Relación 2 k[x]

2. Calcular el máximo común divisor y el mínimo común múltiplo, en el anillo $Z_3[\mathbf{x}]$, de los polinomios $x^4 + x^3 - x - 1$ y $x^5 + x^4 - x - 1$. Encontrar todos los polinomios f (x) y g(x) en $Z_3[\mathbf{x}]$, con grado de g(x) igual a 7, tales que $(x^4 + x^3 - x - 1)$ f(x)+ $(x^5 + x^4 - x - 1)$ g(x) = $x^4 + x^2 + 1$

Máximo común divisor

$$\begin{vmatrix} x^5 + x^4 - x - 1 & 1 & 0 \\ x^4 + x^3 - x - 1 & 0 & 1 \\ x^2 - 1 & 1 & -x \end{vmatrix}$$

Las divisiones realizadas han sido:

$$\bullet (x^5 + x^4 - x - 1)/(x^4 + x^3 - x - 1)$$

Cociente: x Resto: $x^2 - 1$

$$(x^4 + x^3 - x - 1)/(x^2 - 1)$$

Cociente: $x^2 + x + 1$

Resto: 0

Así, el máximo común divisor es $x^2 - 1$

Mínimo común múltiplo

Usamos que
$$[a,b] = \frac{ab}{(a,b)}$$

$$(x^5 + x^4 - x - 1)(x^4 + x^3 - x - 1) = x^9 + 2x^8 + x^7 - x^6 - x^3 + x^2 + 2x + 1$$

$$(x^9 + 2x^8 + x^7 - x^6 - x^3 + x^2 + 2x + 1)/(x^2 - 1) = x^7 + 2x^6 + x^4 + x^2 - x + 2$$

Por lo tanto, el mínimo común múltiplo es $x^7 + 2x^6 + x^4 + x^2 - x + 2$

Ecuación diofántica

Dividiendo por el máximo común divisor la ecuación para obtener al reducida (vemos que tiene solución) queda:

$$(x^2 + x + 1)$$
 f(x)+ $(x^3 + x^2 + x + 1)$ g(x) = $x^2 + 2$

Aplicando la igualdad de Bezout (a partir de los cálculos del máximo común divisor):

1

$$(x^2 + x + 1)(-x) + (x^3 + x^2 + x + 1)(1) = 1$$

$$(x^2 + x + 1)(-x^3 - 2x) + (x^3 + x^2 + x + 1)(x^2 + 2) = x^2 + 2$$

Obtenemos como solución particular:

$$f_0(\mathbf{x}) = -x^3 - 2x$$

$$q_0(\mathbf{x}) = x^2 + 2$$

La solución general quedaría:

$$f(\mathbf{x}) = -x^3 - 2x + k(x)(x^3 + x^2 + x + 1)$$

$$g(x) = x^2 + 2 - k(x)(x^2 + x + 1)$$

Para cumplir la condición g(x) igual a 7 observamos que el grado de k(x) tiene que ser igual a 5. De este modo, todas soluciones pedidas son las que se obtienen a partir de la general para todos los k(x) de $Z_3[x]$ tal que gr(k(x)) = 5.