Description of the Data Processing and Training Pipeline

Introduction

This document outlines, in detail, how each script in the data-processing and model-training pipeline operates. The overall flow is:

- 1. load_data_subsampled.py (Generates monthly data & labels in .pt files)
- 2. month_stacked_label.py (Stitches daily features into a single monthly feature tensor)
- 3. cov_label.py (Transforms monthly feature tensors into local covariance tensors for SPDNet)
- 4. basic_spdnet_pipeline.py (Trains/evaluates SPDNet on monthly covariance data)
- 5. unet_pipeline.py (Trains/evaluates U-Net on monthly stacked pixel data)
- 6. top_classes.py & create_clients.py (Groups tiles by land cover and organizes them into "client" folders)
- 7. spdnet_clientwise.py (Trains SPDNet on a single client folder)
- 8. unet_clientwise.py (Trains U-Net on a single client folder)

Sections below explain each script in this order.

load_data_subsampled.py

Purpose

This script reads daily GeoTIFF imagery and corresponding labels from a <code>/raw_data</code> directory. It saves them, month by month, into a new directory called <code>/subsampled_data</code>, converting each image or label into a PyTorch <code>.pt</code> file. This forms the initial, subsampled data that later scripts use.

Key Steps

- Directory Structure (Input):
 - /raw_data/planet.X/.../PF-SR/: daily .tif images for a specific tile (e.g. 2018-01-05.tif).
 - /raw_data/labels/...: raster and vector label data organized under "Labels/Raster/" or "Labels/Vector/".
- · Subsampling and Grouping:
 - The script is configured with SUBSAMPLE=8, meaning each GeoTIFF is read and reduced to 1/8th of its original spatial resolution (128×128 if the original was 1024×1024).
 - It groups daily imagery by month (e.g. 2018-01), determined by parsing the filenames (YYYY-MM-DD.tif).
- Output Files (per month):
 - Under /subsampled_data/planet.X/<tile_id>/<YYYY-MM>, the script saves:
 - * data_YYYY-MM-DD.pt: daily image in shape [C, H, W]. Typically C = 4 if there are four image bands.
 - * labels/raster.pt: a subsampled label raster for the same month (if available).
 - * labels/vector/...: optional vector labels in .pt format.
- Major Functionality:
 - process_time_series(...): loads daily .tif files, subsamples them, and saves them as .pt (one per day).
 - raster_label_out_file and vector_label_out_file: creation of label .pt files for each month.

month_stacked_label.py

Purpose

After load_data_subsampled.py produces a set of per-day data_YYYY-MM-DD.pt files, month_stacked_label.py "stacks" them into a single monthly tensor. It also processes label data (multi-class [C,H,W]) into a 2D label map [H,W] via thresholding/argmax.

Key Steps

- Input Directory Structure:
 - Expects a folder structure like: /subsampled_data/planet.X/<tile_id>/<YYYY-MM>/
 - Inside each month: multiple data_YYYY-MM-DD.pt plus labels/raster.pt
- Stacking Daily Features:
 - Each daily file is shape [4, H, W].
 - If there are N days, script concatenates them along the channels dimension, resulting in shape $[H, W, 4 \times N]$.
- Label Conversion:
 - Label raster [C, H, W] is thresholded (>127) and then argmaxed over the class dimension to get a 2D integer map [H, W].
- Output:

```
    A single pixel_dataset_<YYYY-MM>.pt is saved under
```

```
/subsampled_data/datasets/unet/planet.X/<tile_id>/<YYYY-MM>/
```

containing the following dictionary with tensor shapes

```
{"features": [H,W,4*N] , "labels": [H,W]}
```

cov_label.py

Purpose

In $cov_label.py$, we convert monthly feature tensors (shape [H, W, C]) into per-pixel covariance matrices for use in an SPDNet model. Below is a more detailed description of how this local covariance is computed, including the formulas and tensor shapes involved.

Key Steps

- 1. Load monthly data:
 - The script reads a file named pixel_dataset_<YYYY-MM>.pt, which contains:
 - features: shape [H, W, C]
 - labels: shape [H, W]

Typically, $C = 4 \times N$ (4 channels per day, N total days), or some variant depending on the data.

