

离散数学 (2023) 作业 17

张波 221900326

2023年5月3日

1 Problem 1

- A. 不一定是子群,因为 $H \cup K$ 可能不满足群的封闭性质,例如H和K不交时。
- B. 是子群,因为 $H \cap K$ 一定满足群的封闭性、结合性、恒等元和逆元的存在性。
- C. 不一定是子群,因为K-H可能不满足群的封闭性质,例如H是K的真子集时。
- D. 不一定是子群,因为H-K可能不满足群的封闭性质,例如H不包含恒等元时。

2 Problem 2

1. 封闭性: 由于 a 是 G 中的元素,因此存在 $e \in G$ 使得 ae = ea = a。对于任意的 $x,y \in N(a)$,有

$$xya = x(ay) = x(ya) = (xy)a,$$

$$axy = a(xy) = (ax)y = (xa)y = x(ay) = xya.$$

因此 $xy \in N(a)$, 即 N(a) 对于乘法运算是封闭的。

2. 结合性: 由于 G 是一个群,因此对于任意的 $x,y,z\in G$,有 x(yz)=(xy)z。因此,对于任意的 $x,y,z\in N(a)$,有

$$x(yz)a = x(ya)z = (xy)az = (xy)(az) = (xy)za,$$

$$ax(yz) = a(xy)z = (ax)yz = (xa)yz = x(ay)z = x(ya)z = (xy)az.$$

因此 $x(yz) \in N(a)$, 即 N(a) 对于乘法运算是结合的。

3. 逆元存在性: 对于任意的 $x \in N(a)$, 由于 $a \notin G$ 中的元素, 因此有

$$xa = ax$$
.

因此有

$$xax^{-1} = ax^{-1}x = ae = a$$
,

$$x^{-1}ax = ax^{-1}x = e.$$

因此 $x^{-1} \in N(a)$, 即 N(a) 对于乘法运算存在逆元。

因此 N(a) 是 G 的子群。

3 Problem 3

证明:

1. 封闭性: 对于任意的 $xhx^{-1}, xkx^{-1} \in xHx^{-1},$ 由于 H 是 G 的子群,因此 $hk^{-1} \in H$,从而有

$$xhx^{-1}xkx^{-1} = xhk^{-1}x^{-1} \in xHx^{-1}$$
.

因此 xHx^{-1} 对于乘法运算是封闭的。

2. 结合性: 由于 G 是一个群,因此对于任意的 $x,y,z\in G$,有 x(yz)=(xy)z。因此,对于任意的 $xhx^{-1},xkx^{-1},xmx^{-1}\in xHx^{-1}$,有

$$xhx^{-1}(xkx^{-1}xmx^{-1}) = xh(km)x^{-1} \in xHx^{-1},$$

$$(xhx^{-1}xkx^{-1})xmx^{-1} = xh(kx)mx^{-1} \in xHx^{-1}.$$

因此 xHx^{-1} 对于乘法运算是结合的。

3. 单位元存在性: 由于 H 是 G 的子群, 因此 $e \in H$ 。因此有

$$xex^{-1} = ee = e.$$

因此 xHx^{-1} 中存在单位元。

4. 逆元存在性: 对于任意的 $xhx^{-1} \in xHx^{-1}$, 由于 $H \in G$ 的子群, 因此 $h^{-1} \in H$ 。因此有

$$(xhx^{-1})^{-1} = xh^{-1}x^{-1} \in xHx^{-1}.$$

因此 xHx^{-1} 中存在逆元。

综上所述, xHx^{-1} 是 G 的子群, 称为 H 的共轭子群。

4 Problem 4

证明:

设 H 和 K 分别为 G 的 r 阶子群和 s 阶子群,且 r 与 s 互素。由拉格朗日定理,r 整除 |G|,s 整除 |G|。

 $\diamondsuit x \in H \cap K$ 且 $x \neq e$,由于 $x \in H$,因此 x 的阶数 r' 整除 r,即 $x^{r'} = e$,同时由于 $x \in K$,因此 x 的阶数 s' 整除 s,即 $x^{s'} = e$ 。由于 r 和 s 互素,因此存在整数 m 和 n,使得 mr' + ns' = 1。从而有

$$x = x^{mr'+ns'} = (x^{r'})^m (x^{s'})^n = e^m e^n = e,$$

这与 $x \neq e$ 矛盾。因此, $H \cap K$ 只能包含单位元 e,即 $H \cap K = \{e\}$ 。

综上所述, 当 H 和 K 是 G 的 r 阶和 s 阶子群, 且 r 与 s 互素时, $H \cap K = \{e\}$ 。

5 Problem 5

证明:

