H^p spaces

A Study of H^p spaces and Inner Outer Factorization of functions in H^p spaces

by Ashish Kujur (MSC21304, Indian Institute of Science Education and Research, Thiruvananthapuram) on 14th May, 2023

Notations

 $\mathop{\rm Notations}_{\circ \bullet}$

Notation and Conventions

Notations ○•

» Notation and Conventions

- * (Open Unit Disc) $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}.$
- * (Unit Circle) $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$

Notations

» Notation and Conventions

- * (Open Unit Disc) $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}.$
- * (Unit Circle) $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$
- * $\mathbb T$ has the normalised Lebesgue measure $\frac{dt}{2\pi}$ unless specified otherwise.
- * $\mathcal{M}(\mathbb{T})$: Banach space of complex measures on \mathbb{T} with the total variation norm.

Notations

» Notation and Conventions

- * (Open Unit Disc) $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- * (Unit Circle) $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$
- * \mathbb{T} has the normalised Lebesgue measure $\frac{dt}{2\pi}$ unless specified otherwise.
- * $\mathcal{M}(\mathbb{T})$: Banach space of complex measures on \mathbb{T} with the total variation norm.
- * nth Fourier coefficient of $f \in \mathcal{L}^1(\mathbb{T})$ and $\mu \in \mathcal{M}(\mathbb{T})$, $n \in \mathbb{Z}$:

$$\hat{f}(n) := rac{1}{2\pi} \int_{-\pi}^{\pi} fig(e^{it}ig) e^{-int} dt.$$

$$\hat{\mu}\left(\mathbf{n}
ight) := \int_{\mathbb{T}} e^{-i\mathbf{n}t} d\mu \left(e^{it}\right).$$

 $* H(\mathbb{D}) = \{f : \mathbb{D} \to \mathbb{C} : f \text{ is holomorphic on } \mathbb{D}\}$ $h(\mathbb{D}) = \{f \colon \mathbb{D} \to \mathbb{C} : f \text{ is harmonic in } \mathbb{D}\}.$

Hardy Spaces

 H^1 is nice!

The Factorization

References

» Hardy Spaces on $\mathbb D$

(F. Riesz (1923))

(F. Riesz (1923))

Let $1 \leq p \leq \infty$ and $f \in H(\mathbb{D})$.

For $0 \le r < 1$, define $f_r : \mathbb{T} \to \mathbb{C}$, $f_r(e^{i\theta}) = f(re^{i\theta})$ for each $e^{i\theta} \in \mathbb{T}$.

(F. Riesz (1923))

Let $1 \leq p \leq \infty$ and $f \in H(\mathbb{D})$.

For $0 \le r < 1$, define $f_r : \mathbb{T} \to \mathbb{C}$, $f_r\left(e^{i\theta}\right) = f\left(re^{i\theta}\right)$ for each $e^{i\theta} \in \mathbb{T}$.

Define $H^{p}(\mathbb{D})$, Hardy class of analytic functions, by

$$H^{p}\left(\mathbb{D}
ight)=\left\{ f\!\in H\!\left(\mathbb{D}
ight):\left\{ \left\Vert f_{r}
ight\Vert _{L^{p}\left(\mathbb{T}
ight)}
ight\} _{0\leq r<1}
ight.$$
 is bounded $ight\}$

(F. Riesz (1923))

Let $1 \leq p \leq \infty$ and $f \in H(\mathbb{D})$.

For $0 \leq r < 1$, define $f_r : \mathbb{T} \to \mathbb{C}$, $f_r\left(e^{i\theta}\right) = f\left(re^{i\theta}\right)$ for each $e^{i\theta} \in \mathbb{T}$.

Define $H^p(\mathbb{D})$, Hardy class of analytic functions, by

$$H^{p}\left(\mathbb{D}
ight)=\left\{ f\!\in H\!\left(\mathbb{D}
ight):\left\{ \left\Vert f_{r}\right\Vert _{L^{p}\left(\mathbb{T}
ight)}
ight\} _{0\leq r<1}\text{ is bounded}
ight\}$$

Theorem ([Har15])

If $f \in H^p(\mathbb{D})$ then $||f_{r_1}||_{L^p(\mathbb{T})} \le ||f_{r_2}||_{L^p(\mathbb{T})}$ for $0 < r_1 < r_2 < 1$.

(F. Riesz (1923))

Let $1 \leq p \leq \infty$ and $f \in H(\mathbb{D})$.

