Probabilidad y Estadística I Semana 14

Pruebas de hipótesis: muestras pequeñas y varianzas

Profesor: Nicolás López MSc

Universidad del Rosario

Contenido

Consideraciones prácticas en la prueba de hipótesis

Pruebas de hipótesis para la media: muestras pequeñas

Pruebas de hipótesis para la diferencia de medias: muestras pequeñas

Pruebas de hipótesis para la varianza Una varianza Dos varianzas

Consideraciones prácticas en la prueba de hipótesis

Algunos comentarios

Algunos comentarios en las pruebas de hipótesis:

- 1. Si $\theta \in RR$ rechazamos H_0 soportando H_1 (la hipótesis que queremos soportar, la hipótesis de investigación que nos interesa).
- 2. Si $\theta \notin RR$ no rechazamos H_0 . Esto no implica que aceptamos H_0 . Podemos presentar el valor p en lugar de una conclusión respecto a H_0 para que la intepretabilidad sea del lector.
- 3. Si el valor p es muy pequeño, esto no implica que H_0 esté muy mal.
- 4. Significancia estadística no es lo mismo que significancia práctica.

Pruebas de hipótesis para la media: muestras pequeñas

Para los procedimientos usados hasta ahora se ha asumido que

$$Z = rac{\hat{ heta} - heta_0}{\sigma_{\hat{ heta}}} \sim_{ extit{TLC}, A} extsf{N}(0, 1)$$

Esto para $\theta = \mu$, $\theta = \mu_1 - \mu_2$, $\theta = p$, $\theta = p_1 - p_2$.

Pruebas de hipótesis para la media: muestras pequeñas

Suponga ahora que $X_1,...,X_n$ es una m.a. de tamaño n de una distribución normal con media y varianza desconocidas. Se tiene entonces que si \bar{X} y S denotan la media y desviación estándar muestral, bajo $H_0: \mu = \mu_0$

$$T = rac{ar{X} - \mu_0}{S/\sqrt{n}} \sim t_{gl=n-1}$$

Tiene distribución t con n-1 grados de libertad. Esta distribución es particularmente apropiada en muestras pequeñas y es muy parecida a la distribución normal estándar, en particular a medida que $gl \longrightarrow \infty$.

Pruebas de hipótesis para la media: muestras pequeñas

Distribución t: 1 - Función de distribución

r	0,25	0,2	0,15	0,1	0,05	0,025	0,01	0,005	0,0005
1	1,000	1,376	1,963	3,078	6,314	12,706	31,821	63,656	636,578
2	0,816	1,061	1,386	1,886	2,920	4,303	6,965	9,925	31,600
3	0,765	0,978	1,250	1,638	2,353	3,182	4,541	5,841	12,924
4	0,741	0,941	1,190	1,533	2,132	2,776	3,747	4,604	8,610
5	0,727	0,920	1,156	1,476	2,015	2,571	3,365	4,032	6,869
6	0,718	0,906	1,134	1,440	1,943	2,447	3,143	3,707	5,959
7	0,711	0,896	1,119	1,415	1,895	2,365	2,998	3,499	5,408
8	0,706	0,889	1,108	1,397	1,860	2,306	2,896	3,355	5,041
9	0,703	0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,781
10	0,700	0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,587
11	0,697	0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,437
12	0,695	0,873	1,083	1,356	1,782	2,179	2,681	3,055	4,318
13	0,694	0,870	1,079	1,350	1,771	2,160	2,650	3,012	4,221
14	0,692	0,868	1,076	1,345	1,761	2,145	2,624	2,977	4,140
15	0,691	0,866	1,074	1,341	1,753	2,131	2,602	2,947	4,073
16	0,690	0,865	1,071	1,337	1,746	2,120	2,583	2,921	4,015
17	0,689	0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,965
18	0,688	0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,922
19	0,688	0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,883
20	0,687	0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,850
21	0,686	0,859	1,063	1,323	1,721	2,080	2,518	2,831	3,819
22	0,686	0,858	1,061	1,321	1,717	2,074	2,508	2,819	3,792
23	0,685	0,858	1,060	1,319	1,714	2,069	2,500	2,807	3,768
24	0,685	0,857	1,059	1,318	1,711	2,064	2,492	2,797	3,745
25	0,684	0,856	1,058	1,316	1,708	2,060	2,485	2,787	3,725
26	0,684	0,856	1,058	1,315	1,706	2,056	2,479	2,779	3,707
27	0,684	0,855	1,057	1,314	1,703	2,052	2,473	2,771	3,689
28	0,683	0,855	1,056	1,313	1,701	2,048	2,467	2,763	3,674
29	0,683	0,854	1,055	1,311	1,699	2,045	2,462	2,756	3,660
30	0,683	0,854	1,055	1,310	1,697	2,042	2,457	2,750	3,646
40	0,681	0,851	1,050	1,303	1,684	2,021	2,423	2,704	3,551
60	0,679	0,848	1,045	1,296	1,671	2,000	2,390	2,660	3,460
120	0.677	0,845	1,041	1,289	1,658	1.980	2,358	2,617	3.373
00	0.674	0.842	1.036	1 282	1.645	1,960	2.326	2 576	3 290

