Pengendali Intensitas Lampu Ruangan Berbasis Arduino UNO Menggunakan Metode Fuzzy Logic

Ganjar Turesna, Zulkarnain, Hermawan Teknik Elektro Universitas Langlang Buana

Abstrak

Untuk dapat mengenali obiek tertentu secara visual, manusia membutuhkan sebuah penerangan. Penerangan mempunyai pengaruh terhadap penglihatan manusia. Oleh karena itu diperlukan lampu sebagai sumber penerangan utama yang dapat menunjang penglihatan serta memberikan pengaruh terhadap fungsi ruangan tersebut. Saat pengguna lampu dalam ruangan menjalankan sistem atau menyalakan lampu maka sensor cahaya LDR menerima cahaya dari luar yang menyebabkan perubahan level tegangan input ke mikrokontroler yang selanjutnya diproses dengan output mikrokontroler berupa tegangan pulsa (PWM) untuk menyalakan lampu LED. Intensitas cahaya yang dihasilkan dari nyala lampu LED akan berbaur dengan cahaya dari luar menghasilkan cahaya ruang. Selanjutnya iluminasi ruang diukur oleh sensor cahaya (LDR) yang kemudian menghasilkan sinyal sebagai masukan umpan balik bagi mikrokontroler. Mikrokontroler akan terus mengolah sinyal masukan dan menghasilkan suatu nilai keluaran yang membentuk sistem pengendalian close loop.

Kata Kunci: LDR, Mikrokontroler, PWM, Lampu LED

1 Pendahuluan

Perkembangan ilmu pengetahuan dan teknologi telah banyak mengubah peradaban manusia. Salah satu dari teknologi tersebut adalah teknologi kontrol. Perkembangan teknologi kontrol saat ini mulai bergeser kearah otomatisasi yang menuntut pengunaan komputer, sehingga campur tangan manusia dalam pengontrolan sangat kecil. Sistem peralatan yang dikendalikan oleh komputer akan memberikan efisiensi, keamanan, dan ketelitian yang lebih jika dibandingkan dengan pengerjaan secara manual oleh manusia.

Penerangan mempunyai pengaruh terhadap penglihatan manusia. Intensitas penerangan dimaksudkan untuk memberikan penerangan yang optimalterhadap obyek dan keadaan di sekelilingnya. Oleh karena itu diperlukan sumber penerangan utama yang dapat menunjang penglihatan serta memberikan pengaruh terhadap fungsi ruangan tersebut. Umumnya pengaturan penerangan ruangan yang ada saat ini menggunakan saklar ON dan OFF, dimana pada saat ruangan gelap lampu dinyalakan dan dimatikan apabila penerangan tidak diperlukan. Dengan prinsip ini, pengaturan penerangan hanya berdasarkan pada kondisi gelap ataupun terang pada ruangan tanpa menghiraukan kontribusi dari luar seperti cahaya matahari.

Pada saat keadaan di luar mendung dan lampu dalam keadaan menyala, maka keadaan di ruangan akan terlalu terang bahkan menyilaukan. Dan sebaliknya jika lampu dimatikan, maka keadaan ruangan akan menjadi gelap. Juga kebiasaan pengguna yang sering lupa mematikan lampu pada saat meninggalkan ruangan, tentunya hal ini menjadikan sangat tidak efisien dalam penggunaan energi listrik. Oleh karena itu diperlukan pengaturan penerangan secara tepat baik untuk keperluan penerangan maupun efisiensi penggunaan energi listrik.

2 Dasar Teori

Cahaya adalah suatu bentuk energi yang berupa pancaran energi yang dapat diterima oleh indera penglihatan (retina mata).Pengaturan kuantitas pencahayaan sumber penerangan lampu terhadap besaran listrik biasanya disebut dimmer. Pada prinsipnya dimmer adalah mereduksi arus cahaya yang dikeluarkan lampu dengan mengatur daya untuk nyala lampu. Rangkaian dimmer yang digunakan menggunakan prinsip-prinsip pengaturan tegangan, pengaturan arus, pengaturan sudut penundaan atau pengaturan Pulse Width Modulation (PWM).

