HEADS UP

- Blackboard is unavailable every weekdays (Monday to Friday) from 5 AM to 6 AM for regular maintenance!
- Change of classroom and labrooms
- Assignments
 - For marking and any related issue, foremost reach out to your lab instructor, not the marker. Then me!
 - For opening another submissions
 - Pay attention to naming of files!
 - Some topics are not covered in the lecture, but in labs or lecture assignments
 - Lab may have dependencies.
 - No key to the labs!
 - Key to the assignments based on highest selected assignments
 - Questions about the lab or lec in discussion board.
 - Subscribe to the forums to receive emails when somebody put sth
 - Academic Integrity (plagiarism)
- Keys to the exams (midterm and final)

- Blackboard is unavailable every weekdays (Monday to Friday) from 5 AM to 6 AM for regular maintenance!
- Change of classroom and labrooms
- Assignments
 - For marking and any related issue, foremost reach out to your lab instructor, not the marker. Then me!
 - For opening another submissions

Day attaction to manipus of filed

SLIDES ARE NOT LIKE THIS

THO KEY CO CITE TOROS.

- Key to the assignments based on highest selected assignments
- Questions about the lab or lec in discussion board.
 - Subscribe to the forums to receive emails when somebody put sth
- Keys to the exams (midterm and final)

Slides are not books, summaries, ...

Slides are not for <u>last night before exam</u>

Slides are to be presented) Lecture = Slide | Talk

SOME TOPICS ARE NOT COVERED IN THE LECTURE, BUT IN LABS OR LECTURE ASSIGNMENTS

Zahra Taherikhonakdar (<u>taherik@uwindsor.ca</u>) Morning Labs Section 51, Tuesdays 11:30 AM - 12:50 PM Section 52, Thursdays 11:30 AM - 12:50 PM

Roonak Moasses (<u>moasses@uwindsor.ca</u>)
Afternoon Labs
Section 53, Tuesdays 01:00 PM - 02:20 PM
Section 54, Thursdays 01:00 PM - 02:20 PM

Discussion Board

Discussions are a good way to encourage students to think critically about your coursework and interact with each others' ideas. You can create discussions around individual course lessons or for your course in general. More Help

THERE MIGHT BE A CHANGE TO CLASSROOM AND LABROOM

Personalize View All 🗗 🌉 First 🕚 1-12 of 12 🕟 Last							
	Class	Class Title	Enrolled	Days & Times	Room	Class Dates	
***	COMP 2650-1A (5115)	Comp Architre I:Digital Design (Lecture)	62	TuTh 10:00AM - 11:20AM	Erie Hall 3123	Jan 17, 2022- Apr 18, 2022	
**	COMP 2650-10 (6123)	Comp Architre I:Digital Design (Lecture)	72	TuTh 10:00AM - 11:20AM	Livestream (Hyflex)	Jan 17, 2022- Apr 18, 2022	
and the second	COMP 2650-51A (5116)	Comp Architre I:Digital Design (Laboratory)	19	Tu 11:30AM - 12:50PM	Erie Hall 2125	Jan 17, 2022- Apr 18, 2022	
å	COMP 2650-510 (6124)	Comp Architre I:Digital Design (Laboratory)	20	Tu 11:30AM - 12:50PM	Livestream (Hyflex)	Jan 17, 2022- Apr 18, 2022	
***	COMP 2650-52A (5117)	Comp Architre I:Digital Design (Laboratory)	19	Th 11:30AM - 12:50PM	Erie Hall 2125	Jan 17, 2022- Apr 18, 2022	
***	COMP 2650-520 (6125)	Comp Architre I:Digital Design (Laboratory)	14	Th 11:30AM - 12:50PM	Livestream (Hyflex)	Jan 17, 2022- Apr 18, 2022	
**	COMP 2650-53A (5118)	Comp Architre I:Digital Design (Laboratory)	17	Tu 1:00PM - 2:20PM	Erie Hall 2125	Jan 17, 2022- Apr 18, 2022	
88	COMP 2650-530 (6126)	Comp Architre I:Digital Design (Laboratory)	14	Tu 1:00PM - 2:20PM	Livestream (Hyflex)	Jan 17, 2022- Apr 18, 2022	
**	COMP 2650-54A (5119)	Comp Architre I:Digital Design (Laboratory)	18	Th 1:00PM - 2:20PM	Dillon Hall 256	Jan 17, 2022- Apr 18, 2022	
***	COMP 2650-540 (6127)	Comp Architre I:Digital Design (Laboratory)	13	Th 1:00PM - 2:20PM	Livestream (Hyflex)	Jan 17, 2022- Apr 18, 2022	

4 AM

Blackboard will return to service at 6 am EST.

