Output tables for the test of Multiple comparisons.

June 12, 2017

1 Average rankings of Friedman test

Average ranks obtained by applying the Friedman procedure

Ranking	6.0625	4.5312	3.4844	4.2188	4.8438	3.8281	3.5625	5.4688
Algorithm	Base	ADASYN	SMOTE	Bord	NCL	SMOTE+TL	SMOTE+ENN	CCR

Table 1: Average Rankings of the algorithms

Friedman statistic considering reduction performance (distributed according to chi-square with 7 degrees of freedom: 31.679688.

2 Post hoc comparisons

Results achieved on post hoc comparisons for $\alpha=0.05,\,\alpha=0.10$ and adjusted p-values.

2.1 P-values for $\alpha = 0.05$

0.001786
0.000264
0.0
3.648719 3.240471
3.240471 3.240471
HTL CHTL
Base vs. SMOTE+ENN Base vs. SMOTE+TL SMOTE vs. CCR
e vs. SMOTE+E se vs. SMOTE+C SMOTE vs. CCR
2 5 7 5
sase Base Sh
Base Base SN

Table 2: P-values Table for $\alpha = 0.05$

ie	71	62	.62	.62	.62	.62	.62	.62	,0	63	26	82	25	29	43	92	33	91		11	2	98	29		,0	33		
Shaffer	0.00357	0.004762	0.004762	0.004762	0.004762	0.004762	0.004762	0.004762	0.005	0.005263	0.005556	0.005882	0.00625	0.006667	0.007143	0.007692	0.008333	0.009091	0.01	0.011111	0.0125	0.014286	0.016667	0.02	0.025	0.033333	0.05	0.1
d	0.000026	0.000045	0.000264	0.001193	0.001853	0.002605	0.007381	0.012401	0.026429	0.036414	0.041227	0.046568	0.087351	0.097215	0.113658	0.125786	0.230439	0.250887	0.283876	0.307434	0.307434	0.332251	0.523547	0.574565	0.609834	0.609834	0.66446	0.898483
$z = (R_0 - R_i)/SE$	4.21006	4.082483	3.648719	3.240471	3.112893	3.010831	2.679129	2.500521	2.21985	2.092272	2.041241	1.99021	1.70954	1.658509	1.581962	1.530931	1.199229	1.148198	1.071652	1.020621	1.020621	0.96959	0.637888	0.561341	0.51031	0.51031	0.433764	0.127578
algorithms	Base vs. SMOTE	Base vs. SMOTE+ENN	Base vs. SMOTE+TL	SMOTE vs. CCR	SMOTE+ENN vs. CCR	Base vs. Bord	SMOTE+TL vs. CCR	Base vs. ADASYN	SMOTE vs. NCL	NCL vs. SMOTE+ENN	Bord vs. CCR	Base vs. NCL	ADASYN vs. SMOTE	NCL vs. SMOTE+TL	ADASYN vs. SMOTE+ENN	ADASYN vs. CCR	SMOTE vs. Bord	ADASYN vs. SMOTE+TL	Bord vs. SMOTE+ENN	Bord vs. NCL	NCL vs. CCR	Base vs. CCR	Bord vs. SMOTE+TL	SMOTE vs. SMOTE+TL	ADASYN vs. Bord	ADASYN vs. NCL	SMOTE+TL vs. SMOTE+ENN	SMOTE vs. SMOTE+ENN
i	28	27	56	25	24	23	22	21	20	19	18	17	16	15	14	13	12	Π	10	6	œ	~	9	2	4	3	7	П

Table 3: P-values Table for $\alpha = 0.10$

Shaffer's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.003571 .

1	hypothesis	unadjusted p	p_{Shaf}
П	Base vs .SMOTE	0.000026	0.000715
2	Base vs.SMOTE+ENN	0.000045	0.000936
3	Base vs .SMOTE+TL	0.000264	0.005535
4	SMOTE vs. CCR	0.001193	0.02506
5	SMOTE+ENN vs.CCR	0.001853	0.038905
9	Base vs .Bord	0.002605	0.054712
7	SMOTE+TL vs.CCR	0.007381	0.155009
∞	Base vs .ADASYN	0.012401	0.260423
6	SMOTE vs.NCL	0.026429	0.422863
10	NCL vs .SMOTE+ENN	0.036414	0.582626
11	Bord vs .CCR	0.041227	0.659629
12	Base vs .NCL	0.046568	0.745084
13	ADASYN vs. SMOTE	0.087351	1.397616
14	NCL vs.SMOTE+TL	0.097215	1.458223
15	ADASYN vs .SMOTE+ENN	0.113658	1.477557
16	ADASYN vs. CCR	0.125786	1.635224
17	SMOTE vs .Bord	0.230439	2.765265
18	ADASYN vs.SMOTE+TL	0.250887	2.765265
19	Bord vs.SMOTE+ENN	0.283876	2.838765
20	Bord vs .NCL	0.307434	2.838765
21	NCL vs .CCR	0.307434	2.838765
22	Base vs .CCR	0.332251	2.838765
23	Bord vs .SMOTE+TL	0.523547	3.14128
24	$_{ m SM}$	0.574565	3.14128
25	ADASYN vs. Bord	0.609834	3.14128
26	ADASYN vs. NCL	0.609834	3.14128
27	SMOTE+TL vs .SMOTE+ENN	0.66446	3.14128
28	SMOTE vs .SMOTE+ENN	0.898483	3.14128

Table 4: Adjusted p-values