Prática de Física dos Dispositivos Eletrônicos FGA0100

Laboratório-3

Termistores

FGA

Universidade de Brasília

Resistivities and Temperature Coefficients of Resistivity for Various Materials

Material	Resistivity ^a (Ω · m)	Temperature Coefficient α [(°C) ⁻¹]
Silver	1.59×10^{-8}	3.8×10^{-3}
Copper	1.7×10^{-8}	3.9×10^{-3}
Gold	2.44×10^{-8}	3.4×10^{-3}
Aluminum	2.82×10^{-8}	3.9×10^{-3}
Tungsten	5.6×10^{-8}	4.5×10^{-3}
Iron	10×10^{-8}	5.0×10^{-3}
Platinum	11×10^{-8}	3.92×10^{-3}
Lead	22×10^{-8}	3.9×10^{-3}
Nichrome ^b	1.50×10^{-6}	0.4×10^{-3}
Carbon	3.5×10^{-5}	-0.5×10^{-3}
Germanium	0.46	-48×10^{-3}
Silicon	640	-75×10^{-3}
Glass	10^{10} to 10^{14}	
Hard rubber	$\sim 10^{13}$	
Sulfur	10^{15}	
Quartz (fused)	75×10^{16}	

aAll values are at 20°C.

^bNichrome is a nickel-chromium alloy commonly used in heating elements.

Termistores PTC

Termistores PTC são feitos de Materiais Cerâmicos ou Compósitos Plásticos

Cerâmica Policristalina Dopada contendo Titanato de Bário (BaTiO₃), ou ainda variações com misturas de Titanatos de Bário, Chumbo, Estrôncio com a adição de Ítrio, Manganês, Tântalo e Sílica.

Compósito Plástico contendo Partículas ou Grãos de Carbono ou de Metais.

Termistores NTC

Óxido Férrico (Fe₂O₃) dopado com Titânio (Ti) [tipo-n]

Óxido de Nickel (NiO) dopado com Lítio (Li) [tipo-p]

PTC NTC 1000 106 Thermistor a, R25 = 100 Ω Thermistor b, R25 = 1 k Ω Thermistor c, R25 = $5 \text{ k}\Omega$ Platinum d, 100 Ω at 0°C 800 10s c b RESISTANCE (1) Resistance (Ω) 600 104 α_{20} 400 10³ 200 102 d R_o @ 25°C, P_{min} TR 10 | -80 0 -40 40 80 120 160 200 150 50 100 0 TEMPERATURE (°C) Temperature (°C) Cerâmico (Titanato de Bário) Fe₂O₃ Dopado

Termistores PTC de Compósitos Plásticos

Grãos de Níquel em Fluoreto de Polivinilideno

Termistores

$$G = \sigma(T) \frac{A}{L}$$

$$\sigma(T) = \frac{1}{\rho(T)}$$

Modelo para o Termistor

Coeficiente Térmico

$$\alpha_T = \frac{1}{R(T)} \frac{dR}{dT} \bigg|_T$$

 $P_E = P_T$

$$I^2R = K[T(R) - T_0]$$

$$T_0 = T(R) - \frac{I^2 R}{K}$$

(ar parado)

Modelo do NTC: Equação de Steinhart-Hart

$$\frac{1}{T} = \frac{1}{T_0} + \frac{1}{B} \ln \left(\frac{R}{R_0} \right)$$

$$T_0$$
 (25 °C = 298.15 K).

$$R = R_0 e^{-B\left(\frac{1}{T_0} - \frac{1}{T}\right)}$$

$$R = r_{\infty}e^{B/T} \qquad r_{\infty} = R_0e^{-B/T_0}$$

Modelo do NTC: Equação de Steinhart-Hart

Obtendo as Temperaturas das Medidas:

Datasheet do NTC 5D-9:

$$r_{\infty} = 0.18\Omega$$
 $R_0 = 5.0\Omega$ $T_0 = 298.15K$ (25 °C)

(Corrente máxima de 3A)

Obter o coeficiente B:
$$B = T_0 \log \left(\frac{R_0}{r_\infty}\right)$$
 [K]

Obter a Temperatura:
$$T = \frac{B}{\log \left(\frac{R_1}{r_\infty}\right)}$$
 [K] Valores Calculados de R_1 a partir das medidas.

