β_* RELATION ON LATTICES

CELİL NEBİYEV AND HASAN HÜSEYİN ÖKTEN

ABSTRACT. In this paper, we generalize β^* relation on submodules of a module (see [2]) to elements of a complete modular lattice. Let L be a complete modular lattice. We say $a,b \in L$ are β_* equivalent, $a\beta_*b$, if and only if for each $t \in L$ such that $a \lor t = 1$ then $b \lor t = 1$ and for each $k \in L$ such that $b \lor k = 1$ then $a \lor k = 1$, this is equivalent to $a \lor b \ll 1/a$ and $a \lor b \ll 1/b$. We show that the β_* relation is an equivalence relation. Then, we examine β_* relation on weakly supplemented lattices. Finally, we show that L is weakly supplemented if and only if for every $x \in L$, x is equivalent to a weak supplement in L.

1. Introduction

Throughout this paper, L denotes a complete modular lattice with the smallest element 0 and the greatest element 1. A lattice we will mean a complete modular lattice. In a lattice L, an element $1 \neq m \in L$ is called maximal in L if there is no element between m and 1. An element a of L called small in L, if $a \lor b \ne 1$ holds for every $b \ne 1$. This is denoted by $a \ll L$. An element c of L is called a *supplement* of b in L if it is minimal relative to the property $b \lor c = 1$. Equivalently, an element c is a supplement of b in L if and only if $b \lor c = 1$ and $b \land c \ll c/0$. An element c of L is called a weak supplement of b in L if $b \lor c = 1$ and $b \land c \ll L$. A lattice L is called supplemented (respectively, weakly supplemented) if each element of L has a supplement (respectively, weak supplement) in L. For $a \in L$, we said that $b \in L$ is a complement of a in L if $a \wedge b = 0$ and $a \vee b = 1$ (see [4]). It is denoted by $a \oplus b = 1$ (see [3]). A lattice L is called *complemented* if each element in L has at least one complement in L (see [3]). A lattice L is called hollow if every element with distinct from 1 small in L. An element a of L has ample supplements in L if for every $t \in L$ with $a \lor t = 1$, there is a supplement t' of a with t' < t. L is called amply supplemented if all elements of L have ample supplements in L. In a lattice L, the meet of all maximal elements in L is called radical of L, denoted by rad(L). If $a \in L$ such that $a \ll L$ then

 $^{2010\} Mathematics\ Subject\ Classification.\ 06C05,\ 16D10.$

Key words and phrases. β_* -relation, weakly supplemented lattice, complemented lattice, amply supplemented lattice, hollow lattice.

 $a \leq rad(L)$ (see [5], Proposition 6). For $a, b \in L$ such that $a \leq b$, we said that b lies above a if $b \ll 1/a$. A lattice L is called distributive if for any elements a, b, c of L, $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ holds.

2. β_* Relation

Definition 1. Let a, b be elements of L. We define a relation β_* on the elements of L by $a\beta_*b$ if and only if for each $t \in L$ such that $a \lor t = 1$ then $b \lor t = 1$ and for each $k \in L$ such that $b \lor k = 1$ then $a \lor k = 1$.

Lemma 1. β_* is an equivalence relation.

Proof. The reflexive and symmetric properties are clear. For transitivity, assume $a\beta_*b$ and $b\beta_*c$. Let $t \in L$ such that $a \lor t = 1$. Since $a\beta_*b$, $b \lor t = 1$. So, by $b\beta_*c$, $c \lor t = 1$. Similarly, for each $k \in L$ such that $c \lor k = 1$ then $a \lor k = 1$. Finally $a\beta_*c$.

