$\sigma = \frac{N}{A} = \frac{F}{A}$ bzw.	$= \frac{F}{A} \qquad \text{bzw.} \qquad \sigma(x) = \frac{N(x)}{A(x)} \qquad \qquad F \qquad x$		$\left[\frac{N}{mm^2} = MPa\right] \qquad \begin{array}{c} \sigma > 0 \to \text{Zugspannung} \\ \sigma < 0 \to \text{Druckspannur} \end{array}$	
Formzahl $lpha_k$ bei Kerben:	$\sigma_{max} = \alpha_k \ \sigma_n$	σ_n σ_n σ_n σ_n	$\sigma_{vorh} = \frac{F}{A}$	$\sigma_{zul} = \frac{\sigma_F}{S_{erf}}$ $\sigma_{vorh} \le \sigma_{zul}$
$\varepsilon(x) = \frac{du}{dx}$	bzw. $(\varepsilon = const)$	$\varepsilon = \frac{\Delta l}{l} = \frac{l - l_0}{l_0}$	$=\frac{N}{EA}$	$\varepsilon>0$ $ ightarrow$ Verlängerung $\varepsilon<0$ $ ightarrow$ Verkürzung
$\sigma = E \cdot \varepsilon$	Stahl	E = 210.000 MF	Pa	E – Elastizitätsmodul
$u = \int\limits_{(l)} \frac{N}{EA} dx$	bzw. $(N, EA = const)$	$\Delta l = u = \frac{N \cdot l}{EA}$	$(0 \le x \le l)$	EA – Dehnsteifigkeit
Gesamtdehnung: $\varepsilon = \frac{\sigma}{E}$	$+ \alpha_T \Delta T$	Stahl: $\alpha_T = 1, 2 \cdot 1$	$0^{-5} K^{-1}$	$lpha_T$ – Ausdehnungskoeffizient
Verschiebung: $u = \int_{(l)} \frac{N}{EA} dx + \int_{(l)} \alpha_T \Delta T dx$ bzw. bzw. $(N, EA, \alpha_T, \Delta T = const)$ $u = \frac{N \cdot l}{EA} + \alpha_T \Delta T \cdot l$				$\mu = \frac{N \cdot l}{EA} + \alpha_T \Delta T \cdot l$
 Vorgehensweise bei 1-fach stat. unbest. Systemen Statisch bestimmtes "0"-System durch Weglassen der -statisch unbestimmten- Kraft X Belastung → gegebene Belastung "1"-System: Lagerung - wie "0"-System, Belastung - statisch Unbestimmte Last mit Größe 1 , ohne die gegebene Belastung Für "0"- und "1"-System - Lagerreaktionen, Schnittgrößen, Verformungen Geometrische Verträglichkeitsbedingung α₁X + α₀ = 0 Daraus wird die -statisch unbestimmte- Kraft berechnet. Superposition: Größen im stat. unbest. System = Größen im "0"-System + Größen im "1"-System · X 				
	$\sigma = \frac{N}{A} = \frac{F}{A} \qquad \text{bzw.}$ Formzahl α_k bei Kerben: $\varepsilon(x) = \frac{du}{dx}$ $\sigma = E \cdot \varepsilon$ $u = \int_{(I)} \frac{N}{EA} dx$ Gesamtdehnung: $\varepsilon = \frac{\sigma}{E}$ Verschiebung: $u = \frac{\sigma}{E}$ Vorgehensweise bei 1- 1. Statisch bestimm Belastung \rightarrow gege 2. "1"-System: Lage Unbestimmte Lage Unb	$\sigma = \frac{N}{A} = \frac{F}{A} \qquad \text{bzw.} \qquad \sigma(x) = \frac{N(x)}{A(x)}$ Formzahl α_k bei Kerben: $\sigma_{max} = \alpha_k \ \sigma_n$ $\varepsilon(x) = \frac{du}{dx} \qquad \text{bzw.}$ $(\varepsilon = const)$ $\sigma = E \cdot \varepsilon \qquad Stahl:$ $u = \int_{(l)} \frac{N}{EA} dx \qquad \text{bzw.}$ $(N, EA = const)$ Gesamtdehnung: $\varepsilon = \frac{\sigma}{E} + \alpha_T \ \Delta T$ $Verschiebung: \qquad u = \int_{(l)} \frac{N}{EA} dx + \int_{(l)} \alpha_T \ \Delta T$ $Vorgehensweise bei 1-fach stat. unbest.$ 1. Statisch bestimmtes "0"-System durch Belastung \rightarrow gegebene Belastung 2. "1"-System: Lagerung - wie "0"-System Unbestimmte Last mit Größe 1, ohne construction of the system of	Formzahl α_k bei Kerben: $\sigma_{max} = \alpha_k \ \sigma_n$ $\varepsilon(x) = \frac{du}{dx} \qquad \qquad$	Formzahl α_k bei Kerben: $\sigma_{max} = \alpha_k \ \sigma_n$ $\varepsilon(x) = \frac{du}{dx} \qquad bzw. \qquad \varepsilon = \frac{\Delta l}{l} = \frac{l - l_0}{l_0} = \frac{N}{EA}$ $\varepsilon(x) = \frac{du}{dx} \qquad bzw. \qquad \varepsilon = \frac{\Delta l}{l} = \frac{l - l_0}{l_0} = \frac{N}{EA}$ $\sigma = E \cdot \varepsilon \qquad Stahl: \qquad E = 210.000 \ MPa$ $u = \int_{(l)} \frac{N}{EA} dx \qquad bzw. \qquad (N, EA = const) \qquad \Delta l = u = \frac{N \cdot l}{EA} \qquad (0 \le x \le l)$ Gesamtdehnung: $\varepsilon = \frac{\sigma}{E} + \alpha_T \Delta T$ $Stahl: \qquad \alpha_T = 1, 2 \cdot 10^{-5} \ K^{-1}$ Verschiebung: $u = \int_{(l)} \frac{N}{EA} dx + \int_{(l)} \alpha_T \Delta T \ dx$ $Vorgehensweise bei 1-fach stat. unbest. Systemen$ 1. Statisch bestimmtes "0"-System durch Weglassen der -statisch unbestimmten- K. Belastung \rightarrow gegebene Belastung 2. "1"-System: Lagerung - wie "0"-System, Belastung - statisch Unbestimmte Last mit Größe 1, ohne die gegebene Belastung 3. Für "0"- und "1"-System - Lagerreaktionen, Schnittgrößen, Verformungen 4. Geometrische Verträglichkeitsbedingung $\alpha_1 X + \alpha_0 = 0$ Daraus wird die -statisch unbestimmte- Kraft berechnet.

