( sublimes	insoluble	insoluble	insol. al., ether; sol. conc.	green amornh
25	3500°	insoluble	insoluble		monoclinic
)6	90.5°	decomp.	insoluble	decomp. by alcohol	inonocimic
27	50.5	insoluble	insoluble	insol.a.; dec.fused KNO ₃	blook orvetale
	18.2°	decomp.	institute	decomp. by alcohol	
	-101°	105.7 c.c.0°			
	-101-	s. soluble		decomp. by alcohol soluble NH ₄ OH	
	210°			soluble NH ₄ OH	ament plates
		decomp.	16.4 ^{102°}	v. soluble CS ₂ , CCl ₄	
	high temp.			soluble al., conc. a	
	· · · · · · · · · · · · ·	insoluble	insoluble	insoluble, all solvent	
14	· · · · · · · · · · · · · · ·	decomp.		s. soluble, PCl ₃ , SCl ₂	crystals
		decomp.			crystalline
	130°	soluble	1		
37		v. soluble	decomp.		: • • • • • • • • • • • • • • • • • • •
18	58.7°	4.170°	3.4950	sol. alk., CS ₂ , ether, al.,	
	l i		1	CHCl ₃ KBr, H ₂ O	[crystals
	‡	soluble		soluble CS ₂ , ether	
40	130-140°	decomp.	1	decomp. by alk	prisms
_			Decompos	es above 10°	0

[‡] Decomposes above 10°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H ₂ = 1 (D).	Melting Point, °C.
			340.00		dec. 15°
2		Cd	112.4	8.642 ^{17°}	321°
3		$Cd(C_2H_3O_2)_2.3H_2O$	284.50	2.01	
4	borotungstate	Cd ₂ B ₂ W ₉ O ₃₂ .18H ₂ O	2739.1	ļ <u> </u>	<u> </u>
. 5			398.26	3.758	decomp.
6		CdBr ₂	272.24	5.192*	568°
7	carbonate	CdCO ₃	172.40	4.258	decomp.
8	chlorate		315.35		80°
9	chloride	CdCl ₂	183.32	4.054	563°
10	1		219.35	3.327	1
11			164.42		dec. 200°
12			436.70	1	1
13	fluoride	CdF ₂	150.40	6.64	520
14			220.43	2.45	decomp.
15		Cd(OH)2	146.42	4.79 ^{15°}	H ₂ O, 300°
16	iodate		462.24	5.644-5.98	decomp.
17	iodide		366.24	5.644	385°
18	lactate		302.48		
19	nitrate		308.48	2.455	59.5°
20	oxalate	CdC ₂ O ₄ .3H ₂ O	254.45	3.32 ¹⁸ ° *	decomp.
21		CdO	128.40	6.95	infusible
22		CdO	128.40	8.11	""
23	oxide sub-	Cd.O	465.6		decomp.
23 24	permanganate		458.36		decomp.
24 25	phosphate		527.28		gecomp.
26			527.28 734.29	3.359	
20 27	selenate	CdSeO ₄ .2H ₂ O			1
28			291.63	3.632 4.72 ¹⁵ °	10000
		CdSO	208.47		1000°
29		3CdSO,4H,0	769.54	3.087**°	
30		CdSO ₄ .4H ₂ O	280.53	3.05	
31		CdS	144 . 47	3.9-4.8	white heat
32			144.47	4.8-4.9	
33	sulphite		192.47		decomp.
34			360.40	J	l
1			132.81	1.8720	26.37°
36			212.73	4.455 ^{21.4°}	
37	bromoiodide	CsBrI ₂	466.57	ļ	
38	carbonate	Cs ₂ CO ₃	325.62		1
39	carbonate acid	CsHCO ₃	193.818		½CO₂, 175°
40	chloraurate	CsAuCl4	471.85		l
41	chloride	CsCl	168.27		646°
42		Cs ₂ PtCl ₅	673.58		
		CsCrO4		4.237000	1

^{*} Anhydrous.

ě.	Boiling		Solubility in	1 100 Parts.	
Number.	Point, °C.	Cold	Hot	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
		Water.	Water.	Alkalies (alk.), etc.	
1		soluble		<b> </b>	red octahedra.
2	778°	insoluble	insoluble	sol. a., NH ₄ NO ₃	crystalline
3		v. soluble			monoclinic
4		1250 ^{19°}			
5		125 ^{17°}			triclinic
6	806°-812°	61.10°	161 ¹⁰⁰ °	26.615° al., 0.415° ether	crystalline
7		insoluble	insoluble	sol. acid, NH, salts	
8		339 ^{0°}	549 ⁶⁵ °	soluble acids	
9	861°-954°	140 ^{20°}	150 ¹⁰⁰ °	1.52 ^{15°} alcohol	hexagonal
10		168 ^{20°}	180 ¹⁰⁰ °	$2.05^{15^{\circ}}$ methyl alcohol.	monoclinic
11		1.7 ^{15°}		sol. KCN, NH ₄ OH, a	crystalline
12		insoluble		sol. HCl	
13	1000°	4.36 ^{15°}		insol. al.; sol. acids	crystalline
		v. soluble		[salts	monoclinic
15		0.00026 ^{25°}		insol. alk.; sol. a., NH,	hexagonal
16	,	s. soluble	s. soluble	soluble HNO ₃ , NH ₄ OH.	crystalline
17	708°719°	80.10°	128 ¹⁰⁰ °	sol. al., ether, NH ₄ OH.	brownish
18		10	12.5	insoluble alcohol	needles
	132°	143 . 4 ^{0°}		sol. al.; insol. HNO ₃	prism. needles.
20		0.00337 ^{18°}	0.009	sol. a., NH ₃ aq	
21		insoluble	insoluble	soluble acid, NH ₄ salts	
22		insoluble	insoluble	insol. alk	regular
23				decomp. by alk., acids.	green amorph.
24		v. soluble	[. <b></b>		
25		insoluble		soluble NH ₄ salts, acids.	amorphous
26		137 ^{15°}	[	71 ^{15°} al.; 42 ^{15°} ether	
27		v. soluble			rhombic
28		76.50°	60.8 ¹⁰⁰ °		
29		114.20°	87100°		monoclinic
30		140°	135.5 ^{100°}	insoluble alcohol	[or amorph.
	subl. 980°	(.00013	colloidal s.	v. s. sol. NH ₄ OH; sol. a	yellow hexag
32		(insoluble		soluble conc. acids	yellow hexag
33		s. soluble		insol. al.; sol. a., NH ₄ OH	
34		0.05	<u> -</u>		yellow crystals
- 1	670°	decomp.	decomp.		silvery yellow.
36		soluble		decomp. by alcohol	
37		decomp.		soluble alcohol	
	dec. 610°	382.3 ^{20°}	v. soluble	11.1 ^{19°} , 20.1 ^{79°} alcohol.	
39		210.2	v. soluble		rhomb. prisms
40		0.5100	38100°	soluble alcohol	• • • • • • • • • • • • • • • • • • •
41		161.40°	270.5 ^{100°}		regular
42		0:0240°	0.377 ^{100°}		yellow regular.
43		71.35 ¹³ °	88.66 ³⁰ °	Digitized by	oogle

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A). H ₂ =1(D).	Melting Point, °C.
1	Auroauric bromide	AuBr	357.04		dec. 115°
2	chloride	AuCl	268.12		dec. 250°
3	oxide	Au ₂ O	410.4		dec. 250°
4	sulphide	AuS	229.27		dec. 140°
	Aurobromhydric Acid		607.96		27°
	Aurous bromide	AuBr	277.14		dec. 115°
7	chloride	AuCl	232.66	SCHOOL STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,	
8	cyanide	AuCN	223.21		decomp.
9		AuI	The second second	the recommendation of the residence	dec. 120°
10	oxide	Au ₂ O	410.40		dec. 250°
11	sulphide *	Au _o S	426.47		dec. 200
	Barium	Ba	127 27	3.78	850°
12	Darium	Da	101.01	9.10	000
13	acetate	Ba(C,H,O,),H,O	273.43	2.02	decomp.
14	arsenate	$Ba_3(AsO_4)_2$	690.07	PT-15-LP-14-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	decomp.
15	26.2 (2.0 (2.0 (2.0 (2.0 (2.0 (2.0 (2.0 (2	BaHAsO, H ₂ O	143 143 ACM THE RESERVE		H.O. 150°
100.3				4.36150	Market Control
16	boride	BaB ₆	TO C SUBJECT		descent
17	bromate	Ba(BrO ₃ ) ₂ .H ₂ O	411.23		decomp.
18	bromide	BaBr ₂		4.781*	880°
19	*******	BaBr ₂ .2H ₂ O		3.852*	2H,0,100
20	carbide	BaC ₂	161.37		And the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of th
21	carbonate	BaCO ₃	197.37		1380
22	chlorate	0/4	322.31		01454
23	chloride	BaCl ₂		3.856*	960*
24	<i>a</i>	BaCl ₂ .2H ₂ O			800, 4
25	chloroplatinate	BaPtCl ₆ .4H ₂ O	617.39	2.86	
26	chloroplatinite	BaPtCl ₄ .3H ₂ O	528.46	2 00	
27	chromate	BaCrO ₄	253		
28	cyanide	Ba(CN)2	H.		
29	dichromate	BaCr ₂ O ₇ ,			
30	"	BaCr ₂ O ₇ .2H ₂ O			
31	dithionate	BaS.O., 2H.O.			
32	ferrocyanide	Ba ₂ Fe(CN) _a c			
33	fluoride	BaF,			
34	fluosilicate	BaSiF ₀			
35	fluobromide	BaBr			
36	fluochloride	BaCl			
37	fluoiodide	Bal			
38	formate	Ba			

^{*} For other com-

Point, Cold Water.    Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Boiling		Solubility in	100 Parts.	Crystalline Form
decomp. insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble acids, a.; insol. b'z'l, silvery crystals insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble acids, NH ₄ Cl  1250° insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble	Point,	Cold Water.		Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
il il [plate yellow rhombic	vol. 950°	decomp. insoluble insoluble v. soluble insoluble insoluble insoluble insoluble insoluble decomp.  62.9-3° 0.055  insoluble 0.30° 980° 1250° dec. to C.H. 0.0022° 30.40°	decomp. insoluble s. soluble insoluble decomp. 80.599° insoluble 5.67100° 149100° 181.7100°	soluble cold HCl. insol. acids; sol. (NH ₄ ) ₂ S decomp. by acid. insol. acids; sol. KCN. sol. excess KI. sol. HI, alkalies insoluble acids. sol. al., a.; insol. b'z'l, petroleum insoluble alcohol. soluble acids, NH ₄ Cl. soluble HNO ₃ .  v. soluble methyl al. tlecomp. by acids. NH ₄ Cl. HCl,	dark red. olive brown black red crystals grayish yellow yellowish white yellow crystals yellow violet black silvery crystals prisms pearly crystals black regular monoclinic gray crystals rhombic
yellow needle hombic flow monoc		jan-			red monoclinic, [plates yellow rhombic
A Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sect		al un	1		red monocl. pr. yellow needles shombic. How monocl. ortahedral

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = I. Air = I (A). H ₂ = I (D).	Melting Point, °C.
1	Barium hexanitride	BaN.H.O	289.45		explodes
2	hvdride	BaH	139.39		volatile
3	hydroxide	Ba(OH),.8H ₂ O	315.51	1	78° *
4	hypophosphate	$Ba_2P_2O_6$	432.82		
5	hypophosphite	$Ba(H_2PO_2)_2.H_2O$	285.50		
6	iodate	$Ba(IO_3)_2.H_2O$	505.23		H₂O, 130°
7	iodide	BaI.		5.150¥	539°-740°
8	manganate	BaMnO ₄		4.85	000 , 110
9	metatungstate	BaW ₄ O ₁₃ .9H ₂ O	1243.5		
10	nitrate	$Ba(NO_3)_2$		3.244 <b>23°</b>	575°
11		$Ba(NO_3)_2.H_2O$		3.173 ²⁹ °	dec. 115°
12	oxalate			2.6578	
13	oxide	BaO		4.73-5.46	BaO ₂ .450°
14	"	BaO		5.32-5.74	DaO2.450
15	namahlamata	Ba(ClO ₄ ) ₂ .4H ₂ O		5.52-5.14	†
		$Ba_s(IO_4)_2.4II_2O$			1
16			375.3		•••••
17	permanganate		169.37	4 06	O, 450°
18	peroxide				
19		BaO ₂ .8H ₂ O			
20		Ba(SO ₄ ) ₂ .4H ₂ O		• • • • • • • • • • • • •	
21	phosphate tri	$D_{-}II_{-}(PO_{4})_{2}$			
22		BaH ₄ (PO ₄ ) ₂	331.48		· · • · • · · · · ·
23	ai	BaHPO	233.42 448.80	4.165 ^{15°}	• • • • • • • • •
24	pyro				
25		BaPt(CN) ₄ .4H ₂ O	508.67		· · · · · · · · · ·
26	selenate		280.57		14700
27	silicate			4.44 ^{18°}	1470°
28	••	BaSiO ₃ .6H ₂ O	321.87	(4.470	1,5000
29	sulphate	BaSO ₄	233.44	(4.476	) 1580°
	<del>-</del>	_	001 50	(4.330	decomp.
30	sulphate acid	Ba(HSO ₄ ) ₂	331.53		• • • • • • • •
31	sulphydrate	$Ba(SH)_2.4H_2O$	275.59		
32	sulphide mono		169.44		infusible
33	" tri		201.52		
34	tetra	BaS ₄ .H ₂ O	283.67		dec. 300°
35	sulphite	BaSO ₃			· · · · · · · · · · · ·
36	sulphocyanate	Ba(CNS) ₂ .2H ₂ O			• • • • • • • • • •
37	tartrate			2.980 <b>20.8°</b>	• • • • • • • •
38		$BaS_2O_3.H_2O$	267. <b>5</b> 3	3. <b>44</b> 7	
39	Beryllium (See Glu-				
	cinum)	<b>.</b>	200 6		0700
40	Bismuth	Bi	208.0	9.7474	270°

^{*} Loses 7H₂O at 95°; 8H₃O at 780°.

Boiling			Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
3 4 5 6 7 8 9	1400° 103° decomp.	v. soluble decomp. 5.56 ^{15°} s. soluble 29 0.008° 170° insoluble decomp. 5.20° 58° 0.0093 ^{18°} 1.50° v. soluble insoluble 62.5 ^{11°} insoluble insoluble 52.20° insoluble 0.01–.02 0.01 316°	v. soluble decomp. 182.780°	soluble al.; insol. ether. soluble alcohol. insoluble alcohol. insol. al.; sol. HCl, HNO ₃ v. soluble alcohol. decomp. by acids. insol. al.; s. sol. acids. 1.6, 94% alcohol. sol.acids NH ₄ Cl; insol.al. soluble HCl, HNO ₃ v. soluble alcohol. soluble HNO ₃ . soluble dilute acids. soluble dilute acids.	needles. monoclinic. monoclinic. rhombic. green hexag. tetragonal regular. hexag. needles amorphous regular. hexagonal.  prisms triclinic rhombic needles
6		0.0118 soluble	0.0138 decomp.	insoluble HNO ₃ ; sol.HCl soluble HCl	
8 9	‡	0.0001720°	0.0003 ³⁴ °	0.006, 3% HCl; sol. conc. H ₂ SO ₄	rhombicamorphous
0 1 2 3 4 5 6 7 8		soluble decomp, soluble 41 ^{15°} 0.019720° soluble 0.026 ^{18°} 0.2675 ^{17.5°}	v. soluble 0.00177 ⁸⁰ ° 0.058 ⁹⁰ °	insoluble alcohol, CS ₂	hexagonal
1	1 <b>420°</b>	insoluble	insoluble	[H ₂ SO ₄ sol. HNO ₃ , aq. r., conc.	

[†] The anhydrous salt melts at 505°. ‡ Volatilizes slowly at 1300°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Bismuth bromide		447.76	5.60	219°
2	carbonate sub	Bi ₂ O ₃ .CO ₂ .H ₂ O	526.02	6.86	decomp.
3	chloride di	BiCl ₂		4.86	163°
4	" tri	BiCl ₃	314.38	4.56 ^{11°}	227°
5	citrate	BiC ₆ H ₅ O ₇	397.040		decomp.
6	dichromate basic	(BiO) ₂ Cr ₂ O ₇	764.0		
7		Bi(OH) ₃	259.02		H ₂ O,100°
8		BiI ₃	588.76		>439°
9	nitrate	$Bi(NO_3)_3.5H_2O$	484.11		74°
10	" sub	BiONO ₃ .H ₂ O:	304.03	4.928 ^{15°}	dec. 260°
11	oxalate	$\text{Bi}_2(\text{C}_2\text{O}_4)_3$	680.0		
12		Bi ₂ O ₃	1	8.8-9.0	820°–860°
13	" tetra	Bi ₂ O ₄ .2H ₂ O	516.03		O, 305°
14	" penta	Bi ₂ O ₅	496.00		O, 150°
15	" "	Bi ₂ O ₅ .H ₂ O	514.02		H ₂ O, 120°
16	oxybromide	BiOBr		8.08215°	
17	oxychloride	BiOCl		7.717 ^{15°}	red heat
18	oxyfluoride	BiOF		7.55 ^{20°}	
19	oxyiodide	BiOI		7.922 ^{15°}	
20		BiPO₄	303.04		
21		Bi ₂ Se ₃		6.82	decomp.
22	sulphate	Bi ₂ (SO ₄ ) ₃	704.21		
23	sulphide	$\mathrm{Bi}_{2}\mathrm{S}_{3}$	512.21	7.00-7.81	decomp.
24	Boric Acid	H ₈ BO ₃	62.02	1 . 4347 ^{15°}	184°-186°
		B	11.0	(2.45 (2.554 ¹ / ₄ °	2200°- 2500°
26		BBr ₃	250.76		
27		B ₆ C	78.0	2.51	
28		BCl ₃	117.38		_127°
29	nuoride	BF ₃		2.3 A.	-12/
30	hydride · · · · · · · ·	BH ₃	14.02		420
31		BI ₃	391.76		43° 577°
32	oxide	$B_2O_3$		1.75–1.83	1
33	phospnide	BP	42.04 118.21		burns 200
34	sulphide tri	$B_2S_3$			310° 390°
35		$\mathbf{B_{2}S_{5}}$	182.35	1.80	390-
	Borofluohydric Acid		100.01		d 1000
	Bromic Acid			3.18830°	dec. 100°   -7.3°
38	Bromine	DI ₂	109.64	9 · 1009	-1.3
39	chloride	BrCl.IOH ₂ O	295.58		7°
40	fluoride	BrF ₃	136.92	مام ورون	5°
			Entitize	TT O -4 2000	

^{*} Loses 11 H₂O at 150°.

[†] Loses 11 H2O at 300°,

ber.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1	453°-498°	decomp.		soluble ether, HBr	yellow cryst
3	dec. 300°	insoluble decomp		sol. a.; insol. Na ₂ CO ₃	black needles.
4	435°-447°	decomp.		sol. al., a., acetone	Diack needles .
5		insoluble	 		crystalline
6	· · · · · · · · · · · · · · · ·	insoluble	insoluble	soluble acids; insol. alk.	
7	*	insoluble	<u>.</u>	soluble acids; insol. alk.	
ð		insoluble	decomp.	35.20°alcohol; sol. HI,KI	black hexag
9 10	dec. 75°–80°			sol. a., 40 ^{19°} acetone	
11	•••••	insoluble			hexag. plates.
	• • • • • • • • • • • •	insoluble	insoluble	soluble acids	
13	• • • • • • • • • • •	insoluble insoluble		soluble acids; insol. alk. soluble acids	brownish yel
	O ₂ , 357°	insoluble			brown
15	$O_2$ , 357° $O_2$ , 357°	insoluble		soluble a., conc. KOH	red
16		insoluble		soluble acids	
17		insoluble		sol. a.; insol. H ₂ C ₄ H ₄ O ₄	quadratic
18		insoluble		soluble acids	crystalline
19		insoluble		soluble acids; insol. KI.	red crystalline.
20		insoluble	insoluble	sol. HCl; insol. dil. HNO	
21		insoluble		insoluble alkalies	black
22			decomp.	soluble acids	needles
23	· · · · · · · · · · · · ·	. 000018		soluble HNO	brown rhomb.
24	t	4.921°	28.7 ^{100°}	(0.24 ^{25°} ether, sol. al. 28 ^{20°} , 72 ^{100°} glycerene	triclinic mono- clinic
25	sublimes	insoluble	insoluble	insol. al., ether ;sol. conc.	green amorph.
	( 3500°	insoluble	insoluble	HNO ₂ , conc. H ₂ SO ₄ .	monoclinic
	90.5°	decomp.		decomp. by alcohol	
27		insoluble	insoluble	insol.a.; dec.fused KNO ₃	
	18.2°	decomp.		decomp. by alcohol	
<b>39</b>	-101°	105.7 c.c.0°		decomp. by alcohol	<b></b>
- 1	210°	s. soluble		soluble NH,OH	
- 1		decomp.	16.4 ^{102°}	v. soluble CS ₂ , CCl ₄	
	high temp.	insoluble	insoluble	soluble al., conc. a	
		decomp.	insoluble	insoluble, all solvent s. soluble, PCl ₂ , SCl ₂	
		decomp.			crystals
	130°	soluble			ystanine
17		v. soluble	decomp.		
	58.7°	4.170°	3 . 4950°	sol. alk., CS ₂ , ether, al.,	brown red
				CHCl ₃ KBr, H ₂ O	crystals
19	1	soluble	l	soluble CS ₂ , ether	yellow brown
	130-140°	decomp.		decomp. by alk that the total	prisms
_			Dasamasa	es above 100	

[‡] Decomposes above 10°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H ₂ = 1 (D).	Melting Point, °C.
	Bromine hydrate	Br ₂ .IOH ₂ O	340.00		dec. 15°
		Cd	112.4	8.642 ^{17°}	321°
3	acetate	$Cd(C_2H_8O_2)_2.3H_2O$	284.50	2.01	
4	9	$Cd_2B_2W_9O_{32}.18H_2O$	2739.1		
5	bromate	$Cd(BrO_3)_2.H_2O$	398.26	3.758	decomp.
6	bromide	$CdBr_2$	272.24	5.192¥	568°
7	carbonate	CdCO ₃	172.40	4.258	decomp.
8	chlorate	Cd(ClO ₃ ) ₂ .2H ₂ O	315.35		80°
9	chloride	CdCl ₂	183.32	4.05¥	563°
10	<i>«</i>	CdCl ₂ .2H ₂ O	219.35	3.327	<u>.</u>
11	cyanide	$Cd(CN)_2$	164.42		dec. 200°
12	ferrocyanide	$Cd_2Fe(CN)_6$	436.70		
13	fluoride	$[CdF_2$	150.40	6. <b>64</b>	520
14	formate	Cd(CHO ₂ ) ₂ .H ₂ O	220.43	2.45	decomp.
15	hydroxide	[Cd(OH)₂	146.42	4.79 ^{15°}	H ₂ O, 300°
16	iodate	$Cd(IO_3)_2$	462.24	5.644-5.98	decomp.
17	iodide	CdI ₂	366.24	5.644	385°
18	lactate	$Cd(C_3H_5O_3)_2$	302.48		
19	nitrate	$Cd(NO_8)_2.4H_2O$	308.48	2.455	59.5°
20	oxalate	$CdC_2O_4.3H_2O$	254.45	3.32 ^{18°} *	decomp.
21	oxide	CdO	128.40	6.95	infusible
22	"	CdO	128.40	8.11	"
23	oxide sub	Cd₄O	465.6	8.21-8.18 ^{19°}	decomp.
24	permanganate	$Cd(MnO_4)_2.6H_2O$	458.36		decomp.
25	phosphate	$Cd_3(PO_4)_2$	527.28		
26	potassium iodide	CdI, 2KI.2H,O	734.29	3.359	
27	selenate	CdSeO ₄ .2H ₂ O	291.63	3.632	}
28	sulphate	CdSO,	208.47	4.72150	1000°
29	-"·	3CdSO, 8H ₂ O	769.54	3.087¾°	
30	"	CdSO ₄ .4H ₂ O	280.53	3.05	
31	sulphide artificial	CdS	144.47	3.9-4.8	white heat
32	" greenockite	CdS	144.47	4.8-4.9	
33	sulphite	CdSO ₃	192.47		decomp.
34	tungstate	CdWO	360.40		
35	Caesium	Cs	132.81	1.87 ²⁰ °	26.37°
36	bromide	CsBr	212.73	4.455 ^{21.4°}	
37	bromoiodide	CsBrI,	466.57		
38	carbonate	Cs,CO,	325.62		
39	carbonate acid	CsHCO ₂	193.818		½CO₂, 175°
40		CsAuCl.	471.85		[
41		CsCl	168.27	3.9723	646°
42		Cs ₂ PtCl ₆	673.58		. <b>.</b>
$\frac{1}{43}$		CsCrO ₄	248.81	4.237	

^{*} Anhydrous.

ij	Boiling	Solubility in 100 Parts.			
Number	Point, °C.	Cold Water	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
-		soluble			red octahedra.
3	778°	insoluble v. soluble	insoluble	sol. a., NH ₄ NO ₃	crystalline
4		1250 ^{19°} 125 ^{17°}			triclinic
6	806°–812°	61 . 10°	161 ¹⁰⁰ °	26.6 ^{15°} al., 0.4 ^{15°} ether	crystalline
8		insoluble 339 ^{0°}	insoluble 549 ⁶⁵ °	sol. acid, NH ₄ salts soluble acids	
9 10	861°-954°	140 ^{20°} 168 ^{20°}	150 ¹⁰⁰ ° 180 ¹⁰⁰ °		hexagonal monoclinic
11 12		1.7 ^{15°} insoluble		sol. KCN, NH ₄ OH, a sol. HCl	crystalline
	1000°	4. 36 ^{15°} v. soluble		insol. al.; sol. acids	crystalline monoclinic
15 16		0.00026 ²⁵ ° s. soluble	s. soluble		hexagonal
	708°–719°	80.10°	128 ^{100°}	sol. al., ether, NH ₄ OH .	brownish
19	132°	10 143 . 40°	12.5		needles prism. needles.
20 21		0.00337 ^{18°} insoluble	0.009 insoluble	sol. a., NH ₃ aq   soluble acid, NH ₄ salts	
22 23		insoluble	insoluble	insol. alkdecomp. by alk., acids.	regular green amorph.
24 25		v. soluble insoluble		soluble NH ₄ salts, acids.	amorphous
26 27		137 ^{15°} v. soluble		71 ^{15°} al.; 42 ^{15°} ether	rhombic
28 29		76.50° 114.20°	60 . 8 ¹⁰⁰ °		monoclinic
30 31	subl. 980°	140° (.00013	135.5 ^{100°} colloidal s.	insoluble alcohol v. s. sol. NH,OH; sol. a	[or amorph.
32 33		insoluble s. soluble		soluble conc. acidsinsol. al.; sol. a., NH ₄ OH	yellow hexag
34		0.05		soluble NH OH	yellow crystals
36	670°	decomp. soluble	decomp.	soluble acids, alcohol decomp. by alcohol	
	dec. 610°	decomp. 382.3 ^{20°}	v. soluble	soluble alcohol 11.1 ^{19°} , 20.1 ^{79°} alcohol.	
39 40		210.2 0.5 ^{10°}	v. soluble 38 ¹⁰⁰ °	soluble alcohol	rhomb. prisms
41 42		161 . 4 ^{0°} 0 : 024 ^{0°}	270.5 ^{100°} 0.377 ^{100°}		regular yellow regular.
43		71.35 ^{13°}	88.66 ³⁰ °	Digitized by $G$	oogle

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Caesium cyanide	CsCN	158.82		
2		Cs.SiF		3.37617	
3	hydride	CsH	133.82		decomp.
4	hydroxide	CsOH	149.82	4.018	<272.3°
5	iodide	CsI		4.5107	621°
6		CsBr.2HgBr	932.41		
7	mercuric chloride	CsCl.HgCl ₂	439.18		
8	nitrate	CsNO,	194.82	3.687♥	414°
9	oxide mon	Cs ₂ O	281.62		*
10	" di	Cs ₂ O ₂	297.62	4.4715°	400-450°
11		Cs,O,	313.62	4.250°	400°
12		Cs ₂ O ₄	329.62	3.77 ^{19°}	515°
13		Cs,S,		2.80616°	202°-205°
14	perchlorate	CsClO	232.27		decomp.
15		CsIO		4.259¥	
16		CsMnO ₄		3.5974 ^{10.3°}	decomp.
17		Cs ₈ SiW ₁₂ O ₄₂	3970.8		
18		Cs,SO,		4.2434	
19		Cs,S.4H,O		•	
20		Cs.S	329.78		460°
21	" "	Cs,S,.H ₂ O			
22	" tri	Cs ₂ S ₃			217°
23	tartrate acid	CsHC ₄ H ₄ O ₆			
24	Calcium	Са		1.544629.20	805°
25		$Ca(C_2H_3O_2)_2.H_2O$	176.13		decomp.
26		CaAl ₂ O ₄	158.28	3.671 ^{20°}	1587°
27	ammonium arsenate	NH,Ca.AsO,.6H,O	305.17	1.905 ^{15°}	decomp.
28		CaNH, PO, 7H, O		1.561 ^{15°}	decomp.
29		Ca ₃ As ₂	270.13		decomp.
30	borate	$Ca(BO_2)_2.2H_2O$	162.10		
31		CaB _a	106.07	2.33 ^{15°}	
32		CaBr,		3.353**°	485°-760°
33		CaBr,.6H,O	308.18		38°
34		CaC ₂	64.07	2.22180	
35		CaCO ₃		2.72-2.95	dec. 825°
36		Ca(ClO ₃ ) ₂	206.99		>100°
37		CaCl,		2.152**°	77 <b>4°</b>
38		CaCl ₂ .H ₂ O	129:01		<b></b>
39		CaCl,.6H,O	219.09	1.654	29.48°
40		CaCrO ₄ .2H ₂ O			2H.O.200°
41		$Ca_3(C_0H_7O_7)_2.4H_2O$			decomp.
42					
			1	Casala	

^{*} Absorbs 30 at 150°. Digitized by GOOS

ber.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
		60 ^{17°} decomp.	v. soluble decomp.	insoluble alcoholinsoluble alcoholdecomp. by acids	regular
5		301.3 ^{30°} 27.7 ^{0°} 0.807 ^{16°}	soluble 51 . 5 ^{35.6°}	soluble alcohol	grayish
	decomp.	1 . 406 ^{17°} 9 . 33 ^{0°}	197100,	insoluble alcohols. soluble alcohol	cubic
10 11	†	v. soluble soluble decomp.			orange red crys. yellow needles choc. brown
13 14		decomp. insoluble	• • • • • • • • • • •	soluble alcoholinsol. absolute alcohol	yellow cryst.
15 16 17		2.15 ^{15°} 0.097 ^{1°} 0.005 ^{20°}	1 . 25 ⁵⁹ ° 0 . 52 ¹⁰⁰ °	insol. alcohol, HCl	rhombic plates
18 19 20		167% v. soluble hygroscopic	220.3100° v. soluble	insoluble alcohol	needles crystals dark red amor.
21 22 23	>800°	soluble  9.7 ^{25°}	98100°	[benzol	quadratic crys. orange [or rhombohed
24 25 26		decomp. 43.60° decomp.	decomp. 34.3 ¹⁰⁰ °	sol. a., sodium; insol. s. soluble alcohol	
27 28 29		0.02 insoluble decomp.	soluble insoluble decomp.	insol.NH4OH;sol.NH4Cl soluble acids	monocl. plates
30 31		$0.40^{30^{\circ}}$ insoluble $1250^{\circ}$	0.40% insoluble 312105%	soluble acids, NH ₄ salts soluble HNO ₃	
	149°–150°	500° decomp. to 0.0013	C ₂ H ₂ 0.088		crystalline
36 37 38		59.50° 69.10°	0.088 154 ^{99°} 205 ^{99°}	soluble alcoholsoluble alcoholsoluble alcoholsoluble alcoholsoluble alcoholsoluble alcohol	rhombic
39 40	129°-130°	117.40° 22.20°	4.3 ¹⁰⁰ °	soluble alcoholsol. alcohol.acids	vellow prisms.
41 42		0.08518°	0.096 ^{25°} 50 ^{90°}	0.0065 ^{18°} alcohol	

[†] Loses oxygen at 650°. ‡ Also hexagonal or rhombohedral.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A). H ₂ =1(D).	Melting Point, °C.
1	Calcium fluoride	$CaF_2$		3.15-3.18	1300°
2	fluosilicate	CaSiF ₄	183.37	2.662 ^{17.5°}	
3	formate	Ca(CHO ₂ ) ₂	130.09	2.021	decomp.
4	hydride	Ca.H.,	42.09	1.7	<del>.</del>
5	hydroxide	$Ca(OH)_2 \dots$	74.09	2.078	
6	hypochlorite	$Ca(ClO)_2.4H_2O$	215.05		decomp.
7	hypophosphate	$Ca_2P_2O_6.2H_2O$	274.25		<del>.</del>
8	hypophosphite	$Ca(H_2PO_2)_2$	170.16		
9	iodate	Ca(IO ₃ ) ₂			decomp.
10	iodide	Cal,	293.91	3 . 956%	631°-740°
11	44	Cal, 6H,O	402.01		42°
12	lactate	$Ca(C_3H_5O_2)_2.5H_2O$			3H,O,100°
13	nitrate	Ca(NO ₂ )	164.09	2.36	561°-499°
14	"	$Ca(NO_3)_2.4H_2O$	236.15	1.82	42.31°
15	nitrid	$Ca_3N_2$	148.23	2.63 ^{17°}	1200°
16	nitrite		150.11	2.23134°	l
17		CaC,O,H,O	146.09	2.24° *	decomp.
18	oxide			3.15-3.40	1995°
19		$Ca(MnO_4)_2.4H_2O$			decomp.
20		CaO ₂ .8H ₂ O	216.20		8H,O,130°
21			310.29		
22		CaHPO.2H,O	172.15	2.3064.50	decomp.
23		$CaH_4(PO_4)_2.H_2O$		2.220140	H ₂ O,100°
24		$Ca_2P_2O_7.4H_2O$	326.28	 	
25		Ca ₂ P ₂		2.51 ^{15°}	dif. fusible
26	phosphite	2CaHPO,3H2O			l
27		Ca ₂ PbO ₄			
28		CaPbO,			
29		$CaK_2(SO_4)_2.H_2O$	328.43	2.617°	
30	salicylate	$Ca(C_7H_5O_3)_2.2H_2O$	350.18		
31	silicate	CaSiO,	116.37	2.919 ^{18°}	1512°
32	silicide	CaSi ₂	96.68		1
33		CaSO,	136.14		1360°
34		CaSO ₄ .2H ₂ O	172.17		2H ₂ O,900°
35	sulphydrate	$Ca(SH)_2.6H_2O$	214.32		dec. 15-18
36		CaS		2.8 ^{15°}	fusible
37	sulphite	CaSO ₃ .2H ₂ O	156.17		2H ₂ O,100°
38	sulphocarbonate	CaCS ₃	148.28		
39		$Ca(CNS)_2.3H_2O$			
40		$CaC_4H_4O_6.4H_2O$			decomp.
41	thiogulphate	$CaS_2O_3.6H_2O$	260.31		
42	tinostate	CaWO ₄	288.07		
	oungouse	04	1-00.01	- Capal	1

^{*} Density of the anhydrous salt.

1		Solubility in 100 Parts.			
å	Boiling				Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		0.0016 ^{18°}		s. soluble conc. acids	regular
2		s. soluble		soluble HF, HCl, al	
3		16 ^{0°}	18.4100°	insoluble alcohol	
4		decomp.	decomp.	insol. benzine; dec. by a.	
5	1	0.170°	$0.08^{100^{\circ}}$	sol. NH ₄ Cl	hexagonal
6	,	deliques.	decomp.		
7		insoluble		soluble H ₄ P ₂ O ₆ , HCl	
8	1	17		insoluble alcohol	
9		$0.4^{15^{\circ}}$	1.33 ¹⁰⁰ °	soluble HNO3	rhombic
	708°-719°	192 ^{0°}	435 ^{92°}	soluble acids, al	plates
11	160°	9070°			
12		10.5		insol. ether; sol. alcohol	
		93.1°°	351 . 2 ^{152°}	14 ¹⁵ alcohol; sol. amyl. al	prisms
	132°	134 ^{0°}	506 ^{152°}		monoelinie
		$\mathbf{decomp.}$	decomp.	sol.dil.acids; insol ab.al.	brown crystals
1		deliques.	v. soluble	insoluble alcohol	prisms
17		$0.000554^{18^{\circ}}$	0.0014 ⁹⁵ °	sol. a.; insol. $H.C_2H_3O_2$ .	octahedral
18			0.06 ¹⁰⁰ °	soluble acids	regular
		331 ^{14°}	388 ²⁵ °	[NH4 salts	purple prisms.
20		s. soluble	$\mathbf{decomp.}$	insol. al., ether; sol. a.,	
21		0.003-0.008			amorphous
22		0.028		insol. al.; sol H ₄ C ₆ H ₇ O ₇	
	dec. 200°	4 ^{15°}	decomp.		rhombic
24		s. soluble		soluble a.; insol. NH ₄ Cl	
25		decomp.		insol. al., ether; sol. dil.a	red crystals
26		s. soluble		sol. NH ₄ Cl; insol. al	
27		insoluble		soluble acids	brown crystals
28		s. soluble		• • • • • • • • • • • • • • • • • • • •	crystalline
29	· · · · · · · · · · · ·	0.25	decomp.		monoclinic
30 31		v. soluble		soluble alcohol	
1		0.0095 ^{17°}	• • • • • • • • •	soluble HCl	monocl, or hex-
32		insoluble	0.4501000.6	1 37 00 3777	[agonal
33	· · · · · · · · · · · · ·	0.17900	0.1781000	$sol. a., Na_2S_2O_3, NH_4 salts$	rhombic
34	• • • • • • • •	- ·		sol. HCl, NaCl, glycerine	
35		v. soluble			prismatic
36 37		0.15 ^{10°}			regular
	· · · · · · · · · · · · ·	0.125		soluble H ₂ SO ₃	
38	• • • • • • • • • •	soluble		soluble alcohol	yellow
39		deliques.	v. soluble	v. soluble alcohol	crystalline
40			$0.3^{100^{\circ}}$	s. soluble alcohol	trimetr. prisms
41				insoluble alcohol	
42		0.2		insoluble a.; sol. NH ₄ Cl.	tetragonal
_					<del></del>

Digitized by GOOSI

2       " diamond       C.       12.00 2.255 \$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdo	Number.	Name.	Formula.	Molec- ular. Weight.	Specific Gravity. Water= 1. Air= 1 (A). H ₂ = 1 (D).	Melting Point, °C.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						sublimes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		" graphite	C	12.00	2.255¥	{ at
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		" diamond	C	12.00	3.47-3.5585	
6						53°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		veura				92°
9	7	chloride di	$C_2Cl_4$	165.84	1.6220	
10   dioxide gaseous   CO2		ιΓι <del>-</del>		1	( 0 . 2 0 - 2 .	182°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	tetra	CC14	153.84		-23.77°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	dioxide gaseous	CO ₂	44.00		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		nquia	CO ₂	44.00		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		sona	CO ₂	44.00		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	disulphide	$ \text{CS}_2$	76.14	1.292\$ 2.63A	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	iodide	CI4	519.68	$4.32^{20.2^{\circ}}$	decomp.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15		[ · · · · · · · · · · · · · · · · ·			- 203°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16					decomp.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17					[
20 silicide $CSi_2$ $68.6$ 2.5	18	oxychloride (phos-	COCl ₂	98.92	1.432°	[
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	oxysulphide	cos	60.07	{2.10 A. }30.4 D.	decomp.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	silicide	CSi ₂	68.6	$\hat{2}.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	thionyl chloride	CSCl ₂	114.99	1.5085 ^{15°}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	" perchloride	CSCI	185.91	1.712 ^{12.8°}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	Cerium	Ce	140.25	$6.92^{25^{\circ}}$	645°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	Ceric carbide	CeC ₂	164.25	5. <b>23</b>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		fluoride	CeF,H,O	234.27		decomp.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	hydroxide	2CeO ₂ .3H ₂ O	398.55		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	nitrate	Ce(NO ₃ ) ₄	388.29		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	peroxide	CeO	188.25		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	silicide	CeSi ₂	196.85	5.67 ^{17°}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		sulphate	$Ce(SO_{4})_{3}.4H_{2}O$	404.45		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	Cerous acetate	$Ce_{2}(C_{2}H_{3}O_{2})_{6}.3H_{2}O$ .	688.69		3H ₂ O,115°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1	bromide	$CeBr_3.H_2O$	398. <b>0</b> 3		decomp.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	carbonate	$Ce_{3}(CO_{3})_{3}.9H_{3}O$	622.64		
36 fluoride CeF ₃ .½H ₂ O 206.26 37 hydroxide Ce ₂ O ₂ .6H ₂ O 436.60		chloride	CeCl	246.63	$3.88^{\frac{15.5}{10.000}}$	
37 hydroxide Ce ₂ O ₃ .6H ₂ O		fluoride	CeF 1H O	206 26	15.5	
38 iodide		hvdroxide	Ce O. 6H.O	436 60	• • • • • • • • • • • • •	
000.10		iodide	Cel. 9H.O	683 15		
	53		OL3:01130	330.10		

Digitized by GOOGIG

ber.	Boiling		Crystalline Form		
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3	,,	insoluble insoluble insoluble	insoluble insoluble insoluble	insoluble in acids alkalies; soluble in molten metals	black amorph. black hexag regular
١ -	189.5° 121°	insoluble		sol. CS.; insol. al., ether sol. al., ether, CHCl ₃	tablets
1	187°	insoluble		soluble alcohol, ether	rhombic, tri- clinic or reg.
10 11	76.74° -78.2° -78.2°	insoluble 179.67c.c. ^{0°} insoluble	90.14c.c. ²⁰⁰	283 c.c. ^{22.6°} al., sol. alk soluble alcohol, ether	crystalline
14	46.2° -190°	0.20° (3.5c.c.0° )0.00440°	0.014 ^{50°} decomp. (1.6c.c. ^{50°} )	soluble alcohol, ether soluble al., CS ₂ , ether 0.20566 ^{16°} al.sol. Cu ₂ Cl ₂ CS ₂ , C ₀ H ₀ , H.C ₂ H ₃ O ₂	octahedra
17	200° 63–66° 8.2°	insoluble decomp.		insol. al.; sol. CS ₂ , ether sol.glac.HC ₂ H ₃ O ₂ ;dec. al	red powder
	-47°	133 ^{0°}	40.330°	v. soluble alcohol, alk	
22 23 24 25	70° 146–147°	insoluble decomp.	decomp. insoluble decomp.	insol. al., ether; sol. conc	golden red golden yellow. steel gray reddish hexag. amorphous
26 27 28 29		soluble acids deliques. insoluble	insol. alk. decomp. insoluble	s. sol. alk., carbonate aq soluble alcohol sol. conc. H ₂ SO ₄	reddish yellow yellow tesseral. red
30 31 32 33	decomp.	insoluble soluble 26 . 45 ^{15°} deliques.	16.2 ⁷⁶		yellow needles needles needles
34 35 36	• • • • • • • • • • • • • • • • • • • •	insoluble 100 insoluble	decomp.		crystals
37 38		sol. acids soluble	insol.alk.	sol.(NH ₄ ) ₂ CO ₃ ;insol.alk. soluble alcohol	crystalline

Digitized by Google

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Cerous nitrate	Ce(NO ₃ ) ₃ .6H ₂ O	435.24		3H ₂ O,150°
2		$Ce_2(C_2O_4)_3.9H_2O$			decomp.
3				6.9-7.0	
4			821.76		
5		CePO,	235.29		
6	sulphate		568.71		
7	""	$Ce_2(SO_4)_3.8H_2O$	712.84		8H ₂ O,630°
8		Ce ₂ S ₃		5.020 ^{110°}	decomp.
		HClO ₃ .7H ₂ O		1.282 ^{14°}	<-20°
	Chlorine	Cl ₂		2.491°A.	-102°
11		Cl.5H,O	125.54		-50°
12		Cl ₂ O		2.977A.	-20°
13		ClO,		1.5, 2.315A.	_79°
14			182.92		
	Chlorosulphonic Acid		116.54		82°
	Chromium	Cr		6.92 ^{20°}	1505°
17		CrB		5.4 ¹⁷ °	
18		CrO,			190,0,300
19		CrP		5.71 ^{15°}	
20	tetrasulphide	Cr ₂ S ₄			
21	trioxide	$Cr\tilde{O}_3$	100 00	2 67-2 82	196°
		CrBr ₂			
23		CrBr ₃ .6H ₂ O			
24		Cr ₂ C ₂			
25		CrCl ₂			
26			266.48		sublimes 83°
27	fluoride	CrF ₃	109.0	3.78	decomp.
28	"	CrF ₃ .9H ₂ O	271.14		
29	hydroxide	Cr(OH) _s	103.02		
30	nitrate	$Cr(NO_3)_3.9H_2O$	400.17		37°
31		CrN			dec. 1500°
32	oxide	Cr.O	152,00	5.04	2059°
33	phosphate	$Cr_2(PO_4)_2.6H_2O$	402.18		
34	"	$Cr_2(PO_4)_2.12H_2O$	510.27	2.121	7H,O,100°
<b>3</b> 5		Cr ₃ Si ₂	212.60	5.6	
36	sulphate	Cr ₂ (SO ₄ ) ₃	302 21	3 012	
37		$Cr_2(SO_4)_3$ . $SH_2O$			
38	"	$Cr_2(SO_4)_3$ . $SH_2O$	662 45	1 86717°	100
39		$Cr_2(SO_4)_3$ . $18H_2O$ $Cr_2(SO_4)_3$ . $18H_2O$	716.50	1.001	100
40		$\operatorname{Cr}_{2}(\operatorname{SO}_{4})_{3}$ . $\operatorname{ISH}_{2}\operatorname{O}$ $\operatorname{Cr}_{2}\operatorname{S}_{2}$	200.21	3 7719°	[
10	sarpinae	01208	200.21	····	

^{*} Decomposes at 200°.

[†] Decomposes at 40°S

per.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold . Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
-	1	deliques.	v. soluble	50 alcohol	red crystals
2		.05325°		insoluble oxalic acid	
3		insoluble		soluble conc. $H_2SO_4$	gray powder
4		insoluble		soluble dilute acids	purple
5		insoluble	insoluble	soluble acids	monocl. prisms.
6		16.56°	2.25100°		or rhombic
7		23.8°°	65 <b>0°</b>		monocl.,triclinic
8		insoluble	decomp.	soluble dilute acids	red crystals
9	†	v. soluble			
10	-33.6°	150°, 300¹0°	180 ^{30°} c.c.	soluble alkalies	greenish yellow.
11		soluble			octahedra
	_5°	200c.c.0°			reddish yellow .
	9.9°	2000c.c.4°	decomp.	sol. conc. H ₂ SO ₄ , alk	yellowish green.
	82°	soluble		sol. benzene	oil
15	155.3°	decomp.		insol. CS ₂ ; decomp. al	02
16	2200°	insoluble	insoluble	sol.HCl,dil.H ₂ SO ₄ ; insol.	oray cryst
17	2200	insoluble	insoluble	sol. fused Na ₂ O ₂ [HNO ₃	gilver ervet
		insoluble	insoluble	soi. Tuseu Ma ₂ O ₂ [IIMO ₃	dark gray
19		insoluble		insol. a.; sol. HNO3;HF.	gray black crys.
20		insoluble		s. soluble conc. acids	gray blk.powder
,	decomp.	163 . 40°	206 · 7 ¹⁰⁰ °	sol. als; ether, H.SO	red triclinic
		insoluble	206.7100	soi. all, etner, $\Pi_2 SO_4 \dots$	
22! 23!		insoluble 200	1	v. soluble alcohol	olive green hex.
,			2.11		green hexag. pl.
		insoluble	insoluble	sol. dil. HCl	gray crystals
	1200–1500°		s. soluble	insol. a.; sol. trace CrCl ₂ :	pink crystals
26	· · · · · · · · · · · ·	v. soluble		soluble alcohol	violet plates .
_				l	gr. hexag. pl.
27	••••••	insoluble		insol. al.; s. sol. acids	greenish octah
28		v. soluble	[	insoluble al.; sol. a	[-blue gelatin.
29		insoluble		sol. a., alk.; s. sol.NH ₃ aq	
	129.5°	soluble		<u> </u>	purple prisms
31		insoluble	· · · · · · · · · · · ·	insol. acids, alkalies	amorphous
32		insoluble		s. soluble acids	dark green hex.
33		s. soluble	[	sol. acids, alk.;	green
34		s. soluble		insol. H.C ₂ H ₃ O ₂	violet triclinic
35		insoluble	insoluble	sol.HCl, HF.; insol.	tetragonal
				HNO ₃ , H ₂ SO ₄	prisms
36	<b></b>	insoluble		insoluble acids	
37		<i></i>		v. soluble alcohol	green amorph
38	10H ₂ O,100°		decomp.67°	insoluble alcohol	violet cryst
39	* * 'J*	120 ²⁰ °	1	l	blue octahed
40		insoluble	decomp.	soluble HNO,	brn. black pow.
_ 1	1	<u> </u>	11 T. T.		haale

[‡] Decomposes at 35°. > Digitized

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A). $H_2 = 1(D)$ .	Melting Point, °C.
1	Chromous acetate	Cr ₂ (C ₂ H ₃ O ₂ ) ₆ .2H ₂ O	494.18		
2	carbonate	CrCO ₃			
3	chloride	CrCl		2.751 ^{14°}	
4	fluoride	CrF,		4.11	1100°
5	hydroxide	Cr(OH) ₂			
6	iodide		305.84		
7	sulphate	CrSO ₄ .7H ₂ O	274.18		
8	sulphide	CrS			
9	Chromyl trichloride .	CrO,Cl,			
10	Cobalt	Co	58.97	8.718*	1490°
11	carbonyl	Co(CO)4	170.97	1.827 ^{18°}	42-46°
12	phosphide	Co ₂ P	148.98	6.4 ^{15°}	
13	Cobaltic boride	CoB	69.97	7.25 ^{18°}	
14	chloride	CoCl ₃	165.38	2.94	sublimes
15	" dichro	$Co(NH_3)_3Cl_3.H_2O$	234.50		. <b></b>
16	" praseo	$Co(NH_3)_4Cl_3.H_2O$	251.53		
17	" purpureo	$Co(NH_3)_5Cl_3$	250.57	1.802 ^{15°}	
18	" luteo	$Co(NH_3)_6Cl_3$	267.58	1.7016 ^{20°}	
19	" roseo	$Co(NH_3)_5Cl_3.H_2O$	268.57		
20	chromate				
21	hydroxide		110.02		
22		$Co_2O_3$	166.00	4.81-5.60	0.895°
23	potassium nitrite	$3H_2O$		• • • • • • • • • • • • • • • • • • • •	
24	sulphate	$\text{Co}_2(\text{SO}_4)_3$	406.15		
25		$\text{Co}_2\text{S}_3$	214.15	4.8	
26	" di		123.11	4.269	
27	Cobaltocobaltic oxide	$\text{Co}_3\text{O}_4$	240.91	5.8-6.3	0.905 .
28	Cobaltous acetate	$Co(C_2H_3O_2)_2.4H_2O$	<b>249.08</b>	1.7043 ^{18.7°}	
29	am. chloride	CoCl ₂ .NH ₄ Cl.6H ₂ O	291 . 49		
30	" sulphate	$ CoSO_4.(NH_4)_2SO_4. $ $ 6H_2O$	395.28	1.902 ^{18°}	• • • • • • • • • • • • • • • • • • • •
31	arsenate	$Co_3(AsO_4)_2.8H_2O$	598.96	2.948	
32	arsenite	$Co_3H_6(AsO_3)_4.H_2O$	692.81		
33	bromate	$Co(BrO_3)_2.6H_2O$			
34	bromide	CoBr	218.81	4.909*	
35	"	CoBr ₂ .6H ₂ O	326.91		100°
36	carbonate	$CoCO_3$	118.97		decomp.
37		2CoCO ₃ .3Co(OH) ₂	516.90		<del>.</del>
38	chlorate	$Co(ClO_3)_2.6\dot{H}_2O$	334.00		50°
39	chloride	CoCl	129.89	3.348*	sublimes
40	"	CoCl, 6H,O	238.00	1.84	86.75°
41	chromate	CoCrO ₄	174.97	ار بریم	decomp.
			nno Digiti	zea by 😉 🗢 OOG l	<del>-</del>

^{*} Decomposes at 100°.

4 5 6 7 8	Point,	Cold Water.	Hot Water.	Alcohol (el.) Acide (e.)	Crystalline Form
2 3 4 5 6 7 8			Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
3 4 5 6 7 8		soluble		insoluble alcohol	green
4 5 6 7 8		insoluble		insoluble ether	amorphous
5 6 7 8		v. soluble			crystalline
6 7 8		s. soluble		insol. al.; sol. hot HCl	green crystals.
6 7 8		decomp.		soluble acids	vellow brown
8		v. soluble			
		12.350°		s. soluble alcohol	blue
0		insoluble			black powder
7	115.9°	decomp.			dark red
10		insoluble	insoluble	soluble acids	
11	dec. 135°	insoluble	insolubio.	Sol. CS ₂ , ether, al	
		insoluble	insoluble	sol. conc. HNO ₃	small needles
		decomp.	decomp.	soluble HNO ₃	nriama
		soluble	soluble		
15		soluble	BOLUBIC	soluble acids, alcohol	
		v. soluble			green crystals
17		0.2320	1.03146.60	insoluble alcohol	green crystais
1		4.260°	12.7446.6°		
19		16.120°	24 8716.19°	s. soluble HCl	brick red
		decomp.	24.07	s. soluble HCI	brick red
21	· · · · · · · · · · · · · · · · · · ·	insoluble	insoluble	insol.al.; sol.conc.cold a.	hl- al-
	heat	insoluble	insoluble		
~-!	neat	s. soluble		soluble conc. acids	
-1				insol. alcohol, ether	[der
24 .	· • • • • • • • • • • • • • • • • • • •	sol. with dec.		soluble conc., H ₂ SO ₄	
	· • • • • • • • • • •	insoluble	<b>.</b>	decomp. by acids	black crystals
26 .		insoluble		sol. HNO ₃ , aqua regia	black
		insoluble	insoluble	sol. conc. H ₂ SO ₄	black
28		soluble			red needles
		deliques.	v. soluble		ruby red
30		20.5 ^{20°}	45.4 ^{80°}	inșoluble alcohol	
31		insoluble	insoluble	soluble acids, NH ₃ aq	reddish monocl.
32		insoluble	. <b></b>	soluble acids	rose red
33		45.5 ^{17°}	<b></b>	soluble NH ₃ aq	hyacinth. octa
34		66. 7 ^{59°}	68.1 ^{97°}	soluble alcohol, ether	
		deliques.	153.297°	soluble alcohol, ether	green
36		insoluble	insoluble	insol. conc. HCl, HNO ₃	red rhombohed.
37		insoluble	decomp.	sol. (NH ₄ ) ₂ CO ₃	red colored
38		558.30°	soluble	soluble alcohol	regular
39		45 ⁷³	105 ^{96°}	31 al., 8.62 acetone	blue crystals
40	t	76.70°	190.7100°	v. sol. ether, glycoll	red monoclinic.
41		insoluble	l	sol. a., NH3 aq., dil. HNO3	yellowish brow

[†] Loses 6H₂O at 110°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A). H ₂ =1(D).	Melting Point, °C.
1	Cobaltous cyanide	Co(CN) ₂ .2H ₂ O			2H ₂ O,280°
2	ferricyanide	$Co_{\mathfrak{s}}[Fe(CN)_{\mathfrak{s}}]_{\mathfrak{s}}$	600.89		
3	ferrocyanide	$Co_2Fe(CN)_6.7H_2O$	455.95		
4	fluoride	CoF ₂ .2H ₂ O	133.00	4.43 *	
5	66	CoF ₂ .5HF.6H ₂ O	305.10	2.086	
6	hydroxide	Co(OH) ₂	93.00	3.597 ^{15°}	[ ]
7	iodate	$Co(IO_3)_2$	408.81	5.008 ^{18°}	
8	iodide	CoI2	312.81	<b></b>	
9	"	CoI ₂ .2H ₂ O			
10	"	CoI ₂ .6H ₂ O	420.91		<i></i>
11	nitrate	$Co(NO_3)_2.6H_2O$	291.09	1.83 ^{14°}	56°
12	oxalate	CoC ₂ O ₄ .2H ₂ O	183.00	2.325 ^{19°} *	
13	oxide	CoO	74.97	5.6-5.75	0.2860°
14		Co(ClO ₄ ) ₂			[
15	phosphate	$Co_3(PO_4)_2$	366.99		[
16	"	$Co_3(PO_4)_2.3H_2O$	421.04		
17	phosphite	CoHPO ₃ .2H ₂ O	175.05		blue at 250
18	potass. carbonate	CoCO ₃ .KHCO ₃ .4H ₂ O			
19	selenide	CoSe			red heat
20	silicate	Co ₂ SiO ₄			
21	sulphate	CoSO ₄	155.04	$3.472^{15^{\circ}}$	989°
22		CoSO ₄ .7H ₂ O			96.8°
23	- Barpriaci I I I I I I I I I I I I I I I I I I I		91.04		> 1100°
24		CoSO ₃ .5H ₂ O			
25	Columbic Acid	$3Cb_2O_5.7H_2O$	927.11		
26	Columbium (Niobium)	Сь	93.5	7.06 <del>11</del>	1950°§
27	bromide	CbBr _s	493.10		l
28	chloride penta	CbCl ₅	270.80	2.75 ^{20°}	194°
29	hydride	CbH	94.51	6-6.6	decomp.
30		CbN	107.51		,
31	oxalate	Cb(HC ₂ O ₄ ) ₅	538.54		
32			219.50	6.3-6.67	l
33					
34				4.4-4.53	
35	F *********************************	1 - 2 - 6			sublimes
36					subl. 400°
37					
	Copper	Cu			1083°¶
39	boride	Cu ₂ B ₂	212.63	8.116	
40	hydride	Cu ₂ H ₂	129.16		dec. 60°
41		Cu ₂ N	204.72		dec. 300°
			Digitiz		

^{*} Density of the anhydrous salt.

[†] Decomposes at red heat.

F.	1				
Number.	Boiling Point,		Solubility in	1 100 Parts.	Crystalline Form
Nun	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		insoluble		sol. KCN, HCl, NH3aq.	buff colored
2		insoluble		insol. HCl; sol. NH ₃ aq.	red
3		insoluble		insol. HCl; sol. KCN	gray green
4		soluble	decomp.	soluble HF	rose red cryst
5					trimetric prisms
6		insoluble	insoluble	insol. alk.; sol. NH, salts	rose red
7		0.4 ^{15°}	1.33100°	soluble HCl, HNO ₃	
8		159 ^{9°}	420 ¹⁰⁰ °	v. soluble alcohol	
9	· · · · · · · · · · · · ·	deliques.		• • • • • • • • • • • • • • • • • • • •	green
10		100 000		10019 80 1 1 1	red
11 12		133.80°	• • • • • • • • • • • • • • • • • • •	100 ^{12.5°} alcohol	red monoclinic.
13		insoluble		sol. a., NH ₈ aq	reddish white
14		insoluble 1000°	insoluble 115 ^{45°}	sol. a., NH ₃ aq.; insol. al.	
15		insoluble	insoluble	sol. al. acetone	red needles reddish
16		insoluble	insoluble	sol. H ₃ PO ₄ , NH ₃ aq soluble H ₃ PO ₄	reddish
17		insoluble		soluble H ₃ FO ₄	reddish[cryst.
18		decomp.	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	rose colored
19	• • • • • • • • • • • • • • • • • • • •	decomp.	• • • • • • • • •		yellow crystals.
20		insoluble	• • • • • • • • • •	decomp. by HCl	violet
	dec. 880°		82.6 ^{100°}	1.04 ^{18°} methyl alcohol.	
		60.43°	soluble	2.53° alcohol	t
23		0.00038		sol. conc. HCl., aq. r., al.	brown needles.
24		insoluble		soluble $H_2SO_3[H_2SO_4]$	
25		insoluble		sol. KOH, HF, conc.	
		:lb-1-	:11-1-	∫s.sol.HCl,HNO ₃ ,aq.r.	-41
26		insoluble	insoluble	sol. hot conc. H.SO.	steel gray
27					purple red,
28	240.5°	decomp.			yellow needles.
29					gray powder
30					black
			_	HNO ₃	<b>.</b> .
31		decomp.	$\mathbf{decomp.}$	dec. al.; sol. $H_2C_2O_4$	monoclinic
32		: ; - ; ; :			regular
33		insoluble		insol. HNO ₃ ; sol. conc.	black
34		insoluble		sol. conc. H ₂ SO ₄ , HF	crystalline
35		decomp.		soluble conc. acids	yellow crystals.
36 37		decomp.		sol. H ₂ SO ₄ , alcohol	needles
		insoluble insoluble	insoluble		black
აგ 39		msormore	insoluble	sol. HNO ₃ , hot conc.	red crystalline.
39 40		• • • • • • • • • • • • •		soluble HCl	yellow reddish brown .
40 41				decomp. by acids	
*1		<u> </u>	<u> </u>	uccomp. by acids	oogle

Carmine red rhomb. or monocl. § Burns in the air. ¶ Melts at 1065° in the air.

Number.	Name.	Formula.	Molec- ular Weight.	Water = 1.	Melting Point, °C.
1	Copper peroxide	CuO ₂ .H ₂ O	113.59		
2	suboxide	Cu ₄ O			oxidizes
3	Cupric acetate	$Cu(C_2H_4O_2)_2.H_2O$	199.63		dec. 240°
4	aceto-arsenite	(CuOAs ₂ O ₂ ) ₃ .Cu (C ₂ H ₃ O ₂ ) ₂	966.12		
5	ammonium chloride	CuCl ₂ .2NH ₄ Cl.2H ₂ O.	277.53	1.96-1.97	2H₂O, 120°
6		CuSO ₄ .4NH ₃ .H ₂ O			decomp.
7	arsenate	$Cu_8(AsO_4)_2.4H_2O$	540.69		
8		$Cu_5H_2(AsO_4)_4.2H_2O$ .			
9	arsenide	Cu ₅ As ₂			decomp.
10		CuHAsO ₃			decomp.
11		$Cu(BrO_3)_2.5H_2O$			5H ₂ O, 200°
12 13		CuBr ₂			decomp.
14		CuCO ₃ .Cu(OH) ₂			decomp.
1.4	•••••	2CuCO ₃ .Cu(OH) ₂	344.73	3.00	decomp.
15	chlorate	Cu(ClO ₃ ) ₂ .6H ₂ O	228 50		65°
16		CuCl ₂			498°
17		CuCl ₂ .2H ₂ O			
18	chromate, basic	CuCrO ₄ .2CuO.2H ₂ O.	374 74	2.11 2.000	2H ₂ O, 260°
19	cvanide	Cu(CN) ₂			easily dec.
20		CuCr ₂ O ₇ .2H ₂ O			
21	fluoride	CuF ₂ .2H ₂ O	137.60		
22		CuSiF ₆ .6H ₂ O			
23		$Cu_3[Fe(CN)_6]_2$			
24		Cu ₂ Fe(CN) ₆ .7H ₂ O			
25		$Cu(CHO_2)_2$			
26	hydroxide		97.59		decomp.
27	iodate	Cu(IO ₃ ) ₂	413.41	5.241160	decomp.
28	"	Cu(IO ₃ ) ₂ .H ₂ O	431.43	4.87615	dec. 290°
00	"	C (TO ) OTT O			,
29 30	************	Cu(IO ₃ ) ₂ .2H ₂ O			decomp.
31	Dasic	CuOHIO ₃			dec. 290°
32		$Cu(C_3H_5O_3)_2.2H_2O$ $CuFe(CN)_5NO.2H_2O$			• • • • • • • • • • • • • • • • • • • •
33		$Cu(NO_3)_2.3H_2O$			114.5°
34		$Cu(NO_3)_2.6H_2O$			26.4°
35	oxalate	CuC ₂ O ₄ . ½H ₂ O	160 59	4.U/T	20.1
36		CuO		6.32-6.43	1064°
37	oxychloride	CuCl ₂ .2CuO.4H ₂ O	429 20		3H₂O, 140°
38		Cu ₂ HIO ₆			dec. 110°
55	portocaro	Ougast Ob			400. 110

^{*} Decomposes at 100°.

[†] Decomposes at red heat.

ber.	Boiling		Solubility in	1 100 Parts.	Crystalline Form
Number.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3 4		insoluble insoluble 7.2 insoluble	20	decomp. by acids 7.143 alcohol; sol. ether	
5 6 7 8 9 10		33 . 80° 18 . 521 . 50° insoluble insoluble insoluble insoluble v. soluble v. soluble	99.380° decomp. insoluble	soluble alcoholsoluble acids, NH ₃ aq. soluble acids, NH ₃ aq. soluble HNO ₃ , aq. rsoluble acids, NH ₃ aq. insoluble acids, NH ₃ aq.	[bic monocl. light blue rhom-bluish green bluish octahed light green crys. iodine col. crys.
13 14 15		insoluble insoluble 207%	decomp. decomp. v. soluble	sol. NH ₃ aq., hot NaHCO ₃ aq. soluble alcohol[al.	dark gr. mo'cl. blue monoclinic green octahedra
7896 1 2 2 2 4 5 6 7 2		70.60° 110.40° insoluble insoluble deliques. s. soluble 2.3217° insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble	107.9100° 192.4100°	53 ^{15.5°} al.,68 ^{15.5°} methyl sol. NH ₄ Cl, ether, al soluble HNO ₃ , NH ₃ aq. sol. KCN sol alcohol, NH ₃ aq sol. al., HCl, HNO ₃ , HF 0.16 ^{20°} alcohol insol. HCl; sol. NH ₃ aq.	brownish yellow blue rhombic yellowish brown yellowish green. black crystals pale blue mono. blue yellowish green. brown red blue monoclinic blue crystals green monoclinic plates blue triclinic
37	§ O, 1110°	insoluble 16.7 insoluble 137.8° 243.70° insoluble hygroscopic insoluble insoluble	0.65 two insoluble 45100°	sol. dil. H ₂ SO ₄	gr. orthorhomb. dark blue mono. greenish blue prismatic. crystalline bluish white black monocl blue green

Decomposes at 170°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Cupric phosphate	Cu ₂ (PO ₂ ) ₂ 3H ₂ O ₂	434.84		
2	phosphide	Cu ₃ P ₂	252.79	6.67	
3	phosphite	CuHPO 2H O	179.65		decomp.
4	salicylate		320.67		decomp.
5			159.64	3.516 ^{30°}	dec. 621°
6	"		249.72	2.28415°	4H ₂ O,110°
7		CuS	95.64	3.8-4.16	
8	tartrate	CuC ₄ H ₄ O ₆ .3H ₂ O	265.65	3.0-4.10	decomp.
- 1	Cuprous ammonium		353.47		decomp.
3	iodide	Out.141.11 ₂ O	300.41		
10		Cu ₂ Br ₂	<b>286</b> .98	4.72	484°
11	carbonate		123.54	1.12	decomp.
12			198.06	3.38-3.68	418°
13		Cu ₂ (CN) ₂	179.16	3.36-3.06	110
14	fluoride		165.14		908°
12	nuoriae	Ou ₂ r ₂	100.14		908
15	ferricyanide	Cu Fa(CN)	402.61		•
16			466.18		
17		CuOH	80.58		½H₂O,360°
18			380.98		606°
19		Cu ₂ O		5.75-6.09	red heat
20			443.50	6.35-6.75	red near
21	sulphide		159.21	5.52-5.82	1100°
22			225.23	3.83-4.46	1100
23			121.65	5.05-1.10	1084°
1	Cyanic acid	CNOH	43.02	1.1408	1004
		C ₂ N ₂	52.02	1.8064A.	-39°
26		CNBr		3.607D.	52°
27		CNCl	61.47	2.13D.	-18°
28		(CN) ₃ Cl ₃		1.32	145°
29		CNI		1.85	146.5°
30	sulphide		84.09	1.00	60°
		Dy			
32			411.632		dec. 120°
33			566.484		78°
34		$Dy_2(CO_3)_3.4H_2O$			3H₂O,150°
35			268.88	3.67%	680° ;
36		$Dy_{\bullet}(CrO_{\bullet})_{\bullet}.10H_{2}O$			3.5H ₂ O,
90	chromate	Dy 2( OrO4)3.10 H2O.	009.10	•••••	3.5H ₂ O, 150°
27	1-4-	D (C () 10H ()	760 16		'roor,
37	oxalate	$Dy_2(C_2O_4)_3.10H_2O.$	247 600		EH 0.000
38		DyPO4.5H ₂ O		• • • • • • • • • • • •	оп₂∪,200°
39		$\text{Dy}_2(\text{SeO}_4)_3.8\text{H}_2\text{O}$			8H ₂ O,200°
401.	Erbium	Er	101.4	4.77,000	· · · · · · · · · · · · · · · · · · ·

_					
Number.	Boiling Solubility in 100 Parts.		Crystalline Form		
unu	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		insoluble	l	soluble acids, NH2aq	blue green
2		insoluble		insol. HCl; sol. HNO2	black
		insoluble	insoluble		fneedles
4		v. soluble	insolubio.	v. soluble alcohol	
5		2000	1941000	insoluble	Didish green
_	5H ₂ O, 230°	31.61°°	203 . 3100°	insoluble alcohol[K,S	blue triclinic
7	J11 ₂ O, 200	.000033	200.0	sol. HNO ₂ , KCN; insol.	
Q		0.02 ^{15°}	0.1485°	soi. 111403, 11014, msoi.	light green
		decomp.	decomp.	soluble NH ₄ I	rhombia plates
٦		decomp.	decomp.	NH,Cl	
'n	861-954°	insoluble	ŀ	sol. HBr, HCl, NH ₃ aq.,	
1	001-904	insoluble		sol. acids, NH ₃ aq	vellow
5	954–1032°	insoluble		sol. HCl, NHaq.,NH ₄ Cl	totrobodnol
	red heat	insoluble		sol. HCl, NH ₃ aq., KCN	monoclinia
4	red near	insoluble		sol. HNO ₂ , conc. HCl.;	rod orgatalling
-		insoluble		insol. al	red crystanine.
5		insoluble	1	sol. NH ₃ aq.; insol. HCl.	hrownish rod
6		insoluble		sol. NH ₃ aq., insol. NH ₄ Cl	brown rod
7		insoluble	insoluble	sol. acids, NH ₃ aq	wellow
8	759–772°	0.0008180	insoluble	insol. a., al.; sol. KI	yenow
		insoluble	insoluble	sol. NH ₃ aq., NH ₄ Cl,HCl	
10	O, 1800°	insoluble	insoluble	sol. HNO ₃ ; insol. HCl	carmine (red)
		.00005		sol. HNO ₃ ; Insol. HCl	gray black
2	· · · · · · · · · · · ·			soluble HNO ₃ .[al., ether	rnomb. or reg
5		s. soluble 0.023 ^{18°}		sol. NH ₃ aq., HCl; insol.	
3				sol. NH ₃ aq	
4		decomp.		4 411 -41	
	-22°	25 c.c. v. soluble		4.4 c.c. al., sol. ether	1
	61.3°	soluble		v. soluble alcohol	regular
	15.5°	soluble		v. soluble al., ether	prisms
8		1-1-1-	· · · · · · · · · · · · · · · ·		
9		soluble		v. soluble al., ether	
Ų		v. soluble		v. sol. al., ether	mombic tablets.
	· · · · · · · · · · · ·	l-bl-		dif. sol. alcohol	
2		soluble v. soluble			yellow needles
3	6H₂O, 110°			s. sol. alcohol	yei. nex. needies
4	• • • • • • • • • • • • • • • • • • • •	insoluble			
5		1.00225°			yellow plates
P	decomp.	1.002~		• • • • • • • • • • • • • • • • • • • •	yellow crystals ≃
7		insoluble	İ	sol. dil. acid	nrigm g
		insoluble		sol. dil. acids, acetic	
8		v. soluble		insol. alcohol	
,,,,		v. soluble		msoi. aiconoi	_
W		<u></u>	<u> </u>	Digitized by	<u> </u>

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A). H ₂ =1(D).	Melting Point, °C.
1	Erbium chloride	ErCl ₃ .6H ₂ O	381.88		
2	nitrate	Er(NO ₂ ) ₃ .6H ₂ O	461.53	·····	[ ]
3	oxide	Er ₂ O ₃	382.80	8.640	infusible
4	sulphate	$\text{Er}_{\bullet}(SO_{\bullet})_{\bullet}$	623.00	3.678	dec. 950°
5	<b>"</b>	$\text{Er}_2(SO_4)_3.8H_2O$	767.14	3.180	
6	Ferric acetate, basic	$FeOH(C_2H_3O_2)_2$	190.90		
7	arsenate	FeAsO ₄ .2H ₂ O	230.85	3.18	
8	arsenite basic	2FeAsO ₃ .Fe ₂ O ₃ .5H ₂ O	607.38		decomp.
9	$bromide \dots \dots$		295.60	<b>.</b>	*
10		FeCl ₃	162.22	2.80410.80	301°
11	"	FeCl ₃ .6H ₂ O	270.32		37°
12	ferrocyanide (Prus-	$Fe_{4}[Fe(CN)_{6}]_{3}$	859.06		decomp.
	sian blue)	•			İ
13	fluoride	FeF ₃	112.84	3.18	
14	"	$FeF_3.4\frac{1}{2}H_2O$	193.91		3H ₂ O,100°
15	formate		208.88		
16			106.86	3.4-3.9	13H2O,500
17	hypophosphite	$Fe(H_2PO_2)_3$			decomp.
18	lactate	$Fe(C_3H_5O_2)_3$	274.96		
19	nitrate	$Fe(NO_3)_3.9H_2O$	404.01	1.6835 ^{20°}	47.2°
20		$\operatorname{Fe}_{2}(\operatorname{C}_{2}\operatorname{O}_{4})_{3}\dots\dots$	375.68		dec. 100°
21	N.	$Fe_2O_3$	159.68	5.12-5.24	1548°
22	phosphate	FePO ₄ .4H ₂ O	222.94	2.87	
23		$Fe_1(P_2O_7)_3.9H_2O$	907.74		[430°
24	sulphate **	$Fe_2(SO_4)_3$	399.89	3.09718°	decomp.at
25		$Fe_2(SO_4)_3.9H_2O$	562.03	2-2.1	
26			207.89	4.25-4.41	decomp.
27		Fe(CNS) ₃ .3H ₂ O	284.13	<b>-</b>	
	Ferrous acetate		245.95		decomp.
29	ammonium sulphate	6H ₂ O	392.16	1.865	
30	arsenate	$Fe_3(AsO_4)_2.6H_2O$	553.58		
31	arsenite	$Fe_2As_2O_5$	341.64		
32	bromide		215.63	4.636*	
33			323.78		27°
34			115.84	3.70-3.87	decomp.
35			133.86		$\mathbf{decomp}$ .
36			126.76	2.98817.90	
37	"		198.82	1.93	
38			571.90	2.714	
39	ferricyanide (Turn-	$[Fe_{3}[Fe(CN)_{6}]_{2}$	591.32		decomp.
	bull's blue)		l		l

^{*} Sublimes and dec.

^{**} For ferric alum see p. 102.

ber.	Boiling Point,		Solubility in	1 100 Parts.	Crystalline Form
Number	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		deliques.	soluble	soluble alcohol	
		soluble	[	soluble alcohol	crystals
3		insoluble		soluble hot acids	<b></b>
5		43 30 ²⁰ °	100 ^{100°}		
8		insoluble	100.00	soluble alcohol, acids	omorphous
7		insoluble	insoluble	soluble HCl	+4H,O, rhomb.
8		decomp.	linsoluble	soluble alkalies	brown to yellow
1 ~		soluble	soluble	soluble alcohol, ether	dark red crystals
10		74.390°	536.6100°		brown hexagon.
11	280-285°	246.0°	00	soluble alcohol	
12		insoluble		insol. al., ether; sol. conc. HCl, H ₂ SO ₄	dark blue cryst.
13	<b></b>	s. soluble	soluble	insol. al., ether; sol. a	green rhomb.
1	decomp.	s. soluble	soluble	insoluble alcohol	yellow crystals.
		soluble	decomp.		yellow crystals.
16		insoluble	insoluble	insoluble alcohol, ether.	reddish brown .
		0.043 ^{25°}	0.083 ¹⁰⁰	sol. sol. alk. citrate	
18		deliques.	v. soluble	insoluble ether	brown amorph.
19	decomp.	v. soluble	v. soluble		rhombic
		v. soluble		insoluble alcohol	
		hygroscopic	insoluble	soluble acids	
22	· · · · · · · · · · · ·	insoluble	0.067		yellow rhombic
		insoluble		soluble acids	yellow
	· · · · · · · · · · · ·	s. soluble	decomp.		amorphous
		v. soluble	decomp.	dec. by al.; sol. ab. al	yellow rhombic
	· · · · · · · · · · · · ·	decomposes		decomposed by acids	greenish yellow.
	· · · · · · · · · · · ·	v. soluble		v. soluble alcohol, ether	
	· · · · · · · · · · ·	v. soluble 180°	78.2 ^{75°}	2	needles
29	••••••	10~	10.20	insoluble alcohol	blue green mon- oclinic
30		insoluble		s. soluble NH.aq	
1271		insoluble			greenish white.
32		1020°	177.8100°	soluble alcohol	Broomsir windo.
		313.2°°	∞		yellow rhombic.
34		insoluble	insoluble	soluble CO2aq	§
35		s. soluble		soluble acids, CO2aq	amorphous
		$64.4^{10^{\circ}}$	105.7100°	100 alcohol	
37		160 . 1 ^{10°}	415.5 ¹⁰⁰ °	soluble alcohol	
38		v. soluble	v. soluble		yellow hexag
<b>3</b> 9		insoluble		insoluble al., dil. acids	deep blue
	·		 <del></del>		

[†] Red hexag., rhombohed. or reg.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= r Air= r (A). H ₃ = r (D).	Melting Point, °C.
1	Ferrous ferrocyanide	Fe ₂ Fe(CN) ₆	323.58		
2	fluoride	FeF ₂ .8H ₂ O	237.97	4.09*	8H ₂ O,100°
3	formate	Fe(CHO ₂ ) ₂ .2H ₂ O	181.89		decomp.
4	hydroxide	Fe(OH) ₂	89.86		
5	iodide	FeI,.4H,O	381.74	2.873	177°*
6	lactate	$Fe(C_3H_5O_3)_2.3H_2O$ .	287.97		decomp.
7	nitrate	$Fe(NO_3)_2.6H_2O$	287.96		60.5°
8	oxalate	$FeC_2O_4.2H_2O$	179.87		<b> </b> †
9	oxide	FeO	71.84		1419°
10	perchlorate	$Fe(ClO_4)_2.6H_2O$	362.86		dec. < 100
11	phosphate	$Fe_3(PO_4)_2.8H_2O$		2.680	
12	potassium oxalate	$K_2$ Fe $(C_2O_4)_2$ ,2 $H_2O$ .	346.07		decomp.
13	sulphate	FeSO7H.O	278.02	1.898714.80	64° ‡
14	sulphide	FeS		4.75-5.04	1197°
15	sulphite	FeSO2H.O	189.96		dec. 250°
16	sulphocyanate	Fe(CNS)3H.O	226.05		decomp.
17	tartrate	FeC.H.O.	203.87		
18	thiosulphate[ride	FeS.O.5H.O	258.06		l
19	Ferroso-ferric chlo-	FeCl ₂ .2FeCl ₃ .18H ₂ O	613.24		dec. 50°
20	ferricyanide (Prussian green)	Fe",Fe",Fe(CN),	1662.27		dec. 180°
21	hydrate	Fe ₂ O ₄ .4H ₂ O	303.58		decomp.
22	oxide	Fe ₃ O ₄	231.52	4.96-5.40	1538°
23			305.80	4.51-4.64	
24	-	F ₂	38	1.31 ^{15°} A. 1.14 ^{-187°}	– 223°
25	Fluosilicic Acid	H ₂ SiF ₆	144.32	` <i></i>	
26	Formic Acid	н. соон	46.02	1.225	8.6°
27	Gadolinium	Gd	157.3	1.31	
28	acetate	$Gd.(C_2H_2O_2)_3.4H_2O$		1.611	
<b>2</b> 9	bromide	GdBr ₈ .6H ₂ O	505.16	2.844	
30	chloride	GdCl ₂	<b>263.68</b>	4.52 ^{2°}	628°
31	chloride		371.78	2.424	
32	nitrate	$Gd(NO_3)_3.6\frac{1}{2}H_2O$	460.43	2.332	
33	oxalate	$Gd_2(C_2O_4)_3.10H_2O$	758.76		6H ₂ O,110°
34	potassium sulphate	2H ₂ O	813.11	1.503 ^{16°}	
35	selenate	$Gd_2(\tilde{SeO_4})_3.8H_2O$	888.33	3.309	8H ₂ O,130°
36	sulphate	$Gd_2.(SO_4)_3$		4.139 ^{14.6} °	
37	• "	$Gd_2(\hat{S}O_4)_3.8H_2O$	746.94	3.010	
38	Gallium	Ga	69.9	5.9524°	30.15°

^{*} The anhydrous salt. † Decomposes at 160° into 2H,O, CO, CO, Fe.

er.	Boiling		Solubility in	100 Parts.	
Number	Point,	Cold Hot Alcohol (al.), Acids (a.), Water. Alkalies (alk.), etc.		Crystalline Form. and Color.	
1 2		insoluble s. soluble		insol al., ether; sol. a	white-blue amor green
3 4 5 6 7		s. soluble 0 . 00067 v. soluble 2 . 1 ^{10°} 200 ⁰	decomp. 8.5 ^{100°}	soluble NH ₄ Cl, acids soluble alcohol insoluble alcohol	pale green cryst. green crystals. green crystals. crystals.
8 9 10 11		0.022 insoluble soluble insoluble	0.026	sol. acidssol. acids; insol. alksoluble alcoholsoluble acids	yellow crystals.blackgreenmonoclinic
13 14		soluble 32.80° 0.00089	soluble 196.4 ^{76°}	insoluble alcoholsoluble acids	golden needles. [or rhombic blue green mono. black hexagonal
15 16 17 18		s. soluble v. soluble 0.877 ^{15.6°} v. soluble	decomp.	soluble SO ₂ aqv. soluble al., etherv. soluble alcoholv.	green rhombic crystals green crystals
19 20 21		deliques. insoluble insoluble	insoluble	sol. conc. hot HCl	yellow greenblack
22 23		insoluble insoluble	insoluble	insoluble alcoholsoluble acids	black octahed hexagonal
24 25 26	-187°	decomp. soluble	decomp.		greenish yellow.
27 28 29 80 81 82 83 84		s. soluble soluble soluble soluble v. soluble 0.11 soluble	soluble soluble v. soluble soluble	soluble conc. HNO ₃ soluble K ₂ SO ₄	triclinic
<b>B5</b> B6 B7 B8		soluble 3.980° soluble insoluble	soluble 2.26 ^{34.4°} soluble insoluble	soluble acids, alkalies	pearly monocl monoclinic gray octahed

[‡] Loses 6H₂O at 100°, 7H₄O at 300°. For other compounds see "Iron,"

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Gallium bromide	GaBr	309.66		
2	chloride di	GaCl ₂			164°
3	" tri	GaCl ₃	176.28	2.36#	75.5°
4		Ga(OH),	120.92		
5	iodide				
6	nitrate	Ga(NO ₃ ) ₂			dec. 110°
7	oxide mon	GaO	85.90		
8		Ga ₂ O ₃			
9	sulphate	Ga ₂ (SO ₄ ) ₃			
10		Ga ₂ S ₃			
	Germanium	Ge		5.46948	916°
12	bromide				about 0°
13		GeCl,			
14				1.887 ^{18°}	liquid.
15	chloroform		1		liquid.
16					
17	fluoride	GeF.3H,O			decomp.
18	iodide	GeI		20.5440°	144°
19	oxide mon	GeO	88.50		
20	" di	GeO ₂		4.703 ^{18°}	
21	oxychloride	GeOCl	159.42		
22		GeS		3.541100°	red heat
23	" di	GeS ₂	136.64		
24	Glucinum(Beryllium)	G1	9.1	1.85 ^{20°}	>960°
25		GlBr ₂	168.94		601°
26		Gl ₂ C	30.2	1.9 ^{15°}	
27	carbonate	GICO ₃ ,4H ₂ O			
28	" basic	(GlO), CO, 5H, O	259.58		
29	chloride	ĠlCl ₂	80.02		400°
30	"	GlCl ₂ .4H ₂ O	152.08		
31	fluoride	GIF,	47.1	$2.1^{15^{\circ}}$	800°
<b>3</b> 2	hydroxide	Gl(OH)2			decomp.
33	iodide	GIÌ,		$4.20^{15^{\circ}}$	510°
34	nitrate	$Gl(NO_3)_2.3H_2O$	187.17		90°
35	oxide	GlÒ		3.0160°	infusible
<b>3</b> 6	oxychloride	Gl ₂ OCl ₂	105.12		
37	potassium fluoride.	GlF2KF			
38	sodium fluoride	GIF2NaF	131.10		l
39		GISO ₄ .4H ₂ O	177.23	1.7125 ^{10.5°}	2H ₂ O,100°
40	*«				
41	Gold ¶	Au	197.2	19.32	1062°
42		Au	197.2		
		l	<u> </u>	l	1

^{*} Converted into Ga₂O₃ at 200°. † Volatile at 1350°. † Sublimes at 450°.

ber.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		deliques.	soluble		crystalline
2		deliques.	decomp.		crystalline
3	215-220°	deliques.	decomp.		needles
4		insoluble		soluble acids, alkalies	
5	deliques.	soluble			
6	*	deliques.	v. soluble		
7		insoluble		soluble acids	grayish blue
8		insoluble		soluble acids	
9		v. soluble	v. soluble	soluble al.; insol. ether	
10					white
11	†	insoluble	insoluble	sol. hot conc.H ₂ SO ₄ ,aq.r.	gray reg. oct
12		decomp.			
13		decomp.	[		
14	86°	decomp.		insol. hot conc. H2SO4	
15	72°				
16	160°	insoluble		soluble HCl	
17		deliques.	soluble ,		crystalline
18	350-400°	deliques.	soluble		yellow
19		soluble		soluble HCl	grayish black
10		0.4 ^{20°}	1.05 ^{100°}	soluble acids, alkalies	rhombic
	>100°	insoluble		soluble acids	
22		0.25	soluble	soluble HCl, KOH	rhomb. or mon.
3		0.45	soluble	insol. acids; sol. alk	
4		insoluble	insoluble	sol. dil. a., alkalies	grayish hexag
	‡	deliques.	v. soluble		needles
16		decomp.	decomp.	soluble acids	yellow hexag
17		0.36°			
18		insoluble	decomp.	soluble acids, alk	
	500°	deliques.	v. soluble	v. soluble alcohol	needles
Ю		deliques.	v. soluble	soluble alcohol	crystalline
11		∞ soluble	∞ soluble	soluble al., H ₂ SO ₄	
2		insoluble		sol.acids,alk.,(NH ₄ ) ₂ CO ₃	
	585-595°	decomp.	decomp.	sol. al., ether, CS ₂	needles
4	§	deliques.	v. soluble		crystalline
5	. <b></b>	insoluble		sol. acids, alk	hexagonal
6		insoluble			
7		220°	5.26100°		
8		1.47180	2.94 ^{100°}		<u>                                     </u>
19	decomp.	100 ^{14°}	<b>∞</b>		tetragonal
0			1: • • • • • • • • •		monoclinic
1	2530°	insoluble	insoluble	insol. a.; sol. KCN, aq. r.	yellow regular.
2		soluble		insol. a.; sol. alk., aq. r	blue violet
_					1000 C

Decom. at 100°. ¶ For other compounds of Gold see "Auric" and "Aurous

Number.	Name.	Formula.	Molec- ular Weight.	$\mathbf{H_3} = \mathbf{r}  (\mathbf{D}).$	Melting Point, °C.
1	Indium sulphate	$\operatorname{In}_2(\operatorname{SO}_4)_3 \dots$	517.81	3.438	
2	sulphide	$In_{\bullet}S_{\bullet}$	325.81		infusible
3	sulphite	2In,O ₃ .3SO ₂ .8H ₂ O	891.54	 	3H ₂ O,100°
4	Iodic Acid	HIO,	175.93	$4.6290^{\circ}$	110°
5	Iodine	I ₂	253.84	4.948 ^{17°}	114.2°
6	chloride mono- «	ICI	162.38	3.1822	24.7°
7	" " в	ICl	162.38		13.9
•					
8	" tri	ICl ₃	233.30	3.1107	33°
	' '				
9		IF ₅			8° .
10		IBr			36°
11		IO ₂			dec. 130°
12	" pent	$I_2O_{\boldsymbol{\delta}}$	333.84	4.799*	dec. 300°
	Iridium				2250°
14	*	Ir	193.1	22.42	1950° [120°
15	bramida tri	IrBr ₈ .4H ₂ O	504 02		2H O 100
16	" total	IrBr ₃ .411 ₂ O IrBr ₄	519 78		decemp
17		IrCl ₂			
18	" tri	$IrCl_3$	204.02		
19	" totro	IrCl ₄	334 04		decomp
20	hvdrovide di-	IrO ₂ .2H ₂ O	261 13		decomp.
21	" seculi-	Ir ₂ O ₃ .3H ₂ O	1488 25		
22	iodida tri-	IrI ₃	573 86		
23	" totra-	IrI ₄	700 78		dec 360°
24	ovide di-	$\overline{\operatorname{IrO}}_{2}$	225 10		ucc. 500
25	" secui-	$\operatorname{Ir}_2 O_3 \dots$	431 20		0.4000
26	sulphide mono-	IrS	225 17		oxidizes
27	" di-	IrS ₂	257 24		oxidizes
28	" sesqui-	$Ir_2S_3$	482 43		oxidizes
	Iron pure	Fe	55.84	7.85-7.88	1505°
	-		ŀ		
30		Fe			1600°
31	white pig	Fe	55.84	7.58-7.73	1075°
32	gray pig	Fe	55.84	7.03-7.13	1275°
33	steel	Fe	55.84	7.60-7.80	1375°
34	cast steel	Fe			1375°
<b>3</b> 5	boride	FeB	66.84	7.15 ^{18°}	
0.2	1	E. C	170 50	7 07169	
36	carbide	Fe ₃ C	179.52	7.0710	
37	· · · · · · · · · · · · · · · · · · ·	FeC4	1105.84		<u>'••</u> •••

Digitized by Google

- i	Boiling		Solubility in	n 100 Parts.		
Number.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.	
1 2		deliques.	v. soluble	l b l (NIT) G		
$\frac{2}{3}$		insoluble		dec. by a.; sol. (NH ₄ ) ₂ S	crystalline	
1 ~	½H₂O,110°	2860°	471 ⁸⁰ °	soluble acidsv. soluble alcohol, HNO ₃		
	184 35°	0.0182 ^{11°}	0.092550	sol. KI, CS ₂ , al., CHCl ₃ ,	grave blook	
"	104 33	0.0102	0.092	ether	rhombic	
	101.3°	decomp.		$\int$ sol. al., $CS_2$ , ether,		
7	101.3°	decomp.		glacial H.C ₂ H ₃ O ₂	reddish brown rhomb, plates	
8		soluble	decomp.	sol. al., ether, HCl, glac. $H.C_2H_3O_2$		
	97°	decomp.	decomp.		liquid	
10		s. soluble		sol. al., $CS_2$ , ether		
11		insoluble	decomp.	insol. al. ether; sol. H2SO4		
12		187 . 4 ^{13°}			trimetric	
13		insoluble	insoluble	sol. aq. r., Cl ₂ .H ₂ O	white spongy	
14		insoluble	insoluble	insol. a., aqua regia	reg. or hexagon. rhombohedral	
•		soluble		insoluble alcohol, ether.	olive gr. cryst	
		soluble		soluble alcohol	blue crystals	
17		insoluble			blackish green .	
18		soluble		insoluble acids, alkalies.	olive green	
19		soluble	decomp.	soluble alcohol, dil. HCl		
20		insoluble		soluble HCl, alk	indigo blue	
21	· · · · · · · · · · · ·	insoluble			black	
22 23	· · · · · · · · · · · ·	s. soluble	soluble	insoluble alcohol		
23 24		insoluble	insoluble	soluble KI, NaI		
24 25	• • • • • • • • • • • •	insoluble insoluble			black	
26		insoluble	<b>.</b>		blue black blue black	
20 27		insoluble		insol. acids; sol. K ₂ S insol. acids; sol. K ₂ S		
28		s. soluble			brown black	
	2450°	insoluble	insoluble			
	2450	msoluble	instituble	sol. acids; insol. alk	cubical or reg. octahedral	
30		insoluble	insoluble	sol. acids; insol. alk		
31		insoluble	insoluble	sol. acids; insol. alk		
32		insoluble	insoluble	sol. acids; insol. alk		
33		insoluble	insoluble	sol. acids; insol. alk		
34		insoluble	insoluble	sol. acids; insol. alk		
35	· · · · · · · · · · · ·	insoluble		sol. HNO ₃ , hot conc.	gray crystals	
36		insoluble	insoluble	soluble acids	regular	
		insoluble		s. soluble HCl		
_					G	

^{*} Loses 8H₂O at 260°. Digitized by GOOGLE

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = $I$ . Air = $I$ (A). $H_2 = I$ (D).	Melting Point, °C.
1	Iron* carbonyl	Fe(CO) ₆	195.84	1.47	-21°
2	disulphide		120.01	4.86-5.18	1171°
3	nitride		125.69	6.35	dec. 200°
4	phosphide	Fe P	142.72	6.57 ^{15°}	1290°
5	Krypton		82.92	(2.818A.	-169°
				40.78D.	
6	Lactic Acid	H.C ₃ H ₅ O ₃	90.05	1.2485	<-24°
7	Lanthanum	La	139.0	6.1545	810°
8	bromate	La ₂ (BrO ₃ ) ₆ .18H ₂ O	1369.808	 	37.5°
9	bromide	LaBr7H.O	504.87		
10	carbide		163.00	5.02 ^{20°}	
11	carbonate	La ₂ (CO ₃ ) ₃ .8H ₂ O	602.13		
12	chloride	LaCl,	245.32	3.947፟፟፟፟፟፟	890°
13	- "	LaCl ₃ .7H ₂ O	371.43	 	<b></b>
14	nitrate		433.13		40°
15	oxalate	La ₂ (C ₂ O ₄ ) ₃ .9H ₂ O	704.14		l
16	oxide sesqui	La ₂ O ₃	326.00	6.41 ^{15°}	infusible
17	sulphate		566.15	3.600	dec. 1150°
18	66	La ₂ (SO ₄ ) ₃ .9H ₂ O	728.29	2.821	decomp.
19	sulphide	La ₂ S ₃	374.15	4.911110	stable at
20	Lead	Pb	207.1	11.34	327°
21	acetate (sugar of) .	Pb(C ₂ H ₃ O ₂ ) ₂ .3H ₂ O	379.20	2.50	75°, 3H ₂ O
22	" basic	$Pb_2(C_2H_3O_2)_3OH$	608.28		
23	" "	$\frac{\text{Pb}(\text{C}_2\text{H}_3\text{O}_2)_2}{\text{Pb}(\text{OH})_2.\text{H}_2\text{O}}$	584.28		
24		$Pb(C_2H_3O_2)_2.2Pb$ (OH),	807.38		
25	azoimide	PbN	291.16	   • • • • • • • • • • • • • • • • • •	
26	borate	$Pb(BO_2)_2.H_2O$	311.12	5.598(anhy)	red heat
27	bromate	$Pb(BrO_3)_2.H_2O$	480.96		dec. 180°
28	bromide	PbBr ₂	366.94	6.57219.20	370°
29	carbonate	PbCO	267.10	6.43	
30	" basic	2PbCO ₃ .Pb(OH) ₂ .	775.31		decomp.
31	chlorate	Pb(ClO ₃ ), H ₂ O	392.04	4.037	dec. 230°
32	chloride	$[PbCl_{\bullet}$	277.02	5.80	498°
33	" tetra	PbCl ₄	348.94	3.18 ^{0°}	-15°
34	chlorite	Pb(ClO ₂ ) ₂	342.02		
35		PbCrO	323.10	$6.123^{15^{\circ}}$	fusible
36		PbCrOPbO	546.20		<i>.</i>
	(chrome red)	-			

^{*} For other compounds of Iron see "Ferrous" and "Ferric."

Der.	Boiling		Solubility	in 100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
3 4	103° decomp. 	.00049 decomp. insoluble	insoluble	sol.conc.H ₂ SO ₄ , al., alk insoluble dil. acids sol. HCl, H ₂ SO ₄ [+HF insol. acids; sol. HNO ₃	yellow reg. or
8 9	14H ₂ O, 100°	decomp. 416 ^{25°} v. soluble decomp.	decomp.	∞ sol. al.; s. sol. ether soluble acids insol. alcohol v. sol. al.; insol. ether soluble acids	hexag. prisms
11 12 13	126	insoluble v. soluble v. soluble deliques. .00008 ^{25°}	decomp.	s. soluble, CO ₂ aqv. soluble alcoholv. soluble alcoholv. soluble alcoholv. soluble alcoholv.	trimetric white crystals. triclinic
17		s. soluble 3.0° 3.8° insoluble	0.87 ^{100°} 1.06 ^{100°} decomp.	soluble al., acids, NH ₄ Cl s. soluble alcohols. soluble alcoholsoluble dilute acids	
21	1525° 280	insoluble 45.64 ^{15°}	insoluble 200 ^{100°}	H ₂ SO ₄ insoluble alcohol	regular or mon- oclinic monoclinic
22 23		v. soluble v. soluble			needles
24		5.55	18.2		needles
29 30 31 32 33 34 35	†	0.05 insoluble 1.38 ^{20°} 0.455° 0.00198 insoluble 171 ^{18°} 0.673° decomp. s. soluble .00002 ^{18°}	s. soluble insoluble	insol. alk., sol. acids sol. acids, KBr; insol. al. insoluble alcohol 0.02 CO ₂ aq soluble 0.09 dil. HCl, insol. al [H.C ₂ H ₂ O ₂ . sol. acids, alk.; insol.	rhombic amorphous monoclinic rhombic yellow monocl yellow monocl
35		s. soluble .00002 ^{18°} insoluble			

[†] Loses H₂O at 160°,

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Lead cyanate	Pb(CNO) ₂	291.12		decomp
2	cyanide	Pb(CN) ₂	1 1		
3	dichromate	PbCr ₂ O ₇			
4	dithionate	$PbS_2O_6.4H_2O$	439.30		decomp.
5	ferricyanide	$Pb_{3}[Fe(CN)_{6}]_{2}.6H_{2}O$			decomp.
6	ferrocyanide	$Pb_2Fe(CN)_6.3H_2O$	680.15		decomp.
7	fluoride	PbF ₂	245.10		fusible
8	formate	Pb(CHO ₂ ) ₂	297.12		dec. 190°
9	hydroxide	2PbO.H₂O	484.22		dec. 145°
10		3PbO.H₂O	687.32		H ₂ O, 130°
11		Pb(IO ₃ ) ₂	556.94		
12	iodide	PbI ₂	460.94		358°
13		Pb(NO ₃ ) ₂	331.12		*
14		PbC ₂ O ₄	294.9		dec. 300°
15		PbO	223.10		888°
16		PbO	223.10		
17		PbO	223.10		red heat
18	8ub	Pb ₂ O	430.20		
19		Pb ₂ O ₃	462.20		dec. 370°
20	rea (miniam)	Pb ₃ O ₄	685.30	9.09615°	dec. 500°- 530°
21	" per	PbO ₂	239.10		decomp.
22		PbCl ₂ .PbO	501.12		
23		PbCl ₂ .2PbO	724.22		
24	"	PbCl ₂ .3PbO			
25	"	PbCl ₂ .7PbO	1839.7		
	(cossel yellow)				
26	perchlorate	$Pb(ClO_4)_2.3H_2O$			
27	periodate	PbHIO ₈			dec. 130°
28	, ,	PbHIO ₈ .H ₂ O			†
29		PbS ₂ O ₈ .3H ₂ O			
30	phosphate	$Pb_3(PO_4)_2$	811.38	6.9–7.3	• • • • • • • • • • • • • • • • • • • •
31	phosphite	PbHPO ₃	287.15		decomp.
32	pyrophosphate		606.30		806°(anh.)
33	selenide		286.30	3.10 ^{15°}	1065°
34	sulphate		303.17		1100°
35	" acid	Pb(HSO ₄ ) ₂ .H ₂ O	419.27		
36	" basic	PbSO.PbO	526.27		
37	sulphide	PbS	239.17		1015°
38	sulphite	PbSO ₃			
-	-P				

^{*} Decomposes at 205°-223°.

Digitized by Google

og.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		insoluble	s. soluble		crystals
2		s. soluble	soluble	insoluble KCN	
3		decomp.		soluble acids, alkalies	red crystalline.
4		soluble			crystalline
5		s. soluble	soluble	soluble alkalies, HNO ₃ .	red crystals
6		insoluble		s. soluble conc., $H_2SO_4$ .	
7		$0.064^{18^{\circ}}$	<u></u>	soluble HNO ₃	
8		1.6 ^{16°}	18 ^{100°}	insoluble alcohol	rhombic
9		s. soluble	s. soluble	soluble alkalies	
10		0.014		soluble alkalies	regular
11		$0.0012^{2^{\circ}}$		s. soluble $HNO_3 \dots$	
12	861-954°	0.04400	0.436 ^{100°}	insol. al., sol. KI	
13		390°	138.9 ^{100°}		octahedral
14		$0.00016^{18^{\circ}}$			
	white heat	$0.013-02^{20^{\circ}}$		soluble alkalies, lead	yellow rhomb
	white heat	$0.0013^{22^{\circ}}$	insoluble	acetate, NH ₄ Cl, CaCl ₂ ,	
	white heat	insoluble	insoluble	(SrCl ₂	amorphous
18		insoluble			grayish black
19		insoluble	decomp.	decomp	reddish yellow
20	· · · · · · · · · · · · · · · · · · ·	insoluble		sol. glacial $H.C_2H_3O_2$ $[C_2H_3O_3]$	
21		insoluble	insoluble	insol. al.; sol. glac. H.	brown hexag
22		insoluble	insoluble	soluble alkalies	tetragonal
23		insoluble		soluble alkalies	yellow trimet
24		$0.0056^{18^{\circ}}$	0.0774°		yellow
25		insoluble			yellow crystals.
		}	1		
26		100°	1	soluble alcohol	
27		insoluble	insoluble	soluble dil. HNO3	crystalline
28		insoluble	insoluble	s. soluble dil. HNO3	amorphous
29		v. soluble			
30		0.00001420°	insoluble	sol. HNO ₃ ; insol. H. C ₂ H ₃ O ₂	
31		insoluble	1	soluble HNO3	
32		insoluble	decomp.	sol.Na, P2O7, HNO3, KOH	
33		insoluble		decomp. HNO	
34		$0.0042^{20^{\circ}}$	s. soluble	sol. conc. H ₂ SO ₄ , HCl,	rhombic
		/		NH, salts; insol. al.	
35		s. soluble	1	s. soluble H ₂ SO ₄	crystalline
36	• • • • • • • • • • •	0.0044°	s. soluble	s. soluble H.SO	
37	1085°	0.0001	insoluble	sol. conc.; a. insol. KOH	black regular
<b>3</b> 8		insoluble		s. sol., H2SO2 sol. HNO2	
		<u> </u>	<u></u>	1	· · · · · · · · · · · · · · · · · · ·

[†] Loses H₂O at 110°-120°. Digitized by GOOGIC

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Lead sulphochloride	3PbS.PbCl ₂	995.53		
2			323.26	3.82	
3	thiosulphate		319.24		decomp.
4	tungstate		455.10	8.235	<del></del>
5	Lithium	Li	6.94	0.53420°	186°
6	acetate		102.00		70°
7	amid	LiNH,	22.97	1.178 ^{17.5°}	374°
8	benzoate	LiC ₇ H ₆ O ₂	127.980		
9	bicarbonate	LiHCO ₃	67.95		
10	bichromate	Li ₂ Cr ₂ O ₇ .2H ₂ O	266.01		
11	borate		259.96		
12	bromide	LiBr	86.86	3.46625	442°-547°
13	carbide	Li ₂ C ₂	37.88	1.65 ^{18°}	
14	carbonate	Li ₂ CO ₃	73.88	2.111	618°-710°
15	chlorate	LiClO ₃ . H ₂ O	99.41		50°
16	chloride	LiCl	42.40	1.998-2.074	
17	chloroplatinate	Li ₂ PtCl ₆ .6H ₂ O			6H,O,180°
18	chromate		147.90		322,233
19	citrate		281.804		decomp.
20	fluoride	LiF	25.94	2.601	801°
21		Li ₂ SiF ₆ .2H ₂ O	192.21	2.33	2H,O,100°
22	formate	LiCHO ₂ .H ₂ O	69.96	1.435-1.479	
23	hydroxide	LiOH	23.95		red heat
24	iodide	LiI		4.06325	330°-446°
25	"	LiI.3H ₂ O	287 91		72°
26	nitrate	LiNO ₃		2.334-2.442	
27	"		123.00	001112	29.88°
28	oxalate		101.88	2.1213 ^{17.5°}	decomp.
29	" acid		113.96		decomp.
30	oxide	Li ₂ O	29.88	2.102 ^{15°}	sublimes
31	perchlorate		106.40	1.841	236°
32	"		160.45	1.022	95°
33	phosphate	Li ₂ PO ₄ .H ₂ O	133.90	2.41 ^{15°}	857°
34	salicylate '		143.940		decomp.
35		Li ₂ SiO ₃	90.18	2.529 ^{15°}	1180°
36		Li Si,		1.12	decomp.
37		Li ₂ SO ₄		2.210 ^{15°}	818°–853°
38	(f	Li ₂ SO ₄ .H ₂ O	127.97	2.05239	H ₂ O, 130°
39	" acid	LiHSO ₄	104 02	2.123	120°, 130
40	sulphide	Li ₂ S	45 05	1.63-1.7	
41	sulphite	Li ₂ SO ₃ .6H ₂ O	202.05	1.05-1.7	red heat
42		LiHC, H, N, O ₃			- 34 11080

^{*} Decomposes at 600°.

[†] Loses 11 H2 at 90°

1			Solubility is	n 100 Parts.	
å	Boiling Point,	·	- Dolubinty i		Crystalline Form and Color.
Number	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		insoluble	decomp.	insoluble dilute acids	red
2		0.5 ^{20°}	decomp.	sol. KCNS, HNO ₃	yellow monocl
3		0.03		soluble Na ₂ S ₂ O ₃	
4		insoluble			regular
5	>1400°	decomp.	decomp.	soluble acids	silvery
	decomp.	300 ^{15°}	v. soluble	21.5 alcohol	rhombic
7	430°	decomp.			regular
8	100	33 ^{25°}	decomp. 40 ^{100°}	7.7 ^{25°} , 10 ^{78°} al	crystals
9		5.5 ^{13°}	10	1 , 10 al	Ci y stais · · · · · ·
10	• • • • • • • • • • • • • • • • • • • •	168.3 ^{30°}			blk. brown crys
11	• • • • • • • • • • • • •	v. soluble		insoluble alcohol	
12	• • • • • • • • • • • • • • • • • • • •	1430°	270 ^{103°}		crystalline
13	• • • • • • • • • •	decomp.	decomp.	soluble acids	crystalline
14	•	1.539°	0.728100	insoluble alcohol	prisms
15		301 ^{18°}		v. soluble alcohol	tetragonal
16		63.70°	∞ 12 <b>9</b> 96°	2.475 25 ° al., sol. ether.	octahedral
17	• • • • • • • • • •	soluble	soluble	soluble alcohol, ether	orange red hex
18	• • • • • • • • • • •	132 ^{30°}	soluble	soluble alcohol, ether	red trimetric
19		50 ²⁵ °	66.7 ^{100°}		
19 20		$0.27^{18^{\circ}}$	66.7100	s. sol. al. ether	crystals
				soluble HF	tablets
21 c 22		52.6	040 0100	sol. alcohol; insol. ether	monoclinic
	• • • • • • • • • • • • •	61.670°	346 . 6 ^{104°}		rhombic
23 .	· · · · · · · · · · · ·	12.70°	17.5 ^{100°}	s. soluble alcohol	crystalline
24 25		151 ^{0°}	476 ^{99°}		crystalline
					(rh'mb. or hex.
26.		48.30°	227.3 ^{100°}	soluble alcohol	} rhombohedral
27 .		138.40°	∞ ∞		or regular
28 .		819.50			
29		8 ¹⁷ °			
30 .		5.22°	$6.26^{100}$		crystalline
31		soluble		soluble alcohol	
32 ‡		soluble			rhombohedral
33 §		0.04		soluble acids, NH₄Cl	rhomboidal
34		v. sol.		v. sol. al	· · · · · · · · · · · · · · · · · · ·
35 .		insoluble	s. decomp.	soluble dil. HCl[tine	hexagonal
36 .		decomp.	decomp.	dec. by a.; insol. turpen-	blue crystals
37		$35.34^{\circ}$	29.24 ^{100°}	insol. 80% al	9
8.		43.52°°	35.75 ^{100°}	insol. 80% al	monoclinic
39 .		decomp.			prismatic
10 .		v. soluble		v. soluble alcohol	
1		soluble		s. soluble alcohol	needles
21.		0.27 ^{20°}	2.5 ^{100°}		
			<del></del>		

[‡] Loses 2H₂O at 100°, 3H₂O at 150°. § Loses H₂O at 100°.

[¶] Monoclinic, regular, rhombic or hexagonal.

TA GENERAL COLOR	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Magnesium	Mg	24.32	1.69-1.75	650°
2		Mg(C2H2O2)2.4H2O	214.43		
3		MgO.Al ₂ O ₃		3.57 ^{15°}	
4	ammonium arsenate	MgNH ₄ AsO ₄ .6H ₂ O	289.42		decomp.
5	" chloride		256.84		decomp.
6	cmoride	MgCl ₂ .NH ₄ Cl.6H ₂ O			
O	chromate.	MgCrO ₄ . (NH ₄ ) ₂ CrO ₄ .6H ₂ O		1.8293 ^{17°}	
7	" phosphate	MgNH ₄ PO ₄ .6H ₂ O	245.56	1.71 ^{15°}	decomp.
8	" sulphate	MgSO ₄ . (NH ₄ ) ₂ SO ₄ . 6H ₂ O	360.64	1.723**	
ø	arsenate	2MgHAsO4.13H2O	562.78	3.155 ^{15°}	
0		$Mg_a(AsO_a)_2$	318.88		
1	benzoate	$Mg(C_7H_5O_2)_2.3H_2O$			decomp.
2	borate	Ma(BO) SHO			accomp.
_					eH O
3		$Mg(BrO_8)_2.6H_2O$			6H ₂ O, 200
4					695°
5		MgBr ₃ .6H ₂ O			decomp.
6	carbonate	MgCO ₃	84.32	3.04	dec. <b>350</b> °
7	44	MgCO ₃ .3H ₂ O	138.37	1.8081	
8		4MgCO ₃ .Mg(OH) ₂ . 5H ₂ O	485.70		
9		3MgCO ₃ ,Mg(OH) ₂ 3H ₂ O	365.34	2.18	
0	chlorate	$Mg(ClO_3)_2.6H_2O$	299.34		40°
1		MgCl ₂	95.24	2.177	708°
2	"	MgCl ₂ .6H ₂ O	203.34	1.569 ^{17°}	2H ₂ O, 10
3					
1					
5		MaF.	62.18		1396°
6		Ma(CHO) 9H O			1000
7	hydroxide	M=(OH)	20.01	o 2015°	d
	nydroxide	Mg(UII) ₂	140.00	2.30	decomp.
8		Mg(1O ₃ ) ₂ .4H ₂ O	140.22	3.23	4H ₂ O, 21
9					decomp.
O		$Mg(NO_3)_2.6H_2O$	256.50	1.464	90°
1				·	decomp.
2					decomp.
3	oxide	MgO	40.32	3.22-3.654	1890-194
4		$Mg(MnO_4)_2.6H_2O$	370.28		decomp.
3	phosphate	$Mg_3(PO_4)_2.4H_2O$	<b>335</b> .10	1.640 ^{15°} (22H ₂ Q)	

^{*} Loses 5H₂O at 330°.

ber.	Boiling Solubility in 100 Parts.			Crystalline Form	
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3	1120°	insoluble deliques.	s. decomp. v. soluble	sol. a., NH ₄ salts v. soluble alcohol	monoclinie
		0.038 ^{20°} 16.7	soluble	0.003 Mg. mix., insol. al.	tetragonal
6		v. soluble	v. soluble		yellow monocl
7 8		0.01322 13.49 ^{0°}	67 .87 ^{75°}	soluble acids; insol. al	tetragonal monocl. prisms
10		insoluble insoluble 4 . 5 ^{25°}	0.15	sol. HNO ₃ ; insol. NH ₄ Cl insol. NH ₃ aq.; sol.NH ₄ Cl	
12 13	decomp.	insoluble 71.5 ^{7°}	soluble insoluble v soluble	soluble acids	regular
15		91.9 ^{0°} 316 ^{0°} 0.0106	120.2 ^{100°}	soluble alcoholsol. acids, 2.21 CO ₂ aq	
		0.1518 ^{19°} 0.04	decomp. 0.011	sol. acids, 1.40 CO ₂ aq soluble acids, NH ₄ salts	or rhombic hexagonal
19		0.04	0.011	soluble acids, NH ₄ salts	monoclinic
21 22 23 24 25 26 27 28	red heat decomp.	deliques. 52.2° 167 211.5 ^{18°} 33 0.0087 ^{18°} 7.7 0.0009 10 ^{15°} 1000°	v. soluble 65.87 ^{80°} 367 v. soluble insoluble	sol. HNO ₃ ; insol. al insol. alcohol, ether soluble NH ₄ salts	monoclinic yellow pale yel. cryst tetragonal rhombic rhombohedral monoclinic
29 30 31 32 33 34	*	100° 200 insoluble 0.07 ¹⁶ ° 0.00062 v.'soluble	164 .9 ^{110°}	soluble alcohol, ether soluble alcohol soluble acids; insol. al sol. alk. oxalates, a sol. acids, NH ₄ salts sol. glac. H.C ₂ H ₃ O ₂ methyl alcohol	
35		0.0205			monoclinic

[†] Greenish yellow crystals.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1		Fe(CO) ₅	195.84	1.47	-21°
2	disulphide	FeS	120.01	4.86-5.18	1171°
3	nitride	Fe ₂ N	125.69	6.35	dec. 200°
4	phosphide	Fe ₂ P	142.72	6.57 ^{15°}	1290°
5	Krypton	Kr	82.92	(2.818A.	-169°
				₹40.78D.	
6	Lactic Acid	H.C ₃ H ₅ O ₃	90.05	1.24857	<-24°
7	Lanthanum	La	139.0	6.1545	810°
8	bromate	La ₂ (BrO ₃ ) ₆ .18H ₂ O	1369.808	<b>.</b>	37.5°
9	bromide	LaBr ₃ .7H ₂ O	504.87		
10	carbide	LaC,	163.00	5.02 ^{20°}	<i>.</i>
11	carbonate	La ₂ (CO ₃ ) ₃ .8H ₂ O	602.13		[
12	chloride		245.32	3.947፟፟፟፟፟	890°
13	. "	LaCl ₃ .7H ₂ O	371.43	. <i>.</i>	
14	nitrate		433.13		40°
15		$La_{2}(C_{3}O_{4})_{3}.9H_{2}O.$	704.14		
16	oxide sesqui	La,O,	326.00	6.41 ^{15°}	infusible
17	sulphate	$La_2(\mathring{SO}_4)_3$	566.15	3.600	dec. 1150°
18	. **	La ₂ (SO ₄ ) ₃ .9H ₂ O	728.29	2.821	decomp.
19	sulphide		374.15	4.911110	stable at
20	Lead	Pb	207.1	11.34	327°
21	acetate (sugar of) .		379.20	2.50	75°, 3H ₂ O
22		$Pb_2(C_2H_3O_2)_3OH$	608.28		
23	" "	$\frac{\text{Pb}(\text{C}_2\text{H}_3\text{O}_2)_2}{\text{Pb}(\text{OH})_2.\text{H}_2\text{O}}$	584.28		• • • • • • • • • • • • • • • • • • • •
24		$Pb(C_2H_3O_2)_2.2Pb$ (OH),	807.38		
25	azoimide	PbN ₆	291.16	<b></b>	l. <b></b>
26	borate	Pb(BO ₂ ) ₂ .H ₂ O	311.12	5.598(anhy)	red heat
27	bromate	$Pb(BrO_3)_2.H_2O$	480.96		dec. 180°
28	bromide	PbBr ₂	366.94	6.57219.20	370°
29	carbonate	PbCO ₃	267.10	6.43	l
30		2PbCO ₃ .Pb(OH) ₂ .	775.31		decomp.
31	chlorate	Pb(ClO ₃ ) ₂ .H ₂ O	392.04	4.037	dec. 230°
32	chloride	PbCl,	277.02	5.80	498°
33	" tetra	PbCl	348.94	3.180°	-15°
34	chlorite	Pb(ClO ₂ ) ₂	342.02		
35	chromate	PbCrO ₄	323.10	6.123 ^{15°}	fusible
36	" basic	PbCrOPbO	546.20		<i></i> \
_	(chrome red)	•			

^{*} For other compounds of Iron see "Ferrous" and "Ferric."

.je	Dalling	Bolling Solubility in 100 Parts.		Crystalline Form	
Number	Point, Cold °C. Water.		Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
3 4	103° decomp. —151.7	.00049 decomp. insoluble	insoluble	sol.conc.H ₂ SO ₄ , al., alk insoluble dil. acidssol. HCl, H ₂ SO ₄ [+HF insol. acids; sol. HNO ₃	yellow reg. or
7 8 9	14H ₂ O, 100°	decomp. 416 ^{25°} v. soluble decomp.	decomp.	∞ sol. al.; s. sol. ether soluble acids insol. alcohol v. sol. al.; insol. ether soluble acids	hexag. prisms
11 12 13 14		insoluble v. soluble v. soluble deliques.	decomp. v. soluble	s. soluble, CO ₂ aq v. soluble alcohol v. soluble alcohol v. soluble alcohol	trimetric white crystals. triclinic
16 17		s. soluble 3.0° 3.8° insoluble	0.87 ^{100°} 1.06 ^{100°} decomp.	soluble al., acids, NH ₄ Cl s. soluble alcohols. s. soluble alcoholsoluble dilute acids	
21 22		insoluble 45.64 ^{15°} v. soluble	insoluble 200 ^{100°}	H ₂ SO ₄ insoluble alcohol s. soluble alcohol	regular or mon- oclinic monoclinic
		v. soluble 5.55	18.2		needles
29 30 31 32 33 34 35	† 861 861–95 <b>4</b> ″	0.05 insoluble 1.38 ^{20°} 0.455 ^{0°} 0.00198 insoluble 171 ^{18°} 0.673 ^{0°} decomp. s. soluble .00002 ^{18°} insoluble	s. soluble insoluble	insol. alk., sol. acids  sol. acids, KBr; insol. al. insoluble alcohol  0.02 CO ₂ aq  soluble  0.09 dil. HCl, insol. al  [H.C ₂ H ₃ O ₂ .  sol. acids, alk.; insol.	crystalline crystalline monoclinic rhombic amorphous monoclinic rhombic yellow monocl. yellow monocl. red crystals

[†] Loses H₂O at 160°,

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
	Lead cyanate	Pb(CNO) ₂			decomp.
2	cyanide	Pb(CN) ₂	259.12		
3	dichromate	PbCr ₂ O ₇			
4	dithionate	PbS ₂ O ₆ .4H ₂ O	439.30		decomp.
5	ferricyanide	Pb _a [Fe(CN) ₆ ] ₂ .6H ₂ O		<b></b>	decomp.
6	ferrocyanide	$Pb_2Fe(CN)_6.3H_2O$			decomp.
7	fluoride	PbF ₂	245.10		fusible
8	formate	Pb(CHO ₂ ) ₂	297.12		dec. 190°
9	hydroxide	2PbO.H ₂ O	484.22		dec. 145°
10		3PbO.H ₂ O	687.32		H₂O, 130°
11		Pb(IO ₃ ) ₂	556.94		358°
12 13	iodide	PbI ₂	460.94 331.12		*
14		Pb(NO ₃ ) ₂	294.9		
15	oxalateoxide mon	PbC ₂ O ₄ PbO	294.9 $223.10$		dec. 300° 888°
16	oxide mon	PbO	223.10		
17		PbO		9.2-9.5	red heat
18		Pb ₂ O	430.20		red near
19		Pb,O ₃	462.20		dec. 370°
20		Pb ₃ O ₄			dec. 500°- 530°
21	" per	PbO,	239.10	8.91	decomp.
22	oxychloride	PbCl ₂ .PbO	501.12	7.21	
23	"	PbCl ₂ .2PbO	724.22	7-7.1	
24		PbCl ₂ .3PbO	947.32		
25		PbCl ₂ .7PbO	1839.7		
- 1	(cossel yellow)		ł		
26	perchlorate	$ Pb(ClO_4)_2.3H_2O $			
27	periodate	PbHIO₅			dec. 130°
28	"	PbHIO ₅ .H ₂ O	433.04		†
29		$PbS_2O_8.3H_2O$			
30	phosphate	$Pb_3(PO_4)_2$	811.38	6.9-7.3	
31	phosphite	PbHPO ₃	287.15		decomp.
32	pyrophosphate	Pb ₂ P ₂ O ₇ .H ₂ O			806°(anh.)
33		PbSe	286.30		1065°
34		PbSO ₄	303.17		1100°
25	" coid	DP(RCO ) II O	410.07		
35	" acid	Pb(HSO ₄ ) ₂ .H ₂ O			•••••
36	Uasic	PbSO ₄ .PbO		7.13–7.7	1015°
37					
38	suipnite	PbSO ₃	281.11		

^{*} Decomposes at 205°-223° Google

ber.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2		insoluble s. soluble	s. soluble soluble	insoluble KCN	crystals
3		decomp.			red crystalline .
5		soluble s. soluble	soluble	soluble alkalies, HNO ₃	crystalline
6		insoluble		s. soluble conc., H ₂ SO ₄ .	
7 8		0.064 ^{18°} 1.6 ^{16°}	18100°	soluble HNO ₃ insoluble alcohol	rhombia
9		s. soluble	s. soluble	soluble alkalies	
10 11		$0.014$ $0.0012^{2^{\circ}}$		soluble alkaliess. soluble HNO ₃	regular
12	861-954°	$0.044^{0^{\circ}}$	0.436100°	insol. al., sol. KI	vellow hexag
13		39 ^{0°} 0.00016 ^{18°}	138.9 ^{100°}	8.77 ^{22°} alcoholinsol. al. sol. HNO ₃	octahedral
15	white heat	$0.013-02^{20^{\circ}}$		(soluble alkalies, lead	yellow rhomb
	white heat white heat	0.0013 ^{22°} insoluble	insoluble insoluble	acetate, NH ₄ Cl, CaCl ₂ , SrCl,	red hexagonal
18	}	insoluble		dec. by acids, alkalies	grayish black
19 20	 	insoluble insoluble	decomp.	decompsol. glacial H.C ₂ H ₃ O ₂	reddish yellow scarlet, [amorp.
				$[\mathring{\mathbf{C}}_{2}\mathring{\mathbf{H}}_{3}\mathbf{O}_{2}$	
21 22		insoluble insoluble	insoluble insoluble	insol. al.; sol. glac. H. soluble alkalies	brown hexag tetragonal
23		insoluble		soluble alkalies	yellow trimet
24 25	1	0.0056 ^{18°} linsoluble	0.0774°		yellowvellow crystals.
1					yenow crystais.
26 27	[····	100° insoluble	insoluble	soluble alcoholsoluble dil. HNO3	owystalling
28		insoluble	insoluble	s. soluble dil. HNO ₃	amorphous
29 30	1	v. soluble 0.000014 ^{20°}	insoluble	sol. HNO ₃ ; insol. H.	
			misorable	$C_2H_3O_2$	€*
31 32		insoluble insoluble	decomp.	soluble HNO ₃ sol.Na ₄ P ₂ O ₇ ,HNO ₃ ,KOH	rhombie
33		insoluble		decomp. HNO ₃	regular
34		$0.0042^{20^{\circ}}$	s. soluble	sol. conc. H ₂ SO ₄ , HCl, NH ₄ salts; insol. al.	rhombic
35		s. soluble		s. soluble H.SO	crystalline
36 37	1085°	0.0044° 0.0001	s. soluble	s. soluble H ₂ SO ₄ sol, conc.; a. insol, KOH	
38		insoluble	insoluble	s. sol., H ₂ SO ₂ sol. HNO ₃	
_	L		1		

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity Water = 1. Air = 1 (A). $H_2 = 1 (D)$ .	Melting Point, °C.
1	Lead sulphochloride	3PbS.PbCl,	995.53		
2	sulphocyanate	Pb(CNS) ₂	323.26	3.82	
3	thiosulphate	PbS ₂ O ₃	319.24		decomp.
4			455.10	8.235	
5	Lithium	Li	6.94	0.534 ^{20°}	186°
6	acetate	LiC ₂ H ₃ O ₂ .2H ₂ O	102.00		70°
7	amid	LiNH ₂	22.97		374°
8		LiC7H6O2	127.980		
9	bicarbonate	LiHCO ₃	67.95		
10		Li ₂ Cr ₂ O ₇ .2H ₂ O	266.01		
11	borate	Li ₂ B ₄ O ₇ .5H ₂ O	259.96		
12		LiBr	86.86	3.4663	442°547°
13		Li ₂ C ₂		1.65180	618°-710°
14 15		Li ₂ CO ₃	73.88	2.111	50°
16		LiClO ₃ , ½H ₂ O	99.41 42.40	1.998-2.074	
17		LiCl Li ₂ PtCl ₆ .6H ₂ O	529.97	1.998-2.074	6H ₂ O,180°
18			147.90		01120,180
19		Li ₂ G ₆ H ₆ O ₇ .4H ₂ O	281.804	1	decomp.
20	0101400	LiF		2.601	801°
21	fluosilicate	Li ₂ SiF ₆ .2H ₂ O	192.21	2.33	2H ₂ O,100°
22		LiCHO ₂ .H ₂ O	69.96	1.435-1.479	
23		LiOH	23.95		red heat
24		LiI	133.86	4.063*	330°-446°
25	"	LiI.3H ₂ O	287.91		72°
26	nitrate	Lino	69.01	2.334-2.442	253°-264°
27		LiNO ₃ .3H ₂ O	123.00		29.88°
<b>2</b> 8		Li ₂ C ₂ O ₄	101.88	2.1213 ^{17.5°}	decomp.
29		LiHC ₂ O ₄ .H ₂ O			decomp.
30		Li ₂ O	29.88	2.102 ^{15°}	sublimes
31	Personal	LiClO ₄	106.40	1.841	236°
32			160.45		95°
33	phosphate		133.90	2.41 ^{15°}	857°
34	salicylate		143.940		decomp.
35		Li ₂ SiO ₃		2.529 ^{15°}	1180°
36		Li Si.		1.12	decomp.
37		Li ₂ SO ₄		2.210150	818°-853°
38		Li ₂ SO ₄ .H ₂ O		2.0524	H ₂ O, 130°
39	acia	LiHSO,		2.123 1.63–1.7	120°
40 41		Li ₂ S Li ₂ SO ₃ .6H ₂ O		1.63-1.7	red heat
42	uroto	LiHC,H,N,O,	174 00		
+2	urate	$L_1 H O_5 H_2 N_4 O_3 \dots$	114.00	1	1••••

^{*} Decomposes at 600°.

[†] Loses 11 H2 at 90°

F	<del>                                     </del>						
Number	Boiling Point,		Solubility i	Crystalline Form			
Nur	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.		
1		insoluble	decomp.	insoluble dilute acids	red		
2		0.5 ^{20°}	decomp.	sol. KCNS, HNO ₃	yellow monocl		
3		0.03		soluble $Na_2S_2O_3$			
4		insoluble			regular		
	>1400°	decomp.	decomp.	soluble acids	silvery		
0	decomp.	30015°	v. soluble	21.5 alcohol	rhombic		
	430°	decomp. 33 ^{25°}	decomp. 40100°	050 +0700 ·	regular		
8			40100	7.7 ^{25°} , 10 ^{78°} al	crystals		
10	• • • • • • • • • • • • • • • • • • • •	5.5 ^{13°} 168.3 ^{30°}			1.11. 1		
11	· · · · · · · · · · · · ·	v. soluble		insoluble alcohol	blk. brown crys		
12	• • • • • • • • • • • • •	1430°	270 ^{103°}	insoluble alconol	crystalline		
13	• • • • • • • • • • •	decomp.	decomp.	soluble acids	crystalline		
14	*	1.539°	0.728 ¹⁰⁰	insoluble alcohol	prisms		
15		301 ^{18°}	0.728-00	v. soluble alcohol	tetragonal		
16		63.70°	12996	2.475 25 ° al., sol. ether.	octahedral		
17	• • • • • • • • • • • • • • • • • • • •	soluble	soluble	soluble alcohol, ether	orange red hex		
18	• • • • • • • • • • • • • • • • • • • •	132 ^{30°}	SOLUDIO	soluble alcohol, ether	red trimetric		
19	• • • • • • • • • • • • • • • • • • • •	50 ²⁵ °	66.7 ^{100°}	s. sol. al. ether	crystals		
20		0.27 ^{18°}	00.7	soluble HF	tablets		
21	decomp.	52.6		sol. alcohol; insol. ether	monoclinic		
22		61.670°	346 . 6 ^{104°}	Soli diconor, indoi: concr	rhombic		
23		12.70°	17.5 ^{100°}	s. soluble alcohol	crystalline		
24		151 ^{0°}	476 ^{99°}		crystalline		
25					(rh'mb. or hex.		
26		48.30°	227.3100°	soluble alcohol	rhombohedral		
27		138.40°	∞		or regular		
28		819.5°					
29		817°					
30		5.22°	$6.26^{100^{\circ}}$		crystalline		
31		soluble		soluble alcohol			
32 1	:	soluble			rhombohedral		
33 §	}	0.04		soluble acids, NH ₄ Cl	rhomboidal		
34 .	· · · · · · · · · · · ·	v. sol.	• • • • • • • •	v. sol. al			
35 .		insoluble	s. decomp.	soluble dil. HCl[tine			
36 .		decomp.	decomp.	dec. by a.; insol. turpen-	blue crystals		
37		35.340°	29.24 ^{100°}	insol. 80% al	1		
38 .		43.52°	35.75 ^{100°}	insol. $80\%$ al			
39 .		decomp.			prismatic		
40 .		v. soluble	• • • • • • • • •	v. soluble alcohol			
41		soluble	0. 51009	s. soluble alcohol	needles		
421.		0.27 ^{20°}	2.5 ^{100°}		·		

[‡] Loses 2H₂O at 100°, 3H₂O at 150°. § Loses H₂O at 100°

[¶] Monoclinic, regular, rhombic or hexagonal.

Number.	Name.	Formula.	Molec- ular Weight.	Water = 1.	Melting Point, °C.
1	Magnesium	Mg	24.32	1.69-1.75	650°
2	acetate	Mg(C ₂ H ₃ O ₂ ) ₂ .4H ₂ O	214.43		
3	aluminate	MgO.Al ₂ O ₃	142.52	3.57 ^{15°}	
4	ammonium arsenate	MgNH ₄ AsO ₄ .6H ₂ O	289.42		decomp.
5		MgCl ₂ .NH ₄ Cl.6H ₂ O	256.84	1.456	<del>.</del>
6		MgCrO ₄ . (NH ₄ ) ₂ CrO ₄ .6H ₂ O		1.8293 ^{17°}	
7	" phosphate	MgNH ₄ PO ₄ .6H ₂ O	245.56	1.71 ^{15°}	decomp.
. 8	" sulphate	$ MgSO_4. (NH_4)_2SO_4. $ $ 6H_2O$	360.64	1.723**	
. 9			562.78	3.155 ^{15°}	
10			318.88		
11	benzoate				decomp.
12	boratei.:		254.45		
13	bromate				6H₂O, 200°
14	bromide		184.16		695°
15			292.26		decomp.
16	carbonate	MgCO ₃	84.32	3.0 <del>4</del>	dec. 350°
17	46	MgCO ₃ .3H ₂ O	138.37	1.8081	<b></b>
18	" basic	4MgCO ₃ .Mg(OH) ₂ . 5H ₂ O	485.70	2.18	
19	66 66	3MgCO ₃ .Mg(OH) ₂ 3H ₂ O	365.34	2.18	•••••••
20	chlorate	$Mg(ClO_3)_2.6H_2O$	299.34		40°
21	chloride	MgCl ₂	95.24		708°
22				1.569 ^{17°}	2H₂O, 100°
23	chromate		266.43		
24	ferrocyanide	$Mg_2Fe(CN)_6.12H_2O$	476.73		
25	fluoride	MgF ₂	<b>62</b> .18		1396°
26	formate				
27	hydroxide			2.36 ^{15°}	decomp.
28	iodate				4H₂O, 210°
29		MgI ₂			decomp.
30	nitrate	$Mg(NO_3)_2.6H_2O$	<b>256</b> .50	1.464	90°
31	nitride	Mg ₃ N ₂	100.98		decomp.
32	oxalate	MgC ₂ O ₄ .2H ₂ O	148.35		decomp.
33	oxide				
34	permanganate	$Mg(MnO_4)_2.6H_2O$	370.28		decomp.
35	phosphate	Mg ₃ (PO ₄ ) ₂ .4H ₂ O	335.10	1.640 ^{15°} (22H ₂ Q)	• • • • • • • • • • • • • • • • • • • •

^{*} Loses 5H₂O at 330°.

iber.	Boiling	Solubility in 100 Parts.			Crystalline Form
Number.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3		insoluble deliques.	s. decomp. v. soluble	sol. a., NH ₄ salts v. soluble alcohol	monoclinic
4 5		0.038 ^{20°} 16.7	soluble	0.003 Mg. mix., insol. al.	tetragonal
6	1	v. soluble	v. soluble		yellow monocl
7 8		0.01322 13.49 ^{0°}	67 .87 ^{75°}	soluble acids; insol. al	tetragonal monocl. prisms
9 10 11 12		insoluble insoluble 4.5 ^{25°} insoluble	0.15 soluble insoluble	sol. HNO ₃ ; insol. NH ₄ Cl insol. NH ₃ aq.; sol.NH ₄ Cl soluble acids	
14 15 16		71.5 ^{7°} 91.90° 3160° 0.0106	v soluble 120.2 ^{100°}	soluble alcoholsol. acids, 2.21 CO ₂ aq	hex. rhomboh.
17 18		0.1518 ^{19°} 0.04	decomp.	sol. acids, 1.40 CO ₂ aq soluble acids, NH ₄ salts	hexagonal
19		0.04	0.011	soluble acids, NH ₄ salts	monoclinic
22 23 24 25 26 27 28 29 30 31	red heat decomp.  decomp.	deliques. 52. 29° 167 211. 5 ^{18°} 33 0.0087 ^{18°} 7.7 0.0009 10 ^{15°} 1000° 200 insoluble	v. soluble 65.8780° 367 v. soluble	soluble alcohol, ether soluble alcohol soluble acids; insol. al	rhombohedral monoclinic
		0.07 ^{16°} 0.00062 v.*soluble 0.0205	0.08 ^{100°} decomp.	sol. alk. oxalates, a sol. acids, NH ₄ salts sol. glac. H.C ₂ H ₃ O ₂ methyl alcohol	reg. or hexag purple needles . monoclinic

[†] Greenish yellow crystals. Digitized by GOOSIC

Number	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
	Magnesium				
1	phosphate acid	MgHPO3H ₂ O	174.42	2.123 ^{15°}	l
2	" "	$Mg_3(PO_4)_2.8H_2O$		2.195 ^{15°}	
3	" "	MgHPO.7H ₂ O	246.48		
4		$Mg_2P_2O_7$	222.72	2.40	
5	phosphite				
6		MgCl,.KCl.6H,O	277.90		
7		MgSO ₄ .K ₂ SO ₄ .6H ₂ O.	402.76	2.0277*	
8		MgSeO ₄ .6H ₂ O	275.62	1.928	
9	silicide	Mø-Si			
10	sodium chloride	MgCl ₂ .NaCl.H ₂ O			
11		MgSO ₄	120.39	2.65	
12		MgSO ₄ .7H ₂ O	246.50	1.6784 ^{17.5°}	
13	sulphide	MgS	56.39	2.82 ^{15°}	decomp.
14		MgSO ₃ .6H ₂ O	212.49		6H,O,200°
15		$MgC_4H_4O_6.4H_2O$	244.42	1.67	decomp.
16	thiosulphate	MgS ₂ O ₂ .6H ₂ O ₂	248.56	1.818 ^{24°}	3H ₂ O.170°
		Mn	54.93		1225°
18	acetate	$Mn(C_2H_3O_2)_2.4H_2O.$	245.04		
19	ammon, phosphate.	NH.MnPOH.O	186.03		
20	" sulphate	MnSO ₄ .(NH ₄ ) ₂ SO ₄ .		1.837¥	
		6H ₀ O			
21	arsenite	$Mn_3H_6(AsO_3)_4.2H_2O$ .	698.71		
22		$Mn(C_7H_5O_2)_2.3H_2O$			
23		MnB ₂	76.93		fusible
24		$\mathbf{M}\mathbf{n}\mathbf{Br_2}$			decomp.
25	"	MnBr ₂ .4H ₂ O			decomp.
26		Mn ₃ C	176.79	6.8917°	
27	carbonate	MnCO ₃	114.93	3.125-3.66	decomp.
28	chloride	MnCl	125.85		650°
29	"	MnCl ₂ .4H ₂ O	197.91		87.5°
30		MnCl ₄	196.77		
31		$Mn_2Fe(CN)_6.7H_2O$			
32	fluoride di-	$MnF_2$	92.93	3.98	856°
33	" sesqui-		331.96		decomp.
34	fluosilicate	$MnSiF_6.6H_2O$	305 33	1.903817.50	decomp.
35	formate	$Mn(CHO_2)_2.2H_2O$	180.98	1 953	decomp.
36		$Mn(OH)_2, \ldots$	88.95		decomp.
30	njuromus -ous	MIII(OII)2	30.00	J. 200	woomp.
37	" -ic *	Mn ₂ O ₃ .H ₂ O	175.88	4 335	decomp.

ber.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
5	1	0.3 insoluble 0.25	0.2 insoluble 81.70 ⁷⁵ °	soluble acids; insol. al soluble acids	plates monocl. plates hexagonal hexagonal monocl. prisms
10		v. soluble insoluble soluble 26.90°	decomp.		monoclinic
12		76.90° decomp.	671.2 ^{100°}	soluble alcohol	tetragonal or monoclinic. red brown cub.
14 15 16 17 18	decomp. decomp. 1900°	1 . 25 0 . 8 ^{16°} v. soluble decomp. 3	v. soluble decomp.	insoluble alcoholsoluble alcoholsoluble dil., acidssoluble alcoholsoluble alcohol	monoclinic prismatic reddish [clinic pale red mono-
20		0.0031 51.3 ²⁵ °	0.05 v. soluble	insol. alcohol, NH ₄ salts	
22 23 24 25 26 27 28 29 30 31 32 33		insoluble 6.55 ^{15°} insoluble 127.3° 296.7° decomp. 0.013 62.16¹° 1518° soluble insoluble insoluble v. soluble	decomp. 228100° decomp. insoluble 123.8106.3°    soluble decomp. decomp.	soluble acids	[bohedral rose col. mono. green [prisms red quadratic crystalline
34 35 36 37		140 soluble insoluble insoluble	v. soluble soluble insoluble insoluble	soluble alcoholsol. a., NH ₄ salts; insol. alk. sol. hot conc., H ₂ SO ₄	hexagonal  monoclinic  hexagonal  tetragonal

Digitized by GOOSTO

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity.  Water = I.  Air = I (A). $H_2 = I$ (D).	Melting Point, °C.
	Manganese	•			
1	hypophosphite		203.06		
2					decomp.
3	lactate				decomp.
4		$Mn(NO_3)_2.6H_2O$	287.05		25.8°
5		2-4-2-1		2.453 ^{20°}	dec. 150°
6		MnO		<b>5</b> .09-5.18	white heat
7	" -ic	$Mn_2O_3$	157.86	4.325-4.82	<del>1</del> 0, 1090°
8		MnO ₂	86.93	5.026	⅓O, 570°
9		MnO ₃	102.93		decomp.
10	" hept	Mn ₂ O ₇	221.86	>1.84	<-20°
11	phosphate -ous	$Mn_3(PO_4)_2.7H_2O$	480.98		
12	" " acid .	MnHPO₄.3H₂O	205.04		
13	phosphite	MnHPO ₃ .H ₂ O	153.00		H ₂ O,200°
14	pyrophosphate				
15		$Mn_2P_2O_7.3H_2O$			
16	silicate	MnSiO ₃	131.23	3.350	1218°
17	silicide	MnSi	83.23	$5.90^{15^{\circ}}$	
18	" di	MnSi ₂	111.53	$5.24^{13^{\circ}}$	
19	" -ous	Mn ₂ Si	138.16	6.20 ^{15°}	
20	sulphate -ic	$Mn_2(SO_4)_3$	398.07		decomp.
21	" -otis	MnSO ₄	151.00	2.954	700°
22	" "	MnSO, H,O			
23		MnSO ₄ .2H ₂ O			
24	" "	MnSO ₄ .3H ₂ O	205.05	2.356 ^{15°}	
25	" "	MnSO ₄ .4H ₂ O *	223.06	2.107	
26	" "	MnSO ₄ .5H ₂ O	241.08	2.1006 ^{14.5°}	54°
27	<i>u u</i>		259.10		
28		MnSO ₄ .7H ₂ O			7H₂O,280°
29		MnS ₂			decomp.
30	" -ous	MnS	87.00	3.6313°	decomp.
31	u u	MnS			decomp.
32		3MnS.H ₂ O	279.02		decomp.
33		Mn(CNS),.3H,O			¶
		$H_4Mn(CN)_6$			decomp.
	acid				<b>F</b> '
35	Manganomanganic oxide	Mn ₃ O ₄	228.79	4.33-4.9	infusible
36	Mercuriammonium di-				
	ammonium bromide.	NHg ₂ Br.NH ₄ Br	593.09		decomp.

^{*} The ordinary salt.

[¶] Loses 3H₂O at 160° 170° |

ber.	Boiling		Solubility in	1 100 Parts.	Crystalline Form
Number.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
١,		)		·	rose red cryst.
ı -ı		deliques.	v. soluble		rose red mono.
		soluble	v. soluble		amethyst mon.
1	129.4°	426.40°	∞	v. soluble alcohol	
5		0.05	0.081000	sol. dil. acids	
6		insoluble	insoluble	soluble acids, NH ₄ Cl	grass green reg.
7		insoluble	insoluble	soluble acids	black regular.
8		insoluble	insoluble	soluble HCl	‡
9		soluble	decomp.	sol. conc., H ₂ SO ₄	reddish
10	explodes	v. soluble	decomp.	soluble conc. H ₂ SO ₄	dark red oil
		s. soluble ·		soluble acids; insol. al	amorphous
1 (		s. soluble	decomp.	soluble acids; insol. al	crystalline
		s. soluble		sol. MnCl ₂ .MnSO ₄	reddish
( I	• • • • • • • • •	insoluble		soluble acids	
		insoluble		soluble Mn ₄ P ₂ O ₇	· · · · · [needles
1		insoluble		:	rose colored
		insoluble	insoluble insoluble	insoluble acids	tetrahedral
19	• • • • • • • • • •	insoluble	insoluble	insol. HNO ₃ .H ₂ SO ₄ sol. HF, alk.	gray octahedra
19		insoluble	insoluble	sol. HCl, NaOH; insol. HNO ₃	quadr. prisms.
20	160°	deliques.	decomp.	sol. conc., HCl, dil. H2SO4	green crystals.
21		53.2 ⁰ °	67 ^{75°}	sol. al.; insol. ether	
	10	98.47 ^{48°}	79.77 ^{100°}		
		85.27 ^{35°}	106.8 ^{55°}		,
	†30° & 40°	$74.225^{\circ}$	99.3157°		
		105.3°°	111.2540	insoluble alcohol	monoclinic or
	†8° & 18°	124.40°	142.1540		[rhombic
	$1-5^{\circ} & +8^{\circ}$	147.40°	134,5380		[or rhombic
		1720°	118 ^{15°}	1 1 7701	pale red mono.
		insoluble	insoluble	decomp. by HCl	black regular
- 1		0.00047	insoluble	insol.(NH ₄ ) ₂ S; sol.dil. a.	green cryst
		0.0006	insoluble	insol.(NH ₄ ) ₂ S; sol. dil. a.	red pink
		0.0006	insoluble v. soluble	insol(NH ₄ ) ₂ S; sol. dil. a. v. soluble alcohol	gray)
		deliques. insoluble	v. soluble	insol. ether; v. sol. al	• • • • • • • • • • • • •
04	• • • • • • • • •	moonung		msoi. ether; v. soi. al	• • • • • • • • • • • • • • • • • • • •
35	• • • • • • • •	insoluble	insoluble	soluble hot HCl	brown tetrag
36		decomp.	decomp.	soluble HCl, KI	yellow

[†] Stable between the temperatures given. ‡ Black tetragonal or rhombic.

Number.	Name.	. Formula.	Molec- ular Weight.	Specific Gravity. Water= I. Air = I (A). $H_2 = I(D)$ .	Melting Point, °C.
	Mercuri diammonium chloride		,		
1		NHg ₂ Cl.NH ₄ Cl	504.17	5.700	volatile
2	fusible white ppt	NHg,Cl.3NH,Cl			300°
3	ammonium iodide .	NHg.I.3NH.I			
4	" nitrate.	NHg ₂ NO ₃ .NH ₄ NO ₃ . H ₂ O	375.29		
5	" sulphate	(NHg ₂ ) ₂ SO ₄ .3(NH ₄ ) ₂ SO ₄ .4H ₂ O	1		
6	bromide	NHg ₂ Br	495.13		decomp.
7	chloride	NHg ₂ Cl	450.67		dec. 300°
8	hydroxide	NHg₂OH	232.22		explodes
9	iodide	NHg ₂ I			
10	mercuric chloride	2NHg ₂ Cl.HgCl ₂			
11	nitrate	NHg ₂ NO ₃			
12		$(NHg_2)_2SO_4.2H_2O$	960.12		
	Mercuri diammonium			İ	
.13		NH ₂ HgBr.NH ₄ Br			
14	•	(NH ₃ ) ₄ .HgI ₂ .CuI ₂	839.99		
15		(NH ₃ ) ₂ HgCl ₂ .HgCl ₂ .	577.11		
16		(NH ₃ ) ₂ HgSO ₄ .H ₂ O	348.75		H₂O, 115°
	Mercuro ammonium				
17	l ·	NH ₃ HgCl	253.09		decomp.
18		$(NH_3)_2Hg(C_2H_3O_2)_2$ .	370.73		decomp.
	tate	$H_2O$	1		
	Mercuroxy	NITT IT. OO	400 00		
19			468.69		dec. 200°
20					dec. 130°
21	louide.	NH ₂ Hg ₂ OI			
22	mirate.	NH ₂ Hg ₂ ONO ₃			
23		(NH ₂ Hg ₂ O) ₂ SO ₄	962.52	0.0544999	decomp.
24	l .	$Hg(C_2H_3O_2)_2$	318.00	3.254422	
25		$Hg_3(AsO_4)_2$	879.72		
26		$Hg(BrO_3)_2.2H_2O$	492.47	F 74	00.50
27	bromide	HgBr ₂			235°
28		2HgO.HgCO ₃ Hg(ClO ₃ ) ₂			dana
29		HgCl ₂	007.02	4.990 5 20 5 46	decomp.
30		HgCrO ₄	216 60	3.32-3.40	265°
31	chromate	$Hg(CN)_2$	050.00	4 019	decomp.
32	cyanide	$ \mathbf{HgF_0} $	220 40	4.010	decomp.
33	fluoride	TIRE 2	400.00		
_	l		1	<u> </u>	
_	*	Decomposes at 130°	-140% giti	zed by Googl	e

ber.	Boiling Solubility in 100 Parts.			Crystalline Form	
Number	Point, °C.	Cold Water.	Hot . Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
3 4		0.14 insoluble decomp. insoluble decomp.	decomp.	insol. alcohol; sol. acids. soluble acids, KI soluble alcohol, ether. sol. HNO ₃ ; insol. KOH. sol. dil. a., NH ₄ salts	red crystals
6 7 8 9 10		insoluble insoluble decomp. insoluble insoluble insoluble insoluble insoluble	insoluble insoluble	soluble HCl, KIsoluble acids, KIsol. hot, HCl, HNO ₃ sol. HCl; dec. by KIsoluble hot HClsoluble KIsoluble KIsoluble KIsoluble HCl, KIsoluble HCl, KIsoluble HCl, KIsoluble HCl, KI	yellowyellowbrown
14 15	decomp.	insoluble decomp. insoluble decomp.	decomp.	soluble HCl, H ₂ SO ₄ sol. alcohol+ H.C ₂ H ₃ O ₂ sol. acids, NH ₄ salts	
		insoluble v. soluble	• • • • • • • • • • • • • • • • • • • •		black rectangular plates
20 21	explodes	s. soluble 0.007 ^{17°}	0.06 ⁸⁰ °	soluble HCl, HNO ₃ soluble HCl, KI	yellow brown brown
23 24 25		insoluble s. soluble 25 ¹⁰ s. soluble	100 ^{100°}	soluble HCl, HNO ₃ soluble alcohol sol. HCl, HNO ₃	micaceous scales
26 27 28 29	†	0.17° 1.06 ^{9°} insoluble 25°	1.6 20–25 ^{100°}	sol.HNO ₃ ,HCl,Hg(NO ₃ ) ₂ soluble alcohol, ether	rhombic brown red
30 31 32	303°–307°	5.73 ^{0°} s. soluble 12.5 ^{15°} decomp.	53.96 ¹⁰⁰ °	43.5 al., 33 etherdecomposed by acids5 alcohol	rhombicdark red trimtetragonal
	1		- Cublimas	4 2100 2250 Digitized by 7	

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Mercuric fluosilicate.	HøSiF.HøO.3H.O	613.55		-
$\overline{2}$	fulminate		284.62		explodes
3	hydrate	$Hg(OH)_2$			
4	iodate	$Hg(IO_3)_2$	550 44		20,110
5	iodide red	HgI ₂	454 44	6 2-6 32	241°-257°
6	" vellow	HgI ₂	454 44	5 91-6 06	241°
7	iodo bromide	HgIBr	407 44	0.01	
8	" chloride	HgICl	362 08		153°
G	chioride	ligioi	302.80		100
9	nitrate	Hg(NO ₃ ) ₂ .2H ₂ O	342 64		decomp
10	nitride	$Hg_3N_2$	629 82		evolodes
11	ovelete	$HgC_2O_4$	288 60		decomp
12	ovide	HgO	216 60	11 00-11 20	decomp.
12	OAIGO:	1	210.00	11.00 11.20	decomp.
13	ovyhromide	HgBr ₂ .3HgO	1010 2		
14	ovychloride	HgCl ₂ .3HgO	921.32	8 670	
15	ovycyanida	Hg(CN) ₂ .HgO		4.437 ^{19°}	explodes
16	oxytyanide	HgF ₂ .HgO.H ₂ O	473 99	7.707	dec. 100°
17	ovviodide	HgI,.3HgO	1104 2		
18		$Hg_3(PO_4)_2$			
19	notessium iodide	2HgI ₂ .2KI.3H ₂ O	1205 1	4 29023.5°	
20	selenide	HgSe	270 80	7 1_8 877	sublimes
21		HgSO ₄			dec.red ht
22	" besie	HgSO ₄ .2HgO	720 87	6.44	dec.ied iid
23	sulphide	HgS	232 67	7 55_7 70	(sublimes
24	surpinge,	HgS	232.07	8 06_8 12	at 446°
24	••••••	iigo	202.01	3.00-3.12	( at 110
25	sulphocyanate	Hg(CNS) ₂	316.76		decomp.
	Mercurous acetáte	Hg (C.H.O.).	519.25		
27	arsenate acid	Hg ₂ HAsO ₄	541 17	,	decomp.
28	"	Hg ₃ AsO ₄	740 76		decomp.
	1	1	1.20.10	1	decomp.
29	bromate	Hg ₂ (BrO ₃ ) ₂	657 .04		decomp
30	bromide	HgBr	280.52	7.307	
31	carbonate	Hg ₂ CO ₃	461 20		dec. 130°
32	chlorate	HgClO ₃	284 06	6 409	decomp.
33	chloride	HgCl	236 06	6 993_7 18 6	
90	omonac	1-501	200.00	[	at
34	"	HgCl	236.06	6.482	400°-500°
07	ή	11501	200.00	0.202	1200 000
35	chromate	Hg ₂ CrO ₄	517.20	)	decomp
36	fluoride	HgF	219.60		dec. 200°
J.	1 1101100	19			200. 200

Digitized by Google

ber.	Boiling		Solubility in	1 100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
6 7	349° 349° 360° 315°	decomp. s. soluble insoluble insoluble 0.004 ^{17.5°} insoluble insoluble	soluble s. soluble	soluble acids	yellow needles octahedral red tetragonal. yellow rhomb. yellow rhomb. yel. rhomb. or red tetrag.
10 11	······································	v. soluble decomp. insoluble 0.00515 ^{25°}	decomp insoluble 0.0395 ^{100°}	sol. HNO ₃ , insol. alcohol decomp. by acidssol. HCl; s. sol. HNO ₃ . insoluble alcohol; sol. a.	
13 14 15 16 17 18 19 20 21 22 23 24		insoluble insoluble s. soluble decomp. decomp. insoluble decomp. insoluble decomp. 0.002 0.0025 insoluble	s. soluble decomp. s. soluble	soluble HIsol. a., NH ₄ Cl.; insol. al. soluble alcohol, ether, KI soluble aqua regia soluble a., insol. al soluble a., insol. al soluble a., insol. al sol. Na ₂ S; insol. HNO ₃ .	yellow crystals yellow prisms needles yellow crystals yellow brown gray laminal yellow black amorph.rhomboh. or
25 26 27 28	Ter	s. soluble 0.75 ^{13°} insoluble insoluble	soluble	soluble HNO, soluble HNO, insoluble	red hexag [scales micaceous yellow to red . dark red
81 82 33	340°–405°	decomp. insoluble insoluble soluble 0.00031	insoluble decomp. decomp. 0.01	soluble NH ₄ Clsol. al.,HC ₂ H ₃ O ₂	yellow tetrag black or yellow columnar crys. rhombic
35 36		s. soluble decomp.	soluble	soluble HNO ₃ , KCN	red crystals yellow monocl.

Number.	Name.	Formula.	Molec- ular	Specific Gravity. Water=1.	Melting Point, °C.
Mu			Weight.	$ \begin{array}{c} Air = I (A). \\ H_2 = I (D). \end{array} $	°C.
_	30 1 1 1				
	Molybdenum	M. G	004 00		
1	tetra	MoS	224.28		oxidizes
3		H ₂ MoO ₄	162.02	3.124 ^{15°}	H O 700
3		H ₂ MoO ₄ .H ₂ O	180.03	3.124.0	H₂O, 70°
4	Neodymium	Nd	144.3	6.9563	840°
5		Nd ₂ (BrO ₃ ) ₆ .18H ₂ O	1380.408		66.7°
6	carbide	NdC,	168.3	5.15	decomp.
7	chloride	NdCl	250.68	4.134 ³ 4°	124°
8	chloride	NdCl ₃ .6H ₂ O	358.78	$2.282\frac{16.5}{4}$	124°
9		Nd ₂ O ₃	336.6		
10	sulphide	Nd ₂ S ₃	384.81	5.179 ^{11°}	decomp.
11	Neon	Ne	20.2	(0.674 A.	- 253°
				9.96 D.	
12	Nickel	Ni	58.68	8.6-8.93	1450°
13	acetate	$Ni(C_2H_3O_2)_2$	176.73	1.799	decomp.
14		NiCl ₂ .NH ₄ Cl.6H ₂ O	291.24	1.645	
15	" sulphate	NiSO ₄ .(NH ₄ ) ₂ SO ₄ .	395.00	1.929 <b>¥°</b>	• • • • • • • • •
10		6H ₂ O	100 04	7 669	1
16 17	arsenide	NiAs	133.64	7.663	<b></b>
18	arsenite boride	$Ni_3H_6(AsO_3)_4.H_2O$	691.44 69.67	7.3918°	decomp.
19	bromate	NiB Ni(BrO ₃ ) ₂ .6H ₂ O	422.62	2.575	decomp.
20	bromide	NiBr ₂	218.52	4.643	decomp.
21	"	NiBr ₂ .3H ₂ O	272.57		3H ₂ O,200°
22		NiBr ₂ .6NH ₃	320.66	1.837	
23	carbonate	NiCO ₃	118.68		decomp.
24	" basic	2NiCO ₃ .3Ni(OH) ₂	587.51		decomp.
		4H,O			
25	carbonyl	Ni(CÓ)	170.68	1.3185 ^{17°}	-25°
Ì	·	, <u>.</u>			
26		NiCl ₂	129.60	2.56	sublim <b>es</b>
27	chloride	NiCl ₂ .6H ₂ O	237.70		· · · · · · · · · ·
28	" ammonia	NiCl ₂ .6NH ₃	231.74		
29	cyanide	Ni(CN) ₂ .4H ₂ O	110.72		4H ₂ O,200°
30	famaaranida	N: E-CON) 11U O	E07 44		
31		Ni ₂ Fe(CN) ₆ .11H ₂ O	527.44 96.68	2.85514°	
32		NiF ₂ NiF ₂ .5HF.6H ₂ O	304.82	2.132	
33	fluorilicato	NiSiF ₆ .6H ₂ O	309.08	2.109	†
34	formate	Ni(CHO ₂ ) ₂ .2H ₂ O	184.73	2.1547	decomp.
35	hydroxide -0119	$4Ni(OH)_2.H_2O$	388.80	4.36	decomp.
50	tryuroxide -ous		1 300.00	atycyoogle	accomp.

^{*} Loses 5H₂O at 105°, 6H₂O at 160°. † Decomposes at red heat.

	Boiling		Solubility i	n 100 Parts.	Crystalline Form
T recembe	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3		insoluble s. soluble 0 . 133 ^{18°}	2.13 ^{70°}		Ĭ
6 7	18H₂O, 150°	decomp. 99 ^{13°}	decomp. 141.2 ^{100°}	sol. dil. a., conc. H ₂ SO ₄ insol.ether,CHCl ₂ sol.al.	
1	*	246 ^{13°}	511.6 ^{100°}		red rhombic
O		insoluble insoluble	decomp.	soluble HClsoluble dil. acids	
1	-243				
2		insoluble	insoluble	sol. dil. HNO ₃ ; s. sol. HCl, H ₂ SO ₄	
		16.6		insoluble alcohol	apple gr. prisms
4 5		v. soluble 2.5 ^{3.5°}	39.2 ^{85°}	s. sol. (NH ₄ ) ₂ SO ₄ aq	green rhombic . green crystals
7 8 9 0 1 2		insoluble insoluble decomp. 28 112.8° 1990° v. soluble insoluble insoluble	insoluble decomp. 155 1100, 315 7100, decomp. insoluble decomp.		prisms. [octah. monometric yellow scales green needles violet powder greenish rhomb.
5	43°	0.018 ^{9,8} °	insoluble	sol. al., CH ₃ Cl, conc. HNO ₃	needles
7 8		53.8° 179.3° soluble insoluble	87.6 ^{100°} 599 ^{100°} decomp. insoluble	sol. alcohol, NH, aq	green hexagonal
11 22 23 24		insoluble 0.02 v. soluble soluble insoluble		insol. HCl; sol. NH ₃ aq. insol. a., al., ether	green quadratic trimetric prisms green rhomboh. green crystals

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Nickel hydroxide -ic	Ni(OH) ₈	109.70		decomp.
2	iodide	NiI,	312.52		sublimes
3	" ammonia	NiI ₂ .6NH ₃	414.66	2.101	decomp.
4	nitrate	$Ni(NO_3)_2.6H_2O$	290.80	2.065 ^{14°}	56.7°
5	. " ammonia .	Ni(NO ₃ ) ₂ .4NH ₃ .2H ₂ O	286.83	<b></b>	
6	oxide mon	NiO	74.68	6.6-6.8	* †
7	" sesqui	$Ni_2O_3$	165.36	4.84160	† ·
8	oxyiodide	NiI ₂ .9NiO.15H ₂ O	1254.9		
9	perchlorate	Ni(ClO ₄ ) ₂ .5H ₂ O	347.680	i	1 <b>4</b> 9°
10	phosphate	$Ni_3(PO_4)_2.7H_2O$	492.23		• • • • • • • • •
11	phosphide	Ni ₃ P ₂	238.12	5.99	· • • • • • • • • •
12		Ni ₂ P	148.40	6.3150	
13	pyrophosphate		399.54	‡3.9303 ^{25°}	
14 15	potassium cyanide. selenide		258.94 137.88	1.875 ^{11°}	H ₂ O, 100°
16	sulphate		154.75	8.46 3.418 ^{15°}	SO ₃ , 840°
17	"		262.85	2.031	6H ₂ O,280°
- 1	••••	141504.01120	202.00	2.031	01120,200
18		NiSO ₄ .7H ₂ O	280.86	1.98	98°–100°
19	sulphide mono	NiS	90.75	4.60	797°
20		Ni ₂ S	149.43	5.52	
21	sulphite		246.85		
22	Nickelo-nickelic oxide		240.04		
23	sulphide	Ni ₃ S ₄	304.32		
	Niobium	Nb	93.5	12.7	2200°
25	bromide		493.10	[	150°
26	chloride		270.80	2.77-2.73 8°	
27	fluoride			3.2932 ^{18°}	72–73°
28	oxide		267.0	4.8	
29	Nitric Acid	HNO ₈	63.02	1.530 18	-41.3
	Nitrogen	N ₂	28.02	0.96737 A.	-210.5℃
31	bromophosphide	•	204.89	1 050	0.00
32	chloride		120.39	1.653	expl. 95° 114°
33	chlorophosphide iodoazoimide		347.91	1.98	
34	iodoazoimide	NH ₃ NI ₃	411.80	3.5	explodes
35	oxide mon-(nitrous)	N,O	44.02	.937 ⁰ 1.530 A	-102 3°
36		$NO(N_2O_2)$	30.01	1.0367 A.	-167°
30	<u> </u>				
37	oxide tri		76.02	1.447-2°	-111°

^{*} Absorbs oxygen at 400°. † Is reduced to NiO at 600°.

F	7				
Number	Boiling Point,	1	Solubility in	1 100 Parts.	Crystalline Form
Nur	°C.	Cold Water.	Cold Hot Alcohol (al.), Acids (a.), Water. Alkalies (alk.), etc.		and Color.
1		insoluble	insoluble		black
2		124 . 20°	188.2 ^{100°}		black scales
3		decomp.		soluble NH ₃ aq	
4	100.1	238 50°	∞	soluble alcohol, NH3aq.	
		v. soluble			, , , . , . ,
6 7	,	insoluble insoluble		soluble acids, NH ₃ aq	
8		insoluble		soluble HCl, NH ₃ aq	
		222.50°	273.7 ⁴⁵ °	sol. HNO ₃ ; insol. NH ₃ aq	
9 10		insoluble	insoluble	sol. al. acet., insol. CHCla	
10 11		insoluble	insoluble	soluble acids, NH ₄ salts insoluble HCl	dorle green
12		insoluble		insoluble HUL	dark green
13		insoluble		insol. a.; sol. HNO, + HF	
14		soluble		soluble acids, NH ₃ aq	
15	· · · · · · · · · · · ·	insoluble		decomp. by acids	
16	<b></b> .	29.30°	83.7 ^{100°}	sol. HNO ₃ , aqua regia insoluble alcohol, ether.	crystalline
17		62.520°	340.7 ¹⁰⁰		
11	• • • • • • • • • •	02.52	340.7100	v. soluble al., NH₃aq	
18	•	75.6 ^{15.5} °	475.8 ^{100°}		green monocl.
10	8	75.6	475.8100	v. soluble alcohol	green rhombic or monoclinic
19		0.00026	d	and HNO agus rogis	black hexag
50	• • • • • • • • • •	0.00036 insoluble	decomp.	sol. HNO ₃ , aqua regia	yellow crystals.
21	• • • • • • • • •	insoluble insoluble		soluble HNOsoluble HCl, H ₂ SO ₂	green tetrahed
22	• • • • • • • • • •	insoluble		soluble acids	gray
3	· · · · · · · · · · · · ·	insoluble			
ы		insoluble		soluble HNO ₃	grayish black rhombohedral
14				insol. a., aq. r	rhombic gray
25	270°	decomp.			green prisms
6	245°				<b>P</b>
	220°	soluble		[	monocl. prisms
28					
	86°	∞		∞ .	
	-195.5°	2.348c.c.0°	1.542c.c. ^{20°}	s. soluble alcohol	crystals
11		insoluble		sol. ether, CS ₂ , CHCl ₃	
12		soluble	decomp.	sol. CS ₂ , PCl ₃ , CHCl ₃	yellowish oil
	255°	decomp.			trimetric
14	. <b></b>	decomp.	explodes	sol. HCl, KCN, Na ₂ S ₂ O ₃	
		_	_	insol. ab. al.	rhombic
15	-89.8°	130.520°	60.82 ^{24°}	soluble al., conc. H ₂ SO ₄	
16	-150.2°	7.3c.c. ⁰³	0.0c.c. ^{100°}	3.5 c.c. conc. H ₂ SO ₄	
				26.6 al., FeSO4aq.	[brown gas
37	3.5°	soluble		sol. HNO ₃ , H ₂ SO ₄ , ether	blue solid, or red
		vdrous salt.	£ I		t 84 mm.

[‡] The anhydrous salt. \$ Loses 6H₂O at 103°. Digitized At 84 mm.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1 (A). H ₂ =1 (D).	Melting Point, °C.
1	Nitrogen oxide tetr	NO ₂ (N ₂ O ₄ )	46.01	1.4903%	-9.6°
2	" pent	N ₂ O ₅	108.02	1.642 ^{18°}	30°
3	oxybromide	NOBr	109.93	>1.0	-2°
	(nitrosyl bromide)			400	
4	(nitrosyl chloride)	NOCl		1.4165 ^{-12°}	-60°
5	selenide	NSe	93.21		explodes
6	sulphide	N ₄ S ₄	184.28	2.22150	188°
7 8	" penta	N ₂ S ₅	188.37	1.9017	10°-11°
	Nitroxyl fluoride	NS₃Cl	65 01	0 04 4	decomp.
- 1	=	-	1		2700°
- 1		Os	190.9	22.48	2700°
11	ammonium trichlo- ride	3H.Ŏ	l		
12	chloride di	$OsCl_2$	261.82		[600°
13	chloride tri	OsCls	297.28		dec. <b>560°</b> -
14	" tri	OsCl ₃ .3H ₂ O	351.33		
15	" tetra	OsCl	332.74		
16		OsO			
17	" sesqui	$Os_2O_3$	429.80		
18	" di	$OsO_2$	222.90		
19	" tetra	OsO ₄			20°
20	potassium tri- chloride	2(OsCl ₃ .3KCl)6H ₂ O			ļ.
21	potassium tetra- chloride	OsCl ₄ .2KCl	İ		"
22	sulphide di	OsS ₂	255.04	<b>.</b>	
23	" tetra	OsS4	319.18		oxidizes
24	sulphite	OsSO ₃	270.97		
25	Oxalic Acid	$H_2C_2O_4.2H_2O$	126.05	1.65318.5	98°
26	Oxygen	$O_2$	32.00	1.10535 A.	-227°
27	Ozone	O ₃	48.00	1.658 A.	dec. 270°
	Palladium	ra	266 54	11.4-11.9	1550°
29 30	oromide	PdBr ₂ PdCl ₂ .2H ₂ O	212 65		
30 31		Pd(CN) ₂			
32		PdF,			
33	hydride	Pd,H	214 41	11 06	decomp.
34		Pd(OH) ₂			
-	LJ dioxido	2 4 ( ) 22 /2			

^{*} At 751 mm.

Der.	Boiling		Solubility in	Solubility in 100 Parts.		
Tumpe	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.	
1	21 .64°	soluble		sol. CS ₂ , CHCl ₃ , conc. HNO ₃ , H ₂ SO ₄	reddish yellow.	
2 3	45°–50°	soluble decomp.	decomp.		rhombic dark brown	
4	-5.6°*	lecomp.			solid, lem. yel. crys., or. red.	
6 7	200° † decomp.	insoluble insoluble insoluble soluble	decomp.	sol. CS ₂ , al., ethers. sol. CS ₂ , alcohol	orange yellow orange r. mono. red citron yellow	
9	-63.5°	decomp. insoluble insoluble v. soluble	insoluble insoluble decomp.	s. sol. HNO ₃ , aqua regia insol. acids, aqua regia v. sol. al.; insol. ether	bluish amorph bluish	
		insoluble s. soluble		sol. al., ether, NaCl sol. alk., al., HCl. s. sol. ether	green needles brownish reg	
7 8	100°	s. soluble soluble insoluble insoluble insoluble v. soluble v. soluble	insoluble v. soluble	sol. alk., HCl	red to yellow grayish black copper red monoclinic	
1		s. soluble		insoluble al., HCl	red octahedra	
6 7 8	· · · · · · · · · · · ·	s. soluble insoluble insoluble 4.90° 4.89 c.c.0° 0.88 insoluble insoluble	120 ^{70°} 2.61c.c.30° insoluble	insoluble alkalies soluble HNO ₃ insol. alk. soluble HCl soluble alcohol sol. melted Ag.; s. sol. al. oil of turp. and cinnamon sol. conc. a., aqua regia soluble HBr.	brownish black. bluish black crystalline regular hexag.	
131		soluble insoluble s. soluble	soluble insoluble	soluble HClsoluble KCN, NH, aq soluble HF	red brown pris	
4	<u></u>	insoluble		sol. acids, alk	brown	

[‡] Loses 6H₂O at 150°-180°.

[¶] Decomposes at red heat?

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Palladium iodide	PdI	360.54		100°
2	nitrate	Pd(NO ₂ ),	230.72		decomp.
3	oxide sub	Pd,O	229.40		*
4		PdO			O, 875°
5	" di	PdO,	138.70		O, 200°
6	sulphate	PdSO ₄ .2H ₂ O	238.80		
7	sulphide sub	Pd.S	245.47	7.303 ^{15°}	red heat
8	" mono	PdS	138.77		oxidizes
					,
9	" di	PdS,	170.84	[ <i></i>	decomp.
10	Pallados diammo-	•			•
	nium chloride	PdCl ₂ .2NH ₃	211.69		
11	hydroxide				
12	Perchloric Acid	HClO,	100.47	1.764*	
13	" "	HClO.H.O	118.49	1.77568	50°
14	" "	HClO.2H,O	136.50	1.65	-20.6°
15	Periodic Acid	HIO,2H,O	227.96		130°
16	Permanganic Acid	HMnO ₄	119.96		
17	Permolybdic Acid	HMoO, 2H,O	197.04		
	Phosphamic Acid				decomp.
	Phosphine				-133.5°
20	" liquid	P ₂ H ₄	66.11	1.007-1.016	
21	" solid	$(\dot{P}_4\dot{H}_2)_3$	378.53	1.83 ^{19°}	burns 200°
22	Phosphonium bromide	PH,Br	114.99	1.906 A.	30°
23	" chloride	PH_Cl	70.53		26°
24		PH OH			
25	" iodide	PH,I	161.99	2.86	
26	" sulphate	(PH ₄ ) ₂ SO ₄	166.21		
27	Phosphoric Acid hypo-	$H_{\bullet}P_{\bullet}O_{\bullet}$	162.15		55°
28	meta	HPÓ,	80.05	2.2-2.488	†
29	ortho	H ₃ PO ₄	98.14	1.884 ^{18.2°}	38.6°
30	pyro				61°
	Phosphorous Acid				
31	hypo	H,PO,	66.06	1.493 ^{18.8°}	26.5°
32	ortho	$[H_{\mathfrak{s}}PO_{\mathfrak{s}}]$	82.06	$1.651^{21.20}$	70.1°
33	pyro	$H_{\star}P_{2}O_{5}$	146.11		38°
34	Phosphorous yellow	P	124.16	1.831 ^{18°}	44.1°
	•	•			ľ
į			ĺ	1	
35	" red	P4	124.16	2.296 ^{16°}	725°
- 1		•			
36	bromide tri	PBr ₃	271.04	2.8847	-41.5°
1					

^{*} Decomposes at red heat.

[†] Sublimes at white heat.

ber	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1	360°	insoluble	insoluble	insol. al., ether; sol. KI	black
2		soluble	decomp.	soluble HNO ₃	brown yel.rhom
3		insoluble		insoluble acids	black
4		insoluble		s. soluble acids	black
5		insoluble		s. soluble acids	black
6		v. soluble	decomp.		brown crystals.
7		insoluble		insol. acids; sol. aq. regia	gray
8		insoluble		soluble HCl; insoluble (NH ₄ ) ₂ S	black
9		insoluble		soluble aqua regia	dark brown
10		s. soluble		soluble acids, NH3aq	yel. or red crys.
11		soluble	decomp.		crystalline
	39°	soluble			oily
	decomp.	soluble			needles
	200°	v. soluble			crystalline
	73 <b>4°</b>	v. soluble		soluble alcohol, ether	monoclinic
16		v. soluble	decomp.		
17		v. soluble	v. soluble		white crystals
18	<b></b>	v. soluble	:lb.l.	and all address Co. Cl.	
	-85° 57°-58°	s. soluble	insoluble	sol. al., ether, Cu ₂ Cl ₂	
21		insoluble insoluble	insoluble	sol. al., turpentine	
22		decomp.		insol. al., sol. P., P ₂ H ₄	yellow
	sublimes	decomp.	decomp.		regular
24		decomp.			crystalline
	80°	decomp.		decomp. by alcohol	tetrag. prisms
26		decomp.		decomp. by alcohor	crystals
27	dec. 70°	soluble			crystals
28		soluble	soluble		glassy
29	İ	v. soluble		soluble alcohol	rhombic
30	-10	v. soluble	decomp.	v. soluble	needles
31	decomp.	00	<b>∞</b>		tablets
32	§	<u>~</u>	- ×		crystalline
33		decomp.			needles
34	290°	0.00033	s. soluble	$1.50^{\circ}$ , $10^{81^{\circ}}$ benzol; $0.4$	
				al.; 1000 $CS_2$ ; .43%, $2^{35^{\circ}}$ ether; sol. alk.	,
25	350° (vel.)	insoluble	insoluble	insol. ether, $CS_2$ ; sol. alk.	red hexagonal
	ooo (yei.)	,	institute	moon comer, OD2, SOL AIK.	rhombohedral
36	175.3°	decomp.		soluble CS ₂ , ether, CHCI ₃	

[‡] Loses ½ H₂O at 213°. § Decomposes at 200°. ¶ Decomposes at 130°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (A).	Melting Point, °C.
	Phosphorus				
1	bromide penta	PBr ₅	430.64		100°
2	bromofluoride	PBr ₂ F ₃	247.88		- 20°
3	bromonitride	PBr ₂ N	204.89		1889_1009
4	bromotrichloride di	PBr ₂ Cl ₃	297.26	•	350
5	" octo-	PBr ₈ Cl ₃	776.88		250
6	" tetra-	PBr ₄ Cl ₃	457.10		20
7	chloride tri	PCl ₃	137.42	1 6128	-111.8°
8	" nenta	PC1	208 34	3 60296° D	1/80+
9	chlorofluoride	PCl ₂ F ₃	158.96	o.oo D.	_80
10	fluoride tri	PF ₅	88.04		_ 160°
11	" penta	PF	126.04	4 30 D	_830
12	hepta bromide di-	PBr ₇ Cl ₂	661.40	1.00 2.	00
	chloride				
13	iodide di-	P ₂ I ₄	284 82		1100
14	" tri	PÍ ₃	411 80		610
15	iodochloride	PI_Cl3	360 26		01
16	monobromtetra-	PBrCl	252.81		
	chloride		-02.01		•••••
17	nitride	P ₃ N ₅	163.17	2 5118	8
18	oxide tri	$P_4^{\circ}O_6^{\circ}$	220.16	2.135¥	22.5°
19	" tetr-	P ₂ O ₄	126 08	2 53722.6	>100°
20	" nent	$P_2O_5$	149 00	2.0014	/100
21	owybromide	POBr ₃	206 90	2.00/	55.5°
22	ovybromdichloride	POBr.Cl ₂	107 99	2.022	13°
23	oxychloride	POCl ₃	153 49	1 711629	1.25°
24	oxyfluoride	POF ₃ .	104 04	1.711004	600
25	oxylodide	$P_3O_8I_6$	082 64	•••••	1400
26	oxynitride	PON	61 05	• • • • • • • • • • • •	red boot
27	selenide sub-	PON P.Se	203 36		_12º
28	" mono-	P.Se	141 28	• • • • • • • • • • • • • • • • • • • •	-12
29	" tri	$P_2Se_3$	200 68	• • • • • • • • • • •	
30	" penta	$P_2Se_5$	458 08		• • • • • • • • • • • • • • • • • • •
31	suiphide sesqui-	$P_4S_3$	220 37	2 0011°	172°
32	" tri	$P_4S_6$	316.58	2.00	
33	" di	$P_3^{A \otimes 6}$	285 54		297°
34	" penta	$\tilde{P}_{2}^{3}\tilde{S}_{5}^{6}$	222 43	2 03	290°
35		PSBrCl ₂			-30°
36	sulphobromide.	PSBr ₃	302.87	2.8517°	36.4°-38°
37		PSBr ₃ .H ₂ O			35°
38		PSCl ₃			-35°
1					1 00

^{*} In vacuo. † Under pressure. ‡ Decomposes at 250°.

<u>د</u> -	P-111-		Solubility is	n 100 Parts.	
Number.	Boiling Point,			<del> </del>	Crystalline Form
2	°C."	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	
ŀ					[rhomboidal
1	106°	decomp.			citron yellow
2		decomp.			pale yellow
3	150°*			sol. ether, CS ₂ , CHCl ₃	
4					orange crystals.
5					brown needles
6		decomp.			dark red cryst
- 1	76°	decomp.	decomp.	sol. CS ₂ , ether, CHCl ₃	
	160°–165°	decomp.		sol. CS ₂ , C ₆ H ₅ COCl	yellow rhombic.
9	T	decomp.		soluble alcohol	
	-95°	decomp.		soluble alcohol, alkalies	
	-75°	decomp.	· · · · · · · · · · ·		prismatic
Z		decomp.		soluble PCl ₃	prismatic
13		decomp.	•	soluble CS,	orange prisms
	decomp.	decomp.	decomp.	soluble $CS_2$	red prisms
		decomp.		soluble CS,	red hexagonal.
6		decomp.			yellow crystals.
			_		_
17		insoluble	s. decomp.		amorphous
- 1	173.1°	soluble	decomp.	sol. $CS_2$ , ether, $CHCl_3$	liquid or monocl.
	180°	soluble			orthorhombic
20		v. soluble		soluble conc. H ₂ SO ₄	amorphous
	189.5°	decomp.		sol. ether, con. $H_2SO_4$ , $CS_2$	
	137.6°	decomp.			tablets
	107.2°	decomp.	decomp.	decomp	tablets
	-40°	decomp.		decomp. by alcohol	crystalline
25	decomp.	soluble		soluble alcohol, ether	red crystals
	burns	insoluble decomp.			amorphous
	ourns	decomp.		sol. CS ₂ ; insol. al., ether s. sol. CS ₂ ; insol.al., ether	
29		decomp.	decomp.	sol. KOH; insol. CS ₂	dark red
10	• • • • • • • • • • • • • • • • • • • •	decomp.			dark red need
	407.8°	insoluble	decomp.		yellow rhomb
	490°	decomp.		sol. al., ether, alkalies	
- 1	¶337°			s. soluble CS ₂	
	518°-520°	decomp		sol. CS2, alkalies	yellow crystals.
35	150°	decomp.			yellow
36	decomp.	decomp.		sol. CS ₂ , ether, PCl ₃ , PBr ₃	yellow octah
37					yellow crystals.
38	125°	decomp.		soluble $CS_2$	
	& Decomp	at red heat.	Subli	mes at red heat Digitize Thy A	101 mm.

[§] Decomp. at red heat. | Sublimes at red heat. | At 101 mm.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
ŀ	Phosphorus		Ĭ		
1	sulphocyanate	P(CNS)	205 28	1.625 ^{18°}	<-20°
2	sulphofluoride	PSF ₃			20
3	sulphoxide	P ₄ S ₄ O ₆	348 44		102°
4	thioamide	$PS(NH_2)_3$	111.16	1 713°	dec. 200°
5	trioxytetrachloride	P ₂ O ₃ Cl ₄	251.92		200
6	trisulphotetrabro-	P,S,Br,		2.262 ^{17°}	
٦	mide	203214	1	2.202	
7	Phosphotungstic Acid	P.O. 12WO.42H.O	3682.8		
	Platinic Acid brom	H,PtBr,.9H,O			dec 100°
9	" " chlor	$H_2$ PtCl ₆ .6 $H_2$ O		2.431	decomp.
10	" " iodo	$H_2PtI_6.9H_2O$			accomp.
	Platino-platinic oxide		649.60		†
	Platinum	Pt	195.2	21.1624	1753°
13	bromide di	PtBr ₂			dec. 300°
14	" tetra	Pt.Br.	514 88		
15	chloride di	PtBr ₄ PtCl ₂	266 12	5 8711°	+
16	" tetra	PtCl ₄	337 04		decomp
17	" "	PtCl ₄ .5H ₂ O		2 43	4H ₂ O,100°
18	cvanide	Pt(CN) ₂			
19	fluoride	PtF			+
20		Pt(OH),			'
21	" "	Pt(OH) ₂ .2H ₂ O			2H ₂ O,100°
22	" (-ic)	Pt(OH)4			$\operatorname{decomp}$ .
23		PtI,			t
24		PtI			+
25	oxide mon	PtO			555°
26		PtO ₂			430°
27	" "	PtO ₂ .H ₂ O	245 22		H-O 100°
	***************************************		210.22		1130, 100
28	""	PtO,.2H,O	263.23		H ₂ O, 100°
29	""	$PtO_2.3H_2O$			dec. 300°
30	" "	$PtO_2.4H_2O$	299 27		decomp.
31	sulphide mono	PtS	227 27	8 897	decomp.
32		$PtS_2$	250 34	5 27	decomp.
33	" sesqui	$Pt_2S_3$			decomp.
34		$Pt(SO_4)_2.4H_2O$	459 40	0.02	• • • • • • • • • • • • • • • • • • • •
-	Potassium	K		0.875 ^{13°}	62.5°
36		KC ₂ H ₃ O ₂			02.3
37	" acid	$KH(C_2H_3O_2)_2$	158 16		148°
38	aluminate		250 45		170
00	CONTRIBILITION OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF	12211204.01120	J. 000 . 40	• • • • • • • • • • • •	• • • • • • •

^{*} At 7.6 atmosphere.

[†] Decomposes at red heat.

Doining		Solubility in	1 100 Parts.	Crystalline Form	
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	• and Color.
3 4	265° 23.8°* 295° 210°–215° decomp.	decomp. decomp. s. soluble decomp.	decomp.	sol. al., ether, CS ₂ , CHCl ₃ s. sol. ether; insol. CS ₂ . 50, CS ₂ .	gastetragonalyellow amorph
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26		soluble v. soluble v. soluble sol. and dec. insoluble insoluble insoluble 0.41200 insoluble v. soluble v. soluble v. soluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble	v. soluble v. soluble insoluble insoluble s. soluble insoluble insoluble insoluble insoluble insoluble insoluble insoluble	soluble alcohol, ether v. sol. al., ether, CHCl ₂ soluble alcohol, ether insoluble acids insoluble acids sol. aq. r., fused alk soluble HBr, KBr sol. al., ether, HBr soluble HCl, NH ₃ aq. soluble alcohol, ether soluble alcohol, ether insoluble alkalies sol. HCl, HBr, SO ₂ aq.alk sol. acids, alkalies v. sol. acids, alkalies insol. a.; sol. Na ₂ SO ₃ sol. alk., HI, KI sol. H ₂ SO ₃ , conc. HCl insoluble acids sol. HCl, NaOH; insol. H.C ₂ H ₃ O ₂ insol. HCl, aq. r sol. acids sol. (NH ₄ ) ₂ S, aqua regia insol. a.; sol. (NH ₄ ) ₂ S, aqua regia insol. a.; sol. aqua regia	yellowreddish brown blackbr. black amor violet to blackblackyellowbrownblackyellow needles black[needles
34	757 . 5° ¶	soluble decomp. 1882° decomp. v. soluble	decomp. decomp. 492 ^{62°}	sol. a., sol. aqua regia. sol. a., al., ether 33 alcohol; insol. ether sol. glac. H.C ₂ H ₃ O ₂ insol. al.; sol. alk	yellow plates needles plates crystals

[‡] Decomposes at 300°-350°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=I. Air=I(A). H ₁ =I(D).	Melting Point, °C.
1	Potassium amid	KH.N	55.13		271°
2	antimonate	KSbO ₃	207.30		
3	antimonyl tartrate.	KSbOC4H4O6.4H2O.	332.34	2.6	½H₂O,100°
4	arsenate	$KSbOC_4H_4O_6.\frac{1}{2}H_2O$ . $K_3AsO_4$	256.26		
5	"	K ₂ HAsO ₄	218.17		
6	arsenate acid	KH.AsO	180.08	2.851	288°
7	arsenite	KAsO,	146.06		
8	" acid	$KH(AsO_2)_2.H_2O$	272.04		
9	aurate	KAuO ₂ .3H ₂ O	322.35		
10	auricyanide	KAu(CN)4.11H2O	367.36		1½H ₂ O
11		KAu(CN) ₂			
12	benzoate	$KC_7H_8O_2.3H_2O$	214.19		
13		$K_2B_2O_4$			
14		$K_2B_4O_7.5H_2O$			5H ₂ O,r. h.
15		KBF4			
16		KC ₄ H ₄ BO ₇			
17	bromate	KBrO ₃	167.02	$3.271_{\frac{17.5}{17.5}}$	434°
18	bromide	KBr	119.02	2.7563	730°
19		KAuBr4			decomp.
20	"	KAuBr.2H.O	592.01	 	
21	bromoplatinate	K ₂ PtBr ₆	752.91	4.658340	
22		K ₂ PtBr ₄			
23		K ₂ CO ₃		2.3312 ^{17°}	909°
24	"	K ₂ CO ₃ .2H ₂ O	174.23		
25		$2K_2CO_3.3H_2O$			
26		KHCO ₃			#
27		KClO ₃			357°
28		KC1			772°
29	chloraurate	KAuCl4	378.14		
30		KOClCrO ₂			
31		$K_2IrCl_6$			decomp.
32		K ₂ PdCl ₆			decomp.
33	chloropalladite	K₂PdCl₄	326.74		decomp.
34		K ₂ PtCl ₆	486.16	3.499**	decomp.
35	chloroplatinite	K ₂ PtCl ₄	415.44	$3.291^{21^{\circ}}$	[:
36	chlororhodite	K ₃ RhCl ₆ .3H ₂ O	487.01		decomp.
37	chlorostannate	K ₂ SnCl ₆	409.96	2.687	
38	chromate	K ₂ CrO ₄	194.20	2.731918	971°
39	citrate	K ₃ C ₇ H ₅ O ₇ .H ₂ O	324.36	1.98	decomp.
40		K ₃ Co (CN) ₆	332.33		3- 0000
41	cobaltinitrite		958.71		dec. 200°
		3H ₂ O.	l		

^{*} Decomposes at 200°. † Anhydrous. ‡ Sublimes at white heat.

ber.	Boiling		Solubility in	1 100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
2 3 4 5 6 7 8 9 10 11	* decomp.	decomp. insoluble 58° 18.87 soluble 196° soluble soluble v. soluble soluble 14.3 124.117.5° 7130°	s. soluble 52100° v. soluble v. soluble decomp. v. soluble 200 16150° v. soluble	insoluble alcohol	green
		26.7 ^{30°} 1.42	v. soluble 6.25 ^{100°}	soluble alk.; insol. al	hexag. prisms. hexag. tablets.
1	decomp.	3.10° 53.480°	50 ^{100°} 102.04 ^{100°}	insoluble alcohols. sol. alcohol. ether	rhombohedral.
19 20 21 22 23 24 25	§	s. soluble 19.5 ^{15°} 2.07 ^{10°} v. soluble 89.4 ^{0°} 146.9 ^{0°} 129.4 ^{0°}	204 ^{67°} 10 ^{100°} v. soluble 156 ^{100°} 331 ^{100°} 268. 3 ^{100°}	soluble alcoholsol. KBr; dec. by ether.	monoclinic  red regular brown rhombic  rhombic monoclinic
26 27	T	22.40° 3.30° 28.50°	60 ⁶⁰ ° 60 ¹⁰⁴ .8° 56 . 6 ¹⁰⁰ °	0.833 alcohol; sol. alk	monoclinic monoclinic regular
28 29 30 31 32 33 34 35 36 37			80.260° 6.67 decomp. v. soluble 5.18100° v. soluble decomp.	soluble alcoholsoluble acidsinsoluble al., KCls. sol. HCl; insol. alinsol.al.; sol.KCl,NH ₃ aq. insol. al., ether	yellow needles red prisms black octahed. red regular
38 39 40 41		61.50° 199.7 ³¹ ° v. soluble 0.090°	81 .8 ^{106.1°} s. soluble	insoluble alcoholinsoluble alcohol, ether.	yellow rhombic yellow rhombic yel. tetragonal prisms

[§] Decomposes at 810°. || Decomposes at 100°-200°. || Decomposes at 40°

=					<del></del>
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air = 1 (A). $H_1 = 1$ (D).	Melting Point, °C.
	Potassium				
1		K ₄ Co(CN) ₆	371 43		[
2	cobaltosulphate	K ₂ SO ₄ .CoSO ₄ .6H ₂ O .	437 41	2 21223	
3	cvanate	KCNO	81 11	2.048	fuses
4		KCN			red heat
5		K ₂ Cr ₂ O ₇			396°
6	ferricvanide	K ₃ Fe(CN) ₆	329.20	1.810917°	decomp.
7	ferric oxalate	$KFe(C_2O_4)_2.2\frac{1}{2}H_2O.$	315.98		decomp.
8	"	$K_3Fe(C_2O_4)_3.3H_2O$	491 19		3H ₂ O, 100
9	ferrocvanide	$K_{\bullet}$ Fe(CN) ₆ .3 $H_{\bullet}$ O	422.35	1 .8533 ^{17°}	†
10	fluoride	KF	58.10	2.454	789°-885°
11	"	KF.2H,O	94.13	2.454	41°
12		KHF,			decomp.
13		K ₂ GeF ₄			
14	fluostannate	$K_2SnF_6.H_2O$	329.22	3.053	
15		K ₂ SiF ₆			ŧ
16			258.32		*
17		$K_2$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$ $I$			
18	formate	KCHO ₂	84 11	1 008	150°
19	hvdride	KH	70 26	0.80	decomp.
20	hydrogulphide	KSH	72 18	2	decomp.
21	hydroxide	кон	56 11	2.044	360.4°
22	hypochlorite	KClO	90.56		decomp.
23		KH ₂ PO ₂			burns
24	iodate	KIO ₂	214.02	3.975 ^{18°}	560°
25	" acid	KH(IO ₃ ) ₂	389.95		
26		KI			680°
27		KI ₃			45°
28	iodobromide	KBr.IBr	325.86		decomp.
29	iodochloride	KCl.ICl ₃	307.86	1.17645°	decomp.
30	iodoiridite	K.IrI.	1072.0		
31	magnesium chloride	MgCl ₂ .KCl.6H ₂ O	277.90	1.618	
	(carnallite)				
32	manganate	K ₂ MnO ₄	197.13		dec. 190°
33	molybdate	K ₂ MoO ₄	238.20		
34	nickel sulphate	K-SO. NiSO. 6H ₂ O.	437.11	2.124	
35	nitrate	KNO ₃	101.11	2.14°	337°
36	nitride	K.N	131.31		
37	nitrite	KNO	85.11	1.195 ^{25°}	
38	nitroprusside	K.Fe(CN).NO.2H.O	330.13		
39	osmate	$K_{\circ}OsO_{\bullet}.2H_{\circ}O$	369.13		<i></i>
40	osmocyanide	$K_4^{2}Os(CN)_6.3H_2O$	557.41		l
	·				0

^{*} Decomposes at 230°,

[‡] Decomposes at red heat.

F .	Pairing		Solubility is	n 100 Parts.	
Number.	Boiling Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
1 2 3 4 5 6 7 8 9 10 11 12 13 14	*	soluble 25.40° soluble v. soluble 4.90° 334.5° 9221° 4.70° 27.812.2° 92.318° 349.318° 4121° 6.4518° 3.718° 9.1017.5°	122.2 ^{103.3°} 102 ^{100°} 77.5 ^{100°} decomp. 117.7 ^{100°} 90.6 ^{96.3°} v. soluble v. soluble v. soluble	insoluble alcohol, ether.  108.449°. insoluble alcohol. sol. glyc., al. insoluble alcohol. s. soluble alcohol. insoluble alcohol. insoluble alcohol. insoluble alcohol, insol. alcohol; sol. HF. insol. alcohol; sol. HF. insol. al.; sol. KC ₂ H ₃ O ₂	monoclinic pl laminæ octahedra[clinic red tri. or mono- red monoclinic olive br. cryst yellow monocl regular regular octahedra
17 18 19 20 21 22 23	decomp.	0.12 ^{17,5°} 0.556 ^{0°} 0.78 ^{2°} 331 ^{18°} decomp. soluble 107 ^{15°} v. soluble v. soluble 4.74 ^{0°} 1.33 ^{15°} 126.1 ^{0°} v. soluble	0.955100° 1.2820° 25100° 65790° decomp. soluble 178100° v. soluble 32.3100°	v. soluble alcohol, ether sol. al.; insol. ether insol. al.; sol. KI 14.28 al.; sol. ether sol. alcohol, KI	yel. rhombohed.
10		v. soluble 64 . 5 ^{18.75°}	decomp.	insoluble alcoholdecomp. by alcohol	green crystals hexagonal
3456788	decomp.	decomp. v. soluble 7.00° 13.30° decomp. 30015.5° 10016° s. soluble s. soluble 3H ₁ O at 60°	60.8 ^{75°} 247 ^{100°} soluble soluble	insoluble alcoholinsoluble alcohol, ether.	dark gray prismatic red monoclinic. violet octahedra yellowish plates

[†] Loses 3H₂O at 60°-80°. ¶ Rhombohedral or prismatic.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Potassium oxalate	K,C,O,.H,O	184.22	2.08	decomp.
2	" acid	KHC,O,H,O	137.12	2.088†	decomp.
3	" tetra	$KH_3(C_2O_4)_2.2H_2O$	254.16	1.836	decomp.
4	oxide	K,O	94.20	2.328	red heat
5	" per	K ₂ O ₄	142.20		red heat
6		KClO4	138.56	$2.524\frac{10.8}{4}$	610°
7		K,CrO,	297.30		dec. 170°
8		KIO,	230.02	3.6187	582°
9	•	KMnO	158.03	$2.7032^{9.9}_{\overline{4}}$	dec. 240°
10	persulphate	K ₂ S ₂ O ₈	270.34		dec.<100°
11	perruthenate		204.80		dec. 440°
12		K ₂ UO ₅ .3H ₂ O	450.75		dec. 100°
13		K,PO₄	212.34		
14			174.25		decomp.
15			136.16	2.338**	96°
16		$K_1P_2O_7.3H_2O$	384.53	2.33	3H ₂ O, 300
17	mewa		472.56	2.26414.50	2H ₂ O, 100
18		K₂HPO₃	158.25	,	decomp.
19	platinate		375.45		
20			431.49	2.4548 ^{16°}	• • • • • • • • • • • • •
$\begin{array}{c} 21 \\ 22 \end{array}$			457.24 387.15		• • • • • • • • •
23			261.92		
24	rumenave		221.40	3.066₩	H₂O, 200°
25	giliog to		154.50	3.0004	
26			335.40		
27		KAg(CN) ₂			
28			230.20	1.61	6H ₂ O,100°
29		K2NaCo(NO2)6.H2O.			dec. 135°
30		$K_2SnO_3.3H_2O$	299.25	3.197	
31		K ₂ SO ₄	174.27	2.6633፟፟፟፟፟፟	1072°
32	" acid	KHSO ₄	136.18	2.245	200°
-33	. " "	KHSO4	136.18	2.612	
34			254.34	2.27	>300°
35		K ₂ S		2.13	
36		K₂S.5HO			3H₂O,150°
37		$K_2S_2$		• • • • • • • • • • •	
38		$K_2S_3$			
39		K ₂ S ₄	1		dec. 850°
40	" penta	$K_2S_5$	238.55		•••••

^{*} Decomposes at 411°.

[†] Density of the anhydrous salt.

ber.	Boiling Solubility in 100 Parts.			n 100 Parts.	Crystalline Form
Number.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3 4		33 ^{16°} 2.2 ^{0°} 1.8 ^{13°} v. soluble	51.5 ^{100°} v. soluble		monoclinictrimetrictriclinicgray octahedral
	decomp.	decomp.	19.8 ^{100°}	s. sol. al.; insol. al., ether	l
1 !	O, 300°	s. soluble 0.66 ^{13°} 2.83 ^{0°}	soluble 32.35 ^{75°}	insol. al., ethers. soluble KOHsol. conc. H,SO4	brown octahed. rhombic dark red rhomb
10 11		0.564 ^{0°} s. soluble	4.08 ⁴⁰ °	insoluble alcohol	prismatic black quadratic
13 14		decomp. s. soluble v. soluble	decomp. soluble v. soluble	decomp. HCl	red crystals
	H ₂ O, 400°	25 ⁷ °. soluble s. soluble	v. soluble	insoluble alcohol insoluble alcohol soluble acids	tetragonal amorphous
		v. soluble soluble s. soluble	v. soluble	insoluble alcohol insoluble alcohol soluble alcohol, ether	yel. rhombohed. yellow rhombic.
21 22		3.8 ^{15°} decomp.	soluble decomp.	soluble KOH	monocl. prisms. rhombohedral
24 25		110.50° soluble	122.2 ^{100°} soluble	insoluble alcoholinsoluble alcohol	amorphous
27 28	•••••	25 ^{20°} 13 ^{12°}	100 20 ^{15°}	4, alcohol	regular monoclinic
29 30 31 32		.07 at 25° 106.6 ^{10°} 8.5 ^{0°} 36.3 ^{0°}	110.5 ^{20°} 26.2 ^{100°} 121.6 ^{100°}	insoluble alcohol	rhombohedral rhom, or hexag. monoclinic
33 <b>34</b>	decomp.	soluble	decomp.		rhombic
35 36 37		soluble soluble soluble	v. soluble decomp.	sol. al., glyc.; insol. ether sol. al., glyc.; insol. ether soluble alcohol	orthorhombic
	• • • • • • • • • • • • • • • • • • • •	soluble soluble v. soluble	decomp.	soluble alcoholv. soluble alcoholv.	yellowish brown
7		, Boldolo	, , soluble		[01,50000

Digitized by GOOGLE

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Potassium sulphite	K.SO.2H.O	194.30		decomp.
2	" acid	KHSO	120.18		decomp.
3		KCNS	97.18	1.906	172.3°
4	tartrate	$K_2C_4H_4O_6{\frac{1}{2}}H_2O$	235.24	1.975	
5		KHĊ,Ĥ,Ŏ		1.956	
6	tellurate	K ₂ TeO ₄ .5H ₂ O	359.78	<b> </b>	
7	tellurite	K,TeO,	253.70	1	red heat
8	thioantimonate	2K ₃ SbS ₄ .9H ₂ O	893.70	<b> </b>	
9	thioarsenate	K ₃ AsS ₄	320.54		decomp.
10	thioarsenite	$K_aAsS_3$	288.47	1	decomp.
11	thiocarbonate	K ₂ CS ₃	186.41		
12	thionate di	$K_2S_2O_6$	238.34	2.2782	decomp.
13		$K_2S_3O_6$	270.41	2.304	
14	" tetra	K₂S₄O₀	302.48	2.2963**	
15	" penta	2K ₂ S ₅ O ₆ .3H ₂ O	723.15	2.1123%	decomp.
16	thioplatinate	$K_2Pt_4S_6$	1051.5	6.44 ^{15°}	burns
17	thiostannate	$K_2SnS_3.10H_2O$	473.57		10H ₂ O,100
18	thiosulphate	$3K_2S_2O_3.H_2O$	589.04	*2.590	H ₂ O, 180°
19		K₂WO₄.2H₂O	362.23		red heat
20		$K_2W_4O_{13}.8H_2O$	. 1166.3	,	
21		$K_6W_7O_{24}.6H_2O$	2014.7		decomp.
22		$K_2UO_4$	380.70		
23		$KS_2COC_2H_5$	160.28	1.5576 ^{21.5} °	dec.>200
	Praseodymium		140.61	6.4754	940°
25	am. sulphate	$Pr_2(SO_4)_3.(NH_4)_2SO_4$ .8H.O	749.62	2.53116.50	8H₂O,170°
26	bromate	Pr ₂ (BrO ₂ ) ₄ .18H ₂ O	1373.008		56.5°
27	carbide		164.61	5.10	decomp.
28	carbonate	$Pr_2(CO_3)_3.8H_2O$	509.33	<b></b>	6H,O,100°
29		PrCl _a	246.98	4.017♥	818°
30	"	PrCl ₃ .7H ₂ O	373.09	2.25116.20	
31	oxalate	$Pr_2(C_2O_4)_3.10H_2O$	725.36		
32	oxide tri	$Pr_2O_3$	329.2	7.068%	
33		Pr ₂ O ₄	345.2	5.978₩	
34		Pr ₂ O ₅	361.2		
35	potassium sulphate	$Pr_2(SO_4)_8.3K_2SO_4.$ $H_2O$	1146.3	3.275 ^{16°}	•••••
36	sulphide	Pr ₂ S ₂	377.41	5.042 ^{11°}	decomp.
37			569.41	3.72160	
38	•"	$Pr_2(SO_4)_3.8H_2O$	713.54	2.8213.20	
39	Radium	Ra	226.4		700°

^{*} Anhydrous.

ber.	D. 111.		Solubility in	100 Parts.	
Number.	Boiling Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
1		100	v. soluble	s. soluble alcohol	monoclinic
2		soluble	soluble		needles
3	dec. 500°	177.20°	217200	soluble alcohol, acetone	
4		1332°	15823°		monoclinic
5	•••••	0.370°	6.1100°	insol. al., H.C ₂ H ₃ O ₂ ; sol.	
Ĭ	•••••	0.01	0.1	a., alk.	montoic
6		s. soluble	soluble		rhomb. prisms .
7	• • • • • • • • • • • • •	s. soluble	soluble	insoi. a, s. soi. 12011	momo. prisms .
8 ⁱ	· · · · · · · · · · · · · · · · · · ·	soluble	Soluble	insoluble alcohol	yellow crystals.
اه	· · · · · · · · · · · · · · · · · · ·	v. soluble		insoluble alcohol	crystalline
ol	•••••	soluble		insoluble alcohol	crystamne
1		v. soluble		s. soluble alcohol	
2	• • • • • • • • • •	v. soluble	66 ^{100°}		red br. crystals.
2	• • • • • • • • • •	0		insoluble alcohol	hexagonal
0	• • • • • • • • •	v. soluble	decomp.		rhombic needles
2	• • • • • • • • • • •	v. soluble		insoluble alcohol	hexag. prisms
9	• • • • • • • • • •	50	decomp.	insoluble alcohol	rhombic plates.
2	• • • • • • • • • • •	insoluble		decomp. by HCl	blue gray crys
4	••••••	soluble			dark brown oil.
8	decomp.	96.10°	312 ^{90°}		monoclinic
9	• • • • • • • • • • •	51.5	151.5	insoluble alcohol	triclinic needles
0	• • • • • • • • • •	soluble	v. soluble	<i></i>	octahedra
1	· · · · · · · · · · · · ·	2.15	6.6		rhombic[rhomb.
2	· · · · · · · · · · · ·	insolubl <b>e</b>	insoluble		orange yellow
3	500°	v. soluble		20 alcohol; insol. ether	prisms
4		decomp.			yellow
5		s. soluble			crystalline
- 1					[prisms
6	4H ₂ O, 100°	190 ^{25°}	<i>.</i>		green hexag.
7		decomp.	decomp.	sol. dil. a., conc. H ₂ SO ₄	yellow crystals.
8		insoluble			crystalline
9		69.5 ¹³⁰	v. soluble	sol. al. pyr. insol. CHCl ₃	
0		176.5	v. soluble		green crystals
ti.		0.098 ^{25°}			crystalline
2					
3			l		black
il.					
5	•••••	s. soluble		sol. HNO ₃ , HCl	crystalline
3		insoluble	decomp.	solu <b>bl</b> e dil. acids	brown
7		23.64 ^{0°}	1.01 ¹⁰⁰		1
3					crystalline
1	•••••	• • • • • • • • • • • • • • • • • • • •			<u> </u>

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = I. Air = I (A). H ₂ = I (D).	Melting Point, °C.
1	Radium bromide	RaBr ₂	386.24		subl. 900°
$\tilde{2}$	chloride	RaCl ₂	296.9		1650°
	Rhodium	Rh	102.9	12.1	1970°
4	chloride	RhCl ₃	209.28		*
5	"	RhCl ₃ .4H ₂ O	281.34		
6	hydrosulphide	Rh(SH)	202.13		<b></b>
7	hydroxide tetra	Rh(OH)	170.93		<b>.</b>
8			153.92	 	decomp.
9	nitrate		324.96		
10	oxide mon	Rh()			
11	" seguii-	$Rh_2O_3$	253.80		
12	" di	RhO ₂	134.90		
13	sulphate		710.20		
14	•	RhS			decomp.
15	" seguii-	$Rh_2S_8$	302.01		
16	sulphite	$Rh_2(SO_3)_3.6H_2O$	554.11		
	Rubidium	Rb	85.45	1.53220°	38.5°
18		RbBr	165.37	3.210230	683°
19	carbonate	$Rb_2CO_3$			837°
20	" bi	RbHCO ₃	146.458		dec. 175°
21		RbClO ₃			ucc. 115
22	chloride	RbCl		2.706 ^{23°}	726°
23	chloroplatinate	Rb ₂ PtCl ₆	578.66	3.9417.50	
24	chromate	Rb,CrO	286.90	3.518	
24 25	dichromate	Rb ₂ Cr ₂ O ₇	386.90	0.010	
26 26		RbF		3.202 ^{16.5°}	753°
20 27	fluosilicate	Rb ₂ SiF ₆	313.20	3.338 ^{20°}	1.00
		RbH	86.46	2	decomp.
28		RbOH	102.46	3.203110	301°
29	J	RbI	1	3.428242	642°
30		RbIO ₃	260.37	4.559	012
31		RbNO ₃	147.46	3.131 ^{15°}	······
32	nitrate	KDNO ₃	141.40	5.101	
-00		Dh O	186.90	3.728	
33	<b></b>	Rb₂O	202.90	3.650°	600°
34		$Rb_2O_2$	218.90	3.530°	< 500°
35			234.90	0.00	600° <b>-650</b> °
36		Rb ₂ O ₄	331.25	2.618 ^{15°}	223°-224°
37	pentasulphide	IND ₂ S ₅	1		fusible
38	perchlorate		184.91	3.014 3.918¥	
39	periodate	RbIO ₄	276.37	3.235 ^{10.4°}	
40	permanganate		204.38		
41	sulphate	KD ₂ SU ₄	266 . 97	3.61133	

* Decomposes at 450°-500° by Google

į.	Boiling Point, °C. Cold			Solubility in	1 100 Parts.	Crystalline Form
	מחען	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1	1		soluble	soluble	soluble alcohol	vellowish reg.
	3		insoluble	insoluble	s. sol. a., aqua regia	grayish white
	4		insoluble		insoluble acids	red
1	5		v. soluble		sol. al., HCl; insol. ether	
	6		insoluble	decomp.	insol. a., Na ₂ S; sol. aq. r.	brownish black
- 1	7		insoluble		soluble HCl	green
- 1	8		insoluble		soluble acids, KOH	black gelatin's
1	9		soluble	soluble	insoluble alcohol	red
_	0		insoluble	insoluble	insoluble acids	gray
	1		insoluble	insoluble	insol. acids, KOH	gray crystals;
- 1-	2		insoluble	insoluble	insol. acids, KOH	brown\.
			v. soluble	decomp.	insoluble alcohol	pale yel. cryst.
1	4		insoluble	insoluble	insol. acids, aqua regia.	bluish
1	5		insoluble	insoluble	insoluble	black tablets
1	6		soluble		insoluble alcohol	yellow crystals
1		696°	decomp.	decomp.	soluble acids, alcohol	soft white
			9850	205.2 ^{113.5} °		regular
1	9	t	450200	soluble	soluble alcohol	
2			116.1		soluble alcohol	rhombic prisms
2	1		2.84.70	5.1 ^{19°}		trimetric
2	2		76.381°	138.9100°	soluble alcohol	regular
2	3		0.184 ^{0°}	0.634 ^{100°}	insoluble alcohol	yellow regular.
2	4		620°	95.7 ^{60°}		yellow rhombic
2	5		$5.72^{18^{\circ}}$	38.9 ^{65°}		tricl.or monocl.
2	6		22.7 ^{13°}		insoluble al., ether	
2	7		$0.16^{20^{\circ}}$	1.35 ^{100°}	insoluble alcohol; sol. a.	regular
2			decomp.	decomp.	decomp. acids	prismatic need.
2		<i></i>	198300	v. soluble		gray
3			137.5 ^{6.9°}	152 ^{17.4°}		reg. octahed.
3		<b></b>	2.1 ^{23°}			crystals
3	2	• • • • • • • • •	20.10°	452 ^{100°}		reg. or hexag.
3			soluble			prisms
3	-1'	· · · · • • • • • • • •	soluble			yellowoctahed.
3	-1	· • • • • • • • • • •				yellow needles
3		· · · · · · · · · · · · ·	sol. decomp.			black
1 -	~ I '	· · · · · · · · · · · ·				yellow
3		••••••	decomp. 1.09 ^{21.3°}			red rhombic
3	9	decomp.	$0.65^{13^{\circ}}$	[		rhombic
3	٠,			4.68 ^{60°}		tetragonal
4	71	• • • • • • • • • •	0.46 ^{0°} 36.4 ^{0°}	4.6800° 81.8 ¹⁰⁰⁰		crystalline
4	4	• • • • • • • • • • • • •	30.4°	01.9.00	• • • • • • • • • • • • • • • • • • • •	hexagonal
	-					

[†] Decomposes at 740°. Digitized by GOOGLE

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A).	Melting Point, °C.
	<u> </u>			$\mathbf{H_3} = \mathbf{I}(\mathbf{D}).$	
1	Rubidium sulphide.	$Rb_2S.4H_2O$	275.03		
2	tartrate acid		234.49	2.399	decomp.
3	,	Ru	101.7	8.6	>1950°
4	"	Ru	101.7	11.4	2000°+
. 5		Ru	101.7	12.268	2000°+
6	chloride di	RuCl ₂	172.62		
7		RuCl ₃	.208.08		
8		RuCl ₄	243.54		
9	hydroxide(sesqui-)		192.82		
10	oxide sesqui	Ru ₂ O ₃	331.60		
11	" di	RuO ₂	173.80	7.2	
12		Ru ₂ O ₅	363.60		₹O, 360°
13	" non	Ru ₄ O ₄	711.20		O, 440°
14		RuO,	165.70	5.7	50°
15	silicide	RuSi	130.0	5.404°	<i>.</i>
16	Samarium	Sm	150.4	7.7-7.8	1350°
17	bromate	Sm ₂ (BrO ₃ ) ₆ .18H ₂ O	1410.608	l	75°
18	bromide	$SmBr_{3}.6H_{2}O$	498.26	2.97220	
19		$\operatorname{SmC}_{2}$	174.4	5.86	
20		SmCl ₃	208.18	4.465	686°
21	"	SmCl ₃ .3H ₂ O	310.83	2.392 ^{15°}	
22	fluoride	$SmF_3.\frac{1}{2}H_2O$	216.41	2.002	
23		$\operatorname{Sm}_{2}(\operatorname{OH})_{6}$	402.85		
24	nitrate	$Sm(NO_3)_3.6H_2O$ .	444.53	2.375	
25	oxide	$\operatorname{Sm}_{2}\operatorname{O}_{3}$	348.80	8.347	
26 26		$\operatorname{Sm}_{4}\operatorname{O}_{9}$	745.60	0.011	• • • • • • • • • • • • • • • • • • • •
27	sulphate	$Sm_2(SO_4)_3.8H_2O$ .	733.14	2.930	OH O AFO
		Sc	44.1	2.950	8H ₂ O, 450 1200°
			150.48		
29		ScCl ₈ · · · · · · · · ·			subl.800-850°
30	oxide		136.2	3.864	· · · · · · · · · · · · · · · · · · ·
31	sulphate	$Sc_2(SO_4)_3$	376.41	2.579	
		Se ₈	633.6	4.26-4.28250	softens 50°
33	• • • • • • • • • • • • • • • • • • • •	Se ₈	633.6	4.47250	170°-180°
34		Se ₈	633.6	4.8250	217°
35	bromide mono		318.24	3.604 ^{15°}	
36		SeBr ₄	398.88		dec. 75°
37	bromochloride tri-	SeBr ₃ Cl	354.42	• • • • • • • • • • • • • • • • • • •	decomp.
38		SeBrCl ₃	265.50		dec. 190°
<b>3</b> 9	l e	SeCl ₂	229.32	2.90617.50	
40		SeCl ₄	221.04		sublimes
41		$Se_2I_2$	412.24		68°-70°
42	" tetra	SeI ₄	586.88		75°-80°
43	oxide di	SeO ₂	111.20	$3.9518^{15.8}_{15.8}$	390°

^{*} Decomposes at 106°.