Pruebas de hipótesis: muestras pequeñas

De manera similar al caso normal, se tiene que

- 1. Si $H_1: \mu > \mu_0$, $RR = \{t > t_{1-\alpha,gl}\}$.
- 2. Si H_1 : $\mu < \mu_0$, $RR = \{t < t_{\alpha,gl}\}$.
- 3. Si $H_1: \mu \neq \mu_0$, $RR = \{|t| < t_{1-\alpha/2,gl}\}$.

Pruebas de hipótesis para la media: muestras pequeñas Ejemplo

Ocho profesionales egresados del pregrado en estadísitca a sus 35 años han cotizado en promedio 2959 días de seguridad social con una desviación de 39.1 días. Para un egresado, el director de la carrera anuncia que se espera como mínimo un promedio de 3000 días cotizados a dicha edad, aunque en la realidad parece ser menor que esto. Con los datos observados, podría afirmarse que hay suficiente evidencia para contradecir al director de la carrera con una significancia del 0,025?

Pruebas de hipótesis para la media: muestras pequeñas Ejemplo

Se supone que se cuenta con una muestra aleatoria de observaciones $X_1,...,X_8$ y se busca probar la hipótesis basada en un estimador $\hat{\theta}=(\bar{X}-\mu_0)/(S/\sqrt{n})$ con distribución t con n-1 grados de libertad. Sea $\mu_0=3000$ un valor específico de θ :

$$\begin{cases} H_0: & \theta = 3000 \\ H_1: & \theta < 3000 \end{cases}$$

A medida que $\hat{\theta}$ se aleja más de θ_0 , esto soporta más a H_1 . Llega un punto en el que la diferencia lleva a que el estadístico caiga en RR. En este caso el estadístico es igual a:

$$t = \frac{2959 - 3000}{39.1/\sqrt{8}} = -2,966$$

Pruebas de hipótesis para la media: muestras pequeñas Ejemplo

Que como

$$RR = \left\{ \bar{X} : \frac{\bar{X} - \mu_0}{S/\sqrt{n}} < t_\alpha \right\} = \left\{ \bar{X} : \frac{\bar{X} - \mu_0}{S/\sqrt{n}} < -2,365 \right\}$$

El estadístico de prueba cae en RR y H_0 es rechazada a favor de H_1 a una significancia de $\alpha=0.025$. Es decir, hay suficiente evidencia para contradecir al director de la carrera con una confianza del 0.975.

Calcule el valor p para el estadístico de prueba calculado anteriormente.

Pruebas de hipótesis: muestras pequeñas

Ejemplo

Por definición y la dirección de la hipótesis alterna $H_1: \theta < 3000$ se tiene que

$$p_{\nu} = P(T < -2,9966)$$

Con $T\sim t_{gl=7}$. Dado que la tabla no abarca estos valores puntuales, se hace una aproximación, y vemos que 2,9966 (de manera simétrica a -2,9966) para una distribución $t_{gl=7}$ cae entre $t_{0,025}=2,365$ y $t_{0,01}=2,998$ por lo cual

$$0.010 \le p_{\nu} \le 0.025 \longrightarrow p_{\nu} \in [0.010; 0.025]$$

Contenido

Consideraciones prácticas en la prueba de hipótesis

Pruebas de hipótesis para la media: muestras pequeñas

Pruebas de hipótesis para la diferencia de medias: muestras pequeñas

Pruebas de hipótesis para la varianza Una varianza Dos varianzas

De manera semejante al caso de dos medias para una muestra grande, se tiene un análogo para muestras pequeñas. Si se tienen dos muestras independientes normales: $Y_{11},...,Y_{1n_1}$ de la población 1 y $Y_{21},...,Y_{2n_2}$ de la población 2 con media μ_1 y μ_2 respectivamente y varianza constante σ^2 (anteriormente asumimos varianzas diferentes para cada población).

