مديريت سبد سهام

- عکی از روشهای شناختهشده و کارآمد برای مدیریت سبد سهام ردیابی شاخص است.
- از آنجا که عموماً در بلندمدت بازدهی شاخص بازار مثبت و مناسب است، تنها با ساخت یک سبد ردیاب شاخص می توان به بازدهی مطلوبی در بلند مدت دست یافت.

مسأله رديابي شاخص بازار

• مسأله ردیابی شاخص به انتخاب سبدی میپردازد که ضمن آن که زیرمجموعه محدودی از داراییهای بازار را شامل است، تغییرات شاخص بازار را تا حد خوبی منعکس کند.

شرح مسأله رديابي شاخص بازار

- سرمایه گذاری را در نظر بگیرید که قصد دارد سبدی متشکل از C دارایی را تشکیل دهد مشروط به و l_i و انتخاب دارایی i کسری از سرمایه که به آن تخصیص داده می شود، حداقل و u_i باشد.
 - هدف آن است که سبد تا حد خوبی شاخص بازار را ردیابی کند.
 - فروش استقراضی مجاز نیست.
 - از آنجا که سبد در بلندمدت به کار گرفته میشود از هزینههای تراکنش اغماض میشود.

محاسبه بازدهی شاخص و داراییها

$a_{i,t}$	$t=0,1,\dots,T$ ارزش دارایی i در دوره
$r_{i,t} = \frac{a_{i,t} - a_{i,t-1}}{a_{i,t-1}}$	$t=1,\!2,,\!T$ بازدهی دارایی i در دوره
a'_t	t=0,1,,T ارزش شاخص در دوره
$r'_{t} = \frac{a'_{t} - a'_{t-1}}{a'_{t-1}}$	$t=1,\!2,,\!T$ بازدهی شاخص در دوره

نمادهای مسأله

$r_{i,t}$	t=1,2,,T بازدهی دارایی i در دوره
r_t'	t=1,2,,T بازدهی شاخص در دوره
$ ho_{i,j}$	j و i ضریب همبستگی بازدهی داراییهای
a_i	ارزش فعلی دارایی i در بازار
C	تعداد داراییهایی که باید انتخاب شوند.
l_i, u_i	کران پایین و بالا روی میزان مشارکت در دارایی انتخابی

انواع مدلهای ردیابی شاخص

[1] (RM) مدل مبتنی بر بازدهی •

[4] (CM) مدل خوشهبندی •

مدل مبتنی بر بازدهی (RM)

$$\min \sum_{t=1}^{T} \left(\sum_{i \in \mathbb{I}} r_{i,t} x_i - r_t' \right)^2$$

$$s.t.$$

$$\sum_{i \in \mathbb{I}} \delta_i = C$$

$$\sum_{i \in \mathbb{I}} x_i = 1$$

$$l_i \delta_i \le x_i \le u_i \delta_i \quad \forall i \in \mathbb{I}$$

$$x_i \ge 0 \quad \forall i \in \mathbb{I}$$

$$\delta_i \in \{0,1\} \quad \forall i \in \mathbb{I}$$

مدل مبتنی بر خوشهبندی (CM)

$$\begin{aligned} \max \sum_{i \in \mathbb{I}} \sum_{j \in \mathbb{I}} \rho_{i,j} \gamma_{i,j} \\ s.t. \\ \sum_{i \in \mathbb{I}} \delta_i &= C \\ \sum_{i \in \mathbb{I}} x_i &= 1 \\ l_i \delta_i &\leq x_i \leq u_i \delta_i \quad \forall i \in \mathbb{I} \\ x_i &\geq 0 \quad \forall i \in \mathbb{I} \\ \delta_i &\in \{0,1\} \quad \forall i \in \mathbb{I} \\ \sum_{i \in \mathbb{I}} \gamma_{i,j} &= 1 \quad \forall j \in \mathbb{I} \\ \gamma_{i,j} &\leq \delta_i \quad \forall i,j \in \mathbb{I} \\ x_i &= \frac{\sum_{j \in \mathbb{I}} a_j \gamma_{i,j}}{\sum_{j \in \mathbb{I}} a_j} \quad \forall i \in \mathbb{I} \\ \gamma_{i,j} &\geq 0 \quad \forall i,j \in \mathbb{I} \end{aligned}$$

مقايسه مدلها

- برای ارزیابی مدلها از چهار مجموعه داده مختلف از شاخص FTSE100 (متشکل از ۱۰۰ دارایی) استفاده میکنیم که به چهار روند مختلف در بازار اشاره دارند.
 - هر یک اطلاعات بازدهی هفتگی سهام مختلف را در طول سه سال دربردارد.
- اطلاعات دو سال اول (۴۰ هفته) به عنوان دادههای دروننمونهای و اطلاعات سال سوم (۵۲ هفته) به عنوان دادههای بروننمونهای لحاظ میشود.

مقایسه مدلها (C=10 و ID: DD)

مراجع

- [1] L. R. Sant'Anna, T. P. Filomena, P. C. Guedes and D. Borenstein, "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," *Annals of Operations Research*, vol. 258, p. 849–867, 2016.
- [2] G. Guastaroba and M. G. Speranza, "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, vol. 217, no. 1, pp. 54-68, 2012.
- [3] C. Chen and R. H. Kwon, "Robust portfolio selection for index tracking," Computera & Operations Research, vol. 39, no. 4, pp. 829-837, 2012.
- [4] D. Wu, R. H. Kwon and G. Costa, "A constrained cluster-based approach for tracking the S&P 500 index," *International Journal of Production Economics*, vol. 193, pp. 222-243, 2017.