Lecture 12 – Quick sort

Review

- Heap sort
 - heap structure properties
 - heapify
 - heapsort idea

e.g.

heap sort the following array: 2 4 -1 10 9 12 10

Today's topics

• Quick sort

1. Quick sort

Q:/ What is the idea for merge sort?

A:/ partition the list into 2 halves based on **positions**.

Idea of quick Sort: Partition the list into 2 halves based on values.

- Place the "pivot" item in its final position in the sorted list _ break the list into two parts
- All elements before the pivot are smaller than or equal to the pivot and all elements after the pivot are greater than or equal to the pivot

Illustration

Thus we can recursively sort the two sub-arrays (i.e. before and after A[s]) using the same method).

So if we can find this position s, then we can develop an algorithm called quick sort.

Quicksort (A,p, q)

if(p < q)

x=A[p];//pivot

partition A into a left subarray and right subarray at position s where elements on the left subarray <=x<=elements in the right subarray

Quicksort(A,p,s-1)

Quicksort(A,s+1,q)

So now the key is how to find this position $s \rightarrow Partition$

Without losing generality, we will pick the first element in A to be the value of the pivot. The method to find where the position is called **double scan**.

Double scan: one scan from the left right and one from right → left

- Left to Right Scan: use index i starting with the second element
- Right to Left Scan: use index *j* starting with the last element

	$\rightarrow i$			j←
p	A[<i>l</i> +1]	A[<i>l</i> +2]	 A[r-1]	A[r]

Goal: elements \geq the pivot are in the second part of the array and elements \leq the pivots are in the first part of the array

- *i*: skips elements <pivot, stop on encountering the first element ≥pivot
- *j*: skips elements >pivot, stop on encountering the first element ≤pivot

Details:

There are three situations depending on whether or not the scanning indexes have crossed 1. i and j haven't crossed each other

example

			$\rightarrow i$	j←		
5	4	2	6	 4	9	8

Q:/ What should we do?

A:/ Swap A[i] with A[j], resume the scans

2. i and j cross over

example

			← j	$\rightarrow i$			
11	4	2	5	12	20	14	19

Q:/ What should we do?

A:/ swap pivot with p[j]

3. i and j meet at the same it

		$\rightarrow i = j \leftarrow$	
p	all are <p< td=""><td>=p</td><td>all are >p</td></p<>	=p	all are >p

example

Q:/ What should we do?

A:/either do nothing or swap pivot with A[i] (though these two values are the same)

Thus the algorithm for partitioning A[l,...,r] is the following Partition (A, p, q) $p \leftarrow A[p]$

```
j←q
repeat
        repeat i++ until A[i]>=p
        repeat j++ until A[j]<=p
        swap A[i] with A[j]
until i>=j
swap A[p] with A[j]
return j
Example: quick sort 5 3 1 9 8 2 4 7
                              j
7
   i
3
    3
                         9
                         9
                                                  l=0, r=7
                                                            l=5, r=7 s=6
                                        l=0, r=3
```

l=0, *r*=0

9

9

FIGURE 4.3 Example of Quicksort operation. (a) The array's transformations with pivots shown in bold. (b) The tree of recursive calls to *Quicksort* with input values *l* and *r* of subarray bounds and split position *s* of a partition obtained.

l=2, r=3 s=2

l=3, *r*=3

(b)

Efficiency analysis

3

 $i\leftarrow p+1$

Input size: # of items n

(a)

O:/ Are there three cases?

A:/ Yes, sometimes we do n checkings and sometimes we do n+1 checkings

Q:/ When does best case happen?

A:/ when all splits happen in the middle of corresponding sub-arrays

 $T(n)=2T(n/2)+\Theta(n) \rightarrow efficiency \Theta(n\log n)$

Q:/ When does worst case happen?

A:/ when the increasing list has been sorted!

$$j \leftarrow \rightarrow i$$

$$A[0] \quad A[1] \quad \dots \quad A[n-1]$$

 $T(n)=T(n-1)+\Theta(n)$

Using recursion tree, we can find the efficiency is $\Theta(n^2)$

Q:/ Why is quick sort a good sorting algorithm since its worst case is the same as insertion sort? A:/ It's because it's average case has very good properties.

The average case is T(n) = 1.38nlogn and it can also be improved by 20-25%.

Q:/ How can we avoid the worst case scenario?

 $\underline{A:/}$ avoid sorted array \rightarrow randomly pick the pivot!!