

第3讲回顾

1、 科学抽象的三个过程 是()、()和()。	
2、 科学抽象的逻辑方法 主要包括()、()和()。	
()是从 个别事实 中概括出 一般原理 的思维方法; ()是从 一般	性
原理 出发,推出关于个别或 特殊事物 的思维方法。	
3、 <mark>模型</mark> 是把对象实体通过适当的(),用适当的表现规则描绘日	出
的原型的简洁()。	
4、 数学模型 是参照某种事物或系统的特征或数量依存关系,采用	
_(),概括地或近似地表述出的一种()。	

第3讲回顾(续)

	5、	数学	建模	的7个约	步骤分	別是模型	型的()	•	()	•	
() .	() .	() .	()和	() 。		
	6、	常用	的数学	建模	方法包	括() .	() 7	和() 。	
	7、	() 3	建模是	通过(()	建立数	学框势	足,道	通过() 石	角定模
型	中包	2含的	参数国	艾关系	•							
	8.	简单:	来说,	最优	化问题	就是在-	一定的	的束象	《件下	下,求一	一个函数	汝的
()或	() .	对最优	化问题	建立数	文学模型	텔, 4	必须写 と	出 ()和
- () 。										

(理科类)

第4讲程序设计与Python 简单数据类型及词法

北京航空航天大学

第4讲 程序设计与Python简单数据类型及词法

4.1 程序与程序设计语言(自学)

4.2 Python简单数据类型及词法

4.2 Python简单数据类型及词法

- 一、Python的内建函数
- 一、Python的标准库
- 三、简单数据类型
- 一 四、Python词法

Python的内建函数

北京航空航天大学

内建函数分类

■ **Python解释器提供了69个内建函数**(内置函数) (Build-in Function), 这些函数用户不需要导入库,而可以直接使用

■ 分为六类

- ◆ 数学运算类: abs(x)求绝对值, float(x)将一个字符串或数转换为浮点数, bin(x)将整数x转换为二进制字符串, oct(x)将整数x转换为八进制字符串, hex(x)将整数x转换为十六进制字符串
- ◆ 集合类操作: max(iterable[, args...][key])返回集合中的最大值, min返回序列中最小的元素, str([object]) 转换为string类型

内建函数分类 (续)

- ◆ 逻辑判断: cmp(x, y)比较x和y的大小
- ◆ 反射: len(s)返回集合长度, type(object)返回该object的类型
- ◆ IO操作: input([prompt])获取用户输入, print ([prompt])打印 函数
- ◆ 其他: help()获取帮助信息
 - 说明: cmp()函数是Python 2中的一个用于比较两个列表、数字 或字符串等的大小关系的函数
 - 但在Python 3中已经没有这个函数了

常用内建函数: (1) 数学运算类

	函数名	含义	示例	说明
	abs(x)	求一个数的绝对值	>>>abs(-10.02) 10.02	
	bin(x)	将整数x转换为二进制 字符串	>>> bin(9) '0b1001'	可用来将十进制数转换 为二进制数
	divmod(x,y)	商余,(x//y,x%y), 同时输出商和余数	>>> divmod(10,3) (3, 1)	
	int(x)	把浮点数 向下取整 为	>>>int(32.9)	简单舍弃小数部分,只
		整数;或把一个数字 字符串转换为整数	>>> int('123') 123	取整数部分 。对于 负数 取整 是按照 朝向0 的方 向进行
航	float(x)	将一个字符串或数转 换为浮点数	>>> float(12) 12.0 >>> float('12.3') 12.3	

常用内建函数: (1) 数学运算类(续)

200	Section 1			
V	函数名	含义	示例	说明
	pow(x,y)	指数运算,x的y次方	>>>pow(2,3) 8	
18 2 JE 88	· — ·	把浮点数四舍五入为最接近的整数值。d是保留小数位数,默认值为0。round(x)则是保留整数。在Python 3中该函数表示对x四舍六入五凑偶	>>>round(1.0/2.0) 0 >>> round(7.5) 8 >>> round(8.5) 8 >>> round(9.5) 10 >>> round(10.5) 10 >>> round(8.51) 9 >>> round(3.1415926,5) 3.14159	当需要四舍五入后保留n位小数时,宜使用该函数。注意:当d=0时,小数部分必须大于"0.5",才能入"1";小于"0.5"的小数部分都舍掉;小数部分等于0.5时,整数取最靠近的偶数。
	A NAI.			

常用内建函数: (2) 集合类操作

	函数名	含义	示例	说明
	max		>>> numbers=[99, 54, 387] >>> max(numbers) 387 >>> max(2,7,3,8,1,5) 8	序列可以是 <mark>列</mark> 表或元组、字 符串
	min	返回序列中最小的 元素	>>> numbers=[99, 54, 387] >>> min(numbers) 54 >>> min(2,7,3,8,1,5) 1	序列可以是 <mark>列</mark> 表或元组、字 符串
- 平	len	返回序列中所包含 元素的数量	>>> numbers=[99, 54, 387] >>> len(numbers) 3 >>> len('world')	序列可以是 列 表或 元组、字 符串

常用内建函数: (2) 集合类操作(续)

函数名	含义	示例	说明
list	对一个序列(如字符串) 创建一个列表	>>> list('Hello') ['H', 'e', 'I', 'I', 'o']	适用于所有类型的序列,而不只是字符串
range	范围函数 ,用于产生某个整数范围内的整数数字	>>>range(0, 10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]	类似于分片, 指定的范围 不包括上限。常用在for语 句中指定迭代范围
sum	求和函数,用于对序列进 行求和计算	>>>sum([0,1,2,3,4], 2)	列表计算总和后再加 2 12

