A Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4

FMCAD 2018, 02 November 2018

Heiko Becker, Nikita Zyuzin, Eva Darulova, Magnus O. Myreen

Raphael Monat, Anthony Fox

Finite-Precision Computations have errors

0.2 + 0.1

 $\widetilde{0.2} + \widetilde{0.1}$

0.3

#

0.3000000000000004

roundoff error

Does it matter?

Finite-Precision Computations have errors

$$f(x) = 0.2 + x$$
 $\widetilde{f}(\widetilde{x}) = \widetilde{0.2} + \widetilde{x}$

roundoff error

$$\left| \max_{x \in [a,b]} |f(x) - \tilde{f}(\tilde{x})| \le \varepsilon \right|$$

Did Daisy compute a correct roundoff error ε ?

$$\max_{x \in [a,b]} \left| f(x) - \tilde{f}(\tilde{x}) \right| \le \varepsilon$$

f: real valued function P(x): input constraints

 \widetilde{f} : finite-precision function ε : roundoff error

>8k Lines of Scala Code

Did Daisy compute a correct roundoff error ε ?

$$\max_{x \in [a,b]} \left| f(x) - \tilde{f}(\tilde{x}) \right| \le \varepsilon$$

Verification

Validation

Certificate Checking

Contributions

FloVer, a certificate checker for finite-precision error bounds

- checks floating-point and fixed-point error bounds
 - → soundness proof with respect to IEEE754 semantics
- build modular with separate validators
 - → uses interval and affine arithmetic
- supports arithmetic (+,-,*,/), let-bindings and fused-multiply-add
- supports mixed-precision (different types for operations)
- runs fast with verified extracted binary

f: real valued function

P(x): input constraints

Certificate

f : real valued function

P(x): input constraints

R: range analysis result

E: error analysis result

real-valued range analysis R

finite-precision error analysis *E*

 \widetilde{f} : finite-precision function ε : roundoff error

Checking Range Analysis

```
RealRangeValid(0.2, P, R) = 0.2 \subseteq R(0.2)
RealRangeValid(x, P, R) = P(x) \subseteq R(x)
RealRangeValid(0.2 + x, P, R) = R(0.2) + RA R(x) \subseteq R(0.2 + x)
```

Certificate

$$f(x) = 0.2 + x$$

P(x): input constraints

R: range analysis

E: error analysis

Γ: variable types

Soundness theorem:

RealRangeValid
$$(f, P, R) \land$$

$$\forall x, (E \ x) \in P \ (x) \Longrightarrow$$

$$(f,E) \downarrow v \land v \in R(f)$$

An Abstraction for Floating-Point Computations

$$\widetilde{f}(\widetilde{x}) = \widetilde{0.2} + \widetilde{x}$$

$$= (\widetilde{0.2} + \widetilde{x}) * (1 + \delta)$$

$$= (\widetilde{0.2} + \widetilde{x}) + (\widetilde{0.2} + \widetilde{x}) * \delta$$
error for + operation

IEEE754 abstraction

$$\exists \ \delta. \ a \ \widetilde{+} \ b = (a+b)*(1+\delta)$$
 where $|\delta| \le \varepsilon$

$$\tilde{x} = x * (1 + \delta)$$

more errors contributed by operands

Computing a Roundoff Error

We want to bound

$$\left| (0.2 + x) - \left(\widetilde{0.2} + \widetilde{x} \right) \right|$$

$$\leq |(0.2 - \widetilde{0.2}) + (x - \widetilde{x}) + (\widetilde{0.2} + \widetilde{x}) * \delta|$$

$$\leq err_1 + err_2 + |(\widetilde{0.2} + \widetilde{x}) * \delta|$$
propagation error roundoff error (e_{new})