2. Mehrdimensio	onale Zusammenhänge	
Spannungs- komponenten:	$\sigma_{ik} = \begin{pmatrix} \sigma_{x} & \tau_{yx} & \tau_{zx} \\ \tau_{xy} & \sigma_{y} & \tau_{zy} \\ \tau_{xz} & \tau_{yz} & \sigma_{z} \end{pmatrix} \qquad \begin{array}{l} \textit{Zeile - gleiche Richtung} \\ \textit{Spalte - gleiche Schnittfläch} \end{array}$	e t_{yz} t_{yx} t_{xy} t_{xy}
Schubspannungen:	$ au_{xy} = au_{yx}$ $ au_{yz} = au_{zy}$ $ au_{zx} = au_{xz}$	T _Z T _Z
Einachsiger Spannungzustand (Zug/Druck):	$\sigma_{\xi} = \frac{\sigma_{x}}{2} + \frac{\sigma_{x}}{2} \cos 2\varphi$ $\tau_{\xi\eta} = -\frac{\sigma_{x}}{2} \sin 2\varphi$	$A=ht$ $A_{\varphi} = \frac{h}{\cos \varphi} t$
Zweiachsiger (ebener) Spannungszustand:	$\sigma_{\xi} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\varphi + \tau_{xy} \sin 2\varphi$ $\sigma_{\eta} = \frac{\sigma_{x} + \sigma_{y}}{2} - \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\varphi - \tau_{xy} \sin 2\varphi$ $\tau_{\xi\eta} = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\varphi + \tau_{xy} \cos 2\varphi$	$\begin{array}{c} \sigma_y \\ \tau_{yx} \\ \tau_{yx} \\ \tau_{yx} \\ \sigma_y \end{array}$ $\begin{array}{c} \sigma_x \\ \tau_{yx} \\ \sigma_x \\ \sigma_y \\ \sigma_x $
Mohrscher	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 → τ - positiv, wenn es ein positives Moment um die dritte Achse (z) bildet → φ im Lageplan - positiv <u>entgegen</u> dem Uhrzeigersinn (wenn z aus der Ebene heraus) → im Spannungskreis wird 2φ positiv <u>im</u> Uhrzeigersinn aufgetragen
Spannungskreis:	Haupt- spannungen: $\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_y}$	$\tan 2\varphi_0 = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$
	Maximale Schubspannungen: $\tau_{max,12} = \frac{\sigma_1 - \sigma_2}{2}$	$\tan 2\varphi_1 = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$