2. Convert features to PyTorch format:

• We often permute features to [1, C, H, W] so we can apply PyTorch's unfold operation for local windows:

features
$$\rightarrow$$
 shape [1, C, H, W].

• We reflect-pad the outer edges by PAD, where PAD = $\lfloor \frac{\text{WINDOW_SIZE}}{2} \rfloor$, ensuring each pixel's local neighborhood is well-defined.

3. Extract local windows:

• We use a fixed window size, e.g. $WINDOW_SIZE = 11$. PyTorch's unfold gives us, for each spatial position, a sub-tensor of shape $[C, WINDOW_SIZE, WINDOW_SIZE]$.

$$\mathbf{X} \in \mathbb{R}^{C \times (\mathtt{WINDOW_SIZE}) \times (\mathtt{WINDOW_SIZE})} \rightarrow \mathbf{X} \in \mathbb{R}^{N \times C}, \text{with } N = \mathtt{WINDOW_SIZE}^2$$

4. Center and compute covariance:

• We first subtract the mean over the samples to center the features:

$$\mathbf{X}_{c} = \mathbf{X} - \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i,:}.$$

• Then the empirical covariance matrix Σ is:

$$\Sigma = \frac{1}{N-1} \mathbf{X}_{c}^{\top} \mathbf{X}_{c},$$

whose shape is [C, C]. This is done *per pixel* in the image, thus producing $(H - 2 \text{ PAD}) \times (W - 2 \text{ PAD})$ covariance matrices.

• Finally, a small diagonal regularization $\alpha \mathbf{I}$ is added (e.g. $\alpha = 10^{-4}$) to ensure positivity. The script also calls a function make_spd to clamp eigenvalues above a threshold ϵ , keeping the matrix SPD (Symmetric Positive Definite).

5. Trimming edges:

• Because PAD pixels around each edge cannot have a full WINDOW_SIZE × WINDOW_SIZE neighborhood, they are removed to match the shape of the final labels. That is, the output shape becomes:

covariance:
$$[H-2\cdot PAD,\ W-2\cdot PAD,\ C,\ C]$$
, labels: $[H-2\cdot PAD,\ W-2\cdot PAD]$.

6. Output Structure:

• Each month's cov_label_<YYYY-MM>.pt is saved with:

```
{
  "covariance": [H - 2*PAD, W - 2*PAD, C, C],
  "labels": [H - 2*PAD, W - 2*PAD]
}
```

The top-level keys are "covariance" and "labels".

reorg_train_val_test.py

This script reorganizes the monthly stacked images pixel_dataset_YYYY-MM.pt from month_stacked_labels.py and covariance files (cov_label_YYYY-MM.pt from cov_label.py) into three separate subdirectories: train/, val/, and test/. However, unlike a random or ratio-based split, it relies on lists of tile IDs specified by external text files (train.txt, val.txt, and test.txt) that have been downloaded or provided beforehand.

- It scans each /subsampled_data/datasets/<spdnet_monthly,unet>/planet.* folder for the pixel_dataset_YYYY-MM.pt and cov_label_YYYY-MM.pt files produced by month_stacked_labels.py and cov_label.py.
- For each tile ID (parsed from the train.txt, val.txt, or test.txt files), it identifies the corresponding tile directory and monthly subfolders, then physically moves or copies the relevant pixel_dataset_YYYY-MM.pt and cov_label_*.pt files into:

```
/subsampled_data/datasets/<spdnet_monthly,unet>/train/<tile_id>/
/subsampled_data/datasets/<spdnet_monthly,unet>/val/<tile_id>/
/subsampled_data/datasets/<spdnet_monthly,unet>/test/<tile_id>/
```

- Once done, it deletes the former directory structure.
- This ensures deep learning pipelines can later load data by referencing the appropriate subdirectory for each split.

Hence, these folders train/, val/, and test/ now cleanly separate data based on the explicit tile IDs found in the three text files, setting the stage for network training and evaluation.

basic_spdnet_pipeline.py

Purpose

Trains and evaluates an SPDNet model (3-block, e.g. "SPDNet3BiRe") on the monthly covariance data created by cov_label.py.

