Aula 8 – Mineração de Dados Classificação - Avaliação

Profa. Elaine Faria
UFU

 Os slides a seguir consistem em adaptações dos slides do prof. Andre Carlos Ponce de Leon Ferreira Carvalho

 Agradecimento ao prof. Andre Carvalho por gentilmente ceder os seus slides

Algoritmos de AM

- Induzem modelos (hipóteses) a partir de um conjunto de dados
- Dados precisam
 - Ser estruturados
 - Ter boa qualidade
 - Ser representativos
- Algoritmos de AM indutivo possuem um viés
 - Tendência a privilegiar uma dada hipótese ou conjunto de hipóteses

Viés Indutivo

 "Quando um algoritmo de AM está aprendendo a partir de um conjunto de dados de treinamento, ele está procurando uma hipótese, no espaço de possíveis hipóteses, capaz de descrever as relações entre os objetos e que melhor se ajuste aos dados de treinamento."

 "Cada algoritmo ultiliza uma forma ou representação para descrever a hipótese induzida"

Viés Indutivo

Árvore de decisão

0.45 -0.40 0.54 0.12 0.98 0.37 -0.45 0.11 0.91 0.34 -0.20 0.83 -0.29 0.32 -0.25 -0.51 0.41 0.70

Redes neurais

Se Peso ≥ 50 então Doente

Se Peso < 50 e Sexo = M então Doente

Se Peso < 50 e Sexo = F então Saudável

Conjunto de regras

Algoritmos de AM

- Fontes de erro de algoritmos AM
 - Viés
 - Quando algoritmo aprende um modelo incorreto
 - Associado a underfitting
 - Variância
 - Quando algoritmo presta atenção a detalhes sem importância
 - Associado a overfitting
- Precisam ser reduzidos

Overfitting e Underfitting

- Quando uma hipótese apresenta uma baixa capacidade de generalização
 - Pode ser que ela está superajustada aos dados de treinamento (overfitting)
 - A hipótese memorizou ou se especializou nos dados de treinamento
- Quando uma hipótese apresenta uma baixa taxa de acerto mesmo no subconjunto de treinamento
 - Pode ser que ela está subajustada (underfitting).
 - Ex: os exemplos de treinamento disponíveis são pouco representativos ou o modelo usado é muito simples e não captura os padrões existentes nos dados.

Overfitting e underfitting

https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76

Bom algoritmo de AM

- Está sempre percorrendo um caminho estreito entre:
 - Overfitting
 - Underfitting
- Buscando o melhor compromisso que busca reduzir ambos

- Espera-se de um classificador que ele apresente desempenho adequado para dados não vistos
 - Acurácia, pouca sensibilidade ao uso de diferentes amostras de dados, ...
- Desempenho do classificador deve ser avaliado
 - Utiliza-se conjuntos distintos de exemplos de treinamento e exemplos de teste
 - Permitem estimar a capacidade de generalização do classificador
 - Permitem avaliar a variância (estabilidade) do classificador

Avaliação de classificadores

- Existem diferentes métodos para organização e utilização dos dados (exemplos) disponíveis em conjuntos de treinamento e teste
- Por exemplo:
 - Holdout
 - Random Subsampling
 - Cross-Validation

Holdout

- Também conhecido como split-sample
- Técnica mais simples
- Faz uma única partição da amostra em:
 - Conjunto de treinamento
 - geralmente 1/2 ou 2/3 dos dados
 - Conjunto de teste
 - dados restantes

Holdout

- Problema: dependência da composição dos conjuntos
- É mais crítico em "pequenas" quantidades de dados...
 - Quanto menor o conjunto de treinamento, maior a variância (sensibilidade / instabilidade) do classificador a ser obtido
 - Quanto menor o conjunto de teste, menos confiável a acurácia estimada do classificador para dados não vistos
 - Conjuntos de treinamento e teste podem não ser independentes
 - Classe sub-representada em um será super-representada no outro

Random Subsampling

- Múltiplas execuções de Holdout
 - Diferentes partições treinamento-teste são escolhidas de forma aleatória
 - Não pode haver interseção entre os dois conjuntos
 - Desempenho de classificação é avaliado para cada partição
 - Desempenho estimado para dados não vistos é o desempenho médio para as diferentes partições
 - Permite uma estimativa de erro mais precisa
 - Porém, não controla número de vezes que cada exemplo é utilizado nos treinamentos e testes

