DIMENSIONALITY REDUCTION METHODS

Tomáš Čelko, Martin Bakoš

PRESENTATION STRUCTURE

- Datasets
 - Flowers
 - Alzheimer
 - Fruits
- Feature extraction
- Reduction methods
- DR quality evaluation
 - kNN
 - Coranking matrix
 - NX curves
- Visualizations

DATASETS - FLOWERS

Description:

Noisy

- Rose
- Dadelion
- Sunflower
- Tulip
- Daisy

DATASET -ALZHEIMER

- Non demented (0)
- Very mild demented (1)
- Mild demented (2)
- Moderate demented (3)

3

DATASET – FRUITS

Description:

- 131 different classes
- Clean images

Classes (examples):

- Apples
- Avocado
- Banana
- Blueberry
- Cucumber
- Grape

- Hazelnut
- Lime
- Onion
- Raspberry
- Tomato
- Watermelon

FEATURE EXTRACTION

- Feature extraction for images:
 - Trivial = Pixel features
 - Non trivial = computed features
 - Manual (statictics means, variances of colors for the regions of image)
 - Interpretable
 - Artificially extracted (NN inner representation)
 - Good representation

EFFICIENT NET

- Computer generated architecture
- Order of magnitude better than human architectures
- Pretrained on ImageNet dataset

Used Efficient net architectures:

Name	Weights	Imagenet Acc	#Parameters
EfficientNetB 0	noisy- student	78.8%	5.3M
EfficientNetB 6	noisy- student	86.4%	43.3M
EfficientNetV 2M	imagenet	85.3%	54.4M

EFFICIENT NET V. BO

EFFICIENT NET TRAINING

Fine tuning the network on GPU

Parameters:

- Batch size => 5~30
- Epochs =>15
- Regularization =>
 - L2
 - Dropout
 - Label smoothing

Reached accuracies on development set:

•	Flowers	dataset	93.4	.%
---	----------------	---------	------	----

Izheimer dataset	96.3%
	Izheimer dataset

• Fruits dataset 99.7%

REDUCING DIMENSION TO 2D

PCA = Principal Component Analysis

- Returns new basis for the data, where each component tries to maximize the variance in its direction
- Eigenvectors of the covariance matrix
- Preserving relative distances

t-SNE = t - distributed Stochastic Neighbor Embedding

- "The similarity of datapoint x_j to datapoint x_i is the conditional probability, $p_j(j \mid i)$, that x_i would pick x_j as its neighbor if neighbors were picked in proportion to their probability density under a t-distribution centered at x_j "
- Variance set by perplexity parameter
- Minimize KL divergence
- Preserving local neighborhood

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log igg(rac{P(x)}{Q(x)}igg)$$

REDUCING DIMENSION TO 2D

UMAP = Uniform Manifold Approximation and Projection

- Inspired by t-SNE
- Non-parametric
- Uses distribution q

- $q_{ij}^{\mathit{UMAP}} = \left(1 + a \|z_i z_j\|^{2b}\right)^{-1}$
- Minimizes cross entropy $H(p,q) = -\sum_{x} p(x) \log q(x)$

LDA – Linear Discriminant Analysis

- Estimate class means μ from training set and class covariances Σ
- Then estimate the discriminator w
- Project the data on w

$$ec{w} \propto (\Sigma_0 + \Sigma_1)^{-1} (ec{\mu}_1 - ec{\mu}_0)$$

Other feature selection techniques - returning subset of features

 Poor results (there are probably no 2 dominat attributes that would expain all 1280 features)

EVALUATING THE QUALITY OF DIMENSIONALITY REDUCTION

Difficult, many different metrics:

Year	Name of the measure	Criterion
1962	Sheppard Diagram (SD)	Global
1964	Kruskal Stress Measure (S)	Global
1969	Sammon Stress (S_S)	Global
1988	Spearman's Rho (S_R)	Local
1992	Topological Product (T_{Pr})	Local
1997	Topological Function (T_F)	Local
2000	Residual Variance (R_V)	Global
2000	König's Measure (K_M)	Local
2001	Trustworthiness & Continuity (T&C)	Local
2003	Classification error rate	classification error
2006	Local Continuity Meta-Criterion (Qk)	Local
2006	Agreement Rate (A_R) /Corrected Agreement Rate (CA_R)	Local
2007	Mean Relative Rank Errors (MRRE)	Local
2009	Procrustes Measure (P_M) /Modified Procrustes Measure (P_{MC})	Local
2009	Co-ranking Matrix (Q)	Local
2011	Global Measure (Q _Y)	Local and global
2011	The Relative Error (R_E)	Global
2012	Normalization independent embedding quality assessment (NIEQA)	Local/global/local&globa

5-NN CLASSIFICATION

Classification of the same data by means of k-nearest neighbor

KNN errors (%)	Alzheimer dataset	Flower dataset	Fruit dataset
PCA	0.80	9.20	24.12
t-SNE	0.70	2.50	0
UMAP	0.80	2.80	0.02
LDA	0.00	5.30	9.39
Variance thresholding	0.70	2.00	0

CORANKING MATRIX

- Original space:
- $p_{ij} = |\{k | d_{ik} < d_{ij}\}|$ $r_{ij} = |\{k | e_{ik} < e_{ij}\}|$
- Projected space:
- "number of closer elements to i than the distance of *i* to *i*"

Coranking matrix Q:

- $q_{ij} = |\{(k, l)|p_{kl} = i \text{ and } r_{kl} = j\}|$
- "number of neighborhoods of size i in original space and size i in projected space"

PCA Alzheimer

200 - 400 600 800

t-SNE Alzheimer

VISUALIZING CORANKING MATRIX

Umap Alzheimer

LDA Alzheimer

Umap Flowers

CORANKING MATRIX EMBEDDINGS

- Q_{NX} curve
 - $Q_{NX}(K) \in [0,1]$ (1 means ideal embedding)

- B_{NX} curve
 - $B_{NX}(K) \in [-1,1]$ (1 means extreme intrusion, -1 means extreme extrusion)
 - Subtracts elements outside of a diagonal
- R_{NX} curve
 - $R_{NX}(K) \in [0,1]$ (1 means ideal embedding)
 - Relative improvement of embedding against random embedding

VISUALIZATIONS - FLOWERS

VISUALIZATIONS - ALZHEIMER

VISUALIZATIONS - FRUITS

RESOURCES

- https://www.sciencedirect.com/science/article/pii/S0925231209000101
- https://www.sciencedirect.com/science/article/pii/S0167865510001364
- https://www.researchgate.net/figure/The-EffecientNet-B0-general-architecture_fig2_348470984
- https://www.kaggle.com/datasets/moltean/fruits
- https://www.kaggle.com/datasets/alxmamaev/flowers-recognition
- https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset

THANK YOU FOR YOUR ATTENTION