

Physique Niveau supérieur Épreuve 3

Lundi 9 mai 2016 (matin)

Numero de session du candidat								

1 heure 15 minutes

Instructions destinées aux candidats

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Section A: répondez à toutes les questions.
- Section B : répondez à toutes les questions d'une des options.
- · Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du **recueil de données de physique** est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [45 points].

Option	Questions
Option A — Relativité	3 – 7
Option B — Physique de l'ingénieur	8 – 11
Option C — Imagerie	12 – 16
Option D — Astrophysique	17 – 21

Section A

Répondez à toutes les questions. Rédigez vos réponses dans les cases prévues à cet effet.

1. Un élève effectue une recherche sur l'oscillation d'une tige horizontale suspendue à l'extrémité d'une corde verticale. Le schéma ci-dessous montre la vue de dessus.

L'élève commence à faire osciller la tige et mesure le plus grand déplacement pour chaque cycle de l'oscillation sur l'échelle et le moment auquel elle se produit. Il commence à prendre des mesures quelques secondes après avoir relâché la tige.

Le graphique ci-dessous montre la variation du déplacement x en fonction du temps t depuis que la tige a été relâchée. L'incertitude pour t est négligeable.

(a) Sur le graphique ci-dessus, dessinez la ligne de meilleur ajustement pour les données.

(Suite de la question à la page suivante)

[1]

(Suite de la question 1)

(b) Calculez le pourcentage d'incertitude pour le déplacement lorsque $t = 40 \,\mathrm{s}$. [2]

(c) L'élève émet l'hypothèse que la relation entre x et t est $x = \frac{a}{t}$, a étant une constante. Pour vérifier cette hypothèse, x est tracé en fonction de $\frac{1}{t}$ comme montré sur le graphique.

- (i) Le point de données correspondant à $t = 15 \,\mathrm{s}$ n'a pas été tracé. Tracez ce point sur le graphique ci-dessus. [1]
- (ii) Suggérez la gamme de valeurs de *t* pour laquelle on peut supposer que cette hypothèse est correcte. [2]

2. Un élève mesure l'indice de réfraction du verre d'une lame de microscope.

Il utilise un microscope de voyage pour déterminer la position x_1 d'une marque sur une feuille de papier. Il place ensuite la lame au-dessus de la marque et trouve la position x_2 de l'image de la marque lorsqu'elle est vue à travers la lame. Enfin, il utilise le microscope pour déterminer la position x_3 du dessus de la lame.

Le tableau ci-dessous montre les résultats moyens d'un grand nombre de mesures répétées.

	Position moyenne de la marque / mm
x_1	0,20 ±0,02
<i>x</i> ₂	0,59 ±0,02
x_3	1,35 ±0,02

(a) L'indice de réfraction du verre dont la lame est faite est donné par

$$\frac{x_3-x_1}{x_3-x_2}$$
.

Déterminez

(i) l'indice de réfraction du verre au nombre correct de chiffres significatifs, en ignorant toute incertitude.

Г	1	ľ
L	•	

.....

(Suite de la question à la page suivante)

(Suite de la question 2)

(ii)	l'incertitude de la valeur calculée dans la question (a)(i).	[3]
	ès cette expérience, l'élève trouve que le microscope de voyage est mal réglé de sorte que la mesure de chaque position est trop grande de 0,05 mm.	
(i)	Exprimez le nom de ce type d'erreur.	[1]
		[1]
		[2]
(i)	Exprimez le nom de ce type d'erreur. Résumez l'effet que l'erreur dans la question (b)(i) aura sur la valeur calculée de	
(i)	Exprimez le nom de ce type d'erreur. Résumez l'effet que l'erreur dans la question (b)(i) aura sur la valeur calculée de	
(i)	Exprimez le nom de ce type d'erreur. Résumez l'effet que l'erreur dans la question (b)(i) aura sur la valeur calculée de	
(i)	Exprimez le nom de ce type d'erreur. Résumez l'effet que l'erreur dans la question (b)(i) aura sur la valeur calculée de	

(Suite de la question à la page suivante)

(Suite de la question 2)

n incertitude.	[2]

Veuillez **ne pas** écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

Tournez la page

Section B

Répondez à **toutes** les questions d'**une** des options. Rédigez vos réponses dans les cases prévues à cet effet.

Option A — Relativité

3.		es postulats de la relativité restreinte exprime que les lois de la physique sont les les dans tous les systèmes de référence inertiels.	
	(a)	Exprimez ce qu'on entend par inertiel dans ce contexte.	[1]
	(b)	Un observateur se déplace à un vecteur vitesse v vers une source lumineuse. Déterminez la valeur que cet observateur mesurerait pour la vitesse de la lumière émise par cette source selon	
		(i) la théorie de Maxwell.	[1]
		(ii) la transformation de Galilée.	[1]

(Suite de l'option A)

4. Deux protons se déplacent avec le même vecteur vitesse dans un accélérateur de particules.

protons

L'observateur X est au repos par rapport à l'accélérateur. L'observateur Y est au repos par rapport aux protons.

