Lista 5

Arruti, Sergio, Jesús

Ej 68.

Ej 69. Sean R artiniano a izquierda y $M \in mod(R)$. Entonces $\forall N \in \mathcal{L}(M)$

$$M_{/N}$$
 es semisimple $\implies rad(M) \subseteq N$.

Demostración. Sea $\mathscr{R}:=J(R)$. Como $M\in mod(R)$, entonces por el Ej. 18 $\exists n\in\mathbb{N}$ y $f:R^n\to M$ un epimorfismo en Mod(R). Así, sí π es el epimorfismo canónico en Mod(R) de M en M_{N} , se tiene que $\pi f:R^n\to M_{N}$ es un epimorfismo en Mod(R) y por lo tanto, nuevamente por el Ej. 18, $M_{N}\in mod(R)$. Por lo anterior, dado que $S\in mod(R)$ es semisimple $\iff \mathscr{R}S=0$ (véase 2.7.13 (c)) y que $rad(M)=\mathscr{R}M$ (véase 2.7.17 (b)), basta con verificar la siguiente implicación:

$$\mathscr{R}^M/_N = 0 \implies \mathscr{R}M \subseteq N.$$

Se tiene que

$$x \in \mathscr{R}M \implies \exists \ t \in \mathbb{N} \text{ t.q. } x = \sum_{i=1}^{t} r_{i}m_{i}, \ r_{i} \in \mathscr{R} \text{ y } m_{i} \in M \ \forall \ i \in [1, t]$$

$$\implies \pi\left(x\right) = \sum_{i=1}^{t} r_{i}\pi\left(m_{i}\right), \ r_{i} \in \mathscr{R} \text{ y } \pi\left(m_{i}\right) \in M/N \ \forall \ i \in [1, t]$$

$$\implies \pi\left(x\right) \in \mathscr{R}M/N = 0$$

$$\implies x \in Ker\left(\pi\right) = N.$$

$$\implies \mathscr{R}M \subseteq N.$$

Ej 70.

Ej 71.

Ej 72. Sean $f: P \to M$ y $g: Q \to M$ cubiertas proyectivas de $M \in Nod(R)$. Entonces $\exists h: P \to Q$ isomorfismo en Mod(R) tal que gh = f. Demostración. Se tiene el siguiente esquema

$$Q \xrightarrow{\exists h} P$$

$$\downarrow f$$

$$Q \xrightarrow{g} M$$

con P proyectivo y g, en partícular por ser un epi-esencial, un epimorfismo en Mod(R). Por lo tanto $\exists \ h \in Hom_R(P,Q)$ tal que

$$gh = f. (*)$$

Así pues, basta con verificar que h es un isomorfismo en Mod(R). De (*) se sigue que, como g es un epi-esencial y f es en partícular un epimorfismo en Mod(R), h es un epimorfismo en Mod(R). Con lo cual, si i es la inclusión natural de Ker(h) en P, la sucesión

$$0 \longrightarrow Ker(h) \stackrel{i}{\longrightarrow} P \stackrel{h}{\longrightarrow} Q \longrightarrow 0$$

es exacta. Más aún es una sucesión exacta que se parte, puesto que Q es proyectivo (Ej. 62), con lo cual h es un split-epi (Ej. 54) i.e. $\exists j \in Hom_R(Q,P)$ tal que $hj=Id_Q$. Notemos que lo anterior garantiza que j es un split-mono y así en partícular es un monomorfismo. Además

$$gh = f \implies fj = g,$$

con lo cual j es un epimorfismo, pues g lo es y f es un epi-esencial. Así j es un isomorfismo en Mod(R) y por lo tanto $h=j^{-1}$ también lo es.

Ej 73.

Ej 74.

Ej 75. Sean R un anillo no trivial.

- a) Sean $e \in R \setminus \{0\}$ un idempotente, $\{P_i\}_{i=1}^n$ una familia en $\mathscr{L}(Re)$ y $\mathcal{A} := \{e_i\}_{i=1}^n \subseteq R$. Si $Re = \bigoplus_{i=1}^n P_i \ \forall \ i \in [1, n] \ e_i \in P_i \ y \ e = \sum_{i=1}^n e_i$, entonces \mathcal{A} es una familia de idempotentes ortogonales. Más aún $\forall \ i \in [1, n] \ Re_i = P_i$.
- b) Si $\{e_i\}_{i=1}^n$ es una familia de idempotentes ortogonales en R y $e:=\sum_{i=1}^n e_i$, entonces $\forall i \in [1,n]$ $Re_i \in \mathcal{L}(_RRe)$ y $Re=\bigoplus_{i=1}^n Re_i$.

