30/09/2025 - Matematicas Discretas 1 (Udea)

1. Repaso - Conceptos claver

En lógica de predicados es importante tener claros los siguientes conceptos:

- Universo o dominio
- Objetos o individuos
- Predicados
- Variables
- Conjunto de verdad
- Cuantificadores.
- Funciones proposicionales

Optimus Prime esta enfermo

Concepto	Representación	Expresión
Universo	Transformers (Autobots y Decepticons)	$U = \{Optimus, Bubumblebee,\}$
Objeto	Optimus Prime	Optimus
Predicado	x está enfermo	enfermo(x)
Variables	Cualquier transformer	x
Cuantificadores	Luego lo veremos.	

2. Cuantificadores Cantidad:

1. Y: Para todo

2. 7: Existe

Sea: 1. If(x): x es hombre 2. I(x): x es Ingeniero

Tunciones proposicionales:
-H(x) gvalor de la Verdad (A)

D Evaluación de F. Paposic. ② Usar ≈= CPH → H(CPH)= V Cuantificadores -> TI (CPH)=F HLCPH) NI (CPH) = V N V = U Proposicion

Charles Proteus Steinmetz (link) CPH

Xi = x es una persona de la Foto $U = \left\{ \times_{1}, \times_{2}, \times_{3}, \times_{4}, \times_{5}, \times_{6}, \times_{7}, \times_{8} \right\}$

1. Yx H(x): Para todo x x es un Hombre Todos las personas de la foto son hombres = V

2. 3x I(x): Existe un x, tal que x es Hay al menos una persona de la coto que es ingenero =

YXI(x): Tados bs de la Foto son 3. ingeneros = F

4. Yx7H(x): To be be la foto ho son rombres = Ninguno de la Foto es hombre = F

1. **Determinación de los valores de verdad de un predicado**: Sea P(x) el predicado " $x^2 > x$ " con dominio el conjunto $\mathbb R$ de todos los números reales. Escriba P(2), $P\left(\frac{1}{2}\right)$ y $P\left(-\frac{1}{2}\right)$ e indique cuáles de los siguientes enunciados son verdaderos y cuáles son falsos.

Datos:

Predicado:
$$P(x): x^2 > x$$

*
$$P(2) = (2)^2 > (2) = 4 > 2 = \sqrt{2}$$

*
$$P(1/2) = \left(\frac{1}{2}\right)^2 > \left(\frac{1}{2}\right) = \frac{1}{11} > \frac{1}{2} = 0.25 > 0.5 = F$$

(onjunte de verded de P(x) → Valores que haven que P(x) sea Verdadero.

$$\frac{x_{3}-x>0}{x_{3}>x}$$

$$\frac{x_{3}>x}{1}$$

$$\frac{1}{2}(x)=x_{3}>x$$

$$\begin{array}{ccc}
x = 0 & x = 1 \\
x = 0 & x = 1
\end{array}$$

2. Determinación del conjunto de verdad de un predicado: Sea Q(n) el predicado

"n es un factor de 8". Determine el conjunto de verdad de Q(n) si:

- a. el dominio de n es el conjunto \mathbb{Z}^+ de todos los enteros positivos.
- b. el dominio de n es el conjunto $\mathbb Z$ de todos los enteros.

Datos: Sea Q(h): "hes un Factor de 8" Un divisor: $8^{\circ}/6n = 0$ $- (onjunto de veidad de Q(n)? Q(n): <math>8^{\circ}/6n = 0$ $\frac{1}{2} \ln E U | Q(n) sea V = \frac{1}{2} \ln E U | n sea un factor de 8 }$

b.
$$U = Z = \{0, ..., -2, -1, 0, 1, 2, ...\} = \{0, \pm 1, \pm 2, \pm 3, ...\}$$
 $N = -1 \longrightarrow 8\%(-1) = 0$
 $N = 1 \longrightarrow 8\%(-1) = 0$
 $N = -2 \longrightarrow 8\%(-1) = 0$
 $N = 2 \longrightarrow 8\%(2) = 0$
 $\{-8, -4, \pm 2, \pm 4, \pm 2\}$

3. Profundizando un goro mas sobre los cuantificadores.

(1) Chantificador Universal Y (2) Chantificador existencial

Característica	Cuantificador universal (∀)	Cuantificador existencial (3)	
Símbolo	A		
Lectura común	"Para todo", "Para cada", "Para cualquier"	"Existe (al menos) un", "Para algún", "Hay algún"	
Significado	La propiedad es verdadera para todos los elementos del dominio	La propiedad es verdadera para al menos uno del dominio	
Estructura típica	$\forall x P(x)$	$\exists x P(x)$	
Condición de verdad	P(x) es verdadero para todo x .	Hay algún x para el cual $P(x)$ es verdadero	
Condición de falsedad	Hay algún x para el cual $P(x)$ es falso.	P(x) es falso para cada x .	
Palabras claves asociadas (al lenguaje natural)	Todos, cada, cualquiera, ninguno (usado con negación), siempre, para todo.	Existe, algún, algunos, hay, al menos uno, a veces, para algún.	

(3) (wantificador de Unicidad (=)

Símbolo	IE II		
Lectura	"Existe un único", "Existe exactamente un", "uno y solo uno".		
Formato	$\exists ! x P(x)$ significa que "Existe una única x tal que la propiedad P es verdadera para x "		
Forma desarrollada	El cuantificador de unicidad no es realmente necesario ya que la restricción de que existe un x único tal que $P(x)$ se puede expresar como: $\exists x \ \Big(P(x) \land \forall y (P(y) \to y = x) \Big)$		
	Parte 1: Existencia	$\exists x P(x)$ - existe al menos uno que cumple $P(x)$	
	Parte 2: Unicidad	$\forall y (P(y) \rightarrow y = x)$ - cualquier otro que lo cumpla debe ser igual a x	