(19) [本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-220879

(43)公開日 平成4年(1992)8月11日

(51) Int.CI. ⁶		識別記号	庁内整理番号	FΙ	技術表	示菌所
H 0 4 N	1/41	В	8839-5C			
G 0 6 F	15/64	400 J	8419-5B			
	15/66	330 H	8420-5L			
H04N	7/13	Z	6957 - 5 C			

審査請求 未請求 請求項の数1(全 4 頁)

(21)出腺番号	역験平2-405161	(71)出腺人	000001443	
			カシオ計算機株式会社	
(22)出願日	平成2年(1990)12月21日		東京都新宿区西新宿2丁目6番1号	
		(72)発明者	松井 紳一	
			東京都東大和市桜が丘2丁目229番地	力
		İ	シオ計算機株式会社東京事業所内	
		(74)代理人	弁理士 鈴江 武彦	

(54) 【発明の名称】 量子化装置

(57)【要約】

【構成】DCT (離散コサイン変換)を用いた画像圧縮 装置において、DCTされた画像データを量子化マップ を用いて量子化した符号量の大小を計測する。符号量と スケールとの関数を指数的にサンブルした点を直線補間 してスケールを決定する。決定したスケールに基づいた 量子化マップを用いてDCTされた画像データを量子化 する。

【効果】符号量とスケールとの関数を指数的にサンプル した点を直線補間してスケールを決定することにより、 どの様な入力関係においても最適な量子化マップが決定 できるため、画質を向上することができる。

—789—

BEST AVAILABLE COPY

特関平4-220879

【特許請求の範囲】

【謝求項1】 入力データを量了化マップを用いて量子化した符号量の大小を計測する符号量計測手段と、符号量とスケールとの関数を指数的にサンプルするサンプル手段と、このサンブル手段によりサンブルした点を直線補間する直線補同手段と、この直線補間手段によりスケールを決定するスケール決定手段と、このスケール決定手段により決定したスケールに基づいた量子化マップを用いて入力データを量子化する量子化手段とを具備することを特徴とする量子化装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は例えば電子ステルカメラ等に用いられるDCT(離散コサイン変換)等の手法を用いた画像圧縮のための量子化装置に関する。

[0002]

【従来の技術】DCTを用いた阿像圧縮装置は、フレームメモリ上に蓄えられた画像データを、通常8×8画素のプロック毎に分割し、2次元DCTを実行した後、量子化しスキャン順に符号化する。一方、デコード側は逆 20量子化した後、2次元逆DCTを実行し出力画像を製作する。

【0003】上記画像圧縮袋置では、符号化に可変長符号を使用するため、一定の量子化袋置を用いると、入力 画像のアクティビティによりトータル符号量が大きく異なってくる。そこで、全体の符号量を一定にするような 符号制圧の必要性が生じた場合、難しいという問題が発生する。

【0004】この問題を解決して全体の符号量を一定にする方法は量子化マップの特性を変化させることである。実際は基本量子化マップにスケールSCを掛けたものを新量子化マップとしてスケールSCの大きさにより新量子化マップをコントロールする。しかしながら、入力画像に応じたスケールSCが決定しにくい為、最適な量子化マップがなかなか見つからないという欠点があった。この欠点を解決するため、図6に示すように、実際に何点かのスケールSCでのトータル符号量 t を計算してスケールSCとトータル符号量 t との予測関数 t = f (SC) を補間作製し、定められたトータル符号量 t の が与えられた時 t の = f (x) なるx を求めて の スケールSCを定める方法が考えられている。実際には 指数関数などで補間する方法などが考えられる。

[0005]

【発明が解決しようとする課題】しかしながら、図6に 示すように、スケールSCの性質として補間調差により 正しい値SC」より予測値x、が多少大きくなった場合 はあまり問題はないが、正しい値SC? よりも予測値x 、が小さい値になった場合は極端に回質が落ちるという 欠点があった。

【0006】本発明は上記の実情に鑑みなされたもの 50 を割り算して量子化する。

で、どの様な入力画像においても最適な量子化マップが 決定できることにより、画質を向上し得る量子化装置を 提供することを目的とする。

[0007]

【課題を解決するための手段】本発明は上記課題を解決するために、符号量とスケールとの関数を指数的にサンブルし、サンブルした点を直線補間してスケールを決定するものである。

[0008]

【作用】上記手段により、符号量とスケールとの関数を 指数的にサンプルした点を直線補間してスケールを決定 することにより、どの様な入力画像においても最適な量 子化マップが決定できる。

[0009]

【実施例】以下図面を参照して本発明の実施例を詳細に 説明する。

【0010】図1は本発明の一実施例でDCTを用いた 画像圧縮装置を示す。即ち、フレームメモリ11は被写 体を撮像した画像データを答える。フレームメモリ11 から銃み出された図2(A)に示す画像データはDCT 装置12に入力される。このDCT装置12はフレーム メモリ11から入力された画像データを、図2(B)に 示すような例えば8両素×8両素のブロック毎に分割 し、2次元DCTを実行した後、量子化器13に入力す る。この最子化器13はDCT装置12から入力された 図2 (C) に示すような1プロックに64個の成分xoo ~ x17を、各成分毎に異なる64個のデータをもった基 本量子化マップCMを用いて割り算して氧み付けをす る。例えばxoo÷16, xo)÷61, xzo÷72, xzz +99年のように割り算をする。この場合、小数は四倍 五入する。前記量子化器13で割る値は大きくなれば後 で符号発生装置14で作り出す符号の量が減り、逆に小 さくなれば符号の量が増える。したがって、全体の符号 量を一定にするような符号制圧が生じた場合は、基本量 子化マップCMにスケールSCを掛けたものを新量子化 マップNMとも、スケールSCの大きさにより新量子化 マップNMをコントロールする。前記量子化器13は量 子化したデータを符号発生袋置14及び符号量計測装置 15に出力する。この符号量計測装置15は量子化器1 3から入力された量子化データから符号発生装置14で 符号化するのと全く同一のアルゴリズムで発生する符号 の量だけを計算し、計算したデータはスケール計算装置 16に出力される。符号量計測基礎 15は符号発生装置 14より動作が速い。前記スケール計算装置16は符号 量計測装置15から入力されたデータを基にベストスケ ールSCを求めて量子化器13に入力する。量子化器1 3はスケール計算装置16から入力されたスケールSC と基本量子化マップCMとの掛け算より得られた新量子 化マップNMで、DCT装置12から入力されたデータ

—790—

BEST AVAILABLE COPY

【0011】図4はスケール計算装置16の動作フローを示す。すなわち、実際に4点のスケールSC=1, SC=255, SC=20、SC=64でのトータル符号量 tを計算してスケールSCとトータル符号量 tとの関数 $t=f_1$ (SC) を補間作製して(s を予測し、制圧したいトータル符号量 t が与えられた時 $t_1=f_1$ (x) なるx を計算してスケールSC を定める方法である。

【0012】図5は図4の $t=f_0$ (SC) なる f_0 を 予測するプロックの詳細を示すプローである。即ち、ス 10 ケールSC=1のトータル符号量を T_1 、スケールSC=20のトータル符号量を T_{20} 、スケールSC=64のトータル符号量を T_{20} 、スケールSC=64のトータル符号量を T_{20} 、スケールSC=64のトータル符号量を T_{20} (T_{20}) (255-68) / (T_{20} - T_{20})

として直線補間する。又、 t_0 < T_{20} であれば、 $x=64-(t_0-T_{64})$ (64-20) / ($T_{20}-T_{64}$)

として直線補関する。又、 t_0 < T_{20} でなければ、 $x = 20 - (t_0 - T_{20})$ (20-1) / ($T_1 - T_{20}$)

として直線補間する。

【0013】図3は実際に測定した関数 t = f (SC) 及びスケール S C = 1 , S C = 255 , S C = 20 , S C = 64 を指数的に選びそれらの間を直縮補間した関数 t = f ** (SC) を示す。このような直線補間によれば、下に凸な実際の関数を直線補間するため必ず補関値は正しい値よりも大きくなる。又、指数関数的な減少をしているため大きな桶間需差は発生しないなどの利点が 30 ある。このようにして補間された関数は単調減少であるため与えられたトータル符号量 t に関して関数 t = f ** (SC) なるスケール S C を求めることができる。図1の符号発生装置 14は量子化器 13から入力された量子

化データをスキャン酸に符号化してメディア17に入力する。

【0014】次に、デコード側について説明する。メディア17から出力されたスキャン順に符号化された符号は復号装置によりもとのデータに復号され、逆量子化器に出力される。逆量子化器は復号装置から入力されたデータに量子化器13と逆流算を実行して逆量子化した後逆DCT装置に出力する。逆DCT装置は逆量子化器から入力されたデータに2次元逆DCTを実行し画像データとしてフレームメモリに入力する。尚、画像データを変換する手法はDCTに限定されない。

[0015]

【発明の効果】以上述べたように本発明によれば、符号 量とスケールとの関数を指数的にサンブルした点を直線 補間してスケールを決定することにより、どの様な入力 画像においても最適な量子化マップが決定できるため、 両質を向上することができる。

【図面の簡単な説明】

【図1】本発明の一実施例を示す構成説明図である。

【図2】本発明の一実施例の動作を説明するための説明 図である。

【図3】本発明に係る直線補間による関数と実際の関数 の一例を示す特性曲線図である。

【図 4】本発明に係るスケール計算装置の動作の一例を示すフローチャートである。

【図5】本発明に係る直線補間の動作の一例を示すフローチャートである。

【図6】従来の予測関数と実際の関数の一例を示す特性 曲線図である。

【符号の説明】

11…フレームメモリ、12…DCT装置、13…量子 化器、14…符号発生装置、15…符号量計測装置、1 6…スケール計算装置、17…メディア。

[図3]

【图6】

—791—

BEST AVAILABLE COPY

