2018 Exam

Joanne Kennedy January 22, 2018

(a) State Girsanov's Theorem for a one-dimensional Brownian motion.

[20%]

(b) Let $(\Omega, \mathcal{F}, \mathbb{N})$ be a probability space supporting a 1-dimensional Brownian motion W and let $\{\mathcal{F}_t\}_{t\geq 0}$ denote the augmented natural filtration of W.

Let X be a process satisfying the SDE

$$dX_t = -\lambda(X_t - \theta)dt + \sigma dW_t, X_0 = x_0,$$

where λ, θ, σ are positive constants. Show that

$$E_{\mathbb{N}}\left(\exp uX_{t}\right) = \exp\left(\phi(t, u) + \psi(t, u)x_{0}\right)$$

where

$$\psi(t, u) = e^{-\lambda t} u,$$

and

$$\phi(t, u) = \theta u(1 - e^{-\lambda t}) + \frac{\sigma^2}{4\lambda} u^2 (1 - e^{-2\lambda t}).$$

[20%]

(c) Let $0 < T < \infty$ and $u \in \mathbb{R}$. Show that the process $M^u = (M^u_*)_{0 \le t \le T}$ defined by

$$M_t^u = \exp(\phi(T-t, u) + \psi(T-t, u)X_t)$$

is a martingale.

Hint: Consider first M_T^u and you may assume without proof the identity

$$E_{\mathbb{N}}\left(\exp uX_{t+s}|\mathcal{F}_{s}\right) = \exp\left(\phi(t,u) + \psi(t,u)X_{s}\right), \ 0 \le t+s \le T.$$

[20%]

(d) Let $0 < T_1 < T_2 < ... < T_n < T_{n+1}$ be a sequence of dates and for i = 1, ..., n let $\alpha_i = T_{i+1} - T_i$. Further let D_{tT_i} denote the value at time t of a pure discount bond that pays unity at T_i .

Consider a term structure model in which for i = 1, ..., n + 1

$$\frac{D_{tT_i}}{D_{tT_{n+1}}}: \quad = \quad M_t^{u_i}, \, t \in [0, T_i],$$

where $u_1 \ge u_2 \ge ... \ge u_{n+1} = 0$

Fix k such that $1 \leq k \leq n-1$. Define a new measure \mathbb{N}^k on (Ω, \mathcal{F}_T) via

$$\left. \frac{d\mathbb{N}^k}{d\mathbb{N}} \right|_{\mathcal{F}_t} := \frac{M_t^{u_{k+1}}}{M_0^{u_{k+1}}}, \ t \le T.$$

(i) Show that under \mathbb{N}^k

$$dX_t = \left(-\lambda(X_t - \theta) + \sigma^2 e^{-\lambda(T - t)} u_{k+1}\right) dt + \sigma d\tilde{W}_t,$$

where \tilde{W} is a Brownian motion under \mathbb{N}^k .

[20%]

(ii) Show that the k^{th} forward LIBOR $L^k := L^k[T_k, T_{k+1}]$ is a martingale under the measure \mathbb{N}^k .

[20%]

Question 2

(a) Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbb{P})$ be a filtered probability space. Let \mathbb{Q} be a probability measure equivalent to \mathbb{P} with respect to \mathcal{F} . Show that M is an $(\{\mathcal{F}_t\}, \mathbb{Q})$ -martingale if and only if ρM is an $(\{\mathcal{F}_t\}, \mathbb{P})$ -martingale where for $t \geq 0$

$$\rho_t := \frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t}.$$

State any results from lectures that you use.

[20%]

(b) State the Martingale Representation Theorem for a one dimensional Brownian motion.

[20%]

(c) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space supporting a one-dimensional Brownian motion W and let $\{\mathcal{F}_t\}_{t\geq 0}$ denote the augmented natural filtration generated by W.

Consider an economy defined for the finite time interval $0 \le t \le T \le \infty$ and composed of two assets having price process A = (D, S) satisfying

$$dD_t = rD_t dt \quad (D_T = 1, r > 0)$$

$$dS_t = \mu S_t dt + \sigma_t S_t dW_t \quad (S_0 = 1)$$

where μ,r and $\sigma > 0$ are constants.

(i) Show that for this economy there exists a unique equivalent martingale measure $\mathbb Q$ correponding to numeraire S.

[20%]

(ii) Show that there exists an $\{\mathcal{F}_t\}$ -predictable self-financing strategy for replicating any given a \mathcal{F}_T -measurable random variable X satisfying

$$E_{\mathbb{Q}}\left[\frac{|X|}{S_T}\right] < \infty.$$

[20%]

(iii) Suppose (N,\mathbb{N}) is some numeraire pair for the economy. Show that for $0 \le t \le T$

$$\left. \frac{d\mathbb{Q}}{d\mathbb{N}} \right|_{\mathcal{F}_t} = \frac{S_t \mathbb{N}_0}{\mathbb{N}_t}.$$

20%]

Let $0 < T_1 < T_2 < ... < T_n < T_{n+1}$ be a sequence of dates and for i = 1, ..., n write $\alpha_i = T_{i+1} - T_i$. Further let $L^{(i)}$ for i = 1, ..., n denote a set of contiguous forward LIBORs where $L_t^{(i)} := L_t[T_i, T_{i+1}]$ and let D_{tT} denote the value at time t of a pure discount bond that pays unity at T.

(a) Suppose that the market value at time t = 0 for a digital caplet with start date T_i , cashflow at time T_{i+1} and strike K is given by

$$V_0^{(i)}(K) = D_{0T_{i+1}} N(d^{(i)}(K)),$$

where

$$d^{(i)}(K) = \frac{\log\left(\frac{D_{0T_i}}{D_{0T_{i+1}}}(1+\alpha_i K)^{-1}\right)}{\Sigma^{(i)}} - \frac{1}{2}\Sigma^{(i)},$$

N(.) denotes the standard cumulative normal distribution and $\Sigma^{(i)}$ is a positive constant.

Further suppose that an arbitrage-free term structure model has been defined which is consistent with the above formula for all strikes for each of the digital caplets.

Show that for this model the distribution of $L_{T_i}^{(i)} + \alpha_i^{-1}$ is lognormal under an equivalent martingale measure corresponding to numeraire $D_{:T_{i+1}}$.

[35%]

(b) In a LIBOR market model working in the equivalent martingale measure \mathbb{N} corresponding to numeraire $D_{T_{n+1}}$ suppose

$$L := (L^{(1)}, L^{(2)}, \dots, L^{(n)})$$

satisfies an SDE of the form

$$dL_t^{(i)} = \mu_t^{(i)} dt + \gamma^{(i)} (L_t^{(i)}) \sigma^i(t) dW_t, \quad i = 1, \dots, n,$$

where W is a one-dimensional Brownian motion, each σ^i is a bounded positive function of time, each $\gamma^{(i)}$ is a known function of the i^{th} LIBOR and each $\mu^{(i)}$ is some general process to be determined. Assuming that the $\gamma^{(i)}$ have been suitably chosen show how to derive appropriate forms for $\mu^{(i)}$, $i=1,\ldots,n$ so that the resulting model is arbitrage free.

[35%]

(c) For i = 1, ..., n specify suitable choices of the functions $\gamma^{(i)}$ and σ^i so that the LIBOR market model described in (b) calibrates to the market values for the digital caplets given in part (a). Justify your answer.

[20%]

(d) What restrictions must be placed on the functions σ^i to enable the model in (b) to be approximated effectively by a one dimensional model.

[10%]

(a) State Lévy's Theorem on the characterization of Brownian motion.

