

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Institut Supérieur d'Informatique et des Mathématiques de Monastir Université de Monastir

<u>Cours:</u> Systèmes Logiques et Architecture des Ordinateurs

Dr. Safa Teboulbi

Année universitaire : 2024-2025

Chapitre 6

Les registres

Introduction

- Les bascules sont très utilisées comme éléments de mémorisation de données ou d'informations.
- Le stockage des données a généralement lieu dans des groupes de bascules, appelés
 Registres ».
- Un registre mémorise un mot binaire de n bits, il est donc constitué de n mémoires élémentaires qui sont les bascules.
- ❖ Les informations peuvent être écrites/lues en même temps (Parallèle) ou une après l'autre (Série).
 - ❖ Le nombre de bits du registre correspond au nombre de cellules mémoire (Nombre de bascule D ou JK) du registre.
- On note que toutes les entrées d'horloge (H) des cellules sont reliées (Ligne d'écriture).

Les opérations possibles effectuées sur les registres sont:

Le Chargement :

- En Parallèle: Tous les bits de l'information sont chargés simultanément.
- <u>En série</u>: L'information se présente « bits après bits » sur le bit de poids fort ou celui de poids faibles pour être chargée en n cycles d'horloge (n: la taille du registre) par décalages successifs.
 - > Le décalage : Un registre capable de décaler l'information binaire qu'il contient
- Les registres sont classés par les registres de mémorisation. Ils peuvent être classés selon la méthode d'écriture de données ou de lecture:
 - > Des registres à entrées parallèles et sorties parallèles : PIPO (Parallel In Parallel Out)
 - Des registres à entrées parallèles et sorties séries : PISO (Parallel In Serial Out)
 - Des registres à entrées séries et sorties parallèles : SIPO (Serial In Parallel Out)
 - Des registres à entrées séries et sorties séries : SISO (Serial In Serial Out)

REGISTRE DE MEMORISATION (Registre parallèle)

- Un registre permet la mémorisation de n bits.
- Il est donc constitué de n bascules, mémorisant chacune un bit.
- Un registre de mémorisation (ou registre de données) est un registre dans lequel les différents étages sont indépendants les uns des autres, cependant certains signaux agissent sur l'ensemble des étages; tel que remise à 0 et remise à 1.

3

Registre de mémorisation 4 bits

Les 4 bascules sont chargées en parallèle et lues en parallèle en synchrone avec le signal d'écriture H. Ce type de registre est appelé aussi registre PIPO.

Schéma fonctionnel d'un registre PIPO

REGISTRE A DECALAGE (Registre Série)

Ce type de registre est principalement utilisé comme mémoire d'information dynamique ; la fonction de décalage consiste de faire glisser l'information de chaque cellule élémentaire dans une autre cellule élémentaire adjacente.

Ce type de registre est appelé aussi registre SISO.

Schéma fonctionnel

Décalage à droite

La bascule du rang i doit recopier la <u>sortie</u> de la bascule du rang (i-1) ainsi son <u>entrée</u> doit être connectée à la <u>sortie</u> (i-1).

Décalage à gauche

L'<u>entrée</u> de la bascule du rang i doit recopier la <u>sortie</u> de la bascule du rang (i+1).

5

Décalage réversible

Il existe des registres à décalage réversibles, c'est à dire des registres où le décalage s'effectue vers la droite et vers la gauche en fonction du niveau logique appliqué à l'entrée S : « sens de décalage ».

En fonction de la valeur de l'entrée S, on a l'opération suivante :

S	Opération .
0	Décalage à gauche
1	Décalage à droite

7

Registre Mixte

On peut trouver des registres mixtes, donc on peut écrire en parallèle et lire en série (PISO), ou vice versa (SIPO), ou qui offrent les deux possibilités « au choix ».

Logigramme en utilisant des bascules D

8

Logigramme en utilisant des bascules D

9