CSC505 – HW1 Greg Timmons

1.) $f(n) \in O(g(n))$ if and only if there exists c, k such that $f(n) \le cg(n)$ for all n > k.

Consider the following:

$$2n^{2} + 5n \log_{2}(n)$$

 $\leq 5n^{2} + 5n \log_{2}(n)$
 $\leq 5n(n + \log(n))$
 $\leq 5n(n + n)^{(*)}$
 $\leq 10n^{2}$

*This step true provided that n > 1

Thus if c = 10 and n = 1 then $f(n) \le cg(n)$ for all n > k and therefor $f(n) \in O(g(n))$

2.) The definition of $f(n) \in \omega(g(n))$ then for any positive c there exists a k such that $0 \le cg(n) < f(n)$ for all $n \ge k$. Since the definition of $f(n) \in \Omega(g(n))$ is that there exists at least on c, k such that $0 \le cg(n) \le f(n)$ for all n > k.

Since $0 \le cg(n) < f(n) \Rightarrow 0 \le cg(n) \le f(n)$ and by the first definition a k must exist for any positive c, there must be at least one c and k pair by the second definition and therefore

$$f(n) \in \omega(g(n)) \Rightarrow f(n) \in \Omega(g(n)).$$