pubs.acs.org/JPCA

Electronic Structure and Thermochemical Properties of Small Neutral and Cationic Lithium Clusters and Boron-Doped Lithium Clusters: $\text{Li}_n^{0/+}$ and $\text{Li}_n \text{B}^{0/+}$ (n=1-8)

Truong Ba Tai, Pham Vu Nhat, Minh Tho Nguyen, Shenggang Li, and David A. Dixon Truong Ba Tai, And David A. Dixon

Supporting Information

ABSTRACT: The stability, electronic structure, and thermochemical properties of the pure Li_n and boron-doped $\text{Li}_n \text{B}$ (n=1-8) clusters in both neutral and cationic states are studied using electronic structure methods. The global equilibrium structures are established, and their heats of formation are evaluated using the G3B3 and CCSD(T)/CBS methods based on the density functional theory geometries. Theoretical adiabatic ionization energies (IE_a) for the Li_n clusters are in good agreement with experiment: Li_2 (G3B3, 5.21 eV; CCSD(T), 5.14 eV; expt, 5.1127 \pm 0.0003 eV), Li_3 (4.16, 4.11, 4.08 \pm 0.10), Li_4 (4.76, 4.68, 4.70 \pm 0.05), Li_5 (4.11, 4.06, 4.02 \pm 0.10), Li_6 (4.46, 4.32, 4.20 \pm 0.10), Li_7 (4.07, 3.99, 3.94 \pm 0.10), and Li_8 (4.49, 4.31, 4.16 \pm 0.10). The Li_4

experimental IE_a has been revised on the basis of the Franck—Condon simulations. Species Li_5B , Li_6B^+ , Li_7B , and Li_8B^+ exhibit high stability as compared to their neighbors, which can be understood by considering the magic numbers of the phenomenological shell model (PSM).

■ INTRODUCTION

Lithium and lithium-based clusters continue to attract attention because of their interesting physical and chemical properties. A large number of studies on the spectroscopic parameters, 1-4 stabilities, and bonding nature⁵⁻¹⁹ of the bare lithium clusters have been reported using various experimental and theoretical methods. It is well established that the addition of an impurity to a cluster can lead to fundamental changes in their geometries, energy properties, and bonding nature, leading to new materials. Because evidence of trilithium oxide Li₃O was reported,²⁰ a number of studies of lithium-rich binary clusters have been carried out. Jiang et al.²¹ and Deshpande et al.²² reported on the structures and electronic properties of Li_nX with X = K, Na. Baruah and Kanhere²³ reported a topological study of the charge densities of small clusters Li_nX with X = Mg, Be and n = 1-6. Theoretical investigations of Li_nX with X = Mg, Be and n = 1 - 12were carried out by Deshpande et al. ²⁴ using Car—Parrinello molecular dynamics (CPMD) simulations. Recently, studies of lithiumrich clusters with various impurities including aluminum, ^{25–33} carbon, ^{34–38} tin, ^{39–41} germanium, ^{42,43} and oxygen ^{10,44} have been reported. Mixed clusters containing boron and lithium have been investigated. 45-48 Lammertsma and co-workers 47 reported theoretical studies of $\text{Li}_n B$ (n = 1 - 8) using various computational methods (B3LYP, MP2, G2MP2, SCF, and CASSCF). The structure and stability of Li_nB (n = 1-7) in both neutral and cationic states was

predicted by Li et al. 46 using the coupled-cluster theory CCSD(T) method with the aug-cc-pVDZ basis set.

Despite numerous studies, discrepancies still exist in terms of the electronic structure and the global minima of some small clusters of $\operatorname{Li_n}^{7,9,10,12,13,18}$ because of the different computational levels, for example, $\operatorname{Li_4}$. Whereas most theoretical studies agree with each other that the planar structure $(D_{2h}, {}^1 A_g)$ is the global minimum of neutral $\operatorname{Li_4}, {}^{9-11,14}$ the difference between the experimental and theoretical results with respect to the ionization energy (IE) is remarkably large. At the CCST(T)/cc-pwCVQZ level, the IE value of $\operatorname{Li_4}$ was reported to be 4.76 eV, which deviates substantially from the available experimental value of 4.31 eV. (More detail is provided below.) A complete interpretation of this difference remains a challenging issue. In addition, the electronic structures of boron-doped lithium clusters have not been studied in great detail yet, and their thermochemical properties have not been determined using reliable theoretical methods.

To expand our understanding of the properties of these clusters, we have performed a systematic series of calculations to predict the electronic structure, stabilities, and thermochemical properties of

Received: January 30, 2011 Revised: May 25, 2011 Published: June 14, 2011

[†]Department of Chemistry, and Mathematical Modeling and Computational Science Center (LMCC), Katholieke Universiteit Leuven, B-3001 Leuven, Belgium

[‡]Department of Chemistry, The University of Alabama, Shelby Hall, Box 870336, Tuscaloosa, Alabama 35847-0336, United States

bare Li_n (n = 1-8) and boron-doped $\text{Li}_n B$ (n = 1-8) lithium clusters in both neutral and cationic states using high-accuracy computational methods. The electronic structure and thermochemical properties of bare lithium clusters $\operatorname{Li}_n^{0/+}$ are re-examined by using high-level G3B3 and CCSD(T)/complete basis set (CBS) methods. The electronic structure, stability, chemical bonding, and thermochemical properties of boron-doped lithium clusters Li_nB in both cationic and neutral states are investigated in detail. The global minima of Li_n are established and compared to previous reports, and the experimental spectrum of Li4 is reassigned on the basis of a comparison of the experimental spectra and our simulated photoionization spectra. New global minima are found including those of Li₂B^{0/+}, Li₃B⁺, Li₄B, and $\text{Li}_8^{0/+}$. The growth mechanism of $\text{Li}_n B$ clusters can then be analyzed with this data. The stability of these molecules is also considered in terms of their chemical properties. In particular, the enhanced stability of the Li₅B, Li₆B⁺, Li₇B, and Li₈B⁺ species can be rationalized by using the phenomenological shell model (PSM).49

■ COMPUTATIONAL METHODS

All electronic structure calculations are carried out by using the Gaussian 03^{50} and Molpro 2008.1^{51} program packages. Equilibrium geometries and harmonic vibrational frequencies of the Li_n and Li_nB (n = 1-8) clusters in both neutral and cationic states are calculated at the density functional theory (DFT) level with the hybrid B3LYP functional 52-54 in conjunction with the correlation-consistent aug-cc-pVTZ basis set for Li and B.55 To obtain improved results, the geometries, energies, and frequencies of the lowest isomers of all clusters (n = 1 - 8)were optimized at the CCSD(T) (R/UCCSD(T) for open-shell species) level⁵⁶ with the aVnZ basis sets (n = D, T) and the G3B3 approach.⁵⁷ The aVnZ basis set is a combination of the cc-pVXZ basis set for Li⁵⁸ and the aug-cc-pVXZ basis set for B. For the lowest-energy structures, the coupled-cluster calculations were also carried out with the aVQZ basis set with the energies extrapolated to the complete basis set (CBS) limit using a mixed exponential/Gaussian expression. 59 Because we are extrapolating to the CBS limit, there is no basis set superposition error. In the above CCSD(T) calculations, the 1s² electrons on Li and B are excluded from the correlation treatment. Core-valence correlation corrections to the CCSD(T) energies for the 1s² electrons on Li and B are calculated at the CCSD(T)/aug-cc-pwCVTZ level (cc-pwCVTZ for Li).60 The scalar relativistic corrections were calculated with the second-order Douglas-Kroll-Hess Hamiltonian⁶¹ as the difference between the valence electron energies at the CCSD(T)-DK/aug-cc-pwCVTZ-DK and CCSD-(T)/aug-cc-pwCVTZ levels (without the augmented functions for Li). 62,63 The procedures for evaluating these energies are given in detail in our recent papers 64-66 on other boron compounds. Total atomization energies (TAEs) are subsequently calculated using the composite G3B3 and CCSD(T)/CBS approaches. By combining the calculated TAE values with the known heats of formation at 0 K for the elements, $\Delta_f H(B) =$ $135.1 \pm 0.2 \text{ kcal/mol}^{67}$ and $\Delta_{\rm f} H$ (Li) = $37.7 \pm 0.2 \text{ kcal/mol}^{68}$ the $\Delta_f H$ values at 0 K of the Li_n and Li_nB clusters can be calculated. A rationale for the choice of the heat of formation for B and Li has been given.⁶⁹ The heats of formation at 298 K are then calculated from the thermal corrections.⁷⁰ To assess previous assignments of the photoionization efficiency spectra for a better comparison between calculated and experimental

Figure 1. Optimized structures for Li_n and Li_n^+ (n=2-6) and relative energies at 0 K (ΔE , kcal/mol) calculated at the B3LYP/aug-cc-pVTZ level.

adiabatic ionization potentials for Li_m the photoelectron spectrum for the transition from the ground state of the neutral cluster to that of the cation was simulated⁷¹ and was integrated to yield the photoionization efficiency spectrum.

The structures are analyzed in terms of natural bond orbitals (NBO)^{72–74} constructed using the B3LYP/6-311+G(d) densities. To understand better the nature of the chemical bonding phenomenon, an analysis of the electron localization function (ELF)⁷⁵ supplemented by a determination of their topological bifurcations⁷⁶ is performed. The ELF is a local measure of electron repulsion in 3D space due to the Pauli exclusion principle. Such a localization technique allows the partitioning of the total density into basins, which correspond to molecular regions containing the cores, lone pairs, and chemical bonds. The total ELFs are mapped out using TOPMOD software,⁷⁷ and all ELF isosurfaces are plotted using Gopenmol software.

■ RESULTS

Structures of Li_n and Li^{n+} and Ionization Energies of Li_n . A variety of Lin structures were constructed starting from isomers reported in previous studies, and additional new isomers were also studied. All structures are fully optimized and characterized at the B3LYP/aug-cc-pVTZ level. The optimized geometries of a selection of lower-lying Li_n clusters in both neutral and cationic states, together with their relative energies (kcal/mol), are shown in Figures 1 and 2. The Cartesian coordinates of the B3LYP/augcc-pVTZ-optimized geometries of all isomers considered are listed in the Supporting Information. The energy properties of the lowest-energy isomers of Lin are predicted by using the higher-level G3B3 and CCSD(T)/CBS methods. The heats of formation derived using the total atomization energies, ΣD_0 , obtained from the G3B3 and CCSD(T)/CBS methods are given in Table 1. The limited available experimental data for these quantities are given. The calculated adiabatic ionization energies (IE_a) at the above levels are compiled in Table 2 and compared with available experimental data for Li_n. 79 The ground states of the Li, clusters and their cations have no significant multireference character as indicated by the relatively small T₁ diagnostics⁸⁰ of <0.02 except for Li₆⁺ and Li₈⁺, where the T₁

Figure 2. Optimized structures for Li_n and Li_n^+ (n = 7 - 8) and relative energies at 0 K (ΔE , kcal/mol) calculated at the B3LYP/aug-cc-pVTZ level.

diagnostics are slightly larger at 0.032 and 0.024 (Supporting Information). The structures given hereafter are labeled **n.x** for the neutral and **nc.x** for the cations, where **n** stands for the size and **c** stands for the cation. For the sake of a systematic comparison, only the relative energies derived from the B3LYP calculations are given in the Figures.

Li₂ and Li₂⁺. The smallest clusters Li_n (n = 2-4) have been extensively studied, and our G3B3 and CCSD(T)/CBS results agree well with earlier calculations. The ground states of Li₂ and Li₂⁺ are $^{1}\Sigma_{g}^{+}$ and $^{2}\Sigma_{g}^{+}$ respectively. The calculated Li–Li distances of Li₂ are 2.698 and 2.670 Å at the B3LYP/aug-cc-pVTZ and CCSD(T)/cc-pVQZ levels, respectively, in good agreement with the experimental value of 2.672 Å. Our calculated values are comparable to the values calculated at the CCSD(T)/cc-pwCVTZ (2.677 Å) and CCSD(T)/cc-pwCVQZ (2.674 Å) levels, 14a where the 1s electrons on Li were also correlated. The calculated heat of formation at 298 K of 51.7 kcal/mol for Li₂ at the CCSD(T)/CBS level is in excellent agreement with the experimental value of 51.6 \pm 0.7 kcal/mol.

