Питання та практичні завдання до іспиту з дисципліни

"Проектування та конструювання мікроелектронної

апаратури"

Частина 1. Проектування та конструювання аналогових пристроїв.

Питання:

У відповіді слід вказати принцип дії згаданого модуля, яку функцію він реалізує, де застосовується, навести структурну схему, якщо модуль складний і відмінності від аналогів, якщо вони є. Принципова схема та порядок проектування не обов'язкові.

1	Джерела опорної напруги
2	Генератори стабільного струму
3	Бустери з високим вхідним опором
4	Бустери з малим вхідним опором
5	Інвертуючі суматори
6	Неінвертуючі суматори
7	Різницеві суматори
8	Інвертуючи інтегратори
9	Неінвертуючі інтегратори
10	Інвертуючі диференціатори
11	Неінвертуючі диференціатори
12	Диференціатори на основі інтегратора
13	Логарифмічні підсилювачі з діодними зворотніми зв`язками
14	Логарифмічні підсилювачі з транзисторними зворотніми зв`язками
15	Елементарні Антилогарифмічні підсилювачі
16	Антилогарифмічні підсилювачі на основі логарифмічних підсилювачів
17	Аналоговий помножувач
18	Помножувач на основі ЛП-АЛП
19	Активні випрямлювачі напруги
20	Активні випрямлювачі струму
21	Піковий детектор
22	Детектор розмаху сигнала
23	Детектор абсолютних значень
24	Детектор екстремумів
25	RC-генератор з мостом Віна-Робінсона
26	RC-генератор з потрійною схемою фазового зсуву
27	RC-генератор з подвійним Т-мостом
28	RC-генератор трифазних сигналів
29	Генератори з кварцовою стабілізацією
30	Балансні (амплітудні) модулятори
31	Модулятор на основі випрямлювачів – суматорів
32	Імпульсні модулятори
33	Схеми частотної модуляції
34	Фазові маніпулятори
35	Пристрої виборки-зберігання
36	Конвертори від`ємних опорів
37	Конвертори додатних опорів
38	Конвертори типу опору (гіратори)
39	Підсилювачі потужності (різниця між класами A,B,AB,D)
40	Аналогові компаратори
41	Аналогові таймери

Практичні завдання:

У відповіді слід навести структурну схему приладу, обґрунтувати її та висунути вимоги до кожної ланки. Принципова схема не обов'язкова.

- 1. Аналоговий термометр: на вході термометр опору, на виході стрілочний амперметр.
- 2. Аналоговий термометр: на вході термометр опору, на виході світлодіодна шкала.
- 3. ШИМ-термостат: на вході термометр опору та константна напруга, що пропорційна заданій температурі, на виході широтно модульовані прямокутні імпульси, глибина модуляції яких пропорційна відхиленню температури від заданої.
- 4. Диференційний термостат: на вході термометр опору та константна напруга, що пропорційна заданій температурі, на виході напруга, що визначає потужність нагрівача та залежить від відхилення температури від заданої та першої похідної цього відхилення у часі.
- 5. Контролер наповнення бака рідиною: На вході датчик потоку рідини у трубі. На виході логічний рівень, що відповідає положенню клапана. На початку наповнення бак вважаємо пустим.
- 6. Звуковий спектроаналізатор: на вході сигнал звукового діапазону, на виході кілька світлодіодних шкал, що показують відносний рівень сигналу у кожному частотному діапазоні. Приділити увагу налаштуванню чутливості прилада.
- 7. Аналоговий лічильник: на вході послідовність імпульсів різної довжини, на виході напруга, пропорційна кількості імпульсів з моменту скидання.
- 8. Звуковий еквалайзер: на вході сигнал звукового діапазону та касета реостатів, що задають підсилення сигналу у відповідних частотних смугах, на виході сигнал з коригованою АЧХ.
- 9. Датчик дози загару в солярії: на вході УФ фотодіод, на виході напруга, пропорційна накопиченій дозі випромінювання.
- 10. Дозиметр: на вході двохелектродний датчик Гейзера, на виході струм, пропорційний рівню радіації, та напруга, пропорційна дозі накопиченій з моменту скидання.
- 11. Детектор несиметричності імпульсів: на вході послідовність імпульсів з одним максимумом (напр. трикутних), початок та кінець яких визначається за переходом сигналу через константний рівень, на виході напруга, пропорційна різниці між інтегралами за час зростання та час спаду попереднього імпульса.
- 12. Детектор фронта імпульса: на вході послідовність прямокутних імпульсів, на виході напруга, яка відмінна від нуля у випадку, коли довжина переднього або заднього фронту імпульса перевищить константну величину.
- 13. Вимірювач скважності імпульсів: на вході послідовність прямокутних імпульсів, на виході напруга, яка пропорційна сквапності вхідних імпульсів.
- 14. Логарифмічнй покажчик: на вході напруга, на виході стрілочний амперметр, проградуйований у логарифмічній декадній шкалі.
- 15. ФАПЧ (основна схема).
- 16. Панорамний вимірювач частотних характеристик (основна схема).
- 17. Аналоговий обчислювач: на вході два сигнали х та у, на виході сигнал, що реалізує

функцію:
$$e^{x/y}$$

18. Аналоговий обчислювач: на вході — два сигнали x та y, на виході - сигнал, що реалізує

функцію:
$$\frac{x+y}{x-y}$$
.

- 19. Аналоговий обчислювач: на вході два сигнали x та y, на виході сигнал, що реалізує функцію: $\left(x-y\right)^2$.
- 20. Аналоговий обчислювач: на вході два сигнали x та y, на виході сигнал, що реалізує функцію: $\log_x y$.

Склав:

к.т.н.,доц. Вунтесмері Ю.В.