Point Cloud Generation

Mohit Rajan Nandini Menon Pooja Sivakumar Sanjay Govind November 6, 2018

FISAT

Abstract

Abstract

This project is to generate a point cloud and visualize it $% \left(1\right) =\left(1\right) \left(1\right)$

Objective

A two joint robotic arm with a sensor attached sweeps 360° and generates a point cloud and visualizes it.

Introduction

Introduction

- \bullet A 2 joint robot with a ultrasonic sensor as end effector sweeps 360°
- The sensor detects the distance from the obstacles present and we calculate the x, y and z coordinates .
- The coordinates are compiled and stored as point cloud data ,these points are plotted and visualized using point cloud library.

Proof of Concept

Proof of concept

ARM

The robot with the sensor as end effector controlled by arduino was build in references with Uarm-ROB

Formula to calculate coordinates of obstacles

- Since the mentioned robotic arm is of simple structure with two joints
- Assume that I,r are the lengths of the two links and Θ and ϕ are their joint angles.
- Considering the 3-dimensional space with x,y and z axes and accordingly changing the views(top view,front view),we can arrive at these relations

Proof of concept

$$x = r cos\Theta cos\phi \tag{1}$$

$$y = I + r sin\Theta \tag{2}$$

$$z = rcos\Thetasin\phi \tag{3}$$

Proof of concept

• From these equations, the joint angles can be determined as

$$\Theta = \sin^{-1}((y - I)/r) \tag{4}$$

$$\phi = \tan^{-1}(z/x) \tag{5}$$

Design

Design

Data Flow Diagram

Level 1

Level 2

