CLASS-9 CHAPTER-10 CIRCLES

Excercise 10.5

Q1. In Figure 1. A, B, C are the three points with centre O such that $\angle BOC=30^{\circ}$ and $\angle AOB=60^{\circ}$. If D is a point on the circle other than the arc ABC, find $\angle ADC$

Solution

Figure 1:

Construction

Symbol	Values	Description
r	1 unit	Radius of OA and OB
О	$\begin{pmatrix} 0 \\ r \end{pmatrix}$	Center of the circle
C	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	Standard basis vector \mathbf{e}_1
α	30°	∠BOC
β	60°	∠AOB
γ	??	∠ADC

Assumptions

- 1. Let \mathbf{P} be a point on the circle such that by expandig OC upto \mathbf{P} we get diameter POC.
- 2. To find ∠ADC let the circle be unit circle and diameter POC on x axis.
- 3. Take three points C, A, D and α , β , γ be three angles made by the points C, A, D with respect to diameter POC.

From the Figure 1:

$$\alpha = \angle POC = 180^{\circ}, \beta = \angle POA = 90^{\circ}, \gamma = \angle POD = 300^{\circ}$$
 (1)

Verification:

From assumptions the vector points C, A, D be

$$\mathbf{C} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}, \mathbf{A} = \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix}, \mathbf{D} = \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix}$$
 (2)

Let AC be the chord that subtends angles at the center \mathbf{O} and at point \mathbf{D} . The cosine of the angle subtended at point \mathbf{D} is given by

$$\cos(\angle ADC) = \frac{(\mathbf{A} - \mathbf{D})^{\top}(\mathbf{C} - \mathbf{D})}{\|\mathbf{A} - \mathbf{D}\| \|\mathbf{C} - \mathbf{D}\|}$$
(3)

Where

$$\mathbf{A} - \mathbf{D} = \begin{pmatrix} \cos \beta - \cos \gamma \\ \sin \beta - \sin \gamma \end{pmatrix}, \mathbf{C} - \mathbf{D} = \begin{pmatrix} \cos \alpha - \cos \gamma \\ \sin \alpha - \sin \gamma \end{pmatrix}$$
(4)

$$(\mathbf{A} - \mathbf{D})^{\top} (\mathbf{C} - \mathbf{D}) = 4 \sin \frac{\alpha - \gamma}{2} \sin \frac{\beta - \gamma}{2} \cos \frac{\alpha - \beta}{2}$$
 (5)

$$\|\mathbf{A} - \mathbf{D}\| \|\mathbf{C} - \mathbf{D}\| = 4\sin\frac{\alpha - \gamma}{2}\sin\frac{\beta - \gamma}{2}$$
(6)

Substituting (5) and (6) in (3),

$$\cos(\angle ADC) = \frac{4\sin\frac{\alpha-\gamma}{2}\sin\frac{\beta-\gamma}{2}\cos\frac{\alpha-\beta}{2}}{4\sin\frac{\alpha-\gamma}{2}\sin\frac{\beta-\gamma}{2}}$$
(7)

$$\cos(\angle ADC) = \cos\frac{\alpha - \beta}{2} \tag{8}$$

By substituting α and β values in (8)

$$\angle ADC = \frac{\alpha - \beta}{2} = \frac{(180^{\circ} - 90^{\circ})}{2} = 45^{\circ}$$
 (9)