

Mathe 1

Charlotte P., Lena W., Vera C., Christian K. | 21. Juni 2018

ITI WAGNER & IPD TICHY $\sum_{m=1}^{\infty} q_m(\omega) \int_0^{A_n} \left\{ (1+\mathrm{i}\eta) \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left[k(x) \frac{\mathrm{d}^2 \psi_{m'}(x)}{\mathrm{d}x^2} \right] - \omega^2 \psi_m(x) \right.$ $\times \left[\rho_l(x) + \frac{\pi}{4} \rho_f b^2(x) \Gamma(\beta(x,\omega),\alpha(x)) \right] \right\} \psi_n(x) \, \mathrm{d}x$ $= \omega^2 \int_0^{A_n} \left\{ \hat{\theta}_\mathrm{B}(\omega)(x+L_0) \left[\rho_l(x) + \frac{M}{4} \psi_l b^2(x) \Gamma(\beta(x,\omega),\alpha(x)) \right] \right.$ $\left. \alpha(x) \right] + \frac{\pi}{4} \rho_f b^2(x) \Delta \left(\beta(x,\omega), \frac{1}{b(x)} \left| \sum_{m=1}^{\infty} q_m(\omega) \psi_m(x) \right. \right.$ $\left. + \hat{\theta}_\mathrm{B}(\omega)(x+L_0) \right|, \alpha(x) \right)$ $\times \left[\sum_{m=1}^{\infty} q_m(\omega) \psi_m(x) + \hat{\theta}_\mathrm{B}(\omega)(x+L_0) \right] \right\} \psi_n(x) \, \mathrm{d}x. \quad (10)$

Gliederung

- Big Integer
- Exponentiation by squaring
- Kombinatorik
- Spieltheorie

Spieltheorie

Big integer

- die maximale Zahl ist größer als integer?
- nehme long long
- die Zahl ist größer als long long
- ????????????????????????????(Panik)

Big integer - Java nutzen

- import java.math.BigInteger
- Konstruktor: BigInteger(String val)
- Methoden:
 - BigInteger add(BigInteger val)
 - BigInteger multiply(BigInteger val)
 - BigInteger subtract(BigInteger val)
 - BigInteger abs()
 - BigInteger compareTo(BigInteger val)
 - BigInteger[] divideAndRemainder(BigInteger val) (Division mit Rest)
 - BigInteger gcd(BigInteger val)

Schriftliche Addition, Beispiel:

String x = "12035"

String y = "389"

vector
$$v_X = (5,3,0,2,1)$$

vector
$$v_y = (9,8,3,0,0)$$

vector
$$V_Z = ($$

$$v_z = (4)$$
, Ubertrag = 1

$$v_z = (4, 2)$$
, Übertrag = 1

$$v_z = (4, 2, 4)$$
, Übertrag = 0

$$v_z = (4, 2, 4, 2)$$
, Übertrag = 0

$$v_z = (4, 2, 4, 2, 1)$$
, Übertrag = 0


```
Schriftliche Addition, Beispiel:
```

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_v = (9,8,3,0,0)$

vector $v_z = ()$

21. Juni 2018


```
Schriftliche Addition, Beispiel:
```

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_y = (9,8,3,0,0)$

vector $v_z = ()$

 $v_z = (4)$, Übertrag = 1

 $v_z = (4, 2)$, Ubertrag = 1

 $v_z = (4, 2, 4)$, Ubertrag = 0

 $v_z = (4, 2, 4, 2)$, Ubertrag = 0

 $v_z = (4, 2, 4, 2, 1)$, Übertrag = 0

In $v_{\scriptscriptstyle Z}$ steht das gespiegelte Ergebnis der Additior


```
Schriftliche Addition, Beispiel:
```

