

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

ENTR Door Unit

MODEL No.: ENTR 1.1

FCC ID: 2AHH881131

Trade Mark: N/A

REPORT NO.: ES161111006E1

ISSUE DATE: December 06, 2016

Prepared for

MUL-T-LOCK TECHNOLOGIES LTD

Kherut St 1, Yavne, 8156218 P.O.B 637, Israel

Prepared by

EMTEK (SHENZHEN) CO., LTD.

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280

FAX: 86-755-26954282

TABLE OF CONTENTS

2 EUT TECHNICAL DESCRIPTION	1	TES	ST RESULT CERTIFICATION	
3 SUMMARY OF TEST RESULT	2	EU	T TECHNICAL DESCRIPTION	4
4 TEST METHODOLOGY 4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS 4.2 MEASUREMENT EQUIPMENT USED 4.3 DESCRIPTION OF TEST MODES 5 FACILITIES AND ACCREDITATIONS 5.1 FACILITIES 5.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 TEST SYSTEM UNCERTAINTY 7 SETUP OF EQUIPMENT UNDER TEST 10 7.1 RADIO FREQUENCY TEST SETUP 1 10 7.2 RADIO FREQUENCY TEST SETUP 2 10 7.3 CONDUCTED EMISSION TEST SETUP 11 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 1 7.5 SUPPORT EQUIPMENT 1 8 TEST REQUIREMENTS 1 8.1 BANDWIDTH TEST 1 8.2 FREQUENCY STABILITY 1 8.3 RADIATED SPURIOUS EMISSION 1 8.4 CONDUCTED EMISSIONS TEST 2	3			
4.2 MEASUREMENT EQUIPMENT USED 4.3 DESCRIPTION OF TEST MODES 5 FACILITIES AND ACCREDITATIONS 5.1 FACILITIES 5.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 TEST SYSTEM UNCERTAINTY 7 SETUP OF EQUIPMENT UNDER TEST 10 7.1 7.1 RADIO FREQUENCY TEST SETUP 1 7.2 RADIO FREQUENCY TEST SETUP 2 7.3 CONDUCTED EMISSION TEST SETUP 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 7.5 SUPPORT EQUIPMENT 8 TEST REQUIREMENTS 8.1 BANDWIDTH TEST 8.1 BANDWIDTH TEST 8.2 FREQUENCY STABILITY 8.3 RADIATED SPURIOUS EMISSION 1 8.4 CONDUCTED EMISSIONS TEST 22				
5.1 FACILITIES 5.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 TEST SYSTEM UNCERTAINTY 7 SETUP OF EQUIPMENT UNDER TEST 7.1 RADIO FREQUENCY TEST SETUP 1 7.2 RADIO FREQUENCY TEST SETUP 2 7.3 CONDUCTED EMISSION TEST SETUP 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 1 7.5 SUPPORT EQUIPMENT 1 8.1 BANDWIDTH TEST 8.2 FREQUENCY STABILITY 8.3 RADIATED SPURIOUS EMISSION 16 22		4.2 4.3	MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	
5.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 TEST SYSTEM UNCERTAINTY 7 SETUP OF EQUIPMENT UNDER TEST 7.1 RADIO FREQUENCY TEST SETUP 1 7.2 RADIO FREQUENCY TEST SETUP 2 7.3 CONDUCTED EMISSION TEST SETUP 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 7.5 SUPPORT EQUIPMENT 8 TEST REQUIREMENTS 8.1 BANDWIDTH TEST 8.2 FREQUENCY STABILITY 8.3 RADIATED SPURIOUS EMISSION 8.4 CONDUCTED EMISSIONS TEST	5	FAC	CILITIES AND ACCREDITATIONS	8
7 SETUP OF EQUIPMENT UNDER TEST 10 7.1 RADIO FREQUENCY TEST SETUP 1 10 7.2 RADIO FREQUENCY TEST SETUP 2 10 7.3 CONDUCTED EMISSION TEST SETUP 11 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 11 7.5 SUPPORT EQUIPMENT 11 8 TEST REQUIREMENTS 12 8.1 BANDWIDTH TEST 14 8.2 FREQUENCY STABILITY 16 8.3 RADIATED SPURIOUS EMISSION 17 8.4 CONDUCTED EMISSIONS TEST 22			FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS	8
7.1 RADIO FREQUENCY TEST SETUP 1 16 7.2 RADIO FREQUENCY TEST SETUP 2 16 7.3 CONDUCTED EMISSION TEST SETUP 17 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 18 7.5 SUPPORT EQUIPMENT 19 8 TEST REQUIREMENTS 10 8.1 BANDWIDTH TEST 10 8.2 FREQUENCY STABILITY 10 8.3 RADIATED SPURIOUS EMISSION 17 8.4 CONDUCTED EMISSIONS TEST 22	6	TES	ST SYSTEM UNCERTAINTY	9
7.2 RADIO FREQUENCY TEST SETUP 2	7	SET	ΓUP OF EQUIPMENT UNDER TEST	10
8.1 BANDWIDTH TEST		7.2 7.3 7.4 7.5	RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT	
8.2 FREQUENCY STABILITY 10 8.3 RADIATED SPURIOUS EMISSION 11 8.4 CONDUCTED EMISSIONS TEST 22	8	TES	ST REQUIREMENTS	14
8.5 ANTENNA APPLICATION		8.2 8.3	FREQUENCY STABILITYRADIATED SPURIOUS EMISSION	16 17
		0.5	ANTENNIA ADDITICATIONI	20

