Diszkrét matematika

4. gyakorlat:

Függvények, részbenrendezés

(A diasort készítette Németh Gábor Árpád, Koch-Gömöri Richárd feladait, Gonda János megoldásait, Nagy Gábor előadás diasorában lévő definíciókat (aki Mérai László előadás diasorát használta fel) is felhasználva)

Válasszuk ki a következő relációk közül a függvényeket. Adja meg a függvények értelmezési tartományát, értékkészletét. Mely függvény szürjektív, injektív, bijektív?

(a)
$$A=\{1,2,3,4,5\}$$
, $B=\{10,11,12,13,14\}$, $f\subseteq A\times B$, $f=\{(1,11),(2,11),(4,12),(5,10)\}$

- (1) Értelmezési tartomány: dmn(f)={1,2,4,5}
- (2) Értékkészlet: rng(f)={10,11,12}
- (3) Nem injektív: (1,11) és $(2,11) \in f$
- (4) Nem szürjektív: $\{10,11,12\} \neq \{10,11,12,13,14\}$
- (5) Nem bijektív, mert (3) és (4)

Egy $f \subseteq X \times Y$ relációt függvénynek (leképezésnek, transzformációnak, hozzárendelésnek, operátornak) nevezünk, ha

 $\forall x, y, y' : (x, y) \in f \land (x, y') \in f \Rightarrow y = y'$. Az $(x, y) \in f$ jelölés helyett ilyenkor az f(x) = y (vagy $f : x \mapsto y$, $f_x = y$) jelölést használjuk. Az y az f függvény x helyen (argumentumban) felvett értéke.

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Válasszuk ki a következő relációk közül a függvényeket. Adja meg a függvények értelmezési tartományát, értékkészletét. Mely függvény szürjektív, injektív, bijektív?

(b)
$$A=\{1,2,3,4\}$$
, $B=\{a,b,c,d,e,f\}$, $f\subseteq A\times B$, $f=\{(1,a),(2,c),(3,e),(3,f),(4,a)\}$

- (1) Értelmezési tartomány: dmn(f)={1,2,3,4}
- (2) Nem is függvény!!! 3-hoz több elem: (3,e) és (3,f)
- (3) Innentől többinek nincs is értelme (szürk, inj, bij)

Egy $f \subseteq X \times Y$ relációt függvénynek (leképezésnek, transzformációnak, hozzárendelésnek, operátornak) nevezünk, ha

 $\forall x, y, y' : (x, y) \in f \land (x, y') \in f \Rightarrow y = y'$. Az $(x, y) \in f$ jelölés helyett ilyenkor az f(x) = y (vagy $f : x \mapsto y$, $f_x = y$) jelölést használjuk. Az y az f függvény x helyen (argumentumban) felvett értéke.

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Válasszuk ki a következő relációk közül a függvényeket. Adja meg a függvények értelmezési tartományát, értékkészletét. Mely függvény szürjektív, injektív, bijektív?

- (c) $A=\{1,2,3,4,5\}$, $B=\{a,b,c,d,e,f\}$, $f \subseteq A \times B$, $f=\{(1,a),(4,e),(5,d)\}$
- (d) $A=\{1,2,3\}$, $B=\{1,3,5\}$, $f\subseteq A\times B$, $f=\{(1,1),(2,5),(3,5)\}$

Egy $f \subseteq X \times Y$ relációt függvénynek (leképezésnek, transzformációnak, hozzárendelésnek, operátornak) nevezünk, ha

 $\forall x, y, y' : (x, y) \in f \land (x, y') \in f \Rightarrow y = y'$. Az $(x, y) \in f$ jelölés helyett ilyenkor az f(x) = y (vagy $f : x \mapsto y$, $f_x = y$) jelölést használjuk. Az y az f függvény x helyen (argumentumban) felvett értéke.