Verzerrungszustand:	1 1	ransformation in der Ebene: $\varepsilon_{\xi} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{x}}{2}$ auptspannungen: $\varepsilon = \begin{bmatrix} \varepsilon_{1} & 0 & 0 \\ 0 & \varepsilon_{2} & 0 \\ 0 & 0 & \varepsilon_{3} \end{bmatrix}$ Winkelve	4
	Dehnungen:	Normalspannungen:	
	$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu \sigma_{y} - \nu \sigma_{z}) + \alpha_{T} \Delta T$	$\sigma_{x} = \frac{E}{1+\nu} \Big[\varepsilon_{x} + \frac{\nu}{1-2\nu} e \Big] - \frac{E}{1-2\nu} \alpha_{T} \Delta T$	e – Volumenänderung
Elastizitätsgesetz:	$\varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x - \nu \sigma_z) + \alpha_T \Delta T$	$\sigma_{x} = \frac{E}{1+\nu} \left[\varepsilon_{x} + \frac{\nu}{1-2\nu} e \right] - \frac{E}{1-2\nu} \alpha_{T} \Delta T$ $\sigma_{y} = \frac{E}{1+\nu} \left[\varepsilon_{y} + \frac{\nu}{1-2\nu} e \right] - \frac{E}{1-2\nu} \alpha_{T} \Delta T$	$e = \varepsilon_x + \varepsilon_y + \varepsilon_z + 3\alpha_T \Delta T$
	$\varepsilon_z = \frac{1}{E} (\sigma_z - \nu \sigma_x - \nu \sigma_y) + \alpha_T \Delta T$	$\sigma_z = \frac{E}{1+\nu} \Big[\varepsilon_z + \frac{\nu}{1-2\nu} e \Big] - \frac{E}{1-2\nu} \alpha_T \Delta T$	ν – Querkontraktionszahl
	$\tau_{xy} = G\gamma_{xy}$	$ \tau_{yz} = G\gamma_{yz} $ $ \tau_{zx} = G\gamma_{zx} $	G – Schubmodul
Festigkeits- hypothesen:	Normalspannungshypothese:	$\sigma_v^{(N)} = \frac{\sigma_x}{2} + \sqrt{\frac{{\sigma_x}^2}{4} + {\tau_{xy}}^2} \qquad \qquad \underset{\rightarrow}{\rightarrow} \text{spröd}$ $\rightarrow \text{Trenn}$	e Werkstoffe bruch
$\rightarrow \text{ für Balken} $ $(\sigma_x \neq 0, \tau_{xy} \neq 0)$	Schubspannungshypothese:	$\sigma_v^{(S)} = \sqrt{{\sigma_\chi}^2 + 4 {\tau_{\chi y}}^2} \qquad \qquad \begin{array}{c} \rightarrow \text{ z\"{a}he V} \\ \rightarrow \text{ Fließe} \end{array}$	Werkstoffe en
	Gestaltänderungsenergiehypothese:	$\sigma_{v}{}^{(G)} = \sqrt{{\sigma_{\chi}}^2 + 3 \; \tau_{\chi y}{}^2} \qquad \qquad \rightarrow \text{z\"{a}he V} \\ \rightarrow \text{Fließe}$	Werkstoffe (Standard für Stahl) n