设 $a \neq G$ 中唯一的 2 阶元, 即 $a^2 = e$, 其中 e 表示 G 的单位元。

对于任意 $g \in G$,我们需要证明 ag = ga。首先注意到, $(ag)^2 = a^2g^2 = g^2$,由于 $a \not\in G$ 中唯一的 2 阶元,因此 $g^2 = e$ 或 $g^2 = a^2 = e$ 。

若 $g^2 = e$, 则 $g \in G$ 中的 2 阶元,由于 $a \in G$ 中唯一的 2 阶元,因此 g = a。因此,

$$ag = aa = a^2 = e = a^2g^2 = ga.$$

若 $g^2=a^2=e$,则 g是 a的共轭元,即存在 $x\in G$,使得 $g=xax^{-1}$ 。因此,

$$ag = axax^{-1} = xaax^{-1} = xae = xe = xax^{-1}a = ga.$$

综上所述,对于任意 $g \in G$,都有 ag = ga,即 a 与 G中所有元素可交换。

6 Problem 6

证明:

设 |g| = r, |h| = s, 则 |gh| 为 $\langle gh \rangle$ 的阶。由于 gh = hg, 我们有

$$(gh)^{rs} = (g^r)^s (h^s)^r = e.$$

因此, |gh| 必定是 rs 的因数。

另一方面,由于 gcd(r,s)=1,根据扩展欧几里得算法,存在整数 x,y,使得 xr+ys=1。因此,

$$(gh)^{xr+ys} = g^{xr}h^{ys} = h^{ys}g^{xr} = (gh)^1 = gh.$$

因此,|gh| 是 |g| 和 |h| 的倍数,即 |gh| 是 rs 的倍数。综上所述,|gh| 是 rs 的因数,且是 rs 的倍数,因此 |gh|=rs。

又因为 g 和 h 可交换,所以有 |gh| = |hg|,因此 |gh| = |hg| = rs = |g||h|。

因此, 证毕。

7 Problem 7

证明:

设 $H \in G$ 的正规子群,我们需要证明 $\forall g \in G, gH = Hg$ 。

对于任意 $g \in G$, 我们有:

$$gH = \{gh : h \in H\}$$

由于 H 是正规子群, 因此 $\forall h \in H, ghg^{-1} \in H$ 。因此,

$$gh = ghg^{-1}g \in gHg^{-1}$$

也就是说, $gH \subseteq gHg^{-1}$ 。

同理, $\forall h \in H$, 我们有

$$h = geg^{-1}h \in Hg^{-1}$$

也就是说, $H \subseteq g^{-1}Hg$ 。

综上所述, $gH\subseteq gHg^{-1}\subseteq gH$,且 $H\subseteq g^{-1}Hg\subseteq Hg$,因此 gH=Hg。 因此,证毕。

8 Problem 8

证明:

我们考虑集合 $Z_p^* := \{[m]_p \in \mathbb{Z}_p | \gcd(m,p) = 1\}$,其中 $[m]_p$ 表示 m 在模 p 意义下的剩余类,即 $[m]_p = m \mod p$ 。显然, Z_p^* 在模 p 意义下构成了一个乘法群。

对于任意 $a \in \mathbb{Z}_p^*$,我们考虑它的阶 k,即 $a^k \equiv 1 \pmod{p}$ 且 k 最小。因为 a 和 p 互质,因此根据欧拉定理, $a^{\varphi(p)} \equiv 1 \pmod{p}$,其中 φ 是欧拉函数,表示小于 p 的与 p 互质的正整数个数。

因此,我们可以将 k 分解为 $k=r\cdot\varphi(p)$,其中 r 和 $\varphi(p)$ 互质。我们需要证明的是 $k=\varphi(p)$ 。

假设 $k < \varphi(p)$,则 $r < \frac{\varphi(p)}{r}$,也就是说,存在一个小于 $\varphi(p)$ 且与 $\varphi(p)$ 互质的正整数 q,满足 r < q。因此, $a^{qr} \equiv a^k \equiv 1 \pmod{p}$ 。

另一方面,根据拉格朗日定理, Z_p^* 中任意元素的阶都是 Z_p^* 的阶的因子。因为 r 和 $\varphi(p)$ 互质,因此 a^r 的阶为 $\varphi(p)$ 。因此, $a^{qr} \equiv 1 \pmod p$ 意味着 a^r 的阶也是 q 的倍数。

这与我们假设的 r < q 矛盾, 因此 k 必须等于 $\varphi(p)$, 也就是说 $a^{\varphi(p)} \equiv 1 \pmod{p}$.

现在我们考虑费马小定理 $a^{p-1}\equiv 1\pmod p$ 。 因为 a 和 p 互质, 因此 $a\in Z_p^*$,根据刚才的结论, $a^{\varphi(p)}\equiv 1\pmod p$ 。 因为 $\varphi(p)=p-1$,所以 $a^{p-1}\equiv 1\pmod p$ 。

因此,费马小定理得证。