Приемането на хипотезата означава, че с вероятност 1- α между няма корелационна зависимост, а отхвърлянето – че има корелационна зависимост.

Същият тест се прилага и при проверка на хипотезата за значимост на ранговия коефициент на корелация, т.е. за отхвърляне или приемане на рангова корелационна зависимост

Пример. 35.1. В конни състезания състезателните коне, които са номерирани съгласно ръста си, са заели следните места: 6, 5, 1, 4, 2, 7, 8, 10, 3, 9. С ниво на значимост α =0,05 да се провери хипотезата, че няма рангова корелационна зависимост между ръста и мястото, което състезателният кон е заел ($H_0 = \{r_s = 0\}$).

Решение. Означаваме с x_i номерата на конете съгласно ръста им, а с y_i - местата им в класирането. Очевидно, x_i са ранговете на теглата на конете, а y_i -ранговете на времената им за изминаване на разстоянието.

Пресмятаме ранговия коефициент:

$$r_s = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} (x_i - y_i)^2 = 1 - \frac{6}{990} [5^2 + 3^2 + 2^2 + 3^2 + 1^2 + 1^2 + 2^2 + 6^2 + 1^2] = 0,4545$$

Изчисляваме наблюдаваната стойност:

$$t_{\mathsf{Ha6n.}} = \frac{r_s \sqrt{n-2}}{\sqrt{1-r_s^2}} = \frac{0.45.\sqrt{8}}{\sqrt{1-0.45^2}} = \frac{1.273}{0.893} = 1.42.$$

От таблицата за *t*-разпределението изчисляваме

$$t_{\text{Kp.}} = t_{1-\frac{\alpha}{2}}(10-2) = t_{0,975}(8) = 2,31$$
.

Тъй като $|t_{\rm Ha6D.}| < t_{\rm Kp.}$, то нямаме основание да отхвърлим хипотезата H_0 , т.е. няма рангова корелационна зависимост между ръста и мястото на класиране.

Упражнения.

- 1. За изследването на променливите X и Y е получена извадката $\frac{x_i}{y_i} \begin{vmatrix} -1 & 2 & 2 & 3 & 6 \\ 0 & -1 & 2 & 4 & 8 \end{vmatrix}$. Да се представят графически резултатите, да се намери точкова и интервална оценка с доверителна вероятност 0,99 на коефициента на корелация.
- 2. Направени са следните наблюдения $\frac{X}{Y} \begin{vmatrix} 2 & 4 & 7 & 6 & 8 \\ 2 & 12 & 16 & 18 & 21 \end{vmatrix}$ на променливите X и Y, за които се предполага, че са нормално разпределени случайни

величини. Да се провери хипотезата за корелираност на величините .

36. Елементи на регресионния анализ. Метод на най-малките квадрати за намиране на линията на регресия.

Регресионният анализ изучава зависимости между две непрекъснати величини X и Y като, за разлика от корелационния анализ, се прилага при изучаване на зависимости, близки до функционалните, т.е. когато едната величина (Y) се влияе от стойността, която е приела другата величина. Величината X може и да не бъде случайна. За величината Y предполагаме, че има случаен характер, обусловен от грешки на измерването или от други неизвестни причини.

Много често зависимостта на Y, се изразява в това, че средната й стойност зависи от стойността x, която е приела величината X, т.е.

$$E(Y|X=x)=E(Y|x)=f(x)$$
,

където f(x) е функция, дефинирана за всяка възможна стойност x на величината X. В такъв случай казваме, че Y зависи регресионно от X, а функцията f(x) се нарича регресия на Y от X. (виж §18). Тогава може да представим Y във вида

$$Y = f(X) + E (36.1)$$

където E случайна величина, отразяваща отклонението на Y от средната й стойност.

Случаи на регресионна зависимост са:

- средната стойност на кръвното налягане от възрастта на индивида.
- количеството продадена минерална вода от температурата,
- средния добив от декар от количеството на валежите.

Основни задачи на регресионния анализ:

- Определяне на вида на зависимостта между променливите.
- Намиране на функцията на регресия.
- Определяне на доверителни интервали и проверка на надеждността на регресионния модел.
- Прилагане на регресионния модел за предвиждане на изменението на Y.

Уравнение на линейната регресия. Да предположим, че регресионната зависимост на Y от X е линейна, т.е. $f(x) = \alpha_1 x + \alpha_0$.

Нека е получена извадката $(x_i, y_i), (i=1,...,n)$. Тогава математическото очакване на Y при $X=x_i$ е $E(Y|x_i)=\alpha_1x_i+\alpha_0$, а

$$\varepsilon_i = y_i - (\alpha_1 x_i + \alpha_o) \tag{36.2}$$

е отколонението на наблюдаваната стойност y_i от него (фиг.36.1), което съгласно предположението се дължи на случайни фактори. Като приемаме, че е малко вероятно ε_i да бъде голямо, търсим такава линейна функция $y=a_1x+a_0$, която най-добре да апроксимира данните,

т.е. да минимизира разликите (36.2). Коефициентите a_1 и a_0 ще бъдат оценки на коефициентите a_1 и a_0 на линейната регресия.

