Matematyka dyskretna (L) - cheatsheet Tomasz Woszczyński

1 Wariacje

Liczba wariacji z powtórzeniami

Dla zbiorów A, B o odpowiednio m, nelementach liczba funkcji ze zbioru A w B wynosi n^m , czyli $|\{f:A\to B\}=n^m|$.

Liczba wariacji bez powtórzeń

Dla zbiorów A, B o odpowiednio elementach liczba funkcji różnowartościowych ze zbioru A w B wynosi $n(n-1)...(n-m+1) = \frac{n!}{(n-m)!}$

Liczba podzbiorów

Zbiór *A* o *n* elementach ma $|\{B: B \subseteq A\} = 2^n|$ podzbiorów.

Para podzbiorów

Dla *U* będącego *n*-elementowym można wyznaczyć dwa jego podzbiory A, B takie, że $A \subseteq B$ na $|\{(A, B) : A \subseteq B \subseteq U\}| =$ $|\{f: U \to \{0,1,2\}\}| = 3^n \text{ sposobów.}$

Liczba permutacii

Zbiór *U* o *n* elementach można spermutować na *n*! sposobów.

Sufit, podłoga, część ułamkowa

Niech $x \in \mathbb{R}$, $n \in \mathbb{Z}$, wtedy: $|x| = n \Leftrightarrow n \le x < n + 1$ $\lceil x \rceil = n \Leftrightarrow n-1 < x \le n$

$\{x\} = x - \lfloor x \rfloor$ Własności sufitu i podłogi

Niech $x \in \mathbb{R}$, $n \in \mathbb{Z}$, wtedy: $\lfloor x + n \rfloor = n + \lfloor x \rfloor$, ponieważ $|x| + n \le x + n < |x| + n + 1$. Ponadto mamy: $\lceil x + n \rceil = n + \lceil x \rceil$ $|-x| = -\lceil x \rceil$

Podzbiory k-elementowe

Niech $|U| = \{1, 2, ..., n\}$ oraz $P_n^k =$ $\{A \subseteq U : |A| = k\}$. Wtedy $\frac{n!}{(n-k)!} = k! |P_n^k|$, czyli $|P_n^k| = \frac{n!}{(n-k)!k!} = \binom{n}{k}$.

Symbol Newtona

Dla $k, n \in \mathbb{N}$ takich, że $0 \le k \le n$ zachodzi: $\binom{n}{k} = \binom{n}{n-k}$ $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

Kulki i szufladki

n kulek do k szuflad można wrzucić na tyle sposobów, ile jest ciągów złożonych z *n* zer i k-1 jedynek, czyli $\binom{n+k-1}{k-1}$.

Dwumian Newtona

Dla $n \in \mathbb{N}$ mamy $(x+y)^n = \sum_{i=1}^n {n \choose i} x^i y^{n-i}$

Zasada szufladkowa Dirichleta

Niech $k, s \in \mathbb{N}_+$. Jeśli wrzucimy k kulek do s szuflad (Dirichleta), a kulek jest wiecej niż szuflad (k > s), to w którejś szufladzie będą przynajmniej dwie kulki.

Innymi słowy, dla skończonych zbiorów Algorytm Euklidesa A, B, jeśli |A| > |B|, to nie istnieje funkcja różnowartościowa z A w B. Dla $k > s \cdot i$ kulek oraz s szuflad bedzie w jakiejś szufladzie i + 1 kulek.

2 Asymptotyka

Niech $f,g: \mathbb{N} \to \mathbb{R} \geq 0$, wtedy możemy mówić o takich funkcjach asymptotycznych:

Notacja dużego ()

Mamy f(n) = O(g(n)) wtw, $\exists (c > 0) \ \exists (n_0 \in \mathbb{N}) \ \forall (n \ge n_0) \ f(n) < cg(n).$ Ponadto dla $C, a, \alpha, \beta \in \mathbb{R}$ zachodzą takie

$$\forall (\alpha, \beta) \ \alpha \leq \beta \Rightarrow n^{\alpha} = O(n^{\beta}),$$

 $\forall (\alpha > 1)n^{C} = O(a^{n}),$

 $\forall (\alpha > 0)(\ln n)^C = O(n^{\alpha}).$ Przydatna może okazać się reguła de l'Hospitala, wiec gdy f(n) i g(n) dążą do nieskończoności, to

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}.$$

Notacja małego o

f(n) = o(g(n))wtw. $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0.$

Notacja duże Omega (Ω)

 $f(n) = \Omega(g(n))$ wtw, $\exists (c > 0) \exists (n_0 \in \mathbb{N}) \forall (n \ge n_0) f(n) \ge cg(n).$

Notacja Theta (⊖)

 $f(n) = \Theta(g(n))$ wtw, gdy $f(n) = \Omega(g(n)) \wedge$ f(n) = O(g(n)).

