1 Определение выпуклой облочки

Определение 1.1. Выпуклая оболочка множества точек S (CH(S)) это минимальное по включению выпуклое множество, содержащее все точки из S.

Утверждение 1.1. Если $|S| < \infty$, то CH(S) есть выпуклый полигон, причем вершины CH(S) принадлежат S.

Доказательство. Достаточно доказать следующие два утверждения.

• Если найдется выпуклый полигон с вершинами из S, содержащий все точки из S, он будет выпуклой оболочкой S (доказывается сначала для треугольника, а потом для произвольного выпуклого полигона, триангуляцией).

 \bullet Найдется выпуклый полигон, содержащий все точки из S (доказывается индукцией по мощности S).

Утверждение 1.2. Самая левая точка S принадлежит CH(S).

Утверждение 1.3. Выпуклая оболочка может быть найдена за время $\Theta(n \log h)$, где n = |S|, h = |CH(S)|.

Доказательство. Оценка $O(n \log h)$ доказывается сведением к сортировке, $\Omega(n \log h)$ доказывается конструктивно (алгоритм Чена).

2 Алгоритмы поиска выпуклой оболочки

2.1 Алгоритм Джарвиса (заворачивание подарка)¹

Самый естественный алгоритм, просто ищет последовательные вершины выпуклой оболочки, выполняя h-1 шаг, на каждом из которых, по текущей вершине выпуклой оболочки выбирается подходящий кандидат на звание следующей вершины перебором множества S. На первом шаге в качестве текущей вершины используется самая левая точка S, которая по утверждению (1.2) принадлежит CH(S).

Время работы — O(nh).

2.2 Метод сканирования Грэхэма²

Утверждение 2.1. Для вершин замкнутой n-звенной ломаной без самопересечений выпуклая оболочка может быть найдена за O(n).

Существует несколько способов генерации по множеству S входа для метода сканирования Γ рэхэма.

- Сортировка точек из S по полярному углу относительно некоторой точки гарантированно лежащий внутри CH(S). Этот способ используется в одном из вариантов MergeHull.
- Сортировка точек из S по полярному углу (в данном случае можно по повороту!) относительно некоторой вершины CH(S). Это классический алгоритм Грэхэма.
- Склейка двух цепей, каждую из который можно получить сортировкой по полярному углу относительно бесконечно удаленной точки. Скажем, для генерации первой цепи используем (0, 1, 0), для второй -(0, -1, 0). Это алгоритм Эндрюса.

2.3 MergeHull³

Применение стандартной идеи "разделяй и властвуй", а именно, разбиение S на подмножества $S_1, S_2, S_1 \cup S_2 = S,$ $S_1 \cap S_2 = \emptyset, ||S_1| - |S_2|| \le 1$; построение $CH(S_1), CH(S_2)$; и слияние выпуклых оболочек. Различают варианты когда S_1, S_2 выбираются произвольным образом, и когда S_1, S_2 разделены в пространстве $(CH(S_1), CH(S_2))$ соотвественно тоже). Время работы обоих вариантов $O(n \log n)$.

2.4 QuickHull⁴

В среднем самый быстрый, хотя в худшем случае время работы может достигать $O(n^2)$. Также использует идею "разделяй и властвуй".

2.5 Алгоритм Чена

Ассимптотическое время работы достигает нижней границы $-O(n \log h)$, но на практике этот алгоритм не применим.

2.6 Инкрементальный алгоритм 5

¹Описан даже в Кормене

²Есть где угодно (Wikipedia)

 $^{^3}$ Можно почитать у О'Рурка

⁴Есть в Wikipedia

 $^{^5 \}mbox{Можно}$ почитать у Препараты, Шеймоса