Today: Agen <u>da</u>	
 Introduction to Prime Numbers Get all primes from 1 to N 	
 Print smallest prime factor for 2 to N 	
 Prime Factorization — Get the number of factors/divisors — 	

nof	has are prime numbers? Losos Losos
	\ → \ ×
	2 → 1,2
	5 -3 1,5
	7-3 1,7
	11-3 1,11

Oves. Check prime?	
	T.C -> O(JO)
count =0;	8.C > OCI)
for (121; ixi<=~; i++) &	
\$ (0==i.v.a) \$i	
id (1== 10%; count +=1	•
3	
id (count== 2) &	
einel 13 sietum faire.	,

<u> </u>	hiven a number to, frint all frime
_ `	numbers from 1 to 10.
12.5.10	0 % 5 7
·	2, 8, 5, 7
<i>№ 20</i> ,	2, 3, 5, 7, 11, 13, 17, 19
Bruk fo	<u>でで:-</u> て. C つ い な
	2.C-3 0 (1)
	for (1=2; 1 <2 m; 1+1) {
	if (checkfrime(i)) }
	if (checkfrime(i)) {
	Besut Cis;
	3

Optimized Approach:

N=50, [1 50]

2-> 4.6.8.10 ... 3 - 6, 9, 12 5 3 5x2, 5x3, 5x4, 5x5 7 - 7*2, 7*3, 7*4, 7*5, 7*6, 7*7 11 -3 11+2, 11x3, 11x4 - - 1/x11 ... getailfrimes (n) { Correct cade ETS = [140] 9 load m= 50 Proj = 65/7 = 5, Jso = 3 for (i=2; ix=5m; i++) { 1 to 50 (g (P(iJ== Tone) for (2= i*i); 2 <= n; 2+= i){ P 153 = false; اع gener 1200 JOD1200400 Ξ T.C3 (N+ 1) + N+ 1) + ...)

(6, 60 1) 60 1) (-2. L

dum of reciprocals

ハ: Jpg 、二 10,8

ceb; serious?	pob; tnappens
T.C. 7 7m	T.C.> O(~10g10g~)
1018 × 5018	("" (Legal 26")
Po1x 8101 <=	1018 × 109 64
=> 1024	10,8 x 6
	=> 6×1014

Prime factorization:

To be prepay ting a no in multiples of

Pouseus of unique frime numbers.

2	48	
2	24	1,3,5,9,15,45 m: 18= 2,4 x 8,=> (A+1) x (1+1) => 10
J	15	USAR =1 33 x 2 1 => (5+1) x(1+1) = P
2	6	~=300=7 32, 2, 2 25=7 (541) x (141) ¥ (541)
ج	35	=) 18
	\	

no. of factors => $(a^{i+1}) * (a^{2-i}) \cdots (a^{2+1})$ 1, a, $x \cdot b^{2} \cdot x \cdot b^{2} \cdot x \cdot \cdots \cdot b^{2} \cdot a^{2}$ 1, dos pare a unspear $x \cdot b^{2} \cdot a^{2} \cdot a^{2} \cdot b^{2} \cdot a^{2} \cdot a^{2} \cdot a^{2}$ 1, a, $x \cdot b^{2} \cdot a^{2} \cdot a$

1, 3, 5, 9, 15, 45 $3^{2} \times 5^{1} = 2 \times (2+1)(1+1) = 6$

00es

Given a number N. For all the numbers from 1 to N, get the number of factors/divisors

 $0 \stackrel{>}{=} 10, \rightarrow 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$

Brue force: for all numbers from 1 to n,

find court of foctous toy In method.

Tico Ofn In)

Oldimi zed

7 -> 12 no. of factor = 3

 $n = \frac{48}{2} \Rightarrow \frac{24}{2} \Rightarrow \frac{2}{2} \Rightarrow \frac{2}{2}$

 $3 \rightarrow 1$ $(2 \rightarrow x \times x \times x + 1)$ $(2 \rightarrow x \times x \times x + 1)$

 $\frac{m-54}{2} = \frac{54}{2} = \frac{27}{2} = \frac{27}{2} = \frac{93}{2} = \frac{93}{2$

3-1/23 => no. of factors = 8.

11 create the spf array -> mlaglagon for (1=2:, ix=n; i++) { In < in > in > x=4x 3x 12631 × = : · & Crris glider 3 Cmp m' 2: [x] 792) fi hm [spf(x]]+=1 lagin elre { 1 = ([x] +94) md ~~ - (', for (x: mm. keys etc)) } legn (1+ [x]mh) * w = eno brint cons; T.C-3 (nleglegn)+ mlegn OW)+ Octobro

V1.
View.
•
<u>.</u> 310 -
e J,

• _ •
<u> </u>
_
√ e
2 2 20
7, 6 7 7 6 7/2
$\mathcal{A}: G \hookrightarrow$
· · · <u>=</u> <u>=</u>
—