# A Mini-Course on Optimization and Dynamics From Euclidean Gradient Descent to Wasserstein Gradient Flow

Jia-Jie Zhu

Weierstrass Institute for Applied Analysis and Stochastics, Berlin

August 15, 2023

# Euclidean gradient descent

Optimization in  $\mathbb{R}^d$ 

$$\min_{x\in\mathbb{R}^d}f(x).$$

We optimize using the gradient descent algorithm

$$x_{k+1} = x_k - \tau_k \cdot \nabla f(x_k)$$

using "variational principle"

$$x_{k+1} \in \operatorname{argmin}_{x} f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\tau_k} ||x - x_k||_2^2$$



#### From GD to Mirror descent

We also define the Bregman divergence associated with  $\phi$  as

$$D_{\phi}(x,y) = \phi(x) - \phi(y) - \nabla \phi(y)^{\top}(x-y).$$

Mirror descent update:

$$x_{k+1} = \operatorname{argmin}_{x} f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{\tau_k} D_{\phi}(x, x_k)$$



#### Example of MD: Euclidean norm

Mirror map  $\phi(x) = \frac{1}{2} ||x||_2^2$ .

MD:

$$x_{k+1} = \operatorname{argmin}_{x} f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\tau_k} ||x - x_k||_2^2.$$

This is equivalent to GD with stepsize  $\tau_k$ .



# Example of MD: negative entropy

Mirror map  $\phi(x) = \sum_{i=1}^d x(i) \log x(i)$ . The resulting Bregman divergence is the KL-divergence  $D_{\phi}(x,y) = \sum_{i=1}^d x(i) \log \frac{x(i)}{y(i)}$ .

If we restrict x to a (discrete probability) simplex  $1^{\top}x = 1$ , then the MD update

$$x_{k+1} = \operatorname{argmin}_{1^{\top} x = 1} f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{\tau_k} D_{\phi}(x, x_k)$$

has the closed-form as exponentiated gradient

$$x(i)_{k+1} = \frac{x(i)_k e^{-\tau_k g_k}}{\sum_{j=1}^n x(j)_k e^{-\tau_k g_k}}, \quad i = 1, 2, \dots, n$$



# Euclidean gradient descent as discretization of ODE gradient flow

$$x^{k+1} \in \operatorname{argmin}_{x} \langle \nabla f(x^{k}), x \rangle_{\mathbb{E}^{d}} + \frac{1}{2\tau} \|x - x^{k}\|^{2}$$

is the explicit Euler scheme for the ODE

$$\dot{x}(t) = -\nabla f(x(t)).$$

The solution x(t) is an ODE gradient flow and the ODE is the gradient flow equation (GFE). In GF terms, the solution x(t) is also called a **curve of maximal slope** (steepest descent).



# Gradient flow dynamics: (nonlinear) ODE

$$\dot{x}(t) = -\nabla f(x(t))$$

 $\dot{x}(t) \in X$  provides the **rate** (or **velocity**) (we can see)

 $-\nabla f(x(t)) \in X^*$  provides the **(thermodynamic) force** (can't see; shadow price)

The equation should be written in the **force-balance** form

$$\mathbb{I}_R \dot{x}(t) = -\nabla f(x(t)) \in X^*, \quad \mathbb{I}_R : X \to X^*$$
 is the Riesz isomorphism.

If, in the non-Euclidean setting,  $X \ncong X^*$ , then we have both force space and rate space GFE.



# **Energy dissipation balance** (equality)

**Fenchel-Young** (proof is trivial;  $\frac{a^2+b^2}{2} \geq ab$ )

$$\psi(x) + \psi^*(\xi) \ge \langle x, \xi \rangle, \forall (x, \xi) \in X \times X^*.$$

Furthermore, if  $\psi$  is proper, lsc, and convex,  $(x^*, \xi^*)$  is optimal.

