AyED 2023. Módulo 2 - 18.11.2023 - Tema 1

Apellido	Nombre	Legajo	Corrigió	Total
				Total
Ejercicio 1:	Ejercicio 2:	Ejercicio 3:	Ejercicio 4:	

Ejercicio 1 (5 puntos). Dado el siguiente algoritmo desarrolle e indique el T(n) correspondiente

```
public int metodo (int n, int a){
    int j = 1; int x = 1;
    while ( j < n){
        for (int i = n/2; i < 2^* n; i = i + 3)
        { algo de O(1); }
        j = j * 2;
    }
    for (int i = a; i <= 100; i ++)
        for (int j = 1; j < i^* n; j ++)
        x = x + j * i;
    return x;
}
```

Aclaración: El valor de "a" es fijo mientras esté en ejecución el método.

Ejercicio 2 (1 punto). Calcular el O(n) y justifique usando la definición de Big Oh.

$$T(N) = 10^5 n^3 + n^3 log(n^2) - n^2$$

Ejercicio 3 (2 puntos). En el siguiente segmento de código tenga en cuenta que el tiempo de ejecución corresponde, aquí, al número de veces que se ejecuta la operación **sum ++**. **sqrt** es la función que devuelve la raíz cuadrada de un número dado.

```
sum :=0
for (i=0; i<sqrt(n)/2; i++)
for (j=i; j<8+i; j++)
for (k=j; k<8+j; k++)
sum++;
```

Si se necesitan 10 ms para ejecutar este código para n = 100, ¿cuánto tardará en ejecutarse para n = 400?

Ejercicio 4 (2 puntos).

1) ¿Cuál es la complejidad de insertar/borrar al comienzo de un arreglo?						
(a) O(n) (b) O(log n)	O(1)	O(n log n)			
2) Se tienen cuatro algoritmos que usan un único loop y dentro del loop se ejecuta el mismo conjunto de sentencias. Considere los siguientes loops:						
A) for(i = 0; i <	n; i++)					
B) for(i = 0; i <	n; i += 2)					
<pre>C) for(i = 1; i <</pre>	n; i *= 2)					
<pre>D) for(i = n; i <</pre>	= n; i /= 2)					
Si el tamaño de la entrada es ${\bf n}$ (positivo), ¿cuál algoritmo es más eficiente (sin considerar el objetivo del algoritmo?						
(a) A	(b) B	(c) C		(d) D		
3) Considere las siguientes sentencias:						
I. $(n + k)^m = O(n^m)$ donde k y m son constantes II. $2^{n+1} = O(2^n)$ III. $2^{(2n+1)} = O(2^n)$						
¿Cuál es verdadera según la definición de Big-Oh?						
(a) I y II (b) I y III (c) II y III (d) Todas son verd	aderas					
4) Dado el siguiente algoritmo						
) { 3; sultado = 2 + recur(r n resultado + 3 * recu	,	•			
Indique el T(n) para n >= 5						
(b) $T(n) = c + T(n) +$	+ 4*T(n-4) + 3T(n-5) + T(n-4) + 2T(n-5)	,				

(f) T(n) = c+2T(n-3) + 4*T(n-4) + 3T(n-2) + T(n-2)