Student Name: Yashvir Singh Nathawat

Roll Number: 231110059 Date: September 15, 2023 QUESTION 1

Consider a classification model where we are given training data $\{x_n, y_n\}_{n=1}^N$ from K classes. Each input $x_n \in \mathbb{R}^D$ and each class c is defined by two parameters, $w_c \in \mathbb{R}^D$ and a $D \times D$ positive definite (PD) matrix M_c , c = 1, 2, ..., K.

Given Objective function:

$$(\hat{w}_c, \hat{M}_c) = \arg\min_{w_c, M_c} \sum_{xn: yn=c} \frac{1}{N_c} \left((xn - w_c)^T M_c (xn - w_c) - \log |M_c| \right)$$

We are giving a minimization problem with w_c and M_c and to find minima we are equating first order derivative equals to 0.

Derivation with respect to w_c :

Take the derivative of the objective with respect to w_c :

$$\frac{\partial}{\partial w_c} \left(\sum_{x_n: y_n = c} \frac{1}{N_c} \left((x_n - w_c)^T M_c (x_n - w_c) - \log |M_c| \right) \right) = 0$$

Now, let's simplify this expression:

$$\sum_{x, y_{c} = c} \frac{1}{N_c} \left(-2M_c(x_n - w_c) \right) = 0$$

Multiply both sides by $\frac{2}{N_c}$ to get:

$$\sum_{x_n:y_n=c} M_c(x_n - w_c) = 0$$

Now, sum over all training examples x_n for class c:

$$M_c \left(\sum_{x_n: y_n = c} (x_n - w_c) \right) = 0$$

$$\sum_{x_n: u_n=c} (x_n) - N_c(w_c) = 0$$

Rearranging the values to find the optimal w_c :

$$\hat{w}_c = \frac{1}{N_c} \sum_{xn:yn=c} x_n$$

This implies that the optimal value of w_c is the mean of all training examples xn for class c.

Optimizing with respect to M_c :

Take the derivative of the objective with respect to M_c . First, let's find the derivative of the log determinant term $\log |M_c|$:

$$\frac{\partial}{\partial M_c} \left(\log |M_c| \right) = \frac{1}{|M_c|} \operatorname{adj}(M_c)$$

Now, let's find the derivative of the entire objective function with respect to M_c :

$$\frac{\partial}{\partial M_c} \left(\sum_{x_n: y_n = c} \frac{1}{N_c} \left((x_n - w_c)^T M_c (x_n - w_c) - \log |M_c| \right) \right) = 0$$

This simplifies to:

$$\sum_{x_n: y_n = c} \left(\frac{1}{N_c} (x_n - w_c) (x_n - w_c)^T - \frac{1}{|M_c|} \operatorname{adj}(M_c) \right) = 0$$

Rearranging the equation to get:

$$\sum_{x_n: y_n = c} \left(\frac{1}{N_c} (x_n - w_c) (x_n - w_c)^T \right) = \frac{1}{|M_c|} \operatorname{adj}(M_c)$$

Now as we know:

$$\operatorname{adj}(A) = |A| \cdot A^{-1}$$

Therefor we get:

$$\sum_{x_n: y_n = c} \left(\frac{1}{N_c} (x_n - w_c)(x_n - w_c)^T \right) = |M_c|^{-1}$$

Now, to get the optimal \hat{M}_c multiplying both sides by \hat{M}_c and multiplying both sides by $\left(\frac{1}{N_c}\sum_{x_n:y_n=c}\left((x_n-w_c)(x_n-w_c)^T\right)\right)^{-1}$:

$$\hat{M}_c = \left(\frac{1}{N_c} \sum_{x_n: y_n = c} \left((x_n - w_c)(x_n - w_c)^T \right) \right)^{-1}$$

Special Case: M_c is an Identity Matrix (I):

When the covariance matrix M_c is an identity matrix $(M_c = I)$. In this case, the optimization problem simplifies as follows:

$$(w_c, I) = \arg\min_{w_c} \sum_{x_n: y_n = c} \frac{1}{N_c} ||x_n - w_c||^2 - \log |I|$$

Since the determinant of the identity matrix is always 1 (|I| = 1), the $\log |I|$ term becomes zero.

$$(w_c) = \arg\min_{w_c} \sum_{x_n: y_n = c} \frac{1}{N_c} ||x_n - w_c||^2$$

Above equation is just standard mean square error of input points x_n and parameter w_c for all data points belonging to class c.

Student Name: Yashvir Singh Nathawat

Roll Number: 231110059 Date: September 15, 2023 QUESTION 2

Yes, the one-nearest-neighbor algorithm is consistent. Let us consider the statement by Cover and Hart (1967):

"As $N \to \infty$, the 1-NN error is no more than twice the error of the Bayes Optimal classifier. Similar guarantees hold for k > 1." The Bayes optimal error rate is given by:

$$\epsilon_{\text{BayesOpt}} = 1 - \max_{i} P(y_i|x)$$

Let us consider:

- N: The number of data points in the dataset.
- x_q : The test point for which we want to make a prediction.
- x_{NN} : The nearest neighbor of x_q in the dataset.
- y_i : The true label or class of a data point.
- $P(y_i|x_q)$: The conditional probability that y_i is the true label of x_q .
- $P(y_i|x_{NN})$: The conditional probability that y_i is the true label of x_n .

