A.4 Useful Results in Matrix Algebra

Eigenvalues, Eigenvectors, and Diagonalization of Matrices

Introduction to Matrix Algebra

- For an n × n square matrix A, an eigenvalue α and eigenvector v satisfy $A \cdot v = \alpha \cdot v$.
- ullet Eigenvalues and eigenvectors simplify the matrix $oldsymbol{A}$ for solving linear systems.
- Key question: Can we find a scalar α and corresponding non-zero vector v such that

$$(A - \alpha I) \cdot v = 0$$
 ?

Introduction to Eigenvalues and Eigenvectors

• Given an n x n matrix A, eigenvalues α and eigenvectors v satisfy the equation

$$(A - \alpha I) \cdot v = 0$$

• For a non-trivial solution ($v \neq 0$), we must have:

$$\det(A - \alpha I) = 0$$

 This is the characteristic equation, leading to the eigenvalues. Importance: Eigenvalues and eigenvectors are crucial in understanding the properties of matrices, especially in transformations and stability analysis.

Characteristic Equation

• The determinant equation $\det(A - \alpha I) = 0$ is a polynomial of degree n in α .

• The roots α_1 , α_2 , ..., α_n are the eigenvalues.

 Example Calculation: Show an example calculation of eigenvalues using a simple 2 x 2 matrix.

Eigenvectors

• For each eigenvalue α_i , the eigenvector v_i satisfies A $v_i = v_i \alpha_i$.

 These eigenvectors can be arranged into a matrix V, and A V = V D, where D is a diagonal matrix of eigenvalues. Example:

For a matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$, the characteristic equation is:

$$\det(A - \alpha I) = \det\left(\begin{bmatrix} 4 - \alpha & 2 \\ 1 & 3 - \alpha \end{bmatrix}\right)$$
$$= (4-\alpha)(3-\alpha) - 2 = \alpha^2 - 7\alpha + 10 = 0$$

The eigenvalues are the solutions to this polynomial: $\alpha_1 = 2$, $\alpha_2 = 5$.

Finding Eigenvectors

- Once eigenvalues are found, we can find the corresponding eigenvectors by solving:
- $(A \alpha_i I) \cdot \nu_i = 0$ for each eigenvalue α_i .
- Example (continued):
- - For $\alpha_1 = 2$:
- $(A-2I)\cdot\nu_1=\begin{bmatrix}2&2\\1&1\end{bmatrix}\cdot\nu_1=0$
- The solution gives v_1 = [-1; 1]. eigenvectors
- Repeat for α_2 = 5 to find ν_2 = [2; 1]

Matrix Diagonalization

• If $det(V) \neq 0$, the matrix A can be diagonalized as $V^{-1} A V = D$.

 This is useful in simplifying the solution of systems of linear differential equations.

Example: A matrix A is diagonalized.

Matrix Diagonalization

• Construct matrix V from the eigenvectors as columns: $V = [v_1 \ v_2].$

The diagonal matrix D has the eigenvalues on the diagonal:

$$D = \begin{bmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{bmatrix}.$$

The matrix A can be diagonalized as: A = V D V⁻¹.

Diagonalizing the matrix
$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

$$V = \begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$$
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$$

Verify $V^{-1} A V = D$.

Applications and Implications

- Diagonalization simplifies the process of solving linear systems, especially in differential equations.
- Eigenvalues indicate stability in systems dynamics:
- Positive eigenvalues may indicate growth or instability.
 - Negative eigenvalues indicate decay or stability.
- Diagonalization is widely used in areas such as physics, engineering, economics, and more.

Example Calculation

Given Matrix:

$$A = \begin{bmatrix} 0.06 & -1 \\ -0.004 & 0 \end{bmatrix}$$

- Calculation Steps:
- 1. Find eigenvalues α_1 and α_2 .
- 2. Find the corresponding eigenvectors.
- 3. Show how A is diagonalized using these vectors.

Concluding Remarks

- The importance of eigenvalues and eigenvectors in matrix algebra.
- Application in solving differential equations.