2021 年度

修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性

―低階数・低次元の場合―

学生証番号 45-196010

フリガナ オクダ タカコ

氏名 奥田 堯子

目次

導	入	2
謝	辞	3
1	設定と ή 射影の基本的な性質および問題 1.3 の観察	4
	1.1 記号の設定	4
	1.2 問題 1.3 の観察: $G = SU(1,1)$, $H = SO(1,1)$ の場合	6
	1.3 問題 1.3 の観察: 問題 1.3 の仮定を外した場合の成り立たない例	11
2	G の実階数が 1 の場合 \dots	12
	2.1 具体例: 実階数 1 の古典型単純 Lie 群	12
	2.2 G の実階数が 1 の場合 \dots	16
	2.2.1 補足: 定理 2.5 の微分幾何的側面	22
	2.3 G が実階数 1 の実半単純 Lie 群の直積の場合 \dots	23
3	G の実階数が 2 の場合	24
参:	老文献	28

導入

G を非コンパクトな実半単純 Lie 群, K を G の極大コンパクト部分群で G の Cartan 対合 Θ に対して $K=\Theta K$ なるものとする. $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ を Θ の微分 $d\Theta$ による \mathfrak{g} の Cartan 分解とするとき, G/K は \mathfrak{p} と \mathfrak{p} \ni $X\mapsto e^XK\in G/K$ により微分同相である.

H を G の非コンパクトな閉部分群で, $H=\Theta H$ を満たすものとし, $\mathfrak{h}^{\perp}:=\{W\in\mathfrak{g}\mid B(W,\mathfrak{h})=\{0\}\}$ とするとき,G/K と \mathfrak{p} の微分同相についてより強い次の構造定理が知られている.

定理 ([Kob89, Lemma 6.1]) π : $(\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^{Y} e^{Z} \cdot o_{K} \in G/K$ は上への微分同相である.

この定理を用いて $X \in \mathfrak{p}$ に対し, $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義する.

G/K に $\mathfrak g$ の Killing 形式 B から定まる Riemann 計量によって Riemann 多様体の構造を定める. G の単位元の G/K での像 eK を通る G/K の極大測地線は B(X,X)=1 なる $X\in \mathfrak p$ によって $e^{tX}K$, $t\in \mathbf R$ と書ける. 定理 1.2 より任意の $t\in \mathbf R$ に対して $e^{tX}K=e^{Y(tX)}e^{Z(tX)}K$ である.

 $G=SU(1,1),\ H=SO(1,1)$ とするとき, $t\in\mathbf{R}$ に対し,Y(tX) は図 1 に図示するような幾何学的な意味を持つ.図 1 は Poincaré 円板における測地線 $e^{tX}K$ (赤色の斜め線) とその上の一点 $e^{tX}K$ から eK の H 軌道 (中央の直線) に下ろした垂線の足 (緑の丸) が $e^{Y(tX)}K$ である.

図 1: Poincaré 円板における Y(tX) の幾何学的意味

本論文では小林俊行氏による次の問題について考察し,G が実階数 1 の場合の肯定的な結果を得た.

問題 $Y(\mathbf{R}\,X)$ が $\mathfrak{h}\cap\mathfrak{p}$ の有界な部分集合であることと「 $X\in\mathfrak{h}^\perp$ もしくは『 $[X_1,X_2]\neq 0$ かつ $\mathfrak{z}_{\mathfrak{z}(\mathfrak{h})}(X)=0$ であること』」は同値である.

ただし $X=X_1+X_2$ はベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^\perp)$ に対応する $X\in\mathfrak{p}$ の分解とする.

謝辞

1 設定と β 射影の基本的な性質および問題 1.3 の観察

1.1 記号の設定

本論文の基本的な設定は次のとおりであり、この他に必要な条件は都度明示することとする.

記号と定義 1.1

- N, R, C, H をそれぞれ 0 を含む自然数全体,実数全体,複素数全体,四元数 全体の集合とする.
- G を非コンパクト実半単純 Lie 群, H を G の非コンパクトな部分 Lie 群で, G の Cartan 対合 Θ に対して $\Theta H = H$ なる実半単純 Lie 群とする.
- $\mathfrak{g} \coloneqq \operatorname{Lie} G$, $\mathfrak{h} \coloneqq \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta \coloneqq d\Theta$ による Cartan 分解とする.
- e を G の単位元とし、 $o_K \coloneqq eK \in G/K$ とする.
- B(-,-)を $\mathfrak g$ の Killing 形式とし、 $\mathfrak h^\perp \coloneqq \{W \in \mathfrak g \mid B(W,\mathfrak h) = \{0\}\}$ とする.
- $X \in \mathfrak{p}$ に対し、ベクトル空間としての分解 $\mathfrak{p} = (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ に対応した 分解を $X = X_1 + X_2$, $X_1 \in \mathfrak{h} \cap \mathfrak{p}$, $X_2 \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ とする.
- (M,d_M) を M の上の任意の 2 点に対し一意的な測地線が存在する Riemann 多様体と M 上の計量から定まる距離とする.相異なる点 $p,q,r\in M$ に対し,
 - $-\gamma_{p,q}\colon [0,d_M(p,q)]\to M$ を, $\gamma(0)=p$, $\gamma(d_M(p,q))=q$ なる測地線とする.
 - $\measuredangle_p(q,r)$ を $\gamma_{p,q}$ と $\gamma_{p,r}$ が p においてなす角とする.

以下の定理 1.2 を用いて、 $X \in \mathfrak{p}$ に対し、 $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義する.

定理 1.2 ([Kob89, Lemma 6.1]) π : $(\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^{Y} e^{Z} \cdot o_{K} \in G/K$ は上への微分同相である.

ここで、 $Y(\mathbf{R} X)$ の有界性について、次の問題 1.3 が小林俊行氏によって提起さ

れた.

問題 1.3 (by T. Kobayashi) $\mathfrak{p}_{H,\mathrm{bdd}}\coloneqq\{X\in\mathfrak{p}\mid Y(\mathbf{R}\,X)\$ が $\mathfrak{h}\cap\mathfrak{p}$ の有界集合である.} と定めるとき,

1. $\mathfrak{p}_{H,\mathrm{bdd}} = (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \cup \{X \in \mathfrak{p} \mid [X_1, X_2] \neq 0 \text{ かつ } \mathfrak{z}_{\mathfrak{z}(\mathfrak{h}) \cap \mathfrak{p}}(X) = \{0\} \text{ である.} \}$ $\tag{1.1}$ であるか?

2. G が実半単純 Lie 群ならば $\mathfrak{p} \setminus \mathfrak{p}_{H,\mathrm{bdd}}$ は測度 0 であるか?

問題 1.3 についての基本的な事項を挙げる.

補題 1.4

- 1. $\mathfrak{p}_{H,\mathrm{bdd}} \subset (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \cup \{X \in \mathfrak{p} \mid [X_1, X_2] \neq 0 \text{ かつ } \mathfrak{z}_{\mathfrak{z}(\mathfrak{h}) \cap \mathfrak{p}}(X) = \{0\} \text{ である.} \}$ が成り立つ.
- 2. $X \in \mathfrak{p}$ が $X_1 = 0$ を満たすならば $X \in \mathfrak{p}_{H,\mathrm{bdd}}$ である.
- 3. G が実階数 1 ならば問題 1.3 と「 $\mathfrak{p}_{H,\mathrm{bdd}} = \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ 」は同値である.

補題 1.4 の証明

1. 背理法による. $X \notin \mathfrak{h}^{\perp} \cap \mathfrak{p}$ なる X に対し, $[X_1, X_2] = 0$ ならば $e^{tX_1}e^{tX_2}$ · $o_K = e^{t(X_1 + X_2)} \cdot o_K = e^{tX} \cdot o_K$ である. したがって定理 1.2 より $Y(tX) = tX_1$, $Z(tX) = tX_2$ であることから $Y(\mathbf{R}\,X) = \mathbf{R}\,X_1$ となり, $X_1 \neq 0$ より $Y(\mathbf{R}\,X)$ は有界集合とならない.

また, $X \notin \mathfrak{h}^{\perp} \cap \mathfrak{p}$ なる X に対し, $\mathfrak{z}_{\mathfrak{z}(\mathfrak{h}) \cap \mathfrak{p}}(X) \neq 0$ ならば, ある $0 \neq W \in \mathfrak{z}(\mathfrak{h}) \cap \mathfrak{p}$ が存在して, $[W,X] = [W,X_2] = 0$ である. $X = W + X_2$ とすると,

- 2. $X_1 = 0$ であることと $X \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ であることが同値であることから従う.
- 3. 次を示せばよい.

$$\{0\} \cup \mathfrak{p} \setminus \mathfrak{h} = (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \cup \{X \in \mathfrak{p} \mid [X_1, X_2] \neq 0 \text{ かっ } \mathfrak{z}_{\mathfrak{z}(\mathfrak{h}) \cap \mathfrak{p}}(X) = \{0\} \text{ である.}\}$$
 (1.2)

G の実階数が 1 かつ H が非コンパクトであるから $\mathfrak{h} \cap \mathfrak{p}$ は極大分裂可換部分代数であり、右辺の 2 つ目の集合は $\mathfrak{z}(\mathfrak{h}) \cap \mathfrak{p} \subset \mathbf{R} X_1$ より $\{X \in \mathfrak{p} \mid [X_1, X_2] \neq 0$ である. $\}$ となる. よって (1.2) の右辺 $\{X \in \mathfrak{p} \mid X_1 = 0 \text{ または } [X_1, X_2] \neq 0$ である. $\}$ は $X \in \{0\} \cup \mathfrak{p} \setminus \{0\}$ と同値であり、(1.2) が示された.

