Modulation Instability in Semiconductor Quantum Dots

Y-type Excitation Scheme: Interpretation of Plots and Experimental **Implications**

Shaon Samanta

Department of Physics

April 18, 2025

Overview

- Motivation: Understanding Modulation Instability (MI) in SQDs.
- Tools: Density matrix formalism, Maxwell-Bloch, NLSE.
- Focus: Interpretation of numerical plots & physical insights.

Y-type Excitation Scheme in SQDs

• We take Y-type 4-level excitation scheme.

Absorption Spectra: $\Omega_c \& \Omega_d$

Dispersion Spectra: $\Omega_c \& \Omega_d$

- Ω_c controls slope & zero-crossings.
- Enables slow/fast light applications.

Kerr Nonlinearity: $Re[\chi^{(3)}]$

- Strong Ω_c & Ω_d amplify Kerr response.
- Enhanced four-wave mixing & optical switching.

Modulation Instability Gain

- Peak gain shifts & increases with CW power.
- Symmetric sidebands from four-wave mixing.

MI Gain

- MI threshold: $P_0 \gtrsim 5 \text{ mW}$.
- Fourth-order dispersion broadens bandwidth.

Conclusion & Applications

- Strong nonlinearities allow tunable MI gain.
- Control via Rabi frequencies & detunings.
- Applications: quantum communication, slow light, optical logic.