Фиг. 36.1.

Намирането на линейната функция $y = a_1 x + a_0$ ще извършим по метода на най-малките квадрати, който се състои в следното:

За произволни a_1 и a_0 образуваме сумата от квадратите на разстоянията (36.2) между точката (x_i,y_i) и точката $(x_i,a_1x_i+a_o)$ от правата:

$$S(a_1,a_0) = \sum_{i=1}^{n} (a_1x_i + a_0 - y_i)^2$$
.

Коефициентите a_1 и a_0 определяме като стойностите, при които $S(a_1,a_0)$ има минимум, условието за което е частните производни на функцията $S(a_1,a_0)$ спрямо променливите a_1 и a_0 да се анулират, т.е.

$$\begin{vmatrix} \frac{\partial S}{\partial a_1} = 2\sum_{i=1}^n (a_1 x_i + a_0 - y_i).(x_i) = 0 \\ \frac{\partial S}{\partial a_0} = 2\sum_{i=1}^n (a_1 x_i + a_0 - y_i) = 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} a_1 \sum_{i=1}^n x_i^2 + a_0 \sum_{i=1}^n x_i = \sum_{i=1}^n x_i y_i \\ a_1 \sum_{i=1}^n x_i + na_0 = \sum_{i=1}^n x_i \end{vmatrix}$$

Като разделим всяко от уравненията на n, получаваме $\begin{vmatrix} a_1\overline{x^2}+a_0\overline{x}=\overline{xy}\\a_1\overline{x}+a_0=\overline{y} \end{vmatrix}$

От второто уравнение изразяваме $\,a_0 = \overline{y} - a_1 \overline{x}\,$, а от първото намираме

$$a_1 = \frac{\overline{xy} - \overline{x}.\overline{y}}{\overline{x^2} - (\overline{x})^2}$$
.

Следователно,

уравнението на линейната регресия на Y от X е

$$y = a_1 x + a_0$$
, където $a_1 = \frac{s_{xy}}{s_x^2}$, $a_0 = \overline{y} - a_1 \overline{x}$. (36.3)

Уравнението на линейната регресия се преобразува по следния начин:

$$y - \overline{y} = \frac{s_{xy}}{s_x^2} (x - \overline{x}) \Leftrightarrow \boxed{\frac{y - \overline{y}}{s_y} = r_{xy} \frac{x - \overline{x}}{s_x}}, \qquad r_{xy} = \frac{s_{xy}}{s_x s_y}$$

където r_{xy} е коефициентът на извадъчната корелация. От тук следва, че

регресионната права минава през центъра $(\overline{x},\overline{y})$ на извадката, а $a_1 = \frac{s_{xy}}{s_x^2} = \mathrm{tg} \varphi$ е ъгловият й коефициент (характреризира наклона на правата).

По същия начин се получава и уравнението на <u>линейната регресия на X от Y, като тук получаваме уравнението във вида</u>

$$x = b_1 y + b_0$$
, $b_1 = \frac{s_{xy}}{s_y^2}$, $b_0 = \overline{x} - b_1 \overline{y}$,

и то може да бъде записано и във вида $\frac{x-\overline{x}}{s_x} = r_{xy} \frac{y-\overline{y}}{s_y}$.

Методът на най-малките квадрати се използва за намиране на линията на регресия и в общия случай, когато се търси друг вид зависимост между X и Y. Видът на зависимостта y = f(x) предварително се определя, например,

 $f(x)=a_0+a_1x+a_2x^2$, $f(x)=a_0+a_1\sin x+a_2\cos x$, $f(x)=a_0+a_1e^x$, т.е. $f(x)=f(x,a_0,a_1,...,a_s)$, където неизвестните коефициенти a_0 , a_1 ,..., a_s се определят от като точката $(a_0,a_1,...,a_s)$, за която функцията

$$S(a_0, a_1, ..., a_s) = \sum_{i=1}^{n} [y_i - f(x_i, a_0, ..., a_s)]^2$$

има минимум. Системата, от която определяме a_0 , a_1 ,..., a_s , е

$$\frac{\partial S}{\partial a_0} = 0, \ \frac{\partial S}{\partial a_1} = 0, \dots \frac{\partial S}{\partial a_s} = 0.$$

Например, за намиране на квадратна регресия $f(x)=a_0+a_1x+a_2x^2$ на Y от X, коефициентите a_0 , a_1 , a_2 се определят от системата:

$$\begin{vmatrix} a_0 n + a_1 \sum x_i + a_2 \sum x_i^2 = \sum y_i \\ a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3 = \sum x_i y_i \\ a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4 = \sum x_i^2 y_i \end{vmatrix}$$
 (36.4)

Пример. 36.1. Установено е, че щурците свирят, като бързо търкат крилцата си. Изследва се зависимостта между честотата X (брой на трептения за сек) и температурата Y (в градуси) на въздуха. Получена е извадката:

Да се намери уравнението на линейната регресия. Ако имаме уред за мерене на честотата на трептенията и той отчита $x\!=\!19$, колко градуса е температурата на въздуха?

