Note di scattering

Bruno Bucciotti

July 15, 2019

Abstract

Imposto la descrizione formale dello scattering. Faccio riferimento ad alcuni risultati della lezione 6 del corso di Paffuti di scattering.

1 Richiami

Ricordo alcune cose descritte approfonditamente da Paffuti.

1.1 Matrice S

Lo scopo della matrice S è fornire l'ampiezza di probabilità per un dato processo di scattering. Per specificare input e output desideriamo utilizzare stati che abbiano un comportamento facile sotto evoluzione libera. Ad esempio, un pacchetto con posizione e impulso abbastanza ben definiti. Dunque gli stati liberi etichettano il processo di scattering, ma l'ampiezza va poi calcolata facendo evolvere (da chiarire fra poco) secondo l'hamiltoniana interagente.

1.2 Operatori di Moller

Ho lo stato libero in ingresso. Per "convertirlo" in quello interagente lo faccio evolvere indietro nel tempo secondo l'hamiltoniana libera e poi lo riporto avanti nel tempo con l'hamiltoniana interagente (notare l'analogia con lo scattering classico). In formule ho

$$\Omega_{+} = \lim_{t \to -\infty} U^{\dagger}(t)U_{0}(t)$$

Analogamente uno stato in uscita va fatto evolvere avanti nel tempo con l'hamiltoniana libera, poi riportato indietro con quella interagente.

$$\Omega_{-} = \lim_{t \to \infty} U^{\dagger}(t) U_0(t)$$

In termini di questi operatori la matrice di scattering S è definita come

$$S = \Omega_{-}^{\dagger} \Omega_{+}$$

1.3 Interaction picture

C'è un legame fra la matrice S e la rappresentazione di interazione, che richiamo ora.

Definiamo

$$|\psi_I\rangle(t) = U_0^{\dagger}(t)|\psi\rangle(t)$$

che si dimostra evolvere con l'hamiltoniana

$$H_I(t) = U_0^{\dagger}(t)V(t)U_0(t)$$

Si verifica anche che

$$|\psi_I\rangle(t) = U_I(t)|\psi_I\rangle(0), \qquad \qquad U_I(t) = U_0^{\dagger}(t)U(t)$$

così come

$$|\psi_I\rangle(0) = U^{\dagger}(t)U_0(t)|\psi_I\rangle(t)$$

Concludendo si osserva che

$$S = \Omega_{-}^{\dagger} \Omega_{+} = U_{I}(\infty, 0) U_{I}(0, -\infty) = U_{I}(\infty, -\infty)$$

Poiché U_I fa evolvere $|\psi_I\rangle$, che abbiamo detto evolve con l'hamiltoniana H_I , si ha infine

$$S = T \exp\left(-i \int_{-\infty}^{\infty} H_I(t) dt\right)$$

2 Calcolare la matrice S

Molte cose saranno date senza dimostrazione.

2.1 Teorema di Wick

Questo teorema consente di trasformare un prodotto t-ordinato in una somma di prodotti normalmente ordinati. Il teorema afferma

$$T(\phi_1\phi_2..\phi_n) =: \phi_1\phi_2..\phi_n : + : \phi_1\phi_2...\phi_n : + (\text{cyc}) + : \phi_1\phi_2\phi_3\phi_4...\phi_n : + (\text{cyc}) + ...$$

Supponiamo per esempio che $H_I(t) = \int gf(t)\psi^*\psi\phi\,\mathrm{d}^3x$. Allora l'esponenziale t-ordinato della formula di Dyson $T\exp\left(-ig\int f(t)\psi^*\psi\phi\,\mathrm{d}^4x\right)$ avrà al suo interno termini come $\frac{(-ig)^2}{2!}\int f(t_1)f(t_2)T(\psi_1^*\psi_1\phi_1\psi_2^*\psi_2\phi_2)\,\mathrm{d}^4x_1\mathrm{d}^4x_2$ (si noti che T è lineare). Il teorema di Wick ci aiuta a valutare tali termini.

2.2 Diagrammi di Wick

Non ci serve scrivere l'espansione algebrica dei vari termini normalmente ordinati, possiamo associare a ciascun termine un diagramma di Wick (corrispondenza biunivoca). Dunque ad esempio $T(\psi_1^*\psi_1\phi_1\psi_2^*\psi_2\phi_2)$ si scrive come la somma di tutti i diagrammi di Wick a due vertici.

Per disegnare un diagramma di Wick, iniziare disegnando il giusto numero di vertici, in base al numero di parametri che entrano nell'integrale. Collegare poi i vertici seguendo le contrazioni. Due diagrammi sono uguali (e dunque compaiono una sola volta nello sviluppo) se e solo se sono ottenuti contraendo gli stessi vertici con gli stessi altri.

