Lezione 06

Gruppi di Trasformazioni

I gruppi di natura geometrica, detti **gruppi di trasformazioni** hanno un'importanza notevole, dato che i gruppi (astratti) sono nati come gruppi di trasformazioni.

Sia X un insieme. Consideriamo l'insieme S(X), insieme di tutte le trasformazioni o corrispondenze biunivoche di X in X. Se indichiamo con \circ il prodotto operatorio (la funzione composta), ossia se $(f \circ g)(x) = f(g(x))$, è facile vedere che $(S(X), \circ)$ è un gruppo:

- 1. **Associatività**: Per ogni $f, g, h \in S(X)$ e per ogni $x \in X$, abbiamo $(f \circ (g \circ h))(x) = f((g \circ h)(x)) = f(g(h(x))) = (f \circ g)(h(x)) = ((f \circ g) \circ h)(x)$.
- 2. Elemento neutro: L'identità $id_X: X \to X$ definita da $id_X(x) = x$ per ogni $x \in X$ è un elemento di S(X) e agisce come un elemento neutro per l'operazione \circ , perché per ogni $f \in S(X)$ e per ogni $x \in X$, abbiamo $(id_X \circ f)(x) = id_X(f(x)) = f(x)$ e $(f \circ id_X)(x) = f(id_X(x)) = f(x)$.
- 3. **Inversi**: Per ogni $f \in S(X)$, poiché f è una trasformazione biunivoca, esiste un'inversa $f^{-1}: X \to X$ tale che $f^{-1}(f(x)) = x$ e $f(f^{-1}(x)) = x$ per ogni $x \in X$. Quindi, $f^{-1} \in S(X)$ e $(f \circ f^{-1})(x) = f(f^{-1}(x)) = x = id_X(x)$ e $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = id_X(x)$ per ogni $x \in X$.

Quindi $(S(X), \circ)$ è un gruppo.

Teorema di Cayley - Mappa iniettiva in un gruppo G che preserva le operazioni.

Sia (G, \star) un gruppo. Allora esiste una mappa iniettiva $\Phi(G, \star) \longrightarrow (S(G), \circ)$ che preserva le operazioni, cioè $\Phi(a \star b) = \Phi(a) \circ \Phi(b)$.

Dimostrazione:

Definiamo la seguente applicazione:

$$egin{aligned} T_a: G & \longrightarrow G \ x & \longrightarrow ax, & orall x \in G \end{aligned}$$

 T_a è la moltiplicazione sinistra per a. Si tratta di una corrispondenza biunivoca di G in sé. Infatti:

- 1. $ax = ay \implies x = y$, cio
è T_a è iniettiva.
- 2. Per ogni $y \in G$ esiste $x \in G$ tale che y = ax: basta prendere $x = a^{-1}y$, quindi T_a è suriettiva.

Quindi T_a è biunivoca, pertanto appartiene all'insieme delle funzioni biunivoche di G in sé stesso: $T_a \in S(G)$.

Definiamo adesso l'applicazione:

$$\Phi: (G,\cdot) \longrightarrow (S(G),\circ) \ a \longrightarrow T_{a.}$$

1. Φ conserva l'operazione: dobbiamo dimostrare che $\Phi(ab) = \Phi(a) \circ \Phi(b)$, cioè $T_{ab} = T_a \circ T_b$.

$$T_{ab}(x)=ab\cdot x=a(bx)=a(T_b(x))=T_a(T_b(x))=T_a\circ T_b(x),\quad orall x\in G$$

2. Φ è iniettiva. Infatti se $\Phi(a) = \Phi(b)$, cioè $T_a = T_b$,

$$T_a = T_b \implies T_a(x) = T_b(x) \implies ax = bx \implies a = b$$

in particolare:

$$a = T_a(e) = T_b(e) = b \implies a = b$$

Chiaramente tale applicazione non è suriettiva, perché se confrontiamo le cardinalità di G e di S(G) sono rispettivamente n e n!. Tuttavia l'immagine di Φ , cioè $\Phi(G) \stackrel{def}{=} \{T_a | a \in G\}$ è un sottogruppo di S(G) risulta quindi isomorfo a G.

Questo teorema viene utilizzato nella dimostrazione del teorema di **Cayley**, che afferma che ogni gruppo (G) è isomorfo ad un sottogruppo di (S(G)).

