Dr D. Sinden

CTMS-MAT-13: Numerical Methods

Assignment Sheet 1. Due: February 28, 2024

Exercise 1 [5+5+3+5 Points]: Let $f(x) = e^{i\omega x}$ with some real number ω .

- a) Compute the Taylor series for f around $c = \frac{\pi}{2}$.
- **b)** Use the Taylor series truncated after the *n*-th term to compute $f(\pi)$ for n = 1, ..., 5 and an arbitrary ω .
- c) Compare values calculated in b) with the actual value of $f(\pi)$ for $\omega = 1$ and create a plot for the errors of the real part and imaginary part as a function of n. (Hint: Use Euler's formula)
- **d)** Show that the Taylor series for $f(x) = e^{i\omega x}$ around $c = \frac{\pi}{2}$ converges to f for $x \in \left[\frac{\pi}{2}, \pi\right]$.

Exercise 2 [5+5+2 Points]:

- a) Compute the Taylor series for $f(x) = \sin(3x^2)$ around c = 0. (Hint: compute for $\sin(x)$ then substitute).
- **b)** The Taylor series for $f(x) = \frac{\sqrt{x+1}}{2}$ around c = 0 represents the function for $|x| \le 1$. What is the Taylor expansion for n = 1 and what is the remainder term? Calculate the number of correct digits for x = 0.0001 and x = -0.0001.
- **b**) Convert the following from one base to another and write down you calculations as an expansion:
 - i) $(530)_{10}$ to $(...)_2$
 - ii) $(1.1011)_2$ to $(...)_8$