MÚLTIPLA-ESCOLHA

(Marque com um "X" a <u>única</u> opção que atende ao que é solicitado em cada questão)

QUESTÃO 01. A pequena Suzana caminha do início ao fim pelo trajeto indicado na figura abaixo e vai adicionando, em cada trecho, uma das frações pelas quais passa. Determine a **menor** soma dentre as 18 possíveis somas que Suzana poderá obter ao final da caminhada.

- **A** () $\frac{235}{153}$
- **B** () $\frac{352}{135}$
- **C** () $\frac{532}{531}$
- **D** () $\frac{18}{15} + \frac{20}{18} + \frac{4}{9}$
- **E** () $\frac{8}{27} + \frac{18}{15} + \frac{19}{18}$

QUESTÃO 02. Júlia, uma excelente doceira, recebeu uma encomenda para fazer o bolo e os doces de um casamento. Para isso, vai precisar de 1,8 quilograma (Kg) de chocolate em pó. Júlia foi ao supermercado, onde encontrou três opções de compra: uma lata de 300 gramas (g) de chocolate em pó, por R\$ 4,00; uma lata de 600 gramas (g), por R\$ 7,00; e uma lata de 1,2 quilograma (Kg), por R\$ 12,00. Qual das opções abaixo é a maneira mais econômica de Júlia comprar 1,8 quilograma (Kg) de chocolate em pó nesse supermercado?

- **A ()** 6 latas de 300 gramas (g).
- **B** () 4 latas de 300 gramas (g) e 1 lata de 600 gramas (g).
- C () 2 latas de 300 gramas (g) e 1 lata de 1,2 quilograma (Kg).
- **D** () 1 lata de 600 gramas (g) e 1 lata de 1,2 quilograma (Kg).
- **E ()** 2 latas de 300 gramas (g) e 2 latas de 600 gramas (g).

QUESTÃO 03. Rômulo ganhou R\$ 2 400 000,00 na loteria e resolveu repartir esse prêmio com seus 6 filhos. Para isso, usou um critério: deu a metade para o filho mais velho; do restante, entregou metade ao segundo filho; do restante dessa última divisão, deu metade ao terceiro, e assim, sucessivamente, até o sexto filho. Quanto restou para Rômulo?

- **A()** R\$ 90 000,00.
- **B**() R\$ 75 000,00.
- **C()** R\$ 3 750,00.
- **D()** R\$ 37 500,00.
- **E()** R\$ 112 500,00.

QUESTÃO 04. Uma escola fez uma pesquisa com 1200 alunos sobre o tipo de diversão que eles preferem. O gráfico abaixo mostra o resultado da pesquisa:

Após leitura do gráfico, pode-se afirmar que o número de alunos que preferem ouvir música

- A () excede, em exatas 120 pessoas, o número de alunos que preferem ver televisão.
- **B** () é menor, em exatas 80 pessoas, que o número de alunos que preferem praticar esporte.
- **C** () excede, em exatas 100 pessoas, o número de alunos que preferem ler.
- **D** () é menor, em exatas 60 pessoas, que o número de alunos que preferem praticar esporte.
- **E** () excede, em exatas 160 pessoas, o número de alunos que preferem ver televisão.

QUESTÃO 05. Gabriel oferecerá um jantar em seu aniversário e decidiu preparar uma mousse de maracujá como sobremesa; no entanto, preferiu servir essa mousse em porções individuais. Gabriel verificou que $\frac{4}{18}$ do conteúdo de uma lata de leite condensado são suficientes para fazer $\frac{20}{24}$ de uma porção da sobremesa. Para fazer 15 porções da sobremesa, quantas latas de leite condensado deverão ser usadas?

A () 4 latas. B () 5 latas. C () 6 latas. D () 7 latas.

) 8 latas.