Our calculated Li–Li distance of 3.132 Å at the CCSD(T)/cc-pVQZ level for the cation compares well with the experimental value of 3.12 Å, 82 which is also close to the value of 3.099 Å obtained at the CCSD(T)/cc-pwCVQZ level. 14b The calculated adiabatic ionization energies of Li₂ are 5.21 (G3B3) and 5.14 eV (CCSD(T)/CBS); the latter is in very good agreement with the experimental value of 5.1127 \pm 0.0003 eV. 83 Our calculated ionization energies are essentially the same as that calculated by Wheeler and Schaefer 14b of 5.14 eV at the CCSD(T)/cc-pwCVQZ level.

 $\hat{\text{Li}}_3$ and $\hat{\text{Li}}_3^+$. Low-spin neutral structure 3.1 ($C_{2\nu}$ $^2\text{B}_2$), distorted from D_{3h} symmetry because of the Jahn—Teller effect, is predicted to be the global minimum for Li_3 , consistent with previous studies. $^{9-11,14}$ At the CCSD(T)/cc-pVQZ level, the

Table 1. Calculated Heats of Formation ($\Delta_{\rm f}H$, kcal/mol) for the Lowest-Energy Isomers of ${\rm Li}_n^{^{0/+}}$ at 0 and 298 K at the G3B3 and CCSD(T)/CBS Levels^{a,b}

		$\Delta_{\mathrm{f}} H \ (0 \ \mathrm{K})$		$\Delta_{ m f} I$	H (298 K)
molecule	label	G3B3	CCSD(T)	G3B3	CCSD(T)
$\text{Li}_2 \left({}^1\Sigma^+_{g} \right)$	2.1	49.1	51.6	49.2	51.7
Li_3 ($^2\text{B}_2$)	3.1	72.9	75.9	72.6	76.0
Li_4 (1A_g)	4.1	78.8	83.8	78.9	83.8
Li_5 ($^2\text{B}_2$)	5.1	95.2	100.9	95.3	100.7
Li_5 ($^2\text{A}_1$)	5.2	97.6		97.8	
Li_6 ($^1A_{1g}$)	6.1	98.1	106.9	98.1	106.8
Li_6 ($^1\text{A}_1$)	6.3	103.6		103.9	
$\text{Li}_7 (^2 \text{A}_2^{\prime\prime})$	7.1	105.2	115.1	105.1	114.9
Li_7 (2 A ₁)	7.2	110.8		110.8	
$\operatorname{Li}_{8}(^{1}A_{1})$	8.1	112.4	123.6	112.4	123.5
$\operatorname{Li}_{8}(^{1}A_{1})$	8.2	112.0		112.1	
$\operatorname{Li_2}^+(^2\Sigma^+_{\ g})$	2c.1	169.4	170.1	169.6	170.3
$\operatorname{Li_3}^+({}^1A_1{}')$	3c.1	168.9	170.6	168.9	170.6
$\mathrm{Li_4}^+$ ($^2\mathrm{B}_{1\mathrm{u}}$)	4c.1	188.7	191.6	188.9	191.8
$\text{Li}_{4}^{+}(^{2}\text{A}_{1})$	4c.2	190.5		190.8	
$\operatorname{Li_5}^+(^1A_1')$	5c.1	190.0	194.4	190.0	194.3
$\operatorname{Li}_{5}^{+}(^{1}A_{1})$	5c.2	194.6		195.0	
$\operatorname{Li_6}^+(^2A_1)$	6c.1	200.9	206.6	200.9	206.6
$\operatorname{Li_6}^+(^2B_{2u})$	6c.3	201.1		200.6	
$\mathrm{Li_{7}}^{+}\left(^{1}A_{1}{'}\right)$	7c.1	199.1	207.0	199.0	206.9
$\operatorname{Li_7}^+(^1A_1)$	7c.2	204.7		204.8	
$\operatorname{Li_8}^+(^2A')$	8c.1	215.9	223.0	216.0	223.1
$\text{Li}_{8}^{+} (^{2}\text{B}_{1})$	8c.2	219.9		220.1	

^a Includes core—valence and scalar relativistic corrections and zeropoint energies. ^b The ion heats of formation at 298 K were calculated in the ion convention where the electron has 0 kcal/mol for the integrated heat capacity of the electron.

bond angle of 71.8° found for 3.1 agrees well with a previous theoretical prediction of 71.8° at the CCSD(T)/cc-pwCVQZ level. There is a 2A_1 state with an acute angle of 54.1° that is 1.2 kcal/mol higher in energy and has one imaginary frequency of 159i cm $^{-1}$. The Li–Li bond lengths in the 2B_2 state of Li₃ calculated by CCSD(T)/cc-pVQZ are 2.789 (×2) and 3.272 Å, whereas the B3LYP values are 2.631 (×2) and 3.048 Å; the experimental values are 2.73 and 3.20 Å.

High-symmetry structure **3c.1** (D_{3h} , $^{1}A_{1}$) is the global minimum for Li₃⁺ (Figure 1). The calculated values for the IE_a of Li₃ are 4.16 eV (G3B3) and 4.11 eV (CCSD(T)/CBS), which can be compared to the calculated value of 4.11 eV at the CCSD(T)/cc-pwCVQZ level^{14b} and the experimental value of 4.08 \pm 0.10 eV.⁷⁹

Li₄ and Li₄⁺. In agreement with previous reports, $^{9-11,14}$ planar structure **4.1** $(D_{2h}, {}^{1}A_{g})$ is predicted to be the global minimum for Li₄. However, the ${}^{1}A_{1}$ state of the $C_{2\nu}$ structure of Li₄ (not shown) was predicted to have an imaginary frequency of \sim 70i cm⁻¹ at the B3LYP, MP2, and CCSD(T) levels, and it lies higher in energy than the ${}^{1}A_{g}$ state of the D_{2h} structure by 7 to 11 kcal/mol. Optimizing this $C_{2\nu}$ structure by following the eigenvector of the imaginary frequency leads to the D_{2h} structure. Thus, the ${}^{1}A_{1}$ state of the $C_{2\nu}$ structure is a transition state connecting the different ${}^{1}A_{g}$ states of the D_{2h} structures resulting from capping the Li₃ triangular structure on its different sides.

Table 2. Calculated Adiabatic Ionization Energies (eV) of the Li_n Clusters (n = 1 - 8) Using the CCSD(T)/CBS and G3B3 Methods Compared with Experiment

neutral	cation	G3B3	CCSD(T)/cc-pVTZ	$CCSD(T)/CBS^a$	$expt^b$
Li $(^2S_{1/2})$	$\operatorname{Li}^{+}(^{1}S_{0})$	5.40	5.38 ^c	5.39 ^c	5.391719 ^d
$\operatorname{Li}_{2}(D_{\infty h,}{}^{1}\Sigma_{g}^{+})$	$\operatorname{Li_2}^+ (D_{\infty h,}{}^2\Sigma^+{}_{\mathrm{g}})$	5.21	5.09	5.14	5.1127 ± 0.0003^{e}
$\text{Li}_3 (C_{2\nu}, {}^2B_2)$	${\rm Li_3}^+ (D_{3h}, {}^1{ m A_1}')$	4.16	4.08	4.11	4.08 ± 0.1
$\text{Li}_4 (D_{2h}, {}^1A_g)$	${\rm Li_4}^+ \left(D_{2h}, {}^2{ m B_{1u}} \right)$	4.76	4.64	4.68	4.70 ± 0.05^{f}
$\text{Li}_5 (C_{2\nu}, {}^2B_2)$	${\rm Li_5}^+ (D_{3h}, {}^1{ m A_1}')$	4.11	4.02	4.06	4.02 ± 0.1
$\text{Li}_6 (D_{4h}, {}^1A_{1g})$	$\text{Li}_{6}^{+} \left(C_{2\nu}, {}^{2}\text{A}_{1} \right)$	4.46	4.28	4.32	4.20 ± 0.1
$\text{Li}_7 (D_{5h}, {}^2\text{A}_2'')$	${ m Li_7}^+ \left(D_{5h}, {}^1\!{ m A_1}' ight)$	4.07	3.96	3.99	3.94 ± 0.1
$\operatorname{Li}_{8}\left(T_{d}, {}^{^{1}}\!\mathrm{A}_{1}\right)$	$\operatorname{Li_8}^+\left({C_{s}},{}^{^2}\!\mathrm{A}'\right)$	4.49	4.25	4.31	4.16 ± 0.1

^a Includes core—valence and scalar relativistic corrections. ^bReference 79. ^cAt the CCSD(T)/cc-pwCVXZ (X = D, T, Q) levels with Li 1s² electrons correlated. ^dReference 84. ^eReference 83. ^fReassigned experimental value based on our spectral simulations. See the text.

Figure 3. Simulated photoionization efficiency spectrum of Li $_4$ at 100 K at the B3LYP/cc-pVDZ level. The adiabatic ionization potential is set to 4.70 eV.

At the B3LYP level, structure **4c.1** $(D_{2h\nu}^{2}B_{1u})$ is found to be the lowest-energy isomer of Li_{4}^{+} , lower than isomer **4c.2** $(C_{2\nu\nu}^{2}A_{1})$ by \sim 3 kcal/mol. However, at the CCSD(T) level, the $^{2}B_{1u}$ state was predicted to have one imaginary frequency of \sim 130i cm $^{-1}$, whereas the $^{2}A_{1}$ state was predicted to be a minimum with no imaginary frequency. At the CCSD(T)/CBS level, the $^{2}B_{1u}$ state was predicted to be lower in energy than the $^{2}A_{1}$ state by \sim 1.5 kcal/mol. The imaginary frequency calculated at the CCSD(T) level for the $^{2}B_{1u}$ state is likely due to symmetry breaking, as pointed out in a previous study. 14b In addition, at the B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels, the $^{2}B_{1u}$ state was predicted to be a minimum with no imaginary frequency.

On the basis of the above results, either the ${}^{2}B_{1u} \leftarrow {}^{1}A_{g}$ transition or the ${}^{2}A_{1} \leftarrow {}^{1}A_{g}$ transition should be used to explain the experimental photoionization efficiency spectrum.⁷⁹ Ĥowever, the ${}^{2}A_{1} \leftarrow {}^{1}A_{g}$ transition can be further ruled out because of the substantial change in the equilibrium geometries accompanying the ionization process. In fact, the experimental spectrum has a very sharp onset. 79 Thus, it can be assigned only to the ${}^{2}B_{1u} \leftarrow {}^{1}A_{g}$ transition, where there is little change in the equilibrium geometries. The simulated photoionization efficiency spectrum by integrating the intensity for the simulated photoelectron spectrum with the energy of the 0-0 band set to 4.70 eV is shown in Figure 3, which agrees fairly well with the experimental spectrum.⁷⁹ The weak signal observed at energies below 4.70 eV, which was used previously to assign the experimental IE_a to 4.31 eV,⁷⁹ can be accounted for by the hot transitions from the vibrationally excited levels of the neutral ground state to the ground vibrational level of the cationic ground state, as also shown in Figure 3. On the basis of the above argument, the experimental $\rm IE_a$ of $\rm Li_4$ is readjusted to 4.70 \pm 0.05 eV, which is now in excellent agreement with our calculated value of 4.68 eV at the CCSD(T)/CBS level. The G3B3 method gives a slightly overestimated value of 4.76 eV. Our CCSD(T)/CBS value for the $\rm IE_a$ of $\rm Li_4$ is also in good agreement the CCSD(T)/cc-pwCVQZ value of 4.74 eV. $^{\rm 14b}$ Thus, the experimental $\rm IE_a$ of $\rm Li_4$ had been misassigned because of the extrapolation of the tail resulting from the hot transitions.