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_y = (9,8,3,0,0)$

vector $v_z = ()$

 $v_z = (4)$, Übertrag = 1

 $v_z = (4, 2)$, Übertrag = 1

 $V_z = (4, 2, 4)$, Ubertrag = 0

 $v_z = (4, 2, 4, 2)$, Ubertrag = 0

 $v_z = (4, 2, 4, 2, 1)$, Übertrag = 0

In v_z steht das gespiegelte Ergebnis der Addition

5/63


```
Schriftliche Addition, Beispiel:
```

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_y = (9,8,3,0,0)$

vector $v_z = ()$

 $v_z = (4)$, Übertrag = 1

 $v_z = (4, 2)$, Übertrag = 1

 $v_z = (4, 2, 4)$, Übertrag = 0

 $v_z = (4, 2, 4, 2)$, Ubertrag = 0

 $v_z = (4, 2, 4, 2, 1)$, Übertrag = 0

In v_z steht das gespiegelte Ergebnis der Addition

Spieltheorie

Schriftliche Addition, Beispiel:

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_y = (9,8,3,0,0)$

vector $v_z = ()$

 $v_z = (4)$, Übertrag = 1

 $v_z = (4, 2)$, Übertrag = 1

 $v_z = (4, 2, 4)$, Übertrag = 0

 $v_z = (4, 2, 4, 2)$, Übertrag = 0

 $v_z = (4, 2, 4, 2, 1)$, Ubertrag = 0

In v_z steht das gespiegelte Ergebnis der Addition

Schriftliche Addition, Beispiel:

String x = "12035"

String y = "389"

vector $v_x = (5,3,0,2,1)$

vector $v_y = (9,8,3,0,0)$

vector $v_z = ()$

 $v_z = (4)$, Übertrag = 1

 $v_z = (4, 2)$, Übertrag = 1

 $v_z = (4, 2, 4)$, Übertrag = 0

 $v_z = (4, 2, 4, 2)$, Übertrag = 0

 $v_z = (4, 2, 4, 2, 1)$, Übertrag = 0

In v_z steht das gespiegelte Ergebnis der Addition

Spieltheorie

Karazuba-Multiplikation

Beobachtung:
$$(a_0 + a_1) \cdot (b_0 + b_1) = a_0 \cdot b_0 + a_1 \cdot b_1 + a_1 \cdot b_0 + a_0 \cdot b_1$$

Algorithm 1 recMult(int a, int b)

```
Require: a und b haben n Ziffern, sei k = \lfloor n/2 \rfloor if n = 1 then return a \cdot b end if schreibe a als a_1 \cdot B^k + a_0 schreibe b als b_1 \cdot B^k + b_0 c_{11} = recMult(a_1, b_1) c_{00} = recMult(a_0, b_0) return c_{11} \cdot B^{2k} + (recMult((a_1 + a_0), (b_1 + b_0)) - c_{11} - c_{00}) \cdot B^k + c_{00}
```


Naive Exponentiation

Algorithm 2 Bereche $y = x^n$ naiv

```
Require: n > 0 \lor x \neq 0
Ensure: v = x^n
  v \leftarrow 1
  if n < 0 then
       X \leftarrow 1/x
       N \leftarrow -n
  else
       X \leftarrow x
       N \leftarrow n
  end if
  while N \neq 0 do
       y \leftarrow y \cdot X
       N \leftarrow N - 1
  end while
  return y
```

Bei ICPC gehen wir davon aus, dass Multiplikation zweier Zahlen in $\mathcal{O}(1)$ liegt, also naive Exponentiation in $\mathcal{O}(n)$

Idee

Beobachtung:

$$x^{n} = \begin{cases} (x^{2})^{n/2} & \text{für n gerade} \\ x \cdot (x^{2})^{(n-1)/2} & \text{für n ungerade} \end{cases}$$
 (1)

Exponentiation by Squaring, rekursiv

Algorithm 3 Exponentiation(n, x) (rekursiv)

```
if n < 0 then
return Exponentiation(-n, 1/x)
else if n = 0 then
return 1
else if n = 1 then
return x
else if n modulo 2 = 0 then
return Exponentiation(n/2, x \cdot x)
else
return x \cdot Exponentiation((n-1)/2, x \cdot x)
end if
```

