ОП.11 ЧИСЛЕННЫЕ МЕТОДЫ В ПРОГРАММИРОВАНИИ

Тема 1.3 Общая задача интерполирования и аппроксимации функций

Понятие аппроксимации. Интерполяция и экстраполяция.

- Дискретная и интегральная аппроксимация.
- Метод конечных элементов.
- √ Конечно-разностная аппроксимация.
- Интерполяционный многочлен Лагранжа.
- ✓ Интерполяционный многочлен Эрмита.

Общие понятия

Экспериментальные данные, сведенные в таблицы и графики, проигрывают в наглядности аналитическим решениям. Подобные проблемы возникают и в случае, если данные получены расчетным путем, но существуют для ограниченного числа точек. Причиной тому может быть сложность и трудоемкость расчетов. Можно выделить два подхода к решению данной задачи. Можно построить кривую, не требуя прохождения ее через все имеющиеся точки, в какомто смысле соответствующей этим точкам. Эта задача аппроксимации. На рисунке ей соответствует синяя линия. Красные маркеры — результаты измерений. Если требовать, чтобы построенная кривая точно проходила через точки, как зеленая линия на рисунке, то это задача

интерполяции.

Аппроксимация

Аппроксимация (приближение) – научный метод, состоящий в замене объектов более простыми, но близкими к исходным.

В основе большинства численных методов математического анализа лежит замена одной функции f(x) (известной, неизвестной или частично известной) другой функцией $\varphi(x)$, близкой κ f(x) и обладающей «хорошими» свойствами, позволяющими легко производить над нею те или иные аналитические или вычислительные операции.

Будем называть такую замену аппроксимацией.

Будем считать, что аппроксимация функции производится с помощью *многочленов степени* $n \in N_0$. Тогда в зависимости от выбора критерия согласия и, в частности, от количества точек согласования f(x) с $\varphi(x)$ (будем называть их *узлами*), то есть точек, в которых известна информация об f(x) и, возможно, ее производных, можно рассмотреть разные конкретные способы аппроксимации.

Дискретная и интегральная аппроксимация

- Когда приближение строится на дискретном наборе точек, аппроксимацию называют точечной или *дискретной*.
- Когда аппроксимация проводится на непрерывном множестве точек (отрезке), то она называется непрерывной или *интегральной*.

Метод конечных элементов

МКЭ получил глубокие теоретические обоснования и применяется для решения весьма широкого круга задач, например:

- стационарные задачи распространения тепла, диффузии, распределения электрического поля, другие задачи теории поля;
- задачи гидромеханики, в частности, течение жидкости в пористой среде;
- задачи механики и прочности, в т.ч. проектирование самолётов, ракет и различных пространственных оболочек;
- и др.

Основная концепция МКЭ

- 1) любую непрерывную величину (например, температуру, давление, перемещение) можно аппроксимировать дискретной моделью, которая строится на множестве кусочно-непрерывных функций, определённых на конечном числе подобластей (элементов);
- 2) кусочно-непрерывные функции определяются с помощью значений непрерывной величины в конечном числе точек рассматриваемой области.

Основная концепция МКЭ

При построении дискретной модели непрерывной величины поступают следующим образом.

- 1. В рассматриваемой области фиксируется конечное число точек. Эти точки называются узловыми (или просто узлами).
- 2. Значение непрерывной величины в каждой узловой точке считается переменной, которая должна быть определена.
- 3. Область определения непрерывной величины разбивается на конечное число подобластей, называемых элементами (или конечными элементами). Эти элементы имеют общие узловые точки и в совокупности аппроксимируют форму области.
- 4. Непрерывная величина аппроксимируется на каждом элементе полиномом (или какой-либо другой функцией), который определяется с помощью узловых значений этой величины.

Для каждого элемента определяется свой полином, но полиномы подбираются таким образом, чтобы сохранилась непрерывность величины вдоль границ элемента.

Этот полином называют ещё функцией элемента.

