Amendments to the Claims

Amendments to the Claims				
1. 18 11	1			
	1. (Currently Amended) A general computer network controller for a			
7 2	network node, coupled to a system area network, said controller comprising:			
	a network protocol engine configured to schedule packets for transmission onto			
4	the system area network;			
	a data buffer configured to handle one or more payloads;			
6	a fully associative context block configured to hold a plurality of last recently			
	used contexts to provide a dynamic resource allocation scheme reflecting run time			
8	situations;			
	an address translation table coupled to said network protocol engine and			
10 configured to:				
	maintain inbound address mapping; and			
j 12	store context information not currently stored in said context block; and			
	a dedicated, programmable micro sequencer tightly coupled to said context block			
14	and configured to:			
	control said context block; and			
16	handle control flow and process multiple types of network packets and			
	protocols;			
18	wherein said micro sequencer s packet format independent and network			
	independent; and			
20	wherein said contexts are updated by said micro sequencer, by an inbound			
	scheduler and by said a-network protocol engine.			
	2. (Previously Presented) The computer network controller of claim 1, further			
2	comprising:			
	a scalable memory array configured as a table for Inbound address mapping of			
4	registered memory and access protection, and further configured as a means for keeping			
context information about all active channels.				
	3. (Previously Presented) The computer network controller of claim 1,			
	l e e e e e e e e e e e e e e e e e e e			

2 wherein said fully associative context block couples said inbound scheduler and					
	netwo	network protocol engine, thereby facilitating an ability of said network controller to			
4	pipel	ine tasks and execute in parallel.			
	4.	(Currently Amended) The computer network controller of claim 3,			
2	where	ein:			
		said context block is configured for dynamic allocation of contexts between			
4	inbou	and remote direct memory access, inbound remote memory access and outbound			
	remo	te memory access;			
6		two upper contexts are reserved for locally driven remote direct memory access;			
	and				
8		said context block is configured to store information including one or more of the			
	follo	wing events:			
10	-	expected sequence number of a next packet for sequence checking,			
	-	input gathering size in order to optimize use of an attached bus,			
12	-	packet type defined by the network for a specific virtual channel,			
	-	accumulated message cyclic redundancy check for data integrity,			
14	-	source addresses,			
	-	destination addresses,			
16	-	mapping for remote direct memory access operations,			
	-	dedicated flags to facilitate new mapping,			
18	-	word count zero detection, and			
	-	protection tag check; and			
20		wherein said events:			
		are received from said inbound scheduler, said micro sequencer and said			
22		network protocol engine;			
		are synchronized by said context block; and			
24		are used by said micro sequencer to invoke, restart, switch or terminate a			
		thread immediately.			
	5.	(Currently Amended) The computer network controller of claim 1,			

^	whereir	
,	\\\\here\t	٠.
_	WHICHCH	ŧ٠

said micro sequencer is further configured to control said network protocol

4 engine;

said network protocol engine is configured to perform link injection control,

- based on feedback from a link layer and intervention from an operative system;; and said network protocol engine is further configured to schedule packets to the
- 8 network.
 - 6. (Previously Presented) The computer network controller of claim 1,
- wherein said inbound scheduler is configured to decode, schedule and invoke running tasks or allocate new tasks, based on:
- 4 i) packets received from the network,
 - ii) memory mapped operations received from a bus attachment module,
- 6 iii) descriptors inserted in first-in, first-out work queues by a user application, and
 - iv) tasks received from said context block.
 - 7. (Currently Amended)

In a system area network comprising a plurality of

- 2 host channel adapters, a plurality of target channel adapters and a switching fabric, each said adapter comprising:
- 4 <u>a network protocol engine configured to schedule packets for transmission onto</u> the system area network;
- a data buffer configured to handle one or more payloads;
 - a fully associative context block configured to hold a plurality of last recently
- 8 used contexts to provide a dynamic resource allocation scheme reflecting run time situations; and
- an address translation table coupled to said network protocol engine and configured to:
- 12 <u>maintain inbound address mapping; and</u>

store context information not currently stored in said context block; and

a dedicated, programmable micro sequencer tightly coupled to said context block and configured to:

