

IAP20 Res'd PCT/AU 02 FEB 2006

SEQUENCE LISTING

<110> Dyer, Cheryl J.
Du, Fengxing
Grosz, Michael D.
Byatt, John C.

<120> USE OF A SINGLE NUCLEOTIDE POLYMORPHISM IN THE CODING REGION OF THE LEPTIN RECEPTOR GENE TO ENHANCE PORK PRODUCTION

<130> 11916.0058.00PC01

<150> US. 60/553,582
<151> 2004-03-16

<150> U.S. 60/493,158
<151> 2003-08-07

<160> 44

<170> PatentIn version 3.2

<210> 1
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 1
atgatgagggc agttgttgca a

21

<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 2
ccttccctgc aatgttgtct

20

<210> 3
<211> 773
<212> DNA
<213> Sus scrofa

<400> 3
gtgggttaag gacctgatgt tgtcactact atggctcgag tcactgctgg ggcatgagtt 60
tgatccctgg tcctggaaat tcacatgctg tgcgtgtggc catatatata tgtatgtatg 120
tgtatatatata tacactcaca tacatgtata tatatatatg tgagtgtata tatatatattta 180

tgtatgtcaaa ttaatgggga aaataaaaatg tgaatttcta aaaaggggtg ctaaagagtg	240
gcatttatctc taagggtata tgctccctct taagtataac actttggaca atggaagagc	300
tttgtattag gcactgtttg agcacttgga aagttaaata attattgttg aagactgcat	360
gttttaatct tagatacttc ctatttatgt cttagtcaaa atgattaatt gctttctat	420
gtgtctttta aatgcctaa cagaatttat ttatgtgata actgcatttgc acttggcata	480
tccaattact ccttggaaat ttaagttgtc ttgcattgcca ccaaatacaa catatgactt	540
cctcttgcct gctggaatct caaagaacac ttcaactttg aatggacatg atgaggcagt	600
tgttggaaacg gaacttaatt caagtggtagt ctaacttatca aacttatctt ctaaaacaac	660
tttccactgt tgcttttgga gtgaggaaga taaaaactgc tctgtacatg cagacaacat	720
tgcgaggaaag gcatttgaaa cagcagtaaa ttcccttagtt tttcaacaaa cag	773

<210> 4	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 4	
gcactgtttg agcacttgga	20
<210> 5	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 5	
ccttccctgc aatgttgtct	20
<210> 6	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 6	
ttcaactttg aatggacatg atgag	25

<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 7
gtggaaaagtt gttttagaag ataagtttga

30

<210> 8
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 8
tgttgaaacg gaactt

16

<210> 9
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 9
tgttgaaatg gaactta

17

<210> 10
<211> 421
<212> DNA
<213> Sus scrofa

<220>
<221> CDS
<222> (133)..(420)

<220>
<221> misc_feature
<222> (299)..(299)
<223> N = T or C

<220>
<221> misc_feature
<222> (310)..(310)
<223> N = T or A

<220>
 <221> misc_feature
 <222> (311)..(311)
 <223> N = T or C

<400> 10
 gcactgtttg agcacttgga aagttaata attattgttg gagactgcat gttttaatct 60
 tagataacttc ctatTTATGT cttAGTcaaa atgattaatt gctttctat gtgtctttta 120
 aatgtccctaa ca gaa ttt att tat gtg ata act gca ttt gac ttg gca tat 171
 Glu Phe Ile Tyr Val Ile Thr Ala Phe Asp Leu Ala Tyr
 1 5 10

cca att act cct tgg aaa ttt aag ttg tct tgc atg cca cca aat aca 219
 Pro Ile Thr Pro Trp Lys Phe Lys Leu Ser Cys Met Pro Pro Asn Thr
 15 20 25

aca tat gac ttc ctc ttg cct gct gga atc tca aag aac act tca act 267
 Thr Tyr Asp Phe Leu Leu Pro Ala Gly Ile Ser Lys Asn Thr Ser Thr
 30 35 40 45

ttg aat gga cat gat gag gca gtt gtt gaa ang gaa ctt aat nna agt 315
 Leu Asn Gly His Asp Glu Ala Val Val Glu Xaa Glu Leu Asn Xaa Ser
 50 55 60

ggt acc tac tta tca aac tta tct tct aaa aca act ttc cac tgt tgc 363
 Gly Thr Tyr Leu Ser Asn Leu Ser Ser Lys Thr Thr Phe His Cys Cys
 65 70 75

ttt tgg agt gag gaa gat aaa aac tgc tct gta cat gca gac aac att 411
 Phe Trp Ser Glu Glu Asp Lys Asn Cys Ser Val His Ala Asp Asn Ile
 80 85 90

gca ggg aag g 421
 Ala Gly Lys
 95

<210> 11
 <211> 96
 <212> PRT
 <213> Sus scrofa

<220>
 <221> misc_feature
 <222> (56)..(56)
 <223> The 'Xaa' at location 56 stands for Thr or Met.

