homalg - Constructive Homological Algebra

Mohamed Barakat

RWTH Aachen University

3rd GAP Days Trondheim, September 14, 2015.

Joint work with Markus Lange-Hegermann, Sebastian Gutsche, Sebastian Posur

The category R-fpmod

 For developing homological algebra constructively we first need to deal with finitely presented modules.

The category R-fpmod

- For developing homological algebra constructively we first need to deal with finitely presented modules.
- A lot of what we want to compute about such modules only depends on their category

$$R\text{-}\mathbf{fpmod} := \begin{cases} \mathsf{Obj:} & \mathsf{finitely} \ \mathsf{presented} \ R\text{-}\mathsf{modules}, \\ \mathsf{Mor:} & \mathsf{their} \ R\text{-}\mathsf{module} \ \mathsf{maps} \end{cases}$$

The category R-fpmod

- For developing homological algebra constructively we first need to deal with finitely presented modules.
- A lot of what we want to compute about such modules only depends on their category

$$R\text{-}\mathbf{fpmod} := \begin{cases} \mathsf{Obj:} & \mathsf{finitely} \ \mathsf{presented} \ R\text{-}\mathsf{modules}, \\ \mathsf{Mor:} & \mathsf{their} \ R\text{-}\mathsf{module} \ \mathsf{maps} \end{cases}$$

up to equivalence.

How can category theory be helpful in the development of a constructive approach?

How can category theory be helpful in the development of a constructive approach?

Answer:

• A category A consists of

How can category theory be helpful in the development of a constructive approach?

Answer:

- A category A consists of
 - objects L, M, N, \ldots and

How can category theory be helpful in the development of a constructive approach?

Answer:

- A category A consists of
 - objects L, M, N, \ldots and
 - sets of morphisms $\operatorname{Hom}_{\mathcal{A}}(M,N)$.

How can category theory be helpful in the development of a constructive approach?

Answer:

- A category A consists of
 - objects L, M, N, \ldots and
 - sets of morphisms $\operatorname{Hom}_{\mathcal{A}}(M,N)$.
- In fact, only the Hom sets and their compositions are relevant

$$\operatorname{Hom}_{\mathcal{A}}(L,M) \times \operatorname{Hom}_{\mathcal{A}}(M,N) \to \operatorname{Hom}_{\mathcal{A}}(L,N)$$

 $(\varphi,\psi) \mapsto \varphi\psi.$

Equivalence of categories

 This means, the notion "category" suppresses the "inner nature" of the objects and emphasizes the "algebra" of morphisms.

Equivalence of categories

- This means, the notion "category" suppresses the "inner nature" of the objects and emphasizes the "algebra" of morphisms.
- The objects are only place-holders, exactly like the vertices of a graph.

Equivalence of categories

- This means, the notion "category" suppresses the "inner nature" of the objects and emphasizes the "algebra" of morphisms.
- The objects are only place-holders, exactly like the vertices of a graph.
- The notion "equivalence of categories" gives one even more freedom in the description of a (constructive) model of the category.

Here is a prominent example of this approach.

Here is a prominent example of this approach.

Example

Let k be a field. Then

$$k ext{-fdvec} := \begin{cases} \mathsf{Obj:} & \mathsf{finite\ dim.\ } k ext{-vector\ spaces}, \\ \mathsf{Mor:} & k ext{-linear\ maps}. \end{cases}$$

Here is a prominent example of this approach.

Example

Let k be a field. Then

$$k ext{-fdvec} := egin{cases} \mathsf{Obj:} & \mathsf{finite\ dim.\ }k ext{-vector\ spaces}, \\ \mathsf{Mor:} & k ext{-linear\ maps}. \\ & \simeq \\ k ext{-mat} := egin{cases} \mathsf{Obj:} & \mathbb{N} \ni g, g', \dots, \end{cases}$$

Here is a prominent example of this approach.

Example

Let k be a field. Then

$$\begin{aligned} k\text{-fdvec} &:= \begin{cases} \mathsf{Obj:} & \mathsf{finite\ dim.\ } k\text{-vector\ spaces,} \\ \mathsf{Mor:} & k\text{-linear\ maps.} \end{cases} \\ &\simeq \\ k\text{-mat} &:= \begin{cases} \mathsf{Obj:} & \mathbb{N} \ni g, g', \dots, \\ \mathsf{Mor:} & \mathtt{A} \in k^{g \times g'}, \ g, g' \in \mathbb{N}. \end{cases} \end{aligned}$$

Here is a prominent example of this approach.

