QCD at Finite Density

(Nuclear/Quark Matter)

QCD at Finite Density

Partition function

$$Z = \text{Tr}\left[e^{-\beta(H-\mu N)}\right]$$
 $\beta = 1/T$ $N = \int d^3x \ \psi^{\dagger}\psi$

Path integral representation (euclidean)

$$Z = \int DA_{\mu} \det(iD/ + i\mu\gamma_4)e^{-S} = \int DA_{\mu} e^{i\phi} |\det(iD/ + i\mu\gamma_4)|e^{-S}$$

Sign problem: importance sampling does not work

Also: No general theorems (a la Vafa-Witten)

Phase structure much richer

(breaking of translational, rotational, parity, isospin, ... symmetry)

Evading the Sign Problem I

QCD like theories with extra "C" symmetry

$$\det(D) \det(CDC^{-1}) = \det(D) \det(D)^* = |\det(D)|^2$$

QCD with $SU(2)_F$ symmetry at non-zero μ_{I_3}

QCD with $N_c = 2$ colors

QCD with fermions in the adjoint representation

These theories have some common features

Charged Goldstone Bosons, Bose condensation No Higgs phase (color superconductivity)

Evading the Sign Problem II

[FK] Improved re-weighting, [FP] imaginary chemical potential [All] Taylor expansions

Schematic Phase Diagram

Dense Baryonic Matter

Low Density

Equation of state of nuclear/neutron matter Neutron/proton superfluidity, pairing gaps

Moderate Density

Pion/kaon condensation, hyperon matter Pairing, equation of state at high density

High Density

Quark matter

Color superconductivity, Color-flavor-locking

Dense Baryonic Matter

```
(constrained by NN interaction, phenomenology)
Low Density
       Equation of state of nuclear/neutron matter
      Neutron/proton superfluidity, pairing gaps
                                   (very poorly known)
Moderate Density
       Pion/kaon condensation, hyperon matter
       Pairing, equation of state at high density
                             (weak coupling methods apply)
High Density
      Quark matter
      Color superconductivity, Color-flavor-locking
```

Low Density: Nuclear Effective Field Theory

Nucleons are point particles

Low Energy Nucleons: Interactions are local

Long range part: pions

Systematically improvable

Advantages: Symmetries manifest (Chiral, gauge, ...)

Connection to lattice QCD

Effective Field Theory

Effective field theory for point-like, non-relativistic neutrons

$$\mathcal{L}_{\text{eff}} = \psi^{\dagger} \left(i \partial_0 + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{2} (\psi^{\dagger} \psi)^2 + \frac{C_2}{16} \left[(\psi \psi)^{\dagger} (\psi \overset{\leftrightarrow}{\nabla}^2 \psi) + h.c. \right] + \dots$$

Simplifications: neutrons only, no pions (very low energy)

Effective range expansion

$$p \cot \delta_0 = -\frac{1}{a} + \frac{1}{2} \sum_n r_n p^{2n}$$

Coupling constants

$$C_0 = \frac{4\pi a}{M}, \quad C_2 = \frac{4\pi a^2}{M} \frac{r}{2}, \quad \dots \quad a = -18 \,\text{fm}, \quad r = 2.8 \,\text{fm}$$

Neutron Matter: Universal Limit

Consider limiting case ("Bertsch" problem)

$$(k_F a) \to \infty$$
 $(k_F r) \to 0$

Why is this limit interesting? (Close to real world!)

Scale (and conformal) invariance

Universal equation of state $E/A = \xi(E/A)_0$

Cross section saturates QM unitarity bound

Perfect fluid?

Connection to cold atoms

Cold Fermi Gases

Universal equation of state

$$(E/A) = 0.42(E/A)_0$$

Experiment, Quantum MC, ϵ expansion

Transport: η/s from damping of collective modes

Epsilon Expansion

Bound state wave function $\psi \sim 1/r^{d-2}$.

