

Probability and Stochastic Processes

Gaussian Random Vectors (or Multivariate Gaussian RVs), Equivalent Definitions for Multivariate Gaussian RVs, Convergence of Sequences of Random Variables (Intro)

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

21/23 November 2024

Gaussian Random Vectors
OR
Jointly Gaussian Random Variables
OR
Multivariate Gaussian Random Variables

Standard Bivariate Gaussian Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and Y be random variables w.r.t. \mathscr{F} .

Definition (Standard Bivariate Gaussian Random Variables)

Random variables X and Y are said to be standard bivariate Gaussian if

- 1. X and Y are jointly continuous, and
- 2. The joint PDF of X and Y is given by

$$f_{X,Y}(x,y) = rac{1}{2\pi\sqrt{1-
ho^2}} \, \exp\left(-rac{x^2-2
ho x y+y^2}{2(1-
ho^2)}
ight), \qquad x,y \in \mathbb{R},$$

for some $\rho \in (-1, 1)$.

Properties of Standard Bivariate RVs

Proposition

Let X and Y be standard bivariate random variables with parameter $\rho \in (-1,1)$. Then, the following hold.

- $X \sim \mathcal{N}(0, 1)$ and $Y \sim \mathcal{N}(0, 1)$.
- $\rho_{X,Y} = \rho$.
- Conditioned on $\{Y = \gamma\}$, X is distributed according to $\mathcal{N}(\rho \gamma, 1 \rho^2)$. Consequently, $\mathbb{E}[X|Y] = \rho Y$.
- If $\rho = 0$, then $X \perp Y$. That is, uncorrelatedness implies independence.

General Bivariate Gaussian RVs

Definition (Bivariate Gaussian RVs)

We say X and Y are bivariate Gaussian RVs or jointly Gaussian if

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{\det(K)}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} K^{-1} (\mathbf{x}-\boldsymbol{\mu})\right), \qquad \mathbf{x} = [x \ y]^{\top} \in \mathbb{R}^2,$$

for some
$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$
 and a positive definite matrix K .

Remark:

$$\boldsymbol{\mu} = \begin{bmatrix} \mathbb{E}[X] \\ \mathbb{E}[Y] \end{bmatrix}, \qquad K = \mathbb{E} \begin{bmatrix} (\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^\top \end{bmatrix} = \begin{bmatrix} \operatorname{Var}(X) & \operatorname{Cov}(X, Y) \\ \operatorname{Cov}(X, Y) & \operatorname{Var}(Y) \end{bmatrix}$$

Caution

Caution!

If *X* and *Y* are individually Gaussian, then they need not be jointly Gaussian.

Example: Let Y_1 , Y_2 be i.i.d. with PDF

$$f(\mathbf{y}) = \sqrt{rac{2}{\pi}}e^{-\mathbf{y}^2/2}, \qquad \mathbf{y} \geq 0.$$

Let $W \perp Y_1, Y_2$, with $\mathbb{P}(\{W = 1\}) = \mathbb{P}(\{W = -1\}) = \frac{1}{2}$. Let

$$X_1 = WY_1, \qquad X_2 = WY_2.$$

Clearly, $X_1 \sim \mathcal{N}(0, 1)$ and $X_2 \sim \mathcal{N}(0, 1)$. Furthermore,

$$X_1 \ge 0 \Longleftrightarrow X_2 \ge 0, \qquad X_1 \le 0 \Longleftrightarrow X_2 \le 0.$$

So, the joint density of X_1 and X_2 has mass only in first and third quadrants

Multivariate Gaussian RVs

Let X_1, \ldots, X_n be random variables. Let $\mathbf{X} = [X_1 \ X_2 \ \cdots \ X_n]^{\top}$.

Definition 1 (Multivariate Gaussian RVs)

The random variables X_1, \ldots, X_n are said to be multivariate Gaussian if

• The joint PDF of $\mathbf{X} = (X_1, \dots, X_n)$ is given by

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(K)}} \, \exp\left(-\frac{(\mathbf{x} - \boldsymbol{\mu})^\top K^{-1} (\mathbf{x} - \boldsymbol{\mu})}{2}\right), \qquad \mathbf{x} \in \mathbb{R}^n,$$

for some $\mu \in \mathbb{R}^n$ and a positive definite matrix K.

Notation:

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, K)$$

Multivariate Gaussian RVs

Let X_1, \ldots, X_n be random variables. Let $\mathbf{X} = [X_1 \ X_2 \ \cdots \ X_n]^{\top}$.

Definition 2 (Multivariate Gaussian RVs)

The random variables X_1, \ldots, X_n are said to be multivariate Gaussian if

• $\mathbf{X} = (X_1, \dots, X_n)$ can be expressed as

$$\mathbf{X} = D\mathbf{W} + \boldsymbol{\mu}$$

for some matrix $D \in \mathbb{R}^{n \times m}$ and some real vector $\boldsymbol{\mu} \in \mathbb{R}^n$, where $\mathbf{W} = (W_1, \dots, W_m)$ with $W_1, \dots, W_m \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, 1)$.

Multivariate Gaussian RVs

Let X_1, \ldots, X_n be random variables. Let $\mathbf{X} = [X_1 \ X_2 \ \cdots \ X_n]^{\top}$.

Definition 3 (Multivariate Gaussian RVs)

The random variables X_1, \ldots, X_n are said to be multivariate Gaussian if

• For every non-zero $\mathbf{a}=(a_1,\ldots,a_n)\in\mathbb{R}^n$, the random variable

$$\mathbf{a}^{\top}\mathbf{X}=a_1X_1+\cdots+a_nX_n$$

is Gaussian distributed.

Definition $1 \implies Definition 2$

- Suppose $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K})$, where $\det(\mathbf{K}) > 0$
- Spectral decomposition of *K*:

$$K = \sum_{i=1}^{n} \lambda_i \, \mathbf{z}_i \, \mathbf{z}_i^{\top} = U \Lambda U^{\top},$$

where $\lambda_1, \ldots, \lambda_n > 0$ are eigenvalues, and $\mathbf{z}_1, \ldots, \mathbf{z}_n$ are orthonormal eigenvectors, U is a matrix with columns as eigenvectors, Λ is a diagonal matrix with eigenvalues on the diagonal

- Let $D = U\Lambda^{1/2}U^{\top}$. Then, we have:
 - $-D^{\top}=D$
 - $DD^{\top} = D^2 = D^{\top}D = K$
 - $\det(D) = \prod_{i=1}^n \sqrt{\lambda_i} > 0$

Definition $1 \implies \text{Definition } 2$

- Let $\mathbf{W} = D^{-1}(\mathbf{X} \boldsymbol{\mu})$
- ullet Clearly, $\mathbb{E}[\mathbf{W}] = \mathbf{0}$, and

$$Cov(\mathbf{W}, \mathbf{W}) = \mathbb{E}[\mathbf{W}\mathbf{W}^{\top}] = \mathbb{E}[D^{-1}(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\top}D^{-1}] = D^{-1}KD^{-1} = I.$$

• Using the Jacobian transformations formula,

$$f_{\mathbf{W}}(\mathbf{w}) = rac{1}{\sqrt{(2\pi)^n}} \exp\left(-rac{\mathbf{w}^ op \mathbf{w}}{2}
ight), \qquad \mathbf{w} \in \mathbb{R}^n,$$

thus proving that $W_1, \ldots, W_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$

• Thus, we have

$$\mathbf{X} = D\mathbf{W} + \boldsymbol{\mu}, \qquad D = \sqrt{K}.$$

Definition 2 \implies Definition 3

• Suppose there exists $D \in \mathbb{R}^{n \times m}$ and $\mu \in \mathbb{R}^n$ such that

$$X = DW + \mu$$

where
$$\mathbf{W} = (W_1, \dots, W_m)$$
, with $W_1, \dots, W_m \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$

• Given a non-zero $\mathbf{a} \in \mathbb{R}^n$, we have

$$a^{\mathsf{T}}\mathbf{X} = a^{\mathsf{T}}D\mathbf{W} + \mathbf{a}^{\mathsf{T}}\boldsymbol{\mu}$$

• The MGF of $Y = \mathbf{a}^{\mathsf{T}} \mathbf{X}$ is given by

$$M_{\mathrm{Y}}(t) = \mathbb{E}[e^{t\mathrm{Y}}] = e^{t\mathbf{a}^ op \mu} \cdot \mathbb{E}[e^{t\mathbf{a}^ op D\mathbf{W}}] = e^{t\mathbf{a}^ op \mu} \cdot \prod_{i=1}^m \mathbb{E}[e^{t \, b_i \, W_i}] = e^{t\mathbf{a}^ op \mu} \cdot \prod_{i=1}^m e^{t^2 \, b_i^2/2},$$

where $b_i = (\mathbf{a}^\top D)_i$. From the above MGF expression, we conclude that $Y \sim \mathcal{N}(\alpha, \sigma^2)$, with $\alpha = \mathbf{a}^\top \mu$ and $\sigma^2 = \mathbf{a}^\top DD^\top \mathbf{a}$