 $Y(\mathbf{R} X)$ の有界性は $\mathrm{Ad}(k)$ -不変である. 具体的には補題 1.5 が成り立つ.

補題 **1.5** $k \in K$, $X \in \mathfrak{p}$ に対し, $X' := \operatorname{Ad}(k)X$, $\mathfrak{h}' := \operatorname{Ad}(k)\mathfrak{h}$ とする. Y'(X'), Z'(X') を, 微分同相 $\pi' : (\mathfrak{h}' \cap \mathfrak{p}) \oplus (\mathfrak{h}'^{\perp} \cap \mathfrak{p}) \ni (Y', Z') \mapsto e^{Y'}e^{Z'} \cdot o_K$ を用いて, $X' \in \mathfrak{p}$ に対し, $(Y'(X'), Z'(X')) = \pi'^{-1}(e^{X'} \cdot o_K)$ と定める.

このとき $Y(\mathbf{R} X)$ が有界であることと $Y'(\mathbf{R} X')$ が有界であることは同値である.

補題 1.5 の証明 主張は (X,\mathfrak{h}) と (X',\mathfrak{h}') に対して対称的であるから, $Y(\mathbf{R}\,X)$ が有界ならば $Y'(\mathbf{R}\,X')$ が有界であることのみを示せば十分である.

任意に $r \in \mathbf{R}$ を取る. $e^{rX'} \cdot o_K = e^{Y'(rX')} e^{Z'(rX')} \cdot o_K$ であり,両辺に左から k^{-1} を掛けると, $e^{rX} = e^{\operatorname{Ad}(k^{-1})(Y'(rX'))} e^{\operatorname{Ad}(k^{-1})(Z'(rX'))} \cdot o_K$ を得る. ここで $Y'(rX') \in \mathfrak{h}' \cap \mathfrak{p}$, $Z'(rX') \in \mathfrak{h}'^{\perp} \cap \mathfrak{p}$ であるから $\operatorname{Ad}(k^{-1})(Y'(rX')) \in \mathfrak{h} \cap \mathfrak{p}$, $\operatorname{Ad}(k^{-1})(Z'(rX')) \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ である.

定理 1.2 により π は微分同相であるから,任意の $r\in \mathbf{R}$ に対して $\mathrm{Ad}(k^{-1})(Y'(rX'))=Y(rX)$ である. $Y'(\mathbf{R}\,X)=\mathrm{Ad}(k)(Y(\mathbf{R}\,X))$ であり, $\mathrm{Ad}(k)$ は有限次元空間の間の線型写像であるから有界性を保つ.

以上から補題 1.5 が示された.

 $Z(\mathbf{R}\,X)$ の有界性については次の定理が知られており、有界性の判定は Lie 環の言葉のみで行える.

定理 1.6 ([Kob97, Lemmma 5.4]) $X \in \mathfrak{p}$ に対し, $\|Z(X)\| \ge \|X\| \sin \varphi(X, \mathfrak{h} \cap \mathfrak{p})$ である.ここに $\varphi(X, \mathfrak{h} \cap \mathfrak{p})$ は $X \ge \mathfrak{h} \cap \mathfrak{p}$ の元がなす角度の最小値 $0 \le \varphi(X, \mathfrak{h} \cap \mathfrak{p}) \le \frac{\pi}{2}$ であり, $X \in \mathfrak{p} \setminus \mathfrak{h} \iff \varphi(X, \mathfrak{h} \cap \mathfrak{p}) \ne 0$ である.

定理 1.6 より, $X \in \mathfrak{h}$ と $Z(\mathbf{R} X)$ が有界であることが同値である.

1.2 問題 1.3 の観察: G = SU(1,1), H = SO(1,1) の場合

$$G=SU(1,1),\ H=SO(1,1)\coloneqq\left\{egin{pmatrix}\cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}\ \middle|\ t\in\mathbf{R}\right\}$$
 の場合に問題 1.3 が正しいことは直接計算により確かめられる.

命題 1.7 G = SU(1,1), H = SO(1,1) のとき問題 1.3 は正しい.

補題 **1.8** \mathfrak{g} \coloneqq $\mathfrak{su}(1,1)$ の Killing 形式から定まる Poincaré 円板 $G/K=\{x+\sqrt{-1}y\mid x^2+y^2<1\}$ の計量は $\frac{8(dx^2+dy^2)}{(1-x^2-y^2)^2}$ である.

補題 1.8 の証明 \mathfrak{g} の元を G/K 上の左不変ベクトル場と同一視すると

$$X' := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{\partial}{\partial x},$$
$$Y' := \begin{pmatrix} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix} = \frac{\partial}{\partial y}$$

である. $\mathfrak g$ の Killing 形式 B から定まる $\mathfrak p$ 上のノルム $\|-\|$ に対して $\|X'\|^2=\|Y'\|^2=8$, B(X',Y')=0 であって, $0\in G/K=\{x+\sqrt{-1}y\mid x^2+y^2<1\}$ で主張が成り立つ.

したがって
$$k_{\theta} \coloneqq \operatorname{diag}(e^{\sqrt{-1}\theta}, e^{-\sqrt{-1}\theta}), \ a_r \coloneqq \begin{pmatrix} \cosh r & \sinh r \\ \sinh r & \cosh r \end{pmatrix}$$
 とすると,

$$g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'))$$

$$= g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y'))$$

$$= 8,$$

$$g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y')) = 0$$

なるような計量 g が Killing 形式から誘導される計量であるが、それが主張の形であることを示せば良い (これらのベクトルが何を表しているかは図 2 参照).

図 2

t=0 での接ベクトルが $d au(k_{ heta/2}a_r)d au(k_{- heta/2})X'$ を与える曲線は

$$\gamma_x(t) := e^{\sqrt{-1}\theta} \frac{\cosh r \cdot e^{-\sqrt{-1}\theta} \tanh t + \sinh r}{\sinh r \cdot e^{-\sqrt{-1}\theta} \tanh t + \cosh r}$$

であるから,

$$\frac{d}{dt}\Big|_{t=0} \gamma_x(t) = d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})X' = (1 - \tanh^2 r)\frac{\partial}{\partial x} = (1 - x^2 - y^2)\frac{\partial}{\partial x}$$

である.

同様に t=0 での接ベクトルが $d au(k_{\theta/2}a_r)d au(k_{-\theta/2})Y'$ を与える曲線は

$$\gamma_y(t) \coloneqq e^{\sqrt{-1}\theta} \frac{\cosh r \cdot e^{-\sqrt{-1}\theta} \sqrt{-1} \tanh t + \sinh r}{\sinh r \cdot e^{-\sqrt{-1}\theta} \sqrt{-1} \tanh t + \cosh r}$$

であるから,

$$\frac{d}{dt}\bigg|_{t=0} \gamma_y(t) = d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})Y' = (1 - \tanh^2 r)\frac{\partial}{\partial y} = (1 - x^2 - y^2)\frac{\partial}{\partial y}$$

以上より
$$g=rac{8(dx^2+dy^2)}{(1-x^2-y^2)^2}$$
 が示された.

命題 1.7 の証明 $k_{\theta} \coloneqq \operatorname{diag}(e^{\sqrt{-1}\theta}, e^{-\sqrt{-1}\theta}), \ X_{\theta} \coloneqq k_{\theta/2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} k_{-\theta/2}$ とすると, $\mathfrak{p}\setminus\{0\} = \{tX_{\theta} \mid t \in \mathbf{R}_{>0}, \ 0 \le \theta \le \pi\}$ である。この X_{θ} と $t \in \mathbf{R}$ に対して $Y(tX_{\theta}) = s\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ なる $s \in \mathbf{R}$ を求める。

右の円の Euclid 距離での半径を R とし, $e^{tX_{\theta}}\cdot o_{K}$ から $H\cdot o_{K}$ への垂線の足の o_{K} からの Euclid 距離を h とするとき,外側の青色の直角三角形に対して三平方の 定理を用いて $(h+R)^{2}=R^{2}+1$ より $R=\frac{1-h^{2}}{2h}$, $R+h=\frac{1+h^{2}}{2h}$ を得る. さらに下の紫色の三角形に対して余弦定理を用いて $R^{2}=(R+h)^{2}+r^{2}-2(R+h)\cos\theta$ を得,

$$\frac{2r\cos\theta}{r^2 + 1} = \frac{2h}{h^2 + 1} \tag{1.3}$$

を得る.

