东南大学考试卷A卷

 课程名称
 线性代数
 考试学期
 19-20-2
 得 分

 适用专业
 全 校
 考试形式
 闭 卷
 考试时间长度
 120 分钟

- 一. (30%)填空题(*E*表示单位矩阵)
- **1.** 设 2 阶矩阵 $A = (\alpha_1, \beta)$, $B = (\alpha_2, \beta)$, 若 |A| = -2 , 则 $|2A B| = _-6$ __;
- **2.** 设向量 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,若 $\alpha_1+\alpha_2,k\alpha_2-\alpha_3,\alpha_1+\alpha_3$ 线性相关,则 $k=__1__$;
- 3. 设 $A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & a & a \\ 1 & a & 0 & 1 \end{pmatrix}$,若 Ax = 0的基础解系中只含两个向量,则 $a = \underline{\hspace{1cm}} 1$ _____;
- **4.** 设向量空间V 的从基 α_1, α_2 到 β_1, β_2 的 过渡矩阵为 $\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$,向量 η 在基 α_1, α_2 下的

5. 将 2 阶矩阵 A 的第二行的 2 倍加到第一行,再将第一行和第二行互换得矩阵 B ,则满

- 7. 若 $A = \begin{pmatrix} 1 & 2 \\ 2 & x \end{pmatrix}$ 与 $B = \begin{pmatrix} 1 & 3 \\ y & 4 \end{pmatrix}$ 合同,则参数 x, y 的取值范围是 $_x < 4, y = 3 _$;
- 8. 已知 A, P 为 2 阶矩阵,且 $P = (\alpha, \beta)$ 可逆,若 $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$,矩阵

- 9. 线性方程组 $\begin{cases} x_1 + x_2 = 1 \\ x_1 x_2 = 2 \text{ 的最小二乘解是} \\ -x_1 + 2x_2 = 1 \end{cases}$

第 1 页

二. **(10%)** 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} 3 & 1 \\ 2 & 3 & 1 \\ & \ddots & \ddots & \ddots \\ & & 2 & 3 & 1 \\ & & & 2 & 3 \end{vmatrix}$.

解:接行展开,得 $D_n = 3D_{n-1} - 2D_{n-2}$.

故
$$D_n - D_{n-1} = 2(D_{n-1} - D_{n-2}) = \cdots = 2^{n-1}(D_2 - D_1) = 2^n$$
;

$$D_n - 2D_{n-1} = D_{n-1} - 2D_{n-2} = \dots = D_2 - 2D_1 = 1$$

所以,

$$D_n = 2^{n+1} - 1$$

三. (12%) 已知向量
$$\beta_1 = \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix}$$
, $\beta_2 = \begin{pmatrix} a \\ 3 \\ 0 \end{pmatrix}$ 可以由 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \\ b \end{pmatrix}$ 线

性表示,且表达式不唯一,求参数a,b的值及表达式.

解:对矩阵 $(\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2)$ 作初等变换得

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2) \rightarrow \begin{pmatrix} 1 & 0 & -1 & -1 & 3a - 3 \\ 0 & 1 & 1 & 2 & 3 - 2a \\ 0 & 0 & b + 2 & 0 & 6 - 5a \end{pmatrix},$$

因为表达式不唯一,所以 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,故b=-2.

又 β_2 可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,b+5a=0,即 $a=\frac{6}{5}$.

$$\beta_1 = (-1+c)\alpha_1 + (2-c)\alpha_2 + c\alpha_3$$
;

$$\beta_2 = (\frac{3}{5} + c)\alpha_1 + (\frac{3}{5} - c)\alpha_2 + c\alpha_3$$

其中, c是任意常数.

四. (13%) 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
, 求矩阵方程 $XA - AXA = E - A^2$ 的解.

解: 由
$$XA - AXA = E - A^2$$
 得 $(E - A)XA = (E - A)(E + A)$.

因为E-A可逆,所以 XA = E + A.