2.3 Molteplicità

Il primo e il secondo diagramma sono diversi, poichè i collegamenti sono diversi. Al contrario, il secondo e il terzo sono uguali. D'altra parte tutti e tre, se valutiamo l'integrale corrispondente, danno lo stesso risultato (per 2 e 3 è banale, non lo è per 1 e 2). Possiamo e vogliamo dunque raggruppare i vari diagrammi, se il loro contributo è uguale. Diremo che due diagrammi hanno lo stesso pattern se i loro integrali, sebbene forse si scrivano diversamente, diventano uguali rinominando i vertici (cioè facendo un cambio di variabili). Quindi 1 e 2 hanno lo stesso pattern e il cambio di variabili che manda un integrale nell'altro consiste nello scambiare x_2 e x_4 come variabili di integrazione.

Quanti diagrammi di n(D) vertici ci sono di un dato pattern? $\frac{n(D)!}{S(D)}$, dove S(D) conta, per un dato diagramma D, in quanti modi si possono rietichettare i vertici in modo tale che, seguendo le stesse prescrizioni riguardo ai collegamenti fra vertici, i collegamenti finali risultino uguali (come in 2 e 3). In pratica rietichetto in tutti i modi possibili (n(D)!) e quoziento per quelli che portano alla stessa cosa.

Dunque per ogni pattern scrivo l'integrale : O(D) : e il contributo di tutti i diagrammi con quel pattern si può riassumere come $\frac{n(D)!}{S(D)} : O(D)$: (n(D)!) a denominatore viene dall'espansione dell'espansione).

Riassumendo, la matrice di scattering S è data dalla somma del contributo associato ad ogni possibile pattern, pesato con un fattore $\frac{1}{S(D)}$.

2.4 Diagrammi connessi vs generici

Intermezzo: Normal ordering

Normal ordering è definito sull'algebra libera degli operatori a, a^{\dagger} , cioè combinazioni lineari di stringhe ordinate di simboli a, a^{\dagger} . L'algebra che abbiamo in testa (quella con le relazioni di commutazione canoniche, CCR) è quella che quozienta $aa^{\dagger}-a^{\dagger}a-1\sim 0$. In pratica se ho due operatori A,B uguali nell'algebra CCR, non è necessariamente vero che : A:=:B: E' vero solo se A=B nell'algebra libera. Con questa accortezza, l'operazione di normal ordering è lineare.

Prendiamo un pattern disconnesso D, scomponibile diagrammi connessi D_i ciascuno presente n_i volte. Allora l'integrale O(D) si fattorizza nel prodotto degli integrali associati ai singoli pattern. Nota bene: il contributo di interesse è : O(D) :, l'operatore normalmente ordinato associato a O(D). L'idea è di riscrivere l'operatore O(D) in un modo equivalente $O_2(D)$ (senza mai applicare le regole di commutazione canoniche) e considerare l'operatore normalmente ordinato associato $O_2(D)$.

$$\frac{O(D)}{S(D)} = \prod_{i} \frac{1}{n_i!} \left(\frac{O(D_i)}{S(D_i)}\right)^{n_i}$$

Il prodotto corre sulla lista di diagrammi connessi esistenti. I fattori $S(D_i)$ a dividere vengono dalla possibilità di permutare le etichette all'interno di un singolo pattern connesso. Inoltre se un dato pattern connesso compare n_i volte, posso scambiare le etichette "in blocco" fra due qualsiasi tali pattern connessi e anche questo dà lo stesso diagramma.

Abbiamo chiarito in 2.3 che S è data dalla somma di tutti i pattern, pesati con un fattore $\frac{1}{S(D)}$. Un pattern è caratterizzato univocamente dalla sequenza $\{n_i\}$ che descrive quante copie di ogni pattern connesso compaiono. La somma è dunque

$$\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \dots \sum \frac{O(D_{n_1,n_2,\dots})}{S(D_{n_1,n_2,\dots})} = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \dots \sum \prod_{i=1}^{\infty} \frac{1}{n_i!} \left(\frac{O(D_i)}{S(D_i)}\right)^{n_i}$$

$$= \prod_{i=1}^{\infty} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{O(D_i)}{S(D_i)} \right)^n = \prod_{i=1}^{\infty} \exp\left(\frac{O(D_i)}{S(D_i)} \right) = \exp\left(\sum_{i=1}^{\infty} \frac{O(D_i)}{S(D_i)} \right)$$

Notare che non abbiamo mai usato le regole di commutazione canoniche CCR, dunque possiamo prendere il normal ordering ad ambo i lati. Si ha che

$$S =: \exp\left(\sum_{i=1} \frac{O(D_i)}{S(D_i)}\right):$$