The function $f(x) = (x-3)^2 + \frac{1}{2}$ has domain $D_f : (-\infty, \infty)$ and range $R_f : \left[\frac{1}{2}, \infty\right)$.

$$\lim_{x \to a} f(x)$$

$$\lim_{x \to a^-} f(x)$$

$$\lim_{x \to a^+} f(x)$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

$$\int \sin x \, dx - \cos x + C$$

$$\int \sin x \, dx - \cos x + C$$

$$\int_{a}^{b}$$

$$\int_{}^{b}$$

$$\int_{2a}^{b}$$

$$\int_{a}^{b} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{a}^{b} = \frac{b^{3}}{3} - \frac{a^{3}}{3}$$

$$\sum_{n=1}^{\infty} = a + ar + ar^2 + \dots + ar^n$$

$$\int_{a}^{b} f(x) dx = \lim_{x \to \infty} \sum_{k=1}^{n} f(x_k) \cdot \Delta x$$

$$\vec{v} = v_1 \vec{i} + v_2 \vec{j} = \langle v_1, v_2 \rangle$$