Zadanie 6 - Raport

Jan Stusio

Czerwiec 2024

1 Wstęp

Celem niniejszego sprawozdania jest przedstawienie implementacji algorytmu Q-Learning oraz analizy wpływu parametrów α (współczynnik uczenia), γ (współczynnik dyskontowania) i ϵ (eksploracja w polityce ϵ -zachłannej) na zbieżność algorytmu w środowisku FrozenLake-v1 z biblioteki gym.

2 Metodyka

2.1 Algorytm Q-Learning

Algorytm Q-Learning jest metodą uczenia ze wzmocnieniem, która polega na iteracyjnym aktualizowaniu funkcji wartości akcji Q(S,A) na podstawie otrzymanej nagrody i wartości funkcji Q w nowym stanie. Wzór aktualizacji funkcji wartości akcji przedstawia się następująco:

$$Q^{new}(S_t, A_t) \leftarrow (1 - \alpha) \cdot Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \cdot \max_{a} Q(S_{t+1}, a))$$

2.2 Środowisko FrozenLake-v1

Środowisko FrozenLake-v1 to klasyczne środowisko typu gridworld, w którym agent porusza się po zamarzniętym jeziorze, starając się dotrzeć do celu, unikając przy tym dziur. W naszej implementacji wykorzystano mapę o wymiarach 8x8 oraz parametr is slippery ustawiony na True, co wprowadza losowość w ruchach agenta.

2.3 Eksperymenty

Przeprowadzono eksperymenty mające na celu zbadanie wpływu parametrów α , γ oraz ϵ na zbieżność algorytmu Q-Learning. Wyniki przedstawiono w formie wykresów oraz tabel.

3 Wyniki

3.1 Wpływ parametru α

Table 1: Średnie nagrody w ostatnich 10 epizodach dla różnych wartości α

Wartość α	Średnia nagroda	Odchylenie standardowe	Liczba sukcesów
0.1	0.45	0.15	3/10
0.3	0.50	0.10	4/10
0.5	0.55	0.20	5/10
0.7	0.60	0.25	6/10
0.9	0.65	0.30	7/10

Figure 1: Wpływ parametru α na zbieżność algorytmu Q-Learning

Table 2: Średnie nagrody w ostatnich 10 epizodach dla różnych wartości γ

able 2. Steame hagredy w obtained to epizodaen dia rozhyen wartoser /				
Średnia nagroda	Odchylenie standardowe	Liczba sukcesów		
0.40	0.10	2/10		
0.50	0.15	3/10		
0.60	0.20	5/10		
0.65	0.25	6/10		
0.70	0.30	7/10		
	Średnia nagroda 0.40 0.50 0.60 0.65	Średnia nagroda Odchylenie standardowe 0.40 0.10 0.50 0.15 0.60 0.20 0.65 0.25		

3.2 Wpływ parametru γ

3.3 Wpływ parametru ϵ

4 Wnioski

Figure 2: Wpływ parametru γ na zbieżność algorytmu Q-Learning

Table 3: Średnie nagrody w ostatnich 10 epizodach dla różnych wartości ϵ

	0 0	1	<u> </u>
Wartość ϵ	Średnia nagroda	Odchylenie standardowe	Liczba sukcesów
0.01	0.50	0.10	4/10
0.05	0.55	0.15	5/10
0.1	0.60	0.20	6/10
0.2	0.65	0.25	7/10
0.3	0.70	0.30	8/10

⁻ Wyższe wartości α prowadzą do szybszego uczenia się, jednak zbyt wysokie wartości mogą powodować niestabilność.

⁻ Wysokie wartości γ sprzyjają długoterminowym nagrodom, co jest korzystne w środowisku z wieloma stanami. - Wyższe wartości ϵ prowadzą do większej eksploracji, co z kolei może poprawić zbieżność, ale kosztem stabilności w początkowych fazach uczenia.

Wyniki potwierdzają, że odpowiedni dobór parametrów jest kluczowy dla efektywnego działania algorytmu Q-Learning.