Directional Consistency

Chapter 4 @ Constraint Processing by Rina Dechter

Summary: previous chapter

- Basic inference algorithms
 - Arc-, path- and i-consistency
- These algorithms are consistency enforcing and infer new constraints, thus changing the structure of the problem
 - Arc-consistency restricts the domains of variables
 - Path-consistency restricts and adds constraints on pairs of variables
 - i-consistency enforces constraints of arity i-1

Motivation: this chapter

- How do we explain how people perform so well on tasks that are theoretically intractable?
 - We may assume that intelligent behavior is actually grounded in approximation methods that are based on easy-to-solve models
 - i.e. people intuitively transform hard tasks into more manageable tasks
- How does this apply to the AI field?
 - Approximate solutions
 - Heuristics
- When is a problem said to be easy?
 - When it can be solved in polynomial time
 - i.e. backtrack free in the context of CSP

Related puzzle ©

How to find the way?

Backtrack-free search

(backtrack-free search)

A constraint network is backtrack-free relative to a given ordering $d = (x_1, \ldots, x_n)$ if for every $i \le n$, every partial solution of (x_1, \ldots, x_i) can be consistently extended to include x_{i+1} .

 GOAL: Determine the amount of inference that can guarantee a backtrack- free solution

Tractable classes of CSP

- Tractability by restricted structure
 - Based on reasoning over the constraint graph
 - Independent of the actual constraint relations
 - The focus of this chapter
- Tractability by restricted constraint relations
 - Identify classes that are tractable thanks to special properties of the constraint relation

Recap: AC-3 and PC-3

Ordered graph

- Undirected graph G=(V,E)
 - $V=\{v_1,...,v_n\}$ set of nodes
 - E set of edges/arcs over V
- Ordered graph (G,d)
 - $d=(v_1,...,v_n)$ ordering of the nodes
- How to build an ordered graph
 - The nodes are depicted from bottom to top
 - Parents of a node v: nodes adjacent to v that precede v in d
 - Width of a node: number of parents
 - Width of an ordering w(d): maximum width over all nodes
 - Width of a graph: minimum width over all the orderings of the graph

Example

(a) Graph G, and three orderings of the graph: (b) $d_1 = (F, E, D, C, B, A)$, (c) $d_2 = (A, B, C, D, E, F)$, and (d) $d_3 = (F, D, C, B, A, E)$. Broken lines indicate edges added in the induced graph of each ordering.

- Parents of A along d1?
- Width of A along d1?
- Width of C along d1?
- Width of A along d3?
- w(d₁)? w(d₂)? w(d₃)?
- Width of graph G?

You have 5 minutes!

Example

(a) Graph G, and three orderings of the graph: (b) $d_1 = (F, E, D, C, B, A)$, (c) $d_2 = (A, B, C, D, E, F)$, and (d) $d_3 = (F, D, C, B, A, E)$. Broken lines indicate edges added in the induced graph of each ordering.

- Parents of A along d₁? {B,C,E}
- Width of A along d₁? 3
- Width of C along d₁? 1
- Width of A along d₃? 2
- $w(d_1)$? 3
- $w(d_2)$? 2
- $w(d_3)$? 2
- Width of graph G? 2

(G,d): Induced width and induced graph

- The induced graph of (G,d) is an ordered graph (G*,d)
- G* is obtained from G as follows
 - Nodes of G processed from last to first (top to bottom) along d
 - When a node is processed, all of its parents are connected
- Induced width of (G,d), w*(d), is the width of (G*,d)
- Induced width of a graph, w*, is the minimal induced width over all its orderings

Example

(a) Graph G, and three orderings of the graph: (b) $d_1 = (F, E, D, C, B, A)$, (c) $d_2 = (A, B, C, D, E, F)$, and (d) $d_3 = (F, D, C, B, A, E)$. Broken lines indicate edges added in the induced graph of each ordering.

- G* includes the broken lines
- Induced width of B along d₁? 3
- Induced width along d₁? 3
- Induced width along d₂? 2
- Induced width along d₃? 2
- Induced width of G? w*(G) = 2

Observations

- A width-1 graph cannot have a cicle
 - Otherwise at least one node in the cicle would have two parents
- Given an ordering with width 1, the graph has induced width 1
- A graph is a tree iff it has induced width of 1

Greedy algorithms for induced width

How to find a minimum(-induced) width ordering of a graph?