补充:字符串的join方法

- 字符串的join方法: 将列表中的各个字符, 连接成一个字符串 <'连接符'>.join(<字符串列表>)
 - ◆ 若在引号中给出某个连接符,则是用该连接符连接各字符 >>> alist=['1', '2', '3', '4', '5'] >>> '+'.join(alist)

'1+2+3+4+5'

◆ 若连接符为空,则直接连接各字符 >>> alist=['H', 'e', 'l', 'l', 'o'] >>> ".join(alist) 'Hello'

常用内建函数: (3) IO操作

4	函数名	含义	示例	说明
	input	法的Python表 达式,可以是字	>>> input ('Enter your name: ') Enter your name: John 'John' >>> input ('Enter your weight(kg): ') Enter your weight(kg): 49.5 '49.5'	Python把用户输入当成是字符串,故在Shell窗口显示出来的内容均用单引号或双引号(当你输入的内容本身包括单引号时)括起来了
Ta. Si		打印表达式 默认多个值之间 有一个空格	>>> print ('Age:', 42) Age: 42 >>> name = input("请输入你的姓名: ") >>> print ("你的姓名是: "+name) >>> print(1,2,3,end='!') 1 2 3! >>> print(1,2,3,end='!',sep='') 123!	可以打印多个表达式,之间 用逗号隔开,这里的"42"认 为是字符串。当需要打印多个 字符串时,可用"+"连接。 用sep参数控制多个值的分 隔符(默认是空格),sep="则 使得值之间没有空格。 使用end参数控制打印内容的结尾。
				14

input函数

■ input函数

- ◆ input函数用来提供用户输入合法的Python表达式,一般用于 传递输入数据给程序
- ◆ input函数使用一个字符串作为参数,用来提示用户应输入的内容——一般必须有此提示语! 括号中不要为空!

格式 变量名=input(" <字符串> ")

- 但是,**OJ(在线评测系统)无法评测input中的字符串**,故在提交到 OJ上时,要求input后的括号中为空
- input函数一般配合赋值语句使用
 name = input("Please enter your name: ")

输入及类型转换

- input函数的返回值为字符串
- 但可以通过类型转换,将其转换为整型或浮点型

ID = input("Please enter your Student ID: ") 字符串

age = int(input("Please enter your age: "))

height = float(input("Please enter your height(m): "))

整型

浮点数

- 通过input函数输入的内容默认其类型为字符串
- 如果需要进行算术运算,则必须先将其转换为int或float

print函数

print函数

◆ print函数用于在Shell窗口显示用户希望显示的内容(字符) 符串或变量的值)

格式 *print*('' <字符串1>", <变量1>, " <字符串2> ", <变量2>,.....)

◆ 当需要显示的内容较多时,最好在变量名的前面加上说明其 含义的字符串,否则,难以判断输出的是哪个变量的值!

print("正态分布样本值为: ", normal)

使用print函数注意事项

- 但是,**OJ(在线评测系统)无法评测print中的字符串**,故 在提交到OJ上时,要求print后的括号中只有变量名
- 故可以在IDLE或Spyder中调试时在变量名前加上提示字符串
- 调试通过后,再将这些语句**注释掉**,重新写几行print语句
 - 如果希望空一行,可以使用print()
 - 如果希望换行,也可以在上一条print语句后面的括号中最后加上换行符'\n'

不同形式的输出

不同形式的输出

print-不同形式输出.py

```
name="Alice"
age=15
print ("Are you really", name , "? ")
print ("Are you really" + name + "? ")
print ("Today", name , "is" , age , "years old. ")
print ("Ten years later", name, "will be", age+10, "years old.")
```

Are you really Alice ?
Are you reallyAlice?
Today Alice is 15 years old.
Ten years later Alice will be 25 years old.

表达式

技巧: 使用sep参数和end参数控制输出格式

- print函数传入多个待打印的值时,用sep参数控制值的分隔符(默认是空格),sep="则使得值之间没有空格
- 使用end参数控制打印内容的结尾
 - ▶ end='\t'表示输出的末尾以Tab键结束,则下一条print语句打印的内容将与刚才打印的内容的第一个字符间隔8个字符输出,不换行
 - ▶ end=' '表示以空格结尾,则下一条print语句打印的内容与刚才打印的内容末尾空一格输出,不换行
 - ▶ end="(两个单引号)表示下一条print语句打印的内容紧接着刚才打印的内容末 尾输出,不换行

```
>>> print(1,2,3,end='!')
1 2 3!
>>> print(1,2,3,end='!',sep='')
123!
>>> print(1,2,3,end='!',sep='+')
1+2+3!
>>> a=7
>>> b=9
>>> print(a,b,end='!',sep='')
79!
```


技巧: 格式化字符串输出

当需要打印的变量值为不同类型 (如浮点数) 时,可以采 用格式化字符串的方法,来指明变量值的类型、位数

例:

print('估算2018年的人口数为%0.3f' % Result) #浮点数保留小数点后3位小数

>>> 估算2018年的人口数为1394.035

字符串格式化操作符

%称为字符串格式化操作符,在%的左侧放置一个字符串(格式化 字符串),右侧放置希望格式化的对象(可以是数字、字符串、变 量或表达式)

