

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/764,622	01/26/2004	Beat Stamm	14984.36	8918
47973	7590	08/26/2005	EXAMINER	
WORKMAN NYDEGGER/MICROSOFT 1000 EAGLE GATE TOWER 60 EAST SOUTH TEMPLE SALT LAKE CITY, UT 84111			WANG, JIN CHENG	
		ART UNIT		PAPER NUMBER
				2672

DATE MAILED: 08/26/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	10/764,622	STAMM ET AL.	
	Examiner	Art Unit	
	Jin-Cheng Wang	2672	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 26 July 2005.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-7 and 9-20 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-7 and 9-20 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____ .
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____ .	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____ .

DETAILED ACTION

Response to Amendment

1. Applicant's submission filed on 07/26/2005 has been entered. Claim 8 has been canceled. Claims 1, 5-6, 9, 16 and 20 have been amended. Claims 1-7 and 9-20 are pending in the present application.

Response to Arguments

Applicant's arguments filed July 26, 2005 have been fully considered but are not found persuasive in view of the ground(s) of rejection set forth below.

The amended Claim 1 is rejected under 35 U.S.C. 102(b) as being anticipated by Kaasila U.S. Patent No. 5, 155,805 (hereinafter Kaasila).

As set forth below, Kaasila discloses that the projection vector specifies a direction along which the difference in distance between the original position of the control point and the desired position of the control point is **measured**. Specifying the projection vector also determines the first angle between the projection vector and the X-axis and the second angle between the projection vector and the Y-axis. Thus, a first angle between the first direction of compliance and an X-axis and a second angle between the first direction of compliance and a Y-axis are readily determined from the projection vector. For example, in Fig. 8, the font instructions have been applied to the spline outlines of lowercase letter "o" in which the projection and freedom vectors are determined for control points. The control point 9 has a projection vector being set to the X-axis such that it is readily determined/measured that the first angle is 0 degree and the second angle is 90 degree. **Accordingly, the freedom vector is set to the x-axis with the first angle**

being smaller than the second angle; see column 8, lines 20-40 wherein the freedom vector is set to the x-axis while satisfying the distance constraints between the control points.

Fig. 8 also shows that the projection and freedom vectors are determined for a plurality of control points. The control point 9 has a projection vector being set to the Y-axis such that it is readily determined/measured that the first angle is 90 degree and the second angle is 0 degree. Accordingly, **the freedom vector is set to the y-axis** with the second angle being smaller than the first angle;; see column 8, lines 20-40 wherein the freedom vector is set to the y-axis while satisfying the distance constraints between the control points.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 1-7 and 9-20 are rejected under 35 U.S.C. 102(b) as being anticipated by Kaasila U.S. Patent No. 5, 155,805 (hereinafter Kaasila).

Claim 1:

Kaasila discloses that, in a computing system that has access to a set of control points, the set of control points for generating an outline of a graphical object, the outline being utilized to determine how the graphical object is rendered on a pixel grid, the location of some control points being constrained to pre-determined locations, a computerized method for dynamically

determining one or more directions of freedom for a control point such that the control point can be moved to comply with a corresponding one or more constraints, the method comprising:

Identifying a first function (*e.g., functions are described in column 9, lines 41-67*) that represents a first constraint, solutions to the first function indicating compliance with the first constraint (*e.g., a first constraint being a distance constraint wherein the projection vector specifies in distance between the original position of the control point and the compliance with the distance constraint. The new positions of control point depend upon the freedom vector and the projection vector which are automatically determined by the routines and functions as disclosed in column 9-10 such that the distance constraint is satisfied to the extent that the distance between the desired position of the control point and the original position of the control point is reduced to the minimum possible value; column 9-10*);

Calculating based on the location of the control point and the identified first function (*e.g., the first function is automatically identified depending upon the location of the control point, the freedom vector and the projection vector; column 9-10*), that the control point does not comply with the first constraint (*e.g., the original control point does not comply with the distance constraint as specified such that the distance between the desired control point and the original control point is reduced to a minimum possible and the target control point is iteratively adjusted to the desired position to reduce non-compliance with the desired control point; column 9-10*), and

Automatically determining a first direction of freedom in which the control point can be moved to comply with the first constraint such that movement of the control point in the first direction of freedom has a reduced likelihood of causing non-compliance with other constraints

(e.g., the new positions of control point depend upon the freedom vector and the projection vector which are automatically determined by the routines and functions as disclosed in column 9-10 and the step of adjusting the position of the control point along the freedom vectors until a balance of the diagonal stroke weight of letter "Y" is achieved i.e., other constraints associated with the other control points can be satisfied such as the distance between one control point and the other control points are maintained for a lowercase letter "o"; column 8-10), wherein automatically determining a first direction of freedom in which the control point can be moved to comply with the first constraint comprises the acts of:

Measuring a first angle between a first direction of compliance and a first axis;

Measuring a second angle between the first direction of compliance and a second axis;

and

Determining that the first angle is smaller than the second angle (e.g., Kaasila discloses that the projection vector specifies a direction along which the difference in distance between the original position of the control point and the desired position of the control point is measured. Specifying the projection vector also determines the first angle between the projection vector and the X-axis and the second angle between the projection vector and the Y-axis. Thus, a first angle between the first direction of compliance and an X-axis and a second angle between the first direction of compliance and a Y-axis are readily determined from the projection vector. For example, in Fig. 8, the font instructions have been applied to the spline outlines of lowercase letter "o" in which the projection and freedom vectors are determined for control points. The control point 9 has a projection vector being set to the X-axis such that it is readily determined/measured that the first angle is 0 degree and the second angle is 90 degree.

Accordingly, the freedom vector is set to the x-axis with the first angle being smaller than the second angle; see column 8, lines 20-40 wherein the freedom vector is set to the x-axis while satisfying the distance constraints between the control points. Fig. 8 also shows that the projection and freedom vectors are determined for a plurality of control points. The control point 9 has a projection vector being set to the Y-axis such that it is readily determined/measured that the first angle is 90 degree and the second angle is 0 degree. Accordingly, the freedom vector is set to the y-axis with the second angle being smaller than the first angle; see column 8, lines 20-40 wherein the freedom vector is set to the y-axis while satisfying the distance constraints between the control points).

Claim 2:

Kaasila further discloses the claim limitation of processing instructions included in a set of control points (column 10, lines 1-45; see also column 7-8).

Re Claim 3:

Kaasila further discloses the claim limitation of identifying a first function that represents one of a distance constraint and a proportion constraint (e.g., a first constraint being a distance constraint wherein the projection vector specifies in distance between the original position of the control point and the desired position of the control point; see column 9-10 and a proportion constraint is determined by the inner product of unit freedom vector and projection vector).

Claim 4:

Kaasila further discloses the claim limitation of determining that using the control point as input to the first function does not result in a value that approximates a zero for the first

function (e.g., moving the control point a predetermined distance being non-zero so that the control point can be moved and applying font instruction including Delta exceptions and projection and freedom vectors to adjust the diagonal stroke of “Y”; see column 10, lines 1-45).

Re Claims 5-6:

Kaasila further disclose the claim limitation of determining that the first direction of freedom is to be in the direction of X-axis or Y-axis (e.g., the freedom and projection vectors are set to the x-axis or y-axis; see column 8, lines 20-40 and column 10, lines 1-45).

Claim 7:

Kaasila further discloses the claim limitation of moving the control point in the first direction of freedom to comply with the first constraint (e.g., the new positions of control point depend upon the freedom vector and the projection vector which are automatically determined by the routines and functions as disclosed in column 9-10 and the step of adjusting the position of the control point along the freedom vectors until a balance of the diagonal stroke weight of letter “Y” is achieved, i.e., other constraints associated with the other control points can be satisfied; column 7-10).

Re Claim 9:

Kaasila further discloses the claim limitation of identifying a second function that represents a second constraint, solutions to the second function indicating compliance with the second constraint; and setting a second direction of freedom perpendicular to the first direction of compliance, the second direction of freedom indicating a direction in which the control point can move to comply with the second constraint (e.g., column 10, lines 1-45).

Re Claim 10:

Kaasila further discloses the claim limitation of setting the second direction of freedom to the direction of the second axis by applying font instructions (column 8-10).

Re Claims 11-12:

Kaasila further discloses the claim limitation of setting the second direction of freedom to the direction of an X-axis or Y-axis (e.g., Repeating the step of moving the control point and setting the direction of freedom vector until a balance of the diagonal stroke weight of letter "Y" is achieved including setting the freedom vector to the x-axis or y-axis by the application of font instructions; see column 8-10).

Re Claim 13:

Kaasila further discloses the claim limitation of setting the second direction of freedom to a diagonal direction (e.g., Repeating the step of moving the control point and setting the direction of freedom vector until a balance of the diagonal stroke weight of letter "Y" is achieved including setting the freedom vector to the diagonal direction in relation to the projection vector by the application of font instructions; see column 8-10).

Claim 14:

Kaasila further discloses the claim limitation of moving the control point along the second direction of freedom to comply with the second constraint in a manner that does not result in non-compliance with the first constraint (e.g., the freedom vector tells the control point the direction it should move and the projection vector determines the desired distance projection between control points and these vectors are used in calculating the resulting vector for determining the new position of control point until a balanced diagonal stroke weight of letter "Y" is achieved; see column 8-10).