Theorem 1. Let a, b be elements of L. Then,

- (1) $a\beta_*b$ if and only if $a \lor c = 1$ and $b \lor c = 1$ for each $c \in L$ such that $a \lor b \lor c = 1$.
- (2) $a\beta_*b$ if and only if $a \lor b \ll 1/a$ and $a \lor b \ll 1/b$.
- Proof. (1) (\Rightarrow) Let $a\beta_*b$ and $c \in L$ such that $a \lor b \lor c = 1$. Since $a \lor (b \lor c) = 1$ and $a\beta_*b$, $b \lor (b \lor c) = 1$. Hence $b \lor c = 1$. Similarly, $a \lor c = 1$. (\Leftarrow) Let $t \in L$ such that $a \lor t = 1$. Then $a \lor b \lor t = 1$. By hypothesis, $b \lor t = 1$. Similarly, if $k \in L$ with $b \lor k = 1$ then $a \lor k = 1$. So $a\beta_*b$.
 - (2) (\Rightarrow) Let $a\beta_*b$ and $t \in 1/a$ such that $a \lor b \lor t = 1$. Since $a\beta_*b$, $a \lor t = 1$. Then t = 1. Therefore $a \lor b \ll 1/a$. Similarly, $a \lor b \ll 1/b$. (\Leftarrow) Let $a \lor b \ll 1/a$, $a \lor b \ll 1/b$ and $t \in L$ such that $a \lor t = 1$. So $(a \lor b) \lor (b \lor t) = a \lor b \lor t = 1$. Since $a \lor b \ll 1/b$ and $b \lor t \in 1/b$, $b \lor t = 1$. Similarly, for each $k \in L$ such that $b \lor k = 1$ then $a \lor k = 1$.

Theorem 2. Let a, b be elements of L. Then,

- (1) If $a \ll L$ and $a\beta_*b$ then $b \ll L$.
- (2) All small elements in L is equivalent with β_* equivalence relation.

Proof. (1) Let $a\beta_*b$, $a \ll L$ and $t \in L$ such that $b \vee t = 1$. Hence $a \vee t = 1$. Since $a \ll L$, t = 1. Thus $b \ll L$.

(2) Let $a \ll L$ and $b \ll L$ for $a, b \in L$. Since $a \ll L$, if $a \vee t = 1$ then t = 1. Therefore $b \vee t = 1$. Similarly, $a \vee k = 1$ for each $k \in L$ such that $b \vee k = 1$. Thus $a\beta_*b$.

Corollary 1. L is hollow if and only if all elements with distinct from 1 in L are equivalent with β_* relation.

Proof. (\Rightarrow) Let L be hollow. Then all elements of L with distinct from 1 are small in L. Then by Theorem 2 (2), all elements with distinct from 1 in L are equivalent with β_* relation.

(\Leftarrow) Let all elements of L with distinct from 1 be equivalent to each other. Let $a,t\in L,\ a\neq 1$ and $a\vee t=1$. If $t\neq 1$, then by hyphothesis $a\beta_*t$ and $t=t\vee t=1$. This is a contradiction. Hence t=1 and $a\ll L$. Therefore L is hollow.

Theorem 3. Let a, b be elements of L such that $a \leq b$. If b lies above a, then $a\beta_*b$.

Proof. Assume b lies above a. Then, $b \ll 1/a$. Since $a \leq b$ for any $t \in L$ such that $a \vee t = 1$, $b \vee t = 1$. Conversely, let $k \in L$ with $b \vee k = 1$. Then $b \vee a \vee k = 1$. Since $b \ll 1/a$ and $a \vee k \in 1/a$, $a \vee k = 1$. Hence $a\beta_*b$.

Lemma 2. Let a, b, c be elements of L. If $a \lor b = 1$ and $(a \land b) \lor c = 1$, then $a \lor (b \land c) = b \lor (a \land c) = 1$.

Proof. Assume $a \lor b = 1$ and $(a \land b) \lor c = 1$. Since $(a \land b) \lor c = 1$, $a = a \land 1 = a \land [(a \land b) \lor c] = (a \land b) \lor (a \land c)$. Then $1 = a \lor b = (a \land b) \lor (a \land c) \lor b = b \lor (a \land c)$. Similarly $a \lor (b \land c) = 1$.

Theorem 4. Let $a, b \in L$. If $a\beta_*b$ then the following conditions hold.

- (1) If there exist supplements of a and b then these are the same.
- (2) If there exist weak supplements of a and b then these are the same.
- Proof. (1) Let c be a supplement of a. Then $a \lor c = 1$. Since $a\beta_*b$, $b \lor c = 1$. Let $d \in L$ such that $d \le c$ and $b \lor d = 1$. Therefore $a \lor d = 1$. Since c is a supplement of a and $d \le c$, d = c. Then c is a supplement of a. Similarly, interchanging the roles of a and a we can show that each supplement of a is also a supplement of a.
 - (2) Let $a\beta_*b$ and c be a weak supplement of a in L. Therefore $a \lor c = 1$ and $a \land c \ll L$. Since $a\beta_*b$ and $a \lor c = 1$, $b \lor c = 1$. Let t be an element of L such that $(b \land c) \lor t = 1$. By Lemma 2, $b \lor (c \land t) = 1$ and since $a\beta_*b$, $a \lor (c \land t) = 1$. Then by also Lemma 2, $(a \land c) \lor t = 1$ and since $a \land c \ll L$, t = 1. Therefore $b \land c \ll L$ and so c is also a weak supplement of b. Similarly, interchanging the roles of a and b we can show that each weak supplement of b is also a weak supplement of a.

Theorem 5. Let L be an amply supplemented lattice and $a, b \in L$. If supplements of a and b in L are the same then $a\beta_*b$.

_

Proof. Let $t \in L$ such that $a \vee t = 1$. Since L is amply supplemented, there exists a supplement r of a in L such that $r \leq t$. By the hypothesis, r is also a supplement of b. Then $b \vee r = 1$. Since $r \leq t$, $b \vee t = 1$. Similarly, interchanging the roles of a and b we can show that $a \vee k = 1$ for any element k of L such that $b \vee k = 1$. Therefore $a\beta_*b$.

Corollary 2. Let $x, y, c \in L$ such that $x \leq y$ and c is a weak supplement of x in L. Then $x\beta_*y$ if and only if $y \wedge c \ll L$.

Proof. (\Rightarrow): Clear from Theorem 4 (2).

(\Leftarrow): Since $x \leq y$, for any element t of L such that $x \vee t = 1$, $y \vee t = 1$. Let $k \in L$ such that $y \vee k = 1$. Since c is weak supplement of x in L, $x \vee c = 1$ and $x \wedge c \ll L$. Therefore $y \wedge (x \vee c) = 1 \wedge y$, and so $y = x \vee (y \wedge c)$. Hence $x \vee (y \wedge c) \vee k = 1$. Since $y \wedge c \ll L$, $x \vee k = 1$. Thus $x \beta_* y$.

Theorem 6. Let $x, y, z, a, b \in L$ such that $a \oplus b = 1$ and y is a supplement of x in L. Then

- (1) If $z\beta_* y$ then $z/(z \wedge x) \cong y/(y \wedge x)$.
- (2) If $z\beta_*b$ then $z/(z \wedge a) \cong b/0$.
- (3) Let $z \leq b$. Then $z\beta_*b$ if and only if z = b.
- (4) Let $b \leq z$. Then $z\beta_*b$ if and only if $z \wedge a \ll L$.

Proof. (1) Since y is a supplement of x in L and $z\beta_*y$, $x \lor y = x \lor z = 1$. Since $z/(z \land x) \cong (z \lor x)/x$ and $(y \lor x)/x \cong y/(y \land x)$, $z/(z \land x) \cong y/(y \land x)$. Thus $z/(z \land x) \cong y/(y \land x)$.

- (2) By (1), $z/(z \wedge a) \cong b/(a \wedge b)$. Since $a \oplus b = 1$, $z/(z \wedge a) \cong b/0$.
- (3) (\Rightarrow): Since $a \oplus b = 1$ and $z\beta_*b$, $a \lor z = 1$. Also, since b is a supplement of a in L and $z \le b$, z = b.
 - (\Leftarrow) Clear from reflexive property of β_* .
- (4) (\Rightarrow): Since a is a weak supplement of b and $z\beta_*b$, it follows from Theorem 4 (2) that a is also a weak supplement of z in L. Hence $z \wedge a \ll L$.

 (\Leftarrow) It is clear from Corollary 2.

Theorem 7. Let L be a distributive lattice and $a, b \in L$. If $a \oplus b = 1$ and $a\beta_*x$, then $a \le x$ and $b \land x \ll L$.

Proof. Since $a \oplus b = 1$ and $a\beta_* x$, $x \vee b = 1$. Hence $a \wedge (x \vee b) = a \wedge 1 = a$. By the distributive property, $(a \wedge x) \vee (a \wedge b) = a$. Since $a \wedge b = 0$, $a \wedge x = a$, and so $a \leq x$. Also since $x\beta_* a$ and $a \leq x$, $b \wedge x \ll L$ by Theorem 6 (4).

Theorem 8. Let L be a distributive lattice and $x \in L$. If $x\beta_*y$ and there exists a decomposition $a \oplus b = 1$ such that $a \le x$ and $b \land x \ll L$, then $a \le y$ and $b \land y \ll L$.

Proof. Since $a \le x$ and $b \wedge x \ll L$, $a\beta_* x$ by Theorem 6 (4). Since $x\beta_* y$ and $a\beta_* x$, $a\beta_* y$. By Theorem 7, $a \le y$ and $b \wedge y \ll L$.