Li₅ and Li₅⁺. The pentaatomic clusters in both neutral and cationic states have been extensively investigated in previous studies using various methods. Boustani et al.⁹ predicted the planar Li₅ **5.2** $(C_{2\nu})^2 A_1$ structure to be the most stable. In contrast, Jones et al.¹⁰ predicted trigonal bipyramidal (TBP) structure **5.1** $(C_{2\nu})$ to be the global minimum. In a more recent study, Alexandrova et al.⁷ also predicted that the global minimum of Li₅ is TBP structure **5.1** $(C_{2\nu})^2 B_1$ at the CCSD(T)/6-311+G(d) level. We explored a number of structures for Li₅ using both the G3B3 and CCSD(T) methods, and some of the lower-energy isomers are displayed in Figure 1. Our results confirm that TBP structure **5.1** $(C_{2\nu})^2 B_2$, which is Jahn—Teller distorted from $D_{3h\nu}$ is the lowest-energy structure. However, planar structure **5.2** $(C_{2\nu})^2 A_1$ is only 2.4 kcal/mol (G3B3 value) less stable than **5.1**. High-spin structure **5.3** $(D_{3h\nu})^4 A_2^{\prime\prime}$ is 7.0 kcal/mol less stable than **5.1**.

Removing one electron from the ground state of Li₅ also removes the first-order Jahn—Teller distortion. Thus, the ground state of Li₅⁺ is **5c.1** (D_{3h} , ${}^{1}A_{1}'$) with higher symmetry than the neutral, just as in the case of Li₃ and Li₃⁺. The next lowest energy isomer is **5c.2** (D_{2d} , ${}^{1}A_{1}$), which is only 2.0 kcal/mol higher in energy, in agreement with earlier results.⁷ The IE_a of Li₅ is calculated to be 4.06 (CCSD(T)/CBS) and 4.11 eV (G3B3), in good agreement with the experimental value of 4.02 \pm 0.10 eV.⁷⁹

 $\operatorname{Li_6}$ and $\operatorname{Li_6}^+$. A number of computational studies have been carried out to identify the global minimum for Li₆. Boustani et al. found two local energy minima (Figure 2), quasi-planar structure **6.3** ($C_{5\nu}$, 1A_1), and planar structure **6.5** (D_{3h} , 1A_1) with the same energies at the CISD level. In contrast, Gardet et al. 12 predicted that 3D structure **6.2** is the most stable isomer. On the basis of DFT molecular dynamics simulations, Jones et al. 10 predicted that the global minimum of Li₆ is distorted octahedron **6.1** with D_{4h} symmetry. The latter prediction was recently supported by Alexandrova and Boldyrev⁷ in which **6.1** ($^1A_{1g}$) is at least 4.2 kcal/mol lower in energy than the other isomers at the CCSD(T)/6-311+G(d) level. Temelso and Sherrill 15 also identified structure **6.1** as the global minimum at the CCSD(T) level

with up to the quadruple ζ basis set including core—valence corrections, and they found good agreement between the experimental and simulated optical absorption spectra for this structure. Our calculations also predict structure **6.1** to be the global minimum. Structure **6.3** $(C_{5w}^{-1}A_1)$, which is distorted from structure **6.4** with higher symmetry (D_{5h}) , is found to be the second most stable isomer with a relative energy of 2.8 kcal/mol above that of **6.1** at the B3LYP/aug-cc-pVTZ level. Planar structure **6.5** $(D_{3h}, {}^{1}A_{1}')$ is the next higher energy structure and is **4.6** kcal/mol less stable than **6.1** at the B3LYP/aug-cc-pVTZ level.

Because the HOMO of structure 6.1 is a doubly degenerate orbital of e_u symmetry, removing one electron from its HOMO will result in a Jahn-Teller distorted cationic structure with a lower symmetry than D_{4h} . The ${}^{2}B_{2u}$ state of the D_{2h} structure (6c.2) was initially predicted⁹ to be the global minimum of Li₆⁺. Temelso and Sherrill¹⁵ predicted Li_6^+ to have $C_{2\nu}$ symmetry (6c.1) upon distortion from D_{4h} . However, the ${}^{2}B_{2}$ state of $C_{2\nu}$ symmetry (6c.4) resulting from distorting the C_{5v} structure (6.3) was predicted to be the global minimum by Alexandrova and Boldyrev. Our calculated results are consistent with those by Temelso and Sherrill. The e_u orbitals under D_{4h} correspond to the a_1 and b_2 orbitals under $C_{2\nu}$, which is a subgroup of D_{4h} symmetry. Removing an electron from the a₁ orbital results in the ${}^{2}A_{1}$ state of $C_{2\nu}$ symmetry (6c.1) after geometry optimization. Removing an electron from the b₂ orbital results in the ²B_{2u} state of D_{2h} symmetry (6c.2) after geometry optimization. The $^{2}\mathrm{B}_{2\mathrm{u}}$ state (6c.2) is only 0.8, 0.2, and 0.6 kcal/mol higher in energy than the ${}^{2}A_{1}$ state (6c.1) at the B3LYP, CCSD(T), and G3B3 levels, and the ${}^2B_{2u}$ state is a transition state with an imaginary frequency of 62 cm $^{-1}$ connecting the 2A_1 states (6c.1) resulting from the elongations of different pairs of neighboring Li atoms in the equatorial positions. Thus, the energy barrier for going from one Jahn-Teller distorted structure to another for structure **6c.1** is very small (i.e., structure **6c.1** is very fluxional). In addition, the other isomer for the cation is higher in energy than 6c.1 by >13 kcal/mol.

The $\rm IE_a$ for $\rm Li_6$ was predicted to be 4.32 eV at the CCSD(T)/CBS level, which agrees well with the experimental value of 4.20 \pm 0.10 eV⁷⁹ and that of 4.27 eV by Temelso and Sherrill¹⁵ at the CCSD(T)/cc-pCVDZ level. Although the equilibrium geometries for the ground states of $\rm Li_6$ and $\rm Li_6^+$ (6.1 and 6c.1) are substantially different, the experimental photoionization spectrum has a fairly sharp onset, which is likely due to the fluxional nature of the cationic structure.

 Li_7 and Li_7^+ . The global minima for Li_7 and Li_7^+ located in the present work are in good agreement with previous studies. ^{7,9,10} Our calculations predict structure 7.1 $(D_{5h\nu}^2 A_2^{\prime\prime})$ to be the most stable isomer for Li_7 , with structure 7.2 $(C_{3\nu}^2 A_1)$ being the second lowest energy isomer (Figure 2).

Removing one electron from 7.1 results in structure 7c.1 $(D_{Slv}^{-1}A_1')$ of the cation, which has similar geometry to that of the neutral cluster. Structure 7c.1 was predicted to be the global minimum for Li_7^{-1} . Structure 7c.2 $(C_{3v}^{-1}A_1)$ is 14.5 kcal/mol higher in energy than structure 7c.1.9 Our calculated IE_a for Li_7 at the CCSD(T)/CBS level of 3.99 eV is in good agreement with the experimental value of 3.94 \pm 0.10 eV. 79 Our G3B3 value of 4.07 eV for its IE_a is slightly larger and just outside of the error bars.

Li₈ and Li₈⁺. Various structures have been assigned to the global minimum of Li₈. Reichardt et al. ¹⁸ suggested $C_{3\nu}$ structure 8.2 to be the global minimum. Fourier et al. ¹³ located similar structure 8.3 for Li₈ but with the lower symmetry of $C_{2\nu}$. Using

different approaches, Boustani et al., ⁹ Gardet et al., ¹² and Jones et al. ¹⁰ predicted high-symmetry $T_{\rm d}$ structure **8.1** to be the most stable isomer of Li₈. According to our G3B3 and CCSD(T)/cc-pVTZ calculations, there is a negligible energy difference between these local minima (Figure 2). Structure **8.2** ($C_{3\nu}$, ¹A₁) is more stable by 0.4 kcal/mol than structure **8.1** ($T_{\rm d}$, ¹A₁) at the G3B3 level, whereas at the CCSD(T)/cc-pVTZ level, structure **8.1** ($T_{\rm d}$, ¹A₁) is 0.1 kcal/mol more stable than structure **8.2**. Structure **8.3** ($C_{2\nu}$, ¹A₁) is a transition state connecting the **8.2** structures. Isomer **8.4** ($C_{\rm s}$, ¹A'), in which one lithium atom is absorbed on one of the triangular faces of structure **7.1** (D_{5h}), is only 0.7 kcal/mol less stable than structure **8.1**.

The removal of one electron from the doubly degenerate HOMO of structure **8.1** of Li₈ leads to a Jahn—Teller distorted structure with C_s symmetry. Structure **8c.1** (C_s , 2 A') is more stable than isomer **8c.2** ($C_{2\nu}$, 2 B₁) by 4.0 kcal/mol at the B3LYP/ aug-cc-pVTZ level (Figure 2). The calculated IE_a of Li₈ of 4.31 eV (CCSD(T)/CBS) is consistent with the experimental value of 4.16 \pm 0.10 eV. The calculated E_s of 4.10 eV.

Structures of Li_nB and LiⁿB⁺ and Ionization Energies of Li_nB. The initial structures for LiⁿB are constructed either from the structures reported previously 45-47 or by replacing one Li atom of Li_{n+1} with one B atom at various positions or adding one B atom to the Li_n cluster. All structures are initially optimized at the B3LYP/aug-cc-pVTZ level. The B3LYP geometries were then used as the starting geometries for the G3B3 and CCSD(T)/ CBS calculations. The heats of formation for all global minima of $\text{Li}_n \text{B}$ and $\text{Li}_n \text{B}^+$ are calculated from the total atomization energies using the G3B3 and CCSD(T)/CBS approaches and are summarized in Table 4. The ground states of the Li_nB clusters and their cations have no significant multireference characters as indicated by the relatively small T_1 diagnostics of <0.02 except in a few cases: Li₃B (0.026), Li₄B (0.041), Li₅B (0.033), and Li₃B (0.030) (Supporting Information). The difference between the CCSD(T)/CBS and G3B3 values generally increases as the size of the cluster increases and is \sim 11 kcal/mol for Li₈B and Li₈B⁺, which reflects the degree of accuracy of the G3B3 results. As a convention, the structures are referred to hereafter as Bn.x and **Bnc.x**, where **B** stands for the dopant, **n** stands for the number of Li atoms, and c stands for the cation. In contrast to the pure Li_n clusters, there is no experimental data available for these doped systems.

LiB and LiB⁺. In agreement with previous reports, ^{45,47} the high-spin B1 ($^3\Pi$) state is the ground state for LiB with an electron configuration of $(1\sigma^+)^2(2\sigma^+)^2(3\sigma^+)^2(4\sigma^+)^1(1\pi)^1$. At the CCSD(T)/CBS level, the $^1\Sigma^+$ state with an electron configuration of $(1\sigma^+)^2(2\sigma^+)^2(3\sigma^+)^2(4\sigma^+)^2$ and the $^3\Sigma^+$ state with an electron configuration of $(1\sigma^+)^2(2\sigma^+)^2(3\sigma^+)^2(3\sigma^+)^2(1\pi)^2$ for LiB are predicted to be higher in energy by 6.0 and 10.7 kcal/mol, respectively, at 0 K. At the CCSD(T)/aVQZ level, the Li–B bond length and stretching frequency for LiB ($^3\Pi$) are 2.146 Å and 543 cm $^{-1}$, respectively, comparable to the values of 2.141 Å and 548 cm $^{-1}$ calculated at the QCISD/6-311+G(d) level.

