Control Systems

G V V Sharma*

Contents				8	Compensators 3
					8.1 Phase Lead
1	C	Flow Graph	1		8.2 Lead Circuit
	1.1	Mason's Gain Formula	1		8.3 Lag Lead
	1.2	Matrix Formula	1		8.4 Example
	1.3	Example	1	9	Gain Margin 3
•	<i>a</i>	F. H. J. Ct. 14	4		9.1 Introduction
2	Gain of	Feedback Circuits	1		9.2 Example
3	Bode Plot		3	10 Phase Margin 3	
	3.1	Introduction	3		10.1 Intoduction
	3.2	Example	3		10.2 Example
	3.3	Phase	3		0. 111
	3.4	Example	3	11	Oscillator 3
		•			11.1 Introduction
4	Second	order System	3		11.2 Example
	4.1	Damping	3	12	Root Locus 3
	4.2	Peak Overshoot	3		12.1 Introduction
	4.3	Settling Time	3		12.2 Example
	4.4	Example	3	10	D.I. Div
				13	Polar Plot 3 13.1 Introduction 3
5	Routh I	Hurwitz Criterion	3		13.1 Introduction
	5.1	Routh Array	3	14	PID Controller 3
	5.2	Marginal Stability	3		14.1 Introduction
	5.3	Stability	3		
	5.4	Example	3		bstract—This manual is an introduction to control ms based on GATE problems.Links to sample Python
6	State-Space Model		3	codes	s are available in the text.
U	_		3	Do	ownload python codes using
	6.1	Controllability and Observability	3		co https://github.com/gadepall/school/trunk/
	6.2	ability Second Order System	3		control/codes
	6.3	-	3		
	0.3	Example	3		1.0
7	Nyquist	Plot	3		1 Signal Flow Graph
•	7.1	Introduction	3	1.1 A	Mason's Gain Formula
	7.1	Example	3	1.2 N	Matrix Formula
	1.4	Lample	5	1.3 E	Example
*CDI	.1 .				2 CANAGE EPERRAGY CURGULATE

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: 2.0.1. For the feedback current amplifier shown in gadepall@iith.ac.in. All content in this manual is released under GNU 2.0.1. For the feedback current amplifier shown in GPL. Free and open source.

2 Gain of Feedback Circuits

2.0.1, Draw the small signal model

Fig. 2.0.1

Solution: While drawing a Small-Signal Model, we goung all constant voltage sources and open all constant current sources. All Small-Signal paramters are obtained from DC-Analysis of the circuit.

Fig. 2.0.1

- 2.0.2. Find the Expression for the Open-Loop Gain $A = \frac{I_o}{I_i}$, from the Small-Signal Model. For simplicity, neglect the Early effect in Q_1 and Q_2 .
- 2.0.3. Find the Expression of the Feedback Factor $\beta = \frac{I_f}{I_o}$, from Small-Signal Model. For simplicity, neglect the Early effect in Q_1 and Q_2 .
- 2.0.4. Find the Expression for the Closed-Loop Gain $A_f = \frac{I_o}{I_s}$. For simplicity, neglect the Early effect in Q_1 and Q_2 .

3 Bode Plot

- 3.1 Introduction
- 3.2 Example
- 3.3 Phase
- 3.4 Example
- 4 Second order System
- 4.1 Damping
- 4.2 Peak Overshoot
- 4.3 Settling Time
- 4.4 Example
 - 5 ROUTH HURWITZ CRITERION
- 5.1 Routh Array
- 5.2 Marginal Stability
- 5.3 Stability
- 5.4 Example
- 6 STATE-SPACE MODEL
- 6.1 Controllability and Observability
- 6.2 Second Order System
- 6.3 Example
- 7 NYQUIST PLOT
- 7.1 Introduction
- 7.2 Example
- 8 Compensators
- 8.1 Phase Lead
- 8.2 Lead Circuit
- 8.3 Lag Lead
- 8.4 Example
- 9 Gain Margin
- 9.1 Introduction
- 9.2 Example
- 10 Phase Margin
- 10.1 Intoduction
- 10.2 Example
- 11 OSCILLATOR
- 11.1 Introduction
- 11.2 Example
- 12 Root Locus
- 12.1 Introduction
- 12.2 Example
- 13 Polar Plot
- 13.1 Introduction
 - 14 PID Controller
- 14.1 Introduction