Решение. Изчисленията са представени в таблицата, последният ред на която е получен чрез сумиране по стълбове.

x_i	y_i	x_i^2	$x_i y_i$
20	31,67	400	633,4
16	22,22	256	355,52
20	33,89	400	677,8
18	28,89	324	520,02
17	27,22	289	462,74
16	23,89	256	382,24
15	21,11	225	316,65
17	27,78	289	472,26
15	20,56	225	308,4
16	28,33	256	453,28
15	26,67	225	400,05
17	28,33	289	481,61
16	27,22	256	435,52
17	28,89	289	491,13
14	24,44	196	342,16
249	401,11	4175	6732,78

Тогава:

$$\bar{x} = \frac{249}{15} = 16,6$$
, $\bar{y} = \frac{401,11}{15} = 26,74$.

$$s_x^2 = \overline{x^2} - (\overline{x})^2 = \frac{4175}{15} - 16,6^2 = 2,78.$$

$$s_{xy} = \overline{xy} - \overline{x}.\overline{y} = \frac{6732,78}{15} - 16,6.26,74 = 13,00$$

Следователно, $a_1 = \frac{13}{2,78} = 1,78$, $a_0 = 26,74 - 1,78.16,6 = -2,93$, откъдето

$$y=1,78x-2,93$$
. (фиг. 36.2)

Като положим x=19, получаваме $y=31{,}03^0$, т.е. може да считаме, че температурата на въздуха е 31^0 .

Фиг. 36.2.

Забележка. 36.1. В пример **36.1.** имаме случай, когато и двете изследвани величини са случайни.

Пример 36.2. Да се намери уравнението на квадратичната регресионна зависимост по данните

Решение: За получим системата (36.4) за коефициентите a_0 , a_1 , a_2 на квадратната функция $f(x) = a_0 + a_1 x + a_2 x^2$ извършваме пресмятанията като използваме дадената по-долу таблица.:

$$\sum x_i = 0, \quad \sum x_i^2 = 10, \quad \sum x_i^3 = 0, \quad \sum x_i^4 = 34$$
$$\sum y_i = 1.5, \quad \sum x_i y_i = -0.7, \quad \sum x_i^2 y_i = 8.3.$$

x_i	y_i	x_i^2	x_i^3	x_i^4	$x_i y_i$	$x_i^2 y_i$
-2	1,2	4	-8	16	-2,4	4,8
-1	0,1	1	-1	1	-0,1	0,1
0	-0,8	0	0	0	0	0
1	0,2	1	1	1	0,2	0,2
2	0,8	4	8	16	1,6	3,2
0	1,5	10	0	34	-0,7	8,3

Така получаваме

$$5a_0+10a_2=1.5$$
 $10a_1=-0.7$ с решение $a_0=0.03,\ a_1=-0.07,\ a_2=-0.46$, $10a_0+34a_1=8.3$

Следователно, $v = 0.3x^2 - 0.07x - 0.46$ (фиг. 36.3)

фиг.36.3.

37. Статистически анализ на уравнението на линейната регресия.

В този параграф ще разгледаме адекватността (съответствието с наличните данни) на получения регресионен модел.

В най-простия случай на линейна регресионна зависимост на Y от X, т.е. $EY = \alpha_1 X + \alpha_0$ (линейна регресия на Y от X) може да представим Y във вида

$$Y = \alpha_1 X + \alpha_0 + \epsilon, \tag{37.1}$$

(смутено уравнение на права), където $\mathfrak E$ е случайна величина, обусловена от случайни фактори, която определя отклонението на Y от математическто й очакване.

Пример 37.1. Нека Y е физична величина, която зависи линейно от величината X и нека измерваме Y при различни (неслучайни) стойности на X. Тогава:

- $\mathcal E$ е грешката от измерването. Ако измерването се провежда с един и същ уред, точността на който не зависи от стойността на X и не се правят систематични грешки, то $\mathcal E$ е случайна величина с нормално рапределение $N(0,\sigma)$ като средното квадратично отклонение не зависи от X и се определя от точността на измервателния уред.
- законът на величината Y е $N(EY,\sigma)$ като, съгласно предположението за съществуване на линейна регресионна зависимост, имаме $EY = \alpha_1 X + \alpha_0$.
- за предвидена стойност на Y при $X=x^*$ приемаме стойността $y^* = \alpha_1 x^* + \alpha_0$. Тази стойност съвпада с условното математическо очакване на Y при $X=x^*$. (фиг. 37.1). •

Ако коефициентите α_1 и α_0 не са известни, то по дадена извадка (x_i,y_i) , i=1,2,...,n намираме оценките им a_1 и a_0 съгласно формули (36.3). Очевидно, може да запишем аналогично на (37.1) съотношение (фиг.36.1) $y_i=a_1x_i+a_0+\varepsilon_i$, или $y_i=\hat{y}_i+\varepsilon_i$, където

$$\hat{y}_i = a_1 x_i + a_0 \tag{37.2}$$

е предвидената стойност на Y при $X = x_i$ според регресионния модел.

