Cryptography Assignment

Riya Jana

April 2024

1. Question1: If a simple Substitution Cipher is used(with an unknown key) and we intercept the cipher text OXAO, then which of the following four-letter words could be the plain text: JHON, SKID, SPAS, LOOT, PLOP or OSLO?

Answer: Cipher text is OXAO. As it is a simple substitution cipher so one character mapped to only one character always.

OXAO may map into "SPAS" or "PLOP" or "OSLO". These are the possible plain text.

- 2. Question2: Which class of ciphers does the Vigenere cipher belongs to?

 Answer: The Vigenere cipher belongs to poly-alphabetic substitution cipher.
- 3. **Question3:** What is the size of the key-space of the Vigenère cipher with a keyword of lenth 13?

Answer: Length of the keyword is 13. Letter space from where we choose plain text and key is 26 (as alphabets are 26 in quantity). Key Space will be 26^{13} .

4. **Question4:** What is the multiplicative inverse of 5 in \mathbb{Z}_{11} and \mathbb{Z}_{12} ? **Answer:** To check in these two set multiplicative inverse holds or not, we need to check $\gcd(5,11)$ and $\gcd(5,12)$ is equal to 1 or not. If so then multiplicative inverse holds.

Now, gcd(5,11)=1gcd(5,12)=1

Multiplicative inverse would be:

 $(5x?) \mod 11 = 1$

 $(5x?) \mod 12 = 1$

In both of the cases we need to find the "?" value.

 $(5x9)\equiv 45 \pmod{11}\equiv 1$ then ans is 9

 $(5x5)\equiv 25 \pmod{12} \equiv 1$ then ans is 5

5. Question5: State the mathematical form of the Affine Cipher.

Answer: Let, E be encryption function.

- D be decryption function.
- x be plain text.
- y be cipher text.
- a be the multiplier.
- b be the constant value.

Now, the mathematical formula for encryption and decryption in Affine cipher:

- E(x)=y is defined as $y=(a.x+b) \mod 26$
- D(y)=x is defined as $x=a^{-1}(y-b) \mod 26$

Condition for affine cipher there should exists inverse of a otherwise its not possible to encrypt.

6. Question6: (a) Encrypt first 4 letters of your name with the Hill cipher using the following key in \mathbb{Z}_{26} :

$$K = \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix}$$

Answer: Plain text = RIYA

Converting it into numeric value: 17 8 24 0 with the key

$$K = \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix}$$

As key is 2x2 so at a time we can encrypt two letters. Dividing the plain text into two part:

$$\begin{bmatrix} 17 & 8 \end{bmatrix} * \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix} mod 26$$

$$\begin{bmatrix} (17*11) + (8*3) \\ (17*8) + (8*7) \end{bmatrix} = \begin{bmatrix} 211 \\ 192 \end{bmatrix} mod 26$$

results to

$$\begin{bmatrix} 3 \\ 10 \end{bmatrix} = \begin{bmatrix} D \\ K \end{bmatrix}$$

In next two letters,

$$\begin{bmatrix} 24 & 0 \end{bmatrix} * \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix} mod 26$$

$$\begin{bmatrix} (24*11)+(0*3)\\ (24*8)+(0*7) \end{bmatrix} = \begin{bmatrix} 264\\192 \end{bmatrix} mod 26$$

results to

$$\begin{bmatrix} 4 \\ 10 \end{bmatrix} = \begin{bmatrix} E \\ K \end{bmatrix}$$

Finally the cipher text will be DKEK.

(b) Now, show the steps to calculate K^{-1}

Answer: Here k^{-1} is inverse of the square matrix K formula for k^{-1} is:

$$K^{-1} = \frac{1}{\mathrm{Det}(K)} * \mathrm{Adj}(K)$$

step1: Finding determinant of K:

 $(11x7 - 8x3) \mod 26 = 1$

step2: Finding Adj of K:

$$\begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix} mod26 = \begin{bmatrix} 7 & -8 \\ -3 & 11 \end{bmatrix} mod26 = \begin{bmatrix} 7 & 18 \\ 23 & 11 \end{bmatrix}$$

step3: Finding inverse of K:

$$K^{-1} = \frac{1}{\mathrm{Det}(K)} * \mathrm{Adj}(K)$$

$$K^{-1} = \frac{1}{1} * \begin{bmatrix} 7 & 18 \\ 23 & 11 \end{bmatrix} = \begin{bmatrix} 7 & 18 \\ 23 & 11 \end{bmatrix}$$

- (c) What are the necessary condition for K to be invertible.

 Answer: If the Det of K is non-zero then only we can say that K is invertible.
- 7. Question 7: (a) Suppose π is the following permutation of $\{1...8\}$

x	1	2	3	4	5	6	7	8
$\pi^{(x)}$	4	1	6	2	7	3	8	5

Compute the permutation π^{-1} :

Answer:

x	1	2	3	4	5	6	7	8
$\pi^{-1}(x)$	2	4	6	1	8	3	5	7

(b) Decrypt the following ciphertext, for a Permutation Cipher with m=8, which was encrypted using the key π : TGEEMNELNNTDROEOAAHDOETCSHAEIRLM

x	1	2	3	4	5	6	7	8
Cipher text	Т	G	Е	Е	Μ	Ν	Е	L
Plain text	Е	Т	N	G	Е	E	L	Μ

x	1	2	3	4	5	6	7	8
Cipher text	N	N	Τ	D	R	О	Е	О
Plain text	D	N	О	N	E	Т	О	R

Answer: Breaking 32 letter cipher text into 8 letter blocks.

 $\begin{array}{c} step 1: step 2 \\ step 3 \end{array}$

step4 Finally our plaintext is ETNGEELMDNONETORDAEATHCOES-RHLAMI.

x	1	2	3	4	5	6	7	8
Cipher text	A	A	Η	D	Ο	\mathbf{E}	Τ	С
Plain text	D	A	Е	Α	Τ	Η	С	О

x	1	2	3	4	5	6	7	8
Cipher text	S	Η	A	Е	I	R	L	Μ
Plain text	Е	S	R	Η	L	Α	Μ	I