Group-wise Sparse Adversarial Attacks

S. Sadiku, M. Wagner, S. Pokutta

Motivation

- ▶ Deep Neural Networks (DNN) are vulnerable to adversarial attacks
- Sparse adversarial attacks explore ℓ_p neighborhoods with p=0 via
 - 1. Greedy single-pixel selection
 - 2. Local search techniques
 - 3. Evolutionary algorithms
 - 4. Relaxing ℓ_0 via the ℓ_1 ball
- Such methods do not constrain the magnitude of changed pixels
- ▶ Generate adversarial attacks that are simultaneously sparse and imperceptible
- Impose structure to sparse adversarial attacks by generating group-wise sparse perturbations that are targeted to the main objective in the image leads to explainable perturbations
- ▶ Sheds light on significant vulnerabilities in DNNs and offers insights into their failures

Group-wise sparse Attacks

Figure 1: Visual comparison of successful untargeted adversarial instances generated by our attack (1), StrAttack (2), and FWnucl (3). The target model is a ResNet50.

Method

- $\mathscr{X} = [I_{\min}, I_{\max}]^{M \times N \times C}$ set of feasible images
- $\mathscr{L}: \mathscr{X} \times \mathbb{N} \to \mathbb{R}$ classification loss function
- lacktriangle Targeted sparse adversarial attacks for given $\bf x$, target t

$$\min_{\mathbf{w} \in \mathbb{R}^{M \times N \times C}} \mathcal{L}(\mathbf{x} + \mathbf{w}, t) + \lambda \|\mathbf{w}\|_{p}^{p},$$

- Use forward-backward splitting algorithm for 0
- Requires solving the proximal operator

$$\operatorname{prox}_{\lambda\|\cdot\|_p^p}(\mathbf{w}) := \underset{\mathbf{v} \in \mathbb{R}^{M \times N \times C}}{\operatorname{arg\,min}} \frac{1}{2\lambda} \|\mathbf{y} - \mathbf{w}\|_2^2 + \|\mathbf{y}\|_p^p,$$

- Closed-form solution for p = 1/2 and p = 2/3
- Tune λ to determine pixel coordinates to perturb 1. Build a mask $\mathbf{m} = \text{sign}\left(\sum_{c=1}^{C} |\mathbf{w}^{(k)}|_{:,:,c}\right) \in \{0,1\}^{M\times N}$, 2. Apply Gaussian blur kernel $\mathbf{M} = \mathbf{m} * *\mathbf{K} \in [0,1]^{M\times N}$, 3. Build

$$\overline{\mathbf{M}}_{ij} = egin{cases} \mathbf{M}_{ij} + 1, & ext{if } \mathbf{M}_{ij}
eq 0, \ q, & ext{else}, \end{cases}$$

4. Set
$$\lambda_{i,j,:}^{(k+1)} = \frac{\lambda_{i,j,:}^{(k)}}{\overline{\mathbf{M}}_{i,i}}$$

► Nesterov Accelerated Gradient over chosen coordinates

Evaluation metrics and Results on Untargeted Attacks

- $(\mathbf{x}^{(i)})_{0 < i \le n}$ images of perturbation $(\delta^{(i)})_{0 < i \le n}$
- Attack Success Rate ASR = $\frac{m}{n}$ for m successful adversaries
- Average Number of Changed Pixels

$$\mathsf{ACP} = \frac{1}{n} \sum_{i=1}^{n} \frac{\|\Delta^{(i)}\|_{0}}{MN}, \quad \Delta^{(i)} = \sum_{c=1}^{C} |\delta_{[:,:,c]}^{(i)}| \in \mathbb{R}^{M \times N}$$

- Run depth-first search (DFS) on $\mathbf{m} = \text{sign}\left(\sum_{c=1}^{C} |\delta_{[:,:,c]}^{(i)}|\right)$ starting from every 1—entry another DFS has not yet discovered
- ▶ Average Number of Clusters (ANC) average the number of DNS runs until all 1—entries are discovered for *m* adversaries
- For n < M, N and $\mathcal{G} = \{G_1, ..., G_k\}$ a set containing the index sets of all overlapping n by n patches in δ

$$d_{2,0}(\delta) := |\{i : \|\delta_{G_i}\|_2 \neq 0, i = 1,...,k\}|$$

	Attack	ASR	ACP	ANC	ℓ_2	$d_{2,0}$
CIFAR-10 ResNet20	GSE (Ours) StrAttack FWnucl	100% 100% 95.1%	36.8 117 456	1.5 4.7 1.3	0.75 1.07 2.00	177 419 592
NIPS2017 VGG19	GSE (Ours) StrAttack FWnucl	100%	96840217225	6.7 7.4 2.1	1.25 1.92 2.40	_
NIPS2017 ResNet50	GSE (Ours) StrAttack FWnucl	100%	1270 8669 14953	,	1.47 2.51 1.82	2922 13963 17083