Ще получим извадъчните параметри на разпределението на величините \hat{y}_i - предвидените (според регресионния модел) стойности и ε_i - разликата между предвидениете и наблюдаваните стойности.

1. Събираемото $\varepsilon_i = y_i - \hat{y}_i$ отразява грешката, която се прави при замяна y_i с изчислената съгласно модела стойност \hat{y}_i и е наблюдавана стойност на величина ε , която се нарича грешка на регресията (на предвиждането). Тази величина се явява следствие както на случайни фактори, така и на неточността на коефициентите a_1 и a_0 .

Като имаме предвид формули (36.2), получаваме:

$$\overline{\varepsilon} = \frac{1}{n} \sum \varepsilon_i = \frac{1}{n} \sum (y_i - a_1 x_i - a_0) = \frac{1}{n} \sum y_i - \frac{1}{n} \sum a_1 x_i - \frac{1}{n} \sum a_0 = \frac{1}{n} \sum a_1 \overline{x} - a_0 = \overline{y} - a_1 \overline{x} - (\overline{y} - a_1 \overline{x}) = 0,$$

Извадъчната дисперсия s_{ε}^2 се нарича <u>остатъчна дисперсия</u>.

За нея получаваме (заместваме $\,a_0 = \overline{y} - a_1 \overline{x}\,$):

$$\begin{split} s_{\varepsilon}^2 &= \frac{1}{n} \sum (\varepsilon_i - \overline{\varepsilon})^2 = \frac{1}{n} \sum \varepsilon_i^2 = \frac{1}{n} \sum (y_i - a_1 x_i - a_0)^2 = \frac{1}{n} \sum [(y_i - \overline{y}) - a_1 (x_i - \overline{x})]^2 \\ &= \frac{1}{n} \sum (y_i - \overline{y})^2 - 2a_1 \cdot \frac{1}{n} \sum (y_i - \overline{y})(x_i - \overline{x}) + a_1^2 \cdot \frac{1}{n} \sum (x_i - \overline{x})^2 \\ &= s_y^2 - 2a_1 s_{xy} + a_1 \cdot s_x^2 = s_y^2 - 2\frac{s_{xy}}{s_x^2} s_{xy} + \left(\frac{s_{xy}}{s_x^2}\right)^2 s_x^2 = s_y^2 - \frac{s_{xy}^2}{s_x^2}, \end{split}$$

Като заместим $a_1 = \frac{s_{xy}}{s_x^2}$, получаваме следната фирмула за пресмятане

на остатъчната дисперсия:

$$s_{\varepsilon}^2 = s_{\nu}^2 - a_1 s_{x\nu} \quad - \tag{37.3}$$

2. Извадъчната средна на предвидените стойности \hat{y}_i намираме по формула (37.2):

 $\hat{\hat{y}} = \overline{y} - \overline{\varepsilon} = \overline{y}$ - средна стойност на предвиждането.

За средно квадратичното на \hat{y}_i (дисперсия на предвидените стойности) имаме:

$$s_{\hat{y}}^2 = \frac{1}{n} \sum (\hat{y}_i - \overline{\hat{y}})^2 = \frac{1}{n} \sum (\hat{y}_i - \overline{y})^2 = \frac{1}{n} \sum (a_1 x_i + \overline{y} - a_1 \overline{x} - \overline{y})^2 = a_1^2 \frac{1}{n} \sum (x_i - \overline{x})^2 = a_1^2 s_x^2$$

Тъй като $a_1 = \frac{s_{xy}}{s_x^2}$, то получаваме.

$$s_{\hat{y}}^2 = a_1^2 s_x^2 = a_1 s_{xy} \tag{37.4}$$

Като имаме предвид формула (37.3), заключаваме, че между общата дисперсия s_y^2 , остатъчната дисперция s_ε^2 и дисперсията s_y^2 връзката:

 $s_y^2 = s_\varepsilon^2 + s_y^2$

Тази формула има следното тълкувание:

Общата извадъчна дисперсия s_y^2 на зависимата величина Y се разпада на две събираеми:

- $s_{\varepsilon}^2 = s_y^2 a_1 s_{xy}$ остатъчна дисперсия (дисперсия на грешките на оценките), която е следствие от случайни фактори и грешки от измерванията или на изменението на неотчетени в регресионния модел фактори.
- $s_{\hat{y}}^2 = a_1 s_{xy}$ факторна дисперсия (дисперсия на предвидените стойности), която характеризира разсейването на предвидените стойности \hat{v}_i на Y около общата средна \overline{v} .

