Econ 3389 Big Data: Homework 3

Due Wednesday, March 16th (Beginning of class)

1 Programming Practice

Load boston data Before beginning these exercises, load the public boston data set using the following code.

Polynomial Regression Extending what we learned in Week 5, our objective in this question will be to fit and evaluate the model.

$$NOX_i = \beta_0 + \beta_1 DIS_i^1 + \beta_2 DIS_i^2 + \dots + \beta_r DIS_i^r + \epsilon_i$$

1. Create a function create_polynomial_matrix(X, degree), where X is a column array and degree is an integer. This function must return a new array where each r^{th} column equals to Z^r elementwise, for r smaller than or equal to degree. That is,

$$\begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \end{bmatrix} \mapsto \begin{bmatrix} Z_1^0 & Z_1^1 & Z_1^2 & \cdots & Z_1^r \\ Z_2^0 & Z_2^1 & Z_2^2 & \cdots & Z_2^r \\ Z_3^0 & Z_3^1 & Z_3^2 & \cdots & Z_3^r \end{bmatrix}$$

2. Recall¹ that the formula for the OLS coefficients, when written in matrix notation, is given by²:

$$\widehat{\beta} = (X'X)^{-1}X'Y$$

where X is a matrix of regressors, possibly containing a column of ones for the intercept, and Y is a column vector containing the dependent variable.

Write a function ols_coefficients(X, Y) that takes conformable arrays X and y, and returns the $\widehat{\beta}$ coefficients, as computed by the formula above.

- 3. Write a function ols_predict(X, betahat) that takes conformable arrays X and betahat, and returns the predicted values of the dependent variable.
- 4. Write a function ols_mse(y, yhat) that computes the mean squared difference (not the R^2 !) between predicted and actual values.
- 5. Now we shall put it all together. Let X be the polynomial matrix in DIS, and let Y be a column array containing NOX. For r in $\{0, \dots, 8\}$, do the following.
 - Use create_polynomial_matrix to create a matrix X containing the polynomial arrays in the variable DIS.
 - Use scikit_learn.cross_validation.train_test_split to divide X and Y into a training and a test test. The training set should be contain 70% of the observations.
 - Use ols_coefficients to estimate the OLS coefficients associated with the polynomial matrix *X* (you should get an *r*-by-1 array).
 - Use ols_predict to predict values in the train and test set.
 - Use ols_mse to find out test and training set MSE, and print out the values of both.

¹Or learn!

²The notation A' means the *transpose* of the matrix A.

Extra (Not for credit) Repeat all the steps in 5, but instead of using ols_coefficients, write the function ridge_coefficients(X, Y, p). This function is identical to its OLS counterpart, except it computes the coefficients using the formula:

$$\widehat{\beta} = (X'X + pI)^{-1}X'Y$$

where p is a positive real number, and I is an identify matrix of appropriate dimensions.

Think What will happen to the magnitude of the coefficients as you increase or decrease p? How does the MSE compare with OLS? How do your results relate to the Gauss-Markov assumptions?³

2 Theory

- 1. Textbook exercise 2.4.3
- 2. Textbook exercise 2.4.5
- 3. Textbook exercise 3.7.4 (Feel free to test your intuition by modifying your code in the Programming Practice part!)

 $^{^3}$ In just a few weeks we will spend a lot a time studying this tiny change in the OLS formula. Stay tuned!