

머신러닝을 활용한 여론조사 무응답 예측

김무관 analyze79@naver.com

Contents

- 1 프로젝트 소개
- 2 분석프로그램
- 3 데이터 설명
- 4 데이터 확인 및 전처리
- 5 머신러닝 모델링
- 6 보팅/스태킹 적용(모델링 추가연구)
- ⑺ 예측결과 검증
- 8 결론 및 제언

프로젝트 소개

- ✔ 여론조사 관련 기관에서는 여론조사의 결과 및 선거예측의 정확성 제고를 위해 지속적으로 노력중이다.
- ✔ 유권자들의 선택 및 정당이나 후보의 적절 한 선거전략 수립을 위해서 여론조사를 통한 객관적이고 신뢰성 있는 정보는 매우 중요하다.
- ✓ 이번 연구에서는 예측 정확도를 높이기 위한 방법으로 머신러닝을 활용해서 지지후보가 "없다/무응답"이라고 응답한 무응답층을 분류해보자.

분석 프로그램

✓ Python, Orange 프로그램으로 머신러닝 적용

데이터 설명

- ✓ 19대 대통령선거 2~3일전에 시행된 전화여론조사(3000명)
 - ※ 회사 내부 데이터라서 외부공유 제한됨(연구목적 사용)

<변수설명>

✓ 데이터 확인

<지지후보 응답데이터> <지지후보 없음/무응답데이터>

- Q2, Q3 변수에 결측치가 있는데, Q1(종속변수) 지지후보 "없음/무응답" 사례수에 해당함
- 독립변수에서 Q2, Q3 삭제 필요함(train 데이터셋, test 데이터셋 동일조건 맞추기 위해서)

✓ 데이터 확인

=>지지 후보별로 데이터 확인결과 상대적으로 아래내용들에서 높은 응 답을 확인할 수 있었음

	지역	연령대	이념성향	지지정당
문재인	광주/전라	20~40대	진보	더불어민주당
홍준표	대구/경북	50대 이상	보수	자유한국당
안철수	골고루 (특히 광주/전라)	골고루 (특히 50대)	중도	국민의당

✔ 데이터 전처리(변수값 수정)

=> 독립변수 일부 변수들 극단치 확인됨

```
df['DQ4'].value_counts() # 99값 모르겠다 (사례수 14개)
       661
       544
       181
       155
       107
        64
        45
 Name: DQ4, dtype: int64
df.loc[(df.DQ4==99), 'DQ4']=13
df['DQ4'].value_counts()
      661
     652
      544
      131
Name: DQ4, dtype: int64
```

