电子电路与系统基础

理论课第八讲

非线性电路方程的线性化处理方法 牛顿-拉夫逊迭代法(数值法) 分段折线法

李国林 清华大学电子工程系

非线性电路方程线性化处理方法 大纲

- 非线性电路方程求解概述
- 数值法
 - 牛顿-拉夫逊迭代法
 - 非线性电路方程的线性化处理方法
 - 以'非线性电阻做保护电路'为例说明
- 分段折线法
 - 大信号激励下,非线性电路的线性化处理方法
 - 二极管整流器
 - 二极管稳压器
 - 二极管混频器(有兴趣自己看书上的例题)

一、非线性电路

- 存在非线性元件的电路为非线性电路(用非线性方程描述的电路为非线性电路)
 - 非线性电阻元件
 - 元件约束方程为非线性代数方程
 - 非线性动态元件
 - 元件约束方程为非线性的微积分关系
- 非线性电路方程求解比线性方程求解困难多多
 - 线性电路有成熟的分析方法,其数学本质就是矩阵运算,原则上,列方程矩阵求逆即可得解
 - 采用变换域方法将LTI系统的定常系数微分方程转化为代数方程、 叠加定理、戴维南定理可以大大简化线性电路的分析复杂度
 - 非线性电路没有成熟的统一的方法,一般是具体问题具体 分析

线 性 申 路 分 析 的 基 本 法

• 解析法 一节课内容: 差分对管: 调整到下学期 性是工程惯例:

- 非线性元件数目少,描述方程简单
- 具有某种对称结构,描述方程可化简

用线性替代非线性是工程惯例: 给出复杂问题的简单线性解析解, 便于原理性理解

- 数值法 本节
 - 本讲义重点讨论牛顿-拉夫逊迭代法,是一种线性化数值解方法
- 局部线性化 两节课内容
 - 只要交流信号足够小,交流信号感受不到曲线变化(非线性约束), 在它的视野中,只能感受到局部的切线变化(线性约束)
 - 放大器的交直流分析法:确定直流工作点(非线性分析),在直流工作点上进行交流小信号分析(线性分析)
- · 分段线性化 本节二极管、下节MOSFET、下下节BJT
 - 将非线性曲线分割为数段折线,每段在各自范围内都可用线性约束
 - 折线化方法: 可用某点切线、两点割线替代包含该点的一个范围内的曲线
- 准线性化 下学期两节内容
 - 电路中存在滤波机制,使得非线性产生的高次谐波分量被滤除,外在看似线性,从而可以用线性方法进行处理(并非真线性,故称准线性)
 - 下学期振荡器分析时考察

二、数值法: 牛顿拉夫逊迭代法

• 例1

$$V_L(t) = \frac{R_L}{R_S + R_L} v_s(t) = 0.5 v_s(t) = 3 \sin \omega t \quad (V)$$

源和负载的正常连接

$$v_s(t) = 6 \sin \omega t \ (V)$$
 $f = 10kHz$

$$R_S = 300\Omega$$
 $R_L = 300\Omega$

存在强干扰: 电路可能损坏

叠加定理: v_s(t)单独起作用

$$v_{L,s}(t) = 0.5v_s(t) = 3\sin\omega t \ (V)$$

i_{int}(t)单独起作用

$$v_{L,\text{int}}(t) = (R_L \parallel R_s)i_{\text{int}}(t) = \begin{cases} +150V \\ -150V \\ 0 \end{cases}$$