Example

Let k be a field. Then

$$k ext{-fdvec} := egin{cases} \mathsf{Obj:} & \mathsf{finite\ dim.\ }k ext{-vector\ spaces,} \\ \mathsf{Mor:} & k ext{-linear\ maps.} \end{cases}$$
 \simeq $k ext{-mat} := egin{cases} \mathsf{Obj:} & \mathbb{N} \ni g, g', \ldots, \\ \mathsf{Mor:} & \mathbb{A} \in k^{g imes g'}, \ g, g' \in \mathbb{N}. \end{cases}$

 \leadsto from the categorical point of view, linear algebra and matrix theory are equivalent.

From now on let R be a ring with 1.

From now on let R be a ring with 1.

Definition

Let $A \in R^{r \times c}$ and $B \in R^{r' \times c}$ be two stackable matrices.

From now on let R be a ring with 1.

Definition

Let $\mathtt{A} \in R^{r \times c}$ and $\mathtt{B} \in R^{r' \times c}$ be two stackable matrices. We say that \mathtt{A} row-dominates \mathtt{B} if there exists a matrix \mathtt{X} satisfying $\mathtt{X}\mathtt{A} = \mathtt{B}$.

From now on let R be a ring with 1.

Definition

Let $A \in R^{r \times c}$ and $B \in R^{r' \times c}$ be two stackable matrices. We say that A **row-dominates** B if there exists a matrix X satisfying XA = B. We write $A \ge B$.

From now on let R be a ring with 1.

Definition

Let $A \in R^{r \times c}$ and $B \in R^{r' \times c}$ be two stackable matrices. We say that A **row-dominates** B if there exists a matrix X satisfying XA = B. We write $A \ge B$.

Example

R-fpmod \simeq

From now on let R be a ring with 1.

Definition

Let $A \in R^{r \times c}$ and $B \in R^{r' \times c}$ be two stackable matrices. We say that A **row-dominates** B if there exists a matrix X satisfying XA = B. We write $A \ge B$.

Example

$$R ext{-fpmod} \simeq \ R ext{-fpres} := \left\{egin{align*} \mathsf{Obj:} & \mathtt{M} \in R^{r imes g}, \mathtt{N} \in R^{r' imes g'}, \ldots, \ r, g, r', g' \in \mathbb{N}, \end{array}
ight.$$

From now on let R be a ring with 1.

Definition

Let $A \in R^{r \times c}$ and $B \in R^{r' \times c}$ be two stackable matrices. We say that A **row-dominates** B if there exists a matrix X satisfying XA = B. We write $A \ge B$.

Example

$$R\text{-fpmod} \simeq \begin{cases} \mathsf{Obj:} & \mathtt{M} \in R^{r \times g}, \mathtt{N} \in R^{r' \times g'}, \ldots, \ r, g, r', g' \in \mathbb{N}, \\ \mathsf{R}\text{-fpres} := \begin{cases} \mathsf{Obj:} & \mathtt{M} \in R^{r \times g}, \mathtt{N} \in R^{r' \times g'}, \ldots, \ r, g, r', g' \in \mathbb{N}, \\ \mathsf{Mor:} & [(\mathtt{M}, \mathtt{A}, \mathtt{N})] \text{ with } \mathtt{A} \in R^{g \times g'} \text{ lies in } \mathrm{Hom}(\mathtt{M}, \mathtt{N}), \\ & \mathsf{if } \mathtt{N} \geq \mathtt{M}\mathtt{A}, \end{cases}$$

From now on let R be a ring with 1.

Definition

Let $A \in R^{r \times c}$ and $B \in R^{r' \times c}$ be two stackable matrices. We say that A **row-dominates** B if there exists a matrix X satisfying XA = B. We write $A \ge B$.

Example

$$\begin{split} R\text{-}\mathbf{fpmod} &\simeq \\ R\text{-}\mathbf{fpres} := \begin{cases} \mathsf{Obj:} & \mathtt{M} \in R^{r \times g}, \mathtt{N} \in R^{r' \times g'}, \ldots, \ r, g, r', g' \in \mathbb{N}, \\ \mathsf{Mor:} & [(\mathtt{M}, \mathtt{A}, \mathtt{N})] \ \mathsf{with} \ \mathtt{A} \in R^{g \times g'} \ \mathsf{lies} \ \mathsf{in} \ \mathsf{Hom}(\mathtt{M}, \mathtt{N}), \\ & \mathsf{if} \ \mathtt{N} \geq \mathtt{MA}, \end{cases} \\ \mathsf{and} \ (\mathtt{M}, \mathtt{A}, \mathtt{N}) &\sim (\mathtt{M}', \mathtt{A}', \mathtt{N}') :\iff \mathtt{M} = \mathtt{M}', \mathtt{N} = \mathtt{N}', \mathtt{N} \geq \mathtt{A} - \mathtt{A}'. \end{cases}$$

