Digital Design & Computer Arch.

Lecture 6: Sequential Logic Design

Prof. Onur Mutlu

ETH Zürich
Spring 2021
12 March 2021

We Are Done with This

- Building blocks of modern computers
 - Transistors
 - Logic gates
- Combinational circuits
- Boolean algebra
- How to use Boolean algebra to represent combinational circuits
- Minimizing logic circuits

Agenda for Today and Next Week

Today

Start (and finish) Sequential Logic

Next week

- Hardware Description Languages and Verilog
 - Combinational Logic
 - Sequential Logic
- Timing and Verification

Assignment: Required Lecture Video

- Why study computer architecture? Why is it important?
- Future Computing Platforms: Challenges & Opportunities

Required Assignment

- **Watch one of** Prof. Mutlu's lectures and analyze either (or both)
- https://www.youtube.com/watch?v=kgiZISOcGFM (May 2017)
- https://www.youtube.com/watch?v=mskTeNnf-i0 (Feb 2021)

Optional Assignment – for 1% extra credit

- Write a 1-page summary of one of the lectures and email us
 - What are your key takeaways?
 - What did you learn?
 - What did you like or dislike?
 - Submit your summary to <u>Moodle</u> Deadline: April 5

Extra Assignment: Moore's Law (I)

- Paper review
- G.E. Moore. "Cramming more components onto integrated circuits," Electronics magazine, 1965

- Optional Assignment for 1% extra credit
 - Write a 1-page review
 - □ Upload PDF file to Moodle − Deadline: April 5

 I strongly recommend that you follow my guidelines for (paper) review (see next slide)

Extra Assignment 2: Moore's Law (II)

- Guidelines on how to review papers critically
 - Guideline slides: pdf ppt
 - Video: https://www.youtube.com/watch?v=tOL6FANAJ8c
 - Example reviews on "Main Memory Scaling: Challenges and Solution Directions" (link to the paper)
 - Review 1
 - Review 2
 - Example review on "Staged memory scheduling: Achieving high performance and scalability in heterogeneous systems" (link to the paper)
 - Review 1

Assignment: Required Readings

- Combinational Logic
 - □ P&P Chapter 3 until 3.3 + H&H Chapter 2
- Sequential Logic
 - □ P&P Chapter 3.4 until end + H&H Chapter 3 in full
- Hardware Description Languages and Verilog
 - H&H Chapter 4 in full
- Timing and Verification
 - □ H&H Chapters 2.9 and 3.5 + (start Chapter 5)

- By the end of next week, make sure you are done with
 - □ P&P Chapters 1-3 + H&H Chapters 1-4

Required Readings (for Next Week)

- Hardware Description Languages and Verilog
 - H&H Chapter 4 in full
- Timing and Verification
 - □ H&H Chapters 2.9 and 3.5 + (start Chapter 5)

- By tomorrow, make sure you are done with
 - □ P&P Chapters 1-3 + H&H Chapters 1-4

Required Readings (for Next Next Week)

- Von Neumann Model, LC-3, and MIPS
 - P&P, Chapters 4, 5
 - H&H, Chapter 6
 - P&P, Appendices A and C (ISA and microarchitecture of LC-3)
 - H&H, Appendix B (MIPS instructions)
- Programming
 - P&P, Chapter 6
- Recommended: Digital Building Blocks
 - H&H, Chapter 5

Sequential Logic Circuits and Design

What We Will Learn Today

- Circuits that can store information
 - Cross-coupled inverter
 - R-S Latch
 - Gated D Latch
 - D Flip-Flop
 - Register
- Finite State Machines (FSM)
 - Moore Machine
 - Mealy Machine
- Verilog implementations of sequential circuits (next week)

Circuits that Can Store Information

Introduction

- Combinational circuit output depends only on current input
- We want circuits that produce output depending on current and past input values – circuits with memory
- How can we design a circuit that stores information?

