STAT UN1201 – Chapter 1

Prof. Joyce Robbins

Waitlist

- 1. The waitlist moves in order as places open up.
- Course materials are available here during change of program period: http://github.com/jtr13/1201
- 3. It is strongly advised to keep up with the material if you are trying to get in the class.

EVERYONE: Once you've made a decision not to take the class, please be considerate and drop it from your schedule.

Discrete data

Discrete data

Heights of 100 college students, in inches

Discrete data histogram

Histogram of height

RIGHT CLOSED, LEFT OPEN

Histogram of height

RIGHT OPEN, LEFT CLOSED

EXERCISE

Draw a histogram of the asking prices for one-bedroom apartments in Morningside Heights (prices in thousands of \$) Data source: cityrealty.com, 9/13/2016

379, 425, 450, 450, 499, 529, 535, 535, 545, 599, 665, 675, 699, 699, 725, 725, 745, 799

Histogram of Morningside Heights One-Bedroom Apt. Prices

Density histogram

Class	Frequency	Rel. Frequency	Density
(300, 400]	1	.056	.00056
(400, 500]	4	.222	.00222
(500, 600]	5	.278	.00278
(600, 700]	4	.222	.00222
(700, 800]	4	.222	.00222

Frequency bar chart

Relative frequency bar chart

Five number summary

- 1. min
- 2. lower fourth
- 3. median
- 4. upper fourth
- 5. max

fivenum(prices)

[1] 379 499 572 699 799

Boxplot

379, 425, 450, 450, 499, 529, 535, 535, 545, 599, 665, 675, 699, 699, 725, 725, 745, 799

[1] 379 499 572 699 799

Boxplot with outliers

Multiple box plots

EXERCISE

(based on #72, p. 49)

Data on a receptor binding measure:

PTSD: 10, 20, 25, 28, 31, 35, 37, 38, 38, 39, 39, 42, 46

Healthy: 23, 39, 40, 41, 43, 47, 51, 58, 63, 66, 67, 69, 72

Draw a comparative boxplot.

Comparative boxplot

Histogram: what's wrong?

Frequency histogram

Class	Freq	CumulativeFreq
300-400	1	1
400-500	4	5
500-600	5	10
600-700	4	14
700-800	4	18

EXERCISE

(based on #17, p. 26) Construction industry data:

bidders	contracts	«) Mhat propartion of the
2	7	a) What proportion of the contracts involved at most
3	20	five bidders?
4	26	b) What proportion of the contracts involved between five and ten bidders, inclusive?
5	16	
6	11	
7	9	
8	6	c) Draw a cumulative
9	8	frequency histogram.
10	3	

bidders contracts

11 2

Five number summary

- 1. min
- 2. lower fourth
- 3. median
- 4. upper fourth
- 5. max

```
summary(prices)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 379 506 572 593 699 799
```

Test score data

Fewer bins

Test score dataset

Original data set of scores:

```
35, 59, 61, 64, 66, 66, 70, 72, 73, 74, 75, 76, 76, 78, 79, 80, 80, 81, 81, 82, 82, 82, 84, 86, 86, 88, 88, 88, 88, 89, 89, 90, 91, 91, 92, 92, 92, 94, 94, 94, 94, 96, 98, 102
```

Mean: 82

Median: 84

Trimmed dataset (min and max removed):

59, 61, 64, 66, 66, 70, 72, 73, 74, 75, 76, 76, 78, 79, 80, 80, 81, 81, 82, 82, 82, 84, 86, 86, 88, 88, 88, 88, 89, 89, 90, 91, 91, 92, 92, 92, 94, 94, 94, 94, 96, 98

Mean: 82.63

Median: 84

How much was trimmed? $\frac{1}{45}$ = 2.22%

Trimmed means

Suppose we want to **trim 15%**.

$$.15 \times 45 = 6.75 \text{ values}$$

Trim 6:

$$\frac{6}{45}$$
 = 0.133

$$\overline{x}_{tr(13.33)}$$
 = 83.667

Trim 7:

$$\frac{7}{45}$$
 = 0.156

$$\overline{x}_{tr(15.56)}$$
 = 83.774

Interpolate:

83.667 + .75 * (.107) = **83.747**

Median vs. trimmed mean

Sample and population means

population mean: μ = sum of N population values / N

sample mean:
$$\bar{x} = \frac{x_1 + x_2 + ... + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

population median: $\widetilde{\mu}$

sample median: \widetilde{x}

Measures of variability

deviations from the mean

 $x_1 - \overline{x}$, $x_2 - \overline{x}$, etc.

Data: 3, 8, 11, 14

Mean: 9

value deviation deviation²

3

-6

36

8

-1

1

11

2

4

14

5

25

Sum of squared deviations

$$S_{xx}$$
: 36 + 1 + 4 + 25 = 66

Population variance

$$\sigma^2 = 66/4 = 16.5$$

$$\sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2 / N$$

Sample variance

Sum of squared deviations:

$$S_{xx}$$
: 36 + 1 + 4 + 25 = 66

Sample variance:

$$s^2 = 66 / 3 = 22$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Why n-1?

Short answer: using **n** would result in an underestimation, since the values in the sample are closer to the sample mean than to the true population mean (which we don't know)

Standard deviation

Square root of variance

- Population s.d. = $\sqrt{\sigma^2}$
- Sample s.d. = $\sqrt{s^2}$
- same units as original values
- Variance of test scores: 156.636
- Standard deviation of test scores: 12.515

EXERCISE (p. 47, #62)

Consider the following information on ultimate tensile strength (lb/in^2) for a sample of n=4 hard zirconium copper wire specimens:

```
\bar{x} = 76,831

s = 180

smallest x_i = 76,683

largest x_i = 77,048
```

Set up equations to determine the values of the two middle sample observations. *Do not solve.*

EXERCISE: sd for n = 3

Find the sample mean, variance, and standard deviation:

X1 X2 X3 mean var sd

```
1 2 3
```

- 2 4 6
- 0 5 10
- 99 100 101
- -8 -5 -2