Recall:

Definition

A category $\ensuremath{\mathcal{A}}$ is called ABELian if

Recall:

Definition

A category ${\mathcal A}$ is called ABELian if

· finite biproducts exist,

Recall:

Definition

A category $\mathcal A$ is called ABELian if

- · finite biproducts exist,
- each morphism has an additive inverse,

Recall:

Definition

A category $\mathcal A$ is called ABELian if

- · finite biproducts exist,
- · each morphism has an additive inverse,
- · kernels and cokernels exist,

Recall:

Definition

A category A is called ABELian if

- · finite biproducts exist,
- each morphism has an additive inverse,
- · kernels and cokernels exist,
- the homomorphism theorem is valid, i.e., $\operatorname{coim} \varphi \xrightarrow{\sim} \operatorname{im} \varphi$.

Recall:

Definition

A category \mathcal{A} is called ABELian if

- · finite biproducts exist,
- each morphism has an additive inverse,
- · kernels and cokernels exist,
- the homomorphism theorem is valid, i.e., $\operatorname{coim} \varphi \xrightarrow{\sim} \operatorname{im} \varphi$.

Definition

A category is called **constructively** ABELian if all disjunctions (\lor) and existential quantifiers (\exists) in the axioms of an ABELian category can be realized by algorithms.

Example

Let $\varphi:M\to N$ be a morphism in \mathcal{A} .

$$M \xrightarrow{\varphi} N$$

Example

Let $\varphi:M\to N$ be a morphism in \mathcal{A} .

$$\ker \varphi$$

$$M \stackrel{\varphi}{-\!\!\!-\!\!\!-} N$$

Example

Let $\varphi: M \to N$ be a morphism in \mathcal{A} .

$$\ker \varphi \xrightarrow{\kappa} M \xrightarrow{\varphi} N$$

Example

Let $\varphi: M \to N$ be a morphism in \mathcal{A} .

Example

Let $\varphi: M \to N$ be a morphism in \mathcal{A} .

The "hidden" existential quantifiers of "kernels"

Example

Let $\varphi: M \to N$ be a morphism in \mathcal{A} .

A is a category

A is a category:

- **1** For any object M there exists an **identity morphism** 1_M .
- 2 For any two composable morphisms φ, ψ there exists a composition $\varphi\psi$.

A is a category with zero

\mathcal{A} is a category **with zero**:

- 3 There exists a zero object 0.
- 4 For all objects M, N there exists a zero morphism 0_{MN} .

\mathcal{A} is an **additive** category

A is an **additive** category:

- **5** For all objects M, N there exists an **addition** $(\varphi, \psi) \mapsto \varphi + \psi$ in the ABELian group $\operatorname{Hom}_{\mathcal{A}}(M, N)$.
- 6 For all objects M,N there exists a subtraction $(\varphi,\psi)\mapsto \varphi-\psi$ in the ABELian group $\operatorname{Hom}_{\mathcal A}(M,N)$.
- 7 For all objects A_1, A_2 there exists a **direct sum** $A_1 \oplus A_2$ and projections $\pi_i : A_1 \oplus A_2 \to A_i$ such that
- 8 for all pairs of morphisms $\varphi_i: M \to A_i, \ i=1,2$ there exists a *unique* product morphism $\{\varphi_1, \varphi_2\}: M \to A_1 \oplus A_2$ satisfying $\{\varphi_1, \varphi_2\}\pi_i = \varphi_i$.
- 9 for all pairs of morphisms $\varphi_i: A_i \to M, i = 1, 2$ there exists a *unique* coproduct morphism^a $\langle \varphi_1, \varphi_2 \rangle : A_1 \oplus A_2 \to M$.

^afollows from the above axioms [HS97, Prop. II.9.1].

\mathcal{A} is a **pre-Abelian** category

A is a **pre-Abelian** category:

- **10** For any morphism $\varphi: M \to N$ there exists a **kernel** $\ker \varphi \overset{\kappa}{\hookrightarrow} M$, such that
- for any morphism $\tau:L\to M$ with $\tau\varphi=0$ there exists a unique lift $\tau_0:L\to\ker\varphi$ of τ along κ , i.e., $\tau_0\kappa=\tau$.
- $\text{ For any morphism } \varphi: M \to N \text{ there exists a cokernel } N \overset{\varepsilon}{\to} \operatorname{coker} \varphi, \text{ such that }$
- **(8)** for any morphism $\eta: N \to L$ with $\varphi \eta = 0$ there exists a unique colift $\eta_0: \operatorname{coker} \varphi \to L$ of η along ε , i.e., $\varepsilon \eta_0 = \eta$.