Blackboard is unavailable every weekday (Monday to Friday) from 5 am to 6 am EST for regular maintenance.

At 6 am you can reload this page to access Blackboard.

M. Morris Mano • Michael D. Ciletti

DIGITAL

Sieth Edition

DESIGN

With An Introduction to the Verilog HDL, VHDL, and System Verilog

Pearson

Chapter 1 Digital Systems and Binary Numbers

DISCRETE SYSTEMS

STAR	CONTINUOUS	DISCRETE
TEMPERATURE	CONTINUOUS	DISCRETE
ELECTRON	CONTINUOUS	DISCRETE
TIME	CONTINUOUS	DISCRETE
WEIGHT	CONTINUOUS	DISCRETE
SPEED	CONTINUOUS	DISCRETE
STUDENT	CONTINUOUS	DISCRETE
SOUND	CONTINUOUS	DISCRETE
IMAGE	CONTINUOUS	DISCRETE
PAIN	CONTINUOUS	DISCRETE
LIGHT	CONTINUOUS	DISCRETE
WAVE	CONTINUOUS	DISCRETE

DISCRETE STAR CONTINUOUS TEMPERATURE **ELECTRON** DISCRETE CONTINUOUS TIME CONTINUOUS WEIGHT CONTINUOUS SPEED STUDENT DISCRETE CONTINUOUS SOUND IMAGE CONTINUOUS DISCRETE DISCRETE PAIN CONTINUOUS CONTINUOUS DISCRETE LIGHT CONTINUOUS WAVE

Burgundy. As heliography produces one-of-a-kind images, there are no duplicates of the piece, which is now part of the permanent collection at the University of Texas-Austin." 18 Famous First Photographs in History: From the Oldest Photo Ever to the World's First Instagram

Quantization

Roman Numerals
Originated in Ancient Rome
8th Century BC

UNARY SYSTEM aka. Base 1

how many positions to represent the moon's distance to the sun if an Oracle said it is ~150 million km and earth's diameter is ~13,000 km?

~150 million km \div ~13,000 km = ~12,000 Earth paper = ~3,000 positions 12,000 \div 3,000 = 4 pages!

NUMBER SYSTEMS

0123456789

Hossein's Number System

More Position

More Position

More Position

1+(1-1)=12+(1-1)=23+(1-1)=33+0+(2-1)=43+1+(2-1)=5 $3 \ 2 \ 3+2+(2-1)=6$ 3+3+(2-1)=73+3+(3-1)=8

(1-1)=0

									<		
		3	0	3	0	2	1	3	1	?	` ر
					3	3	3	3	1	?	
				3	3	3	3	3	2	?	
		3	0	0	3	3	3	3	0	?	
3	3	3	3	3	3	3	3	3	3	?	

		3	0	\cap	0	2	1	3	1	1
					3	3	3	3	1	?
				3	3	3	3	3	2	?
		3	0	0	3	3	3	3	0	?
3	3	3	3	3	3	3	3	3	3	?

		3	0	3	0	2	1	3	1	_	
					3	3	3	3	1		3*4+1+(5-1)
				3	3	3	3	3	2	?	
		3	0	0	3	3	3	3	0	?	
3	3	3	3	3	3	3	3	3	3	?	

		3	0	3	0	2	1	3	1	_
					3	3	3	3	1	17
				3	3	3	3	3	2	2 2
		3	0	0	3	3	3	3	0	-/
3	3	3	3	3	3	3	3	3	3	39

$$3+3+3+\dots+3+(n-1) = 3 \times (n)+(n-1)=4n-1$$

n positions

3 3 ... 3 4n+1

Max =
$$4n-1$$

n=10 ⇒ $(4\times10)-1 = 39$
10 positions

<u> Max</u>

3 | 3

• • •

3

3

39

? positions

how many positions to represent the moon's distance to the sun in Hossein's system if an Oracle said it is ~150 million km and earth's diameter is ~13,000 km?

```
~150 million km \div ~13,000 km = ~12,000 Earth N = 12,000

n = (N+1)\div4 = (12,000+1)\div4 = ~3,000 positions

paper = ~3,000 positions

3,000 \div 3,000 = 1 pages
```


