Python to unravel cancer drug target proteins and drug resistance mechanism analysis

Pycon2019, IIT Madras

MD Aksam VK Data Scientist ZettaLabs*

Mobile: +91-9042404476

000

G Floor, Embassy Signet Wing A
Cessna Business Park, Kadubeesanahalli, Outer Ring Road,
Bengaluru, Karnataka 560103
www.zettalabs.com

Subject to change Until conference

Outline

- Construction of network of MAPK pathways.
- Network pattern revealing with simple metric analysis using python Networkx package.
- Biological process of each protein assigned in the network of MAPK pathways using Matrix.
- Topological and functional attributes of the network based cluster identification.
- Local drug target resistance analysis by calling python function parallelly.

What is network of MAPK pathways...

- Network of MAPK pathways is subnetwork inside a human cell.
- Dysregulation in the network of MAPK pathways causes cancer.
- Disrupting the node(protein) in a network is the therapeutic strategy.
- Furthermore, resistance to the drug is attained due to the concomitant activation of pathways through cross-talks.

5,400 proteins X 28,500 interactions <u>HumanInteractome3</u>-<u>visualised in cytoscape</u> by <u>Andrew Garrow</u> **83 proteins X 183 interactions** - Network of MAPK pathways visualised in cytoscape by MD AKSAM VK

Network pattern revealing with simple metric analysis using python Networkx package

Layer	Number of nodes	Average in degree	Average out degree
1	1	0	2
2	2	1	2
3	4	1	2
4	8	1	0

	No of nodes	Average in degree	Average out degree
1	2	2 0	2.5
2	6	1.166667	2.833333
3	2	0.5	1
4	11	1.5	1.6
5	14	0.785714	2.428571
6	14	3	3.071429
7	10	4.4	5
8	16	2.875	0.875
9	8	1.875	0

Directed ordered network with respect to time

Biological process of each protein assigned in matrix

- We classify the biological process into two category
- 1. Functional process
- 2. Cancerous contributing process
- 83 proteins in the network are given with 82 observed process (Matrix with one hot encoding)
- An adjacency matrix[Aij] is formed with 0 or 1.

$$[Aij] = \begin{cases} 1 \text{ for the nodes which has a specific process} \\ 0 \text{ for the nodes doesn't have a specific process} \end{cases}$$

List of processes (red colored are cancer related)

No.	.GO:BP	No.	GO:BP	No.	GO:BP	No.	GO:BP
0	response to stress	21	multicellular organism reproduction	42	aging	63	establishment of organelle localization
1	cell proliferation	22	regulation of localization	43	response to endogenous stimulus	64	protein complex biogenesis
2	response to chemical stimulus	23	cellular component morphogenesis	44	cellular component assembly	65	regulation of immune 146
3	regulation of growth	24	macromolecule localization	45	macromolecular complex subunit organization	66	response to biotic stimulus
4	cell death	25	regulation of locomotion	46	interspecies interaction between organisms	67	taxis
5	cell division	26	ovulation cycle	47	cellular response to stimulus	68	establishment of protein localization
6	regulation of anti-apoptosis	27	macromolecule metabolic process	48	protein complex biogenesis	69	response to other organism
7	ossification	28	cellular metabolic process	49	anatomical structure formation involved in morphogenesis	70	sexual reproduction
8	cell activation	29	primary metabolic process	50	embryonic development	71	catabolic process
9	cell cycle	30	positive regulation of biological process	51	transport	72	regulation of homeostatic process,
10	cell adhesion	31	negative regulation of biological process	52	system process	73	regulation of cellular component organization
11	multicellular organismal development	32	positive regulation of cellular process	53	organelle organization	74	translational initiation
12	circadian rhythm	33	negative regulation of cellular process	54	behavior	75	cellular homeostasis,
13	biosynthetic process	34	anatomical structure development	55	actin filament-based process	76	leukocyte activation
14	response to abiotic stimulus	35	cellular developmental process	56	establishment of localization	77	establishment or maintenance of cell polarity
15	anatomical structure morphogenesis	36	regulation of biological process	57	regulation of biological quality	78	cell junction organization
16	positive regulation of metabolic process	37	regulation of cellular process	58	cell motion	79	antigen processing and presentation
17	membrane organization	38	regulation of multicellular organismal process	59	microtubule-based process	80	vesicle targeting
18	regulation of metabolic process	39	cellular localization	60	response to external stimulus	81	regulation of viral reproduction
19	reproductive process	40	regulation of molecular function	61	cellular pigmentation		
20	cell projection organization	41	cell communication	62	developmental process		

Topological and functional attributes of the network based cluster identification

Cont.