 $20 \mu s < t < 25 \mu s$ $25 \mu s < t < 30 \mu s$ 其他时间段

$$i_{\rm int}(t) = \begin{cases} +1A \\ -1A \\ 0 \end{cases}$$

$$20\mu s < t < 25\mu s$$

 $25\mu s < t < 30\mu s$
其他时间段

叠加定理: $v_s(t)和i_{int}(t)同时起作用$

$$v_L(t) = v_{L,s}(t) + v_{L,int}(t)$$

非线性电阻做保护电路

戴维南定理简化非线性方程列写

$$v_{TH}(t) = v_{L,s}(t) + v_{L,int}(t)$$

戴维南电压就是未接保护电阻时的负载电压

$$R_{TH} = R_S \parallel R_L = 150\Omega$$

$$f_G(v_G) = i_G = \frac{v_{TH}(t) - v_G}{R_{TH}}$$

$$f(v_G) = f_G(v_G) + \frac{v_G}{R_{TH}} - \frac{v_{TH}(t)}{R_{TH}} = 0$$

关于v_g的非线性电路方程

$$f(x) = 0$$
 非线性方程求解

$$f(x^*) = 0$$

$$\uparrow$$
 真实解未知

$$f\left(x^{(0)}\right) = 0 \quad 猜对了$$

$$f(x^{(0)}) \neq 0$$

$$f(x^{(0)}) \neq 0$$
 猜错了:接着猜 $x^{(1)} = x^{(0)} + \Delta x^{(0)}$

前一次猜测基础上的猜测

拉 夫

$x^{(k+1)} = x^{(k)} + \Lambda x^{(k)}$

期望下一次猜对了

$$0 = f\left(x^{(k+1)}\right) = f\left(x^{(k)} + \Delta x^{(k)}\right)$$
$$= f\left(x^{(k)}\right) + f'\left(x^{(k)}\right) \Delta x^{(k)} + \frac{1}{2}f$$

$$= f(x^{(k)}) + f'(x^{(k)}) \Delta x^{(k)} + \frac{1}{2} f''(x^{(k)}) (\Delta x^{(k)})^{2} + \dots$$

$$\approx f(x^{(k)}) + f'(x^{(k)}) \Delta x^{(k)}$$

代

$$\Delta x^{(k)} = -\frac{f(x^{(k)})}{f'(x^{(k)})}$$

$$\Delta x^{(k)} = -\frac{f(x^{(k)})}{f'(x^{(k)})} \quad \frac{\text{Nhows finessed for the properties of the properties of$$

NR迭代:对前一次猜测的线性修正

保留零阶项和一阶线性项: 就是用切线替代原曲线

牛顿-拉夫逊迭代法一般迭代不会超过10步,误差就小到可以忽略不计

非线性电路方程

$$f'(v_G) = 4.8 \times 10^{-6} \times |v_G|^{3.8} + 1/R_{TH}$$

v_G位置的斜率

$$f(v_G) = f_G(v_G) + \frac{v_G}{R_{TH}} - \frac{v_{TH}(t)}{R_{TH}} = 0$$

$$f_G(v_G) = \begin{cases} +10^{-6} \cdot |v_G|^{4.8} & v_G > 0 \\ -10^{-6} \cdot |v_G|^{4.8} & v_G < 0 \end{cases}$$

$$R_{TH} = R_S \parallel R_L = 150\Omega$$

$$v_{TH}(t) = v_{L,s}(t) + v_{L,int}(t)$$

$$v_{L,\text{int}}(t) = (R_L \parallel R_s)i_{\text{int}}(t) = \begin{cases} +150V \\ -150V \\ 0 \end{cases}$$

 $v_{L_s}(t) = 0.5v_s(t) = 3\sin \omega t \ (V)$

$$t=75\mu s$$

$$v_{TH}(t) = 3\sin \omega t = -3V$$
 没有保护电阻时的负载电压

$$v_G^{(0)} = -3V \qquad f(v_G^{(0)}) = f_G(v_G^{(0)}) + \frac{v_G^{(0)}}{R_{TH}} - \frac{v_{TH}(t)}{R_{TH}} = -1.9507 \times 10^{-4} A$$

$$f'(v_G^{(0)}) = 4.8 \times 10^{-6} \times |v_G^{(0)}|^{3.8} + 1/R_{TH} = 0.0070S$$

$$\Delta v_G^{(0)} = -\frac{f(v_G^{(0)})}{f'(v_G^{(0)})} = 0.0280V \qquad v_G^{(1)} = v_G^{(0)} + \Delta v_G^{(0)} = -3 + 0.0280 = -2.9720V$$

$$f(v_G^{(1)}) = f_G(v_G^{(1)}) + \frac{v_G^{(1)}}{R_{TH}} - \frac{v_{TH}(t)}{R_{TH}} = -1.5310 \times 10^{-7} A$$

$$\left| f\left(v_G^{(1)}\right) \right| < 1 \times 10^{-6} A = \varepsilon$$
 迭代结束

