

UNIVERSIDAD DE GRANADA

VISIÓN POR COMPUTADOR GRADO EN INGENIERÍA INFORMÁTICA

Trabajo 3

CUESTIONES DE TEORÍA

Autor

Vladislav Nikolov Vasilev

Rama

Computación y Sistemas Inteligentes

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Curso 2019-2020

Índice

Ejercicio 1	2
Ejercicio 2	2
Ejercicio 3	2
Ejercicio 4	2
Ejercicio 5	3
Ejercicio 6	3
Ejercicio 7	3
Ejercicio 8	3
Ejercicio 9	3
Ejercicio 10	4
Ejercicio 11	4
Ejercicio 12	4
Ejercicio 13	4
Ejercicio 14	4
Ejercicio 15	5
Referencias	6

Ejercicio 1

¿Cuál es la transformación más fuerte de la geometría de una escena que puede introducirse al tomar una foto de ella? Dar algún ejemplo.

Solución

Ejercicio 2

¿Por qué es necesario usar el plano proyectivo para estudiar las transformaciones en las imágenes de fotos de escenas? Dar algún ejemplo.

Solución

Ejercicio 3

Sabemos que en el plano proyectivo un punto no existe en el sentido del plano afín, sino que se define por una clase de equivalencia de vectores definida por $\{k(x,y,1), k \neq 0\}$. Razone usando las coordenadas proyectivas de los puntos afines de una recta que pase por el (0,0) del plano afín y verifique que los punto de la recta del infinito del plano proyectivo son necsariamente vectores del tipo (*,*,0) con * =cualquier número.

Solución

Ejercicio 4

¿Qué propiedades de la geometría de un plano quedan invariantes cuando se toma una foto de él? Justificar la respuesta.

Solución

Ejercicio 5

Ejercicio 6

¿Cuál es el mínimo número de escalares necesarios para fijar una homografía general? ¿Y si la homografía es afín? Justificar la respuesta.

Solución

Ejercicio 7

Defina una homografía entre planos proyectivos que haga que el punto (3,0,2) del plano proyectivo-1 se transforme en un punto de la recta del infinito del plano proyectivo-2? Justificar la respuesta.

Solución

Ejercicio 8

Ejercicio 9

¿Cuáles son las propiedades necesarias y suficientes para que una matriz defina un movimiento geométrico no degenerado entre planos? Justificar la respuesta.

Solución

Ejercicio 10

¿Qué información de la imagen usa el detector de Harris para seleccionar puntos? ¿El detector de Harris detecta patrones geométricos o fotométricos? Justificar la contestación.

Solución

Ejercicio 11

¿Sería adecuado usar como descriptor de un punto Harris los valores de los píxeles de su región de soporte? Identifique ventajas, inconvenientes y mecanismos de superación de estos últimos.

Solución

Ejercicio 12

Describa un par de criterios que sirvan para seleccionar parejas de puntos en correspondencias ("matching") a partir de descriptores de regiones extraídos de dos imágenes. ¿Por qué no es posible garantizar que todas las parejas son correctas?

Solución

Ejercicio 13

¿Cuál es el objetivo principal del uso de la técnica RANSAC en el cálculo de una homografía? Justificar la respuesta.

Solución

Ejercicio 14

Si tengo 4 imágenes de una escena de manera que se solapan la 1-2, 2-3 y 3-4. ¿Cuál es el número mínimo de parejas de puntos en correspondencias necesarios para montar un mosaico? Justificar la respuesta.

Solución

Ejercicio 15

¿En la confección de un mosaico con proyección rectangular es esperable que aparezcan deformaciones geométricas de la escena real? ¿Cuáles y

por qué? ¿Bajo qué condiciones esas deformaciones podrían no estar presentes? Justificar la respuesta.

Solución

Referencias