High-Pass and Band-Pass Filtering

High-Pass and Band-Pass Filtering CS 450: Introduction to Digital Signal and Image Processing

Bryan Morse BYU Computer Science

Sharpening

Blurring is low-pass filtering, so deblurring is high-pass filtering.

- Explicit high-pass filtering
- Unsharp Masking
- Deconvolution
- Edge Detection

Tradeoff:

- Reduces blur, but
- Increases noise

High-Pass Filtering

Ideal:
$$H(u) = \begin{cases} 1 & \text{if } u > u_c \\ 0 & \text{otherwise} \end{cases}$$

Gaussian:
$$H(u) = 1 - e^{-\frac{1}{2}u^2/u_c^2}$$

Butterworth:
$$H(u) = \frac{1}{1 + (uc^2/u^2)^n}$$

High-Pass Filters

filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

Ideal Filters and Ringing

Ideal Filters and Ringing (cont'd)

Ideal Filters

Ideal Filters and Ringing

FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with $D_0 = 15$, 30, and 80, respectively. Problems with ringing are quite evident in (a) and (b).

Gaussian High-Pass Filters

$$H(u) = 1 - e^{-\frac{1}{2}u^2/u_c^2}$$

Sound familiar?
This is what we did with unsharp masking to get the edges!

Gaussian High-Pass Filters

abc

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with $D_0 = 15$, 30, and 80, respectively. Compare with Figs. 4.24 and 4.25.

High-Boost Filtering

$$H(u) = 1 + \alpha \ HP(u)$$

- ► HP(u) is a high-pass filter
- lacktriangleright lpha controls how much to boost the higher frequencies

This is why unsharp masking in the spatial domain works!

Butterworth High-Pass Filter

Controllable sharpness of the frequency-domain cutoff u_c :

$$H(u) = \frac{1}{1 + (u_c^2/u^2)^n}$$

- ▶ The "cutoff" frequency u_c controls where the cutoff occurs.
- ▶ The parameter *n* controls the sharpness of the cutoff.

Butterworth Filters

Butterworth High-Pass Filters

FIGURE 4.25 Results of highpass filtering the image in Fig. 4.11(a) using a BHPF of order 2 with $D_0 = 15$, 30, and 80, respectively. These results are much smoother than those obtained with an ILPF.

Band-Pass Filtering

Tradeoff: Blurring vs. Noise

- Low-pass reduces noise but accentuates blurring
- High-pass reduces blurring but accentuates noise

A compromise:

Band-boost filtering boosts certain midrange frequencies and partially corrects for blurring, but does not boost the very high (most noise corrupted) frequencies.

Band-Pass Filtering

Band-Pass: Frequency Domain

(http://paulbourke.net/miscellaneous/imagefilter/)

Band-Pass Filtering

Band-Pass: Space Domain (http://paulbourke.net/miscellaneous/imagefilter/)

High-Pass Filtering Example

Ideal (Sharp) Cut-Off: Note Ringing Smooth cut-off: ringing reduced (http://paulbourke.net/miscellaneous/imagefilter/)

Summary: Filtering

Consider what you want to do in the frequency domain (the shape of the filter)

Convert signal to/from frequency domain

THEN

Implement in the frequency domain

Convert filter to equivalent convolution operations

THEN

Implement in the spatial domain