Отчёт по лабораторной работе 1

Установка и конфигурация операционной системы на виртуальную машину

Аристова Арина Олеговна

Содержание

Сп	Список литературы			
4	4 Выводы		20	
		пшнее задание		
		ание виртуальной машины		
3		ие лабораторной работы	7	
2	Задание		6	
1 Цель работы			5	

Список иллюстраций

3.1	Задание имени и типа ос виртуальной машины	7
3.2	Настройка размера памяти ВМ	8
3.3	Задание размера виртуального жесткого диска	8
3.4	Итог создания виртуальной машины	9
3.5	Подключение образа ос	10
3.6	Задание имени и типа ос виртуальной машины	11
3.7	Задание окружения	11
3.8	Отключение KDUMP	12
3.9	Настройки сетевого соединения	13
3.10	Задание пароля root	14
	Создание пользователя	14
3.12	Запуск установки	15
3.13	Использование команды dmesg	16
3.14	Пробую использовать поиск	17
	Получаю информацию о версии ядра Linux	17
3.16	Получаю информацию о частоте процессора установки	17
3.17	Получаю информацию о модели процессора	18
3.18	Получаю информацию о объеме доступной оперативной памяти.	18
3.19	Получаю информацию о типе обнаруженного гипервизора	18
3.20	Получаю информацию о типе файловой системы корневого раздела	19
3.21	Получаю информацию о последовательности монтирования фай-	
	ловых систем	19

Список таблиц

1 Цель работы

Приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

Установить на виртуальную машину операционную систему Linux Rocky, произвести ее минимальную настройку.

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

Создаю новую виртуальную машину, задаю ей имя и тип операционной системы — Linux, RedHat:

Рис. 3.1: Задание имени и типа ос виртуальной машины

Настраиваю размер основной памяти виртуальной машины — 2048 МБ:

Рис. 3.2: Настройка размера памяти ВМ

Задаю размер виртуального жесткого диска: пока 20 ГБ, в случае необходимости увеличим.

Рис. 3.3: Задание размера виртуального жесткого диска

А затем мы можем посмотреть всю общую информацию о произведенных настройках:

Рис. 3.4: Итог создания виртуальной машины

Далее подключаю образ операционной системы, который я заранее скачала с официального сайта Linux Rocky:

Рис. 3.5: Подключение образа ос

3.2 Настройка виртуальной машины

Запускаю виртуальную машину и выполняю необходимые настройки. Выбираю язык: English.

Рис. 3.6: Задание имени и типа ос виртуальной машины

Затем я проверяю дату и часовой пояс, настраиваю раскладку клавиатуры, далее в разделе выбора программ указываю в качестве базового окружения **Server** with **GUI**, а в качестве дополнения — **Development Tools**.

Рис. 3.7: Задание окружения

Отключаю KDUMP:

Рис. 3.8: Отключение КDUMP

Место установки ОС оставляю без изменения. Включаю сетевое соединение и в качестве имени узла указываю aoaristova.localdomain.

Рис. 3.9: Настройки сетевого соединения

Задаю пароль root:

Рис. 3.10: Задание пароля root

Создаю пользователя:

Рис. 3.11: Создание пользователя

И запускаю установку:

Рис. 3.12: Запуск установки

B VirtualBox оптический диск отключился автоматическ.

3.3 Домашнее задание

Чтобы проанализировать последовательность загрузки системы, выполняю команду dmesg, также это можно сделать с помощью dmesgless

```
a
 ⅎ
                              aoaristova@aoaristova:~
[aoaristova@aoaristova ~]$ dmesg
     0.000000] Linux version 5.14.0-427.13.1.el9_4.x86_64 (mockbuild@
uild001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20231218 (Red Hat
NU ld version 2.35.2-43.el9) #1 SMP PREEMPT_DYNAMIC Wed May 1 19:11:2
     0.000000] The list of certified hardware and cloud instances for
Linux 9 can be viewed at the Red Hat Ecosystem Catalog, https://cata
com.
     0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-4
_4.x86_64 root=/dev/mapper/rl_aoaristova-root ro resume=/dev/mapper/r
a-swap rd.lvm.lv=rl_aoaristova/root rd.lvm.lv=rl_aoaristova/swap rhgt
     0.000000] [Firmware Bug]: TSC doesn't count with P0 frequency!
    0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating
sters'
    0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE register
     0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX register
     0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
     0.000000] x86/fpu: Enabled xstate features 0x7, context size is
using 'standard' format.
    0.000000] signal: max sigframe size: 1776
     0.000000] BIOS-provided physical RAM map:
     0.000000] BIOS-e820: [mem 0x00000000000000-0x00000000009fbff
     0.000000] BIOS-e820: [mem 0x00000000009fc00-0x00000000009ffff
     0.000000] BIOS-e820: [mem 0x0000000000f0000-0x0000000000fffff
     0.000000] BIOS-e820: [mem 0x000000000100000-0x000000007ffeffff
```