又A可逆,且
$$A^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
,

所以,

$$X = (E+A)A^{-1} = A^{-1} + E = \frac{1}{2} \begin{pmatrix} 3 & 0 & -1 \\ 0 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix}.$$

(12%) 设矩阵 $A = \begin{pmatrix} 3 & 2 & -2 \\ -a & -1 & a \\ 4 & 2 & -3 \end{pmatrix}$ 相似于对角阵,求a,并求可逆矩阵 P 及对角阵

 Λ ,使得 $P^{-1}AP = \Lambda$.

解: $|\lambda E - A| = (\lambda - 1)(\lambda + 1)^2$,所以, *A* 的特征值为 1, -1(二重). 因为A与对角阵相似,所以,相应于特征值-1,A有两个线性无关的特征向量, 即, r(A+E)=1, 故a=0.

此时
$$(A+E)x=0$$
 有基础解系 $\alpha_1=\begin{pmatrix}1\\-2\\0\end{pmatrix}$, $\alpha_2=\begin{pmatrix}0\\1\\1\end{pmatrix}$;

$$(A-E)x = 0 有基础解系 \alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

$$\Rightarrow P = (\alpha_1, \alpha_2, \alpha_3), \quad \Lambda = diag(-1, -1, 1),$$

则P可逆,且 $P^{-1}AP = \Lambda$.

六. (13%)设二次型 $f(x_1,x_2,x_3)=2x_1^2+ax_2^2+2x_3^2+2x_1x_2+2x_1x_3-2x_2x_3$ 的秩为 2,求参数 a,并求一正交变换 x=Qy,把 f 化为标准形,并给出相应的标准形.

解:
$$f$$
 的矩阵是 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & a & -1 \\ 1 & -1 & 2 \end{pmatrix}$,

因为r(A) = 2, a = 2.

此时, $|\lambda E - A| = \lambda(\lambda - 3)^2$,故 A 的特征值是 0,3,3.

相应于特征值 0, Ax = 0有基础解系 $\alpha = (-1,1,1)^T$;

单位化,得
$$\gamma = \frac{1}{\sqrt{5}} (-1,1,1)^T$$
 ;

相应于特征值 3, (A-3E)x = 0 有基础解系 $\alpha_1 = (1,1,0)^T$, $\alpha_2 = (1,0,1)^T$,

正交化,单位化,得 $\gamma_1 = \frac{1}{\sqrt{2}}(1,1,0)^T$, $\lambda_2 = \frac{1}{\sqrt{6}}(1,-1,2)^T$.

令 $Q = (\gamma, \gamma_1, \gamma_2)$,则Q是正交阵. 在正交变换x = Qy下,

$$f(x_1, x_2, x_3) = 3y_2^2 + 3y_3^2$$
.

- 七. (10%)证明题:
 - 1. 设A为 $s \times n$ 矩阵. 证明: r(A) = n的充分必要条件是存在 $n \times s$ 矩阵B, 使得 BA = E.

证: 必要性 若r(A) = n,则存在可逆矩阵P,Q,使得 $A = P \begin{pmatrix} E_n \\ O \end{pmatrix} Q$.

令 $B = Q^{-1}(E_n, O)P^{-1}$,则 B 是 $n \times s$ 矩阵,且 BA = E . 充分性 若存在 $n \times s$ 矩阵 B ,使得 BA = E ,则因为 $n = r(E) = r(BA) \le r(A) \le n$,知, r(A) = n .

- 2. 设矩阵 $A = (a_{ij})$ 是 n 阶 正定矩阵, $b_i \neq 0$ $(i = 1, 2, \dots, n)$ 为实数.记 $B = (b_i b_i a_{ii})$.证明: B 也是正定矩阵.
- 证:显然,A 是对称的.因为A 是正定的,A 的每个顺序主子式都大于零. 又 B 的第 k 个顺序主子式等于 $B_k = b_1^2 b_2^2 \cdots b_k^2 A_k$,其中, A_k 是 A 的第 k 个顺序主子式,故 $B_k > 0$,从而 B 也是正定的.

共4页 第4页