Nussinov & Nussinov

 $d \ge 4$: Non-interacting bosons $\xi(d=4)=0$

$$\xi(d=4) = 0$$

 $d \leq 4$: Effective lagrangian for atoms $\Psi = (\psi_{\uparrow}, \psi_{\downarrow}^{\dagger})$ and dimers ϕ

$$\mathcal{L} = \Psi^{\dagger} \left(i \partial_0 + \frac{\sigma_3 \nabla^2}{2m} \right) \Psi + \mu \Psi^{\dagger} \sigma_3 \Psi + \Psi^{\dagger} \sigma_+ \Psi \phi + h.c.$$

Nishida & Son (2006)

Perturbative expansion: $\phi = \phi_0 + g\varphi \ (g^2 \sim \epsilon)$

$$O(1) + O(1) + O(\epsilon)$$

$$\xi = \frac{1}{2} \epsilon^{3/2} + \frac{1}{16} \epsilon^{5/2} \ln \epsilon$$
$$-0.0246 \epsilon^{5/2} + \dots$$

$$\xi = 0.475 \qquad \Delta = 0.62E_F$$

Nuclear Matter

isospin symmetric matter: first order onset transition

$$\rho_0 \simeq 0.14 \, \text{fm}^{-3} \quad (k_F \simeq 250 \, \text{MeV}) \quad B/A = 15 \, \text{MeV}$$

can be reproduced using accurate V_{NN} (V_{3N} crucial, $V_{4N} \approx 0$)

EFT methods: explain need for V_{3N} if $N_f>1$ (and $V_{4N}\ll V_{3N}$)

systematic calculations difficult since $k_F a \gg 1$, $k_F r \sim 1$

Nuclear Matter at large N_c

Nucleon nucleon interaction is $O(N_c)$

$$m_N = O(N_c)$$
 $r_N = O(1)$
$$V_{NN} = O(N_c)$$

Get $SU(2N_f)$ (Wigner symmetry) relations

$$C_0(\psi^{\dagger}\psi)^2 \gg C_T(\psi^{\dagger}\vec{\sigma}\psi)^2$$

Dense matter:
$$k_F = O(1) \; (E_F \sim 1/N_c)$$
 crystallization

Note: $E \sim N_c$ (no phase transition?)

Very Dense Matter

Consider baryon density $n_B \gg 1 \, \mathrm{fm}^{-3}$

quarks expected to move freely

Ground state: cold quark matter (quark fermi liquid)

only quarks with $p \sim p_F$ scatter $p_F \gg \Lambda_{QCD} \to {\rm coupling}$ is weak

No chiral symmetry breaking, confinement, or dynamically generated masses

High Density: Pairing in Quark Matter

QQ scattering in perturbative QCD

$$(\vec{T})_{ac}(\vec{T})_{bd} = -\frac{1}{3}(\delta_{ab}\delta_{cd} - \delta_{ad}\delta_{bc}) + \frac{1}{6}(\delta_{ab}\delta_{cd} + \delta_{ad}\delta_{bc})$$

$$[3] \times [3] = [\bar{3}] + [6]$$

Fermi surface: pairing instability in weak coupling

$$\Phi_{ij}^{ab,\alpha\beta} = \langle \psi_i^{a,\alpha} C \psi_j^{b,\beta} \rangle$$

Phase structure in perturbation theory

Minimize
$$\Omega(\Phi_{ij}^{ab,\alpha\beta})$$

In practice: consider $\Phi^{ab,\alpha\beta}_{ij}$ with residual symmetries

Superconductivity

Thermodynamic potential

Variational principle $\delta\Omega/\delta\Phi$ gives gap equation

$$\Delta(p_0) = \frac{g^2}{18\pi^2} \int dq_0 \log\left(\frac{\Lambda_{BCS}}{|p_0 - q_0|}\right) \frac{\Delta(q_0)}{\sqrt{q_0^2 + \Delta(q_0)^2}}$$

$$\Lambda_{BCS} = c_i 256 \pi^4 \mu g^{-5}$$
 $\Delta_i = 2 \Lambda_{BCS} \exp\left(-\frac{3\pi^2}{\sqrt{2}g}\right)$ (c_i depends on phase)

$N_f = 2$: 2SC Phase

 $N_f=2$, color-anti-symmetric: spin-0 BCS condensate

$$\langle \psi_i^b C \gamma_5 \psi_j^c \rangle = \Phi^a \epsilon^{abc} \epsilon_{ij}$$

Order parameter $\phi^a \sim \delta^{a3}$ breaks $SU(3)_c \to SU(2)$

$$SU(2)_L imes SU(2)_R$$
 unbroken

4 gapped, 2 (almost) gapless fermions

light $U(1)_A$ Goldstone boson

SU(2) confined $(\Lambda_{conf} \ll \Delta)$

$$N_f = 3$$
: CFL Phase

Consider
$$N_f = 3 \ (m_i = 0)$$

$$\langle q_i^a q_j^b \rangle = \phi \ \epsilon^{abI} \epsilon_{ijI}$$

 $\langle ud \rangle = \langle us \rangle = \langle ds \rangle$
 $\langle rb \rangle = \langle rg \rangle = \langle bg \rangle$

Symmetry breaking pattern:

$$SU(3)_L \times SU(3)_R \times [SU(3)]_C$$

 $\times U(1) \to SU(3)_{C+F}$

All quarks and gluons acquire a gap [8] + [1] fermions, Q integer

color

... have to rotate right flavor also!

$$\langle \psi_L \psi_L \rangle = -\langle \psi_R \psi_R \rangle$$

CFL Phase: What does it look like?

CFL phase is fully gapped transparent insulator

CFL is a superfluid

rotational vortices

CFL is not an electric superconductor magnetic flux only partially expelled

CFL is "confined"

excitations: mesons and baryons

Towards the real world: Non-zero strange quark mass

Have $m_s > m_u, m_d$: Unequal Fermi surfaces

$$\delta p_F \simeq \frac{m_s^2}{2p_F}$$

Also: If $p_F^s < p_F^{u,d}$ have unequal densities

Charge neutrality not automatic

Strategy

Consider $N_f=3$ at $\mu\gg\Lambda_{QCD}$ (CFL phase)

Study response to $m_s \neq 0$

Constrained by chiral symmetry

Effective theory: (CFL) baryon chiral perturbation theory

$$\mathcal{L} = \frac{f_{\pi}^{2}}{4} \left\{ \operatorname{Tr} \left(\nabla_{0} \Sigma \nabla_{0} \Sigma^{\dagger} \right) - v_{\pi}^{2} \operatorname{Tr} \left(\nabla_{i} \Sigma \nabla_{i} \Sigma^{\dagger} \right) \right\}$$

$$+ A \left\{ \left[\operatorname{Tr} \left(M \Sigma \right) \right]^{2} - \operatorname{Tr} \left(M \Sigma M \Sigma \right) + h.c. \right\}$$

$$+ \operatorname{Tr} \left(N^{\dagger} i v^{\mu} D_{\mu} N \right) - D \operatorname{Tr} \left(N^{\dagger} v^{\mu} \gamma_{5} \left\{ \mathcal{A}_{\mu}, N \right\} \right)$$

$$- F \operatorname{Tr} \left(N^{\dagger} v^{\mu} \gamma_{5} \left[\mathcal{A}_{\mu}, N \right] \right) + \frac{\Delta}{2} \left\{ \operatorname{Tr} \left(N N \right) - \left[\operatorname{Tr} \left(N \right) \right]^{2} \right\}$$

$$\nabla_0 \Sigma = \partial_0 \Sigma + i \hat{\mu}_L \Sigma - i \Sigma \hat{\mu}_R$$
$$D_\mu N = \partial_\mu N + i [\mathcal{V}_\mu, N]$$

$$f_{\pi}^{2} = \frac{21 - 8\log 2}{18} \frac{\mu^{2}}{2\pi^{2}}$$
 $v_{\pi}^{2} = \frac{1}{3}$ $A = \frac{3\Delta^{2}}{4\pi^{2}}$ $D = F = \frac{1}{2}$