Забележка 37.1. За отношението $\frac{s_{\hat{y}}^2}{s_v^2}$, което се нарича <u>коефициент</u>

на детерминация имаме

$$\frac{s_{\hat{y}}^2}{s_y^2} = \frac{a_1 s_{xy}}{s_y^2} = \frac{s_{xy}^2}{s_y^2 s_x^2} = r_{xy}^2 .$$

В по-нататъчните разглеждания ще считаме, че за всяка стойност x на X законът на $\mathfrak E$ е $\mathfrak E \sim N(0,\sigma)$ (не зависи наблюдаваната стойност на X)

При това предположение, ако се въведат оценките:

$$\widetilde{s}_{arepsilon}^{\,2}=rac{n}{n-2}s_{arepsilon}^{\,2}$$
 - поправената остатъчна дисперсия на D С= σ^2 ,

$$\widetilde{s}_{\varepsilon} = \sqrt{\widetilde{s}_{\varepsilon}^2}$$
 - стандартна грешка на оценката (на регресията)

$$s_{a_1} = \frac{\widetilde{s_{\varepsilon}}}{s_{\star}\sqrt{n}}$$
 - стандартна грешка на наклона a_1

$$s_{a_0} = s_{a_1} \sqrt{x^2}$$
 - стандартна грешка на коефициента a_0

се установява, че статистиките $\frac{a_1-\alpha_1}{s_{a_1}}$ и $\frac{a_0-\alpha_0}{s_{a_0}}$ имат t-разпределение с n-2 степени на свобода. Следователно,

Доверителните интервали с доверителна вероятност γ за коефициентите α_1 и α_0 са съответно:

$$\begin{pmatrix} a_1 - t_{\frac{\gamma+1}{2}}(n-2)s_{a_1}; \ a_1 + t_{\frac{\gamma+1}{2}}(n-2)s_{a_1} \end{pmatrix} u$$

$$\begin{pmatrix} a_0 - t_{\frac{\gamma+1}{2}}(n-2)s_{a_0}; \ a_0 + t_{\frac{\gamma+1}{2}}(n-2)s_{a_0} \end{pmatrix},$$

където $t_{\frac{\gamma+1}{2}}(n-2)$ е квантилът от ред $\frac{\gamma+1}{2}$ на t-разпределението с n-1 степени на свобода.

Доверителен интервал за $X = x^*$, когато $x^* \in (x_{\min}, x_{\max})$ се получава по следния начин:

Доверителният интервал с доверителна вероятност γ за предвидената стойност v^* :

- 1) От уравнението на линейната регресия се изчислява оценката на предвиждането $\hat{y}^* = a_0 + a_1 x^*$.
- 2) Изчислява се статиситката

$$s_{y^*} = s_{\varepsilon} \sqrt{\frac{1}{n} \left(1 + \frac{(x^* - \overline{x})^2}{s_{\varepsilon}^2}\right)}$$
 (стандартна грешка на предиждането)

- 3) Намира се квантилът $t_{\frac{\gamma+1}{2}}(n-2)$.
- 4) Доверителният интервал е $y^* \in \left(\hat{y}^* t_{\frac{1+\gamma}{2}} s_{y^*}, \ \hat{y}^* + t_{\frac{1+\gamma}{2}} s_{y^*}\right)$

Пример. 37.2. По извадка с обем 17 са получени следните резултати:

$$\overline{x} = 55,77$$
, $\overline{y} = 59,55$, $\overline{x^2} = 3495,41$, $\overline{y^2} = 5021,41$, $\overline{xy} = 4068,53$.

Да се намерят оценки за параметрите на линейната регресия и доверителните им интервали с доверителна вероятност 0,95.

Решение. Изчисляваме

$$s_x^2 = 3495,41 - 55,77^2 = 358,12$$
, $s_y^2 = 5021,41 - 59,55^2 = 1475,26$, $s_{xy} = 4068,53 - 55,77.59,55 = 747,42$, $a_1 = \frac{747,42}{358,12} = 1,94$, $a_0 = 59,55 - 1,94.55,77 = -48,62$,

Уравнението на линейната регресия е $\hat{y} = 1,96x - 48,62$

Пресмятаме още $s_{\varepsilon}^2 = s_y^2 - a_1 s_{xy} = 25{,}26$ и $\widetilde{s}_{\varepsilon}^2 = \frac{n}{n-2} s_{\varepsilon}^2 = 28{,}63$,

$$\widetilde{s}_{\varepsilon} = \sqrt{28,63} = 5,36$$
, $s_{a_1} = \frac{\widetilde{s}_{\varepsilon}}{s_{\omega} \sqrt{n}} = \frac{5,36}{\sqrt{385,12} \sqrt{17}} = 0,066$

За определяне на доверителния интервал намираме квантила $t_{\frac{\gamma+1}{2}}(n-2)\!=\!t_{0.975}(15)\!=\!2,\!13$, следователно,

$$\alpha_1 \in (1,94-2,13.0,07, 1,94+2,13.0,07)$$
.