By Fenchel(-Young) duality and optimality

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t)) =_{X^*} \langle \nabla f(x(t)), \dot{x} \rangle_X = -\|\nabla f(x(t))\|^2 = -(\frac{1}{2}\|\dot{x}\|^2 + \frac{1}{2}\|\nabla f(x)\|^2)$$

Energy does not necessarily decrease along non-solutions, i.e., only inequality

$$\frac{\mathrm{d}}{\mathrm{d}t}f(z(t)) \geq -(\frac{1}{2}\|\dot{z}\|^2 + \frac{1}{2}\|\nabla f(z(t))\|^2).$$



# Evolutionary variational inequality (EVI) $_{\lambda}$ : ODE

Suppose the energy functional f is proper, upper semicontinuous,  $\lambda$ -convex for some  $\lambda \in \mathbb{R}$ , i.e., either convex or concave,  $\forall s \in [0,1], \forall u_0, u_1 \in \mathbb{R}^d$ 

$$f((1-s)u_0+su_1) \leq (1-s)f(u_0)+sf(u_1)-\frac{\lambda}{2}s(1-s)\|u_0-u_1\|^2.$$

and has compact sublevel sets. Then for any initial condition in the  $x(0) \in \mathbb{R}^d$ , there exists a unique solution at time t,  $x(t) \in \mathbb{R}^d$ .

Furthermore, the ODE solution x(t) satisfies  $(EVI)_{\lambda_t}$  for  $t, s \in [0, T]$ .

$$\frac{1}{2}\|x(t) - \nu\|^2 \le \frac{1}{2}e^{-\lambda(t-s)}\|x(s) - \nu\|^2 + M_{\lambda}(t-s)(f(\nu) - f(x(t))),$$

$$M_{\lambda}(\tau) = \int_0^{\tau} e^{-\lambda(\tau-s)} ds, \quad \forall \nu \in \text{dom}(F) \subset \mathbb{R}^d.$$

Using  $(EVI)_{\lambda}$ , we can effortlessly extract convergence results. Suppose a minimizer of the energy exists  $x^* \in \inf_{x \in \mathbb{R}^d} f(x)$ , we set  $\nu = x^*, s = 0$  in  $(EVI)_{\lambda}$ 

$$||x(t) - x^*||^2 \le e^{-\lambda t} ||x(0) - x^*||^2 + 2M_{\lambda}(t - s) \left( \inf_{x \in \mathbb{R}^d} f(x) - f(x(t)) \right)$$
  
  $\le e^{-\lambda t} ||x(0) - x^*||^2$ 



# Optimization over probability measures

$$\inf_{\mu\in\mathcal{P}}F(\mu)$$

- P: set of probability measures; the probability "simplex"
- We will work with two types of (probability) measures

$$\mathrm{d}\mu(x) = \rho(x) \; \mathrm{d}x, \quad \mu = \sum_{i \in I} \alpha_i \delta_{x_i} \, \alpha \in \Delta$$

- ▶  $M^+ \supseteq \mathcal{P}$ : non-negative measures; "cone"
- F: objective function; "energy"



#### Optimization over probability measures

What can't we just do gradient descent?

$$\mu^{k+1} = \mu^k - \tau_k \cdot \nabla F(\mu^k)$$

- $\triangleright \nabla F(\mu^k)$  is undefined
- $ightharpoonup \mu^{k+1}$  must be a probability measure, care needs to be taken
- ► What can we do instead?

#### A variational approach

Recall the "variational" formulation of gradient descent

$$x^{k+1} \in \operatorname{argmin}_{x} \langle \nabla f(x^k), x \rangle_{\mathbb{R}^d} + \frac{1}{2\tau} \|x - x^k\|^2 \iff x_{k+1} = x_k - \tau \cdot \nabla f(x_k)$$

for a suitable  $\tau$ . This is the variational principle.

Can we do the same for probability measures?

$$\mu^{k+1} \in \operatorname{arginf}_{\mu \in \mathcal{P}} F(\mu) + \frac{1}{\tau} \mathcal{D}^2(\mu, \mu^k)$$

for some "distance" measure  $\mathcal{D}$ . This is sometimes called the *Minimizing Movement Scheme* (MMS).



#### Variational approach and MMS

$$\mu^{k+1} \in \operatorname{arginf}_{\mu \in \mathcal{P}} F(\mu) + \frac{1}{\tau} \mathcal{D}(\mu, \mu^k)$$

We must specify the important ingredients

Energy :F

 $\textit{Geometry}: \mathcal{D}$ 

The merit of the right gradient flow formulation of a dissipative evolution equation is that it separates energetics and kinetics: The energetics endow the state space with a functional, the kinetics endow the state space with a (Riemannian) geometry via the metric tensor. [Otto 2001]

#### Geometry: Wasserstein distance

**Definition.** The p-Wasserstein distance\*\* between probability measures P, Q on  $\mathbb{R}^d$  (with p-th finite moments,  $p \geq 1$ ) is defined through the following Kantorovich problem

$$W_p^p(P,Q) := \inf \left\{ \int |x-y|^p d\Pi(x,y) \, \Big| \, \pi_\#^{(1)} \Pi = P, \, \, \pi_\#^{(2)} \Pi = Q \right\}$$

#### **Dual Kantorovich problem**

$$W_p^p(P,Q) = \sup \left\{ \int \psi_1(x) \, \mathrm{d}P(x) + \int \psi_2(y) \, \mathrm{d}Q(y) \Big| \, \psi_1(x) + \psi_2(y) \le |x-y|^p \right\}$$

Dynamic formulation: Benamou-Brenier

$$W_2^2(P,Q) = \inf \left\{ \int_0^1 \int |v_t|^2 \mathrm{d}\mu_t \mathrm{d}t \, \Big| \, \mu_0 = P, \mu_1 = Q, \frac{\mathrm{d}}{\mathrm{d}t}\mu_t + \mathrm{div}(v_t\mu_t) = 0 \right\}$$

Entropy regularization (Sinkhorn divergence)

$$\inf_{\Pi} \int c(x,y) d\Pi(x,y) + \lambda D_{\phi}(\Pi || P \otimes Q)$$



# Geometry: (Csizsar) $\phi$ -divergence

Relative entropy is defined as

$$D_{\phi}(\mu|
u) = egin{cases} \int \phi\left(rac{\mathrm{d}\mu}{\mathrm{d}
u}
ight) \ \mathrm{d}
u & ext{if } \mu \ll 
u \ +\infty & ext{otherwise} \end{cases}$$

We can choose the  $\phi$  functions from the following table to obtain: identity (trivial), Kullback, Hellinger,  $\chi^2$ 

Table 1: Entropy functions, their corresponding reverse entropy, and convex conjugates

|                           | Entropy $\hat{f}$                                                                             | $f^*$                             | Reverse entropy r                                                                                   | $r^*$                                              |
|---------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                           | $f_{\mathrm{Id}}(t) = \begin{cases} 0 & \text{if } t = \\ +\infty & \text{other} \end{cases}$ | $f_{\mathrm{Id}}^{*}=\mathrm{Id}$ | $r_{\mathrm{Id}}(t) = \begin{cases} 0 & \text{if } t = 1 \\ +\infty & \text{otherwise} \end{cases}$ | $r_{ m Id}^*={ m Id}$                              |
|                           | $f_{\mathrm{KL}}(t) = t \log t - t$                                                           |                                   | $r_{\mathrm{KL}}(t) = t - 1 - \log t$                                                               | $r_{\mathrm{KL}}^{*}(s) = -\log\left(1 - s\right)$ |
|                           | $f_{\rm H}(t) = (\sqrt{t} - 1)^2$                                                             |                                   |                                                                                                     | $r_{\mathrm{H}}^*(s) = s/(1-s)$                    |
| $f_{\chi^2}(t) = (t-1)^2$ |                                                                                               | $f_{\chi^2}^*(s) = s^2/4 + s$     | $r_{\chi^2}(t) = (t-1)^2/t$                                                                         | $r_{\chi^2}^*(s) = 2 - \sqrt{1-s}$                 |

(table: J. Zhu)



#### Preliminary: first variation over measures

The first variation of a functional F at  $\mu \in \mathcal{P}$  is defined as a function  $\frac{\delta F}{\delta \mu}[\mu]$ 

$$\frac{\mathrm{d}}{\mathrm{d}\epsilon}F(\mu+\epsilon\cdot\nu)|_{\epsilon=0}=\int\frac{\delta F}{\delta\mu}[\mu](x)\;\mathrm{d}\nu(x)$$

for any perturbation in measure v such that  $\mu + \epsilon \cdot v \in \mathcal{P}$ .

The variational principle

$$\frac{\mathrm{d}}{\mathrm{d}\epsilon}F(\mu+\epsilon\cdot v)|_{\epsilon=0}=0$$

for all variation v, states the "optimality condition".



# Three types of energy functionals

Suppose  $\mu(x) = \rho(x) dx$  WLOG,

$$\mathcal{F}(\varrho) = \int f(\varrho(x)) dx, \quad \mathcal{V}(\varrho) = \int V(x) d\varrho, \quad \mathcal{W}(\varrho) = \frac{1}{2} \iint W(x - y) d\varrho(x) d\varrho(y)$$

We calculate the first variations (by following the definition)

$$\frac{\delta \mathcal{F}}{\delta \varrho}(\varrho) = f'(\varrho), \quad \frac{\delta \mathcal{V}}{\delta \varrho}(\varrho) = V, \quad \frac{\delta \mathcal{W}}{\delta \varrho}(\varrho) = W * \varrho$$



# Back to (discrete-time) gradient flow

Optimization

$$\inf_{\mu\in\mathcal{P}}F(\mu)$$

Recall MMS

$$\mu^{k+1} \in \operatorname{arginf}_{\mu \in \mathcal{P}} F(\mu) + \frac{1}{\tau} \mathcal{D}(\mu, \mu^k)$$

We have specified the important ingredients

Energy : 
$$F$$
, Geometry :  $D$ 

We can construct a concrete instance of MMS for gradient flow by "mix-and-match".



# Wasserstein-MMS: Jordan-Kinderlehrer-Otto (JKO) scheme

a.k.a. Minimizing Movement Scheme (MMS):

$$\mu^{k+1} \in \inf_{\mu \in \mathcal{P}} F(\mu) + \frac{1}{2\tau} W_2^2(\mu, \mu^k)$$

This formulation is very general in the sense that it includes **nonlinear-in-measure** F. We should think of this as the *gradient descent algorithm for prob. measures*.



# Otto's Gradient flow equation in the Wasserstein space

$$\mu^{k+1} \in \inf_{\mu \in \mathcal{P}} F(\mu) + \frac{1}{2\tau} W_2^2(\mu, \mu^k)$$

Continuous-time limit  $\tau \to 0$ , we have (non-trivially) the **gradient flow equation** (GFE)

$$\partial_t \mu - \nabla \cdot (\mu \nabla \frac{\delta F}{\delta \mu} [\mu]) = 0$$

which describes the dissipation of energy F in  $(\text{Prob}(\bar{X}), W_2)$ . [Otto et al 90s-2000s, Ambrosio 2005]

In a different flavor, we can write it just like ODE  $\dot{x} = -\nabla f(x)$  (in the **rate** form; primal vs. dual force-balance)

$$\partial_t \mu = -\mathbb{K}_{\mathsf{Otto}}(\mu) \ \mathsf{D} F = \nabla \cdot (\mu \nabla \mathsf{D} F).$$



# Example: WGF of (Boltzmann/KL/relative) Entropy

**nonlinear (in measure) energy** (e.g., in variational inference)

$$F(\mu) = D_{\mathrm{KL}}(\mu \| \pi) = \int \log(\frac{\delta \mu}{\delta \pi}(x)) \rho(x) dx$$

$$\frac{\delta F}{\delta \mu} \left[ \mu \right] = \log \rho - \log \pi,$$

density  $\rho:=\frac{\mathrm{d}\mu}{\mathrm{d}\mathcal{L}}$  The Fokker-Planck equation as the **Wasserstein gradient flow** [Otto et al. 90s-2000s]

$$\partial_{t}\mu = \nabla \cdot \left(\mu \nabla \frac{\delta F}{\delta \mu}[\mu]\right)$$

$$= \nabla \cdot \left(\mu(\nabla \log \rho - \nabla \log \pi)\right)$$

$$= \Delta \rho + \nabla \cdot \left(\rho \nabla \log \pi\right)$$

- ▶ If  $\pi$  is the Lebesgue measure, we obtain the heat equation  $\partial_t \mu = \Delta \mu$
- Note: The force field  $\frac{\delta F}{\delta \mu}[\mu]$  and the "score"  $\nabla \frac{\delta F}{\delta \mu}[\mu]$  are **not accessible** if  $\mu$  is atomic.  $\Longrightarrow$  "score-matching"...



#### Application: sampling and variational inference

Suppose  $\pi \propto e^{-V(x)}$ , but with unknown normalizing constant, we want

$$\inf_{\mu\in\mathcal{P}}D_{\mathsf{KL}}(\mu\|\pi).$$

Using the WGF, we have the Fokker-Planck equation

$$\partial_t \mu = \nabla \cdot (\mu(\nabla \log \rho(x) - \nabla V(x)))$$

Suppose there is a single atom whose state is  $X_t$  (R.V.), it is pushed towards the velocity field

$$\nabla \log \rho(X_t) - \nabla V(X_t)$$

We can construct gradient descent

$$X_{t+1} = X_t + \tau \cdot (\nabla \log \rho(X_t) - \nabla V(X_t))$$

Langevin Monte-Carlo forward-Euler discretization

$$X_{t+1} = X_t - \tau \cdot \nabla V(X_t) + \sqrt{2\tau}Z, Z \sim N(0, \mathrm{Id})$$



# Application: (distributionally) robust learning with Otto's WGF

We can use our WGF theory (invented 20yr ago; nothing new) to solve Wasserstein DRO for robust learning (also adversarial robustness in [Sinha et al. 2017])

$$\min_{\theta} \sup_{\mu} \mathbb{E}_{\mu} I(\theta, \mathbf{x}) - \gamma \cdot W_2^2(\mu, \hat{\mu}_N)$$

The inner measure-update step is gradient ascent

$$X_{t+1} = X_t + \tau \nabla I(\theta_t, X_t)$$

where  $\tau=\frac{1}{2\gamma}$ . Then the whole Wasserstein robust learning is simply gradient descent-ascent (GDA).



