AMENDMENTS TO THE CLAIMS:

Please cancel claims 28 and 29 without prejudice or disclaimer.

Please amend claims 1-3, 5, 10, 13, 16, 17, 18, 20, 23-25, 27, 31, 37, 39, 41, 44, 47-49, 51, 56, 62-64, 66, and 69 as follows:

LISTING OF CLAIMS:

1. (Currently Amended) A multiphase centrifugal supercharging air induction system for supplying compressed induction fluid to an intake manifold of an internal combustion engine wherein the engine includes a rotatable crankshaft, said induction system comprising:

a first centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine,

said first supercharger including a first inlet, a spaced first outlet, and a first rotatable impeller fluidly between the first inlet and first outlet to compress induction fluid;

a second centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine,

said second supercharger including a second inlet, a spaced second outlet, and a second rotatable impeller fluidly between the second inlet and second outlet to compress induction fluid; and

Page 6 of 43

an induction fluid flow control assembly fluidly intercommunicating the superchargers so that the superchargers cooperatively provide induction fluid to the engine in a number of operating phases, including a first phase in which at least some induction fluid from the first outlet is supplied to the second inlet and a second phase in which at least some induction fluid from the first and second outlets is supplied to the intake manifold without passing through the other supercharger.

both of the impellers are rotated continuously by the crankshaft and at a substantially constant relative speed to the crankshaft speed during the operating phases of the superchargers.

- 2. (Currently Amended) The system as claimed in claim 1; and a drive assembly operable to drivingly connect the superchargers to the crankshaft so that each of the superchargers operates continuously with rotation of the crankshaft.
- (Currently Amended) The system as claimed in claim 2,
 said first and second impellers being rotatable; each being operable to compress induction fluid for the engine when rotated,
- said first and second superchargers including a transmission drivingly connecting the impellers to the drive assembly,

Page 7 of 43

said transmission cooperating with the drive assembly to maintain rotation of the impellers at a the substantially constant speed ratio relative to the rotation of the crankshaft.

- 4. (Original) The system as claimed in claim 3, said transmission including a plurality of intermeshing gears with at least one of said gears being common to both superchargers.
- 5. (Currently Amended) The system as claimed in claim 4, <u>A multiphase</u> centrifugal supercharging air induction system for supplying compressed induction fluid to an intake manifold of an internal combustion engine wherein the engine includes a rotatable crankshaft, said induction system comprising:
 - a first centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine.
 - said first supercharger including a first inlet, a spaced first outlet, and a first impeller fluidly

 between the first inlet and first outlet to compress induction fluid;
 - a second centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine.
 - said second supercharger including a second inlet, a spaced second outlet, and a second impeller fluidly between the second inlet and second outlet to compress induction fluid; and

Page 8 of 43

- an induction fluid flow control assembly fluidly intercommunicating the superchargers so

 that the superchargers cooperatively provide induction fluid to the engine in a number

 of operating phases, including a first phase in which at least some induction fluid

 from the first outlet is supplied to the second inlet and a second phase in which at

 least some induction fluid from the first and second outlets is supplied to the intake

 manifold without passing through the other supercharger.
- a drive assembly operable to drivingly connect the superchargers to the crankshaft so that

 each of the superchargers operates continuously with rotation of the crankshaft.
- said first and second impellers being rotatable, each being operable to compress induction fluid for the engine when rotated,
- said first and second superchargers including a transmission drivingly connecting the impellers to the drive assembly.
- said transmission cooperating with the drive assembly to maintain rotation of the impellers

 at a substantially constant ratio relative to the rotation of the crankshaft,
- said transmission including a plurality of intermeshing gears with at least one of said gears
 being common to both superchargers,
- said transmission including a common rotatable transmission shaft coupled to said common gear,
- said drive assembly including an endless element entraining at least a portion of said common shaft and being operable to entrain at least a portion of the crankshaft.