Ε(

- **QUESTÃO 06**. Em um planeta distante, há cinco países nos quais as eleições para presidente e senadores ocorrem segundo as regras de suas específicas constituições:
 - I. No país "QIX", há eleições para presidente de 5 em 5 anos; e, para senadores, de 4 em 4 anos. Em 2009, houve eleições para presidente e, em 2010, para senadores.
 - II. No país "TIX", há eleições para presidente de 4 em 4 anos; e, para senadores, de 6 em 6 anos. Em 2007, houve eleições para presidente e, em 2008, para senadores.
 - III. No país "PIX", há eleições para presidente de 9 em 9 anos; e, para senadores, de 5 em 5 anos. Em 2009, houve eleições para presidente e, em 2011, para senadores.
 - IV. No país "LIX", há eleições para presidente de 5 em 5 anos; e, para senadores, de 8 em 8 anos. Em 2007, houve eleições para presidente e, em 2009, para senadores.
 - V. No país "MIX", há eleições para presidente de 4 em 4 anos; e, para senadores, de 3 em 3 anos. Em 2009, houve eleições para presidente e, em 2008, para senadores.

Em um dos cinco (5) países acima mencionados, as eleições para senadores e presidente jamais coincidirão, ou seja, jamais ocorrerão em um mesmo ano. Que país é esse?

A() MIX. B() PIX. C() TIX. D() LIX. E() QIX. QUESTÃO 07. Pedro e João são alunos do Colégio Militar de Brasília (CMB) e gostam muito de Matemática. Quando aprendem um conteúdo novo, fazem um desafio para o outro resolver. Um dia, após terem uma aula sobre cálculo de perímetro, Pedro pegou duas tiras retangulares de cartolina amarela, ambas com 30 centímetros (cm) de comprimento, sendo uma com 7 centímetros (cm) de largura e outra com 16 centímetros (cm) de largura, e colouas uma sobre a outra, perpendicularmente, formando a figura ilustrada abaixo:

Pedro desafiou João a calcular o perímetro da figura. João calculou corretamente o perímetro e respondeu que o perímetro da figura é de

- A () 46 centímetros (cm).
- **B** () 1,2 metro (m).
- **C** () 90 centímetros (cm).
- **D** () 120 decímetros (dm).
- E () 460 centímetros (cm).

QUESTÃO 08. Com os pontos A e B na reta **r** e os pontos C e D na reta **s**, quantos triângulos diferentes podem ser formados?

- A () 5 triângulos.
- **B** () $3 \times 2 4$ triângulos.
- **C** () (2 x 2 x 2 x 2 x 2 4 x 4) : 4 triângulos.
- **D** () $(3-2) \times 3$ triângulos.
- **E ()** No mínimo, 8 triângulos.

QUESTÃO 09. Um trem desloca-se da estação A até a estação B em 1 hora, 15 minutos e 30 segundos e utiliza o mesmo tempo para deslocar-se da estação B até a estação A. Todas as vezes, após chegar a uma estação, fica parado por 10 minutos até sair novamente. Hoje, o trem saiu da estação A e foi para a estação B, voltou para a estação A e, novamente, para a estação B. Considerando que ele chegou na estação B pela segunda vez, exatamente, às 13 horas e 18 minutos, seu horário de partida da estação A pela primeira vez foi às

- A () 9 horas, 11 minutos e 20 segundos.
- **B** () 10 horas, 12 minutos e 30 segundos.
- **C** () 9 horas, 11 minutos e 30 segundos.
- **D** () 10 horas, 11 minutos e 10 segundos.
- **E ()** 11 horas, 12 minutos e 20 segundos.

QUESTÃO 10. Abaixo, há um quadrado mágico. A soma de todos os números de uma mesma linha, coluna ou diagonal é um número constante.

А	2,7	1,2	1,9
1,5	C	3,9	۵
3,5	2,9	Ε	2,0
0,8	G	3,3	3,1

Considerando que todas as letras do quadrado mágico representam números decimais, é correto afirmar que o valor de $\bf A+C+D+E+G$ é

- **A()** 9,2.
- **B** () 12,2.
- **C()** 10,2.
- **D** () 13,2.
- **E()**11,2.

QUESTÃO 11. No Clube de Matemática do Colégio Militar de Brasília (CMB), montamos um pequeno robô chamado M-1. Em um circuito de testes, M-1 começa a andar na posição A2 da tabela, no sentido indicado pela seta (ver figura abaixo). M-1 vai sempre em frente. Se encontrar uma barreira (obstáculo ou margem da tabela), ele virará sempre à direita e irá parar se não conseguir ir em frente, após ter virado à direita. Desse modo, M-1 irá parar em que posição?

