Congratulations! You passed!

Grade received 80%

Latest Submission Grade 80%

To pass 80% or higher

Go to next item

Retake the assignment in 7h 51m

1. What is the variance of the following dataset?

$$D = \{1, 2, 3, 2\}$$

Please use decimal numbers in your answer.

0.5000

⊘ Correct

Well done!

2. What is the standard deviation of the dataset $D = \{1, 2, 3, 2\}$ which we already used in the previous question? You should provide a decimal number as your answer.

1/1 point

0.7071

(V) Correct

Indeed: You just needed to take the square-root of the variance.

3. What would be the new variance if we added 1 to each element in the dataset $D = \{1, 2, 3, 2\}$ from Question 1? Please use decimal numbers in your answer.

0/1 point

0.5600

(X) Incorrect

4. What would be the new variance if we multiplied each sample in a dataset D by 2.

1/1 point

- The variance of the new dataset will be two times the variance of D.
- The variance of the new dataset will be four times the variance of D.
- The variance of the new dataset will not change.

⊘ Correct

Well done!

5. Assuming we have mean \bar{x}_{n-1} and variance σ_{n-1}^2 for some dataset D_{n-1} with n-1 samples. What would be the variance σ_n^2 if we add a new element x_* to the dataset (assuming you have computed the new sample mean \bar{x}_n)?

1/1 point

$$\bigcirc \sigma_n^2 = \frac{n-2}{n-1}\sigma_{n-1}^2 + \frac{1}{n}(x_* - \bar{x}_{n-1})(x_* - \bar{x}_n)$$

$$\bigcirc \sigma_n^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n} (x_* - \bar{x}_{n-1})^2$$

$$\bigcirc \sigma_n^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n-1} (x_* - \bar{x}_{n-1}) (x_* - \bar{x}_n)$$

⊘ Correct

Great job!