Page 9 of 43 BEST AVAILABLE COPY

- 6. (Original) The system as claimed in claim 1,
- said induction fluid flow control assembly fluidly intercommunicating the superchargers so that in all operating phases both superchargers compress at least some induction fluid for the engine whenever the crankshaft is rotating.
- 7. (Original) The system as claimed in claim 6, said induction fluid flow control assembly being operable to fluidly intercommunicate the superchargers with the intake manifold so that in all operating phases substantially all of the induction fluid compressed by each of the superchargers is delivered to the intake manifold.
- 8. (Original) The system as claimed in claim 1, said first phase including a series phase in which substantially all induction fluid from the first outlet is supplied to the second inlet.
- 9. (Original) The system as claimed in claim 8, said first phase further including a first transition phase, said induction fluid flow control assembly being configured to switch operation of the superchargers from the series phase to the first transition phase in response to a predetermined condition.

Page 10 of 43

- 10. (Currently Amended) The system as claimed in claim 9, A multiphase centrifugal supercharging air induction system for supplying compressed induction fluid to an intake manifold of an internal combustion engine wherein the engine includes a rotatable crankshaft, said induction system comprising:
 - a first centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine.
 - said first supercharger including a first inlet, a spaced first outlet, and a first impeller fluidly

 between the first inlet and first outlet to compress induction fluid;
 - a second centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine.
 - impeller fluidly between the second inlet and second outlet to compress induction fluid; and
 - an induction fluid flow control assembly fluidly intercommunicating the superchargers so

 that the superchargers cooperatively provide induction fluid to the engine in a number
 of operating phases, including a first phase in which at least some induction fluid
 from the first outlet is supplied to the second inlet and a second phase in which at
 least some induction fluid from the first and second outlets is supplied to the intake
 manifold without passing through the other supercharger.

Page 11 of 43

said first phase including a series phase in which substantially all induction fluid from the first outlet is supplied to the second inlet.

said first phase further including a first transition phase,

said induction fluid flow control assembly being configured to switch operation of the

superchargers from the series phase to the first transition phase in response to a

predetermined condition,

said predetermined condition being the relative rotational speed of the crankshaft measured in engine rpm relative to the maximum rotational speed of the crankshaft, said relative rotational speed being between about sixty and about seventy percent of the maximum rotational speed.

- 11. (Original) The system as claimed in claim 1, said second phase including a parallel phase in which substantially all induction fluid from the first and second outlets is supplied directly to the intake manifold.
- said second phase further including a second transition phase,
 said induction fluid flow control assembly being configured to switch operation of the
 superchargers from the second transition phase to the parallel phase in response to
 a predetermined condition.

Page 12 of 43

12. (Original) The system as claimed in claim 11,

- 13. (Currently Amended) The system as claimed in claim 12, A multiphase centrifugal supercharging air induction system for supplying compressed induction fluid to an intake manifold of an internal combustion engine wherein the engine includes a rotatable crankshaft, said induction system comprising:
 - a first centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine.
 - said first supercharger including a first inlet, a spaced first outlet, and a first impeller fluidly

 between the first inlet and first outlet to compress induction fluid;
 - a second centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine.
 - said second supercharger including a second inlet, a spaced second outlet, and a second impeller fluidly between the second inlet and second outlet to compress induction fluid; and
 - an induction fluid flow control assembly fluidly intercommunicating the superchargers so

 that the superchargers cooperatively provide induction fluid to the engine in a number

 of operating phases, including a first phase in which at least some induction fluid

 from the first outlet is supplied to the second inlet and a second phase in which at

 least some induction fluid from the first and second outlets is supplied to the intake

 manifold without passing through the other supercharger.

Page 13 of 43

said second phase including a parallel phase in which substantially all induction fluid from

the first and second outlets is supplied directly to the intake manifold.

said second phase further including a second transition phase.

said induction fluid flow control assembly being configured to switch operation of the superchargers from the second transition phase to the parallel phase in response to a predetermined condition,

said predetermined condition being the relative rotational speed of the crankshaft measured in engine rpm relative to the maximum rotational speed of the crankshaft, said relative rotational speed being about eighty percent of the maximum rotational speed.

- 14. (Original) The system as claimed in claim 1; and a case presenting a compression chamber and a transmission chamber, said first and second superchargers being at least partially housed within said compression chamber.
- 15. (Original) The system as claimed in claim 1,
 said induction fluid flow control assembly including a passageway fluidly communicating
 said first outlet and said second inlet,
 said induction fluid flow control assembly further including a first valve disposed along said

Page 14 of 43

passageway for controlling the flow of induction fluid there through.