1 TEST RESULT CERTIFICATION

Applicant: MUL-T-LOCK TECHNOLOGIES LTD

Kherut St 1, Yavne, 8156218 P.O.B 637, Israel

Manufacturer: MUL-T-LOCK TECHNOLOGIES LTD

Kherut St 1, Yavne, 8156218 P.O.B 637, Israel

EUT Description: ENTR Door Unit

Model Number: ENTR 1.1

Trade mark: N/A

File Number: ES161111006E1

Date of Test: November 10, 2016 to December 06, 2016

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD TEST RESULT			
FCC 47 CFR Part 2, Subpart J	PASS		
FCC 47 CFR Part 15, Subpart C	FASS		

The above equipment was tested by EMTEK (SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.249

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	November 10, 2016 to December 06, 2016
Prepared by :	Sculi
	Sevin Li/Editor
Reviewer:	Foe Xia
	Joe Xia/E/Supervisor
Approve & Authorized Signer :	
	Lisa Wang/Manager

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description
Product Description	ENTR Door Unit
Model No.:	ENTR 1.1
Modulation:	QPSK
Operating Frequency Range(s):	2405MHz
Number of Channels:	1 channel
Antenna Type :	Printed Antenna
Antenna Gain	2.8 dBi
Power supply:	☑DC supply:DC 7.2V from Battery & DC 12V Via USB port☐Adapter supply

Note: for more details, please refer to the User's manual of the EUT.

3 SUMMARY OF TEST RESULT

FCC Part Clause	Test Parameter	Verdict	Remark
15.207	15.207 Conducted Emission		
15.209	Radiated Emission	PASS	
15.249 Radiated Spurious Emission		PASS	
15.249	Band edge test	PASS	
15.249	20dB Bandwidth	PASS	
15.203	Antenna Requirement	PASS	

NOTE1: N/A (Not Applicable)

NOTE2: The report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AHH881131 filing to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT	MFR	MODEL	SERIAL	LAST CAL.
TYPE		NUMBER	NUMBER	
Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/28/2016
L.I.S.N. Schwarzbeck		NNLK8129	8129203	05/28/2016
50Ω Coaxial Switch	Anritsu	MP59B	M20531	N/A
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	05/29/2016
Voltage Probe Rohde & Schwa		TK9416	N/A	05/29/2016
I.S.N Rohde & Schwarz		ENY22	1109.9508.02	05/29/2016

4.2.2 Radiated Emission Test Equipment

EQUIPMENT	MFR	MODEL	SERIAL	LAST CAL.
TYPE		NUMBER	NUMBER	
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	05/29/2016
Pre-Amplifier	HP	8447D	2944A07999	05/28/2016
Bilog Antenna	Schwarzbeck	VULB9163	142	05/28/2016
Loop Antenna	ARA	PLA-1030/B	1029	05/29/2016
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	05/29/2016
Horn Antenna	Schwarzbeck	BBHA 9120	D143	05/28/2016
Cable	Schwarzbeck	AK9513	ACRX1	05/29/2016
Cable	Rosenberger	N/A	FP2RX2	05/29/2016
Cable Schwarzbeck		AK9513	CRPX1	05/29/2016
Cable Schwarzbeck		AK9513	CRRX2	05/29/2016

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.
Spectrum Analyzer	Agilent	E4407B	88156318	05/28/2016
Signal Analyzer	Agilent	N9010A	My53470879	05/28/2016
Power meter	Anritsu	ML2495A	0824006	05/28/2016
Power sensor	Anritsu	MA2411B	0738172	05/28/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

Frequency and Channel list

Channel	Frequency (MHz)
0	2405

Test Frequency and channel

Lowest Frequency			
Channel Frequency (MHz)			
0 2405			

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS, 2016.10.24

The certificate is valid until 2022.10.28

The Laboratory has been assessed and proved to be in compliance

with CNAS-CL01: 2006(identical to ISO/IEC17025: 2005)

The Certificate Registration Number is L229

Accredited by TUV Rheinland Shenzhen, 2016.05.19

The Laboratory has been assessed according to the requirements

ISO/IEC 17025.

Accredited by FCC, July 12, 2016

The Certificate Registration Number is 406365.

Accredited by Industry Canada, November 24, 2015 The Certificate Registration Number is 4480A-2

TRF No: FCC 15.249/A Page 8 of 30 Report No.: ES161111006E1 Ver.1.0

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

apparatus.	
Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

The EUT wireless component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

Above 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

TRF No: FCC 15.249/A Page 10 of 30 Report No.: ES161111006E1 Ver.1.0

(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	Note	FCC ID
1.	Adapter	N/A	TS-1084S	Input: AC100-240V, 50/60Hz Output: DC 12V,1A	N/A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 BANDWIDTH TEST

8.1.1 Applicable Standard

According to FCC Part 15.249

8.1.2 Conformance Limit

N/A

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 30 kHz.

Set the video bandwidth (VBW) =100 kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

8.1.5 Test Results

Temperature :	28 ℃	Test Date :	Se	September 05, 2016						
Humidity:	65 %	Test By: Test voltage		King Kong Normal voltage						
Modulation Mode	Channel	Channel	20dB	Limit						
	Number	Frequency	Bandwidth	(MHz)	Verdict					
		(MHz)	(KHz)							
QPSK	0	2405	2.534	N/A	PASS					
Note: N/A (Not App	Note: N/A (Not Applicable)									

TRF No: FCC 15.249/A Page 14 of 30 Report No.: ES161111006E1 Ver.1.0

Test Model

Occupied Bandwidth Channel Frequency: 2405MHz

8.2 FREQUENCY STABILITY

8.2.1 Applicable Standard

According to FCC Part 15.249

8.2.2 Conformance Limit

The frequency tolerance of the carrier signal shall be maintained within ±10ppm of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.2.3 Test Configuration

Test according to clause 6.1 radio frequency test setup

8.2.4 Test Procedure

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 10 kHz.

Set the video bandwidth (VBW) =30 kHz.

Set Span= Entire absence of modulation emissions bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

Beginning at each temperature level specified in user manual, the frequency shall be measured within one minute after application of primary power to the transmitter and at intervals of no more than one minute thereafter until ten minutes have elapsed or until sufficient measurements are obtained to indicate clearly that the frequency has stabilized within the applicable tolerance, whichever time period is greater. During each test, the ambient temperature shall not be allowed to rise more than 10° centigrade above the respective beginning ambient temperature level

Measure and record the results in the test report.

