Inteligencia Artificial I - CI5437

Profesor: Carlos Infante

Integrantes:

Daniela Caballero 14-10140

Emmanuel Bandres 14-10071

Fernando Gonzalez, 08-10464

Proyecto II: Othello

Especificaciones del entorno de prueba:

- Memoria: 12 GB RAM

- Procesamiento: Google Colab

Introducción

Con el presente trabajo se desea llevar a cabo el estudio de la búsqueda de soluciones óptimas para

árboles de juego del Othello 6x6, sobre su variación principal. Para ello se implementaron los algoritmos

Negamax, Negamax con poda alpha-beta, Scout y Negascout con el uso opcional de tablas de

transposición.

Representación del Othello 6x6

La representación de los estados del juego utilizada corresponde a la implementada por el profesor

Blai, con los ajustes correspondientes. Para completarla se añadió el código que chequea si una jugada

flanquea alguna ficha del contrincante en las diagonales y también el código que cambia dichas fichas

al nuevo color.

El valor de la heurística para un determinado estado es la suma de todas las fichas en el tablero, donde

las fichas negras tienen un valor de 1 y las fichas blancas un valor de -1.

Tablas de transposición

Para todos los algoritmos está disponible la opción de utilizar tablas de transposición si al ejecutar main

se hace con más de dos argumentos. Se usaron las dos tablas definidas por el profesor Blai, en una

se almacenan los estados en donde juegan las fichas blancas y en la otra se guardan los estados en

los que juegan las fichas negras (nodos Max).

Su propósito es evitar explorar estados de los cuales ya se sepa su valor, a costa de un mayor consumo de memoria.

Algoritmos y resultados

• Negamax sin tablas de transposición

State of PV	Color	Value	Expanded	Generated	Seconds	G/S
34	White	-4	0	1	6.32E-07	1.58E+06
33	Black	-4	1	2	3.18E-06	628536
32	White	-4	3	5	4.73E-06	1.06E+06
31	Black	-4	4	6	3.44E-06	1.74E+06
30	White	-4	9	13	9.41E-06	1.38E+06
29	Black	-4	10	14	9.96E-06	1.41E+06
28	White	-4	64	91	5.15E-05	1.77E+06
27	Black	-4	125	177	6.18E-05	2.87E+06
26	White	-4	744	1049	0.000374268	2.80E+06
25	Black	-4	3168	4498	0.00170233	2.64E+06
24	White	-4	8597	11978	0.00459743	2.61E+06
23	Black	-4	55127	76826	0.0283235	2.71E+06
22	White	-4	308479	428402	0.158858	2.70E+06
21	Black	-4	2525249	3478735	1.31435	2.65E+06
20	White	-4	9459570	13078933	4.79888	2.73E+06
19	Black	-4	65121519	90647895	32.8727	2.76E+06
18	White	-4	625084814	876269598	317.745	2.76E+06
17	Black	-4	3999381161	1305006091	2018.53	646512

Este algoritmo fue sin duda el que tuvo el peor desempeño de todos. Al igual que los demás algoritmos sin utilizar tablas de transposición tuvo un tiempo de ejecución de una hora en Google Colab, llegando al estado 17 de la variación principal en 2018.53 segundos y con 1305006091 estados generados.

• Negamax con tablas de transposición

State of PV	Color	Value	Expanded	Generated	Seconds	G/S
34	White	-4	0	1	9.03E-07	1.11E+06
33	Black	-4	1	2	6.33E-06	316206
32	White	-4	3	5	4.26E-06	1.17E+06
31	Black	-4	4	6	1.04E-05	5.77E+05
30	White	-4	9	13	1.54E-05	8.44E+05
29	Black	-4	10	14	6.87E-06	2.04E+06
28	White	-4	61	88	6.92E-05	1.27E+06
27	Black	-4	118	170	8.50E-05	2.00E+06
26	White	-4	513	764	0.00044645	1.71E+06

