LECTURE 2 - FIBER SEQUENCES

The goal of this lecture is to introduce the fiber sequence generated by a map and relate it to the long exact sequence of the homotopy groups.

Definition 1. A surjective map $p: E \to B$ is a fibration if it satisfies the covering homotopy property. This means that if $h \circ i_0 = p \circ f$ in the diagram

$$Y \xrightarrow{f} E$$

$$\downarrow i_0 \qquad \downarrow \tilde{h} \qquad \uparrow \qquad \downarrow p$$

$$Y \times I \xrightarrow{h} B$$

then there exists \tilde{h} that makes the diagram commute.

Proposition 2. The pullback of a fibration is a fibration. This means that if $p: E \to B$ is a fibration and $g: A \to B$ is any map, then the induced map $A \times_q E \to A$ is a fibration.

Proposition 3. If $p: E \to B$ is a covering, the p is a fibration with a unique path lifting function s.

Definition 4. For $f: X \to Y$, we define the mapping path space Nf to be

$$Nf = X \times_f Y^I = \{(e,\beta) | \beta(1) = p(e)\} \subset X \times Y^I.$$

Observe that f coincides with the composite

$$X \xrightarrow{\nu} NF \xrightarrow{\rho} Y$$
,

where $\nu(x)=(x,c_{f(x)})$ and $\rho(x,\chi)=\chi(1)$. Let $\pi:Nf\to X$ be the projection. then $\pi\circ\nu=id$ and $id\simeq\nu\circ\pi$ since we can define a deformation $h:Nf\times I\to Nf$ of Nf onto $\nu(X)$ by setting

$$h(x, \chi)(t) = (x, \chi_t)$$
, where $\chi_t(s) = \chi((1 - t)s)$.

Definition 5. It can be checked that $\rho: Nf \to Y$ satisfies the covering homotopy property. We call it the *fibrant replacement* of f.

Translation of fibers along paths in the base space played a fundamental role in the study of covering spaces. Fibrations admit an up to homotopy version of that theory that well illustrates the use of the covering homotopy property (CHP).

Let $p: E \to B$ be a fibration with fiber F_b over $b \in B$ and let $i_b: F_b \to E$ be the inclusion. For a path $\beta: I \to B$ from b to b', the CHP gives a lift $\tilde{\beta}$ in the diagram

Definition 6. Note that $\tilde{\beta}_1$ maps F_b to the fiber $F_{\beta(1)} = F_{b'}$. We call

$$[\tilde{\beta}_1] \in [F_b, F_{b'}]$$

the translation of fibers along the path class $[\beta]$.

Exercise 7. The definition claims that $[\tilde{\beta}_1]$ does not depend on the choice of β in its path class. Prove this fact by considering a diagram similar to the above one.

Definition 8. The dual notion of cones and suspensions are paths and loops. The path space of X is defined by PX = F(I, X).

Definition 9. For a based map $f: X \to Y$, we define the homotopy fiber Ff to be

$$Ff = X \times_f PY = \{(x, \chi) | f(x) = \chi(1)\} \subset X \times PY.$$

Equivalently, Ff is the pullback displayed in the diagram

$$Ff \longrightarrow PY$$

$$\downarrow p_1$$

$$X \longrightarrow Y$$

where $\pi(x,\chi) = x$. As a pullback of a fibration, π is a fibration.

Definition 10. Let $\iota: \Omega Y \to Ff$ be the inclusion specified by $\iota(\chi) = (*, \chi)$. The sequence

$$\cdots \to \Omega^2 X \xrightarrow{\Omega^2 f} \Omega^2 Y \xrightarrow{-\Omega \iota} \Omega F f \xrightarrow{-\Omega \pi} \Omega X \xrightarrow{-\Omega f} \Omega Y \xrightarrow{\iota} F f \xrightarrow{\pi} X \xrightarrow{f} Y$$

is called the fiber sequence generated by the map f.

Theorem 11. For any based space Z, the induced sequence

$$\cdots \to [Z,\Omega Ff] \to [Z,\Omega X] \to [Z,\Omega Y] \to [Z,Ff] \to [Z,X] \to [Z,Y]$$

is an exact sequence of pointed sets, or of groups to the left of [Z, LoopY], or of Abelian groups to the left of $[Z, \Omega^2Y]$.

Corollary 12. If we let $Z = S^n$, then we get the long exact sequence

$$\cdots \to \pi_n(Ff) \to \pi_n X \to \pi_n Y \to \pi_{n-1}(Ff) \to \cdots \to \pi_0(Ff) \to \pi_0 X \to \pi_0 Y.$$