

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Facultad de Ingeniería Mecánica y Eléctrica

PE Maestría en Ciencias de la Ingeniería con Orientación en Sistemas

PROGRAMA ANALÍTICO

I. Datos de Identificación de la Unidad de Aprendizaje:									
1. Clave y nombre de la Unidad de Aprendizaje: PM101 Inteligencia artificial									
2. Frecuencia semanal: horas de trabajo presencial 4									
3. Horas de trabajo extra aula por semana: 2									
4. Modalidad: ⊠ Escolarizada □ No escolarizada □ Mixto									
5. Período académico: ⊠ Semest	ral □ Tetramestral □ Modular								
6. LGAC: Sistemas estocásticos y	simulación								
7. Ubicación semestral: 1 o 2									
8. Área curricular: formación bás	ica, formación avanzada, de aplicación, libre eleccióninvestigación								
9. Créditos: 4									
10. Requisito: Ninguno									
11. Fecha de elaboración: 20/01/2010									
12. Fecha de la última actualización: 10/06/2021									
13. Responsable(s) del diseño:	100959 Dr. Romeo Sánchez Nigenda 096633 Dra. Satu Elisa Schaeffer								

Revisión: 1 Página 1 de 6

II. Presentación:

La *inteligencia artificial* refiere a búsqueda y planeación de acciones, razonamiento con restricciones, aprendizaje máquina y computación evolutiva (algoritmos genéticos).

III. Propósito(s):

Introducir al estudiante los conceptos básicos de la inteligencia artificial para que éste pueda construir herramientas inteligentes y aplicarlas en diferentes problemas de ingeniería.

IV. Competencias del perfil de egreso:

14. Competencias del perfil de egreso

- P1) Resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.
- P2) Resolver problemas concretos en sistemas de la industria, la academia o el sector público en base a las herramientas de la toma de decisiones con bases científicas para lograr el mejor diseño, análisis, planeación o gestión de dichos sistemas.
- P3) Establecer comunicación con los distintos sectores de la sociedad a fin de establecer proyectos estratégicos en las distintas disciplinas de la ingeniería de sistemas y crear la cultura de la creación de riqueza basada en el conocimiento.

15. Competencias generales a que se vincula la Unidad de Aprendizaje:

Declaración de la competencia general vinculada a la unidad de aprendizaje	Evidencia
C2) Utiliza los lenguajes lógico, formal, matemático, icónico, verbal y no verbal de	Tareas
acuerdo a su etapa de vida en el área de las ciencias para comprender, interpretar	
y expresar ideas, sentimientos, teorías y corrientes de pensamiento con un enfoque	
ecuménico.	
C3) Maneja las tecnologías de la información de acuerdo a los usos del campo de las	Tareas
ciencias y la comunicación como herramientas para el acceso a la información y su	
transformación en conocimiento, así como para el aprendizaje y trabajo colaborativo	
con técnicas de vanguardia que le permitan su participación constructiva en la	
sociedad.	
C5) Emplea pensamiento lógico, crítico, creativo y propositivo, siguiendo los mo-	Tareas, proyecto
delos de pensamiento científico para analizar fenómenos naturales y sociales que le	
permitan tomar decisiones pertinentes en su ámbito de influencia con responsabi-	
lidad social.	

Revisión: 1 Página 2 de 6

16. Competencias específicas y nivel de dominio a que se vincula la unidad de aprendizaje: La unidad se vincula con las siguientes competencias específicas:

Competencia Espe- cífica	Nivel I Inicial	Evidencia	Nivel II Básico	Evidencia	Nivel III Autónomo	Evidencia	Nivel IV Estratégico	Evidencia
E2) Resolver pro- blemas concretos en sistemas de la in- dustria, la academia o el sector público en base a las he- rramientas de la to- ma de decisiones con bases científicas para			Identifica los principios de la ingeniería de sistemas necesarios para modelar y resolver un problema aplicado específico.	Tareas, proyec- to.	Resuelve necesidades previamente identificadas en cuanto al diseño, análisis, planeación o gestión de sistemas en la industria, la	Tareas, proyec- to.		
lograr el mejor diseño, análisis, planeación o gestión de dichos sistemas.					academia o el sector público.			