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Legyen $A = \{$ olyan egyenlőszárú háromszögek, amelyeknek az alaphoz tartozó magasságuk egyenlő egy rögzített m > 0 számmal $\}$, $B = \{y \in \mathbb{R} | y > 0\}$. Definiáljuk az $R \subseteq A \times B$ relációt a következőképpen: aRb, $a \in A$, $b \in B$, ha az a háromszög területe b. Mutassuk meg, hogy R függvény, és vizsgáljuk ennek a függvénynek a tulajdonságait (fennállnak-e a következők: szürjektív, injektív, bijektív).

- (1) Terület: $am/2 \rightarrow f\ddot{u}ggv\acute{e}ny$ (Mivel minden a-hoz és m-hez egy nem negatív \mathbb{R} rendelése)
 - (2) Értelmezési tartomány (dmn(f)): a>0 alaphoz tartozó m magasságú egyenlő szárú háromszögek halmaza
 - (3) Értékkészlet (rng(f)): Háromszög terület
 - (4) Nem injektív: alapra tükrözött háromszög területe ugyanaz, mint az eredetié
 - (5) Szürjektív: bármely $\{y \in \mathbb{R} | y > 0\}$ -re egy a=2 y/m-alapú egyenlőszárú, m-magasságú háromszög területe y
 - (6) Nem bijektív, mert (3)

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

(a) Legyen $f: \mathbb{R} \to \mathbb{R}$, $f(x) \coloneqq 3x - 4$. Bizonyítsuk be, hogy a függvény bijektív, majd határozza meg az inverzét.

- (1) $u ext{ és } v \in \mathbb{R}$ számokkal f(u) = 3u 4 = 3v 4 = f(v) iff $3(u v) = 0 \Rightarrow u = v \Rightarrow injektív$
- (2) Szürjektívitás:

tetszőleges $v \in \mathbb{R}$ -re létezik u $\in \mathbb{R}$, hogy v=f(u)=3u-4 .

Mivel $u = \frac{1}{3}v + \frac{4}{3}$ valós szám és v=f(u)=3u-4 (tehát v eleme a függvény értékkészletének) ezért szürjektív

- (3) Mivel (1) és (2) \rightarrow bijektív
- (2) Függvény inverze:

$$(v,u) \in f^{-1}$$
 iff $(u,v) \in f$

Tehát ha $v=f(u)=3u-4 \rightarrow u=\frac{1}{3}v+\frac{4}{3}$

$$f^{-1}(x) = \frac{1}{3}x + \frac{4}{3}.$$

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

- (b) Legyen $g: \mathbb{R} \to \mathbb{R}$, $g(x) \coloneqq 3 |x|$. Bizonyítsuk be, hogy a függvény se nem injektív, se nem szürjektív;
 - (1) injektívitás:

$$g(u) = 3 - |u| = 3 - |-u| = g(-u) \rightarrow$$
 a függvény nem injektív.

(2) szürjektivítás:

Mivel $|x| \ge 0$, ezért $3 - |x| \le 3$, tehát az értékkészlet: rng(g)= $]-\infty$, 3] $\subseteq \mathbb{R}$. \to a függvény nem szürjektív

C 1/ 1/ 6

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Döntsük el, hogy az alábbi relációk közül melyek függvények.

a) $f \subseteq \mathbb{N} \times \mathbb{N}$, $xfy \Leftrightarrow x|y$; (x osztója y-nak)

Ellenpélda: 2|2 és 2|4 és 2|6 ... (egy x-hez több y is rendelhető) tehát 2f2 és 2f4 és $2f6 \rightarrow a$ reláció nem függvény;

c)
$$f \subseteq \{1,2,5\} \times \{0,3,5\}, xfy \Leftrightarrow xy = 0;$$

A példában xy = 0 iff $y = 0 \rightarrow a$ reláció függvény;

e)
$$f \subseteq \mathbb{N} \times \mathbb{N}$$
, $xfy \Leftrightarrow 2x = y$;

2u = v és 2u = w iff v = w, minden u természetes szám egy és csak egy természetes számmal áll olyan relációban, ahol u a pár első eleme \rightarrow a reláció függvény;

f)
$$f \subseteq \mathbb{Z} \times \mathbb{Z}$$
, $xfy \Leftrightarrow x^2 = y^2$;