т.е. с вероятност 0,95 действителната стойност на наколна $\alpha_{\rm l}$ е число в интервала $(1,79;\ 2,09)$.

Пример 37.3. Фирма възнамерява да изразходва 6000 лв за реклама. За да се проучи как ще се отрази това на количеството на продажбите, са събрани следните данни за вложените в реклама пари X (в хиляди лв) и броя на продажбите (в хиляди)

- а) Да се намери линейната регресия на Y от X;
- б) Какъв е броят на продажбите без реклама на продукта?
- в) Какво количество продажби могат да се очакват, ако за реклама се вложат 6000 лв?
- г) да се намери доверителен интервал за предвиждания брой с доверителна вероятност 0,95

Решение. Пресмятаме:

$$\bar{x} = 7$$
, $\tilde{s}_x^2 = 20.8$, $\bar{y} = 44.8$, $\bar{s}_y^2 = 47.76$, $s_{xy} = 29$,

$$a_1 = \frac{s_{xy}}{s_x^2} = \frac{29}{20,8} = 1,395$$
, $a_0 = \overline{y} - a_1 \overline{x} = 35,042$, с което намираме

уравнението на линейната регресия $\hat{y} = 1,395x - 35,042$.

- б) Ако в уравнението на линейната регресия положим x=0, то получаваме, че продажбите без реклама са около 35000 броя.
- в) Изчисляваме $y^* = 1,395.6 + 35,042 = 43,406$. Следователно, очакваните продажби при вложени 6000 лв са 43400 броя.
- г) За да намерим стандартната грешка на предвиждането, пресмятаме
 - 1) остатъчната дисперсия: $s_{\varepsilon}^2 = s_{\nu}^2 a_1 s_{\nu\nu} = 47,76 1,395.29,8 = 6,189$,
 - 2) поправената остатъчна дисперсия $\widetilde{s}_{\varepsilon}^2 = \frac{n}{n-2} s_{\varepsilon}^2 = \frac{5}{3}.6,189 = 10,315$,
 - 3) стандартната грешка на регресията $\tilde{s}_{\varepsilon} = \sqrt{10,315} = 3,21$,
 - 4) стандартната грешка на предвиждането:

$$s_{y^*} = s_{\varepsilon} \sqrt{\frac{1}{n} \left(1 + \frac{(x^* - \overline{x})^2}{s_x^2} \right)} = 3.21 \sqrt{\frac{1}{5} (1 + \frac{(6 - 7)^2}{20.8})} = 3.21 \sqrt{1.25} = 3.589$$

- 5) От таблицата за t-разпределението с n-2=5-2=3 степени на свобода определяме квантила от ред $\frac{\gamma+1}{2}=\frac{0.95+1}{2}=0.975$: $t_{0.975}(3)=3.18$,
- 6) представителната грешка с доверителна вероятност 0,95 е $\delta=s_{_{V^*}}.t_{0,975}(3)=3,\!18.3,\!89=\!12,\!37$.
 - 7) Доверителният интервал е

$$v^* \in (43,406-12,37; 43,406+12,37) = (31,036; 55,706)$$
.

Следователно, очакваните продажби са между 31000 и 55700.

Упражнения (корелация и регресия):

- 1. За двумерната извадка $\frac{X \mid 8 \mid 10 \mid 5 \mid 8 \mid 9}{Y \mid 1 \mid 3 \mid 1 \mid 2 \mid 3}$
 - а) да се изчисли извадъчният коефициент на корелация;
- б) да се провери хипотезата за корелационна зависимост на Y и X. в) да се намери уравнението на линейната регресия на Y от X; г) да се изобраят графически данните и линията на регресия.
- 2. Извършени са 6 наблюдения на променливите X и Y , които са нанесени в таблицата $\frac{X}{Y} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 5 & 5 & 6 & 8 \end{vmatrix}$.
 - а) да се пресметне коефициентът на корелация;
- б) С ниво на значимост $\alpha = 0.05$ се провери хипотезата за значимост на корелационната зависимост между X и Y ($H_0 = \{ \rho_{xv} = 0 \}$ при $H_1 = \{ \rho_{xv} \neq 0 \}$).
- 3. Направени са следните наблюдения на величините X и Y и е получена извадката

Да се намери уравнението на регресия на Y от X и представи графично. Според получения регресионен модел да се изчисли каква стойност ще приеме Y, ако X=4,5.

4. Изследва се зависимостта между количеството тор X, употребено за единица площ и добива Y. Получени са следните данни :

Като се използва, че $\sum x_i^2 = 55$, $\sum y_i^2 = 8490$, $\sum x_i y_i = 666$, да се намери: а) уравнението на линейната регресия на Y от X. б) да се представят графически данните и линията на регресия; г) да се намери коефициентът на корелация и провери хипотезата за корелираност на X и Y с ниво на значимост α =0,1.