Joint MGF

• We have seen

Definition 1
$$\implies$$
 Definition 2 \implies Definition 3

Therefore, we have

Definition
$$1 \implies \text{Definition } 3$$

• We can use this implication to derive the joint MGF of $(X_1,\ldots,X_n)\sim \mathcal{N}(\boldsymbol{\mu},K)$

Joint MGF

- Suppose $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, K)$
- For any non-zero $\mathbf{s} \in \mathbb{R}^n$,

$$M_{\mathbf{X}}(\mathbf{s}) = \mathbb{E}[e^{\mathbf{s}^{\top}\mathbf{X}}] = M_{\mathbf{s}^{\top}\mathbf{X}}(1)$$

• From Definition 3, we know that $Y = \mathbf{s}^{\top} \mathbf{X}$ is Gaussian with mean and variance

$$\mathbb{E}[Y] = \mathbb{E}[\mathbf{s}^{\top} \mathbf{X}] = \mathbf{s}^{\top} \boldsymbol{\mu}, \qquad \text{Var}(Y) = \mathbb{E}[(\mathbf{s}^{\top} (\mathbf{X} - \boldsymbol{\mu}))^2] = \mathbf{s}^{\top} K \mathbf{s}.$$

• Therefore, we have

$$M_{\mathbf{X}}(\mathbf{s}) = M_{\mathbf{Y}}(1) = e^{\mathbf{s}^{\top} \boldsymbol{\mu}} \cdot e^{\mathbf{s}^{\top} K \mathbf{s}/2}$$

Definition $3 \implies \text{Definition } 1$

- Suppose that $Y = \mathbf{a}^{ op} \mathbf{X}$ is Gaussian for every non-zero $\mathbf{a} \in \mathbb{R}^n$
- Assume $\mathbb{E}[\mathbf{X}] = \mathbf{0}$ (w.l.o.g.)
- Let $K = \mathbb{E}[\mathbf{X}\mathbf{X}^{\top}]$

Definition $3 \implies \text{Definition } 1$ (Assuming $K = \mathbb{E}[\mathbf{X}\mathbf{X}^{\top}]$ is invertible)

- Let $D = \sqrt{K}$
- K invertible $\implies D$ invertible
- Define $\mathbf{W} = D^{-1}\mathbf{X}$
- $\mathbb{E}[\mathbf{W}] = \mathbf{0}$, $\mathbb{E}[\mathbf{W}\mathbf{W}^{\top}] = D^{-1}KD^{-1} = I$
- For any non-zero $\mathbf{s} \in \mathbb{R}^n$,

$$M_{\mathbf{W}}(\mathbf{s}) = \mathbb{E}[e^{\mathbf{s}^{\top}\mathbf{W}}] = M_{\mathbf{s}^{\top}\mathbf{W}}(1).$$

• From Definition 3, we know that $Y = \mathbf{s}^{\top} \mathbf{W}$ is Gaussian with mean and variance

$$\mathbb{E}[Y] = \mathbb{E}[\mathbf{s}^{\top}\mathbf{W}] = 0, \qquad \text{Var}(Y) = \mathbb{E}[(\mathbf{s}^{\top}\mathbf{W})^2] = \mathbf{s}^{\top}\mathbf{s}.$$

• Therefore, $M_{\mathbf{W}}(\mathbf{s}) = M_{\mathbf{Y}}(1) = e^{\mathbf{s}^{\top}\mathbf{s}/2} \implies W_1, \dots, W_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$

Definition $3 \Longrightarrow \text{Definition } 1$ (Assuming $K = \mathbb{E}[\mathbf{X}\mathbf{X}^{\top}]$ is invertible)

- Thus, $\mathbf{X} = D\mathbf{W}$, $D = \sqrt{K}$
- Using Jacobian transformations formula with $\mathbf{X} = g(\mathbf{W}), \quad g(\mathbf{w}) = D\mathbf{w},$

$$egin{aligned} f_{\mathbf{X}}(\mathbf{x}) &= rac{f_{\mathbf{W}}(g^{-1}(\mathbf{x}))}{\left|\det(J_g(g^{-1}(\mathbf{x})))
ight|} = rac{f_{\mathbf{W}}(D^{-1}\mathbf{x})}{\det(D)} \ &= rac{1}{\sqrt{(2\pi)^n \det(K)}} \, \exp\left(-rac{\mathbf{x}^ op K^{-1}\,\mathbf{x}}{2}
ight) \end{aligned}$$

 $\begin{array}{ccc} \text{Definition 3} & \Longrightarrow & \text{Definition 1} \\ \text{(Assuming K not invertible)} \end{array}$