Capturing Data

Basic Element: Cross-Coupled Inverters

- Has two stable states: Q=1 or Q=0.
- Has a third possible "metastable" state with both outputs oscillating between 0 and 1 (we will see this later)
- Not useful without a control mechanism for setting Q

More Realistic Storage Elements

Have a control mechanism for setting Q

- We will see the R-S latch soon
- □ Let's look at an SRAM (static random access memory) cell first

SRAM cell

We will get back to SRAM (and DRAM) later

The Big Picture: Storage Elements

Latches and Flip-Flops

- Very fast, parallel access
- Very expensive (one bit costs tens of transistors)

Static RAM (SRAM)

- Relatively fast, only one data word at a time
- Expensive (one bit costs 6+ transistors)

Dynamic RAM (DRAM)

- Slower, one data word at a time, reading destroys content (refresh), needs special process for manufacturing
- Cheap (one bit costs only one transistor plus one capacitor)

Other storage technology (flash memory, hard disk, tape)

- Much slower, access takes a long time, non-volatile
- Very cheap

Basic Storage Element: The R-S Latch

The R-S (Reset-Set) Latch

- Cross-coupled NAND gates
 - Data is stored at Q (inverse at Q')
 - S and R are control inputs
 - In quiescent (idle) state, both S and R are held at 1
 - S (set): drive S to 0 (keeping R at 1) to change Q to 1
 - R (reset): drive R to 0 (keeping S at 1) to change Q to 0
- S and R should never both be 0 at the same time

Input		Output
R	S	Q
1	1	Q_{prev}
1	0	1
0	1	0
0	0	Forbidden

Why not R=S=0?

Input		Output
R	S	Q
1	1	Q_{prev}
1	0	1
0	1	0
0	0	Forbidden

- 1. If **R=S=0**, **Q** and **Q'** will both settle to 1, which **breaks** our invariant that **Q** = !**Q'**
- If S and R transition back to 1 at the same time, Q and Q' begin to oscillate between 1 and 0 because their final values depend on each other (metastability)
 - □ This eventually settles depending on variation in the circuits (more metastability to come in Lecture 8)

How do we guarantee correct operation of an R-S Latch?

- How do we guarantee correct operation of an R-S Latch?
 - Add two more NAND gates!

- Q takes the value of D, when write enable (WE) is set to 1
- S and R can never be 0 at the same time!

Input		Output
WE	D	Q
0	0	Q_{prev}
0	1	Q_{prev}
1	0	0
1	1	1

The Register

The Register

How can we use D latches to store **more** data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]

The Register

How can we use D latches to store **more** data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]

Memory

Memory

Memory is comprised of locations that can be written to or read from. An example memory array with 4 locations:

Addr (00):	0100 1001	Addr (01):	0100 1011
Addr (10):	0010 0010	Addr (11):	1100 1001

- Every unique location in memory is indexed with a unique address. 4 locations require 2 address bits (log[#locations]).
- Addressability: the number of bits of information stored in each location. This example: addressability is 8 bits.
- The entire set of unique locations in memory is referred to as the address space.
- Typical memory is MUCH larger (e.g., billions of locations)

Addressing Memory

Let's implement a simple memory array with:

• 3-bit addressability & address space size of 2 (total of 6 bits)

6-Bit Memory Array

Addr(0)	Bit ₂	Bit ₁	Bit ₀
Addr(1)	Bit ₂	Bit_1	Bit ₀

How can we select an address to read?

How can we select an address to read?

How can we select an address to read?

How can we select an address to read?

Writing to Memory

How can we select an address and write to it?

Writing to Memory

How can we select an address and write to it?

Input is indicated with D_i

Putting it all Together

Let's enable reading and writing to a memory array

A Bigger Memory Array (4 locations X 3 bits)

A Bigger Memory Array (4 locations X 3 bits)

Aside: Implementing Logic Functions Using Memory

Memory-Based Lookup Table Example

- Memory arrays can also perform Boolean Logic functions
 - 2^N-location M-bit memory can perform any N-input, M-output function
 - Lookup Table (LUT): Memory array used to perform logic functions
 - Each address: row in truth table; each data bit: corresponding output value

Figure 5.52 4-word × 1-bit memory array used as a lookup table

Lookup Tables (LUTs)

- LUTs are commonly used in FPGAs
 - To enable programmable/reconfigurable logic functions
 - To enable easy integration of combinational and sequential logic