=> DQ4 99 '모르겠다' 값이 14개 있는데, 사례수도 적고 13 '기타'가 있어서 99값을 13으로 수정함

✔ 데이터 전처리(3개 변수 생성)

```
## 성(SEX) & 연령(AGE) 으로 성연령(BSEXAGE) 변수 생성
                                        df.loc[(df.SEX==1) & (df.AGE==1), 'BSEXAGE']=1
                                                                                      #1.남-20대
                                                                                      #2.남-30대
                                        df.loc[(df.SEX==1) & (df.AGE==2), 'BSEXAGE']=2
                                        df.loc[(df.SEX==1) & (df.AGE==3).'BSEXAGE']=3
                                                                                      #3. 남-40대
                                        df.loc[(df.SEX==1) & (df.AGE==4), 'BSEXAGE']=4
                                                                                      #4. 남-50대
                                        df.loc[(df.SEX==1) & (df.AGE==5), 'BSEXAGE']=5
                                                                                      #5. \t-60CH
BSEXAGE
                                        df.loc[(df.SEX==1) & (df.AGE==6), 'BSEXAGE']=6
                                                                                      #6.남-70대 이상
                                        df.loc[(df.SEX==2) & (df.AGE==1).'BSEXAGE']=7
                                                                                      #7.04-20CH
                                        df.loc[(df.SEX==2) & (df.AGE==2), 'BSEXAGE']=8
                                                                                      #8.04-30CH
                                        df.loc[(df.SEX==2) & (df.AGE==3), 'BSEXAGE']=9
                                                                                      #9.04-40CH
                                        df.loc[(df.SEX==2) & (df.AGE==4), 'BSEXAGE']=10
                                                                                      #10.04-50CH
                                        df.loc[(df.SEX==2) & (df.AGE==5), 'BSEXAGE']=11
                                                                                      #11.04-60CH
                                        df.loc[(df.SEX==2) & (df.AGE==6), 'BSEXAGE']=12
                                                                                      #12.여-70대 이상
                                        ## DQ1(정치이념성향) 세부적인 분류를 묶어서 변수 생성
                                        df.loc[(df.DQ1==1) | (df.DQ1==2), 'BDQ1']=1 #1.보수(매우 보수/보수)
   BDQ1
                                        df.loc[(df.D01==3), 'BD01']=2
                                                                                 #2. 중도
                                        df.loc[(df.DQ1==4) | (df.DQ1==5), 'BDQ1']=3 #3.진보(매우 진보/진보)
                                        df.loc[(df.DQ1==9), 'BDQ1']=4
                                                                                 #4.모름
                                        ## DQ4(직업) 세부적인 분류를 묶어서 변수 생성
                                        df.loc[(df.DQ4==1), 'BDQ4']=1
                                                                                                  #1. 농/임/어업
                                        df.loc[(df.DQ4==2), 'BDQ4']=2
                                                                                                  #2. 자영업
                                                                                                  #3.블루칼라
   BDQ4
                                        df.loc[(df.DQ4==3) | (df.DQ4==4) | (df.DQ4==5), 'BDQ4']=3
                                        df.loc[(df.DQ4==6) | (df.DQ4==7) | (df.DQ4==8), 'BDQ4']=4
                                                                                                  #4.화이트칼라
                                        df.loc[(df.DQ4==9), 'BDQ4']=5
                                                                                                  #5.가정주부
                                        df.loc[(df.D04==10), 'BD04']=6
                                                                                                  #6.학생
                                                                                                  #7.무직/은퇴/기타
                                        df.loc[(df.DQ4==11) | (df.DQ4==12) | (df.DQ4==13), 'BDQ4']=7
                                        df.loc[(df.D04==99).'BD04']=8
                                                                                                  #8.모름
```

✓ 데이터 전처리(SEG 변수생성)

K-means Clustering

- "K"는 데이터 세트에서 찾을 것으로 예상되는 클러스터(그룹) 수
- "means "는 각 데이터로부터 데이터가 속한 클러스터의 중심까지의 평균 거리
- => K-means Clustering (모델 변수중요도에서 높게 나온 'Q4', 'SIDO' 변수로 시도함)

=> 6개 집단으로 묶이는 것을 볼 수 있음

✔ 데이터 전처리(상관분석 확인)

=>종속변수 Q1과 상관관계가 높은 것은 Q2, Q4, SEG 변수임

✔ 데이터 전처리(다중공선성 확인)

다중공선성 : 독립 변수들이 서로 독립이 아니라 상호상관관계가 강한 경우에 발생함

=> vif가 10이상이면 다중공선성이 존재해서 확인 후, 삭제함.

- * [SEX, AGE1, AGE, BSEXAGE]
 - -> [SEX, AGE1] 독립변수에서 삭제
- * [DQ1, BDQ1] -> [DQ1] 독립변수에서 삭제
- * [DQ4, BDQ4] -> [DQ4] 독립변수에서 삭제

✓ 종속변수 확인과 다중분류 모델별 accuracy(모델 정확도) 확인

종속변수 확인결과 범주형변수(명목변수) 로 다중분류모델 적 용이 필요한 것 확인!

=> XGBClassifier 모델이 가장 정확도가 높음

XGBBoost (XGBClassifier, XGBRegressor) 모델 특징

XGBoost(eXtra Gradient Boost)

트리 기반의 알고리즘의 앙상블 학습에서 각광받는 알고리즘 중 하나 GBM에 기반하고 있지만, GBM의 단점인 느린 수행시간, 과적합 규제 등을 해결한 알고리즘

XGBoost의 주요장점

- (1) 뛰어난 예측 성능
- (2) GBM 대비 빠른 수행 시간
- (3) 과적합 규제(Overfitting Regularization)
- (4) Tree pruning(트리 가지치기): 긍정 이득이 없는 분할을 가지치기해서 분할 수를 줄임
- (5) 자체 내장된 교차 검증
 - 반복 수행시마다 내부적으로 교차검증을 수행해 최적회된 반복 수행횟수를 가질 수 있음 지정된 반복횟수가 아니라 교차검증을 통해 평가 데이트세트의 평가 값이 최적화되면 반복을 중간에 멈출 수 있는 기능이 있음
- (6) 결손값 자체 처리

XGBoost는 독자적인 XGBoost 모듈과 사이킷런 프레임워크 기반의 모듈이 존재합니다. 독자적인 모듈은 고유의 API와 하이퍼파라미터를 사용하지만, 사이킷런 기반 모듈에서는 다른 Estimator와 동일한 사용법을 가지고 있음

* 자료 출처: https://injo.tistory.com/44

✓ XGBClassifier 모델 최적화

```
from sklearn, model selection import GridSearchCV
from xgboost import XGBClassifier
xgb = XGBClassifier()
# 파라미터를 딕셔너리 형태로 설정
parameters = \{\text{max\_depth'}: [2, 3, 4, 5, 6],
            'subsample' : [0.6, 0.7, 0.8, 0.9, 1.0]}
grid_xgb = GridSearchCV(xgb, param_grid=parameters, refit=True)
# 하이퍼 파라미터를 순차적으로 학습, 평가
grid_xgb.fit(X_train, y_train)
# GridSearchCV 결과를 추출해 데이터 프레임으로 반환
scores df = pd.DataFrame(grid xgb.cv results )
print('GridSearch - XGB 최적 파라미터: ', grid_xgb.best_params_)
print('GridSearch - XGB 최고 점수: ', grid_xgb.best_score_)
# GridSearchCV의 refit으로 학습된 estimator 반환
estimator = grid_xgb.best_estimator_
# GridSearchCV의 best_estmator_ 는 이미 최적 학습이 됐으므로 별도 학습이 필요 없음
pred = estimator.predict(X_test)
print('XGB 테스트 데이터세트 정확도: {0: .4f}', format(accuracy_score(y_test, pred)))
GridSearch - XGB 최적 파라미터: {'max_depth': 2, 'subsample': 0.7}
GridSearch - XGB 최고 점수: 0.709750566893424
XGB 테스트 데이터세트 정확도: 0.7409
```

✓ XGBClassifier 모델 변수중요도

\checkmark

XGBClassifier 모델로 예측분석

ID와 Q1 예측값 결합해서 데이터 생성

ID OI

	ID	Q1
3	4	4
14	15	3
15	16	3
16	17	2
29	30	3
41	42	3
48	49	1
66	67	5
67	68	2
71	72	1
82	83	1
84	85	1
96	97	1
98	99	3
105	106	3
120	121	3

보팅/스태킹 적용(모델링 추가연구)

Voting 분류기 정확도: 0.7446

- ✓ 보팅(Voting)
- 동일 데이터셋으로 여러 개의 모델로 학습을 진행후 투표

```
from sklearn.ensemble import VotingClassifier from sklearn.metrics import accuracy_score

# 개별 모델을 소프트 보팅 기반의 앙상블 모델로 구현한 분류기
vo_clf = VotingClassifier(estimators=[('XGB', grid_xgb), ('LGBM', grid_lgbm)], voting='soft')

vo_clf.fit(X_train, y_train)
pred = vo_clf.predict(X_test)
print('Voting 분류기 정확도: {0:.4f}'.format(accuracy_score(y_test, pred)))
```

