

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA - CAMPUS FLORIANÓPOLIS Departamento Acadêmico de Eletrônica Curso de Engenharia Eletrônica

1. No sistema de controle da Fig. 1, onde as condições iniciais para k=0 são nulas e período de amostragem é T=0,2 s.

Fig. 1 – Sistema de Controle.

Encontre a equação recursiva de cada um dos blocos discretos do sistema e elabore um programa que utilize estas equações e a equação do somador para visualizar graficamente (kmax = 50) os valores de c(kT) para uma entrada do tipo rampa unitária.

As equações recursivas devem determinar o valor atual da saída de cada bloco.

Equação recursiva do bloco G:

Equação recursiva do bloco GH:

Equação recursiva do bloco F:

2. No sistema de controle da Figura 2, onde as condições iniciais são nulas e período de amostragem é T=0,2 s. A equação recursiva equivalente do controlador digital é: u(k+1)- 0,8187*u(k)= 0,1813*e(k).

Fig. 2 – Sistema de Controle.

a) Determine a expressão exata que representa a resposta do sistema c(k) para a entrada do tipo degrau unitário.

Apresente as equações utilizadas.

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA - CAMPUS FLORIANÓPOLIS Departamento Acadêmico de Eletrônica Curso de Engenharia Eletrônica

- b) Determine o erro de regime permanente para a entrada de degrau unitário. (demonstre, prove matematicamente, apresentando as equações utilizadas). { 10 % }
- c) Determine o ganho Kc a ser inserido na função de transferência do controlador para que os polos z1 = 0,5933+0,2944i seja um dos polos de malha fechada. (demonstre, prove matematicamente, apresentando as equações utilizadas) . **{ 15 % }**
- d) Desenhe o lugar das raízes do sistema do item c). { 10 % }

e) Determine o fator de amortecimento e a frequência natural dos polos de malha fechada. (demonstre, prove matematicamente, apresentando as equações utilizadas) . **{ 15 % }**

Forrmulário

$$H(z) = \mathcal{Z}[ZOH(s)G(s)] = \mathcal{Z}\left[\frac{1 - e^{-Ts}}{s}G(s)\right] = (1 - z^{-1})\mathcal{Z}\left[\frac{G(s)}{s}\right]$$

$$C(z) = \frac{G(z)}{1 + GH(z)}R(z)$$

$$M_{p} = e^{-\frac{\pi \cdot \zeta}{\sqrt{1 - \zeta^{2}}}}$$

$$K_{p} = \lim_{z \to 1} G(z)H(z)$$

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA - CAMPUS FLORIANÓPOLIS Departamento Acadêmico de Eletrônica Curso de Engenharia Eletrônica

$$K_{v} = \lim_{x \to 1} \frac{(1 - z^{-1})G(z)H(z)}{T}$$

$$\frac{360^{\circ}}{\theta} = \frac{360^{\circ}}{\angle z} = \frac{\omega_{a}}{\omega_{d}}$$

$$K_{a} = \lim_{x \to 1} \frac{(1 - z^{-1})^{2}G(z)H(z)}{T^{2}}$$

$$\omega_{a} = \frac{2\pi}{T_{a}}$$

$$K_{p} = \lim_{x \to 1} GH(z)$$

$$K_{v} = \lim_{x \to 1} \frac{(1 - z^{-1})GH(z)}{T}$$

$$|F(z)| = 1$$

$$K_{a} = \lim_{x \to 1} \frac{(1 - z^{-1})^{2}GH(z)}{T^{2}}$$

$$\lim_{k \to \infty} x(k) = \lim_{z \to 1} (z - 1)X(z)$$

$$t_{S5\%} = 3\tau = \frac{3}{\zeta \cdot \omega_{n}}$$

$$t_{S2\%} = 3.9\tau = \frac{3.9}{\zeta \cdot \omega_{n}}$$

$$C(z) = \frac{G(z)}{1 + G(z)H(z)}R(z)$$

$$R(P_{i}) = \left[(s - P_{i})F(s)\frac{z}{z - e^{sT}}\right]_{s = P_{i}}$$

$$Z[x(kT + T)] = zX(z) - zx(0)$$

$$|z| = e^{-T\zeta}\omega_{s}$$

$$Z[x(kT + 2T)] = z^{2}X(z) - z^{2}x(0) - zx(T)$$

$$Z[x(k + m)] = z^{m}X(z) - z^{m}x(0) - z^{m-1}x(1) - \cdots - zx(m-1)$$

$$R(S) = \frac{B(s)}{A(s)} = \frac{a_{1}}{s + p_{1}} + \frac{a_{2}}{s + p_{2}} + \cdots + \frac{a_{n}}{s + p_{n}}$$

$$a_{k} = \left[(s + p_{k})\frac{B(s)}{A(s)}\right]_{s = -p_{k}}$$

$$e_{SS} = \lim_{z \to 1} \left[(1 - z^{-1})\frac{1}{1 + GH(z)}R(z)\right]$$

TABELA 3.4 Erros em regime estacionário em termos do ganho K

Tipo do sistema	Entrada em degrau	Entrada em rampa	Entrada em parábola
Sistema tipo 0	$\frac{1}{1+K}$	∞	∞
Sistema tipo 1	0	$\frac{1}{K}$	∞
Sistema tipo 2	0	0	$\frac{1}{K}$
Sistema tipo 3 ou maior	0	0	0

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA - CAMPUS FLORIANÓPOLIS Departamento Acadêmico de Eletrônica Curso Superior de Tecnologia em Sistemas Eletrônicos

TABLE 2-1 TABLE OF z TRANSFORMS

	X(s)	x(t)	x(kT) or $x(k)$	X(z)	
1.		_	Kronecker delta $\delta_0(k)$ 1, $k = 0$ 0, $k \neq 0$	1	
2.	. —		$ \delta_0(n-k) 1, $	z^{-k}	
3.	$\frac{1}{s}$	1(<i>t</i>)	1(k)	$\frac{1}{1-z^{-1}}$	
4.	$\frac{1}{s+a}$	e^{-at}	e^{-akT}	$\frac{1}{1-e^{-aT}z^{-1}}$	
5.	$\frac{1}{s^2}$	· t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$	
6.	$\frac{2}{s^3}$	t^2	$(kT)^2$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	
7.	$\frac{6}{s^4}$	t ³	$(kT)^3$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	
8.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$1 - e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$	
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$	
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{-akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$	
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1-akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$	
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$	

13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
18.			a ^k	$\frac{1}{1-az^{-1}}$