For
$$0 \leq r < 1$$
, define $f_r : \mathbb{T} \to \mathbb{C}$, $f_r\left(e^{i\theta}\right) = f\left(re^{i\theta}\right)$ for each $e^{i\theta} \in \mathbb{T}$.

Define $H^p(\mathbb{D})$, Hardy class of analytic functions, by

$$H^{p}\left(\mathbb{D}
ight)=\left\{ f\!\in H\!\left(\mathbb{D}
ight):\left\{ \left\Vert f_{r}\right\Vert _{L^{p}\left(\mathbb{T}
ight)}
ight\} _{0\leq r<1}\ ext{ is bounded}
ight\}$$

Theorem ([Har15])

If
$$f \in H^p(\mathbb{D})$$
 then $\|f_{r_1}\|_{L^p(\mathbb{T})} \leq \|f_{r_2}\|_{L^p(\mathbb{T})}$ for $0 < r_1 \leq r_2 < 1$.

Theorem

For $1 \leq p \leq \infty$, $H^{p}(\mathbb{D})$ is a Banach space with the norm

$$||f||_{H^p(\mathbb{D})} := \sup_{r \to 1} ||f_r||_{L^p(\mathbb{T})} = \lim_{r \to 1} ||f_r||_{L^p(\mathbb{T})}$$

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt/2\pi)$. Define $H^p(\mathbb{T}) = \left\{ f \in L^p(\mathbb{T}) : \hat{f}(n) = 0 \text{ for each } n < 0 \right\}$. $H^p(\mathbb{T})$ is a Banach space.

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt/2\pi)$. Define $H^p(\mathbb{T}) = \left\{ f \in L^p(\mathbb{T}) : \hat{f}(n) = 0 \text{ for each } n < 0 \right\}$. $H^p(\mathbb{T})$ is a Banach space. Define $\mathcal{M}_a(\mathbb{T}) = \{ \mu \in \mathcal{M}(\mathbb{T}) : \hat{\mu}(n) = 0 \text{ for each } n < 0 \}$. $\mathcal{M}_a(\mathbb{T})$ is a Banach space.

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T},\mathcal{B}\left(\mathbb{T}\right),dt/2\pi)$. Define $H^p\left(\mathbb{T}\right) = \left\{f \in L^p\left(\mathbb{T}\right): \hat{f}(n) = 0 \text{ for each } n < 0\right\}$. $H^p\left(\mathbb{T}\right)$ is a Banach space. Define $\mathcal{M}_a\left(\mathbb{T}\right) = \left\{\mu \in \mathcal{M}\left(\mathbb{T}\right): \hat{\mu}\left(n\right) = 0 \text{ for each } n < 0\right\}$. $\mathcal{M}_a\left(\mathbb{T}\right)$ is a Banach space.

Question

 $H^{p}(\mathbb{D})$, $H^{p}(\mathbb{T})$ are Banach Spaces. Are they related?

Let $1 \leq p \leq \infty$. Consider the measure space $(\mathbb{T},\mathcal{B}\left(\mathbb{T}\right),dt/2\pi)$. Define $H^p\left(\mathbb{T}\right) = \left\{f \in L^p\left(\mathbb{T}\right): \hat{f}(n) = 0 \text{ for each } n < 0\right\}$. $H^p\left(\mathbb{T}\right)$ is a Banach space. Define $\mathcal{M}_a\left(\mathbb{T}\right) = \left\{\mu \in \mathcal{M}\left(\mathbb{T}\right): \hat{\mu}\left(n\right) = 0 \text{ for each } n < 0\right\}$. $\mathcal{M}_a\left(\mathbb{T}\right)$ is a Banach space.

Question

 $H^{p}(\mathbb{D})$, $H^{p}(\mathbb{T})$ are Banach Spaces. Are they related?

» Poisson Kernel

Definition (Poisson Kernel)

For each $r \in [0,1)$, we define $P_r : \mathbb{T} \to \mathbb{R}$ by

$$P_r\left(e^{it}\right) = \frac{1 - r^2}{1 + r^2 - 2r\cos t}$$

Poisson Kernel

Definition (Poisson Kernel)

$$P_r\left(e^{it}\right) = \frac{1 - r^2}{1 + r^2 - 2r\cos t}$$

Recall the Dirichlet problem on the disk: Given $f: \mathbb{T} \to \mathbb{C}$. Does there exist a continuous function $u: \overline{\mathbb{D}} \to \mathbb{C}$ such that $u \mid_{\mathbb{D}}$ is harmonic and $u \mid_{\mathbb{T}} = f$?

