MATH 429 Introduction to Topology Spring 2021 Schedule

Lec.	Date	Section	Topic
	1/18		Martin Luther King Day - no classes
1	1/20	1, 5	Introduction. Metric spaces. Metrics on \mathbb{R} and \mathbb{R}^n .
2	1/22	5	Metric spaces: more examples.
3	1/25	5	Product spaces. Continuous functions on \mathbb{R} and on metric spaces.
4	1/27	5	Continuous functions from a metric space to \mathbb{R} .
5	1/29	5	Continuous functions on metric spaces.
6	2/1	5	Bounded sets. Open balls in metric spaces.
7	2/3	5	Open sets in metric spaces.
8	2/5	5, 6	Continuity in terms of open sets. Closed sets.
9	2/8	6	The closure and limit points of a set.
10	2/10	6	The interior and the boundary of a set.
11	2/12	6	Convergence in metric spaces.
12	2/15	6	Equivalent metrics.
13	$\frac{7}{2/17}$	6, 7	Homeomorphisms and isometries. Topological spaces: motivation.
14	2/19	7	Topological spaces: definition and examples.
15	2/22		Review.
16	$\frac{2}{24}$		Exam 1 covering Chapters 5 and 6.
17	$\frac{2}{26}$	8	Continuous maps of topological spaces. Homeomorphisms.
18	3/1	8, 9	Bases of topology. Closed sets in topological spaces.
19	$\frac{3}{1}$	9	The closure of a set and dense sets a topological space.
20	$\frac{3}{5}$	9	The interior and the boundary of a set in a topological space.
21	3/8	10	Subspaces.
22	$\frac{3}{3}$	10	Products of topological spaces.
23	$\frac{3/10}{3/12}$	10	Topological products and continuity.
24	$\frac{3/12}{3/15}$	11+	Separation axioms.
$\frac{24}{25}$	$\frac{3/13}{3/17}$		Separation axioms. Connected spaces.
26	$\frac{3/17}{3/19}$	11+, 12	Connectedness.
27	· ·	12	
28	$\frac{3/22}{3/24}$		Connectedness and path-connectedness. Path-connectedness. Compactness: motivation and definition.
29	$\frac{3/24}{3/26}$	12, 13	Compact and noncompact sets.
	· ·	10	
30	3/29		Review.
31 32	3/31	13	Exam 2 covering Chapters 7-12.
	4/2		Properties of compact sets.
33	4/5	13	Compactness of the product. Continuous maps on compact spaces.
2.4	4/7	1 /	Wellness day – no classes.
34	4/9	14	Sequential compactness in metric spaces.
35	4/12	15	Quotient spaces: introduction and definitions.
36	4/14	15	Quotient spaces and quotient maps. The circle.
37	4/16	15	The torus, Klein bottle, and real projective plane.
38	4/19		The fundamental group: definition.
39	4/21		The fundamental group: discussion. Simply connected spaces.
40	4/23		The fundamental group: sphere, circle, and real projective plane.
41	4/26		More on the fundamental group.
42	4/28		Review.
43	4/30		Q & A

Final Exam: Sunday, 5/2, 2:00-5:00 p.m.