2.1 PWM

Pulse Width Modulation (PWM) secara umum adalah sebuah cara memanipulasi lebar sinyal yang dinyatakan dengan pulsa dalam suatu perioda, untuk mendapatkan tegangan rata-rata yang berbeda. PWM dapat diaplikasikan untuk mengatur daya atau tegangan untuk menyalakan lampu.

Pada metode digital setiap perubahan PWM dipengaruhi oleh resolusi dari PWM itu sendiri. Misalkan PWM digital 8 bit berarti PWM tersebut memiliki resolusi 28 = 256, maksudnya nilai keluaran PWM ini memiliki 256 variasi, variasinya mulai dari 0 - 255 yang mewakili duty cycle 0 - 100% dari keluaran PWM tersebut.

Gambar 1 Sinyal PWM

2.1.1 Cara Kerja dan Pengendalian

Sinyal PWM pada umumnya memiliki amplitudo dan frekuensi dasar yang tetap, namun memiliki lebar pulsa yang bervariasi. Lebar Pulsa PWM berbanding lurus dengan amplitudo sinyal asli yang belum termodulasi. Artinya, Sinyal PWM memiliki frekuensi gelombang yang tetap namun *duty cycle* bervariasi (antara 0% hingga 100%).

2.2 Metode Fuzzy Logic

Teori tentang fuzzy set atau himpunan samar pertama kali dikemukakan oleh Lothfi Zadeh tahun 1965. Dengan teori fuzzy set, bertujuan untuk merepresentasikan dan menangani masalah ketidakpastian atau kebenaran yang bersifat sebagian.

ISSN: 2085-2517

Sistem Berbasis Aturan Fuzzy Logic

Variabel linguistik adalah suatu interval numerik dan mempunyai nilai-nilai linguistik, yang semantiknya didefinisikan oleh fungsi keanggotaannya. Sistem dengan berbasis aturan fuzzy terdiri atas tiga komponen utama: Fuzzification, Inference dan Defuzzification.

Gambar 2. Metode Fuzzy Logic

- 1. Fuzzification mengubah masukan-masukan yang nilai kebenarannya bersifat pasti (crisp input) ke dalam bentuk fuzzy input, yang berupa nilai linguistik yang semantiknya ditentukan berdasarkan fungsi keanggotaan tertentu.
- 2. Inference melakukan penalaran menggunakan fuzzy input dan fuzzy rules yang telah ditentukan sehingga menghasilkan fuzzy output.
- 3. Defuzzification mengubah fuzzy output menjadi crisp value berdasarkan fungsi keanggotaan yang telah ditentukan.

2.3 Integrated Development Environment (IDE)

Arduino Development Environment (IDE) terdiri dari editor teks untuk menulis kode, sebuah area pesan, sebuah konsol, sebuah toolbar dengan tombol-tombol untuk fungsi yang umum dan beberapa menu. Arduino Development Environment terhubung ke arduino board untuk meng-upload program dan juga untuk berkomunikasi dengan modul arduino. Perangkat lunak yang ditulis disebut sketch atau kode program. Sketch ditulis pada editor teks. Sketch disimpan dengan file berekstensi .ino. Area pesan memberikan informasi dan pesan error ketika kita menyimpan atau membuka sketch. Konsol menampilkan output teks dari Arduino Development Environment dan juga menampilkan pesan error ketika kita mengkompile sketch. Pada sudut kanan bawah dari jendela Ardujno Development Environment menunjukkan jenis board dan port serjal yang sedang digunakan. Tombol toolbar digunakan utuk mengecek dan mengupload sketch, membuat, membuka atau menyimpan sketch, dan menampilkan serial monitor.