25	Black	-4	1889	2868	0.00143067	2.00E+06
24	White	-4	4148	6245	0.00292712	2.13E+06
23	Black	-4	22596	34930	0.0187741	1.86E+06
22	White	-4	91571	143583	0.101828	1.41E+06
21	Black	-4	424249	682152	0.56816	1.20E+06
20	White	-4	1430546	2350511	2.24284	1.05E+06
19	Black	-4	7651154	13223897	17.5715	7.53E+05
18	White	-4	38652651	71356733	99.9274	7.14E+05
17	Black	-4	126814576	249469805	507.182	491874

En la versión de Negamax que utiliza las tablas de transposición se puede observar que los tiempos mejoran significativamente, de los 2018.53 segundos que tardaba en calcular el valor para el estado 17 de la variación principal pasó a 507.182 segundos. Sin embargo, no pudo seguir ejecutándose porque se agotó la memoria. Se puede destacar que el número de estados generados es mucho menor en esta versión.

• Negamax (alpha-beta) sin tablas de transposición

State of PV	Color	Value	Expanded	Generated	Seconds	G/S
34	White	-4	0	1	6.70E-07	1.49E+06
33	Black	-4	1	2	2.23E-06	898069
32	White	-4	3	5	3.50E-06	1.43E+06
31	Black	-4	4	6	2.48E-06	2.42E+06
30	White	-4	9	13	6.45E-06	2.02E+06
29	Black	-4	10	14	6.04E-06	2.32E+06
28	White	-4	21	27	1.51E-05	1.79E+06
27	Black	-4	62	82	3.90E-05	2.10E+06
26	White	-4	186	238	0.000126891	1.88E+06
25	Black	-4	769	1003	0.00052801	1.90E+06
24	White	-4	1152	1502	0.000850457	1.77E+06
23	Black	-4	3168	4068	0.00218531	1.86E+06
22	White	-4	7031	9130	0.00468119	1.95E+06
21	Black	-4	76021	98755	0.0479624	2.06E+06
20	White	-4	98129	127644	0.0664112	1.92E+06
19	Black	-4	205017	267604	0.13315	2.01E+06
18	White	-4	960343	1259430	0.66431	1.90E+06
17	Black	-4	1549785	2031924	1.05676	1.92E+06
16	White	-4	22325108	29501798	14.3338	2.06E+06
15	Black	-4	32949019	43574643	22.0865	1.97E+06
14	White	-4	82016158	107642871	54.6768	1.97E+06
13	Black	-4	3.15E+08	415909956	203.605	2.04E+06
12	White	-4	2.23E+09	2.932E+09	1398.39	2.10E+06

En Negamax con poda alpha-beta se observa una gran mejora en el desempeño del algoritmo, alcanzando el estado 12 de la variación principal en 1398.39 segundos y con 2931981147 estados generados.

• Negamax (alpha-beta) con tablas de transposición

State of PV	Color	Value	Expanded	Generated	Seconds	G/S
34	White	-4	0	1	1.09E-06	916590
33	Black	-4	1	2	5.05E-06	395804
32	White	-4	3	5	3.88E-06	1.29E+06
31	Black	-4	4	6	9.31E-06	644468
30	White	-4	9	13	8.09E-06	1.61E+06
29	Black	-4	10	14	6.46E-06	2.17E+06
28	White	-4	21	27	6.32E-05	427181
27	Black	-4	59	79	6.00E-05	1.32E+06
26	White	-4	168	219	0.000155845	1.41E+06
25	Black	-4	651	872	0.000682039	1.28E+06
24	White	-4	892	1205	0.000900459	1.34E+06
23	Black	-4	2370	3160	0.00215631	1.47E+06
22	White	-4	4641	6250	0.00410218	1.52E+06
21	Black	-4	39928	54956	0.0428463	1.28E+06
20	White	-4	56258	76965	0.07552	1.02E+06
19	Black	-4	117203	160594	0.156551	1.03E+06
18	White	-4	469220	654686	0.787941	830882
17	Black	-4	716541	999201	0.928447	1.08E+06
16	White	-4	5507352	8029654	11.3172	709511
15	Black	-4	10438933	15027032	20.2808	740949
14	White	-4	21842717	31669720	48.941	647099
13	Black	-4	61578039	91611291	183.277	499851

Con tablas de transposición no se observó una diferencia significativa. Nuevamente la ejecución se paró por agotamiento de la memoria.

