物聯網框架標準

廖冠雄 助理教授 義守大學 資訊工程學系 e-mail:ghliaw@isu.edu.tw

- 前言
- Service Framework
- Architectural Framework

- Interoperability
 - In the way in which software interacts with physical resources
 - Decouple IoT devices from the software that manages them
 - Discovery, Management and Reporting, Security, Authorization

Scalability

- Large number of devices, users, interactions, connections
- Scale-less interaction

Requirements for IoT Architecture

- Technology Reuse and Modularity
 - Software, networks, protocols, data models
 - Across vendors in a vertical application segment
 - Across diverse vertical application segments

- Low Barrier to Innovation
 - Anyone can participate and innovate

IoT Service Frameworks

- The goal providing same qualities as web services to loT
- In the context of the Internet and the WWW
 - Any Web Browser works with any web service, more or less
 - Regardless of wire protocols used in the network
 - Regardless of the data models and content types
 - Across vertical application segments
 - The WWW scales to planetary size
 - Low barrier to Innovation

- Internet and WWW Design Patterns
 - Narrow Waist, endpoint oriented
 - Innovation happens at the endpoints, enabled by common, openly available network protocols (the narrow waist)
 - Layered Protocols
 - Common set of IP protocols (TCP, UDP) abstract the lower communication layers
 - Common Application Protocols (HTTP, REST) abstract resources

IoT Service Frameworks

- Internet and WWW Design Patterns
 - Uniform Addressing
 - URIs and Hyperlinks point to resources
 - IP Addresses, DNS names are globally unique
 - Stateless Interaction
 - Client-Server pattern
 - Hypermedia As The Engine Of Application State

IoT Service Frameworks

- How Does it Apply to IoT?
 - Internet Protocol (IP) on Constrained Devices
 - Machine to Machine (M2M) Application Protocols
 - Standard Object Models and Data Models
 - Hypermedia for Machine APIs

IoT Architectural Frameworks

- Enabling cross-domain interaction and platform unification
 - system compatibility
 - interoperability
 - functional exchangeability
- Covering the architectural needs of the various IoT Application Domains

In this course, we briefly intro ...

- Service Frameworks
 - Allseen AllJoyn
 - OIC Core Framework
 - OMA LWM2M
 - Thread
- Architectural Frameworks
 - oneM2M
 - ETSI M2M
 - IEEE P2413

- Allseen Alliance
 - Enable industry standard interoperability between products and brands with an open source framework for IoT
 - Main members
 - Qualcomm, Microsoft, Philips, LG, ...

- What is the AllJoyn Framework?
 - An open source API framework for the Internet of Everything
 - A way devices and applications publish APIs over a network in a standard way
 - the "things" on the network expose to other "things"
 - provides application discovery and fine-grained discovery of the APIs supported by applications

Allseen AllJoyn (3)

High-Level System Architecture

AllJoyn Bus is composed of two types of nodes:

AllJoyn Router (R)

Applications (App)

App can only connect to R

App can contain R

R can connect to other R

The AllJoyn framework can be thought of as a mesh of stars

Ad Hoc Bus Formation: Discover

Interface descriptions contained in About message

- Services advertise, and Clients find, About messages
- Connect to advertisers supporting desired interfaces

Actual discovery mechanism is transport-dependent:

- On Wi-Fi, PLC, Ethernet: lightweight IP multicast protocol
- On Wi-Fi Direct: would use pre-association discovery

Ad Hoc Bus Formation: Session Creation

Session creation will cause AllJoyn Routers to connect and extend the bus

- Once connected, buses merge and have a single shared namespace
- Peers can discover when other peers join or leave the bus
- Peers can interact via their APIs
- Session reference counting keeps device-to-device connections alive
- Multicast events can be sent to all peers in the session

AllJoyn Software Framework: High-level architecture

A comprehensive software framework lets devices and applications communicate

Physical Layer (Wi-Fi, PLC, Ethernet, Bluetooth)

