# Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний

інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1.

Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 32

| Виконав студент | <u>111-13, Черкасов Станіслав Олексійович</u> |
|-----------------|-----------------------------------------------|
|                 | (шифр, прізвище, ім'я, по батькові)           |
| Перевірив       |                                               |
|                 | ( прізвище, ім'я, по батькові)                |

Основи програмування – 1. Алгоритми та структури даних

#### Лабораторна робота 4

#### Дослідження арифметичних циклічних алгоритмів

**Мета** — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

#### Варіант 32

32. Для заданого дійсного х і натурального п обчислити

$$y = \frac{1}{\sum_{i=0}^{n} \frac{1}{i^2} \sin x}$$
 для  $x = 0.5$ 

#### Постановка задачі

Для обчислення заданого виразу побудуємо цикл. Із кожною ітерацією циклу будемо додавати до змінної SUM певний вираз, який залежить від І (лічильник циклу) та дорівнює поточному елементу суми. Повторюємо цикл N разів та ділимо 1 на отриману суму. Результат записуємо у змінну ANS та виводимо її.

#### Побудова математичної моделі

#### <u>Ділення на нуль</u>

У заданій сумі І є змінною-лічильником, початкове значення якої дорівнює 0. Проте у формулі І розташовано у знаменнику дробу. Отже, перший елемент суми є невизначеним.

Щоб уникнути цього, задамо I початкове значення 1

#### Таблиця змінних

| Змінна          | Тип        | Ім'я | Призначення     |
|-----------------|------------|------|-----------------|
| Задане число Х  | Ціле       | X    | Початкове дане  |
| Задане число N  | Натуральне | N    | Початкове дане  |
| Лічильник циклу | Натуральне | I    | Лічильник циклу |
| Шукана сума     | Дійсне     | SUM  | Проміжне дане   |
| Значення виразу | Дійсне     | ANS  | Кінцеве дане    |

## Обрахування

Нехай початкові значення SUM та І дорівнюють 0 та 1 відповідно.

Припустимо, що X задано в радіанах. Тоді із кожною ітерацією циклу змінюємо SUM наступним чином:

$$SUM += \sin(X) / (I * I);$$

Наприкінці програми обчислюємо..:

$$ANS := 1 / SUM$$

### Розв'язання

Програмні специфікації запишемо у формі псевдокоду та у вигляді блок-схеми.

Крок 1: визначимо основні дії

Крок 2: задамо початкові значення SUM

| Псевдокод                  |                            |
|----------------------------|----------------------------|
|                            |                            |
| Крок 1:                    |                            |
|                            | Крок 2:                    |
| початок                    | •                          |
| введення X, N              | початок                    |
| задання SUM                | введення X, N              |
| знаходження SUM            | SUM := 0                   |
| знаходження ANS            | знаходження SUM            |
| виведення ANS              | знаходження ANS            |
| кінець                     | виведення ANS              |
|                            | кінець                     |
|                            |                            |
|                            |                            |
| Крок 3:                    | Крок 4:                    |
|                            |                            |
| початок                    | початок                    |
| введення X, N              | введення X, N              |
| SUM := 0                   | SUM := 0                   |
| повторити N разів          | повторити N разів          |
| $SUM += \sin(X) / (I * I)$ | $SUM += \sin(X) / (I * I)$ |
| кінець циклу               | кінець циклу               |
| знаходження ANS            | ANS := 1 / SUM             |
| виведення ANS              | виведення ANS              |
| кінець                     | кінець                     |
|                            |                            |

Крок 3: деталізуємо знаходження SUM

Крок 4: деталізуємо знаходження ANS

# Блок-схема



Крок 3: Крок 4: Початок Початок Введення X, N Введення X, N SUM := 1 SUM := 1 l := 1; l <= N; l += 1 I := 1; I <= N; I += 1 SUM += sin(X) / (I \* I)SUM += 1 / ( | \* | \* sin(X)) Обчислення ANS ANS := 1 / SUM Виведення ANS Виведення ANS Кінець Кінець

# Випробування алгоритму

| Блок | Дія                                     |
|------|-----------------------------------------|
|      | початок                                 |
| 1    | введення X := 0.5, N := 2               |
| 2    | SUM = 0                                 |
| 3    | SUM := 0.479<br>0 + 0.479; бо 1 <= 2    |
| 4    | SUM := 0.599<br>0.479 + 0.12; бо 2 <= 2 |
| 5    | ANS := 1.669 1 / 0.599                  |
| 9    | виведення ANS                           |
|      | кінець                                  |

| Блок | Дія                                      |
|------|------------------------------------------|
|      | початок                                  |
| 1    | введення X := 1, N := 3                  |
| 2    | SUM = 0                                  |
| 3    | SUM := 0.841<br>0 + 0.841; 60 1 <= 3     |
| 4    | SUM := 1.051<br>0.841 + 0.21; бо 2 <= 3  |
|      | SUM := 1.145<br>1.051 + 0.093; бо 3 <= 3 |
| 5    | ANS := 0.873 1 / 1.145                   |
| 9    | виведення ANS                            |
|      | кінець                                   |

# Висновок

Під час виконання цієї лабораторної роботи я вдосконалив навички написання математичної моделі, праці з блок схемами та випробування алгоритму. Дослідити особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій.