COMMENTS ON CONCRETE MATHEMATICS (2E) BINOMIAL COEFFICIENTS

PETRO KOLOSOV

Contents

1.	Conventions	1
2.	Important binomial identities	1
3.	Important generating functions	4
4.	Important binomial sums	6
Ref	ferences	7

1. Conventions

- Use variable z that indicates complex value in generating functions.
- Give particular names to binomial identities, for example absorption identity
- Give particular names to generating functions to remember them easily
- Use subscript indices for generating functions that are powers of some value t, for clarity. Example: $A_t(z) = (1+z)^t$ for binomial coefficients.

2. Important binomial identities

Identities from Concrete Mathematics [1, p. 174]

Identity 2.1. Factorial expansion:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \quad integers \ n \ge k \ge 0.$$

Identity 2.2. Symmetry:

$$\binom{n}{k} = \binom{n}{n-k}, \quad integer \ n \ge 0, \ integer \ k.$$

Identity 2.3. Absorption/extraction:

$$\binom{r}{k} = \frac{r}{k} \binom{r-1}{k-1}, \quad integer \ k \neq 0.$$

$$k \binom{r}{k} = r \binom{r-1}{k-1}$$

$$(r-k) \binom{r}{k} = (r-k) \binom{r}{r-k} = r \binom{r-1}{r-k-1} = r \binom{r-1}{k}.$$

Identity 2.4. Addition/induction:

$$\binom{r}{k} = \binom{r-1}{k} + \binom{r-1}{k-1}, \quad integer \ k.$$

Identity 2.5. Upper negation:

$$\binom{r}{k} = (-1)^k \binom{k-r-1}{k}, \quad integer \ k.$$

Let $r = \ell - 1 - t$ and $k = \ell - t - m + s$, then

$$\binom{\ell-1-t}{\ell-t-m+s} = (-1)^{\ell-t-m+s} \binom{m+s}{\ell-t-m+s}.$$

Also

$$(-1)^{t+s} {\ell-1-t \choose \ell-t-m+s} = (-1)^{\ell-m+2s} {m+s \choose \ell-t-m+s}$$
$$= (-1)^{\ell-m} {m+s \choose \ell-t-m+s}$$
$$= (-1)^{\ell+m} {m+s \choose \ell-t-m+s}$$

Because

$$(-1)^{k+2s} \binom{n}{t} = (-1)^k \binom{n}{t}$$
$$(-1)^{k-s} \binom{n}{t} = (-1)^{k+s} \binom{n}{t}$$

Identity 2.6. Trinomial revision:

$$\binom{r}{m}\binom{m}{k} = \binom{r}{k}\binom{r-k}{m-k}, \quad integers \ m, k.$$

Identity 2.7. Binomial theorem:

$$\sum_{k} {r \choose k} x^k y^{r-k} = (x+y)^r, \quad integer \ r \ge 0, \ or \ |x/y| < 1.$$

Identity 2.8. Parallel summation:

$$\sum_{k \le n} \binom{r+k}{k} = \binom{r+n+1}{n}, \quad integer \ n.$$

Identity 2.9. Upper summation:

$$\sum_{0 \le k \le n} {k \choose m} = {n+1 \choose m+1}, \quad integers \ m, n \ge 0.$$

Identity 2.10. Vandermonde convolution:

$$\sum_{k} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n}, \quad integer \ n.$$

3. Important generating functions

Identity 3.1. Cauchy product rule of two generating functions A(z), B(z)

$$A(z) \cdot B(z) = \left(\sum_{n=0}^{\infty} a_n z^n\right) \left(\sum_{n=0}^{\infty} b_n z^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) z^n$$

Identity 3.2. Cauchy product rule for $(1+z)^{r+s}$

$$(1+z)^{r+s} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} {r \choose k} {s \choose n-k} \right) z^n$$

Identity 3.3. Shift selected coefficient of generating function

$$[z^{p-q}]A(z) = [z^p]z^q A(z)$$

$$[z^{p+q}]A(z) = [z^p]\frac{1}{z^q}A(z)$$

Identity 3.4. Binomial coefficient, fixed r

$$\binom{r}{n} = [z]^n (1+z)^r$$

Identity 3.5. Shifted binomial coefficient, fixed m, r

$$\binom{r}{m+n} = [z]^n \frac{(1+z)^r}{z^m}$$
$$\binom{r}{n-m} = [z]^n (1+z)^r z^m$$

Identity 3.6. Binomial coefficient of multiset [2, eq. 8], fixed k

$$A_k(z) = \sum_{n=0}^{\infty} {n \choose k} z^n = \frac{z^k}{(1-z)^{k+1}}$$

Then

$$\binom{t}{k} = [z]^t \frac{z^k}{(1-z)^{k+1}}$$

So that iteration goes over upper index of binomial coefficient.

Identity 3.7. Shifted Binomial coefficient of multiset, fixed k

$$\binom{t}{k+r} = [z]^t \frac{z^{k+r}}{(1-z)^{k+r+1}}$$

Identity 3.8. Shifted Binomial coefficient of multiset in two variables [2, eq. 15]

$$\sum_{n=0}^{\infty} (1+x)^n y^n = \frac{1}{1-(1+x)y}$$

Identity 3.9. Shifted Binomial coefficient of multiset in two variables (negated)

$$\sum_{n=0}^{\infty} (1+x)^n y^n (-1)^n = \frac{1}{1+(1+x)y}$$

Identity 3.10. Binomial coefficients row summation East-West

$$\sum_{k} {r \choose j-k} = \sum_{k} [z]^{j-k} (1+z)^r = [z]^j \sum_{k} z^k (1+z)^r$$
$$= (1+z)^r [z]^j \sum_{k} z^k$$

Because $[z^{p-q}]A(z) = [z^p]z^qA(z)$

4. Important binomial sums

Identities from Concrete Mathematics [1, p. 169]

Identity 4.1.

$$\sum_{k} {r \choose m+k} {s \choose n-k} = {r+s \choose m+n}, \quad integers \ m, n.$$

Identity 4.2.

$$\sum_{k} {l \choose m+k} {s \choose n+k} = {l+s \choose l-m+n}, \quad integer \ l \ge 0, integers \ m, n.$$

Identity 4.3.

$$\sum_{k} {l \choose m+k} {s+k \choose n} (-1)^k = (-1)^{l+m} {s-m \choose n-l}, \quad integer \ l \ge 0, integers \ m, n.$$

Identity 4.4.

$$\sum_{k < l} \binom{l-k}{m} \binom{s}{k-n} (-1)^k = (-1)^{l+m} \binom{s-m-1}{l-m-n}, \quad integers \ l, m, n \ge 0.$$

Identity 4.5.

$$\sum_{0 \le k \le l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1}, \quad integers \ l, m \ge 0, integers \ n \ge q \ge 0.$$

References

- [1] Graham, Ronald L. and Knuth, Donald E. and Patashnik, Oren. Concrete mathematics: A foundation for computer science (second edition). Addison-Wesley Publishing Company, Inc., 1994. https://archive.org/details/concrete-mathematics.
- [2] Faris, William G. Generating Functions Notes for Math 447, 2011. https://math.arizona.edu/~faris/combinatoricsweb/generate.pdf.

Version: Local-0.1.0