

	TMS	1 0	
SD_CLK	TDI	2	17
SD_DATA3	TCK	3	IT.
GPI015	TDO	4	7 7 7 17

SD_DATA3	PI_R1
P0_R1	PI_R2
P0_R2	PI_G1
P0_G1	PI_G2
P0_G2	PI_B1
P0_B1	PI_B2

GPI019	, ,
GPI023	Е
GPI018	(
GPI05	E
GPI015	E

SD_CLK	CLK
GPI016	ŌE
GPI022	ΙΔΤ

FROM THE PxMatrix LIBRARY ON GITHUB:

When driving a long chain of LED modules in a row, parallel color data lines make a lot of sense since it reduces the data rate. But since we are only driving a few modules here, we really don't need that. We can therefore use jumper wires between input connector (PI) and output connector (PO) to chain all shift registers together and create one big shift register. This has two advantages: it reduces the number of required GPIO pins on the microcontroller and we can use the hardware SPI interface to drive it.

If your panel input connector has "R1" in the top left corner, connect PI and PO as follows:

PI	PO
R2	R1
G1	R2
G2	G1
B1	Ğ2
B2	B1

If your panel input connector has "RO" in the top left corner, connect PI and PO as follows:

P0_R1				R1
PO_KI_	1	_		GO
P0_R2_	2			G1
P0_G1	3		J5	BO
P0_G2	4		DisplayOutput	B1
P0_B1	5			

PI	PO
R1	R0
G0	R1
G1	G0
BO	Ğ1
B1	BO