✓ 스태킹(Stacking)

- 모델 예측값으로 실제값을 다시 예측하는 기법

예측결과 검증

✔ 검증시도1 : Orange 프로그램(타프로그램)과 예측결과비교

F1 : 정밀도와 재현율을 결합한 지표(모델성능 확인)

Model	AUC	CA	F1	Precision	Recall
cNN	0.796	0.617	0.576	0.572	0.617
SVM	0.849	0.666	0.651	0.642	0.666
SGD	0.774	0.688	0.668	0.656	0.688
Random Forest	0.859	0.692	0.676	0.670	0.692
Neural Network	0.841	0.663	0.653	0.646	0.663
Naive Bayes	0.868	0.617	0.643	0.681	0.617
Logistic Regression	0.882	0.712	0.697	0.690	0.712
Gradient Boosting	0.880	0.709	0.698	0.690	0.709
AdaBoost	0.843	0.657	0.640	0.632	0.657

F1	0.698	F1	0.741	*파이썬-xgboost VS Gradient Boosting
ID	Gradient Boosting	ID	파이썬-xgboost	사례수 비율
4	2	4	4	TRUE(같음) 220 66.87
15	2	15	3	FALSE(다름) 109 33.13
16	2	16	3	329 100.00
17	2	17	2	
30	3	30	3	
42	3	42	3	
49	2	49	2	
67	5	67	5	
68	2	68	2	
72	1	72	1	
83	5	83	1	
85	5	85	5	
97	5	97	5	
99	3	99	3	
106	3	106	3	
121	2	121	3	

=> 오렌지, 파이썬 프로그램으로 예측한 데이터 값이서로 어느 정도 동일한지 확인함 (67% 내외로 동일)

예측결과 검증

✔ 검증시도2 : 제19대 대선 개표결과와 여론조사결과(무응답보정 포함) 비교

* SPSS 프로그램으로 보정데이터 적용한 테이블(인구통계학적 가중 적용)

	개표결과	여론조사	오렌지 (무응답보정)	파이썬 (무응답보정)
문재인	41.08	37.**	39.38	39.26
홍준표	24.03	18.**	22.45	21.30
안철수	21.41	17.**	19.43	20.68
유승민	6.76	7.**	7.64	7.66
심상정	6.17	8.**	10.58	10.59
기타		0.**	.52	.52
없음/모름		10.33		

← 개표결과에 가까워짐

← 과잉 보정됨

결론 및 제언

- ✓ 선거여론조사에서 지지후보의 득표율 예 측정확도를 개선하기 위해서 무응답(없다/ 무응답)층을 머신러닝으로 예측을 시도해 보았다.
- ✓ 예측(무응답보정)한 결과를 개표결과와 비교해보니, 개표결과에 근사하게 후보별 득표율이 높아지는 것을 볼 수 있었다.
- ▼ 하지만 기존에 득표율이 낮은 후보에서 는 과잉 보정되는 경향을 보였다. 이점은 다른 사례를 통해서 추가검증이 필요해 보 인다.

* SPSS 프로그램으로 보정데이터 적용한 테이블(인구통계학적 가중 적용)

	개표결과	여론조사	오렌지 (무응답보정)	파이썬 (무응답보정)
문재인	41.08	37.**	39.38	39.26
홍준표	24.03	18.**	22.45	21.30
안철수	21.41	17.**	19.43	20.68
유승민	6.76	7.**	7.64	7.66
심상정	6.17	8.**	10.58	10.59
기타		0.**	.52	.52
없음/모름		10.33		

Thank you! ZILICI.