Виды конечных элементов

Некоторые виды конечных элементов: a — одномерные; δ — двухмерные; δ — трехмерные

Алгоритм покрытия

Построение сетки конечных элементов

Конечно-элементная аппроксимация

Одномерное распределение

Варианты разбиения стержня на элементы

Конечно-элементная аппроксимация

$$u(x) \approx \alpha + \alpha_x x.$$

$$u(x) \approx \frac{x_j - x}{x_j - x_i} u_i + \frac{x - x_i}{x_j - x_i} u_j = N_i u_i + N_j u_j = [N^{(e)}][u^{(e)}],$$

где N_i и N_j — так называемые функции формы конечного элемента; u_i и u_j — значения функции u(x) в точках x_i и x_j ; $[N^{(e)}] = [N_i N_j]$ — матричная строка функций формы элемента; $[u^{(e)}] = \begin{bmatrix} u_i \\ u_j \end{bmatrix}$ — вектор-столбец.

Преимущества МКЭ

- 1. Свойства материалов смежных элементов не должны быть обязательно одинаковыми. Это позволяет применять метод к телам, составленным из нескольких материалов.
- 2. Криволинейная область может быть аппроксимирована с помощью прямолинейных элементов или описана точно с помощью криволинейных элементов. Таким образом, методом можно пользоваться не только для областей с «хорошей» формой границы.
- 3. Размеры элементов могут быть переменными. Это позволяет укрупнить или измельчить сеть разбиения области на элементы, если в этом есть необходимость.
- 4. С помощью МКЭ не представляет труда рассмотрение граничных условий с разрывной поверхностной нагрузкой, а также смешанных граничных условий.

Интерполяция

Интерполяция — нахождения промежуточных значений по имеющемуся дискретному набору точных числовых значений.

На отрезке [a,b] в точках $\{x1,x2,...,xn\}$ известны значения функции f(x). Требуется построить функцию g(x), совпадающую с заданной функцией f(x) в этих точках. g(xk)=f(xk), k=1,2,...,n, Точки $\{x1,x2,...,xn\}$ называются узлами интерполяции, а построение функции –интерполированием.

Линейная интерполяция — узлы соединяются прямолинейными отрезками. Два соседних узла позволяют рассчитать параметры этих отрезков. Построенная таким образом функция g(x) — ломаная с вершинами в узлах. Точность интерполяции в промежуточных точках невысока. Представляют интерес гладкие функции, имеющие непрерывные производные.

Интерполяция полиномом высокой степени на всем отрезке называется глобальной. Теоретически точность интерполяции возрастает с ростом степени полинома, однако на практике погрешность расчета коэффициентов при высоких степенях приводят к осцилляциям интерполяционной кривой.

Идея *покальной* интерполяции заключается в том, что между соседними узлами строится свой отдельный интерполяционный полином невысокой степени. Затем эти полиномы «сшиваются». Такой метод называется сплайн- интерполяцией. Если использовать полином третьего порядка, то в узлах можно удовлетворить как условию непрерывности функции, так и непрерывности её первой и второй производных.

Экстраполяция

Экстраполи́рование, экстраполя́ция, (от лат. extrā — снаружи, вне, кроме, за и лат. polire — выправляю, приглаживаю, меняю, изменяю) — это особенный вид аппроксимации, при котором функция аппроксимируется вне заданного интервала, а не меж фиксированными значениями.

Другими словами, экстраполяция — это приближённое определение значений функции в точках, которые лежат вне отрезка, по её значениям в точках.

Интерполяция

$$F(x_i) = y_i, \quad i = 0, 1, ..., n.$$

- x_i называют узлами интерполяции;
- пары (x_i, y_i) называют точками данных;
- разницу между соседними значениями $(x_i x_{i-1})$ называют *шагом*;
- функцию F(x) интерполирующей функцией или интерполянтом.

$$F(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n.$$

$$\begin{cases} a_0 x_0^n + a_1 x_0^{n-1} + \dots + a_{n-1} x_0 + a_n = y_0; \\ a_0 x_1^n + a_1 x_1^{n-1} + \dots + a_{n-1} x_1 + a_n = y_1; \\ \dots & \dots & \dots \\ a_0 x_n^n + a_1 x_n^{n-1} + \dots + a_{n-1} x_n + a_n = y_n. \end{cases}$$