格式化输出

格式

<模板串> % <值元组>

- ◆ 模板串中用%标记"空位",输出时用值填入
- ◆ 值元组可以是一个数值或多个数值,或者一个或多个变量名
- ◆ 格式化运算的结果是一个字符串

■ 例如

>>> print ("The price is RMB%.2f" %(100))

The price is RMB100.00

深刻理解

值元组

模板串

■ 空位: 格式指示符(转换说明符), 描述了填入的值的输出形式

%<宽度>.<精度><类型字符> 例如: %4.2f

- ◆ 三种常用类型字符: decimal, float, string
 - ✓ %d表示被格式化为带符号十进制整数
 - ✓ %f (或%F)表示被格式化为**浮点数**
 - ✓ %s表示被格式化为字符串
 - ✓ %c表示格式化字符及其 ASCII 码
 - ✓ %o表示转换为带符号八进制整数
 - ✓ %x (或%X) 表示转换为带符号十六进制整数

格式描述(续1)

宽度: 指定用多少位显示数值

✓ 省略宽度或指定为0:根据值的实际宽度显示

```
>>> x= 3.141592653
>>> print('pi=%.4f' % x) #按值的实际宽度显示,小数点后保留4位 pi=3.1416
```

✓ 当宽度>值的实际长度时:右对齐显示

```
>>> y= 3.141592653
>>> print('pi=%10.4f' % y) #最小宽度为10,小数点后保留4位
pi= 3.1416
```

✓ 当值的实际宽度>指定宽度时:按照值的实际宽度输出

>>> print('pi=%6.5f' % y) #最小宽度为6,小数点后保留5位

pi=3.14159

✓ 若在指定宽度前加负号: 左对齐显示

pi=3.1416

>>> print(**'pi=%-10.4f'** % y) #最小宽度为10,宽度前**加负号**,小数点后保留4位

格式描述(续2)

- ◆ 精度: 指示浮点数值的小数位数
 - ✓ 省略时: 按系统默认的小数位数显示

```
>>> import math
>>> print ("pi=%0.30f" % (math.pi))
pi=3.141592653589793115997963468544
>>> print ("pi=%20s" % math.pi)
pi= 3.141592653589793
```


格式描述(续3)

◆ 当希望格式化的对象有多个时,只需在"%"右边,采用元组形式将变量名(或表达式)按顺序写出来即可。

```
#data_convert【方法一】.py
x,y=map(float, input().split()) #一个点的横坐标和纵坐标
a,b,c=map(float, input().split()) #直线方程参数

print('x=%.1f, y=%.1f' % (x,y))
print('a=%.1f, b=%.1f, c=%.1f' % (a,b,c))
```


Python的标准库

北京航空航天大学

Python的标准库

- 标准库 (standard liberary): Python的标准安装提供的一组模块。在每个模块中,提供了若干函数,方便用户调用它们,进行相应运算
- ◆ math和cmath模块:包含用于计算实数和复数的数学函数(如向下取整函数floor、 求平方根函数sqrt、正弦函数sin等)
- ◆ random模块:包含产生随机数的函数(如randint函数, uniform函数)
 - ✓ randint(a,b):产生指定范围(a,b)内的一个随机整数
 - ✓ uniform(a,b): 生成指定范围内(a,b)的一个随机浮点数

```
>>> import random
>>> a=random.randint(0,10)
>>> a
3
>>> b=random.randint(0,10)
>>> b
5
```

```
>>> x=random.uniform(0,100)
>>> x
48.939112172354385
>>> y=random.uniform(0,100)
>>> print('%.4f' % y)
81.6205

格式化字符串输出
```


Python的标准库(续)

◆ copy模块:包含deepcopy函数(深拷贝)

◆ datetime模块:提供显示日期和时间的格式化方法

✓ datatime.date: 日期表示类,可以表示年、月、日等;

✓ datatime.time: 时间表示类,可以表示小时、分钟、秒、毫秒等;

✓ datatime.datetime: 日期和时间表示类,功能覆盖datatime.date和datatime.time

今天是哪天?

```
>>> import time
>>> from datetime import date
>>> today = date.today()
>>> today
datetime.date(2020, 10, 18)
```

■ 要想使用标准库中的某个模块,必须先使用import语 句导入该模块;再对模块中的函数进行调用

import语句

- import语句用于从外部模块导入**名称**(绑定到函数、类或其他值的变量)
- 要想使用math库中的某个函数,必须先使用"import math"语句导入math库;再使用形如"math.<函数>(参数)"的语句对该函数进行调用
 - ◆ 【例】math库中log函数实现对数运算 如math.log(8,2)实现log₂8

>>> import math
>>> math.log(8,2)
3.0

数学类函数库math

■ math库为Python语言处理实数**基本数学计算**提供了一些常用**数学函数**

	函数名	数学表示	含义	示例	说明	
	pi	π	圆周率π的近似值,15	>>> math.pi		
		1	位小数	3.141592653589793	floor函数与int函数完	全
	ceil(x)		浮点数 向上取整	math.ceil(32.9)		
		-		33		
	floor(x)		对浮点数 向下取整	>>>math.floor(32.9)	对于负数,不是简单	
				32	取整数部分, 而是取	
				>>> math. floor(-12.51) -13	小于x的整数	
	log(x)	lgx	求x的对数,以e为基	>>> math.log(10)	x可为整数或浮点数,	
				2.302585092994046	结果为 浮点数	
	log10(x)	$\log_{10} x$	求x的对数,以10为基	>>> math.log10(100)	x可为整数或浮点数,	
				2.0	结果为 浮点数	
	log(x,n)	$\log_n x$	求x的对数,以n为基	>>> math.log(8,2)	x可为整数或浮点数,	
航光		- 		3.0	结果为 浮点数	
				>>> math.log(9,2)		31
952 UNIVE				3.1699250014423126		

floor函数与int函数完全相同吗?

```
>>> int(12.51)
>>> import math
>>> math. floor(12.51)
12
>>> int(-12.51)
>>> math. floor(-12.51)
         向下取整, 因为(-13)<(-12.51),
         所以取-13
```