AllJoyn Apps AllJoyn App Layer AllJoyn Application Layer Defines the User experience AllJoyn Service Frameworks AllJoyn Service Frameworks Events and Interoperable, cross-platform Control Panel Lighting Onboarding Actions modules for common IoE functionality **Notifications** Audio Future.... Defines common interfaces between devices AllJoyn Core Libs AllJoyn Core Libs Discovery & Connection Provides ability to find and Advertisement Interface APIs Security APIs **APIs APIs** connect to devices to do interesting things. Core libraries interact with AllJoyn Router the AllJoyn Router Provides access control and OS encryption

AllJoyn Router

- Manages communications between devices and apps
- Dynamic network management

物聯網框架標準-16

Two Versions of the AllJoyn Framework To Choose

Introduction to OIC – Optimized for IoT

OIC Key Concepts (1/2)

- Open-source Implementation lotivity project (https://www.iotivity.org/)
- Free IPR License (Code: Apache 2.0 & Spec: RAND-Z)
 - License covers both code, standards and related IPR
 - License applies to members and affiliates of members
- Dedicated and optimized protocols for IoT (e.g. CoAP)
 - Specific considerations for constrained devices
 - Fully compliant towards RESTful architecture
 - Built-in discovery and subscription mechanisms
- Standards and Open Source to allow flexibility creating solutions
 - Able to address all types of devices, form-factors, companies and markets with the widest possibility of options
 - Open Source is just one implementation to solve a problem

OIC Key Concepts (2/2)

- Full stack definition for maximum interoperability
 - Connectivity, Platform and Vertical Services defined
 - License applies to members and affiliates of members
- Certification and Logo program
 - Guarantees all devices work together
 - Consistent user awareness for interoperability

Sample of Current Members

amond

Platinum

Gold

- Core Framework Specification Scope
 - Specifies the technical specification(s) comprising of the core architectural framework, messaging, interfaces and protocols based on approved use-case scenarios
 - Enables the development of vertical profiles (e.g. Smart Home) on top of the core
- Architect a core framework that is scalable from resource constrained devices to resource rich devices
- Evaluate technical specification(s) for maximum testability and interoperability
- Ensure alignment with OIC open source releases

OIC Client

 i) Initiate an transaction (send a request) & ii) access an OIC Server to get a service

OIC Server

i) host OIC Resource & ii) send a response & provide service

- OIC adopted RESTful Architecture
- Current OIC Architecture defines 2 logical roles that devices can take
 - OIC Server: A logical entity that exposes hosted resources
 - OIC Client: A logical entity that accesses resources on an OIC Server

Organization of an OIC Device

OIC Device concept

Device example: light device (oic.d.light)

- Example overview
 - Smart light device with i) binary switch & ii) brightness resource
- Device type: Light device (oic.d.light) [Defined by the domain]
- Associated resources
 - Core resources: (1) oic/res, (2) oic/d
 - Device specific resources: (3) Binary switch (oic.r.switch.binary),
 - Other optional resources can be exposed, in this example 4 Brightness resource (oic.r.light.brightness)

Example: Smart light device with 4 resources

Device Title	Device Type	Associated Resource Type	M/O
Light	oic.d.light	oic/res (oic.wk.core)	М
		oic/d (oic.d.light)	М
		Binary switch (oic.r.switch.binary)	М
		Brightness (oic.r.light.brightness)	0

OIC Spec Features – Core Framework Spec

Vertical Profiles Smart Home Industrial Internet ...

L2 Connectivity Networking Transport

- ① **Discovery:** Common method for device discovery (IETF CoRE)
- ② Messaging: Constrained device support as default (IETF CoAP) as well as protocol translation via intermediaries
- ③ Common Resource Model: Real world entities defined as data models (resources)\
- CRUDN: Simple Request/Response mechanism
 with Create, Retrieve, Update, Delete and Notify
 commands
- (5) **Device Management:** Network connection settings and remote monitoring/reset/reboot functions
- (6) ID & Addressing: OIC IDs and addressing for OIC entities (Devices, Clients, Servers, Resources)
- Security: Basic security for network, access control based on resources, key management etc

OIC Core Framework Basic Operation

Discovery

Operation

Discovery

- Discover access policies, device info and resources on the devices

Operation

- Get device information by retrieving resources
- Control devices by changing resources
- Observe change on the properties of resources

Basic common services

- Device Monitoring
- Maintenance (e.g., reboot, factory reset, statistics collection, etc.)