^{† 18}H₂O lost on heating to 150°.

=			<del>=====================================</del>		1
ě	Boiling	Solubility in 100 Parts.		Crystalline Form	
	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
ī		v. soluble	v. soluble		crystals
2		1.18 ^{25°}	11.7 ^{100°}		trimet. prisms
3		insoluble	insoluble	s. sol. a., aqua regia	black porous
4		insoluble	insoluble		melted
5		insoluble	insoluble		grayish cryst
6		insoluble		insol. acids, alkalies	black cryst
7		soluble	decomp.	s. sol. al.; insol. a., $CS_2$ .	brown cryst
8		soluble		soluble alcohol [NaOH	
9				sol. a. $NH_3$ aq.; insol.	black powder
0		insoluble		insoluble acids	blue black
1		insoluble		insol. a.; sol. fused KOH	dark violet reg
2	1			soluble HCl	black cryst
3		<b></b> .			black cryst
4	*	s. soluble	. <b>.</b>	soluble alkalies	yellow rhombic.
5	<i>.</i>	insoluble	insoluble.	soluble HNO ₃ + HF	metallic prisms.
6					·
7	14H ₂ O, 100°†	114 ^{25°}			yel. hex. prisms
		deliques.	[		
Đ		decomp.	decomp.	soluble acids	yellow hexag
D				sol. ab. al., pyr	green yel. cryst.
1		deliques.			green
2		insoluble		insoluble acids	
3		insoluble		sol. a.; insol. alkalies	
4		v. soluble			pale yel. prisms
5		VI botable		v. soluble in acids	
В		insoluble			
7	t	s. soluble			
R	*	S. Borabio			
B	••••••	v. soluble		insol. ab. alcohol	shining plates
0	••••••	insoluble		soluble hot conc. acids.	white powder
1	••••••	Insolubic		Solubio not conc. notas.	winter powder
2	690°	insoluble	insoluble	sol. CS ₂ , conc. H ₂ SO ₄	red powder
- 1	690°	insoluble	insoluble	sol. $CS_2$ , conc. $H_2SO_4$	red monoclinic.
	690°	insoluble	insoluble		steel-gray hex
	225°-230°	insoluble	decomp.	sol. CS ₂ , CHCl ₃ , Et. Br.	bright red liquid
ĥ	220 -230	decomp.	decomp.	sol. CS ₂ , CHCl ₃ , Et. Br.	orange crystals.
7	•••••••	decomp.		s. soluble CS ₂ ,	orange crystals.
8	•••••	• • • • • • • • • •		insoluble CS ₂	yelbrown crys.
0	145°	docomposes	· · · · · · · · · · · · · · · · · · ·		red liquid:
n	140	decomposes		s. sol. CS ₂ ; sol. POCl ₃	yel. crystalline.
1	8	decomposes	d		steel gray cryst.
-1	1 1000	decomp.	decomp.	[tone	dark gray cryst.
	I ₄ , 100°	decomp.	decomp.		
3	1	38.4 ^{14°}	v. soluble	v. sol. al., HC ₂ H ₃ O ₂ , ace-	
	+ Tones 200	at 10500	& Dogomn	at 1000 ¶ Sublimes	at 250° 280°

Loses 3SO₂ at 1050°. § Decomp. at 100°. ¶ Sublimes at 250°-280°

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.		
1	Selenium oxychloride	SeOCl ₂	166.12	2.44	10°		
2	nitride	Se, N,	186.42		ехр. 200°		
3	sulphide	SeS	111.27	3.0560°	decomp.		
4	sulphoxide	$SeSO_3$	159.27		dec. 40°		
5		SeSO ₃ Cl ₄			165°		
6	Selenic acid	H,SeO,	145.22	2.9508 ^{15°}	58°		
7	" "		163.24	2.6273 ^{15°}	25°		
8	Selenious acid		129.22	3.0066 ^{15.7°}	decomp.		
	Silicic acid meta		78.32	1.813 ^{17°}	<del>.</del>		
10		H ₄ SiO ₄		1.576 ^{170°}			
	Silicobromoform		269.10	2.7	> -60°		
	Silicochloroform		135.69	1.65	-1.34°		
13	Silicofluoform	SiHF ₃	86.31	2.980° D.	-110°		
	Silicoiodoform			3.314200			
	Silicon cryst	Si	28.3	2.49100	1420°		
16	graphitic	Si	28.3	2.00-2.50			
17	amorphous	Si	28.3	2.00			
18	boride tri		61.3	2.52			
19	" hexa	SiB ₆	94.3	2.47			
20	bromide tri	SiBr,	268.06		95°		
21		SiBr	347.98	2.81288	5°		
22	bromotrichloride		214.60				
23	dibromdichloride		259.11		>-60°		
24	tribromchloride		303.52	2.432	>-39°		
25	carbide		40.30	3.12 ^{15°}			
26		SiCl ₃		1.580°	-1°		
27	" tetra	SiCl ₄		1.5248	-89°		
28	chlorohydrosulphide	SiCl ₃ SH	167.76	1.45			
29		SiF ₄		3.57 A.	-77°		
30	hydride		32.33				
31		Si ₂ H ₆	62.65	2.37 D.	-138°		
32	iodide di		282.14				
33			818.22		250°(vac.)		
34		SiI ₄	535.98	18.56 A.	120.5°		
35	iodoform			3.286 ^{23°}	8°		
36	iodotrichloride	SiICl ₃	261.60				
37	oxide di- amorph	SiO ₂	60.30	2.2015.60	(1600°-		
38	" " cryst	$SiO_2$	60.30	2.318-2.654	(1750°		
39	oxychloride	Si ₂ OCl ₆	301.36	10.05 D.			
99	39   oxychloride						

ber.	Boiling		Solubility in	roo Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3 4 5	179.5°  183°	decomp. insoluble insoluble decomposes decomposes	insoluble insoluble	insol. al.; s. sol. CS ₂ sol. CS ₂ ; insol. ether sol. conc. H ₂ SO ₄	yellowish liquid orange yellow. or. yel. tablets. green prisms white needles.
6 7 8 9 10		v. soluble v. soluble v. soluble insoluble s. soluble decomposes	v. soluble	sol.conc.H ₂ SO ₄ ; dec. al. v. soluble alcohol sol. alk.; insol. NH ₄ Cl. sol. alk.; insol. NH ₄ Cl.	hexag. prisms. needles crystals amorphous
12 13	34°	decomposes decomposes		sol. CS ₂ , CHCl ₃ , CCl ₄ dec. alk., al., ether; sol. toluol.	
15	220° 3500° 3500°	decomposes insoluble insoluble	insoluble insoluble	sol. CS ₂ [+ HF insol. HF; sol. HNO ₃ insol. HF; sol. HNO ₃ + HF, fused KOH	liquid gray octahed crystalline
18 19 20 21 22	265° 153° 80°	insoluble insoluble insoluble decomposes decomposes decomposes	insoluble decomp.	sol. HF, KOH	brown amorph. black rhombic black crystals. rhombic
25 26 27 28 29	126°-128° 	decomposes decomposes insoluble decomposes decomposes decomposes decomposes		insoluble acids	rhombic plates leafletsyellowgas
31 32 33 34 35 36	-115.5° 52° decomp. 290° dec. 150° 113°-114°	insoluble decomposes decomposes decomposes decomposes decomposes	decomposes	decomp. by KOH insol., CS ₂ , CHCl ₃ , C ₆ H ₆ . 19, CS ₂ . 2.2 ^{27°} , CS ₂ . sol. ∞ benzol and CS ₂ .	hexag. plates reg. octahedra.
37 38 39		insoluble insoluble decomposes		sol. hot. alk., HF insol. alk.; sol. HF sol.CS ₂ ,CHCl ₃ ,CCl ₄ , ether	amorphous hexag. prisms.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Silicon sulphide	$SiS_2$	92. <del>1</del> 4		
2	sulphobromide	SiSBr	220.21		93°
3	sulphochloride	SiSCl ₂	70.83		75°
4	Silver	Ag	107.88	10.53	961.5°
5	"	Ag	107.88		955° in air
6	acetate	$AgC_1H_2O_2$	166.90	3.259	decomp.
7	arsenate	Ag ₃ AsO ₄	462.60	6. <b>66¾°</b>	fusible
. 8	arsenite	Ag ₃ AsO ₃	446.60		decomp.
9	bromate	AgBrO ₂	235.80	5.206	decomp.
10	bromide	AgBr	187.80	6.4732	427°
11	carbonate	Ag ₂ CO ₅	275.76	6.017.50	dec. 200°
		<b>32 3</b>			
12	chlorate	AgClO ₃	191.29	4.401 ^{23°}	230°
13	chloride	AgCl	143.34	5.561	451°
14	chromate	Ag.CrO	331.76	5.523	<b></b>
15	citrate	AgC ₆ H ₆ O ₇	296.92		decomp.
16	cvanate	AgCNO	149.89	4.0	decomp.
17	cvanide	AgCN	133.89	3.95	decomp.
18	dichromate	Ag ₂ Cr ₂ O ₇	431.76		decomp.
19	ferricyanide	Ag ₃ FeCy ₆	535.54		
20	ferrocyanide	Ag ₄ FeCy ₆ .H ₂ O	661.44		
21	fluoride	AgF	126.88	$5.852^{15.5^{\circ}}$	435°
22	fluosilicate	$Ag_sSiF_s.2H_sO$	394.09		<100°
23	iodate	AgIO ₃	282.80	5.4 - 5.65	decomp,
24	iodide	AgI	234.80	5.675₹	526°-556°
25	nitrate	AgNO ₃	169.89	4.352 ^{19°}	218°
26	nitrite	AgNO ₂	153.89	4.453 ^{25°}	<i></i>
27	nitroprusside	Ag ₂ Fe(CN) ₅ NO	671.66		
28	oxalate	$\mathrm{Ag_2C_2O_4}.$	303.76	5.029 ⁴ °	decomp.
29	oxide	Ag ₂ O	231.76	7.521	O,300–340
30	oxide per-	AgO	123 88	5.474	dec.>100°
31	nerchlorate	AgClO ₄	207.32		486°
32	permanganate	AgMnO ₄	225.81		decomp.
	F				

Number.	Boiling		Solubility in	n 100 Parts.	Crystalline Form
Mun	Point, °C.	Cold Water.	Cold Hot Water. Alcohol (al.), Acids (a.), Alkalies (alk.), etc.		and Color.
1	white heat	decomposes		sol. dil. alk.; dec. by al	needles
1 2	150°	decomposes	decomposes	soluble CS ₂	plates
13	92° *	decomposes	decomposes	soluble CS ₂	prisms
4	1955°	insoluble	insoluble	sol. HNO ₃ , hot conc.	
5	1955°	<b></b>	1	H ₂ SO ₄ ; insol. alk.	
6		1.02140	2.5280°	· · · · · · · · · · · · · · · · · · ·	laminæ
7	. <b></b>	0.00085200	1	sol. H.C ₂ H ₂ O ₂ , NH ₂ aq.	
		1		NH, salts	
8	• • • • • • • • • • • • • • • • • • • •	0.00115 ^{20°}	insoluble	sol. $\dot{H}.C_2H_3O_2$ , $NH_3aq$ . $NH_4$ salts	yellow
9		0.158 ^{20°}		sol. NH3aq.; s. sol. HNO3	tetragonal
10	†	0.000026 ^{25°}	0.000141000	.051 ¹⁰⁰ °NH ₈ aq.; sol.KCN	pale yel. octah.
11	'	0.0031 ^{15°}	0.051000	sol. NH ₃ aq., Na ₂ S ₂ O ₃ ;	
				insol. alcohol	
12	İ	10 ^{15°}	5080°-90°	insol. alcohol[KCN	tetrag. or reg
13		0.000152 ^{20°}	0.00221000	sol. conc. HCl., NH3aq.,	regular
14		0.0028 ^{18°}		sol. a., NH ₃ aq., KCN	dark red cryst.
15		$0.028^{18^{\circ}}$	0.0284 ^{25°}	sol. NH ₃ aq., KCN	needles
16		s. soluble	soluble	sol.HNO3, NH3aq., KCN	
17		0.000021 ²⁵ °	insoluble	sol. NHaq., KČN, HNO	white curdy
18	· · · · · · · · · · · ·	0.0083 ^{15°}	decomp.	v. sol. HNO ₃ , NH ₃ aq., KCN	red triclinic
19		0.000066 ^{20°}		sol. $NH_3$ aq., hot $(NH_4)_2$ $CO_3$ [a.	orange yellow.
20		insoluble		sol. KCN,NH ₃ aq.; insol.	yellowish white
21		18215.50		501. 11011,11113 aq., 111501.	yellow tetrag
1		v. soluble			crystals
		0.00385180	s. soluble	sol. HNO ₂ .NH ₃ aq., KI	monoclinic
24		0.000035 ^{21°}		sol. KCN, Na ₂ S ₂ O ₃ , NaCl	yellow hexag
٦.					or regular.
25 c	lecomp.	122 ^{0°}	9401000	66 al., ether, glycerine .	rh'b. or hexag. rhombohed.
26		0.33	soluble	insoluble alcohol	crystals
27		insoluble		insol. al., HNO ₃ ; sol.	flesh colored
				NH ₃ aq.	
28].		0.0033918°		sol. NH ₃ aq., KCN	white
<b>?9</b> .		0.00215 ^{20°}	• • • • • • • • •	sol. $NH_3aq.$ , $KCN$ , $Na_2S_2O_3$ $[NH_3aq.]$	brown powder
30.		insoluble		sol. conc. H ₂ SO ₄ , HNO ₃ ,	black octahed.
31 .		soluble			
12		0.550°	1.69 ^{28.5°}	••••••	monoclinic
	· '		+ 7000	+ Decemposes et 2709	2000

[†] Decomposes at 700°. ‡ Decomposes at 270%, Ogle

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
	Silver				
1	phosphate ortho	Ag ₃ PO ₄	418.68	7.321	849°
2	" pyro	$Ag_4^3P_2O_7$	605.60	5.3067.50	585°
	PJCC				
3	potassium cyanide.	KAg(CN) ₂	199.00		
4	selenide	Ag ₂ Sè	294.96	8.0	red heat
		,			
5	sulphate	Ag ₂ SO ₄	311.83	5.40	660°
- 1					
6	sulphide	Ag.S	247.83	6.85-7.32	825°
7		Ag ₂ SO ₃			dec. 100°
8	sulphocyanate	AgCNS	165.96		
9		Ag ₂ C ₄ H ₄ O ₆		3.4321	decomp.
10		Ag ₂ Te		8.318	955° 1
11		AgN ₃		 	250°
12	tungstate	Ag ₂ WO ₄			< redness
13	Sodium	Na		0.973513.5°	97.6°
14	acetate	NaC ₂ H ₃ O ₂ .3H ₂ O	136.7	1.4	58°
15	aluminate	Na ₂ Al ₂ O ₄			1800°
16	amide[phate	NaNH2	40.03		155°
17	ammonium phos-	NaNH4HPO4.4H2O	209.15	1.554	decomp.
.18	antimonate	2NaSbO ₃ .7H ₂ O			l
19	" pyro	Na ₂ H ₂ Sb ₂ O ₇ .H ₂ O	418.43		
20	arsenate			1.7593	85.5°
21	" acid	Na ₂ HAsO ₄ .7H ₂ O	312.08		57°
22		Na ₂ HAsO ₄ .12H ₂ O		1.67-1.76	28°
23	arsenite	Na ₂ HAsO ₃	169.97	1.87	
24	aurosulphide	NaAuS.4H ₂ O	324.33		
25	benzoate	NaC7H5O2	144.040		
26		NaBO ₂			966°
27		$Na_2B_4O_7$	202.00	2.367	878°
28	" "	$Na_2B_4O_7.5H_2O$	292.08	1.815	
29	" " borax.	$Na_2B_4O_7.10H_2O$	382.16	1.694 ^{17°}	red heat
30		$Na_2B_2O_4.4H_2O$			57°
31	bromate	NaBrO ₈	150.92	$3.339_{\overline{17.5}}^{17.5}$	381°
32		NaBr		2.95-3.08	757.7°
33		NaBr.2H ₂ O		2.176¥	
34	bromplatinate			3.323	decomp.
35		Na ₂ C ₂		1.575 ^{15°}	,
36	carbonate			2.43-2.51	849°
37		Na ₂ CO ₃ .H ₂ O			H ₂ O, 106°
38	"	Na ₂ CO ₃ .10H ₂ O	286.16	1.446 ^{17°}	† 34°
39	" acid	NaHCO,	84.01	2.19-2.22	
*	Loses 7H ₂ O at 100°.				T
*	Loses / H ₂ O at 100°.	TOSES 15113O 80	TOO .Digit	^{r=} Pheeloff	av 12.0°.

1	Solubility in 100 Parts.				
å.	Boiling		Solubility in 100 Parts.		Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		0.00193 ^{20°}		sol. acids, NH, aq., KCN	yellow
2		insoluble	insoluble	sol. $NH_3aq.$ , $HNO_3$ , $H_2SO_4$ , $KCN$	· · · · · · · · · · · · · · · · · · ·
3		25 ^{20°}	v. soluble	4 alcohol; insol. acids	reg. octahedra.
4	• • • • • • • • • • •	insoluble		sol. conc. hot HNO ₃ ,	gray
5	dec. 1085°	0.73 ^{14.5°}	1.:393 ^{100°}	NH ₃ aq. sol. H ₂ SO ₄ , HNO ₃ , NH ₃ . aq.; insol. al.	l cantainia
6	oxidizes	0.00002		sol. conc. H ₂ SO ₄ , HNO ₃	gray black reg.
7		s. soluble		$ sol. NH_3aq.; insol. HNO_3$	crystals
! !		.000021 ^{25°}	0.00023100°	insol. dil. a.; sol. NH3aq	curdy
1 1	· · · · · · · · · · · ·	$0.2^{18}$	0.203 ^{25°}	soluble NH ₃ aq., KCN	scales
		insoluble	.01 ^{100°}	sol. warm HNO ₃ , KCN.	gray octahedra.
	explodes	insoluble . 05 ^{15°}	l.	sol. dil. HNO, conc. a	prisms
12	 877.5°	decomp.	decomp.	sol. HNO ₃ ,NH ₃ aq.,KCN insol. benzol., kero.;	paie yei. cryst
		266°	200	sol. al. 2.1 ¹⁸ °[sol. a.	monoel prieme
		soluble	v. soluble	insoluble alcohol	amorphous
	400°	decomposes	decomposes		olive green
17		16.7	100	insoluble alcohol	monoclinic
		.031 ^{12.3°}		s. sol. al., NH ₄ salts	octahedra
1		s. soluble	s. soluble	s. soluble alcohol	1
		26.717		1 1 -1 -1	
21	**	61 ^{15°} 17.2 ^{0°}	v. soluble 140.7 ^{30°}	s. sol. alcohol insoluble alcohol	crystalline
- 1		v. soluble	s. soluble	insoluble alcohol	mono. or rhom.
24		soluble	s. soluble	soluble alcohol	monoclinic
		62.5 ^{25°}	76.9 ^{100°}	2.325°, 8.378°, al	crystalline
26		soluble	v. soluble	l	hexag, prisms
27		1.35°	52.5100°	insoluble alcohol	
28		1.95°	99.1100°		octahedral
29		2.830°	201.4 ^{100°}	insol. a.; sol. glycerine	monoclinic
		soluble	v. soluble	1.	monoclinic
31		27.54 ^{0°}	90.9 ^{100°}		§
		79.50°	114.9 ^{100°}	s. soluble alcohol	regular
33		172.50°	259.5 ^{100°}		
34	7000	y, soluble	decorre	v. soluble alcohol	
	700° decomp.	decomp.	decomp.	sol. acids; decomp. al insoluble alcohol	
37		1	30.4	insol. al. ether, sol. glyc.	
38	1080	21 . 330°	1142 ^{38°}	insoluble alcohol	monoclinic
39	1 T T T T T T T T T T T T T T T T T T T	6.90°	16.40 ^{60°}	insoluble alcohol	monoclinic
_	<del></del>	-4 0709	0 D	a tatuah haw bikawakah	

[‡] Loses CO₂ at 270°.

[§] Reg. tetrah. hex. rhomboh. or rhomb.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
	Sodium				
1	carbonate sesqui	$Na_4H_2(CO_3)_3.3H_2O$		2.112	decomp.
2	chlorate		106.46	2.490 ^{15°}	255°
3		NaAuCl ₄ .2H ₂ O			
4	chloride	NaCl	58.46	2.174139	804°
5	chlororhodate	Na ₃ RhCl ₆	384.66		
6	chloriridate	Na ₂ IrCl ₆ .6H ₂ O	559.96	<u> </u>	
7		Na ₂ PtCl ₆ .6H ₂ O		2.499	6H ₂ O, 100
8	chromate		342.16	$2.71^{16^{\circ}}$	19.92°
9		2Na ₃ C ₆ H ₅ O ₇ .11H ₂ O	714.256		11H ₂ O,150°
10		NaCN	49.01	0 70160	: • • • • • • • • •
11	dichromate	Na ₂ Cr ₂ O ₇ .2H ₂ O	298.03	2.52160	†
12 13	dithionate	Na ₂ S ₂ O ₆ .2H ₂ O · · · · · ·	242.17	2.175 ^{11°}	
14	ferricyanide	Na ₃ Fe(CN) ₆ .H ₂ O	298.92 487.93	1.9731 ^{17.5°}	4H ₂ O, 100
15		$Na_3Fe(C_2O_4)_3.5\frac{1}{2}H_2O$	221.68	1.9/311.0	
16	formovenido	$Na_2Fe_2O_4$ $Na_4Fe(CN)_6.12H_2O$ .	520.09	1.458	
17		NaF	42.00	2.766	980°
18		Na ₂ SiF ₆		2.755 ^{17.5°}	960 ¶
19	formate	NaCHO	68.01	1.919	decomp.
20		NaH		0.92	decomp.
21		NaSH.2H ₂ O			decomp.
22		NaOH			318°
23		NaOCl			decomp.
24	hypophosphate	$Na_4P_2O_6.10H_2O$	430.24	1.832	
25	" acid	$Na_2H_2P_2O_6.6H_2O$	314.17		decomp.
26	hypophosphite	NaH ₂ PO ₂ .H ₂ O	106.07		
27		NaHSO,			
28	iodate	NaIO ₃	197.92	4.277	decomp.
29	iodide	NaI	149.92	3.65418.20	653°
30		NaI.2H ₂ O	185.95	2.448	
31	lactate	NaC ₃ H ₅ O ₃	112.04		decomp.
32	manganate	Na ₂ MnO ₄ .10H ₂ O	345.09		17°
33	molybdate	$Na_2MoO_4.2H_2O$	242.03		
34		$Na_2Mo_2O_7$			612°
35	" tri	$Na_2Mo_3O_{10}.7H_2O$	620.11		
36	" tetra	$Na_2Mo_4O_{13}.6H_2O$	746.10		< red heat
37	" octo	$Na_2Mo_8O_{25}.4H_2O$	1286.1	ئىئ	ا ا
38		$Na_2Mo_{10}O_{81}.12H_2O$	1718.2		
39	nitrate			2.267¥	31 <b>(6°</b>
40	nitride		83.01		
41	nitrite	$NaNO_2$	69.01	2.157 ^{25°}	21 70

^{*} Solubility of the anhydrous salt. † Loses 2H₂O at 100°. † Decom tat 400°.

Number.	Boiling		Solubility in	100 Parts.	Crystalline Form
Nun	Point,	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
3 4	decomp. white heat	12.63% 81.9% 150% 35.7%	41 .59 ¹⁰⁰ ° 333 ¹²⁰ ° 990 ⁶⁰ ° 39 ¹⁰⁰ °	soluble alcohol	monoclinic reg.tetrahedral [hexag.rhb. regular
	decomp.	v. soluble v. soluble 87.36* 91 ^{25°}	v. soluble v. soluble $\infty$ $250^{100^{\circ}}$	sol.al.,Cl ₂ aq.; insol, ether s. soluble alcohol s. sol. al	yellow tricl
10 11 12 13 14 15	\$	soluble 239° 47.6 ^{16°} 18.9 32.5°	v. soluble 1226 ^{98°} 90 9 ¹⁰⁰ ° 80 ^{100°} 182 ^{100°}		redgreen crystals.
16 17 18 19		decomposes 22 ^{15.5°} 4 ^{15°} 0.65 ^{17.5°} 44 ^{0°}	2.46 ¹⁰⁰ ° 160 ¹⁰⁰ °	insoluble alcohols. soluble alcoholinsoluble alcohols. s. sol. al.; insol. ether	gelatinous or rhombic
23 24	white heat	decomposes soluble 133.3 ^{18°} soluble 33	decomp. soluble 250 ^{80°} decomposes v. soluble		
	· · · · · · · · · · · · · · · · · · ·	2.2 soluble v. soluble 2.52° 158.7°	20 soluble 33.9 ^{100°} 312.5 ^{100°}	v. soluble alcoholsoluble alcohol	• • • • • • • • • • • • • • • • • • • •
30 31 32 33 34	· · · · · · · · · · · · · · · · · · ·	317.90° v. soluble soluble 56.20° s. soluble	1550 ^{100°} decomposes 115.5 ^{100°} s. soluble		amorphous green monocl tablets
37 38	decomp.	3.878 ^{20°} s. soluble insoluble s. soluble 72.9 ^{0°}	13.7 ^{100°} v. soluble insoluble s. soluble 180 ^{100°}	s. sol. alcohol, glycerene	
40 41	•••••	83.3 ^{20°}	v. soluble	0.31 ^{19.5°} et. al., 4.43 ^{19.5°}	dark gray crystalline

[§] Loses 5½ H₂O at 200°.

¹ Decomposes at red heat gle

Number	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Sodium nitroprusside.	Na-Fe(CN)-NO.2H-O	297.83	1.6803 ^{17°}	
2	oxalate	Na ₂ C ₂ O ₄	134 00		
3	" acid	NaHC ₂ O ₄ .H ₂ O	130 02		
4	ovide	Na ₂ O	62 00	9 95	red heat
5	nore tungstete	$Na_6W_7O_{24}.16H_2O\dots$	2000	2.20	16H () 200
6	paratungstate	Na PO H O	100 00	• • • • • • • • • •	doc 409
7	perborate	NaBO ₃ .H ₂ O	154 06	• • • • • • • • • •	uec. 40
8		NaBO ₃ .4H ₂ O	104.00		
	perborax	Na ₂ B ₄ O ₇ .10H ₂ O	382.21		4000
9	perchlorate	NaClO	122.46		482
10	perchromate	Na ₃ CrO ₈	249.00		dec. 115°
11	permanganate	NaMnO ₄ .3H ₂ O	196.00		
12	peroxide	Na ₂ O ₂	<b>7</b> 8.00	2.805	decomp.
13	perruthenate	NaRuO4.H2O	206.72		
14	peruranate	Na ₂ UO ₅ .5H ₂ O	454.58		dec. 100°
15	phosphate (trisod.)	Na ₃ PO ₄ .12H ₂ O	380.23	1.618-1.645	77°
16	" (disod.)	Na, HPO, 12H, O	358.24	1.5235 ^{16°}	35°
17	" (mono-)	NaH ₂ PO ₄ .H ₂ O	138.07	2.040	2H,O,200°
18	" meta	Na, P,O ₁₂	408.16	2.476	617°
19	" pyro	Na ₄ P ₂ O ₇ .10H ₂ O	446.24	1.824	anh. 970°
20	" " (di-	Na ₂ H ₂ P ₂ O ₇ .6H ₂ O	330.19	1.848	
	sodium)	11.022.22.207.022201111	000.10	1.010	
21	phosphite	Na ₂ HPO ₃ .5H ₂ O	216 17		53°
22	" acid	2NaH2PO3.5H2O	200.11		
23	nlatinata	$Na_2PtO_3.3H_2O$	249 95		1
24	notoga combonate	NaKCO ₃ .6H ₂ O	020.20	1 6224	6H ₂ O,100°
25	potass, carbonate	NaKC ₄ H ₄ O ₆ .4H ₂ O	200.20	1.0334	70°–80°
26	tartrate	Naku ₄ n ₄ U ₆ .4n ₂ U	282.20	1.77	70 -80
	sancylate	NaC ₇ H ₅ O ₃	100.04	0.00017.99	
27	selenate	Na ₂ SeO ₄	189.20	3.20911.2	
28	selenide	Na ₂ Se	125.20		
29	silicate	Na ₂ SiO ₃	122.30		1018°
30	" (water glass)	Na ₂ Si ₄ O ₀	303.20		• • • • • • • •
31	stannate	Na ₂ SnO ₃ .3H ₂ O	267.05		
32	sulphate	Na ₂ SO ₄	142.07	2.671*	888°
33	66	Na ₂ SO ₄ .7H ₂ O	268.18	 	
34	"	Na ₂ SO ₄ .10H ₂ O	322.23	1.492200	32.383°
35	" acid	NaHSO	120.08	2.435 ^{13°}	300°
36	sulphide mono-	Na ₂ S	78.07	2.471	infusible
37	" nente-	Na ₂ S ₅	206.35		
38	gulnhite	$Na_2SO_3$	126 07	2 633440	150°
39	66	Na ₂ SO ₃ .7H ₂ O	252 19	1 503070	7H ₂ O,150°
UU	••••••	1102008.11120	202.10	1.0505 4	11120,100

^{*} Loses 11H₂O at 100°. † Loses 12H₂O at 100°. ¶ 3H₂O, 150°-170°.

Number.	Boiling		Solubility in 100 Parts.		
Mun	Point, Cold Hot Alcohol (al.), Acids (a.), Cold Water. Water. Alkalies (alk.), etc.		Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.	
1		40 ^{15°}			red triclinic
2		$3.22^{15.5^{\circ}}$	6.33 ¹⁰⁰ ····		
3		1.7 ^{15°}			monoclinic
4	sublimes	decomposes	decomposes	decomposes alcohol	grayish
5		8	decomposes	<del>.</del>	triclinic
6		$2.55^{15^{\circ}}$	3.78325	soluble glycerine	
7		s. soluble	decomp.	soluble acids	crystals
8		$4.2^{11^{\circ}}$	13.8 ³²	<b></b>	crystals
9	decomp.	soluble	v. soluble	soluble alcohol	rhombohedral.
10		s. soluble		insol. alcohol, ether	orange plates
11		v. soluble	v. soluble	<b> </b>	dark red cryst
12		soluble	decomposes	soluble dilute acids	yellow
13		s. soluble			black crystals
14		decomp.	decomp.	decomp. HCl	red crystals
15		$28.3^{15^{\circ}}$	<b>o</b> o		hexagonal
16		$6.30^{\circ}$	∞ ∞	insoluble alcohol	rhombic
17		v. soluble			rhombic
18		insoluble	insoluble	soluble acids, alkalies	
19		5.4 ^{0°}	93	insoluble alcohol	monoclinic
20			<u> </u>		
21		soluble	v. soluble	insoluble alcohol	rhombohedral
22	§	560°	193 ⁴² °		 
23		soluble	1	insoluble alcohol	yellow
24		185 ^{15°}	<b></b> .	 	monoclinic
25	II	260°	66 ^{26°}		trimet. prisms
26		v. soluble			<del>.</del>
27		13.30°	72.8100°		
28		decomposes	1		crystals
29		soluble	soluble	insol. al., Na and K salts	monoclinic
30		soluble	soluble	insol. al., Na and K salts	amorphous
31		67 · 40°	$61.3^{20^{\circ}}$	insoluble alcohol	hexag. plates
32		4.80°	42.5100°	insoluble alcohol	rhomb monocl.
İ		•	-		or hexagonal.
33	3	55.59°	$202.6^{26^{\circ}}$		rhomb. or tetr.
34		12.160°	412 ^{34°}	insoluble alcohol	monoclinic
35	5	500°	100 ¹⁰⁰ °	decomp. by alcohol	triclinic
36		15.4 ^{10°}	59.2 ^{90°}	s. sol. al.; insol. ether	flesh col. amor.
37	1	soluble	soluble	s. sol. alcohol	
38	decomp.	14.10°	49.540°	insoluble alcohol	hexag. prisms .
38	decomp.	32.830°	196 ⁴⁰ °	insoluble alcohol	monocl. prisms
1			1	1	i -

[‡] Decomposes at red heat. § Loses 5H₂O at 100°. Declar Loses 4H₂O at 215°.

Numper.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Sodium sulphite acid				decomp.
2	sulphocyanate	NaCNS	81.08		287°
3		Na ₂ C ₄ H ₄ O ₆ .2H ₂ O			
4	thioantimonate (Schlipp's salt)	$Na_3SbS_4.9H_2O$	479.62		
5	thioarsenate	$2Na_3AsS_4.15H_2O$	814.68		
6	thiocarbonate	Na ₂ CS ₃ .H ₂ O	172.23		decomp.
7	thioplatinate	Na ₄ Pt ₃ S ₆			
8	thiosulphate			1.729170	32°-48°
9	tungstate	Na ₂ WO ₄ .2H ₂ O		$3.259^{17.5^{\circ}}$	2H ₂ O,100°
10	uranate			• • • • • • • • • • • • • • • • • • • •	
11	vanadate	Na ₃ VO ₄ .16H ₂ O	160.00	• • • • • • • • • • • • •	866 (anh.)
13	Stannic acid				
14	" " thio	$H_{10}Sn_5O_{15}H_{2}Sn_{3}$			
15	VIIIO	SnCl ₄ .(NH ₄ Cl) ₂			
16	bromide	SnBr ₄	138 68	3 34035°	29°
17		SnCl.			-33°
18		SnF			750°
19	iodide	SnI.	626.68	4.696 ¹¹ °	143°
20		SnO ₂			1127°
21		$\operatorname{SnO}_2$			infusible
22	oxychloride		205.92		
23	phosphate			3.98 (anh.)	
24	phosphide	$\operatorname{SnP}$	151.04	6.56	
25			277.4		
1		, -			
26	sulphate	$Sn(SO_4)_2.2H_2O$	347.17		
27		$\operatorname{SnS}_2$			‡
28	Stannous bromide	$\operatorname{SnBr}_{2}$	278.84	5.117 ^{17°}	215.5°
29	chloride	SnCl ₂	189.92		249.3°
30	" $(tin salt)$	SnCl ₂ .2H ₂ O	225.95	2.71 ^{15.5°}	37.7°
31	ferricyanide	$\operatorname{Sn}_3(\operatorname{Fe}(\operatorname{CN})_6)_2 \dots$	780.80		
32	ferrocyanide	$\operatorname{Sn}_{2}\operatorname{Fe}(\operatorname{CN})_{6}\ldots\ldots$	449.90		
33		$\operatorname{SnF}_2$			
34	hydroxide	Sn(OH) ₂	153.02		•••••
35	iodide	$\operatorname{SnI}_2$	372.84		316°
36		SnO		6.3	decomp.
37		SnOSnCl ₂ .6H ₂ O	433.02		
<b>3</b> 8		SnSe			
					1

* M. P. anhydrous salt 6980 sittized by Google

Number.	Boiling	5	Solubilit <b>y in</b> 10	po Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
3		s. soluble v. soluble 29 ⁶ °	soluble v. soluble $66^{42.5^\circ}$	insoluble alcoholv. soluble alcoholinsoluble alcohol	rhombic plates trimet. prisms.
4	· • • • • • • • • • • • • • • • • • • •	33		insoluble alcohol	yellow regular.
6 7	decomp.	v. soluble soluble insoluble 74 . 70°	decomposes decomposes 301 560°		yellow[dles red rhomb. nee-
	*	41 ^{0°}	123.5 ^{100°}	insol. al., HCl, HNO ₃ ,	rhombictablets
11 12		insoluble v. soluble s. soluble	insoluble insoluble	sol. dilute acids insoluble alcohol sol. dil. acids, alk	crystalline amorphous
14		insoluble insoluble	insoluble	insol. acids; sol. KOH	
15		soluble			
17		soluble soluble	decomp.	sol. al., $CS_2$ , oil of turpen-	
	341°	v. soluble v. soluble		$145^{15^{\circ}}$ CS ₂ ; sol. al., ether	crystals
20 21		insoluble insoluble	insoluble insoluble	soluble conc. H ₂ SO ₄ soluble conc. H ₂ SO ₄	amorphous
22		soluble			for rhombic
23 24	· · · · · · · · · · · · · · · · · · ·	insoluble insoluble	insoluble	insoluble HNO ₃ sol. HCl; insol. HNO ₃	
25	· · · · · · · · · · · · · · · ·	insoluble		insol. dil. a.; sol. alk.,	
27	· · · · · · · · · · · · · · · · · · ·	v. soluble 0.00002	insoluble	hot conc. H ₂ SO ₄ , sol. dil. H ₂ SO ₄ , HCl sol. conc. HCl, alk. sul-	yellow hexag.
	617°-634° 603°-628°	soluble 83.90°	decomposes 269.8 ¹⁵ °	[phides sol. alk., al., tartaric acid	yellow crystals
30	decomp.	118.70°	∞	sol. alk., al., tartaric acid	monoclinic
31	· · · · · · · · · · · · · · · · · · ·	insoluble insoluble	· · · · · · · · · · · · · · · · · · ·	sol. HCl	
33	· · · · · · · · · · · · · · · · · · ·	v. soluble		sol. hot conc. HCl	prisms
34	• • • • • • • • • • • • • • • • • • • •	insoluble	decomp.	sol. dil. a., alk.; insol.	yellow. amor.
35		0.9820°	4.03100°	NH4OH sol. dil. HCl, KOH	red crystals
36	• • • • • • • • • • • • • • • • • • • •	insoluble	,	sol. a., NH,Cl; insol. alk.	black regular
37 38	• • • • • • • • • • • •	insoluble insoluble	insoluble	sol. dil. acids, alsol. alk. sulphides	steel grav pr.
				1	

[†] Orange red octahedra.

[‡] Decomposes at red heat.

=				<del>, =</del>	<del></del>
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A). H ₂ =1(D).	Melting Point, °C.
1	Stannous sulphate	SnSO	215.07	1 :	<b>[</b>
2		SnS		5.27 ^{15°}	880°
3		SnTe		6.478°	
- 1	Strontium			2.54	900°
5			245.01	3.606150	H ₂ O, 125°
6			373.61		
7		SrB ₄ O ₇ .4H ₂ O	315.69		
8			153.63	3.28150	
9		•	361.49	3.773	dec. 240°
10		SrBr,	-	4.216	498°-630°
11		SrBr ₂ .6H ₂ O		2.358	
12		SrC,		3.19	
13		SrCO ₃		3.62	dec. 1155°
		•			
14	chlorate	$Sr(ClO_3)_2$	254.55	3.152	dec. 290°
15			398.678		
16			158.55	3.054	872°
17			266.646	1.96416.70	112°†
18		SrCrO,		3.895 ^{15°}	
19		$Sr(CN)_2.4H_2O$			decomp.
20			319.83	2.373	4H ₂ O, 78°
. 21	ferrocyanide		657.40		
22	fluoride		125.63	4.21	902°
23	fluosilicate		265.96	2.999	§
24	formate		213.68	2.25	decomp.
25			153.79		decomp.
26	hydroxide	Sr(OH),	121.65	3.625	375°
27	"	$Sr(OH)_2.8H_2O$	265.77	1.396 ^{16°}	·
28	iodide		341.47	4.549 4	507°-645°
29	"	SrI ₂ .6H ₂ O	449.57	4.415	<b></b>
30	molybdate	SrMoO ₄	247.63	4.145	
31	nitrate	$Sr(NO_3)_2$	211.65	2.98 ^{16.8°}	645°
32	"	$Sr(NO_3)_2.4H_2O$	283.71	2.249 ^{15.5°}	
33	nitrite	$Sr(NO_2)_2.H_2O$	197.67	$2.645^{27^{\circ}}$	H ₂ O, 44°
34	oxalate	$SrC_2O_4.H_2O$	193.65		decomp.
35	oxide	SrO	103.63	4.45-4.75	3000°
36		SrO ₂		0.546	decomp.
37		SrO ₂ .8H ₂ O			8H ₂ O,100°
38	permanganate	$Sr(MnO_4)_2.3H_2O$	379.55		decomp.
39		SrHPO		3.544 ^{15°}	
40	salicylate	$Sr(C_7H_5O_3)_2.2H_2O$	397.742		

^{*} Loses H₂O at 120°

[†] Loses 4H₂O at 60°, 6H₂O at 100°.

ш	1	i i			
	Boiling		Solubility in	100 Parts.	Crystalline Form
HDAT.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		18.9 ^{19°}	18.2100°	sol. H ₂ SO ₄ sol. conc. HCl, (NH ₄ ) ₂ Sx	crystals
2	1090°	0.000002	insoluble	sol. conc. HCl, (NH ₄ ) ₂ Sx	gray crystals
3				insol. conc. HCl	gray crystals
4	burns	decomp.	decomp.		crystalline
5	1⅓H₂O,225°		decomp.	sol, in acids [H ₃ AsO ₄	rhomb. needles
6		s. soluble	77100°	s. soluble al., Sr(OH) ₂ ,	crystalline
6	• • • • • • • • • • •	insoluble	insoluble	sol. HNO ₃ , NH ₄ salts	blook amentals
0	*	3315°-18°	msoluble	soluble HNO ₃	black crystals. monocl. prisms
	 	87.70°	2501100	sol. ethyl and amyl. al.	needles
1		204.20°	<b>o</b> o		
2		decomp.	decomp.	decomp. by acids	black crystals.
3		0.0011180		0.12 H,CO ₃ aq.; sol. a., NH ₄ salts	rhombic
4		174.9 ^{18°}	v. soluble		rhomb.ormon.
5		soluble	v. soluble		needles
6		44.200	101.91000	sol. absolute alcohol	. · · · · · · · · · · · · · · · · · · ·
7		$106.20^{\circ} \ 0.12^{15^{\circ}}$	205.8 ⁴⁰ °		hexag. needles
B	• • • • • • • • •	v. soluble		sol. acetic acid, NH ₄ salts	monoci. prisms crystalline
U		22 ^{16°}	67 ¹⁰⁰ °		hexag. plates
1		50	100		vellow monocl.
2	t	0.012 ^{18°}	s. soluble	insol, HF: sol, HCl	reg. octahedra
3	heat	3.2 ^{15°}		0.06 ^{15°} , 50% al.; sol. HCl	tetrag. prisms.
4	<b></b>	soluble	soluble		rhombic
5		soluble	decomp.		crystals
6		0.4100	21.831000	soluble NH ₄ Cl	
7		$0.90^{00}$	47.71 ¹⁰⁰ ° 370 ¹⁰⁰ °		tetragonal
8		1640° 448.90°	370100° ∞		plates
ð		$0.0104^{17^{\circ}}$	<b>3</b> 0		crystals
1		39.50°	101.1 ¹⁰⁰ °	0.012 absolute al	reg. octahedra
2		60 · 43°°	206.51000		triclinic
3		62 83 ^{19.5°}			hexagonal
4		0.0051 ^{18°}	5100°	sol. HCl	
5		decomp. to Sr(OH) ₂		s. sol. al.; insol. ether	gray white rhombic
6		$0.008^{20^{\circ}}$	decomp.	v. sol. a., NH ₄ Cl	
7		0.018 ^{20°}	decomp.		crystalline
8		270°°	291 ¹⁸⁰		purple regular.
9		insoluble 5 . 6 ^{25°}	28.6 ^{100°}	sol. a., NH, salts	rhombic plates
0		. u=-	20.0.0	1.0-, 9.0" 81	crystalline

[‡] Decomposes at 1000°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Strontium selenate	SrSeO ₄	230.83	4.23	
2	silicate	SrSiO ₃	163.93	3.91	1529
3	sulphate	SrSO ₄	183.70	3.71-3.97	*
4		Sr(HSO ₄ ) ₂			decomp.
5	sulphide mono	SrS	119.70	3.72 ^{15°}	l <del>.</del>
6	" tetra	SrS ₄ .6H ₂ O	324.01		
7	sulphite	$ SrSO_3$	167.70		decomp.
8		$Sr(CNS)_2.3H_2O$			3H₂O,100°
9	tartrate	SrC ₄ H ₄ O ₆ .4H ₂ O	307.73	$1.966\frac{19.8}{4}$	
10	thiosulphate	$SrS_2O_3.5H_2O$	289.85	2.178 ^{17°}	4H ₂ O,100°
	Sulphur amorph. soft				>120°
12	" yellow .	S ₈	256.56	2.046	‡ <i>.</i>
13	colloidal Sδ	S	256.56		
14	plastic $S_{\gamma}$	$S_8$	256.56	1.92	
15	monoclinic $S\beta$	$\mathbf{S}_{\mathbf{s}}^{\circ}$	256.56	1.958	119.25°
16	rhombic Sa	S ₈	256.56	2.05-2.070	114.5°
17	chloride mono	S,Cl,	135.06	1.70948	-80°
18	" d1	SCl ₂	103.99	1.62218	-78°
19	" tetra	SCl ₄	173.91	0.0055900	-30°
20	bromide	$S_2Br_2$	223.98	2.635520	– 46°
$\frac{21}{22}$	chioriogide	SCl ₇ I SF ₆	146 07	F 09	decomp. – 55°
23	nexanuoride	οr ₆	140.07	0.03 ( 2001000 T)	- 55
20	ride	$S_2OCl_4$	221.98	1.6560° D.	decomp.
24	oxide di	SO ₂	64.07	(2.2639 D.) 1.433680°	-76.1°
25	" sesqui	$S_2O_3$	112.14		decomp.
26		SO ₃		2.75 D. 1.97 ²⁰	14.8°
27		(SO ₃ ) ₂		1.040	50°
28	" hepta	S ₂ O ₇	176.14		0°
29	pentoxydichloride .	$S_2O_5Cl_2$	215.06	1.819 ^{18°}	-39°
30	trioxytetrachloride.	$S_2O_3Cl_4$	253.98		57°
31	Sulphuric Acid	$H_2SO_4$	98.09	1.8342	10.46°
32	" "	$H_2SO_4.H_2O$	116.10	1.788170	8.53°
33	" "	H ₂ SO ₄ .2H ₂ O	134.12	1.665 ⁰⁰	-38.9°
34	" " pyro-	$H_2S_2O_7$	178.16	1.89	35°
35	" oxychloride	$\stackrel{\circ}{\text{so}}_{\stackrel{\circ}{\text{c}}}\stackrel{\circ}{\text{c}}_{\stackrel{\circ}{\text{c}}}\stackrel{\circ}{\text{c}}_{\stackrel{\circ}{\text{c}}}$	134.99	1.66738¥	• • • • • • • • • • • • • • • • • • • •
36		$SO_2^{T}F_2^{T}$	102.07		- 120°
37	Sulphurous	a o o	000 0	0.000	
- 1	oxybromide	SOBr ₂	223.91	2.61	• • • • • • • •

^{*} Decomposes at wh. ht. † Decomposes at 160°-170°. ‡ Ignition point 255°.

ber.	Boiling		Solubility i	n 100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		insoluble		insol. HNO ₃ ; sol.hot HCl	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$		insoluble 0.0114 ^{18°}	0.0104 ^{100°}	insol. dil. H ₂ SO ₄ , al.; s. sol. acids	prisms rhombic
4		decomposes		14 ^{70°} conc. H ₂ SO ₄	
5		sol. and dec.			cubical
6		soluble			reddish cryst. crystals
6	†	0.0033 v. soluble		v. soluble H ₂ SO ₃ v. soluble alcohol	crystais
9	l *	0.11200	0.755 ^{85°}		
19		0.112° 2513°	57100°		monocl. prisms
10	444.6°		insoluble		monoclinic
1	444.6°	insoluble insoluble	insoluble	partly sol. CS ₂ insoluble CS ₂	paie yei. amor-
	444.6°	soluble			pale yellow
	444.6°	insoluble		insol. CS	citron yel. am.
,	444.6°	insoluble	insoluble	sol CS al CH.Cl.C.H.	
	444.6°	insoluble	insoluble	$24^{0\circ}$ , $181.3^{55\circ}$ CS ₂	yellow octahed.
17	138°	decomposes	decomposes	sol. CS ₂ , C ₆ H ₆ , al., ether.	
18	59°				dark red
19	§	decomposes	decomposes		yel. brown liq.
	54° ∥	decomposes	decomposes		red
21		decomposes			red yel. prisms
22	-62°	s. soluble		s. sol. al.; sol. KOH	crystals
23		decomposes	decomposes	 	deep red liquid
24	-10°	7979 c.c.º°	1560 c.c. ⁵⁰ °	sol. al., H ₂ SO ₄ , H.C ₂ H ₃ O ₂	
<b>2</b> 5	. <b></b> .	decomposes		decomp. by al., ether	bluegreen crys.
26	46.2°	decomposes	decomposes	sol. conc. H ₂ SO ₄	prismatic crys.
27		decomposes	decomposes		silky needles
	decomp.	decomposes		sol. conc. H ₂ SO ₄	needles
	150°	decomposes	decomposes		
	sublimes **	decomposes	decomposes	decomposes alcohol	
	210°-338°		) ‰	decomposes alcohol	
	210 -330 170°-190°	<u>∞</u>	‰	decomposes alcohol	
- 1	decomposes	decomposes		decomposes	
	69.15°	decomposes		sol. glacial acetic acid	liquid
	-52°	10900		soluble alkalies	
37	68°¶	decomposes	4 0 10 mm	** Decomposition	orange yellow.

[§] Decomposes at 20°. || At 0.18 mm. ** Decomposes at 40°. ¶ At 40 mm.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = I. Air = I (A). H ₂ = I (D).	Melting Point, °C.
	Sulphurous				
1		SOCI ₂	118.99	1.67672	
2	oxyfluoride	SOF ₂		3.0076	-110°
3	Tantalum	Та	181.5	14.4911	2900°
		m D			0.00
4			585.10		240° -
5		TaCl _s	358.80	3.6821	211.3° 94°
6 7		TaF ₅			
		Ta ₃ N ₅			burns
8		$TaO_2$		· · · · · · · · · · · · · · · · · · ·	oxidizes
9	0001	Ta ₂ O ₄			oxidizes
10	реш	$Ta_2O_5$			infusible
11		Ta ₂ S ₄			oxidizes
12	Tartaric Acid	$H_2$ . $C_4$ $H_4$ $O_6$	150.05	1.7549	decomp.
	Telluretted Hydrogen				-48°
	Telluric Acid	H ₂ TeO ₄	193.52	3 .42518.80	dec. 160°
15	" a	$H_2\text{TeO}_4.2H_2\text{O}$	229.55	3.053	2H ₂ O,130°
16		$H_2\text{TeO}_4.2H_2\text{O}$			2H ₂ O,130°
	Tellurium	Te		6.015 ²⁰ °	446°
18	"	Te	127.5	6.27	452°
19	bromide di	TeBr	287.34		280°
20		TeBr			380°
21		TeCl ₂			175°
22	" tetra	•			214°
23	iodide di	TeI ₂			
24		TeI			
25		4TeO ₂ .N ₂ O ₅ .1½H ₂ O			
26	oxide mon-		143.50		oxidizes
27	" di	TeO,	159.50		dull red-
	ui	1602	100.00	J.08-	ness
28	" tri	TeO ₃	175.50	5.070414.50	decomp.
29	" thio-	$TeSO_3$	207.57	0.0101	30°
30	sulphite	$(TeO_2)_2SO_3$	399.07		
1	Tellurous Acid a				dec. 40°
32			177.52 177.52		400. 40
	P	- •	159.2	0.071	
34	chloride		265.58	4 3520	588°
35		$\mathrm{Tb_2O_3}$			000
					302°
37		TlC ₂ H ₃ O ₂			JU2
38	bromido mono	TlBr	203.02	7 54021.79	450°
90	bromide mono	11Dr	200.92	1.040****	#0U -

^{*} Decomposes at 180° Digitized by GOOGLE

Ser.	Boiling		Solubility in	1 100 Parts.	
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
3	78° - 30°	decomposes decomposes insoluble	decomposes insoluble	soluble ether, benzine insol. HCl, HNO ₃ , H ₂ SO ₄ sol. HF, fused alk. sol. abs. al., ether	liquidblk. crystalline yellow crystals pale yel. prisms
	226°	decomposes insoluble insoluble insoluble insoluble		sol. H ₂ SO ₄ , abs. alcohol. sol. HF	pate yet. prisms tetragonal yellow amorph brown powder. dark gray rhomb. prisms
12 13 14 15 16 17	0°	115 ⁰ soluble insoluble 19.7 ⁰ 19.70° insoluble insoluble	343100° s. soluble 258.5100° 258.5100° insoluble insoluble	3, 1,,,	rhombohedra .
20 21 22 23 24 25 26		decomposes v. soluble decomposes decomposes insoluble s. soluble decomposes insoluble 0.00067	soluble insoluble decomp. insoluble	decomposed by HClsol. dil. HClsoluble HIsoluble HNO ₃ sol. HCl, H ₂ SO ₄ sol.	[dles steel gray nee-orangeblack crystals. yel. crystalline black crystals. orthorhombic black amorph. yel. octahedral orthorhomb.
28 29 30 31 32 33 34 35 36 37 38	* 1280°	insoluble decomp. s. soluble insoluble v. soluble 0.0466 ²⁰⁰	decomp.	soluble A ₂ SO ₄ soluble acids, alk soluble acids. sol. HNO ₃ , H ₂ SO ₄ v. soluble alcohol.	orange crystal. red amorphous octahedral monocl. prisms orange amorph. bluish white silky needles regular

Digitized by GOOGIC

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H ₂ = 1 (D).	Melting Point, °C.
	Thallium				
1	bromide tri	TIBr.	443.76		decomp.
2		TlBr ₂			
3	carbonate	TLCO		7.06-7.16	272°
4	chlorate	TICIO	287.46	5.047 ^{9°}	
5	chloride mono		239.46		426°
6		Tl ₂ Cl ₃	514.38		400°-500°
7	" tri				25°
8					36°-37°
9	chloroplatinate		815.96	5.76 ^{17°}	
10	chromate		524.0		l
11	cvanide		230.01		decomp.
12	dichromate				
13	ferrocyanide		1064.09	4.641	<b>.</b>
14	fluoride mono		223.00		
15	" tri	TlF ₃	261.0		
16	fluosilicate	Tl ₂ SiF ₄ .2H ₂ O	586.33		<b></b>
17	hydroxide (-ous)		221.01		dec. 100°
18		TIO.OH	237.01		H ₂ O, 115°
19		Tl(OH)3			
20	iodide mono		330.92	$7.072^{15.50}$	431°
21	" sesqui	$\mathrm{Tl}_{2}\mathbf{I}_{3}$			
22	" tri	TII,	584.76		
23	nitrate (-ous)	TINO3	266.01	5.55	205°
24	" (-ic)	$Tl(NO_3)_3 \dots \dots$	390.06		
25	oxide (-ous)	Tl ₂ O	424.00		>870°
26	" (-ic)	$Tl_2O_3$	456.00	5.56 ⁰ °	760°
27	perchlorate		303.46		501°
28	phosphate	Tl ₃ PO ₄	707.04	6.89100	
29	selenate	$Tl_2SeO_4$		$7.019^{180}$	>400°
30	sulphate (-ous)	Tl ₂ SO ₄	504.07	6.77	632°
31	" acid	TIHSO4	301.08		115°-120°
32		$\text{Tl}_2(\text{SO}_4)_3.7\text{H}_2\text{O}\dots$	822.32		$6H_2O,200^{\circ}$
33	selenide	Tl ₂ Se		<b></b> .	340°
34	sulphide (-ous)	Tl ₂ S	440.07		fusible
35		$Tl_2S_3$	504.21		12°
36	sulphite (-ous)			$6.427^{200}$	
37	sulphocyanate	TICNS	262.08		
38	Thorium	Th	232.40	11.0017	>1700°
39		Th	232.40		[
40	boride	ThB₄	276.40	$7.5^{150}$	
					<u> </u>

^{*} This form is stable below 72.8°. Between 72.8% and 142.5° rhombo-

ber.	Boiling		Solubility is	n 100 Parts.	Crystalline Form
Nun	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
6 7 8 9 10 111 122 133 144 155 166 177 18 122 223 224 225 226 27 28 29 30 31	708°-719° decomp. decomp.	cold Water.  soluble decomp. 4.0215.5° 2.80° 0.2615° v. soluble 86.217° 0.006415° 0.0360° 16.828.5° insoluble 0.3718° 8015° insoluble v. soluble insoluble insoluble insoluble 0.006420° insoluble v. soluble insoluble v. soluble insoluble 0.10.615° soluble v. soluble insoluble v. soluble insoluble 0.2715° coluble v. soluble insoluble 0.06420° insoluble v. soluble insoluble 0.515° soluble v. soluble insoluble 10.15° 0.5150° 2.820° 5.425°		v. soluble alcohol	yellow needles yellow needles yellow needles monoclinic regular yel. hexagonal hexag. plates needles pale orange yellow tablets red crystalline yellow triclinic reg. octahedra olive green reg. octahedra pale yel. prisms
33 34	decomp.	insoluble 0.0379 ²⁰⁰ insoluble 3.34 ¹⁵⁰ 0.315 ²⁰⁰ insoluble insoluble insoluble	s. soluble insoluble v. soluble 0. 732 ⁴⁰ insoluble insoluble insoluble	insoluble warm acids sol. a.; insol. alk soluble H ₂ SO ₄ insoluble alcohol jsol. HCl., H ₂ SO ₄ ; s. sol.	gray crystals blue black tetr. black amorph. crystals needles

hedral crystals are formed, and above 142.5° regular crystals.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Thorium boride	ThB _a	298.40	6.4 ^{15°}	
2	bromide	ThBr	552.08	5.62	<b></b>
3	carbide	ThC ₂	256.40	8.96 ^{18°}	burns
4	carbonate	Th(CO ₃ ) ₂	352.40		
5	chloride	ThCl	374.24	4.59	820°
6	fluoride	ThF.4H,O	380.46		H ₂ O,100°†
7	hydroxide	Th(OH)4			
8	iodide	ThI	740.16		
9	nitrate	Th(NO ₃ ) ₄ .12H ₂ O	696.67		
10	oxalate	$Th(C_2O_4)_2$	418.40	4.637160	decomp.
11	oxide di	ThO ₂		9.876 ^{15°}	infusible
12	" per	$Th_2O_7$	576.80		
13	platinocyanide	Th(Pt(CN) ₄ ) ₂ .16H ₂ O	1119.18	2.460	
14	sulphate	$Th(SO_4)_2$	424.54	$4.2252^{17^{\circ}}$	
15	-"	$Th(SO_4)_2.9H_2O$		2.766 ^{16°}	9H₂O,400°
16	sulphide	$ThS_2$	296.54	6.8	
17	Thulium	Tm	168.5		
18	Tin ‡	Sn	119.0	6.53-6.56	$ sta.>170^{\circ} $
19	"	Sn	119.0	$7.2984^{15^{\circ}}$	232°
20	"	Sn	119.0	5.8466 ^{15°}	sta. $<20^{\circ}$
21	Titanic Acid	H ₂ TiO ₃	98.12		
22	Titanium	Ti	48.1	4.50 ^{17.5°}	2200°
23	bromide tetra	TiBr ₄	367.78	2.6	39°
24	carbonitride	Ti ₅ (CN) ₄	344.54		
25		TiCl ₂	119.02		
26	" tri	Ti ₂ Cl ₆	308.96		dec. 440°
27	" tetra	TiCl	189.94	1.7604	-25°
28	fluoride tri	Ti ₂ F ₆	210.20		
29	" tetra	TiF		2.798 ^{20.5°}	284°-287°
30	iodide tetra	TiI.	555.78		150°
31		5TiO2.N2O8.6H2O			
32	oxalate	Ti.(C.O.)10H.O			
33		$Ti_2O_3$			oxidizes
34	" di	TiO.		3.75-4.25	1560°
-			55.20		
35	" per	TiO ₃	96.10		
36		$Ti_2(SO_4)_3$	384.41		
	Tungsten	W	184.0	18.77	2800°
38	bromide di	WBr			dec. 400°
39	" penta	WBr ₅	583.60		276°
	F				l

^{*} In vacuo.

Number.	Boiling		Solubility in	100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Hot Water. Water.		Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1	725° *	insoluble soluble	insoluble	sol. HNO ₃ conc. HCl	violet amorph.
3		decomposes		[Na ₂ CO ₃	crystais
4		insoluble		insol, CO ₂ aq.; sol. conc.	
15		v. soluble	decomp.	sol. KCl, al., ether	noodloo
6		insoluble		insoluble HF	owest allino
7		insoluble		soluble a.; insol. alk	crystanne
8	,	soluble		Soluble a., Ilisoi. aik	geraumous
9	· · · · · · · · · · · ·	v. soluble	· · · · · · · · · · · · ·	v. soluble alcohol	nlatas
10		insoluble		sol. hot (NH ₄ ) ₂ C ₂ O ₄ aq	
11	1	insoluble		sol. hot $H_2SO_4$	
12		insoluble		Soi. 1100 11 ₂ 00 ₄	legulai
		s. soluble	soluble		vol groon or
14		0.740°	6.76 ^{55°}		fthorhombia
		0.970°	9.4155°	· · · · · · · · · · · · · · · · · · ·	
		insoluble	insoluble	s. sol. a.; sol. hot aq. r.	
17		insoluble	insoluble	3. 501. a., 501. nov.aq. 1	· · · · · · · · · · · · · · · · · · ·
		insoluble	insoluble	sol. HCl, H2SO4, dil.	rhombia
19		insoluble	insoluble	$\left\{\begin{array}{ll} \text{HNO}_3, & \text{aq. r., hot} \\ \end{array}\right.$	white tetres
20		III DOI GOLG	msorubio	11 ***	gray
21		insoluble	insoluble	insol. al.; sol. a., alk	gray
22		insoluble	decomp.	soluble acids	d gray amorn
23		decomposes	accomp.		
		insoluble	insoluble	insol. a.,sol.HNO ₃ +HF	reddigh octah
		decomposes		insol. CS ₂ , ether, CHCl ₃ .	black
26		soluble		v. sol. al.; insol. ether;	dark violet
				sol. HCl	dark violet
27	136.4°	decomposes		sol. dil. HCl	
28		soluble		[H ₂ SO ₄	numle red
29	>400°	decomposes		insol. ether; sol. conc.	
	360°	v. soluble			reddish octah
31		soluble			plates
32		soluble	soluble	insoluble alcohol, ether.	vellow prisms
33			l	soluble H ₂ SO ₄ , HF	black amorph
		insoluble		sol. conc. H,SO, alk	white to black
				201, 00=0: 21,2004, 01111:	tetrag or rhom.
35		. <b></b>	1	soluble acids	
36		insoluble	insoluble	sol.dil.a.; insol.al.ether	
37		insoluble	insoluble	sol.HNO, aq.r., conc. hot	gray to black
38		decomposes		[KOH	
39		decomposes		sol.causticalkalies	
_			<del>`</del>	Distinct to Co	<del>()()()()</del>

[‡] For salts of Tin see "Stannic" and "Stannous."

Number.	Name.	Formula.	Molec- ular Weight.	$\mathbf{H_2} = \mathbf{r} \; (\mathbf{D}).$	Melting Point, °C.
1	Tungsten carbide	W₂C	380.0	16.06 ^{18°}	[
2		WCl ₂			
3		<b>W</b> Cl₄			decomp.
4	" penta	WCl _s	361.30		248°
5	" hexa	WCl ₆	396.76	13.3350° D.	275°
6	dioxydibromide	$WO_2Br_2$	375.84		red heat
7	dioxydichloride	WO ₂ Cl ₂	286.92		266°
8	iodide	WI ₂	437.84	$6.9^{18^{\circ}}$	
9	oxide di-(brown)	WO	216.00	12.11	
10	" tri	WO₃	232.00	7.16	red heat
[11]	oxytetrabromide	WOBr4	519.68		277°
<b>ì</b> 2	oxytetrachloride	WOCL	341.84	<b></b>	208°-210°
13	phosphide	W.P	399.04	5.207	
14		wp			
	• • • • • • • • • • • • • • • • • • • •		210.01	J. <b>J</b>	
15	"	WP ₂	246.08	5.8	decomp.
16	sulphide di	ws	248 12	7 510°	
17	" tri_	WS ₃	280.12	1.0	
	Tungstic Acid	H WO	250 .21	• • • • • • • • • •	⅓H₂O,100°
19	" " mote	$H_2W_4O_{13}$	046 02	• • • • • • • • •	
	Uranic Acid	H ₂ UO ₄	304.52	5.93 ^{15°}	H ₂ O,250°-
				10 00519	300°
	Uranium			18.685₩	800°
22	bromide tri				• • • • • • • • • • • •
23	" tetra	UBr ₄	558.18	4.838	
24	carbide				• • • • • • • • • • • • •
25	chloride tri	UCl ₃	344.88		
26	" tetra	UCI.	380.34		
27	" penta	UCl ₅	415.80		dec. 120°
28	fluoride tetra	UF4	314.50		1000°
29	-	UF			69.5 (2 atm.)
30	iodide tetra	[UI,	746.18	5.6 ^{15°}	500°
31	oxide di	UO	270.50	10.95	2176°
32	" (-oso, -ic)	$U_3O_8$	843.50	7.31	decomp.
33	" tri	UO,	286.50	5.02-5.26	decomp.
34	" per	UO2H.O	338.53		
35	sulphate (-ous)	$U(SO_4)_2.4H_2O$	502.70		4H,O,300°
36	sulphide di	US	302.64		>1100°
37	" sesoni-	$U_2S_3$	573.21		burns
	Uranyl acetate	UO.(C.H.O.)2H.O	424.58		2H ₂ O.275°
		FOO 1700	101.00		

^{*} Burns at 150°-170°.

[†] Very volatile.

i i	umber.	Boiling Solubility in 100 Parts.		100 Parts.	Crystalline Form	
1	Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
i	1		insoluble		s. sol. HCl, H ₂ SO ₄ ; sol.	
	2		decomposes		[ĤNO ₃	gray amorph
-{	3		decomposes	1		gray crystals
:	4	275.6°	decomposes		s. soluble CS ₂	black needles .
	5	346.7°		dec. 60°	v. soluble CS ₂ , POCl ₃	steel-blue reg
,	6	decomposes				red prisms
١	7		soluble	decomp.	sol. alk. and NH ₄ OH	yellow tablets.
	8					greenish
1	.9		insoluble		soluble conc. KOH, a	brown rhombic
- 1	10		insoluble		insol. a.; sol. alk	yellow rhombic
		327°	decomposes			black needles . `
		227.5°		·	soluble $CS_2$	red needles
	13				insol. a.; sol. fused Na2	dark gray pris 🙃
				1	CO ₃ +NaNO ₃	
١	14		insoluble		insol. alk., HCl; sol.	gray prisms
1				1	HNO ₃ +HF	
1	15		insoluble	insoluble	insol. al., ether; sol.	black crystals.
1					HNO ₃ + HF	•
	l6				oxidized by HNO ₃	dark gray crys.
111	17		s. soluble	soluble	sol. alk. sulphides, alk	black powder.
- 1-	8		insoluble	s. soluble	sol. alkalies	yellow
- 11	9		soluble			yellow octahed.
12	90		insoluble		sol. a., alk. carbonates;	yellow powder.
1					insol. alk.	
	21		insoluble	insoluble	sol. a. insol. alk	white crystals.
	2		soluble			d. brown need.
	23		soluble			black leaflets .
- 1 -	4		decomp.	decomp.	soluble acids	crystalline
- 11	25		v. soluble			brownish red .
		red heat	v. soluble	decomp.	soluble NH ₄ Cl	dark green reg.
1-	7	<b></b>	sol. and dec.			dark needles
1-	8		insoluble		insol. dil. a. sol. conc. a.	
2	9	55°	soluble		sol. CCl ₄ , CHCl ₃ ; insol.	yel. monocl.
1	_				$CS_2$	
•	0		soluble			black needles.
1-	1		insoluble	insoluble	sol. HNO ₃ , conc. H ₂ SO ₄	black octahed.
1-	2				sol. HNO ₃ , conc. H ₂ SO ₄	olive gr. pow
	3					yellow powder
3	4		hygroscopic		decomp. by HCl	yellow crystals
1	5		decomposes			green monocl.
	- 1	oxidizes	decomposes			gray'h bl.quad.
3	٠,	· • • • • • • • • • • • • • • • • • • •		<u>  .</u>	s.sol.HCl;sol.conc.HNO _s	
13	8	• • • • • • • • • •	soluble	decomp.	soluble alcoholigitized by.	yellow monocl.
-				4 77 1 471		

[‡] Volatile at red heat.

Number.	Name .	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
-	Uranyl [ate				
1	ammonium carbon-	UO ₂ CO ₃ .2(NH ₄ ) ₂ CO ₃	522.65		decomp.
2	chloride	UO ₂ Cl ₂	341.42		fusible
3	nitrate	UO ₂ (NO ₂ ) ₂ ,6H ₂ O	502.62	2.807	60.2°
4	phosphate[ate	$UO_2(HPO_4)_2.4H_2O$	534.66		
5	potassium carbon-	$UO_2CO_3.2K_2CO_3$	606.90		CO ₂ , 300°
6	sodium carbonate .	UO ₂ CO ₃ .2Na ₂ CO ₃	542. <b>5</b> 0		
7	sulphate	UO,SO4.3H,O	420.62	$3.280^{16.5^{\circ}}$	
8	sulphide	UO ₂ S	302.57		dec. 40-50
9	Vanadic Acid meta	HVO ₃	100.01		
10	" " pyro-	$H_1V_2O_2$	218.03		<b> .</b>
11	Vanadium	v	51.0	6.025	1680°
12	bromide tri	VBr ₂	290.66		oxidizes
13	carbide	VC	63.0	5.36	
14	chloride di	VCl ₂	121.92	3.23 ^{18°}	
15	" tri	VCl	157.38	3.00180	oxidizes
16	" tetra	VCl	192.84	1.8653	< - 18°
17	fluoride tri	VF3	108.0	3.3628 ^{19°}	>800°
18	" "	VF ₃ .3H ₂ O	162.05		3.H ₂ O,130
19	" tetra	VF	127.0	2 9749 ^{23°}	dec. 325°
20	" penta	VF ₅	146.0	2.1766 ^{19°}	
21	oxide di	$V_2O_2$	134.00	3.64	burns
22	" tri	$\mathbf{v_{2}^{2}O_{3}^{2}}\dots$	150.00	4.87480	infusible
23	" tetr	V ₂ O ₄	166.00		infusible
24	" pent	V ₂ O ₅	182.00	3 357¥°	658°
25	oxydibromide	VOBr ₂	226.84		dec. 180°
26	oxytribromide	VOBr _a	306.76	2 932514 5°	130°-136°
27		voci			
28	didioxymonochlo-	V ₂ O ₂ Cl	169.46		
29	oxydichloride fride	VOCl ₂	137 .92	2.8813°	
30	oxytrichloride	VOCl ₂	173 38	1 83617.5°	<-15°
31	silicide	VSi ₂	107 6	4 42	†
32	"	$V_2$ Si	130 3		+
33	sulphide di-	$V_2^2S_2^2$	166.14		oxidizes
34	" tri-	$\overset{\circ}{\mathrm{V_2S_3}}$	198 18	3.7-4.0	oxidizes
35	" nenta	$V_2^{2S_3}$	262.35	3.0	oxidizes
36	sulphate	$(VO)_2(SO_4)_2$	422.21		CARCIACE
	1			(63.5 D.	
- 1	Xenon			4.422 A.	-140°
	Ytterbium				1800°
39	acetate	$Yb(C_2H_3O_2)_8.2H_2O$	421.13	2.09	4H ₂ O,100°
40	chloride	YbCl ₃ .6H ₂ O	386.48	(	150°-155°

^{*} At 100 mm. Decomposes at 180°.

ber.	Boiling	<del></del>	Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		515°	decomp.	sol.(NH ₄ ),CO,aq.,SO,aq	vellow crystals
2	decomp.	320 ^{18°}	soluble	sol. alcohol, ether	yellow crystals
	118°	200	v. soluble	v. sol. al., ether, acet	yellow rhombic
4		insoluble	insoluble	insol. acetic acid	yellow rhombic
5		7.415°	decomp.	insoluble alcohol	yellow crystals
6		soluble		insoluble alcohol	yellow crystals
7		16.6 ^{13.2°}	22.2100°	4 alcohol; sol. H ₂ SO ₄	yellow crystals
8	· · · · · · · · · · · · ·	s. soluble		sol. al., conc. HCl	brown
9		s. soluble	soluble	insol. al.; sol.alk., NH3aq.	yellow scales
10		s. șoluble		insol. al.; sol. NH3aq	brown amorph.
11		insoluble	insoluble	sol. HNO ₃ , HF, H ₂ SO ₄	light gray crys.
	· · · · · · · · · · · ·	soluble			gray b. amor-
13	· · · · · · · · · · · ·			sol. HNO ₃	[phous
14	• • • • • • • • • •	soluble	soluble	sol. alcohol, ether	apple gr. hex.
15		soluble		sol. alcohol, ether	pink tablets
	154° [heat			sol. alcohol, ether	red liquid
	subl. red	insoluble	<u>.</u>		green
- 1	· · · · · · · · · · · · ·	soluble	v. soluble	insol. ab. alcohol	rhombohedra
19	• • • • • • • • • • • • • • • • • • • •	soluble		CHCl ₃	yellow
	111. <b>2°</b>	soluble		sol.al., CHCl ₃ ; insol. CS ₂	• • • • • • • • • • • • • • • • • • • •
		insoluble	insoluble		light gray crys.
	• • • • • • • • •	s. soluble	soluble	sol. HF, HCl, hot conc.	
. 1	· · · · · · · · · · · ·	insoluble	<b></b>	soluble a., alk[H ₂ SO ₄	
	• • • • • • • • •	0.8200		soluble conc. a., alk	yellow to red
25	· · · · · · · · · · · · ·	soluble .		• • • • • • • • • • • • • • • • • • • •	brown [rhomb.
26	•	soluble	<i></i>		red liquid
77	• • • • • • • • • •	insoluble		v. soluble HNO3	
18	• • • • • • • • • •	insoluble	• • • • • • • • • •	soluble HNO ₃	yellow cryst
29	107 100	decomp.	• • • • • • • • •	soluble dil. HNO ₃	grassgreen tab.
	127.19°	v. soluble insoluble	insoluble (		yellow liquid.
- 1	• • • • • • • • • • • • • • • • • • • •	insoluble	insoluble	insol. al., ether, benzine	
3	• • • • • • • • • • •	msoruble	insoluble (	a.; sol. HF[HNO ₃	
-1	• • • • • • • • • • •			sol. hot conc. H ₂ SO ₄ ,	black plates
15				sol. alk. sulphides, alk	
16	• • • • • • • • • •	v. soluble	decomp.	sol. alk. sulphides, alk soluble alcohol	blue
	• • • • • • • • • •		decomp.	BOLUDIC STCOHOL	Dide
. 1	-109.1°	28.4 c.c. ^{17°} .			
18	• • • • • • • • • • •	lbl-			
1	6H O 1000	v. soluble	v. soluble		hexag. plates .
-	6H ₂ O, 180°	soluble	1	sol. ab. al	green rhom. pr.

[†] Melts in electric arc.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Ytterbium oxalate.	Yb ₂ (C ₂ O ₄ ) ₃ .10H ₂ O	788.16	2.644	
2	oxide	$Yb_2O_3$	392.00	9.175	infusible
3	oxide hydrated	Yb ₂ O ₃ .6H ₂ O			
4	selenate	$Yb_2(SeO_4)_3.8H_2O$		3.49	
5		$Yb_2(SeO_3)_3$			
6	•	$Yb_2(SO_4)_3$		3.62	dec. 900°
7	Wateriane	$Yb_2(SO_4)_3.8H_2O$		3.286 ^{20.6} ° 3.80 ¹⁵ °	10500
9	Yttrium	Yt	89.0		1250°
10	bromatebromide	Y ₂ (BrO ₃ ) ₆ ,.18H ₂ O YtBr ₂			780°
11		YtBr ₃ .9H ₂ O			
12	carbonate		412.05		• • • • • • • •
13	chloride	$YtCl_3$		2.8 ^{18°}	160°
14	"	YtCl ₃ .6H ₂ O	202 48	2.575	dec. 100°
15		2YtF ₃ .H ₂ O	310 02	2.010	dec. 100
16	hydroxide	$Yt(OH)_8$	140 02		decomp.
17			469.76		decomp.
18	nitrate	Yt(NO ₃ ) ₃ .4H ₂ O	347.09	2.682	
19	"	$Yt(NO_2)_3.6H_2O$	383.13		decomp.
20	oxalate	$Yt_2(C_2O_4)_3.9H_2O$	604.14		decomp.
21	oxide		226.00	5.35 ^{18°}	
22	sulphate		466.21	2.612	dec. 1000°
23	·*·······	$Yt_2(SO_2)_3.8H_2O$	610.34	2.558	8H,O,450°
24	Zinc	Zn	65.37	7.142 ^{16°}	419°
25	acetate	$Zn(C_2H_3O_2)_2$	183.42	1.84	242°
26	"	$Zn(C_2H_3O_2)_2.3H_2O.$		1.72	235°-257°
27	amide	$Zn(NH_2)_2$	97.42		dec. r. ht.
28	arsenate		618.16	3.309 ^{15°}	
29	bromate	$Zn(BrO_1)_2.6H_2O$	429.31	2.566	100°
30	D. 01	$Z_nBr_2$	225.21	4.219	394°
31	carbonate		125.37	4.42-4.45	CO ₂ , 300°
32	chlorate		340.39		60°
33			136.29	2.91*	262
34	0,0000000000000000000000000000000000000		117.39		decomp.
35	ronto o j de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de la contraction de	Zn,Fe(CN) ₀ .3H ₂ O	396.69	4 010190	734°
36		ZnF,	103.37	4.612120	
37		Zn F ₂ .4H ₂ O	1/5.43	2.535 ^{12°}	4H ₂ O,100°
38 39	nyaroxiae	$Z_n(OH)_2$	451 04	3.053	decomp.
39 40	iodate	$Z_{n}(IO_{2})_{2}.2H_{2}O$ $Z_{n}I_{2}$	319.21	4.696	446°
41	nitroto	$Z_{n}(NO_{2})_{2}.6H_{2}O$		2.065139	36.4°
42	nitrido	$Z_{n_3}N_2Z_{n_3}$	224.13	2.000-0	J. 2
74	muriue	2/1181.43	224.10	·····	

^{*} Sublimes in vacuo.

[†] Loses 3H.O. at 100g |

ber.	Boiling	Solubility in 100 Parts.		Crystalline Form	
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		0.000583		s. soluble dilute acids	crystalline
2		insoluble	· · · · · · · · · · ·	soluble hot dil. acids	
3		insoluble	1	v. sol. acids, KOH insol.	gelatinous
4		decomp.	soluble	[NH ₃ aq.	hexag. plates .
5		insoluble	4.67 ^{100°}		
6	• • • • • • • • • • •	44.200		• • • • • • • • • • • • • • • • • • • •	
1	• • • • • • • • • •	soluble	s. soluble		prisms
ð		sl. decomp,	decomp.	v. sol. dil. a., hot KOH	grayish black .
	12H₂O,100°.	158		-1 -1 -21 -4	hexag. prisms
10	• • • • • • • • • • • •	v. soluble		sol. al.; insol. ether sol. al.; insol. ether	tablets
- 1	• • • • • • • • • •	v. soluble insoluble			
4-1	• • • • • • • • • •	v. soluble			mlotos
	· · · • • • • • • • • • • • • • • • • •	v. soluble	v. soluble	sol. al.; insol. ether	plates rhombic prisms
15	· · · · · · · · · · · · · · ·	insoluble	v. soluble		gelatinous
	• • • • • • • • • • • •	insoluble		s. soluble acidsinsol. alk.; sol. a., NH ₄ Cl.	gelatinous
17	• • • • • • • • • •	v. soluble		sol. al.; s. sol. ether	geratinous
18		soluble		sol. conc. HNO ₃	prisms
10	• • • • • • • • •	v. soluble		v. sol. al., ether	crystalline
20		0.000137		s. sol. HCl	crystannie
'n	• • • • • • • • • •	insoluble		sol. a.; insol. alk	crystalline
20		1.52	s. soluble	sol. sat. K ₂ SO ₄ aq	crystanine
n	• • • • • • • • • •	9.3	4 8100°	s. sol. H ₂ SO ₄ ; insol. al	monoclinic
14	918°	insoluble	insoluble	sol. a., alk., $H.C_2H_3O_2$ .	crystalline
25		30250	44.6100°	$2.8^{25^{\circ}}$ , $166^{79^{\circ}}$ al	mono. laminæ.
6		40 ^{25°}	66.6100°	2.0 , 100 al	mono. iammæ.
77		decomp.	00.0-55	dec. by al.; insol. ether.	amorphous
100		insoluble		sol. HNO ₃ , H ₃ AsO ₄ , alk.	mono. needles.
9		100	v. soluble	501. 11110 ₈ , 11 ₃ 1150 ₄ , ark.	regular
		390°	670 ¹⁰⁰ °	v. sol. al., ether, NH, aq.	needles
i		0.001 ^{15°}	insoluble	sol. a., alk., NH, salts.	rhombohedral.
2	decomp.	6520°	wo .	v. soluble alcohol	[prisms
	730°	2090°	616 ^{100°}	100 ^{12.5} al., v. sol. ether.	octahedral or
4		insoluble		insol. al.; sol. alk., KCN	orthorh, prisms
5		insoluble		insol. HCl; sol. NH,aq.	or or or or or or or or or
6	· · · · · · · · · · · · · · · · · · ·	s. soluble	soluble	insol. al.; sol. hot acids.	mono, needles.
7		1.6 ^{18°}	soluble	sol. NH ₃ aq., a., alk	
8		0.0004218°	insoluble	sol. acids, alkalies	rhombic prisms
9		0.877	1.32	sol. HNO ₃ , NH ₃ aq., alk.	
0		430°	510 ¹⁰⁰ °	sol. a., (NH ₄ ),CO ₃ aq	octahedra
- 1		324.50°	o o	v. soluble alcohol	tetragonal
2	,	decomp.			gray.,
		ages 6H O at	200	& Logge & H O et 10	oogle

[‡] Loses 6H₂O at 200.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Zinc oxalate	ZnC ₂ O ₄ .2H ₂ O	189.04	*2.58217.5°	
2	oxide	ZnO	81.37		
3	oxide per	ZnO,			
4		ZnO.ZnS			
5		ZnMnO ₄ .6H ₂ O			5H,O,100°
6	phosphate		386.19	3.998150	red heat
7	* <i>i</i> .	$Zn_3(PO_4)_2.4H_2O$		2.76-2.85	
8	"	$Zn_3(PO_4)_2.8H_2O$	530.41	3.109 ^{15°}	
9	" acid	ZnH ₄ P ₂ O ₈ .2H ₂ O	295.51		
10		Zn,P,O,	304.82		
11		Zn ₃ P ₂	258.19	4.55 ^{13°}	
12	salicvlate	$Zn(C_7H_5O_2)_2.3H_2O.$	393.50		
13	sulphate	ZnŠO	161.44	3.623515°	dec. 600°
14	"	ZnSO ₄ .7H ₂ O	287.55	1.966116.20	50° †
					,
15	sulphate	ZnSO ₄ .6H ₂ O	269.54	2.07	
16	sulphide	$Z_nS$	97.44	3.98	1049°
17	" (blende)	ZnS	97.44	4.03-4.07	1049°
18	sulphite	2ZnSO ₃ .5H ₂ O	380.96		
19	Zirconium	Zr	90.6	4.15	1500°
20	"	Zr	90.6	$6.40^{18^{\circ}}$	2350°
21	bromide	ZrBr4			
22		ZrC,	114.60		
23	chloride	ZrCl			
24	fluoride	ZrF4	166.60	4.4333 ^{16°}	
25	hydroxide	Zr(OH)4	158.63		2H ₂ O,550°
26	iodide	ZrI			
27	nitrate	Zr(NO ₂ ) ₄ .5H ₂ O			dec. 100°
28	oxalate	$Zr(C_2O_4)_2.2Zr(OH)_4$ .	583.86		decomp.
29	oxide di	$ZrO_2$	122.60		2500° ¯
30	" "	ZrO ₂	122.60	5.75 ^{15°}	2500°
31	" per	ZrO ₃	138.60		
32	oxybromide	ZrOBr ₂ .3H ₂ O	320.49		
33	oxychloride	ZrOCl ₂ .8H ₂ O	321 . 65		
34	oxyiodide	$ZrI(OH)_3.3H_2O$	322.59		
35	oxyiodide	$ZrI_2O.8H_2O$	504.57		decomp
36	sulphate	$Zr(SO_4)_2.4H_2O$	354 .80		• • • • • • • • • • • • • • • • • • • •

^{*} Anhydrous.

[†] Loses 7H₂O at 280°; dec. at 600°.



Number.	Boiling		Solubility in	100 Parts	Crystalline Form
Nua	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
3   4   5   6		0.00079 ¹⁸⁷ 0.001 insoluble	v. soluble	sol. acids, alk	[amorphous yellowdark blue crys.
		insoluble insoluble decomp. insoluble insoluble insoluble 520° 43.020° [115.20°]	95.03 ^{100°} 633.59 ^{100°}	v. sol. a., NH ₃ aq., NH ₄ soluble alkaliessol. a., alk., NH ₃ aqsol. dil. acidssoluble alcohols. soluble alcohols. soluble alcohols. soluble alcohols.	rhombic plates triclinic octahedrons needles rhomb. prisms
17 18 19 20 21 22 23 24	subl. 1180° subl. 1180°	0.00069 0.000065 0.16 insoluble insoluble decomposessoluble 1.388 0.02	insoluble insoluble decomp. insoluble insoluble decomposes decomp. insoluble	v. sol. a.; insol.H.C ₂ H ₃ O ₂ soluble acids. [NH ₃ aq. insol. al.; sol. H ₂ SO ₃ , s. soluble acids, sol. HF. soluble hot acids, HF. soluble dilute HF. soluble alcohol. soluble HF. soluble al., insol. al., al.	gray crystalsblack amorph.gray crystalscrys.powder
26 27 28 29 30 31 32 33 34 35		soluble soluble insoluble insoluble insolublesoluble soluble v. soluble v. soluble soluble	decomp. v. soluble 146 ^{39.5°}	sol. a., ether; s. sol. CS ₂	red br. crystals

[‡] Yellow regular tetrahedral or hexagonal rhombohedral.

# XXX.—PHYSICAL CONSTANTS

# MOLECULAR WEIGHT, SPECIFIC GRAVITY, SOLUBILITY, MELTING

By

Number.	Name.	Formula.	Molecu- lar Weight.	Water = 1.
1	Abietic acid	C ₂₀ H ₂₀ O ₂	302.25	
2	Acenaphthen	$C_{10}H_0(CH_0)$ ,	154.08	1.0687#
3	Acetal	CH,CH(OC,H,),	118.12	0.8314*
4	" (K.),	CH ₃ CH(OC ₂ H ₅ ) ₂	118.12	0.824
5	Acet-aldehyde	CH.CHO	44.03	0.787616
6	" (K.)	CH ₃ CHO	44.03	0.79-0.795
7		CH,CHNO		
8		CH,CONH,		
9	anilid	CH ₃ CONH.C ₆ H ₅	135.11	1.21054
10	Acetic acid			1.051518
11		CH ₈ .CO ₂ H		1.048-1.049
12	" anhydride	(CH ₃ CO) ₂ O	102.05	1.079915

This table has been compiled by E. Emmet Reid, formerly Professor of Chemistry Baylor Univ., Texas, now Johnson Scholar Johns Hopkins Univ.

Most of the older data have been taken from standard works of reference. Many of these figures have been verified by reference to the original publications. The current journals have been thoroughly searched for the more recent data.

Nine specific gravities of solids and 103 approximate solubilities have been

determined by the author.

The constants given in the lines preceded by the letter K. were determined for the Chemical Annual by C. A. F. Kahlbaum. In a few cases blanks in these have been filled in from the literature. Such data are enclosed in parenthesis.

The boiling points were determined by him under the following conditions:

1. The distilling flask was of such a size that it was about half filled with the substance being investigated. Whenever possible a metallic vessel was used, on account of the well-known tendency to superheating in glass vessels, especially with low-boiling liquids, such as aldehyde, pentane, acetone, methyl alcohol, etc. Ether, for example, boils in glass vessels as high as 50°. Whenever glass vessels were used a piece of asbestos paper having a circular hole of \$\frac{1}{6}\$-\$\frac{1}{3}\$ the diameter of the distilling flask, according to the boiling point of the substance investigated, was placed under the flask.

2. Heat was supplied by a pointed non-luminous flame without wire

2. Heat was supplied by a pointed non-luminous flame without wire gauze. The size of the flame was regulated at the beginning of the experiment so that two drops of the distillate were produced per second. This

## OF ORGANIC COMPOUNDS

AND BOILING POINTS, CRYSTALLINE FORM AND COLOR.

### E. EMMET REID, M.A., Ph.D.

Rumber.	Solubility in 100 c.c.			Melting Point, °C.	Boiling Point, °C.	Crystalline
Non	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1	insoluble	v. soluble	v. soluble	182°		leaf. or monc.
2		3.220		95°	229.5° C.	rhombic/al
3	$5.2^{25}$	∞ ∞	∞	l	102.91°	
4	5.5	∞ ∞	∞ ∞	<b></b>	102-4°	
5	∞	× 00	∞ ∞	-124.6°	20.8°	l <b></b>
6	∞	∞	∞	abt120°	20.5-24°	
7	∞	∞	∞ ∞	47° or 13°	114-5°	 
8	97.5 ²⁰	25.020	v. soluble	82°	222° C.	hexagonal
9	$0.54^{25}$	46.725	soluble	114.25° C.	305° C.	rhomb. lf/w.
10	<b>∞</b>	<b>∞</b>	∞	16.7°	118.1° C.	
11	00	<b>∞</b>	<b>∞</b>			colorless
12	decomp. sol	90	<b>∞</b> 0			

rate of distillation was maintained during the entire experiment. The distillation was discontinued when 90 to 93% of the liquid had been distilled off. The temperature was observed as soon as the first drops of the distillate fell from the condenser.

- 3. All boiling points refer to an atmospheric pressure of 760 mm. When the atmospheric pressure was abnormal, thermometers with movable scales were employed, water (B. P. 100°), aniline (B. P. 184°) and quinoline (B. P. 238°) being used as standard substances.
- 4. The boiling points given are the limits between which the greater part of the liquid distilled.

#### ABBREVIATIONS

The following abbreviations have been used in the table: abs. = absolute; acet. = acetone; al. = alcohol; amor. = amorphous; anhy. = anhydrous; at. = atmosphere; bz. = benzene; chlo. = chloroform; cryst. = crystalline; dec. = decomposes; et. = ether; exp. = explodes; hexag. = hexagonal; insol. = insoluble; leaf. = leaflets; lig. = ligroene; acet. = acetone; mod. = moderately; monel. = monoclinic; need. = needles; pris. = prisms; quad. = quadratic; s. = slightly; sol. = soluble; subl. = sublimes; tab. = tablets; triclinic w. indicates that crystals separating from a water solution are triclinic in form; v. = verv; w. = water; yel. = yellow; 265°100 indicates that the substance boils at 265° under a pressure of 100 mm.; a small figure to the right of a number denoting solubility signifies the temperature;  $\infty$  = infinitely soluble or soluble in all proportions; >= greater than; <= less than.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Acetic anhydride(K.)	(CH,CO),O	102 05	1.07753
	Aceto-acetanilid $(K.)$			
	Aceto-acetic acid	CH,CO.CH,CO,H	102.05	
4	" ether	CH ₃ CO.CH ₂ .CO ₂ C ₂ H ₅	130.08	1.0282*
5	" " (K.)	CH ₃ CO.CH ₂ CO ₂ C ₂ H ₅	130.08	1.0243
-	Acetol	CH ₂ CO.CH ₂ OH		
7	Acetone	CH ₃ COCH ₃		0.7970¥
8	" (K.)	CH ₃ COCH ₃		0.788-0.790
		CH ₃ CO.C ₆ H ₅		1.0329
10	` 2	CH ₃ CO.C ₆ H ₅		1.028
	Acetoxime			1.16815
		CH ₃ COCH ₂ COCH ₃	100 06	0.98715
14	bromide	CH ₃ COBr	122.99	
15	chloride	CH ₂ COCl		1.10517
	Acetylene	H.C:C:		.91(A).613-80
17	dicarbonic acid		150.05	
18	tetrabromide (K.)	CHBr. CHBr	345.86	2.971
19	tetrachloride (K.)			1.582
20	Acetyl fluoride	CH ₃ COF		1.03699
21	iodiđe		170.00	
22		CH ₃ CO.CH ₂ CO.C ₆ H ₁₃		
23		(CH ₃ CO) ₂ O ₂		
24	propyl alcohol	CH ₃ CO.(CH ₂ ) ₂ CH ₂ OH		
25		$C_{20}H_{18}(C_2H_3O)N_3$	343.29	
26		NH ₂ .CO.NHC ₂ H ₃ O	102.13	
27	Aconic acid	$C_5H_4O_4$	128.03	
		CIT	174.05	
29	Acridine	$C_6H_4 < \frac{CH}{N} > C_6H_4$	179.11	
30	Acrolein	СН.: СН.СНО	56.03	0.84
	Acrylic acid	CH ₂ : CH ₂ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH ₃ : CH	72.03	1.0621*
	Adipic acid	CO ₂ H.(CH ₂ ) ₄ .CO ₂ H	146.08	
33	Aldehyde ammonia	$CH_3.CH(OH).NH_2$		
34		CO ₂ H.C ₆ H ₄ CHO		
35		CO ₂ H.C ₆ H ₄ CHO		
36				
	Aldehydine	2,5CH ₈ .C ₅ H ₃ N.C ₂ H ₅	121.13	0.918423
	Aldol			1.109416
39	Alizarine	$C_6H_4(CO)_2C_6H_2(OH)_2$	240.06	

1sol. dec   2v. s. sol.   soluble   soluble   Soluble   Sd. 5-5°	aber.	Sol	ubility in 100 (	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
2 v. s. sol.   3	M	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Corrected.	and Color.
33   v. soluble   v. soluble   s. soluble   70-80°   100°   rhomboh   34   v. soluble   v. soluble   v. soluble   v. soluble   v. soluble   164-6°   dec.   moncl.leaf., sm. needles	23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 41 41 41 41 41 41 41 41 41 41 41 41 41	sol. dec v. s. sol.  s. soluble s. soluble s. soluble o o insoluble v. s. sol. v. soluble 0.8619 12.5 decomp. decomp. 0.118 g.12 v. soluble insoluble insoluble insoluble s. sol. sl. soluble o insoluble v. sol. hot 17.615 18 s. soluble 40	soluble  soluble  soluble  soluble  soluble  soluble  soluble  soluble  soluble  comp.  decomp.  decomp.  decomp.  decomp.  dec. NaOH  v. soluble  soluble  120; 1077  sol. CH ₃ OH  5012  v. soluble  soluble	soluble  soluble  soluble  soluble  soluble  soluble  v. soluble  soluble  v. soluble  soluble  soluble  v. soluble  soluble  v. soluble  soluble  soluble  soluble  soluble  soluble  soluble  insoluble  v. soluble  soluble  soluble  v. soluble	rected.  84.5-5°	137-40°	colorlesssm. flat pris. becomes yel. leaflets usually yel. prismsorthorhombic crystalline. wh. → yel. colorless brown. wh. → yel. plates red triclinic/w leaflets rhomb. leaf
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 34 35 36 37 38	v. soluble v. solublesol. hot insoluble  ∞	v. soluble v. soluble v. soluble v. soluble v. soluble	s. soluble v. soluble s. soluble v. soluble v. soluble soluble	70–80° 97.2° 164–6° 285°	100° dec. sub. 173–4° 90–105° ²⁰	rhomboh moncl.leaf./w sm. needles needles/w thick syrup red triclinic

^{*} Soluble CS₂, KOH. † Soluble Chloroform, CS₂.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
_	Alizarine	G0 77 G 77 (G0) G 77	221 - 2	
1		CO ₂ H ₁ C ₆ H ₃ (CO) ₂ C ₆ H ₂		
	Allantoin	$C_4H_6N_4O_3[(OH)_2]$		
		C ₄ H ₂ N ₂ O ₄ +1 or 4H ₂ O CH ₃ ,CO ₂ ,C ₂ H		0.93760
5		CH ₂ : CH ₂ (CH ₂ ) ₂ CO ₂ H		
6		$CH_3$ . $CO$ . $CH_2$ . $C_3$ $H_5$	00.00	0.83427
7		CH ₂ : CH.CH ₂ OH	58.05	0.8491
8		CH ₂ : CH.CH ₂ OH		0.854-0.857
9		CH,: CH.CH, NH,		0.768815
10		$C_6H_5$ .NH. $C_3H_5$		
11		C.H.CH:CH.CH.		
12		C ₆ H ₅ .CO ₂ ,C ₃ H ₅		
13		1 0 0 1 2 0 0		
14			128.10	
15	<b>.</b> _			0.937119
16	cinnamate (K.)	$C_6H_5.CH: CH.CO_2.C_3H_5$	188.10	1.05235
17		CH,: CH.CH,CN	67.08	0.835115
18		(CH ₂ : CH.CH ₂ ) ₂ O		0.804618
19	formate	HCO ₂ .C ₃ H ₅	86.05	0.932217.6
20		CH ₂ : CH,CH ₂ I	168.01	1.829323
21	isoamyl ether			
22		C ₄ H ₇ O ₂ .C ₃ H ₅		
23		C ₈ H ₆ .NC		$0.794^{17}$
24		$C_5H_9O_2.C_3H_5$		
25		CH ₂ : CH ₂ CH ₂ SH ₂		
26	mustard oil	CH ₂ : CH.CH ₂ NCS	99.14	1.017310
27	oxalate	$C_2O_4(C_3H_5)_2$	170.08	1.05518
28		$C_6H_5$ .OC ₃ $H_5$		
29		C ₈ H ₅ HN.CO.NHC ₆ H ₅		
30	pyridine $(\alpha)$	C ₃ H ₅ .C ₅ H ₄ N	119.11	0.9595
31	sulphide		114.14	0.8877*
32		C₃H₅.SCN	99.14	
	Allylene			
34		CH ₃ .(C:CH)O		
- 1	Aluminum ethyl			
36	America	Al(CH ₃ ) ₃	207 24	
30	Amarin	$(C \mathbf{H}) (C \mathbf{N} C) (C \mathbf{H})$	394 34	
20		$NH_2CH_2.CO.CH_3$	72 10	
40				
10	acerophenone (p.) (N.)	14112.06114.00.0113	100.11	

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	Form and Color.
	s. soluble	mod. sol.	s. soluble	305°	sub.	red need
	0.6 ²⁰ v.s. h.	v. v. s. sol.	insol.		dec.	monocl. pris
	v. soluble	soluble	<b></b> .	dec.	170°(?)	triclinic/w
4	s, soluble	∞	∞ ∞		103-4°784	
	s. soluble	v. soluble	v. soluble	< -18°	188° C.	
6	insoluble				128-30°	
7	∞ ∞	∞ ∞	× ×	-129°	96.69° C.	
8	œ	∞ ∞	∞ ∞	<i>.</i>	95–7°	
9	∞	soluble	∞ ∞		56.5°756	
10	v. s. sol.	soluble			208–9°	yellow oil
11		soluble			176–7°C.	
12			<b></b>		2300768	
13	insoluble	soluble	soluble		70–1°	<b></b>
14		soluble		1	142°	
15	insoluble	soluble	∞		46°	
16	insoluble	v. soluble	∞		284-6° dec.	wh.→yel
17		soluble			119° C.	
18	s. soluble	∞	<b>∞</b>		94.3°	
19		soluble			83.6°C.788	
20	insoluble	soluble			102.5-2.8c	
21			<i>.</i>	<i>.</i>	120°	
22		<b></b> .	1	l	133.5°	<b>.</b>
23	s. soluble	soluble	1	l	96-106°	<b>.</b>
24			l <b>.</b>	l	154-5°	l
25			1	1	90°	l
26	v. s. soluble	v. soluble	v. soluble		150.7°	
27	insoluble	soluble			217°	
	insoluble				191.7° C.	
29			sol. bz.	115.5°		thick needles.
30	• • • • • • • • •				189-90°	
31	s. soluble	∞	00		138.6°758	
	insoluble				161°	
			3000 с.с.	-110°	-23.5°*	
	s. soluble				62–3°	
	dec.		l	< -18°	194°	l
36				00	130°	
37	insoluble	v. soluble	v. soluble	130-1°anhy	[	prisms
	insoluble	s. sol. hot	s. soluble	245–6°	subl.	sm. need./ace
	v. soluble	soluble		188-9° dec.		need.ortab/al
١	v. s. sol.	soluble	soluble	105 . 5-6°		yel. flat pris
į.	J. 50.	NO. UNIO	SOLUDIC	100.0		Ja. Har pilo.

^{*} Liquefies at 3 to 4 atmospheres pressure.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
ļ	Amino-			
1	anthraquinone	$C_{14}H_9O_2.NH_2$	223.07	
2	azo-benzene (p.)	$NH_2.C_6H_4.N_2.C_6H_5$	197.21	
3	azo-naphthaline	$C_{10}H_7.N_2.C_{10}H_6NH_2$	297.24	
4	benzaldehvde (o.)	C.HCHO.NH	121.10	
5	benzamide (o.)	NH ₂ .C ₆ H ₄ .CONH ₂	136.14	
6	" (m.)	$ NH_2.C_6H_4.CONH_2$	136.14	
7	" (p.)	NH ₂ .C ₆ H ₄ .GONH ₂	136.14	
8	benzene-sulphonic ac.o.	$NH_2.C_6H_4.SO_3H + \frac{1}{2}H_2O$ .	182.17	
9	" (m.)	$NH_{2}.C_{6}H_{4}.SO_{3}H + 1\frac{1}{2}H_{2}O.$	200.19	
10	benzoic acid (o.)	NH ₂ .C ₆ H ₄ .CO ₂ H	137.10	
11	" " (m.)	NH ₂ .C ₆ H ₄ .CO ₂ H	137.10	1.51044
12	" " (p.)	NHC.HCO.H	137.10	
13	cinnamic acid (o.)	NH ₂ .C ₆ H ₄ .C ₂ H ₂ CO ₂ H	163.11	
14	" " (m.)	$NH_2.C_6H_4.C_2H_2CO_2H$	163.11	
15	" " (p.)	$NH_2.C_6H_4.C_2H_2CO_2H$	163.11	
16	diphenyl (o.)	C ₆ H ₅ .C ₆ H ₄ .NH ₂	169.13	
17	" (p.)	C.H.C.H.NH.	169.13	
18	ethyl-benzene (o.)	C ₂ H ₅ .C ₆ H ₄ .NH ₂	121.13	$0.983^{22}$
19	" (m.)	C ₂ H ₅ .C ₆ H ₄ .NH ₂	121.13	$0.9896^{\circ}$
20	" (p.)	C.H.C.H.NH.	121.13	0.97522
21	$\beta$ -naphthol (1)	NH ₂ .C ₁₀ H ₆ .OH	159.11	
22	phenol (o.)	NH ₂ .C ₆ H ₄ .OH	109.10	
23	" (m.)	NH ₂ ,C ₆ H ₄ ,OH	109.10	
24	" (p.)	NH ₂ C ₆ H ₄ .OH	109.10	
25	quinoline (2)	$C_9H_6N.NH_2$	144.14	
26	" (4)	$C_9H_6N,NH_2+H_2O$	169 14	
27	salicylic acid (5)	$NH_2,C_6H_3(OH)CO_2H$	153.10	
28	thiophene	NH,C,H,S	99.14	
29	triphenyl-methane Ammelid	$(C_6H_5)_2CH, C_6H_4NH_2$	259.18	
30	Ammelid	$C_0H_0N_0O_3$	255.43	
31	Ammelin	C,H,N,O	127.24	
32	Amygdaline	$C_{20}H_{27}NO_{11} + 3H_{2}O$	511.31	
33	Amygdalinic acid	$C_{20}H_{28}O_{13}$	476.22	
34	Amvl acetate	CH,CO,C,H,	130.12	0.874819
35	alcohol (n.)	CH ₃ (CH ₃ ) ₃ ,CH ₃ OH	88.10	0.816820
36	" (act.)	$CH_{*}(C_{*}H_{*})CH_{*}CH_{*}OH_{*}$	88.10	0.816918
37	" (sec.)	$C_3H_7$ .CH(OH).CH ₃		0.82390
38	" (tert.)	(CH ₃ ) ₂ .C(OH),C ₂ H ₄		0.814415
39	amine	CH3(CH2)4.NH2		0.766219
		THE LANGE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P		ī

Digitized by GOOgle

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C:= Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C: = Cor- rected.	C. = Cor- rected.	and Color.
1	v. sol. chlo.*	s. soluble	v. sol, acet.	256°	subl.	red powder
	v. s. sol. hot		v. soluble	127.4°	>360°	monoclinic
		mod. sol.	mod. sol.	173-5°	dist.	red needles
4	s. soluble	v. v. sol.	v. v. sol.	3 <del>9-4</del> 0°	dec.	leaflets
_	mod. sol.	v. soluble	s. soluble	108°		leaflets/chlo
1 -	s. soluble	soluble	soluble	79°	abt. 300°	yel. moncl.
	s. soluble		<i>.</i>	182.9° C.		bright yellow
		soluble				quad. prisms.
	1.99	soluble				triclinic pris .
	0.3414	10.79	16.07	144-5°		trimet.leaflets
	0.5614	2.2	1.816	174°		cryst. warts
	0.3414	11.39	8.216	186-7°		red yel. cryst
	v. s. sol. s. soluble	mod. sol. soluble	mod. sol. soluble	158–9° dec 180–1°	· · · · · · · · · ·	yellow need lg. yel. need
	s. soluble	v. soluble	v. soluble	175–6° dec		fine yel. need
	insoluble	soluble	v. soluble	49°	299°	leaflets
	s. soluble	v. soluble	v. soluble	53°	302° C.	glit. leaf/al.
18		v. Bordore	V. Soluble	< -10°	215–6° C.	giio. icai/ai.
19					214-5°	
20				-5°	216-6.5° C	glit. leaflets
21	v. s. sol. hot		sol. fluoresc			leaflets
22	1.70	4.50	v. soluble	170°	subl.	rhombic.
23	2.620	soluble	soluble	122-3°		pris./toluene
1	1.1°	$4.5^{\circ}$	s. soluble	184° dec.	sub. pt.	leaflets
25	v. v. s. sol.	v. soluble	v. soluble	129° C.		lrg. leaf./w
26	soluble	soluble	sol. acet.	69-70° (anh. 154°)		fine need./w
	insoluble	insoluble		dec.	dec.	glit. needles
	v. soluble	v. soluble	insoluble		:	oil
	sol. lig.	sol. bz.	soluble	83-4°		pris. lg. or et .
	insoluble	insoluble	sol. acid			powder
	0.02	insoluble	sol. KOH	dec.		needles
32	8 ¹⁰ , ∞ ¹⁰⁰	0.1110, 9.78		214–6°		tetra. pris./w.
	deliq.	insoluble	v. s. sol.			cryst. mass
	$0.18^{20}$ $2.7^{22}$	00	000	thick-75°.	1480	
	2.72	∞ .	∞		137`.8° 129 .3° C.	
	16				129.3° C.	
	s. soluble	soluble	soluble	-12°	101.81°	
39		soluble	soluble	12	104.81	,
100	1	BOIUDIE			101	
_	1		1	1	<u> </u>	<u> </u>

^{*} Very soluble benzene. Digitized by Google

Number.	Name.	· Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Amyl benzene	C _s H _s .C _s H _s ,	148.13	0.860222
2		CH ₃ .(CH ₂ ) ₃ CH ₂ Br		
3	" tert. (K.)	CH ₃ .CH ₂ .CBr(CH ₃ ) ₂	151.05	1.19438
4		CH ₂ (CH ₂ ),CH ₂ Cl		
5		CH ₃ .CH ₂ CCl(CH ₃ ) ₂		
6	cyanide	(C ₂ H ₅ ) ₂ CHCN	97.13	0.86620
7	ether (K.)	$\left \left(C_{5}H_{11}^{3}\right)_{2}O\right $	158.18	0.77453
8		CHO ₂ C ₅ H ₁₁		
9				1.517420
10		C,H,O,C,H,	158.15	0.859218
11	phthalate (K.) (o.)	$C_6H_4(CO_2C_5H_{11})_2$	306.21	1.019
12		< (CH ₂ ) ₂ : (CO ₂ .C ₅ H ₁₁ ) ₂	258.21	0.9523
13			172.16	0.88120
14	Amylene n	CH ₃ .(CH ₃ ),CH: CH ₂	70.08	
15	Amylene	C,H,CH:CH.CH,	70.08	
16	Amylene (K.)	(CH ₃ ) ₂ C: CHCH ₃	70.08	0.66611
17	Anethol (p.)	CH ₃ .CH: CH.C ₆ H ₄ .O.CH ₃	148.10	0.99361
18	Angelic acid	C ₄ H ₇ CO ₂ H	100 06	0. <b>9539</b> ¥
19	Aniline	$C_6H_5.NH_2$	93.10	1.02541
20	" (K.)	$C_6H_5.NH_2$	93.10	1.021435
21	Anisalcohol (p.)	CH ₃ O.C ₆ H ₄ .CH ₂ OH	138.08	1.11291
22	Anisic acid (p.)	CH ₃ O.C ₆ H ₄ CO ₂ H	152.06	1.3644-1.385
23		CH ₃ O.C ₆ H ₄ CHO	136.06	1.12601
24		CH ₃ O.C ₆ H ₄ .CHO	136.06	1.120-1.122
25	Anisol	$ C_6H_5.O.CH_3$	108.06	0.99881
26	" (K.)	$[C_6H_5.O.CH_3$	108.06	0.99253
27	Anisyl chloride (K.) (p.).	CH ₃ O.C ₆ H ₇ .COCl	170.51	
28	Anthracene		178.08	1.147
29		$ C_6H_4: CHC(CO_2H): C_6H_4$ .		
30		$C_6H_4:(CH_2)_2: C_6H_3.CO_2H$		
31		$ C_6H_4: (CH_2)_2: C_6H_3.CO_2H$		
32	Anthramine	$ C_6H_4:(CH)_2:C_6H_3.NH_2$	1	
<b>3</b> 3	Anthranil	C ₆ H ₄ : NH.CO		
34	Anthrapurpurin	$C_{14}H_5O_2(OH)_81:2:7$		
35	Anthraquinoline	$C_{17}H_{11}N$	229.13	
36	Anthraquinone	$C_6H_4:(CO)_2: C_6H_4$	208.06	1.419-1.438
37	carbonic acid (8)	$C_6H_4:(CO)_2: C_6H_3CO_2H$	252.06	
38	dicarbonic acid (1.3)	$C_{16}H_8O_5$	280.06	
1	Anthrol (m.)	C.H.(CH),C.H.OH	194.08	
40	Antimony pentamethyl	Sb(CH ₂ )	195.32	
	1	. 0/0		

So Water (w.).		ubility in 100 (	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
-		soluble			201°743	
2	• • • • • • • • • • • • • • • • • • •	soluble			128.70739	
3	insol. dec.	∞	∞ ∞		108–11° de.	wh.—yel
4		soluble			106.6°740	
	insol. dec.	∞	∞		85–9°	colorless
	s. soluble	∞	∞		176-70764	
. 1	insoluble	∞ ∞	∞		169-72°	yellowish
- 1	s. soluble	∞	∞ ∞	thick-75°	130.4°	
9		soluble			155.4°789	
- 1	s. soluble				153–5°	
	insoluble	∞	∞		338-44°	yellow
- 1	insoluble	, ∞	∞		289-93°	$wh. \longrightarrow yel.$
- 1	s. soluble	۰ ∞	∞ ∞	thick -75°	203.7°	
4	· · · · · · · · · ·			1	39-40°	
5					360741	· · · · · · · · · · · ·
	v. s. sol.	soluble	∞		37–42°	<u> -</u> <u>-</u>
	v. s. sol.	∞ ∞	∞	22.5°	235.20760	leaflets
- 1	s. soluble	soluble	v. soluble	45.5°	185°	monoclinic
	3.60725	∞	•	-5.96°	183.7° C.	
- 1	3.2212-5	soluble	∞	-6-5°	183–4°	becomes br'n
	insoluble			45°	258.8°	needles
	$0.04^{18}$	v. soluble	soluble	184 . 2° C.	275–80°	monel. prism
	s. soluble	∞	∞ .	0°	248° C.	<u>-</u>
	s. soluble	soluble	∞		247-50°	usually yel
	insoluble	soluble	soluble	−37.8° C.	155-5.6°	
	insoluble	soluble	. ∞	-37.8°	153–5°	
- 1		sol. dec.	soluble	26-7°		sm. needles
	insoluble	0.5915	1.1715	216.55° C.	360,103-4°°	
	v. v. s. sol.	v. soluble		206° dec.	dec.	yel. need./al
		s. soluble	s. soluble	245°	subl.	yel. need./a
	insoluble	soluble	soluble	280° abt.	subl.	sm.yelleaf/a
	v. v. s. sol.		s. soluble	238° 18°	010 15 3-	yel. need./a
3	s. soluble	v. soluble	11-1-4	1	210–15 dec.	
14	s. sol. hot	v. soluble	s. soluble*	>330°	462° C.	lg. or need./a
וכי	insoluble	v. soluble	v. soluble	170°		leaf. or tablet
36	(acetone	$\{0.05^{10}\ 2.3^{70}$	s. soluble	284.65° C.	380° C.	tetrag.yel.
37		v. s. sol.	v. v. s. sol.	290-2°	subl.	yel. pris./al.
	v. v. s. sol.	v. soluble		>330°		yel. needles.
	sol. acetone	v. soluble	v. soluble		200° dec.	need.or leaf/
Ю	insoluble			1	96-100°	1

^{*} Slightly soluble chloroform; insoluble benzene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Antimony triethyl	$Sb(C_2H_s)_3$	207.32	1.324416
2	trimethyl	$ \mathrm{Sb}(\mathrm{CH_3})_{3},\ldots$	165.27	1.52315
3	Antipyrene	$C_{11}H_{12}N_2O$	188.18	
	Apple oil see Isoamyl-			
5	20.2.0.120	G W 0		
6			282.15	
8	Arabinose (d.)	OHCH ₂ (CHOH) ₃ CHO	150.08	
	Arabite (d)	CH OH (CHOH) CH OH	152 10	
10	Arabite (d.)	C.H.O.	312.32	
11	Arbutin	$C_{10}H_{10}O_{7} + \frac{1}{2}H_{10}O_{1} + \cdots$	281.14	
12	Arsenic-diethyl	[As(C,H,),],	266.16	1.+
	Asparagine (l.):	[	Į.	
14	Atronic acid	C ₁₇ H ₁₄ O ₂	250.12	
15	Atropic acid	CH.: C(C.H.).CO.H	148.06	
16	Aurine	C., H., O ₂	290.12	
17	Azelaic acid	CO ₂ H.(CH ₂ ) ₇ .CO ₂ H	188.13	
	Azobenzene			
19	Azobenzoic acid (o.)	(CO.H.C.H.)N	270.16	<b>.</b>
20	" " (m.)	$(CO_2H.C_0H_4)_2.N_2 + \frac{1}{2}H_2O$ .		
21	" " (p.)	$(CO_2H.C_6H_4)_2.N_2 + \frac{1}{2}H_2O$ .	279.17	
	Azonaphthaline (aa)	$ C_{10}H_7.N: N.C_{10}H_7$	282.20	
	Azophenetol (o.)	$(C_2H_5.O.C_6H_4)_2N_2$	270.23	
24	" (p.)	$(C_2H_5.O.C_0H_4)_2N_2$	270.23	
	Azophenoi (o.)	(OH.C ₆ H ₄ ) ₂ N ₂	214.16	
26 27	(m.)	(OH.C ₆ H ₄ ) ₂ N ₂	214.16	
	Azotoluene (oo.)	(OH.C ₆ H ₄ ) ₂ N ₂	214.10	
29	" (mm)	$ (CH_3C_6H_4)_2N_2$	210.20	
30		$(CH_3C_6H_4)_2N_2$		
	Azoxybenzene	(C.H.) .: N.O	198.16	1.24838
32	Azoxybenzoic acid (o.)	(CO,H.C,H,),N,O	286.16	
33	" " (m.) .	$(CO_2H.C_6H_4)_2N_2O$		
34	" " (p.)	$(CO_2H.C_6H_4)_2N_2O$	286.16	
35	Barbituric acid	CO:(NH.CO) ₂ :CH ₂ +2H ₂ O	164.05	
36	Bebeerine	$C_{18}H_{21}NO_3$	299.21	
37	Behenic acid	$C_{22}H_{44}O_2$	340.33	
38	Behenolic acid	$ C_{\mathfrak{g}}H_{1,\mathfrak{g}}C C(CH_{\mathfrak{g}})_{1,\mathfrak{g}}CO_{\mathfrak{g}}H_{1,\mathfrak{g}}$	336.32	1

^{*} Soluble KOH.

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
_	insoluble	soluble	soluble		158.5°780	
	s. soluble	in <b>solu</b> ble	soluble		80.6°	[moncl./w.
	v. soluble	v. soluble	sl. soluble	113°	319° C.174	leaf. et.:
5						
1 -	soluble	insoluble				amorphous
	5910	0.46190%		158.5-9.5°		rhombic pris.
1 -	59.310;300100		insoluble	158.5-9.5°C		rhombic/al
	v. soluble	2.081290%		103° C.		warts
	insoluble	s. soluble	v. soluble	770		leaflets
	v. sol. hot	soluble	v. v. s. sol.	165–6°		silky needles.
12	insoluble	soluble	soluble		185-90°	in the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the
١, ،	0.6220		1			
ľ	53100	v. s. sol.	v. s. sol.	234–5°	dec.	long rhombic
14	v. v. s. sol.	v. soluble		164° .		pris./acet. amor./w.
15	0.1419	soluble	v. sol. CS.	106-7°	267°	moncl. tab.al.
16	insoluble	soluble	sol.solKOH		20.	red rhombic.
17	0.2420-2.265	v. soluble	v. soluble	106.5°	abt 360 dec	leaf., needles.
	insoluble	8.520	sol., v. sol. lig.	68.1°	295–7° ⁷⁴⁹ C.	or. yel.moncl.
119	s. soluble	mod. sol.	v. soluble	250-1°		yel. needles
20	v. s. sol.	s. soluble	s. soluble	dec.		amor. powder
	insoluble	insoluble	insoluble	dec.	dec.	reddish amor.
	insoluble	s. soluble	sol. acet.†	186°	subl.	red need. acet.
	insoluble	soluble	sol. sol. HCl		240° dec.	red pris./al
	insoluble	s. soluble	v. soluble	160°	dist.	orange leaf
	insoluble	0.33	v. soluble*	171°	subl.	vel. leaflets
	v. s. sol.	s. sol. hot	s. soluble	205°	Subi.	leaf./dil. al
	s. soluble	v. soluble	v. solublet	204°	l	brown triclin.
	insoluble §	6.0314	14716	55°	l	red monch./et.
	insoluble	v. soluble	v. soluble	54-5°		or. red rhomb.
1	insoluble	mod. sol.	v. soluble	1440	l	monocl. pris.
	insoluble	11.416	soluble	36°	dec.	vel. rhombic.
	v. s. sol.	mod. sol.	mod. sol.	248°	dec.	yel. triclin.
	insoluble	s. soluble	s. soluble	345°		mic. needles .
		insoluble	sol. pyridin		dec. 330°	yellow prisms
1 -	s. soluble		J	dec.	ucc. 550	rhombic
	0.016	20 abs.‡	8	214°		pris. meth. al.
37	insoluble	0.10217	1.9216	84°	l	needles
	insoluble	v. soluble	sol. chlo	57.5°	1	need./abs. al.
		Soluble		00		I.oca./aos. at.
_		<u> </u>	<u> </u>	<u> </u>		hale

[‡] Soluble acetone and chloroform.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Benzal chloride	C ₆ H ₅ .CHCl ₂	160.95	1.29518
2	" " (K.)	C ₆ H ₅ .CHCl ₂	160.95	1.248
	Benzalcohol	$C_6H_5.CH_2OH$	108.06	1.0500H
4	" (K.)	C ₆ H ₅ .CH ₂ OH	108.06	1.047#
5	Benzaldehyde	C ₆ H ₅ .CHO	106.05	1.0504*
6	Benzaldoxime (a) (anti).	C ₆ H ₅ .CH: NOH	121.10	1.1120
7	" (\$)(syn.)	C ₆ H ₅ .CH: NOH	121.10	I
8	Benzamide	C.HCONH	121.10	1.3414
9	Benzanilid	C.HCONHC.H	197.13	1.306-1.3214
10	Benzene	C.H.	78.05	0.8799♥
11	" (K.)	C H ₆	78.05	0.876
12	hexabromide (trans.)	C.H.Br.	457.81	
13	hexachloride	C.H.Cl	290.75	1.8720
14	sulphinic acid	C ₆ H ₆ .SO ₂ H	142.11	
15	sulphone amide	$ C_6H_6.SO_2NH_2$	157.16	
16	sulphone chloride	C ₆ H ₅ SO ₂ Cl		
17	sulphonic acid	$C_6H_5.SO_3H+H_2O$		
	Benzamidine			
19	Benzidine (p.)	$NH_2.C_6H_4.C_6H_4.NH_2$	184.14	
20	Benzil	$C_6H_5CO.COC_6H_5$	210.08	
21	Benzilic acid	$(C_6H_5)_2.C(OH).CO_2H$	228.10	
22	Benzoic acid anhydride	$C_6H_5.CO_2H$	122.05	1.26597
23	anhydride	$(C_6H_5,CO)_2O$	226.08	1.19893
24	Benzophenone	$(C_bH_b)_2CO$	182.08	1.097688
25	alotropic		105 20	1.38014
20	Benzotrichloride Benzoyl-acetic acid			1.380**
28		$C_6H_5$ .CO.CH ₂ .CO.CH ₃		
29	bengoia said (a.)	$C_6H_5$ .COC $_6H_4$ .CO $_2$ H + $H_2$ O		
30	" " (m)	$C_6H_5$ : $COC_6H_4$ . $CO_2H$	226 08	
31	" " (n )	$C_6H_5$ : $COC_6H_4$ . $CO_2H$		
32	hromide	$C_6H_5COBr$	185.00	1.57015
33	chloride	C.H. COCI	140.49	1 2188¥
34	" (K)	C ₆ H ₅ .COCl	140.49	1.211#
35	cvanide	C.H. COCN	131.08	
36	fluoride	C ₆ H ₅ .COCN	124.04	>1
37	iodide	C ₆ H ₅ .COI	231.01	- <del>-</del>
38	peroxide (K.)	$(C_6H_5CO)_2O_2$	242.08	
	Benzyl acetate	CH.CO.CH.C.H.	150.08	1.06216
40	aceto-acetic ether (K.)	$C_2H_3O.CH(C_7H_7)CO_2C_2H_5$	220.13	1.061#
- 1	20010 20010 201101 (221)	2 3 ( - 1 - 1 / - 2 - 2 - 5		

Digitized by GOOGIC

Number.	Sol	ubility in 100 (	c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	insol. dec.			-16.1° C.	212.4° 202–6°	$\mathbf{wh.} \longrightarrow \mathbf{yel.} \dots$
	insol. dec. 4.017	<b>00</b>	· <b>00</b>		202 – 6° 206.5° C.	$wn. \rightarrow yel$
	4.017	∞ soluble	<b>%</b>		200.5°C.	
	0.3	soluble 00	80	-13.5°	179.9°	
	v. soluble	v. soluble	v. soluble	35°		leaflets
	sol, bz.	v. Boluble	v. soluble	128–30°	200 , 101	rhombic tab.
١.	501. 102.		v. bordore	120 00		or need./et.
8	1.3525	26.925	v. soluble	128°	290°	moncl. tricl.
	insoluble	soluble	s. soluble	160-1°	dist.	leaflets
	$0.072^{22}$	∞	90	5.42°	80.20°	rhombic pris.
	0.01 abt.	soluble	∞	5.4%	80-1°	rhombic pris.
12		s. soluble	s. soluble	212°	<i></i>	monoclinic
13	4.35 ¹⁵ chlo.	6.5 ¹⁸ bz.	v. sol. anil.	157°	dec. 288°	monoclinic
14	s. soluble	v. soluble	v. soluble	83-4°	dec. 100°	long prisms
1-0	0.43	v. soluble	v. soluble	150°	<b> </b>	need. or leaf
	insoluble	v. soluble	soluble	14.5°	251.5° C.	
	v. v. sol.	v. v. sol.	insoluble	65–6°	135–7°°	large leaflets.
	mod. sol.	v. soluble	s. soluble	75–80°		crystalline
1	0.0413	soluble	2.2	127.5–8°	400-10740	leaflets/w
1	insoluble	v. soluble		95°	346-8° C. †	hexag. pris./e
	s. soluble	v. soluble	v. soluble	150° 121.25° C.	dec. 180° 249.2° C.	mond. need
	0.3400 ²⁶		J	121,25° C.	249.2° C.	moncl. nd., lf.
1	insoluble insoluble	med. sol. 13.5 ¹⁸	mod. sol.	48-8.5°	305,44° C.	lg. rhom. pris.
	msoluble	v. soluble	v. soluble	26-6.5°	306°	large moncl.
	dec.	v. soluble	v. soluble	-21.2°	213–4°	large moner
	s. soluble	v. soluble	v. soluble	103-4° dec.	210-4	mic. needles.
	insoluble	v. soluble	soluble	59-60°		pris.→vel.
1	mod. sol.			93°, 27°anh		tricl. need./w.
1	v. s. sol.	v. soluble	v. soluble	161-2°		large needles.
31	v. s.sol.hot	v. soluble	v. soluble	194°	sub.	moncl.leaf/w
32		soluble		0°	218-9°	
	dec.	dec.	<b>∞</b>	-1°	197.2° C.	
	v. s. sol.	sol. dec.	∞	-1 -0°	196–8°	
	insoluble			32–3°	206–8°	tablets
					161.50748	
	dec.	soluble		dec.	dec.	leaflets
1	insoluble	soluble	soluble	103- <b>4°</b>	<u>.</u>	wh. prisms
39		,			206°	· · · · · · · · · · · · · · · · · · ·
40	insoluble	∞	∞		284–90° d.	wh.—yel.
	<u> </u>					

^{*} Soluble in KOH.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — I. Air — I (A).
1	Benzyl amine	C _s H _s .CH _s NH _s	107.11	0.9865#
2	benzoate	$C_sH_s.CO_s.CH_s.C_sH_s$	212.10	1.11418
3	bromide	C ₆ H ₅ ,CH ₂ Br	171.02	1.4380¥
4	carbinol	C.H.CH.CH.OH	122.08	1.0235 ¹⁵
5	chloride	C.H.CH.CI	126.51	1.1040}
6	cyanide	C ₆ H ₅ .CH ₂ CN	117.10	1.0214#
7	disulphide	(C ₆ H ₃ .CH ₂ ) ₂ S ₂	246.24	
8	ether	(C.H.CH.),O	198.12	1.03591
9	Benzylidene acetone (K.)	C ₆ H ₅ .CH: CH.CO.CH ₃	146.08	
	Benzyl iodide	Con On Oo	218.02	1.7335**
11	Ketone	(Č _s H̃ _s .CH̃ _s ) _s CO	210.11	
12	·· (K.)	'CH CH SH	210.11	1 05020
13 ⁻	mercaptan	C.H. CH. NCS. C.H. CH. NCS.	140 16	1.058**
15	mustaru on	Con CHIS	214 10	1.71988
16	eulphoevenide	CH CH SCV	140 16	1.0/1280
17	sulphone	C.H.CH.SCN	246 18	
18	11rea	C.H. CH. NH CO NH.	150 16	
10	ureaBerberonic acid	2:4:5C.H.N(CO.H).2H.O	247 11	•••••
20	Beryllium ethyl	Be(C.H.)	67.18	
21	Bi-enthryl	C_H	354.15	
22	Bilirubin	C.H.N.O.	608.41	
	Bismuth tri-ethyl			
24	Biuret	NH(CONH,), H,O	121.18	<b></b> . <b>.</b> .
25	Borneol (i,)	C, H, OH	154.15	1.011
26	" (d.)	$C_{10}H_{17}OH$	154.15	1.011
27	Bornyl amine (d.)	C, H, NH,	153.20	· · · · · · · · · · · · · · ·
28	Brassidic acid	$C_{22}H_{22}O_2$	338.34	0.8585¥
	Bromacetic acid			
30	Bromacetylene	HBrC: C:	104.97	
	Bromal			
	Bromaniline (o.)			
33,		BrC ₆ H ₆ NH ₂		
34		BrC,H,NH,		
	Brombenzamide (o.)			
36 37	(m.)	BrC,H,CONH,		
	(p.)	BrC ₂ H ₄ CONH ₂	200.05	1 400114
33	Brombenzene	C'utol	197.00	1.49911
40		BrC ₂ H ₄ .CO ₂ H		
TU	(m.)	DiCallaCOallannini	201.00	

^{*} Soluble CS, and benzene: 0.10322 parts soluble in 100 parts chloroform.

"ery soluble in acetone and ligroin.

Digitized by GOOG C

Number.	Solı	ibility in 100 c	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nur	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	∞	∞ .	<b>∞</b>		184.5° C.	
2		soluble		<20°		leaflets
3	· · · · ; ; ; ; · · · <i>i</i>				198–9°	
	s. soluble	soluble	v. soluble	,	219° C.	
- 1	insoluble insoluble	∞	∞	-43.2° C.	179° 233 . 5° C.	• • • • • • • • • • • •
-1	sol. benzene	o dalubla	∞ v. soluble	71°-72°		leaflets/al
8		v. sol. hot	soluble	11 -12	295–8°	oily
~1		v. soluble	v. soluble	41–2°	250 0	$tab. \rightarrow yel$
	s. sol. CS.			34.1°	decomp.	crystalline
11			soluble	33.9°		large cryst/et
	insoluble	v. soluble	v. soluble	33-4°	326-30°	$wh. \rightarrow yel$
13					194-5°	
14	insoluble		soluble		243°	
		soluble	soluble	49°		rhomb. tab./e
	insoluble	v. soluble	v. soluble	41°		prisms
- 1		s. soluble	v. sol. bz.	150°		flat needles/w
	v. s. sol.	v. soluble	v. s. sol.	147-8° .		sm. needles
1	v. s. sol.	v. s. sol.	insoluble	235°		triclinic pris.
20				300°	185–8°	
21	insoluble	v. s. sol.	v. v. s. sol.*		• • • • • • • • •	leaf. toluene.
	insoluble	v. s. sor. v. soluble	v. v. s. soi. v. soluble †		10 <b>7°</b>	monocl./chlo. oilv
	1.54 ¹⁵	v. soluble soluble	v. soluble	190° dec.	107	needles
	v. s. sol.	v. soluble	v. soluble	210.5°	sublimes	hexag.leaf./li.
- 1	v. s. sol.	v. soluble	v. soluble 1		211–12°	hexag. leaf
- 1	v. v. s. sol.	v. v. sol.	v. v. sol.	163°	203-40785	nexag. lear
	$0.74/^{24}$	v. s. sol.	soluble §	114°	282030	leaflets/alc
	delig. ∞	∞	∞°	49-50°	208°; 117°15	hexagonal
	v. soluble	mod. sol.	<i></i>		-2° abt.	liquid at 3 at.
31	decomp.				174.0°	
32		soluble		31-31.5°	250–1°	crystalline
33	<b></b>	soluble		18-18.5°	251°; 130°12	
	insoluble	v. soluble	v. soluble	66.4°	dec.	rhombic
- 1	sol. hot	soluble	s. soluble	155.6° C.		needles/w
1	s. sol. hot	v. soluble		155.3° C.		leaflets/dil.al.
	v. s. sol. hot	1	s. soluble	189.5° C.	1 50 00	rectang. tab
	0 10536	soluble	v. soluble	−30.5° C.	156.6°	1
	$0.185^{25}$	v. soluble	v. soluble	150°	subl.	large need./w.
40	$0.04^{25}$	v. soluble	v. soluble	155°	>280°	needles

^{‡ 16} parts dissolve in 100 parts lig. at 20°, and 24 parts in 100 parts benz. § Insoluble ligroene and benzene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Brombenzoic acid (p.)	BrC,H,CO,H	201.00	
	Bromethylene			1.5167*
	Bromine cyanide		1	
4	Brommalonic acid	CHBr(CO ₃ H) ₃	182.99	
5	Bromnaphthaline (a)	C ₁₀ H _z Br	207.02	1.492219
6	" $(\beta) \dots$	$C_{10}^{\bullet}H_7^{\bullet}B_7$	207.02	1.6050
7			202.04	
8	" (m.)	BrC ₆ H ₄ NO ₂	202.04	
9	" (p.)	BrC ₆ H ₄ NO ₂	202.04	1.93422
10	Bromoform	CHBr ₃	252.89	2.884225
11	Phg. IV (K.)			2.829-2.832
12	Bromphenol (o.)		173.00	
13		1 0 4 - 1 - 1 - 1 - 1 - 1 - 1		
14		BrC ₆ H ₄ OH		
	Brompyridine (3)			1.63210
	Bromtoluene (o.)			
17		BrC ₆ H ₄ CH ₃		
18	_• " (p.)	BrC ₆ H ₄ CH ₃		
19	Butane	CH ₃ .CH ₂ .CH ₂ .CH ₃		0.60°2.046(a)
	Butyl acetate	CH ₃ .CO ₂ .C ₄ H ₉		0.881720
21		C.H., C: CH		0.00015
22		$CH_2$ . $(CH_2)_2$ . $CH_2$ OH		0.81381
23	(11.)	CH ₃ .(CH ₂ ) ₂ .CH ₂ OH		0.807-0.808
24	sec	CH ₃ .CHOH.CH ₂ CH ₃		0.81922
25		CH ₃ (CH ₂ ) ₂ CH ₂ NH ₂		0.7401 ²⁰ 0.8620 ³⁹
26 27		$C_6H_5(CH_2)_3.CH_3$		1.0111
28		$C_6H_5CO_2.C_4H_9$ $CH_3.(CH_2)_2CH_2Br$		1.279230
29		$C_2H_7$ , $CO_2$ , $C_4H_6$		0.88780
30		(CH ₂ ) ₃ C.CH ₂ OH		0.812220
32		$CH_3(CH_2)_3Cl.$		0.887420
33	'' (tert ) (K)	$(CH_3)_3CCl$		0.840#
31	cyanide	$CH_3$ . $(CH_2)_3CN$		0.999524
34	ether	$(C_4H_9)_2.O$		
35	" (sec.)			0.761616
36	formate		102.08	
37				1.6166*
38		$CH_3$ . $(CH_2)_2CH_2SH$		0.858
39				
40		$C_4H_0.CO.C_6H_5$		
41		$(C_4H_2)_2S$		
'		Digitized	w Goo	ogle

Number.	Sol	Solubility in 100 c.c.		Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1 2	0.003725	v. soluble	v. soluble	252°	16 ⁰⁷⁵⁰	mon'cl.nd./w.
3	soluble	soluble		52°	61 . 3 ⁰⁷⁵⁰	needles
4		v. soluble	v. soluble			needles
- 1	∞ bz.	∞ abs.	∞	4-5°	279.50758	prisms
	sol. bz.	6	v. soluble	59°	281-2° C.	rhombic leaf.
7				38.50°	264.4°760	<b></b>
8				52.56°	257.50760	
9		soluble	 	124.92°	259.20760	monocl. pris
10	s. <b>s</b> oluble	∞	∞	90	151 . 2° C.	l
11	v. s. sol.	soluble	∞	7°	148-50°	 
12			l	1	194-5°	oil
13				32-3°	236-6.5°	leaflets
	sol. chlo.	v. soluble	v. soluble	63-4°	238°	tetrag./chlo.
-	v. s. sol.			-	169.5°	oil.
	insoluble	soluble		-25.75°	180.30754	
	insoluble	soluble	• • • • • • • • • • • • • • • • • • •	-39.8°	183.7°	
	insoluble	soluble	soluble	28.5°	185.2°	rhombic
	insoluble	1800 cc.	Solubic	20.0	100.2	
	s. soluble	000 cc.	<b>00</b>		125.10740	
21		~	•		70.5–2.0°	· · · · · · · · · · · · · · · · · · ·
	8.3	αο	<b>x</b> 0		117.02° C.	· · · · · · · · · · · • •
	s. soluble	80			117.02 C. 115–7°	· · · · · · · · · • •
	2920 ·	<b>3</b> 0	<b>∞</b>		99.8°	
24 25		11-	11-			
	×	soluble	soluble		77.8°	
26					183–5°	
27		· · · · · · · · · · ·		<-20°	249° C.	thick oil
28					105°	
29	.,		· • • • • • • • • • • • • • • • • • •	70.00	164.8° C.	
_	s. soluble			52–3°	113-4°	
31					77.96° C.	
_	v. s. sol.	∞ ∞	∞		49-52°	colorless
	insoluble				1600764	
	soluble		. <b></b>		140.9°	
35		∞ ∞	∞		122-2.5°	
36					106.9°	
37	[		<b></b>		129.9°	
38					97–8°	
39					167°	
40	1				237 . 5–8 . 5°	
41	insoluble				182°	
i	1				Co	nogle

=				
Rumber.	Лаше.	Formula.	Molecu- lar Weight.	Water = I.
1	Butylene	C.H. CH: CH.	56.06	 
	Butyramide (n.) (K.)			
	Butyric acid (n.)			0.9599₩
4		CH ₃ .(CH ₂ ) ₂ CO ₂ H		0.95635
5		CH ₃ .(CH ₂ ) ₂ CHO		0.8170₹
6		$(CH_3.(CH_2)_2CO)_2O$	158.12	0.97815
7	Cacodyl		210.10	1.+
8	chloride	(CH ₃ ) ₂ AsCl	140.50	1.+
	Cacodylic acid			
10	Cacodyl oxide			
11	sulphide	((CH ₃ ) ₂ .As) ₂ S	242.16	
12	trichloride	(CH ₃ ) ₂ AsCl ₃	211.40	
13	Cadmium methyl	Cd(CH ₃ ) ₂	142.45	
14	Caffeic acid	$C_9H_8O_4+\frac{1}{2}H_2O$	189.07	
	Caffeine	·	i	l
16	Camphene (i.)	$C_{10}H_{16}$	136.12	
17	" (d. or l.)	$C_{10}H_{10}$	136.12	<b>.</b>
18	Campholene	$(\mathring{\mathrm{CH}}_{3})_{a}^{2}\mathrm{C}_{6}\mathrm{H}_{7}$	124.13	0.803420
19	Campholic acid	C ₂ H ₁₅ .CO ₂ H	170.15	
20	Camphor (d.)	$C_{10}H_{16}O$	152.13	$0.992^{10}$
21	Camphoric acid (i.)		200.13	1.228
22			200.13	
23	" anhydride	$C_{10}H_{14}O_{3}$	182.12	1.19420
24	Camphoronic acid (l.)	$C_6H_{11}(CO_2H)_3$	218.12	
25	Cantharidine	$C_{10}H_{12}O_4$		
<b>2</b> 6	Caoutchene	$ C_4H_6$		$0.65^{-20}$
27	Capric acid	$ \mathrm{CH_{3}.(CH_{2})_{8}CO_{2}H} $		0.8858♥
<b>2</b> 8	" " (K.)	$[\mathrm{CH_{2}},(\mathrm{CH_{2}})_{8}\mathrm{CO}_{2}\mathrm{H}\dots]$		0.930 }}
	Caproic acid	$CH_3.(CH_2)_4CO_2H$	116.10	$0.9289^{20}$
	Caprylic acid			0.9100¥
31	" anhydride		270.24	
32	Carbanil	C ₆ H ₅ NCO	119.08	$1.092^{15}$
33	Carbanilid	$ CO(NHC_6H_5)_2$	212.18	
34	Carbazol	$ (C_6H_4)_2NH $	167.11	
	Carbazoline			
	Carbon diselenide			
37	disulphide			1.255522
38				1.9988♥
39	monoxide	[CO	28.00	0.9674
1		l		I

Digitized by GOOST

Number.	Sol	Solubility in 100 c.c.		Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Muz	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	c. = Cor- rected.	and Color.
1					1.5-2.5°	
-1	soluble	soluble	s. soluble	115–6°	• • • • • • • • • • • • • • • • • • • •	wh. tablets.
3	œ	∞ ∞	∞	−7.9° C.	162.3° C.	
4	90	∞ ∞	∞	$abt4^{\circ}$	161-3°	
5	3.6			• • • • • • • • • • • • • • • • • • •	73–4°	
6					191–3°	
	s. soluble	soluble	soluble	-6°	170°	oil
	insoluble				100°	
	v. soluble	soluble	v. s. sol.	200°		rhomb. pris
	insoluble			-25°	120°	
1	soluble _.	<b>s</b> oluble	· · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·			dec. 40–50°		· · · · · · · · · · · · · ·
	dec.	· · · · <u>·</u> · <u>·</u> · · ·			104-5°?	
١	soluble	v. soluble	. <b></b>	195°	dec.	yel. moncl. pris./w.
15	(1.35 ¹⁶ (*	0.932 95%	0.04416	234-5°	sub. 116°°	glit, needles.
19	<b>*</b>	3.1278abs.	0.3035	l		
16	insoluble	v. soluble	v. soluble	49.5-5.0°	157° C.	feath. need
17	insoluble	v. soluble	v. soluble	51-2°	159° C.	feath.cryst.
	insoluble	v. soluble	v. soluble		138°	
	0.01619	soluble	soluble	105–6°	255°	leaf./et.+al.
20	v. s. sol.	12012	v. soluble	176.4°	209.1° C.	hexagonal
	0.239	33	28	208°		crystals
22	0.62513	112	insoluble	200–2°		monoclinic
23	v. s. sol.	v. soluble	v. soluble	220–1°	dec. 270°	rhb. pris./al
1	6.0	v. soluble	v. soluble	136–7°	dist.	sm. needles
	0.003	100	0.11	218° C.		trimet. tab
26				-10°	14.5°	
	v. s. sol.	soluble	soluble	31.3°	268.4° C.	${f needles}$
28	v. s. sol. hot	soluble	soluble	30-1°	268–9°	finewhite nee.
	s. soluble	soluble	solub <b>ie</b>	$-5.2^{\circ}$	205°	oily liquid
	$0.25^{100}$	∞	∞	16.5°	237.5° C.	leaflets
31					280–90°	oil
32	dec.	comb.			166°769	
	v. s. sol.	v. soluble	v. soluble		sub. 260°	prisms/al
34	insoluble	0.92	s. soluble	238°	351.5° C.	leaf. tablets
	v. s. sol.	v. soluble	v. soluble	99°	296–7°	silky need, or
						yellow[pris
37	0.2182	∞	∞		46.2°	
		mod. sol.	v. soluble	187°	185°	rhb. tab./al.
sol.	3.3 сс.	20 cc.20		-211°	-190°	

^{* 0.059} CS,; 12.97 chlo.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Carbon oxysulphide	cos		2.1040
2	suboxide	OC: C: CO	68.00	
3		CBr ₄		
4		CCl4		
5				1.591
6		CI ₄	519.88	
	Carbonyl chloride			1.392¥
	Carbostyril			
	Carboxy-cinnamic ac. (o.) Carminic acid	$C_{22}H_{22}O_{13}$	192.00	
11	Carvacrol		150 19	0.077748
12	Cellulose	(C.H.O.)x x = 34?	162 08	1.27-1.61
	Cerotic acid			
14	Ceryl alcohol	C ₂ H ₄ O	382.43	
15	Cetvl "	C ₁₄ H ₂₂ OH	242.27	0.8176¥
16	Chlor-acetic acid	ClCH,.CO,H	94.48	1.397864
17	" " (K.)	ClCH ₂ .CO ₂ H	94.48	1.397864
18		CH ₂ Cl.CO.CH ₃		1.16216
19		CH ₂ Cl.COCl	112.92	
20		HClC: C:	60.46	
21		CH : C.CH ₂ Cl		1.04545
22		CIC,H4.NH2		
23 24	" (m.)	ClC ₆ H ₄ .NH ₂	127.54	1.2156%
25	hengamida (a.)	CIC ₆ H ₄ CONH ₂	155 54	1.340-
26	" (m)	ClC ₆ H ₄ CONH ₂	155.54	• • • • • • • • • • • • • • • • • • • •
27		CIC,H4CONH2		
28		C ₆ H ₅ Ci		1.1125 <del>11</del>
29		$C_6H_5C1$		
30	benzoic acid (o.)		156.49	
31		ClC ₆ H ₄ .CO ₂ H		
32		ClC ₆ H ₄ .CO ₂ H		
33	diphenyl (o.)	$Cl.C_6H_4.C_6H_5$	188.52	
34	" (m.)	$Cl.C_6H_4.C_6H_5$	188.52	
35	(P.) · · · · · ·	Cl.C ₆ H ₄ .C ₆ H ₅	188.52	• • • • • • • • • • • • • • • • • • • •
36	etner	CH ₃ .CHCl.O.C ₂ H ₅		
37	eunyi aiconol (2)	CH_Cl.CH_OH		1.200519
30	Chlorhydrine	CICH OCH		1.1302° 1.0625¹0
40	Chlor-methyl ether	CHCl.(CO ₂ H) ₂	138 49	1.0020
41	naphthaline (α)	$C_{10}H_7Cl$	162 51	1 1938¥
		01022701	.02.01	

Digitized by GOOGLE

Number.	Sol	ubilit <b>y</b> in 100 (	e.c.	Melting Point, °C.	Boiling Point, °C. C. = Cor-	Crystalline
Mun	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Cor- rected.	C. = Cor- rected.	Form and Color.
	100 cc.	∞ ×	œ		0°12.5 at.	
	sol. dec.		soluble	-107° abt.		long cryst
I -	insoluble	soluble	soluble	92 . 5°	189.5°	tablets
I -	0.08020	∞	∞	-19.5°	76.74° C.	
	v. v. s. sol.	∞	<b>∞</b>		76–7°	:
6	· · · · · · · · · · ·				dec.	red regular
	dec.	dec.		< -75°	8.2° C.	1
	v. s. sol. s. soluble	v. soluble v. soluble	v. soluble s. soluble	199–200° 173–5°	sub.	large pris./al. needles/w
	v. soluble	s. soluble	v. s. sol.	dec. 136°		monocl.prism.
	sol. KOH	s. soluble	soluble	0°	237.97° C.	thick oil
	insoluble	insoluble	insol.		201.01	amorphous
	insoluble	v. soluble	2085 *	82.5°	dec.	mic. need./al.
14		soluble		79°		crystals
15	insoluble	soluble	soluble	50°	344°, 119°°	leaflets/al
16	v. soluble	soluble	soluble	62.5-3.2°	185–7°	rhomb tab
	v. soluble	v. soluble	v. soluble	62–3°	185–7°	rhomb. tab.
	s. soluble	∞	∞		119°	[or pris.
	decomp.	<b></b>			105–6°	
20 21	spon. comb.					
21 22	• • • • • • • • •		soluble	<-14°	65° 207°	
23	· · · · · · · · · · ·		soluble	< - 14	2300767	
24			soluble	69.7°	232.3° C.	rhomb.prisms
1	s. soluble	v. soluble	v. soluble	142.4° C.		long need./w
	s. soluble	v. soluble		134.5°		needles
27	v. s. sol.	v. soluble	v. soluble	178,3° C.		needles/et
28	<i>.</i>	soluble		-44.9°	132°	
29			∞	-45°	131-2°	
1 -	0.110	v. soluble	v. soluble	142°		rhomb. tab.
3	0.040	soluble	soluble	158°		small prisms.
1.	0.02	v. soluble	v. soluble	243°		monocl. tab
33		sol. lig.	v. soluble	34°	267-8°	moncl. prisms
34 35				89° 75.5°	282°	thin leaflets.
	dec.	dec.	00		282° 97–8°	unn leanets
37		aec.	80 80		132°, 51°22	
	soluble	soluble	soluble		127°	
	dec.				59.5°	
-	v. soluble	v. soluble	v. soluble	133°		prisms
41		soluble		<b></b>	263°	
Ĺ	1					

^{*} v. sol. acetone, bz., chlo., and CS2.

Number.	Name.	Formula.	Molecu- lar Weight.	Water
1	Benzal chloride	C ₆ H ₅ .CHCl ₂	160.95	1.29516
2	" " (K.)	C ₆ H ₅ .CHCl ₂	160.95	1.2483
	Benzalcohol	$C_6H_5.CH_2OH$	108.06	1.05001
4	" (K.)	C ₆ H ₅ .CH ₂ OH	108.06	1.047#
5	Benzaldehyde	C ₆ H ₅ .CHO	106.05	1.0504¥
6	Benzaldoxime (a) (anti).	C ₆ H ₅ .CH: NOH	121.10	1.1130
7	" ( <b>/3</b> ) (syn.)	C ₆ H ₅ .CH: NOH	121.10	1
	D	G II GONII	101 10	
8	Benzamide	C ₆ H ₅ .CONH ₂	121.10	
10	Benzanilid	O ₅ H ₅ .CUNHO ₆ H ₅	79 05	1.300-1.321
11	Benzene	C H	79.05	0.01994
12	havebromide (trens)	$C_6H_6Br_6$	457 21	0.0/030
13	hexachloride	$C_6H_6Cl_6$	290 75	1 8720
14	sulphinic acid	$C_6H_5.SO_2H$	142.11	
15	sulphone amide	C.H. SO.NH.	157.16	
16	sulphone chloride	C.H.SO.Cl	176.55	1.3842
17	sulphonic acid	$C_{s}H_{s}.SO_{s}H + H_{s}O$	176.13	
18	sulphonic acid Benzamidine	C,H,C(:NH).NH,	120.10	
19	Benzidine (p.)	$NH_{a}.C_{a}H_{a}.C_{b}H_{a}.NH_{a}$	184.14	
20	Benzil	$C_6H_5CO.COC_6H_5$	210.08	
21	Benzilic acid	$(C_6H_5)_2.C(OH).CO_2H$	228.10	
	Benzoic acid	$C_6H_5.CO_2H$	122.05	1.2659
23	anhydride	$(C_6H_5,CO)_2O$	226.08	1.1989
	Benzophenone	$(C_bH_b)_2CO$	182.08	1.0976#8
25	alotropic	$(C_6H_5)_2CO$	182.08	1 00014
26	Benzotrichloride	C ₆ H ₅ C,Cl ₃	195.39	1.3801
	Benzoyl-acetic acid	CH ₅ .COCH ₂ CO ₂ H	169.00	
28 29	bongoia agid (a.)	$C_6H_5$ .CO.CH ₂ .CO.CH ₃ $C_6H_5$ .COC ₆ H ₄ .CO ₂ H + H ₂ O	244 10	
30	" " (m)	$C_6H_5$ : $COC_6H_4$ . $CO_2H + H_2O$	224.10	
31	" " (n )	$C_6H_5$ : $COC_6H_4$ . $CO_2H$	226 08	
32	hromide	$C_6H_5COBr$	185.00	1.57015
33	chloride	C ₆ H ₅ .COCl	140.49	1 2188¥
34	" (K)	C ₆ H ₅ .COCl	140.49	1.211#
35	cvanide	C _a H _a .COCN	131.08	
36		C ₆ H ₅ COF		
37	iodida	CHCOI	231 01	
38	peroxide (K.)	$(\mathring{\mathbf{C}}_{\mathbf{a}}\mathring{\mathbf{H}}_{\mathbf{a}}\mathbf{CO})_{\mathbf{a}}\mathbf{O}_{\mathbf{a}}\dots$	242.08	
<b>3</b> 9	Benzvl acetate	$[CH_{2},CO_{2},CH_{2},C_{6}H_{5},\ldots]$	150.08	1.06218
40	aceto-acetic ether (K.)	$C_2H_3^{\prime}O.CH(C_7H_7^{\prime})CO_2C_2H_5$	220.13	1.061#
	• •			

Digitized by GOOSIC

ber.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	Form and Color.
1				-16.1° C.		
	insol. dec.	∞	· <b>x</b> 0		202 – 6°	$\mathbf{wh.} \longrightarrow \mathbf{yel.} \dots$
	4.017	00	∞	<b></b>	206.5° C.	
	4.017	soluble	∞		202–5°	
	0.3	∞	∞.	-13.5°	179.9°	
	v. soluble	v. soluble	v. soluble	35°	200°; 134°20	
	sol. bz.		v. soluble	128–30°		rhombic tab. or need./et.
8	1.3525	26.925	v. soluble	128°	290°	moncl. tricl.
	insoluble	soluble	s. soluble	160-1°	dist.	leaflets
1	0.07222	∞ ∞	∞	5.42°	80.20°	rhombic pris.
	0.01 abt.	soluble	∞	5.4%	80–1°	rhombic pris.
		s. soluble	s. soluble	212°	[	monoclinic
1	4.35 ¹⁵ chlo.			157°	dec. 288°	monoclinic
1	s. soluble	v. soluble	v. soluble	83-4°	dec. 100°	long prisms
	0.43	v. soluble	v. soluble	150°	<b></b>	need. or leaf
	insoluble	v. soluble	soluble	14.5°	251.5° C.	
1	v. v. sol.	v. v. sol.	insoluble	65–6°	135–7°°	large leaflets.
1	mod. sol.	v. soluble	s. soluble	75–80°		crystalline
1-0	0.0413	soluble	2.2	127.5-8°	400–1°740	leaflets/w
	insoluble	v. soluble		95°	346–8° C. †	hexag. pris./e
	s. soluble	v. soluble	v. soluble	150°	dec. 180°	moncl. need
	0.3400 ²⁵	48 ²⁰	3120	121.25° C.	249.2° C.	monel. nd., lf.
	insoluble	m•d. sol.	mod. sol.	42°	360°	rhombic pris.
	insoluble	13.5 ¹⁸	17.513	48-8.5°	305.44° C.	lg. rhom. pris.
1 -		v. soluble	v. soluble	26-6.5°	306°	large moncl
1	dec.	[		-21.2°	213–4°	
1	s. soluble	v. soluble	v. soluble	103–4° dec.		mic. needles.
	insoluble	v. soluble	soluble	59–60°		pris.→yel.
	mod. sol.	· · · · <u>· · · · · ·</u>		93°, 27°anh		tricl. need./w.
	v. s. sol.	v. soluble	v. soluble	161-2°		large needles.
	v. s.sol.hot	v. soluble	v. soluble	194°	sub.	moncl.leaf/w
		soluble		0°	218–9°	
1	dec.	dec.	∞	-1°	197, 2° C.	
	v. s. sol.	sol. dec.	∞	-1 -0°	196–8°	
	insoluble		· • • • • • • · • · •	32–3°	206-8°	tablets
36					161.50745	
	dec.	soluble		dec.	dec.	leaflets
1	insoluble	soluble	soluble	103- <b>4°</b>		wh. prisms
39					206°	
40	insoluble	× ×	∞	····	284–90° d.	wh. $\rightarrow$ yel.
	1			1		T

^{*} Soluble in KOH.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Benzyl amine			
2	benzoate	$C_6H_5.CO_2.CH_2.C_6H_5$	212.10	1.11418
3		$C_6H_5.CH_2Br$		
4		$C_6H_3.CH_2.CH_2OH$		
5		$C_6H_5.CH_2Cl$		
6		$C_6H_5.CH_2CN$		
7		$(C_6H_8.CH_2)_2S_2$		
8	ether	$(C_6H_5.CH_2)_2O$	198.12	1.035916
	Benzylidene acetone (K.)	$C_6H_6.CH: CH.CO.CH_3$	146.08	. <b>. .</b>
	Benzyl iodide	C ₆ H ₅ .CH ₂ I	218.02	1.733525
11	ketone	(C ₆ H ₅ .CH ₂ ) ₂ CO	210.11	
12	" (K.)	(C ₆ <b>H</b> ₅ .CH ₂ ) ₂ CO	210.11	
13	mercaptan	C ₆ H ₅ .CH ₂ .SH	124.13	1.05820
14		C ₆ H ₅ .CH ₂ .NCS		
15		$(C_6H_5.CH_2)_2S$		
16		C ₆ H ₅ .CH ₂ SCN		
17		$(C_6H_5.CH_2)_2SO_2$		
18	urea	C ₆ H ₅ .CH ₂ .NH.CO.NH ₂	150.16	
19	Berberonic acid	2:4:5C ₅ H ₈ N(CO ₂ H) ₃ 2H ₂ O	247.11	
	Beryllium ethyl			
	Bi-anthryl			
22	Bilirubin	$C_{34}H_{36}N_4O_7$	608.41	
23	Bismuth tri-ethyl	$B1(C_2H_5)_3$	295.62	1.82
	Biuret			
	Borneol (i.)			
26		$C_{10}H_{17}OH$		
27	Bornyl amine (d.)	$C_{10}\mathbf{H}_{17}\mathbf{N}\mathbf{H}_{2}$	153.20	0.000057
	Brassidic acid			
	Bromacetic acid			
30	Bromacetylene	CD- COH	104.97	0 04
	Bromaniline (o.)			
33	(111.)	BrC ₆ H ₄ NH ₂		
34	(p.)	BrC ₆ H ₄ NH ₂	200 05	
	Brombenzamide (o.)			
36 37	(111.)	BrC ₆ H ₄ CONH ₂		
	(p.)	BrC ₆ H ₄ CONH ₂		
	Brombenzene			1.499111
	Brombenzoic acid (o.)			
40	·· (m.)	$\mathbf{D} \cap_{6} \mathbf{\Pi}_{4} \cup \cup_{2} \mathbf{\Pi} \dots \dots$	201.00	

^{*} Soluble  $\mathrm{CS}_2$  and benzene; 0.1003²³ parts soluble in 100 parts chloroform. † Very soluble in acetone and ligroin.

Number.	Sol	ubilit <b>y in</b> 100 (	:. <b>c.</b>	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1		∞	ø		184.5° C.	
2		soluble		<20°	323–4° C.	leaflets
3				-3.9°	198–9°	
_	s. soluble	soluble	v. soluble		219° C.	
	insoluble	∞ ∞	∞	-43.2° C.	179°	
1 -	insoluble	∞	∞ .	-24.6° C.	233.5° C.	
		s. soluble	v. soluble	71° <b>–7</b> 2°	<u></u>	leaflets/al
		v. sol. hot	soluble		295–8°	oily
	insoluble	v. soluble	v. soluble	41-2°		$tab. \rightarrow yel$
	s. sol. CS ₂			34.1°	decomp.	crystalline
11		; . ; ;	soluble	33.9°	330.6° C.	large cryst/et
	insoluble	v. soluble	v. soluble	33–4°	326–30°	$\mathbf{wh.} \longrightarrow \mathbf{yel} \dots$
13					194–5° 243°	
1	insoluble	soluble	soluble	49°	243	
1	insoluble insoluble	v. soluble	soluble v. soluble	49° 41°	230–5°	rhomb. tab./e
1		s. soluble	v. solubie v. sol. bz.	150°	230-5	prisms flat needles/w
1	v. soi. acet. v. s. sol.	v. soluble	v. soi, bz. v. s. sol.	147-8°		sm. needles.
1 -	v. s. sol. v. s. sol.	v. soluble	insoluble	235°		triclinic pris.
20		v. s. soi.	insoluble	200	185–8°	tricimie pris.
21				300°	100-0	leaf, toluene .
11	insoluble	v. s. sol.	v. v. s. sol.*	192-2.8°		monocl./chlo.
	insoluble	v. s. sol. v. soluble	v. v. s. soi. v. soluble †	192-2.6	107°	oilv
	1.5415	soluble	v. soluble i	190° dec.	10,	needles
	v. s. sol.	v. soluble	v. soluble	210.5°	sublimes	hexag.leaf./li.
	v. s. sol. v. s. sol.	v. soluble	v. soluble 1		211–12°	hexag. leaf
	v. v. s. sol.	v. v. sol.	v. v. sol.	163°	203-40735	nong. iou
	$0.74/^{24}$	v. s. sol.	soluble §	114°	282030	leaflets/alc
	delig. ∞	00	00	49-50°	208°; 117°16	hexagonal
	v. soluble	mod. sol.			$-2^{\circ}$ abt.	liquid at 3 at.
	decomp.				174.0°	
		soluble		31-31.5°	250-1°	crystalline
33		soluble	l	18-18.5°	251°; 130°12	
34	insoluble	v. soluble	v. soluble	66.4°	dec.	rhombic
	sol. hot	soluble	s. soluble	155.6° C.	l	needles/w
36	s. sol. hot	v. soluble		155.3° C.		leaflets/dil.al.
		mod. sol.	s. soluble	189.5° C.		rectang. tab
38	3 <b></b>	soluble	v. soluble	−30.5° C.	156.6°	l
	0.18525	v. soluble	v. soluble	150°	subl.	large need./w.
40	0.0425	v. soluble	v. soluble	155°	>280°	needles
L	1	<u> </u>	<u> </u>	l	<u> </u>	<u> </u>

^{‡ 16} parts dissolve in 100 parts lig. at 20°, and 24 parts in 100 parts benz. § Insoluble ligroene and benzene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Brombenzoic acid (p.)	BrC ₆ H ₄ .CO ₂ H	201.00	
2	Bromethylene	CH ₂ : CHBr	106.99	1.5167*
	Bromine cyanide			
4	Brommalonic acid	CHBr(CO ₂ H) ₂	182.99	
	Bromnaphthaline (a)	$C_{10}H_7Br$	207.02	1.492210
6	$(\beta)$	C ₁₀ H ₇ Br	207.02	1.6050
	Bromnitrobenzene (o.)			[
8	(m.)			
9	(p.)	BrC ₆ H ₄ NO ₂		
	Bromoform			
11	Bromphenol (o.)	CHBr ₃		
13		BrC ₆ H ₄ OH		
14	(111.)	BrC,H,OH		
	Brompyridine (3)			
16	Bromtoluene (o.)	BrC.H.CH.	171 02	1 4309H
17	" (m.)	BrC ₆ H ₄ CH ₃	171.02	1.4099%
18	" (p.)	BrC ₆ H ₄ CH ₂	171.02	1.3540*
	Butane	CH. CH. CH. CH.	58.08	0.60°2.046(a)
	Butyl acetate			0.881720
21		C.H. C: CH	82.08	
22		$CH_1.(CH_2)_2.CH_2OH$	74.08	0.81381
23	" (K.)	$CH_3$ . $(CH_2)_2$ . $CH_2$ OH	74.08	0.807-0.808
24		CH ₂ .CHOH.CH ₂ CH ₃	74.08	0.81923
25	amine (n.)	$CH_3(CH_2)_2CH_2NH_2$	73.13	0.740130
26		$C_6H_5(CH_2)_3.CH_3$		
27				1.01111
<b>2</b> 8	bromide			1.279230
29	butyrate (n.)	$C_3H_7.CO_2.C_4H_9$		0.8878
30		(CH ₂ ) ₂ C.CH ₂ OH		0.812220
32		CH ₃ (CH ₂ ) ₃ Cl		0.887420
33		(CH ₃ ) ₃ CCl		
31		CH ₃ .(CH ₂ ) ₃ CN		
34		(C ₄ H ₆ ) ₂ .O		
35 36	(500.)	$(\mathrm{CH_3(C_2H_5)CH)_2O} \dots $ $\mathrm{HCO_2C_4H_6} \dots$		
37		$CH_{2}$ . $(CH_{2})_{2}CH_{2}I$		
38		$CH_3.(CH_2)_2CH_2I$ $CH_3.(CH_2)_2CH_2SH$		
39	mustard oil	$CH_3.(CH_2)_3.NCS$	115.17	0.000
40	nhenvi ketone	$C_4H_9$ .CO. $C_6H_5$	162 11	::::::il
41	sulphide	$(C_4H_9)_2S$	146.21	0.85230
		-49/2~		
	<u> </u>	District		2016

Number.	Sol	ubility in 100 (	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	and Color.
1 2	0.003725	v. soluble	v. soluble	252°	16 ⁰⁷⁵⁰	mon'cl.nd./w.
_	soluble	soluble		52°	61.30750	needles
4		v. soluble	v. soluble			needles
	∞ bz.	∞ abs.	∞	4-5°	279.50753	prisms
	sol. bz.	6	v. soluble	59°	281–2° C.	rhombic leaf.
8				38.50°	264 . 40760	
8				52.56°	257.5°760 259.2°760	
1 "	s. soluble	soluble	xo	124.92°	151 .2° C.	monocl. pris
	v. s. sol.	∞ soluble	&	7°	148–50°	
12		Soluble	\	<b> </b> '	194–5°	oil
13				32–3°	236-6.5°	leaflets
14	sol. chlo.	v. soluble	v. soluble	63-4°	238°	tetrag./chlo
15	v. s. sol.				169.5°	oil
16	insoluble	soluble	<b></b> .	-25.75°	180.3°754	
	insoluble	soluble	<b></b>	-39.8°	183.7°	
	insoluble	soluble	soluble	28.5°	185.2°	rhombic
	insoluble	1800 сс.			10	
1 1	s. soluble	× ×	×		125.10740	· · · · · · · · · · · · · · · · · · ·
21	8.3				70.5–2.0° 117.02° C.	· · · · · · · · · · · · · · · · · · ·
	s. soluble	∞ ∞	∞ ∞		117.02°C.	· · · · · · · · · · · • •
	2920	ω.	ω		99.8°	
25	1	soluble	soluble		77.8°	
26					183-5°	
27				<-20°	249° C.	thick oil
28					105°	
29					164.8° C.	
	s. soluble	<b></b>		52–3°	113-4°	
31	1				77.96° C.	
	v. s. sol.	∞	∞ ∞		49-52°	colorless
	insoluble soluble				160°764 140.9°	
35		οο οο	× ×		140.9° 122–2.5°	
36		, w	~	1	106.9°	
37				1	129.9°	
38		l	1		97–8°	
39					167°	
40					237.5-8.5°	
41	insoluble			[	182°	
L		]	1	l .	Digitized by G	oogle

Number.	Rame.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — I. Air — I (A).
		C ₂ H ₅ .CH: CH ₂		
2	Butyramide (n.) (K.)			
		CH ₃ .(CH ₂ ) ₂ CO ₂ H		0.9599¥
4	\	CH ₃ .(CH ₂ ) ₂ CO ₂ H		0.956#
5	J J	CH ₃ .(CH ₂ ) ₂ CHO		0.8170♥
6		$(CH_3, (CH_2)_2CO)_2O$		0.97815
7	Cacodyl		210.10 140.50	
8	Cacodylic acid	(CH ₃ ) ₂ AsCl		
10	Cacodyl oxide	((CH) As) O	226 10	1 48215
11	gulphide	((CH ₂ ) ₂ .As) ₂ S	249 16	1.402
12	trichloride	(CH ₃ ) ₂ AsCl ₃	211 40	
	Cadmium methyl	Cd(CH ₂ )		
	Caffeic acid		189.07	
	Caffeine	0 10 4 2 2	212.26	1.2310
	Camphene (i.)	$C_{10}H_{16}$		
17	" (d. or l.)	C ₁₀ H ₁₆	136.12	
18	Campholene	(CH ₃ ) ₃ C ₆ H ₇	124.13	0.803420
	Campholic acid			
	Camphor (d.)			0.99210
	Camphoric acid (i.)	$C_8H_{14}(CO_2H)_2$	200.13	
22	(u.)		200.13	
23	annyunue			1.194 ²⁰
	Camphoronic acid (l.)	0 11 2 78		
	Cantharidine	1-10-12-4		0.65-20
	Capric acid			0.8858¥
28	" "(K)	2/8 - 2		0.9301
	Caproic acid	CH. (CH.) CO.H		0.928920
30	Caprylic acid	CH. (CH.) CO.H		0.9100₹
31			270.24	
32	Carbanil	C.H.NCO	119.08	1.09215
	Carbanilid			
34	Carbazol	(C ₆ H ₄ ) ₂ NH		
35	Carbazoline	$C_{12}H_{15}N$		
	Carbon diselenide	$CSe_2$		
37	disulphide ,	CS ₂		1.255522
38		2 - 0		1.9988♥
39	monoxide	co	28.00	0.9674
1		·	Coc	محام

Number.	Solubility in 100 c.c.		Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form	
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1					1.5-2.5°	
	soluble	soluble	s. soluble	115–6°		wh. tablets
3		∞	∞	−7.9° C.	162.3° C.	
4		∞	∞	abt 4°	161-3°	
6	3.6		·····		73-4° 191-3°	
٧,	s. soluble	soluble	soluble	-6°	170°	oil.
٠,	insoluble	Soluble	Soluble	1-0	100°	011
-1	v. soluble	soluble	v. s. sol.	200°	1.00	rhomb. pris
	insoluble			-25°	120°	
	soluble	soluble				
12				dec. 40-50°		
	dec.	<b></b>			104-5°?	
14	soluble	v. soluble		195°	dec.	yel. moncl.
				ļ		pris./w.
15	(1.35 ¹⁶		0.04416	234-5°	sub. 116°0	glit. needles
	1 (		0.3035	1		
	insoluble	v. soluble	v. soluble	49.5-5.0°	157° C.	feath. need
	insoluble	v. soluble	v. soluble	51-2°	159° C.	feath.cryst.
	insoluble	v. soluble	v. soluble		138°	
	0.01619	soluble	soluble	105–6°	255°	leaf./et.+al.
20	v. s. sol. 0.239	120 ¹³ 33	v. soluble 28	176.4° 208°	209.1° C.	hexagonal
	0.239 0.62512	33 112	insoluble	200-2°	diat in CO	crystals monoclinic
	v. s. sol.	v. soluble	v. soluble	200-2° 220-1°	$\frac{\text{dist. in } CO_2}{\text{dec. } 270^{\circ}}$	rhb. pris./al
- 1	6.0		v. soluble	136–7°	dist.	sm. needles
	0.003	100	0.11	218° C.	CIBU.	trimet. tab
~-				-10°	14.5°	
27	v. s. sol.	soluble	soluble	31.3°	268.4° C.	needles
	v. s. sol. hot	soluble	soluble	30–1°	268-9°	finewhite nee.
			soluble	$-5.2^{\circ}$	205°	oily liquid
30	0.25100	∞	∞	16.5°	237.5° C.	leaflets
					280–90°	oil
- 1		comb.			166° ⁷⁶⁹	
- 1					sub. 260°	prisms/al
			s. soluble		351 . 5° C.	leaf. tablets
		v. soluble	v. soluble	99°	296–7°	silky need, or
	0.01099		• • • • • • • • • •		40.00	yellow[pris.
	0.21822	_,∞ ,	∞ ,	-108.6°C.		
			v. soluble	187°	185°	rhb. tab./al.
บฮ	o. o cc.	20 cc. ²⁰		-211°	-190°	· · · · · · · · · · · · · · · · · · ·

^{* 0.059} CS,; 12.97 chlo.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Carbon oxysulphide	cos	60.06	2.1040
2	suboxide	OC: C: CO	68.00	
3	tetrabromide	CBr ₄	331.84	3.42
4		CC14		
5	" (K.)			1.591 35
6			519.88	
	Carbonyl chloride	COCl ₂		1.392
	Carbostyril	Py2, C ₉ H ₆ NOH		
	Carboxy-cinnamic ac. (o.)			
	Carminic acid	$C_{22}H_{22}O_{13}$		
	Cellulose	$(C_6H_{10}O_5)x,x=34?$	162 08	1.27-1.61
	Cerotic acid	$C_{26}H_{52}O_2$	396 42	0.83597
	Cervi alcohol		382.43	
	Cetyl "			0.8176♥
16	Chlor-acetic acid	CICH, CO2H	94.48	1.397864
17		ClCH ₂ .CO ₂ H		1.397864
18	-acetone	CH ₂ Cl.CO.CH ₃		1.16216
19	-acetyl chloride	CH ₂ Cl.COCl		1 . <b>4</b> 95°
20	-acetylene	HCIC: C:		
21	-allylene	CH : C.CH ₂ Cl		1.04545
22		CIC ₆ H ₄ .NH ₂		1.2125*
23 24				1.2156 <b>%</b> 1.340 ¹⁸
24 25	" $(p.)$ benzamide $(o.)$			1.340
26		CIC ₆ H ₄ CONH ₂		
27	" (p.)	CIC ₆ H ₄ CONH ₂		
28	benzene	C,H,Cl		1.1125#
29		C ₆ H ₅ Cl		1.104#
30		CľC ₆ H ₄ .CO ₂ H	156.49	1.540
31	" " (m.)		156.49	
32	" " (p.)	ClC ₆ H ₄ .CO ₂ H		1.54124
33	diphenyl (o.)		188.52	
34	" (m.)			
35	" (p.)	Cl.C ₆ H ₄ .C ₆ H ₅	188.52	
36	ether	CH ₃ .CHCl.O.C ₂ H ₅		
37	ethyl alcohol (2)	CH,Cl.CH,OH		1.200519
	Chlorhydrine		110.50	1.1302
<b>3</b> 9	Chlor-methyl ether	CHCl.(CO ₂ H) ₂		1.062510
41	nanhthaline (a)	$C_{10}H_7Cl$		1.1938*
-1	maphonomic (a)	01022701	. 52.51	

Digitized by GOOGLE

Number.	Sol	ubility in 100 c	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	100 cc.	∞	<b>∞</b> 0		0°12.5 at.	
	sol. dec.		soluble	-107° abt.		long cryst
	_	soluble	soluble	92 · 5°	189.5°	tablets
1 1	0.08020	∞	<b>∞</b>	-19.5°	76.74° C.	
	v. v. s. sol.	oc	∞		76–7°	::
6				· · · · · <u>· · · ·</u>	dec.	red regular
	dec.	dec.		<-75°	8.2° C.	<u> </u>
, ,	v. s. sol.	v. soluble	v. soluble	199-200°	sub.	large pris./al.
	s. soluble	v. soluble	s. soluble	173–5°		needles/w
	v. soluble	s. soluble	v. s. sol.	dec. 136°		monocl.prism.
	sol. KOH	1 11	soluble	0°	237.97° C.	thick oil
	insoluble	insoluble	insol. 20 ⁸⁵ *	00 50	1-	amorphous
1 1	insoluble	v. soluble	2000 +	82.5° 79°	dec.	mic. need./al.
14	· · · · · · · · · · · ·	soluble		79° 50°	2449 11000	erystals leaflets/al
	insoluble	soluble	soluble soluble	62.5-3.2°	344°, 119°° 185–7°	rhomb tab
1 1	v. soluble	soluble		62-3°	185–7°	rhomb. tab.
	v. soluble s. soluble	v. soluble	v. soluble ∞	02-3	119°	for pris.
		∞	<b>x</b>		105–6°	for pris.
	decomp.				105–0	
21	spon. comb.				65°	
22	• • • • • • • • •		soluble	< - 14°	207°	
23	• • • • • • • • •		BOIUDIE	-14	2300787	
24	• • • • • • • • •		soluble	69.7°	232.3° C.	rhomb.prisms
	s. soluble	v. soluble	v. soluble	142.4° C.	202.0 0.	long need./w
	s. soluble	v. soluble	v. soluble	134.5°		needles
	v. s. sol.	v. soluble	v. soluble	178.3° C.		needles/et
28		soluble	v. solubic	-44.9°	132°	
29		Solubio	∞o	-45°	131-2°	
1	0.110	v. soluble	v. soluble	142°		rhomb, tab.
	0.040	soluble	soluble	158°	sub.	small prisms.
	0.02	v. soluble	v. soluble	243°		monocl. tab
33		sol. lig.	v. soluble	34°	267-8°	moncl. prisms
34				89°		
35				75.5°	282°	thin leaflets
	dec.	dec.	∞	l	97–8°	
37	∞	∞	∞		132°, 51°22	
38	soluble	soluble	soluble	l	127°	
	dec.		<b> </b>		59 . 5°	
40	v. soluble	v. soluble	v. soluble	133°	<b></b>	prisms
41		soluble	l		263°	
_	<u> </u>	·	<u> </u>	<u> </u>	1	1

^{*} v. sol. acetone, bz., chlo., and CS2. d by Google

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Chlor-naphthaline( $\beta$ )	C ₁₀ H ₂ Cl	162.51	1.265616
2	nitro-benzene (o.)	CIC,H,NO,	157.52	1.36822
3	" (m.)	ClC ₆ H ₄ NO ₂	157.52	1.534
4	" (p.)	ClC ₆ H ₄ NO ₂	157.52	1.52018
	Chloral	CCl ₃ .CHO		
6			165.38	
	Chloroform			1 . 476022
	Chlorophyll			
	Chlor-phenol (o.)			
10				1 00030
11 12	(p.)	CIC,H,OH CH ₃ .CHCl.CO ₂ H	100 40	1.300
13		CH ₂ Cl.CH ₂ .CO ₂ H		
14	nyriding (2)	C ₅ H ₄ ClN	112 59	1 20515
15	" (4)	C ₅ H ₄ ClN	113 52	1.205
16	quinoline (ny 2)	C _o H _c ClN	163.54	1 275417
17	" (py. 4)	C _o H _e ClN	163.54	1.376617
18	toluene (o.)	CiC ₆ H ₄ .CH ₃	126.51	1.08771
19	" " (K.)	CIC ₆ H ₄ .CH ₂	126.51	
20	" (m.)	CIC,H,CH,		1.0722*
21	" `" (K.)	CIC,H.CH	126.51	1.074
22	" (p.)	ClC ₆ H ₄ CH ₈	126.51	1.0749#
23	" "'(K.)	CIC ₆ H ₄ CH ₃	126.51	1.0711
24	trinitro-benzene	$CIC_6H_2(NO_2)_32:4:6$	247.48	1.79720
25	Cholesterin	$\cdot   C_{26}H_{43}OH + H_2O \cdot \dots \cdot$	390.37	1.067
26	Cholic acid	$C_{24}H_{40}O_5 + H_2O \text{ or } C_2H_6O$ .	426.34	
27	Chrysaniline	$ C_{19}H_{18}N_3 + 2H_2O \dots$	321.28	
28	Chrysene	$\cdot  _{\mathbf{C}_{18}\mathbf{H}_{12}\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots$	228.10	
29	Chrysine	$\cdot   \overset{C_{15}H_{10}}{\circ} \overset{C_4}{\circ} \cdots \cdots $	254.08	
30	Cincholic acid	$U_7H_8U_6$	188.00	
31	Cinchomeronic acid Cinnamic acid	OH CH. CH. CO. H	140 06	1 94754
	Cinnamic aldehyde			
90	l -	1 • •	1	
34	1	$C_6H_8$ .CH: CH.CHO	1	t .
<b>3</b> 5	" anhydride	$(C_0H_7O)_2O$	278.12	
	Cinnamyl alcohol	$ C_6H_5.CH:CH.CH_2OH$	134.08	1.0397#
37	chloride	$C_9H_7OC1$	166.51	
	Citraconic acid			
39	anhydride	$C_5H_4O_3$	112.03	1.25016
40	Citral	C ₉ H ₁₈ .CHO	152.13	U.886820
		I		l .

Digitized by Google

Number.	Solubility in 1		.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mur	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1		soluble	soluble	56°		rhomb. leaf.,
2			soluble	32.5°	245.5°753	$\mathbf{needles}  \dots  .$
3	v. sol. bz.	v. sol. hot	soluble	44 . 4°		${f rhombic}\dots$
4		soluble		83°	242°	monocl. pris.
5	v. soluble	∞	∞	-57.5°	97.7° C.	
	66	v. soluble	sol. CS ₂	57°	97.5°	moncl. tab
	0.6322	∞	∞	-63.2° C.	62°760	
8	insoluble	v. soluble	v. s. sol.	no mp.	dec.	hexagonal
9		soluble		7°	175–6°	
10		soluble		28.5°	214°	crystals
	v. s. sol.	v. soluble	v. soluble	37°	217°	crystals
12		∞	∞		186°	<b></b>
13	v. soluble	v. soluble	∞	41.5°	203-5°	leaflets
	v. s. sol.				166°714	
15	mod. sol.				147-8°	
16	v. v. s. sol.	v. v. sol.	v. v. sol.	37–8°	275°751	need./dil. al.
17	sol. HCl	v. v. sol.	v. v. sol.	34°	260-10744	
18	insoluble			-34.0°	155°	
	s. soluble	soluble	∞	-34°	158-9.5°	
20				-47.8°	162°756	
21	s. soluble	soluble	∞	-47°	160.5-2.5°	<i>,</i>
22	insoluble			7.4°	162.3°756	
23	s. soluble	soluble	×	6.5-7.5°	160.5-2.5°	moncl.tab./e
24	insoluble	v. sol. hot	s. soluble	83°		moncl.pr./ch
25	insoluble	1178 1.0817	18	148.5° C.	360° in vac.	monocl. tab.
	0.025	4.870%	0.218	195°	dec. 160°	tetrahed./al.
27	v. v. s. sol.	s. soluble		267-70°	dist.	yel. need
	s. soluble	0.09716	v. s. sol.	250°	448°760	scales or rhb
	v v. s. sol.	2.078 *		275°	subl. need	yellowtab./a
	v. sol. hot	soluble	s. soluble	168–9°		moncl.tab./v
	v. s. sol.	s. soluble	v. v. s. sol.	258-9°	dec	prisms HCl.
	0.04926	13.920 abs.	v. soluble	133°	300°	moncl. prism
33	3 v. s. sol.	∞ ∞	∞.	-7.5°	209.5°250 C.	
34	-	soluble	∞	-8°	248-50° dec.	(colorless t
3	5 insoluble	v. s. sol.	sol. bz.	130-5°		prisms/al
3	6 mod. sol.	v. soluble	v. soluble	33°	257.5° C.	long needles
3	7		soluble	35–6°	170°58	crystals
3	8 24515	s. sol. bz.	soluble	80°	in steam	monel. prisn
39	9 insoluble	l	l	7°	213–4° C.	
4	0 insoluble	soluble	soluble	1	228-9°	oil
1	1	1	1	1	1	1

^{*} Very slightly soluble benzene, CS2, chloroform, and ligroene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — I. Air — I (A).
1	Citramalic acid (rac.)	CO ₂ H.CH ₂ C(OH)(CH ₂ ) CO ₂ H	148.06	
	Citric acid	$ (\mathrm{CO_2H.CH_2})_2\mathrm{C(OH)}\mathrm{CO_2H} + \mathrm{H_2O} $		
3	Collidine (a)	$CH_3$ , $C_5H_3N$ , $C_2H_5$	121.13	0.926816
4	" (β)	$CH_3$ , $C_5H_3N$ , $C_2H_5$	121.13	0.9656°
5	" $(\gamma)$	(CH ₃ ) ₃ C ₅ H ₂ N	121.13	0.91718
6	dicarbonic acid	$(CH_3)_3C_5N(CO_2H)_2$	209.13	
7	Coniferine	$C_{16}H_{22}O_8 + 2H_2O$	378.21	
8	Coniine (d.)	$2,C_5H_{10}N.C_3H_7$	127.18	$0.8472^{17}$
9	Coumaric acid (o.)	OHC ₆ H ₄ CH: CH.CO ₂ H	164.06	
10	" " (p.) Coumarin	OHC H4CH: CH.CO H	164.06	
11	Coumarin	$C_9H_6O_2$	146.05	
12	Coumaron	$C_8H_6O$	118.05	1.07761
13	Creatine	$C_4H_9N_3O_2+H_2O$	149.21	• • • • • • • • • • • •
14	Creatinine	C ₄ H ₇ N ₈ O	113.18	
	Creosole			
	Cresole (o.)			
17		CH ₃ .C ₆ H ₄ OH		
18		CH ₈ .C ₆ H ₄ OH		
19	methyl ether (o.) (K.)	$CH_3.C_6H_4.O.CH_3$	122.08	0.978#
20	" (m.) (K.)	$CH_3.C_6H_4.O.CH_3$	122.08	0.969#
21		$CH_3.C_6H_4.O.CH_3$		
22	Croconic acid	$CO:C:C(CO_2H)_2 + 3H_2O$	196.07	
23	Crotonic acid (a)	$CH_3.HC: CH.CO_2H$		0.973073
24		HCH ₃ C: CH.CO ₂ H	86.05	1.0312¥
25	" aldehyde ( $\alpha$ )	CH ₃ HC: CH.CHO		0.8593
26	Crotonyl ether	(CH ₃ CH: CH.CH ₂ ) ₂ O		0.8895°.
27	alcohol	CH₃CH: CH.CH₂OH	72.06	0.8726
	Cumene		120.10	0.8629¥
29	Cuminalcohol (p.) (K.)	(CH ₃ ) ₂ CH.C ₆ H ₄ .CH ₂ OH.	150.11	0.9745#
30	Cuminic acid (p.)	$(CH_3)_2CH.C_6H_4.CO_2H$	164.10	1.16254
31	aldehyde	(CH ₃ )CHC ₆ H ₄ CHO	148.10	0.975935
32	Cyan-acetic acid	CNCH ₂ .CO ₂ H		
33	amide	CN.NH ₂		
34	anilid	$CNNHC_6H_5 + \frac{1}{2}H_2O \dots$	127 • 14	
35	aniline	$(C_6H_6.NH_2)_2(CN)_2$	238.28	
36	Cyanic acid	CONH	43.05	1.140
37	Cyanoform			
	Cyanogen			0.86617 liq.
_ 1	ا	District.	Col	ogle

Number.	Sol	ubility in 100 (	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	deliq.	v. soluble	mod. sol.	119°	dec. 200°	monod. pr
2	133	75.9	2.26	153°	dec.	rhomb. pris
4	less sol. hot insoluble sol.; insol. hot	v. soluble soluble	v. soluble		179–80° 195–6° ⁷⁵⁸ 171–2°	
7	v. s. sol. 0.51	v. s. sol. soluble	v. s. sol. insoluble	no m.p. 185°	dec. 170°	fine need./w glit. needles .
9	s. soluble v. s. sol.	v. soluble v. soluble	v. soluble v. s. sol. v. soluble	-2.5° 207-8° 206°	dec.	long. needles. silky need./w.
12	v. s. sol. insoluble 1.35 ¹⁸	v. soluble soluble 0.008	soluble soluble insoluble	67° < -18° dec.	290-0.5° 173-4°	rhombic/et
14	8.7 ¹⁶ s. soluble	0.98 ¹⁶ ∞	msoluble $\infty : \infty $ bz.	dec.	221–2°	moncl. prisms moncl. prisms oil
17	0.3 s. soluble	∞ ∞	∞ ∞	30° 3–4° 36°	191° C. 202° C.	crystals
19	s, soluble insoluble insoluble	& & &	8 8 8		202° C. 169–71° 173.5–6°	prisms colorless
22	insoluble v. soluble	∞ soluble	<b>∞</b>	700	174–6°	colorless yel. needles
24	8.3 40 mod. sol.	sol. lig. soluble		72° 15.45°	185° C. 171.9° dec. 104–5°	moncl. prisms need. or pr
26 27	16.6			<-30°	143.5° 117°	
29	insoluble insoluble v. s. sol.	soluble soluble	soluble ∞ v. soluble	116.5°	152.5-3° 243-6° subl.	wh.→yel triclin. pris. or
		soluble	soluble	66.1-6.4° C.	235, 5° C. dec.	tab./al.
34	v. v. sol. s. soluble insoluble	v. soluble v. v. sol. s. soluble	v. soluble v. v. sol. s. soluble	40° & 203° 47° 210–20°	dec.	long needles leaflets
36 37	soluble soluble	s.col comb.	soluble	93.5°		needles
38	450 cc.	soluble	soluble	-34.4°	<b>−20.7°</b> Digitized by	ogle

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — I. Air — I (A).
2		CNC1	106.00 61.49	1.+
3 4		(CN).S.	84.14	
_	Cyan-propionic acid (a)	CH _s .CHCN.CO _s H.1½H _s O	126.11	
	Cyanuric acid	$C_3N_3H_3O_3+2H_2O$		1.7680
	Cyclo-hexane	$CH_2 < (CH_2.CH_2)_2 > CH_2$	82.10	0.7843¥
8	hexanol	(CH ₂ ) ₅ : CHOH	100.10	
9	hexanone	(CH ₂ ) ₅ : CO		0.94733
10	F	$CH_2 < (CH: CH)_2 > \dots$		0.8047*
11		<(CH ₂ .CH ₂ ), $>$ CH ₂		0.7754¥
	Cymene (o.)	CH ₃ .C ₆ H ₄ .CH ₂ .CH ₂ CH ₃		0.874838
13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CH ₃ .C ₆ H ₄ .CH: (CH ₃ ) ₂		0.86220
14	(p.)	CH ₃ .C ₆ H ₄ .CH: (CH ₃ ) ₂		0.859716
15	(IX.)	CH ₃ .C ₆ H ₄ .CH: (CH ₃ ) ₂		0.853#
	Dambose	$C_6H_6(OH)_6$	180.10	
	Deca-hydro-naphthaline	CH (CH) CH		0.87720
	Decane (n.)	$CH_3$ . $(CH_2)_8CH_3$		0.7467 ²⁰ 0.8297¥
	Decylene (n.)	CH ₈ .(CH ₂ ) ₇ .CH: CH ₂		0.7630
	Desoxalic acid	CO ₂ H.CH(OH).C(OH).	194.05	
		(CO ₂ H),		
	Dextrin	$C_{12}H_{20}O_{10}$	324.16	
	Diacetin	(C ₂ H ₃ O ₂ ) ₂ C ₃ H ₅ OH		1.1788
	Diacetyl	CH, CO.CO.CH,		0.973422
25	, ,	[CH ₃ .C(NOH)] ₃	117.14	
	Diacetylene	CH: C.C: CH		• • • • • • • • • • • •
27	dicarbonic acid Di-allyl	(CH ₂ : CH ₂ CH ₂ ) ₂ + H ₂ C	156.04	0.6880₹
28 29	carbinol	17		0.8752
	Diallylene	C ₃ H ₅ .CH ₂ .C; CH		0.857918
	Diamino-triphenyl me-	1		
32	thane (pp.)	Og11g011(Og1141(112)2	211.20	
	Diazo-amino-benzene	C.H., N.NH, N.C.H	197.21	
34				
35	" nitrate			
36	" sulphonic acid(o.)			
37	" " " (m.)	CaHa: NaSOa	184.17	
38	" " (p.)	C ₆ H ₄ : N ₂ SO ₃	184.17	
39		CH ₂ : N ₂	42.08	
1		' '		v

Digitized by GOOGLO

Number.	Sol	ubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
-	soluble	soluble	soluble	52°	61.30750	needles
	2500 сс.	10,000 cc.	5000 cc.	-5°	15.5°	ļ. · · · · · · · <u>. · · · ·</u>
3	soluble	soluble	soluble	146.5°		long needles
-	v. soluble	soluble	v. soluble *		sub. 30°+	rhomb. tab. or leaf.
	v. soluble	v. soluble	. <b></b>	140° dec.		amorphous
1 -	0.2517	0.349				monoclinic
7	<b></b>			6.2°	81–1.5°	
	3.56	<b></b>	soluble	20°	160–1° C.	needles
	v. soluble			-45°	155.5° C.	
	insoluble	<b>∞</b> .	∞ ∞		42.5°	
11					45-6°	oil
	insoluble	soluble	<b></b>		181–2°	
	insoluble	soluble		<-25°	175–6°	
1 1	insoluble	v. soluble	soluble	-73.5°	176.5°	
	insoluble	s. soluble	soluble	-73 5°	174–6°	• • • • • • • • • • • • • • • • • • • •
1 1	s. soluble	ins. abs.		225° C.	319° in vac.	monoclinic/w
17					189–91°	
18				-30-32°	173° C.	
19		soluble		7°	231° C.	thick liquid
20					172°	
21	v. soluble	v. soluble	• • • • • • • • •		dec.	cryst. mass
22	v. soluble	insoluble	insoluble			amorphous
23	σ́ο	v. soluble	∞,insol.CS,	40°	259–61°	
24	2515				87.5-8°	yellow
25	v. s. sol.	v. soluble	v. soluble	232-3°		colorless
26						
27	mod. sol.	v. soluble	v. soluble	177° exp.		tab./al.+et
	insoluble		soluble		59.5° C.	
29	v. v. s. sol.				151° C.	
30	• • • • • • • • •				70°	
( )	v. v. s. sol.	v. soluble	v. soluble	139-40°	[ <u>.</u>	warts
32				-		
33	in <b>s</b> oluble	soluble	v. soluble	96°	exp.	yellow leaf /al.
	v. soluble	soluble	insoluble	dec.		needles
35	v. v. sol.	soluble	insoluble	exp.		needles
	0.071525					cryst. mass
37	v. soluble			exp.		red y. pris./w.
		insoluble		<b></b>	<b></b>	sm. need./w.
		soluble	soluble	exp. 200°		yellow
	F -			• • • • •		

^{*} Very soluble carbon disulphide; mod. sol. chlo. and bz.

1 2			lar Weight.	Gravity. Water — 1. Air — 1 (A).
2	Diazo-phenol (p.)	$C_6H_4N_2O+4H_2O$	192.17	
-	Dibenzyl	$C_6H_5.CH_2.CH_2C_6H_5$	182.12	0.9752
3	amine	NH(CH ₂ C ₆ H ₅ ) ₂	197.16	1.03361
	Dibrom-acetic acid	CHBr ₂ .CO ₂ H	217.94	
5	anthracene	C ₆ H ₄ .C ₂ Br ₂ .C ₆ H ₄	335.98	
6	benzene (o.)	C.H.Br.	235.95	1.97718
7		C.H.Br.		
8	(p.)	C ₆ H ₄ Br ₂	235.95	2.220
9	propyl alconol (K.)	CH ₂ Br.CHBr.CH ₂ OH	217.97	2.1018
10	Di-butyl carbonate Di-butyl oxalate		202 15	1.0100
11	Dichlor-acetamide		197 07	1.010
13	pactic said	CHCl ₂ .CO ₂ H	129 02	1 579418
14	acetic aciu	CHCl ₂ .CO.CH ₃	126.02	1 92621
15	acetyl chloride	CHCl ₂ .COCl	147 36	1.200
16	aldehyde	CHCl ₂ .CHO	112.92	
17	anthracene $(\beta)$ (9. 10)	C ₁₄ H ₈ Cl ₂	246.96	
18	aniline (2. 4)	NH ₂ C ₆ H ₃ Cl ₂	161.98	1.567
19		NH ₂ C ₆ H ₃ Cl ₂		
20	" (3, 4)	NH ₂ C ₆ H ₃ Cl ₂	161.98	
21	" (3, 5)	NH ₂ C ₆ H ₃ Cl ₂	161.98	
22	benzene (o.)	C ₆ H ₄ Cl ₂	146.93	1.32540
23	" (m.)	C ₆ H ₄ Cl ₂	146.93	1.3070
24	" (p.)	C ₆ H ₄ Cl ₂	146.93	1,267515
25	benzoic acid (2, 5)	Cl ₂ C ₆ H ₈ .CO ₂ H	190.93	
26	" " (2, 6)	Cl ₂ C ₆ H ₃ .CO ₂ H	190.93	
27	" " (3, 4)	$Cl_{a}^{2}Cl_{b}^{2}H_{a}^{3}$ . $CO_{a}^{2}H$	190.93	
28	ether	CH ₂ Cl.CHCl.O.C ₂ H ₅	142.96	1.17423
29	hydrine $(1, 3)$	CH,Cl.CHOH.CH,Cl	128.95	1.36719
30	" (2, 3)	CH,CI.CHCI.CH,OH	128.95	1.35517.5
31	propane (2, 2)	CH ₃ .CCl ₂ .CH ₃	112.95	1.82716
32	stilbene	C ₁₄ H ₁₀ Cl ₂	248.98	
33	Dicyan diamide (K.)	NH: C(NH ₂ ).NH.CN	84.19	 
24	diamidine sulphate(K)	INH · C(NH.) NH	338 52	
35	Diethyl-acetic acid	CONH ₂ ] ₂ .H ₂ SO ₄ +2H ₂ O	116.10	0.91963
36	Diethyl-acetic acid	$(C_2H_5)_2HC.CO_2H$	73.13	0.72264
37	" (K.)	$(C_2H_5)_2NH$	73.13	0.7028#
38	aniline	(C₂H₅)₂NЫ¢6 Пб	149.16	0.9351∜
39	" (K.)	$(C_2H_5.)_2NC_6H_5$	149.16	0.993#
				_

Digitized by Google

Number.	Sol	ubility in 100 c	:.c.	Melting Point, °C. C. = Corrected.	Boiling Point, °C. C. = Cor- rected.	Crystalline Form and Color.
Mut	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
	v. soluble	v. soluble	s. soluble	38–9° exp.		yellow need
	sol. CS ₂	mod. sol.	v. soluble	51.8°	284°	monoclinic
- 1	insoluble	v. soluble	v. soluble		269°250 C.	
	v. soluble	v. soluble	v. soluble	48°	232-4°	crystals
5	sol. hot bz.	s. soluble	s. soluble	221°	subl.	yel. need./to
6		soluble		-1°	223.8°752	
7		soluble	soluble	1-2°	219.4°758	
8		14 ⁸⁰		89.3° C.	219°	moncl. tab.
- 1	insoluble	v. <b>so</b> luble	œ	· · · · · · · · · · ·	218–21°	$wh. \rightarrow yel$
10					207.7° C.	
11					243.4° C.	
	v. sol. hot	v. soluble	v. soluble	98°	233-40745	moncl. prism
- 1	soluble	soluble	soluble	-4°	189–91°	
	soluble				120°	
15					107-8°	
	insoluble				89.5–90.5°	
	sol. bz.	s. soluble	s. soluble	209°		yel. needles.
18		<b>s</b> oluble		63°	245° C.	need./dil. al.
19		<b>s</b> oluble		50°	251°	needles/lig
	s. sol. lig.	<b>s</b> oluble	<b></b>	71.5°	272°	needles/lig
21		<b>s</b> oluble		50.5°	259-60°	needles
22		<b>s</b> oluble		<-14°	179°	
23		<b>s</b> oluble	soluble	-18°	172°767	
	v. sol. bz.	∞	v. soluble	53°	173.7° C.	mon.leaf./al.
	$0.09^{11}$	soluble		156°	301°	needles/w
26				126.5°		sm. needles.
- 1	v. s. sol.	v. s. sol.		203°	dist.	fine need./w.
28			∞ ∞		140-5°	
	1.119	∞ .	∞	<b>.</b>	182°	
30					182°	
31	· · · · · · · · · · · · ·	$\infty \text{CS}_2$			69.7°	
32	• • • • • • • • • •	v. sol. hot	v. soluble	170°		silk. need. o leaflets
33	$(2.26^{18})$	(1.2618 abs)	(0.0118 abs)	204-5°	. <b>.</b>	leaf. and tab
	soluble	insoluble	insoluble			sm. wh. need
	s. soluble			< -15°	1900756	
	v. soluble	soluble		-40°	55.5°	
	soluble	soluble	soluble	-40°	55-7°	
38	insoluble	soluble	soluble	-38.8° C.	213.50760	oil
	insoluble	soluble	80	-38-9°	215.0-6.5°	usually vel

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Diethyl-benzene (o.)	C,H,(C,H,),	134.12	0.86621
2		$C_6H_4(C_2H_5)_2$	134.12	0.8602♥
3	" (p.)	$C_sH_4(C_oH_s)_2$	134.12	0.8675
4	carbinol	(C.H.) CHOH	88.10	0.83120
5	fumarate	(C ₂ H ₅ ) ₂ C ₄ H ₂ O ₄	172.10	
6	glutaconate		186.12	1.0499*
7	isosuccinate	(C ₂ H ₅ ) ₂ C ₄ H ₄ O ₄		1.021315
8	itaconate	(C ₂ H ₅ ) ₂ C ₅ H ₄ O	1 '	1.050415
9	ketone	C ₂ H ₅ .CO.C ₃ H ₅	1	0.8335
10	" (K.)	C ₂ H ₅ .CO,C ₂ H ₅		0.8140
11				1.074015
12	malonic acid	(C ₂ H ₅ ) ₂ C,(CO ₂ H) ₂		
13	mesaconate	(C ₂ H ₅ ) ₂ C ₅ H ₄ O ₄	186.12	1.049215
14	mesoxalate			
15		(.CO.NHC ₂ H ₅ ) ₂		
16		(C ₂ H ₅ ) ₂ PH	90.09	
17	sulphite	$(C_2H_3)_2SO_3$		
18	toluene (s.)	(C ₂ H ₅ ) ₂ C ₆ H ₃ CH ₃	148.13	0.87920
19		CO(NHC ₂ H ₅ ) ₂		
20		NH, CO.N(C,H,),		
	Diethylene glycol		106.08	
	Difluor benzene (p.)		114.03	
23	Diglycerine	C.H.O.		
	Diglycolic acid			
	Diguanid			
	Dihydro-anthracene			
27		C ₇ H ₈ O		1.03270
28		$C_{\mathfrak{b}}\mathbf{H}_{\mathbf{a}}$		0.84783
29	naphthaline	$C_{10}^{62-8}H_8.H_2$		
30	phthalic acid ( $\triangle$ 2.4).			
31	quinoline	C _o H _o N		
32		$C_6H_6O_2.H_2$		
33	terephthalic ac. $(\Delta 1.4)$	$C_6H_6(CO_2H)_2$		
34	toluene $(\land 1, 3)$	CH ₃ .C ₆ H ₇		0.8354
35	-xylene (o.)		I .	
36		$(CH_3)_2C_6H_6$		0.827520
37		$(CH_3)_2C_6H_6$		
1	Dihydroxy-benzoic acid	(OH) C.H.CO.H + 2H.O	1	
39	(2, 3)	211/20611300211   21120	200.00	
10		$(OH)_2C_6H_3CO_2H + 3H_2O$	208.10	
1	" " (2, 5)	$(OH)_2C_6H_3CO_2H + 3H_2CO_2H$		
٠.	(2, 0)	O11/20611300211	104.00	· • • • • • • • • • • • • • • • • • • •

ä	Sol	ubility in 100	:.c.	Melting	Boiling	0-43
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Corrected.	Boiling Point, °C. C. = Cor- rected.	Crystalline Form and Color.
1 2				<-20° <-20°	184-4.5° 181-2°	
	insoluble	soluble	soluble	<-20°	182-3°	
5					116.5°753 218.5° C.	
6			soluble		236-8° 198.5-9.5°	
8					227.8° C.	
	soluble 4.1	<b>∞</b>	soluble ∞		103° 101–2°	
	4.1 6516	v. soluble	v. soluble	121–5°	223.03° C.	prisms
13				57°	229° C. abt. 200°	
15	s. soluble	soluble	v. s. sol.	179–80°		wh. needles
16 17	insoluble	soluble	soluble		85° 161.3°	
18 19	v. soluble	v. soluble	v. soluble *	112.5°	199–200° 263°	prisms
20	deliq.	v. soluble soluble	v. soluble soluble	70°	25.0°	prisms
22		soluble			87-9°	
23 24	v. soluble v. soluble	v. soluble	insoluble soluble	148°	220–30°1) decomp.	thick liquid
25 26	insoluble	v. soluble	v. soluble	108.5°	313°	amorphous
27 28		soluble		< -20°		oil
29				15.5°	212°	• • • • • • • • • • • • • • • • • • • •
30 31	0.210, 16100	soluble	s. soluble	215° 220–6°		moncl. tab yellow
	v. soluble . 0.0006	v. soluble	v. s. sol.†	104-6 sl.dec no m.p.		prisms/bz fine needles
34 35		v. soluble	soluble		110-0.5°770	······································
36		• • • • • • • • •	soluble		134–5° 132–4°	• • • • • • • • • • •
37 38	soluble			204°	134–5° decomp.	needles
	0.26317	v. soluble	v. soluble	213° dec.	decomp.	needles/eth
41	sol. hot.	v. soluble	v. soluble	200°	decomp.	need. or pris

[†] V. sol. chlo., acetone, and hot benz.; v. s. sol. CS2 and lig.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Dihydroxy-			
2	benzoic acid (3, 5)	(OH) ₂ C ₆ H ₃ CO ₂ H + 1 ¹ / ₂ H ₂ O	181.08	
3	benzophenone (2, 4)	(C _a H ₄ OH) ₂ CO	214.08	
4	" (3, 3′)	(C ₆ H ₄ OH) ₂ CO	214.08	
5		(C ₆ H ₄ OH) ₂ CO		
6	butane (2, 3)	CH ₈ .CHOH.CHOH.CH ₈	90.08	
7	naphthaline (1, 6)	$(OH)_2C_{10}H_6$	160.06	
8	(1, 7)	$(OH)_2C_{10}H_6$	160.06	• • • • • • • • • • •
9	(1,0)	(OH) ₂ C ₁₀ H ₆	160.06	• • • • • • • • • • •
10	$ \begin{array}{ccc} " & (2,3) \dots \\ " & (2,7) \end{array} $	(OH) ₂ C ₁₀ H ₆	160.06	• • • • • • • • • • • •
11	$" (2,7)\dots$	(OH) ₂ C ₁₀ H ₆	160.06	
12		C ₅ H ₃ N(OH) ₂	111.08	
13		$C_5H_8N(OH)_2+\frac{1}{2}H_2O$	120.09	· · · · · · · · · · · ·
14	quinone $(2, 5)$	C ₆ H ₂ O ₂ (OH) ₂	140.03	
15	toluene (2, 5)	CH ₃ C ₆ H ₃ (OH) ₂	124.06	
16	" (2, 6)	CH,C,H,(OH),	124.06	
17	$(2,4)\dots$	CH ₃ C ₆ H ₃ (OH) ₂	124.06	· · · · · · · · · · · · ·
18	Diiodo-acetic acid	CHI, CO,H	311.96	· · · · · · · · · · · · · · · · · · ·
19	acetylene	IC: ČI	277.94	· · · · · · · · · · · · · · · · · · ·
20	benzene (o.)	C ₆ H ₄ I ₂	329.97	• • • • • • • • • • • •
21	" (m.)	C ₆ H ₄ I ₂	329.97	
22	" (p.)	C,H,I, .IC: C.C:CI	329.97	
<b>2</b> 3	diacetylene	.IC: C.C:CI	301.94	
24	hexane (1, 6)	ICH.(CH.).CH.I	338.04	
25	hexane (1, 6) Diiso-amyl	(CH,),CHCH,CH,),	142.18	0.747920
26	amyl amine (K.)	(CH,),CH.CH,CH,LNH	157.22	0.766#
27	amyl carbonate	$(C_5H_{11})_2CO_8$	202.18	$0.912^{15}$
28	amyl ketone	(C ₅ H ₁₁ ) ₂ CO	170.18	
29	butyl amine	$(C_4H_9)_2NH$	129.20	0.749115
30	butyl carbonate	$(C_4H_9)_2CO_3$	174.15	0.91915
31	butylene	(CH ₃ ) ₂ C: CHC(CH ₃ ) ₃		
32	butyl oxalate			1.00214
33	propyl carbinol	$[(CH_s)_sCH]_cCHOH$	116.13	0.8288 <b>¥</b>
34	propyl ketone	[(CH ₃ ) ₂ CH] ₂ CO	114.12	0.8062₩
35	Dimethyl allene (1, 1)	$(CH_2)_2C:C:CH_2$	68.06	0.6940♥
36	" amine	(CH ₂ ) ₂ NH		0. <b>6865<del>.</del></b>
37	" " (K.)	(CH ₂ ) ₂ NH	45.10	$0.6865^{-5.8}_{\overline{15}}$
38		$C_6H_5N(CH_3)_2$	122.13	0.9621
39	" (K.)	$C_6H_5N(CH_3)_2$	122.13	0.954#
40	anthracene (2, 3)	$(CH_3)_2C_{14}H_8$	206.12	
- 1		7 2\2 - 148.	Caa	_1_

Number.	Sol	ubility in 100 c	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. == Cor- rected.	and Color.
1 2	mod. sol.	v. soluble	v. soluble	232-3°		pris. or need
4	s. sol. hot soluble	sol. alk. soluble	v.sol.sol.bz. sol. alk.	162-3°		pyramid/bz. small needles
6	v. sol. hot	v. soluble	v. soluble *		dist. undec. 183–4°	yel. need./lig.
8	v. sol. bz. mod. sol.	s. soluble v. soluble	v. soluble v. soluble	134–5° 178°	• • • • • • • • • •	short pris./bz. sm. need./bz.
10	v. sol. bz. sol. hot	v. soluble	v. soluble v. soluble	140° 160–1°		need. or leaf rhombic/al
12	sol. hot s. soluble	v. soluble s. soluble	v. soluble v. v. s. sol.	190° 260–5°	subl. pt. de.	long needles. rhomb./al
14	s. soluble v. v. s. sol.	s. soluble v. soluble	v. s. sol. v. s. sol.	195° 215–20°	sublimes	yel. need./w yel. needles
16	v. v. sol. v. soluble	v. v. sol. v. soluble	v. v. sol.	125°	part. subl.	leaflets needles
18	v. soluble s. soluble	v. soluble	v. soluble	103-4° 110°	267–70°	yel. crystals .
20	v. sol. lig.	v. soluble soluble	v. soluble	82° 27°	volatile 286.5 C. ⁰⁷⁵¹	clear need/lig pris. or tab
21 22		soluble soluble	sol. chlo.	40 .4° 129 .4°	284.7°756 285° C.	{rhomb. tab.   {/al.+et.   leaflets
23 24		Soluble	soluble	101° 6–7°	with steam	crystalline
25	s. soluble	soluble	oo		159.66° 185–9°	colorless to
27 28					228.7° C.	yellowish vellow oil
29 30					139–40° 190.3° C.	······
31 32					102.5° C.786	
	v. s. sol. sol. bz.	soluble sol, toluene	soluble		140° 123.7°	[/bz.
35 36	soluble	soluble			40.5-1.5° 7.2-7.3°	
	v. soluble	v. soluble	soluble soluble	2.5°	7-7.3° 193,1° ⁷⁶⁰	
39		soluble	∞	2-2.5° 246°	192.5–3.5°	yellowish fluoresc. leaf.