• Scout sin tablas de transposición

Color	Value	Expanded	Generated	Seconds	G/S
White	-4	0	1	4.14E-07	2.42E+06
Black	-4	1	2	2.48E-06	806127
White	-4	2	3	3.73E-06	804721
Black	-4	3	4	2.53E-06	1.58E+06
White	-4	8	11	9.77E-06	1.13E+06
Black	-4	9	12	7.99E-06	1.50E+06
White	-4	10	13	1.64E-05	790514
Black	-4	11	14	3.76E-05	372380
White	-4	42	52	0.000184317	282123
	White Black White Black White Black White Black	White -4 Black -4 White -4 Black -4 White -4 Black -4 White -4 Black -4 Black -4	White -4 0 Black -4 1 White -4 2 Black -4 3 White -4 8 Black -4 9 White -4 10 Black -4 11	White -4 0 1 Black -4 1 2 White -4 2 3 Black -4 3 4 White -4 8 11 Black -4 9 12 White -4 10 13 Black -4 11 14	White -4 0 1 4.14E-07 Black -4 1 2 2.48E-06 White -4 2 3 3.73E-06 Black -4 3 4 2.53E-06 White -4 8 11 9.77E-06 Black -4 9 12 7.99E-06 White -4 10 13 1.64E-05 Black -4 11 14 3.76E-05

25	Black	-4	152	192	0.000778801	246533
24	White	-4	199	249	0.00115839	214953
23	Black	-4	245	306	0.00200244	152814
22	White	-4	580	727	0.00633253	114804
21	Black	-4	1520	1909	0.0278715	68493
20	White	-4	1777	2250	0.0433185	51940.9
19	Black	-4	2144	2692	0.100123	26887
18	White	-4	4944	6294	0.334193	18833.4
17	Black	-4	5637	7155	0.594742	12030.4
16	White	-4	34050	43606	3.94707	11047.7
15	Black	-4	71785	91903	15.0832	6093.09
14	White	-4	107191	136919	36.5424	3746.85
13	Black	-4	231468	295252	130.081	2269.75
12	White	-4	693495	888835	340.484	2610.5
11	Black	-4	2787292	3586018	2012.12	1782.21

El algoritmo Scout fue el más eficiente de los que probamos, alcanzando el estado 11 de la variación principal antes de que llegara al límite de tiempo.

• Scout con tablas de transposición

State of PV	Color	Value	Expanded	Generated	Seconds	G/S
34	White	-4	0	1	9.30E-07	1.08E+06
33	Black	-4	1	2	7.12E-06	281017
32	White	-4	2	3	4.40E-06	681354
31	Black	-4	3	4	3.03E-06	1.32E+06
30	White	-4	8	11	2.09E-05	526391
29	Black	-4	9	12	1.33E-05	904159
28	White	-4	10	13	1.92E-05	678745
27	Black	-4	11	14	3.71E-05	377308
26	White	-4	42	52	0.000227408	228664
25	Black	-4	147	187	0.00128209	145856
24	White	-4	178	225	0.00121836	184675
23	Black	-4	224	282	0.00195199	144468
22	White	-4	452	575	0.00675185	85161.9
21	Black	-4	1018	1296	0.0311411	41617
20	White	-4	1555	1992	0.0471062	42287.5
19	Black	-4	1889	2397	0.0946147	25334.3
18	White	-4	3860	4990	0.326095	15302.3
17	Black	-4	4479	5764	0.593196	9716.85
16	White	-4	20737	27135	3.75524	7225.9
15	Black	-4	48142	62758	14.2443	4405.83
14	White	-4	69179	90208	34.7987	2592.28
13	Black	-4	148117	193486	125.663	1539.72
12	White	-4	418791	553494	326.978	1692.76
11	Black	-4	1604468	2124212	1954.41	1086.88

Podemos ver que el uso de las tablas de transposición en este algoritmo no mejoró su eficiencia. Es más, el número de nodos generados por segundo fue menor en este caso. A diferencia de otros algoritmos, Scout con tablas de transposición no llegó al límite de memoria antes de que terminara el tiempo disponible.