Рис. 3.13: Использование команды dmesg

Затем я использую поиск для этого вывода: dmesg|grep-i", ":

```
ⅎ
                                  aoaristova@aoaristova:~
                                                                             Q
                                                                                   \equiv
[aoaristova@aoaristova ~]$ dmesg | grep -i "inp"
      0.439556] input: Power Button as /devices/LNXSYSTM:00/LNXPWRBN:00/input/ir
ut0
      0.439684] input: Sleep Button as /devices/LNXSYSTM:00/LNXSLPBN:00/input/in
ut1
     0.503052] input: AT Translated Set 2 keyboard as /devices/platform/i8042/se
rio0/input/input2
     0.711080] input: ImExPS/2 Generic Explorer Mouse as /devices/platform/i8042
/serio1/input/input4
[ 1.022203] input: VirtualBox USB Tablet as /devices/pci0000:00/0000:00:06.0/
usb1/1-1/1-1:1.0/0003:80EE:0021.0001/input/input5
     1.022290] hid-generic 0003:80EE:0021.0001: input,hidraw0: USB HID v1.10 Mou
   [VirtualBox USB Tablet] on usb-0000:00:06.0-1/input0
[ 2.062130] input: Video Bus as /devices/LNXSYSTM:00/LNXSYBUS:00/PNP0A03:00/LNXVIDEO:00/input/input6
     5.310048] input: PC Speaker as /devices/platform/pcspkr/input/input7
    11.505322] rfkill: input handler disabled
54.632024] rfkill: input handler enabled
58.243370] rfkill: input handler disabled
[aoaristova@aoaristova ~]$
```

Рис. 3.14: Пробую использовать поиск

Получаю информацию о:

1. Версии ядра Linux (Linux version).

```
[aoaristova@aoaristova ~]$ dmesg | grep -i "Linux version"
[    0.000000] Linux version 5.14.0-427.13.1.el9_4.x86_64 (mockbuild@iad1-prod-b
uild001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3), G
NU ld version 2.35.2-43.el9) #1 SMP PREEMPT_DYNAMIC Wed May 1 19:11:28 UTC 2024
[aoaristova@aoaristova ~]$
```

Рис. 3.15: Получаю информацию о версии ядра Linux

2. Частоте процессора (Detected Mhz processor).

```
[aoaristova@aoaristova ~]$ dmesg | grep -i "Detected Mhz processor"
[aoaristova@aoaristova ~]$ dmesg | grep -i "processor"
[ 0.000007] tsc: Detected 2994.368 MHz processor
```

Рис. 3.16: Получаю информацию о частоте процессора установки

3. Модели процессора (CPU0).

Рис. 3.17: Получаю информацию о модели процессора

4. Объеме доступной оперативной памяти (Memory available).

```
aoaristova@aoaristova ~]$ dmesg | grep -i "Memory available"
aoaristova@aoaristova ~]$ dmesg | grep -i "Memory"
     0.001493] ACPI: Reserving FACP table memory at [mem 0x7fff00f0-0x7fff01e3]
0.001494] ACPI: Reserving DSDT table memory at [mem 0x7fff0610-0x7fff2962]
0.001495] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f]
     0.001496] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f] 0.001496] ACPI: Reserving APIC table memory at [mem 0x7fff0240-0x7fff0293] 0.001497] ACPI: Reserving SSDT table memory at [mem 0x7fff02a0-0x7fff060b]
     0.001497] ACPI: Reserving SSDT table memory
      0.002057] Early memory node ranges
      0.005228] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000
      0.005230] PM: hibernation: Registered nosave mem
                                                                         ory: [mem 0x0009f000-0x0009
      0.005231] PM: hibernation: Registered nosave me
                                                                           ry: [mem 0x000a0000-0x000e
      0.005231] PM: hibernation: Registered nosave memory: [mem 0x000f0000-0x000f
      0.014950] Hemory: 260860K/2096696K available (16384K kernel code, 5626K rwd
ata, 11748K rodata, 3892K init, 5956K bss, 145300K reserved, 0K cma-reserved)
      0.066861] Freeing SMP alternatives me
     0.186072] x86/mm: Memory block size: 128MB
0.443326] Non-volatile memory driver v1.3
                                      memory driver v1.3
```