^{*} V. sol. acetone and alkalies; v. s. sol. bz., chlo. and CS2.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — I. Air — I (A).
	Dimethyl-anthracene (2,4)			
2	arsine			
3		(CH ₃ ) ₂ C ₆ H ₃ .CO ₂ H		
4		(CH ₃ ) ₂ C ₆ H ₃ .CO ₂ H		
5	(2, 4)	$(CH_3)_2C_6H_3.CO_2H$		
6	(4, 0)	(CH ₃ ) ₂ C ₆ H ₃ .CO ₂ H	150.08	<b></b>
7		(CH ₃ ) ₂ C ₆ H ₃ .CO ₂ H	150.08	
8	carbonate	(CH ₃ ) ₂ CO ₃	90.05	1.06923
9		$(CH_3)_2(C_2H_5).C.CO_2H$		
10		$C_2H_5.C_6H_3.(CH_3)_2$		
11	Denzene (3, 4)	$C_2H_5.C_6H_3.(CH_3)_2$		
12	emylene	$(CH_3)_2C: CH.C_2H_5$		0.6871
13		$(CH_3)_2C_4H_2O_4$		
14	isophthalate	(CH ₃ ) ₂ C ₈ H ₄ O ₄	194.08	0.000018
15		(CH ₃ ) ₂ (C ₃ H ₇ )COH		
16 17	maleate	$(CH_3)_2C_4H_2O_4$	144.00	1.1529.4
18		(CH ₂ ) ₂ C(CO ₂ H) ₂		
19		$(CH_3)_2C_{10}H_6$		
20	(P)	$C_{10}H_7N(CH_3)_2$	171 15	1.000
21	$\beta$ - "	$C_{10}H_7N(CH_3)_2$	171 15	1.044018
22	nitros-amine		74 12	1,040040
23		(.CO.NHCH ₂ ),		
24		$(CH_3)_2C:(CH_3)C_2H_5$		0.718521
25	" (2) (2, 4)	$(CH_3)_2C: CH.CH(CH_3)_2$	98 12	0.698514
26		(CH,),PH		1
27		(CH ₃ ) ₂ PO.OH		
28		$C_6H_4(CO_2CH_3)_2$		
29		$(CH_3)_2$ . $C(OH)$ . $C_3H_7$		
30		(CH ₃ ) ₂ C ₆ H ₂ O ₂		
31		(CH ₃ ) ₂ C ₆ H ₂ O ₂		
32		(CH ₃ ) ₂ C ₆ H ₂ O ₂		
33		(CH ₃ ),C ₄ H ₄ O ₄		
34		(CH,),C(CO,H)CH,CO,H	146.08	
35		(CH ₃ ) ₂ C ₄ H ₄ O ₆		1.340315
36		C ₆ H ₄ (CO ₂ CH ₃ ) ₂		
37	thiophene $(2, 4), \ldots$	(CH.).C.H.S	112.12	0.995620
38	" $(2,5)$	$(CH_3)_2C_4H_2S$	112.12	0.9859₹
39	trimethylene (1, 1)	(CH ₃ ) ₂ C: (CH ₂ ) ₂	70.08	0.6604*
40		$CO < (NHCH_3)_2 \dots$	88.14	
41	" (uns.) (K.)	$NH_2.CO.N(CH_3)_2$	88.14	
		l		I

Digitized by GOOglo

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1		mod. sol.		71°		fine need./al.
2		$\infty$ , $\infty$ CS ₂	∞, ∞ chlo.		36–7°	
	v. sol. hot	soluble		144°	<b></b> .	glassy pris./al
	v. v. s. sol.	v. s. sol.		163-5°		prisms/al
	v. v. s. sol.	soluble	soluble	126°	268°	moncl.pris./a
1	s. soluble	· · · · <u>· · · · ·</u> · ·	v. soluble	116°		short need/w.
1	v. s. sol. hot	v. soluble		132°	268° C.	long need./al.
	insoluble			0.5°	89.70°	
	insoluble	soluble	soluble	-14°	187°	
10				<-20°	185°	
11	· · · · · · · · · ·	<i>-</i>			183-4°	
12					65-70787	
13		s. soluble	s. soluble	102°	192° C.	triclin, prisms
14				67-8°	dist.	
1	soluble	soluble		-14°	117.6°	· · · · · · · · · · · · · ·
16			····		205° C.	· · · · · · · · · · · · · · · · · · ·
	10	s. soluble	v. soluble	192–3° dec.	sub. 120°+	quadrat. pris.
18				<-18°	262-4°	· · · · · · · · · · •
19				-20°	264–6°	
	insoluble	soluble	soluble		274.5° C.711	
21				46°	305°, 212°69	crystalline
22					1530774	yellow oil
1	s. soluble	s. soluble	v. s. sol.	209-10°		wh. needles
24					75–80°	
25					83-4°	
	insoluble				25°	
27				76°	0000	crystalline
28 29					282°	
		soluble	; ;	<-38°	122.5-3.5°762	
31	s. soluble	mod. sol.	mod. sol.	55°	sublimes	yellow need
				72–3°		yel. needles
	s. sol. hot	s. soluble	v. soluble	125°	sublimes	tricl. pris. /al.
	7 7014	soluble		85°	282°	monoclinic/al
	7.5214 isoluble	v. soluble	s. soluble	142° 48°	165°→anh.	
	soluble 30.33	v. soluble	sol. chlo.	140°	280°	crystalline
37		l		140	137–8° C.	trimetric need
38	1					
30	4 · · · · · · · · · · ·				136.5-7.5°C. 21°	
1			in maluable	99–101°	21	4hi
	v. soluble l v. soluble	soluble	insoluble	180-1°		thin prisms
12	iv. soluble	soluble	insoluble	150-1-		thin prisms
L	1	<u> </u>	1	<u> </u>		1 _ L

Number	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Dinaphthol (a)	OH.C ₁₀ H ₆ .C ₁₀ H ₆ OH		 
	Dinaphthol $(\beta)$			
	Dinaphthylmethane (a).	$(C_{10}H_7)_2CH_2$	268.13	
5		(C ₁₀ H ₇ ) ₂ CH ₂		
	Dinicotinic acid			1 61514
0	Dinitraniline (2, 4) Dinitro-benzene (0.)	$ (\mathbf{NO_2})_2\mathbf{O_6}\mathbf{\Pi_3}\mathbf{N}\mathbf{\Pi_2}\dots\dots$		1.615 ¹⁴ 1.565 ¹⁷
0	Dimuo-benzene (o.)	$O_6\Pi_4(NO_2)_2$	100.11	1,000-
9	" (m.)	C ₆ H ₄ (NO ₂ ) ₂	168.11	1 54617
10	" (p.)	$C_6H_4(NO_2)_2$	168.11	1.58717
11		$(NO_2)_2C_6H_3.CO_2H$		
12	" " (2, 5)			
13	" " (2, 6)	$(NO_2)_2C_6H_3.CO_2H$	212.11	
14	" " (3, 5)	$(NO_2)_2C_6H_3.CO_2H$	212.11	
15	diphenyl (o.p.)	NO ₂ C ₆ H ₄ .C ₆ H ₄ NO ₂	244.14	
16	" (p.p.)	NO ₂ C ₆ H ₄ .C ₆ H ₄ NO ₂	244.14	
17	methane	CH ₂ (NO ₂ ) ₂	106.10	• • • • • • • • • • • • • • • • • • •
18		(NO ₂ ),C ₆ H ₂ OH		
19 20	(2, <del>1</del> )	(NO ₂ ) ₂ C ₆ H ₃ OH		
21	(2, 0) toluene (2, 4)	$(NO_2)_2C_6H_3OH$	199 12	1 32080
22			182.13	
23			182.13	
20	(0, 0)	(1102)208113.0113	102.10	
24	Dioxindole	C ₈ H ₇ NO ₂	149.10	
	Diphenol (a) (0.0.)	OHC.H.C.H.OH		
26	" (β)(m.m.)	OHC ₆ H ₄ .C ₆ H ₄ OH	186.08	
27	" $(\gamma)(p.p.)\dots$	OHC ₆ H ₄ .C ₆ H ₄ OH	186.08	
<b>2</b> 8	```	OHC ₆ H ₄ .C ₆ H ₄ OH		
		$C_6H_5.C_6H_5$		$0.9845^{82}$
30	acetic acid		1	
31			169.13	
32				
33	carbonate (K.)			
34				1 00228
35		3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.0033* 1.19016
36 37		$(C_6H_5)_2N.NH_2$ $(C_6H_5)_2CH_2$		1.190.
38		$(C_6H_5)_2CH_2$		1.0126
	huoshmuc	(Vgiig/21 li	100.08	1.01204

Digitized by GOOGIG

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. == Cor-	Boiling Point, °C. C. = Cor-	Crystalline ·Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	insoluble	mod. sol.	v. soluble	300°		rhombic tab.
	insoluble	mod sol.	v. soluble	218° C.	sub. nd.	flat nd. or pr.
	v. sol. bz.	mod. sol.	mod. sol.	160.5° C.	abt. 360°	rhomb. leaf.
	sol. CHCl ₃	0.820	v. sol. bz.	109°	above 360°	short pris./al
		v. soluble	sol. bz.	92°		fine needles.
	v. s. sol.			323°	decomp.	
	in <b>s</b> oluble	0.721		187.5-8°	<i>.</i>	yel. moncl
8	0.38100	3.8 ³⁵ : 33 ⁷⁸ abs.	27.1 ¹⁸ chlo.	117.9°	319° ⁷⁷³	monocl. tab
	32.4 ¹⁸ chlo.	3.520-5	39.45 ¹⁸ bz.	89.95° C.	302.8°770	thin rhb. tab
	0.18100	0.420.5	*1.8218chlo.	172-3°	2990777	moncl. need
11	1.85 ²⁵	v. soluble		179°		rhomb. tab. or prisms
	s. sol. hot			177°		needles
	mod.sol. hot			202° dec.		needles
	2.0100	v. soluble	s. soluble	204–5°		quad. tab./w.
		v. sol. hot	. <b></b>	93.5°		moncl. need.
16		mod.sol.hot	v. soluble	234–5°		fine needles
	soluble			<-15°	exp. 100°	yel. crystals.
	s. soluble	soluble	v. soluble	144°		yel. $need/w$
	0.5	3.919	v. soluble	114-5°		yel. tab./w
	s. soluble	soluble	v. soluble	61.78°		yel.need./ $w$
	insoluble		$2.19^{17} \text{CS}_2$	70.5°		moncl. need
	insoluble		$2.19^{17} \text{CS}_2$	61°		long need.CS
23	s. soluble	mod. sol.	v. soluble	92–3°	with steam	moncl. pris.
	•		$mod.sol.CS_2$			/lig.
	8.3	6.6	sol. alk.	180°	dec. 195°	rhomb. pris.
	mod.sol. hot		v. soluble	123°	315°768	long flat need
	s. soluble	v. soluble	v. soluble	190°	· · <u>· · · · · · · · · · · · · · · · · </u>	small leaflets.
	s. soluble	v. soluble	v. soluble	272°		glit. leaf./al.
	v. s. sol.	v. soluble	v. soluble	161°	342°	mon. prisms.
	insoluble	9.98	soluble	70.5°	254 .93° C.	moncl. tab
	s. soluble	v. soluble	v. soluble	148°	part. sub.	needles/w
	s. soluble	soluble	soluble	52.85°	310°	moncl. leaf
	sol. hot bz.	v. s. sol.	s. soluble	205°	383-427°	small leaflets
		soluble	v. soluble	80-1°	· · · · · · • • · ·	wh. needles
34		v. soluble	v. soluble	96 <b>°</b>		need. dil. al.
					286°	oil
びりっつ	v. s. sol.	v. soluble	v. soluble	44°	220°/40	triclin./lig
3/ 20	insoluble	v. soluble	v. soluble	$26.5^{\circ}$	264.7° C.	prismat. need
38	insoluble	v. soluble	v. soluble		280°	oil

^{* 0.69} parts dissolve in 100 parts methyl alcohol at 200

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Diphenyl			
1	sulpho-urea (K.)	$CS < (NH.C_6H_5)_2$	228.24	   • • • • • • • • • • • • • • • • • •
2	m. tolyl-methane	$(C_6H_5)_2CH.\ddot{C}_6H_4.CH_3$	258.15	1.0716
3	urea (uns.)	$NH_2.CO.N(C_6H_6)_2$	212.18	
4	Diphenylene oxide	$<$ $(C_6H_4)_2O$	168.08	
5	Dipicolinic acid	$1:2:6C_5H_3N(CO_2H)_2$		i
		$+1\frac{1}{2}H_{2}O$	194.07	
6	Dipropargyl	CH;C.CH ₂ .CH ₂ C;CH	78.05	0.8049♥
7	Dipropyl amine	$ (C_3H_7)_2NH$	101.16	0.7 <b>357²⁵</b>
8	Dipropyl amine (K.)	(C ₃ H ₇ ) ₂ NH	101.16	0.736#
9	carbinol	$ (C_3H_7)_2CHOH$	116.13	0.820020
10	ketone	(C ₃ H ₇ ) ₂ CO	114.12	$0.8205^{15.1}$
11	" (K.)	(C ₃ H ₇ ) ₂ CO	114.12	0.822#
12		$(C_3H_7)_2C_2O_4$		
13	Dipyridyl $(\gamma) \dots \dots$	C,H,N.C,H,N	156.16	· • • • • • • • • • • • • • • • • • • •
14	Diquinoline	C _o H ₇ N.C _o H ₇ N	258.20	
15	Diquinoyl (2, 31)	$C_{\mathfrak{g}}H_{\mathfrak{g}}N.C_{\mathfrak{g}}H_{\mathfrak{g}}N.\dots$	256.18	
16	" $(6, 6^1)$	C _o H _e N.C _o H _e N	256.18	
17	" $(7, 2^1)$	C ₉ H ₆ N.C ₉ H ₆ N	256.18	
18	Diresorcine	$[.C_6H_3.(OH)_2]_2 + 2H_2O.$	254.12	· • · · · • · · · · · ·
19	Dithio-glycerine	$C_3H_5(OH)(SH)_2$	124.18	1.34214.4
20	Ditolyl (o.)	$CH_3.C_6H_4.C_6H_4.CH_3$		
21		3 0 1 0 1 3		0.99937
22		CH ₃ .C ₆ H ₄ .C ₆ H _{.4} CH ₃		
23	(p.p.)	CH ₃ .C ₆ H ₄ .C ₆ H _{.4} CH ₃	182.12	0.9172121
24		(CH ₃ C ₆ H ₄ ) ₂ NH · · · · · · · ·		
25	" (m.)	(CH ₂ C ₆ H ₄ ) ₂ NH	197.16	
26	(p.)	(CH ₃ C ₆ H ₄ ) ₂ NH		
27 28		$CS < (NH.C_6H_5.CH_3)_2$		
		$CS < (NH.C_6H_5.CH_3)_2$	250.27	
	Divinyl			
	Docosane			
	Dodecane, n			
	Dodecylene, n			
34	Dulcite	1.2.4.50 H /CH \	124 19	U 636Ver
25	Elaïdic acid		202.12	0.00001
99	Ellagic acid	CHO ± 2HO	238 NO	1 66718
36	Facine	C H Br O	647 00	1.007
37	Eosine	C H CO	05 40	1 2031\$
38	a-Epidichlorhydrine(K.)	CH · CCl CH Cl	110 02	1 20014
39	pronomornymme(A.).	0112. 001.011201	.10.90	1.200==

Digitized by GOOGIC

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Corrected.	and Color.
1	v. s. sok	s. soluble	v. s. sol.	153– <b>4</b> °		prisms
2	sol. bz.	s. soluble	v. soluble	60.5-1.5°	354°706	irreg. prisms.
3	s. soluble	soluble	soluble	189°		long needles
4	insoluble	mod. sol.	v. soluble	867°	287–8°	small. leaf./al
5	sol. hot	v. s. sol.		226° dec.		crusts, scales or needles
6			v. soluble	-6°	85.4°	
7	s. soluble			<-50°	109.4-10.4	
8	soluble	∞ .	soluble		109.5-10.5	colorless
9	<b></b>	soluble	soluble		154°	
10	insoluble	<b></b>			143.52°	
	insoluble	∞	∞		141–3°	colorless
12		• • • • • • • • • •			213.5° C.	
	v. s. sol.	v. soluble	v. soluble	111–2°	304.8°	need. or tab
	insoluble	v. soluble	v. soluble	114°		yel. needles
-	insoluble	v. <b>s</b> oluble	mod. sol.	176–7°	> 400°	m'cl.tab.&nd.
	v. s. sol. hot		v. s. sol.	178°	dist.	mon. tab./al.
	insoluble	v. s. sol.	s. soluble	192.5°	sublimes	mon. tab./al.
	s. soluble	ins. acet.	soluble	310°		need. or pw
	insoluble	v. sol. abs.	insoluble		dec. 130° 272°	thick liquid
21		v. soluble	v. soluble		288°	
22	1	v. bolubie	V. Bordoro		280-1°	
23	sol. CS ₂	soluble	soluble	121°	dist.	moncl. pris.
24					3120727	/et.
25		v. soluble	v. soluble	<-12°	319–20°	
26				79°	330.5°	long needles.
	v. s. sol.	s. soluble	v. s. sol.	157.5-8.5°	· • • • • • • • • • • • • • • • • • •	v. sm. need
	v. s. sol.	s. soluble	v. s. sol.	176–7°	10	v. sm. need
30		478		44.4°	317.4°	cryst./al
31		-  -		-12°	214.5° C.	
32				-31.5°	213-5°	
33	2.14, 56100	0.7	insoluble	188,8° C.	279-80°¹C.	moncl. prisms
34		v. soluble	v. soluble	79–80°	196°	crystalline
	insoluble	soluble	soluble	51.5°	234015,15400	leaflets/al
	v. s. sol. hot		insoluble	decompose	[	yel. cryst. po
37	insoluble	soluble	sol. acet. ac			moncl. need
38	insoluble		soluble		116° C.	
36	insoluble	∞ ∞	∞		95.5–6.5°	colorless
L	1	l	1	l	1	

Digitized by GOOSIG

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Erucic acid	C ₈ H ₁₇ CH:CH(CH ₂ ) ₁₁ CO ₂ H	338.34	0.8602*
2	Erythrite		122.08	
3		$ C_4H_6O_2$		1.113218
		CH ₃ .CH ₃	30.05	0.446º liq.
		$C_2H_5OC_2H_5$		0.711122
	Ethoxy-benzoic acid (o.)	$C_2H_6O.C_6H_4.CO_2H$		
7	" " (m.)	$C_2H_4O.C_0H_4.CO_2H$		
8	(p.)	$C_2H_5O.C_6H_4.CO_2H$		0.000018
9	Ethyl acetate	CH ₈ CO ₂ .C ₂ H ₅	88.06	0.90286*
10		CH ₈ CO ₂ .C ₂ H ₅		{0.8920− {0.8955∰
11		$CH_3CO.CH_2.CO_2.C_2H_5$	130.08	1.02443
12		$C_2H_3(C_2H_3O): (CO_2C_2H_5)_2$	216.13	1.079#
13	acetylene	C ₂ H ₅ .C;CH	54.05	
14		$C_3H_3(CO_2.C_2H_5)_3$		1.100 25
15				0.93930
16	alcohol	C ₂ H ₅ .OH		0.78510₹
17	allyi ether	C,H,O.CH,CH:CH,	86.08	
18		C ₂ H ₅ NH ₂		0.69948
19		CH NH CH	128.13	0.852° 0.9631¥
20		$C_2H_5.NH.C_5H_6$ $C_2H_5.C_{14}H_{4}$	206.12	0.90314
21				
22 23	amsate,	$(C_2H_5)_3AsO_4$	226 12	1.32640
	arganita	$(C_2H_5)_3AsO_3$	210.12	1.0204
24 25		C ₂ H ₅ AsH ₂	106.06	
26				0.8736*
27				1.0509
28		$C_6H_6.CO_2.C_2H_6$	150.08	1.054
29		108-220		
30			150.08	
31		C,H,C,H,CO,H	150.08	
32				1.105#
33	benzyl ether	$C_2H_5.O.CH_2.C_6H_5$	136.10	
34	" ketone	$C_2H_5$ .CO.CH ₂ . $C_6H_5$	148.10	0.99817.5
35	borate	$ (C_2H_5)_3BO_3 $	146.12	0.8863
36	brom-acetate $(K.) \dots$	$ CH_2Br.CO_2.C_2H_5 $		1.507#
37	"-butyrate (a) (K.)	$C_2H_5$ .CHBr.CO ₂ . $C_2H_5$	195.05	1.325#
<b>3</b> 8	"-isobutyrate ( $\alpha$ ) (K.)	$ (CH_3)_2CBr.CO_2.C_2H_5 $	195.05	1.315#
39		$CH_3$ . $CHBr.CO_2C_2H_5$		
40	bromide	$C_2H_5Br$	109.00	1.449915
		1		

Digitized by GOOGI

Number.	Sol	ubility in 100 (	e.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
	v. soluble	v. soluble s. soluble	insoluble	33–4° 126°	329-31°	needles/al quadrat. pris.
4	∞ dec. s. soluble 8.11cc. ²²	46 cc. 4 ∞	οο	-172.1° -112.6°	138° -84.1°749 34.97°	
7	s. soluble s. sol. hot v. v. s. sol.			19.4° 137° 195°	sub.	oilsmall needles
9	6 5.917.8	<b>00</b>	∞	-83.8°	77.4° C.754	
11	s. soluble	∞ v. soluble	<b>∞</b>	-83.8° <-80°	76–7° 181°	colorless
13	insoluble insoluble	οο 	οο οο		260–5° dec. 18° C. 290–6° dec.	wh. →yel wh. →yel
15 16				-112.3°	98.5° C. 78.4°	wii. — yei
17 18	00	 ∞	<b>∞</b>	-83.8°	66-7°748 19-20°	
19 20 21		soluble		-80° 60-1°	170°738 206°	leaflets/al
22 23	dec.			7°	269–5° 235–8°	
25	dec. 0.00126 insoluble				165–6° 36° 136. <b>5</b> °	
27 28	s. sol. hot s. sol. hot	soluble soluble	soluble	-93.2°	211.8° C. 209–12°	faint yellow
30	v. s. sol. v. v. sol.	v. soluble	v. soluble	68° 47°	259° ⁷⁶⁰	fine flat need. long need./w.
32	sol. hot insoluble insoluble	v. soluble ∞ ∞	v. soluble ∞ ∞	112–3°	265–70°dec. 185°	leaflets wh.—yel
34 35					223–6° 120°	
37	insoluble insoluble insoluble	8 8 8	8 8 8		158–60° 175–9° dec. 161–4° dec.	$wh. \rightarrow yel$ $wh. \rightarrow yel$ $wh. \rightarrow vel$
39	insoluble 0.914 ²⁰	8 8 8	88 88	-115.8°	159–61°dec. 38.37°	wh.→yel
L	<u> </u>				C-	agle .

- E			Molecu-	Specific Gravity.
Number.	Name.	Formula.	lar Weight.	Water = 1. Air = 1 (A).
_				
	Ethyl		İ	
1		C ₂ H ₈ Br		
2		$C_2H_6.O.C_4H_9$	102.12	0.752220
3		$C_2H_3.CO.C_4H_9$	114.12	
4	butyrate	$C_3H_7.CO_2.C_2H_6$	116.10	0.897818
5	caprate	$C_9H_{19}.CO_2.C_2H_5$	200.20	0.862
6	caproate	$C_5H_{11}.CO_2.C_2H_5$	144.13	0.873220
7	caprylate	$ C_7H_{15}.CO_2.C_2H_5$	172.16	0.873016
8		$(C_2H_5)_2CO_8$		
9	chloracetate	CH ₂ Cl.CO ₂ .C ₂ H ₅	122.51	1.15858
10	chloraceto-acetate (K.).	CH ₂ CO.CH ₂ .CO ₂ .C ₂ H ₅	164.52	1.179#
11	chlorcarbonate	ClCO ₂ .C ₂ H ₅	108.59	1.13916
12	chloride	C ₂ H ₅ Cl	64.49	0.9214
13	chlorpropionate $(\alpha)(K)$	CH ₈ .CHCl.CO ₂ .C ₂ H ₅	136.52	1.095#
14		$C_6H_5.C_2H_2CO_2.C_2H_5$		
15	" (K.)	$C_6H_5.C_2H_2CO_2.C_2H_5$	176.10	1.049
16	collidinedicarbonate	$C_8H_9N(CO_2C_2H_5)_2$	265.20	1.08715
17	cyanacetate (K.)	CN.CH ₂ .CO ₂ .C ₂ H ₅	113.10	1.059#
18	cyancarbonate	CN.CO ₂ .C ₂ H ₅	99.04	1.0134♥
19	cyanide	C ₂ H ₅ .CN	55.08	0.7799 ²⁰
20		(CH ₃ CO) ₂ CH.CO ₂ .C ₂ H ₅		
21	diazoacetate	$C_2HN_2O_2.C_2H_5$	114.13	1.08324
22	dichloracetate	CHCl ₂ .CO ₂ .C ₂ H ₅	156.95	1.282139
23	" (K)	CHCl ₂ .CO ₂ .C ₂ H ₅	156.95	1.2763
24	diethyl-aceto-acetate(K.	$CH_2CO.C(C_2H_5)_2CO_2C_2H_5$	186.14	0.963#
25				
26	dimethyl-malonate (K.)	$(CH_3)_2 > C < (CO_2.C_2H_3)_2$ .		
27	diphenylamine	$C_2H_5N(C_6H_5)_2$	197.16	
28		$(C_2H_5)_2S_2$	122.20	0.9927¥
29	fluoride	C.H.F	48.04	1.7
30	formate	$HCO_2.C_2H_5$	74.05	0.9480
31	" (K.)	HCO ₂ .C ₂ H ₅	74.05	0.920#
32		$C_5H_4O_4(C_2H_5)_2$		
33		$C_2H_3(OH)_2.CO_2.C_2H_3$		
34		C ₂ H ₅ (OH) ₂ OC ₂ H ₅		
<b>3</b> 5		HOCH, CH, O.C, H,		
36	glycollate	HOCH ₂ .CO ₂ .C ₂ H ₅	104.06	1.082623
37	heptyl ether	$C_7H_5.O.C_2H_5$	144.16	0.79499
38	hexyl ether	$C_2H_5$ .O. $C_6H_{18}$	130.15	
39	hippurate (K.)	C,H,CO.NHCH,CO,C,H	207.14	
40		C,H,NH.NH.	60.14	
		- 40		

per.	Sol	ubilit <b>y</b> in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	s. soluble  s. soluble  insoluble  insoluble v. s. sol. decomp. 2 v. s. sol.	soluble  soluble  soluble  soluble  soluble  soluble  soluble  soluble  soluble	soluble  soluble  co  co  co  co  co  co  co  co  co  c	-125.5° -93.3° -48° -141.6° 12° 7.5°	38-40° 91.4° 147-8° ⁷⁴⁸ 120.6° C. 244° 166.6° 205.8° 125.8° C. 144.5° ⁷⁵⁴ 196-200° 94° 19.5° 145-9° 271° 270-1° dec. 308-10° 205-8°	wh.—yel  colorless  wh.—yel  thick yel. oil.  wh.—yel
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	insoluble mod. sol. s. soluble s. soluble insoluble insoluble insoluble insoluble v. s. sol. 198 c.c. ¹⁴ 11 s. sol. dec. soluble	soluble	soluble	-103.5° -22° -78.9° -60-1°	115-6° 97.08° C. 209-11°dec 140-1° ⁷³⁰ 157.7° ⁷⁶⁵ 156-9° 211-6° dec. 222-7° 192-6° 295-7° 153° ⁷³⁰ C 32° 54.4° 54-5° 236-7° 225-30° 135° 160° C. 166.6° 134-7°	oil

Rumber.	Name.	Formula,	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Ethyl			
1	hydrocinnamate (K.)	$ C_6H_5.CH_2CH_2CO_2.C_2H_5$	178.11	1.01238
2	hydrocollidine dicar- bonate	$C_{10}H_{11}NO_4(C_2H_5)_2$	267.21	
3	hydroxylamine $(\alpha)$	NH ₂ .O.C ₂ H ₅	61.10	0.88277.5
4	" $(\beta)$	C ₂ H ₅ NHOH	61.10	0.9079*
5	hypochlorite	C ₂ H ₅ ClO	80.49	
6	iodide	CH ₃ .CH ₂ I	156.01	1.949216
7	" (K.)	CH ₃ .CH ₂ I	156.01	1.94 1
8	iodopropionate $(\beta)(K.)$ .	$CH_2I.CH_2.CO_2.C_2H_5$	227 . 92	1.666#
9	(K.)	$C_2H_3O.CH(C_5H_{11})CO_2C_2H_5$		
10	isoamyl ether	$C_2H_\delta$ .O. $C_\delta H_{11}$	116.13	0.76118
11	isobutyl ether	$C_2H_5$ .O. $C_4H_5$	102.12	0.7507
12	isobutyrate	$(CH_3)_2CH.CO_2.C_2H_5$	116.10	0.8904
13	isobutyl ketone	C ₂ H ₅ .CO.C ₄ H ₉ (CH ₃ ) ₂ C: CHOC ₂ H ₅	114.12	0.815¥
14	isocrotyl ether	$(CH_3)_2C: CHOC_2H_5$	100.10	
15	isocyanate	C ₂ H ₅ NCO C: N.C ₂ H ₅	71.08	0.8981
16	isocyanide	C; N.C ₂ H ₅	55.08	0.75914
17	(K.)	$C_2H_3O.CH(C_3H_7).CO_2C_2H_5$		
18	" -malonate (K.)	$(CH_3)_2CH.CH(CO_2.C_2H_5)$	202.14	0.987#
19	" ether	C ₂ H ₃ .O.CH(CH ₃ ) ₂	. 88.10	0.74470
20	" ketone	C.HCO.CH(CH.)	100.10	0.830#
21	isosuccinate (K.)	$ \overset{\circ}{\text{CH}}_3\overset{\circ}{\text{CH}} < (\overset{\circ}{\text{CO}}_2\overset{\circ}{\text{C}}_2\overset{\circ}{\text{H}}_5)_2 \dots \\ (\overset{\circ}{\text{CH}}_3)_2\overset{\circ}{\text{CH}}_1\overset{\circ}{\text{CH}}_2\overset{\circ}{\text{CO}}_2\overset{\circ}{\text{C}}_2\overset{\circ}{\text{H}}_5 \dots $	174.11	1.022
22	isovaleriate	$(CH_3)_2CH.CH_2CO_2C_2H_5$ .	130.12	0.871718
23	lactate	$C_2H_5O_8.C_2H_5$	118.08	1.030819
24	laurate	$C_{12}H_{23}O_2.C_2H_5$	228.22	0.86719
25	(==:,::::::::	C.H.		1.01135
26	malate (K.)	$C_2H_5CO_2.C_2H_3(OH)$ $CO_2C_3H_4$	190.11	1.124#
27	malonate	$C_3H_2O_4.(C_2H_5)_2$	160.10	1.061018
28	" (K.)	$C_2H_2O_4$ , $(C_2H_2)_2$ ,	160.10	1.054#
29	mercaptan	C ₂ H ₅ SH	62.11	0.838¥
30	monotartrate	CO,H.(CHOH),CO,C,H,	178.08	
31	mustard oil	C.H.NCS	87.14	0.995238
32	myristate	C, H, O, C, H,	256.26	
33	naphthaline (a)	$C_{10}H_7.C_2H_5$	156.10	1.0635
34	" (β)	$C_{10}H_7.C_2H_5$	156.10	1.0078
35	naphthyl ether $(a) \dots$	$C_{10}^{\bullet}H_7OC_2H_5$	172.10	1.0579#

Digitized by GOOQI

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
-	insoluble v. v. s. sol.	s. soluble	s. soluble	131°	242–5° dec. 315°+	wh → yel tablets/al
5 6 7 8	v. soluble  0.403 ²⁰ s. soluble v. s. sol. insoluble	v. soluble  soluble soluble  o  o  o	v. soluble  soluble  o  soluble  o  o	59-60° 	sublimes 68° 36° ⁷⁵² 72.34° 71–2° 198–201° 230–6° dec.	pearly leaf
11 12 13 14 15	s. soluble	88	∞ soluble soluble ∞	<-66°	112° 78–80° 110–1° 136° 92–4° 60° 78.1° 200–5° dec.	wh. → yel
19 20 21 22 23 24	v. s. sol. insoluble ∞	w. soluble  constant	88 88		212-7° dec. 54° 114.5° 194-7° 134.3° 154.5° C. 269°, 79°° 202-5.5°	colorless colorless oil wh. → yel
27 28 29 30	1.5 soluble insoluble	∞ ∞ soluble soluble	∞ ∞ soluble soluble	-49.8° C. -144.4° 90° -5.9° C. 10.5–11.5°	248-52° d. 197.7-8.2°C 196.5-9.5° 37° ⁴⁵⁰ 	colorless
3:	3 4			<-14° -19° 5.5°	258° s. dec. 251° 279.8° C.	crystals

Number	Name.	Formula.	Molecu- lar Weight.	Water
1	Ethyl naphthyl ether (β)	C ₁₀ H ₇ OC ₂ H ₅	172.10	1.0615
2	nitrate	C ₂ H ₈ NO ₈	91.08	1.115916
3		C ₂ H ₅ NO ₃		
4	nitrite	C ₂ H ₆ NO ₂	75.08	0.90016
5	nitro-benzoate(m.)(K.)	$NO_2.C_6H_4.CO_2.C_2H_5$		
6		2 9 .0 2 2 3		
7 8	(p.) (K.)	NO ₂ C ₆ H ₄ .C ₂ H ₂ .CO ₂ .C ₂ H ₅		
9	nitroile acid			0.0423
10	orthogenbergte	$CH_3C.(OC_2H_5)_3$ $C(OC_2H_5)_4$	102.10	0.94°°
11	orthoformate	$HC(OC_2H_5)_4$	142.10	0,91974 0,8071 <b>9</b>
12		$Si(OC_2H_5)_4$		
13		$C_2O_4(C_2H_5)_2$		
14	" (K.)	$C_2O_4(C_2H_5)_2$	146.08	1.0763
15	oxamate (K.)	C.H.CO.CONH	117.10	
16	oxanilate (K.)	$C_2H_5CO_2\cdot CONHC_2H_5\cdot \cdot \cdot \cdot C_{16}H_{31}O_2\cdot C_2H_5\cdot \cdot \cdot \cdot \cdot$	193.13	
17	palmitate	$C_{16}H_{31}O_2.C_2H_5$	284.30	
18	perchlorate	C ₂ H ₄ ClO ₄	128.49	<b>.</b>
19	phenol (o.)	C ₂ H ₅ .C ₆ H ₄ OH	122.08	1.03710
20	phenyl-acetate (K.)	$C_6H_5.CH_2.CO_2.C_2H_5$	164.10	1.029
21	phenyl acetylene	$C_6H_5.C:C.C_2H_5$	130.08	0.92321
22	phenyl carbinol	$C_6H_5.CH(OH).C_2H_5$	136.10	0.991
23		C ₆ H ₅ (C ₂ H ₅ )N.NH ₂		
24 25	(ab.).	C ₆ H ₅ NH.HNC ₂ H ₅	130.18	1.+
26	" malamata (K)	$C_2H_5$ .CO. $C_6H_5$		1.015018
27	nhanyl sulphona	C H SO C H		
28	nhoenhote	$C_2H_5.SO_2.C_6H_5$ $(C_2H_5)_3PO_4$	182 12	1.07213
29	phosphine	C.H.PH.	62.06	<1.
30	phthalate (o.) (K.)	$C_2H_4\ddot{P}H_2$	222.11	1.126
31	propargyl ether	C ₂ H ₅ OC ₂ H ₃	84.06	0.8326*
32	propiolate	C,HO,C,H,	98.05	
33		$C_2H_5.CO_2.C_2H_5$		0.896416
34	" (K.)	$C_2H_5.CO_2.C_2H_5$	102.08	0.885
35	propyl carbinol	C ₃ H ₇ .CHOH.C ₂ H ₈	102.12	0.818830
36	" ether	$C_2H_5OC_3H_7$	88.10	0.7545
37	" ketone	C ₂ H ₅ .CO.C ₃ H ₅	100.10	0.81817.5
38	pyridine (2) (a)	$C_2H_8.C_8H_4N.$ $C_2H_8.C_4H_4N.$	107.11	0.937117
39	pyrrol (1)	$\begin{bmatrix} \mathbf{U_2H_5}, \mathbf{U_4H_4N} & \dots & \ddots \\ \mathbf{U_{222}} & \mathbf{U_{222}} & \mathbf{U_{222}} \end{bmatrix}$	95.11	0.90421
40	pyroracemate (K.)	CH ₃ .CO.CO ₂ .C ₂ H ₅	116.06	1.049#
41	saucylate	HOC ₆ H ₄ .CO ₂ .C ₃ H ₆	100.08	1.1372

Number.	Sol	ubilit <b>y in</b> 100 (	e.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1				33°	282°	cryst. mass.
1 -	insoluble	soluble	soluble	-112° C.	87.6°	
	v. s. sol.	∞	00	-112°	86-7°	
	insoluble	∞ ∞	soluble	<b></b>	16.4°	
1 -	insoluble	v. soluble	v. soluble	53-4°	. <b>.</b>	yel. prisms
	v. sol. bz.	v. soluble	v. soluble	44°		thin rh'b. nd.
	insoluble	s. soluble	s. soluble	140-1°		flat nd. yel
1 -	soluble		<b>s</b> oluble	86-8°	dec.	yel. rhombic.
9					142°	
10					158–9°	
11					145.5°	
	decomp.				165°	
13	s. soluble	soluble	soluble	-41°	186, 1° C.	<b></b>
	s. sol. dec.	<b>00</b> -	∞	-41°	184-5°	colorless
15	soluble	s. soluble	s. soluble	114-5°	<b></b>	wh. prisms
16	v. s. sol.	soluble	soluble	66-7°		wh. prisms
17	. <b></b>			24.2°	185010,12200	long flat need.
18	insoluble	soluble	soluble		74°	oil
19				<`−18°	206.5-7.5°	1
20	insoluble	<b>∞</b>	∞	<b> </b>	223-6°	colorless
21	l <b></b>			l	201–3°	
22		soluble	soluble		219-20°	
23			<b></b> .		237° C.	oil
24	s. soluble	soluble	soluble	1	100-4°10	oil
25	<i></i>		soluble	21°	218°	
26	insoluble	v. soluble	∞ ∞	. <b>.</b> . <b>.</b>	278–85° d.	$wh. \rightarrow yel$
27	mod.sol. hot	v. soluble	v. soluble	42°	>300°	moncl. tab./et
28	decomp.	soluble	soluble	1	215°, 116°30	l
29					25°	
30	insoluble	90	∞	1	290-4°	colorless
31		<b>00</b>	00	l	80°	
32		v. soluble	v. soluble		119°	oil
33	s. soluble	00	00	-72.6°	98.8° C.	l
		00	<b>00</b> ·		99-102°	colorless
35		soluble	l	1	135° C.	
1	soluble	00	00		63.6.°	
37		l <del></del>			122–4°	
38	1	l	v. soluble	1	148.65° C.	
39	insoluble	<b>∞</b> 0	00		131°	
	s. soluble	∞ ∞	<del>∞</del>	l	148-53°	$wh. \rightarrow yel$
41		<u>~</u>	oo oo	1.3° C.	231.5°	
-	1	~	1			
١			·	·		I

Digitized by GOOGLO

Number.	Rame.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Ethyl salicylate (K.)		166.08	1.13#
2				0.988
3	selenide	(C ₂ H ₅ ) ₂ Se	137.28	
4	succinate			1.046418
5	" (K.)	$C_4H_4O_4(C_2H_6)_2$		1.038
6	succinic acid	CO ₂ H.C ₂ H ₃ (C ₂ H ₅ )CO ₂ H		
7	succinyl-succinate (K.)	(CH.CH ₂ .CO) ₂ (CO ₂ C ₂ H ₅ ) ₂		1 100818
8	sulphate	(C ₂ H ₅ ) ₂ SO ₄		1.183710
9	sulphide	(C ₂ H ₃ ) ₂ S	90.14	0.8364¥
10		$C_2H_5SO_2H$		
11	sulphite	NCS.C ₂ H ₅	97 15	1.1000
12	sulphocyanatesulphone	$(C_2H_5)_2SO_2$	199 14	1 25720
13 14	suipnone	$C_2H_5.SO_2C1$	128 55	1.35723
15	sulphonic acid	C,H,SO,OH	1	
16	sulphome actu	NH,CSCO,C,H,		
17	sulphoxide	$(C_2H_s)_2SO$		
18	sulphuric acid	C,H,HSO,		1.31616
19	1 -	$C_4H_4O_6(C_2H_6)_2$	206.12	1.205920
20	telluride	(C,H,),Te	185.68	 
21	thiocarbonate	$ CS(OC_2H_s)_2$	134.14	1.0321
22				0.93340
23	toluene (o.)			0.873116
24	" (m.)	3 0 0 4		0.86930
25	" (p.)	$C_2H_6.C_6H_4.CH_3$		0.865221
26	toluate (o.)	CH ₈ ,C ₆ H ₄ CO ₂ ,C ₂ H ₅		1.039#
27	" (m.)	CH ₃ .C ₆ H ₄ CO ₂ .C ₂ H ₅	164.10	
28		CCl ₃ .CO ₂ .C ₂ H ₅		1.3826¥ 0.8765³0
29	valeriate	$C_bH_0O_2.C_2H_5$	196.10	
30	vanillate	$C_8H_7O_4.C_2H_5$ $C_2H_5NH.CO.NH_2$		1.21318
31	urea Ethylene	CH _a : CH _a		1.0.6095
33	acetate	$(C_2H_3O_2)_2C_2H_4$	146.08	
34	bromide	CH ₂ Br.CH ₂ Br		2.1901
35	" (K.)	CH ₂ Br.CH ₂ Br		2.175
36	chloride	CH,Cl,CH,Cl		1.2808
37	" (K.)	CH,Cl.CH,Cl.		1.254#
38	diamine	NH,CH,CH,NH,+H,O		0.97016
39	" (K.)	NH,CH,CH,NH,+H,O		0.976
40		$C_2H_4(OC_0H_5)_2$		
41	glycol	OHĊH ₂ .ČH ₂ OH	62.05	,
		I		

Digitized by GOOGIC

Pe	Sol	ubilit <b>y in</b> 100 (	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	. <b></b>	soluble	∞	1.5-2°	230.5-2.5°	$wh. \rightarrow yel$
	insoluble	v. soluble	∞	0–1°	309-12°	colorless
-1	insoluble				107-8°	
	insoluble	00	∞*	-20.8° C:	216.5° C.	
	insoluble v. soluble	soluble v. soluble	v. soluble	98°	215-6.5°	colorless
- 1	v. soluble v. s. sol.	s. soluble	s. soluble	98° 127–8°		fine prisms
	v. s. soi. insoluble	dec. hot	s. soluble	-24.5°	208° C. dec.	sm. green nd.
1	insoluble	soluble	soluble	-99.5°	92.2–3° C.	
	sol. alkali					svrup
11		soluble			161.3°	
12	insoluble	∞	<b>∞</b>		146° C.	
13	15.6 ¹⁶			70°	248°	rhombic
	dec.				177.5° C.	
	deliq.	soluble	sol. alkali			cryst. mass
	v. sol. hot	v. soluble	v. soluble	63°		lemon yel pris
	v. soluble			· · · · · · · · · ·	decomp.	thick liquid
	v. soluble	soluble	soluble		decomp.	syrup
- 1	s. soluble	∞	80		280°	
	v. v. s. sol. insoluble	v. soluble	v. soluble	· · · · · · · · · · · ·	137–8° 161–2°	reddish yel
$\frac{21}{22}$	msoluble	v. soluble	v. soluble		226.9°	
23			• • • • • • • • •	<-17°	158–9°	
	insoluble	soluble	soluble		158-9°	
- 1			soluble	< -20°	161-2°	
26					227° C.	
27					226-8°	
28	insoluble	`∞	∞		167.1°755	
	insoluble	∞	∞		144.5°	
			· · · · · · · · · · · · ·	44°	291–3°	crystal
	v. v. sol.		insol. abs.	91°		moncl. prisms
	25.63 c.c.º		soluble	-169°	-103.9°	
			soluble		186–7°	
		soluble			131.6°	
		soluble soluble	∞	9.5–10° –36° C.	129 · 5–31 · 5 83 · 5° C.	colorless toyel
	v. s. sol.	soluble soluble	••••••••••••••••••••••••••••••••••••••	-36° C.	83.5° U. 83–4.5°	colorless
	soluble		0.3	10°	116.5°	COLOTIESS
39	oo oo		v. s. sol.	9°	110.5 117–9°	$wh. \rightarrow yel.$
	v. s. sol.		v. s. sol. v. soluble	98.5°		crystals
	soluble		1.1	-17.4°	197.37°	

^{*} Very soluble chloroform; insoluble ligroene and CS2

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Ethylene glycol (K.)	OHCH2.CH2OH	62.05	1.113#
2		1 2 3	281.97	2.07
3			102.05	
4				1.50994
5		NO ₂ .CH ₂ .CH ₂ .NO ₃	136.11	
6				1.2156
7	oxide	<(CH ₂ ) ₂ >0\		0.882410
-	Ethylidene bromide			2.100117
9		CH ₃ .CHCl ₂	98.93	1.18637
10	10a1ae	CH ₃ .CHI ₂	281.97	2.54
11		CO<(NH) ₂ >CH.CH ₃		0.926720
	Eucalyptol Eugenol (1, 4, 3)			
14	mothyl other (K)	$C_3H_5.C_6H_3(OCH_3)_21:3:4$	179 11	1.035#
	Euxanthic acid	C H O ±2H O		1.03026
16	Euxanthone	C.H.O.		
10	Duzantinone	01811804	220.00	
17	Filixic acid	CHO	264.13	
	Flavaniline			
	Flavopurpurin			
20	Fluor acetic acid	CH.F.CO.H		
	Fluoran			
22	Fluoranthene	C ₁₄ H ₁₀	190.08	
23	Fluor-benzene	$C_6H_5F$	96.04	1.0290#
24	benzoic acid (o.)	FC ₆ H ₄ .CO ₂ H	140.04	
25	" " (m.)	FC ₆ H ₄ .CO ₂ H		
26	" " (p.)			
	Fluorene			
	Fluorescein			
	Fluoroform			2.48-2.53
	Fluortoluene (o.)	FC ₆ H ₄ CH ₃	1	1.004118
31	" (m.)			0.997218
32	(p.)	FC,H,CH,	100.08	1.00051
-	Formic acid			1.2448
34	(12.)	H.CO ₂ H		1.219#
	Formaldehyde			0.8153 ²⁶
	Formamide			1.139 <b>4∜</b> 1.1437 <b>∜</b>
35		$[CHO.N(C_6H_5)_2$	197.13	
39	(K.) piperidine (K.)	CHO.NC ₅ H ₁₀	113.13	1.0235#

1	Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Corrected.	Crystalline Form
2   S. soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble	Mun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
3	1 -1		∞	v. s. sol.	-20°	194–8°	colorless
4		s. soluble	soluble		81-2°		pris. or tab
Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Soluble   Solu	3	∞					
6 insoluble	4				*		
7	5		soluble				oil
8	1 -1	in <b>s</b> oluble	soluble	soluble	<-15°		
9   0.550   20   10   11   v. v. s. sol.   12   v. v. s. sol.   12   v. v. s. sol.   12   v. v. s. sol.   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°   176°	1 -1	∞	∞ ∞	∞			
10							
11   v. v. s. sol.   12   v. v. s. sol.   13   v. s. sol.   14   insoluble   15   s. soluble   15   s. soluble   15   s. soluble   16   insoluble   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. s. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.   18   v. sol.		0.55020			-101.5°		
12	11	• • • • • • • • • • • • • • • • • • •					
13 v, s, sol.	1 1	v. v. s. sol.	s. soluble				small needles
14   insoluble   15   s. soluble   soluble   soluble   s. soluble   156-8°   dec.   glit. yel   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   false   fals	11			soluble			
15 s. soluble   156-8°   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.   240° C.			∞ :	œ			oil
16   insoluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble							colorless
17   insoluble   18   v. s. sol.   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble	1 1						glit, yel, need
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	insoluble	soluble	s. soluble	240° C.	sub. dec.	{ pale yel.leaf. } or need.
19   v. s. sol. hot   v. s. sol.   s. soluble   459° C.   sub. 160° + yel. new   165°       21   sol. H ₂ SO ₄   soluble   v. soluble   109-10°   217°30   monocl     23     v. soluble   v. soluble   120°     leaflets     25   s. soluble   soluble   s. soluble   v. soluble   124°     leaflets     26   s. soluble   soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   s. soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble	17	in <b>s</b> oluble	v. v. s. sol.	mod. sol.	184.5°		v. sm. leaf./et
20	18	v. s. sol.	soluble	sol. bz.	97°	dist.	lrg. pris./bz
21   sol. H, SO ₄   soluble   s. soluble   v. soluble     109-10°     217°80   monocl		v. s. sol. hot	v. s. sol.	s. soluble	459° C.		yel, need./al.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20				33°	165°	
23			<b>s</b> oluble		180°		flat needles
24 s. soluble         v. soluble         v. soluble         120°         fine nee           25		sol. CS ₂	s. soluble	v. soluble	109-10°	1	monoclinic
25						85°	scales
26 s. soluble       soluble       soluble       182°			v. soluble	v. soluble	120°		fine need./w
27   v. sol. bz.,   28   sol. alkali   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   soluble   solub							leaflets/w
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1		monocl. pr
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		,			116° C.		leaflets/al
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					no m.p.		cryst. powder
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		s. soluble	500 c.c.	js. sol. chlo.		i – -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					>-80°		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		-	· · · · · · · · · · ·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				<b>∞</b>	7.5°		
37 mod. sol. v. soluble soluble 46° 116°11 monocl				· · · · · · · · · · · · · · · · · · ·			
			,				· • • • · · · · · · · · · · ·
	1 4			100200		116011	monocl. pr
38 insoluble soluble soluble 71.5-2.5° tablets	38	insoluble	soluble	soluble	71.5-2.5		tablets
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	. ∞	oc	∞		218-22°	$wh. \rightarrow yel$

^{*} Explodes by percussion. Digitized by Google

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Fructose (d.)	0 12 0	180.10	
	Fuchsin		337.74	
	Fulminic acid			
	Fulminuric acid			
	Fumaric acid			
	Furfural			1.1594 30
7	(			1.158
8	Furfuramide	$\left( \left( C_{5}H_{4}O \right)_{3}N_{2}$	208.18	0.9444 ¹⁸
10	Furfuryl alcohol		08.03	1.135138
11	Galactose (d.)		190.00	
19	Gallic acid 3: 4: 5	(OH) C H CO H + H O	188 07	1 6044
	Geraniol			0.8812¥
14	Gluconic acid (d.)		232.14	
	•	2H.O		
15	Glucose (d.)	$C_6H_{12}O_6+H_2O$	198.12	1.54-1.57
	Glucose oxime (d.)	$C_6H_{12}O_5$ : NOH	195.15	
17	pentacetate $(a) \dots$	$C_6H_7O_5(C_2H_3O)_5$	390.18	
18	phenyl hydrazone (a).	$C_6H_{12}O_5N_2HC_6H_5$	270 .23	
19	" " (β).	$C_6H_{12}O_5N_2HC_6H_6$	270.23	
20	Glutaconic acid	CO.H.CHCH: CHCO.H	130.05	
21		C ₅ H ₄ O ₃		
22	Glutaminic acid (i.)	$C_3H_5NH_2(CO_2H)_2$		1.511‡
23	Glutaric acid	CO ₂ H.(CH ₂ ) ₃ CO ₂ H	132.06	
24	anhvdride	$C_{s}H_{e}O_{s}$	114.02	
25	Glyceric acid	OHCH,.CHOH.CO,H	106.05	
26	aldehyde	OHCH, CHOH, CHO	90.05	
27	Glycerine		92.06	1.2604*
28	acetates	1 +		
29	dinitrate		202.28	1.47 ¹⁶ dry
30	mononitrate	Ongon.onon.ongNo	137.10	
31		CH ₂ NO ₃ .CHNO ₃ .CH ₂ NO ₃		1.600915
32	trinitrite	CH ₂ NO ₂ .CHNO ₂ .CH ₂ NO ₂	179.16	
	Glyceryl ether			1.090718
	Glycid			1.1650
	Glycocholic acid		465.39	
36	Glycocoll	NH ₂ CH ₂ CO ₂ H		1.1607
37	Glycogen	$(C_6H_{10}O_5)x,x>100$	162.08	
38	Glycol	CH ₂ OH.CH ₂ OH	62.05	1.125
- !		l ,		

[†] See mono-, di-, and triacetins.

Number.	Sol	ubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mun	Water (w.).	Alcohol (al.)	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	v. soluble	20	soluble	95°		trimetric
1	s. soluble	soluble	· · · · ; · ; · · · ·			rhomb. tab
3			v. soluble		1450	
	soluble	soluble	soluble	286–7°	exp. 145°	needles/al
	0.66 ¹⁸ 9 ¹⁸	soluble	soluble	1	sub. 200°+	prisms
-	913	soluble	soluble		161°	bright yel.
1 '	1-	∞ 1.1.1	∞ ,	117°	160-2°	) → dark yel.
	insoluble	v. soluble	v. soluble	1	250° dec.	thin short
:	insoluble	v. soluble	v. v. sol.	· · · · · · · · • •	31.4-50756	( needles
10		v. soluble	v. soluble	170 10	170°, 84°24	syrup
	v. soluble	s. soluble	0. 5018	170-1°	1	hexag. tab./a
	0.812; 33100	22.218	2.5018	222-40°	dec. 230 ⁰⁷⁶⁰	tric. prism
	insol. v. soluble	insoluble	∞	<-15°	230	
14	v. soluble	insolubie				syrup
	81.68 ¹⁷	s. soluble	insoluble	α148°β150°		need./abs. al.
	v. soluble	v. s. sol.	insoluble	137.5°		sm. need.
	v. s. soluble	1	2.1315 *	130°.	sub. in vac.	fine need./lig.
	v. soluble	v. sol. hot	v. v. s. sol.	144-5°		v. small crys
19		more sol. than a		115–6°		long needles
20	v. soluble	v. soluble	v. soluble	138°	<b></b>	prisms/et
21	$sol.Na_2CO_3.$		soluble	87° [C.		flat need./et
22	116(d)1.7(i)	s. soluble	insoluble	198°(d)213°		rhombic
23	(63.9 ²⁰ , (111.8 ⁶⁶	v. soluble	v. soluble	97.5°	302–4°	moncl. prisms
	v. s. sol.		s. soluble	56-7°	287° C.	thin needles.
25		∞ ∞	insoluble		[steam	syrup
	slowly sol.	v. v. s. sol.	v. v. s. sol.	abt. 132°	not vol. in	crystals
27		∞ ∞	insoluble	17°	290° C.	rhombic
28						
	v. soluble	v. soluble	soluble	26°	145°15	
	v. soluble	v. soluble	s. soluble	<b></b>		
31	0.12	25	.∞.	2.8 & 13.1°	exp. 260°	dimorphous
	insoluble	decomp.	soluble		150°	yellow
33	1	∞	∞		171–3°	
34		∞ .	∞		161–2° dec	
	3.320	soluble	0.093	152°		needles
	23.2	insoluble		232–6° C.		rhomb. pris.
	v. soluble	0.150%	insoluble	abt. 240°		amorph. pow.
38	∞	∞	1.1	-12°	197.37°	sweet
L			1			T

^{*} V. sol. et., bz. and acet. ac. ∞ chio.

Number	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Glycol aldehyde	CH ₂ OH.CHO	60.03	
2	amide	CH ₂ OH.CONH ₂	75.08	
3	diacetate	$C_2H_3O_2.CH_2.CH_2.C_2H_3O_2$	146.08	1.1280
4	dimethyl ether	CH ₃ OCH ₂ .CH ₂ OCH ₂	90.08	0.873230
5	Glycolic acid	OHCH ₂ .CO ₂ H	76.03	
6	,	$C_4H_6O_5$	134.05	
	Glycolid	$C_4H_4O_4$		
	Glycol monoacetate	CH ₂ OH.CH ₂ O.C ₂ H ₃ O,		· · · · · · · · · · · · ·
9		$C_3H_4N_2O_2$		
	Glyoxal	CHO.CHO		1.1420
- 1	Glyoxylic acid	(OH) ₂ CH.CO ₂ H		
- 1	Glyoxalin	C ₃ H ₄ N ₂		
	Glyoxime	OHN: CH.CH: NOH		
	Guaiacol (o.)	OH.C ₆ H ₄ .OCH ₃		1.1395#
	Guanidine	NH: C(NH ₂ ) ₂		• • • • • • • • • • •
	Guanine	C ₅ H ₅ N ₅ O		• • • • • • • • • • • • • • • • • • • •
	Haematoxylin	$C_{16}H_{14}O_6 + 3H_2O$	1	• • • • • • • • • • • • •
	Helicin (l.)	$C_{13}H_{16}O_7 + \frac{3}{4}H_2O_1$		• • • • • • • • • • • • • • • • • • • •
- 1	Hemimelitic acid	C ₆ H ₃ (CO ₂ H) ₃ 1: 2: 3		
- 1	Hemipinic acid Heptadecane	(CH ₃ O) ₂ C ₆ H ₂ (CO ₂ H) ₂ C ₁₇ H ₃₆		0.7766¥
	Heptamethylene	(CH ₂ ) ₇		0.809420
	Heptane (n.)	CH ₃ .(CH ₂ ) ₅ .CH ₃		0.70198
24	"			0.71110
25	"	$HC(C_2H_5)_3$	100.13	
26	46			0.780617
	Heptoic acid (n.)	CH _s (CH ₂ ) _s CO _s H		0.9212
28	" " " (K.)	CH ₃ (CH ₂ ) ₅ CO ₂ H	130.11	
29	anhydride	(C,H,CO),O	242.21	
- 1	Heptyl acetate (n.)	$C_2H_3O_2.C_7H_{15}$	158.15	
31	alcohol	CH ₃ (CH ₂ ) ₅ .CH ₂ OH	116.13	
32	amine (K.)	CH ₃ (CH ₂ ) ₅ CH ₂ NH ₂	115.18	
33	Heptylene (1)	CH ₃ (CH ₂ ), CH: CH ₂		0.702610
	Heptyl ether (n.)	$(C_7H_{15})_2O$	214.24	0.8150
35	formate		144.13	0.8940
36	Hesperidine	C ₂₂ H ₂₆ O ₁₂	482.21	
	Hexabrom ethane		403.76	
38	Hexachlor benzene	$C_{\mathbf{c}}Cl_{\mathbf{c}}$	284.70	2.044 ²⁸
39	ethane		236.70	1.9988*
40 1	Hexadecane	C ₁₆ H ₃₄		0.7754¥
	Hexadecyl-acetylene	HC:C.(CH ₂ ) ₁₅ .CH ₃	250 27	0.798326

Digitized by GOOGIC

=	<del></del>			i -	1	ī
, i	Sol	lubility in 100	c.c.	Melting	Boiling	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Cor- rected.	Boiling Point, °C. C. = Corrected.	Crystalline Form and Color.
1	v. soluble	v. sol. hot	s. soluble	95–7°	s. vol. in	plates
2		v. soluble	s. soluble	120°	[steam	crystals
3	14	soluble	soluble		186-7°	
4					83-4°	
5		∞ ∞	<b>∞</b>	78–9°	dec.	rhomb. moncl
	insoluble	insoluble	insoluble	128-30°	dec.	powder
	in <b>sol</b> uble	s. soluble	s. soluble	82°: 86–7°	dist. in vac.	leaflets/al
8		× ×	∞	]	182°	
	mod. sol.			216°		needles
1 1	v. soluble	soluble	solub <b>l</b> e	15°	50.5°760	amorphous
	v. soluble			<u> </u>	with steam	rhomb. prism.
	v. soluble	v. soluble	s. soluble	88–9°	256°	thick prisms.
	v. s. sol. hot		insoluble	176°	sub.	rhomb.tab./w
	1.6715	oc	∞	31–3°	205 . 1° C.	hexag. pris
	sol. deliq.					crystals
	insoluble	v. s. sol.	v. s. sol.	dec.	· · · · · · · · · · ·	need. or tab
	s. soluble	soluble	soluble	140°		tetrag. prisms
	v. sol. 100°	soluble	insoluble	175°		v. fine need
	s. soluble	}· · · <u>;</u> · · · <u>·</u> · ·	mod. sol.	194–6°	$\rightarrow$ anhyd.	needles
	v. <b>s</b> oluble	mod. sol.	· • • • • • • • • •	177° C.	sublimes	crystals
21	· · · · · · · · · · ·			22.5°	303°, 81°°	hexag. tab
22					117° ⁷⁴³ C.	oil
	insoluble	abt. 100	, x		98.4°	· · · · · · · · · · · · · · · ·
24 25		soluble	soluble		86-7°	· • • • • • • • • • • • • • • • • • • •
26		soluble	soluble		95–8° 91°	
	0.241 ¹⁵	11-		10.50		· · · · · · · · · · · · · · · ·
	v. s. sol.	soluble	soluble	-10.5°	223-3.5°	
29	v. s. soi.	∞	∞		217.5-21.5 268-71°	$\text{wh.} \longrightarrow \text{yel.}$
30					191.5°	
	soluble	60		-36.5°	175.8°	
	v. s. sol.	80		-30.0	153-5°	wh vol
33		soluble	∞ .		98-9°	$\text{wh.} \longrightarrow \text{yel.}$
34		Solubie			261.9°	
35					176–7°	
	0.02	s. soluble	insoluble	251° dec.	110-1	v. sm. need
37		s. soluble	s. soluble	Zoi ucc.	dec. 210°	rhomb. pris
38		insol. cold	v. s. sol.	229.05° C.		monocl. pris
احدا	insoluble	v. soluble	v. s. sor. v. soluble	228.00 O.		rhomb.tab./al
	misoluble	v. soluble	v, soluble	19–20°	291°	pearly leaflets
41		~	~	26°	180°15	posity toaneus
			• • • • • • • • • •	20	100	• • • • • • • • • • • • • • • • • • • •
						· I

Digitized by GOOSIC

Rumber.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Hexaethyl benzene	$C_6(C_2H_5)_6$	246.24	0.8305*
2	Hexahydro-anthracene		184.13	
3	-benzoic acid		128.10	1.0480₹
4	-cumene	$C_3^{"}H_7^{"}.C_6\dot{H}_{11}$	126.15	0.78720
5	-cymene (p.)	$CH_3.C_6H_{10}.C_3H_7$		0.79616
6	-mellitic acid	C ₆ H ₆ (CO ₂ H) ₆		
7	-salicylic acid	OHC ₆ H ₁₀ CO ₂ H		
8	-toluene	CH ₃ .C ₆ H ₁₁		0.7641₹
9	-xylene (m.)	(CH ₂ ) ₂ C ₆ H ₁₀		0.7874
_	Hexahydroxy benzene			
	Hexamethyl benzene			
12	Hexane (n.)	$CH_3(CH_2)_4CH_3$		0.6603*
13		(CH ₃ ),CH.CH(CH ₂ ),		0.66817
14		(CH ₃ CH ₂ ) ₂ CH.CH ₃		0.6765\$
	Hexenoic acid ∂ε	$CH_2$ : $CH(CH_2)_3$ . $CO_2H$		
	Hexenoic " $\alpha\beta$	CH ₃ (CH ₂ ) ₂ .CH: CH.CO ₂ H		
	Hexenyl alcohol $\dots$	$C_6H_{11}OH \dots$		0.89110
			182.18	1
18				0.833520
	Hexoic aldehyde	CH ₃ (CH ₂ ) ₄ CHO		
	Hexyl acetate (n.)	$C_2H_3O_2.C_6H_{13}$		0.89020
21		1 0 2 0	1 .	0.7701°
22		2/1 2		0.820420
	Hexylene (n.)	CH ₃ (CH ₂ ) ₃ CH: CH ₂		
24	6-7,			0.96690
	Hexyl formate		130.12	
	Hippuric acid			1.3711*
	Hydracrylic acid	OHCH ₂ .CH ₂ CO ₂ H		
29	Hydrastin	$C_2.H_{21}NO_6$	383.21	
20	Hydrazo-benzene	C ₆ H ₅ NH.NHC ₆ H ₅	19/ 19	1.15816
31	benzoic acid (o.)			
32	" " (m.)			
33	" " (p.)			
34				
1	toluene (o.)			
35	(111.)	(CHC,H,NH) ₂	212.21	0 05715
36	(p.)	(CH ₃ C ₆ H ₄ NH) ₂	110.00	0.90/-
	Hydrindene (1, 2)	C.H.: C.H.: CH	118.08	U.9645¶
	Hydrobenzoin	(C,H,CHOH)2	214.12	• • • • • • • • • • • • • • • • • • • •
	Hydrocarbostyril	C.H.NO		
		C ₆ H ₅ .CH ₂ .CH ₂ CO ₂ H		
41	aldehyde	$ C_6H_5(CH_2)_2CHO $	134.08	<u> </u>

Number.	Solubility in 100 c.c.		Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Corrected.	Crystalline Form	
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	in <b>s</b> oluble	soluble	v. soluble	129°	298° C.	long moncl.pr.
2	v. sol. bz.	v. soluble	v. soluble	63°	290°	leaflets
3	0.20115	v. soluble	v. soluble	30 . 5-1°	234-5°	monocl. pris.
4					147-50°	
5				<b></b> .	171–3°	
- 1	v. soluble	v. soluble	s. soluble	dec.		crystals
	v. soluble	v. soluble	v. soluble	111°		quad. tab.
8					103° C.	[and need
9					119.50751	
- 1	s. soluble	s. soluble	s. soluble	none		long needles.
11		0.2		164°	264°	rhombic/al .
	insoluble	abt. 50 ⁸⁸	∞∞	-93.5°	68.95°	· · · · · · · · · · · · ·
13		soluble	soluble		58°	
14		<b></b> .			64°	
	s. soluble			32.7–3.1°	202-4°	
	s. soluble			32.7-3.1	216-7° C.	needles/w.
	v. soluble	∞	<b>∞</b>		137°	
	insoluble				116–8°	oil
19 20	• • • • • • • • • •		· · · · · · · · · ·		129° C. 169.2°	
20 21	• • • • • • • • •	• • • • • • • • • •			131-2°	
	s. soluble		00		157° C.	
<i>22</i> 23		, œ			68–70°	
23 24		soluble	soluble		207°	
25	<b>.</b>	Boluble	soluble		153.6°	
_	0.32620	s. soluble	s. soluble	190.25° C.	decom.	rhombic.pris
	v. soluble	v. soluble	v. soluble	51°	251-2°	
21 28		v. soluble	v. soluble	91	decomp.	syrup
	0.00320	s. soluble	0.50720	132°	decomp.	glit. trimet
20	0.000	s. solubic	0.001	102		prisms
30	insoluble	516	soluble	131°	decomp.	rhomb.tablets
31		soluble	Solubio	205°	decomp.	leaf, or pris.
	insoluble	s. soluble	sol. alkali		1	imperf. cryst
33	insoluble	s. soluble	sol. KOH	1	l	sm. need./al.
	and the second	soluble	soluble	165°	decomp.	leaflets
35	1 · · · · · · · · · · ·	soluble				
36		v. soluble	v. soluble	128°	decomp.	monocl. tab.
37	1			J	177° C.	oil
	0.2515	soluble		138°	300°+	moncl.tab./al
_	v. v. s. sol.	soluble	soluble	163°		glit. pris./al.
	0.620	v. soluble	soluble	48.7°	279.8°	moncl. pris
41		16.7			221-4°744 C.	/al.

Hydrocyanic acid   C:NH   27.05 0.696913	=	<u> </u>			
2   Hydronapthoquinone(1,2)   C ₁ , H ₄ (OH) ₂   160.06       4   Hydroquinone (p.)   C ₁ , H ₄ (OH) ₂   160.06       4   Hydroquinone (p.)   C ₂ , H ₄ (OH) ₂   110.05   1.326       5   dimethyl ether   C ₆ , H ₄ (OCH ₃ ) ₂   138.08   1.0526       6   ethyl ether   OHC ₆ , H ₄ OCH ₅   138.08   1.0526       7   Hydrotropilidene   C ₇ , H ₁₀   94.08   0.8929       8   Hydroxy-anthraquinone (m.)   94.08   0.8929       9   -benzalcohol (o.)   OHC ₆ , H ₄ , CH ₂ OH   124.06       10   -benzalcohol (m.)   OHC ₆ , H ₄ , CH ₂ OH   124.06       11   (p.)   OHC ₆ , H ₄ , CH ₂ OH   124.06       12   -benzaldehyde (o.)   OHC ₆ , H ₄ , CH ₂ OH   122.05       13   (m.)   OHC ₆ , H ₄ , CH ₂ OH   122.05       14   (p.)   OHC ₆ , H ₄ , CONH ₂   137.10       15   -benzamide (o.)   OHC ₆ , H ₄ , CONH ₂   137.10       16   (m.)   OHC ₆ , H ₄ , CONH ₂   137.10       17   (p.)   OHC ₆ , H ₄ , CONH ₂   137.10       18   -benzoic acid (o.)   OHC ₆ , H ₄ , CO ₂ H   138.05   1.473       19   (m.)   OHC ₆ , H ₄ , CO ₂ H   138.05   1.473       20   (m.) (p.)   OHC ₆ , H ₄ , CO ₂ H   138.05   1.473       21   -caprylic acid (a)   CH ₃ (CH ₂ ) _C H(OH)CO ₂ H   160.13       22   -citric acid   (OH) ₂ , H ₃ (CO ₂ H) ₂   182.05       23   -isophthalic acid (2)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       24   (m.) (4)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       25   (m.) (2)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       26   -phthalic acid (3)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       27   (m.) (4)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       28   (m.) (2)   OHC ₆ , H ₃ (CO ₃ H) ₂   182.05       29   -purpurin   C ₁ , H ₄ O ₂ (OH) ₄   272.06       30   -pyridine (α) (2)   OHC ₆ , H ₃ NOH   145.04       4   (bz. 2) (7)   C ₆ , H ₈ NOH   145.04       4   (bz. 3) (6)   C ₆ , H ₈ NOH   145.04       4   (bz. 3) (6)   C ₆ , H ₈ NOH   145.04       5   (bz. 3) (6)   C ₆ , H ₈ NOH   145.04       7   (pr. 2) (2)   C ₆ , H ₈ N	Number.	Name.	Formula.	lar	Gravity. Water = 1.
2   Hydronapthoquinone(1,2)   C ₁ , H ₄ (OH) ₂   160.06       4   Hydroquinone (p.)   C ₁ , H ₄ (OH) ₂   160.06       4   Hydroquinone (p.)   C ₂ , H ₄ (OH) ₂   110.05   1.326       5   dimethyl ether   C ₆ , H ₄ (OCH ₃ ) ₂   138.08   1.0526       6   ethyl ether   OHC ₆ , H ₄ OCH ₅   138.08   1.0526       7   Hydrotropilidene   C ₇ , H ₁₀   94.08   0.8929       8   Hydroxy-anthraquinone (m.)   94.08   0.8929       9   -benzalcohol (o.)   OHC ₆ , H ₄ , CH ₂ OH   124.06       10   -benzalcohol (m.)   OHC ₆ , H ₄ , CH ₂ OH   124.06       11   (p.)   OHC ₆ , H ₄ , CH ₂ OH   124.06       12   -benzaldehyde (o.)   OHC ₆ , H ₄ , CH ₂ OH   122.05       13   (m.)   OHC ₆ , H ₄ , CH ₂ OH   122.05       14   (p.)   OHC ₆ , H ₄ , CONH ₂   137.10       15   -benzamide (o.)   OHC ₆ , H ₄ , CONH ₂   137.10       16   (m.)   OHC ₆ , H ₄ , CONH ₂   137.10       17   (p.)   OHC ₆ , H ₄ , CONH ₂   137.10       18   -benzoic acid (o.)   OHC ₆ , H ₄ , CO ₂ H   138.05   1.473       19   (m.)   OHC ₆ , H ₄ , CO ₂ H   138.05   1.473       20   (m.) (p.)   OHC ₆ , H ₄ , CO ₂ H   138.05   1.473       21   -caprylic acid (a)   CH ₃ (CH ₂ ) _C H(OH)CO ₂ H   160.13       22   -citric acid   (OH) ₂ , H ₃ (CO ₂ H) ₂   182.05       23   -isophthalic acid (2)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       24   (m.) (4)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       25   (m.) (2)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       26   -phthalic acid (3)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       27   (m.) (4)   OHC ₆ , H ₃ (CO ₂ H) ₂   182.05       28   (m.) (2)   OHC ₆ , H ₃ (CO ₃ H) ₂   182.05       29   -purpurin   C ₁ , H ₄ O ₂ (OH) ₄   272.06       30   -pyridine (α) (2)   OHC ₆ , H ₃ NOH   145.04       4   (bz. 2) (7)   C ₆ , H ₈ NOH   145.04       4   (bz. 3) (6)   C ₆ , H ₈ NOH   145.04       4   (bz. 3) (6)   C ₆ , H ₈ NOH   145.04       5   (bz. 3) (6)   C ₆ , H ₈ NOH   145.04       7   (pr. 2) (2)   C ₆ , H ₈ N	1	Hydrocyanic acid	:C:NH	27.05	0.696918
3	2	Hydronapthoguinone(1.2)	C, H (OH)	160.06	
4 Hydroquinone (p.)		" (1,4)	C, H _s (OH)	160.06	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Hydroquinone (p.)	$C_{\bullet}H_{\bullet}(OH)_{\bullet}$	110.05	1.326
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		dimethyl ether	C.H.(OCH.)	138.08	1.0526#
7 Hydrotropilidene         C,H ₁₀ 94.08 0.89298           8 Hydroxy-anthraquinone (m.)         OH.C ₆ H ₄ : (CO) ₂ : C ₆ H ₃ OH         224.06           9 -benzalcohol (o.)         OH.C ₆ H ₄ : CH ₂ OH         124.06           10 -benzalcohol (m.)         OH.C ₆ H ₄ : CH ₂ OH         124.06           11 "(p.)         OH.C ₆ H ₄ : CH ₂ OH         124.06           12 -benzaldehyde (o.)         OH.C ₆ H ₄ : CHO         122.05           13 "(m.)         OHC ₆ H ₄ : CHO         122.05           14 "(p.)         OHC ₆ H ₄ : CONH         137.10           15 -benzamide (o.)         OHC ₆ H ₄ : CONH         137.10           16 "(m.)         OHC ₆ H ₄ : CONH         137.10           17 "(p.)         OHC ₆ H ₄ : CONH         137.10           18 -benzoic acid (o.)         OHC ₆ H ₄ : CONH         137.10           18 -benzoic acid (o.)         OHC ₆ H ₄ : CO ₂ H         138.05           19 ""(m.)         OHC ₆ H ₄ : CO ₂ H         138.05           19 ""(m.)         OHC ₆ H ₄ : CO ₂ H         138.05           20 ""(p.)         OHC ₆ H ₄ : CO ₂ H         138.05           21 -caprylic acid (a)         CH ₃ (CH ₂ ) ₂ CH(OH)CO ₂ H         140.42           22 -citric acid         (OH ₂ C ₂ H ₃ (CO ₂ H)         28.06	6	ethyl ether	OHC, H, OC, H,	138.08	
8 Hydroxy-anthraquinone (m.) 9 -benzalcohol (o.) OH.C ₆ H ₄ : (CO) ₂ : C ₆ H ₃ OH 124.06 1.1613 ²⁶ 10 -benzalcohol (m.) OH.C ₆ H ₄ : CH ₂ OH 124.06 1.1613 ²⁶ 11 "(p.) OH.C ₆ H ₄ : CH ₂ OH 124.06 1.1613 ²⁶ 12 -benzaldehyde (o.) OHC ₆ H ₄ : CH ₂ OH 122.05 1.1589 ²¹ 13 "(m.) OHC ₆ H ₄ : CHO 122.05 1.1589 ²¹ 14 "(p.) OHC ₆ H ₄ : CHO 122.05 1.1291 ¹³⁰ 15 -benzamide (o.) OHC ₆ H ₄ : CONH ₂ 137.10 16 "(m.) OHC ₆ H ₄ : CONH ₂ 137.10 17 "(p.) OHC ₆ H ₄ : CONH ₂ 137.10 18 -benzoic acid (o.) OHC ₆ H ₄ : CONH ₂ 137.10 19 """(m.) OHC ₆ H ₄ : CO ₂ H 138.05 1.473 ⁴ 20 """(p.) OHC ₆ H ₄ : CO ₂ H 138.05 1.473 ⁴ 21 -caprylic acid (a) CH ₃ (CH ₂ ) ₆ CH(OH)CO ₂ H 160.13 22 -citric acid (OH) ₂ C ₂ H ₃ (CO ₂ H) ₃ 208.06 23 -isophthalic acid (2) OHC ₆ H ₃ (CO ₂ H) ₂ +H ₂ O 200.07 24 """(4) OHC ₆ H ₃ (CO ₂ H) ₂ 182.05 25 """(5) OHC ₆ H ₃ (CO ₂ H) ₂ 182.05 26 -phthalic acid (3) OHC ₆ H ₃ (CO ₂ H) ₂ 182.05 27 """(4) OHC ₆ H ₃ (CO ₂ H) ₂ 182.05 28 """(2) OHC ₆ H ₃ (CO ₂ H) ₂ 182.05 29 -purpurin C ₁₄ H ₄ O ₁ OH ₄ 95.08 31 ""(β)(3) OHC ₆ H ₄ N 95.08 32 ""(γ)(4) OHC ₆ H ₄ N 95.08 33 ""(γ)(4) OHC ₆ H ₄ N 95.08 34 ""(β ₂ (2)(7) C ₆ H ₆ N.OH 145.04 35 ""(bz. 2)(7) C ₆ H ₆ N.OH 145.04 36 ""(bz. 4)(5) C ₆ H ₆ N.OH 145.04 37 ""(pr. 2)(2) C ₆ H ₆ N.OH 145.04 38 -toluic acid (1: 2: 3) C ₆ H ₆ N.OH 145.04	7	Hydrotropilidene	C.H	94.08	0.89298
(m.)	8	Hydroxy-anthraquinone	$C_{\bullet}H_{\bullet}$ : (CO),: $C_{\bullet}H_{\bullet}OH$	224.06	
-benzalcohol (o.)   OH.C ₆ H ₄ .CH ₂ OH   124.06   1.1613 ²⁶					
-benzalcohol (m.)   OH.C ₆ H ₄ .CH ₂ OH   124.06   122.05   1.1589 ²¹   -benzaldehyde (o.)   OHC ₆ H ₄ .CHO   122.05   1.1589 ²¹   (m.)   OHC ₆ H ₄ .CHO   122.05   1.1589 ²¹   (m.)   OHC ₆ H ₄ .CHO   122.05   1.1589 ²¹   (m.)   OHC ₆ H ₄ .CHO   122.05   1.1291 ¹³⁰   15   -benzamide (o.)   OHC ₆ H ₄ .CONH ₂   137.10   137.10   16   (m.)   OHC ₆ H ₄ .CONH ₂   137.10   137.10   17   (m.)   OHC ₆ H ₄ .CONH ₂   137.10   137.10   18   -benzoic acid (o.)   OHC ₆ H ₄ .CO ₂ H   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   138.05   1.473 ⁴   1	9	-benzalcohol (o.)	OH.C.H.CH.OH	124.06	1.161325
11		• •			
11	10	-benzalcohol (m.)	OH,C,H,CH,OH	124.06	
12	11	" (p.)	OH.C.H.CH.OH	124.06	
13	12	-benzaldehyde (o.)	OHC,H,.CHO	122.05	1.158921
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	" (m.)	OHC ₆ H ₄ .CHO	122.05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	" (p.)	OHC ₆ H ₄ .CHO	122.05	1.1291130
$ \begin{array}{c} \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} & \text{(iii.)} $	15	-benzamide (o.)	OHC ₆ H ₄ .CONH ₂	137.10	
18 -benzoic acid (o.) OHC ₆ H ₄ ·CO ₂ H. 138.05  19 " " (m.) OHC ₆ H ₄ ·CO ₂ H. 138.05 1.473 ⁴ 20 " " (p.) OHC ₆ H ₄ ·CO ₂ H. 138.05 1.404 ²² 21 -caprylic acid (a) CH ₃ (CH ₂ ) ₅ CH(OH)CO ₂ H 160.13  22 -citric acid (OH) ₂ C ₂ H ₃ (CO ₂ H) ₃ . 208.06  23 -isophthalic acid (2) OHC ₆ H ₃ (CO ₂ H) ₂ + H ₂ O 200.07  24 " " (4) OHC ₆ H ₃ (CO ₂ H) ₂ . 182.05  25 " (5) OHC ₆ H ₃ (CO ₂ H) ₂ . 182.05  26 -phthalic acid (3) OHC ₆ H ₃ (CO ₂ H) ₂ . 182.05  27 " " (4) OHC ₆ H ₃ (CO ₂ H) ₂ . 182.05  28 " " (2) OHC ₆ H ₃ (CO ₂ H) ₂ . 182.05  29 -purpurin C ₁₄ H ₁ O ₂ O(H) ₄ . 272.06  30 -pyridine (α) (2) OH.C ₈ H ₄ N. 95.08  31 " (β) (3) OH.C ₈ H ₄ N. 95.08  32 " (γ) (4) OH.C ₈ H ₄ N. 95.08  33 -quinoline (bz. 1) (8) C ₉ H ₆ N.OH  34 " (bz. 2) (7) C ₉ H ₆ N.OH  35 " (bz. 3) (6) C ₉ H ₆ N.OH  36 " (bz. 4) (5) C ₉ H ₆ N.OH  37 " (pr. 2) (2) C ₉ H ₆ N.OH  38 -toluic acid (1: 2: 3) C ₉ H ₃ (CO ₂ H)(CH ₃ )OH  152.06	16	(111.)	OHC ₆ H ₄ .CONH ₂	137.10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	(p.)	OHC ₆ H ₄ .CONH ₂	137.10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	-benzoic acid (o.)	OHC ₆ H ₄ .CO ₂ H	138.05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	" " (m.)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	(D.)	OHC ₆ H ₄ .CO ₂ H	138.05	1.40422
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	-caprylic acid (a)	CH ₃ (ČH ₂ ) ₅ CH(OH)CO ₂ H	160.13	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	-citric acid	$(OH)_2C_2H_3(CO_2H)_3$	208.06	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	-isophthalic acid (2)	$OHC_6H_3(CO_2H)_2 + H_2O.$	200.07	
26 -phthalic acid (3). OHC ₆ H ₃ (CO ₂ H) ₂ . 182.05 27 " " (4). OHC ₆ H ₃ (CO ₂ H) ₂ . 182.05 28 " " (2). OHC ₆ H ₃ (CO ₂ H) ₂ . 182.05 29 -purpurin. C ₁₄ H ₄ O ₂ (OH) ₄ . 272.06 30 -pyridine ( $\alpha$ ) (2). OH.C ₅ H ₄ N. 95.08 31 " ( $\beta$ ) (3). OH.C ₆ H ₄ N. 95.08 32 " ( $\gamma$ ) (4). OH.C ₅ H ₄ N. 95.08 33 -quinoline (bz. 1) (8). C ₉ H ₆ N.OH. 145.04 34 " (bz. 2) (7). C ₉ H ₆ N.OH. 145.04 35 " (bz. 3) (6). C ₉ H ₆ N.OH. 145.04 36 " (bz. 4) (5). C ₉ H ₆ N.OH. 145.04 37 " (pr. 2) (2). C ₉ H ₆ N.OH. 145.04 38 -toluic acid (1: 2: 3). C ₉ H ₆ (CO ₂ H)(CH ₃ )OH. 152.06	24	" " (4)	$OHC_6H_3(CO_2H)_2$	182.05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	" " (5)	$OHC_6H_3(CO_2H)_2$	182.05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	-phthalic acid (3)	$OHC_0H_3(CO_2H)_2$	182.05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	(4)	$OHC_6H_3(CO_2H)_2$	182.05	
30 -pyridine $(\alpha)$ (2). OH.C ₅ H ₄ N. 95.08 31 " ( $\beta$ ) (3). OH.C ₅ H ₄ N. 95.08 32 " ( $\gamma$ ) (4). OH.C ₅ H ₄ N. H ₂ O. 113.10 -quinoline (bz. 1) (8). C ₅ H ₆ N.OH. 145.04 34 " (bz. 2) (7). C ₆ H ₆ N.OH. 145.04 35 " (bz. 3) (6). C ₅ H ₆ N.OH. 145.04 36 " (bz. 4) (5). C ₆ H ₆ N.OH. 145.04 37 " (pr. 2) (2). C ₆ H ₆ N.OH. 145.04 38 -toluic acid (1: 2: 3). C ₆ H ₃ (CO ₂ H)(CH ₃ )OH. 152.06	28	(4)	$OHC_6H_3(CO_2H)_2$	182.05	
31	29	-purpurin	$C_{14}H_4O_2(OH)_4$	272.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	-pyridine $(\alpha)$ $(2)$	OH.C.H.N	95.08	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	" (β) (3)	OH.C ₅ H ₄ N	95.08	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32	" $(\gamma)$ $(4)$	$OH.C_5H_4N + H_2O$	113.10	<b></b> .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33	-quinoline (bz. 1) (8)	C _o H _o N.OH	145.04	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	" (bz. 2) (7)	C _o H _o N.OH	145.04	
36	35	" (bz. 3) (6)	C _o H _e N.OH	145.04	
37 " (pr. 2) (2) $C_9H_0$ N.OH	36	" $(bz. 4) (5) \dots$	C _o H _o N.OH	145.04	
38 -toluic acid (1: 2: 3) $C_6H_3(CO_2H)(CH_3)OH$ $152.06$	37	" (pr. 2) (2)	CH N.OH	145.04	
39 " " $(1:2:4)$ " $+\frac{1}{2}H_2O$ 161.07	38				
	39		" $+\frac{1}{2}H_2O$	161.07	
		•			т.

F.				<u> </u>	1	1
ă	Sol	ubilit <b>y</b> in 100 (	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color,
1	œ	∞	00	-10-2°	25.2°	
	sol. alkali			abt. 60°		leaflets
	mod. sol.hot		v. soluble	176°		monocl. need.
	5.8518	v. soluble	v. soluble	169°	285°	hex. pris./w
	insol.		sol. bz.	55-6°	216.6°	large leaf./w.
1	s. soluble	v. soluble	v. soluble	66°	246-7°	thin leaflets
1 .	v. s. sol.	soluble	sol. chlo.	0000	120-1°	
	v. v. s. sol.	mod. sol.	mod. sol.	302°	sub.	yel. leaf. or need./al.
9	6.722	v. sol.	v. sol., 1.95 bz. 18°	86°	sub. 100 up	rhomb. tab
10	v. sol. hot	v. soluble	v. soluble	67°	abt.300dec.	needles
11	soluble	soluble	soluble	124.5-5.5°	<b></b>	fine needles
12	v. s. sol.	∞	<b>∞</b>	-20°	196.70°760	oil
13	mod. sol.hot	v. soluble	soluble	104°	240° C.	needles/w
1	s. soluble	v. soluble	v. soluble	115-6°		needles/w
1	soluble	<b>.</b>		139.9° C.	270° dec.	yellowish leaf.
1	s. soluble	v. soluble	v. soluble	170.5° C.		thin leaf./w
	s. soluble	v. soluble	s. soluble	162°		needles
	0.18420	49.6318	23.417	158° C.	sub.	fine need./w.
	0.84318	0.01 ²⁵ bz.	9.7317	200°		rhomb./al
	0.49221	v. soluble	9.4317	213-4°		monoclinic/w
	v. s. sol.	v. soluble	v. soluble	69.5°	1	large plates
22	v. soluble	v. soluble	v. soluble	239°		syrup
24	0.14;2.5100 0.0324	v. soluble v. v. sol.	v. soluble v. soluble	239° 305–6°		long need./w. long needles
	0.06; 18100	v. v. soi. v. soluble	v. soluble	288° C.		needles
	$20^{17}$	v. soluble v. soluble	v. soluble	$\rightarrow$ anhvd.		short pris./w.
27	310	v. soluble	mod. sol.	181° dec.		rosettes/w
28	s. soluble	v. soluble	mod. sol.	no m.p.	sub.	powder
29	v. s. sol.	v. s. soluble	sol. acetone	>275°	sub.	br. red./acet.
30	v. soluble	v. soluble	mod. sol.	106-7°	280-1°	fine need./bz.
31	v. soluble	v. soluble		129°	dist.	needles
32	10015	v. soluble	v. s. sol.	anh.148.5C.		moncl. pris
33	v. s. sol.	v. soluble	s. soluble	75–6°	266.6°C.752	prisms/dil. al.
34	s. soluble	v. soluble		235–8°	sub.	prisms/al.
35	v. s. sol.	s. soluble	v. s. soluble		>360°	small pris./al.
36	sol. alkali		s. soluble	224°		small leaflets.
37	v. s. sol.	v. soluble	v. soluble	199–200°		large pris./al.
38	mod. sol.	v. soluble	v. soluble	145-6°		glit. need./ $\mathbf{w}$ .
39	s. soluble	v. soluble	v. soluble	177–8°		small need./ $\mathbf{w}$
L						

Digitized by GOOSIC

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = L Air = 1 (2).
	Hydroxy-toluic acid			
1		C ₆ H ₃ (CO ₉ H)(CH ₃ )OH	152 06	
2		$C_6H_3(CO_2H)(CH_3)OH \dots$ $C_6H_3(CO_2H)(CH_3)OH \dots$		
3				
4				
5		C ₆ H ₃ (CO ₃ H)(CH ₃ )OH		
6	(	C ₆ H ₃ (CO ₂ H)(CH ₃ )OH		
7		C ₆ H ₃ (CO ₂ H)(CH ₃ )OH		
8	" " (1:3:6)	$C_6H_3(CO_2H)(CH_3)OH$	152.06	
9	Hyenic acid	CH ₃ (CH ₂ ) ₂₃ CO ₂ H	382.40	
10	Hypogaeic acid	$C_{18}H_{29}.CO_2H$	254.24	<b></b>
11	Indican	$C_{14}H_{17}O_6N + 3H_2O \dots$	349.23	
12	Indigo	$(C_6H_4<_{NH}^{CO}>C:)_2$	262.16	
13		$C_{18}H_{10}N_2O_6$		
14	disulphonic acid	$C_{16}H_8N_2O_2(SO_3H)_2$	<b>422.2</b> 8	
15	purpurin	$C_{16}H_{10}N_2O_2$		
16	sulphonic acid	$C_{16}H_9N_2O_2.SO_3H$	342.22	
17	white	$C_{16}H_{12}N_2O_2$	264.18	
	Indirubin			• • • • • • • • • • • • • • • • • • •
	Indol	C ₈ H ₇ N		
20	Indoxyl		1 1	
	Inosite (i.)			1.52415
22	Inulin	$C_{\mathbf{H}} \mathbf{H}_{12} \mathbf{O}_{0} + \mathbf{Z} \mathbf{H}_{2} \mathbf{O} \dots \dots$		1.524 1.539 dry
20	Iodo-acetic acid			1.559 dry
25		CH:CI		
26	-ariline (o )			
27		IC,H,NH,		
28				
29				
30		IC,HANH,	247.06	. <b></b>
31	" (p.)			• • • • • • • • • • • • • • • • • • •
32	-benzene	$C_{6}H_{5}I$	204.01	1.8401#
33	" (K.),	$C_6H_5I$		1.8285#
34	-ethylene	CH,: CHI	154.00	
35	-propionic acid (a)	CH ₃ .CHI.CO ₂ H		• • • • • • • • • • • • • • • • • • •
<b>3</b> 6				
37			218.03	
38		IC ₆ H ₄ .CH ₃	218.03	1.69820
39	" (p.)	IC ₆ H ₄ .CH ₃	218.03	
		'		

Digitized by GOOGLE

ئے	=					
	≕ Sol	ubility in 100 (	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. == Cor-	Crystalline Form and Color.
Mu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
	s. soluble	v. soluble	v. soluble	183.4°		needles/w
	0.14 ²⁵ v. sol. hot	v. v. sol. sol. chlo	v. v. sol.	168° 163–4°		needles/w
	sol. hot	v. soluble	v. soluble	172–3°	voi.in steam	long need./w. needles/w
	mod. sol.			210°	sub.	tablets/w
1 -	v. s. sol.	soluble		177° C.		moncl. pris/al
	v. s. sol.	v. soluble	soluble	206–7° C.	sub.	long needles.
	v. s. sol.	v. soluble s. soluble	v. soluble soluble	151° 77–8°	voi.in steam	long need./w.
	insoluble	v. soluble	soluble	33–4°	230°10 C.	needles
11	v. soluble	v. soluble	soluble	176–7°anhy		brown syrup.
12	insoluble	insoluble	insoluble	390–2°	sub.156-8°°	rhomb./anil
	sol.H ₂ SO ₄	insoluble	insoluble			deep blue pow
	v. soluble	v. soluble				blue amorph.
1	insoluble soluble	soluble soluble	soluble		sub. dec. 200°	choc. need purple
1 .	insoluble	soluble	soluble		uec. 200	white mass
1 .	sol. gl. acet.	mod. sol.				rhomb./anil.
	mod.sol. hot		v. soluble	52°		leaflets
	mod.sol. hot	v. soluble	v. soluble	203°		fine need./w.
	sol. alkali 1012	v. s. sol.	insoluble	225° C.	not vol.	oil moncl./w
	0.00115	v. s. sol.	insoluble	178° dec.	dec. 160°	v. fine cryst
	v. soluble	v. soluble	v. soluble	84°		rhomb. tab
	mod. sol.				29–32°	
	v. s. sol. insoluble	v. soluble soluble		56 . 5° 25–7°		fine needles
	insoluble	soluble		63°		leaflets need. or pris
	soluble			183.6° C.		needles
30	s. soluble			186.5° C.		
	v. s. sol.			217.6° C.	100 40756	
	insoluble insoluble	soluble soluble		−28.5° C. −28-9°	188.4 ⁰⁷⁵⁶ 186.5–8.5°	usually red
34		POTUDIG		-20-9°	180.5-8.5°	usuany reu
	s. soluble	v. soluble	v. soluble	44.5-5.5°		warts or pris.
36	v. s. sol.	v. soluble	v. soluble	82°		leaflets
	insoluble			- · · · · · · · · · ·	211°	
38	insoluble			35°	204° 211.5°	leaflets
00	meorable			00	£11.0	oogle
_					Digitizad by	COOLE

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — I. Air — I (A).
	lodoform			
	Iodosobenzene			
3	Iodoxybenzene	$C_6H_5IO_2$	236.01	
4	Isatane			
5	Isatine	$C_6H_4<_N^{CO}>COH$	147.08	
6	Isatine chloride	C _s H ₄ ONCl	165.52	
7	Isatinic acid	NH ₂ .C ₆ H ₄ .CO.CO ₂ H	165.10	
8	Isatoic acid, anhydride	$C_8H_5NO_8$	163.08	
	Isatoxime			
	Isatronic acid			
	Isatyd			
	Isoamyl-acetate			
13		$C_2H_3O_2.C_5H_{11}$		
14		(CH ₃ ) ₂ CH.(CH ₂ ) ₃ CO ₂ H		
15	alcohol	(CH ₃ ) ₂ CH ₂ (CH ₂ ) ₂ OH ₂	88.10	0.8104*
16	" (K.)	(CH,),CH.(CH,),OH	88.10	0.810812#
17	" (sec.)	(CH ₃ ),CH.CH(OH).CH ₃ .	88.10	0.8198
18		$C_6H_5.C_5H_{11}$ $C_8H_6CO_2.C_8H_{11}$		
19 20		$C_5H_{11}Br$		
21		$C_8H_7CO_2.C_5H_{11}$		
22	carbamate (K)	$NH_2.CO_2.C_5H_{11}$	131 15	0.00204
23	chlorecetate (K.)	$CH_2Cl.CO_2.C_5H_{11}$	164 55	1 041 <b>8</b>
24	chlorearbonate (K)	$Cl.CO_2.C_5H_{11}$	150 54	1 024#
25	chloride	(CH ₃ ) ₂ CH(CH ₂ ) ₂ Cl	106 54	0 862535
26	cvanide	$(CH_3)_2CH(CH_2)_2CN$	97.13	0.80751
27	formate	HCO ₂ .C ₅ H ₁₁	116.10	0.8944
28	iodide	(CH ₂ ) ₂ CH(CH ₂ ) ₂ I	198.06	1.473430
29		$(CH_3)_2$ CH $(CH_2)_2$ NC		
30	isovaleriate	$C_5H_9O_2.C_5H_{11}$	172.16	0.8700
31	" (K.)	$C_5H_9O_2C_5H_{11}$	172.16	0.855#
32	mustard oil	C ₅ H ₁₁ N.CS	129.19	0.941917
33	nitrate	C.H.,NO	133.13	$1.000^{7.5}$
34	nitrite	$C_bH_{11}NO_2$	117.13	0.88015
35	phenol (p.)	$[\mathbf{C_6H_{11}}.\mathbf{C_6H_4OH}]$	164.13	
36	phenylketone	$C_5H_{11}.CO.C_6H_5$	176.13	
37	propionate	$[C_2H_5CO_2.C_5H_{11}]$	144.13	0.8877₹
38	salicylate (K.)	OH.C.H.CO.C.H.	208.13	1.045
39	sulphide	$(C_5H_{11})_2S$	174.24	0.843¥
<b>4</b> 0	Isoanthracene	$\left[\mathrm{C}_{14}\mathrm{H}_{10}.\ldots\ldots\right]$	178.08	
		Digitized	Coo	σle

ěď.	Sol	ubilit <del>y</del> in 100 (	c.c.	Melting	Boiling	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Corrected.	Boiling Point, °C. C. = Cor- rected.	Form and Color.
-	insoluble	1.318	soluble	119°	sub.	yel.hexag.tab.
	mod. sol.	mod. sol.	insoluble		explodes	amorphous
	v. v. s. sol.	v. sol. bz.	v. sol. chlo.		expl. 238°	long need./w.
4	insoluble	soluble	soluble			warts
5	s. soluble	soluble	s. soluble	200–1°	sub.	prisms
1	insoluble	<b>s</b> oluble	v. soluble	180° dec.		brown need.
	s. soluble				dec.	crystals
"	0.7100	abt. 3 ⁷⁸	s. soluble	240° dec.		monoclinic .
	v. s. sol.	soluble	s. KOH	202° dec.		long yel.need
	v. v. s. sol.	v. soluble	v. soluble	156-7°	dec.	leaflets/dil.al.
	v. v. s. sol.	v. s.sol.		237–7.5°	dec.	micro. cryst
	s. soluble	90	∞		139°	
	v. v. s. sol.	∞	••	• • • • • • • • • • • • • • • • • • • •	138-42°	colorless
	v. s. sol.	∞ _	∞		215–21°	colorless
	2.67222	*∞	∞	-117.2°	131° C.	
- 1	2.5 ²⁵	∞	∞		130-2°	colorless
17					112.5°	
18	· · · · · · · · · · ·	• • • • • • • • • •			201-2°760	
19		soluble			261-2°	
	insoluble	soluble			118.6°	· · · · · · · · · · · · ·
	s. soluble	v. soluble	v. soluble	01 00	178.6°	1 - 0 4-
	s. soluble	soluble	soluble	61-2°	221-3°	leaflets
	insoluble v. s. sol. dec	00	00		189-92°	wh. →yel
	v. s. soi. aec insoluble	<b>∞</b>	∞	• • • • • • • • • •	151–6° 100.9° C.	wh. →yel
26	msoluble	soluble soluble			155.48°	
27		soluble soluble			123.3°	· · · · · · · · · · · · · · · · · · ·
28		soluble soluble			148.2° C.	
	insoluble	soluble soluble			137°	
30	meordore	soluble	soluble		194 ⁰⁷⁶⁰	
	v. v. s. sol.	soluble	soluble oo		191–3°	colorless
32	v. v. s. soi.	BOIUDIG	. •		183–4°	coloriess
33		soluble			147-8°	
	in <b>s</b> oluble	00 00 00 00 00 00 00 00 00 00 00 00 00	<b>x</b> o		990	
	v. s. sol. hot	•	~	92–3°	255°	long need./w.
36					241.5-2.5°	iong now./ w.
37		soluble			160.2°	
J I	insoluble	v. soluble	∞		268-73°	wh. →yel
39					216°	
40		s. soluble	s. soluble	133.5-4.5°		pearly leaflets
						hagla
_			·		- District Land	-0.016

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Isoanthraquinone	C ₁₄ H ₈ O ₂	208.06	
2	Isobutane	(CH ₃ ) ₂ CHCH ₃	58.08	
3	Isobutyl-acetate			
4	alcohol	$(CH_3)_2CH.CH_2OH$	74.08	
5	"	(CH ₃ ) ₂ CH.CH ₂ OH	74.08	0. <b>7995</b>
6	aldehyde	(CH ₃ ) ₂ CH.CHO	72.06	0.7938∜
7	amine	(CH ₃ ) ₂ CHCH ₂ NH ₂	73.13	0.724 ²⁰
8		$C_6H_5.C_4H_9$		
9		C ₆ H ₅ CO.C ₄ H ₉		
10		(CH ₃ ) ₂ CH.CH ₂ Br		
11		C ₃ H ₇ CO ₂ .C ₄ H ₉		
12		NH ₂ .CO ₂ .C ₄ H ₉		
13		$Cl.CO_2.C_4H_9$		
14		(CH ₃ ) ₂ CH ₂ CH ₂ Cl		0.883615
15		(CH ₃ ) ₂ CHCH ₂ CN		
16	ether	$(C_4H_9)_2O$	146.15	0.761618
17		$HCO_2.C_4H_9$		
18	iodide	(CH ₃ ) ₂ CH.CH ₂ I	184.04	1.613818
l 9		$(CH_3)_2CH.CH_2CO_2.C_4H_9$ .		
20		(C ₄ H ₉ ) ₂ CO		
21	mustard oil	C ₄ H ₆ .NCS	115.17	0. <b>943</b> *
22		$(CH_3)_2CH.CH_2.NO_3$		
23	phenylketone	$C_4H_9.CO.C_6H_5$	162.11	0.99317
24	tartrate (K.)	<[CH(OH).CO ₂ .C ₄ H ₉ ] ₂	262.18	
	Isobutyric acid	$ (CH_a)_2CH.CO_2H$	88.06	0.948 <b>7</b> ♥
26	" (K.)	(CH ₃ ) ₂ CH.CO ₂ H	88.06	0.946#
27	amide (K.)	(CH ₃ ) ₂ CH.CONH ₂	87.11	
28		$[(CH_3)_2CHCO]_2O$		
	Isocaproic acid			
30	Isocinchomeronic ac	$[2:5,C_5H_3N(CO_2H)_2+H_2O]$	185.10	1
31	Isocinnamic acid	$C_6H_5CH: CH.CO_2H$	148.06	
32	Isocitric acid	$C_{0}H_{8}O_{7}+H_{2}O$	210.08	
	Isocymene (m.)			
34	Isocrotonic acid	CH ₃ .CH: HC.CO ₂ H	86.05	1.03124
35	Isodulcite	CH ₃ (CHOH),CHO+H ₂ O	182.12	1.4708
36	Isodurene	$[1:2:3:5C_6H_2(CH_3)_4$	134.12	0.8961
37	Isoeugenol 1: 3: 4	$\cdot$ $\mid$ $C_{10}$ $H_{12}$ $O_2$ $\dots$ $\dots$	164.10	1.0907
38	Isoheptane	$\cdot   (CH_3)_2 CH (CH_2)_3 CH_3 \dots$	100.13	0.7067
39	Isoheptoic acid	$ (\mathrm{CH_3})_2\mathrm{CH}(\mathrm{CH_2})_3\mathrm{CO}_2\mathrm{H}\dots$	130.12	0.912219
40	Isohexane	$\cdot   (CH_3)_2 CH (CH_2)_2 CH_3 \dots$	86.12	2 0.6 <b>765</b>
41	Isohexylaldehyde	$ (CH_3)_2CH(CH_2)_2CHO$	100.10	){

Number.	Solu	ıbility in 100 c	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1				211–2°		pale yel, need.
2		• • • • • • • • •			-11.5°	
	s. soluble	90	∞ ∞		116.3°	
-	soluble	∞ ′	∞	- 108°	108 . 0°762	vitreous
-	9.5518	90	∞		105.5-6.5°	colorless
-	9.0	∞			63–4°	
7	∞				68-9°	
8					170-0 ,5° C.	
	insoluble	∞	∞		241.5° C.	
	insoluble	∞	∞		89.5–91°	wh. →yel
11					156.9°	
	s. soluble	soluble	soluble	63.4°	205–7°	leaflets
_	v. s. sol. dec	∞	∞		127-30°	wh. →yel•
14					68.5°	
	s. soluble			<b></b>	1540750	
	soluble	· <b>o</b> o	∞		122-2.5°	
	1.01			$thick-75^{\circ}$	98.5°	
18				-90.7°	120.4° C.	
	insoluble	∞	∞		167-70°	colorless
	insoluble				181-2°	
21				1	162°	
	insoluble	∞	∞		122-3°	colorless
23					225–6°	• • • • • • • • • • • • • • • • • • •
24		v. soluble	v. soluble	68-9°	[ <b></b> .	wh. scales
	2020	∞ ∞	<b>∞</b>	-79°	155.5°	
26		∞ ∞	× ×	-79°	153-4.5°	
	v. soluble	v. soluble	s. soluble	128–9°	<i></i>	leaflets
	insoluble				182.5°	
	s. soluble	soluble	soluble	>-18°	207 . 7° C.	
	v. v. s. sol.	v. s. sol.	v. s. sol.	236°	sub.	v. sm. cryst.
	s. soluble	v. soluble	v. soluble	59°	265° dec.	moncl. pris.
	v. s. sol.	v. s. sol.	v. s. sol.	→anh. 100°		prisms [/lig.
33	1		[	$<-25^{\circ}$	175–6°	
	40			15.5°	171.9°dec.	long needles
	57.11 ¹⁹	soluble	54 meth.al.	92–3°		large mon./w.
36		soluble		low	195–7°	
37	1	soluble	soluble	abt 10°	267.5° C.	
38		soluble	soluble		90.3°	
39	1	[			209°	
40	·	soluble	soluble		62°	
4	s. soluble	soluble	<b></b>		1210743	
L						- T
					Digitized by	<del>oogie -</del>

Number.	Name.	Formula.	Molecu- lar Weight.	Water = 1.
1	  Isohexylamine (K.)	(CH ₃ ) ₂ CH(CH ₂ ) ₂ CH ₂ NH ₂	101.16	0.759
2	Isohydrobenzoin	$C_{14}H_{12}(OH)_2$	214.12	
3	Isohydronaphthoquinone	$C_{10}H_8O_2$	160.06	
_	Isomalic acid	$CH_3$ . $C(OH)(CO_2H)_2$	134.05	
	Isomannid	$C_{\bullet}H_{10}O_{\bullet}$	146.08	
	Isonicotinic acid	C.H.N.CO.H	123.08	0.00070
7	Isopentane	CH ₃ ) ₂ CHCH ₂ CH ₃	12.10	0.6387*
9		$C_6H_4(CHO)_2$	194.05	
10		$C_6H_4(CN)_2$		
	Isoprene	CH. CH C(CH.) CH	68 06	0.682320
12	Isopropyl-acetate	CH.CO. CH(CH.)	102.08	
13		(CH,),CH.C: CH		0.6854
14		CH ₃ .CH(OH).CH ₃		0.7909H
15	" (K.)	CH ₃ .CH(OH).CH ₃	60.06	0. <b>796#</b>
16			59.11	0.69018
17	benzoate	$C_6H_5CO_2CH(CH_3)_2$		
18				
19		(CH ₃ ) ₂ CH.Br		
20		(CH ₃ ) ₂ CH.Cl		0.857#
21		(CH ₃ ) ₂ CHCN		
22	ether (K.)	[(CH ₃ ) ₂ CH] ₂ O	102.12	0.7247*
23 24	etnylene	(CH ₂ ),CH.CH: CH ₂	150 16	0 04117
24 25	indida (IZ.)	$C_3H_7$ .CO. $C_6H_{13}$	160.10	1 7052
26 26	igogyanida	$(CH_3)_2CH.NC$	60 NO	1.700# 0.75060
27	ketone	[(CH ₃ ) ₂ CH] ₂ CO	114 12	0.7000
28	phenylketone	$(CH_3)_2CH.CO.C_6H_5$	148.10	
29	pyridine (a)	$(CH_3)_2CH.C_5H_4N$	121.13	0.9342
30	" (γ)	$(CH_3)_{\bullet}CH.C_{\bullet}H_{\bullet}N$	121.13	0.94390
31	sulphide	[(CH ₃ ) ₂ CH] ₂ S	118.18	
32	Isoquinoline	(2)C ₀ H ₇ N	129.10	1.0986₹
33	Isosaccharic acid	< (CH(OH).CH(CO ₂ H)) ₂	192.07	
		>0		
34	Isosuccinic acid	$CH_3CH(CO_2H)_2$	118.05	1.455
35	Isovaleric acid	$(CH_3)_2CHCH_2CO_2H$	102.08	0.93120
36	",     ,    " (K.)	(CH ₃ ) ₂ CHCH ₂ CO ₂ H	102.08	U.929#
37	aldehyde		86.08	0.804018
38	amide	(CH ₂ ) ₂ CH ₂ CONH ₂		
<b>39</b>	Itaconic acid	Un ₂ : U(UU ₂ H).Un ₂ UU ₂ H		1.573-1.632
40	Ketene	n ₂ U: UU	42.02	
		Digitira di b	(-00	ole

Number.	Sol	ıbili <b>ty</b> in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	s. soluble				123–5°	wh. →yel
	0.215	v. soluble	v. soluble	121°		mon. pris./w.
3		soluble	soluble	unstable	1000	small needles
	v. soluble	v. soluble	v. soluble insoluble	abt. 140° d. 87°	dec. 160° 274°	monoclinic
	v. soluble s. soluble	mod. sol. v. v. s. sol.	v. s. sol.	87° 315°	sub. dec.	needles/w
7	s. soluble	v. v. s. soi.	v. s. soi.	<-24°	30.4°	needles/w
Q	0.01325	mod. sol.		<300°		long need./w.
	s. soluble	v. soluble		89–90°		long needles.
	s. sol. hot	sol. hot		156°		fine needles
11					35.8°	
12	s. soluble	œ	<b>∞</b> 0		90-3°	
13					28-90751	
14	∞	∞ .	∞	-85.8°	82.85° C.	cryst
15	<b>∞</b>	∞	∞		81–3°	
16	∞		<b>.</b>		33 <del>-4</del> °	
17					218.5° C.	
	sol. hot			51°		prisms/w
1 1	insoluble	∞	∞		59-60°	colorless
	v. s. sol.	∞	· ∞		35-36.5°	colorless
21 22				;	107–8° 69° C.	· · · · · · · · · · · · · · ·
23	• • • • • • • • • •				21 . 1–1 . 3°	· · · · · · · · · · · · · · · · · · ·
24	• • • • • • • • •				200–10°	
1 1	insoluble	oo	οn	(-89-91°)	88.5-9.5°	wh. →brown.
26		<b>~</b>	~	( 00 01 )	87°	
27					123.7°	
28					217°	
29	s. soluble				158-9°	
30					177-8°	
	insoluble	soluble	soluble		120.50768	
	hydroscopic			24.6°	240°	
33	v. soluble	v. soluble	s. soluble	185°	dec.	rhombic
34	44.30	v. soluble	v. soluble	135° dec.	sub.	prisms
35	9150, 4.220	<b>∞</b>	90	-51°	176.3° C.	
36	s. soluble	∞	<b>∞</b>	-51°	173-6°	
37	s. soluble	soluble	soluble	-51°	92.5°	
	soluble	soluble	soluble	126-8°	230–2°	
	8.320	2516	s. soluble	161° dec.	not in steam	rhombic
40	reacts	∞	soluble	−151° C.	−56° C.	· · · · · · · · · · · · · · · · · · ·
				l		Loglo-

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Ketobutyric acid			1.20017
	Ketoheptamethylene			
	Ketopentamethylene			
	Lactamide	CH ₂ .CHOH.CONH ₂	89.10	
	Lactic acid (i.)	CH ₃ .CHOH.CO ₂ H		1.2485∜
6			162.08	
7	Lactid	$C_6H_8O_4$		
	Lactyl urea	$C_4H_5N_2O_2+H_2O$	131.14	• • • • • • • • • • • • • • • • • • •
	Laevulin		162.08	
	Laevulinic acid	$CH_3.CO.(CH_2)_2CO_2H$	116.06	1.13674
11		CH ₃ .CO.(CH ₂ ) ₂ CHO		
	Lauric acid			
13		C ₁₁ H ₂₃ .CHO		
	Lead tetraethyl			
15		Pb(CH ₃ ) ₄		
	Lecithin (protagon)			
	Lepidine			
10	Leucine	CH ₃ (CH ₂ ) ₃ CH(NH ₂ )CO ₂ H	131.10	1.293.
19	Leucinic acid Leukaniline	(NHCH) CHCH (NH)	202.10	
20	Leukamme,	$(NH_2O_6H_4)_3OHO_6H_3(NH_2)$ $CH_3$	303.29	
21	" (6)		260 26	
22	" (p.)	$CH(C_6H_4NH_2)_8$	280 28	
	Leukaurine			
24	Linoleïc acid	C H O	252 23	0 920614
25	Lophin	C H N	296 21	0.0200
	Lutidene (a)			
27		$(CH_3)_2C_5H_3N$		
28		$(CH_3)_2C_5H_3N$		
29	" (3, 4)	(CH ₃ ) ₂ C ₅ H ₃ N	107.11	
	Lutidinic acid	$C_5H_3N(CO_2H)_2 + H_2O$	185.10	
			116.03	
32		C,H,O,		0 . 9339¥
33	Malic acid (i.)	СО,Н.СН,.СНОН.СО,Н		
34		CO2H.CH2.CHOH.CO2H.		
_	Malonic acid			
36	I	CO2H.CH2.CO2H		
37	Maltose	$ C_{12}H_{22}O_{11}+H_{2}O_{11}$		
	Mandelic acid (i)	C,H,CHOH.CO,H		
39	Mannid	$C_6H_{10}O_4$		
40	Mannite (d.)			
		l	000	ماء

Number.	Solu	Solubility in 100 c.c.  Melting Point, °C. Point, °C. C. = Cor- C. = Cor-		Boiling Point, °C.	Crystalline Form	
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1					78°25	oil
- 1	s. soluble	v. soluble	soluble			oil
3					130–0.5° C.	
	v. soluble	v. soluble	:	74°		crystals
5	∞ .	∞	∞.	18° (d) 25°	83°1, 119°12	syrup
	v. s. sol.	v. soluble	v. soluble	dec. 250–60		amorphous
. 1	v. s. sol.	v. s. sol.		128°	255°	moncl.tab./al
	v. soluble	v. soluble	v. v. s. sol. insoluble	anhy. 145° 174°		rhomb. prism
10	$ \frac{\text{deliq.}}{\infty} $	10 ²² 84% v. soluble	v. soluble	32.5–3°	250–3° C.	amorphous leaflets
11	8	v. soluble	v. soluble	32.5-3° < -21°	186–8° dec.	
	insoluble	soluble	soluble	43.6°	225°100	needles/al
13		soluble	soluble	44.5°	184-5°100	leaflets
- 1	insoluble			11.0	200°	leaneus
					110°	]
	insoluble	soluble	soluble	1	dec.	waxy
	insoluble	00	00	<0°	261-3°	
18	2.218	0.0617		sub. 170°	dec.	leaflets
19	soluble	v. soluble	v. soluble	78°	sub. 100°+	pris. or need
20	s. sol. hot	v. soluble	s. soluble	100°		sm. cryst./w.
	<b></b>	soluble		165°		brown cryst
22		soluble		148°		leaflets [/al.
	s. soluble	v. soluble	sol. acet.		<i>.</i>	white pris.
1. (	insoluble	∞	∞	<-18°		yellow oil
	insoluble	$0.88^{21}$	$0.32^{20}$	275°		needles
	25; less hot				156°	
	20; less hot		· • • • · · · · · ·		157°	
	∞ cold: less				142–3°	
	[hot			020 409	163.5-4.5°	4-11
ე∪ 91	mod. sol. 50 ¹⁰	soluble soluble	insoluble soluble	239–40° 130°	dec. 135°	tab. or leaf
32		soluble	soluble	60°	202° C.	moncl. prisms
	v. soluble	v. soluble	v. soluble	130–1°	202 C.	trimetric
	delig.	s. soluble	s. soluble	100°	decomp.	needles
	73.5 ²⁰	soluble	8. 0 ¹⁵	132°	decomp.	triclinic
	139.3715	soluble	soluble	132–3° dec	decomp.	triclin. leaf
	soluble	s. soluble	DOZUDIO			fine needles.
	15.9520	soluble	soluble	118.1°	dec.	large rhombic
	v. soluble	v. soluble		[	297–317°	syrup
	15.618	0.0714	insoluble	169 .0° C.	290-508-3-5	rhombic pris.
	1					F

Digitized by GOOGLE

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Mannite hexanitrate	[CH ₂ NO ₃ (CHNO ₃ ) ₂ ] ₂	452.30	
	Mannoheptite			
	Mannoheptose (d.)			
	Mannose (d.)			
5	Margaric acid	C ₁₆ H ₃₃ CO ₂ H	270.27	
	Meconic acid			
	Meconine			
ð	Melam	(CNI NIT)	235.51	• • • • • • • • • • • •
11	Melene	C H CO H	420.48	บ.ช9
1 1	Mellitic		249 05	• • • • • • • • • • • • • • • • • • • •
12	Menthol		342.05	0.00018
13	Menthon (l.)		154.15	0.890**
1 5	Mercuric cyanide	Ha(CN)	050 NO	4 000622
	mercure cyanide	11g(O14) ₂	202.00	4.0020
16	mercantide	$(C_2H_5S)_2Hg$	322 20	
	Mercuric ethyl			
18	fulminate	$C_2N_2HgO_2 + \frac{1}{2}H_2O$	293.09	44.42 anhv.
19	methyl	$Hg(CH_3)_2$	230.05	3.069
20		$ H_{\mathbf{g}}(C_{10}H_{7})_{2}$		
21	phenyl			
22	Mesaconic acid	CH ₃ (CO ₂ H)C: CHCO ₂ H	130.05	
23	Mesitol 1: 3: 5: 2	(CH ₃ ) ₃ C ₆ H ₂ OH	136.10	
	Mesitylene 1: 3: 5			
25	Mesitylinic acid 1:3:5	(CH ₃ ) ₂ C ₆ H ₃ CO ₂ H	150.08	
26	Mesityl oxide	(CH ₃ ) ₂ C: CHCOCH ₃	98.08	0.856818
27	Mesotartaric acid	$ (HO)_2C_2H_2(CO_2H)_2+H_2O $	168.06	1.666
	Mesoxalic acid			
		(C ₂ H ₄ O) ₄		
		$(C_8H_8)_x$	104.06	1.05413
	Methane	CH ₄		
	Methoxy-benzamide (o.)	$CH_3O.C_6H_4CO.NH_2$		
3	" (p.)	CH ₃ O.C ₆ H ₄ CO.NH ₂		
4	benzoic acid (o.)		152.06	
5	" " (m.)			
	Methyl-acetanilid	$C_2H_3O.N(CH_3)C_6H_5$	149.13	
7	acetate	CH ₃ CO ₂ .CH ₃	74.05	0.9410¥
8	aceto-acetate (K.)	CH ₃ CO.CH ₂ CO ₂ CH ₃		
9			144.10	
0	acrylate	$C_3H_3O_2.CH_3$	86.05	J.973°

^{*} Sol. CS₂, s. sol. bz.

[†] V. sol. CS₃, chlo., and bz.

Number.	Sol	Solubility in 100 c.c.  Melting Point, °C. C. = Cor- C. = Cor-		Crystalline Form		
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Corrected.	and Color.
	insoluble	2.913	49	112–3°	exp. 120°	needles
-1	6.314	v. s. sol.	· · · · · · · · · ·	188° C.		small needles
	v. soluble	s. soluble		134–5° C.		v. fine need.
	248 ¹⁷	0.417.5 abs	insoluble	132–3° C.		rhombic/al
	insoluble	s. soluble	v. soluble	59.9°	2270100	crystals
6	s. sol.; 25 ¹⁰⁰	s. <b>s</b> oluble	s. soluble			rhomb. tab
	$0.14;4.5^{100}$			102-2.5°	sub.	glit. needles
	insoluble	sol. KOH				orange powd.
- 1	s. soluble	s. soluble	insoluble			monoclinic
1		$0.13; 3.6^{78}$	abs.]	62°	370-80°	crystals
	insoluble	v. s. sol.	v. s. sol.	91°		silky scales
	v. v. sol.	soluble		286–8°	dec.	fine silky nee .
- 1	v. s. sol.	soluble	soluble	42.5°	211–3°	trimorphous.
	i <b>ns</b> oluble	∞ ∞	$\infty$ CS ₂ & bz.		206.3° C.	
15	$12.5^{15}$	10.117	44.219	dec. 320-		quad. prisms.
			wood al.	400°		
16		v. s. sol; 8 ⁷⁸	. <b></b>	76–7°	dec.	leaflets/al
	insoluble	s. soluble	soluble		159°	
18	0.07112	s. sol. hot		exp. 180°		needles/w
19	insoluble				96°	
20	insoluble	s. sol. hot	s. soluble *	187–8°		leaf./bz
	insoluble	mod.sol.hot	†	125–6°	$>$ 306 $^{\circ}$ dec	rhomb. pris.
	2.718	39	‡ soluble	202°	sub.	need./w.or al.
23	insoluble	v. soluble	v. soluble	68-9°	219.5° C.	crystals
24	insoluble	soluble	soluble	-57.5°	164.5°	
	v. s. sol.	v. soluble		166°	sub.	moncl./al
	soluble	∞			128.39°	
27	12015			140-3°		rectang. tab
28			s. soluble	119-2 <b>0°</b>		needles
29	insoluble	1.870	0.535		sub. 150°	tetragonal
30			v. v. s. sol.	dec.		vitreous
31	5.45 cc.º	52.2 cc.	soluble	-184°	$-160^{\circ 760}$	
32	soluble			129.0° C.		leaflets/w
	s. soluble			162-3°	• • • • • • • • • •	
34	$0.5^{30}$			98. <b>5°</b>	200°+	moncl.tab./w.
35	s. soluble	v. soluble	v. soluble	106-7°	sub.	long need./w.
		soluble		102– <b>4</b> °	253°712 C.	prisms./al
	33 ²² [hot	∞	∞	-98.7°	57 . 5°	· · · · · · · · · · · · · · · · · · ·
	v. s. sol.	∞	∞		169–73° dec	wh. $\rightarrow$ yel.
39					186.8°	
40					80.3° C.	
						т

[‡] Very soluble chloroform, carbon disulphide, and ligroene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Methyl-acrylic acid,.			1.0153*
	Methylal	HCH(OCH ₃ ) ₂		0.8621
3	" (K.)	HCH(OCH ₃ ) ₂		0.855
	Methyl alcohol	CH ₃ OH		0.7913*
5	" (K.)	CH ₃ OH[(OH) ₂		
6				
7 8	allene	CH ₂ : C: CHCH ₃	54.05	0.00420
9	allyl carbinol	CH ₂ : CH.CH ₂ .CH(OH).	80.08	0.834%
10	ether	CH ₃ OC ₃ H ₅ [CH ₃	21.00	0.77 ¹¹ 0.699 ⁻¹¹
		CH ₃ NH ₂		
11		CH ₃ NH ₂	31.08	$0.699\frac{-10.8}{15}$
12	amyl-acetylene (n.)	CH ₃ (CH ₂ ),C; C.CH ₃	110.12	
13	amyl ketone	CH ₃ .CO.C ₅ H ₁₁	114.12	0.8346
14	aniline	CH ₃ NHC ₆ H ₆	107.11	0.0991218
15 16	" (K.)	CH ₃ NHC ₅ H ₅	107.11	0.9855##
17	anthracene $(\alpha)$	$C_0H_4$ : $(CH_2)_2$ : $C_0H_3$ . $CH_3$ .	192.10	
18		$C_6H_4$ : $(CH_2)_2$ : $C_6H_3$ . $CH_3$ $CH_3$ . $C_6H_3$ ( $CO$ ) $_2C_6H_4$		
19		$CH_3.C_6H_3(CO)_2C_6H_4$ $CH_3.AsO(OH)_2$		
20		CH ₃ AsCl ₂		
21		CH ₃ AsO		
22		CH ₃ AsH ₂		
23	benzoate	C ₆ H ₅ CO ₂ .CH ₃	136.06	1 0937¥
24		C ₆ H ₅ CO.CH ₂ .CO ₂ .CH ₃		
25	benzyl ketone	CH ₃ .CO.CH ₂ .C ₆ H ₅	134.08	1.0108
26		(CH ₃ ) ₃ BO ₃		
27		CH ₃ Br		1.7320
28	butyl carbinol	CH ₃ .CH(OH)C ₄ H ₉	102.12	0.83270
29		CH ₃ .O.C ₄ H ₉	88.10	0.76350
30	" ketone	CH ₃ .CO.C ₄ H ₉	100.10	0.830
31	butyrate	$C_3H_7CO_2.CH_3$		
32	butyrone			0.82716
33	caprate	$C_9H_{19}CO_2.CH_3$	186.18	
34	caproate	$C_5H_{11}CO_2.CH_3$	130.12	0.9039
35	caprylate	C,H ₁₈ CO ₂ .CH ₈	158.15	0.8942
36	carbamate (K.)	NH ₂ .CO ₂ .CH ₃	75.08	1 00125
37	cnioracetate (K.)	CICH ₂ .CO ₂ .CH ₃	108.49	1.23198
38		Cl.CO ₂ .CH ₃		0.010718
39	cnioride	CH ₃ Cl	169 09	0.919718
40 41	cinnamate	C ₆ H ₅ CH: CH.CO ₂ .CH ₃ C ₈ H ₅ CO ₂ CH ₃	100.08	0.09150
41	w-crotonate	081150020113	100.00	0.3000

Number.	Sol	ubility in 100 (	c.c.	Melting Point, °C. C. = Corrected.	Boiling Point, °C. C. = Cor-	Crystalline Form
Nux	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	mod. sol.			16°		long prisms
2			. <b>.</b>		45.5°	· · · · · · · • • • • • •
	28.5	∞	∞		41-3°	· · · · · · · · · • • • •
4	∞ ∞	90	∞	-97.8°	66.78°	· · · · · · · · · · · · · ·
5		00	00	-95°	65.7-66.3°	· · · · · · · · · · · · · · · · · · ·
6	sol. acetone	soluble	soluble	250-2°	sub. 200°	orange need.
7				<b> ,</b>	18-19°	
	12.5			<b></b> .	115-6°750	
9				. <b></b> .	46°	
10	1150 cc. 12.5	sol.		<b></b> .	-6-6.5°	
	v. soluble	<b>∞</b> .	soluble		6-5.5°	
12				<b></b>	133-4°	· · · · · · · · · · · · ·
13	• • • • • • • • •				151-2°	<b></b>
14			soluble	-80°	198.8°	
1	s. soluble	soluble	∞		193 <b>–4°</b>	yellow
	sol. bz.	sol. $CS_2$		199- <b>200°</b>		leaflets/al
	sol. bz.	s. soluble	s. soluble	207°		wh. scales
	v. v. sol. b <b>z</b> .	v. s. sol.	soluble	177°	sub.	wh't needles.
	soluble	soluble	<b></b>	<b></b> .		large leaf./al.
20		•		<b></b>	133°	
21		• • • • • • • • •	sol. bz.	95°	dec.	warts/CS ₂
22	0.00085	∞ ∞	∞ .	<i>i</i>		<b></b>
	insoluble	∞ ∞	∞		198.6° C.	
24	insoluble	∞ ∞	∞		260–5° dec.	$wh. \longrightarrow yel$
25		soluble		27°	215°	
26			<b></b> .		65°	· · · · · · · · · · · · · ·
	s. soluble	soluble		<-84°	4.50758	<b></b>
	v. s. sol.	soluble		· · • · · · • • · ·	136°	- • • • • • • • • • • • • • • • • • • •
29	• • • • • • • • • • •	· · · · · · · · · ·			70.3°	
30					127.37°	
31		∞	∞ ∞		102-3°	· · · · · · · · · · · · ·
32	. <b></b> .				180°	
33	. <b></b>		. <b></b>		223.5°	<b></b>
34					149.6°	·
35				-40°	192.9°	<u>  .</u>
	v. soluble	v. soluble	soluble	54-5°	177-8°	flat prisms
	v. s. sol.	∞ ∞	΄ ∞		130-2°	colorless
38	decomp.	∞ ∞	∞		72–5°	colorless
	400 c.c.	3500 с.с.		-103.6°	-23.73°	
40	1		soluble	36°	259.6°	
41	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		120.7°	
_	<u> </u>	1	1	<u> </u>	1	·

Digitized by GOOSIC

Number.	Name.	Formula	Molecu- lar Weight.	Water = 1.
	Methyl			
1		CN.CH ₂ .CO ₂ .CH ₃	99.08	1.128
2	cyanide	CH ₂ CN	41.03	0.778423
3	" (K.)	CH ₂ CN	41.03	0.784
4	diethyl carbinol	$(C_2H_5)_2.C(OH).CH_3$	102.12	0.823720
5	dimethyl-aceto-acetate	CH ₃ CO.C(CH ₃ ) ₂ CO ₂ CH ₃	144.10	0.999#
	(K.)		ì	İ
6	ether	(CH ₃ ) ₂ O	46.05	
7	ethyl acetic acid	$CH_3(C_2H_5)CH.CO_2H$	102.08	0.938
8		CH ₃ CO.CH(CH ₃ )C ₂ H ₅	100.10	0.8181
9	" carbonate	CH ₃ .CO ₃ .C ₂ H ₅	104.06	1.0022
10		CH ₃ .O.C ₂ H ₅	60.06	0.72520
11	ketone	CH ₃ .CO.C ₂ H ₅		0.804520
12	" (K.)	CH ₈ .CO.C ₂ H ₅	72.06	0.8045
13	" ketoxime (K.)	CH ₃ .C(NOH).C ₂ H ₅	87.11	0.92135
14	-maionic ac. (K.)	$CH_3C(C_2H_3) < (CO_2H)_2$ $CH_3O.C_2O_2.OC_2H_5$	140.08	1 15560
15	" OXAIATE	$CH_3O.C_2O_2.OC_2H_5$	132.00	1.1550
16	" succinate	$C_4H_4O_4(CH_3)C_2H_5$ $CH_3.S.C_2H_5$	76 19	0.83693
17 18	guipmae	$CH_3F$	24.02	0.83094
19	formate	HCO ₂ .CH ₃	60.03	0.0860
20	furfural (2.5)	CH ₃ .C ₄ H ₂ O.CHO	110 05	1 100718
21	glycorate (K)	CH ₂ OH.CHOH.CO ₂ CH ₃ .	120.06	1 2703
22	glycelate (K.)	OHCH ₂ .CO ₂ .CH ₃	90.05	1 167718
23	henten(2)ol(6) (2)	C ₈ H ₁₅ .OH	128.13	0.854520
24	hepten(2)one(6) (2)	$C_7H_{14}CO$	126.12	0.860220
25	heptyl ether	CH ₃ .O.C ₇ H ₁₅	130.15	0.79530
26	hexyl ketone	$CH_3$ . $CO$ . $C_6H_{13}$	128.13	0.8201
27	hydrazine	NH. NHCH.	46.13	
28	hypochlorite	NH ₂ .NHCH ₃ CH ₃ ClO	66.48	
29	indol (pr. 2)	C ₉ H ₉ N	131.11	l
30		CH ₃ I		
31	" (K.)	CH ₃ I	142.00	2.2735
32	isoamyl ether	CH ₃ .O.C ₅ H ₁₁	102.12	0.6871♥
33	" ketone	CH ₂ .CO.C ₅ H ₁ ,	114.12	0.81817
34	isobutyl ketone	CH ₃ .CO.C ₄ H ₉ (CH ₃ ) ₂ CH.CO ₂ .CH ₃	100.10	0.8033
35	isobutyrate	$(CH_3)_2CH.CO_2.CH_3$	102.08	0.9113
36	isocyanide	CH ₈ .NC	41.07	0.75574
37	isohexyl ketone	$CH_3CO(CH_2)_3CH(CH_3)_2$	128.13	0.81719
38	isopropyl ketone	CH ₃ COCH(CH ₃ ) ₂	86.08	0.804519
39	isosuccinate	$C_5H_7O_2.CH_3$	146.08	1.10715
	İ	ĺ		ī

Digitized by GOOGIC

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	insoluble	∞	<b>∞</b>		202-5°	wh. <b>&gt;y</b> el
2	∞	∞	sol. bz.	-44.4° C.	81.54°	
3	-	.00	∞	-41°	80-2°	colorless
4		soluble		<-38°	123° C.	
5	v. s. sol.	∞	∞		170-4°	wh.—yel
6	3700 с.с.	∞	∞		-23.65°	
7				<-80°	177° C.	
8					118° C.	
9				-14.5°	109.2° C.	
1		∞	∞		10.8°	· · · · · · · · · · · · · · ·
	soluble		soluble	-85.9°	79.7°	
12					79.5-81.5°	colorless
1 .	soluble	∞ 	$\infty$ v. soluble	110 5 7 50	150–3°	colorless
14 15		v. soluble	v. solubie	116.5-7.5°	173.7° C.	sm. wh. pris.
16				<-20°	208.2° C.	· · · · · · · · · · · · · · · · · · ·
17			oc	-104.8°	66.9°	· · · · · · · · · · · · · · · · · · ·
	166 c.c. ¹⁵			101.0	-78°742	
	soluble	∞o		-101.2°	32.3°	
	3.3	v. soluble			187° C.	oil
21	00	00	v. s. sol.		239-44°	wh.→vel
22		. <b></b> .	. <b>.</b>		151 . 2° C.	<del>.</del>
23			v. soluble		174-6°	<b></b>
24					173–4°	
25		90	<b>∞</b>		149.8°	<b></b>
26				-16°	172.92°	
27	soluble	∞	∞		870745	
28	1				120726	
29		v. soluble	v. soluble	59-60°	2720750	need. or leaf
	s. soluble	∞ 11.1.		-64.4°	44.5° C.	
32	0.8 c.c.	soluble	∞		42–3°  91°	becomes red.
33					144° C.	
1	insoluble		∞; ∞ bz.		1190765	
	s. soluble	000	ω, ω υz.		92.3°	
	10 ¹⁵	2.9		-45°	59.6°	
37				1	170-1°	
38	1			1	95°	[
38				1	179°	
		ł	1	1		T
٠.,	<u> </u>		<del> </del>	·	<u> </u>	

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — I. Air — I (A).
1	Methyl isosuccinate (K.).	$CH_3.CH < (CO_2.CH_3)_2$	160.09	1.028#
2	isovaleriate	$C_bH_9O_2.CH_3$	116.10	0.9001
3		$C_3H_5O_3.CH_3$		
4	malate (K.)	CH ₃ CO ₂ .CHOH.CH ₂ .CO ₂ CH ₃	162.08	1.225#
5	malic acid $(\beta)$		148.06	
6	malonate	$C_3H_2O_4(CH_3)_2[CO_2H]$	132.06	1.160315
7	mandelate	C ₆ H ₅ .CH(OH).CO ₂ .CH ₃	166.08	
8	mercaptan	CH ₃ SH	48.09	,
9	mustard oil	CH ₃ NCS	73.13	1.0691*
10	naphthaline (a)	C ₁₀ H ₇ CH ₃	142.08	1.000519
11	(β)	CHANG H	142.08	
12 13	" other (a)	$ CH_3NHC_{10}H_7$ $CH_3.O.C_{10}H_7$	150.00	1 000414
14		$CH_3.O.C_{10}H_7$		
15		CH ₃ NO ₃		
16	nitrite	$CH_3NO_2$	61 03	0 QQ118
17	nitro-benzoate (o ) (K )	$NO_2.C_6H_4.CO_2.CH_3$	181 09	1 28435
18		$NO_2$ . $C_6H_4$ . $CO_2$ . $CH_3$		
19		CH(NO ₂ )NOH		
20	nonyl ketone	CH ₃ .CO.C ₉ H ₁₉	170.18	0.826820
21	octyl ether	CH ₃ .O.C ₈ H ₁₇	144.16	0.8028
22	" ketone	CH ₈ .CO.C ₈ H ₁₇	156.16	0.82520
23	oxalate	$(CH_3)_2C_2O_4$	118.05	1.147954
24		$C_{16}H_{31}O_2.CH_3$		
25		$C_9H_{17}O_2.CH_3$		
26		$CH_3.C : C(CH_2)_{14}CH_3$		
27	pentamethylene	CH ₃ .C ₅ H ₆	84.10	0.7501
28	phenyl-acetate (K.)	$C_6H_5.CH_2.CO_2.CH_3$	150.08	1.063#
29	phenyl carbinol (K.)	CH ₃ (C ₆ H ₅ )CHOH		
30	" hydrazine (aa).	C ₆ H ₅ (CH ₃ )N.NH ₂		
31		CH ₃ PH ₂		1.189
32 33				0.821 ¹⁵
34	properties	$C_5H_{10}N.CH_3$ $CH_3.O.C_3H_3$	70 05	$0.821^{13}$
35		$C_2H_5.CO_2.CH_3$		0.9372
36		$CH_3(C_3H_7)CH.CO_2H$		
37	" acetylene	CH ₈ .C: C.C ₃ H ₇		0.7377¥
38	" ether	CH ₃ .O.C ₃ H ₇		0.7460°
39	" ketone	CH ₃ COC ₃ H ₇	86.08	0.81215
40	" ketoxime (K.)		101.13	0.9045
	<u> </u>			

Number.	Solu	ability in 100 c	.c	Melting Point, °C:	Boiling Point, °C.	Crystalline Form
Num	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C: C. = Cor- rected.	Boiling Point, °C. C. = Cor- rected.	and Color.
1 2	v. s. sol.	∞	∞ ∞		177-9° 116.7°	colorless
_	soluble				144.8° C.	
_	v. v. sol.	∞	<b>∞</b>		242–6° dec.	colorless
5	ø .	∞	œ	123°	dec.	monoel. pris.
6				abt. $-80^{\circ}$	181.5° C.	
7				52°		small leaflets
1 -	insoluble	∞ ∞	•	-130.5°	20°	yellow oil
9	1			35°	119°	
10		v. soluble	v. soluble	-22°	240-2°	
11		<u>.</u>		32.5°	241-2°	monocl./al
12		v. soluble	v. soluble		293°	red oil
13		v. soluble	v. soluble	<-10°	269°753 C.	
	s. soluble	s. soluble	v. soluble	72°	274°	small leaf/et.
	s. soluble	soluble	soluble		65° exp. 12°	
16	insoluble			-8°	286-9°	yellow oil
		∞ soluble	∞ soluble	8° 95-6°	280-9	
	v. soluble	soluble	soluble soluble	95-0° 64°		flat yel. nd needles
20			BOILIDIE	15°	230 . 6°788 C.	needles
21				10	173°	
22				3.5°	211°	
		soluble	sol.CH,OH	54.0°	163.3° C.	moncl. tab
24	s. soluble	BOILDIE	SOI. CI13 CI1	280	100.0	crystals
25				20	213.5° C.	crybuais
26	1			30°	184015	
27					72–3°	
	insoluble	∞	<b>0</b> 0		218-20°	colorless
	insoluble	<b>∞</b>	<b>20</b> .		201-5°	$wh. \rightarrow vel$
30		soluble			2270745	
31	s. soluble	s. soluble	7000 c.c.	<b></b>	-14°	
	insoluble	00	∞		278-81°	yellow
	v. soluble	l	<b></b> .		107°	[
	s. soluble	∞ ∞	∞ ∞		61-2°	
38		∞.	∞	< -75°	79.9°	
36	0.5717	soluble	soluble		193 ^{07 48}	ļ
37	7  <b></b>				83-4°	
	mod.soluble	∞ ∞	∞		38.9°	
39					102.° C.	
40	soluble	∞	∞ ∞		165–9°	colorless
	1	l	1		l	1

Digitized by GOOGLE

Number.	Rame.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Methyl pyrrol (1)	C,H,N.CH,	81.10	0.91 <b>45</b> ¥
2		C.H.N.CH		0.9446*
3	pyrryl ketone	C ₄ H ₄ N.CO.CH ₃	69.10	
4	pyruviate	C ₃ H ₃ O ₃ .CH ₃	102.05	1.1540
5	quinoline (6)	$CH_3.C_6H_3.C_3H_3N$		
6	" (py. 3)	$C_{10}H_0N$		1.064620
7	racemate (K.)	<[.CH(OH).CO ₂ .CH ₃ ] ₂	178.08	
8	salicylate	OHC,H,CO,CH,		1.189
9 10		OHC,H,CO,CH,		1.182#
11	sussinate	(CH, ), Se	109.25	>1  1.1208 <b>₽</b>
12	sulphorraneta (K)	(CH ₃ O ₂ C) ₂ C ₂ H ₄  CN.S.CH ₃		1.073
13	steerete	C ₁₈ H ₃₅ O ₂ .CH ₃		
14	sulphate	(CH ₃ ) ₂ SO ₄	126 11	1 327620
15		(CH ₃ ) ₂ SO ₄		
16		(CH ₂ ) ₂ SO ₃		
17		CH. S.CN		1.0693*
18		CH ₃ SO ₂ Cl		1.51
19	sulphonic acid	CH ₃ .SO ₃ H	96.09	
20		CH ₃ HSO ₄		<i>.</i>
21		$ <[.CH(OH).CO_2.CH_3]_2$		
22		(CH ₃ ) ₂ Te		
23		CH ₃ .C ₄ H ₇		
24		CH ₃ .N ₃		0.8964
25 26	trichlo-acetate	CCl ₃ .CO ₂ CH ₃	177.38	1.67337
20 27	trimethyl acetate	(CH ₃ ) ₃ C.CO ₂ .CH ₃ CH ₃ .C ₃ H ₅	110.10	0.6912-20
28	uros	NH ₂ CONHCH ₂		0.0912
29	urio scid (a) (3)	$CH_3.C_5H_3N_4O_8 + \frac{1}{2}H_2O$		
30	" $(\gamma)$ $(7)$	$CH_3.C_5H_3N_4O_3+H_2O$	200 23	
31	valeriate	C ₄ H ₉ .CO ₂ .CH ₃	116.10	0.9097
32	Methylene acetate	(CH.CO.) CH	132.06	
33		CH,Br,		2.4930
34		CH ₂ Cl ₂		1.3778
35	cyanide	CH ₂ (CN),	66.10	
36	diethyl ether	$CH_2(OC_2H_b)_2$	104.10	0.851
37	disulphonic acid	CH ₂ (SO ₃ H) ₂	176.15	
38		$CH_2I_2$	267.96	3.332615
39	Milk sugar	$C_{12}H_{22}O_{11}+H_{2}O_{12}\cdots$	360.19	1.52520
40	Monacetin	$C_2H_3O_2.C_3H_6(OH)_2$	134.80	1.2212#
41	Mono-ethyl carbonate	U ₂ H ₅ HCU ₈	90.05	
		l		

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	insoluble	∞	∞		112-3 ⁰⁷⁴⁷ 147-8 ⁰⁷⁵⁰	. ,
3	v. soluble	v. soluble	v. soluble	90°	220°	moncl. need
4					134-7° 257.4-8.6 ⁷⁴⁵	
6				10–14°	250°710	
1 1	v. soluble s. soluble	soluble	s. soluble	90–1° –8.3°	222.2° C.	wh. tab. & pr.
9	s. soluble	∞ soluble	<b>x</b>	-8°	221-3°	colorless to
1	insoluble				58.2°	
11 12	insoluble		00	18.5°	195.3° C. 130.5–2.5°	crystals colorless
13			soluble	38°		crystals/s
14 15	· · • · • · · · · ·	soluble	soluble soluble	-83,2°	188.3-8.6 C. 38°700	oil
16		soluble	soluble		121 . 5°	
17	insoluble	soluble	soluble		132,9 ⁷⁶⁷	
	v. soluble		····		dec. 130°	syrup
1 -	v. soluble	soluble soluble	<b>∞</b>	<-30° 49.5-50.5°		oil
	v. soluble insoluble	solubie	s. soluble	49.5-50.5	82°	wh. tablets brass color
23					39-42°	
24 25	decom.	decom.	soluble	34°	20–1° 191–2°	
26					100-2°	
	s. soluble v. soluble	v. soluble	0.0725	102°	4–5° dec.	prisms
29	0.382100		sol, KOH	>360° dec.		small pris./w.
30 31	1.25100		sol. KOH	no m.p.	dec. 370–80 127.3°	fine leafl./w
32	1				170°	
	1.148 ²⁰ 2.00 ²⁰				98.5°756 41.6° C.	
35	13.33	40; 10 chlo.	20; 6 7 bz.		109°20	
	9.1 ¹⁸ deliq.				89° C.	needles
38	<del>.</del>		soluble	4°	180° dec.	leaflets
	17.03 ¹⁰ v. soluble		insoluble	203.5° dec.	dec.	rhombie
41		v. soluble	s. soluble	-61-57°	uec.	thick liq
L						

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — 1. Air — 1 (A).
1	Mono-ethyl fumarate	$CO_2H.C_2H_2.CO_2C_2H_5$	144.06	
2	methyl carbonate	CH ₃ HCO ₃	76.03	
3	methyl carbonate Morphine	$C_{17}H_{19}NO_3+H_2O$	303.21	1.317-1.326
4	Mucic acid	(OH) ₄ C ₄ H ₄ (CO ₂ H) ₂	210.08	
5	Myricyl alcohol	$C_{ao}H_{e_1}OH$	536.50	
	Myristic acid	$C_{18}H_{27}CO_{2}H$	228.22	0.862254
7	aldehyde	C ₁₃ H ₂₇ CHO	212.22	
	Naphthalene	$C_{10}H_8$	128.06	1.0070#
9	sulphone chloride $(\alpha)(K.)$	$C_{10}H_7.SO_2.CI$	226.57	
10	" " (β)(K.)	$C_{10}H_7.SO_2.Cl.$	226.57	
11	sulphonic acid (a)	$C_{10}H_7SO_3H+H_2O$	226.14	
12	" " ( <i>β</i> )	$C_{10}H_7SO_3H$	208.12	
13	Naphthalic acid (1) (8)	$C_{10}H_6(CO_2H)_2$	216.06	
14	Naphthoic acid (a)	$C_{10}H_7.CO_2H$	172.06	· · · · · · · · · · · ·
15	[ (β)	C ₁₀ H ₇ .CO ₂ H	172.06	
16	aldehyde (a)	C ₁₀ H ₇ .CHO	156.06	
17	·· (β)	C ₁₀ H ₇ .CHO	156.06	
18	Naphthol (a)	$C_{10}H_{7}$ . $OH$	144.06	1.224
19 20	(P)	C ₁₀ H ₇ .OH	144.00	1.217
21	surphonic acid (a)(1, 2)	OHC HSO H	224.12	· · · · · · · · · · •
	Naphtho-phenazine $(\alpha\beta)$ .	OHC ₁₀ H ₆ SO ₃ H	224.12	
23		$C_{18}H_8N.CH_3$		
24	" (8)	$C_{18}H_8N.CH_3$	103 17	
25	-quinoline (a)	$C_{18}H_9N$	170 11	
26	" (B)	C.H.N	179 11	
27	-quinone (a)	$C_{13}H_{9}N$	158 05	
28	" (B)	$C_{10}H_6O_2$	158.05	
	Naphthyl acetate (a)	C.H.O.CH	186.08	
30	" " (β)	$C_2H_8O_2.C_{10}H_7$	186.08	
31	amine (a)	$C_{10}H_7.NH_2$	143.11	1.1229#
32	" (β)	$C_{10}H_7.NH_2$	143.11	
33	cyanide (a)	C ₁₀ H ₇ .CN	153.10	1.1167#
34	" (β)	C, H, CN	153.10	1.0939#8
35	Naphthylene diamine (1,2)	$C_{10}H_6(NH_2)_2$	158.16	
36	" " (1, 5)	$ C_{10}H_6(NH_2)_2$	158.16	
37	" " (1, 8)	$C_{10}H_6(NH_2)_2$	158.16	
<b>3</b> 8	Naphthyl ether (a)	(C ₁₀ H ₇ ) ₂ O	270.12	
<b>3</b> 9	" (β)	(C ₁₀ H ₇ ) ₂ O	270.12	

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	s. soluble	v. soluble	v. soluble	70° 5760°	147°18	thin tablets
	0.019220	5 ²⁰ ; 7.5 ⁷⁸	0.0049 ⁵ wet		191–300	-h h
3					191-3-4	rhomb. pris
١.	0.25100	0.066 ²⁰ chlo.	0.0595 ⁵ dry		ŀ	
	0.33	insoluble		206° dec.		cryst. powder
5				88°		sm. need./et.
1 -	insoluble	soluble	soluble	53.8°	250.50100	leaflets
7		[		52.5°	168–9°22	
	insoluble	5.29 ¹⁵ abs.	v. soluble	80 . 05° C.	217 .68° C.	monoclinic
	insoluble	soluble	v. soluble	66–7°		fine tablets
10	insoluble	soluble	v. soluble	76–7°		fine tablets
11	deliq.	soluble	s. soluble	85-90°	[	crystalline
12	not deliq.			<b></b>	decom.	leafy crystals
13	v. v. s. sol.	s. soluble	s. soluble	no m.p.	<b></b>	silky need./al
14	v. s. sol. hot	v. soluble	soluble	160 . 5-1 . 0°	300°	need./dil. al.
15	s. sol. hot	v. soluble	v. soluble	184° C.	>300°	moncl. tab
16				l	291.6° C.	thick liquid
-	sol. hot	v. soluble	v. soluble	60.5-1°		thin leaf./w
	s. soluble	v. soluble	v. soluble	94-96°	278-80°	monoclinic
1	s. sol. hot	v. soluble	v. soluble	122°	285–6°	moncl. leaf
	mod. sol.	V. Bolubio	·· bordoro	>250°		rhomb.tab./w
	v. soluble	v. soluble		122°		small leaflets
22		v. s. sol.	v. s. sol.	142.5°	>360°	lemon yel.
23		V. S. SOI.	V. S. SOI.	142.0	>300°	[pris./bz.
	s. soluble	v. soluble	v. soluble	82°	>300°	large need.
	v. s. sol.	v. soluble	v. soluble	52°	351° C.	moncl./et
	v. s. sol. v. s. sol.	v. soluble	v. soluble	93.5°	349.5–50 ⁷²¹	
		soluble	v. soluble	125°		glit. scales/w.
1	s. soluble		v. soluble	115–20° de		yel. need./lig.
	soluble	soluble	1 11	49°	not in steam	red. need./et.
	mod.sol. hot		v. soluble			nd.or tab./al.
	insoluble	v. soluble	v. soluble	70°		small needles
	0.167	v. soluble	v. soluble	50°	300.8° C.	rhomb. need.
	soluble	soluble	····	111-2°	306 . 1° C.	leaflets/w
1 -	<b> </b>	soluble	sol. lig.	37.5°	299° C.	needles
34	1	v. soluble	sol. lig.	66.5°	306 .5° C.	leaflets/lig
	mod. sol.hot		v. soluble	95–6°		rh'b. leaf./w.
	v. s. sol.	soluble	soluble	189.5°		prisms/et
	s. soluble	∞	∞ ∞	66.5°	sub.	cryst./dil. al.
38	insoluble	s. soluble	v. sol.; v.	110°	>360°	leaflets
			sol. bz.			
39	v. sol. bz.	s. soluble	v. soluble	105°	250°19	
L		1			I	

1 Naphthyl ketone (αβ)	Specific Gravity. Vater = 1. ir = 1 (A).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	488¥
9 Nicotinic acid $C_bH_aNCO_2H$ 123 .08 10 Nitraniline (o.) $NO_2$ , $C_0H_a$ , $NH_2$ 138 .13 1 .443 12 (p.) $NO_2$ , $C_0H_4$ , $NH_2$ 138 .13 1 .398 1.398 12 (p.) $NO_2$ , $C_0H_4$ , $NH_2$ 138 .13 1 .398 13 1 .398 13 1477 13 Nitro-acetic acid $CH_2NO_2$ , $CO_2H$ 105 .07 14alizarine (a) $CH_2NO_2$ , $CO_2H$ 105 .07 15 105 16anisol (o.) (K.) $NO_2$ , $C_0H_4$ , $NO_2$ 285 .10 $NO_2$ , $C_0H_4$ , $OCH_3$ 153 .10 (1 .268 17 (p.) (K.) $NO_2$ , $C_0H_4$ , $OCH_3$ 153 .10 (1 .268 19anthraquinone (a) $C_1H_7O_2NO_2$ 253 .10 $NO_2$ , $C_0H_4$ , $OCH_3$ 153 .10 (1 .233 19benzaldehyde (o.) $NO_2$ , $C_0H_4$ , $COH_3$ 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 .08 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0924 <b>¥</b>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Tab	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • • • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	268 ²⁰ )
19	23320)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3194
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • • • • •
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04535
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	754
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	944
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
33 -benzoylchloride(m.)(K.) NO ₂ .C ₆ H ₄ .COCl. 185.52 185.52 185.52 185.52 185.52 185.52 185.52 185.52 185.52 185.52 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.54 171.5	
34 " " (p.)(K.) NO ₂ .C ₆ H ₄ .COCl. 185.52 35 -benzyl chloride (o.) NO ₂ .C ₆ H ₄ .CH ₂ Cl 171.54 36 " (m.) NO ₂ .C ₆ H ₄ .CH ₂ Cl 171.54 37 " (p.) NO ₂ .C ₆ H ₄ .CH ₂ Cl 171.54	
35 -benzyl chloride (o.) NO ₂ .C ₆ H ₄ .CH ₂ Cl 171.54 171.54 NO ₂ .C ₆ H ₄ .CH ₂ Cl 171.54 171.54 NO ₂ .C ₆ H ₄ .CH ₂ Cl 171.54	
36 " " (m.) $NO_2.C_6H_4.CH_2C1$	
37 " (p.) $$   NO ₂ .C ₆ H ₄ .CH ₂ Cl   171.54	
38 -bromoform NO CBr. 297.922 811	
00  Diomotorm	1112
39 -carbon	50¥
40 -cinnamic acid (o.) $NO_2.C_6H_4.C_2H_2CO_2H$ $193.10$	
41 " " (m.) $ NO_2.C_6H_4.C_2H_2CO_2H 193.10 $	

1	Sol	ubility in 100 (	· c.	Melting	Boiling	
Number.		dentity in 100 t		Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
	v. sol. bz.	1.414	v. soluble	135°	dist.	needles/al
2		4		125.5°		needles/et
3		0.08	v. s. sol.	164-4.5°		silky leaflets.
	0.0813	v. soluble	insoluble	170°		long pris./w
5	in <b>sol</b> uble	185% 20; 578	0.77; 2.135	176°	dec.	rhomb. pris
0	• • • • • • • • •	soluble	soluble		49.7°	
8				-20°	$9.5^{\circ}$ $246.7^{\circ}$	
1 "	∞ s. soluble	$\infty$ mod. sol.	∞ v. v. s. sol.	<-80° 228-9°	sub.	fine needles
	8. soluble 0.125 ²⁵	v. soluble	v. v. s. soi. v. soluble	71.5°	aus.	rhomb. need
	$0.125^{-2}$ $0.12^{24}$	v. soluble	7.89 ²⁰	114°	285°	rnomo. need vel. rhb. need.
	0.12-0.07730	$5.84^{20}$	$6.10^{20}$	147°		vel. moncl./w
	dec.	v. v. sol.	v. v. sol.	69°		prisms/et
1 -1	s, soluble	soluble	sol. KOH	289°	sub.	vel. need./al.
	s. soluble	v. soluble	sol. chlo.	244° dec.	sub. dec.	orange need.
	insoluble	00	<b>00</b>	9°	267-70°	vellow oil
1 1	insoluble	v. soluble	v. soluble	53-4°		yel. prisms
	insoluble	v. s. sol.	v. v. s. sol.	228° C.	sub.	fine need./ace
	0.015325	v. soluble	v. soluble	43.5-4.5°	153°23	yel, need./w.
20	0.010726	v. soluble	v. soluble	58°	164°23	needles
21	s. soluble	v. soluble	s. soluble	106°		prisms/w
22	mod.sol. hot	mod. sol.	mod. sol.	176.6° C.	317°	short needles
	sol. hot			142.7° C.	310–5°	needles
	s. sol. hot			201.4° C.		needles
	v. s. sol.	∞	∞	5.71°	209.40745	
	s. soluble	soluble	∞ ∞	5-6°	209–10°	bright yellow
	0.7316 ²⁵	2810	21.611	147.70° C.		triclin.nd./w.
	0.23815	3310	25.111	140-1°		moncl. tab./w
	0.02115	0.0910	2.211	238°		leaflets/w
	sol. hot	v. soluble	v. soluble	110°		silky needles.
	s. soluble	v. soluble	v. soluble	117–8° 147°		needles
	s. soluble insol. dec.	v. sol. chlo.	v. soluble			leaflets/al
	insol. dec.	soluble soluble	v. soluble	35–6° 72–3°		yel. prisms
35		soluble	v. solubie	48-9°	[·····	yel. prisms crystals/lig
36		soluble		45-7°	173-83°/80	yel, need./lig
37	l	soluble		71°	110-00 /2	leaf, or need.
<b>3</b> 8		soluble		10.25°	127011876010	prisms
	insoluble	soluble	soluble	13°	126°	white cryst
	insoluble	s. soluble		237-40°		
41			l	196-7°	1	vellow need
-						

Digitized by GOOSIC

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Nitro-cinnamic acid (p.)	NO. C.H. C.H.CO.H	193.10	
2	eresole (m ) (K )	$C_6H_3$ . $CH_3(NO_2)OH 1:3:4$ .	153 10	
3	-cumene o + n	$NO_2.C_6H_4.CH(CH_3)_2$	165 13	1.1025*
4	-dimethyl aniline (m)	$NO_2C_6H_4N(CH_3)_2$		1.31317
5	" " (n.)	$NO_2C_6H_4N(CH_3)_2$		
6		$C_6H_5$ . $C_6H_4$ . $NO_2$		
7		$C_6H_6$ . $C_6H_4$ . $NO_2$		
8		CH ₃ .CH ₂ NO ₂	75 08	1.056115
9		CH(NO ₂ ) ₃		
10		NH ₂ .C(NH).NHNO ₂		
11	-isatine	NO ₂ .C ₈ H ₄ NO ₂	192.11	
12	-methane	CH ₃ NO ₂	61.07	1.144115
	Nitron			
	Nitro-naphthaline (a)	$C_{10}^{20}H_7.NO_2$	173.10	1.3314
15		$C_{10}H_7.NO_2$		
16		NO ₂ .C ₁₀ H ₆ .OH		
17	" (4)	$NO_2.C_{10}H_6.OH$	189.10	
18	" $(1)(\beta)\dots$	$NO_2.C_{10}H_6.OH$	189.10	
19	-phenol (o.)	NO ₂ .C ₆ H ₄ .OH	139.08	1.65720
20	" (m.)	NO ₂ .C ₆ H ₄ .OH	139.08	1.48520
21	" (p.)	NO ₂ .C ₆ H ₄ .OH	139.08	1.47920
22	-isophthalic acid (5)	NO ₂ C ₆ H ₃ (CO ₂ H) ₂ +1½H ₂ O	236.11	
23		NO ₂ C ₆ H ₃ (CO ₂ H) ₂		
24		$NO_2C_6H_3(CO_2H)_2+H_2O$		
25		CH ₃ .CH ₂ .CH ₂ NO ₂		0.999916
26	-quinoline (5)	C ₀ H ₆ N.NO ₂	174.13	
27		$C_0H_6N.NO_2+XH_2O$		
28	" (7)	C ₀ H ₆ N.NO ₂	174.13	
29		$C_0H_6N.NO_2+XH_2O$		
30	-salicylic acid (3, 2, 1)	NO ₂ C ₆ H ₃ (OH)CO ₂ H.H ₂ O	201.10	
31	" (5, 2, 1)	NO ₂ C ₆ H ₃ (OH)CO ₂ H	183.08	
32	" (6, 2, 1)	NO ₂ C ₆ H ₃ (OH)CO ₂ H		
33	Nitroso-aniline (p.)	$NO.C_6H_4.NH_2$	122.13	
34	-benzene	C ₆ H ₅ .NO	107.08	
35	-diethylamine (K.)	$(\mathring{\mathbf{C}}_{2}\mathring{\mathbf{H}}_{5})_{2}\mathbf{N}.\mathbf{NO}$	102.16	0.944##
36	-diisobutylamine (K.).	$(C_4H_9)_2$ N.NO	158.22	0.893
37	-dimethylamine $(K.)$ .	(CH ₃ ) ₂ N.NO	74.13	1.041#
38	-dimethyl aniline (p.).	$NO.C_6H_4N(CH_3)_2$	150.16	
39	-diphenyl amine	$NO.N(C_6H_5)_2$	198.16	
40	-dipropyl amine (K.)	$(C_3H_7)_2$ N.NO	<b>130</b> .19	0.913
41	$\alpha$ -naphthol (2)	NO.C ₁₀ H ₆ OH	173.10	
I		I		

ı.	Sol	ubility in 100 (	· c	Melting	Boiling	
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Cor- rected.	Boiling Point, °C. C. = Corrected.	Crystalline Form and Color.
-						. ,,
	v. s. sol. hot		insol. lig.	285–6°		prisms/al
	s. soluble	soluble	soluble	32-2.5°	1: 0040	yel. prisms
_				-35°	dec. 224°	
	insoluble	soluble	soluble	60-1°	280–5°	red mono pr
5	insoluble	soluble		163-4°	14 0000	long yel. need
0				37°	abt. 320°	tric. tab./al
	insoluble	mod. sol.	v. sol. chlo.	114-4.5°	340° C. 114–4.8°	long need./al.
- 1	s. soluble			15°		_1.44
	mod. sol.				explodes	white cryst
	v. s. sol.	v. s. sol.	insoluble	230–1°		pale needles
	s. soluble s. soluble	v. soluble sol. KOH	sol. KOH soluble	226-30° - 28.5°	101-1.5°765	rosettes/al
12 13		sol. KOH soluble	soluble s. soluble	-28.5	101-1.5	test for HNO.
13 14		soluble	s. soluble 2.81 ¹⁵	61°	304°	yellow need
15		v. soluble	v. soluble	79°	304	rhomb, need.
	v. s. sol.	s. soluble	v. soluble	128°		green vel. leaf
			sol. acet.	164°		
	sol. hot	v. soluble v. soluble	1	104°		yel. need./w. vel. need
_	s. soluble	v. soluble	v. soluble	44.27°	214°	monocl. pris
	s. soluble	v. soluble	v. soluble	96°	194 ⁰⁷⁰	monoci. pris
	v. s. sol.	v. soluble	v. soluble	115°	194	monoci. tab
	0.14 ¹⁵	v. soluble		248-9°		thin leaflets.
	v. s. sol.	v. v. sol. v. soluble	v. soluble	219–20°		yel.moncl. pr.
	v. s. sol. v. soluble	v. soluble	v. soluble	161°		small needles
	insoluble	v. soluble	v. Boluble	130.5-1.5°		oil
	s. sol. hot	sol. bz.	1	72°	sub.	v. fine ne./w.
	sol. hot	v. s. sol.	s. sol. lig.	149-50°	sub.	v. fine needles
	501. 1100	v. s. sol.	v. soluble	132–3°	Sub.	silky need
_	s. soluble	mod. sol.	mod. sol.	88-9°		moncl. need
	0.1415	v. soluble	v. soluble	anhy. 144°		long needles .
	0.17623	v. soluble	V. Bolubio	229–30°		monocl. need.
		mod. sol.	v. soluble	195°		vellow need
33		soluble	sol. bz.	173–4°	in steam	blue need./bz
	sol. chlo.	mod. sol.	201. 22.	67.5–8°		rhombic
	soluble	∞ ∞	∞ ∞		173-5°	yellow
	v. s. sol.	<u>∞</u>	$\widetilde{\infty}$	-5°	219–21°	yellow
37			∞ ∞	<b></b>	146-9°	yellow
	insoluble	soluble	soluble	87.8°		green leaflets
	v. sol. bz.	s. soluble		66.5°	:	yel. quad. tab
	s. soluble	00	∞		204-5°	yellow
	v. v. s. sol.	v. soluble	s. soluble	152°	[	yel, need./bz
١						-3. 2000., 62
_	<u> </u>	i	1	1	1 ( '	hogle

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — 1. Air — 1 (A).
	Nitroso- $\alpha$ -naphthol (4)			
2		NO.C ₁₀ H ₆ OH		
3		NO.C ₆ H ₄ .OH		
4 5	Nitro-styrene (o.)			
6	(m.)	$NO_2.C_6H_4.C_2H_3$ $NO_2.C_6H_4.C_2H_8$	149.10	• • • • • • • • • • • •
7	thiophene (p.)	NO ₂ .C ₄ H ₃ S	190 13	
8	-toluene (o.)	NO ₂ .C ₆ H ₄ .CH ₃	137.10	1.16431
_	" " 777 >	NO ₂ .C ₆ H ₄ .CH ₃	197 10	1 10015
9 10		$NO_2.C_6H_4.CH_3$		
11	" (n.)	NO ₂ .C ₆ H ₄ .CH ₃	137 10	1 1302#
12	-o-toluidine (3)	$C_6H_3(CH_3)(NH_2)NO_2$	152.14	
13	" " (4)	1: 2: $4 = CH_3$ : $NH_2$ : $NO_2$ .	152.14	1.36515
14	""(5)	$1: 2: 5 = CH_3: NH_2: NO_2.$	152.14	1.36615
15	" " · (6)	$1:2:6=CH_3:NH_3:NO_3$ .	152.14	1.37815
16	-m- " (2)	$1:3:2=CH_3:NH_2:NO_2$ .		
17				
18	(3)	1:3:5= $CH_8$ : $NH_2$ : $NO_2$ .		
19	(0)			
20 21		1: 4: $2 = CH_3$ : $NH_2$ : $NO_2$ . 1: 4: $3 = CH_3$ : $NH_2$ : $NO_2$ .		
22		NH ₂ .CO.NHNO ₂		
	Nonane n			
24		[(CH ₃ ) ₂ CH.(CH ₂ ) ₂ ] ₂ CH ₂		
25	Nondecane n	CH ₃ (CH ₂ ) ₁₇ CH ₃	268.32	0.7774፟፟፟፟፟፟
26	Nondecylic acid	$\left[ \mathrm{C_{18}H_{37}.CO_{2}H} \right]$	298.30	
27	Nonyl alcohol	$CH_3(CH_2),CH_2OH$	144.16	0.83461
28	Nonylene	CH(CH ₂ ) ₆ CH: CH ₂	126.15	0.7433%
	Nonylic acid			
30	Octadecane (n.) Octadecyl alcohol		254.30	U.7708¥ ∩ 9194₽
	Octadecylene (n.)			
33	Octane (n.)	CH ₂ (CH ₂ ) ₁₅ CH ₁ CH ₂	114.15	0.71881
34	"	$[(CH_3)_2CH.CH_2.]_2$	114.15	0.71118
35	Octochlor-propane	CCl ₃ .CCl ₂ .CCl ₃	319.60	
36	Octyl alcohol (n.)	CH ₃ (CH ₂ ) ₆ CH ₂ OH	130.15	0.83750
37	amine	$CH_3(CH_2), NH_2, \ldots$	129.20	
38	" (sec.)	CH ₈ (CH ₂ ) ₅ CH(NH ₂ )CH ₃	129.20	0.786
39	chloride (n.)	CH ₂ (CH ₂ ) ₆ CH ₂ Cl	148.59	0.892
40	" (sec.)	CH ₃ (CH ₂ ) ₃ CHCl.CH ₃	148.59	U.87071°
	<u> </u>		0	_T_

Digitized by GOOGIC

Number.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Corrected.	and Color.
1		v. soluble	v. soluble	193–4° dec.		needles
	insoluble	I <b>-</b> · -	v. soluble	106°		leaf. or prisms
	mod. sol.	v. <b>s</b> oluble	v. soluble	126°		monocl. pris
	sol. H ₂ SO ₄			12–3.5°		oil
	sol. chlo.	sol. abs.	soluble	-5°		yellow oil
7	v. sol. bz.	v. sol. hot	v. soluble	29°		prisms/lig
1 .				44°	224-5°	monoclinic
-	v. v. s. sol.	<b>∞</b>	∞	$\alpha - 9.4^{\circ}, \\ \beta - 3.6^{\circ}$	225.7° C.	dimorphous
	in <b>s</b> oluble	soluble	∞ ∞	-10.5°	219–21°	bright yellow
- 1	v. v. s. sol.	∞ ∞	∞	16°	230–1°	
	insoluble	soluble	soluble	54°	237.7° ⁷⁶⁰	rhombic
	sol. chlo.	v. soluble	v. soluble	97°		orange prisms
13		soluble	soluble	10 <b>7</b> –9°		moncl. prisms
	v. s. sol.	v. soluble		127-8°		monocl. pris.
	s. soluble	v. soluble	v. soluble	91.5°		rhomb. leaf
. 1 -	s. soluble	v. soluble	sol. acids	53°		yel. needles
	soluble	v. soluble	v. soluble	109°		yel. leaf./w
	v. s. sol.	v. soluble	v. soluble	98-98.4°		orange need
	sol. acid	soluble	s. sol. CS ₂ .	138°		long yel. need
	soluble	s. sol. CS ₂		77.5°		yel. monocl
	v. s. sol.	v. soluble		116–7°		red. monocl
	s. soluble	v. soluble	v. soluble	dec.		cryst. pow./al
23				<-51°	149.7° C.	
24 25					132°	
26 26				32°	330° C.	leaflets
20 27				66.5° -5°	297–9°100	glit. leaf./al .
28		∞	<b>∞</b>	-5	215°	· · · · · · · · · · · · · · · · · · ·
			1. l. l.	12–2.5°	139.5° C.	1
30	soluble	soluble	soluble	12-2.5° 28°	253–4°  317° C. 98°°	leaflets
31	· · · · · · · · · · · · ·			59°	210.5°15	
32		1		18°	179°15	glit. leaf./al
33				-98.2°		crystalline
34				-98.2	125.46° C. 108.53° C	
35		soluble	soluble	160°	268-9°734	leaflets
36		soluble	soluble	-17.9°	195.5°96°17	leaneus
37	eoranie.	, w	, w	-11.9	185–7°	
38		1	1		162.5°	
39					183.6-4.6C.	
40	· · · · · · · · · · ·	l			171–3° C.	
-"		1	1	1	j 0 0.	
1	<u> </u>	1	I	1	L	loogle

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity.  Water = 1.  Air = 1 (A).
1	Octylene (n.)	CH ₂ (CH ₂ ) ₅ CH: CH ₂	112.13	0.72232
	Octyl ether (n.)			0.82039
3			158.15	0.8929
4	Oenanthaldoxime (K.)		129.16	
	Oenanthol (K.)		114.12	0.8025
	Oenanthylic acid		130.12	0.92121
7	Oleïc acid	C ₈ H ₁₇ CH:CH(CH ₂ ) ₇ CO ₂ H	282.28	0.8908₹
8	" (K.)	C ₁₈ H ₃₄ O ₂	282.27	0.88938
9	Oleïne	(C, H, O,), C, H,	884.83	
10	Opianic acid		210.08	
	Orcein		500.27	
12	Orcin 1: 3:5		124.06	1.28954
13	Oxalacetic acid	. CO ₂ H.CO.CH ₂ CO ₂ H	132.03	
14	Oxalhydrazid	C ₂ O ₂ (NH.NH ₂ ) ₂	118.21	
15	Oxalic acid		126.04	1.653¥
16	Oxaluric acid	NH2.CO.NH.CO.CO2H	132.11	
17	Oxalyl chloride		126.90	
18	Oxamic acid	. CO ₂ H.CONH ₂	1000	
19	Oxamide		88.11	1.4756
20	Oxanilic acid	CO2H.CONHC6H5	165.10	
21	Oxanilid	(.CONHC ₆ H ₅ ) ₂	1 P 3 P 5 W 7	
22	Oximide	. <(CO) ₂ >NH		
23	Oxindol	. C ₈ H ₇ NO	133.10	
	Oxyglutanic acid (a)		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
	Oxythymol 4: 1: 2: 5	$(CH_3)_2CH(CH_3)C_6H_2$	166.12	
	Palmitic acid	. CH ₃ (CH ₂ ) ₁₄ CO ₂ H . [(OH) ₂		
27	and on just the second	. CH ₃ (CH ₂ ) ₁₄ CHO	F3.518.57	
28	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	. (C ₁₆ H ₃₁ O) ₂ O		
	Palmitin	$(C_{16}H_{31}O_2)_3C_3H_5$	1	0.8657♥
30	Palmitolic acid	. C ₁₈ H ₂₇ .CO ₂ H		
	Palmitone	$(C_{15}H_{31})_2CO\dots$	1.7	0.7997\$
	Palmito-nitrile	. C ₁₅ H ₃₁ CN	1	0.82244
	Papaverine	. C ₂₀ H ₂₁ NO ₄ ,		1.308-1.337
	Papaverinic acid	. C ₁₆ H ₁₈ NO ₇		
	Parabanic acid		A CONTRACTOR OF	
36	Paracyanogen	. (CN) ₆	156.24	A COLUMN TO SERVICE AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY
37	Paraformaldehyde	. (CH ₂ O)x		
38	Paraldehyde	. (C ₂ H ₄ O) ₃		0.9943*
39	Pelargonic acid	$CH_3(CH_2)_7CO_2H$		0.9100
40	Penta-brombenzene	. C ₆ HBr ₅	472.81	*********

Digitized by GOOS

F				1	<u> </u>	1
Ďer.	Sol	ubili <b>ty in</b> 100 (	c.c.	Melting Point °C	Boiling Point °C	Crystalline Form
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Corrected.	Boiling Point, °C. C. = Cor- rected.	Form and Color.
1					124.60760	
2					291.7°	
			. <b></b>		198.1°	
4	v. s. sol.	v. soluble	v. soluble	54-5°		sm. wh. tab
		soluble	<b>∞</b>		153-5°	colorless
6	0.24115	soluble	soluble	-10.5°	222.40743	
7	insoluble	∞ ∞	∞ ∞	14°	285.5-6°100	needles
8	insoluble	v. soluble	∞	7-9°		usually yel
9	insoluble	s. soluble	v. soluble	-5°	dist.in vac.	oil
10	0.25; 1.7100	soluble	soluble	150°		thin prisms
11	sol. acetone	soluble	insol. bz.			small red crys
12	v. soluble	v. soluble	v. soluble	106.5-8° anhy.	287–90°	moncl. prisms
13	v. soluble	v. soluble	s. soluble	176-80° de.	1	dimorphous
1	soluble	v. s. sol.	v. v. s. sol.	235° dec.		long need./w.
15	8.620; 37.165	4015	1.2715	187° anhy.		monel. prisms
	v. s. sol.	l	l	l	<b></b>	cryst. powder
	fumes in air	reacts	soluble	-12°	64°	wh. need
18	1.717	v. v. s. sol.		dec. 210°		cryst, powder
	0.04	v. s. sol.	v. s. sol.	417-9° dec.		cryst. powder
20	s. soluble	v. soluble	v. soluble	149-50°	l <b></b>	needles/w
	insoluble	v. s. sol.	v. s. sol.	252.50° C.	320°	scales
	s. soluble	l	sol. NH ₃	<b></b>		glit. prisms
23	sol. hot	soluble	soluble	120°	dist.	long need./w.
24	v. soluble	v. soluble	l <i></i>	72–3°		crystalline
	v. s. sol.	v. soluble	v. soluble	143°	290°	crystalline
26		1.130	soluble	62.62°	138-9°0mm	[et.
27			s. soluble	58.5°	192-3°22	pearly scales
28	<b></b>			55-6°		
29	insoluble	0.004321	v. soluble	65.5°	310-200	
30	insoluble	v. soluble	v. soluble	47°	240°15	silky needles.
31				82.8°		leaflets/al
32		l	l	31°	251.50100	hexag. tab
33	v. v. s. sol.	soluble	0.410	147°		trimet, prism.
	v. s. sol.	v. s. sol.	v. s. sol.	233° dec.		v. small tab
	4.728	soluble	l			monoclinic
36	insoluble	insoluble			sub.	
37	20-3018	insoluble	insoluble	162° dry		amorphous
38	1213				124° C.	
39	s. soluble	soluble	soluble	12.5°	251–4° C.	leaflets
	mod. sol. bz	s. soluble	s. soluble	159-60°	sub.	need./al
1		_			Digitized by $G$	nogle
_		·	·	·	<ul> <li>Digitized by</li> </ul>	UUYIL

Number.	Name.	Formula.	Molecu-	Specific Gravity. Water — 1.
2			Weight.	Air = r (A).
-				<del></del>
	Penta-chlor-aniline	Cl ₆ C ₆ NH ₂		<b>.</b>
2		C ₆ HCl ₅		
3		$CH_3(CH_2)_{13}CH_3$		
4		C(CH ₂ OH) ₄		
5		$C_6H(C_2H_5)_5$		
6 7		(CH ₂ ) ₅		0.7754
•		NH ₂ CH ₂ (CH ₂ ) ₃ CH ₂ NH ₂		
8 9	uibioimide			1.70178
10	" oxide	$C_sH_s(CO_2H)$ , $(1:2)$	108.08	0.88000
11		$CH_2 < (CH_2 \cdot CH_2)_2 > O \dots $ $(CH_3)_b C_b OH \dots$	164 12	0.8800
12	" roganiline	$C_{24}H_{29}N_3O$	375 19	
13	" henzoic ac	$(CH_3)_5C_6CO_2H$	192 12	· • • • • • • • • • • • • • • • • • • •
	Pentane (n.)	CH ₂ (CH ₂ )CH ₂	72.10	0.64540
15	Pentaminobenzene	C.H(NH.)	153.09	0.0353
16	Pentinoic acid	C.HCO.H	98.05	
17	Perchlorether	(C.Cl.),O	418.50	1.90014
18	Perseite (d. or l.)	C.H.O	212.13	1
19	Phenanthrene	<(C.H.,CH),>	178.08	1.063100
20	Phenanthrene	C,H,CO,CO,C,H,	208.06	1.4045
21	Phenanthrol	C,H,OH	194.08	
22	Phenanthroline	$C_{12}H_8N_2+H_2O$	198.16	<b></b>
23	Phenazine	$C_aH_a < N_a > C_aH_a \dots$	180.14	<i>.</i>
24	Phenetol (K.)	$C_6H_5OC_2H_5$	122.08	0.963#
25	Phenol	C ₆ H ₅ OH	94.05	1.0677
26	-phthaleïn	(OHC ₆ H ₄ ) ₂ CO.C ₆ H ₄ CO	318.12	1.2765*
27	-sulphonic acid (o)	OH.C,H,SO,H	174.11	. <b></b>
28	" " (m.)	OH.C.H.SO.H+2H2O	192.03	
29	(p.,	OH.C.H.SO.H	174.11	
30	Phenoxybenzoic ac. (o.)	CH ₅ OC ₆ H ₄ CO ₂ H	214.08	
91	Phentriazine (a)	CH OH CO HNO H	131.10	
33	Phenyl-acetanilid (K.)	CH ₅ .CH ₂ CO.HNC ₆ H ₅	211.14	1 000015
34	-acetate	$CH_3.CO_2.C_6H_5$ $C_6H_6CH_2.CO_2H$	126 06	1 .050918
35	ecetylone	CHC: CH	100.00	0.02713
36	-acciding (0)	$C_6H_5C:CH$	255 15	0.5011
37	-activine ( <i>a)</i>	$C_6H_3.C$ : C.CH ₃	116 06	J
38	-amimo-propionic scid	C ₆ H ₅ CH ₂ .CH(NH ₂ )CO ₂ H	165.13	
39	-amimo " acid $(\beta\beta)$	$C_6H_5CH_2.CH(NH_2)CH_2.CO_2H$	165.13	
40	-anthracene	$ C_6H_5.C_{14}H_9$	254.12	l
41	-benzoate	$C_6H_5CO_2C_6H_5$	198.08	1.2345
_			Goo	

ber.	Solu	bility in 100 c	.c.	Melting Point, °C.	Boiling Point. °C.	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	and Color.
23 44 55 66 77 89 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 25 26 27	Water (w.).  5.115  v. soluble soluble v. v. s. sol. v. soluble v. soluble v. soluble v. soluble v. soluble v. s. sol. 66.918 insoluble v. s. sol. 66.7, ∞ 67.5 58. sol. hot v. soluble	v. soluble v. v. s. sol. v. soluble v. v. soluble v. soluble soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble		232° 85–6° 10° 253° < -20°	82-7° 267° sub. 36-6.5° C decom 340° >360°	long need./al. fine need./al. tetragonal oil syrup long needles needles/al red brown fine need./w needles monc. tab./et. scales sm. needles. moncl./al yel. orange ne red. need./lig. hex.?/w long yel. need. colorless large rhb. nee. triclinic
20 20 30 31 32 33	Soluble Soluble V. v. s. sol. V. sol. hot insoluble V. v. s. sol.	soluble soluble v. soluble v. soluble 3.3	v. soluble v. soluble 1.1	74–5°	235–40° 196.7° C.	fine needlessyrupleaf./dil. alyel. need. bzwh. leaf → gr.
3 3 3 4	7	v. soluble v.s. sol. hot v. soluble v. soluble v. soluble mod. sol.	v. soluble  mod. sol.  insoluble v. v. s. sol. v. soluble mod. sol.	76.5°	265.5° C. 141.6° 403–4° 185° sub. part. 417° 314° C.	leaf. or prisms leaf. or prisms lrg. moncl./w. leaflets/al moncl. prism.

Number.	Name,	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Phenyl-benzoic acid (o.).	C ₆ H ₅ .C ₆ H ₄ .CO ₂ H	198.08	
2		$C_6H_5.C_6H_4.CO_2H$		
3		$C_6H_5C_6H_4.CO_2H$		
4	-butyric acid $(\gamma)$	$C_6H_5(CH_2)_3CO_2H$	164.10	
5				. <b></b>
6		C ₆ H ₅ CH: CH.CH ₂ .CO ₂ H.		
7	cyanide			1.0102
8	, ", (K.)	C ₆ H ₅ CN		
9	disulphide	$(C_6H_5)_2S_2$		
10	ditolylmethane	$C_6H_5.CH.(C_6H_4.CH_3)_2$	272.16	1 070020 1
$\begin{array}{c} 11 \\ 12 \end{array}$		$(C_6H_5)_2O$		
13		C ₆ H ₅ .C ₂ H ₄ .NH ₂		
14		$ HCO_2N(C_6H_5)_2$ $ HCO_2C_6H_5$		
15	-glucosazona (d.)	$C_{18}H_{22}N_4O_4$	358 34	
16		$C_{6}H_{5}.CO.CO_{2}H$		
17	-hydrazine	$C_6H_5HN.NH_2$	108 14	1 09728
18	isocvanide	C ₆ H ₅ NC	103.08	0.977516
19	$-\alpha$ -lactic acid ( $\beta$ )	C ₆ H ₅ CH ₂ .CH(OH).CO ₂ H.	166.08	
20		C ₆ H ₅ CH(OH).CH ₂ .CO ₂ H.		
21		C ₆ H ₅ NCS		
<b>2</b> 2		$C_{10}H_7.C_6H_5$		
23	" (β)	$C_{10}H_7.C_6H_5$	204.10	
24	$\beta$ -naphthylamine	$C_{10}H_7$ .NH. $C_6H_8$	219.15	
25	$\alpha$ -naphthyl methane	$C_{10}H_7.CH_2.C_6H_5$	218.11	1.1650
26				
27	$\alpha$ -naphthyl ketone	$C_{10}H_7.CO.C_6H_5$	232.10	
28	β " "	$C_{10}H_7$ .CO. $C_6H_5$	232.10	
29	-phenol (m.)	$C_6H_5.C_6H_4.OH$	170.08	
30	, " , (p.)	C ₆ H ₅ .C ₆ H ₄ .OH	170.08	
31		C ₆ H ₅ PH ₂		
32		C ₆ H ₅ PO(OH) ₂		
33	pnospnenige acid	C ₆ H ₅ PO(OH)H	142.00	
34 35	-propiolic acid	$C_6H_5$ .C; $C.CO_2H$ $C_6H_5$ .CH(OH). $C_2H_5$	128 10	0.00433
36	-propyr arconor (sec.)		126 10	1 00715
37	$\gamma_{1}, \ldots$	$C_6H_b(CH_2)_2CH_2OH_1$ $C_6H_5.C_3N_2H_3$	160 14	1.007
38	-pyrazorone (o) (N.)	$C_6H_5.C_5H_4N$	155 11	1 4
00	-p.j.rame (w)	O6115. O511414	100.11	**
39	" (8)	$C_6H_5.C_5H_4N$	155.11	1.+
40	" ()	$C_6H_5.C_5H_4N$	155.11	
-~	( )	G==5.~5==4=1		
			1100	10

Number.	Sol	ubility in 100 (	C.C.	Melting Point, °C. C. == Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nur	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	s. sol. hot	v. soluble	v. sol. bz.	113.5-4.5°		sm. need./al.
	s. soluble	v. soluble	v. soluble	166° [C.		tablets/al
	v. v. s. sol.	v. soluble	v. soluble	224°	sub.	long need./al.
4	mod.sol. hot	v. soluble	v. soluble	51 .7°	290°	flat leaf./w
5			sol. CCl₄	78°	301–2°	silky need./al.
	v. s. sol.	v. soluble	v. soluble	86°	302°	thin need./w.
	1100	∞ .	∞ .	−12.9° C.	190.7° C.	
	1100	soluble	∞	-17°	189–91°	colorless
9	in <b>sol</b> uble	soluble	v. soluble	60–1°	310° dec.	needles
		soluble	v. soluble *	55–6°		small prisms.
11	v. v. s. sol.	4.97-10	soluble	26.9-7.0°	258.97° C.	monocl. pris.
12	soluble	20	∞		197.5–9.5°	wh.→yel.
13	sol. hot	soluble	soluble	73–4°	210-20°	orthorhomb.
14		l • • • • • • • • • •		. <b></b>	179–80° de.	
15	v. v. s. sol. m	od. sol. hot		<b>217°</b> .		fine yel. need.
16		v. soluble	insol. CS ₂	65–6°		crystalline
17	v. s. sol.	∞	∞	19.6°	243.5°	monoclinic
18					165–6° dec.	greenish
	soluble			97–8°		thick pris./w.
	v. soluble			93°		prisms
	insoluble	soluble	soluble	−21° C.	221° C.	
		v. soluble	v. soluble	no m.p.	324-5°	
	v. sol. bz.	v. soluble	v. soluble	102-2.5°	345° C.	leaflets
	sol. CH ₃ OH	soluble	v. sol. chlo.	107.5-8°	395–9.5°	thin needles
	50 CS ₂	1.6715; 3.378	50	58.6°	350°	tab./al., pr/e.
1 -1		2.315	v. sol. bz.	35.5°	350°	monocl.pr/al.
27	· · • · · · · · · ·	2.4913		75.5°	385°	rhomb. prisms
28	· · · · · · · · · · ·	2.0112		82°		rhomb. pris.
	s. soluble	s. soluble	s. soluble	185°		leaflets/w
	sol. hot	v. soluble	v. soluble	164–5°	305–8°	silky need.
31					160–1°	/dil. al.
	23.515	soluble	soluble	158°	250° dec.	rhomb. leaf
	7.114; 211100	soluble	soluble	70°	dec.	leaflets
34	v. s. sol.	v. sol.	v. sol.	136–7°	sub.	trimet. prisms
35			• • • • • • • • •		212°	
	s. soluble	∞	<b>∞</b>	<-18°	235°, 119°12	thick liquid
	insoluble	s. soluble	s. soluble	239-40°	l	fine leaflets
1	insoluble				268.5- 70.5 ⁰⁷⁴⁹	
39	insoluble	v. soluble	v. soluble	l	269-700749	oil
	mod, sol hot		soluble	77-8°	274-5°	glit. leaf./w
					C	ogle

^{*} Very soluble CS₂ and benzene.

Number.	Name,	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Phenyl-benzoic acid (o.).	C ₆ H ₈ .C ₆ H ₄ .CO ₂ H	198.08	
2		$C_6H_5.C_6H_4.CO_2H$		
3		$C_6H_5C_6H_4.CO_2H$		
4	-butyric acid (γ)	$C_6H_5(CH_2)_3CO_2H$	164.10	
5	carbonate	$(\mathring{C}_6\mathring{H}_5)_2\mathring{CO}_3$	214.08	{. <b></b>
6		$C_6H_5CH: CH.CH_2.CO_2H$ .		
7	cyanide	C ₆ H ₅ CN	103.08	1.0102
8		C ₆ H ₅ CN		1.0235
9	disulphide	$(C_6H_5)_2S_2$	218.20	
10	ditolylmethane	$C_6H_5.CH.(C_6H_4.CH_8)_2$	272.16	
11	-ether	$(C_6H_5)_2O$	170.08	1.0728 ²⁰ liq.
12		$C_6H_5.C_2H_4.NH_2$		
13	formanilid	$HCO_2N(C_6H_5)_2$	197.13	1.23
14	formate	HCO ₂ C ₆ H ₅	122.05	4
15	-glucosazone (d.)	$C_{18}H_{22}N_4O_4$	358.34	
16	-glyoxylic acid	C ₀ H ₅ .CO.CO ₂ H	134.05	1 00 728
17	-nydrazine	C.H.HN.NH.	108.14	1.0972
18	isocyanide	C,H,NC	103.08	0.977516
19 20	$-\alpha$ -lactic acid ( $\beta$ )	C,H,CH,CH(OH).CO ₂ H.	100.08	
21	-β-lactic acid (β)	C ₆ H ₅ CH(OH).CH ₂ .CO ₂ H.	100.08	1 100015
21 22	mustard oil	C. H. C.H.	100.14	1.1382 <del>11</del>
23	" (8)	$C_{10}^{\bullet}H_{7}, C_{6}H_{5},, C_{10}H_{7}, C_{6}H_{5},$	204.10	
24	(P)	$C_{10}H_7.O_6H_5$ $C_{10}H_7.NH.C_6H_5$	210 15	
25	ρ-naphthylamne	$C_{10}H_7.CH_2.C_6H_8$	019 11	1 1650
26	$\beta$ - " "	$C_{10}H_7.CH_2.C_6H_5$	210.11	1.105
27	ρ	$C_{10}H_7.CO.C_6H_5$	220.11	
28	$\beta$ " "	$C_{10}H_7.CO.C_6H_5$	232.10	
29	nhenol (m.)	$C_6H_5.C_6H_4.OH$	170 08	
30	" (n)	$C_6H_5.C_6H_4.OH$	170.08	
31	phosphine	$C_6H_5PH_2$	110.06	1.00115
32	phosphinic acid	$C_6H_5PO(OH)_2$	158.06	1.475
33		$C_6H_5PO(OH)H$		
34	-propiolic acid	$C_6H_5$ .C; C.CO ₂ H	146.05	1
35	-propvl alcohol (sec.)	$C_6H_5.CH(OH).C_2H_5$	136.10	0.9948
36	" (γ)	$C_6H_b(CH_2)_2CH_2OH_1$	136.10	1.00715
37	-pyrazolone (3) (K.)	$C_6H_5.C_3N_2H_3$	160.14	
<b>3</b> 8		$C_6 H_5 C_5 H_4 N \dots$		
39	" (β)	C ₆ H ₅ .C ₅ H ₄ N	155.11	1.+
40	" ()	$C_6H_5.C_5H_4N$	155.11	
	_		Can	ala 🕌

飠.	Solt	ubility in 100 (	e.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Corrected.	Crystalline Form
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. == Cor- rected.	and Color.
- 1	s. sol. hot	v. soluble	v. sol. bz.	113.5-4.5°		sm. need./al.
	s. soluble	v. soluble	v. soluble	166° [C.	l .	tablets/al
	v. v. s. sol.	v. soluble	v. soluble	224°	sub.	long need./al.
4 1	mod.sol. hot	v. soluble	v. soluble	51 .7°	290°	flat leaf./w
5			sol. CCl ₄	78°	301-2°	silky need./al.
- 1	v. s. sol.	v. soluble	v. soluble	86°	302°	thin need./w.
	1100	∞ .	∞	-12.9°C.	190.7° C.	
	1100	soluble	∞	-17°	189–91°	colorless
- 1		soluble	v. soluble	60–1°	310° dec.	needles
		soluble		55–6°		small prisms.
	v. v. s. sol.	4.97-10	soluble	26.9-7.0°	258.97° C.	monocl. pris.
	soluble	20	∞		197.5-9.5°	
1 -	sol. hot	soluble	soluble	73–4°	210-200	orthorhomb.
14	<u>.</u> '	• • • • • • • • • •			179–80° de.	
	v. v. s. sol. m			217°		fine yel. need.
	•••••		insol. CS ₂	65-6°		crystalline
	v. s. sol.	∞	∞	19.6°	243.5°	monoclinic
18				07 00	165-6° dec.	greenish
	soluble	· · · · · · · · · · ·		97–8°		thick pris./w.
	v. soluble	soluble	soluble	93°	221° C.	prisms
	i <b>ns</b> oluble			−21° C.	:	
22		v. soluble	v. soluble	no m.p. 102–2.5°	324–5° 345° C.	1 0-4-
	v. sol. bz.	v. soluble	v. soluble v. sol. chlo.	102-2.5° 107.5-8°		leaflets thin needles
	sol. CH ₃ OH	$1.67^{15}$ ; $3.3^{78}$	v. soi, cnio.	58.6°	395–9 . 5° 350°	
26 .	50 CS ₂	2.3 ¹⁵		35.5°	350°	tab./al., pr/e.
27	• • • • • • • • •	$2.49^{12}$	v. sol. bz.	35.5°	385°	monocl.pr/al. rhomb.prisms
28		$2.49^{12}$		82°	300	rhomb, prisms
	s. soluble	s. soluble	s. soluble	185°		leaflets/w
	sol. hot	v. soluble	v. soluble	164–5°	305–8°	silky need.
31	501. HOU	v. soluble	v. soluble	101-0	160–1°	/dil. al.
1111	23.515	soluble	soluble	158°	250° dec.	rhomb. leaf.
		soluble	soluble	70°	dec.	leaflets
	v. s. sol.	v. sol.	v. sol.	136–7°	sub.	trimet. prisms
35	v. s. su.	7. 501.	7. 501.	100-1	212°	or mico. prisitis
	s. soluble	×0	<b>00</b>	<-18°	235°, 119°12	thick liquid
	insoluble	s. soluble	s. soluble	239-40°	200 , 110	fine leaflets
	insoluble		S. Soldbie		268.5-	
			1	[	70.50749	
39	insoluble	v. soluble	v. soluble		269-700749	oil
	mod. sol hot		soluble	77-8°	274-5°	glit. leaf./w
		20.40.0		0		0.51

^{*} Very soluble CS₂ and benzene.

