Programme de colle : Semaine 24 Lundi 7 avril

1 Cours

- 1. Equation différentielle.
 - Retour sur les équations différentielles mais cette fois à coefficients pas nécessairement constant.
- 2. Espaces vectoriels
 - Définition d'un espace vectoriel. On se contentera de travailler sur \mathbb{R}^n ou \mathbb{C}^n .
 - Définition d'un sous espace vectoriel d'un K-ev.
 - Famille de vecteurs, combinaisons linéaires et espace vectoriel engendré.
 - Famille génératrice d'un sev F. Famille libre. Bases.
 - Dimension, rang d'une famille de vecteurs (défini comme la dimension de l'espace vectoriel engendré).
 - Proposition reliant cardinal d'une famille de vecteur, famille génératrice, famille libre et base.
- 3. Python:
 - Tableau numpy, dictionnaires
 - Représentation informatique d'un polynome par une liste (évaluation, racine, dérivation, somme)

2 Exercices Types

- 1. (a) i. Déterminer $(a,b) \in \mathbb{R}^2$ tel que $\frac{x^2}{1+x^2} = \frac{a}{1+x^2} + b$
 - ii. A l'aide d'une intégration par partie, déterminer une primitive de $x\mapsto 2x\arctan(x)$
 - (b) Résoudre l'équation différentielle suivante sur $]0, +\infty[$

$$y' + \frac{1}{x}y = 2\arctan(x)$$

2. Déterminer la solution générale des équations différentielles suivantes

(a)
$$(1+x^2)y' - 2xy = (1+x^2)^2$$

(b) $y' + \frac{1-2x}{x^2}y = 1$
(c) $y' - y = x^2(e^x + e^{-x})$

(f)
$$(1-x^2)y' - 2xy = 1$$

(b)
$$y' + \frac{1-2x}{x^2}y = 1$$

(g)
$$(\tan x)y' + y - \sin x = 0$$

(c)
$$y' - y = x^2(e^x + e^{-x})$$

(h)
$$y' + (\tan x)y = \sin x + \cos^3 x$$

(d) xy' + (1-2x)y = 1

(i) $x^2y'-y=x^2-x+1$. On pourra chercher une

(e) $x^3y' + 4(1-x^2)y = 0$

- solution particulière polynomiale.
- 3. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^2 ?

(a)
$$A = \{(x, y) \in \mathbb{R}^2, 2x - y = 0\}$$

(b)
$$B = \{(x, y) \in \mathbb{R}^2, \quad x - 3y + 1 = 0\}$$

(c)
$$C = \{(x+2y,y), (x,y) \in \mathbb{R}^2\}$$

(d)
$$D = \{(x, y) \in \mathbb{R}^2, \quad x^2 + y^2 \le 1\}$$

4. Dans \mathbb{K}^3 , on considère u=(2,-4,7) et v=(-1,2,-3). Peut-on déterminer a de sorte que $w\in \mathrm{Vect}(u,v)$ dans chacun des 3 cas suivants :

(a)
$$w = (-1, a, 3)$$

(b)
$$w = (-1, 2, a)$$

(c)
$$w = (-1, -1, a)$$

5. Les familles suivantes de \mathbb{R}^3 sont-elles libres ou liées? Si elle est liée, exprimer un vecteur comme combinaison linéaire des autres.

(a)
$$u = (1, -1, 0), v = (2, 1, -1)$$
 et $w = (1, 5, -1)$

(b)
$$u=(1,1,2),\,v=(2,1,0)$$
 et $w=(3,1,\lambda)$ λ paramètre réel.

(c)
$$u = (1, 0, -2), v = (2, 3, 1)$$
 et $w = (4, -2, 1)$

(d)
$$u = (1, 1, -1), v = (1, -1, 1), w = (-1, 1, 1)$$
 et $t = (1, 1, 1)$

- 6. Montrer que F est un sous-espace vectoriel de E. Donner une base de F et sa dimension.
 - (a) $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3, x y + 3z = 0 \text{ et } 2x y + z = 0\}$
 - (b) $E = \mathbb{R}^3 \text{ et } F = \{(x, y, z) \in \mathbb{R}^3, x y + 4z = 0\}$
 - (c) $E = \mathbb{R}^3$ et $F = \{(x + 2y 2z, -x + 3y z, x + 7y 5z), (x, y, z) \in \mathbb{R}^3\}$
 - (d) $E = \mathbb{R}^4$ et $F = \{(x, y, z, t) \in \mathbb{R}^4, 2xy + z t = 0 \text{ et } x y + z + t = 0 \text{ et } x + 2y at = 0\}$ avec a un paramètre réel.
- 7. Ecrire une fonction Python qui prend en argument un entier n et retourne la valeur de u_n où $(u_n)_{n\in\mathbb{N}}$ est définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 3sin(u_n) + 2$

8. Représenter informatiquement un polynome (liste) et donner une fonction qui permet de faire la somme de deux polynomes.