

如何利用開 源程式碼進 行髮絲去背

開源智造 OPEN AI FAB

開源智造

開源智造

題目

• AI圖片去背功能

企業

- 高博思股份有限公司
- 台灣第一個針對Facebook社群進行行銷的團隊,經手超過200個企業粉絲團

痛點

 當需要圖片的某個物件,都必須使用人工去 背,非常耗費人力資源

目的

- 透過AI進行圖片背景的移除
- 可參考Semantic Soft Segmentation的作法

http://yaksoy.github.io/sss/

3維度

每次結果不同

• 使用群聚分析(K-means) 將創建好的 圖層分成5層 去背後目標物位於哪一 層是隨機的

目標物被拆解

有時目標物 被拆成多個 物件

效率低

• 計算時間長

使用不方便

開源碼使用 了python和 matlab

圖片去背種類

Segmentation

- 對每個像素的語義 理解,並得到該像 素分類結果
- 較難滿足標的物邊 緣高精度的切割效 果

Matting

- 找出前景與背景的 顏色,以及它們之 間的融合程度,邊 緣分割效果自然
- 人工耗時繪製 「trimap」

Segmentation introduction

https://github.com/sadeepj/crfasrnn_keras

Original image (hover to highlight segmented parts)

Semantic segmentation

Objects appearing in the image:

Bicycle	Person
---------	--------

Objects not appearing in the image:

Aeroplane	Bird	Boat	Bottle	Bus	Car	Cat
Chair	Cow	Dining table	Dog	Horse	Motorbike	Potted plant
Sheep	Sofa	Train	TV/Monitor			

Segmentation method

http://host.robots.ox.ac.uk/leaderboard/displaylb_main.php?challengeid=11&compid=6

	mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor	submission date
	~	\triangleright	\triangleright	abla	$\overline{}$	\triangleright	abla	abla	abla	ightharpoons	abla	\triangleright	abla	\triangleright	ightharpoons	\triangleright	$\overline{}$	\triangleright	abla	ightharpoons	$\overline{}$	ightharpoons
RecoNet152_coco [?]	89.0	97.3	80.4	96.5	83.8	89.5	97.6	95.4	97.7	50.1	96.8	82.6	95.1	97.7	95.1	92.6	80.2	95.2	71.7	92.1	83.8	26-Oct-2019
DeepLabv3+_JFT [?]	89.0	97.5	77.9	96.2	80.4	90.8	98.3	95.5	97.6	58.8	96.1	79.2	95.0	97.3	94.1	93.8	78.5	95.5	74.4	93.8	81.6	09-Feb-2018
DeepLabv3+_AASPP [?]	88.5	97.4	80.3	97.1	80.1	89.3	97.4	94.1	96.9	61.9	95.1	77.2	94.2	97.5	94.4	93.0	72.4	93.8	72.6	93.3	83.3	22-May-2018
SRC-B-MachineLearningLab [?]	88.5	97.2	78.6	97.1	80.6	89.7	97.4	93.7	96.7	59.1	95.4	81.1	93.2	97.5	94.2	92.9	73.5	93.3	74.2	91.0	85.0	19-Apr-2018
SepaNet [?]	88.3	97.2	80.2	96.2	80.0	89.2	97.3	94.7	97.7	48.6	95.0	81.6	95.2	97.5	95.1	92.7	79.5	95.4	68.8	90.9	83.4	25-Oct-2019
EMANet152 [?]	88.2	96.8	79.4	96.0	83.6	88.1	97.1	95.0	96.6	49.4	95.4	77.8	94.8	96.8	95.1	92.0	79.3	95.9	68.5	91.7	85.6	15-Aug-2019
MSCI [?]	88.0	96.8	76.8	97.0	80.6	89.3	97.4	93.8	97.1	56.7	94.3	78.3	93.5	97.1	94.0	92.8	72.3	92.6	73.6	90.8	85.4	08-Jul-2018
ExFuse [?]	87.9	96.8	80.3	97.0	82.5	87.8	96.3	92.6	96.4	53.3	94.3	78.4	94.1	94.9	91.6	92.3	81.7	94.8	70.3	90.1	83.8	22-May-2018
KSAC [?]	87.9	96.8	79.9	96.3	76.5	86.5	97.5	94.5	96.9	54.8	91.6	81.4	93.8	97.2	94.0	92.3	77.3	93.1	73.5	91.1	83.4	03-Sep-2019
DeepLabv3+ [?]	87.8	97.0	77.1	97.1	79.3	89.3	97.4	93.2	96.6	56.9	95.0	79.2	93.1	97.0	94.0	92.8	71.3	92.9	72.4	91.0	84.9	09-Feb-2018
CFNet [?]	87.2	96.7	79.7	94.3	78.4	83.0	97.7	91.6	96.7	50.1	95.3	79.6	93.6	97.2	94.2	91.7	78.4	95.4	69.6	90.0	81.4	12-Jun-2019
DeepLabv3-JFT [?]	86.9	96.9	73.2	95.5	78.4	86.5	96.8	90.3	97.1	51.4	95.0	73.4	94.0	96.8	94.0	92.3	81.5	95.4	67.2	90.8	81.8	05-Aug-2017
DIS [?]	86.8	94.0	73.3	93.5	79.1	84.8	95.4	89.5	93.4	53.6	94.8	79.0	93.6	95.2	91.5	89.6	78.1	93.0	79.4	94.3	81.3	13-Sep-2017
Gluon DeepLabV3 152 [?]	86.7	96.5	74.3	96.1	80.2	85.2	97.0	93.8	96.4	49.7	93.6	77.6	95.1	95.3	93.9	89.6	75.8	94.4	70.8	89.7	78.7	03-Oct-2018
CASIA_IVA_SDN [?]	86.6	96.9	78.6	96.0	79.6	84.1	97.1	91.9	96.6	48.5	94.3	78.9	93.6	95.5	92.1	91.1	75.0	93.8	64.8	89.0	84.6	29-Jul-2017
APDN [?]	86.4	94.5	65.4	94.2	82.7	88.1	95.7	91.7	95.7	45.5	94.3	82.8	93.8	94.8	92.4	91.7	73.7	93.4	72.8	91.9	82.4	28-May-2019
IDW-CNN [?]	86.3	94.8	67.3	93.4	74.8	84.6	95.3	89.6	93.6	54.1	94.9	79.0	93.3	95.5	91.7	89.2	77.5	93.7	79.2	94.0	80.8	30-Jun-2017
GluonCV DeepLabV3 [?]	86.2	96.3	69.7	93.5	76.2	86.5	96.5	92.2	95.8	47.8	95.0	81.6	93.0	96.0	91.2	90.7	77.1	94.7	68.9	89.3	81.7	07-Sep-2018
DFN [?]	86.2	96.4	78.6	95.5	79.1	86.4	97.1	91.4	95.0	47.7	92.9	77.2	91.0	96.7	92.2	91.7	76.5	93.1	64.4	88.3	81.2	15-Jan-2018

