The Poincare group

Transformations that presures

 $ds^2 = 1_{AV} dx^{A} \wedge dx^{b}$

Non-homogeneous group $X'' = \Lambda'' \times X'' + \alpha''$

10-parameters

Corentz group:

(non-compact)

L=0(4,3)=1/16 GL(4,12)/1/1/1/=1/ Lag: 3(1,3): } a (Max (TR) / at = -nan.

Proper: L+=SO(1,3)= \(\Lambda \in \tau(1,3) \) \det \(\L = +1 \)

Improper: $L=\{\Lambda\in\mathcal{O}(1,3)|\det\Lambda=-1\}$ - Is not a T,PEL.

Oithochronous transformations

Are defined by

[=] N & O(1,3) 1 N° 0 > +1

Non-orthochronous:

1, = 4 / 1 / 2 = -1 /

then the orthochronous Lorentz group or restricted Lorentz group LINL

The connected part of the poincaré group is Jub, Pa -- hemitian.

- Panconé algebra:

 [[JM, Jap] = Nua Jup Nua Jup Npr Jan + Npr Jan
 - · [[pm]~] = nm pp nmp p~
 - [by | bp] = 0

L. Generates a subgroup.

Angular momentum.

$$\vec{J}^{6} = (J^{23}, J^{31}, J^{42}) \rightarrow SO(3)$$

$$J^{6} = \underbrace{1}_{2} \in {}^{ijk} J^{jk}$$

Boost's:

$$\vec{K} = (j^{\circ 1}, j^{\circ 2}, j^{\circ 3}) \rightarrow \vec{K}^{\circ} = j^{\circ i}$$

algebra:

$$[J_{i},J_{3}] = i \in_{ijk} J_{k}$$

$$[J_{i},P_{j}] = i \in_{ijk} P_{k}$$

$$[K_{i},P_{i}] = -i + \delta_{ij}$$

$$[K_{i},K_{j}] = -i \in_{jk} J_{k}$$

$$[K_{i},H] = -i P_{j}$$

$$[J_{i},H] = [P_{i},H] = [H,H] = 0$$

$$50(3) \stackrel{\text{def}}{=} 50(2)$$

Representation in 4-dim: \times^{n} ; $(J^{n\nu})^{r}_{\sigma} = \overline{\iota}(J^{nr}\delta^{\nu}_{\sigma} - N^{\nu r}\delta^{n}_{\sigma})$

Tensorial representations:

Anti-symmetric

Symmetric S/Trace.

$$\leq^{\mu\nu} = \frac{1}{2} \left(T^{\mu\nu} - T^{\nu\mu} \right) - T N^{\mu\nu}$$

Trace

Casimir:

Pancare: O(1,3) & Trans

is not semisimple

by Wigner-Inonu

 $P^{\mu}P_{\mu} \rightarrow M=2$ Pauli - lubanski W = - 1 E MUST JUP P

50(1,4): Semisimple: l=2

If $p^2 70$: Static $p^m = (m, 0)$

My = - (W) E wise] NS = W E vis] NS then,

 $W^{\circ} = 0$; $W^{\circ} = \underline{M} \in \mathcal{N}^{\uparrow j K} J^{K} = M J^{\bar{i}}$

. - W" Wn = M2 S(3+1) - Spin

Spin: Quantum-Relativistic intrinsic property.

- r landucible representation: (m,s)

If p2=0: the states has just one grade of freedom.

W2=0

Wn=hPn

helicity -+ h= p-7

Pseudo scalar

Shivotz:

 $[J_i, J_k] = i \in i_i k J_k$

 $[J_{i},K_{j}]=i\in ijKK_{K}$

[Ki, Kj]=-[Eijk]x

we define: J = J + []

then, $[J_{i}^{\dagger}, J_{j}^{\dagger}] = i \in_{ijk} J_{k}^{\dagger}$ | $SO(1,3)^{(1)} \otimes SO(2) \otimes SO(3)$

 $\left[\int_{i}^{+} \int_{i}^{-} dz \right] = 0$

 $\angle O(S) \otimes \angle O(S)$

(ep: (j-,j+)

then, dm: (2j-+1)(2j++1) $\vec{J} = \vec{J}^{+} + \vec{J}^{-}$; $\leq p_{1} n : |j_{+} - j_{-}| \leq \leq j_{+} + j_{-}$: meducible representations. Irreducible representations (0,0): $d_{1}m=1$ $\vec{j}^{\perp}=0 \rightarrow \vec{j}_{1}\vec{k}=0$ (1/2,0) (0,1/2) : $d_{1}m=2$; spin=1/2YR Fermions (bi-comp) Neyl Representation φ_{c} left-handed Right-handed $\vec{\nabla}/2$ $\vec{J} = \vec{\nabla}/2$ 0 $\vec{\sigma}/2$ 成=-i(式ケーゴ~) 0 P = 3 - 7 = ±i \$\vec{\pi}/2 \neq \vec{k}^4\$ 1 0-0 R then, Ψ_{ι,e} Λυρ (-i = t). σ/2 {Ψ_{ι,e} from the transformation properties: $\Delta_s \bigvee_{i=1}^{k} \Delta_s = Y^{k}$ $\int d^2 u_i u_{\dot{s}} = -u_{i \star}$ Therefore $Q_5 A_* \longrightarrow Q_5 (Y, A^r)_k = (Q_5 V_* A_5 | Q_5 A^r)_k$ $= \bigwedge_{\kappa} (\sigma^2 \psi^{\kappa})$ then, $\nabla^2 \psi_1^* \in (0, 1/2)$ Definition: Charge conjugacy: PL = iT2 PL Symilarly: PR =- (T29* E (1/2,0) Dirac representation: (1/2,0) (0,1/2) $\psi = \psi_l + \psi_e$: $\begin{pmatrix} \psi_l \\ \psi_o \end{pmatrix} = 4 - components.$

 $\begin{aligned} \text{Rep}(1/2, 1/2) &: \text{dim 4} ; 1 \neq j \neq |1/2 - 1/2| = 0 & \text{if } = 0, 1. \\ &(1/2, 0) \oplus (0, 1/2) \longrightarrow (\Psi_{\text{LX}}, \xi_{\text{RB}}) ; \sim_{1} \beta = 1, 2. \\ \text{Definition: Covariant vectors:} \\ &\Psi_{\text{R}} = i \sigma^{2} \Psi_{\text{L}}^{\text{K}} \\ &\xi_{\text{L}} = -i \sigma^{2} \xi_{\text{R}}^{\text{K}} \end{aligned}$

Transformation: 1 - real.

this

$$rep = rep(x^{n})$$

 $(1/2,0) \otimes (1/2,0) = (0,0) \oplus (1,0)$ [Tersorial representation
 $(0,1/2) \otimes (0,1/2) = (0,0) \oplus (0,1)$ anti-self-dual. G .