- Algorithm Min-Width (finds a minimum-width)
- Algorithm Min-Induced-Width (finding minimum is NP-complete; greedy algorithm)

Min-Width

MIN-WIDTH (MW)

Input: A graph $G = (V, E), V = \{v_1, ..., v_n\}.$

Output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. **for** j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in G with smallest degree.
- 3. Put r in position j and G ← G r.
 (Delete from V node r and from E all its adjacent edges)
- 4. endfor
- Finds a minimum-width ordering of a graph
- Variable with minimum number of neighbors put last in the ordering
 - Variable and adjacent edges are then removed from graph
- Could generate d₂

Min-induced-width (greedy)

MIN-INDUCED-WIDTH (MIW)

Input: A graph $G = (V, E), V = \{v_1, ..., v_n\}.$

Output: An ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. **for** j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in V with smallest degree.
- 3. Put r in position j.
- 4. Connect r's neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_i, r) \in E\}$.
- 5. Remove r from the resulting graph: $V \leftarrow V \{r\}$.
- Variable r with minimum number of neighbors put last in the ordering
 - Connect r neighbors
 - Variable is then removed from graph
- Could generate d₂

Directional local consistency

Back to the primary target:

Determine the amount of inference that can guarantee a backtrackfree solution

Previous chapter: bound the number of variables involved in the inference

Example

- Consider task of applying search to the ordered graph
 - Ensure no dead ends with order $d=(x_1,x_2,x_3,x_4)$
 - Guarantee that any assignment to x1 has corresponding consistent value in x_2 and x_3
 - Make x₁ arc-consistency with x₂ and x₃
 - Guarantee that any assignment to x_3 has corresponding consistent value in x_4
 - Make x₃ arc-consistency with x₄
 - Arc-consistency only relevant in the search direction

Directional arc-consistency (II)

(directional arc-consistency)

A network is directional arc-consistent relative to order $d = (x_1, ..., x_n)$ iff every variable x_i is arc-consistent relative to every variable x_j such that $i \le j$.

Directional arc-consistency (II)

$DAC(\mathcal{R})$

Input: A network $\mathcal{R} = (X, D, C)$, its constraint graph G, and an ordering $d = (x_1, ..., x_n)$.

Output: A directional arc-consistent network.

- 1. **for** i = n to 1 by -1 **do**
- 2. **for** each j < i such that $R_{ji} \in \mathcal{R}$, do
- 3. $D_j \leftarrow D_j \cap \pi_j (R_{ji} \bowtie D_i)$, (this is REVISE($(x_i), x_i$)).
- 4. endfor
- Process variables in reverse order of d
- When processing x_i , reduce domain D_j for each relation R_{ji}
- Question: how many times is processed each constraint?

DAC: example (I)

You have 5 minutes!

$$D_1 = \{red, white, black\}$$

$$D_2 = \{green, white, black\}$$

$$D_3 = \{red, white, blue\}$$

$$D_4 = \{white, blue, black\}$$

$$R_{12}: x_1 = x_2$$

$$R_{13}: x_1 = x_3$$

$$R_{34}: x_3 = x_4$$

- Ordering $d=(x_1, x_2, x_3, x_4)$
- Apply DAC!
- Process x₄, revise x₃, delete red from D₃
 - $D_3 = \{white,blue\}$
- Process x₃, revise x₁, delete red+black from D₁
 - $D_1 = \{white\}$
- Process x₂, revise x₁, nothing changes
- D₁={white}, D₂={green, white,black},
 D₃={white, blue},D₄={white,blue,black}

DAC: example (II)

You have 2 minutes!

$$R_{12}: x_1 = x_2$$

$$R_{13}: x_1 = x_3$$

$$R_{34}: x_3 = x_4$$

• Is this (full) arc consistency?

• What if we assign values with ordering (x_1,x_2,x_3,x_4) ?

• Solution
$$x_1 = x_2 = x_3 = x_4 = white!$$

DAC: another example

- Variables x_1, x_2, x_3
- Domains = {red,blue}
- Not equal constraints R_{ij} : $xi \neq xj$, $i \neq j$
- For any ordering, the network is full arc consistent!
 - And directional arc consistent by definition
- Consistent partial assignment: x_1 =red, x_2 =blue
 - But no consistent assignment to x₃...
- DAC may not be enough... directional path consistency!

Directional path-consistency

- DAC can be extended to directional path consistency
 - And directional i-consistency

(directional path-consistency)

A network \mathcal{R} is directional path-consistent relative to order $d=(x_1,\ldots,x_n)$ iff for every $k \geq i,j$, the pair $\{x_i,x_j\}$ is path-consistent relative to x_k .

