Semaine du 31 Mars - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 24a, propriétés 11 et 12 : famille de vecteurs liée.

Exercice no 2:

(Convexité) : Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe.

- 1. On suppose que $\lim_{x\to +\infty} f(x) = 0$. Montrer que f est positive.
- 2. On suppose que f présente une droite asymptote en $+\infty$. Cela signifie qu'il existe une droite d'équation y = px + q vérifiant $f(x) (px + q) \xrightarrow[x \to +\infty]{} 0$. Étudier la position de la courbe par rapport à cette asymptote.

Exercice no 3:

(Espaces vectoriels): Soit x, y deux vecteurs d'un \mathbb{K} -espace vectoriel E et F un sous-espace vectoriel de E. Montrer que $F + \operatorname{Vect}(x) = F + \operatorname{Vect}(y)$ si et seulement s'il existe $z \in F$ et $(\alpha, \beta) \in \mathbb{K}^2$ tels que $\alpha\beta \neq 0$ et $z + \alpha x + \beta y = 0$.

Exercice nº 4:

(Espaces vectoriels): Soit E un \mathbb{R} -espace vectoriel et F_1, \ldots, F_n des sous-espaces vectoriels de E strictement inclus dans E. Supposons que $F_n \not\subseteq F_1 \cup \cdots \cup F_{n-1}$ et choisissons $x \in F_n \setminus (F_1 \cup \cdots \cup F_{n-1})$. et $y \in E \setminus F_n$.

- 1. Montrer que $\lambda x + y \notin F_n$ pour tout $\lambda \in \mathbb{R}$.
- 2. Montrer que pour tout $i \in \{1, \ldots, n-1\}$, il existe au plus un $\lambda \in \mathbb{R}$ tel que $\lambda x + y \in F_i$.
- 3. Conclure que $\bigcup_{k=1}^{n} F_k \neq E$.

Semaine du 31 Mars - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 24a, propriété 16 : caractérisation d'une base.

Exercice no 2:

(Convexité) : Étudier la convexité de la fonction $f: x \mapsto \ln(1+x^2)$ définie sur \mathbb{R} .

Exercice no 3:

(Espaces vectoriels): Soit $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} . On pose pour tout $a \in \mathbb{R}$, $E_a = \{f \in E, f(a) = 0\}$.

- 1. Montrer que pour tout $a \in \mathbb{R}$, E_a est un sous-espace vectoriel de E.
- 2. Soit $a \neq b$. Montrer que $E = E_a + E_b$.
- 3. Cette somme peut-elle être directe?

Exercice no 4:

(Espaces vectoriels) : Soit F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E tels que F+G=E. Notons F' un supplémentaire de $F\cap G$ dans F. Montrer que $E=F'\oplus G$.

Semaine du 31 Mars - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 24a, propriété 20 : caractérisation d'une somme directe de sous-espaces.

Exercice no 2:

(Convexité):

- 1. Montrer que la fonction $f: x \in]1, +\infty[\mapsto \ln(\ln(x))$ est concave.
- 2. En déduire que pour tout $(x,y) \in]1, +\infty[^2, \ln\left(\frac{x+y}{2}\right)] \geq \sqrt{\ln(x)\ln(y)}$

Exercice no 3:

(Espaces vectoriels) : Dans cet exercice, on chercher à étudier des sous-espaces qui admettent un supplémentaire commun.

- 1. Soit $E = \mathbb{R}[X]$ l'ensemble des polynômes réels, P et $Q \in E$ de degré p et q, E_P et E_Q les ensembles des multiples de P et Q respectivement.
 - (a) Montrer que E_P est un espace vectoriel.
 - (b) Justifier que $E = E_P \oplus \mathbb{R}_{p-1}[X]$ (où $\mathbb{R}_{p-1}[X]$ désigne l'ensemble des polynômes réels de degré au plus égal à p-1).
 - (c) En déduire que si p=q, alors E_P et E_Q admettent un supplémentaire commun.
- 2. Soit E un espace vectoriel
 - (a) Soit F un sous-espace vectoriel et $x \in E$ non nul tels que $E = F \oplus \text{Vect}(x)$. Montrer que pour tout $y \notin F, E = F \oplus \text{Vect}(y)$.
 - (b) Soit F_1, F_2 des sous-espaces vectoriels et $x_1 \in F_2 \backslash F_1, x_2 \in F_1 \backslash F_2$ tels que

$$E = F_1 \oplus \operatorname{Vect}(x_1) = F_2 \oplus \operatorname{Vect}(x_2)$$

Déterminer une droite vectorielle qui est un supplémentaire commun à F_1 et F_2 .

- 3. En reprenant $E = \mathbb{R}[X]$ et \mathcal{P} et \mathcal{I} les sous-espaces vectoriels des polynômes pairs et impairs respectivement.
 - (a) Montrer que \mathcal{I} est un supplémentaire de \mathcal{P} dans E.