REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 15 April 2003 Viewgraphs 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER F04611-00-C-0009 5b. GRANT NUMBER 5Klbf Unielement TCA for Film Coolling Model 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 3005 Jeffrey Muss 5e. TASK NUMBER UT00 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Sierra Engineering 603 E. Robinson St., Suite 7 Carson City, NV 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/PRS 11. SPONSOR/MONITOR'S 5 Pollux Drive NUMBER(S) Edwards AFB CA 93524-7048 AFRL-PR-ED-VG-2003-090 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 20030529 076 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE OF ABSTRACT

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER

PERSON Sheila Benner

(include area code)

(661) 275-5963

OF PAGES

Α

MEMORANDUM FOR PRS (Contractor Publication)

FROM: PROI (STINFO)

15 Apr 2003

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2003-090 Muss, Jeffrey (Sierra Engineering), "5Klbf Unielement TCA for Film Cooling Model"

5140

NASA Fluids Workshop (U.S. Citizens Only)

(Statement A)

(Biremingham, AL, 22-24 Apr 2003) (Deadline: 21 Apr 2003 – RUSH, per PAK)

5Klbf Unielement TCA for Film Cooling Model Validation

Jeffrey Muss

Sierra Engineering

24 April 2003

DISTRIBUTION STATEMENT A: Approved for Public Release -Distribution Unlimited

Overview

- Problem Statement & Applicability
- 2. Hardware Characteristics
- 3. Test Program
- 4. Data Reduction Approach
- 5. Summary

Problem Statement:

Very limited test data available to validating the potential of liquid RP-1 film cooling at high pressures

Applications:

- extensively on film cooling for MCC thermal management Northrop-Grumman's TR107 hydrocarbon engine relies
- applicable for design and analysis of target applications Liquid / gaseous film cooling model refinement

5K Test Objectives

- Collect film cooling performance data
- Hot gas recovery temperature
- Convective heat transfer coefficient (Hg)
- Single versus dual film cooling data
- Wall compatibility / spatial uniformity
- Operability
- Demonstrate "full size" element
- Performance
- Data for "scalability" of elements
- Currently elements tested at 400 lbf level
- Chamber pressure 1/2 (<1200 psia)
- Data with "hot" gO₂

5K Hardware Characteristics

- Operating conditions tied to full-sized TR107
- Ox-rich staged combustion oxidizer
- Main element operation characteristics matched
- Predicted maximum material temperatures bracketed
- Wall-to-element dimensions matched
- Chamber characteristic lengths and accelerations matched
- Passage dimensions matched
- Heavily instrumented for model validation
- Workhorse hardware with some flight-type characteristics

Result is Modular Design

Modular Test Hardware Design

- Main Injector Assembly
- Ablative Hardware
- Main Injector
- Igniter Flange
- Ablative Chamber
- Work Horse Hardware
- Film Coolant Injection Rings (2)
- Instrumented Barrel
- Instrumented Nozzle
- Flight Type Sleeve Hardware
- Flight Type Sleeve
- Flight Type Sleeve Backup Chamber

Ablative Chamber Assembly No Film Cooling

Objectives:

- Demonstrate ability to run ORPB with TCA downstream
 - Demonstrate ignition of TCA main injector Demonstrate TCA injector element performance

Ablative Chamber Assembly with Fwd FFC Assembly

Objectives:

- Demonstrate ability to run ORPB with TCA downstream, with film cooling
- Demonstrate ignition of TCA main injector, with film cooling
- Demonstrate TCA injector element performance, with film cooling

Work Horse Assembly

Objectives:

- Demonstrate ability to run ORPB with TCA downstream, with dual injection film cooling
- Demonstrate TCA injector element performance, with dual point film cooling
 - Collect film cooling performance data as a function of film and geometric Film

