1. (5pts.) Use a tree to determine whether the following argument is valid or invalid. <u>Clearly explain</u> what property of the tree justifies your answer: (3pts.)

$$(J \to K) \ v \ T, \ (K \to J) \ v \ T \ \ \middle{}^{\ } \! \vdash \! \sim \! T \leftrightarrow (J \leftrightarrow K)$$

Explanation: Invalid. Negating the conclusion does not result in contradictions on every branch. The branches with the red circles under them are fully decomposed and do not contain a contradiction.

2. Use the tree method to determine whether the following is a tautology, a contradiction, or a contingent formula. Display <u>all and only</u> the trees that are necessary to confirm your conclusion. So do this on scratch paper first. If you display a tree that is irrelevant you will lose points. <u>Clearly explain</u> what property of the tree(s) justify your answer: (3pts.)

Explanation: This is a tautology because negating it produces a tree in which all branches close.

(This occurs in such short order because the antecedent of the formula is a contradiction.)

3. Derive the following in propositional logic using only the 8 non derived rules and the two hypothetical rules. (3pts)

$$(P \ v \ S) \ \& \ (L \ v \ G) \ \ \middle{\mid} \ \ ((P \to {\sim} S) \ \& \ ({\sim} S \to {\sim} L)) \to ({\sim} G \to {\sim} P))$$

1. (P v S) & (L v G) 2. P v S 3. L v G 4. (P → ~S) & (~S → ~L) 5. P → ~S 6. ~S → ~L 7. ~G 8. P 9. ~S 10. ~L 11. L 12. P 13. L & ~L 14. ~P 15. L → ~P 16. G 17. P 18. G & ~G 19. ~P 20. C	A 1, &E 1, &E H→I 4, &E 4, &E H→I 5,8 →I 6,9 →I H →I 10,11 &I 12-13, ~I 11-14, →I H→I H→I H→I 17-16 &I 17-18 ~I
	•
	•
	•
	•
20. G →~P	16-19 →I
21. P	3,15,20 vE
22. P → ~P	8-21 →I
23. S	$H \rightarrow I$
24. P	H ~I
25.	5,24 →E
26. S & ~S	23,25 &I
27.	24-26 ~l 23-27 →l
20. 3 → ~P 29. ~P	$23-27 \rightarrow 1$ 2, 22, 28 vE
30.	2, 22, 26 VL 7-29 →I
31. $((P \rightarrow \sim S) \& (\sim S \rightarrow \sim L)) \rightarrow (\sim G \rightarrow \sim P)$	7-29 →1

4. If the following is a tautology, derive it as a <u>theorem</u> in propositional logic. If it is a contradiction, derive it's <u>negation</u> as a <u>theorem</u> in propositional logic. Use only the 8 non derived rules and the two hypothetical rules. (3pts.)

$$\text{~(S} \rightarrow \text{(P} \rightarrow \text{S))} \rightarrow \text{~(S \& (P \& \text{~S))}}$$

This is an easy proof if you have one insight, which is that (S→(P→S)) is a theorem. So just derive it. Then when you assume it's negation for →I you have an immediate contradiction.

Name: _____

5. Evaluate the following formulas as true or false in the model by writing either T or F under the formulas. Study the model carefully. Reminder 1: When evaluating universally quantified expressions, remember that they refer to all entities in the model. Hence, $\exists x \forall y Lxy = F$, because no number is less than itself. Reminder 2: Be sure you understand the truth conditions of the conditional. If you do, then it will be clear why, e.g., $\forall x (Sxx \rightarrow G_{34}) = T$. For this formula to be false, there would have to be a value of x which made the antecedent true and the consequent false. But since nothing is south of itself, this is not the case. (3 pts, .3 each)

Universe = Numbers 1-12. The circle is not part of the universe. The directional indicators are not part of the universe. No other numbers are part of the universe.

Names = Numerals 1-12. We here extend predicate logic to include numerals as names. Hence $\exists x \ x=1$, ~2=3, G₃₂ are all wffs.

1-place predicates

P = prime

V = even

O = odd

2-place predicates

N = north of

S =south of

E = east of

W = west of

D = divisible by

G = greater than

L = less than

Clarifications:

- 1. Directional predicates are not mutually exclusive. e.g., the value of (S₅₁₂ & E₅₁₂) = T
- 2. Directional predicates do not mean "completely". e.g. N₁₂₁ = T even though 12 is not completely north of 1.
- 3. D means "divisible into whole numbers without remainder." Hence D67 = F, D63 = T
- 4. 1 is not a prime number.

- ∀x(Wx4 → Gx1)
 False. 1 is west of 4.
- ~∃x∃y(Sxy & Dxy)
 False. 8 is south of 2 and divisible by 2.
- 3. $\exists x \forall y (\sim Exy \rightarrow x=y)$ True. 3 is east of everything but itself.
- 4. $\forall x(Px \rightarrow \forall y(Dxy \rightarrow x=y))$ False, every prime number is divisible by itself and 1. This is just a property of primes.
- ∀x(Px → ∃y(Nyx & Gyx))
 True. 12 is north of every prime.

- False e.g., 12 is divisible by, but 12>2 and no number is less than 1.
- 7. ∀x∀y∀z((Nxy & Nyz) → Szx)

 True This is entailed by the meaning of North and South.
- 8. $\exists x \exists y ((Ox \& Vy) \& (Dyx \leftrightarrow Px))$ True This is satisfied by, e.g., x=3 and y =12.
- 9. $\exists x((Px \leftrightarrow Vx) \& \forall y(\neg Gyx \rightarrow (y=x \ v \ y=1)))$ True The first conjunct is satisfied by 2 and the second conjunct is satisfied by every number, as every number that is not greater than 2 is 2 or 1.
- 10. $\exists x \exists y((Dyx \& Sxy) \& \exists z \exists u(\sim u=z \& (Dxz \& Dzu)))$ True 12 is divisible by 6 and 6 is south of 12. 3 \neq 1 and 6 is divisible by 3 and 3 is divisible by 1.