Low-spin **B1c** $(^2\Sigma^+)$ is the ground state 45,47 for LiB $^+$ with an electron configuration of $(1\sigma^+)^2(2\sigma^+)^2(3\sigma^+)^2(4\sigma^+)^1$. The $^2\Pi$ state of LiB $^+$ with an electron configuration of $(1\sigma^+)^2(2\sigma^+)^2(3\sigma^+)^2(1\pi)^1$ is predicted to be higher in energy than the $^2\Sigma^+$ state by 15.6 kcal/mol at the CCSD(T)/CBS level at 0 K. At the CCSD(T)/aVQZ level, the Li $^-$ B bond length for LiB $^+$ ($^2\Sigma^+$) is $^-$ 0.3 Å longer than that for LiB ($^3\Pi$), and the Li $^-$ B stretching frequency for LiB $^+$ ($^2\Sigma^+$) is $^-$ 200 cm $^{-1}$ less. Natural population analysis shows a high ionic character for the Li $^-$ B bond in LiB

Table 3. Dissociation Enthalpies (ΔH , kcal/mol) of Lithium Clusters Li_n and Liⁿ⁺ into Different Products^a

		ΔH(0 K)	ΔH(298 K)	ΔH(0 K)	ΔH(298 K)
				CCSD(T)/	CCSD(T)/
molecul	e products	G3B3	G3B3	CBS	CBS
Li_2	2Li	26.3	27.0	23.8	24.5
$\mathrm{Li_2}^+$	$Li + Li^+$	30.5	30.7	29.6	30.3
Li_3	$Li + Li_2$	13.9	14.7	13.4	13.8
	3Li	40.2	41.7	37.2	38.3
$\mathrm{Li_3}^+$	$Li + Li_2^{+}$	38.2	38.4	37.1	37.6
	$\mathrm{Li}_2 + \mathrm{Li}^+$	42.4	42.9	42.8	43.3
Li ₄	$Li + Li_3$	31.8	31.8	29.8	30.3
	$2Li_2$	19.4	19.5	19.3	19.5
	4Li	72.0	73.5	67.0	68.6
$\mathrm{Li_4}^+$	$\mathrm{Li} + \mathrm{Li_3}^+$	17.9	17.7	16.7	17.3
	$\mathrm{Li_2} + \mathrm{Li_2}^+$	29.8	29.9	30.0	30.4
	$\mathrm{Li}_3 + \mathrm{Li}^+$	46.4	46.3	46.2	46.9
Li ₅	$\mathrm{Li} + \mathrm{Li}_4$	21.3	21.7	20.6	21.1
	$Li_2 + Li_3$	26.8	26.5	26.5	26.8
	5Li	93.3	95.2	87.6	89.7
$\mathrm{Li_5}^+$	$Li + Li_4^+$	36.4	36.6	35.0	35.3
	$\text{Li}_2 + \text{Li}_3^+$	28.0	28.1	27.8	28.0
	$\text{Li}_3 + \text{Li}_2^+$	52.3	52.2	51.6	51.9
	$Li_4 + Li^+$	51.0	51.5	51.3	51.8
Li ₆	Li + Li ₅	34.8	35.3	31.7	32.2
· ·	$\text{Li}_2 + \text{Li}_4$	29.8	30.0	28.4	28.6
	2Li ₃	47.7	47.1	44.9	44.3
	6Li	128.1	130.5	119.3	121.7
Li ₆ ⁺	$\mathrm{Li} + \mathrm{Li_5}^+$	26.8	26.8	25.5	25.5
	$\text{Li}_2 + \text{Li}_4^+$	36.9	37.2	36.6	36.9
	$\text{Li}_3 + \text{Li}_3^+$	40.9	40.6	40.0	39.7
	$\mathrm{Li_4} + \mathrm{Li_2}^+$	47.3	47.6	47.3	47.6
	$Li_5 + Li^+$	56.5	57.0	56.2	56.7
Li_7	Li + Li ₆	30.6	31.1	29.5	30.0
	Li ₂ + Li ₅	39.1	39.4	37.4	37.7
	$Li_3 + Li_4$	46.5	46.4	44.6	44.5
	7Li	158.7	161.6	148.8	151.7
$\mathrm{Li_{7}}^{+}$	$\text{Li} + \text{Li}_6^+$	39.5	39.6	37.3	37.4
,	$\mathrm{Li_2} + \mathrm{Li_5}^+$	40.0	40.2	38.9	39.1
	$\text{Li}_3 + \text{Li}_4^+$	62.5	62.5	60.5	60.5
	$\text{Li}_4 + \text{Li}_3^+$	48.6	48.8	47.4	47.6
	$\text{Li}_5 + \text{Li}_2^+$	65.5	65.9	63.9	64.3
	$\text{Li}_6 + \text{Li}^+$	61.2	61.7	61.8	62.3
Li_8	Li + Li ₇	30.5	30.8	29.1	29.4
8	$\text{Li}_2 + \text{Li}_6$	34.8	34.9	34.8	34.9
	$Li_3 + Li_5$	55.7	55.5	53.2	53.0
	2Li ₄	45.2	45.4	43.9	44.1
	8Li	189.2	192.4	178.0	181.2
Li ₈ ⁺	Li + Li ₇ ⁺	20.9	20.7	21.7	21.5
ы8	$\text{Li}_{2} + \text{Li}_{6}^{+}$	34.1	34.1	35.1	35.1
	$\text{Li}_2 + \text{Li}_6$ $\text{Li}_3 + \text{Li}_5^+$	47.0			
	$\text{Li}_3 + \text{Li}_5$ $\text{Li}_4 + \text{Li}_4$		46.6	47.3	46.9
	$\text{Li}_4 + \text{Li}_4$ $\text{Li}_5 + \text{Li}_3$	51.6	51.8	52.4	52.6
	-	48.2	48.2	48.6	48.6
	$\operatorname{Li}_6 + \operatorname{Li}_2^+$	51.6	51.7	54.0	54.1
a C	Li ₇ + Li ⁺	51.5	51.7 ned for all sp	54.0	54.2
(trounc	i electronic s	grates assur	nea for all sp	ectes.	

^a Ground electronic states assumed for all species.

Table 4. Calculated Heats of Formation ($\Delta_f H$, kcal/mol) for the Lowest-Energy Isomers of Li_nB $_{-}^{0/+}$ at 0 and 298 K at the G3B3 and CCSD(T)/CBS Levels $_{-}^{a,b}$

	, ,				
		$\Delta_{ m f} H$	$\Delta_{\mathrm{f}}H$ (0 K)		(298 K)
molecule	label	CBS	G3B3	CBS	G3B3
LiB ($^3\Pi$)	B1	144.8	143.0	145.6	143.8
Li_2B (4A_2)	B2.1	145.6	143.1	146.1	143.6
Li_3B (1A_1)	B3.1	148.7	144.7	149.2	145.2
Li_4B (2B_2)	B4.1	140.8	139.1	141.1	139.4
Li_5B (1A_1)	B5.1	126.5	119.3	126.4	119.2
Li_6B ($^2A_{1g}$)	B6.1	117.6	112.3	117.2	111.9
Li_7B ($^1A_1'$)	B7.1	126.6	117.3	126.3	117.0
Li_8B ($^2A'$)	B8.1	149.2	138.8	148.9	138.5
LiB^+ ($^2\Sigma^+$)	B1c	278.5	277.8	279.4	278.7
Li_2B^+ $(^1\Sigma_g^{+})$	B2c.1	250.6	249.9	251.2	250.5
$Li_3B^+\left(^4A_2{''}\right)$	B3c.1	244.2	241.8	244.8	242.4
Li_4B^+ ($^1A_{1g}$)	B4c.1	237.1	234.8	237.2	234.9
$Li_5B^+(^2A_1)$	B5c.1	227.0	223.0	227.0	223.0
Li_6B^+ ($^1\text{A}_{1g}$)	B6c.1	206.6	201.1	206.0	200.5
$Li_{7}B^{+}\left(^{2}{A_{1}}'\right)$	B7c.1	225.6	219.5	225.3	219.2
$\text{Li}_{8}\text{B}^{+}\left(^{1}\text{A}_{1}\right)$	B8c.1	236.8	225.8	236.4	225.4

^a Includes core—valence and scalar relativistic corrections and zeropoint energies. ^b The ion heats of formation at 298 K were calculated in the ion convention where the electron has 0 kcal/mol for the integrated heat capacity of the electron.

 $(^3\Pi)$ with a positive charge of 0.74 e on Li, which suggests B in LiB $(^3\Pi)$ is in the 3P state of its anion B $^-$. At the CCSD(T)/CBS level, the bond dissociation energy of LiB $(^3\Pi)$ is 28.0 kcal/mol, which is much larger than that of 18.5 kcal/mol for LiB $^+$ ($^2\Sigma^+$). The adiabatic ionization energy of LiB of 5.80 eV (CCSD(T)/CBS) is the highest of all of the Li_nB clusters studied.

Li₂**B** and **Li**₂**B**⁺. Nguyen et al. ⁴⁷ and Li et al. ⁴⁶ reported that the ground state of Li₂B is the ²B₂ state of $C_{2\nu}$ symmetry (**B2.2**). We find, at the CCSD(T)/CBS level, the high-spin ⁴A₂ state of $C_{2\nu}$ symmetry (**B2.1**) to be its ground state, which has not been reported previously to our knowledge. The low-spin ²Π (**B2.2**, $D_{\infty h}$) and ²B₂ (**B2.3**, $C_{2\nu}$) states of Li₂B are higher in energy than the ⁴A₂ state by 1.3 and 7.6 kcal/mol, respectively, at the B3LYP/aug-cc-pVTZ level. At the CCSD(T)/CBS level, the ²Π state is higher in energy than the ⁴A₂ state by 4.0 kcal/mol. The ²Π state has an electron configuration of $(1\sigma_{\rm g}^{+})^2(1\sigma_{\rm u}^{+})^2(2\sigma_{\rm g}^{+})^2-(3\sigma_{\rm g}^{+})^2(2\sigma_{\rm u}^{+})^2(1\pi_{\rm u})^1$.

The ground state of Li_2B^+ is the $^1\Sigma_g^+$ state of $D_{\infty h}$ symmetry (B2c.1), which is derived from the $^2\Pi$ state by removing an electron from the $^1\pi_u$ orbital. The $^3\Pi_g$ state, previously reported to be the most stable isomer, 45 is predicted to be 7.6 kcal/mol higher in energy than the $^1\Sigma_g^+$ state at the CCSD(T)/CBS level. The $^3\Pi_g$ state has an electron configuration of $(1\sigma_g^+)^2(1\sigma_u^+)^2(2\sigma_g^+)^2(3\sigma_g^+)^2(2\sigma_u^+)^1(1\pi_u)^1$. The Li–B distance of the $^1\Sigma_g^+$ state of 2.301 Å is slightly longer than that of the $^3\Pi_g$ state of 2.240 Å at the CCSD(T)/aVQZ level, and the symmetric stretching frequency of the $^1\Sigma_g^+$ state of 384 cm $^{-1}$ is also slightly larger than that of the $^3\Pi_g$ state of 371 cm $^{-1}$. The reaction energy for Li_2B^+ ($^1\Sigma_g^+$) \rightarrow LiB ($^3\Pi$) + Li^+ (^1S) is predicted to be 56.1 kcal/mol.

The adiabatic ionization energy of Li₂B is calculated as the energy difference between B2.1 (4 A₂) and B2c.1 ($^1\Sigma_g^+$) and is

Figure 4. Optimized structures for Li_nB (n = 1 - 4) and their cations and relative energies at 0 K $(\Delta E, \text{ kcal/mol})$ calculated at the B3LYP/aVTZ level.

4.55 eV at the CCSD(T)/CBS level and 4.63 eV at the G3B3 level. The vertical ionization energy (IE $_{\rm v}$) between B2.1 and B2c.1 of 5.11 eV (CCSD(T)/aVTZ) is markedly larger, consistent with the significant changes in the equilibrium geometries upon ionization. As ionization occurs between states with a difference in their multiplicity of ± 1 , we also calculated the adiabatic ionization energy as the energy difference between B2.1 (4 A $_2$) and B2c.2 ($^3\Pi_g$), which is predicted to be 4.88 eV at the CCSD(T)/CBS level.