When $N \to \infty$, the distance between x_q and x_{NN} tends to 0 and they will likely overlap.

$$P(y_i|x_q) = P(y_i|x_{NN})$$

Now, we define $\epsilon_{\rm NN}$ as the probability of wrongly classifying the test point x_q :

$$\epsilon_{\text{NN}} = P(y_i|x_q)(1 - P(y_i|x_{\text{NN}})) + P(y_i|x_{\text{NN}})(1 - P(y_i|x_q))$$

$$\epsilon_{\text{NN}} \le (1 - P(y_i|x_{\text{NN}})) + (1 - P(y_i|x_q)) \le 2(1 - P(y_i|x_q)) \le 2\epsilon_{\text{BayesOpt}}$$

where $\epsilon_{\text{BayesOpt}}$ signifies the error of the Bayes Optimal classifier also the inequality follows from the observations that $P(y_i|x_q) \leq 1$, $P(y_i|x_{\text{NN}}) \leq 1$.

A classification algorithm is said to be consistent if, whenever it has access to infinite amounts of training data, its error rate approaches the optimal error rate (a.k.a. Bayes optimal).

$$\epsilon_{\text{BayesOpt}} \le \epsilon_{\text{NN}} \le 2\epsilon_{\text{BayesOpt}}$$

Given the Bayes optimal error rate is zero ($\epsilon_{\text{BayesOpt}}=0$) and the noise-free setting (i.e., every training input is labeled correctly), the one-nearest-neighbor algorithm is **CONSISTENT!** as its error rate approaches the optimal error rate (a.k.a. Bayes optimal).

$$\epsilon_{\rm NN} \to 0$$

Student Name: Yashvir Singh Nathawat

Roll Number: 231110059 Date: September 15, 2023 QUESTION 3

In regression tasks, where the labels are real-valued, a good criterion to choose a feature for splitting is to maximize the **Standard Deviation Reduction (SDR)**.

1. Standard Deviation (S) for Tree Building (Branching)

The formula to calculate the standard deviation for a sample of data is:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$$

Where:

n: Number of examples of parent node.

 x_i : target value of of ith example in parent node.

 \bar{x} : Mean of the target values of parent node.

2. Standard deviation for two attributes (target and predictor)

For target feature (T) and value (X) of selected feature, we are computing standard deviation of the combined variables S(T,X)

$$S(T,X) = \sum_{i=1}^{k} \left(\frac{n_i}{n} \times SD_i \right)$$

Where:

k: Number of child nodes after the split

 n_i : Number of data points in the *i*-th child node

n: Total number of data points in the parent node

 SD_i : Standard deviation of the target variable in the *i*-th child node

3. Splitting Criteria

The attribute with the largest standard deviation reduction is chosen for the decision node.

A higher SDR value suggests that the split results in more homogeneous child nodes, making it a suitable criterion for selecting the best attribute to split on in decision tree regression when the goal is to minimize the variability of the target variable.

$$SDR = SD_{parent} - S(T, X)$$

Where:

 SD_{parent} : Standard deviation of the target variable in the parent node

The dataset is divided based on the values of the selected attribute. This process is run recursively on the non-leaf branches, until all data is processed.

Student Name: Yashvir Singh Nathawat

Roll Number: 231110059 Date: September 15, 2023 **QUESTION**

4

In the unregularized linear regression model, the prediction for a test input x_* is given by:

$$y_* = \hat{w}^T x_* = x_*^T \hat{w}$$

where $\hat{w} = (X^T X)^{-1} X^T y$ is the solution.

Now,let's put the value of w in prediction rule:

$$y_* = x_*^T (X^T X)^{-1} X^T y$$

It can be written as:

$$y_* = Wy$$

where $\mathbf{W} = [w_1, w_2, w_3, \dots, w_N]$ is row vector with N elements and also we can say $\mathbf{y} = [y_1, y_2, y_3, \dots, y_n]^T$

The equation $y_* = Wy$ can be represented in summation form as:

$$y^* = \sum_{i=1}^{N} w_i \cdot y_i$$

The relationship between w_n (the *n*-th column of matrix **W**) and the input vector \mathbf{x}^* , as well as the training data \mathbf{x}_1 to \mathbf{x}_n , can be expressed as:

$$w_n = \mathbf{x}^* \cdot \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \cdot \mathbf{x}_n$$

Here, w_n represents the *n*-th index of the $1 \times N$ matrix **W**. **X** is a matrix whose rows are the *N* training vectors \mathbf{x}_1 to \mathbf{x}_n . The expression $\mathbf{x}^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_n$ signifies that w_n depends on the input \mathbf{x}^* and all the training data from \mathbf{x}_1 to \mathbf{x}_n .

