Presentazione

lunedì 4 luglio 2022

Tempo totale stimato = 12 minuti

- Pagina 2 30 secondi
 - o Cos'é il path planning?
 - Problema di guidare il robot verso il goal
 - Evitare gli ostacoli non noti a priori
 - Ottimizzare la traiettoria
 - o Di quali informazioni siamo in possesso riguardo il robot e gli ostacoli?
 - Posizione e orientamento
 - Degli ostacoli conosciamo posizione e velocità
- Pagina 3 1 minuto
 - o Strumento matematico molto utilizzato? Potenziali artificiali
 - Funzioni in due variabili
 - Con forme per guidare il robot verso un punto di goal (obiettivo)
 - Classicamente di due tipi
 - ☐ Attrattivo: unico punto di minimo nel goal
 - ☐ Repulsivo: unico punto di massimo nell'ostacolo, nullo altrove oltre una soglia
 - Facendone l'antigradiente si ottiene una funzione da R2 a R2 che esprime delle velocità che puntano verso il minimo della funzione
- Pagina 4 1 minuto
 - o Come si utilizzano i due potenziali (attrattivo e repulsivo)?
 - Si sommano per ottenere un potenziale totale
 - Il robot seguirà in ogni istante il suo antigradiente perché il suo obiettivo é minimizzare la funzione potenziale totale
 - Verrà in pratica attratto dal goal e contemporaneamente respinto dagli ostacoli
 - o Problema con questo approccio?
 - Minimi locali dovuti ad un annullamento dell'antigradiente consguente alla somma di potenziali
- Pagina 5 30 secondi
 - O Un alternativa alla somma di potenziali?
 - Potenziale bypassante invece del repulsivo per evitare gli ostacoli
 - Punti scritti sulla slide
- Pagina 6 1 minuto
 - Come si usa il potenziale bypassante?
 - Bisogna switchare tra due potenziali (attrattivo e bypassante)
 - In ogni istante si seguirà un solo potenziale alla volta
 - o Statechart
 - Due macrostati e due sottostati ciascuno
 - Ogni stato elementare ha un suo antigradiente
 - L'antigradiente fornisce una velocità di riferimento al robot
- Pagina 7 30 secondi
 - Come viene implementato l'algoritmo?
 - Con l'architettura in figura
 - L'entry point é un ciclo che alterna chiamate ad ogni modulo
 - Prima viene localizzato l'ostacolo e visto se dà fastidio
 - Poi viene chiesto allo stato in cui si trova il robot di decidere in base al rilevamento
 - Poi viene fatto muovere il robot
 - Tutto con un tempo di campionamento
 - Ora affrontiamo come sono implementati i singoli moduli
- Pagina 8 10 secondi
 - o Slide autoesplicativa
- Pagina 9 20 secondi
 - o II meccanismo di switching a stati si realizza con il design pattern state
 - SwitchingRObot ha un campo di tipo RobotState
 - RobotState offre un metodo decision (utlizzato nella funzione start) che viene ridefinito dalle sottoclassi
 - In pratica ogni sottoclasse esprime uno stato elementare e definisce un comportamente state-specific
 - RobotState ha anche due campi gradX e gradY che sono gli antigradienti
 - Lo switching avviene proprio nel metodo decision e si concretizza nell'assegnazione a RobotState di un altro sottotipo
 - o Ora approfondiamo come funziona matematicamente lo switching
- Pagina 10 1 minuto
 - o Si controlla qual é la velocità dell'ostacolo

- o Si calcola l'angolo phi tra robot e ostacolo (figura sx)
- o Poi si trasforma questa velocità con una matrice di rotazione per portarla nel sistema di riferimento di phi
- o In pratica stiamo vedendo dove il robot dal punto di vista dell'angolo phi (figura dx)
- o Per calcolare il verso vale relazione in slide
- Pagina 11 1 minuto
 - o L'ostacolo virtuale si calcola con le condizioni di tangenza
 - o Quali sono queste condizioni di tangenza? (riferimento a figura sx)
 - Tra movimento robot e potenziale bypassante virtuale
 - Tra potenziale bypassante virtuale e bypassante reale
 - Tra bypassante reale e attrattivo
 - Per non entrare in dead loop bisogna controllare che la distanza del robot dal goal non sia maggiore rispetto alla distanza di P2 dal goal
- Pagina 12 20 secondi
- Pagina 13 40 secondi
- Pagina 14 1 minuto
- Pagina 15 20 secondi
- Pagina 16 40 secondi
- Pagina 17 30 secondi
- Pagina 18 30 secondi
- Pagina 19 30 secondi
- Pagina 20 30 secondi