MATHEMATICS

1.	Considering only the	principal	values	of	the	inverse	${\bf trigonometric}$	$\operatorname{func-}$
	tions, the value of							

$$\frac{3}{2}\cos^{-1}\sqrt{\frac{2}{2+\pi^2}} + \frac{1}{4}\sin^{-1}\frac{2\sqrt{2}\pi}{2+\pi^2} + \tan^{-1}\frac{\sqrt{2}}{\pi}is$$

2. Let
$$\alpha$$
 be a positive real number. let $f: \mathbb{R} \to \mathbb{R}$ and $g: (\alpha, \infty) \to \mathbb{R}$ be the functions defined by $f(x) = \sin(\frac{\pi x}{12})$ and $g(x) = \frac{2log_e(\sqrt{x} - \sqrt{\alpha})}{log_e(e^{\sqrt{x}} - e^{\sqrt{\alpha}})}$

then the value of
$$\lim_{x\to\alpha} f(g(x))$$
 is _____

3. In a study about a pandemic, data of 900 persons was collected. It was found that

- 190 persons had symptom of fever,
- 220 persons had symptom of cough,
- 220 persons had symptom of breathing problem,
- 330 persons had symptom of fever or cough or both,
- 350 persons had symptom of cough or breathing problem or both,
- 340 persons had symptom of fever or breathing problem or both,
- 30 persons had all three symptoms

If a person is chosen randomly from these 900 persons, then the probability that the person has at most one symptom is _

4. Let z be a complex number with non-zero imaginary part. If $\frac{2+3z+4z^2}{2-3z+4z^2}$

If
$$\frac{2+3z+4z^2}{2-3z+4z^2}$$

is a real number, then the value of $|z|^2$ is ______

5. Let \overline{z} denote the complex conjugate of a complex number z and let i = $\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation $\overline{z} - z^2 = i(\overline{z} + z^2)$

$$\overline{z} - z^2 = i(\overline{z} + z^2)$$

- 6. Let $l_1, l_2, ..., l_{100}$ be consecutive terms of an arithmetic progression with common difference d_1 , and let $w_1, w_2, ..., w_100$ be consecutive terms of another arithmetic progression with common difference d_2 , where $d_1d_2 =$ 10. For each i = 1, 2,...,100, let R_i be a rectangle with length L_i , width W_i and area A_i . If $A_{51} - A_{50} = 1000$, then the value of $A_{100} - A_{90}$ is
- 7. The number of 4-digit integers in the closed interval [2022, 4482] formed by using the digits 0,2,3,4,6,7 is
- 8. Let ABC be the triangle with AB = 1, AC = 3 and $\angle BAC = \frac{\pi}{2}$. If a circle of radius r > 0 touches the sides AB, AC and also touches internally the circumcircle of the triangle ABC, then the value of r is
- 9. consider the equation

consider the equation
$$\int_{1}^{e} \frac{(\log_{e} x)^{\frac{1}{2}}}{x(a - (\log_{e} x)^{\frac{3}{2}})^{2}} dx = 1, a \in (-\infty, 0) \cup (1, \infty)$$

which of the following statements is/are TRUE?

- (A) No a satisfies the above equation
- (B) An integer a satisfies the above equation
- (C) An irrational number a satisfies the above equation
- (d) More than one a satisfy the above equation
- 10. Let $a_1, a_2, a_3, ...$ be an arithmetic progression with $a_1 = 7$ and common difference 8. Let $T_1, T_2, T_3,...$ be such that $T_1 = 3$ and $T_{n+1} - t_n = a_n$ for $n \ge 1$. Then, which of the following is/are TRUE? (A) $T_{20} = 1604$ (B) $\sum_{K=1}^{20} T_k = 10510$ (C) $T_{30} = 3454$ (D) $\sum_{K=1}^{30} T_k = 35610$

$$(A)T_{20} = 1604$$

(B)
$$\sum_{k=1}^{20} T_k = 10510$$

$$(C)T_{30} = 3454$$

$$(D)\sum_{K=1}^{30} T_k = 35610$$

11. Let P_1 and P_2 be two planes given by

$$P_1: 10x + 15y + 12z - 60 = 0$$

$$P_2: -2x + 5y + 4z - 20 = 0.$$

Which of the following straight lines can be an edge of some tetrahedron whose two faces lie on P_1 and P_2 ?

$$(A)\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{5}$$

$$(B)\frac{x-6}{-5} = \frac{y}{2} = \frac{z}{3}$$

$$(B)^{\frac{x-6}{-5}} = \frac{y}{2} = \frac{z}{3}$$

$$(C)\frac{x}{-2} = \frac{y-4}{5} = \frac{z}{4}$$

$$(D)\frac{x}{1} = \frac{y-4}{-2} = \frac{z}{3}$$

12. Let S be the reflection of a point Q with respect to the plane given by $\uparrow r = -(t+p)\hat{i} + t\hat{j} + (1+p)\hat{k}$

where t, p are real parameters and $\hat{i}, \hat{j}, \hat{k}$ are the unit vectors along the three positive coordinate axes. If the position vectors of Q and S are $10\hat{i} + 15\hat{j} + 20\hat{k}$ and $\alpha\hat{i} + \beta\hat{j} + \gamma\hat{k}$ respectively, then which of the following is/are TRUE?

- (A) $3(\alpha + \beta) = -101$
- (B) $3(\beta + \gamma) = -71$
- (C) $3(\gamma + \alpha) = -86$
- (D) $3(\alpha + \beta + \gamma) = -121$
- 13. Consider the parabola $y^2 = 4x$. Let S be the focus of the parabola. A pair of tangents drawn to the parabola from the point p = (-2, 1)meet the parabola at P_1 and P_2 . Let Q_1 and Q_2 be points on the lines SP_1 and SP_2 respectively such that PQ_1 is perpendicular to SP_1 and PQ_2 is perpendicular to SP_2 . Then, which of the following is/are TRUE?
 - (A) $SQ_1 = 2$
 - (B) $Q_1Q_2 = \frac{3\sqrt{10}}{5}$
 - (C) $PQ_1 = 3$
 - (D) $SQ_2 = 1$
- 14. Let |M| denote the determinant of a square matrix M. Let $g:[0,\frac{\pi}{2}]\to\mathbb{R}$ be the function defined by

$$g(\theta) = \sqrt{f(\theta) - 1} + \sqrt{f(\frac{\pi}{2} - \theta) - 1} \text{ where}$$

$$f(\theta) = \frac{1}{2} \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \end{vmatrix} + \begin{vmatrix} \sin \pi & \cos \left(\theta + \frac{\pi}{4}\right) & \tan \left(\theta - \frac{\pi}{4}\right) \\ -\cos \frac{\pi}{2} & \log_e \left(\frac{4}{\pi}\right) \end{vmatrix}$$
Let $p(t)$ be a guidantia polynomial whose roots are the maximum and

Let p(x) be a quadratic polynomial whose roots are the maximum and minimum values of the function $g(\theta)$ and $p(2) = 2 - \sqrt{2}$. Then, which of the following is/are TRUE?

- (A) $p(\frac{3+\sqrt{2}}{4}) < 0$ (B) $p(\frac{1+3\sqrt{2}}{4}) > 0$ (C) $p(\frac{5\sqrt{2}-1}{4}) > 0$ (D) $p(\frac{5-\sqrt{2}}{4}) < 0$

- 15. consider the following lists:

List-I

List-II

$$(I)x \in [-\frac{2\pi}{3}, \frac{2\pi}{3}] : \cos x + \sin x = 1$$

(P) has two elements

$$\begin{array}{ll} (II)x\in[-\frac{5\pi}{18},\frac{5\pi}{18}]:\sqrt{3}\tan3x=1 & \text{(Q) has three elements}\\ (III)x\in[-\frac{6\pi}{5},\frac{6\pi}{5}]:2\cos(2x)=\sqrt{3} & \text{(R) has four elements}\\ (IV)x\in[-\frac{7\pi}{4},\frac{7\pi}{4}]:\sin x-\cos x=1 & \text{(s) has five elements}\\ (V) & \text{(T) has six elements} \end{array}$$

The correct option is:

$$\begin{array}{l} (\mathbf{A}) \ (I) \rightarrow (P); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (S) \\ (\mathbf{B}) \ (I) \rightarrow (P); (II) \rightarrow (P); (III) \rightarrow (T); (IV) \rightarrow (R) \\ (\mathbf{C}) \ (I) \rightarrow (Q); (II) \rightarrow (P); (III) \rightarrow (T); (IV) \rightarrow (S) \\ (\mathbf{D}) \ (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (R) \end{array}$$

16. Two players, $P_1 and P_2$, play a game against each other. In every round of the game, each player rolls a fair die once, where the six faces of the die have six distinct numbers. Let x and y denote the readings on the die rolled by $P_1 and P_2$, respectively. If x > y, then P_1 scores 5 points and P_2 2 scores 0 point. If x = y, then each player scores 2 points. If x < y, then P_1 scores 0 point and P_2 scores 5 points. Let X_i and Y_i be the total scores of $P_1 and P_2$, respectively, after playing the i^{th} round.

