Multi-Pose Time-Series Tomato Database for Fine-Grained Categorization with Deep Learning

Yujie Zhang¹, Sven Reichardt¹

¹Julius Kühn-Institut, Federal Research Centre for Breeding Research on Horticultural Crops, Institute for Breeding Research on

using RMSE and ARE during the calibration phase, while the average peak signalto-noise ratio (PSNR) is mainly used for overall quality control after calibration.

Fisheye and super wide angle camera calibration progress **Root Mean Square Error:**

Method	Cam 1	Cam 2	Cam 3	Cam 4
Video1	0.0935	30.9048	0.0967	0.1395
Video2	0.1206	3.2342	0.1171	552.9743
Video3	0.1147	0.8835	5515.1196	10.0304
Image	0.0747	0.8950	0.0927	0.0728

Average Re-projection Error:

Method	Cam 1	Cam 2	Cam 3	Cam 4
Video1	0.0918	30.7810	0.0940	0.1320
Video2	0.1190	2.1214	0.1131	63.3698
Video3	0.1084	0.3053	477.4222	5.2166
Image	0.0732	59.2439	0.0829	0.0687

Peak signal-to-noise ratio (PSNR):

Method	Cam 1	Cam 2	Cam 3	Cam 4	
Best Video	28.71	29.60	30.72	29.60	
Image	28.69	30.97	30.54	30.10	

Conclusion

segmentation and

classification approach

VGG-16 backbones.

using Mask R-CNN and

the semantic

The poster outlines the dataset along with an exceptional approach for fine-grained phenotypic recognition of tomato plants using deep learning methods for precision agriculture (PA), offering a viable alternative for automated and efficient agricultural practices. Additionally, the innovative **Internet of Things** architecture provides efficient and scalable data collecting for phenotyping research purpose.

Loss vs 50 Epochs

Node.js programmed drone for validation data generation. 1

3D reconstruction with Phenotyper v1.0 dataset. 2,3

https://github.com/0YJ/MPTSTD