INFO221v12 IR IV

Truls Pedersen
Institutt for informasjons- og medievitenskap
Universitetet i Bergen

Resten av kurset - forslaget vedtatt

	Uke 15	Uke 16	Uke 17	Uke 18
Plan	Forel. KO3(ut)	Pres (KO3)	Forel. KO3(inn)	Forel.(resten)
Forslag	Forel. KO3(ut)	Forel.	Forel.	Forel.(åpent) KO3(inn)

Oversikt

- Parametriske indekser
- Vektet sonepoeng
- Læring av vekter
- Termfrekvens o.l.
- Vektorrepresentasjon
- Alternative poengligninger
- SMART
- CosineScore

Parametriske indekser

Vi har sett forskjellige måter å indeksere termene i et dokument; enkel forekomst, frekvens, posisjoner.

Vi kan også inkludere et *relevansestimat*.

Parametriske indekser

Vi har sett forskjellige måter å indeksere termene i et dokument; enkel forekomst, frekvens, posisjoner.

Vi kan også inkludere et relevansestimat.

Vi kan søke etter dokumenter som har "star wars" i tittelen:

intitle: '`star wars''

Parametriske indekser

Vi har sett forskjellige måter å indeksere termene i et dokument; enkel forekomst, frekvens, posisjoner.

Vi kan også inkludere et relevansestimat.

Vi kan søke etter dokumenter som har "star wars" i tittelen:

intitle: '`star wars''

En *sone* er en konkret del av et dokument: tittel, ingress, sammendrag, ...

Et felt er en attributt fra metadata: forfatter, publiseringsdato, ...

Representasjons former:

1. Som før: "star wars" forekommer i dokument 11,

Representasjons former:

- 1. Som før: "star wars" forekommer i dokument 11,
- 2. "star wars" forekommer i tittelen til dokument 11, og

Representasjons former:

- 1. Som før: "star wars" forekommer i dokument 11,
- 2. "star wars" forekommer i tittelen til dokument 11, og
- 3. "william" forekommer i tittelen og som forfatter til dok. 2.

Representasjons former:

- 1. Som før: "star wars" forekommer i dokument 11,
- 2. "star wars" forekommer i tittelen til dokument 11, og
- 3. "william" forekommer i tittelen og som forfatter til dok. 2.

Vi kan nå søke i spesifikke soner, men dette tillater også *vektet sonepoeng*.

Weighted zone scoring (vektet sonepoeng)

Hvis en søketerm forekommer i tittelen til dokument d_1 , og i sammendraget til dokument d_2 , hvilket dokument er da mest relevant?

Weighted zone scoring (vektet sonepoeng)

Hvis en søketerm forekommer i tittelen til dokument d_1 , og i sammendraget til dokument d_2 , hvilket dokument er da mest relevant?

Anta at alle dokumentene våre har nøyaktig tre soner:

$$(s_1, s_2, s_3)$$
 = (tittel, sammendrag, kropp)

Vi lar hver s_i være 1 hvis søketermen forekommer i sone i og 0 ellers. Hvert dokument får fra 0 til 3 poeng.

Weighted zone scoring (vektet sonepoeng)

Hvis en søketerm forekommer i tittelen til dokument d_1 , og i sammendraget til dokument d_2 , hvilket dokument er da mest relevant?

Anta at alle dokumentene våre har nøyaktig tre soner:

$$(s_1, s_2, s_3) = (tittel, sammendrag, kropp)$$

Vi lar hver s_i være 1 hvis søketermen forekommer i sone i og 0 ellers. Hvert dokument får fra 0 til 3 poeng.

Vi ønsker ikke at et dokument skal få like mange poeng for å ha et treff i sammendraget som i tittelen.

Weighted zone scoring

Vi kan la et treff telle mer i tittelen enn elles ved å vekte poengene avhengig av hvilken sone treffet forekom i.

La (g_1, g_2, g_3) være vekter slik at $g_1 + g_2 + g_3 = 1$.

Hvert dokument får en poengsum fra 0 til 1 (/ soner):

$$\sum_{i=1}^{l} g_i s_i$$

Weighted zone scoring

Vi kan la et treff telle mer i tittelen enn elles ved å vekte poengene avhengig av hvilken sone treffet forekom i.