(<i>A</i>)	(<i>B</i>)	(<i>C</i>)	1	(X)
data 1	data 2	data 3	data 4	LUT output
0	0	0	X	0
0	0	1	X	1
0	1	0	X	0
0	1	1	X	0
1	0	0	X	0
1	0	1	X	0
1	1	0	X	1
1	1	1	X	0

Figure 5.59 LE configuration for two functions of up to four inputs each

(<i>A</i>)	(<i>B</i>)			(Y)
data 1	data 2	data 3	data 4	LUT output
0	0	X	X	0
0	1	X	X	0
1	0	X	X	1
1	1	X	X	0

Sequential Logic Circuits

Sequential Logic Circuits

- We have examined designs of circuit elements that can store information
- Now, we will use these elements to build circuits that remember past inputs

CombinationalOnly depends on current inputs

SequentialOpens depending on past inputs

State

- In order for this lock to work, it has to keep track (remember) of the past events!
- If passcode is R13-L22-R3, sequence of states to unlock:
 - A. The lock is not open (locked), and no relevant operations have been performed
 - B. Locked but user has completed R13
 - C. Locked but user has completed R13-L22
 - D. Unlocked: user has completed R13-L22-R3

- The state of a system is a snapshot of all relevant elements of the system at the moment of the snapshot
 - □ To open the lock, states A-D must be completed in order
 - ☐ If anything else happens (e.g., L5), lock **returns** to state A

State Diagram of Our Sequential Lock

Completely describes the operation of the sequential lock

We will understand "state diagrams" fully later today

Another Simple Example of State

- A standard Swiss traffic light has 4 states
 - A. Green
 - B. Yellow
 - C. Red
 - D. Red and Yellow

The sequence of these states are always as follows

Changing State: The Notion of Clock (I)

- When should the light change from one state to another?
- We need a clock to dictate when to change state
 - Clock signal alternates between 0 & 1

CLK: 0

- At the start of a clock cycle (), system state changes
 - During a clock cycle, the state stays constant
 - In this traffic light example, we are assuming the traffic light stays in each state an equal amount of time

Changing State: The Notion of Clock (II)

- Clock is a general mechanism that triggers transition from one state to another in a sequential circuit
- Clock synchronizes state changes across many sequential circuit elements
- Combinational logic evaluates for the length of the clock cycle
- Clock cycle should be chosen to accommodate maximum combinational circuit delay
 - More on this later, when we discuss timing (Lecture 8)

Finite State Machines

Finite State Machines

- What is a Finite State Machine (FSM)?
 - A discrete-time model of a stateful system
 - Each state represents a snapshot of the system at a given time
- An FSM pictorially shows
 - 1. the set of all possible **states** that a system can be in
 - 2. how the system transitions from one state to another
- An FSM can model
 - A traffic light, an elevator, fan speed, a microprocessor, etc.
- An FSM enables us to pictorially think of a stateful system using simple diagrams

Finite State Machines (FSMs) Consist of:

Five elements:

- 1. A **finite** number of states
 - State: snapshot of all relevant elements of the system at the time of the snapshot
- 2. A finite number of external inputs
- 3. A finite number of external outputs
- 4. An explicit specification of all state transitions
 - How to get from one state to another
- 5. An explicit specification of what determines each external output value

Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
 - next state logic
 - state register
 - output logic

At the beginning of the clock cycle, next state is latched into the state register

Finite State Machines (FSMs) Consist of:

Sequential circuits

- State register(s)
 - Store the current state and
 - Load the next state at the clock edge

Combinational Circuits

- Next state logic
 - Determines what the next state will be

- Output logic
 - Generates the outputs

Finite State Machines (FSMs) Consist of:

Sequential circuits

- State register(s)
 - Store the current state and
 - Load the next state at the clock edge

Combinational Circuits

- Next state logic
 - Determines what the next state will be

- Output logic
 - Generates the outputs

State Register Implementation

- How can we implement a state register? Two properties:
 - 1. We need to store data at the **beginning** of every clock cycle

2. The data must be available during the entire clock cycle

The Problem with Latches

- Currently, we cannot simply wire a clock to WE of a latch
 - Whenever the clock is high, the latch propagates D to Q
 - The latch is transparent

The Problem with Latches

- Currently, we cannot simply wire a clock to WE of a latch
 - Whenever the clock is high, the latch propagates D to Q
 - The latch is transparent

The Problem with Latches

How can we change the latch, so that

- 1) D (input) is observable at Q (output) only at the beginning of next clock cycle?
- 2) Q is available for the full clock cycle

The Need for a New Storage Element

- To design viable FSMs
- We need storage elements that allow us
 - to read the current state throughout the current clock cycle

AND

 not write the next state values into the storage elements until the beginning of the next clock cycle.

