# A foundation model of transcription across human cell types

(Fu et al. 2025)

Celine Hoh
02/11 Deep learning reading group



Steven Salzberg 💚 🤎 @StevenSalzberg1 · Jan 9

9

Is this real, or is it excessive AI hype? New paper claims that an AI foundation model achieves experimental-level accuracy in predicting gene expression even in previously unseen cell types." I'll read the paper, but don't believe it for a second



# Background

Challenge: Predict gene expression from transcription factor information

#### Past models not good enough because:

- Expecto, Basenji and Enformer
  - can only predict gene expression of the cell types they were trained on
- Geneformer, scGPT and scFoundation
  - Works on single cell, do not learn deep underlying transcriptional grammar

## Quick bio review



Transcription Factors (TFs) → Messengers that bind at promoters and enhancers

# **GET**

**Goal:** Predict gene expression from chromatin information

#### **GET** (general expression transformer)

- Input: Chromatin data from 213 fetal + adult cell types
- Output: Gene expression prediction

#### Why is GET so cool:

- Zero-shot prediction → Can predict gene expression without prior training on specific cell types.
- ✓ Identifies cis-regulatory elements → Finds important DNA regions controlling gene expression.
- $\bigvee$  Constructed GET Catalog  $\rightarrow$  A public database of transcription factor (TF) interactions.
- First foundation model to predict transcription directly from chromatin landscapes!
- Interpretable!

# Content

- 1. What can GET do???
- 2. How was GET trained???
- 3. How does GET generalize so well???
- 4. How did they make GET interpretable???

# 1. What can GET do???



# GET predicts gene expression really well even on unseen cell types!



Trained GET without astrocyte data, test on astrocyte data.

GET achieved a Pearson correlation of  $0.94 (R^2 = 0.88)$ .

Comparable to real experimental replicates of astrocytes, which have r = 0.92–0.99!

# 2) GET identifies regulatory elements well without any prior training!



LentiMPRA integrates DNA sequences into the genome, and outputs activity

Recently inserted and tested 226,243 sequences in K562 leukemia cells, creating a gold-standard benchmark

GET was fine-tuned on K562 chromatin accessibility & gene expression data, **never trained on LentiMPRA data**.

Enformer was trained on 486 different K562 assays, including TF binding, histone marks, and chromatin accessibility.

Enformer does better in low expression regions, by GET does better overall!

**GET** is significantly faster, allowing it to screen all 226,243 elements in the same time Enformer needed for just 2,000!

# 3) GET predicts long range enhancer–promoter pairs better than others



- **✓** GET successfully rediscovered key transcription factors (TFs):
  - GATA TF → Activates BCL11A (confirmed known science).
  - SOX TF family → Linked to fetal hemoglobin before, but GET found a new regulatory role in a specific enhancer.
- GET outperformed other models at detecting long-range enhancer–promoter interactions.

Jacobian → Measures Feature Importance
ATAC → Measures Chromatin Accessibility
Powerlaw → Models Long-Range Enhancer-Promoter
Interactions

# 2. How was GET trained??



## **GET** model



#### Inputs for a local region (~2Mbp)

X = input features (TF binding scores, chromatin accessibility score)p(X) = chromatin environment

#### **Output**

E = gene expression

#### Pretraining (From X to p(X))

- Learns relationships among Xs by predicting missing (masked)
   TF binding, accessibility scores
- 16 NVIDIA V100 GPUs over 1 week (800 epochs).

#### Fine-tuning

- Trained to predict E from p(X)
- Same architecture but output head changed to focus on predicting E
- 8 A100 GPUs over 1 day (100 epochs).

## **GET Architecture**



#### 1. Regulatory Element Embedding (RegionEmb)

- a. Converts DNA regulatory elements into vectors
- 1 regulatory element = 282 transcription factor (TF)
   binding scores + 1 chromatin accessibility score

#### 2. Regulatory-Element-Wise Attention Layers (Encoder)

- a. 12 layers of attention to analyze how regulatory elements interact with each other
- b. Learns both short and long-range gene regulation.

#### 3. Expression Prediction Output Layer

- Final layer converts learned info into gene expression prediction
- b. Other specialized outputs like identifying cis-regulatory elements can also be generated

#### Honorable mention: LoRA!

- a. Adapts large ML model for specific uses without retraining the entire model.
- b. Reduces 99% of parameters

# LoRA (Low-Rank Adaptation of Large Language Models)

#### 1) Freeze the Pretrained Model

Instead of modifying the original model, LoRA keeps the pretrained weights unchanged so that general knowledge is intact.

#### 2) Introduce Trainable Low-Rank Matrices (A & B)

- Instead of updating the full weights W, LoRA adds and trains small matrices (A & B) to capture adjustments.
   Mathematically: W'=W+AB
  - W = Original frozen model weights
  - A & B = Small trainable matrices

#### 3) Fine-Tune Only the Small Matrices (A & B)

- Since A and B are much smaller than W, fewer parameters need to be updated.
- Drastically reduces memory usage with near full fine-tuning accuracy





# 3. How does GET generalize so well???



# Leave things out so that GET do transfer learning better!

#### **Leave-One-Chromosome-Out Testing**

- Trained without one chromosome at a time, then tested on the missing chromosome.
- Tested on:
  - Fetal astrocytes (r=0.78), Tumor cells (r= 0.75), K562 cells (blood cancer cell line) (r=0.81)
    - GET still made accurate predictions even when entire chromosomes were missing.
- Simulates real-world scenarios! where GET encounters new genomes/mutations/missing regulatory regions.

#### **Leave-Out-Motif Testing**

- Some TF motifs were hidden to see if GET could still predict gene expression.
- Forces GET to learn how different motifs interact rather than relying on individual TFs.
- Tested with 1, 2, 3, 4, 10, and 20 missing motifs.
- GET was still accurate with up to 10 missing motifs.
- ⚠ With 20 missing motifs, accuracy dropped because too much regulatory information was removed.



# Fine tuning and transfer learning is what makes GET good!









# 4. How did they make GET interpretable???





#### **Feature Attribution**

1)

- Quantitative ATAC Model → Uses chromatin accessibility strength (numerical score).
- Binary ATAC Model → Uses accessibility as a yes/no feature
- Jacobian Matrix → Measures how changes in a motif affect gene expression, to identify important TF motifs

#### 2) © Which enhancer regulate what genes?

- GET ranks enhancer importance using Jacobian scores.
- Uses distance-based predictions (e.g., Hi-C contact maps) to improve accuracy.
- Experimental Validation with LentiMPRA

#### 3) ① Do TF expressions match target gene's expression?

- Gene-by-Motif Matrix → Mapped TFs to their target genes using Jacobian scores.
- Regulatory Embedding Space
  - Built using transformer attention layers.
  - o Genes clustered based on regulation patterns, not just sequence similarity.

#### 4) Find cause-and-effect relationships between transcription factors.

- Built TF interaction networks using:
  - Spearman correlation & causal inference algorithms.
  - Compared GET's predictions to known TF interaction databases (STRING, ChIP-seq).

### Conclusion

- GET real or overhyped?
- Performance is good!
- DNA + ATAC data allows good predictions on gene expression
- Transcriptional regulators across different cell types are similar, GET learns this underlying grammar, which makes it good at predicting unseen cell types
- Data leakage?

#### Go try it out!

- Paper: https://t.ly/iQct
- Model: https://t.ly/4jnUl
- Analysis package: https://t.ly/OqLAL
- Demo: https://t.ly/rbFQB
- Docker: https://t.ly/86n i