

## INSTRUCTION DIVISION First SEMESTER 2015-2016 Course Handout (Part II)

Date: 03/08/2015

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No : CHEM F214

**Course title** : Inorganic Chemistry I

**Instructor-in-charge:** INAMUR RAHAMAN LASKAR

<u>Scope and Objective of the Course</u>: The course provides a comprehensive survey of the concepts involved in the study of the VSEPR Model, VB Theory, Ionic Crystal Structure, Structure of Complex Solids, Electronegativity, Acid-Base Chemistry, Chemistry in Aqueous and Non-Aqueous Solvents, Periodicity, Chemistry of transition metals, Halogens and Noble Gases, Inorganic Chains, Rings, Cages and Clusters

<u>Text Book</u>: Huheey J. E., Keiter, E. A. Keiter, R. L. Keiter, O. K. Medhi, Inorganic Chemistry, 4<sup>th</sup> ed., Pearson Education,

Reference Books: I. Inorganic Chemistry by Shriver & Atkins, (4th edition)

II. Cotton F.A., Wilkinson G., Murillo, C.A., Bochmann, M. Advanced Inorganic Chemistry, 6<sup>th</sup> ed., John Wiley and Sons, New York (2003).

## 1. Course Plan

| Lec.        | <b>Topics to be</b> | Learning objects                                     | Reference: (Chapter    |  |
|-------------|---------------------|------------------------------------------------------|------------------------|--|
| No: covered |                     | Ç V                                                  | and page No: of T1)    |  |
| 1-2         | Concepts of         | Electronegativity                                    | Chapter 5: p 155-169   |  |
|             | inorganic           | Acid-base chemistry                                  | Chapter 8: p 220-227   |  |
| 3-4         | chemistry           | A generalized acid-base concept                      | Self-study (p 228-236) |  |
| 5-7         |                     | Measures of acid-base strength                       | p 237-243              |  |
| 3-7         |                     | Hard and soft acids and bases, Symbiosis             |                        |  |
| 8-9         |                     | Chemistry of aqueous and nonaqueous solvents         | Chapter 9: p 246-257   |  |
| 10          |                     | Summary of protonic and aprotic solvents             | Self-study (p257-260)  |  |
| 11          |                     | Molten salts                                         | p 260-265              |  |
| 11          |                     | Electrode potentials and electromotive forces        |                        |  |
| 12-13       | The                 | Noble gas chemistry: Fluorides, bonding              | Chapter12: p343-367    |  |
| 14          | chemistry of        | Other compounds of xenon                             |                        |  |
|             | halogens and        | Bond strengths in noble gas compounds                |                        |  |
| 15-16       | the noble           | Halogens in positive oxidation states                |                        |  |
|             | gases               | Polyhalide ions, Fluorine-oxygen chemistry, Oxyacids |                        |  |
|             |                     | of heavier halogens, Halogen oxides and oxyfluorides |                        |  |
|             |                     | Halogen cations, Halides, Pseudohalogens             |                        |  |
| 17-18       |                     | Electrochemistry of the halogens and pseudohalogens  |                        |  |
|             |                     |                                                      |                        |  |
|             |                     |                                                      |                        |  |

| 19-21 | Structure of molecules                                | The Covalent Bond: VSEPR Model and VB Theory                                                                                                                                                                                                                                                                                                                                                | Chapter 6: p171-182 |
|-------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 22-26 | Ionic bonding and the solid state                     | The ionic bond, Lattice energy, Size effects, Covalent character in predominantly ionic bonds, Imperfections in crystals, Conductivity in ionic Solids, Solid held together by covalent boding                                                                                                                                                                                              | Chapter 4: p72-114  |
| 27-29 | The Chemistry of the Main Group Elements: Periodicity | Periodicity: First and second row anomalies The use of <i>p</i> orbitals in pi-bonding The use of <i>d</i> orbitals by nonmetals Periodic anomalies of the nonmetals and post-transition metal                                                                                                                                                                                              | Chapter10: p268-290 |
| 30-38 | Inorganic<br>chains, rings,<br>cages                  | Catenation, Heterocatenation, Silicate minerals, Intercalation chemistry, One dimensional conductors, Isopoly anions, Heteropoly anions; Borazines, Phosphazenes, Phosphazene polymers, Other heterocyclic inorganic systems, Homocyclic inorganic systems; Boron cage compounds-Boranes, Carboranes, Metallacarboranes, Structure prediction for heteroboranes and organometallic clusters | Chapter11: p292-338 |
| 39-40 | Inorganic<br>clusters                                 | Metal clusters, Dinuclear compounds, Trinuclear clusters, Tetranuclear clusters, Hexanuclear clusters, Polyatomic Zintl anions and cations, Chevrel phases, Infinite metal chains                                                                                                                                                                                                           | Chapter13: p395-406 |

## **Evaluation Scheme:**

| — · · · · · · · · · · · · · · · · · · · |          |            |               |             |  |  |  |
|-----------------------------------------|----------|------------|---------------|-------------|--|--|--|
| Components                              | Duration | Weightage% | Date and Time | Remarks     |  |  |  |
| Mid Term Test                           | 90 min   | 30%        | 6/10 8:00 -   | Closed Book |  |  |  |
|                                         |          |            | 9:30 AM       |             |  |  |  |
| Tutorials                               | 15 min   | 25%        | Continuous    | Closed book |  |  |  |
| Comprehensive Exam.                     | 3 hrs.   | 45%        | 3/12 FN       | \$          |  |  |  |

\$ The Comprehensive Examination will have a closed book quiz portion with 16% weightage, and an open book section with 29% weightage.

<u>Notices:</u> Notices, if any, concerning the course will be displayed on the **Notice Board of Chemistry Group** only.

Make up policy: Make up would be considered only for genuine cases

Instructor-in-charge CHEM F214