Flight Type Sleeve Testing Assembly

Objectives: 1. Demonstrate "flight" type dump sleeve

Workhorse Chamber Assembly

- 6 Testable Configurations
- Allows for parametric study of film cooling
 Dual Point FFC, Test Matrix (Test Series 7)
 Single Point FFC (Test Series 8 and 9)

Established to Capture Critical Film Cooling Factors Wall Temperature Measurement Locations

Factors influencing film cooling performance & instrumentation placement:

- Core gas condition, i.e. un-accelerated, accelerating, diverging nozzle
 - Instrumentation placed to measure these effects
- Decomposition length of supercritical coolant
- Predicted decomposition lengths used to select near injection locations
- Hardware design / cost
- Flange size / location, bolt access
- Limited budget for instrumentation

Instrumented Throat Design Features

Instrumented Barrel Design Features

outer covering (Stainless Steel, Viton O-Ring)

Test Planning Overview

- I. Testing Objectives
- 2. Phases of Test Program
- Basic Approach for each Phase of Test Program

Three Phase Test Program Mitigates Risk, Obtains Needed Data

WorkHorse

ORPB

5k TCA Hot Fire Test Sequence

Yellow Box – Green Box -Cyan Box -

Ablative Configurations
Work Horse Configurations
Flight Type Sleeve Configuration

Top Level Test Plan

Test Series	Objective	TCA Config.	TCA	Element MR	Chamber Pressure	Film Cooling Config	No. of Tests
-	• Integration / Checkout with ORPB	Ablative chamber w/o FFC	09~	09~	190 to 385	None	4
2	Main Inj. Ignition Chamber Wall Compatibility Element Performance	Ablative chamber w/o FFC	3.147	3.147	740 To 1485	None	4
೮	Main Inj. Ignition Chamber Wall Compatibility Element Performance	Ablative chamber w/o FFC	2.7	2.7	740 To 1485	None	4
4	Main Inj. Ignition Chamber Wall Compatibility Element Performance	Ablative chamber w/o FFC	3.2	3.2	740 To 1485	None	4
τυ	Integration/Timing Fwd FFC Chamber Wall Compatibility Element Performance	Ablative chamber w/ FWD FFC	0.94 To 1.22	3.147	1760 To 1875	High FWD	င
9	Integration/Timing Fwd FFC Chamber Wall Compatibility Element Performance	Ablative chamber w / FWD FFC	1.22 To 1.62	3.147	1750 To 1800	Low FWD	ന
7	Integration/Timing with both Fwd & Atf FFC Chamber Wall Compatibility	Work Horse w / Fwd & Aft FFC	0.72 To 1.34	3.147	890 To 2045	Multiple Combinations	40
ω	Chamber Wall Compatibility	Fwd FFC only – Work Horse Hardware	0.94 to 1.22	3.147	1760 To 1875	High FWD	O
6	Chamber Wall Compatibility	Fwd FFC only – Work Horse Hardware	1.22 To 1.62	3.147	1750 To 1800	Low FWD	Q
10	Integration with Flight Hardware Chamber Wall Compatibility	Flight-Type Sleeve w/ Fwd FFC	-1.04	. 3.147	1835 & ~1100	High FWD	9

Test Plan Details

- Detailed Hot Fire Test Plan & Instrumentation
- Ablative Configurations
- Work Horse Configurations
- Flight Type Sleeve Configuration
- Data Reduction

5k TCA Hot Fire Test Plan

To Date:

The test plan has not been optimized / prioritized for the NGLT test duration (~6 wks testing, +2 wks setup).

