Replication for 'Bond Risk Premiums with Machine Learning'

YoungHae Kim

January 15, 2021

1. Data

- Monthly yield-data: Liu, Wu(2020), Reconstructuring the yield curve
 - Annualized continuously-compounded zero coupon yield in percentage points
 - Extract \rightarrow date : 1971.09 \sim 2019.12, maturity : 1month \sim 120month
 - https://sites.google.com/view/jingcynthiawu/yield-data
- Monthly macro-data: McCracken, Ng(2015)
 - Use 'current.csv' data \rightarrow extract 1971.09 $^{\sim}$ 2019.12
 - https://research.stlouisfed.org/econ/mccracken/fred-databases/
 - In above site, 135 variables are described in 'Appendix_table_update' file. But now 7 variables are omitted \rightarrow 128 variables
 - Omitted variables: NAMPI (Group1), NAPMEI (Group2), NAPM, NAPMNOI, NAPMSDI, NAPMII (Group4), NAPMPRI (Group7)
- Construct forward-rate, excess-return from yield-data
 - Define the zero-coupon yield at t with a maturity of n as $y_t(n)$ $(t = \frac{1}{12}, \frac{2}{12}, ...48\frac{3}{12})$ $(n = \frac{1}{12}, \frac{2}{12}, ...10)$
 - The price of the n-year discount bond at time t relates to the zero-coupon yield : $log(P_t(n)) = -ny_t(n)$
 - The forward rate with maturity n at time t is dened as the return for a loan starting at t+n-1 and maturing at t+n: $f_t(n) = log(P_t(n-1)) log(P_t(n))$
 - The excess return : $rx_{t+1}(n) = log(P_{t+1}(n-1)) log(P_t(n)) y_t(1)$