

Reinforcement Learning Basic Concept

• Reinforcement Learning is learning what to do – how to map situations to actions – so as to maximum a numerical reward.

Reinforcement Learning: An introduction Sutton & Barto

- Rather than learning from explicit training data, or discovering patterns in static data, reinforcement learning discovers the best option (highest reward) from trial and error.
- Inverse Reinforcement Learning
 - Learn reward function by observing an expert
 - "Apprenticeship learning"
 - E.g. Abbeel et al. *Autonomous Helicopter Aerobatics through Apprenticeship Learning*

A Reinforcement Learning Problem

- The environment
- The reinforcement function r(s,a)
 - Pure delay reward and avoidance problems
 - Minimum time to goal
 - Games
- The value function V(s)
 - Policy $\pi: S \to A$
 - Value $V^{\pi}(s) := \sum_{i} \gamma^{i} r_{t+i}$
- Find the optimal policy π^* that maximizes

 $V^{\pi*}(s)$ for all states s.

Goal: Learn to choose actions that maximize $r_0 + \gamma r_1 + \gamma^2 r_2 + ...$, where $0 < \gamma < 1$

RL Value Function - Example

A minimum time to goal world

0	-14	-20	-22
-14	-18	-22	-20
-20	-22	-18	-14
-22	-20	-14	0

Value function for random movement

Optimal policy

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

Optimal value function

Markov Decision Processes

Assume:

- finite set of states S, finite set of actions A
- at each discrete time agent observes state $s_t \in S$ and chooses action $a_t \in A$
- then receives immediate reward r_t
- and state changes to s_{t+1}
- Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
 - i.e. r_t and s_{t+1} depend only on current state and action
 - functions δ and r may be non-deterministic
 - functions δ and r not necessarily known to the agent

Digital Business Evolving your digital future

MDP Example

r(s,a)

An optimal policy

The Q-Function

Optimal policy:

- $\pi^*(s) = \operatorname{argmax}_a[r(s,a) + \gamma V^*(\delta(s,a))]$
- Doesn't work if we don't know r and δ .

The Q-function:

- $Q(s,a) := r(s,a) + \gamma V * (\delta(s,a))$
- $\pi^*(s) = \operatorname{argmax}_a Q(s,a)$

The Q-Function

- Note Q and V* closely related: $V^*(s) = \max_{a'} Q(s,a')$
- Therefore Q can be written as:

$$Q(s_{t},a_{t}) := r(s_{t},a_{t}) + \gamma V *(\delta(s_{t},a_{t})) = r(s_{t},a_{t}) + \gamma \max_{a'} Q(s_{t+1},a')$$

• If $Q^{\hat{}}$ denote the current approximation of Q then it can be updated by:

$$Q^{\wedge}(s,a) := r + \gamma \max_{a'} Q^{\wedge}(s',a')$$

Q-Learning for Deterministic Worlds

For each s, a initialize table entry $Q^{(s,a)} := 0$.

Observe current state s.

Do forever:

- 1. Select an action a and execute it
- 2. Receive immediate reward *r*
- 3. Observe the new state s'
- 4. Update the table entry for $Q^{\hat{}}(s,a)$: $Q^{\hat{}}(s,a) := r + \gamma \max_{a'} Q^{\hat{}}(s',a')$
- 5. s := s'

Q-Learning Example

$$Q^{(s_1, a_{right})} := r + \gamma \max_{a'} Q^{(s_2, a')}$$

 $:= 0 + 0.9 \max\{63, 81, 100\}$
 $:= 90$

Q-Learning Continued

- Exploration
 - Selecting the best action
 - Probabilistic choice
- Improving convergence
 - Update sequences
 - Remember old state-action transitions and their immediate reward
- Non-deterministic MDPs
- Temporal Difference Learning

Reinforcement Learning – Neural Networks as Function Approximators

- To tackle a high-dimensional state space or continous states we can use a neural network as function approximator
- Lunar Lander experiment
 - 8 continous/discrete states
 - XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact
 - 4 discrete actions
 - Left thrust
 - Right thrust
 - Main engine thrust
 - NOP
 - Rewards
 - Move from top to bottom of the screen (+ \sim 100-140)
 - Land between the posts (+100)
 - Put legs on ground (+10 per leg)
 - Penalties
 - Using main engine thrust (-0.3 per frame)
 - Crashing (-100)
- Solved using Stochastic Policy Gradients

Reinforcement Learning Neural Networks as Function Approximators