Рис. 3.18: Получаю информацию о объеме доступной оперативной памяти

5. Типе обнаруженного гипервизора (Hypervisor detected).

```
[aoaristova@aoaristova ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[aoaristova@aoaristova ~]$
```

Рис. 3.19: Получаю информацию о типе обнаруженного гипервизора

6. Типе файловой системы корневого раздела

```
[aoaristova@aoaristova ~]$ dmesg | grep -i "root"
     0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-427.13.1.el9
0.010339] Kernel command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-427.1
3.1.el9_4.x86_64 root=/dev/mapper/rl_aoaristova-root ro resume=/dev/mapper/rl_aoaristova-swap rd.lvm.lv=rl_aoaristova/root rd.lvm.lv=rl_aoaristova/swap rhgb qui
et
      0.222511] ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-ff])
     0.223902] pci_bus 0000:00: root bus resource [io 0x0000-0x0cf7 window] 0.223905] pci_bus 0000:00: root bus resource [io 0x0d00-0xffff window]
      0.223906] pci_bus 0000:00: root bus resource [mem 0x000a0000-0x000bffff win
dowl
      0.223908] pci_bus 0000:00: root bus resource [mem 0x80000000-0xfdffffff win
dow]
     0.223910] pci_bus 0000:00: root bus resource [bus 00-ff] 0.297481] Trying to unpack rootfs image as initramfs...
     4.217059] systemd[1]: initrd-switch-root.service: Deactivated successfully.
     4.217200] systemd[1]: Stopped Switch
     4.220913] systemd[1]: Stopped target Switch Root.
4.220993] systemd[1]: Stopped target Initrd Root File System.
     4.316418] systemd[1]: plymouth-switch-root.service: Deactivated successfull
     4.316694] systemd[1]: Stopped Plymouth switch root service.
     4.316894] \ \ systemd[1]: \ \ systemd-fsck-{\color{red}root}. service: \ Deactivated \ \ successfully.
     4.316938] systemd[1]: Stopped File System Check on Root Device.
     4.362709] systemd[1]: Starting Remount Root and Kernel File Systems...
     4.362887] systemd[1]: Repartition Root Disk was skipped because no trigger
condition checks were met.
[aoaristova@aoaristova ~]$
```

Рис. 3.20: Получаю информацию о типе файловой системы корневого раздела

7. Последовательность монтирования файловых систем.

```
[aoaristova@aoaristova ~]$ dmesg | grep -i "file system"
[    1.402466] systemd[1]: Reached target Initrd /usr File System.
[    4.220741] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[    4.220956] systemd[1]: Stopped target Initrd File Systems.
[    4.220993] systemd[1]: Stopped target Initrd Root File System.
[    4.221192] systemd[1]: Reached target Remote File Systems.
[    4.240350] systemd[1]: Mounting Huge Pages File System...
[    4.244065] systemd[1]: Mounting POSIX Message Queue File System...
[    4.253137] systemd[1]: Mounting Kernel Debug File System...
[    4.260321] systemd[1]: Mounting Kernel Trace File System...
[    4.316938] systemd[1]: Stopped File System Check on Root Device.
[    4.362709] systemd[1]: Starting Remount Root and Kernel File Systems...
[aoaristova@aoaristova ~]$
```

Рис. 3.21: Получаю информацию о последовательности монтирования файловых систем

4 Выводы

По результатам работы мною были закреплены практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов, а также в рамках выполнения домашнего задания вспомнила и закрепила на практике использование команды dmesg.

Список литературы

• Описание лабораторной работы