V. Representación gráfica:

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

VI. Estructuración en capítulos, etapas o fases de la unidad de aprendizaje:

- 17. Desarrollo de las fases de la Unidad de Aprendizaje: Se cubren los principios teóricos y prácticos de la inteligencia artificial. Se busca desarrollar habilidades en la resolución en casos prácticos concretos. Se necesita contar con un buen entendimiento de varios los conceptos matemáticos, especialmente de matemáticas discretas y probabilidad, o en el caso contrario, estar preparado a estudiarlos según necesidad. También se necesita un conocimiento sólido de programación. La sesiones son de cuatro horas cada una y son veinte semanas en total.
 - 1. Introducción; selección de temas de proyecto
 - 2. Unidad temática 1: Métodos de búsqueda (4 semanas)
 - 3. Unidad temática 2: Planeación (4 semanas)
 - 4. Unidad temática 3: Algoritmos evolutivos inteligentes (4 semanas)
 - 5. Unidad temática 4: Aprendizaje máquina (5 semanas)
 - 6. Presentaciones de proyectos
 - 7. Revisión de portafolios de evidencia

Elementos de competencia:

Evidencias de	Criterios de desem-	Actividades de	Contenidos	Recursos
aprendizaje	peño	aprendizaje		
Reporte escrito y código de la im- plementación de un método de inteli- gencia artificial.	Calidad de la redacción científica del reporte; precisión del algoritmo propuesto; eficiencia de la implementación del método; cobertura de la experimentación.	Experimentación con ejemplos; lectura de material de apoyo; modificación de ejemplos; diseño y ejecución de experimentos; análisis y reportaje de resultados obtenidos.	Métodos diversos de inteligencia artificial.	Material en la página web de la unidad y la literatura citada; lenguaje Python o similar; paquete LATEX para redacción científica; repositorios de GitHub.

Revisión: 1 Página 4 de 6

VII. Evaluación integral de procesos y productos:

Las tareas son individuales; se recomienda estudiar juntos y discutir las soluciones, pero no se tolera ningún tipo de plagio en absoluto, ni de otros estudiantes ni de la red ni de libros — toda referencia bibliográfica tiene que ser apropiadamente citada. La entrega se realiza por un repositorio público que debe reflejar todas las fases del trabajo.

No habrá examen. Son 17 tareas (A1–A17) que reportan avances semanales de aplicación de la lectura de la semana para el proyecto del estudiante, otorgando por máximo 5 puntos por tarea:

NP = tarea omitida

5 =excede lo que se esperaba

4 = cumple con lo que se esperaba

3 = débil en alcance y/o calidad

2 = débil en ambos alcance y calidad

 $1 = \sin$ contribuciones o méritos aunque fue entregada

 $\mathbf{0} = \mathsf{completamente}$ inadecuado en alzance y calidad

El proyecto final (A18) otorga un máximo de 15 puntos, evaluados en los siguientes rubros

- 1. Variedad de técnicas de empleadas
- 2. Cobertura y validez de la experimentación
- 3. Claridad y relevancia de los resultados
- 4. Calidad de visualización científica
- 5. Calidad de redacción científica

con la escala:

3 = cumple con lo que se esperaba

2 = débil en alcance y/o calidad

1 = débil en ambos alcance y calidad

 $\mathbf{0} = \mathsf{inadecuado} \; \mathsf{en} \; \mathsf{alzance} \; \mathsf{y} \; \mathsf{calidad}$

Ponderación específica

Actividad	A1	A2	A3	A4	A 5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	Total
Ponderación	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5 %	5%	5%	5%	5%	5%	15 %	100 %

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

VIII. Producto integrador de aprendizaje de la unidad:

18. Producto integrador de Aprendizaje:

Portafolio en un repositorio digital público que contiene los reportes escritos y los códigos de la implemetación de todas las tareas y el proyecto.

IX. Fuentes de apoyo y consulta:

19. Fuentes de apoyo y consulta

19.1. Básicas

- S. Russell & P. Norvig: Artificial Intelligence: A Modern Approach. Third Edition. Prentice Hall. 2010.
- D.E. GOLDBERG: Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, Reading, EUA, 1989
- S. HAYKIN: *Neural Networks: A Comprehensive Foundation*. Second edition. Prentice Hall, Englewood-Cliffs, EUA, 1998.

19.2. Complementarias

Artículos científicos especializados relacionados a los temas tratados, de preferencia publicados en revistas internacionales indizados recientes.

Revisión: 1 Página 6 de 6

Autorizó: Dr. César Emilio Villarreal Rodríguez

ALERE FLAMMAM VERITATIS

Ciudad Universitaria, 25 de junio de 2021

Dr. César Emilio Villarreal RodríguezCoordinador Académico
Posgrado en Ingeniería de Sistemas

Vo. Bo. Dr. Simón Martínez Martínez Subdirector de Estudios de Posgrado Facultad de Ingeniería Mecánica y Eléctrica

Revisión: 1