- math.floor与int函数对于正的浮点数运算结果相同。但floor函数使用之前必须导入math库;而int函数是内建函数,可以直接使用,所以更方便。
- 但是,对于负的浮点数来说,二者结果是不同的!

数学类函数库math (续)

函数名	数学表示	含义	示例	说明
е	e	自然常数e 的近似值, 15位小数	>>> math.e 2.718281828459045	
sqrt(x)	\sqrt{x}	计算一个浮点数的平 方根	>>> math.sqrt(9) 3.0	该函数不能计算复数或虚 数的平方根
degrees(x)		弧度转换为角度	>>> math.degrees(2) 114.59155902616465	
radians(x)		角度转换为弧度	>>> math.radians(90) 1.5707963267948966	
sin(x)	sinx	正弦函数	>>> math.sin(math.pi/2) 1.0	结果为浮点数
asin(x)	arcsinx	反正弦函数	>>> math.asin(1) 1.5707963267948966	$x \in [-1.0, 1.0]$

- 上述函数都封装在math库里,**不能直接使用,必须先导入math库**
- 思考:用什么运算可以代替sqrt(x)函数?

【课堂练习】

【课堂练习】尝试Python编程,输入一个整数n
 (n<=15),调用math库的pi函数获得π,再将π保留n位
 小数输出。

■ 提示: 使用内建函数round(x,[d]))

三分钟内完成

总结: 几个取整函数的比较

- int(x): 把浮点数向下取整为整数(简单舍弃小数部分,只取整数部分); 或把一个数字字符串转换为整数
- round(x,[d]): 把浮点数四舍五入为最接近的整数值。d是保留小数位数,默认值为0。在Python 3中该函数表示对x四舍六入五凑偶
 - ◆ 如round(3.5)=4, round(2.5)=2
- math.ceil(x): 浮点数**向上取整**
- math.floor(x): 浮点数**向下取整**
 - ◆ 对于正的浮点数,运算结果与int函数相同: int(12.3)= math.floor(12.3)=12
 - ◆ 对于**负的带小数**的浮点数,运算结果与int函数**不同**: int(-12.3)=-12, **math.floor(- 12.3)=-13**

【讨论1】

■ 请思考,以下几个函数的计算结果是什么?

(1) int(12.51)=? int('789')=?

(2) round(12.5)=? round(12.51)=?

(3) math.ceil(12.49)=? math.ceil(12.51)=?

(4) math.floor(12.49)=? math.floor(12.51)=?

(5) math.floor(-12.49)=? math.floor(-12.51)=?

三、简单数据类型

北京航空航天大学

Python中的对象

- Python程序中所有的数据均由对象或者对象间的关联关系来表示,对象几乎都具有属性(attributes)及方法(methods)
- 每个对象包括标识(identity)、类型(type)及值(value)
 - ◆ 在创建对象后,该对象的标识(即名称)不再改变
 - ◆ 对象的类型决定该对象支持哪些操作,可以通过函数int(整型)、float(浮 点型)、str(字符串)等进行类型转换
 - ◆ 一些对象的值可以改变,如列表list[]、字典dict{};而有些对象的值在创建 后不可改变,如整型int、字符串str''、元组tuple()。**值的可变性由对象的类**

常用Python内置类型

- 在Python程序中,每个数据都是对象,每个对象都有自己的数据 类型。不同类型有不同的操作方法
- Python提供了多个内置的数据类型 (Build-in Types)
- Python 是一种**动态类型化**语言,**无需事先声明变量类型**;由解释 器根据其值的表示形式自动匹配其类型

常用Python内置类型(续)

布尔类型 简单数据类型 数值类型 列表 本节课学习 元组 序列类型 字符串 映射类型 字典 集合类型 集合

简单数据类型

Python简单数据类型包括布尔类型和数值类型

(1) 布尔类型 (bool type)

- Python中最简单的内置类型,该类型的**对象值**只可能为True或 False (称为布尔值)
 - ◆ 【例】逻辑表达式 "x and y" 中, x、y都是布尔类型
- 表达式可以评值为布尔值
 - ◆ 【例】将关系表达式 "10 < 11" 的值评值为 "True"

(2) 数值类型

(2) 数值类型

- int (整型) , float (浮点型) , complex (复数型)
- 除复数型外,所有的数值类型都支持算术运算
- 在Python中,参数或变量不需要事先声明类型
 - ◆ 一个数字或变量,根据数字或变量被赋值的数字的书写形式, Python就可以知道它的类型
- 同样一个数字,如果写成不同的形式,则表示不同的数值类型
 - ◆ 例如,4表示整数,4.0表示实数

如何获取对象的类型?

