Report for the Bio-Argo workshop

Prepared by

Hervé Claustre, Nick Hardman-Mountford, Ken Johnson, Antoine Poteau, Catherine Schmechtig, Violeta Slabakova, Haili Wang, Xiaogang Xing

With the help / contribution of ADMT

Beside O2, the biogeochemical community has identified the first variables ready to be implemented on Argo

70	0	,	•	<i>1</i>	

Oxygen: exchange with atmosphere, marine photosynthesis and respiration.

- ☐ Nitrate: New production (build up of organic material); remineralization; biogeochemical modeling
- ☐ Chlorophylle a : Proxy of phytoplankton biomass, photosynthesis
- Particulate scattering (b_{bp}): Stock of particulate matter (detrital and living). Proxy of Particulate Carbon (POC) and Suspended Particulate Matter (SPM)

Selection of these variables through an international consensus: IOCCG Working group "Biooptical sensors on Argo floats Argo", OceanObs09

Outline

- Variable naming
- For Chlorophyll a, b_{bp} and NO3
 - Processing at the DAC level
 - Real-time QC
 - Delayed mode QC
- Additional documentation
- Next step

Important prerequisite

- N_VALUES for the spectral dimension of some measurements (NO₃, b_{bp})
- Naming of variables
 - Put a suffix the so-called "parameter family" to better define the measurement (e.g. NITRATE, BACKSCATTERING, CHLA...)
 - This recommendation also apply for other variables which are not "core Bio-Argo variables" e.g. radiometry, pH...
 - ⇒ Argo manual accordingly be updated
- As soon as these actions are closed the first definitive version of the documents (Chla, b_{bp}, NO₃) will be produced.

Other points

Vertical_Pressure_Offset_Sensor vs CTD

Processing Chla

- Adding wavelength of fluorescence sensor (anticipate evolving sensors)
 - in the attribute of the parameter
 - in the sensor model description in the metadata file
- New calibrations (e.g. prior to deployment) should be stored in the profile file and in the SCIENTIFIC_CALIB_EQUATION. The last calibration will be the one to be used.
- As soon as "naming" is OK, the "final" version of the document "processing Chla at the DAC level" will be produced (action 3 closed)

Chla RT QC actions 4, 7, 8

- Correction with the deep value
 - If it is not possible to determine the deep value (MLD >>) then CHLA and CHLA_ADJUSTED will be flag = 2
 - If calculated deep value > 20% of the DARK_CHLA then CHLA and CHLA_ADJUSTED will be flag = 2

Chla RT QC actions 4, 7, 8

- Correction with the deep value
- The global -0.1-50 mg m-3 is adopted
 - A point outside is flagged =4
- The spike test is relevant for « negative » spikes only: flag = 4
- Positive « spikes » are OK. No need to flag
- Gradient test is not relevant
- « Jumps » (rare) can not be treated in RT.

Chla RT QC actions 4, 6

- NPQ mean correction is recommended
 Reference paper Xing et al., 2012
- On the profile part affected by NPQ
 - CHLA will be flag = 3
 - CHLA_ADJUSTED will be flagged 2
 - Action for Xiaogang: restablish the variance after the correction.

Chla DM QC: the use of remote sensing

- To identify problems
- Not to correct for float
- Both data set (in situ and satellite) have to be « prepared » independently

Chla DM QC metrics

- Find metrics to identify (anomalous)
 drift/changes in the deep values (1)
- Find metrics to compare surface float data with remote sensing Chla (2)
- When appropriate, compare (1) and (2) to identify a mixing problem from a sensor drift

Action for LOV (and Nick? and Xiaogang?)

Chla DM QC Use of « sparse data bases »

- Method of data aggregation / classification into « biogeochemical provinces » have to be tested
 - IOCCG, 2009
 - Hardman-Mountford et al., 2008
 - Dowell et al., 2009
 - D'Ortenzio and Dalcala. 2009
- => action to be taken Nick and LOV

Chla DM QC Use of additional « onboard » measurement

- e.g. when radiometry is present, combined used of FLUO_CHLA and Ed(490) is a way to get a better DM Chla product.
 - Xing et al., 2011
- Advantage: make consistent database originating from different float (a single "calibration" for all of them)
- Drawback: the use of a global bio-optical prevents to identify potentially interesting regional anomalies.
- Test have to be undertaken for the floats having both measurements = > action for Xiaogang

Processing b_{bp}

- Cf Argo update
- Length of the calibration equation

Real-time b_{bp} QC

- At the moment it is not recommended to correct for deep values in RT.
 - It might be possible to correct as part of DM-QC (return of experience still needed)
- Presently, for real-time QC, the main test/flag remains range: 5.10⁻⁵ 10⁻¹ m⁻¹.
- As for Chlorophyll a, it is not relevant to remove/ flagg positive spikes.
 Negative spikes flagging (4) is recommended.

b_{bp} DM QC metrics

- Find metrics to identify (anomalous)
 drift/changes in the deep values (1)
- Find metrics to compare surface float data with remote sensing Chla (2)
- When appropriate, compare (1) and (2) to identify a mixing problem from a sensor drift

Action for LOV (and Nick? and Xiaogang?)

Processing NO3

- Require to have comments on the draft presented by ken Johnson by the Argo community: Thierry, Ann, Claudia, LOV: New Action XXX
- Require to translate the calibration equation in less than 1024 characters. New action for Ken
- Sensor Model
 - SUNA_WITH_SCOOP
 - SUNA
 - ISUS_IN_PUMP_STREAM
 - ISUS

Real-time NO3 QC

- 2 proposed tests to be tested implemented
 - Range : $0-46 \pm 5 \mu M \text{ kg}^{-3}$ (-5 to 51)
 - Spike / gradient test in steep gradients (including Vertical_Pressure_Offset_Sensor)
- Spectral quality test
 - Either: SUNA_Absorbance_Fit_Residual: threshold at 0.004
 - Or better: Absorbance At 240: threshold at 0.8
 - Action: Ken + LOV to test these tests

NO3 DM QC

- WOA is for the moment the best reference especially for deep values
- Takeshita et al. JGR 2013 as an initial reference.

Bio-Argo float « good practice »

 Produce a document of reference (predeployment, sensor management, metadata, deployment....) that can be used for « capacity building » and for helping any user.

=> action for Antoine Poteau and others (?)

Session 085 - Towards a Global Ocean Biogeochemical Observing System Based on Profiling Floats and Gliders

CLAUSTRE Hervé, CNRS & UPMC, LOV <u>claustre@obs-vlfr.fr</u> JOHNSON Kenneth, MBARI <u>johnson@mbari.org</u>

~ 30 abstracts recieved

Tutorial - TOWARD A GLOBAL OCEAN BIOGEOCHEMICAL OBSERVING SYSTEM BASED ON PROFILING FLOATS

Johnson, K. S., MBARI, USA, johnson@mbari.org

Claustre, H., CNRS & UPMC, LOV, France, claustre@obs-vlfr.fr

Sarmiento, J. L., Princeton University, USA, <u>ils@princeton.edu</u>

WG 142 Quality Control Procedures for Oxygen and Other Biogeochemical Sensors on Floats and Gliders

Arne Körtzinger (Germany)

Ken Johnson (USA)