• Negascout sin tablas de transposición

State of PV	Color	Value	Expanded	Generated	Seconds	G/S
34	White	-4	0	1	9.09E-07	1.10E+06
33	Black	-4	1	2	2.59E-06	773096
32	White	-4	3	5	3.74E-06	1.34E+06
31	Black	-4	4	6	2.49E-06	2.41E+06
30	White	-4	14	20	9.07E-06	2.21E+06
29	Black	-4	15	21	8.05E-06	2.61E+06
28	White	-4	26	34	1.68E-05	2.03E+06
27	Black	-4	64	84	3.87E-05	2.17E+06
26	White	-4	312	398	0.000184327	2.16E+06
25	Black	-4	1275	1668	0.000796053	2.10E+06
24	White	-4	1894	2465	0.00116364	2.12E+06
23	Black	-4	3051	3898	0.0019838	1.96E+06
22	White	-4	9329	12085	0.00594342	2.03E+06
21	Black	-4	37988	48716	0.025269	1.93E+06
20	White	-4	63570	81896	0.042844	1.91E+06
19	Black	-4	142595	184434	0.0955216	1.93E+06
18	White	-4	466161	606535	0.322127	1.88E+06
17	Black	-4	870050	1134974	0.61071	1.86E+06
16	White	-4	5518091	7224096	3.80199	1.90E+06
15	Black	-4	19705373	25834398	13.4573	1.92E+06
14	White	-4	47600678	62054622	32.4079	1.91E+06
13	Black	-4	1.85E+08	242590597	122.177	1.99E+06
12	White	-4	4.77E+08	623022874	314.772	1.98E+06
11	Black	-4	2.57E+09	3.362E+09	1763.36	1.91E+06

En Negascout se obtuvo un resultado similar que con Scout, alcanzando al estado 11 de la variación principal con 1763.36 segundos y 3362315471 nodos generados.

• Negascout con tablas de transposición

State of PV	Color	Value	Expanded	Generated	Seconds	G/S
34	White	-4	0	1	1.50E-06	665336
33	Black	-4	1	2	6.41E-06	312110
32	White	-4	3	5	5.76E-06	867604
31	Black	-4	4	6	1.36E-05	441761
30	White	-4	14	20	1.45E-05	1.38E+06
29	Black	-4	15	21	1.39E-05	1.51E+06

28	White	-4	26	34	5.32E-05	639398
27	Black	-4	61	81	7.95E-05	1.02E+06
26	White	-4	248	325	0.000211835	1.53E+06
25	Black	-4	967	1323	0.000757493	1.75E+06
24	White	-4	1318	1798	0.000995519	1.81E+06
23	Black	-4	2159	2867	0.00176958	1.62E+06
22	White	-4	5475	7439	0.00454812	1.64E+06
21	Black	-4	21616	29049	0.0208645	1.39E+06
20	White	-4	35851	48313	0.0366881	1.32E+06
19	Black	-4	82168	110813	0.110946	998804
18	White	-4	235923	322474	0.356913	903510
17	Black	-4	429696	589847	0.608378	969540
16	White	-4	2092120	2926730	3.65963	799734
15	Black	-4	6198961	8709255	11.8155	737105
14	White	-4	13843419	19599669	28.5593	686281
13	Black	-4	33901681	48969238	86.6353	565234
12	White	-4	91230899	133748749	328.84	406729

Al igual que con Scout, al utilizar tablas de transposición en el algoritmo Negascout no vemos ninguna mejora, incluso alcanzando un estado menos que sin tablas ya que se llegó al límite de memoria.

Conclusión

Podemos concluir que los algoritmos de Scout y Negascout fueron los más eficientes para el problema planteado del Othello 6x6. El uso de tablas de transposición, si bien mejora los tiempos de ejecución y disminuye la cantidad de estados generados y expandidos, incurre en un gran gasto de memoria. Por lo tanto, su uso no representa una mejora para los algoritmos implementados con los recursos disponibles.