Near-term Activity:

- Prioritize the test points using design-of-experiments
- maximize data for model validation
- work within the allocated resources

ORPB Integration - Ablative Configuration Test Series 1

Objectives:

- Demonstrate ability to run
 ORPB with TCA
 downstream
- 2. 4 tests

Success Criteria:

- ORPB performance (Pc, T uniformity) not impacted by attachment of TCA
- Igniter Spool temperature with acceptable limits

TCA Injector Ignition, Element Performance (No FFC) Ablative Configuration **Fest Series 2-4**

Objectives:

- Demonstrate ignition of TCA main injector without forward film cooling
- Demonstrate TCA injector element performance (over Pc and MR box)
- 12 tests

Success Criteria:

- ORPB performance (Pc, T uniformity) not impacted by attachment of TCA
 - Ignition achieved with no adverse "popping"
- Igniter Spool temperature with acceptable limits
 - Element performance within expected level

Ablative Configuration Instrumentation Test Series 1 thru 4

Provided instrumentation allows evaluation of:

- Ignition characteristics
 - Element performance
- Face compatibility
- Igniter wall condition

Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line
TCA Main Injector GOX Supply					
GOX Supply Pressure	PGOXI	180		100 Hz	Yes
GOX Supply Temperature	TGOXI	0		20 Hz	
HiFreq Manifold Pressure	PGOXIHF	90		5k Hz	
TCA Fuel Supply System					
Fuel Supply Pressure	PFI			100 Hz	Yes
Fuel Supply Temperature	TFI			10 Hz	
Fuel Suppy Flowrate	WFI			20 Hz	
Main Injector Fuel System					
Main Fuel Venturi Inlet Pressure	PFVIMI			100 hz	Yes
Main Fuel Venturi Downstream Pressure	PFVDMI			50 hz	
Injector Manifold Fuel Pressure	PFJ	180		50 hz	
HiFreq Manifold Pressure	PFJHF	210		10k Hz	
Fuel Supply Temperature	TFJ	270		20 Hz	
njector Face					
Injector Face Temperature	TINJ1	90	0	1k hz	Yes
Injector Face Temperature	TINJ2	330	0	1k hz	Yes
Shamber Conditions - Igniter section					
Steady State Pc (0-300 psia)	PCL	90	1.5	1k Hz	Yes
Steady State Pc (0-3000 psia) (same port as above)	PCH	90	1.5	1k Hz	Yes
Axial Accel	AAX			10 kHz	
Radial Accel	ARAD			10 kHz	
Wall Temperature (igniter spool)	TIGN1	60	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGN3	60		50 Hz	
Wall Temperature (igniter spool)	TIGN4	180	1,5	50 Hz	Yes
Wall Temperature (ignitêr spool)	TIGN2	330		50 Hz	
Wall Temperature (igniter spool)	TIGN5	330		50 Hz	

TCA Injector Ignition, Element Performance (w/ FFC) Ablative Configuration Test Series 5 & 6

Objectives:

- Demonstrate ability to run ORPB with TCA downstream, with film cooling
 - Demonstrate ignition of TCA main injector, with film cooling
- Demonstrate TCA performance with varying ilm cooling percentage

Success Criteria:

- 1. ORPB performance (Pc, T uniformity) not impacted by attachment of TCA
- Ignition achieved with no adverse "popping" ςi
 - Igniter Spool temperature with acceptable ന :
- Element performance within expected level

Ablative Configuration Instrumentation Test Series 5 and 6

Instrumentation for Test
Series 5 & 6 increased to
allow measurement of
forward film coolant
operating conditions

Provided instrumentation allows evaluation of:

- Ignition characteristics
- Element performance
 - Face compatibility
- Igniter wall condition

Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line	•
FCA Main Injector GOX Supply						
GOX Supply Pressure	PGOXI	180		100 Hz	Yes	
GOX Supply Temperature	TGOXI	0		20 Hz		
HiFreq Manifold Pressure	PGOXIHF	90		5k Hz		
TCA Fuel Supply System						
Fuel Supply Pressure	PFI			100 Hz	Yes	
Fuel Supply Temperature	TFI			10 Hz		
Fuel Suppy Flowrate	WFI			20 Hz		
Main Injector Fuel System						
Main Fuel Venturi Inlet Pressure	PFVIMI			100 hz	Yes	
Main Fuel Venturi Downstream Pressure	PFVDMI			50 hz		
Injector Manifold Fuel Pressure	PFJ	180		50 hz		
HiFreq Manifold Pressure	PFJHF	210		10k Hz		
Fuel Supply Temperature	TFJ	270		20 Hz		
njector Face						
Injector Face Temperature	TINJ1	90	0	1k hz	Yes	
Injector Face Temperature	TINJ2	330	0	1k hz	Yes	
Chamber Conditions - Igniter section						
Steady State Pc (0-300 psia)	PCL	90	1.5	1, TZ	Yes	
Steady State Pc (0-3000 psia) (same port as above)	PCH	90	1.5	1K Hz	Yes	
Axial Accel	AAX			10 kHz		
Radial Accel	ARAD		-	10 kHz		
Wall Temperature (igniter spool)	TIGN1	60	١	50 Hz		
Wall Temperature (igniter spool)	TIGN3	60	-	50 Hz		
Wall Temperature (igniter spool)	TIGN4	180	1,5	50 Hz	Yes	
Wall Temperature (igniter spool)	TIGN2	330	1	50 Hz		
Wall Temperature (igniter spool)	TIGNS	330	1.5	50 Hz		
Forward Film Cooling Ring						
Fwd FFC Fuel Supply Temperature	TFFFCI			10 Hz		
Fwd FFC Fuel Venturi Inlet Pressure	PVIFFFC			10 Hz	Yes	
Fwd FFC Fuel Venturi Downstream Pressure	PVDFFFC			10 Hz		
Fwd FFC Fuel Manifold Pressure	PMFFFC			10 Hz		

Workhorse Configuration Element Performance, Film Cooling Performance Test Series 7 & 8

Dual Point Film Cooling Testing Workhorse Configuration Test Series 7

Objectives:

- 1. Demonstrate ability to run ORPB with TCA downstream and dual injection film cooling
- Demonstrate TCA injector element performance with dual point film cooling ⟨
- Collect film cooling performance data as a function of film and geometric parameters

Outline for Dual Point Film Cooling Study

- Independent forward and aft FFC flow fractions
- Cover range of equivalent film flows for 40K and 1M engines
- Nominal and 1/2 main injector flow
- 40 tests to fully characterize operating box

Element Performance, Wall Compatibility as Instrumentation for Test Series 7 Measures Function of Film Cooling

Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line
TCA Main Injector GOX Supply					
GOX Supply Pressure	PGOXI	180		100 Hz	Yes
GOX Supply Temperature	TGOXI	0		20 Hz	
HiFred Manifold Pressure	PGOXIHF	06		5K HZ	
TCA Fuel Supply System					
Fuel Supply Pressure	PFI			100 Hz	Yes
Fuel Supply Temperature	TFJ			10 Hz	
Fuel Suppy Flowrate	WFI			20 Hz	
Main Injector Fuel System					
Main Fuel Venturi Inlet Pressure	PFVIMI			100 hz	Yes
Main Fuel Venturi Downstream Pressure	PFVDMI			50 hz	
Injector Manifold Fuel Pressure	PFJ	180		20 hz	
HiFreq Manifold Pressure	PFJHF	210		16 H2	
Fuel Supply Temperature	TFJ	270		20 Hz	
Injector Face					
Injector Face Temperature	TINJ1	06	٥	1k hz	Yes
Injector Face Temperature	TINJS	330	٥	1k hz	Yes
Chamber Conditions - Igniter section					
Steady State Pc (0-300 psia)	PQ.	96	1.5	1k Hz	Yes
Steady State Pc (0-3000 psia) (same port as above)	PCH	8	1.5	1 HZ	Yes
Axial Accel	AAX			10 kHz	
Radial Accel	ARAD			10 kHz	
Wall Temperature (igniter spool)	TIGN1	09	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGN3	90	1.5	50 Hz	
Wall Temperature (igniter spool)	TIGN4	180	1.5	50 Hz	Yes
Wall Temperature (igniter spool)	TIGNS	330	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGNS	330	1.5	20 Hz	
Forward Film Cooling Ring					
Fwd FFC Fuel Supply Temperature	TFFFCI			10 Hz	
Fwd FFC Fuel Venturi Inlet Pressure	PVIFFFC			10 Hz	Yes
Fwd FFC Fuel Venturi Downstream Pressure	PVDFFFC			10 Hz	
Fwd FFC Fuel Manifold Pressure	PMFFFC			10 Hz	
Aft Film Cooling Ring					
Aft Film Fuel Supply Temperature	TAFFCI			10 Hz	
Aft film Fuel Venturi Inlet Pressure	PVIAFFC			10 Hz	Yes
Aft Film Fuel Venturi Downstream Pressure	PVDAFFC			10 Hz	
A6 CCO Enal Manifold Proceura	PMAFFC			10 Hz	