- Suppose det(K) = 0
- There exists $\mathbf{a} \neq \mathbf{0}$ such that $K\mathbf{a} = \mathbf{0}$, and

$$\mathbf{a}^{\top} K \mathbf{a} = \mathbf{0}.$$

• But $\mathbf{a}^{\top} K \mathbf{a} = \mathbb{E}[(\mathbf{a}^{\top} \mathbf{X})^2]$, so we have $\mathbb{E}[(\mathbf{a}^{\top} \mathbf{X})^2] = 0$, which implies

$$\mathbb{P}(\{a^{\top}\mathbf{X}=0\})=1.$$

• One of the components of **X** is linearly dependent on the others

Definition $3 \implies \text{Definition } 1$ (Assuming K not invertible)

- W.l.o.g., let X_n be a linear combination of (X_1, \ldots, X_{n-1})
- Let K_1 be the covariance matrix of (X_1, \ldots, X_{n-1})
- If $det(K_1) = 0$, repeat the process till we arrive at a non-singular covariance matrix
- After suitable reordering of coordinates, X may be expressed as

$$\mathbf{X} = (\mathbf{Y}, \mathbf{Z}),$$

in which Y has non-singular covariance matrix K_Y , and Z = AY for some matrix A

- Let K_Y be of size $k \times k$
- Let $D = \sqrt{K_Y}$; D is also of size $k \times k$
- Because K_Y is invertible, we have

$$\mathbf{Y} = D\mathbf{W}, \qquad \mathbf{W} \sim \mathcal{N}(\mathbf{0}, I_{k \times k})$$

Definition $3 \implies \text{Definition } 1$ (Assuming K not invertible)

• Using Jacobian transformations formula, we can show that

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, D^2) = \mathcal{N}(\mathbf{0}, K_{\mathbf{Y}}).$$

• Noting $\mathbf{Y} = D\mathbf{W}$, $\mathbf{Z} = AY = AD\mathbf{W}$, we can write \mathbf{X} as

$$\mathbf{X} = \begin{bmatrix} \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} = \begin{bmatrix} D & \mathbf{O}_{k \times k} \\ AD & \mathbf{O}_{n-k \times n-k} \end{bmatrix} \begin{bmatrix} \mathbf{W} \\ \overline{\mathbf{W}} \end{bmatrix},$$

where $\overline{\mathbf{W}}$ consists of (n-k) i.i.d. $\mathcal{N}(0,1)$ RVs

Convergence of Sequences of Random Variables

Objective

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined w.r.t. \mathscr{F} .

Let *X* be another random variable defined w.r.t. \mathscr{F} . We allow *X* to take $\pm \infty$

Objective

To define the following forms of convergence.

- 1. Pointwise convergence; notation: $X_n \stackrel{\text{pointwise}}{\longrightarrow} X$.
- 2. Almost-sure convergence; notation: $X_n \xrightarrow{a.s.} X$.
- 3. Mean-squared convergence; notation: $X_n \stackrel{\text{m.s.}}{\longrightarrow} X$.
- 4. Convergence in probability: notation: $X_n \xrightarrow{p} X$.
- 5. Convergence in distribution; notation: $X_n \stackrel{d}{\longrightarrow} X$.

Pointwise Convergence

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined w.r.t. \mathscr{F} .

Let X be another random variable defined w.r.t. \mathscr{F} . We allow X to take $\pm \infty$

Definition (Pointwise Convergence)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X pointwise if

$$\forall \omega \in \Omega, \qquad \lim_{n \to \infty} X_n(\omega) = X(\omega).$$

Notation:

$$X_n \stackrel{\text{pointwise}}{\longrightarrow} X$$
.

Example

$$\Omega = [0,1]$$
, $\mathscr{F} = \mathscr{B}([0,1])$, $\mathbb{P} = \lambda$.

For each $n \in \mathbb{N}$, let

$$X_n(\omega) = \begin{cases} 1, & \omega \in \left[0, \frac{1}{n}\right), \\ 0, & \text{otherwise.} \end{cases}$$

Identify the limit random variable X to which the above sequence converges pointwise.

Convergence in Distribution

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined w.r.t. \mathscr{F} .

Let X be another random variable defined w.r.t. \mathscr{F} . We allow X to take $\pm \infty$

Definition (Convergence in Distribution)

We say that the sequence $\{X_n\}_{n=1}^{\infty}$ converges to X in distribution if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x) \qquad \forall x\in C_{F_X},$$

where C_{F_X} denotes the points of continuity of F_X .

Notation:

$$X_n \stackrel{\mathrm{d}}{\longrightarrow} X$$
.

Example

Let $X_n = U$ for all $n \in \mathbb{N}$, with $U \sim \mathrm{Unif}([0,1])$.

Let X = 1 - U.

Show that does not converge to X pointwise, but $X_n \stackrel{d}{\longrightarrow} X$.