crfasrnn

PSPNet

deeplabV3+

• SSS使用DeepLab v2的架構

- •目前較為推崇的是DeepLab v3+
 - https://github.com/tensorflow/ models/tree/master/research/ deeplab

Model	DeepLab v3+	DeepLab v3	DCDMET			
		Deehran v2	PSPNET	DeepLab v2	DeepLab	CRF-RNN
Submission date	2018/2/9	2017/6/20	2016/12/6	2016/6/6	2014/12/23	2015/2/10
mean	87.8	85.7	85.4	79.7	66.4	65.2
plane	97.0	96.4	95.8	92.6	78.4	80.9
bicycle	77.1	76.6	72.7	60.4	33.1	34.0
bird	97.1	92.7	95.0	91.6	78.2	72.9
boat	79.3	77.8	78.9	63.4	55.6	52.6
bottle	89.3	87.6	84.4	76.3	65.3	62.5
bus	97.4	96.7	94.7	95.0	81.3	79.8
car	93.2	90.2	92.0	88.4	75.5	76.3
cat	96.6	95.4	95.7	92.6	78.6	79.9
chair	56.9	47.5	43.1	32.7	25.3	23.6
cow	95.0	93.4	91.0	88.5	69.2	67.7
table	79.2	76.3	80.3	67.6	52.7	51.8
dog	93.1	91.4	91.3	89.6	75.2	74.8
horse	97.0	97.2	96.3	92.1	69.0	69.9
motor	94.0	91.0	92.3	87.0	79.1	76.9
person	92.8	92.1	90.1	87.4	77.6	76.9
potted	71.3	71.3	71.5	63.3	54.7	49.0
sheep	92.9	90.9	94.4	88.3	78.3	74.7
sofa	72.4	68.9	66.9	60.0	45.1	42.7

Matting introduction

https://github.com/99991/matting

Trimap

$$I = \alpha \times F + (1 - \alpha) \times B$$

Matting trimap

- Trimap製作困難且耗時,且品質不好衡量
- 製作方式
 - 目前無法全自動生成trimap
 - 小畫家
- RobustMatting
 - https://www.juew.org/projects/RobustMatting/index.html
 - https://github.com/foamliu/Deep-Image-Matting/files/2844890/RobustMatting_1.45.zip

Matting trimap

Matting method

http://alphamatting.com/eval_25.php

Sum of Absolute Differences	overall	avg. small	avg.		(Stron	Troll gly Trans Input	parent)	(Strong	Doll gly Trans Input	sparent)		Donkey m Trans Input			Elephan m Trans Input		(Little	Plant Transpa Input	arent)		Pineapple Transpa Input			Plastic banks Plastic banks Input		(High	Net nly Transpa Input	arent)
	rank	rank	rank	rank	small	<u>large</u>	user	small	<u>large</u>	user	small	<u>large</u>	user	<u>small</u>	<u>large</u>	user	small	<u>large</u>	user	small	<u>large</u>	user	small	<u>large</u>	user	<u>small</u>	<u>large</u>	user
AdaMatting	4.9	4.3	3.9	6.5	<u>10.2</u> 6	<u>11.1</u> 7	<u>10.8</u> 6	<u>4.9</u> 6	<u>5.4</u> 5	<u>6.6</u> 9	<u>3.6</u> 8	<u>3.4</u> 3	<u>3.4</u> 11	<u>0.9</u> 1	<u>0.9</u> 1	<u>1.8</u> 3	<u>4.7</u> 1	<u>6.8</u> 1	<u>9.3</u> 9	<u>2.2</u> 1	<u>2.6</u> 1	<u>3.3</u> 1	<u>19.2</u> 10	1 <u>9.8</u> 12	<u>18.7</u> 12	<u>17.8</u> 1	<u>19.1</u> 1	<u>18.6</u> 1
SampleNet Matting	5.3	4	4.5	7.4	<u>9.1</u> 3	<u>9.7</u> 3	<u>9.8</u> 3	<u>4.3</u> 1	<u>4.8</u> 1	<u>5.1</u> 1	<u>3.4</u> 7	<u>3.7</u> 7	<u>3.2</u> 8	<u>0.9</u> 2	<u>1.1</u> 3	<u>2</u> 6	<u>5.1</u> 2	<u>6.8</u> 2	<u>9.7</u> 12	<u>2.5</u> 3	<u>4</u> 7	<u>3.7</u> 3	<u>18.6</u> 9	<u>19.3</u> 9	<u>19.1</u> 15	<u>20</u> 5	<u>21.6</u> 4	<u>23.2</u> 11
GCA Matting	5.8	6.4	3.5	7.5	<u>8.8</u> 1	<u>9.5</u> 2	<u>11.1</u> 8	<u>4.9</u> 5	<u>4.8</u> 2	<u>5.8</u> 5	<u>3.4</u> 6	<u>3.7</u> 5	<u>3.2</u> 7	<u>1.1</u> 8	<u>1.2</u> 4	<u>1.3</u> 1	<u>5.7</u> 9	<u>6.9</u> 3	<u>7.6</u> 1	<u>2.8</u> 5	<u>3.1</u> 2	<u>4.5</u> 10	<u>18.3</u> 6	<u>19.2</u> 5	<u>18.5</u> 10	<u>20.8</u> 11	<u>21.7</u> 5	<u>24.7</u> 18
FE2E High-Quality Matting	6.1	5	6.5	6.8	<u>10.1</u> 5	<u>11.1</u> 5	<u>9.3</u> 2	<u>5.5</u> 11	<u>6.4</u> 9	<u>6.9</u> 11	<u>3.4</u> 5	<u>3.7</u> 6	<u>3.2</u> 6	<u>1</u> 4	<u>1.7</u> 7	<u>1.9</u> 4	<u>5.7</u> 8	<u>7.8</u> 11	<u>11</u> 17	<u>2.5</u> 2	<u>3.8</u> 5	<u>3.8</u> 4	<u>17.3</u> 2	<u>18.4</u> 3	<u>17.4</u> 8	<u>19.6</u> 3	<u>21.8</u> 6	<u>20.2</u> 2
VDRN Matting	7	8.5	6.4	6.1	<u>8.9</u> 2	<u>9.4</u> 1	<u>9.3</u> 1	<u>5.2</u> 8	<u>5.6</u> 7	<u>6.6</u> 8	<u>2.8</u> 2	<u>3.3</u> 2	<u>2.7</u> 1	<u>1.8</u> 20	<u>1.9</u> 9	<u>2</u> 5	<u>5.7</u> 7	<u>7.1</u> 5	<u>8.3</u> 2	<u>3</u> 6	<u>3.5</u> 4	<u>3.6</u> 2	<u>17.6</u> 3	<u>18.3</u> 2	<u>16.9</u> 5	<u>23.2</u> 20	<u>25.9</u> 21	<u>26.5</u> 25
Deep Matting	7.3	8.4	6.5	7	<u>10.7</u> 9	<u>11.2</u> 9	<u>11</u> 7	<u>4.8</u> 4	<u>5.8</u> 8	<u>5.6</u> 3	<u>2.8</u> 1	<u>2.9</u> 1	<u>2.9</u> 2	<u>1.1</u> 5	<u>1.1</u> 2	<u>2</u> 7	<u>6</u> 18	<u>7.1</u> 6	<u>8.9</u> 5	<u>2.7</u> 4	<u>3.2</u> 3	<u>3.9</u> 5	<u>19.2</u> 11	1 <u>19.6</u> 11	<u>18.7</u> 11	<u>21.8</u> 15	<u>23.9</u> 12	<u>24.1</u> 16