Ellenpélda: -1 és 1 (mindkettő \mathbb{Z}) és y²=1 mindkettőre (egy x-hez több y is rendelhető) 1f1 és 1f(-1) \rightarrow a reláció nem függvény;

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Döntsük el, hogy az alábbi relációk közül melyek függvények:

- $f \subseteq \{0,3,5\} \times \{1,2,5\}, xfy \Leftrightarrow xy = 0$
- $f \subseteq \mathbb{N} \times \mathbb{N}$, $xfy \Leftrightarrow$ tízes számrendszerben x ugyanazokból a számjegyekből áll, mint y;
- $f \subseteq \mathbb{N} \times \mathbb{N}$, $xfy \Leftrightarrow x^2 = y^2$;
- $f \subseteq \mathbb{R} \times \mathbb{R}, xfy \Leftrightarrow x^2 + y^2 = 9.$

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Döntsük el, hogy az alábbi relációk közül melyek függvények. Ha a reláció függvény, döntsük el, hogy injektív, szürjektív, bijektív-e, illetve, ha nem függvény, akkor reflexív, szimmetrikus, tranzitív-e.

$$f_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} | 7x = y^2\} \subseteq \mathbb{R} \times \mathbb{R};$$

- Ez a reláció egy pozitív x-tengelyű, origó-csúcspontú parabola
- $(x,y) \in f_1 \Rightarrow 7x = y^2 = (-y)^2 \Rightarrow (x,-y) \in f_1$, és ha $y \neq 0$, akkor $y \neq -y \Rightarrow$ a reláció nem függvény
- $(x,x) \in f_1$ iff, ha $7x = x^2$ (tehát x=0 vagy x=7) \rightarrow nem reflexív (de nem is irreflexív, mert (0,0) és (7,7) $\in f_1$)
- csak a (0,0) és a (7,7) pár olyan eleme a relációnak, amely eleme a reláció inverzének is, több pár nincs
 → a reláció nem szimmetrikus
- Tranzitítás: Ellenpélda: $(x=1, y=\sqrt{7})$ és $(y=\sqrt{7}, z=\sqrt{7\sqrt{7}})$ eleme a relációnak, de $(x=1, z=, z=\sqrt{7\sqrt{7}})$ már nem \rightarrow nem tranzitív

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg x R x$;

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Döntsük el, hogy az alábbi relációk közül melyek függvények. Ha a reláció függvény, döntsük el, hogy injektív, szürjektív, bijektív-e, illetve, ha nem függvény, akkor reflexív, szimmetrikus, tranzitív-e.

$$f_3 = \{(x, y) \in \mathbb{R} \times \mathbb{R} | 7x^2 - 6 = y\} \subseteq \mathbb{R} \times \mathbb{R};$$

- Ez a reláció egy pozitív y-tengelyű, (0, -6)-csúcspontú parabola
- Minden x-hez pontosan egy y tartozik → a reláció függvény
- Értelmezési tartomány (dmn(f)): \mathbb{R} , Értékkészlet (rng(f)): -6-nál nem kisebb $\mathbb{R} \to \text{nem szürjektív}$ (mivel $y \in \mathbb{R}$)
- x-hez és –x-hez ugyanazt az értéket rendeli hozzá → nem injektív
- nem bijektív (azért is mert nem szürjektív és azért is mert nem injektív)

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg x R x$;

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Döntsük el, hogy az alábbi relációk közül melyek függvények. Ha a reláció függvény, döntsük el, hogy injektív, szürjektív, bijektív-e, illetve, ha nem függvény, akkor reflexív, szimmetrikus, tranzitív-e.

$$f_4 = \{(x, y) \in \mathbb{R} \times \mathbb{R}_0^+ | y = |x| \} \subseteq \mathbb{R} \times \mathbb{R}_0^+;$$

- Minden x-hez pontosan egy y tartozik → a reláció függvény
- Értelmezési tartomány (dmn(f)): \mathbb{R} , Értékkészlet (rng(f)): minden nem negatív $\mathbb{R} \to \text{szürjektív}$ (mivel $y \in \mathbb{R}_0^+$)
- x-hez és –x-hez ugyanazt az értéket rendeli hozzá → nem injektív
- nem bijektív (mert nem injektív)