Li₃B and Li₃B⁺. For Li₃B, our predictions are in qualitative agreement with previous results^{45,47} in that B3.1 $(C_{2,\nu}, {}^{1}A_{1})$ is the most stable neutral isomer (Figure 4). B3.2 $(D_{3h}, {}^{1}A_{1}')$ is a second-order saddle point with two imaginary frequencies, both of ~30i cm⁻¹, and is 2.2 kcal/mol higher in energy at 0 K (CCSD(T)/CBS). The CCSD(T)/aVQZ bond lengths for the ground state of Li₃B (Li–B: 2.200 and 2.308 Å) are somewhat longer than that of the ${}^{3}\Pi$ state of LiB (2.146 Å).

B3c.2 (C_{2v} 2B_2) was reported to be the ground state of $\text{Li}_3\text{B}^{+.46}$ At the B3LYP/aug-cc-pVTZ level, high-spin state **B3c.1** (D_{3h} $^4\text{A}_2$ ") is predicted to be 0.7 kcal/mol higher in energy than low-spin state **B3c.2**. However, at the CCSD(T)/CBS level, **B3c.1** is predicted to be lower in energy than **B3c.2** by 3.4 kcal/mol. The adiabatic ionization energy of Li_3B (the energy difference between **B3.1** and **B3c.2**) is 4.14 eV at the CCSD(T)/CBS level. The corresponding vertical ionization energy at the CCSD(T)/aVTZ level is much larger, 4.60 eV. The ionization energy calculated from the energy difference between **B3.1** and **B3c.1** is 4.29 eV.

 Li_4B and Li_4B^+ . The ground state of Li_4B was previously predicted to be B4.2 $(D_{2d}, {}^2\text{B}_2)$ at the CCSD(T)/aug-cc-pVDZ, He B3LYP, and G2MP2 levels. To Our B3LYP/aug-cc-pVTZ results are consistent with these results. B4.2 results from a small out-of-plane distortion of square planar structure B4.3

 $(D_{4h}, {}^{2}A_{2u})$, which was predicted to lie higher in energy than **B4.2** by 0.1 kcal/mol and to have one imaginary frequency of 32i cm at the B3LYP/augg-cc-pVTZ level. Thus, it is a transition state for the inversion of **B4.2**. At this DFT level of theory, **B4.1** $(C_{2\nu}^{2}B_{2})$, which is derived from the further out-of-plane distortion of B4.2, was predicted to lie higher in energy than B4.2 by 1.5 kcal/mol. However, at the CCSD(T)/CBS level with ZPE corrections calculated at the B3LYP/aug-cc-pVTZ level, B4.1 is found to be the ground state of Li₄B, with B4.2 and B4.3 lying only 0.2 and 0.6 kcal/mol higher in energy, respectively. Thus, there are three different conformers related to the inversion distortion of planar **B4.3**. The low inversion barrier for **B4.1** at the CCSD(T) level means that the molecule will be very floppy and would probably have an average planar structure under most experimental conditions. The Li-B distances for B4.1 (2.162 and 2.209 Å, CCSD(T)/aVQZ) are similar to that for the ${}^3\Pi$ state of LiB (2.146 Å).

B4c.1 $(D_{4h}, {}^{1}A_{1 g})$ is predicted to be the ground state of Li₄B⁺, consistent with the previous CCSD(T)/6-311+G(d) study. There is a substantial difference between the adiabatic and vertical ionization energies for the transition from **B4.1** to **B4c.1** for Li₄B as a result of the large changes in equilibrium geometries as shown in Table 5.

Li₅B and Li₅B⁺: Structure B5.1 (C_{4v} ¹A₁) is predicted to be the neutral ground state (Figure 5). At the B3LYP/aug-cc-pVTZ level, structures B5.2 (D_{3h} ²A₁) and B5.3 (C_{2v} ²A₁) are predicted to be transition states with essentially the same energy, 1.5 kcal/mol higher than that of B5.1. The Li−B distances for B5.1 (2.150 and 2.228 Å) are similar to that for the ³Π state of LiB (2.146 Å).

The removal of an electron from the HOMO of the neutral cluster does not substantially affect the equilibrium geometry, and **B5c.1** (C_{4w} 2 A₁) is predicted to be the ground state of the cation. Consistent with the modest changes in the equilibrium geometry, there is little difference betweeen the adiabatic and vertical ionization energies for Li₅B as shown in Table 5.

Li₆B and Li₆B⁺. In agreement with earlier studies, ^{46,47} **B6.1** (O_h , $^1A_{1g}$) is predicted to be the ground state for Li₆B (Figure 5). At the CCSD(T)/aVTZ level, the Li-B bond lengths in **B6.1** are calculated to be 2.182, which is slightly longer than that for the $^3\Pi$ state of LiB (2.152 Å) calculated at the same level of theory.

B6c.1 $(O_h, {}^1A_{1g})$ is predicted to be the ground state for Li_6B^+ , consistent with previous studies. At the CCSD(T)/aVTZ level, the Li-B bond lengths in **B6c.1** are calculated to be 2.197 Å, slightly longer than the value in **B6.1**. Because of the small changes in the equilibrium geometries, there is little difference between the adiabatic and vertical ionization energies for Li₆B as shown in Table 5. The adiabatic ionization energy is predicted to be 3.86 eV at the CCSD(T)/CBS level, which is lower than for the Li_nB clusters for n = 1 to 5 and 7.

Li₇B and Li₇B⁺. Our results are in agreement with previous reports^{46,47} that pentagonal bipyramidal structure B7.1 (D_{Sh} , 1A_1) is the ground state for Li₇B (Figure 5). B7.2 ($C_{3\nu}$, 1A_1) is predicted to be 4.4 kcal/mol higher in energy than B7.1 at the B3LYP/aug-cc-pVTZ level. B7.1 exhibits a HOMO–LUMO gap of 1.67 eV, which is larger than the corresponding gaps of 1.48 and 1.44 eV for Li₃B and Li₅B, respectively.

Pentagonal bipyramidal structure $\mathbf{B7c.1}$ (D_{5h} , $^2\mathbf{A_1}'$) is predicted to be the ground state for $\mathrm{Li_7B}^{+.46,47}$ Cationic structure $\mathbf{B7c.2}$ (C_{3v} , $^2\mathbf{A_1}$) is predicted to be 3.4 kcal/mol higher in energy than $\mathbf{B7c.1}$. Similar to $\mathrm{Li_6B}$, there is little difference between the adiabatic and vertical ionization energies for $\mathrm{Li_7B}$ as shown in Table 5.

Table 5. Adiabatic and Vertical Ionization Energies ($\text{IE}_a/\text{IE}_{v}$, eV) using the CCSD(T)/aug-cc-pVnZ and G3B3 Methods and the HOMO(SOMO)-LUMO Gap (eV) of the Lowest Closed-Shell Isomers at the B3LYP/6-311+G(d) Level for the Li_nB Clusters (n = 1-8)

		IE_a	IE_a	IE_a	IE_{v}	neutral	cation
neutral	cation	aVTZ	CBS	G3B3	aVTZ	GAP	GAP
LiB $(C_{\infty\nu}, {}^3\Pi)$	$\mathrm{LiB}^+ \left(C_{\infty \nu}^{} ^2\Sigma^+ \right)$	5.72	5.80	5.84	5.89		
$\text{Li}_2\text{B} \left(C_{2\nu}, {}^4\text{A}_2 \right)$	$\mathrm{Li}_{2}\mathrm{B}^{+}\left(D_{\infty h},\ ^{1}\Sigma_{\mathrm{g}}^{\ +} ight)$	4.52	4.55	4.63	5.11		2.57
$\text{Li}_2\text{B} \left(C_{2\nu}, {}^4\text{A}_2 \right)$	$\mathrm{Li_2B}^+ \left(D_{\infty h}, ^3\Pi_\mathrm{g} \right)$	4.80	4.88				
$\text{Li}_{3}\text{B}\ (C_{2\nu\nu}^{1}\text{A}_{1})$	${\rm Li_3B}^+ (D_{3h}, {}^4{\rm A_2}^{\prime\prime})$	4.07	4.14	4.21	4.60	1.48	
$\text{Li}_{3}\text{B}\ (C_{2\nu}\ ^{1}\text{A}_{1})$	$\text{Li}_{3}\text{B}^{+} \left(C_{2\nu}, {}^{2}\text{B}_{2} \right)$	4.24	4.29				
$\text{Li}_{4}\text{B}\ (C_{2\nu}, {}^{2}\text{B}_{2})$	${ m Li_4B}^+~(D_{4h}, { m ^1A_{1g}})$	4.15	4.18	4.33	5.02		2.16
Li_4B $(D_{2dt}^2\text{B}_2)$	${ m Li_4B}^+~(D_{4h}, { m ^1A_{1g}})$	4.13	4.17				
$\text{Li}_5 \text{B} \left(C_{4\nu}^{-1} \text{A}_1 \right)$	$\text{Li}_5\text{B}^+ (C_{4\nu}, {}^2\text{A}_1)$	4.33	4.36	4.50	4.57	1.44	
$\text{Li}_6 \text{B} \left(O_h, {}^2 \text{A}_{1g}\right)$	$\operatorname{Li_6B}^+(O_h, {}^{^{1}}\operatorname{A}_{1g})$	3.85	3.86	3.85	3.84		2.43
$\text{Li}_{7}\text{B}\ (D_{5h}, {}^{1}\text{A}_{1}{}')$	${\rm Li}_7{\rm B}^+\ (D_{5h},^2{\rm A_1}')$	4.27	4.29	4.43	4.28	1.69	
$\text{Li}_8\text{B}\left(C_{ss}^2\text{A}'\right)$	$\mathrm{Li}_{8}\mathrm{B}^{+}\left(D_{4d},\ ^{1}\mathrm{A}_{1} ight)$	3.80	3.80	3.83	3.85		1.83

Figure 5. Optimized structures for $\text{Li}_n B$ (n = 5 - 8) and their cations and relative energies at 0 K (ΔE , kcal/mol) calculated at the B3LYP/aVTZ level.

Li₈B and Li₈B⁺. Different quantum chemical methods (B3LYP and MP2 with the 6-31G(d) basis set, and G2MP2)⁴⁷ predict two different structures for Li₈B, a C_{3v} structure (similar to **B8.2** (D_{3d})) in which the B atom is bonded to two distorted "tetrahedral" Li₄ units and a D_{4h} structure **B8.3** where the B atom

is located at the center of the Li₈ cube. The first structure was predicted to be 26.6 kcal/mol more stable than the second structure at the HF/6-31G(d) level. We searched for several possible structures of Li₈B and Li₈B⁺, and some low-energy forms are shown in Figure 5. They include the two earlier structures, namely B8.2 (D_{3d}) and B8.3 (D_{4h}), new C_{4v} structure B8.4, a prismatic structure derived from the D_{4h} structure, and new C_s structure B8.1 derived from a distortion of the C_{4v} structure. At the CCSD(T)/aVTZ level, B8.1 (C_{sv}^2 A') is calculated to be the ground state whereas B8.2 (D_{3dh}^2 A_{2u}) is predicted to be 15.9 kcal/mol higher in energy. B8.4 (C_{4v}^2 B₂) is a saddle point with three imaginary frequencies, 9.6 kcal/mol higher than B8.1 at the B3LYP/aug-cc-pVTZ level.

For the cation, B8c.1 $(D_{4d})^{-1}A$) and B8c.2 $(C_{3w})^{-1}A_1$) are predicted to be nearly degenerate, with an energy difference of only 1.5 kcal/mol (CCSD(T)/aVTZ). For both the neutral and cationic clusters, the high-symmetry D_{4h} structure is a second-order saddle point. The adiabatic ionization energy of Li₈B of 3.80 eV calculated at the CCSD(T)/CBS level is the smallest among all of the Li_nB clusters studied.