The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

- When the clock is low, master propagates D to the input of slave (Q unchanged)
- Only when the clock is high, slave latches D (Q stores D)
 - □ At the rising edge of clock (clock going from 0->1), Q gets assigned D

The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

We can use these Flip-Flops to implement the state register!

- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

Rising-Clock-Edge Triggered Flip-Flop

Two inputs: CLK, D

Function

- The flip-flop "samples" D on the rising edge of CLK (positive edge)
- When CLK rises from 0 to 1, **D** passes through to **Q**
- Otherwise, Q holds its previous value
- Q changes only on the rising edge of CLK
- A flip-flop is called an edge-triggered state element because it captures data on the clock edge
 - A latch is a level-triggered state element

D Flip-Flop Based Register

Multiple parallel D flip-flops, each of which storing 1 bit

A 4-Bit D-Flip-Flop-Based Register (Internally)

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state

Moore FSM

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs
 Moore FSM

Finite State Machine Example

- "Smart" traffic light controller
 - 2 inputs:
 - Traffic sensors: T_A, T_B (TRUE when there's traffic)
 - 2 outputs:
 - Lights: L_A , L_B (Red, Yellow, Green)
 - State can change every 5 seconds
 - Except if green and traffic, stay green

From H&H Section 3.4.1

Finite State Machine Black Box

Inputs: CLK, Reset, T_A, T_B

Outputs: L_A, L_B

Finite State Machine Transition Diagram

Moore FSM: outputs labeled in each state

States: Circles

Transitions: Arcs

Finite State Machine Transition Diagram

Moore FSM: outputs labeled in each state

States: Circles

Transitions: Arcs

Finite State Machine Transition Diagram

Moore FSM: outputs labeled in each state

States: Circles

Transitions: Arcs

Finite State Machine Transition Diagram

Moore FSM: outputs labeled in each state

States: Circles

Transitions: Arcs

Finite State Machine Transition Diagram

Moore FSM: outputs labeled in each state

States: Circles

Transitions: Arcs

Finite State Machine: State Transition Table

Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	
S0	1	X	
S1	X	X	
S2	X	0	
S2	X	1	
S3	X	X	

Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Currer	it State	Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Current State		Inputs		Next State	
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

C		_	7
3	1	_	-

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	it State	Inputs		Next	State
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	it State	Inputs		Next	State
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

$$S'_0 = ?$$

State	Encoding		
S0	00		
S1	01		
S2	10		
S3	11		

Current State		Inputs		Next State	
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Current State		Inputs		Next State	
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

 $S'_1 = S_1 \text{ xor } S_0$ (Simplified)

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Finite State Machine: Output Table

Currer	ıt State	Outputs		
S_1	S_0	L_{A}	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Curren	it State	Outputs		
S_1	S_0	L_A	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Output	Encoding
green	00
yellow	01
red	10

Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

L_{A1}	=	S_1
----------	---	-------

Output	Encoding
green	00
yellow	01
red	10

Curren	Current State		Out	puts	
S_1	S_0	L_{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

L_{A1}	=	S_1	
L_{A0}	=	$\overline{S_1}$	$\cdot S_0$

Output	Encoding
green	00
yellow	01
red	10

Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1	
$L_{A0} =$	$\overline{S_1}$	S_0
$L_{B1} =$	$\overline{S_1}$	

Output	Encoding		
green	00		
yellow	01		
red	10		

Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1	
$L_{A0} =$	$\overline{S_1}$	S_0
$L_{B1} =$	$\overline{S_1}$	
$L_{B0} =$	S_1	S_0

