Andrea Brugnoli

☐ +33 7 50 39 47 27 • ☐ andrea.brugnoli92@gmail.com

• andreabrugnoli • ⑤ andrea.brugnoli

• ☐ andrea.brugnoli

Education

ISAE-Supaero Toulouse

PhD candidate October 2017-October 2020

A port-Hamiltonian formulation of flexible structures: modelling and symplectic finite element discretization.

Université Paris Saclay/Supélec

Paris/Toulouse

Research Master in automatics and image processing

2016-2017

Courses: inverse problem, advanced dynamics of flexible structures, parameter estimation.

ISAE-Supaero Toulouse

Double degree in aerospace and astronautical engineering

2015-2017

Specialisation in applied mathematics and advanced automatics: multidisciplinary optimisation, high performance computing, control of flexible structures.

Politecnico di MilanoMaster in space engineering, 110/110 cum laude
2014–2017

Courses: orbital mechanics, structural dynamics and control, thermochemical propulsion.

Politecnico di Milano
Mechanical Engineering Degree. 110/110 cum laude

Milan
2011–2014

Mechanical Engineering Degree, 110/110 cum laude Courses: finite element method, mechanical vibrations, numerical methods for engineering.

Liceo Classico Scipione Maffei Verona

High school diploma, 100/100 2006–2011

Experiences

ITA-Instituto Tecnológico de Aeronáutica

São José dos Campos

Visiting researcher January 2019, 4 months

Collaboration with Flavio Cardoso-Riberio on numerical methods for port-Hamiltonian systems.

CNES-Centre des études spatiales

Toulouse

Internship 2017, 6 months

Analysis of dismissed satellites subjected to solar pressure to identify stable pointing configurations and periodical behaviours.

ISAE-Supaero in partnership with LAAS

Toulouse

2016, 5 months

Industrial and entrepreneurial project Intelligent teleoperations and optimal control for micro-drones systems (six people team).

ISAE-Supaero Toulouse

Research project 2016, 4 months

Modular modelling of rigid multibody systems following the logic of Simscape Multibody.

Politecnico di Milano in partnership with Danieli S.p.A

Milan

Bachelor project 2014, 3 months

Dynamics of a forging manipulator: kinematics modelisation and dynamic analysis. Presented at Danieli.

Languages

Italian: native speaker

English: fluent (Toeic 965/990)

French: fluent

Spanish: intermediate

Brazilian portuguese: intermediate

Computer skills

Softwares and platforms: Simulink, Abaqus, Inventor,

Solid Works, Labview

Languages: Python (especially FEM librairies: FEniCS

and Firedrake), Matlab, Java, C, LATEX

OS: Linux environment (Fedora, Ubuntu)

References

Denis Matignon

Department of Applied Mathematics

ISAE-Supaero

Toulouse, 31055 (FR) 10 Avenue Edouard Belin

☑ denis.matignon@isae.fr

**** 0033-661741511

Daniel Alazard

Department of Space and Aeronautics Vehicle

Dynamics

ISAE-Supaero

Toulouse, 31055 (FR)

10 Avenue Edouard Belin

☑ daniel.alazard@isae.fr

**** 0033-634981322

Paul Kotyzca

Department of Mechanical Engineering Technical University of Munich

Munich, 85748 (GE)
Boltzmannstr. 15

☑ kotyczka@tum.de

Laurent Lefèvre

Laboratory for system conception and integration Université de Grenoble Alpes, LCIS

Valence, F26902 (FR)

50 rue Laffémas

☐ laurent.lefevre@lcis.grenoble-inp.fr

Publications

- [1] A. Brugnoli, D. Alazard, V. Pommier-Budinger, and D. Matignon. Partitioned finite element method for the Mindlin plate as a port-Hamiltonian system. In *3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019*, pages 88 95, Oaxaca, MX, 2019. https://doi.org/10.1016/j.ifacol.2019.08.016.
- [2] A. Brugnoli, D. Alazard, V. Pommier-Budinger, and D. Matignon. Port-Hamiltonian formulation and symplectic discretization of plate models part I: Mindlin model for thick plates. *Applied Mathematical Modelling*, 75:940 960, Nov 2019. https://doi.org/10.1016/j.apm.2019.04.035.
- [3] A. Brugnoli, D. Alazard, V. Pommier-Budinger, and D. Matignon. Port-Hamiltonian formulation and symplectic discretization of plate models part II: Kirchhoff model for thin plates. *Applied Mathematical Modelling*, 75:961 981, Nov 2019. https://doi.org/10.1016/j.apm.2019.04.036.
- [4] A. Brugnoli, D. Alazard, V. Pommier-Budinger, and D. Matignon. Interconnection of the Kirchhoff plate within the port-Hamiltonian framework. In *Proceedings of the 59th IEEE Conference on Decision and Control*, Dec 2019.
- [5] F. L. Cardoso-Ribeiro, A. Brugnoli, D. Matignon, and L. Lefèvre. Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. In *Proceedings of the 59th IEEE Conference on Decision and Control*, Dec 2019.

- [6] A. Brugnoli, F. L. Cardoso-Ribeiro, G. Haine, and P. Kotyzca. Partitioned finite element method for power-preserving structured discretization with mixed boundary conditions. Submitted to the 21st IFAC World congress, Jul 2020.
- [7] A. Brugnoli, D. Alazard, V. Pommier-Budinger, and D. Matignon. Structure-preserving discretization of port-Hamiltonian plate models. Submitted to the 24st International Symposium on Mathematical Theory of Networks and Systems, Aug 2020.

Interests

Tutor of mathematics and physics for bachelor students. Lindy Hop, tennis, travelling, literature and cinema.