3. Biegung						
	$\sigma_x(x,z) = \frac{M_y(x)}{I_y(x)}z$ bzw. $\sigma_x = \frac{M_y}{I_y}z$ Spo	$annung = \frac{Schnittgröße}{Querschnittsgröße}Koord$	Annahme: Spannungen sind linear über den Querschnitt verteilt!			
	$\sigma_{X}(x,z) = \frac{M_{y}(x)}{I_{y}(x)}z \text{bzw.} \sigma_{x} = \frac{M_{y}}{I_{y}}z Spannung = \frac{Schnittgr\"{o}\&e}{Querschnittsgr\"{o}\&e}Koordinate \frac{Annahme:}{Spannungen sind linear \"{u}ber} \\ \sigma_{max} = \frac{M_{y}}{I_{y}}z_{max} = \frac{M_{y}}{W_{y}} W_{y} = \frac{I_{y}}{ z_{max} } \frac{! \text{Vorsicht, bei Anwendung des}}{\text{widerstandsmomentes besonders bei}} \\ W_{y} - \text{Widerstandsmoment}$					
	Aufgabentypen:					
	1. Nachweis: - geg.: Geometrie, Lasten, Sicherheit S_{erf} , Werkstoffwiderstand R					
Normalspannungen:	- ges.: $\sigma_{max} \leq \sigma_{zul}$ $\sigma_{zul} = \frac{R}{S}$ σ_{m}	$max = \frac{max}{W_{min}}$				
	2. Tatsächliche Sicherheit, Auslastung: - geg.: Geometrie, Lasten, Sicherheit S_e	$_{rf}$, Werkstoffwiderstand $\it R$				
	- ges.: $S_{vorh} = \frac{R}{\sigma_{max}} \le S_{erf}$ $a = \frac{\sigma_n}{\sigma_2}$	$\frac{max}{max} = \frac{\sigma_{max} S_{erf}}{R}$				
	3. max. Last:					
	- geg.: Geometrie, Sicherheit S_{erf} , Werkstoffwiderstand R - ges.: $M_{max} \leq W \sigma_{zul}$					
	4. <u>Dimensionierung:</u>					
	- geg.: Teil der Geometrie, Lasten, Sicherheit S_{erf} , Werkstoffwiderstand R - ges.: i.d.R. Querschnittsabmessung $W_{erf} \geq \frac{M_{max}}{\sigma_{zul}}$					
	16		.Ordnung DGL 4.Ordnung			
Biegelinie:	DGL 2. Ordnung: $w'' = -\frac{M_y}{EI_y}$ Randbeding	gungen:	$w = 0 \qquad \qquad w = 0, M = 0$			
	DGL 4. Ordnung: $EI_y w^{IV} = q_z$	4	0, w' = 0 $w = 0, w' = 0$			
	Vollquerschnitte: $ au_{xz} = - \frac{Q_z(x) S_y(z)}{I_y b(z)}$	$S_{y}(z) = \int_{A^{*}} z dA = z_{S} \cdot A^{*} \qquad S_{y}(z)$) - statisches Moment der abgeschnittenen Fläche			
Schub infolge Querkraft:		$S_y(s) = \int_{A^*} z dA = z_S \cdot A^*$ vere Bere				
	Dünnwandige geschlossene Querschnitte:	 für dünnwandig geschlossene gleich S gesetzt werden bei Symmetrie kann auf der Symi im Schnitt sind τ_{xs} = 0 → kann als offenes Profil berechnet 	metrieachse geschnitten werden –			
	Schubmittelpunkt: M S M S	s M=S M -	kungslinie einer äußeren Kraft durch → keine Torsion Torsion → Drehung um <i>M</i>			