Como estadístico de prueba se usa

$$T = \frac{(\bar{Y}_1 - \bar{Y}_2) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Con $T \sim t_{gl=n_1+n_2-2}$ y

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Y además \bar{Y}_1 , S_1^2 , \bar{Y}_2 , S_2^2 las medias y varianzas de cada muestra.

Si se busca probar la hipótesis

$$\begin{cases} H_0: & \mu_1 - \mu_2 = D_0 \\ H_1: & \mu_1 - \mu_2 < D_0 \longrightarrow RR = \{\bar{y_1} - \bar{y_2} < k\} \text{ \'o} \\ H_1: & \mu_1 - \mu_2 > D_0 \longrightarrow RR = \{\bar{y_1} - \bar{y_2} > k\} \text{ \'o} \\ H_1: & \mu_1 - \mu_2 \neq D_0 \longrightarrow RR = \{\bar{y_1} - \bar{y_2} < k_I\} \cup \{\bar{y_1} - \bar{y_2} > k_U\} \end{cases}$$

Con D_0 un valor constante y usualmente $D_0=0$, se tiene que bajo H_O

$$T = \frac{(\bar{Y}_1 - \bar{Y}_2) - D_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Con $T \sim t_{gl=n_1+n_2-2}$. El uso de la tabla de la distribución t delimita la RR para el estadístico T, dada por un valor de α y de manera correspondiente a la dirección de H_1 .

Ejemplo

Se tienen dos exámenes finales diferentes para la asignatura y se busca evaluar si existen diferencias en el tiempo esperado de respuesta con un $\alpha=0,05$. Para el primer examen se tiene que 9 profesores lo responden en 35.22 minutos, con una suma de desvíos cuadrados de 195.56 minutos². Para el segundo examen, otros 9 profesores tienen un tiempo promedio de respuesta de 31,56 minutos, con una suma de desvíos cuadrados de 160.22 minutos².

Ejemplo

Se tiene que

$$\begin{cases} H_0: & \mu_1 - \mu_2 = 0 \\ H_1: & \mu_1 - \mu_2 \neq 0 \end{cases}$$

El estadístico de prueba

$$T = \frac{(\bar{Y}_1 - \bar{Y}_2) - D_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

con $D_0=0$ y gI=18-2. Como la prueba es a dos colas se tiene la RR:

$$\{\bar{y}_1 - \bar{y}_2 < k_l\} \cup \{\bar{y}_1 - \bar{y}_2 > k_u\} = \{t < t_{\alpha/2, gl = 16}\} \cup \{t > t_{1-\alpha/2, gl = 16}\}$$

Como $t_{\alpha/2, gl=16}=2{,}120$ y por simetría de la distribución:

$$RR = \{t : t < -2,120 \cup t > 2,120\} = |t| > 2,120$$

Ejemplo

El valor calculado para el estadístico de prueba está dado por

$$t = \frac{(\bar{y}_1 - \bar{y}_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(35,22 - 31,56)}{4,716\sqrt{\frac{1}{9} + \frac{1}{9}}}$$

Con

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{195,56 + 160,22}{9 + 9 - 2} = 22,24$$

Contenido

Consideraciones prácticas en la prueba de hipótesis

Pruebas de hipótesis para la media: muestras pequeñas

Pruebas de hipótesis para la diferencia de medias: muestras pequeñas

Pruebas de hipótesis para la varianza Una varianza Dos varianzas

Para probar hipótesis respecto a la varianza poblacional se tiene posibles juegos de hipótesis análogos a los usados para las hipótesis de la media poblacional. Sea $X_1,...,X_n$ una m.a. normal con media μ y varianza σ^2

$$\begin{cases} H_0: & \sigma^2 = \sigma_0^2 \\ H_1: & \sigma^2 < \sigma_0^2 \text{ ó} \\ H_1: & \sigma^2 > \sigma_0^2 \text{ ó} \\ H_1: & \sigma^2 \neq \sigma_0^2 \end{cases}$$

