Prova de Física - UFRGS/2006

01. Em uma aula de laboratório, os alunos realizam um experimento para demonstrar a relação linear existente entre a massa e o volume de diferentes cilindros maciços feitos de vidro. A seguir, repetem o mesmo experimento com cilindros de aço, alumínio, chumbo e cobre. No gráfico abaixo, cada reta corresponde ao resultado obtido para um dos cinco materiais citados.

A reta que corresponde ao resultado obtido para o chumbo é a de número

- (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.
- (E) 5.

Instrução: As questões 02 e 03 referem-se ao enunciado abaixo.

Arrasta-se uma caixa de 40 kg sobre um piso horizontal, puxando-a com uma corda que exerce sobre ela uma força constante, de 120 N, paralela ao piso. A resultante das forças exercidas sobre a caixa é de 40 N.

(Considere a aceleração da gravidade igual a 10m/s².)

- **02.** Qual é o valor do coeficiente de atrito cinético entre a caixa e o piso?
 - (A) 0,10.
 - (B) 0,20.
 - (C) 0,30.
 - (D) 0,50.
 - (E) 1,00.

- O3. Considerando-se que a caixa estava inicialmente em repouso, quanto tempo decorre até que a velocidade média do seu movimento atinja o valor de 3 m/s?
 - (A) 1,0 s.
 - (B) 2,0 s.
 - (C) 3,0 s.
 - (D) 6,0 s.
 - (E) 12,0 s.

Instrução: As questões 04 e 05 referem-se ao enunciado abaixo.

Uma barra rígida horizontal, de massa desprezível, medindo 80 cm de comprimento, encontra-se em repouso em relação ao solo. Sobre a barra atuam apenas três forças verticais: nas suas extremidades estão aplicadas duas forças de mesmo sentido, uma de 2 N na extremidade A e outra de 6 N na extremidade B; a terceira força, F, está aplicada sobre um certo ponto C da barra.

- 04. Qual é a intensidade da força F?
 - (A) 2 N.
 - (B) 4 N.
 - (C) 6 N.
 - (D) 8 N.
 - (E) 16 N.
- **05.** Quais são as distâncias AC e CB que separam o ponto de aplicação da força F das extremidades da barra?
 - (A) AC = 65 cm e CB = 15 cm.
 - (B) AC = 60 cm e CB = 20 cm.
 - (C) AC = 40 cm e CB = 40 cm.
 - (D) AC = 20 cm e CB = 60 cm.
 - (E) AC = 15 cm e CB = 65 cm.
- **06.** A massa de uma partícula X é dez vezes maior do que a massa de uma partícula Y. Se as partículas colidirem frontalmente uma com a outra, pode-se afirmar que, durante a colisão, a intensidade da força exercida por X sobre Y, comparada à intensidade da força exercida por Y sobre X, será
 - (A) 100 vezes menor.
- (D) 10 vezes maior.
- (B) 10 vezes menor.
- (E) 100 vezes maior.
- (C) igual.

- **07.** Um balde cheio de argamassa, pesando ao todo 200 N, é puxado verticalmente por um cabo para o alto de uma construção, à velocidade constante de 0,5 m/s. Considerando-se a aceleração da gravidade igual a 10 m/s2, a energia cinética do balde e a potência a ele fornecida durante o seu movimento valerão, respectivamente,
 - (A) 2,5 J e 10 W.
 - (B) 2,5 J e 100 W.
 - (C) 5 J e 100 W.
 - (D) 5 J e 400 W.
 - (E) 10 J e 10 W.
- **08.** Uma pistola dispara um projétil contra um saco de areia que se encontra em repouso, suspenso a uma estrutura que o deixa completamente livre para se mover. O projétil fica alojado na areia. Logo após o impacto, o sistema formado pelo saco de areia e o projétil move-se na mesma direção do disparo com velocidade de módulo igual a 0,25 m/s. Sabe-se que a relação entre as massas do projétil e do saco de areia é de 1/999.

Qual é o módulo da velocidade com que o projétil atingiu o alvo?

- (A) 25 m/s.
- (B) 100 m/s.
- (C) 250 m/s.
- (D) 999 m/s.
- (E) 1000 m/s.
- 09. O diagrama da figura 1, abaixo, representa duas pequenas esferas, separadas por uma certa distância. As setas representam as forças gravitacionais que as esferas exercem entre si.

A figura 2 mostra cinco diagramas, representando possibilidades de alteração daquelas forças, quando a distância entre as esferas é modificada.

Segundo a Lei da Gravitação Universal, qual dos diagramas da figura 2 é coerente com o diagrama da figura 1?

- (A) I.
- (B) II.
- (C) III.
- (D) IV.
- (E) V.
- **10.** Um cubo h<mark>omogêneo</mark> de madeira, cuja massa é de 1600 g, flutua na água e no álcool. Sabendo-se que a massa específica da água é 1,00 g/cm3 e que a massa específica do álcool é 0,80 g/cm3, quais são os volumes das frações do cubo que imergem na água e no álcool, respectivamente?
 - (A) 1600 cm3 e 1280 cm3.
 - (B) 1280 cm3 e 1600 cm3.
 - (C) 2000 cm3 e 1600 cm3.
 - (D) 2000 cm3 e 2000 cm3.
 - (E) 1600 cm3 e 2000 cm3.
- **11.** Uma barra de aço e uma barra de vidro têm o mesmo comprimento à temperatura de 0 °C, mas, a 100 °C, seus comprimentos diferem de 0,1 cm. (Considere os coeficientes de dilatação linear do aco e do vidro iguais a 8x10⁻⁶ °C⁻¹ e, respectivamente.)

Qual é o comprimento das duas barras à temperatura de 0 °C?

- (A) 50 cm.
- (B) 83 cm.
- (C) 125 cm.
- (D) 250 cm.
- (E) 400 cm.
- **12.** À temperatura ambiente, que volume de ferro apresenta a mesma capacidade térmica de um litro de água?

(Considere que, à temperatura ambiente, a capacidade térmica de um litro de água é 4.200 J/°C, o calor específico do ferro é 0,5 J/g.°C e a massa específica do ferro é 8 g/cm3.)

- (A) 0,95 L
- (B) 1,00 L
- (C) 1,05 L
- (D) 1,25 L
- (E) 1,50 L

13. Em uma transformação termodinâmica sofrida por uma amostra de gás ideal, o volume e a temperatura absoluta variam como indica o gráfico abaixo, enquanto a pressão se mantém igual a 20 N/m2.

Sabendo-se que nessa transformação o gás absorve 250 J de calor, pode-se afirmar que a variação de sua energia interna é de

- (A) 100 J.
- (B) 1.50 J.
- (C) 250 J.
- (D) 350 J.
- (E) 400 J.
- **14.** Na figura abaixo, os diagramas p x V representam duas transformações termodinâmicas de uma amostra de gás ideal.

As transformações 1 e 2 denominam-se, respectivamente,

- (A) adiabática e isotérmica.
- (B) isobárica e isométrica.
- (C) isométrica e isotérmica.
- (D) adiabática e isobárica.
- (E) isométrica e isobárica.
- **15.** A figura abaixo representa duas cargas elétricas puntiformes positivas, +q e +4q, mantidas fixas em suas posições.

Para que seja nula a força eletrostática resultante sobre uma terceira carga puntiforme, esta carga deve ser colocada no ponto

- (A) A.
- (B) B.
- (C) C.
- (D) D.
- (E) E.

Instrução: As questões 16 e 17 referem-se ao enunciado que segue.

A figura abaixo representa um circuito elétrico com três resistores idênticos, de resistência R, ligados a uma fonte ideal de força eletromotriz V. (Considere desprezível a resistência elétrica dos fios de ligação.)

- **16.** Quanto vale a corrente elétrica i, indicada no circuito, quando a chave C está aberta?
 - (A) V/(3R).
 - (B) V/(2R).
 - (C) V/R.
 - (D) 2V/R.
 - (E) 3V/R.
- **17.** Quanto vale a corrente elétrica i, indicada no circuito, quando a chave C está fechada?
 - (A) V/(3R).
 - (B) V/(2R).
 - (C) V/R.
 - (D) 2V/R.
 - (E) 3V/R.
- **18.** O circuito a seguir representa três pilhas ideais de 1,5 V cada uma, um resistor R de resistência elétrica 1,0 ç) e um motor, todos ligados em série.

(Considere desprezível a resistência elétrica dos fios de ligação do circuito.)

A tensão entre os terminais A e B do motor é 4,0 V. Qual é a potência elétrica consumida pelo motor?

- (A) 0,5 W.
- (B) 1,0 W.
- (C) 1,5 W.
- (D) 2,0 W.
- (E) 2,5 W.
- **19.** A figura abaixo representa uma vista superior de um fio retilíneo, horizontal, conduzindo corrente elétrica i no sentido indicado. Uma bússola, que foi colocada abaixo do fio, orientou-se na direção perpendicular a ele, conforme também indica a figura.

Imagine, agora, que se deseje, sem mover a bússola, fazer sua agulha inverter a orientação indicada na figura. Para obter esse efeito, considere os seguintes procedimentos.