[20%]

(b) Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbb{Q})$ be a probability space supporting a one-dimensional Brownian motion W. Let X denote a local martingale of the form

$$X = \int_0^t H_u dW_u,$$

where H is a deterministic function of time. Suppose $[X]_t \uparrow \infty$ as $t \uparrow \infty$ and for $t \geq 0$ define

$$\tau_t = \inf \{ u > 0 : [X]_u > t \}.$$

Show that

$$X_t = \tilde{W}([X]_t),$$

where \tilde{W} is a Brownian motion adapted to $\{\tilde{\mathcal{F}}_t\}$ where $\tilde{\mathcal{F}}_t = \mathcal{F}_{\tau_t}$.

Hint: Take $\tilde{W}_t = X_{\tau_t}$ and apply Lévy's Theorem.

[25%]

(c) Show that

$$t \int_0^t \sigma_u dW_u = \int_0^t \int_0^u \sigma_s dW_s du + \int_0^t u \sigma_u dW_u.$$

where σ is a deterministic function of time.

[10%]

(d) Consider a short-rate model having as its short-rate the process r which under the risk-neutral measure $\mathbb Q$ satisfies the SDE

$$dr_t = \theta_t dt + \sigma_t dW_t,$$

where θ and σ are deterministic functions of time. Show that for this model the value at time t of a pure discount bond paying unity at time T is of the form

$$D_{tT} = \exp\left(\frac{1}{2}\int_{t}^{T}\sigma_{u}^{2}(T-u)^{2}du - \int_{t}^{T}\theta_{u}(T-u)du - (T-t)r_{t}\right).$$

[30%]

(e) Let $0 < T_1 < T_2 < ... < T_n < T_{n+1}$ be a sequence of dates and for i = 1, ..., n write $\alpha_i = T_{i+1} - T_i$. For i = 1, ..., n let $L_{T_i}^{(i)} := L_{T_i}[T_i, T_{i+1}]$ denote the spot LIBOR for the period $[T_i, T_{i+1}]$. Show that for the model described in (d) under \mathbb{Q} , for i < j

$$corr(\log(1+\alpha_i L_{T_i}^i), \log(1+\alpha_i L_{T_j}^j)) = \frac{\sqrt{(\int_0^{T_i} \sigma_u^2 du)}}{\sqrt{(\int_0^{T_j} \sigma_u^2 du)}}.$$

[15%]

Solutions

Ques	trem	1
	>110n	-

(a) Gusons's Theorem Lova one-dimensional B. M. Let (12, 7 JP) be a probability space supporting a one-dimensional Brownium motor Wand let \$1,3 denote the augmented natural soldiering generaled by W (i) Suppose BMP with J. Then I as lf, 3-predictable 18-valued pacess C such That

(+:=00/2=0x/2cm/-2/cm) 4)

(ii) Conversely if e is a selectly poster (3, bester, P) metalight some Topo, Effet =1.
There e has the representation in (+) and define a measure of Post. In other of the done cases, under the wirew- [colo is ad it] (A)
Brassian motion (with time howson, restricted to [o] in letter case)

(b) Set Y = ext X. Then by integration by path

 $QX = G_{yq}QX + X^{+}YG_{yq}Q$

= - x ex x, d+ + x 6 ex d+ + ex = do, + x x ex +

= e4+ 400 + 40 e2+ 4

 $\frac{1}{\lambda} = x^{2} + 9\left(6y - 1\right) + 4\left(\frac{1}{2}e^{y\alpha}\right)\theta^{\alpha}$

 $X_{+} = e^{-\lambda t}(x_{0} - 0) + 0 + \epsilon e^{-\lambda t}(e^{\lambda u}du)$

Noting $\int_{0}^{\infty} e^{\lambda u} dw_{u} \sim N\left(0, \left(\frac{e^{2\lambda t}}{2\lambda}\right)\right)$

So
$$X_1 \sim N \left(\theta + e^{-xt}(x_0 - \theta), \frac{e^x}{2\lambda}(1 - e^{-2\lambda t})\right)$$

Thus

$$E_N \left(\exp(\omega X_1)\right) = \exp\left(u(\theta \cdot e^x_1 e^x_2 - \theta) + \frac{e^x}{2\lambda}(1 \cdot e^{-2\lambda t})\right)$$

$$= \exp\left(u \cdot e^x_1 x_2 + e^u(1 - e^x_1) + \frac{e^x}{2\lambda}(1 \cdot e^{-2\lambda t})\right)$$

$$= \exp\left(u \cdot e^x_1 x_2 + e^u(1 - e^x_1) + \frac{e^x}{2\lambda}(1 \cdot e^{-2\lambda t})\right)$$

$$= \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$$

To give $(m^u) = \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$

To give $(m^u) = \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$

To give $(m^u) = \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$

$$= \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$$

$$= \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$$

To give $(m^u) = \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$

To give $(m^u) = \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$

$$= \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$$

To give $(m^u) = \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$

To give $(m^u) = \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$

$$= \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$$

To give $(m^u) = \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$

$$= \exp\left(\psi(x_1, w) + \psi(x_2, w)\right)$$

$$= \exp\left(\psi(x_1,$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot a^{n} ds \right)$$

$$= \frac{\omega_{n}}{\omega_{n}} \exp \left(a \left(a^{n} \cdot a^{n} \right) \int_{0}^{c} s_{n} \cdot$$

(a) Recall from lectures for
$$X \in \mathcal{L}'(\Omega, 3_+, \Omega)$$

$$\mathbb{E}_{\mathbb{Q}}[x|\mathfrak{Z}_{s}] = \mathfrak{C}_{s}^{-1} \, \mathbb{E}_{\mathbb{P}}[x\mathfrak{C}_{t}|\mathfrak{Z}_{s}] \tag{+}$$

where P+ = do / Jt.

Suppose em is an (57,7 P) martingale. Then M(i) M is adapted since p, em are

 $M(ii) \quad E^{\infty}[M^{+}] = E^{\infty}[6^{+}M^{+}] \stackrel{e}{=} E^{\infty}[6^{+}M^{+}] \times \infty$

Since for must be in I' (SZ , I, IP)

M(iii) $E_{\infty}(M_{\uparrow}|\mathcal{J}_{s}) = e_{s}^{2} E_{\infty}(e_{\uparrow}M_{\downarrow}|\mathcal{J}_{s})$ by (+)

= Ps' Ps Ms using mortingale property

= M5

Thus properties M(i) - M(iii) hold and we have shown that em is an (57,3, IP) maxingule =) M is en (57,3,00) maxingale

Converse in plication can be proved similarly of write M=con and M=c'm and note c' = JP/J.

(b) Let (2,3,A) be a probability space supporting a one dimensional Brownian motion w, $\{j_{+}\}$ the augmented natural Fillration generated by w.

M.R.T.

Dry local martingale N w.r.t It, 3 can be written in the form $N_{+} = N_{0} + \int_{0}^{+} H_{u} dw_{u}$.

Lor some Sty3-predictable H s.t. Sty du < 00 a.s. allt.

(c)(i) Set $D^{s}:=\frac{D}{5}$ $dD_{s}^{s}=D_{+}dS_{1}^{s}+S_{1}^{s}dD_{+}$ since D has finite varietion

=(a,-h) =1,9+-a2,7m^t =(a,-h) =2,9+972,9(2^t) =-2,49+-a2,9m^t ·8,52,9

SO UNDER TO 10 4 (02-11) 2, D'A -02, D'AM

7D2 = (2,+(1-1/2)) D2 9 -aD2 9M

Let a denote the EMM corresponding to numeraise S. We need to prove all exists and is unique. Corresponds Theorem suggests we take

12/2- \$ = \$2+1-1/2

This was shown to be a mortingale in lectures or Solione Som an easy application of Morikov's condition as Exemp(xp2t) = exp(xp2t) <00.

So (W) with t=T desines a measure Q ~ P on F by Gilsanor's Theorem (Pout(ii)). Under Q Gilsanor's Theorem dell us that

is an (SJI) Brawnian motion on [, T] and

9D'2=-aD2900.

This SDE has unique solution

which again (Novikar) is a manlingale.

Under Q 5:==== 1 is Invally a monlingale.

We have shown on EMMI corresponding to the numerainon Sexists.

To show Dis unique let D' be some other Emm for the numerains. Then by partii) of G. 15 anov's Theorem - There exists an \\ \frac{1}{2} - \pired: 2 db \text{ process}\\ \frac{1}{2} = \frac{1}{2} \text{ and } \\ \frac{1}{2} \te

20\$ = -a 0 = (9m, 12 4) my = m - (2 2 m) my = m - (2 2 m)

For Do to be a martingale under Q we must have [Do & Judu = 0 all tell so V = 0, Q* = Q on].

$$\langle ii \rangle \cap \text{Non } \mathcal{Q}$$

Desme
$$M_{+} = E_{0}\left[\frac{x}{5_{T}}\right]3_{+}$$
 $0 \le t \le T$

Then M is an (5) to Mordingale. By the MRT we can find some (3, 3-predictable H such what

In particular daking +=T

By numbraire invariance this is equivalent to

$$\begin{array}{l}
\Sigma = \phi_0 D_0^s + \phi_0^{(a)} + \int_0^t \phi_0^{(a)} dS_0^s + \int_0^t \phi_0^{(a)} dD_0^s \\
\Sigma = \phi_0 D_0^s + \phi_0^{(a)} + \int_0^t \phi_0^{(a)} dS_0^s + \int_0^t \phi_0^{(a)} dD_0^s \\
\Sigma = \phi_0 D_0^s + \phi_0^{(a)} + \int_0^t \phi_0^{(a)} dS_0^s + \int_0^t \phi_0^{(a)} dD_0^s \\
\Sigma = \int_0^t \int_$$

Then by port (a)

Bis a @ martingale At JON . D = D is an

M madinsul

But Q is the unique EMM on of corresponding to numerice 5 so Q = Q on IT

(a) Let N' denote - The Emm corresponding to numeraine D. Ti. The value of the ith digital caplet is given by

$$V_{o}^{(i)}(K) = D_{o\tau_{i,i}} E_{m_{i}} \left[\frac{V_{\tau_{i}}^{ii}}{D_{\tau_{i}} T_{i+1}} \right]$$

$$= D_{o\tau_{i+1}} M'(L_{\tau_{i}}^{ii}) \times K$$

If the model is consistent with the specifical market

$$(+) \qquad \mathcal{M}_{i}\left(\Gamma_{(i)}^{\perp,i} > K\right) = \mathcal{M}\left(\sigma_{(i)}(K)\right) \qquad \text{for} \quad K = \sigma_{i}^{\perp}$$

where N() is the comulative normal distribution (Note: model allows negative rates)
This specialiss the distribution of L(i) To under N'

$$M(L_{L_{i}}^{1}, *K) = M_{i}(\log(L_{L_{i}}^{(i)}, *A_{i}^{(i)}) - \log(L_{0}^{0}, *A_{i}^{(i)}) + K(\Sigma_{i}^{(i)})$$

$$= M_{i}(\log(L_{L_{i}}^{(i)}, *A_{i}^{(i)}) - \log(L_{0}^{0}, *A_{i}^{(i)}) + K(\Sigma_{i}^{(i)})$$

$$Vode \quad 1+d_{i}l_{o}^{i} = \frac{D_{o}T_{i}}{D_{o}T_{i}}$$

$$> \frac{1+d_{i}l_{o}^{i}}{D_{o}T_{i}} + \frac{1+d_{i}l_{o}^$$

$$S = \frac{\Sigma_{(i)}}{\left(S > -P_{(i)}(K)\right)} \sim \mathcal{N}(o^{i})$$

$$= \mathcal{N}_{(i)} \left(S > -P_{(i)}(K)\right)$$

(b) For the model do be entitinge dree we require Sor (=1, ---, n M'; = D+T: D+Tnn

to be mortingales under IN, the EMM correspondio to D. They as numeraire.