2 salicy semic 5 sulph 5 sulph 5 sulph 5 sulph 6 thious 10 11 12 o-toly 13 m-tol 14 p-toly 15 left 17 left 18 left 19 left 17 left 18 left 19 left 17 left 19 left 17 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19 left 19	Name.	Formula.	Molecu- lar Weight.	Specific Gravity, Water = 1. Air = 1 (A).
salicy semic semic sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphical sulphic	l-quinoline $(\alpha)$	$C_6H_5.C_9H_6N$	205.13	
semic sulphi sulphi sulphi sulphi thious toluer toluer toluer toly in the sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulph	" (0.)	$C_6H_5.C_9H_6N$	205.13	
semic sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi ri toluer o-toly m-toly urea. henyle rea rea rea rea rea rea rea rea rea re	ylate, salol	$OH.C_6H_4.CO_2.C_6H_8$	214.08	1.2614*
6 sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi sulphi	icarbazid (1)	$ C_6H_5.NH.NH.CONH_2 $	151.19	
7 sulph- 8 thious 9 toluer 10 " 11 " 12 o-toly 13 n-tol 14 p-toly 15 urea 16 Phenyle 17 18 19 -diam 20 " 21 " 22 " 32 Phlorog 24 trieth 25 trime 26 trioxi 27 Phosphe 30 Phthalic 31 aldeh anhyo 33 Phthali 35 Phthaly 36 " 37 " 38 Picoline 39 "		NH ₂ .NH.CO.NHC ₆ H _δ		
8 thious toluer 10 "" 12 o-toly 13 m-tol 14 p-toly 15 life Phenyle 17 ls 19 o-diam 20 "" (3 Phlorog 21 "" (4 25 trieth trime trioxi 27 Phosphe 29 Phosphe 30 Phthalid 31 aldeh anhyd 31 Phthalid 35 Phthalid 36 "" 38 Picoline 39 "" 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-toly 10 o-to	hide	$(C_6H_5)_2S$	186.14	1.11851
9 toluer 10 "" 11 12 o-toly 13 m-tol 14 p-toly 15 urea 16 Phenyle 17 18 19 -diam 20 " 21 "" 22 "(; 23 Phlorog 24 trieth 25 trime 27 Phosphe 30 Phthalic 31 aldeh anhyc 33 Phthali 35 Phthaly 36 "" 38 Picoline 39 ""	hone	$(C_6H_5)_2SO_2$	218.14	
10 " 11 " 12 o-toly m-tol p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-toly in the p-to	urea	NH ₂ .CS.NHC ₆ H ₅	152.20	
11	ene (o.)	$C_6H_5.C_6H_4.CH_3$	168.10	
12		$C_6H_5.C_6H_4.CH_3$		
13 m-tol 14 p-toly urea . 15 Phenyle 17 18 19 -diam 20 " 21 " 22 " 23 Phlorog 24 trieth trime trioxi 27 Phosphe 29 Phosphe 29 Phosphe 30 Phthalid 31 aldeh anhyd 33 Phthalid 34 Phthalid 35 Phthalid 36 " 37 " 38 Picoline 39 "	(P. J	$C_6H_5.C_6H_4.CH_3$	168.10	1.01527
14 p-toly 15 urea . 16 Phenyle 17 18 19 -diam 20 21 "(3 22 Phlorog 24 trieth trime trioxi 27 Phosphe 29 Phosphe 30 Phthalic 31 aldeh anhyo 33 Phthali 34 Phthali 35 Phthaly 36 " 37 38 Picoline 39	lyl ketone	$C_6H_5.CO.C_6H_4.CH_3$	196.10	
15 urea 16 Phenyle 17 18 19 -diam 20 21 22 Phlorog 24 25 26 Phosphe 27 Phosphe 30 Phthalid 31 aldeh anhyo 31 Aldeh anhyo 31 Phthalid 35 Phthalid 36 Phthalid 37 38 Picoline 39	olyl ketone	C ₆ H ₅ .CO.C ₆ H ₄ .CH ₃	196.10	1.088 ¹⁷
16 Phenyle 17 18 19 -diam 20 21 22 23 Phlorog 24 25 trieth trime trioxi 27 Phospho 30 Phthalic 31 aldeh anhyo 33 Phthali 35 Phthali 36 " 37 38 Picoline 39	lyl ketone	$C_6H_8.CO.C_6H_4.CH_8$	196.10	
16 Phenyle 17 18 19 -diam 20 21 22 23 Phlorog 24 25 trieth trime trioxi 27 Phospho 30 Phthalic 31 aldeh anhyo 33 Phthali 35 Phthali 36 " 37 38 Picoline 39	b	C ₆ H ₅ NH.CO.NH ₂	136.14	
18 19 20 21 22 23 Phlorog 24 25 trieth trime trioxi 27 Phosphe 29 Phthali 31 aldeh anhyo 33 Phthali 34 Phthali 35 Phthaly " " 38 Picoline 39 "	lene-diacetic ac.(o)	$C_6H_4(CH_2CO_2H)_2$	194.08	
19 -diam 20 21 "(3 22 23 Phlorog 24 trieth trime 27 Phoron 28 Phosphe 29 Phosphe 30 Phthalic 31 aldeh anhyc 33 Phthali 34 Phthali 35 Phthali 37 38 Picoline 39		$C_6H_4(CH_2CO_2H)_2$		
20 " 21 " 22 "(23 Phlorog 24 trieth 25 trime 26 Phosphe 27 Phosphe 29 Phthalid 31 aldeh 32 anhyd 33 Phthalid 34 Phthalif 35 Phthaly 36 " 37 " 38 Picoline 39 "	" (p.)	$C_6H_4(CH_2CO_2H)_2$	194.08	
21 "(22 "(32 Phlorog trieth trime trioxi Phoron. 28 Phosphe 29 Phosphe 30 Phthalic 31 aldeh anhyo 33 Phthalic 35 Phthalic 36 "" 38 Picoline 39 ""	$\mathbf{mine}\ (o.).\dots\dots$	$C_6H_4(NH_2)_2$	108.14	
22 "(32 Phlorog 24 trieth trime 25 Phosphe 29 Phosphe 30 Phthalid 31 aldeh anhyd 33 Phthalid 35 Phthalid 36 " 36 Phosphe 37 " 37 " 38 Picoline 39 "		$C_6H_4(NH_2)_2$		
23 Phlorog 24 trieth 25 trime 27 Phoroni 28 Phosphe 29 Phosphe 30 Phthalic 31 aldeh 32 anhyo 33 Phthalic 34 Phthali 35 Phthal 36 " 37 " 38 Picoline 39 "		$C_6H_4(NH_2)_2$		
24 trieth 25 trime 26 trioxi 27 Phosphe 29 Phosphe 30 Phthalic 31 aldeh 32 anhyo 33 Phthalic 35 Phthali 36 " 37 " 38 Picoline 39 "	(3) sulphonic ac. (o.)	$(NH_2)_2C_6H_3SO_3H+1\frac{1}{2}H_2O$	205.23	
25 trime 26 Phosphe 29 Phosphe 30 Phthalic 31 aldeh 32 anhyo 33 Phthalic 34 Phthalic 35 Phthaly 36 " 37 " 38 Picoline 39 "	glucin	1: 2: $3C_6H_3(OH)_3 + 2H_2O$	162.08	
26 trioxi 27 Phoron. 28 Phosphe 29 Phosphe 30 Phthalid 31 aldeh anhyd 33 Phthalid 34 Phthalid 35 Phthaly 36 " 37 " 38 Picoline 39 "	hyl ether	1: 2: $3C_6H_3(OC_2H_5)_3$	210.15	
27 Phoron. 28 Phosphe 30 Phthalid 31 aldeh 32 Phthalid 34 Phthalid 35 " 36 " 37 " 38 Picoline 39 "	${f iethyl}$ ether ${f}$	1: 2: 3C ₆ H ₃ (OCH ₃ ) ₃	168.10	
28 Phosphe 29 Phosphe 30 Phthalic 31 aldeh 32 Phthalic 33 Phthalic 35 Phthaly 36 " 37 " 38 Picoline 39 "	kime	$C_6H_6(NOH)_3$	171.19	
29 Phospho 30 Phthalic 31 aldeh 32 anhyo 33 Phthalic 34 Phthalic 35 Phthaly 36 " 37 38 Picoline 39 "	a	$[(\mathring{CH}_3)_2\mathring{C}:\mathring{CH}.]_2>\mathring{CO}$	138.12	0.8850*
30 Phthalic 31 aldeh 32 anhyd 33 Phthalic 34 Phthalic 35 Phthaly 36 " 37 38 Picoline 39 "	nenyl chloride	$C_6H_5PCl_2$	178.94	1.31920
31 aldeh 32 anhyo 33 Phthalio 34 Phthalio 35 Phthaly 36 " 37 " 38 Picoline 39 "	10-benzene	$C_6H_5P:PC_6H_5$	216.08	
32 anhyo 33 Phthalid 34 Phthalid 35 Phthaly 36 " 37 " 38 Picoline 39 "	ic acid	$o.C_6H_4(CO_2H)_2$	166.05	1.585-1.593
33 Phthalid 34 Phthalid 35 Phthaly 36 " 37 " 38 Picoline 39 "	hyde	o.C ₆ H ₄ (CHO) ₂	134.05	
34 Phthalir 35 Phthaly 36 " 37 " 38 Picoline 39 "	ydride	$C_6H_4 < (CO)_2 > O$	148.03	1.5274
35 Phthaly 36 " 37 " 38 Picoline 39 "	id	$C_6H_4.CH_2.O.CO - \dots$	134.05	
36 " 37 " 38 Picoline 39 "	imide	$o.C_6H_4<(CO)_2>NH$	147.08	
37 " 38 Picoline 39 "		$C_6H_4C_2O_2.Cl_2$		
38 Picoline		$C_6H_4C_2O_2.Cl_2$		
<b>3</b> 9 "	" (p.)	$C_6H_4C_2O_2.Cl_2$	202.93	
UU	$\mathbf{e}(\alpha)(\mathbf{K}.)$	CH ₃ .C ₅ H ₄ N	93.10	0.9423
	(β)	$CH_3$ , $C_5H_4N$	93.10	0.9613¥
40 "	$(\gamma)$	$CH_3.C_5H_4N$	93.10	0.9571
41 Picolinio	$\mathbf{uc}$ acid $(2)$	C ₅ H ₄ N.CO ₂ H	123.08	

101	Solu	ibilit <b>y</b> in 100 c	ic.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1 2		v. soluble v. soluble	v. soluble v. soluble	86°		long need.
		v. soluble v. sol. hot	v. soluble	42–2.5°		rhomb tab
	v. v. s. sol. s. soluble	v. soi. not v. soluble		4 <i>2</i> –2.5° 172°		leaf./dil. al
1 1	s. soluble s. sol. hot.	v. soluble v. soluble	insoluble	172° 122°		rhomb. lf./w.
1 1		v. sombie soluble		thick — 40°	296° ⁷⁶⁰ C.	rnomb. II./W.
		sorubie s. soluble				moncl.pris bz.
		5.66 ²⁵	sol.; sol. bz.	128-9 152°		
1		5.00		152	258–60°	trimet./al
10					272-7°	
11				-2-3°	263-7°	
	[chlo.	• • • • • • • • •		<-18°	263–7° 315–6° C.	
	$\infty$ bz. and	οδ	oo	V - 10	314-6°745 C.	
	v. sol. bz.	mod. sol.	v. soluble	*	326° C.	hex. or moncl.
	s. sol. hot	v. soluble	v. soluble	147°	320 C.	moncl. need
	s. soluble	v. soluble	v. soluble	150°		fine needles.
1	soluble	v. soluble	v. soluble	170°	dist. dec.	needles/w
	v. s. sol.	v. soluble	v. soluble	244°	dist. dec.	flat needles.
	s. soluble	v. soluble	v. soluble	102-3°	256–8°	quad.tab./ch.
	soluble	v. soluble	v. soluble	63°	282-4°	rhombic
	mod. sol.	v. soluble	v. soluble	140°	267°	monoclin./w.
	1.0410	v. s. sol.	v. s. sol.	110	201	rhomb. tab
1	1.1	v. soluble	v. s. sol. v. soluble	217-9°	sub. dec.	rhomb. tab
	insoluble	v. v. sol.	v. v. sol.	43°	175°24	(vol. with st)
	v. sol. bz.	v. soluble	v. soluble	52°	255.5° C.	prisms/al
	v. s. sol.	v. s. sol.	sol. chlo.	exp. 155°	200.0 0.	cryst. powd
		soluble	soluble	280	198.5°	pale yel. cryst
28	dec.	∞ C ₆ H ₆	∞ CS ₂	1	224.6° C.	pare year eryst
1	insoluble	insoluble	insoluble	149-50°		pale yel. pow.
	0.5414	11.818 abs.	0.6815	195° abt.	dec. 196°	rhombic
1	1.4 hot	soluble	soluble	56-6.5°		
1 -	s, sol, hot	soluble	<1°	128°	284.5° C.	rhomb. pris
-	v. s. sol.	v. soluble	1.3	73 ⁶	290	needles/w
1	insol. bz.	insol, lig.	s. soluble	233.5° C.	sub.	hexag.pris./et
				0°	281.5° C.	oil.
		1		41°	276°	cryst. mass
37	1	1		77-8°	259°	needles
38	<b>o</b> o	∞	∞		128-30°	colorless
39		1	.]		143.4°760 C	
40	)		.		142.5-4.5C	
41	v. soluble	v. soluble	v. v. s. sol.	137°	sub.	fine needles
					1	

^{*}The hexagonal crystals melt at 55°, while the monoclinic crystals melt at 60°.

Number	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Picramide	$NH_2C_6H_2(NO_2)_3$		
	<b>Picramic</b> acid (4:6:2)	$OH.C_6H_2(NO_2)_2NH_2$	199.16	
	Picric acid 1:2:4:6	$OH.C_6H_2(NO_2)_3$	229.15	1.76719
	Picryl chloride (K.)	(NO ₃ ) ₃ C ₆ H ₂ .Cl		
				0.00008
	Pinacoline	CH ₃ .CO.C(CH ₃ ) ₃		0.82098
	Pinacone	$\frac{[(CH_3)_2C(OH).]_2}{(CH_3)_3C.CH(OH).CH_3}$		0.9672 ¹⁸ 0.8347 ⁰
	Pinene	$ C_{10}H_{16}$		$0.8647^{20}$
	Pinol	$C_{10}H_{16}O$		0.942020
	Piperidine	$CH_{2} < (CH_{2}, CH_{2})_{2} > NH.$		0.86063
	Piperonal			
	Piperonyl alcohol		152.06	l. <b>.</b>
	Polyglycolid		58.02	
15	Populin	$C_{20}H_{22}O_8 + 2H_2O \dots$		
16	Prehnitene	1: 2: 3: $4C_6H_9$ . (CH ₃ ) ₄		
	<b>Prehnitic</b> acid 1 : 2 : 3 : 4	$C_6H_2(CO_2H)_4 + 2H_2O$		
	Propane	CH ₃ .CH ₂ .CH ₃		0.51516
	Propargyl acetate			1.005*
20		CH: C.CH,OH		0.972 <b>¥</b>
	Propiolic acid			0.050519
	Propion amide			0.9565¥ 0.9937²°
24	Propionic acid	CH ₃ .CH ₂ CO ₂ H		0.991
25		CH ₂ .CH ₂ CHO		0.8066*
26		(CH ₃ CH ₂ .CO) ₂ O		1.0336
	Propyl acetate (n.)			0.8908
28		$C_3H_7$ , $C$ : $CH$	I	
29	alcohol	CH ₃ .CH ₃ .CH ₃ OH		0.80358*
30	amine	CH ₃ .CH ₂ .CH ₂ NH ₂	59.11	0.718620
31	-benzene	$CH_3(CH_2)_2.C_6H_5$	120.10	0.8680₹
32	benzoate	$C_6H_5.CO_2(CH_2)_2CH_3$	164.10	1.0274¥
33		$CH_3(CH_2)_2.C_6H_4.CO_2H$		
34		$CH_3(CH_2)_2.C_0H_4.CO_2H$		
35		CH ₃ .CH ₂ .CH ₂ Br		
36		C ₃ H ₇ .O.C ₄ H ₉		
37		C ₃ H ₇ CO ₂ .C ₂ H ₇		
38		NH ₂ .CO ₂ .C ₃ H ₇		
39 40		Cl.CO ₂ .C ₃ H ₇		1.08311 0.8915 ¹⁸
41		CH ₃ .CH ₂ .CH ₂ Cl		0.858820
41	" (sec.)	OII3.OHOI.OH3	10.01	0.0000

Digitized by GOOGLO

Number.	Sol	ubili <b>ty in</b> 100 (	o.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form and Color.
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	insoluble	insoluble	sol. acet.	188°		yel. mon. tab.
	0.1423	mod. sol.	s. soluble	168-9°		moncl. prisms
	1.0320	10	5.415 wet	122.5°	exp.	yel. leaf./w
4	insoluble	soluble	soluble	81-2°		yel. prisms
5	520	v. soluble	v. soluble	105°	272°100	rhombic/w
6	2.36 ¹⁵		soluble		106° C.	
	s. soluble	v. soluble		35-8°	172–3°	small needles
8		soluble		5.45°	120-1°	silky needles.
- 1	v. s. sol.	∞ abs.	$\infty$ , $\infty$ chlo.		156°, 50°15	
1		soluble			184°	
11		soluble		-17°	106.2°759	<u>.</u> ,
	0.2	∞ ⁷⁸	∞ ∞	37°	263°	long glit. crys
	s. soluble	∞	∞ .	51°	dec.	long crystals.
	insoluble		. <b></b>	223°	dist. in vac.	powder
	0.415; 42100	mod. sol.	soluble	180°		v. fine needles
16	· · • · · · · · · · ·			-4°	204°	
	v. soluble		soluble	238° dec.	→anhyd.	large irreg. pr.
	6.5 c.c. ¹⁸	790 c.c. ¹⁷	926 c.c. ¹⁷	<-195°	-44.5°	
19	1 · · · · · · · · · · ·	soluble	soluble		124-5°	
1	soluble ·	∞	∞			
	soluble	soluble -	soluble	6°	144° dec.	long crystals.
22		soluble	soluble	79°	213°	rhomb./chlo.
23		∞	∞	−22° C.	140.7° C.	
24		∞ ∞	<b>∞</b>		140-1°	colorless
	2020	∞ ∞	∞		48.8° C.	
	s. soluble				168.6°	
	1.6	∞ ∞	∞	-92.5°	101.6°	
			soluble		48–9°	
29	, ~	<b>∞</b> 0	∞ ∞		97.4° C.	
	soluble			-127°	49°	
1 -	insoluble	soluble	soluble		158.20752	
32					230.7° C.	
	soluble	v. soluble	v. soluble	58°	272 ⁰⁷³⁹	leaf./dil. al
	s. sol. hot	v. soluble	v. soluble	140°		leaflets/w
35		∞		· · · · · · · · · · ·	71.5° C.	
• 36		• • • • • • • • •			117.1°	
37		∞	, ,∞		142.70	
1	v. soluble		soluble	59-60°	198-200°	flat pris
	v. s. sol. dec	∞	∞		112–6°	colorless
40	1				46.5°	
41	•••••		<b>-</b>		36.5°	
	1	l	<u> </u>	l	C	hogle

Number	Name.	. Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Propyl cyanide	CH ₃ .CH ₂ .CH ₂ CN	69.10	0.79615
2	ether	2 2/2		0.7465 ¹⁶
3	fluoride	CH ₃ .CH ₂ .CH ₂ F	62.06	
4	formate	HCO ₂ .C ₃ H ₇		0.9095¥
5	glycollate	$C_5H_{10}O_3$		1.062118
6	hexamethylene	$C_3H_7.C_6H_{11}$		0.7671
7	hexyl ketone			0.824%
8	iodide	CH ₃ .CH ₂ .CH ₂ I		1.747216
9	" (K.)	CH ₃ .CH ₂ .CH ₂ I		1.74235
10	isobutyl ketone	C ₃ H ₇ .CO.CH ₂ .CH(CH ₃ ) ₂		0.813*
11 12	isovaleriate (K.)	(CH ₃ ) ₂ CH.CH ₂ .CO ₂ .C ₃ H ₇ .		0.8623
13	mercaptan	CH ₂ .CH ₂ .CH ₂ SH	76.13	0.99090
14	nitrate	$C_3H_7$ .NO ₃		1.063115
15	nitrite	$C_3H_7.NO_3$		$0.935^{21}$
16	phenol (m.)	$C_3H_7$ . $C_6H_4OH$	136.10	
17	phenyl ketone			
18	propionate	$C_2H_5.CO_2.C_3H_7$		
19	pyridine $(\alpha)$			
20	sulphide			
- 1	Propylene			1.498
22	bromide	CH ₃ .CHBr.CH ₃ Br		1.930718
23	chloride	CH3.CHCl.CH2Cl	112.95	1.165614
24	iodide	CH_I.CHCH_I		
25	oxide	CH ₃ (CH.CH ₂ )O		0.859
26	Propylidene-acetic ac		100.06	0.9921
27	Proto catechuic acid 3,4.	$(OH)_2C_6H_3.CO_2H+H_2O$ .	172.07	1.54154
28			138.05	
	Pseudo-cumene	$1:2:4C_{6}H_{3}(CH_{3})_{8}$		0.8810 <del>1</del>
30	" " (K.)		120.10	0.8745
,				
32	phenanthroline			
33	Purpurin 1: 2: 4	$(OH)_3C_6H < (CO)_2 > C_6H_4$		
	Pyrazine			
35	Pyrazole	-NH.N.CH.CH.CH	64.11	
36	Pyrazoline	$NH < \frac{N:CH}{CH_2.CH_2} > \dots$	66.13	• • • • • • • • • • • • • • • • • • • •
37 ]	Pyrene	$[\mathrm{C_{16}H_{10}.\ldots}]$	202.08	
38]	Pyridazine	$N_2 < (CH.CH)_2 > \dots$		1.1108
	Pyridine	$CH < (CH.CH)_2 > N$		0.9779*
40	" (K.)	$CH < (CH.CH)_2 > N$	79.08	0.976#

Digitized by GOOGLO

<u></u>	<u>*</u>					
Number.	Sol	ubility in 100 (	<b>:.c.</b>	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
ž	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1					118.5°	
2	soluble	∞	∞		91–1.2° 2°	
4	s. soluble	∞ ∞	∞	<-75°	81°	
5 6					170.5° C. 147.5–9.5°	
7				-9°	206–7°	
	$0.107^{20}$	. ∞	∞	-98.8°	102.2° C.	
9 10		∞	∞ 		101.5-2.5° 155°750	turns brown.
11	insoluble	∞	∞ ∞		153-6°	colorless
12	v. s. sol.	soluble	soluble		67–8°	
13					153°	
14		soluble	soluble		110.5°	
15		soluble	soluble		57°	
16	v. v. s. sol.	soluble			228°	crystalline
17		soluble		21°	218°	
	s. soluble	90	∞		122.4° C.	· · · · · · · · · · · · · · ·
19	insoluble	soluble	soluble	1	165-8° 141.5-2.5 ⁷⁷²	
	44.6 c.c.	1250 c.c.	soluble	< -180°	$-48.2^{0749}$	· · · · · · · · · · · · · · · · · · ·
	$0.245^{20}$	soluble		-100	141.6° C.	
	0.27220	BOILEDIC			96.8° C.	
24					227° dec.	
25	33	∞	00		35°	
	6.2720		soluble	9.5-10.5°	200–1° C.	1
27	1.914	v. soluble	mod. sol.	199° dec.		moncl. need
- 1	5.0	v. soluble	v. soluble	153–4°	dec.	flat cryst./w.
29					169.8° C.	
30		soluble	∞ .		168-70°	colorless
	v. v. s. sol	v. soluble	v. soluble	71-2°	234-5°	fine needles w.
١.	mod.sol.hot	v. soluble	s. soluble	173°	dist.	thin need./
	mod. sol.	soluble	soluble *	256°	dec.	red need./al.
34	00 	v. soluble	v. soluble	47° 69.5–70°	118°760 186–8°	tb./et.;pris.w.
36	v. soluble	v. soluble	v. soluble	08.0-7U	186–8°	long need./et.
	∞	∞				
37		1.37	v. soluble	148–9°	far > 360°	monoclinic
38 39	<b>∞</b>	v. soluble	v. soluble	-8° -42°	208° ⁷⁶⁰ C. 115.2° ⁷⁶⁰ C.	
39 40	∞		soluble	-42	115.2° ° ° ° C. 113.5–4.5°	and and and
ΨV	80	∞	8		110.0-4.5	colorless
L	<u> </u>					l

^{*} Soluble CS₂, hot benzene, and toluene. Google

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Pyridine purified (K.)	CH < (CH.CH) ₂ >N		0.97235
2	penta carbonic acid	$C_bN(CO_2H)_b + 2$ or $3H_2O$ .	299.08	
3		C ₅ H ₄ N.SO ₃ H.		
4		$C_5H_2N.(CO_2H)_7 + 1\frac{1}{2}H_2O$		
5	Pyrocatechin	$[0,C_6H_4(OH)_2,\ldots,C_6H_4(OH)_2]$	110.05	
6	Pyrocoli	$C_4H_3N < (CO)_2 > NC_4H_3$	186.13	1 40040
	Pyrogallol	1: 2: 3C ₆ H ₃ (OH) ₃		1.46340
8	Description of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co	1: 2: 3C ₆ H ₃ (OCH ₃ ) ₃	110 02	1.1118
10	Pyromeconic acid Pyromellitic ac. $(1, 2, 4, 5)$	CH(COH)	200 00	
11	Pyromucic acid		112 02	
12	Pyrone		06 03	•••••
	Pyroracemic acid			1.264925
	Pyrotartaric acid			
15	Pyrrol	<(CH CH)->NH	67.08	0.9669
16	Pyrrolidine	NH < (CH, CH ₂ ) >	71.11	0.852022
17	Pyrroline	NH < (CH, CH), >		0.90973
	Pyrrone		164.10	
19	Pyruvic acid	CH, CO.CO.H	88.03	1.28818
20	Quercetin	$C_{15}H_{10}O_7 + 2H_2O \dots$	338.12	
21	Quercite (d.)	CH ₂ <[(.CHOH.) ₂ ] ₂ >CHOH		1.584518
22	Ouercitrine	$C_{21}H_{22}O_{12} + 2H_2O$	698.24	l
	Quinaldine	pv. 2.C.H.N.CH	143.11	1.101310
	Ouinic acid		192.10	1.637
	Quinic acid	CH.O.C.H.N.CO.H	203.11	
26	Quinoline	CH.CH. CH.CH.	129.10	1.094720
27		$\left <_{\mathrm{CH.CH}}^{\mathrm{CH.CH}}>\mathrm{C_2}<_{\mathrm{N.CH}}^{\mathrm{CH.CH}}>\right $	129.10	1.093
<b>2</b> 8	Quinolinic acid	$2: 3C_5H_3N(CO_2H)_2$	167.05	
<b>2</b> 9	Quinone	CO < (CH.CH) ₂ > CO	108.03	1.307-1.318
	Racemic acid		168.07	1.697
	Raffinose	$C_{18}H_{32}O_{16} + 5H_2O$	594.34	1.465
	Resorcine	$m.C_6H_4(OH)_2$	110.05	1.271715
33		$m.C_6H_4(OCH_3)_2$		
	Retene			
35	Rhamnite	CH ₃ [CH(OH)],.CH ₂ OH.	166.12	
36	Rhamnose	CH ₃ [CH(OH)],CHO.H ₂ O	182.12	1.4708
	Ricinoleïc acid			
	Rosaniline	$C_{20}H_{21}N_3O$	319.29	
39	Parindulina	(NH ₂ C ₆ H ₄ ) ₃ COH	305.18	
40	Rosinduline	U ₂₂ H ₁₅ N ₈	321 24	

Number.	Sol	ubility in 100 (	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1	∞ .	∞	∞ ,			colorless
	v. v. sol.			dec. 220°		imperfect reg.
	v. soluble 1.2 ¹⁵	v. s. sol.	insoluble	249–50°		need, or leaf
1	v. soluble	mod. sol. v. soluble	insoluble v. soluble	249-50° 104°	24 <b>5°</b>	rhomb. tab
	insoluble	v. soluble v. s. sol.	v. s. sol.	268-9°	sub.	moncl. tab
	4413	100 ²⁵	83.3 ²⁵		293°, 105°°	thin leaf. the ne.
8		v. soluble	v. soluble	47°	241° C.	lg.need/dil.al.
	soluble	soluble	s. soluble	117°		prisms
	14.216	v. soluble		265° anhy.		tricl. tab./w
	2.70; 25100	v. soluble	v. soluble	132.6-4.3°	sub. 100°+	monel. prisms
	v. v. s. sol.	soluble	v. soluble	32.5°	210-5°,97°13	prisms
13		∞ ∞	∞ ∞	13.6°	165°, 65°10	·
14	66.720	v. soluble	v. soluble	117-8°		triclin. prisms
1 .	insoluble	v. soluble	v. soluble		130–1°	
16	_				87.5-8.5°	
	v. v. sol.				90–1°	
1	v. v. s. sol.	v. soluble	v. soluble	160°		trimet. need.
19		∞	∞	13.6°	165° dec.	/et.
	0.35 11 ²⁰	1	insoluble	313–4° dec. 234° or 225		lem. yel. nd
21	11	v. s. sol.	insoluble	234 OF 225	· · · · · · · · · · ·	moncl. prisms
22	0.0420	0.25	0.80	168° dec.		yel.need.or lf.
23			<b></b>		246-7°	
	40°	s. soluble	insoluble	161.6° C.	dec.	moncl. prisms
	v. s. sol.	1.24780	v. v. s. sol.	280° dec.	sub. part.	yellow prisms
26	1*	soluble	$sol. sol. CS_2$	-19.5°	240 · 4–1 · 3°	
1	s. soluble	soluble	∞		237–8°	usually yel
	0.559	s. soluble	v. soluble	231°	dec.	moncl. prisms
	s. sol. hot	v. soluble	v. soluble	115.7°	sub. need.	yel. m'cl.pris
	20.6 ²⁰ 14 ²⁰	2.04		205–6°	J. 1200	triclinic crystalline
32	147.312.5	0.120 90% 16115	v. soluble	118-9°anhy 110°	dec. 130° 280°	rhomb.tab./w
	v. s. sol.	soluble	soluble	<-17°	217° C.	vol.withste'm
34		3	soluble	98.5°	390°, 135°°	leaflets/al
	v. soluble	v. soluble	v. s. sol.	121°		triclin pris./a.
	50	s. soluble		92–3°	1	monoclin./w.
37		∞ ∞	∞	16-7°	250°15	cryst. mass
38	s. soluble	soluble	insoluble	1	dec.	need. or tab
39	insoluble	soluble	soluble	188-9°		red. leaflets
40	insoluble	v. soluble	v. soluble	198–9°	[	brown lf./et
L	<u> </u>	1	1	1	C	loglo-

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Rosolic acid	C ₂₀ H ₁₆ O ₃	304.13	
2	Saccharic acid (d.)		210.08	
3	Saccharine (d.)	$(C_6H_{10}O_5)x$	162.08	
4	Saccharin	$C_6H_4 < \frac{CO}{SO_2} > NH$	183.14	
			286.15	1.426-1.434
6	Salicylamide	OH.C ₆ H ₄ .CONH ₂	137.10	
7	Salicylic acid	$0.OH.C_6H_4.CO_2H$	138.05	
8		$C_2H_5O_2.C_6H_4.CO_2H$	180.06	
9	F		214.08	
10	aldehyde (K.)			1.165#
11	anhydride			
	Saligenin	OH.C ₆ H ₄ .CH ₂ OH	124.06	1.161325
	Salol see Phenyl salicylate			
	Santonin	$C_{15}H_{18}O_3$	246.14	1.1866
	Sarcolactic acid	$CH_3.CH(OH).CO_2H$	90.05	
	Sarcosine	CH ₃ NH.CH ₂ CO ₂ H	89.10	
	Skatol	C _o H _o N		
	Sebacic acid			
		1 - 1 - 2 - 1 - 1 - 1 - 1 - 2 - 1 - 1 -		
	Silicobenzoic acid	C ₆ H ₅ .SiO ₂ H		
	Silicon tetraphenyl (K.).	$Si(C_6H_5)_4$		
22	triethyl phenyl	$C_6H_5Si(C_2H_5)_3 \dots$	192.56	0.90420
	Silver fulminate	$C_2Ag_2N_2O_2$	299.94	
		NaC ₂ H ₅		
25		NaC ₃ H ₇ O ₃		<b>,</b>
	Sorbic acid			
-	Sorbinose	$C_6H_{12}O_6$	180.10	1 . 65418
	Sorbite (d.)	$C_6H_{14}O_6+\frac{1}{2}H_2O$		
	Starch	$(C_6H_{10}O_5)x \ x = 46-50?$		
	Stearic acid	2/10 2		0.8428*
31		CH ₃ (CH ₂ ) ₁₆ CHO		
32				
	Stearine	$(C_{18}H_{35}O_2)_3C_3H_5$		
	Stearolic acid			
	Stearone			0.7979♥
	Stilbene	C ₆ H ₅ .CH: CH.C ₆ H ₅		
	Styrene	C ₆ H ₅ CH: CH ₂		
	Suberic acid	2,62	174.12	
	Suberone	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.96850
<b>4</b> 0	Suberyl alcohol	< (CH ₂ .CH ₂ .CH ₂ ) ₂ CHOH	114.12	U. 9595**
	l	L		1

Digitized by GOOGIC

Number.	Sol	ubility in 100 (	o.c.	Melting Point, °C. C. = Corrected.	Boiling Point, °C. C. = Cor- rected.	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	v. s. sol. v. soluble	v. sol. hot v. soluble	mod. sol. s. soluble	abt. 270°	dec.	red leaflets
	1315			160-1°	volatile	large rhb.pris.
4	0.430525	3.12/90%	*	220°dec.	sub.	(monocl. /acetone
- 1	3.34 ¹⁵ ; 85 ⁹⁶	soluble	insoluble	201°	230-40°	rhomb.lf.orpr.
	s. soluble			139.9° C.	270° dec.	leaflets
I - I	0.220625	49.6315	50.4715	159.05° C.	sub. 75–6°°	fine need./w
	v. s. sol.	v. soluble	v. soluble	132°	dec.>140°	fine need./w.
	v. v. s. sol.	v. soluble	v. soluble	113°	355° dec.	leaf./dil. al
	s. soluble	soluble	∞.	-20°	196.70°760	bright yellow
11	insoluble	v. soluble	v. soluble	200-20°	dec.	yel. amor.
	6.722	v. soluble	v. soluble	86°	sub. 100°+	rhomb. tab
	$0.02^{17}$	2.0 ²²	1.317	169–70°	sub. dec.	trimet. t.or pr.
15	· 🗴	∞ ∞	∞ ∞			syrup
16	v. soluble	s. soluble		210-5°		rhombic
17	s. soluble	soluble	sol. lig.	95°	265-6°755	glit. leaf./lig.
18	0.0225 0.465	v. soluble	v. soluble	133-3.5°	294.5°100	feath'y cryst.
19	v. soluble	soluble	v. sol. chlo.	96°		pris./abs. al
20	in <b>s</b> oluble	sol. KOH	v. soluble	92°		glassy/et
21	insoluble	v. s. sol.	v. s. sol.	230-1°	<b></b>	fine leaflets
	insoluble		soluble		230°	
23	$0.075^{13}$	v. sol. NH ₃	insol. HNO ₃	exp.		small need
24						
25	decom.	soluble				white powd
26	v. s. sol.	v. soluble	v. soluble	134.5°	228° dec.	needles/w
	200	s. soluble		164°		rhombic
	soluble	v. s. sol.		110–1°	. <b></b>	crystalline
	insoluble	insoluble	insoluble	no m.p.		amorphous
	insoluble	0.113995%	soluble	69.32°	291°100	leaflets
31				63.5°	212-3°22	scales/ether
32	<b></b>			71–7°		
	insoluble	v. s. sol.	soluble	71-1.5°		crystalline
	insoluble	s. soluble	v. soluble	48°	260°	long pris./al
35		s. sol. hot	s. sol. hot	87.8°		leaflets
36		0.88 ¹⁷ abs.	7.8814	124-5°	306-7°	monoclinic
	insoluble	∞ ∞	∞ ∞		146°759 C.	
	0.080-0.1620	soluble	0.809	140°	300°; 152°°	need. or tab
39	s. soluble	v. soluble	soluble	<b></b>	178.5-9.5°C	oil
40					184–5° C.	
<u> _</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1

^{*} Sol. 2 in amylacet, 5 in ethylacetate, s. sol. bz, v. sol. HNO₃.

Ē			i -	1
Number	Name.	Formula.	Molecu- lar Weight.	Water = I.
1	Succinamide	NH ₂ CO ₂ (CH ₂ ) ₂ CONH ₂	  116.14	 
2	Succinic acid	CO.H (CH.),CO.H.	118.05	1 552
3	anhydride	<(CH ₂ .CO) ₂ >O	100.03	1.1036♥
4	Succinimide	< (CH ₂ .CO) ₂ $>$ NH + H ₂ O.	117.10	
5	Succinyl chloride	ClCO(CH ₂ ) ₂ COCl	154.93	1.412316
6	Sugar (cane)	C ₁₂ H ₂₂ O ₁₁	342.18	1.58820
	Sulphamine benzoic ac.(o.)	$NH_2SO_2.C_6H_4.CO_2H$	201.16	. <b></b>
8	" " (m.)	NH ₂ SO ₂ .C ₆ H ₄ .CO ₂ H	201.16	
9		NH ₂ SO ₂ .C ₆ H ₄ .CO ₂ H		
	Sulphanilic acid (p.)			
11	Sulphoacetic acid	$SO_3H.CH_2.CO_2H+H_2O.$		
	Sulphobenzid (K)			
	Sulphobenzoic acid (o)			
14 15	(111.)	CO ₂ H.C ₆ H ₄ .SO ₃ H + 2H ₂ O	220.14	
	Sulphocyanic acid	$CO_2H_*C_6H_4.SO_8H + 3H_2O$	200.10	
17	Sulphonal	(CH) C(SO C H)		
18	Sylvestrene (d.)	С H		0.851016
10	Talomucic acid (d. or l.)	CO HICH(OH)1 CO H		
20	Tannin	C.H.O.		
21	Tartaric acid (i.)	LCH(OH) CO.HL + H.O.		
22	" (d.)	CO ₂ H [CH(OH)] ₂ CO ₂ H		1.7598¥
23		CO2H [CH(OH)]2CO2H	150.05	
24				
25	Tartronic acid	$OHCH(CO_2H)_2 + \frac{1}{2}H_2O$		
26	Taurine	NH, CH, CH, SO, H	125.16	
27	Taurocholic acid	$C_{26}H_{45}NSO_7 + H_2O$		
28	Teraconic acid	$(CH_3)_2C: C(CO_2H).$	158.08	
		CH ₂ .CO ₂ H.	l.	
	Teracrylic acid			
30	Terebic acid			0.8155*
	Terephthalic acid (p.)	$C_6H_4(CO_2H)_2$		
32	aldehyde (p.)	$C_6H_4(CHO)_2$	134.05	• • • • • • • • • • • • •
33	nitrile (p.)	$C_0H_4(CN)_2$	128.11	• • • • • • • • • • • • • • • • • • • •
34	Terpenol	$C_{10}H_{18}O$	154.15	
35	Terpentine (pinene)	O H	130.13	U.858720
30	Terpinene	C II O	150.13	0.804/**
3/	Terpineol		136.13	0 935720
30	Tetrahrom bongono (a)	1.9.4.5C H R	202 97	3.02720
40	Tetrabrom-benzene (s.).		393 .87 393 .87	
40	(as.)	1: 3: 4: $5C_6H_2Br_4$	090.01	• • • • • • • • • • • • • • • • • • • •
ŀ			1	

Water (w.).  .45 ¹⁵ .8 ²⁰ ; 28.1 ⁸⁵ nsoluble . soluble . soluble . s. sol v. s. sol108 ²⁰ bluble nsoluble 0 eliq.	insoluble 9.99 ¹⁵ soluble mod. sol.  0.4 v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble	insoluble 1.19 ¹⁵ v. s. sol. v. soluble s. soluble v. s. sol. insol. abs.	Melting Point, °C. C. = Cor- rected.  242-3° 185° 119.6° 125-6° 16-7° 189.2° C. 165-7° 238° C. dec. 280° chars.280°+	Boiling Point, °C. C. = Corrected.  235° 261° 287-8° 190-2° C.	needles monoclinic trimetric/al. octah./acet monoclinic rhombohed.scales
. 8 ²⁰ ; 28.1 ⁶⁵ asoluble . soluble . soluble . s. sol v. s. sol 108 ²⁰ bluble asoluble	9.99 ¹⁵ soluble mod. sol	1.19 ¹⁵ v. s. sol. v. soluble s. soluble v. s. sol.	185° 119.6° 125–6° 16–7° 189.2° C. 165–7° 238° C. dec. 280°	261° 287–8° 190–2° C.	monoclinic trimetric/al. octah./acet monoclinic rhombohed
nsoluble soluble . soluble . s. sol. . v. s. sol. . 10820 bluble nsoluble	soluble mod. sol. 0.4 v. soluble v. soluble v. soluble v. soluble s. sol. v. soluble	v. s. sol. v. soluble s. soluble v. s. sol.	119.6° 125–6° 16–7° 189.2° C. 165–7° 238° C. dec. 280°	261° 287–8° 190–2° C.	trimetric/al. octah./acet. monoclinic. rhombohed
soluble	mod. sol.  0.4 v. soluble v. soluble v. soluble v. s. sol. v. soluble s. soluble	v. soluble s. soluble v. s. sol.	125–6° 16–7° 189 · 2° C. 165–7° 238° C. dec. 280°	287–8° 190–2° C.	octah./acet. monoclinic rhombohed
98.6 ¹² . soluble . s. sol v. s. sol 108 ²⁰ oluble asoluble	0.4 v. soluble v. soluble v. soluble v. s. sol. v. soluble s. soluble	s. soluble v. s. sol.	16-7° 189.2° C. 165-7° 238° C. dec. 280°	190–2° C.	monoclinic rhombohed
. soluble . s. sol. . v. s. sol. . 108 ²⁰ bluble nsoluble	v. soluble v. soluble v. soluble v. s. sol. v. soluble s. soluble	s. soluble v. s. sol.	189.2° C. 165–7° 238° C. dec. 280°		rhombohed.
. soluble . s. sol. . v. s. sol. . 108 ²⁰ bluble nsoluble	v. soluble v. soluble v. soluble v. s. sol. v. soluble s. soluble	s. soluble v. s. sol.	165–7° 238° C. dec. 280°	1	rhombohed.
. s. sol. . v. s. sol. . 108 ²⁰ oluble nsoluble 0	v. soluble v. soluble v. s. sol. v. soluble s. soluble	s. soluble v. s. sol.	238° C. dec. 280°		
v. s. sol. 108 ²⁰ oluble nsoluble 0	v. soluble v. s. sol. v. soluble s. soluble	v. s. sol.	dec. 280°		scales
. 108 ²⁰ oluble nsoluble 0	v. s. sol. v. soluble s. soluble				
oluble nsoluble 0	v. soluble s. soluble		chars.280°+		flat pris /w.
nsoluble 0	s. soluble	insol. abs.			rhomb. tab
0			84-6°		pris. tab./w.
	v goluble	s. soluble	123-4°		tablets
eliq.	v. soluble	insoluble	130° anhy.	<b></b>	large trimet.
		v. soluble	141° anhy.		
. soluble	v. soluble	v. soluble	259-60°	. <b></b>	needles
00	v. soluble	v. soluble	5°	. <b></b>	
15; 6.7100	50/abs. ⁷⁸	0.7515	125-6°	300° dec.	thick prisms
				176-7°	[aceton
. soluble	v. sol. hot	sol. acetone	158° dec.		v. sm. leaf
0	167	v. s. sol.	dec. 210°	. <b></b>	amorph. pow
2515			140° anh.	  - • • • • • • • • • • • • • • • • • • •	rectang, tab.
39	60 ²⁵	0.4	168-70°		monoclinic .
36.6	v. soluble	insoluble	170°	. <b></b>	monoclinic .
	soluble	<b></b>	. <b></b>		rhombic
• soluble	v. soluble	s. soluble	185-7° dry.	sub. 110°+	prisms/et
.512	insoluble	insoluble	88°	dec.	tetrag, need.
. soluble	v. soluble	s. soluble			deliq. needles
. soluble	v. soluble	v. soluble	164° dec.	→anhyd.	triclinic
			<-18°	226–8° C.	
. soluble	<b>s</b> oluble	soluble	174°	dec.	mono /al
.0016	v. v. s. sol.	insoluble	no m.p.	sub.	needles
.5100	v. soluble	v. s. sol.	116°	245–8°	fine need $/w$ .
	s. soluble	s. sol. hot	222°		
• • • • • • • •			69-70°		thick pris./et
	∞ abs.	∞		156°; 50°15	oil
. s. sol.				179-82°	<b></b>
. s. sol.		v. soluble	35°	218°	ftransp.crys
. s. sol.	v. soluble			183-5° C.	\ /et
. s. sol.	v. soluble		174-5°		monocl. pris
. s. sol.	v. soluble	<i></i>		329°	
	s. sol.	s. sol. o abs.	s. sol. $\infty$ abs. $\infty$	s. soluble s. sol. hot 222° s. sol. ∞ abs. ∞  soluble v. soluble v. soluble 35°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Digitized by GOOGIG

==				
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Picramide	$NH_2C_6H_2(NO_2)_3$	228.19	
		$OH.C_0H_2(NO_2)_2NH_2$	199.16	
		$OH.C_6H_2(NO_2)_3$		1.76719
		(NO ₃ ) ₃ C ₆ H ₂ .Cl		
	Pimelic acid (n.)	CO ₂ H.(CH ₂ ) ₅ CO ₂ H		
	Pinacoline	CH ₃ .CO.C(CH ₃ ) ₃		0.82098
		[(CH ₃ ) ₂ C(OH).] ₂		0.967215
	Pinacolyl alcohol	$(CH_3)_3C.CH(OH).CH_3$		0.8347° 0.8647°
	Pinene	$egin{array}{cccc} C_{10}H_{16}. & . & . & . & . & . & . \\ C_{10}H_{16}O. & . & . & . & . & . \\ \end{array}$		0.8647
_		$CH_{16}CH_{16}CH_{2}$ $> NH$ .		0.86063
	Piperional			
	Piperonyl alcohol			• • • • • • • • • • • • • • • • • • •
		$(CO,CH_2,O)x$		
		$C_{20}H_{22}O_{2}+2H_{2}O$		
	Prehnitene	1: 2: 3: 4C ₆ H ₉ .(CH ₃ ) ₄		
	Prehnitic acid 1: 2: 3: 4			
		CH _a .CH ₂ .CH ₃	44.07	0.51516
		CH, CO, C, H,		1.005₹
20		CH C.CH,OH		0.972₹
	Propiolic acid		70.02	. <b></b>
<b>2</b> 2	Propion amide	$C_2H_5.CONH_2$	73.10	0.95657
23	Propionic acid	CH ₃ .CH ₂ CO ₂ H		0.993720
24	" " (K.)	CH ₃ .CH ₂ CO ₂ H		0.991#
25		CH ₃ .CH ₂ CHO		0.8066₩
26		$(CH_3CH_2.CO)_2O$		1.0336
	Propyl acetate (n.)			0.8908₩
28		$C_3H_7$ , $C$ : $CH$	68.08	
29	alcohol	CH ₃ .CH ₂ .CH ₂ OH		0.80358₹
30	amine	CH ₃ .CH ₂ .CH ₂ NH ₂		0.718630
31	-benzene	$CH_3(CH_2)_2.C_6H_5$		0.8680¥
32	benzoate	$C_6H_5$ . $CO_2(CH_2)_2CH_3$		1.0274¥
33	-benzoic acid (o.)			
34	(p.)	$CH_3(CH_2)_2.C_0H_4.CO_2H$		1 904018
35 36	bromide			1.364016
37	butyrete	CH CO CH		0.77730
38	carbamete (V)	C ₃ H ₇ CO ₂ .C ₃ H ₇	100.12	0.8789.
39		NH ₂ .CO ₂ .C ₃ H ₇		
40	chloride	$Cl.CO_2.C_3H_7$ $CH_3.CH_2.CH_2Cl$	70 E1	1.000## 0.901##
41		CH ₃ .CH ₂ .CH ₂ Cl CH ₃ .CHCl.CH ₃	70.01	0.858820
41	(sec.)	OII3.OHOI,OH3	10.01	0.0000
. 1	!	•		

Digitized by GOOGLO

	Sol	ubility in 100 (	.c.	Melting	Boiling	
Number.	Water (w.).	Alcohol (al.).		Melting Point, °C. C. = Cor- rected.	Boiling Point, °C. C. = Corrected.	Crystalline Form and Color.
-	<b></b>	<u> </u>			<del></del>	
	insoluble	insoluble	sol. acet.	188°		yel. mon. tab.
	0.1422	mod. sol.	s. soluble	168-9°		moncl. prisms
3	1.0320	10	5.415 wet	122.5°	exp.	yel. leaf./w
	insoluble	soluble	soluble	81-2°		yel. prisms
	520	v. soluble	v. soluble	105°	2720100	rhombic/w
	2.3615		soluble		106° C.	<b>.</b>
	s. soluble	v. soluble		35–8°	172–3°	small needles
8		soluble		5.45°	120–1°	silky needles.
	v. s. sol.	∞ abs.	∞, ∞ chlo.		156°, 50°15	
10		soluble		· · · · <u>·</u> · · · · ·	184°	
11	∞	soluble		-17°	106 . 2°759	
_	0.2	∞ ⁷⁸	∞	37°	263°	long glit. crys
	s. soluble	∞	∞ ∞	51°	dec.	long crystals.
	insoluble		. <b></b>	223°	dist. in vac.	powder
	0.415; 42100	mod. sol.	soluble	180°		v. fine needles
16			<i>.</i>	-4°	204°	
	v. soluble		soluble	238° dec.	→anhyd.	large irreg. pr.
	6.5 c.c. ¹⁸	790 c.c. ¹⁷	926 c.c. ¹⁷	<-195°	-44.5°	
19		soluble	soluble		124-5°	
		90	∞ ∞	+H ₂ O,-17°	114-5°	
	soluble	soluble	soluble	6°	144° dec.	long crystals.
22		soluble	soluble	79°	213°	rhomb./chlo.
23	1	∞ ∞	× ×	-22° C.	140.7° C.	
24		∞	∞		140–1°	colorless
1	2020	∞	∞		48.8° C.	
	s. soluble				168.6°	
	1.6	∞	∞0	-92.5°	101.6°	
28			soluble		48–9°	
29		oo	∞		97.4° C.	· · · · · · · · · · · · ·
	soluble			–127°	49°	
	insoluble	soluble	soluble		158.20752	
32			· · · · <u>· · · · · ·</u> · ·		230.7° C.	
1	soluble	v. soluble	v. soluble	58°	2720739	leaf./dil. al
	s. sol. hot	v. soluble	v. soluble	140°		leaflets/w
35		∞		· · · · · · · · · · · · · · · · · · ·	71.5° C.	
36					117.1°	· · · · · · · · · · · · · · ·
37		∞	, ,∞		142.7°	
1	v. soluble	v. soluble	soluble	59-60°	198-200°	flat pris
	v. s. sol. dec	∞	∞ ∞		112–6°	colorless
40	<b> ••••</b>				46.5°	
41	· · · · · · · · · · · · ·				36.5°	
	<u> </u>		1	[	C	Sogle

=							
Number.	Name.	. Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).			
	Propyl cyanide			0.79615			
2	ether	. 2 2/2		0.746516			
3	fluoride		62.06				
4	formate			0.9095¥			
5	glycollate			1.062118			
6		$C_3H_7.C_6H_{11}$	l	0.76713			
7		$C_3H_7$ .CO. $C_6H_{13}$		0.8243			
8	iodide			1.747216			
9	" (K.)			1.742			
10		$C_3H_7$ .CO.CH ₂ .CH(CH ₃ ) ₂		0.813			
11		$(CH_3)_2CH.CH_2.CO_2.C_3H_7$ .		0.862			
12	mercaptan		76.13				
13	mustard oil	C ₃ H ₇ .NCS		0.99090			
14	nitrate	C ₃ H ₇ .NO ₃		1.063115			
15	nitrite		1	0.93521			
16		$C_3H_7.C_6H_4OH$	136.10				
17		$C_3H_7$ .CO. $C_6H_5$		1.0090			
18	propionate			0.888518			
19		$C_3H_7.C_5H_4N$					
20		(CH ₃ .CH ₂ .CH ₂ ) ₂ S					
	Propylene	CH ₃ .CH: CH ₂	42.05				
22		CH ₃ .CHBr.CH ₂ Br					
23		CH ₃ .CHCl.CH ₂ Cl					
24	iodide	CH ₂ I.CH ₂ .CH ₂ I					
25	oxide	CH ₃ (CH.CH ₂ )O		0.859			
		CH ₃ CH ₂ CH: CH.CO ₂ H		0.9921			
	Proto catechuic acid 3,4.	$(OH)_2C_6H_3.CO_2H+H_2O$ .		1.54154			
28		, , , , , , , , , , , , , , , , , , , ,	138.05				
	Pseudo-cumene			0.8810			
30	" (K.)	1: 2: 4C ₆ H ₃ (CH ₃ ) ₃	120.10	U.8745#			
32		$C_{12}H_8N_2 + 4H_2O$	252.21				
33	Purpurin 1:2:4	$ (UH)_3U_6H < (UU)_2 > U_6H_4 $	250.06				
34	Pyrazine	$ N < (UH.UH.)_2 > N$					
35	Pyrazole	-NH.N.CH.CH.CH	64.11				
36	Pyrazoline	$NH < \frac{N:CH}{CH_2.CH_2} > \dots$	66.13				
37	Pyrene	$\left[\mathrm{C_{16}H_{10}}\ldots\ldots$	202.08				
38	Pyridazine	$ N_2 < (CH.CH)_2 > \dots$		1.1108			
	Pyridine	$CH < (CH.CH)_2 > N$	79.08	0.9779♥			
40	" (K.)	$CH < (CH.CH)_2 > N$	79.08	0.976#			
	• •	1.2		ī			

Number.	Sol	ubilit <b>y in</b> 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1					118.5°	
	soluble	∞	∞		91-1.2° 2°	
4	s. soluble	∞	∞	<-75°	81°	
5					170.5° C. 147.5–9.5°	
7				-9°	206-7°	
8	0.10720	, <b>x</b> 0	∞ ∞	-98.8°	102.2° C. 101.5–2.5°	turns brown.
10			∞ 		1550750	turns brown.
	insoluble	∞ 11-1-	∞		153-6°	colorless
13	v. s. sol.	soluble	soluble		67–8° 153°	
14		soluble	soluble		110.5°	
15 16	v. v. s. sol.	soluble soluble	soluble		57° 228°	crystalline
17		soluble		21°	218°	
18 19	s. soluble	∞	∞		122.4° C. 165–8°	
1	insoluble	soluble	soluble		141.5-2.5772	
1 1	44.6 c.c. 0.245 ²⁰	1250 c.c. soluble		<-180°	-48.2°749 141.6° C.	
	0.272 ²⁰	·····			96.8° C.	
	33			- <b>-</b>	227° dec. 35°	
	$6.27^{20}$	∞	∞ soluble	9.5–10.5°	200–1° C.	
	1.914	v. soluble	mod. sol.	199° dec.		moncl. need
	5.0	v. soluble	v. soluble	153–4°	dec. 169.8° C.	flat cryst./w.
30		soluble	∞ .		168-70°	colorless
	v. v. s. sol mod.sol.hot	v. soluble v. soluble	v. soluble s. soluble	71–2° 173°	234–5° dist.	fine needles w.
33	mod. sol.	soluble	soluble *	256°	dec.	red need./al.
34 35	∞ v. soluble	v. soluble v. soluble	v. soluble v. soluble	47° 69.5–70°	118 ⁰⁷⁶⁰ 186–8°	tb./et.;pris.w. long need./et.
36	v. soluble ∞	v. soluble	v. borubie	00.0	144°	iong need./60.
37	~	1.37	v. soluble	148–9°	far>360°	monoclinic
38	∞	v. soluble	v. soluble	-8°	208°760 C.	
39 40	& &	xo	soluble ∞	-42°	115.2°760 C. 113.5-4.5°	colorless
"	•	• •	3		110.0-4.0	coloriess

^{*} Soluble CS2, hot benzene, and toluene. Google

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Pyridine purified (K.)	CH<(CH.CH) ₂ >N	79.08	0.9 <b>72<del>11</del></b>
2		$ C_bN(CO_2H)_b + 2 \text{ or } 3H_2O$ .		
3		C ₅ H ₄ N.SO ₃ H		
4	tricarbonic ac. (2, 3, 4)	$C_5H_2N.(CO_2H)_7 + 1\frac{1}{2}H_2O$		
5	Pyrocatechin	$o.C_6H_4(OH)_2$	110.05	
	Pyrocoll			
	Pyrogallol	$1: 2: 3C_6H_3(OH)_3$	126.05	1.4634
8	trimethyl ether	1: 2: 3C ₆ H ₃ (OCH ₃ ) ₃		
9	Pyromeconic acid	$C_8H_4O_8$		
10	Pyromellitic ac. (1, 2, 4, 5)	$C_6H_2(CO_2H_4)_4 + 2H_2O \dots$	290.08	
	Pyromucic acid			
	Pyrone			
14	Pyrotartaric acid		122 06	1 4105
15	Pyrrol	CH CH) > NH	67 08	0.0860\$
16	Pyrrolidine	NH < (CH CH ) >	71 11	0.852022
17	Pyrroline	NH < (CH CH) >	69 10	0.90973
18	Pyrrone	CO(C H NH)		
19	Pyruvic acid	CH-CO CO-H	88.03	1.28818
	Quercetin			
	Quercite (d.)			1.584513
	(4.),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	>CHOH		
22	Ouercitrine	$C_{21}H_{22}O_{12} + 2H_2O$	698.24	]
23	Ouinaldine		143.11	1.101310
24	Quinic acid	(ŎH) (C,H,CO,H,	192.10	1.637
	Quinic acid	CH ₃ O.C ₉ H ₄ N.CO ₂ H	203.11	
26	Quinoline	CH.CH CH.CH CH.CH		1.094720
27	" (K.)		129.10	1.093#
	Quinolinic acid			
	Quinone		1	1.307-1.318
	Racemic acid	$(CO_2H.CH(OH).)_2 + H_2O$	168.07	
	Raffinose		594.34	
	Resorcine	$m.C_6H_4(OH)_2$	110.05	1.27171
33	dimethyl ether	$m.C_6H_4(OCH_3)_2$	138.08	1.0617#
	Retene			
	Rhamnite			
30	Rhamnose	CH ₃ [CH(OH)] ₄ CHO.H ₂ O	182.12	1.4/08¥
3/	Ricinoleïc acid	$O_{17}H_{32}(OH)CO_2H$	298.28	U.945**
38 39	Rosaniline	(NH OH) COH	319.29	· · · · · · · · · · · · · · · · · · ·
	Parindulina	(NH ₂ C ₆ H ₄ ) ₃ COH	201 04	1
40	Rosinduline	C ₂₂ Π ₁₅ N ₃	321.24	[

nber.	Sol	ubility in 100 (	:.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	8	<b>∞</b>	80		113.5-8.0°	colorless
	v. v. sol.	<u>.</u>		dec. 220°		imperfect reg
	v. soluble	v. s. sol.	insoluble			need. or leaf
- 1		mod. sol.	insoluble	249-50°	0.470	rhomb. tab.
- 1	v. soluble	v. soluble	v. soluble	104°	245°	monoclinic
- 1	insoluble	v. s. sol.	v. s. sol. 83. 3 ²⁶	268–9°	sub.	moncl. tab thin leaf.& ne
8		100 ²⁵ v. soluble	v. soluble	132.5-3.5° 47°	293°, 105°° 241° C.	lg.need/dil.al
- 1	soluble	soluble	s. soluble	117°		prisms
	14.2 ¹⁶ .	v. soluble	s. soluble	265° anhy.	sub. 100 +	tricl. tab./w.
	$2.7^{\circ}$ ; $25^{100}$	v. soluble	v. soluble			moncl. prisms
	v. v. s. sol.	soluble	v. soluble	32.5°		prisms
13		00	00	13.6°	165°, 65°10	
14	66.720	v. soluble	v. soluble	117-8°		triclin, prisms
15	insoluble	v. soluble	v. soluble		130-1°	
16					87.5-8.5°	
17	v. v. sol.				90–1°	
18	v. v. s. sol.	v. soluble	v. soluble	160°	; 	trimet. need.
19		∞ ∞	∞ ∞	13.6°	165° dec.	/et.
	0.35			313–4° dec.		lem. yel. nd
21	11 ²⁰	v. s. sol.	insoluble	234° or 225		moncl. prism
	0.0420	0.25	0.80	168° dec.		yel.need.or lf
23			- · · • • • • · · ·		246–7°	1
	409	s. soluble	insoluble	161.6° C.	dec.	monel. prism
25 26	v. s. sol.	1.24780	v. v. s. sol.	280° dec. -19.5°	sub. part. 240.4-1.3°	yellow prism
	s. soluble	soluble soluble	sol. sol. $CS_2$	-19.5	237-8°	usually yel.
	8. soluble 0.559	s. soluble	v. soluble	231°	dec.	moncl. prism
	s. sol. hot	v. soluble	v. soluble	115.7°	sub. need.	yel. m'cl.pris
	20.620	2.04	v. solubic	205–6°	sub. need.	triclinic
	1420	0.120 90%		118-9°anhy		crystalline
	147.312.5	16115	v. soluble	110° Jamiy	280°	rhomb.tab./v
-	v. s. sol.	soluble	soluble	<-17°	217° C.	vol.withste'n
34		3	soluble	98.5°		leaflets/al
35	v. soluble	v. soluble	v. s. sol.	121°		triclin.pris./a
	50	s. soluble		92-3°		monoclin./w
37		∞ ∞	∞	16-7°	250°15	cryst. mass.
	s. soluble	soluble	insoluble	. <b></b> .	dec.	need. or tab.
	insoluble	soluble	soluble	188-9°		red. leaflets.
	insoluble	v. soluble	v. soluble	198–9°	I .	brown lf./et.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Rosolic acid	C ₂₀ H ₁₆ O ₃		
2	Saccharic acid (d.)	$C_4H_4(OH)_4(CO_2H)_2$		
3	Saccharine (d.)	$(C_6H_{10}O_5)x$	162.08	. <b></b>
4	Saccharin	$C_6H_4 < \frac{CO}{SO_2} > NH \dots$	183.14	
	Sancin	$ C_{13}H_{13}O_2(OH)_5$	286.15	1.426-1.434
6	Salicylamide	OH.C.H.CONH.	137.10	
	Salicylic acid			
8	acetate	$C_2H_5O_2.C_6H_4.CO_2H$	180.06	
9	F	$o.C_6H_5O.C_6H_4.CO_2H$		
10		o.OH.C.HCHO	122.05	1.1653
11	anhydride	$C_{14}H_{10}O_5$	240.06	
12	Saligenin	OH.C.H.CH2OH	124.06	1.161325
13	Salol see Phenyl salicylate			
14	Santonin	$C_{15}H_{18}O_3$	246.14	1.1866
15	Sarcolactic acid	CH ₃ .CH(OH).CO ₂ H	90.05	
16	Sarcosine	CH ₃ NH.CH ₂ CO ₂ H	89, 10	
17	Skatol	C _o H _o N	131.11	
18	Sebacic acid	CO ₂ H.(CH ₂ ) ₈ CO ₂ H	202.15	
	Semicarbazid			
20	Silicobenzoic acid	C ₆ H ₅ .SiO ₂ H	138.45	
21	Silicon tetraphenyl (K.).	$Si(C_6H_5)_4$	336.56	
22	triethyl phenyl	$C_6H_5Si(C_2H_5)_3$	192.56	0.90420
<b>2</b> 3	Silver fulminate	$ C_2Ag_2N_2O_2$	299.94	
24	Sodium ethyl			
25	glycerate	$NaC_3H_7O_3$	114.11	
27	Sorbinose	$ C_6H_{12}O_6$	180 . 10	1 . 65415
	Sorbite (d.)			
	Starch			
	Stearic acid	$ \mathrm{CH_3}(\mathrm{CH_2})_{16}\mathrm{CO_2H}\dots$	284.30	0.8428\$
31	aldehyde	$CH_3(CH_2)_{16}CHO$	268.30	
<b>32</b>	anhydride	$(C_{18}H_{35}O)_2O$	550.56	
	Stearine		890.88	0.86218
34	Stearolic acid		280.26	
35	Stearone		506.56	0.7979♥
	Stilbene		180.10	0.9707119
	Styrene			
	Suberic acid			
	Suberone			
40	Suberyl alcohol	$ <(CH_2.CH_2.CH_2)_2CHOH $	114.12	0.959516

Digitized by GOOSIC

per	Sol	ubilit <b>y in</b> 100 (	c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
-1	v. s. sol. v. soluble	v. sol. hot v. soluble	mod. sol. s. soluble	abt. 270°	dec.	red leaflets
	13 ¹⁵	v. soluble	s. soluble	160–1°	volatile	large rhb.pris.
4	0.430525	3.12/90%	*	220°dec.	sub.	(monocl. /acetone
	,	soluble	insoluble	201°	230-40°	rhomb.lf.orpr.
	s. soluble			139.9° C.	270° dec.	leaflets
	0.220625	49.6316	50.4715	159.05° C.	sub. 75–6°°	
8	v. s. sol.	v. soluble	v. soluble	132°	$dec.>140^{\circ}$	fine need./w.
	v. v. s. sol.	v. soluble	v. soluble	113°	355° dec.	leaf./dil. al
	s. soluble	soluble	∞	-20°	196.70°760	bright yellow
	insoluble	v. soluble	v. soluble	200-20°	dec.	yel. amor.
12	6.722	v. soluble	v. soluble	86°	sub. 100°+	rhomb. tab
13						
14	$0.02^{17}$	2.022	1.317	169-70°	sub. dec.	trimet. t.or pr.
15	· 🕉	∞	∞ ∞			syrup
16	v. soluble	s. soluble		210–5°		rhombic
17	s. soluble	soluble	sol. lig.	95°	265-6°755	glit. leaf./lig.
18	0.0225 0.465	v. soluble	v. soluble	133-3.5°	294.5°100	feath'y cryst.
19	v. soluble	soluble	v. sol. chlo.	96°		pris./abs. al
20	insoluble	sol. KOH	v. soluble	92°		glassy/et
	insoluble	v. s. sol.	v. s. sol.	230-1°	<b></b>	fine leaflets
22	insoluble		soluble	<i>.</i>	230°	
	0.07513	v. sol. NH ₃	insol. HNO ₃	exp.	<b></b> .	small need
24						
25	decom.	soluble		<i></i>		white powd
26	v. s. sol.	v. soluble	v. soluble	134 . 5°	228° dec.	needles/w
27	200	s. soluble		164°	. <b></b>	rhombic
28	solub <b>le</b>	v. s. sol.		110-1°	<b>.</b>	crystalline
	insoluble	insoluble	insoluble	no m.p.		amorphous
30	insoluble	0.113995%	soluble	69.32°	291°100	leaflets
31			<b></b>	63.5°	212-3°22	scales/ether
32			<i>.</i>	71–7°		
33	insoluble	v. s. sol.	soluble	71-1.5°		crystalline
34	insoluble	s. soluble	v. soluble	48°	260°	long pris./al
35		s. sol. hot	s. sol. hot	87.8°		leaflets
		0.88 ¹⁷ abs.	7.8814	124-5°	306-7°	monoclinic
37	insoluble	∞	∞		146°759 C.	
38	$0.08^{\circ}-0.16^{20}$	soluble	0.809	140°	300°: 152°°	need. or tab
39	s. soluble	v. soluble	soluble	l	178.5-9.5°C	
40		• • • • • • • • • • • • • • • • • • • •			184–5° C.	
	l			1	-	1

^{*} Sol. 2 in amylacet, 5 in ethylacetate, s. sol. bz, v. sol. HNO3

Number	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Succinamide	NH ₂ CO.(CH ₂ ) ₂ .CONH ₂	116.14	
2	Succinic acid	CO ₂ H (CH ₂ ) ₂ CO ₂ H	118.05	1 552
3	anhydride	<(CH ₂ .CO) ₂ >O	100.03	1.1036₹
4	Succinimide	< (CH ₂ .CO) ₂ $>$ NH + H ₂ O.	117.10	
5	Succinyl chloride Sugar (cane)	ClCO(CH ₂ ) ₂ COCl	154.93	1.412316
6	Sugar (cane)	$C_{12}H_{22}O_{11}$	342.18	1.58820
	Sulphamine benzoic ac.(o,)	NH ₂ SO ₂ .C ₆ H ₄ .CO ₂ H	201.16	
8	" " (m.)	NH ₂ SO ₂ .C ₆ H ₄ .CO ₂ H	201.16	• • • • • • • • • • • •
9	······································	NH, SO ₂ .C ₆ H ₄ .CO ₂ H	201.16	• • • • • • • • • • • •
	Sulphanilic acid (p.) Sulphoacetic acid			
11	Sulphobenzid (K)	$ SO_3\Pi.C\Pi_2.CO_2\Pi+\Pi_2O$		
12	Sulphobenzoic acid (o)	CO H C H SO H ± 3H O	256 16	
14	" " (m)	$CO_2H.C_6H_4.SO_3H + 2H_2O$	220.10	
15	" " (n.)			
	Sulphocyanic acid	CNSH		
17	Sulphonal	(CH ₂ ) ₂ C(SO ₂ C ₂ H ₂ ) ₂		
18	Svivestrene (d.)	CH		0.851016
19	Talomucic acid (d. or l.)	CO'HICH(OH)1.CO'H		
20	Tannin,	$C_{14}H_{10}O_{0}$		
21	Tartaric acid (i.)	$[.\ddot{C}H(O\dot{H}).CO_{3}H]_{3} + H_{3}O$	168.07	1.666
22	" (d.)	CO ₂ H.[CH(OH)],CO ₂ H	150.05	1.7598*
23	" (l.)	CO ₂ H [CH(OH)] ₂ CO ₂ H	150.05	1 764
24	(41): 11111111	$[.CH(OH).CONH_2]_2$		
25	Tartronic acid	$OHCH(CO_2H)_2 + \frac{1}{2}H_2O$		
26	Taurine	$NH_2.CH_2.CH_2.SO_3H$		
27	Taurocholic acid	$C_{26}H_{45}NSO_7 + H_2O$		
28	Teraconic acid	$(CH_3)_2C$ : $C(CO_2H)$ . $CH_3.CO_2H$ .	158.08	• • • • • • • • • •
29	Teracrylic acid		128.10	
	Terebic acid			0.8155*
31	Terephthalic acid (p.)	C.H.(CO.H)	166.05	
32	aldehyde (p.)	$C_6H_4(CHO)_2$		
33	nitrile (p.)	$ C_{\alpha}H_{\alpha}(CN),\ldots$	128.11	
34	Terpenol	C, H, O	154.15	
35	Terpentine (pinene)	$\left  \mathbf{C_{10}H_{16}} \cdots \cdots \right $	136.13	0.858720
36	Terpinene	C.H	136.13	0.864720
37	Terpineol	$\left[ \mathbf{C}_{10} \mathbf{H}_{18} \mathbf{O} \dots \right]$	154 . 15	0.935720
38	Terpinolene	$C_{10}H_{16}$	136.13	
	Tetrabrom-benzene (s.).	1: 2: 4: 5C ₆ H ₂ Br ₄		
40	" (as.)	1: 3: 4: 5C ₆ H ₂ Br ₄	393 .87	

ż	Sol	ubility in 100		Melting	Boiling	
Number	Water (w.).	Alcohol (al.).	1	Melting Point, °C. C. = Corrected.	Boiling Point, °C. C. = Corrected.	Crystalline Form and Color.
-	,					
	0.4518	insoluble	insoluble	242-3°		needles
2	,	9.9915	1.1915	185°	235°	monoclinic
	insoluble	soluble	v. s. sol.	119.6°	261°	trimetric/al.
	v. soluble	mod. sol.		125-6°	287–8°	octah./acet.
5				16-7°	190–2° C.	
	198.6 ¹²	0.4		189 . 2° C.		monoclinic
	v. soluble	v. soluble	v. soluble	165-7°		rhombohed
	v. s. sol.	v. soluble	s. soluble	238° C.		scales
	v. v. s. sol.	v. soluble		dec. 280°		flat pris /w
1 1	1.10820	v. s. sol.	v. s. sol.	chars.280°+	[	rhomb. tab
1 I	soluble	v. soluble	insol. abs.	84-6°		pris. tab./w
	insoluble	s. soluble	s. soluble	123-4°		tablets
13		v. soluble	insoluble	130° anhy.		large trimet
	deliq.	• • • • • • • • • •	v. soluble	141° anhy.		· • • • • • • • • • • • • • • • • • • •
	v. soluble	v. soluble	v. soluble	259-60°		needles
	∞0	v. soluble	v. soluble	5°		
1 ' 1		50/abs. ⁷⁸	0.7515	125–6°	300° dec.	thick prisms.
18		. <b></b>			176–7°	[acetone
		v. sol. hot	sol. acetone	158° dec.		v. sm. leaf.
20		167	v. s. sol.	dec. 210°		amorph. pow.
	12515			140° anh.		rectang. tab.
		60 ²⁵	0.4	168-70°		monoclinic
		v. soluble	insoluble	170°		monoclinic
24	· · · · · · · · · · · ·	soluble	<b></b>			rhombic
	v. soluble	v. soluble	s. soluble			prisms/et
1 -1		insoluble	insoluble	88°	dec.	tetrag. need
	v. soluble	v. soluble	s. soluble			deliq, needles
28	v. soluble	v. soluble	v. soluble	164° dec.	→anhyd.	triclinic
29				<-18°	226–8° C.	
30	s. soluble	soluble	soluble	174°	dec.	mono /al
		v. v. s. sol.		no m.p.	sub.	needles
32			v. s. sol.	116°	245-8°	fine need /w.
33			s. sol. hot	222°		-,
34		<b></b>		69-70°	volatile	thick pris./et.
35	v. s. sol.	∞ abs.	∞	<i>.</i>		oil
36					179-82°	
37	insoluble	v. soluble	v. soluble	35°	218°	ftransp.crys
38		<b></b>			183-5° C.	/et
39		<b></b>		174–5°		monocl. pris
40		v. v. s. sol.	v. soluble	98.5°		fine needles.
$\sqcup$	1			I		•

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Tetrabrom-ethane (s.)	CHBr ₂ .CHBr ₂	345.86	2.9716¥
2		$CBr_2.CBr_2$		
3	<b>Tetrachlor-</b> aniline	2: 3: 4: 5NH2.C6HCl4		. <b></b>
4		$2: 3: 5: 6NH_2.C_6HCl_4$		
5		1: 2: 4: 5C ₆ H ₂ Cl ₄		1.85821
6	" (as.)			
7	(v.)	1: 2: 3: 4C ₆ H ₂ Cl ₄	215.82	
8	-ether	CCl ₃ .CHCl.O.C ₂ H ₅	211.85	1.418215
9	-etnylene	CCl ₂ : CCl ₂		1.6312%
10	-nydroquinone	(OH) ₂ C ₆ Cl ₄	247.82	0.7796 <b>U</b>
12	Tetracosane (n.) Tetradecane (n.)		109 94	0.76459
	Tetradecylene (n.)			0.7745¥
14	Tetraethyl-ammonium hy.	(CHANOH		
15	-benzene (s )	$1: 2: 4: 5C_6H_2(C_2H_5)_4$	190 18	
16		$(C_2H_5)_4Si$		
	Tetrahydro-benzaldehyde	H.C.H.CHO	110.08	1.00919
18	-naphthaline (a)	C.,H.,	132.10	0.9348
19	-phthalic acid $(\Delta')$	$C_aH_a(CO_aH)_a$	170.08	
20	-quinoline (K.)	C₀H,,N	133, 13	1.056
21	-toluene	$ CH_3.C_6H_6$	96.10	0.8048♥
22	-m-xylene	$C_{\mathfrak{s}}H_{\mathfrak{s}}(CH_{\mathfrak{s}})_{\mathfrak{s}}\dots\dots$	110.12	0.8019¥
23	Tetrahydroxy-benzene(s.)	$1:2:4:5C_6H_2(OH)_4$	142.05	
24	-benzoic acid	2: 3: 4: 5(OH) C ₆ HCO ₂ H	186.05	[
25	-quinone	$O_2C_6(OH)_4$	172.03	
	Tetraiodo-ethylene	$Cl_2: Cl_2 \dots \dots$	531.88	2.983**
27		C ₄ I ₄ NH	570.89	
00	Tetramethyl	(OIL) NOIL : EILO	101 00	
28 29	-ammonium nydroxide	$(CH_3)_4NOH + 5H_2O \dots C_{18}H_{18} \dots \dots$	181.23	
30	bongono (g.)	$1: 2: 4: 5C_6H_2(CH_3)_4$	124 19	0200E
31	-benzene (s.)	1: 2: 3: $5C_6H_2(CH_3)_4$	134 12	0.00004
32	" (v)	1: 2: 3: $4C_6H_2(CH_3)_4$	134 19	0.88169
33	-diamino-benzonhenone	$CO[C_6H_4N(CH_3)_2]_2$	268 24	
34	" -diphenyl-amine	$NH[C_6H_4N(CH_3)_2]_2$	255.29	
	Tetramethyl-diamino		200.20	1
36		$H_2C.[C_6H_4N(CH_3)_2]_2$	254.26	l
37	-triphenyl-methane	$C_6H_5CH[C_6H_4N(CH_3)_2]_2$ .		
38	Tetramethyl-silicon	(CH.),Si	88.50	<1.
39	Tetramethylene-diamine.	NH _a .(CH _a )NH _a [2H _a O	88.18	
40		$1, 1, 2, 2 C_4 H_4 (CO_2 H)_4 +$		
				Į

^{*} The crystals from benzene melt at 102°

, per	Sol	ubilit <b>y</b> in 100 (	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1 2	1		 	<-20° 56°	137°86 100°15	tablets
–	v. sol. bz.	v. soluble	v. soluble	118° 90°		·····
	mod.sol.CS ₂		mod. sol.	140-1°	243–6° C.	moncl /CS ₂
6 7	v. sol. CS,	v. s. sol. s. soluble	v. soluble	50-1° 45-6°	246° 254°	needles
8					189.7°750	
	insoluble	v. soluble	v. soluble	2320	sub. dec. 243°15324.1°	moncl. pris
12				50.7-1.3° 5.5°	252.5° C.	\ \ /bz. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	v. deliq.	soluble		-12° dec. 190°	240–6° dec.	needles
	insoluble			13°	250° C. 153°	
17	insoluble				186–8° 208–12°	
1	v. soluble v. s. sol.			120° dec. (abt. 20°)	246–50°	leaflets/w wh. →yel
1 -				(200, 20)	105–6° C.	
23	mod. sol.	mod. sol.	v. soluble	215–20°		glit. leaf./ace.
25	s. soluble	insol. lig. v. soluble	s. soluble	147–8° no m.p.		cryst./acet. e. bluish cryst
	v. sol. CS ₂ 0.02	5.8 ¹⁸ , 90%	soluble 50; sol. bz.	192° C. no m.p.		monocl. pris. yel. n./dil. al.
	220¹⁵, ∞ ⁶⁸	v. soluble		62-3°	dec.	deliq. cryst
29 30	v. sol. bz.	v. soluble	v. soluble	abt. 280° d. 79–80°	193–5°	moncl. leaf
31 32				-4°	195–7° 204° C.	
33 34		v. soluble soluble	v. soluble	174° °C. 119°	>360° dec.	glit. leaflets
35 36		soluble		90–1°	dist.	leaflets/al
37			v. soluble	*		tric.n/bz.oral.
39	v. soluble			27–8°	15860°	leaflets
40	v. soluble	v. soluble	v. soluble	198–203°		thick pris./w.

while those from alcohol melt at 93-94°.

Digitized by GOOGLE

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water — 1. Air — 1 (A).
1	Tetranitro-methane	C(NO ₃ ),	196.16	1.65013
2		$C_{10}H_4(NO_2)_4$		
3	" (β)	$C_{10}H_4(NO_2)_4$	308.19	
4	Tetraphenyl-ethane (s.) .	$(C_6H_5)_2CH.CH(C_6H_5)_2$	334.18	1.182
5	-ethylene	$(C_6H_5)_2C: C(C_6H_5)_2$	332.16	
6	-methane	$(C_6H_5)_4C$		
7	Tetrolic acid	CH ₃ .C: C.CO ₂ H		
8	Thallin	$C_0H_{10}NO.CH_3$	149.13	
	Theine (see Caffeine)			
	Theobromine	C ₇ H ₈ N ₄ O ₂		
	Thiazol			1.19981
	Thio-acet-amide			
13	" -anilid		151.17	
14		CH ₃ .COSH		
15		C ₆ H ₅ .COSH		
16 17	-carbamic acid	NH ₂ .CS.SH	93.19	1 200 54
18	-carbanilia	$CH_3$ . $C_6H_4$ . $SH$	124 12	1.3205
19	-m. "	CH ₃ .C ₆ H ₄ .SH	124.12	1 06258
20		CH ₃ .C ₆ H ₄ .SH		
21	-p	(CNSH) ₃	177 33	
22		$S < (C_0H_4)_2 > NH$		
23		$(OH)_2C_3H_5.SH$	108 12	1 29514
24	-hydroguinone (p.)	$C_6H_4(SH)_2$	142.17	
25	-naphthen	$C_8H_6S$	134.11	
26	-a naphthol	$C_{10}H_7SH$	160.12	1.15493
27	-β- "	C ₁₀ H ₇ SH	160.12	
28	-oxamide	NH ₂ SC.CSNH ₂	120.23	
29	-phene	<(CH.CH),>S	84.09	1.0705¥
30	" (K.)	<(CH.CH) ₂ >S	84.09	1.06#
31	" alcohol	C ₄ H ₃ S.CH ₂ OH	114.11	
32	" aldehyde	C ₄ H ₃ S.CHO	112.09	1.21521
33		$C_4H_3S.CO_2H$		
34		$C_4H_3S.CO_2H$		
35	-phenol (K.)	$C_6H_5.SH$	110.11	1.075
36	-phosgene	CŠCi ₂	114.96	1.508515
37	-resorcine	$C_6H_4(SH)_2(1:3)$	142.17	
38	-semicarbizid	NH ₂ .CS.NH.NH ₂	91.22	
39		NH ₂ .CS.NH ₂		1.406-1.450
	Thymol (4:1:3)			
	Thymo-quinone			
42	Tiglic acid	$CH_3.CH: C(CH_3).CO_2H.$	100.06	0.9641

	<u> </u>			<u> </u>	1	i
	Sol	ubility in 100 (	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Corrected.	and Color.
1	insoluble	soluble	soluble	13°	126°	white cryst
2	v. v. s. sol.	v. v. s. sol.	v. v. s. sol.	259°	exp.	rhomb./chlo.
3		• • • • • • • • •		203°	exp.	long thin n./a
	14 bz.	s. soluble	sol. acet.	211° C.	379–83° C.	rhomb. need.
1		v. s. sol.	v. s. sol.		415–25°	monoclinic
- 1	sol. bz.		insoluble	285°	4310760	wh. cryst./bz.
	v. soluble	v. soluble	v. soluble	76°	203°	tablets
	v. s. sol.	v. soluble	v. soluble	42–3°	2830735	thick trim. pr
9						
	0.0318	$0.04^{21}95\%$	0.0323	329-30°	sub. 290°+	rhombic mic.
11				105 5 0 50	116.8° C.	
	v. soluble	soluble		107.5-8.5°	3.	moncl.tab./et
	insoluble	sol. KOH		75°	dec. 93°	needles/w
14	∞ - 1 1 1 1	∞	∞	<-17° 24°	93	
	insoluble v. soluble	∞ v. soluble	∞ v. soluble	24		crystals needles
1		v. soluble		154°	dec.	trimet. tab
	insoluble insoluble	v. soluble soluble	v. soluble	15 ⁴ 15°	194.3°760	leaflets
10 19		soluble		<-20°	194.3°760	leanets
	insoluble	soluble	v. soluble	430	195.4 190.2–1.7°	leaflets/et
	v. sol. hot	v. s. sol.	v. soluble	1-0	dec. 200°	yel. needles
	v. sol. hot v. sol. bz.	s. soluble	mod. sol.	no m.p. 180°	371° dec.	thin rhomb.
	s. soluble	s. soluble	insoluble	100	on dec.	thick liquid
23 24		<b>2</b> 0	msorubie	98°		hexag. leaf
2 <del>4</del> 25				30–1°	220–1°	leaflets
	insoluble	v. soluble	v. soluble	30-1	285° dec.	leamers
27	msoluble	soluble	v. soluble	81°	288° dec.	glit. scales/al.
	s. soluble	soluble sol. hot	s. soluble	dec.	200 uec.	yel, red, cryst
	insoluble	soluble	sol. H ₂ SO ₄	uec.	84° C.	yei. ieu. ciysu
	insoluble	soluble	801. 11 ₂ 50 ₄		83.5-4.5°	colorless
31	msoluble	soluble	•		207° C.	coloness
32			soluble		198° C.	oily
-	0.7525	v. soluble	v. soluble	126.5°	260° C. dec.	monocl. need.
1	0.4325	v. soluble	v. soluble	138.4°	with steam	monocl.pris/w
	insoluble	v. soluble	• oo	100.7	168-9.5°	$wh. \rightarrow yel$
36		v. soluble	<b>.</b> .		73.5°	red
37				27°	243°116.4°11	crystalline
	soluble	1		181–3°	210 110.2	long need./w.
39		v. s. sol.	v. s. sol.	180°		thick rhb. pri.
1	0.08315	v. s. sol. v. soluble	v. s. soi. v. soluble	49.65° C.	231.8°	hexag. or mo.
1	v. s. sol.	v. soluble	v. soluble	45.5°	233.5° C.	or, yel, tab
	s. soluble	soluble	soluble	64.5°	198.5°	triclinic
<u></u>	- Solubic	Jordon	BOLUDIC	101.0	Diatizad to Ca	300fe

			<del></del>	
Number.	Name,	Formula.	Molecu- lar Weight.	Water = 1.
1	Tiglic aldehyde	CH ₃ ·CH: C(CH ₂ ).CHO	84.06	0.87115
2	Tin diethyl	$\operatorname{Sn}(C_2H_5)_2$	177.08	1.654
3	tetra-ethyl	$ \operatorname{Sn}(C_2H_5)_4$	235.16	1.18723
4	" -methyl	$Sn(CH_2)_4$	179.10	1.31380
5	triethyl	$(C_2H_5)_3$ Sn.Sn $(C_2H_5)_3$	412.24	1.41150
6	Tolane	$C_6H_8.C: C.C_6H_8$	178.08	
7	Toluene	CH ₃ .C ₆ H ₆	92.06	0.87231
8	" (K),	CHC.H	92.06	0.8625
9	sulphone-amide (o.)	CH ₃ .C ₆ H ₄ .SO ₂ NH ₂	171.17	
10	" " (p.)	CH ₃ .C ₆ H ₄ .SO ₂ NH ₂	171.17	
11	" chloride (o.).	CH ₃ C ₆ H ₄ .SO ₂ Cl	190.57	
12	" ' (p.).	CH ₃ C ₆ H ₄ .SO ₂ Cl	190.57	
13		$CH_3.C_6H_4.SO_3H + 2H_2O.$		
14	" (m.)	$CH_3.C_6H_4.SO_3H+H_2O$	190.14	
15	" (p.)	$CH_3.C_6H_4.SO_3H+4H_2O.$	244 . 17	
16	Toluic acid (o.)	CH ₃ .C ₆ H ₄ .CO ₂ H	136.06	1.0621115
17	" (m.)	CH ₃ .C ₆ H ₄ .CO ₂ H	136.06	1.0543111
18	" (p.)	CH ₃ .C ₆ H ₄ .CO ₂ H	136.06	
19	amide (o.)	CH ₃ .C ₆ H ₄ .CONH ₂	135 11	
20	" (m)	CH ₃ .C ₆ H ₄ CONH ₂	135.11	
21	" (p.)	CH ₃ .C ₆ H ₄ .CONH ₂	135.11	. <b></b>
22	anhydride (o.)	(CH ₃ .C ₆ H ₄ .CO) ₂ O	254.11	
23	Toluidine (o.)	CH ₃ .C ₆ H ₄ .NH ₂	107.11	1.00311
24	" " (K.)	CH ₃ .C ₆ H ₄ .NH ₂	107.11	0.996#
25		CH ₃ .C ₆ H ₄ .NH ₂		
26	" (p.)	CH ₃ .C ₆ H ₄ .NH ₂	107.11	0.973##
27	Tolunitrile (o.) (K)			
28	" (m.) (K.)	CH ₃ .C ₆ H ₄ .CN	117.10	0.9843
29	" (p.) (K.)	CH ₃ .C ₆ H ₄ .CN	117.10	
30	Tolyl carbinol (o.)			
31		CH ₃ .C ₆ H ₄ .CH ₂ OH		
32		CH ₃ .C ₆ H ₄ .CH ₂ OH		
33		CH ₃ .C ₆ H ₄ .CH ₂ Cl		
34		CH ₃ .C ₆ H ₄ .CH ₂ Cl		
35		CH ₃ .C ₆ H ₄ .CH ₂ Cl		
36	mustard oil (o.) (K.)	CH ₃ .C ₆ H ₄ .N: CS	149.16	1.104#
37		CH ₃ .C ₆ H ₄ .N: CS		
1	Tricetamide			
39	Triacetin	(C.H.O.) C.H	218.12	1.1606#
40	" (K.)	$(C_2H_3O_2)_3C_3H_5$	218.12	1.159
	Triamino-benzene	1.2:3C.H.(NH.)	123 19	
		1. = . O G = 13(11112/8 )	-20.10	<del></del>

Number.	Sol	ubility in 100 (	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Mum	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	2	<b>∞</b>	∞		116.6° C.	
2	insoluble	soluble			dec.	oily
	insoluble		soluble	· · · · · · · · · · ·	175°	
4					78°	
	insoluble	insoluble	v. soluble	60°	256-70° de.	
6		v. sol. hot		1	275–300° 111.0°	monoclinic
1 -	insoluble	00 11-1-	∞ ∞	-92.4° -93.2°	111.0° 110–1°	11
	v. v. s. sol. 0.105°	soluble 3.6 ⁵	<b>∞</b>	155°	110-1	colorless
1 -	0.105	3.0° 7.5 ⁵	• • • • • • • • •	137°		
	insoluble			137		leaflets oilv
	insoluble		soluble	69°	145–6°15	rhombic
13			soluble	09	145-0	crystalline
14	1		· · · · • • · · · ·		• • • • • • • • •	needles
15				92°	146-7°°	leaf. or pris
1	s. soluble	v. soluble	sol. chlo.	102°	259°	long need./w.
	1.7100	v. soluble	v. soluble	110.5°	263°	prisms/w
	s. soluble	v. soluble	v. soluble		275° C.	needles
	soluble	v. soluble	v. soluble	147°	210 0.	needles
1.	s. soluble	v. soluble		97°		rhomb, pris.
21		v. soluble	s. soluble	165°		need.or tab./.
22		v. soluble	s, soluble	39°	abt. 325°	crys./et.or bz.
	3. soluble	<b>o</b> o	<b>o</b> o	$\alpha - 21^{\circ}$	199.7°780	dimorphous.
24		~	•	$\beta-15.5^{\circ}$	100.1	dimorphous
	s. soluble	soluble	∞	20.0	199-200°	usually yel
25	s. soluble	00	<b>oo</b> .	<-13°	203° C.	dodding you
	0.73921	l		45°	200.3°C.	leaflets/al
	insoluble	∞	œ		201–4°	wh.→yel
	insoluble	00	90		209-11°	wh.→yel
	insoluble	v. soluble	v. soluble	28-9°	215-7°	wh.→yel
30	120; 115100	v. soluble	v. soluble	34°	223° C.750	needles
	5		soluble	<-20°	217°	
32	v. s. sol.	v. soluble	v. soluble	58.5-9.5°	217°	needles
33			 		197–9°	l <b></b>
34		<b></b>			195–6°	. <b></b>
35	1	<b></b>			200-2°	
	insoluble	v. soluble	∞		238-9°	
37		v. soluble	v. soluble	26-7°	242–4°	wh. →yel
38			soluble	78–9°	<i>.</i>	sm. need./et.
	s. soluble	∞ ∞	∞		258-9°	
40		∞ ∞	∞		266-7° dec.	colorless
41	v. soluble	v. soluble	v. soluble	103°	336° C.	crystalline

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Triamino-benzene	1: 2: 4C ₆ H ₈ (NH ₂ ) ₃	123.19	  - • • • • • • • • • • • • • • • • • • •
2		$OH.C_6H_2(NH_2)_3$	139.19	
	Triazobenzene	C ₆ H ₅ .N: N ₂	119.16	1.098010
	Tribenzylamine	$(\mathring{C}_6\mathring{H}_5CH_2)_3N$	287.21	· • • · · · • • • • • • • • • • • • • •
	Tribrom-acetic acid	CBr ₃ .CO ₂ H	296.89	• • • • • • • • • • •
6		NH ₂ .C ₆ H ₂ .Br ₃		
7 8		1: 3: 5C ₆ H ₃ Br ₃		
9		1: 3: 4C ₆ H ₃ Br ₃ 1: 2: 3C ₆ H ₃ Br ₃		
10	(٧٠/		200 00	2.000
11		$2:4:6OH.C_6H_2Br_3$		
12				
	Tributyl amine			0.778220
	Tricarballyic acid	CO,H.CH(CH,CO,H),		
	Tricarboxy phenol (1, 3, 5)			
	Trichlor-acetal	CHCl ₂ .CCl(OC ₂ H _b ) ₂		
17	"	CCl ₃ .CH(OC ₂ H ₅ ) ₂		
18		CCl.CONH		
19	-acetic acid	CCl ₃ .CO ₂ H	163.36	1.629861
20	-benzene (s.)	1:3:5C ₆ H ₃ Cl ₃	181.38	  - • • • • • • • • • • •
21	" (as.)	1:3:4C ₆ H ₃ Cl ₂	181.38	1.465810 liq .
22	" (v.)	$1:2:3C_6H_3Cl_3$	181.38	
23	benzoic acid			
24				
25		3: 4: 5Cl ₃ C ₆ H ₂ .CO ₂ H		
26		Cl _s CBr		
27	-ethane (1, 1, 1)	CCl ₃ .CH ₃	133.38	1.32498
28	" $(1, 2, 2) \dots$	CH ₂ Cl.CHCl ₂	133.38	1.4784
29 30		CCl ₃ .CH ₂ OH		
31		CHCl: CCl ₂ CH,Cl.CHCl.CH,Cl		
32		$Cl_2C_6H(OH)_2(2:3:5)$		
33	-nyaroquiononephenol $(2;4;6)$	$Cl_3C_6H_2OH$	107 32	
34	-phenol (2:3:5)	$Cl_3C_6H_2OH$	107 38	· · · · · · · · · · · · · · · · · · ·
35	-quinone	$Cl_3C_6H.O_2$	211 36	
1	Tricosane (n.)	$CH_3(CH_2)_{21}CH_3$	324.38	0.779948
		CH ₃ C(CN) ₃		
		CH ₃ (CH ₂ ) ₁₁ CH ₃		
	Tridecylene			
40	Triethyl amine (k.)	$(C_2H_5)_3N$	101.16	0.7250
41	arsine	$(C_2H_5)_3As$	162.12	$1.151^{17}$
42	benzene (s.) 1:3:5	$C_6H_3(C_2H_5)_3$	162,15	0.8636¥

er.	Solubility in 100 c.c.			Melting	Boiling	Crystalline
Number	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Corrected.	Boiling Point, °C. C. = Cor- rected.	Form and Color.
1 2	v. soluble	v. soluble	s. soluble	44°	abt. 340° 257°	leaf./chlo
3	insoluble	s, soluble	s, soluble		73.5° 22-4	yellow oil
4	v. s. sol.	s. soluble	v. soluble	91.3°		moncl.lea./al.
5	v. soluble	v. soluble	v. soluble	135°	245°	moncl. tab
6	insoluble	s. soluble	soluble	121-2°		sm. needles
7		s. sol. hot	<b></b>	119.6°	278°	needles
8		s. soluble		44°	275–6°	needles
9				87.4°		monocl. pris.
10				16-7°	219–21°	prisms
1	0.00715	v. soluble	soluble	96°	sub.	monocl. pris.
	v. s. sol.	v. soluble	soluble	111°		small need
13					216.5°	
	40.5214	v. soluble	s. soluble	165°	sub. dec.	rhombic
1	0.5.0	v. sol. hot	s. soluble	000	dec. 180°	warts
		soluble		83°	230° dec. 197°	moncl. n./al.
	0.5	00	∞;∞ glyc.			
	v. s. sol.	v. soluble soluble	v. v. sol. soluble	141° 57°	238–9° 195°	mncl. tab./w.
20	v. soluble	soluble	soluble	63.40°	208.5°C.764	rhomohedral.
21	· · · · · · · · · · · · · · · · · · ·	gorapie		17°	213°	long needles.
22		s. soluble		53-4°	218–9°	large tab./al.
	v. v. s. sol.	v. soluble .		163°	sub.	sm. need./w.
	mod. sol.	v. soluble .		129°	Bub.	needles
_	v. v. s. sol.	v. soluble	v. soluble	203°	sub.	needles/al
26		v. sordore	V. Boldbie	-21°	104.07° C.	necesies, ar
27					74.5°	
28					114°	
	s. soluble	∞	∞	17.8°	151°737	rhomb, tab.
30					88°	
31					158°	
32	Q.615	v. soluble	v. soluble	134°	sub. leaf.	large prisms.
	0.05111;	v. v. sol.	v. v. sol.	67–8°	243.5-4.5°	rhomb. pris
	sol. hot	v. soluble	v. soluble	53-4°	252–3°	long need./al.
	insoluble	s. soluble	v. soluble	165-6°	. <b></b>	large yel. leaf.
11		s. soluble	soluble	47.7°	320.7°	glit.leaf./al.et
37		v. soluble	v. soluble	93.5°	volatile	need
38	• • • • • • • • •			-6.2°	234°	<b></b>
<b>3</b> 9		• • • • • • • • • •		<b></b>	232.7° C.	
	14.2420	<b>∞</b>	∞		88-9°	wh. →yel
	insoluble	• • • • • • • • •		<b>- </b>	140°136 dec.	<b></b>
42	,			l <i></i>	217° C.	noole

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Triethyl borate	(C,H,),BO,	146.12	0.8863
2	boride	$(C_2H_5)_3B$	98.12	0.696123
3	carbinol	$(C_2H_5)_3COH$	116.12	0 840220
4	phosphine	$(C_2H_4)_2P_2$	118.12	0.81215
5	phosphite	$(C_2H_5)_3PO_3$	166.12	0.96057
6	silicol	$(C_2H_s)_s$ SiOH	132.53	0.8709
7	" ether	$(C_2H_8)_3SiOC_2H_8$	160.56	0.84034
8	silicon hydride	$(C_2H_5)_3SiH$	116.53	0.7510
9	" oxide	$[(C_2H_5)_3Si]_2O$	247.04	0.8590
	Trihydroxy-benzene (as.)	$1: 2: 4 C_6 H_8 (OH)_3 \dots$	126.05	
11	-benzoic acid	2: 3: 4(OH) ₃ C ₆ H ₂ CO ₂ H	170.05	
12	-butane $(1, 2, 3)$	CH ₃ .(CHOH) ₂ CH ₂ OH	106.08	1.232417
13	-pyridine (s.)	2: 4: 6(OH) ₃ C ₅ H ₂ N	127.08	
	Triiodo-acetic acid	Cl ₃ .CO ₂ H	183.98	
15	-benzene (as.)	1: 2: 4C,H,I,	455.94	
10	Triisoamyl amine (K.)	[(CH ₃ ) ₂ CH.CH ₂ .CH ₂ ] ₃ N	227.30	0.785
10	Triisobutyl amine (K.)	[(CH ₃ ) ₂ CH.CH ₂ ] ₃ N		
10	Trimellitic acid	1: 2: 40 ₆ H ₃ (CO ₂ H) ₃		
	Trimesic acid (s.)			0.00550
21	Trimethyl acetic acid	$(CH_3)_3C.CO_2H$	50 11	0.662-
22	" (K)	(CH ₂ ) ₃ N	50 11	
23	anthracene	1: 2: 4(CH ₃ ) ₃ C ₁₄ H ₇	220 13	0.002
24	"	1: 3: $6(CH_3)_3C_{14}H_7$	220.13	
25	"	1 · 4 · 6(CH.) · C. · H.	220 13	
26	arsine	(CH ₃ ) ₃ As. 2: 4: 5(CH ₃ ) ₃ C ₆ H ₂ CO ₂ H.	120.07	
27	benzoic acid	2: 4: 5(CH.), C.H.CO.H	164.10	
28	bismuth	(CH ₃ ) ₃ Bi	253.57	2.3018
29	boride	(CH ₃ ) ₃ B	56.07	1.9108
30	-butene (3) (2, 2, 3)	$(CH_3)_3C.C(CH_3): CH_2$	98.12	
31	carbinol	(CH ₈ ) ₃ C.OH	74.08	0.783934
32	-butyl alcohol (2, 3, 3)	(CH ₃ ) ₃ C.COH(CH ₃ ) ₂	116.13	
33	citrate	$(CH_3)_3.C_6H_5O_7$	234.12	
34	phosphate	(CH ₃ ) ₃ PO ₄	140.07	1.219516
35	phosphine	(CH ₃ ) ₃ P	76.07	>1.
	Trimethylene	CH ₂ <(CH ₂ ) ₂ >	42.05	
37	promide	CH ₂ Br.CH ₂ .CH ₂ Br	201.97	1.9878
38	-carbonic acid	<(CH ₂ )>CHCO ₂ H		1.0879*
39	Trinitro beneand (1, 2)	$<(CH_2)_2>C<(CO_2H)_2$	212 12	
41	Trinitro-benzene (s.)	$CH_3.C_6H(OH)(NO_2)_3$	049 10	
42	ervan methane	$(NO_2)_3CCN$	178-16	
12	-ojan memane	Bigitizet	1.0.10	<u>sqle:</u>

Number.	Solubility in 100 c.c.		.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Corrected.	Form and Color.
1					119.5°	
2		soluble	soluble		95°.	
	s. soluble	soluble	soluble		140-2°	
		soluble	soluble		1270744	
5	insoluble	v. soluble	v. soluble		155.5-6.5 ⁰⁷⁴¹	
-	insoluble		<b></b> .		154°	
- 1	insoluble	sol. H ₂ SO ₄	<b></b> .		153°	<i></i>
8	insoluble		<b></b> .		107°	
9		sol. H ₂ SO ₄	<b></b>		231°	
	v. soluble	v. soluble	v. v. sol.	140.5°	with steam	mncl.leaf./et.
11	0.1312	soluble	v. soluble	d.195-200°		silky need./w.
12	soluble	œ	∞		134-6°28	
13	mod. sol.	. <b>.</b>	<b></b>	220-30°		micro. cryst
14	soluble		<b></b>	150° dec.		glit. yel. leaf.
15		soluble		76°	sub.	small needles
16	insoluble	v. soluble	90		237-40°	wh. $\rightarrow$ yel
17	insoluble	v. soluble	90		189-92°	wh. $\rightarrow$ yel
	mod. sol.		mod. sol.	228°		crusts
	2.6922	v. soluble	mod. sol.		sub. 300°+	prisms/w
	2.220	00	v. soluble	35.35°	163.7° C	regular
-	v. soluble	v. soluble	soluble		3.2-3.8°.	
1 -	v. soluble	v. soluble	soluble		3.2-3.8°	colorless
			2014210	243°		00101100011111
	sol. bz.	s. soluble	soluble	222°		
	sol. bz.	v. s. sol.	mod. sol.	227°	sub.	fluoresc. leaf.
	s. soluble	v. s. soi.	mou. soi.		<100°	nuoresc. icar.
	v. s. sol. hot	v goluble	v. soluble	149-50°	with steam	1" need./bz
28		v. soluble	v. soluble	140-00	110°	i need./ Dz
29		• • • • • • • • •			110	~~~
30			l		78–80°	gas
		soluble	l· · · · · · · · · ·	25 .45°	82.94° C.	rhomb. tab
	deliq. ∞	80101016	l	25 .45° 17°	82.94° C. 131°	
32 33	→hydrate.		1		283–7° dec.	crystalline triclinic
1		soluble	aalub!-	78.5–9°	197.2° C.	tricimic
34	:11 1		soluble			
	i <b>nsol</b> uble		soluble	100.00	40-20	
36	· · · · · · · · · · · · ·	,-;,	1	-126.6°	-34°749	· • • • • • • • • • • • • • • • • • • •
37		soluble	soluble	<-75°	165° C.	· · · · · · · · · · · · · · · · · · ·
	s. soluble	· • • • • • • • • • • • • • • • • • • •	1	18–19°	182–4°	
	20		soluble	175°	210°30	needles/et
	0.0420		v. soluble	121.2°	dec.	rh'b. tab./al.
	v. s. sol.	soluble	soluble	105–6°	· · · · · · · · · ·	sm. yel. need
42	dec.	dec.	soluble	41.5°	exp. 220°	campher.mass

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Trinitro-			
1		$C_{10}H_5(NO_2)_8$ (1:3:5)	263.16	
2	" (ß)	$C_{10}H_{5}(NO_{2})_{8}$ (1:3:8)	263.16	
3	" $(\gamma)$	$C_{10}H_{\delta}(NO_3)_2(1:4:5)\dots$	263.16	
4	-phenol (s.)	$ (NO_2)_3C_6H_2.OH$	229.15	see picric ac.
5	" $(2, 3, 6), \ldots$	$(NO_2)_3C_6H_2.OH$		
6	" (3, 4, 6),	$(NO_2)_3C_6H_2OH$		
7	-resorcine (1:3) (2:4:6) (K.)	$(OH)_2C_6H(NO_2)_3$	245.14	
8	-toluene (s.)	2: 4: 6(NO ₂ ) ₃ C ₆ H ₂ .CH ₃	227.16	
9	-triphenyl methane	(NO ₂ .C ₀ H ₄ ) ₃ CH		
10				
11	Trioxymethylene $(a)$	$C_{\mathbf{a}}\mathbf{H}_{\mathbf{c}}O_{\mathbf{a}}$		
12	Tripalmitin	$\left  \mathbf{C_3^{H} H_5^{C} (C_{16} H_{31} O_2)_3 \dots } \right $		0.8657*
13	Triphenyl acetic acid	$(C_6H_5)_3C.CO_2H$	288.13	
14	amine	$(C_6H_5)_3N\dots$	245.16	0.7748
15	benzene (s.)	$1:3:5C_6H_3(C_6H_5)_3$	306.15	1.2055
16	carbinol	$(C_6H_5)_3COH$		
17	ethane $(s.)$	0 8 2 0 3/2		
18	guanidine $(a)$	$C_6H_8.N: C(NHC_6H_5)_2$		
19	<b>"</b> (β)	HN: C(NHC ₆ H ₅ )N(C ₆ H ₆ ) ₂		
20	hydrazine	$(C_6H_5)_2N.NHC_6H_5$		
21	methane		I .	1.0568
22	methyl		243.12	
23	phosphine		262.12	1
	Tripropyl amine (K.)	2 2/8		0.750# 0.8621 <b>%</b>
	Tristearin	0 0 10 00 2/8	•	0.80211
27	Trithio-aldehyde	(CH ₃ CSH) ₃  (CH ₃ CSH) ₃		
28	-carbonic acid	CS(SH) ₂		
29	-glycerine	CH ₂ SH.CHSH.CH ₂ SH		1.39114
		OH.C ₆ H ₄ .C ₂ H ₃ (NH ₂ )CO ₂ H		1
	Undecane (n.)	$CH_3(CH_2)_{\mathfrak{g}}CH_3$		0.758120
		$C_{11}H_{22}$		0.772920
	Undecyclic acid	$CH_3(CH_2)_9CO_2H$		
	Uramil (murexan)	CO < (NH.CO) ₂ > CHNH ₂		
		CO(NH ₂ ) ₂		1.323
36	nitrate		123.16	1
37				0.986221
38	Uric acid			
39	Usnic acid (d)	$C_{18}H_{16}O_{7}$		
40	Usnic acid (i)	$C_{18}H_{16}O_7$	344.13	

Digitized by GOOGLO

Number.	Solubility in 100 c.c.		Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form	
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	v. sol. acet.	v. soluble	v. sol. chlo	122°		monoclinic
	v.s.sol.chlo.			218°		monocl./chol.
3	0.64 chlo.	0.1221890%	0.39	154°		glit. yel. leaf.
5	mod.sol.hot	v soluble	v. soluble	117–8°		small need
	mod.sol.hot		v. soluble	96°		glt.n.or scales
	v. s. soluble		s. soluble	174-5°		sm. yel. pr
8	0.386 ¹⁷ CS ₂	v. sol. hot		82°		rhombic
1	sol. bz.		v. s. sol.	206-7°		cryst./bz
	insoluble	soluble	s. soluble	180-1°		yel. prisms
ı	soluble	soluble	soluble	65.5°	sub.	needles
12	s. soluble	0.0043 ^{21abs} mod. sol.	v. soluble s. soluble	2.64-5°	310-200	irreg. cryst monocl. pris.
	mod. sol.bz		s. soluble sol. acet.	127°	347-8°	mncl. pris./et
	sol. bz.	s. soluble	s. soluble	169-70°	dist.	rhb. tab./et
	sol. bz.	v. soluble	v. soluble	162°	360°+	hexag./bz
17		insoluble	v. soluble	<b>54</b> º	348–9° C.	monocl. leaf
	insoluble	7.94 ²⁵ abs.		144-4.5°	dec.	rhb. pris./al .
	v. s. sol.	v. soluble	v. soluble	131°		regular tab
	mod. sol.	mod. sol.	s. soluble	142° 92°	0.00.00784	thick needles
		s. soluble v. s. sol.	v. soluble v. s. sol.	92° 145–7°	358-9°754	rhombic transp. cryst.
	insoluble	mod. sol.	v. s. soi. v. soluble	79°	1>360°	mncl. prs./et.
	s. soluble	00	soluble	<u>                                    </u>		colorless
25		v. s. sol.		71.6°		cryst
	insoluble	4.8725	$21.70^{25}$	45-6°	205°	rhomb. need.
27				α101° β125	246-7°	long prisms
	insol. dec.	sol. Na ₂ CO ₃		[γ 76°	57° dec.	led. brown oil
	insoluble 0.04 ²⁰		insoluble insoluble	314–8° C.		silky needles .
31		0.01	msoruble	-25.6°	194 . 5° C.	suky needies.
32				20.0	195.4° C.	
33	insoluble	v. soluble		28.5°	212.50100	scales
34	insoluble		sol.con. HCl			needles
			s. soluble	132.65° C.	dec.	quadratic
		s. soluble		163°		monoclinic
	v. soluble	v. soluble	v. soluble	49–50°		leaflets
	0.007 insoluble		insoluble s. soluble	dec. 203°		scales yel. pr <b>is./al</b>
				203° 192–3°		yel. mon. pris.

=					
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).	
1	Uvic acid (2:5) (3)	(СН.).С.НО.СО.Н	140.06		
	Uvitic acid 1: 3: 5	CH C H (CO H)	180 06		
2	Valeric acid (n.)	CH (CH ) CO H	100.00	0.041530	
4	(11.) (12.)	CH ₃ (CH ₂ ) ₃ CO ₂ H	102.08		
5		CH ₃ (CH ₂ ) ₃ CHO		0.818511	
6	anhydride				
7	Valerylene				
8	Valylene	$ CH_2: C.(CH_3).C:CH$	66.05		
9	Vanillic acid 3: 4: 1	CH ₃ O.C ₄ H ₃ (OH)CO ₂ H	168.06		
10			154.08	l <b>.</b>	
	Vanilline 3: 4: 1				
	Veratrol (K.)				
	Veronal				
	Vesuvine impure				
	Vinyl acetic acid				
16		(.CH ₂ .) ₂ >NH		0.832124	
17	bromide				
18		CH ₂ : CHCl			
19	ether	(CH ₂ : CH),O	70.05		
20	ethyl carbinol	$C_2H_3.CH(OH).C_2H_5$	86.08	0.840%	
21		C,H,O.C,H,		0.76251	
22		(ĆH,: CH,),S		0.9125	
	Wood alcohol	(see methyl alcohol)	00.11	0.0120	
	Xanthene		199 09	 	
25	Xanthine $(2:6) \dots$		159 10		
20	Vandanie (2:0)	$O_5 \Pi_2 \Pi_4 (O\Pi)_2 \dots$	100.19	• • • • • • • • • • • • • • • • • • •	
	Xanthone				
	Xylene (o.)				
28	" " (K.)	$C_6H_4(CH_3)_2$	106.08	0.876#	
29	" (m.)	$C_6H_4(CH_3)_2$	106.08	0.8691	
30	" " (K.)	$C_6H_4(CH_3)_2$	106.08	0.863#	
31	" (p.)	$C_6H_4(CH_8)_2$	106.08	0.8661#	
32				0.859#	
33		$C_6H_4(CH_3)_2$		0.86135	
34	sulphonic ac (4) (1 2)	$(CH_3)_2C_6H_3.SO_3H + 2H_2O$			
	<b>Xylenol</b> $(1, 2)$ $(3)$	(CH ) C H OH			
36	" (1 2) (4)	(CH ) CH OH			
1	" (1, 2) (4)	(CH ₃ ) ₂ C ₆ H ₃ OH	100.00		
37	" (1, 3) (2)	(CH ₃ ) ₂ C ₆ H ₃ OH	122.08		
38	$(1, 4) (4) \dots$	(CH ₃ ) ₂ C ₆ H ₃ OH	122.08	.0362°	
39	" (1, 3) (5)	(CH ₃ ) ₂ C ₆ H ₅ OH	122.08		
40	" (1, 4) (2)	$(CH_3)_2C_6H_3OH$	122.08	1.169 ^{ts}	
41	<b>Xylidine</b> (1: 2) (3)	(CH.),C,H,NH,	121.13	0.99115	
42	" (1:2)(4)	$(CH_2)_2C_6H_3.NH_2$	121.13	1.075517	
	(*, =, (*,	· · · · · · · · · · · · · · · · · · ·	,		

Number.	Sol	ubility in 100 (	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nut	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
		v. soluble	v. v. sol.	135°		needles/w
	insoluble	v. soluble	v. soluble	290–1°	sub.	fine need./ $\mathbf{w}$
- 1	3.7 ¹⁶	90	∞	-58.5°	186 . 4° C.	
	3.7 c.c. ¹⁶	90	∞	-59°	185.5-6.5°	colorless
	s. soluble			<b></b>	103.4°	
6	insoluble			<b></b>	215°	
7					55.5-6°	
8	<b></b>				50°	
	$0.12^{14}$	v. soluble	soluble	207°	sub.	needles/w
	v. sol. hot	v. soluble	v. soluble	115°	dec.	prisms
	1.014; 580	v. soluble	v. soluble	80-1°	285° in CO ₂	moncl. n./w.
	s. soluble	soluble	soluble	23°	207.1° C.	cryst
	$0.7^{20}, 8^{100}$	soluble	v. soluble	182°	· · · · · · · · · · · ·	cryst. pw
	s. sol. hot	v. soluble	v. soluble	118°		cryst./bz
15				< -20°	168°, 70°12	
16	∞	soluble			56° 16° ⁷⁵⁰	
17						
18		soluble			-18-15°	
19		soluble	∞		39°	
20					114-4.5° 35.5°	
	s. soluble s. soluble	90	∞ _.		35.5° 101°	oilv
22 23		<b>00</b> -	<b>∞</b>	1	101	опу
	v. s. soluble	a galubla	soluble	100.5°	315° C.	leaflets/al
	0.26 ¹⁷	0.033 ¹⁷	v.sol.KOH			powder
	insoluble	0.033	s. soluble	173–4°	350-1°	long need/a
-	insoluble	v. soluble	v. soluble	-27.1°	142.6° C.	long needy a
	insoluble	soluble	00	-29°	142-3°	colorless
	insoluble	v. soluble	v. soluble	-54.8°	139.3° C.	COIOTICSS
	insoluble	soluble	00	- 54°	138.5-9.5°	colorless
_	insoluble	v. soluble	v. soluble	150	137 · 5° C.	moncl. prism
	insoluble	soluble	00	15°	137-7.5°	moncl. prism
	insoluble	soluble	- ×		1	, prisin
	soluble		l <del></del>	dec.	l	rectang. tab.
	soluble	soluble	l	75°	218° C.	long need./w
	soluble	soluble	l	65°	2250757	long need./w
	s. sol. hot	soluble		49°	211-2°	leaflets
	v. s. sol.	00	× ×	26°	211.5° C.	needles
	s. soluble	soluble	sol. NaOH	68° or 64°	219.5°	fine need./w
	soluble	soluble		74.5°	211.5°	monocl. pris.
41				<-15°	225°	
	s. soluble	mod.sol.lig		490	226°	moncl. tab

Number.	Name.	Formula.	Molecu- lar Weight.	Water = T.
2 3 4 5	" 1: 3: 5	(CH ₃ ) ₂ C ₆ H ₃ ·NH ₂ ······ (CH ₃ ) ₂ C ₆ H ₃ ·NH ₂ ······ (CH ₃ ) ₂ C ₆ H ₃ ·NH ₂ ····· C ₅ H ₁₀ O ₅ ·······	121.13 121.13 121.13 150.08 123.48	0.9184 ¹⁵ 0.9935° 0.980 ¹⁵ 1.535° 1.182 ¹⁸

Der.	Solubility in 100 c.c.		Melting Point, °C.	Boiling Point, °C.	Crystalline
Numb	Water (w.).	Alcohol (al.). Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1 2				216° 212°	
3 4			15.5°	220-1.° 215° ⁷⁸⁹	
6	117 ²⁰ dec. dec.	dec. v. s. sol. v. v. s. sol. soluble	-28°	118° 46°	orthorhomb

## XXXI

## PHYSICAL CONSTANTS OF ALKALOIDS

COMPILED BY ATHERTON SEIDELL

#### EXPLANATORY REMARKS

This table was compiled from the data found in the United States Pharmacopæia, 8th Revision (1905); Beilstein's "Handbuch der Organ. Chemie," 3rd Edition (1896–1899), and Ergänzungsbände thereto (1901–1906). Merck's 1907 Index; Hager's "Handbuch der Pharmaceutischen Praxis" (1900); Bruhl's "Die Pflanzen Alkaloide" (1900); and Pictet's "The Vegetable Alkaloids"—translated and revised by H. C. Biddle (1904).

No attempt has been made to include every alkaloidal compound mentioned in the above-named reference books, but those only have been selected which appear of most general interest and for which the constants have been

most completely determined.

The solubility data are for the most part of qualitative reliability only. The quantitative statements found in the reference books vary considerably, especially so in the case of alcohol as the solvent. In fact it is practically hopeless to harmonize them in a reasonably satisfactory manner. In the present table an attempt has been made in all cases to select a value from the available sources which is nearest the truth, giving preference, however, to the U. S. P. results. It may also be mentioned that in practically all reference books the solubilities are expressed in terms of parts of solvent to dissolve one part of alkaloid. It is often uncertain whether weight or volume parts are meant, and furthermore the temperature is frequently omitted, as well as the degree of purity or strength of the solvent employed. For greater uniformity and convenience, the solubility values have been recalculated to terms of weight of alkaloid dissolved in 100 grams of the solvent. Unless otherwise stated, it is to be understood that the compounds are colorless.

Sol. = soluble, v. = very, sl. = slightly, insol. = insoluble.

The compiler of this table desires to acknowledge his indebtedness to Professors W. A. Puckner and H. M. Gordin for valuable criticisms and suggestions.

# XXXI. - PHYSICAL CON-

BY ATHERTON

=				
Kumber.	Name.	Formula.	Molecular Weight.	Melting Point.
1	Aconitine	C ₃₄ H ₄₇ NO ₁₁ (or C ₃₈ H ₄₅ NO ₁₂ )	645.386	195° (1)
2	hydrobromide	C ₃₄ H ₄₇ NO ₁₁ .HBr+2.5H ₂ O.	771.354	163° (4)
3 4 5 6	hydrochloride nitrate sulphate Anhalonidine	C _{3.} H _{4.7} NO ₁₁ .HCl+3H ₂ O(3) C _{3.} H _{4.7} NO ₁₁ .HNO ₂ +5.5H ₂ O (C _{3.} H _{4.7} NO ₁₁ ) ₂ .H ₂ SO ₄ C ₁₂ H ₁₁ NO ₂ . C ₁₂ H ₁₁ NO ₂ . C ₄ H ₁₂ NO ₂ . C ₄ H ₁₂ NO ₂ .	735.902 798.484 1388.858 221.13	154° (5)
7 8 9 10	AnhalonineAnhydroecgoninehydrochlorideApoatropine	C ₁₄ H ₁₈ NO ₃ . C ₂ H ₁₃ NO ₂ . C ₃ H ₁₃ NO ₂ .HCl. C ₁₇ H ₂₁ NO ₂ .HCl. C ₁₇ H ₂₁ NO ₂ .HCl.	221 . 13 167 . 110 203 . 582 271 . 178	235° (6) 240° 60°–62°
13	Apomorphine	C ₁₇ H ₁₇ NO ₂	281.162 267.146	
14 15 16	hydrochloride Arecoline hydrobromide Atropine (Daturine)	C ₁₇ H ₁₇ NO ₃ .HCl. C ₈ H ₁₃ NO ₃ .HBr. C ₁₇ H ₂₂ NO ₃ .	236.042 289.194	115°
17		(C ₁₇ H ₂₈ NO ₃ .HCl)AuCl ₃	629.242	
18 19	iodatesulphate	$C_{17}H_{22}NO_3IO_3H$	465.122 676.474	183°-184°.5 (4) (7)
20 21 22	valerate	$ \begin{array}{l} (C_{17}H_{22}NO_3.C_3H_{10}O_2).H_2O \ . \\ C_{18}H_{21}NO_3. \dots \\ C_{18}H_{21}NO_3.HC1 \dots \end{array} $	409.22 299.178 335.646	42° 214° (8)
24 25	Berberine	$C_{20}H_{17}NO_4.HCl+4H_2O(11)$ $C_{24}H_{17}NO_4.H_4SO_4$	443 . 242 443 . 678 431 . 232 466 . 292	
27 28 29	nitrate	C ₂₃ H ₂₆ N ₂ O ₄ .HCl C ₂₃ H ₂₆ N ₂ O ₄ .HNO _{3.2} H ₂ O (C ₂₂ H ₂₆ N ₂ O ₄ ) ₂ H ₂ SO ₄ .7H ₂ O.	430.696 493.278 1012.654	230° (6)

With slow heating at 182° with decomposition.
 3% solution in alcohol.
 In 2% aq. solution. (3) Or 3.5 H₂O.

⁽⁴⁾ Of the anhydrous salt.
(5) 159° according to Beilstein.
(6) With decomposition.

## STANTS OF ALKALOIDS

SEIDELL

ber.	Solubility at 25°. Grams per 100 Grams:			Optical	Crystalline Form,	
Number.	H ₂ O.	C ₂ H ₅ OH. (92.3 wt. %).	(C ₂ H ₅ ) ₂ O.	Activity.	Color, Etc.	
1	0.0312	4.54	2.27	$     \begin{bmatrix}       \alpha \end{bmatrix} D^{23} = +11^{\circ} \\       (2) $	rhombic tables or prisms; also amor- phous.	
2	soluble	soluble	′	$[\alpha]_D = -30.47^{\circ} (3a)$	monoclinic tables.	
3	soluble	soluble	<i>.</i>	lævo `	 	
4	soluble	soluble		lævo		
5	soluble	soluble		lævo	[	
	soluble	soluble	soluble	inactive	needles, octohedra.	
7		soluble	soluble		needles.	
8	v. soluble	soluble	v. sl. sol.		crystals. [morphic.	
9	soluble	soluble		$[\alpha]_D = -61.5^{\circ}$	needles, rhombic, hemi-	
10	sl. soluble	v. soluble	v. soluble		prisms.	
11	soluble				leaflets. [mass.	
12	v. sl. sol.	soluble	soluble		amorphous, gummy	
13	sl. soluble	soluble	soluble		amorphous mass, turns green in air.	
14	2.53	2.62	0.0536		monoclinic prisms.	
15	soluble	soluble			prisms.	
16		68.5	6.0	inactive	rhombic prisms or needles (sublimes).	
1	sl. soluble				crystals, leaflets or glistening powder.	
18		27	0.0467	inactive	powder or needles.	
10	v. soluble	sl. soluble	sl. soluble		crystal crusts.	
	0.016 (cold)	v. soluble		$[\alpha]D = -298^{\circ}$	crystal crusts. glistening prisms.	
	v. soluble	v. soluble			needle clusters (hygro- scopic). [prisms.	
13	22.2 (21°)	1.0 (cold)	v. sl. sol.	inactive	red-yellow needles or	
4	soluble` ´	soluble			bright orange needles.	
5	1.0 (21°)	sl. soluble		<b></b>	fine yellow crystals.	
6	0.31 (còld)	v. soluble	v. sl. sol.	$[\alpha]D = -119^{\circ}$	monoclinic columns.	
				— 127° (10)	plates, prisms or leaf- lets.	
7	v. soluble	[. <b>.</b>	<b>.</b>		crystalline clusters.	
	soluble	soluble			four-sided prisms.	
9		l			long needles.	

⁽⁷⁾ At about 189.9° (U. S. P.)
(8) At 180° when amorphous.
(9) At 178° when anhydrous.

⁽¹⁰⁾ In chloroform solution. (11) Also with 2H₂O. (12) Also with 1 H₂O. (12)

Number.	Name.	Formula.	Molecular Weight.	Melting Point.	
1	Bulbocapnine	C ₁₉ H ₁₉ NO ₄	325.162	199°	
2	thina\	$C_8H_{10}N_4O_2+H_2O(1)$		236.8° (2)	
3 4 5	aitrata	$C_8H_{10}N_4O_2.C_6H_8O_7$	386.184 266.620 292.206		
6 7 8	tri iodide	$ \begin{array}{c} C_{8}^{3}H_{10}^{10}N_{1}O_{2}^{2} + GC_{1}^{2} + 2H_{2}O_{1}(3) \\ C_{8}H_{10}N_{1}O_{2} + H_{2}SO_{4}(4) \\ C_{8}H_{10}N_{1}O_{2}I_{2}.HI + 1.5H_{2}O_{1} \\ C_{8}H_{10}N_{1}O_{2}.C_{8}H_{10}O_{2}. \\ C_{14}H_{26}NO_{2}. \end{array} $	592.912 296.20 239.21	171° (21)	
9		C ₁₄ H ₂₆ NO ₂ .HCl	•	225° (7)	
10	Chelerythrine	C ₁₉ H ₁₁ NO ₂ (OCH ₃ ) ₃	347.146	203° <b>–4</b> °	
11	Chelidonine	C ₂₀ H ₁₀ NO ₅ +H ₂ O	371.183	135° <b>–6</b> °	
12 13	hydrochloride Cinchonidine	C ₂₀ H ₁₀ NO ₅ ·HCl C ₁₀ H ₂₂ N ₂ O	389.634 294.196	207.2° (cor.	
l 4	hydrochloride	$C_{19}H_{22}N_2O.HCl+H_2O(11).$	348.68		
l 5 l 6	bisulphatesulphate	$C_{19}H_{29}N_2O.H_2SO_4 + 5H_2O$ $(C_{19}H_{29}N_2O)_2.H_2SO_4 + 3H_2O(12).$	482.362 740.526	205.3° (13)	
17	Cinchonine	$C_{19}H_{22}N_2O$	294.196	264.3° (cor.	
8	hydrochloride	C ₁₉ H ₂₂ N ₂ O.HCl+2H ₂ O	366.696	••••	
9 20 21	nitratebisulphatesulphate	$\begin{array}{c} C_{10}H_{22}N_2O \cdot HNO_3 + \frac{1}{2}H_2O \cdot . \\ C_{10}H_{22}N_2O \cdot H_2SO_4 + 4H_2O \cdot . \\ (C_{10}H_{22}N_2O)_2 \cdot H_2SO_4 + \\ 2H_2O(19) \cdot . \end{array}$	366.222 464.346 722.510	198.5°	

⁽¹⁾ Anhydrous when crystallized from

alcohol.

(2) When dried at 100° to constant weight.

⁽³⁾ Also anhydrous, Beilstein.
(4) Also with .1 H₂O.
(5) With decomposition.
(6) In absolute alcohol.

⁽⁷⁾ Begins to darken and decompose at higher temperature.
(8) In 96% alcohol, p = 2.
(9) For a solu. in a mixture of 2 vols. CHCl₃ and 1 vol. C₂H₃OH of 97%, p = 1.1-2.1.
(10) Grams per 100 cc. of saturated solution in 99.75 vol., per cent alcohol.
(11) Also with .2 H₂O.

ber.	Solubility at 25°. Grams per 100 Grams:			Optical	Crystalline Form,	
Number.	H ₂ O.	C ₂ H ₅ OH (92.3 wt. %).	(C ₂ H ₅ ) ₂ O.	Activity.	Color, Etc.	
1	insoluble	soluble	soluble	$[\alpha]_{D=+}$ 237.1°	rhombic hemihedral	
2	2.19	1.88	0.267		flexible silky needles (sublimes).	
	soluble soluble (5)	soluble			monoclinic crystals. monoclinic crystals.	
5	soluble (5) soluble (5)	v. soluble		l <i></i>	rosettes of needles. long metal green prisms	
7	soluble (5) insoluble	11 (12°) (6)	3	l. <b></b>	fatty glistening needles monoclinic prisms, rhombic crystals (sublimes).	
9	11.6			, · · · · · · · · · · · · · · · · · · ·	long needles, rhombic or monoclinic.	
10		sl. soluble	sl. soluble	inactive	rhombohedral crystals (solutions fluoresce blue).	
11	insoluble	soluble	soluble	$\begin{bmatrix} \alpha \end{bmatrix} D^{20} = + \\ 115^{\circ} \ 24'(8)$	monoclinic tables or	
12 13	0.31 (18°) 0.019 (11.5°)		0.53 (15°)	$[\alpha]D^{17\cdot 80} = -$ 107.9° (9)	fine crystals. large trimetric prisms.	
14	,'	25.55 (18.5°) (10)	, , ,	lævo	large double trimetric pyramids, mono- clinic.	
15 16	v. soluble 1.6	v. soluble 1.4	0.0237	lævo lævo	long monoclinic prisms glistening needles or prisms.	
17	0.043	0.795 (20°) (15)	0.27 (10°) (16)	$\begin{bmatrix} \alpha \end{bmatrix} D^{17} = + \\ 229.6 \ (14)$	monoclinic tables, columns, prisms or needles (sublimes).	
18	4.5 (cold)	100 (cold)	0.18 (cold)	$[\alpha]D = +$ 165.5 (17)	monoclinic crystals.	
	3.79 (12°) 217 (14°) 1.72	soluble 111 (14°) (18) 10		dextro	monoclinic crystals. rhombic octohedral. prismatic, rhombic	

⁽¹²⁾ Also with 6 H₂O.
(13) Darkens at 203°, U, S. P.
(14) In absolute alcohol, p = 0.1875.
(15) In 84 vol. per cent alcohol.
(16) In ether of d = 0.73.

^{(17) 2.425} p in aq. solution. (18) In alcohol of d = 0.85. (19) Also 1 H₂O. (20) 0.855 p in aq. solution. (21) For anhydrous salt.

Number.	Name.	Formula.	Molecular Weight.	Melting Point.
		C ₁₉ H ₂₄ N ₃ O		(cor)
2	Cocaine	C ₁₇ H ₂₁ NO ₄	<b>30</b> 3.178	989
3	hydrochloride	C ₁₇ H ₂₁ NO ₄ .HCl	339.646	18 <b>9.9°</b>
4	Codeine	C ₁₈ H ₂₁ NO ₃ +H ₂ O	317.194	154.9° (4)
5 6	hydrochloride	C ₁₈ H ₂₁ NO ₃ ·HCl+2H ₂ O C ₁₈ H ₂₁ NO ₃ ·H ₃ PO ₄ +2H ₂ O	371.678 433.280	264° (4) 235°
7	sulphate	(6). (C ₁₈ H ₃₁ NO ₂ ) ₂ .H ₂ SO ₄ + 5H ₂ O.	786.522	278° (7)
8	Colchicine	C ₂₂ H ₂₅ NO ₆	399.21	142.5 (8)
9	Conhydrine (oxyconiine)	C ₈ H ₁₇ NO	143.146	120.6
0	(pseudo)	C _s H ₁₇ NO	143.146	101–2
1	Coniine (d-2-propyl piperidine).	C ₈ H ₁₇ N	127.146	-2.5° (10)
2	hydrochloride Cryptopine	C ₈ H ₁₇ N.HCl	163.624 369.194	208°–210° 217°
4	Cytisine (Ulexine)	C ₁₁ H ₁₄ N ₂ O	190.132	152° <b>–3</b> °
5	Delphinine	C ₂₂ H ₃₆ NO ₆ (13)	409.29	120° (14)
	Diacetyl morphine (He-	C ₂₁ H ₂₃ NO ₅		171°, 173°
7	roin).	C ₂₁ H ₂₃ NO ₅ .HCl		ł

In absolute alcohol, p=0.625.
 In chloroform solution, g=per cent CHCl₂.
 In alcohol solution, q= % C₂H₂OH.
 For anhydrous sait.

⁽⁵⁾ In 97% alcohol.
(6) Also with 1.5 H₂O.
(7) Chars at 200° and residue melts at 278°.
(8) When dried over H₂SO₄.

Per.	Gr	Solubility at 25°. Grams per 100 Grams:			Crystalline Form.
Number.	H ₂ O.	C ₂ H ₅ OH (92.3 Wt. %).	(C ₂ H ₅ ) ₃ O.	Optical Activity.	Color, Etc.
1			insoluble	$[\alpha]D^{17} = +$	needles from alcohol.
2	0.166	20	26.3	$ \begin{array}{c} 199 (1) \\ [\alpha]D^{20} = - \\ (15.827 + \\ .00585 q) \end{array} $	four or six-sided mono- clinic prisms.
3	250	38.4	insoluble	$\begin{bmatrix} (2) \\ [\alpha] D^{20} = - \\ (52.18 + \\ 0.1588 \ q) \\ (3) \end{bmatrix}$	monoclinic prisms, leaflets or powder.
4	0.83	62.5	8		orthorhombic prisms, octohedral crystals or crystalline powder.
5 6	4 (15°) 44.9	0.383	0.0746	[α]D for neutral	short needles. needle shaped crys- tals, or powder.
7	3.3	0.0967	insoluble	$ \begin{vmatrix} salts = - \\ 134^{\circ} \end{vmatrix} $	rhombic prisms, needle shaped crystals or powder.
8	4.54	v. soluble	0.645	lævo	pale yellow leaflets or
9	solubl <b>e</b>	soluble	soluble	dextro	leaflets (sublimes), b. pt. 225°.
10	soluble	soluble	soluble	$\begin{bmatrix} \alpha \\ D = + \\ 4.30^{\circ} (9) \end{bmatrix}$	needle shaped crystals (sublimes), b.pt. 229°.
11	1.1	all propor- tions	ca. 16	$[\alpha]D^{19} = +$ $16.4^{\circ}$	oily liquid, d ₁₉ =0.844, b. pt. (739 mm.) 163.5° in hydrogen.
.2 3	50 insoluble		insoluble insoluble	inactive	large rhombic crystals. microscopic six-sided
4	78 (16°)	30.1 (8°) (11)	insoluble	$\begin{bmatrix} \alpha \end{bmatrix} D^{17} = -119.1^{\circ} (12)$	prisms or plates. rhombic hemihedral crystals (sublimes to needles and leaflets).
5	0. <b>002 (20°)</b>	4.8 (20°) (15)	9. (20°)	inactive	rhombic crystals,
6	v. sl. sol.	sl. soluble	sl. soluble		prisms or powder.
7	50	soluble	insoluble		crystalline powder.

⁽⁹⁾ In 8% solution. (13) C₃₁H₄₉NO₇ (Brühl), (10) Solidifying point. (14) Decomposes without melting. (11) In absolute alcohol. (15) In 98% alcohol. (12) In 2% aq. solution; – 111°, 22′ for 5% aq. solution.

=							
Number.	Name.	Formula.	Molecular Weight.	Melting Point.			
1	Dionin (ethyl morphine hydrochloride).	C ₁₉ H ₂₃ NO ₂ .HCl+2H ₂ O (1)	385.694	125° (2)			
2	Ditaine (Echitamine)	$C_{22}H_{28}N_2O_4 + 4H_2O(3)\dots$	456.308	206° (4)			
3	Ecgonine	C ₉ H ₁₅ NO ₃ +H ₂ O	203.146	198° (6)			
4 5 6	hydrochloride Emetine Ephedrine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	239.614 508.34 165.13	246° 62°–65° (8)			
		C ₃₆ H ₄₀ N ₄ O ₆	1	205° (9)			
8 9	$\alpha$ <b>Eucaine</b> hydrochloride	$C_{19}H_{27}NO_4$	333.226 387.71	103°-5° ca. 200° (2)			
10 11	eta Eucainehydrochloride	C ₁₅ H ₂₁ NO ₂ C ₁₅ H ₂₁ NO ₂ .HCl	253.178 289.646	ca. 78°, 91° 268° (2)			
12	Gelseminine	C ₂₂ H ₂₆ N ₂ O ₃	366.228	172° (11)			
13	hydrochloride	C ₂₂ H ₂₆ N ₂ O ₃ .HCl	407.696	330° (12)			
14	Homoatropine (oxyto-	$C_{16}H_{21}NO_3$	275.178	95.5°-98.5°			
15 16	hydrobromide <b>Hydrastine</b>	C ₁₆ H ₂₁ NO ₃ .HBr C ₂₁ H ₂₁ NO ₆	356.106 383.178	213.8° 131°			
17	hydrochloride	C ₂₁ H ₂₁ NO ₆ .HCl+aq	419.646				
18 19	Hydrastinine hydrochloride	$C_{11}H_{13}NO_3$ $C_{11}H_{11}NO_3.HCl$	207.114 225.566	116°-7° 212° (2)			
20	bisulphate	C ₁₁ H _{,1} NO ₂ .H ₂ SO ₄	287.184	216° (2)			
21	Hydroberberine	C ₂₀ H ₂₁ NO ₄	339.178	167°			
22	Hydrocotarnine	$C_{12}H_{15}NO_3 + \frac{1}{2}H_2O \dots$	230.138	50°, 55°			
23 24	Hydrohydrastinine Hyoscine (Scopolamine).	C ₁₇ H ₁₃ NO ₂	191.114 303.178	66° ca. 50°, 59°			

 ^{.1} H₂O also given.
 With decomposition.
 Also .1 H₂O, dehydrates at 105°.
 With rapid heating, decomposes.

⁽⁵⁾ For 2% solution in 97% alcohol. (6) At 205° after drying at 140°. (7) In 95% alcohol. (8) Also given as 68°.

F	<del></del>					
Number.		Solubility at 25° ms per 100 Gra		Optical	Crystalline Form,	
Nun	H ₂ O.	C ₂ H ₅ OH (92.3 wt. %).	(C ₂ H ₅ ) ₂ O.	Activity.	Color, Etc.	
1	i4.3	50	insoluble		microscopically crys- talline powder.	
2	soluble	v. soluble	sl. soluble	$\begin{bmatrix} \alpha \end{bmatrix} D^{15} = - \\ 28.8^{\circ}  (5)$	thick glistening prisms	
3	21.7 (17°)	1.83(17°) (7)	v. sl. sol.	lævo	monoclinic prisms (from abs. alcohol).	
5	soluble 0.1 soluble	sl. soluble v. soluble soluble	v. soluble soluble	inactive	triclinic plates. leaflets. crystalline mass,	
	insoluble	0.5 (20°) (7)			b. pt. 225°. (Brühl) prismatic needles (solu- tions fluoresce violet)	
8	10	117	v. soluble sl. soluble		shining prisms, crystals. rosettes of small crystals or powder.	
10 11	· · · · · · · · · · · · · · ·	11	v. soluble insoluble		crystals. plates and prisms or powder.	
12	insolub <b>le</b>				rosettes from benzene, also amorphous.	
13	v. soluble	v. sl. sol.			microscopic columns or prisms.	
14	sl. soluble				glistening prisms from alcohol.	
	17.5 v. sl. sol.	3.08 0.75	insoluble 0.80	$\begin{bmatrix} \alpha \end{bmatrix} D^{17} = - \\ 678^{\circ} (13)$	rhombic prisms. rhombic prisms tri- metric.	
17	soluble		soluble	lævo	microcrystalline pow-	
	sl. soluble v. soluble •	v. soluble v. soluble	v. soluble 0.77	inactive inactive	needles (from ligroin). yellowish needles (aq. solutions fluoresce	
Ю	soluble	soluble			blue). crystals with green fluorescence.	
11	insoluble	soluble			monoclinic needles or octohedrons.	
12	•••••••	v. soluble	v. soluble	inactive	monoclinic prisms (from ether).	
:3 :4	10.52 (15°)	v. soluble v. soluble	v. soluble v. soluble	$\begin{bmatrix} \alpha \end{bmatrix}_D = -$	crystals. varnish drying syrup, prisms when pure.	

⁽⁹⁾ When crystalline; at 138° when amorphous.
(10) In alcoholic solution.
(11) When dry.

⁽¹²⁾ Decomposes without melting. (13) In chloroform solution, 1.275 grams in 50 cc.

=				
Number.	, Name.	Formula.	Molecular Weight.	Melting Point.
1	Hyoscine hydrobromide.	C ₁₇ H ₂₁ NO ₄ .HBr+3H ₂ O(1)	438.154	191°-2° (2)
2	sulphate	(C ₁₇ H ₂₁ NO ₄ ) ₂ .H ₂ SO ₄ + 2H ₂ O(4)	740.472	
3	Hyoscyamine	2H ₂ O(4). C ₁₇ H ₂₃ NO ₃	289.192	108.5°
4	hydrobromide	C ₁₇ H ₂₈ NO ₃ .HBr	370.122	151.8°
. 6	hydrochloride sulphate	C ₁₇ H ₂₃ NO ₃ .HCl (C ₁₇ H ₂₂ NO ₃ ) ₂ .H ₂ SO ₄ (6)	345.662 676.474	198.9
7 8 9	(pseudo)	C ₁₇ H ₂₈ NO ₃	289.192 343.21 357.226	166°
10	Lobeline	C ₁₈ H ₂₈ NO ₂	285.194	
11	Lupanine	C ₁₅ H ₂₄ N ₂ O	248.212	44°
12	Lupinine	C ₂₁ H ₄₀ N ₂ O ₂ (or C ₁₀ H ₁₉ NO).	352.34	68.5°-69.2° (8)
13	hydrochloride	$C_{21}H_{40}N_2O_2.2HC1$	425.276	212°–3°
14 15	Lycorine	C ₃₅ H ₃₂ N ₂ O ₈ C ₁₇ H ₁₉ NO ₃ +H ₂ O	572.276 303.178	250° (11) 25 <b>4</b> ° (12)
16	acetate	$C_{17}H_{19}NO_3.C_2H_4O_2 + 3H_2O.$	399.242	ca. 200° (14)
17	hydrochloride	$C_{17}H_{19}NO_3.HCl+3H_2O$	375.678	ca. <b>250°</b> (15)
18	meconate		860.436	
19 <b>20</b>		C ₁₇ H ₁₉ NO ₃ .HNO ₃ (C ₁₇ H ₁₉ NO ₃ ) ₂ .H ₂ SO ₄ +		ca. 250° (15)
21	Narceine	$C_{22}H_{27}NO_8 + 3H_2O(17)$	499.274	170° (18)
_		·	<del> </del>	

Also with less H₂O of crystallization depending upon the solvent from which it is crystallized.
 When anhydrous.
 For an 8% solution of an atrocine free preparation containing .2 H₂O.
 Also anhydrous.

⁽⁵⁾ For p = 3.22. (6) Also with 2 H₂O. (7) For p = 2. (8) B. pt. in H = 255.7°. (9) In aq. solution of specific gravity 1.005. (10) In 2% solution. (11) With decomposition.

ber.		Solubility at 25°. Grams per 100 Grams:		Optical	Crystalline Form,
Number.	H ₂ O.	C ₂ H ₅ OH (92.3 Wt. %).	(C ₂ H ₅ ) ₂ O.	Activity.	Color, Etc.
1	66.6	6.25	insoluble	$[\alpha]D^{16} = -$ 32.9° (3)	rhombic crystals from H ₂ O.
2	v. soluble	v. soluble	<b></b> .		microscopic needles from H ₂ O.
3	soluble	v. soluble	soluble	$[\alpha]D^{16} = - \\ 20.3 (5)$	needles, tetragonal pyramids or plates.
1	v. soluble	50	0.0625	lævo	prismatic crystals, deliquescent.
	soluble v. soluble	soluble 15.6	0.04	$ \begin{bmatrix} \alpha \\ D = - \\ 28.6^{\circ} (7) \end{bmatrix} $	indistinct crystals of powder (deliquescent).
7		soluble	sl. soluble		
9		sl. soluble v. soluble	0.154 (18°) 5.18 (16°)	inactive $[\alpha]D^{15} = +$ 103.23°(7).	small trimetric prisms. needles from benzene.
10		v. soluble	sl. soluble		yellow, honey-like liquid.
11	soluble	soluble	soluble	dextro	needles (also lævo and inactive modi- fications).
12	decomposes	soluble	soluble	$\begin{bmatrix} \alpha \end{bmatrix} D^{17} = -19^{\circ}$	tables from acetone, rhombic crystals from petroleum ether
13	soluble	soluble	<b></b>	$[\alpha]D = -14^{\circ}$ $(10)$	large rhombic crystals.
14 15	sl. soluble 0.03	sl. soluble 0.595	sl. soluble 0.0224		polyhedric crystals. rhombic prisms, fine needles or crystal- line powder.
16	44.4	4.63	insoluble		crystalline or amor- phous powder.
17	5.87	2.38	insoluble	$\begin{bmatrix} \alpha \end{bmatrix} D^{25} = - \\ 111.5^{\circ}(16)$	needles or micro-
18	4.0	soluble -			
20		0.215	insoluble		acicular crystals or cubical masses.
21	0.078 (13°)	0.105 (13°) (19)	insoluble	inactive	prisms or fine needles (deliquescent).

⁽¹²⁾ When heated slowly, first turning brown at 200°
(13) In methyl alcohol. C = 2.292.
(14) With loss of acetic acid and water.
(15) Turns brown and chars without melting the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont ing.

⁽¹⁶⁾ For anhydrous sait, C = 2.24.
(17) Also with .1 and 2 H₂O.
(18) When dehydrated at 100° it melts at 145 2° (cor.)
(19) In 80% alcohol.

Number	Name.	Formula.	Molecular Weight.	Melting Point.
1 2 3	Narceine hydrochloride . bisulphate	C ₂₃ H ₂₇ NO ₈ .HCl+3H ₂ O(1) C ₂₅ H ₂₇ NO ₈ .H ₂ SO ₄ +2H ₂ O. C ₂₂ H ₂₃ NO ₇	535.742 579.342 413.194	190°–2° (2) 176°
<b>4</b> 5	hydrochloride Nicotine	C ₂₂ H ₂₃ NO ₇ .HCl (5) C ₁₀ H ₁₄ N ₂	449.662 162.132	b. pt. in H
6 7 8 9	salicylate tartrate	$\begin{array}{c} C_{10}H_{14}N_2 \cdot HCl \ (6) \cdot \cdot \cdot \cdot \\ C_{10}H_{14}N_2 \cdot C_7H_6O_3 \cdot \cdot \\ C_{10}H_{14}N_2 \cdot 2C_4H_6O_5 + 2H_2O \cdot \cdot \\ C_{10}H_{21}NO_3 \cdot \cdot \cdot \cdot \end{array}$	300.18 498.260	
10		$C_{19}H_{21}NO_3.HCl+2H_2O$		
12 13 14 15 16 17	Papaverine hydrochloride Paucine Pelletierine Pellotine Pereirine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	339.178 375.646 630.466 139.114 237.162 296.212	147° 245°-7° (?) 126° (11) b.pt.195°(12) 110° 118°-124°
19 20		$C_{15}H_{21}N_3O_2.HC1$		178.9° (14)
21 22		$(C_{15}H_{21}N_3O_2)_2.H_2SO_4$ $C_{10}H_{14}N_2O_2$		140° (15)
<b>2</b> 3	platinum chloride	$(C_{10}H_{14}N_2O_2.HCl)_2PtCl_4 + 4H_2O \\ C_{11}H_{16}N_2O_2$	870.304	187° (16)
25 26	hydrochloride	C ₁₁ H ₁₆ N ₂ O ₂ .HCl	244.596	195.9° (19)

Also with .5½ H₂O.
 When anhydrous.
 In 85% alcohol.
 In chloroform, neutral solutions are lævo, acid solutions, dextro.
 Also .1 H₂O, yields basic salts by recrystallisation from hot water.

⁽⁶⁾ With .2 HCl (Hager).

(7) In hydrated form m. pt. = 138°-146°.

(8) For p = 4 in chloroform.

(9) For p = 2 in aq. solution.

(10) Anhydrous according to Beilstein.

(11) Decomposition temperature.

(12) B. pt. at 100 mm. = 125°.

ber.	Gra	Solubility at 25 ams per 100 Gra		Optical	Crystalline Form,
Number.	H ₂ O.	C ₂ H ₅ OH (92.3 wt. %).	(C ₂ H ₅ ) ₂ O.	Activity.	Color, Etc.
3	sl. soluble insoluble	soluble soluble 1. (cold) (3)	0.6 (16°)	$[\alpha]_{D} = -$ 207.35°(4)	lemon yellow crystals. fine needles. needles, prisms or rhombic columns.
6 7	soluble v. soluble v. soluble soluble soluble	v. soluble soluble soluble	v. soluble	[\alpha]D=- 161.55° dextro	colorless oil $d_{20} = 1.011$ , very hygroscopic. crystals. plates.
		soluble	soluble	$[\alpha]D^{15} = +  131.6^{\circ} (8)$ $[\alpha]D^{15} = -  162.6^{\circ} (9)$	hydrated flakes, anhy- drous needles from alcohol. small needles.
12 13 14 15 16 17	v. soluble insoluble 2.7 (18°) insoluble 4.35 (cold) insoluble insoluble sl. soluble soluble	v. soluble sl. solubleinsoluble v. soluble v. soluble v. soluble v. soluble	v. soluble 0.38 (10°) insoluble v. soluble v. soluble v. soluble v. soluble	inactive dextro (13)	white hygroscopic needles. prisms. large columns. yellow leaflets. oily liquid of $d_0$ =0.988. plates from alcohol. amorphous powder. trimetric prisms from benzene.
20 21		7.87 v. soluble v. soluble	0.57 0.083 sl. soluble	$[\alpha]_D = +$ 81.3° (17)	acicular or short columnar crystals. micro-crystalline pow- der. syrup (crystalline (?)).
- 1	v. soluble	insoluble v. soluble	sl. soluble	$[\alpha]D^{18} = + \\ 106^{\circ} (18)$	orange yellow leaflets or dark red pyramids. needles very hygro- scopic.
25 26	333 25	43.5 1.66	insoluble insoluble	$ \begin{array}{l} [\alpha]_{D} = + \\ 91.74^{\circ}(21) \\ [\alpha]_{D} = + \\ 82.9^{\circ}(22) \end{array} $	prismatic crystals, deliquescent. shining crystals, prisms.

⁽¹³⁾ Becomes inactive when heated to 100° with an alkali; the salts are lævo.
(14) Softens and turns yellow at 160°.
(15) Softens at 130°.
(16) Of anhydrous salt, with decomposition; air-dried salt melts at 88°-9°.

⁽¹⁷⁾ For C = 1.5374.
(18) In 2% aq. solution.
(19) When dried at 100°, 200°-5°, Beilstein.
(20) 178° cor., Beilstein.
(21) For C = 9.924.
(22) For C = 9.572.

Number.	Name.	Formula.	Molecular Weight.	Melting Point.
	Pilocarpine sulphate	(C ₁₁ H ₁₆ N ₂ O ₂ ) ₂ .H ₂ SO ₄	514.342	132° (120°)
		C ₁₇ H ₁₉ NO ₃		, ,
	Pseudo pelletierine			48° (2)
	_	$C_{20}H_{24}N_2O_2$ (3)		171.5° (4)
5	-	$C_{20}H_{24}N_2O_2.HCl+H_2O$	1	
6				
7	sulphateQuinine	2H ₂ O C ₂ H ₂ N ₂ O ₂ +3H ₂ O ₂	378.260	1
·				
8 9	(anhydrous) bisulphate	$ C_{20}H_{24}N_2O_2$ $C_{20}H_{24}N_2O_2.H_2SO_4 + 7H_2O.$	324.212 548.410	174.9° ca. 160° (11)
10				205° (12)
11	hydrobromide	C ₂₀ H ₂₄ N ₂ O ₂ .HBr+H ₂ O	423.156	152°-200°
12	hydrochloride	$C_{20}H_{24}N_2O_2.HCl+2H_2O$	396.712	156°-190°
13		C ₂₀ H ₂₄ N ₂ O ₂ .C ₇ H ₆ O ₃ +	471.268	183°-7°
14 15	Sabadine	3H ₂ O C ₂₉ H ₅₁ NO ₈ C ₂₀ H ₁₅ NO ₄ + H ₂ O	541.418 351.146	238°-240°(14) 213°
16 17	Sparteine		234.228	b. pt. 180°- 181° (17)
18	bisulphate	$C_{15}H_{26}N_2.H_2SO_4 + 5H_2O(16)$	422.394	136° (18)
19	Strychnine	C ₂₁ H ₂₂ N ₂ O ₂	334.196	268°
20	nitrate	C ₂₁ H ₂₂ N ₂ O ₂ .HNO ₃	397.214	decomposes

For C = 7.318.
 B. pt. = 246°.
 Crystallizes in different forms, with H₂O and other substances of crystallization according to the solvent employed.

⁽⁴⁾ When dry. (5) In 80% alcohol.

⁽⁶⁾ In 1.06% solution in a mixture of 1 vol.
alcohol and 2 vols. chloroform;
+274.7°, Brühl.
(7) In 97% alcohol.
(8) For 3% solution in chloroform.
(9) For 0.657 gram in 100 cc. of 97% alcohol.

cohol. Digitized by Google

=	1			· · · · · · · · · · · · · · · · · · ·	
aber.	1	ms per 100 Gra		Optical	Crystalline Form,
Number	Н,0.	C ₂ H ₅ OH (92.3 wt. %).	(C ₂ H ₅ )O ₂ .	Activity.	Color, Etc.
1	soluble	soluble		$[\alpha]_D = +$ 84.72 (1)	crystals from alcohol- ether.
2	insoluble	6.66	277		large monoclinic col- umns.
3	soluble	soluble	soluble	inactive	prismatic plates from petroleum ether.
4	0.05(15°)	4.0 (20°) (5)	4.5 (20°)	$\begin{bmatrix} \alpha \end{bmatrix} D^{17} = - \\ 274.7^{\circ} (6)$	needles from benzene (3).
5	1.6 (10°)	v. soluble	v. sl. soluble	$[\alpha]_{D=+2.212}$ -2.562 (7)	
6	1.0 (15°)	12	v. sl. soluble		prisms, solutions fluor- esce blue.
7	0.0645	166	76.9	$[\alpha]_{D^{15} = -145.2^{\circ}(9)}^{162.17(8)}$	flaky or microcrys- talline powder, efflo- resces.
8	0.0571	166	22.2	lævo	amorphous powder. orthorhombic or small
9	11.76	5.55	0.0565		orthorhombic or small needles (effloresces).
D	0.139	1.16	v. sl. sol.		silky crystals or prismatic monoclinic needles (effloresces).
1	2.5	149.2	6.25		silky needles (effloresces).
2	5.55	166	0.415	$\begin{bmatrix} \alpha \end{bmatrix} D^{15} = - \\ 144.98^{\circ} (13)$	silky needles (efflo-
3	1.3	9.1	0.91		colorless needles.
	sl. soluble insoluble	v. soluble soluble	sl. soluble soluble	inactive	needles (from ether). needles (from acetic ether) (15) blue violet fluorescence.
	v. sl. sol. v. sl. sol.	soluble soluble	insoluble soluble	[	needles.
	v. si. soi. 91	41.7	insoluble	$\begin{bmatrix} \alpha \end{bmatrix}_{D} = - \\ 14.6^{\circ} (19)$	
	0.0156	0.91	0.0182	lævo	or powder.
	2.38	0.83	insoluble	$\begin{bmatrix} \alpha \end{bmatrix}_{D} = ca$	crystals or powder. needles, glistening prisms.

⁽¹⁰⁾ Sometimes .8 H₂O.
(11) Softens at 60°, becomes semifluid at 70°, and melts at 160° with decomposi-

tion.

12) When dried over H₂SO₄.

13) For 3.15 grams in 100 cc. H₂O.

⁽¹⁴⁾ With decomposition.
(15) The salts are deep red.
(16) Varying mols. H₂O of crystallization.
(17) At 20 mm.
(18) When anhydrous.

⁽¹⁹⁾ In alcohol.

Number.	Name.	Formula.	Molecular Weight.	Melting Point.
1	Strychnine sulphate	$(C_{21}H_{22}N_2O_2)_2.H_2SO_4+ 5H_2O  C_{10}H_{21}NO_3$	856.558	200° (1)
2	Thebaine (para mor-	$C_{19}H_{21}NO_3$	311.178	193°
3	phine). hydrochloride	$C_{19}H_{21}NO_3.HCl+H_2O$	365.662	
4	Theobromine	C ₇ H ₈ N ₄ O ₂	180.164	329°-330° (4)
5	Theophylline	C ₇ H ₈ N ₄ O ₂ +H ₂ O	198.120	264°
6	Tritopine	C ₄₂ H ₅₄ N ₂ O ₇	698.452	182°
7	Tropacocoaine hydro- chloride.	C ₁₅ H ₁₉ NO ₂ .HCl	281. <b>6</b> 30	271°
8	Tropine	C ₈ H ₁₅ NO	141.13	61.2°-63° (5)
9		(C ₈ H ₁₅ NO.HCl) ₂ .PtCl ₄	692.236	198°-200°
10	ride. Veratrine	C ₈₇ H ₅₈ NO ₁₁	687.434	180°
11	Yohimbine	C ₂₃ H ₃₂ N ₂ O ₄ (?)	400.276	231°

⁽¹⁾ When anhydrous.(2) In 2% solution in 97% alcohol.

⁽³⁾ P-2.83.

ber.	I .	Solubility at 25°. Grams per 100 Grams:		Optical	Crystalline Form,	
Number	H ₂ 0.	C ₂ H ₅ OH (92.3 wt. %).	$(C_2H_{\delta})O_2.$	Activity.	Color, Etc.	
1	3.22	1.54	insoluble		prismatic crystals or powder(efflorescent).	
2	v. sl. sol.	0.10	0.71 (10°)		leaflets, or prisms.	
3	6.33 (10°)			$ \begin{array}{c c} 218.64^{\circ}(2) \\ [\alpha]_{D} = - \\ 168.32 (3) \end{array} $	large rhombic prisms.	
4	0.0305 (18°)	0.045 (21°)	insolu <b>ble</b>		lumpy crystalline pow- der(from H ₂ O),micro- scopic rhombic crys- tals sublimes, 290-5°.	
5	0.55	sl. soluble			thin monoclinic plates, needles (from H ₂ O)	
6		soluble	sl. soluble		prisms (from alcohol) plates (from ether).	
7	soluble	· · · · · · · · · · · · · · · · · · ·			needle-shaped crystals.	
8	v. soluble	v. sl. sol.	v. sol.	inactive	plates(from abs. ether) very hygroscopic.	
9	soluble	insoluble			orange red mono- clinic table, columns.	
10	insoluble	9	9	inactive	amorphous resinous	
11	v. sl. sól.	soluble	soluble	dextro	glistening needles.	

⁽⁴⁾ In closed tube.

⁽⁵⁾ B. pt. 229-33°.

### XXXII.—PHYSICAL AND CHEMICAL

COMPILED BY

No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation, 100 mm.*	Solubility in Alcohol.
1	Ajowan: (Carum ajowan)	.900 to .930 (1)	+1.0  to  +1.5(2)	· • • • • • • • • • • • • • • • • • • •
2	Allspice: (Pimenta officinalis).	1.045 to 1.055 (2) (1.024–1.055) (1)	-1 to -5 (1)	1 pt. in 2 of 70%
3	Ammoniac: (Dorema am- moniacum).	.891 (1)	slightly dextro- gyrate (2)	
4	Angelica Root:	.857 to .918 (1) .855 to .905 (2)	+16  to  +32 (1)	
5	Japanese Angelica Rt. (Angelica refracta and A. anomala).	.915		
6	Angelica Seed: (Angelica officinalis).	.856890 (1)	+11  to  +12 (1)	
7	Angostura: (Galipea cusparia).	.930960 (2)	-36  to  -50 (2)	
8	Anise Seed: (Pimpinella anisum).	.980990 at 17° C. (5 and 2)	lævogyrate to -1.9 (2)	1 pt. in 1½ to 5 of 90% (1)
9	Anise Bark: (Unknown source).	.969	-0.8	
10	Anise, Star: (Chinese) (Illicium verum).	.980990 at 17° C. (2) (5) .975988 (25°)	slightly — to about —2 (1) rarely slight- ly+	1 pt. in 3 of 90% alc.
11	Anise, Star: (Japanese) (Illicium religiosum) (leaves).	1.006 at 16.5° C.		
12	Arnica: [Arnica montana (flowers)].	.906 (1)		
13		.990-1.000 (1)	-2(2)	
14	Asafœtida: (Ferula fætida).	.975990 (1)	-9° 15′ †	
15	Asarum Canadense:	.930960 (2)	-3.5	2 parts 70%
17	Basil: (European) (Ocymum basilicum).	1.015–1.068 (2) .905–.930 (1)	` ,	1 pt. in 2 of 80%
18	`(Řéunion)	.945987 (1)	+7  to  + 12 (1)	1 pt. in 7 of $70\%$

* About 20° C.

The numbers in brackets in the table refer to the following authorities:

(1) Schimmel & Co., Semi-Annual Reports.
(2) Commercial Organic Analysis, Allen.
(3) E. J. Parry.

(4) Bush & Co.
(5) United States Pharmacopœia.
(6) Gildermeister and Hoffman.

#### CONSTANTS OF ESSENTIAL OILS

ALBERT F. SEEKER

=		
No.	Other Characters.	Chief Known Constituents.
1	Smells strongly of thymol, of which it contains 45-55%.	Thymol; cymene.
2	Refractive index (20°) 1.5309-1.5303 (3) Produces semi-solid mass with equal vol. strong caustic soda. Not less than 65% eugenol (5).	Eugenol; sesquiterpene.
3	Boils principally between 250-290°, beginning at 155° C.	
5	Saponification value 37.7 (4). Distils chiefly between 60-70° C. Ref. index (20°) 1.4800. Crystals separate at +10°, and oil solidifies at 0°. Boiling point between 170-310°.	Phellandrene; valeric acid.
6	Pale yellow oil darkens with age	Phellandrene; valericacid.
7	Deposits anethol on cooling. Solidifying	pene: pinene.
9	point 10 to 15° C. (15-19° [1]). Refractive index 1.552-1.558 (20° C.) (3).	col.  Methyl clavicol.
Ĭ		mennyi ciavicoi.
10	Solidifying point $+$ 14 to $+$ 18°. Refractive index 1.552-1.558 (20° C.) (3).	Anethol; anise aldehyde and ketone; methyl clavicol; safrol.
11		Anethol; safrol; eugenol.
12	Acid value 75.1. Sapon. value 29.9. Usually of buttery consistency.	
13	Yellow color, becoming darker with age	Dimethyl ester of thy- moquinol.
14		
15	Yellowish-brown oil	Asarol; methyl eugenol.
17	Thick, brownish liquid	Methyl clavicol; cineol. linalol.
19	<u></u>	• • • • • • • • • • • • • • • • • • • •
	† One sample.	

Digitized by Google

⁽⁷⁾ Pharmacographia Indica.
(8) Hesse and Müller, Berichte, 32.
(9) Joancard and Satie.

⁽¹⁰⁾ Bulletin 109, U. S. Dept. Ag.
(11) Soldaini and Berté.
(12) Charabot.

⁽¹²⁾ Charabot

⁽¹³⁾ Daufresne.

=				<del></del>
No.	Oil and Chief Botanical Source.	Specific Gravity. 1.5° C.	Optical Rotation, 100 mm.*	Solubility in Alcohol.
1	Bay: (Pimenta acris)	9.65995 (3)	lævogyrate (as much as – 2)	
2	Bergamot: [(expressed) Citrus bergamia].	.880886	+8 to +20 (not more than +20 [5])	1 pt. in 2 of 80%
	Birch: (Betula lenta) Bitter Almond: [Prunus Amygdalus var. amara].	1.045-1.071(2)	inactive inactive	1 pt. in 5 of 70% 1 pt. in 2 of 70%
5 6	HCN removed Cade: (Juniperus Oxycedrus).	1.050-1.055 (1) .99-1.05	inactive	1 pt. in 2 of 70% soluble in het 90%
7	Cajuput: (Melaleuca Leu- cadendron).		- 10' to -2° (1) not more than -2 (5)	soluble in equal
8	Calamus: (Acorus calamus).	.960980 (Japanese (2) .985-1.00)	+10 to +31	all proportions of 90%
9	Camphor: [Cinnamomum Camphora. (Wood and twigs.)].	.870–1.040 (2)	+12  to  +32 (2)	······································
10	Camphor Wood:  [(Venezuelian) Source unknown].	1.155 (2)	+2.7(2)	••••••
	Cananga: (Cananga odorata). Canella: (Canella alba)	(1)	- 27 to - 87 (30°) (1) +1° 8′ †	
	Caraway: (Carum Carvi)		+70 to +85 (3)	equal pt. 90%
		(5)	(25°) (5)	
14	Cardamoms: (Elettaria repens). (Ceylon)	.895905 (1)	+12 to +15(1)	1 pt. in 2 of 80%
15 16	(Malabar) (Siam) † (6)	.933943 (6) .905 (42° C.)	+26 to +34 (6) +38° 4′ (42° C.)	1 pt. in 4 of 70% 1 pt. in 1.2 of 80%
	Cedar Leaves: [(Commercial) Juni- perus Virginiana].	·	-3 to -24 +55 to +65 (3)	
- 1	Cedar Wood: [Juniperus Virginiana].		-30 to -40 (1)	1 pt. in 20 of 90%
19	Celery Seed: (Apium graveolens).	.870895 (1)	+67 to +79 (6)	ogle

N.	Other Characters.	Chief Known Constituents.
	Mixed with equal volume concentrated caustic soda forms semi-solid mass. Refractive index 1.487-1.585 (20°) (3).	
	Refractive index (20°) 1.465–1.470 (3). Residue on evaporation not more than 6%. Contains 30–45% linally acetate. Acid value 1.4–3.5. Ester value 96.4 †.	limonene.
*	Odor of wintergreen. Boils 218-221° C	Benzaldehyde; hydrocy- anic acid; phenyloxy- acetonitril.
1	Thick, clear liquid, tarry odor, burning, bitter taste. 68–80% vol. between 150–300°.	Cadinene.
7	Usually bluish-green, due to traces copper.  Becomes semi-solid when shaken with phosphoric acid (Sp. gr. 1.75). Refractive	Cineol (not less than 55% (5)).
	index 1.460-1.466 (20°) (3). Sapon. value 18-20 (after acetylization 40-50). Boils 170-300° C. Refractive index 1.507-1.515 (20°) (3). Very variable, being a by-product from the	oenanthilic, heptylic and palmitic acid. Pinene; camphor; cineol;
10	production of common camphor.  Solidifies to crystalline mass at ordinary temperatures.	phellandrene; dipen- tene; safrol; eugenol. Apiol.
l	Sapon. value 42-94(1). Refractive index (30°) i.4788-1.5082 (1).	lol. Eugenol; cineol; caryo-
13	Refractive index (20°) 1.4867-1.4970 (3). Boils 175-230°C. (1). Not more than 15% should distil below 185° (2). Carvone 50-60%.	phylene. Carvone; dextro-limo- nene.
		Terpinene; dipentene; acetic esters; limonene.
15 16	Saponification value 132 (6)	Cineol.
17	Refractive index 1.4639 (20°) (3). Savin-like odor	Limonene; cadinene; borneol; bornyl esters.
	Refractive index (20°) 1.498-1.503 (3)	Cedrene; cedar camphor.
19		Limonene; phenols; se- danolide; sedanonic acid.

=				
No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation, 100 mm.*	Solubility in Alcohol.
1	Ciramomile: [(German)  Matricaria Chamo- millal.	.930940 (1)	very slight	Turbid with 90%
2	Chamomile: [(Roman) Anthemis nobilis].	.905915 (6)	+1  to  +3 (6)	1 pt.in 6 of 70%
	Cherry Laurel: (Prunus laurocerasus). Cinnamon Bark:	1.05 <del>4</del> -1.066 (1)		1 pt.in 2 of 70%
	[(Ceylon) Cinnamo- mum zeylanicum].	1.024-1.040 (1)		1 pt. in 2 of 70%
5	`mum cassia].	1.045–1.055 (25°) (5) 1.055–1.070 (1)	+1  to  -1 (2)	1 pt. in 2 of 80%
6		1.044-1.065 (1)	-0° 5′ to +1°	
	Citronella: [(Singapore) Andropogon nardus].		-0° 34′ to -3° (1)	
8	(Lana Batu)		-5  to  -21  (1) slightly lævo-	
8		1.040–1.060(25°) (5)	gyrate up to -1° 10′ (1)	
	<b>3</b>	.875885 (1)	$+0^{\circ} 43' \text{ to } -0^{\circ}$ 3' (1)	80%
11	Copaiba: (Copaiba Langsdorffii and other species).		$\begin{bmatrix} -2 & (2) \\ -7 & \text{to} & -35 & (1) \end{bmatrix}$	1 pt. in 10 of 95% (5)
	Coriander: (Coriandrum sativum).	.870885 (1)	$[+7 to +14 (25^{\circ})]$ (5)]+8to+13(1)	
13	Cubebs: (Piper Cubeba).	[.905925 (25°) (5)]910930(1)	-25 to -40 (6)	1 pt. in 1 of 95%
	Cumin: (Cuminum cyminum).	.900930 (1)	+4 to +8 (1)	1 pt. in 3 to 10 of 80%
	Cypress: (Cypressus sem- pervirens).		,	1 pt. in 4-5 of 90% (6)
16	Dill: (Peucedanum grave- olens).	.895915 (1) [.905920 (7)]	+70  to  +80  (2) [not less than $+70  (7)$ ]	
17	East Indian: (Anethum sowa).	.948970 (6)	+41 to +50 (6)	•••••••
	Elèmi: (From Manilla Elemi).	, í	about +44 (6)	
19	Erigeron: (Erigeron Ca- nadensis).	.850870 (6) [.855890 in- creasing with age (2)]	[not less than + 45 (25°) (5)] + 52 (6) Digitized by	90%

No.	Other Characters.	Chief Known Constituents.
1	Solid at 0° and deposits crystals at 15°. Sapon. value 45 (1).	A paraffin.
	Sapon. value 250–317 (6). Blue color when fresh, changing to green and finally to yellow-brown. Refractive index 1.4455 (20°) (3).	gelic and tiglic acid.
3		Benzaldehyde; hydrocy- anic acid.
	Cinnamic aldehyde 65-75% (6). Refractiv. index 1.590-1.599 (20°) (3). Refractive index (20°) 1.585-1.605 (3). Boils	genol
	240-260°. Not less than 75% cinnamic alde- hyde (5).	85% (2).
	Refractive index 1.535 (20°) (3)	hyde; safrol.
	Contains 80-91% geraniol (6). Refractive index 1.465-1.468 (20°).	i i
9	Refractive index (20°) 1.4811-1.4830 (3). Contains 50-70% geraniol (6). Refractive index (20°) 1.5301-1.5360 (3). Boils between 250-260°C. Contains 80- 90% eugenol. Becomes semi-solid on shak- ing with strong ammonia.	Geraniol; citronellal; methyl eugenol. Eugenol; caryophyllene. [Not less than 80% euge- nol (5)].
	Ester value 140-250. Acid value 50 to over 100(1). Boils 250-275° C. (1)	nrylic acid
10	Refractive index (20°) 1.4665 (3)	Limalale minene
	Viscid greenish color. Boils 175-280°; 80% volatile between 250-280° C. Refractive index 1.49-1.496 (20°) (3).	
14	Limpid liquid with sharp taste	Cymene; cumic alde- hyde.
	Boils 160-250° (6)	Pinene; cymene; valeric acid; camphene; cy- press camphor.
	Penetrating odor; taste at first sweetish, then sharp and burning. Refractive index 1.48-1.495 (20°) (3).	Phellandrene; terpinene; carvone.
		· - 1
18	Agreeable aromatic odor and taste	Dipentene.
19	Larger part distils between 175-180° C. (2)	d-limonene; terpineol; esters.
_		Digitized by Google

No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation, 100 mm.*	Solubility in Alcohol.
1	Eriodictyon: (Eriodictyon Californica).	0.937 (2)	-1.6 (2)	soluble in 70% (2)
2	Eucalyptus: (amygdalina)	.850886 (1) .855890 (3)	$\begin{bmatrix} -25 \text{ to } -70 \text{ (1)} \\ (-89) \text{ (3)} \end{bmatrix}$	1 pt. to more than 6 of 90%
3	(Baileyana)		(-09) (3)	
4	(cneorifolia) (dealbata)	.899923 (2) .871900 (2)	-4  to  -14 (2)	
6	(dumosa)	.884915 (2)	0  to  +6.5 (2)	
7	(eugenoides)	.905910 (3)	+3.7  to +5.2 (6)	
8	(globulus)	[.910930 (1) [.915925 (5)]	+1 to +15 (1)	1 pt. in 3 of 70%
9	(hæmastoma)	.880890 (2)		
10	(leucoxylon)	.915927 (2)	+0.5  to + 2.7 (2)	
11 12	(macrorrhyncha) (maculata variety cit- riodora).	.870905 (2)	$\pm 0 \text{ to } + 2 (2)$	1 pt. in 4-5 of 70%
13	(microcorys)	.896935 (2)	<b></b>	
14	(odorata)	.899925 (2)	slightly lævo-	· · · · · · · · · · · · · · · · · · ·
15	(oleosa)	.905930 (3)	$\begin{array}{c} \text{gyrate} \\ -5 \text{ to } +5 \text{ (3)} \end{array}$	 
16	(piperita)	.909913 (2) (17°)	-3  to  +1.6(2)	
17	(punctata)		-2.5  to + 4.4 (6)	
18	(Risdonia)	.910925 (3)	-2  to  -6 (3)	
19	(rostrata)		-1.1  to  +13 (2)	1 pt. in 2 of 70%
20	(Woolsiana) Fennel: [(Commercial)		$\begin{vmatrix} -13.7 & (2) \\ +12 & to & +24 & (6) \end{vmatrix}$	gol in equal nt
21	Fæniculum capil- laceum].	.953973 (25°) (5)	+ 12 to + 23 (t)	90%
22	(Japanese)	.975976 (6)	+10  to  +16 (6)	
23	(Macedonian)	.970980 (6)	+5  to  +12 (6)	· · · · · · · · · · · · · · · · · · ·
24	(Roman)	.976980 (6)	+7°50′ to 16°30′	
25	(Wild)	.905925 (6)	+48 (6)	• • • • • • • • • • • • • • • • • • • •
26	[(Water) Oenanthe aquatica].	.8589 (6)	+ 12° 42′ to + 15° 30′	
27	Galangal:	.915925 (1)	$-1^{\circ} 30' \text{ to } -3^{\circ}$	1 pt. in 1 of 90%
<b>2</b> 8	(Alpinia officinarum). Galbanum:	.910940 (6)	30' (1) +20 to -10 (6)	
29	(Ferula galbaniflua) Garlic: (Allium sativum).	1.046-1.057	inactive	
				ī

No.	Other Characters.	Chief Known Constituents.
1		,
2	Refractive index 1.4735 (20°) (3)	Phellandrene; cineol.
5 6 7 8	Boils 160-185° (6). Contains about 30% cineol (1).  Has an odor resembling dill and caraway  Boils 206-216° (6)	drene. Cineol; cuminal. Citronellal; citronellol. Cineol. Cineol; pinene; aldehydes.
11	acid (1.75 sp. gr.). Boils 170—250° C. (1)  Begins to boil 172° (1)  Citronellal 80–90% (6)	Cineol; terpenes. Cineol. Cineol; eudesmol. Citronellal; geraniol; cit- ronellol.
14	Boils 160-200° (1). Contains about 30% cineol (1). Boils 157-199° (6). Solidifies in a freezing mixture.	Cineol; cuminal.
	Boils 170-272° (1)	Phellandrene; cineol; eu-
18 19	Boils 137 (?)—181° (6)	Cineol; phellandrene; piperitone. Cineol: valeric aldehyde
21	Solidifying point about 3-8° C (6) Not	Anethol: fenchone
22 23	less than +5° (5). Refractive index 1.525– 1.534 (20°) (3). B. pt. 160–220°. Solidifying point about 7° C. (6)	Anethol; fenchone. Anethol; phellandrene; limonene.
24 25	Solidifying point 10-12° C. (6)	
26	50-60% volatile between 170-172°	chone. Phellandrene.
- 1	Boils 170-275° (1). Ref. ind. 1.480 (20°) (3).	· ·
- 1		
_		diallyl disulphide.  Digitized by GOOGIC

No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation, 100 mm.*	Solubility in Alcohol.
٠,	Geranium: [(Rose Geranium). Several species of Pelargonium].			
1		.897905 (6)	-7.5  to  -9 (6)	2–3 vols. 70%
3	(Algerian)	.889895 (6) .892900 (6)	-6.5 to $-10$ (6)	2–3 vols. 70% 2–3 vols. 70%
4	(Spanish)			not completely sol.
8	(German †) Ginger:	.875–.885 (1)	$ \begin{vmatrix} -16 \\ -25 \text{ to } -45 & (1) \\ & & [(4)] $	1 pt. in 100 of 95%
7	(Zingiber officinale). Grains of Paradise: (Amomum melegueta).	[.882900 (4)] .894 (1)	[-12.4 to -45.3 -4 (1)	
8	Guaiac Wood: (Bulnesia sarmienti).	(30°) .965–.975 (1)	-6 to -7 (30°)	sol. in <b>70</b> %
9	Gurjum Balsam: Species of Dipterocarpus.	.915930 (1)	-35  to  -130  (1) sometimes strongly + (7)	sparingly in 95%
10	Hops: (Humulus lupulus).	.840882 (3)	+ 28' to + 40'(6)	very sparingly in 95%
	grandiflorum).	1.007-1.018 (8)	+2.5  to  +3.5 (8)	
12	Juniper Berries: (Juniperus communis)	.865882 (6) .860885 (1) .862868 (6)	slightly + to - 11 (6) 0 to -18° 48' (6)	times not com-
13	(Hungarian).  Jaborandi:  (Pilocarpus jaborandi)	.865895 (1)	+ 3° 25′ (1)	1 pt. in 2 of 80%
14	Laurel Betries: (Laurus nobilis).	.915935 (6)	-14° 10′ (6) †	sol. in 90%
15	Laurel Leaves: (Laurus nobilis).	.920930 (1)	-15 to -18 (1)	1 pt. in 3 of <b>80</b> %
- 1	Lavender: (Lavendula officinalis)	.875910 (25°) (5)		1 pt. in 3 of 70%
17	(French)	.880895	-6  to  -10 (9). -3  to  -9 (1)	
18	(English)		` '	1 pt. in 3 of 70%
19	(Spike) (Lavendula spica, D.C.)	.905915 (1)	-1  to  +7 (1)	1 pt. in 6 of 65%
20	Lemon: (Citrus medica var. limonum).	[.851855 (25°) 5] .856861 (15.6°)	+54 to +66 (20°)	not sol. to clear sol. owing to presence of wax
				Ţ

No.	Other Characters.	Chief Known Constituents.
2	Refractive index 1.460-1.471 (20°) (3). Esters as geranyl tiglate 25-28%. Esters as geranyl tiglate 27-33%. Green color. Esters as geranyl tiglate 19-29%	Geranioi; citronelloi,
4	Esters as geranyl tiglate 35–42%	
1	Boils 155-300° C. (1). Refractive index 1.488-1495 (20°) (3)	herene
7	Boils 236–258° C. (1)	
	Sapon. value about 4 (1). Very viscid oil, tea- like odor, and crystalline at ordinary tem- peratures.	
9	Boils 255-256°C. (1). Sapon. value after acetylization about 9.6 (6).	A sesquiterpene.
10	Refractive index (20°) 1.4775 (3)	Humulene; geraniol; ter- penes.
11	Esters as benzyl acetate 69-73% (8)	Benzyl acetate; linalyl acetate; linalol.
	Varies greatly in appearance and properties, according to origin and mode of preparation. Refractive index 1.474-1.488 (20°)(3).	Pinene; cadinene; juni- per camphor.
	Boils 180-290° C. (1). Sometimes solidifies on cooling. Sometimes solidifies above 0° C	1
15		acid.
-	Refractive index 1.462–1.4675 (20°) (3)	clavicol; eugenol.
	Refractive index (20°) 1.4638-1.4643 (3).	ļ
18	Sapon. value after acetylization 160 (9). Refractive index (20°) 1.4660-1.4678 (3)	linalol. Linalyl acetate 5-10%; cineol.
19	Refractive index (20°) 1.4666 (3). Sapon value about 15 (1). Odor resembles both	Pinene; camphene; cin- eol; camphor; borneol, linalol.
20	lavender and rosemary. Refractive index (20°) 1.4743-1.4760 (1). First 10% of distillate (using Ladenburg flask)	d-limonene; citral.
	should have optical rotation differing from that of original oil by not more than 5° (1).	
	First 50% of distillate must have higher rotation than original oil and the residue (11). Residue at 100° not more than 5%.	
	,	Digitized by Google

=		1		
No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation, 100 mm.*	Solubility in Alcohol.
1	Lemongrass: (Andropogon citratus). Lime (Limette): (West Indian. Citrus	.895905 (3)‡ .877-887(3)§	$+3 \text{ to } -3 (3) \\ [-12.7 (4)]$	1 pt. in <b>2 of 70</b> %
2	medica, var. acida). Expressed	.873885 (2)	+35 to +40 (2)	
3	Distilled	.856868 (1 and 3)	+38 to +45	
4	(Italian. Citrus limetta). Expressed	.872 (1) .882 (2)	+58 (6)	· · · · · · · · · · · · · · · · · · ·
5	Distilled	.863866 (2)	+34.8  to  +45(2)	•••••••••
6		.875–895 (1)	[-5  to  -12(1)]	1 pt. in 2 of 70%
7	[(Cayenne) Ocotea can- data (?)].	.8 <b>70</b> –.880 (1)	-15  to  -20 (1)	1 pt. in 2 of 70%
	Lovage: (Levisticum officinale).	1.000-1.040 (6) [.963-1.023 (4)]	$\pm 0$ to $+5$ (6) $[-14$ to $+12(4)]$	1 pt. in 3 of 80%
1	Mace: (Myristica fra- grans).	.890930 (1)	+10  to  +20 (1)	1 pt. in 3 of 90%
	Male Fern. (Dryopteris Filix-mas).	.850 (1)		• • • • • • • • • • • • • • • • • • • •
11	Mandarin: (Citrus madurensis).	.850858 (1)	+65 to +75 (1)	••••••
12	Marjoram: (Origanum majorana).	.890910 (6)	+5 to +18 (6)	1 pt. in 2 of 80%
13	Mastic: (Pistacia lentiscus).	.858868 (1)	+22  to  +28 (1)	
	Matico (leaves): (Piper augustifolium).	.930-1.130 (3)	(6)	equal part 90%
	Monarda: (Monarda punctata).	.930940 (2)	slightly + (2)	
16	Mustard: (Brassica nigra and B. juncea).	1.016-1.030 (6) [1.013-1.020 (25°) (5)]		1 pt. in 10 of 70%
17	Myrrh: (Species of Com- miphora).	.988-1.007 (6)	-67° 54' to 90°	1 pt. in 10 of 90%
18	Myrtle: (Myrtus communis).	.890920 (2)	+10  to  +30 (1)	
19	Neroli: (Citrus bigaradia).	.870880 (6)	slightly dextro- gyrate to +5	1 pt. in 2 of 80%
20	Nutmeg: (Myristica fragrans).	.865930 (1) [.884924 (25°)	+8 to +28 (1)	1 pt. in 3 of 90%
	+ Foot Indi	(5)]	& West Indian	ogle

[‡] East Indian.

=	<del> </del>	
No.	Other Characters.	Chief Known Constituents.
1	Contains 70-75% citral. Refractive index 1.483-1.488 (20°) (3).	Citral; geraniol; methyl heptenone.
ŀ	Refractive index (20°) 1.480-1.4846 (3)  Refractive index (20°) 1.4750-1.4770 (3).  Boils 175-220 (1).	thyl anthranilate.
	Sapon. value 75 (6). Ref. ind. 1.477 (20°) (3).	d-limonene; citral; lin- alyl acetate. Citral; "limene" (C ₁₅ H ₂₄ ).
1	Sapon. value 1-10 (1). Refractive index (20°) 1.4638 (1).	Linalol; geraniol; methyl heptenone. Mostly linalol.
8		d-terpineol; a terpene.
9	Refractive index 1.476-1.484 (20°) (3)	Pinene; dipentene; my-
10	Boils 140–250° (1)	Hexyl and octyl esters of
11	Boils 175–179° C. (6)	fatty acids. Limonene; citral; methyl ester of methyl an- thanilate.
12	Sapon. value 21.5 † (6)	
13	Boils 155–160° (1)	d-pinene.
14		Asarone; possibly methyl eugenol (1).
15	Strong thyme-like odor	Thymol; cymol.
	Boils 148-154° C. Warmed with ammonia water it produces thiosinamine. Should give on distillation the same sp. gr. with first and last of distillate. Ref. ind. 1.525-1.535 (20°) (3). Boils 220-325° (6)	Allyl-iso-thiocyanate [not less than 92% (5)].
1		Pinene; cineol; dipen-
	Sapon. value 20-52 (1). Shaken with saturated sodium bisulphite assumes a perma-	tene. Linalvi acetate: linaloi:
20	nent purplish color. Ref. ind. (20°) 1.4755. Evaporated on water bath should leave no crystalline residue on cooling. Refractive index (20°) 1.476 (3).	Myristicin; pinene.

No.	Oil and Chief Botanical Source.	Specific Gravity,	Optical Rotation, 100 mm.*	Solubility in Alcohol.
1	Olibanum:	.875885 (6)	-11  to  -17  (6)	
3	(Boswellia Carterii). Onion: (Allium cepa) Orange (Sweet): (Citrus aurantium). (Bitter C. bigaradia).	1.035-1.045 (3) .848857 (1) .842846 (25°) (5)	(bitter orange) +90 to +93)	1 pt. in 4 of 95% with faint tur- bidity
5	Origanum (Triest): (Origanum hirtum). (Smyrna). (Origanum smyrnæum).	.940980 (1) .915966 (3)	ly - 0 to -15 (3)	1 pt. in 3 of 70% 1 pt. in 3 of 70%
	Origanum vulgare: Orris: (Species of <i>Iris</i> ).	.870910 (6)	-34.5 (6) slightly dextro- gyrate	••••••
	Opopanax: (Commiphora katof).	.870905 (1)		equal part 90%
y	Palmarosa: (Andropogon Schaenanthus).	.880890 (1 oz 4)	[+1.8  to  -1.7(1)]	1 pt. 1n 3 of 70%
10	Parsley (leaves): (Petroselinum sativum).	.900925 (1)	$+16' \text{ to } +3^{\circ} 10'$	
11	(seed)	1.05-1.10 (1)	slightly lævo-	
12	Patchouli: (Pogostemon patchouli).	.970995 (1)		equal part 90%
13	Pennyroyal (American): (Hedeoma pulegioides).	.925940 (1) [.920935 (25°) (5)]	+18 to +22 (1 and 5) [+25.7† (1)]	1 pt. in 2 of 70%
14	(European): (Mentha pulegium).	.930–.960 (1)	+17 to +23 (1)	1 pt. in 2 of 70%
15	Pepper (Black): (Piper nigrum).	.870900 (6) [.930 (4)]	$-5 \text{ to } +2 (6) \\ [-8.5 (4)]$	1 pt. in 15 of 90%
16	Peppermint: (Mentha piperita).	.894914 (25°)	$-20 \text{ to } -33$ $(25^{\circ}) (5)$	1 vol. in 4 of 70% (5)
17	(American)	.905920 (2)	-18 to -33 (2)	or more vol
18	(English)	.900910 (2)	-22  to  -33 (2)	do
19 20	(French) (Russian)	.910921 (1) .905915 (2)	$ \begin{array}{c c} -6 \text{ to } -35 \text{ (1)} \\ -17 \text{ to } -22 \text{ (2)} \end{array} $	dodo
21	(German)	.900915 (2)	-25  to  -33 (2)	do
22	(Italian †)	.912 (2)	-16.3 (2)	do
23	(Japanese) (Mentha arvensis).	.895900 (24°)	-25 to -43 (2)	gje.do

ĭ¥o.	Other Characters.	Chief Known Constituents.
1		Pinene; phellandrene;
2 3	Refractive index 1.4730-1.4740 (20°)	dipentene. Allyl-propyl disulphide. Chiefly limonene.
4	Contains 60-85% carvacrol. Gives violet color with ferric chloride.	Carvacrol; cymene.
	Contains 25-60% carvacrol. Color with ferric chloride not so intense as last. Refractive index 1 510 (20°) (3)	mene.
7	Distils mostly at 161° C. (6)	Myristic and oleic acid and their methyl es- ters; irone.
8	Boils between 250-300° (6)	
	Refractive index (20°) 1.4760-1.4805 (3). Sapon. value 20-40 (1); after acetylization 230-270 (1).	tate and capronate;
10	Strong odor of parsley. Greenish yellow color. Refractive index (20°) 1.489 (3).	Apiol (small amount).
	German oil semi-solid at ordinary tempera- tures, French oil on cooling.	
	(These values were obtained on oils distilled in Europe.) Singapore oils, probably sophisticated, give lower sp. gr., and optical rotation.	phor; eugenol; cinnamic aldehyde.
13		Pulegone; hedeomol.
14	About 80% distils between 212-216°C., and only about 5% below 212°. Refractive index (20°) 1.4805 (3).	Pulegone.
15		Phellandrene; dipentene.
	Not less than 6% esters (menthyl ester) and 50% total menthol (5). Ref. ind. (20°) 1.4650.	been identified in
	Refractive index (20°) about 1.4635 (2). Solidifies in freezing mixture. Total menthol 48-64%.	American oil, chief of which are: Menthol; esters of menthol; men-
	Deposits a few crystals on long standing in freezing mixture. Total menthol 51-66%.	phellandrene: limo-
	Total menthol 45-69%.	nene; cadinene. Other
	Acts like English oil on cooling. Total menthol about 50%.	many of the same con-
	Acts like English oil on cooling. Total men- thol 55-68%.	
1	Deposits no crystals on cooling. Refractive index 1.4680 at 16°. Total menthol 55.5%.	ı
23	Solidifies +17 to +28° C. Total menthol 70- 91%.	Digitized by Google

=					
No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation, 100 mm.*	Solubility in Alcohol.	
1	Petit-grain: (Citrus bigaradia).	.887900 (1)	[-6.25 from leaves only]	1 pt. in 2 of 80%	
	Petit-grain citronier: (Citrus medica). Pine-needles: (various conifers).	.869874 (1) .878 (4) .853875 (1) (P. sylvestris .905) • (P.cembra.920)	(12)] +22 to +34 (1) +9.4 (4) -5 to -76 (1) (P. sylvestris +10.7 to -19) (P. cembra +29)	1 pt. in 5–6 of 90%	
4	Poplar buds: (Populus nigra).	.895905 (6)	+1 to +5 (6)	1 pt. in } of 95%	
5	Rose: (Rosa damascena) (Bulgarian)		lævogyrate to -4(1)		
6	(German)	(1) .845855 (30°)	+1  to  -1 (1)		
7 8	(U. S. Pharm.) Rosemary: (Rosmarinus officinalis).	.855865 (25°)	-9 to +18 (3) (English oil -9.5†)	equal pt. 90%	
9	Rue: (Ruta graveolens).		+0.2 to +2 (1) (Algerian oil +5)	1 pt. in 2-3 of 70%	
	Sage: Salvia officinalis Sandal-Wood:	.915925 (1)	+10 to +25 (1)	1 pt. in 2 of 80%	
	(East Indian). (Santalum album).	.970985 (1) .971982 (4)	$ \begin{array}{c cccc} -17 & to & -19 & (1) \\ [-16 & to & -20 \\ (25^{\circ}) & (5) \end{array} $	1 pt. in 5 of 70%	
12	(West Indian). (Amyris balsamifera).	.960967 (6)	+24  to  +29 (6)		
13 14		.953 1.065–1.095 (2) [1.070–1.080 (1)]	+5.3 +1 to +4 (2) [+3 to +4 (1)]	All proportions of 90%	
15	Savin: (Juniperus sabina)	.903923(25°)	+40 to $+60$	equal part 95%	
16	Schinus: (Schinus molle)	.850 (1)	(25°) (5) +46 (17°) (1)	1 pt. in 3.3 of	
17 18	(botan. source (?)).	.883885 (6)	1-23 (6) Digitized by CaO	equal part 90% 1 pt. in 2 of 70%	
	‡ Two authentic samples .961 and .980.				

=		
No	Other Characters.	Chief Known Constituents.
]	Refractive index (20°) 1.4623 (3). Sapon. value 110-245 (1).	Linalyl acetate; linalol; limonene; a sesquiter- pene.
2	Contains oil from unripe fruit	Esters of linalol; citral.
3	Boils 150-185° C. Leaves considerable residue at 185° C. Less than 10% volatile below 160°.	l-pinene; l-limonene; bor- nyl acetate.
4	Sapon. value 13 (1). Boils 255-265 (6)	Humulene and another sesquiterpene; a paraffin.
	Congeals below 23° C. Sapon. value 10-17. Acid value 0.5-3. Refractive index (25°) 1.452-1.464. Geraniol 66-74% (1). Congeals +27 to +37° C. (1). Stearoptene	Geraniol; citronellol;
8	26-34%. Congeals 18-22° C. Sapon. value 10-17 Sapon. value 12-20 (1). First 10% distillate should also be dextrogyrate. Not less than 2.5% bornyl acetate and 10% total borneol (5).	eol; camphor; borneol;
	Heor (3).  Refractive index (20°) 1.4341 (3). Solidifies +8 to 10°. Most of it volatile 215-232°, not more than 5% below 200°.  Sapon. value 107 (1)	lauric aldehyde.
11	Sapon. value 5-15 (1). Not less than 90% alcohols as santalol (5). Refractive index (20°) 1.505-1.510 (3).	Santal alcohols: santalol:
		••••••
13 14	Five drops of oil cooled and mixed with 5 drops conc. nitric acid produce first a red coloration, then a resin.	Safrol; eugenol; camphor; pinene; phellandrene.
15	Sapon. value 115-125 (1). Not more than 25% volatile below 250° C.	Sabinol; sabinol acetate; cadinene; pinene.
16		Phellandrene; pinene; carvacrol.
17 18	Carvone about 56% (6)	[nene. Carvone; limonene; pi- Linalol; citral; cineol carvone; limonene.

=	Oil and Chief Botanical	Specific Gravity,	Optical Rotation.	Solubility in
 ₹	Source.	15° C.	100 mm.*	Alcohol.
1	Storax: (Liquidambar orientale).	.890-1.100 (1)	-3  to  -38  (6)	
2	Tansy: (Tanacetum vulgare).	.925955 (6) [Fresh herb .915 to .930 (2)]	+30 to +45 (1) [English oil -27.5 (2)]	
3	Tar: (Species of Pinus).	.862872 (6) [about .892 (25°) (5)]	+15  to  +24 (6)	sol. in 95%
. 4	Tarragon: (Artemisia Dracunculus).	.900949 (13) .890960 (1)	+2 to +9 (1)	1 pt. in 10 of 80%
	Thuja (Leaves): (Thuja occidentalis).	.915925 (3)	-5 to -14 (6)	1 pt. in 3-4 of 70%
7	Thyme: (Thymus vulgaris). (French)	.900930 (25°)   (5)  .905915 (1)	not more than $-3 (25^{\circ}) (5)$ slightly lævo-	80% (5)
8	(German)	·. '	gyrate (1) slightly lævo- gyrate (1)	
9 10	(Spanish) (Botanical source (?)).	.930950 (6)		1 pt. in 2–3 of 70%
11	Thyme (Wild): _ (Thymus serpyllum).	.890920 (6) .905930 (2)	-10  to  -21 (6) -1 to -11 (2)	10%
	Tolu:     (Toluifera balsamum). Turpentine:	.945-1.09(6) 860- 870(25 ⁹ )(5)	-1 to +1 (6)	$1  ext{ pt. in 3 of 95}\%$
14		.862875 (20°)	-34.8  to  +29.6	(5)
		(10)	(2)	i
15	("Wood" Turpentine)	.855910 (20°) (10)		•••••••••••
16	Valerian: (Valeriana officinalis)	.930955 (2)	-8 to -15 (2)	••••••••
17	(Japanese) (V. officinalis, var. augustifolia).	.990996 (1)	-8 to -15 (2)	· · · · · · · · · · · · · · · · · · ·
- 1	Verbena: † ( <i>Lippia citriodora</i> ). Verti-vert: ( <i>Andropogon</i>	.900 (1)	-12° 38′ (1)	1 pt. in 5 of 90%
19	muricatus). (German)	1.015-1.030 (1)	about +27 (1)	1 pt. in 2 of 80%
20	(Réunion)	(30°) .982998 (1)	+29 to +36 (1)	1 pt. in 2 of 80%

No.	Other Characters.	Chief Known Constituents.
	Boils 150-300° C. (American Storax, L. sty-racifluum, dextrogyrate, about +16.)	Thujone; camphor; bor-
3		neol.
4	Refractive index (15°) 1.5165-1.5170 (13)	Methyl-clavicol.
5		d-pinene; $l$ -fenchone; thujone.
6	Contains not less than 20% phenols (5). Ref. ind. (20°) 1.480-1.490 (3).	
	Contains 20-25% phenols, sometimes as much as 42%. Like the French oil.	Thymol; carvacrol; cy- mene; linalol; borneol.
g		
0	Contains 50-70% phenols (6)	Carvaerol (no thymol).
1	Distils mostly 175–180° (6)	Thymol; carvacrol.
١	Saponification value about 180 (6)	cinnamic acid.
1	Most of the oil distils 155-162° (5). Less than 2% residue at 100° (2).  Refractive index (20°) 1.4690-1.4740 (10).  Less than 5% is left unpolymerized with	Pinene; sylvestrene; di- pentene.
5	conc. sulphuric acid after standing 30 min.; about 90% distils 156-180°. Refractive index (20°) 1.4685-1.4750 (10). Usually has a tarry odor. Less than 90%	•
8	distils below 165° (2).  Boils 250-300° (2). Acid value 20-50. Ester value 80-100. Sapon. value 100-150 (6).	acetate and isovaleri- anate; pinene; cam-
7	Has a green color, but similar to European oil in other organoleptic properties.	phene. Same as European oil but contains also kessyl acetate.
3		
5	Sapon. value 60-80. Most viscid of all essential oils.	
1		

No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation, 100 mm.*	Solubility in Alcohol.
1	Wintergreen: (Gautheria procumbens).	1.175-1.187 (2) 1.172-1.180 (25°) (5)	-0.45 to -1.0	1 pt. in 6 of 70%
2	Wormseed (American): (Chenopodium ambro- sioides).	about 0.970 (2)	-5 to -18 (2)	1 pt. in 10 of 70%
	Wormseed (Levant) (Artemisia maritima). Wormwood: (Artemisia absinthium).	.930935 (2) [.915940 (6)]	slightly lævo- gyrate	1 pt. in 2-4 of 80%
	Ylang Ylang: (Manila) (Cananga odorata). Zedoary: (Curcuma Zedoaria).	.911958 (30°) (1) .900-1.010 (6)	-27 to -49.7 (30°) (1)	

No.	Other Characters.	Chief Known Constituents.
1	Boils 218–221°	Methyl salicylate about 99%.
2	Penetrating odor and bitter taste. Varies in properties with age.	
3		Cineol.
4	First 10% of distillate should be soluble in 2 vols. 80% alcohol. Has green color when distilled from green herb. Refractive index (20°) 1,460-1,470 (3).	phellandrene; thujyl
	Sapon. value 90-138 (1). Refractive index (30) 1.4747-1.4940.	their esters; pinene.
6	Viscid, very dark oil. Distils mostly 240–300°.	Cineol; a crystalline body melting at 142.5°.

## XXXIII.—MELTING POINT AND COMPOSITION OF FUSIBLE ALLOYS*

55.5         12.00         16.00         60.00         12.00            60-68         26.70         13.30         50.00         10.00         Lip           65.5         25.00         12.50         50.00         12.50         Wo           65.5         12.00         16.00         60.00         12.00	Special Name  Dowitz.  Dod.
55.5         12.00         16.00         60.00         12.00            60-68         26.70         13.30         50.00         10.00         Lip           65.5         25.00         12.50         50.00         12.50         Wo           65.5         12.00         16.00         60.00         12.00	oowitz. ood.
55.5         12.00         16.00         60.00         12.00            60-68         26.70         13.30         50.00         10.00         Lip           65.5         25.00         12.50         50.00         12.50         Wo           65.5         12.00         16.00         60.00         12.00	oowitz. ood. ood.
65.5   25.00   12.50   50.00   12.50   Wd 65.5   12.00   16.00   60.00   12.00	ood. ood.
65.5   25.00   12.50   50.00   12.50   Wd 65.5   12.00   16.00   60.00   12.00	ood. ood.
	ood.
85 5   24 90   14 20   51 00   10 90	ood.
	ood.
67.5   25.21   14.10   51.07   9.60   \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	n Hauer.
68.5   24.24   13.65   49.09   13.09   v. H	lauer.
	Hauer. wton.
	liman.
	ood.
70   28.60   14.30   50.00   7.10   Wo	od.
70   27.19   12.91   50.09   9.81   Wo	$\mathbf{ood}$ .
72 29.66 8.80 54.94 6.60	
75.5   25.80   14.70   52.40   7.00   Wo	ood.
	owitz.
76.5 34.38 9.37 50.00 6.25 \{\frac{V.}{Lii}}	Hauer. oowitz-Eratz.
76.6 27.27 18.18 45.46 9.09Hg.	
77.0 29.41 17.65 47.06 5.88	
	rper.
	Arcet.
80.0   35.15   20.03   35.31   9.51	
	ood.
	v. Hauer.
	Hauer.
	se.
	rcet.
91.6   30.00   20.00   50.00	ions. ehtenbe <b>rg.</b>
91.6   32.73   12.44   54.83   Liq	htenberg.
92-93   18.45   31.55   50.00   v.	Hauer.
93.0   25.00   25.00   50.00	man. se.
93.0 18.75 31.25 50.00	wton. lotte.
93.75 27.94 15.92 56.16 Ro	
94.0   16.67   16.67   66.66	
94.0   42.10   15.80   42.10   Ro	se.

^{*} Chem. Ztg., 30, 1139-1143. Jour. Soc. Chem. Ind., 25, 1221.

Melting		Percentage (	Composition		Observer or
Point, °C.	Lead.	Tin.	Bismuth.	Cadmium'.	Special Name.
94.0	27.50	45.00	27.50		Bismuth solder.
94.44	33.90	11.60	54.50	1	Newton.
94.5	50.00	30.00	20.00		Newton.
95.0		33.33	50.00	16.67	v. Hauer.
95.0		30.00	50.00	20.00	v. Hauer.
95.0		33.33	55.56	11.11	
95.0		25.00	50.00	25.00	Wood, v. Hauer.
95.0	43.26		50.06	6.67	v. Hauer.
95.0	58.33		33.33	8.34	
95.0	30.77	1	53.84	15.39	
95.0	33.13	32.15	00.01	34.40	
95.0	32.49	18.51	49.00	01.10	d'Arcet.
95.0	25.00	25.00	50.00		Rose.
98.0	31.25	18.75	50.00		Newton, d'Arcet.
98.75	45.10	9.60	45.30		d'Arcet.
98.8	24.00	27.30	48.70		Rose.
99.0	33.34	33.33	33.33		
100.0		30.00	20.00		
100.0	50.00 16.67	41.67	41.66		Newton.
				I	Smith.
100.0	25.00	25.00	50.00		Krafft.
104.0 105.0	26.33	7.51	66 16	4.76	v. Hauer.
	26.67	44.76	23.81		Bismuth solder.
111.0	40.00	20.00	40.00		
119.0	48.39	38.71	12.90		TT
122.0	39.28	21.25	39.47		Homberg.
123.3	33.33	33.33	33.34		
123.75	41.67	25.00	33.33		
124.0	38.84	22.14	39.02		• • • • • • • • • • • • • • • • • • • •
124.0	42.86	42.86	14.28	1	TD 11
125.3	27.20	· · · · · · · · · ·	72.80		Rudberg.
127.0	42.74		57.26		
128.0	44.45	44 44	11.11		
130.0	38.46	30.77	30.77	1	
132.0	28.00	47.00		25.00	v. Hauer.
136.0	34.36	57.64		8.00	v. Hauer.
136.0	26.47	59.32		14.30	v. Hauer.
136.0	20.43	68.54		11.03	v. Hauer.
136.4		29.80	70.20		Rudberg.
140.0		68.29	31.71	[	
140.0	33.33	33.33	33.34		
140.0	42:10	36.84	21.06		
145.0	48.25	27.50	24.25		
145.0	50.00	30.00	20.00		
146.3			78.80	21.20	Rudberg.
149.0	25.00	50.00		25.00	,
150.0	40.74	44.44	14.82		
155.0	42.86	42.86	14.28		Bismuth solder.

Melting		Percentage	Composition		Observer or
Point, °C.	Lead.	Tin	Bismuth.	Cadmium.	Special Name.
155.0	52.50	30.00	17.50		
160.0	53.57	32.14	14.29		
160.0	42.10	47.37	10.52	1	
160.0	44.45	44.44	11.11		Bismuth solder.
160.0	31.80	36.20	32.00		
165.0		75.65		24.35	v. Hauer.
168.0	40.00	60.00			Prechtl, tin solder.
168.0	26.90	68.90	1	4.20Zn	
171.0	33.33	66.67	1	1.20211	soft quick solder.
173.8	00.00	00.00	67.80	32.20	Rudberg.
175	89.77	10.23	1		Spring.
175	87.53	12.47	1		Spring.
176.5	77.82	22.18			Spring.
177.0	84.03	15.97		1	Spring.
177.5	63.70	36.30			Spring.
179.0	36.90	63.10			Spring.
180.0	25.00	75.00	1		Prechtl.
180.0	37.00	63.00			Drop solder.
181.0	37.35	62.65			Pillichody.
181.0	51.28	48.72			I Illichody.
181.2	55.64	44.36			Pohl.
183.0	30.50	69.50			Spring.
185.0	46.73	53.27			opring.
186.0	37.50	62.50			
186.0	20.00	80.00			Prechtl.
187.0	31.00	69.00			1 16cmvi.
187.0	33.33	66.67			
187.0	30.50	69.50			Pillichody.
189.0	63.70	36.30			
189.0	50.00	50.00			Prechtl quick solder
189.0	81.40	18.60			1 recini quick soider
189.0	71.43	28.57			
190.0	22.62	77.38			
190.0	41.23	58.77	1		
192.0	16.67	83.33	1		Prechtl.
192.0	14.30	85.70			Prechtl.
194.0	23.08	76.91			recuti.
194.0	25.00 25.00	75.00			
194.0	28.58	71.42			
194-195	84.00	16.00		::::::	
194-195	75.00	25.00	1		
194-195	47.20	52.80			Pillichody.
197.0	54.34	45.66		:::::	Fillienody.
		14.00	1		
198.0	86.00				
198.0	77.78	22.22		• • • • • • • •	
200.0	63.70	36.30			
200.0	50.00	50.00		[ · · · · · · · · · ]	·

## XXXIV (a).—EQUIVALENT OF DEGREES BAUMÉ (AMERICAN STANDARD) AND SPECIFIC GRAVITY AT 60° F.

Degrees Baumé =  $145 - \frac{145}{\mathrm{Sp.\,Gr.}}$  For Liquids Heavier than Water.