Key Points

- Input Directory: /subsampled_data/datasets/spdnet_monthly/<train/val/test>/
 - Expects many cov_label_*.pt files, each containing covariance $[H \times W, C, C]$ and labels $[H \times W]$.

• Data Loading:

- MonthlyCovarianceDataset flattens each pixel's [C, C] matrix and label, grouping them into a dataset.
- Typically batch size = 1, each batch may contain a set of $[N_{pixels}, C, C]$.

• SPDNet Model:

- SPDNet3BiRe uses repeated $BiMap \rightarrow ReEig$ (and optional BatchNormSPD).
- Finally, LogEig + Vech \rightarrow a fully connected layer.
- Key hyperparameters: lr=1e-4, weight_decay=1e-4, epochs=..., batch_size=1.
- Uses RiemannianAdam for optimization.

• Metrics:

- Per-class IoU, confusion matrix, classification report, multi-class AUC attempt, etc.

unet_pipeline.py

Purpose

Trains and evaluates a U-Net model on the monthly "pixel dataset" created by month_stacked_label.py. The data are $[H, W, 4 \times N]$ images with 2D labels [H, W].

Key Points

- Directory Structure (Input):
 - /subsampled_data/datasets/unet/<train/val/test>/
 - Each month's data: $pixel_dataset_{YYYY-MM}$.pt containing features $\rightarrow [H, W, C]$ and $labels \rightarrow [H, W]$.

• UNet Model:

- in_channels = $4 \times T$ (e.g. 112 for T = 28).
- num_classes = 7.
- Various standard conv blocks and up-conv (transpose conv) layers.
- pad_and_cat ensures shape alignment in skip connections.

• Data Loader:

- UNetCropDataset loads each .pt file, permutes to [C, H, W], then crops or slices channels as needed (e.g. top-left [118, 118]).
- Typically batch_size = 1.

• Training Hyperparameters:

- epochs ≈ 30 ,
- lr=1e-4,
- weight_decay=1e-4.

• Evaluation:

- Per-class IoU, confusion matrix, classification report, multi-class AUC, etc.
- Best model is saved upon highest mean IoU.

top_classes.py and create_clients.py

top_classes.py

- Scans raw labels (.tif in /raw_data/labels) to figure out which classes dominate a tile (e.g. farmland vs. forest).
- Uses SUBSAMPLE=8 to read label .tif quickly.
- Finds the top n classes for each tile by counting pixel frequencies.
- Outputs a dictionary of tile IDs to the top classes.

create_clients.py

- Reads the tile grouping from top_classes.py.
- Copies data from /subsampled_data/datasets/(unet or spdnet_monthly)/ into "client" directories based on each tile's land-cover group (e.g. "mixed," "urban," etc.).
- Final structure: /clients/unet/<group>/<tile_id> or /clients/spdnet_monthly/<group>/<tile_id>.

spdnet_clientwise.py

Purpose

Trains the same SPDNet approach (as in basic_spdnet_pipeline.py) but for a single "client" folder, e.g. a group of tiles with similar dominant classes.

Process

- Points to a client path, e.g. /clients/spdnet_monthly/mixed/.
- Loads all the cov_label_*.pt files in that directory.
- Splits them (70%-15%-15%) for train-val-test.
- Hyperparameters are similar: batch_size = 1, epochs = 15, 1r = 1e 4.
- The model is the same SPDNet3BiRe with RiemannianAdam.

unet_clientwise.py

Purpose

Trains a U-Net on a single "client" folder containing stacked monthly pixel data.

Details

- Reads from e.g. /clients/unet/mixed/, loads pixel_dataset_*.pt files.
- Splits them 70%-15%-15%.
- Hyperparameters: epochs = 15, lr = 1e 4, weight decay = 1e 4.
- Produces final metrics (accuracy, IoU, confusion matrix, etc.).

Conclusion

This pipeline starts from raw daily .tif images and ends in multiple model training strategies, both U-Net-based (for direct pixel classification) and SPDNet-based (for classification via covariance matrices). The scripts support flexible grouping of tiles into "clients," enabling clientwise or federated learning setups.