IMPORT NECESSARY LIBRARIES

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
```

LOAD DATASET

```
In [60]: train = pd.read_csv('worldpopulationdata.csv')
```

Checking the first 5 rows

```
In [61]: train.head(5)
```

0	ud	- [6	1	7	0
		~ L	_			•

	Series Name	Series Code	Country Name	Country Code	2022	2021	2020	2019	2018	2017	•••	2010	
	Population, total	SP.POP.TOTL	Afghanistan	AFG	41128771.0	40099462.0	38972230.0	37769499.0	36686784.0	35643418.0		28189672.0	273
,	Population, total	SP.POP.TOTL	Albania	ALB	2775634.0	2811666.0	2837849.0	2854191.0	2866376.0	2873457.0		2913021.0	29
	Population, total	SP.POP.TOTL	Algeria	DZA	44903225.0	44177969.0	43451666.0	42705368.0	41927007.0	41136546.0		35856344.0	351
	Population, total	SP.POP.TOTL	American Samoa	ASM	44273.0	45035.0	46189.0	47321.0	48424.0	49463.0		54849.0	
	Population, total	SP.POP.TOTL	Andorra	AND	79824.0	79034.0	77700.0	76343.0	75013.0	73837.0		71519.0	

5 rows × 26 columns

Checking the last 5 rows

In [62]: train.tail(5)

Out	[62]	
-----	------	--

•		Series Name	Series Code	Country Name	Country Code	2022	2021	2020	2019	2018	2017	•••	2010	
,	1080	Population, male (% of total population)	SP.POP.TOTL.MA.ZS	Virgin Islands (U.S.)	VIR	46.613382	46.764444	46.914637	47.057307	47.185912	47.314214	•••	47.801059	47
	1081	Population, male (% of total population)	SP.POP.TOTL.MA.ZS	West Bank and Gaza	PSE	49.893678	49.877839	49.858957	49.835542	49.811374	49.785969		49.876336	49
1	1082	Population, male (% of total population)	SP.POP.TOTL.MA.ZS	Yemen, Rep.	YEM	50.519031	50.538516	50.554317	50.571320	50.596614	50.616964		50.594170	50
	1083	Population, male (% of total population)	SP.POP.TOTL.MA.ZS	Zambia	ZMB	49.344602	49.344951	49.338301	49.326233	49.309087	49.288400		49.056379	48
	1084	Population, male (% of total population)	SP.POP.TOTL.MA.ZS	Zimbabwe	ZWE	47.214139	47.167153	47.130679	47.099796	47.076238	47.051613		46.995893	47

5 rows × 26 columns

Checking the shape of the dataset

In [63]: train.shape
Out[63]: (1085, 26)

Checking the columns of the dataset

In [64]: train.columns

```
Out[64]: Index(['Series Name', 'Series Code', 'Country Name', 'Country Code', '2022', '2021', '2020', '2019', '2018', '2017', '2016', '2015', '2014', '2013', '2012', '2011', '2010', '2009', '2008', '2007', '2006', '2005', '2004', '2003', '2002', '2001'], dtype='object')
```

Checking for missing values

```
train.isnull().sum()
         Series Name
                          0
Out[65]:
         Series Code
                          0
         Country Name
                          0
         Country Code
                          0
         2022
         2021
         2020
         2019
         2018
         2017
         2016
         2015
         2014
         2013
         2012
         2011
         2010
         2009
         2008
         2007
         2006
         2005
         2004
         2003
         2002
         2001
         dtype: int64
          Observation:
```

• There are no missing values in the dataset

Population of Selected Countries in 2022

```
In [66]: countries_to_plot = ['United States', 'Canada', 'Brazil', 'Japan', 'Germany', 'France']
    filtered_data = train[train['Country Name'].isin(countries_to_plot)]
    plt.figure(figsize=(10, 6))
    plt.bar(filtered_data['Country Name'], filtered_data['2022'])
    plt.xlabel('Country Name')
    plt.ylabel('Population in 2022')
    plt.title('Population of Selected Countries in 2022')
    plt.xticks(rotation=45)
    plt.show()
```


Histogram for population distribution in 2022

```
In [67]: plt.figure(figsize=(10, 6))
    sns.histplot(train['2022'].dropna(), bins=20, kde=True, color='blue')
    plt.title('Distribution of Country Populations in 2022')
    plt.xlabel('Population')
```

```
plt.ylabel('Frequency')
plt.show()
```


Bar chart for population distribution in 2022

```
In [68]: import matplotlib.pyplot as plt
import seaborn as sns

# Set the aesthetic style of the plots
```

```
plt.figure(figsize=(15, 10))
sns.barplot(x='Country Name', y='2022', data=train.sort_values('2022', ascending=False).head(20), palette='viridis')
plt.xticks(rotation=90)
plt.title('Population of Different Countries in 2022 (Top 20)')
plt.xlabel('Country')
plt.ylabel('Population')
plt.show()
```