Cluster	Node number	Protein name
cluster 1	[4, 9, 30, 32, 33, 38, 58, 64, 78, 81]	SOS, c-Raf1, Eef2k, GAB1, LAD, MEF2, MLK3, MLTKa/b, MAPKAP-K3, HSP27
cluster 2	[28, 46, 56, 68, 76]	ATF1,NFAT4,GADD45,MKK6,ATF2
cluster 3	[26, 31, 40, 49, 50]	4EBP1,BAD,M3/6,ZAK,DLK

Local resistance analysis

The nodes in the clusters are analyzed to see the drug resistance mechanism acquired through the alternative activation of its substrate proteins

Single / combination therapy

11 nodes	Single target
9 nodes	Single / multi target

Switching mechanism over B-RAF to C-RAF are the key observed mechanism, which leads to study the local analysis among alternative switching proteins.[Inamdar et al. 2010]

	circiap	7
		Single/multi drug
Protein	Alternative protein	target
	Mos	single
c-Raf1	A-Raf	single
c naiz	B-Raf	single
	Tpl-2	single
M3/6	MKP5	Multi
11137 0	MKP2	Single
GADD45	Cdc42	Multi
GADD43	Rac	Multi
	MEKK1	Multi
	MEKK2	Multi
	MEKK3	Single
	MEKK4	Multi
	ASK1	Multi
MI K3	MLK1	Multi
IVILKS	MLK2	Multi
	LZK	Multi
	DLK	Multi
	ZAK	Multi
	MLTKa/b	Multi
	TAK1	Single
	MEKK1	Multi
	MEKK2	Multi
	MEKK3	Multi
	MEKK4	Multi
	ASK1	Multi
C-Raf1 Tpl M3/6 Mik MAMA GADD45 Rai ME ME ME ASI ML TAI ME ME ME ME ME ME ASI ML TAI ME	MLK1	Multi
IVIL I Na/ D	MLK2	Multi
	LZK	Multi
	DLK	Multi
	ZAK	Multi
	MLK3	Multi
	TAK1	Multi
MKK6	MKK3	Multi
МАРКАР-КЗ	МАРКАР-К2	single

Algorithm for local drug resistance analysis

```
Algorithm:Local analysis
Input: U = Cluster1 U Cluster2 U Cluster3 and Adjacency matrix X[i][j]
Output: Number of cancerous and cellular functions between each node in
the cluster and alternate activating nodes sharing are listed
Begin
For each element in U, collect substrate of U activated by set of proteins V
Create function to find similarity of cancerous(1-7) and cellular function role
(8-82) between pairs of nodes -
func(x,y):
Let temp1:=0, temp2:=0, temp3:=0, temp4:=0, temp5:=0, temp6:=0
 for i from 0 to 7
 if x[i]==1 & y[i]==1:
  print 'case1'
  print i
  temp1=temp1+1;
  print temp1
 elif x[i] == 1 & y[i] == 0:
  print 'case2'
  print i
  temp2=temp2+1;
  print temp2
 elif x[i]==0 & y[i]==1:
  print 'case3'
  print i
  temp3=temp3+1;
  print temp3
```

```
for i from 8 to 82
 if x[i]==1 & y[i]==1:
  print 'case4'
  print i
  temp4=temp4+1;
  print temp4
 elif x[i]==1 & y[i]==0:
 print 'case5'
  print i
  temp5=temp5+1;
  print temp5
 elif x[i]==0 & y[i]==1:
  print 'case6'
  print i
  temp6=temp6+1;
  print temp6
Call for each element of U by corresponding alternate activating nodes
with function func(U,V) and tabulate output
```

