NAME:

1	$/10 \mid 2$	/10 3	/13 4	/12 5	/15 6	/15 T	/75

MATH 2415 (Spring 2014) Exam II, April 3rd

Dr. Zweck's Class

No calculators, books or notes! Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 75 minute exam is worth 75 points.

(1) [10 pts] Let $\mathbf{r}: \mathbb{R} \to \mathbb{R}^3$ be the parametrized curve

$$\mathbf{r}(t) = (t^2, e^{3t}, \cos(4t))$$

and let $f: \mathbb{R}^3 \to \mathbb{R}$ be a function such that

$$f(0,1,1) = 5$$
 $f(0,3,0) = -2$ $\nabla f(0,1,1) = 2\mathbf{i} - 5\mathbf{j} + 7\mathbf{k}$ $\nabla f(0,3,0) = -\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$.

Let $g(t) = f(\mathbf{r}(t))$. Find g'(0).

(2) [10 pts] Let z = f(x, y) be a function with table of values given by

		y		
		4	5	6
	0	7	8	5
x	1	6	9	12
	2	8	11	15

Estimate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point (x,y)=(1,5). Use your answer to estimate the directional derivative of f in the direction $\theta=\pi/3$ at the point (1,5).

- (3) [13 pts]
- (a) Calculate $\iint_D y^3 dA$, where D is the triangle with vertices (0,2), (1,1), and (3,2).

(b) Calculate $\iint_D \cos(x^2 + y^2) dA$, where D is the region above the x-axis and within the circle $x^2 + y^2 = 9$.

- (4) [12 pts]
- (b) Sketch the level curves of the function $z = f(x, y) = x e^y$ at levels k = -1, k = 0, and k = 1. Also calculate the gradient of f at the origin, add it to your sketch, and explain how it is related to the level curve that passes through the origin.

- (5) [15 pts] In this problem you will use the **method of Lagrange Multipliers two different ways** to solve the same problem. The problem is to find the absolute maximum and absolute minimum of the function $f(x,y) = x^2 + y^2$ on the ellipse $(x-1)^2 + 4y^2 = 4$.
- (a) First solve the problem **graphically** by sketching the ellipse and some appropriately chosen level curves, f(x,y) = k. [Hint: The ellipse is centered at (1,0).]

b) Now solve the problem by setting up the appropriate equations and solving them algebraical	y.

(6) [15 pts] Suppose that z = f(x, y) is a function with the following table of values.

(a,b)	f(a,b)	$\nabla f(a,b)$	$f_{xx}(a,b)$	$f_{xy}(a,b)$	$f_{yy}(a,b)$
(1,2)	0	(0,0)	5	3	1
(7, -2)	0	(0,1)	5	3	1
(3,4)	7	(0,0)	-5	-3	-2
(5, -3)	68	(0,0)	8	-4	2
(2,1)	35	(0,0)	5	3	2

Identify any local maxima, minima, and saddle points of f. Explain the reasons for your answers.

Please sign the following honor statement:

On my honor, I pledge that I have neither given nor received any aid on this exam.

Signature: