The exam is composed of 6 questions in one page (The mark of each question is (20) marks)

Part (1): Answer two questions only

- 1) a) Show that the function: $u(x,y) = \sin 2x \cosh 2y + 6x 4y + 5$ is harmonic and find it's corresponding analytic function f(z) = u + iv. Find f'(z). b) Find all values of z such that: i) $e^{z-1} = ie^3$ (4) and ii) $z = (1+i)^{(1+i)}$ (4)
- 2) a) Find all Laurent series for the function: $f(z) = \frac{5z+6}{z^2+z-12}$ in the domains.

- ii) 3 < |z| < 4
- iii) |z| > 4
- b) Evaluate the following integrals: i) $\oint_C \frac{1}{(z-2)^2(z-4)} dz$, where C: First. The rectangle defined by x = 1, x = 6, y = -2, y = 2. Second. The circle |z| = 3.
 - ii) $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)} \quad \left(\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)} \right)$
- $J_{-\infty}(x^2 + 1)(x^2 + 9)$ 3)a) Find all values of z such that (i) $\cos 2z = 20i$ and (ii) $(1 i)^{2i}$.
 - b) Evaluate the following integrals: i) $\oint_c (2z^3 + 5z^2 + 4) e^{\frac{2}{z}} dz c$: |z| = 1, ii) $\oint_c \frac{e^{2z}}{z^3 + 2z^2} dz c$: |z| = 3
 - iii) If c is the circle |z| = 5 and $g(z_0) = \oint \frac{z^3 + 2z^2 + 6}{(z z_0)^2} dz$ Find a) g(2i) b) g(4 + 5i)

Part (2): Answer two questions only

- 4)a) Evaluate the following integral: $\int_0^1 \frac{dx}{\sqrt{-\ln(x)}}$
 - b) Find the series solution of : 2y'' + xy' 4y = 0, near x = 0.
 - c) Evaluate the following integral: $\int_0^\infty \frac{dx}{\sqrt{x} + x^{3/2}}$, use substitution $t = \frac{1}{1+x}$
- 5)a) Use LaPlace transform to solve the IVP: $ty'' y' = t^2$, y(0) = 0
 - b) Evaluate the following integral : $\int_0^\infty \frac{\sin(5t)}{te^{5t}} dt$, use LaPlace transform.
 - c) Sketch the graph of the function: $f(t) = \begin{cases} \sin(t) & \text{; } 0 < t < 2\pi \\ 0 & \text{; } \pi < t < 2\pi \end{cases}$, period 2π .
- 6)a) Find $f(t) = L^{-1} \left(\frac{1 e^{-2s} + 2\tilde{e}^{3s} 2e^{-5s}}{s^2} \right)$ and sketch the function f(t).
 - b) Solve the integral equation: $\int_0^t \frac{y(u)}{\sqrt{t-u}} du = 1 + t + t^2$.

End of Exam

Good Luck

Ain Shams University Faculty of Engineering Eng. Physics & Math. Department

Total mark (70)

Engineering Math (PHM 663) Fall 2022-2023

Allowed Time: 2 Hrs.

The exam is composed of 6 questions in one page (The mark of each question is (20) marks)

Part (1): Answer two questions only

- 1) a) Show that the function: $u(x, y) = e^{2x} \cos 2y + 6x 3y + 15$ is harmonic and find it's corresponding analytic function f(z) = u + iv. Find f'(z).
 - b) Find all values of z such that: i) $e^{2z+3i} = 10i$
- ii) $z = (3 3i)^{2i}$
- 2)a) Find all Laurent series for the function : $f(z) = \frac{8z-6}{z^2-4z-21}$ in different domains.
 - b) Evaluate the following integrals: (i) $\oint_C \frac{\cosh(2z)}{z^3 2z^2} dz$, where C: |z| = 3 and (ii) $\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 9)(x^2 + 4)}$.
 - c) If $(z_0) = \oint_C \frac{z^2 + 3z}{(z z_0)^2} dz$, find H(2i) and H(5 + i), where C: |z| = 4.
- 3)a) Find the image of (i) y = 2x and (ii) $x^2 + y^2 + 2x = 0$ under the transformation $w = \frac{1}{z}$.

Discuss the details of your work.

b) Evaluate the following integrals: i) $\oint_{|z|=1} (2z^3 + 3z^2 + 1) e^{\frac{3}{2}} dz$, ii) $\int_0^\infty \frac{dx}{(x^2+4)^2} and$ iii) $\int_0^{2\pi} \frac{d\theta}{5+4\cos(\theta)}$

Part (2): Answer two questions only

- 4)a) Evaluate the following integral: $\int_0^1 \frac{dx}{\sqrt{-\ln(x)}}$
 - b) Find the series solution of: 2y'' + xy' 4y = 0, near x = 0.
 - c) Evaluate the following integral: $\int_0^\infty \frac{dx}{\sqrt{x} + x^{3/2}}$, use substitution $t = \frac{1}{1+x}$
- 5)a) Use LaPlace transform to solve the IVP: $ty'' y' = t^2$, y(0) = 0
 - b) Evaluate the following integral : $\int_0^\infty \frac{\sin(5t)}{te^{5t}} dt$, use LaPlace transform.
 - c) Sketch the graph of the function: $f(t) = \begin{cases} \sin(t) & \text{; } 0 < t < 2\pi \\ 0 & \text{; } \pi < t < 2\pi \end{cases}$, period 2π .
- 6)a) Find $f(t) = L^{-1} \left(\frac{1 e^{-2s} + 2e^{3s} 2e^{-5s}}{s^2} \right)$ and sketch the function f(t).
 - b) Solve the integral equation: $\int_0^t \frac{y(u)}{\sqrt{t-u}} \ du = 1 + t + t^2.$

End of Exam

Good Luck