Phase Structure and Spectrum

Phase structure determined by effective potential

$$V(\Sigma) = \frac{f_{\pi}^2}{2} \operatorname{Tr} \left(\hat{\mu}_L \Sigma \hat{\mu}_R \Sigma^{\dagger} \right) - A \operatorname{Tr} (M \Sigma^{\dagger}) - B_1 \left[\operatorname{Tr} (M \Sigma^{\dagger}) \right]^2 + \dots$$

$$V(\Sigma_0) \equiv min$$

Fermion spectrum determined by

$$\mathcal{L} = \operatorname{Tr}\left(N^{\dagger}iv^{\mu}D_{\mu}N\right) + \operatorname{Tr}\left(N^{\dagger}\gamma_{5}\rho_{A}N\right) + \frac{\Delta}{2}\left\{\operatorname{Tr}\left(NN\right) - \left[\operatorname{Tr}\left(N\right)\right]^{2}\right\},\,$$

$$\rho_{V,A} = \frac{1}{2} \left\{ \xi \hat{\mu}_L \xi^{\dagger} \pm \xi^{\dagger} \hat{\mu}_R \xi \right\} \qquad \xi = \sqrt{\Sigma_0}$$

Phase Structure of CFL Phase

$$m_s^{crit} \sim 3.03 \, m_d^{1/3} \Delta^{2/3}$$

$$m^* \sim 0.017 \,\alpha_s^{4/3} \Delta$$

QCD realization of s-wave meson condensation

Driven by strangeness over-saturation of CFL state

Fermion Spectrum

gapless fermion modes (gCFLK)

(chromomagnetic) instabilities?

Phase Diagram: $m_s \neq 0$

Phase structure at moderate μ (and $m_s, \mu_e \neq 0$) complicated and poorly understood. Systematic calculations

$$m_s^2 \ll \mu^2, m_s \Delta \ll \mu^2, g \ll 1$$

Use neutron stars to rule out certain phases

Composition of Neutron Stars

F. Weber (2005)

Observational Constraints

Mass-radius relationship, maximum mass

Equation of state

Cooling behavior

Phase structure, low energy degrees of freedom

Rotation

Equation of state, Viscosity

Spin-down, glitches

Superfluidity

Resources

- Star, Phenix, Phobos, Brahms, *Discoveries at RHIC*, Nuclear Physics A750 (2005).
- E. Shuryak, *The QCD Vacuum*, *Hadrons*, and *Superdense Matter*, World Scientific, Singapore.
- T. Schaefer, Phases of QCD, hep-ph/0509068.
- T. Schaefer, *Effective Theories of Dense and Very Dense Matter*, nucl-th/0609075.
- J. Kogut, M. Stephanov, $The\ Phases\ of\ QCD$, Cambridge University Press (2004).
- M. Alford, K. Rajagopal, T. Schaefer, A. Schmitt, *Color Superconductivity*, arXiv:0709.4635.

- J. Lattimer and M. Prakash, *The Physics of Neutron Stars*, astro-ph/0405262.
- U. Heinz, Concepts of Heavy-Ion Physics, hep-ph/0407360.
- D. Son, A. Starinets, Viscosity, Black Holes, and Quantum Field Theory, arXiv:0704.0240.
- J. Casalderrey-Solana et al., $Gauge/String\ Duality,\ Hot\ QCD\ and\ Heavy\ Ion\ Collisions$, arXiv:1101.0618, Cambridge University Press.