DATA SCIENCE

Klasifikasi Iris Dataset menggunakan Algoritma Support Vector Machine (SVM)

Ву

FARA FIROZA

DESKRIPSI PROYEK

Proyek ini bertujuan untuk mengklasifikasikan spesies bunga iris berdasarkan fitur-fiturnya (seperti panjang dan lebar sepal/petals). Saya menggunakan dataset Iris dan algoritma SVM untuk memodelkan dan menguji akurasi model.

IMPORT LIBRARY

Untuk memulai proyek ini, beberapa pustaka penting diimpor untuk pengolahan data, pelatihan model, dan evaluasi hasil.

```
#import library
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
import matplotlib.pyplot as plt
import seaborn as sns
```

LOAD DATASET

```
#Load dataset and convert to DataFrame
data=load_iris()

#mengubah data Load Iris menjadi dataframe
df=pd.DataFrame(data.data,columns=data.feature_names)

df['target']=data.target

df.head(10)
```

1 4.9 3.0 1.4 0.2 0 2 4.7 3.2 1.3 0.2 0 3 4.6 3.1 1.5 0.2 0 4 5.0 3.6 1.4 0.2 0 5 5.4 3.9 1.7 0.4 0 6 4.6 3.4 1.4 0.3 0 7 5.0 3.4 1.5 0.2 0 8 4.4 2.9 1.4 0.2 0 9 4.9 3.1 1.5 0.1 0	ر ۱۵ [1]	sepal	length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
2 4.7 3.2 1.3 0.2 0 3 4.6 3.1 1.5 0.2 0 4 5.0 3.6 1.4 0.2 0 5 5.4 3.9 1.7 0.4 0 6 4.6 3.4 1.4 0.3 0 7 5.0 3.4 1.5 0.2 0 8 4.4 2.9 1.4 0.2 0	-	0	5.1	3.5	1.4	0.2	0
3 4.6 3.1 1.5 0.2 0 4 5.0 3.6 1.4 0.2 0 5 5.4 3.9 1.7 0.4 0 6 4.6 3.4 1.4 0.3 0 7 5.0 3.4 1.5 0.2 0 8 4.4 2.9 1.4 0.2 0		1	4.9	3.0	1.4	0.2	0
4 5.0 3.6 1.4 0.2 0 5 5.4 3.9 1.7 0.4 0 6 4.6 3.4 1.4 0.3 0 7 5.0 3.4 1.5 0.2 0 8 4.4 2.9 1.4 0.2 0		2	4.7	3.2	1.3	0.2	0
5 5.4 3.9 1.7 0.4 0 6 4.6 3.4 1.4 0.3 0 7 5.0 3.4 1.5 0.2 0 8 4.4 2.9 1.4 0.2 0		3	4.6	3.1	1.5	0.2	0
6 4.6 3.4 1.4 0.3 0 7 5.0 3.4 1.5 0.2 0 8 4.4 2.9 1.4 0.2 0		4	5.0	3.6	1.4	0.2	0
7 5.0 3.4 1.5 0.2 0 8 4.4 2.9 1.4 0.2 0		5	5.4	3.9	1.7	0.4	0
8 4.4 2.9 1.4 0.2 0		6	4.6	3.4	1.4	0.3	0
		7	5.0	3.4	1.5	0.2	0
9 4.9 3.1 1.5 0.1 0		8	4.4	2.9	1.4	0.2	0
		9	4.9	3.1	1.5	0.1	0

Dataset Iris dimuat menggunakan pustaka sklearn.datasets. Dataset ini memiliki 150 sampel bunga iris dengan 4 fitur (panjang sepal, lebar sepal, panjang petal, lebar petal) dan label target (spesies iris), namun disini saya hanya memggunakan 10 sampel.

NULL DATA

Memeriksa apakah ada data yang hilang (null) dalam dataset. Jika ada nilai yang hilang, kita akan menangani data tersebut dengan metode yang sesuai (misalnya imputasi atau penghapusan).

```
[9] df.info()
   <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 150 entries, 0 to 149
    Data columns (total 5 columns):
                           Non-Null Count Dtype
         Column
       sepal length (cm) 150 non-null
                                         float64
     1 sepal width (cm) 150 non-null
                                          float64
       petal length (cm) 150 non-null
                                           float64
         petal width (cm) 150 non-null
                                           float64
         target
                          150 non-null
                                           int64
    dtypes: float64(4), int64(1)
    memory usage: 6.0 KB
```

PREPROCESSING DATA

Menyiapkan data untuk pemodelan dengan memisahkan fitur (X) dan target (y).

```
colab.research.google.com

+ <> + TT

[14] from sklearn.model_selection import train_test_split

#Define features and target

X = df[data.feature_names]

y = df['target']

# Split dataset into training and test

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

[17] from sklearn.svm import SVC
```

SPLITTING DATA

Memisahkan dataset menjadi data latih dan data uji. Data latih digunakan untuk melatih model, dan data uji digunakan untuk mengevaluasi akurasi model.

```
[17] from sklearn.svm import SVC

# Initialize Suport Vector Classifier
svm_classifier = SVC(kernel='linear',random_state=42)

#Train the model
svm_classifier.fit(X_train,y_train)
```

MODELING

Membangun model menggunakan Support Vector Machine (SVM) dengan kernel linear.

```
# (> + T)

[17] from sklearn.svm import SVC

# Initialize Suport Vector Classifier
svm_classifier = SVC(kernel='linear', random_state=42)

#Train the model
svm_classifier.fit(X_train,y_train)

SVC
SVC(kernel='linear', random_state=42)
```

MODEL AKURASI

- Mengevaluasi model dengan menghitung akurasi menggunakan data uji.
- Akurasi model menunjukkan seberapa baik model dapat mengklasifikasikan data uji

```
#Predict on the test set
y_pred = svm_classifier.predict(X_test)

# Calculate accuracy
accuracy = accuracy_score(y_test,y_pred)
print(f"Akurasi: {accuracy * 100:.2f}%")

#print classification report for details
print(classification_report(y_test,y_pred,
target_names=data.target_names))
```

0 d [20]	Akurasi: 100.	00%				
₹		precision	recall	f1-score	support	
	setosa versicolor virginica	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	10 9 11	
	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	30 30 30	
✓ F211						

VISUALISASI HASIL KLASIFIKASI

```
plt.figure(figsize=(10,6))
    sns.scatterplot(x=X_test.iloc[:, 0], y=X_test.iloc[:, 1], hue=y_pred, palette='Set1', s=100
    plt.title("SVM Classification Results on Iris Dataset")
    plt.xlabel(data.feature_names[0]) # Corrected to use the actual feature name
    plt.ylabel(data.feature_names[1]) # Corrected to use the actual feature name
    plt.legend(title='Predicted Classes') # Corrected 'tittle' to 'title'
    plt.show()
```


Scatterplot menunjukkan hasil klasifikasi dataset Iris menggunakan algoritma SVM.

Setiap titik mewakili sampel bunga pada data uji.

Warna menunjukkan kelas bunga (Setosa, Versicolor, Virginica).

Sumbu X dan Y merepresentasikan fitur utama dataset, seperti panjang dan lebar sepal.

KESIMPULAN

- Model SVM dengan kernel linear berhasil mengklasifikasikan data Iris dengan akurasi tinggi
- Hasil klasifikasi menunjukkan pemisahan yang jelas antara spesies bunga iris.
- Proyek ini dapat diperluas dengan mencoba kernel SVM lainnya atau algoritma lain untuk membandingkan performanya.

Terima kasih