Agenten-basierte Modelle

Eric Sîrbu

Überblick

- Motivation
- Modell des Modells
- Beispiel Covid-19
- Beispiel eigene Implementierung

Motivation

- System aus Agenten
- Nicht-linear zusammengesetzt
- Agenten im Vergleich simpel
- Low-level Auswertung

- Anwendungen:
 - Aktienmarkt
 - Physischer Fluss
 - Soziale Netzwerke
 - Epidemien

Modell des Modells

- Agenten
 - Eigenschaften und Verhalten
- Umgebung
 - Interaktion unter Agenten

Modell des Modells

- Agenten
 - Eigenschaften und Verhalten
- Umgebung
 - Interaktion unter Agenten
- Nagel-Schreckenberg
 - Entstehung von Staus
 - Trödeln als Erklärung
 - Erweiterung möglich

https://de.wikipedia.org/wiki/Nagel-Schreckenberg-Modell#Beispiel_f%C3%BCr_den_Ablauf_einer_Runde

Motivation

- Pandemie ist schlecht
- Auswirkungen lindern ist gut

- Kompliziertes Zusammenspiel
- Bewertung und Prognose nötig
- Interdisziplinäre Kommunikation
- Menschen als Agenten
- Infektionsradius als Nachbarschaft

Annahmen über Krankheit

- Neue Krankheit (mehr oder weniger)
- Ausgangssituation bekannt

- Ansteckrate?
- Infektionsdauer?
- Todesrate?
- Immunität?

Annahmen über Menschen

- Mehrere mögliche Zustände
 - Anfällig
 - Infiziert
 - Erholt
 - (Tot)
- Bewegung durch die Simulation
- Bevölkerungsverteilung
 - Alter
 - Gesundheit

Annahmen über Maßnahmen

- Quarantäne der (Teil-)Bevölkerung
- Social Distancing der (Teil-)Bevölkerung
- Schließung von Schulen
- Reiseeinschränkungen

- Unbekannte Infektionen?
- Einhaltung?
- Verhaltensänderungen?

Abstraktion

- Genauigkeit vs. Simplizität
 - Auswirkung auf Bewertung

- Simulationsfläche
 - Kleines Quadrat ausreichend?
- Menschen
 - Bewegung
 - Beziehungen
 - Mehr Zustände
 - Asymptomatische Fälle

Ergebnisse

- Prognose
 - Todesfälle
 - Pandemiedauer
 - Benötigte Fachkräfte
- Kombinationen testen
- Abläufe beobachten
- Weiter Testen

Ergebnisse

- Prognose
 - Todesfälle
 - Pandemiedauer
 - Benötigte Fachkräfte
- Kombinationen testen
- Abläufe beobachten
- Weiter Testen
- Validierung
 - SIR-Modell

Initialisierung

```
def __init__(self, N=500, width=50, height=50, infected_start=0.01, ...):
    for i in range(N):
        a = MyAgent(i, self)
        self.schedule.add(a)
        while len(self.grid.get_cell_list_contents([(x,y)])) != 0:
        x = self.random.randrange(self.grid.width)
        y = self.random.randrange(self.grid.height)
        self.grid.place_agent(a, (x,y))
        if i < N * infected_start:
            a.state = State.INFECTED
        a.recovery_time = self.get_recovery_time()</pre>
```

Status

```
if self.state == State.INFECTED:
    dead = self.model.death_rate > random.random()
    if dead:
        self.model.dead_agents += 1
        self.model.schedule.remove(self)
        self.model.grid.remove_agent(self)
    elif self.model.schedule.time - self.infection_time >= self.recovery_time:
        self.state = State.RECOVERED
```

Bewegung

```
neighborhood = self.model.grid.get_neighboorhood(self.pos, ...)
new_position = random.choice(neighborhood)
if len(self.model.grid.get_cell_list_contents([new_position])) == 0:
self.model.grid.move_agent(self, new_position)
```

Bewegung und Kontakt

```
neighborhood = self.model.grid.get_neighboorhood(self.pos, ...)
new_position = random.choice(neighborhood)
if len(self.model.grid.get_cell_list_contents([new_position])) == 0:
self.model.grid.move_agent(self, new_position)
```

```
if self.state == State.INFECTED:
    neighborhood = self.model.grid.get_neighboorhood(self.pos, ...)
    neigbours = self.model.grid.get_cell_list_contents(neigborhood)
    for other in neighbours:
        if other.state is State.SUSCEPTIBLE:
        if self.model.p_transmission > random.random():
            other.state = State.INFECTED
        other.infection_time = self.model.schedule.time
        other.recovery_time = self.model.get_recovery_time()
```

Basis

Basis

Unterschiedliche Infektionsraten

Verfeinerung

Reiseeinschränkungen?

Beispiel einfache ImplementierungDiskussion

- Einfach zu erstellen
- Leicht zu verstehen
- Praktisch zu erweitern
- Sieht korrekt aus

Diskussion

- Einfach zu erstellen
- Leicht zu verstehen
- Praktisch zu erweitern
- Sieht korrekt aus

- Nur 500 Agenten
- Sehr Quadratisch
- Homogene Agenten
- Willkürliche Werte

Zusammenfassung

- ABM sind simpel
- Können komplizierte Systeme darstellen
 - Heterogene Akteure
 - Wechselndes Verhalten
 - Keine globalen Entscheidungen
- Leicht erweiterbar
- Variable Abstraktion
 - Richtiges Niveau treffen