 $r = \tanh t$, $h = \tanh s$ であるから (1.3) は $\cos \theta \tanh 2t = \tanh 2t$ と書き直せる. したがって X_{θ} に対して $Y(\mathbf{R} X)$ が有界 $\iff |\cos \theta| \neq 1 \iff X \notin \mathfrak{h}$ である.

補足 1.9 命題 1.7 は角度を用いた議論によっても示すことができる. 具体的には, 計算により次の補題 1.10 が示せる.

補題 **1.10**
$$e^{sY}e^{rZ}\cdot o_K=\begin{pmatrix} \cosh s & \sinh s \\ \sinh s & \cosh s \end{pmatrix}\sqrt{-1}\tanh r\in SU(1,1)/U(1), \ s>0,$$

 $r \in \mathbf{R}$ に対し, $\varphi_{s,r} \coloneqq \measuredangle_{o_K}(e^{sY}e^{rZ} \cdot o_K, e^{sY} \cdot o_K)$ は, $\tan \varphi_{s,r} = \frac{\tanh 2r}{\sinh 2s}$ を満たす.ただし $Y \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $Z \coloneqq \begin{pmatrix} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix}$ とする.

補題 1.10 により命題 1.7 は次のように証明できる.任意の $0 \neq s \in \mathbf{R}, r \in \mathbf{R}$ に対し,

$$\lim_{r \to -\infty} \tan \varphi_{|s|,r} = \frac{-1}{\sinh 2|s|} \le \tan \varphi_{s,r} \le \lim_{r \to \infty} \tan \varphi_{|s|,r} = \frac{1}{\sinh 2|s|}$$
(1.4)

であるから、 $X \notin \mathbf{R} Y$ の元に対して $Y(\mathbf{R} X)$ が非有界であるとすると、 $0 < \varepsilon < \varphi(X,\mathfrak{h})$ なる ε に対し、ある $t \in \mathbf{R}$ が存在して、 $Y(tX) = s_t Y$ 、 $\sinh 2|s_t| > \frac{1}{\tan \varepsilon}$ である. $Z(tX) = r_t Z$ とすると (1.4) より $|\tan \varphi_{s_t,r_t}| < \tan \varepsilon$,したがって

$$-\varepsilon < \measuredangle_{o_K}(e^{s_t Y} e^{r_t Z} \cdot o_K, e^{s_t Y} \cdot o_K) < \varepsilon < \varphi(X, \mathfrak{h})$$

となる.しかし定義より $\angle_{o_K}(e^{s_tY}e^{r_tZ}\cdot o_K,e^{s_tY}\cdot o_K)=\angle_{o_K}(e^{tX}\cdot o_K,e^{Y(tX)}\cdot o_K)$ であり, $\angle_{o_K}(e^{tX}\cdot o_K,e^{Y(tX)}\cdot o_K)=\varphi(X,\mathfrak{h})$ であるから矛盾する.

系 1.11 G = SO(1, n), H = SO(1, k), $1 \le k \le n - 1$ に対して問題 1.3 は正しい.

系 1.11 の証明 より正確に記述せよ SO(1,n)/SO(n) の開球としての実現を考える. $\lceil e^X \cdot o_K$ と o_K を結ぶ直線」と $H \cdot o_K$ で張られる超平面で SO(1,n)/SO(n) を切った際の断面を考える.

N=3, ヒ=1の何り

図 4

この断面に現れるのは図3と同じであるから、同様の計算により系1.11を得る.

1.3 問題 1.3 の観察: 問題 1.3 の仮定を外した場合の成り立たない例 問題 1.3 と次の問題 1.12 は同値である.

問題 $\mathbf{1.12}\ \mathfrak{p}_{H,\mathrm{bdd}} = \{X \in \mathfrak{p} \mid [X, (\mathfrak{h} \cap \mathfrak{p})] \neq \{0\}\$ あるいは $X \perp (\mathfrak{h} \cap \mathfrak{p})\$ である. $\}$ ここで似た予想として $\mathfrak{h} \cap \mathfrak{p}$ を \mathfrak{h} に置き換えた次の予想が立てられる.

問題 $\mathbf{1.13}\ \mathfrak{p}_{H,\mathrm{bdd}} = \{X \in \mathfrak{p} \mid [X,\mathfrak{h}] \neq \{0\}\$ あるいは $X \perp \mathfrak{h}\$ である. $\}$ しかし問題 1.13 には反例が存在する.

補題 **1.14**
$$G = SL(3, \mathbf{R})$$
, $Y_1 \coloneqq \operatorname{diag}(1, 1, -2)$, $Y_2 \coloneqq \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

 $\mathfrak{h}=\mathbf{R}\,Y_1\oplus\mathbf{R}\,Y_2,\ X=\mathrm{diag}(1,0,-1)$ に対し, $[X,\mathfrak{h}]
eq\{0\}$ であるが $Y(\mathbf{R}\,X)=\mathbf{R}\,Y_1$ であり,非有界である.

補題 **1.14** の計算 \mathfrak{h} は可換 Lie 環であり、 $\mathfrak{g} = \mathfrak{sl}(3, \mathbf{R})$ の Cartan 対合 $\theta W \coloneqq -{}^t W$ に対し $\mathfrak{h} = \theta \mathfrak{h}$ である.

 $[X, \mathfrak{h}] \neq 0$ は, $[X, Y_2] \neq 0$ より従う.

ここで $Z_1 := \operatorname{diag}(1, -1, 0) \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ であり、任意の $t \in \mathbf{R}$ に対し、 $e^{2tX} = e^{tY_1}e^{tZ_1}$ であるから、 $Y(\mathbf{R}X) = \mathbf{R}Y_1$ となり、補題 1.14 が示された.

補題 1.14 において X と \mathfrak{h} は, $[X,\mathfrak{h}] \neq \{0\}$ だが $[X,(\mathfrak{h} \cap \mathfrak{p})] = \{0\}$ かつ $X \not\perp (\mathfrak{h} \cap \mathfrak{p})$ となるように取った.

つまり問題 1.13 の右辺を次の問題 1.15 のように少し弱めても補題 1.14 はその反例になっている.

問題 1.15 $\mathfrak{p}_{H,\mathrm{bdd}}=\{X\in\mathfrak{p}\mid [X,\mathfrak{h}]\neq\{0\}$ あるいは $X\perp(\mathfrak{h}\cap\mathfrak{p})$ である. $\}$

2 Gの実階数が1の場合

2.1 具体例: 実階数 1 の古典型単純 Lie 群

命題 2.1 G = SO(1,n), SU(1,n), Sp(1,n), H = SO(1,1), $n \ge 2$ に対して問題 1.3 は正しい.

$$G=Sp(1,2),\ \mathfrak{h}=\mathbf{R}egin{pmatrix} 0&1&0\\1&0&0\\0&0&0 \end{pmatrix}$$
の場合にのみ示す.その他の場合も全く同様

の議論である.

命題 **2.2** $G=Sp(1,2),\ H=SO(1,1),\ X\in\mathfrak{p}$ に対し、 $Y(\mathbf{R}\,X)$ が有界 $\iff X\in\mathfrak{p}\setminus\mathfrak{h}$ or X=0 である.

ただし、H は G の左上に入っている. すなわち、 $\text{Lie } H = \mathfrak{h} = \mathbf{R} Y, Y :=$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
とする.

記号と定義 2.3 H を四元数体とする. Sp(1,2) の定義と自然表現の定義 $Sp(1,2)/Sp(1) \times Sp(2) \simeq \{(z_1,z_2) \mid z_1,z_2 \in \mathbf{H}, \mid |z_1|^2 + |z_2|^2 < 1\} =: \mathbf{H} \mathbb{H}^2$ である. なぜならば t(1,0,0) の自然表現 $Sp(1,2) \curvearrowright \mathbf{H}^2$ による軌道を考え,第 2,第 3 成分に第 1 成分の逆数を右からかけた空間が $\mathbf{H} \mathbb{H}^2$ と微分同相であるた

めであり,
$$Sp(1,2)$$
 \sim \mathbf{H}^3 の $^t(1,0,0)$ 軌道の点 $\begin{pmatrix} z_0 \\ z_1 \\ z_2 \end{pmatrix}$ に対応する \mathbf{H} \mathbb{H}^2 の点を

$$\begin{bmatrix} \begin{pmatrix} z_0 \\ z_1 \\ z_2 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ z_1 z_0^{-1} \\ z_2 z_0^{-1} \end{pmatrix} \end{bmatrix} と書く.$$

愚直な行列計算により、次が示される.

補題
$$\mathbf{2.4} \ \forall z, w \in \mathbf{H}$$
 に対し, $\exp \begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cosh r & * & * \\ \overline{z} \\ \frac{\overline{z}}{r} \sinh r & * & * \\ \overline{w} \\ \frac{\overline{w}}{r} \sinh r & * & * \end{pmatrix}$, ただし

 $r\coloneqq \sqrt{|z|^2+|w|^2}$, である.

命題 2.2 の証明 $X=0 \Rightarrow Y(\mathbf{R}\,X)=\{0\}$ と $X\in\mathfrak{h}\setminus\{0\}$ のときに $Y(\mathbf{R}\,X)$ が非有界であることは明らかであるから, $X\notin\mathfrak{h}$ の場合にのみ議論すればよい.

G の Cartan 対合を $\Theta(g)=(g^*)^{-1}$ $(g^*$ は g の共役転置)とするとき, $\Theta(e^{Y(tX)}e^{Z(tX)})\cdot o_K=e^{-Y(tX)}e^{-Z(tX)}\cdot o_K=\Theta(e^X)\cdot o_K=e^{-X}\cdot o_K$ より,「 $Y(\mathbf{R}\,X)$ が非有界 $\iff Y(\mathbf{R}\,X)\subset\mathbf{R}\,Y$ が上に非有界」である.

したがって, $Y(\mathbf{R} X)$ が非有界であるとき,列 $\{t_n \in \mathbf{R}\}_{n \in \mathbf{N}}$ で, $s_n \to \infty$, $n \to \infty$, ただし $Y(t_n X) = s_n Y$, なるものが存在する.

また, 任意の
$$\mathfrak{h}^{\perp} \cap \mathfrak{p}$$
 の元はある $Z = \begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} \in \mathfrak{h}^{\perp} \cap \mathfrak{p}, \ z, w \in \mathbf{H} \ \mathrm{s.t.} \ |z|^2 +$

$$|w|^2=1$$
 と $r\in\mathbf{R}$ により rZ と表せる. $Z(t_nX)=r_nZ_n$, $Z_n\coloneqq\begin{pmatrix}0&z_n&w_n\ \overline{z_n}&0&0\ \overline{w_n}&0&0\end{pmatrix}$,

 $z_n,w_n\in \mathbf{H}$ s.t. $|z_n|^2+|w_n|^2=1$ とすると, $X\notin\mathfrak{h}$ であるから定理 1.6 より $|r_n|\to\infty$ である. $z_n,w_n\in \mathbf{H}$ s.t. $|z_n|^2+|w_n|^2=1$ より, $\{t_n\}$ の部分列を取

るとある
$$Z_\infty$$
 が存在して $\lim_{n\to\infty} Z_n = Z_\infty = \begin{pmatrix} 0 & z_\infty & w_\infty \\ \overline{z_\infty} & 0 & 0 \\ \overline{w_\infty} & 0 & 0 \end{pmatrix} \in \mathfrak{h}^\perp \cap \mathfrak{p}$ な

るようにできる. $Z \in \mathfrak{p} \setminus \mathfrak{h}$ より $\operatorname{Re} z_{\infty} \neq \pm 1$ であることに注意する (Re: $\mathbf{H} \ni a + bi + cj + dk \mapsto a \in \mathbf{R}$ とする).

補題 2.4 より,

$$e^{s_n Y} e^{r_n Z_n} \cdot o_K = \begin{pmatrix} \cosh s_n & \sinh s_n & 0 \\ \sinh s_n & \cosh s_n & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} 1 \\ \pm \overline{z_n} \tanh |r_n| \\ \pm \overline{w_n} \tanh |r_n| \end{pmatrix}$$

$$= \begin{bmatrix} \cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n \\ \sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n \\ \pm \overline{w_n} \tanh |r_n| \end{bmatrix},$$

複号は r_n の符号 \pm と同順,である.このとき $\lim_{n\to\infty} \tanh s_n=1=\lim_{n\to\infty} \tanh |r_n|$ と $\lim_{n\to\infty} \ker z_n=\operatorname{Re} z_\infty\neq \pm 1$ に注意すると次を得る.具体的な計算は後述する.

 $\lim_{n \to \infty} (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} = 1 \quad (2.1)$

したがって,
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2 \,$$
から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2 \,$ へのベクトルと, $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2 \,$ か

$$\begin{pmatrix} (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n)(\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} \\ * \end{pmatrix} \in \mathbf{H} \mathbb{H}^2 \wedge \mathcal{O}$$

ベクトルがなす Euclidean な内積の値を I_n とすると、 $\lim_{n\to\infty}I_n=1$ である.

しかし、
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H}\mathbb{H}^2$$
 から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H}\mathbb{H}^2$ へのベクトルと、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H}\mathbb{H}^2$ から $e^{t_n X} \cdot o_K \in \mathbf{H}\mathbb{H}^2$ へのベクトルがなす Euclidean な内積の値 J_n は、 $X := \begin{pmatrix} 0 & z_0 & w_0 \\ \overline{z_0} & 0 & 0 \\ \overline{w_0} & 0 & 0 \end{pmatrix}$ 、 $z_0, w_0 \in \mathbf{H}$ s.t. $|z_0|^2 + |w_0|^2 = 1$ とするとき $J_n = \frac{\overline{z_0}}{r_0} \tanh(tr_0)$ 、 $r_0 \coloneqq \sqrt{|z_0|^2 + |w_0|^2}$ であり、 $X \notin \mathfrak{h} \iff z_0 \neq 1$ より $\lim_{n \to \infty} J_n = \frac{\overline{z_0}}{r_0} \neq 1$ で

ある.

以上 2 つの議論を合わせると $e^{s_nY}e^{r_nZ_n}\cdot o_K=e^{t_nX}\cdot o_K\implies 1=\lim_{n\to\infty}I_n=1$ $\lim_{n\to\infty} J_n \neq 1$ となり矛盾する.

以上より 「 $X \in \mathfrak{p} \setminus \mathfrak{h} \Rightarrow Y(\mathbf{R} X)$ 有界」, したがって 命題 2.2 を得る.

命題 2.2 の計算 $\lim_{n\to\infty} |(\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} -$ |1| = 0 を示せば主張が得られる. 具体的に計算すると,

$$\lim_{n \to \infty} \left| (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} - 1 \right|$$

$$= \lim_{n \to \infty} \left| \frac{(\tanh s_n \pm \overline{z_n} \tanh |r_n|) (1 \pm z_n \tanh |r_n| \tanh s_n)}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2} - 1 \right|$$

$$= \lim_{n \to \infty} \frac{|(\tanh s_n \pm \overline{z_n} \tanh |r_n|) z_n' - (1 \pm \overline{z_n} \tanh |r_n| \tanh s_n) z_n'|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2} \tag{*}$$

である. ここで $z_n' \coloneqq 1 \pm z_n \tanh |r_n| \tanh s_n$ とすると,

$$(*) = \lim_{n \to \infty} \frac{|(\tanh s_n \pm \overline{z_n} \tanh |r_n|) z'_n - (1 \pm \overline{z_n} \tanh |r_n| \tanh s_n) z'_n|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|) z'_n|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|)|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|}$$

であり、 $0<\min|1\pm {\rm Re}\,z_n|\leq |(1\pm\overline{z_n}\tanh|r_n|\tanh s_n)|\leq \sqrt{2^2+1^2}=\sqrt{5}$ と $\min\{|-1\pm \operatorname{Re} z_n|\} \leq |-1\pm \overline{z_n} \tanh |r_n|| \leq \sqrt{5}$ であることと $\lim_{n\to\infty} \operatorname{Re} z_n = 1$ $\operatorname{Re} z_{\infty} \neq \pm 1 \, \sharp \, \mathfrak{h}$

$$0 = \lim_{n \to \infty} (1 - \tanh s_n) \frac{\min\{|-1 \pm \operatorname{Re} z_n|\}}{\sqrt{5}} \le \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|)|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|}$$
$$\le \lim_{n \to \infty} (1 - \tanh s_n) \frac{\sqrt{5}}{\min\{|1 \pm \operatorname{Re} z_n|\}} = 0$$
より、(2.1) が成り立つ.

2.2 Gの実階数が1の場合

定理 2.5~G を実階数 1 の実半単純 Lie 群, H を G の非コンパクトな閉部分 Lie 群で, G の Cartan 対合 Θ に対して $\Theta H = H$ かつ $\dim \mathfrak{h} = 1$ とするとき, 問題 1.3 が成り立つ.

定理 2.6 ([Hel01, p. 409, Theorem 3.1]) $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を実半単純 Lie 環 \mathfrak{g} の Cartan 対合 θ に対する Cartan 分解とし, $\alpha, 2\alpha \in \Sigma(\mathfrak{g}, \mathfrak{a})$ と仮定する. $0 \neq X_{\alpha} \in \mathfrak{g}_{\alpha}$, $0 \neq X_{2\alpha} \in \mathfrak{g}_{2\alpha}$ を任意に固定したとき, $X_{\alpha}, X_{2\alpha}, \theta X_{\alpha}, \theta X_{2\alpha}$ から生成される Lie 環 \mathfrak{g}^* は $\mathfrak{su}(2,1)$ と同型である.

以下で定理 2.6 を示すための補題や記号を設定し、定理 2.6 を示す.

記号と定義 2.7

- $\mathfrak{a} \subset \mathfrak{g}$ を極大分裂可換部分代数, $\mathfrak{m} \coloneqq \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \coloneqq \{W \in \mathfrak{k} \mid [W,\mathfrak{a}] = \{0\}\}$ とする. B を \mathfrak{g} の Killing 形式とする.
- $\Sigma(\mathfrak{g},\mathfrak{a})$ を \mathfrak{a} に関する制限ルート系とする. \mathfrak{g}_{λ} を $\lambda \in \mathfrak{a}^*$ のルート空間とする.
- $Y_{\alpha} := [\theta X_{\alpha}, X_{2\alpha}] \ \text{\geq \flat} \ \text{δ}.$
- $A_{\alpha} \in \mathfrak{a}$ を、任意の $H \in \mathfrak{a}$ に対して $B(H, A_{\alpha}) = \alpha(H)$ を満たす元とする. このとき、任意の $H \in \mathfrak{a}$ に対して $B(H, [X_{\alpha}, \theta X_{\alpha}]) = \alpha(H)B(X_{\alpha}, \theta X_{\alpha})$ である.したがって

$$[X_{\alpha}, \theta X_{\alpha}] = B(X_{\alpha}, \theta X_{\alpha}) A_{\alpha},$$

$$[Y_{\alpha}, \theta Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha}) A_{\alpha},$$

$$[X_{2\alpha}, \theta X_{2\alpha}] = 2B(X_{2\alpha}, \theta X_{2\alpha}) A_{\alpha}$$

である.

•
$$c_{\alpha} \coloneqq \sqrt{\frac{-2}{\alpha(A_{\alpha})B(X_{\alpha},\theta X_{\alpha})}}$$
, $c_{2\alpha} \coloneqq \sqrt{\frac{-2}{\alpha(A_{\alpha})B(X_{2\alpha},\theta X_{2\alpha})}} \succeq \cup$,
$$X_{\alpha}^* \coloneqq c_{\alpha}X_{\alpha},$$

$$X_{2\alpha}^* \coloneqq c_{2\alpha}X_{2\alpha},$$

$$Y_{\alpha}^* \coloneqq [\theta X_{\alpha}^*, X_{2\alpha}^*] = c_{\alpha}c_{2\alpha}Y_{\alpha},$$

$$A_{\alpha}^* \coloneqq \frac{1}{12\alpha(A_{\alpha})}A_{\alpha}$$

とする.

補題 **2.8** $c\coloneqq 2\alpha(A_\alpha)B(X_\alpha,\theta X_\alpha)$ とすると, $[X_\alpha,Y_\alpha]=cX_{2\alpha}$ である.特に $0\ne Y_\alpha\ne X_\alpha$ である.

補題 2.8 の証明 Jacobi 恒等式と $3\alpha \notin \Sigma(\mathfrak{g},\mathfrak{a})$ による.

補題 2.9 $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m} \setminus \{0\}$ である.また $[[X_{\alpha}, \theta Y_{\alpha}], X_{\alpha}] = -3\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})Y_{\alpha}$ である.

補題 2.9 の証明 $Y_{\alpha} \in \mathfrak{g}_{\alpha}$ より $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m} + \mathfrak{a}$ であり、任意の $H \in \mathfrak{a}$ に対して

$$B(H, [X_{\alpha}, \theta Y_{\alpha}]) = B([H, X_{\alpha}], Y_{\alpha}) = \alpha(H)B(X_{\alpha}, [X_{\alpha}, \theta X_{2\alpha}])$$
$$= \alpha(H)B([X_{\alpha}, X_{\alpha}], X_{2\alpha})$$
$$= 0$$

であることより $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m}$ である. さらに、

$$\begin{split} [[\theta X_{\alpha}, Y_{\alpha}], X_{\alpha}] &= -[[Y_{\alpha}, X_{\alpha}], \theta X_{\alpha}] - [[X_{\alpha}, \theta X_{\alpha}], Y_{\alpha}] \\ &= c[X_{2\alpha}, \theta X_{\alpha}] - B(X_{\alpha}, \theta X_{\alpha})\alpha(A_{\alpha})Y_{\alpha} \\ &= -cY_{\alpha} - B(X_{\alpha}, \theta X_{\alpha})\alpha(A_{\alpha})Y_{\alpha} \\ &= -3\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})Y_{\alpha} \neq 0 \end{split}$$

より、 $\theta[\theta X_{\alpha},Y_{\alpha}]=[X_{\alpha},\theta Y_{\alpha}]\in\mathfrak{m}\setminus\{0\}$ である.

補題 2.10 $\mathbf{R} X_{\alpha} + \mathbf{R} Y_{\alpha}$ は $\mathrm{ad}_{\mathfrak{g}}([X_{\alpha}, \theta Y_{\alpha}])$ で不変である. さらに

$$[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] = -6\alpha (A_{\alpha})^{2} B(X_{\alpha}, \theta X_{\alpha}) B(X_{2\alpha}, \theta X_{2\alpha}) X_{\alpha},$$
$$[Y_{\alpha}, \theta Y_{\alpha}] = -2\alpha (A_{\alpha}) B(X_{\alpha}, \theta X_{\alpha}) B(X_{2\alpha}, \theta X_{2\alpha}) A_{\alpha}$$

である.

補題 2.10 の証明 $[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] \in \mathbf{R} X_{\alpha}$ を示せば,補題 2.9 と併せて 補題 2.10 が従う.

$$\begin{split} [[X_{\alpha},\theta Y_{\alpha}],Y_{\alpha}] &= -[[\theta Y_{\alpha},Y_{\alpha}],X_{\alpha}] - [[Y_{\alpha},X_{\alpha}],\theta Y_{\alpha}] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} + c[X_{2\alpha},[X_{\alpha},\theta X_{2\alpha}]] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - c[X_{\alpha},[\theta X_{2\alpha},X_{2\alpha}]] - c[\theta X_{2\alpha},[X_{2\alpha},X_{\alpha}]] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - cB(X_{2\alpha},\theta X_{2\alpha})\alpha(A_{2\alpha})X_{\alpha} \end{split}$$

であり $(\mathfrak{g}_{3\alpha} = \{0\} \ \text{による}), \ A_{2\alpha} = 2A_{\alpha} \ \text{であるから},$

$$[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - 4\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$$
を得る.

さらに,

$$B(Y_{\alpha}, \theta Y_{\alpha}) = B(Y_{\alpha}, [X_{\alpha}, \theta X_{2\alpha}]) = -B([X_{\alpha}, Y_{\alpha}], \theta X_{2\alpha})$$
$$= -2\alpha (A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})$$

であるから, 最終的に

$$[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - 4\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$$
$$= -6\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$$

を得る. ■

補題 **2.11** $[[X_{\alpha}, \theta Y_{\alpha}], X_{2\alpha}] = 0$ である.

補題 **2.11** の証明 補題 2.8-2.10 と Jacobi 恒等式による.

補題 **2.12** $[Y_{\alpha}, \theta X_{2\alpha}] = 2\alpha(A_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})\theta X_{\alpha}$ である.

補題 2.12 の証明 Jacobi 恒等式を用いて与式を変形し計算することにより示せる.

定理 2.6 の証明 $\mathfrak{g}_0^* \coloneqq \mathbf{R} A_{\alpha} \oplus \mathbf{R}[X_{\alpha}, \theta Y_{\alpha}], \ \mathfrak{g}_{\alpha}^* \coloneqq \mathbf{R} X_{\alpha} \oplus \mathbf{R} Y_{\alpha}, \ \mathfrak{g}_{-\alpha}^* \coloneqq \mathbf{R} \theta X_{\alpha} \oplus \mathbf{R} \theta X_{\alpha} \oplus \mathbf{R} \theta X_{\alpha} \oplus \mathbf{R} \theta X_{\alpha}, \ \mathfrak{g}_{-\alpha}^* \coloneqq \mathbf{R} \theta X_{\alpha} \oplus \mathbf{R} \theta X_$

非自明な \mathfrak{g}^* の Lie 括弧の関係は以下の通りである (残りの関係式はこの両辺に θ をつけることで得られる).

$$[X_{\alpha}^{*},Y_{\alpha}^{*}] = -4X_{2\alpha}^{*}, \qquad (補題 2.8 による),$$

$$[X_{\alpha}^{*},[X_{\alpha}^{*},\theta Y_{\alpha}^{*}]] = -6Y_{\alpha}^{*}, \qquad (補題 2.9 による),$$

$$[X_{\alpha}^{*},\theta X_{\alpha}^{*}] = -24A_{\alpha}^{*}, \qquad (定義による),$$

$$[X_{\alpha}^{*},X_{2\alpha}^{*}] = 0, \qquad (\mathfrak{g}_{3\alpha} = 0 \ \mathrm{ct}_{3\alpha}^{*}),$$

$$[X_{\alpha}^{*},\theta X_{2\alpha}^{*}] = \theta Y_{\alpha}^{*}, \qquad (定義による),$$

$$[Y_{\alpha}^{*},X_{2\alpha}^{*}] = 0, \qquad (補題 2.11 \ \mathrm{ct}_{3\alpha}^{*}),$$

$$[Y_{\alpha}^{*},\theta X_{2\alpha}^{*}] = -4\theta X_{\alpha}^{*}, \qquad (補題 2.12 \ \mathrm{ct}_{3\alpha}^{*}),$$

$$[Y_{\alpha}^{*},\theta Y_{\alpha}^{*}] = -96A_{\alpha}^{*}, \qquad (補題 2.10 \ \mathrm{ct}_{3\alpha}^{*}),$$

$$[Y_{\alpha}^{*},[X_{\alpha}^{*},\theta Y_{\alpha}^{*}]] = 24X_{\alpha}^{*}, \qquad (補題 2.10 \ \mathrm{ct}_{3\alpha}^{*}),$$

$$[[X_{\alpha}^{*},\theta Y_{\alpha}],X_{2\alpha}^{*}] = [[X_{\alpha}^{*},\theta Y_{\alpha}],\theta X_{2\alpha}^{*}] = 0, \qquad (補題 2.12 \ \mathrm{ct}_{3\alpha}^{*}),$$

$$[[X_{2\alpha}^{*},\theta Y_{\alpha}^{*}],X_{2\alpha}^{*}] = -48A_{\alpha}^{*}, \qquad (定義による),$$

$$[\mathcal{L}_{2\alpha}^{*},\theta X_{2\alpha}^{*}] = -48A_{\alpha}^{*}, \qquad (定義による),$$