Information-flow matting	8.8	9.6	9	7.6	<u>10.3</u> 7	<u>11.2</u> 8	<u>12.5</u> 11	<u>5.6</u> 15	<u>7.3</u> 13	<u>7.3</u> 14	<u>3.8</u> 9	<u>4.1</u> 9	<u>3</u> 4	<u>1.4</u> 9	<u>2.3</u> 10	<u>2</u> 9	<u>5.9</u> 15	<u>7.1</u> 7	<u>8.6</u> 3	<u>3.6</u> 10	<u>5.7</u> 10	<u>4.6</u> 11	<u>18.3</u> 5	<u>19.3</u> 8	<u>15.8</u> 2	20.2 7	<u>22.2</u> 7	<u>22.3</u> 7
IndexNet Matting	9.9	12	8.3	9.4	<u>12.6</u> 25	<u>13.4</u> 11	<u>11.4</u> 9	<u>4.8</u> 3	<u>4.9</u> 3	<u>5.7</u> 4	<u>3.3</u> 4	<u>4</u> 8	<u>3</u> 3	<u>1.1</u> 6	<u>1.5</u> 6	<u>1.6</u> 2	<u>6.4</u> 22	<u>7.5</u> 10	<u>8.9</u> 6	<u>3.4</u> 7	<u>4</u> 6	<u>4.1</u> 6	<u>18.6</u> 8	<u>19.1</u> 4	<u>18.5</u> 9	<u>23.4</u> 21	<u>25.1</u> 18	<u>29.3</u> 36
DCNN Matting	10.5	12.3	8.6	10.8	<u>12</u> 19	<u>14.1</u> 13	<u>14.5</u> 17	<u>5.3</u> 9	<u>6.4</u> 10	<u>6.8</u> 10	<u>3.9</u> 11	<u>4.5</u> 11	<u>3.4</u> 10	<u>1.6</u> 15	<u>2.5</u> 11	<u>2.2</u> 12	<u>6</u> 17	<u>6.9</u> 4	<u>9.1</u> 7	<u>4</u> 13	<u>6</u> 11	<u>5.3</u> 13	<u>19.9</u> 12	2 <u>19.2</u> 7	<u>19.1</u> 14	<u>19.4</u> 2	<u>20</u> 2	<u>21.2</u> 3
AlphaGAN	11.4	12.1	11.4	10.8	<u>9.6</u> 4	<u>10.7</u> 4	<u>10.4</u> 5	<u>4.7</u> 2	<u>5.3</u> 4	<u>5.4</u> 2	<u>3.1</u> 3	<u>3.7</u> 4	<u>3.1</u> 5	<u>1.1</u> 7	<u>1.3</u> 5	<u>2</u> 8	<u>6.4</u> 24	<u>8.3</u> 19	<u>9.3</u> 10	<u>3.6</u> 9	<u>5</u> 8	<u>4.3</u> 8	<u>20.8</u> 13	3 <u>21.5</u> 14	<u>20.6</u> 20	<u>25.7</u> 35	<u>28.7</u> 33	<u>26.7</u> 28
Context-aware Matting	13.5	17.3	11.1	12.1	<u>10.4</u> 8	<u>11.1</u> 6	<u>10.1</u> 4	<u>6.4</u> 25	<u>7.4</u> 16	<u>7.1</u> 12	<u>4.1</u> 12	<u>4.5</u> 12	<u>3.8</u> 17	<u>2.3</u> 35	<u>3.1</u> 13	<u>3</u> 28	<u>7.1</u> 31	<u>8.2</u> 17	<u>9.1</u> 8	<u>3.5</u> 8	<u>5.5</u> 9	<u>4.1</u> 7	<u>18.3</u> 7	<u>19.2</u> 6	<u>16.5</u> 4	<u>21.1</u> 12	<u>23.3</u> 10	<u>24.6</u> 17
Three-layer graph matting	15.5	11.8	13	21.8	<u>10.7</u> 10	<u>15.2</u> 14	<u>13.8</u> 14	<u>4.9</u> 7	<u>5.6</u> 6	<u>8.1</u> 26	<u>3.9</u> 10	<u>4.4</u> 10	<u>3.6</u> 14	<u>1</u> 3	<u>1.8</u> 8	<u>3</u> 26	<u>5.9</u> 13	<u>7.3</u> 9	<u>12.4</u> 26	<u>4.2</u> 16	<u>8</u> 18	<u>8.5</u> 35	<u>24.2</u> 27	7 <u>25.6</u> 28	<u>24.2</u> 28	<u>20.5</u> 8	<u>23.5</u> 11	<u>22.2</u> 5
ATPM Matting	18	21.1	20	12.8	<u>14</u> 36	<u>17.8</u> 21	<u>13.4</u> 12	<u>5.5</u> 10	<u>6.4</u> 11	<u>7.3</u> 15	<u>5.4</u> 43	<u>6.4</u> 38	<u>4.3</u> 31	<u>1.7</u> 18	<u>3.3</u> 18	<u>2.3</u> 15	<u>6.8</u> 28	<u>8</u> 14	<u>8.7</u> 4	<u>4.2</u> 14	<u>7.5</u> 15	<u>5.5</u> 14	<u>17.2</u> 1	<u>17.6</u> 1	<u>15.7</u> 1	<u>22.6</u> 19	<u>37.3</u> 42	<u>22.8</u> 10