- Inverter o sentido da corrente elétrica i, mantendo o fio na posição em que se encontra na figura.
- II. Efetuar a translação do fio para uma posição abaixo da bússola, mantendo a corrente elétrica i no sentido indicado na figura.
- III. Efetuar a translação do fio para uma posição abaixo da bússola e, ao mesmo tempo, inverter o sentido da corrente elétrica i. Desconsiderando-se a ação do campo magnético terrestre, quais desses procedimentos conduzem ao efeito desejado?
- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) I, 11 e 111.

20. Entre 1909 e 1916, o físico norte-americano Robert Millikan (1868-1953) realizou inúmeras repetições de seu famoso experimento da "gota de óleo", a fim de determinar o valor da carga do elétron. O experimento, levado a efeito no interior de uma câmara a vácuo, consiste em contrabalançar o peso de uma gotícula eletrizada de óleo pela aplicação de um campo elétrico uniforme, de modo que a gotícula se movimente com velocidade constante.

O valor obtido por Millikan para a carga eletrônica foi de aproximadamente 1,6x10⁻¹⁹ C.

Suponha que, numa repetição desse experimento, uma determinada gotícula de óleo tenha um excesso de cinco elétrons, e que seu peso seja de 4,0 x 1015 N. Nessas circunstâncias, para que a referida gotícula se movimente com velocidade constante, a intensidade do campo elétrico aplicado deve ser de aproximadamente

- (A) 5,0 x 102 V/m.
- (B) 2,5 x 103 V/m.
- (C) 5.0 x 103 V/m.
- (D) 2,5 x 104 V/m.
- (E) 5,0 x 104 V/m.
- **21.** A figura abaixo representa dois diodos emissores de luz, ligados em paralelo a um solenóide.

Os diodos foram ligados em oposição um ao outro, de modo que, quando a corrente elétrica passa por um deles, não passa pelo outro. Um ímã em forma de barra é movimentado rapidamente para dentro ou para fora do solenóide, sempre pelo lado direito do mesmo, como também está indicado na figura.

Ao se introduzir o ímã no solenóide, com a orientação indicada na figura (S-N), observa-se que o diodo 1 se acende, indicando a indução de uma força eletromotriz, enquanto o diodo 2 se mantém apagado.

A respeito dessa situação, considere as seguintes afirmações.

- Ao se retirar o ímã do solenóide, com a orientação indicada (S-N), o diodo 2 se acenderá e o diodo 1 se manterá apagado.
- II. Ao se introduzir o ímã no solenóide, com a orientação invertida (N-S), o diodo 1 se acenderá e o diodo 2 se manterá apagado.
- III. Ao se retirar o ímã do solenóide, com a orientação invertida (N-S), o diodo 2 se acenderá e o diodo 1 se manterá apagado.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) Apenas II e III.
- **22.** Um pêndulo simples, de comprimento L, tem um período de oscilação T, num determinado local. Para que o período de oscilação passe a valer 2T, no mesmo local, o comprimento do pêndulo deve ser aumentado em
 - (A) 1L.
 - (B) 2L.
 - (C) 3L.
 - (D) 5L.
 - (E) 7L.
- 23. Na figura abaixo estão representados um espelho plano E, perpendicular à página, e um pequeno objeto luminoso S, colocado diante do espelho, no plano da página. Os pontos O1, O2 e O3, também no plano da página, representam as posições ocupadas sucessivamente por um observador.

O observador verá a imagem do objeto S fornecida pelo espelho E

- (A) apenas da posição O1.
- (B) apenas da posição O2.
- (C) apenas da posição O3.
- (D) apenas das posições O1 e O2.
- (E) das posições O1, O2 e O3.
- **24.** A figura abaixo representa um raio de luz monocromática que incide sobre a superfície de separação de dois meios transparentes. Os ângulos formados pelo raio incidente e pelo raio refratado com a normal à superfície são designados por α e β, respectivamente.

Nesse caso, afirmar que o ângulo-limite para a reflexão total da luz entre os meios 1 e 2 é de 48° significa dizer que ocorrerá reflexão total se

- (A) $48^{\circ} < \alpha < 90^{\circ}$.
- (B) $24^{\circ} < \alpha < 48^{\circ}$.
- (C) $0^{\circ} < \alpha < 24^{\circ}$.
- (D) $48^{\circ} < \beta < 90^{\circ}$.
- (E) $0^{\circ} < \beta < 48^{\circ}$.
- **25.** Um trem de ondas senoidais, gerado por um dispositivo mecânico oscilante, propaga-se ao longo de uma corda. A tabela abaixo descreve quatro grandezas que caracterizam essas ondas mecânicas.