Formelsammlung TM 2

		M_{ν} , M_{ν}			
		Biegung um y-Achse: $\sigma_x = \frac{1}{I_y}z$ $w'' = -\frac{1}{EI_y}$			
		Biegung um y-Achse: $\sigma_x = \frac{M_y}{I_y} z$ $w'' = -\frac{M_y}{EI_y}$ $y = \frac{1}{z} \sum_{z=1}^{M_y} z$ Biegung um z-Achse: $\sigma_x = -\frac{M_z}{I_z} y$ $v'' = +\frac{M_z}{EI_z}$ $z = \frac{1}{z} \sum_{y=1}^{M_z} z$			
	y, z sind Hauptachsen:	Spannungen werden addiert: $\sigma_x = \frac{M_y}{I_y} z - \frac{M_z}{I_z} y$			
		Nulllinie $n-n$: $\sigma_x = \frac{M_y}{I_y} z - \frac{M_z}{I_z} y = 0$			
		Winkel β von y -Achse zur $n-n$: $\tan \beta = \frac{z}{y} = \frac{M_z \ I_y}{M_y \ I_z}$			
		Biegung um y-Achse: $Ew'' = \frac{-M_y I_z + M_z I_{yz}}{I_y I_z - I_{yz}^2}$			
Schiefe Biegung:		Biegung um z-Achse: $Ev'' = \frac{M_z I_y - M_y I_{yz}}{I_y I_z - I_{yz}^2}$			
	y, z gehen durch S, aber sind keine Hauptachsen:	Spannung: $\sigma_x = \frac{(M_y I_z - M_z I_{yz})z - (M_z I_y - M_y I_{yz})y}{I_y I_z - I_{yz}^2}$			
		Winkel β : $\tan \beta = \frac{z}{y} = \frac{M_z I_y - M_y I_{yz}}{M_y I_z - M_z I_{yz}}$			
		Verschiebung in x-Richtung: $u=-(zw'+yv')$ w' – Durchbiegung um y-Achse v' – Durchbiegung um z-Achse			
	M_y und M_z - Sonderfall	Gesamtbiegemoment: $M_{b,ges} = \sqrt{{M_y}^2 + {M_z}^2}$			
	Kreis oder Kreisring	Spannung: $\sigma_x = \frac{M_b}{I_y} z$ Winkel β : $\tan \beta = \frac{M_z}{M_y}$			
Biegung M_y mit	Spannung:	$\sigma_x = \frac{N}{A} + \frac{M_y}{I_y} z$ $z_0 = -\frac{N I_y}{A M_y}$ $z = \frac{N I_y}{\sigma_x(M_y)} \sigma_x(N) \sigma_x \text{ ges}$			
Längskraft N:	Versatz zu S in z -Richtung: $ z_0 = -\frac{N I_y}{A M_y} $ $ z \cdot \frac{\sigma_x(M_y)}{\sigma_x(N)} \frac{\sigma_x(N)}{\sigma_x(N)} $				
Biegung M_y und M_z mit Längskraft N :	Spannung: $\sigma_x = \frac{N}{A} + \frac{M_y}{I_y} z - \frac{M_z}{I_z} y$				
	Winkel β von y -Achse zur $n-n$: $\tan \beta = \frac{z}{y} = \frac{M_z I_y}{M_y I_z}$				
	Versatz zu S in z-Richtu	z zu S in z-Richtung: $z_0 = -\frac{N I_y}{A M_y}$			

4. Torsion							
Torsionssteifigkeit:	$GI_t \varphi' = M_t$	bei unbekanntem M_t (statisch unbekannte Systeme):	$(GI_t q)$	$(\rho')' = -m_t$	bzw. $(GI_t = const)$	$GI_t \varphi'' = -$	$-m_t$
Verdrehung:	$\varphi = \int_{0}^{l} \frac{M_{t}(}{GI_{t}(}$	$\frac{(x)}{(x)}dx \qquad \qquad \begin{aligned} \text{bzw.} \\ (GI_t = const) \\ (M_t = const) \end{aligned}$	φ	$=\frac{M_t \; l}{GI_t}$	vom Bogen-	ins Gradmaß: $$	$y = \frac{180^{\circ}}{\pi} x$
Spannung:	$\tau = \frac{M_t}{I_t} r$	bzw. $\tau_{max} = \frac{M_t}{I_t} R = \frac{M}{W}$	<u>t</u> t	$W_t = \frac{I_t}{R}$		rsionswiderstandsn	noment
0 1 111 110	Kreis:	$I_t = I_p = \frac{\pi R^4}{2} = \frac{\pi D^4}{32}$		V	$W_t = \frac{\pi R^3}{2} =$	$=\frac{\pi D^3}{16}$	R
Querschnittsgrößen:	Kreisring: $I_t = I_p$	$= \frac{\pi}{2} (R_a^4 - R_i^4) = \frac{\pi}{32} (D_a^4 -$	D_i^4)	$W_t = \frac{\pi}{2} \frac{(R)}{R}$	$\frac{R_a^4 - R_i^4)}{R_a} =$	$\frac{\pi}{16} \frac{\left(D_a^4 - D_i^4\right)}{D_a}$	R_s
	nach Spannung:	$\tau_{max} \le \tau_{zul}$	nach Ve	erformung:		$\varphi_{max} \leq \varphi_{zu}$!
Dimensionierung:	z.B. für Kreis nach Spa	annung: $\frac{M_t}{W_t} = \frac{M_t}{\frac{\pi R^3}{2}}$	$- \leq \tau_{zul}$			$R \ge \sqrt[3]{\frac{2 M_t}{\pi \tau_{zul}}}$	