Expliquez la nature de la force entre les protons telle qu'elle est observée par l'observateur X **et** par l'observateur Y.

[4]

(Suite de l	l'option	A)
-------------	----------	----

5.	Un électron est émis d'un noyau avec une énergie totale de 2,30 MeV telle qu'elle est observée dans un laboratoire.							
	(a)	Mon	trez que la vitesse de cet électron est environ 0,98c.	[3]				
	(b)		électron est détecté à une distance de 0,800 m du noyau émetteur telle qu'elle est urée dans le laboratoire.					
		(i)	Pour le système de référence de cet électron, calculez la distance parcourue par le détecteur.	[2]				
		(ii)	Pour le système de référence du laboratoire, calculez le temps pris pour que l'électron atteigne le détecteur après son émission du noyau.	[2]				

(Option A, suite de la question 5)

(iii)	Pour le système de référence de l'électron, calculez le temps pris entre son émission au niveau du noyau et son détection.	[2]
(iv)	Résumez pourquoi la réponse à la question (b)(iii) représente un intervalle de temps propre.	[1]

(Suite de l'option A)

6. Un observateur sur la Terre regarde deux fusées A et B. Le diagramme d'espace-temps ci-dessous montre une partie du mouvement de A et de B dans le système de référence de l'observateur sur la Terre. A et B se déplacent dans la même direction.

(Option A, suite de la question 6)

(a)	Pour le système de référence de l'observateur sur la Terre, calculez la vitesse de la fusée A en termes de la vitesse de la lumière c.	[2]
(b)	Une fusée passe au niveau de l'autre à l'événement E. Pour le système de référence de l'observateur sur la Terre, estimez	
	(i) la coordonnée d'espace de E, en kilomètres.	[1]
	(ii) la coordonnée de temps de E, en secondes.	[1]

Tournez la page

(Option A, suite de la question 6)

(c) On utilise trois feux balises à éclats, X, Y et Z, pour guider une autre fusée C. Les éclats sont montrés sur le diagramme d'espace-temps ci-dessous. Ce diagramme montre les axes pour les systèmes de référence de la Terre et de la fusée C. L'observateur sur la Terre est à l'origine.

(Option A, suite de la question 6)

En utilisant le graphique ci-contre, déduisez l'ordre dans lequel

(i) les feux balises émettent des éclats dans le système de référence de la fusée C.	[2]
(ii) l'observateur sur la Terre voit les éclats émis par les feux balises.	[2]
(ii) l'observateur sur la Terre voit les éclats émis par les feux balises.	[2]
(ii) l'observateur sur la Terre voit les éclats émis par les feux balises.	[2]
(ii) l'observateur sur la Terre voit les éclats émis par les feux balises.	[2]
(ii) l'observateur sur la Terre voit les éclats émis par les feux balises.	[2]

Tournez la page

(Suite de l'option A)

7.	(a)	Résumez ce qu'on entend par trou noir.	[2]
	(b)	Un observateur regarde un vaisseau spatial lointain qui est à 23,0 km du centre d'un trou noir. Ce vaisseau spatial contient une horloge qui fait tic-tac une fois chaque seconde et ces tics-tacs peuvent être entendus par l'observateur éloigné. En 2,00 minutes cet observateur compte 112 tics-tacs de l'horloge.	
		Déterminez la masse de ce trou noir.	[3]

Fin de l'option A

Veuillez **ne pas** écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

Tournez la page

Option B — Physique de l'ingénieur

8. Un cylindre massif d'une masse M et d'un rayon R roule sans glisser vers le bas d'une pente uniforme. Cette pente fait un angle θ avec l'horizontale.

Le schéma ci-dessus montre les trois forces agissant sur ce cylindre. N est la force de réaction normale et F est la force de frottement entre le cylindre et la pente.

(a)	Exprimez pourquoi <i>F</i> est la seule force fournissant un couple autour de l'axe du cylindre.	[1]

(b)	(i)	Le moment d'inertie d'un cylindre autour de son axe est $I = \frac{1}{2}MR^2$. Montrez,	
		en appliquant les lois de mouvement de Newton, que l'accélération linéaire du	
		cylindre est $a = \frac{2}{3}g\sin\theta$.	[4]

(Option B, suite de la question 8)