Three Stages Matting	18.8	18.3	18.9	19.1	<u>11.7</u> 18	<u>13.9</u> 12	<u>13.9</u> 15	<u>5.6</u> 12	<u>7.4</u> 15	<u>7.9</u> 20	<u>4.6</u> 24	<u>5.5</u> 25	<u>4.2</u> 26	<u>2.2</u> 31	<u>4</u> 25	<u>3.1</u> 31	<u>6.5</u> 25	<u>11</u> 36	<u>11.9</u> 21	<u>4</u> 11	<u>6.5</u> 12	<u>4.5</u> 9	<u>23.3</u> 21	1 23.2 23	<u>22.3</u> 23	<u>19.6</u> 4	<u>20.8</u> 3	<u>22.4</u> 8
CSC Matting	20	23.5	16.1	20.5	<u>13.6</u> 33	<u>15.6</u> 15	<u>14.5</u> 16	<u>6.2</u> 23	<u>7.5</u> 17	<u>8.1</u> 27	<u>4.6</u> 25	<u>4.8</u> 14	<u>4.2</u> 29	<u>1.8</u> 22	<u>2.7</u> 12	<u>2.5</u> 17	<u>5.5</u> 6	<u>7.3</u> 8	<u>9.7</u> 11	<u>4.6</u> 20	<u>7.6</u> 16	<u>6.9</u> 23	<u>23.7</u> 23	3 <u>23</u> 21	<u>21</u> 21	<u>26.3</u> 36	<u>27.2</u> 26	<u>25.2</u> 20
LNSP Matting	20.3	16.5	20.5	23.9	<u>12.2</u> 20	<u>22.5</u> 39	<u>19.5</u> 44	<u>5.6</u> 13	<u>8.1</u> 19	<u>8.8</u> 36	<u>4.6</u> 22	<u>5.9</u> 30	3.6 13	<u>1.5</u> 12	3.5 21	<u>3.1</u> 30	<u>6.2</u> 19	<u>8.1</u> 16	<u>10.7</u> 16	<u>4</u> 12	<u>7.1</u> 13	<u>6.4</u> 19	<u>21.5</u> 16	5 <u>20.8</u> 13	<u>16.3</u> 3	<u>22.5</u> 18	<u>24.4</u> 13	<u>27.8</u> 30
Graph-based sparse matting	21.1	21.6	21.8	19.9	<u>12.6</u> 26	<u>20.5</u> 31	<u>14.8</u> 21	<u>5.7</u> 17	<u>7.3</u> 12	<u>6.4</u> 7	<u>4.5</u> 20	<u>5.3</u> 21	<u>3.7</u> 15	<u>1.4</u> 11	<u>3.3</u> 19	<u>2.3</u> 14	<u>6.3</u> 21	<u>7.9</u> 12	<u>11.1</u> 18	<u>4.2</u> 15	<u>8.3</u> 21	<u>6.4</u> 18	<u>28.7</u> 40	3 <u>1.3</u> 41	<u>27.1</u> 37	23.6 23	<u>25.1</u> 17	<u>27.3</u> 29
Patch-based Matting	21.4	15.6	23.5	25	<u>10.9</u> 12	<u>19</u> 25	<u>15.7</u> 27	<u>6</u> 20	<u>9.5</u> 33	<u>8.3</u> 29	<u>4.3</u> 16	<u>5.2</u> 18	<u>4.2</u> 28	<u>1.6</u> 14	<u>3.2</u> 16	<u>2.6</u> 18	<u>5.2</u> 3	<u>9</u> 24	<u>12.4</u> 23	<u>4.7</u> 21	<u>9.7</u> 28	<u>7</u> 24	<u>21.6</u> 17	<u>21.7</u> 15	<u>24.9</u> 30	<u>23.5</u> 22	<u>28.1</u> 29	<u>25.6</u> 21
KL-Divergence Based Sparse Sampling	21.5	20	21.3	23.3	<u>11.6</u> 17	<u>17.5</u> 20	<u>14.7</u> 18	<u>5.6</u> 14	<u>8.5</u> 24	<u>8</u> 22	<u>4.9</u> 36	<u>5.3</u> 19	<u>3.7</u> 16	<u>1.5</u> 13	<u>3.5</u> 20	<u>2.1</u> 10	<u>5.8</u> 11	<u>8.3</u> 18	<u>14.1</u> 34	<u>5.6</u> 31	<u>9.3</u> 26	<u>8</u> 31	<u>24.6</u> 28	3 <u>27.7</u> 35	<u>28.9</u> 40	<u>20.7</u> 10	<u>22.7</u> 8	<u>23.9</u> 15
TSPS-RV Matting	22.8	21	22.5	24.9	<u>11.3</u> 16	<u>16.4</u> 18	<u>13.7</u> 13	<u>6.1</u> 21	<u>8.1</u> 21	<u>8.6</u> 33	<u>4.5</u> 18	<u>5.4</u> 23	<u>4.1</u> 25	<u>1.4</u> 10	<u>3.3</u> 17	<u>3.5</u> 40	<u>7.9</u> 39	<u>8.9</u> 22	<u>12.4</u> 25	<u>6.2</u> 35	<u>9</u> 24	<u>8.7</u> 37	22.8 20	23. <u>5</u> 24	<u>21.4</u> 22	<u>20.7</u> 9	28.5 31	22.2 4