DISCUSSION

Ionization Energies (IEs). There is very good agreement between the experimental and calculated ionization energies for the Lin clusters. The calculated IEa values of 5.392 eV (CCSD(T)/CBS) and 5.40 eV (G3B3) of Li are in good agreement with the experimental value of 5.391719 eV.⁸⁴ For Li₄, the experimental spectrum^{79b} was reassigned on the basis of the comparison of the experimental spectrum with our simulated photoionization efficiency spectrum. The previously reported ionization energy of 4.31 \pm 0.05 eV for Li₄ is adjusted to 4.70 \pm 0.05 eV. We note that previous calculations by Wheeler and Schaefer 14b also indicate that the previously reported experimental value is a lower bound of the adiabatic ionization energy. Overall, the difference between our CCSD(T) results and the experimental values for the IE_a values for the Li_n clusters are less than 0.1 eV when the adjusted value for Li₄ is used. There is little difference between the IEs obtained at the CCSD(T)/CBS level with the core-valence and scalar relativistic corrections and at the CCSD(T)/cc-pVTZ level for Li_n . The maximum difference is

Figure 6. Adiabatic ionization energies of Li_n and BLi_n calculated by CCSD(T)/CBS.

0.05 eV. The G3B3 IEs are slightly larger. These results suggest that the ionization energies calculated for the Li_nB clusters should be good to 0.1 eV.

The IEs plotted in Figure 6 for Li_n and Li_nB show an odd—even oscillation. For Li_n, the highest IE_a is for the Li atom and the IE_a generally decreases with increasing cluster size. It is easier to ionize the Li_n clusters with an unpaired electron (excluding n=1) than the clusters with even numbers of paired electrons. This difference is on the order of 0.3 eV for the larger clusters. The IE_a values of Li₆ and Li₈ are comparable at 4.3 eV and are still far from the work function of the metal of 2.93 eV.

For the Li_nB clusters, the IE_a values for the same number of Li atoms show the opposite trend (Figure 6) in terms of even—odd alternation because the additional B atom makes the odd number of Li_n clusters closed shell and the even number of Li_n clusters open shell. The effect of the B atom can be to raise or lower the IE_a . For LiB, the IE_a is substantially increased as compared to that for Li, but for Li_2B , the IE_a is decreased as compared to that for Li_2 . For Li_3B and Li_3 , the IE_a values are the same, and for n=4, the IE_a of Li_4B is substantially lower than that of Li_4 . For n=5 and 7, the IE_a of Li_a is lower than that of Li_nB , but the opposite is true for n=6 and 8. Thus, in general, the structures with an unpaired electron are more readily ionized than those with paired electrons and the IE_a decreases as the cluster size increase, consistent with the ability of the cluster to delocalize the positive charge.

Clustering Energies. The relative stabilities of both series of clusters and their cations can be examined on the basis of the normalized binding energy (E_b) and the second-order difference in the total energies $(\Delta^2 E)$. For Li_n and Li_n^+ , we define

$$E_{b}(Li_{n}) = \frac{nE(Li) - E(Li_{n})}{n}$$
 (1)

$$E_{b}(\text{Li}_{n}^{+}) = \frac{(n-1)E(\text{Li}) + E(\text{Li}^{+}) - E(\text{Li}_{n}^{+})}{n}$$
 (2)

$$\Delta^{2}E(\text{Li}_{n}) = E(\text{Li}_{n-1}) + E(\text{Li}_{n+1}) - 2E(\text{Li}_{n})$$
 (3)

$$\Delta^{2}E(\text{Li}_{n}^{+}) = E(\text{Li}_{n-1}^{+}) + E(\text{Li}_{n+1}^{+}) - 2E(\text{Li}_{n}^{+})$$
 (4)

Figure 7. Average binding energy at 0 K in eV of Li_n and Li_nB (n = 1 - 8) in both neutral and cationic states calculated by G3B3.

For $\text{Li}_n B$ and $\text{Li}_n B^+$, we define

$$E_{b}(Li_{n}B) = \frac{nE(Li) + E(B) - E(Li_{n}B)}{n+1}$$
 (5)

$$E_{b}(Li_{n}B^{+}) = \frac{(n-1)E(Li) + E(Li^{+}) + E(B) - E(Li_{n}B^{+})}{n+1}$$
(6)

$$\Delta^2 E(\operatorname{Li}_n B) = E(\operatorname{Li}_{n-1} B) + E(\operatorname{Li}_{n+1} B) - 2E(\operatorname{Li}_n B)$$
 (7)

$$\Delta^{2}E(\text{Li}_{n}B^{+}) = E(\text{Li}_{n-1}B^{+}) + E(\text{Li}_{n+1}B^{+}) - 2E(\text{Li}_{n}B^{+})$$
 (8)

The four normalized binding energies are compared in Figure 7. For Li_m the normalized binding energies tend to increase with increasing cluster size, although for n=3 and 5 (open-shell molecules) the normalized binding energy is not much larger than for n=2 and 4, respectively. This is consistent with the behavior of odd and even binding energies often seen in small metallic clusters where the closed-shell species are more stable on a per atom basis than are the open-shell species.

The normalized binding energies of Li_n^+ show the opposite behavior in terms of even and odd numbers of atoms with a clear odd—even oscillation in which the cations bearing a closed-shell electron configuration (n = 3, 5, 7) have larger E_b values. Doping the Li_n cluster with one boron atom greatly increases its binding energy because of the increase in the number of chemical bonds and the larger bond energy of the Li_-B bond as compared to that of the Li_-Li bond. At the $\operatorname{CCSD}(T)/\operatorname{CBS}$ level, the dissociation energy at 0 K of LiB is \sim 4 kcal/mol larger than that of Li_2 .

The normalized binding energies of the cationic clusters are predicted to be larger than those of the corresponding neutral clusters in the pure and B-doped systems. This trend holds even in the case where the cation is open-shell (high-spin multiplicity) and the corresponding neutral is closed-shell (low-spin multiplicity). The size of the normalized binding energy apparently has more to do with the cluster size than with the spin multiplicity in terms of open- or closed-shell species.

Another possible comparison is given by the binding energy (BE) of an atom to a cluster, as shown in reaction 9 for Li_n (BE1):

$$\operatorname{Li}_n \to \operatorname{Li} + \operatorname{Li}_{n-1}$$
 (9)

Table 6. Calculated Dissociation Enthalpies (kcal/mol) of Li_nB at 0 K at the CCSD(T)/CBS Level

molecule	label	reaction11a	reaction11b
LiB $(C_{\infty\nu}^{3}\Pi)$	B1	28.0	28.0
$\text{Li}_2 \text{B} \left(C_{2\nu_2}^{\ \ 4} \text{A}_2 \right)$	B2.1	36.9	41.1
$\text{Li}_{3}\text{B}\ (C_{2\nu\nu}^{-1}\text{A}_{1})$	B3.1	34.6	62.3
$\text{Li}_4 B \left(C_{2\nu}^{2\nu} {}^2 B_2 \right)$	B4.1	45.6	78.1
$\text{Li}_5 B \left(C_{4\nu\nu}^{-1} A_1 \right)$	B5.1	52.0	109.5
$\text{Li}_6 \text{B} \left(O_{h\nu}^{2} \text{A}_{1g}\right)$	B6.1	46.7	124.4
$\text{Li}_7 B (D_{5h}, {}^1 A_1')$	B7.1	28.6	123.5
$\text{Li}_8\text{B}\left(C_{ss}^2\text{A}'\right)$	B8.1	15.1	109.5

These values correspond to the cohesive energy of the cluster. The values (Table 3) show an even—odd oscillation for n = 2 and 3 and n = 4 and 5. However, the value is approximately converged at 30 to 32 kcal/mol at n = 4. This value can be compared to the cohesive energy of Li of 37.7 ± 0.2 kcal/mol. ⁶⁸ Of interest is the fact that the highest value for BE1 is for n = 6.

The BE for the cations can be defined by reaction 10a (BE2) and reaction 10b (BE3):

$$\operatorname{Li}_{n}^{+} \to \operatorname{Li}^{+} + \operatorname{Li}_{n-1} \tag{10a}$$

$$\rightarrow$$
Li + Li_{n-1}⁺ (10b)

BE1 shows an increase from n=2 to 7 and a decrease at n=8. BE2 shows a substantial decrease for n=4 and 8 with a smaller decrease for n=6. As expected, BE2 is larger than BE3 because of the ability of the cluster in reaction 10b to delocalize the positive charge better. We note that the BE2 values can be quite low, especially for the even number of clusters, and it will be relatively easy to remove an Li atom from the positively charged cluster. These results, coupled with the value of the BE for Li₈, suggest that Li₆ is a very stable species and that Li₈ is less stable.

Corresponding binding energies BE4 and BE5 for the neutral boron clusters are given in reactions 11a and 11b (Table 6).

$$\text{Li}_n B \to \text{Li}_{n-1} B + \text{Li}$$
 (11a)

$$\rightarrow$$
Li_n + B (11b)

The energy required to lose a Li atom (eq 11a) is less than that for the loss of a B atom, excluding LiB. The loss of a Li atom essentially increases to n = 5 and then decreases to n = 8, where the loss of Li is expected to cost only 15 kcal/mol. The value of BES is substantially larger than for BE4, increasing to \sim 124 kcal/mol for n = 6 and 7. The value of BE5 decreases for n = 8.

For $\text{Li}_n \text{B}^+$, the two dissociation channels are given by reactions 12a (BE6) and 12b (BE7, Table 7).

$$\operatorname{Li}_{n}\operatorname{B}^{+} \to \operatorname{Li}_{n-1}\operatorname{B}^{+} + \operatorname{Li}$$
 (12a)

$$\rightarrow \text{Li}_{n-1}\text{B} + \text{Li}^+$$
 (12b)

Except for Li_2B^+ , the loss of Li is favored over the loss of Li^+ , presumably because of the ability of the larger cluster to stabilize the positive charge. The largest value for BE6 is for Li_2B^+ , and the lowest is 19 kcal/mol for Li_7B^+ . Excluding LiB^+ , the values for BE7 range from 52 to 82 kcal/mol. The largest values for BE6 and for BE7 are for Li_6B^+ . This suggests that Li_6B^+ has additional stability, consistent with the low ionization potential of Li_6B . It is interesting that Li_6B is also a very stable species as

Table 7. Calculated Dissociation Enthalpies (kcal/mol) of $\operatorname{Li}_n B^+$ at 0 K at the $\operatorname{CCSD}(T)/\operatorname{CBS}$ Level

molecule	label	reaction12a	reaction12b
${ m LiB}^+ \left({C_{\infty u }}, {}^2 \! \Sigma^+ ight)$	B1c		18.5
$\mathrm{Li}_{2}\mathrm{B}^{+}\left(D_{\infty h},\ ^{1}\Sigma_{\mathrm{g}}^{\ +} ight)$	B2c.1	65.6	56.1
$\text{Li}_{3}\text{B}^{+}\left(D_{3h}^{}{}^{4}\text{A}_{2}^{\prime\prime}\right)$	B3c.1	44.1	63.3
${ m Li_4B}^+ \left(D_{4hv} ^1 \! { m A_{1g}} \right)$	B4c.1	44.8	73.5
$\text{Li}_5\text{B}^+ (C_{4\nu}^{2}\text{A}_1)$	B5c.1	47.8	75.7
$\text{Li}_6\text{B}^+ \left(O_h, ^{^1}\text{A}_{1g}\right)$	B6c.1	58.2	81.9
${\rm Li}_7{\rm B}^+ \left(D_{5hv} ^2{\rm A_1}' \right)$	B7c.1	18.6	53.8
$\operatorname{Li}_{8}\operatorname{B}^{+}\left(D_{4d},\ ^{1}\operatorname{A}_{1}\right)$	B8c.1	26.6	51.8

Figure 8. Second-order difference of the average binding energy at 0 K in eV of the $\text{Li}_n \text{B}$ clusters in both neutral and cationic states as calculated by G3B3.

shown by comparing its binding energy with those of Li_5B and Li_7B . The second-order energy differences are displayed in Figure 8 for the larger clusters. The remarkably large value identified for Li_6B^+ is consistent with a higher stability as compared to other members of the series, especially given that Li_6B is not strongly destabilized.

