Assignment #3

UW-Madison MATH 421

GEOFF YOERGER March 10, 2021

Exercise #1: Assuming that the function $f(x) = e^x$ is continuous, prove that the equation $e^x = 4 - x^7$ has a solution.

Proof. Let $g(x) = e^x + x^7 - 4$. It follows from the theorems proven in class/homework, and the given assumption, that g(x) is continuous.

Let a = 0. Then g(a) = -3 < 0.

Let b = 2. Then $g(b) = e^2 + 128 - 4 \approx 131.389 > 0$.

Because g(a) < 0 < g(b), by Theorem 7.1, $\exists x : g(x) = e^x + x^7 - 4 = 0$, equivicantly, $\exists x : e^x = 4 - x^7$. \Box

Exercise #2: Spivak, Chapter 7, Problem # 14 (b)

If f is a continuous function on [0,1], let ||f|| be the maximum value of |f| on [0,1].

Theorem. $||f + g|| \le ||f|| + ||g||$

Proof. Let h(x) = f(x) + g(x). It follows that h(x) is continuous. By Theorem 7.3,

$$\begin{aligned} &\exists y_f \in [0,1] \ \forall x \in [0,1] : |f(x)| \le |f(y_f)| \\ &\exists y_g \in [0,1] \ \forall x \in [0,1] : |g(x)| \le |g(y_g)| \\ &\exists y_h \in [0,1] \ \forall x \in [0,1] : |h(x)| \le |h(y_h)| \implies |f(x) + g(x)| \le |f(y_h) + g(y_h)| \end{aligned}$$

Thus,
$$||f|| = |f(y_f)|$$
, $||g|| = |g(y_g)|$, $||f + g|| = |h(y_h)| = |f(y_h) + g(y_h)|$.

Because $\forall x \in [0,1] : |f(x)| \le |f(y_f)|$, and $y_h \in [0,1]$, it follows that $|f(y_h)| \le |f(y_f)|$.

Because $\forall x \in [0,1]: |g(x)| \leq |g(y_q)|$, and $y_h \in [0,1]$, it follows that $|g(y_h)| \leq |g(y_q)|$.

Then, $||f + g|| = |f(y_h) + g(y_h)| \le |f(y_h)| + |g(y_g)| \le |f(y_f)| + |g(y_g)| = ||f|| + ||g||$.

Example. Example where $||f + g|| \neq ||f|| + ||g||$

Let
$$f(x) = x$$
. Let $g(x) = -x$. Then $(f+g)(x) = x - x = 0$.

Then ||f+g|| = 0, ||f|| = 1, ||g|| = 0, and $||f|| + ||g|| = 0 + 1 \neq 0 = ||f+g||$.

Exercise #3: Suppose f is continuous on [a,b]. If $f(x) \neq 0$ for all x in [a,b], then either f(x) > 0 for all x in [a,b] or f(x) < 0 for all x in [a,b]

Proof. We argue by contrapositive.

[Original:
$$(\forall x \in [a,b]: f(x) \neq 0) \implies (\forall x \in [a,b]: f(x) > 0) \lor (\forall x \in [a,b]: f(x) < 0)$$
]
[Contrapositive: $(\exists x_1 \in [a,b]: f(x_1) \leq 0) \land (\exists x_2 \in [a,b]: f(x_2) \geq 0) \implies \exists x_3 \in [a,b]: f(x_3) = 0$]
If $\exists x_1 \in [a,b]: f(x_1) \leq 0$ and $\exists x_2 \in [a,b]: f(x_2) \geq 0$, Then proceed by cases

Case 1. $f(x_1) = 0$

Then
$$\exists x = x_1 \in [a, b] : f(x) = 0$$

Case 2. $f(x_2) = 0$

Then
$$\exists x = x_2 \in [a, b] : f(x) = 0$$

Case 3.
$$f(x_1) < 0 \land f(x_2) > 0 \implies f(x_1) < 0 < f(x_2)$$

By Theorem 7.1, $\exists x \in [x_1, x_2] \subset [a, b] : f(x) = 0$

Exercise #4: | Spivak, Chapter 7, Problem # 20 (a) Suppose f is continuous on [0,1] and f(0)=f(1).

Theorem. $\forall n \in \mathbb{N} \ \exists x : f(x) = f(x + \frac{1}{x})$

Proof. Fix $n \in \mathbb{N}$. Let $g(x) = f(x) - f(x + \frac{1}{n})$. It follows that g is continuous on $[0, 1 - \frac{1}{n}]$. If $\exists x \in [0, 1 - \frac{1}{n}] : g(x) = 0$, then $\exists x \in [0, 1 - \frac{1}{n}] : f(x) = f(x + \frac{1}{n})$.

Otherwise, $\forall x \in [0, 1 - \frac{1}{n}] : g(x) \neq 0$. We argue by contradiction.

By exercise 3, either $\forall x \in [0, 1 - \frac{1}{n}] : g(x) > 0$ or $\forall x \in [0, 1 - \frac{1}{n}] : g(x) < 0$.

If $\forall x \in [0, 1 - \frac{1}{n}] : g(x) > 0$, then $\forall x \in [0, 1 - \frac{1}{n}] : f(x) > f(x + \frac{1}{n})$. Then, $f(0) > f(\frac{1}{n}) > \cdots > f(\frac{n-1}{n}) > 0$. $f(\frac{n}{n}) = f(1)$. Thus $f(0) \neq f(1)$, which is a contradiction.

Likewise, if $\forall x \in [0, 1 - \frac{1}{n}] : g(x) < 0$, then $\forall x \in [0, 1 - \frac{1}{n}] : f(x) < f(x + \frac{1}{n})$. Then, $f(0) < f(\frac{1}{n}) < \dots < f(\frac{1}{n}) < \frac{1}{n}$ $f(\frac{n-1}{n}) < f(\frac{n}{n}) = f(1)$. Thus $f(0) \neq f(1)$, which is a contradiction. Thus, $\forall x \in [0, 1 - \frac{1}{n}] : g(x) \neq 0$ leads to a contradiction, and $\exists x \in [0, 1 - \frac{1}{n}] \subset \mathbb{R} : g(x) = 0$.

Since n was aribtrary, $\forall n \in \mathbb{N} \ \exists x : f(x) = f(x + \frac{1}{n})$

The next three problems involve infinite limits which are defined as follows.

Definition.

- 1. We write $\lim_{x\to\infty} f(x) = \infty$ if for every number M>0 there exists N>0 such that: if x>N, then
- 2. We write $\lim_{x\to\infty} f(x) = -\infty$ if for every number M>0 there exists N>0 such that: if x>N, then
- 3. We write $\lim_{x\to-\infty} f(x) = \infty$ if for every number M>0 there exists N>0 such that: if x<-N, then f(x) > M.
- 4. We write $\lim_{x\to-\infty} f(x) = -\infty$ if for every number M>0 there exists N>0 such that: if x<-N, then f(x) < -M.

Remark. In the definition above, we should think about M as a very large number.

Exercise #5: Suppose $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ is a polynomial. Prove:

- (a) $\lim_{x\to\infty} f(x) = \infty$.
- (b) If n is even, then $\lim_{x\to-\infty} f(x) = \infty$.
- (c) If n is odd, then $\lim_{x\to-\infty} f(x) = -\infty$.

Proof of (a). Fix M > 0. Let $N = max\{1, 2M, 2n|a_0|, 2n|a_1|, \dots, 2n|a_{n-1}|\}$. If x > N,

$$\begin{split} |\frac{a_{n-j}}{x^j}| &= \frac{|a_{n-j}|}{|x|^j} \\ &< \frac{|a_{n-j}|}{|x|} & \text{Since } |x| > N > 1 \\ &< \frac{|a_{n-j}|}{2n|a_{n-j}|} & \text{Since } |x| > N > 2n|a_{n-j}| \\ &= \frac{1}{2n} \end{split}$$

Thus,

$$1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \ge 1 - \left| \frac{a_{n-1}}{x} \right| - \dots - \left| \frac{a_0}{x^n} \right|$$

$$> 1 - \frac{1}{2n} - \dots - \frac{1}{2n}$$

$$= 1 - n * \frac{1}{2n}$$

$$= 1 - \frac{n}{2n}$$

$$= 1 - \frac{1}{2}$$

$$= \frac{1}{2}$$

Since $f(x) = x^n (1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n})$, If x > N, Then $f(x) > x^n * \frac{1}{2} = \frac{x^n}{2} > \frac{x}{2} > \frac{N}{2} \ge \frac{2M}{2} = M$. Since M was arbitrary, $\forall M > 0 \; \exists N > 0 : x > N \implies f(x) > M$, equivicantly, $\lim_{x \to \infty} f(x) = \infty$.

Theorem (Lemma 1). If $x < -N \le -1$ and n is even, then $x^n > N$.

Theorem (Lemma 2). If $x < -N \le -1$ and n is odd, then $x^n < -N$.

Proof of Lemma 1. Notice $x < -N \implies x^2 > N^2$. Since n = 2m is even, $x^n = (x^2)^m > (N^2)^m = N^{2m} > N$, since N > 1.

Proof of Lemma 2. Using Lemma 1,

Since n = 2m + 1 is odd and x < 0, $x^n = n * n^{n-1} = n * n^{2m} < x * N < -N$.

Proof of (b). Fix M > 0. Let $N = max\{1, 2M, 2n|a_0|, 2n|a_1|, \cdots, 2n|a_{n-1}|\}$. If x < -N,

$$\begin{aligned} |\frac{a_{n-j}}{x^j}| &= \frac{|a_{n-j}|}{|x|^j} \\ &< \frac{|a_{n-j}|}{|x|} & \text{Since } |x| > N > 1 \\ &< \frac{|a_{n-j}|}{2n|a_{n-j}|} & \text{Since } |x| > N > 2n|a_{n-j}| \\ &= \frac{1}{2n} \end{aligned}$$

Thus,

$$1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \ge 1 - \left| \frac{a_{n-1}}{x} \right| - \dots - \left| \frac{a_0}{x^n} \right|$$

$$> 1 - \frac{1}{2n} - \dots - \frac{1}{2n}$$

$$= 1 - n * \frac{1}{2n}$$

$$= 1 - \frac{n}{2n}$$

$$= 1 - \frac{1}{2}$$

$$= \frac{1}{2}$$

Since $f(x) = x^n (1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n})$, If x < -N, then $f(x) > x^n * \frac{1}{2} > \frac{N}{2} \ge \frac{2M}{2} = M$. Since M was arbitrary, $\forall M > 0 \ \exists N > 0 : x < -N \implies f(x) > M$, equivicantly, $\lim_{x \to -\infty} f(x) = \infty$.

Proof of (c). Fix M > 0. Let $N = max\{1, 2M, 2n|a_0|, 2n|a_1|, \dots, 2n|a_{n-1}|\}$. If x < -N,

$$\begin{aligned} |\frac{a_{n-j}}{x^j}| &= \frac{|a_{n-j}|}{|x|^j} \\ &< \frac{|a_{n-j}|}{|x|} & \text{Since } |x| > N > 1 \\ &< \frac{|a_{n-j}|}{2n|a_{n-j}|} & \text{Since } |x| > N > 2n|a_{n-j}| \\ &= \frac{1}{2n} \end{aligned}$$

Thus,

$$1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \ge 1 - \left| \frac{a_{n-1}}{x} \right| - \dots - \left| \frac{a_0}{x^n} \right|$$

$$> 1 - \frac{1}{2n} - \dots - \frac{1}{2n}$$

$$= 1 - n * \frac{1}{2n}$$

$$= 1 - \frac{n}{2n}$$

$$= 1 - \frac{1}{2}$$

$$= \frac{1}{2}$$

Since $f(x) = x^n (1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n})$, If x < -N, then $f(x) < x^n * \frac{1}{2} < \frac{-N}{2} \le \frac{-2M}{2} = -M$ Since M was arbitrary, $\forall M > 0 \ \exists N > 0 : x < -N \implies f(x) < -M$, equivicantly, $\lim_{x \to -\infty} f(x) = -\infty$.

Exercise #6: Suppose f is continuous on \mathbb{R} . If $\lim_{x\to\infty} f(x) = \infty$ and $\lim_{x\to-\infty} f(x) = -\infty$, then there exists a number x such that f(x) = 0.

Proof. If $\lim_{x\to\infty} f(x) = \infty$, then $\forall M > 0 \ \exists N > 0 : x > N \implies f(x) > M$. If $\lim_{x\to-\infty} f(x) = -\infty$, then $\forall M > 0 \ \exists N > 0 : x < -N \implies f(x) < -M$.

Let M = 1. Then $\exists N_1 > 0 : x_1 > N_1 \implies f(x_1) > 1$, and $\exists N_2 > 0 : x_2 < -N_2 \implies f(x_2) < -1$.

Fix $x_1 > N_1 > 0$. Then $f(x_1) > 1 > 0$.

Fix $x_2 < -N_2 < 0$. Then $f(x_2) < -1 < 0$.

By Theorem 7.1, $\exists x \in [x_2, x_1] \subset \mathbb{R} : f(x) = 0$.

Since x_1, x_2 were arbitrary, $\exists x \in \mathbb{R} : f(x) = 0$.

Exercise #7: Suppose f is continuous on \mathbb{R} . If $\lim_{x \to \infty} f(x) = \infty = \lim_{x \to -\infty} f(x)$, then there exists a number g such that $f(g) \leq f(x)$ for all g.

```
Proof. If \lim_{x\to\infty} f(x) = \infty, then \forall M>0 \ \exists N>0 : x>N \implies f(x)>M.

If \lim_{x\to-\infty} f(x) = \infty, then \forall M>0 \ \exists N>0 : x<-N \implies f(x)>M.

Fix M>0. Then \exists N_1>0 : x_1>N_1 \implies f(x_1)>M, and \exists N_2>0 : x_2<-N_2 \implies f(x_2)>M.

Fix x_1>N_1. x_2<-N_2. By Theorem 7.4, \exists y\in [x_2,x_1] \ \forall x\in [x_2,x_1] : f(y)\leq f(x).

Since M, x_1, x_2 were arbitrary, \exists y\in \mathbb{R} \ \forall x\in \mathbb{R} \ f(y)\leq f(x).
```

1 Extra Credit Questions

Each extra credit question is worth 1 extra point.

```
Exercise E.C.#2: Spivak, Chapter 7, Problem 17 Suppose f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.
```

Theorem. $\exists y \ \forall x : |f(y)| \le |f(x)|$

Proof. Proceed by cases

Case 1. $f(x) = a_0$

Let y = 0.

Then $\forall x : |f(y)| = |a_0| = |f(x)|$.

Thus $\forall x : |f(y)| \le |f(x)|$.

Case 2. f(x) has some factor of the form $a_j x^j$ where $a_j \neq 0$ and $j \in \mathbb{Z} \geq 1$.

Let g(x) = |f(x)|.

It follows from properties of infinite limits of polynomials that $\lim_{x\to\infty} |f(x)| = \lim_{x\to\infty} g(x) = \infty$ and $\lim_{x\to-\infty} |f(x)| = \lim_{x\to-\infty} g(x) = \infty$.

Applying proof from exercise (7), $\exists y \ \forall x : g(y) \leq g(x)$, equivicantly, $\exists y \ \forall x : |f(y)| \leq |f(x)|$