MATHEMATICS 271 L01/02 WINTER 2013 MIDTERM SOLUTIONS

[6] 1. Use the Euclidean algorithm to find gcd(78, 59). Then use your work to write gcd(78, 59) in the form 78a + 59b where a and b are integers. Solution: We have

$$78 = 1 \times 59 + 19$$

$$59 = 3 \times 19 + 2$$

$$19 = 9 \times 2 + 1$$

$$2 = 2 \times 1 + 0$$

so
$$\gcd(78, 59) = 1$$
, and $\gcd(78, 59) = 1 = 19 - 9 \times 2 = 19 - 9 \times (59 - 3 \times 19)$
= $28 \times 19 - 9 \times 59 = 28 \times (78 - 19) - 9 \times 59 = 28 \times 78 - 37 \times 59$.

Another way is to use the "table method" as follows.

		78	59
	78	1	0
	59	0	1
$R_1 - R_2$	19	1	-1
$R_2 - 3R_3$	2	-3	4
$R_3 - 9R_4$	1	28	-37

Thus, gcd(78, 59) = 1 and $gcd(78, 59) = 78 \times 28 + 59 \times (-37)$, that is, a = 28 and b = -37.

- [4] 2. You are given that A and B are sets, and that $(2,3) \in A \times B$, but $(2,4) \notin A \times B$. (a) Find an ordered pair that definitely is in $B \times A$. Explain. Solution: The pair (3,2) is definitely an element of $B \times A$. Since $(2,3) \in A \times B$, we know $2 \in A$ and $3 \in B$, and hence $(3,2) \in B \times A$.
- (b) Find another ordered pair $(\neq (2,4))$ that definitely is **not** in $A \times B$. Explain. Solution: The pair (1,4) is definitely not an element of $A \times B$. Since $(2,3) \in A \times B$, we know $2 \in A$. Since $(2,4) \notin A \times B$, we know $2 \notin A$ or $4 \notin B$, but $2 \in A$ as seen above, and so we know that $4 \notin B$. Since $4 \notin B$, the pair (1,4) is not an element of $A \times B$.

Note that $(a, b) \notin A \times B$ if and only if $a \notin A$ or $b \notin B$. Thus, if we know $b \notin B$ then we can conclude that $(a, b) \notin A \times B$ (it does not matter if $a \in A$ or $a \notin A$). In this case, we know $4 \notin B$, so we can conclude $(1, 4) \notin A \times B$, it does not matter whether 1 is an element of A or not, and in fact we do not know whether 1 is an element of A.

Also, note that the empty set is **not** an element of every set. It is true that the empty set is a **subset** of every set.

- [11] 3. Two of the following three statements are true, and one is false. Prove the true statements. Write out and prove the **negation** of the false statement. Use no properties of even and odd integers other than their definitions.
- (a) $\forall n \in \mathbb{Z} \exists$ a prime number p so that pn is even.

Solution: This statement is true and here is a proof. Let $n \in \mathbb{Z}$. Choose p = 2. Then p is a prime, and pn = 2n where $n \in \mathbb{Z}$ and so pn is even.

(b) $\forall n \in \mathbb{Z} \exists$ a prime number p so that pn is odd.

Solution: This statement is false. Its negation is: " $\exists n \in \mathbb{Z}$ so that \forall prime numbers p, pn is even". For example, let n = 2. Then $n \in \mathbb{Z}$ and for any prime number p, pn = 2p is clearly even.

(c) $\forall n \in \mathbb{Z} \exists$ a prime number p so that p + n is odd.

Solution: This statement is true and here is a proof. Let $n \in \mathbb{Z}$.

Case 1: n is odd, that is, n = 2k + 1 for some $k \in \mathbb{Z}$. We choose p = 2. Then p is a prime, and p + n = 2 + 2k + 1 = 2(k + 1) + 1 where $k + 1 \in \mathbb{Z}$, and so p + n is odd.