<220>
 <221> misc_feature
 <222> (60)..(60)
 <223> The 'Xaa' at location 60 stands for Ile or Ser.

<400> 11

Glu Phe Ile Tyr Val Ile Thr Ala Phe Asp Leu Ala Tyr Pro Ile Thr

1

5

10

15

Pro Trp Lys Phe Lys Leu Ser Cys Met Pro Pro Asn Thr Thr Tyr Asp
 20 25 30

Phe Leu Leu Pro Ala Gly Ile Ser Lys Asn Thr Ser Thr Leu Asn Gly
 35 40 45

His Asp Glu Ala Val Val Glu Xaa Glu Leu Asn Xaa Ser Gly Thr Tyr
 50 55 60

Leu Ser Asn Leu Ser Ser Lys Thr Thr Phe His Cys Cys Phe Trp Ser
 65 70 75 80

Glu Glu Asp Lys Asn Cys Ser Val His Ala Asp Asn Ile Ala Gly Lys
 85 90 95

<210> 12

<211> 4050

<212> DNA

<213> Sus scrofa

<400> 12

cttctctgaa gtaagatgac gtgtccaaag ttctctgtgg ctttgttaca ttgggaattt	60
atttatgtga taactgcatt tgacttggca tatccaatta ctcccttgaa atttaagttg	120
tcttgcatgc caccaaatac aacatatgac ttccctttgc ctgctgaaat ctcaaagaac	180
acttcaacct tgaatggaca tcatggggca gttgttggaaa cggaacttaa tataagtgg	240
acctacttat caaacttatac ttctaaaaca actttccact gttgctttt gagtggaa	300
gataaaaact gctctgtaca tgcagacaac attgcaggga aggcatgtt ttcagcagta	360
aattccttag ttttcaaca aacaggtgca aactggaaaca tacagtgctg gatgaaagag	420
gacttgaaat tattcatctg ttatatggag tcattattta agaattcctt caagaattat	480
gaccttaaag ttcatcttt atatgttctg ctgcgttgt tagaaggatc acctctgctc	540
ccccagaaaag gtagtttca gagcggttcaa tgcaactgca gtgctgtga atgttgtgaa	600
tgccatgtgc ctgtgtcgcc agccaaactc aactacaccc ttcttatgta tttgaaaatc	660
acatctggtg gagcagttt tcactcacct ctcatgtcag ttccagccat aaacgttgc	720
aaggcctgatc caccattagg tttgcatatg gaaatcacag acactggtaa tttaaagatt	780
tcttggtcca gcccaacact ggtaccattt caacttcaat atcaagtaaa atattcagag	840