A is an **ABELian** category

A is an **ABELian** category:

- 14 Each mono is a kernel mono.
- 15 Each epi is a cokernel epi.

Definition

We call a constructive ring left computable

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable. This means:

Determining a syzygy matrix S of A:

$$SA = 0, \forall S' : S'A = 0 \implies S \ge S'.$$

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable. This means:

• Determining a syzygy matrix S of A:

$$SA = 0, \forall S' : S'A = 0 \implies S \ge S'.$$

• Deciding if $A \ge B$, i.e., the solvability of XA = B

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable. This means:

• Determining a syzygy matrix S of A:

$$SA = 0, \forall S' : S'A = 0 \implies S \ge S'.$$

• Deciding if $A \ge B$, i.e., the solvability of XA = B and in the affirmative case determining a particular solution X.

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable. This means:

• Determining a syzygy matrix S of A:

$$SA = 0, \forall S' : S'A = 0 \implies S \ge S'.$$

 Deciding if A ≥ B, i.e., the solvability of XA = B and in the affirmative case determining a particular solution X.

Theorem ([BLH11])

If R is left computable then the category R-fpres $\simeq R$ -fpmod is constructively ABELian.

Rows of the matrices A and B can be considered as elements of the free module $R^{1\times g}$.

Rows of the matrices A and B can be considered as elements of the free module $R^{1\times g}$.

 Deciding the solvability of the inhomogeneous linear system XA = B for a single row matrix B

Rows of the matrices A and B can be considered as elements of the free module $R^{1\times g}$.

 Deciding the solvability of the inhomogeneous linear system XA = B for a single row matrix B is thus nothing but the **submodule membership problem** for the submodule generated by the rows of the matrix A.

Rows of the matrices A and B can be considered as elements of the free module $R^{1\times g}$.

- Deciding the solvability of the inhomogeneous linear system XA = B for a single row matrix B is thus nothing but the submodule membership problem for the submodule generated by the rows of the matrix A.
- Finding a particular solution X (in case one exists) solves the submodule membership problem **effectively**.

DecideZeroRows

• DecideZeroRows(B, A) returns a matrix B' (having the same shape as B)

DecideZeroRows

- DecideZeroRows(B, A) returns a matrix B' (having the same shape as B)
 - for which the equation XA = B B' is solvable

DecideZeroRows

- DecideZeroRows(B, A) returns a matrix B' (having the same shape as B)
 - for which the equation XA = B B' is solvable
 - and where the *i*-th row B_i' is zero iff the equation $xA = B_i$ is solvable.

DecideZeroRows

- DecideZeroRows(B, A) returns a matrix B' (having the same shape as B)
 - for which the equation XA = B B' is solvable
 - and where the i-th row \mathbf{B}_i' is zero iff the equation $\mathbf{x}\mathbf{A}=\mathbf{B}_i$ is solvable.

In particular, the equation XA = B is solvable iff

DecideZeroRows(B, A) = 0.

DecideZeroRows

- DecideZeroRows(B, A) returns a matrix B' (having the same shape as B)
 - for which the equation XA = B B' is solvable
 - and where the i-th row B'_i is zero iff the equation xA = B_i is solvable.

In particular, the equation $\mathtt{XA} = \mathtt{B}$ is solvable iff

DecideZeroRows(B, A) = 0.

 DecideZeroRowsEffectively(B, A) computes a matrix T satisfying B + TA = B', where B' = DecideZeroRows(B, A).

DecideZeroRows

- DecideZeroRows(B, A) returns a matrix B' (having the same shape as B)
 - for which the equation XA = B B' is solvable
 - and where the i-th row B'_i is zero iff the equation xA = B_i is solvable.