类型	描述	语法示例		
int (整型)	无小数部分的数	42, -5, 1024		
float (浮点型)	有小数部分的数	42.5, -5.25, 4.25e-3 (科学计数法) 或 4.25*10**(-3) (即4.25*10 ⁻³ =0.00425)		
complex (复数型)	实数(整数或浮点数) 与虚数的和	59+4j, 42j		

◆ 使用Python的内建函数type可以获取对象的类型

四、Python词法

北京航空航天大学

词法符号

- Python程序由空白符分隔的词法符号流组成
- **词法符号**包括
 - ◆ 空白符 (White space)
 - ◆ 常量 (Constant)
 - ◆ 操作符 (运算符, Operator)
 - ◆ 标识符 (Identifier)
 - ◆ 关键字 (Key word)
 - ◆ 注释 (Comment)

1、空白符

空白符

- ◆ 空白符包括空格、Tab、换行
- ◆ 起分隔词法符号的作用;同时使代码错落有致,提高可读性
- ◆ Python可以智能缩进
 - ✓ 用def关键字定义一个函数后,回车,则自动缩进4格,以输入函数中的执行语句(函数体)
 - ✓ for语句、while语句等,也是在第2行自动缩进4格,以便输入循环体

for n in range(2,25): #for循环语句, range为范围函数
fib[n]=fib[n-1]+fib[n-2] #计算第n项斐波那契数
print('第',n,'个月:',fib[n]) #打印

2、常量

2、常量

- 常量: 在程序运行过程中,其值不能改变的量
- Python的常量包括整数和实数
- 常量可以表示为二进制、十进制、八进制或十六进制
 - ◆ 一个数字,如果仅仅由阿拉伯数字0~9以及小数点组成,如 483、2795、343.7,则表示十进制数
 - ◆ 二进制数用0b开头,如0b10=2
 - ◆ 八进制数用0o开头, 如0o10=8
 - ◆ 十六进制数用0x开头,如0x10=16; 0xAF=175 (A~F或a~f代表十进制数10~15)

如何将一个十进制数转换其他进制的字符串?

- (1) 如何将一个十进制数转换为二进制表示的字符串? bin(number)
- (2) 如何将一个十进制数转换为八进制表示的字符串? oct(number)
- (3) 如何将一个十进制数转换为十六进制表示的字符串? hex(number)

3、运算符

3、运算符

- 运算符也称为操作符,是Python预定义的函数符号,这些函数对 被操作的对象进行规定的运算,得到一个结果
 - ◆ 逻辑运算符
 - ◆ 成员测试运算符
 - ◆ 关系运算符 (布尔比较运算符)
- 共36个

- ◆ 位运算符
- ◆ 移位运算符
- ◆ 算术运算符等

运算符(续1)

运 算 符	描述		优先级
1 ambda	lambda表达式		. 1
or	逻辑或		2
and	逻辑与 逻辑运算符 逻辑运算符 逻辑证算符 成员资格测试 非成员资格测试 一致性测试 成员测试运算符		3
not			4
in			5
not in			5
is			6
is not			6

运 算 符	描 述		优先级
<			7
>	大于		7
<=	小于或等于		7
>=	大于或等于	关系运算符	7
==	等于		7
_!=	不等于	_1	7
	按位或	-1	8
•	按位异或	位运算符	9
&	按位与		10

运算符(续2)

运 算 符	描 述	优 先 级
&	按位与	10
<<	左移 经分类	11
	移位运算符	11
[+	加法	12
-	减法	12
•	_{乗法} 算术运算符	13
/	除法	13
ኒ %	求余	13
+	一元一致性	14
-	一元不一致性	14
~	按位补码	15
**	幂	16
x.attribute	特性引用	17
x[index]	项目访问	18
x[index1:index2[:index3]]	切片	19
f(args)	函数调用	20
()	将表达式加圆括号或元组显示	21
£]	列表显示	22
{key:value}	字典显示	23
'expressions'	字符串转换	24

算术运算符使用说明

	运算符	含义	示例	说明
	+	加法	1+2=3 1.0+2=3.0 1+2.0=3.0	如果参与运算的两个数都是整数,则结果也是整数; 如果参与运算的数中有一个为浮点数,则结果也是浮点数
	-	减法	8-5=3 8.0-5=3.0 8-5.0=3.0	如果参与运算的两个数都是整数,则结果也是整数; 如果参与运算的数中有一个为浮点数,则结果也是浮点数
	*	乘法	3*5=15 3.0*5=15.0 3*5.0=15.0	如果参与运算的两个数都是整数,则结果也是整数; 如果参与运算的数中有一个为浮点数,则结果也是浮点数
**************************************	/	除法	1/2=0.5 10/3=3.3333333333333333333333333333333333	普通除法,两个整数相除即使能除尽, 结果 也为 浮点数 。如果除不尽,保留16位小数

算术运算符使用说明(续)

运算符	含义	示例	说明	
//	整除	1//2=0	无论对整数或者浮点数,都是整除,只保	
运算结果 与操作数		10//3=3 - 1.0//2.0=0.0	留 商的整数部分 。即使是浮点数,也会执行整除,但结果形式也为浮点数: 1.0//2.0=0.0	
%	求模,取余	1%2=1 10%3=1 2.75%0.5=0.25	取余运算符对浮点数同样适用	
**	幂 (乘方)	2**3=8 (-3)**2=9 9**(1/2)=3	幂运算符比取反(一元减运算符)优先级高: -3**2等同于-(3**2) =-9。 幂运算可以实现 求平方根	

■ 思考: 普通除法与整除有何区别?