aattctacaa	caaatatgag	agaagctgat	gagatcgct	cagatacatc	tctgcttgc	900
gacagtgtgc	ttccgggtc	ttcatatgag	gttcaggta	ggggcaagag	actggatggc	960
ccaggaatct	ggagtgactg	gagcaccccc	tttacttttta	ccacacaaga	tgtttatatac	1020
tttccaccta	aaattctgac	aagtgttggg	tctaacattt	cttttcaactg	catctataaa	1080
aatgagaaca	agatcgttc	ctcaaaaaag	attgtttgg	ggtatgaattt	agctgagaag	1140
attcctcaaa	gtcagtatga	tgttgtgggt	gaccatgtta	gcaaagtac	ttttcccaat	1200
atgaatgcaa	ccaaacctcg	aggaaagttc	acctatgatg	cagtgtactg	ctgcaatgag	1260
cacgagtgcc	accatcgcta	tgctgagttt	tatgtgattt	atgtcaatat	caatatatca	1320
tgtgaaactg	atgggtactt	aactaaaatg	acttgcagat	ggtcaaccaa	tgcaatccaa	1380
tcacttgg	gaagcactt	gcagttgagg	tatcatagga	gtagccctca	ctgttctgac	1440
gttccatctg	tgcatccat	atctgaaccc	aaagattgcc	agttgcagag	agatggttt	1500
tatgaatgca	tatttcagcc	aatatttctg	ctatctggct	atacaatgtg	gattagaata	1560
aatcaccgt	tgggttca	tgattctcca	ccaacatgtg	tcattcctga	ttccgtgg	1620
aaaccgctgc	ctccatccag	tgtgaaagca	gaaattactg	caaaaattgg	attactgaaa	1680
atatcttggg	agaagccagt	cttcccagag	aataatctc	agttccagat	tcgctatgg	1740
ttaagtggaa	aagaagtaca	gtggaagatc	tatgaggtat	atgacacaaa	gtaaaaatcc	1800
accagtctcc	cgggccaga	cctgtgtca	gtctatgctg	tccaggtgcg	ctgtaagagg	1860
ctagatggac	tgggttattt	gagtaattgg	agtactccag	cctacacagt	tgtcacggat	1920
gtaaaaagttc	ctatcagagg	acctgaattt	tggagaataa	ttaatgaaga	tgccactaaa	1980
aaagagagga	atatcactct	gctctggaag	cctctgatga	aaaatgactc	attgtgcagc	2040
gtgagaagtt	atgtggtaa	acatcataact	tcccgccatg	gaacatggtc	agaagatgtg	2100
ggaaaccaca	ctaaactcac	tttccttgg	acagagcaag	cacattctgt	tacagttctg	2160
gccgtcaatt	caattggtgc	ttcttcgc	aattttatt	taacattctc	atggccatg	2220
agcaaagtaa	atatctgca	gtcgctcagt	gcttatcctt	taaacagcag	ttgtgtgg	2280
ctttcctggc	tgctctcacc	cagtgattac	aatctgatgt	attttattct	tgagtggaaa	2340
attcttaatg	aagaccatga	aattaaatgg	ctcagaatcc	tttcctctgt	taaaaagtat	2400
tatatccacg	atcatttat	tcctattgag	aaatatcaat	tcagtcttta	ccccatattc	2460
atggaaggag	tggggaaacc	gaagataatt	aacagttca	cccaagatgg	tgaaaaacac	2520
cggaaatgatg	caggtctata	tgtattgtg	ccaataatta	tttcctcttc	aatcttattt	2580

cttggAACAT	tgttaatgtc	acaccaaAGA	atgaaaaAGC	tatTTGGGA	agatgttcca	2640
aaccccaAGA	actgttcCTG	ggcacaAGGA	cttaattTC	agaAGCCGA	aacatttgAG	2700
catctttTA	tcaAGCACAC	agaatcAGTG	acatttGCC	ctcttCTTT	ggagcCTGAA	2760
accatttCAg	aagatATCAG	tgttgataCA	tcatggAAA	ataaggatGA	gatggTGC	2820
ccaactacAG	tctctCTACT	cttgacaACT	ccggacCTT	aaaAGAGTC	aatttGTATT	2880
agtgaccaAC	gcagcAGTGC	ccacttCTCT	gaggcTGAGA	gcatggAGAT	aactcGTGAG	2940
gatgaaaATA	gaagacAGCC	ctctattAAA	tatGCCACCC	tgctcAGCAG	ccctaaATCA	3000
ggtgaaaACTG	agcaagAGCA	agaacttGTA	agtagCTTGG	tcagcAGATG	cttctCTAGC	3060
agcaattCCC	taccgaaAGA	gtctttCTCG	aatagCTCAT	gggagatAGA	aaccCAGGCC	3120
tttttttATT	tatcagatCA	gcatccCAAT	atgacttCAC	cacacCTTC	cttctcAGAA	3180
ggattggatG	aacttatGAA	gtttgaggGA	aatttCCCCA	aagaacataA	tgacgaaAGG	3240
tctgtCTATT	atttaggAGT	cacCTCAATC	aaaaAGAGAG	agagtGATGT	gtttttGACT	3300
gatgagtCAA	gagtgcGGTG	cccattCCCA	gcccaCTGTT	tattcgCTGA	catcaAAATC	3360
ctccaggAGA	gctgttCACA	ccttGTA	aataattCA	attnagGAAC	ttctggTCAG	3420
aagactttG	tatcttACAT	gcctcaATT	caaacttGTT	caactcAGAC	tcagaAGATA	3480
atggAAAACA	agatgtATGA	cctaaccGTC	taagttCATT	ccagaaACAT	ctcagattTA	3540
tgtatggatG	agtcatATT	aggtaatat	gttctacATG	gtgttCCATA	gcagAGAGAA	3600
aaaaatttGAG	tcaaatttGA	aaatgactTC	aaaagtAAA	gagatctGTT	tgtccacACT	3660
cagtaataCA	gaaaaaaaa	tgtgagaaAG	ccttcaAGAG	ccttagtaATG	tagacCTACT	3720
cttctaatGA	ttctcttaAC	cggtacAGT	gggaagtTCT	cgaatgcCCT	gtgtctAGCT	3780
agaaacaAGC	ccaacaataAC	tagcgtttG	agcattaATC	tcatgtAGAA	agagctaATC	3840
catctgaATT	acacataCAT	ctgaaAGAAG	acttcAGACT	aacacttGtg	aatgtAATG	3900
tcttcaAGAG	tgtgattGTT	ttatcttgAG	gtgtctttGT	tttacactAA	tttacacATA	3960
cacatATGCA	cacttGtATC	taataggCAT	cctgtacATT	gttaaataATA	tgtatgtACTT	4020
gtttttgtGC	taaaaaaaaa	aaaaaaaaaa				4050