Il teorema che abbiamo appena dimostrato fa vedere che per ogni gruppo esiste un **omomorfismo** (approfondiremo questo concetto più avanti) **iniettivo canonico**

Gruppo Simmetrico S_n

Ora, nel caso in cui l'insieme X sia finito e ha cardinalità n ($X = \{x_1, x_2, ..., x_n\}$) il gruppo S(X) si indica con S_n e prendi il nome di **gruppo simmetrico** (o **di permutazioni**) di g n (o su n elementi).

Sia $X = \{1, 2, ..., n\}$. Ogni elemento σ di S_n , in quanto corrispondenza biunivoca di X in sé, rappresenta una permutazione di $\{1, 2, ..., n\}$. Quindi la cardinalità di S_n è n! (fattoriale)

Prendiamo per esempio $n=6, X=\{1,2,3,4,5,6\}$ e sia σ la seguente corrispondenza biunivoca:

$$\begin{split} \sigma: X &\longrightarrow X \\ 1 &\longrightarrow 5 \\ 2 &\longrightarrow 1 \\ 3 &\longrightarrow 4 \\ 4 &\longrightarrow 6 \\ 5 &\longrightarrow 2 \\ 6 &\longrightarrow 3. \end{split}$$

Possiamo scrivere σ come una matrice 2×6 :

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 6 & 2 & 3 \end{pmatrix}$$

Notiamo che nella seconda riga vi sono tutti gli elementi di X anche se in ordine diverso. In generale quindi un elemento di S_n verrà indicato con la matrice $2 \times n$:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ i_1 & i_2 & i_3 & i_4 & \dots & i_n \end{pmatrix}$$

(la prima riga è sempre la stessa, la seconda è data dalle varie permutazioni).

Proposizione - Se $n \geq 3$ allora S_n non è abeliano

 S_n non è abeliano se $n \geq 3$. Per dimostrarlo, analizziamo il caso in cui n = 2 e n = 3.

 \bullet n=2

Nel caso di S_2 , che è il gruppo simmetrico su un insieme di due elementi, ci sono solo due possibili permutazioni: l'identità, che lascia entrambi gli elementi al loro posto, e la trasposizione, che scambia i due elementi. Chiamiamo l'identità e e la trasposizione τ . Quindi abbiamo:

$$e=egin{pmatrix} 1 & 2 \ 1 & 2 \end{pmatrix}, \quad au=egin{pmatrix} 1 & 2 \ 2 & 1 \end{pmatrix}.$$

Ora, se calcoliamo le composizioni $e \circ \tau$ e $\tau \circ e$, otteniamo:

$$e \circ \tau = \tau$$
, $\tau \circ e = \tau$.

E se calcoliamo $\tau \circ \tau$, otteniamo e. Quindi, in S_2 , la composizione di qualsiasi coppia di permutazioni è commutativa, cioè $\sigma \circ \tau = \tau \circ \sigma$ per ogni $\sigma, \tau \in S_2$. Questo è il motivo per cui S_2 è un gruppo commutativo (o abeliano).

• n=3

Nel caso di S_3 , che è il gruppo simmetrico su un insieme di tre elementi, supponiamo che σ sia la permutazione che scambia 1 e 2, e τ sia la permutazione che scambia 2 e 3. Quindi abbiamo:

$$\sigma=egin{pmatrix}1&2&3\2&1&3\end{pmatrix},\quad au=egin{pmatrix}1&2&3\1&3&2\end{pmatrix}.$$

Calcoliamo ora le composizioni $\sigma \circ \tau$ e $\tau \circ \sigma$:

$$\sigma\circ au=egin{pmatrix}1&2&3\2&3&1\end{pmatrix},\quad au\circ\sigma=egin{pmatrix}1&2&3\3&1&2\end{pmatrix}.$$

Notiamo che $\sigma \circ \tau \neq \tau \circ \sigma$, il che dimostra che S_n non è commutativo per $n \geq 3$.

Congruenze - L'anello \mathbb{Z}_n

La relazione di congruenza modulo n (un intero positivo) è una relazione che identifica in \mathbb{Z} se la differenza tra due elementi è multiplo di n.