Iterative Transductive Matting	23.5	24.5	23.5	22.4	<u>13.1</u> 30	<u>17.2</u> 19	<u>15.6</u> 26	<u>5.7</u> 16	<u>8.6</u> 26	<u>7.8</u> 19	<u>5.1</u> 39	<u>5.5</u> 24	<u>3.9</u> 18	<u>1.9</u> 23	<u>5.8</u> 36	<u>2.6</u> 19	<u>6.6</u> 26	<u>8.5</u> 20	<u>13.8</u> 33	<u>5.4</u> 26	<u>10</u> 29	<u>7.4</u> 28	<u>25.5</u> 30	24 25	<u>23.8</u> 27	<u>20.1</u> 6	<u>22.7</u> 9	<u>22.7</u> 9
Comprehensive sampling	23.8	20.6	24.3	26.6	<u>11.2</u> 15	<u>18.5</u> 24	<u>14.8</u> 19	<u>6.5</u> 29	<u>9.5</u> 32	<u>8.9</u> 38	<u>4.5</u> 19	<u>4.9</u> 15	<u>4.1</u> 24	<u>1.7</u> 17	<u>3.1</u> 15	<u>2.3</u> 16	<u>5.4</u> 5	<u>9.8</u> 28	<u>13.4</u> 31	<u>5.5</u> 29	<u>11.5</u> 35	<u>7.4</u> 30	<u>23.9</u> 25	5 <u>22</u> 17	<u>22.8</u> 24	23.8 26	<u>28</u> 28	<u>28.1</u> 31
SVR Matting	24	26.8	24.3	20.9	<u>18.7</u> 48	<u>30.7</u> 50	<u>19.1</u> 41	<u>6.8</u> 35	<u>7.7</u> 18	<u>7.6</u> 18	<u>4.7</u> 31	<u>5</u> 17	<u>3.4</u> 9	<u>1.9</u> 24	<u>4.7</u> 28	<u>2.9</u> 24	<u>5.8</u> 10	<u>8.7</u> 21	<u>10.5</u> 13	<u>4.3</u> 17	<u>8</u> 19	<u>5.6</u> 16	21.2 15	5 <u>22.1</u> 18	<u>17.1</u> 7	<u>25.6</u> 34	<u>26.1</u> 23	<u>30.6</u> 39
Comprehensive Weighted Color and Texture	24.4	23.9	25.6	23.8	<u>14.6</u> 37	<u>16</u> 16	<u>15.7</u> 28	<u>6.8</u> 34	<u>10</u> 36	<u>7.9</u> 21	<u>4.3</u> 15	<u>5</u> 16	<u>4.1</u> 22	<u>1.7</u> 16	<u>3.5</u> 22	2.2 11	<u>5.4</u> 4	<u>9.9</u> 30	<u>12.8</u> 29	<u>4.3</u> 18	<u>7.4</u> 14	<u>5.2</u> 12	28.3 39	9 <u>28.1</u> 36	<u>25.4</u> 33	<u>24</u> 28	<u>30.2</u> 35	<u>28.7</u> 34
Sparse coded matting	24.8	28	25.6	20.8	<u>13.7</u> 34	<u>25.8</u> 46	<u>14.8</u> 22	<u>6.4</u> 26	<u>8.2</u> 22	<u>6.2</u> 6	<u>4.7</u> 26	<u>5.4</u> 22	<u>4</u> 20	<u>1.8</u> 21	<u>3.1</u> 14	<u>2.3</u> 13	<u>5.9</u> 14	<u>8</u> 15	<u>10.6</u> 14	<u>4.5</u> 19	<u>8</u> 17	<u>5.5</u> 15	30.3 42	2 <u>33.1</u> 44	<u>29.2</u> 41	<u>27.7</u> 42	<u>27.2</u> 25	<u>29</u> 35
LocalSamplingAndKnnClassification	26.4	28.9	24.4	26	12.6 24	<u>16</u> 17	<u>12.4</u> 10	<u>5.8</u> 18	<u>8.1</u> 20	<u>8</u> 23	<u>4.5</u> 21	<u>5.5</u> 26	<u>4.1</u> 21	2.2 32	<u>5.1</u> 31	<u>3.4</u> 38	<u>8.1</u> 40	<u>10.5</u> 32	<u>15.6</u> 39	<u>7.3</u> 39	<u>12.3</u> 38	<u>9.4</u> 38	24.1 26	<u>21.8</u> 16	<u>19.7</u> 16	<u>24.7</u> 31	<u>24.8</u> 15	<u>25.9</u> 23
Weighted Color and Texture Matting	27	24.5	29.3	27.3	13.1 31	17.8 22	15.8 29	6.5 28	9.4 30	8.6 32	4.2 14	4.7 13	3.9 19	1.7 19	6 37	2.7 20	6.4 23	11 35	16.3 40	4.8 22	9.1 25	6.5 20	23.7 22	24.8 27	23.2 25	26.5 37	40.2 45	28.5 33