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
Dannie	Gravity	Daume	Gravity	Danne	Gravity	Daume	Gravity
0.0	1.0000	.7	1.0262	.4	1.0538	.1	1.0829
.1	1.0007	.8	1.0269	.5	1.0545	.2	1.0837
.2	1.0014	.9	1.0276	.6	1.0553	.3	1.0845
.3	1.0021	4.0	1.0284	.7	1.0561	.4	1.0853
.4	1.0028	.1	1.0291	.8	1.0569	.5	1.0861
.5	1.0035	.2	1.0298	.9	1.0576	.6	1.0870
.6	1.0042	.3	1.0306	8.0	1.0584	.7	1.0878
.7	1.0049	.4	1.0313	.1	1.0592	.8	1.0886
.8	1.0055	.5	1.0320	.2	1.0599	.9	1.0894
.9	1.0062	6	1.0328	.3	1.0607	12.0	1.0902
1.0	1.0069	.7	1.0335	.4	1.0615	.1	1.0910
.1	1.0076	.8	1.0342	.5	1.0623	.2	1.0919
.2	1.0083	.9	1.0350	.6	1.0630	.3	1.0927
.3	1.0090	5.0	1.0357	.7	1.0638	.4	1.0935
.4	1.0097	.1	1.0365	.8	1.0646	.5	1.0943
.5	1.0105	.2	1.0372	.9	1.0654	.6	1.0952
.6	1.0112	.3	1.0379	9.0	1.0662	.7	1.0960
.7	1.0119	.4	1.0387	.1	1.0670	.8	1.0968
.8	1.0126	.5	1.0394	.2	1.0677	.9	1.0977
.9	1.0133	.6	1.0402	.3	1.0685	13.0	1.0985
2.0	1.0140	.7	1.0409	.4	1.0693	.1	1.0993
.1	1.0147	.8	1.0417	.5	1.0701	.2	1.1002
.2	1.0154	.9	1.0424	.6	1.0709	.3	1.1010
.3	1.0161	6.0	1.0432	.7	1.0717	.4	1.1018
.4	1.0168	.1	1.0439	.8	1.0725	.5	1.1027
.5	1.0175	.2	1.0447	.9	1.0733	.6	1.1035
.6	1.0183	.3	1.0454	10.0	1.0741	.7	1.1043
.7	1.0190	.4	1.0462	.1	1.0749	.8	1.1052
.8	1.0197	.5	1.0469	.2	1.0757	.9	1.1060
.9	1.0204	.6	1.0477	.3	1.0765	14.0	1.1069
3.0	1.0211	.7	1.0484	.4	1.0773	.1	1.1077
.1	1.0218	.8	1.0492	.5	1.0781	.2	1.1086
.2	1.0226	.9	1.0500	.6	1.0789	.3	1.1094
.3	1.0233	7.0	1.0507	.7	1.0797	.4	1.1103
.4	1.0240	.1	1.0515	.8	1.0805	.5	1.1111
.5	1.0247	.2	1.0522	.9	1.0813	.6	1.1120
.6	1.0255	.3	1.0530	11.0	1.0821	.7	1.1128
	J _				Digitizad	Cood	se

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.8	1.1137	.2	1.1526	.6	1.1944	28.0	1.2393
.9	1.1145	.3	1.1535	.7	1.1954	.1	1.2404
15.0	1.1154	.4	1.1545	.8	1.1964	.2	1.2414
.1	1.1162	.5	1.1554	.9	1.1974	.3	1.2425
.2	1.1171	.6	1.1563	24.0	1.1983	.4	1.2436
.3	1.1180	.7	1.1572	.1	1.1993	.5	1.2446
.4	1.1188	.8	1.1581	.2	1.2003	.6	1.2457
.5	1.1197	.9	1.1591	.3	1.2013	.7	1.2468
.6	1.1206	20.0	1.1600	.4	1.2023	.8	1.2478
.7	1.1214	.1	1.1609	.5	1.2033	.9	1.2489
.8	1.1223	.2	1.1619	.6	1.2043	29.0	1.2500
.9	1.1232	.3	1.1628	.7	1.2053	.1	1.2511
16.0	1.1240	.4	1.1637	.8	1.2063	.2	1.2522
.1	1.1249	.5	1.1647	.9	1.2073	.3	1.2532
.2	1.1258	.6	1.1656	25.0	1.2083	.4	1.2543
.3	1.1267	.7	1.1665	.1	1.2093	.5	1.2554
.4	1.1275	.8	1.1675	.2	1.2104	.6	1.2565
.5	1.1284	.9	1.1684	.3	1.2114	.7	1.2576
.6	1.1293	21.0	1.1694	.4	1.2124	.8	1.2587
.7	1.1302	.1	1.1703	.5	1.2134	.9	1.2598
.8	1.1310	.2	1.1712	.6	1.2144	30.0	1.2609
.9	1.1319	.3	1.1722	.7	1.2154	.1	1.2620
17.0	1.1328	.4	1.1731	.8	1.2164	.2	1.2631
.1	1.1337	.5	1.1741	.9	1.2175	.3	1.2642
.2	1.1346	.6	1.1750	26.0	1.2185	.4	1.2653
.3	1.1355	.7	1.1760	.1	1.2195	.5	1.2664
.4	1.1364	.8	1.1769	.2	1.2205	.6	1.2675
.5	1.1373	.9	1.1779	.3	1.2216	.7	1.2686
.6	1.1381	22.0	1.1789	.4	1.2226	.8	1.2697
.7	1.1390	.1	1.1798	.5	1.2236	.9	1.2708
.8	1.1399	.2	1.1808	.6	1.2247	31.0	1.2719
.9	1.1408	.3	1.1817	.7	1.2257	.1	1.2730
18.0	1.1417	.4	1.1827	.8	1.2267	.2	1.2742
.1	1.1426	.5	1.1837	.9	1.2278	.3	1.2753
.2	1.1435	.6	1.1846	27.0	1.2288	.4	1.2764
.3	1.1444	.7	1.1856	.1	1.2299	.5	1.2775
4	1.1453	.8	1.1866	.2	1.2309	.6	1.2787
.5	1.1462	.9	1.1876	.3	1.2319	.7	1.2798
.6	1.1472	23.0	1.1885	.4	1.2330	.8	1.2809
.7	1.1481	.1	1.1895	.5	1.2340	.9	1.2821
.8	1.1490	.2	1.1905	.6	1.2351	32.0	1.2832
.9	1.1499	.3	1.1915	.7	1.2361	.1	1.2843
19.0	1.1508	.4	1.1924	.8	1.2372	.2	1.2855
.1	1.1517	.5	1.1934	.9	1.2383	.3	1.2866

Digitized by GOOSIC

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.4	1.2877	.8	1.3401	.2	1.3969	.6	1.4588
.5	1.2889	.9	1.3414	.3	1.3983	.7	1.4602
6	1.2900	37.0	1.3426	.4	1.3996	.8	1.4617
.7	1.2912	.1	1.3438	.5	1.4010	.9	1.4632
.8	1.2923	.2	1.3451	.6	1.4023	46.0	1.4646
.9	1.2935	.3	1.3463	.7	1.4037	.1	1.4661
<b>33</b> .0	1.2946	.4	1.3476	.8	1.4050	.2	1.4676
.1	1.2958	.5	1.3488	.9	1.4064	.3	1.4691
1.2	1.2970	.6	1.3501	42.0	1.4078	.4	1.4706
.3	1.2981	.7	1.3514	.1	1.4091	.5	1.4721
.4	1.2993	.8	1.3526	.2	1.4105	.6	1.4736
.5	1.3004	.9	1.3539	.3	1.4119	.7	1.4751
.6	1.3016	38.0	1.3551	.4	1.4133	.8	1.4766
.7	1.3028	.1	1.3564	.5	1.4146	.9	1.4781
.8	1.3040	.2	1.3577	.6	1.4160	47.0	1.4796
.9	1.3051	.3	1.3590	.7	1.4174	.1	1.4811
34.0	1.3063	.4	1.3602	.8	1.4188	.2	1.4826
.1	1.3075	.5	1.3615	.9	1.4202	.3	1.4841
.2	1.3087	.6	1.3628	43.0	1.4216	.4	1.4857
.3	1.3098	.7	1.3641	.1	1.4230	.5	1.4872
.4	1.3110	.8	1.3653	.2	1.4244	6	1.4887
.5	1.3122	.9	1.3666	.3	1.4258	.7	1.4902
.6	1.3134	39.0	1.3679	.4	1.4272	.8	1.4918
.7	1.3146	.1	1.3692	.5	1.4286	.9	1.4933
.8	1.3158	2	1.3705	.6	1.4300	48.0	1.4948
.9	1.3170	.3	1.3718	.7	1.4314	.1	1.4964
35.0	1.3182	.4	1.3731	.8	1.4328	.2	1.4979
.1	1.3194	.5	1.3744	.9	1.4342	.3	1.4995
.2	1.3206	.6	1.3757	44.0	1.4356	.4	1.5010
.3	1.3218	7	1.3770	.1	1.4371	.5	1.5026
.4	1.3230	.8	1.3783	.2	1.4385	.6	1.5041
.5	1.3242	.9	1.3796	.3	1.4399	.7	1.5057
.6	1.3254	40.0	1.3810	.4	1.4414	.8	1.5073
.7	1.3266	.1	1.3823	.5	1.4428	.9	1.5088
.8	1.3278	.2	1.3836	.6	1.4442	49.0	1.5104
.9	1.3291	.3	1.3849	.7	1.4457	.1	1.5120
36.0	1.3303	.4	1.3862	.8	1.4471	.2	1.5136
.1	1.3315	.5	1.3876	.9	1.4486	.3	1.5152
.2	1.3327	.6	1.3889	45.0	1.4500	.4	1.5167
.3	1.3329	.7	1.3902	.1	1.4515	.5	1.5183
. 4	1.3352	.8	1.3916	.1	1.4529	.6	1.5199
.5	1.3364	.9	1.3910	.3	1.4544	.7	1.5199
	1.3376	41.0	1.3929	.4	1.4558	.8	1.5213
.6 .7	1.3389	.1	1.3942	.5	1.4573	.0	1.5231
. 1	т. 990а	.1	1.0900	ı .ə	1.4010		1.0241

Digitized by GOOGIC

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
50.0	1.5263	.4	1.6004	.8	1.6821	.2	1.7726
.1	1.5279	.5	1.6022	.9	1.6841	.3	1.7748
.2	1.5295	.6	1.6040	59.0	1.6860	.4	1.7770
.3	1.5312	.7	1.6058	.1	1.6880	.5	1.7791
.4	1.5328	.8	1.6075	.2	1.6900	.6	1.7813
.5	1.5344	.9	1.6093	.3	1.6919	.7	1.7835
.6	1.5360	55.0	1.6111	.4	1.6939	.8	1.7857
.7	1.5376	.1	1.6129	.5	1.6959	.9	1.7879
.8	1.5393	.2	1.6147	.6	1.6979	64.0	1.7901
.9	1.5409	.3	1.6165	.7	1.6999	.1	1.7923
51.0	1.5426	.4	1.6183	.8	1.7019	.2	1.7946
.1	1.5442	.5	1.6201	.9	1.7039	.3	1.7968
.2	1.5458	.6	1.6219	60.0	1.7059	.4	1.7990
.3	1.5475	.7	1.6237	.1	1.7079	.5	1.8012
.4	1.5491	.8	1.6256	.2	1.7099	.6	1.8035
.5	1.5508	.9	1.6274	.3	1.7119	.7	1.8057
.6	1.5525	56.0	1.6292	.4	1.7139	.8	1.8080
.7	1.5541	.1	1.6310	.5	1.7160	.9	1.8102
.8	1.5558	.2	1.6329	.6	1.7180	65.0	1.8125
.9	1.5575	.3	1.6347	.7	1.7200	.1	1.8148
52.0	1.5591	.4	1.6366	.8	1.7221	.2	1.8170
.1	1.5608	.5	1.6384	.9	1.7241	.3	1.8193
.2	1.5625	.6	1.6403	61.0	1.7262	.4	1.8216
.3	1.5642	.7	1.6421	.1	1.7282	.5	1.8239
.4	1.5659	.8	1.6440	.2	1.7303	.6	1.8262
.5	1.5676	.9	1.6459	.3	1.7324	.7	1.8285
.6	1.5693	57.0	1.6477	.4	1.7344	.8	1.8308
.7	1.5710	37.0	1.6496	.5	1.7365	.9	1.8331
.8	1.5727	.2	1.6515	.6	1.7386	66.0	1.8354
.9	1.5744	.3	1.6534	.7	1.7407	.1	1.8378
53.0	1.5761	.4	1.6553	.8	1.7428	.2	1.8401
.1	1.5778	.5	1.6571	.9	1.7449	.3	1.8424
.2	1.5778	.6	1.6590	62.0	1.7470	.4	1.8448
.3	1.5812	.7	1.6609	.1	1.7491	.4	1.8448
.s .4	1.5812	.8	1.6628	.1	1.7512	.5	1.8471
		.9	1.6648	.3	1.7512	.6	1.8471
.5	1.5847	1			1.7554	.7	
6	1.5864	58.0	1.6667	.4		.8	1.8519
.7	1.5882	.1	1.6686	.5	1.7576	.9	1.8542
.8	1.5899	.2	1.6705	.6	1.7597		1.8566
.9	1.5917	.3	1.6724	.7	1.7618	67.0	1.8590
54.0	1.5934	.4	1.6744	.8	1.7640	.1	1.8614
.1	1.5952	.5	1.6763	.9	1.7661	.2	1.8638
.2	1.5969	.6	1.6782	63.0	1.7683	.3	1.8662
.3	1.5987	.7	1.6802	.1	1.7705	.4	1.8686

Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
1.8710	. 2	1.8880	.9	1.9054	.6	1.9231
1.8734	.3	1.8905	69.0	1.9079	.7	1.9256
1.8758	.4	1.8930	.1	1.9104	.8	1.9282
1.8782	.5	1.8954	.2	1.9129	.9	1.9308
1.8807	.6	1.8979	.3	1.9155	70.0	1.9333
1.8831	.7	1.9004	.4	1.9180		
1.8856	.8	1.9029	.5	1.9205	11	1
	1.8710 1.8734 1.8758 1.8782 1.8807 1.8831	1.87102 1.8734 .3 1.8758 .4 1.8782 .5 1.8807 .6 1.8831 .7	1.8710	1.8710	1.8710    2     1.8880     .9     1.9054       1.8734     .3     1.8905     69.0     1.9079       1.8758     .4     1.8930     .1     1.9104       1.8782     .5     1.8954     .2     1.9129       1.8807     .6     1.8979     .3     1.9155       1.8831     .7     1.9004     .4     1.9180	1.8710

# XXXIV (b). — EQUIVALENT BAUMÉ DEGREES (AMERICAN STANDARD) WITH SPECIFIC GRAVITY AT 60° F.

Sp. Gr.  $=\frac{140}{130 + B^{\circ}}$  For Liquids Lighter than Water.

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
10.0	1.0000	.2	0.9845	.4	0.9695	.6	0.9550
.1	0.9993	.3	0.9838	.5	0.9689	.7	0.9543
.2	0.9986	.4	0.9831	.6	0.9682	.8	0.9537
.3	0.9979	.5	0.9825	.7	0.9675	.9	0.9530
.4	0.9972	.6	0.9818	.8	0.9669	17.0	0.9524
.5	0.9964	.7	0.9811	.9	0.9662	.1	0.9517
.6	0.9957	.8	0.9804	15.0	0.9655	.2	0.9511
.7	0.9950	.9	0.9797	.1	0.9649	.3	0.9504
.8	0.9943	13.0	0.9790	.2	0.9642	.4	0.9498
.9	0.9936	.1	0.9783	.3	0.9635	.5	0.9492
11.0	0.9929	.2	0.9777	.4	0.9629	.6	0.9485
.1	0.9922	.3	ი.9770	.5	0.9622	.7	0.9479
.2	0.9915	.4	0.9763	.6	0.9615	.8	0.9472
.3	0.9908	.5	0.9756	.7	0.9609	.9	0.9466
.4	0.9901	.6	0.9749	.8	0.9602	18.0	0.9459
.5	0.9894	.7	0.9743	.9	0.9596	.1	0.9453
.6	0.9887	.8	0.9736	16.0	0.9589	.2	0.9447
.7	0.9880	.9	0.9729	.1	0.9582	.3	0.9440
.8	0.9873	14.0	0.9722	.2	0.9576	.4	0.9434
.9	0.9866	.1	0.9715	.3	0.9569	.5	0.9428
12.0	0.9859	.2	0.9709	.4	0.9563	.6	0.9421
.1	0.9852	.3	0.9702	.5	0.9556	.7	0.9415

Digitized by GOOGLE

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.8	0.9409	.2	0.9138	.6	0.8883	32.0	0.8642
.9	0.9402	.3	0.9132	.7	0.8878	.1	0.8637
19.0	0.9396	.4	0.9126	.8	0.8872	.2	0.8631
.1	0.9390	.5	0.9121	.9	0.8866	.3	0.8626
.2	0.9383	.6	0.9115	28.0	0.8861	.4	0.8621
.3	0.9377	.7	0.9109	.1	0.8855	.5	0.8615
.4	0.9371	.8	0.9103	.2	0.8850	.6	0.8610
.5	0.9365	.9	0.9097	.3	0.8844	.7	0.8605
.6	0.9358	24.0	0.9091	.4	0.8838	.8	0.8600
.7	0.9352	.1	0.9085	.5	0.8833	.9	0.8594
.8	0.9346	.2	0.9079	.6	0.8827	33.0	0.8589
.9	0.9340	.3	0.9073	.7	0.8822	.1	0.8584
20.0	0.9333	.4	0.9067	.8	0.8816	.2	0.8578
.1	0.9327	.5	0.9061	.9	0.8811	.3	0.8573
.2	0.9321	.6	0.9056	29.0	0.8805	.4	0.8568
.3	0.9315	.7	0.9050	.1	0.8799	.5	0.8563
.4	0.9309	.8	0.9044	.2	0.8794	.6	0.8557
.5	0.9302	.9	0.9038	.3	0.8788	.7	0.8552
.6	0.9296	25.0	0.9032	.4	0.8783	.8	0.8547
.7	0.9290	.1	0.9026	.5	0.8777	.9	0.8542
.8	0.9284	.2	0.9021	.6	0.8772	34.0	0.8537
.9	0.9278	.3	0.9015	.7	0.8766	.1	0.8531
21.0	0.9272	.4	0.9009	.8	0.8761	.2	0.8526
.1	0.9265	.5	0.9003	.9	0.8755	.3	0.8521
.2	0.9259	.6	0.8997	30.0	0.8750	.4	0.8516
.3	0.9253	.7	0.8992	.1	0.8745	.5	0.8511
.4	0.9247	8	0.8986	.2	0.8739	.6	0.8505
.5	0.9241	.9	0.8980	.3	0.8734	.7	0.8500
.6	0.9235	26.0	0.8974	.4	0.8728	.8	0.8495
.7	0.9229	.1	0.8969	.5	0.8723	.9	0.8490
.8	0.9223	.2	0.8963	.6	0.8717	35.0	0.8485
.9	0.9217	.3	0.8957	.7	0.8712	.1	0.8480
22.0	0.9211	.4	0.8951	.8	0.8706	.2	0.8475
.1	0.9204	.5	0.8946	.9	0.8701	.3	0.8469
.2	0.9198	.6	0.8940	31.0	0.8696	.4	0.8464
.3	0.9192	.7	0.8934	.1	0.8690	.5	0.8459
.4	0.9186	.8	0.8929	.2	0.8685	.6	0.8454
.5	0.9180	.9	0.8923	.3	0.8679	.7	0.8449
.6	0.9174	27.0	0.8917	.4	0.8674	.8	0.8444
.7	0.9168	.1	0.8912	.5	0.8669	.9	0.8439
.8	0.9162	.2	0.8906	.6	0.8663	36.0	0.8434
.9	0.9156	.3	0.8900	.7	0.8658	.1	0.8429
23.0	0.9150	.4	0.8895	.8	0.8653	.2	0.8424
.1	0.9144	.5	0.8889	.9	0.8647	.3	0.8419
		1	<u>l</u>		Dialitzeri tiv	Coogl	2

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.4	0.8413	.8	0.8197	.2	0.7991	.6	0.7795
.5	0.8408	.9	0.8192	.3	0.7986	.7	0.7793
.6	0.8403	41.0	0.8187	.4	0.7982	.8	0.7786
.7	0.8398	.1	0.8182	.5	0.7977	.9	0.7782
.8	0.8393	.2	0.8178	.6	0.7973	50.0	0.7778
.9	0.8388	.3	0.8173	.7	0.7968	.1	0.7773
37.0	0.8383	.4	0.8168	.8	0.7964	.2	0.7769
.1	0.8378	.5	0.8163	.9	0.7959	.3	0.7765
.2	0.8378	.6	0.8159	46.0	0.7955	.4	0.7761
.3	0.8368	.7	0.8154	.1	0.7950	.5	0.7756
.4	0.8363	.8	0.8149	.2	0.7946	.6	0.7752
.5	0.8358	.9	0.8144	.3	0.7941	.7	0.7748
.6	0.8353	42.0	0.8140	.4	0.7937	.8	0.7743
.7	0.8348	.1	0.8135	.5	0.7932	.9	0.7739
.8	0.8343	.2	0.8130	.6	0.7928	51.0	0.7735
.9	0.8338	.3	0.8125	.7	0.7923	.1	0.7731
38.0	0.8333	.4	0.8121	.8	0.7919	.2	0.7726
.1	0.8328	.5	0.8116	.9	0.7914	.3	0.7722
.2	0.8323	.6	0.8111	47.0	0.7910	.4	0.5718
.3	0.8318	.7	0.8107	.1	0.7905	.5	0.7713
.4	0.8314	.8	0.8102	.2	0.7901	.6	0.7709
.5	0.8309	.9	0.8097	.3	0.7896	.7	0.7705
.6	0.8304	43.0	0.8092	.4	0.7892	.8	0.7701
.7	0.8299	.1	0.8088	.5	0.7887	.9	0.7697
.8	0.8294	.2	0.8083	.6	0.7883	52.0	0.7692
.9	0.8289	.3	0.8078	.7	0.7878	.1	0.7688
39.0	0.8284	.4	0.8074	.8	0.7874	.2	0.7684
.1	0.8279	.5	0.8069	.9	0.7870	.3	0.7680
· .2	0.8274	.6	0.8065	48.0	0.7865	.4	0.7675
.3	0.8269	.7	0.8060	.1	0.7861	.5	0.7671
.4	0.8264	.8	0.8055	.2	0.7856	.6	0.7667
.5	0.8260	.9	0.8051	.3	0.7852	.7	0.7663
.6	0.8255	44.0	0.8046	.4	0.7848	.8	0.7659
.7	0.8250	.1	0.8041	. 5	0.7843	.9	0.7654
.8	0.8245	.2	0.8037	.6	0.7839	53.0	0.7650
.9	0.8240	.3	0.8032	.7	0.7834	.1	0.7646
40.0	0.8235	.4	0.8028	.8	0.7830	.2	0.7642
.1	0.8230	.5	0.8023	.9	0.7826	.3	0.7638
.2	0.8226	.6	0.8018	49.0	0.7821	.4	0.7634
.3	0.8221	.7	0.8014	.1	0.7817	.5	0.7629
.4	-0.8216	.8	0.8009	.2	0.7812	.6	0.7625
.5	0.8211	.9	0.8005	.3	0.7808	.7	0.7621
.6	0.8206	45.0	0.8000	.4	0.7804	.8	0.7617
.7	0.8202	.1	0.7995	.5	0.7799	.9 Googl	0.7613

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
54.0	0.7609	.4	0.7431	.8	0.7261	.2	0.7099
.1	0.7605	.5	0.7427	.9	0.7258	.3	0.7096
.2	0.7600	.6	0.7423	63.0	0.7254	.4	0.7092
.3	0.7596	.7	0.7419	.1	0.7250	.5	0.7089
.4	0.7592	.8	0.7415	.2	0.7246	.6	0.7085
.5	0.7588	.9	0.7411	.3	0 7243	.7	0.7081
.6	0.7584	59.0	0.7407	.4	0.7239	.8	0.7078
.7	0.7580	.1	0.7403	.5	0.7235	.9	0.7074
.8	0.7576	.2	0.7400	.6	0.7231	68.0	0.7071
.9	0.7572	.3	0.7396	.7	0.7228	.1	0.7067
55.0	0.7568	.4	0.7392	.8	0.7224	.2	0.7064
.1	0.7563	.5	0.7388	.9	0.7220	.3	0.7060
.2	0.7559	.8	0.7384	64.0	0.7216	.4	0.7056
.3	0.7555	.7	0.7380	.1	0.7213	.5	0.7053
.4	0.7551	.8	0.7376	.2	0.7209	.6	0.7049
.5	0.7547	.9	0.7372	.3	0.7205	.7	0.7046
.6	0.7543	60.0	0.7368	.4	0.7202	.8	0.7042
.7	0.7539	.1	0.7365	.5	0.7198	.9	0.7039
.8	0.7535	.2	0.7361	.6	0.7194	69.0	0.7035
.9	0.7531	.3	0.7357	.7	0.7191	.1	0.7033
56.0	0.7527	.4	0.7353	.8	0.7187	.2	0.7028
,1	0.7523	.5	0.7349	.9	0.7183	.3	0.7025
.2	0.7519	.6	0.7345	65.0	0.7179	.4	0.7023
.3	0.7515	.7	0.7341	.1	0.7176	.5	0.7018
.4	0.7511	.8	0.7338	.2	0.7172	.6	0.7014
.5	0.7507	.9	0.7334	.3	0.7168	.7	0.7011
.6	0.7503	61.0	0.7330	.4	0.7165	.8	0.7007
.7	0.75	.1	0.7326	.5	0.7161	.9	0.7004
.8	0.7495	.2	0.7322	.6	0.7157	70.0	0.7000
.9	0.7491	.3	0.7318	.7	0.7154	.1	0.6997
57.0	0.7487	.4	0.7315	.8	0.7150	.2	0.6993
.1	0.7483	.5	0.7311	.9	0.7147	.3	0.6990
.2	0.7479	.6	0.7317	66.0	0.7143	.4	0.6986
.2	0.7475	.7	0.7307	.1	0.7139	.5	0.6983
.4	0.7471	.8	0.7299	.2	0.7136	.6	0.6979
.5	0.7467	.9	0.7295	.3	0.7132	.7	0.6976
.6	0.7463	62.0	0.7292	.4	0.7128	.8	0.6972
.0 .7	0.7459	.1	0.7288	.5	0.7125	.9	0.6969
.8	0.7455	.2	0.7284	.6	0.7123	71.0	0.6965
.9	0.7451	.3	0.7280	.7	0.7121	.1	0.6962
58.0	0.7431	.4	0.7277	8	0.7117	.1	0.6958
.1	0.7447	.5	0.7273	.9	0.7114	.3	0.6955
.2	0.7439	.6	0.7269	67.0	0.7110	.4	0.6955
.3	0.7435	.7	0.7265	.1	0.7107	.5	0.6948
.0	0.1300	''	0.1200	••	0.1100	U.	0.0320

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.6	0.6944	.8	0.6869	.9	0.6799	78.0	0.6731
.7	0.6941	.9	0.6866	76.0	0.6796	.1	0.6728
.8	0.6938	74.0	0.6863	.1	0.6793	.2	0.6724
.9	0.6934	.1	0.6859	.2	0.6790	.3	0.6721
72.0	0.6931	.2	0.6856	.3	0.6786	.4	0.6718
.1	0.6927	.3	0.6853	.4	0.6783	.5	0.6715
.2	0.6924	.4	0.6849	.5	0.6780	.6	0.6711
.3	0.6920	.5	0.6846	.6	0.6776	.7	0.6708
.4	0.6917	.6	0.6843	.7	0.6773	.8	0.6705
.5	0.6914	.7	0.6839	.8	0.6770		0.6702
.6	0.6910	.8	0.6836	.9	0.6767	79.0	0.6699
.7	0.6907	.9	0.6833	77.0	0.6763	.1	0.6695
.8	0.6903	75.0	0.6829	.1	0.6760	.2	0.6692
.9	0.6900	.1	0.6826	.2	0.6757	.3	0.6689
73.0	0.6897	.2	0.6823	.3	0.6753	.4	0.6686
.1	0.6893	.3	0.6819	.4	0.6750	.5	0.6683
.2	0.6890	.4	0.6816	.5	0.6747	.6	0.6679
.3	0.6886	5	0.6813	.6	0.6744	.7	0.6676
.4	0.6883	.6	0.6809	.7	0.6740	.8	0.6673
.5	0.6880	.7	0.6806	.8	0.6737	.9	0.6670
.6	0.6876	.8	0.6803	.9	0.6734	80.0	0.6667
.7	0.6873		0.0000		3.3.32		
	1 3.3313	1		1	l		<u> </u>

Digitized by Google

By W. C. FERGUSON

Degrees Baumé.	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Degrees Twaddell.	Per Cent H ₂ SO ₄ .	Weight of 1 Cu. Ft. in Lbs. Av.	Per Cent O. V.*	Pounds 0. V. in r Cubic Foot.
0	1.0000	0.0	0.00	62.37	0.00	0.00
1	1.0069	1.4	1.02	62.80	1.09	0.68
2	1.0140	2.8	2.08	63.24	2.23	1.41
3	1.0211	4.2	3.13	63.69	3.36	2.14
4	1.0284	5.7	4.21	64.14	4.52	2.90
5	1.0357	7.1	5.28	64.60	5.67	3.66
6	1.0432	8.6	6.37	65.06	6.84	4.45
7	1.0507	10.1	7.45	65.53	7.99	5.24
8	1.0584	11.7	8.55	66.01	9.17	6.06
9	1.0662	13.2	9.66	66.50	10.37	6.89
10	1.0741	14.8	10.77	66.99	11.56	7.74
11	1.0821	16.4	11.89	67.49	12.76	8.61
12	1.0902	18.0	13.01	68.00	13.96	9.49
13	1.0985	19.7	14.13	68.51	15.16	10.39
14	1.1069	21.4	15.25	69.04	16.36	11.30
15	1.1154	23.1	16.38	69.57	17.58	12.23
16	1.1240	24.8	17.53	70.10	18.81	13.19
17	1.1328	26.6	18.71	70.65	20.08	14.18
18	1.1417	28.3	19.89	71.21	21.34	15.20
19	1.1508	30.2	21.07	71.78	22.61	16.23
20	1.1600	32.0	22.25	72.35	23.87	17.27
21	1.1694	33.9	23.43	72.94	25.14	18.34
22	1.1789	35.8	24.61	73.53	26.41	19.42
23	1.1885	37.7	25.81	74.13	<b>27</b> .69	20.53
24	1.1983	39.7	27.03	74.74	<b>29</b> .00	21.68

Sp. Gr. determinations were made at 60° F., compared with water at 60° F. From the Sp. Grs., the corresponding degrees Baumé were calculated by the following formula: Baumé = 145-145/Sp. Gr.

Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

* 66° Baumé = Sp. Gr. 1.8354 = Oil of Vitriol (O. V.). 1 cu. ft. water at 60° F. weighs 62.37 lbs. av. Atomic weights from F. W. Clarke's table of 1901. O = 16.  $H_2SO_4 = 100$  per cent.

> $\% \text{ H}_2\text{SO}_4$  % O. V.  $\%60^\circ$ O. V. = 93.19 = 100.00 = 119.98  $60^\circ$  = 77.67 = 83.35 = 100.00  $50^\circ$  = 62.18 = 66.72 = 80.06

AND H. P. TALBOT

Degrees Baumé.	* Freezing (Melting) Point.	APPROX		BOILING	POINTS
1	F.		50° B,	295° F.	
			60° "	386° "	
0	32.0		61° "	400° "	
1	31.2		62° "	415° "	
2	30.5		63° "	432° "	
3	29.8		64° "	451° "	
4	28.9		65° "	485° "	
5	28.1		66° "	538° "	
6	27.2		RIXED	POINTS	
7	26.3		FIAED	TOINTS	
8	25.1				
9	24.0	Specific Gravity.	Per Cent H ₂ 80 ₄ .	Specific Gravity.	Per Cent H ₂ SO ₄ .
10	22.8				
11	21.5	1.0000	.00	1.5281	62.34
. 12	20.0	1.0048	.71	1.5440	63.79
13	18.3	1.0347	5.14	1.5748	66.51
14	16.6	1.0649	9.48	1.6272	71.00
		1.0992	14.22	1.6679	74.46
15	14.7	1.1353	19.04	1.7044	77.54
16	12.6	1.1736	23.94	1.7258	79.40
17	10.2	1.2105	28.55	1.7472	81.32
18	7.7	1.2513	33.49	1.7700	83.47
19	4.8	1.2951	38.64	1.7959	86.36
20	+ 1.6	1.3441	44.15	1.8117	88.53
21	- 1.8	1.3947	49.52	1.8194	89.75
22	- 6.0	1.4307	53.17	1.8275	91.32
23	-11	1.4667	56.68	1.8354	93.19
24	**	1.4822	58.14	1.000	00.10

Acids stronger than 66° Bé, should have their percentage compositions determined by chemical analysis.

* Calculated from Pickering's results, Jour. of Lon. Ch. Soc., vol. 57, p. 363.

AUTHORITIES — W. C. FERGUSON; H. P. TALBOT.

This table has been approved and adopted as a standard by the Manufacturing Chemists' Association of the United States,

W. H. Bower, Henry Howard, Jas. L. Morgan, Arthur Wyman,

A. G. Rosengarten,

Executive Committee

New York, June 23, 1904.

Degrees Baumé.	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Degrees Twaddell.	Per Cent H ₂ 80 ₄ .	Weight of t Cu. Ft. in Lbs. Av.	Per Cent 0. V.	Pounds 0. V. in r Cubic Poot.
25	1.2083	41.7	28.28	75. <b>3</b> 6	30.34	22.87
26	1.2185	43.7	29.53	76.00	31.69	24.08
27	1.2288	45.8	30.79	76.64	33.04	25.32
28	1.2393	47.9	32.05	77.30	34.39	26.58
29	1.2500	50.0	33.33	77.96	35.76	27.88
30	1.2609	52.2	34.63	78.64	37.16	29.22
31	1.2719	54.4	<b>35</b> . <b>93</b>	79.33	38.55	30.58
32	1.2832	56.6	<b>37.26</b>	80.03	39.98	32.00
33	1.2946	58.9	<b>3</b> 8.58	80.74	41.40	33.42
34	1.3063	61.3	39.92	81.47	42.83	34.90
35	1.3182	63.6	41.27	82.22	44.28	36.41
36	1.3303	66.1	42.63	82.97	45.74	37.95
37	1.3426	68.5	43.99	83.74	47.20	39.53
38	1.3551	71.0	45.35	84.52	48.66	41.13
39	1.3679	73.6	46.72	85.32	50.13	42.77
40	1.3810	76.2	48.10	86.13	51.61	44.45
41	1.3942	78.8	49.47	86.96	53.08	46.16
42	1.4078	81.6	<b>50</b> . <b>87</b>	87.80	54.58	47.92
43	1.4216	84.3	<b>52.26</b>	88.67	56.07	49.72
44	1.4356	87.1	<b>5</b> 3.66	89.54	57.58	51.56
45	1.4500	90.0	55.07	90.44	59.09	53.44
46	1.4646	92.9	56.48	91.35	60.60	55.36
47	1.4796	95.9	<b>57</b> . 90	92.28	62.13	57.33
48	1.4948	99.0	<b>59</b> . <b>32</b>	93.23	63.65	59.34
49	1.5104	102.1	60.75	94.20	65.18	61.40
50	1.5263	105.3	62.18	95.20	66.72	63.52
51	1.5426	108.5	63.66	96.21	68.31	65.72
52	1.5591	111.8	65.13	97.24	69.89	67.96
53	1.5761	115.2	66.6 <b>3</b>	98.30	71.50	70.28
54	1.5934	118.7	68.13	99.38	73.11	72.66
55	1.6111	122.2	69.65	100.48	74.74	75.10
56	1.6292	125.8	71.17	101.61	76.37	77.60
57	1.6477	129.5	72.75	102.77	78.07	80.23
58	1.6667	133.3	<b>74.36</b>	103.95	79.79	82.95
59	1.6860	137.2	75.99	105.16	81.54	85.75

Degrees Baumé.	* Freezing (Melting) Point. *F.	AL	LOWANCE	FOR TEM	PERATUR	E
25	-23					
26	<b>30</b>	At 10°	Bé029° Bé	or .00023	Sp. Gr. =	1° F.
27	-39	" 20°	" .036°	" .0003	4 " =	1° "
28	-49	" 30°	" .035°	" .0003	9 " =	1° "
29	-61	" 40°	" .031°	" .0004	" =	1° "
		" 50°	" .028°	" .0004	5 " =	1° "
30	<b>74</b>	" 60°	" .026°	" .0005	3 " =	1° "
31	-82	" 63°	" .026°	" .0005	7 " =	1° "
32	-96	" 66°	" .0235°	" .′0005	4 " =	1° "
33	<b>-97</b>				•	
34	<b>-91</b>					
35	-81					
36	<b>-70</b>		Pounds		Pounds	
37	60	Per Cent	60° Baumé	Per Cent	50° Baumé	
38	<b>-53</b>	Baumé.	in r Cubic Foot.	50° Baumé.	in 1 Cubic Foot.	
39	<b>-47</b>		1 Cubic Foot.		1 Cubic Foot.	
40	-41	61.93	53.34	77.36	66.63	Ċ
41	<b>-35</b>	63.69	55.39	79.56	69.19	
42	-31	65.50	57.50	81.81	71.83	
43	-27	67.28	59.66	84.05	74.53	
44	-23	69.09	61.86	86.30	77.27	
45	-20	70.90	64.12	88.56	80.10	
46	-14	72.72	66.43	90.83	82.98	
47	-15	74.55	68.79	93.12	85.93	
48	-18	76.37	71.20	95.40	88.94	
49	-22	78.22	73.68	97.70	92.03	
50	-27	80.06	76.21	100.00	95.20	,
51	-33	81.96	78.85	102.38	98.50	
52	<b>-39</b>	83.86	81.54	104.74	101.85	
53	<b>-49</b>	85.79	84.33	107.15	105.33	
54	<b>-59</b>	87.72	87.17	109.57	108.89	
55	۲	89.67	90.10	112.01	112.55	
56	\$	91.63	93.11	114.46	116.30	
57	Below	93.67	96.26	117.00	120.24	
58	🗟	95.74	99.52	119.59	124.31	
59	- 7 ¹	97.84	102.89	122.21	128.52	

Degrees Baumé.	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Degrees Twaddell.	Per Cent H ₂ SO ₄ .	Weight of r Cu. Ft. in Lbs. Av.	Per Cent O. V.	Pounds O. V. in I Cubic Foot.
60	1.7059	141.2	77.67	106.40	83.35	88.68
61	1.7262	145.2	79.43	107.66	85.23	91.76
62	1.7470	149.4	81.30	108.96	87.24	95.06
63	1.7683	153.7	83.34	110.29	89.43	98.63
64	1.7901	158.0	85.66	111.65	91.92	102.63
641	1.7957	159.1	86.33	112.00	92.64	103.75
641	1.8012	160.2	87.04	112.34	<b>93.4</b> 0	104.93
642	1.8068	161.4	87.81	112.69	94.23	106.19
65	1.8125	162.5	88.65	113.05	95.13	107.54
651	1.8182	163.6	89.55	113.40	96.10	108.97
65 <del>]</del>	1.8239	164.8	90.60	113.76	97.22	110.60
651	1.8297	165.9	91.80	114.12	98.51	112.42
66	1.8354	167.1	93.19	114.47	100.00	114.47

## XXXVI. - FUMING SULPHURIC ACID AT 20°

CL. WINKLER

Specific	Total	100 Parts Contain			Specific	Total	100 I	100 Parts Contain			
Gravity.	SO ₃ .	Free SO ₃ *.	H ₂ SO ₄	Acid of 66° B.	Gravity.	80 ₈ .	Free SO ₃ .*	H,504	Acid of 66° B.		
1.835	75.31		92.25	99	1.905	83.57	10.56	89.44	65.68		
1.840	77.38		94.79	90.69	1.910	83.73	11.43	88.57	65.25		
1.845	79.28		97.11	83.08	1915	84.08	13.33	86.67	63.84		
1.850	80.01	1	98.01	80.10	1.920	84.56	15.95	84.05	62.10		
1.855	80.95		99.16	76.38	1.925	85.06	18.67	81.33	59.90		
1.860	81.84	1.54	98.46	72.81	1.930	85.57	21.34	78.66	57.86		
1.865	82.12	2.66	97.34	71.71	1.935	86.23	25.65	74.35	55.21		
1.870	82.41	4.28	95.76	70.53	1.940	86.78	28.03	71.97	53.00		
1.875	82.63	5.44	94.56	69.35	1.945	87.13	29.94	70.06	51.60		
1.880	82.81	6.42	93.58	68.92	1.950	87.41	31.46	63.54	50.48		
1.885	82.97	7.29	92.71	68.27	1.955	87.65	32.77	67.23	49.52		
1.890	83.13	8.16	91.94	67.55	1.960	88.22	35.87	64.13	47.23		
1.895	83.43	9.34	90.66	66.81	1.965	88.92	39.68	60.32	44.42		
1.900	83.48	10.07	89.93	66.24	1.970	89.83	44.64	55.36	40.78		

^{*} This column gives the amount of SO, which may be distilled off.

Degrees Baumé.	* Freezing (Melting) Point.	Per Cent 60° Baumé.	Pounds 60° Baumé in Cubic Foot.	Per Cent 50° Baumé.	Pounds 50° Baumé in Cubic Foot.	
60	+12.6	100.00	106.40	124.91	132.91	
61	27.3	102.27	110.10	127.74	137.52	
62	39.1	104.67	114.05	130.75	142.47	
63	46.1	107.30	118.34	134.03	147.82	
64	46.4	110.29	123.14	137.76	153.81	
641	43.6	111.15	124.49	138.84	155.50	•
641	41.1	112.06	125.89	139.98	157.25	
647	37.9	113.05	127.40	141.22	159.14	
65	33.1	114.14	129.03	142.57	161.17	
651	24.6	115.30	130.75	144.02	163.32	
651	13.4	116.65	132.70	145.71	165.76	
651	- 1	118.19	134.88	147.63	168.48	
66	-29	119.98	137.34	149.87	171.56	

## XXXVII. — SULPHURIC ACID

94-100% H₂SO₄

Ву Н. В. Візнор

The acid used in this table was prepared from Baker and Adamson's c.p. sulphuric acid 95 per cent, which was strengthened to 100 per cent by the addition of fuming sulphuric acid made by distilling fuming acid (70 per cent free SO₄) into a portion of the 95 per cent c.p. acid. The final acid was tested for impurities: residue upon evaporation, chlorine, niter and sulphur dioxide. The only impurity found was a trace of sulphur dioxide (0.001 per cent) which was less than the sensitiveness of the determination.

The analytical and specific gravity determinations, and the allowance for temperature were made in the same manner, and with the same accuracy as in the sulphuric acid table adopted in 1904, the specific gravity 1.8354 and 93.19 per cent H₂SO₄ being taken as a standard.

The actual determinations were made within a few hundredths of a per cent of the points given in the table, the even percentages being calculated by interpolation.

Per Cent H ₂ SO ₄ .	Sp. Gr. at 60° F.,	Allowance for Temperature.
66° Bé. 93.19	1.8354	At 94% 0.00054 sp. gr. = 1° F.
94.00	1.8381	At $96\%$ 0.00053 sp. gr. = 1° F.
95.00	1.8407	At $97.5\%$ 0.00052 sp. gr. = 1° F.
96.00	1.8427	At $100\%$ 0.00052 sp. gr. = 1° F.
97.00	1.8437	
97.50	1.8439	
98.00	1.8437	•
99.00	1.8424	
100.00	1.8391	Digitized by GOOGLE

## XXXVIII.—SULPHURIC ACID

LUNGE AND ISLER

Specific Gravity		by weight cond to	ı liter c	ontains ms	Specific Gravity 15°		by weight ond to		ontains ams
in vacuo	% SO ₃	H₂SO₄	SO ₃	H ₂ SO ₄	in vacuo	so,	% H₃SO₄	SO ₃	H ₃ SO ₄
1.000	0.07	0.09	1	1	1.190,	21.26	26.04	253	310
1.005	0.68	0.83	7	8	1.195	21.78	26.68	260	319
1.010	1.28	1.57	13	16	1.200	22.30	27.32	268	328
1.015	1.88	2.30	19	23	1.205	22.82	27.95	275	337
1.020	2.47	3.03	25	31	1.210	23.33	28.58	282	346
1.025	3.07	3.76	32	39	1.215	23.84	29.21	290	355
1.030	3.67	4.49	38	46	1.220	24.36	29.84	297	364
1.035	4.27	5.23	44	54	1.225	24.88	30,48	305	373
1.040	4.87	5.96	51	62	1.230	25.39	31.11	312	382
1.045	5.45	6.67	57	71	1.235	25.88	31.70	320	391
1.050	6.02	7.37	63	77	1.240	26.35	32.28	327	400
1.055	6.59	8.07	70	85	1.245	26.83	32.86	334	409
1.060	7.16	8.77	76	93	1.250	27.29	33.43	341	418
1.065	7.73	9.47	82	102	1.255	27.76	34.00	348	426
1.070	8.32	10.19	89	109	1.260	28.22	34.57	356	435
1.075	8.90	10.90	96	117	1.265	28.69	35.14	363	444
1.080	9.47	11.60	103	125	1:270	29.15	35.71	370	454
1.085	10.04	12.30	109	133	1.275	29.62	36.29	377	462
1.090	10.60	12.99	116	142	1.280	30.10	36.87	385	472
1.095	11.16	13.67	122	150	1.285	30.57	37.45	393	481
1.100	11.71	14.35	129	158	1.290	31.04	38.03	400	490
1.105	12.27	15.03	136	166	1.295	31.52	38.61	408	500
1.110	12.82	15.71	143	175	1.300	31.99	39.19	416	510
1.115	13.36	16.36	149	183	1.305	32.46	39.77	424	519
1.120	13.89	17.01	156	191	1.310	32.94	40.35	432	529
1.125	14.42	17.66	162	199	1.315	33.41	40.93	439	538
1.130	14.95	18.31	169	207	1.320	33.88	41.50	447	548
1.135	15.48	18.96	176	215	1.325	34.35	42.08	455	557
1.140	16.01	19.61	183	223	1.330	34.80	42.66	462	567
1.145	16.54	20.26	189	231	1.335	35.27	43.20	471	577
1.150	17.07	20.91	196	239	1.340	35.71	43.74	479	586
1.155	17.59	21.55	203	248	1.345	36.14	44.28	486	596
1.160	18.11	22.19	210	257	1.350	-36.58	44.82	494	605
1.165	18.64	22.83	217	266	1.355	37.02	45.35	502	614 624
1.170	19.16	23.47	224	275	1.360	37.45	45.88	509	1
1.175 1.180	19.69 20.21	24.12 24.76	231 238	283 292	1.365	37.89 38.32	46.41	517	633 643
1.180	20.21	24.76	238	301			46.94	525	
1.150	20.13	20.40	240	301	1.375	38.75	47.47	533	653
	<u> </u>		<u> </u>		1	Digitized	by G00	gle	

Specific Gravity 15°	roo parts corres	by weight ond to	ı liter e	ontains ams	Specific Gravity 15°		by weight pond to		ontains ms
in vacuo	% SO ₃	% H ₂ SO₄	SO ₃	H ₂ SO ₄	in vacuo	% SO ₂	% H ₂ SO ₄	SO ₈	H ₂ SO ₄
1.380	39.18	48.00	541	662	1.590	55.18	67.59	877	1075
1.385	39.62	48.53	549	672	1.595	55.55	68.05	886	1085
1.390	40.05	49.06	557	682	1.600	55.93	68.51	89	1096
1.395	40.48	49.59	564	692	1.605	56.30	68.97	904	1107
1.400	40.91	50.11	573	702	1.610	56.68	69.43	913	1118
1.405	41.33	50.63	581	711	1.615	57.05	69.89	921	1128
1.410	41.76	51.15	589	721	1.620	57.40	70.32	930	1139
1.415	42.17	51.66	597	730	1.625	57.75	70.74	938	1150
1.420	42.57	52.15	604	740	1.630	58.09	71.16	947	1160
1.425	42.96	52.63	612	750	1.635	58.43	71.57	955	1170
1.430	43.36	53.11	620	759	1.640	58.77	71.99	964	1181
1.435	43.75	53.59	628	769	1.645	59.10	72.40	972	1192
1.440	44.14	54.07	636	779	1.650	59.45	72.82	981	1202
1.445	44.53	54.55	643	789	1.655	59.78	73.23	989	1212
1.450	44.92	55.03	651	798	1.660	60.11	73.64	998	1222
1.455	45.31	55.50	659	808	1.665	60.46	74.07	1007	1233
1.460	45.69	55.97	667	817	1.670	60.82	74.51	1016	1244
1.465	46.07	56.43	675	827	1.675	61.20	74.97	1025	1256
1.470	46.45	56.90	683	837	1.680	61.57	75.42	1034	1267
1.475	46.83	57.37	691	846	1:685	61.93	75.86	1043	1278
1.480	47.21	57.83	699	856	1.690	62.29	·76.30	1053	1289
1.485	47.57	<b>58.28</b>	707	865	1.695	62.64	76.73	1062	1301
1.490	47.95	58.74	715	876	1.700	63.00	77.17	1071	1312
1.495	48.34	59.22	723	885	1.705	63.35	77.60	1080	1323
1.500	48.73	59.70	731	896	1.710	.63.70	78.04	1089	1334
1.505	49.12	60.18	739	906	1.715	64.07	78.48	1099	1346
1.510	49.51	60.65	748	916	1.720	64.43	78.92	1108	1357
1.515	49.89	61.12	756	926	1.725	64.78	79.36	1118	1369
1.520	50.28	61.59	764	936	1.730	65.14	.79.80	1127	1381
1.525	50.66	62.06	773	946	1.735	65.50	80.24	1136	1392
1.530	51.04	62.53	781	957	1.740	65.86	80.68	1146	1404
1.535	51.43	63.00	789	967	1.745	66.22	81.12	1156	1416
1.540	51.78	63.43	797	977	1.750	66.58	81.56	1165	1427
1.545	52.12	63.85	805	987	1.755	66.94	82.00	1175	1439
1.550	52.46	64.26	813	996	1.760	67.30	82.44	1185	1451
1.555	52.79	64.67	821	1006	1.765	67.65	82.88	1194	1463
1.560	53.12	65.08	829	1015	1.770	68.02	83.32	1204	1475
1.565	53.46	65.49	837	1025	1.775	68.49	83.90	1216	1489
1.570	53.80	65.90	845	1035	1.780	68.98	84.50	1228	1504
1.575	54.13	66.30	853	1044	1.785	69.47	85.10	1240	1519
1.580	54.46	66.71	861	1054	1.790	69.96	85.70	1252	1534
1.585	54.80	67.13	869	1064	1.795	70.46	86.30	1265	1549

Specific Gravity	100 parts by weight correspond to			r liter contains grams			by weight ond to	r liter contains grams	
in vacuo	SÖ ₃	H ₂ SO ₄	SO ₃	H,504	in vacuo	% SO ₂	H ₂ SO ₄	SO ₃	H ₂ SO ₄
1.800	70.94	86.90	1277	1564	1.833	75.72	92.75	1388	1700
1.805	71.50	87.60	1291	1581	1.834	75.96	93.05	1393	1706
1.810	72.08	88.30	1305	1598	1.835	76.27	93.43	1400	1713
1.815	72.69	89.05	1319	1621	1.836	76.57	93.80	1405	1722
1.820	73.51	90.05	1338	1639	1.837	76.90	94.20	1412	1730
1.821	73.63	90.20	1341	1643	1.838	77.23	94.60	1419	1739
1.822	73.80	90.40	1345	1647	1.839	77.55	95.00	1426	1748
1.823	73.96	90.60	1348	1651	1.840	78.04	95.60	1436	1759
1.824	74.12	09.80	1352	1656	1.8405	78.33	95.95	1441	1765
1.825	74.29	91.00	1356	1661	1.8410	79.19	97.00	1458	1786
1.826	74.49	91.25	1360	1666	1.8415	79.76	97.70	1469	1799
1.827	74.69	91.50	1364	1671	1.8410	80.16	98.20	1476	1808
1.828	74.86	91.70	1368	1676	1.8405	80.57	98.70	1483	1816
1.829	75.03	91.90	1372	1681	1.8400	80.98	99.20	1490	1825
1.830	75.19	92.10	1376	1685			99.45	1494	1830
1.831	75.35	92.30	1380	1690	1.8390		99.70	1497	1834
1.832	75.53	92.52	1384		1.8385		99.95	1500	1 '

## XXXIX. - FUMING SULPHURIC ACID

FREE SO₂, TOTAL SO₂ AND EQUIVALENT VALUES IN TERMS OF 100%, 98% AND 93.19% H₂SO₄

Ву Н. В. Візнор

Total SO	com	tual posi- on.		Equiv	alents.		con	tual iposi- on.		Equiv	alents.	
1       99       81.82       100.23       102.27       107.55       26       74       86.41       105.85       108.01       113.5         2       98       82.00       100.45       102.50       107.79       27       73       86.59       106.07       108.24       113.8         3       97       82.18       100.67       102.73       108.03       28       72       86.78       106.07       108.24       113.8         4       96       82.37       100.90       102.96       108.28       29       71       86.96       106.05       108.70       114.0         5       95       82.55       101.13       103.19       108.52       30       70       87.14       106.75       108.93       114.5         6       94       82.73       101.35       103.65       109.00       32       68       87.51       107.20       109.39       115.0         8       92       83.10       101.80       103.88       109.24       33       67       87.69       107.42       109.62       115.2         10       90       83.47       102.25       104.34       109.72       35       65       88.06	Per Cent Free SO ₂ .	Per Cent H,SO4.	Total SO,	Cent	Cent	93.19 Per Cent	Per Cent Free SO ₃ .	Per Cent H ₂ SO ₄ .		Cent	Cent	H ₂ SO ₄ 93.19 Per Cent 66° B.
2 98 82.00 100.45 102.50 107.79 27 73 86.59 106.07 108.24 113.8   3 97 82.18 100.67 102.73 108.03 28 72 86.78 106.30 108.47 114.0   4 96 82.37 100.90 102.96 108.28 29 71 86.96 106.53 108.70 114.3   5 95 82.55 101.13 103.19 108.52 30 70 87.14 106.75 108.93 114.5   6 94 82.73 101.35 103.42 108.76 31 69 87.33 106.98 109.16 114.7   7 93 82.92 101.58 103.65 109.00 32 68 87.51 107.20 109.39 115.0   8 92 83.10 101.80 103.88 109.24 33 67 87.69 107.42 109.62 115.2   9 91 83.29 102.08 104.11 109.48 34 66 87.88 107.65 109.85 115.5   10 90 83.47 102.25 104.34 109.72 35 65 88.06 107.87 110.08 115.7   11 89 83.65 102.47 104.87 109.96 36 64 88.24 108.10 110.31 116.0   12 88 83.84 102.70 104.80 110.21 37 63 88.43 108.33 110.54 116.2   13 87 84.02 102.92 105.03 110.45 38 62 88.61 108.55 110.76 116.4   86 84.20 103.15 105.26 110.69 39 61 88.80 108.78 110.99 116.7   15 85 84.39 103.38 105.49 110.93 40 60 88.98 109.00 111.22 116.9   16 84 84.57 103.60 105.71 111.17 41 59 89.16 109.22 111.45 117.2   17 83 84.75 103.82 105.94 111.41 42 58 89.35 109.00 111.22 116.9   18 85.12 104.27 106.40 111.90 44 56 89.71 109.90 112.14 117.9   20 80 85.31 104.50 106.63 112.14 45 55 89.90 110.13 112.37 118.1   21 79 85.49 104.73 106.86 112.38 46 54 90.08 110.35 112.60 118.4   22 78 85.67 104.95 107.09 112.62 47 53 90.27 110.58 112.83 118.6   23 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9	0	100	81.63	100.00	102.04	107.31	25	75	86.22	105.62	107.78	113.34
3       97       82.18 100.67 102.73 108.03       28       72       86.78 106.30 108.47 114.0         4       96       82.37 100.90 102.96 108.28       29       71       86.96 106.53 108.70 114.3         5       95       82.55 101.13 103.19 108.52       30       70       87.14 106.75 108.93 114.5         6       94       82.73 101.35 103.42 108.76       31       69       87.33 106.98 109.16 114.7         7       93       82.92 101.58 103.65 109.00       32       68       87.51 107.20 109.39 115.0         8       92       83.10 101.80 103.88 109.24       33       67       87.69 107.42 109.39 115.5         9       91       83.29 102.08 104.11 109.48       34       66       87.88 107.65 109.85 115.5         10       90       83.47 102.25 104.34 109.72       35       65       88.06 107.87 110.08 115.7         11       89       83.65 102.47 104.57 109.96       36       64       88.24 108.10 110.31 116.0         12       88       83.84 102.70 104.80 110.21       37       63       88.43 108.33 110.54 116.2         13       87       84.02 102.92 105.03 110.45       38       62       88.61 108.55 110.76 116.4         14       86       84.39 103.38 105.49 110.93       40       60	1	99	81.82	100.23	102.27	107.55	26	74	86.41	105.85	108.01	113.59
4       96       82.37 100.90 102.96 108.28       29       71       86.96 106.53 108.70 114.3         5       95       82.55 101.13 103.19 108.52       30       70       87.14 106.75 108.93 114.5         6       94       82.73 101.35 103.42 108.76       31       69       87.33 106.98 109.16 114.7         7       93       82.92 101.58 103.65 109.00       32       68       87.51 107.20 109.39 115.0         8       92       83.10 101.80 103.88 109.24       33       67       87.69 107.42 109.62 115.2         9       91       83.29 102.08 104.11 109.48       34       66       87.88 107.65 109.85 115.5         10       90       83.47 102.25 104.34 109.72       35       65       88.06 107.87 110.08 115.7         11       89       83.65 102.47 104.57 109.96       36       64       88.24 108.10 110.31 116.0         12       88       83.84 102.70 104.80 110.21       37       63       88.43 108.33 110.54 116.2         13       87       84.02 102.92 105.03 110.45       38       62       88.61 108.55 110.76 116.4         14       86       84.20 103.15 105.26 110.69       39       61       88.89 109.00 111.22 116.9         15       85       84.39 103.38 105.49 110.93       40       60	2	98	82.00	100.45	102.50	107.79	27	73	86.59	106.07	108.24	113.83
5       95       82.55       101.13       103.19       108.52       30       70       87.14       106.75       108.93       114.5         6       94       82.73       101.35       103.42       108.76       31       69       87.33       106.98       109.16       114.7         7       93       82.92       101.58       103.65       109.00       32       68       87.51       107.20       109.39       115.0         8       92       83.10       101.80       103.88       109.24       33       67       87.69       107.42       109.62       115.2         9       91       83.29       102.08       104.11       109.48       34       66       87.88       107.65       109.85       115.5         10       90       83.47       102.25       104.34       109.72       35       65       88.06       107.87       110.08       115.7         11       89       83.65       102.47       104.57       109.96       36       64       88.24       108.10       110.31       116.0         12       88       83.84       102.70       104.80       110.21       37       63       88.43	3	97	82.18	100.67	102.73	108.03	28	72	86.78	106.30	108.47	114.07
6 94 82.73 101.35 103.42 108.76 31 69 87.33 106.98 109.16 114.7 7 93 82.92 101.58 103.65 109.00 32 68 87.51 107.20 109.39 115.0 8 92 83.10 101.80 103.88 109.24 9 91 83.29 102.08 104.11 109.48 34 66 87.88 107.65 109.85 115.5 10 90 83.47 102.25 104.34 109.72 35 65 88.06 107.87 110.08 115.7 11 89 83.65 102.47 104.57 109.96 36 64 88.24 108.10 110.31 116.0 12 88 83.84 102.70 104.80 110.21 37 63 88.43 108.33 110.54 116.2 13 87 84.02 102.92 105.03 110.45 38 62 88.61 108.55 110.76 116.4 14 86 84.20 103.15 105.26 110.69 39 61 88.80 108.78 110.99 116.7 15 85 84.39 103.38 105.49 110.93 40 60 88.98 109.00 111.22 116.9 16 84 84.57 103.60 105.71 111.17 41 59 89.16 109.22 111.45 117.2 17 83 84.75 103.82 105.94 111.41 42 58 89.35 109.45 111.68 117.4 18 82 84.94 104.05 106.17 111.65 43 57 89.53 109.67 111.91 117.6 19 81 85.12 104.27 106.40 111.90 44 56 89.71 109.90 112.14 117.9 20 80 85.31 104.50 106.63 112.14 45 55 89.90 110.13 112.37 118.17 17 9 85.49 104.73 106.86 112.38 46 54 90.08 110.35 112.80 118.6 122 78 85.67 104.95 107.09 112.62 47 53 90.27 110.58 112.83 118.6 123 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9	4	96	82.37	100.90	102.96	108.28	29	71	86.96	106.53	108.70	114.31
7 93 82.92 101.58 103.65 109.00 32 68 87.51 107.20 109.39 115.0 8 92 83.10 101.80 103.88 109.24 33 67 87.69 107.42 109.62 115.2 9 91 83.29 102.08 104.11 109.48 34 66 87.88 107.65 109.85 115.5 10 90 83.47 102.25 104.34 109.72 35 65 88.24 108.10 110.31 116.0 12 88 83.84 102.70 104.80 110.21 37 63 88.43 108.33 110.54 116.2 13 87 84.02 102.92 105.03 110.45 38 62 88.61 108.55 110.76 116.4 14 86 84.20 103.15 105.26 110.69 39 61 88.80 108.78 110.99 116.7 15 85 84.39 103.38 105.49 110.93 40 60 88.98 109.00 111.22 116.9 16 84 84.57 103.60 105.71 111.17 41 59 89.16 109.22 111.45 117.2 17 83 84.75 103.82 105.94 111.41 42 58 89.35 109.45 111.68 117.4 18 82 84.94 104.05 106.17 111.65 43 57 89.53 109.67 111.91 117.6 19 81 85.12 104.27 106.40 111.90 44 56 89.71 109.90 112.14 117.9 19 81 85.49 104.73 106.86 112.38 46 54 90.08 110.35 112.60 118.4 22 78 85.67 104.95 107.09 112.62 47 53 90.27 110.58 112.83 118.6 23 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9	5	95	82.55	101 . 13	103.19	108.52		70	87.14	106.75	108.93	114.55
8       92       83.10 101.80 103.88 109.24       33       67       87.69 107.42 109.62 115.2         •9       91       83.29 102.08 104.11 109.48       34       66       87.88 107.65 109.85 115.5         10       90       83.47 102.25 104.34 109.72       35       65       88.06 107.87 110.08 115.7         11       89       83.65 102.47 104.57 109.96       36       64       88.24 108.10 110.31 116.0         12       88       83.84 102.70 104.80 110.21       37       63       88.43 108.33 110.54 116.2         13       87       84.02 102.92 105.03 110.45       38       62       88.61 108.55 110.76 116.4         14       86       84.20 103.15 105.26 110.69       39       61       88.80 108.78 110.99 116.7         15       85       84.39 103.38 105.49 110.93       40       60       88.98 109.00 111.22 116.9         16       84       84.57 103.60 105.71 111.17       41       59       89.16 109.22 111.45 117.2         17       83       84.75 103.82 105.94 111.41       42       58       89.35 109.45 111.68 117.4         18       82       84.94 104.05 106.17 111.65       43       57       89.53 109.67 111.91 117.6         19       81       85.31 104.50 106.63 112.14       45       55 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-											
9       91       83.29       102.08       104.11       109.48       34       66       87.88       107.65       109.85       115.5         10       90       83.47       102.25       104.34       109.72       35       65       88.06       107.87       110.08       115.7         11       89       83.65       102.47       104.87       109.96       36       64       88.24       108.10       101.03       116.0         12       88       83.84       102.70       104.80       110.21       37       63       88.43       108.33       110.54       116.2         13       87       84.02       102.92       105.03       110.45       38       62       88.61       108.55       110.76       116.4         14       86       84.20       103.15       105.26       110.69       39       61       88.80       108.78       110.99       116.76         15       85       84.39       103.38       105.49       110.93       40       60       88.98       109.00       111.22       116.9         16       84       84.57       103.82       105.94       111.41       42       58       89.35 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 1</td> <td></td> <td></td> <td></td> <td></td> <td></td>							- 1					
10       90       83.47 102.25 104.34 109.72 11       35       65       88.06 107.87 110.08 115.7 110.08 115.7 111.08 115.7 109.96 36 64 88.24 108.10 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 116.0 110.31 110.31 116.0 110.31 110.31 116.0 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 110.31 1	8	92	83.10	101.80	103.88	109.24	33	67	87.69	107.42	109.62	115.28
11       89       83.65 102.47 104.57 109.96       36       64       88.24 108.10 110.31 116.0         12       88       83.84 102.70 104.80 110.21       37       63       88.43 108.33 110.54 116.2         13       87       84.02 102.92 105.03 110.45       38       62       88.61 108.55 110.76 116.4         14       86       84.20 103.15 105.26 110.69       39       61       88.80 108.78 110.99 116.7         15       85       84.39 103.38 105.49 110.93       40       60       88.98 109.00 111.22 116.9         16       84       84.57 103.60 105.71 111.17       41       59       89.16 109.22 111.45 117.2         17       83       84.75 103.82 105.94 111.41       42       58       89.35 109.45 111.68 117.4         18       82       84.94 104.05 106.17 111.65       43       57       89.53 109.67 111.91 117.6         19       81       85.12 104.27 106.40 111.90       44       56       89.71 109.90 112.14 117.9         20       80       85.31 104.50 106.63 112.14       45       55       89.90 110.13 112.37 118.1         21       79       85.49 104.73 106.86 112.38       46       54       90.08 110.35 112.60 118.4         22       78       85.67 104.95 107.09 112.62 47       53       90	• 9	91	83.29	102.08	104.11	109.48	34	66	87.88	107.65	109.85	115.52
12 88 83.84 102.70 104.80 110.21 37 63 88.43 108.33 110.54 116.2 13 87 84.02 102.92 105.03 110.45 38 62 88.61 108.55 110.76 116.4 14 86 84.20 103.15 105.26 110.69 39 61 88.80 108.78 110.99 116.7 15 85 84.39 103.38 105.49 110.93 40 60 88.98 109.00 111.22 116.9 16 84 84.57 103.60 105.71 111.17 41 59 89.16 109.22 111.45 117.2 17 83 84.75 103.82 105.94 111.41 42 58 89.35 109.45 111.68 117.4 18 82 84.94 104.05 106.17 111.65 43 57 89.53 109.67 111.91 117.6 19 81 85.12 104.27 106.40 111.90 44 56 89.71 109.90 112.14 117.9 19 81 85.49 104.73 106.63 112.14 45 55 89.90 110.13 112.37 118.1 12 79 85.49 104.73 106.86 112.38 46 54 90.08 110.35 112.60 118.4 122 78 85.67 104.95 107.09 112.62 47 53 90.27 110.58 112.83 118.6 123 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9		90	83.47	102.25	104.34	109.72		65	88.06	107.87	110.08	115.76
13 87 84.02 102.92 105.03 110.45 38 62 88.61 108.55 110.76 116.4 14 86 84.20 103.15 105.26 110.69 39 61 88.80 108.78 110.99 116.7 15 85 84.39 103.38 105.49 110.93 40 60 88.98 109.00 111.22 116.9 16 84 84.57 103.60 105.71 111.17 41 59 89.16 109.22 111.45 117.2 17 83 84.75 103.82 105.94 111.41 42 58 89.35 109.45 111.68 117.4 18 82 84.94 104.05 106.17 111.65 43 57 89.53 109.67 111.91 117.6 19 81 85.12 104.27 106.40 111.90 44 56 89.71 109.90 112.14 117.9 19 81 85.49 104.73 106.86 112.38 46 54 90.08 110.35 112.60 118.4 122 78 85.67 104.95 107.09 112.62 47 53 90.27 110.58 112.83 118.6 123 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9		89	83.65	102.47	104.57	109.96			88.24	108.10	110.31	116.00
14     86     84.20     103.15     105.26     110.69     39     61     88.80     108.78     110.99     116.7       15     85     84.39     103.38     105.49     110.93     40     60     88.98     109.00     111.22     116.9       16     84     84.57     103.60     105.71     111.17     41     59     89.16     109.22     111.45     117.2       17     83     84.75     103.82     105.94     111.41     42     58     89.35     109.45     111.68     117.4       18     82     84.94     104.05     106.17     111.65     43     57     89.53     109.67     111.91     117.6       19     81     85.12     104.27     106.40     111.90     44     56     89.71     109.90     112.14     117.9       20     80     85.31     104.50     106.63     112.14     45     55     89.90     110.13     112.37     118.1       21     79     85.49     104.73     106.86     112.38     46     54     90.08     110.35     112.60     118.4       22     78     85.67     104.95     107.09     112.62     47     53 <t< td=""><td></td><td></td><td>83.84</td><td>102.70</td><td>104.80</td><td>110.21</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			83.84	102.70	104.80	110.21						
15 85 84.39 103.38 105.49 110.93 40 60 88.98 109.00 111.22 116.9 16 84 84.57 103.60 105.71 111.17 41 59 89.16 109.22 111.45 117.2 17 83 84.75 103.82 105.94 111.41 42 58 89.35 109.45 111.68 117.4 18 82 84.94 104.05 106.17 111.65 43 57 89.53 109.67 111.91 117.6 19 81 85.12 104.27 106.40 111.90 44 56 89.71 109.90 112.14 117.9 20 80 85.31 104.50 106.63 112.14 45 55 89.90 110.13 112.37 118.1 12 79 85.49 104.73 106.86 112.38 46 54 90.08 110.35 112.60 118.4 22 78 85.67 104.95 107.09 112.62 47 53 90.27 110.58 112.83 118.6 23 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9	13	87	84.02	102.92	105.03	110.45	38	62	88.61	108.55	110.76	116.48
16     84     84.57 103.60 105.71 111.17     41     59     89.16 109.22 111.45 117.2       17     83     84.75 103.82 105.94 111.41     42     58     89.35 109.45 111.68 117.4       18     82     84.94 104.05 106.17 111.65     43     57     89.53 109.67 111.91 117.6       19     81     85.12 104.27 106.40 111.90     44     56     89.71 109.90 112.14 117.9       20     80     85.31 104.50 106.63 112.14     45     55     89.90 110.13 112.37 118.1       21     79     85.49 104.73 106.86 112.38     46     54     90.08 110.35 112.60 118.4       22     78     85.67 104.95 107.09 112.62     47     53     90.27 110.58 112.83 118.6       23     77     85.86 105.18 107.32 112.86 48     52     90.45 110.80 113.06 118.9	14	86	84.20	103.15	105. <b>2</b> 6	110.69	39	61	88.80	108.78	110.99	116.73
17     83     84.75     103.82     105.94     111.41     42     58     89.35     109.45     111.68     117.4       18     82     84.94     104.05     106.17     111.65     43     57     89.53     109.67     111.91     117.6       19     81     85.12     104.27     106.40     111.90     44     56     89.71     109.90     112.14     117.9       20     80     85.31     104.50     106.63     112.14     45     55     89.90     110.13     112.37     118.1       21     79     85.49     104.73     106.86     112.38     46     54     90.08     110.35     112.60     118.4       22     78     85.67     104.95     107.09     112.62     47     53     90.27     110.58     112.83     118.6       23     77     85.86     105.18     107.32     112.86     48     52     90.45     110.80     113.06     118.9	15	85	84.39	103.38	105.49	110.93	40	60	88.98	109.00	111.22	116.97
18     82     84.94     104.05     106.17     111.65     43     57     89.53     109.67     111.91     117.6       19     81     85.12     104.27     106.40     111.90     44     56     89.71     109.90     112.14     117.9       20     80     85.31     104.50     106.63     112.14     45     55     89.90     110.13     112.37     118.1       21     79     85.49     104.73     106.86     112.38     46     54     90.08     110.35     112.60     118.4       22     78     85.67     104.95     107.09     112.62     47     53     90.27     110.58     112.83     118.6       23     77     85.86     105.18     107.32     112.86     48     52     90.45     110.80     113.06     118.9	16	84					41	59	89.16	109.22	111.45	117.21
19 81 85.12 104.27 106.40 111.90 44 56 89.71 109.90 112.14 117.9 20 80 85.31 104.50 106.63 112.14 45 55 89.90 110.13 112.37 118.1 21 79 85.49 104.73 106.86 112.38 46 54 90.08 110.35 112.60 118.4 22 78 85.67 104.95 107.09 112.62 47 53 90.27 110.58 112.83 118.6 23 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9	17	83	84.75	103.82	105.94	111.41	·42	58				
20 80 85.31 104.50 106.63 112.14 45 55 89.90 110.13 112.37 118.1 21 79 85.49 104.73 106.86 112.38 46 54 90.08 110.35 112.60 118.4 22 78 85.67 104.95 107.09 112.62 47 53 90.27 110.58 112.83 118.6 23 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9	18	82	84.94	104.05	106.17	111.65	43	57	89.53	109.67	111.91	117.69
21 79 85.49 104.73 106.86 112.38 46 54 90.08 110.35 112.60 118.4 22 78 85.67 104.95 107.09 112.62 47 53 90.27 110.58 112.83 118.6 23 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9	19	81	85.12	104.27	106.40	111.90	44	56				
21	20	80	85.31	104.50	106.63	112.14	45	55	89.90	110.13	112.37	118.17
23 77 85.86 105.18 107.32 112.86 48 52 90.45 110.80 113.06 118.9	21	79	85.49	104.73	106.86	112.38	46	54	90.08	110.35	112.60	118.41
1 11   00:00 200:20 201:02	22	78	85.67	104.95	107.09	112.62	47	53	90.27	110.58	112.83	118.66
24 76 86 04105 40107 55113 10 40 51 00 63111 09112 90110 1	23	77	85.86	105.18	107.32	112.86	48	52	90.45	110.80	113.06	118.90
21   10   00.01   01   01   01   01   01	24	76	86.04	105.40	107.55	113.10	49	51	90.63	111.02	113.29	119.14

Digitized by GOOGLE

com	tual posi- on.		Equiv	alents.		con	tual iposi- ion.	Equivalents.			
Per Cent Free SO ₃ .	Per Cent H,SO.	Total SO ₃ .	100 Per Cent H ₂ SO ₄ .	98 Per Cent H ₂ SO ₄ .	H ₂ SO ₄ 93.19 Per Cent 66° B.	Per Cent Free SO ₃ .	Per Cent H,SO,	Total SO ₃ .	100 Per Cent H ₃ SO ₄ .	98 Per Cent H ₂ SO ₄ .	H ₂ SO ₄ 93.19 Per Cent 66° B.
50	50	90.82	111.25	113.52	119.38	75	25	95.41	116.88	119.26	125.42
51	49	91.00	111.48	113.75	119.62	76	24	95.59	117.10	119.49	125.66
52	48		111.70			77	23		117.33		
53	47		111.93			78	22	1	117.55		
54	46	91.55	112.15	114.44	120.35	79	21	96.14	117.77	1 <b>20</b> .18	126.38
55	45	91.73	112.37	114.67	120.59	80	20	96.33	118.00	120.41	126.62
56	44	91.92	112.60	114.90	120.83	81	19	96.51	118.22	120.64	<b>126</b> .86
57	43	92.10	112.82	115.13	121.07	82	18	96.69	118.45	120.87	127.11
58	42	92.29	113.05	115.36	121.31	83	17	96.88	118.68	121.10	127.35
59	41	92.47	113.28	115.59	121.55	84	16	97.06	118.90	121.23	127.59
60	40	92.65	113.50	115.82	121.79	85	15	97.25	119.13	121.56	127.83
61	39	92.84	113.73	116.05	122.04	86	14	97.43	119.35	121.79	128.07
62	38		113.95			87	13		119.57		
63	37		114.17			88	12		119.80		
64	36	93.39	114.40	116.74	122.76	89	11	97.98	120.03	1 <b>22</b> .48	128.80
65	35	93.57	114.62	116.96	123.00	90	10	98.16	120.25	122.70	129.04
66	34	93.76	114.85	117.19	123.24	91	9	98.35	120.48	122.93	129.28
67	33	93.94	115.08	117.42	123.49	92	8	98.53	120.70	123.16	129.52
68	<b>32</b>	94.12	115.30	117.65	123.73	93	7	98.71	120.92	123.39	129.76
69	31	94.31	115.53	117.88	123.97	94	6	98.90	121.15	123.62	130.00
70	30	94.49	115.75	118.11	124.21	95	5	99.08	121.37	123.85	130.25
71	29	94.67	115.97	118.34	124.45	96	4	99.27	121.60	124.08	130.49
72	28	94.86	116.20	118.57	124.69	97	3	99.45	121.83	124.31	130.73
73	27	95.04	116.42	118.80	124.93	98	2	99.63	122.05	124.54	130.97
74	26	95.22	116.65	119.03	125.18	99	1	99.82	122.28	124.77	131.21
					`	100	0	100.00	122.50	125.00	131.45

# XL. - NITRIC ACID

By W. C. FERGUSON

-	Sp. Gr	1	<del></del>		Sp. Gr.		
Degrees Baumé.	Sp. Gr. 60° 60° F.	Degrees Twaddell.	Per Cent HNO ₈ .	Degrees Baumé.	60° F.	Degrees Twaddell.	Per Cent HNO ₃ .
10.00	1.0741	14.82	12.86	${21.25}$	1.1718	34.36	28.02
10.25	1.0761	15.22	13.18	21.50	1.1741	34.82	28.36
10.50	1.0781	15.62	13.49	21.75	1.1765	35.30	28.72
10.75	1.0801	16.02	13.81	22.00	1.1789	35.78	29.07
11.00	1.0821	16.42	14.13	22.25	1.1813	36.26	29.43
11.25	1.0841	16.82	14.44	22.50	1.1837	36.74	29.78
11.50	1.0861	17.22	14.76	22.75	1.1861	37.22	30.14
11.75	1.0881	17.62	15.07	23.00	1.1885	37.70	30.49
12.00	1.0902	18.04	15.41	23.25	1.1910	38.20	30.86
12.25	1.0922	18.44	15.72	23.50	1.1934	38.68	31.21
12.50	1.0943	18.86	16.05	23.75	1.1959	39.18	31.58
12.75	1.0964	19.28	16.39	24.00	1.1983	39.66	31.94
13.00	1.0985	19.70	16.72	24.25	1.2008	40.16	32.31
13.25	1.1006	20.12	17.05	24.50	1.2033	40.66	32.68
13.50	1.1027	20.54	17.38	24.75	1.2058	41.16	33.05
13.75	1.1048	20.96	17.71	25.00	1.2083	41.66	33.42
14.00	1.1069	21.38	18.04	25.25	1.2109	42.18	33.80
14.25	1.1090	21.80	18.37	<b>25</b> .50	1.2134	42.68	34.17
14.50	1.1111	22.22	18.70	25.75	1.2160	43.20	34.56
14.75	1.1132	22.64	19.02	26.00	1.2185	43.70	34.94
15.00	1.1154	23.08	19.36	26.25	1.2211	44.22	35.33
15.25	1.1176	23.52	19.70	26.50	1.2236	44.72	35.70
15.50	1.1197	23.94	20.02	26.75	1.2262	45.24	36.09
15.75	1.1219	24.38	20.36	27.00	1.2288	45.76	36.48
16.00	1.1240	24.80	20.69	27.25	1.2314	46.28	36.87
16.25	1.1262	25.24	21.03	27.50	1.2340	46.80	37.26
16.50	1.1284	25.68	21.36	27.75	1.2367	47.34	37.67
16.75	1.1306	26.12	21.70	28.00	1.2393	47.86	38.06
17.00	1.1328	26.56	22.04	28.25	1.2420	48.40	38.46
17.25	1.1350	27.00	22.38	28.50	1.2446	48.92	38.85
17.50	1.1373	27.46	22.74	28.75	1.2473	49.46	39.25
17.75	1.1395	27.90	23.08	29.00 29.25	1.2500 1.2527	50.00	39.66
18.00	1.1417 1.1440	28.34	$23.42 \\ 23.77$	29.25	1.2554	50.54 51.08	40.06 40.47
18.25	1.1440	28.80 29.24	24.11	29.75	1.2582	51.64	40.47
18.50 18.75	1.1402	29.70	24.11	30.00	1.2609	52.18	41.30
19.00	1.1400	30.16	24.47	30.25	1.2637	52.74	41.72
19.00	1.1508	30.10	25.18	30.20	1.2664	53.28	42.14
19.25	1.1554	31.08	25.53	30.75	1.2692	53.84	42.14
19.50	1.1554	31.54	25.88	31.00	1.2092	54.38	43.00
20.00	1.1600	32.00	26.24	31.25	1.2719	54.94	43.44
$\frac{20.00}{20.25}$	1.1624	32.48	26.24	31.50	1.2747	55.50	43.44
20.25	1.1624	32.48	26.96	31.75	1.2804	56.08	44.34
20.50 $20.75$	1.1671	33.42	27.33	32.00	1.2832	56.64	44.78
21.00	1.1694	33.88	27.67	32.25	1.2861		
41.00	1.1054	99.00	21.07	34.40	1.2001	01.44	40.24

Degrees Baumé.	Sp. Gr. 60° 60° F.	Degrees Twaddell.	Per Cent HNO ₂ .	Degrees Baumé.	Sp. Gr. 60° F.	Degrees Twaddell.	Per Cent HNO ₃ .
32.50	1.2889	57.78	45.68	40.75	1.3909	78.18	63.48
<b>32.75</b>	1.2918	58.36	46.14	41.00	1.3942	78.84	64.20
33.00	1.2946	58.92	46.58	41.25	1.3976	79.52	64.93
33.25	1.2975	59.50	47.04	41.50	1.4010	80.20	65.67
33.50	1.3004	60.08	47.49	41.75	1.4044	80.88	66.42
<b>3</b> 3.75	1.3034	60.68	47.95	42.00	1.4078	81.56	67.18
34.00	1.3063	61.26	48.42	42.25	1.4112	82.24	67.95
34.25	1.3093	61.86	48.90	42.50	1.4146	82.92	68.73
<b>34</b> . <b>5</b> 0	1.3122	62.44	49.35	42.75	1.4181	83.62	69.52
<b>34</b> .75	1.3152	63.04	49.83	43.00	1.4216	84.32	70.33
<b>35.00</b>	1.3182	63.64	50.32	43.25	1.4251	85.02	71.15
<b>35.25</b>	1.3212	64.24	50.81	43.50	1.4286	85.72	71.98
<b>3</b> 5. <b>5</b> 0	1.3242	64.84	51.30	43.75	1.4321	86.42	72.82
<b>3</b> 5.75	1.3273	65.46	51.80	44.00	1.4356	87.12	<u>73.</u> 67
36.00	1.3303	66.06	52.30	44.25	1.4392	87.84	74.53
36.25	1:3334	66.68	52.81	44.50	1.4428	88.56	75.40
<b>3</b> 6.50	1.3364	67.28	53.32	44.75	1.4464	89.28	76.28
36.75	1.3395	67.90	53.84	45.00	1.4500	90.00	77.17
37.00	1.3426	68.52	54.36	45.25	1.4536	90.72	<b>78.07</b>
37.25	1.3457	69.14	54.89	45.50	1.4573	91.46	79.03
<b>37</b> .50	1.3488	69.76	55.43	45.75	1.4610	92.20	80.04
37.75	1.3520	70.40	55.97	46.00	1.4646	92.92	81.08
38.00	1.3551	71.02	56.52	46.25	1.4684	93.68	82.18
38.25	1.3583	71.66	57.08	46.50	1.4721	94.42	83.33
<b>3</b> 8.50	1.3615	72.30	<b>57</b> . <b>6</b> 5	46.75	1.4758	95.16	84.48
38.75	1.3647	72.94	58.23	47.00	1.4796	95.92	85.70
<b>39</b> .00	1.3679	73.58	58.82	47.25	1.4834	96.68	86.98
39.25	1.3712	74.24	59.43	47.50	1.4872	97.44	88.32
39.50	1.3744	74.88	60.06	47.75	1.4910	98.20	89.76
39.75	1.3777	75.54	60.71	48.00	1.4948	98.96	91.35
40.00	1.3810	76.20	61.38	48.25	1.4987	99.74	93.13
40.25	1.3843	76.86	62.07	48.50	1.5026	100.52	95.11
40.50	1.3876	77.52	62.77			'	

Specific Gravity determinations were made at 60° F., compared with water at 60° F. From the Specific Gravities, the corresponding degrees Baumé were calculated by the lowing formula: following formula: Baumé == 145

Sp. Gr. Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901.

- 48.5° Bé. - 1/17° Bé. or

#### ALLOWANCE FOR TEMPERATURE:

AUTHORITY - W. C. FERGUSON.

This table has been approved and adopted as a Standard by the Manufacturing Chemists' Association of the United States.

JAS. L. MORGAN W. H. BOWER. HENRY HOWARD ARTHUR WYMAN. A. G. ROSENGARTEN, Executive Committee

.00084 "

New York, May 14, 1903.

# XLI.—NITRIC ACID

## LUNGE AND REY

Specific Gravity 15°	100 parts	by weight tain		r con- grams	Specific Gravity 15°	100 parts	by weight tain	r liter con- tains grams	
in vacuo	% N ₂ O ₅	HNO,	N ₂ O ₅	HNO ₃	in vacuo	% N ₂ O ₅	HNO ₃	N ₂ O ₅	HNO ₈
1.000	0.08	0.10	1	1	1.195	27.10	31.62	324	378
1.005	0.85	1.00	8	10	1.200	27.74	32.36	333	388
1.010	1.62	1.90	16	19	1.205	28.36	33.09	342	399
1.015	2.39	2.80	24	28	1.210	28.99	33.82	351	409
1.020	3.17	3.70	33	38	1.215	29.61	34.55	360	420
1.025	3.94	4.60	40	47	1.220	30.24	35.28	369	430
1.030	4.71	5.50	49	57	1.225	30.88	36.03	378	441
1.035	5.47	6.38	57	66	1.230	31.53	36.78	387	452
1.040	6.22	7.26	64	75	1.235	32.17	37.53	397	463
1.045	6.97	8.13	73	85	1.240	32.82	38.29	407	475
1.050	7.71	8.99	81	94	1.245	33.47	39.05	417	486
1.055	8.43	9.84	89	104	1.250	34.13	39.82	427	498
1.060	9.15	10.68	97	113	1.255	34.78	40.58	437	509
1.065	9.87	11.51	105	123	1.260	35.44	41.34	447	521
1.070	10.57	12.33	113	132	1.265	36.09	42.10	457	533
1.075	11.27	. 13.15	121	141	1.270	36.75	42.87	467	544
1.080	11.96	13.95	129	151	1.275	37.41	43.64	477	556
1.085	12.64	14.74	137	160	1.280	38.07	44.41	487	568
1.090	13.31	15.53	145	169	1.285	38.73	45.18	498	581
1.095	13.99	16.32	153	179	1.290	39.39	45.95	508	593
1.100	14.67	17.11	161	188	1.295	40.05	46.72	519	605
1.105	15.34	17.89	170	198	1.300	40.71	47.49	529	617
1.110	16.00	18.67	177	207	1.305	41.37	48.26	540	630
1.115	16.67	19.45	186	217	1.310	42.06	49.07	551	643
1.120	17.34	20.23	195	227	1.315	42.76	49.89	562	656
1.125	18.00	21.00	202	236	1.320	43.47	50.71	573	669
1.130	18.66	21.77	211	246	1.325	44.17	51.53	585	683
1.135	19.32	22.54	219	256	1.330	44.89	52.37	597	697
1.140	19.98	23.31	228	266	1.3325		52.80	603	704
1.145	20.64	24.08	237	276	1.335	45.62	53.22	609	710
1.150	21.29	24.84	245	286	1.340	46.35	54.07	621	725
1.155	21.94	25.60	254	296	1.345	47.08	54.93	633	739
1.160	22.60	26.36	262	306	1.350	47.82	55.79	645	753
1.165	23.25	27.12	271	316	1.355	48.57	56.66	658	768
1.170	23.90	27.88	279	326	1.360	49.35	57.57	671	783
1.175	24.54	28.63	288	336	1.365	50.13	58.48	684	798
1.180	25.18	29.38	297	347	1.370	50.91	59.39	698	814
1.185	25.83	30.13	306	357	1.375	51.69	60.30	711	829
1.190	26.47	30.88	315	367	1.380	52.52	61.27	725	846

Digitized by GOOSIC

Specific Gravity 15°	100 parts	by weight tain		r con- grams	Specific Gravity 150	100 parts	by weight tain	r liter	
in vacuo	% N ₂ O ₅	HNO ₃	N ₂ O ₅	HNO ₃	in vacuo	% N ₂ O ₅	HNO ₃	N ₂ O ₅	HNO3
1.3833		61.92	735	857	1.495	78.52	91.60	1174	
1.385	53.35	62.24	739	862	1.500	80.65	94.09	1210	
1.390	54.20	63.23	753	879	1.501	81.09	94.60	1217	1420
1.395	55.07	64.25	768	896	1.502	81.50	95.08	1224	1428
1.400	<b>55</b> .97	65.30	783	914	1.503	81.91	95.55	1231	1436
1.405	56.92	66.40	800	933	1.504	82.29	96.00	1238	1444
1.410	<b>57.86</b>	67.50	816	952	1.505	82.63	96.39	1244	1451
1.415	<b>58.83</b>	68.63	832	971	1.506	82.94	96.76	1249	1457
1.420	59.83	69.80	849	991	1.507	83.26	97.13	1255	1464
1.425	60.84	70.98	867	1011	1.508	83.58	97.50	1260	1470
1.430	61.86	72.17	885	1032	1.509	83.87	97.84	1265	1476
1.435	62.91	73.39	903	1053	1.510	84.09	98.10	1270	1481
1.440	64.01	74.68	921	1075	1.511	84.28	98.32	1274	1486
1.445	65.13	75.98	941	1098	1.512	84.46	98.53	1277	1490
1.450	66.24	77.28	961	1121	1.513	84.63	98.73	1280	1494
1.455	67.38	78.60	981	1144	1.514	84.78	98.90	1283	1497
1.460	68.56	79.98	1001	1168	1.515	84.92	99.07	1287	1501
1.465	69.79	81.42	1023	1193	1.516	85.04	99.21	1289	1504
1.470	71.06	82.90	1045	1219	1.517	85.15	99.34	1292	1507
1.475	72.39	84.45	1068	1246	1.518	85.26	99.46	1294	1510
1.480	73.76	86.05	1092	1274	1.519	85.35	99.57	1296	1512
1.485	75.18	87.70	1116	1302	1.520	85.44	99.67	1299	151
1.490	76.80	89.60	1144	1335					1

## XLII.—HYDROCHLORIC ACID

By W. C. FERGUSON

	DI W. C. FERGUSON												
Degrees Baumé.	Sp. Gr.	Degrees Twaddell.	Per Cent HCl.	Degrees Baumé.	Sp. Gr.	Degrees Twaddell.	Per Cent HC1.						
1.00	1.0069	1.38	1.40	14.25	1.1090	21.80	21.68						
2.00	1.0140	2.80	2.82	14.50	1.1111	22.22	22.09						
3.00	1.0211	4.22	4.25	14.75	1.1132	22.64	22.50						
4.00	1.0284	5.68	5.69	15.00	1.1154	23.08	22.92						
5.0 <b>0</b>	1.0357	7.14	7.15	15.25	1.1176	23.52	23.33						
5.25	1.0375	7.50	7.52	15.50	1.1197	23.94	23.75						
5.50	1.0394	7.88	7.89	15.75	1.1219	24.38	24.16						
5.75	1.0413	8.26	8.26	16.0	1.1240	24.80	24.57						
6.00	1.0432	8.64	8.64	16.1	1.1248	24.96	24.73						
6.25	1.0450	9.00	9.02	16.2	1.1256	25.12	24,90						
6.50	1.0469	9.38	9.40	16.3	1.1265	25.30	25.06						
6.75	1.0488	9.76	9.78	16.4	1.1274	25.48	25.23						
7.00	1.0507	10.14	10.17	16.5	1.1283	25.66	25.39						
7.25	1.0526	10.52	10.55	16.6	1.1292	25.84	25.56						
7.50	1.0545	10.90	10.94	16.7	1.1301	26.02	25.72						
7.75	1.0564	11.28	11.32	16.8	1.1310	26.20	25.89						
8.00	1.0584	11.68	11.71	16.9	1.1319	26.38	26.05						
8.25	1.0603	12.06	12.09	17.0	1.1328	26.56	26.22						
8.50	1.0623	12.46	12.48	17.1	1.1336	26.72	26.39						
8.75	1.0642	12.84	12.87	17.2	1.1345	26.90	26.56						
9.00	1.0662	13.24	13.26	17.3	1.1354	27.08	26.73						
9.25	1.0681	13.62	13765	17.4	1.1363	27.26	26.90						
9.50	1.0701	14.02	14.04	17.5	1.1372	27.44	27.07						
9.75	1.0721	14.42	14.43	17.6	1.1381	27.62	27.24						
10.00	1.0741	14.82	14.83	17.7	1.1390	27.80	27.41						
10.25	1.0761	15.22	15.22	17.8	1.1399	27.98	27.58						
10.50	1.0781	15.62	15.62	17.9	1.1408	28.16	27.75						
10.75	1.0801	16.02	16.01	18.0	1.1417	28.34	27.92						
11.00	1.0821	16.42	16.41	18.1	1.1426	28.52	28.09						
11.25	1.0841	16.82	16.81	18.2	1.1435	28.70	28.26						
11.50	1.0861	17.22	17.21	18.3	1.1444	28.88	28.44						
11.75	1.0881	17.62	17.61	18.4	1.1453	29.06	28.61						
12.00	1.0902	18.04	18.01	18.5	1.1462	29.24	28.78						
12.25	1.0922	18.44	18.41	18.6	1.1471	29.42	28.95						
$12.50 \\ 12.75$	1.0943	18.86	18.82	18.7	1.1480	29.60	29.13						
12.75	1.0964	19.28	19.22	18.8	1.1489	29.78	29.30						
13.00 $13.25$	1.1006	19.70 20.12	19.63 20.04	18.9 19.0	1.1498	29.96	29.48						
13.25 $13.50$	1.1006				1.1508	30.16	29.65						
13.75	1.1027	20.54 20.96	$20.45 \\ 20.86$	19.1 19.2	1.1517	30.34	29.83						
14.00	1.1048	20.96	20.86	19.2	1.1526	30.52	30.00						
14.00	1.1009	21.38	21.27	19.3	1.1535	30.70	30.18						
				1		1 0 0 0 0	1						

Degrees Baumé.	Sp. Gr.	Degrees Twaddell.	Per Cent HCl.	Degrees Baumé.	Sp. Gr.	Degrees Twaddell.	Per Cent HCl.
19.4	1.1544	30.88	30.35	22.5	1.1836	36.72	36.16
19.5	1.1554	31.08	30.53	22.6	1.1846	36.92	36.35
19.6	1.1563	31.26	30.71	22.7	1.1856	37.12	36.54
19.7	1.1572	31.44	30.90	22.8	1.1866	37.32	36.73
19.8	1.1581	31.62	31.08	22.9	1.1875	37.50	36.93
19.9	1.1590	31.80	31.27	23.0	1.1885	37.70	·37.14
20.0	1.1600	32.00	31.45	23.1	1.1895	37.90	37.36
20.1	1.1609	32.18	31.64	23.2	1.1904	38.08	37.58
20.2	1.1619	32.38	31.82	23.3	1.1914	38.28	37.80
20.3	1.1628	32.56	32.01	23.4	1.1924	38.48	38.03
20.4	1.1637	32.74	32.19	23.5	1.1934	38.68	<b>38.26</b>
20.5	1.1647	32.94	32.38	23.6	1.1944	38.88	<b>38.49</b>
20.6	1.1656	33.12	32.56	23.7	1.1953	39.06	38.72
20.7	1.1666	33.32	<b>32.75</b>	23.8	1.1963	39.26	38.95
20.8	1.1675	33.50	32.93	23.9	1.1973	39.46	39.18
20.9	1.1684	<b>3</b> 3.68	33.12	24.0	1.1983	39.66	39.41
21.0	1.1694	33.88	33.31	24.1	1.1993	39.86	39.64
21.1	1.1703	34.06	33.50	24.2	1.2003	40.06	39.86
21.2	1.1713	34.26	33.69	24.3	1.2013	40.26	40.09
21.3	1.1722	34.44	33.88	24.4	1.2023	40.46	40.32
21.4	1.1732	34.64	34.07	24.5	1.2033	40.66	40.55
21.5	1.1741	34.82	34.26	24.6	1.2043	40.86	40.78
21.6	1.1751	35.02	34.45	24.7	1.2053	41.06	41.01
21.7	1.1760	35.20	34.64	24.8	1.2063	41.26	41.24
21.8	1.1770	35.40	34.83	24.9	1.2073	41.46	41.48
21.9	1.1779	35.58	35.02	25.0	1.2083	41.66	41.72
22.0	1.1789	35.78	35.21	25.1	1.2093	41.86	41.99
22.1	1.1798	35.96	35.40	25.2	1.2103	42.06	42.30
22.2	1.1808	36.16	35.59	25.3	1.2114	42.28	42.64
22.3	1.1817	36.34	35.78	25.4	1.2124	42.48	43.01
22.4	1.1827	36.54	35.97	25.5	1.2134	42.68	43.40

Sp. Gr. determinations were made at  $60^{\circ}$  F., compared with water at  $60^{\circ}$  F. From the Specific Gravities, the corresponding degrees Baumé were calculated by the following formula: Baumé = 145 - 145/Sp. Gr. Atomic weights from F. W. Clarke's table of 1901. O = 16.

## ALLOWANCE FOR TEMPERATURE:

10-15° Bé. - 1/40° Bé. or .0002 Sp. Gr. for 1° F. 15-22° Bé. - 1/30° Bé. or .0003 " " " 1° F.

22-25° Bé. - 1/28° Bé. or .00035 " " " 1° F.

#### AUTHORITY -- W. C. FERGUSON.

This table has been approved and adopted as a Standard by the Manufacturing Chemists' Association of the United States.

W. H. Bower, Jas. L. Morgan, HENRY HOWARD, INC. ARTHUR WYMAN.

A. G. ROSENGARTEN,

Executive Committee

## XLIII. — HYDROCHLORIC ACID

#### LUNGE AND MARCHLEWSKI

Specific Gravity.  15° 4° in Vacuo.	Per Cent HCl by Weight.	r Liter con- tains Grams HCl.	Specific Gravity 15° 4° in Vacuo.	Per Cent HCl by Weight.	r Liter con- tains Grams HCl.	Specific Gravity 15° 4° in Vacuo.	Per Cent HCl by Weight.	r Liter con- tains Grams HCl.
1.000	0.16	1.6	1.075	15.16	163	1.145	28.61	328
1.005	1.15	12	1.080	16.15	174	1.150	29.57	340
1.010	2.14	22	1.085	17.13	186	1.152	29.95	345
1.015	3.12	32	1.090	18.11	197	1.155	30.55	353
1.020	4.13	42	1.095	19.06	209	1.160	31.52	366
1.025	5.15	53	1.100	20.01	220	1.163	32.10	373
1.030	6.15	64	1.105	20.97	232	1.165	32.49	379
1.035	7.15	74	1.110	21.92	243	1.170	33.46	392
1.040	8.16	85	1.115	22.86	255	1.171	33.65	394
1.045	9.16	96	1.120	23.82	267	1.175	34.42	404
1.050	10.17	107	1.125	24.78	278	1.180	35.39	418
1.055	11.18	118	1.130	25.75	291	1.185	36.31	430
1.060	12.19	129	1.135	26.70	303	1.190	37.23	443
1.065	13.19	141	1.140	27.66	315	1.195	38.16	456
1.070	14.17	152	1.1425	28.14	322	1.200	39.11	469

# COMPOSITION OF CONSTANT BOILING HYDROCHLORIC ACID *

Pressure mm. of Mercury.	Per Cent of HCl.	Grams constant boiling distillate for 1 mol. HCl.
770	20.218	180.390
760	20.242	180.170
750	20.266	179.960
740	20.290	179.745
730	20.314	179.530

Temperature of constant boiling hydrochloric acid is 108.54° at 763 mm. Specific gravity 1.09620²⁵.

^{*} Hulett and Bonner, Jour. Am. Chem. Soc. xxxi, 390,

## XLIV. — ACETIC ACID AT 15°

### OUDEMANS

Specific Gravity.	Per Cent H.C,H3O,	Specific Gravity	Per Cent H.C,H,O,	Specific Gravity	Per Cent H.C,H,O,	Specific Gravity.	Per Cent H.C,H,O,.
0.9992	0	1.0363	26	1.0623	51	1.0747	76
1.0007	1	1.0375	27	1.0631	52	1.0748	77
1.0022		1.0388	28	1.0638	53	1.0748	78
1.0037	2 3	1.0400	29	1.0646	54	1.0748	79
1.0052	4	1.0412	30	1.0653	55	1.0748	80
1.0067	5	1.0424	31	1.0660	56	1.0747	81
1.0083	6	1.0436	32	1.0666	57	1.0746	82
1.0098	7	1.0447	33	1.0673	58	1.0744	83
1.0113	8	1.0459	34	1.0679	59	1.0742	84
1.0127	9	1.0470	35	1.0685	60	1.0739	85
1.0142	10	1.0481	36	1.0691	61	1.0736	86
1.0157	11	1.0492	37	1.0697	62	1.0731	87
1.0171	12	1.0502	38	1.0702	63	1.0726	88
1.0185,	13	1.0513	39	1.0707	64	1.0720	89
1.0200	14	1.0523	40	1.0712	65	1.0713	90
1.0214	15	1.0533	41	1.0717	66	1.0705	91
1.0228	16	1.0543	42	1.0721	67	1.0696	92
1.0242	17	1.0552	43	1.0725	68	1.0686	93
1.0256	18	1.0562	44	1.0729	69	1.0674	94
1.0270	19	1.0571	45	1.0733	70	1.0660	95
1.0284	20	1.0580	46	1.0737	71	1.0644	96
1.0298	21	1.0589	47	1.0740	72	1.0625	97
1.0311	22	1.0598	48	1.0742	73	1.0604	98
1.0324	23	1.0607	49	1.0744	74	1.0580	99
1.0337	24	1.0615	50	1.0746	75	1.0553	100
1.0350	25	II .	I	11	i	II.	1

## MELTING POINTS OF ACETIC ACID

		RUDORFF, D	er. <b>3,</b> 390.		
100 gr. H.C ₂ H ₂ O ₂ mixed with gr. water.	roo parts by weight contain parts water.	Melting (solidi- fying) point °C.	H.C ₂ H ₃ O ₂ mixed with gr. water.	by weight contain parts water.	Melting (solidifying) point °C.
0.0	0.0	16.7°	8.0	7.407	6.25°
0.5	0.497	15.65	9.0	8.257	5.3
1.0	0.990	14.8	10.0	9.090	4.3
1.5	1.477	14.0	11.0	9.910	3.6
<b>2.0</b>	1.961	13.25	12.0	10.774	2.7
3.0	2.912	11.95	15.0	13.043	-0.2
4.0	3.846	10.5	18.0	15.324	-2.6
5.0	4.761	9.4	21.0	17,355 J	-5.1
6.0	5.660	8.2	24.0	gitize <b>19.354</b> 031	-7.4
7.0	6.542	7.1	!		

Boiling point 100% acid 117.8°.

## XLVI. — AQUA AMMONIA

According to W. C. Ferguson

Degrees Baumé.	Sp. Gr. 60° F.	Per Cent NH ₈ .	Degrees Baumé.	Sp. Gr. 60° F.	Per Cent NH ₃ .	Degrees Baumé.	Sp. Gr. 60° F.	Per Cent
10.00	1.0000	.00	16.50	.9556	11.18	23.00	.9150	23.52
10.25	.9982	.40	16.75	.9540	11.64	23.25	.9135	24.01
10.50	.9964	.80	17.00	.9524	12.10	23.50	.9121	24.50
10.75	.9947	1.21	17.25	.9508	12.56	23.75	.9106	24.99
11.00	.9929	1.62	17.50	.9492	13.02	24.00	.9091	25.48
11.25	.9912	2.04	17.75	.9475	13.49	24.25	.9076	25.97
11.50	.9894	2.46	18.00	.9459	13.96	24.50	.9061	26.46
11.75	.9876	2.88	18.25	.9444	14.43	24.75	.9047	26.95
12.00	.9859	3.30	18.50	.9428	14.90	25.00	.9032	27.44
12.25	.9842	3.73	18.75	.9412	15.37	25.25	.9018	27.93
12.50	.9825.	4.16	19.00	.9396	15.84	25.50	.9003	28.42
12.75	.9807	4.59	19.25	.9380	16.32	25.75	.8989	28.91
13.00	.9790	5.02	19.50	.9365	16.80	26.00	.8974	29.40
13.25	.9773	5.45	19.75	.9349	17.28	26.25	.8960	29.89
13.50	.9756	5.88	20.00	.9333	17.76	26.50	.8946	30.38
13.75	.9739	6.31	20.25	.9318	18.24	26.75	.8931	30.87
14.00	.9722	6.74	20.50	.9302	18.72	27.00	.8917	31.36
14.25	.9705	7.17	20.75	.9287	19.20	27.25	.8903	31.85
14.50	.9689	7.61	21.00	.9272	19.68	27.50	.8889	32.34
14.75	.9672	8.05	21.25	.9256	20.16	27.75	.8875	32.83
15.00	.9655	8.49	21.50	.9241	20.64	28.00	.8861	33.32
15.25	.9639	8.93	21.75	.9226	21.12	28.25	.8847	33.81
15.50	.9622	9.38	22.00	.9211	21.60	28.50	.8833	34.30
15.75	.9605	9.83	22.25	.9195	22.08	28.75	.8819	34.79
16.00	.9589	10.28	22.50	.9180	22.56	29.00	.8805	35.28
16.25	.9573	10.73	22.75	.9165	23.04			

Specific Gravity determinations were made at 60° F., compared with water at 60° F.

From the Specific Gravities the corresponding degrees Baumé were calculated by the following formula:

Baumé = 
$$\frac{140}{\text{Sp. Gr.}} - 130$$
.

* Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

XLVII. — SODIUM HYDROXIDE SOLUTION AT 15°  $_{\rm LUNGE}$ 

Specific Gravity.	Degrees Baumé.	Degrees Twaddell.	Per Cent Na ₂ O.	Per Cent NaOH.	r Liter Gra	
Gravity.	Daume.	I wadden.	Na ₂ O.	NEUM.	Na ₂ O.	NaOH
1.007	1.0	1.4	0.47	0.61	4	6
1.014	2.0	2.8	0.93	1.20	9	12
1.022	3.1	4.4	1.55	2.00	16	21
1.029	4.1	5.8	2.10	2.70	22	28
1.036	5.1	7.2	2.60	3.35	27	35
1.045	6.2	9.0	3.10	4.00	32	42
1.052	7.2	10.4	3.60	4.64	38	49
1.060	8.2	12.0	4.10	5.29	43	56
1.067	9.1	13.4	4.55	5.87	49	63
1.075	10.1	15.0	5.08	6.55	55	70
1.083	11.1	16.6	5.67	7.31	61	79
1.091	12.1	18.2	6.20	8.00	68	87
1.100	13.2	20.0	6.73	8.68	74	95
1.108	14.1	21.6	7.30	9.42	81	104
1.116	15.1	23.2	7.80	10.06	87	112
1.125	16.1	25.0	8.50	10.97	96	123
1.134	17.1	26.8	9.18	11.84	104	134
1.142	18.0	28.4	9.80	12.64	112	144
1.152	19.1	30.4	10.50	13.55	121	156
1.162	20.2	32.4	11.14	14.37	129	167
1.171	21.2	34.2	11.73	15.13	137	177
1.180	22.1	36.0	12.33	15.91	146	188
1.190	23.1	38.0	13.00	16.77	155	200
1.200	24.2	40.0	13.70	17.67	164	212
1.210	25.2	42.0	14.40	18.58	174	225
1.220	26.1	44.0	15.18	19.58	185	239
1.231	27.2	46.2	15.96	20.59	196	253
1.241	28.2	48.2	16.76	21.42	208	266
1.252	29.2	- 50.4	17.55	22.64	220	283
1.263	30.2	52.6	18.35	23.67	232	299
1.274	31.2	54.8	19.23	24.81	245	316
1.285	32.2	57.0	20.00	25.80	257	332
1.297	33.2	59.4	20.80	26.83	270	348
1.308	34.1	61.6	21.55	27.80	282	364
1.320	35.2	64.0	22.35	28.83	295	381
1.332	36.1	66.4	23.20	29.93	309	399
1.345	37.2	69.0	24.20	31.22	326	420

Specific	Degrees	Degrees	Per Cent	Per Cent	r Liter contains Grams		
Gravity.	Baumé.	Twaddell.	Na ₂ O.	NaOH.	Na ₂ O.	NaOH.	
1.357	38.1	71.4	25.17	32.47	342	441	
1.370	39.2	74.0	26.12	33.69	359	462	
1.383	40.2	76.6	27.10	34.96	375	483	
1.397	41.2	79.4	28.10	36.25	392	506	
1.410	42.2	82.0	29.05	37.47	410	528	
1.424	43.2	84.8	30.08	38.80	428	553	
1:438	44.2	87.6	31.00	39.99	446	575	
1.453	45.2	90.6	32.10	41.41	466	602	
1.468	46.2	93.6	33.20	42.83	487	629	
1.483	47.2	96.6	34.40	44.38	510	658	
1.498	48.2	99.6	35.70	46.15	535	691	
1.514	49.2	102.8	36.90	47.60	559	721	
1.530	50.2	106.0	38.00	49.02	581	750	

## XLVIII. — POTASSIUM HYDROXIDE SOLU-TION AT 15°

### LUNGE

Specific	Degrees	Degrees	Per Cent	Per Cent	r Liter Gra	contains ms
Gravity.	Baumé.	Twaddell.	K ₂ O.	кон.	K20.	кон.
1.007	1.0	1.4	0.7	0.9	7	9
1.014	2.0	2.8	1.4	1.7	14	17
1.022	3.1	4.4	<b>2.2</b>	2.6	22	26
1.029	4.1	5.8	2.9	3.5	30	36
1.037	5.2	7.4	3.8	4.5	39	46
1.045	6.2	9.0	4.7	5.6	49	58
1.052	7.2	10.4	5.4	6.4	57	67
1.060	8.2	12.0	6.2	7.4	66	78
1.067	9.1	13.4	6.9	8.2	74	83
1.075	10.1	15.0	7.7	9.2	83	99
1.083	11.1	16.6	8.5	10.1	92	109
1.091	12.1	18.2	9.2	10.9	100	119
1.100	13.2	20.0	10.1	12.0	111	132
1.108	14.1	21.6	10.8	12.9	119	143
1.116	15.1	23.2	11.6	13.8	129	153
<u>•</u> ;						

Digitized by GOOG

## XLVI. — AQUA AMMONIA

According to W. C. Ferguson

Degrees Baumé.	Sp. Gr. 60° F.	Per Cent NH ₃ .	Degrees Baumé.	Sp. Gr.	Per Cent NH _s .	Degrees Baumé.	Sp. Gr. 60° F.	Per Cent
10.00	1.0000	.00	16.50	.9556	11.18	23.00	.9150	23.52
10.25	.9982	.40	16.75	.9540	11.64	23.25	.9135	24.01
10.50	.9964	.80	17.00	.9524	12.10	23.50	.9121	24.50
10.75	.9947	1.21	17.25	.9508	12.56	23.75	.9106	24.99
11.00	.9929	1.62	17.50	.9492	13.02	24.00	.9091	25.48
11.25	.9912	2.04	17.75	.9475	13.49	24.25	.9076	25.97
11.50	.9894	2.46	18.00	.9459	13.96	24.50	.9061	26.46
11.75	.9876	2.88	18.25	.9444	14.43	24.75	.9047	26.95
12.00	.9859	3.30	18.50	.9428	14.90	25.00	.9032	27.44
12.25	.9842	3.73	18.75	.9412	15.37	25.25	.9018	27.93
12.50	.9825.	4.16	19.00	.9396	15.84	25.50	.9003	28.42
12.75	.9807	4.59	19.25	.9380	16.32	25.75	. 8989	28.91
13.00	.9790	5.02	19.50	.9365	16.80	26.00	,8974	29.40
13.25	.9773	5.45	19.75	.9349	17.28	26.25	.8960	29.89
13.50	.9756	5.88	20.00	.9333	17.76	26.50	.8946	30.38
13.75	.9739	6.31	20.25	.9318	18.24	26.75	.8931	30.87
14.00	.9722	6.74	20.50	.9302	18.72	27.00	.8917	31.36
14.25	.9705	7.17	20.75	.9287	19.20	27.25	.8903	31.85
14.50	.9689	7.61	21.00	.9272	19.68	27.50	.8889	32.34
14.75	.9672	8.05	21.25	.9256	20.16	27.75	.8875	32.83
15.00	.9655	8.49	21.50	.9241	20.64	28.00	.8861	33.32
15.25	.9639	8.93	21.75	.9226	21.12	28.25	.8847	33.81
15.50	.9622	9.38	22.00	.9211	21.60	28.50	.8833	34.30
15.75	.9605	9.83	22.25	.9195	22.08	28.75	.8819	34.79
16.00	.9589	10.28	22.50	.9180	22.56	29.00	.8805	35.28
16.25	.9573	10.73	22.75	.9165	23.04			

Specific Gravity determinations were made at 60° F., compared with water at 60° F.

From the Specific Gravities the corresponding degrees Baumé were calculated by the following formula:

Baumé = 
$$\frac{140}{\text{Sp. Gr.}} - 130$$
.

* Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

#### ALLOWANCE FOR TEMPERATURE

The coefficient of expansion for ammonia solutions, varying with the temperature, correction must be applied according to the following table:

Corrections to be Added for Each Degree Below 60° F.			Corrections to be Subtracted for Each Degree Above 60° F.							•		
Degrees Baumé.	40° F		50° F		70° I	7.	80° I	٠.	90° F		100° E	·.
14° Bé	.015°		.017°	Bé	.020°	Bé	.022°	Bé	.024°		.026°	В
16°	.021	"	.023		.026		.028		.030	"	.032	-
18°	.027	"	.029	"	.031	"	.033	"	.035	"	.037	•
20°	.033	"	.036	"	.037	"	.038	"	.040	"	.042	•
22°	.039	"	.042	"	.043	"	.045	"	.047	"		
26°	.053	"	.057	"	.057	"	.059	"	1	- 1		

#### AUTHORITY - W. C. FERGUSON.

This table has been approved and adopted as a Standard by the Manufacturing Chemists' Association of the United States.

W. H. Bower,
HENRY HOWARD,
JAS. L. MORGAN,
ARTHUR WYMAN,
A. G. ROSENGARTEN,
Executive Committee.

New York, May 14, 1903.

XLVII. — SODIUM HYDROXIDE SOLUTION AT 15° LUNGE

Specific	Degrees	Degrees	Degrees Per Cent Twaddell. Na ₂ O.		I Liter contains Grams		
Gravity.	Baumé.	Twaddell.	Na ₂ O.	NaOH.	Na ₂ O.	NaOH	
1.007	1.0	1.4	0.47	0.61	4	6	
1.014	2.0	2.8	0.93	1.20	9	12	
1.022	3.1	4.4	1.55	2.00	16	21	
1.029	4.1	5.8	2.10	2.70	22	28	
1.036	5.1	7.2	2.60	3.35	27	35	
1.045	6.2	9.0	3.10	4.00	32	42	
1.052	7.2	10.4	3.60	4.64	38	49	
1.060	8.2	12.0	4.10	5.29	43	56	
1.067	9.1	13.4	4.55	5.87	49	63	
1.075	10.1	15.0	5.08	6.55	55	70	
1.083	11.1	16.6	5.67	7.31	61	79	
1.091	12.1	18.2	6.20	8.00	68	87	
1.100	13.2	20.0	6.73	8.68	74	95	
1.108	14.1	21.6	7.30	9.42	81	104	
1.116	15.1	23.2	7.80	10.06	87	112	
1.125	16.1	25.0	8.50	10.97	96	123	
1.134	17.1	26.8	9.18	11.84	104	134	
1.142	18.0	28.4	9.80	12.64	112	144	
1.152	19.1	30.4	10.50	13.55	121	156	
1.162	20.2	32.4	11.14	14.37	129	167	
1.171	21.2	34.2	11.73	15.13	137	177	
1.180	22.1	36.0	12.33	15.91	146	188	
1.190	23.1	38.0	13.00	16.77	155	200	
1.200	24.2	40.0	13.70	17.67	164	212	
1.210	25.2	42.0	14.40	18.58	174	225	
1.220	26.1	44.0	15.18	19.58	185	239	
1.231	27.2	46.2	15.96	20.59	196	253	
1.241	28.2	48.2	16.76	21.42	208	266	
1.252	29.2	<b>50.4</b>	17.55	22.64	220	283	
1.263	30.2	52.6	18.35	23.67	232	299	
1.274	31.2	54.8	19.23	24.81	245	316	
1.285	32.2	57.0	20.00	25.80	257	332	
1.297	33.2	59.4	20.80	26.83	270	348	
1.308	34.1	61.6	21.55	27.80	282	364	
1.320	35.2	64.0	22.35	28.83	295	381	
1.332	36.1	66.4	23.20	29.93	309	399	
1.345	37.2	69.0	24.20	31.22	326	420	

Specific	Degrees	Degrees	Per Cent	Per Cent	r Liter contains Grams	
Gravity.	Baumé.	Twaddell.	Na ₂ O.	NaOH.	Na ₂ O.	NaOH.
1.357	38.1	71.4	25.17	32.47	342	441
1.370	39.2	74.0	26.12	33.69	359	462
1.383	40.2	76.6	27.10	34.96	375	483
1.397	41.2	79.4	28.10	36.25	392	506
1.410	42.2	82.0	29.05	37.47	410	528
1.424	43.2	84.8	30.08	38.80	428	553
1.438	44.2	87.6	31.00	39.99	446	575
1.453	45.2	90.6	<b>3</b> 2.10	41.41	466	602
1.468	46.2	93.6	33.20	42.83	487	629
1.483	47.2	96.6	34.40	44.38	510	658
1.498	48.2	99.6	35.70	46.15	535	691
1.514	49.2	102.8	36.90	47.60	559	721
1.530	50.2	106.0	38.00	49.02	581	750

## XLVIII. — POTASSIUM HYDROXIDE SOLU-TION AT 15°

## LUNGE

Specific	Degrees	Degrees	Per Cent	Per Cent	ı Liter Gra	contains ms
Gravity.	Baumé.	Twaddell.	K ₂ O.	кон.	K20.	кон.
1.007	1.0	1.4	0.7	0.9	7	9
1.014	2.0	2.8	1.4	1.7	14	17
1.022	3.1	4.4	2.2	2.6	22	26
1.029	4.1	5.8	2.9	3.5	30	36
1.037	5.2	7.4	3.8	4.5	39	46
1.045	6.2	9.0	4.7	5.6	49	58
1.052	7.2	10.4	5.4	6.4	57	67
1.060	8.2	12.0	6.2	7.4	66	78
1.067	9.1	13.4	6.9	8.2	74	83
1.075	10.1	15.0	7.7	9.2	83	99
1.083	11.1	16.6	8.5	10.1	92	109
1.091	12.1	18.2	9.2	10.9	100	119
1.100	13.2	20.0	10.1	12.0	111	132
1.108	14.1	21.6	10.8	12.9	119	143
1.116	15.1	23.2	11.6	13.8	129	153

Digitized by GOOXII

Specific	Degrees	Degrees	Per Cent	Per Cent KOH.		contains ams
Gravity.	Baumé.	Twaddell.	K ₂ O.	кон.	K ₂ O.	кон.
1.125	16.1	25.0	12.4	14.8	140	167
1.134	17.1	26.8	13.2	15.7	150	178
1.142	18.0	28.4	13.9	16.5	159	183
1.152	19.1	30.4	14.8	17.6	170	203
1.162	20.2	32.4	15.6	18.6	181	216
1.171	21.2	34.2	16.4	19.5	192	228
1.180	22.1	36.0	17.2	20.5	203	242
1 190	23.1	38.0	18.0	21.4	214	255
1.200	24.2	40.0	18.8	22.4	226	269
1.210	25.2	42.0	19.6	23.3	237	282
1.220	26.1	44.0	20.3	24.2	248	295
1.231	. 27.2	46.2	21.1	25.1	260	309
1.241	28.2	48.2	21.9	26.1	272	324
1.252	29.2	50.4	22.7	27.0	284	338
1.263	30.2	52.6	23.5	28.0	297	353
1.274	31.2	54.8	24.2	28.9	308	368
1.285	32.2	57.0	25.0	29.8	321	385
1.297	33.2	59.4	25.8	30.7	335	398
1.308	34.1	61.6	26.7	31.8	349	416
1.320	35.2	64.0	27.5	32.7	363	432
1.332	36.1	66.4	28.3	33.7	377	449
1.345	37.2	69.0	29.3	34.9	394	469
1.357	38.1	71.4	30.2	35.9	410	487
1.370	39.2	74.0	31.0	36.9	425	506
1.383	40.2	76.6	31.8	37.8	440	522
1.397	41.2	79.4	32.7	38.9	457	543
1.410	42.2	82.0	33.5	39.9	472	563
1.424	43.2	84.8	34.4	40.9	490	582
1.438	44.2	87.6	35.4	42.1	509	605
1.453	45.2	90.6	36.5	43.4	530	631
1.468	46.2	93.6	37.5	44.6	549	655
1.483	47.2	96.6	38.5	45.8	571	679
1.498	48.2	99.6	39.6	47.1	593	706
1.514	49.2	102.8	40.6	48.3	615	731
1.530	50.2	106.0	41.5	49.4	635	756
1.546	51.2	109.2	42.5	50.6	655	779
1.563	52.2	112.6	43.6	51.9	681	811
1.580	53.2	116.0	44.7	53.2	706	840
1.597	54.2	119.4	45.8	54.5	731	870
1.615	55.2	123.0	47.0	55.9	754	905
1.634	56.3	126.8	48.3	57.5	789	940
UUT	ω.υ	120.0	40.0	01.0	100	1 PT 1

## XLIX. — SODIUM CARBONATE SOLUTION AT 15°

### LUNGE

Specific	Degrees	Per Cent	Per Cent	r Liter contains Grams		
Gravity.	Baumé.	Na ₂ CO ₃ .	Na ₂ CO ₃ . 10H ₂ O.	Na ₂ CO ₃ .	Na ₂ CO ₃ . 10H ₂ O	
1.007	1.0	0.67	1.807	6.8	18.2	
1.014	2.0	1.33	3.587	13.5	36.4	
1.022	3.1	2.09	5.637	21.4	57.6	
1.029	4.1	2.76	7.444	28.4	76.6	
1.036	5.1	3.43	9.251	35.5	95.8	
1.045	6.2	4.29	11.570	44.8	120.9	
1.052	7.2	4.94	13.323	52.0	140.2	
1.060	8.2	5.71	15.400	60.5	163.2	
1.067	9.1	6.37	17.180	68.0	183.3	
1.075	10.1	7.12	19.203	76.5	206.4	
1.083	11.1	7.88	21 . 252	85.3	230.2	
1.091	12.1	8.62	23.248	94.0	253.6	
1.100	13.2	9.43	25.432	103.7	279.8	
1.108	14.1	10.19	27.482	112.9	304.5	
1.116	15.1	10.95	29.532	122.2	329.6	
1.125	16.1 ⁻	11.81	31.851	132.9	<b>3</b> 58.3	
1.134	17.1	12.61	34.009	143.0	385.7	
1.142	18.0	13.16	35.493	150.3	405.3	
1.152	19.1	14.24	38.405	164.1	442.4	

# L. — CONCENTRATED SODIUM CARBONATE SOLUTION AT 30°

### LUNGE

Specific	Degrees	Per Cent	Per Cent	1 Liter co	ntains Grams
Gravity	Baumé.	Na ₂ CO ₃ .	Na ₂ CO ₃ .10H ₂ O.	Na ₃ CO ₃ .	Na ₂ CO ₃ . 10H ₂ O.
1.142	18.0	13.79	37.21	157.5	425.0
1.152	19.1	14.64	39.51	168.7	455.2
1.162	20.2	15.49	41.79	180.0	485.7
1.171	21.2	16.27	43.89	190.5	514.0
1.180	22.1	17.04	45.97	201.1	542.6
1.190	23.1	17.90	48.31	214.0	577.5
1.200	24.2	18.76	50.62	225.1	607.4
1.210	25.2	19.61	52.91	237.3	640.3
1.220	26.1	20.47	55.29	249.7	673.8
1.231	-27.2	21.42	57.80	263.7	711.5
1.241	28.2	22.29	60.15	276.6	746.3
1.252	29.2	23.25	62.73	291.1	785.4
1.263	30.2	24.18	65.24	305.4	824.1
1.274	31.2	25.11	67.76	319.9	863.2
1.285	32.2	26.04	70.28	334.6	902.8
1.297	33.2	27.06	73.02	351.0	947.1
1.308	34.1	27.97	75.48	365.9	987.4
1.000	51.1	21.01	10.40	555.8	507.4

# LI. — CORRECTION OF SPECIFIC GRAVITY OF SODIUM CARBONATE FOR ± 1° C.

### LUNGE

	For 1		For Spec	cific Gravity		
o° to 30°.	30° to 40°.	40° to 50°	50° to 70°.	70° to 100°.	From	То
0.0002	0.0004	0.0004	0.0005	0.0005	1.010	1.050)
0.0003	0.0004	0.0004	0.0006	0.0005	1.060	1.070
0.0004	0.0004	0.0004	0.0006	0.0006	1.080	1.110
0.0004	0.0004	0.0005	0.0006	0.0006	1.120	1.170
0.0004	0.0004	0.0006	0.0007	0.0007	1.180	1.200
0.0005	0.0004	0.0005	0.0007	0.0007	1.210	1.240
	0.0005	0.0005	0.0007	0.0007	1.241	1.252 ) है
	0.0005	0.0005	0.0006	0.0008	1.263	1.285

# LII. — POTASSIUM CARBONATE SOLUTION AT 15° CALCULATED FROM GERLACH

Specific Gravity.	Baumé.	Twaddell.	Per Cent K ₂ CO ₃ .	r Liter contains Grams K ₂ CO ₅ .	Specific Gravity.	Baumé.	Twaddell.	Per Cent K ₂ CO ₃ .	1 Liter contains Grams K ₂ CO ₃ .
1.00914	1.3	1.8	1	10.1	1.27893	31.6	55.8	28	358.1
1.01829	2.6	3.6		20.4	1.28999	32.6			374.1
1.02743	3.9	5.4	3	30.8	1.30105	33.6			390.3
1.03658	5.1	7.2	4	41.4	1.31261	34.5		1	406.9
1.04572	6.3	9.2	5	52.3	1.32417	35.5		1 - 1	423.7
1.05513	7.6	11.0	6	63.3	1.33573	36.4		33	440.8
1.06454	8.8	12.9	7	74.5	1.34729	37.4			458.1
1.07396	10.0	14.8	8	85.9	1.35885	38.3	71.8	35	475.6
1.08337	11.2	16.6	_	97.5	1.37082	39.2	74.2	36	493.5
1.09278	12.3	18.6		109.3	1.38279	40.1	76.6	37	511.6
1.10258	13.5	20.5	11	121.3	1.39476	41.0	79.0	38	530.0
1.11238	14.6	22.4	12	133.5	1.40673	41.9	81.4	39	<b>548.6</b>
1.12219	15.8	24.4	13	145.9	1.41870	42.8	83.7	40	567.5
1.13199	16.9	26.4	14	158.5	1.43104	43.7	86.2	41	586.7
1.14179	18.0	28.3	15	171.3	1.44338	44.5	88.7	42	606.2
1.15200	19.1	30.4	16	184.3	1.45573	45.4	91.1	43	626.0
1.16222	20.2	32.4	17	197.5	1.46807	46.2	93.6	44	646.0
1.17243	21.3	34.5	18	211.0	1.48041	47.1	96.0	45	666.2
1.18265	22.4	36.5	19	224.7	1.49314	47.9	98.6	46	686.8
1.19286	23.4	38.6	20	238.6	1.50588	48.7	101.2	47	707.7
1.20344	24.5	40.7	21	252.7	1.51861	49.5	103.7	48	728.9
1.21402	25.6	42.8	22	267.1	1.53135	50.3	106.3	49	750.4
1.22459	26.6	44.9	23	281.7	1.54408	51.1	108.8	50	772.1
1.23517	27.6	47.0	24	296.5	1.55728		111.5	51	794.2
1.24575	28.6	49.1	25	311.5	1.57048		114.1	52	816.7
1.25681	29.6	51.4	26	326.8	1.57079	52.7	114.2	52.024	817.2
1.26787	30.6	<b>53</b> .6	27	342.3					

416 LIII. — Specific Gravity and Percentage of Alcohol by Volume

SQUIBB

Per Cent Alcohol by Volume.	Specific Gravity at 15.56°C.	Per Cent Alcohol by Volume.	Specific Gravity at 15.56°C.	Per Cent Alcohol by Volume.	Specific Gravity at 15.56°C.	Per Cent Alcohol by Volume.	Specific Gravity at 15.56°C.
1	0.9985	26	0.9698	51	0.9323	76	0.8745
2	.9970	27	.9691	52	:9303	77	8721
2 3	.9956	28	.9678	53	.9283	78	.8696
4	.9942	29	.9665	54	.9262	79	.8664
4 5	.9930	30	.9652	55	.9242	80	.8639
6	.9914	31	.9643	56	.9221	81	.8611
7	.9898	32	.9631	57	.9200	82	.8581
8	.9890	33	.9618	58	.9178	83	.8557
9	.9878	34	.9609	59	.9160	84	. 8526
10	.9869	35	.9593	-60	.9135	85	.8496
11	.9855	36	.9578	61	.9113	86	.8466
12	.9841	37	.9565	62	.9090	87	.8434
13	.9828	38	.9550	63	.9069	88	.8408
14	.9821	39	.9535	64	.9047	89	.8373
15	.9815	40	.9519	65	.9025	90	.8340
16	.9802	41	.9503	66	.9001	91	.8305
17	.9789	42	.9490	67	.8973	92	.8272
18	.9778	43	.9470	68	. 8949	93	.8237
19	.9766	44	.9452	69	.8925	94	.8199
20	.9760	45	.9434	70	.8900	95	.8164
21	.9753	46	.9416	71	.8875	96	.8125
22	.9741	47	.9396	72	.8850	97	.8084
23	.9728	48	.9381	73	.8825	98	.8041
24	.9716	49	.9362	74	.8799	99	.7995
25	.9709	50	.9343	75	.8769	100	.7946

The tables giving the percentage of alcohol by weight and by volume do not agree with each other. The density of absolute alcohol given by Fownes is .7938 at 15.6° C. (60° F.) compared with water at the same temperature. Under the same conditions Tralles finds a density of .7946. Squibb has shown that the density of absolute alcohol must be at least as low as .7935. This is .003 lower than the density found by Fownes and corresponds to 0.1 per cent of alcohol. The table given by Squibb is based on the values given by Fownes for percentage by weight and those given by Tralles for percentage by volume.

# LIV. — PERCENTAGE OF ALCOHOL BY VOLUME AND BY WEIGHT*

GILPIN, DRINKWATER, AND SQUIBB

Specific		Alcohol		Specific		Alcohol	
Gravity at 60° F.	per cent by volume	per cent by weight	Grams per 100 c.c.	Gravity at  · 60° 60° F.	per cent by volume	per cent by weight	Grams per 100 c.c.
1.00000	0.00	00.0	0.00	.99473	3.60	2.88	2.86
0.99984.	0.10	0.08	0.08	.99459	3.70	2.96	2.94
.99968	0.20	0.16	0.16	.99445	3.80	3.04	3.02
. 99953	0.30	0.24	0.24	.99431	3.90	3.12	3.10
.99937	0.40	0.32	0.32	.99417	4.00	3.20	3.18
.99923	0.50	0.40	0.40	.99403	4.10	3.28	3.26
.99907	0.60	0.48	0.48	.99390	4.20	3.36	3.34
.99892	0.70	0.56	0.56	.99376	4.30	3.44	3.42
.99877	0.80	0.64	0.64	.99363	4.40	3.52	3.50
.99861	0.90	0.71	0.71	.99349	4.50	3.60	3.58
.99849	1.00	0.79	0.79	.99335	4.60	3.68	3.66
.99834	1.10	0.87	0.87	.99322	4.70	3.76	3.74
.99819	1.20	0.95	0.95	.99308	4.80	3.84	3.81
.99805	1.30	1.03	1.03	.99295	4.90	3.92	3.89
.99790	1.40	1.11	1.11	.99281	5.00	4.00	3.97
.99775	1.50	1.19	1.19	. 99268	5.10	4.08	4.05
.99760	1.60	1.27	1.27	.99255	5.20	4.16	4.13
.99745	1.70	1.35	1.35	.99241	5.30	4.24	4.21
.99731	1.80	1.43	1.43	.99228	5.40	4.32	4.29
.99716	1.90	1.51	1.51	.99215	5.50	4.40	4.37
.99701	2.00	1.59	1.59	.99202	5.60	4.48	4.44
.99687	2.10	1.67	1.66	.99189	5.70	4.56	4.52
.99672	2.20	1.75	1.74	.99175	5.80	4.64	4.60
.99658	2.30	1.83	1.82	.99162	5.90	4.72	4.68
.99643	2.40	1.91	1.90	.99149	6.00	4.80	4.76
<b>.99629</b>	2.50	1.99	1.98	.99136	6.10	4.88	4.84
.99615	2.60	2.07	2.06	.99123	6.20	4.96	4.92
.99600	2.70	2.15	2.14	.99111	6.30	5.05	5.00
.99586	2.80	2.23	2.22	.99098	6.40	5.13	5.08
.99571	2.90	2.31	2.30	.99085	6.50	5.21	5.16
.99557	3.00	2.39	2.38	.99072	6.60	5.29	5.24
.99543	3.10	2.47	2.46	.99059	6.70	5.37	5.32
.99529	3.20	2:55	2.54	.99047	6.80	5.45	5.40
.99515	3.30	2.64	2.62	.99034	6.90	5.53	5.48
.99501	3.40	2.72	2.70	.99021	7.00	5.61	5.56
<b>.994</b> 87	3.50	2.80	2.78	.99009	7.10	5.69	5.64

^{*} Bulletin No. 65, U.S. Department of Agriculture

Specific Gravity at $\frac{60^{\circ}}{60^{\circ}}F$ .	}	Alcohol	!	Specific	Alcohol			
	per cent by volume	per cent by weight	Grams per 100 c.c.	Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.	per cent by volume	per cent by weight	Grams per 100 c.c.	
.98996	7.20	5.77	5.72	.98513	11.30	9.11	8.97	
<b>.98984</b>	7.30	5.86	5.80	.98502	11.40	9.19	9.05	
.98971	7.40	5.94	5.88	.98491	11.50	9.27	9.13	
<b>.98959</b>	7.50	6.02	5.96	.98479	11.60	9.35	9.21	
<b>.98947</b>	7.60	6.10	6.04	.98468	11.70	9.43	9.29	
.98934	7.70	6.18	6.11	. <b>98457</b>	11.80	9.51	9.36	
.98922	7.80	6.26	6.19	.98446	11.90	9.59	9.44	
.98909	7.90	6.34	6.27	. 98435	12.00	9.67	9.52	
.98897	8.00	6.42	6.35	. 98424	12.10	9.75	9.60	
.98885	8.10	6.50	6.43	.98413	12.20	9.83	9.68	
.98873	8.20	6.58	6.51	.98402	12.30	9.92	9.76	
.98861	8.30	6.67	6.59	.98391	12.40	10.00	9.84	
.98849	8.40	6.75	6.67	.98381	12.50	10.08	9.92	
.98837	8.50	6.83	6.75	.98370	12.60	10.16	10.00	
<b>.98825</b>	8.60	6.91	6.83	.98359	12.70	10.24	10.07	
.98813	8.70	6.99	6.91	.98348	12.80	10.33	10.15	
.98801	8.80	7.07	6.99	.98337	12.90	10.41	10.23	
.98789	8.90	7.15	7.07	.98326	13.00	10.49	10.31	
.98777	9.00	7.23	7.14	.98315	13.10	10.57	10.39	
.98765	9.10	7.31	7.22	.98305	13.20	10.65	10.47	
.98754	9.20	7.39	7.30	.98294	13.30	10.74	10.55	
.98742	9.30	7.48	7.38	.98283	13.40	10.82	10.63	
.98730	9.40	7.56	7.46	.98273	13.50	10.90	10.71	
.98719	9.50	7.64	7.54	.98262	13.60	10.98	10.79	
.98707	9.60	7.72	7.62	.98251	13.70	11.06	10.87	
.98695	9.70	7.80	7.70	.98240	13.80	11.15	10.95	
.98683	9.80	7.88	7.78	.98230	13.90	11.23	11.03	
.98672	9.90	7.96	7.85	.98219	14.00	11.31	11.11	
.98660	10.00	8.04	7.93	.98209	14.10	11.39	11.19	
.98649	10.10	8.12	8.01	.98198	14.20	11.47	11.27	
.98637	10.20	8.20	8.09	.98188	14.30	11.56	11.35	
.98626	10.30	8.29	8.17	.98177	14.40	11.64	11.43	
.98614	10.40	8.37	8.25	.98167	14.50	11.72	11.51	
.98603	10.50	8.45	8.33	.98156	14.60	11.80	11.59	
.98592	10.60	8.53	8.41	.98146	14.70	11.88	11.67	
.98580	10.70	8.61	8.49	.98135	14.80	11.97	11.75	
.98569	10.80	8.70	8.57	.98125	14.90	12.05	11.82	
.98557	10.90	8.78	8.65	.98114	15.00	12.13	11.90	
.98546	11.00	8.86	8.73	.98104	15.10	12.21	11.98	
.98535	11.10	8.94	8.81	.98093	15.20	12.29	12.06	
.98524	11.20	9.02	8.89	.98083	15.30	12.38	12.14	

Specific		Alcohol		Specific		Alcohol	
Gravity at	per cent by volume	per cent by weight	Grams per 100 c.c.	Gravity at  60° 60° F.	per cent by volume	per cent by weight	Grams per 100 c.c.
.98073	15.40	12.46	12.22	.97658	19.50	15.84	15.47
.98063	15.50	12.54	12.30	.97648	19.60	15.93	15.55
.98052	15.60	12.62	12.37	. 97638	19.70	16.01	15.63
.98042	15.70	12.70	12.45	.97628	19.80	16.09	15.71
.98032	15.80	12.79	12.53	.97618	19.90	16.18	15.79
. 98021	15.90	12.87	12.61	.97608	20.00	16.26	15.87
.98011	16.00	12.95	12.69	.97598	20.10	16.34	15.95
. 98001	16.10	13.03	12.77	.97588	20.20	16.42	16.03
.97991	16.20	13.12	12.85	.97578	20.30	16.51	16.10
. 97980	16.30	13.20	12.93	.97568	20.40	16.59	16.18
.97970	16.40	13.29	13.01	.97558	20.50	16.67	16.26
. 97960	16.50	13.37	13.09	.97547	20.60	16.75	16.34
. 97950	16.60	13.45	13.17	.97537	20.70	16.84	16.42
.97940.	16.70	13.53	13.25	.97527	20.80	16.92	16.50
.97929	16.80	13.62	13.33	.97517	20.90	17.01	16.58
.97919	16.90	13.70	13.41	.97507	21.00	17.09	16.66
.97909	17.00	13.78	13.49	.97497	21.10	17.17	16.74
.97899	17.10	13.86	13.57	.97487	21.20	17.26	16.82
.97889	17.20	13.94	13.65	.97477	21.30	17.34	16.90
.97879	17.30	14.03 14.11	13.73	.97467	21.40	17.43	16.98
. 97869 . 97859	17.40 17.50	14.11	13.81 13.89	.97457	21.50 21.60	17.51 17.59	17.06 17.14
.97848	17.60	14.19	13.89	.97436	21.70	17.67	17.14 $17.22$
.97838	17.70	14.27	14.04	.97426	21.80	17.76	17.22
.97828	17.80	14.33	14.12	.97416	21.90	17.76	17.38
.97818	17.90	14.52	14.20	.97406	22.00	17.92	17.46
.97808	18.00	14.60	14.28	.97396	22.10	18.00	17.54
.97798	18.10	14.68	14.36	.97386	22.20	18.09	17.62
.97788	18.20	14.77	14.44	.97375	22.30	18.17	17.70
.97778	18.30	14.85	14.52	.97365	22.40	18.26	17.78
.97768	18.40	14.94	14.60	.97355	22.50	18.34	17.86
.97758	18.50	15.02	14.68	.97345	22.60	18.42	17.94
.97748	18.60	15.10	14.76	.97335	22.70	18.51	18.02
.97738	18.70	15.18	14.84	.97324	22.80	18.59	18.10
.97728	18.80	15.27	14.92	.97314	22.90	18.68	18.18
.97718	18.90	15.38	15.00	.97304	23.00	18.76	18.26
.97708	19.00	15.43	15.08	.97294	23.10	18.84	18.33
.97698	19.10	15.51	15.15	.97283	23.20	18.92	18.41
.97688	19.20	15.59	15.23	.97273	23.30	19.01	18.49
.97678	19.30	15.68	15.31	.97263	23.40	19.09	18.57
.97668	19.40	15.76	15.39	.97253	23.50	19.17	18.65
				1 ,			

Specific		Alcohol		Specific		Alcohol	
Gravity at 60°F.	per cent by volume	per cent by weight	Grams per 100 c.c.	Gravity at 60°F.	per cent by volume	per cent by weight	Grams per 100 c.c.
.97242	23.60	19.25	18.73	.96805	27.70	22.71	21.98
.97232	23.70	19.34	18.81	.96794	27.80	22.79	22.06
.97222	23.80	19.42	18.88	.96783	27.90	22.88	22.14
.97211	23.90	19.51	18.96	.96772	28.00	22.96	22.22
.97201	24.00	19.59	19.04	.96761	28.10	23.04	22.30
.97191	24.10	19.67	19.12	.96749	28.20	23.13	22.38
.97180	24.20	19.76	19.20	.96738	28.30	23.21	22.45
.97170	24.30	19.84	19.28	.96726	28.40	23.30	22.53
.97159	24.40	19.93	19.36	.96715	28.50	23.38	22.61
.97149	24.50	20.01	19.44	.96704	28.60	23.47	22.69
.97139	24.60	20.09	19.52	.96692	28.70	23.55	22.77
.97128	24.70	20.18	19.60	.96681	28.80	23.64	22.85
.97118	24.80	20.26	19.68	.96669	28.90	23.72	22.93
.97107	24.90	20.35	19.76	.96658	29.00	23.81	23.01
.97097	25.00	20.43	19.84	.96646	29.10	23.89	23.09
.97086	25.10	20.51	19.92	.96635	29.20	23.98	23.17
.97076	25.20	20.60	20.00	.96623	29.30	24.06	23.25
.97065	25.30	20.68	20.08	.96611	29.40	24.15 24.23	23.33 23.41
.97055 .97044	25.40 25.50	20.77   20.85	$20.16 \\ 20.24$	.96600 .96587	29.50 29.60	24.23	23.49
.97033	25.60	20.83	20.24	.96576	29.70	24.40	23.57
.97033	25.70	21.02	20.32	.96564	29.80	24.49	23.65
.97012	25.80	21.10	20.47	.96553	29.90	24.57	23.73
.97001	25.90	21.19	20.55	.96541	30.00	24.66	23.81
.96991	26.00	21.27	20.63	.96529	30.10	24.74	23.89
.96980	26.10	21.35	20.71	.96517	30.20	24.83	23.97
.96969	26.20	21.44	20.79	.96505	30.30	24.91	24.04
.96959	26.30	21.52	20.87	.96493	30.40	25.00	24.12
.96949	26.40	21.61	20.95	.96481	30.50	25.08	24.20
.96937	26.50	21.69	21.03	.96469	30.60	25.17	24.28
.96926	26.60	21.77	21.11	.96457	30.70	25.25	24.36
.96915	26.70	21.86	21.19	.96445	30.80	25.34	24.44
.96905	26.80	21.94	21.27	.96433	30.90	25.42	24.52
.96894	26.90	22.03	21.35	.96421	31.00	25.51	24.60
.96883	27.00	22.11	21.43	.96409	31.10	25.60	24.68
.96872	27.10	22.20	21.51	.96396	31.20	25.68	24.76
.96861	27.20	22.28	21.59	.96384	31.30	25.77	24.84
.96850	27.30	22.37	21.67	.96372	31.40	25.85	24.92
.96839	27.40	22.45	21.75	.96360	31.50	25.94	25.00
.96828	27.50	22.54	21.83	.96347	31.60	26.03	25.08
.96816	27.60	22.62	21.90	.96335	31.70	26.11	25.16
	<u>'</u>	<u> </u>	!		<u>'</u>	<u> </u>	1

Specific		Alcohol		Specific		Alcohol	
Gravity at	per cent	per cent	Grams	Gravity at	per cent	per cent	Grams
60° F.	volume	by weight	per 100 c.c.	60°F.	by volume	by weight	per 100 c.c.
.96323	31.80	26.20	25.24	. 95787	35.90	29.74	28.49
.96310	31.90	26.28	25.32	.95773	36.00	29.83	28.57
.96298	32.00	26.37	25.40	.95759	36.10	29.92	28.65
.96285	32.10	26.46	25.48	.95745	36.20	30.00	28.73
.96273	32.20	26.54	25.56	.95731	36.30	30.09	28.81
.96260 .96248	32.30	26.63	25.64	.95717	36.40	30.17	28.88
.96235	32.40 32.50	26.71	25.71	.95703	36.50	30.26	28.96
.96222	32.60	26.80 26.89	25.79 25.87	.95688 .95674	36.60 36.70	30.35 30.44	29.04 $29.12$
.96210	32.70	26.89	25.95	.95660	36.80	30.52	29.12 29.20
.96197	32.80	27.06	26.03	.95646	36.90	30.61	29.29
.96185	32.90	27.14	26.11	.95632	37.00	30.70	29.36
.96172	33.00	27.23	26.19	.95618	37.10	30.79	29.44
.96159	33.10	27.32	26.27	.95603	37.20	30.88	29.52
.96146	33.20	27.40	26.35	.95589	37.30	30.96	29.60
.96133	33.30	27.49	26.43	.95574	37.40	31.05	29.68
.96120	33.40	27.57	26.51	.95560	37.50	31.14	29.76
.96108	33.50	27.66	26.59	.95545	37.60	31.23	29.84
.96095	33.60	27.75	26.67	.95531	37.70	31.32	29.92
.96082	33.70	27.83	26.75	. 95516	37.80	31.40	30.00
.96069	<b>33</b> .80	27.92	26.82	.95502	37.90	31.49	30.08
. 96056	33.90	28.00	26.90	.95487	38.00	31.58	30.16
.96043	34.00	28.09	26.98	.95472	38.10	31.67	30.24
.96030	34.10	28.18	27.06	. 95457	38.20	31.76	30.32
.96016	34.20	28.26	27.14	.95442	38.30	31.85	30.40
.96003	34.30	28.35	27.22	.95427	38.40	31.94	30.48
.95990	34.40	28.43	27.30	.95413	38.50	32.03	30.56
.95977	34.50	28.52	27.38	.95398	38.60	32.12	30.64
.95963	34.60	28.61	27.46	.95383	30.70	32.20	30.72
.95950.:	34.70	28.70	27.54	.95368	30.80	32.29	30.79
.95937	34.80	28.78	27.62 27.70	.95353	30.90	32.37	30.87
.95923 .95910	34.90 35.00	28.87		. 95338 . 95323	39.00	32.46	30.95
.95896	35.10	29.05	27.78 27.86	.95323	39.10 39.20	$32.55 \\ 32.64$	31.03 31.11
. 95883	35.20	29.13	27.94	.95292	39.30	32.72	31.11
.95869	35.30	29.13	28.02	.95292	39.40	32.72	31.16
.95855	35.40	29.30	28.02	.95262	39.50	32.90	31.34
.95842	35.50	29.38	28.17	.95246	39.60	32.99	31.42
.95828	35.60	29.48	28.25	.95231	39.70	33.08	31.50
.95814	35.70	29.57	28.33	.95216	39.80	33.17	31.58
.95800	35.80	29.65	28.41	.95200	39.90	33.27	31.66
				1			

Specific		Alcohol		Specific		Alcohol	
Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.	per cent by volume	per cent by weight	Grams ' per 100 c.c.	Gravity at 60° F.	per cent by volume	per cent by weight	Grams per 100 c.c.
.95185	40.00	33.35	31.74	.94519	44.10	37.02	34.99
.95169	40.10	33.44	31.82	.94502	44.20	37.11	35.07
.95154	40.20	33.53	31.90	.94484	44.30	37.21	35.15
.95138	40.30	33.61	31.98	.94467	44.40	37.30	35.23
.95122	40.40	33.70	32.06	.94450	44.50	37.39	35.31
.95107	40.50	33.79	32.14	.94433	44.60	37.48	<b>35</b> .39
.95091	40.60	33.88	32.22	.94416	44.70	37.57	35.47
.95075	40.70	33.97	32.30	.94398	44.80	37.66	35.55
.95059	40.80	34.06	32.38	.94381	44.90	37.76	35.63
. 95044	40.90	34.15	32.46	.94364	45.00	37.84	35.71
.95028	41.00	34.24	32.54	.94346	45.10	37.93	35.79
.95012	41.10	34.33	32.62	.94329	45.20	38.02	35.87
. 94996	41.20	34.42	32.70	.94311	45.30	38.12	35.95
.94980	41.30	34.50	32.78	.94294	45.40	38.21	36.03
.94964	41.40	34.59	32.86	.94276	45.50	38.30	36.11
.94948	41.50	34.68	32.93	.94258	45.60	38.39	36.19
. <b>94</b> 932	41.60	34.77	33.01	.94241	45.70	38.48	36.26
.94916	41.70	34.86	33.09	.94223	45.80	38.57	36.34
.94900	41.80	34.95	33.17	.94206	45.90	38.66	36.42
. <b>94884</b>	41.90	35.04	33.25	.94188	46.00	38.75	36.50
. <b>94868</b>	42.00	35.13	33.33	.94170	46.10	38.84	36.58
. <b>94852</b>	42.10	35.22	33.41	.94152	46.20	38.93	36.66
. 94835	42.20	35.31	33.49	.94134	46.30	39.03	36.74
.94810	42.30	35.40	33.57	.94116	46.40	39.12	36.82
.94802	42.40	35.49	33.65	.94098	46.50	39.21	36.90
.94786	42.50	35.58	33.73	.94080	46.60	39.30	36.98
.94770	42.60	35.67	33.81	.94062	46.70	39.39	37.06
.94753	42.70	35.76	33.89	.94044	46.80	39.49	37.13
.94737	42.80	35.85	33.97	.94026	46.90	39.58	37.21
.94720	42.90	35.94	34.04	.94008	47.00	39.67	37.29
.94704	43.00	36.03	34.12	.93990	47.10	39.76	37.37
.94687	43.10	36.12	34.20	.93971	47.20	39.85	37.45
.94670	43.20	36.21	34.28	.93953	47.30	39.95	37.53
. 94654	43.30	36.30	34.36	.93934	47.40	40.04	37.61
.94637	43.40	36.39	34.44	.93916	47.50	40.13	37.69
.94620	43.50	36.48	34.52	.93898	47.60	40.22	37.77
.94603	43.60	36.57	34.60	.93879	47.70	40.32	37.85
.94586	43.70	36.66	34.68	.93861	47.80	40.41	37.93
.94570	43.80	36.75	34.76	.93842	47.90	40.51	38.01
.94553	43.90	36.84	34.84	.93824	48.00	40.60	38.09
.94536	44.00	36.93	34.91	.93805	48.10	40.69	38.17
	12.00	30.03			1		

Specific		Alcohol.		Specific Gravity at	Alcohol.				
60° F.	Per Cent by Volume.	Per Cent by Weight.	Grams per 100 c.c.	Gravity at 60° F.	Per Cent by Volume.	Per Cent by Weight.	Grams per 100 c.c.		
.93786	48.20	40.78	38.25	.93617	49.10	41.61	38.96		
.93768	48.30	40.88	38.33	.93598	49.20	41.71	39.04		
.93749	48.40	40.97	38.41	.93578	49.30	41.80	39.12		
.93730	48.50	41.06	38.49	.93559	49.40	41.90	39.20		
93711	48.60	41.15	38.57	.93540	49.50	41.99	39.28		
93692	48.70	41.24	38.65	.93521	49.60	42.08	39.36		
.93679	48.80	41.34	38.72	.93502	49.70	42.18	39.44		
93655	48.90	41.43	38.80	.93482	49.80	42.27	39.52		
.93636	49.00	41.52	38.88	.93463	49.90	42.37	39.60		

# ALCOHOL TABLES OF THE BUREAU OF STANDARDS

### LV. — DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER

Per Cent Alcohol by Weight.	D ¹⁸ .*	D ²⁰ 4.	D ²⁶ 4.	Per Cent Alcohol by Weight.	D ¹⁶ 4.	D ²⁰ 4.	D ²⁶ 4.
0	0.99913	0.99824	0.99708	15	0.97683	0.97522	0.97336
1	0.99725	0.99636	0.99521	16	0.97563	0.97393	0.97199
2	0.99543	0.99453	0.99338	17	0.97444	0.97264	0.97061
3	0.99366	0.99274	0.99159	18	0.97324	0.97134	0.96922
4	0.99197	0.99102	0.98984	19	0.97203	0.97003	0.96782
5	0.99033	0.98936	0.98815	20	0.97080	0.96870	0.96640
6	0.98877	0.98776	0.98651	21	0.96956	0.96736	0.96497
7	0.98726	0.98620	0.98491	22	0.96829	0.96599	0.96352
8	0.98581	0.98470	0.98336	23	0.96699	0.96459	0.96203
9	0.98442	0.98325	0.98185	24	0.96566	0.96317	0.96052
10	0.98307	0.98185	0.98038	25	0.96430	0.96171	0.95897
11	0.98176	0.98047	0.97893	26	0.96289	0.96021	0.95739
12	0.98049	0.97913	0.97752	27	0.96145		0.95577
13	0.97925	0.97781	0.97612	28	0.95997	0.95711	0.95412
14	0.97803	0.97651	0.97474	29	0.95845	0.95550	0.95244

^{*}D\frac{15}{4} = density at 15° C. referred to water at 4° C.

Per Cent Alcohol by Weight.	D15.*	D ²⁰ 4.	D ²⁵ 4.	Per Cent Alcohol by Weight.	D ¹⁵ .	D ²⁰ / ₄ .	D-4.
. 30	0.95688	0.95385	0.95071	65	0.88368	0.87950	0.87530
31	0.95526	0.95215	0.94894	66	0.88134	0.87716	0.87295
32	0.95360	0.95042	0.94713	67	0.87899	0.87480	0.87058
33	0.95191	0.94865	0.94529	68	0.87664	0.87244	0.86821
34	0.95017	0.94684	0.94342	69	0.87428	0.87008	0.86583
35	0.94839	0.94499	0.94152	70	0.87192	0.86770	0.86344
36	0.94657	0.94311	0.93957	71	0.86954	0.86532	0.86105
37	0.94471	0.94119	0.93760	72	0.86716	0.86292	0.85864
38	0.94282	0.93924	0.93560	73	0.86477	0.86052	0.85622
39	0.94089	0.93725	0.93356	74	0.86237	0.85812	0.85380
40	0.93893	0.93524	0.93151	75	0.85997	0.85570	0.85137
41	0.93694	0.93320	0.92943	76	0.85755	0.85328	0.84893
42	0.93491	0.93113	0.92732	77	0.85513	0.85084	0.84648
<b>43</b>	0.93286	(0.92904	0.92519	78	0.85270	0.84840	0.84403
44	0.93078	0.92693	0.92305	79	0.85026	0.84595	0.84157
45	0.92868		0.92088	80	0.84781	0.84349	0.83909
<b>46</b>	0.92655	0.92264	0.91870	81	0.84534	0.84101	0.83660
47	0.92441	0.92047	0.91650	82	0.84286	0.83852	0.83410
48	0.92225	0.91828	0.91429	83	0.84037	0.83602	0.83159
49	0.92006	0.91608	0.91207	84	0.83786	0.83350	0.82906
50	0.91787	0.91386		85	0.83534	0.83097	0.82652
51	0.91566	0.91164		86	0.83279	0.82842	0.82396
<b>52</b>	0.91344	0.90940	0.90533	87	0.83022	0.82583	0.82137
53	0.91120	0.90715	0.90307	88	0.82762	0.82323	0.81876
54	0.90895	0.90488	0.90079	89	0.82500	0.82060	0.81613
55	0.90670	0.90262	0.89851	90	0.82235	0.81795	0.81348
56	0.90443	0.90034	0.89622	91	0.81966	0.81527	0.81080
57	0.90215	0.89805	0.89392	92	0.81694	0.81255	0.80809
<b>58</b>	0.89987	0.89576	0.89162	93	0.81418	0.80979	0.80534
59	0.89758	0.89346	0.88931	94	0.81138	0.80700	0.80256
60	0.89528	0.89115	0.88700	95	0.80854	0.80417	0.79974
61	0.89297	0.88883	0.88467	96	0.80564	0.80129	0.79689
<b>62</b>	0.89066	0.88651	0.88234	97	0.80271	0.79838	0.79400
63	0.88834	0.88418	0.88000	98	0.79972	0.79541	0.79106
64	0.88601	0.88185	0.87766	99	0.79668	0.79240	0.78809
				100	0.79358	0.78933	0.78507

^{*} D15 = density at 15° C, referred to water at 4° C.

LVI. — Density of Mixtures of Ethyl Alcohol and Water at  $\frac{20^{\circ}}{4^{\circ}}$ C.

Per Cent Alcohol		Tenths of Per Cent.								
by Weight.	0	1	3	8	4	5	6	7	8	9
0	0.99824	804	786	767	748	729	710	692	673	654
1	0.99636	617	599	580	562	544	525	507	489	47
2	0.99453	434	417	399	381	363	345	327	310	29
3	0.99274	257	240	222	205	188	171	154	136	119
4	0.99102	086	069	052	035	019	002	*986	*969	*952
5	0.98936	920	904	887	871	855	839	823	807	791
6	0.98776	760	744	729	713	697	682	666	651	636
7	0.98620	605	590	575	560	545	530	515	500	48
8	0.98470	456	441	426	412	397	383	368	354	340
9	0.98325	311	297	283	269	255	241	227	213	199
10	0.98185	171	157	143	130	116	102	088	074	061
11	0.98047	034	020	006	*993	*979	*966	*953	*939	*920
12	0.97913	899	886	873	860	846	833	820	807	794
13	0.97781	768	755	742	728	715	702	689	676	663
14	0.97651	638	625	612	599	586	573	560	547	535
15	0.97522	509	496	483	470	457	444	432	419	406
16	0.97393	380	367	354	341	328	316	303	290	277
17	0.97264	251	238	225	212	199	186	173	160	147
18	0.97134	121	108	095	082	068	055	042	029	016
19	0.97003	*989	*976	*963	*950	*936	*923	*910	*896	*883
20	0.96870	856	843	830	816	803	790	776	763	749
21	0.96736	722	708	695	681	668	654	640	626	613
22	0.96599	585	571	557	544	530	516	502	488	473
23	0.96459	445	431	417	403	388	374	360	346	331
24	0.96317	302	288	273	<b>25</b> 9	244	230	215	200	186
25	0.96171	156	141	126	111	096	081	066	051	036
<b>2</b> 6	0.96021	006	*991	*975	*960	*945	*929	*914	*899	*883
27	0.95868	852	837	821	806	790	774	759	743	72
<b>28</b>	0.95711	695	679	663	647	631	615	599	583	560
<b>2</b> 9	0.95550	534	518	501	485	468	452	435	419	402

^{*} The asterisk indicates a diminution of one in the second place decimal.

Per Cent Mcohol				Te	nths of l	Per Cent	•			
by Weight.	0	1	2	8	4	5	6	7	8	9
30	0.95385	369	352	335	318	301	284	267	250	232
31	0.95215	198	181	164	146	129	112	094	077	059
32	0.95042	024	007	*989	*971	*954	*936	*918	*900	*883
33	0.94865	847	829	811	793	775	757	739	720	702
34	0.94684	666	647	629	611	592	574	555	537	518
35	0.94499	481	462	443	424	406	386	368	349	330
36	0.94311	292	272	253	234	215	196	176	157	13
37	0.94119	099	080	061	041	022	002	*983	*963	*94
<b>3</b> 8	0.93924	904	884	864	845	825	805	785	765	74
39	0.93725	705	685	665	645	625	605	585	565	54
40	0.93524	504	484	464	443	423	402	382	362	34
41	0.93320	300	279	259	238	217	196	176	155	13
42	0.93113	092	072	051	030	009	*988	*967	*946	*92
43	0.92904	883	862	841	820	799	778	757	736	71
44	0.92693	672	651	629	608	587	566	544	523	50
45	0.92480	458	437	415	394	372	351	329	308	28
46	0.92264	243	221	199	178	156	134	112	091	06
47	0.92047	025	004	*982	*960	*938	*916	*894	*872	*85
48	0.91828	806	784	762	740	718	696	674	652	63
<b>49</b> ·	0.91608	586	564	542	519	497	475	453	431	40
50	0.91386	364	342	319	297	275	253	230	208	18
51	0.91164	141	119	096	074	052	029	007	*984	*96
52	0.90940	917	895	872	850	827	805	782	760	73
53	0.90715	692	670	647	624	602	579	556	534	51
54	0.90488	466	443	420	398	375	352	330	307	28
55 50	0.90262	239	216	193	170	148	125	102	079	0
56 57	0.90034 0.89805	011	*988	*965	*942	*919	*896	*874	*851	*82
58		782	759	736	713	690	668	645	622	59
59	0.89576	553	530	507	484	461	438	415	392	30
99	0.89346	323	300	277	254	230	207	184	161	1:
60	0.89115	092	069	046	022	*999	*976	*953	*930	*90
61	0.88883	860	837	814	791	767	744	721	698	6
62	0.88651	628	605	581	558	535	512	488	465	4
63 64	0.88418	395	372	348	325	302	278	255	231	*9°
υ <del>1</del> .	0.88185	161	138	114	091	068	044	021	*997	او- ا

^{*} The asterisk indicates a diminution of one in the second place decimal.

Per Cent Mçohol		Tenths of Per Cent.								
by Weight.	. 0	1	2	8	4	5	6	7	8	9
65	0.87950	927	904	880	857	833	810	786	763	739
66	0.87716	692	669	645	622	598	574	551	527	504
67	0.87480	457	433	409	386	362	339	315	291	268
68	0.87244	221	197	173	150	126	102	079	055	03
69	0.87008	*984	*960	*936	*913	*889	*865	*842	*818	*794
70	0.86770	746	722	699	675	651	627	603	580	` 550
71	0.86532	508	484	460	436	412	388	364	340	310
<b>72</b>	0.86292	268	245	221	197	173	149	125	101	070
73	0.86052	028	004	*980	*956	*932	*908	*884	*860	*830
74	0.85812	788	764	739	715	691	667	643	618	594
<b>75</b>	0.85570	546	522	497	473	449	425	400	376	352
76	0.85328	303	279	255	230	206	182	157	133	10
77	0.85084	060	036	011	*987	*962	*938	*914	*889	*86
78	0.84840	816	791	767	742	718	693	669	644	62
<b>79</b>	0.84595	571	546	521	497	472	448	423	398	37
80	0.84349	324	299	275	250	225	200	176	151	120
81	0.84101	076	051	026	002	*977	*952	*927	*902	*87
<b>82</b>	0.83852	827	802	777	752	727	702	677	652	62
83	0.83602	577	552	526	501	476	451	426	401	370
84	0.83350	325	300	274	249	224	198	173	147	12
85	0.83097	071	046	020	*995	*969	*944	*918	*893	*86
86	0.82842	816	790	764	738	713	687	661	635	60
87	0.82583	557	531	506	479	453	427	401	375	349
88	0.82323	297	270	244	218	192	165	139	113	080
89	0.82060	034	007	*981	*954	*928	*901	*875	*848	*82
90	0.81795	<b>76</b> 8	742	715	688	661	634	608	581	55
91	0.81527	500	473	446	418	391	364	337	310	28
92	0.81255	228	200	173	145	118	090	062	035	00
93	0.80979	952	924	896	868	840	812	784	756	72
94	0.80700	672	644	616	587	559	531	502	474	44.
95	0.80417	388	360	331	302	274	245	216	187	15
96	0.80129	100	071	042	013	*984	*955	*926	*896	*86
97	0.79838	808	779	749	720	690	660	631	601	57
98	0.79541	511	481	451	421	391	361	331	300	27
99	0.79240	209	179	148	118	087	056	026	*995	*96
100	0.78933								1	

^{*} The asterisk indicates a diminution of one in the second place decimal.

LVII. — Specific Gravity of Mixtures of Ethyl Alcohol and Water at  $\frac{60^{\circ}}{60^{\circ}}$  F.  $\left(\frac{15.55^{\circ}}{15.56^{\circ}}$  C. $\right)$ 

Per Cent Icohol	Tenths of Per Cent.									
y Vol- me at 60° F.	0	1	2	8	4	5	6	7	8	9
0	1.00000	*985	*970	*954	*940	*924	*910	*894	*880	*86
1	.99850	835	820	805	791	776	761	747	732	718
2	.99703	688	674	660	645	631	616	602	588	574
3	.99560	545	531	517	503	489	475	461	447	43
4	.99419	405	392	378	364	350	337	323	310	29
5	.99283	269	256	243	230	216	203	190	177	16
6	. 99150	137	124	111	098	086	073	060	047	03
7	.99022	009	*996	*984	*971	*959	*946	*934	*922	*90
8	.98897	885	872	860	848	836	824	812	800	78
9	.98776	764	752	740	728	716	705	693	681	67
10	.98658	646	635	623	612	600	589	578	566	55
11	.98544	532	521	510	499	488	477	466	454	44
12	.98432	422	410	400	389	378	367	356	345	33
13	. 98324	313	302	291	281	270	259	249	<b>23</b> 8	22
14	.98217	206	196	185	175	164	154	144	133	12
15	.98112	102	092	082	071	061	051	040	030	02
16	. 98010	000	*989	*979	*969 .	*959	*949	*939	*928	*91
17	.97908	898	888	878	868	858	848	838	828	81
18	.97808	<b>798</b>	788	778	768	758	748	<b>73</b> 8	728	71
19	.97708	698	688	678	668	658	648	637	627	61
20	97607	597	587	577	567	557	547	537	527	51
21	.97507	497	487	477	466	456	446	436	426	41
22	.97406	396	386	375	365	355	345	334	324	31
23	.97304	294	283	273	263	252	242	232	221	21
24	.97200	190	180	169	159	148	138	127	117	10
25	.97096	085	074	064	053	043	032	022	011	00
26	.96990	979	968	957	946	936	925	914	903	89
27	.96881	870	859	848	837	826	815	804	792	78
<b>2</b> 8	.96770	759	748	736	725	714	702	691	679	66
<b>2</b> 9	.96656	645	633	622	610	599	587	575	564	55

^{*} The asterisk indicates a diminution of one in the second place decimal.

Cent Alcoholo    Tenths of Per Cent.											
	Cent Alcohol				Т	enths of	Per Cen	ıt.			
31         .96420         408         396         384         372         359         347         335         322         310           32         .96297         285         272         260         248         235         222         210         197         184           33         .96172         159         146         133         120         107         094         082         068         065           34         .96042         029         016         003         *990         *976         *963         *950         *936         *923           35         .95909         896         882         868         855         841         827         814         800         786           36         .95772         758         744         730         716         702         688         673         659         645           37         .95630         616         602         587         573         558         544         529         515         500           38         .95485         471         456         441         426         412         397         382         367         352           3	ume at	0	1	2	8	4	5	6	7	8	9
32         .96297         285         272         200         248         235         222         210         197         184           33         .96172         159         146         133         120         107         094         082         068         055           34         .96042         029         016         003         *990         *976         *963         *950         *936         *923           35         .95909         896         882         868         855         841         827         814         800         786           36         .95772         758         744         730         716         702         688         673         659         645           37         .95630         616         602         587         573         558         544         529         515         500           38         .95485         471         456         441         426         412         397         382         367         352           39         .95337         322         306         291         276         261         246         230         215         200           4		.96540	528	516	504	492	481	469	456	444	432
32         .96297         285         272         260         248         235         222         210         197         184           33         .96172         159         146         133         120         107         094         082         .068         055           34         .96042         029         016         003         *990         *976         *963         *950         *936         *923           35         .95809         896         882         868         855         841         827         814         800         786           36         .95772         758         744         730         716         702         688         673         659         515         500           38         .95485         471         456         441         426         412         397         382         367         352           39         .95337         322         306         291         276         261         246         230         215         200           40         .95184         168         153         137         122         106         090         075         059         043	31	.96420	408	396	384	372	359	347	335	322	310
34         .96042         029         016         003         *990         *976         *963         *950         *936         *923           35         .95909         896         882         868         855         841         827         814         800         786           36         .95772         758         744         730         716         702         688         673         659         645           37         .95630         616         602         587         573         558         544         529         515         500           38         .95485         471         456         441         426         412         397         382         367         352           39         .95337         322         306         291         276         261         246         230         215         200           40         .95184         168         153         137         122         106         090         075         059         043           41         .95027         011         *995         *979         *963         *947         *931         *915         *899         *883	32	.96297	285	272			235	222	210	197	184
35         .95909         896         882         868         855         841         827         814         800         786           36         .95772         758         744         730         716         702         688         673         659         615           37         .95630         616         602         587         573         558         544         529         515         500           38         .95485         471         456         441         426         412         397         382         367         352           39         .95337         322         306         291         276         261         246         230         215         200           40         .95184         168         153         137         122         106         090         075         059         043           41         .95027         011         *995         *979         *963         *947         *931         *915         *899         *883           42         .94866         850         834         817         801         784         768         751         735         718 <td< td=""><td>33</td><td>.96172</td><td>159</td><td>146</td><td>133</td><td>120</td><td>107</td><td>094</td><td>082</td><td>• 068</td><td>055</td></td<>	33	.96172	159	146	133	120	107	094	082	• 068	055
36         .95772         758         744         730         716         702         688         673         659         645           37         .95630         616         602         587         573         558         544         529         515         500           38         .95485         471         456         441         426         412         397         382         367         352           39         .95337         322         306         291         276         261         246         230         215         200           40         .95184         168         153         137         122         106         090         075         059         043           41         .95027         011         *995         *979         *963         *947         *931         *915         *899         *883           42         .94866         850         834         817         801         784         768         751         735         718           43         .94702         685         668         651         634         618         601         584         567         550 <td< td=""><td>34</td><td>.96042</td><td>029</td><td>016</td><td>003</td><td>*990</td><td>*976</td><td>*963</td><td>*950</td><td>*936</td><td>*923</td></td<>	34	.96042	029	016	003	*990	*976	*963	*950	*936	*923
37         .95630         616         602         587         573         558         544         529         515         500           38         .95485         471         456         441         426         412         397         382         367         352           39         .95337         322         306         291         276         261         246         230         215         200           40         .95184         168         153         137         122         106         090         075         059         043           41         .95027         011         *995         *979         *963         *947         *931         *915         *899         *883           42         .94866         850         834         817         801         784         768         751         735         718           43         .94702         685         668         651         634         618         601         584         567         550           44         .94532         515         498         481         464         447         429         412         395         377 <td< td=""><td></td><td>. 95909</td><td>896</td><td>882</td><td>868</td><td>855</td><td>841</td><td>827</td><td>814</td><td>800</td><td>786</td></td<>		. 95909	896	882	868	855	841	827	814	800	786
38         .95485         471         456         441         426         412         397         382         367         352           39         .95337         322         306         291         276         261         246         230         215         200           40         .95184         168         153         137         122         106         090         075         059         043           41         .95027         011         *995         *979         *963         *947         *931         *915         *899         *883           42         .94866         850         834         817         801         784         768         751         735         718           43         .94702         685         668         651         634         618         601         584         567         550           44         .94532         515         498         481         464         447         429         412         395         377           45         .94360         342         325         307         290         272         254         236         219         201 <td< td=""><td></td><td>.95772</td><td>758</td><td>744</td><td>730</td><td>716</td><td>702</td><td>688</td><td>673</td><td>659</td><td>645</td></td<>		.95772	758	744	730	716	702	688	673	659	645
39         .95337         322         306         291         276         261         246         230         215         200           40         .95184         168         153         137         122         106         090         075         059         043           41         .95027         011         *995         *979         *963         *947         *931         *915         *899         *883           42         .94866         850         834         817         801         784         768         751         735         718           43         .94702         685         668         651         634         618         601         584         567         550           44         .94532         515         498         481         464         447         429         412         395         377           45         .94360         342         325         307         290         272         254         236         219         201           46         .94183         165         147         129         111         093         076         058         039         021 <td< td=""><td></td><td>. 95630</td><td>616</td><td>602</td><td>587</td><td>573</td><td>558</td><td>544</td><td>529</td><td>515</td><td>500</td></td<>		. 95630	616	602	587	573	558	544	529	515	500
40         .95184         168         153         137         122         106         090         075         059         043           41         .95027         011         *995         *979         *963         *947         *931         *915         *899         *883           42         .94866         850         834         817         801         784         768         751         735         718           43         .94702         685         668         651         634         618         601         584         567         550           44         .94532         515         498         481         464         447         429         412         395         377           45         .94360         342         325         307         290         272         254         236         219         201           46         .94183         165         147         129         111         093         076         058         039         021           47         .94003         *985         *967         *948         *930         *912         *893         *875         *856         *838	<b>38</b>	. 95485	471	456	441	426	412	397	382	367	352
41       .95027       011       *995       *979       *963       *947       *931       *915       *899       *883         42       .94866       850       834       817       801       784       768       751       735       718         43       .94702       685       668       651       634       618       601       584       567       550         44       .94532       515       498       481       464       447       429       412       395       377         45       .94360       342       325       307       290       272       254       236       219       201         46       .94183       165       147       129       111       093       076       058       039       021         47       .94003       *985       *967       *948       *930       *912       *893       *875       *856       *838         48       .93819       801       782       764       745       726       707       688       670       651         49       .93632       613       594       575       556       536       517       498<	39	.95337	322	306	291	276	261	246	230	215	200
42       .94866       850       834       817       801       784       768       751       735       718         43       .94702       685       668       651       634       618       601       584       567       550         44       .94532       515       498       481       464       447       429       412       395       377         45       .94360       342       325       307       290       272       254       236       219       201         46       .94183       165       147       129       111       093       076       058       039       021         47       .94003       *985       *967       *948       *930       *912       *893       *875       *856       *838         48       .93819       801       782       764       745       726       707       688       670       651         49       .93632       613       594       575       556       536       517       498       479       460         50       .93440       421       402       382       363       343       324       304		.95184	168	153	137	122	106	090	075	059	043
43         .94702         685         668         651         634         618         601         584         567         550           44         .94532         515         498         481         464         447         429         412         395         377           45         .94360         342         325         307         290         272         254         236         219         201           46         .94183         165         147         129         111         093         076         058         039         021           47         .94003         *985         *967         *948         *930         *912         *893         *875         *856         *838           48         .93819         801         782         764         745         726         707         688         670         651           49         .93632         613         594         575         556         536         517         498         479         460           50         .93440         421         402         382         363         343         324         304         285         265 <t< td=""><td></td><td>.95027</td><td>011</td><td>*995</td><td>*979</td><td>*963</td><td>*947</td><td>*931</td><td>*915</td><td>*899</td><td>*883</td></t<>		.95027	011	*995	*979	*963	*947	*931	*915	*899	*883
44         .94532         515         498         481         464         447         429         412         395         377           45         .94360         342         325         307         290         272         254         236         219         201           46         .94183         165         147         129         111         093         076         058         039         021           47         .94003         *985         *967         *948         *930         *912         *893         *875         *856         *838           48         .93819         801         782         764         745         726         707         688         670         651           49         .93632         613         594         575         556         536         517         498         479         460           50         .93440         421         402         382         363         343         324         304         285         265           51         .93246         226         206         187         167         147         128         108         088         068 <t< td=""><td></td><td>.94866</td><td>850</td><td>834</td><td>817</td><td>801</td><td>784</td><td>768</td><td>751</td><td>735</td><td>718</td></t<>		.94866	850	834	817	801	784	768	751	735	718
45         .94360         342         325         307         290         272         254         236         219         201           46         .94183         165         147         129         111         093         076         058         039         021           47         .94003         *985         *967         *948         *930         *912         *893         *875         *856         *838           48         .93819         801         782         764         745         726         707         688         670         651           49         .93632         613         594         575         556         536         517         498         479         460           50         .93440         421         402         382         363         343         324         304         285         265           51         .93246         226         206         187         167         147         128         108         088         068           52         .93048         028         008         *988         *968         *948         *928         *908         *887         *867		.94702	685	668	651	634	618	601	584	567	550
46         .94183         165         147         129         111         093         076         058         039         021           47         .94003         *985         *967         *948         *930         *912         *893         *875         *856         *838           48         .93819         801         782         764         745         726         707         688         670         651           49         .93632         613         594         575         556         536         517         498         479         460           50         .93440         421         402         382         363         343         324         304         285         265           51         .93246         226         206         187         167         147         128         108         088         068           52         .93048         028         008         *988         *968         *948         *928         *908         *887         *867           53         .92847         827         806         786         766         745         725         704         684         663	44	.94532	515	498	481	464	447	429	412	395	377
47         .94003         *985         *967         *948         *930         *912         *893         *875         *856         *838           48         .93819         801         782         764         745         726         707         688         670         651           49         .93632         613         594         575         556         536         517         498         479         460           50         .93440         421         402         382         363         343         324         304         285         265           51         .93246         226         206         187         167         147         128         108         088         068           52         .93048         028         008         *988         *968         *948         *928         *908         *887         *867           53         .92847         827         806         786         766         745         725         704         684         663           54         .92643         622         601         581         560         539         518         498         477         456		.94360	342	325	307	290	272	254	236	219	201
48         .93819         801         782         764         745         726         707         688         670         651           49         .93632         613         594         575         556         536         517         498         479         460           50         .93440         421         402         382         363         343         324         304         285         265           51         .93246         226         206         187         167         147         128         108         088         068           52         .93048         028         008         *988         *968         *948         *928         *908         *887         *867           53         .92847         827         806         786         766         745         725         704         684         663           54         .92643         622         601         581         560         539         518         498         477         456           55         .92435         414         393         372         351         330         309         288         267         246					129						
49         .93632         613         594         575         556         536         517         498         479         460           50         .93440         421         402         382         363         343         324         304         285         265           51         .93246         226         206         187         167         147         128         108         088         068           52         .93048         028         008         *988         *968         *948         *928         *908         *887         *867           53         .92847         827         806         786         766         745         725         704         684         663           54         .92643         622         601         581         560         539         518         498         477         456           55         .92435         414         393         372         351         330         309         288         267         246           56         .92224         203         182         161         139         118         097         075         054         032		.94003	*985		*948	*930		*893		*856	
50         .93440         421         402         382         363         343         324         304         285         265           51         .93246         226         206         187         167         147         128         108         088         068           52         .93048         028         008         *988         *968         *948         *928         *908         *887         *867           53         .92847         827         806         786         766         745         725         704         684         663           54         .92643         622         601         581         560         539         518         498         477         456           55         .92435         414         393         372         351         330         309         288         267         246           56         .92224         203         182         161         139         118         097         075         054         032           57         .92011         *990         *968         *946         *925         *903         *882         *860         *838         *817				782	764			707	688	670	651
51         .93246         226         206         187         167         147         128         108         088         068           52         .93048         028         008         *988         *968         *948         *928         *908         *887         *867           53         .92847         827         806         786         766         745         725         704         684         663           54         .92643         622         601         581         560         539         518         498         477         456           55         .92435         414         393         372         351         330         309         288         267         246           56         .92224         203         182         161         139         118         097         075         054         032           57         .92011         *990         *968         *946         *925         *903         *882         *860         *838         *817           58         .91795         773         752         730         708         686         664         643         621         599	49	.93632	613	594	575	556	536	517	498	479	460
52         .93048         028         008         *988         *968         *948         *928         *908         *887         *867           53         .92847         827         806         786         766         745         725         704         684         663           54         .92643         622         601         581         560         539         518         498         477         456           55         .92435         414         393         372         351         330         309         288         267         246           56         .92224         203         182         161         139         118         097         075         054         032           57         .92011         *990         *968         *946         *925         *903         *882         *860         *838         *817           58         .91795         773         752         730         708         686         664         643         621         599           59         .91577         555         533         511         489         467         444         422         400         378		.93440		402		363	343	324	304	285	
53         .92847         827         806         786         766         745         725         704         684         663           54         .92643         622         601         581         560         539         518         498         477         456           55         .92435         414         393         372         351         330         309         288         267         246           56         .92224         203         182         161         139         118         097         075         054         032           57         .92011         *990         *968         *946         *925         *903         *882         *860         *838         *817           58         .91795         773         752         730         708         686         664         643         621         599           59         .91577         555         533         511         489         467         444         422         400         378           60         .91356         333         311         289         266         244         222         199         177         154 <t< td=""><td></td><td></td><td></td><td></td><td>187</td><td>167</td><td></td><td></td><td></td><td></td><td></td></t<>					187	167					
54         .92643         622         601         581         560         539         518         498         477         456           55         .92435         414         393         372         351         330         309         288         267         246           56         .92224         203         182         161         139         118         097         075         054         032           57         .92011         *990         *968         *946         *925         *903         *882         *860         *838         *817           58         .91795         773         752         730         708         686         664         643         621         599           59         .91577         555         533         511         489         467         444         422         400         378           60         .91356         333         311         289         266         244         222         199         177         154           61         .91132         109         087         064         041         019         *996         *973         *951         *928											
55     .92435     414     393     372     351     330     309     288     267     246       56     .92224     203     182     161     139     118     097     075     054     032       57     .92011     *990     *968     *946     *925     *903     *882     *860     *838     *817       58     .91795     773     752     730     708     686     664     643     621     599       59     .91577     555     533     511     489     467     444     422     400     378       60     .91356     333     311     289     266     244     222     199     177     154       61     .91132     109     087     064     041     019     *996     *973     *951     *928       62     .90905     882     860     837     814     791     768     745     722     699       63     .90676     653     630     607     584     560     537     514     491     468		.92847									
56         .92224         203         182         161         139         118         097         075         054         032           57         .92011         *990         *968         *946         *925         *903         *882         *860         *838         *817           58         .91795         773         752         730         708         686         664         643         621         599           59         .91577         555         533         511         489         467         444         422         400         378           60         .91356         333         311         289         266         244         222         199         177         154           61         .91132         109         087         064         041         019         *996         *973         *951         *928           62         .90905         882         860         837         814         791         768         745         722         699           63         .90676         653         630         607         584         560         537         514         491         468	54	.92643	622	601	581	560	539	518	498	477	456
57         .92011         *990         *968         *946         *925         *903         *882         *860         *838         *817           58         .91795         773         752         730         708         686         664         643         621         599           59         .91577         555         533         511         489         467         444         422         400         378           60         .91356         333         311         289         266         244         222         199         177         154           61         .91132         109         087         064         041         019         *996         *973         *951         *928           62         .99905         882         860         837         814         791         768         745         722         699           63         .90676         653         630         607         584         560         537         514         491         468										267	
58     .91795     773     752     730     708     686     664     643     621     599       59     .91577     555     533     511     489     467     444     422     400     378       60     .91356     333     311     289     266     244     222     199     177     154       61     .91132     109     087     064     041     019     *996     *973     *951     *928       62     .90905     882     860     837     814     791     768     745     722     699       63     .90676     653     630     607     584     560     537     514     491     468		.92224	<b>2</b> 03	182	161	139	118	097	075		
59     .91577     555     533     511     489     467     444     422     400     378       60     .91356     333     311     289     266     244     222     199     177     154       61     .91132     109     087     064     041     019     *996     *973     *951     *928       62     .90905     882     860     837     814     791     768     745     722     699       63     .90676     653     630     607     584     560     537     514     491     468		.92011	*990	*968	*946	*925	*903	*882	*860	*838	*817
60     .91356     333     311     289     266     244     222     199     177     154       61     .91132     109     087     064     041     019     *996     *973     *951     *928       62     .90905     882     860     837     814     791     768     745     722     699       63     .90676     653     630     607     584     560     537     514     491     468		.91795	773	752	730	708	686	664	643	621	599
61     .91132     109     087     064     041     019     *996     *973     *951     *928       62     .90905     882     860     837     814     791     768     745     722     699       63     .90676     653     630     607     584     560     537     514     491     468	59	.91577	555	533	511	489	467	444	422	400	<b>37</b> 8
62 .90905 882 860 837 814 791 768 745 722 699 63 .90676 653 630 607 584 560 537 514 491 468						266					
63   .90676   653   630   607   584   560   537   514   491   468		.91132	109	087	064	041	019	*996	*973	*951	*928
1,000.0 000 000 000 000 000 000 000 000		.90905			837	814	791	768	745	722	
64   .90444   421   398   374   351   328   304   281   257   234		.90676	653				560			491	
	64	.90444	421	398	374	351	328	304	281	257	234

^{*} The asterisk indicates a diminution of one in the second place decimal.

Per Cent Alcohol	Tenths of Per Cent.											
by Vol- ume at 60° F.	0	1	2	8	4	5	6	7	8	9		
65	.90210	187	163	140	116	092	069	045	022	*998		
66	.89974	950	927	903	879	855	831	807	783	759		
67	.89735	711	687	663	639	615	591	567	542	518		
68	.89494	470	445	421	397	372	348	324	299	275		
69	.89250	226	201	177	152	127	103	078	053	029		
70	.89004	*979	*954	*930	*905	*880	*855	*830	*805	*780		
71	.88755	730	705	680	655	630	605	580	554	529		
72	.88504	478	453	<b>428</b>	403	377	352	326	301	276		
73	.88250	224	199	173	147	122	096	070	044	018		
74	.87993	967	941	915	889	864	838	812	786	760		
75	.87734	708	682	655	629	603	577	550	524	498		
76	.87471	445	419	392	366	339	313	286	259	233		
77	.87206	179	153	126	099	072	045	018	*991	*964		
78	.86937	910	883	856	829	802	774	747	720	692		
79	.86665	<b>63</b> 8	610	583	<b>55</b> 5	528	500	472	445	417		
80	.86389	362	334	306	278	250	222	194	166	138		
81	.86110	082	054	025	*997	*969	*941	*912	*884	*855		
<b>82</b>	.85827	799	770	742	713	684	656	627	598	570		
83	.85541	512	483	454	425	396	367	338	308	279		
84	.85250	<b>22</b> 0	191	162	132	103	073	044	014	*984		
85	.84955	925	895	865	835	805	775	745	714	684		
86	.84654	624	593	563	532	502	471	440	410	379		
87	.84348	317	286	255	224	193	162	131	100	068		
. 88	.84037	005	*974	*942	*910	*879	*847	*815	*783	*751		
89	.83719	687	654	622	590	557	525	492	459	427		
90	.83394	361	328	294	261	228	194	160	127	093		
91	.83059	025	*991	*957	*923	*888	*854	*819	*785	*750		
92	.82715	680	645	610	574	539	503	468	432	396		
93	.82360	324	288	252	215	178	142	105	068	031		
94	.81994	956	918	881	843	804	766	<b>72</b> 8	689	650		
95	.81611	572	533	494	454	414	374	334	293	253		
96	.81212	171	130	089	047	006	*964	*921	*879	*836		
97	.80794	751	708	664	620	576	532	488	443	398		
98	.80353	308	262	216	169	123	076	028	*981	*933		
99	.79885	837	788	739	690	640	<b>59</b> 0	<b>54</b> 0	489	438		
100	. 79387											

^{*} The asterisk indicates a diminution of one in the second place decimal.

Table LVIII.—Per Cents of Alcohol by Volume at 60°F., Corresponding to Various Per Cents by Weight in Mixtures of Ethyl Alcohol and Water

Per Cent Alcohol		Tenths of Per Cent.								
by Weight.	0	1	2	8	4	5	6	7	8	9
0	0.00	0.13	0.25	0.38	0.50	0.63	0.75	0.88	1.01	1.13
i	1.26	1.38	1.51	1.63	1.76		2.01	2.13	2.26	
2	2.51	2.63	2.76	2.88	3.01	3.13	3.26	3.38	3.51	3.63
3	3.76	3.88	4.01	4.13	4.26	4.38	4.50	4.63	4.75	4.88
4	5.00	5.13	5.25	5.37	5.50	5.62	5.75	5.87	5.99	6.12
5	6.24	6.37	6.49	6.61	6.74	6.86	6.98	7.11	7.23	7.36
6	7.48	7.60	7.73	7.85	7.97	8.10	8.22	8.34	8.47	8.59
7	8.71	8.84	8.96	9.08	9.20	9.33	9.45	9.57	9.70	9.82
8	9.94	10.07	10.19	10.31	10.43	10.56	10.68	10.80	10.92	11.05
. 9	11.17	11.29	11.41	11.54	11.66	11.78	11.90	12.03	12.15	12.27
10	12.39	12.52	12.64	12.76	12.88	13.00	1 <b>3</b> .13	13.25	13.37	13.49
11	13.62	13.74	13.86	13.98	14.10	14.22	14.35	14.47	14.59	14.71
12	14.83	14.95	15.08	15.20	15.32	15.44	15.56	15.68	15.81	15.93
13	16.05	16.17	16.29	16.41	<b>16.5</b> 3	16.66	16.78	16.90	17.02	<b>1</b> 7.14
14	17.26	17.38	17.50	17.62	17.75	17.87	17.99	18.11	18.23	18.35
15	18.47	18.59	18.71	18.83	18.95	19.08	19.20	19.32	19.44	19.56
16	19.68	19.80	19.92	20.04	<b>20</b> .16	20.28	20.40	<b>20</b> .52	20.64	20.76
17	20.88	21.00	21.12	21.24	21.36	21.48	21.60	21.72	21.84	21.96
18	22.08	22.20	22.32	22.44	22.56	22.68	22.80	22.92	23.04	23.16
19	<b>23.2</b> 8	23.40	23.52	23.64	23.76	23.88	24.00	24.12	24.24	<b>24</b> .36
20	24.48	24.59	24.71	24.83	24.95	25.07	25.19	25.31	25.43	<b>25</b> .55
21	25.67	25.78	25.90	26.02	26.14	26.26	26.38	26.50	26.62	<b>26</b> .73
22	26.85	26.97	27.09	27.21	27.33	27.44	27.56	27.68	27.80	<b>27</b> .92
23	28.04	<b>28</b> .15	28.27	28.39	28.51	28.62	28.74	28.86	28.98	29.10
24	29.21	29.33	29.45	29.57	29.68	29.80	29.92	30.03	30.15	30.27
25	30.39	30.50	30.62	30.74	30.85	30.97	31.09	31.21	31.32	31.44
26	31.56	31.67	31.79	31.91	32.02	32.14	32.26	32.37	32.49	<b>32</b> .60
27	32.72	32.84	32.95	33.07	33.18	33.30	33.42	33.53	33.65	33.76
28	33.88	34.00	34.11	34.23	34.34	34.46	34.57	34.69	34.80	34.92
29	35.03	35.15	35.26	35.38	35.49	35.61	35.72	35.84	35.95	36.07

Per Cent Alcohol	Tenths of Per Cent.										
by Weight.	. 0	1	2	8	4	5	. 6	7	.8	9	
30	36.18	36.30	36.41	36.52	36.64	36.75	36.87	36.98	37.10	37.21	
31	37.32	37.44	37.55	37.67	37.78	37.89	38.01	38.12	38.23	38.35	
32	38.46	38.58	38.69	38.80	38.91	39.03	39.14	39.25	39.37	39.48	
33	39.59	39.71	39.82	39.93	40.04	40.16	40.27	40.38	40.49	40.61	
34	40.72	40.83	40.94	41.05	41.17	41.28	41.39	41.50	41.61	41.72	
35	41.84	41.95	42.06	42.17	42.28	42.39	42.50	42.62	42.73	42.84	
36	42.95	43.06	43.17	<b>43.28</b>	43.39	43:50	43.61	43.72	43.83	43.94	
37	44.06	44.16	44.27	44.38	44.49	44.60	44.71	44.82	44.93	45.04	
38	45.15	45.26	45.37	45.48	45.59	45.70	45.81	45.92	46.03	46.14	
39	46.25	46.36	46.46	46.57	46.68	46.79	46.90	47.01	47.12	47.23	
40	47.33	47.44	47.55	47.66	47.77	47.87	47.98	48.09	48.20	48.31	
41	48.41	48.52	48.63	48.74	48.84	48.95	49.06	49.17	49.27	49.38	
42	49.49	49.59	49.70	49.81	49.91	50.02	50.13	50.23	50.34	50.45	
43	50.55	50.66	50.77	50.87	50.98	51.08	51.19	51.30	51.40	51.51	
44	51.61	51.72	51.82	51.93	52.04	52.14	52.25	. 52.35	52.46	52.56	
45	52.67	52.77	52.88	52.98	53.09	53.19	53.30	53.40	53.51	53.61	
46	53.72	53.82	53.92	54.03	54.13	54.24	54.34	54.44	54.55	<b>54.65</b>	
47	54.76	54.86	54.96	55.07	55.17	55.27	55.38	55.48	55.58	<b>55</b> .69	
48	55.79	55.89	55.99	56.10	56.20	56.30	56.41	56.51	56.61	56.71	
49	56.82	56.92	57.02	57.12	57.22	57.33	57.43	57.53	57.63	57.73	
50	57.84	57.94	58.04	58.14	58.24	58.34	58.45	58.55	58.65	<b>58.75</b>	
51	58.85	58.95	59.05	59.15	59.26	59.36	59.46	59.56	59.66	59.76	
52	59.86	59.96	60.06	60.16	60.26	60.36	60.46	60.56	60.66	60.76	
53	60.86	60.96	61.06	61.16	61.26	61.36	61.46	61.56	61.66	61.76	
54	61.86	61.96	62.05	62.15	62.25	62.35	62.45	62.55	62.65	62.75	
55	62.85	62.94	63.04	63.14	63.24	63.34	63.44	63.53	63.63	63.73	
56	63.83	63.93	64.02	64.12	64.22	64.32	64.41	64.51	64.61	64.71	
57	64.80	64.90	65.00	65.10	65.19	65.29	65.39	65.48	65.58	<b>65.68</b>	
58	65.77	65.87	65.97	66.06	66.16	66.26	66.35	66.45	66.55	66.64	
59	66.74	66.83	66.93	67.03	67.12	67.22	67.31	67.41	67.50	67.60	
60	67.70	67.79	67.88	67.98	68.08	68.17	68.26	68.36	68.46	68.55	
61	68.64	68.74	68.83	68.93	69.02	69.12	69.21	69.31	69.40	69.50	
62	69.59	69.68	69.78	69.87	69.97	70.06	70.15	70.25	70.34	70.43	
63	70.53	70.62	70.71	70.81	70.90	70.99	71.09	71.18	71.27	71.37	
64	71.46	71.55	71.64	71.74	71.83	71.92	72.02	72.11	72.20	<b>72.29</b>	

by	1 1	Tenths of Per Cent.									
Weight.	0	1	2	8	4	5	6	7	8	9	
65	72.38	72.48	72.57	72.66	72.75	72.84	72.94	73.03	73.12	73.21	
66	73.30	73.40	73.49	<b>73.5</b> 8	73.67	73.76	73.85	73.94	74.03	74.12	
67	74.22	74.31	74.40	74.49	74.58	74.67	74.76	74.85	74.94	75.03	
68	75.12	75.21	75.30	75.39	<b>75.48</b>	75.57	75.66	75 <b>.7</b> 5	75.84	75.93	
69	76.02	76.11	76.20	<b>76.2</b> 9	76.38	76.47	76.56	76.65	76.74	76.83	
70	76.92	77.00	77.09	77.18	77.27	77.36	77.45	77.54	77.62	77.71	
71	77.80	77.89	77.98	78.06	78.15	78.24	78.33	78.42	78.50	<b>78.59</b>	
72	78.68	78.77	78.85	78.94	79.03	79.12	79.20	79.29	79.38	79.47	
73	79.55	79.64	79.73	79.81	79.90	79.99	80.07	80.16	80.25	80.33	
74	80.42	80.50	80.59	80.68	80.76	80.85	80.93	81.02	81.11	81.19	
75	81.28	81.36	81.45	81.53	81.62	81.70	81.79	81.87	81.96	82.04	
76	82.13	82.21	82.30	82.38	82.47	82.55	82.64	82.72	82.81	82.89	
77	82.98	83.06	83.14	83.23	83.31	83.40	83.48	83.56	83.65	83.73	
78	83.81	83.90	83.98	84.06	84.15	84.23	84.31	84.40	84.48	84.56	
79	84.64	84.73	84.81	84.89	84.98	85.06	85.14	85.22	85.30	85.39	
80	85.47	85.55	85.63	85.71	85.80	85.88	85.96	86.04	86.12	<b>86.20</b>	
81	86.29	86.37	86.45	86.53	86.61	86.69	86.77	86.85	86.93	87.01	
82	87.10	87.18	87.26	87.34	87.42	87.50	87.58	87.66	87.74	87.82	
83	87.90	87.98	88.05	88.13	88.21	88.29	88.37	88.45	88.53	88.61	
84	88.69	88.77	88.85	88.92	89.00	89.08	89.16	89.24	89.32	<b>89.40</b>	
85	89.47	89.55	89.63	89.71	89.78	89.86	89.94	90.02	90.10	90.17	
86	90.25	90.33	90.40	90.48	90.56	90.63	90.71	90.79	90.86	90.94	
87	91.02	91.09	91.17	91.25	91.32	91.40	91.47	91.55	91.62	91.70	
88	91.78	91.85	91.93	92.00	92.08	92.15	92.22	92.30	92.37	92.45	
89	92.52	92.60	92.67	92.75	92.82	92.89	92.97	93.04	93.12	93.1 <b>9</b>	
90	93.26	93.34	93.41	93.48	93.55	93.63	93.70	93.77	93.85	93.92	
91	93.99	94.06	94.14	94.21	94.28	94.35	94.42	94.49	94.57	94. <b>64</b>	
92	94.71	94.78	94.85	94.92	94.99	95.06	95.13	95.20	95.27	95. <b>34</b>	
93	95.42	<b>95.48</b>	95.55	95.62	95.69	95.76	95.83	95.90	95.97	96.04	
94	96.11	96.18	96.25	96.31	96.38	96.45	96.52	96.59	96.65	96. <b>72</b>	
95	96.79	96.86	96.92	96.99	97.06	97.13	97.19	97.26	97.33	97.39	
96	97.46	97.53	97.59	97.66	97.72	97.79	97.85	97.92	97.98	98. <b>05</b>	
97	98.12	98.18	<b>98.24</b>	98.31	98.37	98.44	98.50	98.57	98.63	96. <b>69</b>	
98	98.76	98.82	98.88	98.95	99.01	99.07	99.14	99.20	99.26	99.3 <b>2</b>	
99	99.39	99.45	99.51	99.57	99.63	99.69	99.75	99.82	99.88	99.94	
100	100.00								ı		

LIX. — REDUCTION OF MIXTURES OF ETHYL ALCOHOL AND WATER FROM PER CENTS BY VOLUME TO PER CENTS BY WEIGHT

Per Cent Alcohol' by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.	Per Cent Alcohol by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.	Per Cent Alcohol by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.
0 ·	0.00	0.80	23	18.76	0.84	46	38.78	0.91
1	0.80	0.79	24	19.60	0.84	47	39.69	0.93
2	1.59	0.80	25	20.44	0.84	48	40.62	0.92
3	2.39	0.81	26	21.28	0.84	49	41.54	0.94
4	3.20	0.80	27	22.12	0.85	50	42.48	0.94
. 5	4.00	0.80	28 '	22.97	0.85	51	43.42	0.95
6	4.80	0.81	29	23.82	0.85	52	44.37	0.95
7	5.61	0.81	30	24.67	0.85	53	45.32	0.95
8	6.42	0.81	31	25.52	0.86	54	46.27	0.97
9	7.23	0.82	32	<b>26.38</b>	0.86	55	47.24	0.96
10	8.05	0.81	33	27.24	0.86	. 56	48.20	0.98
11	8.86	0.82	34	28.10	0.87	57	49.18	0.98
12	9.68	0.82	35	<b>2</b> 8.97	0.87	58	50.16	0.99
13	10.50	0.82	36	29.84	0.88	59	51.15	0.99
14	11.32	0.82	37	30.72	0.87	60	52.14	1.00
15	12.14	0.82	38	31.59	0.89	61	53.14	1.00
16	12.96	0.82	39	<b>32</b> :48	0.88	62	54.14	1.02
17	13.78	0.83	40	33.36	0.89	63	55.16	1.02
18	14.61	0.83	41	34.25	0.90	64	<b>56</b> .18	1.02
19	15.44	0.83	42	35.15	0.89	65	57.20	1.03
20	16.27	0.83	43	36.04	0.91	66	58.23	1.04
21	17.10	0.83	44	36.95	0.91	67	59.27	1.05
<b>22</b> .	17.93	0.83	45	37.86	0.92	68	60.32	1.06

Per Cent Alcohol by Vol- ume at 60° F.	Per cent Alcohol by Weight.	Differ- ences.	Per Cent Alcohol by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.	Per Cent Alcohol by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.
69	61.38	1.06	80	73.52	1.16	91	86.98	1.32
70	62.44	1.07	81	74.68	1.17	92	88.30	1.34
71	63.51	1.07	82	75.85	1.18	93	89.64	1.37
72	64.58	1.09	83	77.03	1.19	94	91.01	1.40
73	65.67	1.09	84	78.22	1.21	95	92.41	1.43
74	66.76	1.10	85	79.43	1.22	96	93.84	1.47
75	67.86	1.12	86	80.65	1.23	97	95.31	1.51
76	68.98	1.12	87	81.88	1.25	98.	96.82	1.56
77	70.10	1.13	88	83.13	1.27	99	98.38	1.62
78	71.23	1.14	89	84.40	1.28	100	100.00	
79	72.37	1.15	90	85.68	1.30			

# LX. — METHYL ALCOHOL AT $\frac{15.56^{\circ}}{4^{\circ}}$

Specific Gravity.	Per Cent by Weight.	Specific Gravity.	Per Cent by Weight.	Specific Gravity.	Per Cent by Weight.	Specific Gravity.	Per Cent by Weight.
0.99729	· 1	0.94055	38	0.89133	63	0.84521	82
0.99554	2	0.93697	40	0.88905	64	0.84262	83
0.99214	4	0.93335	42	0.88676	65	0.84001	84
0.98893	6	0.92975	44	0.88443	66	0.83738	85
0.98569	8	0.92610	46	0.88208	67	0.83473	86
0.98262	10	0.92237	48	0.87970	68	0.83207	87
0.97962	12	0.91855	50	0.87714	69	0.82938	88
0.97668	14	0.91661	51	0.87487	70	0.82668	89
0.97379	16	0.91465	52	0.87262	71	0.83396	90
0.97039	18	0.91267	53	0.87021	72	0.82123	91
0.96808	20	0.91066	54	0.86779	73	0.81849	92
0.96524	22	0.90863	55	0.86535	74	0.81572	93
0.96238	24	0.90657	56	0.86290	75	0.81293	94
0.95947	26	0.90450	57	0.86042	76	0.81013	95
0.95655	28	0.90239	58	0.85793	77	0.80731	96
0.95355	30	0.90026	59	0.85542	78	0.80448	97
0.95053	32	0.89798	60	0.85290	79	0.80164	98
0.94732	34	0.89580	61	0.85035	80	0.79876	99
0.94399	36	0.89358	62	0.84779	81	0.79589	100

LXI. — Specific Gravity and Percentage by Weight and Volume of Methyl Alcohol

TECHN. HOGSKOLAN STOCKHOLM. ARKIV. KEMI. MIN. GEOL. (2) 27, 32 pp.

		<del></del>						
Specific Gravity $\frac{15.6^{\circ}}{15.6^{\circ}}$ C.	Per Cent Weight.	Per Cent Vol- ume.	Specific Gravity 15.6° C.	Per Cent Weight.	Per Cent Vol- ume.	Specific Gravity 15.6° C.	Per Cent Weight.	Per Cent Vol- ume.
1.0000	0.00	0.00	0.9962	2.04	2.62	0.9924	4.24	5.38
0.9999	0.06	0.07	0.9961	2.09	2.69	0.9923	4.29	5.45
0.9998	0.11	0.13	0.9960	2.14	2.76	0.9922	4.35	5.52
0.9997	0.17	0.20	0.9959	2.20	2.83	0.9921	4.41	5.60
0.9996	0.22	0.27	0.9958	2.26	2.90	0.9920	4.57	5.67
0.9995	0.28	0.33	0.9957	2.31	2.98	0.9919	4.53	5.74
0.9994	0.33	0.40	0.9956	2.37	3.05	0.9918	4.60	5.82
0.9993	0.39	0.47	0.9955	2.43	3.12	0.9917	4.66	5.89
0.9992	0.44	0.53	0.9954	2.49	3.19	0.9916	4.72	5.96
0.9991	0.50	0.60	0.9953	2.55	3.26	0.9915	4.78	6.04
0.9990	0.55	0.67	0.9952	2.60	3.34	0.9914	4.85	6.11
0.9989	0.61	0.73	0.9951	2.66	3.41	0.9913	4.91	6.18
0.9988	0.66	0.80	0.9950	2.72	3.48	0.9912	4.97	6.25
0.9987	0.72	0.86	0.9949	2.78	3.55	0.9911	5.03	6.33
0.9986	0.77	0.93	0.9948	2.84	3.62	0.9910	5.10	6.40
0.9985	0.83	1.00	0.9947	2.89	3.70	0.9909	5.16	6.47
0.9984	0.88	1.06	0.9946	2.95	3.77	0.9908	5.22	6.55
0.9983	0.94	1.13	0.9945	3.01	3.84	0.9907	5.28	6.62
0.9982	0.99	1.20	0.9944	3.07	3.91	0.9906	5.35	6.69
0.9981	1.05	1.26	0.9943	3.13	3.98	0.9905	5.41	6.77
0.9980	1.10	1.33	0.9942	3.18	4.06	0.9904	5.47	6.84
0.9979	1.15	1.40	0.9941	3.24	4.13	0.9903	5.53	6.91
0.9978	1.20	1.47	0.9940	3.30	4.20	0.9902	5.60	6.98
0.9977	1.26	1.54	0.9939	3.36	4.27	0.9901	5.66	7.06
0.9976	1.31	1.62	0.9938	3.42	4.35	0.9900	5.72	7.13
0.9975	1.36	1.69	0.9937	3.48	4.42	0.9899	5.78	7.21
0.9974	1.41	1.76	0.9936	3.53	4.49	0.9898	5.85	7.28
0.9973	1.46	1.83	0.9935	3.59	4.57	0.9897	5.91	7.36
0.9972	1.52	1.90	0.9934	3.65	4.64	0.9896	5.97	7.44
0.9971	1.57	1.97	0.9933	3.71	4.71	0.9895	6.04	7.52
0.9970	1.62	2.05	0.9932	3.77	4.79	0.9894	6.10	7.59
0.9969	1.67	2.12	0.9931	3.83	4.89	0.9893	6.16	7.67
0.9968	1.72	2.19	0.9930	3.89	4.94	0.9892	6.23	7.75
0.9967	1.78	2.26	0.9929	3.94	5.01	0.9891	6.29	7.82
0.9966	1.83	2.33	0.9928	4.00	5.08	0.9890	6.36	7.90
0.9965	1.88	2.40	0.9927	4.06	5.16	0.9889	6.42	7.98
0.9964	1.93	2.47	0.9926	4.12	5.23	0.9888	6.48	8.05
0.9963	1.98	2.55	0.9925	4.18	5.30	0.9887	6.55	8.13
	·	<u>'</u>	·	·			06	

Digitized by GOOSI

Specific Gravity $\frac{15.6^{\circ}}{15.6^{\circ}}$ C.	Per Cent Weight.	Per Cent Vol- ume.	Specific Gravity 15.6° C.	Per Cent Weight.	Per Cent Vol- ume.	Specific Gravity 15.6° C.	Per Cent Weight.	Per Cent Vol- ume.
0.9886	6.61	8.21	0.9843	9.39	11.58	0.9800	12.27	15.12
0.9885	6.67	8.29	0.9842	9.45	11.66	0.9799	12.34	15.21
0.9884	6.74	8.36	0.9841	9.52	11.74	0.9798	12.41	15.29
0.9883	6.80	8.44	0.9840	9.58	11.82	0.9797	12.48	15.38
0.9882	6.86	8.52	0.9839	9.65	11.90	0.9796	12.55	15.46
0.9881	6.93	8.59	0.9838	9.72	11.98	0.9795	12.62	15.55
0.9880	6.99	8.67	0.9837	9.78	12.06	0.9794	12.69	15.63
0.9879	7.06	8.75	0.9836	9.85	12.14	0.9793	12.76	15.72
0.9878	7.12	8.83	0.9835	9.92	12.23	0.9792	12.83	15.80
0.9877	7.19	8.90	0.9834	9.99	12.31	0.9791	12.90	15.89
0.9876	7.25	8.98	0.9833	10.06	12.39	0.9790	12.97	15.87
0.9875	7.32	9.06	0.9832	10.12	12.47	0.9789	13.04	16.06
0.9874	7.38	9.14	0.9831	10.19	12.55	0.9788	13.11	16.14
0.9873	7.45	9.22	0.9830	10.26	12.63	0.9787	13.18	16.23
0.9872	7.51	9.29	0.9829	10.33	12.71	0.9786	13.25	16.31
0.9871	7.58	9.37	0.9828	10.40	12.79	0.9785	13.32	16.40
0.9870	7.64	9.45	0.9827	10.46	12.87	0.9784	13.39	16.48
0.9869	7.71	9.53	0.9826	10.53	12.95	0.9783	13.46	16.57
0.9868	7.77	9.61	0.9825	10.60	13.04	0.9782	13.53	16.65
0.9867	7.84	9.68	0.9824	10.67	13.12	0.9781	13.60	16.74
0.9866	7.90	9.76	0.9823	10.74	13.20	0.9780	13.67	16.82
0.9865	7.97	9.84	0.9822	10.80	13.28	0.9779	13.74	16.91
0.9864	8.03	9.92	0.9821	10.87	13.36	0.9778	13.82	16.99
0.9863	8.10	10.00	0.9820	10.94	13.44	0.9777	13.89	17.08
0.9862	8.16	10.07	0.9819	11.01	13.52	0.9776	13.96	17.16
0.9861	8.23	10.15	0.9818	11.07	13.61	0.9775	14.03	17.25
0.9860	8.29	10.13	0.9817	11.14	13.69	0.9774	14.11	17.33
0.9859	8.35	10.31	0.9816	11.21	13.78	0.9773	14.18	17.42
0.9858	8.42	10.38	0.9815	11.27	13.86	0.9772	14.25	17.50
0.9857	8.48	10.47	0.9814	11.34	13.94	0.9771	14.32	17.59
0.9856	8.55	10.55	0.9813	11.41	14.03	0.9770	14.40	17.68
0.9855	8.61	10.63	0.9812	11.47	14.11	0.9769	14.47	17.76
0.9854	8.68	10.03	0.9812	11.54	14.11	0.9768	14.54	17.76
	8.74	10.71	0.9811	11.61	14.28	0.9767	14.61	17.93
0.9853 0.9852	8.81	10.79	0.9809	11.67	14.26	0.9766	14.69	17.93 18.02
			0.9808	11.74	14.45	0.9765	14.76	18.10
0.9851	8.87	10.95			14.43	1		
0.9850	8.94 9.00	11.03 11.10	0.9807 0.9806	11.80 11.87	14.62	0.9764 0.9763	14.83 14.90	18.19 18.27
0.9849	9.00	11.10	0.9805	11.87	14.70	0.9763	14.90	18.2 <i>i</i> 18.36
0.9848			0.9805	12.00	14.78	0.9762	14.98 15.05	
0.9847	9.13	11.26						18.44
0.9846	9.19	11.34	0.9803	12.07	14.87	0.9760	15.12	18.53
0.9845	9.26	11.42	0.9802	12.14	14.95	0.9759	15.19	18.62
0.9844	9.32	11.50	0.9801	12.20	15.04	0.9758	15.27	18.70

Digitized by GOOGLE

<u> </u>						<del>,</del>	· · · · · ·	
Specific Gravity 15.6° C.	Per Cent Weight.	Per cent Vol- ume.	Specific Gravity 15.6° C.	Per Cent Weight.	Per Cent Vol- ume.	Specific Gravity 15.6° C.	Per Cent Weight.	Per Cent Vol- ume.
0.9757	15.34	18.79	0.9714	18.40	22.47	0.9671	21.42	26.10
0.9756	15.41	18.88	0.9713	18.47	22.56	0.9670	21.49	26.18
0.9755	15.49	18.96	0.9712	18.54	22.64	0.9669	21.56	26.26
0.9754	15.56	19.05	0.9711	18.61	22.73	0.9668	21.63	26.35
0.9753	15.63	19.14	0.9710	18.68	22.82	0.9667	21.70	26.43
0.9752	15.70	19.22	0.9709	18.75	22.90	0.9666	21.77	26.52
0.9751	15.78	19.31	0.9708	18.82	22.99	0.9665	21.84	26.60
0.9750	15.95	19.40	0.9707	18.89	23.07	0.9664	21.91	26.68
0.9749	15.92	19.48	0.9706	18.96	23.16	0:9663	21.98	26.77
0.9748	16.00	19.56	0.9705	19.03	23.24	0.9662	22.05	26.85
0.9747	16.07	19.65	0.9704	19.10	23.33	0.9661	22.12	26.94
0.9746	16.14	19.74	0.9703	19.17	23.41	0.9660	22.19	27.02
0.9745	16.22	19.83	0.9702	19.24	23.50	0.9659	22.26	27.10
0.9744	16.29	19.91	0.9701	19.31	23.58	0.9658	22.52	27.18
0.9743	16.36	20.00	0.9700	19.38	23.67	0.9657	22.40	27.26
0.9742	16.43	20.09	0.9699	19.45	23.75	0.9656	22.47	27.34
0.9741	16.51	20.17	0.9698	19.52	23.84	0.9655	22.54	27.43
0.9740	16.58	20.26	0.9697	19.59	23.92	0.9654	22.61	27.51
0.9739	16.65	20.35	0.9696	19.66	24.00	0.9653	22.68	27.59
0.9738	16.72	20.43	0.9695	19.73	24.09	0.9652	22.75	27.67
0.9737	16.79	20.52	0.9694	19.80	24.17	.0.9651	22.82	27.75
0.9736	16.86	20.60	0.9693	19.87	24.25	0.9650	22.89	27.83
0.9735	16.93	20.69	0.9692	19.94	24.34	0.9649	22.96	27.91
0.9734	17.00	20.77	0.9691	20.01	24.42	0.9648 0.9647	23.03	27.99
0.9733	17.07	20.86	0.9690	20.09	24.51			28.07
0.9732	17.14	20.94	0.9689	20.16	24.59 24.67	0.9646 0.9645	23.17 23.24	28.18 28.24
0.9731	17.21	21.03	0.9688	20.23	24.76	0.9644	23.31	28.32
0.9730	17.28	21.11	0.9687 0.9686	20.30	24.70	0.9643	23.38	28.40
0.9729	17.35	21.20 21.28	0.9685	20.37	24.92	0.9642	23.45	28.48
0.9728	17.42	21.28	0.9684	20.51	25.01	0.9641	23.52	28.56
0.9727	17.49 17.56	21.45	0.9683	20.51	25.01	0.9640	23.59	28.64
0.9726	17.63	21.45	0.9682	20.65	25.17	0.9639	23.66	28.72
0.9725	17.70	21.62	0.9681	20.72	25.26	0.9638	23.75	28.80
0.9724	17.70	27.71	0.9680	20.79	25.34	0.9637	23.80	28.88
0.9723	17.77	21.79	0.9679	20.86	25.42	0.9636	23.88	28.96
$0.9722 \\ 0.9721$	17.84	21.79	0.9678	20.93	25.51	0.9635	23.95	29.04
	17.81	21.96	0.9677	21.00	25.59	0.9634	24.02	29.11
0.9720	18.05	22.05	0.9676	21.07	25.68	0.9633	24.09	29.19
0.9719	18.12	22.13	0.9675	21.14	25.76	0.9632	24.16	29.27
0.9718 0.9717	18.12	22.22	0.9674	21.21	25.84	0.9631	24.23	29.36
0.9717	18.19	22.30	0.9673	21.28	25.95	0.9630	24.31	29.43
0.9715	18.33	22.39	0.9672	21.33	26.01	0.9629	24.38	29.51
0.8710	10.00	-2.00	0.0012		1-0.02			

# LXII. — REFRACTOMETER READINGS OF METHYL AND ETHYL ALCOHOL

### ZEISS' IMMERSION REFRACTOMETER By Leach and Lythgoe

Per Cent Alcohol	Scale R	eadings at	Per Cent Alcohol	Scale R	eadings at	Per Cent Alcohol	Scale R	eadings at
by Weight.	Methyl Alcohol.	Ethyl Alcohol.	by Weight.	Methyl Alcohol.	Ethyl Alcohol.	by Weight.	Methyl Alcohol.	Ethyi Alcohol.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.5 6 6.5	14.5 14.65 14.65 15.1 15.4 15.7 16.0 16.3 16.6 16.9 17.2 17.5 17.8 18.1 18.4	14.5 15.25 16.0 16.8 17.6 18.35 19.1 19.9 20.7 21.5 22.3 23.2 24.1 25.0 25.9	15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5	23.55 23.9 24.2 24.5 24.85 25.2 25.5 26.15 26.5 26.5 27.1 27.45 27.8 28.1	41.5 42.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5 50.5 51.45 52.4 53.35 54.3 55.3	31 31.5 32 32.5 33 33.5 34 34.5 35 35.5 36.5 37 37.5 38	33.5 33.8 34.1 34.7 34.95 35.2 35.5 36.8 36.05 36.3 36.8 37.05 37.3	70.4 71.05 71.7 72.4 73.1 73.75 74.4 75.1 75.8 76.35 76.9 77.95 78.0 78.55 79.1
7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14.5	18.7 19.0 19.3 19.6 19.9 20.2 20.5 20.8 21.1 21.4 21.7 22.0 22.3 22.6 22.9 23.2	26.85 27.8 28.7 29.6 30.5 31.4 32.3 33.2 34.1 35.0 35.95 36.9 37.8 38.7 39.6 40.5	23 23.5 24.5 25.5 26.5 27.5 28.5 29.5 30.5	28.4 28.75 29.1 29.4 29.7 30.0 30.3 30.6 30.9 31.25 31.6 31.9 32.2 32.4 32.8 33.15	56.3 57.25 58.2 59.15 60.1 61.0 61.9 62.8 63.7 64.6 65.5 66.35 67.2 68.1 69.0 69.7	38.5 39 39.5 40 40.5 41 41.5 42 42.5 43.5 44.5 45.5	37.5 37.7 37.9 38.1 38.25 38.4 38.6 39.0 39.2 39.25 39.3 39.35 39.45 39.5	79.65 80.2 80.75 81.3 81.8 82.3 82.8 83.3 83.75 84.2 84.7 85.2 85.7 86.2 86.6 87.0

^{*} Interpolated to half degrees.

