SH*T TO OPEN TOMORROW

- **1. WINDOW 1**
 - a. TCOLE
 - b. Quiz
- 2. WINDOW 2
 - a. Symbolab
 - b. Desmos
 - c. Matrix Multiplier
 - d. Google
 - e. Octave

2 COMPLEX NUMBERS (I)

- 1. Imaginary numbers, i
 - a. $i \equiv \sqrt{-1}$

$$i^2 = -1$$

b.
$$\sqrt{-c} = \sqrt{c} \times -1 = \sqrt{c}\sqrt{-1} = \sqrt{c}i$$

 $\sqrt{-c} = \sqrt{c}i$

c. Powers of i

$$i^2 = -1$$

$$i^3 = i^2 \times i = -i$$

$$i^4 = i^2 \times i^2 = 1$$

$$i^5 = i^4 \times i = i$$

- 2. Complex numbers: Cartesian form
 - a. Cartesian form

$$z=x+iy,\;x,y\in\mathbb{R}$$

b. Solve with Complete The Square (CTS)

 Solve
$$P(z) = z^2 - 4z + 13$$

COMPLETE THE SQUARE

$$ax^{2} + bx + c = a(x + (\frac{b}{2a})^{2})^{2} - (\frac{b}{2a})^{2} + c$$

$$=(z-2)^2+9$$

Turn + into ---

$$= (z - x)^{2} - 9$$
Turn $-c$ into $\sqrt{c}i$

$$= (z - 2)^{2} - (3i)^{2}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$= (z - 2 + 3i)(z - 2 - 3i)$$

$$\therefore z = 2 \pm 3i$$

- c. Basic operations
 - i. Equality

$$a + bi = c + di \leftrightarrow a = c \land b = d$$

ii. Addition/Subtraction

$$a + bi \pm c + di = (a \pm c) + i(b \pm d)$$

iii. Multiplication

$$(a+bi)(c+di) = (ac-bd) + i(ad+bc)$$

iv. Division

$$\frac{a+bi}{c+di} \times \frac{c-di}{c-di}$$
(^ conjugate)

d. Complex conjugate

$$\bar{z} = x - iy, \ x, y \in \mathbb{R}$$

e. Conjugate pair

$$z\overline{z} = x^2 + y^2$$

- 3. Complex Numbers: Polar Form
 - a. Argand Plane
 - i. Quadrants<diagram>
 - ii. Angles table

7g. 6 6 14.5 16								
deg.	30	45	60	90	120	185	150	180
rad.	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
dec.	0.5235	0.7853	1.0471	1.5707	2.0943	2.3561	2.6179	3.1415

iii. sine and cosine table

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	<u>π</u> 3	$\frac{\pi}{2}$
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	<u>1</u> 2	0
sin θ	0	1 2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1

$$\frac{\sqrt{3}}{2} = 0.8660...$$

$$\frac{1}{\sqrt{2}} = 0.7071... = \frac{\sqrt{2}}{2}$$

- iv. Standard Triangles
- b. Polar Form

i.

$$z = r(\cos \theta + i \sin \theta)$$
$$= r \operatorname{cis} \theta$$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\tan \theta = \frac{y}{x}$$

ii. Argument of z

$$arg(z) = \theta \{ or + 2\pi k, k \in \mathbb{Z} \}$$

iii. Principal Value of z

$$-\pi < P.V.arg(z) \le \pi$$

- c. Multiplication and Division
 - i. $cis \theta_1 \times cis \theta_2 = cis (\theta_1 + \theta_2)$

 $\tan \alpha = \frac{x}{y}$

 $\tan \alpha = \frac{-2}{-3}$

 $\alpha = \frac{\pi}{4}$

 $\theta = \frac{5\pi}{4}$

ii. $\frac{cis \, \theta_1}{cis \, \theta_2} = cis \, (\theta_1 - \theta_2)$

4. Cartesian to Polar Form

<example> Express z = -2 - 2i in Polar Form

Find
$$r$$
 with $r = |z| = \sqrt{x^2 + y^2}$

$$r = \sqrt{(-2)^2 + (-2)^2} = 2\sqrt{2}$$

Method 1: Plot graph

<diagram>

Find Quadrant

QIII : $\theta = \pi + \alpha$

Find $\alpha \& \theta$:

Standard Triangle

$$\alpha = \frac{\pi}{4}$$

Method 2: Divide Cartesian form with r

$$z = 2\sqrt{2} \left(\underline{} + i \underline{} \right)$$

$$= -2 - 2i$$

$$= 2\sqrt{2} \left(-\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right)$$

$$\cos \theta = -\frac{1}{\sqrt{2}}$$

$$\sin \theta = -\frac{1}{\sqrt{2}}$$

$$\Theta \sin, \Theta \cos : QIII$$

$$\theta = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

$$\theta = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

Sub into $z = r \operatorname{cis} (\theta + 2\pi k)$ $z = 2\sqrt{2}\operatorname{cis}(+2\pi k), k \in \mathbb{Z}$

5. Polar to Cartesian Form

<example> Express $z = 2cis(\frac{19\pi}{6})$ in Cartesian Form Expand

$$z = 2(\cos\frac{19\pi}{6} + i\sin\frac{19\pi}{6})$$

Solve $\cos \theta$ and $\sin \theta$

$$z = 2(-\frac{\sqrt{3}}{2} - i\frac{1}{2})$$

Expand

$$z = \sqrt{3} - i$$

6. DeMoivre's Theorem

$$z^n = r^n cis(n\theta)$$

3 COMPLEX NUMBERS (II)

1. Roots of complex number

a.

$$w = s \operatorname{cis} \beta = r^{\frac{1}{n}} \operatorname{cis}(\frac{\theta + 2\pi k}{n})$$

b. <example> Calculate square roots of z = -1 + iWrite z in polar form

$$r = |z| = \sqrt{(-1)^2 + (1)^2} = \sqrt{2}$$

<diagram>

$$\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

$$z = \sqrt{2}cis\left(\frac{3\pi}{4} + 2\pi k\right)$$
Let $w = s \ cis \ \beta = r^{\frac{1}{n}}cis\left(\frac{\theta + 2\pi k}{n}\right)$

$$r = \sqrt{2}, \ n = 2, \ \theta = \frac{3\pi}{4}$$

$$w = \sqrt{2}^{\frac{1}{2}}cis\left(\frac{3\pi}{4} + 2\pi k\right) = 2^{\frac{1}{4}}cis\left(\frac{3\pi}{4} + 2\pi k\right)$$
Calculate for $k = 0, 1, 2, ..., n - 1$

$$k = 0 : 2^{\frac{1}{4}} cis(\frac{3\pi}{4} + 2\pi(0)) = 2^{\frac{1}{4}} cis(\frac{3\pi}{8})$$
$$k = 1 : 2^{\frac{1}{4}} cis(\frac{3\pi}{4} + 2\pi(1)) = 2^{\frac{1}{4}} cis(\frac{11\pi}{8})$$

2. Subsets of complex planes

- a. $\langle example \rangle Re(z) = -Im(z)$
- b. <example>
- c. <example>
- d. <example>
- e. Circles

i.

$$|z-z_0|=r,\ z_0=a+ib$$

Circle: radius=r, centre=(a,b)

ii. <example> |z + 3 - 3i| > 2

Find z_0

$$|z - (-3 + 3i)| > 2$$

Find radius and centre

$$z_0 = -3 + 3i$$
, centre=(-3,3) radius=2

- > is outside the circle
- < is inside the circle

4 MATRICES

1. Scalar Multiplication

if
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $kA = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$

2. Order

$$m(rows) \times n(columns)$$

Square Matrix m = n

3. General Form of a Matrix

<diagram>

- 4. Equality
 - A and B are only equal if and only if:
 - a. They are of the same order

- b. Corresponding elements are equal $a_{ij} = b_{ij}$ for all $\{i, j\}$
- 5. Matrix Addition

A + B only exists if A and B have the same order

- 6. Matrix Multiplication
 - a. A + B only exists if $A(m \times n)$ and $B(n \times p)$
 - b. <diagram>
 - c. $AB \neq BA$ (non-commutative)
- 7. Identity Matrix

<diagram>

- 8. Inverse Matrix
 - a.

if
$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \frac{1}{|A|} \neq 0$$

b. Singular: |A| = 0

Non-Singular/Regular: $|A| \neq 0$

C.

$$AA^{-1} = A^{-1}A = I$$

d. AX = B

To find X:

$$A^{-1}AX = A^{-1}B$$

$$X = A^{-1}B$$

5 MATRIX TRANSFORMATIONS

- 1. Object and Image
 - a. **Object** points: (x, y)
 - b. **Image** points: (x', y')

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = T \begin{bmatrix} x \\ y \end{bmatrix}$$

- d. Transformations are also known as mappings
- 2. General Linear Transformations
 - a. To find T, transform (1,0) and (0,1)

3. Reflection in the x-axis

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

4. Reflection in the y -axis

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

5. Reflection in the line y = x

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

6. Reflection in the line y = mx

Where $m = \tan \theta$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

7. Rotation anticlockwise about the origin

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta - \sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

8. Dilation/Contraction by a factor k parallel to the x-axis

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

9. Dilation/Contraction by a factor k parallel to the y-axis

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

10. Dilation/Contraction parallel to both x and y axis

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} k_x & 0 \\ 0 & k_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

11. Transformation inverse

12. Combined Transformations

When a transformation represented by matrix A is followed by a transformation represented by matrix B the image P''(x'', y'') is given by

$$\begin{bmatrix} x'' \\ y'' \end{bmatrix} = BA \begin{bmatrix} x \\ y \end{bmatrix}$$

Remember it is important to get this order correct, since matrix multiplication is not commutative.

13. Degenerate Transformations

- a. For matrices which are **singular** (determinant $\Delta = 0$)
- b. ..

14. Isometry

a. An **isometry** is a transformation that preserves distance

- i. Translations
- ii. Reflections
- iii. Rotations
- iv. NOT Dilations

b. A direct isometry preserves orientation

- i. Translations
- ii. Rotations
- iii. NOT Reflections

6 ELLIPSES AND HYPERBOLAS

1. Ellipse

$$(h,k)$$
: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

$(n, k) \cdot \frac{1}{a^2} + \frac{1}{b^2}$			
	Horizontal orientation	Vertical orientation	
	<i>a</i> > <i>b</i>	b > a	
centre	(h,k)	(h,k)	
vertices	$(h \pm a, k)$	$(h, k \pm b)$	
С	$\sqrt{a^2-b^2}$	$\sqrt{b^2-a^2}$	
foci	$(h \pm c, k)$	$(h, k \pm c)$	
eccentrici ty	$e = \frac{c}{a}$	$e = \frac{c}{b}$	
major axis	2 <i>a</i>	2 <i>b</i>	

2. Hyperbola

$$\pm \frac{(x-h)^2}{a^2} \mp \frac{(y-k)^2}{b^2} = 1$$

<u>u</u> -	<i>b</i> ⁻	
	Horizontal orientation	Vertical Orientation
Equation		
Vertices		
С		
foci		

asymptot es

7 VECTORS

1. Adding vectors

2. Scalar Multiplications

- a. Parallel $\tilde{a} \text{ and } \tilde{b} \text{ are parallel if } \tilde{b} = k\tilde{a} \text{ , } k > 0$ \tilde{a}/\tilde{b}
- b. Anti-parallel \tilde{a} and \tilde{b} are anti-parallel if $\tilde{b}=k\tilde{a}$, k<0 \tilde{a} anti-// \tilde{b}

3. Vector Subtraction

4. Adding more than two vectors

5. Unit vectors

 $\tilde{i}, \tilde{j}, \tilde{k}$ are unit vectors (have magnitude of 1) In the direction of x, y, z

The formula

$$\overrightarrow{PQ} = (x_2 - x_1)\underline{i} + (y_2 - y_1)\underline{j} + (z_2 - z_1)\underline{k}$$

6. is useful for finding the **vector between two points** $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$.

To show that points P, Q, R are **collinear** using vectors, show that $\overrightarrow{PQ}//\overrightarrow{QR}$ and state that these two vectors have a common point Q.

8. Magnitude

$$|\underline{a}| = \sqrt{x^2 + y^2 + z^2}$$
.

9. Unit Vector

$$\hat{\underline{a}} = \frac{\underline{a}}{|\underline{a}|}$$
.

8 VECTOR MULTIPLICATION

1. Dot Product

for a - ani+oni+ani b= bni+bni+bnk

$$a \cdot b = a_x b_x + a_y b_y + a_z b_z$$

2. Dot Product useful products

Cummulative
$$\textcircled{3} a \cdot b = b \cdot a$$

Significative $\textcircled{3} (a+b) \cdot (c+a) = a \cdot c + b \cdot c$

Fig. $(a+b) \cdot (c+a) = a \cdot c + a \cdot d + b \cdot c + b \cdot d$

3. Dot Product Theorem

$$0 \le \theta \le \frac{\pi}{2}$$
 $\cos \theta > 0$ $a \cdot b > 0$
 $\theta = \frac{\pi}{2}$ $\cos \theta = 0$ $a \cdot b = 0$
 $\frac{\pi}{2} \le \theta \le \pi$ $\cos \theta < 0$ $a \cdot b < 0$

4. Angle between 2 vectors

$$\cos\theta = \frac{|\delta||\delta|}{\sigma \cdot \delta} \Leftrightarrow \overline{\sigma} \cdot \overline{\rho} = |\overline{\sigma}||\overline{\rho}|\cos\theta$$

5. Scalar Projection

scalar projection of b onto a is S

$$\cos \theta = \frac{S}{|b|}$$
 $S = |b| \cos \theta = \frac{|a||b|| \cos \theta}{|a|} = \frac{a \cdot b}{a} = b \cdot \hat{a}$
 $\therefore S = b \cdot \hat{a}$

6. Vector Projection

9 VECTOR GEOMETRY

10 STATISTICAL INFERENCE

https://www.remnote.io/a/c10-statistical-inference/5f9be2fd59d095003f80db0c

1. Symbols

	Sample	Population
Mean	\bar{x}	μ
Standard Deviation	S	σ
Variance	s^2	σ^2

2. Expected Value

a. Aka the population mean

$$E(X) = \mu$$

3. Linear Function of a Random Variable

- If W = aX + b then:
- E(W) = E(aX + b) = aE(X) + b
- $Var(W) = Var(aX + b) = a^2Var(X)$
- $SD(W) = \sqrt{Var(W)} = \sqrt{a^2SD^2(X)} = |a|SD(X)$

a.

4. Independent Random Variables

- ullet Let X and Y be independent random variables and let W=X+Y
- $E(W) = E(X \pm Y) = E(X) \pm E(Y)$
- $Var(W) = Var(X \pm Y) = Var(X) + Var(Y)$

5. Z-scores

a.

$$z = \frac{x=\mu}{\sigma}$$

b. Check Formula Sheet for z-scores

6. Confidence Intervals

a.

$$\left[\bar{x}-z\frac{x}{\sqrt{n}},\bar{x}+z\frac{x}{\sqrt{n}}\right]$$

7. Hypothesis Testing

- a. Null hypothesis, H_0
 - i. Makes the claim that there is no difference $\mu = \mu_0$
- b. Alternative hypothesis
 - i. Makes the claim that there is a difference
 - One-tailed test: $\mu > \mu_0, \mu < \mu_0$
 - Two-tailed test: $\mu \neq \mu_0$

- c. Type I error
 - Occurs when we reject true null hypothesis
- d. Type II error
 - Occurs when we accept a false null hypothesis

11 TECHNIQUES OF ANTI-DIFFERENTIATION (I)

1. Antidifferentiation Rules and Formulae

(1)
$$\int kf(x)dx = k \int f(x)dx$$

(2)
$$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$$

(3)
$$\int [f(x) - g(x)]dx = \int f(x)dx - \int g(x)dx$$

(4)
$$\int 0 dx = c$$

$$(5) \int 1 dx = x + c$$

(6)
$$\int (ax+b)^r dx = \frac{1}{a(r+1)} (ax+b)^{r+1} + c$$

(7)
$$\int \frac{d}{ax+b} dx = \frac{d}{a} \ln |ax+b| + c$$

(8)
$$\int \sin(kx)dx = -\frac{1}{k}\cos(kx) + c$$

(9)
$$\int \cos(kx)dx = \frac{1}{k}\sin(kx) + c$$

(10)
$$\int \sec^2(kx)dx = \frac{1}{k}\tan(kx) + c$$

$$(11) \int e^{kx} dx = \frac{1}{k} e^{kx} + c$$

(12)
$$\int \frac{b}{\sqrt{a^2 - x^2}} dx = b \sin^{-1}(\frac{x}{a}) + c$$

(13)
$$\int \frac{-b}{\sqrt{a^2 - x^2}} dx = b \cos^{-1}(\frac{x}{a}) + c$$

(14)
$$\int \frac{a}{a^2+x^2} dx = \tan^{-1}(\frac{x}{a}) + c$$

(15)
$$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1}(\frac{x}{a}) + c$$

2. Fundamental Theorem of Calculus

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

3. Substitution with the Derivative Present <example>

$\int 3x^2(x^3+1)^4 dx$

Working

• let
$$u = x^3 + 1$$

$$ullet$$
 then $rac{du}{dx}=3x^2$

• then
$$dx = \frac{du}{3x^2}$$

• Substitute
$$(x^3+1) o u$$
 and $dx o rac{du}{3x^2}$

•
$$\int 3x^2(x^3+1)^4 dx = \int 3x^2(u)^4 \frac{du}{3x^2} = \int u^4 du$$

Differentiate

•
$$\int u^4 du = \frac{u^5}{5} + c$$

• Substitute
$$u o (x^3 + 1)$$

$$\frac{(x^3+1)^5}{5}+c$$

• | Answer
$$\frac{(x^3+1)^5}{5} + c$$

4. Even/Odd; sin and cos; tan and sec

$u = \sin x$	$\frac{du}{dx} = \cos x$	This substitution is helpful if there is an odd power of $\cos x$.
$u = \cos x$	$\frac{du}{dx} = -\sin x$	This substitution is helpful if there is an odd power of sinx.
$u = \tan x$	$\frac{du}{dx} = \sec^2 x$	This substitution is helpful if there is an even power of secx.
$u = \sec x$	$\frac{du}{dx} = \sec(x)\tan(x)$	This substitution is helpful if there is an odd power of tanx.

