自修華特提出管制圖的概念與作法迄今,管制圖的發展已極為 完備。本章之前所介紹的各種管制圖,都是由修華特所提出的,故 一般統稱為修華特管制圖。修華特管制圖較適用於重複性生產,但 當今生產型態極為多樣化,為因應不同生產型態的需求,許多學者 乃陸續發展出其他有別於修華特的各類管制圖,本章就針對常用的 這幾種管制圖加以介紹。

壹、累積和管制圖

修華特管制圖依賴最近一期或幾期的樣本點判斷製程是否存在 異常,這種作法的最大缺點就是對於製程小幅度偏移的偵測能力較 弱。累積和管制圖(Cumulative Sum Control Chart,CUSUM Control Chart)與指數加權移動平均數管制圖(Exponential Weighted Moving Average Control Chart,EWMA Control Chart) 對於偵測製程小幅度的偏移,提供了較佳的作法。

一、累積和管制圖的原理

假設有一製程,其品質特性之平均數已偏離一倍標準差,讓我們看看修華特管制圖的偵測能力。表12-1中的觀察值1~20,是用Excel產生的一組以10.00為平均數,1.00為標準差的樣本;觀察值21~30,是另一組以11.00為平均數,1.00為標準差的樣本。若將表12-1的資料繪製成個別值與移動全距管制圖,可得圖12-1與圖12-2。

			▼表12-1	本白松石		44				-
			V 1X 12-	**日於1	问半均數	的兩組樣才	K資料			
期間	1	2	3	4	5	6	7	8	9	10
觀察值	8.87	9.74	10.10	11.21	9.45	11.20	9.76	9.48	9.59	9.46
移動全距		0.87	0.35	1.11	1.76	1.75	1.43	0.28	0.11	0.12
期間	11	12	13	14	15	16	17	18	19	20
觀察值	9.31	11.05	10.40	9.82	10.15	10.52	9.74	9.01	11.05	10.10
移動全距	0.15	1.74	0.65	0.58	0.33	0.37				0.95
期間	21	22	23	24			0.78	0.73	2.04	
	11.20			24	25	26	27	28	29	30
觀察值	11.39	11.78	12.87	11.54	10.30	10.21	10.95	10.10	11.13	10.05
移動全距	1.29	0.39	1.09	1.33	1.24			10.10	11.13	
					1.24	0.09	0.74	0.85	1.03	1.08

以管制圖判定準則檢視圖 12-1 與圖 12-2 並無異常,然而事實上 製程卻已偏移,故可證實修華特管制圖對於製程小幅度偏移的偵測 能力較弱。上述狀況主要是因為修華特管制圖只是以最近一期或幾 期的樣本點就要判斷製程是否存在異常,先天上就有誤判的可能, 尤其是在品質特性偏移 1.5 倍標準差以下時更為嚴重。

對於表 12-1,假設品質特性目標值為 10.00,如果我們不繪製個別值管制圖,而改為繪製製程偏離目標(觀察值 – 10.00)的累積和〔Σ(觀察值 – 10.00)〕,則累積和的計算如表 12-2 所示,相對應的圖形如圖 12-3 所示。由圖 12-3 可看出,製程約在第 20 至第 21 點之間開始產生偏移。運用累積和的觀念,就可以偵測出製程小幅度的偏移。

XX

					とかかかあ	組槎本之!	累積和資料	1		
		▼表	12-2 來自		-13到 Eller	6	累積和資料 7	8	9	10
期間	1	2	3	4	5		9.76	9.48	9.59	9.46
觀察值	8.87	9.74	10.10	11.21	9.45	11.20		-0.52	-0.41	-0.54
目標偏離量	- 1.13	-0.26	0.10	1.21	-0.55	1.20	-0.24			
累積和	-1.13	-1.39	-1.29	-0.09	-0.64	0.56	0.32	-0.20	-0.61	-1.15
期間		12	13	14	15	16	17	18	19	20
	11			9.82	10.15	10.52	9.74	9.01	11.05	10.10
觀察值	9.31	11.05	10.40			0.52	-0.26	-0.99	1.05	0.10
目標偏離量	-0.69	1.05	0.40	-0.18	0.15		-0.16	- 1.15	-0.10	0.00
累積和	-1.84	-0.79	-0.39	-0.57	-0.42	0.10			29	
期間	21	22	23	24	25	26	27	28		30
觀察值	11.39	11.78	12.87	11.54	10.30	10.21	10.95	10.10	11.13	10.05
			2.87	1.54	0.30	0.21	0.95	0.10	1.13	0.05
目標偏離量	1.39	1.78				8.09	9.04	9.14	10.27	10.32
累積和	1.39	3.17	6.04	7.58	7.88	0.07				