#### **Energy dissipation balance of WGF**

Recall the ODE case

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t)) = -(\frac{1}{2}\|\dot{x}\|^2 + \frac{1}{2}\|\nabla f(x)\|^2)$$

In  $(\operatorname{Prob}(\bar{X}), F, W_2)$ , **Fenchel(-Young)** yields the **Energy dissipation balance** (equality) [Ambrosio et al. 2007]

$$\frac{\mathrm{d}}{\mathrm{d}t}F(\mu(t)) = -\frac{1}{2}|\mu'|_{W_2}(t)^2 - \frac{1}{2}|\nabla^- F|_{W_2}(\mu(t))^2$$

$$F(\mu(t)) - F(\mu(s)) = -\frac{1}{2} \int_{-\frac{\pi}{2}}^{t} |\mu'|_{W_2}(r)^2 + |\nabla^- F|_{W_2}(\mu(r))^2 dr$$

- metric speed with velocity  $v_t$ :  $|\mu'|_{W_2}(t) = \sqrt{\int |v_t|^2 d\mu}$
- ▶ metric slope:  $|\nabla^- F|_{W_2}(\mu(t)) = \sqrt{\int |\nabla \frac{\delta F}{\delta \mu} [\mu](x)|^2 d\mu}$  By EDB, the velocity field can identified as  $v_t = -\nabla \frac{\delta F}{\delta \mu} [\mu]$ . EDB can be used as the definition of gradient flows (curves of maximal slopes), even without GFE.

For (Boltzmann) entropy  $F(u) = \rho \log \rho$ , EDB gives  $\frac{d}{dt}F(\mu(t)) = -\int |\nabla \log \rho|^2 \rho \ dx$ 

#### Evolutionary variational inequality

Under a few technical assumptions and the so-called  $\lambda$ -geodesic-convexity of the energy F, if along a geodesic curve  $\gamma$ ,

$$\mathcal{E}(\gamma(s)) \leq (1-s)\mathcal{E}(\gamma(0)) + s\mathcal{E}(\gamma(1)) - \frac{\lambda}{2}s(1-s)W_2^2(\gamma(0),\gamma(1)), \ \forall s \in [0,1].$$

Then, there exists unique gradient flow solution satisfies (EVI) $_{\lambda}$ , for .

$$\frac{1}{2}W_2^2(\mu(t),\nu) \leq \frac{1}{2}e^{-\lambda(t-s)}W_2^2(\mu(s),\nu) + M_{\lambda}(t-s)(F(\nu) - F(\mu(t))),$$

$$\forall \nu \in \mathsf{dom}(\mathcal{F}), M_{\lambda}(\tau) = \int_0^{\tau} e^{-\lambda(\tau-s)} ds.$$

Set  $\nu \in \operatorname{arginf}_{\mu} F(\mu)$ , we have exponential convergence in-time and uniqueness of gradient flow.



#### Thank you!

There are many other active research topics in GF for ML

- Gradient flow with kernel methods [a few of my past / current works]
- Unbalanced transport and its gradient flow
- Applications: causal inference, mean-field NN, Nash equilibrium, offline RL, policy optimization. . .

#### Reference

- 1. Mielke, A. An introduction to the analysis of gradients systems. Preprint at http://arxiv.org/abs/2306.05026 (2023).
- 2. Otto, F. The geometry of dissipative evolution equations: the porous medium equation. (2001).
- 3. Ambrosio, L. & Savaré, G. Gradient Flows of Probability Measures. in Handbook of Differential Equations: Evolutionary Equations vol. 3 1–136 (Elsevier, 2007).
- 4. Santambrogio, F. Optimal transport for applied mathematicians. Birkäuser, NY 55, 94 (2015).
- 5. Peletier, M. A. Variational Modelling: Energies, gradient flows, and large deviations. arXiv:1402.1990 [math-ph] (2014).