Se usa

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

que bajo H_0 se distribuye $\chi^2_{gl=n-1}$

Note que si

$$\begin{cases} H_0: & \sigma^2 = \sigma_0^2 \\ H_1: & \sigma^2 < \sigma_0^2 \end{cases}$$

Si H_1 es cierto se tiene $\sigma^2<\sigma_0^2$ y así $S^2<\sigma_0^2$ pues S^2 se usa como estimador de σ^2 , con lo cual

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

bajo H_1 se hace $peque\~no$. Entre χ^2 sea menor, mayor evidencia hay a favor de $H_1:\sigma^2<\sigma_0^2$

Note ahora que bajo

$$\begin{cases} H_0: & \sigma^2 = \sigma_0^2 \\ H_1: & \sigma^2 > \sigma_0^2 \end{cases}$$

Si H_1 es cierto se tiene $\sigma^2>\sigma_0^2$ y así $S^2>\sigma_0^2$ pues S^2 se usa como estimador de σ^2 , con lo cual

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

bajo H_1 se hace *grande*. Entre χ^2 sea mayor, mayor evidencia hay a favor de $H_1:\sigma^2>\sigma_0^2$. En contraste con los anteriores estadísticos de prueba (estandarizados o no)

En contraste con los anteriores estadísticos de prueba (estandarizados o no), se tiene que el parámetro de interés está definido en $[0,+\infty)$ en lugar de $[-\infty,+\infty]$:

- Esto se traduce en que el estadístico de prueba (estandarizado o no) para la varianza sea siempre mayor a cero.
- Ya no tengo la simetría en los percentiles.

Volviendo a las posibles hipótesis:

$$\begin{cases} H_0: & \sigma^2 = \sigma_0^2 \\ H_1: & \sigma^2 < \sigma_0^2 \longrightarrow RR = \{s^2 < k\} \text{ ó} \\ H_1: & \sigma^2 > \sigma_0^2 \longrightarrow RR = \{s^2 > k\} \text{ ó} \\ H_1: & \sigma^2 \neq \sigma_0^2 \longrightarrow RR = \{s^2 < k_I\} \cup \{s^2 > k_U\} \end{cases}$$

Si fijamos $P(E1) = \alpha$ se tiene

$$\begin{cases} H_0: & \sigma^2 = \sigma_0^2 \\ H_1: & \sigma^2 < \sigma_0^2 \longrightarrow RR = \{\chi_c^2: \chi_c^2 < \chi_{\alpha,gl}^2\} \text{ ó} \\ H_1: & \sigma^2 > \sigma_0^2 \longrightarrow RR = \{\chi_c^2: \chi_c^2 > \chi_{1-\alpha,gl}^2\} \text{ ó} \\ H_1: & \sigma^2 \neq \sigma_0^2 \longrightarrow RR = \{\chi_c^2: \chi_c^2 < \chi_{\alpha/2,gl}^2\} \cup \{\chi_c^2: \chi^2 > \chi_{1-\alpha/2,gl}^2\} \end{cases}$$

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	χ^{2}_{025}	$\chi^{2}_{.010}$	χ^2_{008}
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

Ejemplo

La varianza en el diámetro de la rosca de un bombillo no debe ser mayor a 0.0002 cms. En una muestra de 10 bombillos se encontró una varianza de 0.003 cms. Con una confianza del 95 % pruebe la hipótesis subyacente en el enunciado.

Se tiene

$$\begin{cases} H_0: & \sigma^2 = 0,0002 \\ H_1: & \sigma^2 > 0,0002 \end{cases}$$

Bajo el supuesto que los diámetros medidos son normales, podemos usar como estadístico de prueba a

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

El valor observado del estadístico es igual a

$$\chi_c^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{9 \times 0,0003}{0,0002} = 13,5$$

Al buscar en la tabla se tiene $\chi^2_{0.95:gl=9}=16{,}919$

Ejemplo

Como

$$RR = \{\chi_c^2 : \chi_c^2 < \chi_{\alpha,gl}^2\} = \{\chi_c^2 : \chi_c^2 < 16,919\}$$

Y el valor calculado es $\chi_c^2=13,5$ no contamos con suficiente evidencia para rechazar H_0 con una confianza del 95 %.