Definition (Poisson Kernel)

For each $r \in [0,1)$, we define $P_r : \mathbb{T} \to \mathbb{R}$ by

$$P_r\left(e^{it}\right) = \frac{1 - r^2}{1 + r^2 - 2r\cos t}$$

- * Recall the Dirichlet problem on the disk: Given $f: \mathbb{T} \to \mathbb{C}$. Does there exist a continuous function $u: \overline{\mathbb{D}} \to \mathbb{C}$ such that $u \mid_{\mathbb{D}}$ is harmonic and $u \mid_{\mathbb{T}} = f$?
- * The solution to the Dirichlet problem on the $\mathbb D$ is:

$$u\left(re^{i\theta}\right) = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r\left(e^{i(\theta-t)}\right) f\left(e^{it}\right) dt & re^{i\theta} \in \mathbb{D} \\ f\left(e^{i\theta}\right) & e^{i\theta} \in \mathbb{T} \end{cases}$$

> Poisson Integral

> Poisson Integral

» Poisson Integral

Definition (Poisson Integral)

Let $\mu \in \mathcal{M}(\mathbb{T})$ and $f \in L^1(\mathbb{T})$. Then Poisson integral of μ , denoted by $P[\mu] : \mathbb{D} \to \mathbb{C}$ is given by

$$P\left[\mu
ight]\left(re^{i heta}
ight)=\int_{\mathbb{T}}P_{r}\left(e^{i(heta-t)}
ight)d\mu\left(e^{it}
ight)$$

and Poisson integral of f, denoted by $P[f]: \mathbb{D} \to \mathbb{C}$ is given by

$$P[f]\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r\left(e^{i(\theta-t)}\right) f\left(e^{i\theta}\right) dt$$

» Fatou's theorem (1906)

Corollary ([Fat06])

Let $\mu \in \mathcal{M}(\mathbb{T})$. Then

$$\lim_{r \to 1} P[\mu] \left(r e^{i\theta} \right)$$

exists for almost all $e^{i\theta} \in \mathbb{T}$ and equals "the" Radon Nikodym derivative of the absolutely continuous part of μ with respect to the Lebesgue measure. As a consequence, we have that if $f \in L^1(\mathbb{T})$ then

$$\lim_{r o 1} extstyle P[extstyle f]\left(extstyle re^{i heta}
ight) = f\left(e^{i heta}
ight)$$

for almost all $e^{\mathrm{i} heta}\in\mathbb{T}$.

Let $u: \mathbb{D} \to \mathbb{C}$ be a harmonic function and $1 \le p \le \infty$. Suppose that for all $0 \le r < 1$, we have that

$$\|u_r\|_p < M < +\infty$$

for some M > 0.

Let $u: \mathbb{D} \to \mathbb{C}$ be a harmonic function and $1 \le p \le \infty$. Suppose that for all $0 \le r < 1$, we have that

$$||u_r||_p < M < +\infty$$

for some M > 0. Then for almost every θ the radial limits

$$\tilde{u}(e^{i\theta}) = \lim_{r \to 1} u\left(re^{i\theta}\right)$$

exist and define a function \tilde{u} in $L^{p}(\mathbb{T})$. The following also holds:

Let $u: \mathbb{D} \to \mathbb{C}$ be a harmonic function and $1 \leq p \leq \infty$. Suppose that for all $0 \leq r < 1$, we have that

$$||u_r||_p < M < +\infty$$

for some M > 0. Then for almost every θ the radial limits

$$\tilde{u}(e^{i\theta}) = \lim_{r \to 1} u\left(re^{i\theta}\right)$$

exist and define a function \tilde{u} in $L^{p}(\mathbb{T})$. The following also holds:

1. If
$$p > 1$$
 then $u = P[\tilde{u}]$.

Let $u: \mathbb{D} \to \mathbb{C}$ be a harmonic function and $1 \leq p \leq \infty$. Suppose that for all $0 \leq r < 1$, we have that

$$\|u_r\|_p < M < +\infty$$

for some M > 0. Then for almost every θ the radial limits

$$\tilde{u}(e^{i\theta}) = \lim_{r \to 1} u\left(re^{i\theta}\right)$$

exist and define a function \tilde{u} in $L^{p}(\mathbb{T})$. The following also holds:

- 1. If p > 1 then $u = P[\tilde{u}]$.
- 2. If p=1 then $f=P[\mu]$ for some complex measure μ whose absolutely continuous part is $\frac{1}{2\pi}\tilde{u}dt$.

