Exercises - Calculus Academic Year 2021-2022

Sheet 7

1. Determine the behaviour of the following series (converging, diverging to $+\infty$, diverging to $-\infty$ or indeterminate). Determine also if the series is absolutely converging or not.

Take into account that $\lim_n \arctan(x_n) = \pi/2$ for any sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $x_n \to +\infty$.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^4 + 1}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n \arctan n}{\sqrt{n^6 + 1}}$$

(d)
$$\sum_{n=3}^{\infty} \left(\frac{1}{n^3} - \frac{1}{n^2} \right)$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!}$$

(f)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n^3+1)}}$$

(g)
$$\sum_{k=5}^{\infty} \frac{1-2k}{2^{k/2}}$$

(h)
$$\sum_{n=1}^{\infty} \frac{1}{n^{3+(-1)^n}}$$

$$(i) \sum_{n=2}^{\infty} n^{-n/2}$$

(j)
$$\sum_{k=1}^{\infty} \frac{2 + (-1)^k}{k^2}$$

(k)
$$\sum_{k=3}^{\infty} (-1)^k \frac{\sqrt{k+1} - \sqrt{k}}{k}$$

(1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+\sqrt{n}}$$

(m)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

(n)
$$\sum_{n=3}^{\infty} \frac{\arctan n}{n\sqrt{n-1}}$$

(o)
$$\sum_{n=1}^{\infty} 3^{-\sqrt{n}}$$

$$(p) \sum_{n=1}^{\infty} 2^n \cdot 3^{-\sqrt{n}}$$

(q)
$$\sum_{n=5}^{\infty} (-1)^{n+2} (\sqrt[n]{3} - 1)$$

(r)
$$\sum_{n=2}^{\infty} \sqrt[3]{n+1} - \sqrt[3]{n}$$

(s)
$$\sum_{n=2}^{\infty} \log \left(1 + \frac{1}{n^2} \right)$$

(t)
$$\sum_{n=1}^{\infty} n(1 - e^{1/n^2})$$

2. Determine for which values of $x \in \mathbb{R}$ the following series converges. When the series is converging, determine also if the series is absolutely converging or not.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} x^n \sin(1/n)$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(\sin x)^n}{n}$$

(e)
$$\sum_{n=1}^{\infty} (1 - \cos(x/n))$$

3. Verify that the series

$$1 - \frac{1}{2 \cdot 3} + \frac{1}{2} - \frac{1}{3 \cdot 4} + \frac{1}{2^2} - \frac{1}{4 \cdot 5} + \frac{1}{2^3} - \dots - \frac{1}{n(n+1)} + \frac{1}{2^{n-1}} - \dots$$

is converging and compute its sum.

4. Determine the behaviour of the series

$$1 - \frac{1}{3} + 1 - \frac{1}{9} + 1 - \frac{1}{27} + \dots + 1 - \frac{1}{3^n} + 1 - \dots$$

5. Determine, with respect to the parameter α , $\alpha > 0$, whether the following series converges

$$1 + \frac{1}{1+\alpha} + \frac{1}{(1+\alpha)(1+2\alpha)} + \ldots + \frac{1}{(1+\alpha)(1+2\alpha)\cdot\ldots\cdot(1+n\alpha)} + \ldots$$

6. Determine, with respect to the parameter $\alpha, \, \alpha > 0$, the behaviour of the series

$$\sum_{n=1}^{\infty} \left(\sqrt{1 + \frac{1}{n^{\alpha}}} - 1 \right).$$

7. Prove that, for any $a \neq 0, -1, -2, -3, \ldots$, we have

$$\sum_{n=0}^{\infty} \frac{1}{(a+n)(a+n+1)} = \frac{1}{a}.$$

8. Determine for which values of α , $0 < \alpha < \pi/2$, the following series converges

$$\sum_{n=0}^{\infty} 2^n (\sin \alpha)^{2n}.$$

When it is convergent, compute its sum.

Determine if the following series converge, specifying if the convergence is absolute or not

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)}$$
; b) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n+1}-1}{n}$; c) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{n}\right)^{\log n}$.

