Review: AdaGrad Avoids Saddle Points

田皓原, 孙伟喨, 郑嘉业

Shanghaitech University, Shanghai, China

2023 年 5 月

Outline

1. Background

Preliminary

3. Resul

Background

- AdaGrad is a family of adaptive first-order methods that automatically adapt an optimization algorithm's step size.
- The convergence guarantee leaves open the issue of converging to **undesirable saddle points**.
- We need rigorous proof to persuade the community.

Intuition

Figure: An empirical evidence that AdaGrad avoids saddle point

Outline

1. Background

2. Preliminary

3. Result

AdaGrad Family

The AdaGrad algorithm is considered in the form:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \Gamma_t \nabla_t f(\mathbf{x}_t)$$

where

 \blacksquare AdaNorm:

$$\Gamma_t = \frac{1}{\sqrt{\delta_0^2 + \sum_t^{s=0} \|\nabla f(x_s)\|_2^2}}$$

■ AdaGrad-Diag: $\Gamma_t = G_t^{-\frac{1}{2}}$

$$G_t = \delta_0^2 I + diag(\sum_{s=0}^t \nabla f(x_s) \nabla f(x_s)^\top)$$

■ AdaGrad-Full: $\Gamma_t = G_t^{-\frac{1}{2}}$

$$G_t = \delta_0^2 I + \sum_{s=0}^t \nabla f(x_s) \nabla f(x_s)^\top$$

Problem Statement

Problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$

Assumptions:

- $\blacksquare \inf_{x \in \mathbb{R}^d} f(x) > -\infty$, this holds for loss function.
- lacktriangle Lipschitz continuity holds for f(x)
- The undesirable critical points is a set of strict saddle points

$$\|\nabla f(\mathbf{x}^*)\| = 0 \wedge \lambda_{\min}(\nabla^2 f(\mathbf{x}^*)) < 0$$

Analysis

The proof is classified into a few steps:

- Note that iterative algorithm $x_{t+1} \leftarrow x_t \Gamma_t \nabla f(x)$ is a **dynamical system**.
- Adaptive step-size matrices Γ_t converge to **symmetric positive** definite matrices.
- Local Structure of AdaGrad dynamical system(trivially near 0) can be expanded via Taylor's Theorem into linear and nonlinear parts,

$$\mathbf{x}_{t+1} = (I - \Gamma \nabla^2 f(\mathbf{0})) \mathbf{x}_t - \Gamma \theta(\mathbf{x}_t) - (\gamma_t - \Gamma) \nabla f(x_t)$$

where $\theta(\cdot)$ is the remainder of Taylor expansion.

Analysis (cont.)

Stable manifold theorem
The dynamical system

$$x_{t+1} \leftarrow x_t - \Gamma_t \nabla f(x)$$

converges to an unstable fixed point only if the initial point \mathbf{x}_0 is taken from a certain lower-dimension manifold.

■ Extend the local proposition to \mathbb{R}^d via proving the map $\varphi(\mathbf{x}) = \mathbf{x} - \Gamma_t \nabla f(\mathbf{x})$ is diffeomorphism.

Outline

1. Background

Preliminary

3. Result

Result

Main Theorem $AdaGrad \ \ \mbox{algorithm family does not converge to undesirable critical points.}$

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