

Computer Graphics & Virtual Reality Shape Modeling: Subdivision Surfaces

Tamy Boubekeur

Applications

- Animation
- •FX
- Video games
- •CAD

Where do subdivision surfaces come from

Original issue:

"How to define a smooth surface of arbitrary topology?"

NB: splines were the major representation in the 70's

- Mesh Refinement: local, recursive, efficient et simple.
- Idea Nb1: avoid control net/spline and work only with
 - A mesh
 - Some refinement rules
- Idea Nb2: without spline, consider arbitrary topology, adapt the rules
- Idea Nb3: call it subdivision surface

Subdivision Surface

Coarse mesh (domain) + subdivision rules

Subdivision Scheme: a set of subdivision rules

Formal Definition:

Limit geometry of a domain mesh under an infinite number of subdivision steps

Recursive Evaluation:

- 1. Tessellate
- 2. Smooth
- 3. Tessellate
- 4. Smooth
- 5. ...

Parametric Evaluation:

Arbitrary tessellation and direct projection on the limit surface

Subdivision Surfaces

Terminology

Even vertex: exists before tessellation

Odd vertex: inserted by tessellation at the current step

Regular vertex: valence 6 for triangles meshes, 4 for quad meshes

Extraordinary vertex: the other ones

Primal scheme : subdivide *polygons*

Dual scheme: subdivide *vertices*

Subdivision Mask

- A graphical representation of subdivision schemes
- Example :

A,B,C,D: even vertices

O: odd vertex

$$O = A/8 + 3B/8 + 3C/8 + D/8$$

Odd vertex mask

Classification criteria

Interpolation or Approximation

• **Locality**: neighborhood inspection required (1-ring, 2-ring, more)

• Continuity: C0, C1, C2

• **Primal** or Dual

Classification

Primal	Triangle	Quad
	Meshes	Meshes
Approximation	Loop (C2)	Catmull-Clark (C2)
Interpolation	Modified Butterfly (C1)	Kobbelt (C1)

Dual	Triangle Meshes	Quad Meshes
Approximation	Sqrt (3)	Doo-Sabin (C1), Mid-Edge, Bi- Quartic (C2)

Note : continuity given for regular vertices

Loop Scheme

Approximating scheme for triangle mesh

C2 continuity everywhere but on extraordinary Odd vertex vertices (C1 only)

Primal refinement

Tags (vertices, edges, faces) and special rules:

- Borders
- Sharp and semi-sharp crease
- Corners
- Dart points
- Normal control

2 Loop subdivision steps

Loop Scheme

Loop masks

Odd vertices

$$\alpha_n = \frac{1}{64} \left(40 - \left(3 + 2\cos\left(\frac{2\pi}{n}\right) \right)^2 \right)$$

Even vertices

Catmull-Clark Scheme

Approximating scheme for quad meshes

C2 everywhere but on extraordinary vertices (C1 only)

Primal scheme

Special rules: sharp creases, corners, dart points

Geri's Game (1997): Pixar Animation Studios

Catmull-Clark Scheme

Catmull-Clark Scheme

FACE

$$f = \frac{1}{n} \sum_{i=1}^{n} v_i$$

EDGE

$$e = \frac{v_1 + v_2 + f_1 + f_2}{4}$$

O ·····► O VERTEX

$$v_{i+1} = \frac{n-2}{n}v_i + \frac{1}{n^2}\sum_{j}e_j + \frac{1}{n^2}\sum_{j}f_j$$

Modified Butterfly Scheme

- Interpolating scheme for triangle meshes
- C1 everywhere

Modified Butterfly Scheme

Regular Odd Vertices

Borders and sharp creases

Note: interpolation requires only odd rules

Extraordinaty Odd Vertices

$$k=3$$
, $s_0=\frac{5}{12}$, $s_{1,2}=-\frac{1}{12}$

$$k = 4$$
 $s_0 = \frac{3}{8}, s_2 = -\frac{1}{8}, s_{1,3} = 0.$

$$k > 5$$
.
$$\frac{1}{k} \left(\frac{1}{4} + \cos \frac{2i\pi}{k} + \frac{1}{2} \cos \frac{4i\pi}{k} \right)$$

