Retrieving Data Using the SQL SELECT Statement

Objectives

After completing this lesson, you should be able to do the following:

- List the capabilities of SQL SELECT statements
- Execute a basic SELECT statement

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Capabilities of SQL SELECT Statements

Basic SELECT Statement

```
SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;
```

- SELECT identifies the columns to be displayed.
- FROM identifies the table containing those columns.

Selecting All Columns

SELECT *
FROM departments;

	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
1	10	Administration	200	1700
2	20	Marketing	201	1800
3	50	Shipping	124	1500
4	60	IT	103	1400
5	80	Sales	149	2500
6	90	Executive	100	1700
7	110	Accounting	205	1700
8	190	Contracting	(null)	1700

Selecting Specific Columns

SELECT department_id, location_id FROM departments;

	A	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
1		10	Administration	200	1700
2		20	Marketing	201	1800
3		50	Shipping	124	1500
4		60	IT	103	1400
5		80	Sales	149	2500
6		90	Executive	100	1700
7		110	Accounting	205	1700
8		190	Contracting	(null)	1700

	DEPARTMENT_ID	LOCATION_ID
1	10	1700
2	20	1800
3	50	1500
4	60	1400
5	80	2500
6	90	1700
7	110	1700
8	190	1700

Writing SQL Statements

- SQL statements are not case-sensitive.
- SQL statements can be entered on one or more lines.
- Keywords cannot be abbreviated or split across lines.
- Clauses are usually placed on separate lines.
- Indents are used to enhance readability.
- In many DBMS, SQL statements can optionally be terminated by a semicolon (;) Semicolons are required when you execute multiple SQL statements.

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column Aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Arithmetic Expressions

Create expressions with number and date data by using arithmetic operators.

Operator	Description
+	Add
ı	Subtract
*	Multiply
/	Divide

Using Arithmetic Operators

```
SELECT last_name, salary, salary + 300
FROM employees;
```

	LAST_NAME	2 SALARY	SALARY+300
1	King	24000	24300
2	Kochhar	17000	17300
3	De Haan	17000	17300
4	Hunold	9000	9300
5	Ernst	6000	6300
6	Lorentz	4200	4500
7	Mourgos	5800	6100
8	Rajs	3500	3800
9	Davies	3100	3400
10	Matos	2600	2900

Operator Precedence

SELECT last_name, salary, 12*salary+100

FROM employees;

LAST_NAME 2 SALARY 2 12*SALARY+100

1 King 24000 288100
2 Kochhar 17000 204100

204100

•••

3 De Haan

SELECT last_name, salary, 12*(salary+100)
FROM employees;

17000

	LAST_NAME	2 SALARY	12*(SALARY+100)
1	King	24000	289200
2	Kochhar	17000	205200
3	De Haan	17000	205200

- - -

Defining a Null Value

- Null is a value that is unavailable, unassigned, unknown, or inapplicable.
- Null is not the same as zero or a blank space " ".

last_name, job_id, salary, commission pct SELECT FROM employees; SALARY 2 LAST_NAME JOB ID COMMISSION PCT 1 King AD_PRES 24000 (null) 2 Kochhar AD_VP 17000 (null) 12 Zlotkey SA_MAN 10500 0.2 13 Abel SA_REP 0.3 11000 14 Taylor SA_REP 0.2 8600 . . . 19 Higgins AC_MGR (null) 12000 AC ACCOUNT 20 Gietz 8300 (null)

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value evaluate to null.

SELECT last_name, 12*salary*commission_pct FROM employees;

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Defining a Column Alias

A column alias:

- Renames a column heading
- Is useful with calculations
- Immediately follows the column name (There can also be the optional AS keyword between the column name and alias.)
- Requires double quotation marks if it contains spaces or special characters, or if it is case-sensitive

Using Column Aliases

```
SELECT last_name AS name, commission_pct comm FROM employees;
```

		NAME	£	COMM		
	1	King			(n	ull)
	2 Kochhar				(n	ull)
:	3	De Haan			(n	ull)

. . .

```
SELECT last_name "Name" , salary*12 "Annual Salary"
FROM employees;
```


. . .

Lesson Agenda

- Basic SELECT Statement
- Arithmetic Expressions and NULL values in SELECT statement
- Column Aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Concatenation Operator in Oracle

A concatenation operator:

- Links columns or character strings to other columns
- Is represented by two vertical bars (||)
- Creates a resultant column that is a character expression

```
SELECT last_name||job_id AS "Employees"
FROM employees;
```


- - -

Concatenation Operator in MySQL

Uses concat_ws with a space.

```
SELECT CONCAT_WS(" ", Address, PostalCode,
City) AS Address
FROM Customers;
```

CustomerName	Address		
Alfreds Futterkiste	Obere Str. 57 12209 Berlin		
Ana Trujillo Emparedados y helados	Avda. de la Constitución 2222 05021 México D.F.		
Antonio Moreno Taquería	Mataderos 2312 05023 México D.F.		
Around the Horn	120 Hanover Sq. WA1 1DP London		

Duplicate Rows

The default display of queries is all rows, including duplicate rows.

SELECT DISTINCT department_id FROM employees;

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Displaying the Table Structure

- Use the DESCRIBE command to display the structure of a table.
- Or, select the table in the Connections tree and use the Columns tab to view the table structure.

DESC[RIBE] tablename

Using the DESCRIBE Command

DESCRIBE employees

DESCRIBE employees		_
Name	Null	Туре
TWO CITES TO		TERROTO ACA
EMPLOYEE_ID	MOI MOPP	NUMBER(6)
FIRST_NAME		VARCHAR2(20)
LAST_NAME	NOT NULL	VARCHAR2(25)
EMAIL	NOT NULL	VARCHAR2(25)
PHONE_NUMBER		VARCHAR2(20)
HIRE_DATE	NOT NULL	DATE
JOB_ID	NOT NULL	VARCHAR2(10)
SALARY		NUMBER(8,2)
COMMISSION_PCT		NUMBER(2,2)
MANAGER_ID		NUMBER(6)
DEPARTMENT_ID		NUMBER (4)
ll rows selected		

Quiz

Identify the SELECT statements that execute successfully.

```
SELECT first name, last name, job id, salary*12
    AS "Yearly Sal"
         employees;
   FROM
   SELECT first name, last name, job id, salary*12
    yearly sal
   FROM
          employees;
   SELECT first name, last name, job id, salary AS
3.
    yearly sal
          employees;
   FROM
   SELECT first name+last name AS name, job Id,
    salary*12 yearly sal
          employees;
   FROM
```

Summary

In this lesson, you should have learned how to:

- Write a SELECT statement that:
 - Returns all rows and columns from a table
 - Returns specified columns from a table
 - Uses column aliases to display more descriptive column headings

```
SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;
```

Practice 1: Overview

This practice covers the following topics:

- Selecting all data from different tables
- Describing the structure of tables
- Performing arithmetic calculations and specifying column names

W3C SQL Tutorial

Please look at more examples regarding select statements from

https://www.w3schools.com/MySQL/mysql_select.asp