10. Determine the behaviour of the following series. Determine also if the series is absolutely converging or not.

a)
$$\sum_{n=0}^{+\infty} \frac{n^3 + \sin(n^2)}{2n^3 + 3}$$
; b) $\sum_{n=1}^{+\infty} \frac{\sin(n^2)}{n^2}$; c) $\sum_{n=1}^{+\infty} \cos(n\pi) \sin(n - \sqrt{n^2 - 1})$

- 11. Determine whether the following sets are open, closed or not open and not closed. Determine their interior, closure, boundary, set of accumulation points and set of isolated points.
 - (a) $A = (-5,7) \setminus \{0,4\}$
 - (b) $A = (\mathbb{Z} \cap [5,7]) \cup \{x \in \mathbb{R} : x^2 7x + 6 > 0\}$
 - (c) $A = \{2n : n \in \mathbb{N}\}$
 - (d) $A = \{x \in \mathbb{R} : \sqrt{x^2 + 1} > x + 3\}$
 - (e) $A = \{x \in \mathbb{R} : \exp(3x^2 4) > 1/e\}$
 - (f) $A = \{x \in \mathbb{R} : x^{11} 3x^{10} + 5x^9 7x^4 + 3x^2 + 2 = 0\}$
 - (g) $A = \{x \in \mathbb{R} : x^2 2x 1 \ge 0\}$ and $B = \{x \in \mathbb{Q} : x^2 2x 1 \ge 0\}$
 - (h) $A = \{x = t^3 + 5 : t \in \mathbb{R} \cap [0, 2]\}$ and $B = \{x = q^3 + 5 : q \in \mathbb{Q} \cap [0, 2]\}$

(i)
$$A = \bigcup_{n=1}^{\infty} \left(1 - \frac{1}{n}, 3n \right); \quad B = \bigcap_{n=1}^{\infty} \left(1 - \frac{1}{n}, 3n \right)$$

(j)
$$A = \bigcup_{n=1}^{\infty} \left(\frac{1}{2n+1}, \frac{1}{2n} \right]; \quad B = \bigcap_{n=1}^{\infty} \left(\frac{1}{2n+1}, \frac{1}{2n} \right]$$

$$\begin{array}{ll} \text{(k)} & A = \bigcup\limits_{n=1}^{\infty} \left[\frac{1}{n}, 5 + \frac{1}{n} \right]; \quad B = \bigcap\limits_{n=1}^{\infty} \left[\frac{1}{n}, 5 + \frac{1}{n} \right] \\ \text{(l)} & A = \bigcap\limits_{n \in \mathbb{N}} [n, n^2]; \quad B = \bigcap\limits_{n \in \mathbb{N}} [1/n^2, 1/n] \\ \end{array}$$

(1)
$$A = \bigcap_{n \in \mathbb{N}} [n, n^2]; \quad B = \bigcap_{n \in \mathbb{N}} [1/n^2, 1/n]$$

12. Let A be a subset of \mathbb{R} . Assume that $\sup A$ is finite. Prove that $\sup A$ belongs to \overline{A} and to ∂A .

Hint: the exercise is not easy, try to use the characterizations with se-

13. Let A be a subset of \mathbb{R} . Let $B = \{x : x \text{ is an accumulation point of } A\}$ and $C = \{x : x \text{ is an isolated point of } A\}$. Prove that $B \cap C = \emptyset$ and

$$+\infty$$
, diverging to $-\infty$ or indeterminate). Determine also if the series is absolutely converging or not.

Take into account that $\lim_n \arctan(x_n) = \pi/2$ for any sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $x_n \to +\infty$.

(b)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^4 + 1}}$$
(c)
$$\sum_{n=1}^{\infty} \frac{n \arctan n}{\sqrt{n^6 + 1}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n \arctan n}{\sqrt{n^6 + 1}}$$
(d)
$$\sum_{n=3}^{\infty} \left(\frac{1}{n^3} - \frac{1}{n^2}\right)$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!}$$

(f) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n^3+1)}}$

(g)
$$\sum_{k=5}^{\infty} \frac{1-2k}{2^{k/2}}$$
(h)
$$\sum_{k=1}^{\infty} \frac{1}{n^{3+(-1)^n}}$$

(i)
$$\sum_{n=2}^{\infty} n^{-n/2}$$

(j)
$$\sum_{k=1}^{\infty} \frac{2 + (-1)^k}{k^2}$$

(k)
$$\sum_{k=3}^{\infty} (-1)^k \frac{\sqrt{k+1} - \sqrt{k}}{k}$$

(1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n + \sqrt{n}}$$

(m)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

(n)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

(m)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

(m)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

(m)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$
m)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

n)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$
m)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

$$\frac{1}{n+\sqrt{n}}$$

$$\cos(n^2) + \sqrt{n}$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n + \sqrt{n}}$$

