## Jacobs University Bremen

# Natural Science Laboratory Electrical Engineering Module I

Fall Semester 2021

Lab Experiment 2 – Ohm's Law

Author of the report Ramin Udash

Experiment conducted by : Ramin Udash, Dhespina Pepa Pecini

Place of execution : Teaching Lab EE Room 1, Bench 1 and 2

Date of execution : Sept 23, 2021

#### 1. Introduction

The objectives of this experiment are:

- Demonstrate Ohm's law in a real circuit,
- Examine the behavior of Positive Temperature Coefficient (PTC) and Negative Temperature Coefficient (NTC) resistors in a circuit.

The Ohm's law states that the current through two points in a circuit is directly proportional to the potential difference across the two points i.e.,

$$V \propto I$$

The resistance between the two points is the proportionality constant in this equation. For strict fulfillment of this formula, the resistance and the temperature of the circuit must be constant i.e., independent from the Current(I). Only if these conditions are fulfilled, the behavior of the circuit is ohmic. The formula is:

$$V=IR$$

For a copper wire, the resistance is directly proportional to the length of the wire 'l' and inversely proportional to the cross-sectional area of the conductor 'A', establishing the relation:

$$R \propto 1/A$$

In this equation, the proportionality constant is the resistivity of the conductor ' $\rho$ ' and the equation becomes:

$$R = \rho l/A$$

Positive Temperature Coefficient (PTC) are the type of resistors for which the resistance increases with the increasing temperature. For temperatures below 150°C, the following formula applies:

$$R_T = R_{T0}(1 + \alpha \Delta T)$$

In this equation, Rt is the resistance of the resistor in a specific temperature, Rt0 is the resistance at the reference temperature T0(in our case T0= 25°C),  $\alpha$  is the temperature coefficient (3.85\*103 °C-1) and  $\Delta$ T is the difference between T and T0.

Negative Temperature Coefficient(NTC) are resistors whose resistance decreases as the temperature goes up. The following formula applies for NTC:

$$R_T = R_{25} * e^{B\left(\frac{1}{T} - \frac{1}{T_0}\right)}$$

In this formula, Rt is the resistance of the resistor in a specific temperature, R0 is the resistance at the reference temperature T0.

### 2. Evaluation

Instruments used in this experiment:

- 1m Copper Wire
- Breadboard
- 1K Ohm PTC resistor
- 1K Ohm NTC resistor
- Two 1K Ohm resistors
- One 100K Ohm resistor
- Power Supply
- Connecting Wires
- ELABO multimeter
- TENMA multimeter



Part 1: Resistance of the Copper Wire

The SETUP

In this experiment, we measure the resistance of a 1m copper wire. A special method called Kelvin(4-wire) is used since the resistance was low. When applying this method, the first step is to remove the errors that can happen from the influence of the connecting wires. The ELABO multimeter used as Voltmeter is connected in parallel with the copper wire. The voltmeter is connected to the ends of the wire at the solder spots. We measure the resistance between the solder spots.

The circuit established is shown below:



#### Execution and results:

The TENMA multimeter is used as the ammeter and is connected in series with the wire to measure the current. A constant current of 1A was supplied as specified by the instructions. We measured and recorded the voltage and the current after the current was supplied. After that, we switch the TENMA multimeter from Ampere to Ohms to measure the resistance of the circuit.

The results of the experiment are tabulated below:

| Voltage /V | Current /A | Resistance/ohms |
|------------|------------|-----------------|
| 0.0682     | 1.0028     | 0.2700          |

Part 2: Resistance of a metal film resistor

#### The SETUP

For Part 2 of this experiment, we use a metal film resistor of resistance  $1k00\Omega$  as ohmic resistance even though it is not an ohmic conductor. We use the ELABO as the voltmeter connected in parallel with the metal film resistor R1 and TENMA as the ammeter connected in series with the resistor to measure the current. The circuit was setup as per the instructions in the lab manual is shown below:



#### Execution and results:

We alter the voltage supply to the metal film resistor from 0V to 24V at intervals of 2V. We measure the current and the voltage over the  $1k00\Omega$ . The results are tabulated below:

| Range    | Voltage Source/V | Current | Voltage reading/v |
|----------|------------------|---------|-------------------|
| 0.2000   | 0.0000           | 0.0136  | 0.0000            |
| 20.0000  | 2.0000           | 0.0021  | 2.0920            |
| 20.0000  | 4.0000           | 0.0030  | 4.0130            |
| 20.0000  | 6.0000           | 0.0060  | 6.0630            |
| 20.0000  | 8.0000           | 0.0079  | 8.0000            |
| 20.0000  | 10.0000          | 0.0099  | 9.9970            |
| 20.0000  | 12.0000          | 0.0120  | 12.0450           |
| 20.0000  | 14.0000          | 0.0139  | 14.0060           |
| 20.0000  | 16.0000          | 0.0159  | 15.9750           |
| 20.0000  | 18.0000          | 0.0178  | 17.9420           |
| 20.0000  | 20.0000          | 0.0199  | 19.9730           |
| 200.0000 | 22.0000          | 0.0218  | 21.9300           |
| 200.0000 | 24.0000          | 0.0238  | 23.9200           |

The graph below shows the graph of Voltage(V) against Current(I):





### Part 3: Resistance of a PTC resistor

#### The SETUP

For part 3 of Experiment 2, our objective is to understand the behavior of PTC resistor. The resistance of PTC increases with the increase in temperature. We use TENMA as ammeter and ELABO as voltmeter. We connected resistor R1 of 1K Ohm in series with the PTC resistor. The voltmeter was connected in parallel across only the PTC resistor. The TENMA as ammeter was connected in series with resistor R1. The circuit setup as per the instructions in the Lab Manual is shown below:



#### Execution and results:

The voltage source was varied from 0V to 24V at intervals of 2.0V. As stated in the Manual, the system needed to be stabilized before the values are recorded for accurate results. So, we waited 2 minutes for each value and then recorded it after a somewhat stable value was seen. The results of the experiment are tabulated below:

| Range     | Voltage Source/V | Current | Voltage reading/v |
|-----------|------------------|---------|-------------------|
| 2000.0000 | 0.0000           | 0.00001 | 0.0000            |
| 2.0000    | 2.0000           | 0.00085 | 0.8410            |
| 2.0000    | 4.0000           | 0.00161 | 1.6017            |
| 20.0000   | 6.0000           | 0.00243 | 2.4380            |
| 20.0000   | 8.0000           | 0.00397 | 4.0400            |
| 20.0000   | 10.0000          | 0.00493 | 5.1100            |
| 20.0000   | 12.0000          | 0.00587 | 6.1770            |
| 20.0000   | 14.0000          | 0.00676 | 7.2700            |
| 20.0000   | 16.0000          | 0.00763 | 8.3750            |
| 20.0000   | 18.0000          | 0.00849 | 9.5150            |
| 20.0000   | 20.0000          | 0.00925 | 10.7300           |
| 20.0000   | 22.0000          | 0.00997 | 11.9620           |
| 20.0000   | 24.0000          | 0.01074 | 13.1950           |

The graph of Current(I) against Voltage(V) is shown below:



Part 4: Resistance of a NTC resistor

#### The SETUP

For part 3 of Experiment 2, our objective is to understand the behavior of NTC resistor. We replace the PTC resistor in the previous circuit with an NTC resistor. The resistance of NTC resistor decreases with the increase in temperature. It behaves opposite as the PTC resistor. We use TENMA as ammeter and ELABO as voltmeter. We connected resistor R1 of 1K Ohm in series with the PTC resistor. The voltmeter was connected in parallel across only the PTC resistor. The TENMA as ammeter was connected in series with resistor R1.

