Midterm 1 Version 2 Solution

March 19, 2020

Question 1

a. Since

$$S_1 = \{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29\}, \text{ and } S_2 = \{1, 2, 3, 5, 6, 10, 15, 30\},$$

 $S_1 \cap S_2 = \{1, 2, 3, 5\}$

b. See the table below

p	q	r	$ \neg p $	$\neg p \Leftrightarrow q$	$ \mid (\neg p \Leftrightarrow q) \Rightarrow r $
\overline{T}	Т	Т	F	F	Т
\overline{T}	Т	F	F	F	Т
\overline{T}	F	Т	F	Т	Т
F	Т	Т	Τ	Τ	F
\overline{T}	F	F	F	Т	F
F	F	Т	Т	F	Т
\overline{F}	F	F	Т	F	Т

c. Let $x \in \mathbb{N}$. Assume P(x).

We will prove that there is a natural number y such that the predicate Q(x,y) is true.

Question 2

- a. $\forall x \in P, Cat(x) \wedge Loves(x, x)$
- b. $\forall x \in P, \exists y \in P, Cat(x) \land Cute(y) \land Loves(x, y)$

Question 3

Question 4