Introducción al Álgebra Lineal Curso: Profesor: Natham Aguirre Ayudante:

Luis Felipe Beltrán lfbeltran@uc.cl

Ayudantía 12

14 de junio

Problema 1.

Diagonalize la matriz A y encuentre una matriz B tal que $B^3 = A$.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 0 & 3 \end{pmatrix}$$

Problema 2.

Sea $A = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$. Encuentre condiciones sobre los coeficientes de la matriz para que A sea diagonalizable.

Problema 3.

Demuestre que $A=\begin{pmatrix} a & a-1 \\ a+1 & a \end{pmatrix}$ es diagonalizable si y sólo si |a|>1.

Problema 4.

Sea
$$A = \begin{pmatrix} -1 & -2 & 2 \\ 0 & -1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$
.

- (a) Diagonalice A.
- (b) Diagonalice $B = A^{10} + A I$.

Problema 5.

Sea A una matriz de 5×5 antisimétrica y q el polinomio dado por $q(x) = 4x^3 - x^2 + 2$. Demuestre que 2 es valor propio de la matriz q(A).

Problema 6.

Sea A de 3×3 y e_1,e_2,e_3 los vectores canónicos de \mathbb{R}^3 tal que:

$$A(e_1 + e_2) = e_3;$$
 $A(e_1 + e_3) = e_2;$ $A(e_1) = 3e_1$

Encuentre y diagonalice A.

Problema 7.

Sea A una matriz de 3×3 tal que $A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$ y la FER de A es $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Diagonalice A.

Problema 8.

Sea la matriz:

$$\begin{pmatrix} a+b & b & 1 \\ -b & a-b & -1 \\ 1 & 1 & a^2 \end{pmatrix}$$

con $a, b \in \mathbb{R}$.

- (a) Determine valores de a y b tal que A tenga solo un valor propio de multiplicidad algebraica 3.
- (b) Determine para qué valroes de a y b la matriz A es diagonalizable.
- (c) Para algún valor de a y b calculado en (b), diagonalice A.

Problema 9.

Sea la matriz:

$$\begin{pmatrix} a^2 & 0 & 0 & a \\ 0 & 2 & 1 & 0 \\ 0 & 0 & b & 0 \\ a^2 & 0 & 0 & a \end{pmatrix}$$

con $a, b \in \mathbb{R}$.

- (a) Calcule los valores propios de A e indique para qué valores de a y b el valor propio 2 tiene multiplicidad algebraica 3.
- (b) Para b=2 y $a\not\in\{\sqrt{2},0\}$ calcule el espacio propio asociado al valor propio 2. ¿Para qué valor(es) de a la matriz no es diagonalizable?

Problema 10.

V o F

- (a) Si $A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$, entonces $\lambda = 16$ es valor propio de A^2 .
- (b) Si A es de 2×2 de rango 1 tal que $A \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$, entonces A es diagonalizable.
- (c) Si A es semejante a B, entonces sus polinomios característicos son iguales.
- (d) Si A de $n \times n$ es tal que $A^8 = 7A^7$. Si 7 no es valor propio de A, entonces A no es invertible.