```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
```

In [2]: data=pd.read_csv('aerofit_treadmill.csv')

In [3]: data

Out[3]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

```
In [4]: len(data)
```

Out[4]: 180

In [5]: print('Data type of attributes')
 print(data.info())

Data type of attributes <class 'pandas.core.frame.DataFrame'> RangeIndex: 180 entries, 0 to 179 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)

memory usage: 12.8+ KB

None

```
In [6]: print('shape of the data',data.shape)
```

shape of the data (180, 9)

In [7]: print('statistical summary of numerical attributes')
 print(data.describe())

statis	statistical summary of numerical attributes											
	Age	Education	Usage	Fitness	Income	,						
count	180.000000	180.000000	180.000000	180.000000	180.000000							
mean	28.788889	15.572222	3.455556	3.311111	53719.577778							
std	6.943498	1.617055	1.084797	0.958869	16506.684226							
min	18.000000	12.000000	2.000000	1.000000	29562.000000							
25%	24.000000	14.000000	3.000000	3.000000	44058.750000							
50%	26.000000	16.000000	3.000000	3.000000	50596.500000							
75%	33.000000	16.000000	4.000000	4.000000	58668.000000							
max	50.000000	21.000000	7.000000	5.000000	104581.000000							

Miles count 180.000000 103.194444 mean 51.863605 std min 21.000000 25% 66.000000 50% 94.000000 75% 114.750000 360.000000 max

```
In [8]: Age_counts=data['Age'].value_counts()
         print('What are the age distributions purchasing gym equipments ??')
         print(" ")
         print(Age_counts)
         What are the age distributions purchasing gym equipments ??
         25
         23
               18
         24
               12
         26
               12
         28
                9
         35
                8
         33
                8
         30
                7
         38
                7
                7
         21
                7
         22
                7
         27
         31
                6
         34
                6
         29
                6
         20
                5
         40
                5
                4
         32
         19
                4
                2
         48
                2
         37
                2
         45
                2
         47
         46
                1
         50
                1
         18
                1
         44
                1
         43
                1
         41
                1
         39
                1
         36
                1
         42
                1
        Name: Age, dtype: int64
In [9]: Education_counts=data['Education'].value_counts()
         print('Number of people completed their Education in how many years ??')
        print(" ")
         print(Education_counts)
        Number of people completed their Education in how many years ??
         16
               85
         14
               55
         18
               23
         15
                5
                5
         13
         12
                3
                3
         21
         20
                1
        Name: Education, dtype: int64
```

```
In [10]:
         Usage_counts=data['Usage'].value_counts()
         print('The average number of times the customer plans to use the treadmi
         print('')
         print(Usage_counts)
         The average number of times the customer plans to use the treadmill eac
         h week
         3
              69
         4
              52
         2
              33
         5
              17
         6
               7
         7
                2
         Name: Usage, dtype: int64
In [11]: Fitness_counts=data['Fitness'].value_counts()
         print('Self-rated fitness on a 1-to-5 scale, where 1 is the poor shape at
         print(' ')
         print(Fitness_counts)
         Self-rated fitness on a 1-to-5 scale, where 1 is the poor shape and 5 i
         s the excellent shape.
         3
              97
         5
              31
         2
              26
         4
              24
                2
         1
         Name: Fitness, dtype: int64
In [12]: Marital_counts=data['MaritalStatus'].value_counts()
         print('Marital Status')
         print('')
         print(Marital_counts)
         Marital Status
         Partnered
                       107
                        73
         Single
```

Name: MaritalStatus, dtype: int64

```
In [13]: Income_counts=data['Income'].value_counts()
    print('Number of people and their Annual income')
    print('')
    print('Number of people at right column and their Annual income on left
    print('')
    print(Income_counts)
```

Number of people and their Annual income

Number of people at right column and their Annual income on left column

```
14
45480
52302
          9
46617
          8
54576
          8
53439
          8
65220
          1
55713
          1
68220
          1
30699
          1
95508
          1
Name: Income, Length: 62, dtype: int64
```

```
In [14]: Miles_counts=data['Miles'].value_counts()
    print('The average number of miles the customer expects to walk/run each
    print('')
    print(Miles_counts)
```

The average number of miles the customer expects to walk/run each week

```
85
        27
95
        12
66
        10
75
        10
47
         9
         9
106
94
         8
113
         8
53
         7
         7
100
180
         6
200
         6
56
         6
64
         6
         5
127
160
         5
42
         4
150
         4
         3
38
74
         3
         3
170
         3
120
         3
103
         2
132
         2
141
280
         1
260
         1
         1
300
240
         1
         1
112
212
         1
80
         1
140
         1
21
         1
         1
169
188
         1
360
         1
```

Name: Miles, dtype: int64

```
In [15]: data.groupby('Product')['Age'].describe()
```

Out[15]:

	count	mean	std	min	25 %	50 %	75%	max
Product								
KP281	80.0	28.55	7.221452	18.0	23.00	26.0	33.00	50.0
KP481	60.0	28.90	6.645248	19.0	24.00	26.0	33.25	48.0
KP781	40.0	29.10	6.971738	22.0	24.75	27.0	30.25	48.0

In [16]: data.groupby('Product')['Income'].describe()

Out[16]:

	count	mean	std	min	25%	50%	75%	max
Product								
KP281	80.0	46418.025	9075.783190	29562.0	38658.00	46617.0	53439.0	68220.0
KP481	60.0	48973.650	8653.989388	31836.0	44911.50	49459.5	53439.0	67083.0
KP781	40.0	75441.575	18505.836720	48556.0	58204.75	76568.5	90886.0	104581.0

```
In [17]: sns.distplot(data['Age'], kde=True)
    plt.title('Distribution of age')
    plt.xlabel('Age')
    plt.ylabel('Frequency of age')
    plt.show()
```

/var/folders/fr/xk4r1t0n0kqdxrwjlb8fd4n80000gn/T/ipykernel_7074/7295609
0.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.1 4.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(data['Age'], kde=True)


```
In [18]: sns.countplot(x='Product',data=data)
   plt.title('Count products')
   plt.xlabel('Product')
   plt.ylabel('Count')
   plt.show()
```



```
In [19]: sns.countplot(x='MaritalStatus',data=data)
   plt.title('Count of Marital status')
   plt.xlabel('MaritalStatus')
   plt.ylabel('Count')
   plt.show()
```



```
In [20]: plt.hist(data['Age'],bins=20)
   plt.title('Age Histogram')
   plt.xlabel('Age')
   plt.ylabel('Frequency')
   plt.show()
```



```
In [21]: plt.hist(data['Usage'],bins=5)
    plt.title('Usage Histogram')
    plt.xlabel('Expected hours of usage')
    plt.ylabel('Number of people')
    plt.show()
```



```
In [22]: num_data_points=len(data['Income'])
    binsize=int(np.sqrt(num_data_points))
    binsize
```