5. Направени са следните наблюдения на нормално разпределените величини

$$X$$
 и Y : $\frac{X \mid 2}{Y \mid 2} \frac{4}{12} \frac{7}{16} \frac{6}{18} \frac{8}{21}$. Да се намери:

- а) уравнението на регресия на Y от X;
- б) каква стойност ще получи величината Y, ако X = 5; в) доверителен интервал за получената стойност с доверителна вероятност 0.95.
- 6. Изследва се зависимостта от броя X на работниците във фирма и стойността (в хиляди левове) на сключените договори. Получена е следната извадка:

- а) да се намери уравнението на линейната регресия на X от Y;
- б) да се изчисли извадъчният коефициент на корелация; в) да се изобразят графически данните и линията на регресия.

приложения

Стойности на функцията F(x) на разпределение на стандартна нормална величина (Z-разпределение)

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
, $F(-x) = 1 - F(x)$

Пример: F(1.96) = 0.975002

1.96										
	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,500000	0,503989	0,507978	0,511966	0,515953	0,519939	0,523922	0,527903	0,531881	0,535856
0,1	0,539828	0,543795	0,547758	0,551717	0,555670	0,559618	0,563559	0,567495	0,571424	0,575345
0,2	0,579260	0,583166	0,587064	0,590954	0,594835	0,598706	0,602568	0,606420	0,610261	0,614092
0,3	0,617911	0,621720	0,625516	0,629300	0,633072	0,636831	0,640576	0,644309	0,648027	0,651732
0,4	0,655422	0,659097	0,662757	0,666402	0,670031	0,673645	0,677242	0,680822	0,684386	0,687933
0,5	0,691462	0,694974	0,698468	0,701944	0,705401	0,708840	0,712260	0,715661	0,719043	0,722405
0,6	0,725747	0,729069	0,732371	0,735653	0,738914	0,742154	0,745373	0,748571	0,751748	0,754903
0,7	0,758036	0,761148	0,764238	0,767305	0,770350	0,773373	0,776373	0,779350	0,782305	0,785236
0,8	0,788145	0,791030	0,793892	0,796731	0,799546	0,802337	0,805105	0,807850	0,810570	0,813267
0,9	0,815940	0,818589	0,821214	0,823814	0,826391	0,828944	0,831472	0,833977	0,836457	0,838913
1	0,841345	0,843752	0,846136	0,848495	0,850830	0,853141	0,855428	0,857690	0,859929	0,862143
1,1	0,864334	0,866500	0,868643	0,870762	0,872857	0,874928	0,876976	0,879000	0,881000	0,882977
1,2	0,884930	0,886861	0,888768	0,890651	0,892512	0,894350	0,896165	0,897958	0,899727	0,901475
1,3	0,903200	0,904902	0,906582	0,908241	0,909877	0,911492	0,913085	0,914657	0,916207	0,917736
1,4	0,919243	0,920730	0,922196	0,923641	0,925066	0,926471	0,927855	0,929219	0,930563	0,931888
1,5	0,933193	0,934478	0,935745	0,936992	0,938220	0,939429	0,940620	0,941792	0,942947	0,944083
1,6	0,945201	0,946301	0,947384	0,948449	0,949497	0,950529	0,951543	0,952540	0,953521	0,954486
1,7	0,955435	0,956367	0,957284	0,958185	0,959070	0,959941	0,960796	0,961636	0,962462	0,963273
1,8	0,964070	0,964852	0,965620	0,966375	0,967116	0,967843	0,968557	0,969258	0,969946	0,970621
1,9	0,971283	0,971933	0,972571	0,973197	0,973810	0,974412	0,975002	0,975581	0,976148	0,976705
2	0,977250	0,977784	0,978308	0,978822	0,979325	0,979818	0,980301	0,980774	0,981237	0,981691
2,1	0,982136	0,982571	0,982997	0,983414	0,983823	0,984222	0,984614	0,984997	0,985371	0,985738
2,2	0,986097	0,986447	0,986791	0,987126	0,987455	0,987776	0,988089	0,988396	0,988696	0,988989
2,3	0,989276	0,989556	0,989830	0,990097	0,990358	0,990613	0,990863	0,991106	0,991344	0,991576
2,4	0,991802	0,992024	0,992240	0,992451	0,992656	0,992857	0,993053	0,993244	0,993431	0,993613
2,5	0,993790	0,993963	0,994132	0,994297	0,994457	0,994614	0,994766	0,994915	0,995060	0,995201
2,6	0,995339	0,995473	0,995604	0,995731	0,995855	0,995975	0,996093	0,996207	0,996319	0,996427
2,7	0,996533	0,996636	0,996736	0,996833	0,996928	0,997020	0,997110	0,997197	0,997282	0,997365
2,8	0,997445	0,997523	0,997599	0,997673	0,997744	0,997814	0,997882	0,997948	0,998012	0,998074
2,9	0,998134	0,998193	0,998250	0,998305	0,998359	0,998411	0,998462	0,998511	0,998559	0,998605
3	0,998650	0,998694	0,998736	0,998777	0,998817	0,998856	0,998893	0,998930	0,998965	0,998999
3,1	0,999032	0,999065	0,999096	0,999126	0,999155	0,999184	0,999211	0,999238	0,999264	0,999289
3,2	0,999313	0,999336	0,999359	0,999381	0,999402	0,999423	0,999443	0,999462	0,999481	0,999499
3,3	0,999517	0,999534	0,999550	0,999566	0,999581	0,999596	0,999610	0,999624	0,999638	0,999651
3,4	0,999663	0,999675	0,999687	0,999698	0,999709	0,999720	0,999730	0,999740	0,999749	0,999758
3,5	0,999767	0,999776	0,999784	0,999792	0,999800	0,999807	0,999815	0,999822	0,999828	0,999835
3,6	0,999841	0,999847	0,999853	0,999858	0,999864	0,999869	0,999874	0,999879	0,999883	0,999888
3,7	0,999892	0,999896	0,999900	0,999904	0,999908	0,999912	0,999915	0,999918	0,999922	0,999925
3,8	0,999928	0,999931	0,999933	0,999936	0,999938	0,999941	0,999943	0,999946	0,999948	0,999950
3,9	0,999952	0,999954	0,999956	0,999958	0,999959	0,999961	0,999963	0,999964	0,999966	0,999967

