Modelos de crecimiento

Carlos Andrés Erazo Garzón Pedro Humberto Guerrero Infante Valentina Rozo Bernal María Alejandra Sandoval López

Objetivo

Examinar la forma en la que crece la población en Colombia, Bogotá y Antioquia de acuerdo a diferentes modelos, inicialmente el modelo de Malthus y el modelo logístico.

Modelo de Malthus

El modelo de Malthus es un modelo poblacional que establece que la población aumenta su tamaño en una tasa proporcional al número de individuos.

Ecuación diferencial

k: constante

P: población

Ecuación ordinaria

$$\frac{dP}{dt} = kP$$

$$\frac{dP}{dt} = kP$$

$$\frac{1}{P}dP = k dt$$

$$\int_{P_0}^{P} \frac{1}{P} dP = \int_{t_0}^{t} k \ dt$$

$$\ln(P) - \ln(P_0) = k \left(t - t_0 \right)$$

$$e^{\ln{(\frac{P}{P_0})}} = e^{k(t-t_0)}$$

Solución

$$P(t) = P_0 e^{k(t-t_0)}$$

Modelo logístico

Este modelo de crecimiento estudia la manera en la que crece una población teniendo en cuenta el lugar en donde se encuentra y los recursos que tiene a su disposición. Introducido en 1838 por Pierre François Verhulst.

Ecuación diferencial

$$\frac{dP}{dt} = kP(1 - \frac{P}{L})$$

P = población

L = Capacidad de carga

k = Constante de crecimiento

Solución

$$P(t) = \frac{L}{\left(\frac{L - P_0}{P_0}\right)e^{-kt} + 1}$$

Aplicaciones

- Megapolis sustentables.
- Cultivos de bacterias.
- Predicciones poblacionales.
- Producción de alimentos.

Logístico y Malthus

La población para el año 2018 de Colombia es: 60312553.433882

Crecimiento de poblacion Modelo de Logistico

La población para el año 2018 de Colombia es: 48408068.4876176

Crecimiento de poblacion Modelo de Malthus

La población para el año 2018 de Bogotá es: 11880761.8156744

Crecimiento de poblacion Modelo de Logistico

La población para el año 2018 de Bogotá es: 8702381.99353434

Crecimiento de poblacion Modelo de Malthus

La población para el año 2018 de Antioquia es: 7337026.41911556

Crecimiento de poblacion Modelo de Logistico

La población para el año 2018 de Antioquia es: 5736047.90141546

Adam modelo

1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
4225 649	6313 6756 7	2.086 051e +13	1.022 901e +20	7.444 138e +28	8.040 216e +39	1.288 823e +53	3.066 137e +68	1.082 585e +86	5.672 899e +105	4.411 846e +127	5.092 232e +151	8.723 049e +177	2.217 69e+ 206	8.367 696e +236	4.685 795e +269	3.894 333e +304

Simulación

Crecimiento poblacional

97,000,000

Comportamiento del proceso

```
malthus<-function(t, k, p0){
  return (p0*exp(k*t))
}
logistico<-function(t, k, p0, 1){
  A = (1-p0)/p0
  return (1/(1+A*exp(-k*t)))
}</pre>
```

Errores

- Error relativo

$$Er = \frac{|Vr - Va|}{|Vr|}$$

- Error Truncamiento

$$E_{tr} = \frac{Va(x_{i+1}) - Va(x_i)}{Vr(x_{i+1}) - Vr(x_i)}$$

- Eficiencia

$$Eficiencia = \frac{\mathit{Vr}_1 * \mathit{Er}_1 + \mathit{Vr}_2 * \mathit{Er}_2 + \dots + \mathit{Vr}_n * \mathit{Er}_n}{\mathit{Vr}_1 + \mathit{Vr}_n + \dots + \mathit{Vr}_n}$$

Valores

 Exponentes de Lyapunov: caracteriza el grado de separación de dos trayectorias.

$$\lambda = 1/n * In (f^n * (x0 + 1) - f^n * x0)$$

• Entropía de Kolmogrov-Sinaí: mide la pérdida de información a lo largo de la evolución del sistema.

$$\Sigma = \lambda_i$$

Características de hardware

```
yox@yox
                                 OS: Manjaro 20.2 Nibia
                                 Kernel: x86 64 Linux 5.4.74-1-MANJARO
                                 Uptime: 1h 22m
                                 Packages: 1298
                                  Shell: zsh 5.8
                                 Resolution: 1920x1080
                                 DE: Cinnamon 4.6.7
                                 WM: Muffin
                                 WM Theme: Mint-Y-Dark-Teal (Mint-Y-Dark-Teal)
                                 GTK Theme: Mint-Y-Dark-Teal [GTK2/3]
                                 Icon Theme: Papirus-Adapta-Nokto-Maia
                                 Font: Cantarell 10
                                 Disk: 47G / 125G (40%)
                                 CPU: AMD Ryzen 5 2500U with Radeon Vega Mobile Gfx @ 8x 2GHz
                                 GPU: Advanced Micro Devices, Inc. [AMD/ATI] Raven Ridge [Radeon Vega
Series / Radeon Vega Mobile Series] (rev c4)
Advanced Micro Devices, Inc. [AMD] Raven/Raven2/Renoir Non-Sensor <u>Fusion Hub KMDF driver</u>
                                  RAM: 4125MiB / 14984MiB
```


Librerías:

- rmpfr
- sprecision

2.220446e-16

Resultados

Crecimiento de poblacion Modelo de Malthus

La población para el año 2018 de Colombia es: 60312553.433882

Crecimiento de poblacion Modelo de Logistico

La población para el año 2018 de Colombia es: 48408068.4876176

Consideraciones

- **-Orden de convergencia:** el modelo tiene orden de convergencia 2.
- -Sensibilidad: la sensibilidad del método es fuertemente arraigada a la función que se utiliza, nosotros utilizamos nuestra función de modelo malthus f(t,k,p0) = (p0*exp(k*t)). Euler es una función bastante estable y continua en todos los números reales, al estar t multiplicado siempre en aumento en los últimos años la potencia se dispara muy agresivamente. Se puede concluir que es sensible el método después del año 17.

Conclusiones

El modelo de Malthus aplicado inicialmente no es preciso porque no tiene en cuenta otro factor más que la población.

El modelo logístico ayuda a estabilizar el crecimiento siendo más preciso, sin embargo este depende de la capacidad de carga que tiene el entorno.

Es importante contar con las características recomendadas del software debido a que el uso de una versión menor la aplicación no podrá ejecutarse de la manera correcta y presenta unos posibles errores

Referencias

- https://www.researchgate.net/publication/339390781_Analysis_the_predictability_of_the_annual_concentrations_of_PM25_in_Quito_applying_the_entropy_of_Kolmogorov-Sinai_1
- http://www.ifsc.usp.br/~reynaldo/curso_caos/notas_aula_pt17.pdf
- https://www.sostenibilidad.com/desarrollo-sostenible/malthus-produccion-alimentos-crecimie nto-poblacion/
- https://scielo.conicyt.cl/pdf/formuniv/v12n1/0718-5006-formuniv-12-01-25.pdf
- https://www.researchgate.net/publication/256282972_Calculo_del_maximo_exponente_de_Lya punov_con_Mathematica
- https://riunet.upv.es/bitstream/handle/10251/30892/Modelos%20continuos%20de%20crecimie nto%20Malthus.pdf?sequence=1
- https://www.nagwa.com/es/videos/730151402080/
- https://es.slideshare.net/Silvanita093/metodo-adams-bashforth