CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

- Today: Sequences
 - Notations on Sequences
 - Mathematical induction
 - Solving some exam problems

Sequences

"Mathematics is the art of giving the same name to different things." - Henri Poincaré

What are sequences?

Types of sequences

- Finite sequence: $a_m, a_{m+1}, a_{m+2}, \ldots, a_n$ e.g.: $1^1, 2^2, 3^2, \ldots, 100^2$
- Infinite sequence: $a_m, a_{m+1}, a_{m+2}, \ldots$ e.g.: $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots$

Term

• Closed-form formula: $a_k = f(k)$

e.g.:
$$a_k = \frac{k}{k+1}$$

• Recursive formula: $a_k = g(k, a_{k-1}, \dots, a_{k-c})$

e.g.:
$$a_k = a_{k-1} + (k-1)a_{k-2}$$

Growth of sequences

Increasing sequence

e.g.:
$$2, 3, 5, 7, 11, 13, 17, \dots$$

Decreasing sequence

e.g.:
$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$$

Sums and products of sequences

Sum

• Summation form:

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \dots + a_n$$

where, k= index, m= lower limit, n= upper limit e.g.: $\sum_{k=m}^n \frac{(-1)^k}{k+1}$

Product

Product form:

$$\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdot \dots \cdot a_n$$

where, k= index, m= lower limit, n= upper limit e.g.: $\prod_{k=m}^n \frac{k}{k+1}$

Properties of sums and products

• Suppose $a_m, a_{m+1}, a_{m+2}, \ldots$ and $b_m, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers and c is any real number

Sum

- $\sum_{k=m}^{n} a_k = \sum_{k=m}^{i} a_k + \sum_{k=i+1}^{n} a_k$ for $m \le i < n$ where, i is between m and n-1 (inclusive)
- $c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} (c \cdot a_k)$
- $\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$

Product

 $\bullet (\prod_{k=m}^n a_k) \cdot (\prod_{k=m}^n b_k) = \prod_{k=m}^n (a_k \cdot b_k)$

Proof by Mathematical Induction

Proof for dominos

Core idea

A starting domino falls. From the starting domino, every successive domino falls. Then, every domino from the starting domino falls.

Mathematical Induction

- Let P(n) denote a predicate, and our objective is to prove P(n) for all integers n>=0. Mathematical induction works in two steps.
- Base step: prove P(0)
- Inductive step: prove P(k) -> P(k+1) for any k>=0

Proof by mathematical induction: Example 1

Proposition

•
$$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}$$
 for all integers $n\geq 2$.

Proof by mathematical induction: Example 1

Proposition

• $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}$ for all integers $n\geq 2$.

Proof

Let
$$P(n)$$
 denote $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}$.

- Basis step. P(2) is true.
- Induction step.

Assume
$$P(k)$$
: $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{k}\right)=\frac{1}{k}$ for some $k\geq 2$.

➤ How?

Prove
$$P(k+1)$$
: $(1-\frac{1}{2})(1-\frac{1}{3})\cdots(1-\frac{1}{k+1})=\frac{1}{k+1}$

LHS of P(k+1)

$$= \left[\left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) \cdots \left(1 - \frac{1}{k} \right) \right] \left(1 - \frac{1}{k+1} \right)$$

$$=\frac{1}{k}\left(1-\frac{1}{k+1}\right)$$
 (:: $P(k)$ is true)

$$=\frac{1}{k}\cdot\frac{k}{k+1}$$
 (:: common denominator)

$$=\frac{1}{k+1}$$
 (:: remove common factor)

$$= \mathsf{RHS} \; \mathsf{of} \; P(k+1)$$

Proof by mathematical induction: Example 2

Proposition

• Fibonacci sequence is: F(0)=1, F(1)=1, and F(n)=F(n-1)+F(n-2) for $n\geq 2$. Prove that: $F(0)^2+F(1)^2+\cdots+F(n)^2=F(n)F(n+1)$ for all $n\geq 0$.

Proof by Mathematical Induction — Guideline

- The problem usually looks like this:
 - Prove: For any integer n >=1, P(n) holds
- Check P(1), P(2) ... before the proof
- Try to solve P(k) -> P(k+1)
- Write a proof that has:
 - A notation for predicate P(n)
 - A base step
 - An inductive step

(a) [5 points] For all integers $n \ge 1$,

$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1.$$

(a) [5 points] For all integers $n \ge 1$,

$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1.$$

- Proof.
 - We will prove this proposition with mathematical induction.
 - Let P(n) denote the predicate 1(1!) + 2(2!) + ... + n(n!) = (n+1)! -1
 - Base step: We prove P(1).
 - LHS is 1, and RHS is 2! 1=1
 - Inductive step: We prove P(k) -> P(k+1) for all integer k>=1
 - Let k be an arbitrary integer and k>=1.
 - Assume P(k) holds. That is 1(1!) + 2(2!) + ... + k(k!) = (k+1)! -1
 - We want to prove P(k+1), namely, 1(1!) + 2(2!) + ... + k(k!) + (k+1)(k+1)! = (k+2)! -1
 - LHS can be reduced to (k+1)! -1 + (k+1) (k+1)! following assumption P(k)
 - The latter can be further reduced to (k+2)! -1, namely RHS.
- QED.

(b) [5 points] Consider the Fibonacci sequence: $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$, for $n \ge 2$. For all integers $n \ge 2$,

$$f_{n+2} = 1 + \sum_{i=0}^{n} f_i.$$

(b) [5 points] Consider the Fibonacci sequence: $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$, for $n \ge 2$. For all integers $n \ge 2$,

$$f_{n+2} = 1 + \sum_{i=0}^{n} f_i.$$

- Proof.
 - We will prove this proposition with mathematical induction.
 - Let P(n) be the predicate $f_{n+2} = 1 + f_0 + f_1 + ... + f_n$
 - Base step: We first prove P(2) holds.

• LHS =
$$f = 4 = 3$$
. RHS = $1 + f = 0 + f = 1 + f = 2 = 1 + 0 + 1 + 1 = 3$

- Inductive step:: Then we prove P(k) -> P(k+1) for all k>=2
 - Let k be an arbitrary integer and k>=2
 - Assume P(k) holds, namely, $f \{k+2\} = 1 + f + 0 + f + 1 + \dots + f + k$
 - We want to prove P(k+1), that is, $f_{k+3} = 1 + f_0 + f_1 + ... + f_k + f_{k+1}$
 - LHS = f {k+2}+f {k+1} from Definition of Fobonacci Sequence.
 - Thus, LHS = 1+ f_0+f_1 +... + f_k + f_{k+1} following assumption P(k)
 - Thus equals RHS