

Improving QSAR Modeling for Predictive Toxicology using Publicly Aggregated Semantic Graph Data and Graph Neural Networks

Joseph D. Romano*, Yun Hao*, Jason H. Moore

Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA

*These authors contributed equally

Source code: https://github.com/EpistasisLab/qsar-gnn
ComptoxAl: https://comptox.ai

- Quantitative Structure-Activity Relationship (QSAR) modeling is the most prevalent method for *in silico* toxicity prediction.
- The disappointing performance and low interpretability of existing QSAR models call for new methodological innovation in the field.
- We introduce a GNN-based approach that aggregate data from ComptoxAI, and evaluate it on data from 52 assays to show that it significantly outperforms existing methods.

ComptoxAl is a new graph database containing many entity and relationship types that pertain to translational mechanisms of toxicity

Overview of the graph machine learning approach

- Graph convolutional network architecture
- Node representation
 - Chemical nodes: 166 bits MACCS fingerprint
 - Assay and gene nodes: single-valued feature optimized during model training
- GCN layer
 - 2 hidden layers connected by leaky ReLU, softmax applied to output of the 2nd
 - Each layer is defined as an edge-wise aggregation of adjacent nodes
- Optimization: minimizing binary cross-entropy loss with Adam optimizer

GNN model significantly outperforms baseline QSAR models

- 52 assays and their accompanying chemical screening data from Tox21
- 80%/20% train/test split on the label chemicals

GNN achieves better performance with the added context of network relationships between chemicals, assays, and genes

- Our GNN models are highly interpretable
- Highest weighted assay for HepG2 viability prediction:
 Caspase 3/7 and Shh antagonist (both induce apoptosis)
- Our GNN approach is robust to sources of bias
- The graph incorporate biological knowledge that can fill in gaps left by incomplete or inaccurate data
- Acknowledgements: K99-LM013646 (PI: Joseph Romano),
 R01-LM010098, R01-LM012601, R01-AI116794, UL1 TR001878, UC4-DK112217 (PI: Jason Moore), T32-ES019851,
 and P30-ES013508 (PI: Trevor Penning).