- 16. (Currently Amended) The system as claimed in claim 15,
- said first valve shiftable between an open position wherein induction fluid can is permitted

 to flow through said passageway and a closed position wherein induction fluid is

 prevented from flowing through said passageway,
- said first valve shiftable into a plurality of intermediate positions between said open and closed positions wherein the quantity of induction fluid allowed to flow through the passageway varies from one intermediate position to another.
- 17. (Currently Amended) The system as claimed in claim 15, A multiphase centrifugal supercharging air induction system for supplying compressed induction fluid to an intake manifold of an internal combustion engine wherein the engine includes a rotatable crankshaft, said induction system comprising:
 - a first centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine.
 - said first supercharger including a first inlet, a spaced first outlet, and a first impeller fluidly

 between the first inlet and first outlet to compress induction fluid;
 - a second centrifugal supercharger drivingly connectable to the crankshaft and operable to compress induction fluid for the engine,

- said second supercharger including a second inlet, a spaced second outlet, and a second impeller fluidly between the second inlet and second outlet to compress induction fluid; and
- an induction fluid flow control assembly fluidly intercommunicating the superchargers so

 that the superchargers cooperatively provide induction fluid to the engine in a number

 of operating phases, including a first phase in which at least some induction fluid

 from the first outlet is supplied to the second inlet and a second phase in which at

 least some induction fluid from the first and second outlets is supplied to the intake

 manifold without passing through the other supercharger.
- said induction fluid flow control assembly including a passageway fluidly communicating

 said first outlet and said second inlet,
- said induction fluid flow control assembly further including a first valve disposed along said

 passageway for controlling the flow of induction fluid there through.
- said induction fluid flow control assembly including an additional passageway in fluid communication with said first outlet and operable to be in fluid communication with the intake manifold.
- said induction fluid flow control assembly further including a second valve disposed along said additional passageway downstream of said first-mentioned passageway for controlling the flow of induction fluid through said additional passageway.

Page 16 of 43

18. (Currently Amended) The system as claimed in claim 17,

said second valve shiftable between an open position wherein induction fluid can is permitted to flow through said additional passageway and a closed position wherein induction fluid is prevented from flowing through said additional passageway.

- 19. (Original) The system as claimed in claim 17,
- said induction fluid flow control assembly including a second additional passageway in fluid communication with said second inlet,
- said induction fluid flow control assembly further including a third valve disposed along said second additional passageway upstream of said first-mentioned passageway for controlling the flow of induction fluid through said second additional passageway.
- 20. (Currently Amended) The system as claimed in claim 19, said third valve shiftable between an open position wherein induction fluid can is permitted to flow through said second additional passageway and a closed position wherein induction fluid is prevented from flowing through said second additional passageway.
- 21. (Original) The system as claimed in claim 19; and a case presenting a compression chamber and a transmission chamber,

Page 17 of 43

BEST AVAILABLE COPY

Appl. No. 10/710,797 Amdt. dated November 17, 2005 Reply to Office Action of October 7, 2005

said first and second superchargers and said induction fluid flow control assembly being at least partially housed within said compression chamber,

said compression chamber presenting a case inlet in fluid communication with the atmosphere.

- 22. (Original) The system as claimed in claim 21,
- said induction fluid flow control assembly including a third additional passageway fluidly communicating the case inlet with said first inlet and fluidly communicating the case inlet with said second additional passageway,
- said induction fluid flow control assembly further including a fourth valve disposed along said third additional passageway for controlling the flow of induction fluid there through.
- 23. (Currently Amended) The system as claimed in claim 22, said fourth valve shiftable between an open position wherein induction fluid can is permitted to flow through said third additional passageway and a partially closed position wherein at least some induction fluid is prevented from flowing through said third additional passageway.