Instrument Callout Barrel Section - Heat Sink HiFreg PC Wall Temperature (Barrel Flance - upstream)		Clocking	Position	Sampling	3
arrel Section - Heat Sink HIFreg PC Wall Temerature (Barrel Flance - upstream)	Nomenclature	Downstream	Injector	Rate	Hed Line
aret Section - reat Strik HiFreq PC Wall Temperature (Barrel Flance - upstream)			Lace		
Wall Temperature (Barrel Flance - upstream)	PCHE	7.5	8 925	10k Hz	Yes
	TBAR1	09	2.625	50 Hz	
Wall Temperature	TBAR3	09	4.625	50 Hz	
Wall Temperature	TBAR5	09	6.125	50 Hz	
Wall Temperature	TBAR7	09	7.625	50 Hz	
Wall Temperature	TBAR9	09	9.125	50 Hz	
Wall Temperature	TBAR11	9	10.625	50 Hz	
Wall Temperature (Barrel Flange - dwnstream)	TBAR13	9	12.526	50 Hz	Yes
Wall Temperature (Barrel Flange)	TBAR2	330	2.625	50 Hz	
Wall Temperature	TBAR4	330	4.625	50 Hz	
Wall Temperature	TBAR6	330	6.125	50 Hz	
Wall Temperature	TBARB	330	7.625	50 Hz	
Wall Temperature	TBAR10	330	9.125	50 Hz	
Wall Temperature	TBAR12	330	10.625	50 Hz	
Wall Temperature (Barrel Flange - dwnstream)	TBAR14	330	12.526	50 Hz	Yes
Throat Section - Heat Sink					
Wall Temperature (Throat Flange - upstream)	TNOZ1	09	14.77	50 Hz	
Wall Temperature	TNOZ3	90	16.264	50 Hz	
Wall Temperature	TNOZ5	90	17.763	50 Hz	
Wall Temperature	TNOZ7	9	19.261	50 Hz	
Wall Temperature	TNOZ9	09	20.761	50 Hz	
Wall Temperature	TN0Z11	09	23	50 Hz	Yes
Wall Temperature	TNOZ13	90	24.747	50 Hz	
Wall Temperature	TNOZ15	90	26.247	50 Hz	
Wall Temperature (Throat Flange - upstream)	TNOZ2	330	14.77	50 Hz	
Wall Temperature	TNOZ4	330	16.264	50 Hz	
Wall Temperature	TNOZ6	330	17.763	50 Hz	
Wall Temperature	TNOZ8	330	19.261	50 Hz	
Wall Temperature	TNOZ10	330	20.761	50 Hz	
Wall Temperature	TNOZ12	330	23	50 Hz	Yes
Wall Temperature	TNOZ14	330	24.747	50 Hz	
Wali Temperature	TNOZ16	330	26.247	50 Hz	
Wall Static Pressure	PNOZ	345	19.261	1 kHz	

Test Series 8 & 9 – Work Horse Configuration Single Point Film Cooling Testing Outline