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg x R x$;

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Döntsük el, hogy az alábbi relációk közül melyek függvények. Ha a reláció függvény, döntsük el, hogy injektív, szürjektív, bijektív-e, illetve, ha nem függvény, akkor reflexív, szimmetrikus, tranzitív-e.

$$f_7 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | 7|x - y\} \subseteq \mathbb{Z} \times \mathbb{Z};$$

- 7|x-y (7 osztója x-y-nak) iff, ha van olyan $u \in \mathbb{Z}$: x-y=7u, azaz x=y+7c (ahol c egy \mathbb{Z} konstans), azaz minden x-hez végtelen sok y tartozik \rightarrow a reláció nem függvény
- Minden x-re:
 - $7|0 = x x \rightarrow (1)$ reflexív
 - $7|u \text{ iff, } 7|-u \rightarrow (2) \text{ szimmetrikus}$
 - 7|x-y és 7|y-z, akkor $7|(x-y)+(y-z)=x-z \rightarrow (3)$ tranzitív
 - (1) + (2) + (3) : ekvivalencia reláció

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg x R x$;

- injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Döntsük el, hogy az alábbi relációk közül melyek függvények. Ha a reláció függvény, döntsük el, hogy injektív, szürjektív, bijektív-e, illetve, ha nem függvény, akkor reflexív, szimmetrikus, tranzitív-e.

$$f_{2} = \{(x,y) \in \mathbb{R} \times \mathbb{R} | x = y^{2} + 6y\} \subseteq \mathbb{R} \times \mathbb{R};$$

$$f_{5} = \{(x,y) \in \mathbb{R} \times \mathbb{R} | y = (x+4)^{2}\} \subseteq \mathbb{R} \times \mathbb{R};$$

$$f_{6} = \{(x,y) \in \mathbb{R} \times \mathbb{R}_{0}^{+} | 2y = \sqrt{x}\} \subseteq \mathbb{R} \times \mathbb{R}_{0}^{+};$$

$$f_{8} = \{(x,y) \in (\mathbb{R} \setminus \{0\}) \times (\mathbb{R} \setminus \{0\}) | xy = 1\} \subseteq (\mathbb{R} \setminus \{0\}) \times (\mathbb{R} \setminus \{0\});$$

$$f_{9} = \{(x,y) \in \mathbb{R} \times \mathbb{R} | xy = 1\} \subseteq \mathbb{R} \times \mathbb{R};$$

$$f_{10} = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} | | x - y| \leq 3\} \subseteq \mathbb{Z} \times \mathbb{Z};$$

$$f_{11} = \{(x,y) \in \mathbb{R} \times \mathbb{R} | y(1 - x^{2}) = x - 1\} \subseteq \mathbb{R} \times \mathbb{R};$$

 $f_{12} = \{(x,y) \in (\mathbb{R} \setminus \{1,-1\}) \times (\mathbb{R} \setminus \{1,-1\}) | y(1-x^2) = x-1\} \subseteq (\mathbb{R} \setminus \{1,-1\}) \times (\mathbb{R} \setminus \{1,-1\}).$

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg x R x$;

Az $f: X \to Y$ függvény

• injektív, ha $\forall x, x', y : (f(x) = y \land f(x') = y) \Rightarrow x = x';$

Házi

feladat

- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Legyen $A = \{2,3,6,8,9,12,18\} \subseteq \mathbb{N}^+$, $R \subseteq A \times A$ és $aRb \Leftrightarrow a|b$.

- a) Mutassa meg, hogy az R reláció részbenrendezés az A halmazon.
- 1) Minden n pozitív egész szám osztója önmagának \rightarrow reláció reflexív
- 2) m|n és n|m igaz iff, ha m=n \rightarrow reláció antiszimmetrikus
- 3) m|n és n|o, akkor n=um és o=vn, tehát o=vn=v(um)=(vu)m=wm egy $w \mathbb{N}^+$ számmal (tehát m|o) \rightarrow reláció tranzitív

Mivel reflexív, antiszimmetrikus és tranzitív a reláció, ezért részbenrendezés

Egy halmazon értelmezett részbenrendezési relációnak az alaphalmaz bármely részhalmazára való megszorítása is részbenrendezés

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg xRx$;

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , $\preceq \preccurlyeq$, ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.

(Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)

Legyen $A = \{2,3,6,8,9,12,18\} \subseteq \mathbb{N}^+$, $R \subseteq A \times A$ és $aRb \Leftrightarrow a|b$.

b) Rajzolja meg az *R* rendezési diagramját (Hasse-diagram).

Ha egy részbenrendezett halmaz elemeit pontokkal ábrázoljuk, és csak azon x, y párok esetén rajzolunk irányított élt, amelyre x megelőzi y-t, akkor a részbenrendezett halmaz Hasse-diagramját kapjuk. Néha irányított élek helyett irányítatlan élt rajzolunk, és a kisebb elem kerül lejjebb.

- a) Bizonyítsa be, hogy az \mathbb{N} halmazon \leq részbenrendezési reláció, ahol \leq definíciója: $n, m \subseteq \mathbb{N}$, $n \leq m \Leftrightarrow \exists k \in \mathbb{N}$ (n + k = m);
- 1) $n + 0 = n \Rightarrow n \le n \Rightarrow \text{reláció reflexív}$
- 2) $n \le m \land m \le n \Rightarrow \exists k, l \in \mathbb{N}: n + k = m \land m + l = n \Rightarrow n = n + (k + l) \Rightarrow k + l = 0 \Rightarrow k = 0 = l \Rightarrow n = m \Rightarrow reláció antiszimmetrikus$
- 3) $n \le m \land m \le o \Rightarrow \exists k, l \in \mathbb{N}: n + k = m \land m + l = o \Rightarrow o = n + (k + l) = n + r \Rightarrow \exists r \in \mathbb{N}: o = n + r \Rightarrow n \le o \Rightarrow reláció tranzitív$

Mivel reflexív, antiszimmetrikus és tranzitív a reláció, ezért részbenrendezés

Egy halmazon értelmezett részbenrendezési relációnak az alaphalmaz bármely részhalmazára való megszorítása is részbenrendezés

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg x R x$;

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \preceq \preccurlyeq , ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.

(Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)

b) Bizonyítsa be, hogy az $\mathbb{N} \times \mathbb{N}$ halmazon $(m_1, n_1)R(m_2, n_2) \Leftrightarrow m_1 \leq m_2 \wedge n_1 \leq n_2$ részbenrendezés.

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. *R* antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 1. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg xRx$;

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \preceq \preccurlyeq , ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.

(Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)

Döntse el a következő relációkról, hogy részbenrendezési relációk-e az adott halmazon.

- $R \subseteq \mathbb{Z} \times \mathbb{Z}$, $aRb \Leftrightarrow |a| \leq |b|$;
- 1) $|x| \le |x| \to \text{a reláció reflexív}$
- 2) ha a \neq 0, akkor a \neq -a, viszont $|a| = |-a| = |b| \rightarrow$ a reláció nem antiszimmetrikus

Mivel nem antiszimmetrikus, ezért nem részbenrendezési reláció

```
Legyen R reláció X-en. Ekkor azt mondjuk, hogy
```

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$; 6. R irreflexív, ha $\forall x \in X : \neg xRx$;

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \leq \preccurlyeq , ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \prec y$ vagy $y \prec x$, akkor x és y összehasonlítható.

(Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)

Döntse el a következő relációkról, hogy részbenrendezési relációk-e az adott halmazon.