Page 18 of 43

BEST AVAILABLE COPY

Appl. No. 10/710,797 Amdt. dated November 17, 2005 Reply to Office Action of October 7, 2005

- 24. (Currently Amended) A method of supplying compressed induction fluid to an intake manifold of an internal combustion engine of a powered land vehicle, wherein the engine includes a rotatable crankshaft and, when off idle, operates at variable rpm over a rev range, said method comprising the steps of:
 - (a) driving a first supercharger off of by the crankshaft to compress induction fluid;
 - (b) driving a second supercharger off of by the crankshaft to compress induction fluid;
 - operating the superchargers at least partially in series so that at least some induction fluid that is compressed by the first supercharger is further compressed by the second supercharger and then supplied to the intake manifold of the engine; and
 - operating the superchargers at least partially in parallel so that at least a portion of induction fluid is compressed by the first supercharger and at least another portion of induction fluid is compressed by the second supercharger and the at least a portion and at least another portion of compressed induction fluid are supplied to the intake manifold of the engine without passing through the other supercharger.

said driving steps of (a) and (b) each being performed so that both superchargers are

continuously operated by the crarkshaft at a substantially constant relative speed to
the crankshaft speed during the operating steps of (c) and (d).

25. (Currently Amended) The method as claimed in claim 24, A method of supplying compressed induction fluid to an intake manifold of an internal combustion engine of a

Page 19 of 43

powered land vehicle, wherein the engine includes a rotatable crankshaft and, when offidle, operates at variable rpm over a rev range, said method comprising the steps of:

- (a) driving a first supercharger off of the crankshaft to compress induction fluid:
- (b) <u>driving a second supercharger off of the crankshaft to compress induction fluid:</u>
- operating the superchargers at least partially in series so that at least some induction

 fluid that is compressed by the first supercharger is further compressed by the second supercharger and then supplied to the intake manifold of the engine; and
- operating the superchargers at least partially in parallel so that at least a portion of induction fluid is compressed by the first supercharger and at least another portion of induction fluid is compressed by the second supercharger and the at least a portion and at least another portion of compressed induction fluid are supplied to the intake manifold of the engine without passing through the other supercharger.
- step (d) being performed after step (c) so that operation of the superchargers phases from at least partially in series to at least partially in parallel in response to a predetermined condition,

said predetermined condition comprising the engine rpm being greater than about seventy percent of rev range.

- 26. (Original) The method as claimed in claim 24,
- step (d) being performed after step (c) so that operation of the superchargers phases from at least partially in series to at least partially in parallel in response to a predetermined condition; and
- (e) switching operation of the superchargers to substantially fully parallel in response to a second predetermined condition so that at least a portion of induction fluid is compressed by the first supercharger and at least another portion of induction fluid is compressed by the second supercharger and the at least a portion and at least another portion of compressed induction fluid are supplied to the intake manifold of the engine without passing through the other supercharger wherein said at least a portion and said at least another portion of induction fluid comprise substantially all induction fluid supplied to the intake manifold of the engine.
- 27. (Currently Amended) The method as claimed in claim 26, A method of supplying compressed induction fluid to an intake manifold of an internal combustion engine of a powered land vehicle, wherein the engine includes a rotatable crankshaft and, when offidle, operates at variable rpm over a rev range, said method comprising the steps of:
 - (a) driving a first supercharger off of the crankshaft to compress induction fluid;
 - (b) driving a second supercharger off of the crankshaft to compress induction fluid;

Page 21 of 43

- operating the superchargers at least partially in series so that at least some induction

 fluid that is compressed by the first supercharger is further compressed by the second

 supercharger and then supplied to the intake manifold of the engine; and
- (d) operating the superchargers at least partially in parallel so that at least a portion of induction fluid is compressed by the first supercharger and at least another portion of induction fluid is compressed by the second supercharger and the at least a portion and at least another portion of compressed induction fluid are supplied to the intake manifold of the engine without passing through the other supercharger.
- step (d) being performed after step (c) so that operation of the superchargers phases from at

 least partially in series to at least partially in parallel in response to a predetermined

 condition; and
- switching operation of the superchargers to substantially fully parallel in response to a second predetermined condition so that at least a portion of induction fluid is compressed by the first supercharger and at least another portion of induction fluid is compressed by the second supercharger and the at least a portion and at least another portion of compressed induction fluid are supplied to the intake manifold of the engine without passing through the other supercharger wherein said at least a portion and said at least another portion of induction fluid comprise substantially all induction fluid supplied to the intake manifold of the engine.

Page 22 of 43

BEST AVAILABLE COPY

said second predetermined condition comprising the engine rpm being about eighty percent of rev range or higher.