Recall for
$$i=1,...,n$$

$$L_{+}^{(i)} = \frac{D_{+T_{i}} - D_{+T_{i}}}{\alpha \cdot D_{+T_{i}}}, \quad \alpha' := T_{+} - T_{i}$$
Under M , $L^{(n)}$ is a martingale $\left(L^{n}_{+} = A_{n}^{-1} \left(\frac{D_{+T_{n}}}{D_{+T_{n}}} - 1\right)\right)$
and so $\mu_{+}^{(n)} = 0$, $t \in T_{n}$.

Next observe
$$M_{+}^{(i)} := D_{+T_{i}} = \prod_{j=i}^{r} \left(1 + \lambda_{j} L_{+}^{(j)} \right)$$

$$= M_{+}^{(i+1)} + \lambda_{i} L_{+}^{(i)} M_{+}^{(i+1)}$$

9 ((1) ((1))) = (1) 9 ((2)) + ((1)) 9 ((1)) + ((1)) 9 ((1)) 0 martingings =) 8: (1) ((1)) ((1)) a martingings =) 8: (1) ((1)) ((1)) a martingings

$$\Im \left(\Gamma_{(i)}^{+} W_{(i+1)}^{+} \right) = \Gamma_{(i)}^{+} \Im W_{(i+1)}^{+} + W_{(i+1)}^{+} \Im \Gamma_{(i)}^{+} + \Im W_{(i+1)}^{+} \Im \Gamma_{(i)}^{+}$$

(C) As the model in (b) is arbidrage free and emplete we have $L^{(i)}$ a mertingele under M^i (as $L^{(i)}$) of form assor/numeraire) where M^i is the EMM corresponding to D. Tit, as numeraire.

The equation for $L^{(i)}$ under M^i is

in vbare m. & a si w sadu

Consider $y''(L_{+}^{(i)}) = L_{+}^{(i)} + d_{+}^{(i)}$ and set $Y'_{+} = L_{+}^{(i)} + d_{+}^{(i)}$ Then $JL_{+}^{(i)} = JY^{(i)} = Y^{(i)} G^{(i)}(+) JW_{+}$

which has unique salution at T; $Y_{ij}^{(i)} = Y_{ij}^{(i)} \exp \left(T_{i} \sigma_{i}^{(i)}(t) dU_{i} - Y_{i}^{(i)}(u) du \right)$ So For this choice of Y_{i}^{i} undo $N_{i}^{(i)}$

109(1, + 4;) ~ ~ (109(1, +4;)-12)(6, 0) ch, (1; in) for

Thus daking $\chi^{(i)}(L_{t}^{(i)}) = L_{t}^{(i)} + d_{t}^{(i)}$ and $\left(\chi^{(i)} \right)^{2} = \int_{0}^{T_{t}} (\sigma^{(i)}(u))^{2} du$

i=1,...,n

(d) Separable assumption of (t):=0'o(t)
6'>0, o(t) positive 1,80 sund un of vini enobles
21.2t approximation (es based on Brownian blidge us
in lecture) to give an approximation in which L'';
is a Sundan of x = for dwy

