[320] Pre-Machine Learning: Intro

Tyler Caraza-Harter

Functions/Models

training data

Kinds of Machine Learning

Supervised Machine Learning

data is **labeled**, we know what we want to predict

2

Unsupervised Machine Learning

data is **unlabeled**, we're just looking for patterns

3

Reinforcement Learning

not covered in CS 320

Main Categories of Machine Learning

Supervised Machine Learning

data is **labeled**, we know what we want to predict

2

Unsupervised Machine Learning

data is unlabeled, we're just looking for patterns

3

Reinforcement Learning

not covered in CS 320

Supervised Learning

Supervised Learning: Regression

training data

it's outputting continuous data

Supervised Learning: Classification

Main Categories of Machine Learning

Supervised Machine Learning

data is **labeled**, we know what we want to predict

2

Unsupervised Machine Learning

data is **unlabeled**, we're just looking for patterns

3

Reinforcement Learning

not covered in CS 320

Unsupervised Learning

unsupervised clustering algorithms try to identify groups of _ similar data. The algorithm decides the groups.

Sometimes (but often not) they'll correspond to things we describe. E.g., cluster I: old houses with few bathrooms; cluster 2: new houses with many bathrooms

Foundations

Important Packages

We'll be learning the following to do ML and related calculations efficiently:

- 2 pytorch
- 3 scikit-learn

$$\begin{bmatrix} 2 & 1 & 1985 \\ 3 & 1 & 1998 \\ 4 & 3 & 2005 \\ 4 & 2 & 2020 \end{bmatrix} \longrightarrow \begin{bmatrix} 190000 \\ 254000 \\ 328000 \\ 343000 \end{bmatrix}$$

$$y = x ** 2$$
 not linear
 $y = 3*c0 + -2*c1 + 0.5*c2 + ... + 10*c49$ linear

Calculus

training data

beds	baths	year	price		
1	l	1980	\$140K	→ 30	
3		1990	\$240K		
3	4	2004	\$295K	Machine Learning Algorithm	
				train	predicted pr
					\$190K
				y = Xc + b	\$254K
					\$328K

Calculus

how do we optimize **c** to minimize **loss**? Important concepts: derivative, gradient

Parallelism

Parallelism

- doing multiple things at the same time
- requires multiple cores

GPUs (graphics processing units)

- graphics involves many of the same operation
- better to have many weaker cores working at once than fewer faster cores
- modern GPUs may have 1000s of cores (in contrast to 10s for CPUs)

Scientific Computing

- GPUs can greatly speed up key ML operations
 - multiplying matrices
 - computing gradients
- We'll learn pytorch for this...

Practitioners

Conclusion: Our focus

how can we clean this up?