The circuit setup as per the instructions in the Lab Manual is shown below:



 $R_2 = 1k00 \Omega$ 

#### Execution and results:

The voltage source was varied from 0V to 24V at intervals of 2.0V. As stated in the Manual, the system needed to be stabilized before the values are recorded for accurate results. So, we waited 2 minutes for each value and then recorded it after a somewhat stable value was seen. The results of the experiment are tabulated below:

| Range   | Voltage Source/V | Voltage reading/v | Current |
|---------|------------------|-------------------|---------|
| 20.0000 | 0.0000           | 0.0110            | 0.00001 |
| 20.0000 | 2.0000           | 0.8860            | 0.00078 |
| 20.0000 | 4.0000           | 1.7450            | 0.00156 |
| 20.0000 | 6.0000           | 3.0750            | 0.00298 |
| 20.0000 | 8.0000           | 3.9400            | 0.00412 |
| 20.0000 | 10.0000          | 4.7160            | 0.00531 |
| 20.0000 | 12.0000          | 5.2700            | 0.00685 |
| 20.0000 | 14.0000          | 5.6300            | 0.00845 |
| 20.0000 | 16.0000          | 5.8750            | 0.01008 |
| 20.0000 | 18.0000          | 6.1260            | 0.01184 |
| 20.0000 | 20.0000          | 6.2370            | 0.01364 |
| 20.0000 | 22.0000          | 6.2470            | 0.01577 |
| 20.0000 | 24.0000          | 6.3230            | 0.01758 |

The graph of Current(I) against Voltage(V) of the NTC resistor is shown below:



### 3. Evaluation

3.1 Part 1: Resistance of copper wire

Question: 1 Calculate the resistance of the wire using the values from the 4-wire measurement.

Solution:

Using Ohm's law:

| Voltage /V | Current /A | Resistance/ohms |
|------------|------------|-----------------|
| 0.0682     | 1.0028     | 0.2700          |

V=I\*R,  
So, R=V/I = 
$$(0.0682/1.0028) \Omega$$
  
=  $0.0680 \Omega$ 

Question: 2 Calculate the relative error of R using the values from the 4-wire measurement (error propagation!).

#### Solution:

Absolute error of the voltage= 0.025% \* rdg+(5 \* dgt)

$$=(0.025/100)*0.0682+5*0.00001=0.0000671$$

Relative error of the voltage= (Absolute error)/(Recorded value) \*100

$$=(0.0000671/0.0682)*100=0.09830303\%$$

Absolute error of the current= (0.15% \* f.Value) + (0.01% \* f.Range)

$$= (0.15/100*1.0028)+(2*0.01/100)=0.002008+0.003=0.0017042$$

Relative error of the current= (Absolute error)/(Recorded value) \* 100

$$=(0.0017042/1.0028)*100=0.1699\%$$

Question:3 Calculate the theoretical resistance of the wire ( $l = 1 \text{ m} - A = 0.25 \text{ mm}^2$ ). Use the  $\rho$  given in the experiment section.

Solution:

$$R = \rho \frac{l}{A}$$

We know.

$$\rho$$
 =  $0.0195 \frac{\Omega mm^2}{}^{\prime} m$  , A=0.25mm^2, 1=1.0 m

So, Theoretical Resistance (R)= 0.0195\*(1/0.25) = 0.07800

Question: 4 The experimental taken R value should be very accurate. Why there are differences to the theoretical value?

#### Solution:

The theoretical resistance of the wire is  $0.078~\Omega$  whereas the value we calculated from the measurements of the results of the 4-wire method is  $0.0680~\Omega$ . This is because the true value of the resistivity of the wires we used to get data i.e.,  $\rho$  is not exactly  $0.0195~\Omega$ mm^2/m for the wires we used. In addition, the values of cross-sectional area and the length of the wire may have been different.

Another cause for this error might be that the values we got from the ammeter and from the voltmeter have not been accurate enough.

Question: 5 The experimental taken R value should be very accurate. Why there are differences to the theoretical value?

#### Solution:

The value of R we got from the Tenma multimeter was 0.1 Ohms. This value has a considerable difference from the value of our experimental resistance which was 0.06843625 Ohms. The TENMA multimeter is not used for this type of small resistances. The resistance of our 1-m wire is very similar to that of the wires inside the multimeter, saying that it results in systematical error. Also, using wires in the same length as the wire we are trying to measure, it results in methodical error. The error using 4-wire measurement was very low (0.05008%) and surely it is lower than the error we get when using the multimeter to measure the resistance.

