Modul Statistische Aspekte der Analyse molekularbiologischer und genetischer Daten

R-Blatt 2: Deskriptive Statistiken in R

Janne Pott

WS 2021/22

In dieser Übung wird R genutzt, um deskriptive Statistiken zu erstellen.

Deskriptive Statistik in R

Beispiele

In dem ersten Teil der Übung beschäftigen wir uns mit deskriptiven Statistiken. Dazu wird der Datensatz ergometer. RData verwendet. Dabei handelt es sich um eine R-spezifische Datei, die schneller in R einlesbar ist und alle R-spezifische Informationen in den Daten (z. B. Attribute, Variablentypen usw.) mitspeichert. Das beinhaltet auch die Variablennamen. Wurde als der Datensatz myTab mittels save(myTab, file="test.RData") gespeichert, wird wieder die Variable myTab erzeugt. Wenn diese schon besteht, wird sie einfach überschrieben! Man kann sich aber den oder die Variablennamen mitangeben lassen.

```
loaded1<-load("data/ergometer.RData")
loaded1
## [1] "myDat"

class(myDat)
## [1] "data.frame"</pre>
```

Table 1: Parameterbeschreibung zum Datensatz ergometer

Variable	Beschreibung	Codierung / Einheit
id	Durchlaufende ID-Nummer	NA
sex	Geschlecht	1 = Mann; 2 = Frau
Bday	Geburtstag	Monat/Tag/Jahr
Tday	Erhebungsdatum	Monat/Tag/Jahr
height	Größe	in m
weight	Gewicht	in kg
ergometer	Leistung im Ergometer	in Watt/kg
lactate	Milchsäure im Blut	in mg/dl

In diesem Beispiel heißt der Datensatz also myDat. Um Verwechslungen zu verweiden, kann man diesen auch umbenennen:

```
myDat2<-myDat
myDat3<-copy(myDat)
myDat4<-get(loaded1)</pre>
```

Der Befehl copy ist vor allem in der **data.table** Syntax wichtig, da sonst nicht eine vollständige Kopie angelegt wird (Änderungen in myDat2 würden sich dann auch auf myDat auswirken).

Mit get kann man einfach den Variablenname des Objekts angeben, der gesucht und dann einem neuen Namen zugeordnet werden soll. Das ist z.B. bei Schleifen hilfreich, wenn pro Schleife ein RData-Objekt geladen wird, aber die einzelnen Objekte anderes heißen (und man auch nicht weiß wie).

Oft muss man Datensätze noch etwas anpassen, bevor man sie auswerten kann. Wenn das Datum zum Beispiel nicht als solches erkannt wird, kann man das Alter nicht direkt ausrechen. Ich nutze hier die Funktion mdy() aus dem Paket **lubridate**, um das Alter zu transformieren, das im Format Monat-Tag-Jahr angegeben ist. Trennzeichen werden hier automatisch erkannt.

head(myDat)

```
##
     id sex
                            Tday height weight ergometer lactate
                 Bday
          2 5/27/1958 5/27/2005
                                   1.59
                                           59.6
                                                     3.34
## 1
     1
                                                                11
     2
          2 4/14/1958 4/14/2005
                                   1.77
                                           76.8
                                                     3.19
                                                                11
                                           72.5
                                                     2.76
## 3
     3
          2 1/4/1957 1/4/2005
                                   1.72
                                                                12
## 4
     4
          2 2/17/1955 2/17/2005
                                   1.65
                                           63.0
                                                     2.87
                                                                11
## 5
          2 4/6/1954 4/6/2005
     5
                                   1.67
                                           60.7
                                                     2.27
                                                                11
## 6 6
          2 3/27/1954 3/27/2005
                                   1.63
                                           71.0
                                                     2.93
                                                                14
```

class(myDat\$Bday)

```
## [1] "character"
```

```
date1<-mdy(myDat$Bday)
date2<-mdy(myDat$Tday)
class(date1)</pre>
```