二、以累積和管制圖監控平均數

累積和管制圖與指數加權移動平均數管制圖,對於製程的小幅 度偏移,都有比修華特管制圖更好的偵測能力。

累積和管制圖是以製程偏離目標的累積和為觀察對象,最適合 用於化學化工與材料等行業、樣本大小經常為1、或是對每一產品 自動量測以進行線上即時監控的製程管制。

累積和管制圖同樣可用來監控製程的平均數與變異程度。 以累積和管制圖監控平均數前,以下事項須先確定:

1. 品質特性目標值(Target) 品質特性目標值本書以 T表示之。 2. 參考值(Reference Value)

製作累積和管制圖前,須先確定製程偏移量達到多少才應被 計入,此稱為參考值)一般以K代表之。為避免將不顯著的 「製程偏離目標值」計算進入累積和中,造成累積和的高估, 一般會採取較為保守的作法,只將「製程偏離目標值」與參 考值的差計入累積和中。有時為了方便解釋,我們會將參考 值以標準差的倍數方式表示,即 $k = \frac{K}{\sigma}$ 。例如,品質特性 目標值為 20.50mm,標準差為 0.4mm,其參考值 k 就可設為 0.5 倍標準差,或是k = 0.20mm。

3. 決策區間 (Decision Interval)

當累積和達到多少時,代表製程偏移,此值稱為決策區間, 一般以 H 表示之,其意義與管制界限相同。當累積和超過決 策區間時,代表製程偏移。H值最常採用的是4或5倍標準 差。有時為了方便解釋,我們也會將決策區間以標準差的倍 數方式表示,即 $h = \frac{H}{\sigma}$ 。例如,前例的H值就可設為 1.6mm (h=4) 或 2.0mm (h=5) °

累積和管制圖用來監控製程平均數之變化的統計量有兩個,其 一為單邊上累積和(One-sided Upper CUSUM),一般表示為 C⁺;另一為單邊下累積和(One-sided Lower CUSUM),一般表示 為 C^{-} 。 C^{+} 與 C^{-} 如公式(12-1)所示。

$$C_{i}^{+} = max[0, x_{i} - (T + K) + C_{i-1}^{+}]$$

 $C_{i}^{-} = max[0, (T-K) - x_{i} + C_{i-1}^{-}]$

其中, $C_0^+ = C_0^- = 0$ 。 當 C^+ 或 C^- 超出決策區間時,即可判斷製程已偏移;若是 C^+ 超出決策區間,製程平均數有變大傾向,為向上偏移;若是C型 出決策區間,製程平均數有變小傾向,為向下偏移。至於何時開始 偏移,則可以 C^+ 或 C^- 的起升點或起降點來做判斷。