## 3.2 Part 2, 3, and 4: Resistance of different components

Question: 1 Draw the graph R = f(I) for all resistors. Put all three graphs in one diagram.

**Solution:** The data for the metal film resistor is tabulated below:

| Range    | Voltage<br>Source/V | Current | Voltage<br>reading/v | Resistance   |
|----------|---------------------|---------|----------------------|--------------|
| 0.2000   | 0.0000              | 0.00000 | 0.0000               | 0.0000000    |
| 20.0000  | 2.0000              | 0.00208 | 2.0920               | 1008.1927711 |
| 20.0000  | 4.0000              | 0.00299 | 4.0130               | 1344.3886097 |
| 20.0000  | 6.0000              | 0.00602 | 6.0630               | 1006.8083693 |
| 20.0000  | 8.0000              | 0.00795 | 8.0000               | 1006.5425264 |
| 20.0000  | 10.0000             | 0.00993 | 9.9970               | 1006.3418563 |
| 20.0000  | 12.0000             | 0.01197 | 12.0450              | 1006.1816055 |
| 20.0000  | 14.0000             | 0.01392 | 14.0060              | 1006.1058832 |
| 20.0000  | 16.0000             | 0.01588 | 15.9750              | 1006.0457208 |
| 20.0000  | 18.0000             | 0.01784 | 17.9420              | 1005.9994393 |
| 20.0000  | 20.0000             | 0.01986 | 19.9730              | 1005.9430874 |
| 200.0000 | 22.0000             | 0.02183 | 21.9300              | 1004.3968123 |
| 200.0000 | 24.0000             | 0.02382 | 23.9200              | 1004.0716954 |

The data for the PTC resistor is tabulated below:

| Range     | Voltage<br>Source/V | Current | Voltage<br>reading/v | Resistance   |
|-----------|---------------------|---------|----------------------|--------------|
| 2000.0000 | 0.0000              | 0.00001 | 0.0000               | 0.0000000    |
| 2.0000    | 2.0000              | 0.00085 | 0.8410               | 992.9161747  |
| 2.0000    | 4.0000              | 0.00161 | 1.6017               | 993.7953713  |
| 20.0000   | 6.0000              | 0.00243 | 2.4380               | 1002.0138917 |
| 20.0000   | 8.0000              | 0.00397 | 4.0400               | 1017.3759758 |
| 20.0000   | 10.0000             | 0.00493 | 5.1100               | 1035.8808028 |
| 20.0000   | 12.0000             | 0.00587 | 6.1770               | 1051.9414169 |
| 20.0000   | 14.0000             | 0.00676 | 7.2700               | 1075.4437870 |
| 20.0000   | 16.0000             | 0.00763 | 8.3750               | 1097.6408912 |
| 20.0000   | 18.0000             | 0.00849 | 9.5150               | 1120.9943450 |
| 20.0000   | 20.0000             | 0.00925 | 10.7300              | 1160.6273661 |
| 20.0000   | 22.0000             | 0.00997 | 11.9620              | 1199.5587645 |
| 20.0000   | 24.0000             | 0.01074 | 13.1950              | 1228.8135593 |

The data for the NTC resistor is tabulated below:

| Range   | Voltage<br>Source/V | Voltage<br>reading/v | Current | Resistance   |
|---------|---------------------|----------------------|---------|--------------|
| 20.0000 | 0.0000              | 0.0110               | 0.00001 | 1434.1590613 |
| 20.0000 | 2.0000              | 0.8860               | 0.00078 | 1141.6054632 |
| 20.0000 | 4.0000              | 1.7450               | 0.00156 | 1117.0144668 |
| 20.0000 | 6.0000              | 3.0750               | 0.00298 | 1031.8791946 |
| 20.0000 | 8.0000              | 3.9400               | 0.00412 | 956.3106796  |
| 20.0000 | 10.0000             | 4.7160               | 0.00531 | 887.9683675  |
| 20.0000 | 12.0000             | 5.2700               | 0.00685 | 769.5677570  |
| 20.0000 | 14.0000             | 5.6300               | 0.00845 | 666.6666667  |
| 20.0000 | 16.0000             | 5.8750               | 0.01008 | 582.8373016  |
| 20.0000 | 18.0000             | 6.1260               | 0.01184 | 517.5735046  |
| 20.0000 | 20.0000             | 6.2370               | 0.01364 | 457.1575167  |
| 20.0000 | 22.0000             | 6.2470               | 0.01577 | 396.0816637  |
| 20.0000 | 24.0000             | 6.3230               | 0.01758 | 359.7519345  |

The combined diagram of all three resistors is below:



#### Question: 2 Do the graphs show expected behavior?

#### Solution:

Comprehending the diagram above, it can be said the resistors show the expected behavior. In this experiment, with the increasing voltage supply, the temperature in the resistor increases too. For the metal film resistor, the resistance does not depend on the temperature so the value should stay constant and that is what can be seen on the graph. For the PTC resistor, the resistance increases with temperature as it can be observed on the graph with the increase being nearly exponential. The NTC acts opposite to the PTC resistor. Some values might not exactly reflect the exponential behavior because of external environmental conditions that might affect the resistor.

Question: 3 Draw the temperature at the PTC as a function of the resistance of the PTC resistor.

Solution:

$$R_T = R_{25}(1 + \alpha \Delta T)$$

Where  $R_{25}$ =1K00 $\Omega$ ,  $\alpha$ = 0.0038724, T=Temperature of the PTC resistor, and  $R_T$ = Recorded Temperature.

*Equation of temperature at the PTC as of function of resistance of the PTC:* 

$$\Delta T = ((R_T/R_{25})-1)/\alpha$$

Example:

$$=((992.916/1000-1)/0.0038724)+25=23.11046$$

The results of the temperature as a function of resistance are tabulated in the next page:

| Resistance | Temperature(T) |
|------------|----------------|
| 0.000      | 0.000          |
| 992.916    | 23.171         |
| 993.795    | 23.398         |
| 1002.014   | 25.520         |
| 1017.376   | 29.487         |
| 1035.881   | 34.266         |
| 1051.941   | 38.413         |
| 1075.444   | 44.482         |
| 1097.641   | 50.215         |
| 1120.994   | 56.245         |
| 1160.627   | 66.480         |
| 1199.559   | 76.534         |
| 1228.814   | 84.088         |

The graph of Temperature as a function of Resistance of the PTC is tabulated below:



Question: 4 Draw the temperature at the NTC as a function of the resistance of the NTC resistor.

Solution:

$$R_T = R_{25} * e^{(B(1/T-1/To))}$$

Where  $R_{25}$ =1K00 $\Omega$ , B= 3930K, T0= 298.15  $^{\circ}$ K, T=Temperature of the NTC resistor and  $R_T$  = Recorded Temperature.

Equation of temperature at the NTC as of function of resistance of the PTC:

$$T = \frac{B * T_0}{\ln\left(\frac{R_T}{R_0}\right) * T_0 + B}$$

Example:

$$=(3930*298.15)/((ln(1434.2/1000)*298.15)+3930)$$

$$= 290.2$$

The results of the temperature as a function of resistance at NTC are tabulated below:

| Resistance | Temperature(T) |
|------------|----------------|
| 1434.2     | 290.2          |
| 1141.6     | 295.2          |
| 1117.0     | 295.7          |
| 1031.9     | 297.4          |
| 956.3      | 299.2          |
| 888.0      | 300.9          |
| 769.6      | 304.2          |
| 666.7      | 307.6          |
| 582.8      | 310.9          |
| 517.6      | 313.8          |
| 457.2      | 317.0          |
| 396.1      | 320.7          |
| 359.8      | 323.2          |

*The graph of Temperature as a function of Resistance of the NTC is tabulated below:* 



Question: 5 Why might it be dangerous to connect a NTC resistor to higher voltages?