Out[22]: 13

```
In [23]: plt.hist(data['Income'],bins=13)
    plt.title('Income Histogram')
    plt.xlabel('Income')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [24]: sns.boxplot(x='MaritalStatus', y='Income', data=data)
plt.title('Boxplot of Marital Status vs. Income')
plt.xlabel('MaritalStatus')
plt.ylabel('Income')
plt.show()
```



```
In [25]: sns.boxplot(x='MaritalStatus',y='Age',data=data)
   plt.title('Boxplot of MaritalStatus vs. Age')
   plt.xlabel('MaritalStatus')
   plt.ylabel('Age')
   plt.show()
```



```
In [26]: correlation_matrix = data[['Age', 'Income', 'Fitness']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


In [27]: gender_by_product=pd.crosstab(data['Product'],data['Gender'])
gender_by_product

Out[27]:

Gender	remale	waie
Product		
KP281	40	40
KP481	29	31
KP781	7	33

In [28]: gender_by_product=pd.crosstab(data['Product'],data['MaritalStatus'])
 gender_by_product

Out [28]:

MaritalStatus	Partnered	Single		
Product				
KP281	48	32		
KP481	36	24		
KP781	23	17		

In [29]: sns.histplot(data=data, x='Age', hue='Product', kde=False)

Out[29]: <Axes: xlabel='Age', ylabel='Count'>

In [30]: sns.countplot(x='MaritalStatus', hue='Product', data=data)

Out[30]: <Axes: xlabel='MaritalStatus', ylabel='count'>

In [31]: marital_product_crosstab = pd.crosstab(data['MaritalStatus'], data['Product_crosstab

Out[31]:

Product	KF201	KF401	KF/OI
MaritalStatus			
Partnered	48	36	23
Single	32	24	17

In [32]: sns.heatmap(marital_product_crosstab, annot=True, cmap='YlGnBu', fmt='d'

Out[32]: <Axes: xlabel='Product', ylabel='MaritalStatus'>

Conditional Probability

what is the probability of Male Customers buying KP781 ??

In [33]: kp781_data = data[data['Product'] == 'KP781']
kp781_data

Out[33]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
140	KP781	22	Male	14	Single	4	3	48658	106
141	KP781	22	Male	16	Single	3	5	54781	120
142	KP781	22	Male	18	Single	4	5	48556	200
143	KP781	23	Male	16	Single	4	5	58516	140
144	KP781	23	Female	18	Single	5	4	53536	100
145	KP781	23	Male	16	Single	4	5	48556	100
146	KP781	24	Male	16	Single	4	5	61006	100
147	KP781	24	Male	18	Partnered	4	5	57271	80
148	KP781	24	Female	16	Single	5	5	52291	200
149	KP781	24	Male	16	Single	5	5	49801	160
150	KP781	25	Male	16	Partnered	4	5	49801	120
151	KP781	25	Male	16	Partnered	4	4	62251	160
152	KP781	25	Female	18	Partnered	5	5	61006	200
153	KP781	25	Male	18	Partnered	4	3	64741	100
154	KP781	25	Male	18	Partnered	6	4	70966	180
155	KP781	25	Male	18	Partnered	6	5	75946	240
156	KP781	25	Male	20	Partnered	4	5	74701	170
157	KP781	26	Female	21	Single	4	3	69721	100
158	KP781	26	Male	16	Partnered	5	4	64741	180
159	KP781	27	Male	16	Partnered	4	5	83416	160
160	KP781	27	Male	18	Single	4	3	88396	100
161	KP781	27	Male	21	Partnered	4	4	90886	100
162	KP781	28	Female	18	Partnered	6	5	92131	180
163	KP781	28	Male	18	Partnered	7	5	77191	180
164	KP781	28	Male	18	Single	6	5	88396	150
165	KP781	29	Male	18	Single	5	5	52290	180
166	KP781	29	Male	14	Partnered	7	5	85906	300
167	KP781	30	Female	16	Partnered	6	5	90886	280
168	KP781	30	Male	18	Partnered	5	4	103336	160
169	KP781	30	Male	18	Partnered	5	5	99601	150
170	KP781	31	Male	16	Partnered	6	5	89641	260
171	KP781	33	Female	18	Partnered	4	5	95866	200
172	KP781	34	Male	16	Single	5	5	92131	150
173	KP781	35	Male	16	Partnered	4	5	92131	360
174	KP781	38	Male	18	Partnered	5	5	104581	150
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

```
In [34]: total_male_customers = len(data[data['Gender'] == 'Male'])
total_male_customers
```

Out [34]: 104

```
In [35]: male_customers_kp781 = len(kp781_data[kp781_data['Gender'] == 'Male'])
male_customers_kp781
```

Out[35]: 33

```
In [36]: probability_male_kp781 = (male_customers_kp781 / total_male_customers)*10
probability_male_kp781
```

Out[36]: 31.73076923076923

There is 31.7 % probability that Male Customer will purchase KP781

```
In [37]: total_Female_customers = len(data[data['Gender'] == 'Female'])
total_Female_customers
```

Out[37]: 76

```
In [38]: kp281_data = data[data['Product'] == 'KP281']
kp281_data
```

Out[38]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
75	KP281	43	Male	16	Partnered	3	3	53439	66
76	KP281	44	Female	16	Single	3	4	57987	75
77	KP281	46	Female	16	Partnered	3	2	60261	47
78	KP281	47	Male	16	Partnered	4	3	56850	94
79	KP281	50	Female	16	Partnered	3	3	64809	66

80 rows × 9 columns

