Cifrari Simmetrici

Riccardo Longo

Simulazione di OTP

- One Time Pad ha sicurezza perfetta
- Non è pratico da usare:
 - Scambio delle chiavi
 - Gestione delle chiavi
- Approssimazione di OTP:
 - Keystream pseudorandom
 - Chiave più piccola e gestibile

Stream Cipher

- Il cifrario fa da generatore pseudocasuale di bit (flusso)
- La chiave è usata per inizializzare il generatore (seed)
- Cifratura vera e propria XOR del flusso con il plaintext
- Estremamente veloce e pratico in hardware
- Ottimo quando la lunghezza del plaintext non è nota e/o variabile
- Delicato: facile da usare in maniera errata

Sincronizzazione

- Per decifrare i flussi di chiave devono essere sincronizzati
- Stream Cipher Sicrono
 - Si perde il sync se si perdono o aggiungono bit in trasmissione
 - Si sincronizza con marker nel CT o provando diversi offset
 - La corruzione di un bit in trasmissione rovina solo un bit nella decifratura
 - Suscettibile ad attacchi attivi

Self-Synchronising Stream Cipher

- Il flusso è derivato dagli ultimi N bit del ciphertext
- Ci si risincronizza automaticamente se si hanno N bit di ciphertext validi
- Gli errori si propagano ma limitatamente

LFSR

- La generazione di base è affidata a Linear Feedback Shift Registers
 - Facilmente implementabili in hardware
 - Estremamente efficienti
 - Proprietà controllabili matematicamente
- Per eliminare la linearità si usano più registri combinati con funzioni non lineari e/o di clock

Sicurezza

- Il periodo del flusso dev'essere lungo
- Il flusso dev'essere indistinguibile da rumore random
- Le chiavi non devono mai essere riusate
- non fornisce autenticazione ma solo privacy

Block Cipher

- Plaintext diviso in blocchi di lunghezza fissa
- Viene processato blocco per blocco
- Se la lunghezza non è un multiplo del blocco:
 - Padding
 - Ciphertext Stealing
 - Residual Block Termination
 - Stream-like Operation Mode

Primitiva crittografica

- Block cipher molto utili per costruire altre primitive:
 - Stream Cipher
 - Hash crittografiche
 - Generatori Pseudorandom
 - Message Authentication Codes

Round

- La maggior parte dei design si basa sull'iterazione
- Al blocco viene applicata una trasformazione invertibile
- La cifratura avviene ripetendo la trasformazione un certo numero di volte (round)
- Ad ogni ciclo viene usata una diversa chiave di round derivata dalla chiave tramite una funzione di key-schedule

Sostituzione-Permutazione

- Struttura di **AES** (Rijndael)
- Blocco suddiviso in sottoblocchi
- Ad ognuno viene applicata una sostituzione (s-box)
 - mappa biettiva
 - molto non-lineare, cambia molti bit (confusione)
- I sotto blocchi vengono poi riuniti e vi si applica una permutazione (mixing layer)
 - invertibile
 - diffonde bene i bit di un sottoblocco in molti sottoblocchi (diffusione)
- XOR con la chiave di round

Feistel

- Blocco diviso in due
- Ad una metà è applicata la funzione di round (usando la chiave di round)
 - La funzione non è necessariamente invertibile
- Il risultato è XORato con l'altra metà
- I due pezzi sono invertiti

Sicurezza

- Dimensione del blocco
- Numero di round
- Lunghezza della chiave
- Modo d'uso

Operation Modes

- Un cifrario a blocchi di per sé è sicuro solo per la cifratura di un blocco singolo
- Gli Operation Mode ne estendono le funzionalità:
 - Cifratura sicura di plaintext lunghi
 - Evitare il padding
 - Integrare l'autenticazione

Initialisation Vector

- Molti OM richiedono input addizionale (IV o SV o nonce)
- Serve per randomizzare la cifratura e poter cifrare blocchi uguali con la stessa chiave
- Dev'essere unico (mai riusato)
- In molti casi **non prevedibile** (random)
- Generalmente non deve essere segreto

Electronic Codebook (ECB)

- Il più semplice
- Il plaintext è diviso in blocchi (con padding)
- Ogni blocco è processato indipendentemente
- Parallelizzabile sia in cifratura che in decifratura, permette accesso random
- Quasi mai abbastanza sicuro: poca confidenzialità e suscettibile ad attacchi

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Cipher Block Chaining (CBC)

- Il cifrato di un blocco è xorato con il blocco successivo prima della cifratura
- Richiede padding ed IV
- Parallelizzabile in decifratura ma non in cifratura, permette accesso random
- Errori si propagano al blocco successivo
- Vulnerabile ad attacchi padding oracle

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

Cipher Feedback (CFB)

- Trasforma il cifrario a blocchi in uno stream cipher autosincronizzante
- Il flusso è ottenuto cifrando l'IV e poi cifrando ancora il cifrato (XOR di plaintext e flusso)
- La decifratura è parallelizzabile ma non la cifratura, permette accesso random
- Non richiede padding
- Simile ad Output Feedback (OFB), dove viene cifrato un blocco del flusso per produrre il successivo (stream sincrono, non parallelizzabile)

Cipher Feedback (CFB) mode encryption

Cipher Feedback (CFB) mode decryption

Counter (CTR)

- Produce un flusso come uno stream cipher
- Completamente parallelizzabile, con accesso random
- Un nonce viene combinato con un contatore per produrre dei blocchi unici
- Il flusso è generato cifrando questi blocchi

Counter (CTR) mode encryption

Counter (CTR) mode decryption

Authenticated Encryption

- Alcuni OM integrano un processo di autenticazione del dato
- Oltre al cifrato viene prodotto un tag che permette di controllare l'integrità
- Galois Counter Mode (GCM):
 - Standard, single-pass, efficiente
- Encrypt-then-Authenticate-then-Translate(EAX),
 Counter with CBC-MAC (CCM): anche basati su CTR,
 double-pass
- Offset CodeBook(OCB), efficiente, standard, selezionato dalla competizione CAESAR
- Synthetic Initialization Vector (SIV): resiste all'uso improprio del nonce