Random Subsampling

- Exemplo:
 - Supor que o conjunto de dados original seja formado pelos dados: x1, x2, x3, x4, x5, x6, x7, x8
 - Possíveis partições:

	Treinamento	Teste
Part. 1	x ₂ , x ₄ , x ₆ , x ₇	x_5, x_8, x_1, x_3
Part. 2	Control of the Contro	x_1, x_7, x_2, x_6
Part. 3	x ₃ , x ₄ , x ₅ , x ₇	x_2, x_8, x_1, x_6

- Validação cruzada
- Classe de métodos para estimativa da taxa de erro
- k-fold cross-validation
 - Cada objeto participa o mesmo número de vezes do treinamento (k − 1 vezes)
 - Cada objeto participa o mesmo número de vezes do teste (1 vez)

- Divide conjunto de dados em k partições mutuamente exclusivas
 - A cada iteração, uma das k partições é usada para testar o modelo
 - As outras k 1 são usadas para treinar o modelo
 - Taxa de erro é tomada como a média dos erros de teste das k partições
- Exemplo Típico
 - 10-fold cross-validation

- *k-fold cross-validation* estratificada
 - Mantém nas pastas as proporções de exemplos das classes presentes no conjunto total de dados

• 3-fold cross-validation

Leave-one-out

- N iterações são utilizadas para uma amostra de tamanho N
 - N-fold cross-validation
 - A cada iteração, um dos exemplos é utilizado para testar o modelo
 - Os outros N-1 exemplos são utilizados para treinamento
- Taxa de erro é obtida dividindo o número total de erros de validação observados por N

Leave-one-out

- Sua estimativa de erro é praticamente não tendenciosa
 - Média das estimativas tende a taxa de erro verdadeiro
- Computacionalmente caro
 - Geralmente utilizado para pequenos conjuntos de exemplos
 - 10-fold cross validation aproxima leave-one-out
- Variância tende a ser elevada

Bootstrap

- Funciona melhor que cross-validation para conjuntos muito pequenos
- Forma mais simples de bootstrap:
 - Ao invés de usar sub-conjuntos dos dados, usar sub-amostras
 - Cada sub-amostra é uma amostra aleatória com substituição do conjunto total de exemplos
 - Cada conjunto de treinamento têm o mesmo número de exemplos do conjunto total
 - Os exemplos que restarem são utilizados para teste

Bootstrap

- Se conjunto original tem N exemplos
 - Amostra de tamanho N tem ≈ 63,2% dos exemplos originais
- Processo é repetido b vezes
- Resultado final = média dos b experimentos
- Existem diversas variações

Medidas de desempenho

- Principal objetivo de um modelo é predizer com sucesso o valor de saída para novos exemplos
 - Errar o mínimo possível
- Existem várias medidas de "erro" e "acerto"
 - Diferentes medidas podem capturar diferentes aspectos do desempenho de classificadores

Taxa de Classificação Incorreta

- A medida mais básica para estimar a taxa de erro de um classificador é denominada de taxa de classificação incorreta (*misclassification rate*)
 - É simplesmente a proporção dos exemplos de teste que são classificados incorretamente pelo classificador
 - Usualmente é mensurada indiretamente através do seu complemento, a taxa de classificação correta
 - Denominada de Acurácia
 - Acurácia = 1 taxa de classificação incorreta

Acurácia

- Também chamada de accuracy (do inglês)
 - Trata as classes igualmente...
 - Pode não ser adequada para classes desbalanceadas
 - Classe rara é normalmente mais interessante que a majoritária
 - No entanto, a medida tende a privilegiar a classe majoritária

- Limitações da Acurácia
 - Considere um problema de duas classes
 - Número de exemplos da classe 0 = 9990
 - Número de exemplos da classe 1 = 10
 - Se o modelo predizer qualquer exemplo como da classe 0, a acurácia será 9990/10000 = 99.9 %
 - Acurácia pode ser enganadora

Tipos de Erros

- Em classificação binária, em geral se adota a convenção de rotular os exemplos da classe de maior interesse como positivos (+)
 - Normalmente a classe rara ou minoritária
 - Demais exemplos são rotulados como negativos (–)
- Em alguns casos, os erros têm igual importância
- Em muitos casos, no entanto, esse não é o caso
 - Ex. diagnóstico negativo para indivíduo doente...