【讨论2】

- **除法"/"**: 普通除法。商为多少,全部保留。无论能否除尽,**结**果都为浮点数
- 整除"//":无论对整数或者浮点数,都只保留商的整数部分。运 算结果的类型与操作数相同

■ 请思考,以下几个表达式的计算结果是什么?

(1)
$$10//4 = ?$$
 $10//4.0 = ?$

(2)
$$10/4=$$
? $10/4.0=$? $4/2=$?

运算符的优先级

不同的运算符有不同的优先级

- ◆ 同一个表达式中如果有多个运算符,应按照优先级高的运算符 先运算、优先级低的运算符后运算的规则进行
- ◆ 例: x+y*3首先计算y*3,之后加上x

■ 利用括号可以改变优先顺序

◆ (x+y)*3

首先计算x+y,结果值再乘以3

4、表达式

- 由对象和运算符(操作符)组成的式子称为表达式
- 表达式包括
 - ◆ 算术表达式
 - ◆ 关系表达式
 - ◆ 布尔表达式

■ 采用不同的运算符,则构成不同的表达式

(1) 算术表达式

(1) 算术表达式

- 算术表达式: 用算术运算符连接的表达式
 - ◆ "4+5" 指示int型对象9
 - ◆ "4.00+5.00" 指示float型对象9.00
 - (2 + tmp)**0.5
 - pi_0 * 2/tmp

■ 算术表达式的运算结果为数值类型

(2) 关系表达式

(2) 关系表达式

- 关系表达式:表示两个对象之间关系的表达式
 - ◆ 使用**关系运算符**(<, <=, >,>=, ==, !=)连接
 - ◆ 当关系为真时表达式的值为布尔值True,当关系为假时表达式的值为布尔值False
 - ◆ 如 "8 > 9" , 其值为False, "2 < 3" , 其值为True

关系表达式的运算结果为布尔类型

(3) 布尔表达式

(3) 布尔表达式

■ 布尔表达式(逻辑表达式): <u>由布尔运算量和逻辑运算符按一定语法</u> 规则组成的式子

- ◆ 参与逻辑运算的**对象** (布尔运算量)
 - ✓ 逻辑值 (True 或False)
 - ✓ 布尔变量(又称为逻辑变量)
 - ✓ 关系表达式

✓ 由括号括起来的布尔表达式

编写程序时可利用布尔表达式

或关系表达式实现程序控制

(用作条件语句中的条件)

【例4.1】布尔表达式示例

【例4.1】判断某年份year是否为闰年

2000年

- ◆ 世纪闰年: 世纪年 (能被100整除的年份) 能被400整除的是闰年 year % 400==0
- ◆ 普通闰年: 普通年(不能被100整除的年份) 能被4整除的年为闰年
 - √ (year % 4==0) and (not(year % 100==0))

1904年, 2004年

◆ 整合:

z=(year % 400==0) or (year % 4==0) and (not(year % 100==0))

若z=True, 说明year是闰年; 否则不是闰年

【举手发言】

■ 问题:

判断下面哪些年份是闰年,哪些不是。为什么?

◆ 1600年, 1900年, 2400年

◆ 1998年, 2016年, 2018年, 2019年, 2020年

【例4.1】Python程序

例4.1-闰年.py

```
year=int(input('请输入年份: '))
z=(year % 4==0) and (not(year % 100==0)) or (year % 400==0)
if z==True:
    print('%d 是闰年' % year)
else:
    print('%d 不是闰年' % year)
```


5、标识符

5、标识符

- **标识符:** 用户编程时给Python语言描述的对象所起的名字。标识符可由字母、数字、下划线和\$符号构成
- 如变量名、常量名、函数名等
- **■** 定义标识符时应遵循如下规则
 - ① 首字符必须是字母或下划线,不能是数字或\$符号!
 - ② 标识符是区分大小写的: "LENGTH"与 "length"不同
 - ③ 标识符不要与关键字同名!

变量及变量的赋值

- 变量: 在程序运行过程中, 其值可以改变的量
- 变量提供将名 (name) 与对象 (object) 关联的方式
 - ϕ pi_0 = 2

pi的初值

 ϕ pi_1 = 3

pi的计算值

- \bullet n = int(input())
- 变量是代表(或者引用)某值的名字
- <u>赋值:将某个值(或对象)赋给某个变量</u>,或者说,<u>将变量绑定</u> 到某个值(或对象)上面

◆ 例: x=3, y=2*x

变量及变量的赋值(续)

- 在使用变量之前,必须对其赋值!
- 变量被赋值之后,才可以在表达式中使用该变量

```
>>> x=3 #赋值语句
>>> x*2
6
```

```
>>> y*3

Traceback (most recent call last):
  File "<pyshell#18>", line 1, in <module>
    y*3

NameError: name 'y' is not defined
```


关于变量的使用规则

- 一个变量记一个名,赋值语句将赋值操作符"="左侧的名与"="右侧的表达式所指示的对象进行关联
 - 在Python中,变量通常以字母或者 "_" 开始,变量 名称可以包含字母、数字以及特殊字符_
 - 变量不能以数字或\$符号开头
 - 系统所使用的关键字(如if, for, def, import),不能作为变量名使用
 - 变量是大小写敏感的,如world和World代表不同的变量
 - 通常**使用小写字母**进行变量命名

6、赋值语句

赋值语句: 将等号右边的值(或对象) 赋给等号左边的 变量的语句

格式

<variable name> = <expression>

- 通过赋值语句,可以设置变量的初始值,也可以将新值关联至变量
 - ◆ 变量初始化: 第一次对某变量名进行赋值
 - ◆ 变量引用: 变量初始化之后, 在程序后续的表达式中使 用该变量名

赋值语句示例

在一条赋值语句中给多个变量赋值

交换两个变 量的值

思考: 还可以采用什么方法?