單邊上累積和,一般表 示為C+;單邊下累積 和,一般表示為C。

$$C_{i}^{+} = max[0, x_{i} - (T + K) + C_{i-1}^{+}]$$

$$C_{i}^{-} = max[0, (T-K) - x_{i} + C_{i-1}^{-}]$$

範例 12-1

已知品質特性目標值為10.00,參考值K=0.50,決策區間H=4.00。試 以累積和管制圖監控表 12-1 之製程平均數的變化。

解答

依公式(12-1)得 $C_{i}^{+} = max[0, x_{i} - (T+K) + C_{i-1}^{+}] = max[0, x_{i} - 10.50 + C_{i-1}^{+}]$ $C_{i}^{-} = max[0, (T-K) - x_{i} + C_{i-1}^{-}] = max[0, 9.50 - x_{i} + C_{i-1}^{-}]$ 其中, $C_{0}^{+} = C_{0}^{-} = 0$ 故 $C_{1}^{+} = max[0, x_{i} - 10.50 + C_{i-1}^{+}] = max[0, 8.87 - 10.50 + 0.00] = 0.00$ $C_{1}^{-} = max[0, 9.50 - x_{i} + C_{i-1}^{-}] = max[0, 9.50 - 8.87 + 0.00] = 0.63$ $C_{2}^{+} = max[0, x_{i} - 10.50 + C_{i-1}^{+}] = max[0, 9.74 - 10.50 + 0.00] = 0.00$ $C_{2}^{-} = max[0, 9.50 - x_{i} + C_{i-1}^{-}] = max[0, 9.50 - 9.74 + 0.63] = 0.39$ 餘此類推,可得表 12-3。

		▼表12-3 範例1	2-1 累積和	计算		
	the size to	單邊上	累積和	單邊下累積和		
期間	觀察值	$x_i = 10.5$	C_i^{\dagger}	$9.5 - x_i$	C_i^-	
1	8.87	-1.63	0.00	0.63	0.63	
2	9.74	-0.76	0.00	-0.24	0.39	
3	10.10	-0.40	0.00	-0.60	0.00	
4	11.21	0.71	0.71	-1.71	0.00	
5	9.45	-1.05	0.00	0.05	0.05	
6	11.20	0.70	0.70	-1.70	0.00	
7	9.76	-0.74	0.00	-0.26	0.00	
8	9.48	-1.02	0.00	0.02	0.02	
9	9.59	-0.91	0.00	-0.09	0.00	
10	9.01	-1.49	0.00	0.49	0.49	
11	9.31	-1.19	0.00	0.19	0.68	
12	11.05	0.55	0.55	-1.55	0.00	
13	10.40	-0.10	0.45	-0.90	0.00	
14	9.82	-0.68	0.00	-0.32	0.00	
15	10.15	-0.35	0.00	-0.65	0.00	
16	10.52	0.02	0.02	-1.02	0.00	
17	9.74	-0.76	0.00	-0.24	0.00	
18	9.01	-1.49	0.00	0.49	0.49	
19	11.05	0.55	0.55	-1.55	0.00	
20	10.10	-0.40	0.15	-0.60	0.00	
21	11.39	0.89	1.04	-1.89	0.00	
22	11.78	1.28	2.32	-2.28	0.00	
23	12.87	2.37	4.69	-3.37	0.00	
24	11.54	1.04	5.73		0.00	
25	10.30	-0.20	5.53	-2.04	0.00	

26	10.21	-0.29	5.24		
	10.95	0.45		-0.71	0.00
27	10.10		5.69	-1.45	0.00
28		-0.40	5.29	-0.60	0.00
29	11.13	0.63	5.92	-1.63	
30	10.05	-0.45	5.47	-0.55	0.00
				-0.55	0.00

將表 12-3 繪成圖形,可得圖 12-4。

由圖 12-4 可看出第 23 期的累積和已超出決策區間,顯現出該製程偏移的 警示。由於單邊上累積和為正,故製程為向上偏移。另因單邊上累積和是從 第20期開始累積,故可判斷製程的偏移應約在第20期與第21期間開始發 生。

三、以累積和管制圖監控變異

累積和管制圖亦能用來監控製程變異,但此時的計算將更為繁 複。有興趣的讀者請自行參考D. C Montgomery 所著之Introduction to Statistical Quality Control °

貳、指數加權移動平均數管制圖

針對修華特管制圖無法偵測出製程小幅度偏移的改善,除了可 採用累積和管制圖外,指數加權移動平均數管制圖,又稱為幾何移 動平均數(Geometric Moving Average,GMA)管制圖,是另外 一種極佳的選擇。

