Title

D. Zack Garza

Friday 4th September, 2020

Contents

1 Wednesday, September 02

1

1 Wednesday, September 02

Recommended exercises:

- 0.9
- 0.5 (easy)
- 0.10

Taken:

- 0.11
- 0.3
- 0.4

Exercise 1.1 (0.9).

Let R_1, R_2 be two k-algebras that are also domains with fraction fields K_i .

Show that $R_1 \otimes_k R_2$ is a domain $\iff K_1 \otimes_k K_2$ is a domain.

Exercise 1.2 (0.9).

Let k be a field and $d \ge 2$ with $4 \nmid d$ and $p \in k[x]$ a polynomial of positive degree.

Factor p in $\bar{k}[x]$ as $\prod_{i=1}^{r} (x-a_i)^{e_i}$, and suppose there is some i such that $d \nmid e_i$. Show that

$$f(x,y) := y^d - p(x) \in k[x,y]$$

is geometrically irreducible.

Conclude that

$$ff(k[x,y]/\langle f\rangle).$$

is a regular one-variable function field over k.

Solution:

Recall:

- For L/K,
- A polynomial $f \in k[t_i]$ is geometrically irreducible iff $f \in \bar{k}[t_i]$ is irreducible as a polynomial, i.e. if $f = pq \implies p = 1$ or q = 1.
- A field extension L/k is regular iff any of the following conditions hold:
 - $-\kappa(L)=k$ and L/k is separable, where $\kappa(L)$ is the field of elements of L algebraic

 - $\begin{array}{ll} -\ L \otimes_k \bar{k} \text{ is a domain or a field.} \\ -\ \text{For all } L'/k,\ L \otimes_k L' \text{ is a domain.} \end{array}$