Gambar 3 IDE Arduino

3 Perancangan Alat

Tahap ini meliputi semua tahap pengerjaan yang berhubungan langsung dengan rangkaian dan perangkat keras diantaranya:

- Perancangan skematik rangkaian
- Pembuatan jalur Printed Circuit Board (PCB) menggunakan aplikasi protel 99.
- Pemasangan komponon elektronika pada PCB
- Merangkainya menjadi sebuah alat

3.1 **Diagram Blok**

Perancangan dan pembuatan alat pengendali intensitas cahaya lampu, serta alur proses kerja sistem secara diagram blok dapat dilihat pada gambar di bawah ini:

Gambar 4 Diagram Blok

3.2 Sensor

Sensor yang digunakan untuk mendeteksi intensitas cahaya yaitu sebuah LDR yang dirangkai seri dengan potensiometer 20 K Ω dan diberikan tegangan 5 volt. Output sensor LDR dihubungkan ke analog input port AO Modul Arduino Uno R3.

Sensor PIR digunakan untuk mendeteksi keberadaan pengguna dalam ruangan. Pemasangan sensor PIR kaki pin no.1 terhubung ke tegangan Vcc 5 volt, pin no.2 merupakan output, terhubung dengan port A1 Modul Arduino Uno Rev 3, dan pin no.3 terhubung dengan ground.

Gambar 5 Sensor LDR dan PIR

3.3 Mikrokontroler

Modul Arduino Uno Rev 3 dengan menggunakan IC ATMega 328 yang digunakan sebagai minimum system. Rangkaian ini berfungsi sebagai pusat pengendali yang memproses sinyal input tegangan dari LDR dan sinyal digital PIR serta data instruksi input keypaduntuk memilih mode lampu yang akan dinyalakan, dengan keluaran pada port 6 berupa sinyal PWM yang terhubung ke rangkaian driver L298 untuk menyalakan lampu LED

Gambar 6 Modul Arduino Uno Rev 3

3.4 Power Supply

Rangkaian ini yang berfungsi mengubah tegangan dari bolak-balik (AC) ke tegangan searah (DC). Menggunakan transformator CT 2 ampere, juga IC regulator LM7805 dan LM7812. Tegangan 5 volt digunakan untuk menyuplai tegangan ke Modul Arduino Uno R3 dan tegangan 12 volt digunakan untuk menyuplai tegangan untuk lampu LED melalui rangkaian driver.

Gambar 7 Skematik Power Supply

Layout desain rancangan PCB tegangan suplai ditunjukkan seperti pada gambar di bawah ini:

Gambar 8 PCB Power Supply

3.5 Rangkaian Driver

Rangkaian untuk penguatan arus lampu menggunakan IC *driver* L 298. Kaki pin 4 dihubungkan ke tegangan 12 volt dan pin 9 ke tegangan 5 volt. Pin 5 (IN1) terhubung ke tegangan 5 volt dan kaki nomor 7 dan 8 dihubungkan dengan ground. Kaki nomor 2 dan 3 dihubungkan ke lampu dan kaki 6 enable A dihubungkan ke *port* 6 Modul Arduino.Uno Rev 3.

Gambar 9 Rangkaian Driver

Layout desain rancangan PCB untuk driver lampu ditunjukkan pada gambar di bawah ini:

Gambar 10 PCB Driver

3.6 Lampu Led

LED yang digunakan untuk lampu penerangan yaitu *Chip On Board* LED (COB LED) tipe SMD LED super bright yang memancarkan sinar berwarna putih terang, yang terdiri 4 buah LED dengan daya 5 Watt dan tegangan 12 Volt yang dijual di pasaran.