一、指數加權移動平均數管制圖的原理

在時間序列的預測中,指數平滑法(Exponential Smoothing Method)是最常使用的方法之一,其公式如(12-2)所示。

$$z_i = \lambda x_i + (1 - \lambda) z_{i-1}$$

12-2

此處 $\lambda = \mathbb{P}$ 滑常數,且 $0 < \lambda \le 1$ 。

由於管制圖的資料屬於時間序列的一種,故可運用指數平滑法來預測製程的未來變化,進而達到製程管制的目的。

運用指數平滑的預測公式來製作管制圖,被稱為指數加權移動平均數管制圖,此時一般多以品質特性目標值作為第一個估計值,即z₀ = T。

以範例 12-1 之資料為例,假設 $\lambda = 0.25$,則可預測製程平均數 之變化如下:

$$z_1 = \lambda x_1 + (1 - \lambda) z_0 = 0.25 \times 8.87 + 0.75 \times 10.00 = 9.72$$

 $z_2 = \lambda x_2 + (1 - \lambda) z_1 = 0.25 \times 9.74 + 0.75 \times 9.72 = 9.72$

餘此類推,可得表12-4。

期間	4 範例 12-2 預測製程平均數變 觀察值	預測值
1	8.87	9.72
2	9.74	9.72
3	10.10	9.82
4	11.21	10.17
5	9.45	9.99
6	11.20	10.29
7	9.76	10.16
8	9.48	9.99
9	9.59	9.89
10	9.01	9.67
11	9.31	9.58
12	11.05	9.95
13	10.40	10.06
14	9.82	10.00
15	10.15	10.04
16	10.52	10.16
17	9.74	10.05
18	9.01	9.79

19	11.05	
20	10.10	10.11
21	11.39	10.11
22	11.78	10.43
23	12.87	10.76
24	11.54	11.29
25	10.30	11.35
26	10.21	11.09
27		10.87
	10.95	10.89
28	10.10	10.69
29	11.13	10.80
30	10.05	10.61

若將表 12-3 繪成圖形,可得圖 12-5。

由圖 12-5 可看出,原先看似隨機跳動的觀察值,如今從預測值 來看卻已呈現明顯上升。

指數加權移動平均數管制圖也同樣可用來監控製程的平均數與 變異程度。

二、以指數加權移動平均數管制圖監控平均數

對製程小幅度偏移的偵測能力,指數加權移動平均數管制圖與 累積和管制圖皆優於修華特管制圖;至於對製程大幅度偏移的偵測 能力,指數加權移動平均數管制圖與修華特管制圖皆優於累積和管 制圖。

指數加權移動平均數管制圖是以品質特性的預測值為觀察對

製程小幅度偏移的偵 測能力,指數加權移動 平均數管制圖與累積和 管制圖皆優於修華特管 制圖;至於對製程大幅 度偏移的偵測能力,指 數加權移動平均數管制 圖與修華特管制圖皆優 於累積和管制圖。

它同樣最適合用於化學化工與材料等行業、樣本大小經常為 1、或是對每一產品自動量測以進行線上即時監控的製程管制。

以指數加權移動平均數管制圖監控平均數前,以下事項須先確

定:

- 1. 品質特性目標值(Target) 品質特性目標值本書以 T表示之。
- 2. 平滑常數 (λ) 平滑常數一般是由嘗試錯誤法獲得,預測誤差愈小的平滑常 數,愈為我們所喜愛。一般最常採用的平滑常數介於0.05至 0.25之間。
- 3. 管制界限因子 指數加權移動平均數管制圖的管制界限因子之意義與修華特 管制圖相同,本書以1代表之,在三倍標準差的考慮下,1= 3;但由於指數加權移動平均數管制圖大多用於偵測製程小 幅度的偏移,故大多數學者建議管制界限因子可適度減小, 以提高偵測能力,例如1=2.6至2.8即為非常適當的選擇。

指數加權移動平均數管制圖的管制界限隨著期數之不同而異, 如公式(12-3)所示。

$$UCL_{i} = T + l\sigma \sqrt{\frac{\lambda}{(2-\lambda)} \left[1 - (1-\lambda)^{2i}\right]}$$

$$CL = T$$

$$LCL_{i} = T - l\sigma \sqrt{\frac{\lambda}{(2-\lambda)} \left[1 - (1-\lambda)^{2i}\right]}$$

