

Emil Björnson

Outline

- Main principle of the Monte Carlo method
- Estimate mean value of a random variable
- Estimate error probability
- Estimate entire statistical distribution

Statistical inference

Monte Carlo method

Generate many independent random realizations
Use them to estimate deterministic properties

Properties of sample average

- Consider independent realizations $x_1, ..., x_L$
 - Mean value $\mu = E\{x_i\}$ and finite variance $\sigma^2 = Var\{x_i\}$
- Sample average $\hat{\mu}_L = \frac{1}{L} \sum_{l=1}^{L} x_l$ satisfies:

$$\hat{\mu}_L \to \mu \text{ as } L \to \infty$$

• For finite L: $Var{\{\hat{\mu}_L\}} = \frac{\sigma^2}{L}$

95% confidence interval for μ :

$$\Pr{\{\hat{\mu}_L - \delta \le \mu \le \hat{\mu}_L + \delta\}} \ge 0.95$$

Error tolerance

How large is δ ?

Central limit theorem: Gaussian approximation of $\widehat{\mu}_L$

Two standard deviations give 95%

$$\delta = 2\sqrt{Var\{\hat{\mu}_L\}} = 2\sigma/\sqrt{L}$$

Estimate mean value: Monte Carlo method

- 1. Select error tolerance $\delta > 0$
- 2. Compute required number of realizations from $\delta = 2\sigma/\sqrt{L}$:

$$L = 4\sigma^2/\delta$$

- 3. Generate *L* independent realizations $x_1, ..., x_L$
- 4. Compute sample estimate

$$\hat{\mu}_L = \frac{1}{L} \sum_{l=1}^{L} x_l$$

Possible extension

Compute
$$E\{g(x)\} = \int_{-\infty}^{\infty} g(x)f(x)dx$$
 as $\frac{1}{L}\sum_{l=1}^{L} g(x_l)$

Example: Exponential distribution, Exp(1)

Confidence interval:

$$\Pr\left\{\hat{\mu}_L - \frac{2\sigma}{\sqrt{L}} \le \mu \le \hat{\mu}_L + \frac{2\sigma}{\sqrt{L}}\right\} \ge 0.95$$

Estimate error probability of experiment

- Each experiment results in *success* or *error*
 - Bernoulli distribution: $Pr\{x = 1\} = p$ and $Pr\{x = 0\} = 1 p$
- Monte Carlo method:
 - Generate *L* independent realizations: $x_1, ..., x_L$
 - Compute sample estimate $\hat{p}_L = \frac{1}{L} \sum_{l=1}^{L} x_l$

Error tolerance should be proportional to p

Rule-of-thumb: $L = 100/p_{\text{smallest}}$

Example: $p = 1 - e^{-1/\text{SNR}}$

Empirical cumulative distribution function

- Estimate the entire statistical distribution: $F(a) = \Pr\{x \le a\}$
- Monte Carlo method:
 - Generate *L* independent realizations: $x_1, ..., x_L$
 - Compute estimate for each *a*:

$$\widehat{F}_L(a) = \frac{1}{L} \sum_{l=1}^{L} \mathbb{I}_{x_l \le a}$$
Indicator function:
$$\begin{cases} 1, & \text{if } x_l \le a \\ 0, & \text{if } x_l > a \end{cases}$$

Variance depends on a:

$$Var\{\hat{F}_L(a)\} = \frac{F(a)(1 - F(a))}{L}$$

Example: $F(x) = 1 - e^{-x^2}$

Summary

- Monte Carlo method
 - Generate *L* independent realizations
 - Use sample average (possibly of a function) to estimate statistics
 - Important: Select *L* to achieve desired accuracy
- Examples:
 - Estimate mean value (e.g., error probability)
 - Empirical cumulative distribution function

Emil Björnson