	(ii) Calculez, pour θ = 30°, le temps que met le cylindre massif à se déplacer de 1,5 m le long de la pente. Au départ, le cylindre est au repos.	[2]
(c)	Un bloc de glace est placé sur la pente à côté du cylindre massif et tous les deux sont relâchés en même temps. Ce bloc de glace a la même masse que le cylindre massif et il glisse sans frottement.	
	À n'importe quel endroit donné sur la pente, la vitesse du bloc de glace est plus grande que la vitesse du cylindre massif. Résumez pourquoi, en utilisant la réponse à la question (b)(i).	[1]
(d)	Le cylindre massif est remplacé par un cylindre creux ayant la même masse et le même rayon. Suggérez comment ce changement affectera, le cas échéant, l'accélération en (b)(i).	[2]

Tournez la page

(Suite de l'option B)

9. Une masse fixe d'un gaz monoatomique parfait subit une transformation isotherme de A à B comme montré ci-dessous.

La température en A est 350 K. Une masse identique du même gaz monoatomique parfait subit une transformation isobare de A à C.

(2)	/i\	Calculez la température en C.	[11]
(a)	(1)	Calculez la lemberalure en C.	111

.....

(ii) Calculez le changement de l'énergie interne pour AC. [2]

(Option B, suite de la question 9)

	(iii)	Déterminez l'énergie fournie au gaz pendant la transformation AC.	[2]
	(iv)	Sur le graphique ci-contre, dessinez une droite pour représenter une détente adiabatique de A à un état d'un volume de $4.0 \times 10^{-3} \text{m}^3$ (point D).	[1]
(b)	(i)	Exprimez le changement de l'entropie d'un gaz pour la détente adiabatique de A à D.	[1]
	(ii)	Expliquez, en référence au concept de désordre, pourquoi l'entropie de ce gaz est plus grande en C qu'en B.	[3]

(Suite de l'option B)

10. Un réservoir a un niveau d'eau constant. Q est un endroit à l'intérieur du tuyau de sortie à une profondeur de 12,0 m, à côté du robinet de sortie.

La pression atmosphérique est $1,05 \times 10^5 \, \text{Pa}$ et la densité de l'eau est $1,00 \times 10^3 \, \text{kg m}^{-3}$.

(a) Calculez la pression en Q lorsque le robinet est lenne.	נין
(b) Expliquez ce qui arrive à la pression en Q lorsqu'on ouvre le robinet.	[2]

(Option B, suite de la question 10)

(c) On raccorde le robinet en Q à un tuyau de sortie d'un diamètre de 0,10 m. L'eau s'écoule de façon constante dans le tuyau à une vitesse de 1,27 m s $^{-1}$. La viscosité de l'eau est 1,8 × 10 $^{-3}$ Pa s.

(i)	Calculez le nombre de Reynolds pour cet écoulement.	[2]
(ii)	Expliquez la signification de cette valeur.	[1]

(Suite de l'option B)

11. Une sphère solide A suspendue par une corde à un support fixe forme un simple pendule.

Le facteur de qualité Q pour ce système est 200 et la période d'oscillation est environ 0,4 s.

(a) On déplace la sphère A de sorte que le système oscille. En référence au facteur Q, discutez le mouvement du pendule qui en résulte.

[2]

 •

(b) On fait alors osciller horizontalement le point de support P de ce pendule avec une fréquence f.

Décrivez l'amplitude de A et la phase de A par rapport à P lorsque

(i) $f = 2.5 \,\text{Hz}$.

.....

(ii) f = 1 Hz. [1]

.....

Fin de l'option B

Option C — Imagerie

12. Le schéma ci-dessous montre un miroir divergent.

L'objet O a une hauteur de 2,0 cm et il est à 6,0 cm de la surface du miroir. La distance focale du miroir est 4,0 cm et le rayon de courbure est 8,0 cm.

(a)	Construisez un diagramme de rayons pour l'objet O. Légendez l'image I.	[3]
(b)	Estimez le grossissement linéaire de l'image.	[1]

(c)	Résumez l'avantage des miroirs paraboliques par rapport aux miroirs sphériques.	[3]

(L'option C continue sur la page suivante)

Tournez la page

[3]

(Suite de l'option C)

13.		utilise un télescope astronomique réglé à l'infini. La séparation des lentilles dans ce scope est 0,84 m. L'objectif a une distance focale de 0,82 m.	
	(a)	Calculez le grossissement de ce télescope.	[2]
	(b)	Résumez pourquoi la convention de signes est nécessaire en optique.	[1]
	(c)	Une élève décide d'inverser les positions de ces mêmes lentilles sans changer la séparation afin de former un microscope optique réglé à l'infini. Le punctum proximum de cette élève est à 0,25 m de son œil.	
		(i) Montrez à l'aide d'un calcul que l'image formée par l'objectif est à environ 0,19 m de l'oculaire.	[2]
		(ii) Calculez la distance entre l'objectif du microscope et l'objet.	[2]

(Option C, suite de la question 13)

	(iii)	Déte	rmine	z le gro	ssissen	nent tota	al du mic	roscope			[2]

14. Un rayon de lumière monochromatique entre dans une fibre optique à gradient d'indice.

(a) Dessinez le trajet du rayon tandis qu'il se propage à travers la fibre optique à gradient d'indice. [1]

(b) Expliquez comment la fibre optique à gradient d'indice réduit la dispersion de guidage. [3]

	-		-	-	
		-			
•			•		
		-			
		-			
					\neg

(Suite de l'option C)

15. Dans l'imagerie médicale, on peut faire passer des rayons X à travers l'aluminium avant d'atteindre le corps. Le graphique ci-dessous montre la variation du coefficient d'absorption linéaire de l'aluminium pour différentes énergies de photons.