In particular, the equation XA = B is solvable iff

$$DecideZeroRows(B, A) = 0.$$

DecideZeroRowsEffectively(B, A) computes a matrix T satisfying B + TA = B', where B' = DecideZeroRows(B, A).
 In particular, if the equation XA = B is solvable then we recover

$$X := -T =: RightDivide(B, A).$$

Example

gap> ?SyzygiesOfRows

Example

```
gap> ?SyzygiesOfRows
```

gap> ?SyzygiesGeneratorsOfRows

Example

```
gap> ?SyzygiesOfRows
```

gap> ?SyzygiesGeneratorsOfRows

gap> ?DecideZeroRows

Example

```
gap> ?SyzygiesOfRows
```

gap> ?SyzygiesGeneratorsOfRows

gap> ?DecideZeroRows

gap> ?DecideZeroRowsEffectively

Example

```
gap> ?SyzygiesOfRows
```

gap> ?SyzygiesGeneratorsOfRows

gap> ?DecideZeroRows

gap> ?DecideZeroRowsEffectively

gap> ?RightDivide

Example (computable rings)	
ring	algorithm
a	'
b	

Example (computable rings)	
ring	algorithm
a constructive field k	
а b	

Example (computable rings)	
ring	algorithm
a constructive field k ring of rational integers $\mathbb Z$	
b	

Example (computable rings)	
ring	algorithm
a constructive field k	
ring of rational integers \mathbb{Z}	
a univariate polynomial ring $k[x]$	
	l
a b	
b	

Example (computable rings)	
ring	algorithm
a constructive field k	
ring of rational integers ${\mathbb Z}$	
a univariate polynomial ring $k[x]$	
a polynomial ring ^a $R[x_1, \ldots, x_n]$	
AD and of the other days	
^a R any of the above rings	

Example (computable rings)	
ring a constructive field k ring of rational integers \mathbb{Z} a univariate polynomial ring $k[x]$ a polynomial ring ^a $R[x_1,\ldots,x_n]$ many noncommutative rings	algorithm
${}^{a}R$ any of the above rings	

Example	(computable rings)
---------	--------------------

ring	algorithm
a constructive field k	
ring of rational integers $\mathbb Z$	
a univariate polynomial ring $k[x]$	
a polynomial ring ^a $R[x_1, \ldots, x_n]$	
many noncommutative rings	
$k[x_1,\ldots,x_n]_{\langle x_1,\ldots,x_n\rangle}$	

 $^{{}^{\}it a}_{\it b}R$ any of the above rings

 $^{{}^{}a}R$ any of the above rings

^bmodulo ideals which are f.g. as left resp. right ideals.

Example (computable rings)	
ring	algorithm
a constructive field k	
ring of rational integers ${\mathbb Z}$	
a univariate polynomial ring $k[x]$	
a polynomial ring ^a $R[x_1, \ldots, x_n]$	
many noncommutative rings	
$k[x_1,\ldots,x_n]_{\langle x_1,\ldots,x_n\rangle}$	
residue class rings ^b	
an (III)	'

 $^{{}^{}a}R$ any of the above rings

^bmodulo ideals which are f.g. as left resp. right ideals.

Example (computable rings)	
ring	algorithm
a constructive field k	Gauss
ring of rational integers $\mathbb Z$	
a univariate polynomial ring $k[x]$	
a polynomial ring ^a $R[x_1, \ldots, x_n]$	
many noncommutative rings	
$k[x_1,\ldots,x_n]_{\langle x_1,\ldots,x_n\rangle}$	
$k[x_1,\ldots,x_n]_{\langle x_1,\ldots,x_n\rangle}$ residue class rings ^b	
	1
^a R any of the above rings	

 $^{^{\}circ}R$ any of the above rings

^bmodulo ideals which are f.g. as left resp. right ideals.

Example (computable rings)	
ring	algorithm
a constructive field k	Gauss
ring of rational integers ${\mathbb Z}$	HERMITE normal form
a univariate polynomial ring $k[x]$	
a polynomial ring ^a $R[x_1, \ldots, x_n]$	
many noncommutative rings	
$k[x_1,\ldots,x_n]_{\langle x_1,\ldots,x_n\rangle}$	
residue class rings ^b	

 $^{{}^{}a}R$ any of the above rings

^bmodulo ideals which are f.g. as left resp. right ideals.

Example (computable rings)	
ring	algorithm
a constructive field k	Gauss
ring of rational integers ${\mathbb Z}$	HERMITE normal form
a univariate polynomial ring $k[x]$	HERMITE normal form
a polynomial ring ^a $R[x_1, \ldots, x_n]$	
many noncommutative rings	
$k[x_1,\ldots,x_n]_{\langle x_1,\ldots,x_n\rangle}$	
residue class rings ^b	

 $^{^{}a}R$ any of the above rings

^bmodulo ideals which are f.g. as left resp. right ideals.