Matting method

- Deep Image Matting
 - https://github.com/huochaitiantang/pytorch-deep-image-matting
- Indexnet matting
 - https://github.com/poppinace/indexnet_matting/
- Fusion Matting
 - https://github.com/yunkezhang/FusionMatting
- KNN-matting
 - https://github.com/MarcoForte/knn-matting
- bayesian-matting
 - https://github.com/MarcoForte/bayesian-matting/
- learning-based-matting
 - https://github.com/MarcoForte/learning-based-matting
- poisson-matting
 - https://github.com/MarcoForte/poisson-matting
- mishima-matting
 - https://github.com/MarcoForte/mishima-matting
- closed-form-matting
 - https://github.com/MarcoForte/closed-form-matting

Matting result

Matting 方法比較

deeplabV3+

deep matting

圖片去背種類

Segmentation

- 對每個像素的語義 理解,並得到該像 素分類結果
- 較難滿足標的物邊 緣高精度的切割效 果

Matting

- 找出前景與背景的 顏色,以及它們之 間的融合程度,邊 緣分割效果自然
- 人工耗時繪製 「trimap」

Auto Hair

- Segmentation與
 Matting的結合
- Segmentation :DeepLab V3+
- Matting : deep matting

Auto Hair introduction

Auto Hair Automatic Trimap

- Automatic Trimap Generator
 - https://github.com/lnugraha/trimap_generator
 - trimap_module.py
- Deep-Image-Matting
 - https://github.com/foamliu/Deep-Image-Matting
 - data_generator.py
- unet-gan-matting
 - https://github.com/eti-p-doray/unet-gan-matting
 - combine.py
- Semantic Human Matting
 - https://github.com/lizhengwei1992/Semantic_Human_Matting
 - gen_trimap.py

