1. Ga. Cantormerae $C := \sum_{n=1}^{\infty} a_n 3^{-n} : a_n \in \{0, 233\},$ ∀n ≥ 1: Cn:= {∑ax3-k: ax ∈ {0,1,23, ∀K ≤n' ax ∈ {0,2}}; Zz. # C > No Ww. Wenn C abzahlbar, dann 3f N C susj. Sei (xm)me CM, dann bezeichne amn & 80,23 die Ziffer von X.m an der n-ten Nachkommastelle, X1 0. an a12 a13 ... x. z = 0. a21 a22 a23 ... X3 = 0. as as as ... By E C : Im E N : y = xm, weil 6 = 0. C1 CZ C3 ... mit Vi EN : C; = { 0 , a : = Z Zz. \(() = 0 C C O Cn V NEN C2 nen Sei x e n Cn : VneN : x e Cn. Angenommen, X & C => 3K EN: ax=1, aber BneNin > K C Ww. : (Cn) nEN monoton fallend

$C(x) := \begin{cases} \infty & \frac{a_{1}}{2} \\ \sum & 2^{n} \end{cases}, x = \sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} \in C \\ n=1 \end{cases}$ $L \sup_{n=1}^{\infty} \{c(y)^{\frac{1}{2}} \times y \in C\}, \text{sonst} \end{cases}$ $Zz : c \text{monoton}$ $Seien x_{1}, x_{2} \in [0,1], x_{1} < x_{2}.$ $Fall 1. x_{1}, x_{2} \in C.$ $Fall 2. x_{1} \in C, x_{2} \notin C.$ $Definition vom sop^{n}$ $Fall 3. x_{1} \notin C, x_{2} \in C.$ $Monotonie gilt \forall y \leq x_{1} \Rightarrow gilt \forall x' \leq x_{1} \text{sop}^{n}$ $Fall 4. x_{1}, x_{2} \notin C.$ $Zz : c susj.$ $Sei z \in [0,1], dann gilt \forall z \in C : c(z) = z und$ $\forall z \in [0,1], C : \exists x \in [0,1], C : z'(x) = 0$ $Sei x \in [0,1], C : \text{sit often}, dann$ $\exists \epsilon > 0 : \forall z \in U_{\epsilon}(x) : y \leq U_{\epsilon}(x) \leq U$	Cantor funktion c'[0,1] [0,1]
Zz.: c monoton Seien $\times_1, \times_2 \in [0,1]$, $\times_1 < \times_2$. Fall 1. $\times_4, \times_2 \in C$. Fall 2. $\times_1 \in C$, $\times_2 \notin C$. Definition vom a sop? Fall 3. $\times_1 \notin C$, $\times_2 \in C$. Monotonie gilt $\forall y \leq \times_1 \Rightarrow$ gilt $\forall x \in S$, sop? Fall 4. $\times_4, \times_2 \notin C$. Zz.: c susj. Sei $z \in [0,1]$, dann gilt $\forall z \in C$: $c(z) = z$ und $\forall z \in [0,1]$ C : $\exists x \in [0,1]$ C : z : sup $\{ c(y) : x \neq y \in C \}$, weil $x := z$. Zz.: $\forall x \in [0,1]$ C : $c'(x) = 0$ Sei $x \in [0,1]$ C : $c'(x) = 0$ Sei $x \in [0,1]$ C : $c'(x) = 0$ Sei $x \in [0,1]$ C : $c'(x) = 0$	$, x = \sum_{n=1}^{\infty} \frac{a_n}{3^n} \in C$
Seien $\times_1, \times_2 \in [0,1]$, $\times_1 \leq \times_2$. Fall 1. $\times_1, \times_2 \in C$. Fall 2. $\times_1 \in C$, $\times_2 \notin C$. Definition vom a sop* Fall 3. $\times_1 \notin C$, $\times_2 \in C$. Monotonie gilt $\forall y \leq \times_1 \Rightarrow$ gilt $\forall x' \leq x_1 \Rightarrow x' \leq x'$	rec3, sonst
Fall 1. $\times_1, \times_2 \in C$. Fall 2. $\times_1 \in C$, $\times_2 \notin C$, Definition vom "sop" Fall 3. $\times_1 \notin C$, $\times_2 \in C$. Monotonie gilt $\forall y \in \times_1 \Rightarrow$ gilt $\forall x \in X_1 \Rightarrow x_2 \in X_2 \Rightarrow x_3 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_5 \Rightarrow $	
Fall 2. $\times_1 \in C$, $\times_2 \notin C$, Definition vom a sup" Fall 3. $\times_1 \notin C$, $\times_2 \in C$. Monotonie gilt $\forall y \leq \times_1 \Rightarrow$ gilt $\forall z \in S$ as sup" Fall 4. $\times_1 \times_2 \notin C$. Zz. i c surj. Sei z $\in [0,1]$, dann gilt $\forall z \in C$ i $c(z) = z$ und $\forall z \in [0,1] \setminus C$ i $\exists x \in [0,1] \setminus C$ i $z \in [0,1] \setminus C$ i $z \in [0,1] \setminus C$ i $z \in [0,1] \setminus C$ is $z \in [0,1] \setminus C$.	4 < ×2 .
Fall 3. $\times_{A} \notin C$, $\times_{Z} \in C$. Monotonie gilt $\forall y \leq \times_{A} \Rightarrow \text{ gilt } \notin \text{Git's } \text{ , sop''}$ Fall 4. $\times_{A}, \times_{Z} \notin C$. Zz. : c surj. Sei z \in [0,1], dann gilt $\forall z \in C$: c(z) = z und $\forall z \in$ [0,1]\C : $\exists \times \in$ [0,1]\C : $z \in$ Sup $\{ \in C(y) : \times \} \neq \in C \}$, weil $x := z$. Zz. : $\forall \times \in$ [0,1]\C : $z'(x) = 0$ Sei $x \in$ [0,1]\C : $z'(x) = 0$ Sei $x \in$ [0,1]\C : $z'(x) = 0$ Sei $x \in$ [0,1]\C : $z'(x) = 0$	
Monotonie gilt $\forall y \leq x_1 \Rightarrow gilt füt's sop"$ Fall 4. $x_1, x_2 \notin C$. Zz. 'c surj. Sei z $\in [0,1]$, dann gilt $\forall z \in C$ 'c(z) = z und $\forall z \in [0,1] \setminus C$ ' $\exists x \in [0,1] \setminus C$ ' $z \in [0,1] \setminus C$	Definition vom , sup
Fall 4. \times_{1} , \times_{2} ¢ C. Zz. 'c susj. Sei z ∈ [0,1], dann ajlt \forall z ∈ C 'c(z) = z und \forall z ∈ [0,1]\C '∃ x ∈ [0,1]\C ' z = sup {c(y)' x > y ∈ C}, weil x = z. Zz. ' \forall x ∈ [0,1]\C 'c'(x) = 0 Sei x ∈ [0,1]\C 'ist o &en, dann B ∈ > O ' \forall z ∈ Ue(x)'	
Zz. c surj. Sei z \in [0,1], dann ajlt \forall z \in C: $c(z)$ = z und \forall z \in [0,1] (C: \exists x \in [0,1] (C: z = sup $\{$ $e(y)$: $x \neq y \in$ C $\}$, weil $x = z$. Zz. \forall x \in [0,1] (C: $e'(x)$ = 0 Sei x \in [0,1] (C: s) often, dann \exists \in > 0: \forall z \in $U_{\epsilon}(x)$:	gilt für's "sop"
Sei $z \in [0,1]$, dann gilt $\forall z \in C$: $c(z) = z$ und $\forall z \in [0,1] \setminus C$: $\exists x \in [0,1] \setminus C$: $z = \sup \{c(y): x \} y \in C\}$, weil $x = z$. Zz.: $\forall x \in [0,1] \setminus C$: $c'(x) = 0$ Sei $x \in [0,1] \setminus C$: ist often, dann $\exists \in [0,1] \setminus C$: $\exists x \in [0,1] \setminus $	
$\forall z \in [0,1] \setminus C$ $\exists x \in [0,1] \setminus C$ \vdots $z = \sup \{ c(x) : x \neq y \in C \}$, well $x = z$. $\exists z : \forall x \in [0,1] \setminus C : c'(x) = 0$ Sei $x \in [0,1] \setminus C : \text{st often}$, dann $\exists \varepsilon \geq 0 : \forall z \in U_{\varepsilon}(x) :$	
Zz. $\forall x \in [0,1] \setminus C$: $c'(x) = 0$ Sei $x \in [0,1] \setminus C$ ist often, dann $\exists \epsilon \geq 0 : \forall z \in U_{\epsilon}(x)$:	
Sei $x \in [0,13) \subset ist$ often, dann $\exists \varepsilon > 0 : \forall z \in U_{\varepsilon}(x) :$	C3, weil x = z.
$\exists \varepsilon > 0 : \forall z \in U_{\varepsilon}(x) :$	(x)=0
Also ist a in einex e Umgebong konstant.	Umgebong Konstant.

3. Gg. \ \ = log (2)/log (3), Max Hausdor (fma B; Zz: Ma (C) = 1 Ww. d (Cn) = sup |x-y|, Ma (C) = x, y E Cn lim inf & Z. d(Cn) x: (Cn)neN & (2 R) N, C & O Cn, YneHid(Cn) < E 3 Ww. YneN' Cn 2 C, wenn Cn so wie in 1. Sei E D, dann Bne N: (2/3) > E $\lambda(C_n)$ Wähle (Au) NEN, sodass die Folge alle Teilintervalle von En abdeckt. ∑ d(An) = (2/3)n· x = 1. HEN


```
6. Ga.: 1 = Z, E = EP, Z3 v EEx, x+13: x EZ,
\mu(\phi) = \gamma(\phi) = 0, \mu(Z) = \gamma(Z) = \infty.
VxeZ: u({x,x+13) = v({zx-1, 2x3) = 1,
                        y({2x, 2x+13) = 2;
Zz: M. y Mase
   \mu(\phi) = \nu(\phi) = 0 \checkmark
   M, N 21 0 V
   Y (An)new & EN: u(\(\Sigma An\) = \(\Sigma u(An)\)
WW The N An & v Z An Z v
3! KEN # Ax 32
Zz: 15 MaB auf E: y = 5 + u
Ww. Z = \sum \{Zx-1, 2x3 \Rightarrow \zeta(Z) = 0,
               5=0
 Ww. Z = Z {2x, 2x+13 = 5(Z) = 0 + 0
                5=1
```

7. Ga. C durchschnitt stabiles Mengensystem M. Y Maße auf E mit u = V Zz : 3 5 MaB auf E: v = u + 5 E:= {A & C: u(A) 4 00 3 E* := {A & & : B (An)neN & EN : A = E An } VMEE: 5 (M):= x (M) - u (M) ist would efiniert YMEE* 5 (M) = Z x (Mn) - u (Mn) ebenfalls, weil (An) HEN, (BK)KEN E EN > Z y (An) - u (An) = Z y (Z Bk n An) - u (Z Bk n An) = Iv (AnnBx) - u(AnnBx) F \(\times An \(B_K \) - \(\times An \(B_K \) = \(\times \times \(B_K \) - \((B_K \) - \(B_K \). Man dart die " Z. vertauschen, weil die (doppel-) Reihe entweder absolut Konvergiert, oder bestimmt divergiert,