La (g_1, g_2, g_3) være vekter slik at $g_1 + g_2 + g_3 = 1$.

Hvert dokument får en poengsum fra 0 til 1 (/ soner):

$$\sum_{i=1}^{l} g_i s_i$$

Vi kan la tittelen være viktigere enn sammendraget ved å f.eks. gi vektene

$$(g_1, g_2, g_3) = (0.4, 0.35, 0.25)$$

Da vil d_1 og d_2 få hhv. 0.4 og 0.35 poeng.

Weighted zone scoring

Hvor viktig er det at en søketerm forekommer i tittelen i forhold til i sammendraget?

Hva med en søketerm som forekommer bare i tittelen i et dokument, og både (og bare) i sammendraget og kroppen til et annet?

Er 0.4 den *riktige* verdien for g_1 ?

Læring av vekter

Det er generelt umulig å sette vektene g_i for hånd. Vi må la datamaskinen *lære* hva som er "riktig".

- 1. Konstruer en mengde treningsdata:
 - en mengde dokumenter,
 - en liste med søketermer (spørringer), og
 - en menneskelig vurdering av hvor relevant hvert dokument er for hver spørring

Læring av vekter

Det er generelt umulig å sette vektene g_i for hånd. Vi må la datamaskinen *lære* hva som er "riktig".

- 1. Konstruer en mengde *treningsdata*:
 - en mengde dokumenter,
 - en liste med søketermer (spørringer), og
 - en menneskelig vurdering av hvor relevant hvert dokument er for hver spørring
- 2. La systemet *lære*:
 - still inn vektene i g slik at systemet dømmer dokumentene like relevant som tilhørende vurdering

Eksempel	docID	spørring	$s_T \mid s_B \mid$		Vurdering	r
ϕ 1	37	linux	1	1	Relevant	1
ϕ_{2}	37	penguin	0	1	Irrelevant	0
ϕ_3	238	system	0	1	Relevant	1
:	•	:	:	:	:	:
ϕ_7	3191	driver	1	0	Irrelevant	0

Eksempel	docID	spørring	s_T	s _B Vurdering		r
ϕ_1	37	linux	1	1	Relevant	1
ϕ_2	37	penguin	0	1	Irrelevant	0
ϕ_3	238	system	0	1	Relevant	1
:	•	:	:	:	:	:
ϕ_7	3191	driver	1	0	Irrelevant	0

Hvert (dokument,spørring)-par får poeng (som vi så):

$$\mathit{score}(d,q) = g_T s_T(d,q) + g_B s_B(d,q) = \sum_{i \in \{T,B\}} g_i s_i(d,q)$$

Eksempel	docID	spørring $s_T s_B$		$ s_T s_B$ Vurder		r
ϕ_1	37	linux	1 1		Relevant	1
:	:	:	:	:	:	
ϕ_7	3191	driver	1	0	Irrelevant	0

Hvert (dokument,spørring)-par får poeng (som vi så):

$$score(d,q) = g_T s_T(d,q) + g_B s_B(d,q) = \sum_{i \in \{T,B\}} g_i s_i(d,q)$$

Hvert (vekt-vektor,test j)-par får en feil (definert):

$$\varepsilon(g, \phi_j) = (r(d_j, q_j) - score(d_j, q_j))^2$$

Eksempel	docID	spørring	s_T	$s_T \mid s_B \mid V$ urdering		r
ϕ_1	37	linux	1	1	Relevant	1
:	:	:	:	:	:	:
ϕ_7	3191	driver	1	0) Irrelevant	

Hvert (dokument,spørring)-par får poeng (som vi så):

$$score(d,q) = g_T s_T(d,q) + g_B s_B(d,q) = \sum_{i \in \{T,B\}} g_i s_i(d,q)$$

Hvert (vekt-vektor,test j)-par får en feil (definert):

$$\varepsilon(g,\phi_j) = (r(d_j,q_j) - score(d_j,q_j))^2$$

Feilen for en vekt-vektor for testmengden blir da

$$\sum_{j} \varepsilon(\boldsymbol{g}, \phi_{j}).$$

Eksempel	docID	spørring	s _T	s _B	Vurdering	r
ϕ_1	37	linux	1	1	Relevant	1
:	÷	:	:	:	:	÷
ϕ_7	3191	driver	1	0	Irrelevant	0

Å la datamaskinen minimere feilen for testmengden er å finne den vekt-vektoren g som minimerer $\sum_i \varepsilon(g, \phi_i)$.