<210> 13
<211> 1025
<212> DNA
<213> Sus scrofa

```

<220>
<221> misc_feature
<222> (1)..(1025)
<223> N = unknown

<400> 13
tgcagtgtga cttgaagcat ttggcacatt gttcaagttc acacaagccc tatggcaca      60
acttttaaac ctaatcttt tatgatgcc aaccaggtag ctgtaatctt ggcataatt      120
tgcagaggaa gtttattttc ctttagctt tgcgtcgta aaatgattac tcctgaggaa      180
atatgaccct acatggta tttggaaaca gggagtcagt tttattggaa agggatgaga      240
ggggtagaa gaatgtcatg cttagggtt taaaaccta ttcttggtcc aggtacccc      300
actggttggg gagtttcatc caagatgtt cactactga gactaggctt aaaaataaaa      360
ggctgtttctt attcctctgg tcaatatgtt gctcatctt aaacaggaac atagggtcc      420
aatangannn ccccagtctt gtatgttacgt gtaccttaac ttttgcttc ttgtttctt      480
ttannagctt taacttanna aatattgtca tcttgttac cctgacnnat gatttatctt      540
catcaatctg tttagacttg aagtcannngc tcaaattann ttctgnnnnt tcattnnngnn      600
cnnnnntngn nnnnnnnnnn nnagctgt gtccaaattt nnnnnnnnnn natgaantac      660
tcnnnnnnnn nnnnnnnnnn nnngnnnaaa nnnnnnnnnn nnnncnnncnn nnnnnnnnnnn      720
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnn      780
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnn      840
nnnnnnnnnn nnnncagnnt natgaannnn nnctanannn nnncnacttg gacctgggc      900
actattgtgg tctcaggagt tctgttccca ggattcagga attcactaga gtgtacacag      960
agcatgacaa aaccttggc tgactggacc atttatcagt ttctcttcc tgggttcta      1020
ggtcc                                              1025

```

```

<210> 14
<211> 446
<212> DNA
<213> Sus scrofa

```

```

<220>
<221> misc_feature
<222> (1)..(446)
<223> N = unknown

<400> 14
caggaattcg gcaccagaca taatgtatg ttttgttaatgt tattaattta tataatctaac      60

```

atgcctgcc	aatggtggtg	ttaaatttgt	gtagaagact	ctgcctaaga	gttgcgactt	120
ttcttgaat	gtttgtatc	gtgtattata	taacctgaac	atcgcttaag	agagacatac	180
accccccgc	ccttgccagc	gaggacagca	gtgggtctgc	cctacgcctt	gtccgagttg	240
ctaataattcc	tcaacccctt	caccaaccgg	tttggaaac	aggattctca	cgttagatac	300
gaaatggtct	cgattgagct	tttactttt	tatagttcaa	cagggtaga	gagccatggg	360
acatggttt	accctgttc	tacccaaatc	catatacatg	cgnngnnnt	taactggnn	420
ctactataat	tnnnnnnttt	cnnnnt				446