Ejemplo

Calcule el valor p para el estadístico de prueba calculado anteriormente.

Ejemplo

Por definición y la dirección de la hipótesis alterna $H_1: \theta > 0,0002$ se tiene que

$$p_{\nu} = P(\chi^2 > 13.5)$$

Con $\chi^2 \sim \chi^2_{gl=9}$. Dado que la tabla no abarca estos valores puntuales, se hace una aproximación, y vemos que 13,5 para una distribución $\chi^2_{gl=9}$ cae entre $\chi^2_{0.9}=4,168$ y $\chi^2_{0.1}=14,684$ por lo cual

$$0.1 \le p_{\nu} \le 0.9 \longrightarrow p_{\nu} \in [0.1; 0.9]$$

El valor exacto puede encontrarse mediante el uso de R y es igual a 0.14126. Encuentre dicho valor mediante la función apropiada para complementar el ejercicio.

Contenido

Consideraciones prácticas en la prueba de hipótesis

Pruebas de hipótesis para la media: muestras pequeñas

Pruebas de hipótesis para la diferencia de medias: muestras pequeñas

Pruebas de hipótesis para la varianza Una varianza Dos varianzas

Cuando se desea comparar la varianza de dos poblaciones normales, si estas son iguales o no generalmente es la prueba a evaluar. Sea $X_{11},....,X_{1n_1}$ y $X_{21},....,X_{2n_2}$ ambas m.a. normales con media desconocida y varianzas $V(X_{i1}) = \sigma_1^2$ y $V(X_{i2}) = \sigma_2^2$ con σ_1^2 y σ_2^2 desconocidos:

$$\begin{cases} H_0: & \sigma_1^2 = \sigma_2^2 \\ H_1: & \sigma_1^2 < \sigma_2^2 \text{ ó} \\ H_1: & \sigma_1^2 > \sigma_2^2 \text{ ó} \\ H_1: & \sigma_1^2 \neq \sigma_2^2 \end{cases}$$

Usualmente se usa $H_1: \sigma_1^2 > \sigma_2^2$. Nuevamente esperamos que el estadístico de prueba considere la naturaleza no negativa de la varianza.

Se usa

$$F = rac{rac{(n_1-1)S_1^2}{\sigma_1^2} \bigg/ (n_1-1)}{rac{(n_2-1)S_2^2}{\sigma_2^2} \bigg/ (n_2-1)} = rac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2}$$

que bajo H_0 se distribuye $F_{gl_n=(n_1-1),gl_d=(n_2-1)}$

De manera semejante al caso anterior, note que cuando

$$\begin{cases} H_0: & \sigma_1^2 = \sigma_2^2 \\ H_1: & \sigma_1^2 > \sigma_2^2 \end{cases}$$

Si H_1 es cierto, se tiene que $\sigma_1^2/\sigma_2^2 > 1$ y así $S_1^2/S_2^2 > 1$ pues S_1^2 y S_2^2 se usan como estimadores de de las varianzas poblacionales correspondientes, con lo cual:

$$RR = \left\{ \frac{S_1^2}{S_2^2} > k \right\}$$

Donde k nuevamente depende de P(E1). Bajo H_0 se tiene que

$$F=\frac{S_1^2}{S_2^2}$$

Y RR resulta en

$$RR = \{F > F_{\alpha}\}$$

Donde $k = F_{\alpha}$ es el percentil $1 - \alpha$ de la distribución F correspondiente. Rosario

TABLA A.7 Puntos porcentuales superiores para la distribución F

Código R

- ightharpoonup qt(0.95,df = 10)
- ightharpoonup pt(0.718,df = 6)
- \triangleright pt(-2.966,df= 8-1)
- qchisq(0.9,df=5)
- ► 1- pchisq(13.5,df=10-1)
- ightharpoonup qf(0.95,4,1)
- ► 1-pf(10,9,9)

