CST325 HW 1.3 – Vector Details

(69 possible points weighted to 100)

- 1. Two vectors are considered the same if and only if they have the same: (1pt)
 - a. Placement in the Cartesian Plane
 - b. Magnitude
 - c. Direction
 - d. b. and c.
 - e. All of the above
- 2. Which of the following about vectors and points are true? (2pts)
 - a. A point is a displacement from the origin in a specific reference frame
 - b. A vector is a displacement from the origin in a specific reference frame
 - c. A point has meaning independent from any reference frame
 - d. A vector has meaning independent from the origin

b and d are true.

- 3. True / False (1pt each)
 - a. Vector addition is commutative TRUE
 - b. Vector addition is associative TRUE
 - c. Vector subtraction is commutative FALSE
 - d. Vector subtraction is associative FALSE
 - e. Vector-scalar multiplication is commutative TRUE
 - f. The dot product is commutative TRUE
 - g. The dot product is associative FALSE
 - h. The cross product is commutative FALSE
 - i. The cross product is associative FALSE
- 4. The result of multiplying a scalar and a vector is (1pt)
 - a. A scalar
 - b. A vector
 - c. Something else
- 5. Given \vec{u} and \vec{v} , accurately draw the following: (3pts)

a.
$$\vec{w} = \vec{u} + \vec{v}$$

b.
$$\vec{t} = \vec{u} - \vec{v}$$

c.
$$\vec{r} = \vec{v} - \vec{w}$$

6. Given \vec{x} , \vec{y} , and \vec{z} : accurately draw the following: (3pts)

a.
$$\vec{s} = \vec{x} + \vec{y} + \vec{z}$$

b.
$$\vec{t} = \vec{x} - \vec{y} + \vec{z}$$

	X	y
\vec{x}	-7	0
$-\vec{y}$	-3	-3
\vec{z}	3	-3
	-7	-6

c.
$$\vec{u} = -\vec{x} + \vec{y} - \vec{z}$$

	Х	У
$-\vec{x}$	7	0
\vec{y}	3	3
$-\vec{z}$	-3	3
	7	6

7. Express \vec{z} as a linear combination of **either** $\vec{\iota}$ and $(\vec{\jmath} - \vec{\iota})$ **or** $\vec{\jmath}$ and $(\vec{\iota} - \vec{\jmath})$. Assume the tip of \vec{z} lies exactly ½ of the way between the tips of $\vec{\iota}$ and $\vec{\jmath}$. (5pts)

$$\vec{z} = 3/2 \vec{\iota} + \frac{1}{2} (\vec{j} - \vec{\iota})$$

- 8. What vector operation is directly associated with the Pythagorean Theorem? (1pt)
 - a. Addition
 - b. Dot Product
 - c. Magnitude
 - d. Cross Product
- 9. (True / False) A vector can have a negative magnitude. (1pt) False
- 10. What is the length of the vector $\begin{bmatrix} 6 \\ 2 \\ -3 \end{bmatrix}$? (2pts)

$$\sqrt{6^2 + 2^2 - 3^2} = \sqrt{49} = 7$$

11. (True / False) A vector can have a magnitude of 0. (1pt) **True**

- 12. (True / False) All vectors can be normalized. (1pt) FALSE (Magnitude = 0)
- 13. When is the following statement true? (Try comparing the lengths of different combinations of vectors. Is there anything significant about the angle between the two?). (3pts)

$$\|\vec{a} + \vec{b}\| = \|\vec{a}\| + \|\vec{b}\|$$

When the angle is 0. Then the magnitude of the sum of the vectors is also the sum of each vectors original magnitude.

- 14. A normalized vector is also called (1pt)
 - a. a normal
 - b. a normal vector
 - c. a unit vector
 - d. colinear
- 15. If a vector $\vec{a} = (a_x, a_y, a_z)$ and has length 10 then what are the component values of the normalized version? (3pts)

```
a_x/10, a_y/10, a_z/10
```

- 16. Normalizing the vector (1, 2, 12) yields (2pts)
 - a. (1, 2, 12)
 - b. (1, 1, 1)
 - c. (0.082, 0.164, 0.983)
 - d. (0.1, 0.2, 0.7)
 - e. (0.042, 0.130, 0.83)
- 17. How would you generate a random vector (3d) whose tip lied on the surface of a sphere with radius r (assume the tail is placed at the center of the sphere)? (5pts)

You can take 3 random numbers, as long as none of them are 0. You would then normalize them to a magnitude of 1. You would then multiply each of the vector components by r.