16	control said context block and handle control flow; and		
	process multiple types of network packets and protocols;		
18	a bus attachment module; and		
	a network link interface;		
20	wherein said micro sequencer is packet format independent and network		
	independent, and wherein said contexts are updated by said micro sequencer, by an		
22 inbound scheduler and by said a-network protocol engine,			
	a method for local and remote asynchronous completion control, the method		
24	comprising:		
	detecting a final packet of a message directed from a local node to a remote node,		
26	the final packet comprising:		
	an accumulated cyclic redundancy heck covering the message; and		
28	an address of a process completion queue on the remote node;		
	receiving the final packet at the remote node;		
30	at the remote node:		
	performing an integrity check on the final packet;		
32	signaling "receive complete" to the remote process completion queue; and		
	issuing a response to the final packet to the local node; and		
34	at the local node, signaling "send complete" to a local process completion queue.		
	8. (Currently Amended) A protocol engine for a channel adapter configured		
2	to interface a system area network with a network node, the protocol engine comprising:		
	an inbound scheduler configured to schedule one or more of the following for		
4	each of a plurality of tasks: decoding/scheduling and invoking;		
	a multi-context micro sequencer configured to handle control flow for multiple		
6	communication channels between the network node and the system area network,		
	wherein said multi-context micro sequencer is packet format independent and network		
8	independent;		
	a context block configured to store a set of least recently used contexts, wherein		
10	each said context corresponds to one of the communication channels;		
	a data buffer configured to buffer payloads of packets for the multiple		

12	communication channels; and			
	a network protocol engine configured to schedule transmission of packets onto the			
14	system area network;			
	wherein a subset of said set of contexts stored in said context blocks is reserved			
16	for outbound RDMA (Remote Direct Memory Access); and			
	wherein a remainder of said contexts in said set of contexts are dynamically			
18	allocated among inbound RDMA, inbound RMA (Remote Memory Access) and			
	outbound RMA.			
	9. (Previously Presented) The protocol engine of claim 8, wherein said multi-			
2	context micro sequencer is further configured to:			
	detect page boundary crossing and word count zero; and			
4	perform an integrity check of a message, wherein the message comprises one or			
	more packets.			
	10. (Previously Presented) The protocol engine of claim 8, wherein said multi-			
2.	context micro sequencer is further configured to perform integrated local and remote			
	completion.			
	11. (Cancefled)			
	12. (Cancelled)			
	13. (Previously Presented) The protocol engine of claim 8, wherein each said			
2	context stored in said context block comprises one or more of:			
	a source address;			
4	a destination address;			
_	RDMA operation mapping;			
6	expected sequence number of a next packet;			
0	an accumulated cyclic redundancy check; and			
8	a set of dedicated flags for performing one or more of:			

		word count zero detec	tion;
10		packet integrity check	dng;
		sequence error checki	ng;
12		protection tag checking	ng; and
		data buffer manageme	ent.
	14.	(Previously Presented)	The protocol engine of claim 8, wherein said data
2	buffer	comprises a number of entries	equivalent to the number of least recently used
	contex	ts stored in said context block	
	15.	(Previously Presented)	The protocol engine of claim 8, wherein said data
2	buffer comprises:		
		multiple read ports; and	
4		multiple write ports;	
		wherein said multiple read po	rts and multiple write ports facilitate processing of
6	multip	le tasks in parallel by the prot	ocol engine.
	16.	(Previously Presented)	The protocol engine of claim 8, further comprising:
2		one or more work queues con	nfigured to store descriptors inserted by applications
	execut	ing on the network node; and	
4		an inbound scheduler configu	ared to schedule processing of said descriptors.
	17.	(Previously Presented)	The protocol engine of claim 16, wherein said
2	inbound scheduler is further configured to schedule:		
_		receipt of a packet from the s	
4			received from the network node; and
		a task received from said cor	itext block.
	10	(Durania and a Day and a D	
2	18.	(Previously Presented)	The protocol engine of claim 8, further comprising:
2	nodo		ne protocol engine to an internal bus of the network
	node;	allu	

- a second connection coupling the protocol engine to the system area network.
 - 19. (Previously Presented) The protocol engine of claim 18, further
- 2 comprising:
 - a third connection coupling the protocol engine to an address translation table;
- 4 wherein the address translation table is configured to:
 - maintain inbound address mapping; and
- 6 store context information not ourrently stored in said context block.
 - 20. (Previously Presented) The protocol engine of claim 18, wherein the size of
- 2 packets exchanged between the protocol engine and the network node differ from the size of packets exchanged between the protocol engine and the system area network.