Validation of Aquarius Sea Surface Salinity Data with In Situ Measurements from the SPURS Field Experiment

Yi Chao (Remote Sensing Solutions) and Carrie Zhang (UCLA)

Data provided by:

Tom Farrar (WHOI Mooring)

Dave Fratantoni and Ben Hodges (WHOI Wave Gliders)

Luca Centurioni (SIO/UCSD Drifters)

Thanks to:

SPURS Data Management: Frederick Bingham (UNCW)
Aquarius Project, JPL PODAAC, SPURS Science Teams

Challenges in Aquarius Validation

- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km
 & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?

Salinity Processes in the Upper Ocean Regional Study (SPURS)

Five (5) cruises during September 2012 – October 2013

- Thalassa/Frence-2012 (8/16 9/13)
- 2. Knorr/US-2012 (9/6 10/9)
- 3. Sarmiento/Spain-2013 (3/14 4/20)
- Endeavour/US-2013spring
 (3/14 4/14)
- Endeavour/US Cruise-2013fall (9/19-10/10)

SPURS Salinity Measurements from Surface to 10 meters Depth

• Waveglider-1: 0.2

• Drifter: 0.5

WHOI Mooring: 0.75 (2)

2.1

5.2

8.0

• Waveglider-2: 6

• STS Float: 0-3

3-10

• Seaglider: 0-10

- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km
 & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?

Vertical Stratification: Wave Glider CTD-1(0.2m) vs. CTD-2 (6m)

- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km
 & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?

Conclusion:
Averaging singlepoint data
significantly
improves the
agreement with
Aquarius
(averaged) data

- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km
 & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?

Sub-weekly variations from WHOI mooring

- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km
 & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?

SPURS In Situ Measurements

Aquarius

Aquarius & SPURS In Situ SSS (150-km, weekly)

Triple-Point Analysis

Formulation:

$$S_A = S \pm e_A$$

 $S_1 = S \pm e_1$
 $S_2 = S \pm e_2$

If e_A and e₁ are uncorrelated, then

$$<\Delta S_{A-1}^2> = +$$

 $<\Delta S_{A-2}^2> = +$
 $<\Delta S_{1-2}^2> = +$

Solving above equations, then

$$\langle e_A^2 \rangle = \{\langle \Delta S_{A-1}^2 \rangle + \langle \Delta S_{A-2}^2 \rangle - \langle \Delta S_{1-2}^2 \rangle \}/2$$

Triple-Point Analysis

Formulation:

$$S_A = S \pm e_A$$

$$S_1 = S \pm e_1$$

$$S_2 = S \pm e_2$$

If e_{Δ} and e_{1} are uncorrelated, then

$$<\Delta S_{A-1}^2> = +$$

 $<\Delta S_{A-2}^2> = +$
 $<\Delta S_{1-2}^2> = +$

Solving above equations, then

$$\langle e_A^2 \rangle = \{\langle \Delta S_{A-1}^2 \rangle + \langle \Delta S_{A-2}^2 \rangle - \langle \Delta S_{1-2}^2 \rangle \}/2$$

Aquarius Data Retrieval Error (psu):

[Aquarius, Drifter, Wave Glider]

0.13

[Aquarius, WHOI Mooring, Wave Glider]

0.14

[Aquarius, WHOI Mooring, Drifter]

0.14

Triple-Point Analysis

Formulation:

$S_A = S \pm e_A$ $S_1 = S \pm e_1$ $S_2 = S \pm e_2$

If e_{Δ} and e_{1} are uncorrelated, then

$$<\Delta S_{A-1}^2> = +$$

 $<\Delta S_{A-2}^2> = +$
 $<\Delta S_{1-2}^2> = +$

Solving above equations, then

$$\langle e_A^2 \rangle = \{\langle \Delta S_{A-1}^2 \rangle + \langle \Delta S_{A-2}^2 \rangle - \langle \Delta S_{1-2}^2 \rangle \}/2$$

Aquarius Data Retrieval Error (psu):

[Aquarius, Drifter, Wave Glider]

0.13

[Aquarius, WHOI Mooring, Wave Glider]

0.14

[Aquarius, WHOI Mooring, Drifter]

0.14

Errors for drifter, mooring and wave glider are 0.072, 0.062, & 0.02 psu, respectively

Aquarius meets the accuracy requirement in the SPURS region!

Aquarius retrieved weekly data error is 0.13-0.14 psu near 25°N/38°W, & is smaller than the monthly allocation of 0.16 psu at this latitude.

Latitude Range	Mean Sensitivity (dT _v /dS)	Mean # Samples in 28 Days	Baseline Mission Monthly Salinity Error (psu)	
			Allocation	CBE
0-10	0.756	10.9	0.15	0.11
11–20	0.731	11.3	0.16	0.11
21-30	0.671	12.1	0.16	0.12
31-40	0.567	13.5	0.18	0.13
41-50	0.455	15.9	0.21	0.15
51-60	0.357	20.3	0.24	0.17
61–70	0.271	30.2	0.26	0.18
Global RMS (psu)			0.20	0.14

(Lagerloef et al., 2008)

RMS=0.25 psu (from Hsun-Ying Kao) --

SUMMARY & CONCLUSIONS

- Variability that cannot be resolved by Aquarius and in situ measurements
 - 0.05 to 0.1 psu associated with the vertical stratification (between surface < 1 m and near surface 3-10 m)
 - 0.1 psu associated with sub-footprint (150-km) variations
 - 0.05 psu associated with the sub-weekly fluctuations
- In the SPURS region near 25°N and 38°W, the Aquarius retrieved weekly data error is estimated as 0.13-0.14 psu (smaller than the 0.16 psu allocated for the monthly error), meeting the accuracy requirement!

FUTURE WORK

- Re-do the analysis with delayed mode data
 - WHOI mooring (redundant sensor at 0.75 m; sensors at 2.1, 5.2, 8.0 meters)
 - UCSD/SIO drifters (CTD sensor drift after 6 months)
- Include data from
 - STS floats (Steve Riser, UW)
 - Seagliders (Craig Lee, UW)
- How can we apply lessons learned from SPURS in the global Aquarius validation?

Thanks!

Questions?

Contact Information:
Yi Chao
ychao001@gmail.com
626-602-6186