$$v_G^* \approx v_G^{(1)} = -2.9720V$$

有保护电阻时的负载电压

保护电阻属高阻支路,对正常电路的工作影响很小 12

$$v_{TH}(t) = 0.5v_s(t) + R_{TH}i_{int}(t) = 152.9763V$$

没有保护电阻时的负载电压:可能损坏电路器件

$$v_G^{(0)} = +10V$$

$$\Delta v_G^{(k)} = -\frac{f(v_G^{(k)})}{f'(v_G^{(k)})}$$

$$v_G^{(k+1)} = v_G^{(k)} + \Delta v_G^{(k)}$$

迭代次数	猜想值	函数结果	微分斜率	迭代增量
k	$v_G^{(k)}$	$f(v_G^{(k)})$	$f'\!\!\left(\!v_G^{(k)} ight)$	$\Delta { m {\it v}}_G^{(k)}$
0	10	-0.8901	0.0370	24.0871
1	34.0871	21.9285	3.2062	-6.8395
2	27.2476	6.9166	1.3728	-5.0384
3	22.2091	2.0346	0.6348	-3.2050
4	19.0041	0.4824	0.3541	-1.3623
5	17.6418	0.0603	0.2685	-0.2245
6	17.4173	0.0014	0.2561	-0.0055
7	17.4118	8.1823×10 ⁻⁷	0.2558	-3.1986×10 ⁻⁶
8	17.4118	2.7778×10 ⁻¹³		

$$v_G^* \approx v_G^{(7)} = 17.4118V$$

有保护电阻时的负载电压,由于存在这个 低阻分流支路,负载和信源都得到保护

没有干扰源,保护电阻影响很小

清华大学电子工程系 2020年春季学期

强干扰保护

三、分段折线法

如果非线性特性中有明显分区的,均可分段折 级处理

$$g = \frac{di_G}{dv_G}\Big|_{v_G = 17.78V}$$

$$=4.8\times10^{-6}\cdot\left|17.78\right|^{3.8}$$

$$=0.2699(S)$$

$$i - 1 = g \times (v - 17.78)$$

$$=0.2699v-4.8$$

$$i = 0.27v - 3.8$$

$$v = 3.7i + 14$$

折线表述

$$i = \begin{cases} \frac{v - 14}{3.7} & +14V < v < +17.78V \\ 0 & -14V < v < +14V \\ \frac{v + 14}{3.7} & -17.78V < v < -14V \end{cases}$$

线 段 等效

$$t < 20 \mu s$$

$$t > 30 \mu s$$

$$v_G(t) = v_{TH}(t) = 3\sin \omega t$$

$$20 \mu s < t < 25 \mu s$$

$$|25\mu s|$$
 $|25\mu s|$ $|25\mu s|$

$$i_G(t) = \frac{v_{TH}(t) - 14}{R_{TH} + 3.7} = \frac{150 + 3\sin\omega t - 14}{150 + 3.7} = 0.8848 + 0.0195\sin\omega t$$

$$v_G(t) = 14 + 3.7 \times i_G(t) = 17.27 + 0.07 \sin \omega t$$

$$i_G(t) = \frac{v_{TH}(t) + 14}{R_{TH} + 3.7} = \frac{-150 + 3\sin\omega t + 14}{150 + 3.7} = -0.8848 + 0.0195\sin\omega t$$

$$v_G(t) = -14 + 3.7 \times i_G(t) = -17.27 + 0.07 \sin \omega t$$

获得了近似解析解

分段折线分析结果

- 前面的例子用切线替代曲线
- 牛顿拉夫逊迭代法也是用切线替代曲线
- 切线斜率对应的就是微分元件参量

微分电阻

$$r_{ac} = r_d = \left(\frac{di}{dv}\right)_Q^{-1}$$

微分电阻 交流电阻 动态电阻

$$R_{DC} = \left(\frac{v}{i}\right)_{Q} = \frac{V_{0}}{I_{0}}$$

直流电阻静态电阻

PN结二极管的分段折线描述

伏安特性曲线具有十分明显的三段分区特征

正偏导通 反偏截止 反向击穿

整流二极管两段折线模型

整流二极管的 反向击穿电压 很大,工作区域远离击穿区,故而不予考虑

(c) 正偏恒压源模型

恒压模型

原理性最强的表述方式

(d) 理想整流模型

0

理想整流模型 最简单,最常用,原理性最强

李国林 电子电路与系统基础

(1) 二极管整流电路

- 二极管整流,就是用二极管的整流开关特性将交流电压变换为直流电压
 - Rectifier: 整流器
- 在所有利用交流电能供电的电子信息处理系统中,都有整流器电路,将交流电整流为直流电
 - 电子信息处理系统一般都需要直流供能
- 二极管整流
 - 半波整流: half-wave rectification
 - 只对正弦波的半周期波形整流
 - 全波整流: full-wave rectification
 - 对正弦波的正负半周波形都整流
 - 桥式整流: bridge rectification
 - 用二极管构成电桥电路进行全波整流