Case 2: n is even, that is, n = 2m for some $m \in \mathbb{Z}$. We choose p = 3. Then p is a prime, and p + n = 3 + 2m = 2(m + 1) + 1 where $m + 1 \in \mathbb{Z}$, and so p + n is odd.

[13] 4. Let S be the statement:

for all sets
$$A, B$$
 and C , if $A \cap B = \emptyset$ then $(A - C) \cap (B - C) = \emptyset$.

(a) Write out the contrapositive of S.

Solution: The contrapositive of S is

for all sets A, B and C, if $(A-C) \cap (B-C) \neq \emptyset$ then $A \cap B \neq \emptyset$.

(b) Prove \mathcal{S} , using contradiction or the contrapositive.

Solution (by contradiction): Suppose that there are sets A, B and C so that $A \cap B = \emptyset$ and $(A - C) \cap (B - C) \neq \emptyset$. Since $(A - C) \cap (B - C) \neq \emptyset$, there exist an element $x \in (A - C) \cap (B - C)$. It follows that $x \in (A - C)$ and $x \in (B - C)$, which implies that $x \in A$ and $x \in B$. Since $x \in A$ and $x \in B$, we know $x \in A \cap B$. Thus, there exists an element $x \in A \cap B$, which contradicts the assumption that $A \cap B = \emptyset$. Hence, for all sets A, B and C, if $A \cap B = \emptyset$ then $(A - C) \cap (B - C) = \emptyset$.

Solution (using the contrapositive): We prove the contrapositive of \mathcal{S} (stated in part (a)). Suppose that A, B and C are sets so that $(A-C)\cap(B-C)\neq\emptyset$. Since $(A-C)\cap(B-C)\neq\emptyset$, there exist an element $x\in(A-C)\cap(B-C)$. It follows that $x\in(A-C)$ and $x\in(B-C)$, which implies that $x\in A$ and $x\in B$. Since $x\in A$ and $x\in B$, we know $x\in A\cap B$. Thus, there exists an element $x\in A\cap B$, and so $A\cap B\neq\emptyset$. Thus, the contrapositive of \mathcal{S} is true and since \mathcal{S} is logically equivalent to the contrapositive of \mathcal{S} , \mathcal{S} is true.

(c) Write out the *converse* of statement S. Is it true or false? Explain.

Solution: The converse of S is:

for all sets A, B and C, if $(A - C) \cap (B - C) = \emptyset$ then $A \cap B = \emptyset$.

The converse of S is false. For example, in the case $A = B = C = \{1\}$, we have $(A - C) \cap (B - C) = \emptyset \cap \emptyset = \emptyset$, but $A \cap B = \{1\} \neq \emptyset$.

(d) Write out the negation of statement S. Is it true or false? Explain.

Solution: The negation of S is:

there exist sets A, B and C so that $A \cap B = \emptyset$ but $(A - C) \cap (B - C) \neq \emptyset$.

The negation of S is false since it has the opposite truth value of S, which is true as proven in (b).

[6] 5. Use mathematical induction (or well ordering), to prove that $2^n \ge 5n - 7$ for all integers $n \ge 3$.

Solution:

Basis step: (n=3)

 $2^{n} = 2^{3} = 8 \ge 8 = 15 - 7 = 5 \times 3 - 7 = 5n - 7$. Thus, the statement is true when n = 3.

Inductive step: Let $k \geq 3$ be an integer and suppose that

$$2^k \ge 5k - 7.$$
 [IH]

We want to prove that $2^{k+1} \ge 5(k+1) - 7$.

Now.

$$2^{k+1} = 2 \times 2^{k}$$

$$\geq 2(5k-7) \qquad \text{by [IH]}$$

$$= 10k-14$$

$$= 5(k+1)-7+(5k-12)$$

$$\geq 5(k+1)-7 \qquad \text{Note th}$$

 $\geq 5(k+1)-7$. Note that $k \geq 3$, so $5k-12 \geq 5 \times 3-12 = 3 \geq 0$ Thus, $2^n \geq 5n-7$ for all integers $n \geq 3$.