Homework 2: Random Numbers, Monte Carlo, and Multidimensional Integration

X.Y.Z

Department of Physics, Astronomy, and Applied Physics, Rensselaer Polytechnic Institute name@rpi.edu

February 12, 2013

Computational Physics: HW 2

Question 1

- 1. Use your computer's default pseudo-RNG to generate a sequence $\{x_i\}_{i=1,N}$ of random numbers in the range between 0.0 and 1.0 (choose an appropriate value for N, such as 10,000 or more).
 - (a) Plot x_i as a function of sequence number i. Comment on the plot. Does it look random and uniform?
 - (b) Plot x_i as a function of x_{i+k} for a small k of your choice. What can you learn from this plot?
 - (c) Compute the k^{th} moment of your distribution. Compare to the theoretical value and comment.
 - (d) Calculate the auto-correlation between x_i and x_{i+k} for a few values of k. Comment and discuss.
 - (e) Prepare a plot with bins to assess the uniformity of the sequence. Use a reasonable number of bins (10, for instance). What does this plot tell you about the sequence?

- (f) Using the information in (a)-(e), comment on the quality of your sequence of random numbers.
- (g) Repeat with a sequence of numbers obtained from www.random.org.

Question 2

Choose *either* of the two following problems:

- 1. Use random numbers to calculate the integral in five dimensions
- 2. Random walk in 3D

Question 2a: Use random numbers to calculate:

$$\int_0^1 dx_1 \int_0^1 dx_2 \int_0^1 dx_3 \int_0^1 dx_4 \int_0^1 dx_5 (x_1 + x_2 + x_3 + x_4 + x_5)^3$$

- (a) Compare your result with the analytical result.
- (b) Repeat the calculation for a varying number of random numbers.
- (c) Study how the error behaves as you change the number of points. Plot this error and find if you can detect a $\sim 1/\sqrt{N}$ behavior of the error, where N is the number of points.
- (d) Compare the order of magnitude of your error with (numerically obtained):

$$\sigma^2 = \langle f^2 \rangle - \langle f \rangle^2 \tag{1}$$

Question 2b: Random walk in 3D

- (a) Repeat the 2D work presented in class for an equivalent 3D random walk.
- (b) At each step, consider a constant step size (i.e. of length 1, thereby defining the unit of distance). This means you could use spherical coordinates with constant r=1, while randomly picking values for azimuthal angle $\theta \in [0,2\pi]$ and zenith angle $\phi \in [0,\pi]$. Feel free to use Cartesian coordinates if you prefer; but in that case make sure you normalize the displacement vector.
- (c) Vary the total number N of steps and plot $\sqrt{< R^2 >}$ as a function of \sqrt{N} . $< R^2 >$ could be computed by averaging over, say, $n_{average} = 16$ different random walks (choose a different value for $n_{average}$ if you want). Comment on the general behavior of the $\sqrt{< R^2 >}$ versus \sqrt{N} plot.
- (d) Plot a few trajectories and discuss their shape.

Comments

- Due date: Wednesday 02/27/2013 at midnight
- Make sure your report is self-contained with sufficient details and clear plots.
- Feel free to add listings of your code (or use pseudo-code).
- Collaborative work is allowed but each student will turn in an individual report.

Technicalities: random numbers in C++

Function:

```
double randDouble(double a, double b) {
    double cd;
    d=b-a;
    c=((double)rand()/(static_cast<double>(RAND_MAX)+1.0))*d+a;
    return c;}

Seed:
srand( (unsigned)time(0) );

Call:
a=randDouble(-1,1);
```