Modelo do NTC: Equação de Steinhart-Hart

Obtendo a constante K de Convecção:

$$T_0 = T(R) - \frac{I^2 R}{K} = T(R) - \frac{P_T}{K}$$
 $P_E = P_T$

$$K = \frac{P_T}{T(R) - T_0}$$

Type Number	Zero Power Resistance At 25°C	Max.Steady State Current At 25°C	Thermal Dissipation Constant	Thermal Time Constant	Operating Temperature Range
	Ω	Α	mW/°C	Sec	°C
5D-9	5	3	11	34	-55 ~ +200

Modelo Alfa de Termistor PTC

$$\alpha = \frac{\ln\left(\frac{R_2}{R_1}\right)}{T_2 - T_1}$$

Onde:

 R_1 = Resistência em T_1 [Ohms]

 R_2 = Resistência em T_2 [Ohms]

 $T_1 = Temperatura-1 [K]$

 $T_2 = Temperatura-2 [K]$

Modelo do PTC

$$\alpha = \frac{\ln\left(\frac{R_2}{R_1}\right)}{T_2 - T_1} \qquad \Rightarrow \qquad R_2 = R_1 \cdot e^{\alpha \cdot \left(T_2 - T_1\right)}$$

$$R(T) = R_0 e^{\alpha (T - T_0)}$$

$$T = \frac{1}{\alpha} ln \left[\frac{R(T)}{R_0} \right] + T_0$$

Modelo Beta de Termistor NTC

$$\beta = \frac{\ln(\frac{R_{T1}}{R_{T2}})}{(\frac{1}{T_1} - \frac{1}{T_2})}$$

Onde:

 R_{T1} = Resistência em T_1 [Ohms]

 R_{T2} = Resistência em T_2 [Ohms]

 $T_1 = Temperatura-1 [K]$

 T_2 = Temperatura-2 [K]

Modelo Dinâmico dos Termistores

$$P = V \times I = \frac{dH}{dt} = K[T(R) - T_0] + C_T \frac{dT(R)}{dt}$$

 C_T – Capacidade Térmica [Joule / K]

H – Calor [Joules]

P – Potência Elétrica

V – Tensão [volts]

I – Corrente [amps]

K – Constante de Dissipação de Calor por Convecção Natural [W / K]

Modelo Dinâmico do Termistor NTC

$$P = V \times I = \frac{dH}{dt} = K[T(R) - T_0] + C_T \frac{dT(R)}{dt}$$

$$\text{Dissipação Térmica} \\ \text{(Convecção)} \\ \text{Inércia Térmica}$$

$$P(t) = V^{2}(t)/R(t) \qquad I(t) = V(t)/R(t)$$

$$R = R_0 e^{-B(\frac{1}{T_0} - \frac{1}{T})}$$

Thermal Time Constant (TTC)

$$T = (T_2-T_1) (1-exp(-t/\tau)) + T_1$$

$$T = (T_2-T_1) (1-e^{-1}) + T_1$$

$$\frac{T-T_1}{T_2-T_1} = 1-e^{-1} = 1-\frac{1}{2.718} = 0.632$$

63.2%

Thermal Time Constant (TTC)

Type Number	Zero Power Resistance At 25°C	Max.Steady State Current At 25°C	Thermal Dissipation Constant	Thermal Time Constant	Operating Temperature Range
	Ω	Α	mW/°C	Sec	°C
5D-9	5	3	11	34	-55 ~ +200

Circuito de Medidas

Termistor NTC

Efeito Memória em Circuitos com Termistores

Efeito Memória em Circuitos com Termistores

Aplicação Tecnológica: Termistor PTC como Medidor de Fluxo

FIG. 2. Schematic structure of a PTC based flow sensing head.

FIG. 8. Output voltage response of a PTC flow sensor with varying cross section of the tube.

https://www.researchgate.net/publication/234921674_Gas_flow_meter_using_a_positive_temperature_coefficient_thermistor_as_the_sensor