8.2.5 Test Results

N/A

8.3 RADIATED SPURIOUS EMISSION

8.3.1 Applicable Standard

According to FCC Part 15.249 and 15.209

8.3.2 Conformance Limit

According to FCC Part 15.249: radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

According to 1 GG 1 dit 10:200, Nestricted baries								
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	12.57675-12.57725 322-335.4		(2)					
13.36-13.41								

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

Field strength of fundamental and Field strength of harmonics Limit:

<u> </u>									
Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)							
902-928 MHz	50(94 dBV/m)	500(54 dBV/m)							
2400-2483.5 MHz	50(94 dBV/m)	500(54 dBV/m)							
5725-5875 MHz	50(94 dBV/m)	500(54 dBV/m)							
24.0-24.25 GHz	250(108 dBV/m)	2500(68 dBV/m)							

As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation

For this report

Fundamental Frequency	Field Strength	Field Strength of Spurious
Fundamental Frequency	Of Fundamental	Emissions
	AV/:04 dBuV//m at 2m diatance	AV:54 dBuV/m at 3m
2400-2483.5 MHz	AV:94 dBuV/m at 3m distance	distance
2400-2463.5 IVITZ	PK:114 dBuV/m at 3m	PK:74 dBuV/m at 3m
	distance	distance

8.3.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.3.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 1GHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz for

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 30MHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

 $\dot{R}BW = 9kHz$

VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold For Below 150KHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 200Hz VBW ≥ RBW Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.3.5 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

Temperature: 24 °C Test Date: September 05, 2016
Humidity: 53 % Test By: King Kong
Test mode: TX Mode

Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK `	ÁV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Field Strength of the fundamental signal

Temperature: 24°C Test Date: Nov. 25, 2016

Humidity: 53 % Test By: KK

Test mode: TX Mode

Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m((dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
2405.00	V	93.35	87.62	114.00	94.00	-20.65	-6.38	
2405.00	Н	92.15	85.69	114.00	94.00	-21.85	-8.31	

Note: (1) Correct Factor= Antenna Factor +Cable Loss- Amplifier Gain

(2) Emission Level= Reading Level+Probe Factor +Cable Loss

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

Temperature: 28°C Test Date: Nov. 25, 2016

Humidity: 65 % Test By: King Kong

Test mode: QPSK Frequency: 2405MHz

Freq.	Ant.Pol.	Emission Lev	rel(dBuV/m)	Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4810.00	V	42.76	30.32	74.00	54.00	-31.24	-23.68
7215.00	V	45.74	34.15	74.00	54.00	-28.26	-19.85
9927.00	V	47.25	35.65	74.00	54.00	-26.75	-18.35
4810.00	Н	42.60	30.31	74.00	54.00	-31.40	-23.69
7215.00	Н	46.60	34.53	74.00	54.00	-27.40	-19.47
9954.00	Н	47.76	34.98	74.00	54.00	-26.24	-19.02

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

Temperature: 24°C Test Date: Nov. 25, 2016

Humidity: 53 % Test By: KK

Test mode: QPSK Frequency: 2405.00MHz

Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)
2371.68	Н	39.65	74.00	-34.35	23.21	54.00	-30.79
2371.84	V	38.67	74.00	-35.33	25.10	54.00	-28.90

Temperature: 24°C Test Date: Nov. 25, 2016

Humidity: 53 % Test By: KK

Test mode: QPSK Frequency: 2405.00MHz

	Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)
ſ	2497.19	Н	37.94	74.00	-36.06	23.12	54.00	-30.88
Ī	2484.51	V	41.16	74.00	-32.84	30.25	54.00	-23.75

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

TRF No: FCC 15.249/A Page 21 of 30 Report No.: ES161111006E1 Ver.1.0

Spurious Emission below 1GHz (30MHz to 1GHz)

Limit: (RE)FCC PART 15 CLASS B Mode:2405MHz-TX

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	32.9100	41.64	-17.28	24.36	40.00	-15.64	QP			
2		43.5800	38.00	-14.14	23.86	40.00	-16.14	QP			
3		103.7200	40.09	-15.15	24.94	43.50	-18.56	QP			
4		270.5600	32.59	-12.39	20.20	46.00	-25.80	QP			
5	;	392.7800	27.25	-9.30	17.95	46.00	-28.05	QP			
6	!	960.2300	32.60	0.24	32.84	54.00	-21.16	QP			