Formelsammlung TM 2

Dünnwandig	1. Bredtsche Formel:	$\tau = \frac{T}{t} = \frac{M_t}{2 A_m t(s)}$	$\tau_{max} = \frac{M_t}{W_t} = \frac{M_t}{2 A_m t_{min}}$
geschlossene Querschnitte:	2. Bredtsche Formel:	$I_t = \frac{4 A_m^2}{\oint \frac{ds}{t(s)}}$	bzw. $(t_i = const) \\ (b_i = const)$ $I_t = \frac{4 A_m^2}{\sum \frac{b_i}{t_i}}$
Dünnwandig offene Querschnitte:	n dünne Rechtecke:	$ au_i = rac{M_t}{I_t} t_i$ bzw. $ au_{max} = rac{M_t}{I_t} t_m$	$m_{max} = \frac{M_t}{W_t}$ $W_t = \frac{I_t}{t_{max}}$ $I_t = \frac{1}{3} \sum_{i=1}^{n} b_i t_i^3$

5. Energiemeth	oden
	Allgemein: $u = \sum_{i=1}^{n} \int\limits_{(l_{i})} \left(\frac{N_{i} \overline{N}_{i}}{EA_{i}} + \frac{M_{y,i} \overline{M}_{y,i}}{EI_{y,i}} + \frac{M_{z,i} \overline{M}_{z,i}}{EI_{z,i}} + \frac{M_{t,i} \overline{M}_{t,i}}{GI_{t,i}} + \frac{k_{z,i} Q_{z,i} \overline{Q}_{z,i}}{GA_{i}} + \frac{k_{y,i} Q_{y,i} \overline{Q}_{y,i}}{GA_{i}} \right) dx_{i}$
	bei ebenen Balken und Rahmen – nur Biegung: $u = \sum_{i=1}^{n} \int_{(l_i)} \frac{M_{y,i} \ \overline{M}_{y,i}}{EI_{y,i}} dx_i$ • ansetzen von virtueller Kraft \rightarrow Ergebnis – vahre Verschiebung • ansetzen von virtuellerem Moment \rightarrow Ergebnis – vahre Verdrehung • ansetzen von virtuellerem Kraftepaar • ansetzen von virtuellerem von
Arbeitsgleichung:	bei Fachwerkstäben – nur Zug/Druck, $N=const$: $u=\sum_{i=1}^{n}\frac{N_{i}\;\overline{N}_{i}\;l_{i}}{EA_{i}}$ • ansetzen von virtuellerem Kräftepaar (gleiche Wirkungsline, entgegengesetzt) \rightarrow Ergebnis – wahre relative Verschiebung • ansetzen von virtuellerem Momentepaar \rightarrow Ergebnis – wahre relative Verdrehung
	bei räumlichen Balken und Rahmen – nur Momente: $u = \sum_{i=1}^n \int\limits_{(l_i)} \left(\frac{M_{y,i} \ \overline{M}_{y,i}}{E I_{y,i}} + \frac{M_{z,i} \ \overline{M}_{z,i}}{E I_{z,i}} + \frac{M_{t,i} \ \overline{M}_{t,i}}{G I_{t,i}} \right) dx_i$
	bei ebenen gemischten Systemen aus Rahmen (nur Biegung, n Bereiche) und Fachwerkstäben (nur Zug/Druck, m Stäbe): $u = \sum_{i=1}^n \int\limits_{(l_i)} \frac{M_{y,i} \ \overline{M}_{y,i}}{EI_{y,i}} dx_i + \sum_{k=1}^m \frac{N_k \ \overline{N}_k \ l_k}{EA_k}$
Statisch unbestimmte Systeme:	Vorgehensweise bei k=1:- hier Formeln für ebene Balken und Rahmen - für andere Modelle - entsprechende Schnittgrößen und Integrale1. Grad der statischen Unbestimmtheit ermitteln2. Wählen statisch Unbestimmte, Hauptsystem (statisch bestimmt, kinematisch unveränderlich)3. Schnittgrößen für das "0"-System. Belastung - gegebene Belastung4. Schnittgrößen für das "1"-System. Belastung - die statisch Unbestimmte5. Berechnen:
	• für ein beliebiges statisch bestimmtes System: - virtuelle Kraft $\bar{1}$ und \bar{M} • Resessbage der Verschiebung: - Unbekannte sind Schriftungssen

Berechnen der Verschiebung:

Formelsammlung TM 2