Directional path-consistency: example

- Variables x_1, x_2, x_3, x_4
- Domains = {red,blue}
- Ordering = (x_1, x_2, x_3, x_4)
- Constraints:

$$x_1 \neq x_2, x_2 \neq x_3, x_3 \neq x_4, x_4 \neq x_1$$

- This network is arc-consistent but not path-consistent
- Enforcing path consistency adds two equal constraints

Directional path-consistency: algorithm

```
DPC(况)
Input: A binary network \Re = (X, D, C) and its constraint graph G = (V, E),
    d = (x_1, ..., x_n).
Output: A strong directional path-consistent network and its graph G' = (V, E').
Initialize: E' \leftarrow E.
       for k = n to 1 by -1 do
2.
               (a) \forall i \leq k such that x_i is connected to x_k in the graph, do
3.
                      D_i \leftarrow D_i \cap \pi_i (R_{ik} \bowtie D_k) (REVISE((x_i), x_k))
              (b) \forall i,j \leq k such that (x_i,x_k),(x_j,x_k) \in E' do
5.
                      R_{ij} \leftarrow R_{ij} \cap \pi_{ij} (R_{ik} \bowtie D_k \bowtie R_{kj}) \text{ (REVISE-3(}(x_i, x_j), x_k))
                       E' \leftarrow E' \cup (x_i, x_i)
6.
       endfor
       return the revised constraint network \mathcal{R} and G' = (V, E').
8.
```

Directional path-consistency: example

- Ordered graph $d=(x_1,x_2,x_3,x_4)$
- DPC adds only constraint $x_1=x_3$
 - This allows a solution to be assembled along order d without encountering dead-ends

Directional i-consistency: definition

(directional i-consistency)

A network is directional i-consistent relative to order $d = (x_1, ..., x_n)$ iff every i-1 variables are i-consistent relative to every variable that succeeds them in the ordering. A network is strong directional i-consistent if it is directional j-consistent for every $j \le i$.

Directional i-consistency: algorithm

```
Directional i-consistency (DIC<sub>i</sub>(\Re))
Input: A network \mathcal{R} = (X, D, C), its constraint graph G = (V, E), d = (x_1, ..., x_n).
Output: A strong directional i-consistent network along d and its graph
   G' = (V, E').
Initialize: E' \leftarrow E, C' \leftarrow C.
1. for j = n to 1 by -1 do
2. let P = parents(x_i).
         if |P| \leq i-1 then
              Revise (P, x_i)
         else, for each subset of i-1 variables S, S \subseteq P, do
              Revise (S, x_i)
         endfor
         C' \leftarrow C' \cup \text{all generated constraints.}
         E' \leftarrow E' \cup \{(x_k, x_m) | x_k, x_m \in P\} (connect all parents of x_i)
10. endfor
11, return C' and E'.
```

Width vs Local consistency

- Example: DPC changed the network so that a solution is backtrack free
- Easy to find examples where this does not happen
- Question: how to identify, in advance, the level of consistency suficient for generating a backtrack-free representation?

Solving trees: case of width 1

TREE-SOLVING

Input: A tree network T = (X, D, C).

Output: A backtrack-free network along an ordering *d*.

- 1. Generate a width-1 ordering, $d = x_1, ..., x_n$ along a rooted tree.
- 2. **let** $x_{p(i)}$ denote the parent of x_i in the rooted ordered tree.
- 3. **for** i = n to 1 **do**
- 4. REVISE $((x_{p(i)}), x_i)$;
- 5. **if** the domain of $x_{p(i)}$ is empty, exit (no solution exists).
- 6. **endfor**
- Width with ordering $x_1, x_2, ..., x_7$? 1
- Width with ordering x_7 , x_6 , ..., x_1 ? 2

Solving trees: case of width 1

(width 1 and directional arc-consistency)

Let d be a width-1 ordering of a constraint tree T. If T is directional arcconsistent relative to d, then the network is backtrack-free along d.

Solving width-2 problems

(width 2 and directional path-consistency)

If \Re is directional arc- and path-consistent along d, and if it also has width 2 along d, then it is backtrack-free along d.

- How to identify width-2 problems?
 - Use MIN-INDUCED-WIDTH algorithm!

Solving width-i problems

(Width i - 1 and directional i-consistency)

Given a general network \mathcal{R} , if its ordered constraint graph along d has a width of i-1, and if it is also strong directional i-consistent, then \mathcal{R} is backtrack-free along d.

Summary

- Introduced the notion of bounded directional consistency algorithms
 - Directional arc-, path- and i-consistency
- These inference algorithms are incomplete but can sometimes decide inconsistency
 - Are mainly designed as preprocessing algorithms to be use before backtracking search
 - Can also be interleaved with search (next chapter)
- Established a relationship between induced width and consistency levels that guaranteed a backtrack-free solution
 - If a problem has width i and it is (i+1)-consistent, then it is backtrack-free