Da Multiplikation konstant viel Zeit benötigt, liegt die Exponentiation in $\mathcal{O}(log(n))$

Beispiel


```
2^{10638} = (2^{5319})^2
2^{5319} = 2 \cdot (2^{2659})^2
2^{2659} = 2 \cdot (2^{1329})^2
2^{1329} = 2 \cdot (2^{664})^2
2^{664} = (2^{332})^2
2^{332} = (2^{166})^2
2^{166} = (2^{83})^2
2^{83} = 2 \cdot (2^{41})^2
2^{41} = 2 \cdot (2^{20})^2
2^{20} = (2^{10})^2
2^{10} = (2^5)^2
2^5 = 2 \cdot (2^2)^2
2^2 = (2^1)^2
```

Exponentiation by Squaring, iterativ

Algorithm 4 Exponentiation(n, x) (iterativ)

```
if n < 0 then
   n = -n
   x = 1/x
end if
if n=0 then
   return 1
   v=1
end if
while n > 1 do
   if n \mod 2 = 0 then
      x = x \cdot x
      n = n/2
   else
      y = y \cdot x
      x = x \cdot x
      n = (n-1)/2
   end if
end while
```

21. Juni 2018

Kombinatorik

Definition

"Combinatorics is a branch of discrete mathematics concerning the study of countable discrete structures"

^aCompetitive Programming 3

Bei ICPC-Aufgaben erkennbar an:

- "Wie viele Möglichkeiten gibt es, ..?"
- "Berechne die Anzahl an X."
- Alles, was mit Zählen zu tun hat

Kombinatorik bei ICPC

Die Lösung für eine Kombinatorik-ICPC-Aufgabe ist meist eine kurze rekursive Formel, oft in Verbindung mit Greedy oder DP. Der Aufwand liegt nicht in der Implementierung, sondern im Aufstellen der Formel.

- Kombinatorik-Aufgaben von einer Person bearbeiten lassen
 - bestenfalls mit guten mathematischen Kenntnissen
- Sobald die Formel fertig ist, Lösung coden und abgeben!

Kombinatorik bei ICPC

Gängige Formeln sollte man kennen... ... oder ausprobieren!

On-Line Encyclopedia of Integer Sequences

Unter http://oeis.org/ kann man die ersten Lösungen für kleine Probleminstanzen eingeben und so prüfen, ob bereits eine Formel für diese Folge existiert.

Aufgabe - Mauerbau

- Baue eine Mauer aus bestimmten Ziegeln.
- jeder Ziegel ist 2 Einheiten breit und 1 Einheit hoch und kann beliebig gedreht werden.
- jede Mauer ist 2 Einheiten hoch und m Einheiten breit (0 < m <= 50).
- Aufgabe: Wie viele Kombinationen an Ziegelsteinen gibt es?

Fibonacci

Definition:

$$f(0) = 0$$

 $f(1) = 1$
 $n > 1 : f(n) = f(n-1) + f(n-2)$

Also: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

Sollte man erkennen!

Fibonacci - Implementierung

- Mit DP in O(n)
- Binet's Formel:

$$f(n) = \frac{(\phi^n - (-\phi)^{-n})}{\sqrt{5}}$$

 $\phi := goldener Schnitt$

$$\phi = \frac{(1+\sqrt{5})}{2}$$

 ϕ gerundet nutzen. Anzahl der Nachkommastellen entscheidet über Genauigkeit!

- oder vorberechnen!
- Achtung: Wird sehr schnell sehr groß.