- V a 10-egység hosszúságú \mathbb{R}^2 -beli vektorok halmaza, $R \subseteq V \times V$, $(x,y) \in R \Leftrightarrow$ az x vektor hajlásszöge kisebb-egyenlő, mint az y vektor hajlásszöge (hajlásszög legyen $[0; 2\pi[$ -beli);
- 1) ha két vektor azonos, akkor a hajlásszögük is azonos, és minden valós szám kisebb-egyenlő önmagánál, így minden vektor, tehát minden 10 egység hosszúságú vektor is relációban áll önmagával $(xRx) \rightarrow a$ reláció reflexív
- 2) ha xRy és yRx, akkor mindkét vektor hajlásszöge kisebb-egyenlő a másik vektor hajlásszögénél, vagyis a két hajlásszög azonos, és a hosszuk is megegyezik, tehát a két vektor megegyezik \rightarrow a reláció antiszimmetrikus
- 3) ha x, y és z vektorok olyanok, hogy xRy és yRz, akkor x hajlásszöge kisebb-egyenlő, mint y hajlásszöge, és ez utóbbi kisebb-egyenlő, mint z hajlásszöge, ám ekkor x hajlásszöge kisebb-egyenlő, mint z hajlásszöge, azaz $xRz \rightarrow a$ reláció tranzitív
- Mivel (1) és (2) és (3) teljesül: részbenrendezés.

```
Legyen R reláció X-en. Ekkor azt mondjuk, hogy
```

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg xRx$;

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \preceq \preccurlyeq , ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.

(Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)

Döntse el a következő relációkról, hogy részbenrendezési relációk-e az adott halmazon.

• $R \subseteq \mathbb{R}^2 \times \mathbb{R}^2$, $xRy \Leftrightarrow az x$ vektor hossza kisebb-egyenlő, mint az y vektor hossza;

• P a valós együtthatós polinomok halmaza, $R \subseteq P \times P$, $fRg \Leftrightarrow \deg f \leq \deg g$;

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. *R* antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 1. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg x R x$;

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \preceq \preccurlyeq , ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.

(Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)

Döntse el, mely relációk teljes rendezések az $A = \{1,2,3,4\}$ halmazon.

$$f = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\};$$

- (1) Reflexív (hurokélek)
- (2) Antiszimmetrikus (nincs oda-vissza él)
- (3) Tranzitív (mindenütt "rövidítő út")
- (1)+(2)+(3) miatt: részbenrendezés
- (4) dichotóm is (2 különböző pont között egyik irányban út)

Tehát (1)+(2)+(3)+(4) miatt teljes rendezés

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. R irreflexív, ha $\forall x \in X : \neg xRx$;
- 8. R dichotóm, ha $\forall x, y \in X$ esetén xRy vagy yRx (esetleg mindkettő).

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \leq \preccurlyeq , ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \prec y$ vagy $y \prec x$, akkor x és y összehasonlítható.

(Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)

7. R trichotóm, ha $\forall x, y \in X$ esetén x = y, xRy és yRx közülpontosan egy teljesül; Az X halmazon értelmezett reflexív, tranzitív, antiszimmetrikus és dichotóm relációt rendezésnek nevezzük.

Döntse el, mely relációk teljes rendezések az $A = \{1,2,3,4\}$ halmazon.

$$f = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\};$$

- (1) Reflexív (hurokélek)
- (2) Antiszimmetrikus (nincs oda-vissza él)
- (3) Tranzitív (mindenütt "rövidítő út")
- (1)+(2)+(3) miatt: részbenrendezés
- (4) Nem dichotóm (2 és 3 és 4 között nincs út, azaz ez a 2 pár egyik sorrendben sem eleme a relációnak) (4) miatt nem teljes rendezés

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 1. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg x R x$;

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \preceq \preccurlyeq , ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.

(Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)

Döntse el, mely relációk teljes rendezések az $A = \{1,2,3,4\}$ halmazon.

$$f = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,4)\};$$

- (1) Nem Reflexív ((3,3) és (4,4) párnak megfelelő hurokél hiányzik)
- (2) E miatt se nem teljes rendezés, se nem részben rendezés

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$;
- 2. R szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha $\forall x \in X : xRx$;
- 6. *R* irreflexív, ha $\forall x \in X : \neg x R x$;

Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: \leq , \preceq \preccurlyeq , ...)

Ha \leq egy részbenrendezés X-en, akkor az $(X; \leq)$ párt részbenrendezett halmaznak nevezzük.

Ha $x, y \in X$ esetén $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.

(Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)