Example (computable rings)	
ring	algorithm
a constructive field k	Gauss
ring of rational integers ${\mathbb Z}$	HERMITE normal form
a univariate polynomial ring $k[x]$	HERMITE normal form
a polynomial ring ^a $R[x_1, \ldots, x_n]$	Buchberger
many noncommutative rings	
$k[x_1,\ldots,x_n]_{\langle x_1,\ldots,x_n\rangle}$	
residue class rings ^b	

 $^{{}^{}a}R$ any of the above rings

^bmodulo ideals which are f.g. as left resp. right ideals.

algorithm
Gauss
HERMITE normal form
HERMITE normal form
Buchberger
n.c. Buchberger

 $^{{}^{}a}R$ any of the above rings

^bmodulo ideals which are f.g. as left resp. right ideals.

Example (computable rings)	
ring	algorithm
a constructive field k	Gauss
ring of rational integers $\mathbb Z$	HERMITE normal form
a univariate polynomial ring $k[x]$	HERMITE normal form
a polynomial ring ^a $R[x_1, \ldots, x_n]$	Buchberger
many noncommutative rings	n.c. Buchberger
$k[x_1,\ldots,x_n]_{\langle x_1,\ldots,x_n\rangle}$	MORA BUCHBERGER
residue class rings ^b	
	'

 $^{{}^{}a}R$ any of the above rings

^bmodulo ideals which are f.g. as left resp. right ideals.

Example (computable rings)	
ring a constructive field k ring of rational integers \mathbb{Z} a univariate polynomial ring $k[x]$ a polynomial ring ^a $R[x_1, \dots, x_n]$ many noncommutative rings $k[x_1, \dots, x_n]_{\langle x_1, \dots, x_n \rangle}$ residue class rings ^b	algorithm GAUSS HERMITE normal form HERMITE normal form BUCHBERGER n.c. BUCHBERGER MORA BUCHBERGER
aR any of the above rings b modulo ideals which are f.g. as left resp. right ideals.	

In this context any algorithm to compute a GRÖBNER basis is a substitute for the GAUSS resp. HERMITE normal form algorithm.

BasisOfRows

Exercise

Use BasisOfRows to program

- DecideZeroRows,
- DecideZeroRowsEffectively,
- and SyzygiesOfRows.

BasisOfRows

Exercise

Use BasisOfRows to program

- DecideZeroRows,
- DecideZeroRowsEffectively,
- and SyzygiesOfRows.

Hint:

$$\left(\begin{smallmatrix}1&-X\\0&Y\\0&S\end{smallmatrix}\right)\left(\begin{smallmatrix}1&B&0\\0&A&1\end{smallmatrix}\right)\xrightarrow{\mathsf{BasisOfRows}}\left(\begin{smallmatrix}1&B'&-X\\0&A'&Y\\0&0&S\end{smallmatrix}\right)=\left(\begin{smallmatrix}1&-X\\0&Y\\0&S\end{smallmatrix}\right)\left(\begin{smallmatrix}1&B&0\\0&A&1\end{smallmatrix}\right)$$

```
Example (homalg rings)
gap> LoadPackage( "RingsForHomalg" );;
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> Q := HomalgFieldOfRationals();
Q
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> Q := HomalgFieldOfRationals();
Q
gap> F2 := HomalgRingOfIntegers(2);
GF(2)
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> Q := HomalgFieldOfRationals();
Q
gap> F2 := HomalgRingOfIntegers(2);
GF(2)
gap> F4 := HomalgRingOfIntegers(2, 2);
GF(2^2)
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> Q := HomalgFieldOfRationals();
Q
gap> F2 := HomalgRingOfIntegers(2);
GF(2)
gap> F4 := HomalgRingOfIntegers(2,2);
GF(2^2)
gap> ZZ := HomalgRingOfIntegers();
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> Q := HomalgFieldOfRationals();
Q
gap> F2 := HomalgRingOfIntegers(2);
GF(2)
gap> F4 := HomalgRingOfIntegers(2,2);
GF(2^2)
gap> ZZ := HomalgRingOfIntegers();
Z
gap> ?Ring Constructions
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> Q := HomalgFieldOfRationals();
Q
gap> F2 := HomalgRingOfIntegers(2);
GF(2)
gap> F4 := HomalgRingOfIntegers(2,2);
GF(2^2)
gap> ZZ := HomalgRingOfIntegers();
Z
gap> ?Ring Constructions
gap> Q := HomalgFieldOfRationalsInSingular();
Q
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> 0 := HomalgFieldOfRationals();
gap> F2 := HomalgRingOfIntegers( 2 );
GF (2)
gap> F4 := HomalgRingOfIntegers(2, 2);
GF (2<sup>2</sup>)
gap> ZZ := HomalgRingOfIntegers();
gap> ?Ring Constructions
gap> Q := HomalgFieldOfRationalsInSingular();
0
gap> F2 := HomalgRingOfIntegersInSingular(2);
GF (2)
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> 0 := HomalgFieldOfRationals();
gap> F2 := HomalgRingOfIntegers( 2 );
GF (2)
gap> F4 := HomalgRingOfIntegers(2, 2);
GF (2<sup>2</sup>)
gap> ZZ := HomalgRingOfIntegers();
gap> ?Ring Constructions
gap> Q := HomalgFieldOfRationalsInSingular();
0
gap> F2 := HomalgRingOfIntegersInSingular(2);
GF (2)
gap> F4 := HomalgRingOfIntegersInSingular(2, 2);
GF (2<sup>2</sup>)
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> 0 := HomalgFieldOfRationals();
gap> F2 := HomalgRingOfIntegers( 2 );
GF (2)
gap> F4 := HomalgRingOfIntegers(2, 2);
GF (2<sup>2</sup>)
gap> ZZ := HomalgRingOfIntegers();
gap> ?Ring Constructions
gap> Q := HomalgFieldOfRationalsInSingular();
0
gap> F2 := HomalgRingOfIntegersInSingular(2);
GF (2)
gap> F4 := HomalgRingOfIntegersInSingular(2, 2);
GF (2<sup>2</sup>)
gap> ZZ := HomalgRingOfIntegersInSingular();
7.
```

```
gap> LoadPackage( "RingsForHomalg" );;
gap> ?Ring Constructors
gap> 0 := HomalgFieldOfRationals();
gap> F2 := HomalgRingOfIntegers( 2 );
GF (2)
gap> F4 := HomalgRingOfIntegers(2, 2);
GF (2<sup>2</sup>)
gap> ZZ := HomalgRingOfIntegers();
gap> ?Ring Constructions
gap> Q := HomalgFieldOfRationalsInSingular();
0
gap> F2 := HomalgRingOfIntegersInSingular(2);
GF (2)
gap> F4 := HomalgRingOfIntegersInSingular(2, 2);
GF (2<sup>2</sup>)
gap> ZZ := HomalgRingOfIntegersInSingular();
7.
qap> R := F4 * "x, y, z";
GF(2^2)[x,y,z]
```

```
gap> ?HomalgMatrix
```

```
gap> ?HomalgMatrix
gap> ZZ := HomalgRingOfIntegers();
Z
```

```
gap> ?HomalgMatrix
gap> ZZ := HomalgRingOfIntegers();
Z
gap> m := HomalgMatrix( "[ 1, 2, 3, 4, 5, 6 ]", 2, 3, ZZ );
<A 2 x 3 matrix over an internal ring>
```

```
gap> ?HomalgMatrix
gap> ZZ := HomalgRingOfIntegers();
Z
gap> m := HomalgMatrix( "[ 1, 2, 3, 4, 5, 6 ]", 2, 3, ZZ );
<A 2 x 3 matrix over an internal ring>
gap> m := HomalgMatrix( "[ \
> 1, 2, 3, \
> 4, 5, 6 \
> ]", 2, 3, ZZ );
<A 2 x 3 matrix over an internal ring>
```

A is a **pre-ABELian** category

A is a **pre-Abelian** category:

- For any morphism $\varphi:M\to N$ there exists a **kernel** $\ker \varphi \overset{\kappa}{\hookrightarrow} M$, such that
- for any morphism $\tau:L\to M$ with $\tau\varphi=0$ there exists a unique lift $\tau_0:L\to\ker\varphi$ of τ along κ , i.e., $\tau_0\kappa=\tau$.
- $\hbox{ For any morphism } \varphi: M \to N \hbox{ there exists a cokernel } N \stackrel{\varepsilon}{\twoheadrightarrow} \operatorname{coker} \varphi, \hbox{ such that }$
- **(8)** for any morphism $\eta: N \to L$ with $\varphi \eta = 0$ there exists a unique colift $\eta_0: \operatorname{coker} \varphi \to L$ of η along ε , i.e., $\varepsilon \eta_0 = \eta$.

${ t S} = { t Syzygie} { t sOfRows}({ t A},{ t N})$

For the stacked matrix $({A\atop N})$ we write

$${\tt SyzygiesOfRows}((\begin{smallmatrix} A\\ N \end{smallmatrix})) = (\verb"K"L")$$

with KA + LN = 0 and define^a

$$SyzygiesOfRows(A, N) := K$$
,

for which we need a matrix algorithm CertainColumns to extract K.

^aAgain, one can derive more efficient algorithms to compute the relative version of SyzygiesOfRows.