<210> 15
<211> 770
<212> DNA
<213> Sus scrofa

<220>
<221> misc_feature
<222> (1)..(770)
<223> N = unknown

<400> 15						
caaggaagag	aagctaaggc	aagattcaa	aaacagaaaat	ccaagaattc	cagcaaacca	60
gggttagatt	catagtaca	aa	gtctatgat	atattttagc	tacaagaagg	120
aacagaatat	caaaagaggg	gtaaagccta	catatctca	gtctaaaaaa	tgaagttata	180
aaactcttag	tgtcttaagc	tatgtttca	acagaccctc	tgatatttgg	aaaagcagag	240
gaaaatttgg	aagcccactg	ttgcaatcaa	caggagctac	taaaatttta	gtctattttt	300
ttcaactcta	tcagttcttt	tcttataactc	aaatgattat	cctggctatt	aaataatctc	360
tttcctccct	ccacacaccc	gctgccagt	gactctcctt	tttatattt	tacttttga	420
attcaagtct	tctatatctt	agtacaatgg	ccaaaaaaaaac	taagctttct	aaggcaccca	480
agagttagaa	ctttcattt	cctacttcat	atgcaagaaa	ttttctctcc	ctttgtctac	540
ttcataagta	atgattagca	atgggtaaat	atcaaaagag	ctaacggtag	actatatttt	600
aggcatggaa	taatttccct	taatagacat	tatccagtag	ccccctctta	ttggcagnnn	660
atatgtnnnn	ngnnnctcag	tngatgccnn	nnnctnnnnn	tngtactgaa	cgctacat	720
gctattctt	nntatacant	catanntatg	nnnanncn	actnacnnan		770

<210> 16
<211> 362

<212> DNA
<213> Sus scrofa

<400> 16
gggaccgtca gtgtgaccaa atcagggcgc cagtgccagc cgtggattc ccaatatccc 60
cacacacaca ctttcaccgc cctccgtttc ccagaactga atggagggca ctccattgc 120
cgcaacccag ggaatcagaa ggaagctccc tggtgcttca cttggatga gaactttaag 180
tccgacctgt gtgacatccc agcatgttat tcaaaggatt ccaaagagaa gaataaaaatg 240
gaaatcctgt acataactggt gcccagtgtt gccatcccc tggccattgc cttactcttc 300
ttcttcatct gtgtctgtcg caataaccag aagtcgtcct caccggctgt ccagaggcaa 360
cc 362

<210> 17
<211> 625
<212> DNA
<213> Sus scrofa

<400> 17
gtacacagat gtaaaaacac ttagtgttca cacgttttat ttaaatattt acaaattttt 60
tcattagtagat attaaacctt tcgcatttatt catcttaat gtcttccagg agggtgactc 120
cccccattag cgtgactcaa tacaaacttt gcaagtgggg ggaccacgga acccggaaatg 180
ctactgctgt gcccgttcta tggcgaggca gctgtactg gttacgaacc cgtgttggaa 240
atagtattt gaaactttctt ggcagattt ttacatcgat attcaatatg agctgcgaat 300
catatgctcg tagttaggaa aatgtcagga aaccctgagt gtgcctgctt tgttgacaa 360
agctattttc gagtcatgtt ggaaggcaag ggcattccagc gcctggcatg gaggagaaga 420
ggtagccctt gccccccacc ttcccagctt tttctgaga tggtggtaat tcggccttag 480
atgacaagcg ctcaactctg aacaagagac ggccatctca caccgtotca attagtcag 540
gatgtgtgtc agggctgcga gaggtcgagg agggaaatgcg gggacttgt tcacttctt 600
ctcagtttgg atcaactgag ctgca 625

<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 18

ggcagctgta actggttacg aa

22

<210> 19
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 19
tcgcagctca tattgaataa cgatgt

26

<210> 20
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 20
aagttccaaa tactcttgc

19

<210> 21
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 21
aagttccaaa tactatttc

19

<210> 22
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 22
cagaccctct gatatttgaa aaagca

26

<210> 23
<211> 33
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic nucleotide
<400> 23
gccaggataa tcatttgagt ataagaaaaag aac

<210> 24
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide
<400> 24
acaggagctta ctaaaat

<210> 25
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide
<400> 25
caggagctat taaaat

<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide
<400> 26
acatttctaag acaaccgaaa tggca

<210> 27
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide
<400> 27
ctagggatct attttcact tttgttaagtt catt