(a) Des rayons X sont incidents sur une feuille d'aluminium d'une épaisseur de 8,0 cm. Calculez la fraction de l'intensité des rayons X incidents qui sort de cette feuille pour des énergies de photons de

(i)	9,0 MeV.	[2]
(1)	J,UIVICV.	14

(Option C, suite de la question 15)

		(ii) $3.0 \times 10^{-3} \text{ MeV}.$	[1]
	(b)	En référence à vos réponses aux questions (a)(i) et (a)(ii), discutez les avantages de l'utilisation de la feuille d'aluminium.	[2]
16.	(a)	Exprimez un avantage et un désavantage de l'imagerie par résonance magnétique (IRM) par rapport à l'imagerie radiologique.	[2]
	Avar	ntage :	
	Désa	avantage:	
	• • •		
	(b)	Expliquez pourquoi un champ de gradient est nécessaire dans l'imagerie par résonance magnétique nucléaire (RMN).	[3]

Fin de l'option C

Tournez la page

Option D — Astrophysique

17.	(a)	Décrivez une caractéristique clé d'une nébuleuse.	[1]
	(b)	Bêta Centauri est une étoile dans les cieux du sud avec un angle de parallaxe de $8,32 \times 10^{-3}$ secondes d'arc. Calculez, en mètres, la distance de cette étoile de la Terre.	[2]
	(c)	Résumez pourquoi les astrophysiciens utilisent des unités hors SI pour la mesure de la distance astronomique.	[1]
18.		ebaran est une géante rouge avec une longueur d'onde de crête de 740 nm et une masse, 7 masses solaires. Montrez que la température en surface d'Aldébaran est environ 4000 K.	[2]
			[4]
	• • • •		

(Option D, suite de la question 18) Le rayon d'Aldébaran est 3,1 × 10¹⁰ m. Déterminez la luminosité d'Aldébaran. [2] (c) Résumez comment la lumière provenant d'Aldébaran donne la preuve de sa composition. [2] (d) Identifiez l'élément qui est en fusion dans le noyau d'Aldébaran à ce stade de [1] son évolution. Prédisez l'évolution future probable d'Aldébaran. [3] (e)

(Suite de l'option D)

(a)	Onc	lumière atteignant la Terre en provenance du quasar 3C273 a $z = 0,16$.	
	(i)	Résumez ce qu'on entend par z.	[1]
	(ii)	Calculez le rapport de la taille de l'univers lors de l'émission de cette lumière par ce quasar avec la taille actuelle de l'univers.	[1]
	(iii)	Calculez la distance de 3C273 de la Terre en utilisant $H_0 = 68 \mathrm{km s^{-1} Mpc^{-1}}$.	[2]
(b)		iquez comment le rayonnement cosmologique fossile soutient le modèle du pang chaud.	[2]

(Suite de l'option D)

20.	(a) Exprimez le critere de Jeans pour la formation des étoiles.	[2]
	(b) Décrivez trois différences entre les supernovae de type la et de type II.	[3]

Tournez la page

(Suite de l'option D)

21. Le modèle du big-bang chaud suggère plusieurs conséquences pour l'univers. Il existe désormais des preuves que l'énergie sombre et la matière noire existent.

- (a) Sur les axes ci-dessus, représentez un graphique de la variation du facteur d'échelle cosmique en fonction du temps pour
 - (i) un univers fermé sans énergie sombre. Légendez cette courbe C. [1]
 - (ii) un univers accélérant avec énergie sombre. Légendez cette courbe A. [2]

(b)		ΧĻ	olio	٦L	ie	_	u	n	e	O	D	Se	÷1	Vċ	111	U	<u> </u>	е	X	ρŧ	=1	11	11	e	111	.a	IE	. (վ	!!	S	JU	ıu	eı	11	Ič	1)I	е	Se	71	IC	e	u	е	lē	a	11	ıa	u	е	re	; 1	IC	ווע	С.	
										-				-																		-							•								•										
																							•																																		
										•			•	•			•	•					•			•	•												•			•							•							•	
													•					•																					•			•															
										-			-	-																		-		-					-																		

Fin de l'option D

Veuillez **ne pas** écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

