

Супер Дерево

Вам надано дерево з n вершинами, ідентифікованими індексами $0, \ldots, n-1$. Корінь має індекс 0. Кожній вершині $i \in \{0,\ldots,n-1\}$ присвоєно ціле число a_i . Нехай f_v буде значенням бітової операції AND (надалі позначається &) значень a_i на простому шляху від вершини v до кореня. (Зверніть увагу, що простий шлях від вершини x до вершини y включає як x, так і y.) Нехай nomyжність дерева буде значенням

$$\sum_{0 \le u,v \le n} f_u \cdot f_v,$$

і нехай суперпотужність дерева буде значенням

$$\sum_{0 \leq u < v < n} f_u \cdot f_v.$$

Скажімо, що вершина u належить niddepeву вершини v, якщо v належить простому шляху від вершини u до кореня. Зверніть увагу, що піддерево вершини x включає саму вершину x.

Вам пропонують виконати q змін до дерева. Кожна зміна описується двома цілими числами, v і x, та вимагає від вас встановити $a_u := a_u \,\&\, x$ для кожної вершини u у піддереві вершини v. Після кожної зміни ви повинні виводити потужність і суперпотужність поточного дерева.

Оскільки вихідні значення можуть бути великими, виведіть їх за модулем $10^9 + 7$.

Формат вхідних даних

Перший рядок вхідних даних містить цілі числа n і q.

Другий рядок вхідних даних містить n-1 цілих чисел, а саме $p_1, p_2, \ldots, p_{n-1}$, які визначають структуру дерева. Для кожного $i \in \{1, \ldots, n-1\}$ p_i це індекс батьківської вершини i, гарантується, що $0 \le p_i < i$.

Третій рядок вхідних даних містить n цілих чисел, а саме $a_0, a_1, \ldots, a_{n-1}$. Це значення, присвоєні вершинам.

Наступні q рядків містять по два цілі числа, v ($0 \le v < n$) і x. Кожен рядок описує одну зміну до дерева.

Формат вихідних даних

Виведіть q+1 рядків. Кожен рядок має містити два цілих числа, розділених пробілом. У першому рядку виведіть потужність і суперпотужність (по модулю 10^9+7) початкового дерева. У i-му рядку з решти q рядків ($i\in\{1,\ldots,q\}$) надрукуйте потужність і суперпотужність (за модулем 10^9+7) дерева після i-ї зміни.

Обмеження

- $1 \le n, q \le 10^6$.
- $0 \le a_i < 2^{60}$ для кожного $i \in \{0, \dots, n-1\}.$
- $0 \leq x < 2^{60}$ для кожної зміни (v,x).

Оцінювання

Для кожного тесту, ваше рішення отримає 50% балів, якщо воно надає правильні значення потужності для всіх змін, але підраховує неправильне значення суперпотужності принаймні для однієї зі змін.

Подібним чином, ваше рішення отримає 50% балів, якщо воно надає правильні значення суперпотужності для всіх змін, але підраховує неправильне значення потужності принаймні для однієї зі змін.

Підзавдання

- 1. (4 бали) n=3.
- 2. (7 балів) n, q < 700.
- 3. (13 балів) n, q < 5000.
- 4. (6 балів) $n \leq 10^5$, $p_i = i-1$ (для кожного $i \in \{1,\dots,n-1\}$), і $a_i,x < 2^{20}$ (для кожного $i \in \{0,\dots,n-1\}$ і для кожної зміни (v,x)).
- 5. (7 балів) $p_i = i-1$ (для кожного $i \in \{1, \dots, n-1\}$).
- 6. (12 балів) $a_i, x < 2^{20}$ (для кожного $i \in \{0, \dots, n-1\}$ і для кожної зміни (v, x)).
- 7. (14 балів) $n < 10^5$.
- 8. (11 балів) $n < 5 \cdot 10^5$.
- 9. (26 балів) Без додаткових обмежень.

Приклад тесту 1

Приклад вхідних даних

3 3 0 0 7 3 4 1 6

203

Приклад вихідних даних

196 61 169 50

81 14

25 6

Пояснення

Спочатку маємо

$$f_0 = 7, \ f_1 = 7\&3 = 3, \ f_2 = 7\&4 = 4.$$

Отже, потужність дерева дорівнює

$$f_0 \cdot f_0 + f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_0 + f_1 \cdot f_1 + f_1 \cdot f_2 + f_2 \cdot f_0 + f_2 \cdot f_1 + f_2 \cdot f_2 =$$

$$= 7 \cdot 7 + 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 7 + 3 \cdot 3 + 3 \cdot 4 + 4 \cdot 7 + 4 \cdot 3 + 4 \cdot 4 = 196.$$

Суперпотужність дорівнює

$$f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_2 = 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 4 = 61.$$

Після першої зміни:

$$a_0=7,\; a_1=3\&6=2,\; a_2=4;$$
 $f_0=7,\; f_1=2,\; f_2=4.$

Після другої зміни:

$$a_0=7,\; a_1=2,\; a_2=4\&2=0;$$
 $f_0=7,\; f_1=2,\; f_2=0.$

Після третьої зміни:

$$a_0 = 7 \& 3 = 3, \; a_1 = 2 \& 3 = 2, \; a_2 = 0 \& 3 = 0;$$
 $f_0 = 3, \; f_1 = 2, \; f_2 = 0.$

Приклад тесту 2

Приклад вхідних даних

Приклад вихідних даних

256 84 144 36 16 4

Пояснення

Спочатку ми маємо

$$f_0=6,\ f_1=6\&5=4,\ f_2=6\&6=6,\ f_3=2\&5\&6=0.$$

Після першої зміни:

$$a_0=6,\ a_1=5\&2=0,\ a_2=6,\ a_3=2\&2=2;$$
 $f_0=6,\ f_1=0,\ f_2=6,\ f_3=2\&0=0.$

Після другої зміни:

$$a_0=7,\; a_1=2,\; a_2=4\&2=0;$$
 $f_0=7,\; f_1=2,\; f_2=0.$

Приклад тесту 3

Приклад вхідних даних

```
7 3
0 0 1 1 2 2
7 6 5 7 3 4 2
4 4
3 3
2 1
```

Приклад вихідних даних

```
900 367
784 311
576 223
256 83
```