 $\mathsf{Digitized} \ \mathsf{by} \ Google$ 

Per Cent Alcohol	Scale R	eadings at	Per Cent Alcohol	Scale R	leadings at	Per Cent Alcohol	Scale R	eadings at
Weight.	Methyl Alcohol.	Ethyi Alcohol.	by Weight.	Methyl Alcohol.	Ethyl Alcohol.	by Weight.	Methyl Alcohol.	Ethyi Alcohol.
46.5 47	39.55 39.6	87.4 87.8	64.5 65	35.75 35.5	98.15 98.3	82.5 83	23.45 23.6	100.45 100.4
47.5	39.65	88.25	65.5	35.25	98.5	83.5	23.2	100.4
48	39.7	88.7	66	35.0	98.7	84	22.8	100.3
48.5	39.75	89.1	66.5	34.75	98.9	84.5	22.3	100.2
49	39.8	89.5	67	34.5	99.1	85	21.8	100.1
49.5	39.8	89.9	67.5	34.25	99.25	85.5	21.3	99.95
50	39.8	90.3	68	34.0	99.4	86	20.8	99.8
<b>50.5</b>	39.75	90.7	68.5	33.75	99.55	86.5	20.25	99.65
51	39.7	91.1	69	33.5	99.7	87	19.7	99.5
51.5	39.65	91.45	69.5	33.25	99.85	87.5	19.15	99.35
<b>52</b>	39.6	91.8	70	33.0	100.0	88	18.6	<b>99.2</b>
<b>52</b> .5	39.6	92.1	70.5	32.65	100.1	88.5	17.95	99.05
53	39.6	<b>92.4</b>	71	32.3	100.2	89	17.3	<b>98.9</b>
53.5	39.55	92.7	71.5	32.0	100.3	89.5	16.7	98.75
54	39.5	93.0	72	31.7	100.4	90	16.1	98.6
54.5	39.45	93.3	72.5	31.4	100.5	90.5	15.5	98.45
55	39.4	93.6	73	31.1 30.75	100.6 100.7	91	14.9	98.3
55.5 56	39.3 39.2	93.85 94.1	73.5 74	30.75	100.7	91.5 92	14.3 13.7	98.05 97.8
56.5	39.2	94.1	74.5	29.75	100.8	92.5	13.05	97.5 97.5
50.5 57	39.0	94.4	75	29.7	100.9	92.5	12.4	97.3 97.2
57.5	38.8	94.95	75.5	29.35	101.0	93.5	11.7	96.8
58	38.6	95.2	76	29.0	101.0	94	11.0	96.4
58.5	38.45	95.45	76.5	28.65	100.95	94.5	10.3	96.05
59	38.3	95.7	77	28.3	100.9	95	9.6	95.7
59.5	38.1	95.55	77.5	27.95	100.9	95.5	8.9	95.3
60	37.9	96.2	78	27.6	100.9	96	8.2	94.9
60.5	37.7	96.45	78.5	27.2	100.85	96.5	7.45	94.45
61	37.5	96.7	79	26.8	100.8	97	6.7	94.0
61.5	37.25	96.9	79.5	26.4	100.75	97.5	5.9	93.5
62	37.0	97.1	80	26.0	100.7	98	5.1	93.0
<b>62.5</b>	<b>3</b> 6.75	97.3	80.5	25.55	100.65	98.5	4.3	92.5
63	36.5	97.5	81	25.1	100.6	99	3.5	92.0
63.5	36.25	97.75	81.5	24.7	100.55	99.5	2.75	91.5
64	<b>36</b> .0	98.0	82	24.3	100.5	100	2.0	91.0
					,			

^{*} Interpolated to half degrees.

#### CALCULATION OF THE AMOUNT OF ETHYL AND METHYL ALCOHOL IN DISTILLATES CONTAINING A MIXTURE OF THE TWO

#### By A. F. SEEKER

EXAMPLE.

Observed data: — Specific gravity  $\frac{15.6^{\circ}}{15.6^{\circ}}$ , 0.9796.

Immersion refractometer reading 20°, 26.8.

The observed specific gravity corresponds to the following percentages of the respective alcohols having the refractometer readings indicated in the last column:

	Per cent by vol.	Per cent by wt.	Refractometer reading at 20°.
(1) Ethyl alcohol	16.50	13.37	37.57
(2) Methyl alcohol		12.55	21.73

The difference in refractometer reading for these percentages of the respective alcohols

$$(3)$$
  $37.57 - 21.73 = 15.84$ 

divided into the difference between the observed refractometer reading and the refractometer reading for ethyl alcohol alone

$$(4) \ \ 37.57 \ -\ 26.8 \ =\ 10.77$$

gives the proportion of methyl alcohol in the mixture.

(5) 
$$\frac{10.77}{15.84} = 0.68$$
 methyl alcohol.

(6) 
$$1.00 - 0.68 = 0.32$$
 ethyl alcohol.

Referring back to the possible content of each alcohol calculated from the specific gravity (1) and (2), and multiplying each by their respective proportional parts just found we have:

- (7)  $15.46 \times 0.68 = 10.51$
- (8)  $16.50 \times 0.32 = 5.28$

15.79 per cent by vol. of mixed alcohols in the distillate.

It has been found (5) that 0.68 of this is methyl alcohol and (6) 0.32 is ethyl alcohol: consequently:

- (9)  $15.79 \times 0.68 = 10.74$  per cent by vol. of the distillate is methyl and
- (10)  $15.79 \times 0.32 = 5.05$  per cent by vol. of the distillate is ethyl acohol. Starting from (7) the percentages by weight can be found in the same way.
- (11)  $12.55 \times 0.68 = 8.53$
- (12)  $13.37 \times 0.32 = 4.38$ 12.91 per cent by weight of mixed alcohols in the distillate.
- (13)  $12.91 \times 0.68 = 8.78$  per cent by weight of the distillate is methyl and
- (14)  $12.91 \times 0.32 = 4.13$  per cent by weight of the distillate is ethyl alcohol.

LXIII. — Specific Gravity Aqueous Solutions
Chemically Pure Glycerene

# # #	Ger	ach.	Skalweit.	ë t	Ger	lach.	Skalweit.
Per Cent Glycerene.	Sp. Gr. at 15° C. Water at 15° = 1.	Sp. Gr. at 20° C. Water at 20° = 1.	Sp. Gr. at 15° C.	Per Cent Glycerene.	Sp. Gr. at 15° C. Water at 15° = 1.	Sp. Gr. at 20° C. Water at 20° = 1.	Sp. Gr. at
0	1.0000	1.0000	1.0000	36			1.0912
1			1.0024	37			1.0939
2			1.0048	38			1.0966
3			1.0072	39			1.0993
4			1.0096	40	1.1020	1.1010	1.1020
5	1		1.0120	41	l		1.1047
6			1.0144	42			1.1074
7	l		1.0168	43	ĺ		1.1101
8			1.0192	44	ł		1.1128
9	I		1.0216	45	1.1155	1.1145	1.1155
10	1.0245	1.0235	1.0240	46			1.1182
11			1.0265	47			1.1209
12	ļ		1.0290	48			1.1236
13			1.0315	49	1		1.1263
14			1.0340	50	1.1294	1.1280	1.1290
15			1.0365	51			1.1318
16			1.0390	52			1.1346
17	1		1.0415	53			1.1374
18	1		1.0440	54		·	1.1402
19			1.0465	55	1.1430	1.1415	1.1430
20	1.0490	1.0480	1.0490	56	l		1.1458
21			1.0516	57	1		1.1486
22	1		1.0542	58	1	1	1.1514
23			1.0568	59	·		1.1542
24			1.0594	60	1.1570	1.1550	1.1570
25	1.0620	1.0610	1.0620	61	1		1.1599
26			1.0646	62			1.1628
27	ı		1.0672	63		!	1.1657
28			1.0698	64	1		1.1686
29			1.0724	65	1.1711	1.1685	1.1715
30	1.0750	1.0740	1.0750	66	1		1.1743
31			1.0777	67			-1.1771
32			1.0804	68	1		1.1799
33	1.		1.0831	69	1		1.1827
34			1.0858	70	1.1850	1.1820	1.1855
35	1.0885	1.0875	1.0885	71	1.1878	1.1847	1.1882

Digitized by GOOGIG

# g	Ger	lach.	Skalweit.	Cent erene.	Ger	lach.	Skalweit.
Per Cent Glycerene.	Sp. Gr. at 15° C. Water at 15° = 1.	Sp. Gr. at 20° C. Water at 20° = 1.	Sp. Gr. at 15°.	Per Ce Glycere	Sp. Gr. at 15° C. Water at 15° = 1.	Sp. Gr. at 20° C. Water at 20° = 1.	Sp. Gr. at
72 73	1.1906 1.1934	1.1874	1.1909	87	1.2319	1.2279	1.2314
73 74	1.1934	1.1901	1.1936 1.1963	88 89	1.2346 1.2373	1.2333	1.2341 1.2368
75 76	1.1990 1.2018	1.1955 1.1982	1.1990 1.2017	90 91	1.2400 1.2425	1.2360 1.2386	1.2395 1.2421
77	1.2046	1.2009	1.2044	92	1.2425	1.2412	1.2421
78 79	1.2074	1.2036 1.2063	1.2071 1.2098	93 94	1.2476	1.2438 1.2464	1.2473 $1.2499$
80	1.2130	1.2090	1.2125	95	1.2526	1.2490	1.2525
81 82	1.2157 1.2184	1.2117 1.2144	1.2152 $1.2179$	96 97	1.2552 1.2577	1.2516 1.2542	$1.2550 \\ 1.2575$
83	1.2211	1.2171	1.2206	98	1.2602	1.2568	1.2600
84 85	1.2238 1.2265	1.2198 1.2225	$1.2233 \\ 1.2260$	99 100	1.2628	$egin{array}{c c} 1.2594 \\ 1.2620 \\ \end{array}$	$1.2625 \\ 1.2650$
86	1.2292	1.2252	1.2287				

# LXIV. — Ammonium Sulphate Solution at 19° Schiff

Specific Gravity.	Per Cent (NH4),SO4.	Specific Gravity.	Per Cent (NH ₄ ) ₃ SO ₄ .	Specific Gravity.	Per Cent (NH4),SO4.	Specific Gravity.	Per Cent (NH4) ₂ SO ₄ .	Specific Gravity.	Per Cent (NH ₄ ) ₂ SO ₄ .
1.0057	1	1.0632	11	1.1207	21	1.1780	31	1.2343	41
1.0115	2	1.0690	12	1.1265	22	1.1836	32	1.2402	42
1.0172	3	1.0747	13	1.1323	23	1.1892	33	1.2462	43
1.0230	4	1.0805	14	1.1381	24	1.1948	34	1.2522	44
1.0287	5	1.0862	15	1.1439	25	1.2004	35	1.2583	45
1.0345	6	1.0920	16	1.1496	26	1.2060	36	1.2644	46
1.0403	7	1.0977	17	1.1554	27	1.2116	37	1.2705	47
1.0460	8	1.1035	18	1.1612	28	1 .2172	38	1.2766	48
1.0518	9	1.1092	19	1.1670	29	1.2228	39	1.2828	49
1.0575	10	1.1149	20	1.1724	30	1.2284	40	1.2890	50
									İ

LXV. — Ammonium Chloride Solution at 15° Gerlach

Specific Gravity.	Per Cent NH,Cl.	Specific Gravity.	Per Cent NH,Cl.	Specific Gravity.	Per Cent NH,Cl.	Specific Gravity.	Per Cent NH,C1.	Specific Gravity.	Per Cent NE,Cl.
1.00316 1.00632	1 2	1.02180	7 8	1.03947	13 14	1.05648	19 20	1.07304 1.07575	25 26
1.00948 1.01264 1.01580	3 4 5	1.02781 1.03081 1.03370	9 10 11	1.04524 1.04805 1.05086	15 16 17	1.06204 1.06479 1.06754	21 22 23	1.07658	26.297
1.01880	6	1.03658	12	1.05367	18	1.07029	24		

### LXVI. — AVAILABLE CHLORINE IN BLEACHING POWDER SOLUTION AT 15°

#### LUNGE AND BACHOFFEN

Specific	Grams	Specific	Grams	Specific	Grams	Specific	Grams
Gravity.	Cl per l.	Gravity.	Cl per l.	Gravity.	Cl per l.	Gravity.	Cl per l.
1.0000	traces 1.40 2.71 5.58 8.48 11.41 14.47	1.0300	17.36	1.0650	39.10	1.1000	61.50
1.0025		1.0350	20.44	1.0700	42.31	1.1050	64.50
1.0050		1.0400	23.75	1.0750	45.70	1.1060	65.33
1.0100		1.0450	26.62	1.0800	49.96	1.1100	68.00
1.0150		1.0500	29.60	1.0850	52.27	1.1105	68.40
1.0200		1.0550	32.68	1.0900	55.18	1.1150	71.50
1.0250		1.0600	35.81	1.0950	58.40	1.1155	71.79

### LXVII. — CUPRIC CHLORIDE SOLUTION AT 17.5° FRANZ

Specific	Per Cent	Specific	Per Cent	Specific	Per Cent	Specific	Per Cent
Gravity.	CuCl ₂ .	Gravity.	CuCl ₂ .	Gravity.	CuCl ₂ .	Gravity.	CuCl ₂ .
1.0182	2	1.1178	12	1.2501	22	1.3950	32
1.0364	4	1.1436	14	1.2779	24	1.4287	34
1.0548	6	1.1696	16	1.3058	26	1.4615	36
1.0734	8	1.1958	18	1.3338	28	1.4949	38
1.0920	10	1.2223	20	1.3618	30	1.5284	40

Digitized by GOOQIC

### LXVIII. - CUPRIC SULPHATE SOLUTION AT 18°

Specific Gravity.	Per Cent CuSO ₄ . 5H ₂ O.	Specific Gravity.	Per Cent CuSO ₄ . 5H ₂ O.	Specific Gravity.	Per Cent CuSO ₄ . 5H ₂ O.	Specific Gravity.	Per Cent CuSO ₄ . 5H ₂ O.
1.0063	1	1.0582	9	1.1135	17	1.1699	24
1.0126	2	1.0649	10	1.1208	18	1.1738	25
1.0190	3	1.0716	11	1.1281	19	1.1817	26
1.0254	4	1.0785	12	1.1354	20	1.1898	27
1.0319	5	1.0854	13	1.1427	21	1.1980	28
1.0384	6	1.0923	14	1.1501	22	1.2063	29
1.0450	7	1.0993	15	1.1585	23	1.2146	30
1.0516	8	1.1063	16	ł	1	i	Ì

# LIX. — FERRIC CHLORIDE SOLUTION AT 17.5° FRANZ

Specific Gravity.	Per Cent Fe ₂ Cl ₆ .	Specific Gravity.	Per Cent Fe ₂ Cl ₆ .	Specific Gravity.	Per Cent Fe ₂ Cl _{6.}	Specific Gravity.	Per Cent Fe ₃ Cl ₆ .	Specific Gravity.	Per Cent Fe,Cle.
1.0146 1.0292	2 4 6	1.1054 1.1215 1.1378	14 16 18	1.2155 1.2365 1.2568	26 28 30	1.4311 1.3622 1.3870	38 40 42	1.4867	50 52
1.0439 1.0587 1.0734	8 10	1.1542	20 22	1.2778	32 34	1.4118	44 44 46	1.5439 1.5729 1.6023	54 56 58
1.0894	12	1.1950	24	1.3199	36	1.4617	48	1.6317	60

### LXX. — Ferrous Sulphate at $15^{\circ}$

#### GERLACH

Specific Gravity.	Per Cent FeSO ₄ .	Per Cent FeSO ₄ . 7H ₂ O.	Specific Gravity.	Per Cent FeSO ₄ .	Per Cent FeSO ₄ . 7H ₂ O.	Specific Gravity.	Per Cent FeSO ₄ .	Per Cent FeSO ₄ . 7H ₂ O.
1.005	0.565	1	1.0267	2.811	5	1.1430	15.834	25
1.011	1.130	2	1.0537	5.784	10	1.1738	19.622	30
1.016	1.694	3	1.0823	8.934	15	1.2063	23.672	35
1.021	2.258	4	1.1124	12.277	20	1.2391	27.995	40

### LXXI. — Ferric Sulphate at $18^{\circ}$

### HAGER

### GIVING PERCENTAGE OF METALLIC IRON

Specific Gravity.	Per Cent Fe ₂ (SO ₄ ) ₃ .	Per Cent Fe.	Specific Gravity.	Per Cent Fe ₂ (SO ₄ ) ₃ .	Per Cent Fe.	Specific Gravity.	Per Cent Fe ₃ (SO ₄₎₃ .	Per Cent Fe.
1.017	2	0.56	1.173	17	4.76	1.351	31	8.68
1.027	3	0.84	1.184	18	5.04	1.365	32	8.96
1.036	4	1.12	1.196	19	5.35	1.380	33	9.24
1.046	5	1.40	1.208	20	5.60	1.395	34	9.52
1.057	6	1.68	1.220	21	5.88	1.411	35	9.80
1.067	7	1.96	1.232	22	6.16	1.427	36	10.08
1.077	8	2.24	1.245	23	6.44	1.442	37	10.36
1.087	9	2.52	1.258	24	6.72	1.458	38	10.67
1.097	10	2.80	1.271	. 25	7.00	1.474	39	10.92
1.107	11	3.08	1.284	26	7.28	1.490	40	11.20
1.118	12	3.36	1.297	27	7.56	1.506	41	11.48
1.129	13	3.64	1.310	28	7.84	1.523	42	11.76
1.140	14	3.92	1.323	29	8.12	1.540	43	12.04
1.151	15	4.20	1.337	30	8.40	1.557	44	12.32
1.162	16	4.48						

 $\mathsf{Digitized} \ \mathsf{by} \ Google$ 

# LXXII — Potassium Chromate Solution at 19.5° Schiff

Specific Gravity.	Per Cent K,Cr,O.	Specific Gravity.	Per Cent K,CrO,.	Specific Gravity.	Per Cent K2CrO4.	Specific Gravity.	Per Cent K,CrO.	Specific Gravity.	Per Cent K,CrO4.
1.0080	1	1.0750	9	1.1474	17	1.2274	25	1.3151	33
1.0161	2	1.0837	10	1.1570	18	1.2379	26	1.3268	34
1.0243	3	1.0925	11	1.1667	19	1.2485	27	1.3386	35
1.0325	4	1.1014	12	1.1765	20	1.2592	28	1.3505	36
1.0408	5	1.1104	13	1.1864	21	1.2700	29	1.3625	37
1.0492	6	1.1195	14	1.1964	22	1.2808	30	1.3746	38
1.0576	7	1.1287	15	1.2066	23	1.2921	31	1.3868	39
1.0663	8	1.1380	16	1.2169	24	1.3035	32	1.3991	40

### LXXIII. — POTASSIUM DICHROMATE SOLUTION AT 19.5° KREMERS AND GERLACH

#### Per Per Per Per Specific Specific Specific Specific Cent Cent Cent Cent Gravity. Gravity. Gravity. Gravity. K,Cr,O, K₂Cr₂O₇ K₂Cr₂O₇ K2Cr2O7 1.007 1.037 1.065 9 1:095 13 5 2 1.073 1.102 1.015 1.043 6 10 14 3 1.022 1.050 7 1.080 11 1.110 15 4 8 1.030 1.056 1.087 12

# LXXIV. — SODIUM CHLORIDE SOLUTION AT 15° GERLACH

Specific Gravity.	Per Cent NaCl.	Specific Gravity.	Per Cent NaCl.	Specific Gravity.	Per Cent NaC1.	Specific Gravity.	Per Cent NaCl.
1.00725	1	1.05851	8	1.11146	15	1.16755	22
1.01450	2	1.06593	9	1.11938	16	1.17580	23
1.02174	3	1.07335	10	1.12730	17	1.18404	24
1.02899	4	1.08097	11	1.13523	18	1.19228	25
1.03624	5	1.08859	12	1.14315	19	1.20098	26
1.04366	6	1.09622	13	1.15107	20	1.20433	26.39
1.05108	7	1.10384	14	1.15931	21		

LXXV. — SODIUM DICHROMATE SOLUTION
BY STANLEY

Specific	Per Cent	Specific	Per Cent	Specific	Per Cent
Gravity.	Na ₂ Cr ₂ O ₇ .	Gravity.	Na ₂ Cr ₂ O ₇ .	Gravity.	Na ₂ Cr ₂ O ₇ .
1.007 1.035 1.071 1.105	1 5 10 15	1.141 1.171 1.208 1.245	20 25 30 35	1.280 1.313 1.343	40 45 50

LXXVI. — SODIUM HYPOSULPHITE
BY H. B. BISHOP

Bé.º *	Specific Gravity 60° F.	Per Cent Na ₂ S ₂ O ₃ 5 H ₂ O.	Per Cent Na ₂ S ₂ O ₃ .	Weight of r Cubic Foot in Pounds Avoirdupois.	Pounds Na ₂ S ₂ O ₃ . 5 H ₂ O in 1 Cubic Foot.
10	1.0741	13.75	8.76	66.99	9.21
11	1.0821	15.19	9.68	67.49	10.25
12	1.0902	16.63	10.60	68.00	11.31
13	1.0985	18.09	11.53	68.51	12.39
14	1.1069	19.56	12.46	69.04	13.50
15	1.1154	21.03	13.40	69.57	14.63
16	1.1240	22.51	14.34	70.10	15.78
17	1.1328	24.03	15.31	70.65	16.98
18	1.1417	25.56	16.29	71.21	18. <b>20</b>
19	1.1508	27.12	17.28	71.78	19.47
20	1.1600	28.69	18.28	72.35	20.76
21	1.1694	30.25	19.28	72.94	<b>22</b> .06
22	1.1789	31.82	20.28	73.53	<b>23</b> .40
23	1.1885	33.39	21.28	74.13	<b>24</b> .75
24	1.1983	34.98	22.29	74.74	<b>26</b> .14
25	1.2083	36.59	23.32	75.36	27.57
<b>26</b> ′	1.2185	38.21	24.35	76.00	29.04
27	1.2288	39.84	25.39	76.64	30.53
28	1.2393	41.49	26.44	77.30	32.07
29	1.2500	43.15	27.50	77.96	33.64
30	1.2609	44.82	28.56	78.64	35.25
31	1.2719	46.49	29.62	79.33	<b>36</b> .88
32	1.2832	48.18	30.70	80.03	38.56
33	1.2946	49.87	31.78	80.74	40.27
34	1.3063	51.60	32.88	81.47	42.04

Bé.º	Specific Gravity 60° F.	Per Cent Na ₂ S ₂ O ₂ . 5 H ₂ O.	Per Cent Na ₂ S ₂ O ₃ .	Weight of r Cubic Foot in Pounds Avoirdupois.	Pounds Na ₂ S ₂ O ₃ . g H ₂ O in I Cubic Foot.
35	1.3182	53.34	33.99	82.22	43.86
36	1.3303	55.10	35.11	82.97	45.72
37	1.3426	56.87	36.24	83.74	47.62
38	1.3551	58.66	37.38	84.52	49.58
39	1.3679	60.46	38.53	85.32	51.58
40	1.3810	62.27	39.68	86.13	53.63
41	1.3942	64.08	40.83	86.96	55.72
42	1.4078	65.92	42.00	87.80	57.88
43	1.4216	67.77	43.18	88.67	60.09
44	1.4356	69.65	44.38	89.54	62.34
45	1.4500	71.61	45.63	90.44	64.76
46	1.4646	73.59	46.89	91.35	67.23
47	1.4796	75.61	48.18	92.28	69.77
48	1.4948	77.64	49.47	93.23	72.39
49	1.5104	79.69	50.78	94.20	75.07
50	1.5263	81.76	52.10	95.20	77.84
51	1.5426	83.83	53.42	96.21	80.65
52	1.5591	85.90	54.74	97.24	83.53
53	1.5761	87.98	56.06	98.30	86.48
<b>54</b>	1.5934	90.04	57.38	99.38	89.48
55	1.6111	92.03	58.64	100.48	92.48
56	1.6292	93.93	59.85	101.61	95.44
57	1.6477	95.73	61.00	102.77	98.38
58	1.6667	97.43	62.08	103.95	101.27
59	1.6860	99.03	63.10	105.16	104.14
59.63	1.6984	100.00	63.72	105.93	105.93

Specific gravity determinations were made at 60° F., compared with water at 60° F.

From the specific gravities, the corresponding degrees Baumé were calculated by the following formula:

Bé. 145 
$$-\frac{145}{\text{sp. gr.}}$$
.

* Baumé hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

#### ALLOWANCE FOR TEMPERATURE

At 15° Bé. 0.026° Bé. or 0.00022 sp. gr. = 1° F. 20° Bé. 0.027° Bé. or 0.00025 sp. gr. = 1° F. 30° Bé. 0.026° Bé. or 0.00029 sp. gr. = 1° F. 40° Bé. 0.024° Bé. or 0.00032 sp. gr. = 1° F. 50° Bé. 0.020° Bé. or 0.00033 sp. gr. = 1° F. 59° Bé. 0.017° Bé. or 0.00032 sp. gr. = 1° F.

### LXXVII. — SODIUM SULPHITE

#### Ву Н. В. Візнор

Bé.° Specific Gravity 60° F.		Gravity Per Cent		Specific Gravity 60° F.	Per Cent Na ₂ SO ₃ .
15.00	1.1154	11.67	19.25	1.1531	15.20
15.25	1.1176	11.87	19.50	1.1554	15.42
15.50	1.1197	12.06	19.75	1.1577	15.64
15.75	1.1219	12.26	20.00	1.1600	15.86
16.00	1.1240	12.45	20.25	1.1624	16.09
16.25	1.1262	12.65	20.50	1.1647	16.31
16.50	1.1284	12.85	20.75	1.1671	16.54
16.75	1.1306	13.06	21.00	1.1694	16.77
17.00	1.1328	13.27	21.25	1.1718	17.00
17.25	1.1350	13.48	21.50	1.1741	17.22
17.50	1.1373	13.69	21.75	1.1765	17.44
17.75	1.1395	13.90	22.00	1.1789	17.66
18.00	1.1417	14.11	22.25	1.1813	17.88
18.25	1.1440	14.33	22.50	1.1837	18.10
18.50	1.1462	14.54	22.75	1.1861	18.33
18.75	1.1485	14.76	23.00	1.1885	18.56
19.00	1.1508	14.98	23.25	1.1910	18.80

### SOLUTION AT 212° F.

Bé.°	Specific Gravity 212° 60° F.	Per Cent Na ₂ SO ₂ .	Bé.º	Specific Gravity 212° F.	Per Cent Na ₂ SO ₃ .
21.75	1.1765	21.90	22.25	1.1813	22.47
22.00	1.1789	22.18	22.50	1.1837	22.75

### Allowance for Temperature 15-23° Bé.°-40° F. = 1° Bé.°

### FIXED POINTS AT 60° F.

	Per Cent.		Per Cent.
1.1138	11.52	1.1702	16.85
1.1323	13.22	1.1864	18.36
1.1494	14.85	1.1913	18.82

#### Ат 212° F.

	Per Cent.
1.1768	21.93
1.1841	22.80

### LXXVIII. — SODIUM BISULPHITE

Ву Н. В. Візнор

Bé.°*	Specific Gravity.	Per Cent NaHSO:	Bé.º	Specific Gravity.	Per Cent NaHSO:
0.00	1.0000	0.00	8.75	1.0642	9.03
0.25	1.0016	0.25	9.00	1.0662	9.30
0.50	1.0034	0.51	9.25	1.0681	9.56
0.75	1.0051	0.76	9.50	1.0701	9.83
1.00	1.0069	1.02	9.75	1.0721	10.09
1.25	1.0086	1.27	10.00	1.0741	10.36
1.50	1.0104	1.53	10.25	1.0761	10.62
1.75	1.0122	1.78	10.50	1.0781	10.89
2.00	1.0140	2.04	10.75	1.0801	11.15
2.25	1.0157	2.29	11.00	1.0821	11.42
2.50	1.0175	2.55	11.25	1.0841	11.68
2.75	1.0193	2.80	11.50	1.0861	11.95
3.00	1.0211	3.06	11.75	1.0881	12.21
3.25	1.0229	3.31	12.00	1.0902	12.48
3.50	1.0247	3.57	12.25	1.0922	12.75
3.75	1.0265	3.82	12.50	1.0943	13.02
4.00	1.0284	4.08	12.75	1.0964	13.29
4.25	1.0302	4.33	13.00	1.0985	13.56
4.50	1.0320	4.59	13.25	1.1006	13.83
4.75	1.0338	4.85	13.50	1.1027	14.10
5.00	1.0357	5.11	13.75	1.1048	14.38
5.25	1.0375	5.37	14.00	1.1069	14.65
5.50	1.0394	5.63	14.25	1.1090	14.93
5.75	1.0413	5.89	14.50	1.1111	15.20
6.00	1.0432	6.15	14.75	1.1132	15.48
6.25	1.0450	6.41	15.00	1.1154	15.75
6.50	1.0469	6.67	15.25	1.1175	16.03
6.75	1.0488	6.93	15.50	1.1197	16.30
7.00	1.0507	7.19	15.75	1.1218	16.58
7.25	1.0526	7.45	- 16.00	1.1240	16.85
7.50	1.0545	7.71	16.25	1.1262	17.13
7.75	1.0564	7.97	16.50	1.1284	17.40
8.00	1.0584	8.24	16.75	1.1306	17.68
8.25	1.0603	8.50	17.00	1.1328	17.96
8.50	1.0623	8.77	17.25	1.1350	18.24

Bé.°	Specific Gravity.	Per Cent NaHSO;	Bé.º	Specific Gravity.	Per Cent NaHSO,
17.50	1.1372	18.52	27.50	1.2340	29.85
17.75	1.1394	18.80	27.75	1.2366	30.14
18.00	1.1417	19.08	28.00	1.2393	30.43
18.25	1.1439	19.36	28.25	1.2419	30.72
18.50	1.1462	19.64	28.50	1.2446	31.00
18.75	1.1485	19.92	28.75	1.2473	31.29
19.00	1.1508	20.20	29.00	1.2500	31.57
19.25	1.1531	20.48	29.25	1.2527	31.86
19.50	1.1554	20.76	29.50	1.2554	32.14
19.75	1.1577	21.04	29.75	1.2581	32.43
20.00	1.1600	21.32	30.00	1.2609	32.71
<b>20</b> . <b>25</b>	1.1623	21.60	30.25	1.2636	33.00
20.50	1.1647	21.88	30.50	1.2664	33.28
<b>20</b> .75	1.1670	22.16	30.75	1.2691	33.57
21.00	1.1694	22.44	31.00	1.2719	33.86
21.25	1.1717	22.72	31.25	1.2747	34.14
21.50	1.1741	23.00	31.50	1.2775	34.43
21.75	1.1765	23.28	31.75	1.2803	34.71
22.00	1.1789	23.57	32.00	1.2832	35.01
22.25	1.1813	23.85	32.25	1.2860	35.31
22.50	1.1837	24.14	32.50	1.2889	35.62
22.75	1.1861	24.42	32.75	1.2917	<b>35</b> .9 <b>4</b>
<b>23</b> .00	1.1885	24.71	33.00	1.2946	<b>36.25</b>
23.25	1.1909	24.99	33.25	1.2975	36.57
23.50	1.1934	25.28	33.50	1.3004	36.88
23.75	1.1958	25.56	33.75	1.3033	37.20
<b>24</b> .00	1.1983	25.85	34.00	1.3063	37.51
<b>24</b> .25	1.2008	26.13	34.25	1.3092	37.83
24.50	1.2033	26.42	34.50	1.3122	38.14
<b>24</b> .75	1.2058	26.70	34.75	1.3152	<b>3</b> 8. <b>46</b>
25.00	1.2083	26.99	35.00	1.3182	38.78
25. <b>25</b>	1.2108	27.27	35.25	1.3212	39.10
<b>25</b> .50	1.2134	27.56	35.50	1.3242	39.42
<b>25.75</b>	1.2159	27.84	35.75	1.3272	39.74
26.00	1.2185	28.13	36.00	1.3303	40.06
26.25	1.2210	28.41	36.25	1.3333	40.38
26.50	1.2236	28.70	36.50	1.3364	40.69
<b>26.75</b>	1.2262	28.98	36.75	1.3395	41.00
27.00	1.2288	29.27	37.00	1.3426	41.30
27.25	1.2314	29.56	37.25	1.3457	41.61

Bé.° Specific Gravity.		Per Cent NaHSO ₃ . B6.°		Specific Gravity.	Per Cent NaHSO:	
37.50	1.3488	41.91	38.50	1.3615	43.12	
37.75	1.3519	42.22	38.75	1.3647	43.42	
38.00	1.3551	42.52	39.00	1.3680	43.72	
38.25	1.3583	42.82	39.25	1.3712	44.02	

Specific gravity determinations were made at 60° F., compared with water at 60° F.

From the specific gravities, the corresponding degrees Baumé were calculated by the following formula:

Baumé = 
$$145 - \frac{145}{\text{sp. gr.}}$$

* Baumé hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

#### ALLOWANCE FOR TEMPERATURE

At 5° Bé. 54° F. = 1° Bé.	At 27° Bé. 37° F. = 1° Bé
12° Bé. 43° F. = 1° Bé.	32° Bé. 38° F. = 1° Bé
16° Bé. 41° F. = 1° Bé.	36° Bé. 39° F. = 1° Bé
21° Bé. 39° F. = 1° Bé.	39° Bé. 40° F. = 1° Bé

### LXXIX. — STANNIC CHLORIDE SOLUTION AT 15°

#### By GERLACH

Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.	Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.	Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.	Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.	Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.
1.012	2	1.137	22	1.293	42	1.491	62	1.759	82
1.024	4	1.151	24	1.310	44	1.514	64	1.791	84
1.036	6	1.165	26	1.329	46	1.538	66	1.824	86
1.048	8	1.180	28	1.347	48	1.563	68	1.859	88
1.059	10	1.195	30	1.366	50	1.587	70	1.893	90
1.072	12	1.210	32	1.386	52	1.614	72	1.932	92
1.084	14	1.2268	34	1.406	54	1.641	74	1.969	94
1.097	16	1.242	36	1.426	56	1.669	76	1.988	96
1.110	18	1.259	38	1.447	58	1.698	78	11	
1.1236	20	1.2755	40	1.468	60	1.727	80		
1.1236	20	1.2755	40	1.468	60	1.727	80		

### LXXX. — STANNOUS CHLORIDE SOLUTION AT 15° By Gerlach

Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.	Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.	Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.	Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.	Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.
1.013	2	1.128	18	1.268	34	1.445	50	1.677	66
1.026	4	1.144	20	1.288	36	1.471	52	1.711	68
1.040	6.	1.161	22	1.309	38	1.497	54	1.745	70
1.054	8	1.177	24	1.330	40	1.525	56	1.783	72
1.068	10	1.194	26	1.352	42	1.554	58	1.821	74
1.083	12	1.212	28	1.374	44	1.582	60	1.840	75
1.097	14	1.230	30	1.395	46	1.613	62	İ	l
1.113	16	1.249	32	1.421	48	1.644	64		

### LXXXI. - ZINC CHLORIDE

By H. B. BISHOP

Bé.°	Specific Gravity 60° F.	Per Cent ZnCl ₂ .	Bé.º	Specific Gravity 60° F.	Per Cent ZnCl ₂ .	B6.°	Specific Gravity 60° F.	Per Cent ZnCl ₂ .
5.0	1.0357	3.75	14.0	1.1069	11.49	23.0	1.1885	20.00
5.5	1.0394	4.19	14.5	1.1111	11.97	23.5	1.1934	20.48
6.0	1.0432	4.63	15.0	1.1154	12.45	24.0	1.1983	20.96
*6.18	1.0445	4.79	15.5	1.1197	12.89	24.5	1.2033	21.45
6.5	1.0469	5.00	16.0	1.1240	13.32	25.0	1.2083	21.94
7.0	1.0507	5.41	16.5	1.1284	13.77	25.5	1.2134	22.44
7.5	1.0545	5.85	*16.66	1.1298	13.90	26.0	1.2185	22.94
8.0	1.0584	6.31	17.0	1.1328	14.23	26.5	1.2236	23.39
8.5	1.0623	6.71	17.5	1.1373	14.64	26.6	1.2247	23.49
9.0	1.0662	7.12	18.0	1.1417	15.16	27.0	1.2288	23.84
9.5	1.0701	7.52	18.5	1.1468	15.63	27.5	1.2340	24.49
10.0	1.0741	7.94	19.0	1.1508	16.11	28.0	1.2393	25.14
10.5	1.0781	8.35	19.5	1.1554	16.59	28.5	1.2446	25.75
*10.54	1.0784	8.39	20.0	1.1600	17.07	29.0	1.2500	26.36
11.0	1.0821	8.78	20.5	1.1647	17.56	29.5	1.2554	26.98
11.5	1.0861	9.24	21.0	1.1694	18.05	30.0	1.2609	27.60
12.0	1.0902	9.70	21.5	1.1741	18.49	30.5	1.2664	28.33
12.5	1.0943	10.17	*21.91	1.1780	18.86	31.0	1.2719	28.85
13.0	1.0985	10.64	22.0	1.1789	18.97	*31.38	1.2762	29.34
13.5	1.1027	11.07	22.5	1.1837	19.35	31.5	1.2775	29.42

^{*} Specific gravity determinations and analysis made on these samples.

Bé.°	Specific Gravity 60° F.  Per Cent ZnCl ₂ .  Bé.°		Specific Gravity 60° F. Per Cent ZnCl ₂ .		B6.°	Specific Gravity 60° F.	Per Cent ZnCl ₂ .	
32	1.2832	29.83	48.5	1.5026	45.77	65	1.8125	63.80
32.5	1.2889	30.21	49	1.5104	46.34	65.5	1.8239	64.30
33	1.2946	30.59	*49.11	1.5122	46.45	66	1.8354	64.86
33.5	1.3004	31.01	49.5	1.5183	46.77	66.5	1.8471	65.39
34	1.3063	31.44	50	1.5263	47.44	67	1.8590	65.93
34.5	1.3122	31.84	50.5	1.5344	47.94	67.5	1.8710	66.47
35	1.3182	32.23	51	1.5426	48.46	68	1.8831	67.01
35.5	1.3242	32.63	51.5	1.5508	48.94	68.5	1.8954	67.55
*35.95	1.3297	33.00	52	1.5591	49.43	*68.86	1.9044	67.88
36	1.3303	33.07	52.5	1.5676	49.93	69	1.9079	68.09
36.5	1.3364	33.57	53	1.5761	50.43	*69.30	1.9155	68.56
37	1.3426	34.09	53.5	1.5847	50.93	69.5	1.9205	68.62
37.5	1.3488	34.56	*53.57	1.5857	50.99	70	1.9333	69.15
*37.81	1.3527	34.86	54	1.5934	51.52	70.5	1.9463	69.67
38	1.3551	35.04	54.5	1.6022	52.07	71	1.9595	70.20
<b>38.5</b>	1.3615	35.52	55	1.6111	52.63	71.5	1.9728	70.71
39	1.3679	35.99	55.5	1.6201	53.19	72	1.9863	71.23
<b>39.5</b>	1.3744	36.48	56.05	1.6292	53.75	72.5	2.0000	71.74
<b>4</b> 0	1.3810	36.97	56.5	1.6384	54.30	73	2.0139	72.26
40.5	1.3876	37.47	57	1.6477	54.84	73.5	2.0280	72.78
41	1.3942	37.95	57.5	1.6571	55.44	74	2.0423	73.31
41.5	1.4010	38.43	58	1.6667	56.03	74.5	2.0567	73.83
42	1.4078	38.89	58.5	1.6763	56.57	75	2.0714	74.35
42.5	1.4146	39.41	*58.74	1.6810	56.87	*75.23	2.0782	74.59
43	1.4216	39.92	59	1.6860	57.14	75.5	2.0863	75.10
43.5	1.4286	40.38	59.5	1.6959	57.69	76	2.1014	75.85
44	1.4356	40.82	60	1.7059	58.25	76.5	2.1168	76.63
44.5	1.4428	41.30	60.5	1.7160	58.82	77	2.13 <b>23</b>	77.43
*44.76	1.4465	41.58	61	1.7262	59.39	77.5	2.1481	78.19
45	1.4500	41.87	61.5	1.7365	59.94	78	2.1642	78.97
45.5	1.4573	42.42	62	1.7470	60.50	*78.08	2.1668	79.09
46	1.4646	42.95	62.5	1.7576	61.07	*78.14	2.1687	79.19
46.5	1.4721	43.55	63	1.7683	61.63	78.5	2.1805	79.79
47	1.4796	44.13	63.5	1.7791	62.17	79	2.1970	80.60
47.5	1.4872	44.67	64	1.7901	62.71	79.5	2.2137	81.35
48	1.4948	45.18	64.5	1.8012	63.25	80	2.2307	82.12

^{*} Specific gravity determinations and analysis made on these samples.

#### ALLOWANCE FOR TEMPERATURE

#### ALLOWANCE FOR TEMPERATURE

At 5° Bé. 50° F. = 1° Bé.	At 30° Bé. 30° F. = 1° Bé.
10° Bé. 47° F. = 1° Bé.	35° Bé. 32° F. = 1° Bé
15° Bé. 38° F. = 1° Bé.	40° Bé. 31° F. = 1° Bé
20° Bé. 31° F. = 1° Bé.	45° Bé. 30° F. = 1° Bé
25° B4 30° F = 1° B4	50° B6 34° F = 1° B6

The specific gravity determinations and analysis made on these samples. Solution proved neutral by gravimetric determinations of zinc and chlorine; solution is neutral to methyl-orange.

Specific gravity determinations made by bottle method.

Baumé corresponding to specific gravity calculated from the sulphuric acid tables of the Manufacturing Chemists Association of the United States.

Above 66° Bé. the calculation was made according to the formula:

Bé. = 
$$145 - \frac{145}{\text{sp. gr.}}$$

Methods of analysis: — Zinc precipitated with sodium carbonate and weighed as ZnO. Chlorine precipitated with silver nitrate and weighed as AgCl. Chlorine determinations made on each sample analyzed. Zinc determinations made on every other sample.

All work done in duplicate by two men independently.

LAUREL HILL LABORATORY, Jan. 24, 1902.

### LXXXII. — Zinc, Cadmium and Lithium Chloride

AT 19.5° By Krämer

S	pecific Gravi	ty.	Per Cent	s	Per Cent		
ZnCl ₂ .	CdCl ₂ .	LiC1.	Salt.	ZnCl ₂ .	CdCl ₂ .	LiC1.	Salt.
1.045	1.045		5	1.352		·,	35
1.091	1.089	1.0580	10	1.420	1.472	1.2557	40
1.137	1.140	ĺ	15	1.488	l		45
1.186	1.195	1.1172	20	1.566	1.656		50
1.238	1.256	l	25	1.650	ļ	1	55
1.291	1.321	1.1819	30	1.740	1.890		60

### LXXXIII. — ZINC SULPHATE SOLUTION AT 15°

Specific Gravity.	Per Cent ZnSO ₄₋₇ H ₂ O.	Specific Gravity.	Per Cent ZnSO _{4.7} H ₂ O.	Specific Gravity.	Per Cent ZnSO ₄ .7H ₂ O.
1.029	5	1.167	25	1.310	45
1.059	10	1.193	30	1.352	50
1.091	15	1.231	35	1.399	55
1.124	20	1.271	40 Digiti	ed by <b>1.445</b>	e <b>60</b> _

### LXXXIV. — DENSITY OF WATER AT 0° TO 36°

Weight in Grams of One Cubic Centimeter of Water Free from Air at Temperatures of 0 to 36 Centigrade by the Hydrogen Thermometer — According to Thiesen, Scheel, and Diesselhorst Wiss. Abh. d. Phys. — Techn. Reichsanst. 3, 68: 1900

998.	Tenths of Degrees.									
Degrees.	0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	0.999868	874	881	887	893	899	905	911	916	922
1	927	932	936	941	945	950	954	957	961	965
2	968	971	974	977	980	982	985	987	989	991
3	992	994	995	996	997	998	999	999	*000	*000
4	1.000000	000	000	*999	*999	*998	*997	*996	*995	*993
5	0.999992	990	988	986	984	982	979	977	974	971
6	986	965	962	958	954	951	947	943	938	934
7	929	925	920	915	910	904	899	893	888	882
8	876	870	864	857	851	844	837	830	823	816
9	808	801	793	785	778	769	761	753	744	736
10	727	718	709	700	691	681	672	662	652	642
11	632	622	612	601	591	580	569	558	547	536
12	525	513	502	490	478	466	454	442	429	417
13	404	391	379	366	353	339	326	312	.299	285
14	271	257	243	229	215	200	186	171	156	141
15	126	111	096	081	065	050	034	018	002	*986
16	0.998970	953	937	920	904	887	870	853	836	819
17	801	784	766	749	731	713	695	677	659	640
18	622	603	585	566	547	528	509	490	471	451
19	432	412	392	372	352	332	312	292	271	251
20 -	230	210	189	168	147	126	105	083	062	040
21	. 019	*997	*975	*953	*931	*909	*887	*864	*842	*819
22	0.997797	774	751	728	705	682	659	635	612	588
23	565	541	517	493	469	445	421	396	372	347
24	323	298	273	248	223	198	173	147	122	096
25	071	045	019	*994	*968	*941	*915	*889	*863	*836
<b>26</b> .	0.996810	783	756	730	703	676	648	621	594	567
27	539	512	484	456	428	400	372	344	316	288
28	259	231	202	174	145	116	087	058	029	000
29	0.995971	941	912	882	853	823	793	763	733	703
30	673	643	613	582	552	521	491	460	429	398
31	367	336	305	273	242	211	179	148	116	084
32	052	020	*988	*956	*924	*892	*859	*827	*794	*762
33	0.994729	696	663	630	597	564	531	498	464	431
34	398	364	330	296	263	229	195	161	126	092
35	058	023	*989	*954	*920	*885	*850	*815	*780	*745

## LXXXV. — Density of Water at 30° to 102°

Weight in Grams of One Cubic Centimeter of Water Free from Air at Temperatures of 30° to 102° Centigrade by the Hydrogen Thermometer — According to M. Thiesen

Wiss. Abh. d. Phys. — Techn. Reichsanst. 4, 1: 1904

De- grees.	0	1	2	3	4	5	6	7	8	9
30	0.99567	537	505	473	440	406	371	336	299	262
40	224	186	147	107	066	025	*982	*940	*896	*852
50	0.98807	762	715	669	621	573	525	475	425	375
60	324	272	220	167	113	059	005	*950	*894	*838
70	0.97781	723	666	607	548	489	429	368	307	245
80	183	121	057	*994	*930	*865	*800	*734	*668	*601
90	0.96534	467	399	330	261	192	122	051	*981	*909
100	0.95838	765	693		1	1	1			

## LXXXVI. — DENSITY OF WATER AT 100° TO 320°

WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF WATER AT TEMPER-ATURES OF 100° TO 320° CENTIGRADE

ACCORDING TO W. RAMSAY, S. YOUNG, J. J. WATERSTON, AND G. A. HIRN

°C.	Density.	°C.	Density.	°C.	Density.	°C.	Density.
100	0.9585	160	0.9075	220	0.837	280	0.75
110	0.9510	170	0.8973	230	0.823	290	0.72
120	0.9434	180	0.8866	240	0.809	300	0.70
130	0.9352	190	0.8750	250	0.794	310	0.68
140	0.9264	200	0.8628	260	0.779	320	0.66
150	0.9173	210	0.850	270	0.765	}	

To reduce the densities of water free from air to the density of water containing air add .000003 for temperatures of 0 to 14, .000002 for temperatures of 15 to 19. For higher temperatures the correction is negligible,

# LXXXVII. — VOLUME IN CUBIC CENTIMETERS OF ONE GRAM OF WATER AT 0° TO 36° CENTIGRADE

By the Hydrogen Thermometer — According to Thiesen, Scheel, and Diesselhorst Wiss. Abh. d. Phys. — Techn. Reichsanst. 3, 69: 1900

				Tenths	of Deg	rees				
Degrees.	0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	1.000132	126	119	113	107	101	095	089	084	079
1	073	069	064	059	055	051	047	043	039	035
2	032	029	026	023	020	018	016	013	011	009
3 4	008	006	005	004	003	002	001	001	000	000
	000	000	000	001	001	002	003	004	005	007
5	008	010	012	014	016	018	021	023	026	029
6	032	035	039	042	046	050	054	058	062	066
7	071	075	080	085	090	096	101	107	112	118
8	124	130	137	143	149	156	163	170	177	184
9	192	199	207	215	223	231	239	247	256	264
10	273	282	291	300	390	319	328	338	348	358
11	368	378	388	399	409	420	431	442	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	622	635	648	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	874	890	905	920	936	951	967	983	999	*015
16	1.001031	048	064	081	098	114	131	148	165	183
17	200	218	235	253	271	289	307	325	343	361
18	380	399	417	436	455	474	493	513	532	551
19	571	591	610	630	650	671	691	711	732	752
20	773	794	815	836	857	878	899	921	942	964
21	985	*007	*029	*051	*073	*096	*118	*140	*163	*186
22	1.002208	231	254	277	300	324	347	370	394	418
23	441	465	489	513	538	562	586	611	635	660
24	685	710	735	760	785	810	835	861	886	912
25	938	964	990	*016	*042	*068	*094	*121	*147	*174
26	1.003201	227	254	281	308	336	363	390	418	445
27	473	501	529	556	585	613	641	669	698	726
28	755	783	812	841	870	899	928	957	987	*016
29	1.004046	075	105	135	165	194	225	255	285	315
30	346	376	407	437	468	499	530	561	592	623
31	655	686	717	749	781	812	844	876	908	940
32	972	*005	*037	*070	*102	*135	*167	*200	*233	*266
33	1.005299	332	365	399	432	465	499	533	566	600
34	634	668	702	736	771	805	839	874	908	943
35	978	*013	*047	*082	*118	*153	*188	*223	*259	*294

## LXXXVIII. — VOLUME IN CUBIC CENTIMETERS OF ONE GRAM OF WATER AT 30° TO 102° CENTIGRADE

By the Hydrogen Thermometer—According to M. Thiesen Wiss. Abh. d. Phys.—Techn. Reichsanst. 4, 1: 1904

De- grees.	0	1	2	3	4	5	6	7	8	9
30	1.00435	466	497	530	563	598	633	669	706	743
40	782	821	861	901	943	985	*028	*072	*116	*162
50	1.01207	254	301	349	398	448	498	548	600	652
60	705	758	813	867	923	979	*036	*093	*151	*210
70	1.02270	330	390	452	514	576	639	703	768	833
80	899	965	*032	*099	*168	*237	*306	*376	*447	*518
90	1.03590	663	736	810	884	959	*035	*111	*188	*265
100	1.04343	422	501		1				1	

To reduce the volumes of water free from air to the volume of water containing air add .000003 for temperatures of 0 to 14, .000002 for temperatures of 15 to 19. For higher temperatures the correction is negligible.

## LXXXIX. — VOLUME IN CUBIC CENTIMETERS OF ONE GRAM OF WATER AT 100° TO 320° CENTIGRADE

According to W. Ramsay, S. Young, J. J. Waterston, and G. A. Hirn

°C.	Cubic Cent.	°C.	Cubic Cent.	°C.	Cubic Cent.	°C.	Cubic Cent.
100	1.0433	160	1.1019	220	1.195	280	1.34
110 120	1.0515	170 180	1.1145 1.1279	230 240	1.215 1.236	290 300	1.38 1.42
130 140	1.0693 1.0794	190 200	1.1429 1.1590	250 260	1.259 1.283	310 320	1.46
150	1.0902	210	1.177	270	1.308		

## XC. — Tension of Water Vapor Over Ice in Millimeters of Mercury

### According to Juhlin and Marvin

°C.	mm.	°C.	mm.	°C.	mm.	°c.	mm.
-50 -49 -48 -47 -46 -45 -44 -43 -42 -41	0.034 0.038 0.043 0.048 0.054 0.061 0.068 0.076 0.085 0.095 0.105	-37 -36 -35 -34 -33 -32 -31 -30 -29 -28 -27	0.141 0.156 0.173 0.193 0.215 0.238 0.264 0.292 0.324 0.358 0.397	-24 -23 -22 -21 -20 -19 -18 -17 -16 -15	0.534 0.589 0.648 0.714 0.787 0.868 0.955 1.048 1.148 1.257 1.375	-11 -10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1	1.806 1.974 2.154 2.347 2.557 2.785 3.032 3.299 3.586 3.894 4.223
-39 -38	0.115 0.127	$ \begin{array}{c c} -26 \\ -25 \end{array} $	$0.438 \\ 0.484$	$-13 \\ -12$	1.506 1.650	- 0	4.579

# XCI. — TENSION OF WATER VAPOR OVER WATER IN MILLIMETERS OF MERCURY

## According to Regnault, Broch, and Juhlin

°C	mm.	°c.	mm.	°c.	mm.	°c.	mm.
-20 -19 -18 -17 -16 -15	0.960 1.044 1.135 1.233 1.338 1.451	$ \begin{array}{c c} -14 \\ -13 \\ -12 \\ -11 \\ -10 \end{array} $	1.573 1.705 1.846 1.997 2.159	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.335 2.521 2.722 2.937 3.167	$ \begin{array}{c c} -4 \\ -3 \\ -2 \\ -1 \\ -0 \end{array} $	3.413 3.677 3.958 4.258 4.579

# XCII. — Vapor Tension of Water in Millimeters of Mercury $-2^{\circ}$ to $+36^{\circ}$ C.

According to Regnault, Broch, and Weibe

°C.	0	.1	.2	.3	.4	.5	*.6	.7	.8	.9
<b>-2</b>	mm. 3.958	mm. 3.929	mm. 3.900	mm. 3.872	mm. 3.844	mm. 3.815	mm. 3.787	mm. 3.760	mm. 3.732	mm. 3.705
-1	4.258	4.227	4.197	4.166		4.106			4.016	
-0		4.546		4.481	4.448	4.416		4.352	4.321	4.289
0	4.579	4.612	4.646		4.713	4.747	1	4.816	4.851	4.886
1	4.921	4.957	4.992	5.028	5.064	5.101	5.137	5.174	5.211	5.248
- 2		5.324	5.362	5.400	5.438	5.477	5.516	5.555	5.595	5.635
3			5.755	5.796	5.837	<b>5</b> .878	5.920	5.961	6.003	
4			6.174	6.217	6.261	6.305	6.349	6.393	6.438	
5				6.666	6.712	6.759			6.901	6.949
6	1				7.192	7.242	7.292	7.342	7.392	
7					7.702	7.755			7.914	
8	I				8.243	8.299			8.469	8.526
9		1				8.877			9.057	9.118
10	1	ı	•	1		9.490			9.680	
11		9.875		10.006						
				10.687						
				11.407						
				$12.169 \\ 12.974$						
				13.825						
				14.724						
				15.672						
				16.673						
				17.728						
				18.844						
				20.021						
				21.264						
				22.581						
				23.970						
26	24.987	25.135	25.284	25.434	<b>25</b> .584	25.736	25.888	26.041	26.195	26.349
27	26.505	26.661	26.818	26.976	27.134	27.294	27.454	27.615	27.777	27.939
				28.599						
				30.307						
				32.103						
				33.992						
				35.978						
				38.064						1
				40.254						
35	41.583	42.085	42.319	42.554	42.791	43.028	43.266	43.506	43.747	43.989
						<u>l</u>		Cod	ale_	

## XCIII. — Vapor Tension of Water in Millimeters of Mercury 30° to 230°

ACCORDING TO REGNAULT, BROCH, AND WIEBE

Degrees.	0	1	2	3	4	5	6	7	8	9
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
30	31.56			37.43					49.35	
40		57.98							83.36	
50						117.77				
										223.84
70	233.79	244.11	254.84	265.91	277.41	289.32	301 . 65	314.42	327.64	341.32
				İ						
		l	ı							506.36
			1							733.24
	760.00	1		845.3				971.1		1039.6
			1					1	1	1444.5
120	1491	1539	1588	1639	1691	1744	1798	1854	1911	1970
			l	1		ŀ			Ì	į
130	2030	2092	2155	2220	2286	2354	2423	2494	2567	2641
140	2718	2795	2875	2957	3040	3125	3213	3302	3393	3486
150	3581	3678	3778	3879	3983	4088	4196	4307	4419	4534
160	4651	4771	4893	5018	5145	5274	5406	5541	5678	5819
170	5961	6107	6255	6406	6560	6717	6877	7040	7205	7374
		1	,	İ			1			
180	7546	7721	7899	8080	8265	8453	8644	8838	9036	9237
190	9442	9650	9862	10078	10296	10519	10745	10975	11209	11447
200	11688	11934	12183	12436	12694	12955	13220	13490	13764	14042
210	14324	14611	14901	15197	15496	15800	16109	16422	16740	17062
220	17389	17721	18058	18399	18745	19096	19452	19813	20179	20549
230	20925	1				I	l	1	1	1

## XCIV. - VAPOR PRESSURE OF WATER

## ACCORDING TO REGNAULT

°C.	°F.	Inches of Mercury.	Pounds per sq. inch.	Grams per sq. Centi- meter.	∘c.	°F.	Inches of Mercury.	Pounds per sq. inch.	Grams per sq. Centi- meter.
0	32.0	0.181	0.0890	6.254	38	100.4	1.941	0.954	67.026
1	33.8	0.194	0.0955	6.716	39	102.2	2.049	1.007	70.752
2	35.6	0.209	0.1025	7.206	40	104.0	2.162	1.061	74.653
3	37.4	0.224	0.1100	7.736	41	105.8	2.280	1.121	78.678
4	39.2	0.240	0.1180	8.291	42	107.6	2.404	1.216	82.947
5	41.0	0.257	0.1263	8.878	43	109.4	2.533	1.244	87.488
6	42.8	0.276	0.1354	9.517	44	111.2	2.669	1.312	92.165
7	44.6	0.295	0.1452	10.183	45	113.0	2.811	1.381	97.059
8	46.4	0.316	0.1551	10.904	46	114.8	2.959	1.454	102.184
9	48.2	0.338	0.1657	11.651	47	116.6	3.114	1.530	107.528
10	50.0	0.361	0.1773	12.467	48	118.4	3.276	1.609	113.115
11	51.8	0.386	0.1893	13.310	49	120.2	3.444	1.692	118.962
12	53.6	0.412	0.2023	14.207	50	122.0	3.62	1.78	125.05
13	55.4	0.439	0.2158	15.173	51	123.8	3.81	1.87	131.42
14	57.2	0.469	0.2303	16.192	52	125.6	4.00	1.96	138.04
15	59.0	0.500	0.2456	17.266	53	127.4	4.20	2.06	144.98
16	60.8	0.533	0.2618	18.408	54	129.2	4.41	2.17	152.20
17	62.6	0.568	0.2789	19.605	55	131.0	4.63	2.27	159.72
18	64.4	0.605	0.2970	20.883	56	132.8	4.85	2.39	167.55
19	66.2	0.644	0.3162	22.229	57	134.6	5.09	2.50	175.72
20	68.0	0.685	0.3363	23.643	58	136.4	5.33	2.62	184.23
21	69.8	0.728	0.3577	25.152	59	138.2	5.59	2.75	193.08
22	71.6	0.774	0.3802	26.729	60	140.0	5.86	2.88	202.29
23	73.4	0.822	0.4040	28.401	61	141.8	6.14	3.01	211.87
24	75.2	0.873	0.4289	30.155	62	143.6	6.42	3.16	221.84
25	77.0	0.927	0.4554	32.018	63	145.4	6.72	3.30	232.20
26	78.8	0.984	0.4833	33.975	64	147.2	7.04	3.46	242.97
27	80.6	1.044	0.5126	36.042	65	149.0	7.36	3.62	254.17
28	82.4	1.106	0.5434	38.204	66	150.8	7.70	3.78	265.79
29	84.2	1.172	0.5759	40.488	67	152.6	8.05	3.95	277.87
30	86.0	1.242	0.6101	42.894	68	154.4	8.41	4.13	<b>29</b> 0.40
31	87.8	1.315	0.6461	45.423	69	156.2	8.79	4.32	303.41
<b>32</b>	89.6	1.392	0.6838	48.074	70	158.0	9.18	4.51	316.90
33	91.4	1.473	0.7234	50.861	71	159.8	9.58		330.90
34	93.2	1.558	0.7655	53.798	72	161.6	10.00	4.91	345.42
35	95.0	1.647	0.810	56.870	73	163.4	10.44		360.49
36	96.8	1.740	0.855	60.093	74	165.2	10.89	5.35	376.08
37	98.6	1.838	0.903	63.478	75	167.0	11.36	5.58	392.26

Digitized by GOOGLO

°C.	°F.	Inches of Mercury.	Pounds per sq. inch.	Grams per sq. Centi- meter.	°c.	°F.	Atmos- pheres.	Pounds per sq. inch.	Grams per sq. Centi- meter.
76	168.8	11.84	5.82	409.01	117	242.6	1.782	26.20	1841.74
77	170.6	12.35	6.06	426.36	118	244.4	1.841	27.06	1902.05
78	172.4	12.87	6.32	444.32	119	246.2	1.901	27.94	1963.95
79	174.2	13.40	6.58	462.92	120	248.0	1.962	28.85	2027.48
80	176.0	13.96	6.85	482.15	121	249.8	2.025	29.78	2092.70
81	177.8	14.54	7.14	502.07	122	251.6	2.091	30.73	2159.62
82	179.6	15.14	7.44	522.67	123	253.4	2.157	31.70	2228.26
83	181.4	15.75	7.74	543.96	124	255.2	2.225	32.70	2298.69
84	183.2	16.39	8.05	565.99	125	257.0	2.295	33.72	2370.91
85	185.0	17.05	8.37	588.74	126	258.8	2.366	34.78	2444.96
86	186.8	17.73	8.71	612.26	127	260.6	2.430	35.86	2520.89
87	188.6	18.43	9.05	636.57	128	262.4	2.515	36.97	2598.76
88	190.4	19.16	9.41	661.68	129	264.2	2.592	38.11	2678.54
89	192.2	19.91	9.78	687.61	130	266.0	2.671	39.26	2760.29
90	194.0	1 1	10.16	714.38	131	267.8	2.753	40.47	2844.12
91	195.8	1 1	10.56	740.31	132	269.6	2.836	41.68	2929.89
92	197.6	3	10.95	770.54	133	271.4	2.921		3017.80
93	199.4		11.38	799.98	134	273.2	3.008		3107.85
94	201.2		11.81	830.34	135	275.0	3.097		3200.04
95	203.0		12.26	861.66	136	276.8	3.188		3294.43
96	204.8		12.71	893.97	137	278.6	3.282		3391.06
97	206.6		13.19	927.26	138	280.4	3.378		3489.99
98	208.4		13.68	961.59	139	282.2	3.476		3591.29
99	210.2		14.18	996.98	140	284.0	3.576	52.55	3694.78
.00	212.0	29.92 1.000*	14.70	1033.26	141 142	285.8 287.6	3.678 3.783	54.07 55.60	3800.75 3909.14
01	213.8	· 1.036*	15.23	1070.78	143	289.4	3.890	57.16	4020.03
02	215.6	1.074*	15.79	1109.41	144	291.2	4.000	58.79	4133.42
03	217.4	1.112*	16.35	1149.21	145	293.0	4.113	60.44	4249.37
04	219.2	1.152*		1190.17	146	294.8	4.227	62.13	4367.91
05	221.0	1.193*		1232.32	147	296.6	4.344	63.86	4489.0 <b>9</b>
06	222.8	1.235*		1275.69	148	298.4	4.464	65.62	4612.96
07	224.6	1.278*		1320.32	149	300.2	4.587	67.41	<b>4739.55</b>
80	226.4	1.322*		1366.24	150	302.0	4.712	69.26	4868.9
09	228.2	1.368*		1413.47	151	303.8	4.840		5001.1
10	230.0	1.415*		1462.03	152	305.6	4.971		5136.1
11	231.8	1.463*	. 1	1511.97	153	307.4	5.104		5275.0
12	233.6	1.513*		1563.26	154	309.2	5.240		5414.8
13	235.4	1.564*		1615.99	155	311.0	5.380		5558.6
14	237.2	1.616*		1670.18	156	312.8	5.522		5705 5
15	239.0	1.670*		1725.84	157	314.6		83.29	5855.5
16	240.8	1.726*	25.73	1783.02	158	316.4	5.815	85.47	6008.5

°c.	°F.	Atmos- pheres.	Pounds per sq. inch.	Grams per sq. Centi- meter.	°c.	°F.	Atmos- pheres.	Pounds per sq. inch.	Grams per sq. Centi- meter.
159	318.2	5.966	87.69	6164.7	195	383.0	13.842		14302.7
160	320.0	6.120	89.96	6324.2	196	384.8	14.139		14609.8
161	321.8	6.278	92.27	6486.8	197	386.6	14.441		14921.2
162	323.6	6.439	94.63	6652.8	198	388.4	14.749	1	15240.4
163	325.4	6.603	97.04	6822.2	199	390.2	15.062		15563.5
164	327.2	6.770	99.50	6994.9	200	392.0	15.380		15891.9
165	329.0	6.940	102.01	7171.1	201	393.8	15.703		16225.5
166	330.8	7.114	104.56	7350.7	202	395.6	16.031		16564.7
167	332.6	7.291	107.18		203	397.4	16.364		16908.8
168	334.4	7.472	109.84	7720.7	204	399.2			17257.3
169	336.2	7.656	112.53	7911.1	205	401.0	17.047		17614.0
170	338.0	7.844	115.29	8105.2	206	402.8			17974.9
171	339.8	8.036	118.11	8303.1	207	404.6	17.751		18341.5
172	341.6	8.231	120.98		208	406.4	18.111		18713.7
173	343.4	8.430	123.90		209	408.2	18.477	1	19091.6
174	345.2	8.632	126.87	8919.5	210	410.0			19475.4
175	347.0	8.839	129.91		211	411.8			19864.9
176	348.8	9.049	133.00		212	413.6			20260.5
177	350.6	9.263	136.15		213	415.4			20661.9
178	352.4	9.481	139.35		214	417.2	l .		21069.3
179	354.2	9.703	1	10026.1	215	419.0			21482.8
180	356.0	9.929		10259.7	216	420.8			21902.4
181	357.8	10.150		10497.7	217	422.6			22328 3
182	359.6	10.394	152.77		218	424.4			22760.3
183	361.4	10.633		10986.4	219	426.2			23198.6
184	363.2	10.876		11237.3	220	428.0			23643.2
185	365.0	11.123		11490.0	221	429.8			24094.3
186	366.8	11.374		11752.5	222	431.6			24551.8
187	368.6	11.630		12016.9	223	433.4			25015.8
188	370.4	11.885		12285.9	224	435.2			25486.4
189	372.2	12.155		12559.6	225	437.0			25963.5
190	374.0	12.425		12837.9	226	438.8			26447.4
191	375.8	12.699		13121.0	227	440.6			26938.0
192	377.6	12.977		13408.9	228	442.4	26.552		27435.4
193	379.4	13.261		13701.7	229	444.2	27.040	397.40	27939.6
194	381.2	13.549	199.13	13999.4					

XCV. — Boiling Point of Water at Barometric Pressures of 680 MM. to 800 MM.

According to Regnault, Broch, and Wiebe

Baro- metric Pressure mm.	Boiling Point °C.	Baro- metric Pressure mm.	Boiling Point °C.	Baro- metric Pressure mm.	Boiling Point °C.	Baro- metric Pressure mm.	Boiling Point °C.
680	96.915	711	98.145	741	99.293	771	100.403
681	96.955	712	98.184	742	99.331	772	100.439
682	96.996	713	98.223	743	99.368	773	100.475
683	97.036	714	98.261	744	99.406	774	100.511
684	97.076	715	98.300	745	99.443	775	100.548
685	97.116	716	98.339	746	99.481	776	100.584
686	97.156	717	98.378	747	99.518	777	100.620
687	97.197	718	98.416	748	99.555	778	100.656
688	97.237	719	98.455	749	99.592	779	100.692
689	97.277	720	98.493	750	99.630	780	100.728
690	97.317	721	98.532	751	99.667	781	100.764
691	97.357	722	98.570	752	99.704	782	100.800
692	97.396	723	98.609	753	99.741	783	100.836
693	97.436	724	98.647	754	99.778	784	100.872
694	97.476	725	98.686	755	99.815	785	100.908
695	97.516	726	98.724	756	99.852	786	100.944
696	97.555	727	98.762	757	99.889	787	100.979
697	97.595	728	98.800	758	99.926	788	101.015
698	97.635	729	98.838	759	99.963	789	101.051
699	97.674	730	98.877	760	100.000	790	101.087
700	97.714	731	98.915	761	100.037	791	101.122
701	97.753	732	98.953	762	100.074	792	101.158
702	97.792	733	98.991	763	100.110	793	101.193
703	97.832	734	99.029	764	100.147	794	101.229
704	97.871	735	99.067	765	100.184	795	101.264
705	97.910	736	99.104	766	100.220	796	101.300
706	97.949	737	99.142	767	100.257	797	101.335
707	97.989	738	99.180	768	100.293	798	101.370
708	98.028	739	99.218	769	100.330	799	101.408
709	<b>9</b> 8.067	740	99.255	770	100.366	800	101.441
710	98.106	1 1				Coogl	

## XCVI. - VAPOR TENSION OF MERCURY

RAMSAY AND YOUNG, J. CHEM. Soc. 49, 37; 1886

°c.	mm.	°c.	mm.	oc.	mm.	<b>°c</b> .	mm.
40	0.0008	160	4.013	280	157.378	400	1495.60
50	0.015	170	5.904	290	198.982	410	1733.79
60	0.029	180	8.535	300	246.704	420	2000.21
70	0.052	190	12.137	310	304.794	430	2298.80
. 80	0.092	200	17.015	320	373.528	440	2628.79
90	0.160	210	23.482	330	454.277	450	2996.06
100	0.270	220	31.957	340	546.715	460	3399.50
110	0.445	230	42.919	350	658.515	470	3843.68
120	0.719	240	56.919	360	785.107	480	4327.14
130	1.137	250	74.592	370	930.335	490	4856.74
140	1.763	260	96.661	380	1096.22	500	5434.99
150	2.684	270	123.905	390	1283.71	510	6059.16
	!					520	6736.60

## XCVII. - VAPOR TENSION OF MERCURY

Cailletet, Corlardeau, and Rivière, C. R. 130, 1585; 1900

°c.	Atm.	°c.	Atm.	°c.	Atm.	°c.	Atm.
400 450 500	2.1 4.25 8	550 600 650	13.8 22.3 34	700 750 800	50 72 102	850 880	137.5 162

## EQUIVALENTS OF METRIC AND CUSTOM-ARY (U. S.) WEIGHTS AND MEASURES

### STANDARDS OF WEIGHTS AND MEASURES *

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of nine parts of the former to one of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1887, to the different governments, and are called National Prototype Standards. Those apportioned to the United States were received in 1890, and are kept by the Bureau of Standards in Washington, D. C.

The International Standard Meter is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the Inter-

national Bureau of Weights and Measures near Paris, France.

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

The International Standard Meter and Kilogram are the fundamental

standards for the United States.

The liter is equal to a cubic decimeter, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogram in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimeter.

The grain Troy is the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.

. The nautical mile adopted by the U. S. Coast and Geodetic Survey many years ago is defined as the length of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

^{*} Quoted from Smithsonian Physical Tables, 3d Ed., 1904.

## XCVIII. — FUNDAMENTAL EQUIVALENTS *

1 meter = 39.37 inches (law of July 28, 1866).

1 yard =  $\frac{3600}{500}$  meter.

1 pound avoirdupois = 453.5924277 grams.

1 pound troy =  $\frac{5760}{600}$  pound avoirdupois.

1 gallon = 231 cubic inches. 1 bushel = 2,150.42 cubic inches.

All lengths, areas, and cubic measures are derived from the international meter, the legal equivalent being 1 meter = 39.37 inches (law of July 28, 1866). In 1893 the United States Office of Standard Weights and Measures was authorized to derive the yard from the meter, using, for the purpose, the relation legalized in 1866, 1 yard equals \frac{359}{359} meter, and the customary weights are likewise referred to the kilogram (executive order, approved April 5, 1893). This action fixes the values, inasmuch as the reference standards are as perfect and unalterable as it is possible for human skill to make them.

All capacities are based on the practical equivalent 1 cubic decimeter equals 1 liter. The decimeter is equal to 3.937 inches in accordance with the legal equivalent of the meter given above. The gallon referred to in the tables is the United States gallon of 231 cubic inches. The bushel is the United States bushel of 2,150.42 cubic inches. These units must not be confused with the British units of the same name which differ from those used in the United States. The British gallon is approximately 20 per cent larger and the British bushel 3 per cent larger than the corresponding units used in this country.

The customary weights derived from the international kilogram are based on the value 1 avoirdupois pound = 453.5924277 grams. This value is carried out farther than that given in the law, but is in accord with the latter as far as it is there given. The value of the troy pound is based upon the relation just mentioned and also the equivalent  $\frac{57}{6}$ % avoirdupois pound equals 1 troy pound.

* Quoted from Table of Equivalents, U. S. Bureau of Standards.

 $\cdot \ \ _{\text{Digitized by}} Google$ 

# XCIX.—Comparison of Metric and Cus- 471 Tomary Units from 1 to 10*

### **LENGTHS**

Inches.	Millimeters.	Inches.	Centimeters.	Feet.	Meters.
0.03937 =	= 1	0.3937 =	: 1	1 =	= 0.304801
0.07874 =	<b>= 2</b>	0.7874 =	<b>- 2</b>	2 =	= 0.609601
0.11811 =	- 3	1 =	2.54001	3 =	= 0.914402
0.15748 =	= <b>4</b>	1.1811 =	<b>- 3</b>	3.28083 =	= 1
0.19685 =	= 5	1.5748 =	= <b>4</b>		= 1.219202
0.23622 =	-	1.9685 =	= 5		= 1.524003
0.27559 =	<b>= 7</b>	2 =	5.08001	6 =	= 1.828804
0.31496 =	= 8	2.3622 =	<b>= 6</b>	6.56167 =	= <b>2</b>
0.35433 =	= 9	2.7559 =	<b>- 7</b>	7 =	= 2.133604
1 =	= 25.4001	3 =	7.62002	8 =	= 2.438405
2 =	<b>50</b> .8001	3.1496 =	= 8	9 =	= 2.743205
3 =	<b>=</b> 76.2002	3.5433 =	= 9	9.84250 =	= 3
4 =	= 101.6002	4 =	= 10.16002	13.12333 =	= 4
5 =	= 127.0003	5 =	= 12.70003	16.40417 =	= 5
6 =	= 152.4003		= 15.24003	19.68500 =	= 6
-	= 177.8004	-	= 17.78004	22.96583 =	= 7
8 =	= 203.2004		= 20.32004	26.24667 =	<b>= 8</b>
_9 =	= 228.6005	9 =	<b>= 22.86005</b>	29.52750 =	= 9

U. S. Yards.	Meters.	U. S. Miles.	Kilometers.
1 =	0.914402	0.62137 =	1
1.093611 =	1	1 =	1.60935
2 =	1.828804	1.24274 =	2 ·
2.187222 =	2	1.86411 =	<b>3</b>
3 =	2.743205	2	3.21869
3.280833 =	3	2.48548 =	4
4 =	3.657607	3 =	4.82804
4.374444 =	4	3.10685 =	5
5 =	4.572009	3.72822 =	6
5.468056 =	5	4 =	6.43739
6 =	5.486411	4.34959 =	7
6.561667 =	6	4.97096 =	8
7 =	6.400813	5 =	8.04674
7.655278 =	7	5.59233 =	9 .
8 =	7.315215	6 =	9.65608
8.748889 =	8	7 =	11.26543
9 =	8.229616	8 =	12.87478
9.842500 =	9	9 =	14.48412

^{*} Table of Equivalents, U. S. Bureau of Standards.

## AREAS

Square Inches.	Square Millimeters.	Square Square Inches. Centimeter	Square Square s. Feet. Meters.
0.00155 =	= 1	0.1550 = 1	1 = 0.09290
0.00310 =	<b>= 2</b>	0.3100 = 2	2 = 0.1858
0.00465 =	<b>= 3</b>	0.4650 = 3	3 = 0.27871
0.00620 =	<b>- 4</b>	0.6200 = 4	4 = 0.37161
0.00775 =	= 5	0.7750 = 5	5 = 0.46452
0.00930 =		0.9300 = 6	6 = 0.55742
0.01085 '=		1 = 6.452	
0.01240 =	_	1.0850 = 7	8 = 0.74323
0.01395 =	<b>- 9</b>	1.2400 = 8	9 = 0.83613
1 =	- 010.10	1.3950 = 9	10.764 = 1
2 =	= 1,290. <b>3</b> 3	2 = 12.903	21.528 = 2
3 =	= 1,935.49	3 = 19.355	
4 =	= 2,580.65	4 = 25.807	43.055 = 4
5 =	= 3,225.81	<b>5</b> = 32.258	53.819 = 5
6 =	= 3,870.98	6 = 38.710	64.583 = 6
7 =	= 4,516.14	7 = 45.161	75.347 = 7
8 =	0,202.00	8 = 51.613	
9 =	<b>5,806.46</b>	9 = 58.065	96.875 = 9
Square Yards.	Square Meters.	Square Square Miles, Kilomete	Acres. Hectares.
1 =	= 0.8361	0.3861 = 1	1 = 0.4047
1.1960 =	4.00	0.7722 = 2	2 = 0.8094
2 =	= 1.6723	1 = 2.590	$00 \mid 2.471 = 1$
	= 1.0723		
2.3920 =		1.1583 = 3	3 = 1.2141
	<b>= 2</b>		3 = 1.2141
_	= <b>2</b> = 2.5084		3 = 1.2141
3 =	= <b>2</b> = 2.5084 = <b>3</b>	1.5444 = 4	$ \begin{array}{cccc} 3 & = 1.2141 \\ 4 & = 1.6187 \\ 4.942 & = 2 \end{array} $
<b>3</b> = 3.5880 =	= <b>2</b> = 2.5084 = <b>3</b> = 3.3445	1.5444 = 4 $1.9305 = 5$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3 = 3.5880 = 4 =	= <b>2</b> = 2.5084 = <b>3</b> = 3.3445	$ \begin{array}{rcl} 1.5444 &=& 4 \\ 1.9305 &=& 5 \\ 2 &=& 5.180 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 = 3.5880 = 4 = 4.7839 =	= 2 = 2.5084 = 3 = 3.3445 = 4 = 4.1807	1.5444 = 4 1.9305 = 5 2 = 5.180 2.3166 = 6	3 = 1.2141 4 = 1.6187 4.942 = 2 5 = 2.0234 6 = 2.4281 7 = 2.8328
3 .5880 = 4 .7839 = 5 = =	= 2 = 2.5084 = 3 = 3.3445 = 4 = 4.1807	$\begin{array}{rcl} 1.5444 &=& 4 \\ 1.9305 &=& 5 \\ 2 &=& 5.180 \\ 2.3166 &=& 6 \\ 2.7027 &=& 7 \end{array}$	3 = 1.2141 4 = 1.6187 4.942 = 2 5 = 2.0234 6 = 2.4281 7 = 2.8328
3.5880 = 4.7839 = 5.9799 =	= 2 = 2.5084 = 3 = 3.3445 = 4 = 4.1807 = 5 = 5.0168	$ \begin{array}{rcl} 1.5444 &=& 4 \\ 1.9305 &=& 5 \\ 2 &=& 5.180 \\ 2.3166 &=& 6 \\ 2.7027 &=& 7 \\ 3 &=& 7.770 \end{array} $	3 = 1.2141 4 = 1.6187 4.942 = 2 5 = 2.0234 6 = 2.4281 7 = 2.8328 00 7.413 = 3
3.5880 = 4.7839 = 5.9799 = 6	= 2 = 2.5084 = 3 = 3.3445 = 4.1807 = 5 = 5.0168 = 5.8529	1.5444 = 4 1.9305 = 5 2 = 5.186 2.3166 = 6 2.7027 = 7 3 = 7.776 3.0888 = 8	3 = 1.2141 4 = 1.6187 4.942 = 2 5 = 2.0234 6 = 2.4281 7 = 2.8328 7.413 = 3 8 = 3.2375 9 = 3.6422
3 .5880 = 4 .7839 = 5 .9799 = 6 = 7	= 2 = 2.5084 = 3 = 3.3445 = 4.1807 = 5 = 5.0168 = 5.8529	1.5444 = 4 1.9305 = 5 2 = 5.180 2.3166 = 6 2.7027 = 7 3 = 7.770 3.0888 = 8 3.4749 = 9	3 = 1.2141 4 = 1.6187 4.942 = 2 5 = 2.0234 6 = 2.4281 7 = 2.8328 7.413 = 3 8 = 3.2375 9 = 3.6422 9.884 = 4
3.5880 = 4.7839 = 5.9799 = 6 = 7.1759 =	= 2 = 2.5084 = 3 = 3.3445 = 4.1807 = 5 = 5.0168 = 5.8529 = 6 = 6.6890	1.5444 = 4 1.9305 = 5 2 = 5.186 2.3166 = 6 2.7027 = 7 3 = 7.776 3.0888 = 8 3.4749 = 9 4 = 10.366	3 = 1.2141 4 = 1.6187 4.942 = 2 5 = 2.0234 6 = 2.4281 7 = 2.8328 7.413 = 3 8 = 3.2375 9 = 3.6422 9.884 = 4 12.355 = 5
3 = 3.5880 = 4 = 4.7839 = 5 = 5.9799 = 6 = 7.1759 = 8	= 2 = 2.5084 = 3 = 3.3445 = 4.1807 = 5 = 5.0168 = 5.8529 = 6 = 6.6890 = 7	$\begin{array}{rrrrr} 1.5444 &=& 4 \\ 1.9305 &=& 5 \\ 2 &=& 5.180 \\ 2.3166 &=& 6 \\ 2.7027 &=& 7 \\ 3 &=& 7.770 \\ 3.0888 &=& 8 \\ 3.4749 &=& 9 \\ 4 &=& 10.360 \\ 5 &=& 12.950 \end{array}$	3 = 1.2141 4 = 1.6187 4.942 = 2 5 = 2.0234 6 = 2.4281 7 = 2.8328 7.413 = 3 8 = 3.2375 9 = 3.6422 9.884 = 4 12.355 = 5 14.826 = 6
3 = 3.5880 = 4 = 4.7839 = 5 = 5.9799 = 6 = 7.1759 = 8 = 8.3719 =	= 2 = 2.5084 = 3 = 3.3445 = 4.1807 = 5 = 5.0168 = 5.8529 = 6 = 6.6890 = 7	1.5444 = 4 1.9305 = 5 2 = 5.180 2.3166 = 6 2.7027 = 7 3 = 7.770 3.0888 = 8 3.4749 = 9 4 = 10.360 5 = 12.950 6 = 15.540	3 = 1.2141 4 = 1.6187 4.942 = 2 5 = 2.0234 6 = 2.4281 7 = 2.8328 7.413 = 3 8 = 3.2375 9 = 3.6422 9.884 = 4 12.355 = 5 14.826 = 6 17.297 = 7 19.768 = 8

VOLUMES

Cubic Inches.	Cubic Millimeters.	Cubic Inches.	Cubic Centimeters.	Cubic Feet.	Cubic Meters.
0.000061 = 0.000122 = 0.000183 =	= 2 = 3	0.0610 = 0.1220 = 0.1831 =	2 3	1 2 3	= 0.02832 = 0.05663 = 0.08495
0.000244 = 0.000305 =		0.2441 = 0.3051 =	- •	5	= 0.11327 = 0.14159
0.000366 = 0.000427 = 0.000488 =	= 7	0.3661 = 0.4272 = 0.4882 =	7	6 7 8	= 0.16990 $= 0.19822$ $= 0.22654$
0.000549 = 1 =	= 9	0.5492 =	9	9 35.314	= 0.25485
2 = 3 =	= 32,774.3 = 49,161.5	2 = 3 =	32.7743 49.1615	70.629 105.943	= 2 = 3
5 =	= 65,548.6 = 81,935.8	5 =	81.9358	141.258 · 176.572	= 5
7 = 8 =	= 98,323.0 = 114,710.1 = 131,097.3		00.0200	211.887 247.201 282.516	= 7
9 =	= 147,484.5	9 =	147.4845	317.830	= 9

Cubic Yards.	Cubic Meters.	Cubic Yards.	Cubic Meters.	Cubic Yards.	Cubic Meters.
1.3079 =	= 0.7645 = <b>1</b> = 1.5291	I _	3.0582 3.8228 4	8 =	= <b>6</b> = 6.1165 = 6.8810
2.6159 = 3.9238 =	2.2937	6.5397 =	4.5874 <b>5</b> 5.3519	9.1556 = 10.4635 = 11.7715 =	= 8

## CAPACITIES

Milliliters.								
(cc.)		U.S. Liquid Ounces.	Milliliters. (cc.)		.S. Apothe- ies' Drams.	U.S. Apot caries' Scru	he- l ples.	Milliliters. (cc.)
1 :	=	0.03381	1	=	0.2705	0.8115	=	1
2 =	=	0.06763	2	=	0.5410	1	=	1.2322
3 =	=	0.10144	3	=	0.8115	1.6231	=	2
4 =	=	0.13526	3.6967	=	1	2	=	2.4645
						2.4346	=	3
5 =	=	0.16907	4	=	1.0820	3	=	3.6967
6 =	=	0.20288	5	=	1.3525	3.2461	=	4
7 =	=	0.23670	6	==	1.6231	4	`=	4.9290
8 =	=	0.27051	7	=	1.8936	4.0577	=	5
9 =	=	0.30432	7.3934	=	2	4.8692	===	6
						5	=	6.1612
29.574	_	1	8	=	2.1641	5.6807	=	7
59.147	=	2	9	=	2.4346	6	=	7.3934
88.721	=	3	11.0901	=	3	6.4923	=	8
118.295	=	4	14.7869	=	4	7	=	8.6257
						7.3038	=	9
147.869	_	5	18.4836	=	5	8	=	9.8579
177 . 442	=	6	22.1803	=	6	9	=	11.0901
207.016 =	=	7	25.8770	=	7			
236.590 =	=	8	29.5737	=	8			
000 100		•	00 0=04		_	l l		
<b>266.163</b> =	=	9	33.2704	=	9	1		
U.S. Liquid Quarts.		Liters.	U.S. Liqui Gallons.		Liters.	U.S. Dry Quarts.	•	Liters.
U.S. Liquid	<u> </u>		U.S. Liqui	d			,	Liters.
U.S. Liquid Quarts.	= = =	Liters.	U.S. Liqui Gallons. 0.26417	d =	Liters.	Quarts.	=	1
U.S. Liquid Quarts.		Liters. 0.94636	U.S. Liqui Gallons.	d = =	Liters.	Quarts. 0.9081	=	
U.S. Liquid Quarts. 1 .05668		Liters. 0.94636 1	U.S. Liqui Gallons. 0.26417 0.52834	d = =	Liters. 1 2	0.9081 1 1.8162	=	1 1.1012
U.S. Liquid Quarts.  1 1.05668		Liters.  0.94636  1 1.89272	U.S. Liqui Gallons. 0.26417 0.52834 0.79251	d = = =	Liters.  1 2 3	0.9081 1 1.8162	=	1 1.1012 2
U.S. Liquid Quarts.  1 1.05668 2 2.11336		Liters.  0.94636  1 1.89272	U.S. Liqui Gallons. 0.26417 0.52834 0.79251	d = = =	Liters.  1 2 3	Quarts.  0.9081  1 1.8162 2	=	1 1.1012 2 2.2025
U.S. Liquid Quarts.  1 1.05668 2 2.11336	= = = =	Liters. 0.94636 1 1.89272 2	U.S. Liqui Gallons. 0.26417 0.52834 0.79251	d = = = =	Liters.  1 2 3 3.78543	Quarts.  0.9081  1 1.8162 2 2.7242	= = =	1 1.1012 2 2.2025 3
U.S. Liquid Quarts.  1 1.05668 2 2.11336 3 3.17005	= = = =	Liters.  0.94636 1 1.89272 2 2.83908	U.S. Liqui Gallons. 0.26417 0.52834 0.79251 1		Liters.  1 2 3 3.78543	Quarts.  0.9081  1.8162  2.7242  3	= = =	1.1012 2 2.2025 3 3.3037
U.S. Liquid Quarts.  1 1.05668 2 2.11336 3 3.17005 4	= = = =	Liters.  0.94636  1  1.89272  2.83908  3	U.S. Liqui Gallons. 0.26417 0.52834 0.79251 1 1.05668 1.32085	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5	0.9081 1 1.8162 2 2.7242 3 3.6323	= = = =	1 1.1012 2 2.2025 3 3.3037 4
U.S. Liquid Quarts.  1 1.05668 2 2.11336 3 3.17005 4 4.22673		Liters.  0.94636  1 1.89272 2 2.83908 3 3.78543	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6	Quarts.  0.9081  1.8162  2.7242  3.6323  4.5404	= = = = = = = = = = = = = = = = = = = =	1 1.1012 2 2.2025 3 3.3037 4 4.4049
U.S. Liquid Quarts.  1	= = = = = =	Liters.  0.94636  1 1.89272 2 2.83908 3 3.78543 4	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502 1.84919	d = = = =	Liters.  1 2 3 3.78543 4 5 6 7	Quarts.  0.9081  1.8162  2.7242  3.6323  4.5404	= = = = = = = = = = = = = = = = = = = =	1 1.1012 2 2.2025 3 3.3037 4 4.4049 5
U.S. Liquid Quarts.  1		Liters.  0.94636  1 1.89272 2 2.83908 3 3.78543 4	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502 1.84919	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6 7	Quarts.  0.9081  1.8162  2.7242  3.6323  4.5404  5	= = = = = = = = = = = = = = = = = = = =	1 1.1012 2 2.2025 3 3.3037 4 4.4049 5 5.5061
U.S. Liquid Quarts.  1		Liters.  0.94636  1 1.89272 2 2.83908 3.78543 4 4.73179	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502 1.84919 2	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6 7 7.57087	Quarts.  0.9081  1.8162  2.7242  3.6323  4.5404  5.4485		1 1.1012 2 2.2025 3 3.3037 4 4.4049 5 5.5061
U.S. Liquid Quarts.  1		Liters.  0.94636 1 1.89272 2 2.83908 3 3.78543 4 4.73179 5	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502 1.84919 2	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6 7 7.57087	Quarts.  0.9081  1.8162  2.7242  3.6323  4.5404  5.4485  6.3565		1 1.1012 2 2.2025 3 3.3037 4 4.4049 5 5.5061 6 6.6074
U.S. Liquid Quarts.  1		Liters.  0.94636 1 1.89272 2 2.83908 3 3.78543 4 4.73179 5 5.67815	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502 1.84919 2 2.11336 2.37753	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6 7 7.57087	Quarts.  0.9081  1.8162  2.7242  3.6323  4.5404  5.4485  6.3565  7		1 1.1012 2 2.2025 3 3.3037 4 4.4049 5 5.5061 6 6.6074
U.S. Liquid Quarts.  1		Liters.  0.94636 1 1.89272 2 2.83908 3 3.78543 4 4.73179 5 5.67815 6	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502 1.84919 2 2.11336 2.37753	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6 7 7.57087 8 9 11.35630	Quarts.  0.9081  1.8162  2.7242  3.6323  4.5404  5.4485  6.3565  7		1 1.1012 2 2.2025 3 3.3037 4 4.4049 5 5.5061 6 6.6074 7 7.7086
U.S. Liquid Quarts.  1		Liters.  0.94636 1 1.89272 2 2.83908 3 3.78543 4 4.73179 5 5.67815 6	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502 1.84919 2 2.11336 2.37753	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6 7 7.57087 8 9 11.35630	Quarts.  0.9081  1.8162  2.7242  3.6323  4.5404  5.4485  6.3565  7.2646  8		1 1.1012 2 2.2025 3 3.3037 4 4.4049 5 5.5061 6 6.6074 7 7.7086
U.S. Liquid Quarts.  1		Liters.  0.94636  1 1.89272 2 2.83908 3 3.78543 4 4.73179 5 5.67815 6 6.62451	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502 1.84919 2 2.11336 2.37753 3 4	= = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6 7 7.57087 8 9 11.35630 15.14174	Quarts.  0.9081 1.8162 2.7242 3.6323 4.5404 5.4485 6.3565 7.2646 8.1727		1 1.1012 2 2.2025 3 3.3037 4 4.4049 5 5.5061 6 6.6074 7 7.7086 8 8.8098
U.S. Liquid Quarts.  1		Liters.  0.94636  1.89272  2.83908  3.78543  4.73179  5.67815  6.62451	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.32085 1.58502 1.84919 2 2.11336 2.37753 3 4	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6 7 7.57087 8 9 11.35630 15.14174 18.92717	Quarts.  0.9081 1 1.8162 2 2.7242 3.6323 4.5404 5.4485 6.3565 7.2646 8.1727 9		1 1.1012 2 2.2025 3 3.3037 4 4.4049 5 5.5061 6 6.6074 7 7.7086 8 8.8098 9
U.S. Liquid Quarts.  1		Liters.  0.94636 1 1.89272 2 2.83908 3.78543 4 4.73179 5 5.67815 6 6.62451 7 7.57088	U.S. Liqui Gallons.  0.26417 0.52834 0.79251 1 1.05668 1.35085 1.58502 1.84919 2 2.11336 2.37753 3 4 5 6	d = = = = = = = = = = = = = = = = = = =	Liters.  1 2 3 3.78543 4 5 6 7 7.57087 8 9 11.35630 15.14174 18.92717 22.71261	Quarts.  0.9081 1.8162 2.7242 3.6323 4.5404 5.4485 6.3565 7 7.2646 8.1727 9		1 1.1012 2 2.2025 3 3.3037 4 4.4049 5 5.5061 6 6.6074 7 7.7086 8 8.8098 9

## METRIC TABLES

## CAPACITIES (Continued).

U.S. Pecks.	Liters.	Dekaliters	3.	U.S. Pecks.	U.S. Bushels.	Hectoliters.
0.11351 = 0.22702 = 0.34053 = 0.45404 =	2 3	0.8810 1 1.7620	=	2	1 = 2 = 2.83774 = 3 =	0.70479
0.45404 = 0.56755 = 0.68106 = 0.79457 = 0.90808 = 1 =	5 6 7 8	2.6429 3 3.5239 4 4.4049	=======================================	3 3.4053 4 4.5404	4 = 5 = 5.67548 =	1.40957 1.76196 <b>2</b> 2.11436
3 =	9 17.61964 26.42946 35.23928	5 5.2859 6 6.1669	==	6.8106	8 = 8.51323 = 9 = 11.35097 =	3 3.17154
6 = 7 = 8 =	44.04910 52.85892 61.66874 70.47856 79.28838	7 7.0479 7.9288 8 9	=	7.9457 8 9 9.0808 10.2159	14.18871 = 17.02645 = 19.86420 = 22.70194 = 25.53968 =	6 7 8

U.S. Bushels per Acre.	Hectoliters per Hectar.	U.S. Bushels per Acre.	Hectoliters per Hectar.	U.S. Bushels H per Acre. p	ectoliters er Hectar.
1 = 1.14840 = 2 =	0.87078 1 1.74156	4 = 4.59359 = 5 =	4	7 = 8 = 8.03879 =	6.09545 6.96622 <b>7</b>
2.29680 = <b>3</b> = 3.44519 =	2 2.61233 3	5.74199 = 6 = 6.89039 =	5.22467	9 = 9.18719 = 10.33558 =	7.83700 8 9

· MASSES

Grains.		Grams.	Avoirdup Ounces		Gra	ms.	Troy Ounc		Grams.
1	=	0.06480	0.0352	7 =	1		0.032	215 =	1
2	=	0.12960	0.0705	5 =	2		0.064	30 =	2
3	=	0.19440	0.10582	2 =	3		0.096	45 =	3
4	=	0.25920	0.14110	) =	4		0.128	60 =	4
5	=	0.32399	0.17637	7 =	5		0.160	75 =	5
6	=	0.38879	0.2116	<b>!</b> ==	6		0.192	90 =	6
7	=	0.45359	0.24692	2 =	7.		0.225	06 =	7
8	==	0.51839	0.28219	) =	8		0.257	21 =	8
9	=	0.58319	0.31747	7 =	9		0.289	36 =	9
15.432	4 =	1	1	=	28.3	495	1		31.10348
30.864	7 =	2	2	=	56.6	991	2	=	62.20696
46.297	1 =	3	3.	=	85.0	486	3	=	93.31044
61.729	4 =	4	4	=	113.3	981	4	=	124.41392
77.161	8 =	5	5	=	141.7	476	5	_	155.51740
92.594	1 =	6	6	=	170.0	972	6	=	186.62088
108.026	5 =	7	7	=	198.4	467	7	=	217.72437
123.458	9 =	8	8	=	226.7	962	8	=	248.82785
138.891	2 =	9	9	=	255.1	457	9	_	279.93133

Avoirdupois Pounds.			Kilograms.
. 1	= 0.45359	1	= 0.37324
2	= 0.90718	2	= 0.74648
2.20462	= 1	2.67923	= 1
3	= 1.36078	3	= 1.11973
4	= 1.81437	4	= 1.49279
4.40924	= 2	5	= 1.86621
5	= 2.26796	5.35846	= 2
6	= 2.72155	6	= 2.23945
6.61387	= 3	7	= 2.61269
7	= 3.17515	8	= 2.98593
8	= 3.62874	8.03769	= 3
8.81849	<b>= 4</b>	9	= 3.35918
9	= 4.08233	10.71691	= 4
11.02311	= 5	13.39614	= 5
13.22773	= 6	16.07537	= 6
15.43236	= 7	18.75460	= 7
17.63698	= 8	21.43383	= 8
19.84160	= 9	24.11306	= 9

Digitized by GOOQI

# EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES*

### STANDARDS AND FUNDAMENTAL EQUIVALENTS

The meter is the length, at the temperature of 0°C., of the platinum-

iridium bar deposited with the Board of Trade.

The present legal equivalent of the meter is 39.37079 inches. If a brass meter is, however, compared, not at its legal temperature (0° C. or 32° F.), but at the temperature of 62° F., with a brass yard also at the temperature of 62° F., then the apparent equivalent of the meter would be nearly 39.382 inches.

The kilogram is the weight in vacuo at 0° C. of the platinum-iridium

weight deposited with the Board of Trade.

millimeter (mm., .001 m.)

hectare (100 ares or 10,000 sq. m.)

The liter contains one kilogram weight of distilled water at its maximum density (4° C.), the barometer being at 760 millimeters.

## C. — METRIC TO IMPERIAL

#### LINEAR MEASURE

0.03937 inch

2.47115 acres

centimeter (.01 m.)	= 0.39371 inch
decimeter (.1 m.)	= 3.93708 inches
meter (m.)	= 39.37079  inches
	= 3.28089917 feet
	= 1.09363306  yards
dekameter (10 m.)	= 10.93633  yards
hectometer (100 m.)	= 109.36331  yards
kilometer (1,000 m.)	= 0.62138 mile
myriameter (10,000 m.)	= 6.21382  miles
micron	= 0.001  mm.
SQUARE ME	ASURE
sq. centimeter	= 0.15501  sq. inch
sq. decimeter (100 sq. centm.)	= 15.50059  sq. inches
sq. meter or centiare (100 sq. dcm.)	= 10.76430  sq. feet
-	= 1.19603  sq. yards
are (100 sq. m.)	= 119.60333  sq. yards

#### CUBIC MEASURE

cub. centimeter (c.c. or 1,000 cubic millimeters) = 0.06103 cub. inch cub. decimeter (c.d. or 1,000 c.c.) = 61.02705 cub. inches cub. meter or stere (1,000 c.d.) = 35.31658074 cu. feet

ub. meter or stere (1,000 c.d.) = 35.31658074 cu. teet = 1.30802151 cu. vards

^{*}Quoted from sheets issued in 1890 by the Standard Office of the British Board of Trade.

## MEASURE OF CAPACITY

milliliter (ml., c.c. or .001 liter) = 0.06103 cub. inch centiliter (.01 liter) = 0.61027 " " = 0.07043 gill = 0.17608 pint

deciliter (.1 liter) = 0.17608 pint liter (1,000 c.c. or cub. decimeter) = 1.76077 pints dekaliter (10 liters) = 2.20097 gallons hectoliter (100 liters) = 2.75121 bushels kiloliter (1,000 liters) = 3.43901 quarters

microliter = 0.001 c.c.

### APOTHECARIES' MEASURE

cubic centimeter (1 gram weight of

water) = 0.03527 fluid ounce = 0.28219 fluid drachm = 15.43235 grains weight

cubic millimeter = 0.01693 minim

### AVOIRDUPOIS WEIGHT

milligram (mgr.)  $= 0.01543 \, \text{grain}$ centigram (.01 gram) = 0.5432 " decigram (.1 gram) = 1.54324 grainsgram = 15.43235 " dekagram (10 gram) = 5.64383 dramshectogram (100 gram) = 3.52739 ounces kilogram (1,000 gram) = 2.20462125 pounds = 15432.34874 grains myriagram (10 kilogram) = 22.04621 pounds quintal (100 kilogram) = 1.96841 cwt.millier or ton (1,000 kilogram) = 0.98420591 ton

#### TROY WEIGHT

gram = 0.03215073 oz. Troy = 0.64301 pennyweight = 15.43235 grains

## APOTHECARIES' WEIGHT

gram = 0.25721 drachm = 0.77162 scruple = 15.43235 grains

# CI.—EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES

## STANDARDS AND FUNDAMENTAL EQUIVALENTS

The yard is the length at 62° F. marked on a bronze bar deposited with the Board of Trade.

The pound is the weight of a piece of platinum weighed in vacuo at the temperature of 0° C., which is also deposited with the Board of Trade.

The gallon contains 10 lb. weight of distilled water at the temperature of 62° F., the barometer being at 30 inches. The weight of a cubic inch of water is 252.286 grains.

## IMPERIAL TO METRIC

#### LINEAR MEASURE

inch	= 25.39954113 millimeters
foot (12 inches)	= 0.30479449 meters
yard (3 feet)	= 0.91438348 "
pole (5½ yards)	= 5.02911 "
chain (22 yards or 100 links)	= 20.11644 "
furlong (220 yards)	= 201.16437 "
mile (1,760 yards)	= 1.60931493 kilometers

## SQUARE MEASURE

square inch	= 6.45137 sq. centimeters
square foot (144 sq. in.)	= 9.28997  sq. decimeters
sq. yard (9 sq. ft.)	= 0.83609715 sq. meters
perch (301 sq. yd.)	= 25.29194 ""
rood (40 perches)	= 10.11678 ares
acre (4,840 sq. yds.)	= 0.40467 hectare
sq. mile (640 acres)	= 258.98945312  hectares

#### CUBIC MEASURE

cubic inch	= 16.38617589 cub. centimeters
cubic foot (1,728 cub. in.)	= 0.02832 cub. meter
cubic yard (27 cub. ft.)	= 28.31531 cub. decimeters = 0.76451342 cub. meter

#### MEASURE OF CAPACITY

gill	= 141.983 cubic centimeters
· ·	= 1.41983 deciliters
pint (4 gills)	= 0.56793 liter
quart (2 pints)	= 1.13586 liters
gallon (4 quarts)	= 4.54345797 liters
peck (2 gallons)	= 9.08692 "
bushel (8 gallons)	= 3.63477 dekaliters
quarter (8 bushels)	= 2.90781 hectoliters

## APOTHECARIES' MEASURE

gallon * (8 pints or 160 fluid oz.)	= 4.54346 liters
fluid ounce f. 3 (8 drachms)	= 28.39661 cub. centimeter
fluid drachm f. 3 (16 minims)	= 3.54958 " "
minim. M (0.91146 grain weight)	= 0.05916 " "

### AVOIRDUPOIS WEIGHT

grain	=	64.79895036	milligrams
dram	=	1.77185 gram	8
ounce (16 drams)	==	28.34954 "	
pound (16 oz. or 7,000 grains)	=	0.45359265 ki	logram
stone (14 pounds)		6.35030	īı
quarter (28 pounds)	=	12.70059	"
hundred weight (112 pounds)	=	50.80238	"
		0.50802 quint	al
ton (20 ewt.)	=	1.01604754 m	illier or tonne

## TROY WEIGHT

Troy ounce (480 grains † avoir.)	=	31.10350	grams
pennyweight (24 grains)		1.55517	66
			_

## APOTHECARIES' WEIGHT

ounce ‡ (8 drachms)	=	31.10350	grams
drachm 3i (3 scruples)			"
scruple 3i (20 grains*)	=	1.29598	"

- * The Apothecaries' gallon is of the same capacity as the Imperial gallon.
- † The Troy grain is of the same weight as the Avoirdupois and Apothecaries' grain.
  - ‡ The Apothecaries' ounce is of the same weight as the Troy ounce.

## THERMOCHEMISTRY

## CII. — THERMOCHEMICAL UNITS

THE SMALL CALORIE is the amount of heat required to raise the temperature of one gram of water one degree centigrade (from 0° to 1°, 4° to 5° or 15° to 16° being used, giving slightly different values).

THE LARGE CALORIE is the amount of heat required to raise the temperature of one kilogram of water one degree centigrade. It is therefore one thousand times as large as the small calorie.

The British Thermal Unit (B. T. U.) is the heat required to raise the temperature of one pound of water one degree Fahrenheit. As one kilogram is equal to 2.20462 pounds, and one degree centigrade is equal to  $\frac{9}{5}$  degree Fahrenheit, the large calorie is 3.96832 (2.20462  $\times$   $\frac{9}{5}$ ) times as great as the British Thermal Unit, the small calorie being .00396832 times the British Thermal Unit.

THE HEAT OF COMBUSTION of a substance is the number of small or large calories of heat evolved during the combustion of a gram or a kilogram of the substance.

Using the English weights and measures it is the number of B. T. U. of heat evolved during the combustion of one pound of the substance. To convert the former into the latter value the number of calories must be multiplied by  $1.8 (3.96832 \div 2.20462)$ .

THE HEAT OF FORMATION of a substance is the number of calories of heat evolved or absorbed when a gram molecular weight of the substance is formed. When heat is absorbed the value found is negative.

## CIII. — HEATS OF FORMATION

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Aluminium				
carbide	Al ₄ , C ₃	15	solid	232,000
chloride	Al, Cl ₃	15	solid	161,800
, "			dil. sol.	238,100
fluoride	Al, F ₃	15	dil. sol.	275,220
hydroxide	Al, O ₃ , H ₃	15	solid	301,300
oxide	Al ₂ , O ₃	15	solid	392,600
silicate	Al ₂ , Si ₂ , O ₇	15	solid	767,500
44	Al ₂ , Si ₂ , O ₂ , H ₄	15	solid	927,420
sulphate	Al ₂ , S ₃ , O ₁₂	15	dil. sol.	879,700
sulphide	Al ₂ , S ₃	15	solid	126,400
Ammonia	N, H ₁	15	gas	12,000
"	1		liquid	21,000
Ammonium			1 -	,
bi-carbonate	$N, H_5, C, O_3 \dots$	15	solid	208,600
"	,,		dil. sol.	202,300
bromide	NH ₃ , HBr			45,020
"	NH4, Br			65,350
chloride	N, H ₄ , Cl	15	solid	76,800
"			dil. sol.	72,800
"				41,900
"				75,790
fluoride	N, H ₄ , F	15	solid	101,250
"			dil. sol.	99,750
hydroxide	N, H ₅₂ O	15	solid	88,800
"	14, 116, 0		dil. sol.	90,000
iodide	NH ₂ , HI			43,460
"	NH4, I			49,310
nitrate	N ₂ , H ₄ , O ₃			88,060
nitrite	$N_2$ , $H_4$ , $O_2$	(		64,950
acid sulphate	$N_2$ , $H_4$ , $O_2$	15	solid	244,600
·			dil. sol.	245,100
	N II G O	15	solid	283,500
sulphate	N ₂ , H ₈ , S, O ₄		dil. sol.	•
	NY TT CI		solid	281,100
sulphide	N, H ₅ , S	15		40,000
• • • • • • • • • • • • • • • • • • • •			dil. sol.	36,700
Antimony	ar a	1, 1	201:4	01 400
chloride, tri	Sb, Cl ₃	15	solid	91,400
" penta	Sb, Cl ₅	15	liquid	104,500
			solid	104,870
fluoride	Sb, $\mathbf{F_8}$	15	dil. sol.	136,680

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Antimony	CI II			
hydride (stibine)	Sb, H ₃	15	gas	86,800
"			const.	34,270
	 		const.	33,980
oxide, tri	.Sb ₂ , O ₃	15	solid	166,900
" pent	Sb ₂ , O ₃	15	solid	231,200
sulphide	Sb ₂ , S ₃	15	solid	34,400
chloride	As, Cl ₃		liquid	71,380
	· <u></u> · · · · · · · · · · · · · · · · · ·	15	solid	<b>-71,500</b>
hydride (arsine)	H ₃ , As	15	gas	44,200
oxide tri	As ₂ , O ₈	15	solid	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
"		l	dil. sol.	148,900
" pent	As ₂ , O ₅	15	solid	219,400
Auric		<b>-</b>	dil. sol.	225,400
chloride	Au, Cl ₃	15	solid	22,800
			dil. sol.	27,200
oxide	Au ₂ , O ₈	15	solid	-11,500
Aurous chloride Barium	Au, Cl	15	solid	5,800
carbonate	Ba, C, O ₃	15	solid	286,300
chloride	Ba, Cl ₂	15	solid	197,100
"			dil. sol.	198,300
fluoride	Ba, F ₂	15	solid	224,000
*			dil. sol.	221,500
hydride	Ba, H ₂	15	solid	37,500
hydroxide	$\frac{\text{Ba}}{2}$ , O, H			109,550
nitride	Ba ₈ , N ₂	15	solid	149,400
oxide	Ba, O	15	solid	133,400
			dil. sol.	161,500
dioxide	Ba, O ₂	15	solid	145,500
selenide	Ba, Se	15	solid	69,900
silicate	Ba, Si, O ₈	15	solid	328,100
sulphate	Ba, S, O ₄	15 15	solid	339,400
sulphide	Ba, S	10	solid dil. sol.	102,900 109,800
Beryllium			un. soi.	100,000
chloride	Be, Cl ₂	15	solid	155,000
"			dil. sol.	199,500
		i		

Digitized by GOOGLO

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Bismuth	,			
chloride	Bi, Cl ₂	l	solid	90,800
hydroxide	Bi, O., H.		solid	171,700
oxide	Bi ₂ , O ₃		solid	139,200
Boron			ļ	,
chloride	B, Cl	15	gas	89,100
fluoride	B, F ₃	15	dil. sol.	219,345
oxide	$B_2$ , $O_3$	15	solid	272,600
"		<b>.</b>	dil. sol.	279,900
sulphide	B ₂ , S ₃	15	solid	75,800
Cadmium		!		·
carbonate	Cd, C, O ₃	15	solid	183,200
chloride	Cd, Cl ₂	15	solid	93,700
"			dil. sol.	96,400
cyanide	$Cd, C_2, N_2 \dots$	15	solid	-31,850
fluoride	Cd, F ₂	15	dil. sol.	121,720
oxide	Cd, O	15	solid	66,300
sulphate	Cd, S, O ₄	15	solid	219,900
· · · · · · · · · · · · · · · · · · ·			dil. sol.	231,600
sulphide	Cd, S	15	solid	34,400
telluride	Cd, Te	15	solid	16,600
Cæsium				
carbonate	$Cs_2O$ , $CO_2$			20,570
"	$Cs_2$ , $C$ , $O_3$			274,540
carbonate, bi	Cs, H, C, O ₃			232,920
"	CsOH, CO ₂			11,250
chloride	Cs, Cl			109,860
hydroxide	$Cs_2O$ , $H_2O$			50,360
oxide mon	Cs ₂ , O			82,700
" tri	$Cs_2O_2$ , $O$			18,000
" tetr	$Cs_2O_3$ , $O$			12,500
Calcium	_			
aluminate, mono	$Ca, Al_2, O_4$	15	solid	<b>524,55</b> 0
" di	Ca ₂ , Al ₂ , O ₅	15	solid	658,900
" tri	Ca ₃ , Al ₂ , O ₆	15	solid	789,050
aluminium silicate	Ca ₃ , Al ₂ , Si ₂ , O ₁₀	15	solid	1,195,550
carbide	Ca, C ₂	15	solid	-6,250
carbonate	Ca, C, O ₃	15	solid	273,850
chloride	Ca, Cl ₂	15	solid	169,900
"			dil. sol.	187,400
cyanide	Ca, C2, N2	15	dil. sol.	41,650
fluoride	Ca, F ₂	15	solid	216,450
	l .	ı	ı	ı

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Calcium				
hydroxide	$Ca, H_2, O_2 \dots$	15	solid	215,600
			dil. sol.	219,500
"	CaO, H ₂ O			15,100
oxide	Ca, O	15	solid	131,500
"	<b>.</b>		dil. sol.	149,600
" per	Ca, O ₂			156,010
phosphate	Ca ₂ , P ₂ , O ₃	15	solid	919,200
selenide	Ca, Se	15	solid	58,000
silicate, mono	Ca, Si, O	15	solid	329,350
" di	Ca, Si, O ₄	15	solid	471,300
" tri	Ca., Si, O	15	solid	603,050
sulphate	Ca, S, O ₄	15	solid	317,400
			dil. sol.	321,800
sulphide	Ca, S	15	solid	94,300
			dil. sol.	100,600
Carbon		1		
di-oxide	CO, O	15	gas	68,040
"			dil. sol.	73,940
	C, O ₂	15	gas	103,100
di-sulphide	$\mid \mathbf{C}, \mathbf{S_2}, \ldots \rangle$	15	gas	-25,400
· · · · · · · · · · · · · · · · · · ·			liquid	-19,000
monoxide	C, O	15	gas .	21,160
tetrachloride	C, Cl4		liquid	28,230
. "			gaseous	21,030
·			(	8,940
Cementite	C, 3 Fe			(650°-
Cobalt .			(	700°)
chloride	Co, Cl ₂	15	solid	76,700
"	. :		dil. sol.	95,000
fluoride	Co, F ₂	15	dil. sol.	120,340
oxide	Co, O	15	solid	64,100
selenide	Co, Se	15	solid	13,900
sulphate	Co, S, O ₄	15	dil. sol.	228,700
sulphide	Co, S	15	solid	21,900
telluride	Co, Te	15	solid	13,000
Copper				
carbonate	Cu, C, O ₃	15	solid	· 146,100
chloride (cupric)	Cu, Cl ₂	15	solid	51,400
<i>u u</i>			dil. sol.	62,500
" (cuprous)	Cu, Cl	15	solid	35,400
cyanide	Cu, C, N	15	solid	-20,235
nitrate	Cu, N ₂ , O ₆	15	dil. sol.	81,300

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Copper ·			,	
oxide (cupric)	Cu, O	15	solid	37,700
" (cuprous)	Cu ₂ O	15	solid	43,800
selenide (cupric)	Cu, Se	15	solid	17.300
" (cuprous)	Cu ₂ , Se	15	solid	8,000
sulphate	Cu, S, O ₄	15	solid	181,700
•			dil. sol.	197,500
aulahida (aumaia)	Cu. S	15	solid	197,300
sulphide (cupric)		15		-,
" (cuprous)	Cu ₂ , S	15	solid	20,300
_ telluride	Cu ₂ , Te	15	solid	8,200
Cyanogen	C, N		gas	-65,700
Hydriodic acid	H, I		gas	-6,040
Hydrobromic				
acid	H, Br		gas	8,440
Hydrochloric				
acid	H, Cl	15	gas	22,000
"			dil. sol.	39,400
Hydrocyanic	<i>'</i>			
acid	H, C, N	15	gas	-27,150
"			dil. sol.	-21,050
Hydroferricyanic				1
acid	H ₂ , Fe, C ₆ N ₆	15	dil. sol.	-127,500
Hydroferrocyanic	, , , ,			′
acid	Ha. Fe. CaNa	15	solid	102,000
"			dil. sol.	-101,500
Hydrofluoric				,
acid	H, F	15	gas	38.500
"			dil. sol.	50,300
Hydrogen			un. 501.	00,000
oxide	H ₂ , O		solid	70,400
"	112, 0	1	liquid	69.000
"			gas	58,060
peroxide	H ₂ , O ₂ , Aq		liquid	45,300
• ,,			-	
	$H_2O$ , $O$ , $Aq$		· · · · · · · · · ·	-23,060
nyurateu				-91,420
sulphide	H ₂ , S	15	gas	4,800
Transablicana			dil. sol.	9,500
Hypochlorous	CI O	Ì		17 000
anhydride	Cl ₂ , O		gas	17,930
Iodic	TT T O			
acid	H, I, O ₃		<b></b> .	57,590

^{*} Decomposition of hydrogen peroxide.

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Iodine				,
chloride mono	I, Cl		liquid	5,830
" tri	I, Cl ₃		solid	21,490
pentoxide	I2, O8		solid	45,030
sulphide	I, S		solid	0,000
Iron				
carbide	Fe₃, C:	15	solid	8,460
carbonate (ferrous)	Fe, C, O ₃	15	solid	187,800
chloride (ferrous)	Fe, Cl ₂	15	solid	82,200
			dil. sol.	100,100
chloride (ferric)	Fe, Cl ₃	15	solid	96,150
		]	1	127,850
cyanide	Fe ₇ , C ₁₈ , N ₁₈	15	solid	-256,700
fluoride (ferrous)	Fe, F ₂	15	dil. sol.	125,220
fluoride (ferric)	Fe, F ₃	15	dil. sol.	164,940
oxides	Fe, O	15	solid	65,700
"	Fe ₂ , O ₂	15	solid	195,600
"	Fe ₃ O ₄	15	solid	270,800
phosphide	Fe, P	15	solid	nearly
• •	l _ ` _		١	( zero
selenide	Fe, Se	15	solid	15,200
silicate (ferrous)	Fe, SiO ₃	15	solid	254,600
sulphate (ferrous)	Fe, S, O4	15	dil. sol.	234,900
" (ferric)	$Fe_2, S_3, O_{12}, \ldots$	15	dil. sol.	650,500
sulphide	Fe, S	15	solid	24,000
telluride	Fe, Te	15	solid	12,000
Lanthanum				
chloride	La, Cl ₃			263,000
Lead	71 0 0	1	1 ,.,	170.000
carbonate	Pb, C, O ₃	15	solid	170,000
chloride	Pb, Cl ₂	15	solid	83,900
• • • • • • • • • • • • • • • • • • • •	701 70	1	dil. sol.	77,900
fluoride	Pb, F ₂	15	solid	101,600
nitrate	Pb, N ₂ , O ₆	15	solid	105,400
• • • • • • • • • • • • • • • • • • • •			dil. sol.	98,200
oxide mon	Pb, O	15	solid	50,800
" per	Pb, O ₂	15	solid	63,400
selenide	Pb, Se	15	solid	17,000
sulphate	Pb, S, O ₄	15	solid	215,700
sulphide	Pb, S	15	solid	20,200
telluride	Pb, Te	15	solid	6,200
Lithium	7. 0		١	
carbide	ы, С	15	sond	-0,750
carbide	Li, C	15	solid	-5,75

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Platinum				
chloride	Pt, Cl4	15	solid	60,200
<b>"</b>	. <u></u> <u></u>		dil. sol.	79,800
hydride	Pt ₁₀ , H	15	solid	14,200
oxide	Pt, O	15	solid	17,000
Potassium				
bromate	K, Br, O ₃		cryst.	84,060
	, ,	<u></u>	cryst.	-11,250
bi-carbonate	$  \mathbf{K}, \mathbf{H}, \mathbf{C}, \mathbf{O}_{3} \dots  $	15	solid	233,300
• • • • • • • • • • • • • • • • • • • •		<u></u>	dil. sol.	228,000
carbonate	K ₂ , C, O ₃	15	solid	282,100
•••••••••			dil. sol.	288,600
chlorate	K, Cl, O ₂		solid	95,860
"	KCl, O ₃		solid	-9,750
chloride	K, Cl	15	solid	105,700
"			dil. sol.	101,200
cyanate	K, C, N, O	15	solid	105,850
"			dil. sol.	100,650
cyanide	K, C, N	15	solid	33,450
			dil. sol.	30,250
ferri-cvanide	K ₂ Fe, C ₆ , N ₆			129,600
•	1131.6, 08, 118			100,800
ferrocyanide	K4, Fe, C6, N6	15	solid	157,300
	•		dil. sol.	145,300
fluoride	K, F	15	solid	110,000
			dil. sol.	113,600
hydroxide	K, O, H	15	solid	104,600
"	´´		dil. sol.	117,100
iodate	K, I, O ₃		solid	124,490
"	KÍ, Ó3		solid	44,360
nitride tri	K, H ₃ , N	15	solid	30,700
nitrate	K, N, O ₃	15	solid	119,000
"			dil. sol.	110,700
oxide	K ₂ , O	15	solid	98,200
"			dil. sol.	165,200
selenide	K ₂ Se	15	solid	79,600
"			dil. sol.	87,900
silver-cyanide	K, Ag, C ₂ , N ₂	15	solid	13,700
"	, == <del>G, ==, =======</del>		dil. sol.	5,350
sulphate	K ₂ S, O ₄	15	solid	344,300
"			dil. sol.	337,700
" acid	K, H, S, O ₄	15	solid	276,100
u u	,, ~, ~,		dil. sol.	272,900
•••••			-II. DOI.	2.2,000

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Potassium				
sulphide	K ₂ , S	15	solid	103,500
"	· <u>··</u> ·····		dil. sol.	113,500
" poly	K, S ₂	15	solid	59,300
Rubidium			dil. sol.	59,700
carbonate	Rb ₂ O, CO ₂			20,570
" bi	Rb, H, C, O ₂			231,920
chloride	Rb, Cl		solid	105,940
hydroxide	Rb, H, O			101,990
"	Rb ₂ O, H ₂ O			51,480
oxide	Rb ₂ , O			83,500
Selenium hydride	Se, H ₂	15		-25,100
nyariae			gas dil. sol.	-25,100 $-15,800$
hydroxide (selenic)		15	dil. sol.	79,300
" (selenous)		15	solid	52,400
			dil. sol.	51,500
nitride	Se, N	15	solid	-42,300
Silicon				
carbide	SiC			1,963
chloridefluoride	Si, Cl ₄	15 15	gas	128,800 275,920
hydride	Si, H ₄	15	gas	-6,700
dioxide	Si, O ₂		solid	180,000
sulphide	Si, S ₂		solid	40,000
Silver	, -			,
carbide	Ag, C	15	solid	-43,575
carbonate	Ag ₂ C, O ₃	15	solid	123,800
chloride	Ag, Cl	15	solid	29,000
cyanate	Ag, C, N, O	15	solid	26,450
fluoride	Ag, F	15	solid dil. sol.	22,070 25,470
nitrate	Ag, N, O ₃	15	solid	28,700
"			dil. sol.	23,000
oxide	Ag ₂ , O	15	solid	7,000
selenide	Ag ₂ , Se	15	solid	2,000
sulphate	Ag ₂ S, O ₄	15	solid	167,100
"			dil. sol.	162,600
sulphide	Ag ₂ , S	15	solid	3,000
borate, bi	Na ₂ , B ₄ , O ₇	15	solid	748,100
66		1	dil. sol.	758,300
	1	1		1

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Sodium				
carbide	Na, C	15	solid	-4,400
carbonate	Na ₂ , C, O ₃	15	solid	273,700
	Na, H, C, O ₂	15	dil. sol.	279,300
" bi		15	dil. sol.	227,000 222,700
chloride	Na, Cl	15	solid	97,900
"	11a, OI	10	dil. sol.	96,900
cvanate	Na, C, N, O	15	solid	105,850
"			dil. sol.	100,250
cyanide	Na, C, N	15	solid	25,950
"	l		dil. sol.	25,450
fluoride	Na, F	15	solid	109,720
"			dil. sol.	109,120
hydroxide	Na, O, H	15	solid	102,700
			dil. sol.	112,500
nitrate	Na, N, O ₃	15	solid	110,700
•••••	N 0		dil. sol.	106,000
oxide	Na ₂ , O	15	solid	100,900
" per	No O O	19	dil. sol. solid	155,900 8,900
рег	Na ₂ O, O	19	solid	119,800
phosphate	Na ₂ , O ₂	15	solid	452,400
selenide	Na ₂ , Se	15	solid	60,900
66	1142, 50		dil. sol.	78,600
••••	3. G. G.		(solid)	•
silicate	Na ₂ , Si, O ₃		liquid	326,100
sulphate	Na ₂ S, O ₄	15	solid	328,100
			dil. sol.	328,500
" bi	Na, H, S, O ₄	15	·solid	269,100
"			dil. sol.	268,300
sulphide	Na ₂ , S	15	solid	89,300
"			dil. sol.	104,300
" bi	Na ₂ , S ₂	15	solid	49,500
" "			dil. sol.	54,400
tellurate	Na ₂ O, TeO ₃			124,300
titanate	Na ₂ O, TiO ₂ , O			69,700
zincate	$Z_n$ , $Na_2O_2$			67,600
Stannic chloride	Zn, O, Na ₂ O:	15	lianid	87,000
oxide	Sn, Cl ₄	15 15	liquid	129,800 141,300
Stannous chloride	SnO ₂	15	solid solid	80,900
oxide	Sn. O	15	solid	70,700
Oxide	ы, <b>О</b>	10	BUILU	10,100

Name.	Formula.	Temp.	Physical State.	Calories.
Strontium				
carbonate	Sr, C, O ₃	15	solid	281,400
chloride	Sr, Cl ₂	15	solid	184,700
"			dil. sol.	195,850
fluoride	Sr, F ₂	15	solid	224,020
hydride	$Sr, H_2$	15	solid	38,400
hydroxide	$Sr, O_2, H_2$	15	solid	217,300
"			dil. sol.	227,400
oxide	Sr, O	15	solid	131,200
"	´	1	dil. sol.	158,400
selenide	Sr, Se	15	solid	67,600
silicate	Sr, SiO ₃	15	solid	329,100
sulphate	Sr, S, O ₄	15	solid	330,200
sulphide	Sr, S	15	solid	99,300
"		l	dil. sol.	106,700
Sulphur				,
monochloride	$S_2$ , $Cl_2$		liquid	14,260
oxide di	S, O ₂	15	gas	69,260
"	,	l	dil. sol.	77,600
" tri	S, O ₃	15	solid	91,900
" "			dil. sol.	141,000
Sulphuric			422. 502.	111,000
acid	H ₂ , S, O ₄	15	liquid	192,200
"			dil. sol.	210,200
anhydride	S, O ₃		liquid	103,240
	SO ₂ , O			32,160
Tellurium				02,200
chloride (telluric)	Te, Cl4			77,380
hydride	Te, H ₂	15	gas	-34,900
hydroxide (telluric)	Te, O ₃ , H ₃	15	dil. sol.	99,500
" (tellurous)	Te, $O_2$ , $H_2$	15	solid	78,300
oxide	Te, O ₂	15	dil. sol.	78,300
Thallic	20, 02		<b></b>	10,000
hydroxide	Tl, O ₂ H ₂	15	solid	43,800
oxide	Tl ₂ , O ₃	15	solid	87,600
Thallous	112, 03	10	Borna	01,000
chloride	T1, C1	15	solid	48,600
"	11, 01	1	dil. sol.	38,400
fluoride	Tl, F	15	dil. sol.	54,405
hydroxide	Tl, O, H	15	solid	57,400
"		10	dil. sol.	54,300
oxide	Tl ₂ O	15	solid	42,800
(	1120	10	dil. sol.	39,700
selenide	Tl ₂ , Se	15	solid	13,400
scieniue	112, 56	10	BULICE	10,400

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Thallous				
sulphate			solid dil. sol.	221,800 213,500
sulphide			solid	21,600
Thorium	<b>-</b> ,	1		,
chloride	Th, Cl4			339,430
"	Th, 2 Cl	1		300,200
oxide	Th, O ₂			326,000
telluride	Tl ₂ , Te		solid	10,600
Water	H ₂ , O		solid	70,400
	<b>.</b> ,	ł	liquid	69,000
			gas	58,060
Zinc			8	00,000
carbonate	Zn, C, O ₃	15	solid	197,500
chloride	Zn, Cl ₂	15	solid	97,400
"			dil. sol.	113,000
cyanide	Zn, C2, N2	15	solid	-24,550
fluoride	Zn, F ₂	15	dil. sol.	138,220
hydroxide	Zn, H ₂ , O ₂	15	solid	83,500
nitrate	Zn, N ₂ , O ₆	15	dil. sol.	131,700
oxide	Zn, O	15	solid	84,800
selenide	Zn, Se	15	solid	30,300
sulphate	Zn, S, O4	15	solid	229,600
"			dil. sol.	248,000
sulphide	Zn, S	15	solid	45,600
telluride	Zn, Te	15	solid	31,000

## CIV. — HEATS OF SOLUTION

Name.	. Formula.	Temp. °C.	Water.	Calories.
Acetic	T 0 T 0	10	Mols.	
acid	H.C ₂ H ₃ O ₂	18	200	375
Aluminium	•	1	! !	
chloride	AlCl ₃		2500	+153,690
potassium sulphate	K ₂ Al ₂ (SO ₄ ) ₄ .24H ₂ O		2400	-20,240
Ammonium		i	1 1	•
bromide	NH₄Br		200	-4.380
chloride				3,880
iodide	NH4I		200	-3,550
nitrate			200	-6,320
platinochloride	(NH ₄ ) ₂ PtCl ₄		660	8,480
sulphate			400	-2,370

Name.	Formula.	Temp. °C.	Water.	Calories.
Antimony			Mols.	
pentachloride	SbCl ₅	18	1100	35,200
trichloride	SbCl ₂	18		8,910
Arsenic	00013	1		0,010
acid	H ₂ AsO ₄	18	230	-400
pentoxide	As ₂ O ₅	18	. 200	6,000
tri-chloride	AsCl ₂ liq	18	900	17,580
Arsenious	Ascas nq	10	900	17,560
oxide	As ₂ O ₂	18		7 550
	A82U3	10	[]	- 7,550
Auric	AD.		2000	0.700
bromide	AuBr ₈		2000	- 3,760
_ chloride	AuCl ₃		900	+4,450
Barium		}		
bromide	BaBr ₂		400	+ 4,980
"	BaBr ₂ .2H ₂ O		400	<b>- 4,130</b>
chlorate	Ba(ClO ₃ ) ₂ .H ₂ O		600	<b>-11,240</b>
chloride	BaCl ₂		400	+ 2,070
"	BaCl ₂ .2H ₂ O		400	- 4,930
hydroxide	Ba(OH) ₂			+12,260
	Ba(OH) ₂ .8H ₂ O		400	-15,210
iodide	.BaI ₂ .7H ₂ O		500	- 6,850
nitrate	Ba(NO ₃ ) ₂		400	- 9,400
oxide	BaO			+34,520
sulphate	BaSO ₄			- 5,580
Boric				0,000
acid	B ₂ O ₃ .3H ₂ O	18	800	-10,790
Bismuth	2203.02220		000	10,100
tri-chloride	BiCl ₂	18	1600	7,830
Bromine	Br ₂ liquid	18	600	1,080
Cadmium	Dig fiquid	10	000	1,000
bromide	CdBr ₂		400	+440
"	CdBr ₂ 4H ₂ O		600	
• • • • • • • • • • • • • • • • • • • •			400	- 7,290
chloride	CdCl ₂			+ 3,010
			400	+760
iodide	CdI ₂		400	-960
nitrate	Cd(NO ₃ ) ₂ .H ₂ O		400	+ 4,180
sulphate	CdSO4		400	+10,740
_ "	$CdsO_4.H_2O$		400	+6,050
Cæsium		!		
bi-carbonate	CsHCO ₃			<b>- 4,317</b>
chloride	CsCl			- 4,750
oxide	Cs₂O			11,840
sulphate	Cs ₂ SO ₄			<b>- 4,970</b>
bi-sulphate	CsHSO ₄		ı i	-3,730

Name.	Formula.	Temp. °C.	Water.	Calories.
Calcium			Mols.	
bromide	CaBr ₂		400	+24,510
**	CaBr ₂ .6H ₂ O		400	- 1,090
chloride	CaCl ₂		300	+17,410
44	CaCl ₂ .6H ₂ O		400	<b>- 4,310</b>
hydroxide	Ca(OH) ₂		2500	+ 2,790
iodide	Cal ₂		400	+27,690
nitrate	Ca(NO ₃ ) ₂		400	+ 3,950
oxide	CaO		2500	+18.330
nitrate	Ca(NO ₃ ) ₂ .4H ₂ O		2000	-7,250
sulphate	CaSO ₄			-7,230 + 4,440
suprate	CaSO ₄ .2H ₂ O			<del>+ 4,440</del>
	CaS ₂ O ₆ .4H ₂ O		400	
sulphite	CaS ₂ U ₆ .4H ₂ U	• • • • • •	400	<b>-</b> 7,970
Cerium	0. (90.)		1000	
sulphate	Ce ₂ (SO ₄ ) ₃ . 4.4H ₂ O	• • • • • •	1200	+16,130
Citric	0.77			
acid	C ₆ H ₈ O ₇	· · · · · ·	600	- 4,100
Cobalt			•	
chloride	CoCl ₂		400	+18,340
"	CoCl ₂ .6H ₂ O		400	- 2,850
nitrate	$C_0(NO_3)_2.6H_2O$		400	<b>- 4,960</b>
sulphate	CoSO ₄ .7H ₂ O		800	- 3,570
Cupric	ł			
bromide	CuBr ₂		400	+80,250
chloride	CuCl ₂		600	+11,080
66	CuCl ₂ .2H ₂ O		400	+4,210
nitrate	$Cu(NO_2)_2.6H_2O$		400	-10,710
sulphate	CuSO4		400	+15,800
***************************************	CuSO ₄ .5H ₂ O		400	+9,340
Ferric ,				,
chloride	FeCla		2000	+63,360
Ferrous				,
chloride	FeCl ₂		350	+17,900
"	FeCl ₂ .4H ₂ O		400	+2,750
sulphate	FeSO ₂ .7H ₂ O		400	- 4,510
Formic	1 0002.11220		100	1,010
acid	H.CHO2	18	200	150
Iodic	11.01102	10	200	100
acid	HIO:	18	200	- 2,170
Iodine	11103	10	200	- 2,170
	1.0	18		1 700
pentoxide	I ₂ O ₅	10		- 1,790
Lead	PLO II O PII O		000	0 140
acetate			800	- 6,140
bromide	PbBr ₂		2500	-10,040

Name.	Formula.	Temp. °C.	Water.	Calories.
Lead .			Mols.	
chloride	PbCl ₂		1800	- 6,800
nitrate	1		400	- 7,610
Lithium	1 5 (1408)2		1 400	- 7,010
oxide	Li ₂ O, 200H ₂ O	1		31,200
Magnesium	DigO, 2001130			31,200
chloride	. MgCl ₂	]	800	1 25 000
"			400	+35,920
hydroxide			400	+ 2,950
			600	10.000
potassium sulphate			600	-10,020
nitrate			400	- 4,220
sulphate			400	+20,280
	1 0		400	+13,300
	3 5 6 6 5 5		400	- 3,800
sulphite	$  \mathbf{MgS_2O_6.6H_2O} $		400	<b>- 2</b> ,960
Manganese	75.00	<u> </u>		
chloride			350	+16,010
***************************************			400	+ 1,540
nitrate				12,930
sulphate			400	+13,790
**	. MnSO ₄ .H ₂ O		400	+7,820
Mercuric		1		
chloride	.  HgCl ₂		300	- 3,300
Nickel	İ	1		
chloride			400	+19,170
"			400	- 1,160
nitrate			400	<b>- 7,47</b> (
sulphate	. NiSO4.7H ₂ O		800	- 4,250
Nitric	l	1	1	
acid	. HNO3	18	300	7,480
Nitrogen		1	1	
carbide	. N ₂ , C ₂	15	gas	-73,000
"			dil.sol.	-67,100
Oxalic		l	1 1	
acid (cryst.)	$H_2.C_2O_4.2H_2O$		530	- 8,590
Phosphoric				•
acid	H ₃ PO ₄ , liquid	18	200	5,350
66	l ·	18	120	2,690
Phosphorous				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
acid	H ₂ PO ₂ , liquid	18	120	2,940
"		18	120	-130
chloride, tri		18	1000	65,140
pentoxide		18	550	35,600
Pomoniuo		-0	500	50,000

Name.	Formula.	Temp. °C.	Water.	Calories.
Potassium			Mols.	
	VC H O		200	1 9 940
acetate	KC ₂ H ₃ O ₂			+ 3,340
bromate	KBrO ₃		200	- 9,760
bromide	KBr	1	200	- 5,080
carbonate			400	+6,49
	$K_2CO_3.\frac{1}{2}H_2O$	1	400	+4,280
chlorate	•		400	-10,040
chloride	KCl		200	- 4,44
cyanide	KCn		175	- 3,010
dichromate	$K_2Cr_2O_7$		400	-16,700
di-thionate	$K_2S_2O_6$		500	-13,010
hydroxide	KOH		250	+13,29
iodate	KIO ₃		500	- 6,78
iodide			200	- 5.110
nitrate	KNO ₃		200	- 8,52
oxalate	K ₂ C ₂ O ₄ .H ₂ O		800	- 7,410
palladic chloride	K ₂ PdCl ₆			-15,000
chlorplatinate	K ₂ PtCl ₆			-13,000
• ,,				
• • • • • • • • • • • • • • • • • • • •	K₂PtCl₄		600	-12,220
bromplatinite	K ₂ PtBr ₄		800	-10,630
permanganate	KMnO ₄	4	1000	-20,79
acid sulphate	KHSO4	I	200	-3,80
sulphate	$K_2SO_4$		400	- 6,38
Rubidium				
carbonate	$Rb_2CO_3$			9,07
bi-carbonate	RbHCO ₃			4,73
chloride	RbCl			- 4,46
oxide	$Rb_2O$			83,00
sulphate	$Rb_2SO_4$		1	- 6,66
bi-sulphate	RbHSO ₄		l l	-3,73
Silver				-,
nitrate	AgNO ₃	ļ	400	-10,88
sulphate	Ag ₂ SO ₄		1400	<b>- 4,48</b>
Sodium	1182004		1100	1,10
	NaC ₂ H ₃ O ₂	1	200	+ 3.87
acetate	NaC ₂ H ₃ O ₂		400	
			1	- 4,81
ammonium phosphate	Na ₂ NH ₄ PO ₄ .4H ₂ O		800	-10,75
bi-borate	Na ₂ B ₄ O ₇ .10H ₂ O	1	1600	-25,86
bromide	NaBr		200	-19
"	NaBr.2H ₂ O		300	- 4,71
carbonate cryst	Na ₂ CO ₃		1	+5,64
"	Na2CO ₃ .H ₂ O	1	400	+ 2,25

Name.	Formula.	Temp. °C.	Water.	Calories.
Sodium			Mols.	
carbonate cryst	Na ₂ CO ₂ .2H ₂ O		400	+20
"	Na ₂ CO ₃ .10H ₂ O		400	-16,160
chloride	NaCl		100	- 1,180
hydroxide	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		200	+ 9,940
hydrogen phosphate	Na ₂ HPO ₄		400	+ 5,640
" " "	Na ₂ HPO ₄ .2H ₂ O		400	-390
u u	Na ₂ HPO ₄ .12H ₂ O		400	-22,830
iodide	NaI		200	+ 1,220
"	NaI.2H ₂ O		300	- 4,010
nitrate	NaNO ₃		200	- 5,030
oxide	Na ₂ O.			56,500
chlorplatinate	Na ₂ PtCl ₆ .6H ₂ O		900	-10,630
		1	(400	fused +460
sulphate	Na ₂ SO ₄		400	efflor'd+170
44	Na ₂ SO ₄ .H ₂ O		400	<b>–</b> 1,900
"	Na ₂ SO ₄ .10H ₂ O		400	-18,760
" bi	NaHSO4		200	+1,190
thiosulphate	Na ₂ S ₂ O ₂ .5H ₂ O		400	-11.370
Stannic	14820203.01120		100	-11,570
chloride	SnCl		300	+29,920
Stannous	Short		300	720,020
chloride	SnCl ₂		300	+350
"	SnCl ₂ .2H ₂ O		200	- 5,370
Strontium	SilC12.21120		200	- 0,510
bromide	C-D-		400	1 16 110
	SrBr ₂		400	+16,110
ablasida	SrBr ₂ .6H ₂ O		400	- 7,220
chloride	SrCl ₂			+11,140
hadaanida	SrCl ₂ .6H ₂ O	ı	400	<b>-</b> 7,500
hydroxide	Sr(OH) ₂	1		+11,640
	$Sr(OH)_2.8H_2O$	i		-14,640
nitrate			400	- 4,620
************	$Sr(NO_3)_2.4H_2O$		400	-12,300
oxide	SrO			+29,340
sulphite	SrS ₂ O ₆ .4H ₂ O		400	- 9,250
Sulphur	90 11 11	1.0	900	
dioxide	SO ₂ , liquid	18	300	1,500
trioxide	SO ₃ , liquid	18	1600	39,170
Sulphuric	T 00 1:		1000	1.000
acid	H ₂ SO ₄ , liquid	18	1600	17,850
**************************************	H ₂ SO ₄ .H ₂ O, liquid		1600	11,470
Pyrosulphuric		٠.	1000	
acid	$H_2S_2O_7$ , liquid	18	1600	54,320

Name.	Formula.	Temp. °C.	Water.	Calories.
Thallous			Mols.	
chloride'	Tl ₂ Cl ₂		9000	-20,200
hydroxide	Tl(OH)	 	470	- 6,310
nitrate	TINO.		600	- 19,940
oxide	Tl ₂ O		570	- 3,080
sulphate	Tl ₂ SO ₄		1600	- 8,280
Zinc				•
bromide	ZnBr ₂		400	+15,030
chloride	ZnCl2	<b></b>	300	+15,630
iodide	ZnI2		400	+11,310
nitrate	$Zn(NO_3)_2.6H_2O$		400	- 5,840
sulphate	ZnŠO ₄		400	+18,430
*"	ZnSO ₄ .H ₂ O		400	+ 9,950
"	ZnSO ₄ .7H ₂ O	l	400	- 4,260
sulphite	ZnS ₂ O ₆ .6H ₂ O			- 2,420

## CV. — HEATS OF NEUTRALIZATION OF ACIDS WITH FORMATION OF SODIUM SALTS

Compound Formed.	Reaction.	Calories.
Sodium		
acetate	HC ₂ H ₂ O ₂ 200 Aq, NaOH 200 Aq	13,400
arsenate	H ₂ A ₈ O ₄ 200 Aq, 3NaOH 200 Aq	35,920
arsenite	H ₂ As ₂ O ₄ 400 Aq, 2NaOH 400 Aq	13,780
borate	H ₂ B ₂ O ₄ 300 Aq, 2NaOH 300 Aq	20,010
bicarbonate	H ₂ CO ₃ Aq, NaOH Aq	11,016
'bromate	HBrO: 400 Aq, NaOH 400 Aq	13,780
bromide	HBr 200 Aq, NaOH 200 Aq	13,750
carbonate	H ₂ CO ₃ Aq, 2NaOH Aq	20,180
cyanide	HCN 100 Aq, NaOH 100 Aq	2,270
chlorate	HClO, 400 Aq, NaOH 400 Aq	13,760
chloride	HCl 200 Aq, NaOH 200 Aq	13,780
citrate	H ₃ C ₆ H ₅ O ₇ 600 Aq, 3NaOH 600 Aq	38,980
chromate	H ₂ CrO ₄ 400 Aq, 2NaOH 400 Aq	24,720
fluoride	HF 200 Aq, NaOH 200 Aq	16,270
formate	HCHO ₂ 200 Aq, NaOH 200 Aq	13,450
fluosilicate	H ₂ SiF ₆ 400 Aq, 2NaOH 400 Aq	26,620
hypochlorite	HClO 400 Aq, NaOH 400 Aq	9,980
hypophosphite	HPH ₂ O ₃ 250 Åq, NaOH 250 Åq	15,160
iodate	HIO, 400 Aq, NaOH 400 Aq	13,810

Compound Formed.	Reaction.	Calories.
Sodium		
iodide	HI 200 Aq, NaOH 200 Aq	13,680
malate	H ₂ C ₄ H ₄ O ₅ Aq, 2NaOH Aq	26,170
metaphosphate	HPO, 400 Aq, NaOH 400 Aq	14,380
monochloracetate	HC ₂ H ₂ ClO ₂ 200 Aq, NaOH 200 Aq	14,280
nitrate	HNO ₃ 200 Aq, NaOH 200 Aq	13,680
palladochloride	H ₂ PdCl ₄ Aq, 2NaOH Aq	27,250
phosphate	H ₃ PO ₄ 450 Åq, 3NaOH 450 Aq	34,030
phosphite	H ₂ PHO ₃ 400 Åq, 2NaOH 400 Åq	28,450
platinichloride	H ₂ PtCl ₆ 600 Aq, 2NaOH 600 Aq	27,220
pyrophosphate	H ₄ P ₂ O ₇ 800 Aq, 4NaOH 800 Aq	52,740
selenate	H ₂ SeO ₄ 400 Aq, 2NaOH 400 Aq	30,390
silicate	H ₂ SiO ₃ 200 Aq, 2NaOH 200 Aq	5,230
succinate	H ₂ C ₄ H ₄ O ₄ 400 Aq, 2NaOH 400 Aq	24,160
sulphate	H ₂ SO ₄ 200 Aq, 2NaOH 200 Aq	31,380
sulphydrate	HSH Aq, NaOH Aq	7,740
sulphite	H ₂ SO ₃ 400 Aq, 2NaOH 400 Aq	28,970
tartrate	H ₂ C ₄ H ₄ O ₆ 300 Aq, 2NaOH 300 Aq	25,310

### CVI. — RELATIVE AVIDITY OF ACIDS

				Measured by	7
Mole- cules.	Acid.	Avidity.	Electric Conductiv- ity.	Hydroly- sis of Methyl Acetate.	Inversion of Cane Sugar.
1	Nitric	1.00	0.996	0.92	1.00
1	Hydrochloric	1.00	1.00	1.00	1.00
1	Hydrobromic	0.89	1.01	0.98	1.11
1	Hydriodic	0.79	1		l
į.	Sulphuric	0.49	0.65	0.74	0.73
į	Selenic	0.45	l		
ī	Trichloracetic	0.36	0.62	0.68	0.73
1	Orthophosphoric	0.25	0.07		0.06
ł	Oxalic	0.24	0.20	0.17	0.18
ī	Monochloracetic	0.09	0.05	0.04	0.05
1	Hydrofluoric	0.05			
i i	Tartaric	0.05	0.023	0.023	
į	Citric	0.05	0.017	0.016	0.017
i	Acetic	0.03	0.004	0.003	0.004
į.	Boric B ₂ O ₂	0.01	<b>.</b>		
į	Silicic	0.00	1		
i	Hydrocyanic	0.00			

Digitized by GOOGLE

### CVII. — HEAT OF COMBUSTION OF VARIOUS SUBSTANCES

Substance	Burned to	Heat E	volved.	Anthode
Substance.	Burned to	Cal- ories.	B.T.U.	Authority.
Alcohol, ethyl	CO,+H,O liquid	7184	12931	Favre and Silberman
ethyl	CO ₂ +H ₂ O liquid	7054	12697	Berthelot
methyl		5330	9594	
Asphalt	<b></b>	9532	17159	Slossen and Colburn
Benzol C ₆ H ₆ gas	CO,+H,O liquid	10070	18126	Berthelot
gas	CO ₂ +H ₂ O liquid	9650	17370	
liquid	CO ₂ +H ₂ O liquid	10030	18054	Stohman
Cane sugar		3961	7130	Berthelot
Carbon crystallized	co	2405	4329	Berthelot
crystallized	CO	7859	14146	Berthelot
amorphous	co	2489	4480	Berthelot
amorphous	CO	8137	14647	Berthelot
amorphous	co,	8080	14544	Favre and Silberman
vapor	co	11328	20390	Calculated
vapor diamond	CO	11134	20041	Berthelot
Carbonic oxide CO	CO ₂	5640	10152	Thomsen
Cellulose	CO ₂ +H ₂ O liquid	4208	7574	Berthelot
Charcoal	CO	2473	4451	Favre and Silberman
"	co	2442	4396	Berthelot
"	CO,	8080	14544	Favre and Silberman
"	CO	8137	14647	Berthelot
beech	CO2	7140	12852	Schwackhöfer
soft	CO	7071	12723	Schwackhöfer
sugar	CO ₂	8040	14472	Favre and Silberman
	002	(7800		ravie and onberman
Coal (pure and dry)		9000		
Coke gas	CO	8047	14485	Favre and Silberman
petroleum	CO	8017	14503	Mohler
_ •	CuO	590	1062	Thomsen
Copper	CO,+H,O liquid	11927	21469	Berthelot
Gas, acetylene C ₂ H ₂ .	$CO_2 + H_2O$ liquid	11527	20749	Thomsen
acetylene $C_2H_2$	CO2+112O IIquid	(4440	7990	Thomsen
coal		7370	12266	
ethylene C ₂ H ₄	CO2+H2O liquid	11858	21344	Favre and Silberman
ethylene $C_2H_4$	CO ₂ +H ₂ O liquid	12072	21730	Berthelot
ethylene $C_2H_4$	$CO_2 + H_2O$ gas	11293	20327	Berthelot
methane $CH_4$	CO ₂ +H ₂ O gas	13063	23513	Favre and Silberman
ethane CH ₄	$CO_2 + H_2O$ liquid	13344	24019	Berthelot
etnane on ₄ ,	CO2+112O nquid	10044	Digitized b	

Substance.	Burned to	Heat B	volved.	Authority.
	Duillou to	Cal- ories.	B.T.U.	· ·
Gas, methane CH4	CO2+H2O gas	12066	21719	Berthelot
petroleum		10800	19440	
producer		<b>§ 773</b>	1391	
-	ļ	(1370	2466	
water		2350	4230	
water		3032	5458	
Glycerene	CO ₂ +H ₂ O liquid	4316		
Graphite	CO ₂	7901	14222	Berthelot
Hydrogen	H ₂ O liquid	34462	62032	Favre and Silberman
	H ₂ O liquid	34180	61524	Thomsen
******	H₂O liquid	34500	62100	Berthelot
******	H ₂ O gas	28800	51840	Thomsen
"	H ₂ O gas	29150	52470	Berthelot
Iron	Fe ₂ O ₃	1582	2848	
Lignite (pure and dry)		{6000   7000	10800	
Magnesium	Man	6077	12600 10939	
Naphthalene	MgO CO ₂ +H ₂ O liquid	9690	17442	Berthelot
"		9354	16837	Berthelot
Oil. cotton seed		9500	17100	Del unelou
heavy coal gas		8900	16020	St. C. Deville
olive		9473	17051	Stohman
rape	l i	9489	17080	Stohman
schist		9000	1620	
sperm	l '	10000	18000	Gibson
Paraffin		11140	20050	Stohman
"	CO ₂ +H ₂ O gas	10340	18612	Stohman
Peat		5940	10692	Bainbridge
Petroleum		9600	17280	
"		11000	19800	
Pitch		8400	15120	
Silicon	SiO ₂	7407	13333	Berthelot
Stearic acid	CO2+H2O liquid	9374	16873	Stohman
Starch		4228	7610	Berthelot
Sulphur, rhombic	SO	2221	3998	Favre and Silberman
rhombic		2166	3899	Berthelot
monoclinic		2241	4034	Thomsen
Tallow	1	9500	17100	Stohman
Wood, hard		4750	8550	Gottlieb
soft resinous	[ <b>.</b>	5050	9090	Gottlieb

CVIII. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF ANTHRACITE COAL*

				Chemica	Chemical Composition.	sition.				Heat of Combustion.	t of ustion.
Source and Grade of Coal.	Volatile	Cart	on.	ro- n.	3	Miter	1:8			1 1	
	Matter. Fixed. Total.	Fixed.	Total.	Hyd ge	deb	gen.	gen, phur	Water. Ash.	Yep.	ories.	B.1.0.
Lackawanna	<u> </u>	5.0 84.0							11.0	11.0 7724	13900
Black Mountain.		92.41	:		92.41	:	:	:	5.42	8333	15000
ykens Valley buckwheat		76.94		:	6.21 76.94		:	:	15.5		14100
Lykens Valley buckwheat	5.0	81.0	:	:	:	:	-		14.0	7583	13650
Mount Pleasant Scranton pea		76.28	-	:	:	:	:		10.01	9082	14050
[reverton		85.66	90.06	1.73	6.67 85.66 90.66 1.73 0.78 .001 0.84 6.83 8442	.00	:	0.84	6.83	8442	15195

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

"Google

CIX. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF BITUMINOUS COAL*

			0	hemica	Chemical Composition	sition.			Ī	Heat of Combustion.	t of istion.
Source and Grade of Coal.	Volatile	Carbon.	bon.	n. n.	-A10	Mitro	Sul		i	-182	1
	Matter. Fixed. Total.	Fixed.	Total.	Hyd	gen.	gen.	phur.	Water.	Asb.	ories.	B.T.U.
Indiana: Brazil	34.49	50.30	70.50	4.76	16.29	1.36	1.39	8.98		8079	14542
Lancaster	37.44	47.22	47.22 71.41 5.56 18.42 1.54 0.62	5.56	18.42	1.54	0.62	12.66	2.68		14251
Ohio: Brier Hill	36.4	59.1	:		:	:	:		4.5	7888	14200
Hocking Valley	36.05	49.05	68.18	4.65	9.40	9.40 1.44 1.43	1.43	6.40	8.50		13981
Waterford	37.29	53.34		4.98	6.42	1.40	3.44				14814
Pennsylvania: Carnegie	36.42			5.10	7.22	1.68	1.42	1.45			14947
West Virginia: Pocahontas	18.30		83.75	4.13	2.65	0.85	0.57	08.0	7.25	8928	15682
Pocahontas ad	18.10	74.52			:	:	09.0				15739
Thacker	35.00	57.10	78.90	4.98		5.64 1.42 1.16	1.16		6.50	_	15181
Wyoming: Diamond	33.35	44.30		77.65		:	0.42	14.50		6477	11658
Harker	33.52	43.90		:	77.40	:	1.03	7.88	14.70	7433	13380
Jumbo	40.13	43.65		:	83.78	:	4.57	5.72	10.50		14170

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CX. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF OVEN COKES*

				hemica	Chemical Composition.	sition.				Hea	Heat of Combustion.
Source of Coke.	Volatile	Carb	ou.	-ori	- Axo	Nitro-	Sul-			1	
	Matter. Fixed. Total.	Fixed.	Total.	H 8	gen.	gen.	gen. phur.	water. Asn.	Asn.	ories.	<b>B.I</b> .U.
Connellerille Pa	0.46	0 46 80 58					18 0	03	0 11	7005	14911
Commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited at the commercial visited			:	:	:	:	0.0	3	11.0	000	11711
Dade, Fa		75.94	:	:	0.0	:	0.6	0.54	21.75	7953	14315
Pineville, W. Va.		94.66	:	:		:	0.69	1.14	3.57	8006	14128
Pocahontas, W. Va	99.0	95.80	٠	:		:	0.55	99.0	4.91	8032	14457
Pratt, Pa	1.58	88.87	•	:		:	1.18	8 1.92 '8.99 7946 14	8.86	7946	14300
Seymore, Pa			•	:			0.85	0.25	7.65	8036	14468
St. Bernard, Pa	0.34	90.06	:				2.37	:	8.96	7995	14340
		_									

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole,

CXI. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF LIGNITE*

Source of Coke. Volstile Carbon. Gan. High gen. Sul. Water. Ash. Ories. Comb. Matter. Fixed. Total. High gen. Burn. Water. Ash. Ories. Brie, Col. Sul. Water. Sul. Water. Ash. Ories. Brie, Col. Sul. Water. Sul. Water. Sul. Water. Ash. Ories. Brie, Col. Sul. Water. Sul. Water. Sul. Water. Ash. Ories. Sul. Water. Sul. Water. Ash. Ories. Brie, Col. Sul. Water. Sul. Sul. Water. Sul. Sul. Water. Sul. Sul. Water. Sul. Sul. Water. Sul. Sul. Sul. Sul. Water. Sul. Sul. Sul. Sul. Sul. Sul. Sul. Sul				Chen	aical Co	Chemical Composition.	ġ			Control	Heat of Combustion.
Matter.         Fixed.         Total.         Page Sen.         gen.         phur.         Watter.         Ash. ories.           37.61         51.36         7.38         9.27         1.50         1.02         7.01         4.03         7276           44.74         34.89         5.14         14.60         1.50         0.42         18.57         2.74         6311           46.20         42.08         5.07         27.77         1.20         0.43         18.35         3.25         5432           41.23         38.46         4.89         13.88         0.95         0.30         17.64         2.67         5526           12.16         84.65         3.72         4.20         1.62         0.70         1.50         2.29         7911           33.79         58.62         5.23         12.86         0.35         0.47         6.30         1.28         6780		Volatile	1	bon.		-	Kitro	118		Cal	
37.61     51.36     7.38     9.27     1.50     1.02     7.01     4.03     7276       32.71     45.98     4.25     6.65     1.64     0.52     18.57     2.74     6311       44.74     34.89     5.07     7.77     1.50     0.42     17.15     3.22     5432       36.20     42.08     5.07     27.77     1.20     0.43     18.35     3.77     4530       41.23     38.46     37.2     4.20     1.62     0.70     1.54     2.55     5526       12.16     84.65     5.23     12.86     2.35     0.47     6.30     1.28     6780		Matter.	Fixed.	Total.		gen.	gen.	phur.	Ash.	ories.	B.T.U.
32.71     45.98     4.25     6.65     1.64     0.52     18.57     2.74     6311       44.74     34.89     5.14     14.60     1.50     0.42     17.15     3.22     5432       36.20     42.08     5.07     27.77     1.20     0.43     18.35     3.37     4530       41.23     38.46     4.89     13.88     0.95     0.30     17.64     2.67     5526       12.16     84.65     3.72     4.20     1.62     0.70     1.50     2.29     7911       33.79     58.62     5.23     12.86     2.35     0.47     6.30     1.28     6780	Caffon City. Col	37.61			7.38	1	1.50	1.02	4.03	1	1
44.74     34.89     5.14     14.60     1.50     0.42     17.15     3.22     5432       36.20     42.08     5.07     27.77     1.20     0.43     18.35     3.37     4530       41.23     38.46     4.89     13.88     0.95     0.30     17.64     2.67     5526       12.16     84.65     3.72     4.20     1.62     0.70     1.50     2.29     7911       33.79     58.62     5.23     12.86     2.35     0.47     6.30     1.28     6780	Erie, Col	32.71	45.98		4.25		1.64	0.52	2.74		
36.20     42.08     5.07     27.77     1.20     0.43     18.35     3.37     4530       41.23     38.46     4.89     13.88     0.95     0.30     17.64     2.67     5526       12.16     84.65     3.72     4.20     1.62     0.70     1.50     2.29     7911       33.79     58.62     5.23     12.86     2.35     0.47     6.30     1.28     6780	Golden City, Col	44.74	34.89	:	5.14		1.50	0.42	3.22		
41.23       38.46       4.89       13.88       0.95       0.30       17.64       2.67       5526         12.16       84.65       3.72       4.20       1.62       0.70       1.50       2.29       7911         33.79       58.62       5.23       12.86       2.35       0.47       6.30       1.28       6780	Golden City, Col.	36.20		:	5.07		1.20	0.43	3.37		
33.79 58.62 5.23 12.86 2.35 0.47 6.30 1.28 6780	Golden City, Col	41.23	38.46	:	4.89				2.67		
	Gunnison River, Col	12.16	84.65	:	3.72		1.62	0.70	2.29		
	Lechner's South Park, Col	33.79		:	5.23		2.35	0.47	1.28		

* Most of the data for this table have been quoted from The Calogific Power of Fuels by Poole.

Name.	Formula.	Temp.	Water.	Calories.
Thailous			Mols.	
chloride	Tl ₂ Cl ₂	l <i>.</i>	9000	-20,200
hydroxide	Tl(OH)		470	-6,310
nitrate	TlNO ₃		600	-19,940
oxide				- 3.080
sulphate				- 8,280
Zinc				-,
bromide	ZnBr ₂		400	+15,030
chloride	ZnCl ₂			+15,630
iodide	ZnI ₂			+11.310
nitrate	Zn(NO ₃ ) ₂ .6H ₂ O			- 5,840
sulphate	ZnSO ₄			+18,430
"	ZnSO ₄ .H ₂ O			+ 9,950
"	ZnSO ₄ .7H ₂ O			- 4,260
sulphite				- 2,420

# CV. — HEATS OF NEUTRALIZATION OF ACIDS WITH FORMATION OF SODIUM SALTS

Compound Formed.	Reaction.	Calories
Sodium		
acetate	HC ₂ H ₃ O ₂ 200 Aq, NaOH 200 Aq	13,400
arsenate	H ₂ AsO ₄ 200 Aq, 3NaOH 200 Aq	35,920
arsenite	H ₂ As ₂ O ₄ 400 Aq, 2NaOH 400 Aq	13,780
borate	H ₂ B ₂ O ₄ 300 Aq, 2NaOH 300 Aq	20,010
bicarbonate	H ₂ CO ₃ Aq, NaOH Aq	11,016
'bromate		13,780
bromide		13,750
carbonate		20,180
cyanide		2,270
chlorate		13,760
chloride		13,780
citrate		38,980
chromate	1	24,720
fluoride		16,270
formate		13,450
fluosilicate		
hypochlorite		
hypophosphite		15,160
iodate		13,810

Compound Formed.	Reaction.	Calories.
Sodium		
iodide	HI 200 Aq, NaOH 200 Aq	13,680
malate	H ₂ C ₄ H ₄ O ₅ Aq, 2NaOH Aq	26,170
metaphosphate	HPO: 400 Aq, NaOH 400 Aq	14,380
monochloracetate	HC2H2ClO2 200 Aq, NaOH 200 Aq	14,280
nitrate	HNO. 200 Aq, NaOH 200 Aq	13,680
palladochloride	H ₂ PdCl ₄ Aq, 2NaOH Aq	27,250
phosphate	H ₂ PO ₄ 450 Åq, 3NaOH 450 Aq	34,030
phosphite	H ₂ PHO ₂ 400 Åq, 2NaOH 400 Åq	28,450
platinichloride	H ₂ PtCl ₆ 600 Aq, 2NaOH 600 Aq	27,220
pyrophosphate	H ₄ P ₂ O ₇ 800 Aq, 4NaOH 800 Aq	52,740
selenate	H ₂ SeO ₄ 400 Aq, 2NaOH 400 Aq	30,390
silicate	H ₂ SiO ₃ 200 Aq, 2NaOH 200 Aq	5,230
succinate	H ₂ C ₄ H ₄ O ₄ 400 Aq, 2NaOH 400 Aq	24,160
sulphate	H ₂ SO ₄ 200 Aq, 2NaOH 200 Aq	31,380
sulphydrate	HSH Aq, NaOH Aq	7,740
sulphite	H ₂ SO ₂ 400 Aq, 2NaOH 400 Aq	28,970
tartrate	H ₂ C ₄ H ₄ O ₆ 300 Aq, 2NaOH 300 Aq	25,310
	" " "	

### CVI. — RELATIVE AVIDITY OF ACIDS

			[	Measured by	7
Mole- cules.	Acid.	Avidity.	Electric Conductiv- ity.	Hydroly- sis of Methyl Acetate.	Inversion of Cane Sugar.
1	Nitrie	1.00	0.996	0.92	1.00
1	Hydrochloric	1.00	1.00	1.00	1.00
1	Hydrobromic	0.89	1.01	0.98	1.11
1	Hydriodic	0.79	1	[	l
į	Sulphuric	0.49	0.65	0.74	0.73
į	Selenic	0.45			
i	Trichloracetic	0.36	0.62	0.68	0.73
1	Orthophosphoric	0.25	0.07		0.06
ī	Oxalic	0.24	0.20	0.17	0.18
i	Monochloracetic	0.09	0.05	0.04	0.05
ī	Hydrofluoric	0.05	l		
ī	Tartaric	0.05	0.023	0.023	
į	Citric	0.05	0.017	0.016	0.017
i	Acetic	0.03	0.004	0.003	0.004
ī	Boric B ₂ O ₃	0.01	1		
į	Silicic	0.00			
í	Hydrocyanic	0.00	1		

Digitized by GOOGIC

### CVII. — HEAT OF COMBUSTION OF VARIOUS SUBSTANCES

Substance.	Burned to	Heat E	volved.	Authority.
Danguarov.	<b>Du.200</b> to	Cal- ories.	B.T.U.	2202011091
Alcohol, ethyl	CO2+H2O liquid	7184	12931	Favre and Silberman
ethyl	CO2+H2O liquid	7054	12697	Berthelot
methyl		5330	9594	
Asphalt		9532	17159	Slossen and Colburn
Benzol C.H. gas	CO ₂ +H ₂ O liquid	10070	18126	Berthelot
gas	CO ₂ +H ₂ O liquid	9650	17370	
liquid	CO ₂ +H ₂ O liquid	10030	18054	Stohman
Cane sugar		3961	7130	Berthelot
Carbon crystallized	co	2405	4329	Berthelot
crystallized	CO ₂	7859	14146	Berthelot
amorphous	co	2489	4480	Berthelot
amorphous	CO	8137	14647	Berthelot
amorphous	co	8080	14544	Favre and Silberman
vapor	CO,	11328	20390	Calculated
vapor diamond	CO ₂	11134	20041	Berthelot
Carbonic oxide CO	CO ₂	5640	10152	Thomsen
Cellulose	CO2+H2O liquid	4208	7574	Berthelot
Charcoal	CO	2473		Favre and Silberman
"	co	2442	4396	Berthelot
"	CO,	8080		Favre and Silberman
"	CO ₂	8137	14647	Berthelot
beech	CO	7140	12852	Schwackhöfer
soft	CO	7071	12723	Schwackhöfer
sugar	co	8040	14472	Favre and Silberman
•	003	(7800		2 di vio di la cimpoi in-
Coal (pure and dry)		9000	16200	
Coke gas	CO	8047	14485	Favre and Silberman
petroleum	CO ₂	8017	14503	Mohler
Copper	CuO	590	1062	Thomsen
Gas, acetylene C ₂ H ₂ .	CO,+H,O liquid	11927	21469	Berthelot
acetylene $C_2H_2$	CO ₂ +H ₂ O liquid	11527	20749	Thomsen
acetylene (2112	OO2+112O IIquid	(4440	7990	Thomsen
coal		7370	12266	
athedona C H	CO L II O liamid	11858	21344	Favre and Silberman
ethylene C ₂ H ₄	CO ₂ + H ₂ O liquid CO ₂ + H ₂ O liquid	12072	21730	Berthelot
ethylene C ₂ H ₄		11293	20327	Berthelot
ethylene $C_2H_4$	CO ₂ +H ₂ O gas			Favre and Silberman
methane CH ₄	CO ₂ +H ₂ O liquid	13063	23513	
methane CH ₄	CO ₂ +H ₂ O liquid	13344	24019 Digitized b	Berthelot

Substance.	Burned to	Heat E	volved.	Authority.
		Cal- ories.	B.T.U.	·
Gas, methane CH4	CO ₂ +H ₂ O gas	12066	21719	Berthelot
petroleum		10800	19440	
producer		<b>{ 773</b>	1391	
-		(1370		
water		2350	4230	
water		3032		G4-1
Glycerene	CO2+H2O liquid	4316	7769	Stohman
Graphite	CO₂ H₄O liquid	7901 34462	14222 62032	Berthelot
Hydrogen	H ₂ O liquid	34180	61524	Favre and Silberman Thomsen
"	H ₂ O liquid	34500	62100	Berthelot
"	H ₂ O gas	28800	51840	Thomsen
"	H ₂ O gas	29150	52470	Berthelot
Iron	Fe ₂ O ₃	1582	2848	
	re203	(6000	10800	•
Lignite (pure and dry)		7000		
Magnesium	MgO	6077	10939	
Naphthalene		9690	17442	Berthelot
"	CO ₂ +H ₂ O gas	9354	16837	Berthelot
Oil, cotton seed		9500	17100	
heavy coal gas		8900	16020	St. C. Deville
olive		9473	17051	Stohman
rape		9489	17080	Stohman
schist		9000	1620	
sperm		10000	18000	Gibson
Paraffin	CO2+H2O liquid	11140	20050	Stohman
"	CO2+H2O gas	10340	18612	Stohman
Peat		5940	10692	Bainbridge
Petroleum		9600	17280	
		11000	19800	
Pitch		8400	15120	
Silicon	SiO ₂	7407	13333	Berthelot
Stearic acid		9374	16873	Stohman
Starch	CO2+H2O liquid	4228	7610	Berthelot
Sulphur, rhombic	$\begin{bmatrix} SO_2 \end{bmatrix}$	2221	3998	Favre and Silberman
rhombic		2166	3899	Berthelot
monoclinic		2241	4034	Thomsen
Tallow		9500	17100	Stohman
Wood, hardsoft resinous		4750 5050	8550	Gottlieb
			9090	

CVIII. - CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF ANTHRACITE COAL*

		-	Chemica	Chemical Composition.	sition.				Heat of Combustion.	ustion.
Source and Grade of Coal.	ile Carl	, io		0.10	#itro	7.12			1 5	
COM	Matter. Fixed, Total.	Total.	Hyd	gen. gen. phur	gen.	phur	Water.	ų V	ories.	ories. B.T.U.
Lackawanna	5.0 84.0							11.0 7724	7724	13900
:	17 92.41	:	:	:	:	:	:	5.42	833	1500
:	21 76.94	:	:	:	<u>:</u>	<del>:</del>	:	15.5	7833	1410
Lykens valley buckwheat	5.0 81.0 75.28 7.49 76.28							10.01	7808	14050
:	67 85.66	90.06	1.73	0.78	.00		0.84	6.83	8442	1519

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CIX. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF BITUMINOUS COAL*

			S	hemical	Chemical Composition.	sition.				Heat of Combustion.	of stion.
Source and Grade of Coal.	Volatile	Carbon.	go	n. n.	-22.0	Witro	-Ing	i		1,87	
	Matter. Fixed.	Fixed.	Total.	Hyd ge	gen.	gen.	phur.	gen. phur. Water. Ash.	Asb.	ories.	в.т. о.
									1	1	
Indiana: Brazil	34.49	50.30	70.50	4.76	16.29	1.36	1.39	8.98	6.28	8079	14542
Lancaster	37.44	47.22	47.22 71.41 5.56 18.42 1.54 0.62	5.56	18.42	1.54	0.62		2.68	7917	14251
Ohio: Brier Hill	36.4	59.1	59.1	:		:	:	:	4.5	7888	14200
Hocking Valley	36.05	49.05	68.18	4.65	9.40	1.44	1.43	6.40	8.50		13981
Waterford	37.29	53.34	74.39	4.98	6.42	1.40	3.44		7.82		14814
Pennsylvania: Carnegie	36.42	56.20	77.20	5.10	7.22	1.68	1.42	1.45		8304	14947
West Virginia: Pocahontas	18.30	73.65	73.65 83.75 4.13 2	4.13	2.65 0.85 0.57	0.85	0.57				15682
Pocahontas ad	18.10	74.52	:		:	:	09.0	0.73	6.65		15739
Thacker	35.00	57.10	78.90	4.98	5.64 1.42 1.16	1.42	1.16	1.40	6.50	8434	15181
Wyoming: Diamond	33.35	44.30	77.65	:	77.65 0.42	:	0.42		7.85	6477	11658
Harker	33.52			:	77.40		1.03		14.70	7433	13380
Jumbo	40.13	43.65		:	83.78	:	4.57	5.72	10.50	7873	14170
000				_					_		_
* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.	have be	onb ua	ted from	n The	Calorif	c Pow	er of 1	d slen	y Poole.		

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CX. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF OVEN COKES*

				bemica	Chemical Composition.	sition.				Comb	Heat of Combustion.
Source of Coke.	Volatile	Carb	on.	-orl n.	Č	ı	11.8			1	
	Matter. Fixed. Total.	Fixed.	Total.	μ g	, de 1		phur.	gen. phur. Water.	Ash.	ories.	B.T.U.
Connellsville, Pa	0.46	0.46 89.58	:	:	:	:	0.81	0.03	9.11	7895	14211
Dade, Pa	80.0	75.94	:	:	:	:	0.67	0.54	21.75	7953	14315
Pineville, W. Va.	0.04	94.66	:	:	:		69.0	1.14	3.57	8006	14128
Pocahontas, W. Va	99.0		:	:	:	:	0.55		4.91	8032	14457
Pratt, Pa	1.58	88.87	:	:	:	:	1.18	1.92	86. 80.	7946	14300
Seymore, Pa	0.63	90.65	:	:	:	:	0.85		7.65	8036	14468
St. Bernard, Pa	0.34		:	:		:	2.37	:	8.96	7995	14340
		_									

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CXI. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF LIGNITE*

			Chen	aical Co	Chemical Composition.	ġ			•	Comp	Heat of Combustion.
Source of Coke.	Volatile	Car	Carbon.	ro- in.	0	Nitro		i	1	Ca1-	E E
	Matter.	Fixed. Total	Total.	Hyd	gen.	gen.	phur.	Water.	ASD.	ories.	B.1.0.
Caffon City, Col	37.61	51.36		7.38	9.27	1.50	1.02	7.01	4.03		
Erie, Col.	32.71	45.98	:	4.25	6.65	1.64	0.52	18.57		6311	
Golden City, Col	44.74	34.89	:	5.14	14.60	1.50	0.42	17.15			9778
Golden City, Col.	36.20	42.08	:	5.07		1.20	0.43	18.35			
Golden City, Col.	41.23	38.46	:	4.89		0.95	0.30	17.64			
Gunnison River, Col	12.16	84.65	:	3.72	4.20	1.62	1.62 0.70	1.50	2.29	7911	
Lechner's South Park, Col	33.79	58.62	:	5.23		2.35	0.47	6.30			

* Most of the data for this table have been quoted from The Calogific Power of Fuels by Poole.

# CXII.—CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF WOOD*

Name.		Che	emical Cor	nposition	1.			of Com- tion.
Name.	Carbon.	Hydro- gen.	Oxygen.	Nitro- gen.	Ash.	Water.	Cal- ories.	B.T.U
Ash	49.18	6.27	43.91	0.07	0.57		4711	8480
Beech	49.06	6.11	44.17	0.09	0.57		4774	8591
Birch	48.88	6.06	44.67	0.10	0.29		4771	8586
Elm	48.89	6.20	44.25	0.06	0.50		4728	8510
Fir	50.36	5.92	43.39	0.05	0.28		5035	9063
Oak	50.16	6.02	43.36	0.09	0.37		4620	8316
Pine	50.31	6.20	43.08	0.04	0.37		5085	9153
Tan bark					15.0		3389	6100
" "						30.0	2380	4284

## CXIII. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF PETROLEUM *

		Specific	Ch	emical C	ompositio	on.	Hea Comb	it of istion.
Source.	Grade.	Grav- ity.	Carbon.	Hydro- gen.	Oxygen + Ni- trogen.	Oxy- gen.	Cal- ories.	B.T.U.
Ohio	Heavy	0.887	ı	13.1	2.7	•••	10399	
	Lima		80.2	17.1	2.7		12000	
Pennsylvania	Crude	0.938	ľ	13.7		1.4	11520	20736
-	Heavy	0.886	84.9	13.7	1.4		10672	19210
	Light	0.826	82.0	14.8	3.2		9963	17930
West Virginia	Heavy	0.928	88.3	13.9		0.8	10102	18184
ا	Heavy		83.5	13.3	3.2		10180	18324
	Light	0.841	84.3	14.1	1.6		10223	18400
Russia	Crude	0.884	86.3	13.6	1	0.1	12650	22628
	Crude	0.938	1	12.3		1.1	10800	19440
			1					

^{*} Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole. Digitized by Colorific

OF CXIV. -- CHEMICAL COMPOSITION AND HEAT OF COMBUSTION NATURAL GAS*

				Chemica	Chemical Composition.	ion.				Heat of Combustion.	of stion.
Source of Gas.	Hydro- gen, H ₁ .	Meth- ane, CH,	Ethyl- ene, C,H,.	Illumi- nants.	Carbon Dioxide, CO ₂ .	Carbon Mon- oxide, CO.	Oxygen, O ₃ .	Nitro- gen, N ₂ .	Hydro- gen Sul- phide, H ₂ S.	Calories per Cu. M.	B.T.U.
Indiana, Kakomo	1.42	94.16	0.30		0.27	0.55	0.30	2.80	0.18	9581	1030
Munice	2.35	92.67	0.25		0.25	0.45	0.35	3.53	0.15	9477	1019
Kentucky, Louisville	1.31	87.75	:		9.60	:	•	4.34		8849	686
New York, Olean	:	96.50	:	1.00		0.50	2.00			0066	1071
W. Bloomfield	:	82.41	:	2.94	10.11	:	0.23	4.31	•	9158	866
Ohio, Findlay	2.18	92.60	:	0.31	0.26	0.50	0.34	3.61	0.20	10250	1100
Pennsylvania, Burn's Well		75.44	18.12	trace	0.34	trace	:	:	:	10090	1170
Cherry Tree		60.27	9.80		2.28	:	0.38	7.32	:	8034	840
E. Liberty	9.64	57.85	0.80	5.20	:	1.00	2.10	23.41	:	5581	592
Leechburg		89.62	4.39	0.56	0.35	0.26	:	-:	:	9965	1073
Grapeville		14.93	96.0	39.64	trace	trace	0.12	18.69	:	8326	891
Murraysville		78.24			:		2.20		:	8458	06
Pittsburg	20.02	72.18	:	6.30	08.0	1.00	08.0		:	8620	917

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CX. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF OVEN COKES*

			5	hemica	Chemical Composition.	sition.				Comp	Heat of Combustion.
Source of Coke.	Volatile	Carbon.	ou.	ro- n.	2		1.0			1,0	
	Matter.	Fixed. Total.	Total.	H Aq	gen.		gen. phur.	Water.	Ash.	ories.	B.T.U.
Connellsville, Pa	0.46	89.58		:		: :	0.81	0.81 0.03	9.11	7895	14211
)ade, Pa	0.0		:	:	:	:	0.67	0.54	21.75	7953	
ineville, W. Va.	0.04		94.66	:	:	: :	0.69		3.57	9008	
Pocahontas, W. Va	99.0			:	:	: :	0.55		4.91	8032	
Pratt, Pa.	1.58		88.87	:	:		1.18		8.99	7946	14300
Seymore, Pa	0.63		90.65	:	:	:	0.85		7.65	8036	
St. Bernard, Pa	0.3 <del>2</del>		:		69.06	:	2.37		8.96 7995	7995	

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole,

CXI. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF LIGNITE*

	200		cuemicai composition.	i				Combustion	ustion.
	rbon.	ro- n.	,	Zit.			1	5	
, ,	Total.	hyH 26	gen.	gen.		Water.	- 1	ories.	B.T.U.
7.61 51.3		7.38		1.50	1.02		4.03		1309
	00	4.25	6.65	1.64	0.52		2.74		1136
	6	5.14	14.60	1.50	0.42		3.22		977
	80	5.07	27.77	1.20	0.43		3.37		8154
	9	4.89	13.88	0.95	0.30		2.67		
	2	3.72	4.20	1.62	0.70		2.29		
		5.23		2.35	0.47		1.28		
	Fire 52 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Carbon. Fixed. To 34.89 42.08 38.46 58.62 58.65 58.62	Carbon. Fixed. To 34.89 42.08 38.46 58.62 58.65 58.62	Carbon. Fixed. To 34.89 42.08 38.46 58.62 58.65 58.62	Carbon.         del page         Oxy-           Fired.         Total.         Hpug gen.           51.36         7.38         9.27           45.98         4.25         6.65           34.89         5.14         14.60           42.08         5.07         27.77           38.46         4.89         13.88           84.65         5.23         12.86           58.62         5.23         12.86	Carbon.         beggn beggn gen.         Oxy- gen.         Mitro- gen.           51.36         7.38         9.27         1.50           45.98         4.25         6.65         1.64           42.08         5.14         14.60         1.50           38.46         4.89         13.88         0.95           84.65         3.72         4.20         1.62           58.62         2.23         12.86         2.35	Carbon.         Unitroduction         Unitroduction         Mitton           51.36         7.38         9.27         1.50           45.98         4.25         6.65         1.60           42.08         5.14         14.60         1.50           38.46         4.89         13.88         0.95           84.65         3.72         4.20         1.62           58.62         3.72         4.20         1.62           58.62         3.72         4.20         1.62           58.62         3.72         4.20         1.62	Carbon.         b g g gen.         Oxy-         Ritto-         Sul-         Water.           51.36         Total.         H a gen.         phur.         Total.         H a gen.         phur.         Water.           51.36         7.38         9.27         1.50         1.02         7.01           45.98         4.25         6.65         1.64         0.52         18.57           34.89         5.07         27.77         1.20         0.42         17.15           42.08         5.07         27.77         1.20         0.43         18.35           38.46         4.89         13.88         0.95         0.30         17.64           58.65         5.23         12.86         2.35         0.47         6.30	Carbon.         b conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of the conversion of th

* Most of the data for this table have been quoted from The Caloxific Power of Fuels by Poole.

### CXII.—CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF WOOD*

•		Ch	emical Cor	nposition	ı.			of Com- tion.
Name.	Carbon.	Hydro- gen.	Oxygen.	Nitro- gen.	Ash.	Water.	Cal- ories.	B.T.U
Ash	49.18	6.27	43.91	0.07	0.57		4711	8480
Beech	49.06	6.11	44.17	0.09	0.57		4774	8591
Birch	48.88	6.06	44.67	0.10	0.29		4771	8586
Elm	48.89	6.20	44.25	0.06	0.50		4728	8510
Fir	50.36	5.92	43.39	0.05	0.28		5035	9063
Oak	50.16	6.02	43.36	0.09	0.37		4620	8316
Pine	50.31	6.20	43.08	0.04	0.37	l	5085	9153
Tan bark		l <i>.</i> .			15.0		3389	6100
" "						30.0	2380	4284

## CXIII. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF PETROLEUM *

		Specific	Ch	emical C	ompositio	on.	Hea Combu	t of stion.
Source.	Grade.	Grav- ity.	Carbon.	Hydro- gen.	Oxygen + Ni- trogen.	Oxy- gen.	Cal- ories.	B.T.U.
Ohio	Heavy	0.887		13.1	2.7		10399	
1	Lima		80.2	17.1	2.7		12000	21600
Pennsylvania	Crude	0.938	84.9	13.7		1.4	11520	20736
•	Heavy	0.886	84.9	13.7	1.4		10672	19210
	Light	0.826	82.0	14.8	3.2		9963	17930
West Virginia	Heavy	0.928	88.3	13.9	1 1	0.8	10102	18184
	Heavy		83.5	13.3	3.2		10180	18324
	Light		84.3	14.1	1.6		10223	18400
Russia	Crude	0.884	86.3	13.6	l	0.1	12650	22628
	Crude	0.938		12.3		1.1	10800	19440
			1		·			

^{*} Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole. Digitized by Calorific

OF CXIV. -- CHEMICAL COMPOSITION AND HEAT OF COMBUSTION NATURAL GAS*

				Chemica	Chemical Composition	ion.				Heat of Combustion.	of stion.
Source of Gas.	Hydro- gen, H ₁ .	Meth- ane, CH,	Ethyl- ene, C,H,.	Illumi- nants.	Carbon Dioxide, CO ₃ .	Carbon Mon- oxide, CO.	Oxygen, O ₁ .	Mitro-gen, Ns.	Hydro- gen Sul- phide, H ₂ S.	Calories per Cu. M.	B.T.U. per Cu. Ft.
Indiana, Kakomo	1.42	94.16	0.30		0.27	0.55	0.30	2.80	0.18	9581	1030
Munice		92.67	0.25		0.25	0.45	0.35	3.53	0.15	9477	1019
Kentucky, Louisville	1.31	87.75		:	09.9			4.34	:	8849	939
New York, Olean	•	96.50	:	1.00		0.20		:	:	0066	1071
W. Bloomfield	:	82.41		2.94	10.11		0.23	4.31	:	9158	866
Ohio, Findlay	2.18	92.60	:	0.31	0.26			3.61	0.20	10250	1100
Pennsylvania, Burn's Well	6.10	75.44	18.12	trace	0.34			:	:	10090	1170
Cherry Tree	22.50	60.27	6.80	:	2.28			7.32	:	8034	840
E. Liberty	9.64	57.85	0.80	5.20	:	1.00	2.10	23.41	:	5581	592
Leechburg	4.89	89.65	4.39	0.56	0.35	0.26	:	:	:	9965	1073
Grapeville	24.56	14.93	96.0	39.64	trace	trace	0.12	18.69	:	8326	891
Murraysville	19.56	78.24	:			:	2.20	:	:	8458	06
Pittsburg	20.02	72.18	:	6.30	08.0	1.00	08.0	:	:	8620	917
25											

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Foole.

CXV. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION COAL GAS *

				Chemics	Chemical Composition.	ttion.				Heat of Combustion.	t of stion.
Source of Gas.	Hydro- gen, H ₃ .	Methy ane, CH,	Ethyl- ene, C,H _i .	Illumi- nants.	Carbon Dioxide, CO ₂ .	Carbon Mon- oxide, CO.	Oxygen, O ₃ .	Nitró- gen, N ₂ .	Hy- drogen Sul- phide, H ₂ S.	Calories per Cu. M.	B.T.U.
Boston Mass	47 49	38 67	5 21		1 04	6 74		0.85		6095	651
Cape Breton, Canada	44.6	39.2	1	6.2	1.4	4.5	0.6			5460	612
Cape Breton, Canada	45.4	36.5	:	5.2	2.5	3.6	9.0	6.3		5455	611
Cincinnati, Ohio	45.85	39.26	5.17	:	0.82	4.78	0.41	3.71	:	6033	645
Cleveland, Ohio	34.80	28.80	9.50	1.70	0.20	10.40	0.40	14.20		6151	657
Coke Ovens, Johnston, Pa.		18.8	•	8.0	2.00	3.20	:	18.0	:	3736	399
Coke Ovens, Westphalia		36.11	:	2.24	1.41	6.49	:		0.43	5730	612
Hoboken, N. J.		37.30	5.85	0.75	2.70	4.30	1.40	8.20		6033	645
International, Canada	46.5	35.7	:	2.0	3.1	5.7	0.5	3.7	:	5536	620
Newton, Mass	50.59	34.80	:	5.23	1.16	6.16	:	2.06	:	2608	599
000											
* Most of the data for this table have been quoted from The Calorific Power of Finels hy Pools	ata for th	is table	have been	anoted	from T	he Calor	rific Pov	ver of Fr	vd aler	Poole	
C TITORY OF ATTORY	TO 101 101	ום המניים	332	7	77 77077	2400	THE T OF	5	TCTE TO	T COLC.	

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CXVI.—CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF WATER GAS

				Chemica1	Chemical Composition.	ition.				Heat of Combustion.	t of istion.
Source of Gas.	Hydro- gen, H ₂ .	Meth- ane, CH,	Ethyl- ene, C,H.	Illumi- nants.	Illumi- Dioxide, CO ₂ .	Carbon Mon- oxide, CO.	Oxygen, O ₃ .	Nitro- gen, N ₃ .	Hydrogen Sulphide, H ₂ S,	Calories Per Cu. M.	B.T.U.
A = 41 = 0 = 140	27 78			-	300	96 90		45		9908	906
Coke	50.70	:	:	4.11		40.00	:	4 . 4	:	9850	204
Coke and bituminous coal	94.08	· · ·		:		3.54		0.12		3032	324
Granger process (uncarburetted)	52.88	2.16	:	3.47		36.8	:	4.69		2642	283
Granger process (carburetted)	30.0	24.0	12.5	0.3	:	29.0	0.5	2.5	1.5	0009	640
Granger process (from coke)	52.41	0.2	:	:	4.8	11.5	:	0.47	•	3098	331
Loomis process, Boston, Mass	53.40	3.10	:	0.29	7.60	29.50	:	6.05	:	2884	308
Lowe process, Des Moines (1½ gal. oil).	41.7	12.2	:	5.4	4.5	34.6	0.4	1.2	:	4580	490
Lowe process, Des Moines (2½ gal. oil).	37.6	16.5	:	8.9	3.7	30.7	0.7	1.9	:	5514	290
	50.9	:	:	:	:	44.5	0.07	2.08	:	3062	327
	32.7	16.8	:	14.4	2.4	30.2	0.4	3.1	:	2160	992
Rose-Hastings, Louisville, Ky. (soft c'l)	36.4	23.2	:	14.05		19.1	1.15	3.08	:	6140	657
Rose-Hastings (generator gas)	8.6	49.6	:	1.1	8.1	28.1	0.3	3.9	:	3482	390
Rose-Hastings (enriched)	26.0	34.6	:	11.9	5.6	10.9	0.3	1.6	:	0009	673
Strong Process, Yonkers, N. Y	52.76	4.11	:	:	2.02	35.88	0.77	4.43	:	2900	315
gle											

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

## STOICHIOMETRY

R. HARMAN ASHLEY, Ph. D.

AND

CARL H. LIPS, Ph. D.

### WEIGHT AND MASS

#### FUNDAMENTAL UNITS

**Velocity** (v) is equal to the distance travelled, divided by the time required to do so. v = distance/time.

The Unit of Velocity (u) is the velocity of a point that traverses the unit

distance, in the unit of time. u = cm./sec.

The Unit of Acceleration. (a)—The acceleration per unit of time a is equal to the addition to a velocity, of another velocity u equal to the unit of velocity. a cm. per sec. = u,  $a = u/\sec$ .  $= (cm./sec.)/sec. <math>= a = cm./sec.^2$ .

Acceleration produced by Gravity (g).—It has been found that gravity will impart to any body, irrespective of its weight, an acceleration of 980.62 cm. per second per second (g) in mean latitude  $(45^{\circ})$ ; that is, the velocity attained by a freely falling body is 980.62 cm. per second, at the end of the first second of its fall. At the beginning of its fall, it has no velocity, while at the end of the first second of its fall, it travels with a speed that carries it 980.62 cm. in one second. It has then traversed a distance of 980.62 cm./2 = 490.31 cm. The formula showing this, and from which g may be calculated after determining the other data experimentally, is  $H = \frac{1}{2} gt^2$ . H = height or distance travelled, in centimeters; t = time in seconds.

The Unit of Length, in physical computations, is the centimeter. This centimeter is the one one-hundredth part of the distance between two marks on a rod of a platinum-iridium alloy (9 parts platinum, 1 part iridium) kept in Paris in the archives of the Bureau of Standards. Since 1875 rods of this alloy have been made, and the distance of one meter indicated upon them by two fine lines. These rods have been supplied to those governments that have joined the "Meter Conference" originally held in Paris on the 20th of May, 1875. The original meter, made by Lenoir and still preserved in the archives in Paris, is the distance, from end to end, on a rod of platinum, at  $0^{\circ}$  C.

Originally the meter was intended to be the ten millionth part of a quadrant of the meridian. The reason that the length of the seconds pendulum was not taken as the unit was that, then, another element, *time*, would have been brought into consideration.

The Unit of Volume is equal to 1 centimeter cube, cm.3.

The volume of 1000 ccm. was taken as a unit for common measure and called a liter which is also equal to the volume of one kilogram of pure water at 4° C. weighed in vacuo. The mass of a liter of water at 4° C. was adopted as the unit of mass, and called a kilogram. A mass of platinum-iridium alloy, made to coincide exactly with the mass of one liter of water at 4° C., is kept in the archives of the Bureau of Standards in Paris.

The Unit of Mass is the one thousandth part of the above standard kilogram or is equal to 1 gram; the unit of mass is, of course, also equal to the

515

mass of 1 gram of water at 4° C. The reason that the definition of the unit of mass refers to the above standard kilogram and not to the liter is that, when the metric system was evolved, it was intended to make the unit of mass equal to the mass of a cubic centimeter of pure water (very carefully distilled) at 4° C. The original kilogram standard was made in accordance with this intention. But it was then found that the comparison of kilogram weights could be made more accurately than the determination of the weight of a cubic centimeter of water at 4° C. Therefore, the above kilogram weight is taken as the standard of mass.

The Unit of Force, or the Dyne, is that force which gives to the unit of mass, in the unit of time, the unit of velocity. The dyne = (gram (mass) x cm.)/sec.

One of the fundamental laws of mechanics states that a unit force f, which gives to a unit mass m, in the unit time t, a unit velocity u (u = cm./sec.), varies directly as the quantities m and u, and inversely as the quantity t, or f = c.m.u/t. This c is a constant. But force is equal to mass times acceleration, and  $u/t = (v/t)/t = v/t^2 = \text{acceleration}$ . So  $m.v/t^3 = \text{force unit}$ . Consequently mv/t = c.m.v/t and c must then be equal to 1. The force, exerted by the earth's attraction upon the mass of 1 gram, in mean latitude,  $45^\circ$ , is equal to  $1 \times 980.62$  cm. gram/sec.² or  $1 \times 980.62$  dynes. The weight of 1 gram mass is, thus, 980.62 dynes, and 1 dyne force or weight = 1 gram mass/980.62 = 0.00102 grams weight.

Weight. — The force with which gravity acts upon a mass M is called the weight W of this mass. The forces thus acting are known by the same names as the masses upon which they act. The weight of a kilogram is the force with which the earth acts upon the mass of a kilogram. This latter force is in mean latitude, 980.62 cm./sec.² and is generally designated by the letter g. Consequently the weight kilogram = the mass kilogram  $\times g$ , or the force kilogram = mass  $kg \times g$ , or in the absolute system, we have, force

(weight)  $kg = 1000 \times 980.62$  dynes.

The fact that masses and weights are designated by the same terms, although they depend upon entirely different units, and, therefore, have different numerical values, is often rather confusing. It is, therefore, necessary for the scientist always to bear in mind, when dealing with e.g., a kilogram, whether the weight (force) or the mass of the kilogram for example is meant.

Weighing.—The expression weight refers to the relative attraction of bodies for one another. Weight is not a characteristic of any one body, and as the "weight" of a body varies about \( \frac{1}{2} \) per cent on the surface of the earth, the weight of any one body cannot be made unity. Special sets of weights would have to be made for at least each latitude.

The weights we use are masses to which we compare other masses. Our sets of "weights" are really sets of masses, and a weighing performed on an ordinary analytical balance is not a determination of weight, but a determination of mass.

The Unit of Pressure is that pressure in which the unit of force is exerted upon the unit of area. In other words, unit pressure is equal to a pressure of, or weight of, 1 dyne acting on a square centimeter (gram cm./sec.²)/cm.² = gram/sec.² cm.

Atmosphere. — The pressure exerted upon the area of one square centimeter by a column of mercury, 76.0 cm. high, at 0° C., at sea level and in a latitude of 45°, is known as a pressure of one atmosphere.

The mass of a unit volume of mercury is 13.596 times as great as the mass of a unit volume of water. The cross-section of the above column of mercury being 1 sq. cm. in area, the mass is, therefore, 1 (sq. cm.)  $\times$  76.0 (cm.)  $\times$  13.596 = 1033.296 grams. The weight of this mass pressing downwards is 1033. 296  $\times$  980.62 cm./sec.² at 45° latitude. And this is equal to 1,013,270.7 + dynes. At latitude 50° we have 1033. 296  $\times$  981.1 cm./sec. 1,013,766.7 + dynes. At 45° latitude the value of 1 dyne in grams is 0.00102 (more correctly 0.0010196), and consequently the pressure there, of one atmosphere, will be 1,013,270.7 +  $\times$  0.0010196 grams = 1033.290 grams weight per square centimeter. The ratio of 981.1:980.62 is 1.0005:10. Therefore, if we multiply 1033.29 by 1.0005, we obtain the value in grams weight of 1 atmosphere at 50° latitude, which is equal to 1033.81 grams.

The constant g varies with the latitude, as we have just seen. It also varies with the height. The following formula enables us to calculate g for any latitude and for any height.  $g = 980.6 \ (1-0.0026 \times \cos 2\phi - 0.000002 \ H)$  cm./sec.  $\phi$  = latitude in degrees. H = height in meters. g decreases as a body is raised above sea level, by 0.2 millionths parts for every meter of the value at sea level. Local variations amount to about as much. 0.0000002 is a mean, and is influenced by local topographical conditions. The entire variation at sea level is only about 0.5 per cent, g at the equator

being 978.1 and at the pole 983.2.

It was the physicist Richter, who in the year 1672, when in Cayenne, noticed that the seconds pendulum was shorter than in his northern home. This led him to conclude that the force of gravity varied on the surface of the earth, L=gt/TP. At the equator g=978.009, while at the pole, it is 983.089 (cm./sec.). The "weight" of 1 gram of mass, at the pole, will be  $1\times983$  dynes, and that of the same mass, at the equator, will be only  $1\times978$  dynes, or a difference of 5 dynes. As one dyne (see under Unit of Force) is equal to 0.001020 grams weight, the difference in weight of the mass of one gram, weighed at the pole, and at the equator, is 0.00510 grams.

Expansion. — The fractional increase in length of the unit of length, upon heating, varies with the temperature, and the constant of variation, at any particular range of temperature, is called the coefficient of linear expansion.

 $L = \text{length at } t^{\circ}$ ,  $L_{0} = \text{length at } 0^{\circ}$ , B = constant (coefficient),  $t = \text{number of degrees between } 0^{\circ}$  and  $t^{\circ}$ , then by definition  $\left(\frac{L - L_{0}}{L_{0}t}\right) = B$ .

If B is known, this last equation permits us to calculate the length L for any temperature of a rod whose length at  $0^{\circ}$  was  $L_0$ .

**Reduction of a Length to Length at 0°.** — If we know the length L of a rod at t°, and if we know also B, then we can calculate the length  $L_0$  that the rod would have at 0°.  $L_0 = L/(1 + Bt)$ . Since B is generally very small, 1/(1 + Bt) = 1 - Bt, and we have,  $L_0 = L(1 - Bt)$ .

Cubical Coefficient of Expansion, a. — In the case of the superficial expansion of an isotropic material of unit length of side, at  $0^{\circ}$ , we obtain for  $t^{\circ}$  rise

in temperature a length of side of 1 + Bt; the area will then be  $1 + 2Bt + (Bt)^2$ . As  $(Bt)^2$  represents a very small number, we can neglect it. The coefficient of superficial expansion is then 2B.

Similarly the cubical coefficient of expansion from  $0^{\circ}$  to  $t^{\circ}$  is 3 B, for in the expression for the cubical contents, after expansion,  $1 + 3 Bt + 3 Bt^{\circ} + Bt^{\circ}$ ,

the last two terms may be neglected, as being very small.

The cubical coefficient of expansion is generally expressed for brevity's sake, by the Greek letter  $\alpha$  (alpha).

#### CALCULATION

#### Accuracy of Measurements

When making physico-chemical measurements, it must not be forgotten that errors of observation are unavoidable. These errors depend upon various causes, such as the individuality of the observer, the delicacy of adjustment of the instruments, change of temperature during the observation, and among still other causes, a change in the body during measurement, due to hygro-

scopic properties, or other causes not controllable.

Thus it will be seen that, in practice, several measurements of the same object, made at different times, may vary from each other, or the measurement of one sample may vary from that made of another sample of the same homogeneous object. The relative size of these differences is called "definition" by Ostwald-Walker who formulated the fundamental rule for measurements, as follows: The accuracy of the measurement must correspond to the exactness of the definition of the object to be measured. An example will illustrate this:

One hundred grams of a 1 per cent solution of a salt, in water, are to be made. It would be an error, in method, to weigh the water on the same delicate balance as the 1 gram of salt, striving in both cases, of course, for the same limit of accuracy, about 0.1 mg. The "definition" of such a quantity of water is uncertain, owing to evaporation, etc. Furthermore, an error of 0.1 mg. in the weight of the salt occasions the same error in the strength of the solution, as a one hundred times greater error in the weight of the water:  $0.0001 \, \text{g.} / 1 \, \text{g.} = x/100$ , x = 0.01, x = 0.01 per cent, and x = 0.01 g. x = 0.01 per cent.

### **Figuring**

Results should be given in so many figures, that the second last figure is fairly accurate, while the last figure is uncertain owing to errors of observation in making the measurements. In doubtful cases, it is advisable to carry one figure more rather than less. Arithmetically the results must be correct, and thus, in a longer calculation, e.g., one in which logarithms are used, one figure more than it is intended to report in the result, should be carried along, as otherwise, by dropping all but the number of figures intended for the final result, the last figure in the number may become wrong by several units.

Suppose, in measuring a cube whose edges are 2.10 cm., 1.01 cm., and 1.05 cm. long respectively, we make, in each case, an error of +0.01 cm. The uncertainty, due to error of observation, lies in the second place of the decimal.

The final result, then, cannot agree with the actual facts, beyond this third figure of the number. This third figure is uncertain and cannot be made more certain by annexing figures to it:

 $2.11 \times 1.02 \times 1.06 = 2.281332$ , arithmetically.  $2.10 \times 1.01 \times 1.05 = 2.22705$ , arithmetically.  $2.09 \times 1.00 \times 1.04 = 2.1736$ , arithmetically.

From the above the volume of the cube is  $2.2 \pm ccm$ .

Added zeros or those beginning decimal fractions are not counted when determining the number of figures with which to calculate or those that are to be reported.

#### SPECIFIC GRAVITY

Hydrostatic Pressure. — The weight of each layer of a liquid presses upon the layer beneath it so that the pressure increases with the depth of the liquid.

Let q be the area of the upper surface of such a layer, h the height of the column of liquid, and d its density; then the mass m of the liquid will be m = q.h.d. And if g is the acceleration of gravity in the latitude where the determination is made, then the weight w of the liquid will be w = q.h.d.g.,

and the pressure per unit area will be  $p = \frac{q.h.d.g.}{q} = h.d.g.$  (Force = mass ×

acceleration, and pressure = force per unit area.) Every horizontal layer of liquid that has a layer of liquid above it of the height h will receive a pressure p=h.g.d. This pressure, produced by gravity, is known as hydrostatic pressure.