» Answering the Question

p > 1

For p > 1, consider the map

$$H^{p}(\mathbb{T}) \to H^{p}(\mathbb{D})$$

 $u \mapsto P[u]$

This is an isometric isomorphism.

» Answering the Question

p=1

For p = 1, consider the map

$$\mathcal{M}_{\mathsf{a}}\left(\mathbb{T}\right) o \mathcal{H}^{1}\left(\mathbb{D}\right)$$

$$\mu \mapsto \mathcal{P}\left[\mu\right]$$

This turns out to be a isometric isomorphism.

Answering the Question

p=1

For p=1, consider the map

$$\mathcal{M}_{\mathsf{a}}\left(\mathbb{T}\right) o \mathcal{H}^{1}\left(\mathbb{D}\right)$$
 $\mu \mapsto \mathcal{P}\left[\mu\right]$

This turns out to be a isometric isomorphism.

Theorem (F and M Riesz (1916))

Let $\mu \in \mathcal{M}_a(\mathbb{T})$ then μ is absolutely continuous.

» Answering the Question

p=1

For p = 1, consider the map

$$\mathcal{M}_{\mathsf{a}}\left(\mathbb{T}\right) o \mathcal{H}^{1}\left(\mathbb{D}\right)$$

$$\mu \mapsto \mathcal{P}\left[\mu\right]$$

This turns out to be a isometric isomorphism.

Theorem (F and M Riesz (1916))

Let $\mu \in \mathcal{M}_{\mathsf{a}}(\mathbb{T})$ then μ is absolutely continuous.

$$H^{1}\left(\mathbb{T}\right) \to H^{1}\left(\mathbb{D}\right)$$
 $f \mapsto P[f]$

is again an isometric isomorphism.

 H^1 is nice!

» Szegő's theorem

 H^1

Theorem (Szegő)

Let $f \in H^1(\mathbb{T})$, $f \not\equiv 0$. Then the function $\log |f|$ is integrable and

$$\frac{1}{2\pi} \int_{\mathbb{T}} \log \left| f(e^{it}) \right| dt \ge \log \left| f(e^{i0}) \right|$$

» Szegő's theorem

Theorem (Szegő)

Let $f \in H^1(\mathbb{T})$, $f \not\equiv 0$. Then the function $\log |f|$ is integrable and

$$\frac{1}{2\pi} \int_{\mathbb{T}} \log \left| f(e^{it}) \right| dt \ge \log \left| f(e^{i0}) \right|$$

Corollary

Let $f \in H^1(\mathbb{T})$. If $f \not\equiv 0$ then f cannot vanish on a (measurable) subset of \mathbb{T} with positive Lebesgue measure.

The Factorization

Inner Function

» Inner Function

Definition (Inner Function)

Let $f\colon \mathbb{D} \to \mathbb{C}$. Then f is said to be an *inner function* if $f \in H^\infty\left(\mathbb{D}\right)$ and the corresponding boundary function $\tilde{f} \in H^\infty\left(\mathbb{T}\right)$ has unit modulus almost everywhere on \mathbb{T} . In other words, the function \tilde{f} defined almost everywhere on \mathbb{T} by

$$\widetilde{f}\Big(e^{i heta}\Big)=\lim_{r o 1}f\Big(re^{i heta}\Big)$$

has unit modulus almost everywhere.

» Inner Function

Definition (Inner Function)

Let $f\colon \mathbb{D} \to \mathbb{C}$. Then f is said to be an *inner function* if $f \in H^\infty\left(\mathbb{D}\right)$ and the corresponding boundary function $\tilde{f} \in H^\infty\left(\mathbb{T}\right)$ has unit modulus almost everywhere on \mathbb{T} . In other words, the function \tilde{f} defined almost everywhere on \mathbb{T} by

$$\widetilde{f}\Big(e^{i heta}\Big)=\lim_{r o 1}f\Big(re^{i heta}\Big)$$

has unit modulus almost everywhere.

Finite Blaschke Product

Let $z_1, z_2, \ldots, z_n \in \mathbb{D}$ and $\alpha \in \mathbb{R}$. Then the finite Blaschke product is the function given by

$$B(z) = e^{i\alpha} \prod_{k=1}^{n} \frac{z - z_j}{1 - \bar{z}_j z}.$$

» Outer Function

Definition (Outer Function)

An *outer function* is a holomorphic function $f \colon \mathbb{D} \to \mathbb{C}$ of the form

$$f(re^{it}) = \alpha \exp \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + re^{i\theta}}{e^{it} - re^{i\theta}} k(e^{it}) \right] dt$$

where $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ and k is a real valued integrable function on \mathbb{T} .