Theorem 9. Let $x \in L$ and k be a maximal element of L.

- (1) If $a, b \in L$ such that $a \lor b = 1$, $b \ne 1$ and $x\beta_*a$ then $x \not\le b$.
- (2) If $x\beta_* y$ and $x \leq k$ then $y \leq k$.
- (3) If $x\beta_*k$ then x < k.
- (4) If $x\beta_*k$ and w is a weak supplement of x in L then $k = x \vee (k \wedge x)$ and $k \wedge w \ll L$.

Proof. (1) Assume that $x \leq b$. Since $a \vee b = 1$ and $x\beta_*a$, $x \vee b = 1$ so b = 1. This is a contradiction with b is distinct from 1. Therefore $x \not\leq b$.

- (2) Let $y \not\leq k$. Then $k \vee y = 1$. Since $x\beta_* y$, $k = k \vee x = 1$. This is a contradiction. Therefore $y \leq k$.
- (3) Let $x\beta_*k$ and $x \not\leq k$. Since k is a maximal element, $x \vee k = 1$. Moreover k = 1, because $x\beta_*k$. This is a contradiction. Therefore $x \leq k$.
- (4) Let $x\beta_*k$ and w be a weak supplement of x in L. From Theorem 4 (2), w is a weak supplement of k in L. Hence $k \vee w = 1$ and $k \wedge w \ll L$. Since $x\beta_*k$, $x \leq k$ by (3). Since $x \vee w = 1$ and $x \leq k$, the modular law yields $k = x \vee (k \wedge w)$.

Theorem 10. Let $a, b \in L$ and $a \oplus b = 1$. For $x, s \in a/0$, if $x\beta_*s$ in L, then $x\beta_*s$ in a/0.

Proof. Let $k \in a/0$ such that $x \vee k = a$. Then $(x \vee k) \oplus b = 1$, and so $x \vee (k \vee b) = 1$. Hence $s \vee (k \vee b) = 1$ since $x\beta_* s$ in L. Then $[(s \vee k) \vee b] \wedge a = a$, it follows that $(s \vee k) \vee (b \wedge a) = a$. We obtain that $s \vee k = a$. Similarly, interchanging roles of x and s, we can show that $x \vee t = a$ for any element t of a/0 such that $s \vee t = a$. Therefore $x\beta_* s$ in a/0.

Theorem 11. Let $x, y, k \in L$ such that $x \vee k = y \vee k = 1$, $k \wedge y \leq k \wedge x$ and $x \vee y \ll 1/y$. Then $x \vee y \ll 1/x$.

Proof. Let $t \in 1/x$ such that $(x \vee y) \vee t = 1$. Since $x \vee k = 1$, $t \wedge (x \vee k) = t \wedge 1$, and so $x \vee (t \wedge k) = t$ by the modular law. Hence $x \vee y \vee (t \wedge k) = 1$. It follows that $x \vee y \vee [y \vee (t \wedge k)] = 1$. Since $x \vee y \ll 1/y$, $y \vee (t \wedge k) = 1$. Then by Lemma 2, $t \vee (k \wedge y) = 1$. Since $k \wedge y \leq k \wedge x$, $1 = t \vee (k \wedge y) = t \vee (k \wedge x) = t$. Therefore $x \vee y \ll 1/x$.

Theorem 12. Let $x, y, a, b \in L$. If $a, b \ll L, x \leq y \vee b$ and $y \leq x \vee a$, then $x\beta_*y$.

Proof. Let $k \in L$ such that $x \vee y \vee k = 1$. Since $x \leq y \vee b$, $y \vee b \vee k = 1$. From $b \ll L$, $y \vee k = 1$. Similarly, $x \vee k = 1$. Hence, by Theorem 1 (1), $x \beta_* y$.

Theorem 13. Let $x_1, x_2, y_1, y_2 \in L$. If $x_1\beta_*y_1$ and $x_2\beta_*y_2$ then $(x_1 \lor x_2)\beta_*(y_1 \lor y_2)$.

Proof. Let $k \in L$ such that $(x_1 \vee x_2) \vee (y_1 \vee y_2) \vee k = 1$. Since $x_1\beta_*y_1$, $y_1 \vee x_2 \vee y_2 \vee k = 1$ and $x_1 \vee x_2 \vee y_2 \vee k = 1$. Also since $x_2\beta_*y_2$, $y_1 \vee y_2 \vee k = 1$ and $x_1 \vee x_2 \vee k = 1$. By Theorem 1 (1), $(x_1 \vee x_2)\beta_*(y_1 \vee y_2)$.

