SRN						

PES University, Bengaluru
(Established under Karnataka Act 16 of 2013)

UE20PH101

END SEMESTER ASSESSMENT (ESA) B. TECH. I SEMESTER APRIL 2021 **UE20PH101 ENGINEERING PHYSICS**

Time: 3 hours **Answer all questions** Max marks: 100

$$\mid m_e = 9.\,1 \times 10^{-31} \; kg \quad \mid \quad h = 6.\,63 \times 10^{-34} \; Js \quad \mid \quad k_B = 1.\,38 \times 10^{-23} \; JK^{-1} \mid$$

$$\mid \quad e = 1.\,6 \times 10^{-19} \; C \quad \mid \quad N_A = 6.\,02 \times 10^{23} \; \; per \; mol \quad \mid \quad m_p = 1.\,67 \times 10^{-27} kg \quad \mid$$

1.	a)	Draw a plot of the black body spectrum, list your observations and explain how a theoretical model could fit the curves.	5
	b)	What is group velocity? Show that it represents particle velocity.	5
	c)	Discuss the properties and significance of Ψ and $ \Psi ^2$.	5
	d)	What is the Uncertainty principle? An electron's speed is measured to be 2340 $m s^{-1}$ with an uncertainty of 1 $cm s^{-1}$. Calculate the uncertainty in its position.	5
2.	a)	What is an Eigen value equation? What is its significance in quantum mechanics? Explain with an example.	5
	b)	How do the Eigen wavefunctions of a particle bound in a finite well compare with those of an infinite well? Demonstrate with graphs.	4
	c)	Solve the Schrodinger's equation for particles $(E > V_0)$ incident on a step potential of height V_0 and show that $R + T = 1$.	8
	d)	Give the expression of the potential used in the Hydrogen atom model. Write the first three Eigen energy values.	3
3.	a)	What is drift velocity? Derive an expression for the microscopic form of the Ohm's law.	4
	b)	Derive an expression for the Density of States in metals.	6
	c)	What is Fermi factor? Find the temperature at which there is a probability of occupation of	5

UE19PH101

		0.1 at a state 0.2 eV above the Fermi level.					
	d)	Plot a labelled periodic potential used in the Kronig-Penney model and define the Bloch function.					
4.	a)	Discuss the requirements of a laser system.	4				
	b)	Discuss 3 and 4 level laser systems with examples.	6				
	c)	Give the details of the following for each of <i>HeNe</i> , <i>CO</i> ₂ and <i>Semiconductor lasers</i> . 1. Pumping mechanism 2. Active medium 3. Laser wavelength 4. Power of the emitted laser	8				
	d)	Write a note on Holography.	2				
5.	a)	Classify magnetic materials based on the temperature dependence of susceptibility using plots.	6				
	b)	What is Larmor precession? Calculate the Larmor angular frequency for protons in a field of strength 10 T.	4				
	c)	Discuss the origins of electric polarization.	4				
	d)	Briefly discuss the phenomena of piezoelectricity, pyroelectricity and ferroelectricity and their inter-relation.	6				

*** * ***