これらを踏まえて \mathfrak{g}^* と $\mathfrak{su}(2,1)$ の対応を,

$$\begin{split} X_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & X_{2\alpha}^* \leftrightarrow \begin{pmatrix} \sqrt{-1} & 0 & -\sqrt{-1} \\ 0 & 0 & 0 \\ \sqrt{-1} & 0 & -\sqrt{-1} \end{pmatrix}, \\ \theta X_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, & \theta X_{2\alpha}^* \leftrightarrow \begin{pmatrix} \sqrt{-1} & 0 & \sqrt{-1} \\ 0 & 0 & 0 \\ -\sqrt{-1} & 0 & -\sqrt{-1} \end{pmatrix}, \\ Y_{\alpha}^* \leftrightarrow -2 \begin{pmatrix} 0 & \sqrt{-1} & 0 \\ \sqrt{-1} & 0 & -\sqrt{-1} \\ 0 & \sqrt{-1} & 0 \end{pmatrix}, & \theta Y_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & \sqrt{-1} & 0 \\ \sqrt{-1} & 0 & \sqrt{-1} \\ 0 & -\sqrt{-1} & -0 \end{pmatrix}, \\ A_{\alpha}^* \leftrightarrow \frac{1}{12} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, & [X_{\alpha}, \theta Y_{\alpha}^*] \leftrightarrow -4 \begin{pmatrix} \sqrt{-1} & 0 & 0 \\ 0 & -2\sqrt{-1} & 0 \\ 0 & \sqrt{-1} \end{pmatrix} \end{split}$$

でつける. この対応が Lie 環としての同型であること (上の関係式が満たされること) は計算することにより従う.

以上より定理 2.6 が示された.

補題 **2.13** $\Sigma(\mathfrak{g},\mathfrak{a})=\{\pm\alpha\}$ の場合,任意に固定した $0\neq X_{\alpha}\in\mathfrak{g}_{\alpha}$ と θX_{α} により生成される部分 Lie 環 \mathfrak{g}' は $\mathfrak{su}(1,1)$ と同型である.

補題 2.13 の証明 $\mathfrak{g}_{2\alpha}=\mathfrak{g}_{-2\alpha}=\{0\}$ より, $[X_{\alpha},X_{\alpha}]=[X_{-\alpha},X_{-\alpha}]=0$ である. $A_{\alpha}\in\mathfrak{a}$ を任意の $H\in\mathfrak{a}$ に対して $B(H,A_{\alpha})=\alpha(H)$ を満たす元とする.任意の $H\in\mathfrak{a}$ に対して $B(H,[X_{\alpha},\theta X_{\alpha}])=\alpha(H)B(X_{\alpha},\theta X_{\alpha})$ である.任意の $0\neq W\in\mathfrak{g}$ に対し $-B(W,\theta W)>0$ より $[X_{\alpha},\theta X_{\alpha}]=B(X_{\alpha},\theta X_{\alpha})A_{\alpha}\neq 0$ である.

以上より X_{α} と θX_{α} により生成される $\mathfrak g$ の部分 Lie 環 $\mathfrak g'$ は $\mathfrak g'=\mathbf R\,A_{\alpha}\oplus\mathbf R\,X_{\alpha}\oplus\mathbf R\,X_{\alpha}$ である.

$$c_lpha\coloneqqrac{2}{lpha(A_lpha)}$$
 を用いて \mathfrak{g}' と $\mathfrak{su}(1,1)$ の対応を

$$A_{\alpha} \leftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad c_{\alpha} X_{\alpha} \leftrightarrow \begin{pmatrix} \sqrt{-1} & -\sqrt{-1} \\ \sqrt{-1} & -\sqrt{-1} \end{pmatrix},$$
$$c_{\alpha} X_{-\alpha} \leftrightarrow \begin{pmatrix} \sqrt{-1} & \sqrt{-1} \\ -\sqrt{-1} & -\sqrt{-1} \end{pmatrix}$$

により与えると、これは \mathfrak{g}' と $\mathfrak{su}(1,1)$ の間の同型になっている.

系 2.14 G を実階数 1 の実半単純 Lie 群とする. 任意の $Y \in \mathfrak{h}\setminus\{0\}$ と任意の $X \in \mathfrak{p}\setminus\mathfrak{a}$ を固定したとき, X,Y を含む部分 Lie 環 $\mathfrak{g}_0 \subset \mathfrak{g}$ で, $\mathfrak{g}_0 \simeq \mathfrak{su}(1,1)$ か $\mathfrak{g}_0 \simeq \mathfrak{su}(2,1)$ なるものが存在する.

系 2.14 の証明 G は実階数 1 より,極大分裂可換部分代数 $\mathfrak{a} := \mathbf{R} Y \subset \mathfrak{g}$ に対しある $\alpha \in \mathfrak{a}^*$ が存在して $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha\}$ あるいは $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$ であるから,それぞれ定理 2.6 と補題 2.13 より系 2.14 の主張が従う.以下で $\Sigma(\mathfrak{g},\mathfrak{a})$ の形で場合分けしてこの議論をを確認する.

$\Sigma(\mathfrak{q},\mathfrak{a}) = \{\pm \alpha\}$ の場合

 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$, $\mathfrak{g}_0 \coloneqq \mathfrak{z}_{\mathfrak{g}}(\mathfrak{a})$ より $X \in \mathfrak{p} \setminus \mathfrak{a}$ をこの分解に対応して $X = X_0 + X_\alpha + X_{-\alpha}$ と分解すると, $X \in \mathfrak{p} \setminus \mathfrak{a}$ より $X_{-\alpha} = -\theta X_\alpha \neq 0$ である. $Y \in \mathbf{R}[X_\alpha, \theta X_\alpha]$ であるからこの $X_\alpha \neq 0$ に補題 2.13 を適用することにより $\mathfrak{g}_0 \simeq \mathfrak{su}(1,1)$ で $X, Y \in \mathfrak{g}_0$ なるものが存在する.

$$\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$$
 の場合

 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_{2\alpha} \oplus \mathfrak{g}_{-2\alpha}$, $\mathfrak{g}_0 \coloneqq \mathfrak{z}_{\mathfrak{g}}(\mathfrak{a})$ より $X \in \mathfrak{p} \setminus \mathfrak{a}$ をこの分解に対応して $X = X_0 + X_\alpha + X_{-\alpha} + X_{2\alpha} + X_{-2\alpha}$ と書くと, $X \in \mathfrak{p}$ より $X_{-\alpha} = -\theta X_\alpha$, $X_{-2\alpha} = -\theta X_{2\alpha}$ である.

ここで $X \notin \mathfrak{a}$ より,

- 1. $X_{\alpha} \neq 0$ かつ $X_{2\alpha} \neq 0$
- 2. $X_{\alpha} \neq 0$ かつ $X_{2\alpha} = 0$
- 3. $X_{\alpha}=0$ かつ $X_{2\alpha}\neq 0$

のいずれかである.

- 1 の場合はこの $X_{\alpha}, X_{2\alpha}$ と Y に,
- 2 の場合はこの X_{α} と、適当な $0 \neq X'_{2\alpha} \in \mathfrak{g}_{2\alpha}$ と Y に、
- 3 の場合はこの $X_{2\alpha}$ と、適当な $0 \neq X'_{\alpha} \in \mathfrak{g}_{\alpha}$ と Y に、

定理 2.6 を適用することにより $\mathfrak{g}_0 \simeq \mathfrak{su}(2,1)$ で $X,Y \in \mathfrak{g}_0$ なるものが存在する.

系 2.14 で定めた \mathfrak{g}_0 とその G における解析部分群 G_0 について次の 3 つが成り立つ.

補題 2.15 [Hel01, p. 409, Lemma 2.2] \mathfrak{g} の Cartan 対合 θ に対して $\mathfrak{g}_0 = \theta \mathfrak{g}_0$ であり、 \mathfrak{g}_0 への θ の制限は \mathfrak{g}_0 の Cartan 分解を与える.

補題 **2.16** ([Yos38, p. 82]) 系 2.14 の \mathfrak{g}_0 の G における解析的部分群を G_0 とする. G_0 は G の閉部分群である.

補題 2.17 ([Hel01, p. 409, Lemma 2.3]) 系 2.14 の \mathfrak{g}_0 の G における解析的部分群を G_0 とする. G=KAN を G の岩澤分解, $G_0=K_0A_0N_0$ を G の岩澤分解とするとき,

$$K_0 := G_0 \cap K$$
, $A_0 := G_0 \cap A$, $N_0 := G_0 \cap N$,

であり、 $G_0/K_0 \simeq G_0/K$ は G/K の全測地的な部分 Riemann 多様体である.

以上のことを用いて,G が実階数 1 の場合を SU(1,2) ないし SU(1,1) に帰着させることにより定理 2.5 を示す.

定理 2.5 の証明 おそらく $\dim H = 1$ 出ない場合も背理法で示せる気がする. $\mathfrak g$ の

極大分裂可換部分代数 \mathfrak{h} の定めるルート系を $\Sigma(\mathfrak{g},\mathfrak{h})$ とし, $\Sigma(\mathfrak{g},\mathfrak{h})$ の形によって 2 通りに場合分けして証明する.

$\Sigma(\mathfrak{g},\mathfrak{h}) = \{\pm \alpha\}$ のとき

系 2.14 により X とりを含む部分 Lie 環 $\mathfrak{g}' \subset \mathfrak{g}$ で $\mathfrak{su}(1,1)$ に同型なものが存在する。 \mathfrak{g}' に対応する G の解析的部分群を G' とし,その岩澤分解を G' = K'A'N' とする。このとき $e^{Z(tX)} \cdot o_K = e^{-Y(tX)}e^{tX} \cdot o_K \in G'/K$ であるから $Z(tX) \in \mathfrak{g}' \cap \mathfrak{h}^{\perp} \cap \mathfrak{p}$ \subset であり, $Y(\mathbf{R} X)$ の有界性は全測地的的な部分 Riemann 多様体 $G'/K' \subset G/K$ に対して行えば良いことがわかる。したがって命題 1.7 により $X \in \mathfrak{p}_{H,\mathrm{bdd}} \iff X = 0$ あるいは $X \in \mathfrak{p} \setminus \mathfrak{h}$ が言え,定理 2.5 が示された。

$\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$ のとき

系 2.14 により X とりを含む部分 Lie 環 $\mathfrak{g}^* \subset \mathfrak{g}$ で $\mathfrak{su}(2,1)$ に同型なものが存在する. \mathfrak{g}^* に対応する G の解析的部分群を G^* とし,その岩澤分解を $G^* = K^*A^*N^*$ とする.このとき $e^{Z(tX)} \cdot o_K = e^{-Y(tX)}e^{tX} \cdot o_K \in G'/K$ であるから $Z(tX) \in \mathfrak{g}^* \cap \mathfrak{h}^\perp \cap \mathfrak{p}$ こであり, $Y(\mathbf{R}|X)$ の有界性は全測地的的な部分 Riemann 多様体 $G^*/K^* \subset G/K$ に対して行えば良いことがわかる.したがって命題 2.1 により $X \in \mathfrak{p}_{H,\mathrm{bdd}} \iff X = 0$ あるいは $X \in \mathfrak{p} \setminus \mathfrak{h}$ が言え,定理 2.5 が示された.

2.2.1 補足: 定理 2.5 の微分幾何的側面

定義 2.18 [Ebe72a, Definition 1.3]

M が完備かつ非正曲率をもつ 1-連結 Riemann 多様体であるとき,M を Hadamard 多様体といい,Hadamard 多様体 M が visibility manifold であるとは, $\forall p \in M, \forall \varepsilon > 0$ に対し,ある $r(p,\varepsilon) > 0$ が存在して,測地線 $\gamma \colon [t_0,t_1] \to X$ が任意の $t \in [t_0,t_1]$ に対し $d_M(p,\gamma(t)) \geq r(p,\varepsilon)$ を満たすならば, $\angle_p(\gamma(t_0),\gamma(t_1)) \leq \varepsilon$ であることである.

後に示すように Poincaré 円板は visibility manifold であるが、補題 1.10 よりその片鱗を見ることはできる.具体的には $0<\varepsilon<\frac{\pi}{2}$ に対し $t_\varepsilon:=\frac{1}{2}\sinh^{-1}\frac{1}{|\tan\varepsilon|}$ とし、測地線 $\gamma_\varepsilon(s)=e^{t_\varepsilon Y}e^{sZ}\cdot o_K$ とすると、補題 1.10 より任意の $s_0,s_1\in\mathbf{R}$ に対し

 $\measuredangle_{o_K}(\gamma_{\varepsilon}(s_0), \gamma_{\varepsilon}(s_1)) \leq \varepsilon$ である. この様子を図示すると図 5 のようになる.

図 5: visibility manifold のイメージ

定理 2.19 [BH99, p. 296, 9.33 Theorem], originally [Ebe72b, Theorem 4.1] $\exists C \subset M$ s.t. $M = \bigcup \{f(C) \mid f \in \text{Isom}(M)\}$ なる Hadamard 多様体 M に対し、次は同値である.

- (ii) 全測地的な部分 Riemann 多様体 $M'\subset M$ で ${\bf R}^2$ と等長同型なものが存在しない.

ここで Riemann 対称空間は Hadamard 多様体であり、定理 2.19 の (ii) は G の 実階数が 1 以下であることと同値である.したがって G の実階数が 1 の場合 G/K は visibility manifold であり、G=SU(1,2)、H=SO(1,1) の場合の証明と全く同様にして背理法により問題 1.3 が示される.

2.3 G が実階数1の実半単純 Lie 群の直積の場合

定理 2.5 の系として次が示される.

系 2.20 $n \in \mathbb{N}$ を固定し、 $\{G_i\}_{1 \leq i \leq n}$ を実階数 1 の実半単純 Lie 群の族、 Θ_i を G_i の Cartan 対合とする.

G を $\{G_i\}_{1\leq i\leq n}$ の直積からなる Lie 群 $G=G_1\times\cdots\times G_n$ とし,H を G の非コンパクトな部分 Lie 群で,G の Cartan 対合 $\Theta\colon G\to G,\ G\ni (g_1,\ldots,g_n)\mapsto (\Theta_1g_1,\ldots,\Theta_ng_n)\in G$ に対して $\Theta H=H$ で $\dim\mathfrak{h}=1$ なるものとする.このとき問題 1.3 が成り立つ.

系 2.20 の証明 各 G_i を G の部分 Lie 群と自然にみなす. このとき $H_i := G_i \cap H$ とすると, $H \simeq H_1 \times \cdots \times H_n$ である.同様に $\mathfrak{g}_i \subset \mathfrak{g} = \bigoplus_{1 \leq i \leq n} \mathfrak{g}_i$ とみなすと $\mathfrak{h}_i := \mathfrak{g}_i \cap \mathfrak{h}$ は H_i の Lie 環である.

 K_i を $\Theta K_i = K_i$ なる G_i の極大コンパクト部分群とすると, $K \coloneqq K_1 \times \cdots \times K_n$ は G の極大コンパクト部分群で $\Theta K = K$ を満たす.

 $G/K \simeq G_1/K_1 \times \cdots \times G_n/K_n$ であり, 定理 1.2 により各 $1 \le i \le n$ の (G_i, H_i, Θ_i) に対し上への微分同相 π_i : $(\mathfrak{h}_i \cap \mathfrak{p}_i) \oplus (\mathfrak{h}_i^{\perp} \cap \mathfrak{p}_i) \ni (Y, Z) \mapsto e^Y e^Z \cdot o_K \in G_i/K_i$ が存在する. $X_i \in \mathfrak{p}_i$ に対し $(Y_i(X_i), Z_i(X_i)) := \pi_i^{-1}(e^{X_i}K_i)$ と定める.

 $X \in \mathfrak{p}$ に対し, $X = X^{(1)} + \cdots + X^{(n)}$ を $\mathfrak{p} = \bigoplus_{1 \leq i \leq n} \mathfrak{p}_i$ に対応する X の分解とすると, $Y(\mathbf{R}\,X)$ が有界であることは各 $Y_i(\mathbf{R}\,X^{(i)})$ が有界であることと同値である.また定理 2.5 より $Y_i(\mathbf{R}\,X^{(i)})$ が有界であることと「 $[X_1^{(i)},X_2^{(i)}] \neq 0$ あるいは $X_1^{(i)} = 0$ であること」が同値である.ここで $X^{(i)} = X_1^{(i)} + X_2^{(i)}$ は $\mathfrak{p}_i = (\mathfrak{h}_i \cap \mathfrak{p}_i) \oplus (\mathfrak{h}_i^{\perp} \cap \mathfrak{p}_i)$ に対応する $X^{(i)} \in \mathfrak{p}_i$ の分解とする.

したがって、 $Y(\mathbf{R} X)$ が非有界であることと「 $[X_1, X_2] = 0$ かつ $X_1 \neq 0$ であること」が同値であり、系 2.20 が示された.

3 Gの実階数が2の場合

G の実階数が 2 のとき問題 1.3 には次の反例が存在する.

