VO-Klausur Formale Sprachen & Komplexitätstheorie (9. Februar 2016)

Aufgabe 1 - 8P:

Es war eine Grammatik $G = (V, P, \Sigma, S)$ gegeben mit

$$P := \{S \to XY, S \to YX, S \to \epsilon, X \to YX, Y \to XY, X \to x, Y \to y\}$$

$$V := \{S, X, Y, Z\}, \Sigma := \{x, y\}.$$

Ist G regulär, kontextfrei, kontextsensitiv? Gilt $yxxyxy \in L(G)$?

Aufgabe 2 – 8P:

 $L := \{ \langle M \rangle : M \text{ akzeptiert mindestens 3 Eingaben } x \text{ mit } |x| = 7 \}$. Ist L entscheidbar? Ist L rekursiv aufzählbar?

Aufgabe 3 – 8P:

Bemerkung: In einem Absatz stand noch mal die Definition von einem Isomorphismus von zwei Graphen und die Definition von CLIQUE da.

Aufgabe 4 - 4P:

Zeige, dass die Sprache $L:=\{a^nb^ma^{n-m}:n,m\in\mathbb{N}\wedge n\geq m\}$ kontextfrei ist, indem du einen PDA dafür erstellst.

Aufgabe 5 – 4P:

Erstelle eine Grammatik G, die folgende Sprache erzeugt: $\{0^n1^n0^n : n \ge 0\}$.

Aufgabe 6 – 12P:

Richtig oder falsch?

(Für jede falsche Antwort gibt es einen Punkt Abzug, insgesamt kann man auf die Aufgabe nicht weniger als 0P kriegen)

- Die Sprache Useful ist entscheidbar.
- Das Komplement des Halteproblems ist rekursiv aufzählbar.
- Das Problem der Berechnung eines minimalen Spannbaums in einem Graphen ist in NP.
- Für jede NTM gibt es eine DTM, die dieselbe Sprache entscheidet.
- Eine Sprache L ist NP-vollständig genau dann, wenn $L' \leq_P L$ für jede Sprache $L' \in NP$ und $L \in NP$.
- Jede kontextfreie Sprache wird von einem endlichen Automaten erkannt.
- $\bullet\,$ Das Akzeptanzproblem ist auf 3-SAT reduzierbar.
- Jede Chomsky 1 Grammatik ist kontextfrei.
- L_1 ist kontextfrei, ist dann auch $L_2 \subset L_1$ kontextfrei?
- Sind alle Sprachen in P rekursiv aufzählbar?
- ullet Gibt es für alle Sprachen, die von einer Chomsky-0 Grammatik erzeugt werden, einen äquivalenten NTM?
- Wenn ein polynomieller Algorithmus für Clique gefunden wird, gilt dann P = NP?