Her har vi bare to soner, så g = (x, 1 - x); én variabel. Dette klarer en datamskin å finne en optimal løsning for.

Generelt er det vanskelig for en datamaskin å finne en optimal løsning for realistisk store mengder.

Andre tall vi kan bruke for å estimere relevans er poeng basert på *termfrekvens*.

 $tf_{t,d} =$ antall forekomster av t i d

Andre tall vi kan bruke for å estimere relevans er poeng basert på *termfrekvens*.

 $tf_{t,d} =$ antall forekomster av t i d

Samlingsfrekvens (collection frequency)

 $cf_t =$ antall forekomster av t

Andre tall vi kan bruke for å estimere relevans er poeng basert på *termfrekvens*.

 $tf_{t,d} =$ antall forekomster av t i d

Samlingsfrekvens (collection frequency)

 $cf_t = \text{antall forekomster av } t$

Dokumentfrekvens

 $df_t =$ antall dokumenter t forekommer i

Andre tall vi kan bruke for å estimere relevans er poeng basert på *termfrekvens*.

 $tf_{t,d} =$ antall forekomster av t i d

Samlingsfrekvens (collection frequency)

 $cf_t =$ antall forekomster av t

Dokumentfrekvens

 $df_t =$ antall dokumenter t forekommer i

... og invertert dokumentfrekvens

$$idf_t = \log\left(\frac{N}{df_t}\right)$$

Vi har sett

$$\mathsf{tf}\text{-}\mathsf{idf}_{t,d} = \mathsf{tf}_{t,d} \times \mathsf{idf}_t$$

 $tf_{t,d}$ er h @ y hvis t forekommer ofte i d, og idf_t er h @ y dersom t forekommer i få dokumenter.

Vi kan få et inntrykk av hvordan tf-idf oppfører seg. tf-id $f_{t,d}$ er

- høyest når t forekommer mange ganger i d, men ellers i få dokumenter
- 2. lavere når *t* forekommer færre ganger i *d*, eller i mange dokumenter, og
- 3. lavest når *t* forekommer få ganger i *d* og også i mange andre dokumenter.

En spørring q består av l termer, $t_1 t_2 \ldots t_{l'}$.

Vi kan angi hvor relevant et dokument d er for spørringen q ved å regne ut summen av tf-idf poeng.

$$\mathsf{poeng}(q,d) = \sum_{t \in q} \mathsf{tf}\text{-}\mathsf{idf}_{t,d}$$

Et dokument har en vektorrepresentasjon gitt ved

$$\vec{v}(d_i) = (\mathsf{tf}\text{-}\mathsf{idf}_{t_1,d_i}, \mathsf{tf}\text{-}\mathsf{idf}_{t_2,d_i}, \dots, \mathsf{tf}\text{-}\mathsf{idf}_{t_k,d_i})$$

hvor t_1, t_2, \dots, t_k er *alle* termer i dokumentsamlingen.

Et dokument har en vektorrepresentasjon gitt ved

$$\vec{v}(d_i) = (\mathsf{tf}\text{-}\mathsf{idf}_{t_1,d_i}, \mathsf{tf}\text{-}\mathsf{idf}_{t_2,d_i}, \dots, \mathsf{tf}\text{-}\mathsf{idf}_{t_k,d_i})$$

hvor t_1, t_2, \dots, t_k er *alle* termer i dokumentsamlingen.

Hvis vi nå regner ut vektorene for alle dokumentene får vi et k-dimensjonalt vektorrom hvori vi har en vektor for hvert dokument.