Интерполяционный многочлен Лагранжа

$$L_n(x) = p_0(x)y_0 + p_1(x)y_1 + \dots + p_n(x)y_n = \sum_{i=1}^n p_i(x)y_i,$$

$$p_i(x_j) = \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases}$$

$$p_i(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n)}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)},$$

$$L_n(x) = \sum_{i=0}^n \frac{(x-x_0)(x-x_1) \dots (x-x_{i-1})(x-x_{i+1}) \dots (x-x_n)}{(x_i-x_0)(x_i-x_1) \dots (x_i-x_{i-1})(x_i-x_{i+1}) \dots (x_i-x_n)} y_i$$

Построить интерполяционный многочлен Лагранжа для функции, заданной таблично

. X	1	2	3	5
Y	I	5	14	81

$$L_3(x) = 1 \cdot \frac{(x-2)(x-3)(x-5)}{(1-2)(1-3)(1-5)} + 5 \cdot \frac{(x-1)(x-3)(x-5)}{(2-1)(2-3)(2-5)} + 14 \cdot \frac{(x-1)(x-2)(x-5)}{(3-1)(3-2)(3-5)} + 81 \cdot \frac{(x-1)(x-2)(x-3)}{(5-1)(5-2)(5-3)} = x^3 - 2x^2 + 3x - 1.$$

Для функции $y = \sin(\pi x)$ построить интерполяционный полином Лагранжа, выбрав узлы $x_0 = 0$; $x_1 = \frac{1}{6}$; $x_2 = \frac{1}{3}$.

$$y_0 = 0;$$
 $y_1 = \sin \frac{\pi}{6};$ $y_2 = \sin \frac{\pi}{2} = 1.$

$$L_{2}(x) = \frac{\left(x - \frac{1}{6}\right)\left(x - \frac{1}{2}\right) \cdot 0}{\left(-\frac{1}{6}\right)\left(-\frac{1}{2}\right)} + \frac{1}{2} \cdot \frac{x\left(x - \frac{1}{2}\right)}{\frac{1}{6}\left(\frac{1}{6} - \frac{1}{2}\right)} + 1 \cdot \frac{x\left(x - \frac{1}{6}\right)}{\frac{1}{2}\left(\frac{1}{2} - \frac{1}{6}\right)} = \frac{7}{2}x - 3x^{2}.$$

Построить интерполяционный полином Лагранжа для двух узлов интерполяции:

X	I	3
י א	1	9

$$L_n(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

$$L_1(x) = \frac{x-3}{1-3} \cdot 1 + \frac{x-1}{3-1} \cdot 9 = \frac{x-3}{-2} + \frac{x-1}{2} \cdot 9 = \frac{8x-6}{2} = 4x-3.$$

Построить интерполяционный полином Ла-

гранжа для трех узлов интерполяции:

x	1	3	4
у	12	4	6

$$L_n(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2$$

$$L_n(x) = \frac{(x-3)(x-4)}{(1-3)(1-4)} \cdot 12 + \frac{(x-1)(x-4)}{(3-1)(3-4)} \cdot 4 + \frac{(x-1)(x-3)}{(4-1)(4-3)} \cdot 6$$

$$=2x^2-12x+22.$$

Литература

```
Численные методы и программирование: учеб. пособие / В.Д. Колдаев; под ред. проф. Л.Г. Гагариной. — М.: ИД «ФОРУМ»: ИНФРА-М, 2017. <a href="http://znanium.com/catalog/product/672965">http://znanium.com/catalog/product/672965</a>
```

Дополнительные источники

Введение в численные методы в задачах и упражнениях: Учебное пособие / Гулин А.В., Мажорова О.С., Морозова В.А.-М.: АРГАМАК-МЕДИА, НИЦ ИНФРА-М, 2014

Интернет-ресурсы

- http://window.edu.ru
- http:// edu.ru
- http://Fcior.edu.ru

Спасибо за внимание