√3 Scheme

- Approximating scheme for triangle meshes
- 1-3 tessellation, local connectivity « rotation »
- More progressive refinement than Loop (25% less triangles)
- Sharp creases
- Straightforward adaptive subdivision

√3 Scheme

Odd vertices (insertion)

Triangle barycenter

$$\mathbf{q} := \frac{1}{3} \left(\mathbf{p}_i + \mathbf{p}_j + \mathbf{p}_k \right)$$

Even Vertices (relaxation)

Interpolation between original $S(\mathbf{p}) := (1 - \alpha_n) \mathbf{p} + \alpha_n \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{p}_i$. position and barycenter of the 1-ring neighborhood $\alpha_n = \frac{4 - 2\cos(\frac{2\pi}{n})}{9}$

Subdivision Matrix

- A subdivision scheme can be expressed by a matrix M of weights wij
 - wij: weight of pj when computing pi at next level
 - M is sparse

 $P^{i+1} = MP^i$

- M should not be used for implementation
- Enable subdivision analysis
 - Eigen analysis
 - Limit surface

Note: in fact, a scheme requires 2 matrices, one for inserting vertices (odd vertices) and one for moving existing ones (even vertices), the later being the most interesting for analysis

$$\begin{bmatrix} w_{00} & w_{01} & \cdots & 0 \\ w_{10} & w_{11} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & w_{nj} \end{bmatrix} \begin{bmatrix} p_0^i \\ p_1^i \\ \vdots \\ p_n^i \end{bmatrix} = \begin{bmatrix} p_0^{i+1} \\ p_1^{i+1} \end{bmatrix}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$p_n^{i+1}$$

$$\vdots$$

$$\vdots$$

$$p_n^{i+1}$$

$$\vdots$$

$$\vdots$$

$$p_n^{i+1}$$

$$\vdots$$

$$\vdots$$

$$vertices$$

$$tevel n$$

$$tevel n+1$$

Adaptive Subdivision

Spatially varying subdivision level on the surface

Pro.

- Subdivision mesh density control tailored using various criteria
 - Curvature
 - Distance
 - Visibility

Cons.

- Harder to implement
- Harder to analyze

Mesh combinatorics : adaptive subdivision must preserve topology (no cracks introduced).

Geometry Processing

Subdivision surfaces are useful for:

- Mesh to spline conversion
- Reconstruction from point sets
- Multiresolution
 - Analysis
 - Deformation
 - Rendering
- Parameterization
- Compression
- Simplification
- Remeshing

Implementation

Forest of quad-trees

- Each polygon of the base mesh a root
- Polygon subdivision = quad-tree
- +: adaptive subdivision
- : expensive and complicated

Implementation

Basis functions table (BFT)

Every point on a subdivision surface is a linear combination of a compact and local set of vertices on the base domain mesh.

- 1. Precompute the tables of weights for a each pair « valence/level »
- 2. Tessellate each polygon at desired level
- 3. Combine the relative base domain neighborhood using the BFT
- + : very fast, arbitrary scheme, GPU friendly
- : precomputation for each case, limited number of (rational) parameter points, adaptivity

Implementation

Hash-table

- Build a hash-table
 - Indexed by mesh edges
 - Storing odd vertices newly inserted on edges
- Iterate on polygons, accumulating their contribution on vertices and « edges vertices » (using the hash-table)
- 3. Replace each polygon by 4 new ones using the odd vertices stored in the hash-table and the even ones.
- + : straightforward to implement, works with various schemes
- : no multiresolution construction (mesh to mesh conversion)

Real Time

Dynamic coarse domain

Generate the subdivision mesh at each frame

GPGPU Rendering:

- 1. Subdivide 2 times on the GPU
- 2. Decompose in 2-rings patches
- 3. Unroll the rings (1D)
- 4. Patches them into a 2D texture
- 5. Render the texture on a quad, using twice higher screen resolution
 - Replace the image filtering kernel by the subdivision rules
- 6. Iterate until the desired level
- Back conversion texture to mesh(1 pixel RGB = 1 vertex XYZ)