Single, multi thread and GPU implementation

```
# Drug resistance analysis function
def FUN(x1,c1):
    i=0
    e1=x1[i]
    e2=x1[i+1]
    x2=n1[e1]
    y2=n1[e2];
    temp1, temp2, temp3, temp4, temp5, temp6=0,0,0,0,0,0;
    for i in range(0,7):
        if x2[i]==1 and y2[i]==1:
            temp1=temp1+1;
        elif x2[i]==1 and y2[i]==0:
            temp2=temp2+1;
        elif x2[i]==0 and y2[i]==1:
            temp3=temp3+1;
    for i in range(8,82):
        if x2[i]==1 and y2[i]==1:
            temp4=temp4+1;
        elif x2[i]==1 and y2[i]==0:
            temp5=temp5+1;
        elif x2[i]==0 and y2[i]==1:
            temp6=temp6+1;
    c1[0]=int64(temp1)
    c1[1]=int64(temp2)
    c1[2]=int64(temp3)
    c1[3]=int64(temp4)
    c1[4]=int64(temp5)
    c1[5]=int64(temp6)
```

```
#single thread, multi thread and GPU
gus1 = guvectorize(['void(int64[:], int64[:])'],'(n)->(n)')
gup1 = guvectorize(['void(int64[:], int64[:])'],'(n)->(n)', target="parallel")
guc1 = guvectorize(['void(int64[:], int64[:])'],'(n)->(n)', target="cuda")

gvecs1 = gus1(fun)
gvecp1 = gup1(fun)
gvecc1 = guc1(fun)

with timer("single-thread, scalar y"):
    s0d = gvecs1(inp)

with timer("multi-thread, scalar y"):
    p0d = gvecp1(inp)

with timer("GPU, scalar y"):
    c0d = gvecc1(inp)
```

```
Elapsed time for single-thread, scalar y: 0.0 Elapsed time for multi-thread, scalar y: 0.00
```

Nine nodes c-Raf1, M3/6, GADD45, MLK3, ZAK, DLK, MLTKa/b, MKK6 and MAPKAP-K3 along with their alternate activating proteins

		<u> </u>		no of		no of	_	no of		no of		no of	<u>-</u>	no of
		Alternative		cancerous			cas	cancerous		functional		functional		functional
NO.	protein		rase1			attributes		attributes	rase4	attributes	rase5	attributes		attributes
140.	protein	Mos	nil	nil	1.4		nil		27,28,29		36,37,53	3		nil
					-		_		27,28,29 27,28,29,36,37		53	1		nil
1	c-Raf1				1.4		_		27,28,29,36,37 27,28,29,36,37		53	1	****	8
				nil	1,4		nil		27,28,29,36,37 27,28,29,36,37		53	1	h	1
		· • · =		nil	2	1	0		27,28,29,36,37 27,28,29,36,37		18,40	<u>1</u>	47	1
2	M3/6	MKP2	2	1	nil	nil	-				18,40	2		nil
			2	1	nıı	nii	nii	nii	27,28,29,36,37	5	18,40	2		
		Cdc42							0 10 27 20 20 2				11,14,16,19,20,21,22,24,25,30,31,32	
	CADDAE					- *1	<u> </u>		9,18,27,28,29,3		F.0	4	,33,34,35,38,39,43,51,56,57,60,62,6	
3	GADD45		0,4	2	nil	nil	2,3	2	6,40,47,53	10	59	1		28
		Rac				2		,	40 26 27 40 52	_	0 27 20 20 47 50	c	11,15,16,20,23,24,30,31,32,34,35,36	
			nil	nil	0,4	2	6		18,36,37,40,53		9,27,28,29,47,59	Ь	,39,44,55,56,63,65,73,77,78	20
		MEKK1					l		18,27,28,29,31					
							۱		32,36,37,40,44				11,14,16,22,25,31,33,34,53,57,60,71	1
			0,4	2	2	1	nil		45,47,48		9,59	2	,73,81	14
		MEKK2					۱		18,27,28,29,36	, -	9,30,32,44,45,48,5			l
			0	1	1,4	2	nil		37,40,47	8	9	7	nil	nil
		MEKK3					١		27,28,29,30,32		9,18,40,44,45,47,4			l
			nil	nil	0,1,4	3	nil		36,37		8,59	8	nil	nil
		MEKK4					l		18,27,28,29,36		9,30,32,44.45,48,5			
			0	1	1,4	2	nil		37,40,47	8	9	7	nil	nil
		ASK1					l		18,27,28,29,30					
			0,4	2	1	1	nil		32,36,37,40,47		9,44,45,48,59	5	46	1
		MLK1					l		18,27,28,29,36	1	9,30,32,44,45,48,5			
4	MLK3		0	1	1,4	2	nil		37,40,47	8	9	7	nil	nil
Γ	IVILIO	MLK2					l		18,27,28,29,30					
			0	1	1,4	2	nil	nil	32,36,37,40,47	10	9,44,45,48,59	5	31,33	2
		LZK					l		18,27,28,29,36	,	9,30,32,44,45,48,5			
			0	1	1,4	2	nil		37,40,47	8	9	7	nil	nil
		DLK					l		27,28,29,36,37	,	9,18,30,32,40,44,4			
			0	1	1,4	2	nil		47		5,48,59	9	nil	nil
		ZAK							27,28,29,36,37	,	18,30,32,40,44,45,			
			0	1	1,4	2	nil	nil	47	6	48,59	9	53	1
		MLTKa/b							9,18,27,28,29,3	3				
							l		0,32,36,37,40,4					
			0,1	2	4	1	3	1	7	11	44,45,48,59	4	14,35	2
		TAK1							18,27,28,29,30	,				
			nil	nil	0,1,4	3	nil	nil	32,36,37,40,47	,10	9,44,45,48,59	5	11,15,31,33,34,38,49,50,65	9

Cont.

	1	Altour			1	1	1	1						
		Altern ative		no of		no of		no of		no of				no of
	protoi	protei		functi		functi		functi		functi		no of		functi
NO.	n	ľ	case1		case2		case3		case4		case5	functions	case6	ons
140.	"	MEKK	casei	0113	Casez	0113	cases		14,18,27,28,29,30,32,36,37	0113	cases	Turiculons	11,16,22,25,31,33,34,44,45,48,53,57,60,71,73,	_
		1	h	1	1,3	2	4	1	14,18,27,28,29,30,32,36,37	11	9,35	2	81	, 16
		MEKK	_	_	1,3	_	Г	-	, +0, +7	11	5,55			1
		2	0	1	1,3	2	nil	nil	18,27,28,29,36,37,40,47	8	9,14,30,32,35	5	nil	nil
		MEKK	ľ	Ē	,	Ī			20,27,20,20,007,10,17		5)2 .,50,62,50			1
		3	nil	nil	0,1,3	3	nil	nil	27,28,29,30,32,36,37	7	9,14,18,35,40,47	6	nil	nil
		MEKK												
		4	0	1	1,3	2	nil	nil	18,27,28,29,36,37,40,47	8	9,14,30,32,35	5	nil	nil
		ASK1							18,27,28,29,30,32,36,37,40					
			0	1	1,3	2	4	1	,47	10	9,14,35	3	46	1
_	MLTKa	MLK1	0	1	1,3	2	nil	nil	18,27,28,29,36,37,40,47	8	9,14,30,32,35	5	nil	nil
5	/b	MLK2							18,27,28,29,30,32,36,37,40					
			0	1	1,3	2	nil	nil	,47	10	9,14,35	3	31,33	2
		LZK	0	1	1,3	2	nil	nil	18,27,28,29,36,37,40,47	8	9,14,30,32,35	5	nil	nil
		DLK												
			0	1	1,3	2	nil	nil	27,28,29,36,37,47	6	9,14,18,30,32,35,40	7	53	1
		ZAK												
			0	1	1,3	2	nil	nil	27,28,29,36,37,47	6	9,14,18,30,32,35,40	7	53	1
		MLK3							9,18,27,28,29,30,32,36,37,					
		IVILKS	0	1	1	1	4	1	40,47	11	14,35	2	44,45,48,59	4
		TAK1							18,27,28,29,30,32,36,37,40					
			nil	nil	0,1,3	3	nil	nil	,47	10	9,14,35	3	11,15,31,33,34,36,38,49,50,65	9
		MEKK											11,14,16,18,22,25,30,31,32,33,34,36,37,40,44,	,
		1	0	1	nil	nil	4	1	27,28,29,36,37,47,53	7	nil	nil	45,48,57,60,71,73,80	20
		MEKK												
		2	0	1	nil	nil	nil	nil	27,28,29,36,37,47	6	53	1	18,40	2
		MEKK	۱.,	۱.,			۱.,	۱.,	27 20 20 25 27	_	47.50		20.00	
		3	nil	nil	0	1	nil	nil	27,28,29,36,37	5	47,53	2	30,32	
		MEKK 4	0	1	nil	nil	nil	nil	27,28,29,36,37,47	6	53	1	18,40	
		ASK1	6	1	nil	nil	4		27,28,29,36,37,47		53	1	18,30,32,40,46	<u> </u>
6	ZAK	MLK1	6	1	nil	nil	nil	t	27,28,29,36,37,47		53	1	18,40	2
			0	1	nil	nil	nil		27,28,29,36,37,47		53	1	18,30,31,32,33,40	6
			0	1			nil		27,28,29,36,37,47		53	1	18,40	2
		DLK	0	1	nil	nil	nil	nil	27,28,29,36,37,47		nil	nil	nil	nil
		MLTKa	<u> </u>	+	1111	1111	1111	1111	21,20,23,30,31,41,33	/		1111	jiii	1111
		/b	<u> </u>	1	nil	nil	1 2	2	77 70 70 26 27 47	6	E 2	1	0 14 18 20 22 25 40	6
		IVILK3	0	1	_	nil nil	1,3 1.4		27,28,29,36,37,47		53 53	1	9,14,18,30,32,35,40 9,18,30,32,40,44,45,48	8
	ĺ		nil	nil	0	1	-	_	/ -/ -/ is in instance			1	 	13
		LAKT	nil	mı	ĮU	11	nil	nil	27,28,29,36,37,47	6	53	Īτ	11,15,18,30,31,32,33,34,38,40,49,50,65	<u>µ3</u>

Cont.

		Altern									ī			
		ative	1	no of		no of		no of		no of		no of		no of
	protei			functi		functi	1	functi		functi		functi		functi
NO.	n	n	case1		case2		case3	1			case5			ons
		MEKK											11,14,16,18,22,25,30,31,32,33,34,40,44,45,48,57,60,	
		1	0	1	nil	nil	4	1	27,28,29,36,37,47,53	7	nil			20
		MEKK												
		2	0	1	nil	nil	nil	nil	27,28,29,36,37,47	6	53	1	18,40	2
		MEKK												
		3	0	1	nil	nil	nil	nil	27,28,29,36,37	4	47,53	2	30,32	2
		MEKK												
		4	0	1	nil	nil	nil	nil	27,28,29,36,37,47	6	53	1	18,40	2
7	DLK	ASK1	0	1	nil	nil	4	1	27,28,29,36,37,47	6	53	1	18,30,32,40,46	5
		MLK1	0	1	nil	nil	nil	nil	27,28,29,36,37,47	6	53	1	18,40	2
		MLK2	0	1	nil	nil	nil	nil	27,28,29,36,37,47	6	53	1	18,30,31,32,33,40	6
		LZK	0	1	nil	nil	nil	nil	27,28,29,36,3747	6	53	1	18,40	2
		MLTK												
		a/b	0	1	nil	nil	1,3	2	27,28,29,36,37,47	6	53	1	9,14,18,30,32,35,40	7
		ZAK	0	1	nil	nil	nil	nil	27,28,29,36,37,47,53	7	nil	nil	nil	nil
		MLK3	0	1	nil	nil	1,4	2	27,28,29,36,37,47	6	53	1	9,18,30,32,40,44,45,48,59	9
		TAK1	nil	nil	0	1	nil	nil	27,28,29,36,37,47	6	53	1	11,15,18,30,31,32,33,34,38,40,49,50,65	
8	МКК6	МКК3							18.27,28,29,30,32,36,37,4					
			0	1	nil	nil	2	1	0,52	10	16,38,60	3	9,47	2
9	MAPK		1											
	AP-K3	AP-K2	nil	nil	0	1	nil	nil	27,28,37	3	29,36	2	18,38	2

Conclusions & Future work

- Python function is built for recursive cancer drug target identification by using topological and functional properties.
- Cause of resistance mechanism prevailing in the network are revealed and analyzed to overcome them.
- Work can be extended to analyze the complete network of signaling pathways regulating cancer mechanism.
- Available open source data can be used to study specific cancer types.
- Fully automated end to end drug resistance analysis can be built.