Analiza seria 4

Bartosz Kucypera, bk439964

30 maja 2023

Zadanie 3

Załóżmy, że $a_n \geq 0$ dla $n \in \mathbb{Z}$, zaś szereg potęgowy $f(x) = \sum_{n=0}^{\infty} a_n x^n$ ma promień zbieżności R = 1. Proszę udowodnić, że $\lim_{x \to 1^-} f(x)$ istnieje wtedy i tylko wtedy gdy $\sum_{n=0}^{\infty} a_n < \infty$.

$$R \to L$$

Jeśli suma $f(1) = \sum_{n=0}^{\infty} a_n$ skończona, to z wniosku 8.30 w skrypcie, f ciągła na (-1,1], czyli granica $\lim_{x\to 1^-} f(x)$ niewątpliwie istnieje i jest równa f(1).

$L \to R$

Chcemy pokazać, że możemy przesunąć $\lim_{x\to 1^-}$ pod sumę i że wyrażenie się nie znieni.

Skoro $\lim_{x\to 1^-} f(x)$ istnieje to niech będzie równy A.

Niech s_n będzie ciągiem sum częściowych, $s_n(x) = \sum_{k=0}^n a_n x^n$, f szeregiem potęgowym, więc $s_n \rightrightarrows f$. Chcemy wykazać, że $\lim_{n \to \infty} \lim_{x \to 1^-} s_n = A$.

Niech $g_n = \lim_{x \to 1^-} s_n$. Zauważmy, że $\forall x \in (-1,1)$ zachodzi

$$|A - g_n| = |A - g_n + s_n(x) - s_n(x) + f(x) - f(x)| \le |A - f(x)| + |f(x) - s_n(x)| + |s_n(x) - g_n(x)|$$

Niech $\delta_n = \frac{1}{n}$.

1) |A - f(x)|

Z definicji A,

$$\forall \epsilon > 0 \ \exists n_0$$
 takie, że $\forall x \in (-1,1)$ jeśli $|x-1| < \delta_{n_0}$

to

$$|A - f(x)| < \frac{\epsilon}{3}$$

2)
$$|f(x) - s_n(x)|$$

 $s_n \rightrightarrows f$, więc również z definicji, $\forall \epsilon > 0$ istnieje takie n_1 , że

$$\forall x \in (-1,1) \ \forall n > n_1 \ |f(x) - s_n(x)| < \frac{\epsilon}{3}$$

3)
$$|s_n(x) - g_n(x)|$$

Z definicji $g_n, \forall \epsilon > 0$ istnieje takie $n_2,$ że $\forall x \in (-1,1),$ jeśli

$$|x-1|<\delta_{n_3}$$

to

$$|s_n(x) - g_n(x)| < \frac{\epsilon}{2}$$

Synteza

Teraz $\forall \epsilon > 0$ możemy dobrać takie $N = max(n_0, n_1, n_2)$ (z kolejnych podpunktów), że $\forall n > N$ zachodzi

$$|A - g_n| \le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Czyli g_n , zbieżny do A z definicji.