Tipos de Erros

- Dois tipos de erro em classificação binária:
 - Classificação de um exemplo N como P
 - Falso Positivo (FP alarme falso)
 - Ex.: Diagnosticado como doente, mas está saudável
 - Classificação de um exemplo P como N
 - Falso Negativo (FN)
 - Ex.: Diagnosticado como saudável, mas está doente

Matriz de Confusão

- Ou Tabela de Contingência
 - Pode ser usada para distinguir os tipos de erro
 - Base de várias medidas de erro
 - Pode ser usada com duas ou mais classes

	Classe Verdadeira			
Classe Prevista		2	3	
1	25	10	0	
2	0	40	0	
3	5	0	20	

VP + VN + FP + FN

Erro do tipo I

Taxa de FN =
$$\frac{FN}{VP + FN}$$

Erro do tipo II

C	lassificador:	1
Ť	FN = 0.6	
Ī	FP = 0.3	

Taxa de FP =
$$\frac{FP}{FP + VN}$$

$$Precisão = \frac{VP}{VP + FP}$$

$$Acurácia = \frac{VP + VN}{VP + VN + FP + FN}$$

Especificidade =
$$\frac{VN}{VN + FP}$$
 = 1–TFP

Taxa de VP =
$$\frac{VP}{VP + FN}$$

(Sensibilidade) $\frac{VP}{VP + FN}$
Revocação = $\frac{VP}{VP + FN}$
(Recall) $\frac{2}{1/prec + 1/rev}$

Especificidade =
$$\frac{VN}{VN + FP}$$
 = 1-TFP Taxa de FN = $\frac{FN}{VP + FN}$ = 1-TVP (Erro tipo II)

- Revocação (recall, sensibilidade, taxa de VP)
 - Taxa com que classifica como positivos todos os exemplos que são de fato positivos
 - Só considera os exemplos que são positivos
 - Normalmente classe de maior interesse
- Precisão (precision)
 - Taxa com que todos os exemplos classificados como positivos são realmente positivos
 - Só considera os exemplos classificados como positivos

- Especificidade (*Especificity*)
 - Taxa com que classifica como negativos todos os exemplos que são de fato negativos
 - Só considera os exemplos negativos

Gráficos ROC

- Do inglês, Receiver Operating Characteristics
- Medida de desempenho originária da área de processamento de sinais
 - Muito utilizada na área médica
 - Mostra relação entre custo (taxa de FP) e benefício (taxa de VP)
 - Taxa de FP = Erro do Tipo I (alarmes falsos)
 - Taxa de VP (Recall, Sensibilidade) = 1 Erro do Tipo II

Exemplo

• Plotar no gráfico ROC os 3 classificadores do exemplo anterior

Exemplo

Gráficos ROC

- Informalmente, melhor classificador é aquele cujo ponto está mais a noroeste
 - Classificadores próximos do canto inferior esquerdo são conservadores
 - Só fazem classificações positivas com forte evidência
 - Assim, cometem poucos erros de FP
 - Classificadores próximos ao canto superior direito são liberais (sob risco de alarme falso)

Curvas ROC

- Classificadores que geram escores:
 - Diferentes valores de limiar para os scores associados à classe Positiva podem ser utilizados para gerar um classificador
 - Cada valor produz um classificador diferente
 - Corresponde a um ponto diferente no gráfico ROC
 - Ligação dos pontos gera uma Curva ROC

Curvas ROC

Classes Difíceis

- Alguns problemas de classificação são caracterizados por possuírem classes difíceis de serem aprendidas por um classificador
 - Duas das principais razões são:
 - Distribuição espacial complexa no espaço dos atributos
 - Classes desbalanceadas
 - Classes raras

Classes desbalanceadas

- No. de exemplos varia para as diferentes classes
 - Natural ao domínio; ou
 - Problema com geração / coleta de dados
- Várias técnicas de DM não conseguem ou têm dificuldade para lidar com esse problema
 - Tendência a classificar na(s) classe(s) majoritária(s)

Classes desbalanceadas

- Alternativa mais simples:Balanceamento Artificial
 - Sobre-amostragem

Consiste em aumentar artificialmente os exemplos da classe minoritária (classe positiva) até que os dados de treinamento estejam balanceados

Sub-amostragem

Diminui artificialmente os exemplos da classe majoritária (negativa) até que dados de treinamento estejam balanceados

Híbrido

Mescla oversampling e undersampling para amenizar os possíveis problemas de cada abordagem