4¹ More Significant

4¹ More Significant

1 round of all (4) symbols = 1×4^{1}

2 rounds of all (4) symbols = 2×4^{1}

```
2 rounds of all (4) symbols = 2 \times 4^{1}
                                              4<sup>1</sup> More Significant
3 rounds of all (4) symbols = 3 \times 4^{1}
```


QUATERNARY SYSTEM aka. Base-4, Radix-4

 $(0,1,2,3)_{4}$

Hindu-Arabic Numerals
Originated in India
7th Century AD

More Significant Position

More Significant Position

#Symbols=4 Radix-4 Base-4

#Symbols=4 Radix-4 Base-4

2	U	
2	1	
2	2	
2333	2301	
3	0	
3	1	
3	2	
3	2	
0		1
	5/0%	

41

 $2 \times 4^{1} + 0 \times 4^{0} = 8$

 $2 \times 4^{1} + 1 \times 4^{0} = 9$

 $2 \times 4^{1} + 2 \times 4^{0} = 10$

 $2 \times 4^{1} + 3 \times 4^{0} = 11$

 $3 \times 4^{1} + 0 \times 4^{0} = 12$

 $3 \times 4^{1} + 1 \times 4^{0} = 13$

 $3 \times 4^{1} + 2 \times 4^{0} = 14$

 $3 \times 4^{1} + 3 \times 4^{0} = 15$

 $\times 4^2 + 0 \times 4^1 + 0 \times 4^0 = 16$

#Symbols=4 Radix-4 Base-4

										1
		3	0	3	0	2	1	3	1	~ ·
					3	3	3	3	1	~ ·
				3	3	3	3	3	2	
		3	0	0	3	3	3	3	0	?
3	3	3	3	3	3	3	3	3	3	?

		3	0	\cap	0	2	1	3		?
					3	3	3	3	1	?
				3	3	3	3	3	2	
		3	0	0	3	3	3	3	0	
3	3	3	3	3	3	3	3	3	3	

<u> </u>

47	46	45	44	43	42	41	40
3	0	3	0	2	1	3	1

47	46	4 ⁵	44	43	42	41	40	×
3	0	3	0	2	1	3	1	
3×4^7	0×4 ⁶	3×4^5	0×4^4	2×4^3	1×4^2	3×4^{1}	1×4 ⁰	

47	46	45	44	43	42	41	40	X
3	0	3	0	2	1	3	1	
3×4^7	0×4 ⁶	3×4^5	0×4^4	2×4^3	1×4^2	3×4^{1}	1×4 ⁰	$\sum_{i=1}^{n}$

nothard

		3	0	3	0	2	1	3	1	65,437
					3	3	3	3	1	1,021
				3	3	3	3	3	2	?
		3	0	0	3	3	3	3	0	
3	3	3	3	3	3	3	3	3	3	

		3	0	3	0	2	1	3	1	65,437
					$ \mathcal{O} $	3	3	3	1	1,021
				3	3	3	3	3	2	4,094
		3	0	0	3	3	3	3	0	50,172
3	3	3	3	3	3	3	3	3	3	1,048,575

										Base-4	Hossein's Number System
		3	0	3	0	2	1	3	1	65,437	X -
			(\	\cap	3	3	\cap	_	1,021	17 R
				\mathcal{C}	$ \bigcap $	3	3	\mathcal{O}	2	4,094	22
		3	0	0	3	3	3	3	0	50,172	χ -
3	3	3	3	3	3	3	3	3	3	1,048,575	39
											

$$N = 3 \times 4^{n-1} + 3 \times 4^{n-2} + \dots + 3 \times 4^{2} + 3 \times 4^{1} + 3 \times 4^{0}$$

$$N = 3 \times (4^{n-1} + 4^{n-2} + \dots + 4^{2} + 4^{1} + 4^{0}) \rightarrow \text{geometric series}$$

$$N = 3 \times \left(\frac{4^{n} - 1}{4 - 1}\right)$$

$$N = 4^{n} - 1$$

$$N$$

n positions

Max

4n-1	4n-2		42	41	40	
3	3	• • •	ω	3	ω	Z

$$n = 10 \Rightarrow 4^{10} - 1 = 1,048,575$$

10 positions

3 3 ... Max
3 ?

? positions

how many positions to represent the moon's distance to the sun in Base-4 system if an Oracle said it is ~150 million km and earth's diameter is ~13,000 km?

~150 million km ÷ ~13,000 km = ~12,000 Earth N = 12,000 n = \log_4 (12,000+1) = \log_{10} 12,001 ÷ \log_{10} 4 = 4 ÷ 0.6 = 6.79 ~7 positions