- **A()**B1
- **B**()C3
- **C**()D1
- **D**()B2
- E () Não irá parar até descarregar totalmente a bateria.

QUESTÃO 12. Um objeto sólido é formado por cubos cujas faces são cinza. Esse objeto foi colocado sobre uma mesa de tampo preto.

Observe abaixo os diversos pontos de vista do objeto:

LATERAL DIREITA	LATERAL ESQUERDA	FRONTAL

TRASEIRA	SUPERIOR

Analisando esses pontos de vista, consegue-se saber o número exato de cubos que formam o sólido.

Então, é correto afirmar que o sólido é composto por

- A () seis cubos.
- B () sete cubos.
- C () oito cubos.
- **D** () nove cubos.
- **E** () dez cubos.

QUESTÃO 13. Um sólido é chamado "LEGAL" quando o produto entre o total de arestas (A) pelo total de faces (F), dividido pelo total de vértices (V), é igual a nove. Ou seja, $\frac{A \times F}{V} = 9$. Considerando os sólidos abaixo, podemos afirmar que

Sólido 1

Sólido 2

Sólido 3

- A () somente o sólido 2 é "LEGAL".
- B () somente o sólido 1 é "LEGAL".
- C () nenhum dos sólidos é "LEGAL".
- D() os sólidos 1 e 3 são "LEGAIS".
- E () somente o sólido 3 é "LEGAL".

QUESTÃO 14. Para encorajar seu filho a estudar, uma mãe fez-lhe a seguinte proposta:

- Filho, você ganhará R\$ 8,00 para cada questão resolvida corretamente nas provas e me dará R\$ 5,00 para cada questão errada, certo?
- O filho aceitou prontamente a proposta. Depois de 52 questões realizadas, um não devia nada ao outro.

Quantas questões o filho acertou?

- A () O filho acertou 21 questões.
- B () O filho acertou 32 questões.
- C () O filho acertou 31 questões.D () O filho acertou 19 questões.
- E () O filho acertou 20 questões.

QUESTÃO 15. Atualmente, ocorrem vários acidentes de trânsito envolvendo ciclistas. No final de semana passado, Pedro andava de bicicleta quando um carro o atropelou. Pedro caiu e, embora não conseguisse anotar toda a placa do carro, lembrou-se de que ela tinha as letras ABC, nessa ordem; de que o algarismo das unidades simples era par; e de que o algarismo da unidade de milhar simples era 1 e o das centenas simples era 2.

Sabe-se que cada placa de carro é formada por 3 letras e 4 algarismos. Quantas placas poderíamos obter satisfazendo às condições observadas por Pedro?

- **A ()** 50 placas.
- **B** () 150 placas.
- **C ()** 100 placas.
- **D** () 10 placas.
- **E ()** 15 placas.

QUESTÃO 16. Arnaldo, Bruno e Cláudio subiram juntos numa balança, a qual registrou 167 quilogramas (kg). Cláudio desceu e a balança registrou 100 quilogramas (kg). Cláudio subiu na balança, Arnaldo desceu e o registro foi de 125 quilogramas (kg).

Com esses dados, se apenas Cláudio e Arnaldo, juntos, subirem na balança, ela registará

- A () 109 quilogramas (kg).
- **B** () 100 quilogramas (kg).
- C () 105 quilogramas (kg).
- **D** () 125 quilogramas (kg).
- **E ()** 119 quilogramas (kg).

QUESTÃO 17. Dona Mariana faz deliciosos bolinhos fritos para comer com café à tarde. Ela usa uma receita de família passada pela avó de sua avó. Veja abaixo uma tabela com as medidas de ingredientes necessárias para fazer 15 desses deliciosos bolinhos.