Grandeza	Descrição					
I	Número de oscilações por segundo de um ponto da corda					
II	Duração de uma oscilação completa de um ponto da corda					
III	Distância que a onda percorre durante uma oscilação completa					
IV	Deslocamento máximo de um ponto da corda					

As grandezas I, II, III e IV são denominadas, respectivamente,

- (A) frequência, fase, amplitude e comprimento de onda
- (B) fase, freqüência, comprimento de onda e amplitude.
- (C) período, freqüência, velocidade de propagacão e amplitude.
- (D) período, freqüência, amplitude e comprimento de onda.
- (E) frequência, período, comprimento de onda e amplitude.
- **26.** O gráfico abaixo representa as intensidades luminosas relativas de duas linhas do espectro visível emitido por um hipotético elemento químico.

Nesse gráfico, a coluna menor corresponde a um comprimento de onda próprio da luz laranja.

A outra coluna do gráfico corresponde a um comprimento de onda próprio da luz

- (A) violeta.
- (B) vermelha.

- (C) verde.
- (D) azul.
- (E) amarela.
- 27. Mediante uma engenhosa montagem experimental, Thomas Young (1773-1829) fez a luz de urna Único fonte passar por duas pequenas fendas paralelas, dando origem a um par de fontes luminosas coerentes idênticas, que produziram sobre um anteparo uma figura como a registrada n. fotografia abaixo.

A figura observada no anteparo é típica do fenômeno físico denominado

- (A) interferência.
- (B) dispersão.
- (C) difração.
- (D) reflexão.
- (E) refração.
- 28. Quando um nêutron é capturado por um núcleo de grande número de massa, como o do U-235, este se divide em dois fragmentos, cada um com cerca da metade da massa original. Além disso, nesse evento, há emissão de dois ou três nêutrons e liberação de energia da ordem de 200 MeV, que isoladamente, pode ser considerada desprezível (trata-se de uma quantidade de energia cerca de 1013 vezes menor do que aquela liberada quando se acende um palito de fósforo!). Entretanto, o total de energia liberada que se pode obter com esse tipo de processo acaba se tornando extraordinariamente grande graças ao seguinte efeito: cada um dos nêutrons liberados fissiona outro núcleo, que libera outros nêutrons, os qual! por sua vez, fissionarão outros núcleos, e assim por diante. O processo inteiro ocorre em um intervalo de tempo muito curto e é chamado de
 - (A) reação em cadeia.
 - (B) fusão nuclear.
 - (C) interação forte.
 - (D) decaimento alfa.
 - (E) decaimento beta.
- **29.** Assinale a alternativa que preenche corretamente as lacunas do texto abaixo, na ordem em que aparecem.

De acordo com a Física Quântica, a energia interna de um átomo está quantizada em níveis discretos. Pelo modelo atômico de Bohr, os valores de energia dos níveis discretos do átomo de hidrogênio livre são dados por

$$En=-\frac{2,18x10^{-18}}{n^2}, n=1,\,2,\,3,\,...,$$

onde \mathbf{n} é o número quântico que identifica cada nível de energia. Sendo $h=6,6 \times 10\text{-}34 \text{ J.s}$ o valor aproximado da constante de Planck, para sofrer uma transição atômica do nível inicial n=3 para o nível fundamental n=1, um átomo de hidrogênio deverá radiação eletromagnética de freqüência aproximadamente igual a hertz.

- (A) absorver 1,6 x 1014
- (B) emitir 2,5 x 1014
- (C) absorver 3,6 x 1014
- (D) emitir 2,9 x 1015
- (E) absorver 3,3 x 1015
- **30.** Em 1905, como conseqüência da sua Teoria da Relatividade Especial, Albert Einstein (1879-1955) mostrou que a massa pode ser considerada como mais uma forma de energia. Em particular, a massa m de uma partícula em repouso é equivalente a um valor de energia E dado pela famosa fórmula de Einstein:

$$E = mc2$$
,

onde c é a velocidade de propagação da luz no vácuo, que vale aproximadamente 300.000 km/s. Considere as seguintes afirmações referentes a aplicações da fórmula de Einstein.

- Na reação nuclear de fissão do U-235, a soma das massas das partículas reagentes é maior do que a soma das massas das partículas resultantes.
- II. Na reação nuclear de fusão de um próton e um nêutron para formar um nêutron, a soma das massas das partículas reagentes é menor do que a massa da partícula resultante.
- III. A irradiação contínua de energia eletromagnética pelo Sol provoca uma diminuição gradual da massa solar.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) Apenas I e III.

Gabarito

001. A	002. B	003. D	004. D	005. B	006. C	007. B	008. C	009. A	010. E
011. D	012. C	013. B	014. E	015. B	016. C	017. E	018. D	019. D	020. C
021. A	022. C	023. D	024. A	025. E	026. B	027. A	028. A	029. D	030. E

UFRGS/2006