EXAMENUL DE BACALAUREAT – 2011 Proba E. c) Probă scrisă la MATEMATICĂ

MODEL

Filiera teoretică, profilul real, specializarea matematică - informatică.

Filiera vocațională, profilul militar, specializarea matematică - informatică.

- Toate subiectele (I, II, III) sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați modulul numărului complex $z = 1 i\sqrt{3}$.
- **5p** 2. Determinați mulțimea valorilor funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x + 1$.
- **5p** 3. Știind că doi termeni ai unei progresii geometrice sunt $b_3 = 6$ și $b_5 = 24$, determinați termenul b_7 .
- **5p** | **4.** Determinați x > 0, știind că $\log_a x = 2\log_a 3 3\log_a 2$, unde a > 0, $a \ne 1$.
- **5p** | **5.** Scrieți ecuația dreptei care conține punctul A(3, 2) și este perpendiculară pe dreapta d: x + 2y + 5 = 0.
- **5p 6.** Știind că $x \in \left(\frac{\pi}{2}, \pi\right)$ și $\sin x = \frac{2\sqrt{2}}{3}$, calculați $\cos x$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Fie matricea $A(x) = \begin{pmatrix} 1 & -2x & 4x^2 \\ 0 & 1 & -4x \\ 0 & 0 & 1 \end{pmatrix}$ din mulţimea $\mathcal{M}_3(\mathbb{R})$.
- **5p a)** Calculați $(A(2) A(0))^{2010}$
- **5p** | **b**) Arătați că $A(x) \cdot A(y) = A(x+y)$, oricare ar fi $x, y \in \mathbb{R}$.
- **5p** c) Demonstrați că matricea A(x) este inversabilă și calculați inversa matricei A(x).
 - 2. Pe mulțimea G = (0,1) se definește legea de compoziție asociativă $x * y = \frac{xy}{2xy x y + 1}$.
- **5p** a) Verificați dacă $e = \frac{1}{2}$ este elementul neutru al legii "*".
- **5p b)** Arătați că orice element din mulțimea G este simetrizabil în raport cu legea "*".
- **5p** c) Demonstrați că funcția $f: G \to \mathbb{R}_+^*$, $f(x) = \frac{1}{x} 1$ este un izomorfism de la grupul (G, *) la grupul (\mathbb{R}_+^*, \cdot) .

SUBIECTUL al III-lea (30 de puncte)

- 1. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = (x-2)(x-3)(x-4)(x-5) + 1.
- **5p a)** Calculați f'(5).
- **5p b)** Calculați $\lim_{n \to +\infty} \left(\frac{f(n+1)-1}{f(n)-1} \right)^n$.
- **5p** c) Arătați că ecuația f'(x) = 0 are exact trei soluții reale distincte.
 - **2.** Fie şirul $(I_n)_{n\geq 0}$, $I_n = \int_0^1 \frac{(x^2 + x + 1)^n x}{x^2 + 1} dx$.
- **5p a)** Calculați I_0 .
- **5p b)** Verificați dacă $I_2 I_0 \in \mathbb{Q}$.
- **5p** c) Arătați că $I_{4n+1} \in \mathbb{Q}$, oricare ar fi $n \in \mathbb{N}$.