How to compute $\ker \varphi \stackrel{\kappa}{\hookrightarrow} M$ of $\varphi: M \to N$?

How to compute $\ker \varphi \stackrel{\kappa}{\hookrightarrow} M$ of $\varphi : M \to N$?

To compute the kernel $\ker \varphi \overset{\kappa}{\hookrightarrow} \mathtt{M}$ of a morphism $\varphi : \mathtt{M} \overset{\mathtt{A}}{\to} \mathtt{N}$ we do the following:

How to compute $\ker \varphi \stackrel{\kappa}{\hookrightarrow} M$ of $\varphi: M \to N$?

How to compute $\ker \varphi \overset{\kappa}{\hookrightarrow} M$ of $\varphi : M \to N$?

To compute the kernel $\ker \varphi \stackrel{\kappa}{\hookrightarrow} \mathtt{M}$ of a morphism $\varphi : \mathtt{M} \stackrel{\mathtt{A}}{\to} \mathtt{N}$ we do the following:

First compute

$$K = SyzygiesOfRows(A, N),$$

the matrix representing κ .

How to compute $\ker \varphi \stackrel{\kappa}{\hookrightarrow} M$ of $\varphi : M \to N$?

How to compute $\ker \varphi \overset{\kappa}{\hookrightarrow} M$ of $\varphi : M \to N$?

To compute the kernel $\ker \varphi \overset{\kappa}{\hookrightarrow} \mathtt{M}$ of a morphism $\varphi : \mathtt{M} \overset{\mathtt{A}}{\to} \mathtt{N}$ we do the following:

First compute

$$K = SyzygiesOfRows(A, N),$$

the matrix representing κ .

2 Then $\ker \varphi$ is presented by the matrix

SyzygiesOfRows(K, M).

A is a **pre-ABELian** category

A is a **pre-Abelian** category:

- ① For any morphism $\varphi:M\to N$ there exists a **kernel** $\ker \varphi \overset{\kappa}{\hookrightarrow} M$, such that
- for any morphism $\tau: L \to M$ with $\tau \varphi = 0$ there exists a unique lift $\tau_0: L \to \ker \varphi$ of τ along κ , i.e., $\tau_0 \kappa = \tau$.
- $\hbox{ For any morphism } \varphi: M \to N \hbox{ there exists a cokernel } N \stackrel{\varepsilon}{\to} \operatorname{coker} \varphi, \hbox{ such that }$
- **(3)** for any morphism $\eta:N\to L$ with $\varphi\eta=0$ there exists a unique colift $\eta_0:\operatorname{coker}\varphi\to L$ of η along ε , i.e., $\varepsilon\eta_0=\eta$.

How to compute the lift $\tau_0: L \to K$ of τ along κ ?

How to compute the lift $\tau_0: L \to K$ of τ along κ ?

Let $\kappa: \mathtt{K} \overset{\mathtt{K}}{\hookrightarrow} \mathtt{M}$ be the kernel monomorphism and $\tau: \mathtt{L} \xrightarrow{\mathtt{T}} \mathtt{M}$ a morphism with $\tau \varphi = 0$ for $\varphi = \operatorname{coker} \kappa$. Then the matrix

$$X := RightDivide(T, K)$$

represents $\tau_0: L \to K$, the lift of τ along κ .

¹Cf. [BR08, 3.1.1, case (2)]).

How to compute the lift $\tau_0: L \to K$ of τ along κ ?

How to compute the lift $\tau_0: L \to K$ of τ along κ ?

Let $\kappa: \mathtt{K} \overset{\mathtt{K}}{\hookrightarrow} \mathtt{M}$ be the kernel monomorphism and $\tau: \mathtt{L} \xrightarrow{\mathtt{T}} \mathtt{M}$ a morphism with $\tau \varphi = 0$ for $\varphi = \operatorname{coker} \kappa$. Then the matrix

$$X := RightDivide(T, K)$$

represents $\tau_0: L \to K$, the lift of τ along κ .

It is an easy exercise¹ to check that X represents a *morphism*.

¹Cf. [BR08, 3.1.1, case (2)]).

Thank you

- Mohamed Barakat and Markus Lange-Hegermann, An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), no. 2, 269–293, (arXiv:1003.1943). MR 2795737 (2012f:18022)
- Mohamed Barakat and Daniel Robertz, homalg A meta-package for homological algebra, J. Algebra Appl. 7 (2008), no. 3, 299–317, (arXiv:math.AC/0701146). MR 2431811 (2009f:16010)
- P. J. Hilton and U. Stammbach, *A course in homological algebra*, second ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR MR1438546 (97k:18001)