May 2009

1N4001 - 1N4007 General Purpose Rectifiers

Features

- · Low forward voltage drop.
- · High surge current capability.

DO-41
COLOR BAND DENOTES CATHODE

Absolute Maximum Ratings * T_A = 25 ℃ unless otherwise noted

Symbol	Davamatar	Value							Unite
	Parameter	4001	4002	4003	4004	4005	4006	4007	Units
V _{RRM}	Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	٧
I _{F(AV)}	Average Rectified Forward Current .375 " lead length @ T _A = 75°C	1.0						,	Α
I _{FSM}	Non-Repetitive Peak Forward Surge Current 8.3ms Single Half-Sine-Wave	30						Α	
l ² t	Rating for Fusing (t<8.3ms)	3.7						A ² sec	
T _{STG}	Storage Temperature Range		-55 to +175						°C
TJ	Operating Junction Temperature	-55 to +175						°C	

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may by impaired.

反向截止时,输入电压全部加载在二极管两端,二极管应能承受这样的反向偏压

半波描述 $(V_p >> 0.7V)$

$$\left(V_p >> 0.7V\right)$$

$$v_{in}(t) = V_p \cos \omega t$$

$$V_{dc} = \overline{v_{out}(t)} = \frac{V_p}{\pi}$$

$$V_{rms} = \sqrt{\overline{v_{out}^2(t)}} = \frac{V_p}{2} = 0.5V_p$$

$$f_{out} = f_{in}$$

$$v_{out}(t) = \begin{cases} V_p \cos \omega t & \cos \omega t > 0 \\ 0 & \cos \omega t < 0 \end{cases}$$

$$= S_1(\omega t) \cdot v_{in}(t)$$

$$= \frac{V_p}{\pi} + \frac{V_p}{2} \cos \omega t$$

$$+ \frac{V_p}{\pi} \frac{2}{1 \cdot 3} \cos 2\omega t - \frac{V_p}{\pi} \frac{2}{3 \cdot 5} \cos 4\omega t + \frac{V_p}{\pi} \frac{2}{5 \cdot 7} \cos 6\omega t - \dots$$

全波信号的表述

$$v_{in}(t) = V_p \cos \omega t \qquad v_{out}(t) = \begin{cases} +0.5V_p \cos \omega t & \cos \omega t > 0 \\ -0.5V_p \cos \omega t & \cos \omega t < 0 \end{cases}$$
$$= 0.5 \cdot S_2(\omega t) \cdot v_{in}(t)$$

$$S_2(\omega t) = \begin{cases} +1 & \cos \omega t > 0 \\ -1 & \cos \omega t < 0 \end{cases}$$

双向开关函数

$$S_{2}(\omega t) = \begin{cases} +1 & \cos \omega t > 0 \\ -1 & \cos \omega t < 0 \end{cases}$$
$$= 2S_{1}(\omega t) - 1$$
$$= \frac{4}{\pi} \cos \omega t - \frac{4}{3\pi} \cos 3\omega t + \frac{4}{5\pi} \cos 5\omega t - \dots$$

输出信号频率分量

$$v_{out}(t) = 0.5 \cdot S_2(\omega t) \cdot v_{in}(t)$$

$$f_{out} = 2f_{in}$$

$$=0.5\left(\frac{4}{\pi}\cos\omega t - \frac{4}{3\pi}\cos3\omega t + \frac{4}{5\pi}\cos5\omega t - \dots\right) \cdot V_p\cos\omega t$$

$$= \frac{V_p}{\pi} + \frac{V_p}{\pi} \frac{2}{1 \cdot 3} \cos 2\omega t - \frac{V_p}{\pi} \frac{2}{3 \cdot 5} \cos 4\omega t + \frac{V_p}{\pi} \frac{2}{5 \cdot 7} \cos 6\omega t - \dots$$

$$V_{dc} = \overline{V_{out}(t)} = \frac{V_p}{\pi} = 0.318V_p = \frac{2}{\pi}V_{p,out} = 0.637V_{p,out}$$

$$V_{rms} = \sqrt{\overline{V_{out}^2(t)}} = \frac{V_p}{2\sqrt{2}} = 0.354V_p = \frac{V_{p,out}}{\sqrt{2}} = 0.707V_{p,out}$$