Gambar 11 LED COB

Gambar 12 Rangkaian Keseluruhan

3.7 Perancangan Software

Dalam melakukan perancangan perangkat lunaknya menggunakan metode fuzzy logic dengan data input (Crisp Input) berupa nilai intensitas cahaya yang tertangkap sensor LDR. kemudian keluaran sensor berupa tegangan keluaran sensor dikonversi menjadi sinyal digital 8 bit (0-255) oleh ADC konverter vang ada dalam Modul Arduino Uno R3. Nilai input tersebut yang akan difuzzifikasi menjadi himpunan fuzzy dengan nilai Gelap, Agak Gelap, Redup, Agak Terang dan Terang dengan fungsi keanggotaan trapesium.

Gambar 13 Pengambilan Data Intensitas Cahaya

Pengambilan data intensitas cahaya input sebagai rujukan merancang program dilakukan dengan cara pengukuran menggunakan alat luxmeter merek Luxtron Lx-02 pada skala 2.000 lux, cahaya yang diukur dari cahaya lampu dimmer dengan daya lampu 75 Watt. Penempatan alat ukur dengan lampu berjarak 20 cm. Pengambilan data intensitas cahaya dilakukan dengan simulasi dimmer dari redup sampai dengan terang.

Dari hasil pengukuran intensitas cahaya, data terrendah (gelap) 3 lux dan data tertinggi (terang) 500 lux. Kemudian dilakukan pengelompokan nilai input tersebut menjadi himpunan fuzzy set atau fuzzifikasi, yaitu:

Dengan menggunakan fungsi keanggotaan trapesium dengan lima variabel linguistik: Gelap, Agak Redup, Redup, Agak Terang dan Terang.

1. Gelap : 0 lux sampai 30 lux. 2. Agak Redup : 10 lux sampai 100 lux 3. Redup : 80 lux sampai 170lux. : 150 lux sampai 240 lux. 4. Agak Terang 5. Terang : 220 lux sampai 255 lux.

Gambar 14 Fungsi Keanggotaan Input

Contoh crisp input adalah 162 lux berada diantara Redup dan Agak Terang maka:

Menghitung derajat keanggotaan Redup dari *crisp input* misalnya 162 lux, menggunakan persamaan:

$$-(x-d)/(d-c)$$
, c < x \le d, dimana c = 150 dan d = 170 (1)

$$-(162-170)/(2170-150) = 8/20 (0,4)$$
 (2)

ISSN: 2085-2517

Menghitung derajat keanggotaan Agak Terang:

$$(x-a)/(b-a)$$
, a < x < b, dimana a =150 dan b =170 (3)

$$(162-150)/(170-150) = 12/20(0.6)$$
 (4)

Gambar 15 Derajat Keanggotaan Input Lux

Ada bermacam-macam cara dalam menentukan aturan fuzzy, berikut ini menggunakan fungsi keanggotaan trapesium dengan lima nilai linguistik; PWMlong,PWMagak_long,PWMnormal, PWMagak_normal dan PWMshort.

Tabel 1 Inferensi Aturan Yang Digunakan

	Gelap	Agak Redup	Redup	Agak Terang	Terang
PWMlong	PWMlong				
PWM agak_long		PWM agak_long			
PWMnormal			PWMnormal		
PWM agak_normal				PWM agak_normal	
PWMshort					PWMshort

"JIKA " X = A, "MAKA" Y = B

Nilai crisp input 195 lux berada diantara Redup dan Terang, selanjutnya masuk ke aturan fuzzy.