命題 **3.1** $G = SL(3, \mathbf{R})$, $H = \{ \operatorname{diag}(e^a, e^b, e^c) \mid a, b, c \in \mathbf{R}, a+b+c=0 \}$, $X \coloneqq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & \sqrt{2} & -1 \end{pmatrix}$ に対し $Y(\mathbf{R} X)$ は非有界である.

 $\mathfrak{h} = \{ \operatorname{diag}(a, b, c) \mid a, b, c \in \mathbf{R}, \ a + b + c = 0 \}$ であるから $X_1 = \operatorname{diag}(1, 0, -1)$,

$$X_2 = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & \sqrt{2} \ 0 & \sqrt{2} & 0 \end{pmatrix}$$
 であり, $[X_1,X_2] = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & \sqrt{2} \ 0 & -\sqrt{2} & 0 \end{pmatrix}
eq 0 より X は $(1.1)$$

の右辺の集合の元ではあるが $X \notin \mathfrak{p}_{H,\mathrm{bdd}}$ であるから,命題 3.1 は問題 1.3 の反例となっている.

1つ補題を用意してから命題 3.1を証明する.

補題 3.2 任意の $t \in \mathbf{R}$ に対し

$$\exp\left(2t\begin{pmatrix}0&\sqrt{2}\\\sqrt{2}&-1\end{pmatrix}\right) = \begin{pmatrix}\frac{2e^{2t} + e^{-4t}}{3} & \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3}\\ \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3} & \frac{e^{2t} + 2e^{-4t}}{3}\end{pmatrix}$$

である.

補題 3.2 の証明 θ を $\cos 2\theta = \frac{1}{3}$, $\sin 2\theta = \frac{-2\sqrt{2}}{3}$ を満たす実数として任意に 1 つ固定する. このとき

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2} = \frac{2}{3},$$
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2} = \frac{1}{3}$$

である.
$$k \coloneqq \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 とすると,

$$k \begin{pmatrix} 0 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix} k^{-1} = \begin{pmatrix} -2\sqrt{2}\sin\theta\cos\theta - \sin^2\theta & \sqrt{2}(\cos^2\theta - \sin^2\theta) + \cos\theta\sin\theta \\ \sqrt{2}(\cos^2\theta - \sin^2\theta) + \cos\theta\sin\theta & 2\sqrt{2}\sin\theta\cos\theta - \cos^2\theta \end{pmatrix}$$

$$= \begin{pmatrix} -\sqrt{2}\sin2\theta - \sin^2\theta & \sqrt{2}\cos2\theta + \frac{\sin2\theta}{2} \\ \sqrt{2}\cos2\theta + \frac{\sin2\theta}{2} & \sqrt{2}\sin2\theta - \cos^2\theta \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

である.

したがって

$$k \exp\left(2t \begin{pmatrix} 0 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix}\right) k^{-1} = \exp\left(2t & 0 \\ 0 & -4t \end{pmatrix}$$

であるから,

$$\begin{split} \exp\left(2t\begin{pmatrix}0&\sqrt{2}\\\sqrt{2}&-1\end{pmatrix}\right) &= k^{-1}\exp\left(\begin{pmatrix}2t&0\\0&-4t\end{pmatrix}\right)k \\ &= \begin{pmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{pmatrix}\begin{pmatrix}e^{2t}&0\\0&e^{-4t}\end{pmatrix}\begin{pmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{pmatrix} \\ &= \begin{pmatrix}e^{2t}\cos^2\theta+e^{-4t}\sin^2\theta&(e^{-4t}-e^{2t})\sin\theta\cos\theta\\(e^{-4t}-e^{2t})\sin\theta\cos\theta&e^{2t}\sin^2\theta+e^{-4t}\cos^2\theta\end{pmatrix} \\ &= \begin{pmatrix}\frac{2e^{2t}+e^{-4t}}{3}&\frac{\sqrt{2}(e^{2t}-e^{-4t})}{3}\\ &\frac{\sqrt{2}(e^{2t}-e^{-4t})}{3}&\frac{e^{2t}+2e^{-4t}}{3}\end{pmatrix} \end{split}$$

命題 3.1 の証明 行列式 1 の 3×3 正定値実対称行列全体の集合 $\mathrm{Symm}^+(3)$ と G/K は $gK\mapsto g\begin{pmatrix} 1&0\\0&1\end{pmatrix}{}^tg$ により微分同相である。 補題 3.2 より

$$e^{tX} \cdot o_K = e^{tX} \stackrel{t}{} (e^{tX}) = e^{2tX}$$

$$= \begin{pmatrix} e^{2t} & 0 & 0 \\ 0 & \frac{2e^{2t} + e^{-4t}}{3} & \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3} \\ 0 & \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3} & \frac{e^{2t} + 2e^{-4t}}{3} \end{pmatrix}$$
(3.1)

である.

$$Y\coloneqq \mathrm{diag}(a,b,c),\ a+b+c=0,\ Z\coloneqq egin{pmatrix} 0&0&0\\0&0&1\\0&1&0 \end{pmatrix}$$
 とすると、 $r\in\mathbf{R}$ に対し、

$$e^{Y}e^{rZ} \cdot o_{K} = e^{Y}e^{2rZ}e^{Y}$$

$$= \begin{pmatrix} e^{a} & 0 & 0 \\ 0 & e^{b} & 0 \\ 0 & 0 & e^{c} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cosh 2r & \sinh 2r \\ 0 & \sinh 2r & \cosh 2r \end{pmatrix} \begin{pmatrix} e^{a} & 0 & 0 \\ 0 & e^{b} & 0 \\ 0 & 0 & e^{c} \end{pmatrix}$$

$$= \begin{pmatrix} e^{2a} & 0 & 0 \\ 0 & e^{2b}\cosh 2r & e^{b+c}\sinh 2r \\ 0 & e^{b+c}\sinh 2r & e^{2c}\cosh 2r \end{pmatrix}$$

$$= \begin{pmatrix} e^{2a} & 0 & 0 \\ 0 & e^{2b}\cosh 2r & e^{-a}\sinh 2r \\ 0 & e^{-a}\sinh 2r & e^{-2a-2b}\cosh 2r \end{pmatrix}$$
(3.2)

である. ただし最後の変形にはa+b+c=0を用いた.

(3.1) と (3.2) を見比べると,

$$a = t,$$

$$\sinh 2r = \frac{2\sqrt{2}}{3} \sinh 3t,$$

$$e^{2b} = \frac{2e^{2t} + e^{-4t}}{\sqrt{9 + 8\sinh^2 3t}}$$

とすると $e^Y e^{rZ} \cdot o_K = e^{tX} \cdot o_K$ を得る. つまり任意の $t \in \mathbf{R}$ に対し

•
$$Y(tX) = \operatorname{diag}(a(t), b(t), -a(t) - b(t))$$

$$\text{title } a(t) = t, \ b(t) = \frac{1}{2} \log \left(\frac{2e^{2t} + e^{-4t}}{\sqrt{9 + 8 \sinh^2 3t}} \right),$$

•
$$Z(tX) = r(t)Z$$
 ただし $r(t) = \frac{1}{2}\sinh^{-1}\left(\frac{2\sqrt{2}}{3}\sinh 3t\right)$

であるから、 $Y(\mathbf{R}X)$ は非有界である.

参考文献

- [Ber88] J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys., Vol. 5, n. 4, 1988, pp. 663–710.
- [BBE85] W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2), Vol. 122, No. 1, 1985, pp. 171–203.
- [BH99] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissensschaften, Vol. 319, Springer, 1999.
- [Borel-Ji] A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, 2006.
- [**Ebe72a**] P. Eberlien, Geodesic Flows on Negatively Curved Manifolds I, Ann. of Math. (2), Vol. 95, 1972, pp. 492–510.
- [Ebe72b] P. Eberlien, Geodesic Flow in Certain Manifolds without Conjugate Points, Trans. Amer. Math. Soc., Vol. 167, 1972, pp. 151–70.
- [EO73] P. Eberlein and B. O'Neill, *Visibility Manifolds*, Pacific J. Math., Vol. 46, No. 1, 1973, pp. 45–109.
- [Hel84] S. Helgason, Groups and Geometric Analysis—Integral Geometry, Invariant Differential Operators, and Spherical Functions, Mathematical Surveys and Monographs, Vol. 83, AMS, 1984.
- [Hel01] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, GSM, Vol. 34, AMS, 2001.
- [Kob89] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., Vol. 285, Issue. 2, 1989, pp. 249–263.
- [Kob97] T. Kobayashi, Invariant mesures on homogeneous manifolds of reductive type, J. Reine Angew. Math., Vol. 1997, No. 490–1, 1997, pp. 37–54.
- [Yos37] K. Yosida, A problem concerning the second fundamental theorem of Lie, Proc. Imp. Acad., Vol. 13, No. 5, 1937, pp. 152–155.

[Yos38] K. Yosida, A Theorem concerning the Semi-Simple Lie Groups, Tohoku Mathematical Journal, First Series, Vol. 44, 1938, pp. 81–84.