Internet Protocol (IP)

Kameswari Chebrolu

Recap

- IP Protocol: Needed functionality
 - IP Protocol: Packet format, addressing
 - Forwarding
 - Routing
 - Error reporting and host signaling
- Focus: Packet Format and Fragmentation and re-assembly

- Version: Specifies the version of the protocol
 - IPv4, IPv6
- Header Length:

 Specifies the header in

 32-bit words
 - 5 words (without 5x32 options)

- Type of Service:
 Permits packets to be treated differently
 - Research Focus
- Total Length: Specifies the length of the datagram (in bytes) including header

- Identification/Flags/ Fragment Offset:
 - Max size of IP packet is 65535 Bytes
- Physical Networks may not support large packets
 - Need Fragmentation and reassembly (more on it soon)

(21-1) byte

- Time to Live: Helps catch
 - packets doing rounds
 - Not really time but hop count
 - Routers decrement the field by one before forwarding; if zero discard
 - Default value = 64

- Protocol: Demux key that identifies higher layer protocol
 - TCP: 6, UDP: 17
- Checksum (Internet):
 Detects errors in header

- Source/Destination IP address: 32-bit
 - Destination key to forwarding
 - Source for replying back
 - Global address space,
 independent of physical
 network address (MAC)

- Options: Rarely used
 - Record Time stamp
 - Record route taken
 - Specify source route
- Data/Payload: Higher Layer Data (TCP or UDP segment)

- Options: Rarely used
 - Record Time stamp
 - Record route taken
 - Specify source route
- Data/Payload: Higher Layer Data (TCP or UDP segment)

Fragmentation and Reassembly

- Goal: Interconnect heterogeneous networks
- Problem: Each technology has different
 Maximum Transmission Unit (MTU) size
 - MTU: Largest IP datagram that can be carried in a frame
 - E.g. Ethernet: 1500, FDDI: 4352, PPP: 296(Negotiable), WiFi: 7981

- At host: Select MTU of link it is connected to
- At intermediate router: Forward datagram on a network with smaller MTU
 - Need to fragment the datagram
- Where to reassemble?
 - Next hop router? Increases overhead and datagram may again be fragmented
 - Destination is the best place

Note: Above values not true in practice due to Offset field having to be a multiple of 8

Fragmentation Fields

- Identification: Helps identify a datagram
 - All fragments carry same identification
- Flags: 3 bits

 Identification

 Flags

 Fragment
 Offset
 - bit 0: Reserved, set to zero
 - bit 1: Don't Fragment (DF); Useful for path MTU discovery
 - bit 2: More Fragments (MF); Set to one to indicate more fragments to follow

Fields

- Fragmentation Offset: 13 bits long
 - Measures data/payload in units of eight-byte blocks
 - For a particular fragment, offset specifies start of data relative to the beginning of the original unfragmented IP datagram.
 - E.g first fragment would have an offset of zero

Example

Length=292

Length=140

• Original datagram:

- Data within is 1480B
- MTU: 296B 276
 - Max Data within is 276B
 - Offset has to be multiple of $8 \rightarrow$ Data within

Original Datagram

Fragflag=1

Fragflag=0,

Offset=0

Offset=170

Fragmented Datagrams

ID=x

ID=x

Summary

- Looked at IP packet format
- Looked at fragmentation and reassembly
- Next: Addressing and Forwarding