

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz

Rozhodnutelnost

Opakování z minulé přednášky

- Co je to Turingův stroj?
- Jak je Turingův stroj formálně definován?
- Co je to konfigurace, krok výpočtu a výpočet TS?
- Jaký je rozdíl mezi jazykem akceptovaným a rozhodovaným TS?
- Co je to rekursivní a rekursivně spočetný jazyk?
- Jak lze použít TS pro výpočet hodnot funkcí?
- Co je to rozhodnutelný, částečně rozhodnutelný a nerozhodnutelný problém?
- Jaké varianty TS znáte?
- Jaké jsou uzávěrové vlastnosti rekurzivních a rekurzivně spočetných jazyků?

Otázky pro dnešní přednášku

- Existují jazyky (problémy), které nejsou rekursivně spočetné (částečně rozhodnutelné)?
- Existují jazyky (problémy), které jsou rekursivně spočetné (částečně rozhodnutelné), ale nejsou rekursivní (rozhodnutelné)?
- Pokud ano, které to jsou?

Osnova přednášky

- Formalizace pojmu algoritmus
 - Churchova teze
 - Další formalizace algoritmu
 - Kódování strojů a slov
 - Univerzální TS
- Problém příslušnosti
 - Diagonalizace
- Problém zastavení
 - Redukce
- Důsledky nerozhodnutelnosti

Churchova teze

- Algoritmus = postup řešení určitého problému
 - Obecný
 - Konečný
 - Deterministický
 - Srozumitelný
 - Opakovatelný
- Jak pojem algoritmus formalizovat?
- Church-Turingova teze: "Každý proces, který lze intuitivně nazvat algoritmem, lze ralizovat pomocí Turingova stroje"
- Ztotožnění pojmů "algoritmicky řešitelný" a "řešitelný pomocí TS"

Další formalizace algoritmu

- Postovy systémy
- Minského stroje
- μ-rekursivní funkce
- λ-kalkul
- while programy
- Všechny jsou výpočetně ekvivalentní Turingově stroji

Kódování Turingova stroje

- Je dán TS M = (Q, Σ , Γ , \triangleright , \bot , δ , q_0 , q_A , q_R).
- Předpokládejme seřazení a očíslování prvků množin Q, Σ , Γ takové, že Q = {q₀, q_A, q_R, ...}, Γ = { \triangleright , \bot , ...}
- Dále označme $s_1 = L$ a $s_2 = R$
- Pak hodnotu přechodové funkce $\delta(q_i, x_j) = (q_k, x_l, s_m)$ lze jednoznačně zakódovat binárním řetězcem $0^i 10^j 10^k 10^l 10^m$
- Binárním kódem TS M je pak řetězec 111<KÓD1>11
 KÓD2>11...11<KÓDr>111
- Analogicky lze kódvat i vstupní slova stroje M
- Kód stroje M označíme <M>, kód slova w označíme <w>

Univerzální Turingův stroj

- Díky kódování TS a vstupního slova lze sestrojit Univerzální TS U takový, že
- L(U) = {<M>#<w> | M akceptuje slovo w}
- Výpočet stroje U:
 - Ověří, že je slovo požadovaného tvaru (pokud ne, tak zamítá)
 - Simuluje krok po kroku výpočet stroje M nad slovem w.
 - U má 3 pásky: kód stroje M, aktuální obsah pásky stroje M, aktuální stav stroje M
 - U akceptuje (zamítá) právě tehdy, když M nad w akceptuje (zamítá). Pokud M nad w cyklí, pak i U nad <M>#<w> cyklí.

Problém příslušnosti pro TS

- Problém určit, zda stroj M slovo w akceptuje, nebo neakceptuje (tj. zamítne, nebo bude cyklit).
- Tedy problém určit, zda w ∈ L(M)
- Definujeme jazyk odpovídající problému:
 PP = {<M>#<w> | stroj M akceptuje slovo w}
- Tedy PP = {<M>#<w> | w ∈ L(M)}

Rozhodnutelnost PP

- Snadno lze ověřit, že PP je částečně rozhodnutelný
 - -L(U) = PP
 - U není úplný, proto zatím nevíme, zda je
 PP rozhodnutelný
 - Může existovat i jiná metoda, než je UTS?
- Odpověď na otázku za chvíli...

Diagonalizace I.

- Existuje jazyk, který není rekursivně spočetný
- Každý řetězec nad abecedou {0,1} lze chápat jako kód nějakého TS, resp. jako kód nějakého slova.
- Pro dané slovo x ∈ {0,1}* označme M_x Turingův stroj s kódem x a w_x slovo s kódem x.
- Všechna slova nad abecedou lze snadno uspořádat a sestrojit dvourozměrnou tabulku

Diagonalizace II.

	W_{ϵ}	W_0	W_1	W ₀₀	W ₀₁	W ₁₀	
M_{ϵ}	1	0	1	1	0	1	
M_0	0	1	1	1	0	1	
M_1	1	1	1	0	1	1	•••
M_{00}	0	0	0	0	0	1	
M_{01}	1	0	0	1	0	0	
M ₁₀	0	0	0	1	1	0	
•••			•••				

Diagonalizace III.

