зариант	ф.	номер	група	поток	курс	от	предишна	година?
${\bf A}$								
Име:								

I контролно по Изчислимост (теория), 12.11.2016

Зад. 1. Нека f_1 и f_2 са произволни частични функции, а P е предикат, като всички те са на n аргумента. Да означим с q следната функция:

$$g(\bar{x}) \simeq \begin{cases} f_1(\bar{x}), & \text{ako } P(\bar{x}) \\ f_2(\bar{x}), & \text{ako } \neg P(\bar{x}). \end{cases}$$

- а) Докажете, че ако f_1 , f_2 и P са примитивно рекурсивни, то q също е примитивно рекурсивна.
- б) Докажете, че ако f_1 и f_2 са частично рекурсивни, а P е рекурсивен, то q е частично рекурсивна.
- в) Докажете, че ако n-местната функция f е частично рекурсивна, а h се различава от нея само в краен брой точки, то и h е частично рекурсивна.
- ${f 3}$ ад. ${f 2}$. а) Нека f е едноместна тотална функция. Дефинирайте $\widehat f$ историята на f. Докажете, че f е пр. рекурсивна тогава и само тогава, когато $\widehat f$ е пр. рекурсивна.
- б) Кажете кога една едноместна функция f се дефинира с пълна (възвратна) рекурсия от дадени константа c и двуместна функция F.
- в) Докажете, че ако F е примитивно рекурсивна, то и f е примитивно рекурсивна.
- **Зад 3.** а) Дайте определение за програма за Машина с неограничени регистри (МНР). Дефинирайте едностъпковото преобразование $Step_P$ за програмата $P:I_0,\ldots,I_k$. б) Кажете кога една n-местна функция е изчислима с програма за МНР.

Пожелаваме Ви успех: Екипът.

вариант	ф. номер	група	поток	курс	от	предишна	година?
A							
Име:							

I контролно по Изчислимост (теория), 12.11.2016

 ${\bf 3}$ ад. 1. Нека f_1 и f_2 са произволни частични функции, а P е предикат, като всички те са на n аргумента. Да означим с g следната функция:

$$g(\bar{x}) \simeq \begin{cases} f_1(\bar{x}), & \text{ако } P(\bar{x}) \\ f_2(\bar{x}), & \text{ако } \neg P(\bar{x}). \end{cases}$$

- а) Докажете, че ако f_1 , f_2 и P са примитивно рекурсивни, то g също е примитивно рекурсивна.
- б) Докажете, че ако f_1 и f_2 са частично рекурсивни, а P е рекурсивен, то g е частично рекурсивна.
- в) Докажете, че ако n-местната функция f е частично рекурсивна, а h се различава от нея само в краен брой точки, то и h е частично рекурсивна.
- **Зад. 2.** а) Нека f е едноместна тотална функция. Дефинирайте \widehat{f} историята на f. Докажете, че f е пр. рекурсивна тогава и само тогава, когато \widehat{f} е пр. рекурсивна.
- б) Кажете кога една едноместна функция f се дефинира с пълна (възвратна) рекурсия от дадени константа c и двуместна функция F.
- в) Докажете, че ако F е примитивно рекурсивна, то и f е примитивно рекурсивна.
- **Зад 3.** а) Дайте определение за програма за Машина с неограничени регистри (МНР). Дефинирайте едностъпковото преобразование $Step_P$ за програмата $P:I_0,\ldots,I_k$. б) Кажете кога една n-местна функция е изчислима с програма за МНР.

Пожелаваме Ви успех: Екипът.

вариант	ф.	номер	група	поток	курс	от	предишна	година?
A								
Име:			1					

I контролно по Изчислимост (теория), 12.11.2016

Зад. 1. Нека f_1 и f_2 са произволни частични функции, а P е предикат, като всички те са на n аргумента. Да означим с q следната функция:

$$g(\bar{x}) \simeq egin{cases} f_1(\bar{x}), & ext{a ко } P(\bar{x}) \ f_2(\bar{x}), & ext{a ко } \neg P(\bar{x}). \end{cases}$$

- а) Докажете, че ако f_1 , f_2 и P са примитивно рекурсивни, то q също е примитивно рекурсивна.
- б) Докажете, че ако f_1 и f_2 са частично рекурсивни, а P е рекурсивен, то g е частично рекурсивна.
- в) Докажете, че ако n-местната функция f е частично рекурсивна, а h се различава от нея само в краен брой точки, то и h е частично рекурсивна.
- **Зад. 2.** а) Нека f е едноместна тотална функция. Дефинирайте \widehat{f} историята на f. Докажете, че f е пр. рекурсивна тогава и само тогава, когато \widehat{f} е пр. рекурсивна.
- б) Кажете кога една едноместна функция f се дефинира с пълна (възвратна) рекурсия от дадени константа c и двуместна функция F.
- в) Докажете, че ако F е примитивно рекурсивна, то и f е примитивно рекурсивна.
- **Зад 3.** а) Дайте определение за програма за Машина с неограничени регистри (МНР). Дефинирайте едностъпковото преобразование $Step_P$ за програмата $P: I_0, \ldots, I_k$.
- б) Кажете кога една n-местна функция е изчислима с програма за МНР.

Пожелаваме Ви успех: Екипът.

вариант	ф.	номер	група	поток	курс	от	предишна	година?
A								
Име:								

I контролно по Изчислимост (теория), 12.11.2016

Зад. 1. Нека f_1 и f_2 са произволни частични функции, а P е предикат, като всички те са на n аргумента. Да означим с g следната функция:

$$g(\bar{x}) \simeq \begin{cases} f_1(\bar{x}), & \text{ако } P(\bar{x}) \\ f_2(\bar{x}), & \text{ако } \neg P(\bar{x}). \end{cases}$$

- а) Докажете, че ако $f_1,\,f_2$ и P са примитивно рекурсивни, то g също е примитивно рекурсивна.
- б) Докажете, че ако f_1 и f_2 са частично рекурсивни, а P е рекурсивен, то g е частично рекурсивна.
- в) Докажете, че ако n-местната функция f е частично рекурсивна, а h се различава от нея само в краен брой точки, то и h е частично рекурсивна.
- **Зад. 2.** а) Нека f е едноместна тотална функция. Дефинирайте \widehat{f} историята на f. Докажете, че f е пр. рекурсивна тогава и само тогава, когато \widehat{f} е пр. рекурсивна.
- б) Кажете кога една едноместна функция f се дефинира с пълна (възвратна) рекурсия от дадени константа c и двуместна функция F.
- в) Докажете, че ако F е примитивно рекурсивна, то и f е примитивно рекурсивна.
- **Зад 3.** а) Дайте определение за програма за Машина с неограничени регистри (МНР). Дефинирайте едностъпковото преобразование $Step_P$ за програмата $P:I_0,\ldots,I_k$. б) Кажете кога една n-местна функция е изчислима с програма за МНР.

Пожелаваме Ви успех: Екипът.