This will give you a new 3d vector with magnitude r, so its tip would be touching the sphere.

- 18. If two vectors are orthogonal, that means the angle between them is: (1pt)
 - a. 90 deg
 - b. PI / 2
 - c. PI
 - d. 180 deg
 - e. a. and b.
- 19. The dot product is a type of vector multiplication (product) that operates on two vectors (input) and generates the following as output: (1pt)
 - a. A scalar value
 - b. A vector value

- c. A unit vector
- 20. If two vectors \vec{a} and \vec{b} are orthogonal, what is the value of their dot product $(\vec{a} \cdot \vec{b})$? (1pt)
- **21.** If two vectors \vec{a} and \vec{b} are equal, what is the value of their dot product $(\vec{a} \cdot \vec{b})$? (1pt) The square of either vector's magnitude.
- 22. If two vectors \hat{a} and \hat{b} are equal, what is the value of their dot product $(\hat{a} \cdot \hat{b})$? (Pay attention to the hat.) (1pt) 1
- 23. If two vectors \vec{a} and \vec{b} are opposite in direction but equal in magnitude, what is the value of their dot product $(\vec{a} \cdot \vec{b})$? (Note: these are not unit vectors) (3pts) -1
- 24. Given two vectors \vec{a} and \vec{b} where $\vec{a} = (a_x, a_y, a_z)$ and $\vec{b} = (b_x, b_y, b_z)$, what is $\vec{a} \cdot \vec{b}$? (Express your answer **without** using cosine) (2pts)

$$a_x b_x + a_y b_y + a_z b_z$$

- 25. What is the dot product between (5, -2, 3) and (-2, 4, 6)? (1pt) 0
- 26. When is the dot product of two vectors equal to the cos of the angle between them? In other words, when does $\vec{a} \cdot \vec{b} = cos(\theta)$? (3pts)

When \vec{a} and \vec{b} are normalized. Since both of their magnitudes will be 1 and $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$

27. Given the dot product d of two vectors. What is the angle (in radians, not degrees) between the vectors used to generate the dot product? ($\theta = ?$) (3pts)

$$\theta = \arccos \left(\left(\mathbf{u} \cdot \mathbf{v} \right) / \left(|\mathbf{u}| |\mathbf{v}| \right) \right)$$

- 28. The cross product is a type of vector multiplication (product) that operates on two vectors (input) and generates the following as output: (1pt)
 - a. A scalar value
 - b. A vector value
 - c. A unit vector
- 29. The cross product between (1, 0, 0) and (0, 1, 0) is (2pts)
 - a. 10
 - b. 11
 - c. (30, -29, -56)
 - d. (0, 0, 1)
 - e. (-56, -29, 30)
 - f. (0, 0, -1)

- 30. The cross product between (-2, 13, 8) and (4, 2, -1) is (2pts)
 - a. 10
 - b. 11
 - c. (30, -29, -56)
 - d. (30, -56, -29)
 - e. (-56, -29, 30)
 - f. (-29, 30, -56)
- 31. What is the result of $\vec{a} \times \vec{a}$? (1pt) 0
- 32. What is the result of $\vec{a} \times (-\vec{a})$? (1pt) 0
- 33. What is the result of $(\vec{a} \times \vec{b}) \cdot \vec{a}$? (Visual aids recommended... First think about the result of the cross product and then what happens with a dot product.) (2pts) 0
- 34. What is the result of $(\vec{a} \times \vec{b}) \cdot \vec{b}$? (2pts) 0
- 35. (True / False) If \vec{a} and \vec{b} are unit length and perpendicular then $\|(\vec{a} \times \vec{b})\| = 1$ (2pts) True
- 36. (True / False) If \vec{a} and \vec{b} are unit length and colinear then $\|(\vec{a} \times \vec{b})\| = 1$ (2pts)
- 37. (True / False) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (1pt) **TRUE**

Bonus

1. Derive the formula for the dot product using the Law of Cosines. (5pts)