[1] "Date"

```
head(difftime(date2, date1, unit="weeks"))
## Time differences in weeks
## [1] 2452.429 2452.429 2504.571 2609.000 2661.143 2661.143
head(difftime(date2, date1, unit="weeks")/52.25)
## Time differences in weeks
## [1] 46.93643 46.93643 47.93438 49.93301 50.93096 50.93096
round(head(difftime(date2, date1, unit="weeks")/52.25),2)
## Time differences in weeks
## [1] 46.94 46.94 47.93 49.93 50.93 50.93
class(round(head(difftime(date2, date1, unit="weeks")/52.25),2))
## [1] "difftime"
setDT(myDat)
myDat[,alter:=as.numeric(round(difftime(date2, date1, unit="weeks")/52.25,2))]
Die Deskription umfasst unter anderem das Minimum, Maximum, Mittelwert und die Quartile. Zusätzlich
werden Standardabweichung oder Varianz mitangegeben. Man kann rein optisch auf Normalverteilung prüfen
(QQ-Plot, Histogramm), oder mittels Kolmogorov-Smirnov Test auf eine signifikante Abweichung davon
testen. Ist dieser signifikant, sollte man parameterfreie Test für weitere Analysen verwenden. Der Mann-
Whitney U Test liefert beim Geschlechtsvergleich ein signifikantes Ergebnis, d.h. das Altersmittel der Männer
ist in diesem Datensatz signikant höher als das in Frauen.
myDat[,summary(alter)]
##
      Min. 1st Qu.
                               Mean 3rd Qu.
                     Median
                                                 Max.
     46.94
             58.92
                      64.91
                               64.77
                                       71.90
                                                76.90
myDat[,sd(alter)]
## [1] 7.368519
myDat[,var(alter)]
## [1] 54.29507
par(mfrow = c(1,2)) # zwei Plots nebeneinander
qqnorm(myDat[,alter],main = "Alter"); qqline(myDat[,alter], col = 2)
```

hist(myDat[,alter],breaks = 10,main = "Alter")


```
ks.test(myDat[,alter],pnorm,mean=mean(myDat[,alter]),sd=sd(myDat[,alter]))
## Warning in ks.test(myDat[, alter], pnorm, mean = mean(myDat[, alter]), sd =
## sd(myDat[, : ties should not be present for the Kolmogorov-Smirnov test
##
    One-sample Kolmogorov-Smirnov test
##
##
## data: myDat[, alter]
## D = 0.10719, p-value = 0.02019
## alternative hypothesis: two-sided
wilcox.test(myDat[,alter] ~ myDat[,sex])
##
    Wilcoxon rank sum test with continuity correction
##
## data: myDat[, alter] by myDat[, sex]
## W = 5870.5, p-value = 0.02685
\#\# alternative hypothesis: true location shift is not equal to 0
boxplot(myDat[,alter] ~ myDat[,sex],
        xlab="Geschlecht",ylab="Alter")
```


Aufgaben

- a) Berechnen Sie den *BMI* der Probanden und bestimmen Sie deskriptive Statistiken für die Größen *ergometer*, *lactate*, *BMI* und *Alter* für Männer und Frauen getrennt.
- b) Erstellen Sie QQ-Plots und Histrogramme und testen Sie auf Normalverteilung.
- c) Vergleichen Sie ergometer zwischen den Geschlechtern unter Verwendung eines geeigneten Tests.
- d) Korrelieren Sie ergometer mit lactate, BMI und Alter.

Gepaarte Tests

Beispiele

In dem ersten Teil der Übung beschäftigen wir uns mit gepaarten Tests. Dazu wird der Datensatz haendigkeit.RData verwendet. Laden Sie den Datensatz haendigkeit.RData in R ein.

```
rm(list = setdiff(ls(), c("cor.prob","pathwd","r_on_server")))
loaded2<-load("data/haendigkeit.RData")
loaded2</pre>
```

```
## [1] "myDat"
```

Table 2: Parameterbeschreibung zum Datensatz haendigkeit

Beschreibung	Codierung / Einheit
Durchlaufende ID-Nummer	NA
Geschlecht	1 = Mann; 2 = Frau
Länge der Schreibhand	in cm
Länge der Nichtschreibhand	in cm
Schreibhand	0 = rechts; 1 = links
Präferenz für Armverschränkung	0 = rechts auf links; 0.5 = keine; 1 = links auf rechts
Präferenz für Klatschen	0 = rechts; 0.5 = keine; 1 = links
Größe	in m
	Durchlaufende ID-Nummer Geschlecht Länge der Schreibhand Länge der Nichtschreibhand Schreibhand Präferenz für Armverschränkung Präferenz für Klatschen

```
setDT(myDat)
```

Manchmal sind die Daten unvollständig oder enthalten Ausreißer. Je nach Anteil kann man diese vollständig filtern, oder nur für einzelne Tests.

Fehlende Werte sind in der Regel durch NA gekennzeichnet. Mittels apply kann man sich die Anzahl der NA pro Spalte angeben lassen. Für dieses Beispiel filtere ich die einzelnen NAs, aber belasse die NAs der Spalte height.

