FOR 306 FOREST MEASUREMENTS

Standing Tree Volume

TREE VOLUME

- Tree Stem most important section of the tree in respect with usable wood
- Tree consists on four wooden parts:
 - Roots
 - Stump lower part of the stem left after harvest
 - Stem
 - Branches
- Economic development determination of volume/weight of tree and its component
- Units for volume: cu.ft /bd.ft or cubic meters

DETERMINATION OF VOLUME-CU.UNITS

- Direct determination of volume of parts of tree requires a precise identification of respective part
- Generally, the volume of any part of a tree obtained by felling the tree and cut the stems or its limb into sections
- Approaches to determine the volume in cubic units
 - Formulas stem is represented by a solid of revolution
 - Displacement water
 - Integration generalization of formulas
 - Graphical methods
 - Height accumulation
- Bark volume

VOLUME DETERMINED USING FORMULAS

 Assume that the a part of the tree (stem, crown etc) can be represented by a solid of revolution

FORMULAS OF SOLIDS OF REVOLUTION

Radius²= $k(distance from apex)^b = k(h_{total}-h_{on stem})^b$

Shape	b	Formula
Cylinder	0	Radius = ct.
Paraboloid (3 rd degree)	2/3	Radius = $k \times (h_{total} - h_{on stem})^{1/3}$
Quadratic Paraboloid (2 nd degree)	1	Radius = $k x (h_{total} - h_{on stem})^{1/2}$
Conoid	2	Radius = $k x (h_{total} - h_{on stem})$
Neiloid	3	Radius = $k x (h_{total} - h_{on stem})^{3/2}$
	-	-

5

VOLUME OF SOLIDS OF REVOLUTION

Solid of revolution = geometric solid

Solid of revolution	Volume
Cylinder	A _b h
Paraboloid	½×A _b h
Cone	1/×3A _b h
Neiloid	1/4×A _b h

TREE SHAPE AND VOLUME

- Top: cone (paraboloid rare)
- Main bole:
- frustum of paraboloid
- Butt-log (first log):
- frustum of neiloid

Frustum: portion of a solid between two parallel planes

Log: 16 feet long section of stem

VOLUME & PPROXIMATIONS FOR FRUSTUM OF GEOMETRIC SOLIDS

Frustum of Paraboloid

Smalian's formula:
$$V = \frac{A_1 + A_2}{2} \times L$$

Frustum of Neiloid

Huber's formula:
$$V = A \times L$$

Smalian's formula: $V = \frac{A_1 + A_2}{2} \times L$

$$V = \frac{L}{4} \times (A_1 + \sqrt[3]{A_1^2 A_2} + \sqrt[3]{A_1 A_2^2} + A_2)$$

Frustum of cone, neiloid or paraboloid

Newton's formula:
$$V = \frac{A_1 + 4A + A_2}{6} \times L$$

EXAMPLE

Determine the volume of a log (section of a tree 16 feet long) that has the larger diameter 20" and the smaller diameter 18". Assume that that diameter at the middle of the log is the average between the larger and smaller diameter.

Solution:

According to the position along the stem the volume can be:

Position on stem	Geometric solid	Smalian's formula	Newton's formula
Butt-log	Neiloid		
Upper logs	Paraboloid		

Diameter at the middle of the log:

VOLUME DETERMINATION USING DISPLACEMENT & INTEGRATION

- Water Displacement the most accurate method of measuring the volume of irregular solids
- Xylometer tank used to measure tree volume
- Integration: determine the volume of a solid with known cross sectional area $V = \int_{a}^{b} A(X) dX$
- Requires the expression of the profile of the tree by an equation – knowledge of taper
- If the stem is assumed to be obtained from a solid of revolution then the cross sectional area is a circle and the stem volume is $V = \pi \int_{-\infty}^{b} Y^2 dX$

VOLUME DETERMINATION USING GRAPHICAL METHOD

- Graphical method of determination of tree volume involves measuring diameter at various positions along the stem, plotting the data, and joining the points by curve lines giving a diametral outline of the stem
- The curve obtained by joining the points are called taper curve or stem profile
- Stem volume can be calculated in several ways:
 - Use diameter at selected positions along the stem from the taper curve to calculate stem volume by summing the volumes of sections using Smalian's or Huber's formula.
 - 2. A program calculates the volume of the section between each set of successive points and accumulates the sums

COMPARISON OF THE FORMULAS

- Water displacement (Young et al, 1967)
 - Average error for 8'- and 16'- softwood logs
 - 0% for Newton's formulae,
 - +9% for Smalian's formulae
 - -3.5% for Huber's formulae
 - No significant errors for 4' logs
- Graphical techniques (Miller, 1959)
 - Average error for 16' hardwood logs
 - 2% for Newton's formulae,
 - 12% for Smalian's formulae
 - -5% for Huber's formulae