注意: 分隔符只能是英文半角逗号

【例4.2】 赋值语句使用示例

【例4.2】利息。已知本金m(美元),年利率(人民币)r,存款年数n,存款日美元兑人民币汇率a。假如小明今天把**美元**换成人民币再**存**入银行,n年后从银行取出。每年利息按**复利**计算(即每年的利息也作为下一年的本金计算)。

试输出小明取款日拿到的人民币,保留两位小数。

【例4.2】设计思路

设计思路

- ◆ 根据题意,首先将美元兑换成人民币存入银行,已知存款日美元兑人民 币汇率为a
 - 则本金m (美元) 换成人民币后 = m*a

$$\mathbf{x} = (\mathbf{m} \times \mathbf{a}) \times (\mathbf{1} + \mathbf{r})$$

◆ 存满**2年**的本金+利息为多少?

$$\mathbf{x} = [(\mathbf{m} \times \mathbf{a}) \times (\mathbf{1} + \mathbf{r})] \times (\mathbf{1} + \mathbf{r}) = (\mathbf{m} \times \mathbf{a}) \times (\mathbf{1} + \mathbf{r})^2$$

◆ 进一步地, 存满**n年**的本金+利息为多少?

$$\mathbf{x} = (\mathbf{m} \times \mathbf{a}) \times (\mathbf{1} + \mathbf{r})^{\mathbf{n}}$$

【例4.2】 Python程序

例4.2-利息.py

#例4.2-利息.py

```
# (1) 输入
```

m = float(input())

r = float(input())

n = int(input())

a = float(input())

#本金m (美元)

#年利率

#存款年数

#存款日美元兑人民币汇率

(2) 计算存款n年复利后的人民币

x = (m*a)*((1+r)**n) #把美元换成人民币后,存n年

(3) 输出

print('%d年后共有人民币x=%.3f' % (n,x))

7、关键字

7、关键字

- 关键字:是某种程序设计语言中事先定义好的确认符,用来组织 语言结构,或者定义内建函数
- 关键字含有内建的含义,用户不能随便使用作为标识符
- 不同版本的Python其关键字不尽相同
- Python3.4.0中的关键字
 - ◆ 组织语言结构的单词
 - ◆ 所有内建函数名

abs, max, min, bin,

oct, hex, pow, int, float等

8、注释

8、注释

- 增强代码可读性的有效方法是在程序中添加必要的注释(对程) 序中每个变量、关键语句必须添加注释!)
- 在Python中,注释不会被解释执行
 - ◆ "#"为**单行注释符**,跟在每一行的末尾,后跟注释文字。注释行也可以单独作为一行
 - ◆ 多行注释符:一对三引号'''

建议把题目要求和解题思路写在程序最前面:把测试样例写在最下面

#例4.2-利息.py

己知本金(美元)m,年利率(人民币)r,存款年数n,存款日美元兑人民币汇率a,取款日假如小明今天把美元换成人民币再存入银行,n年后从银行取出。每年利息按复利计算(即每 试输出小明取款日拿到的人民币,保留两位小数。

```
#(1)输入
```

```
m = float(input()) #本金m (美元)
r = float(input()) #年利率
n = int(input())
               #存款年数
a = float(input()) #存款日美元兑人民币汇率
#(2) 计算存款n年复利后的人民币
x = (m*a) * ((1+r) ** n) # 把美元换成人民币后, 存n年
print('%d年后共有人民币x=%, 2f' % (n, x))
输入样例:
1000
0.02
10
6. 5
```

如何打印由多行字符串组成的图形?

- 采用一对三引号将要输出的字符串 括起来, 然后赋给一个变量
- 再采用**格式化字符串**方法,打印该 变量

7923.46

【例4.3】将键盘输入的一个字符插入到固定的多行字符串的中间位置,打印输出。

例4.3-print-多行字符串.py

- %称为**字符串格式化操作符**,其**右边**为需要**格式化的对象**,**左边**的%s表示要插入的对象的**位置和格式**。这里即是将x的值插入变量display中"%s"所在位置。
- print语句输出时,是将三引号中的内容,**原封不动**地打印出来。必须将要打印的内容,**紧跟在第一个在三引号的后面**!而不能放在三引号的下一行!否则,打印时最前面会比预想的多一行空行。同理,**第二个三引号也必须紧跟在要打印内容的末尾**,而不是下一行。否则,打印内容的最后,会多一个空行。提交到OJ上时会WA。

- 1、重视课前、课上和课后各个环节
 - ◆ <mark>课前</mark>预习课件,观看MOOC视频,仔细阅读教材 相关章节
 - ◆ **上课**认真听讲,积极**思考**,参与**讨论**和**练习**
 - ◆ 课后认真复习精讲课件,把课件上例子自己独立做一遍,仔细体会语法

仅仅带着耳朵听课是不够的! 必须预习+复习+实践!

提示很重要!

2、实验怎么做?