 ${\bf Comparison\ of\ Unregularized\ Linear\ Regression\ Model\ with\ Weighted\ K-Nearest\ Neighbors}$

The weighted K-Nearest Neighbors (WKNN) algorithm can be represented with the following formula:

$$\hat{y} = \frac{1}{\sum_{i=1}^{K} w_i} \sum_{i=1}^{K} w_i \cdot y_i$$

where

$$w_n = \frac{1}{\|\mathbf{x}^* - \mathbf{x}_n\|_2}$$

while Unregularized Linear Regression Mode:

$$w_n = \mathbf{x}_* \cdot \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \cdot \mathbf{x}_n$$

The weights, denoted as w_n , in this regression model depend on both the test input \mathbf{x}^* and the entire set of training data \mathbf{x}_1 to \mathbf{x}_N . These weights are determined by the inner product between the test input \mathbf{x}^* and each training input \mathbf{x}_n , with adjustments made based on the characteristics of the training data matrix \mathbf{X} .

In a weighted variation of the K-Nearest Neighbors (KNN) algorithm, w_n is commonly defined as the reciprocal of the distance between the test input \mathbf{x}^* and the training input \mathbf{x}_n . This implies that in KNN, the weights are predominantly influenced by the spatial separation of data points. In contrast, in linear regression, the weights take into account a more intricate relationship, which encompasses inner products and the training data matrix.

5

QUESTION

Student Name: Yashvir Singh Nathawat

Roll Number: 231110059 Date: September 15, 2023

Given Loss function using masked input be

$$L(M) = \sum_{n=1}^{N} (y_n - w^T \tilde{x}_n)^2$$

In matrix form:

$$L(M) = \|y - \tilde{X}w\|^2$$

To represent the masked input $\tilde{x}_n = x_n \odot m_n$ in matrix form, we can use the following:

$$\tilde{X} = X \odot M$$

Where:

- X is the original input matrix with dimensions $N \times D$.
- M is a matrix of the same size as X where each element M_{ij} follows a Bernoulli distribution with probability p, i.e., $M_{ij} \sim \text{Bernoulli}(p)$. This matrix M is the binary mask matrix. \odot represents the element-wise product (Hadamard product).

$$L(M) = ||y - (M \odot X)w||^2$$

New loss function with masked input is as follows:

$$L(w) = \arg\min_{w} \left\{ \mathbb{E} \left[\|y - (M \odot X)w\|^{2} \right] \right\}$$

$$L(w) = \arg\min_{w} \mathbb{E} \left[((y - (M \odot X))^{T} (y - (M \odot X)w) \right]$$

Using result:

$$E[a^T a] = \text{Tr}(\Sigma) + c^T c$$

where-

$$c = E[a], \quad \Sigma = \text{Var}[a]$$
$$a = y - (M \odot X), E(a) = y - pXw$$

Also,

$$Tr(\Sigma) = Tr(Var[a]) = Tr(Var[(y - (M \cdot X)w])$$
$$= p(1 - p)Tr[(Xw)(Xw)^T]$$

and

$$c^T c = E[a]^T E[a] = (y - pXw)^T (y - pXw)$$

Using above all result, we get:

$$L(w) = \arg\min_{w} \left\{ (y - pXw)^{T} (y - pXw) + p(1 - p) \operatorname{Tr} \left((Xw)(Xw)^{T} \right) \right\}$$

$$\Rightarrow L(w) = \arg\min_{w} \left\{ \|y - pXw\|^2 + p(1-p)\operatorname{Tr}\left(Xww^TX^T\right) \right\}$$

$$\Rightarrow L(w) = \arg\min_{w} \left\{ \|y - pXw\|^2 + p(1-p)w^T(X^TX)w \right\}$$

$$L(w) = \arg\min_{w} \left\{ \|y - pXw\|^2 + p(1-p)\|\sqrt{\operatorname{diag}(X^TX)}w\|^2 \right\}$$

Comparing L(w) with ridge regression objective function,

$$L_{\text{ridge}}(w) = \arg\min_{w} \left\{ (y - Xw)^{T} (y - Xw) + \lambda w^{T} w \right\}$$

It is obvious that the objective L(w) resembles the objective function of ridge regression and is therefore identical to minimizing a regularized loss function, where $p(1-p)\|\sqrt{\operatorname{diag}(X^TX)}w\|^2$ acts as a regularizer and $\|y-pXw\|^2$ is equivalent to squared loss.

Student Name: Yashvir Singh Nathawat

Roll Number: 231110059 Date: September 15, 2023

Method 1: The convex.ipynb file's first method's accuracy was 46.89320388349515 Method 2:

QUESTION

Lambda	Accuracy (%)
0.01	58.090614886731395
0.1	59.54692556634305
1	67.39482200647248
10	73.28478964401295
20	71.68284789644012
50	65.08090614886731
100	56.47249190938511

Table 1: Accuracy Results

Best accuracy comes at lambda = 10.