Growth Mechanism. In Figures 1-4, it is obvious that the Li_nB cluster is constructed by bonding the new Li to the B on Li_{n-1}B . There is a tendency to increase the coordination number of the B atom (i.e., binding Li to B of diatomic LiB to form triatomic Li₂B). For $n \ge 6$, B prefers a central position of the lithium cluster to form higher-symmetry structures such as Li₆B (O_h) and Li₇B (D_{5h}) . Structures **B8.2** (D_{3d}) and **B8.1** (C_s) , which have coordination numbers of six and eight, respectively, are the lowest neutral isomers, and their cationic counterparts are almost degenerate in energy. **B8.2** (D_{3d}) is formed by adding Li to a Li₃ face of a "tetrahedral" Li₄ unit of Li₇B ($C_{3\nu}$). A direct connection of one Li to B of Li₇B (D_{5h}) gives rise to the latter. For the neutrals, the first addition mode is somewhat preferred over the second, consistent with the fact that the Li—B bond is stronger as compared to the Li-Li bond. We predict that the larger clusters $\text{Li}_n B$ $(n \ge 9)$ likely prefer the first growth mode for the most

Electron Localization Function (ELF). The ELF plots for some selected structures including Li_5B , Li_6B^+ , Li_7B , and Li_8B^+ are displayed in Figure 9. There is perfect electron delocalization in these systems. The ELF analysis of Li_5B (B5.1) shows four

Figure 9. ELF plots of high-stability species Li_5B , Li_6B^\pm , Li_7B , and Li_8B^+ .

trisynaptic (Li–Li–Li) basins, each containing $\sim\!\!1.9$ electrons. This indicates the emergence of three-center–two-electron (3c–2e) bonds. Similarly, the ELF plot for Li₆B⁺ (B6c.1) points out the existence of eight trisynaptic (Li–Li–Li) basins, each of which contains $\sim\!\!1.0$ electron. These populations confirm the presence of multicenter bonds, and also a global electron delocalization in B6c.1 that lends further support to its high stability.

Similar observations are found for the other members Li_7B and Li_8B^+ . The ELF plot of Li_7B (B7.1) reveals a perfect electron delocalization in which electrons are mainly distributed on basins of triangle Li_3 whereas the electrons of Li_8B^+ (B8c.1) are globally populated on eight trisynaptic basins, that again suggest the existence of three-center bonds and strong electron delocalization.

Phenomenological Shell Model (PSM). The stability pattern of the Li_nB clusters can be further probed within the framework of the PSM. This model was proposed by Knight et al.⁴⁹ to interpret the stability pattern and electronic structure of simple metal clusters. 86-88 In the framework of this model, the valence electrons are assumed to be freely itinerant in a simple mean-field potential formed by the nuclei. A very stable metal cluster is predicted if its electronic shell or subshells are closed; the numbers of valence electrons corresponding to shell closings such as 2(1s²), 8(1s²1p⁶), and 20(1s²1p⁶1d¹⁰2s²) are called magic numbers. We note that the notation for shells 1p, 1d,... are from the PSM and do not correspond to the actual molecular orbitals. In binary clusters, the number of valence electrons does not always correspond to a magic number (e.g., K₈Zn, ⁸⁹ Na₆Pb, ⁹⁰...). A modified potential was subsequently introduced to account for the behavior of these cases. 91,92 According to the modified model, the dopant induces a slight perturbation and the

Figure 10. Plot of the density of states of (a) Li_5B (B5.1) and (b) Li_6B^+ (B6c.1) using the calculated orbitals at the B3LYP/6-311+G(d) level.

ordering of the single-particle energy levels is changed either to $(1s^21p^62s^21d^{10}2p^6)$ if the impurity is more electronegative than the host atoms or to $(1s^21p^61d^{10}2s^21f^{14}2p^6)$ if the central dopant is less electronegative than the host atoms. In the present case, the B impurity plays the role of an electronegative dopant for the Li clusters.

The energetic ordering of molecular orbitals can be correlated with the PSM using the modified potential version. (See the Supporting Information for diagrams of closed-shell Kohn—Sham orbitals from the B3LYP calculations.) As examples, we examine high-stability, closed-shell species Li_5B , Li_6B^+ , Li_7B , and Li_8B^+ . The approximate density of states derived from the B3LYP Kohn—Sham orbitals of Li_5B and Li_6B^+ is depicted in Figure 10. Neutral Li_5B has eight valence electrons, and its shell is

Figure 11. Plot of the density of states of (a) Li_7B (B7.1), (b) Li_8B^+ (B8c.1), and (c) Li_8B^+ (B8c.2) using the calculated orbitals at the B3LYP/6-311+G(d) level.

closed. Three orbitals (HOMO, degenerate HOMO-1, Figure 10) for Li₅B have p character, and HOMO-2 is an s orbital. Thus, Li₅B is

consistent with the configuration $(1s^21p^6)$ of the PSM. A similar observation can be made for isoelectronic Li_6B^+ (Figure 10), whose shell is also closed with eight valence electrons filling the $(1s^21p^6)$ configuration. Consequently, Li_5B has a higher adiabatic ionization energy of 4.36 eV than that of 3.86 eV for Li_6B (CCSD(T)/CBS). The LUMO in both species is an s orbital, consistent with the energy ordering of $(1s^21p^62s^01d^0)$ (with a modified potential) instead of level $(1s^21p^61d^02s^0)$ of the simple PSM, consistent with B being more electronegative than Li.

Neutral Li₇B has 10 valence electrons. Its HOMO and HOMO-3 are s orbitals, HOMO-1 can be considered to be a p_z orbital, and degenerate HOMO-2 corresponds to the p_x and p_y orbitals. Consequently, its LUMO according to the PSM model should be a d-type orbital as shown in Figure 11. Li₈B⁺ has two structures **B8c.1** ($D_{4dv}^{-1}A_1$) and **B8c.2** ($C_{3vv}^{-1}A_1$) of nearly the same energy. **B8c.1** is consistent with a configuration of $(1s^21p^62s^21d^0)$ as shown in Figure 11, but **B8c.2** is consistent with the arrangement of $(1s^21p^61d^22s^0)$. Thus, structure **B8c.2** can be considered to be distorted geometry and is better interpreted by using the Clemenger—Nilsson model.⁹³

CONCLUSIONS

We predicted the electronic structures, stabilities, and thermochemical properties of small, pure lithium clusters Li,, B-doped lithium clusters Li_nB , and their cations using DFT, CCSD(T)/ CBS, and G3B3. Extensive searches for possible structures were carried out, and previous global minima are confirmed or new ones identified. Heats of formation $(\Delta_f H)$ are calculated from the total atomic energies (TAE) using the composite G3B3 model and the highly accurate CCSD(T)/CBS method. Calculated adiabatic ionization energies (IEa) agree well with available experimental data. For Li₄, we reassigned the experimental IE_a to 4.70 eV on the basis of our calculated IEa and simulated spectrum. The CCSD(T)/CBS values are closer to experiment than the G3B3 values. Species such as Li₅B, Li₆B⁺, Li₇B, and Li₈B⁺ are characterized by a higher stability as compared to that of their neighbors, which can be explained by the magic numbers of the phenomenological shell model.

ASSOCIATED CONTENT

Supporting Information. Energies and equilibrium geometries calculated at the B3LYP/aug-cc-pVTZ level. Energy contributions and equilibrium geometries calculated at the CCSD(T) level. Kohn—Sham orbitals for the closed-shell clusters. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: minh.nguyen@chem.kuleuven.be; dadixon@bama.ua.

ACKNOWLEDGMENT

M.T.N. is indebted to the K.U. Leuven Research Council for support (GOA, IDO, and IUAP programs). T.B.T. thanks the Arenberg Doctoral School for a scholarship. This work was supported in part by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under grant no. DE-FG02-

03ER15481 (catalysis center program). D.A.D. also thanks the Robert Ramsay Chair Fund of The University of Alabama for support.

■ REFERENCES

- (1) (a) Wu, C. H. J. Chem. Phys. 1976, 65, 3181. (b) Wu, C. H. J. Phys. Chem. 1983, 87, 1534.
- Brechihnac, C.; Busch, H.; Cahuzac, P.; Leygnier, J. J. Chem. Phys. 1994, 101, 6992.
- (3) Kornath, A.; Kaufmann, A.; Zoermer, A.; Ludwig, R. J. Chem. Phys. 2003, 118, 6957.
- (4) (a) Blanc, J.; Bonacic-Koutecky, V.; Broyer, M.; Chevaleyre, J.; Dugourd, P. *J. Chem. Phys.* **1992**, *96*, 1793. (b) Dugourd, P.; Chevaleyre, J.; Broyer, M.; Wolf, J.; Woste, L. *Chem. Phys. Lett.* **1990**, *175*, 555.
- (5) Sarkas, H. W.; Arnold, S. T.; Hendrickx, J. H.; Bowen, K. H. J. Chem. Phys. 1995, 103, 2653.
- (6) Boldyrev, A. I.; Simons, J.; Schleyer, P. v. R. J. Chem. Phys. 1993, 99, 8793.
- (7) Alexandrova, A. N.; Boldyrev, A. I. J. Chem. Theory Comput. **2005**, 1, 566.
 - (8) Boustani, I.; Koutecky, J. J. Chem. Phys. 1998, 88, 5657.
- (9) Boustani, I.; Pewestort, W.; Fantucci, P.; Bonacic-Koutecky, V.; Koutecky, J. *Phys. Rev. B* **1987**, *35*, 9437.
- (10) Jones, R. O.; Lichtenstein, A. I.; Hutter, J. J. Chem. Phys. 1997, 106, 4566.
- (11) (a) Rao, K.; Khanna, S. N.; Jena, P. *Phys. Rev. B* **1987**, *36*, 953. (b) Rao, K.; Khanna, S. N.; Jena, P. *Phys. Rev. B* **1991**, *43*, 1416.
- (12) Gardet, G.; Rogemond, F.; Chermette, H. J. Chem. Phys. 1996, 105, 9933.
- (13) Fournier, R.; Joey, C. J.; Wong, A. J. Chem. Phys. 2003, 119, 9444.
- (14) (a) Wheeler, S. E.; Sattelmeyer, K. W.; Schleyer, P. V. R.; Schaefer, H. F.; Wu, C. H. *J. Chem. Phys.* **2004**, *120*, 4683. (b) Wheeler, S. E.; Schaefer, H. F., III. *J. Chem. Phys.* **2005**, *122*, 204328.
 - (15) Temelso, B.; Sherrill, C. D. J. Chem. Phys. 2005, 112, 064315.
- (16) Kawai, R.; Tombrello, J. F.; Weare, J. H. Phys. Rev. A 1994, 49, 4236
- (17) Visser, S. P.; Alpert, Y.; Danovich, D.; Shaik, S. J. Phys. Chem. A **2000**, 104, 11223.
- (18) (a) Reichardt, V.; Bonacic-Koutecky, V.; Fantucci, P.; Jellinek, J. Chem. Phys. Lett. 1997, 279, 129. (b) Bonacic-Kouteky, V.; Pittner, J.; Koutecky, J. J. Chem. Phys. 1996, 210, 313.
- (19) (a) Dixon, D. A.; Gole, J. L.; Jordan, K. D. J. Chem. Phys. 1997, 66, 567. (b) Gole, J. L.; Childs, R. H.; Dixon, D. A.; Eades, R. A. J. Chem. Phys. 1980, 72, 6368. (c) Richtsmeier, S. C.; Eades, R. A.; Dixon, D. A.; Gole, J. L. In Metal Bonding and Interactions in High Temperature Systems; ACS Symposium Series; Gole, J. L., Stwalley, W. C., Eds.; American Chemical Society: Washington, DC, 1982; Vol. 179, p 177. (d) Eades, R. A.; Hendewerk, M. L.; Frey, R.; Dixon, D. A.; Gole, J. L. J. Chem. Phys. 1982, 76, 3075. (e) Richtsmeier, S. C.; Dixon, D. A.; Gole, J. L. J. Phys. Chem. 1982, 86, 3942.
- (20) (a) Wu, C. H.; Kudo, H.; Ihle, H. R. J. Chem. Phys. 1997, 70, 1534. (b) Wu, C. H. Chem. Phys. Lett. 1987, 139, 357.
- (21) Jiang, Z. Y.; Lee, K. H.; Li, S. T.; Chu, S. Y. Int. J. Mass Spectrosc. **2006**, 253, 104.
- (22) Deshpande, M. D.; Kanhere, D. G. Phys. Rev. A 2002, 65, 033202.
 - (23) Baruah, T.; Kanhere, D. G. Phys. Rev. A 2001, 63, 063202.
- (24) Deshpande, M.; Dhavale, A.; Zope, R. R.; Chacko, S.; Kanhere, D. G. Phys. Rev. A 2000, 62, 063202.
- (25) (a) Boldyrev, A. I.; Simons, J.; Schleyer, P. v. R. J. Chem. Phys. 1993, 99, 8793. (b) Boldyrev, A. I.; Gonzales, N.; Simons, J. J. Phys. Chem. 1994, 98, 9931.
- (26) Nemukhin, A. V.; Almlof, J.; Heiberg, A. Chem. Phys. Lett. 1980, 76, 601.
- (27) Tai, T. B.; Nhat, P. V.; Nguyen, M. T. Phys. Chem. Chem. Phys. 2010, 12, 11477.

