

8 BIT SIPO SHIFT LATCH REGISTER (3-STATE)

- HIGH SPEED : f_{MAX} = 80 MHz (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A = 25^{\circ}C$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PI H} ≅ t_{PHI}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 4094

The M74HC4094 is an high speed CMOS 8 BIT SIPO SHIFT LATCH REGISTER fabricated with silicon gate C²MOS technology.

This device consists of an 8 bit shift register and an 8 bit latch with 3 state output buffer. Data is shifted serially trough the shift register on the positive going transition of the clock input signal. The output of the last stage (Qs) can be used to cascade several devices.

Data on the Qs output is transferred to a second output (Qs') on the following negative transition of

ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC4094B1R	
SOP	M74HC4094M1R	M74HC4094RM13TR
TSSOP		M74HC4094TTR

the clock input signal. The data of each stage of the shift register is provided with a latch, which latches data on the negative going transition of the STROBE input signal. When the STROBE input is held high, data propagates through the latch to a 3-state output buffer.

This buffer is enabled when OUTPUT ENABLE input is taken high.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/12

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION		
1	STROBE	Strobe Input		
2	SERIAL IN	Serial Input		
3	CLOCK	Clock Input		
4, 5, 6, 7, 14, 13, 12, 11	Q1 to Q7	Parallel Outputs		
9, 10	QS Q'S	Serial Outputs		
15	OE	Output Enable Input		
8	GND	Ground (0V)		
16	Vcc	Positive Supply Voltage		

TRUTH TABLE

СК	OE	ST	SI	PARALLEL	OUTPUTS	SERIAL OUTPUTS	
CK	OE .	31	31	Q1	Qn	Qs	Qs'
	Н	Н	L	L	Qn-1	Q7	NC
	Н	Н	Н	Н	Qn-1	Q7	NC
L	Н	L	Х	NC	NC	Q7	NC
L	L	Х	Х	Z	Z	Q7	NC
	Н	Х	Х	NC	NC	NC	Qs
7	L	Х	Х	Z	Z	NC	Qs

X : Don't Care Z : High Impedance NC: No Change

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
I _O	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P _D	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage	2 to 6	V	
VI	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t_r , t_f		$V_{CC} = 4.5V$	0 to 500	ns
		V _{CC} = 6.0V	0 to 400	ns

DC SPECIFICATIONS

			Test Condition	Value							
Symbol	Parameter	v _{cc}		T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{OH} High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9			
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		V
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{OZ}	High Impedance Output Leakage Current	6.0	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 5		± 10	μА
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μА

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		To	est Condition				Value				
Symbol	Parameter	V _{CC}		T,	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	N	/lin.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0			30	75		95		115	
	Time	4.5			8	15		19		23	ns
		6.0			7	13		16		20	
t _{PLH} t _{PHL}	Propagation Delay	2.0			92	200		250		300	
	Time	4.5			26	40		50		60	ns
	(CLOCK - Qn)	6.0			20	34		43		51	
t _{PLH} t _{PHL}	Time (CLOCK - QS, Q'S)	2.0			65	150		190		225	
		4.5			19	30		38		45	ns
		6.0			15	26		32		38	
t _{PLH} t _{PHL}	Propagation Delay Time (STROBE - Qn)	2.0			75	160		200		240	
		4.5			20	32		40		48	ns
	(STROBE - Qn)	6.0			16	27		34		41	
t _{PZL} t _{PZH}		2.0			58	150		190		225	
	Output Enable	4.5			16	30		38		45	ns
	Time	6.0			13	26		32		38	
t _{PHZ} t _{PLZ}	PLZ High Impedance	2.0			35	150		190		225	ns
	Output Disable	4.5			16	30		38		45	
	Time	6.0			13	26		32		38	
f _{MAX}	Maximum Clock	2.0		6	16		4.8		4		
	Frequency	4.5		30	66		24		20		MHz
		6.0		35	80		28		24		
t _{W(H)}	Minimum Pulse	2.0			17	75		95		110	
t _{W(L)}	Width	4.5			7	15		19		22	ns
		6.0			6	13		16		19	
t _{W(L)}	Minimum Pulse	2.0			28	75		95		110	
, ,	Width	4.5			6	15		19		22	ns
		6.0			6	13		16		19	
t _s	Minimum Set-up	2.0			30	75		95		110	
	Time	4.5			7	15		19		22	ns
	(SERIAL INPUT)	6.0			5	13		16		19	
t _s	Minimum Set-up	2.0			45	100		125		145	
	Time	4.5			10	20		25		29	ns
	(STROBE)	6.0			8	17		21		25	
t _h	Minimum Hold	2.0				0		0		0	
	Time	4.5				0		0		0	ns
	(SI, ST)	6.0				0		0		0	

CAPACITIVE CHARACTERISTICS

		Test Condition		Value							
Symbol	mbol Parameter		V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C	
	V _{CC} (V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.			
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			140						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/2(per FLIP/FLOP)$

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 C_L = 50pF/150pF or equivalent (includes jig and probe capacitance) R_1 = 1KΩ or equivalent R_T = Z_{OUT} of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAY TIMES, MINIMUM PULSE WIDTH (CLOCK), SETUP AND HOLD TIMES (CLOCK) (f=1MHz; 50% duty cycle)

WAVEFORM 2 :PROPAGATION DELAY TIMES, MINIMUM PULSE WIDTH (STROBE), SETUP AND HOLD TIMES (STROBE)($f=1\,MHz; 50\%$ duty cycle)

WAVEFORM 3: OUTPUT ENABLE AND DISABLE TIMES(f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM.		mm.			inch	
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1		•	45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S		•	8° (max.)	•	

TSSOP16 MECHANICAL DATA

DIM.		mm.		inch			
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

577

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.