Problem 1.8.25

Let \mathcal{B} be a Banach space in which the parallelogram law holds. We can define an inner product on \mathcal{B} by

$$4(f,g) = ||f + g||^2 - ||f - g||^2$$

Note that (\cdot, \cdot) induces the norm because

$$(f, f) = \frac{1}{4} (\|f + f\|^2 - f - f^2)$$
$$= \frac{1}{4} (4\|f\|^2)$$

So we have that $||f|| = \sqrt{(f, f)}$. We need to show that (\cdot, \cdot) is indeed an inner product because

$$4(f,g) = ||f+g||^2 - ||f-g||^2$$

$$= (||f+g|| - ||f-g||)(||f+g|| + ||f-g||)$$

$$= (||f+g|| + ||g-f||)(||f+g|| + ||f-g||)$$

Because the norm is non-negative, we have (\cdot, \cdot) is the product of positive terms and hence, positive. Symmetry is also clear because

$$4(f,g) = ||f + g||^2 - ||f - g||^2$$
$$= ||g + f||^2 - (-1)^2 ||g - f||^2$$
$$= 4(g, f)$$

We are only left to verify linearity. In the real case we compute

$$(f, g + h) = ||f + g + h||^2 - ||f - (g + h)||^2$$

We can decompose the right side into the following quantities

$$A = \frac{1}{2} \|f + g + h\|^2 + \frac{1}{2} \|f + g - h\|^2 - \|h\|^2$$

$$B = \frac{1}{2} \|f - g + h\| + \frac{1}{2} \|f - g - h\| - \|h\|^2$$

$$C = \frac{1}{2} \|f + g + h\| + \frac{1}{2} \|f - g - h\|^2 - \|g\|^2$$

$$D = \frac{1}{2} \|f + g - h\|^2 + \frac{1}{2} \|f - g - h\|^2 - \|g\|^2$$

Then we have

$$\begin{split} \|f+g+h\|^2 - \|f-(g+h)\|^2 &= A - B + C - D \\ &= \left(\|f+g\|^2 - \|f-g\|^2\right) + \left(\|f+h\|^2 - \|f-h\|^2\right) \\ &= 4(f,g) + 4(f,h) \end{split}$$

So the operation is linear.

To get scalar multiplication we note that linearity immediately implies that

$$(nf,q) = (f + \cdots + f,q) = (f,q) + \cdots + (f,q) = n(f,q)$$

whenever $n \in \mathbb{Z}$. To get rational scalars we note that

$$(f,g) = (n(\frac{1}{n}f),g) = n(\frac{1}{n}f,g)$$

So for any $q \in \mathbb{Q}$ we must have q(f,g) = (qf,g). To extend this to real scalars we define a function $\varphi : \mathbb{R} \to \mathbb{R}$ given by

$$t \mapsto t(f, g) - (tf, g)$$

This function is clearly continuous because it is the difference of continuous functions. Moreover, it is 0 on \mathbb{Q} , which is dense in \mathbb{R} and therefore it must be zero on the whole line. Consequently, we must have that (tf,g)=t(f,g) for every $t\in\mathbb{R}$.

For complex Banach spaces we define the inner product by the formula

$$4(f,g) = (\|f + g\|^2 - \|f - g\|^2) + i(\|f + ig\|^2 - \|f - ig\|^2)$$

The computation to show that this indeed an inner product in analogous to the one above, but considers the real and imaginary parts of the vectors separately.

To see that $L^p(\mathbb{R})$ is only a Hilbert space for p=2 consider the functions $f(x)=\chi_{[0,1]}(x)$ and $g(x)=\chi_{[1/2,1]}(x)$. In order for the parallelogram law to hold in $L^p(\mathbb{R})$ we must have that $2(2)^{2/p}=1(1)^{2/p}$, which holds only when p=2.

Problem 1.8.30

It is clear that \mathcal{B}/\mathcal{S} is a vector space. Let [f] denote the equivalence class of f under the relation \sim . We define addition pointwise

$$[f] + [g] = [f + g]$$

and scalar multiplication via $\alpha[f] = [\alpha f]$. We then put the following norm on \mathcal{B}/\mathcal{S} ,

$$||[f]||_{\mathcal{B}/\mathcal{S}} = \inf_{f' \sim f} ||f'||_{\mathcal{B}}$$

To see that this is indeed a norm we note that $f' \sim f$ implies that f = f' + s for some non-zero $s \in \mathcal{S}$. We check scalar multiplication by noting that if $\alpha \neq 0$ then

$$\begin{aligned} \|\alpha[f]\|_{\mathcal{B}/\mathcal{S}} &= \|[\alpha f]\|_{\mathcal{B}/\mathcal{S}} \\ &= \inf_{s \in \mathcal{S}} \|\alpha f + s\|_{\mathcal{B}} \\ &= \inf_{s \in \mathcal{S}} \|\alpha f + \alpha s\|_{\mathcal{B}} \\ &= |\alpha| \inf_{s \in \mathcal{S}} \|f + s\|_{\mathcal{B}} \\ &= |\alpha| \|[f]\|_{\mathcal{B}/\mathcal{S}} \end{aligned}$$

Equality still holds when $\alpha = 0$ because $[0] \in \mathcal{S}$ and $\inf_{s \in \mathcal{S}} ||s|| = 0$. Now we check the triangle inequality by computing

$$\begin{aligned} \|[f] + [g]\|_{\mathcal{B}/\mathcal{S}} &= \|[f+g]\|_{\mathcal{B}/\mathcal{S}} \\ &= \inf_{s \in \mathcal{S}} \|f+g+s\|_{\mathcal{B}} \\ &= \inf_{s,s' \in \mathcal{S}} \|f+s+g+s'\|_{\mathcal{B}} \\ &= \inf_{s \in \mathcal{S}} \|f+s\|_{\mathcal{B}} + \|g+s\|_{\mathcal{B}} \\ &= \|[f]\|_{\mathcal{B}/\mathcal{S}} + \|[g]\|_{\mathcal{B}/\mathcal{S}} \end{aligned}$$

Now we need only verify that ||[f]|| = 0 implies that [f] = 0. Let $f \in \mathcal{B}$ be such that ||[f]|| = 0. Then we must have that $\inf_{s \in \mathcal{S}} ||f + s||_{\mathcal{B}} = 0$. So for each n > 0 we can sind an $s_n \in \mathcal{S}$ such that $||f + s_n||_{\mathcal{B}} < 1/n$. Consequently, we must have that $-s_n \to f$ as $n \to \infty$. Because \mathcal{S} is closed we must have that $f \in \mathcal{S}$ and therefore [f] = 0 in \mathcal{B}/\mathcal{S} .

Now we need to show that \mathcal{B}/\mathcal{S} is complete. Let $\sum_n F_n$ be an absolutely convergent series in \mathcal{B}/\mathcal{S} . By definition of $\|\cdot\|_{\mathcal{B}/\mathcal{S}}$ we can find f_n such that

$$||f_n||_{\mathcal{B}} \le ||F_n||_{\mathcal{B}/\mathcal{S}} + 2^{-n}$$

It is then clear that $\sum_n |f_n|$ is bounded and hence converges and therefore $\sum_n f_n$ converges because \mathcal{B} is a Banach space.

Let $f = \sum_n f_n$ and let $S_N(f)$ denote the N^{th} partial sum. We then see that

$$||[S_N(f)] - [f]||_{\mathcal{B}/\mathcal{S}} = ||S_N([f_n - f])||_{\mathcal{B}/\mathcal{S}}$$

$$= \inf_{s \in \mathcal{S}} ||S_N(f) - f + s||_{\mathcal{B}}$$

$$\leq ||S_N(f) - f + S_N(s)||_{\mathcal{B}}$$

$$= ||S_N(f + m) - f||_{\mathcal{B}}$$

The last quantity clearly goes to 0 as $N \to \infty$. Thus, we have that $S_N([f]) \to [f]$ as $N \to \infty$ and so \mathcal{B}/\mathcal{S} is complete.

Problem 1.8.32

If \mathcal{B}^* is separable then we can find a countable dense subset $\{\varphi_1, \varphi_2, \ldots\}$. Now choose a set of unit vectors $f \in \mathcal{B}$ such that $|\varphi_n(x_n)| \geq \frac{1}{2} ||\varphi_n||$. Let \mathcal{C} be the set of linear combinations of the x_n . We need to show that \mathcal{C} is dense in \mathcal{B} . Suppose not, then we have that $\overline{\mathcal{C}}$ is a proper closed subspace of \mathcal{B} . So we can find some non-zero bounded linear functional $L \in \mathcal{B}^*$ such that $L(\overline{\mathcal{C}}) = 0$. Since $L \in \mathcal{B}^*$ and $\{\varphi_n\}$ is dense in \mathcal{B}^* we must have some sequence $\varphi_{n_k} \to L$ as $n_k \to \infty$. Hence $||L - \varphi_{n_k}|| \to 0$ as $n_k \to \infty$. But,

$$||L - \varphi_{n_k}|| \ge |(L - \varphi_{n_k})(x_{n_k})|$$

$$= |\varphi_{n_k}(x_{n_k})|$$

$$\ge \frac{1}{2} ||\varphi_{n_k}||$$

So we must have that $\|\varphi_{n_k}\| \to 0$ as $n_k \to \infty$. However, $\varphi_{n_k} \to L$ and so $\|\varphi_{n_k}\| \to \|L\|$, which means that $\|L\| = 0$. This is a contradiction, and therefore we have that \mathcal{C} is dense in \mathcal{B} .

Problem 1.8.33

Following the hint, we take $u = \text{Re}(\ell_0)$. We then apply Theorem 1.5.2 to extend u to a linear functional $U: V \to \mathbb{R}$ such that $U(f_0) = u(f_0)$ for every $f_0 \in V_0$ and $U(f) \leq p(f)$ for every $f \in V$. We then define

$$\ell(f) = U(f) - iU(if)$$

Then it is clear that $\ell(f_0) = \ell_0(f_0)$ whenever $f_0 \in V_0$. Fix a $g \in V$ and find a complex z such that |z| = 1 and $z\ell(g) = |\ell(g)|$. Hence,

$$|\ell(g)| = z\ell(g) = \ell(zg)$$

which means that $\ell(zg) \in \mathbb{R}$ and therefore $\ell(zg) = U(zg)$. As a result we see

$$|\ell(g)| = U(zg) \le p(zg) = |z|p(g) = p(g)$$

And therefore ℓ is the functional with the desired properties.

Problem 1.8.34

Consider the functional $\ell: V \to \mathbb{R}$ defined by

$$\ell(f) = \frac{\|f - p(f)\|}{\|f_0 - p(f_0)\|}$$

where p(f) is the canonical projection of f onto S. If $f_0 \notin S$ then the mapping is well-defined because $f_0 \neq p(f_0)$ so the denominator is non-zero. Moreover, it is clear that ℓ s continuous because the norm is continuous and the denominator is a non-zero scalar. If

 $f \in \mathcal{S}$ then we have that f = p(f) and so $\ell(f) = 0$. To check the other conditions we compute

$$\ell(f_0) = \frac{\|f_0 - p(f_0)\|}{\|f_0 - p(f_0)\|} = 1$$

So $\ell(f_0) = 1$.

Now we need to verify that $\|\ell\| = 1/d$ where d is the distance from f_0 to S. We begin by computing

$$\|\ell\| = \sup_{f \neq 0} \frac{|\ell(f)|}{\|f\|}$$

$$= \sup_{f \neq 0} \frac{\|f - p(f)\|}{\|f\|} \cdot \frac{1}{d}$$

$$= \sup_{f \neq 0} \left(1 - \frac{\|p(f)\|}{\|f\|}\right) \cdot \frac{1}{d}$$

$$\leq \frac{1}{d}$$

But we can find a case where equlity holds by choosing $f \in \ker p$. Then we have

$$\begin{aligned} \frac{|\ell(f)|}{\|f\|} &= \sup_{f \neq 0} \frac{\|f - p(f)\|}{\|f\|} \cdot \frac{1}{d} \\ &= \sup_{f \neq 0} \frac{\|f - 0\|}{\|f\|} \cdot \frac{1}{d} \\ &= \frac{1}{d} \end{aligned}$$

Which means that $\|\ell\| = 1/d$ as desired.