桥式整流

非平衡电桥:桥中一定可以看到激励

负载电压为全波信号

$$v_{out}(t) = \begin{cases} +V_p \cos \omega t & \cos \omega t > 0 \\ -V_p \cos \omega t & \cos \omega t < 0 \end{cases}$$
$$= S_2(\omega t) \cdot v_{in}(t)$$

- 桥式整流器变压器次级线圈电压可以全部用作整流器的输入
 - 全波整流器只用 了一半电压

$$V_{dc} = \overline{v_{out}(t)} = \frac{2V_p}{\pi} = 0.637V_p$$

$$V_{rms} = \sqrt{\overline{v_{out}^2(t)}} = \frac{V_p}{\sqrt{2}} = 0.707 V_p$$

- 桥式整流器比全 波整流器,可能 得到两倍的。 电压 电压 有效值电压
 - 代价是多用了两个二极管

三种整流器比较

	半波	全波	桥式
二极管个数	1	2	4
输入信号峰值电压	V _P	V_{P}	V _P
输出峰值 (理想模型)	V_P	0.5V _P	V_P
输出峰值(恒压模型)	V _P -0.7	0.5V _P -0.7	V _P -1.4
直流分量/峰值输入	1/ π	1/ π	2/ π
有效值/峰值输入	1/2	0.354	0.707
波纹频率	f in	2f _{in}	2f _{in}

(2) 二极管稳压器

FAIRCHILD Zeners 1N4728A - 1N4752A

Electrical Characteristics

T_A = 25°C unless otherwise noted

Device	V _z (V)	Z _z @ (Ω)	I _{ZT} (mA)	Z _{zK} (Ω)	l _{zk} (mA)	V _R @ (V)	l _R (μΑ)	SURGE (mA)	I _{ZM} (mA)
1N4728A	3.3	10	76	400	1.0	1.0	100	1380	276
1N4729A	3.6	10	69	400	1.0	1.0	100	1260	252
1N4730A	3.9	9.0	64	400	1.0	1.0	50	1190	234
1N4731A	4.3	9.0	58	400	1.0	1.0	10	1070	217
1N4732A	4.7	8.0	53	500	1.0	1.0	10	970	193
1N4733A	5.1	7.0	49	550	1.0	1.0	10	890	178
1N4734A	5.6	5.0	45	600	1.0	2.0	10	810	162
1N4735A	6.2	2.0	41	700	1.0	3.0	10	730	146
1N4736A	6.8	3.5	37	700	1.0	4.0	10	660	133
1N4737A	7.5	4.0	34	700	0.5	5.0	10	605	121
1N4738A	8.2	4.5	31	700	0.5	6.0	10	550	110
1N4739A	9.1	5.0	28	700	0.5	7.0	10	500	100

等效电路

- 齐纳二极管1N4733A的测试电流为49mA,此位置上, 齐纳电压为5.1V,齐纳电阻为7 Ω
- 齐纳二极管的拐点电流为1mA,最大电流为178mA
- 电源电压不确定,在7V-12V之间波动
- 已知限流电阻R。为100 Ω
- 问:负载电阻在多大变化范围内,可保持稳压二极管处于稳压工作状态?

$$V_S' = \frac{R_L}{R_L + R_S} V_S$$

$$R_S' = R_S \parallel R_L$$

$$\frac{R_{L}}{R_{L} + R_{S}} V_{S} - V_{ZS}
\frac{R_{L} > \frac{V_{ZS} + I_{ZK}R_{Z}}{V_{S} - V_{ZS} - I_{ZK}(R_{S} + R_{Z})} R_{S}}{Q_{S} + R_{S}} > I_{ZK}
= \frac{4.757 + 1m \times 7}{7 - 4.757 - 1m \times (100 + 7)} \times 100
= 223\Omega$$