指數加權移動平均數管 制圖的管制界限

$$\begin{aligned} \textit{UCL}_i &= \textit{T} + \\ \textit{l}\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}[1 - (1-\lambda)^{2i}] \end{aligned}$$

$$CL = T$$

$$LCL_i = T -$$

$$l\sigma\sqrt{\frac{\lambda}{(2-\lambda)}[1-(1-\lambda)^{2i}]}$$

範例 12-2

已知品質特性目標值為 10.00,標準差為 1.00,平滑常數 $\lambda = 0.25$,管制 界限因子 l = 2.6。 試以指數加權移動平均數管制圖監控表 12-4 之製程平均數 的變化。

解答

依公式 (12-3),得

$$UCL_{i} = T + l\sigma\sqrt{\frac{\lambda}{(2-\lambda)}} \left[1 - (1-\lambda)^{2i}\right]$$

$$= 10.00 + 2.6 \times 1.00 \times \sqrt{\frac{0.25}{(2-0.25)} [1 - (1-0.25)^{2i}]}$$

$$CL = T = 10.00$$

$$LCL_{i} = T - l\sigma\sqrt{\frac{\lambda}{(2-\lambda)}} \left[1 - (1-\lambda)^{2i}\right]$$

$$= 10.00 - 2.6 \times 1.00 \times \sqrt{\frac{0.25}{(2-0.25)}} \left[1 - (1-0.25)^{2i}\right]$$

故

$$UCL_{1} = 10.00 + 2.6 \times 1.00 \times \sqrt{\frac{0.25}{(2 - 0.25)}} [1 - (1 - 0.25)^{2 \times 1}] = 11.071$$

$$LCL_{1} = 10.00 - 2.6 \times 1.00 \times \sqrt{\frac{0.25}{(2 - 0.25)}} [1 - (1 - 0.25)^{2 \times 1}] = 8.929$$

餘此類推,可得表12-5。

***************************************	12-5 範例12-2指		双官制圖管制界限:	之計算
期間	觀察值	預測值	UCL	LCL
1	8.87	9.72	11.071	8.929
2	9.74	9.72	11.177	8.823
3	10.10	9.82	11.232	8.768
4	11.21	10.17	11.262	8.738
5	9.45	9.99	11.279	8.721
6	11.20	10.29	11.288	8.712
7	9.76	10.16	11.293	8.707
8	9.48	9.99	11.296	8.704
9	9.59	9.89	11.298	8.702
10	9.01	9.67	11.299	8.701
11	9.31	9.58	11.299	8.701
12	11.05	9.95	11.300	8.700
13	10.40	10.06	11.300	8.700
14	9.82	10.00	11.300	8.700
15	10.15	10.04	11.300	8.700
16	10.52	10.16	11.300	8.700
17	9.74	10.05	11.300	8.700
18	9.01	9.79	11.300	8.700
19	11.05	10.11	11.300	8.700
20	10.10	10.11	11.300	8.700
21	11.39	10.43	11.300	8.700
		10.76	11.300	8.700
22	11.78	11.29	11.300	8.700
23	12.87	11.29	11.300	8.700

25	10.30	11.09	11.300	8.700
25	10.21	10.87	11.300	8.700
27	10.21	10.89	11.300	8.700
28	10.10	10.69	11.300	8.700
29	11.13	10.80	11.300	8.700
30	10.05	10.61	11.300	8.700

將預測值與管制界限繪成圖12-6,可發現第24期出現警示。

三、以指數加權移動平均數管制圖監控變異

指數加權移動平均數管制圖亦能用來監控製程變異,但此時的計算亦較為繁複。有興趣的讀者請自行參考 D. C Montgomery 所著之 Introduction to Statistical Quality Control。

參、工程製程管制

要降低製程中的變異,除可運用統計製程管制外,另外一種方法就是工程製程管制(Engineering Process Control, EPC)。統計製程管制是運用統計原理發覺製程中的非機遇原因,加以檢討並去除該原因,以降低製程的變異。至於工程製程管制,則是運用製程中的可操作變數(Manipulatible Variable)調整品質特性,使品質特性盡量接近目標值,以降低製程的變異。由於工程製程管制是依據品質特性與目標值之間的差,回推可操作變數應該做何調整,故