- ◆ 实验课前复习语法;仔细阅读实验指导,了解题目要求(包括输入、输出的类型),理解题意
- ◆ **实验课上**逐题编程,先在本地调试,**所有**测试样例通过后再 提交到OJ上测试
- ◆ 若遇到程序有问题
 - ✓ 不要马上问老师或助教——因为考试时你只能靠自己!
 - ✓ 先自己冷静下来,仔细阅读系统给出的出错信息,分析可能错在什么地方

- ✓ 在可能有问题的地方插入print,打印中间结果,有助于查错
- ✓ 查阅课件或教材中相关知识和示例
- ✓ 如果还不能解决,一定要现场或在课程群里提问。不要 在一道题上纠缠太久!
- ✓ 可以贴出出错信息和相关源代码,但不要直接贴出全部 代码
- ✓ 可以私信发给助教或老师
- ◆ 实验课后,尽快完成未完成的题,在OJ上提交
 - ◆ 确保每次实验的每道题都能独立完成

本讲小结

北京航空航天大学

一、Python的内建函数

- Python解释器提供了69个内建函数,用户可以直接使用
 - ◆ 数学运算类: abs(x)求绝对值; int(x)向下取整, float(x)将一个字符串或数转换为浮点数, round(x,[d])把浮点数四舍五入为最接近的整数值; bin(x)将整数x转换为二进制字符串, oct(x)将整数x转换为八进制字符串, hex(x)将整数x转换为十六进制字符串
 - ◆ 集合类操作: len(x)返回序列中所包含元素的数量; max(x)返回集合中的最大值, min(x)返回序列中最小的元素, str(x) 转换为string类型
 - ◆ IO操作: input输入合法的Python表达式; print打印表达式

二、Python的标准库

- 标准库是Python的标准安装提供的一组模块。每个模块中提供了若干函数, 方便用户调用它们,进行相应运算
 - ◆ math和cmath模块:包含用于计算实数和复数的数学函数(如向下取整函数floor、 求平方根函数sqrt、正弦函数sin等)
 - ◆ random模块:包含产生随机数的函数(如randint函数, uniform函数)
 - ◆ copy模块:包含deepcopy函数(深拷贝)
 - ◆ datetime模块:提供显示日期和时间的格式化方法
- 要想使用标准库中的某个函数,必须先使用"import <库名>"语句导入该库;
 - 再使用形如"<库名>.<函数>(参数)"的语句对该函数进行调用

总结: 几个取整函数的比较

- int(x): 把浮点数向下取整为整数(简单舍弃小数部分,只取整数部分);或把一个数字字符串转换为整数
- round(x,[d]): 把浮点数四舍五入为最接近的整数值。d是保留小数位数, 默认值为0。在Python 3中该函数表示对x四舍六入五凑偶
 - ◆ 如round(3.5)=4, round(2.5)=2
- math.ceil(x):浮点数**向上取整**
- math. floor(x): 浮点数向下取整
 - ◆ 对于正的浮点数,运算结果与int函数相同: int(12.3)= math.floor(12.3)=12
 - ◆ 对于**负的带小数**的浮点数,运算结果与int函数**不同**: int(-12.3)=-12, math.floor(-12.3)=-13

三、简单数据类型

- Python简单数据类型包括布尔类型和数值类型
 - ◆ 布尔类型: Python中最简单的内置类型,该类型的对象值只可能为 True或False (称为布尔值)
 - ◆ **数值类型**: int (整型) , float (浮点型) , complex (复数型)
 - ✓ 除复数型外,所有的数值类型都支持算术运算
- 在Python中,参数或变量不需要事先声明类型
- 使用Python的内建函数type可以获取对象的类型

- Python程序由空白符分隔的词法符号流组成
- 词法符号
 - ◆ 空白符 (空格、Tab、换行)
 - ◆ 常量 (整数和实数)
 - ◆ 操作符
 - ◆ 标识符
 - ◆ 关键字
 - ◆ 注释
- 可以分别使用内建函数bin、oct、hex,将十进制数字转换为 二进制、八进制和十六进制表示的字符串

运算符

- 运算符(操作符),是Python预定义的函数符号,这些函数 对被操作的对象进行规定的运算,得到一个结果
 - ◆ 逻辑运算符
 - ◆ 成员测试运算符
 - ★系运算符(布尔比较运算符)
- 普通除法 "/" 与整除 "//" 的区别

- ◆ 位运算符
- ◆ 移位运算符
- ◆ 算术运算符等

不同的运算符有不同的优先级

标识符

- **标识符:** 用户编程时给Python语言描述的对象所起的名字。标识符可由字母、数字、下划线和\$符号构成
- 如变量名、常量名、函数名等
- 定义标识符时应遵循如下规则
 - ① 首字符必须是字母或下划线,不能是数字或\$符号!
 - ② 标识符是区分大小写的: "LENGTH"与 "length"不同
 - ③ 标识符不要与关键字同名!

关键字与注释

- 关键字: 是某种程序设计语言中事先定义好的确认符,用来组织 语言结构,或者定义内建函数
- 关键字含有内建的含义,用户不能随便使用作为标识符!
- 注释:程序中的解释性文字,用来说明变量或语句的含义和作用,程序运行时不会被执行
 - ◆ 对程序中每个变量、关键语句必须添加注释!
 - 建议把题目要求和解题思路写在程序最前面;把测试样例写在最下面
 - 当需要注释掉某一段程序时,使用多行注释符(一对三引号''')