Quest for 4
(a) Let X be a continuous of-dimensional local martingule adapted to the fillrection (3, 3. Then X is an S7, 3 Brownian motion if and
for all i, i and t. $\begin{bmatrix} X^{(i)} \\ Y^{(i)} \end{bmatrix} = Si$; t a.s.
tor all i, i and t. +
(b) Observe that
(b) Observe that $[X]_{t} = [H_{u}^{2}du f \infty].$ Since H is deterministic, T is an increasing deterministic
Since H is deterministic, T is an increasing deterministic
Function of time. Setting Wy:= X = 5th Hudwn
100
$\frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} = \frac{1}{12}$
$\omega_{t}(x) = x = x$
It remains to show that Wis a Brownian motion adapted
to Ital by applying Lery's Theorem.
Adaptedness and continuity of W follow from that
of the stochastic integral. Define 5n:=mfgt>0: X >n}
and the second s
$T_n := T_{s_n}^{-1} = [X]_{s_n}$
Since I is increasing it follows for each fixed t, that
$\frac{T_{+nT_{n}}=5_{n}\Lambda T_{+}}{-1}$
$T_{+nT_{1}} = 5_{n} \wedge T_{+}$ and $\begin{cases} T_{n} \leq t \\ \end{cases} = \begin{cases} 5_{n} \leq T_{+} \end{cases} \in J_{T_{+}}$
Thus
Thus ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
and since 25, 3 is a reducing sequence for X, it follows that
STAZ is a redución sequence for the conditions + total modernil
The sis a redució sequence for the continuous tocal martingal w. Finally note [w], = [the Hadu = [X] = t. Thus by Lény's
+it

(c) For continuous semimortingales X, Y by integration (+) X+1 = xx+ (+x-71 + 1+ 1-xx) + (+) Set X=+, Y= [ondwo and note [x,Y] =0 as X=sinte veriation. Then by (+) (Ya ets book my) + 1, oudwn = 1, nongm + 1, 2, or and on as required, (2)
| frydu = | frodu + | frogods du + | frogods du = 10++ 10+ 2+ 90 of of + + 10+ 00 mm - 10+ 100 mm = 1/2++ 5+(+-5) 0,25 + 5+ 00 (+-4) 2WN $\sum_{i}^{t} \sqrt{u} g u = \sqrt{u} (L-t) + \sum_{i}^{t} (L-z) \delta^{2} g z + (L-t) \int_{z}^{a} \delta^{2} g z$ + (12"(1-1) 9M" + (1-1) 1, 2" 9M" For a short-rate model Dt = Ed (orb(-l, right) 3+) = $\exp \{v_0|T_{-1}\} + \sqrt{T_{-5}} \otimes_S ds + (T_{-1}) \int_0^T \otimes_S ds + (T_{-1}) \int_0^T$ ind appendent; proposty of B.M.

$$= \exp\left(-\frac{1}{1+1}\right) r_{1} - \frac{1}{1+1} r_{-3} \theta_{2} ds + \frac{1}{2} \int_{0}^{1} \sigma_{n}^{4} (1-u)^{2} du\right)$$
Since $-\frac{1}{1+1} \sigma_{n}^{4} (1-u)^{2} du$ $V \sim V \left(0, \int_{0}^{1} \sigma_{n}^{4} (1-u)^{2} du\right)$

(e) Observe

$$|v|_{d} : \dot{V}_{T_{1}} = \frac{1}{D_{T_{1}} T_{1_{1}}}$$

$$= \cos\left(\frac{1}{1+1} \frac{1}{1+1}\right) \log\left(\frac{1}{1+1} \frac{1}{1+1}\right)$$

$$= \cos\left(\frac{1}{1+1} \frac{1}{1+1}\right) \log\left(\frac{1}{1+1} \frac{1}{1+1}\right)$$

$$= \cos\left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \cos\left(\frac{1}{1+1} \frac{1}{1+1}\right)$$

$$= \cos\left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \cos\left(\frac{1}{1+1} \frac{1}{1+1}\right)$$

$$= \left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \cos\left(\frac{1}{1+1} \frac{1}{1+1}\right)$$

$$= \left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \cos\left(\frac{1}{1+1} \frac{1}{1+1}\right) \left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right)$$

$$= \left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \left(\frac{1}{1+1} \frac{1}{1+1}\right) \left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \left(\frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}\right) \left(\frac{1}{1+1} \frac{1}{1+1$$

= ver viced result