Wardrobe Selection Mathematical Modeling

Aditya Sathe

November 30, 2020

Input Parameters and Variables

Parameters

- \bullet d: number of days we want to select the wardrobe for
- \bullet t: number of available tops
- \bullet b: number of available bottoms

Variables

- $topFreshness_i, i \in [1, t]$: the number of days for which a top can be worn consecutively
- $bottomFreshness_j$, $j \in [1, b]$: the number of days for which a bottom can be worn consecutively
- $matchingPairs = \{(i,j), \ i \in [1,t], \ j \in [1,b]\}$: set of matching pairs of tops and bottoms

Decision Variables

- $topOfDay_k, k \in [1, d]$: assignment of a top to a day
- $bottomOfDay_k,\ k\in[1,d]$: assignment of a bottom to a day

Constraints

- $1 \le topOfDay_k \le t$
- $1 \leq bottomOfDay_k \leq b$
- $(topOfDay_k, bottomOfDay_k) \in matchingPairs$

• $\forall i \in [1, t], \ \forall \ k' \in [1, d - topFreshness_i]$

$$\left(\sum_{k''=k'}^{k''=k'+topFreshness_i} topOfDay_{k''}\right) \leq topFreshness_i \tag{1}$$

• $\forall j \in [1, b], \ \forall \ k' \in [1, d-bottomFreshness_j]$

$$k''=k'+bottomFreshness_{j}$$

$$\left(\sum_{k''=k'} bottomOfDay_{k''}\right) \leq bottomFreshness_{j} \quad (2)$$

Objective Function

Minimize,

$$Z = w_1 * (\sum_{i=1}^{i=t} |(\sum_{k=1}^{k=d} topOfDay_k == i) - (d/t)|) + w_2 * (\sum_{k=1}^{j=b} |(\sum_{k=1}^{k=d} bottomOfDay_k == j) - (d/b)|)$$
(3)