Want more revision exercises? Get MathsFit - New from projectmaths.

Area = $7 \times \log_e 5$ – area between curve and y-axis

As
$$y = \log_e(x - 2)$$
,
 $e^y = x - 2$
 $x = e^y + 2$

Area =
$$7\log_e 5 - \int_0^{\log_e 5} (e^y + 2) \, dy$$

= $7\log_e 5 - \left[e^y + 2y \right]_0^{\log_e 5}$
= $7\log_e 5 - \left[e^{\log_e 5} + 2\log_e 5 - (e^0 + 0) \right]$
= $7\log_e 5 - 5 - 2\log_e 5 + 1$
= $5\log_e 5 - 4$ $\therefore (5\log_e 5 - 4) \text{ units}^2$

Board of Studies: Notes from the Marking Centre

Many responses contained an initial line of working which could lead to the correct solution and so gained a mark. In most of the successful responses, candidates correctly made x the subject of the equation, although some were careless with their operations. The most successful technique was to find the area between the lines x = 7 and $x = e^y + 2$ with respect to the y-axis between the limits y = 0 and $y = \log_e 5$. Some attempted to subtract the area with respect to the y-axis from the area of the rectangle but did not complete this successfully, either not attempting the subtraction or not completing it correctly. Some candidates obtained the correct solution using a substitution or, on rare occasions, integration by parts. Candidates are reminded to refer to their standard integral table, as this may have prevented some candidates from attempting to integrate $\log_e (x - 2)$ with respect to the x-axis directly.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies