Content-based filtering

Key concept

• Building a vector of attribute

• Or a vector of keyword preferences

How to

• 사용자가 직접 제시 (or 수정)

Infer profile from user actions

Infer profile from explicit user ratings

Merge user actions and explicit user ratings

Preferences?

• Keywords that users have (or not have) opinion on

Count

• Or more sophisticated other methods

How to use preferences

- Vector of keyword preferences
 - Simply add up likes and dislikes
 - 더 relevant한 것에 weight 주기
- TFIDF(Term Frequency Inverse Document Frequency)
 - How frequent/important is this description in the current product?
 - Ex) blue + long sleeve + shirt + 목사 collar

Case-based recommendation

Products described in a set of relevant attributes

- Preference -> recommendations -> further preferences
- 일시적

- Ex) 어떤 상품? -> 무슨 용도? -> 사용자의 전문성? -> price range?
 - ->...other feature attribute

Knowledge based recommendation

• 어떤 item을 선호했는지에 대한 정보에서 출발

- 그 item을 기준으로
 - Cheaper, nicer, more traditional...

• Ex) Entrée

Case-based recommendation

- 일시적
 - 현재 보는 것과 비슷한 상품

Easier to explain to the user

Content-based recommendations

- 장기적인 선호도 반영
- Harder to explain to users
- Not so clear on all domains
 - Ex) paintings- more blue? more oil?
 - Need to come up with attributes that seem to correlate with preference
- Harder to find 보완재 than 대체제
- Work without large set of user data

Content(product attribute)-based

 Short term : database of cases(co-purchased, co-browsed), navigate

• Longer term : build profile (on content preferences)

TFIDF

Term Frequency Inverse Document Frequency

The search problem

Search "civil war"

- How often does the term occur in the document?
 - 'civil' 100, 'war' 100
 - 'civil war' 50
 - In terms of importance: 'civil' > 'war'

TFIDF weighting

- Term Frequency * Inverse Document Frequency = weight
- Term Frequency
 - Number of occurrences of a term in the document
 - Or tags
- Inverse document frequency
 - How few documents contain this term
 - 일반적 공식
 - Log (#documents / #documents with term)
 - 얼마나 rare한가? Ex) 'the' vs 'civil'

But TFIDF fails when...

- Core term/concept not used much in document
 - Legal contracts 이름 1회 노출 후 '갑' 등으로 대체

• 사람들이 검색을 '못'할 때

How does TFIDF apply to CBF?

Use TFIDF to create a profile of a document/object

Can be combined with ratings, etc

Variants on TF(Term Frequency)

• 0 or 1 Boolean frequencies (above certain threshold)

Logarithmic frequencies

Normalized frequency (ex) divide by document length

More things to consider

- Phrases and n-grams
 - 'computer science' != 'computer' and 'science'
- 문서에서의 중요도 (or 문서 제공자의 신뢰도)
 - 제목, 부제, ...
- General document authority
- Implied content
 - 키워드가 한번도 포함되지 않는다면? Ex) 뉴욕 양키스 스케줄
 - Co-purchasing as an alternative to direct atrrtibute

Keyword vector

Keyword vector

- Keywords define a content space
 - Each keyword = dimension
 - Each item has a position in that space; vector
 - Each user has taste profile in that space; vector
 - User preference & item 벡터가 얼마나 가까이 있는가
 - May limit/collapse space stem and stop

Representing item through a keyword vector

• 0 or 1?

Occurrence count?

TFIDF (most common)

Normalize vector

Representing item through a keyword vector

- 0 or 1
 - Actor '톰 크루즈'
 - Descriptive '스릴 있는'
- IDF (IDF 값이 낮을 수록-많이 나온 단어일수록-중요한 단어가 아니다)
 - Actor '톰 크루즈 ' vs '엑스트라1'
 - Descriptive '재판장 씬 ' vs '로맨스'/'스릴러'

Limitation of the vector space model

- No difference between liking and importance
 - 바비큐 소스를 좋아하지만, 있어도 그만 없어도 그만이라면?