Aufgabe - Lieblingsschokolade

- Gegeben: Paket mit n Schokoladentafeln, alle gleich verpackt
- Davon sind k Tafeln in meiner Lieblingssorte
- Gesucht: Wahrscheinlichkeit, k Tafeln zu nehmen und nur Lieblingsschokolade zu ziehen

Binomialkoeffizient

Wie viele Möglichkeiten gibt es, *k* Objekte aus einer Menge von *n* verschiedenen Objekten zu ziehen?

$$C(n,k) = \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

Rekursive Definition:

$$C(n,0) = C(n,n) = 1$$

 $C(n,k) = C(n-1,k-1) + C(n-1,k)$

21. Juni 2018

Binomialkoeffizient - Visualisierung

Abbildung: Visualisierung Binomialkoeffizient¹

¹Quelle: Wikipedia

Big Integer

Kombinatorik

Spieltheorie

Exponentiation by squaring

Binomialkoeffizient - Implementierung

- Naiv rekursiv
 - → Viel zu langsam!
- Vorberechnen

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Spieltheorie

Binomialkoeffizient DP Bottom-Up

Algorithm 5 Binomialkoeffizient(n, k)

```
C \leftarrow int[n+1][k+1]
i \leftarrow 0
while i \le n do
   i \leftarrow 0
   while j <= min(i, k) do
       if j == 0 | j == i then
           C[i][i] \leftarrow 1
       else
           C[i][j] \leftarrow C[i-1][j-1] + C[i-1][j]
       end if
       i + +
   end while
   i + +
end while
return C[n][k]
```

Laufzeit: O(nk), Platzbedarf: O(nk)

Spieltheorie

Binomialkoeffizient - Implementierung

- Naiv rekursiv
 - → Viel zu langsam!
- Vorberechnen
 - Meist interessieren nicht alle Werte
 - lacksquare o Top-Down rekursiv mit Zwischenspeichern
- Mit nicht-rekursiver Formel

$$C(n,k) = \frac{n!}{(n-k)! \cdot k!} = C(n,n-k)$$

Binomialkoeffizient Nicht-Rekursiv

Algorithm 6 Binomialkoeffizient(n, k)

```
if k > n-k then k \leftarrow n-k end if result \leftarrow 1 i \leftarrow 0 while i < k do result \leftarrow result \cdot \frac{(n-i)}{(i+1)} i + + end while return result
```

Laufzeit: $O(\frac{n}{2})$, Platzbedarf: O(1)

Aufgabe - Der Mathetest

- Gegeben: Anzahl an Faktoren
- Gesucht: Anzahl an Möglichkeiten, diese korrekt zu klammern
- Beispiel:
 - Gegeben: {a, b, c, d}
 - a(b(cd)), (ab)(cd), ((ab)c)d, (a(bc))d, a((bc)d)
 - Lösung: 5

21. Juni 2018

Catalan Nummern

Definition:

$$Cat(n) = \frac{1}{n+1} \binom{2n}{n}$$

Rekursiv:

$$Cat(0) = 1$$

$$Cat(n+1) = \sum_{i=0}^{n} Cat(i) \cdot Cat(n-i)$$

Also: 1, 1, 2, 5, 14, 42, 132, 429, ...

Spieltheorie

Catalan Nummern

Cat (n) entspricht zum Beispiel:

- Anzahl verschiedener Binär-Bäume mit n Knoten.
- Anzahl korrekter Klammerausdruecke mit *n* Klammerpaaren
- Anzahl verschiedener Möglichkeiten, n + 1 Faktoren korrekt zu klammern
- Anzahl Möglichkeiten, ein konvexes n + 2-Eck in Dreiecke aufzuteilen

21. Juni 2018

Catalan Nummern - Implementierung

- Naiv rekursiv
 - → Viel zu langsam!
- Rekursiv mit DP

21. Juni 2018

Catalan Nummern DP Bottom-Up

Algorithm 7 Catalan(n)

```
 \begin{aligned}  & \textit{Cat} \leftarrow \textit{int}[n+1] \\ & \textit{Cat}[0] \leftarrow 1 \\ & \textit{Cat}[1] \leftarrow 1 \\ & \textit{i} \leftarrow 2 \\ & \textit{while } \textit{i} <= \textit{n} \textit{ do} \\ & \textit{Cat}[\textit{i}] \leftarrow 0 \\ & \textit{j} \leftarrow 0 \\ & \textit{while } \textit{j} < \textit{i} \textit{ do} \\ & \textit{Cat}[\textit{i}] \leftarrow \textit{Cat}[\textit{i}] + \textit{Cat}[\textit{j}] \cdot \textit{Cat}[\textit{i} - \textit{j} - 1] \\ & \textit{j} + + \\ & \textit{end while} \\ & \textit{i} + + \\ & \textit{end while} \\ & \textit{return } \textit{Cat}[\textit{n}] \end{aligned}
```