Demostración. a) Sea $u \in [1, n]$. Notemos primeramente que como $e_u \in Re$, entonces $\exists r_u \in R$ tal que $e_u = r_u e$, y así

$$e_u e = (r_u e) e = r_u (ee)$$

= $r_u e$, $e^2 = e$
= e_u .

Así

$$e_u = e_u e = e_u \sum_{i=1}^n e_i$$
$$= \sum_{i=1}^n e_u e_i$$
$$= e_u^2 + \sum_{\substack{i=1\\i \neq u}}^n e_u e_i.$$

Como $e_u \in P_u$, $\forall i \in [1, n]$ $e_u e_i \in P_i$ y la desomposición en suma en $\sum_{i=1}^{n} P_i$ es única, por formar $\{P_i\}_{i=1}^{n}$ una suma directa para Re, lo anterior garantiza que $e_u = e_u^2$ y que $\forall i \neq u$ $e_u e_i = 0$. Por lo tanto $\{e_i\}_{i=1}^{n}$ es una familia de idempotentes ortogonales (f.i.o.).

Por su parte, como $e_u \in P_u \leq Re$ entonces $Re_u \subseteq P_u$, así que basta con probar que $P_u \subseteq Re_u$. Sea $p \in P_u \leq Re$, entonces $\exists q \in R$ tal que

$$p = qe = q \sum_{i=1}^{n} e_{i}$$

$$\implies p - qe_{u} = \sum_{\substack{i=1\\i \neq u}}^{n} qe_{i},$$

con

$$p - qe_u \in P_u, \sum_{\substack{i=1\\i \neq u}}^n qe_i \in \sum_{\substack{i=1\\i \neq u}}^n P_i.$$

Dado que $P_u \cap \sum_{\substack{i=1\\i\neq u}}^n P_i = \langle 0 \rangle$, se sigue que $p = qe_u \in Re_u$

b) Sea $r \in R$. Como $\forall i \in I$ $Re_i \in Mod(R)$, para verificar que $Re_i \in \mathcal{L}(RRe)$ basta con probar que $Re_i \subseteq Re$, y esto último es consecuencia

de que si $re_i \in Re_i$ entonces $(re_i) e \in Re$ y

$$(re_i) e = r (e_i e)$$

= $r \left(e_i \sum_{j=1}^n e_j \right)$
= re_i . $\{e_j\}_{j=1}^n$ es una f. i. o.

Más aún, así se tiene que $\sum_{i=1}^n Re_i \subseteq Re$. Notemos que $re = \sum_{i=1}^n re_i \in \sum_{i=1}^n Re_i$, así para verificar que $Re = \bigoplus_{i=1}^n Re_i$ basta con verificar que esta descomposición es única. Sea $s \in R$ tal que $re = \sum_{i=1}^n se_i$, entonces

$$\sum_{i=1}^{n} re_i = \sum_{i=1}^{n} se_i$$

$$\implies \sum_{i=1}^{n} (r-s) e_i = 0.$$

Sea $j \in [1, n]$. Multiplicando a ambos lados de la igualdad por e_j y empleando nuevamente que $\{e_j\}_{j=1}^n$ es una f. i. o. se obtiene que

$$(r-s) e_j = 0, \ \forall \ j \in [1, n]$$

 $\implies re_j = se_j, \ \forall \ j \in [1, n]$

y así se tiene lo deseado.

Ej 76.

Ej 77.

Ej 78. Sea R un anillo. R es semisimple si y sólo si gldim(R) = 0.

Demostración. Afirmamos que M es proyectivo, $\forall M \in Mod(R)$, si y sólo sí qldim(R) = 0. En efecto:

 \implies Se tiene que si M es proyectivo, entonces por el Ej. 77a) $pd\left(M\right)=0$. Luego bajo estas condiciones, como por el Teorema 2,9,1 (a)

$$gldim\left(R\right)=\sup_{M\in Mod\left(R\right)}\left\{ pd\left\{ M\right\} \right\} ,$$

se tiene que $gldim\left(R\right)=\sup_{M\in Mod\left(R\right)}\left\{ 0\right\} =0.$

Sea $M \in Mod(R)$. Como en partícular gldim(R) es cota superior de $\{pd\{M\} \mid M \in Mod(R)\}$, entonces $pd(M) \leq 0$. En tal caso

 $pd\left(M\right)\in\mathbb{N}$ y por tanto $pd\left(M\right)\geq0.$ Con lo cual $pd\left(M\right)=0,$ así que, por el Ej. 77a), M es proyectivo.

Por la equivalencia previamente demostrada, y dado que por la Proposición 2.6.8

M es proyectivo, $\forall M \in Mod(R) \iff R$ es semisimple,

se tiene lo deseado.