- (28) Kuma, V. Phys. Rev. B 1999, 60, 2916.
- (29) Guo, X. Q.; Podloucky, R.; Freeman, A. J. Phys. Rev. B 1990, 42, 10912.
 - (30) Chacko, S.; Kanhere, D. G. Phys. Rev. A 2004, 70, 023204.
 - (31) Akola, J.; Manninen, M. Phys. Rev. B 2002, 65, 245424.
- (32) Cheng, H. P.; Barnett, R. N.; Landman, U. Phys. Rev. B 1993, 48, 1820.
- (33) Lee, M. S.; Gowtham, S.; He, H.; Lau, K. C.; Pan, L.; Kanhere, D. G. *Phys. Rev. B* **2006**, *74*, 245412.
- (34) Lievens, P.; Thoen, P.; Bouckaert, S.; Bouwen, W.; Vanhoutte, W.; Weidele, H.; Silverans, R. E.; Vazquez, A. N.; Schleyer, P. v. R. Eur. Phys. J. D 1999, 9, 289.
- (35) Lievens, P.; Thoen, P.; Bouckaert, S.; Bouwen, W.; Vanhoutte, F.; Weidele, H.; Silverans, R. E. *Chem. Phys. Lett.* **1999**, 302, 571.
 - (36) Ivanic, J.; Marsden, C. J. J. Am. Chem. Soc. 1993, 115, 7503.
 - (37) Kudo, H. Nature 1992, 355, 432.
- (38) Schleyer, P. v. R.; Wurthwein, E. U.; Kaufman, E.; Lark, T.; Pople, J. A. J. Am. Chem. Soc. 1983, 105, 5930.
 - (39) Joshi, K.; Kanhere, D. G. Phys. Rev. A 2002, 65, 043203.
- (40) Shetty, S.; Pal, S.; Kanhere, D. G. J. Chem. Phys. 2003, 118, 7288.
 - (41) Joshi, K.; Kanhere, D. G. J. Chem. Phys. 2003, 119, 12301.
- (42) Gopakumar, G.; Lievens, P.; Nguyen, M. T. J. Phys. Chem. 2007, 111, 4353.
- (43) Ngan, V. T.; Haeck, J. H.; Le, H. T.; Gopakumar, G.; Lievens, P.; Nguyen, M. T. *J. Phys. Chem. A* **2009**, *113*, 9080.
- (44) Lievens, P.; Thoen, P.; Bouckaert, S.; Bouwen, W.; Vanhoutte, W.; Weidele, H.; Silverans, R. E.; Vazquez, A. N.; Schleyer, P. v. R. J. Chem. Phys. 1999, 110, 10316.
- (45) Meden, A.; Mavri, J.; Bele, M.; Pejovnik, S. J. Phys. Chem. 1995, 99, 4252.
- (46) (a) Li, Y.; Wu, D.; Li, Z. R.; Sun, C. C. J. Comput. Chem. **2007**, 28, 1677. (b) Li, Y.; Liu, Y. J.; Wu, D.; Li, Z. R. Phys. Chem. Chem. Phys. **2009**, 11, 5703.
- (47) (a) Nguyen, K. A.; Lammertsma, K. J. Phys. Chem. A 1998, 102, 1608. (b) Nguyen, K. A.; Srinivas, G. N.; Hamilton, T. P.; Lammertsma, K. J. Phys. Chem. A 1999, 103, 710.
- (48) (a) Tai, T. B.; Nguyen, M. T. Chem. Phys. 2010, 375, 35.(b) Tai, T. B.; Nguyen, M. T. Chem. Phys. Lett. 2010, 489, 75.
- (49) Knight, W. D.; Clemenger, K.; de Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. *Phys. Rev. Lett.* **1984**, *52*, 2141.
- (50) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.01; Gaussian, Inc.: Wallingford, CT, 2004.
- (51) MOLPRO, version 2008.1, a package of ab initio programs. Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz, M.; Celani, P.; Korona, T.; Rauhut, G.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel C.; Hetzer, G.; Lloyd, A. W.; McNicholas, S. J.; Meyer W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer, R.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T. See http://www.molpro.net.
- (52) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, U.K., 1989.

- (53) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (54) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- (55) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. **1992**, 96, 6796.
- (56) (a) Deegan, M. J. O.; Knowles, P. J. Chem. Phys. Lett. 1994,
 227, 321. (b) Knowles, P. J.; Hampel, C.; Werner, H.-J. J. Chem. Phys.
 1993, 99, 5219. (c) Rittby, M.; Bartlett, R. J. J. Phys. Chem. 1988, 92,
 3033.
- (57) (a) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. *J. Chem. Phys.* **1998**, *109*, 7764. (b) Baboul, A. G.; Curtiss, L. A.; Redfern, P. C. *J. Chem. Phys.* **1999**, *110*, 7650.
 - (58) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
- (59) Peterson, K. A.; Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1994, 100, 7410.
- (60) (a) Woon, D. E.; Dunning, T. H., Jr. *J. Chem. Phys.* **1995**, 103, 4572. (b) Peterson, K. A.; Dunning, T. H., Jr. *J. Chem. Phys.* **2002**, 117, 10548.
- (61) (a) Douglas, M.; Kroll, N. M. Ann. Phys. 1974, 82, 89. (b) Hess, B. A. Phys. Rev. A 1985, 32, 756. (c) Hess, B. A. Phys. Rev. A 1986, 33, 3742.
- (62) de Jong, W. A.; Harrison, R. J.; Dixon, D. A. J. Chem. Phys. 2001, 114, 48.
- (63) Prascher, B. P.; Woon, D. E.; Peterson, K. A.; Dunning, T. H., Jr.; Wilson, A. K. *Theor. Chem. Acc.* **2010**, DOI: 10.1007/s00214-010-0764-0.
- (64) Nguyen, M. T.; Matus, M. H.; Ngan, V. T.; Grant, D. J.; Dixon, D. A. J. Phys. Chem. A 2009, 113, 4895.
- (65) Tai, T. B.; Grant, D. J.; Nguyen, M. T.; Dixon, D. A. J. Phys. Chem. A 2010, 114, 994.
- (66) Tai, T. B.; Nguyen, M. T.; Dixon, D. A. J. Phys. Chem. A 2010, 114, 2893.
 - (67) Karton, A.; Martin, J. M. L. J. Phys. Chem. A 2007, 111, 5936.
- (68) Chase, M. W., Jr. NIST-JANAF Thermochemical Tables, 4th ed.; *J. Phys. Chem. Ref. Data, Monograph 9*; American Institute of Physics: Woodbury, NY, 1998; Supplement 1.
- (69) Feller, D.; Peterson, K. A.; Dixon, D. A. J. Chem. Phys. 2008, 129, 204105.
- (70) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063.
 - (71) Li, S. Ph.D. Thesis, University of Kentucky, 2004.
 - (72) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
- (73) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. *Phys. Rev. B* **1992**, *46*, 6671.
- (74) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294.
 - (75) Becke, A.; Edgecombe, K. J. Chem. Phys. 1990, 92, 5397.
- (76) (a) Silvi, B.; Savin, A. Nature 1994, 371, 683. (b) Savin, A.; Becke, A.; Flad, D.; Nesper, R.; Preuss, H.; Schnering, H. V. Angew. Chem., Int. Ed. 1991, 30, 409. (c) Savin, A.; Silvi, B.; Colonna, F. Can. J. Chem. 1996, 74, 1088.
- (77) (a) Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. TOPMOD Package; Universite Pierre et Marie Curie: Paris, 1997. (b) Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. Compt. Chem. 1999, 23, 597.
- (78) (a) Laaksonen, L. J. Mol. Graph. 1992, 10, 33. (b) Bergman,
 D. L.; Laaksonen, L.; Laaksonen, A. J. Mol. Graph. Model 1997, 15, 301.
- (79) (a) Benichou, E.; Allouche, A. R.; Aubert-Frecon, M.; Antoine, R.; Broyer, M.; Dugourd, Ph.; Rayane, D. *Chem. Phys. Lett.* **1998**, 290, 171. (b) Dugourd, Ph.; Rayane, D.; Labastie, P.; Vezin, B.; Chevaleyre, J.; Broyer, M. *Chem. Phys. Lett.* **1992**, 197, 433.
 - (80) Lee, T. J.; Taylor, P. R. Int. J. Quantum Chem. 1989, S23, 199.
- (81) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure Constants of Diatomic Molecules; van Nostrand-Reinhold: New York, 1979.
- (82) Bernheim, R. A.; Gold, L. P.; Tipton, T. J. Chem. Phys. 1983, 78, 3653.
 - (83) McGeogh, M. W.; Schlier, R. E. Chem. Phys. Lett. 1983, 99, 347.
- (84) Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 86th ed.; Taylor and Francis: Boca Raton, FL, 2005; pp 10–202.

- (85) Lide, D. R., Ed.; CRC Handbook of Chemistry and Physics, 86th ed.; Taylor and Francis: Boca Raton, FL, 2005, pp 12–114.
 - (86) de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611.
- (87) Bouwen, W.; Vanhoutte, F.; Despa, F.; Bouckaert, S.; Neukermans, S.; Kuhn, L. T.; Weidele, H.; Lievens, P.; Silverans, R. E. Chem. Phys. Lett. 1999, 314, 227.
- (88) Hoshino, K.; Watanabe, K.; Konishi, Y.; Taguwa, T; Nakajima, A.; Kaya, K. Chem. Phys. Lett. 1994, 231, 499.
- (89) Kappes, M. M.; Radi, P.; Schar, M.; Schumacher, E. Chem. Phys. Lett. 1985, 119, 11.
- (90) Yeretzian, C.; Rothlisberger, U.; Schumacher, E. Chem. Phys. Lett. 1995, 237, 334.
- (91) Janssens, E.; Neukermans, S.; Lievens, P. Curr. Opin. Solid. State Mater. Sci. 2004, 15, 8.
 - (92) C. Yeretzian, C. J. Phys. Chem. 1995, 99, 123.
- (93) Clemenger, K. Phys. Rev. B. 1985, 32, 1359. Nilsson, S. G. K. Dan. Vidensk. Selsk, Mat. Fys. Medd. 1955, 29, 16. Gustafson, C.; Lamm, I. L.; Nilsson, S. G. Ark. Fys. 1967, 36, 613.