- 28. (Canceled)
- 29. (Canceled)
- 30. (Original) The method as claimed in claim 28, steps (a) and (b) including the common step of intermeshing a common gear between the superchargers.
- 31. (Currently Amended) The method as claimed in claim 30, A method of supplying compressed induction fluid to an intake manifold of an internal combustion engine of a powered land vehicle, wherein the engine includes a rotatable crankshaft and, when off idle, operates at variable rpm over a rev range, said method comprising the steps of:

:;

- (a) driving a first supercharger off of the crankshaft to compress induction fluid:
- (b) driving a second supercharger off of the crankshaft to compress induction fluid:
- operating the superchargers at least partially in series so that at least some induction
 fluid that is compressed by the first supercharger is further compressed by the second
 supercharger and then supplied to the intake manifold of the engine; and

Page 23 of 43

11

- operating the superchargers at least partially in parallel so that at least a portion of induction fluid is compressed by the first supercharger and at least another portion of induction fluid is compressed by the second supercharger and the at least a portion and at least another portion of compressed induction fluid are supplied to the intake manifold of the engine without passing through the other supercharger.
- steps (a) and (b) each including the step of drivingly connecting the superchargers to the

 crankshaft so that each of the superchargers operates continuously with rotation of
 the crankshaft,
- steps (a) and (b) including the common step of intermeshing a common gear between the superchargers.
- steps (a) and (b) further including the common steps of entraining an endless element around at least a portion of the crankshaft and driving the common gear at least in part with the endless element.
 - 32. (Original) The method as claimed in claim 24,
- steps (c) and (d) each including the step of operating both superchargers so that each supercharger compresses at least some induction fluid that is supplied to the intake manifold of the engine whenever the crankshaft is rotating.
 - 33. (Original) The method as claimed in claim 32,

Page 24 of 43

Appl. No. 10/710,797

Amdt. dated November 17, 2005

Reply to Office Action of October 7, 2005

- steps (c) and (d) each further including the step of delivering substantially all of the induction fluid compressed by the superchargers to the intake manifold.
 - 34. (Original) The method as claimed in claim 24,
- step (c) including the step of operating the superchargers substantially fully in series so that substantially all induction fluid that is compressed by the first supercharger is further compressed by the second supercharger and then supplied to the intake manifold of the engine.
 - 35. (Original) The method as claimed in claim 24; and
- (e) housing both superchargers substantially within a case.
 - 36. (Original) The method as claimed in claim 24; and
- (e) intercommunicating the first and second superchargers and the intake manifold, step (e) including the steps of fluidly communicating the first and second superchargers with a serial passageway and disposing a first valve along the serial passageway for controlling the flow of induction fluid there through.
 - 37. (Currently Amended) The method as claimed in claim 36,

Page 25 of 43

BEST AVAII ABI E CODV

Appl. No. 10/710,797 Amdt. dated November 17, 2005

Reply to Office Action of October 7, 2005

step (c) including the step of shifting the first valve into an open position wherein induction fluid can is permitted to flow through said serial passageway.

- 38. (Original) The method as claimed in claim 36, step (d) including the step of shifting the first valve into a closed position wherein induction fluid is prevented from flowing through said serial passageway.
- 39. (Currently Amended) The method as claimed in claim 36, A method of supplying compressed induction fluid to an intake manifold of an internal combustion engine of a powered land vehicle, wherein the engine includes a rotatable crankshaft and, when offidle, operates at variable rpm over a rev range, said method comprising the steps of:
 - (a) driving a first supercharger off of the crankshaft to compress induction fluid;
 - (b) driving a second supercharger off of the crankshaft to compress induction fluid:
 - operating the superchargers at least partially in series so that at least some induction
 fluid that is compressed by the first supercharger is further compressed by the second
 supercharger and then supplied to the intake manifold of the engine; and
 - operating the superchargers at least partially in parallel so that at least a portion of induction fluid is compressed by the first supercharger and at least another portion of induction fluid is compressed by the second supercharger and the at least a portion

Page 26 of 43

and at least another portion of compressed induction fluid are supplied to the intake manifold of the engine without passing through the other supercharger.

- intercommunicating the first and second superchargers and the intake manifold,

 step (e) including the steps of fluidly communicating the first and second superchargers with

 a serial passageway and disposing a first valve along the serial passageway for

 controlling the flow of induction fluid there through,
- step (e) including the steps of fluidly communicating the first supercharger and the intake manifold with an additional passageway and disposing a second valve along the additional passageway for controlling the flow of induction fluid there through.
 - 40. (Original) The method as claimed in claim 39,
- step (c) including the step of shifting the second valve into a closed position wherein induction fluid is prevented from flowing through said additional passageway.
- 41. (Currently Amended) The method as claimed in claim 39,
- step (d) including the step of shifting the second valve into an open position wherein induction fluid can is permitted to flow through said additional passageway.
 - 42. (Original) The method as claimed in claim 39,

Page 27 of 43

- step (e) including the steps of fluidly communicating the second supercharger and the atmosphere with a parallel passageway and disposing a third valve along the parallel passageway for controlling the flow of induction fluid there through.
- 43. (Original) The method as claimed in claim 42, step (c) including the step of shifting the third valve into a closed position wherein induction fluid is prevented from flowing through said parallel passageway.
- 44. (Currently Amended) The method as claimed in claim 43, step (d) including the step of shifting the third valve into an open position wherein induction fluid can is permitted to flow through the parallel passageway.
- step (e) including the step of fluidly communicating the atmosphere, the first supercharger, and the parallel passageway with an inlet passageway and disposing a fourth valve along said inlet passageway for controlling the flow of induction fluid there through.
 - 46. (Original) The method as claimed in claim 45; and

45. (Original) The method as claimed in claim 42,

shifting the fourth valve into a partially closed position wherein at least some induction fluid is prevented from flowing through said inlet passageway.

Page 28 of 43

- 47. (Currently Amended) In a powered land vehicle including an internal combustion engine having an intake manifold and a rotatable crankshaft, an improved air induction system comprising:
 - a first centrifugal supercharger drivingly connected to the crankshaft for compressing induction fluid for the engine,
 - said first supercharger including a first inlet, a spaced first outlet, and a first rotatable impeller fluidly between the first inlet and first outlet to compress induction fluid;
 - a second centrifugal supercharger drivingly connected to the crankshaft for compressing induction fluid for the engine,
 - said second supercharger including a second inlet, a spaced second outlet, and a second rotatable impeller fluidly between the second inlet and second outlet to compress induction fluid; and
 - an induction fluid flow control assembly fluidly intercommunicating the superchargers so that the superchargers cooperatively provide induction fluid to the engine in a number of operating phases, including a first phase in which at least some induction fluid from the first outlet is supplied to the second inlet and a second phase in which at least some induction fluid from the first and second outlets is supplied to the intake manifold without passing through the other supercharger.
 - said first and second superchargers being drivingly connected to the crankshaft wherein both

 of the impellers are rotated continuously by the crankshaft and at a substantially

Page 29 of 43

constant relative speed to the crankshaft speed during the operating phases of the superchargers.

- 48. (Currently Amended) In a powered vehicle as claimed in claim 47; and a drive assembly drivingly connecting the superchargers to the crankshaft so that each of the superchargers operates continuously with rotation of the crankshaft.
- 49. (Currently Amended) In a powered vehicle as claimed in claim 48, said first and second impellers being rotatable to compress induction fluid for the engine when rotated,
- said first and second superchargers including a transmission drivingly connecting the impellers to the drive assembly,
- said transmission cooperating with the drive assembly to maintain rotation of the impellers at the a substantially constant speed ratio relative to the rotation of the crankshaft.
- 50. (Original) In a powered vehicle as claimed in claim 49, said transmission including a plurality of intermeshing gears with at least one of said gears being common to both superchargers.

Page 30 of 43

- 51. (Currently Amended) In a powered vehicle as claimed in claim 50, In a powered land vehicle including an internal combustion engine having an intake manifold and a rotatable crankshaft, an improved air induction system comprising:
 - a first centrifugal supercharger drivingly connected to the crankshaft for compressing induction fluid for the engine.
 - said first supercharger including a first inlet, a spaced first outlet, and a first impeller fluidly

 between the first inlet and first outlet to compress induction fluid;
 - a second centrifugal supercharger drivingly connected to the crankshaft for compressing induction fluid for the engine.
 - impeller fluidly between the second inlet and second outlet to compress induction fluid; and
 - an induction fluid flow control assembly fluidly intercommunicating the superchargers so

 that the superchargers cooperatively provide induction fluid to the engine in a number

 of operating phases, including a first phase in which at least some induction fluid

 from the first outlet is supplied to the second inlet and a second phase in which at

 least some induction fluid from the first and second outlets is supplied to the intake

 manifold without passing through the other supercharger.
 - a drive assembly drivingly connecting the superchargers to the crankshaft so that each of the superchargers operates continuously with rotation of the crankshaft,

Page 31 of 43

said first and second impellers being rotatable to compress induction fluid for the engine when rotated,

- said first and second superchargers including a transmission drivingly connecting the impellers to the drive assembly.
- said transmission cooperating with the drive assembly to maintain rotation of the impellers

 at a substantially constant ratio relative to the rotation of the crankshaft.
- said transmission including a plurality of intermeshing gears with at least one of said gears

 being common to both superchargers.
- said transmission including a common rotatable transmission shaft coupled to said common gear,
- said drive assembly including an endless element entraining at least a portion of said common shaft and at least a portion of the crankshaft.
- 52. (Original) In a powered vehicle as claimed in claim 47, said induction fluid flow control assembly fluidly intercommunicating the superchargers so that in all operating phases both superchargers compress at least some induction fluid for the engine whenever the crankshaft is rotating.
 - 53. (Original) In a powered vehicle as claimed in claim 52,

Page 32 of 43

Appl. No. 10/710,797 Amdt. dated November

Amdt. dated November 17, 2005

Reply to Office Action of October 7, 2005

said induction fluid flow control assembly being operable to fluidly intercommunicate the superchargers with the intake manifold so that in all operating phases substantially all of the induction fluid compressed by each of the superchargers is delivered to the intake manifold.

- 54. (Original) In a powered vehicle as claimed in claim 47, said first phase including a series phase in which substantially all induction fluid from the first outlet is supplied to the second inlet.
- said first phase further including a first transition phase,
 said induction fluid flow control assembly being configured to switch operation of the
 superchargers from the series phase to the first transition phase in response to a
 predetermined condition.

55. (Original) In a powered vehicle as claimed in claim 54,

- 56. (Currently Amended) In a powered vehicle as claimed in claim 55, In a powered land vehicle including an internal combustion engine having an intake manifold and a rotatable crankshaft, an improved air induction system comprising:
 - a first centrifugal supercharger drivingly connected to the crankshaft for compressing induction fluid for the engine.

Page 33 of 43

BEST AVAILABLE COPY

Appl. No. 10/710,797 Amdt. dated November 17, 2005

Reply to Office Action of October 7, 2005

said first supercharger including a first inlet, a spaced first outlet, and a first impeller fluidly

between the first inlet and first outlet to compress induction fluid;

a second centrifugal supercharger drivingly connected to the crankshaft for compressing induction fluid for the engine.

impeller fluidly between the second inlet and second outlet to compress induction fluid; and

an induction fluid flow control assembly fluidly intercommunicating the superchargers so

that the superchargers cooperatively provide induction fluid to the engine in a number

of operating phases, including a first phase in which at least some induction fluid

from the first outlet is supplied to the second inlet and a second phase in which at

least some induction fluid from the first and second outlets is supplied to the intake

manifold without passing through the other supercharger.

said first phase including a series phase in which substantially all induction fluid from the first outlet is supplied to the second inlet.

said first phase further including a first transition phase,

said induction fluid flow control assembly being configured to switch operation of the

superchargers from the series phase to the first transition phase in response to a

predetermined condition.

Page 34 of 43

in engine rpm relative to the maximum rotational speed of the crankshaft measured in engine rpm relative to the maximum rotational speed of the crankshaft, said relative rotational speed being between about sixty and about seventy percent of the maximum rotational speed.

- 57. (Original) In a powered vehicle as claimed in claim 47, said second phase including a parallel phase in which substantially all induction fluid from the first and second outlets is supplied directly to the intake manifold.
- 58. (Original) In a powered vehicle as claimed in claim 57, said second phase further including a second transition phase, said induction fluid flow control assembly being configured to switch operation of the superchargers from the second transition phase to the parallel phase in response to a predetermined condition.
- 59. (Original) In a powered vehicle as claimed in claim 58, said predetermined condition being the relative rotational speed of the crankshaft measured in engine rpm relative to the maximum rotational speed of the crankshaft, said relative rotational speed being about eighty percent of the maximum rotational speed.

