Presentación

Aprendizaje Profundo

Grado en Ingeniería y Ciencia de datos (Universidad de Oviedo)

Pablo González, Pablo Pérez {gonzalezgpablo, pabloperez}@uniovi.es Centro de Inteligencia Artificial, Gijón

Presentación 1 / 11

Outline

- Introducción
- 2 Profesores
- 3 ¿Qué vas a aprender en este curso?
- Material docente
- 5 Prácticas de laboratorio
- 6 Evaluación

Presentación 2 / 11

Bienvenido

Bienvenido a la edición 2023/2024 del curso de **Aprendizaje Profundo** del Grado en Ciencia e Ingeniería de Datos

Presentación 3 / 11

Profesores

Pablo González

gonzalezgpablo@uniovi.es
https://pglez82.github.io

Pablo Pérez

pabloperez@uniovi.es

Presentación 4 / 11

¿Qué vas a aprender en este curso?

- Tema 1: Introducción al aprendizaje profundo
- Tema 2: Fundamentos de las redes neuronales profundas
- Tema 3: Entrenando redes neuronales profundas
- 4 Tema 4: Principales arquitecturas y aplicaciones

Presentación 5 / 11

Material docente

El material docente se encuentra en la siguiente página web:

https://pglez82.github.io/DeepLearningWeb

Las clases teóricas y prácticas están grabadas y disponibles públicamente en el siguiente canal de Youtube:

@AprendizajeProfundo

Presentación 6 / 11

Prácticas

En las prácticas te enfrentarás a un *problema real* con un *dataset real*. Deberás encontrar una solución personal al problema aplicando los conocimientos que irás descubriendo en la asignatura.

Aprendizaje basado en proyectos

Cada semana se presentará un nuevo concepto en las prácticas que te será de utilidad para la resulución de tu proyecto de prácticas

Presentación del proyecto

Cada uno de vosotros deberá de presentar y defender su solución!

Presentación 7 / 11

Prácticas

- Preparación del entorno: pip, conda, Google colab
- 2 Introducción a PyTorch (Parte 1). Primer contacto con PyTorch. Manejo de tensores.
- Introducción a PyTorch (Parte 2). Uso de los tensores para el cálculo de gradientes.
- Introducción a PyTorch (Parte 3). Entrenamiento de la primera red neuronal en PyTorch.
- Introducción a PyTorch (Parte 4). Datasets y DataLoaders.
- **6 Introducción a PyTorch (Parte 5)**. Entrenamiento avanzado: early stopping, selección del mejor modelo.
- Introducción a PyTorch (Parte 6). Otras capas en PyTorch (CNNs, Transformers, Batch-Normalization, etc.).
- Introducción a PyTorch (Parte 7). Fine-tuning de un modelo preentrenado.

Presentación 8 / 11

Prácticas

- Trabajando en remoto (SSH). Trabajo en un servidor remoto con GPU.
- Monitorización de experimentos (Wandb). Monitorización de experimentos usando Weights and Biases
- Optimización de hiperparámetros (Optuna). Optimización automática de hiperparámetros con Optuna.
- Frameworks alto nivel (PyTorch Lightning). Utilización de frameworks de alto nivel con PyTorch Lightning.

Presentación 9 / 11

Evaluación continua

Media ponderada de los instrumentos de evaluación que se enumeran a continuación:

- Asistencia (5%): La nota máxima en este apartado se alcanzará con una asistencia activa a las clases presenciales de prácticas de un mínimo del 80
- Actividades online (10%): Se contabilizará la participación en actividades a través del campus virtual, como pueden ser cuestionarios o exámenes tipo test.
- 3 Exámenes de prácticas (45%): Durante el curso se realizarán dos exámenes de prácticas en horas de clase presencial. El peso del primer examen será de un 30% y el peso del segundo examen un 70%.
- **Examen de teoría** (40%): La parte teórica se evaluará mediante un examen final en la hora establecida por la escuela.

Importante

Nota igual o superior a 4 puntos sobre 10 en las partes 3 y 4

Presentación 10 / 11

Evaluación extraordinaria

La evaluación extraordinaria se compondrá de:

Examen teórico: 50% Examen práctico: 50%

Importante

Para superar la asignatura, se debe obtener una nota igual o superior a 4 puntos sobre 10 en ambos exámenes.

11 / 11