- ResNet20 classifier for CIFAR-10
- ▶ VGG19 and a ResNet50 classifier for ImageNet/NIPS2017
- ► Tested on 1,000 samples from each dataset

Speed Comparison

	ι	Intargeted		Targeted					
	CIFAR-10	Image	Net	CIFAR-10	ImageNet				
Attack	ResNet20	ResNet50	VGG19	ResNet20	ResNet50	VGG19			
GSE (Ours) StrAttack FWnucl	0.39s 1.33s 0.80s	23.8s 48.9s 32.4s	38.9s 78.2s 67.1s	0.39s 1.28s 0.82s	20.1s 49.2s 31.9s	40.8s 75.5s 65.8s			

Results on Targeted Attacks

ResNet20						
classifier for						
CIFAR-10						
VCC40 and a						

- VGG19 and a ResNet50 classifier for NIPS2017
- Tested on 1,000 samples from each dataset

		Best case				Average case				Worst case						
Dataset	Attack	ASR	ACP	ANC	ℓ_2	$d_{2,0}$	ASR	ACP	ANC	ℓ_2	$d_{2,0}$	ASR	ACP	ANC	ℓ_2	$d_{2,0}$
CIFAR-10 ResNet20	GSE (Ours) StrAttack FWnucl	100% 100% 100%	75.4	1.2 2.2 1.0	0.69 0.79 1.44	336	100% 100% 82.8%	232	2.1 5.4 1.6	1.17 1.96 2.32		100% 100% 35.0%	430	3.5 9.0 2.8	1.62 4.72 3.78	620
NIPS2017 VGG19	GSE (Ours) StrAttack FWnucl	100% 100% 56.1%	3616	3.6	2.85	5863	100% 100% 18.3%	10940	11.0	3.70		100%		19.9		32193
NIPS2017 ResNet50	GSE (Ours) StrAttack FWnucl	100% 100% 32.4%	6117	4.0	2.73	9246	100% 100% 12.6%	15308	12.1	4.17		100%	16284 26569 N/A	20.5		33297

Visual Anylsis

Figure 2: Targeted adversarial examples generated by GSE. The target is airship for the first two rows, and golf cart for the last two rows. The attacked model is a VGG19.

Interpretability Metrics

- ▶ $Z(\mathbf{x})$ logits of vectorized image $\mathbf{x} \in [I_{\min}, I_{\max}]^d$
- Adversarial Saliency Map (ASM)

$$\mathsf{ASM}(\mathbf{x},t)[i] = \left(\frac{\partial Z(\mathbf{x})_t}{\partial \mathbf{x}_i}\right) \left|\frac{\partial Z(\mathbf{x})_l}{\partial \mathbf{x}_i}\right| 1_S(i),$$

$$S = \left\{i \in \{1,...,d\} \;\middle|\; \frac{\partial Z(\mathbf{x})_t}{\partial \mathbf{x}_i} \geq 0 \; \text{or} \; \frac{\partial Z(\mathbf{x})_l}{\partial \mathbf{x}_i} \leq 0\right\}.$$

▶ Binary mask $\mathbf{B}_{ASM} \in \{0,1\}^d$

$$\mathbf{B}_{ASM}[i] = egin{cases} 1, & ext{if ASM}(\mathbf{x},t)[i] > \mathbf{v}, \ 0, & ext{otherwise}, \end{cases}$$

• Interpretability score (IS) given perturbation $\delta \in \mathbb{R}^d$

$$\mathsf{IS}(\delta) = rac{\|\mathbf{B}_{ASM} \odot \delta\|_2}{\|\delta\|_2}.$$

- $f_k[i,j]$ activation of the unit k at the coordinates (i,j) in the last convolutional layer
- w_k^l weights corresponding to label l for unit k
- Class activation map $CAM_l[i,j] = \sum_k w_k^l f_k[i,j]$

Quantitative Interpretability

Figure 3: IS vs. percentile *v* for targeted GSE attack (1), StrAttack (2), FWnucl (3), and SAIF (4). Evaluated on a CIFAR-10 ResNet20 classifier (a), and an ImageNet VGG19 classifier (b).

Literature

Bibliography

- [1] S. Sadiku, M. Wagner, and S. Pokutta. Group-wise Sparse and Explainable Adversarial Attacks. arXiv preprint arXiv:2311.17434, 2023.
- [2] K. Xu, S. Liu, P. Zhao, P. Chen, H. Zhang, Q. Fan, D. Erdogmus, Y. Wang and X. Lin. StrAttack: Towards general implementation and better interpretability. ICLR, 2019.
- [3] E. Kazemi and T. Kerdreux and L. Wang. Minimally Distorted Structured Adversarial Attacks International Journal of Computer Vision 131.1, pp. 160-176, 2023.
- [4] T. Imtiaz, M. Kohler, J. Miller, Z. Wang, M. Sznaier, O. Camps and J. Dy. SAIF: Sparse Adversarial and Interpretable Attack Framework. arXiv preprint arXiv:2212.07495, 2022.