Connectivity

Networking

Transport

Security 物聯網框架標準-2

Application			
Resource Model			
Encoding (CBOR)			
CoAP			
DTLS	TLS		
UDP	TCP		
IPv6			
L2 Connectivity (Wi-Fi)			

Project B OIC Stack

Alternatives

Encoding	JSON or XML/EXI can be negotiated
IP Version	v6 (v4 supported for legacy devices)

OMA LWM2M

- OMA Open Mobile Alliance
- LWM2M Light-Weight M2M
 - to serve the IoT market with a focus on lightweight nature

OMA LWM2M Architecture

M2M Applications

 Application abstraction through REST API

Objects

LWM2M

CoAP

SMS

DTLS

UDP

 Resource Discovery and Linking

- Reuses IETF technologies, such as the CoAP protocol, DTLS, Resource Directory.
- Deployable on gateways and in the cloud
- LWM2M Clients are Devices
 - Device abstraction through CoAP
 - LWM2M Clients are CoAP Servers
 - Any IP network connection 物聯網框架標準-32

What is Thread?

A secure, wireless mesh networking protocol that:

- Supports IPv6 addresses and simple IP bridging
- Is built upon a foundation of existing standards
- Is optimized for low-power / battery-backed operation
- Is intended for control and automation (250kbps)
- Can support networks of 250 nodes or greater
- Supports low latency (less than 100 milliseconds)
- · Offers simplified security and commissioning
- Runs on existing 802.15.4 wireless SoCs

THREAD

Standard

UDP + DTLS

RFC 768, RFC 6347, RFC 4279, RFC 4492v RFC 3315, 5007

Distance Vector Routing

RFC 1058, RFC 2080

6LowPAN (IPv6)

RFC 4944, RFC 4862, RFC 6775

IEEE 802.15.4 MAC (including MAC security)

IEEE 802.15.4 (2006)

IEEE 802.15.4 PHY

IEEE 802.15.4 (2006)

http://www.threadgroup.org/

物聯網框架標準-33

Connected Home – Networking Requirements

- Direct addressability of devices within the HAN and from smart phones or tablets
- Simplified forming and joining of network, limit special devices or customer knowledge of concepts like coordinator vs. router vs. end device
- Scalable to 200-300 devices in a home with sufficient routers to provide coverage but remainder can be end devices
- Latency less than 100 milliseconds for typical interactions (user interaction concern)
- Allow the use of multiple gateways
- Seamless connectivity to user interaction on device of choice in the home (dedicateddisplay, smart phone, tablet, etc.)
- Battery operated devices with years of expected life door locks, security sensors etc.

Target Devices

Normally Powered

Lighting

- Gateway
- Lighting
- Appliances
- Smart Meter
- Garage door opener

Sensors

- HVAC equipment
- Smart Plugs
- Fans

Powered or Battery

Appliances

- Thermostat
- Light switches
- Smoke detectors

HVAC

Sensors

- In home display
- Shades or blinds
- Door bell
- Glass break sensors
- Robots/cleaners

Normally Battery

Energy Saving

- Door sensors
- Window sensors

Security

- Motion sensors
- Door locks
- Radiator valves
- Body sensors

物聯網框架標準-35

System Messaging Model

- Expect device to device communication within HAN for operations in the home
- Border Router forwards data to cloud
- Also provides WiFi connectivity to phone or tablet in the home
 - Cloud connectivity for control when not at home
 - When within the home, phone or tablet must go direct to gateway to reduce \ latency
 - Has to be seamless to consumer using device

Key Features Overview

IP-based:

· Simplified bridging to other IP networks

Flexible Network:

Simplified device types

Robust:

No single point of failure

Secure:

Simple security and commissioning

Low Power Operation:

