STAT 4005 Time Series Assignment 2 Due date: 24 Feb 2021; 5pm

Let $a_t \sim WN(0, \sigma^2)$ if not specified otherwise.

- 1. Let X_t be a stationary time series with mean α and autocovariances $\gamma_k=0.8^k$ and $\bar{X}=\sum_{t=6}^{10}X_t/5$
 - (a) Find $E(\bar{X})$.
 - (b) Find $Var(\bar{X})$.
- 2. Consider the process

$$Z_t = a_t + a_{t-1} + 0.25a_{t-2}, \quad \sigma_a^2 = 20.$$

- (a) Identify the order of the ARIMA model for the process.
- (b) Is $\{Z_t\}$ stationary?
- (c) Is $\{Z_t\}$ invertible?
- (d) Find the ACVF $\gamma(k)$ and ACF $\rho(k)$ of $\{Z_t\}$ for $k=0,\,1,\,2,\,3,...$
- (e) Find the values of π_k , k = 0, 1, 2, 3,... if the process is written as

$$a_t = \sum_{i=0}^{\infty} \pi_t Z_{t-i} .$$

3. Consider the AR(2) process

$$Z_t = 0.5Z_{t-1} - 0.06Z_{t-2} + a_t$$

where a_t s are independently and identically distributed as N(0,1).

- (a) Find the roots of the AR characteristic equation.
- (b) Is the process Z_t stationary and causal? Why?
- (c) Find the autocovariances $\gamma(0)$, $\gamma(1)$ and $\gamma(2)$.
- 4. Find ACVF $\gamma(k)$, k=0,1,2,3,... of the process

$$Z_t = 0.7Z_{t-4} + a_t$$
.

5. Find the AR and MA representation of the process

$$Z_t = 0.6Z_{t-1} + a_t + 0.2a_{t-1}, \quad a_t \sim WN(0, 4).$$

- 6. Identify the following as specific ARIMA models:
 - a) $Z_t = 1.5Z_{t-1} 0.5Z_{t-2} + a_t 0.3a_{t-1} + 0.6a_{t-2}$.
 - b) $Z_t = 3Z_{t-1} 3Z_{t-2} + Z_{t-3} + a_t + 0.1a_{t-1}$.

7. Consider the ARMA(2,1) model

$$Z_t = 0.6Z_{t-1} - 0.09Z_{t-2} + a_t - 0.2a_{t-1}, \quad a_t \sim WN(0, 1).$$

- a) Find the AR representation of $\{Z_t\}$.
- b) Find the ACF $\rho(k)$ of $\{Z_t\}$ for $k \in \mathbb{Z}$.
- 8. Show that for $|\phi| > 1$,

$$Z_t = \frac{a_t}{\phi^2} - \left(1 - \frac{1}{\phi^2}\right) \sum_{k=1}^{\infty} \frac{a_{t+k}}{\phi^k}.$$

is a white noise process with $\operatorname{Var}(Z_t) = \frac{\sigma^2}{\phi^2}$.