Et dokument har en vektorrepresentasjon gitt ved

$$\vec{v}(d_i) = (\mathsf{tf}\text{-}\mathsf{idf}_{t_1,d_i}, \mathsf{tf}\text{-}\mathsf{idf}_{t_2,d_i}, \dots, \mathsf{tf}\text{-}\mathsf{idf}_{t_k,d_i})$$

hvor t_1, t_2, \dots, t_k er *alle* termer i dokumentsamlingen.

Hvis vi nå regner ut vektorene for alle dokumentene får vi et k-dimensjonalt vektorrom hvori vi har en vektor for hvert dokument.

Vi kan også se hvor "nær" to dokumenter er hverandre ved å se på forskjellen mellom vektorene.

Et dokument har en vektorrepresentasjon gitt ved

$$\vec{v}(d_i) = (\mathsf{tf}\text{-}\mathsf{idf}_{t_1,d_i}, \mathsf{tf}\text{-}\mathsf{idf}_{t_2,d_i}, \dots, \mathsf{tf}\text{-}\mathsf{idf}_{t_k,d_i})$$

hvor t_1, t_2, \dots, t_k er *alle* termer i dokumentsamlingen.

Hvis vi nå regner ut vektorene for alle dokumentene får vi et k-dimensjonalt vektorrom hvori vi har en vektor for hvert dokument.

Vi kan også se hvor "nær" to dokumenter er hverandre ved å se på forskjellen mellom vektorene.

En spørring kan vi også se på som et dokument; vi gir poeng til termene i spørringen som for andre dokumenter (men ser bort fra termer vi ikke har indeksert).

Vektorer

For to vektorer \vec{x} og \vec{y} har vi et *indreprodukt*

$$\vec{x}\cdot\vec{y}=\sum_i x_iy_i$$

Vektorer

For to vektorer \vec{x} og \vec{y} har vi et *indreprodukt*

$$\vec{x}\cdot\vec{y}=\sum_i x_iy_i$$

Vi kan *normalisere* en vektor $\vec{x}/|\vec{x}|$.

Alle normaliserte vektorer har samme lengde (1).

Vektorer

For to vektorer \vec{x} og \vec{y} har vi et *indreprodukt*

$$\vec{x}\cdot\vec{y}=\sum_i x_iy_i$$

Vi kan *normalisere* en vektor $\vec{x}/|\vec{x}|$.

Alle normaliserte vektorer har samme lengde (1).

Vi har et naturlig mål for avstanden mellom to dokumenter

$$sim(d_1, d_2) = \frac{\vec{V}(d_1) \cdot \vec{V}(d_2)}{|\vec{V}(d_1)||\vec{V}(d_2)|} = \cos(\theta)$$

Søking i vektorrom

En spørring kan vi se på som et kort dokument. Hvis vi har en spørring med to termer t_i og t_j har vi en vektor

$$ec{V}(q) = (0,0,\ldots, ext{tf-idf}_{q,i},\ldots, ext{tf-idf}_{q,j},\ldots,0,0)$$

Altså en vektor der alle elementene (utenom to) er null.

Da blir

$$ec{V}(d) \cdot ec{V}(q) = (ext{tf-idf}_{q,i} imes ext{tf-idf}_{d,i}) + (ext{tf-idf}_{q,j} imes ext{tf-idf}_{d,j})$$

lett å beregne.

Søking i vektorrom

En spørring kan vi se på som et kort dokument. Hvis vi har en spørring med to termer t_i og t_j har vi en vektor

$$ec{V}(q) = (0,0,\ldots, ext{tf-idf}_{q,i},\ldots, ext{tf-idf}_{q,j},\ldots,0,0)$$

Altså en vektor der alle elementene (utenom to) er null.

Da blir

$$ec{V}(d) \cdot ec{V}(q) = (ext{tf-idf}_{q,i} imes ext{tf-idf}_{d,i}) + (ext{tf-idf}_{q,j} imes ext{tf-idf}_{d,j})$$

lett å beregne. Også resten av ligningen for sim blir enkel:

- 1. $|\vec{V}(q)|$ er enkel å beregne, og
- 2. $|\vec{V}(d)|$ kan forhåndsberegnes.

