18MAB101T-Calculus and Linear Algebra for C-Slot **Answer Key**

$$(a) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix} \quad (b) \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 2 \\ 3 & 2 & 1 \end{pmatrix} \quad (c) \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix} \quad (d) \begin{pmatrix} 1 & 2 & 6 \\ 2 & 3 & 4 \\ 6 & 4 & 1 \end{pmatrix}$$

- 2. The number of positive terms in the canonical form is called
 - (a) Signature
- (b) Index
- (c) Quadratic form
- (d) Positive definite

Answer: b

3. If
$$\binom{4}{1}$$
 is an Eigen vector of the matrix $\binom{5}{1}$ then, find the corresponding Eigen value

- (a) 1
- (b) 6
- (c) 5
- (d) 4

Answer: b

4. Find the sum of squares of the Eigen values of
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 3 & 5 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) 14
- (b) 6
- (c) 0
- (d) 10

Answer: a

5. Find the sum and product of the Eigen values of
$$A = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 6 & 4 \\ 1 & 0 & 0 \end{pmatrix}$$

- (a) 8, 6
- (b) 8, 12
- (c) 6, 8
- (d) 0, 1

Answer: b

- 6. If A is an orthogonal matrix then,
 - (a) |A| = 0
- (b) A is singular
- (c) $A^2 = I$ (d) $A^T = A^{-1}$

Answer: d

7. Find the Eigen values of
$$A^3$$
 of $A = \begin{pmatrix} -5 & 0 & 0 \\ 3 & 0 & 0 \\ 4 & -1 & 2 \end{pmatrix}$

- (a) 25, 0, 4
- (b) -5,0,2 (c) -125, 0,8 (d) 50,0,1

Answer: c

8. Find the Eigen values of the matrix
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$$

- (a) 2, 3
- (b) 3, -1
- (c) 4, 1
- (d) 5. -2

Answer: d

9. Find the Eigen values of
$$A^{-1}$$
 if the matrix $A = \begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix}$

- (a) 1/3, 1/4
- (b) -3, 4
- (c) 1/4, 1/-3
- (d) 1/4, -1

Answer: c

10. Find the characteristic equation of	of the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	
$(a) \lambda^2 + 5\lambda - 2 = 0$	$(b) \lambda^2 - \lambda - 6 = 0$	
	$(d) \lambda^2 - 5\lambda - 2 = 0$	
Answer: d		
	(1 1 1)
11. Find the characteristic equation (of the matrix $A = \begin{pmatrix} 0 & 2 & 1 \\ -4 & 4 & 3 \end{pmatrix}$)
$(a) \lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$	(b) $\lambda^3 + 6\lambda^2 + 11\lambda +$	-6 = 0
$(c) \lambda^3 + 6\lambda^2 + 12\lambda + 5 = 0$	(d) $\lambda^3 + 3\lambda^2 + 2\lambda + 4\lambda$	4 = 0
Answer: a		
12. Find the nature of the quadratic f	Form $x^2 + 5y^2 + z^2 + 2zy + 6$	6xz + 2xy
(a) Positive definite (b) Ne	gative definite (c) Positive se	mi-definite (d) Indefinite
Answer: d		
13. Write the Q.F. defined by the ma	atrix $A = \begin{pmatrix} 2 & 6 \\ 6 & 3 \end{pmatrix}$	
(a) $2x^2 + 3y^2 + 6xy$		
(c) $2x^2 + 3y^2 + 12xy$	- · · ·	
Answer: c		
14. The matrix of the quadratic form	$x^2 + 2xy$ is	
(a) $\begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$		$(d)\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
`L 0'	$\binom{c}{1}\binom{1}{0}$	$\binom{u}{1}\binom{1}{1}$
Answer: b		
15. If $A = \begin{pmatrix} 1 & 2 \\ 5 & 3 \end{pmatrix}$, then by Cayley-I	Hamilton Theorem A^2 is equal	to
(a) $A^2 = 4A - 7I$ (b) $A^2 = 5A$	$A - I$ (c) $A^2 = 7A + 4I$	(d) $A^2 = 4A + 7I$
Answer: d		
$\begin{pmatrix} 1 & 2 & -2 \end{pmatrix}$		
16. If $A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$, then by	y Cayley-Hamilton Theorem A	l's is equal to
(a) $A^2 + 5A + I$ (b) $A^2 - 5A + I$	$-I$ (c) $5A^2 + 9A + I$	(d) $5A^2 - 9A + I$
Answer: d	1 (0) 511 511 1	(4) 571 771 1
17. Find the matrix from the quadrat	ic form $2x^2 + 3y^2 + 2xy + 4$	γ 7.
(a) $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 2 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & 0 \end{pmatrix}$	$ (c) \left(1 6 0 \right) $	$(d) \left(2 3 0 \right)$
1 0 1/ 12 0 0	$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$	\4 0 0/
Answer: b		
18. Find the nature of the quadratic f		(1) D 1:1
	efinite (c) Negative definite	(d) Positive semidefinite
Answer: a	Source 1242 24-2 12-2 2	
19. Find the nature of the quadratic f		
(a) indefinite (b) Positive de	efinite (c) Negative definite	(a) Positive semidefinite

Answer: b

21. Find index of the Quadrati	c Form whose Ca	$y_1 - 6y_2 - 3y_3$
(a) 1 (b) 2 (c)3	(d) 0	
Answer: a		
22. Find signature of the Quad	ratic Form whose	e Canonical form is $y_1^2 - 2y_2^2 + 4y_3^2$
(a) 1 (b) 2 (c)3	(d) 0	
Answer: a		
23. The sum and the product o	f the Eigen value	s of a 3x3 matrix are 4 and -6 respectively. If one
of the Eigen value is -1 the	en, find the other	two Eigen values.
(a) 1,1 (b) 1,2	(c) 2,3	(d) 4,3
Answer: c		
24. If the sum and the product	of the Eigen valu	es of a 2x2 matrix are 8 and 7 respectively, then
the Eigen values are		
(a) 1,1 (b) 2,2	(c) 2,5	(d) 1,7
Answer: d		
25. If $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ are the	e two Eigen vecto	ors of a real symmetric matrix, then the third

(d) 0

20. Find rank of the Quadratic Form whose Canonical form is $3y_2^2 + 15y_3^2$

(a) $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ (d) $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

(a) 3 (b) 2 (c) 1

Answer: b

Eigen vector is

Answer: d