$$\frac{1}{n+\sqrt{n}}$$

$$n \frac{1}{n + \sqrt{n}}$$

$$\frac{1}{1+\sqrt{n}}$$

$$\frac{1}{\sqrt{n}}$$

$$\frac{1}{+\sqrt{n}}$$

$$\frac{N+1}{\sqrt{(N+1)^{\frac{1}{2}+1}}} = \frac{\sqrt{N+1}}{N} \qquad \frac{N(1+\frac{1}{2})\sqrt{N+(1+\frac{1}{2})}}{\sqrt{N+(1+\frac{1}{2})}\sqrt{N+(1+\frac{1}{2})}}$$

$$=\frac{N^2}{N^2}=1$$

$$\int_{N=3}^{\infty} \left(\frac{1}{n^3} - \frac{1}{n^2} \right)$$

$$\frac{1+0+0}{N} = 0 \quad \text{lc1}$$

$$\frac{1}{N} = \frac{1}{N} = 0 \quad \text{lc1}$$

$$\begin{cases}
\frac{8}{2} & \frac{1-2k}{2^{n/2}} & \sim \frac{1}{2^{n/2}} = 0
\end{cases}$$

$$\begin{cases} \sum_{N=1}^{\infty} \frac{1}{\sqrt{3} + (-1)^d} \end{cases}$$

$$N^{-\frac{N}{2}\cdot\frac{1}{N}} = N^{-\frac{N}{2}} = \frac{1}{1}$$

$$\frac{K+1-K}{K\sqrt{K+1}+K\sqrt{K}} \sim \frac{1}{K(\sqrt{K+1}+\sqrt{K})}$$

(f)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n^3+1)}}$$

(g)
$$\sum_{k=5}^{\infty} \frac{1-2k}{2^{k/2}}$$

(h)
$$\sum_{n=1}^{\infty} \frac{1}{n^{3+(-1)^n}}$$

$$(i) \sum_{n=2}^{\infty} n^{-n/2}$$

(j)
$$\sum_{k=1}^{\infty} \frac{2 + (-1)^k}{k^2}$$

(k)
$$\sum_{k=3}^{\infty} (-1)^k \frac{\sqrt{k+1} - \sqrt{k}}{k}$$
(l)
$$\sum_{k=1}^{\infty} (-1)^n \frac{1}{n+\sqrt{n}}$$

(m)
$$\sum_{n=1}^{\infty} \frac{1}{n} (\cos(n^2) + \sqrt{n})$$

The Property (3

$$\frac{\mathcal{E}}{N=2} \frac{N^2-1}{N^4 \cos(N)} \sim \frac{1}{N^2} \int_{N^2}^{1/2} \int_{N^2}^{N^2} \int_{N^2}^{N^2$$

(n)
$$\sum_{n=3}^{\infty} \frac{\arctan n}{n\sqrt{n-1}}$$

Solves re

(o)
$$\sum_{n=0}^{\infty} 3^{-\sqrt{n}}$$

N)
$$\frac{ARGTANN}{N V N-1} = \frac{11/2}{N V N-1} = \frac{\pi}{2N V N-1}$$

O) $\frac{2}{3} - VN = \frac{1}{3} - VN = \frac{1}{3} - \frac{1}{2} = \frac{1}{3} - \frac{1}{3} = 0$

CONVERGE

0)
$$\frac{2}{8} 3^{-\sqrt{N}} = 3^{-\sqrt{N}} \cdot \frac{1}{N} = 3^{-\frac{1}{N}} \cdot \frac{1}{N} = \left(\frac{1}{3}\right)^{\frac{N}{N}}$$

10. Determine the behaviour of the following series. Determine also if th series is absolutely converging or not.

a)
$$\sum_{n=0}^{+\infty} \frac{n^3 + \sin(n^2)}{2n^3 + 3}$$
; b) $\sum_{n=1}^{+\infty} \frac{\sin(n^2)}{n^2}$; c) $\sum_{n=1}^{+\infty} \cos(n\pi) \sin(n - \sqrt{n^2 - 1})$

(2)
$$\sum_{N=0}^{400} \frac{N^3 + 514(N^2)}{2N^3 + 3}$$

$$\frac{\omega_{N+1}}{\omega_{N}} = \frac{(N+1)^{3} + 5 \ln((N+1)^{2})}{2(N+1)^{3} + 3} \cdot \frac{2N^{3} + 3}{N^{3} + 5 \ln(N^{2})}$$

$$\frac{n^{3}+1+3n^{2}+3n+5m(\mu t)^{2}}{2n^{3}+2+6n^{2}+6n+3}$$

$$\frac{2n^{3}+2+6n^{2}+6n+3}{n^{3}+5m(n^{2})}$$