Søking i vektorrom

Alternative poengligninger - samme prinsipp

Vi har en million dokumenter og vi søker etter 'best car insurance'. Et dokument d inneholder 'car' en gang, 'insurance' to ganger, men ikke 'best'.

term	query				document			product
	tf	df	idf	$W_{t,q}$	tf	wf	$W_{t,d}$	
auto	0	5000	2.3	0	1	1	0.41	0
best	1	50000	1.3	1.3	0	0	0	0
car	1	10000	2.0	2.0	1	1	0.41	0.82
insurance	1	1000	3.0	3.0	2	2	0.82	2.46

Dette dokumentet får 0 + 0 + 0.82 + 2.46 = 3.28 poeng.

Alternative poengligninger - samme prinsipp

Vi har en million dokumenter og vi søker etter 'best car insurance'. Et dokument d inneholder 'car' en gang, 'insurance' to ganger, men ikke 'best'.

term	query				document			product
	tf	df	idf	$W_{t,q}$	tf	wf	$W_{t,d}$	
auto	0	5000	2.3	0	1	1	0.41	0
best	1	50000	1.3	1.3	0	0	0	0
car	1	10000	2.0	2.0	1	1	0.41	0.82
insurance	1	1000	3.0	3.0	2	2	0.82	2.46

Dette dokumentet får 0 + 0 + 0.82 + 2.46 = 3.28 poeng.

$$w_{t,q} = idf_t$$
 hvis $tf > 0$, og 0 ellers. $w_{t,d} = tf_{t,d}/|\vec{V}(d)| = tf_{t,d}/\sqrt{6}$.

Alternative poengligninger - sublineær tf

Hvis et dokument d_1 inneholder termen t 20 ganger så ofte som d_2 , er det rimelig å anta at d_1 er 20 ganger så relevant?

Alternative poengligninger - sublineær tf

Hvis et dokument d_1 inneholder termen t 20 ganger så ofte som d_2 , er det rimelig å anta at d_1 er 20 ganger så relevant?

$$\textit{wf}_{t,d} = egin{cases} 1 + \log \textit{tf}_{t,d} & \text{, hvis } \textit{tf}_{t,d} > 0, \\ 0 & \text{, ellers} \end{cases}$$

Alternative poengligninger - sublineær tf

Hvis et dokument d_1 inneholder termen t 20 ganger så ofte som d_2 , er det rimelig å anta at d_1 er 20 ganger så relevant?

$$\textit{wf}_{t,d} = egin{cases} 1 + \log \textit{tf}_{t,d} & ext{, hvis } \textit{tf}_{t,d} > 0, \ 0 & ext{, ellers} \end{cases}$$

På samme måte som vi definerer tf-idf ift. tf, kan vi definere wd-idf som

$$wf$$
- $idf_{t,d} = wf_{t,d} \times idf_t$

Alternative poengligninger - SMART

term frequency		docume	ent frequency	normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
l (logarithm)	$1 + \log(tf_{t.d})$	t (idf)	$\log \frac{N}{\mathrm{d}f_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_{MI}^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{\max_{t}(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{d} f_t}{\mathrm{d} f_t}\}$	u (pivoted unique)	1/u (Section 17.4.4)	
b (boolean)	$\begin{cases} 1 \text{ if } tf_{t,d} > 0 \\ 0 \text{ otherwise} \end{cases}$			b (byte size)	$1/CharLength^{\alpha}$, α < 1	
L (log ave) $\overline{1}$	$\frac{1 + \log(tf_{t,d})}{+ \log(ave_{t \in d}(tf_{t,d}))}$					

SMART systemet angir vektingsalgoritem for query (qqq) og dokumenter (ddd) som ddd.qqq.

Hva betyr nnc.ntn?

CosineScore

```
    float Scores[N] = 0
    Klargjør Length[N]
    for each sprørreterm t
    do beregn w<sub>t,q</sub> og hent treffene for t
    for each (d, tf<sub>t,d</sub>)<sub>t</sub>
    do Scores[d] += wf<sub>t,d</sub> × w<sub>t,q</sub>
    Les inn Length[d]
    for each d
    do Scores[d] = Scores[d] / Length[d]
    return beste K komponentene i Scores[]
```