MAT 301 - Problem Set 3

Due Wednesday, March 12, 2014

- 1. In each case below, prove or disprove that the subgroup H is normal in the group G. If H is normal in G, determine whether the factor group G/H is abelian. (Note: You do not need to show that H is a subgroup of G.)
 - a) Let $G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a, b \in \mathbb{R}, a \neq 0 \right\}$ (under matrix multiplication). Let $H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{R}, \right\}$.
 - b) Let $G = S_4$ and let $H = \langle (134) \rangle$.
- 2. Let $G = \mathbb{Z}_{84}$ and $H = \langle 69 \rangle$.
 - a) Compute the order |G/H| of the factor group G/H.
 - b) Determine the order of the element 46 + H in the factor group G/H.
- 3. Prove that S_4 does not have a normal subgroup of order 8. (*Hint*: Suppose that H is a normal subgroup of S_4 such that |H| = 8. Prove that every element of order 2 in S_4 must belong to H.)
- 4. Let H be a normal subgroup of a group G. Let $H' = \{ a \in G \mid a^2 \in H \}$.
 - a) Suppose that G/H is abelian. Prove that H' is a subgroup of G. Prove that H' is normal in G.
 - b) Do not hand in this part. Find an example where $H \neq \{e\}$, G/H is not abelian and H' is not a subgroup of G. (Hint: Try dihedral groups with nontrivial centre.)
- 5. In each case below, determine whether the function $\phi: G \to G'$ is a homomorphism. If ϕ is a homomorphism, find all elements in the kernel $\operatorname{Ker} \phi$ of ϕ .
 - a) Let $G = \langle a \rangle$ be a cyclic group of order 12 and let $G' = \langle b \rangle$ be a cyclic group of order 18. Define $\phi(a^j) = b^{15j}$, $0 \le j \le 11$.
 - b) Let $G = \mathbb{R}$ and $G' = GL(2, \mathbb{R})$. Define

$$\phi(x) = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}, \quad x \in \mathbb{R}.$$

- 6. Let $r \in D_{20}$ be an element of order n and let $s \in D_{20}$ be a reflection. Suppose that $\phi: D_{20} \to D_{20}$ is a homomorphism such that $\phi(r) = r^{12}$.
 - a) Prove that $\phi(s)$ is a reflection.
 - b) Find all elements in the kernel Ker ϕ of ϕ .
 - c) Prove that the factor group $D_{20}/\mathrm{Ker}\,\phi$ is nonabelian.
 - d) Prove that $D_{20}/\ker \phi$ is isomorphic to a dihedral group D_m . (What is m?)
- 7. Let G be a finite group. Suppose that $\phi: G \to S_4$ is a homomorphism and ϕ is onto.
 - a) Prove that G is not abelian.
 - b) Prove that G contains an element of order 4.
 - c) Let $H = \{ a \in G \mid \phi(a) \in A_4 \}$. Prove that H is a subgroup of G.
 - d) Determine whether the subgroup H defined in part c) is a normal subgroup of G.