

PVsyst - Simulation report

Grid-Connected System

Project: 10 MW solar project

Variant: 1st simulation of 10 MW solar plant

Sheds on ground

System power: 10.00 MWp

Katgun - India

PVsyst TRIAL

PVsyst TRIAL

Author

Variant: 1st simulation of 10 MW solar plant

PVsyst V7.4.5

VC0, Simulation date: 07/01/24 15:47 with v7.4.5

Project summary

Geographical Site Situation

KatgunLatitude17.70 °NIndiaLongitude74.37 °E

Longitude 74.37 °E Altitude 816 m

Time zone UTC+5.5

Meteo data

Tilt/Azimuth

Katgun

Meteonorm 8.1 (1996-2015), Sat=100% - Synthetic

System summary

Grid-Connected System Sheds on ground

PV Field Orientation Near Shadings

25 / 0°

Fixed plane Linear shadings : Fast (table)

nadings User's needs
nadings : Fast (table) Unlimited load (grid)

System information

PV Array Inverters

Nb. of modules29412 unitsNb. of units154 unitsPnom total10.00 MWpPnom total7700 kWac

Pnom ratio 1.299

Project settings

0.20

Albedo

Results summary

Produced Energy 15964610 kWh/year Specific production 1596 kWh/kWp/year Perf. Ratio PR 80.04 %

Table of contents —	
Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Near shading definition - Iso-shadings diagram	
Main results	
Loss diagram	6
Predef. graphs	7
Single-line diagram	8

Variant: 1st simulation of 10 MW solar plant

PVsyst V7.4.5

VC0, Simulation date: 07/01/24 15:47 with v7.4.5

General parameters

Grid-Connected System Sheds on ground

PV Field Orientation

Orientation Sheds configuration Models used Fixed plane Nb. of sheds 1490 units Transposition

Tilt/Azimuth 25 / 0° Diffuse Perez. Meteonorm Sizes

Sheds spacing 5 00 m Circumsolar separate Collector width 4.02 m 80.4 % Ground Cov. Ratio (GCR)

Perez

0.02 m Top inactive band Bottom inactive band 0.02 m Shading limit angle

Limit profile angle 51.9°

Horizon **Near Shadings** User's needs Free Horizon Linear shadings : Fast (table) Unlimited load (grid)

PV Array Characteristics

PV module Inverter

Manufacturer Manufacturer Generic Generic CS3U-340P-AG 1500V SG50CX-P2 Model Model

(Original PVsyst database) (Original PVsyst database)

Unit Nom. Power 340 Wp Unit Nom. Power 50.0 kWac Number of PV modules 29412 units Number of inverters 154 units Nominal (STC) 10.00 MWp Total power 7700 kWac Modules 1634 string x 18 In series Operating voltage 160-1000 V Max. power (=>40°C) 55.0 kWac At operating cond. (50°C)

1.30 Pmpp 9055 kWp Pnom ratio (DC:AC)

U mpp 624 V Power sharing within this inverter

14509 A I mpp

Total PV power Total inverter power

Nominal (STC) 10000 kWp 7700 kWac Total power Total 29412 modules Max. power 8470 kWac 58353 m² 154 units Module area Number of inverters 52010 m² 1.30 Cell area Pnom ratio

Array losses

Array Soiling Losses Thermal Loss factor DC wiring losses

Loss Fraction 2.0 % Module temperature according to irradiance Global array res. $0.72~\text{m}\Omega$ Loss Fraction 1.5 % at STC

Uc (const) 29.0 W/m2K

Uv (wind) 0.0 W/m2K/m/s

Module Quality Loss Module mismatch losses **Strings Mismatch loss**

Loss Fraction -0.4 % Loss Fraction 2.0 % at MPP Loss Fraction 0.2 %

IAM loss factor

Incidence effect (IAM): User defined profile

10°	20°	30°	40°	50°	60°	70°	80°	90°
0.998	0.998	0.995	0.992	0.986	0.970	0.917	0.763	0.000

System losses

Variant: 1st simulation of 10 MW solar plant

PVsyst V7.4.5 VC0, Simulation date: 07/01/24 15:47 with v7.4.5

Variant: 1st simulation of 10 MW solar plant

PVsyst V7.4.5

VC0, Simulation date: 07/01/24 15:47 with v7.4.5

Main results

System Production

Produced Energy 15964610 kWh/year

Specific production Perf. Ratio PR 1596 kWh/kWp/year

80.04 %

Normalized productions (per installed kWp)

Performance Ratio PR

Balances and main results

0.2 0.1 0.0

Jan

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	155.5	45.18	20.37	197.4	179.9	1596006	1564745	0.793
February	163.3	47.55	23.20	193.6	181.9	1594556	1563538	0.807
March	199.3	64.24	26.82	213.3	201.3	1743647	1709973	0.802
April	198.7	72.98	29.30	192.1	180.5	1557690	1527954	0.796
May	202.4	82.76	29.73	181.7	169.2	1471574	1444200	0.795
June	146.6	81.46	25.84	128.9	117.8	1053880	1033968	0.802
July	114.4	82.98	24.59	102.8	92.2	836046	820047	0.798
August	129.3	84.14	23.81	120.2	109.2	991315	972341	0.809
September	140.9	68.96	23.88	143.1	132.8	1187236	1163916	0.813
October	144.2	66.81	24.43	159.6	148.3	1311367	1286280	0.806
November	143.0	49.45	22.18	175.6	161.9	1435374	1407373	0.801
December	143.6	42.54	20.36	186.2	168.0	1499761	1470274	0.790
Year	1881.1	789.05	24.54	1994.5	1842.8	16278451	15964610	0.800

Legends

GlobHor Global horizontal irradiation

DiffHor Horizontal diffuse irradiation

T_Amb Ambient Temperature

Globlnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray E_Grid PR Effective energy at the output of the array

Energy injected into grid Performance Ratio

Variant: 1st simulation of 10 MW solar plant

PVsyst V7.4.5

VC0, Simulation date: 07/01/24 15:47 with v7.4.5

Variant: 1st simulation of 10 MW solar plant

PVsyst V7.4.5 VC0, Simulation date: 07/01/24 15:47 with v7.4.5