Notacja małe Omega (ω)

 $f(n) = \omega(g(n))$ wtw, gdy $\lim_{n\to\infty} = \frac{f(n)}{g(n)} = \infty.$

3 Arvtmetvka modularna

Funkcja modulo

Niech $n, d \in \mathbb{Z}$ i $d \neq 0$. Wtedy: $n \mod d = n - \left| \frac{n}{d} \right| \cdot d$.

 $n \mod d = r \text{ wtw, } \text{gdy } 0 \le r < d \land$ $\exists (k \in \mathbb{Z}) \ n = kd + r$

Przystawanie modulo

 $a \equiv_n b$ wtw, gdy $a \mod n = b \mod n$

Własności funkcii modulo

 $a + b \equiv_n a \mod n + b \mod n$ $a \cdot b \equiv_n (a \mod n) \cdot (b \mod n)$

Podzielność

Niech $n, d \in \mathbb{Z}$ i $d \neq 0$. Wtedy: d|n wtw, gdy $\exists (k \in \mathbb{Z}) \ n = kd$ d|n wtw, gdy $n \mod d = 0$ d|n wtw, gdy $n \equiv_d 0$ $d|n_1 \wedge d|n_2$ to $d|(n_1 + n_2)$

Największy wspólny dzielnik (NWD, gcd)

Niech $a, b \in \mathbb{N}$, wtedy $gcd(a, b) = max\{d \in \mathbb{N} : d|a \wedge d|b\}$

Dla $a \ge b > 0$ korzystamy z własności: $gcd(a,b) = gcd(b,a \mod b)$ oraz gcd(a, 0) = a. qcd(a, b): while b != 0: $c = a \mod b$ a = bb = creturn a

Rozszerzony algorytm Euklidesa

Dla
$$a \ge b > 0$$
:
 $\exists (x,y \in \mathbb{Z}) \ xa + yb = \gcd(a,b)$
 $\gcd(a, b)$:
 $x = 1, \ y = 0, \ r = 0, \ s = 1$
while $b != 0$:
 $c = a \mod b$
 $q = a \operatorname{div} b$
 $a = b$
 $b = c$
 $r' = r$
 $s' = s$
 $r = x - q * r$
 $s = y - q * s$
 $x = r'$
 $y = s'$

return a, x, y

Liczby względnie pierwsze

Niech $a,b \in \mathbb{Z}$, wtedy te liczby są względnie pierwsze, gdy gcd(a, b) = 1.

4 Wzór włączeń i wyłączeń

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{I \subseteq \{1,\dots,n\}} \left| \bigcap_{i \in I} A_i \right|$$

5 Rekurencja, zależności rekurencyjne

Liczby Fibonacciego

Niech $F_0 = 0, F_1 = 1$, wtedy $F_n = F_{n-1} + 1$ F_{n-2} dla n > 1.

Operator przesunięcia E

Mamy ciąg $\langle a_n \rangle = \langle a_0, a_1, \dots, a_n, \dots \rangle$. Wtedy $\mathbf{E} \langle a_n \rangle = \langle a_{n+1} \rangle = \langle a_1, \dots, a_n, \dots \rangle$.

Złożenie operatora przesunięcia

$$\mathbf{E}^2 \langle a_n \rangle = \mathbf{E} (\mathbf{E} \langle a_n \rangle) = \langle a_2, \dots, a_n, \dots \rangle$$

Operatory działające na ciagi

$$\langle a_n \rangle + \langle b_n \rangle = \langle a_n + b_n \rangle$$
 = $\langle a_0 + b_0, a_1 + b_1, \dots \rangle$ $c \langle a_n \rangle = \langle ca_n \rangle = \langle ca_0, ca_1, \dots \rangle$