<210> 28
<211> 25
<212> DNA

33

17

16

25

34

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 28

ataatttca taaagaccca ctaat

25

<210> 29

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 29

cataaaggcc cactaat

17

<210> 30

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 30

taaatgtctt ccaggagggt gactc

25

<210> 31

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 31

cacacatcct ggactaattg agacg

25

<210> 32

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 32

caagaattcc agcaaaccag gg

22

<210> 33
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 33
ctcttgggtg ccttagaaaag cttag 25

<210> 34
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 34
gggagtttca tccaaatgtt ttcac 25

<210> 35
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 35
aaactgataaa atggtccagt cagcc 25

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 36
ttccccatat ccccacacac 20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 37

gctgggatgt cacacaggtc

20

<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 38
tggaaacag gattctcacg

20

<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 39
tggatttggg tagaacaggg

20

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 40
cagcagccct aaatcaggtg

20

<210> 41
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 41
aggcctgggt ttcttatctcc

20

<210> 42
<211> 406
<212> DNA
<213> Sus scrofa

```

<220>
<221> misc_feature
<222> (103)..(103)
<223> N = T or G

<400> 42
tcataacaact ttgcagtggg gggaccacgg aacccggaag tctactgttg tgcccgttct      60
atggtgaggc agctgtaact ggttacgaac ccgtgttgg aanaagtattt ggaactttct      120
tggcagattt cttacatcg tattcaatat gagctgcgaa tcatacgctc gtatgttagga      180
aaatgtcagg aaaccccgag tgtgcctgct ttgtttgaca aagctatccc cgagtcatgt      240
tggaaaggcaa gggcatccag cgcctggcat ggaggagaag aggtagcccc tgccccccac      300
cttcccagcc ttttctgag atgttggtaa ttcggtccta gatgacaagc gctcaactct      360
gaacaaggga cggccgtctc acaccgtctc aattagtcca ggatgt                         406

<210> 43
<211> 395
<212> DNA
<213> Sus scrofa

<220>
<221> misc_feature
<222> (192)..(192)
<223> N = T or C

<400> 43
gatatatattt agctacagaa ggttttctag gcaacagaat atcaaaaagag gggtaaagcc      60
tacatatctt cagtcataaaa aatgaagtta taaaactttt agtgtctttaa gctatgtttt      120
caacagaccc tctgatattt ggaaaagcag agaaaaattt ggaagcccac tggcaatc      180
aacaggagct antaaaattt tagtctattt ttcaactct atcagttttt ttcttata:t      240
caaatgatta tcctggctat taaataatct ctccctccc tccacacacc cgctgccagc      300
ggactctctt ttatataattt ttacttttg aattcaagtc ttctatatct tagtacaatg      360
gccaaaaaaaaa ctaagctttc taaggcaccc aagag                           395

<210> 44
<211> 838
<212> DNA
<213> Sus scrofa

<400> 44
tctggtaat atgtacgtca tctctaaaag gaacataggg ctccaatagg aggaccccaag      60
tctttagtt aagtgtacct taacttttg cttcttcttt cttcttagga gctttaactt      120

```

aggaaatcta tcacatcttggtt aaccctgaca aatgatttat cttcatcaat ctgtttaaac	180
ttgaagtcaag aggctcaaataat tattttctgt ttttcataa agttcagatt ttgagagact	240
ggtttagcagc ttgtgtgc当地 atttaaaggcc tttaaatgaa atactcaaaa ttctagat	300
atcctaagtt taaaattgca aacctataact tcagctccac tctcccttca aatttttcta	360
cagaacctct gcaaagatag ggagactatc tgaccatacc aaagtataaa acattctaag	420
acaaccgaaa tggcagataa ttttcataaa grcccactaa tctctagtca tatataagat	480
gaaatgaact tacaaaagtg aaaaatagat ccctagcaca ctgaccctaa aactgatcta	540
aatccatatac tcaataggcc agacttggag ttcccatcat ggcacagtgg taaaagaacc	600
cgactaggaa tcacatcaggaa gcagggttcaa tccctggcct tgctcagtgg gttaagaatc	660
cagcatttgct gtgagctgtg gtgttagtgc cagacgtggc tcagattcca cgttgctgtg	720
gctctggcgt aggcgggagg ctacagctct gattagaccc ctcgcctaattt atgccagggg	780
tgcagccctt cgcctaataat gccatgggtg cagccctaga aaagacaaaa aaaaaaaaaa	838