理想恒压模型估算

• 手工估计,可采用理想恒压模型

$$V_L \qquad \frac{R_L}{R_L + R_S} V_{S, \min} > V_Z$$

$$R_L > \frac{V_Z}{V_{S,\min} - V_Z} R_S$$

$$=\frac{5.1}{7-5.1}\times100$$

 $=268\Omega$

抓住了最核心的:足够用了

本节小结

- 非线性电路分析没有统一的方法,但工程惯例是先做线性化处理,获得原理性解释后,如果需要,再做细致的非线性分析
- 牛顿拉夫逊迭代法是电路CAD工具中处理非线性的 核心算法
- 分段折线是最常见的线性化处理方法,主要针对 (1) 大信号; (2) 非线性器件伏安特性具有明显 的分区特性; (3) 信号可以限定在某个线性化区 域工作(二极管稳压电路),也可跨区工作(二极 管整流电路)

作业1: 直流电阻和交流电阻

- 假设某二极管伏安特性在很大范围内都满足指数律关系
 - 该二极管的反向饱和电流Iso为10fA
 - 给出直流电流为**0.1mA**,**1mA**,**10mA**时对应的直流电压,以及该直流工作点上的直流电阻和微分电阻
 - 分析直流电阻和微分电阻的变化规律

$$i_D = I_{S0} \left(e^{\frac{v_D}{v_T}} - 1 \right)$$

i _D (mA)	v _D	R_{D}	r _d
0.1			
1			
10			

作业2: 二极管0.7V恒压模型的应用

• 采用导通0.7V恒压模型,分析如下电路,给 出输出电阻上的电压大小

- - 分别画出直流 等效电路和交 流等效电路
 - 二极管直流 模型:正偏 0.7V电压源, 反偏开路
 - 二极管交流 模型:正偏 短路,反偏 开路

作业3:二极管开关

叠加定理不适用于非线性电路,直流分析是非线性分析交流小信号在直流基础上起作用,是线性分析

作业4:二极管 数字门电路

- 5V电源电压情况下,我们将大于3V的电压视为逻辑状态1,将小于2V的电压视为逻辑状态0,2-3V的电压不定义其逻辑状态
 - (**1**)给出如下两个电路的输出逻辑 状态
 - (2)用一句话说明逻辑与和逻辑或 的逻辑运算规则(决策原则)
 - 其中逻辑1用'同意'一词表述,逻辑 0用'不同意'一词表述
 - (3)回答:联合国安理会'一票否决制'采用的是与运算还是或运算?

V _{1 (V)}	V _{2 (V)}	V _{3 (V)}	D_1	D ₂	D ₃
0	0		0	0	
0	5		0	1	
5	0		1	0	
5	5		1	1	

与门: and gate

李国林 电子电路与系统基础

二极管: 0.7V恒压源模型

作业5 转移特性

作业中,普通PN结二极管均采用导通0.7V恒压源模型

51

• 画出如图所示电路的电压转移特性曲线

作业6 二极管稳压器

- 一个齐纳稳压电路,输入电压在16V-20V之间变动,齐纳二极管为1N4733A,负载电阻R_L要求负载电流为6mA-20mA才能正常工作,限流电阻R_s的取值范围是多少?
 - 齐纳二极管采用理想电压源模型,反向击穿假设为5.1V恒压
 - 用图解法确认齐纳二极管输入电压必须大于5.1V才可能实现稳压
 - 用图解法解释Rs取值范围的取值考虑
 - 当输入电压、限流电阻、负载电流都取中间值时,求所有元件上 释放或消耗的功率大小

作业7 限幅器

• 分析说明图示电路为什么有这样的输出电压波形?

- 搭建如图所示全波整流电流,假设四个整流二极管相同型号,仿真
 - 确认正常整流时的全波波形
 - 给出S点/A点/B点/L点对地电压波形比较分析,说明为什么有这样的波形
 - 对电源vin提供的电流波形进行分析
 - 如果激励源有内阻,波形变化情况
 - 如果**R**_并联一个大电容后,对上述波形再次进行分析

- 仿真分析当**v**in幅度超过二极管的反向击穿电压时,会导致什么后果? _____

CAD作业