- Zkonstruujeme jazyk D nad abecedou {0,1}.
- Zařadíme do něj právě taková slova w_d, která nejsou akceptována strojem M_d.
- Sestrojili jsme jazyk, který není akceptován žádným Turingovým strojem.
- Kdyby byl akceptován nějakým strojem M_m, pak by nesměl obsahovat slovo w_m právě tehdy, když jej obsahuje, a naopak.

Důkaz ne-rozhodnutelnosti PP

- Sporem. Předpokládejme existenci úplného TS T akceptujícího jazyk
- Pro vstup <M>#<w> stroj T pracuje takto:
 - T zastaví a akceptuje právě tehdy, když M zastaví a akceptuje
 - T zastaví a zamítne právě tehdy, když M zastaví a zamítne, anebo když cyklí na w.
- Zkonstruujeme stroj N, který pro vstup x pracuje takto:
 - Na pásku zapíše řetěz x#x
 - Simuluje výpočet stroje T na vstupu x#x
 - N akceptuje právě tehdy, když T zamítne vstup x#x
 - N zamítne právě tehdy, když T akceptuje vstup x#x
- Stroj N nad vstupem <N> pak nechá stroj T simulovat sebe sama a zamítne právě tehdy, když akceptuje, a akceptuje právě tehdy, když tamítne
- Dostáváme tedy spor, tudíž stroj T nemůže existovat
- Jazyk PP tedy není rekursivní

Důsledek ne-rozhodnutelnosti PP

- Jazyk co-PP = {<M>#<w> | M neakceptuje w} není rekursivně spočetný
- PP je rekursivně spočetný. Kdyby byl i co-PP rekursivně spočetný, pak by byl PP i co-PP rekursivní
- Víme, že PP není rekursivní, tudíž co-PP nemůže být ani rekurisvně spočetný
- Neexistuje tedy (ani neúplný) TS akceptující jazyk co-PP

Problém zastavení I.

- Problém rozhodnout, zda daný TS M nad daným vstupem w zastaví, není rozhodnutelný
- Jazyk PZ = {<M>#<w> | výpočet M na w je konečný} není rekursivní
- Důkaz provedeme sporem. Předpokládáme rozhodnutelnost PZ, tedy existenci TS T, L(T) = PZ
- Ukážeme, že pak by existoval úplný TS akceptující PP
- Ten však existovat nemůže, tudíž nemůže existovat ani T.

Problém zastavení II.

- Sestrojíme stroj N akceptující jazyk PP. Stroj bude pracovat takto:
- Simuluje výpočet stroje T (PZ) na vstupu <M>#<w>
- Pokud T akceptuje, pak to znamená, že výpočet M nad w je konečný. N může tedy simulovat výpočet M na w
- Pokud T zamítne, pak to znamená, že M nad w cyklí. N tedy vstup zamítne.
- Protože PP není rekursivní, stroj N nemůže existovat. Nemůže tedy existovat stroj T, na němž je výpočet stroje N založen.

Redukce

- Problém příslušnosti jsme převedli (redukovali) na problém zastavení.
- Kdybychom měli k dispozici algoritmus PZ (stroj T), pak bychom měli i algoritmus PP (stroj N).
- Víme-li že neexistuje algoritmus pro PP (stroj N), pak nemůže existovat ani algoritmus PZ (stroj T)

Formální definice redukce

- Redukce jazyka A ⊆ Σ*na jazyk B ⊆ Ψ* (značíme A ≤ B) je rekursivní funkce r: Σ* → Ψ* taková, že w ∈ A ⇔ r(w) ∈ B
- Jedná se tedy o funkci realizovatelnou TS (rekursivní fce) zachovávající příslušnost do jazyka
- Zobrazení, které všechna slova z jazyka A zobrazí na slova z jazyka B a všechna slova napatřící do jazyka A zobrazí na slova nepatřící do jazyka B.

Využití redukce

- Nechť A ≤ B. Pak platí:
 - Není-li jazyk A rekursivně spočetný, pak není ani jazyk B rekursivně spočetný
 - Není-li jazyk A rekursivní, pak není ani jazyk B rekursivní
 - Je-li jazyk B rekursivně spočetný, pak je i jazyk A rekursivně spočetný
 - Je-li jazyk B rekursivní, pak je i jazyk A rekursivní

Důsledky pro informatiku

- Existují problémy, které nelze řešit pomocí počítače
 - Problém zastavení
 - Postův korespondenční problém
 - Problém rozhodnout, zda jazyk generovaný danou CFG je konečný
 - Problém rozhodnout, zda dvě CFG generují stejný jazyk
 - Každá netriviální vlastnost rekursivně spočetných jazyků

Rozhodnutelné problémy

- Je-li problém rozhodnutelný, ještě to neznamená, že je rozhodnutelný "v rozumném čase".
- Za rozumný čas považujeme takový čas, kdy je pro nás výsledek výpočtu ještě využitelný.
- Rozhodnutelností se zabývá teorie vyčíslitelnosti
- Časovou (a prostorovou) náročností se zabývá teorie složitosti
 - Můžete se těšit na příští přednášku