ME 608: Homework 4

Tanmay C. Shidhore

December 1, 2017

1 Problem 1

The problem for a lid-driven cavity was considered. The mesh for the same, constructed in ICEM CFD, is shown in figure 1

Figure 1: Mesh for the problem

The unsteady Navier-Stokes equation (including the convective terms) was solved using the fractional step method with Explicit Euler time advancement to simulate a lid velocity of 1 for the top surface. The kinematic viscosity was assumed to be 0.01, which gave a Reynolds number of 100. Data output from the code was compared against the benchmark study by Ghia et al. for Re=100.

1.1 Part a

Figures 2 and 3 display the value of u and v at the geometric centreline (y=0.5 and x=0.5 respectively). The data for the present code (marked by the solid line) was obtained through the use of 'griddata' in Python. The stars represent the data from Ghia et al.

Figure 2: Variation of u with y at the geometric centre

Figure 3: Variation of v with x at the geometric centre

The plots show that the results from this code agree fairly well with the results from Ghia et al. Even though a mismatch is observed in the data for v, the overall trend of the benchmark results from Ghia et al. is captured accurately.

1.2 Partb

For the second method, the code blows up beyond a certain number of time steps (≈ 10 iterations). The plots from part a, just before code blow up are shown in figures 4 and 5.

Figure 4: Variation of u with y at the geometric centre

Figure 5: Variation of v with x at the geometric centre

1.3 Partc

Even for the third method, the code blows up beyond a certain number of time steps (\approx 120, which is more than the number of iterations/time steps required for part b). The plots from part a, just before code blow up are shown in figures 6 and 7.

Figure 6: Variation of u with y at the geometric centre

Figure 7: Variation of v with x at the geometric centre