#### Solution:

The resistance of the NTC resistor increases significantly with the increase in the power supplied. When we use higher voltages, the resistance of the resistor gets very low which means the current flow will be very high. A higher current flow means the setup will be dangerous.

Question: 6 What kind of 'resistor' is the copper wire? What are the consequences when using it with high currents or with hight temperatures.

#### Solution:

The copper wire acts like a PTC resistor i.e., the resistance increases with increasing power supplied. At some point, if the voltage supplied gets very high, the temperature will get very high i.e., reach a critical value and the wire will start to melt. This would lead to an open circuit with infinite resistance.

### 4. Conclusion

For part 1 of experiment 2, we used a specific 4-wire copper wire circuit to determine the resistance of a 1metre copper wire. After collecting and analyzing the data, we can say that the use of this specific 4-wire circuit yielded the most accurate results.

For part 2 of experiment 2, we measured the voltage and current through a metal film resistor. After gathering the results and calculating the resistance, we concluded that the resistance of the metal film resistor is independent of the amount of current passing through it i.e., it is independent of the temperature. It was also reflected in the graph of resistance as a function of current with a constant resistance throughout the graph. In short, we can say that this type of resistor has a constant value for resistance.

The purpose of part 3 of this experiment was to determine and analyze the behavior of Positive Temperature Coefficient (PTC) resistor. We increased the value of the voltage supplied and recorded the values of voltage and current reading. We calculated the resistance, and we could see the resistance increasing with increasing voltage supplied i.e., the resistance increased with the increase in temperature. The graph we constructed confirms the relation mentioned above.

In part 4 of experiment 2, we analyzed the behavior of NTC resistor just the way we did for the PTC resistor. After recording the values and creating the graph, we concluded that with increasing temperature, the resistance decreases. This type of resistor can be very dangerous if a high voltage is supplied as the temperature will get very high and the resistance will get very small causing the current flow to be very high.

In conclusion, doing these experiments we encountered several errors which are thought to be normal, when analyzing these types of resistors. The general type of errors were methodical errors, errors caused by temperature change in the environment which might have affected our readings for the PTC and NTC resistor.

| 5. Refere | ences  |  |  |
|-----------|--------|--|--|
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
| I. Lab    | Manual |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |
|           |        |  |  |

## Jacobs University Bremen

# Natural Science Laboratory Electrical Engineering Module I

Fall Semester 2021

Lab Experiment 3 – Thevenin's And Norton Circuit(Data)

Author of the report Ramin Udash

Experiment conducted by : Ramin Udash, Dhespina Pepa Pecini

Place of execution : Teaching Lab EE Room 1, Bench 1 and 2

Date of execution : Sept 24, 2021

## Part 1: A Linear Network

| Vs/ V | Elabo/V | Vab/V  | Range(Elabo) |
|-------|---------|--------|--------------|
| 20    | 20.02   | 12.512 | 200          |

# Part 2: Determine Thevenin's and Norton's parameters

| Vsupply/ V | Range | Velabo/ V | Vth/ V | I(no)/A  | Rth & Rno/<br>ohm |
|------------|-------|-----------|--------|----------|-------------------|
| 20         | 200   | 20.05     | 16.985 | 4.74E-02 | 352.67            |

# Part 3: Determine V<sub>AB</sub> using Th'evenin's Circuit

| V supply/ V | Range | Vth/ V | Vab/ V | Rth in decade/ohm |
|-------------|-------|--------|--------|-------------------|
| 16.9        | 20    | 16.983 | 12.474 | 353               |

# Part 4: Determine $V_{AB}$ using Norton's Circuit

| V supply/ V | Range | Rno( using<br>the decade)/<br>ohms | Ino/ A   | Vab/ V | Vab( from<br>table 1) |
|-------------|-------|------------------------------------|----------|--------|-----------------------|
| 16.9        | 20    | 353                                | 4.76E-02 | 12.469 | 12.512                |