Claim 15:

Kaasila further discloses the claim limitation of receiving a set of control points representing a character of text (e.g., the freedom vector tells the control point the direction it should move and the projection vector determines the desired distance projection between control points and these vectors are used in calculating the resulting vector for determining the new position of control point until a balanced diagonal stroke weight of letter “Y” is achieved; see column 8-10).

Claim 16:

Kaasila teaches that, in a computing system that has access to a set of control points, the set of control points for representing an outline of a graphical object, a method for setting the direction of freedom vectors for one or more of the control points, the method comprising:

For each control point in the set of control points, determining the number of constraints the control point is to comply with (*e.g., Delta exceptions permit user of font rendering engines to quickly correct and adjust the outlines of a glyph over a significant range of resolution to enhance typeface with raster output devices at a resolution; the set of control points are illustrated in column 7-9 and the number of constraints the control point is to comply with are described in column 7-10 in which the freedom and projection vector are means to move control points in desired direction and to measure distances along the projection vector and these two vectors are manipulated iteratively;*);

When the control point is to comply with one or more constraints:

Identifying a first projection vector corresponding to a first constraint, compliance with the first constraint being determined by measuring a distance from the control point, in the

direction of the first projection vector, to another portion of the outline or to a pre-determined location (*e.g., column 10, lines 1-45 in which the control point is iteratively adjusted in accordance with the font instructions and the freedom vector and projection vector are determined in which the projection vector specifies a direction along which the difference in distance between the original position of the control point and the desired position of the control point is measured and the freedom vector specifies the direction a selected control point should move; the control points are manipulated with freedom and projection vectors in a plurality of lines; see Fig. 12*);

Automatically determining a first direction of freedom in which the control point can be moved to comply with the first constraint by at least determining the direction of the first projection vector is closer to the direction of a first axis than to the direction of a second axis, the first axis being perpendicular to the second axis (*e.g., e.g., Kaasila discloses that the projection vector specifies a direction along which the difference in distance between the original position of the control point and the desired position of the control point is measured. Specifying the projection vector also determines the first angle between the projection vector and the X-axis and the second angle between the projection vector and the Y-axis. Thus, a first angle between the first direction of compliance and an X-axis and a second angle between the first direction of compliance and a Y-axis are readily determined from the projection vector. For example, in Fig. 8, the font instructions have been applied to the spline outlines of lowercase letter “o” in which the projection and freedom vectors are determined for control points. The control point 9 has a projection vector being set to the X-axis such that it is readily determined/measured that the first angle is 0 degree and the second angle is 90 degree. Accordingly, the freedom vector is set to*

the x-axis with the first angle being smaller than the second angle; see column 8, lines 20-40 wherein the freedom vector is set to the x-axis while satisfying the distance constraints between the control points. Fig. 8 also shows that the projection and freedom vectors are determined for a plurality of control points. The control point 9 has a projection vector being set to the Y-axis such that it is readily determined/measured that the first angle is 90 degree and the second angle is 0 degree. Accordingly, the freedom vector is set to the y-axis with the second angle being smaller than the first angle,; see column 8, lines 20-40 wherein the freedom vector is set to the y-axis while satisfying the distance constraints between the control points. See column 8 and column 10, lines 1-45); and

Setting the direction of a first freedom vector to the direction of the first axis, the first freedom vector indicating a direction in which the control point can move to comply with the first constraint (e.g., column 8-10).

Claim 17:

Kaasila further discloses the claim limitation of determining the number of constraints the control point is to comply with the iterative process (column 9-10).

Claim 18:

Kaasila further discloses the claim limitation of determining that the control point is to comply with one constraint (column 10, lines 1-45 and column 8).

Claim 19:

Kaasila further discloses the claim limitation of determining that the control point is to comply with two constraints (e.g., column 10, lines 1-45 which presented at least two set of

projection vectors and freedom vectors such that the distance constraints are satisfied at each iterative step of adjusting the original control point to the desired control point).

Claim 20:

The claim 20 is subject to the same rationale of rejection set forth in the claim 1.

Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jin-Cheng Wang whose telephone number is (571) 272-7665. The examiner can normally be reached on 8:00 - 6:30 (Mon-Thu).

Art Unit: 2672

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mike Razavi can be reached on (571) 272-7664. The fax phone number for the organization where this application or proceeding is assigned is ~~703-872-9306~~ 571-273-8300

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

jcw

ALMIS R. JANKUS
PRIMARY EXAMINER