Support for sleeping devices

Thread

Application Layer

UDP + DTLS

Distance Vector Routing

IPv6

6LowPAN

IEEE 802.15.4 MAC (including MAC security)

Physical Radio (PHY)

Standard

RFC 768, RFC 6347, RFC 4279, RFC 4492, RFC 3315, RFC 5007

RFC 1058, RFC 2080

RFC 4944, RFC 4862, RFC 6282, RFC 6775

IEEE 802.15.4 (2006)

oneM2M – The Common Service Layer

oneM2M - Common Service Functions

oneM2M – Technical Reports

Architecture
Analysis 1
TR-0002
(WI-0002)

Use Cases TR-0001 (WI-0001) Architecture
Analysis 2
TR-0003
(WI-0002)

Protocol Analysis TR-0009 (WI-0008) Study of Mgt Capab. Enabl^{nt} TR-0006 (WI-0004) Abstraction & Semantics
TR-0007
(WI-0005)

Security
Analysis
TR-0008
(WI-0007)

Roles & Focus Areas
TR-0005
(WI-0003)

Use Cases v2 TR-0011 (WI-0014) E2E Security & Group Authent.
TR-0012
(WI-0011)

oneM2M – Technical Specifications

Requirements

TS-0002 (WI-0001)

Functional
Architecture
TS-0001
(WI-0002)

Definitions & Acronyms TS-0011 (WI-0003) Service Layer Core Protocols TS-0004 (WI-0009)

HTTP Protocol
Binding
TS-0009
(WI-0013)

CoAP Protocol
Binding
TS-0008
(WI-0012)

Management Enabl^{nt} - OMA TS-0005 (WI-0010) Management Enablnt - BBF TS-0006 (WI-0010)

MQTT Protocol

Binding

TS-0010
(WI-0014)

Security
Solutions
TS-0003
(WI-0007)

Service Components TS-0007 (WI-0011)

oneM2M – Use Cases & Requirements

oneM2M - Architecture

Application Entity Provides application logic for the end-to-end M2M solutions

Network Services Entity Provides services to the CSEs besides the pure data transport

NodeLogical equivalent of a physical (or possibly virtualized, especially on the server side) device

30-Oct-14

© 2014 oneM2M

物聯網框架標準-43

oneM2M - Architecture

Reference Point One or more interfaces - Mca, Mcn, Mcc and Mcc' (between 2 service providers)

Common Services Entity Provides the set of "service functions" that are common to the M2M environments

Application Entity Provides application logic for the end-to-end M2M solutions

Network Services Entity Provides services to the CSEs besides the pure data transport

NodeLogical equivalent of a physical (or possibly virtualized, especially on the server side) device

ETSI M2M - High Level Architecture

ETSI M2M - Architecture

- ETSI M2M adopted a RESTful architecture style
 - Information is represented by resources which are structured as a tree
- ETSI M2M standardizes the resource structure that resides on an M2M Service Capability Layer (SCL)
 - Each SCL contains a resource structure where the information is kept
- M2M Application and/or M2M Service Capability Layer exchange information by means of these resources over the defined reference points
- ETSI M2M standardizes the procedure for handling the resources

ETSI M2M - Example

(DA)

ETSI M2M – High Level Deployment

- Focus to integrate market needs with the developing IoT technology landscape
- Define an Architectural Framework for the IoT
 - descriptions of various IoT domains
 - definitions of IoT domain abstractions
 - identification of commonalities between different IoT domains

IEEE P2413

- The Architectural Framework for IoT provides
 - reference model
 - defines relationships among various IoT domains
 - reference architecture
 - builds upon the reference model
 - defines basic architectural building blocks and their ability to be integrated into multi-tiered systems
 - addresses how to document and mitigate architecture divergence.

IEEE P2413 Definitions

The Group accepted the definition of the "Thing":

The "Thing"

Notes:

- Things, Apps, and Services can be integrated into what would be abstracted as a "Thing"
- Information exchange could be "horizontal" (subscribe/ publish as an example) or vertical, or both
- Properties could be real or virtual

IEEE P2413 Levels of abstractions

IEEE P2413 Structure

IEEE P2413 Potential Profiles