Sia $n \geq 2$. Si dice relazione di congruenza modulo n la relazione su \mathbb{Z} :

$$a \rho_n b$$
, ovvero $a \equiv b \pmod{n} \iff a - b = nh$, per qualche $h \in \mathbb{Z}$.

Ovvero che a e b hanno lo stesso resto se divisi per n. Ogni intero a è congruo modulo n ad un intero b tale che $0 \le b < n$. In luogo di $a \equiv b \pmod{n}$ si può anche scrivere $a \equiv b(n)$ oppure $a \equiv_n b$.

Esempio di modulo nella vita reale

Un esempio che può rendere l'idea è dato dalle lancette dell'orologio. Quando sono le ore 16:00 molto spesso diciamo che sono le 4:00. Se dalle ore 00:00 voglio che passino 72 ore (quindi 3 giorni), non saranno le 72:00, ma sempre le 00:00 (ogni 12 ore il ciclo ricomincia).

Osservazione 1 - la congruenza è una relazione di equivalenza

Sia n > 0 un intero fissato. La relazione di congruenza modulo n è una relazione di equivalenza. Risulta infatti:

- $a \equiv a \pmod{n}, \forall a \in \mathbb{Z};$
- $a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$;
- $a \equiv b \pmod{n}, b \equiv c \pmod{n} \implies a \equiv c \pmod{n}$;

Osservazione 2 - estensione ai casi specifici

La definizione di congruenza può essere estesa anche ai casi n=1, n=0, n<0:

- 1. $a \equiv b \pmod{1} \iff 1 | a b \iff a b \in \mathbb{Z}$. Dunque \equiv_1 è la relazione **caotica**, perché tutti i numeri sono equivalenti fra loro. b diviso 1 dà b con resto zero, perciò tutti gli a sono equivalenti a $(b \mod 1) = 0$.
- 2. $a \equiv b \pmod{0} \iff 0 | a b \iff a b = 0$. Dunque \equiv_0 è la relazione **identica**, perché ogni numero è uguale a sé stesso. b diviso 0 (in algebra) è uguale a 0 con resto b, ciò implica che a è **equivalente** a b se e solo se a = b.
- 3. Sia n < 0. $a \equiv b \pmod{n} \iff |n| |a b$. Dunque \equiv_n coincide con $\equiv_{|n|}$, in quanto, se divido per un numero negativo, il resto rimane invariato.

Con \mathbb{Z}_n si definisce l'insieme quoziente di \mathbb{Z} rispetto alla congruenza modulo n:

$$\left[\mathbb{Z}_n\stackrel{def}{=}\mathbb{Z}/\equiv_n=\{ar{0},ar{1},\ldots,\overline{n-1}\}
ight]$$

I suoi elementi sono detti classi resto modulo n. Per ogni $a \in \mathbb{Z}$ la classe resto di a modulo n è denotata \bar{a} (oppure [a]). Risulta:

$$ar{a} = a + n\mathbb{Z} = \{a + nt, orall t \in \mathbb{Z}\}.$$

Dove \bar{a} equivale agli interi che divisi per n danno resto a.

Osservazione 3 - insiemi delle classi di equivalenza in \mathbb{Z}_n

Ricordando la proprietà che lega <u>classi di equivalenza e relazioni di equivalenza</u>, con la relazione $a \sim_n b$ valida se a - b è divisibile per n, notiamo che nell'insieme delle classi di equivalenza

$$\mathbb{Z}_n = \{[0], [1], [2], [n-1], [n], [n+1], [n+2]\}$$

alcune classi di equivalenza coincidono: infatti [n+1] = [+1], perché (n+1) - (+1) = n, che è divisibile per n. In particolare n+1 e +1 sono congruenti ad $1 \pmod{n}$.