Outer Function

Definition (Outer Function)

An outer function is a holomorphic function $f: \mathbb{D} \to \mathbb{C}$ of the form

$$f(re^{it}) = \alpha \exp \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + re^{i\theta}}{e^{it} - re^{i\theta}} k(e^{it}) dt \right]$$

where $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ and k is a real valued integrable function on \mathbb{T} .

Proposition

Let $f: \mathbb{D} \to \mathbb{C}$ be an outer function with above form. Then

$$f \in H^{1}\left(\mathbb{D}\right) \Leftrightarrow e^{k} \in L^{1}\left(\mathbb{T}\right)$$

» Inner Outer Factorization

Theorem ([Beu49])

Let $f \in H^1(\mathbb{D})$ and $f \not\equiv 0$. Then f has a factorization $\theta \cdot u$ where θ is inner and u is outer. This factorization is unique up to a constant of modulus 1.

Inner Outer Factorization

Theorem ([Beu49])

Let $f \in H^1(\mathbb{D})$ and $f \not\equiv 0$. Then f has a factorization $\theta \cdot u$ where θ is inner and u is outer. This factorization is unique up to a constant of modulus 1.

Idea of Proof: Define

$$u(z) = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \left| \tilde{f}(e^{it}) \right| dt \right)$$
$$\theta = \frac{f}{u}.$$

» Disintegrating *Inner* part

Theorem (nonzero H^1 functions satisfy the Blaschke condition)

Let $f \in H^1(\mathbb{D})$ and $f \not\equiv 0$. Then the zeroes of f are countable in number and satisfy the **Blaschke** condition, that is, if z_1, z_2, \ldots are the zeroes of f, then

$$\sum_{k=1}^{\infty} (1 - |z_n|) < \infty \Longleftrightarrow \prod_{n=1}^{\infty} |z_n| < \infty$$

» Infinite Blaschke Products

Theorem ([Bla15])

Let $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{D}\setminus\{0\}$ be a sequence. The infinite product

$$B(z) = \prod_{n=1}^{\infty} \frac{\bar{z_n}}{z_n} \frac{z_n - z}{1 - \bar{z_n} z}$$

converges uniformly on compact subsets of $\mathbb D$ iff the product $\prod_{n=1}^\infty |z_n|$ converges iff

$$\sum_{n=1}^{\infty} (1-|z_n|) < \infty.$$

When either of these is satisfied, B defines an inner function whose zeroes are $\{z_n : n \in \mathbb{N}\}$.

» Infinite Blaschke Products

Definition

An *(infinite) Blaschke product* is a holomorphic function B of the form

$$B(z) = z^{\rho} \prod_{n=1}^{\infty} \left[\frac{\bar{z}_n}{|z_n|} \cdot \frac{z_n - z}{1 - \bar{z}_n z} \right]^{\rho_n}$$

where

- 1. $p, p_1, p_2, \ldots \in \mathbb{N}$;
- 2. $\{z_n : n \in \mathbb{N}\} \subset \mathbb{D} \setminus \{0\}$
- 3. the product $\prod_{n=1}^{\infty} |z_n|^{p_n}$ is convergent.

Corollary (Factoring all zeroes of $H^{1}(\mathbb{D})$)

The Blaschke product formed out of the zeroes of a nonzero $H^1(\mathbb{D})$ function is an inner function.

» So far...

Let $f \in H^1(\mathbb{D})$, $f \not\equiv 0$. Let

$$f = \theta \cdot u$$

be its inner outer factorisation where θ is inner and u is outer.

» So far...

Let $f \in H^1(\mathbb{D})$, $f \not\equiv 0$. Let

$$f = \theta \cdot \mu$$

be its inner outer factorisation where θ is inner and u is outer. The outer part u has no zeroes of F, so, θ has all the zeroes.

» So far...

Let $f \in H^1(\mathbb{D})$, $f \not\equiv 0$. Let

$$f = \theta \cdot u$$

be its inner outer factorisation where θ is inner and u is outer. The outer part u has no zeroes of F, so, θ has all the zeroes. Let B be the Blaschke product formed out of zeroes of u (which is same as that of f). Is

$$\theta/B$$

another inner function?

