Криптография, Лекция № 5

6 октября 2014 г.

Доведем рассуждения с прошлой лекции. В общих чертах: генератор случайных числе - функция, котора берет короткое число независимых случайных битов и выдает длинную строку, чтобы отличить которую нужно затратить много ресурсов.

Theorem 1. (Голдрайх-Левин)

Если $f:\{0,1\}^n \to \{0,1\}^n$ - односторонняя перестановка, то $g:\{0,1\}^{2n} \to \{0,1\}^{2n},$ g(x,y)=(f(x),y) - тоже односторонняя перестановка, а $h(x,y)=x\odot y$ - трудный бит для g.

Theorem 2. (О кодах Адамара или о списочном декодировании) Пусть $h_x(y) = x \odot y$ - код Адамара слова $x \in \{0,1\}^n$. Пусть $\bar{h}(y)$ - такая функция, что доля у удовлетоворяющих $\bar{h}(y) = h_x(y)$ больше либо равна $\frac{1}{2}$. Тогда существует вероятностный алгоритм, работающий ро $ly(\frac{n}{\varepsilon})$, имеющий произвольный доступ к \bar{h} , выдающий список слов длины n, с вероятностью $\geq \frac{1}{2}$ содержит x.

Почему это называется декодированием списка? Вообще кодирование нужно для исправления ошибок. Код Адамара - длинный код. Точного полиномиального алгоритма декодирования не существует. h - код, \bar{h} - испорченный код.

Theorem 3.

Из теоремы о списочном декодировании выводится теорема Голдрайха-Левина.

Доказательство.

Пусть существует схема, которая с вероятностью $\geq \frac{1}{2} + \varepsilon$ по (f(x), y) находит $x \odot y$.

$$Pr_y\{C(f(x), y) = x \odot y\} \ge \frac{1}{2} + \varepsilon$$
$$Pr_y\{\bar{C}(y) = h_x(y)\} \ge \frac{1}{2} + \varepsilon$$

 $ar{C}$ - искаженный код Адамара слова x.

Обратитель f:

1. Применяет алгоритм списочного декодирования для $\bar{h}=\bar{C}$ и ε

- 2. Вычисляет значения f на всех элементах полученного списка
- 3. Если $f(\bar{x}) = f(x)$, то выводит \bar{x} , иначе выводит что угодно.

Утверждается, что этот обратитель будет достаточно успешным. Он точно будет работать полиномиальное время (он обращается к схеме, нужно переделать алгоритм в полиномиальную схему). Нужно понять, с какой вероятностью он будет обращать. Эта вероятность будет равна $\frac{\varepsilon}{4}$. Ибо если декодирование успешно, то нужный x будет найден и вероятность успеха декодирования будет $\frac{1}{2}$. Нужно посчитать долю x, для которых

$$Pr_y\{\bar{C}(y) = h_x(y)\} \ge \frac{1}{2} + \frac{\varepsilon}{2}$$

Эта доля $\geq \frac{\varepsilon}{2}$, иначе

$$Pr_y\{C(f(x),y) = h_x(y)\} < \frac{\varepsilon}{2} \cdot 1 + 1 \cdot (\frac{1}{2} + \frac{\varepsilon}{2}) = \frac{1}{2} + \varepsilon$$

Получили противоречие с предположением.

 $\geq \frac{\varepsilon}{2}$ - вероятность хорошего x;

 $\geq \frac{1}{2}$ - вероятность успешного обращения хорошего x

Из последних двух оценок поулчаем $\geq \frac{\varepsilon}{4}$ - вероятность успешного обращения x.

Lemma 1. (ЗБЧ для попарно независимых случайных величин) Пусть ξ_1, \ldots, ξ_N - попарно независимые одинакого распределенные, бернулиевские случайные величины. $E\xi_i = \frac{1}{2} - \varepsilon$. Тогда

$$Pr\{\xi_1 + \dots \xi_N \ge \frac{1}{2}N\} \le \frac{1}{\varepsilon^2} \frac{1}{N}$$

Доказательство.

Следствие попарной независимости:

$$D(\xi_1 + \ldots + \xi_N) = D\xi_1 + \ldots + D\xi_N$$
$$E(\xi_1 + \ldots + \xi_N) = (\frac{1}{2} - \varepsilon)N$$

Применим неравенство Чебышёва:

$$Pr\{\xi_1 + \ldots + \xi_N \ge E(\xi_1 + \ldots + \xi_N) + \varepsilon N\} \le \frac{D(\xi_1 + \ldots + \xi_N)}{(\varepsilon N)^2} \le \frac{N \cdot \frac{1}{4}}{(\varepsilon N)^2} = \frac{1}{4N\varepsilon^2}$$

Доказательство. (теоремы о списочном декодировании)

$$h_x(y) = h_x(y+r) + h_x(r)$$

Отсюда еще можно заметить, что если бы было испорчено не более четверти битов, то можно было $h_x(y), h_x(r)$ заменить на \bar{h} и выбирать максимум.

$$h_x(y) = majority_r(\bar{h}(y+r) + h_x(r))$$

Можно взять выборку из попарно независимых r_i . Как их построить? Есть небольшое количество случайных вектор-строк длины $n: u_1, \ldots, u_s$. r_1, \ldots, r_{2^s-1} - все нетривиальные суммы u_j . Они будут попарно независимыми равномерно распределенными. Представим r_i в виде вектор-столбца R. $R = A \cdot U$.

 $h_x(u_1+u_2+u_s)=h_x(u_1)+h_x(u_2)+h_x(u_s)$. То есть $h_x(r_i)$ полностью определяется $h_x(u_1),\dots,h_x(u_s)$.

$$k$$
-ый бит x : $x_k = h_k(e_k) = x \odot e_k$

Алгоритм восстановления x (списком):

- 1. Для всех строк длины $b \in \{0,1\}^s$
- 2. Для всех $k=1,\ldots,n$

$$x_k=majority|_{i=1,\dots,2^s-1}(\bar{h}(e_k+r_i)+h_x(r_i))$$
где $h_x(r_i)$ посчитан при условии $h_x(u_1)=b_1,\dots,h_x(u_s)=b_s$

3. Добавить x в список.

Введем случайные перменные ξ_i - индикатор $\bar{h}(y+r_i)=h_x(y+r_i)$. r_i - случайные, следовательно $Pr\{\xi_i=1\}\geq \frac{1}{2}+\varepsilon$. Посчитаем вероятность плохого исхода: $\leq \frac{1}{4\varepsilon^2}\cdot \frac{1}{2^s-1}\cdot n$. Хотим, чтобы последняя величина была меньше $\frac{1}{2}$. Откуда $s\simeq\log\frac{n}{\varepsilon^2}$. Весь алгоритм, как легко проверить, полиномиальный.