User profiles

- Add together the item vectors?
 - Normalize?
 - All vectors should be the same weight?
 - Weigh the vector?
 - Ratings for weight ... etc

How to factor in rating

- Simple unary without weights
- Simple binary add positives and subtract negatives
- Unary with threshold 3.5 and above as equal
- Weight, but positive only
- Weight, and include negative also negative weight

How to update profiles (new ratings)

- Recompute each time 비효율적
- Weight new/old similarly
 - For changed ratings, subtract old
- Decay old profile and mix in new
 - 0.95*old + 0.05*new
 - More weight to new

Computing predictions

- Prediction = cosine of the angle between two vectors(profile, item)
- Normalized vector들의 내적

- Ranges between -1 and 1 (0 and 1 if all positive)
 - 1에 가까울수록 match
- ...more on later lectures

A·B (A와 B의 내적)

$$= |B| \times |A| \times \cos\theta$$

$$= 6 \times 4 = 24$$

(벡터 D의 크기는 A벡터의 크기에 cosθ를 곱한 것이다. | D | = | A | × cosθ)

여기서 A의 크기가 아니라 A를 분해한 벡터 D의 크기를 곱해주는 이유는

B 벡터에 실제적으로 영향을 주는 벡터가 D이기 때문이다.

(벡터 C는 벡터 B의 방향으로 어떠한 영향도 주지 못하기 때문에, 내적 계산에서 무시한다.)

Keyword 사용 장점

- Entirely content based
- Understandable profile
- Easy computation
- Flexibility can integrate with other approaches
 - Case-based
 - Query-based

단점

- Factors?
- Weights?
- Simplified can't handle interdependencies
 - 톰 크루즈의 액션영화와 르네 젤웨거의 로맨틱 코미디, not 르네 젤웨거의 액션영화와 톰 크루즈의 로맨틱 코미디
 - Comedies with violence and historical documentaries, but not historical comedies or violent documentaries.
 - Not unless infinite combinations of attributes
- 이미 좋아한다고 한 것만 추천해준다

Entrée style recommenders

Knowledge-based recommenders - The FindMe systems

I would like to eat at a restaurant that has:

	Cuisine	•	Price		\$
Style		Atmosphere	-	Occasion	(\$)

I would like to eat at a restaurant just like:

Chinois on Main	Los Angeles	‡
-----------------	-------------	----------

Entrée style recommenders

- Similar reassessment finding similarity between objects
- Criteria arranged hierarchically
 - Cuisine -> price -> quality of the experience
- Similarity can be asymmetric
 - 비슷하지만 더 비싼 음식점 not so similar

Recommending restaurants

- Manual knowledge engineering => similarity matrix
 - multiple cuisines in a restaurant
 - same cuisine may not be the same food depending on the location(city)
- 사용한 유저 정보
 - Critique-based RS <= 사용 안함
 - Cheaper recommendations options get small very fast
 - Always need to give recommendations even if not so similar
 - This encouraged users to explore keep hitting cheaper
 - '비슷함' <- 사람마다 주관적인 기준
 - Is the person rich? Is the person feeling rich that day?
 - Price may be in the lower hierarchy of the similarity matrix
 - Start with default matric (- then maybe let the users choose their own similarity metric)

Type retrieval

- 'Just like this Chinese restaurant but Italian'
 - Lots of queries like this
 - Make up pretend restaurant, find the closest one
- Let people explore the space of possibilities

Case-based reasoning

Memory-based reasoning

Case-based reasoning

• 과거의 문제와 해결방법을 새로운 문제 해결에 사용한다

- Problems and solutions as cases
 - Problem solution (- outcome)
- Retrieve a case similar to the new problem
- Most useful in domains where there's no strong domain models

Case-based recommenders

- Single-shot case-based reasoning system(/case-based RS)
 - Query represented in a case-like representation
 - Suggests a set of similar cases
- Conversational recommendations
 - Conversational interactions between user and the case-based system
 - User provides feedback at each recommendation step
 - Recommends Chinese restaurant -> 'more cheaper' -> 반영된 추천
 - Critiques on multiple features
- Relevance and diversity