а

5. Double-Angle Formula

a. If both sin and cos have even powers

$$\cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta))$$

$$\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta))$$

6.

a.

12 TECHNIQUES OF ANTI-DIFFERENTIATION (II)

1.
$$\sqrt{K^2 - x^2}$$
 sub $x = K \sin(u)$ then $\sin^2(u) + \cos^2(u)$

a.
$$\int \frac{1}{\sqrt{4-x^2}} dx$$
; $-2 < x < 2$

2. Integration by parts

a. Product rule of differentiation

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

- b. Make u whatever comes first on the list
 - i. Logarithms $(\ln |x|)$
 - ii. Inverse trigonometric functions ($\sin^{-1}(x)$, $\cos^{-1}(x)$, $\tan^{-1}(x)$)
 - iii. Polynomials $(1, x, x^2...)$
 - iv. **E**xponential functions (e^{kx})
 - v. Trigonometric functions $(\sin(x), \cos(x), \tan(x), \sec(x))$
- b. <example> Find $\int x \sec^2(x) dx$

~P;
$$\sec^2$$
 ~T; P comes before T in LIPET so $u = x$
Then $\frac{du}{dx} = 1$

And
$$\frac{dv}{dx} = \sec^2(x)$$

Then
$$v = \tan(x)$$

Sub into product rule of differentiation

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int x \sec^2(x) dx = x \tan(x) - \int (\tan(x) \times 1) dx$$

$$= x \tan(x) - \int \frac{\sin(x)}{\cos(x)} dx$$

$$= x \tan(x) + \ln|\cos(x)| + c$$

3.

13 VOLUMES OF SOLIDS AND REVOLUTIONS

1. X-axis

1. Suppose the region to be rotated has the axis of rotation (i.e. the x axis) as one of its boundaries, as shown below.

Then

$$V = \int_a^b \pi [f(x)]^2 dx.$$

2. X-axis with gap

2. Suppose there is a gap between the axis of rotation (i.e. the x axis) and the region, as shown below.

Then

$$V = \int_{a}^{b} \pi [f(x)]^{2} dx - \int_{a}^{b} \pi [g(x)]^{2} dx.$$

3. Y-axis

a. *change all equations to x = ...

3. Suppose the region to be rotated has the axis of rotation (i.e. the y axis) as one of its boundaries, as shown below.

Then

$$V = \int_{0}^{d} \pi [g(y)]^{2} dy.$$

4. Y-axis with gap

4. Suppose there is a gap between the axis of rotation (i.e. the y axis) and the region, as shown below.

Then

$$V = \int_{c}^{d} \pi [g(y)]^{2} dy - \int_{c}^{d} \pi [h(y)]^{2} dy.$$

14 APPROXIMATION OF DEFINITE INTEGRALS

1. Trapezoidal Rule

a. Estimate

where

 $h = \frac{b-a}{n}$ is called the **step size**, and *n* is the number of steps (trapezoids).

b. Error Estimate

U = max(|f''(x)|) on [a, b]

$$\left|E_T\right| \le \frac{b-a}{12}h^2U,$$

1.

where U is any upper bound for the values of |f''| on [a, b]

2. Midpoint Rule

a. Estimate

To approximate $\int_{a}^{b} f(x)dx$, use

$$\begin{split} M &= h f(\bar{x}_1) + h f(\bar{x}_2) + \dots h f(\bar{x}_n) \\ &= h [f(\bar{x}_1) + f(\bar{x}_2) + \dots + f(\bar{x}_n)] \end{split}$$

where

 $h = \frac{b-a}{n}$ is the step size

and

$$\bar{x}_i = \frac{1}{2}(x_{i-1} + x_i)$$

are the midpoints of the intervals $[x_{i-1}, x_i]$.

b. Error Estimate

$$\left| E_M \right| \le \frac{b-a}{24} h^2 U$$

where U is any upper bound for the values of |f''| on [a, b].

15 DIFFERENTIAL EQUATIONS (I)

1.

16 DIFFERENTIAL EQUATIONS (II)