Page 35 of 43

- 60. (Original) In a powered vehicle as claimed in claim 47; and a case presenting a compression chamber and a transmission chamber, said first and second superchargers being at least partially housed within said compression chamber.
- 61. (Original) In a powered vehicle as claimed in claim 47,
 said induction fluid flow control assembly including a passageway fluidly communicating
 said first outlet and said second inlet,
 said induction fluid flow control assembly further including a first valve disposed along said
 passageway for controlling the flow of induction fluid there through.
- 62. (Currently Amended) In a powered vehicle as claimed in claim 61, said first valve shiftable between an open position wherein induction fluid can is permitted to flow through said passageway and a closed position wherein induction fluid is prevented from flowing through said passageway,
- said first valve shiftable into a plurality of intermediate positions between said open and closed positions wherein the quantity of induction fluid allowed to flow through the passageway varies from one intermediate position to another.

Page 36 of 43

- 63. (Currently Amended) In a powered vehicle as claimed in claim 61, In a powered land vehicle including an internal combustion engine having an intake manifold and a rotatable crankshaft, an improved air induction system comprising:
 - a first centrifugal supercharger drivingly connected to the crankshaft for compressing induction fluid for the engine.
 - between the first inlet and first outlet to compress induction fluid;
 - a second centrifugal supercharger drivingly connected to the crankshaft for compressing induction fluid for the engine.
 - impeller fluidly between the second inlet and second outlet to compress induction fluid; and
 - an induction fluid flow control assembly fluidly intercommunicating the superchargers so
 that the superchargers cooperatively provide induction fluid to the engine in a number
 of operating phases, including a first phase in which at least some induction fluid
 from the first outlet is supplied to the second inlet and a second phase in which at
 least some induction fluid from the first and second outlets is supplied to the intake
 manifold without passing through the other supercharger.
 - said induction fluid flow control assembly including a passageway fluidly communicating

 said first outlet and said second inlet.

Page 37 of 43

said induction fluid flow control assembly further including a first valve disposed along said

passageway for controlling the flow of induction fluid there through

said induction fluid flow control assembly including an additional passageway in fluid communication with said first outlet and the intake manifold,

said induction fluid flow control assembly further including a second valve disposed along said additional passageway downstream of said first-mentioned passageway for controlling the flow of induction fluid through said additional passageway.

- 64. (Currently Amended) In a powered vehicle as claimed in claim 63, said second valve shiftable between an open position wherein induction fluid can is permitted to flow through said additional passageway and a closed position wherein induction fluid is prevented from flowing through said additional passageway.
 - 65. (Original) In a powered vehicle as claimed in claim 63,
- said induction fluid flow control assembly including a second additional passageway in fluid communication with said second inlet,
- said induction fluid flow control assembly further including a third valve disposed along said second additional passageway upstream of said first-mentioned passageway for controlling the flow of induction fluid through said second additional passageway.

Page 38 of 43

- 66. (Currently Amended) In a powered vehicle as claimed in claim 65, said third valve shiftable between an open position wherein induction fluid can is permitted to flow through said second additional passageway and a closed position wherein induction fluid is prevented from flowing through said second additional passageway.
- 67. (Original) In a powered vehicle as claimed in claim 65; and a case presenting a compression chamber and a transmission chamber, said first and second superchargers and said induction fluid flow control assembly being at least partially housed within said compression chamber, said compression chamber presenting a case inlet in fluid communication with the atmosphere.
- 68. (Original) In a powered vehicle as claimed in claim 67, said induction fluid flow control assembly including a third additional passageway fluidly communicating the case inlet with said first inlet and fluidly communicating the case inlet with said second additional passageway,
- said induction fluid flow control assembly further including a fourth valve disposed along said third additional passageway for controlling the flow of induction fluid there through.

BEST AVAILABLE COPY

Appl. No. 10/710,797 Amdt. dated November 17, 2005 Reply to Office Action of October 7, 2005

69. (Currently Amended) In a powered vehicle as claimed in claim 68, said fourth valve shiftable between an open position wherein induction fluid can is permitted to flow through said third additional passageway and a partially closed position wherein at least some induction fluid is prevented from flowing through said third additional passageway.

Page 40 of 43