Opinion mining

- Amazon
 - Catalog features info about the product
 - Reviews user generated info about the product
 - Opinion mining to extract out new features
 - Ex) 맥북 에어 디자인, 화면 크기, 배터리
 - Sentiment anlaysis
 - Ex) 맥북 디자인 긍정, 맥북 가격 부정

Dialog-based recommenders

Critiquing based

Critique-based recommender system

- Critiques
 - User initiated
 - I like this laptop, but I want something cheaper
 - Provided by the system
 - This item might be also interesting for you
 - This laptop satisfied your requirement, and gives better battery life, but more expensive

Difference between critique vs rating

- Rating based recommender systems
 - Preferences represented as a score (as a whole)
- Critique based recommender systems
 - Preferences expressed over the features of a product
 - Single shot high stakes decision 꼼꼼히 조건 봄
 - User preference change overtime
 - 아이폰 16기가 -(1년 후)-> 아이폰 128기가
 - Preferences change based on the available options shown to us
 - Given today's market, today's tech, today's context...etc
 - Also catches stable and long term preferences
 - Compound critiquing several features at once

User preference model

- MAUT(multi attribute utility theory)
 - Linear combination weighted by the importance of each attribute
 - Direction of utility
 - Direction matters: more memory better, more expensive worse
 - Pro: Easy to compute linear algorithm
 - Easy to compute and rank scores
 - Con: Assumes independence of different attributes
 - Screen size and weight
 - 역에서 집까지 거리 (500미터)

Critiques change

- 100만원 미만의 상품을 원한다 -> 상품을 보다 보니까
 - ->200만원 이상이더라도 더 좋은 성능을 원한다

- Compound critiquing
 - Suggest items that satisfy some of the preferences and make compromises
 - Educate users what options are available
 - Giving people a tool to navigate and helping them learn what the space is.

Search, recommendation, and target audiences

Search vs Recommendation

- Search
 - User triggers the task
 - User knows what they are looking for
- Recommendation
 - Recommender gives suggestions
 - User does not know that item exists

Data for content-based recommendation

User provided content

Item content

Tags

- Reviews
 - Great for understanding "why"

Special demographic populations of users

- Children
 - Harder to get user profile
 - Need to consider readability
- English as second language
 - Can get user profile
 - Need to consider comprehension level of English
 - Topic interests

Beyond TFIDF

The Netflix prize

Matrix factorization

- "Recommending New Movies: Even a Few Ratings are More Valuable Than Metadata"
 - Content-based approach 는 쓰레기?

Content-based approach 재조명

- Social media nowadays full of content
 - Both quality and quantity
- Explanation
 - 유저보다,
 - 추천 시스템에 투자하는 회사에게 더 필요
- Comprehension of the info conveyed by text or content > Method
 - To semantic representation

Semantic representation

- Explicit representation
 - Explicitly mapping features describing the item or the whole item with concepts contained in external knowledge sources
 - Wikipedia
 - DBpedia etc
- Implicit representation
 - Distributed hypothesis: "the meaning is it's use"
 - Meaning of words determined by analyzing their usage (cooccurrence)
 - Word embedding, word2vec, ...

Semantics-aware RS advantages

- Richer representations
 - Overcome limited content analysis
 - Better explanations
 - Foster unexpectedness

추가 내용

Damped means

- Problem: low confidence w/ few ratings
- Solution: assume that, without evidence, everything is average
- Ratings are evidence of non-averageness
- k controls strength of evidence required

$$\frac{\sum_{u} r_{ui} + k\mu}{n+k}$$

Scoring news stories

Hacker News

$$\frac{(U-D-1)^{\alpha}}{(t_{\text{now}}-t_{\text{post}})^{\gamma}} \times P$$

- · Net upvotes, polynomially decayed by age
- Old items scored mostly by vote
- Multiplied by item penalty terms
 - incorporate community goals into score

Reddit algorithm (c. 2010)

$$\log_{10} \max(1, |U-D|) + \frac{\operatorname{sign}(U-D)t_{\text{post}}}{45000}$$

- Log term applied to votes
 - decrease marginal value of later votes
- Time is seconds since Reddit epoch
- Buries items with negative votes
- Time vs. vote impact independent of age
- · Scores news items, not comments