#### TERMS USED IN CONNECTION WITH SPECIFIC GRAVITY

- (1) The specific gravity of a homogeneous substance is expressed by a number indicating how many times heavier or lighter it is than the weight of an equal volume of water of maximum density 4° C. In other words, it is equal to the weight of the body divided by the weight of an equal volume of water at 4° C.
- (2) The density of a homogeneous substance is equal to the mass of a unit volume of the substance. See (7).
- (3) The specific volume of a homogeneous substance is equal to the volume of a unit mass of the substance. See (7).

(4) Density and specific volume are reciprocals of each other.

E.g., 10.53 = density of Ag. 10.53 grams. of Ag occupy 1 cm. 1 gram of silver occupies a volume of 1/10.53 c.cm. which equals the specific volume.

(5) The volumes of equal weights of bodies vary inversely as their specific gravities.

(6) The weights of equal volumes and the densities of substances vary directly as their specific gravities, and inversely as their specific volumes and as the volumes of equal masses.

(7) Figures representing specific gravity are relative figures, and as such independent of the absolute, or c.-g.-s.-system.

(8) Density and specific volume, however, are expressed in the absolute

system.

According to (1) water at 4° C. has a specific gravity of 1, and as 1 ccm. of water at 4° C. contains 1 gram mass, the density of water at 4° C. in the c.-g.-s.-system is equal also to 1, or in other words, density and specific gravity in the absolute system are equal.

(9) In practice, generally, water of to is employed. This leads to the

determination of the specific gravity of water at  $t^{\circ}$ .

(10) Specific gravity of water of  $t^{\circ} = \frac{\text{weight of a body in water of } t^{\circ}}{\text{weight of same body in water of } 4^{\circ}}$  = the ratio of the weights of equal volumes (6).

(11) From (10) and (1) we obtain for the specific gravity of a homogeneous solid, determined in water of  $t^{\circ}$ , specific gravity =  $\frac{\text{weight of body at } t^{\circ}}{\text{loss of weight in water at } t^{\circ}}$ 

 $\times$  specific gravity of water at  $t^{\circ}$ .

Similarly, the specific gravity of a liquid is found as follows: Weigh a body in the liquid, and in water of the same temperature. The loss of weight of the body in the liquid and its loss of weight in water represent the weights of equal volumes of the liquid and of water, and we have

(12) Specific gravity =  $\frac{\text{loss of weight of body in the liquid of } t^{\circ}}{\text{loss of weight of body in water of } t^{\circ}} \times \text{specific}$ 

gravity of water of  $t^{\circ}$ .

## METHODS FOR DETERMINING SPECIFIC GRAVITY OF SOLIDS

The Pycnometer. — Let the pycnometer, filled with water, or any other liquid as above, weigh p grams, the body m grams and the pycnometer, after the body has been dropped into the water and the overflow removed, p grams. The overflow, or the volume of water displaced by the body is, then, v = p + m - p. v ccm. water at  $4^{\circ}$  have a mass of v grams. d = m/v and specific

gravity = m grams/v grams.

Nickolson's Hydrometer. — This instrument is so adjusted that when 10 grams are placed in the pan, the instrument sinks in distilled water, at  $4^{\circ}$  C. to a fixed mark 0 on the stem. Place in the pan a fragment of the body weighing less than 10 grams, and add the weight w required to sink the mark to the water level. Then the weight of the substance in air is 10-w. Remove the body to the cavity at the bottom of the instrument. Now add to the weight in the pan till the 0 mark again is at the water level. The additional weight represents the buoyancy of the body, or its apparent loss of weight in water. The specific gravity = (10-w)/w'. Owing to the many sources of error, this instrument is but rarely used.

Jolly's Spring Balance. — The spiral spring of this balance when used for specific gravity determinations has fastened to it two weighing pans, the lower one of which is always submerged in water. The lower, free end of the

spring may be shaped into a pointer.

With the aid of a set of weights weighing can readily be made with this instrument, by bringing the pointer end always to the same mark on a graduated scale fastened behind the spring. Without weights weighings may be performed by employing the principle that the elongation h of the spring is practically proportional to the weights w attached.  $w = c \cdot h$ . By a trial with a known weight the constant c is readily determined. Since in density determinations the weight factor can be eliminated, we can make use of the scale divisions as units.

If the pointer is lowered h scale divisions, when the body is placed in the upper pan, and h' divisions, when it is placed under water in the lower pan, we have: specific gravity = h/(h-h').

As, however, the elongation is not absolutely the same for all weights, it is best to determine two constants, one for the greatest expected elongation and one for about one-half of that elongation. Then w = ch + dh', c and d being the constants at the particular ranges, h and h'.

Solids Soluble in Water, and Heavier.—Weigh solid in air, then in a liquid of known specific gravity, in which it is insoluble. Weight in air divided by loss of weight in liquid is equal to the specific gravity, relative to the liquid employed: multiplying by specific gravity of the liquid employed gives the specific gravity of the substance.

Let the density of a substance relative to chloroform be 5. If the specific gravity of the latter be 1.476, to find the density referred to water, or the true specific gravity of the body, we proceed as follows:

- (a) If the body were five times as heavy as an equal volume of water, a unit volume of it would weigh 5 grams. But as the weight of a unit volume of chloroform is 1.476 grams, and the unit volume of the body weighs as much as 5 unit volumes of chloroform, the unit volume of the body, or 1 c.cm. will weigh  $5 \times 1.476$  grams or 7.38 grams. The specific gravity sought is, therefore, 7.38.
- (b) Or, by (6), if x be the loss in weight of the body, when immersed in the liquid, and y be the weight of a like volume of water of the same temperature as the liquid, we have: x:y::1.476:1.

Dividing the weight in air, 5 (grams), by the weight of a like volume of water, 0.6775 (grams), we get the desired specific gravity, 7.38.

Still another method can be followed:

(c) Keeping in mind that density and specific volumes are reciprocals (4), and that specific volumes vary inversely as the specific gravities (6a), we find, taking the same figures as before:

 $\frac{5 = \text{volume of the chloroform, } t^{\circ}}{x = \text{volume of the water, } t^{\circ}} = \frac{1 = \text{specific gravity water, } 4^{\circ} \text{ C.}}{1.476 = \text{specific gravity chloroform, } 4^{\circ} \text{ C.}}$ therefore x = 7.38 ccm.

Now 7.38 ccm. of water weigh as much as 5 ccm. of chloroform (by the equation), and 5 ccm. of chloroform weigh as much as 1 ccm. of the body (4, and conditions of the problem). Consequently, 1 ccm. of the body weighs as much as 7.38 ccm. of water, and, therefore, (1) the specific gravity of the body is 7.38.

(d) Another method, depending upon the fact that the specific gravity varies directly as the density, gives us the two expressions: 5 = density, body at  $t^{\circ}$  relative to chloroform at  $t^{\circ}$ ,  $\propto 1.476 =$  specific gravity chloroform, at  $t^{\circ}$ . x = density, body at  $t^{\circ}$  relative to water at  $t^{\circ}$ ,  $\propto 1.0 =$  specific gravity, water at  $t^{\circ}$ .

 $5 \propto 1.476$ ,  $x \propto 1.0$ . Combining and converting into an equation, we get:  $5 \times 1.476 = x \times 1.0$ , or in the form of a proportion, 5:x::1:1.476, or 5/x = 1.476

1/1.476.

Solids Insoluble in Water, and Lighter. — In this case we must employ a sinker in order to immerse the substance in water. If we know the weight of the sinker in air and its specific gravity, we can find its weight in water as follows: By (10 and 12) we have specific gravity, e.g., 5, weight in air = 10 grams, weight in air divided by specific gravity equals volume of water displaced (10/5 = 2) or loss in weight in water. Therefore the weight of the sinker in water equals 10 - 2 or 8.

The substance being lighter than water, the weight of sinker and substance in water will be less than that of the sinker alone. If we subtract from the weight of sinker and substance in water the weight of the sinker in water, we obtain the weight of the substance in water. This is a negative quantity, and is a measure of the buoyant power of the substance.

Weight in air

Specific gravity =  $\frac{1}{\text{Weight in air } - \text{loss of weight in water}}$ 

# Weight in air

Weight in air - (weight of sinker + substance in water - weight of sinker in water)

To Illustrate. — Weight of substance in air, 5 grams. Weight of sinker in water, 12 grams. Weight of substance and sinker in water, 10 grams. Difference of weight of sinker and substance in water, and of sinker alone in water = 10 - 12 = -2 grams, and we have:  $5 \div [5 - (-2)] = 5 \div 7 = 0.714$ , the specific gravity sought.

Solids Soluble in Water, and Lighter. — Weigh with a sinker attached in some liquid that will not act on the substance. Calculate the density (specific gravity) relative to this liquid, and then find the true specific gravity, as under B.

To Illustrate. — Find specific gravity of potassium, given weight of potassium = 4 grams. Weight of sinker in air = 10 grams. Weight of potassium and sinker in ligroin = 8.6698 grams. Specific gravity of silver sinker = 10.53. Specific gravity of ligroin used = 0.73.

First find the specific gravity of the sinker referred to ligroin. Keeping in mind that density and specific volume are reciprocals of one another (4), and that the weights of equal volumes vary inversely as the specific volumes (6), we have 0.73:1::10.63:x...x=14.4246= specific gravity of sinker referring to ligroin.

Then find the weight of the sinker in ligroin. We have just found how many times heavier a unit volume of the sinker is than an equal volume of ligroin. Specific gravity (14.4246) = weight in air (10 grams) divided by loss in weight in ligroin  $(10-x) \dots x = 9.3067$  grams.

Now following the reasoning under (c), we obtain the following equation:

Specific gravity potassium = 
$$\frac{4}{4 - [8.6669 - 9.3067]} = \frac{4}{4.6398} = 0.8621$$
.

## METHODS OF DETERMINING SPECIFIC GRAVITY OF LIQUIDS

1. Calibrated vessels, such as measuring flasks and cylinders, pipettes and burettes.

The volume of these vessels being known, we know the weight of an equal volume of water at 4° C. If now the weight of a definite volume of any liquid such as the contents of a liter flask is taken, we immediately have the necessary data, i. e. weights of equal volumes.

- 2. Pycnometer. Here we have vessels of unknown volume, but either having a mark on the neck, or having glass stopper with a capillary hole. Thus the pycnometers are made to hold constant volumes. Constant temperature is obtained by the aid of a bath of constant temperature. For use in a determination the pycnometer is weighed empty, filled with water, and filled with the liquid under consideration. The weight of the pycnometer full of water minus the weight of the empty pycnometer is equal to the weight of the water it will hold. This weight, compared with the weight of the liquid that the pycnometer will hold, gives us the specific gravity of the liquid.
- 3. Hydrostatic Balance. A body of sufficient density, e.g., a small thermometer, is suspended from the end of the balance arm. By placing weights in the balance pan suspended from the other end of the balance arm, we obtain the weight of the body in air. It is then weighed, still suspended from the balance arm, immersed in water, and finally it is weighed, immersed in the liquid whose density is to be determined.

The weight of the body in air minus its weight in water is equal to its loss of weight in water, and this loss corresponds to the weight of a volume of water equal to the volume of the body. Similarly, we find the weight of the same volume of the liquid. The ratio of the weights of this same volume of water and of the liquid represents the ratio of the densities.

· A source of error is the frequently uneven wetting of the fine platinum suspending wire. This can be overcome, practically, by plating the wire with black platinum.

Another source of error is a bubble of air frequently formed by water or by the liquid in the loop of the wire from which the small thermometer is suspended.

Mohr-, Westphal-, Sartorius-, Specific Gravity Balances.— In these balances the right-hand half of the beam is divided into ten equal parts from the fulcrum to the point of suspension at the end of the beam. Suspended from this end of the beam is the sinker (thermometer), while a weight at the other end acts as a counterbalance. When the sinker is immersed in water of 4° C., the equilibrium of the balance is destroyed by the buoyancy of the water. To adjust the equilibrium, a weight equal to this force and in grams

equal to the weight of the volume of water displaced (which is equal to the volume of the sinker) is hung from the point of suspension. This weight is shaped somewhat like  $\Omega$  and is called a *rider*. Other riders weighing respectively 0.1, 0.01, 0.001 of the weight of this rider constitute the set of weights used with these balances. With their aid we can directly read off from the balance beam the density of a liquid.

## Hydrometers

These instruments consist of a spindle-shaped float, with a cylindrical neck containing a scale. They are weighted at their lower end, thus bringing the center of gravity very far down, and insuring an upright position when floating. They depend upon the principle that a body will sink in a liquid until enough liquid has been displaced, so that the weight of the displaced liquid equals the weight of the body.

The weight and volume are so adjusted, that the instrument sinks to the lowest mark on its neck in the heaviest liquid to be tested by it, and to the

highest mark on its neck in the lightest liquid to be tested by it.

The Instrument always Displaces its own Weight of Liquid. — If we subdivide the stem of the hydrometer into any number of equidistant divisions of volume, such that each division represents the same multiple of the volume of the submerged portion of the hydrometer when floating in water, we can directly read off the volumes of equal weight, i.e., the specific volumes.

For example, let us mark with the number 100 the point up to which the hydrometer sinks in water, and let us subdivide the stem into 100 equal parts, by volume, such that each division represents one one-hundredth of the weight of the submerged volume of the hydrometer. Then, if the instrument sinks only up to the mark 75, for example, in a liquid whose density is to be determined, we know that 75 of the above parts, by volume, weigh as much as 100 of these parts by volume of water, or as much as the entire hydrometer weighs.

Water being unity, the specific volume of the liquid (compared with water, both volumes having the same weight), is as 75 parts volume liquid are to

100 parts volume water or 75/100 or 0.75.

Seventy-five volumes of the liquid, weighing the same as one hundred volumes of water, must be as much heavier than the water, as 75 is contained in 100, or 1.333+, consequently the relative density is 1.333+, which, if we have worked with water and liquid of 4° C., is the true specific gravity of the liquid.

From the following table, we see that if the same hydrometer were to be used for liquids only a little heavier than water and for those considerably heavier, that the intervals, between the lines indicating specific gravity, would become so small as to render the hydrometer entirely useless; for the errors of observation with hydrometers are relatively great, and the nearer the divisions the greater will be the error.

Therefore, hydrometers are made comprising only limited ranges of specific

gravity, e.g., 10-1.2000, 1.2000-1.4000, 1.4000-1.6000.

As a rule, it is desirable to read off directly the specific gravity, and not the specific volume of a liquid. This specific gravity scale must be constructed: Equal differences of specific gravity are not represented by equal differences of parts volume marked on the stem:

Specific Gravity.		Degrees Immersed.		Difference	x°=Degrees Immersed.	
1.1		90.9		9.1	Spec. grav.=	
1.2 1.3 1.4		83.3 76.9 71.4		7.6	$100/x^{\circ}$	
				6.4	$x^{\circ} = 100/\text{spec}$	
				5.5	grav.	
Degrees Immersed.			Specifi	c Gravity.	Difference.	
100 100/100		1.	0000			
99 100/99		1.	0101	0.0101		
98 100/98		1.	0204	0.0103		
97 100/97		1.	0309	0.0105		
96 100/96		1.	0417	0.0108		
95 100/95		1.	0526	0.0109		
75	75 100/75		1.	3333		
50	50 100/50		2.	0000	.6667	
25	25 100/25		4.	0000	2.0000	
10	0 100/10		10.	0000	6.0000	
5 100/5		20.	00.00	10.000 <b>0</b>		
1 100/1		100.	0000	80.0000		

# Baumé Hydrometer

This hydrometer is extensively employed in the chemical industries. It is named after the French chemist, Antoine Baumé, born in Senlis, France, in the year 1728. He described this instrument in the journal "Avant Coureur" in the years 1768 and 1769.

It depends upon the following principles:

The specific gravity of water, at the temperature at which the hydrometer is calibrated, and at which it is intended to be used, is taken as being unity, or specific gravity water at 17.5° C., e.g. 1.000.

In writing degrees Baumé is abbreviated to ° Bé.

The original Baumé hydrometer scale is marked 0° at the point up to which it sinks in a 10 per cent sodium chloride solution, and 10° at the point to which it sinks in water, both liquids being at 17.5° C.

The distance between these two fixed points is divided into ten equal divisions, and this scale is then continued above and below these points.

Frequently, for liquids heavier than water, rational Baumé scale hydrometers are used side by side with hydrometers for liquids lighter than water whose scale is calibrated according to the old Baumé system. This is likely to produce confusion.

Rational scale Baumé hydrometers have been proposed by Lunge. Here the scale is marked 0° at the point up to which the hydrometer sinks in water, and 10° at the point to which it sinks in a 10 per cent sodium chloride solution, both liquids being at 12.5° C.

According to Lunge, the numbers, indicating rational Lunge-Baumé degrees, are marked with the minus (-) sign, if the degrees refer to a liquid lighter than water.

The old Baumé scale gives us no indication as to whether a liquid lighter or heavier than water is under consideration. The following table* will illustrate what has just been said.

Rational Degrees Baumé-Lunge.	Specific Gravity.	Degrees Baumé.	Rational Degrees Baumé-Lunge.	Specific Gravity.	Degrees Baumé.
-50	0.743	60	+ 9	1.067	1
-25	0.852	35	+10	1.074	0
-10	0.935	20	+11	1.083	1
- 1	0.993	11	-15	1.116	5
0	1.000	10	+19	1.152	9
+ 1	1.007	9	+20	1.161	10
+ 5	1.036	5	+21	1.170	11

American Standard Baumé Scale. — These various Baumé scales have been the cause of great confusion. To do away with this uncertainty, the Manufacturing Chemists' Association of the United States has adopted a Baumé table calculated by aid of the following formulæ: For liquids heavier than water at 60° F.

° Bé = 
$$145 - \frac{145}{\text{sp. gr.}}$$
° specific gravity =  $\frac{145}{\text{°Bé.} - 145}$ 

For liquids lighter than water at 60° F.

° Bé = 
$$\frac{140}{\text{sp. gr.}}$$
 - 130, specific gravity =  $\frac{140}{130 + \text{°Be}}$ 

The specific gravity determinations were made at 60° F., compared with water at 60° F. (60° F. = 15.55° C.+) and are calculated for weights in air.

Twaddle's hydrometer is generally employed in England. Its scale has 200 degrees, from 0° to 200°, corresponding to a change of specific gravity from 1 to 2. The degrees represent constant increases in specific gravity. Water at 4° C. is given a specific gravity of 1000. An increase of specific

^{*} This table is taken from Dr. R. Dierbach, "Der Betriebschemiker," 2nd Ed., p. 100.

gravity of 5 units corresponds to an increase of 1° Tw. Therefore, at 15.55°C. specific gravity = 1 + .005 Tw°.

Alcoholometers frequently employed are those of Richter and of Tralles.

Richter's alcoholometer shows the per cent by weight of alcohol in an aqueous alcoholic solution. It has a decimal scale. The points up to which the instrument sinks in 0 per cent (H₂O), 5 per cent, 10 per cent, etc., solutions are noted, and the intervals are decimally subdivided.

Trailes' alcoholometer shows the percentage by volume of alcohol in an aqueous alcoholic solution. It is so constructed, that, for every per cent volume of alcohol shown on the scale, an equal volume of the instrument is submerged, e.g., with 100 per cent alcohol, the instrument should be just below the surface of the alcohol.

#### CORRECTIONS TO BE APPLIED IN SPECIFIC GRAVITY DETER-MINATIONS

To obtain the *true* specific gravity of substances, their density, at 4° C., and in *vacuo*, must be compared with the density of water, at 4° C., in vacuo.

#### Correction for Temperature

Tables are published showing the weight of a cubic centimeter, or the volume of a gram of distilled water at different temperatures.

In case we know the weight of one cubic centimeter of water, at the temperature at which the density determination was made, we obtain (see definition 6):

(a) Specific gravity at  $4^{\circ}$ ; specific gravity at  $t^{\circ}$ ; density at  $4^{\circ}$ ; density at  $t^{\circ}$ .

Specific gravity  $4^{\circ} = (\text{specific gravity } t^{\circ} \times \text{density, water at } 4^{\circ})/\text{density, water at } t^{\circ}.$ 

Where we know the volume of a cubic centimeter, at  $t^{\circ}$ , we obtain: Specific gravity at  $4^{\circ}$ : specific gravity at  $t^{\circ}$ : volume 1 ccm. water at  $t^{\circ}$ : volume 1 ccm. water at  $4^{\circ}$ .

(b) Specific gravity  $4^{\circ}$  = (specific gravity  $t^{\circ} \times$  volume 1 ccm. water,  $t^{\circ}$ )/volume 1 ccm. water,  $4^{\circ}$ .

If we know the cubical coefficient of expansion, at or around the temperature of the determination, we have S = s [1 + a(t - T)], where s = density at temperature of determination,  $t^{\circ}$  (for a solid  $t^{\circ}$  = temperature in water), S = density at any other temperature T, while a = coefficient of expansion.

Most liquids have an irregular expansion. This is taken from tables. If the volumes of the same weight of a liquid be V at  $T^{\circ}$  and v at  $t^{\circ}$ , and S and s be the densities at  $T^{\circ}$  and  $t^{\circ}$ , we have:

$$S = s \times \frac{v}{V}.$$

For technical use, specific gravity is frequently determined at any convenient temperature, and referred to water, of either that same temperature, or to water at 4° C., weight in air being taken as a basis.

Thus 15° C./15° C., after

the specific gravity figure, means that the temperature of the solid or liquid was 15° C., at the time of the determination, and that the weight of a unit volume of it was compared with the weight of a unit volume of water at 15° C. Similarly, 15° C./4° C., after the specific gravity figure, means that here comparison is made with the weight of a unit volume of solid or liquid at 15° C., with the weight of a unit volume of water at 4° C.

To convert from one system to the other, and to standard conditions,

proceed as follows, taking the above figures to illustrate the method:

w 15° C. = weight unit volume of liquid at 15° C., w 15° C. = weight of unit volume of water at 15° C., w 4° C. = weight unit volume water at 4° C.

Specific gravity  $15^{\circ}/15^{\circ} = w \ 15^{\circ}/w \ 15^{\circ}$ . Specific gravity  $15^{\circ}/4^{\circ} = w \ 15^{\circ}/w \ 4^{\circ}$ . Then  $w \ 15^{\circ} =$  specific gravity  $15^{\circ}/15^{\circ} \times w \ 15^{\circ}$ , and  $w \ 15^{\circ} =$  specific gravity  $15^{\circ}/4^{\circ} \times w \ 4^{\circ}$ , and we have:

(c) Specific gravity  $15^{\circ}/15^{\circ}$  = (specific gravity  $15^{\circ}/4^{\circ} \times w \ 4^{\circ})/w \ 15^{\circ}$ .

(d) Specific gravity  $15^{\circ}/4^{\circ} = (\text{specific gravity } 15^{\circ}/15^{\circ} \times w \ 15^{\circ})/w \ 4^{\circ}.$ 

To convert from specific gravity  $15^{\circ}/4^{\circ}$  to  $4^{\circ}/4^{\circ}$ , we proceed as under (a)

or (b) above.

To illustrate. — The density of Uranium is given as  $18.685^{\frac{1}{40}}$  on page 208. To obtain the true specific gravity, we obtain, from a table, the density of water at 13°, or the volume of 1 gram of water at 13°. Then, by (a): 18.685/0.99941 (density) =  $18.696^{\frac{1}{4}}$  and by (b)  $18.685 \times 1.00059$  (volume) =  $18.696^{\frac{1}{4}}$ .

#### Correction to Weight in Vacuo, and a Combination of this with the Temperature Correction

In the following discussion and formulæ, let d = density of water, at  $t^\circ$ , used for comparison.  $\lambda = (0.00012)$ , the mean density of air referred to water (see under atmosphere, p. 517), m = apparent mass (weight) in air of body, as found by aid of balance, or, in case of determinations of density of liquids with the aid of the glass body, e.g. (Westphal balance), the apparent loss of weight of this body when immersed in the liquid. w = apparent mass (weight) in air of the volume of water equal to the volume of the body. In case of liquids, w = apparent weight in air of the water in the pycnometer, or of the volume of water displaced by the glass body (buoyancy). In case of solids, w = apparent loss of weight of the body in water, in determinations depending upon buoyancy, or the apparent weight in air of the water displaced, when a solid is placed in the pycnometer full of water. m/w = specific gravity, uncorrected.

Discussion. — If a body, solid or liquid, weighs m in air, and displaces a mass of air, a, its weight in vacuo is m + a. In case the weight w of a volume of water equal to that of the solid, has been determined in air, its weight in vacuo will be w + a. Again, if the apparent loss of weight of a body by submersion in water was determined, this weight must also be increased by a, since, in vacuo, this weight would have been greater than in air by a. And again, if the density of a liquid is determined by comparing the apparent loss

of weight of a solid in water, and in the liquid, each loss must be increased, for the same reason as above, by a.

Now, if the water used did not have the density l, but had a density d, then the same volume of water would weigh, at  $4^{\circ}$ , not w + a, but (w + a)/d. Therefore, the true specific gravity of the body would be S = (m + a)/((w + a)/d) = (m + a)d/(w + a). Now as (w + a)/d is equal to the volume of the displaced air (volume = weight/density), whose density is  $\lambda$ , the weight

of this air will be  $a = \lambda (w + a)/d$ , or  $a = \frac{w\lambda}{d-\lambda}$ .

Substituting this value for a in S = (m + a)d/(w + a) we obtain

(1) 
$$S = (m/w) (d - \lambda) + \lambda \text{ or } (m/w)d + (1 - m/w) \lambda.$$

Proof and derivation of above formula:

$$S = d \frac{m + \frac{w\lambda}{d - \lambda}}{w + \frac{w\lambda}{d - \lambda}} = d \frac{md - m\lambda + w\lambda}{wd - w\lambda + w\lambda} = \frac{md - m\lambda + w\lambda}{w} = \frac{md}{w} + \frac{w - m}{w} \lambda.$$

$$S = \frac{m}{w}d + \left(1 - \frac{m}{w}\right)\lambda = \frac{m}{w}d + \lambda - \frac{m}{w}\lambda = \frac{m}{w}(d - \lambda) + \lambda.$$

The importance of the corrections obtained by the above formulæ will become apparent from the following, showing that the uncorrected result may be as much as 0.08 too high.

A piece of Uranium weighs 37.37 grams in air. Specific gravity  $U=18.685^{18}$ , 1 ccm. U weighs 18.685 grams in air. 1 gram U has a volume of 1/18.685 ccm. = 0.053518 ccm. 1 gram U displaces 0.053518 ccm. of air, 0.053518 ccm. of water. 37.37 grams U displaces 37.37  $\times$  0.053518 ccm. = 2 ccm. of air and the same volume of water.

One ccm. air weighs 0.001293 gram, 2 ccm. air weighs 0.002586 gram. Weight of volume of water equal to volume of U=2 grams. Weight in vacuo of U=37.37+0.002586 gram =37.372586 grams. Weight in vacuo of a volume of water equal to volume of U=2+0.002586 gram =2.002586.

Specific gravity U reduced to (weights in) vacuo =  $37.372586/2.002586 = 18.662^{\frac{18}{4}}$ . 18.685 in air -18.662 in vacuo = 0.023 difference.  $18.662^{\frac{18}{4}} = 18.673^{\frac{4}{4}}$ . 18.696 - 18.673 = 0.023 difference.

If the expansion of water were neglected, the difference would be: Density  $U^{\frac{10}{4}}$  = specific gravity,  $4^{\circ} \times$  density water,  $t^{\circ}$ . Density  $U^{\frac{30}{4}} = U^{\frac{4}{4}} \times$  density water,  $30^{\circ} = 18.592^{\frac{30}{4}}$ . Differences:  $18.673 - 18.662^{\frac{18}{4}} = 0.011$ ,  $18.673 - 18.592^{\frac{30}{4}} = 0.081$ .

Corrections for Differences in Temperature During the Determination of Density, with the Pycnometer or with the Aid of the Glass Body or Sinker

If, when using the pycnometer, there is a difference of temperature between the water and the liquid whose density is to be compared, the mass of the volume of water of  $t_n$  degrees and density  $d_n$  has to be recalculated to the mass

Digitized by GOOGIC

of the volume of water that would fill the pycnometer at t degrees and that would then have a density d.

If the net weight of, or the weight in water, or the buoyancy in water (of the glass body or sinker), at the temperature  $t_n$ , indicates an apparent net weight  $w_n$ , or an apparent buoyancy  $w_n$ , then, to find the corresponding weight w, or buoyancy w, at another temperature, t, at which the net weight, in the pycnometer, of the liquid whose density is to be determined was found, or at which the buoyancy of the glass body or sinker in the liquid was found, or the temperature of the water, or other liquid, in a pycnometer, after putting into it a solid whose density is to be determined, was found, we have:

The correction for the expansion of water will be an addition of  $w_n$   $(d-d_n)$  to  $W_n$ , and the correction for the increase in volume of the water due to the increase in volume of the pycnometer will be an addition of  $w_n B$   $(t-t_n)$  to  $w_n$ . We have now (definition 6)  $d:d_n::m/w::m/w_n=d:d_n::m/wm:$   $m/w_n m=d:d_n::w:w_n; \ w=\frac{w_n d}{d_n}$ , the pycnometer, or the glass sinker =  $w_n+w_n[1+3B(t-t_n)]:w=w_n[1+3B(t-t_n)]d/d_n$ . But as  $d/d_n=1-(1-d)/1-(1-d_n)=1+(d-d_n)$ , the above expression becomes:  $w=w_n+w_n[(d-d_n)+3B(t-t_n)]$ . The quantity  $(d-d_n)3B(t-t_n)$  is insignificant, and, therefore, neglected.

This expression should be inserted in the formula (1) in place of w, then  $S = [M/(w_n + w_n)][(d - d_n) + 3 B(t - t_n)][(d - \lambda) + \lambda]$ . The quantity in brackets can readily be taken from tables.

$$W = w_0 \frac{1 + 3 B (t - t_0)}{A - 0.00120}$$

This term should be determined for the temperature interval that is likely to occur, and plotted in a curve. For a determination at temperature t, take value for W and calculate specific gravity S (for temperature t degrees) where M = apparent weight of liquid in pycnometer, or equals apparent buoyancy in liquid.

 $S = \frac{M}{W} + 0.00120$ . Proof of this formula by combining formula 1 and 2. Taken from Kohlrausch: Lehrbuck der proktischen physik, 9th Ed., p. 70

(top)

Hydrometers have indicated upon their stem the temperature at which they are to be used. This temperature is usually 60° Fahrenheit (15.55° C.) on technical hydrometers, a temperature readily obtained and held constant. To obtain correct readings determinations should be made at this temperature. Liquids, as a rule, do not expand uniformly. Their expansion should be obtained from tables which have been experimentally obtained. If a table giving the volume of a mass of liquid at the temperatures T and t is at hand, then if S = specific gravity at T°, and if s be that at t°, we have (see under definition 5) S/v = s/V, S = s.v/V.

For given liquids, temperature allowances within a certain range of specific gravity are determined and published. These allowances are published in books dealing with chemical and physical tables and constants.

# USE OF SPECIFIC GRAVITY TABLES ACID CALCULATIONS

Large shipments of acid, particularly sulphuric acid, are usually billed and paid for on the basis of 66° Bé, 50° Bé, etc. It is, therefore, necessary to calculate the actual strength of the acid shipped to its equivalent in 66° Bé, 50° Bé or to whatever strength basis the acid is billed and paid for.

The weight of one cubic foot of water at 60° F. has been found to be 62.37 The weight of a cubic foot of an acid is its specific gravity multiplied The acid content corresponding to 66° Bé (oil of vitriol, O. V.) has been carefully ascertained and found to be 93.19 per cent H₂SO₄. (p. 392). A sample of sulphuric acid of 65.75° Bé containing 91.80 per cent H₂SO₄ is equivalent to  $\frac{91.80}{92.10} \times 100 = 98.51 \text{ per cent O. V.},$ 

and as a cubic foot of 65.75° Bé acid weighs 114.12 pounds the number of pounds of oil of vitriol equivalent to one cubic foot of this acid is

$$\frac{91.80}{93.19} \times 114.12 = 112.42$$
 pounds O. V.

The equivalent per cent in 60° Bé (77.67 per cent H₂SO₄) of an acid of 64° Bé (85.66 per cent H₂SO₄) is

$$\frac{85.66}{77.67} \times 100 = 110.29 \text{ per cent } 60^{\circ} \text{ Bé},$$

and as 60° Bé corresponds to 1.7059 specific gravity, the pounds of 60° Bé equivalent to one cubic foot of 64° Bé acid is

$$\frac{85.66}{77.67} \times 1.7059 \times 62.37 = 123.14$$
 pounds 60° Bé.

Correction for temperature must be made when determining the specific gravity. As an example illustrating the use to which the specific gravity tables may be put: suppose it is required to calculate the number of pounds of 50° Bé sulphuric acid in a shipment, the following data being given:

Forty-two inches of sulphuric acid are drawn out of the tank at a temperature of 101° F.

Suppose we find by calculating the capacity of the tank from the inside measurements that 1 inch of liquid in the tank corresponds to 50.00 cubic A sample taken from the tank and tested in the laboratory showed 56.88° Bé at 92° F. Correction must be made for the temperature in order to reduce it to 60° F., the temperature for which the tables are constructed:

$$92 - 60 = 32$$
 difference.

From the table under the caption "Allowance for Temperature," it is seen that the allowance for 60° Be acid is 0.026° Be for each degree Fahrenheit, and that the correction for 50° Bé acid is 0.02 © Bé. As the acid in question is about midway between these points, the allowance for each degree Fahrenheit is very nearly 0.027° Bé. The correction for temperature is

$$32 \times 0.027 = 0.86^{\circ}$$
 Bé,

and as the standard temperature, 60° F., is lower than 92° F., the temperature at which the Baumé of the sample was taken, this amount must be added. The Baumé of the acid at 60° F. is, then,

$$56.88 + 0.86 = 57.74^{\circ}$$
 Bé.

The Baumé of the acid at 101° F., the temperature at which the acid was drawn off, is calculated

$$101 - 60 = 41^{\circ}$$
 F. difference,  
 $41 \times 0.027 = 1.11^{\circ}$  Bé correction,

and as the density of the acid is lowered as the temperature is raised

$$57.74 - 1.11 = 56.63^{\circ}$$
 Bé at  $101^{\circ}$  F.

The easiest way to get the specific gravity corresponding to this degree Baumé is by interpolating the given data:

57° Bé = 1.6477 specific gravity.

56° Bé = 1.6292 specific gravity.

diff. = 0.0185 specific gravity.

 $56.63 - 56.00 = 0.63^{\circ}$  Bé difference.

 $0.0185 \times 0.63 = 0.0117$  specific gravity.

1.6292 + 0.0117 = 1.6409 specific gravity

corresponding to 56.63° Bé.

Then as 42 pounds were drawn from the tank, the pounds drawn off are

$$42 \times 50.00 \times 62.37 \times 1.6409 = 214,920$$
 pounds.

As the acid is sold on the basis of 50° Bé, the pounds of 50° Bé corresponding to 57.74° Bé acid is easily found by interpolating from the table.

58° Bé = 119.59 per cent 50° Bé acid.

 $57^{\circ}$  Bé = 117.00 per cent  $50^{\circ}$  Bé acid.

diff. = 2.59 per cent 50° Bé acid.

 $2.59 \times 0.74 = 1.92$ 

117 + 1.92 = 118.92 per cent  $50^{\circ}$  Bé acid corresponding

to 57.74° Bé acid.

 $214,920 \times 1.1892 = 255,827$  pounds 50° Bé acid.

#### **PROBLEMS**

- 1. (a) What is the per cent oil of vitriol (93.19 per cent  $H_2SO_4$ ) equivalent to 62.18 per cent sulphuric acid? (b) What is the per cent of 50° Bé sulphuric acid (62.18 per cent  $H_2SO_4$ ) equivalent to oil of vitriol?
  - Ans. (a) 66.72 per cent; (b) 149.87 per cent.
- 2. (a) What is the equivalent in oil of vitriol (93.19 per cent H₂SO₄) of 600 pounds of a sulphuric acid of 89.55 per cent H₂SO₄? (b) In 50° Bé sulphuric acid (62.18 per cent H₂SO₄)?

Ans. (a) 576.6 lbs.; (b) 864.12 lbs.

3. Knowing that 60° Bé sulphuric acid contains 77.67 per cent H₂SO₄ and that 50° Bé sulphuric acid contains 62.18 per cent H₂SO₄, what is the number of pounds of 50° Bé sulphuric acid equivalent to a cubic foot of 60° Bé sulphuric acid?

Ans. 132.91 lbs.

**4.** 50° Bé sulphuric acid contains 62.18 per cent  $H_2SO_4$  and 52° Bé acid contains 65.13 per cent  $H_2SO_4$ . (a) To how many pounds of 50° Bé sulphuric acid are 350 cubic feet of 52° Bé acid equivalent? (b) If 60° Bé sulphuric acid contains 77.67 per cent  $H_2SO_4$ , to how many pounds of 60° Bé sulphuric acid are 530 cubic feet of 52° Bé acid equivalent?

Ans. (a) 35,647.5 lbs.; (b) 43,216.2 lbs.

5. Calculate the equivalent weight in terms of 60° Bé sulphuric acid equivalent to 2310 cubic feet measured at 102° F., a sample of which showed 59.66° Bé at 80° F.

Ans. 243,150 lbs.

- 6. Calculate the weight of 50° Bé sulphuric acid equivalent to a shipment of 2130.61 cubic feet measured at 120° F., a sample of which showed 56.14° Bé at 80° F.*

  Ans. 252,410 lbs.
- 7. How many pounds of 66° Bé sulphuric acid are equivalent to a shipment of 2507 cubic feet measured at 92° F., a sample of which showed 65.52° Bé at 77° F.?

  Ans. 282,614 lbs.
- 8. A sample of bismuth weighed 14.738 grams in air and 13.235 grams in water. (a) What is the density of the bismuth? (b) What is the weight of a cube of bismuth, 2 cm. on an edge? (c) How many cubic centimeters in a kilogram of bismuth?

Ans. (a) 9.805; (b) 78.44 grams; (c) 101.98 cc.

Rel. dens. = W/(W-w).

(a) 14.738 - 13.235 = 1.503 grams loss of weight in water 14.738/1.503 = 9.805 specific gravity.

Mass = rel. dens.  $\times$  vol.

(b) Mass =  $9.805 \times (2)^8 = 78.44$  grams. Vol. = mass/specific gravity.

(c) Vol. = 1000/9.805 = 101.98 ccm.

• In commercial transactions, calculations are often carried to a degree of accuracy unwarranted by the accuracy of the readings.

9. A sample of cork weighed 2.140 grams in air. A silver sinker (specific gravity 10.53) of 10.000 grams was employed, the combination of sinker and cork, in water, weighing 2.274 grams. Find the specific gravity of the cork.

Ans. 0.240.

Specific gravity = 
$$W/(W+x-w)$$
.

The sinker will displace a volume of water equal to its volume. The weight of this water will be equal to the loss of weight of the sinker, when weighed in water.

10/10.53 = 0.9497 cm. = 0.9497 gram. 10.00 - 0.9497 = 9.0503 grams, weight in water of sinker.

Substituting in the formula:

$$2.14/(2.14 + 9.0503 - 2.274) = 2.14/8.9163 = 0.240.$$

10. A block of pine weighed 6.431 grams in air. With a sinker attached to the block by a fine thread, the sinker being in water and the block in air, the combination weighed 18.530 grams; the combination of both sinker and block in water weighed 7.635 grams. Find the specific gravity of the block of pine.

Ans. 0.5903.

Specific gravity = 
$$W/(W'-W'')$$
 = 6.431/(18.53 - 7.635)  
= 6.431/10.895 = 0.5903.

11. Find the specific gravity of a sample of sand, from the following data: Weight of sand taken 4.655 grams; weight of bottle full of water 80.04 grams; weight of bottle containing sand and filled up with water 82.755 grams.

Ans. 2.399.

Specific gravity = 
$$W/[W - (W'' - W')] = 4.655/[4.655 - (82.755 - 80.04)]$$
  
=  $4.655/1.94 = 2.399$ .

12. A platinum ball weighed 42.96 grams in air, 40.96 grams in water, 39.548 grams in sulphuric acid, and 41.264 grams in naphtha. Find the specific gravity (a) of the sulphuric acid, (b) of the naphtha, and (c) of the platinum.

Ans. (a) 1.706; (b) 0.848; (c) 21.48.

Specific gravity = 
$$(W - W'')/(W - W')$$
.

- (a) (42.96 39.548)/(42.96 40.96) = 3.412/2 = 1.706.
- (b) (42.96 41.264)/(42.96 40.96) = 1.696/2 = 0.848.
- (c) 42.96/(42.96 40.96) = 42.96/2 = 21.48.
- 13. (a) Convert specific gravity, 1.7957, into degrees Baumé. (b) Convert 65.25° Baumé (heavier than water) into specific gravity. (c) Convert specific gravity, 0.7692, into degrees Baumé. (d) Convert 51° Baumé (lighter than water) into specific gravity.

Ans. (a) 64.25°; (b) 1.8182; (c) 52°; (d) 0.7735.

14. 0.0203 gram of gold (specific gravity, 19.32) were plated on a brass weight having a superficial area of 13.5 sq. cm. What is the thickness of the gold plating?

Ans. 0.000777 mm.

We have 0.0203 gram Au 1 cc. Au weighs 19.32 grams 0.0203/19.32 = volume of Au spread over 13.5 sq. cm. [(0.0203/19.32)/13.5] cc. = volume

of Au spread over 1 sq. cm., and this divided by 1 sq. cm. = thickness of Au film, 0.0000777 cm.

15. A steel sphere of 1.90 cm. diameter weighed 28.25 grams. What is the density of the steel sphere?

Ans. 7.866.

- 16. The best funnels are made with an angle of exactly  $60^{\circ}$ . If a funnel measures 7.5 cm. across the top, what size filter paper will fit it flush with the edge?

  Ans. 15 cm. diam.
- 17. A piece of aluminum wire 200 mm. long weighs 0.1327 gram. What length should be taken to make a centigram rider?

Ans. 15.05 mm.

- 18. A certain catalogue gives the following data about platinum foil: Platinum foil, medium, 0.003 inch thick, 1 gram per square inch. Assuming the price of platinum to be \$0.80 per gram, what would a cone for electrolysis cost, having a slant height of 4 inches and a diameter at the base of 3 inches?

  Ans. \$15.09.
- 19. A block of wood,  $7.49 \times 7.46 \times 3.78$  cm. weighs 152.7 grams. What is its specific gravity?

  Ans. 0.723.
- 20. Linseed oil has a specific gravity of 0.930. What will it weigh per gallon? (1 gallon = 231 cubic inches.)

Ans. 7.758 lbs.

21. A drum has a capacity of 4 cubic feet, how many pounds of ammonia of 0.8917 specific gravity will it hold? (Take, the weight of one cubic foot of water as 62.37 pounds.)

Ans. 222.5 lbs.

- 22. What is the weight of 15 cubic feet of oil of vitriol, whose specific gravity is 1.8354?

  Ans. 1717 lbs.
- 23. What is the volume of 100 pounds of hydrochloric acid of 1.2003 specific gravity?

  Ans. 1.335 cu. ft.
- 24. A casting of iron weighs 1000 kilograms. Taking the specific gravity of iron as 7.23, what is its volume?

Ans. 138.3 liters.

25. A platinum wire 7.25 cm. long weighs 1.0762 grams. The specific gravity of platinum is 21.48. Find the diameter of the wire.

Ans. 0.938 mm.

- 26. What is the radius of a steel sphere (specific gravity = 7.81) equal in weight to a brass sphere (specific gravity = 8.40) of 1.5 cm. radius?

  Ans. 1.54 cm.
- 27. Faraday estimated that the ductility of gold was so high that the gold in four English sovereigns could be drawn into a wire long enough to surround the earth. The weight of a sovereign is 7.988 grams, and it contains 91.66 per cent gold. If a quadrant of the earth is 10,000,857 meters, what is the thickness of the wire? (Specific gravity of gold = 19.3.)

Ans. 0.0002198 mm.

- 28. A casting of iron is suspected of having internal cavities. In air it weighs 170.42 grams; in water, 145.60 grams. The specific gravity of cast iron is 7.23. Has the casting any cavities, and if so, what is their volume? Ans. 1.25 cc.
- 29. In obtaining the specific gravity of a sample of heavy spar, the following weights were obtained: weight in air, 5.127 grams; weight in water, 3.969 grams. What is the relative density of the sample?

Ans. 4.427.

30. In obtaining the specific gravity of a brass weight, the following readings were obtained: weight in air, 116.62 grams, weight in water, 102.81 grams, temperature of the water, 20° C. Volume 1 gram H₂O at 20° C. = 1.001773 cc. What is the specific gravity of the brass weight?

- 31. Find the weight of a cubic foot of water at 60° F. Density of water at 60° F. is 0.999050. Ans. 62,363 lbs.
- 32. Calculate the relative density of a block from the following data: Weight of block alone in air, 152.7 grams; weight of block in air, and sinker in water, 218.5 grams; weight of block and sinker in water, 9.5 grams. Ans. 0.7306.
- 33. Find the relative density of gutta-percha from the following data: Weight of gutta-percha in air, 4.152 grams; weight of sinker in air, 10.450 grams; weight of sinker in water, 7.546 grams; weight of gutta-percha and sinker in water, 7.405 grams. Ans. 0.967.
- 34. A sample of willow weighed in air 3.820 grams. A sinker of lead (specific gravity 11.4) of a volume of 1.632 cc. was employed, the combination weighing in water 14.26 grams. What is the specific gravity of the willow? 0.5847. Ans.
- 35. At a certain temperature a specific gravity flask holds 83.327 grams of alcohol (specific gravity, 0.8164), 155.79 grams of sulphuric acid, and 120.44 grams of potassium hydroxide solution. Determine the specific gravity (a) of the sulphuric acid, and (b) that of the potassium hydroxide solution. Ans. (a) 1.526; (b) 1.180.
- 36. A piece of glass weighed 5.236 grams in air, and its specific gravity was 3.256. It weighed 3.702 grams in a solution of ammonia. Find the specific Ans. 0.9539. gravity of the ammonia.
- 37. A cylinder sank 54.40 centimeters when immersed in water, and 39.85 centimeters in gasoline. What is the relative density of the gasoline? Ans. 0.7325.
- 38. A cylinder was immersed in water at 4° C., and was marked 1.000 at the depth to which it sank. It was then immersed in a liquid of 1.2083 specific gravity, and the depth to which it sank was marked 1.250. The distance between these marks was divided into 25 equal spaces. When the cylinder was placed in a third liquid, it sank to the 1.150 mark, what is the specific gravity of this liquid? Ans. 1.125.

- 39. One side of a U-tube is filled with glycerine, the other with mercury (density, 13.6). If 17.4 cc. of mercury balance 187.8 cc. of glycerine, what is the specific gravity of the glycerine?

  Ans. 1.26.
- 40. A cylinder when immersed to a certain depth in water weighed 37.93 grams. When immersed to the same depth in gasoline, it weighed 27.55 grams. What is the relative density of the gasoline?

  Ans. 0.7263.
- 41. Find the specific gravity of the liquid from the following: Weight of specific gravity bottle, 40.327 grams; weight of specific gravity bottle and water, 143.252 grams; weight of specific gravity bottle and liquid, 108.779.

  Ans. 0.665.
- 42. Bunsen gives the following data. From it calculate the relative density of calcium. Weight of empty bottle, 13.640 grams; weight of bottle filled with naphtha, 20.275 grams; weight of bottle partly filled with naphtha, 16.650 grams; weight of bottle partly filled with naphtha and calcium, 19.150 grams; weight of bottle full of naphtha and calcium, 21.576 grams; density of the naphtha, 0.758.

  Ans. 1.581.
- 43. A sample of bronze is made up of 31.50 per cent zinc, 3.00 per cent tin, and 65.50 per cent copper. What is its specific gravity, supposing no change in volume occurred in alloying? (Specific gravities: zinc = 7.142; copper = 8.93; tin = 7.29.)

  Ans. 8.226.
- 44. A piece of brass weighed 9.0331 grams in water at 4° C. and 10.2531 grams in air. The specific gravity of copper is 8.930 and of zinc 7.142. What is the percentage of copper and of zinc, supposing that these two metals only are present, and that no change of volume took place in alloying?

  Ans. 70.97 per cent Cu, 29.03 per cent Zn.
- 45. An amalgam, consisting of 60.34 per cent mercury (specific gravity, 13.59) and of 39.66 per cent gold (specific gravity, 19.3) shows a specific gravity of 15.47. What is the contraction that has taken place in the formation of a kilogram of the amalgam in totals of the volumes of the two original metals?

  Ans. 0.31 cc.
- 46. Lupton states, that an alloy of 50 per cent by weight of platinum (specific gravity, 21.5), and 50 per cent by weight of copper (specific gravity, 9.00) has the same color and density as gold (specific gravity, 19.5). What is the contraction in the formation of 50 cc. of the alloy?

Ans. 26.84 cc.

47. The allowance for temperature of 13 per cent to 26 per cent nitric acid is 0.00029 specific gravity for each degree Fahrenheit. (a) Given a sample of acid of specific gravity 1.1154 at 60° F., what is its specific gravity at 45° F.? (b) At 78° F.? (c) What is the weight of 3.4 cubic feet of this acid at 80° F.? (d) What weight of this acid will occupy 10 cubic feet at 42° F.? (e) What is the volume in cubic feet of 100 pounds of this acid at 60° F.? (1 cubic foot of water at 60° F. weighs 62.37 pounds.)

Ans. (a) 1.1197 spec. grav.; (b) 1.1102 spec. grav.;

(c) 235.3 lbs.; (d) 698.9lbs.; (e) 1.437 cu. ft.

48. An acid of a certain concentration was found to have a specific gravity of 1.5281 at 56° F., and a specific gravity of 1.5209 at 72° F. (a) What was the expansion per degree F.? (b) What was the change per degree F. of the specific gravity? (c) Change of strength Bé per degree F.? (d) What is the specific gravity of this acid at 60° F.? (e) The Bé strength of this acid at 60° F.? (f) Assuming the changes of specific gravity and of Bé strength, per degree rise in temperature, to be uniform, what is the specific gravity of the acid at 50° F.? (g) What is the strength Bé at 80° F.?

Ans. (a) 0.0001937; (b) 0.00045; (c) 0.02812° Bé; (d) 1.5263 sp. gr.; (e) 1.5308 sp. gr.; (f) 49.44° Bé.

49. 60° F. is the temperature at which degrees Baumé are tabulated. An acid of a certain concentration changes 0.0235° Bé for each degree change of temperature (Fahrenheit). (a) If the strength Baumé at 42° F. of a sample of this acid is 66.46° Bé, what is the strength Baumé at the temperature of tabulation? (b) What would be the strength Baumé of this acid at 73° F.? (c) If at 60° F., the percentage of acid, corresponding to 66° Bé, is 93.19 per cent and 65.75° Bé corresponds to 91.80 per cent acid, what is the percentage strength of the acid in this sample?

Ans. (a) 66.04° Bé; (b) 65.73° Bé; (c) 93.41 per cent.

**60.** A sample of sulphuric acid shows a strength of 65.25° Bé at 60° F. How many pounds of this acid in a cubic foot?

Ans. 113.40 lbs.

51. What must be the diameter of a drum to hold 400 pounds of 26° Bé ammonia, length of drum to be 2.5 feet?

Ans. 1.91 ft.

**52.** Accurate volumetric analysis requires that correction be made for changes of volume of standard solutions with change of temperature. A solution was standardized at 72° F. This solution showed a specific gravity of 1.0277 at 84° F., and of 1.0378 at 40° F. (a) What is the expansion per unit volume per degree Fahrenheit? (b) If a determination was made with this solution at 55° F., using 98.00 cc., what correction must be made to find what the volume would be at 72° F., which is the temperature at which it was standardized? (c) What is the volume, corrected to 72° F.?

Ans. (a) 0.000225; (b) 0.37 cc.; (c) 98.37 cc.

53. What is the Twaddell reading corresponding (a) to 1.6111 specific gravity? (b) To 66° Bé?

Ans. (a) 122.2 Tw.; (b) 167.1 Tw.

54. 141.2° Twaddell corresponds (a) to what specific gravity, and (b) to how many degrees Bé?

Ans. (a) 1.7060 spec. grav.; (b) 60.0° Bé.

55. 50° Bé sulphuric acid contains 62.18 per cent H₂SO₄ and 52° Bé acid contains 65.13 per cent H₂SO₄. (a) To how many pounds of 50° Bé sulphuric acid are 350 cubic feet of 52° Bé acid equivalent? (b) If 60° Bé sulphuric acid contains 77.67 per cent H₂SO₄, to how many pounds of 60° Bé sulphuric acid are 530 cubic feet of 52° Bé acid equivalent?

Ans. (a) 35,647.5 lbs.; (b) 43,216.2 lbs.

**56.** Calculate the weight of a 60° Bé sulphuric acid that would be equivalent to 2310 cubic feet, measured at 102° F., of a 59.66° Bé acid, the latter being at 80° F. when its Bé strength was determined.

Ans. 243,150 lbs.

57. Calculate the weight of a 50° Bé sulphuric acid that would be equivalent to a shipment of 2,160.61 cubic feet, measured at 120° F., of an acid, a sample of which showed 56.14° Bé at 80° F.*

Ans. 252,410 lbs.

58. It is desired to make a 50 cc. burette, graduated to tenths of a cubic centimeter, the graduations to be 2 mm. apart. What should the diameter of the glass tube be? Ans. 0.798 cm.

#### GAS AND MERCURY THERMOMETERS

The scale of the gas thermometer is the ideal scale and the one now generally adopted. It depends upon the supposition, that an ideal gas will expand for every increase of temperature of one degree, at constant pressure, an equal amount, or, that at constant volume, its pressure will increase equally for every rise in temperature of 1°. An ideal gas will expand  $\frac{1}{2}$ , of its volume at 0° for every rise of one degree in temperature. The gas used is hydrogen. At high temperatures nitrogen is used.

To have a standard for comparison at all times, hydrogen of such a density, that it would have at 0° a pressure of 1000 mm. mercury was agreed upon as the normal gas. The coefficient of expansion of hydrogen is a = 0.003663, that of nitrogen is a = 0.003675, between 0° and 100°. The difference, in indication, of the hydrogen and of the nitrogen thermometers between 0° and 100° is 0.01° at the most. This difference increases at low temperatures.

but amounts to only  $0.6^{\circ}$  at  $-190^{\circ}$  (the boiling point of air).

Mercury does not expand uniformly, as gases do, but shows an accelerated expansion as the temperature rises. The same may be said of glass, though different varieties vary in this respect. Evidently, if a glass could be produced that would show the same absolute inequality of expansion as mercury, a mercury thermometer could be made whose readings would agree with those of the gas thermometer.

Mercury thermometers, if the caliber is the same throughout their length, and the ice point, as well as the boiling point, are correctly indicated, will give too high readings between 0° and 100° C. Thermometers vary, depending upon the variety of glass used. The variations from the true readings may reach up to 150° C., 0.5°, up to 250° C., 4°, and up to 350° C., 10°.

At 20° C., for example, thermometers made of Jena glass No. XVI indicate

0.09° too high, while those made of Jena glass No. 59, indicating a variety of

glass known as verre dur, indicate 0.08 too high.

In tabulating corrections for "tested" thermometers, the latter are compared with the hydrogen thermometer up to 100°, and above this they are

* In commercial transactions, calculations are often carried to a degree of accuracy unwarranted by the accuracy of the readings.

compared with the air thermometer, whose indications up to 100° vary very little from those of the former. Tables are published showing the corrections to be made for various grades of glass.

The scale employed for the thermometers just discussed is the decimal or centigrade scale. However, there are two other scales in use: the Reaumur and the Fahrenheit scale. The centigrade scale is the one adopted by Celsius, and the readings of the instrument, based upon this scale, are often called degrees Celsius.

Celsius called the point at which the mercury in the thermometer constructed by him, stood, when the instrument was placed in melting ice (finely chopped, or grated ice, made into a sort of paste by adding a little distilled water), 0, and he called the point to which the mercury rose when the instrument was placed in the vapors of boiling water, 100, and divided the interval into 100 equal spaces called degrees. This same scale is continued above and below these two fixed points.

Fahrenheit took the prevailing temperature, in Danzig, in the winter of 1709, as the 0 point of his scale, in order always to have positive temperature indications, believing that a lower temperature (than then prevailing) could not be obtained. He marked the point to which the mercury rose when the thermometer was placed into melting ice 32. This boiling point he marked 212. Thus there are 180 degrees on the Fahrenheit scale between the ice point and the boiling point. Reaumur marked the ice point 0 and the boiling point 80, thus making his scale one of 80 degrees.

A comparison of these three scales will readily show the relation of one to the other.

Thus  $100^{\circ}$  C. =  $180^{\circ}$  F. =  $80^{\circ}$  R., and, therefore, to compare the Celsius (C) or the centigrade scale and the Reaumur (R) scale with the Fahrenheit (F) scale, we must first subtract  $32^{\circ}$  from the reading of the Fahrenheit instrument. Then, we can compare the number of degrees between the melting point of ice and the boiling point of water on the three instruments. Vice versa, when Centigrade or Reaumur degrees are to be converted into Fahrenheit degrees, the ratios 180/100 and 180/80 show only the relation of the scales between the two fixed points, and would give a result  $32^{\circ}$  too low. For example:  $^{\circ}$  F. = (180/100)  $t^{\circ}$  C. If  $t^{\circ}$  C. =  $100^{\circ}$ , then the expression becomes  $^{\circ}$  F. =  $180^{\circ}$ . If  $t^{\circ}$  C. = 0, then the expression becomes  $0^{\circ}$ , in each case  $32^{\circ}$  below the true marking for the respective temperature.

The temperature of boiling water and consequently that of its vapor varies with the atmospheric pressure. If we know this pressure in millimeters mercury, then we can readily find the boiling point of water, at this pressure, in tables.* The boiling point  $t^{\circ}$  can be found without resource to tables correctly to within one one-hundredth of a degree, between 715 mm. and 770 mm. pressure, for a pressure b, by the aid of the following formula:  $t^{\circ} = 100^{\circ} + 0.0375^{\circ}$  (b = 760).

Example. — Let the reduced barometric reading be 750 mm. Then from a table, we find the boiling point of water to be  $99.63^{\circ}$  at 750 mm. By the above formula:  $100^{\circ} + 0.0375^{\circ}$  (750 - 760) =  $100 - 0.375 = 99.625^{\circ}$ . If

the thermometer indicated 99.83°, it indicated 0.20° too high. The correction, at the  $100^{\circ}$  mark on the thermometer, is, therefore,  $-0.20^{\circ}$ .

The position of the fixed points is subject to change.

- 1. Position and Pressure. Thermometers are usually calibrated for use in a vertical position. This fact should be considered when using long, delicate thermometers. In a horizontal position the pressure of the column of mercury (the thread) upon the portion in the bulb is less than when it is in a vertical position, and thus in this position mercury may expand a little more than when the instrument is in its normal position. The amount of this influence of position upon the indication of any particular thermometer is to be found empirically. If the thermometer indicates S degrees higher, in a horizontal position, than in a vertical one, at the same temperature, then the correction will be, for the angle of tilting, Y, S sin Y. The factor S is proportional to the height of the column of mercury. If this column be L mm. long, S will average  $1/8000 \ L^{\circ}$  C.
- 2. Gradual Ascending of the Fixed Points. Owing to the very gradual contraction of newly blown glass, a process that may continue for years, the volume of the glass of a newly made thermometer slowly shrinks. And so, as the volume of the mercury in the instrument remains constant, the length of the thread produced by the expansion of the mercury becomes longer. The two fixed points are thus raised, and they may be found as much as one degree higher than the original corresponding marks.
- 3. Low Indication, after Exposing a Thermometer to Heat. Upon being exposed to any definite temperature, glass will not immediately attain the volume which corresponds to that temperature. If a thermometer be kept at a high temperature for any length of time, the ice point and the boiling point may experience a permanent lowering of as much as 2° C.
- 4. Correction for Exposed Thread. Thermometric scales are based upon the theory that all of the mercury in the instruments has the same temperature. In practice this is rarely the case. If d degrees of the thread of mercury are exposed to a temperature  $t'^{\circ}$  lower than that to be measured,  $t^{\circ}$ , and if the length of this exposed portion of the thread were  $d_{0}$  degrees at  $0^{\circ}$  C., then this length would be increased by  $d_{0}$  a(t-t'). No appreciable error is introduced by replacing  $d_{0}$  by d in this formula. The apparent coefficient of expansion of mercury in glass a (i.e., the difference of the expansion of these two substances) varies with the composition of the glass. For three standard grades of thermometer glass a = 0.000157, 0.000163, 0.000158. Thus the formula will read, in the last instance,  $d \times 0.000158$  (t t'). The mean temperature,  $t'^{\circ}$ , is found by the aid of short thermometers that are placed into immediate contact with the long instrument, and whose bulbs are so placed as to be about in the middle of the exposed portion of the thread.

# ATMOSPHERIC PRESSURE — BAROMETER

Gravity, increasing from the equator, where its value is 978.1, to mean latitude 45°, where it is 980.6, and from there to the poles, where its value is 983.2, influences atmospheric pressure.

The atmospheric pressure at any one place is subject to constant variations. The pressure reaches a maximum and a minimum twice in twenty-four hours. The times of greatest pressure are from 9 to 11, and of least

pressure from 3 to 5, both A.M. and P. M.

The mean atmospheric pressure at sea level is taken as 760 mm. of mercury at 45° latitude. From the equator, either northward or southward, the mean pressure increases to about latitude 30° by 4 to 5 mm., and thence it decreases to about latitude 65°, where the mean atmospheric pressure is less than at the equator, and beyond that it slightly increases. This distribution of pressure in zones is due to the great atmospheric currents.

The extreme variation of atmospheric pressure is very unequal in different latitudes. Within the tropics it rarely exceeds 6 mm., while at 40° latitude, it is more than 50 mm.; at higher latitudes the variation may amount to

76 mm.

The mean atmospheric pressure is not known for a sufficiently large number of places on the earth's surface. So to obtain a basis for comparison, the mean atmospheric pressure at latitude 45° and at sea level, reduced to 0° C. and referred to the value for gravity at 45° latitude, was selected as a standard.

This standard pressure, per square centimeter, is equal to the pressure of a column of mercury of a height of 337.784 Paris lines (1" of Paris = 2.2558 mm.), or of 762.703 mm., or of 30.028 inches. For scientific purposes a

pressure of 760 mm. mercury has been adopted as a standard.

The effective pressure of an atmosphere at sea level, based upon the value of gravity at 45° latitude, is taken as 1033.3 grams per square centimeter in France, and in the other countries using the metric system, while in this country and in England, it is taken as 14.71 pounds per square inch. For general use, excepting for scientific purposes, an atmosphere, equal to a pressure of 1 kilogram per square centimeter, has been adopted and is known as the new atmosphere. Instruments for measuring atmospheric pressure are now generally calibrated with this new atmosphere as a basis.

Corrections to be applied to the readings of a barometer. For:

1. Temperature of the Mercury. — Mercury expands 0.000181 of its volume for every increase in temperature of 1° C. If l is the reading of the barometer at l°, then the reading  $l_0$  at  $l_0$  degrees will be  $l_0 = l - 0.000181 t.l$ .

2. Temperature of the Scale. — The coefficient of expansion  $\beta$  of brass is 0.000019, that of glass is 0.000008. Then the length  $l_0$  of the scale at  $t_0$  will be  $l_0 = l - \beta .t.l$ . The combined correction will be the sum of these two corrections:  $l_0 = l - (0.000181 - \beta) \ t.l$ ;  $l_0 = l - [0.000181 \ t.l + (-\beta .t.l)] = l - (0.000181 - \beta) \ t.l$ .

With a brass scale, this correction will be:  $(0.000181 - 0.000019) = 0.000162 \, l.t.$ 

 $\mathsf{Digitized} \, \mathsf{by} \, Google$ 

With a glass scale, this correction will be: (0.000181 - 0.000008) = 0.000173 l.t. These latter values may be taken from tables.

This correction will amount, under ordinary barometric conditions, to about 1/8 mm. per degree centigrade, and for general purposes the result will frequently be sufficiently accurate, if 1/8 mm.t be deducted from the barometric reading.

3. Capillary Depression. — This varies with the different instruments. The correction is generally supplied, for any particular instrument, by the manufacturer. The wider the tube of the barometer, the less will be the error due to capillary depression. This correction will amount, at most, to 0.1 mm., where the diameter of the barometer tube is 15 mm.

4. Vapor Pressure of Mercury. — This amounts to 0.001 mm. at 20 °C., and to 0.01 at 40° C. To compensate for the vapor pressure of mercury, it

will be sufficient to add to the reading of the barometer 0.001 mm.t.

5. Influence of Gravity. — Reduction to conditions in latitude 45°. The pressure of one and the same column of mercury at different latitudes is proportional to gravity. The pressure of a column of mercury, at sea level, that would be in equilibrium with the pressure of the air would be: At the poles, 983.2 × 13.596 × 760 dynes/cm.², at 45° latitude, 980.6 × 13.596 × 760 dynes/cm.², and at the equator, 978.1 × 13.596 × 760 dynes/cm.²

Thus we see that the specific gravity and the height of the column of mercury remaining the same, the pressure depends upon gravity. Thus, at the equator, the effective pressure is, in the ordinary system of nomenclature, (978.1/980.6)  $760 \times 13.596$  grams/cm.², at latitude  $45^{\circ}$ , it is 980.6/980.6  $(760 \times 13.596)$  grams/cm.², while at the poles it is 983.2/980.6  $(760 \times 13.596)$ 

grams/cm.2

Thus, to reduce a barometric reading at any latitude other than 45° to that at latitude 45°, we have the following equation: g/g 45° = x mm./760 mm., or 760.g/g45°, or 760 (1 - 0.0026.cos  $2\phi$  - 0.0000002 H) = height which a column of mercury would have, under the same atmospheric pressure, at sea level, and at latitude 45°.

This ratio,  $g/g45^\circ$ , is equivalent to the expression, 1-0.0026 cos  $2\phi-0.0000002~H$ . In this expression  $\phi$  represents the latitude and H the height in meters above sea level. At sea level, H, of course, is equal to 0. The quantity 0.0000002 is a mean that is influenced by the physical properties of the locality. Only at great heights will this last factor, 0.0000002~H, be of any account.

#### GAS CALCULATIONS

Boyle's Law. — The temperature remaining constant, the volume of a true gas varies inversely as the pressure to which it is subjected. Let V be the volume of a gas under a pressure P and let V' be some other volume of the same quantity of the gas and P' its corresponding pressure. The analytical expression of this law is

 $\frac{V}{V'} = \frac{P'}{P}$  or PV = P'V'.*

^{*} P'V' = k, a constant; therefore, on plotting the changes of a given volume of a gas under varying pressure or temperature, an hyperbola results.

Charles' Law. — The pressure remaining constant, the volume of a true gas varies directly as its absolute temperature. Let V be the volume of gas at a temperature T and let V' be some other volume of the same quantity of the gas and T' its corresponding temperature. Then the analytical expression of this law is

$$\frac{V}{V'}=\frac{T^*}{T'}$$

Since  $0^{\circ}$  C. corresponds to 273° absolute, the law of Charles may be stated as follows. The pressure remaining constant, a true gas expands or contracts  $\frac{1}{2}$  of its volume at  $0^{\circ}$  C. for each degree centigrade rise or fall in temperature.

Furthermore, the volume remaining constant, the pressure on a gas varies directly as the absolute temperature. Let P be the pressure of a gas at temperature T and let P' be some other pressure on the same quantity of the gas and T' its corresponding temperature. Then the analytical expression of this fact is

$$\frac{P}{P'} = \frac{T}{T'}.$$

The gas thermometer is based upon this law. Thus the pressure exerted by a gas is used as a means of measuring temperature and is employed in the hydrogen thermometer in which the volume is kept constant, and differences of pressure caused by different temperatures are measured. This unit has been chosen for the reason that the expansion coefficient of hydrogen is very uniform over wide ranges of temperature, a property of all gases in a condition far removed from their liquefaction point. Mercury being a liquid does not expand with this regularity with increase of temperature, though at ordinary temperatures the difference of a temperature reading with a hydrogen thermometer and a mercury thermometer is slight.

The laws of Charles and Boyle may be combined in the general formula

$$\frac{PV}{T}=\frac{P'V'}{T'},$$

in which P, V, and T are the original conditions of the gas and P', V', and T' are the changed conditions of the same gas. Then, knowing five of these quantities, the sixth may be obtained by solving the equation.

Vapor Pressure. — Volumes of gases are often measured over liquids which may or may not exert an appreciable vapor pressure. The vapor pressure of a saturated vapor depends only upon the temperature and is independent of the pressure or the presence or absence of an inert gas. If a sufficient amount of a volatile liquid is introduced into the Torricellian vacuum above a mercury barometer or into a barometer tube containing a gas, the

^{*} Note that T and T' are in the absolute scale.

 $[\]dagger$   $_{1}$ , can be expressed as a decimal. More accurately the coefficient of expansion of a gas is 0.00367, then for  $t^{\circ}$  change this becomes 0.00367 t.

height of the column will be depressed an amount which is independent of all conditions except the temperature. If then the volume of a confined gas is measured over a volatile liquid such as water, the volume will appear greater than the volume of the same amount of the dry gas by an amount corresponding to the vapor pressure of the water (if that is the liquid employed) at that temperature. If this vapor pressure were a constant quantity or increased regularly with the rise in temperature, it would be a very simple matter to correct for it; but such not being the case the vapor pressures corresponding to various temperatures are obtained experimentally and tabulated. In an analytic form these facts are expressed by the equation

$$\frac{V}{V'}=\frac{P-p}{P},$$

in which V and V' are the volumes of the dry and the moist gases respectively, P' the pressure and p the pressure of aqueous vapor at the temperature of observation.

When measuring a liquid over mercury, whether moist or not, a common procedure is to bring the mercury to the same level inside and outside the tube, the atmospheric pressure being measured by a barometer. Under such conditions, the pressure of the confined gas is indicated by the barometer. If it is not convenient to bring the mercury columns to the same level the height of the mercury in the tube must be subtracted from the barometric pressure in order to obtain the pressure on the confined gas. If P' be the reading of the barometer and F the height of the mercury in the tube, V the volume corresponding to the pressure P, and V' the volume of the confined gas, the equation is

$$\frac{V}{V'}=\frac{P'-F}{P},$$

and if V' be measured moist, the volume V of the dry gas is

$$V = \frac{P' - (p+F)}{P} V'.$$

Use of this formula is as follows: It is desired to know the weight W of a liter of air saturated with moisture at 15° C. (T) under a pressure of 754 mm. (P'). The weight of a liter of a gas is given under standard conditions ( $T=273^{\circ}$  A; P=760 mm.). Of air this weight is 1.2926 grams (A). The tension of aqueous vapor (P) at 15° C. is 12.76 mm. Substituting in the formula

$$W = \frac{273}{288} \times \frac{754 - \frac{1}{8}12.76}{760} \times 1.2926 = 1.2078$$
 grams.

Again, it is required to find the weight of a liter of oxygen saturated with moisture at 17° C. and under a pressure of 750 mm. (ten. aq. vap. at 17° C. = 14.45 mm.). W' = the weight of the dry oxygen, W'' = the weight of the water vapor.

 $\mathsf{Digitized} \ \mathsf{by} \ Google$ 

or

$$W' = \frac{273}{290} \times \frac{750 - 14.45}{760} \times 32 \times 0.044656 = 1.3019 \,\mathrm{gr.\,O_2}.$$

$$W'' = \frac{273}{290} \times \frac{14.45}{760} \times 18.016 \times 0.044656 = 0.0144 \,\mathrm{gr.\,H_2O} \,\mathrm{vapor.}$$

$$W = 1.3019 + .0144 = 1.3163 \,\mathrm{gr.}$$

#### **PROBLEMS**

The readings in all problems are supposed to be at standard conditions, unless otherwise stated.

**59.** 200 cc. of a gas is at a pressure of 752 mm. at 15° C. (a) What is its volume under a pressure of 770 mm., the temperature remaining constant? (b) What is its volume, if the temperature is lowered to 10° C., the pressure remaining constant? (c) What is its volume, if the pressure and temperature are changed from 752 mm. and 15° C. to 770 mm. and 10° C.?

Ans. (a) 
$$(752/770) \times 200 = 195.33$$
 ccm.;  
(b)  $15^{\circ}$  C. =  $288^{\circ}$  T.;  $10^{\circ}$  C. =  $283^{\circ}$  T.  $(283/288) \times 200$  =  $196.53$  ccm.;

- (c) (283/288) (752/770).200 = 191.94 ccm.
- **60.** A barometer graduated at 19.5° C. on a glass scale reads 763.4 mm. (a) What is the reading corrected to 0° C.? (b) If the corrected height of a barometer with a brass scale is 764.7 mm., what does the barometer read at 22° C.? (c) If a barometer with a glass scale reads 754.3 mm. at  $-10^{\circ}$  C., what is the height corrected to standard temperature?

Ans. (a)  $763.4/[1 + (0.000181 - 0.000008) 19.5^{\circ}] = 760.9 \text{ mm}$ ;

(a)  $763.4 - (0.000162 \times 763.4 \times 19.5) = 760.9 \text{ mm.};$ (b)  $x/[1 + (0.000162 \times 22)] = 764.7x = 767.4 \text{ mm.};$ 

- (b)  $764.7 + (0.000181 0.000019) \times 764.7 \times 22$ = 767.4 mm.;
- (c)  $754.3 (0.000173 \times 754.3 \times -10) = 755.6$  mm.
- 61. A gas, at 750 mm. and 12° C., measured moist, occupies 325 cc. (a) What is its volume, dry, under the same conditions? (b) Volume, dry, at standard conditions? (c) 160 cc. of a gas are measured, moist, at 15° C., the barometer (corrected) reads 743 mm. The mercury in the tube stands 150 mm. above the trough what is the volume of the dry gas at standard conditions?

Ans. (a) Tension of aqueous vapor at 12° C. is 10.48 mm.; at 15° C. it is 12.73 mm.;

(750 - 10.48)/750 = 325/x = 320.46 cc.;

(b)  $V_0 = (750 - 10.48) \times 325 \times 273/285 = 302.93 \text{ cc.};$ 

(b)  $V_0 = (739.52 \times 325)/(760 \times 285 \times 0.00367)$ = 302.93 cc.;

(c) V = [743 - (150 + 12.73)]  $160/[760 \times 288 \times 0.00367]$  = 115.8 cc.

62. How many cubic centimeters of nitrogen gas, at standard conditions, can be obtained from a liter of ammonia gas at 15° C. and 780 mm.?

```
Ans. 2 NH<sub>3</sub> = N<sub>2</sub> + 3 H<sub>2</sub>;

2 vol. 1 vol. 3 vol.

Two vol. NH<sub>3</sub> give one vol. N<sub>2</sub>, 1 vol. NH<sub>3</sub> (1000 ccm.), gives \frac{1}{2} vol. N<sub>2</sub> (500 ccm.);

V = (780 \times 500)/760 \times 288 \times 0.00367 = 486.43 ccm.
```

- 63. (a) A liter of sulphur dioxide, at standard conditions, weighs 2.9266 grams. Find its molecular weight. (b) The molecular weight of acetylene is 26.016; what is the weight of 250 cc. of the gas at 18° C. and 757 mm. pressure? (c) If the specific gravity of hydrogen selenide, referred to air, is 2.806, what is its weight per liter? (d) What is its molecular weight?
  - Ans. (2)  $[2.9266/1000) \times 760(1+at) \times 1]/0.00004463 \times 760$   $\times (1+at) \times 1 = 65.5$ , or  $2.9266 \times 22.393 = 65.5$ or, 2.9266/0.044656 = 65.5;  $0.044656 \times 26.016/1 = 1.1617$  gr. per L., at standard con
    - ditions;  $W_0 = 1.1617 \times 760 \times 1 \times 273/291 = 1.0899$  gr. per L., at 18° C.
    - and 760 mm.;  $W_0 = 1.0856 \times 757/760 = 1.0856$  gr. per L., at 18° C. and 757
    - mm.; 1.0856 gr. per L. = 1.0856  $\times$  0.250 gr. per 0.250 L. = 0.2714 gr.;  $W_{18^{\circ}} = 0.044656 \times 26.016 \times 757 \times 250 \times 273/760 \times 1000 \times 291 = 0.2714$  gr.
    - (c)  $2.806 \times 1.2926 = 3.627$  gr. per L.;
    - (d)  $2.806 \times 28.943 = 81.21$ .
- 64. (a) If 30.82 ccm. of oxygen (density, to air = 1.1055) effuses through a small orifice in 55 seconds, what volume of hydrogen (density, to air = 0.06965) will effuse in the same time under the same conditions? (b) What volume of sulphur dioxide will effuse through a small orifice in the same time as 83 cc. of ammonia? (c) 150 ccm. of air effuse in the same time as 63.82 ccm. of bromine. What is the molecular weight of the bromine?
  - Ans. (a)  $V^2: v^3:: D: d = V = v \sqrt{d/D}$ , where V and v indicate velocities.  $V = 30.82 \sqrt{\frac{1.1055}{.06965}} = 123.1$  cc.
    - (b) The ratio of the densities of sulphur dioxide and of ammonia is the same as the ratio of their molecular weights, then as before;
    - (b)  $v = (83) \times 17.034/64.06 = 42.82$ ;
    - (c) D = V/v = d;  $D = 150/63.82 \times 1 = 5.524$  density referred to air;  $5.525 \times 28.943 = 159.9$  density (referred to hydrogen).
- 65. (a) What volume of oxygen at 18°C. and 754 mm. is liberated by 1.763 grams of potassium chlorate, when completely decomposed? (b) How

much sulphuric acid must be taken to obtain 5.5 cubic feet of hydrogen, at 17° C. and 762 mm., by acting on a metal?

Ans. (a) 2 KClO₃ = 2 KCl + 3O₂.  
2 (122.56) gr. 3(22.4) L.  

$$v = p_0v_0 (1 + at)/p$$
.  
 $v = 760 (3 \times 22.4) 291/273$ . 1.763/2(122.56) mol. grams ×  $v = 0.5193$  L.;  
(b)  $m.p.v = M.p_0v_0 (1 + at)$ . H₂SO₄ +  $M'' = M''$  SO₄ + H₂;  
98.09 oz. 1(22.4) cu. ft.  
 $M = 98.09 \times 762 \times 5.5 \times 273/760 \times 22.4 \times 290 = 22.73$  oz. (1.42 lbs.).

66. Find the weight, in vacuo, in each of the two following problems:
(a) A mass of aluminum (density, 2.583) weighed in air at 18° C. and 742 mm. showed an apparent weight of 149.2350 grams, brass weights (density = 8.4) being used. What is its weight in vacuo? (b) A mass of platinum (density, 21.48) weighed in air at 15° C., and 765 mm. with brass weights, showed an apparent weight of 89.4130 grams. Find its weight in vacuo.

Ans. (a) 
$$p_0v_0 = p_0v_0T$$
;  $v_0 = pv/p$   $Ta$ ;  $v = m/d = 149.2350/2.583$ ;  $v = 742 \times (149.2350/2.583) \times 273/760 \times 291$ ;  $0.0012926 \times v_0 = 0.0684$  gram lost by aluminum.

 $V = 742 \quad (149.2350/8.4) \quad 273/760 \times 291$ ;  $0.0012926 \times v_0 = 0.0210$  gram lost by weights;  $0.0684 - 0.0210 = 0.0474$  grams difference in air displaced;  $149.2350 + 0.0474 = 149.2824$  grams, weight in vacuo.

(b) Using the formula  $W = W' + W'd\left(\frac{1}{D} - \frac{1}{D_1}\right)$ ,  $d = \frac{273}{288} \times \frac{765}{760} \times 0.0012926 = 0.0012333$ ;  $w = 89.4130 + 89.4130 \times 0.0012333 \left(\frac{1}{21.48} - \frac{1}{8.4}\right)$ ;  $w = 89.4130 + 89.4130 \times 0.0012333 \left(0.04656 - 0.11905\right)$ ;

67. One liter of a gas is under a pressure of 780 mm. What will be its volume at standard pressure (760 mm.), the temperature remaining constant?

Ans. 1026.3 ccm.

 $w = 89.4130 + 89.4130 \times 0.0012333 (-0.07249);$ w = 89.4130 - 0.0080 = 98.4050 grams in vacuo.

- 68. 300 ccm. of gas is under standard pressure. What will be its volume at 784 mm., the temperature remaining constant?

  Ans. 290.8 cc.
- 69. Five cubic feet of a gas are under a pressure of 27.3 ins. of mercury. What is its volume at 29.9 ins., the temperature remaining constant?

  Ans. 4.565 cu. ft.
- 70. A gas occupying a volume of one liter, under standard pressure, is expanded to 1200 ccm. The temperature remaining constant, by how many millimeters must the pressure have been diminished?

  Ans. 126.7 mm.

- 71. A gas measures 200 ccm. at 15.7° C. Find its volume at 0° C., the pressure remaining constant. Ans. 189.12 ccm.
- 72. One liter of a gas is measured at  $-15^{\circ}$  C., what is its volume at  $15^{\circ}$  C., pressure remaining constant?

  Ans. 1116.3 ccm.
- 73. A gas measured 150 ccm. at 17.5° C., and on account of a change of temperature, the pressure remaining constant, the volume decreased to 125 ccm. What is the new temperature?

  Ans.  $-30.9^{\circ}$  C.
- 74. The pressure on a confined gas at 15° C. was 792 mm. If the pressure, later, registered 820 mm., what is the temperature, the volume remaining unchanged?

  Ans. 25.2° C.
- 75. A liter of gas,, at standard conditions, has its temperature raised to  $15^{\circ}$  C. What must be the pressure on the gas if the volume is unaltered?

  Ans. 801.7 mm.
- 76. A gas, measuring 183 ccm. at standard conditions, has its pressure raised to 792 mm. What is the temperature, the volume remaining constant?

  Ans. 11.5° C.
- 77. 250 ccm. of a gas are at a temperature of  $15^{\circ}$  C. What is the volume of the gas at  $0^{\circ}$  C., the pressure remaining constant?

  Ans. 237 ccm.
- 78. The pressure on a certain volume of hydrogen is 730 mm. at the temperature of melting ice. The volume remaining constant, what is the temperature at a pressure of 750 mm.?

  Ans. 7.5° C.
- 79. Given 250 ccm. of a gas, under a pressure of 765 mm. and at a temperature of 15° C., what is their volume under standard conditions? (0° C. and 760 mm.)

  Ans. 238.5 cc.
- 80. 50 cc. of a gas at 780 mm. and at 10° C. changes its volume to 48 cc. under a pressure of 792 mm. What is the temperature at this pressure and volume?

  Ans. 2.9° C.
- 81. A gas is at a pressure of 748 mm. and at a temperature of  $12^{\circ}$  C. when its volume is 200 ccm. What must be the pressure of the gas, if its volume is 178 ccm. at a temperature of  $0^{\circ}$  C.?

  Ans. 805.1 mm.
- 82. A volume of gas is confined at 0° C. and 760 mm. pressure. What is this pressure (a) in inches of mercury, and (b) in pounds per square inch?

  Ans. (a) 29.921 ins.; (b) 14.701 lbs. per sq. in.
- 83. A barometer with a glass scale shows a pressure of 752.6 mm. at  $15^{\circ}$  C. What is the barometer reading at  $0^{\circ}$  C, corrected for the contraction of the scale?

  Ans. 750.7 mm.
- 84. A barometer with a brass scale shows a pressure of 768.5 mm. at  $18^{\circ}$  C. What is the barometer reading at  $0^{\circ}$  C. corrected for the contraction of the scale?

  Ans. 766.3 mm.
- 85. The reading of a barometer with a glass scale at  $-5^{\circ}$  C. is 753.2 mm. What is the reading at  $0^{\circ}$  C.?

  Ans. 753.8 mm.
- 86. What must be the reading on a barometer with a glass scale at 15° C., so that the pressure, at 0° C., may indicate 760 mm.?

Ans. 761.9 mm.

- 87. If sufficient water is placed in a vessel containing a dry gas that is at a temperature of 15° C. and a pressure of 753.8 mm. to thoroughly saturate it, what would be the pressure after saturation,* the temperature remaining constant?

  Ans. 766.53 mm.
- 88. If the atmosphere is saturated at 14° C. and 758 mm., what percentage by volume of water vapor does it contain?

  Ans. 1.58 per cent.
- 89. A gas, measured moist, has a volume of one liter, at 17.5° C., under a pressure of 758.9 mm. What is its volume, dry, under standard conditions?

  Ans. 919.9 cc.
- 90. 300 ccm. of a gas are measured, over water, at 15° C. and under a pressure of 765 mm. (a) What would be the volume of the gas, dry, at this temperature and pressure? (b) What is its volume, dry, under standard conditions?

  Ans. (a) 295.0 cc.; (b) 281.5 cc.
- 91. A certain reaction produces 22.4 liters of a gas measured at standard conditions. (a) What volume would the moist gas occupy at 18° C. and at standard pressure? (b) At 18° C. and 770 mm.?

Ans. (a) 24.36 liters; (b) 24.04 liters.

92. 500 ccm. of nitrogen are measured, over water, at 17° C., the barometer reading 750 mm. If the water stood 180 mm. in the tube, what would be the volume of the nitrogen, dry, at standard conditions?

Ans. 447.07 ccm.

- 93. 180.5 ccm. of air are saturated with moisture at 18° C. and 620.3 mm. pressure and is measured over mercury, the barometer reading 620.3 mm. The mercury stood 52 mm. in the tube. Find the volume of the air in the dry state and at standard conditions.

  Ans. 123.7 ccm.
- 94. 203 ccm. of chlorine gas at standard conditions are necessary to decompose a certain amount of hydrobromic acid gas, also at standard conditions. What is the volume of the hydrobromic acid gas?

Ans. 406 ccm.

95. If to a mixture of 100 ccm. nitrogen and of 200 ccm. oxygen, 500 ccm. of hydrogen are added, and the mixture exploded, (a) what is the resultant volume, if the water is allowed to condense? (b) What is the resultant volume, if the water stays in the gaseous state?

Ans. (a) 200 cc.; (b) 600 cc.

## SUCCESSIVE REACTIONS

When one chemical substance is the means of obtaining another, by means of a series of chemical reactions, that may of themselves be well defined, and it is desired to know the quantity of one of the two requisite to obtain a certain quantity of the other, it is unnecessary to calculate the quantities of the intermediate products. We need to know, only, how many molecules of the one substance are required to produce one molecule of the other. The ratio

^{*} For tension of aqueous vapor see p. 462.

of the molecules and, consequently, that of the molecular weights being given, the ratio of the weights of the substances under consideration is readily obtained.

For example, we wish to know the amount of ammonia involved in the production of one ton of anhydrous sodium carbonate by the Solvay process. The reactions involved are:

$$2 \text{ NH}_3 + 2 \text{ H}_2\text{O} + 2 \text{ CO}_2 = 2 \frac{\text{NH}_4\text{HCO}_3}{\text{NaCl}};$$
  
 $2 \text{ NaCl} + 2 \text{ NH}_4\text{HCO}_2 = 2 \frac{\text{Na} \text{ HCO}_3}{\text{NaHCO}_3} + 2 \text{ NH}_4\text{Cl};$   
 $2 \text{ NaHCO}_3 = \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2.$ 

From these equations, in which the underscored compounds are successively converted one into the other, we see that 2 molecules of ammonia are required to produce one molecule of sodium carbonate. The ratio of the molecules is:

$$2 \text{ NH}_3/\text{Na}_2\text{CO}_3 = 2 (17.03)/106 = 34.06/106$$

and the ratio of the weights of the two substances is:

X tons NH₃/1 ton Na₂CO₂ 34.06/106 = X/1, X = 0.3213 tons, or 642.6 pounds.

#### FACTORS

In gravimetric analysis the term factor represents the numerical value of a ratio.

 The factor of an element (sought), or of a group of elements (sought), forming part of one molecule, is the weight in grams of the element, or group of elements, contained in one gram of the substance of whose molecule they form a part.

2. The factor of the molecule of one of two chemically equivalent molecules represents the weight in grams of the molecule (sought), contained in

one gram of the other equivalent molecule.

Examples to Illustrate. — Factor of SO₃ in BaSO₄ = molecular weight SO₃: molecular weight BaSO₄ = 80.06: 233.46 = 80.06/233.46 = 0.3430, i.e., 0.3430 grams of SO₃ are contained in 1 gram of BaSO₄.

Factor of S in BaSO₄ = atomic weight S: molecular weight BaSO₄ = 32.07: 233.46 = 32.07/233.46 = 0.13738, i.e., 0.13738 grams of S are contained in 1 gram of BaSO₄.

Factor of Mg₂P₂O₇ corresponding to MgCl₂ · 6 H₂O = molecular weight  $Mg_2P_2O_7$ : 2 (molecular weight  $MgCl_2 \cdot 6 \cdot H_2O$ ) = 222.64: 2 (203.34) = 224.64/ 406.68 = 1.8266, i.e., 1.8266 grams of Mg₂P₂O₇ correspond to 1 gram of  $MgCl_2 \cdot 6 H_2O$ .

# "ASSAY-TON" SYSTEM

This system was devised by Prof. Charles W. Chandler of Columbia University. It saves long calculations in reporting the results of an assay of the ores of gold or silver, obtained in grams, the results being required in ounces Troy per ton of 2000 pounds avoirdupois. If an "assay ton," or 29.1666

grams, is used, the result in gold or silver, as weighed in milligrams, is ounces

per ton, without any further calculation.

The "assay ton" is derived as follows: One pound avoirdupois contains 7000 grains. One ton, 2000 pounds, contains 14,000,000 grains. One ounce Troy contains 480 grains. 14,000,000/480 = 29,166.6, or the number of Troy ounces in one ton. Thus, if we take this number of milligrams (29,166.6) of ore for an assay, each milligram of gold or silver found is equivalent to an ounce Troy in one ton of the ore.

Proof. — 1 mg.: 29,166.6 mg.: 480 grains (1 ounce Troy): 14,000,000 grains

(1 ton Avoirdupois).

#### **PROBLEMS**

96. Given the reaction:

$$PbCl_2 + K_2CrO_4 = PbCrO_4 + 2 KCl;$$
  
(278.02) (323.1)

- (a) What is the factor of lead chloride to lead chromate?
  (b) If 0.1784 grams of lead chromate are precipitated by an excess of potassium chromate from a solution containing lead chloride, how many grams of lead chloride were present?
  (c) How many grams of lead chromate are obtained from one gram of lead chloride?
  (d) How many grams of lead in 0.7325 grams of lead chromate?
  Ans. (a) PbCl₂/PbCrO₄ = 278.02/323.1 = 0.8604;
  - (b)  $0.1784 \times 0.8604 = 0.1535$  gr. PbCl₂;
  - (c) 1/0.8604 = 1.1622 gr. PbCrO₄; (d) Pb/PbCrO₄, 207.1/323.1 = x/0.7325 = 0.4695 gr. Pb.
- 97. Hydrous sodium carbonate may be converted into the anhydrous salt by heat according to the equation.

$$Na_2CO_3 \cdot 10 H_2O = Na_2CO_3 + 10 H_2O.$$
  
286.16 106.00 180.16

(a) How many pounds of anhydrous sodium carbonate may be obtained from 15 pounds of the crystallized salt? (b) What is the factor of hydrous sodium carbonate to anhydrous sodium carbonate? (c) If 17 pounds of hydrous sodium carbonate are converted into the anhydrous form, what is the loss in weight?

Ans. (a) 
$$(Na_2CO_3/Na_2CO_3 \cdot 10 H_2O) 106.0/286.16 = x/15$$
  
 $x = 5.5214 \text{ lbs.} Na_2CO_3;$ 

(b)  $Na_2CO_3 \cdot 10 H_2O/Na_2CO_3 = 2.6996$ ;

(c) The loss in weight is the water driven off. This problem may be solved in two ways: By using the factor found in (b), or by calculating the water directly.

17/2.6996 = 6.2973 lbs. Na₂CO₃ remaining; 17.000 - 6.2973 = 10.703 lbs. water driven off;

10  $\text{H}_2\text{O}/\text{N}_2\text{CO}_3 \cdot 10 \text{ H}_2\text{O} = (180.16/286.16)17 = 10.703 \text{ lbs. water driven off.}$ 

98. Sulphuric acid is made according to the equation

$$2 S + 3 O_2 + 2 H_2O = 2 H_2SO_4$$
.

- (a) If brimstone containing 97.00 per cent sulphur is used, how much sulphuric acid is obtained from one ton? (b) If pyrites containing 96 per cent FeS₂ is used to furnish the sulphur, how many tons are required to yield a ton of sulphuric acid?

  Ans. (a) 2.9667 tons; (b) 0.6371 tons.
- 99. (a) What is the percentage of manganese in pure potassium permanganate? (b) In potassium permanganate containing 2 per cent impurities?

  Ans. (a) 34.76 per cent; (b) 34.06 per cent.
- 100. Potassium antimonyl tartrate (tartar emetic) corresponds to the formula  $K_2H_2$  ( $C_4H_4O_6$ ).  $Sb_2O_3$ . (a) What are the percentages of the different elements in this compound? (b) What is the percentage of  $Sb_2O_3$ ? (c) Five gram of antimony are contained in how many grams of tartar emetic?

Ans. (a) K = 11.76 per cent, H = 1.52 per cent, C = 14.44 per cent, O = 36.11 per cent, Sb = 36.17 per cent;

(b) 43.39 per cent;

(c) 13.8245.

101. How many grams of chromic sulphide will be formed from 0.7182 gram of chromic oxide according to the equation:

$$2 \operatorname{Cr}_2 O_3 + 3 \operatorname{CS}_2 = 2 \operatorname{Cr}_2 S_3 + 3 \operatorname{CO}_2$$
?

Ans. 0.9460 gr.

102. What is the factor for the conversion  $Mg_2P_2O_7$  to  $P_2O_5$ ? (b) How many grams of phosphoric anhydride are contained in 0.7256 grams of magnesium pyrophosphate? (c) What is the factor for the ratio conversion  $(NH_4)_2PO_4 \cdot 12 \ MoO_3$  to  $P_2O_5$ ? (d) How many grams of phosphoric anhydrids are equivalent to 0.1500 gram of ammonium phosphomolybdate?

Ans. (a) 0.63793; (b) 0.46288 gr.; (c) 0.03784; (d) 0.0056765 gr.

103. Iodine may be obtained from potassium iodide according to the equations.

$$NaCl + H_2SO_4 = NaHSO_4 + HCl,$$
  
 $4 HCl + MnO_2 = MnCl_2 + 2 H_2O + Cl_2,$   
 $Cl_2 + 2 KI = 2 KCl + l_2.$ 

How much sodium chloride must be taken to produce 5 grams of iodine?

Ans. 4.606 gr.

104. The LeBlanc process for the manufacture of sodium carbonate is

$$2 \text{ NaCl} + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + 2 \text{ HCl.}$$
  
 $\text{Na}_2\text{SO}_4 + 2 \text{ C} = \text{Na}_2\text{S} + 2 \text{ CO}_2,$   
 $\text{Na}_2\text{S} + \text{CaCO}_3 = \text{Na}_2\text{CO}_3 + \text{CaS}.$ 

How many tons of sodium carbonate may be obtained from a ton of salt? Ans. 0.9066 tons.

105. From the equations,

AlCl₃ + 3 NH₄C₂H₃O₂ = Al(C₂H₃O₂)₃ + 3 NH₄Cl,  
Al(C₂H₃O₂)₃ + H₂O = Al(OH) 
$$\cdot$$
 (C₂H₃O₂)₂ + HC₂H₃O₂,  
2 Al(OH)  $\cdot$  (C₂H₃O₂)₂ + 8 O₂ = Al₂O₃ + 7 H₂O + 8 CO₂:

(a) How many grams of aluminum chloride are required to yield 0.3 gram of aluminum oxide? (b) How many grams of aluminum oxide are obtained from 0.8300 gram of aluminum chloride?

Ans. (a) 0.7836 gr.; (b) 0.3177 gr.

106. Sulphuric acid reacts with sodium hydroxide thus,

$$H_2SO_4 + 2 NaOH = Na_2SO_4 + 2 H_2O.$$

If 0.2073 grams of sulphuric acid are added to 0.1705 grams of sodium hydroxide, (a) how much sodium sulphate is formed and (b) which is left over, caustic alkali or acid, and how much?

Ans. (a) 0.3003 gr.; (b) 0.0014 gr. NaOH.

107. What are the percentages of the elements in ammonium phosphomolybdate (NH₄)₂PO₄ · 12 MoO₃ · 3 H₂O?

Ans. N = 2.18 per cent; O = 35.63 per cent; H = 0.93 per cent; Mo = 59.65 per cent; P = 1.61 per cent.

108. Regarding ammonium phosphomolybdate as made up of the radicals  $(NH_3)$ ,  $(H_2O)$ ,  $(P_2O_5)$ , and  $MoO_3$ , what is the percentage composition of these radicals in the molecule?

Ans.  $P_2O_4 = 3.69$  per cent;  $H_2O = 4.20$  per cent;  $NH_3 = 2.65$  per cent;  $MoO_3 = 89.47$  per cent.

• 109. Chrome iron ore is Cr₂O₃FeO, and may be converted into potassium dichromate as follows:

$$4 \text{ FeOCr}_2O_3 + 4 \text{ K}_2\text{CO}_3 + 4 \text{ CaO} + 7 \text{ O}_2 = 4 \text{ K}_2\text{CrO}_4 + 4 \text{ CaCrO}_4 + 2 \text{ Fe}_2O_3 + 4 \text{ CO}_2.$$

The calcium chromate is converted into potassium chromate,

$$CaCrO_4 + K_2SO_4 = CaSO_4 + K_2CrO_4$$

and potassium dichromate is obtained from the potassium chromate,

$$2 K_2 CrO_4 + H_2 SO_4 = K_2 SO_4 + H_2 O + K_2 CrO_4 \cdot CrO_3$$
.

How many tons of potassium dichromate can be obtained from a ton of chrome iron ore, if the conversion is complete, and the ore is 92 per cent FeCr₂O₄?

Ans. 1.2089 tons.

110. Sulphur dioxide may be produced by the reaction,

$$Cu + 2 H_2SO_4 = CuSO_4 + 2 H_2O + SO_2.$$

(a) How much copper and (b) how much of a 93.2 per cent H₂SO₄ must be taken to obtain 64 grams of sulphur dioxide?

Ans. (a) 63.50 gr.; (b) 210.3 gr.

111. How much superphosphate can be made from one ton of calcium phosphate, 93.5 per cent pure? The reaction is

$$Ca_3(PO_4)_2 + 2 H_2SO_4 = 2 CaSO_4 + CaH_4(PO_4)_2$$
.

Ans. 0.7056 tons.

# **OLEUM ANALYSIS**

When an oleum contains free sulphurous anhydride, an interesting and important case of indirect volumetric analysis results. Such an oleum contains sulphuric acid, sulphuric anhydride, and sulphurous anhydride. (There may be other impurities, such as solid particles, etc., but for these calculations, only the three constituents enumerated will be considered as being present. The method is easily extended so as to cover other impurities.) A weighed sample is dissolved in water and titrated with a standard alkali when all the constituents are acted upon as follows:

$$\begin{array}{ll} H_2\!S\!O_4 + 2 \ \mathrm{NaOH} = \mathrm{Na}_2\!S\!O_4 + H_2\!O; & S\!O_3 + H_2\!O = H_2\!S\!O_4; \\ H_2\!S\!O_3 + 2 \ \mathrm{NaOH} = \mathrm{Na}_2\!S\!O_3 + H_2\!O; & S\!O_2 + H_2\!O = H_2\!S\!O_3. \end{array}$$

The following is a typical example of an oleum analysis: Exactly 5 grams of an oleum are dissolved in water, and the volume is then made up to 500 cc. Of this solution 100 cc., equivalent to 1 gram of the sample, are titrated with N/10 iodine solution, of which 7.80 cc. are required. A similar portion is titrated with N/5 sodium hydroxide, using phenolphthalein* as the indicator, 122.81 cc. being required. To calculate the composition of the oleum:

1 mol. SO₂ (64.06) requires 1 mol. I (253.70), or 64.06/253.70;  
1 cc. N/10 Iodine sol. = 1 cc. N/10 SO₂=
$$\times \frac{64.06}{2 \times 10} \times \frac{1}{1000}$$
 = 0.003203 gr. SO₂;

hence, 7.8 cc. Iodine  $N/10 = 7.8 \times 0.003203 = 0.02498$  gr.  $SO_2 = 2.5$  per cent  $SO_2$ ; 122.81 N/5 solution = 245.62 cc. N/10 solution:

245.62 - 7.80 = 237.82 cc. N/10 NaOH;

required for the titration of the sulphuric acid, and the sulphur trioxide. (The 7.80 cc. are subtracted, this being the number of cc. of N/10 solution of sodium hydroxide used in neutralizing the sulphuric acid. If methyl orange had been used 253.42 cc. (254.62 + 7.80) of N/10 sodium hydroxide would have been required for the total acidity titration. Then 15.6 cc. (7.8 cc. to form NaHSO₃ and 7.8 cc. to form from this, Na₂SO₃) of N/10 solution would have had to be deducted from the 253.42 cc. N/10 sodium hydroxide that would have been required for the total acidity, leaving 237.82 cc. to take up the sulphuric acid and the sulphuric acid anhydride as before.)

^{*} Using phenolphthalein the following reaction takes place, H₂SO₂ + 2 NaOH = Na₂SO₂ + H₂O while with methyl orange the acid salt will be formed as follows: H₂SO₂ + NaOH = NaHSO₃. Digitized by Google

80.08 g.  $SO_3/2 \times 1000$  cc. nNaOH = 40.04/1000 cc. nNaOH = X g.  $SO_3/237.82 = 95.21$  per cent total  $SO_3$ . 95.21 per cent + 2.50 per cent = 97.71 per cent,  $SO_2 + SO_3$ . 100.00 per cent - 97.71 per cent = 2.29 per cent  $H_2O$ . 98.09 g.  $H_2SO_4/18.016$  g.  $H_2O = X$  per cent  $H_2SO_4/2.29$  per cent  $H_2O$ . = 12.47 per cent  $H_2SO_4$ .

100.00 per cent (of the oleum) - (12.47 per cent  $H_2SO_4 + 2.50$  per cent  $SO_2$ ) = 85.03 per cent free  $SO_3$  and so the oleum is composed of  $H_2SO_4 = 12.47$  per cent,  $SO_3 = 85.03$  per cent,  $SO_2 = 2.50$  per cent -100.00 per cent.

To calculate this problem algebraically, let x = percentage of H₂SO₄, y = percentage of SO₂, z = percentage of SO₂, A = total acidity, as H₂SO₄, f = factor, H₂SO₄/SO₂ = 98.09/80.07 = 1.22505.

Then,

$$x + y + z = 100, x + y = 100 - z, x = 100 - (y + z).$$

From the conditions of the problem:

x+y=100-z, x+fy=A. x=A-fy. Substituting in first equation, A-fy+y=100-z, or fy-y=-100+z+A, y (f-1)=A+z-100, y=(A+z-100)/(f-1)=(A+z-100)/0.22505=4.4436 (A+z-100).

Solving the problem given by this method:

Since z = 2.50 per cent (as before),

A = 237.82 cc. n/10 NaOH = 116.64 per cent H₂SO₄.

y = 4.4436 (116.64 per cent + 2.50 per cent - 100.00 per cent =  $4.4436 \times 19.14 = 85.05$  per cent.

x = 100.00 per cent (2.50 per cent + 85 per cent) = 12.45 per cent.

The result of the analysis then is:

12.45 per cent  $H_2SO_4$ , 85.05 per cent  $SO_3$ , 2.50 per cent  $SO_2$  (= 100.00 per cent).

# DILUTION AND CONCENTRATION OF LIQUIDS, OF MIXTURES, AND FORMATION OF ALLOYS OF DEFINITE COMPOSITION, ETC.

The course of reasoning, in each instance, will be analogous, if not the same. For the sake of simplicity liquids alone will be considered.

(1) Preparation of a definite amount of a dilute solution by diluting a strong solution of a substance with water or with a weak solution of the same substance.

General Discussion. — Let x be the weight in grams of the solution to be diluted, and let A be the number of grams of substance dissolved in 100 grams of this solution. This ratio of A grams to 100 grams of solution is called the concentration. The solution then is an A per cent solution. Water containing nothing of the substance dissolved in it, is therefore, in respect to the substance a 0 per cent solution.

Argument. — X = weight in grams of the solution of A per cent concentration that is to be diluted with a quantity of solution of B per cent concentration to form Z grams of a solution of D per cent concentration. Z - X = weight in grams of the solution of B per cent concentration, that, if mixed with X grams of the A per cent solution, will form Z grams of a D per cent solution.

(A/100) X = weight, in grams, of substance dissolved in X grams of the A per cent solution,

(B/100) (Z-X) = weight, in grams, of substance dissolved in Z-X grams of the B per cent solution.

(D/100)Z = weight, in grams, of substance dissolved in Z grams of the D per cent solution.

(2) Dilution of a definite amount of solution, thus producing a greater amount than this of a more dilute solution.

X = weight, in grams, of the B per cent solution to be added to Z grams of the solution, to be diluted, of A per cent concentration, to form of these Z + X grams of a weaker solution, a D per cent solution.

AZ = weight in grams of the substance dissolved in Z grams of the A per cent solution.

 $B\bar{X}$  = weight in grams of the substance dissolved in X grams of the B per cent solution.

D(Z + X) = weight in grams of the substance dissolved in Z + R grams of the D per cent solution.

$$AZ + BX = DZ + DX, X = Z(A - D)/(D - B).$$

Where we dilute with water, the B per cent solution, as before, is in fact a 0 per cent solution, and the expression becomes:

$$X = Z(A - D)/(D - O), X = Z(A - D)/D.$$

Example 1.— How many pounds of water must be added to 800 pounds of a 73 per cent H₂SO₄? Dilution with water.

$$X = 800(73 - 70)/70 = 34.39$$
 pounds of H₂O.

How much water must be added to 1000 cc. of a 0.1128 N solution to make a 0.1 N solution? As a N/10 solution has practically a density of one, the numbers indicating normality may be taken as volumes. To be very accurate the corresponding weights should be taken.

$$X = 1000 (0.1128 - 0.1000)/0.1000 = 128 \text{ cc. } H_2O.$$

Example 2. — How many pounds of a 62.18 per cent  $H_2SO_4$  must be added to 1000 pounds of a 98 per cent  $H_2SO_4$  to make of the whole a 93 per cent  $H_2SO_4$ ?

$$X = 1000 (98 - 93)/(93 - 62.18) = 162.2 \text{ pounds } 62.18 \text{ per cent } H_2SO_4.$$

Example 3. — How much 0.1012 N solution must be added to 1000 cc. of a 0.5009 N solution to make a 2 N/10 solution?

$$X = 1000(0.5009 - 0.2000)/(0.2000 - 0.1012) = 3045.5$$
 cc. of a 0.1012 N solution.



(3) Preparation of a definite amount of a stronger solution, from a weak solution, by the addition of a solution of a higher concentration than that of either of the two solutions on hand.

Let X = weight in grams of the C per cent solution, the one that will be diluted by mixing with a quantity of a solution of A per cent concentration necessary to make Z grams of a solution, stronger than the A per cent solution, and of a D per cent concentration.

Z-X = weight of the solution of A per cent concentration, that, together with X grams of the C per cent solution, will give Z grams of a D per cent solution.

$$CX + A(Z - X) = DZ$$
,  $X(C - A) = Z(D - A)$ ,  $X = Z(D - A)/(C - A)$ .

Example 1. — How many pounds of an 80 per cent acetic acid and of a 60 per cent acetic acid must be mixed to make 500 pounds of a 65 per cent acetic acid.

$$X = 500 (65 - 60)/(80 - 60) = 125$$
 pounds 80 per cent acetic acid.   
 $Z - X = 500 - 125$  = 375 pounds 60 per cent acetic acid.   
 $X + (Z - X) =$  = 500 pounds 65 per cent acetic acid.

Example 2. — How many cubic centimeters of a 0.0957 N and a 0.1120 N solution must be taken to make 1000 cc. of a 0.1 N solution.

$$X = 1000 (0.1000 - 0.0957)/(0.1120 - 0.0957) = 263.8 \text{ cc. of the}$$
  
 $0.112 \text{ N solution.}$   
 $Z - X = = 736.2 \text{ cc. of the } 0.0957 \text{ N solution.}$   
 $X + (Z - X) = = 1000 \text{ cc. N/10 solution.}$ 

= 1000 cc. N/10 solution.

(4) Concentration of a definite amount of solution, by the addition of a more concentrated solution of the same substance, thus producing a greater amount of a concentrated solution.

Let X = weight of the solution of C per cent concentration, that will be diluted by adding it to Z grams of an A per cent solution, necessary to make a quantity Z + X grams of a solution, stronger than the A per cent solution, and of a D per cent concentration.

$$CX + AZ = D(Z + X), X(C - D) = Z(D - A), X = Z(D - A)/(C - D).$$

Example. — How many pounds of an 80 per cent H₂SO₄ must be added to 980 pounds of a 35 per cent H₂SO₄, to strengthen the whole to a 40 per cent acid.

X = 980 (40 - 35)/(80 - 40) = 122.5 pounds 80 per cent H₂SO₄.

## FORMATION OF MIXTURES OF DEFINITE COMPOSITION

(1) Suppose we have two lots of soap powder in stock, one containing 25 per cent of soap, and the other 50 per cent of soap. We desire to make a soap powder containing 40 per cent of soap, for which we have an order calling for

1000 pounds. How many pounds of each of our stock powders must we mix to fill the order?

One lot contains 15 per cent less soap than the desired mixture, the other 10 per cent more. So if we take 15 parts of the richer mixture to 10 parts of the poorer one, we shall have a powder containing 40 per cent soap.

$$15/25 = x/100 = 60/100 = 60$$
 per cent.  
 $10/25 = y/100 = 40/100 = 40$  per cent.

60 per cent of 1000 pounds of the final mixture must be 600 pounds of the 50 per cent mixture.

40 per cent of 1000 pounds of the final mixture must be 400 pounds of the 25 per cent mixture.

600 pounds of the 50 per cent mixture contain 300 pounds of soap. 400 pounds of the 25 per cent mixture contain 100 pounds of soap.

Therefore, 1000 pounds of this 40 per cent mixture contain 400 pounds of soap as required.

(2) Problems of this character may also be solved as follows:

There are on hand two portions of iron, one containing 0.1 per cent of carbon while the other contains 0.25 per cent of carbon. How many pounds of each must be melted together to produce 1000 pounds of an iron containing 0.2 per cent of carbon.

Let x be the weight in pounds of the 0.25 per cent carbon iron, then 1000 - xis the weight required of the 0.1 per cent carbon iron in pounds. 0.25 per cent of x + 0.1 per cent of (1000 - x) = 0.2 per cent of 1000. 0.0025 x + 0.001  $(1000 - x) = 0.002 \times 1000$ . x = 666.67 or 666.67 pounds of the 0.25 per cent carbon iron, and 333.33 pounds of the 0.1 per cent carbon iron are required to produce 1000 pounds of an iron containing 0.2 per cent carbon.

## FORMATION OF MIXTURES OF SULPHURIC AND NITRIC ACIDS OF DEFINITE COMPOSITION (SO-CALLED "MIXED ACIDS")

"Mixed acid" is a commercial term, generally meaning a mixture of nitric and sulphuric acids. Such mixtures are extensively used in manufacturing processes. On account of the relatively high cost of concentrated nitric acid, compared with that of the dilute acid, the concentrated acid is diluted with a weak solution of the acid, instead of with water, using a minimum quantity of concentrated and a maximum quantity of dilute nitric acid. The sulphuric acid is added as 98 per cent acid, as here it is practically impossible to ship the dilute acid, it being a question of containers. Concentrated sulphuric acid hardly attacks iron, and so it can be readily shipped in iron drums or tanks.

Example 1. — A waste mixed acid left over from nitrating is composed of 60.12 per cent H₂SO₄, 20.23 per cent HNO₃ and 19.65 per cent H₂O. It is required to make a mixture of 1000 pounds, containing 60 per cent H₂SO₄, 22.5 per cent HNO₂, and 17.5 per cent H₂O. A 97.5 per cent H₂SO₄ and a

90.5 per cent HNO₃ are on hand. How many pounds of each of these two acids and of the waste acid must be taken to make the required mixture without adding any water?

Solution. — Let x be the weight of the waste acid, y the weight of 97.5  $H_2SO_4$  added, and z the weight of 90.5 per cent HNO₃ added.

Then x (0.6012) = weight of  $H_2SO_4$  (100 per cent) in the waste acid, y (0.975) = weight of  $H_2SO_4$  (100 per cent) actually added, when adding the 97.5 per cent acid, x (0.2023) = weight of  $HNO_3$  (100 per cent) in the waste acid, z (0.905) = weight of  $HNO_3$  (100 per cent) actually added, y (0.025) = weight of  $H_2O$  contained in the  $H_2SO_4$  (97.5 per cent), that was added, z (0.095) = weight of  $H_2O$ , contained in the  $HNO_3$  (90.5 per cent), that was added, x (0.1965) = weight of  $H_2O$ , in the waste acid.

One thousand pounds of the desired mixture must evidently contain 601.2 pounds H₂SO₄, 202.3 pounds HNO₃, and 196.5 pounds H₂O. Therefore, we

have the following equations:

```
(1) x (0.6012) + y (0.975) = 600 pounds H<sub>2</sub>SO<sub>4</sub>.

(2) x (0.2023) + z (0.905) = 225 pounds HNO<sub>3</sub>.

(3) x (0.1965) + y (0.025) + z (0.095) = 175 pounds H<sub>2</sub>O.

y = (600 - x 0.6012)/0.975 = 615.38 - x (0.61662).
z = (225 - x 0.2023)/0.905 = 248.62 - x (0.22353).
```

Substituting these two equations in equation (3), we obtain:

```
0.1965+15.38-0.01542 x+23.62-0.02124 x = 175.00.

0.15984x = 136, x = 850.85 \dots = 850.85 \text{ pounds of waste acid.}
```

Substituting in equation (1):

$$y = (600 - 511.53)/0.975 = 90.74 \dots$$
 = 90.74 pounds H₂SO₄ 95.7 per cent.

Substituting in equation (2):

Example 2.— It is desired to make a "mix" consisting of 60,000 pounds of a mixed acid to consist of 46 per cent H₂SO₄, 49 per cent HNO₃ and 5 per cent water. The H₂SO₄ is to be added in the form of 98 per cent acid, the HNO₃ in the form of 61.4 per cent and 95.5 per cent acid.

Solution.

```
60,000 \times 0.46 = 27,600 pounds H_2SO_4 are required. 60,000 \times 0.49 = 29,400 pounds HNO_3 are required. 60,000 \times 0.05 = 3,000 pounds H_2O are required. \frac{27,600}{10.98} = 28,163 pounds 98 per cent H_2SO_4 required,
```

60,000-28,163=31,837 pounds of a mixture of concentrated and dilute nitric acid to be added to the 28,163 pounds of the 98 per cent  $H_2SO_4$  to complete the required mixture.

Let

x = number of pounds of 95.5 per cent HNO₂ to be added.

Then

 $31.837 - x = \text{number of pounds of } 61.4 \text{ per cent HNO}_3 \text{ to be added.}$ 

Then

$$0.955x + 0.614(31,837 - x) = 29,400,$$

and solving

x = 28,891 pounds of 95.5 per cent HNO₃ to be taken. 31,837 - 28,891 = 2946 pounds of 61.4 per cent HNO₃ to be taken.

So to make the "mix," take:

28,163 pounds 98 per cent H₂SO₄
28,891 pounds 95.5 per cent HNO₃
2,946 pounds 61.4 per cent HNO₃
60,000 pounds total.

This same result might have been reached by means of the formulæ given to adjust the strengths of acids (1) to (4) page 556, according as to whether the acid is to be diluted or is to be strengthened. 29,400 pounds of absolute nitric acid are called for. The weight of nitric acid to be added, after the 98 per cent sulphuric acid is added, is 31,837 pounds, as before. We obtain the concentration of this acid as follows:

29,400/31,837 = x/100; x = 92.35 or the 29,400 pounds absolute nitric acid, if added to the 31,837 pounds of 98 per cent  $H_2SO_4$ , would produce a 92.35 per cent  $HNO_4$  solution that would be mixed with the 98 per cent  $H_2SO_4$  solution.

To make 31,837 pounds of a 92.35 per cent HNO₃ solution from a mixture of 95.5 per cent and 61.4 per cent nitric acids, employing formula (3) p. 558, we proceed as follows:

(92.35 - 61.4)/(95.50 - 61.4) = x/31,837 x = 28,896 pounds 95.5 per cent HNO₃ to be taken.

31,837 - 28,896 = 2941 pounds 61.4 per cent HNO₃ to be taken.

Example 3. — An example, involving the use of oleum, will now be considered: It is required to make 61,320 pounds of a mixed acid of the composition,

56 per cent  $HNO_3$  (add as 94.5 per cent  $HNO_3$ ), 41 per cent  $H_2SO_4$  (add as 98.56 per cent  $H_2SO_4$  and as 20 per cent oleum), and 3 per cent  $H_2O$ .

The tank in which the acid is to be mixed already contains 2604 pounds of the remains of a previous "mix" of the composition,

52 per cent HNO₃, 42.50 per cent H₂SO₄ and 5.5 per cent H₂O.

Solution.

 $61,320 \times 0.56 = 34,339$  pounds HNO₃,  $61,320 \times 0.41 = 25,141$  pounds H₂SO₄,  $61,320 \times 0.03 = 1840$  pounds H₂O.

 $2604 \times 0.52 = 1354$  pounds HNO₂,  $2604 \times 0.4250 = 1107$  pounds H₂SO₄,  $2604 \times 0.055 = 143$  pounds H₂O.

Thus we have:

Required: 25,141 pounds  $H_2SO_4$ , 34,339 pounds  $HNO_3$ , 1840 pounds  $H_2O$ ; In tank: 1,107 pounds  $H_2SO_4$ , 1,354 pounds  $HNO_3$ , 143 pounds  $H_2O$ ;

To be added: 24,034 pounds  $H_2SO_4$ , 32,985 pounds  $HNO_2$ , 1697 pounds  $H_2O$ .

24,034/0.9856 = 24,385 pounds 98.56 per cent  $H_2SO_4$  required.

(In attempting to work out the amounts requisite, by the previous method, it will be seen that the method will not work, for the reason that too much water would be introduced. The 24,385 pounds of 98.56 per cent sulphuric acid given above is a provisional figure that will have to be modified later.)

24,385 - 24,034 = 351 pounds  $H_2O$  that were added with the 98.56 per cent

H₂SO₄.

1,697 - 351 = 1346 pounds  $H_2O$  still to be added.

Adding this water with the nitric acid, would call for a stronger nitric acid, than the 94.5 per cent nitric acid on hand:

 $32,985 \text{ (HNO}_3) + 1346 \text{ (H}_2\text{O}) = 34,331 \text{ pounds HNO}_3 + \text{H}_2\text{O} \text{ still to be}$ 

added.

32,985/34,331 = x/100/x = 96.08 or a 96.08 per cent HNO₃ would be required.

Oleum will be required to take up this water.

32,945/0.945 = 34,905 pounds 94.5 per cent HNO₃ are required.

34,905 - 32,985 = 1920 pounds  $H_2O$  added with the 94.5 per cent HNO₂. 1920 - 1697 = 223 pounds  $H_2O$  added in excess.

These 223 pounds of water must be taken up by the 20 per cent oleum which will require 4955 pounds 20 per cent oleum.

 $80 (SO_3)/18 (H_2O) = x/223 = 991$  pounds free  $SO_3$ , and this is contained

in 4955 pounds, 991/20 = x/100 = 4955 pounds.

But as 85.31 is the percentage total of SO₂ in 20 per cent oleum, and as 81.63 is the percentage total of SO₂ in 100 per cent sulphuric acid, 20 per cent oleum is equivalent to 104.5 per cent H₂SO₄.

85.31/81.63 = x/100 = 104.5 per cent.

The addition of these 4955 pounds 20 per cent oleum corresponds to an addition of  $4955 \times 104.5/100 = 5178$  pounds of 100 per cent  $H_2SO_4$ . 24,034 pounds -5178 pounds 100 per cent  $H_2SO_4 = 18,856$  pounds 100 per cent  $H_2SO_4$  that are yet to be added.

This acid is to be prepared from 20 per cent oleum and from 98.56 per cent sulphuric acid. This 98.56 per cent acid contains 80.45 per cent of its weight  $SO_3$ : 80.06/100.00 = x/98.56. Using formula (3) page 555 and calculating on the  $SO_3$  content, we find that 4723 pounds of 20 per cent oleum are required. (Desired conc. — actual conc.)/(conc. strength sol. — actual conc.) × amount sol. desired or given = conc. stronger sol. to be added or taken. (81.63 — 80.4)/(85.31 — 80.4) × 18,856 = 4723 pounds.

The amount of 98.56 per cent H₂SOA that is to be added is now calculated,

and found to be 14,133 pounds.

Thus, 18,856 pounds 100 per cent  $H_2SO_4 - 4723$  pounds 20 per cent oleum = 14,133 pounds 98.56 per cent  $H_2SO_4$ .

Formula (1), p. 556, y = z - x, or amount weaker solution to be added or taken = amount of solution desired or given minus amount of stronger solution to be added or taken.

The total amount of 20 per cent oleum to be added is 9678 pounds = 4955

pounds + 4723 pounds = 9678 pounds.

And thus, to make the required mixture, we add to the acid already in the tank: 9678 pounds of 20 per cent oleum, 14,133 pounds of 98.56 per cent H₂SO₄, and 34,905 pounds of 94.5 per cent HNO₃.

## RECTANGLE METHOD FOR THE DILUTION AND CON-CENTRATION OF LIQUIDS AND MIXTURES, AND FOR THE FORMATION OF ALLOYS OF DEFINITE COMPOSITION

The figures expressing the percentage concentration of two solutions (or those of one solution, and the figure 0 for water, where dilution with water is desired) are written in the two left hand corners of a rectangle, and the figure expressing the desired concentration is placed on the intersection of the two

diagonals of this rectangle.

Now subtract the figures on the diagonals, the smaller from the larger, and write the result at the other end of the respective diagonal. These figures then indicate what quantities of the solutions whose concentration is given on the other end of the respective *horizontal* line, must be taken to obtain a solution of the desired concentration. For example, to make a 12 per cent solution, by mixing an 8 per cent and a 15 per cent solution we prepare Fig. 1



which indicates that we have to take 3 parts by weight of the 8 per cent solution and 4 parts by weight of the 15 per cent solution to obtain (7 parts by weight of) the 12 per cent solution.

Again, if we wish to dilute a 25 per cent solution so as to obtain a 9 per cent solution, we place the

figure 25 in, for example, the upper left corner of a rectangle and place the figure 0 (concentration of the solution in pure water) in the lower left corner, and then place the figure 9 (desired concentration) at the point of intersection of the diago-

corner, and then place the figure 9 (desired concentration) at the point of intersection of the diagonals, and subtracting across the diagonals, we obtain Fig. 2: 9 parts by weight of the 25 per cent solution, if mixed with 16 parts by weight of water, will give 25 parts by weight of a 9 per cent solution.*



1. To prepare a definite amount of a dilute solution, by diluting a strong solution of a substance with water, or with a weak solution of the same substance.

See examples 1 and 2 page 558.

* By A. Cobenal, Wiesloch, Baden. From Compendium der prakt. Photographic, Prof. F. Schmidt, 9th Ed. p. 379. See also for explanation, problems 1 and 2 under the heading: "Formation of Mixtures of Definite Composition," p. 558.

1. How many pounds of H₂O and how many pounds of a 60 per cent H₂SO₄ must be mixed to obtain 400 pounds of a 34.2 per cent H₂SO₄?





By Fig. 3, 34.2 parts of a 60 per cent H₂SO₄ and 25.8 parts of H₂O, if mixed, will give 60 parts (34.2 +25.8) of a 34.2 per cent H₂SO₄.

Or, 34.2/60 parts of a 60 per cent H₂SO₄ and 25.8/60 parts of H₂O will, if mixed, give 1 part of a 34.2 per cent H₂SO₄ and 400 parts of a 34.2 per cent H₂SO₄ will require 400 times these quantities of H₂SO₄ and of H₂O.

2. How many pounds of a 62.18 per cent H₂SO₄ must be added to 1000 pounds of a 98 per cent H₂SO₄

to make of the whole a 93 percent H₂SO₄:

Fig. 4 Argument same as above.

5 + 30.82 = 35.82. 5/35.82 of the 62.18 per cent acid +30.82/35.82 of the 98 per cent acid will give 1 part of a 93 per cent acid. Etc.

2. Dilution of a definite amount of solution, thus producing a greater amount than this of a more dilute solution.

See examples 1, 2, and 3 page 557.



(1) We wish to know the weight of water to be added to 800 pounds of a 73 per cent H₂SO₄ to make, of the whole, a 70 per cent acid. If 3 parts of H₂O added to 70 parts of a 73 per cent H₂SO₄ will give a 70 per cent acid, then X parts of H₂O added to 800 parts of a 73 per cent  $H_2SO_4$  will also give a 70 per cent acid: 3/70 =X/800, X = 34.29 pounds  $H_2O$ .

(2) How much 0.1012 N solution must be added to 1000 cc. of a 0.5009 N

solution to make of it a 2 N/10 solution?

If 0.3009 parts of the 0.1012 N solution added to 0.0988 parts of the 0.5009 N solution will produce a 2 N/10 solution, then X parts of the 0.1012 N solution added to 1000 cc. of the 0.5009 N solution will also give a 2 N/10 solution:

0.3009/0.0988 = X/1000, X = 3045.5 cc. 0.1012 N solution.

3. Preparation of a definite amount of a stronger solution from a weak solution, by the addition of a solution of a higher concentration than that of either of the two solutions on hand.

See example 1 page 558.

(1) How many pounds of an 80 per cent acetic acid and of a 60 per cent acetic acid must be mixed to make 500 pounds of a 65 per cent acetic acid?

Five pounds of the 80 per cent acid added to 15 pounds of the 60 per cent acid will give 20 pounds of a 65 per cent acid. 5/20 parts of the 80 per cent acid + 15/20 parts of the 60 per cent acid will require 500 times these quantities:

> $500 \times 5/20 = 125$  pounds 80 per cent acid,  $500 \times 15/20 = 375$  pounds 60 per cent acid.

4. Concentration of a definite amount of solution by the addition of a more concentrated solution of the same substance, thus producing a greater amount of a concentrated solution.

See example under (4) page 558.

(1) How many pounds of an 80 per cent H₂SO₄ must be mixed with 980 pounds of a 35 per cent H₂SO₄ to strengthen the whole to a 40 per cent acid? If 5 parts of an 80 per cent acid added to 40 parts of a 35 per cent acid will produce a 40 per cent acid, then X parts of an 80 per cent acid added to 980 parts of a 35 per cent acid will also produce a 40 per cent acid.

5/40 = X/980, X = 122.5 pounds of an 80 per cent H₂SO₄.

### DILUTION TO A CERTAIN SPECIFIC GRAVITY

The method to be described is not strictly accurate, on account of the small contraction of volume, on melting together of metal, when forming alloys, or when mixing solutions of different densities, but this does not introduce an error that is appreciable in ordinary work.

Under this head comes the problem that Archimedes had to solve: The problem of the Crown. The following discussion will explain the principles

involved.

How many parts by weight, x grams, of a metal of the specific gravity S, and how many parts by weight, y grams, of another metal of the specific gravity  $S_1$ , are there in n parts, by weight, of an alloy of these two metals, of the specific gravity  $S_2$ ,

$$x + y = n; \quad \frac{x}{S} + \frac{y}{S_1} = \frac{n}{S_2}; \quad \text{then} \quad y = n - x;$$
$$\frac{x}{S} + \frac{n - x}{S_1} = \frac{n}{S_2};$$

whence

and

whence 
$$S_1S_2x + SS_2n - SS_2x = SS_1n$$
, or  $x = \frac{nS(S_1 - S_2)}{S_2(S_1 - S)}$ .  
Similarly we obtain  $y = \frac{nS_1(S - S_2)}{S_1(S_1 - S_2)}$ .

#### **PROBLEMS**

112. What percentage of "Oil of Vitriol" (O. V.) (93.19 per cent H₂SO₄) is equivalent to 62.18 per cent of sulphuric acid (100 per cent)? (b) What percentage of 50° Bé sulphuric acid (62.18 per cent H₂SO₄) must be taken to be equivalent in strength to O. V.?

- (a) 62.18 per cent  $\times 100 = x$  per cent  $\times 93$ ,  $x \text{ per cent} = 62.18 \text{ per cent} \times 100/93.19.$ (b) 93.19 per cent  $\times$  100 = x per cent  $\times$  62.18,
- $x \text{ per cent} = 93.19 \text{ per cent} \times 100/93.19.$
- (a) 0.6219/0.9319 = x/100 = 66.72 per cent. (b) 0.9319/0.6219 = x/100 = 149.87 per cent.

113. What is the result of the analysis of an oleum containing  $SO_2$ , being given the following data:

For total acid, as SO₃:

Weight of oleum taken = 3.0570 gr. N/1 NaOH required = 74.30 cc.

For sulphur dioxide:

Weight of oleum taken = 7.0510 gr. N/10 I sol. required = 46.80 cc.

The reaction for the sulphurous acid and the iodine is

$$H_2SO_3 + I_2 + H_2O = H_2SO_4 + 2 HI.$$

Ans. Free SO₂ = 80.33 per cent; SO₂ = 2.13 per cent;  $H_2SO_4 = 17.54$  per cent.

114. What is the composition of an oleum, the data of the titration of which, having used phenolphthalein as an indicator, are as follows:

For total acid:

Weight of acid taken = 5.0000 gr. 1.112 N NaOH to neutralize = 99.95 cc.

For sulphur dioxide:

Weight of acid taken = 5.0000 gr. N/10 I sol. required = 39.00 cc.

Ans. Free SO₃ = 33.10 per cent.  $H_2SO_4 = 64.40$  per cent.  $SO_2 = 2.50$  per cent.

100.00 per cent.

115. 300 pounds of oleum containing 33% of free SO₃ and 67% of H₂SO₄ are equivalent to how many pounds of oil of vitriol (93.19% H₂SO₄)?

Ans. 345.82 lbs.

116. How many pounds of oleum containing 33% of free SO₂ and 67% of  $\rm H_2SO_4$  must be added to 100 pounds of 85%  $\rm H_2SO_4$  to make oil of vitriol?

Ans. 53.64 lbs.

117. (a) 600 pounds of an 89.55 per cent sulphuric acid is equivalent to how many pounds of oil of vitriol (93.19 per cent H₂SO₄)?

(b) And to how many pounds of  $50^{\circ}$  Bé sulphuric acid (62.18 per cent  $H_{s}SO_{4}$ )?

Ans. (a) 576.6 pounds; (b) 864.12 pounds.

118. What is the percentage of 100 per cent sulphuric acid, equivalent in strength (a) to a 20 per cent oleum? (b) To a 30 per cent oleum?

Ans.: (a) 104.5 per cent; (b) 106.75 per cent.

119. (a) What is the percentage of oil of vitriol equivalent in strength to a 25 per cent oleum? (b) What is the percentage of a 98 per cent sulphuric acid, equivalent in strength to a 35 per cent oleum?

Ans. (a) 113.34 per cent; (b) 110.08 per cent.

120. Calculate the amounts of acid required to make 34,000 pounds of a mixed acid to consist of 65.9 per cent  $H_2SO_4$ , 18.1 per cent  $HNO_3$ , and 16 per cent  $H_2O$ . There are still in the tank 3780 pounds of an acid, consisting of 42 per cent  $H_2SO_4$ , 52 per cent  $HNO_3$ , and 6 per cent  $H_2O$ . It is desired to employ, besides this acid in the tank, a quantity of acid that is on hand, and that is to be "worked off." This consists of 7000 pounds of a mixed acid composed of 64 per cent  $H_2SO_4$ , 28 per cent  $HNO_3$ , and 8 per cent water.

93.2 per cent H₂SO₄, 52.3 per cent HNO₃ and water are on hand, and are to be used to help give the mixture the desired composition. How many pounds of these two acids and of water are required to accomplish this?

Ans. 17,531 pounds 93.2 per cent H₂SO₄; 4260 pounds 52.3 per cent HNO₂; 1429 pounds water.

121. How many pounds of a 98 per cent and a 96 per cent sulphuric acid and a 61.4 per cent nitric acid must be taken to make 60,000 pounds of a mixed acid, to be composed of 46 per cent H₂SO₄, 48 per cent HNO₃, and 6 per cent H₂O?

Ans. 28,163 pounds 98 per cent H₂SO₄; 26,711 pounds 96 per cent HNO₅; 5126 pounds 61 per cent HNO₅.

122. It is required to make a mixed acid composed of 46 per cent H₂SO₄, 49 per cent HNO₃, and 5 per cent H₂O with the aid of a 96 per cent and a 61.4 per cent nitric acid, and of a 98 per cent sulphuric acid. How many pounds of each must be taken to prepare 60,000 pounds of the mixed acid?

Ans. 28,163 pounds 98 per cent H₂SO₄; 28,474 pounds 96 per cent HNO₅; 3363 pounds 61 per cent HNO₅.

- 123. How many pounds of a 95 per cent nitric acid and of a 30 per cent oleum must be added to each 1000 pounds of a mixed acid, composed of 43 per cent H₂SO₄, 51 per cent HNO₃, and 6 per cent H₂O, to convert this mixture into a mixed acid of the composition: 42 per cent H₂SO₄, 53 per cent HNO₃, and 5 per cent H₂O?
  - Ans. 137.07 pounds 95 per cent HNO₃; 71.38 pounds 30 per cent oleum.
- 124. It is required to make 61,320 pounds of a mixed acid of the composition, 41 per cent H₂SO₄, 56 per cent HNO₃, and 3 per cent H₂O. The mixing tank contains 2604 pounds of an acid composed of 52 per cent HNO₃, 42.5 per cent H₂SO₄, and 5.5 per cent H₂O. How many pounds of a 20 per cent

oleum, a 98.56 per cent sulphuric acid, and a 94.50 per cent nitric acid must be added to the acid already in the tank?

Ans. 4678 pounds 20.00 per cent oleum; 14,133 pounds 98.56 per cent H₂SO₄; 34,905 pounds 94.50 per cent HNO₃.

125. 37,000 pounds of a mixed acid are to be made. It is to consist of 41 per cent H₂SO₄, 52 per cent HNO₃, and 7 per cent H₂O. In the mixing tank there is still, from a former lot, a residue of 6720 pounds, consisting of 42 per cent H₂SO₄, 52.54 per cent HNO₃, and 5.46 per cent H₂O. How many pounds of a 98 per cent and a 94.7 per cent H₂SO₄ and a 61.4 per cent HNO₃ must be added to the acid already in the tank to make a mixture of the above composition?

Ans. 12,599.6 pounds of the 98 per cent  $H_2SO_4$ , 15,689.3 pounds of the 94.7 per cent  $HNO_2$ , and 1991.1 pounds of the 61.4 per cent  $HNO_2$ .

126. Sodium hydroxide and trisodium phosphate are to be determined in the presence of each other. Phenolphthalein reacts neutral to disodium phosphate; therefore, in titrating a mixture of these two salts with sulphuric acid, and employing phenolphthalein as an indicator, we have:

 $2 \text{ NaOH} + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + 2 \text{ H}_2\text{O},$   $2 \text{ Na}_2\text{PO}_4 + \text{H}_2\text{SO}_4 = 2 \text{ Na}_2\text{HPO}_4 + \text{Na}_2\text{SO}_4.$  45 cc. of 0.5 NH₂SO₄ are required for these titrations.

Methyl orange, which is alkaline to disodium phosphate, but neutral to monosodium phosphate, is now added, and the titration is continued with 0.5 N  $H_2SO_4$ :

 $2 \text{ Na}_{2}\text{HPO}_{4} + \text{H}_{2}\text{SO}_{4} = 2 \text{ Na}\text{H}_{2}\text{PO}_{4} + \text{Na}_{2}\text{SO}_{4}.$ 

35 cc. are required. What amounts of trisodium phosphate and of sodium hydroxide are present?

Ans. 0.20005 gr. NaOH; 2.8707 gr. Na₃PO₄.

127. What is the composition of a solution of mixed tri- and disodium phosphates, if the phenolphthalein titration requires 25 cc. of a 0.5 N sulphuric acid, and the methyl orange titration requires 35 cc. of a 0.5 N sulphuric acid, in addition?

Ans. 0.71025 gr. Na₂HPO₄; 2.0505 gr. Na₂PO₄.

128. What is the result of the analysis of an oleum containing SO₂, having given the following data:

For total acid, as SO₃:

Weight of oleum taken = 3.0570 gr. N/1 NaOH required = 74.30 cc.

For sulphur dioxide:

Weight of oleum taken = 7.0510 gr. N/10 I sol. required = 46.80 cc.

The reaction for the sulphurous acid and the iodine is

$$H_2SO_3 + I_2 + H_2O = H_2SO_4 + 2 HI.$$

Ans. Free  $SO_3 = 51.23$  per cent.  $SO_2 = 2.13$  per cent.

 $H_2SO_4 = 46.64$  per cent.

129. What is the composition of an oleum, the data of the titration of which, having used phenolphthalein as an indicator, are as follows:

For total acid:

Weight of acid taken = 5.0000 gr. 1.112 N NaOH to neutralize = 99.95 cc.

For sulphur dioxide:

Weight of acid taken = 5.0000 gr. N/10 I sol. required = 39.00 cc.

Ans. Free SO₃ = 33.10 per cent.  $H_2SO_4 = 64.40$  per cent.  $SO_2 = 2.50$  per cent. 100.00 per cent.

- 130. A solution of sulphuric acid, after testing is found to contain 0.049205 grams of acid per cubic centimeter. How many cubic centimeters of water must be added to a kilogram of this solution to make it N/1?

  Ans. 3.20 cc.
- 131. How much 0.2019 N sodium hydroxide and how much water must be taken to make 5 liters of N/10 sodium hydroxide? (Consider the densities of the two liquids to be the same, in this and other problems, unless otherwise mentioned.)

Ans. 2391.2 cc. NaOH; 2608.8 cc. H₂O.

132. 50 cc. of a solution (factor to N/10=1.005) correspond to 48.90 cc. of another solution. How many cubic centimeters of water, per liter, must be added to this second solution to make it N/10?

Ans. 28.00 cc.

- 133. How many grams each of a 0.5012 N and of a 0.1078 N solution must be mixed to make 5 kilos of a 2 N/10 solution?

  Ans. 756.6 gr. of the 0.1078 N solution; 234.4 gr. of the 0.5012 N solution.
- 134. How many pounds of an 80 per cent acetic acid must be added to a 92.60 per cent acetic acid to make 600 pounds of a 90 per cent acid?

Ans. 123.8 pounds 80.00 per cent acid; 476.2 pounds 92.60 per cent acid.

135. How many pounds of a 20 per cent hydrochloric acid must be added to 800 pounds of a 43 per cent hydrochloric acid to convert this quantity of acid into a 30 per cent acid?

Ans. 1040 pounds.

- 136. How many pounds each of a 30 per cent oleum and of a 98 per cent sulphuric acid must be mixed, to prepare 100 pounds of a 100 per cent sulphuric acid? (Calculate on the percentages of SO₃ present in each.)
  - Ans. 22.82 pounds 30 per cent oleum; 77.18 pounds 98 per cent H₂SO₄.
- 137. A solution of sulphuric acid, after testing it, is found to contain 0.049205 gram of acid per cubic centimeter. How many cubic centimeters of water must be added to a kilogram of this solution to make it N/1?

*Ans.* 3.20 cc.

- 138. How much 0.2019 N sodium hydroxide and how much water must be taken to make 5 liters of N/10 sodium hydroxide? (Consider the densities of the two liquids to be the same, in this and other problems, unless otherwise mentioned.)

  Ans. 2391.2 cc. NaOH; 2608.8 cc.  $H_2O$ .
- 139. 50 cc. of a solution (factor to N/10 = 1.005) correspond to 48.90 cc. of another solution. How many cubic centimeters of water, per liter, must be added to this second solution to make it N/10?

  Ans. 28.00 cc.
- 140. How many grams each of a 0.5012 N and of a 0.1078 N solution must be mixed to make 1 kilo of a N/5 solution?
- Ans. 756.6 gr. of the 0.1078 N solution; 234.4 gr. of the 0.5012 N solution.
- 141. How many pounds of an 80 per cent acetic acid must be added to a 92.6 per cent acetic acid, to make 600 pounds of a 90 per cent acid?

  Ans. 123.8 lbs. 80 per cent acid; 476.2 lbs. 92.6 per cent acid.
- 142. How many pounds of a 20 per cent hydrochloric acid must be added to 800 pounds of a 43 per cent hydrochloric acid to convert this quantity of acid into a 30 per cent acid?

  Ans. 1040 lbs.
- 143. How many pounds each of a 30 per cent oleum and of a 98 per cent sulphuric acid must be mixed to prepare 100 pounds of a 100 per cent sulphuric acid? (Calculate on the percentages of SO₃ present in each.)

  Ans. 22,82 lbs. 30 per cent oleum; 77.18 lbs. 98 per cent H₂SO₄.

# NEW BOOKS

## A LIST OF THE MORE IMPORTANT BOOKS WHICH HAVE BEEN PUBLISHED SINCE JULY, 1909

# AMERICAN AND ENGLISH BOOKS

## AGRICULTURE AND HORTICULTURE

American Fertilizer Handbook, 1910. A standard directory of the commercial fertilizer industry and allied trades. Illustrated. $8 \times 10$ .	
Cloth. 240 pp. Philadelphia, 1910net	\$3.00
Cameron, Frank, K.: The Soil Solution. The nutrient medium for plant growth. Illustrated. 6 × 9. Cloth. 141 pp. Easton, 1911net	1.25
Fritsch, J.: The Manufacture of Chemical Manures. Translated from the French, with numerous notes, by Donald Grant. 69 illustrations. 108 tables. $6 \times 8\frac{3}{4}$ . Cloth. 355 pp. London, 1911net	4.00
Hall, A. D.: Fertilizers and Manures. Illustrated. 12mo. Cloth. 399 pp. New York, 1909net	1.50
— The Feeding of Crops and Stock. An introduction to the science of the nutrition of plants and animals. With 24 illustrations and diagrams. 5½ × 8. Cloth. 314 pp. New York, 1911net	1.50
Hart, J. H.: Cacao. A manual on the cultivation and curing of cacao. 64 illustrations and plates. $6\frac{1}{4} \times 9\frac{1}{4}$ . Cloth. 333 pp. London, 1911net	3.00
Johnson, W. H.: The Cultivation and Preparation of Para Rubber. Second Edition, rewritten and greatly enlarged. 32 illustrations. 8vo. Cloth. 186 pp. London, 1909net	3.00
Kinch, E.: Church's Laboratory Guide. A manual of practical chemistry for colleges and schools, specially arranged for agricultural students. Ninth Edition, revised and largely rewritten. 45 illus-	
trations. $5\frac{1}{2} \times 7\frac{3}{4}$ . Cloth. 385 pp. New York, 1912net	2.50
Microbiology for Agricultural and Domestic Science Students. Edited by C. E. Marshall. 128 illustrations. $5\frac{3}{4} \times 8$ . Cloth. 746 pp. Philadelphia, 1911net	2.50
Murray, J. A.: Soils and Manures. 33 illustrations. 8vo. Cloth. 367 pp. (Van Nostrand's Westminster Series.) New York, 1910.	

Ville, M. G.: Artificial Manures: Their Chemical Selection and Scientific Application to Agriculture. New and Revised Translation by William Crookes and John Percival. Illustrated. 8vo. Cloth.	
388 pp. London, 1909net	<b>\$</b> 3.00
ANALYTICAL	
Allen's Commercial Organic Analysis. A treatise on the properties, modes of assaying, and proximate analytical examination of the various organic chemicals and products employed in the arts, manufactures, medicine, etc. With concise methods for the detection and estimation of their impurities, adulterations, and products of decomposition. Vol. V. Edited by W. A. Davis and S. S. Sadtler. Fourth Edition, entirely rewritten. Tannins, Analysis of Leather, Dyes and Colouring Matters, Inks. 6½ × 9½. Cloth. 714 pp. Philadelphia, 1911	5.00
ume 21 s. Zt. f. ang. Chem. 1911, 1215	
milk and dairy products. Translation by W. Goodwin, M.Sc. Ph.D. London, 1910. Cloth. 260 pp., 8°net	1.90
Baskerville, Prof. Charles and Dr. L. J. Curtman: College of the City of New York. Qualitative Analysis. New York, 1910. Cloth. 200 pp., 8°net	1.40
Battle, H. B. and Gascoyne, W. J.: Chemical conversion tables for the use in the analysis of commercial fertilizers, cotton seed, iron and food products, etc. 13 tables. 16mo. Leather. 80 pp. Thumb indexed. Baltimore, 1909net	3.00
Blyth, A. W., and Blyth, M. W.: Foods: Their Composition and Analysis. A manual for the use of analytical chemists and others. Sixth edition, thoroughly revised, enlarged and rewritten. Illustrated. 8vo. Cloth. 634 pp. London, 1909net	7.50
Bolton, F. C., S. E. Richards and Cecil Revis: Fatty Foods, Their Practical Examination. A handbook for the use of analytical and technical chemists. 7 Plates and 36 figures. Philadelphia	3.50
Byers, H. G., and Knight, H. G.: Notes on Qualitative Analysis. $6 \times 9$ . Cloth. 192 pp. New York, 1912net	1.50
Caven, R. M.: Systematic Qualitative Analysis for Students of Inorganic Chemistry. 8vo. Cloth. 240 pp. London, 1909net	1.25
Chesneau, M. G.: Ingenieur en chef des Mines: Professeur d'analyse minérale a l'école nationale des Mines. Theoretical Principles of the Methods of Analytical Chemistry Based upon Chemical Reactions. Authorized translation by A. T. Lincoln, Ph.D., Assistant Professor of Chemistry, Rensselaer Polytechnic Institute and D. H. Carnahan, Ph.D., Associate Professor of Romance Languages, University of	
Illinois. New York, 1910. Cloth. 184 pp., 8°net	1.75

Clowes, F., and Coleman, J. B.: Quantitative Chemical Analysis. Adapted for use in the laboratories of colleges and schools. Eighth Edition. Illustrated. 8vo. Cloth. 589 pp. London, 1909. net	<b>\$</b> 3.50
Darling, C. R.: Pyrometry. A practical treatise on the measurement of high temperatures. 60 illustrations. $5 \times 7\frac{1}{2}$ . Cloth. 212 pp. London, 1911	2.00
<b>Desch, Cecil H.:</b> The Chemistry and Testing of Cement. Illustrated. $5\frac{7}{8} \times 8\frac{3}{4}$ . Cloth. 277 pp. London, 1910net	3.00
Gardner, H. A., and Schaeffer, J. A.: The Analysis of Paints and Painting Materials. Illustrated. $6\frac{3}{8} \times 9\frac{3}{8}$ . Cloth. 109 pp. New York, 1911net	1.50
Gill, Augustus H.: A Short Handbook of Oil Analysis. Fifth Edition revised and enlarged. Illustrated. 12mo. Cloth. 179 pp. Philadelphia, 1909net	2.00
Given, A.: Methods for Sugar Analysis and Allied Determinations. The methods here presented are those which the author, from practice on a very large variety of substances, considers to be best adapted for the purposes in hand. Illustrated. $6\frac{1}{2} \times 9\frac{1}{2}$ . Cloth. 85 pp. Philadelphia, 1912 net	2.00
Gooch, Frank Austin: Professor of Chemistry in Yale University, and Philip Embury Browning, Assistant Professor of Chemistry in Yale University. Outlines of Qualitative Chemical Analysis. Second Edition, Revised. Small 8vo, vi + 145 pages. Clothnet	1.25
<b>Hampshire, C. H.:</b> Volumetric Analysis for Students of Pharmaceutical and General Chemistry. $5\frac{1}{4} \times 7\frac{3}{4}$ . Cloth. 112 pp. Philadelphia, 1912net	1.25
Johnson, A. E.: Analyst's Laboratory Companion. A collection of tables and data for the use of general analysts, agricultural, brewing, and works' chemists, and students; together with numerous examples of chemical calculations and concise descriptions of several analytical processes. 5 × 7½. Cloth. 176 pp. Philadelphia, 1912net	2.00
Johnson, C. M.: Rapid Methods for The Chemical Analysis of Special Steels, Steel-making Alloys and Graphite. Illustrated. 12mo. Cloth. 227 pp. New York, 1909	3.00
Leach, Albert E., S.B.: Chief of the Denver Food and Drug Inspection Laboratory, Bureau of Chemistry, U. S. Department of Agriculture. Food Inspection and Analysis. For the use of public analysts, health officers, sanitary chemists, and food economists. Second Edition, Revised and Enlarged. Large 8 vo. xviii + 954 pp. 120 figures. 40 full-page half-tone plates. Cloth	7.50
Low, Albert H., B.S.: formerly Chief Assayer, United States Mint, Denver. Fourth Edition, Revised. Technical Methods of Ore Analysis. 8vo. xii + 349 pages. Cloth	3.00

Lunge, George: Technical Methods of Chemical Analysis. English translation from the latest German edition; edited by C. A. Keane, in collaboration with eminent specialists. Vol. II. In two parts. 148 illustrations. $7 \times 9\frac{1}{2}$ . Cloth. 1291 pp. New York, 1911net \$ Previously published:  Vol. I. General Methods of Technical Analysis. (In two parts.)	18. <b>00</b>
Illustrated. $6\frac{1}{4} \times 9$ . $1024$ ppnet Mac Farlane, Walter: Laboratory Notes on Iron and Steel Analysis.	15.00
25 illustrations. 12mo. Cloth. London, 1909net	2.50
— A Practical Guide to Iron and Steel Works Analyses. Being selections from "Laboratory Notes on Iron and Steel Analyses." Illustrated. 5 × 7½. Cloth. 196 pp. New York, 1911net	1.25
Mason, William P.: Professor of Chemistry, Rensselaer Polytechnic Institute. Examination of Water. (Chemical and Bacteriological) Fourth Edition, Revised. 12mo. v + 167 pp., illustrated. Cloth	1.25
Moor, C. G. and Partridge, W.: Aids to the Analysis of Food and Drugs. Third Edition. 12mo. Cloth. London, 1909net	2.00
Mulliken, Samuel P.: Identification of the Commercial Dyestuffs. Being Volume III of A Method for the Identification of Pure Organic Compounds by a systematic analytical procedure based on physical properties and chemical reactions.	
—— Identification of Dyestuffs. 1. Aufl. 1910. 1910. New York. Zt. f. ang. Chem. 1910, 2085	<b>45.00</b>
Neave, G. B., and Heilbron, I. M.: Identification of Organic Compounds. $5 \times 7\frac{3}{4}$ . Cloth. 111 pp. New York, 1911net	1.25
Nelson, Burt E.: Introduction to the Analysis of Drugs and Medicines. An elementary handbook for the beginner. $5 \times 7\frac{1}{4}$ . Cloth. 396 pp. New York, 1910	3.00
Parry, L.: The Analysis of Ashes and Alloys. 8vo. Cloth. 151 pp. London, 1908net	2.00
Peckham, S. F.: Solid Bituminous. Their physical and chemical properties and chemical analysis, together with a treatment of the chemical technology of bituminous pavements. 29 illustrations. 8vo. Cloth. 324 pp. Chicago, 1909net	5.00
Price, W. B., and Meade, R. K.: Technical Analysis of Brass and the Non-Ferrous Alloys. Illustrated. 5½ × 7½. Cloth. 271 pp. New York, 1911net	2.00
Richards, Ellen H.: Laboratory Notes on Industrial Water Analysis.  A survey course for engineers. Second Edition, revised with additions. 8vo. Cloth. 59 pp. New York, 1910net	0.50
Rockwood, E. W., M.D., Ph.D.: Chemical Analysis for students of Medicine, Pharmacy and Dentistry. Illustrated. Fourth Edition.	1 50

Schimpf, Henry W.: A Manual of Volumetric Analysis for the use of	
pharmacists, sanitary and food chemists as well as students in these	
branches. Fifth Edition, revised and enlarged. 102 illustrations.	
8vo. Cloth. 745 pp. New York, 1909	\$5.00
- Essentials of Volumetric Analysis. An introduction to the subject,	
adapted to the needs of students of pharmaceutical chemistry. 58	
illustrations. $5\frac{1}{2} \times 8\frac{1}{2}$ . Cloth. 372 pp. New York, 1911net	1.50
Scott, Wilfred Welday: Qualitative Chemical Analysis. A laboratory	2.00
guide. Illustrated. 6½ × 9. Cloth. 176 pp. New York, 1910. net	1.50
Seamon, W. H.: A Manual for Assayers and Chemists. Determina-	1.00
tion of metals, acids, ores, slags and miscellaneous substances used in	
tion of metals, acids, ores, stags and miscentaneous substances used in	0.50
metallurgy. 5\frac{3}{4} \times 8\frac{1}{4}\$. Cloth. 355 pp. New York, 1910net	2.50
Sherman, H. C.: Methods of Organic Analysis. Second Edition, re-	
written and enlarged. Illustrated. $6\frac{1}{2} \times 9$ . Cloth. 425 pp.	
New York, 1912net	2.40
Smith, E. F.: Electro-Analysis. Fifth Edition, revised and enlarged.	
46 illustrations. $5\frac{1}{2} \times 7\frac{1}{2}$ . Leather. 340 pp. Philadelphia, 1911.	
net	2.50
Smith, J. R.: Modern Assaying. A concise treatise describing latest	
methods and appliances. Edited by F. W. Braun. 80 illustrations	
12mo. Cloth. 145 pp. Philadelphia, 1910net	1.50
Stieglitz, J.: The Elements of Qualitative Chemical Analysis. Parts	
I. and II., Fundamental Principles and Their Application. With	
special consideration of the application of the laws of equilibrium and	
of the modern theories of solution. $5\frac{3}{4} \times 8\frac{3}{4}$ . Cloth. 325 pp. New	
	1 40
York, 1911net	1.40
Stillman, Thomas B.: Engineering Chemistry. A manual of quantita-	
tive chemical analysis for the use of students, chemists and engineers.	
Fourth Edition. 174 illustrations. $6 \times 9$ . Cloth. 753 pp. Eas-	
ton, Pa., 1910net	5.00
Stocks, H. B.: Water Analysis for Sanitary and Technical Purposes.	
Illustrated. $5\frac{1}{2} \times 8$ . Cloth. 144 pp. London, 1912net	1.50
Stone, C. H., B.S., M.S.: Chief Inspector of Gas, Public Service	
Commission, Second District, New York. Practical Testing of Gas	
and Gas Meters. 8vo. x + 337 pp. 51 figures. Cloth	3.50
Sutton, Francis: A Systematic Handbook of Volumetric Analysis; or,	
the Quantitative Determination of Chemical Substances by Measure,	
Applied to Liquids, Solids and Gases. Tenth Edition, revised	
throughout, with numerous additions by W. Lincolne Sutton.	F F0
6½ × 8½. Cloth. 635 pp. Philadelphia, 1911net	5.50
Thorne, Baker T.: The Spectroscope. Its Uses in General Analytical	
Chemistry. New York. William Wood & Co., 1908. 8vo	1.75
Treadwell, F. P.: Analytical Chemistry. Vol. II. Quantitative	
Analysis. Translated by William T. Hall. Second Edition,	
thoroughly revised and enlarged. 110 illustrations. $6\frac{1}{4} \times 9\frac{1}{4}$ .	
Cloth. 797 pp. New York, 1910	4.00

Trotman, S. R.: Leather Trades Chemistry. A practical manual on the analysis of materials and finished products. 48 Illustrations. 8vo. Cloth. 300 pp. London and Philadelphia, 1908net	<b>\$</b> 4.50
Waterbury, L. A.: Laboratory Manual for the Use of Students in Testing Materials of Construction. 68 illustrations. $5 \times 7\frac{3}{4}$ . Cloth. 279 pp. New York, 1912net	1.50
Zerr, George: Tests for Coal-Tar Colors in Aniline Lakes: a review of the coal-tar coloring matters generally used in the lake industry and their behavior with distinct chemical reagents. Translated by Charles Mayer. 6½ × 9. Cloth. 230 pp. London, 1910	4.50
FOODS	
Armstrong, E. F.: The Simple Carbohydrates and the Glucosides. 8vo. Boards. 121 pp. London, 1910net Billing, G. T., and Walker, A. H.: Milk and Food Inspectors' Exami-	1.20
nations. Model answers to questions set by the Royal Sanitary Institute and other examining bodies. 5½ × 7½. Cloth. 164 pp.	1 50
London, 1911	1.50
Colored plates. $6\frac{3}{4} \times 9\frac{7}{8}$ . Cloth. 179 pp. Buffalo, N. Y. 1909 net	3.50
Grant, J.: The Chemistry of Breadmaking. 47 illustrations and 4 plates. $5 \times 7\frac{1}{2}$ . Cloth. 234 pp. New York, 1912net	1.40
Hawk, P. B., M.S., Ph.D.: Practical Physiological Chemistry. Fourth Edition revised. Six colored plates and 136 text figures (12 in colors.) 495 pp. Philadelphia	2.50
Jago, W., and Jago, W. C.: The Technology of Bread-Making. Including the chemistry and analytical and practical testing of wheat, flour, and other materials employed in bread-making and confectionery. 121 illustrations. 7 × 10. Cloth. 916 pp. London,	
1911net	7.50
Jordan, W. H.: Principles of Human Nutrition. A study in practical dietetics. Illustrated. $5\frac{3}{4} \times 8$ . Cloth. 475 pp. New York, 1912.	1.75
<b>Leathes, J. B.:</b> The Fats. $6\frac{1}{4} \times 9\frac{3}{4}$ . Boards. 138 pp. (Monographs on Biochemistry.) London, 1910net	1.25
Macewen, Hugh A.: Food Inspection. A practical handbook. Illustrated. 8vo. Cloth. 264 pp. London, 1910net	2.50
Monographs on Biochemistry: Ed. by R. H. Aders Plimmer and F. G. Hopkins. Longmans, Green & Co., London. 1. The chemical constitution of the Proteins. R. H. Aders Plimmer. 2 pts.; 1908. 100 + 66 pp. 2. The nature of Enzyme action. 90 pp. 1908. W. M. Bayliss. Z. f. Koll. 1909 ¹ , 44	
Murray, J. A.: The Economy of Food. A popular treatise on nutrition, food and diet. Illustrated. 5½ × 7½. Cloth. 265 pp. New	4 EU

 $\mathsf{Digitized} \ \mathsf{by} \ Google$ 

Annual Reports on the Progress of Chemistry for 1909. Issued by the	
Chemical Society. Volume VI. $5\frac{3}{4} \times 8\frac{1}{2}$ . Cloth. 293 pp. Lon-	
don, 1910net 1910. Vol. V11. $5\frac{1}{2} \times 8\frac{1}{2}$ . Cloth. 303 pp. London, 1911net	<b>\$</b> 2.00
1910. Vol. VII. $5\frac{3}{4} \times 8\frac{1}{2}$ . Cloth. 303 pp. London, 1911net	2.00
1911. Vol. VIII. J. C. Cain, Editor. 6 × 81. Cloth. 329 pp.	
London, 1912net	2.00
Baden-Powel, B. F. S. (Editor): The Science Year Book. With	
astronomical, physical and chemical tables; summary of progress in	
science and diary for 1910. Sixth year of issue. 8vo. Cloth.	
London, 1910net	2.00
Biltz, Heinrich: Introduction to Experimental Inorganic Chemistry.	
Authorized translation from the German by William T. Hall and	
Joseph W. Phelan, Instructors in Chemistry, Massachusetts Institute	
of Technology. 12mo. vi + 185 pp. Clothnet	1.25
Bingham, E. C., and White, George C.: A Laboratory Manual of In-	0
organic Chemistry. Illustrated. $5\frac{1}{4} \times 7\frac{3}{4}$ . Cloth. 155 pp. New	
York, 1911net	1.25
	1.20
Blanchard, A. A.: Synthetic Inorganic Chemistry. A laboratory	
course for first year college students. Illustrated. 12mo. Cloth.	1 00
97 pp. New York, 1908net	1.00
The British Journal of Photography, 1910. Fourth Colonial Num-	
ber Phot. Korr. 1910, 193	
The British Journal, photographic almanac and photographers daily	
Companion, 1910. Ed. by George E. Brown. 1909. Henry Green-	1 00
wood & Co., London. Phot. Korr. 1910, 99	1.00
Brown, James C. D., Sc., LL.D.: The History of Chemistry from the	
earlier times till the present day. 107 Ill. 573 pp. Philadelphia	3.50
Brundage, A. H.: A Manual of Toxicology. A concise presentation of	
the principal facts relating to poisons, with detailed directions for the	
treatment of poisoning. Also a table of doses of the principal and	
many new remedies. Seventh Edition, revised and profusely illus-	
trated. $4\frac{1}{4} \times 7\frac{1}{4}$ . Cloth. 438 pp. New York, 1911net	2.00
Burgess, G. K., and Le Chatelier, H.: The Measurement of High	
Temperatures. Third Edition, rewritten and enlarged. 179 illustra-	
tions. $6\frac{1}{4} \times 9\frac{1}{4}$ . Cloth. 528 pp. New York, 1912net	4.00
Chauvenet, R.: Chemical Arithmetic and Calculation of Furnace	
Charges. A systematic course in stoichiometric calculations. The	
present manual may serve either as a text-book, or as a convenient	
reference for the instructor. The author has included in the text all of	
the problems which he was accustomed to present to his classes in	
General Chemistry. $6\frac{1}{2}$ , $\times$ $9\frac{1}{2}$ . Cloth. 315 pp. Philadelphia, 1912	
net	4.00
	00
Czapek, F.: Chemical Phenomena in Life. 4½ × 7. Cloth. 162 pp.	0.75
London, 1911net	
Dreaper, W. P., F. I. C., F. C. S.: Notes on Chemical Research	1.00

Annual Reports on the Progress of Chemistry for 1909. Issued by the	
Chemical Society. Volume VI. 5\\\ 2\\ \text{8}\\\ \text{2}. Cloth. 293 pp. Lon-	
don, 1910net 1910. Vol. VII. $5\frac{3}{4} \times 8\frac{1}{4}$ . Cloth. 303 pp. London, 1911net	\$2.00
1910. Vol. VII. 5\(\frac{1}{4}\times 8\(\frac{1}{2}\). Cloth. 303 pp. London, 1911net	2.00
1911. Vol. VIII. J. C. Cain, Editor. $6 \times 8\frac{1}{2}$ . Cloth. 329 pp.	
London, 1912net	2.00
Baden-Powel, B. F. S. (Editor): The Science Year Book. With	
astronomical, physical and chemical tables; summary of progress in	
science and diary for 1910. Sixth year of issue. 8vo. Cloth.	
London, 1910net	2.00
Biltz, Heinrich: Introduction to Experimental Inorganic Chemistry.	
Authorized translation from the German by William T. Hall and	
Joseph W. Phelan, Instructors in Chemistry, Massachusetts Institute	
of Technology. 12mo. vi + 185 pp. Clothnet	1.25
Bingham, E. C., and White, George C.: A Laboratory Manual of In-	
organic Chemistry. Illustrated. 5½ × 7½. Cloth. 155 pp. New	
York, 1911net	1.25
Blanchard, A. A.: Synthetic Inorganic Chemistry. A laboratory	-:
course for first year college students. Illustrated. 12mo. Cloth.	
97 pp. New York, 1908net	1.00
The British Journal of Photography, 1910. Fourth Colonial Num-	1.00
ber Phot. Korr. 1910, 193.	
The British Journal, photographic almanac and photographers daily	
Companion, 1910. Ed. by George E. Brown. 1909. Henry Green-	
wood & Co., London. Phot. Korr. 1910, 99	1.00
Brown, James C. D., Sc., LL.D.: The History of Chemistry from the	1.00
earlier times till the present day. 107 Ill. 573 pp. Philadelphia	3.50
	3.50
Brundage, A. H.: A Manual of Toxicology. A concise presentation of	
the principal facts relating to poisons, with detailed directions for the treatment of poisoning. Also a table of doses of the principal and	
many new remedies. Seventh Edition, revised and profusely illus-	
trated. $4\frac{1}{4} \times 7\frac{1}{4}$ . Cloth. 438 pp. New York, 1911net	2.00
	2.00
Burgess, G. K., and Le Chatelier, H.: The Measurement of High	
Temperatures. Third Edition, rewritten and enlarged. 179 illustra-	4 00
tions. $6\frac{1}{4} \times 9\frac{1}{4}$ . Cloth. 528 pp. New York, 1912net	4.00
Chauvenet, R.: Chemical Arithmetic and Calculation of Furnace	
Charges. A systematic course in stoichiometric calculations. The	
present manual may serve either as a text-book, or as a convenient	
reference for the instructor. The author has included in the text all of	
the problems which he was accustomed to present to his classes in	
General Chemistry. $6\frac{1}{2}$ , $\times$ $9\frac{1}{2}$ . Cloth. 315 pp. Philadelphia, 1912	
net	4.00
Czapek, F.: Chemical Phenomena in Life. $4\frac{1}{2} \times 7$ . Cloth. 162 pp.	
London, 1911net	0.75
Dreaper, W. P., F. I. C., F. C. S.: Notes on Chemical Research	1.00

Dunstan, A. E., and Thole, F. B.: Text-book of Practical Chemistry	
for Technical Institutes. 52 illustrations. $5 \times 7\frac{1}{2}$ . Cloth. 345	
pp. London, 1911net	<b>\$</b> 1.40
Edmunds, E. W., and Hoblyn, J. B.: The Story of the Five Elements.	
43 illustrations. 8 plates. $5\frac{1}{4} \times 7\frac{3}{4}$ . Cloth. 272 pp. London,	
1911 net	1.25
Fenton, Henry J. H.: Outlines of Chemistry with Practical Work.	
Part I. 8vo. Cloth. 384 pp. Cambridge, 1909net	3.00
Field, Samuel: The Principles of Electro-Deposition. A laboratory	
guide to electro-plating. 120 illustrations. 5½ × 8. Cloth. 398	
pp. London, 1911net	1.80
Fowler, Gilbert J.: An introduction to Bacteriological and Enzyme	
Chemistry. Illustrated. $5\frac{1}{4} \times 7\frac{1}{2}$ . Cloth. 336 pp. New York,	
1911	2.10
Friend, J. N.: The Corrosion of Iron and Steel. Illustrated. $5\frac{1}{2} \times 8$ .	
Cloth. 315 pp. London, 1911	1.80
— The Theory of Valency. 12mo. Cloth. 194 pp. London,	1.00
1909net	1.60
Gooch, Frank Austin: Professor of Chemistry in Yale University and	1.00
Claude Frederic Walker, teacher of Chemistry in the High School of	
Commerce of New York City. Outlines of Inorganic Chemistry.	
Cloth. 514 pp., 8°net	1.75
Gooch, Frank Austin, and Claude Frederic Walker: Laboratory Ex-	1.70
periments to Accompany Outlines of Inorganic Chemistry. Paper.	
104 pp., 12°	0.50
Hale, A. J.: Practical Chemistry for Engineering Students. With an	0.50
introductory note by Professor R. Meldola. 58 illustrations.	
$5\frac{1}{2} \times 8$ . Cloth. 212 pp. New York, 1912net	1.00
	1.00
Hale, William J.: The Calculations of General Chemistry with Definitions, Explanations, and Problems. Second Edition, revised. 275	
problems. 16mo. Cloth. 185 pp. New York, 1909net	1.00
	1.00
Heinemann, P. G.: A Laboratory Guide in Bacteriology. Second	
Edition. 35 illustrations. $5\frac{1}{4} \times 7\frac{1}{2}$ . Cloth. 225 pp. Chicago,	1.50
1912net	1.50
Hilditch, T. P.: A Concise History of Chemistry. 16 diagrams.	1 0"
5 × 7½. Cloth. 273 pp. New York, 1911	1.25
Holleman, A. F., and Cooper, H. C.: A Text-book of Inorganic Chemis-	
try. Fourth Edition, completely revised. 77 illustrations, 2 colored	0.50
plates. $6\frac{1}{4} \times 9\frac{1}{4}$ . Cloth. 514 pp. New York, 1912	2.50
Houlievigue, L.: The Evolution of the Sciences. A popular treatise	
on Chemistry and Astronomy. Translated from the French. Illus-	0.00
trated. 8vo. Cloth. 338 pp. London, 1909net	2.00
Jago, William: A Manual of Forensic Chemistry, dealing especially	
with Chemical Evidence, its Preparation and Adduction. $5\frac{1}{4} \times 7\frac{3}{8}$ .	0.00
Cloth. 264 pp. London, 1909net	2.00
Digitized by Google	

Examination of Air and Water; Bacteria; Moulds; Yeasts; The Pure Culture of Yeast on a Large Scale. Translated by S. H. Davies. 101 illustrations. 6 × 8\frac{2}{3}. Cloth. 500 pp. London, 1911net	<b>\$</b> 4.50
Kahlenberg, Louis, Ph.D.: Professor of Chemistry and Director of the course in Chemistry in the University of Wisconsin. Outlines of Chemistry. A Text-book for College Students. New York, 1909. Cloth. 548 pp., 8°net	
Lafar, Franz: Technical Mycology: The utilization of micro-organisms in the arts and manufactures. A practical handbook on fermentation and fermentative processes. Translated by Charles T. C. Salter. In two volumes. London, 1910.  Vol. I. Schrzomycetic Fermentation. 99 illustrations. 1 plate.	2.00
6½ × 9½. Cloth. 828 pp	4.50 4.00 5.00
Lee, Edwin: A text-book of Experimental Chemistry. With descriptive notes for students of general inorganic chemistry. 57 illustrations. 12mo. Cloth. 433 pp. Philadelphia, 1909net	1.50
Lowell, Percival: The Evolution of Worlds. Illustrated. 8vo. Cloth. 275 pp. New York, 1909net	2.50
Martin, G.: Triumphs and Wonders of Modern Chemistry. A popular treatise on modern chemistry and its marvels, written in non-technical language for general readers and students. 76 illustrations. 24 plates. $5\frac{1}{2} \times 8\frac{1}{4}$ . Cloth. 378 pp. New York, 1911net	2.00
Mastin, John: The Chemistry, Properties and Tests of Precious Stones. $4 \times 6\frac{1}{2}$ . Leather. 114 pp. London, 1911	1.00
Morse, H. W.: Storage Batteries. The chemistry and physics of the lead accumulator. 106 illustrations. $5\frac{1}{2} \times 7\frac{1}{2}$ . Cloth. 271 pp. New York, 1912net	1.50
Mees, C. E. K.: An Atlas of the Absorption Spectra. Longmans.	
Ostwald, W.: Professor of Chemistry in the University of Leipzig. Conversations on Chemistry. Part II. The Chemistry of the Most Important Elements and Compounds. Authorized Translation by Stuart K. Turnbull. Second Edition, corrected. 12mo. viii + 373	
pp. 32 figures. Cloth	2.00
Hall and Robert S. Williams. 74 illustrations. 6 × 8½. Cloth. 378 pp. New York, 1911net	1.50
— The Fundamental Principles of Chemistry. An introduction to all text-books of chemistry. Authorized Translation by Harry W. Morse. 65 illustrations. 8vo. Cloth. 361 pp. New York, 1909.	2.25

Parsons, C. L.: The Chemistry and Literature of Beryllium. 8vo. Cloth. 180 pp. Easton, Pa., 1909net	2.00
<b>Partington, J. R.:</b> Higher Mathematics for Chemical Students. 44 illustrations. $5\frac{1}{4} \times 7\frac{3}{4}$ . Cloth. 278 pp. London, 1911net	2.00
Penrose's Pictorial Annual: The process yearbook. Ed. by William Gamble. Vol. 15, 1909–1910. Vol. 14, 1908–1909. A. W. Penrose & Co., London. Phot. Korr. 1909, 145; 1910, 297 Sl	h5.00
Roberts, E.: Famous chemists. New York. McMillan Co. 243 pp. net	
Pösch, V.: An Introduction to the Chemistry of Colloids. A compendium of colloidal chemistry for students, teachers and works managers. Translated from the Second Enlarged German Edition by H. H. Hodgson. $5 \times 7\frac{1}{2}$ . Cloth. 114 pp. London, 1910	1.25
Ramsay, Sir William: Essays, Biographical and Chemical. Illustrated. 12mo. Cloth. 254 pp. New York, 1909net	2.50
Ransom, J. H.: Experimental General Chemistry. Second Edition, revised. Illustrated. 5½ × 7½. Cloth. 155 pp. New York, 1911	1.00
Rohland, Dr. P.: The Colloidal and Crystalloidal State of Matter. Translated by W. J. Britland and H. E. Potts. 5 × 7½. Cloth. 54 pp. New York, 1912net	1.25
Schwedtman, F. C., and Emery, J. A.: Accident Prevention and Relief. An investigation of the subject in Europe, with special attention to England and Germany, together with recommendations for action in the United States of America. Illustrated. $6\frac{1}{2} \times 9\frac{1}{2}$ . Half morocco. 501 pp. New York, 1911	15.00
Segerblom, W.: Tables of Properties of over fifteen hundred common inorganic substances. 8vo. Cloth. 154 pp. Exeter, N. H., 1909	3.00
Seidell, Atherton: Solubilities of Inorganic and Organic Substances. A handbook of the most reliable quantitative solubility determinations. Second printing, with corrections. $6 \times 9\frac{1}{2}$ . Cloth. 375 pp. New York, 1911	<b>3</b> .00
Senter, G.: A Text-book of Inorganic Chemistry. 89 illustrations. $5\frac{1}{2} \times 7\frac{1}{2}$ . Cloth. 593 pp. New York, 1912net	1.75
Stoddard, John F.: Professor of Chemistry at Smith College. New York, 1910. Introduction to General Chemistry. Designed as a basis for the first year's course in Chemistry. Cloth. 432 pp. 8vo. net	1.60
The ABC Guide to Autotype Carbon Printing: Published by J. R. Sawyer in the year 1887, brought up to date. 1909. The Autotype Co., London. Phot. Korr. 1909, 603	
Tennant, A.: The American Annual of Photography, New York. G. Murphy. 328 pp	1.00

Thorpe, Edward: History of Chemistry. Vol. I. From the Earliest Times to the Middle of the Nineteenth Century. Illustrated. 16mo. Cloth. 210 pp. New York, 1909	<b>\$</b> 0.75
Travers, Dr. Morris W.: Assistant Professor of Chemistry, University College, London. The Experimental Study of Gases. With Introduction by Sir W. Ramsay. London, 1901. Cloth. 323 pp., 8°. net	3.25
Wadmore, J. M.: Elementary Chemical Theory. Illustrated. 5½ × 7½. Cloth. 290 pp. New York, 1912net	1.50
Watkins, A.: Photography. Its principles and applications. 100 illustrations. 5\(\frac{3}{4}\times 8\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.00
Wedekind, E. and J. Lewis. New Atomic Weight Curves. 21 pp. with 4 curves. 1910. Stuttgart: Ferdinand Curke	÷
Werner, A.: New Ideas on Inorganic Chemistry. Translated with the author's sanction from the second German Edition by E. P. Hedley. 6 × 9. Cloth. 284 pp. London, 1911net	2.50
Zsigmondy, Richard: Professor of Inorganic Chemistry in the University of Göttingen. Colloids and the Ultramicroscope. A Manual of Colloid Chemistry and Ultramicroscopy. Authorized Translation by Jerome Alexander, M.Sc. Small 8vo. xiii + 245 pp. Illustrated	
with line cuts and 2 plates in color. Cloth	3.00
MANUFACTURING AND INDUSTRIAL CHEMISTRY	
A . T ACT . 177	
American Institute of Chemical Engineers. Transactions. Vol. I, 1908. 41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New	
41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New York, 1909	6.00
41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New York, 1909	6.00
41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New York, 1909	6.00 6.00 6.00
41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New York, 1909	6.00 6.00 6.00 6.00
41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New York, 1909	6.00 6.00 6.00 6.00 2.00
41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New York, 1909	6.00 6.00 6.00 6.00 2.00
41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New York, 1909	6.00 6.00 6.00 2.00
41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New York, 1909	6.00 6.00 6.00 2.00 10.00 4.50
41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New York, 1909	6.00 6.00 6.00 2.00 10.00 4.50

Bourry, Emile: A Treatise on Ceramic Industries. A complete manual for pottery, tile, and brick manufacturers. A revised translation from the French by Alfred B. Searle. 308 illustrations. 5\frac{1}{4} \times 8\frac{1}{2}. Cloth. 488 pp. London, 1911	.00
6 × 8½. Cloth. 404 pp. London, 1911	.00
Blucher, H.: Modern Industrial Chemistry. Translated by J. P. Millington. Articles in Alphabetical Order. Illustrated. 7 × 9½. Cloth. 795 pp. Berlin, 1911	.00
Cloth. 795 pp. Berlin, 1911	.00
Cloth. 795 pp. Berlin, 1911	.00
Bourry, Emile: A Treatise on Ceramic Industries. A complete manual for pottery, tile, and brick manufacturers. A revised translation from the French by Alfred B. Searle. 308 illustrations. 5\frac{3}{4} \times 8\frac{1}{2}. Cloth. 488 pp. London, 1911	.00
manual for pottery, tile, and brick manufacturers. A revised translation from the French by Alfred B. Searle. 308 illustrations. 5½ × 8½. Cloth. 488 pp. London, 1911	.00
Brown's Directory of American Gas Companies. Gas Statistics.  Compiled and corrected by E. C. Brown. 7 × 10½. Cloth. 641  pp. New York, 1911	.00
Compiled and corrected by E. C. Brown. 7 × 10½. Cloth. 641 pp. New York, 1911	.00
pp. New York, 1911 5.	.00
D # 6 TT (0 + 1 + 6 36 6 + 1 D) + 61 + 61	
Bunnell, S. H.: Cost-keeping for Manufacturing Plants. $6\frac{1}{2} \times 9\frac{1}{2}$ . Cloth. 243 pp. New York, 1911	.50
Byrom, T. H., and Christopher, J. E.: Modern Coking Practice. Including the analysis of materials and products. 110 illustrations.	. 50
	.00
Calvert, G. T.: The Manufacture of Sulphate of Ammonia. 100	
illustrations. $5\frac{3}{4} \times 9$ . Cloth. 153 pp. London, 1911	.00
Chalon, P. F.: Les Explosifs Modernes. Third Edition. 217 illustrations. 7 × 9½. Cloth. 789 pp. Paris, 1911	.50
Chapin, H. M.: How to Enamel. Being a treatise on the practical enameling of jewelry with hard enamels. Illustrated. $5 \times 7\frac{1}{2}$ .	.00
Cirkel, Fritz: Graphite; Its Properties, Occurrence, Refining and Uses.  Illustrated with folding plates and maps. 7 × 10. Cloth. 307 pp.	
	.00
Cross, C. F., Bevan, E. J., and Sindall, R. W., with the collaboration of W. N. Bacon. Wood Pulp and Its Uses. 25 illustrations.	.00
	.00
Cushman, A. S., and Gardner, H. A.: The Corrosion and Preserva- tion of Iron and Steel. 67 illustrations. 8vo. Cloth. 373 pp. New York, 1910net 4.	.00
Dichmann, Carl: The Basic Open-Hearth Steel Process. Translated	
	50
Duncan, R. K.: Some Chemical Problems of To-day. Illustrated. $5\frac{3}{4} \times 8\frac{1}{2}$ . Cloth. 260 pp. New York, 1911net 2.	00
Durnford, E.: Manufacture of Nitro-Lignin and Sporting Powder.  The book is divided into parts which deal briefly with the Manu-	
facture of Nitro-Lignin, as a base for sporting powder, and the Man-	
ufacture of Sporting Powder, respectively. Illustrated. $5\frac{3}{4} \times 9$ .	
Cloth. 90 pp. London, 1912net 1.	90

manual. 88 illustrations. 8vo. Cloth. 330 pp. New York, 1909	Standpoint. Map and charts. 8vo. Cloth. 92 pp. New York, 1909	\$2.00
practice. Sixth Edition, revised and considerably extended. 63 illustrations. 5½ × 7½. Cloth. 292 pp. London, 1911net 3.00 Geerligs, H. C. P.: Cane Sugar and Its Manufacture. Large 8vo. Cloth. 377 pp. Manchester, 1909	1909net	4.00
Geerligs, H. C. P.: Cane Sugar and Its Manufacture. Large 8vo. Cloth. 377 pp. Manchester, 1909	practice. Sixth Edition, revised and considerably extended. 63	3.00
enameling sheet-iron and cast-iron ware, with useful information relating to all side lines. An exceptionally complete manual for self-instruction for all engaged in the trade. 5½ × 8½. Cloth. 88 pp. New York, 1910	Geerligs, H. C. P.: Cane Sugar and Its Manufacture. Large 8vo. Cloth. 377 pp. Manchester, 1909net	
Grünwald, Julius: The Theory and Practice of Enameling on Iron and Steel, with historical notes on the use of enamel. Translated by Herbert H. Hodgson. 8vo. Cloth. 138 pp. London, 1910	enameling sheet-iron and cast-iron ware, with useful information relating to all side lines. An exceptionally complete manual for self-instruction for all engaged in the trade. $5\frac{1}{2} \times 8\frac{1}{2}$ . Cloth. 88 pp.	10.00
Harden, Arthur: Alcoholic Fermentation. With tables. 6 × 9\frac{2}{3}.  Boards. 138 pp. New York, 1911	Grünwald, Julius: The Theory and Practice of Enameling on Iron and Steel, with historical notes on the use of enamel. Translated by	
Holley, Clifford Dyer, M.S., Ph.D.: Chief Chemist Acme White Lead and Color Works. Lead and Zinc Pigments. Large 12mo. xix + 340 pp. 85 figures. Cloth	Harden, Arthur: Alcoholic Fermentation. With tables. $6 \times 9\frac{3}{4}$ .	
Hornby, John: A Text-book of Gas Manufacture for Students. 1911. G. Bell & Sons, London. Zt. f. angew. Chem. 1912, S. 26  Humphrys, N. H.: Construction and Management of Small Gas Works. With a section on Actual Costs and capacity of recently erected works by J. H. Brearley. 48 illustrations. 5½ × 7½. Cloth. 270 pp. London, 1911	Holley, Clifford Dyer, M.S., Ph.D.: Chief Chemist Acme White Lead and Color Works. Lead and Zinc Pigments. Large 12mo.	
Works. With a section on Actual Costs and capacity of recently erected works by J. H. Brearley. 48 illustrations. $5\frac{1}{4} \times 7\frac{1}{2}$ . Cloth. 270 pp. London, 1911	Hornby, John: A Text-book of Gas Manufacture for Students.	3.00
Jones, L., and Scard, F. I.: The Manufacture of Cane Sugar. 224 illustrations. 8vo. Cloth. 473 pp. London, 1909	Works. With a section on Actual Costs and capacity of recently erected works by J. H. Brearley. 48 illustrations. $5\frac{1}{4} \times 7\frac{1}{2}$ .	2 00
Lowe, Houston: Paints for Steel Structures. 12mo. 115 pages 1.00  Lunge, George: Coal-Tar and Ammonia. Fourth and Enlarged Edition. In two volumes, not sold separately. 305 illustrations. 8vo. Cloth. 1210 pp. London, 1910	Jones, L., and Scard, F. I.: The Manufacture of Cane Sugar. 224	
Lunge, George: Coal-Tar and Ammonia. Fourth and Enlarged Edition. In two volumes, not sold separately. 305 illustrations. 8vo. Cloth. 1210 pp. London, 1910		
Cloth. 1210 pp. London, 1910	Lunge, George: Coal-Tar and Ammonia. Fourth and Enlarged Edi-	1.00
practical treatise. Vol. II. Sulphate of Soda, Hydrochloric Acid, Leblanc Soda. Third Edition, much enlarged. In two parts, not sold separately. 335 illustrations. 8vo. Cloth. 1044 pp. London, 1910		15.00
— Technical Chemists' Handbook. 283 pp. 12mo. Leathernet 3.50 — The Manufacture of Sulphuric Acid and Alkali, with the Collateral Branches. A theoretical and practical treatise. Vol. III., Ammo-	practical treatise. Vol. II. Sulphate of Soda, Hydrochloric Acid, Leblanc Soda. Third Edition, much enlarged. In two parts, not sold separately. 335 illustrations. 8vo. Cloth. 1044 pp. Lon-	15.00
—— The Manufacture of Sulphuric Acid and Alkali, with the Collateral Branches. A theoretical and practical treatise. Vol. III., Ammo-		
	— The Manufacture of Sulphuric Acid and Alkali, with the Collateral Branches. A theoretical and practical treatise. Vol. III., Ammo-	ა.ე⊍

nia Soda, Various Processes of Alkali Making and the Chlorine Industry. 181 illustrations. $6\frac{1}{2} \times 9$ . Cloth. 784 pp. New York, 1911net\$	310. <b>0</b> 0
Vols. I. and II. Previously published	
MacDonald, G. W.: Historical Papers on Modern Explosives. With an introduction by Sir Andrew Noble. Illustrated. $5\frac{1}{2} \times 8\frac{1}{2}$ . Cloth. 200 pp. London, 1912net	2.75
McIntosh, J. G.: The Manufacture of Varnishes and Kindred Industries. Based on and including the work of Ach. Livache. Second Edition, greatly enlarged. Vol. III., Spirit Varnishes and Spirit Varnish Materials. 64 illustrations. $5\frac{1}{2} \times 8\frac{3}{4}$ . Cloth. 500 pp. London, 1911	4.50
Masselon, Roberts et Cillard: Le Celluloid, Fabrication, Applications Substituts. 159 illustrations, 7 plates. $5\frac{1}{2} \times 9$ . hf. morocco. 534 pp. Paris, 1911net	6.75
Meade, R. K.: Portland Cement. Its composition, raw materials, manufacture, testing and analysis. Second Edition. 169 illustrations. 6½ × 9½. Cloth. 522 pp. Easton, Pa., 1911	
Mittelstaedt, Otto: Technical Calculations for Sugar Works. Translated from the Third German Edition by C. J. Bourbakis. 12mo.	4.50
Cloth. 128 pp. New York, 1910net	1.50
Molinari, Ettore: General and Industrial Inorganic Chemistry. Translated by Dr. E. Feilmann, B. Sc., F.I.C., Ph.D. From Third Italian Edition, revised. 720 pp. 280 illustrations and 3 plates. Philadelphia	6.00
— General and Industrial Organic Chemistry. Translated by T. H. Pope. From Third Italian Edition, revised. 506 illustrations. Philadelphia	
Morris, G. S.: The Bottlers' Formulary. Practical recipes, formulas and processes for making the soluble flavors used in the manufacture of carbonated beverages. $5\frac{1}{2} \times 7\frac{3}{4}$ . Cloth. 87 pp. Kansas	
City, 1910	5.00
Narmandy, F.: A practical manual on Sea Water Distillation. London. Griffin & Co. 8°. 104 pp.	6 S
Nicholson, T. Lee: Nicholson on Factory Organization and Costs.  Illustrated. 4to. Three-quarters morocco. 423 pp. New York, 1909:	12.50
Norton, C.: Book on Modern Yeasting and Distillation. Construction of Plants; Mashing; Yeasting; Fermentations; Distillation; Feed; Laboratory; Mycology. Illustrated. 6 × 8\frac{3}{4}. Cloth. 68 pp. Chicago, 1911.	
Otto, M.: L'Industrie des parfums, d'après les théories de la chemie moderne. Notations et formules. Les parfums naturels. Les parfums artificiels. Illustrated. 6½ × 9½. Cloth. 545 pp. Paris,	
1909	7.20

Paint Manufacturers' Association: First Annual Report on Wearing of Paints Applied to Atlantic City Fence. Illustrated. 8vo. Paper. 315 pp. Bulletin 16. Philadelphia, 1909	<b>\$</b> 5.00
burg Test Fence. Illustrated. 8vo. Paper. 301 pp. Bulletin 17. Philadelphia, 1909	5.00
Parry, Ernest J.: The Chemistry of Essential Oils and Artificial Perfumes. Illustrated. 8vo. Cloth. 554 pp. London and New York, 1908net	5.00
Potts, H. E.: The Chemistry of the Rubber Industry. $6\frac{1}{4} \times 9\frac{1}{2}$ . Cloth. 168 pp. London, 1912net	2.00
Reitzenbaum, S.: Important Decisions regarding The Working of German Patents. 12mo. Cloth. 48 pp. London, 1909net	1.00
Rise and Progress of the British Explosives Industry published under the auspices of the Seventh International Congress of Applied Chem- istry by its Explosives Section. Illustrated. 4to. Cloth. 432	F 05
pp. London, 1909net  Rogers, A., and Aubert, A. B.: Industrial Chemistry. A manual for the student and manufacturer. Edited by authors in collaboration with eminent specialists. 340 illustrations. $7 \times 9\frac{3}{4}$ . Cloth. 870	5.25
pp. New York, 1912net Sadtler, S. P.: Industrial Organic Chemistry. Adapted for the use of manufacturers, chemists, and all interested in the utilization of organic materials in the industrial arts. Fourth Edition, revised, enlarged and reset. 122 illustrations. 19 diagrams. 7 × 10.	5.00
Cloth. Philadelphia, 1912net	5.00
Sang, Alfred: Corrosion of Iron and Steel. The work is in great measure a compilation and study of the results obtained by other investigators and is intended as a compendium of the subject suitable for reference. 12mo. Cloth. 130 pp. New York, 1910net	1.00
Scherer, R.: Casein. Its preparation and technical utilization.  Translated from the German by Charles Salter. Second Edition, revised and enlarged. Illustrated. 5½ × 8½. Cloth. 196 pp.	1.00
London, 1911	3.00
Scott, W. G.: White Paints and Painting Materials. Source and manufacture, composition and properties; uses and formulas; physical tests and chemical analysis. 62 illustrations. 6½ × 9½.	5.00
Cloth. 527 pp. Chicago, 1910net	3.50

Seeligmann, T., Torrilhon, G. L., and Falconnet, H.: India Rubber and Gutta Percha. Translated by J. G. McIntosh. A complete practical treatise on India rubber and gutta percha in their historical, botanical, arboricultural, mechanical, chemical and electrical aspects. Second English Edition, revised and enlarged. 145 illustrations. 125 tables. 6½ × 9¾. Cloth. 424 pp. London, 1910.	
Seymour, Alfred: Modern Printing Inks. A practical handbook for printing ink manufacturers and printers. Illustrated. 8vo. Cloth. 90 pp. London, 1910net	<b>e</b> 2 00
Simmons, W. H., and Appleton, H. A.: The Handbook of Soap Manufacture. 27 Illustrations. 8vo. Cloth. 166 pp. London and New York, 1908	
Sindall, R. W.: The Manufacture of Paper. 58 illustrations. 8vo. Cloth. 285 pp. Van Nostrand's Westminster Series. New York,	
Thorpe, E.: A Dictionary of Applied Chemistry. In five volumes.  Vol. I. Revised and Enlarged Edition. Illustrated. 7 × 9½.	2.00
Cloth. 764 pp. London, 1912net  Toch, Maximilian: Materials for Permanent Painting. A manual for	13.50
manufacturers, art dealers, artists and collectors. Illustrated. $5\frac{1}{4} \times 7\frac{3}{4}$ . Cloth. 207 pp. New York, 1911net Wahl, R., and Henius, M.: American Handy Book of the Brewing,	2.00
Malting and Auxiliary Trades. A book of ready reference for persons connected with the brewing, malting and auxiliary trades, together with tables, formulas, calculations, bibliography and dictionary of technical terms. Third Edition, revised. Illustrated. 12mo. Leather. Two volumes. 1530 pp. Chicago, 1908net	19.00
Webner, F. E.: Factory Costs. A work of reference for cost accountants and factory managers. 230 illustrations. $6\frac{3}{4} \times 9\frac{1}{4}$ . Cloth.	12.00
611 pp. New York, 1911	6.00
Cloth. 262 pp. London, 1910net  Worden, Edward C.: Nitrocellulose Industry. A compendium of the history, chemistry manufacture, commercial application and analysis	
of nitrates, acetates and xanthates of cellulose as applied to the peaceful arts with a chapter on gun cotton, smokeless powder and explosive cellulose nitrates. Two volumes. 324 illustrations. $6\frac{1}{2} \times 9\frac{1}{2}$ . Cloth. 1239 ppnet	
MECHANICAL ENGINEERING, MINING, METALLURGY AND GEOLOGY	
Anderson, Fred A.: Boiler Feed Water. A practical treatise on its quality, effects and purification. 8vo. Cloth. 165 pp. London, net.	2 50

Austin, Leonard S.: The Metallurgy of the Common Metals. Second Edition, revised and enlarged. 195 illustrations. 8vo. Cloth. 494 pp. San Francisco, Cal., 1909net	\$4.00
Bain, H. Foster: More Recent Cyanide Practice. In this book are compiled the leading articles on cyanidation that have appeared since "Recent Cyanide Practice" was published. Illustrated. 6½ × 9½. Cloth. 424 pp. San Francisco, 1910	2.00
Borchers, W.: Metallurgy. A brief outline of the modern processes for extracting the more important metals. Authorized translation from the German by W. T. Hall and Carle R. Hayward. 218 illustrations. $6 \times 9$ . Cloth. 271 pp. New York, 1911net	3.00
Brislee, F. J.: An Introduction to the Study of Fuel. A text-book for those entering the engineering, chemical and technical industries. 60 illustrations. 61 × 9. Cloth. 293 pp. London, 1911net	3.00
Buchanan, John F.: Practical Alloying. A compendium of alloys and processes for brass founders, metal workers and engineers. Illustrated. 6½ × 9. Cloth. 205 pp. Cleveland, 1910	2.50
Clennell, J. E.: The Chemistry of Cyanide Solutions resulting from the treatment of ores. Second Edition, corrected and enlarged. 8vo. Cloth. 208 pp. New York, 1910net	2.50
The Cyanide Handbook. 8vo. Cloth. 531 pp. New York, 1910net	5.00
Collins, Henry F.: The Metallurgy of Lead. Being one of a series of treatises on metallurgy written by associates of the Royal School of Mines. Edited by Sir W. C. Roberts-Austin. Second Edition, thoroughly revised and enlarged. 315 illustrations. 7 × 9½. Cloth. 558 pp. London, 1910net	6.00
Coste, J. H.: Calorific Power of Gas. A treatise on calorific standards and calorimetry. 57 illustrations. Numerous tables. 5½ × 8. Cloth. 326 pp. London, 1911	2.00
Finlay, James R.: The Cost of Mining. An exhibit of the results of important mines throughout the world. Illustrated. 8vo. Cloth. 425 pp. New York, 1909net	5.00
Ford, W. E.: Dana's Manual of Mineralogy. For the student of elementary mineralogy, the mining engineer, the geologist, the prospector, the collector, etc. Thirteenth Edition, entirely revised and rewritten. 357 illustrations. 10 plates. 5½ × 7½. Cloth. 468 pp. New York, 1912net	2.00
Greene, A. M., Jr.: Pumping Machinery. A treatise on history, design, construction and operation of various forms of pumps. 502 illustrations. 6½ × 9½. Cloth. 709 pp. New York, 1911net	4.00
Gunther, C. G.: Electro-Magnetic Ore Separation. Illustrated. 8vo. Cloth. 200 pp. New York, 1909net	3.00

Harbord, F. W., and Hall, J. W.: The Metallurgy of Steel. Fourth Edition, enlarged and revised. 2 vols. 612 illustrations. $6\frac{1}{2} \times 9\frac{1}{4}$ .	10.00
Cloth. 1028 pp. London, 1911 set, nets Vol. I. Metallurgy, by F. W. Harbord Vol. II. Mechanical Treatment, by J. W. Hall	12.00
Hatfield, W. H.: Cast Iron. In the light of recent research. Composition and properties of. 164 illustrations. $6\frac{3}{4} \times 9$ . Cloth. 263 pp. London, 1912	3.50
Hoover, Herbert C.: Principles of Mining. Valuation, organization and administration. Copper, gold, lead, silver, tin and zinc. 45 illustrations. 8vo. Cloth. 205 pp. New York, 1909net	2.50
Joly, J., M.A., ScD., F.R.S.: Professor of Geology and Mineralogy in the University of Dublin. Radioactivity and Geology. An Account of the Influence of Radioactive Energy on Terrestrial History. 290 pp. $5 \times 7\frac{1}{2}$ inches. 8 illustrationsnet	3.00
v. Jüpner, Hanns: Heat Energy and Fuels: Pyrometry, Combustion, Analysis of Fuels and Manufacture of Charcoal, Coke and Fuel Gases. Translated by Oscar Nagel. 118 illustrations. 8vo. Cloth. 311 pp. New York, 1908net	3.00
Lake, E. F.: Composition and Heat Treatment of Steel. Making Pig Iron; Bessemer Open Hearth, and Crucible Processes and Electric Furnace for Steel Making; Working Steel into Shape; Furnaces and Fuels Used for Heat-Treatment; Annealing, Hardening, and Tempering Steel; Carbonizing. 143 illustrations. 6½ × 9½. Cloth. 252 pp. New York, 1910net	2.50
Levy, D. M.: Modern Copper Smelting. Lectures delivered at Birmingham University greatly extended and adapted, and with an introduction on the history, uses and properties of copper. 76 illustrations, 4 colored plates. $6\frac{1}{2} \times 9\frac{1}{4}$ . Cloth. London, 1912	3.50
Maclaren, J. M.: Gold. Its geological occurrence and geographical distribution. 213 illustrations, 38 plates. 6 × 9. Cloth. 662 pp. London	10.00
McMillan, W. G., and Cooper, W. R.: A Electro-Plating and Electro-Metallurgy Treatise on Electro-Metallurgy. Third Edition, revised and enlarged. 111 illustrations. $5\frac{3}{4} \times 8\frac{1}{2}$ . Cloth. 440 pp. London, 1910	4.00
Megraw, H. A.: Practical Data for the Cyanide Plant. 25 illustrations. $4\frac{1}{4} \times 6\frac{3}{4}$ . Leather. 93 pp. New York, 1910net	2.00
Nagel, Oscar: The Mechanical Appliances of the Chemical and Metallurgical Industries. Illustrated. 8vo. Cloth. 307 pp. New York, 1908net	2.00
North, Sydney, H.: Oil Fuel. Its supply, composition, and application. Revised throughout and greatly enlarged by Edward Butler. Second Edition. 106 illustrations. Folding plates. $5\frac{1}{2} \times 8$ . Cloth. 248 pp. London 1911	2.00

Illustrated. $5\frac{3}{4} \times 8$ . Cloth. 330 pp. New York, 1911net	\$1.80
Parry, L.: Systematic Treatment of Metalliferous Waste. Illustrated. 8vo. Cloth. 121 pp. London, 1909net	2.00
Parsons, S. J.: Malleable Cast Iron. Melting; Moulding; Annealing; Cleaning and Straightening; Design; Patterns; Inspection and Testing; Supplementary Processes; Application. 90 illustrations. 8vo. Cloth. London, 1909net	2.50
Philip, Arnold: The Electro-Plating and Electro-Refining of Metal. Second Edition, revised. Being a new edition of Alexander Watt's "Electro-Deposition." 162 illustrations. 6 × 8. Cloth. 704 pp. London, 1911net	4.50
Rose, T. Kirke: The Precious Metals. Comprising gold, silver and platinum mining, smelting and assaying. 46 illustrations. 8vo. Cloth. 311 pp. (Van Nostrand's Westminister Series.) New York, 1909net	2.00
Rowe, J. P.: Practical Mineralogy Simplified. For mining students, mines and prospectors. $5\frac{1}{4} \times 7\frac{3}{4}$ . Cloth. 162 pp. New York, 1911net	1.25
Ruer, Dr. Rudolf: Privatdozent at the University of Göttingen. Elements of Metallography. Authorized Translation by C. H. Mathewson, Ph.D., Instructor in Chemistry and Metallography at the Sheffield Scientific School of Yale University. 8vo. xiv + 342 pp. 119 figures. Clothnet	3.00
Sexton, A. H.: Alloys (Non-Ferrous). 137 illustrations. 8vo. Cloth. 298 pp. Manchester, 1909net	3.00
— and Primrose, J. S. G.: Common Metals (Non-Ferrous). The metallurgy of copper, tin, zinc, lead, antimony, aluminium and nickel. 185 illustrations. $6 \times 8\frac{3}{4}$ . Cloth. 491 pp. Manchester, 1911	3.00
Soap Maker's Handbook of Materials: Processes and Receipts for every description of soap. Edited chiefly from the German of Dr. C. Deite, A. Engelhardt, F. Wiltner and other experts. With additions by W. T. Brannt. Second Edition, revised and greatly rewritten. 54 illustrations. $6 \times 8\frac{3}{4}$ . Cloth. 535 pp. Philadelphia, 1912.net	6.00
Stevens, H. J.: The Copper Handbook. This book lists and describes 8130 mines and mining companies in all parts of the world. Vol. X., 1910–1911. Completely revised. $6 \times 9$ . Buckram. 1902 pp. Houghton, Michigan, 1911	5.00 7.50
Wang, C. Y.: Antimony for students manufacturers and users of antimony. 64 illustrations. 8vo. Cloth. 227 pp. London, 1909 net	4.00

## ORGANIC CHEMISTRY

Cohnheim, O.: Enzymes. Six lectures delivered under the Herter Lectureship Foundation at the University and Bellevue Hospital Medical College. 5\frac{1}{2} \times 7\frac{3}{4}. Cloth. 183 pp. New York, 1912. net	<b>\$</b> 1.50
Fischer, Emil: Introduction to the Preparation of Organic Compounds. Translated with the author's sanction from the New (Eighth) German Edition by R. V. Stanford. 19 illustrations. $5 \times 7\frac{1}{2}$ . Cloth. 194 pp. New York, 1910net	1.25
Keane, C. A.: Modern Organic Chemistry. 29 illustrations. 12mo. Cloth. 518 pp. London, 1909	1.50
May, Percy: The Chemistry of Synthetic Drugs. $6\frac{1}{4} \times 9$ . Cloth. 239 pp. New York, 1911net	2.25
Moore, F. J.: Outlines of Organic Chemistry. A book designed especially for the general student. Illustrated. 12mo. Cloth. 324 pp. New York, 1910net  Noyes, W. A., Prof.: Illinois. Organic Chemistry for the Laboratory.	1.50
2. durchgeseh. u. erweiterte Aufl. XI und 291 S. 1911. The Chemical Publishing Co., Easton, Pa. Zt. f. angew. Chem. 1911, S. 2156.	
Remsen, Ira: An introduction to the Study of the Compounds of Carbon or Organic Chemistry. Fifth revision. Illustrated. 12mo. Cloth. 441 pp. Boston, 1909net	1.20
Roscoe, H. E., and Schorlemmer, C.: A Treatise on Chemistry. Vol. I. The Non-Metallic Elements. Fourth Edition. 226 illustrations. $6 \times 9$ . Cloth. 967 pp. London, 1911net Previously published: Vol. II. The Metals. 259 illustrations. $6 \times 9$ . Cloth. 1400 pp. London, 1907net	5.00 7.50
Sidgwick, N. V.: The Organic Chemistry of Nitrogen. Illustrated. $6\frac{1}{2} \times 10$ . Cloth. 426 pp. Oxford, 1910net	4.75
Stewart, A. W.: Recent Advances in Organic Chemistry, with an introduction by J. W. Colie. 8vo. Cloth. 401 pp. London, 1908. net	2.50
Sudborough, J. J. and James, J. C.: Practical Organic Chemistry, 92 illustrations. 12mo. Cloth. 394 pp. London, 1909net	2.00
PHYSICAL CHEMISTRY	
Ewell, Arthur W.: A Text-book of Physical Chemistry, Theory and Practice. 102 illustrations. 63 tables. 12mo. Cloth. 379 pp. Philadelphia, 1909	2.25
Getman, Frederick H., Ph.D.: Associate in Chemistry, Bryn Mawr College, formerly Carnegie Research Assistant in Physical Chemistry Johns Hopkins University. Introduction to Physical Science. 12mo. vi + 257 pp. 129 figures. Clothnet	1.50
	00

Gibson, Charles R.: The Autobiography of an Electron. Wherein	
the scientific ideas of the present day are explained in an interesting	•
and novel fashion. Illustrated. $5 \times 7\frac{1}{2}$ . Cloth. 216 pp. Phila-	
delphia, 1910net	\$1.50
Jones, H. C.: Professor of Physical Chemistry in the Johns Hopkins University. Introduction to Physical Chemistry. New York, 1910.	
Cloth. 279 pp. 12°net	1.60
- The Electrical Nature of Matter and Radioactivity. Second	
Edition, completely revised. 8½ × 5½. Cloth. 218 pp. New York, 1910net	2.00
Kaye, G. W. C., and Laby, T. H.: Tables of Physical and Chemical	
Constants and some Mathematical Functions. $6\frac{2}{4} \times 9\frac{3}{4}$ . Flexible cloth. 160 pp. New York, 1911net	1.50
Lorentz, H. A.: The Theory of Electrons. 8vo. Cloth. London,	2.00
1909net	3.60
Morgan, J. Livingston R., Ph.D.: Professor of Physical Chemistry in	
Columbia University. Physical Chemistry for Electrical Engineers. Second Edition, revised. 12mo. x + 243 pp. Clothnet	1.50
	1.50
Perrin, M. Jean: Brownian Movement and Molecular Reality. Translated from the Annales de Chimie et de Physique. 8th series,	
September, 1909, by F. Soddy. Illustrated. $5\frac{1}{2} \times 8\frac{3}{4}$ . Cloth. 93	
pp. London, 1910net	1.25
Philip, T. C.: Physical Chemistry. Its bearing on biology and medi-	1.20
cine. Illustrated. $5 \times 7\frac{1}{2}$ . Cloth. 310 pp. London, 1910net	2.10
Prideaux, A. B. R.: Problems in Physical Chemistry. With practical	
applications. Illustrated. 6 × 9. Cloth. 325 pp. New York,	
1912net	2.00
Redgrove, H. S.: On the Calculation of Thermochemical Constants.	
8vo. Cloth. London, 1909net	1.70
Roth, W. A.: Exercises in Physical Chemistry. Authorized transla-	
tion by A. T. Cameron. 49 illustrations. 8vo. Cloth. 208 pp.	
London, 1909net	2.00
Senter, George: Outlines of Physical Chemistry. Illustrated.	
12mo. Cloth. 386 pp. London, 1910net	1.50
Second Edition, revised. 42 illustrations. $5 \times 7\frac{1}{2}$ . Cloth. 401	
pp. New York, 1911net	1.75
Smiles, Samuel: The Relations between Chemical Construction and	
some Physical Properties. Illustrated. $5\frac{1}{4} \times 7\frac{3}{4}$ . Cloth. 583 pp.	
London, 1910net	4.00
Soddy, F.: Chemistry of the Radio-Elements. $6 \times 8\frac{3}{4}$ . Cloth. 97	
pp. New York, 1911net	0.90
Stewart, A. W.: Recent Advances in Physical and Inorganic Chemis-	
try. With an Introduction by Sir William Ramsay. 25 illustra-	
tions 8vo. Cloth. 283 pp. London, 1909net	2.50
Digitized by Google	

Townsend, John S.: The Theory of Ionization of Gases by Collision. Illustrated. $5 \times 7\frac{1}{2}$ . Cloth. 99 pp. New York, 1911net	\$1.25
Tutton, A. E. H.: Crystalline Structure and Chemical Construction.  Illustrated. 8vo. Cloth. 204 pp. London, 1910net	1 60
indstrated. 646. Cloth. 201 pp. London, 1910net	1.00
TEXTILE INDUSTRY	
Barker, A. T.: Textiles. 86 illustrations. $6 \times 8\frac{1}{2}$ . Cloth. 387 pp.	
New York, 1911net Carter, H. R.: Bleaching, Dyeing and Finishing of Flax, Hemp and	2.00
Jute Yarns and Fabrics. 20 illustrations. $5\frac{1}{2} \times 8\frac{3}{4}$ . Cloth. 172	
pp. London, 1911net	1.00
Edge, J. H.: Notes on Practical Cotton Finishing. Illustrated. $5\frac{1}{2} \times 8\frac{1}{2}$ . Cloth. 102 pp. London, 1911net	2.00
Fay, Irving W.: The Chemistry of the Coal-Tar Dyes. $6\frac{1}{2} \times 9$ .	_,,,,
Cloth. 473 pp. New York, 1911net	4.00
Fernbach, R. L.: Chemical Aspects of Silk Manufacture. $5\frac{1}{2} \times 8$ . Cloth. 84 pp. New York, 1910net	1 00
Knecht, E., Rawson, C., and Lowenthal, R.: Manual of Dyeing. For	1.00
the use of practical dyers, manufacturers, students and all interested	
in the art of dyeing. Second Edition. Two volumes. 120 illustra-	
tions. 875 pp. London, 1910net	12.00
Kretschmar, Karl: Yarn and Warp Sizing in all its Branches. Translated from the German by C. Salter. 122 illustrations. $6\frac{1}{4} \times 10$ .	
Cloth. 192 pp. London, 1911net	4,00
Maire, F.: Colors, What They Are and What to Expect of Them. A	
series of practical treatises on development of the color-making in- dustry; preliminary study of colors; natural earth colors; chemically	
made colors; various divisions of groups of colors; black group of	
colors; brown group of pigments; raw and burnt umber; the	
mining of earth colors; the blue group of pigments; also the green, red, yellow and white; vehicles or thinness of pigments; system of	
grinding. Illustrated. $4\frac{1}{2} \times 8\frac{3}{4}$ . Cloth. 103 pp. Chicago, 1911.	0.60
Matthews, J. M.: Laboratory Manual of Dyeing and Textile Chemis-	
try. 8vo. Cloth. 375 pp. New York, 1909	3.50
Olney, Louis A.: Textile Chemistry and Dyeing. A manual of practical instruction in the art of textile bleaching and coloring, and	
allied processes of treatment including many useful hints and recipes.	
Illustrated. 8vo. Half leather. 343 pp. Chicago, 1909	3.00
Owen, F. A., B.S.: Dyeing and Cleaning of Textile Fabrics. A	
Handbook for the Amateur and the Professional. Containing a List of the Various Kinds of Dyes; the Art of Fixing Coloring-Matters, and	
Miscellaneous Recipes for Dyeing Cotton, Wool, Silk; the Prepara-	
tion of Cleaning Liquor; Bleaching; the Removing of Spots and Stains from Garments; the Washing of Silk and Cotton; the Wash-	
Digitized by GOOGLE	

Carpets, etc. Steam Cleaning, Dry Cleaning. Soaps, etc., etc. Based partly on notes of H. C. Standage. 12mo. vi + 253 pp. Cloth	\$2.00
Polleyn, F.: Dressings and Finishings for Textile Fabrics and Their Application. Description of all the materials used in dressing textiles; their special properties, the preparation of dressings and their employment in finishing lipen, cotton, woollen and silk fabrics, fire-proof and waterproof dressings, together with the principal machinery employed. Translated from the Third German Edition by Chas. Salter. 60 illustrations5\(\frac{3}{4} \times 8\frac{1}{2}\). Cloth. 279 pp. London, 1911	3.00
Practical Dry Cleaner, Scourer, and Garment Dyer. Edited by W. T. Brannt. Fourth Edition, revised and enlarged. 41 illustrations. 5½ × 7½. Cloth. 371 pp. Philadelphia, 1911net	2.50
Practical Manual of Cloth Finishing. Comprising the finishing of woollen, worsted and union fabrics. By the editors of "The Dyer and Calico Printer." Illustrated. 6½ × 9½. Cloth. 316 pp. London, 1911	8.40
Rothery, G. C., and Edmonds, H. O.: The Modern Laundry. Its construction, equipment and management. Including dry cleaning and dyeing, by A. Morris. In two volumes. $7\frac{3}{4} \times 10\frac{3}{4}$ . Half morocco. London, 1911	
Trotman, S. R., and Thorp, E. L.: Principles of Bleaching and Finishing of Cotton. 131 illustrations. 6½ × 9. Cloth. 359 pp. London, 1911net	5.00
WATER SUPPLY AND SANITATION	
Bailey, E. H. S., Ph.D.: Professor of Chemistry, University of Kansas. A Text-book of Sanitary and Applied Chemistry or The Chemistry of Water, Air, and Food. New York, 1906. Reprinted 1908, 1910. Cloth. 345 pp. 12°net	1.40
Baskerville, Chas.: Municipal Chemistry. A series of thirty lectures by experts on the application of the principles of chemistry to the city, delivered at the College of the City of New York, 1910. 251 illustrations. $16\frac{1}{2} \times 9\frac{3}{4}$ . Cloth. 535 pp. New York, 1911net	
Cosgrove, J. J.: History of Sanitation. Illustrated. 8vo. Cloth. 124 pp. Pittsburg, 1909.	1.50
—— Sewage Purification and Disposal. 71 illustrations. 8vo. Cloth. 229 pp. Pittsburgh, 1909	3.00
Don, John, and Chisholm, John: Modern Methods of Water Purification. 96 illustrations. 6 × 9. Cloth. 384 pp. London, 1911, net	4.20

Fuller, G. W.: Sewage Disposal. 80 illustrations. 7 × 9½. Cloth. 783 pp. New York, 1912net	<b>\$</b> 6.00
Kershaw, G. Bertram: Modern Methods of Sewage Purification. A guide for the designing and maintenance of sewage purification works. Illustrated tables, 36 plates. $6\frac{3}{4} \times 9$ . Cloth. 369 pp. London, 1911net	7.50
Kinnicutt, L. P., Winslow, C. E. A., and Pratt, R. W.: Sewage Disposal. Illustrated. $6 \times 9\frac{1}{2}$ . 440 pp. New York, $1910 \dots net$	3.00
Mathews, John L.: The Conservation of Water. Illustrated. 5 ² / ₄ × 8 ¹ / ₄ . Cloth. 299 pp. Boston, 1911	2.00
Moore, E. C. S. and Silcock, E. J.: Sanitary Engineering. A practical treatise on the collection, removal and final disposal of sewage and house refuse, and the design and construction of works of drainage and sewerage with numerous hydraulic tables, formulæ and memoranda including an extensive series of tables of velocity and discharge of pipes and sewers. Two volumes. 500 illustrations. 101	
folding plates. 160 tables. 8vo. Cloth. 880 pp. London, 1909.	14.00
Morse, W. F.: The Collection and Disposal of Municipal Waste. 91 illustrations. 100 tables. 8vo. Cloth. 500 pp. New York, 1909	5.00
Naylor, W.: Trades Waste. Its treatment and utilization. With special reference to the prevention of river pollution. 21 plates, 27 folding diagrams, and numerous illustrations. 6 × 9. Cloth. 283 pp. Philadelphia, 1912net	6.50
Ogden, H. N.: Rural Hygiene. 79 illustrations. $5\frac{1}{2} \times 8$ . Cloth. 451 pp. New York, 1911net	1.50
and Cleveland, H. B.: Practical Methods of Sewage Disposal. For residences, hotels and institutions. 52 illustrations and plates. 6½ × 9½. Cloth. 138 pp. New York, 1912	1.50
Richards, Ellen H.: Instructor in Sanitary Chemistry, Massachusetts Institute of Technology, and Alpheus G. Woodman, Assistant Pro- fessor of Food Analysis, Massachusetts Institute of Technology. Air, Water, and Food from a Sanitary Standpoint. Third Edition,	
revised. 8vo. 278 pp. Illustrated. Cloth	2.00
a laboratory guide for sanitary engineers.) Illustrated. 6½ × 9½. Cloth. 317 pp. New York, 1911	2.50
Trentham, W. H. and Saunders, James: Modern Methods of Sewage Disposal. A practical handbook for the use of members of local	
authorities and their officials. Illustrated. 12mo. Cloth. 68 pp.	1 25

# FOREIGN BOOKS, MOSTLY GERMAN

By CARL H. LIPS, B. S., PH. D.