```
In [39]: Female_customers_kp281 = len(kp281_data[kp281_data['Gender'] == 'Female'
Female_customers_kp281
```

Out[39]: 40

In [40]: probability_Female_kp281 = (Female_customers_kp281 / total_Female_customers_kp281 / total_Female_customers_kp281 / total_Female_customers_kp281

Out[40]: 52.63157894736842

There is 52.6 % probability that Female Customers will purchase KP281

In [46]: total_male_customers=len(data[data['Gender']=="Male"])
total_male_customers

Out[46]: 104

In [42]: kp481_data = data[data['Product'] == 'KP481']
kp481_data

Out[42]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
80	KP481	19	Male	14	Single	3	3	31836	64
81	KP481	20	Male	14	Single	2	3	32973	53
82	KP481	20	Female	14	Partnered	3	3	34110	106
83	KP481	20	Male	14	Single	3	3	38658	95
84	KP481	21	Female	14	Partnered	5	4	34110	212
85	KP481	21	Male	16	Partnered	2	2	34110	42
86	KP481	21	Male	12	Partnered	2	2	32973	53
87	KP481	23	Male	14	Partnered	3	3	36384	95
88	KP481	23	Male	14	Partnered	3	3	38658	85
89	KP481	23	Female	16	Single	3	3	45480	95
90	KP481	23	Male	16	Partnered	4	3	45480	127
91	KP481	23	Female	16	Partnered	3	2	43206	74
92	KP481	23	Female	14	Single	3	2	40932	53
93	KP481	23	Male	16	Partnered	3	3	45480	64
94	KP481	24	Female	14	Single	3	2	40932	85
95	KP481	24	Male	14	Single	3	4	48891	106
96	KP481	24	Female	16	Single	3	3	50028	106
97	KP481	25	Female	14	Partnered	2	3	45480	85
98	KP481	25	Female	14	Single	3	4	43206	127
99	KP481	25	Male	16	Partnered	2	2	52302	42
100	KP481	25	Female	14	Partnered	5	3	47754	106
101	KP481	25	Male	14	Single	3	3	45480	95
102	KP481	25	Female	14	Single	2	3	43206	64
103	KP481	25	Male	14	Partnered	4	3	45480	170
104	KP481	25	Male	14	Partnered	3	4	43206	106
105	KP481	25	Male	16	Partnered	2	3	50028	53
106	KP481	25	Female	14	Single	2	2	45480	42
107	KP481	25	Male	14	Single	4	3	48891	127
108	KP481	26	Female	16	Partnered	4	3	45480	85
109	KP481	26	Female	16	Single	4	4	50028	127
110	KP481	26	Male	16	Single	4	3	51165	106
111	KP481	27	Male	14	Single	4	2	45480	53
112	KP481	29	Female	14	Partnered	3	3	51165	95
113	KP481	30	Female	14	Single	3	3	57987	74
114	KP481	30	Female	13	Single	4	3	46617	106
115	KP481	31	Male	16	Partnered	3	3	52302	95
116	KP481	31	Female	16	Partnered	2	3	51165	64
117	KP481	31	Female	18	Single	2	1	65220	21

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
118	KP481	32	Male	16	Single	4	3	60261	127
119	KP481	32	Male	16	Partnered	3	3	53439	95
120	KP481	33	Male	13	Partnered	4	4	53439	170
121	KP481	33	Female	16	Partnered	2	3	50028	85
122	KP481	33	Male	16	Partnered	3	3	51165	95
123	KP481	33	Female	16	Partnered	5	3	53439	95
124	KP481	33	Female	18	Single	3	4	47754	74
125	KP481	34	Female	16	Partnered	4	3	64809	95
126	KP481	34	Male	16	Partnered	3	4	59124	85
127	KP481	34	Male	15	Single	3	3	67083	85
128	KP481	35	Female	14	Partnered	3	2	52302	53
129	KP481	35	Male	16	Partnered	3	2	53439	53
130	KP481	35	Female	16	Single	3	2	50028	64
131	KP481	35	Male	16	Partnered	3	3	53439	95
132	KP481	37	Female	16	Partnered	2	3	48891	85
133	KP481	38	Female	16	Partnered	4	3	62535	85
134	KP481	38	Male	16	Partnered	3	3	59124	106
135	KP481	40	Female	16	Partnered	3	3	61398	85
136	KP481	40	Female	16	Single	3	3	57987	85
137	KP481	40	Male	16	Partnered	3	3	64809	95
138	KP481	45	Male	16	Partnered	2	2	54576	42
139	KP481	48	Male	16	Partnered	2	3	57987	64

```
In [43]: male_customers_kp481 = len(kp481_data[kp481_data['Gender'] == 'Male'])
male_customers_kp481
```

Out[43]: 31

In [47]: probability_male_kp481=male_customers_kp481/total_male_customers*100
probability_male_kp481

Out[47]: 29.807692307692307

There is 29.8 % probability that male Customers will purchase KP481 $\,$