Output	Encoding
green	00
yellow	01
red	10

Finite State Machine: Schematic

FSM Schematic: State Register

FSM Schematic: State Register

state register

FSM Schematic: Next State Logic

$$S'_1 = S_1 \times S_0$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

FSM Schematic: Output Logic

$$L_{A1} = \underline{S_1}$$

$$L_{A0} = \underline{S_1} \cdot S_0$$

$$L_{B1} = \overline{S_1}$$

$$L_{B0} = S_1 \cdot S_0$$

CLK_

Reset_

 T_A_-

 T_B _

 ${\rm S'}_{\rm 1:0}^{-}_{-}$

1.0 =

 $\mathrm{S}_{\scriptscriptstyle{1:0}}\,{}^-_{\scriptscriptstyle{-}}$

L_{A1:0} _

L_{B1:0} _

This is from H&H Section 3.4.1

See H&H Chapter 3.4

Finite State Machine: State Encoding

FSM State Encoding

- How do we encode the state bits?
 - □ Three common state binary encodings with different tradeoffs
 - 1. Fully Encoded
 - 2. 1-Hot Encoded
 - 3. Output Encoded
- Let's see an example Swiss traffic light with 4 states
 - Green, Yellow, Red, Yellow+Red

FSM State Encoding (II)

1. Binary Encoding (Full Encoding):

- Use the minimum number of bits used to encode all states
 - Use *log₂(num_states)* bits to represent the states
- Example states: 00, 01, 10, 11
- Minimizes # flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:

- Each bit encodes a different state
 - Uses num_states bits to represent the states
 - Exactly 1 bit is "hot" for a given state
- Example states: 0001, 0010, 0100, 1000
- Simplest design process very automatable
- Maximizes # flip-flops, minimizes next state logic

FSM State Encoding (III)

3. Output Encoding:

- Outputs are directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
 - Bit₀ encodes green light output,
 - Bit₁ encodes **yellow** light output
 - Bit₂ encodes red light output
- Minimizes output logic
- Only works for Moore Machines (output function of state)

FSM State Encoding (III)

3. Output Encoding:

Outputs are directly accessible in the state encoding

The designer must carefully choose an encoding scheme to optimize the design under given constraints

- Minimizes output logic
- Only works for Moore Machines (output function of state)

Moore vs. Mealy Machines

Recall: Moore vs. Mealy FSMs

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs

 Moore FSM

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM

Moore vs. Mealy FSM Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.

Moore FSM

Design Moore and Mealy FSMs of the snail's brain.

CLK inputs + state state output state - outputs logic logic Mealy FSM CLK next k state next output inputs state outputs state logic logic

State Transition Diagrams

What are the tradeoffs?

Mealy FSM

FSM Design Procedure

- Determine all possible states of your machine
- Develop a state transition diagram
 - Generally this is done from a textual description
 - You need to 1) determine the inputs and outputs for each state and
 2) figure out how to get from one state to another

Approach

- Start by defining the reset state and what happens from it this is typically an easy point to start from
- Then continue to add transitions and states
- Picking good state names is very important
- Building an FSM is **like** programming (but it *is not* programming!)
 - An FSM has a sequential "control-flow" like a program with conditionals and goto's
 - The if-then-else construct is controlled by one or more inputs
 - The outputs are controlled by the state or the inputs
- In hardware, we typically have many concurrent FSMs

What is to Come: LC-3 Processor

Figure 4.3 The LC-3 as an example of the von Neumann model

What is to Come: LC-3 Datapath

Digital Design & Computer Arch.

Lecture 6: Sequential Logic Design

Prof. Onur Mutlu

ETH Zürich
Spring 2021
12 March 2021

Backup Slides: Different Types of Flip Flops

Enabled Flip-Flops

- Inputs: CLK, D, EN
 - □ The enable input (EN) controls when new data (D) is stored
- Function:
 - EN = 1: D passes through to Q on the clock edge
 - □ **EN** = **0**: the flip-flop retains its previous state

Resettable Flip-Flop

- **Inputs:** CLK, D, Reset
 - The Reset is used to set the output to 0.
- Function:
 - \square **Reset** = 1: Q is forced to 0
 - Reset = 0: the flip-flop behaves like an ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - Asynchronous: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Synchronously resettable flip-flop?

Settable Flip-Flop

- Inputs: CLK, D, Set
- Function:
 - □ **Set** = **1**: Q is set to 1
 - □ **Set** = **0**: the flip-flop behaves like an ordinary D flip-flop