Wenn man die Differnez der Handlängen betrachtet, erwartet man ähnliche Größen (1-2 cm). Größere Abweichungen sind unplausibel (z.B. durch falsche Dateneingabe) und/oder könnten die Analyse verzerren,

und sollten daher gefiltert werden. Dazu kann man entweder den Plot nutzen und den "offensichtlichen" Ausreißer filtern, oder man legt eine Grenze fest, zum Beispiel eine Abweichung von mehr als 4*SD vom Mittelwert.

```
apply(myDat, MARGIN = 2, function(x) sum(is.na(x)))
##
       id
                                                Clap height
                  WrHnd
                         NWHnd
                                  WHnd
                                         Fold
##
                                            0
filt<-!is.na(myDat$sex) & !is.na(myDat$WrHnd) & !is.na(myDat$NWHnd) & !is.na(myDat$WHnd) & !is.na(myDat
table(filt)
## filt
## FALSE
         TRUE
       3
           234
myDat<-myDat[filt,]</pre>
apply(myDat, MARGIN = 2, function(x) sum(is.na(x)))
##
       id
                  WrHnd NWHnd
                                 WHnd
                                        Fold
                                                Clap height
             sex
##
        0
                                     0
                                            0
                                                   0
myDat[,dif:=WrHnd-NWHnd]
filt<-myDat$dif>mean(myDat$dif,na.rm = T) + 4*sd(myDat$dif,na.rm = T)
myDat[filt,]
      id sex WrHnd NWHnd WHnd Fold Clap height dif
                                            NA 4.7
## 1: 3
          1
                18 13.3
                            0
                                 1 0.5
plot(myDat$id, myDat$dif, main="Handlängendifferenz",
     xlab = "ID", ylab="Differenz",pch=16,cex.main=1.5,cex.lab=1.5)
points(myDat$id[filt],myDat$dif[filt],col="red",pch=16)
abline(h=mean(myDat$dif,na.rm = T) + 4*sd(myDat$dif,na.rm = T),lwd=2,col="red",lty=2)
```

Handlängendifferenz


```
myDat2<-myDat[!filt,]
attach(myDat2)</pre>
```

Um binäre Variablen zu beschreiben, eignet sich die absolute bzw. relative Häufigkeit der verwendeten Kategorien. Um zwei Variablen zu vergleichen, benutzt man Kontingenztafel. Es gibt zwei Tests auf Unabhängigkeit:

- Chi-Quadrat-Test (stochastische Unabhängigkeit zweier Merkmale)
- Exakter Test nach Fisher (keine Voraussetzungen an den Stichprobenumfang, robuster)

```
myDat2[,.N,by = .(sex)]
##
      sex
             N
        2 117
## 1:
## 2:
        1 116
myDat2[,.N,by = .(WHnd)]
##
      WHnd
             N
## 1:
         0 216
## 2:
         1 17
```

```
myDat2[,.N,by = .(sex,WHnd)]
##
      sex WHnd
                 N
## 1:
        2
             0 110
## 2:
                10
        1
             1
## 3:
        1
             0 106
        2
## 4:
myDat2[,table(sex,WHnd)]
##
      WHnd
## sex
##
     1 106
            10
     2 110
fisher.test(sex,WHnd)
##
##
    Fisher's Exact Test for Count Data
##
## data: sex and WHnd
## p-value = 0.4627
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.2100113 2.0499856
## sample estimates:
## odds ratio
## 0.6756833
chisq.test(sex,WHnd)
##
   Pearson's Chi-squared test with Yates' continuity correction
##
## data: sex and WHnd
## X-squared = 0.27267, df = 1, p-value = 0.6015
```

Aufgaben

- a) Berechnen Sie geeignete deskriptive Statistiken für die Variablen sex, WrHnd, NWHnd, WHnd, Fold, Clap, und height!
- b) Testen Sie, ob es Unterschiede in den Handlängen zwischen Männern und Frauen gibt. Konstruieren Sie Boxplots.
- c) Testen Sie für Männer und Frauen getrennt, ob es Längenunterschiede zwischen Schreib- und Nichtschreibhand gibt.
- d) Analysieren Sie die Beziehung zwischen Schreibhand, Armverschränkung und Klatschen, dabei die unentschiedenen Fälle filtern.
- e) Testen Sie für Männer und Frauen getrennt, ob es Beziehungen zwischen Größe, Länge der Hand und Unterschied zwischen Schreib-/Nichtschreibhand gibt.