

Estrutura de Dados II

Prof. MSc. Jackson Antonio do Prado Lima Departamento de Sistemas de Informação - DSI

Agenda

- Apresentação da disciplina
 - Ementa
 - Objetivos
 - Conteúdo programático
 - Avaliação
 - Bibliografia

Professor

- Jackson Antonio do Prado Lima
 - Bacharel em Sistemas de Informação (UDESC)
 - Mestre em Informática (UFPR)
 - Engenharia de Software
 - Engenharia de Software Baseado em Busca
 - Computação Evolutiva
 - Doutorando em Ciência da Computação (UFPR)
 - Engenharia de Software

Contato: jacksonpradolima@gmail.com

Ementa

- Meios de armazenamento, dispositivos de acesso sequencial, dispositivos de acesso aleatório, registros, listas invertidas, hashing, sort, backup.
- Métodos de ordenação e busca de dados.
- Noções sobre complexidade de algoritmos na avaliação de desempenho de programas.

Objetivo

 Possibilitar ao discente a habilidade de analisar problemas e desenvolver soluções computacionais, ou propor ações de aprimoramento aplicando os conhecimentos e técnicas da disciplina.

СН	CONTEÚDOS PROGRAMÁTICOS
3h	1. Apresentação
	 Apresentação da disciplina
	2. Metodologia de ensino
	3. Avaliação

СН	CONTEÚDOS PROGRAMÁTICOS				
15h	2. Meios de armazenamento, dispositivos de acesso sequencial e aleatório, conceitos de registros				
	 Conceitos básicos e classificação dos meios de armazenamento 				
	■ Estrutura dos discos, operações e tempos de acesso				
	■ Características dos sistemas de arquivos, interface, vantagens e desvantagens				
	 Conceitos de registros, campos e chaves de acesso 				
	 Manipulação de arquivos, registros de tamanho fixo e registros de tamanho variável 				
	 Tipos de fluxo de dados, acesso direto, acesso sequencial, sequencial indexado e acesso aleatório 				

• Prova Individual 1

СН	CONTEÚDOS PROGRAMÁTICOS			
15h	3. Listas invertidas, hashing, sort e backup			
	 Conceitos de hashing e tabelas de dispersão, função de espelhamento, colisões, aplicação e limitações 			
	 Composição, estrutura e endereçamento de listas invertidas 			
	 Utilização de coleções, algoritmos destrutivos, operações de sort e backup 			

Prova Individual 2

СН	CONTEÚDOS PROGRAMÁTICOS
6h	4. Noções sobre complexidade de algoritmos na avaliação de desempenho de programas
	 Conceitos básicos de complexidade, complexidade espacial e temporal, notações
	■ Conceitos básicos de desempenho, pior caso, melhor caso e caso médio
	 Algoritmos ótimos

СН	CONTEÚDOS PROGRAMÁTICOS			
15h	5. Métodos de ordenação e busca de dados			
	 Conceitos de ordenação, tipos, vantagens e desvantagens 			
	 Prática com métodos bubblesort, insertsort, selectsort, heapsort, mergesort e quicksort 			
	 Conceitos de busca de dados, tipos, vantagens e desvantagens 			
	 Prática com métodos de busca linear e busca binária 			

Prova Individual 3

Avaliação

Avaliação	Peso	Data
Prova Individual 1	27%	05/04/2018
Prova Individual 2	27%	03/05/2018
Prova Individual 3	27%	28/06/2018
Trabalho Final	19%	21/06/2018

 As atividades avaliativas contarão até 1 ponto (serão corrigidas) adicional em suas respectivas provas.

Observação sobre as avaliações

 Como a adesão aos exercícios de laboratório é espetacular, iremos usa-los como parte das notas das provas, onde 25% da nota da prova será dada pelos exercícios de laboratório que devem ser postados no Moodle sempre até as datas pré-estabelecidas, ou seja a prova valerá 7,5 e os outros 2,5 serão advindos das atividades de laboratório entre a prova anterior e a prova atual.

Calendário

• Calendário DAD II 2018/1

Frequência

- Frequência mínima para aprovação:
 - -75% = 41 aulas = 14 dias
- Número máximo de faltas
 - -25% = 13 aulas = 4 dias

 Atenção: duas reprovações por falta na mesma disciplina ocasiona a perda de vínculo com a UDESC (resolução Nº 005/2014 CONSEPE, Art. 21)

Bibliografia Básica

GOODRICH, Michael T; TAMASSIA, Roberto. **Estruturas de dados e algoritmos em Java.** 4. ed. Porto Alegre: Bookman, 2007. 600 p.

Bibliografia Básica

LAFORE, Robert. **Estruturas de dados & algoritmos em Java.** Rio de Janeiro: Ciência Moderna, 2004. xxvi, 702 p.

Bibliografia Básica

PREISS, Bruno R; GOUVÊA, Elisabeth Ferreira. **Estruturas de dados e algoritmos: padrões de projetos orientados a objetos com Java.** Rio de Janeiro: Campus, 2001. 566 p. ISBN 8535206930 (broch.).

Bibliografia complementar

- DEITEL, Harvey M; DEITEL, Paul J. **Java: como programar**. 8. ed. São Paulo: Prentice Hall, 2010. 1144 p.
- PUGA, Sandra; RISSETTI, Gerson. Lógica de programação e estruturas de dados: com aplicações em Java. 2. ed. São Paulo: Pearson Prentice Hall, 2008. 262 p.
- HELLER, Philip; ROBERTS, Simon. Guia completo de estudos para certificação em Java 2. 1. ed. Rio de Janeiro: Ciência Moderna, c2004. 692 p.
- HORSTMANN, Cay S. Conceitos de computação com Java: compatível com Java 5 & 6. 5. ed. Porto Alegre: Bookman, 2009. xiv, 720 p.
- SILBERSCHATZ, Abraham; GALVIN, Peter B; GAGNE, Greg. **Sistemas operacionais com Java.** 7. ed. Rio de Janeiro: Campus, 2008. 673 p.

Moodle

- Todo o conteúdo será disponibilizado no Moodle
 - http://www.moodle.udesc.br

Exercício de nivelamento

- Postar no *Moodle* até 7/3/2018 (ver prazo na atividade)
 - 1. Desenvolva um algoritmo para manipulação de pilhas
 - 2. Desenvolva um algoritmo para manipulação de filas simplesmente encadeadas

Finalizando

- Dúvidas?
- Sugestões?

Obrigado

jacksonpradolima.github.io
 github.com/ceplan