^{*:}Maximum data x:Over limit !:over margin Operator: Ricky

Limit: (RE)FCC PART 15 CLASS B

Mode:2405MHz-TX

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	33.8800	42.16	-17.06	25.10	40.00	-14.90	QP			
2		103.7200	30.82	-15.15	15.67	43.50	-27.83	QP			
3		191.9900	32.37	-16.41	15.96	43.50	-27.54	QP			
4		303.5400	32.57	-11.80	20.77	46.00	-25.23	QP			
5		328.7600	24.70	-10.84	13.86	46.00	-32.14	QP			
6		550.8900	26.92	-6.34	20.58	46.00	-25.42	QP			

^{*:}Maximum data Operator: Ricky x:Over limit !:over margin

8.4 CONDUCTED EMISSIONS TEST

8.4.1 Applicable Standard

According to FCC Part 15.207(a)

8.4.2 Conformance Limit

Conducted Emission Limit					
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56	56-46			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies

8.4.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

8.4.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Repeat above procedures until all frequency measured were complete.

8.4.5 Test Results

Pass

We test the EUT at 120V and 240V, and show the worst result as bellow.

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

55 %

Humidity:

Power: AC 120V/60Hz

Limit: (CE)FCC PART 15 class C_QP

Mode: 2405MHz-TX

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1550	55.86	0.00	55.86	65.73	-9.87	QP	
2		0.1550	24.95	0.00	24.95	55.73	-30.78	AVG	
3	*	0.1800	57.31	0.00	57.31	64.49	-7.18	QP	
4		0.1800	26.13	0.00	26.13	54.49	-28.36	AVG	
5		0.2300	53.53	0.00	53.53	62.45	-8.92	QP	
6		0.2300	24.10	0.00	24.10	52.45	-28.35	AVG	
7		0.4550	41.82	0.00	41.82	56.78	-14.96	QP	
8		0.4550	38.75	0.00	38.75	46.78	-8.03	AVG	
9		1.5900	33.09	0.00	33.09	56.00	-22.91	QP	
10		1.5900	27.08	0.00	27.08	46.00	-18.92	AVG	
11		3.7200	34.23	0.00	34.23	56.00	-21.77	QP	
12		3.7200	26.16	0.00	26.16	46.00	-19.84	AVG	

*:Maximum data x:Over limit !:over margin Comment: Factor build in receiver. Operator: WQG

Humidity:

55 %

Power: AC 120V/60Hz

Site Conduction #1

Limit: (CE)FCC PART 15 class C_QP

Mode: 2405MHz-TX

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu√	dB	Detector	Comment
1	*	0.1500	56.50	0.00	56.50	66.00	-9.50	QP	
2		0.1500	27.78	0.00	27.78	56.00	-28.22	AVG	
3		0.1900	54.34	0.00	54.34	64.04	-9.70	QP	
4		0.1900	28.55	0.00	28.55	54.04	-25.49	AVG	
5		0.2400	49.84	0.00	49.84	62.10	-12.26	QP	
6		0.2400	29.99	0.00	29.99	52.10	-22.11	AVG	
7		0.3650	41.06	0.00	41.06	58.61	-17.55	QP	
8		0.3650	30.27	0.00	30.27	48.61	-18.34	AVG	
9		0.4500	40.98	0.00	40.98	56.88	-15.90	QP	
10		0.4500	33.04	0.00	33.04	46.88	-13.84	AVG	
11		3.5800	33.90	0.00	33.90	56.00	-22.10	QP	
12		3.5800	16.80	0.00	16.80	46.00	-29.20	AVG	

*:Maximum data Comment: Factor build in receiver. Operator: WQG x:Over limit !:over margin

8.5 ANTENNA APPLICATION

8.5.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.5.2 **Result**

PASS.		
Note:	⊠ □ □ which	Antenna use a permanently attached antenna which is not replaceable. Not using a standard antenna jack or electrical connector for antenna replacement The antenna has to be professionally installed (please provide method of installation) in accordance to section 15.203, please refer to the internal photos.
	which	in accordance to section 15.203, please refer to the internal photos.