BARK VOLUME

- Bark volume –10-20% of unpeeled volume
- Bark –factor method determine the bark volume as the difference between the unpeeled and peeled volume
- Bark thickness needs to be accurately determined
 b = 0.5×(dob-dib)
- Between dib and dob there is a direct relationship dob=k×dib→k is called bark factor
- Bark factor varies between 0.87-0.93
- Bark factor varies with species, age and site
- Volume bark [%] = $(1-k^2) \times 100$

VOLUME TABLE

- Volume table tabulated description of the average volume of a tree by one or more tree dimensions
- Most common tree dimensions used to determine the volume of a tree are:
 - Dbh
 - Height
 - Tree form
- Results supplied in board feet or cubic feet

TYPE OF VOLUME TABLES

Local volume tables

- Gives the volume of a tree only as a function of dbh
- Restricted to a species and a confined area

Standard volume tables

- Tree volume is a function of dbh and height
- Height can be total height or merchantable height
- Prepared for individual species and locations

Form class volume table

- Tree volume is a function of dbh, height and tree form
- Tree form expressed as Girard form class or form quotient
- Height can be total height or merchantable height

LOCAL&STANDARD VOLUME TABLES

TABLE 6-6. Example of a Local Volume Table for Yellow Poplar (Liriodendron tulipifera) in Stark County, Ohio^a

Dbh Outside Bark (in.)	Volume Per Tree (board feet)	Merchantable Length (ft)
10	30	19.5
11	50	23
12	70	26.5
13	95	30
14	125	33
15	155	36.5
16	190	40
17	235	43
18	285	45.5
19	345	48
20	405	51
21	480	53.5
22	555	56
23	635	58

TABLE 6-7. Example of a Standard Volume Table, Using Board-Foot Volume, International ¹/₄-in. Rule, for Red Oak (*Quercus rubra*) in Pennsylvania^a

Dbh				Merc	hantab	le Heigl	nt—Nu	nber of	16-ft L	ogs	
(in.)	1 2	1	1 ½	2	2 1/2	3	3 1/2	4	41/2	5	5 ½
8	8	18	28	37	47	57					
9	11	23	35	48	60	73					
10	13	29	44	59	75	90	105	121			
11	17	35	54	72	91	109	128	146			
12	20	42	64	86	108	130	153	175	197		
13	24	50	76	102	128	153	179	205	231		
14	28	58	88	118	148	178	208	238	268	298	328
15	33	67	102	136	170	205	239	274	308	343	377
16	37	77	116	155	194	233	273	312	351	390	429
17		87	131	175	219	264	308	352	396	441	485
18		97	147	197	246	296	345	395	445	494	544

FORM CLASS VOLUME TABLES

VOLUME TABLE - VOLUME EQUATIONS

Past: Tables → Present: Equations or Functions

INTERNATIONAL LOG RULE, 1/2-IN, SAW KERF, FOR LO	OGS 8 TO 20 FT IN LENGTE	1
--	--------------------------	---

			Le	ngth of k	og (ft)			
Diameter (small end of log inside bark)	8	10	12	14	16	18	20	Diameter
(in.)				Volume (b	od ft)			(in.)
4		5	5	5	5	5	10	4
5	5	5	10	10	10	15	15	5
6	10	10	15	15	20	25	25	6
7	10	15	20	25	30	35	40	7
8	15	20	25	35	40	45	50	8
9	20	30	35	45	50	60	70	9
10	30	35	45	55	65	75	85	10
11	35	45	55	70	80	95	105	11
12	45	55	70	85	95	110	125	12
13	55	70	85	100	115	135	150	13
14	65	80	100	115	135	155	175	14
15	75	95	115	135	160	180	205	15
16	85	110	130	155	180	205	235	16
17	95	125	150	180	205	235	265	17
18	110	140	170	200	230	265	300	18
19	125	155	190	225	260	300	335	19
20	135	175	210	250	290	330	370	20
21	155	195	235	280	320	365	410	21
22	170	215	260	305	355	405	455	22
23	185	235	285	335	390	445	495	23
24	205	255	310	370	425	485	545	24
25	220	280	340	400	460	525	590	25
26	240	305	370	435	500	570	640	26
27	260	330	400	470	540	615	690	27
28	280	355	430	510	585	665	745	28
29	305	385	465	545	630	715	800	29

$$Volume[BF] = 0.0498LD^{2} - 0.1607LD + 0.0498L^{2}DT + 0.0166L^{3}T^{2} -$$

$$-0.0804L^2T - 0.1992LDT -$$

$$-0.0996L^2T^2 + 0.3214LT + 0.1328LT^2$$

Grosenbaugh (1952)

TYPES OF EQUATIONS

- Classification based on # attributes:
 - 1. Local volume equations: single entry eq.
 - Equations based on a single variable (dbh)
 - 2. Standard volume equations:
 - Equations using DBH and height
- multiple entry eq.
 - 3. General volume equations: as standard eq. + tree form
 - No advantage in using tree form in addition to dbh and ht.
- Classification based on # species:
 - 1. Species equations: for each species/group species with similar tree form
 - 2. Composite equations: for diverse species combinations (coniferous and broadleaves)
 - Corrections to address different stem taper

