

An Example

Sam and Alex are pulling a box.

- Sam pulls with 200 Newtons of force at 60°
- Alex pulls with 120 Newtons of force at 45° as shown

What is the combined force, and its direction?

An Example

Sam and Alex are pulling a box.

- Sam pulls with 200 Newtons of force at 60°
- Alex pulls with 120 Newtons of force at 45° as shown

What is the combined force, and its direction?

Lecture 2

An Example

Sam and Alex are pulling a box.

200 Sin (6)

- Sam pulls with 200 Newtons of force at 60°
- Alex pulls with 120 Newtons of force at 45° as shown

What is the combined force, and its direction? (us) = (us) (315)

150 Kinkyp) >>

Lecture 2

Vector Multiplication (Scalar . Vector) = Vector **Scalar Product**

• The product of a scalar s and a vector \vec{v} is a new vector whose magnitude is sv and whose direction is the same as that of \vec{v} if s is positive, and opposite that of \vec{v} if s is negative.

scally down soft z u

To divide \vec{v} by s, multiply \vec{v} by 1/s.

Scaling up $\rightarrow 100 \vec{V} = \vec{\omega}$, divertion remains the same $|\vec{\omega}| = |\vec{\omega}| |\vec{v}|$ inverting $\rightarrow -2\vec{V} = \vec{s}$ Scaling down $\rightarrow 0.00\vec{V} = \vec{\omega}$ Scaling down $\rightarrow 0.00\vec{V} = \vec{\omega}$ Scaling down $\rightarrow 0.00\vec{V} = \vec{\omega}$

Vector Multiplication **Dot Product**

(Vector . Vector) = Scalar

(b)

The Projection of one *vector* on *the other*

How much does two vector point in the same direction Multiplying these gives the dot product.

Along direction of \vec{a} is $b \cos \phi$ Component of \vec{a} along direction of along direction of \vec{b} is $a \cos \phi$

gives the dot product.

Component of \vec{b}

Vector Multiplication **Dot Product**

(Vector . Vector) = Scalar

Component of \vec{b}

along direction of

The Projection of one *vector* on *the other*

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \emptyset$$

$$\vec{b} \cdot \vec{a} = |\vec{b}| |\vec{a}| \cos \emptyset$$

$$\vec{b} \cdot \vec{a} = \vec{a} \cdot \vec{b}$$

Multiplying these gives the dot product.

Or multiplying these – gives the dot product.

Component of \vec{a} along direction of \vec{b} is $a \cos \phi$

(b)

(Vector . Vector) = Scalar

Dot Product

The Projection of one vector on the other

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \emptyset$$

If the angle ϕ between two vectors is 0°, the component of one vector along the other is maximum, and so also is the dot product of the vectors. If, instead, ϕ is 90°, the component of one vector along the other is zero, and so is the dot product.

(Vector . Vector) = Scalar

Dot Product

$$(axi + ayj) \cdot (bxi + byj)$$

Or Sum of (Element wise multiplication)

just multiply and

$$\overrightarrow{A} \cdot \overrightarrow{B} = \sum (a_{u}b_{u})$$

 $i \cdot i = 1$

$$u=1$$
 som storts

$$= a, b, + a_1b_2 \longrightarrow a_x b_x + a_y b_y$$

Vector Multiplication Dot Product

(Vector . Vector) = Scalar

Or Sum of (Element wise multiplication)

$$\overrightarrow{A} \cdot \overrightarrow{B} = \sum_{u=1}^{2} (a_u b_u)$$

$$\hat{\imath} \cdot \hat{\imath} = \hat{\jmath} \cdot \hat{\jmath} = \hat{k} \cdot \hat{k} = (1)(1)\cos 0^{\circ} = 1$$

$$\hat{\imath} \cdot \hat{\jmath} = \hat{\imath} \cdot \hat{k} = \hat{\jmath} \cdot \hat{k} = (1)(1)\cos 90^{\circ} = 0$$

$$\overrightarrow{A} \cdot \overrightarrow{B} = a_x b_x + a_y b_y$$

and b are necessarily and b are necessarily ou a plane is perpendicular ou a plane is perpendicular.

(Vector x Vector) = Vector

Cross Product

Rotational Information

The resultant vector is always perpendicular to the two vectors multiplied.

The system must be in three dimensions or more.

(Vector x Vector) = Vector

Cross Product

Rotational Information

$$\hat{\imath} \times \hat{\jmath} = -\hat{\jmath} \times \hat{\imath} = \hat{k}$$

$$\hat{j} \times \hat{k} = -\hat{k} \times \hat{j} = \hat{k}$$

$$\hat{j} \times \hat{k} = -\hat{k} \times \hat{j} = \hat{i}$$

$$\hat{k} \times \hat{i} = -\hat{i} \times \hat{k} = \hat{j}$$

What do you think, is this?

(Vector x Vector) = Vector

Cross Product

Rotational Information

$$\vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin \emptyset$$

If \vec{a} and \vec{b} are parallel or antiparallel, $\vec{a} \times \vec{b} = 0$. The magnitude of $\vec{a} \times \vec{b}$, which can be written as $|\vec{a} \times \vec{b}|$, is maximum when \vec{a} and \vec{b} are perpendicular to each other.

(Vector x Vector) = Vector

Cross Product

Determinant (because determinants show how area is stretched and rotated)

$$\vec{a} \times \vec{b} = \det \begin{pmatrix} \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{pmatrix} \end{pmatrix} \xrightarrow{\mathbf{a} \times \mathbf{b}} \mathbf{a} \times \mathbf{b}$$

Cross Product

Determinant (because determinants show how area is stretched and rotated)

- \rightarrow Length of $\vec{a} \times \vec{b}$ is the same as area of parallelogram.
- $\rightarrow \vec{a} \times \vec{b}$ is perpendicular to the \vec{a}

(Vector x Vector) = Vector

for parallel and autiparallel vectors, the area of parallelogram will remain zero.