Riesz Decomposition Theorem

Theorem ([Rie23])

Let $f \in H^p(\mathbb{D})$, $1 , <math>f \not\equiv 0$ and let B be the Blaschke product formed with the zeroes of f in \mathbb{D} . Let

$$g = f/B$$

Then $g \in H^p(\mathbb{D})$, g is zerofree in \mathbb{D} and

$$\|g\|_p = \|f\|_p$$

Singular Inner Function

» Singular Inner Function

Any nonzero H^1 function f can be written as $B \cdot S \cdot u$ where B is a Blaschke product, S is a zerofree inner function and u is the outer part of f. This representation is *unique* upto multiplication by unimodular constant.

» Singular Inner Function

Any nonzero H^1 function f can be written as $B \cdot S \cdot u$ where B is a Blaschke product, S is a zerofree inner function and u is the outer part of f. This representation is *unique* upto multiplication by unimodular constant.

Definition (Singular Inner function)

A inner function S which is zerofree and S(0) > 0 is called singular function.

Singular Inner Function

Any nonzero H^1 function f can be written as $B \cdot S \cdot u$ where B is a Blaschke product, S is a zerofree inner function and u is the outer part of f. This representation is unique upto multiplication by unimodular constant.

A inner function S which is zerofree and S(0) > 0 is called singular function.

Theorem ([Her11])

Let g be a singular inner function. Then there is a unique singular positive measure μ such that

$$g(z) = \exp \left[-\int_{\mathbb{T}} \frac{e^{it} + z}{e^{it} - z} d\mu \left(e^{it} \right) \right]$$

» The Factorization Theorem

Let $f \not\equiv 0$ be an H^1 function in the unit disc. Then f is uniquely expressible in the form of $f = B \cdot S \cdot u$ where B is a Blaschke product, S is a singular inner function and u is an outer function (in H^1).

Let $f \not\equiv 0$ be an H^1 function in the unit disc. Then f is uniquely expressible in the form of $f = B \cdot S \cdot u$ where B is a Blaschke product, S is a singular inner function and u is an outer function (in H^1).

Let p be the order of zero of f at the origin and let p_1, p_2, \ldots be the multiplicities of the remaining zeroes $\alpha_1, \alpha_2, \ldots$ of f. Then we have that

$$B(z) = z^{p} \prod_{n=1}^{\infty} \left[\frac{\overline{\alpha_{n}}}{|\alpha_{n}|} \frac{\alpha_{n} - z}{1 - \overline{\alpha_{n}} z} \right]^{p_{n}}$$

$$u(z) = \exp \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \left(\log \left| \tilde{u} \left(e^{i\theta} \right) \right| + ia \right) d\theta \right]$$

$$S(z) = \frac{f(z)}{B(z) u(z)} = \exp \left[-\int \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu (\theta) \right]$$

for some positive singular measure μ and where $a = \arg(f/B)(0)$.

» References

- [Ash14] Robert B Ash. Complex variables. Academic Press, 2014.
- [Beu49] Arne Beurling. "On two problems concerning linear transformations in Hilbert space". In: (1949).
- [Bla15] Wilhelm Blaschke. "Eine erweiterung des satzes von vitali über folgen analytischer funktionen". In: *Leipzig Ber* 67 (1915), pp. 194–200.
- [Coh13] Donald L Cohn. *Measure theory*. Vol. 1. Springer, 2013.
- [Fat06] Pierre Fatou. "Séries trigonométriques et séries de Taylor". In: *Acta mathematica* 30.1 (1906), pp. 335–400.
- [Har15] Godfrey H Hardy. "The mean value of the modulus of an analytic function". In: *Proceedings of the London Mathemathical Society* 2.1 (1915), pp. 269–277.

» References (cont.)

- Gustav Herglotz. "Uber potenzreihen mit positivem, [Her11] reelen teil im einheitskreis". In: Ber. Verhandl. Sachs Akad. Wiss. Leipzig, Math.-Phys. Kl. 63 (1911), pp. 501–511.
- [Hof07] Kenneth Hoffman. Banach spaces of analytic functions. Courier Corporation, 2007.
- [Mas09] Javad Mashreghi. Representation theorems in Hardy spaces. Vol. 74. Cambridge University Press, 2009.
- Freidrich Riesz. "Über die Randwerte einer analytischen [Rie23] Funktion". In: Mathematische Zeitschrift 18.1 (1923), pp. 87–95.

Thank You!