

TENTAMEN / EXAMINATION

Fylls i av student / To be completed by the student

Skriv anonymiseringskoden på samtliga svarsblad / Write your anonymity code on each sheet

Anonymiseringskod / Anonymity code

Matematisk grundkurs								
Kurskod / <i>Course code</i>	Provkod / Exam	m code			um / Examination			
M A G A 5 1	2 0	0 0		2 0	1 8 -	0 9] - [2]	7
lag har tagit del av regler som gäller i ten I have read the current exam hall rules	tamenssalen /	∑ Ja / Ye	95	Antal inlämnad	de blad / <i>Numbe</i>	r of sheets		
	Fylls i av skr	rivvakt / To	o be compl	leted by the	invigilator			
ontroll av legitimation / Ider	tification check	red	☑ Ja ,					troller utförts thecks have bee
ontroll av inlämnade blad /	Answer sheets	checked	☑ Ja ,		arried out		dlig sign. /	
lämningstid / Time of submis	sion	10	0:[5	4	CBO			
		lärare / To ning av upp						
1 2 3	2,5	5	6	7	8	9	10	~
11 12 13	14	15	16	7	18	19	20	~
21 22 23	24	25	26	27	28	29	30	~
alt antal poäng / Total points		Examin. lärare	e/Kursansvari Évela	g signatur / Sig	nature of the a	examiner Belli	hoff	
5 bouns poar	0	Namnförtydlig	ande / Clarifica	ation of the sign	ature	2000/	All	

Försättsbladet ska alltid lämnas in även om ingen uppgift behandlats $\it /$ Examination should always be submitted even if no questions are answered

Häftområde Löpande sidnr Ange anonymitetskod / Write your anonymity code (Vid icke anonym tentamen ange kurskod + namn + personnummer) (For non-anonymous exams write the course code + name + civic registration number) Consecutive no: Skriv ej i detta område Leave this area blank MAGA51-0017-RHZ Uppgift nr / Question no: 36 Poäng / Points awarded: Lärarens anteckning Examiner's remarks: resomement Universitetstryckeriet Behandla endast en uppgift per sida / Answer only one question per page