Laufzeit: $O(n^2)$, Platzbedarf: O(n)

Catalan Nummern - Implementierung

- Naiv rekursiv
 - → Viel zu langsam!
- Rekursiv mit DP
- Mit Binomialkoeffizient

Catalan Nummern

Algorithm 8 Catalan(n)

 $result = Binomialkoeffizient(2 \cdot n, n)$ return result \div (n+1)

Laufzeit: O(n), Platzbedarf: O(1)

21. Juni 2018

Catalan Nummern - Implementierung

- Naiv rekursiv
 - → Viel zu langsam!
- Rekursiv mit DP
- Mit Binomialkoeffizient
- Achtung: Catalan Nummern wachsen sehr schnell!
 - $Cat(10) > 10^5$
 - $Cat(19) > 10^{10}$

Spieltheorie allgemein

- Formalisierung und Darstellung von Spielen
- Versuch, Spielausgang zu berechnen

Dabei muss gelten:

- Summe der Gewinne und Verluste aller Spieler beträgt 0 (Nullsummenspiel)
- Meistens ein Gewinner (+1) und ein Verlierer (-1)
- Spiel ist ohne Zufall
- Alle spielen perfekt

Beispielspiel

simples Beispielspiel

Alice und Bob haben sechs Münzen in der Mitte liegen und nehmen abwechselnd je eine bis drei davon. Wer die letzte Münze nimmt, gewinnt.

Spielbaum benutzen

Schritt 1:

- Knoten: aktueller Spieler und Spielsituation
- Kanten: legale Spielzüge
- Wurzel: Spielsituation beim Start

Charlotte P., Lena W., Vera C., Christian K. - Mathe 1

Schritt 1:

- Knoten: aktueller Spieler und Spielsituation
- Kanten: legale Spielzüge
- Wurzel: Spielsituation beim Start

Schritt 2:

- An Blätter des Baumes Ergebnis schreiben
- Von unten nach oben Ergebnis berechnen

Exponentiation by squaring

Kombinatorik

21. Juni 2018

21. Juni 2018

Min-Max-Strategie

Min-Max-Strategie: Gewinn mit dem größtem Unterschied

$$minmax(s,k) = \begin{cases} k.Bewertung & \text{für k Blatt-Knoten} \\ min \{minmax(k')|k'Kindknoten\} & \text{falls s = A} \\ max \{minmax(k')|k'Kindknoten\} & \text{falls s = B} \end{cases}$$

$$(2)$$

Exponentiation by squaring

Kombinatorik

Spieltheorie

21. Juni 2018

Exponentiation by squaring

Kombinatorik

Exponentiation by squaring

Kombinatorik

Exponentiation by squaring

Kombinatorik

Exponentiation by squaring

Kombinatorik

Spieltheorie

900

Min-Max-Strategie

Min-Max-Strategie: Gewinn mit dem größtem Unterschied

$$minmax(s,k) = \begin{cases} k.Bewertung & \text{für k Blatt-Knoten} \\ min\{minmax(k')|k'Kindknoten\} & \text{falls s = A} \\ max\{minmax(k')|k'Kindknoten\} & \text{falls s = B} \end{cases}$$

$$(3)$$

Man kann die Spieler-IDs auch weglassen:

$$minmax(k) = \begin{cases} k.Bewertung & \text{für k Blatt-Knoten} \\ -min\{minmax(k')|k'Kindknoten\} & \text{sonst} \end{cases}$$
(4)