Corollary 3. Let $x, y_1, y_2, ..., y_n \in L$. If $x\beta_* y_i$ for i = 1, 2, ..., n, then $x\beta_* \bigvee_{i=1}^n y_i$.

Proof. Clear from Theorem 13.

Theorem 14. Let $x, y \in L$ and $j \ll L$. Then $x\beta_* y$ if and only if $x\beta_* (y \vee j)$.

Proof. (\Rightarrow) Let $k \in L$ with $x \lor k = 1$. Since $x\beta_* y$, $y \lor k = 1$. Then $y \lor j \lor k = 1$. Let $t \in L$ such that $(y \lor j) \lor t = 1$. Since $j \ll L$, $y \lor t = 1$. $x \lor t = 1$ from $x\beta_* y$. Hence $x\beta_* (y \lor j)$.

(\Leftarrow) Let $k \in L$ with $x \vee k = 1$. Since $x\beta_*(y \vee j)$, $y \vee j \vee k = 1$. Also, since $j \ll L$, $y \vee k = 1$. Let $t \in L$ such that $y \vee t = 1$. Then $y \vee j \vee t = 1$. Since $x\beta_*(y \vee j)$, $x \vee t = 1$. Hence $x\beta_*y$.

Theorem 15. Let rad(L) = 0 and $a \oplus b = 1$. If $x\beta_*a$ for some $x \in L$ then $x \oplus b = 1$.

Proof. Since $a \oplus b = 1$, b is a supplement of a in L. Since $x\beta_*a$, b is also a supplement of x in L by Theorem 4 (1). Therefore $b \vee x = 1$ and $b \wedge x \ll x/0$. Since rad(L) = 0, $x \wedge b \leq rad(L) = 0$. Hence $x \oplus b = 1$.

Theorem 16. L is weakly supplemented if and only if for every $x \in L$, x is β_* equivalent to a weak supplement in L.

Proof. (\Rightarrow) Let $x \in L$. Since L is weakly supplemented, there exists $z \in L$ such that $x \lor z = 1$ and $x \land z \ll L$. Also x is a weak supplement of z in L. Since β_* relation is reflexive, $x\beta_*x$. So, every element of L is β_* equivalent to a weak supplement element in L.

(\Leftarrow) Let $x \in L$. By the hypothesis, there exists a weak supplement $z \in L$ such that $x\beta_*z$. Let z be a weak supplement of a in L. Thus $a \lor z = 1$ and $a \land z \ll L$. Also, a is a weak supplement element of z in L. Since $x\beta_*z$, a is also a weak supplement of x in L by Theorem 4 (2).

Remark 1. The converse of Theorem 3 is not always true. We can give an example about that. Let K be a hollow module which is not simple. L be the lattice of the set of all submodules of $K \times K$ with respect to the ordering relation of inclusion. Since K is not simple, K has a submodule T with $T \neq 0$ and $T \ll K$. Clearly we see that $T \times 0 \ll L$ and $0 \times T \ll L$. But $T \times 0$ and $0 \times T$ don't lie above each other.

References

- [1] R. Alizade and E. Toksoy, "Cofinitely weak supplemented lattices," *Indian Journal of Pure and Applied Mathematics*, vol. 40:5, pp. 337–346, 2009.
- [2] G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sökmez, and A. Tercan, "Goldie*-supplemented modules," *Glasgow Mathematical Journal*, vol. 52A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212. [Online]. Available: https://doi.org/10.1017/S0017089510000212
- [3] G. Călugăreanu, Lattice Concepts of Module Theory. Dordrecht: Springer Netherlands, 2000.
- [4] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order. Cambridge, UK New York, NY: Cambridge University Press, 2002.
- [5] B. Stenström, "Radicals and socles of lattices," $Archiv\ der\ Mathematik,$ vol. 20, no. 3, pp. 258–261, Jul 1969, doi: 10.1007/BF01899296. [Online]. Available: https://doi.org/10.1007/BF01899296

DEPARTMENT OF MATHEMATICS, ONDOKUZ MAYIS UNIVERSITY, KURUPELIT-ATAKUM-SAMSUN, TURKEY

E-mail address: cnebiyev@omu.edu.tr

Technical Sciences Vocational School, Amasya University, Amasya, Turkey $E\text{-}mail\ address:\ hokten@gmail.com}$