INGREDIENTES	MEDIDAS
Açúcar	200 gramas
Manteiga	100 gramas
Leite	$\frac{1}{2}$ litro
Farinha de trigo	800 gramas

Dona Mariana tem as seguintes medidas de ingredientes em casa: 1,2 quilograma (Kg) de açúcar, 700 gramas (g) de manteiga, 5 litros (L) de leite e 6 quilogramas (Kg) de farinha de trigo. A maior quantidade desses bolinhos que ela poderá fazer usando os ingredientes que tem em casa, e seguindo a receita, é um número que pode ser expresso por

- **A**() $2 \times 10 + 4 \times 7$.
- **B**() $9 \times 10 6 \times 3$.
- **C** () $4 \times 10 + 4 \times 5$.
- **D**() $6 \times 10 2 \times 9$.
- **E()** $3 \times 10 + 4 \times 15$.

QUESTÃO 18. Em uma caixa de papelão, colocam-se 12 barras de cereais de mesma dimensão e massa. A caixa de papelão e as barras de cereais, juntas, têm massa igual a 1800 gramas (g). Adicionam-se à caixa de papelão 4 barras de cereais de mesma dimensão e massa das anteriores, e a massa sobe para 2 280 gramas (g). Qual é a massa da caixa de papelão vazia?

```
A ( ) 1440 gramas (g).
B ( ) 1200 gramas (g).
C ( ) 120 gramas (g).
D ( ) 1920 gramas (g).
E ( ) 360 gramas (g).
```

QUESTÃO 19. O Colégio Militar de Brasília (CMB) possui cinco salas equipadas para a projeção de filmes (I, II, III, IV e V). As salas I e II têm capacidade para 200 pessoas cada uma e as salas III, IV e V, para 100 pessoas cada uma. Durante um festival de filmes, as cinco salas serão usadas para a projeção do mesmo filme. Os alunos serão distribuídos entre elas conforme a ordem de chegada, seguindo o padrão descrito abaixo:

```
1ª pessoa: sala I

2ª pessoa: sala III

3ª pessoa: sala II

4ª pessoa: sala IV

5ª pessoa: sala I

6ª pessoa: sala V

7ª pessoa: sala II
```

A partir da 8ª pessoa, o padrão se repete (I, III, IV, I, V, II,...). Nessas condições, a 496ª pessoa a chegar assistirá ao filme na sala

```
A( ) IV.
B( ) V.
C( ) III.
D( ) II.
E( ) I.
```

QUESTÃO 20. Todos os anos, os colégios estaduais de Bom Jesus da Lapa realizam um torneio chamado "Jogos Estudantis". Algumas das modalidades disputadas nesses jogos são: Futebol, Voleibol, Basquete, Tênis de Quadra e Handebol. O gráfico abaixo indica a quantidade de calorias que são queimadas, por pessoa, na prática de cada um desses esportes durante 1 (uma) hora. Considere essa queima de calorias sempre constante, ou seja, igual para todas as pessoas em cada modalidade esportiva no tempo total de 1 hora ou fração de hora correspondente.

QUEIMA DE CALORIAS POR HORA

Parte da equipe do professor Hélio é formada por 5 (cinco) alunos: Flávio, Rodrigo, Gustavo, Pedro e Luís. Nos "Jogos Estudantis" de 2012, Flávio jogou 30 minutos de futebol e 15 minutos de Basquete; Rodrigo jogou 1 hora de Voleibol e 30 minutos de Handebol; Gustavo jogou 30 minutos de Tênis de Quadra e 30 minutos de Voleibol; Pedro jogou 15 minutos de Futebol e 1 hora de Handebol; Luís jogou 15 minutos de Basquete e 30 minutos de Tênis de Quadra. O professor Hélio, utilizando os dados do gráfico acima, calculou a quantidade de calorias queimadas por seus alunos com a realização das atividades mencionadas anteriormente e registrou os resultados na tabela abaixo.

NOME DO ALUNO	CALORIAS QUEIMADAS
Flávio	490 calorias
Gustavo	465 calorias
Luís	520 calorias
Pedro	755 calorias
Rodrigo	690 calorias

O professor Hélio fez os cálculos das calorias queimadas, mas um de seus alunos observou que alguns resultados estavam incorretos. Após essa conferência, pode-se afirmar que o professor calculou, corretamente, apenas as queimas de calorias dos alunos:

- A () Flávio e Rodrigo.
- **B** () Flávio e Pedro.
- **C** () Rodrigo e Gustavo.
- **D** () Luís e Pedro.
- **E ()** Luís e Gustavo.