- Thermal analysis indicates hardware will survive single point (forward injection only) film cooling tests
- Without forward film coolant flow the front end hardware over heats
- Demonstrate forward film effectiveness at two chamber pressures
- 12 tests identified

Instrumentation for Test Series 8 & 9 Measures Element Performance, Wall Compatibility as Function of Film Cooling

Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line
TCA Main Injector GOX Supply					
GOX Supply Pressure	PGOXI	180		100 Hz	Yes
GOX Supply Temperature	TGOXI	0		20 Hz	
HiFred Manifold Pressure	PGOXIHE	90		5k Hz	
TCA Fuel Supply System					
Fuel Supply Pressure	PFI			100 Hz	Yes .
Fuel Supply Temperature	TFI			10 Hz	
Fuel Suppy Flowrate	WFI			20 Hz	
Main Injector Fuel System					
Main Fuel Venturi Inlet Pressure	PFVIMI			100 hz	Yes
Main Fuel Venturi Downstream Pressure	PFVDMI			50 hz	
Injector Manifold Fuel Pressure	PFJ	180		50 hz	
HiFred Manifold Pressure	PFJHF	210		10k Hz	
Fuel Supply Temperature	TFJ	270		20 Hz	
Injector Face					
Injector Face Temperature	TINJ1	90	0	1k hz	Yes
Injector Face Temperature	TINJ2	330	0	1k hz	Yes
Chamber Conditions - Igniter section					
Steady State Pc (0-300 psia)	PCL	06	1.5	1k Hz	Yes
Steady State Pc (0-3000 psia) (same port as above)	PCH	06	1.5	1k Hz	Yes
Axial Accel	AAX			10 KHz	
Radial Accel	ARAD			10 KHz	
Wall Temperature (igniter spool)	TIGN1	09	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGN3	8	1.5	50 Hz	
Wall Temperature (igniter spool)	TIGN4	180	1.5	50 Hz	Yes
Wall Temperature (igniter spool)	TIGN2	330	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGNS	330	1,5	50 Hz	
Forward Film Cooling Ring					
Fwd FFC Fuel Supply Temperature	TFFFCI			10 Hz	
Fwd FFC Fuel Venturi Inlet Pressure	PVIFFFC			10 Hz	Yes
Fwd FFC Fuel Venturi Downstream Pressure	PVDFFFC			10 Hz	
Fwd FFC Fuel Manifold Pressure	PMFFFC			10 Hz	,

					-
Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line
Raryel Section - Heat Sink					
HiFren PC	PCHF	75	8.925	10k Hz	Yes
Wall Temperature (Barrel Flande - upstream)	TBAR1	9	2.625	50 Hz	
Wall Temperature	TBAR3	9	4.625	50 Hz	
Wall Temperature	TBAR5	90	6.125	50 Hz	
Wall Temperature	TBAR7	90	7.625	50 Hz	
Wall Temperature	TBAR9	60	9.125	50 Hz	
Wall Temperature	TBAR11	60	10.625	50 Hz	
Wall Temperature (Barrel Flance - dwnstream)	TBAR13	99	12.526	50 Hz	Yes
Wall Temperature (Barrel Flange)	TBAR2	330	2.625	50 Hz	
Wall Temperature	TBAR4	330	4.625	50 Hz	
Wall Temperature	TBAR6	330	6.125	50 Hz	
Wall Temperature	TBAR8	330	7.625	50 Hz	
Wall Temperature	TBAR10	330	9.125	50 Hz	
Wall Temperature	TBAR12	330	10,625	50 Hz	
Wall Temperature (Barrel Flange - dwnstream)	TBAR14	330	12.526	50 Hz	Yes
Throat Section - Heat Sink					
Wall Temperature (Throat Flange - upstream)	TNOZ1	60	14.77	50 Hz	
Wall Temperature	TNOZ3	60	16.264	50 Hz	
Wall Temperature	TNOZ5	60	17,763	50 Hz	
Wall Temperature	TNOZ7	60	19.261	50 Hz	
Wall Temperature	TNOZ9	90	20.761	50 Hz	
Wall Temperature	TNOZ11	90	23	50 Hz	Yes
Wall Temperature	TNOZ13	90	24.747	50 Hz	
Wall Temperature	TNOZ15	90	26.247	50 Hz	
Wall Temperature (Throat Flange - upstream)	TNOZ2	330	14.77	50 Hz	
	TNOZ4	330	16.264	50 Hz	
Wall Temperature	TNOZ6	330	17.763	50 Hz	
Wall Temperature	TNOZ8	330	19.261	50 Hz	
Wall Temperature	TNOZ10	330	20.761	50 Hz	
Wall Temperature	TNOZ12	330	23	50 Hz	Yes
Wall Temperature	TNOZ14	330	24.747	50 Hz	
Wall Temperature	TNOZ16	330	26.247	50 Hz	
Wall Static Pressure	PNOZ	345	19.261	1 kHz	