Jika kondisi "Gelap", Maka" Lampu. PWMlong

Jika kondisi "Agak Redup", Maka" Lampu.PWMagak_long

Jika kondisi "Redup", Maka" Lampu. PWM normal

Jika kondisi "Agak Terang", Maka" Lampu. PWMagak_normal

Jika kondisi "Terang", Maka" Lampu. PWMshort

Gambar 17 Fungsi Keanggotaan Singleton Untuk Output PWM

Kemudian dilakukan defuzzifikasi menggunakan Model Sugeno yang menggunakan fungsi keanggotaan yang sederhana yaitu singleton, keanggotaan yang memiliki derajat keanggotaan 1 pada suatu nilai crisp tunggal, dan 0 pada semua crisp yang lain. Metode yang digunakan Weighted Average untuk defuzzifikasi, maka

$$y * = \frac{0.4(125) + 0.6(55)}{04 + 0.6} = 83 \ pwm \tag{5}$$

Gambar 18 Fungsi Keanggotaan Output

Gambar 19 Flowchart

Gambar 20 Alat Hasil Rancangan

4 Pengujian dan Analisa

Bagian-bagian dari sistem yang dibuat seperti sensor cahaya, *driver* lampu, *power supply* dan lampu LED, dilakukan pengujian. Pengujian yang dilakukan dengan cara melakukan pengukuran tegangan *input*, *output* dan konsumsi daya yang digunakan untuk menyalakan lampu LED.

4.1 Power Supply

Untuk mengetahui power supply hasil perancangan berfungsi dengan dengan baik atau tidak yaitu dengan dilakukan pengujian atau pengukuran tegangan output, dengan cara voltmeter dihubung paralel dengan terminal output yang akan diukur. Hasil pengujian seperti terlihat dalam tabel dibawah.

Tabel 2 Pengujian Tegangan Output Power Supply

V input Trafo	V output Trafo	lc Regulator	Tegangan Output
220 volt	9 volt	7805	4,8 volt
220 volt	15 volt	7812	11,7 volt

4.2 Sensor

Pengujian sensor PIR berfungsi untuk mendeteksi keberadaan orang yang ada dalam ruangan. Apabila mendeteksi keberadaan atau pergerakan orang, PIR akan dalam kondisi ON atau logika I, dan apabila tidak ada pergerakan, maka PIR dalam kondisi OFF atau berlogika 0.

4.3 Alat Keseluruhan

Alat kemudian dijalankan dan dilakukan pengukuran besaran listrik pada sistem. Hasil pengukuran besaran listrik yang dilakukan seperti pada tabel di bawah ini.

Tabel 3 Hasil Pengujian Sistem Dioperasikan

PWM	I Arus (A)	Int. Lampu (Lux)	Sensor (Volt)	
0	0,031	3	0,078431373	
10	0,147	26	2,68627451	
20	0,212	58	3,156862745	
30	0,273	84	3,490196078	
40	0,372	100	3,647058824	
50	0,431	114	3,745098039	
60	0,473	135	3,823529412	
70	0,528	145	3,901960784	
80	0,562	168	3,960784314	
90	0,588	174	4,039215686	
100	0,608	182	4,078431373	
110	0,623	187	4,098039216	
120	0,637	190	4,098039216	
130	0,644	194	4,098039216	
140	0,655	205	4,117647059	
150	0,662	210	4,156862745	
160	0,665	215	4,176470588	
170	0,671	217	4,176470588	
180	0.680	227	4,196078431	
190	0,689	230	4,196078431	
200	0,695	225	4,196078431	
210	0,700	226	4,196078431	
220	0,706	228	4,196078431	
230	0,711	230	4,196078431	
240	0,716	231	4,196078431	
250	0,719	232	4,196078431	
255	0,722	232	4,196078431	

Dari hasil pengoperasian alat, maka konsumsi daya dapat diketahui dengan menghitung daya yang dipakai untuk menyalakan beban lampu

Konsumsi daya pada saat lampu redup:

PWM = 10

I total = 0,147 Ampere

V = 15 Volt

 $P=V \times I \text{ total}$

maka 15 V x 0,147 A = **2,205 Watt**

Konsumsi daya pada saat lampu terang:

PWM =255

I total = 0,722 Ampere

V = 15 Volt

 $P = V \times I \text{ total}$

maka 15 V x 0,722 A = **10,83 Watt**

Tabel 4 Hasil Perhitungan Daya

PWM	Teg. (Volt)	I Arus (Ampere)	Daya (Watt)
	(VOIC)	(Ampere)	(Watt)
10	15	0,147	2,205
20	15	0,212	3,18
40	15	0,372	5,58
60	15	0,473	7,095
80	15	0,562	8,43
100	15	0,608	9,12
120	15	0,637	9,55
140	15	0,655	9,825
160	15	0,676	10,14
180	15	0,689	10,33
200	15	0,681	10,21
220	15	0,693	10,39
240	15	0,716	10,74
255	15	0,722	10,83

Gambar 21: Hubungan PWM Terhadap Konsumsi Daya

5 **Penutup**

5.1 Kesimpulan

Berdasarkan hasil pengujian alat yang dibuat dan dilakukan pengukuran- pengukuran besaran listrik serta dilakukan analisa data hasil pengukuran, maka dapat disimpulkan:

- 1. Alat yang dirancang dapat berfungsi dengan baik, dikala ruangan terkena pencahayaan yang redup, lampu dapat menyala terang dan dikala ruangan mendapatpencahayaan, maka nyala lampu meredup.
- 2. Arus listrik yang digunakan untuk menyalakan lampu lebih kecil (tergantung cahaya yang terdeteksi) dibandingkan dengan sistem saklar dengan arus yang konstan.
- 3. Dengan penghematan konsumsi daya listrik yang digunakan maka biaya tagihan listrik meniadi lebih murah.
- 4. Lampu lebih cocok untuk penggunaan ruangan untuk aktifitas pada siang hari dengan memanfaatkan kontribusi pencahayaan alami yang terdeteksi sensor LDR seperti ruang tamu atau kantor.

5.2 Saran

Alat hasil perancangan yang penulis buat masih jauh dari sempurna untuk itu masih perlu penyempurnaan untuk dapat bermanfaat secara maksimal, meningkatkan intensitas nyala lampunya dengan daya yang lebih besar sehingga dapat digunakan untuk aplikasi penggunaan penerangan yang lebih luas. Atau dengan menambahkan accumulator sebagai sumber tegangannya sehingga dapat difungsikan sebagai lampu darurat atau lampu untuk keperluan berkemah.

LDR digunakan sebagai sensor cahaya mempunyai kekurangan yaitu karakteristik tegangan yang dihasilkan tidak linear sehingga untuk menghasilkan nyala lampu yang optimal maka diperlukan rangkaianpengkondisi sinyal untuk mendapatkan tegangan yang linear input sensornya.

6 **Daftar Pustaka**

- [1] http://arduino.cc/en/Main/Products#.Uxf9Fi-SzDE (29 September 2014)
- [2] http://id.wikipedia.org/wiki/Cahaya (10 September 2014)
- [3] http://solarsuryaindonesia.com/info/lampu-led (9 Oktober 2014)
- [4] http://computer.howstuffworks.com/monitor1.htm I(10 Oktober 2014)
- [5] http://www.ledaladdin.com/Technology/Types-LED-Technology.html (110ktober 2014)
- [6] http://repository.usu.ac.id/bitstream/123456789/37482/4/Chapter%20II.pdf (10 Oktober 2014)
- [7] Michael McRoberts. 2010. Beginning Arduino, www.apress.com
- [8] Muhaimin. 2001. Teknologi Pencahayaan. Bandung: PT. Refika Aditama
- [9] Michael Tooley, BA. Irzam Harmein, ST., 2002 Rangkaian Elektronik Prinsip dan Aplikasi, Penerbit Erlangga
- [10] Suyanto. ST. Msc., 2011 Artificial Intellegence, Penerbit Informatika
- [11]Netika Purwaningrum, Aplikasi Fuzzy Logic untuk Pengendalian Penerangan Ruangan Berbasis Mikrokontroler ATMega8535, (Semarang: Teknik Elektro Fakultas Teknik Universitas Semarang, 2007)