Implementierung

Wie gewöhnt als Baum

```
struct Node {
  vector<int> children
  int Bewertung
}
```

Spieler-IDs können weggelassen werden

```
int minmax(Zustands-Knoten k):
   if(k ist Blatt){
     return k.getBewertung
} else {
      for(alle Kindknoten kind von k){
      res = - min(res, Bewertung(k))
    }
}
```

4□ > 4回 > 4 豆 > 4 豆 > 豆 の Q ○

Nachdenken nicht vergessen

Beispiel

Die Spieler A und B multiplizieren x abwechselnd mit einer Zahl von 2 bis 9. Am Anfang ist x=1. Wer zuerst über eine Grenze n kommt, gewinnt.

Big Integer

Exponentiation by squaring

Nachdenken nicht vergessen

Beispiel

Die Spieler A und B multiplizieren x abwechselnd mit einer Zahl von 2 bis 9. Am Anfang ist x=1. Wer zuerst über eine Grenze n kommt, gewinnt.

- Problem: Je acht Kindknoten: Baum wird zu groß
- Lösung: Optimale Strategie anhand kleiner Bäume herleiten
- Im Beispiel: A nimmt immer 2, B immer 9 als Faktor

Nachdenken nicht vergessen

Beispiel

Die Spieler A und B multiplizieren x abwechselnd mit einer Zahl von 2 bis 9. Am Anfang ist x=1. Wer zuerst über eine Grenze n kommt, gewinnt.

- Problem: Je acht Kindknoten: Baum wird zu groß
- Lösung: Optimale Strategie anhand kleiner Bäume herleiten
- Im Beispiel: A nimmt immer 2, B immer 9 als Faktor

Fazit

Falls möglich, anhand kleiner Teilbäume Regel herleiten, statt direkt anzufangen, zu implementieren.

Nim-Spiel

- Mehrere Haufen mit Objekten
- Zwei Spieler nehmen abwechselnd von einem Haufen
- Wer das letzte Objekt nimmt, gewinnt
- Für wenige Haufen mit Spielbaum modellierbar
- Für viele Haufen eigene Optimalstrategie nötig

21. Juni 2018

Nim-Spiel: Optimalstrategie

- Nim-Zahl: Anzahl Objekte in Haufen binär mit XOR verknüpfen
- Gewinnstrategie: In jedem Zug die Nim-Zahl auf 0 bringen

Beispiel

5 Haufen mit 6, 3, 5, 2 und 7 Elemente

Binär: 110₂, 011₂, 101₂, 010₂ und 111₂ Elemente

Dann: 110₂ XOR 011₂ XOR 101₂ XOR 010₂ XOR 111₂ = 101₂

Der Spieler am Zug hat also die Möglichkeit, die Nim-Zahl auf 0 zu

bringen (z. B. indem er vom letzten Stapel 5 Elemente entfernt), und hat

somit eine Gewinnstrategie.

Grundy-Zahlen

- Theorem von Sprague-Grundy: Jedes neutrale Spiel äquivalent zu Standard-Nim-Spiel
- Grundy-Zahlen: kleinste Zahl, die nicht Grundy-Zahl von Nachfolgerstellung ist
- Nim-Zahlen entsprechen Grundy-Zahlen
- Gewinnstrategie: Grundy-Zahl in jedem Zug auf 0 bringen

Beispiel

Big Integer

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
 - 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
 - 1, 0 und 3 Elemente: 001₂ XOR 000₂ XOR 011₂ = 010₂ = 2
 - **1**, 2 und 0 Elemente: 001_2 XOR 010_2 XOR $000_2 = 011_2 = 3$
 - **1**, 2 und 1 Elemente: 001_2 XOR 010_2 XOR $001_2 = 010_2 = 2$
 - 1, 2 und 2 Elemente: 001₂ XOR 010₂ XOR 010₂ = 010₂ = 2
 - Kleinste nicht vorkommende Zahl ist 0, also keine Gewinnstrategie