MULTIPLE - ENTRY VOLUME EQUATIONS

- Estimate volume of an individual tree using DBH and height, sometimes tree form
- Girard tree form
- Disadvantages in using the tree form
 - Tendency of rough estimate of form class rather than actually measuring it
 - Variation in upper-stem diameter cannot be described by the butlog taper
- Problems: 1% change in tree-form →3%change in merchantable volume

MULTIPLE - ENTRY VOLUME EQUATIONS

Spur type:

- Ponderosa pine: $V=-0.44670+0.00216\times DBH^2H$ [cu.ft]
- Loblolly pine: V=0.34864+0.00232×DBH²×H [cu.ft]

Example: DBH=10" and H=50' \rightarrow V=.....

- Schumacher & Hall type (Schumacher & Hall, 1933)
- Loblolly pine: $V=6.315+0.124\times(DBH-5)^{1.737}(H-17)^{0.36}$ [cu.ft]
- Shortleaf pine: $V=7.7+0.1576\times(DBH-8)^{1.051}(H-4.5)^{1.261}$ [bd.ft]

Example: DBH=10" and H=50' \rightarrow V=.....

Note: DBH in inches and Height in feet

SINGLE-ENTRY EQUATIONS

- Development:
 - Multiple entry volume equations
 - Scaled measured felled trees

- Advantages:
 - Quick
 - Uniformity in timber estimations

CONSTRUCTING SINGLE-ENTRY EQUATIONS

From felled trees

```
V=b_0+b_1x DBH^2

Yellow poplar

V=-8.4166+0.2679 \times DBH^2 [cu.ft]
```

From multiple entry volume equations

```
V = 786.74^{-1} \times DBH^{1.544} \times H^{1.29} - \text{Schumacher \& Hall type}

\ln(H) = b_0 + b_1 \times DBH^{-1} - \text{Schumacher type}

\ln(H) = 5.21909 - 14.32872 / DBH

\ln(V) = -6.6679 + 1.544 \times \ln(DBH) + 1.29 \times \ln(H) =

= -6.6679 + 1.544 \times \ln(DBH) + 1.29 \times (5.21909 - 14.32872 / DBH)

\ln(V) = 0.0647 + 1.544 \times \ln(DBH) - 18.484 / DBH \rightarrow V = e^{0.0647 + 1.544 \ln(DBH) - 18.484 / DBH}

V = 1.0668 \times DBH^{1.544} \times e^{-18.484 / DBH}
```

VOLUME EQ. TO UPPER-STEM DIAMETER

- Merchantable part of a tree that can be manufactured into a saleable product
- Utilization standard: the dimensions (stump height, top diameter, base diameter, and length) and quality of trees that are harvested
- Volume estimates for various <u>couple</u> of diameters representing different utilization standards
- Upper-stem diameter identifies the utilization standard of a tree

VOLUME EQ. TO UPPER-STEM DIAMETER

- Volume estimates should be logically related:
 - sum of the parts sum up to the stem volume
- Method: volume ratio equations

Example:

Loblolly pine:

```
V=0.34864+0.00232\times DBH^2\times H [cu.ft] 
R=1 - 0.32354(d<sup>3.1579</sup>/DBH<sup>2.7115</sup>)
```

- If DBH=10" and H=100' then V=
- R_{4"}=
- V_{4"}=

VOLUME DISTRIBUTION IN TREES

- Volume distribution along tree stem:
 - Improve volume estimates
 - Aid in estimating volume looses due to defects

Usable length	% total volume in each log by position				
(16 ft logs)	1 st	2 nd	3 rd	4 th	
1	100				
2	59	42			
3	42	33	25		
4	34	29	22	15	

USABLE VOLUME OF A TREE

 Honer et al. (1983) — procedure to determine products obtained from a particular tree

Example:

- 1. Tree with dbh=30" & h=90'
- 2. Top diam. sawlog: 12"
- 3. $d_{upper}/dbh=12/30=0.4\rightarrow\%V=96.2$
- 4. $\%V=96.22 \rightarrow h_{upper}/H=0.8$
- 5. $h_{upper} = 0.8 \times 90 = 72''$
- 6. #logs=(72-17.3)/16.3 + 1 = 40.3 – trimming allowance
- 7. $h_{upper} = 1 + 16.3 \times 4 = 66.2$
- 8. $h_{upper}/H = 0.73$
- 9. %V=93.9%

Height Ratio, h_u/H	Volume Percentage	Diameter Ratio, d_u/D	Volume Percentage
0.10	21.76	0.10	100.00
0.20	39.60	0.20	99.96
0.30	55.12	0.30	98.88
0.40	68.30	0.40	96.22
0.50	79.12	0.50	91.59
0.60	87.70	0.60	84.07
0.70	93.92	0.70	72.52
0.80	97.80	0.80	55.63
0.90	99.36	0.90	31.87

Source: Adapted from Honer et al. (1983).

> First log

Reading: Chapter 6