The following list is made up of only such books as have been reviewed between August 1, 1908, and January 1, 1913, in such readily and generally accessible journals as the "Photographische Korrespondenz," "Zeitschrift für angewandte chemie," and "Zeitschrift für Chemie und Industrie der Kolloide."

In these reviews attention is often called to errors and misstatements. Valuable information relating to the subject matter of the book is frequently added by the reviewing specialist. This fact alone will make it worth while in many cases to look up the reference, whether one is interested in any particular book, or only in the subject matter covered by such a book.

#### AGRIKULTURCHEMIE UND DAZU GEHÖRIGES — FORSTWISSEN-SCHAFT

SCHAFT	
Baumhauer, Dr. Heinrich: Freiburg im Breisgau. Leitfaden der Chemie, insbes. zum Gebrauch an landwirtschaftlichen Lehranstalten. Zt. f. angew. Chem. 1911, S. 890, 2156. I. Teil: Anorg. Chemie, 6. Aufl. mit 34 Abb. 1911. Herdersche Verlagshandlung	M2.70 M1.80
Ehrenberg, Paul: Theoretische Betrachtungen über die Beeinflussungen einiger der sogen. physikalischen Bodeneigenschaften. Ein Anfangsversuch einer landwirtschraftlichen Kolloidchemie Sonderabdruch aus den Mitteilungen der landw. Inst. der Kgl. Universität Breslau. 1908. O. Parey, Berlin	
Grossmann, H.: Die Stickstofffrage und ihre Bedeutung für die deutsch. Volkswirtschaft. 1911. M. Krayn, Berlin. Zt. f. angew. Chemie, 1911, S. 1741	
Haselhoff, Emil, Prof.: Marburg. Agrikulturchemische Untersuchungsmethoden. 1909. G. J. Göschen, Leipzig. Zt. f. ang. Chem. 1910, 601	
Huber, Rob., Dr.: Zur Stickstofffrage. 116 S. 1908. Staempfli & Co. Zt. f. ang. Chem. 1909, 331.	
Jahresbericht über die Fortschritte auf dem Gesamtgebiete der Agrikulturchemie. Nr. 22, 3. Kolge, 1909; der ganzen Reihe 52. Jahrg. Hrsg. von Prof. Th. Dietrich, Hannover. 1910. Paul Parey, Berlin. Zt. f. ang. Chem. 1910, 2176	M28.00
Jurisch, Konrad W., Dr.: Salpeter und sein Ersatz. 356 S., 2 Bildwissen, 45 Abb. 1908. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1908, S. 2108	

596

Stickstoffdüngung. Sonderabdruck aus: "Salpeter und sein Ersatz." 1908. L. Hirzel, Leipzig	
Kaiser, Karl, Prof.: Der Luftstickstoff und seine Verwertung. Bd. 313 aus "Natur und Geisteswelt." 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem., 1911, 648	
Krische, Dr. P.: Argikulturchemie. (Sammlung aus Natur und Geisteswelt). B. G. Teubner, Leipzig. Zt. f. angew. Chem. 1912, S. 27	
Löhnis, Dr. F.: Landwirtschaftlich-bakteriologisches Praktikum. 3 Taf. und 40 Abb. 1911. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1912, S. 65geb.	M3.40
Passon, Max, Dr.: Kleines Handwörterbuch der Agrikulturchemie. 1. Teil Aadl-Kynurensäure. 2. Teil Lab-Zymogen. 1910. W. Engelmann, Leipzig. Zt. f. ang. Chem. 1910, 700,	M25.00
v. Schneider, W., Dr.: Mineralische Düngemittel und Ernteerträge. 1909. N. Kymmel, Riga. Zt. f. ang. Chem. 1910, 601	
Schröter, E.: Die Rauchquellen im Königreich Sachsen und ihr Einfluss auf die Forstwirtschaft. Heft 2 der Sammlung von Abh. über Abgase u. Rauchschäden. Hrsg. von H. Wislicenus. Paul Parey, Berlin. Zt. f. ang. Chem. 1910, 210	M4.00
Schucht, L.: Die Fabrikation des Superphosphats mit Berücksichtigung der anderen gebräuchlichen Düngemittel. Ein Handbuch.  3. verb. u. verm. Aufl. 1909. Vieweg & Sohn, Braunschweig.  Zt. f. ang. Chem. 1910, 162	M20.00
Stoklasa, Dr. J.: Biochemischer Kreislauf des Phosphations im Boden. 1911. Gustav Fischer, Jena. Zt. f. ang. Chem. 1912, S. 28	
ALLGEMEINE CHEMISCHE TECHNOLOGIE, WERKE UN ZEITSCHRIFTEN BETR. CHEMISCHE TECHNOLOGIE	īD
Adressbuch sämtlicher Bergwerke, Hütten und Nebenbetriebe Deutschlands, 1908–09. 5. Jahrg. 1908. H. Kramer, Dresden. Zt. f. ang. Chem. 1908, S. 2346	M6.00
Alt, Heinrich, Dr.: München. Die Kälte, ihr Wesen, ihre Erzeugung und Verwendung. Bd. 311, "Aus Natur u. Geisteswelt." 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1911, 791	
Asmus, Joh.: Torfkoks und Kraftgas. 1908. A. Seydel, Berlin. Zt. f. ang. Chem. 1909, 187	M1.00
Aufhäuser, Dr.: Hamburg. Vorlesungen über Brenntoffkunde. 1910. Boysen & Moasch. Zt. f. ang. Chem. 1910, 2040	M2.00
Beltzer, Francis J. G., Prof.: Paris. Die moderne industrielle Chemie. 2. Teil: Anorg. chem. Industrie: Die Metalloide, 687 S. 1909. Société d'Éditions techniques, Paris. Zt. f. ang. Chem.	•
1910, 743	e

Kunststoffe: Hrsg. von Dr. Richard Escales, München. Jährl. 24 Hefte. 1911. J. F. Lehmann, MünchenPro. Jahr. M	<b>M</b> 16.00
Lach, Bela: Die Stearinfabrikation. Bd. 15 d. monogr. über chemteclin. Fabrikations methoden. 180 S. W. Knapp, Halle. Z. f. Koll. 1911, 62. Zt. f. ang. Chem. 1909, 1290Brosch.	M6.40
Lehner, Sigmund: Die Kitte und Klebemittel. 7. verm. u. verb. Aufl. 1909. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1910, 363geh.	M1.80
Lunge, Georg, Prof.: Zürich, u. Dr. Ernst Berl. Chemisch-technische Untersuchungsmethoden. Unter Mitw. zahlr. Fachgenossen hrsg. 1. Bd. 6 vollst. umgearb. u. verm. Aufl. 1. Bd. Zt. f. ang. Chem. 1910, 1319. 1910. J. Springer, Berlin M.	<b>12</b> 0.50
Maercker, Max: Handbuch der Spiritus fabrikation. 9. vollst. neubearb. Aufl., herausgegeb. von Dr. M. Delbrück. 284 Textabb. u. 2 Tafeln. 1908. Paul Parey, Berlin. Zt. f. ang. Chem. 1908, 2297	
Mitreiter, Max, Dr.: Die Gewinnung des Broms in der Kalündustrie. Bd. 20, Monogr. üb. chem. techn. Fabrikationsmeth. 54 S. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 1867. Z. f.	M2.00
Nicolardot, Paul: Industrie des Métaux Secondaires et des Terres	M5.00
Nierenstein, M., Dr.: Bristol. Chemie der Gerbstoffe. Aus Sammlung chem. u. chemtechn. Vorträge. 58 S. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1910, 1992. Zt. f. ang.	M1.20
Ohlmüller, W. Dr., u. Prof. O. Spitta: Die Untersuchung und Beurteilung des Wassers und des Abwassers. 3. neubearb u. veränd. Aufl. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 1271 M	<b>1</b> 13.20
Ost, H., Prof.: Hannover. Lehrbuch der Chemischen technologie. 7. umgearb. Aufl. 293 Abb. u. 9 Tafeln. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, 1266	
Riemann, Karl, Dr.: Gewinnung und Reinigung des Kochsalzes. monogr, über chem u. chem. technische Fabrikationsmethoden. 1909. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 409	
Rüdisüle, A., Dr.: Bern. Die Untersuchungsmethoden des Eisens und Stahls. 1910. Max Drechsel, Bern. Zt. f. ang. Chem. 1911, 22	<b>1</b> 11.00
Scheithauer, W., Dr.: Die Schwelteere, ihre gewinnung und verarbeitung. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1911, 1361 M	
Schnabel-Kühn, Albert Erich, Dr.: Die Steinkohlengasindustrie in Deutschland in ihrer Bedeutung für die Volkswirtschaft und das moderne Städteleben. 1910. R. Oldenbourg, München, Berlin	M4.00

Stolzenwald, G.: Industrie des Sulfats, der Salzsäure und der Salpetersäure. Bibliothek der ges. Technik. 62 Band. 1907. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909 ¹ , 187	
Strache, H., Prof.: Die Fortschritte des Beleuchtungswesens und der Gasindustrie im Jahre 1909. Im Auftrage des Vereins der Gasund Wasserfachmänner in Österreich-Ungarn, zusammengestellt. 1910. Selbstverlag des Vereins, Wien. Zt. f. ang. Chem. 1911, 1171.	
Teichman, H., Dr.: Komprimierte und verflüssigte Gase. xii. u. 192 S. 38 Abb. im Text. 14. Bd. der Monogr. über chem. techn. Fabrikationsmethoden. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909 ¹ , 809. Z. f. Koll, 1910 ¹ , 126	
Tietjens, L., Dr., u. Dr. H. Rormer: Laboratoriumsbuch für die Kalündustrie. Aus Sammlung: Lab. Bücher f. d. chem. u. verw. Ind. Bd. 12. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 1361	M3.60
Urban, K., Dr.: Laboratoriumsbuch für die industrie der verflüssigten und Komprimierten Gase. 40 S. Bd. 7 — Laboratoriumsbücher, f. d. chem. u. verw. Industrien. 1909. W. Knapp, Halle. Z. f. Koll. 1910 ^t , 127	
Wedding, Hermann, Dr.: Ausführliches Handbuch der Eisenhüttenkunde. 2. vollk. umgearb. Aufl. Bd. 4. hilfgr. 2. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2617. Zt. f. ang. Chem. 1909, 2617	M16.00
ALLGEMEINE LEHRBÜCHER DER CHEMIE.	
Abel, Gustav, Prof.: Chemie in Küche und Hans. 2. vollst. umgearb. Aufl. von Dr. Joseph Klein. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1909, 2457	M1.25
Arnold, Carl, Dr.: Repetitorium der Chemie. 13. Aufl. 1909. Leopold Voss, Hamburg. Zt. f. ang. Chem. 1909, 1821	M7.00
G. J. Göschen, Leipzig. Zt. f. ang. Chem., 1910, 64  Bernthsen, A., Prof.: Ludwigshafer a. Rh. Kurzes Lehrbuch der organischen Chemie. 10. Aufl. Bearb. in Gemeinschaft mit Prof. E. Mohr. 640 S. 1909. Vieweg & Sohn, Braunschweig. Z. f. Koll. 1909 ¹ , 206	M0.80
Binz, A., Prof.: Chemisches Praktikum für Anfänger mit Berücksichtigung der Technologie. 1909. Georg Reimer, Berlin. Zt. f. ang. Chem. 1910, 64	
Dittrich, Max, Dr.: Chemisches Praktikum für Studierende der Naturwissenschaften. Analyt. Chemie. 1908. Carl Winter, Heidelberg. 7t. f. eng. Chem. 1908. 2562	

Emich, Prof. Friedrich, Graz. Lehrbuch der Mikrochemie. 30 Textabb., XIV + 212 S. 1911. J. F. Bergmann, Wiesbaden. Zt. f. ang. Chem. 1912, S. 371geh Erdmann, H., Prof.: Charlottenburg. Lehrbuch der anorganischen	M6.65
Chemie. 5. Aufl. Mit dem Porträt d. Verf. in Gravüre. 1910. Friedr. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1910, 2040	M17.00
Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1912, S. 113  Hahn, Hans, Dr.: Grundriss der Chemie für Techniker. 2. Teil, Bd. 148 der Bibliothek d. ges. Technik: Organische Chemie. 146 S. Zt. f. ang. Chem. 2. Teil: 1911, 840. Z. f. Koll, 1911 ¹ , 60.	M6.60
<ul> <li>1910. Dr. Max Jänecke, Hannover</li></ul>	
2. vollst. veränderte Aufl., mitbearb. von Dr. E. Ebler. 1909. Veit & Co., Leipzig. Zt. f. ang. Chem. 1910, 64	M10.00
Chemie. (Akademischer Vortrag gehalten in der Universität zu Bern am 9. Feb., 1911.) 1911. Max Drechsel, Bern. Zt. f. ang. Chem. 1911, S. 2402	
Kotte, E.: Lehrbuch der Chemie. 3. Teil-Org. Chemie. 1911. Bleyl & Kämmerer, Dresden-Blasewitz. Zt., f. aug. Chem. 1911, 1267	
Kümmell, Gottfried, Prof.: Rostock. Physikalisch-chemische Praktikumsaufgaben. VII u. 71 S. 1910. B. G. Teubner, Leip- zig u. Berlin. Zt. f. ang. Chem. 1911, 1029	M2.00
Kuspert, Franz, Dr.: Lehrgang der Chemie und Mineralogie für höhere Schulen. 1908. C. Koch, Nurnberg. Zt. f. ang. Chem. 1908, 1819.	
Ladenburg, Albert: Naturwissenschaftliche Vorträge in gemeinverständlicher Darstellung. 2. bedeut. verm. Auflage (Volksausgabe) 1 Tabelle u. 30 Abb. 1911. Akademische Verlagsgesellschaft m. b. H. Leipzig. Zt. f. ang. Chem. 1911, S. 1818	M5.00
Lassar-Cohn, Prof.: Konigsberg i. Pr. Einführung in die Chemie in leichtfasslicher Form. 3. verb. u. verm. Aufl. mit 60 Abb. XII u. 301 S. 1907. Leopold Voss, Hamburg, Leipzig. Zt. f. ang. Chem. 1908, 2056	M4.00
Linck, Gottlob, Dr.: Grundriss der Krystallographie für Studierende und zum Sellstunterricht. 604 Originalfig. 3 farb. lithogr. Tafelu. 2. Aufl. 1908. Gustav Fischer, Jena. Zt. f. ang. Chem. 1909, 808.	M11.00

 $\mathsf{Digitized} \ \mathsf{by} \ Google$ 

Meyer's Kleines Konversationslexikon. 7. gänzl. neubearb. u. verm. Aufl. 6 B'de in Halbleder-gebunden zu. Bd. 1-3. Z. f. Koll. Bd. 2. 382. Bd. 4-6. Z. f. Koll. 1908 ¹¹ , 188; 1909 ¹¹ , 228 Bibliographisches Institut, Wien u. Leipzigje. M1	12 00
Mikrokosmos: Zeitschrift für die praktische Betätigungaller Naturfreunde. (Mikroskopie.) 5. Jahrg. 12 Hefte u. 2 Gratisbuchbeilagen. Hrsgn. von Dr. Adolf Reitz. Franck, Stuttgart. Zt. f. ang. Chem. 1911, 1140	
Mohr, Ernst, Prof.: Anleitung zum zweckmässigen Rechnen bis chemischen, präparativen Arbeiten. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 2218	
Ochs, Rudolf: Einführung in die Chemie. 218 Textfig., 1 Spektraltafel, VIII u. 204 S. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 411	[6.00
Oppenheimer, Carl, Prof.: Grundriss der anorganischen Chemie.  6. Aufl. VII u. 171 S 1910. Georg Thieme, Leipzig. Zt. f. ang. Chem. 1911, 22	[3.50
Riesenfeld, C. H., Prof.: Freiburg i. Br. Anorganisch-chemisches Praktikum Qual. Analyse u. anorgan. Praeparate. 2. Aufl. 13 Abb. XII u. 340 S. 1910. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1911, 20	[6.00
von Richter, V.: Richters Chemie der Kohlenstoffverbindungen oder organische Chemie. 11. Aufl Bearb. von Prof. Anschütz u. Dr. G. Schroeter, Bonn. 1. Bd.: Die Chemie der Fettkörper. 1909. Friedrich Cohen, Bonn. Zt. f. ang. Chem. 1909, 2266 M2	
<ul> <li>Sackuf, Otto, Dr.: Breslau. Einführung in die Chemie. Ein Lehrbuch für Zahnärzte u. Studierende der Zahnheilkunde. Unter Mitw. von Dr. med Erich Feiler-Breslau, hrsg. von Dr. O. Sackur, 123 S. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 647. M</li> </ul>	[3.80
Scheffer, W.: Wirkungsweise und Gebrauch des Mikroskops und seiner Hilfsapparate. VII u. 116 S. 1911. B. G. Teubner, Ber- lin. Zt. f. ang. Chem. 1912, S. 830	
Schwarze, Dr. W.: Hamburg. Vorschule der Chemie. 66 Abb. 1911. Leopold Voss, Hamburg u. Leipzig. Zt. f. ang. Chem. 1911, S. 1741	<b>I</b> 1.80
Smith, Alex., Prof.: New York. Einführung in die allgemeine und anorganische Chemie auf elemtarer Grundlage. Unter Mitwirk. des Verf. übers. u. bearb. von Dr. E. Sterm. 1909. G. Braun,	
Praktische Übungen zur Einführung in die Chemie. Übers. von Prof. F. Haber u. Dipl. Ing. F. Hiller. 175 S. 1910. G. Braun,	19.00
Karlsruhe. Zt. f. ang. Chem. 1911, 112	13.60
520 S. gr. 8°. 1910. J. J. Weber, Leipzig. Zt. f. ang. Chem. 1910, 2086	12.00

Ulimann, F.: Organisch-chemisches Praktikum. 1908. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1909, 1047	
Weinhold, Adolf, F.: Physikalische Demonstrationen. 5. Aufl., 1. Lief. 1911. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1912, S. 1125	
ALLGEMEINE TECHNOLOGIE	
Andés, Louis Edgar: Der Kesselstein, seine Entstehung und Verhütung. Bd. 332 d. chem. techn. Bibliothek. 1910. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1911, 22	
Bender, O.: Feuerungswesen. Bd. 36 der Bibliothek der ges. Technik. 263 S. u. 75 Abb. 1907. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1908, 2567	M3.80
Bersch, Dr. Wilh.: Handbuch der Moorkultur. 2. Aufl. 1912. Wilh. Frick, Wien-Leipzig. Zt. f. ang. Chem. 1912, S. 1123	
Bertelsmann, Dr. Wilhelm: Lehrbuch der Leuchtgasindustrie. 2. Bde. II. Bd. Die Verwendung des Leuchtgases. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 479	M15.00
Binz. E.: Die Mission der Teerfarbenindustrie. 1912. Georg Reimer, Berlin. Zt. f. ang. Chem. 1912, S. 1234	M0.70
Brähmer, Dr. Friedrich: Chemie der Gase. 1911. Franz Benjamin Auffahrt, Frankfurt a/M. Zt. f. ang. Chem. 1912, S. 1433.	
Bugge, Dr. Günther: Chemie und Technik. (Bücher der Naturwissenschaften, heraus von Prof. Dr. Siegmund Günther, 11. Band.) 7 Tafeln u. 14 Zeichnungen Philipp Reclam jun. Leipzig. Zt. f. ang. Chem. 1911, S. 2434	
Kälteerzeugung, Die industrielle, und ihre Anwendungen. Institut du Mois Scientifique et Industriel. Bibliothèque Pratique du Mois Scientifique et Industriel 8, Rue Nouvelle, Paris 8c. Zt. f. ang. Chem. 1911, S. 2404	2.75
Fischer, Ferd., Prof.: Göttingen. Kraftgas, seine Herstellung und Beurteilung. VIII u. 236 S. 1. Bd. von: Chemische Technologie in Einzeldarstellungen. Hrsg. von Prof. Ferd Fischer, Göttingen. 1911. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1911,	
113-114	W113.30
Gewerbliche Materialkunde: Herausgegeb. v. Dr. Paul Krais. Bd. II. Die Schmuck- und Edelsteine. Von Dr. A. Eppler. 1912. Verlag Felix Krais, Stuttgart. Zt. f. ang. Chem. 1912, S. 1287	M12.00
Haier, F.: Dampfkessel feuerungen zur Erzielung einer möglichst rauchfreien Verbrennung. 2. Aufl. 375 Text fig., 29 Zahlen- tafeln, 10 lithogr. Tafeln. 1910. Jul. Springer, Berlin. Zt. f.	
ang. Chem. 1911, 354	M20.00

Hartmann, DrIng. Konrad, Geh. RegRat. Sicherheitseinrichtungen in chemischen Betrieben. (Chem. Technologie in Einzeldarstellungen, herausgeg. von Ferdinand Fischer.) Mit 245 Fig. Verlag von Otto Spamer, Berlin. Zt. f. ang. Chem. 1911,	ı
S. 2019geb.  Hausbrand, E.: Kgl. Baurat. Das Trocknen mit Luft und Dampf.	
4. Aufl. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, S. 1737	M5.00
Springer, Berlin	M12.00 M10.00
Heidepriem, Eugen: Die Reinigung des Kesselspeisewassers. 2. Aufl. 1909. A. Seydel, Berlin. Zt. f. ang. Chem. 1909, 1001	M2.50
Hohorst, Dr. C. v.: Laboratoriumsbuch für die anorg. Grossindustrie. Wilh. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S.	357 00
Jochum, P. Dr.: Der Drehrohrofen als modernster Brennapparat.  1911. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1911,	M5.60
839	M6.00
Kautny, Theo.: Handbuch der autogenen Schweissung. 1909. Carl Marhold, Halle. Zt. f. ang. Chem. 1909, 1708	M3.60
Kietaibl, Carl, Dr.: Das generatorgas, seine Crzeugung und Verwendung. 151 Abb. 1910. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1910, 2369	
Krätzer, A., Bingen a. Rh.: Teeröldieselmotoren als Kraftmasschinen für ein Elektrizitätswerkvonca. 400 k.w. 1911. A. Krätzer, Bingen, a. Rh. Zt. f. ang. Chem. 1911, 1417	
Kremann, Prof. Dr. Robert: Anwendung physikalchemischer Theorien auf techn. Prozesse und Fabrikationsmethoden. X + 208 S. W. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S. 1382	M9.60
Lach, Ing. Chem. u. Dr. phil., Béla: Die Ceresinfabrikation. 49 Abb. W. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S. 412	M9.60
Ludwig, K.: Reduktionstabelle für Heizwert und Volumen von gasen. 1911. R. Oldenbourg, Berlin, München. Zt. f. ang.	
Chem. 1911, 414	M1.20
bourg, München, Berlin. Zt. f. ang. Chem. 1910, 1419	M10.00
Massot, Prof. Dr. W.: Wäscherei, Bleicherei, Färberei und ihre Hilfsstoffe. 2 Aufl. Textilindustrie III. Sammlung Göschen. Zt. f. ang. Chem. 1912, S. 892	
Moldenhauer, Dr. Wilh.: Darmstadt. Chemtechnisches Prakti- kum. 1911. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1912, S. 892.	e

Momber, W.: Der Dampf in der chemischen Technik. Bd. 11. Monogr. über chemtechn. Fabrikationsmethoden. 104 S. 26 Fig. im Text. 1908. Wm. Knapp, Halle. Zt. f. ang. Chem. 1908,	
2564. Z. f. Koll. 1910 ¹ , 127geh.  Monasch, Berthold, Dr. Ing.: Elektrische Beleuchtung. 2 Aufl. Dr.	M3.60
Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, 221 Brosch.	M9.20
Nairz, O.: Die elektrische Arbeitsübertragung. 1909. Barth, Leipzig. Zt. f. ang. Chem. 1909, 1869	M6.00
Naske, Carl: Zerkleinerungsvorrichtungen und Mahlanlagen. aus Fischer's. "Chemische Technologie in Einzeldarstellungen." 1911. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1911, 1030	M15.00
Neuner, Dr. Franz Ch.: Fortschritte in der Gerbereichemie. 60 S. 1911. Th. Steinkopff, Dresden. Zt. f. ang. Chem. 1911, S. 2365	M1.80
Der Oelmotor: (Zeitschrift für die ges. Fortschritte auf dem Gebiete der Verbrennungs-motoren.) Verlag für Fachliteratur, Berlin. Zt. f. ang. Chem. 1912, S. 1383	
Rathkes Adressbuch der Zuckerindustrie Deutschlands und des Auslands. 28. Jahrg. 1911/12. Albert Rathkes Bibliothek für Zuckerinteressenten, Band I. Zt. f. ang. Chem. 1911, S. 2434	
Reichelt, Alfred: Die Prüfung der Konstruktionsstoffe für den Maschinenbau. 1909. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 1531	M3.80
Schmatolla, Ernst: Die Gaserzeuger u. Gasfeuerungen. 2 Aufl. 1908. Max Jänecke, Hannover	
Schmidt, Fritz. Ingenieur: Die Leuchtgaserzeugung und die moderne Gasbeleuchtung. Heft 40 von: "Die Wissenschaft." 1911. Friedr. Vieweg, Braunschweig. Zt. f. ang. Chem. 1912, S. 535. Geb.	
Seipp, Heinr., Dr.: Leitfaden der Statik für Hochbau- und Tiefbau-	
techniker. 1908. L. Degener, Leipzig. Zt. f. ang. Chem. 1908, 2493	
Stohmann-Schander: Handbuch der Zuckerfabrikation. 5. umgearb. Aufl. 1912. Verlag. Paul Parey, Berlin. Zt. f. ang. Chem. 1912, S. 1234	M26.00
Strache, Prof. Dr. H.: Die Fortschritte des Beleuchtungswesens und der Gasindustrie im Jahre 1910. 1911. R. Oldenbourg, München-Berlin. Zt. f. ang. Chem. 1912, S. 1125	
Vogel, Prof. Dr. J. H.: Das Acetylen, seine Eigenschaften, seine Herstellung und Verwendung. 1911. Otto Spamer, Berlin, Leipzig. Zt. f. ang. Chem. 1912, S. 27	M6.50
Waldau, Fr.: Freistehende Schornsteine. 1909. Wilh. Seegelken, Stassfurt. Zt. f. ang. Chem. 1909, 2456	

Wasser und Abwasser: Die Hygiene der Wasserversorgung und Abwasserbeseitigung. Bearbeitet v. Prof. Dr. R. Kolkwitz, Berlin, Dr. Ing. C. Reichle, Berlin, usw. Mit III Abb. u. 3 Farbtafeln, 386 S. 1911. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1911, S. 2066	
Weiss, F. J.: Kondensation. Ein Lehr-u. Handbuch über Kondensation und alle damit zusammenhängenden Fragen, auch einschliesslich der Wasserrückkühlung. 2. ergänzte Aufl. bearb. von E. Wiki, Luzern. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 457	M12.00
Wichelhaus: Vorlesungen über chemTechnologie. 3. Aufl. The- odor Steinkopff, Dresden. Zt. f. ang. Chem. 1912, S. 680. geb  ANALYTISCHE CHEMIE UND DARAUF BEZÜGLICHE BÜG	
Aufhäuser, Dr.: Kohlenuntersuchungen. Thermochem. Prüfungs-und Versuchsanstalt. 1910. Selbstverlag des Verf., Hamburg. Zt. f. ang. Chem. 1911, S. 1527	CHER
Bauer, O., und E. Deiss: Probenahme und Analyse von Eisen und Stahl. VIII. 258 S. u. 128 Textabb. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1525	M9.00
Beilsteins Anleitung zur Qualitativen Analyse. 9. Aufl. Neu bearb. von Prof. E. Winterstein u. G. Trier. VI. u. 80 S. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1909, 2267	M2.60
Birkenbach, L., Dr.: Die Untersuchungsmethoden des Wasserstoffsuperoxyds. Bd. 7 der "Chemischen Analyse." 142 S. 1909. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 2221	M4.40
Birnbaum, K., Prof.: Leitfaden der chemischen Analyse. 8. verb. u. verm. Aufl., bearb. von Prof. E. Dieckhoff. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 363	M4.80
Bornemann, Georg, Prof.: Chemnitz. Stöchiometrie. 59 durchgerechnete Beispiele u. 265 aufgaben. VIII u. 192 S. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1910, 942	M4.00
Böttger, Wilhelm, Dr., Prof.: Qualitative Analyse vom Standpunkte der Jonenlehre. 2. umgearb. u. stark erweiterte Aufl. 524 S. 1908. Wilh. Engelmann, Leipzig. Zt. f. ang. Chem. 1908, 2618.	M10.00
Stand und Wege der analytischen Chemie. (13. Bd. aus: Die chemische Analyse, von Margosches.) 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 583	
Classen, Alexander: Quantitative Analyse durch Elektrolyse. 5. Aufl. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1908, 2566. Theorie und Praxis der Massanalyse. 46 Abb. IX + 772 S. 1912. Akademische Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem.	M10.00
1912, S. 1016. Koll. Zt. 1912, S. 61geb. Crato, E., Dr.: Massanalyse. VIII u. 305 S. 1909. J. A. Barth,	M32.00
Leipzig. Zt. f. ang. Chem. 1909. 2219	M7.80

Dennstedt, M., Prof.: Hamburg. Anleitung zur vereinfachten Elementaronalyse für wissenschaftliche und technische Zwecke. 1910. Otto Meissner, Hamburg. Zt. f. ang. Chem. 1911, 647	M3.00
Donath, Ed., Prof.: Über den Ersatz des Schwefelwasserstoffs in der qualitativen chemischen Analyse. Eine Zusammenstellung der einschlägigen Methoden. 1909. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1909, 2120	M2.80
Eder, Joseph Maria, Prof. Atlas typischer Spektren. Funkenspektren von 71. Elementen sowie zum Teil noch nicht veröff. Flammenspektren vieler Verbindungen. 1911. Kaiserliche Akademie der Wissenschaften, Wien. Phot. Korr. 1911, 379, 388.	
Ehrhardt, R., Dr.: Tabellen zur Berechnung von Kalianalysen. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1740	M3.00
Eijkman, J. F., Prof.: Groningen. Tafeln zum Gebrauche bei der Bestimmung von Brechungsindices, nach der Methode der konstanten Deviation von 40°. Zt. f. ang. Chem. 1910, 1815	
Fages y Virgili, Prof. Dr. Juan: Die indirekten Methoden der analytischen Chemie. (Sammlung chemischer und chemisch-technischer Vorträge.) 1911. F. Enke, Stuttgart. Zt. f. ang. Chem. 1911, S. 1934	M3.60
Fichter, Fr.: Übungen in quantitativer chemischer Analyse. 1909. Fr. Reinhardt, Basel. Zt. f. ang. Chem. 1909, 2220	M2.40
Fischer, A., Dr.: Elektroanalytische Schnellmethoden. 304 S. 1908. Ferd. Enke, Stuttgart. Z. f. Koll. 1910 ¹ , 230 Brosch.	M9.40
Formanek, Jaroslaw: Untersuchungen und Nachweis organischer Farbstoffe auf spektroskopischem Wege. I. Teil. 2. Teil, 1. Leif. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 2070; 1912, S. 1335	
Frühling, R., Prof.: Anleitung zur Untersuchung der für die Zucker- industrie in Betracht kommenden Rohmaterialien, Produkte, Neb- enprodukte und Hilfs substanzen. 7. umg. u. verm. Aufl. 535 S. 1911. Vieweg & Sohn; Braunschweig. Zt. f. ang. Chem. 1911,	3510.00
Fühner, Dr. phil et med. Hermann, Freiburg i/B. Nachweis und	M16.00
Bestimmung von Giften auf biologischem Wege. 89 farb. Textabb. u. 176 S. 1911. Urban u. Schwarzenberg, Berlin u. Wien. Zt. f. ang. Chem. 1912, S. 213	M9.00
Glikin, Dr. W.: Calorimetrische Methodik. 51. Fig. 1911. Verlag v. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1911, S. 2252	
Hanofsky, Karl, Prof., u. Prof. Dr. Paul Artmann: Kurze Anleitung zur qualitativen chemischen analyse nach dem Schwefelnatrium-	

gange. Ergänzung zu Prof. Vortmann's; Allgemeiner Gang der qualitativen chemischen analyse ohne anwendung von Schwefel- wasserstoffgas. VII u. 115 S. 1910. Franz Deuticke, Leipzig u. Wien. Zt. f. ang. Chem. 1911, 591	M2.50
Herz, W., Dr.: Physikalische Chemie als grundlage der analytischen Chemie. Bd. 3 der "Chemischen Analyse," Margosches. 114 S. 1907. F. Enke, Stuttgart. Z. f. Koll. 1909", 227	M3.40
Hillebrand, W. F.: Washington. Analyse der Silicat- und Carbonatgesteine. Deutsche Ausgabe unter Mitw. des Verf. übers. u. besorgt von Ernst Wilke-Dörfurt. 2. stark verm. Aufl. der "Prakt. Anl. zur Analyse der Sillkatgesteine," von W. F. Hillebrand. XVI. u. 2588 S., 25 Fig., 1910. W. Engelmann, Leipzig. Zt. f. ang. Chem. 1910, 1125; Zt. f. ang. Chem. 1911, 591	M7.00
Hinrichsen, F. W.: Die Untersuchung von Eisengallustinten. Bd. 6 der Sammlung: Die Chemische Analyse, hrsg. von Dr. Margosches. 140 S. 1909. F. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 1532.	M4.40
Klut, Dr. Hartwig: Untersuchung des Wassers an Ort und Stelle. 2. verm. u. verb. Auflage mit 30 Textfig. und 150 S. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 2366	M4.00
Kremann, R., Dr., u. K. Kaas: Anleitung zu den Analytisch- chemischen Übungen für Anfänger. X u. 109 S. 1909. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1909, 2267	M3.00
Krüss, Gerhard, Prof., u. Dr. Hugo Krüss: Colorimetrie und quantitative Spektralanalyse in ihrer Anwendung in der Chemie. 2. verb. u. verm. Aufl. Bearb. von Dr. u. Hugo und Paul Krüss. 52 Abb. VIII u. 284 S. 1909. Leopold Voss, Hamburg, Leipzig. Zt. f. ang. Chem. 1910, 1569	M8.00
Küster, F. W.: Logarithmische Rechentafeln. 9 Aufl. 1909. Veit & Co., Leipzig. Zt. f. ang. Chem. 1578	
Ledebur, A.: Leitfaden für Eisenhüttenlaboratorien. IX. Aufl. 170 S. Fried. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1912, S. 679	M5.50
Leo, Max, Dr.: Die Anlauffarben. Eine neue Methode zur (optischen). Untersuchung opaker Erze und Erzgemenge. 74 S., mit einer Dreifarbendrucktafel u. einer Tabelle. 1911. Theo. Steinkopff, Dresden. Z. f. Koll. 1911, 268. Zt. f. ang. Chem. 1911, 1028.	M2.00
Luchmann, Ernst, Dr.: Neue Methoden zur Massanalytischen Bestimmung von Mn, Fe, Cr. 1908. Gebrüder Böhm, Katto- witz, O. S. Zt. f. ang. Chem. 1909, 2119	M2.00
Meigen, W., Prof.: Freiburg i. Br. Übungsbeispiele zur quantitativen Analyse. 60 S. Speyer & Kaerner, Freiburg i. Br	M2.00

Bernthsen, Prof., Dr. A.: Kurzes Lehrbuch der anorgan. Chemie.  11. Auflage. 1911. Verlag Friedr. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1912, S. 263  Biltz, Heinr.: Experimentelle Einführung in die unorganische Chemie. 4. Aufl. 1911. Veit & Co., Leipzig. Zt. f. ang.	M12.00
Chemie. 4. Aufi. 1911. Veit & Co., Leipzig. Zt. f. ang. Chem. 1912, S. 1285	
Boeke, H. E.: Ein Schlüssel zur Beurteilung des Krystallisationsverlaufs der bei der Kalisalzverarbeitung vorkommenden Lösungen. Sonderabdruck aus der Zeitschrift "Kali," 4. Jahrg., Heft 13 u. 14. 52 S. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 1030	
Bornemann, K., Dr.: Die binären Metallegierungen. 38 Tafeln enth. ca 400 Abb. u. ein Ableselineal. Teil 1. 1909geh. Teil II. 3 Textfig. u. 13 Tafeln. 1912. Wilh. Knapp. Halle a/S.	M7.00
Zt. f. ang. Chem., 1910, 1174, 1912, S. 1286	M9.60
1419	M2.50
Gmelin-Krauts Handbuch der anorganischen Chemie. 7., gänzl. umgearb. Aufl., hrsg. von C. Friedheim. Lieferungen 74-107. 1908/1909. Zt. f. ang. Chem. 1909, 2220. Lieferung 108-145. (Herausgegeben von C. Friedheim. o. ö Prof. (Bern), und fortgesetzt von Prof. Franz Peters.) Carl Winters Universitätsbuchhandlung, Heidelberg. Zt. f. ang. Chem., 1909, 2220; 1911, S. 2367.	
Guertler, W., Dr.: Metallographie. Ein ausführl. Lehr- u. Handbuch, etc. 1910. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1909, 2457; 1910, 1223; 1911, 113	
Lieferung 1. Lieferung 2. Lieferung 3. Lieferung 4. Lieferung 5. Lieferung 6.	M4.20 M3.00 M4.00 M3.40 M3.00 M5.40
Heyn, E. u. O. Bauer: Metallographie. 2 Bde. 1909. G. Göschen, Leipzig. Zt. f. ang. Chem. 1910, 700je Hoffmann. M. K., Dr.: Lexikon der anorganischen Verbindungen.	M0.80
Bd. 1, 1. Lieferung. Bd. 3, 1. Lief. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1224je  Jänecke, Ernst, Dr.: Kurze Übersicht über sämtliche Legierungen. 98 S. 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem.	M4.00
98 S. 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1910, 1418, 2041	M4.80

Jellinek, Karl: Das Hydrosulfit. 2 Bde. Bd. 1: Grundzüge der physikal. Chemie des Hydrosulfits im Vergleich zu analogen Schwefelsauerstoffderivaten. (Samml. Chem. und chemtechn. Vorträge XVII. Bd; Heft 1-5.) 1911. Ferd. Enke. Stuttgart. Zt. f. ang. Chem. 1912, S. 772. Koll. Zt. 1912 ¹¹ , S. 46 u. S. 137. Bd. 1	
Bd. 2 Katalog — Allgemeine Chemie. Liste Nr. 631. 1910. Dr. Robert Muencke, G. m. b. H., Berlin, N. W. 6. Zt. f. allg. Chem. 1910, 1720.	M9.00
Lunge, Georg, Prof.: Handbuch der Sodaindustrie und ihrer Nebenzweige. 3. umgearb. Aufl. 2. Bd. Zugleich als 16. Lieferung von Bolley-Englers Handbuch der chem. Technologie, neue Folge. Sulfat, Salzsäure, Leblaneverfahren, Kaustische Soda. 1909. Vieweg & Sohn, Braunschweig	M36.60
Mennicke, Hans, Dr.: Die Metallurgie des Zinns mit spezieller Berücksichtigung der Elektrometallurgie. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 889Brosch	
Ouvrard, L. Dr.: Paris (Sorbonne). Die Industrie des Chroms, des Mangans, des Nickels und des Cobalts. 320 S. 22 Fig. 1910. O. Doin et fils, Paris. Zt. f. ang. Chem. 1910, 1570Fcs.	5.00
v. Panayeff, Jos., Dr.: Verhalten der wichtigsten seltenen Erden zu Reagenzien. 1909. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 311	M3.60
Ramsay, Sir William: Die edlen und die radioaktiven Gase. Vortrag geh. in deutscher Sprachr in Wien. 1908. Akad. Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1909, 514	M1.80
Schütz, Dr. Ing. E.: Die Darstellung von Bisulfiten und Sulfiten. 1911. W. Knapp, Halle. Koll. Zt. 1912", S. 137geh.	M2.80
Swarts, F.: Grundriss der anorganischen Chemie. (Autorisierte deutsche Ausgabe von W. Cronheim.) 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 2402	M15.00
Urban, K.: Laboratoriumsbuch für die Industrie der verflüssigten und Komprimierten Gase. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1739	
Vanino, L., Dr.: Das Natriumsuperoxyd. Bd. 305 der chemtechn. Bibl. von Hartleben. 72 S. A. Hartleben, Wien, Leipzig. Z. f. Koll. "1909, 277	M2.00
Werner, A., Prof.: Zürich. Neuere anschauungen auf dem gebiete der anorganischen Chemie. Heft 8, "Die Wissenschaft." 2. Aufl. 292 S. 1909. Vieweg & Sohn, Braunschweig. Z. f. Koll. 1909, 153	
Zeitschrift für Metallographie: Internationale. Zentralblatt für die gesanite Theorie u. Praxis der Metallegierungen. Hrsg. von Dr. W. Guertler, Berlin. Erscheint in zwanglosen Heften, von den	
6-7 einen Band von 24 Druckbogen bilden. 1911. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1911, 592	M20.00

Prüfungsapparate für die Papierindustrie. Katalog von Louis Schopper, Leipzig. Zt. f. ang. Chem. 1910, 1680	
Renker, M., Dr.: Über Bestimmungsmethoden der Cellulose. 2. verb. Auflage. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1910, 193, 840	
Schwalbe, Carl G., Prof.: Darmstadt. Die Chemie der Cellulose.  1. Hälfte, 272 S. 1910, Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1911, 415. Z. f. Koll. 1910 ¹¹ , 316geh.	M9.60
CHEMIKERKALENDER, ETC.	
Chemikerschematismus: Hrsgn. vom Verein Österr. Chemiker. VI. Ausg. Ein Verzeichniss. Öst. Ungar. Chemiker. 1911. Verlag des Vereins, Wien. Zt. f. ang. Chem. 1911, 1028	
Universitäten im deutschen Reiche	M2.00 M2.00 M3.40
Kalender der technischen Hochschulen Deutschlands, Österreichs und der Schweiz. 1. Ausgabe, Studienjahr, 1908/1909. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 2170. Zt. f. ang. Chem. 1910, 942. Zt. f. ang. Chem. 1911, 938	M2.60
Van Nostrand's Chemical Annual, 1909: 2. Aufl. VI u. 580 S. Hrsgn. von Prof. John C. Olsen, Brooklyn, N. Y. 1909. D. Van Nostrand Co., New York. Zt. f. ang. Chem. 1910, 840	2.22.00
Wer ist's: 3. Jahrg. Auskunft über in der Öffentlichkeit stehender. Personen. 1908. Ludwig Degener, Leipzig. Zt. f. ang. Chem. 1908, 2246	M10.00
EINZELVORTRÄGE UND VERSCHIEDENES	
d'Albe, Fournier: Zwei neue Welten. Deutsch von Max Iklé. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 115	M4.00
Die Durchgeistigung der deutschen Arbeit. Ein Bericht von Deutschen Werkbund. 8 Tafeln. 1911. Eugen Diederichs, Jena. Zt. f. ang. Chem. 1911, 1267	M1.00
Eudel, Paul: Fälscherkünste. Neu hrsg. u. ergänzt von Arthur Roessler. 1909. Fr. Wilh. Grunow, Leipzig. Zt. f. ang. Chem.	
1909, 2456	M6.00 M20.00
Fischer, Emil, Prof.: Berlin. Neuere Erfolge und Probleme der Chemie. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 945, 1318	
Digitized by GOOSIC	

Hunicke, August: The Chemical Engineer. 19 S. Abdruck einer Rede geh. vor d. chem. gess. zu St. Louis, Mo. 406 Market St. Zt. f. ang. Chem. 1908, 2566	
Jahrbuch der technischen Sondergebiete: Übersicht über die Unterrichtseinrichtungen für die einzelnen techn. Fächer, über Sonderlaboratorien, etc., Fachzeitschriften, etc. Unter Mitw. von Fachleuten bearb. von Dr. R. Escales. 1. Jahrg. 1910. 1910. J. F. Lehmann, München. Zt. f. ang. Chem. 1911, 168	M6.00
Kiesel, Arthur, Dr.: Scheinwelt und wirkliche Welt. 9 Ill. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 699geh.	M3.00
Krätzer, A.: Keine Gemeinde, kein Anwesen ohne Elektrizität. 4. Aufl. 1911. Selbstverlag d. Verf., Bingen. Zt. f. ang. Chem. 1911, 1418	
Ladenburg, Albert, Prof.: Breslau. Naturwissenschaftliche Vorträge. 264 S. 12 Vorträge allgemeineren Charakters. 1908. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. Koll. 1908 ¹¹ , 106. Zt. f. ang. Chem. 1908, 2109geh.	M9.00
Le Bon, Gustave: Die Entwicklung der Materie Nach der 12. Aufl. übers. von Max Iklé. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1815	
Lehmann, O.: Flüssige Krystalle und die Theorien des Lebens. 2. durch Zusätze verb. Auflage. Vortrag geh. 21. Sept. 1906. Vers. deutsch. naturf. u. Ärzte. 69 S. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2391	M1.50
Lodge, Oliver: Leben und materie, eine kritik von Häckels Welträtsel. 150 S. 1908. Karl Curtius, Berlin. Zt. f. ang. Chem. 1908, 2565	
Mach, E., Prof., emer.: Wien. Populär wissenschaftliche Vorlesungen. 4. verm. u. durchges. Auflage. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1369	M7.50
Ostwald, Wilhelm, Prof.: Grossbothen. Die Forderung des Tages. 1910, Akad. Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1911, 71	M10.20
——, Grossbothen. Sprache und Verkehr. 51 S. 1911. Akad. Verlagsges., Leipzig. Zt. f. ang. Chem. 1911, 1475geh.	M1.50
Perry, Edward Delavan: Die amerikanische Universität. Bd. 206 aus Natur und Geisteswelt. IV u. 96 S. 22 Fig. Deutsch von Prof. Dr. Bahlsen. Zt. f. ang. Chem. 1909, 379	M1.25
Schmitz, Hermann: Kein Hans und kein Betrieb ohne Elektrizität.  70 S. 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem.  1911, 1031	M0.45
Trübner, K., Dr.: Minerva, Jahrbuch der gelehrten Welt. 1907/ 1908 (17. Jahrgn.) 1909/1910. Karl. J. Trübner, Strassburg. Zt. f. ang. Chem. 1908, 1916. Zt. f. ang. Chem. 1910, 409ca	M17.00

<ul> <li>Weinstein, Max B., Prof.: Welt- und Lebensanschauungen, hervorgegangen aus Religion, Philosophie, und Naturerkenntniss. XII u. 496 S. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1942.</li> <li>Wieland, Heinr., Dr.: München. Die Knallsäure. Sammlung chemu. chem. techn. Vorträge. 1909. Ferd. Emke, Stuttgart. Zt. f. ang. Chem. 1910, 2264.</li> <li>Ziegler, J. H., Dr.: Berh. Die Struktur der Materie und das Welträtsel. 98 S. 1908. Selbstverlag, Bern. Z. f. Koll. 1909¹, 206.</li> </ul>	M11.50
ELEKTROCHEMIE, ELEKTROTECHNIK, UND HIERAU BEZÜGLICHE WERKE	J <b>F</b>
Askenasy, Paul: Braunschweig. Einführung in die technische Elektrochemie. 1. Bd. Elektrothermie. Unter mitw. herv. Fachgenossen. 251. S. 1910. Braunschweig. Zt. f. ang. Chem. 1910, 1720.  Arndt, Kurt: Flektrochemie. Aus "Natur u. geisteswelt." B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1909, 1580.  Bein, W., Dr: Elemente und Akkumulatoren, ihre Theorie und Technik. Aus "Wissen und Können." 241 S. 98 Abb. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 709, 1760.  Bermbach, W.: Die Akkumulatoren. 2. verm. Aufl. 38 Abb. 187 S. 1911. Otto Wigand, Leipzig. Zt. f. ang. Chem. 1912, 1432.  Betts, Anson Gardner: Bleiraffination durch Elektrolyse. Bd. 35, Monogr. über angew. Elektrochemie. Aus dem Engl. übers. von Viktor Engelhardt. 1910. Wilh. Knapp, Halle. Zt. f. ang. Chem.	M1.25
1911, 883  Billiter, Jean, Dr.: Wien. Die elektrochemischen Verfahren der chemischen grossindustrie. 4 Bde. — 1. Bd.: Elektrometallurgie wässeriger Lösungen. 284 S. 1909. II. Bd.: Elektrolysen mit unlöslichen Anoden ohne Metallabscheidung. Z. f. Koll. 1910',	M18.00
230. Zt. f. ang. Chem. 1910, 210, 1912, S. 215	M28.50
Brosch Die elektrolytische Alkalichloridzersetzung. Teil 1. Koll. Zt.	M12.00
1912", S. 137geh.  Brand, K., Dr.: Die elektrochemische Reduktion organischer Nitro- körper und verwandter Verbindungen. Bd. 13. 3-9 Heft, Samm- lung chem. u. chemtechn. Vorträge. Zt. f. ang. Chem. 1909, 2267. Zt. f. ang. Chem. 1909, 2582	M16.50
industrie. 247 S. 76 Fig. Bernard Tignol, Paris. Zt. f. ang. Chem. 1910, 1368	10.00

Daneel, H., Dr.: Handbuch der Elektrochemie. Specielle Elektrochemie. 1. Elemente u. anorg. Verb. Lieferung 5. Zink vollst. u. Teil von Cadmium. Zt. f. ang. Chem. 1909,1384	
Ebert, W., u. Joseph: Nussbaum. Hypochlorite und elektrische Bleiche, praktischangewandter Teil. 38. Bd. aus Engelhardt's "Monographien über angew. Elektrochemie." XII u. 367 S., 54 Fig. u. 33 Tabellen. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 1137 u. 1140	M18.00
Eibs, Karl: Die Akkumulatoren. 4. Aufl. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2391	M1.00
Ferchland, P., Dr.: Berlin. Die elektrochemischen Patentschriften der Vereinigten Staaten von Nord Amerika. 1. Bd.: Elektrothermische Verfahren u. Apparate; Entladungen durch Gase. 352 Fig. im Text. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 890 Die englischen elektrochemischen Patente. Auszüge, ausf. Sach-u. Namenregister. 1. Bd.: Elektrolyse. Verfahren u. Apparate, Entlad. durch Gase. 2. Bd.: Elektrothermische. 1907. W.	
Knapp, Halle	M9.00 M9.60
den. 4. u. 5 Bd. der Chemischen Analyse. 394 S., 41 Abb., 136 Tabellen. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 560	M9.40
Jahresbericht über die Leistungen der Chemischen Technologie mit besonderer Berücksichtigung der Elektrochemie und gewerbestatistik. Bearb. von Prof. Ferd. Fischer, — Göttingen. (1907.) 38. Jahrg. 2 Teile pro Jahrg.: Anorg. u. org. Teil. Zt. f. ang. Chem. 1907, 810; 1908, 953, 1819; 1909, 809, 2266; 1910, 1175, 1318. 1907/1909, Otto Weigands. 1910. J. A. Barth, Leipzig. Z. f. Koll. 1908 ¹¹ , 310.	
König, Adolf, Dr., Ing.: Über die Oxydation des Stickstoffs im gekühlten Hochspannungsbogen bei Niederdruck. 76 S. 8 Abb. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 709	M3.00
Le Blanc, Max: Lehrbuch der Elektrochemie. 5. Auflage. Oskar Leiner, Leipzig. Zt. f. ang. Chem. 1911, S. 1935 Geb.	M7.00
Löb, Walther, Prof.: Grundzüge der Elektrochemie. 2. verm. u. verb. Aufl. 174 S. 1910. J. J. Weber, Leipzig. Zt. f. ang. Chem. 1910, 1030	M3.00
Lorenz, R., u. F. Kaufler: Elektrochemie geschmolzener Salze. Bd. 11, Abt. 1, von Bredig's Handbuch der angew. physik. Chemie. 84 S. 1909. J. A. Berth, Leipzig. 7t. f. ang. Chem. 1909. 2364	M3 KO

Messungen elektromotorischer Kräfte galvanischer Ketten mit wässrigen Elektrolyten. Gesammelt und bearb. im Auftrage der Deutschen Bunsen-Gesellschaft von R. Abegg, Fr. Auerbach, R. Luther. Abhandlungen der Deutschen Bunsengesellschaft Nr. 5. 213 S. 1911. W. Knapp, Halle a/S. Zt. f. ang. Chem. 1911,	
S. 2403	
Knapp, Halle. Zt. f. ang. Chem. 1910, 2211geh.	
Norden, Konrad. Elektrolytische Zähler. Monog. über ang. Elektrochemie, Bd. 31. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 474.	
Ostwald, W.: Entwicklung der Elektrochemie in gemeinverständlicher Darstellung. Aus: Wissen u. Können. 208 S. 1909.  J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1030  Schule der Elektrizität. Nach G. Claude, l'Electricité pour tout le monde. 400 Abb. 579 S. 1909. Dr. Werner Klinkhardt, Leipzig. Zt. f. ang. Chem. 1909, 2582	
Poincarè, L.: Die Elektrizität. Deutsch von Prof. A. Kalähne. Quelle & Mayer, Berlin. Zt. f. ang. Chem. 1910, 1030	M4.40
Ries, Chr.: Die elektrischen Eigenschaften und die Bedeutung des Selens für die Elektrotechnik. 96 S. 1908. "Der Mercator," Berlin — Nikolassee. Zt. f. ang. Chem. 1909, 1049	
Schenkel, M.: Elektrotechnik. 1910. J. J. Weber, Leipzig. Zt. f. ang. Chem. 1910, 1569.	
Schlötter, M., Dr., Ing.: Leipzig. Galvanostegie. I. Teil: Ueber elektrolytische Metallniederschläge. 22. Fig. (37. Bd. der Monographien über angewandte Elektrochemie.) 1910. Verlag Wilh. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S. 28Geh.	M12.00
Sperling, M., Dr.: Beiträge zur Kenntniss der Selenzellen. Zt. f. ang. Chem. 1908, 2493	
Spiel, Dr. Hugo: Ueber die Bildung von Stickoxyden bei der stillen elektrischen Entladung im Siemensrohr. 1911. Alfred Hölder, Wien u. Leipzig. Zt. f. ang. Chem. 1912, S. 27Brosch. kart.	
ENZYME UND GÄHRUNGSGEWERBE	
Bayliss, W. M., Prof.: London. Das Wesender Enzymwirkung.	

Deutsch von Karl Schorr-Wien. 91 S. 1910. Theo. Steinkopff, Dresden. Zt. f. ang. Chem. 1910, 1273. Z. f. Koll. 1910, 59 . . .

Bersch, Wilh., Dr.: Hefen, Schimmelpilze und Bakterien. 1910. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1911, 264......

Digitized by Google

M3.00

Chodounsky, Franz: Die Bierbrauerei. Bd. 128 d. Bibl. d. gesamten Technik. Dr. Max Jaenecke, Hannover. Zt. f. ang. Chem. 1910, 1941.	M4.60
Dafert, F. W., und Kornauth, Karl: Experimentelle Beiträge zur Lösung der Frage nach der zweckmässigsten, gesetzlichen Regelung des Verkehrs mit Hefr. 1908. Wilhelm Frick, Wien. Zt. f. ang. Chem. 1908, 2200.	M3.00
Euler, Hans: Allgemeine Chemie der Enzyme. 239 S. 1910. J. F. Bergmann, Wiesbaden. Z. f. Koll. 1910 ¹¹ , 62. Zt. f. ang. Chem. 1910, 1941	
Henneberg, Wilh., Dr.: Berlin. Gährungsbakteriologisches Praktikum, Betriebsuntersuchungen und Pilzkunde. 1909. Paul Parey, Berlin. Zt. f. ang. Chem. 1910, 260	M21.00
Jahrbuch der Versuchs- und Lehranstalt für Brauerei in Berlin. 11.  Bd. 1908. Hrsg. von M. Delbrück. 1908. P. Parey, Berlin. Zt. f. ang. Chem. 1909, 280	
Kobert, R., Prof.: Rostock. Über die Einwirkung von Enzymen auf Alkaloide, Glykoside und Ester. 18 S. 1909. H. Warkentien. Zt. f. ang. Chem. 1909, 2457	M0.80
Kossowicz, Prof. Dr. Alexander: Wien. Zeitschrift für Gärungsphysiologie. Band I. Heft I. (je 24 Bogen 1 Bd.) 1912. Bornträger, Berlin. Zt. f. ang. Chem. 1912, S. 630	
Lindner, Paul, Prof.: Mikroskopische Betriebskontrolle in den gährungsgewerben mit einer Einführung in die technische Biologie, Hefenreinkultur und Infectionslehre. 5. neubearb. Aufl. 1909. Paul Parey, Berlin. Zt. f. ang. Chem. 1910, 312	M21.00
Oppenheimer, Carl: Die Fermente und ihre Wirkungen. 3. völlig neu bearbeit. Aufl. 1. Spezieller Teil, 491 S. 2. Allgemeiner Teil u. Register, mit einem Sonderkapitel: Physikalische Chemie der Fermentwirkungen, von R. O. Herzog. 1919, 1910. F. C. W. Vogel, Leipzig. Z. f. Koll. 1910 ¹¹ , 62. Z. f. Koll. 1911 ¹ , 334. Z. f. ang. Chem. 1910, 1174	M16.00
Prescher, Joh., Dr., u. Viktor Rabs: Bakteriologisch-chemisches Praktikum. 2. vollst. umgearb. u. verm. Aufl. 1910. Curt Kabitzsch, Würzburg. Zt. f. ang. Chem. 1910, 2085	M6.30
Rüdinger, Hermann: Die Bierbrauerei und die Malzextrakt-Fabrikation. 3. vollst. neu bearb. Aufl. 402 S. A. Hartleben, Wien, Leipzig. Z. f. Koll. 1909 ¹ , 205	
Will, H., Prof.: Anleitung zur biologischen Untersuchung und Begutachtung von Bierwürze, Bierhefe, Bier und Brauwasser, zur Betriebskontrolle sowie zur Hefereinzucht. R. Oldenbourg, Berlin, München. Zt. f. ang. Chem. 1909, 2458	M12.00

# FARBSTOFFE, FÄRBEREI, UND THEORIE DES FARBENS, MALMATERIALIENKUNDE

M12.00
M3.60
M5.00
M13.60
M1.00
M5.20
M15.00
M7.00
M24.00
M7.00
M4.00

1910. Theo. Steinkopff, Dresden. Z. f. Koll. 1910 ¹ , 278. Zt. f. ang. Chem. 1910, 1030	M8.00
Polleyn, Friedr.: Die Appreturmittel und ihre Verwendung. 3. vollst. umgearb. Aufl. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1909, 2311	
Schultz, Dr. Gustav.: München. Farbstofftabellen. 5. vollst. umgearb. u. verm. Auflage der tabellarischen Uebersicht der im Handel befindlichen organischen Farbstoffe von Gustav Schultz und Paul Julius. 1. Lieferung	M3.00
Schwalbe, Carl G., Prof.: Darmstadt. Neuere Färbetheorien. Bd. 12, Hefte 4-6, Sammlung chem. u. chemtechn. Vorträge. 230 S. 1907. Ferd. Enke, Stuttgart. Z. f. Koll. 1908 ^{II} , 106	
Staeble, Rupert, Dr.: Die neueren Farbstoffe der Pigmentfarbenindustrie, mit besonderer Berücksichtigung der einschlägigen Patente.  1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 2368	M7.00
Unna, P. G. und L. Golodetz: Die Bedeutung des Sauerstoffs in der Färberei. (Dermatologische Studien, Bd. 22.) 1912. Verlag von Leopold Voss, Leipzig u. Hamburg. Zt. f. ang. Chem. 1912, S. 535	M4.00
Wahl, Prof. Dr. André: L'Industrie des Matières Colorantes Organiques. 400 pages. 1912. Octave Doin et fils, Paris. Zt. f. ang. Chem. 1912. S. 1201	5 Frs.
Waither, Dr. Gustav.: Crefeld. Farben und Farbstoffe. (Bibliothek der ges. Technik, Bd. 157.) Mit 9 Tafeln und 8 Abb. 1911. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, S. 2318	M4.80
Zacharias, Procopios, Prof.: Athen. Die Theorie der Färbevorgänge. Deutsche Ausgabe. 420 S. 1908. Verlag für Textilindustrie, Berlin, S. W. Zt. f. ang. Chem. 1908, 2155. Z. f. Koll. 1908 ¹¹ , 243	
Zänker, Dr. W.: Barmen. Die Kalkulation der Organisation in Färbereien und verwandten Betrieben. 1911. Verlag von Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 584	
Zerr, Georg: Bestimmung von Teerfarbstoffen in Farblacken. 1907. Steinkopffe Springer, Dresden. Z. f. Koll. 1909 ¹¹ , 276	
— u. Dr. R. Rübencamp. Handbuch der Farbenfabrikation (Körperfarben). 2. neubearb. u. verm. Aufl. Union Deutsche Verlagsgesellschaft, Berlin, S. W. 68. Zt. f. ang. Chem. 1910, 365	
Zimmermann, Wilh.: Die Batikfärberei und moderne Batikfarben 120 Farbtöne auf Baumwollsatin und Seide. A. Wehner, Zürich, Leipzig. Zt. f. ang. Chem. 1910, 1513	

#### · GESCHICHTE DER CHEMIE

Arrhenius, Svante: Die Vorstellung vom Weltgebäude im Wandel der Zeiten. (Das Werden der Welten, Neue Folger.) Aus dem Schwedischen übersetzt von L. Bamberger. 28 Abb. XI. u. 191 S. 1908. Akademische Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1908, 2055	M6.00
Auerbach, Felix: Geschichtstafeln der Physik. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1174	M5.00
Bryk, Otto, Dr.: Entwicklungsgeschichte der reinen und angewandten Naturwissenschaft im 19. Jahrhundert. 1. Bd.: Die Naturphilosophie und ihre Überwindung durch die erfahrungsgemässe Denkweise (1800–1850). 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 312	M16.00
Dannemann, Friedrich: Aus der Werkstatt grosser Forscher. 3. Aufl. des 1. Bds. des "Grundriss einer Geschichte der Natur. wissenschaften." XII u. 430 S. 1908. W. Engelmann, Leipzig. Zt. f. ang. Chem. 1909, 2411	
— Die Naturwissenschaften in ihrer Entwicklung und in ihrem Zusammenhang. 4 Bde. Bd. 1. Von den Aufängen bis zum Wiederaufleben der Wissenschaften. Mit 50 Abb. im Text u. einem Bildniss von Aristoteles. 1910. Wilh. Engelmann, Leipzig. Zt. f. ang. Chem. 1911, 70	M10.00
Die Naturwissenschaften in ihrer Entwicklung und in ihrem Zusammenhange dargestellt von Friedrich Dannemann. Bd. I: Von den Anfängen bis zum Wiederaufleben der Wissenschaften Geb. Bd. II: Von Galilei bis zur Mitte des 18. Jahrhunderts Geb. Bd. III: Das Emporblühen der modernen Naturwissenschaften bis zur Entdeckung des Energieprinzips Geb. 1910 u. 1911. Wilhelm Engelmann, Leipzig. Zt. f. ang. Chem. 1911, S. 2368.	M11.00
Faraday: Naturgeschichte einer Kerze. 6 Vorlesungen für die Ingend. Mit einem Lebensabriss Faraday's. Hrsg. von Dr. Richard Meyer, Braunschweig. 5. Aufl. 1909. Quelle & Meyer, Leipzig. Zt. f. ang. Chem. 1909, 2457	M2.50
Hennig, Richard, Dr.: Buch berühmter Ingenieure. 43 Abb. im Text. 1911. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1910, 2430	M6.50
Hjelt, Edv., Prof.: Helsingfors. Berzelius — Liebig — Dumas. Ihre Stellung zur Radikaltheorie 1832–1840. Aus Ahrens' Sammlung Chem. u. chemtechn. Vorträge. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 2618, 1911, 2618	M1.00

Jacobs, Karl: Das Aufkommen der Feuerwaffen am Niederrhein bis zum Jahre, 1400. Vu. 137 S. 8°. 1910. Peter Hanstein, Bonn. Zt. f. ang. Chem. 1910, 1679	M2.00
Jörgensen, S. M.: Die Entdeckung des Sauerstoffs. Aus dem Dänischen übers. von Wilh. Ortwed u. Max Speter. 1909. Stuttgart. Zt. f. ang. Chem. 1909, 1090	
Ostwald, Wilhelm, Prof.: Grossbothen. Der Werdegung einer Wissenschaft. 7 gemeinverst. Vorträge. Ref. von Prof. L. Pfaundler, Graz. 1908. Akad. Verlagsgesellschaft, Leipzig. Zt.	
f. ang. Chem. 1908, S. 2135	M7.50 M15.00
Ramsay, Sir William: Die Gase der Atmosphäre und die Geschichte	
ihrer Entdeckung. 3. Aufl. Übers. von Max Huth. 160 S. 8 Abb. im text. 1907. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2564geh. Vergangenes und Künftiges aus der Chemie. Deutsch hrsgn. von	M5.00
Prof. Wilh. Ostwald. Mit Porträt von Wm. Ramsay. Ca. 200 S.         1909. Akad. Verlagsgess. m. b. H., Leipzig. Z. f. Koll. 1909",         78. Zt. f. ang. Chem. 1909, 1385	
<ul> <li>Speter, Max, Dr.: Lavoisier und seine Vorläufer. Bd. 15 d. Sammlung chem. u. chemtechn. Vorträge. 110 S. 1910. F. Enke, Stuttgart. Z. f. Koll. 1911^r, 173. Zt. f. ang. Chem. 1910, 1271</li> </ul>	
Strunz, Franz, Dr.: Wien Beiträge und Skizzen zur Geschichte der Naturwissenschaften. 1909. Leopold Voss, Hamburg, Leipzig. Zt. f. ang. Chem. 1910, 412	M5.00
Geschichte der Naturwissenschaften im Mittelalter. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 1092	
Volhard, Jakob: Justus von Liebig. 2 Bde. Ein Kapitel daraus ver- öffentlicht: "Unterricht," Zt. f. ang. Chem. 1908, 2449. 1909. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2536	M24.00
Walden, P., Prof.: Riga. Die Lösungstheorien in ihrer geschichtlichen Aufeinanderfolge. Sammlung chem u. chem. techn. Vorträge Bd. 15, Heft 8–12. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1910, 1867. Z. f. Koll. 1911 ¹¹ , 44	
Zimmermann, Ernst: Die Erfindung und Frühzeit des Meissner Porzellans. Ein Beitrag z. Geschichte d. deutschen Keramik. 1. Farbetafel u. 111 Abb., XXV u. 928 S. gr. 40. 1908. Georg	
Reimer, Berlin. Zt. f. ang. Chem. 1910, 1721	M22.00

#### GLAS, KERAMIK, ZEMENT

v. Arit, Ferd. R., Dr.: Laboratoriumsbuch für die Zementindustrie. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 2137, 2369 geh.

M4.50

<ul> <li>Berdel, Dr. Ed., Höhr: Einfaches chemisches Praktikum für Keramiker, Glastechniker, Metalltechniker usw., zum Gebrauch an Fachschulen, Gewerbeschulen, und zum Selbstunterricht.</li> <li>1. Teil: Chem. Vers. u. Praeparate für Anfänger; 2. Teil: Vorübungen zur Analyse; 3. Teil: Die qualitative Analyse; 4. Teil: Ausgewählte quantitativen Methoden. 1909, 1910. Müller &amp;</li> </ul>	
Schmidt, Koburgje Teil V und VI, Anleitung zu keramischen Versuchen für Schule und Praxis. 1911. Verlag v. Müller & Schmidt, Koburg. Zt. f. ang. Chem. 1910, 409, 943, 1911, S. 890, 1868	M1.20
Beufey, Gustav: Herstellung feuerfester Erzeugnisse. (Bibliothek d. ges. Technik.) Dr. M. Jänecke, Hannover. Zt. f. ang. Chem. 1912, S. 1288	M3.20
Bollenbach, H., Dr.: Laboratoriumsbuch für die Tonindustrie. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 168	
Bronn, J.: Der elektrische Öfen im Dienste der keramischen Gewerbe und der Glas- und Quarzglaserzeugung. 198 Abb. u. 2 Tafeln. XIII u. 360 S. 34. Bd.: Monog. ü. angew. Elektrochemie. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 264	M22.00
Dralle, Robert: Die Glasfabrikation. 2 Bände. 1282 S. mit 1031 Textfig. u. 48 Taf. R. Oldenbourg, München, Berlin. Zt. f. ang. Chem. 1912, S. 829	
Granger, Albert: Fabrication et emploi des matériaux et produits réfractaires utilisés dans l'industrie. 378 p. 1910. Librairie polytechnique Ch. Béranger, Paris. Zt. f. ang. Chem. 1911, 415 Frs.	15.00
Heim, Max, Dr.: Die Steingutfabrikation. Bd. 145, "Bibl. der ges. Technik." 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, 840	M4.10
Heinemann, Bruno, Dr.: Die wirtschaftliche und soziale Entwicklung der deutschen Ziegelindustrie unter dem Einflusse der Technik. 1909. Dr. Werner Klinkhardt, Leipzig. Zt. f. ang. Chem. 1910,	364 70
Der Kalksandstein, seine Herstellung und Eigenschafen. 105 S. 72 Abb. Verein der Kalksandsteinfabriken. Zt. f. ang. Chem. 1910, 410.	M4.50 M3.00
Kasai, Dr. S.: Portlandzement mit Puzzolanzusatz. 1911. Ton-industrie-Ztg. G. m. b. H., Berlin. Zt. f. ang. Chem. 1912, S. 1067geh.	M5.00
Michaelis sen., W., Dr: Der Erhärtungsprocess der Kalkhaltigen hydraulischen Bindemittel. 49 S. 1909. Th. Steinkopff, Dresden. Zt. f. ang. Chem. 1910, 410. Z. f. Koll. 1909", 172	M1.50
Miller, J. B.: Die Glasätzerei. 4. verm. Aufl. 20 Abb. 1910. A. Hartleben. Wien, Leinzig Zt. f. ang. Chem. 1910. 411	M2.60

Rieke, Reinhold, Dr.: Berlin. Das Porzellan. Bd. 150 der Bibl. d. gesamt. Technik. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1910, 2369.	
Rohland, Paul, Dr.: Die Kolloidstoffe in den Tonen. van Bemmelen-gedenkbock, 1910. Z. f. Koll. 1911 ¹ , 54	
f. ang. Chem. 1909, 2311. Z. f. Koll. 1909 ¹¹ , 172	M2.80
Rudolph, Wilh.: Landshut. Die Tonwarenerzeugung. Bibl. d. ges. Technik, Bd. 139. 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1910, 1991	M3.60
Die Silicate in chemischer und technischer Beziehung. Theorie von W. und D. Asch. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1014	M16 00
Deutsche Steinzeugwarenfabrik für Kanalisation und Chemische Industrie, Friedrichsfeld in Baden. Abt. 1: Apparate und Einzelteile zum Kühlen, Absorbieren und Kondensieren. Zt. f. ang. Chem. 1911, 553.	1110.00
Zentralblatt für Chemie und Analyse der hydraulischen zemente. Hrsg. von Dr. Ferd. R. v. Arlt, — Wien. Erscheint zunächst monatlich einmal. 1911. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 593	
Zwick, H., Dr.: Hydraulischer Kalk und Portlandzement, ihre Rohstoffe, physikalischen u. chemischen Eigenschaften. 3. Aufl. bearb. von Dr. A. Moye. 50 Abb. A. Hartleben. Zt. f. ang. Chem. 1909, 2220.	
GUMMI, GUTTAPERCHA, U. KAUTSCHUK	
Ditmar, R., Dr.: Die Analyse des Kautschuks, der Guttapercha, der Balata u. ihrer Zusätze. 288 S. 1908. A. Hartleben, Wien, Leipzig. Z. f. Koll. 1908 ^{II} , 187.	
Kalender für die Gummündustrie u. verwandte Betriebe. 1909, hrsgn. von Edgar Herbst. 1910 hrsgn. von Dr. Kurt Gottlob. Hrsg. von Edgar Herbst. Union Deutsche Verlagsgesellschaft,	354 70
Berlin, S. W. 68. Zt. f. ang. Chem. 1909, 1482; 1910, 1368  Hinrichsen, F. W., Prof.: u. K. Memmler, — Gross-Lichterfelde.  Der Kautschuk und seine Prüfung. X u. 263 S. 64 Abb. 3  Teile. 1910. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1911, 264.	M4.50
Z. f. Koll. 1911 ¹ , 109	M9.00
Chem. 1910, 1367	M8.00
mit 56 Fig. 1911. Octave Doin et Fils, Editeur, Paris. Zt. f. ang. Chem. 1911, S. 1934	5 Frs.

## KOLLOIDCHEMIE UND DARAUF BEZÜGLICHE LEHRBÜCHER

Arndt, Prof., Dr. Kurt: Die Bedeutung der Kolloide für die Technik.	
40 S. 1909. Theo. Steinkopff, Dresden	M1.00
Z. f. Koll. 1909 ¹ , 320. 2. verb Auflage. Zt. f. ang. Chem. 1910,	
410. 1912: 165 Brosch.	M1.50
van Bemmelen, J. M., Prof.: (Leiden.) III. 1911. Die Ab-	
sorption. Mit Unterstützung des Vf. neu hrsg. von Dr. Wo.	
Ostwald, Leipzig. Mit dem Bilde des Verf., seiner Biographie u.	
zahlr. Figuren. 1910. Theo. Steinkopff, Dresden. Zt. f. ang.	
Chem. 1911, 553	M13.50
Chem. 1911, 553	S.
Rohland, P. Die Kolloidstoffe in den Tonen	S. 54
Liesegang, R. E. Trocknungserscheinungen bei Gelen	S. 54
Zsigmondy, R. Über Dialyse der Kolloiden Kieselsäure	S. 55
Freundlich, H., u. M. Masius. Über die Adsorption in einer	
Lösung mehrerer Stoffe	S. 264
Pelet-Jolivet, L., u. H. Siegrist. Die temperaturabhängigkeit	<u>-</u>
der Adsorption von Methylenblau u. Krystallponceau durch	
Kohle	S. 265
Doelter, C. Über den amorphen und den krystallinen Zustand	S. 265
Duhem, P. Die Kolloide u. die dauernden Zustandsänderungen	
in der Chemie	S. 265
Malfitano, G. Über einige willkürliche Unterscheidungen in den	2. 2.0
heutigen chemischen Lehren	S. 265
Biltz, W. Über die Dialysierbarkeit der Farbstoffe	S. 266
Svedberg, The. Über die Entwicklung eines Grundproblems der	
Kolloidchemie	S. 266
Leopold, G. H. Beobachtungen über die chemische Zusammenset-	
zung des Ges chiebelehms im niederländischen Diluvium mit	
besonderer Rücksicht auf das Verwitterungsilikat	S. 267
Ehrenberg, P., u. H. Pick. Die Bedeutung der Bodenkolloide für	
die Bestimmung der Hygroskopizität in Acker- und Waldboden	S. 267
Procter, H. R. Kolloidchemie und Gerberei	S. 267
Vanino, L. Über die Beziehungen der Künstlichen Leuchtsteine	
zu den Kolloidlösungen	S. 268
Cohen, E. Der Leim in der Kulinochemie	S. 268
Lorenz, R. "Pyrosole." Das Kolloide Phänomen in der glühend	
flüssigen Materie	S. 332
Ostwald, Wo. Über Elektrolytadsorptionen in Solen	S. 332
Zacharias, P. D. Farbstoffe und Kolloidchemie	S. 333
Bechold, H. Pulsierende Ultrafiltration	S. 333
Spring, W. Über die Sättigungskapazität von Kolloidverbin-	
dungen	S. 333
Bredig, G., u Marck, A. Über Kolloides Mangandioxydsol und	
sein Verhalten gegen Wasserstoffsuperoxyd	S. 333
Barus, C. Kompressibilität fester Kolloide	S. 334
Digitized by Google	

### NEW BOOKS

Le Chatelier, H. Die Plastizität des Tones.  Hardy, W. B. Elektrolytische Kolloide.  Jordis, E. Beiträge zur Chemie der Kolloide.  Ringer, W. E. Eiweiss-Säurebindung und Viskosität.  Spiro, K. Zur Lehre von der Quellung.	S. 34 S. 34 S. 35 S. 35 S. 35
Dumanski, A.: Index der Kolloidchemie. Literatur bis ca. September, 1908. 1909. S. W. Kulschenko, Kiew. Z. f. Koll. 1909, 320	
Freundlich, Herbert: Kapillarchemie. 591 S. 1909. Akadem. Verlagsgess. m. b. H., Leipzig. Z. f. Koll. 1910 ^t , 58. Z. f. ang. Chem. 1909, 1293. Z. f. ang. Chem. 1910, 792	
Handovsky, Hans: Fortschritte in der Kolloidchemie der Eiweisskörper. Verlag v. Theodor Steinkopff, Dresden. Zt. f. ang. Chem. 1911, S. 1868	M1.50
Lebens. 148 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 327. Z. f. Koll. 1910 ¹ , 122. Phot. Korr. 1910, 44. Zt. f.	
ang. Chem. 1910, 1079	M5.00
Ostwald, Wolfgang, Dr.: Leipzig. Grundriss der Kolloidchemie. 2. völlig umgearb. u. wesentlich verm. Aufl. 1. Hälfte, 330 S Z. f. Koll. 1909, 546. (1. Aufl.) 1911. Theo. Steinkopff, Dresden. Z. f. Koll. 1911, 175. Zt. f. ang. Chem. 1909, 2582. Zt. f. ang. Chem. 1911, 1172. Phot. Korr. 1911, 331	M9.00
Pauli, Wolfgang: Kolloidchemische Studien am Eiweiss. 28 S. 1908, Theo. Steinkopff, Dresden. Z. f. Koll. 1908 ¹¹ , 244. Zt. f. ang. Chem. 1908, 2536	M1.00
Pöschl, Viktor, Dr.: Einführung in die Kolloidchemie. 2. wesentl. verm. Aufl. 68 S. 1910. Theo. Steinkopff, Dresden. 3. verb. Aufl	M2.00
Z. f. Koll. 1908 ¹¹ , 243. Z. f. Koll. 1910 ¹ , 278	M1.80
Rohland, Dr. Paul: Der Eisenbeton. Kolloidchemische und physikalchem. Untersuchungen. 1912. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1912, S. 1124	M3.00
F. Lehmann, G. m. b. H., Stuttgart. Z. f. Koll. 1911, 268	
Svedberg, The, Dr.: Upsala. Die Methoden zur Herstellung Kolloider Lösungen anorganischer Stoffe. 507 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 275. Zt. f. ang. Chem.	M10 00
1909, 2220.  Szilard, B., Dr.: Paris. Beiträge zur allgemeinen Kolloidchemie VI u. 41 S. 1908. Theo. Steinkopff, Dresden. Zt. f. Koll. 1908 ¹¹ ,	
46.  Digitized by GOOgl	M1.50 €

Dispersion of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of	364.00
Chem. 1912, S. 828	M4.00
KUNSTSEIDE UND GESPINSTFASERN, UND IHRE VERAL UNG. APPRETURMITTEL UND IHRE ANALYSE	RBEIT-
Axmacher, Aug.: Praktischer Führer durch den Zeugdruck. Bibl. d. gesamten Technik, Bd. 95 u. 96. 1908. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1908, 2603	
Chem. 1909, 2019  Elbers, Wilh., Dr.: Die Bedienung der Arbeitsmaschinen zur Herstellung bedruckter Baumwollstoffe unter Berücksichtigung der wichtigsten Arbeitsmaschinen der Spinnerei und Weberei. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 2502	M33 00
Herzinger, Eduard: Die Technik der Mercerisation. 1911. Appreturzeitung, Gera, Reuss. Zt. f. ang. Chem. 1911, 1172 Herzog, Alois, Prof.: Sorau i. N.—S. Die Unterscheidung der natürlichen und Kümstlichen Seiden. 50 Abb. 78 S. 1910. Theo. Steinkopff, Dresden. Z. f. Koll. 1910", 172. Zt. f. ang. Chem. 1911, 1031	
Sansone, Antonio: Jahresbericht über die Fortschritte des Zeugdrucks und verwandter Industrien. 1. Jahrg. 1. Lieferung. 1908. Gustav Fock, Leipzig. Zt. f. ang. Chem. 1908, 1771 Supplement für Dr. E. Laubers: Prakt. Handbuch des Zeugdrucks, Schick, Oskar: Der Textilchemiker. Kleines Handbuch für Textilfabrikslaboranten. 1910. Paul Genschel, Gera-Reuss. Zt. f.	M2.00 M95.00
ang. Chem. 1911, 1317.  Witt, Otto N., Prof.: Chemische Technologie der Gespinstfasern, ihre Geschichte, Gewinnung, Verarbeitung, u. Veredelung. Lieferung 1-4, 1888-1909. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 2266.	M6.00
LABORATORIUMSEINRICHTUNGEN DER BETRIEBSCHEM , UND SEINE KAUFMÄNNISCHE BETÄTIGUNG	IKER.
Bender, O.: Laboratoriumstechnik. Aus Bibliothek der gesamten Technik. 1909. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 1820	M3.00
Calmes, Dr. Albert: Der Fabrikbetrieb. Die Organisation, die Buchhaltung und die Selbstkostenberechnungen industrieller Betriebe. 2. neubearb. u. verm. Aufl. 1908. G. A. Gloeckner, Leipzig. Zt. f. ang. Chem. 1908, 1722	M4.100
Digitized by Google	

Oeflers Geschäftshandbuch: (Die kaufmännische Praxis.) 12. verb. Aufl. 81–100. Tausend. Hrsgn. unter Mitwirkung bewährter Fachleute. Richard Oefler, Berlin, S. W. 61. Zt. f. ang. Chem. 1908, 2618	Dierbach, Richard, Dr.: Der Betriebschemiker, 2. Aufl. Zt. f. ang. Chem. 1908, 2248	
Leitner, Friedr.: Die Selbstkostenberechnung industrieller Betriebe.  3. stark verm. Aufl. 1908. I. D. Sauerländer, Frankfurt, a/M.  Zt. f. ang. Chem. 1909, 280	Bibl. d. ges. Technik. 1910. Dr. Max Jaenecke. Zt. f. ang. Chem. 1910, 2039.	
verb. Aufl. 81–100. Tausend. Hrsgn. unter Mitwirkung bewährter Fachleute. Richard Oefler, Berlin, S. W. 61. Zt. f. ang. Chem. 1908, 2618	Leitner, Friedr.: Die Selbstkostenberechnung industrieller Betriebe.  3. stark verm. Aufl. 1908. I. D. Sauerländer, Frankfurt, a/M.  Zt. f. ang. Chem. 1909, 280	M4.80
Samter, Victor, Dr.: Einrichtung von Laboratorien und allgemeine operationen. 65 S. Bd. 8: Laboratoriumsbücher für die chem. u. verm. Industrien. 1909. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 363	verb. Aufl. 81-100. Tausend. Hrsgn. unter Mitwirkung be- währter Fachleute. Richard Oefler, Berlin, S. W. 61. Zt. f. ang.	M3.00
Scheffler, W., Dr., Ing.: Einrichtung von Fabriklaboratorien. Bd. 151 d. Bibl. d. ges. Technik. 146 S. 1910. Dr. Max Jänecke, Hannover. Z. f. Koll. 1911, 221. Zt. f. ang. Chem. 1910, 2039 M3.40  NAHRUNGSMITTEL UND NAHRUNGSMITTELCHEMIE NAHRUNGSMITTEL-CHEMIE  NAHRUNGSMITTEL-CHEMIE  Bauer, Dr. Hugo: Stuttgart. Nahrungsmittelchemisches Praktikum. 36 Abb. VIII u. 252 S. 8°. 1911. Ferdinand Enke, Stuttgart. Zt. f. ang. Chem. S. 1934	Samter, Victor, Dr.: Einrichtung von Laboratorien und allgemeine operationen. 65 S. Bd. 8: Laboratoriumsbücher für die chem. u. verm. Industrien. 1909. W. Knapp, Halle. Zt. f. ang. Chem.	M2.70
NAHRUNGSMITTEL-CHEMIE  Bauer, Dr. Hugo: Stuttgart. Nahrungsmittelchemisches Praktikum. 36 Abb. VIII u. 252 S. 8°. 1911. Ferdinand Enke, Stuttgart. Zt. f. ang. Chem. S. 1934	Scheffler, W., Dr., Ing.: Einrichtung von Fabriklaboratorien. Bd. 151 d. Bibl. d. ges. Technik. 146 S. 1910. Dr. Max Jänecke,	M3.40
kum. 36 Abb. VIII u. 252 S. 8°. 1911. Ferdinand Enke, Stuttgart. Zt. f. ang. Chem. S. 1934		C
Frerichs und Dr. H. Emde. Jahresbericht über die Fortschritte in der Untersuchung der Nahrungs- und Genussmittel. (Sonderabdruck a. d. Jahresbericht der Pharmazie. 20. Jahrgang 1910.) 166 S. 8°. 1911. Vandenhoeck u. Ruprecht, Göttingen. Zt. f. ang. Chem. 1911, 2368	kum. 36 Abb. VIII u. 252 S. 8°. 1911. Ferdinand Enke,	M3.00
ang. Chem. 1911, 2368	Frerichs und Dr. H. Emde. Jahresbericht über die Fortschritte in der Untersuchung der Nahrungs- und Genussmittel. (Sonderabdruck a. d. Jahresbericht der Pharmazie. 20. Jahrgang 1910.)	
Zt. f. ang. Chem. 1911, 70		M5.40
• durch den Polizeibeamten. 73 S. 8°. 1910. Jul. Springer,	ihre Erkennung und Bekämpfung. 140 S. gr. 8°. Sammlung	
Berin. 2t. 1. ang. Chem. 1910, 1720	ihre Erkennung und Bekämpfung. 140 S. gr. 8°. Sammlung Chem. u. chem. tech. Vorträge. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 70	M3.60
Bujard, Dr. A., und Dr. E. Baier: Hilfsbuch für Nahrungsmittel- chemiker. Zum gebrauch im Laboratorium, etc. 3. umgearb. Aufl. XVIII u. 730 S. 8°. 1911. Julius Springer, Berlin. Zt. f.	ihre Erkennung und Bekämpfung. 140 S. gr. 8°. Sammlung Chem. u. chem. tech. Vorträge. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 70	M3.60
ang. Chem. 1911, S. 1570	ihre Erkennung und Bekämpfung. 140 S. gr. 8°. Sammlung Chem. u. chem. tech. Vorträge. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 70	M1.60
	ihre Erkennung und Bekämpfung. 140 S. gr. 8°. Sammlung Chem. u. chem. tech. Vorträge. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 70	M1.60

	Codexalimentarius austriacus. (Österreichisches Lebensmittelbuch.) XIV u. 461 S. 4°. 1911. K. K. Hof und Staatsdruckerei; Wien. Band II., 459 S. gr. 4°. 1912. K. K. Hof- und Staatsdruckerei, Wien. Zt. f. ang. Chem. 1911, 1527; 1912, S. 1432
:	Deutsches Nahrungsmittelbuch: Hrsg. vom Bunde deutscher Nahrungsmittel-Fabrikanten und -Händler. 2. vielf. geänderte u. verm. Aufl. VII u. 408 S. gr. 8°. 1909. Carl Winter, Heidel- berg. Zt. f. ang. Chem. 1910, 1418
	Dieterich-Helfenberg. Zur Pharmakodiakosmie und chemischen Analyse der Hausen- und Fischblasen. Abhandlung zur Erlangung der Lehrberechtigung an der Kgl. Sächs. Tierärztl. Hochschule zu Dresden. 3. Tafeln, 1909. Zt. f. ang. Chem. 1909, 977 u. 1001.
M4.00	Experimentelle und Kritische Beiträge zur Neubearbeitung der Vereinbarungen: Zur einheitlichen Untersuchung und Beurteilung von Nahrungs- und Genussmitteln, sowie Gebrauchsgegenständen für das Deutsche Reich. Hrsgn. vom Kaiserl. Gesundheitsamte, Berlin. 1 Bd. V. u. 260 S. 4°. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 1028
	Gerlach, V., Dr. med.: Wiesbaden. Physiologische Wirkungen der Benzorsäure und des Benzorsauren Natrons. 95 S. 8°. 15 Tafeln. 1909. Heinr. Staadt, Wiesbaden. Zt. f. ang. Chem. 1910, 1418.
M20.00	Handbuch der Milchkunde: Hrsg. von Dr. Paul Sommerfeld. XIV u. 999 S. gr. 8°. 1909, J. F. Bergmann, Wiesbaden. Zt. f. ang. Chem. 1909, 1788.
	Hartwich, C., Prof.: Zürich. Die menschlichen Genussmittel, ihre Herkunft, Verbreitung, Geschichte, Bestandteile, Anwendung und Wirkung. Lex. 8°. 576 mit ca. 24 Tafeln in Autotypie, Karten u. Abbildng. im Text. Ca 14 Lieferungen vorgesehen. Liefg. 1-9. Chr. H. Tauchnitz, Leipzig. Zt. f. ang. Chem. 1911, 354. Pro Liefg.
	Hasterlik, Alfred, Dr.: München. Der Bienenhonig und seine Ersatzmittel. 228 S. 1909. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1909, 281
M3.00	Der Tafelsenf (Mostrich) und die technische Verwertung der Senfpflanze. 56 Abb. u. 3 Taf. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1910, 411.
•	<ul> <li>Hausner, A.: Die Fabrikation der Konserven und Kanditen. 4.</li> <li>verb. Aufl. 47 Abb. VIII + 332 S. 8°. 1912. A. Hartleben,</li> <li>Wien u. Leipzig. Zt. f. ang. Chem. 1912, S. 1288</li></ul>
	Jahrbuch des Vereins der Spiritus-Fabrikanten in Deutschland, des Vereins der Stärke-Interessenten in D., und des Vereins Deutscher Kartoffeltrockner. 9. Jahrg. Bearb. von G. Heinzelmann. 1909. Paul Parey, Berlin. Zt. f. ang. Chem. 1909, 1579
,	Jahresbericht über die Fortschritte in der Untersuchung der Nahrungs- und Genussmittel. Bearb. von Prof. Heinr. Beckurts, —

Braunschweig, u. Dr. Dr. Frerichs u. Emde. Sonderabdruck a. d. Jahresbericht d. Pharmazie. 1907, 170 S. gr. 8°	M5.00 M6.00
Jahresbericht über die Untersuchungen und Fortschritte auf dem Gesamtgebiete der Zuckerfabrikation. Bearb. von Dr. Joh. Bock. 48. Jahrg. 1908. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 2217.	M16.00
Jolles, Adolf, Dr.: Die Nahrungs- und Genussmittel, ihre Herstellung und Verfälschung. Mit einem Pilzmerkblatt. VIII u. 209 S. 8°. 1909. Franz Deuticke, Leipzig, Wien. Zt. f. ang. Chem. 1909, 1739	
Kaiserliches Gesundheitsamt: Übersicht über die Jahresberichte der öffentlichen anstalten zur technischen Untersuchung von Nahrungs- und Genussmitteln im Deutschen Reich für des Jahr. 1904. VIII u. 285 S. 4°. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1908, 1819.  Ergebnisse der amtlichen Weinstatisktik. Berichtjahr 1909/10. 470 S. gr. 8°. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 113.	M5.00
Kassowicz, Alex., Prof. Dr.: Wien. Einführung in die Mykologie der Nahrungsmittelgewerbe. 5 Tafeln, 21 Abb. VIII u. 138 S. 8°. Zt. f. ang. Chem. 1911, S. 1600	M4.00
König, Dr. J., Geh. RegRat: Münster. Die Untersuchung landwirtschaftlich und gewerblich wichtiger Stoffe. 4. neubearb. Aufl. mit 426 Textabb. XX und 1226 S. gr. 8°. 1911. Paul Parey, Berlin. Zt. f. ang. Chem. 1911, S. 2403 Nährwerttafel. 10. verb. Aufl. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 2319	
Kosutàny, Dr. Th.: Budapest. Chemische Untersuchungen der Mahlprodukte der ungarischen Exportweizenmühlen vom Jahre 1911. 39 S. 4°. Budapest, 1912. Zt. f. ang. Chem. 1912, S. 1526.	•
Kraus, A., Dr., u. Dr. P. Schwenzer: vom chem. Unters. Amt. Kreis Neuss. Hilfstabellen für Nahrungsmittelchemiker. 1910. Veit & Co., Leipzig. Zt. f. ang. Chem. 1911, 1031	M2.00
Kremers & Schlossmann: Die Milch in Gesetz und Rechtsprechung. VIII u. 39 S. 8°. 1909. Carl Heymann, Berlin. Zt. f. ang. Chem. 1910, 1125	M1.00

Kulisch, P., Prof.: Colmar. Anleitung zur sachgemässen Weinverbesserung einschliesslich der Umgärung der Weine. 3. auf Grund des, Reichsgesetzes über d. Verk. m. Wein vom 7. IV. 1909. umgearb. Aufl. XII u. 171 S. 8°. 1909. Paul Parey, Berlin. Zt. f. ang. Chem. 1910, 410,	M4.00
Lebensmittelbuch: Schweizerisches. Methoden für die Untersuchung und Normen für die Beurteilung von Lebensmitteln und gebrauchsgegenständen. — Im Auftrag des Schweiz. Departements des Inneren bearb. 2. Aufl. IX u. 67 S. gr. 8°. 2 revid. Aufl. XVI u. 336 S. 1908, 1909. Neukomm & Zimmermann, Bern. Zt. f. ang. Chem. 1908, 1720. Zt. f. ang. Chem. 1909, 2120.	
Lebbin, Dr. Georg: Berlin. Allgemeine Nahrungsmittelkunde. XI u. 543 S. 8°. 1911. Leonhard Simion Nachf., Berlin. Zt. f. ang. Chem. 1911, S. 1738	
Luhmann, E., Dr.: Kakao und Schokolade. Bibl. d. ges. Technik, 114. Bd. 68 Abb. 1909. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 1089	
Mezger, Otto, Dr.: Stuttgart. Anleitung zur Durchführung einer wirksamen Milchkontrolle in Stadt- und Landgemeinden. IV u. 126 S. 8°. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 70	
Reitz, Dr. Adolf: Die Milch und ihre Produkte. Mit 16. Abb. u. 104 S. 1911. G. B. Teubner, Berlin. Zt. f. ang. Chem. 1912, S. 64.	
Röhrig, Armin, Dr.: Leipzig. Bericht über die Tätigkeit der chemischen Untersuchungsanstalt der Stadt Leipzig in Jahre 1909. 51 S. gr. 8°. Zt. f. ang. Chem. 1910, 1720	
Röttger, H.: Lehrbuch der Nahrungsmittelchemie. 4. verm. u. verb. Aufl. 1. Bd. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 2039	
Stift, Anton, u. Wilh. Gredinger: Der Zuckerrübenbau und die Fabrikation des Rübenzuckers. 1910. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1910, 1816	
Teichert, Dr. Kurt: Wangen im Allgäu. Die Analyse der Milch und Milcherzeugnisse. 2. verm. u. verb. Aufl. mit 19 Textfig. VII u. 81 S. 8°. 1911. Julius Springer, Berlin. Zt. f. ang. Chem.	
Methoden zur Untersuchung von Milch und Molkereiprodukten. 54 Abb. u. 27 Tabellen. 1909. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1910, 262.	
- Coogle	

Übersicht über die Jahresberichte der öffentlichen Anstalten zur technischen Untersuchung von Nahrungs- und Genussmitteln im Deutschen Reich für das Jahr 1905, 1906, 1907. Bearb. im Kais. Gesundheitsamt, von Dr. Max Müller. 348 u. 45 S. gr. 8°. VIII, 328 u. 44 S. gr. 8°. X, 388 u. 50 S. 40. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 1739. 1905	M7.60 M6.60 M9.40
1910, 1720	$\mathbf{M26.00}$
Utz, F.: München. Die Milch, ihre Untersuchung und Verwertung. 1911. A. Hartleben, Wien, Liepzig. Zt. f. ang. Chem. 1911, 501 geh.	M5.00
Veröffentlichungen auf dem Gebiete des Militär-Sanitätswesens. Hrsgn. von der Medizinal-Abteilung des Königl. Preuss. Kriegsministeriums. Arbeiten aus den hygienchem. Untersuchungsstellen. Heft 38: 2. Teil. 115 S. Heft 45: 4. Teil 122 S. 1908, 1911. Aug. Hirschwald, Berlin. Zt. f. ang. Chem. 1908, 1819. Zt. f. ang. Chem. 1911, 889.  Verzeichniss der Zuckerfabriken und Raffinerien Deutschlands und des Auslandes. 1908/1909, 1909/1910 (26 Jahrg). Albert Ratke, Magdeburg. Zt. f. ang. Chem. 1908, 2346. 1909, 2310.  Weinstatistik, 1909: Die Schweizerische. Bearb. vom Verein anal. Chemiker, Schweiz. Separat-Abdruckaus., Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene," 1, 1910. Heft 4. 31 S. 8°. Zt. f. ang. Chem. 1911, 415.  Verzeichniss der schweizer. Weinlagen und Wein-Handelsbezeichnungen. 68 S. 8°. 1910. J. Dürst, Zürich. Zt. f. ang. Chem. 1911, 353.	
ÖLE, FETTE, WACHSE	
Congrès international du pétrole: 3. session, Bucarest 8.—13./9. 1907. Compte-Rendu. II. Memoires. 1910. Carol Göbl, Bucarest. Zt. f. ang. Chem. 1911, 355  Einheitsmethoden zur Untersuchung von Fetten, Ölen, Seifen und	
Glycerinen, sowie sonstigen Materialien der Seifenindustrie. Hrsg. vom Verband der Seifenfabrikanten Deutschlands. 1910.	

Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 2264.....

Fahrion, Wilhelm, Dr. phil.: Die Chemie der trocknenden Oele. 1911. Verlag v. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, S. 2367	M11.00
Handbuch der Kaliwerke, Salinen, Tiefbohrunternehmungen und der Petroleumindustrie. Jahrgänze 1909, 1910, 1911. Verlag der Kuxen-Zeitung, Berlin C. Zt. f. ang. Chem. 1909, 859. Zt. f. ang. Chem. 1910, 793. Zt. f. ang. Chem. 1911, 648 Pro Jahrgn.	
Hefter, Gustav: Technologie der Fette und Ole. 4 Bde.  1. Bd.: Gewinnung der Fette u. ÖleAllegemeiner Teil.  2. Bd.: Gewinnung der Fette u. ÖleSpecieller Teil.  3. Bd.: Die Fett verarbeitenden Industrien.  Jul. Springer, Berlin. Zt. f. ang. Chem. 1907, 43. Zt. f. ang. Chem. 1908, 763. Zt. f. ang. Chem. 1910, 1473.	M22.50 M31.00 M35.00
Holde, D., Prof.: Untersuchung der Mineralöle und Fette sowie der ihnen verwandten Stoffe. 3. verm. u. verb. Aufl. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 365	M12.00
Lach, Bela: Die Zeresinfabrikation. 1912. W. Knapp, Halle. Koll. Zt. 1912", S. 46	M9.60
Landenberger, Dr.: Die deutschen Patente betreffend Verfahren zur Herstellung von Seifen. Selbstverlag des Verf., Berlin S. W. 61. Zt. f. ang. Chem. 1908, 1721	
Leimdörfer, J.: Beiträge zur Technologie der Seife auf kolloid- chemischer Grundlage. (Sonderausgabe aus "Kolloidchemische Beihefte") 2 Tafeln, 56 S. 1911. Theodor Steinkopff, Dresden. Zt. f. ang. Chem. 1912, 308	M1.80
Lewkowitsch, J.: Technologie et analyse chimigue des huiles graisses et cires. Traduit par E. Bontoux. Tome 1. Zt. f. ang. Chem. 1908, 281, 474. Tome 2. Zt. f. ang. Chem. 1909, 2311. Tome 3. Zt. f. ang. Chem. 1910, 1079. H. Dunod et E. Pinat, Paris	
Mann, H.: Die Schule des modernen Parfümeurs. Hersgn. vom H. Mann. 1912. H. Ziolkowsky. Koll. Zt. 1912 ¹ , S. 323	M10.00
Marcusson, J.: Laboratoriumsbuch für die Industrie der Oele und Fette. Mit 21 Abbild. u. 20 Tab. 1911. W. Knapp, Halle a/S. Zt. f. ang. Chem. 1911, S. 2369	
Rakusin, M. A.: Die Theorie der Färbung der natürlichen Erdöle und deren notwendige Konsequenzen. 1909. Verlag für Fach- literatur, Berlin. Zt. f. ang. Chem. 1910, 743	M2.00
Ubbelohde, L. und F. Goldschmidt: Handbuch der Chemie und Technologie der Oele und Fette. III. Bd. 1. u. 2. Abt. 13 Tafeln, 225 Abb., 1195 S. 1911. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1912, S. 309. Koll. Zt. 1912, S. 60	M34.00
Digitized by Google	

## ORGANISCHE CHEMIE UND ORGANISCHE HANDBÜCHER Angeli, Prof., Dr. A.: Neue Studien in der Indol- und Pyrrolgruppe. (Deutsch. bearb. v. Dr. W. Roth, Cöthen.) 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 830 ...... Bartelt, Konrad, Dr.: Die Terpene und Campherarten. ca 370 S. 1908. Carl Winter, Heidelberg. Zt. f. ang. Chem. 1908, 2347.... M12.00 Comanducci, Ezio, Prof.: Neapel. Die Konstitution der Chinaalkaloide. Deutsche Ausgabe durchges. von Dr. W. Roth, Köthen, 165 S. 16. Bd., 4.-7. Heft von Ahrens' Sammlung chem. u. chem.-techn. Vorträge. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 457..... Carré, P., Prof.: Paris. Hydrocarbures, Alcool et Éthers de la Série Grasse. Aus der Sammlung: Encyclopédie scientif. publiée sons la direction du Dr. Toulouse. III + 410 + XII S. 1911. Octave Doin et Fils, Paris..... Frs. 5.00 Decker, Herman: Carl Graebe's Untersuchungen über Chinone. Gmelin-Kraut: Handbuch der organischen Chemie. 7. Aufl. Hrsg. von C. Friedheim. 43. bis 73. Lieferung. Zt. f. ang. Chem. 1909, 905, vergl. 1908, 664..... Goldberg, Irma, Dr., u. Dr. Herm. Friedmann: Die Sulfosäuren des Anthrachinons und seiner Derivate. (Eine Zersammenstellung derselben.) 1909. Weidmann, Berlin. Zt. f. ang. Chem. 1910, 1720..... M4.00 Hallerbach, Wilhelm: Uerdingen am Rhein. Die Citronensäure und ihre Derivate. 11 und 104 S. 1911. Julius Springer, Berlin. M4.40 Holleman, A. F., Prof.: Amsterdam. Die direkte Einführung von Substituenten in den Benzolkern. Ein Beitrag zur Lösung des Substitutionsproblems in aromatischen Verbindungen. VI u. 516 S. 1910. Veit & Co., Leipzig. Zt. f. ang. Chem. 1911, 501. M23.00 Jahrbuch der Chemie: Hrsgn. von Prof. Richard Meyer, - Braunschweig. 1907, 1908, 1909. 1909 = 19. Jahrg. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2297. Zt. f. ang. Chem. 1910, 2211. Z. f. Koll. 1908¹¹, 310. Z. f. Koll. 1911¹, 63...... Geb. in Lnw. M19.00 Geb. in Halbfrg. M20.00 Jahrbuch der organischen Chemie. 1. Jhrg. 1907, 392 S. 1908, 1909. Hrsgn. von Prof. Julius Schmidt, Stuttgart. Ferd. Enke, Stuttgart. Z. f. Koll. 1908", 310. Zt. f. ang. Chem. 1909, 1579. Zt. f. ang. Chem. 1910, 942..... Ley, H.: Die Beziehungen zwischen Farbe und Konstitution bei organischen Verbindungen. 1911. S. Hirzel, Leipzig. Zt. f.

Meyer, Hans, Prof.: Prag. Analyse und Konstitutionsermittlung organischer Verbindungen. 2. verm. u. umgearb. Aufl. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 2312	M31.00
Richter, M. M.: Lexikon der Kohlenstoffverbindungen. 3 Auflage. Leopold Voss, Hamburg, Berlin. Zt. f. ang. Chem. 1910, 1569, 1912, S. 1433	
Schmidt, Dr. Julius: Die Alkaloidchemie in den Jahren 1907–1911. 284 S. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 1477	
Die organischen Magnesiumverbindungen und ihre Anwendung zu Synthesen, II. Sammlung chem. u. chemtechn. Vorträge. Bd. 13. 11–12 Heft. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 1482.	
— Stuttgart. Über Chinone und chinoide Verbindungen. Ahrens' Sammlung chemischer u. chemtechn. Vorträge. Bd. 11. Hefte 10 u. 11	•
Scholtz, M.: Die optisch aktiven Verbindungen des Schwefels, Selens, Zinns, Silciums und Stickstoffs. Ahrens Samml. chem. u. chemtechn. Vorträge XI. Bd., Heft 12. Zt. f. ang. Chem. 1909, 1090	
Stoermer, R., Prof.: Die Oxydations- und Reduktionsmethoden der organischen Chemie Sonderabdruck aus Th. Weyl's Handbuch: Die Methoden der org. Chemie. 256 S. 1909. G. Thieme, Leipzig. Z. f. Koll. 1909", 173	M7.00
Wallach, Otto: Terpene und Campher. XXII. u. 576 S. 1909. Veit & Co., Leipzig. Zt. f. ang. Chem. 1909, 1530	
Weyl, Theo., Dr.: Berlin. Die Methoden der organischen Chemie. Ein Handbuch. 1. Bd. 355 S. 1., 2., 3., Lfng. 1908. G. Thieme, Leipzig. Z. f. Koll. 1911, 173. Zt. f. ang. Chem. 1908, 2564. Zt. f. ang. Chem. 1909, 2218	M3.00
Wichelhaus, Dr. H.: Sulfurieren, Alkalischmelze der Sulfosäuren, Esterifizieren. (Chem. Technologie in Einzeldarstellungen, herausgeg. v. Ferd. Fischer.) 32 Fig. u. 1 Tafl. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1911, S. 2019	
Winterstein, E., Prof., u. Dr. G. Trier: Zürich. Die Alkaloide. Eine Monographie der natürlichen Basen. gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1910, 1992	
Winther, Adolf, Dr.: Zusammenstellung der Patente auf dem Gebiete der organischen Chemie 1877–1905. 3 Bde., gr. 4°., ca. 4000 S. 1. Bd. ——. 2. Bd. ——. 3. Bd. Austandische Patente. Register. Zt. f. ang. Chem. 1908, 2247; 1909, 1088; 1910, 1367. 1910, Alfred Töpelmann, Giessen	

## PATENT-GESETZE, ETC.

Bomborn, Bernhard: Das deutsche Gebrauchsmusterrecht. Bibl. d. ges. Technik, Bd. 134. 1909. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 1948.	
Damme, F., Dr., Geh. RegRat., Dir im Kaiserl. Patentamt, Berlin. Der Schutz technischer Erfindungen als Erscheinungsform moderner Volkswirtschaft. 1910. Otto Liebmann, Berlin. Zt. f. ang. Chem. 1911, 591	M3.40
Dennstedt, M., Prof.: Hamburg. Die Chemie in der Rechtspflege. 1910. Akad. Verlagshandlung, Hamburg. Zt. f. ang. Chem. 1910, 1772	
Fischer u. Roediger, Dr.: Die Patentgesetze. Eine systematische Übersicht der Pat. gesetze der versch. Länder. 2. u. 3. Teil. 1907. 1908. Carl Heymann, Berlin. Zt. f. ang. Chem. 1909, 663je.	M5.00
Freund, G. S., Dr., u. J. Magnus: Gesetz zum Schutz der Warenbezeichnungen vom 12. v. 1894. Der früheren Ausg. 5. völlig neu bearb. Aufl. Taschenformat.	M3.50
Goldschmidt, Karl, Dr.: Das Recht der Angestellten an ihren Erfindungen. 41 S. 1909. W. Knapp, Halle. Zt. f. Koll. 1910 ¹ , 324	M1.50
Hederich, Dr.: Warenzeichen oder Geschmacksmuster? Über den gesetzlichen Schutz von Etiquetten. Verlag "Geistiges Eigentum," Charlottenburg. Zt. f. ang. Chem. 1910, 364	M0.50
Jahreskatalog des K. K. Patentamtes in Wien. Alphabetisches Sachverzeichniss über sämtliche bis 31. Dec. 1908, 1909, in das Patentregister eingetragenen Patente. Lehmann & Wentzel, Wien. Phot. Korr. 1909, 452; 1910, 297	K1.00
Kloeppel, E., Dr.: Patentrecht und Gebrauchsmusterrecht. 1908. Carl Heymann, Berlin. Zt. f. ang. Chem. 1908, 2248	
Köhler, Josef: Warenzeichenrecht. J. Bensheimer, Mannheim, Leipzig. Zt. f. ang. Chem. 1911, 742	M8.00
ternationalen Vertrag z. Schutze des gewerbl. Eigentums, etc. 7. neubearb. Aufl. von Dipl. Ing. u. Pat. Anwalt Tennenbaum. 1909. H. A. Ludwig Degener, Leipzig. Zt. f. ang. Chem. 1909,	
1948	M6.00
Zt. f. ang. Chem. 1909, 2502	
W. Knapp, Halle. Zt. f. ang. Chem. 1911, 983	

M3.60	Teudt, Heinrich, Dr.: (Ständiger Mitarbeiter im Kaiserlichen Patentamte.) Die Abfassung der Patentunterlagen und ihr Einfluss auf den Schutzumfang. Ein Handbuch für Nachsucher und Inhaber deutscher Reichspatente. 1908. Julius Springer, Berlin. Zt. f. ang. Chem. 1908, 2249
M5.00	Chem. 1911, 169
M3.00	rechts. 1910. Dr. Walther Rotschild, Berlin u. Leipzig. Zt. f. ang. Chem. 1910, 1417
M0.80	Göschen, Leipzig. Zt. f. ang. Chem. 1911, 1214je
	PFLANZENCHEMIE
	Euler, H.: Grundlagen und Ergebnisse der Pflanzenchemie. 3 Teile in 2 Bänden; 238 u. 297 Seiten. Nach der schwedischen Ausgabe. 1908/1909. Vieweg & Sohn, Braunschweig. Z. f. Koll. 1910 ¹ , 59
M3.00	Fischer, Julius, Dr.: Die Lebensvorgänge in Pflanzen und Tieren. Versuch einer Lösung der physiologischen Grundfragen. 83 S. 1908. Friedländer & Sohn, Berlin. Z. f. Koll. 1909 ¹ , 205. Zt. f. ang. Chem. 1909, 90
	Tschirch, A.: Die Chemie und Biologie der pflanzlichen Sekrete.  95 S. 1908. Akad. Verlagsges, m. b. H., Leipzig. Z. f. Koll.  1911 ^r , 173
M3.00	Vageler, P., Dr.: Die organogenen Nährstoffe der Pflanze; O, H, C, u. Nals Pflanzennährstoffe. Aus "Wissen u. Können." 148 S. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 1821
M35.00	Wehmer, C., Prof.: Hannover. Die Pflanzenstoffe (botanisch- syst. bearb. Chem. Bestandteile u. Zusammensetz. der einzelnen Pflanzenarten, Rohstoffe u. Produkte, Phanerogamen). XVI u. 937 S. Register umfasst 98 S. 1911. Gustav Fischer, Jena. Zt. f. ang. Chem. 1911, 791.
	PHARMAZIE UND PHARMAKOGNOSCIE
<b>3.50</b> (00	Apothekengesetze, Die preussischen: Hrsg. von Dr. H. Böttger unter Mitw. von E. Urban. 4. umgearb. u. vervollst. Aufl. 1910. J. Springer, Berlin. Zt. f. ang. Chem. 1910, 1991  Arends, G.: Neue Arzneimittel und pharmazeutische Specialitäten. (Einschliesslich der neuen Drogen, Organ- und Serumpräparate mit zahlr. Vorschriften zu Ersatzmitteln u. einer Erklärung der gebräuchl. medicin. Kunstansdrücke. 3. sehr verm. u. verb.
M6.00	Aufl. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 2310.

**Chem. 1909, 2310.**Digitized by Google

Bauer, Dr. phil. Hugo: Die Gehaltsbestimmungen des Deutschen Arzneibuches V. 92 S. 1911. Verlag von Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, S. 2110	
Beckurts, Heinrich, Dr.: Analytische Chemie für Apotheker. 2. neubearb. Aufl. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1908, 2603	M11.60
Buchheister, G. A.: Handbuch der Drogistenpraxis. 9. neubearb. Aufl. von Georg Ottersbach. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 2218.	M13.40
Cieszyński, T.: Der polnische Apotheker. Polnischlateinisches Wörterbuch, etc. 2. verm. Aufl. bearb. von J. Jasinski. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1909, 2120	M2.80
Dieterich, Eugen: Neues Pharmazeutisches Manual. 10. verm. Aufl. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 1090.	M18.00
Düring, Franz, Dr.: Gräfenhainichen. Übersicht über die deutschen Reichspatente betreffend Heilmittel und Desinfectionsmittel. 116 S. 8°. 1908. "Selbstverlag," Berlin. Z. f. Koll. 1909", 277. Zt. f. ang. Chem. 1908, 1819	
Eichinger, Alfons: Die Pilze. 54 Abb. u. 124 S. 1911. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1911, S. 2018	M1.25
Fränkel, Dr. S.: Die Arzneimittelsynthese. 3. umgearb. Aufl. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1123	M26.50
Handbuch der Drogisten-Praxis: (Im Entwurf vom Drogistenverband preisgekrönte Arbeit von G. A. Buchheister, 1910.) Neu bearbeitete Auflage v. Georg Ottersbach, Hamburg. 389 Fig. u. 1260 S. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1912 S. 263.	M13.40
Hell, Gustav: Pharmazeutisch technisches Manuale. Anleitung zur rationellen Darstellung pharmazeutischer Präparate, etc. Ein Handbuch für Apotheker. 5. Aufl. 1910. Urban & Schwarzenberg, Berlin, Wien. Zt. f. ang. Chem. 1911, 220	
2 Teile zuje  Heyl, Prof., Dr. Georg: Erklärung der technischen Prüfungsmethoden des Deutschen Arzneibuches. 5. Ausgabe 1910.  9 Abbildungen. 1911. Selbstverlag des Deutschen Apothekervereins, Berlin. Zt. f. ang. Chem. 1911, S. 1819	
Knolls Pharmaka 1886-1911. Knoll & Co., Ludwigshafen a/Rh. Zt. f. ang. Chem. 1911, S. 2369	W11.00
Kommentar zum Deutschen Arzneibuch, 5. Ausgabe, 1910. 1. Halbband. Unter Mitw. hervorr. Fachgenossen, hrsgn. von Dr. O. Anselmino u. Prof. Ernst Gilig	
— 2 Halbband (Auf Grundlage der Hager-Fischer-Hartwich'schen Kommentare der früheren Arzneibücher, unter Mitwirkg. v. Prof. Dr. Bieberstein, Dr. P. W. Dankwortt, etc., in zwei Bänden. 1	
Digitized by Google	

Halbband, S. 1-400. 2. Halbband S. 401-719. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, S. 984, 2065geh. Lenz, W. und G. Arends: Hager's Handbuch der pharmaceutischen	M8.00
Praxis für Apotheker, Arzte, etc. 820 S. Lexikongrösse. 1908.  Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 89	M17.50
Lipowski, L., Dr.: Anleitung zur Beurteilung und Bewertung der wichtigsten neueren Arzneimittel. 102 S. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1908, 2492	M2.80
Mannheim, Dr. E.: Pharmazeutische Chemie. I. Anorgan. Chemie. (Sammlung Göschen Nr. 543.) II. Bd. Organ. Chemie. (Sammlung Göschen Nr. 544.) 1911. Göschensche Verlagsbuchhandlung. Göschen, Leipzig. Zt. f. ang. Chem. 1911, S. 2206, 1912, S. 679	M0.80
Oesterle, O. A., Prof.: Bern. Grundriss der Pharmakochemie. Gebrüder Bornträger, Berlin. Zt. f. ang. Chem. 1909, 1869	
Partheil, A., Dr.: Königsberg i. Pr. Kurzgefasstes Lehrbuch der Chemie für mediziner und Pharmazeuten. Org. Teil. 1. Abt.: Die Chemie der Fettköpper. 1909. Carl Georgi, Bonn. Zt. f. ang. Chem. 1909, 2503	
Rohden, C.: Die offiziellen ätherischen Oele und Balsame. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 1965	M7.00
Schlickums Ausbildung des jungen Pharmazeuten und seine Vorbereitung zur Gehilfenprüfung. 11. vollst. umgearb. u. bed. verm. Aufl. — Hrsg. unter Reduktion von Dr. W. Böttger. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 410	
Schmidt, Ernst, Prof.: Marburg. Ausführliches Lehrbuch der pharmazeutischen Chemie. 5. Aufl. 2. Bd. 1. Abt	
Scholtz, Max, Prof.: Greifswald. Lehrbuch der pharmazeutischen Chemie. 1. Bd. Anorganischer Teil. 1910. Carl Winter, Heidelberg. Zt. f. ang. Chem. 1910, 2085	M12 00
Spiegel, L., Prof.: Charlottenburg. Einführung in die Pharmakologie für Studierende der Medizin und der Pharmazie. 193 S.	
<ul> <li>1911. Ernst Reinhard, München. Zt. f. ang. Chem. 1911, 501</li> <li>Squire's Companion to the British Pharmakopoeia. 18. ed. 1908.</li> <li>J. &amp; A. Churchill. Zt. f. ang. Chem. 1909, 1088</li> </ul>	M2.50
Thoms, Dr. Prof. H.: Dahlem. Arbeiten aus dem Pharmazeutischen Institute der Universität, Berlin. 280 S. 1911. Urban & Schwarzenberg, Berlin-Wien. Zt. f. ang. Chem. 1912, S. 1124 geh.	M7.00
— Schule der Pharmazie. Bd. II. Chemischer Teil. 5. verb. Aufl. 105 Textabb., 536 S. 1912. Jul. Springer, Berlin. Zt. f.	
ang. Chem. 1912, S. 1476	M10.00

— Das Pharmazeutische Institut der Universität, Berlin.  1910. Bornträger, Berlin. Zt. f. ang. Chem. 1910, 2211	M12.00
— Arbeiten aus dem pharmazeutischen Institut der Universität, Berlin. 7. Bd. 1910. Urban & Schwarzenberg, Berlin, Wien. Zt. f. ang. Chem. 1910, 1679.	M8.50
Tschirch, A., Prof.: Bern. Handbuch der Pharmakognosie. ca. 30 Lieferungen. Hefte 1-4, 5-8, 9-12, 14-18, 19-27. 2 Bde. Hermann Tauchnitz, Leipzig. Zt. f. ang. Chem. 1908, 2440; Zt. f. ang. Chem.	
1909, 1048; Zt. f. ang. Chem. 1910, 261; Zt. f. ang. Chem. 1910, 1271; Zt. f. ang. Chem. 1911, 1362	M2.00
PHOTOGRAPHIE	
Autochrombelichtungstabelle des Wiener Amateurphotographen- Klubs. Phot. Korr. 1910, 43	
Bartels, C. O.: Auf frischer Tat. Beobachtungen aus der niederen Tierwelt in Bilderserien nach Naturaufnahmen vom Verf. 1.	
Sammlung. 40 S. Text u. 15 Serien mit 71 Aufnahmen aus der niederen Tierwelt. E. Schweizerbart, Stuttgart. Phot. Korr.	
1910, 253. 216 u. 217	M3.80
Blecher, Karl: Lehrbuch der Reproduktionstechnik. Lieferung 2-4, 5-6. W. Knapp, Halle. Phot. Korr. 1909, 351, 548. Pro Lief.	M2.00
Clerc, L. P.: Paris. Les reproductions Photomécaniques Mono- chromes. Photogravüre, Similigravüre, Phototypie, Heliogravüre, etc. XXII u. 396 S. mit 115 Fig. im Text. 1910. O. Doin et Fils, Paris. Phot. Korr. 1910, 557Frs.	
Cohn, Paul, Dr.: Wiener Porträts. Sammlung photogr. Amateuraufnahmen. Verlag für Fachliteratur G. m. b. H., Berlin. Phot. Korr. 1909, 44.	•
Das Bild: Monatschrift für photographische Bildkunst. 7. Jahrg.	
1911	
N. P. G. Bibliothek: Bd. 1. Bromsilberpapier, 40 S. Bd. 2. Katatypie, 32 S. Bd. 3. Gaslichtpapier, "Lenta," 64 S Pro Band Phot. Korr. 1909, Beilage zu S. 300. 1910. 193. 1909, 1910. Neue Photographische Gesellschaft, Steglitz-Berlin	M0.20
David, Ludwig: K. K. Oberst. Photographisches Praktikum, Lehrbuch der Photographie. 2. völl. neu bearb. Aufl. 185 Textfig. 2 farb. Aufnahmen u. 26 Tafeln. 1911. W. Knapp, Halle. Phot. Korr. 1911, 335	
K. K. Oberst. Ratgeber für Anfänger im Photographieren. 4250. Aufl. 1909. W. Knapp, Halle. Zt. f. ang. Chem. 1908,	
2200; Zt. f. ang. Chem. 1909, 2312; Phot. Korr. 1909, 403, 601	M2.00

909, 400, 601 ...

Digitized by Google

Kosel-Album: Zweite Sammlung Buchdruckreproduktionen nach	
Original-Photographien von Hermann Kosel. 1910. Langer & Co., Wien. Phot. Korr. 1910, 150	K8.00
Kümmell, Gottlieb, Prof.: Photochemie. Bd. 227, ,, Aus Natur u. Geisteswelt." Ca. 100 S. 1908. B. G. Teubner, Leipzig.	
Phot. Korr. 1909, 42. Zt. f. ang. Chem. 1908, 2298	M1.25
Lettner, G.: Skioptikon, Einführung in die Projektions Kunst. 5. Aufl. 1910. Ed. Liesegang, Leipzig. Phot. Korr. 1911, 334	M1.50
Lexikon für Photographie und Reproduktionstechnik. Unter Mitw. zahlr. Fachleute hrsgn. von Prof. G. H. Emmerich, München. A.	TZ 00
Hartleben, Wien. 1. Hälfte. Phot. Korr. 1910, 299  Die Lichtbildkunst: (Katalog). Führer u. Wegweiser durch das Gesamtgebeet der Photographie. 478. Hrsg.: Georg J. Joseph, Wien. Phot. Korr. 1911, 423	K6.00
Liesegang, R. Ed.: Photographische Chemie. 3. vollst. neu bearb. Aufl. von Dr. Carl Kieser. Bd. 9, Liesegangs photogr. Bücherschatz. Photogr. Korr. 1909, 301	M3.00
Liesegang, F. Paul: Das lebende Lichtbild. (Kinematographie.)	1120.00
Ed. Liesegang, Leipzig. Phot. Korr. 1910, 297  — Einstellung und Abblendung des photographischen Objektivs.	M2.00
Separatabdruck. 1910. "Physikalische Zeitschrift," S. 1017. Phot. Korr. 1910, 606	M9.00
Limmer, Fr., Dr.: Das Farbenanpassungsverfahren. Ausbleichverfahren. Separatabdruck aus "Wiener Mitteilungen photographischen Inhalts." 1910. "Wiener Mitteilungen," Wien. Phot. Korr. 1911, 605.	
Linden, A., Dr.: Die Standentwicklung und deren Fortschritte. 19 Abb. Ed. Liesegang, Leipzig. Phot. Korr. 1910, 559	M2.50
Loescher, Fritz: Die Bildnisphotographie. 3. erw. Aufl., bearb. von Otto Ewel. gr. 8°. XII u. 220 S. mit 149 Bildnisbeispielen und	
Gegenbeispielen. Phot. Korr. 1911, 235	M7.00
Bibl. Bd. 15. 3. Aufl. Gust. Schmidt, Berlin. Zt. f. ang. Chem. 1909, 2019. Phot. Korr. 1909, 44	M3.20
Lüppo-Cramer, Dr.: Frankfurt a. M. Die Röntgenographie in ihrem photographischen Teil. H. 67, Enzykl. d. Phot., 140 S. 1909. W. Knapp, Halle. Z. f. Koll. 1909 ¹¹ , 77. Phot. Korr. 1909,	W13.20
548. Zt. f. ang. Chem. 1910, 115	M4.80
— Kolloides Silber und die Photohaloide. (Carey Lea u. Lüppo- Cramer) 147 S. 1908. Theo. Steinhopff, Dresden Kolloidehemie und Photographie. 1908. Theo. Steinkopff,	M4.80
Dresden. 154 S	M5.80
Digitized by Google	

Luther, R., Dr.: Dresden. Photographie als Lehr-u. Forschungs- gegenstand. Enzykl. d. Photog. Heft 66. 1909. W. Knapp, Halle. Phot. Korr. 1909, 246	M1.00
Mathies-Masuren, F.: Das Bildniss. Ein museum für den Porträtphotographen. Heft 1: Damenbildnisse, ganze Figuren, von R. Dührkoop. Heft 2: Text über gruppenaufnahmen und 10 gruppenbildnisse. 1909. W. Knapp, Halle. Phot. Korr. 1909, 548. Phot. Korr. 1911, 51	<b>M</b> 4.00
Mayer, Anton: Abtnaundorfbri Leipzig. Die Spiegelreflexcamera, ihr Wesen und ihre Konstruktion. 48 Abb. Enzykl. d. Phot. Nr. 71. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 1031. Phot. Korr. 1911, 50. Phot. Korr. 1910, 606	M2.40
Max Liebermann: 14 Kunstblätter und 4 Textbilder nach seinen besten Werken. Mit einem Geleitwort von Wilh. F. Burr. Hrsgn. von d. freien Lehservereinigung für Kunstpflege. 1910. Josef Scholz, Mainz. Phot. Korr. 1911, 337	M1.00
Mees, Kenneth C. E.: An Atlas of Absorption Spektra. 170 Spectrograms of aqueous solutions of dyestuffs. Longmans, Green & Co., London, and Wratten & Wainwright Ltd., Croydon. Z. f. Koll. 1911, 221.	
Mente, O. und Prof. Dr. Adolf Warschauer: Die Anwendung der Photographie für die archivalische Praxis. Mitteilungen der Kgl. preussischen Archiv-Verwaltung, Heft 15. 1909. Phot. Korr. 1910, 508. Siehe auch hierzu Anmerk. C. H. L. Phot. Korr. 1910, 324, 499, 500. Phot. Korr. 1911, 426	
Mercator, G.: Die Diapositivverfahren. Enzyk. d. Phot. Heft. 27. 2. Aufl. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1047	M2.00
Miethe, A., Prof.: Charlottenburg, Berlin. Photographische Aufnahmen vom Ballon aus. Enzykl. d. Phot. Nr. 68. 1909. W. Knapp, Halle. Phot. Korr. 1909, 549	M2.50
Miethe, A.: Dreifarbenphotographie nach der Natur. 2. Aufl. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2247	M2.50
Müller, H.: Misserfolge in der Photographie. 4. Aufl. 1907. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2298	
Musterblätter 1910 der k. u. k. Hof-Photochemigraphischen Kunstanstalt C. Angerer & Göschl in Wien. Phot. Korr. 1911, 50	
Naumann, Felix: Die Technik des Platindruckes. 1910. Ed. Liesegang, Leipzig. Phot. Korr. 1911, 51	M2.50
Naumann, Fr.: Form und Farbe. 1909. Buchverlag der Hilfe, G. m. b. H.: Berlin. Phot. Korr. 1909. 351	M3.00

"Selbstverlag," München, 31. Phot. Korr. 1911, 423	
— Porträtkunst in der Photographie. Bd. 1. Ästhetik. Bd. 2. Praxis. 1909. Ed. Liesegang, Leipzig. Phot. Korr. 1909, 547je	M4.60
Stenger, Erich, Dr.: Moderne photographische Kopierverfahren. Enzykl. d. Photog. Nr. 63. 1909. W. Knapp, Halle. Phot. Korr., 1909, 247. Zt. f. ang. Chem. 1909, 2019	
Stolze, F.: Die Panoramenapparate in ihren Vorzügen und Mängeln sowie ihre Verwendung in der Praxis. Enzykl. d. Photog. Nr. 64. 1909. W. Knapp, Halle. Phot. Korr. 1909, 247. Zt. f. ang. Chem. 1909, 2120	M3.00
— Die Stereoskopie und das Stereoskop in Theorie und Praxis. Enzykl. d. Phot. Nr. 10. 2. Aufl. 1908. W. Knapp, Halle. Phot. Korr. 1909, 301. Zt. f. ang. Chem. 1909, 1047	. <b>M5.0</b> 0
<ul> <li>Unger, A. W., K. K. Prof.: Die Herstellung von Büchern, Illustrationen Akzidenzen u. s. w. 2. verm. Aufl. 178 Fig., 12 Beilagen, 74 Tafeln. 1911. W. Knapp, Halle. Phot. Korr. 1911, 335</li> </ul>	
Urban, Wilh.: München. Kompendium der gerichtlichen photographie. 103 Bilder. 1909, 1910. Otto Nemnich, Leipzig. Phot. Korr. 1910, 298. Zt. f. ang. Chem. 1910, 566`	M7.50
Vogel's Dr. E. Taschenbuch der Photographie. Ein Leitfaden für Anfänger und Fortgeschrittene. Bearb. von Paul Hanneke. 21.–25. Aufl. — 91. Tausend. 1909, 1910. Gustav Schmidt, Berlin. Phot. Korr. 1909, 601; 1911, 334	M2.50
Warstat, Willi, Dr.: Allgemeine Asthetik der photographischen Kunst auf psychologischer Grundlage. Eneykl. d. Photogr. Heft 65. 1909. W. Knapp, Halle. Phot. Korr. 1909, 246	M3.00
Was der Photograph, Photohändler und Amateur vom Giftgesetz und den Giften wissen muss. Hrsgn. u. verlegt von Soennecken & Co., München. Phot. Korr. 1911, 421	
Weigert, F.: Die chemischen Wirkungen des Lichts. 114 S. Koll. Zt. 1912", S. 205	
Wentzel, Fritz, Dr. Ing.: Kinematographen-Films. Nr. 6, 1911 der Zeitschrift: Kunststoffe. 1911. J. F. Lehmann, München. Phot. Korr. 1911, 332	M18.00
u. Dr. F. Paech: Photographisches Reisehandbuch; ein Ratgeber für die photographische Ausrüstung und Arbeit auf Reisen. Klein 8°. Reich ill. 1909. Gustav Schmidt, Berlin.	
Phot. Korr. 1909, 350	M3.00

Wimmer, Franz Paul: Praxis der Makro- und Mikro-Projektion für Lehrzwecke in Schule und Haus, sowie für Lichtbildervorträge, etc. 1911. Otto Nemnich, Leipzig. Phot. Korr. 1911, 333	M6.00
Zehn Jahre Deutsche Alpenzeitung. Phot. Korr. 1911, 334	
von Zamboni, Karl: Anleitung zur Positiv- und Negativretusche. 3. Aufl. 1908. W. Knapp, Halle. Phot. Korr. 1909, 43	M2.40
Zimmermann, W.: Die Photographie. 1909. Quelle & Meyer, Leipzig. Zt. f. ang. Chem. 1909, 2121	M1.80
Zollhandbuch für die photographische Industrie. Zusammenstellung der ausländischen Einfuhrzölle auf die wichtigsten photogr. Bedarfsartikel. Bearb. von Fritz Hansen, Berlin. 170 S. Hrsgn. vom Verein der Fabrikanten photographischer artikel E. V., Berlin. Phot. Korr. 1910, 558.	
PHOTOGRAPHISCHE KALENDER, ZEITSCHRIFTEN, ET	C.
Agenda Lumière, 1909, 1910. Lyon, A. Lumière et ses fils. Gauthier-Villars, Paris. Phot. Korr. 1909, 145; 1910, 193Fr.	1.00
Deutscher Kamera-Almanach: gr. 8°. ca. 300 S. u. 130 Reprod., 146 Reprod. Bd. 5 = 1909. Begr. von Fritz Loescher, fortgeführt von Otto Eevel. Gustav Schmidt, Berlin. Phot. Korr. 1909, 44; 1910, 45; 1911, 336	M5.00 M5.50
— Photographen-Kalender: Taschenbuch und Almanach für 1909, 1910, 1911. 2 Teile. 28. Jahrg. 1909. Karl Schwier, Weimar	M2.00
423 Beide zusammen.	M3.00

Jahrbuch des Kamera-Klubs in Wien, 1909. Selbstverlag. Phot. Korr. 1909, 547	
Notizbuch für Amateurphotographen. 2. verm. u. verb. Aufl. mit Belichtungstafel. P. Brünsing, Heidelberg. Phot. Korr. 1909, 500	M1.20
Photographischer Abreisskalender, 1910. Phot. Korr. 1910, 46. R. Lechner, Wien	K3.30
Photographischer Abreisskalender, 1910, 1911. W. Knapp, Halle. Phot. Korr. 1909, 601. Phot. Korr. 1910, 605. 4. Jahrg	M2.00
Photographischer Almanach: Hrsg. Hans Spörl. Ca 144 S. Jährlich. Ed. Liesegang, Leipzig. Phot. Korr. 1909, 43, 245; 1910, 149	M1.50
— Notizkalender: Hrsgn. von Prof. Dr. Franz Stolze, Berlin. 1911 = 16. Jahrg. (+ 14. I. 1910, Phot. Korr. 1910, 100.) W. Knapp, Halle. Phot. Korr. 1909, 45. Phot. Korr. 1910, 99.	3/1 50
Phot. Korr. 1911, 334	M1.50 M1.00
PHYSIKALISCHE- UND THEORETISCHE CHEMIE MATI MATIK, PHYSIK.	HE-
Arndt, Kurt: Technische Anwendungen der physikalischen Chemie. IV u. 304 S. 55 Abb. im Text. 1908. Mayer & Müller, Berlin. Zt. f. ang. Chem. 1908, 2566	M8.00
Arrhenius, Svante, Prof.: Stockholm. Theorien der Chemie. Übers von A. Finkelstein. 2. neubearbeitete u. bed. verm. Aufl. 233 S. 1909. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. ang. Chem. 1909, 1655	
— Untersuchung über die galvanische Leitfähigkeit der Elektrolyte. Übers. von Anna Hamburger. Hrsg. von Otto Sackur. Ostwald's Klasoiker, etc. Wilh. Engelmann, Leipzig. Zt. f. ang. Chem. 1908, 2564.	M2.50
Auerbach, Felix, u. Rudolf Rothe: Taschenbuch für Mathematiker und Physiker. Unter mitw. zahlr. Fachgenossen hrsgn. 2. Jahrg. 1911. B. G. Teubner, Leipzig, Berlin. Zt. f. ang. Chem. 1911, 1417	M7.00
Bakhuis Roozeboom, Dr. H. W.: Amsterdam. Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre. Drittes Heft, Erster Teil. Die ternären Gleichgewichte. 1911. Friedr. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1911, S. 1739.	W11.00
Bädeker, K., Prof.: Jena. Die elektrischen Erscheinungen in metallischen Leitern. Aus d. Sammlung "Die Wissenschaft." Vieweg-Sohn, Braunschweig. Zt. f. ang. Chem. 1911, 1361	M4.80

 $\mathsf{Digitized} \ \mathsf{by} \ Google$ 

Bendt, Franz: Grundzüge der Differential- u. Integralrechnung. 4. Aufl. 39 Abb. J. J. Weber, Leipzig. Zt. f. ang. Chem. 1911, 458	M3.00
Benrath, Dr. Alfred: Chemische Konstitutionsbeweise. 79 S. 1911. Carl Winters Universitätsbuchhandlung, Heidelberg. Zt. f. ang. Chem. 1911, S. 2367	
Winter, Heidelberg. Zt. f. ang. Chem. 1909, 89	M1.20
Börnstein, R., Prof., u. Prof. W. Marckwald: Sichtbare und unsichtbare Strahlen. 2. neubearb. u. verm. Aufl. 85 Abb. im Text. 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1910, 890	M1.25
Bruni, Guiseppe, Dr.: Feste Lösungen und Isomorphismus. 1908.  Akad. Verlagsgesellschaft m. b. H., Leipzig. VI. u. 130 S. Zt. f.  ang. Chem. 1909, 560. Z. f. Koll. 1909 ¹ , 154	M5.00
Byk, Alfred, Dr.: Einführung in die Kinetische Theorie der Gase.  1. Teil: Die idealen gase. (Statik und Dynamik der einatomigen gase.) 10. B'dchen d. "Mathemat. — physikal. Schriften für Ingenieure und Studierendi," hrsgn. von E. Jahnke. IV u. 102 S. 1910. B. G. Teubner, Berlin, Leipzig. Zt. f. ang. Chem. 1911, 648.	M3.20
Coops, G. H., Dr.: Übersichtliche Darstellung des zweiten Hauptsatzes der Thermodynamik und der daraus herzuleitenden Folgen. 1909. P. Noordorf, Groningen. Zt. f. ang. Chem. 1909, 2070	M0.75
Dessau, Bernhard: Die physikalisch-chemischen - Eigenschaften der Legierungen. VIII u. 208 S. 1910. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1910, 1992	M8.00
Duhem, Pierre: Ziel u. Struktur der Physikalischen Theorien. Übers. von Fr. Adler, Vorwort von Ernst Mach. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2392	M8.00
Fournier d'Albe, C. E.: Die Elektronentheorie. Gemeinverst. Einf. in die moderne Theorie der Elektricität u. des Magnetismus. Übers. von I. Herweg. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2491	M4.80
Gehrcke, C., Prof.: Die Strahlen der positiven Elektrizität. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1910, 115	W14.00
Helm, Georg, Prof.: Dresden. Die Grundlagen der höheren Mathematik. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f.	M14.20
Hinrichsen, Willy, F.: Vorlesungen über chemische Atomistik. 7 Abb. im Text, 1. Tafel. 1908. Teubner, Leipzig. Zt. f. ang. Chem. 1908, 2491	M7.00
van't Hoff, J. H., Prof.: Berlin. † 2 III. 1911. Die Lagerung der Atome im Raume. 3. umgearb. u. verm. Aufl. 147 S. 1908. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2108.	
Z. f. Koll. 1909', 206.	M4.50

— Zur Bildung der ozeanischen Salzablagerungen. 2. Heft. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 1627.	M5.00
Jänecke, Ernst: Gesättigte Salzlösungen vom Standpunkte der Phasenregel. 188 S. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 665	M9.00
von Jüptner, H.: Das chemische Gleichgewicht auf grund mechanischer Vorstellungen. 367 S. 1910. B. G. Teubner, Leipzig, Berlin. Zt. f. ang. Chem. 1911, 889	M11.00
Kauffmann, Prof. Hugo: Die Valenzlehre. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 772	M15.00
Kaufmann, Walther, Prof.: Königsberg i. Pr. und Prof. Alfred Coehn, Göttingen. Magnetismus und Elektrizität. Aus: Müller — Pouillets Lehrbuch der Physik und Meteorologie, 10. Aufl. 4 Bde. — Bd. 4. 1. Abth. 5. Buch. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1910, 1816	M13.00
Braunschweig. Zt. f. ang. Chem. 1910, 1816	M6.60
Kröhnke, O., Dr.: Kurze Einführung in den inneren gefügeaufbau der Eisenkohlenstofflegierungen. 1911. Concordia Verlagsges, Berlin. Zt. f. ang. Chem. 1911, 1417	
Lehmann, O.: Die neue Welt der flüssigen Kristalle, und deren Bedeutung für Physik, Chemie, Technik und Biologie. 388 S. mit 246 Fig. 1911. Akademische Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1911, S. 1935. Zt. f. Koll, 1911, 269 Geb.	M13.00
Leiser, R., Dr.: Elektrische Doppelbrechung der Kohlenstoffverbindungen Abhandlungen d. Deutschen Bunsen-gesellschaft Nr. 4. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 840	
Levy, Herbert, Dr: Thermodynamische Behandlung einiger Eigenschaften des Wassers und des Wasserdampfes. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 220	
Lundèn, Harald: Affinitätsmessungen an schwachen Säuren und Basen. Ahrens'sche Sammlung chem. u. chemtechn. Vorträge Bd. 14, Heft 1–3. 1908. Ferd. Enke, Stuttgart. Z. f. Koll. 1910 ^t , 324. Zt. f. ang. Chem. 1910, 412	
Marc, Dr. Robert: Jena. Vorlesungen über die chemischen Gleichgewichte und ihre Anwendung auf die Probleme der Mineralogie, Petrographie und Geologie. 1911. Gustav Fischer, Jena. Zt. f. ang. Chem. 1911, S. 1818. Koll. Zt. 1912 ¹ , S. 205	
Mecklenburg, Werner: Die experimentelle Grundlage der Atomistik. VIII u. 143 S. 1910. Gustav Fischer, Jena. Zt. f. "em. 1911, 1912. Z. f. Koll. 1911, 108geh.	,

mente. Sammlung Ahrens, etc. 66 S. 1910. Ferd. Enke, Stuttgart. Z. f. Koll. 1910 ¹¹ , 172. Zt. f. ang. Chem. 1910, 1867. Geh.	
Die Bedeutung der Lehre von der chemischen Reactionsgeschwindigkeit für die angewandte Chemie. Ein Vortrag. IV u. 64 S. 1908. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. ang. Chem. 1908, 2200. Z. f. Koll. 1908 ¹¹ , 243	. M2.00
Obermiller, Jul., Dr.: Stuttgart. Die orientierenden Einflüsse und der Benzolkern. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1223	•
Ostwald, W., Prof.: Die Energie. Aus "Wissen u. Können." 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 954  — Ueber Katalyse. 2. Aufl. 1911. Akademische Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1912, S. 1066	M4.40
Ostwald-Luther: Hand- und Hilfsbuch zur Ausführung physiko- chemischer Messungen. 3. Aufl. Hrsg. von Dr. R. Luther, Dres- den, und Dr. K. Drucker, Leipzig. 351 Fig. im Text. 573 S. 1910. Wilh. Engelmann, Leipzig. Zt. f. ang. Chem. 1911, 305	•
Perrin, Prof., Dr. J.: Die Brownsche Bewegung und die wahre Existenz der Moleküle. 1910. Th. Steinkopff, Dresden. Zt. f. ang. Chem. 1912, S. 1013	M2.50
Planck, Max: Das Prinzip der Erhaltung der Energie. II. Aufl. Sammlung: Wissenschaft u. Hypothese. B. G. Teubner. Zt. f. ang. Chem. 1909, 1291	M6.00
Pöschl, Victor, Dr.: Die Härte der festen Körper und ihre physikalisch-chemische Bedeutung. 84 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 173. Zt. f. ang. Chem. 1910, 1772.	,
Ramsay, William, Sir: Moderne Chemie. 1. Teil: Theoretische Chemie. Übers, von Dr. Max Huth. 9. Abb. 2. Aufl. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1579	•
Richards, Theodore William: Cambridge. Experimentelle Untersuchungen über Atomgewichte. Unters. von Richards u. seinen Mitarbeitern. Deutsch von J. Koppel. VI u. 890 S. 34 Abb. 1909. Leopold Voss, Hamburg, Leipzig. Zt. f. ang. Chem. 1910. 1514.	1 •
Righi, Augusto: Bologna. Strahlende Materie und magnetische Strahlen. Übers. von Max Iklé. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 412	
Righi, Augusto: Bologna. Die Bewegung der Ionen bei der elektrischen Entladung. Deutsch von Max Iklé. 70 S. 1907.  Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 474	

Neuere Anschaufingen über die Struktur der Materie.	
Deutsch von Dr. F. Fraenckel	M1.40
Die moderne Theorie der physikalischen Erscheinungen. Deutsch von B. Dessau. II. Aufl. 1908. Joh. Ambr. Barth, Leipzig.	
Zt. f. ang. Chem. 1908, 2297	M4.80
Schenck, Rudolph: Physikalische Chemie der Metalle. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1580	M7.00
Skrabal, A., Dr.: Wien. Die induzierten Reactionen, ihre Geschichte und Theorie. Die Reaction Ferrosalz-Permangant in salzsaurer Lösung. Samml. chem. u. chemtechn. Vorträge. Bd. XIII. 10. Heft. 36 S. 1 Abb. 1908. Friedr. Enke, Stuttgart.	M1 90
Zt. f. ang. Chem. 1909, 1002	M1.20
an der Univ. Glasgow, 1908. 31 Abb. XVI u. 272 S. 1909. J. A. Barth. Leipzig. Zt. f. ang. Chem. 1910, 507	M6.00
Thiel, A.: Der Stand der Indikatorenfrage. (Beitrag zur chemi-	M10.00
schen Theorie der Farbe. Sammlung Ahrens.) 1911. F. Enke, Stuttgart. Zt. f. ang. Chem. 1911, S. 2475	
Thiele, Dr. Johannes: Strassburg. Ueber den Verlauf chemischer	
Reaktionen. Verlag J. H. Ed. Heitz (Heitz & Mündel). Zt. f. ang. Chem. 1911, S. 1869	M1.20
Thomson, I. I.: Die Korpuskulartheorie der Materie Übers	W11.20
Thomson, J. J.: Die Korpuskulartheorie der Materie. Übers. von G. Siebert. 1908. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2392	M5.80
van der Waals, Prof. Dr. J. R.: Die Zustandsgleichung. Akademische Verlagsgesellschaft m. B. H., Leipzig. Zt. f. ang. Chem. 1911, S. 2109.	
Wedekind, Prof. Dr. E. und Dr. Lewis: Neue Atomgewichtskurven. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 629	
Weber, Heinrich, und Joseph Wellstein: Enzyklopaedie der	
Elementarmathematik. 3. Bd.: Angew. Elementarmathematik. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1909, 859	M14 00
Woker, Gertrud: Die Katalyse, Die Rolle der Katalyse in der	M114.00
analyt. Chemie. I. Allgemeiner Teil. XI. und XII. Band der	
Sammlung von Einzeldarstellungen auf dem Gebiete der chem., technchem., und physikalchem. Analyse. (645 S.) 1910.	
Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, S. 2366	M20.00
PHYSIOLOGIE, BIOCHEMIE UND MEDIZINISCHE CHEM	MIE
Abderhalden, Prof. Dr. Emil: Berlin. Die Bedeutung der Ver-	
dauung für den Zellstoffwechsel, im Lichte neuerer Forschungen auf dem Gebiete der physiologischen Chemie. (Vortrag geh. im	
Ingenieur-u. Architekten-Verein, 27. 1. 1911.) 39. S. Urban und Schwarzenberg, Berlin-Wien. Zt. f. ang. Chem. 1912, S.	
65Geh.	M1.00

— Handbuch der biochemischen Arbeitsmethoden. 1. Bd.: Zt. f. ang. Chem. 1909, 1912; 2. Bd.: Zt. f. ang. Chem. 1910, 601; 3. Bd.: Zt. f. ang. Chem. 1910, 1721; 4. Bd.: Zt. f. ang. Chem.	
1911, 168	M18.00
<ul> <li>Lehrbuch der Physiologischen Chemie. In 32 Vorlesungen.</li> <li>Aufl. vollst. umgearb. u. erweitert. 984 S. 18 Fig. 1908/1909.</li> <li>Urban u. Schwarzenberg, Berlin-Wien. Zt. f. ang. Chem. 1909, 664.</li> </ul>	
— Neuere Ergebnisse auf dem gebiete der speziellen Eiweisschemie. 128 S. 1909. Gustav Fischer, Jena. Zt. f. ang. Chem. 1909, 1090	
—— Physiologisches Praktikum. 271 Fig.; 283 S. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1525 Brosch.	
Arthus, Maurice, u. Joh. Starke: Elemente der physiologischen Chemie. 353 S. 3. Aufl. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1772	
Autenrieth, Dr. W.: Freiburg i/B. Die Chemie des Harns. 28 Abb., 344 S. 1911. J. C. B. Mohr (Paul Siebeck) Tübingen. Zt. f. ang. Chem. 1912, S. 213	M11.00
Bayliss, W. M.: London. Der osmotische Druck elektrolytisch dissozüerter Kolloide. Vortrag gehalten a. d. 8. internat. Physiologen-Kongress, Wien, 27-30 Sept. 1910. Z. f. Koll. 1911, 55	
Bechhold, Prof. Dr. H.: Die Kolloide in Biologie und Medizin. 52. Abb., mehrere Tab., u. 2. Tafeln, 441 S. 1912. Theodor Steinkopff, Stuttgart. Zt. f. ang. Chem. 1912, S. 729. Koll. Zt. 1912, S. 205.	
Buchka, Dr. Karl v.: Die Nahrungsmittelgesetzgebung im Deutschen Reiche. 2. Aufl., XIX. 294 S. 8°. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 729	
van Calcar, R. P.: Dialyse, Eiweisschemie und Immunität. 81 S. 1908. van Doesburgh, Leiden, u. J. A. Barth, Leipzig. Z. f. Koll. 1909 ¹¹ , 77	
Coermann, Amtsgerichtsrat: Nahrungsmittel-Gesetzgebung. (Teil XXI.) 1912. Emil Roth, Giessen. Zt. f. ang. Chem. 1912, S. 771	M15.00
Cohnheim, Otto: Chemie der Eiweisskörper. 3. vollst. neu bearb. Aufl. 388 S. 1911. Vieweg & Sohn, Braunschweig. Koll. Zt. 1912! S. 322. Zt. f. ang. Chem. 1912. S. 213.	M12.00

Delbrück, M. und F. Hayduck: Die Gärungsführung in Brauerei, Brennerei und Presshefefabrik auf Grund der Arbeiten und Erfahrungen des Instituts für Gärungsgewerbe in Berlin. 6 Textabbund 226 S. 1911. Paul Parey, Berlin. Zt. f. ang. Chem. 1912, S. 214.	
Ehrlich, Dr. Felix: Ueber die Bedeutung des Eiweissstoffwechsels für die Lebensvorgänge in der Pflanzenwelt. (Sammlung chemischer und chemisch-technischer Vorträge, Band XVII; Heft 9.) 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 771	
Ehrlich, Paul, Prof., Frankfurt a. M., u. Dr. S. Hata: Die experimentelle Chemotherapie der Spirillosen. (Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie.) Mit Beiträgen von H. J. Nichols, New York, J. Iversen, St. Petersburg, Bitter, Kairo, und Dreyer, Kairo. 164 S. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem.	
1911, 457	M7.00
— Beiträge zur experimentellen Pathologie und Chemotherapie. 247 S. 1909. Akad. Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1910, 1867.	
von Esmarch, Erwin: Hygienisches Taschenbuch für Medicinal- und Verwaltungsbeamte, Ärzte, Techniker und Schulmänner. 4. Aufl. kl. 8°. XII u. 324 S. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 1196.	M4.00
Fischer, Emil: Organische Synthese und Biologie. 28 S. Faraday Lecture, Oct. 10, 1907, Chemical Soc. London. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1908, 1721	M1.00
Fischer, Martin H., Prof.: Cincinnati. Das Odem. Eine experimentelle und theoretische Untersuchung der Physiologie und Pathologie der Wasserbindung im Organismus. Mit Autorisation der Trustees u. d. Verf., deutsch von Karl Schorr u. Wolfg. Ostwald. 223 S. 1910. Theo. Steinkoff, Dresden. Zt. f. ang. Chem. 1911, 840. Z. f. Koll. 1911, 60	
Gaidukov, N.: Dunkelfeldbeleuchtung und Ultramikroskopie in der Biologie und in der Medizin. 13 Abb. VI u. 83 S. 1910. Gustav Fischer, Jena. Z. f. Koll. 1910 ¹¹ , 173	
Glikin, W., Dr.: Biochemisches Taschenbuch. 348 S. 1909. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1910, 115	M8.50
Hammarsten, Olaf: Upsala. Lehrbuch der physiologischen Chemie. 7. völlig umgearb. Aufl. 947 S. 1910. I. J. Bergmann, Wiesbaden. Zt. f. ang. Chem. 1910, 1991; 1907, 681	
Handbuch der biochemischen Arbeitsmethoden. Herausg. von Prof. Dr. Emil Abderhalden. (Bearb. v. Prof. Dr. Abderhalden, Prof. Dr. W. Authenrieth, Prof. Dr. Bechhold, etc.) 5. Band, 1. Teil mit 168 Textabb. 1911. Verlag von Urban & Schwarzen- berg, Berlin. Zt. f. ang. Chem. 1912, S. 26Geh.	
nerg, Dermit 76. 1. ang. Ottem. 1912, p. 20	14140.00

Der Harn, sowie die übrigen Ausscheidungen und Körperflüssigkeiten von Mensch und Tier, ihre Untersuchung und Zusammensetzung in normalem und pathologischem Zustande. Bearbeitet von A. Albu, Berlin, A. C. Andersen, Kopenhagen, I. Bang, Lund, usw. 2 Teile, 1823 S. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 1868	M63.00
Hofmeister, Franz: Leitfaden für den praktisch-chemischen Unterricht der Mediciner. III. Aufl. 1908. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2298	M4.75
Jahresbericht über die Ergebnisse der Immunitätsforschung, 1907. Hrsg. von Dr. Wolfgang Weichard, Erlangen. 542 S. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 1949	
Kaiserliches Gesundheitsamt: Uebersicht über die Jahresberichte der öffentlichen Anstalten zur techn. Untersuchung von Nahrungsund Genussmitteln im Deutschen Reich 1908. X. 461 und 54 S. Gr. 4°. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 679.	•
v. Korányi, A., und P. F. Richter: Physikalische Chemie und Medizin. 2. Bd. 484 S. 1908. Georg Thieme, Leipzig. Z. f. Koll. 1908 ¹¹ , 187	
Kraft, Ernst, Dr.: Analytisches Diagnostikum. Die chemischen, mikroskopischen u. bakteriologischen Untersuchungsmethoden von Harn, Auswurf, magensaft, Blut, Kot usw. 146 Abb., 4 farb. Tafeln. 1909. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 1788	
Lockemann, Georg, Dr.: Berlin. Die Beziehungen der Chemie zur Biologie und Medizin. 30 S. 1909. Carl Winter, Heidelberg. Zt. f. ang. Chem. 1910, 1772	M0.80
Loeb, Jacques, Prof.: New York. Die chemische Entwicklung- serregung des tierischen Eies. (Künstliche Parthenogenese.) 56 Textfig. 259 S. 1909. Jul. Springer, Berlin. Z. f. Koll. 1909 ¹¹ , 327	
— Die Bedeutung der Tropismen für die Psychologie. 51 S. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1772Geh.	M1.00
Loehlein, M., Dr.: Leipzig. Die krankheiterregenden Bakterien 307. Bd. der Sammlung "Aus Natur und Geisteswelt." 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1910, 1772	M1.25
Michaelis, Leonor, Dr. med. Prof.: Dynamik der Oberflächen. Eine Einführung in biologische Oberflächen-Studien. 88 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 227. Zt. f.	
ang. Chem. 1910, 1772	M4.00

"Selbstverlag," München, 31. Phot. Korr. 1911, 423	
— Porträtkunst in der Photographie. Bd. 1. Ästhetik. Bd. 2. Praxis. 1909. Ed. Liesegang, Leipzig. Phot. Korr. 1909, 547	M4.60
Stenger, Erich, Dr.: Moderne photographische Kopierverfahren. Enzykl. d. Photog. Nr. 63. 1909. W. Knapp, Halle. Phot. Korr., 1909, 247. Zt. f. ang. Chem. 1909, 2019	
Stolze, F.: Die Panoramenapparate in ihren Vorzügen und Mängeln sowie ihre Verwendung in der Praxis. Enzykl. d. Photog. Nr. 64. 1909. W. Knapp, Halle. Phot. Korr. 1909, 247. Zt. f. ang. Chem. 1909, 2120	M3.00
— Die Stereoskopie und das Stereoskop in Theorie und Praxis. Enzykl. d. Phot. Nr. 10. 2. Aufl. 1908. W. Knapp, Halle. Phot. Korr. 1909, 301. Zt. f. ang. Chem. 1909, 1047	<b>M5.0</b> 0
Unger, A. W., K. K. Prof.: Die Herstellung von Büchern, Illustrationen Akzidenzen u. s. w. 2. verm. Aufl. 178 Fig., 12 Beilagen, 74 Tafeln. 1911. W. Knapp, Halle. Phot. Korr. 1911, 335	
Urban, Wilh.: München. Kompendium der gerichtlichen photographie. 103 Bilder. 1909, 1910. Otto Nemnich, Leipzig. Phot. Korr. 1910, 298. Zt. f. ang. Chem. 1910, 566`	M7.50
Vogel's Dr. E. Taschenbuch der Photographie. Ein Leitfaden für Anfänger und Fortgeschrittene. Bearb. von Paul Hanneke. 21.–25. Aufl. — 91. Tausend. 1909, 1910. Gustav Schmidt, Berlin. Phot. Korr. 1909, 601; 1911, 334	M2.50
Warstat, Willi, Dr.: Allgemeine Ästhetik der photographischen Kunst auf psychologischer Grundlage. Eneykl. d. Photogr. Heft 65. 1909. W. Knapp, Halle. Phot. Korr. 1909, 246	M3.00
Was der Photograph, Photohändler und Amateur vom Giftgesetz und den Giften wissen muss. Hrsgn. u. verlegt von Soennecken & Co., München. Phot. Korr. 1911, 421	
Weigert, F.: Die chemischen Wirkungen des Lichts. 114 S. Koll. Zt. 1912 ¹¹ , S. 205	
Wentzel, Fritz, Dr. Ing.: Kinematographen-Films. Nr. 6, 1911 der Zeitschrift: Kunststoffe. 1911. J. F. Lehmann, München. Phot. Korr. 1911, 332	M18.00
— u. Dr. F. Paech: Photographisches Reisehandbuch; ein Ratgeber für die photographische Ausrüstung und Arbeit auf Reisen. Klein 8°. Reich ill. 1909. Gustav Schmidt, Berlin. Phot. Korr. 1909, 350.	
Wiener, Otto: Über Farbenphotographie. Ein Vortrag. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 890	2.20.00

Wimmer, Franz Paul: Praxis der Makro- und Mikro-Projektion für Lehrzwecke in Schule und Haus, sowie für Lichtbildervorträge, etc. 1911. Otto Nemnich, Leipzig. Phot. Korr. 1911, 333	M6.00
— Die Kinematographie. Wesen, Entstehung und Ziele des lebenden Bildes. 2. erw. Aufl. 46 Abb. 1911. Union Deutsche Verlagsgess, Berlin, S. 61. Phot. Korr. 1911, 423	
Zehn Jahre Deutsche Alpenzeitung. Phot. Korr. 1911, 334	
von Zamboni, Karl: Anleitung zur Positiv- und Negativretusche. 3. Aufl. 1908. W. Knapp, Halle. Phot. Korr. 1909, 43	M2.40
Zimmermann, W.: Die Photographie. 1909. Quelle & Meyer, Leipzig. Zt. f. ang. Chem. 1909, 2121	M1.80
Zollhandbuch für die photographische Industrie. Zusammenstellung der ausländischen Einfuhrzölle auf die wichtigsten photogr. Bedarfsartikel. Bearb. von Fritz Hansen, Berlin. 170 S. Hrsgn. vom Verein der Fabrikanten photographischer artikel E. V., Berlin. Phot. Korr. 1910, 558.	
PHOTOGRAPHISCHE KALENDER, ZEITSCHRIFTEN, ET	c.
Agenda Lumière, 1909, 1910. Lyon, A. Lumière et ses fils. Gauthier-Villars, Paris. Phot. Korr. 1909, 145; 1910, 193Fr.	1.00
Deutscher Kamera-Almanach: gr. 8°. ca. 300 S. u. 130 Reprod., 146 Reprod. Bd. 5 = 1909. Begr. von Fritz Loescher, fortgeführt von Otto Eevel. Gustav Schmidt, Berlin. Phot. Korr. 1909, 44; 1910, 45; 1911, 336	M5.00 M5.50
— Photographen-Kalender: Taschenbuch und Almanach für 1909, 1910, 1911. 2 Teile. 28. Jahrg. 1909. Karl Schwier, Weimar	M2.00
423Beide zusamen.	M3.00

Jahrbuch des Kamera-Klubs in Wien, 1909. Selbstverlag. Phot. Korr. 1909, 547	
Notizbuch für Amateurphotographen. 2. verm. u. verb. Aufl. mit Belichtungstafel. P. Brünsing, Heidelberg. Phot. Korr. 1909, 500	M1.20
Photographischer Abreisskalender, 1910. Phot. Korr. 1910, 46. R. Lechner, Wien	K3.30
Photographischer Abreisskalender, 1910, 1911. W. Knapp, Halle. Phot. Korr. 1909, 601. Phot. Korr. 1910, 605. 4. Jahrg	M2.00
Photographischer Almanach: Hrsg. Hans Spörl. Ca 144 S. Jährlich. Ed. Liesegang, Leipzig. Phot. Korr. 1909, 43, 245; 1910, 149.	M1.50
— Notizkalender: Hrsgn. von Prof. Dr. Franz Stolze, Berlin. 1911 = 16. Jahrg. (+ 14. I. 1910, Phot. Korr. 1910, 100.) W. Knapp, Halle. Phot. Korr. 1909, 45. Phot. Korr. 1910, 99. Phot. Korr. 1911, 334	M1.50
Photographisches Taschen-Notizbuch: Soennecken & Co., G. m. b. H., München. Phot. Korr. 1909, 500	
PHYSIKALISCHE- UND THEORETISCHE CHEMIE MATE MATIK, PHYSIK.	HE-
Arndt, Kurt: Technische Anwendungen der physikalischen Chemie. IV u. 304 S. 55 Abb. im Text. 1908. Mayer & Müller, Berlin. Zt. f. ang. Chem. 1908, 2566	M8.00
Arrhenius, Svante, Prof.: Stockholm. Theorien der Chemie. Übers von A. Finkelstein. 2. neubearbeitete u. bed. verm. Aufl. 233 S. 1909. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. ang. Chem. 1909, 1655	
— Untersuchung über die galvanische Leitfähigkeit der Elektrolyte. Übers. von Anna Hamburger. Hrsg. von Otto Sackur. Ostwald's Klasoiker, etc. Wilh. Engelmann, Leipzig. Zt. f. ang. Chem. 1908, 2564.	M2.50
Auerbach, Felix, u. Rudolf Rothe: Taschenbuch für Mathematiker und Physiker. Unter mitw. zahlr. Fachgenossen hrsgn. 2. Jahrg. 1911. B. G. Teubner, Leipzig, Berlin. Zt. f. ang. Chem. 1911, 1417.	M7.00
Bakhuis Roozeboom, Dr. H. W.: Amsterdam. Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre. Drittes Heft, Erster Teil. Die ternären Gleichgewichte. 1911. Friedr. Vieweg & Solm, Braunschweig. Zt. f. ang. Chem. 1911, S. 1739.	W. 7. UU
Bädeker, K., Prof.: Jena. Die elektrischen Erscheinungen in metallischen Leitern. Aus d. Sammlung "Die Wissenschaft."	

Bendt, Franz: Grundzüge der Differential- u. Integralrechnung. 4. Aufl. 39 Abb. J. J. Weber, Leipzig. Zt. f. ang. Chem. 1911, 458	M3.00
Benrath, Dr. Alfred: Chemische Konstitutionsbeweise. 79 S. 1911. Carl Winters Universitätsbuchhandlung, Heidelberg. Zt. f. ang. Chem. 1911, S. 2367	
Winter, Heidelberg. Zt. f. ang. Chem. 1909, 89	M1.20
Börnstein, R., Prof., u. Prof. W. Marckwald: Sichtbare und unsichtbare Strahlen. 2. neubearb. u. verm. Aufl. 85 Abb. im Text. 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1910, 890	M1.25
Bruni, Guiseppe, Dr.: Feste Lösungen und Isomorphismus. 1908.  Akad. Verlagsgesellschaft m. b. H., Leipzig. VI. u. 130 S. Zt. f.  ang. Chem. 1909, 560. Z. f. Koll. 1909, 154	M5.00
Byk, Alfred, Dr.: Einführung in die Kinetische Theorie der Gase.  1. Teil: Die idealen gase. (Statik und Dynamik der einatomigen gase.) 10. B'dchen d. "Mathemat. — physikal. Schriften für Ingenieure und Studierendi," hrsgn. von E. Jahnke. IV u. 102 S. 1910. B. G. Teubner, Berlin, Leipzig. Zt. f. ang. Chem. 1911, 648.	M3.20
Coops, G. H., Dr.: Übersichtliche Darstellung des zweiten Hauptsatzes der Thermodynamik und der daraus herzuleitenden Folgen. 1909. P. Noordorf, Groningen. Zt. f. ang. Chem. 1909, 2070	M0.75
Dessau, Bernhard: Die physikalisch-chemischen Eigenschaften der Legierungen. VIII u. 208 S. 1910. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1910, 1992	M8.00
Duhem, Pierre: Ziel u. Struktur der Physikalischen Theorien. Übers. von Fr. Adler, Vorwort von Ernst Mach. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2392	M8.00
Fournier d'Albe, C. E.: Die Elektronentheorie. Gemeinverst. Einf. in die moderne Theorie der Elektricität u. des Magnetismus. Übers. von I. Herweg. 1908. Joh. Ambr. Barth, Leipzig. Zt. f.	354.00
ang. Chem. 1908, 2491	M4.80
Helm, Georg, Prof.: Dresden. Die Grundlagen der höheren Mathematik. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. ang. Chem. 1911, 355	M14.20
Hinrichsen, Willy, F.: Vorlesungen über chemische Atomistik. 7 Abb. im Text, 1. Tafel. 1908. Teubner, Leipzig. Zt. f. ang. Chem. 1908, 2491	M7.00
van't Hoff, J. H., Prof.: Berlin. † 2 III. 1911. Die Lagerung der Atome im Raume. 3. umgearb. u. verm. Aufl. 147 S. 1908. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2108.	M4 50
Z. f. Koll. 1909 ¹ , 206	M4.50

M5.00	— Zur Bildung der ozeanischen Salzablagerungen. 2. Heft. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 1627.
M9.00	Jänecke, Ernst: Gesättigte Salzlösungen vom Standpunkte der Phasenregel. 188 S. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 665
M11.00	von Jüptner, H.: Das chemische Gleichgewicht auf grund mechanischer Vorstellungen. 367 S. 1910. B. G. Teubner, Leipzig, Berlin. Zt. f. ang. Chem. 1911, 889
M15.00	Kauffmann, Prof. Hugo: Die Valenzlehre. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 772
M13.00	Kaufmann, Walther, Prof.: Königsberg i. Pr. und Prof. Alfred Coehn, Göttingen. Magnetismus und Elektrizität. Aus: Müller — Pouillets Lehrbuch der Physik und Meteorologie, 10. Aufl. 4 Bde. — Bd. 4. 1. Abth. 5. Buch. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1910, 1816
	Kremann, R.: Leitfaden der graphischen Chemie. Mit 5 zusammenlegbaren Raummodellen. 1910. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1911, 353
M7.50	Kröhnke, O., Dr.: Kurze Einführung in den inneren gefügeaufbau der Eisenkohlenstofflegierungen. 1911. Concordia Verlagsges, Berlin. Zt. f. ang. Chem. 1911, 1417
M13.00	<ul> <li>Lehmann, O.: Die neue Welt der flüssigen Kristalle, und deren Bedeutung für Physik, Chemie, Technik und Biologie. 388 S. mit 246 Fig. 1911. Akademische Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1911, S. 1935. Zt. f. Koll, 1911¹, 269 Geb.</li> </ul>
M3.60	Leiser, R., Dr.: Elektrische Doppelbrechung der Kohlenstoffverbindungen Abhandlungen d. Deutschen Bunsen-gesellschaft Nr. 4. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 840
	Levy, Herbert, Dr: Thermodynamische Behandlung einiger Eigenschaften des Wassers und des Wasserdampfes. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 220
	Lundèn, Harald: Affinitätsmessungen an schwachen Säuren und Basen. Ahrens'sche Sammlung chem. u. chemtechn. Vorträge Bd. 14, Heft 1-3. 1908. Ferd. Enke, Stuttgart. Z. f. Koll. 1910 ^t , 324. Zt. f. ang. Chem. 1910, 412
	Marc, Dr. Robert: Jena. Vorlesungen über die chemischen Gleichgewichte und ihre Anwendung auf die Probleme der Mineralogie, Petrographie und Geologie. 1911. Gustav Fischer, Jena. Zt. f. ang. Chem. 1911, S. 1818. Koll. Zt. 1912 ^I , S. 205
9 %	Mecklenburg, Werner: Die experimentelle Grundlage der Atomistik. VIII u. 143 S. 1910. Gustav Fischer, Jena. Zt. f.

Meyer, Julius, Dr.: Berlin. Die Allotropie der chemischen Elemente. Sammlung Ahrens, etc. 66 S. 1910. Ferd. Enke, Stuttgart. Z. f. Koll. 1910 ¹¹ , 172. Zt. f. ang. Chem. 1910, 1867.	M2.40
Geh.  Die Bedeutung der Lehre von der chemischen Reactionsge- schwindigkeit für die angewandte Chemie. Ein Vortrag. IV u. 64 S. 1908. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. ang. Chem. 1908, 2200. Z. f. Koll. 1908 ¹¹ , 243	
Obermiller, Jul., Dr.: Stuttgart. Die orientierenden Einflüsse und der Benzolkern. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1223	
Ostwald, W., Prof.: Die Energie. Aus "Wissen u. Können." 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 954  — Ueber Katalyse. 2. Aufl. 1911. Akademische Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1912, S. 1066	M4.40
Ostwald-Luther: Hand- und Hilfsbuch zur Ausführung physiko- chemischer Messungen. 3. Aufl. Hrsg. von Dr. R. Luther, Dres- den, und Dr. K. Drucker, Leipzig. 351 Fig. im Text. 573 S. 1910. Wilh. Engelmann, Leipzig. Zt. f. ang. Chem. 1911, 305	M13.00
Perrin, Prof., Dr. J.: Die Brownsche Bewegung und die wahre Existenz der Moleküle. 1910. Th. Steinkopff, Dresden. Zt. f. ang. Chem. 1912, S. 1013	M2.50
Planck, Max: Das Prinzip der Erhaltung der Energie. II. Aufl. Sammlung: Wissenschaft u. Hypothese. B. G. Teubner. Zt. f. ang. Chem. 1909, 1291	M6.00 M7.80
Pöschl, Victor, Dr.: Die Härte der festen Körper und ihre physikalisch-chemische Bedeutung. 84 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 173. Zt. f. ang. Chem. 1910, 1772	
Ramsay, William, Sir: Moderne Chemie. 1. Teil: Theoretische Chemie. Übers, von Dr. Max Huth. 9. Abb. 2. Aufl. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1579	
Richards, Theodore William: Cambridge. Experimentelle Untersuchungen über Atomgewichte. Unters. von Richards u. seinen Mitarbeitern. Deutsch von J. Koppel. VI u. 890 S. 34 Abb. 1909. Leopold Voss, Hamburg, Leipzig. Zt. f. ang. Chem. 1910, 1514	
Righi, Augusto: Bologna. Strahlende Materie und magnetische Strahlen. Übers. von Max Iklé. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 412	
Righi, Augusto: Bologna. Die Bewegung der Ionen bei der elektrischen Entladung. Deutsch von Max Iklé. 70 S. 1907.  Joh. Ambr. Barth. Leipzig. Zt. f. ang. Chem. 1909, 474	

— Neuere Anschaufingen über die Struktur der Materie.  Deutsch von Dr. F. Fraenckel  Die moderne Theorie der physikalischen Erscheinungen. Deutsch von B. Dessau. II. Aufl. 1908. Joh. Ambr. Barth, Leipzig.	
Zt. f. ang. Chem. 1908, 2297	M4.80
Halle. Zt. f. ang. Chem. 1909, 1580	
Zt. f. ang. Chem. 1909, 1002	
J. A. Barth. Leipzig. Zt. f. ang. Chem. 1910, 507	M6.00
Thiele, Dr. Johannes: Strassburg. Ueber den Verlauf chemischer Reaktionen. Verlag J. H. Ed. Heitz (Heitz & Mündel). Zt. f. ang. Chem. 1911, S. 1869	M1.20
Thomson, J. J.: Die Korpuskulartheorie der Materie. Übers. von G. Siebert. 1908. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2392	M5.80
van der Waals, Prof. Dr. J. R.: Die Zustandsgleichung. Akademische Verlagsgesellschaft m. B. H., Leipzig. Zt. f. ang. Chem. 1911, S. 2109	
Wedekind, Prof. Dr. E. und Dr. Lewis: Neue Atomgewichtskurven. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 629	
Weber, Heinrich, und Joseph Wellstein: Enzyklopaedie der Elementarmathematik. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1909, 859	
Woker, Gertrud: Die Katalyse, Die Rolle der Katalyse in der analyt. Chemie. I. Allgemeiner Teil. XI. und XII. Band der Sammlung von Einzeldarstellungen auf dem Gebiete der chem., technchem., und physikalchem. Analyse. (645 S.) 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, S. 2366	
PHYSIOLOGIE, BIOCHEMIE UND MEDIZINISCHE CHE	MIE
Abderhalden, Prof. Dr. Emil: Berlin. Die Bedeutung der Verdauung für den Zellstoffwechsel, im Lichte neuerer Forschungen auf dem Gebiete der physiologischen Chemie. (Vortrag geh. im Ingenieur-u. Architekten-Verein, 27. 1. 1911.) 39. S. Urban und Schwarzenberg, Berlin-Wien. Zt. f. ang. Chem. 1912, S. 65	

<ul> <li>Handbuch der biochemischen Arbeitsmethoden. 1. Bd.:</li> <li>Zt. f. ang. Chem. 1909, 1912; 2. Bd.: Zt. f. ang. Chem. 1910, 601;</li> <li>Bd.: Zt. f. ang. Chem. 1910, 1721; 4. Bd.: Zt. f. ang. Chem.</li> </ul>	
1911, 168	
<ul> <li>Lehrbuch der Physiologischen Chemie.</li> <li>Aufl. vollst. umgearb. u. erweitert. 984 S.</li> <li>18 Fig. 1908/1909.</li> <li>Urban u. Schwarzenberg, Berlin-Wien. Zt. f. ang. Chem. 1909, 664</li> </ul>	M26.50
— Neuere Ergebnisse auf dem gebiete der speziellen Eiweisschemie. 128 S. 1909. Gustav Fischer, Jena. Zt. f. ang. Chem. 1909, 1090.	
—— Physiologisches Praktikum. 271 Fig.; 283 S. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1525 Brosch.	M10.00
— Synthese der Zellbausteine in Pflanze und Tier. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1123	M4.40
Arthus, Maurice, u. Joh. Starke: Elemente der physiologischen Chemie. 353 S. 3. Aufl. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1772	M6.75
Autenrieth, Dr. W.: Freiburg i/B. Die Chemie des Harns. 28 Abb., 344 S. 1911. J. C. B. Mohr (Paul Siebeck) Tübingen. Zt. f. ang. Chem. 1912, S. 213	M11.00
Bayliss, W. M.: London. Der osmotische Druck elektrolytisch dissozüerter Kolloide. Vortrag gehalten a. d. 8. internat. Physiologen-Kongress, Wien, 27–30 Sept. 1910. Z. f. Koll. 1911 ¹ , 55	
Bechhold, Prof. Dr. H.: Die Kolloide in Biologie und Medizin. 52. Abb., mehrere Tab., u. 2. Tafeln, 441 S. 1912. Theodor Steinkopff, Stuttgart. Zt. f. ang. Chem. 1912, S. 729. Koll. Zt. 1912 ¹ , S. 205	M15.50
Buchka, Dr. Karl v.: Die Nahrungsmittelgesetzgebung im Deutschen Reiche. 2. Aufl., XIX. 294 S. 8°. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 729	
van Calcar, R. P.: Dialyse, Eiweisschemie und Immunität. 81 S. 1908. van Doesburgh, Leiden, u. J. A. Barth, Leipzig. Z. f. Koll. 1909 ¹¹ , 77	
Coermann, Amtsgerichtsrat: Nahrungsmittel-Gesetzgebung. (Teil XXI.) 1912. Emil Roth, Giessen. Zt. f. ang. Chem. 1912, S. 771	M15.00
Cohnheim, Otto: Chemie der Eiweisskörper. 3. vollst. neu bearb. Aufl. 388 S. 1911. Vieweg & Sohn, Braunschweig. Koll. Zt. 1912 ^t , S. 322. Zt. f. ang. Chem. 1912, S. 213	M12.00
Digitized by GOOGLE	

Delbrück, M. und F. Hayduck: Die Gärungsführung in Brauerei, Brennerei und Presshefefabrik auf Grund der Arbeiten und Er- fahrungen des Instituts für Gärungsgewerbe in Berlin. 6 Textabb. und 226 S. 1911. Paul Parey, Berlin. Zt. f. ang. Chem. 1912, S. 214.	
Ehrlich, Dr. Felix: Ueber die Bedeutung des Eiweissstoffwechsels für die Lebensvorgänge in der Pflanzenwelt. (Sammlung chemischer und chemisch-technischer Vorträge, Band XVII; Heft 9.) 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 771	
Ehrlich, Paul, Prof., Frankfurt a. M., u. Dr. S. Hata: Die experimentelle Chemotherapie der Spirillosen. (Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie.) Mit Beiträgen von H. J. Nichols, New York, J. Iversen, St. Petersburg, Bitter, Kairo, und Dreyer, Kairo. 164 S. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem.	
1911, 457	M7.00
— Beiträge zur experimentellen Pathologie und Chemotherapie. 247 S. 1909. Akad. Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1910, 1867.	
von Esmarch, Erwin: Hygienisches Taschenbuch für Medicinal- und Verwaltungsbeamte, Ärzte, Techniker und Schulmänner. 4. Aufl. kl. 8°. XII u. 324 S. 1908. Jul. Springer, Berhn. Zt. f. ang. Chem. 1909, 1196.	
Fischer, Emil: Organische Synthese und Biologie. 28 S. Faraday Lecture, Oct. 10, 1907, Chemical Soc. London. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1908, 1721	
Fischer, Martin H., Prof.: Cincinnati. Das Odem. Eine experimentelle und theoretische Untersuchung der Physiologie und Pathologie der Wasserbindung im Organismus. Mit Autorisation der Trustees u. d. Verf., deutsch von Karl Schorr u. Wolfg. Ostwald. 223 S. 1910. Theo. Steinkoff, Dresden. Zt. f. ang. Chem. 1911, 840. Z. f. Koll. 1911, 60	
Gaidukov, N.: Dunkelfeldbeleuchtung und Ultramikroskopie in der Biologie und in der Medizin. 13 Abb. VI u. 83 S. 1910. Gustav Fischer, Jena. Z. f. Koll. 1910 ¹¹ , 173	
Glikin, W., Dr.: Biochemisches Taschenbuch. 348 S. 1909. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1910, 115	M8.50
Hammarsten, Olaf: Upsala. Lehrbuch der physiologischen Chemie. 7. völlig umgearb. Aufl. 947 S. 1910. I. J. Bergmann, Wiesbaden. Zt. f. ang. Chem. 1910, 1991; 1907, 681	
Handbuch der biochemischen Arbeitsmethoden. Herausg. von Prof. Dr. Emil Abderhalden. (Bearb. v. Prof. Dr. Abderhalden, Prof. Dr. W. Authenrieth, Prof. Dr. Bechhold, etc.) 5. Band, 1. Teil mit 168 Textabb. 1911. Verlag von Urban & Schwarzen-	
berg, Berlin. Zt. f. ang. Chem. 1912, S. 26Geh.	M28.00

Der Harn, sowie die übrigen Ausscheidungen und Körperflüssigkeiten von Mensch und Tier, ihre Untersuchung und Zusammensetzung in normalem und pathologischem Zustande. Bearbeitet von A. Albu, Berlin, A. C. Andersen, Kopenhagen, I. Bang, Lund, usw. 2	
Teile, 1823 S. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 1868	M63.00
Hofmeister, Franz: Leitfaden für den praktisch-chemischen Unterricht der Mediciner. III. Aufl. 1908. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2298	M4.75
Jahresbericht über die Ergebnisse der Immunitätsforschung, 1907. Hrsg. von Dr. Wolfgang Weichard, Erlangen. 542 S. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 1949	
Kaiserliches Gesundheitsamt: Uebersicht über die Jahresberichte der öffentlichen Anstalten zur techn. Untersuchung von Nahrungsund Genussmitteln im Deutschen Reich 1908. X. 461 und 54 S. Gr. 4°. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 679	M11.00
v. Korányi, A., und P. F. Richter: Physikalische Chemie und Medizin. 2. Bd. 484 S. 1908. Georg Thieme, Leipzig. Z. f. Koll. 1908 ¹¹ , 187	
Kraft, Ernst, Dr.: Analytisches Diagnostikum. Die chemischen, mikroskopischen u. bakteriologischen Untersuchungsmethoden von Harn, Auswurf, magensaft, Blut, Kot usw. 146 Abb., 4 farb. Tafeln. 1909. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 1788	M10.00
Lockemann, Georg, Dr.: Berlin. Die Beziehungen der Chemie zur Biologie und Medizin. 30 S. 1909. Carl Winter, Heidelberg. Zt. f. ang. Chem. 1910, 1772	M0.80
Loeb, Jacques, Prof.: New York. Die chemische Entwicklungserregung des tierischen Eies. (Künstliche Parthenogenese.) 56 Textfig. 259 S. 1909. Jul. Springer, Berlin. Z. f. Koll. 1909 ¹¹ ,	M10 00
327 Die Bedeutung der Tropismen für die Psychologie. 51 S. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1772 Geh.	
Loehlein, M., Dr.: Leipzig. Die krankheiterregenden Bakterien 307. Bd. der Sammlung "Aus Natur und Geisteswelt." 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1910, 1772	M1.25
Michaelis, Leonor, Dr. med. Prof.: Dynamik der Oberflächen. Eine Einführung in biologische Oberflächen-Studien. 88 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 227. Zt. f. ang. Chem. 1910, 1772.	M4.00

Brunswig, Dr., H.: Explosivstoffe auf grund des in der Literatur veröffentlichten Materials bearbeitet. 56 Fig. im Text, u. 56 Tabellen. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1909, 1708	M9.00
Escales, Richard, Dr.: Chloratsprengstoffe. 1910. Veit & Co., Leipzig. Zt. f. ang. Chem. 1911, 21	M8.00
Guttmann, Oscar: Zwanzig Jahre Fortschritte in Explosivstoffen. 4 Vorträge, geh. in der Royal Soc. of Arts, London, Nov./Dec. 1908. 11 Abb. u. 1 farb. Tafel. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 1196.	M3.00
Kast, H., Dr.: Anleitung zur chemischen und physikalischen Untersuchung der Spreng- und Zündstoffe. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 1654	M4.20
Kedesdy, E., Dr.: Die Sprengstoffe. 105. Bd. der Bibl. der gesamten Technik. 1909. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 618	M4.60
TOXIKOLOGIE UND GERICHTLICHE MEDIZIN	
Autenrieth, Wilh., Prof.: Freiburg i. B. Die Auffindung der Gifte und stark wirkender Arzneistoffe. 4. vollst. neubearb. Aufl. 1909. J. C. B. Mohr, Tübingen. Zt. f. ang. Chem. 1910, 411	M8.60
Gadamer, J., Prof.: Breslau. Lehrbuch der chemischen Toxikologie und Anleitung zur Ausmittlung der Gifte für Chemiker, Apotheker und Mediziner. Bearb. von Prof. Gadamer unter Mitw. von Prof. W. Herz u. Dr. G. Otto Gaebel. XII u. 725 S., 31 Abb., 1 Tafel der Blutspektra u. 10 Tabellen. 1909. Vandenhoeck u. Ruprecht, Göttingen. Zt. f. ang. Chem. 1911, 648	
Leers, Otto, Dr.: Berlin. Die forensische Blutuntersuchung. 1910.	
<ul> <li>Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 1771</li> <li>Mannheim, E., Dr.: Toxikologische Chemie. 6 Abb., 147 S. 1909.</li> <li>G. J. Göschen, Leipzig. Zt. f. ang. Chem. 1910, 1369. Z. f. Koll.</li> </ul>	M6.80
1911 ¹ , 173	M0.80
Poulsson, E.: Lehrbuch der Pharmakologie für Ärzte und Studierende. Deutsch von Fr. Leskien. 574 S. 1909. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1910, 1472	M15.00
Rambousek, Dr. J.: Gewerbliche Vergiftungen. 1911. Veit & Co. Leipzig. Zt. f. ang. Chem. 1912, S. 730	M13.50
Schmiedeberg, O., Prof.: Strassburg. Grundriss der Pharmakologie in bezug auf arzneimittellehre und Toxikologie. 6. Aufl. 1909. F. C. W. Vogel, Leipzig. Zt. f. ang. Chem. 1910, 1570	M11.50

Geh. M11.50
Digitized by Google

## NEW BOOKS

Schmidt, W. A., Prof.: Kairo. Die Erkennung von Blutflecken	
und die Unterscheidung von Menschen- und Tierblut in der gerichts	
praxis. 31 S. gr. 8°. Quelle & Meyer, Leipzig. Zt. f. ang. Chem.	
1910, 942	M0.80
Teleky, Dr. Ludwig: Die gewerbliche Quecksilbervergiftung dar-	
gestellt auf Grund von Untersuchungen in Oesterr. 14. Abb., 17	
Tab. 228. S. 1912. A. Seydel, Berlin. Zt. f. ang. Chem.	
1912, S. 891Geb.	M8.00

## INDEX

Acceleration, of gravity, 515. unit of, 515.

Acetic acid, melting points of, 406. specific gravity of, 406.

Acid calculations, 531.

Acid values of oils, conversion into

oleic acid, 67.

Acids and bases, value of normal solu-

tions of, 52.

Acids, basicity of, with various in-

dicators, 51. heats of neutralization of, 500.

relative avidity of, 501.

Alcohol, ethyl, comparison of per cents by weight and by volume, 431, 434.

density of, 423, 425, 428.

methyl, specific gravity and percentage by weight and volume, 423, 436.

methyl, refractometer readings of,

439.

calculation of, 441.
percentage of, by volume and by

weight, 417. refractometer readings of, 439.

specific gravity and percentage of, by volume 417

by volume, 417. tables of Bureau of Standards, 423.

Alkaloids, physical constants, 339.

Alloys, fusible, melting point and composition of, 376.

of definite composition, formation of, 563.

American standard Baumé scale, 526. Ammonia, specific gravity of, 408

Ammonium, chloride, specific gravity of solutions of, 444.

sulphate, specific gravity of solutions of, 443.

Anthracite coal, chemical composition and heat of combustion of, 504. Assay-ton system, 551.

Atmosphere, definition of, 517.

pressure of, 542.

Atomic and molecular weights and their logarithms, 39.

Atomic weights for 1909, 1.

Available chlorine in bleaching powder solution at 15°, 444.

Avidity of acids, 501.

Barometer, 542.

corrections for, 542.

readings, correction of, for temperature, 72.

Basicity of acids with various indicators, 51.

Baumé, degrees and specific gravity equivalent of, 379.

hydrometer, 525.

Bishop, H. B., furning sulphuric acid,

specific gravity of sodium bisulphite, 451.

specific gravity of sodium hyposulphite, 448.

specific gravity of sodium sulphite, 450.

specific gravity of sulphuric acid, 393.

specific gravity of zinc choride, 454.

Bituminous coal, chemical composition and best of combustion of 505

and heat of combustion of, 505.

Bleaching powder solution, available chlorine in, 444.

Boiling point of water at 680 to 800 mm. pressure, 467.

Boyle's law, 543.

British Imperial and metric weights and measures, equivalents of, 477. Bureau of Standards, alcohol tables

of, 423.

Butter fat, Polenske values of, 68.

Butyro-Refractometer readings, conversion of, to indices of refraction, 69.

Cadmium chloride, specific gravity of solutions of, 456.

Calculation, accuracy of, 518. of gas analyses, tables for, 70.

of volumetric analyses, tables for, 51. Carbon dioxide, table of density of (Parr), 76.

Charles' law, 544. Chemical and physical constants of, fats and waxes, 61. lubricating oils, 65. oils, 57. Chemical composition and heat of combustion of, anthracite coal, 504. bituminous coal, 505. coal gas, 510. lignite, 507. natural gas, 509. oven cokes, 506. petroleum, 508. water gas, 511. wood, 508.

Coal, chemical composition and heat of combustion of, 505. gas, chemical composition and heat

of combustion of, 510. Coefficient, of expansion, 517.

of expansion of gases, 73. Coke, chemical composition and heat of combustion of, 506.

Comparison of metric and U. weights and measures from 1 to 10, 472.

Constant boiling hydrochloric acid, composition of, 405.

Conversion, of acid values of oils into oleic acid, 67.

of butyro-refractometer readings to indices of refraction, 69.

Correction of barometer readings for temperature, 72.

Cupric, chloride, specific gravity of solutions of, at 17.5°, 444.

sulphate, specific gravity of solutions of, 445.

Density, 519.

of gases, 3.

of nitrogen, 74.

of water, at 0° to 36°, 457. at 30° to 102°, 458.

at 100° to 320°, 458.

Dilution, and concentration of liquids,

to a certain specific gravity, 565. Dyne, 516.

Elements, Mendeléeff's periodic system of, 2.

physical constants of, 4.

Equivalents, of degrees Baumé and specific gravity, 379.
of metric and British Imperial

weights and measures, 477.

of metric and U.S. weights and measures, 469.

Essential oils, physical and chemical constants of, 356.

Ethyl alcohol, comparison of per cents by weight and by volume, 431, 434.

density of, 423, 425, 428. refractometer readings of, 439. calculation of, 441.

Expansion, coefficients of, 517.

Factors, 551.

for the calculation of indirect gravimetric analyses, 37.

gravimetric, and their logarithms, 10. Fats and waxes, physical and chemical constants of, 61.

Ferric, chloride, specific gravity of solutions of, 445.

sulphate, specific gravity of solutions of, 446.

Ferrous sulphate, specific gravity of solutions of, 446.

Figuring, accuracy of, 518. Force, unit of, 516.

Furning sulphuric acid, 397.

specific gravity of, 392.

Fundamental equivalents of metric and U.S. weights and measures, 470.

Fundamental units, 515.

Gas, analyses, tables for the calculation of, 70.

calculations, 543.

coal, chemical composition and heat of combustion of, 510.

natural, chemical composition and heat of combustion of, 509.

volumes, reduction of, to 0° and 760 mm., 70.

water, chemical composition and heat

of combustion of, 511. Gas and mercury thermometers, 539. Gases, coefficient of expansion of, 73.

density of, 3. solubility of, in water, 73a.

German books, review of, 596.

Glycerene, specific gravity of aqueous solutions of, 442.

Gravimetric factors and their logarithms, 10.

Gravity, variations of, 517.

Heat of combustion of, anthracite coal, 504.

bituminous coal, 505.

coal gas, 510.

lignite, 507.

natural gas, 509. oven cokes, 506.

petroleum, 508.

various substances, 502.

water gas, 511.

wood, 508.

Heats of, formation, 482.

neutralization of acids with formation of sodium salts, 500. solution, 494.

Hydrochloric acid, composition

constant boiling, 405. specific gravity of, 403, 405.

Hydrometer, Nickolson's, 520.

Hydrometers, 524.

Hydrostatic, balance, 523. pressure, 519.

Indirect gravimetric analyses, factors for the calculation of, 37.

Inorganic compounds, physical constants of, 101.

International atomic weights 1913, 1.

Jolly's spring balance, 520.

Kilogram, definition of, 515.

Leach and Lythgoe, refractometer readings of methyl and ethyl alcohol, 439.

Length, unit of, 515.

Lignite, chemical composition and heat of combustion of, 507.

Liquids, dilution and concentration of, 556.

methods of determining specific gravity of, 523.

Lithium chloride, specific gravity of solutions of, 456.

Liter, definition of, 515.

Logarithms, table of, 79.

Lubricating oils, physical and chemical constants of, 65.

physical constants of, 64.

Lythgoe and Leach, refractometer readings of methyl and ethyl alcohol, 439.

Mass, unit of, 515.

Melting point, and composition of fusible alloys, 376.

of acetic acid, 406.

Mendèléeff's periodic system of the elements, 2.

Mercury, vapor tension of, at 40° to 880°, 468.

Meter, definition of, 515.

Methyl alcohol, refractometer readings of, 439.

calculation of, 441.

specific gravity and percentage by weight and volume, 436.

specific gravity of, 435.

Metric and British Imperial weights and measures, equivalents of, 477.

Metric and U.S. weights and measures, equivalents of, 469. fundamental equivalents of, 470.

Mixed acids, formation of, 559.

Mixtures of definite composition, formation of, 558.

Mohr specific gravity balance, 523. Molecular and atomic weights and their logarithms, 39.

Natural gas, chemical composition and heat of combustion of, 509.

New books, review of, 571. Nickolson's hydrometer, 520.

Nitric acid, specific gravity of, 399.

Nitrogen, density of, 74.

Normal, solutions of acids and bases, value of, 52.

oxidizing and reducing solutions, value of, 54.

precipitation reagents, value of, 56.

Oils, physical and chemical constants of, 57.

table for calculation of specific gravity of, 68.

Oleum analysis, 555.

Organic compounds, physical constants of, 216.

Oxidizing  $\mathbf{and}$ reducing solutions, value of normal solutions of, 54.

Percentage of alcohol by volume and by weight, 417.

Periodic system of the elements, 2. Petroleum, chemical composition and heat of combustion of, 508.

Phosphoric acid, specific gravity of,

Physical constants of, alkaloids, 339.

inorganic compounds, 101. lubricating oils, 64.

organic compounds, 216.

the elements, 4.

Physical and chemical constants of, essential oils, 356.

lubricating oils, 65. fats and waxes, 61.

oils, 57.

Polenske value of butter fat, table of,

Potassium, carbonate solutions, specific gravity of, 415.

chromate, specific gravity of solu-tions of, 447.

dichromate solutions, specific gravity of, 447.

hydroxide, specific gravity of solutions of, 411.

Precipitation reagents, value of normal solutions of, 56.

Pressure, unit of, 516. Problems, 533, 546, 552.

Pycnometer, 520, 523.

Rational scale, Baumé hydrometer,

Rectangular method for dilution and

concentration, 563. Reduction of gas volumes to 0° and 76° mm., 70.

Refractive indices of oils, temperature correction for, 67.

Refractometer readings of methyl and ethyl alcohol, 439.

calculation of, 441.

Relative avidity of acids, 501.

Review of new books, 571.

Sartorius specific gravity balance, 523 Seeker, A. F., calculation of refractometer readings, 441. Sodium, bisulphite, specific gravity

of, 451. carbonate solutions, correction of specific gravity of, 413, 414. chloride solutions, specific gravity

of, 447. dichromate solutions, specific gravity of, 448.

hydroxide, specific gravity of solutions of, 410.

hyposulphite, specific gravity of 448.

specific gravity of, 414. sulphite, specific gravity of, 450. Solubility of gases in water, 73a. Specific gravity, 519.

and Baumé degrees, equivalent of 379.

and percentage by weight and

volume of methyl alcohol, 436. and percentage of alcohol by volume

determinations, corrections for, 527. of acetic acid, 406.

of ammonia, 408.

of ammonium chloride solutions, 444. of ammonium sulphate solutions, 443

of aqueous solutions of glycerene,

of cadmium chloride solutions, 456. of cupric chloride solutions, at 17.5°,

of cupric sulphate solutions, 445.

of ferric chloride solutions, 445. of ferric sulphate solutions, 446.

of ferrous sulphate solutions, 446. of fuming sulphuric acid, 392.

of hydrochloric acid, 405.

of liquids, 523. of lithium chloride solutions, 456.

of methyl alcohol, 435.

of nitric acid, 399, 401. of oils, temperature correction for, 67. at 15.5°, table for calculation of,

of phosphoric acid, 407.

of potassium carbonate solutions, 415. of potassium chromate solutions, 447 of potassium dichromate solutions,

Specific gravity, of potassium hydroxide solutions, 411.

of sodium carbonate solutions, 413, 414.

of sodium carbonate solutions, correction of, 414.

of sodium chloride solutions, 447. of sodium dichromate solutions, 448. of sodium hydroxide solutions, 410.

of solids insoluble in water, 522. of solids soluble in water, 521.

of stannic chloride solutions, 453. of stannous chloride solutions, 454. of sulphuric acid, 388, 394.

of zinc chloride solutions, 454, 456. of zinc sulphate solutions, 456.

tables, use of, 531.

Specific volume, 519.

Standards and fundamental equivalents, of British Imperial and metric weights and measures, 477. of U. S. weights and measures, 469. Stannic chloride solutions, gravity of, 453.

Stannous chloride solutions, specific gravity of, 454.

Stoichiometry, 513.

Successive reactions, 550.

Sulphuric acid, fuming, 397. specific gravity of, 393.

specific gravity table of, 388, 394.

Temperature correction for, refractive indices of oils, 67. specific gravity of oils, 67.

Tension, of water vapor over ice, 461. of water vapor over water, 461. Thermochemical units, 481.

Thermochemistry, 481.

Thermometers, 539. errors in, 541.

Thompson, R. T., basicity of acids according to, 51.

Twaddle's hydrometer, 526.

Vapor, pressure of water, 464. tension of, mercury at 40° to 880°. 468.

**Vapor**, tension of, water, at  $-2^{\circ}$  to +36°, 462. at 30° to 230°, 463.

Velocity, unit of, 515.

Volume in C. C. of one gram of water, at 0° to 36°, 459. at 30° to 102°, 460.

at 100° to 320°, 460. unit of, 515.

Volumetric analyses, tables for calculation of, 51.

Water, boiling point of, at 680 to 800 mm. pressure, 467.

density of, at 0° to 36°, 457. at 30° to 102°, 457.

at 100° to 320°, 458.

gas, chemical composition and heat of combustion of, 511.

solubility of gases in, 73a.

vapor, tension of, over ice, 461. over water, 461.

vapor, pressure of, 464.

volume in C. C. of one gram of, at 0°

to 36°, 459. at 30° to 102°, 460. at 100° to 320°, 460.

Waxes and fats, physical and chemical constants of, 61.

Weight, 516.

and mass, 515.

Weights and measures, British Imperial and metric, equivalents of, **477.** 

standards of, 469.

(U. S.) fundamental equivalents of, 469.

(U.S.) and metric equivalents of, 469. **Westphal,** specific gravity balance, 523.

Wood, chemical composition and heat of combustion of, 508.

Zeiss' immersion refractometer readings, 439.

calculation of, 441.

Zinc chloride, specific gravity of solutions of, 454, 455, 456.

sulphate, specific gravity of solutions of, 456.

## The Chemist's Duplex Slide Rule

Designed by Dr. R. Harman Ashley

The Chemist's Duplex Slide Rule represents the successful completion of a long series of experiments to adapt the logarithmic and cologarithmic scales, in conjunction with the chemical gauge points, to the rapid solution of the problems encountered by the chemist. By the use of this Rule, problems in Stoichiometry, such as Gravimetric Analysis, Volumetric Analysis, Equivalents, Percentage Composition, Conversion Factors, Volume of gas from a given weight of substance at different temperatures and pressures, and many other analogous problems are quickly and easily solved.

Aside from the solution of the chemical problems above referred to, any arithmetical problems solvable by logarithms are readily and accurately done with a minimum number of settings.

The Rule carries 138 chemical symbols, which include the common acids, bases, salts, oxides and elements, and which are arranged in the order of their molecular weight.

As each symbol has its individual position corresponding to the logarithm of its molecular weight, the number of permutations and combinations possible covers the requirements of almost any problem.

**NEW YORK** 

## KEUFFEL &

Chicago

St. Louis

Drawing Materials

Mathematical and



SECTIONAL VIEW - SEVENTH-EIGHTHS ACTUAL SIZE

The application of a simple rule enables the Chemist to locate other symbols of less frequent occurrence.

The Chemist's Duplex Slide Rule may be relied upon to give accurate readings to three significant figures, with a maximum apparent error of one-tenth per cent. This error is quite within the limit of accuracy of the average operation of the analytical Chemist.

The Rule does not attempt to replace logarithms, but it is a valuable adjunct to the Chemist in checking up results and it may be conveniently used whenever rapid approximations to within a fair degree of certainty are desired.

In many cases, the operator may solve a chemical problem directly with the Rule. It is made of high grade material, has a 10 in. scale, engine divided, and each rule is accompanied by a manual containing clear, comprehensive instructions for use.

Write to our nearest office for a complete description of this rule.

ESSER CO. HOBOKEN, N. J.

San Francisco

Montreal

Measuring Tapes

Surveying Instruments

pes .

D. Van Mostrand Comyany, 25 park Place, New York, are prepared to supply any of the books listed in the toregoing bibliography, as well as any other publication treating of

## Chemistry or the Chemical Industries

A complete stock of books is always kept on band and we shall be glad to forward to any address our free complete catalogs of Books on Chemistry or any other Engineering or Scientific Subject

Requests for information concerning books on any scientific subject are given prompt and careful attention.

We are ready at all times to give immediate consideration to requests for books to be sent for examination.

## THE NEW YORK PUBLIC LIBRARY REFERENCE DEPARTMENT

This book is under no circumstances to be taken from the Building

		1
	7 3	
		1
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	1
form as		