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
- 1, 0 und 3 Elemente: $001_2 \text{ XOR } 000_2 \text{ XOR } 011_2 = 010_2 = 2$

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
- 1, 0 und 3 Elemente: 001₂ XOR 000₂ XOR 011₂ = 010₂ = 2
- 1, 2 und 0 Elemente: 001₂ XOR 010₂ XOR 000₂ = 011₂ = 3
- **1**, 2 und 1 Elemente: 001_2 XOR 010_2 XOR 001_2 = 010_2 = 2
- 1, 2 und 2 Elemente: 001₂ XOR 010₂ XOR 010₂ = 010₂ = 2
- Kleinste nicht vorkommende Zahl ist 0, also keine Gewinnstrategie

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
- 1, 0 und 3 Elemente: 001₂ XOR 000₂ XOR 011₂ = 010₂ = 2
- 1, 2 und 0 Elemente: 001₂ XOR 010₂ XOR 000₂ = 011₂ = 3
- 1, 2 und 1 Elemente: 001₂ XOR 010₂ XOR 001₂ = 010₂ = 2

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
 - 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
 - 1, 0 und 3 Elemente: 001₂ XOR 000₂ XOR 011₂ = 010₂ = 2
- 1, 2 und 0 Elemente: 001₂ XOR 010₂ XOR 000₂ = 011₂ = 3
- 1, 2 und 1 Elemente: 001₂ XOR 010₂ XOR 001₂ = 010₂ = 2
- 1, 2 und 2 Elemente: 001₂ XOR 010₂ XOR 010₂ = 010₂ = 2

Beispiel

Es gibt drei Haufen mit einem, zwei und drei Elementen. Berechne die Grundy-Zahl dieser Situation

Es gibt sechs mögliche Nachfolgerzustände:

- 0, 2 und 3 Elemente: 000₂ XOR 010₂ XOR 011₂ = 001₂ = 1
- 1, 1 und 3 Elemente: 001₂ XOR 001₂ XOR 011₂ = 011₂ = 3
- 1, 0 und 3 Elemente: 001₂ XOR 000₂ XOR 011₂ = 010₂ = 2
- 1, 2 und 0 Elemente: 001₂ XOR 010₂ XOR 000₂ = 011₂ = 3
- 1, 2 und 1 Elemente: 001₂ XOR 010₂ XOR 001₂ = 010₂ = 2
- 1, 2 und 2 Elemente: 001₂ XOR 010₂ XOR 010₂ = 010₂ = 2
- Kleinste nicht vorkommende Zahl ist 0, also keine Gewinnstrategie

ICPC-Aufgabe

Schokoladenspiel

Bunty and Dolly are playing a game, described as follows.

There are two boxes full of chocolates. Both can eat 'L' ($L \ge 1$) chocolates from any one box or 'L' chocolates from both the box in each step. They play the game alternatively and the last one to eat the chocolate will be the winner.

As Bunty wants to impress Dolly, he wants to make Dolly the winner. You have to help Bunty in deciding who should play first.

Assume that both the players play the game optimally.

Lösungsidee

Nim-Spiel mit zwei Stapeln, also beide Werte binär mit XOR verknüpfen. Bei 0 beginnt Dolly, sonst Bunty.

ICPC-Aufgabe

Schokoladenspiel

Bunty and Dolly are playing a game, described as follows.

There are two boxes full of chocolates. Both can eat 'L' ($L \ge 1$) chocolates from any one box or 'L' chocolates from both the box in each step. They play the game alternatively and the last one to eat the chocolate will be the winner.

As Bunty wants to impress Dolly, he wants to make Dolly the winner. You have to help Bunty in deciding who should play first.

Assume that both the players play the game optimally.

Lösungsidee

Nim-Spiel mit zwei Stapeln, also beide Werte binär mit XOR verknüpfen. Bei 0 beginnt Dolly, sonst Bunty.