IEEE754 abstraction

$$\exists \delta. \, a \stackrel{\sim}{+} b = (a+b) * (1+\delta)$$

where $|\delta| \le \varepsilon$

operand errors:

$$|0.2 - \widetilde{0.2}| \le err_1$$
$$|x - \widetilde{x}| \le err_2$$

Checking Roundoff Error Bounds

Certificate

$$f(x) = 0.2 + x$$

P(x): input constraints

R: range analysis

E: error analysis

Γ: variable types

Soundness Theorem:

ErrorValid
$$(f, E, R) \land$$

RangeValid
$$(f, P, R) \land$$

$$(\forall x, E \ x \in P(x)) \Longrightarrow$$

$$(f,E) \downarrow v \land (\tilde{f},E) \downarrow \tilde{v} \land |v - \tilde{v}| \leq E(f)$$

Supported abstract domains

Interval Arithmetic

$$e \in [a, b]$$
 where $a \le e \le b$

$$e \in x_0 + x_1 * \varepsilon_1 + \dots + x_n * \varepsilon_n$$

where $x_0 + \sum_{i=1}^n x_i * -1 \le e \le x_0 + \sum_{i=1}^n x_i$

non-relational, easy to implement

relational, complex to implement Track linear, approx. non-linear

Monotonicity of operations:

$$e_1 \in rep_1 \land e_2 \in rep_2 \Longrightarrow e_1 \circ e_2 \in (rep_1 \circ^{RA} rep_2)$$

Type inference in FloVer

Certificate

f: real valued function

P(x): input constraints

R: range analysis

E: error analysis

 Γ : variable types

But we want \tilde{f} to be

```
f(x:single) =
  let y:double = x + 3.0
  in y * 1.3
```

result type?

TypeInference (f,Γ) infers a global type map M_T for f

Soundness of FloVer

Let \underline{f} be a real-valued function, E a real-valued environment, \tilde{E} its finite-precision counterpart, P a precondition constraining the free variables of f, Γ a map from all free variables of f to a precision, R a range analysis result, Γ a type-map and E an error analysis result. Then

$$E \sim_{(E,\mathcal{V},\mathcal{D},\Gamma)} \tilde{E} \wedge \\ \text{TypeInference}(\Gamma,f) = \Gamma \wedge \text{RealRangeValid}(f,P,R) \wedge \\ \text{MachineRangeValid}(f,\Gamma,R,E) \wedge \\ \text{ErrorValid}(f,\Gamma,R,E) \Rightarrow \\ \exists \ v \ \tilde{v}_1 \ m_1. \ (f,E,\Gamma) \ \psi \ (v,\infty) \ \wedge \ (\tilde{f},\tilde{E},\Gamma) \ \psi \ (\tilde{v}_1,m_1) \ \wedge \\ (\forall \tilde{v}_2 \ m_2. \ (\tilde{f},\tilde{E},\Gamma) \ \psi \ (v_2,m_2) \Rightarrow |v-\tilde{v}_2| \leq E(f)) \\ \end{cases}$$

Extraction using the CakeML compiler toolchain

Experiments

Measure end-to-end running times for 18 benchmarks from literature

Benchmark	# ops.	Daisy	Coq		HOL4	Binary Interval	
			Interval	Affine	Interval	CakeML	OCaml
ballBeam	7	4.62	3.50	3.26	89.04	<0.01	0.02
doppler	17	4.86	5.28	12.21	610.67	0.05	0.02
bspline	28	4.21	4.61	4.07	298.44	0.03	0.08
•••	•••	•••	•••	•••		•••	•••
traincar1	36	4.85	10.87	9.84	932.93	0.07	0.11
floudas	99	7.76	13.99	12.76	565.68	0.14	0.27
Traincar4	269	10.60	116.94	115.38	17429.30	1.10	0.77

Complexity

FloVer

- Supporting floating-point and fixed-point arithmetic
- Runs fully automatically in Coq and HOL4
- Mixed-precision
- Extract a verified binary with CakeML
- Proven sound for IEEE754 floating-point semantics
- Code on https://gitlab.mpi-sws.org/AVA/Flover

Questions?