영상처리 과제 #6

마감기한: 11월 15일 일요일 23:59까지

학과	전자정보통신공학과	과목명	영상처리(001)
학번	18010697	이름	김해리

1

MATLAB code

```
% 1. 'pelicans.tif' 영상에 대해 아래에 아래의 문제를 해결하세요.
img = imread("sample_images/pelicans.tif");
% (1) fspecial 함수를 사용하여 LoG 필터를 생성하여 pelicans 영상을 필터링하세요.
kernel = fspecial("log");
f_img = filter2(kernel, img);
% (2) (1)의 결과에서 0보다 작은 값은 0으로 255보다 큰 값은 255로 만들어 디스플레이하세요.
cut_img(cut_img < 0) = 0;
cut_img = f_img;
                                % 필터링한 이미지 복사
                                % 0보다 <mark>작은 값은 0으로 맞추기</mark>
                                % 255보다 큰 값은 255로 맞추기
% 디스플레이
cut_img(cut_img > 255) = 255;
figure(1), imshow(cut_img);
title("1- (2)");
% (3) (1)의 결과에서 최소값을 0으로 최대값을 1로 스케일링 변환하여 디스플레이하세요.
scale_img = double(f_img); % 밀터링한 이미지 복사
mx = max(max(scale_img));
                                        % 최대값 구하기
                                       % 최소값 구하기
mn = min(min(scale_img));
scale_img = (scale_img - mn) / (mx - mn); % 0-1 사이 값으로 맞춰주기 위해 최소값 빼주고 전체 스케일로 나눔
figure(2), imshow(scale_img);
title("1 - (3)");
% (4) (1)의 결과에서 절대값이 100보다 큰 값을 1로 작거나 같은 값을 0으로 변환 후 <mark>결과 디스플레이하세요.</mark>
bin_img = zeros(size(f_img));
bin_{img}(abs(f_{img}) > 100) = 1.;
bin_img(abs(f_img) \le 100) = 0.;
figure(3),imshow(bin_img);
title("1 - (4)");
```

display

2

```
MATLAB code
       clear all
1 —
2 —
       clc
3
4
      % 2. 'caribou.tif' 영상에 대해 아래에 아래의 문제를 해결하세요.
5 —
       img = imread("sample_images/caribou.tif");
6
       %(1) fspecial 함수를 사용하여 크기가 5x5이고 표준편차가 2인 가우시안 필터를 만들고,
7
       % 이 필터를 사용하여 caribou 영상을 필터링하세요.
8
9 —
       kernel = fspecial("gaussian", [5 5], 2); % h = fspecial('gaussian',hsize,sigma)
10 —
      blur_img = filter2(kernel, img);
11
12
      % (2) (1)의 결과를 low-pass filtering 결과로 사용하여 caribou.tif 영상에 대한 헌샤프 마스킹을 수행하고, 결과
      % 를 디스플레이하세요. (scale은 1.5를 사용하고, 결과를 xu라고 할 때, uint8(xu*3)으로 디스플레이하세요.)
13
14 —
      unsharp_img1 = double(img) - blur_img/1.5;
15 —
       figure(1), imshow(uint8(unsharp_img1 * 3));
       title("2 - (2): unsharped with scale 1.5");
16 -
17
       % (3) 언샤프 마스킹의 scale를 1.1과 10으로 변경해서 결과의 변화를 관찰하세요.
18
19
       %(강의자료 31쪽에서 xf/1.1와 xf/10로 설정하라는 의미입니다. 여기에서 산출된 결과를 각각 xu1, xu2라고
20
       % 할 때, 각각을 uint8(xu1*8), uint8(xu2)으로 디스플레이하세요.)
      unsharp_img2 = double(img) - blur_img/1.1;
21 —
22 —
      unsharp_img3 = double(img) - blur_img/10;
23 —
       figure(2), imshow([uint8(unsharp_img2 * 8), uint8(unsharp_img3)]);
24 —
       title("2 - (3): unsharped with scale 1.1(left), 10(right)");
      % (4) Scale을 10, 1.5, 1.1으로 변경할 때의 변화를 에지 강조 측면에서 설명하세요.
                                           display
```


2 - (4) Scale을 10, 1.5, 1.1으로 변경할 때의 변화를 에지 강조 측면에서 설명하세요 이 예제에서는 edge 검출을 위해 gaussian filter라는 low pass filter를 이용해 저주파 성분을 추

출해 일정 scale로 나누어 전체 영상에서 빼 주었습니다.

scale 값이 작을수록 전체 영상에서 삭제할 저주파 성분이 더 큽니다.

3

MATLAB code

```
### Clear all c
```

```
% (2) ordfilt2 함수를 사용하여 영상에 5x5 최대값 필터를 적용하고 결과를 디스플레이 한 후, 영상의 전체적인
% 밝기가 어떻게 변하는지와 그 이유를 설명하세요. (강의자료 36~38쪽)
max_img = ordfilt2(img, 25, ones(5,5));
figure(2), imshow(max_img);
title("3 - (2) maximum");

% (3) ordfilt2 함수를 사용하여 영상에 5x5 Median filter 적용하세요. (강의자료 36~38쪽)
med_img = ordfilt2(img, 13, ones(5,5));
figure(3), imshow(med_img);
title("3 - (3) median");
```

display

(1)에 대한 설명

최소값 필터를 적용하면 필터 영역 안에서 가장 밝기 값이 낮은 값을 선택합니다. 따라서 전체적으로 영상의 밝기가 어두워지며, zero padding을 했기 때문에 가장자리에 검은 테두리가 생깁니다.

(2)에 대한 설명

최대값 필터를 적용하면 필터 영역 안에서 가장 밝기 값이 높은 값을 선택합니다. 따라서 전체적으로 영상의 밝기가 밝아집니다.

4

MATLAB code

```
% (1) 이상적인 저역통과 필터링을 주파수 영역에서 수행하세요. 디스플레이할 내용은 다음과 같습니다: 원본
  ※ 영상, 필터, 주파수 도메인에서의 필터링 결과, 영상 도메인에서의 필터링 결과 (강의자료 47~49쪽)
  [x, y] = meshgrid(-128:127, -128:127);
  z = sqrt(x.^2 + y.^2);
  c = (z<15);
  cf = fftshift(fft2(img));
  cfl = cf.*c;
  cfli = ifft2(cfl);
  figure(1); imshow(img);
  figure(2); imshow(c);
  figure(3); fftshow(cfl,'log');
  figure(4); fftshow(cfli, 'abs');
% (2) 이상적인 고역통과 필터링을 주파수 영역에서 수행하세요. 디스플레이할 내용은 다음과 같습니다: 원본
% 영상, 필터, 주파수 도메인에서의 필터링 결과, 영상 도메인에서의 필터링 결과 (강의자료 50~52쪽)
[x, y] = meshgrid(-128:127, -128:127);
z = sqrt(x.^2 + y.^2);
c = (z>15);
cf = fftshift(fft2(img));
cfh = cf.*c;
cfhi = ifft2(cfh);
figure(1); imshow(img);
figure(2); imshow(c);
figure(3); fftshow(cfh, 'log');
figure(4); fftshow(cfh|i,'abs');
% (3) 가우시안 저역통과 필터링을 주파수 영역에서 수행하세요. 디스플레이할 내용은 다음과 같습니다: 원본
 % 영상, 필터, 주파수 도메인에서의 필터링 결과, 영상 도메인에서의 필터링 결과 (강의차료 62~63쪽)
_% - 가우시안 필터의 최대값을 1로 만들어 주기 위해 fspecial로 필터 g를 만들고 g=g/max(g(:))를 해주세요
 g = fspecial('gaussian', 256, 10);
 g = g/\max(g(:));
 cf=fftshift(fft2(img));
 cfg=cf.*g;
 cfgi = ifft2(cfg);
 figure(1); imshow(img);
 figure(2); imshow(g);
 figure(3); fftshow(cfg, 'log');
 figure(4); fftshow(cfgi, 'abs');
```

```
% (4) 가우시안 고역통과 필터링을 주파수 영역에서 수행하세요. 디스플레이할 내용은 다음과 같습니다: 원본
% 영상, 필터, 주파수 도메인에서의 필터링 결과, 영상 도메인에서의 필터링 결과 (강의자료 65쪽)
% - 가우시안 필터의 최대값을 1로 만들어 주기 위해 fspecial로 필터 g를 만들고 g=g/max(g(:))를 해주세요
g = fspecial('gaussian', 256, 10);
g = 1 - g/max(g(:));
cf=fftshift(fft2(img));
cfg=cf.*g;
cfgi = ifft2(cfg);
figure(1); imshow(img);
figure(2); imshow(g);
figure(3); fftshow(cfg,'log');
figure(4); fftshow(cfgi, 'abs');
                                display
                            Figure 2
                 - □ ×
파일(F 편집(E 보기(V 삽입(I 툴(T, 데스크탑(I 창(W 도움말(F ㅋ 파일(F 편집(E 보기(V 삽입(I 툴(T, 데스크탑(I 창(W 도움말(F ㅋ
含目們田日前
파일(F 편집(E 보기(V 삽입(I 툴(T, 데스크탑(I 창(W 도움말(F > T) 파일(F 편집(E 보기(V 삽입(I 툴(T, 데스크탑(I 창(W 도움말(F > T)
```


(5) 저역통과 필터링과 고역통과 필터링의 효과에 대해 각각 한 줄 이상으로 설명하세요.

저역통과 필터링을 거칠 경우 DC 성분을 포함해 밝기 값의 변화가 크기 않은, 면에 해당하는 성분들만 남고 edge와 같이 밝기 값 변화가 심한 부분은 제거됩니다. 따라서 이미지가 전체적으로 뿌옇고 흐려 보입니다.

반면 고역통과 필터를 거쳤을 경우 우선 DC 성분이 제거되기 때문에 전체적으로 검은색을 띕니다. 또한 밝기 값 차이가 심한 면과 면의 경계 부분에 해당하는 성분들이 주로 남아, 이미 지의 디테일을 뚜렷하게 확인할 수 있습니다.