Auto Hair Automatic Trimap

不內縮不外擴	不內縮外擴20	內縮10外擴30
內縮20外擴30	內縮20外擴40	內縮50外擴60

Auto Hair Automatic Trimap

Auto Hair 方法比較

Segmentation

Auto Hair

圖片去背種類

Segmentation

- 對每個像素的語義 理解,並得到該像 素分類結果
- 較難滿足標的物邊 緣高精度的切割效 果

Matting

- 找出前景與背景的 顏色,以及它們之 間的融合程度,邊 緣分割效果自然
- 人工耗時繪製 「trimap」

Auto Hair

- Segmentation與
 Matting的結合
- Segmentation :DeepLab V3+
- Matting : deep matting

開源程式碼示範 資料來源

- Auto Hair
 - https://github.com/openaifab/Auto-Hair
- Segmentation
 - https://github.com/tensorflow/models/tree/master/research/deeplab
- Matting
 - https://github.com/huochaitiantang/pytorch-deep-image-matting
- Trimap
 - https://github.com/Inugraha/trimap_generator

開源程式碼示範 Auto Hair 教學

- Github
 - https://github.com/openaifab/Auto-Hair
- ●步驟
 - 先於 Github 網址中下載 Auto Hair 原始碼
 - 下載其他開發者已訓練完成 deeplabV3+ 的模型
 - http://download.tensorflow.org/models/deeplabv3_pascal_trainval_2018_01_ 04.tar.gz
 - 下載其他開發者已訓練完成 deep matting 的模型
 - https://github.com/huochaitiantang/pytorch-deep-image-matting/releases/download/v1.4/stage1_sad_54.4.pth
 - 安裝所需套件:「tensorflow」、「torch」、「torchvision」與「opency」

開源程式碼示範

Auto Hair 教學

- 開啟 jupyter notebook
- 打開 demo.ipynb

安裝套件

```
In [ ]: #!pip install tensorflow==1.14
#!pip install torch
#!pip install torchvision
#!pip install opencv-python
```

匯入套件與函數

```
In [1]: from matting import matting_result
from deeplabv3plus import deeplabv3plus
from trimap import trimap
import numpy as np
...
```

segmentation

```
In [2]: result_segmentation = deeplabv3plus('06.jpg')
#result_segmentation = deeplabv3plus('04.jpg')
#result_segmentation = deeplabv3plus('http://i.epochtimes.com/assets/uploads/2016/06/PO_X5716_meitu_1-450x300.jpg',
# website = True)

In [3]: # 0:segmentation的結果
result_segmentation[0]

...

In [4]: # 1:segmentation產生的mask
result_segmentation[1]
```

開源程式碼示範 Segmentation教學

- Github
 - https://github.com/tensorflow/models/tree/master/research/deeplab
- Model
 - https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
- Demo
 - https://github.com/tensorflow/models/blob/master/research/deeplab/deeplab_demo.ipynb

開源程式碼示範 Trimap 教學

- Github
 - https://github.com/huochaitiantang/pytorch-deep-image-matting
- Demo
 - https://github.com/lnugraha/trimap_generator/blob/master/trimap_module.
 py

開源程式碼示範 Matting 教學

- Github
 - https://github.com/huochaitiantang/pytorch-deep-image-matting
- Demo
 - https://github.com/huochaitiantang/pytorch-deep-image-matting/blob/master/core/demo.py
- Py file
 - https://github.com/huochaitiantang/pytorch-deep-image-matting/tree/master/core

開源程式碼示範 Matting 教學

- Github
 - https://github.com/huochaitiantang/pytorch-deep-image-matting
- Demo
 - https://github.com/huochaitiantang/pytorch-deep-image-matting/blob/master/core/demo.py
- Py file
 - https://github.com/huochaitiantang/pytorch-deep-image-matting/tree/master/core

開源程式碼示範 資料來源

- Auto Hair
 - https://github.com/openaifab/Auto-Hair
- Segmentation
 - https://github.com/tensorflow/models/tree/master/research/deeplab
- Matting
 - https://github.com/huochaitiantang/pytorch-deep-image-matting
- Trimap
 - https://github.com/Inugraha/trimap_generator

開源程式碼 **常遇到的問題**

- 環境的架設、環境變數的路徑設定
- 可能沒有開放原始碼
- 有原始碼但沒有訓練好的模型
 - 使用CPU要訓練超級久
- 有原始碼、有訓練好的模型,但程式版本與自己的版本不合
 - Python2 VS. Python3
 - TF 1.14 VS. TF 2.0
 - scipy.misc.imread VS. imageio.imread
- 效果不佳

開源程式碼 前端介面應用

http://openaifab.com/hair

Contact

Jon

CEO

jonhuang@openaifab.com

https://www.openaifab.com

https://www.facebook.com/openaifab