CUDA implementation

Visually plausible approximations:

- QAS (Loop)
- ACC (Catmull-Clark)

Curved PN Triangles

- Realtime Mesh Refinement
- Visually smooth
- Alternative to interpolating subdivision
- Purely local
- Vertex and Normal vectors used to drive the refinement
- Geometric continuity: C0 on edges

Curved PN Triangles

Principle

- generate a displacement field Cd and a normal field Cn on each triangle by creating 2
 Bézier patches defined by positions and normals of each vertex of the triangle
 - Cd: cubic patch
 - Cn: quadratic patch
- Tessellate the triangle and embed the tessellation positions in Cd and normals in Cn
- Draw the resulting piece of mesh *instead* of the original triangle

- No topology knowledge (i.e. no 1-ring structure)

 Compatible with GPU mesh format
- Visual smoothness is not enough for some applications

$$d_i = P_j + (P_k - P_j)/3. \ e_i = \Pi(P_j, N_j, d_i)N_j$$
 Barycentric Projection on the PN coordinates plane of the nearest

triangle

Curved PN Triangles

- Scalar Tagged PN Triangle
 - PN G1 Triangles

Simpler operator :

Phong Tessellation

PNG1 Triangles PN Triangles

The faster visually smooth substitute to subdivision surfaces (CryEngine, Unity, Unreal Engine, etc)

- Generate a curved displacement field
- A projection operator
 - 1. interpolate the 3 vertex positions
 - 2. project this point on the 3 tangent planes
 - 3. interpolate the 3 projections

Modulate with a simple shape factor α

$$\mathbf{p^*}_{\alpha}(u,v) = (1-\alpha)\mathbf{p}(u,v) + \alpha(u,v,w) \begin{pmatrix} \pi_i(\mathbf{p}(u,v)) \\ \pi_j(\mathbf{p}(u,v)) \\ \pi_k(\mathbf{p}(u,v)) \end{pmatrix}$$

Comparison to Subdivison

Remember "Phong Shading"

Generate a continuous normal field on an arbitrary mesh

- Principle: interpolate vertex normals
- Purely local
 - 3 vertex normals per-triangle
- Linear [Phong 1975]
- Quadratic [Van Overveld 1997]

Multiresolution modeling

- Approximate a sampled surface (e.g., mesh, point set) with a subdivision surfaces
- Principle: similar to wavelets

Target

Subdivision Surfaces Memo

- 1978:
 - First scheme, including the Catmull-Clark one (quads)
- 1987:
 - Loop scheme: approximating scheme for triangle meshes
- 1994:
 - Modifications on Loop (sharp creases, borders) in the context of surface reconstruction [Hoppe et al.]
- 1995:
 - Multiresolution analysis of arbitrary meshes [Eck et al.]
 - Theoretical results on continuity [Reif et al.]
- 1996:
 - Variational Subdivision Surfaces [Kobbelt]
- 1998:
 - Subdivision Surface for Character Animation [DeRose et al.]
 - Exact parametric evaluation of Subdivision Surfaces discovered for Catmull-Clark and Loop schemes [Stam]
- 2000:
 - SIGGRAPH course, 2^{nde} version (THE entry point) [Zorin & Schröder]
 - Singularity control, normal control [Biermann et al.] (MPEG-4)
 - SQRT(3) scheme, constructive approach[Kobbelt]
 - Displaced Subdivision Surfaces [Lee et al.] (industrial spread started in 2004)
- 2001:
 - Curved PN Triangle, a fake subdivision, more efficient and visually smooth [Vlachos et al.]
- 2001-2005
 - Factored subdivision methods (same algorithms and data-structure for many schemes)
 - Hybrid Triangle/Quad subdivision schemes

Subdivision Surface Rendering:

- 1996: Table-based Subdivision evaluation [Pulli & Segal]
- 2003: GPU evaluation of subdivision surfaces [Bolz & Schröder]
- 2005: First full GPU implementation of subdivision
- 2007/8: Efficient Realtime Substitutes