Ejercicio

Decidir en cada caso si W es subespacio de V. Justificar.

1)
$$W = \{p(x) \in \mathbb{R}[x] | (\frac{d}{dx}p)(0) = 0\} \text{ y } V = \mathbb{R}[x].$$

2)
$$W = \left\{ A \in \mathbb{R}^{2 \times 2} : A \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$
y $V = \mathbb{R}^{2 \times 2}$.

3)
$$W = \{f : \mathbb{R} \to \mathbb{R} | f^2 = f\} \text{ y } V = \{f : \mathbb{R} \to \mathbb{R}\}.$$

Definamos:

(*) W es no velio

W es cerredo para la suma y para la multiplicación por un escalar.

1) Para probar que W es un subespacio de V debemos probar (*) y (*)

Ahora procederemos a demostrar (*):

Sea $\tilde{\rho}$ un polinomio con todos los coeficientes nulos, tenemos que $\left(\frac{d}{dx}\tilde{\rho}\right)(0) = 0$: queda demostrado que w es no vacio.

Ahora seguiremos con la demostración de (+):

Hipótesis: $g(x), h(x) \in W \Rightarrow \left(\frac{d}{dx}q\right)(0) = 0 \quad y \left(\frac{d}{dx}h\right)(0) = 0$

Tesis: q(x) + S. h(x) & W, con Se IR

$$\frac{d}{dx}(4+5.h)(0) \stackrel{\text{(d)}}{=} \left(\frac{d}{dx}4\right)(0) + \left(\frac{d}{dx}5.h\right)(0)$$

$$\stackrel{\text{(2)}}{=} \left(\frac{d}{dx} q \right) (0) + S \cdot \left(\frac{d}{dx} h \right) (0) \stackrel{\text{(3)}}{=} 0 + S \cdot 0 = 0$$

$$\frac{d}{dx}(4+5.h)(0) = 0 \implies q(x) + s.h(x) \in W$$

lor lower, guede demostrada la propiedad (**)

$$\frac{1}{2}\frac{d}{dx}(f\pm g) = \frac{d}{dx}f \pm \frac{d}{dx}g$$

(2)
$$\frac{d}{dx}(k \cdot f) = k \cdot \frac{d}{dx} f$$

(3) Hipotesis

Vor ende, como demostramos (*) y (*), queda demostrado que W es un subespacio vectorial de V.

2)
$$W = \left\{ A \in \mathbb{R}^{2\times 2} : A \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$
 $Y = \mathbb{R}^{2\times 2}$

De la misma forma que en el ejercicio anterior, debemas demostrar que se cumplen (x) y (A).

Procedamos a demostrar (*):

$$Sed A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies A \cdot \begin{pmatrix} 1 & 1 \\ -2 & \cdot 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & \cdot 2 \end{pmatrix} = \begin{pmatrix} 1.0 & 1.0 \\ -2.0 & -2.0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

: guedo demostrado que W es no vario.

Alhora procedemos a demostrar la buena definición para la suma:

Hipotesis: Sean
$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = 0$, $C = 0$ $\in W$

$$= 7 B \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & -2 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, $C \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -2 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

tesis: B̃+c̃ € W

$$\widetilde{\beta} + \widetilde{C} = \beta \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} + C \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 &$$

: como $\widetilde{B}+\widetilde{C}=0 \Rightarrow \widetilde{B}+\widetilde{C} \in W$, por lo cual queda demostrada la buera definición smul sl sna

Ahora procedemos a demostrar la buena definición para multiplicación por escalares:

Teniendo en cuenta lo planteado en la anterior demostración, intentemos demostrar que $t.\hat{B} \in W$:

$$t.\widetilde{S} = t.S \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = t.\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = t.\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 \therefore como $t.\hat{B} = 0 \Rightarrow t.\hat{B} \in W$

Por loud quede demostrede la buera definición para la multiplicación por escalares.

Por ende, habiendo demostrado (*) y (*), queda demostrado que W es un subespacio. Vectorial de V.

3)
$$W = \{f : \mathbb{R} \to \mathbb{R} | f^2 = f\} \text{ y } V = \{f : \mathbb{R} \to \mathbb{R}\}.$$

De la Misma forma que en los demas ejercicios, para demostrar que W es un subespació de V basta con demostrar (*) y (*).

Procedomos a demostrar (*):

Sea
$$f(x) = 0$$
 una función constante $\Rightarrow (f(x))^2 = f(x) \Rightarrow 0^2 = 0 \Rightarrow 0 = 0$

.. quada demostrado que W es no vacio.

Procedemos a demostrar que no se cumple (*):

Sean $f \times g \in W \times S \in \mathbb{R}$ se tiene que cumplir que $f + S \cdot g \in W$, sin embargo si f(x) = 1, g(x) = 2, S = 3 tenemos lo siguiente:

f(x) + S.g(x) = 1 + 3.2 = 7

Ahoro vermos si se comple que $(f(x) + S.g(x))^2 = f(x) + S.g(x)$: $(f(x) + S.g(x))^2 = f(x) + S.g(x) \implies 7^2 = 7 \implies 49 =$

Por ende, como demostramos que (→) no se cumple, somos capaces de afirmar que W no es un subespacio vectorial de V.