LIST-I	LIST-II
(I) Probability of $(X_2 \ge Y_2)$ is	$(P) = \frac{3}{8}$ $(Q) = \frac{11}{16}$
(II) Probability of $(X_2 > Y_2)$ is	$(Q) = \frac{11}{16}$
(III) Probability of $(X_3 = Y_3)$ is	$(R) = \frac{5}{16}$
(IV) Probability of $(X_3 > Y_3)$ is	$(S) = \frac{355}{864}$
(V)	$(T)\frac{77}{432}$

the correct option is:

(A)
$$(I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (T); (IV) \rightarrow (S)$$

(B) $(I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (T); (IV) \rightarrow (S)$
(C) $(I) \rightarrow (P); (II) \rightarrow (R); (III) \rightarrow (Q); (IV) \rightarrow (S)$
(D) $(I) \rightarrow (P); (II) \rightarrow (R); (III) \rightarrow (Q); (IV) \rightarrow (T)$

17. Let p,q amd r be nonzero real numbers that are the 10^{th} , 100^{th} , $and 1000^{th}$ terms of a harmonic progression, respectively. Consider the following system of linear equations:

$$x + y + z = 1$$
$$10x + 100y + 1000z = 0$$
$$qrx + pry + pqz = 0$$

LIST-I

- (I) If $\frac{q}{r} = 10$, then the system of linear equations has
- (II) If $\frac{p}{r} \neq 100$, then the system of linear equations has
- (III) If $\frac{r}{q} \neq 10$, then the system of linear equations has (IV) If $\frac{p}{q} = 10$, then the system of linear equations has

- (P) $x = 0, y = \frac{10}{9}, z = -\frac{1}{9}$ as a solution (Q) $x = \frac{10}{9}, y = -\frac{1}{9}, z = 0$ as a solution
- (R) infinitely many solutions
- (S) no solution

(A)
$$(I) \rightarrow (T); (II) \rightarrow (R); (III) \rightarrow (S); (IV) \rightarrow (T)$$

- (B) $(I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (S); (IV) \rightarrow (R)$
- (C) $(I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (P); (IV) \rightarrow (R)$
- (D) $(I) \rightarrow (T); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (T)$
- 18. consider the ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$ let $H(\alpha, 0), 0 < \alpha < 2$, be a point. A straight line drawn through H parallel to the y-axis crosses the ellipse and its auxiliary circle at points E and F respectively, in the first quadrant. The tangent to the ellipse at the point E intersects the positive x-axis at a point G. Suppose the straight line joining F and the origin makes an angle ϕ with the positive x-axis

LIST-I

- (I) if $\varphi = \frac{3}{4}$, then the area of the triangle FGH is
- (II) if $\varphi = \frac{\pi}{3}$, then the area of the triangle FGH is
- (III) if $\varphi = \frac{\pi}{6}$, then the area of the triangle FGH is
- (IV) if $\varphi = \frac{\pi}{12}$, then the area of the triangle FGH is (V)

LIST-II

- $(p)\frac{(\sqrt{3}-1)^4}{8}$ (Q)1

(A)
$$(I) \rightarrow (R)$$
; $(II) \rightarrow (S)$; $(III) \rightarrow (Q)$; $(IV) \rightarrow (P)$

- (B) $(I) \rightarrow (R)$; $(II) \rightarrow (T)$; $(III) \rightarrow (S)$; $(IV) \rightarrow (P)$
- (C) $(I) \rightarrow (Q); (II) \rightarrow (T); (III) \rightarrow (S); (IV) \rightarrow (P)$
- (D) $(I) \rightarrow (Q)$; $(II) \rightarrow (S)$; $(III) \rightarrow (Q)$; $(IV) \rightarrow (P)$