Proposizione 1 - congruenza compatibile con operazioni di $\mathbb Z$

La relazione di congruenza \equiv_n è compatibile con le due operazioni definite in \mathbb{Z} . Ne segue che $(\mathbb{Z}_n, +, \cdot)$ è un anello commutativo unitario con [0] elemento neutro additivo e [1] elemento neutro moltiplicativo. Infatti, se a, b, c, d sono elementi di \mathbb{Z} :

$$a \equiv b \ \mathrm{mod}(n), c \equiv d \ (\mathrm{mod} \ n) \implies egin{cases} a + c \equiv b + d \ (\mathrm{mod} \ n) \ ac \equiv bd \ (\mathrm{mod} \ n) \end{cases}$$

Dimostrazione:

$$(1)\ a \equiv b\ (\mathrm{mod}\ n) \iff a-b=hn$$
 $c \equiv d\ (\mathrm{mod}\ n) \iff c-d=kn$
 $\implies a+c-(b+d)=(h+k)n$
 $\implies a+c \equiv b+d\ (\mathrm{mod}\ n) \qquad riangle$
 $(2)\ ac-bd=ac-ad+ad-bd=a(c-d)+(a-b)d$
 $akn+hnd=(ak+hd)n \implies ac \equiv bd\ (\mathrm{mod}\ n)$

Da cui deduciamo che $\overline{a} + \overline{b} = \overline{a+b}, \ \overline{a} \cdot \overline{b} = \overline{a \cdot b}, \ \forall \overline{a}, \overline{b} \in \mathbb{Z}_n.$

Queste due operazioni sono **ben definite**, ovvero non dipendono dalla scelta dei rappresentanti delle classi di equivalenza (ad esempio [5] + [4] = [2] + [1] = [3] = [0] (in modulo 3)).

Proposizione 2 - \mathbb{Z}_n come dominio di integrità

In generale \mathbb{Z}_n non è un dominio di integrità, infatti nei domini di integrità vale <u>la legge di</u> <u>cancellazione</u>. Prendiamo per esempio $(\mathbb{Z}_4, +, \cdot)$ dove $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ e verifichiamo che sia un dominio di integrità per la moltiplicazione:

$a \cdot b$	0	1	2	3
-------------	---	---	---	---

0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	2	2	1

Ricordando la definizione di <u>dominio di integrità e divisore dello zero</u>, deduciamo che \mathbb{Z}_4 non è un *dominio di integrità*, perché in esso 2 è un divisore dello zero: infatti $(2 \cdot 2) \mod 4 = 4 \mod 4 = 0$.

Proposizione 3 - numeri primi e domini di integrità

Notiamo che \mathbb{Z}_n è un dominio di integrità se e solo se n è un numero primo.

Dimostrazione:

Ipotizziamo per assurdo che \mathbb{Z}_n sia un dominio di integrità e che n non sia primo, pertanto n deve essere ottenuto da due numeri $1 < a, b < n | a \cdot b = n$. Questo implica che $ab \equiv 0 \pmod{n}$, ma sia a che b non sono uguali a 0, ciò significa che questo non è un dominio di integrità, che è un **assurdo** che contraddice la nostra ipotesi.

Proposizione 4 - \mathbb{Z}_n come campo e numeri primi

 \mathbb{Z}_n è un campo $\iff n$ è primo.

Dimostrazione:

 \Longrightarrow :

Dimostreremo che se n non è primo allora \mathbb{Z}_n non è un campo.

Nella <u>Proposizione 3</u> abbiamo visto come \mathbb{Z}_n non sia un dominio di integrità se n non è primo. Quindi ci resta dimostrare che se un anello non è un dominio di integrità allora non è un campo. Ipotizziamo che a sia invertibile e che a sia un divisore dello zero. Ciò significa che ax = 0 per qualche $x \neq 0$. Allora $0 = a^{-1} \cdot 0 = a^{-1} \cdot a \cdot x = x$ che è un assurdo. Pertanto, se a è un divisore dello zero allora non è invertibile, perciò un anello che contiene divisori dello zero non è un campo.

←=:

Se un numero n è primo è coprimo con tutti i numeri da 1 a n-1, pertanto è possibile scrivere un'identità di Bézout del tipo ax + ny = 1 dove $a : \{1, 2, ..., n-1\}$. Convertita in un'equazione congruenziale diventa $ax \equiv 1 \pmod{n}$. Notiamo come x quindi sia l'inverso di a, quindi a è invertibile.

Notiamo quindi che se n non è un numero primo, allora solo i numeri coprimi con esso saranno invertibili. Ma quanti sono gli elementi invertibili? Per scoprirlo, occorre utilizzare la funzione φ di Eulero.

TODO

• Collegare alla funzione φ di Eulero