Flight Type Sleeve Tests Planned to Simulate TR107 Thermal Boundary Conditions

- Demonstrate operation at nominal and 1/2 PC
- Twos series of 3 tests increasing duration

Instrumentation for Test Series 10 Measures Element Performance, Wall Compatibility as Function of Film Cooling

	1	-1	1	ــــــــــــــــــــــــــــــــــــــ	1_	1_	1	1	1		1_	ــــــــــــــــــــــــــــــــــــــ		1	1	1	1		L																		
Red Line		Yes				Yes				Yes						Yes	Yes		Yes	Yes					Yes					Yes					Yes		
Sampling Rate		100 Hz	20 Hz	5k Hz		100 Hz	10 Hz	20 Hz		100 hz	50 hz	50 hz	10k Hz	20 Hz		1k hz	1k hz		1k Hz	1k Hz	10 kHz	10 kHz	50 Hz		10 Hz	10 Hz	10 Hz	10 Hz		10 Hz	П	10 Hz	10 Hz				
Axial Position from Injector Face																0	0		1.5	1.5			0.5	1.5													-
Clocking Looking Downstream		180	0	90								180	210	270		90	330		90	90			9	09	180	330	330										-
Nomenclature		PGOXI	TGOXI	PGOXIHE		PFI	TFI	WFI		PFVIMI	PFVDMI	PFJ	PFJHF	TFJ		TINJI	TINJ2		PCL	PCH	AAX	ARAD	TIGN1	TIGN3	TIGN4	TIGNS	TIGNS		TFFFCI	PVIFFFC	PVDFFFC	PMFFFC		TDSI	PVIDS	PVDDS	PMDS
Instrument Callout	TCA Main Injector GOX Supply	GOX Supply Pressure	GOX Supply Temperature	HiFreq Manifold Pressure	TCA Fuel Supply System	Fuel Supply Pressure	Fuel Supply Temperature	Fuel Suppy Flowrate	Main Injector Fuel System	Main Fuel Venturi Inlet Pressure	Main Fuel Venturi Downstream Pressure	Injector Manifold Fuel Pressure	HiFreq Manifold Pressure	Fuel Supply Temperature	Injector Face	Injector Face Temperature	Injector Face Temperature	Chamber Conditions - Igniter section	Steady State Pc (0-300 psia)	Steady State Pc (0-3000 psia) (same port as above)	Axial Accel	Radial Accel	Wall Temperature (igniter spoot)	Wall Temperature (igniter spool)	Forward Film Cooling Ring	Fwd FFC Fuel Supply Temperature	Fwd FFC Fuel Venturi Inlet Pressure	Fwd FFC Fuel Venturi Downstream Pressure	Fwd FFC Fuel Manifold Pressure	Flight Dump Sleeve	Dump Sleeve Fuel Supply Temperature	Dump Sleeve Fuel Venturi Inlet Pressure	Dump Sleeve Fuel Venturi Downstream Pressure	Dump Sleeve FFC Fuel Manifold Pressure			

Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line
Throat Section - Heat Sink					
Wall Temperature (Throat Flange - upstream)	TNOZ1	90	14.77	50 Hz	
Wall Temperature	TNOZ3	09	16.264	50 Hz	
Wall Temperature	TNOZ5	09	17.763	50 Hz	
Wall Temperature	TNO27	09	19.261	50 Hz	
Wall Temperature	4ZONT	09	20.761	50 Hz	
Wall Temperature	TNOZ11	09	23	50 Hz	Yes
Wall Temperature	TNOZ13	90	24.747	2H 09	
Wall Temperature	TN0Z15	9	26.247	50 Hz	
Wall Temperature (Throat Flange - upstream)	TNOZ2	330	14.77	50 Hz	
Wall Temperature	TNOZ4	330	16.264	50 Hz	
Wall Temperature	TNOZ6	330	17.763	50 Hz	
Wall Temperature	TNOZ8	330	19.261	50 Hz	
Wall Temperature	TNOZ10	330	20.761	50 Hz	
Wall Temperature	TNOZ12	330	23	50 Hz	Yes
Wall Temperature	TNOZ14	330	24.747	50 Hz	
Wall Temperature	1 TNOZ16	330	26.247	2H 0S	
Wall Static Pressure	PNOZ	345	19.261	1 kHz	

Throat section measurements allow direct comparison to previous work horse test results.

Data Reduction Approach

Testing objectives for film cooling:

- temperature and heat transfer coefficient. These data Determine the local (axially varying) recovery will be used to:
- Discern the fluid "latent heating & cracking" length
- Forward
- Aft
- Discern the single point film cooling effectiveness
- Forward
- Discern the two point film cooling effectiveness
- Superposition principal

TCA Hot Wall Instrumentation Utilizes Dual Junction Coaxial Thermocouples

- Rudded
- Fast response
- Matched to wall material and response
- Simple to use (no water cooling circuits)
- Relatively inexpensive
- Successfully demonstrated numerous times for measurement of local wall heat fluxes
- Kidd, C.T., "Coaxial Surface Thermocouples Analytical & Experimental Considerations for Aerothermal Heat Flux Measurement Applications", ISA, 1990, Paper 90-126 Hollis; B.R., "Users Manual for the One-Dimensional Hypersonic Aero-thermodynamic (1DHEAT) Data Reduction Code", NASA
 - - Hedlund, E.R., et.al. "Heat Transfer Testing in the NSWC Hypervelocity Wind Tunnel Utilizing Co-axial Surface Thermocouples", NSWC MP80-151, March 19, 1080
 - Philippart, K.D."Diagnostic Developments for Velocity & Temperature Measurements in Uni-Element Rocket Environments" AFIT/CI/CIA 95-72, Aug 1995
 - Schieb, D.J. "Effects of Liquid Transpiration Cooling on Heat Transfer to the Diverging Region of a Porus-Walled Nozzle", AIIF/GA/ENY/97D-04, Dec, 1997
 - Cahoon, N.T. "Heating Parameter Estimation Using Coaxial Thermocouple Gages in Wind Tunnel Test Articles", AFIT/GAE/AA/84D-3, Dec. 1984

TCA Hot Wall Instrumentation Utilizes Co-axial Thermocouples

Planned sampling rate is 50 Hz. Each thermocouple will provide a "hot wall" and in-depth transient thermal response to the applied heat load.

Injector Face TC's

characteristics of the brass Iron/nickel type closely matches the thermal

Igniter/barrel/nozzle TC's

characteristics of the matches the thermal Type E closely Inconel 625

Summary

- Hardware design enables incremental study of film cooling and injector performance characteristics
- Component and assembly designs have been established for all necessary test hardware
- Instrumentation specified
- Preliminary test plan has been proposed
- Test plan needs to be prioritized for NGLT funding
- A data reduction approach for the film cooling data has been developed
- Data supports validation of both analytical and CFD models