Foliande Large satteching Examiner's ren Ser man att for att gora g bijektiv kan man antingen begrensa $D_{(k)}$ t_{i} /// $X \in (-\infty, 4]$ eller t_{i} /// $X \in [4, \infty)$ Da $D_{(k)} = \{X, 1 \times E, -\infty, -4, 1\}$ ges intersen av $D_{(k)}$ $X = \sqrt{x^{2} + 16}$ $\Rightarrow X $	Ser man at for att gova a bijektiv kan man antingen begrensa $D_{(x)}$ $X \in (-\infty, 4]$ eller $f(X) \times (-\infty, 4]$ ges inversen avy så som: $X = \sqrt{y^2 - 16} \implies X = y - 16 \iff y = X + 1/6$	Ser man at for at gora a bijektiv kan man antinsen begrensa D_{gk} f_{i} /// $X \in (-\infty, 4]$ eller f_{i} /// $X \in (-\infty, 4]$ eller f_{i} /// $X = \sqrt{2} - 16$ $\Rightarrow X = \sqrt{-16}$ $\Rightarrow X = \sqrt{-16}$ $\Rightarrow X = \sqrt{-16}$ $\Rightarrow Y = -\sqrt{2} + 16$ $\Rightarrow X = \sqrt{-16}$ $\Rightarrow X$	Ser man at for at gora a bijektiv kan man antinsen begrensa D_{gk} f_{i} /// $X \in (-\infty, 4]$ eller f_{i} /// $X \in (-\infty, 4]$ eller f_{i} /// $X = \sqrt{2} - 16$ $\Rightarrow X = \sqrt{-16}$ $\Rightarrow X = \sqrt{-16}$ $\Rightarrow X = \sqrt{-16}$ $\Rightarrow Y = -\sqrt{2} + 16$ $\Rightarrow X = \sqrt{-16}$ $\Rightarrow X$	nråde ank	(SEA)	UNIDAY SUNIDAY	Ange anonymitetskod / Write your anonymity code (Vid icke anonym tentamen ange kurskod + namn + personnummer) (For non-anonymous exams write the course code + name + civic registration number) MAGASI-0017-RHZ	Löpande sidnr Consecutive no
Followork Ser men att for att gora g bijektiv kan man antingen begrensa g_{∞} till $X \in (-\infty, 4]$ cher fill $X \in [4, \infty)$ Sa som: $X = \sqrt{2} + 16$ $\Rightarrow X = \sqrt{-16}$ $\Rightarrow X$	Follow of the second state of the second stat	Follow of the second state of the second stat	Following Examiner's ren Ser man at for all gora a bijectiv kan man antingen begrensa $Q_{(6)}$ till $X \in (-\infty, 4]$ eller $f_{(7)}$ $X \in (4, \infty)$ Dà $Q_{(6)} = \{X \mid X \in (-\infty, -41)\}$ ges inversen av $g_{(7)}$ sa som: $X = \sqrt{x^2 + 16} \Rightarrow X = \sqrt{-16} \Leftrightarrow y = X + 1/6$ $\Rightarrow y = -\sqrt{x^2 + 1/6}$ dar $X \in [0, \infty)$ och da $Q_{(6)} = \{X \mid X \in [4, \infty)\}$ ges inversen av $g_{(7)}$ $g_{(7)} = (-\infty, -41)$ ges inversen av $g_{($	Leave this area blank				Question no: 3 C Poäng / Points
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} kan man & antingan & begransa \\ X \in (-\infty, 4] & cller & fill & X \in [4, \infty) \\ X \in (-\infty, 4] & cller & fill & X \in [4, \infty) \\ Da D_{g(x)} = \{x \mid X \in (-\infty, -4]\} & ges inversen & out \\ Sa som: & & & & \\ X = \sqrt{x^2 - 16} & \Rightarrow & X = \sqrt{-16} & \Leftrightarrow & & & \\ X = \sqrt{x^2 - 16} & \Rightarrow & & & \\ X = \sqrt{x^2 + 16} & & & & \\ \Rightarrow & & & & \\ Och & $	$\begin{array}{c} kan man & antingan & begransa \\ X \in (-\infty, 4] & cller & fill & X \in [4, \infty) \\ X \in (-\infty, 4] & cller & fill & X \in [4, \infty) \\ Da D_{g(x)} = \{x \mid X \in (-\infty, -4]\} & ges inversen & out \\ Sa som: & & & & \\ X = \sqrt{x^2 - 16} & \Rightarrow & X = \sqrt{-16} & \Leftrightarrow & & & \\ X = \sqrt{x^2 - 16} & \Rightarrow & & & \\ X = \sqrt{x^2 + 16} & & & & \\ \Rightarrow & & & & \\ Och & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		följan	di.		anteckning
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} D\dot{a} D_{g(0)} = \{ \times 1 \times E(-\infty, -4] \} ges inversen avg \\ \\ \dot{s} \dot{a} som : \\ \\ \dot{x} = \sqrt{x^2 + 16} \Rightarrow \dot{x} = \sqrt{-16} \Leftrightarrow \dot{y} = \sqrt{x} + 1/6 \\ \\ \Rightarrow \dot{y} = -\sqrt{x^2 + 1/6} dor \dot{x} \in [p, \infty) \\ \\ och d(a) D_{g(0)} = \{ \times 1 \times E(4, \infty) \} ges inversen avg \\ \\ \dot{y} = \sqrt{x^2 + 1/6} & \\ \\ \dot{y} = \sqrt{x^2 + 1/6} & \\ \end{array}$		1.		son bearinsa D +1/1	
$\Rightarrow y = -\sqrt{x^2 + 16} dar x \in [p, \infty)$	$\Rightarrow y = -\sqrt{x^2 + 16} dar x \in [0, \infty)$ $och da D_{g(x)} = \{x \mid x \in [4, \infty)\} ges inversion av$	$\Rightarrow y = -\sqrt{x^2 + 16} dar x \in [0, \infty)$ $och da D_{g(x)} = \{x \mid x \in [4, \infty)\} gas inversion av$	$\Rightarrow \sqrt{=-\sqrt{x^2+16}} dor \times \in [0,\infty)$ $0 \text{ och } d\stackrel{\circ}{a} D_{0}(x) = \{ \times (\times \in \Psi, \infty) \} \text{ges involsion av}$ $y = \sqrt{x^2+16}$		Da	$\mathcal{D}_{g(x)} = \{x \mid x \in \mathcal{C}\}$	7, 11 XE[4, w)	
			y = \sqrt{x+1/6}		<i>⇒ y</i> :	$=-\sqrt{\chi^2+/6}$	dar XE[d, w)	