168

167

Квантили на разпределението на Стюдънт (t-разпределение)

Пример: $t_{0,975}(8) = 2{,}306004133$ - квантил от ред $p = 0{,}975$ на t-разпределение с n = 8 степени на свобода

p n	0,900	0,950	0,975	0,990	0,995	
1	3,077683537	6,313751514	12,70620473	31,82051595	63,65674115	
2	1,885618083	2,91998558	4,30265273	6,964556734	9,9248432	
3	1,637744352	2,353363435	3,182446305	4,540702858	5,840909309	
4	1,533206273	2,131846782	2,776445105	3,746947388	4,604094871	
5	1,475884037	2,015048372	2,570581835	3,364929997	4,032142983	
6	1,439755747	1,943180274	2,446911846	3,142668403	3,70742802	
7	1,414923928	1,894578604	2,364624251	2,997951566	3,499483297	
8	1,39681531	1,859548033	2,306004133	2,896459446	3,355387331	
9	1,383028739	1,833112923	2,262157158	2,821437921	3,249835541	
10	1,372183641	1,812461102	2,228138842	2,763769458	3,169272672	
11	1,363430318	1,795884814	2,200985159	2,718079183	3,105806514	
12	1,356217334	1,782287548	2,178812827	2,680997992	3,054539586	
13	1,350171289	1,770933383	2,160368652	2,650308836	3,012275833	
14	1,345030375	1,761310115	2,144786681	2,624494064	2,976842734	
15	1,340605608	1,753050325	2,131449536	2,60248029	2,946712883	
16	1,336757167	1,745883669	2,119905285	2,583487179	2,920781621	
17	1,33337939	1,739606716	2,109815559	2,566933975	2,898230518	
18	1,330390944	1,734063592	2,100922037	2,552379618	2,878440471	
19	1,327728209	1,729132792	2,09302405	2,539483189	2,860934604	
20	1,325340707	1,724718218	2,085963441	2,527977001	2,845339707	
21	1,323187874	1,720742871	2,079613837	2,517648014	2,831359554	
22	1,321236742	1,717144335	2,073873058	2,50832455	2,818756056	
23	1,31946024	1,713871517	2,068657599	2,499866736	2,807335678	
24	1,317835934	1,710882067	2,063898547	2,492159469	2,796939498	
25	1,316345073	1,708140745	2,059538536	2,48510717	2,787435805	
26	1,314971864	1,705617901	2,055529418	2,478629817	2,778714523	
27	1,313702913	1,703288423	2,051830493	2,472659904	2,770682946	
28	1,312526782	1,701130908	2,048407115	2,467140089	2,763262442	
29	1,311433647	1,699126996	2,045229611	2,46202135	2,756385902	
30	1,310415025	1,697260851	2,042272449	2,457261531	2,749995652	
40	1,303077053	1,683851014	2,02107537	2,423256774	2,704459262	
50	1,298713694	1,675905026	2,008559072	2,403271907	2,677793261	
60	1,295821093	1,670648865	2,000297804	2,390119457	2,660283014	
70	1,293762898	1,66691448	1,994437086	2,38080746	2,647904603	
80	1,292223583	1,664124579	1,990063387	2,373868245	2,638690591	
100	1,290074761	1,660234327	1,983971466	2,364217356	2,625890514	
120	1,288646234	1,6576509	1,979930381	2,357824599	2,617421135	

Квантили на χ^2 -разпределение

Пример: $\chi^2_{0,95}(11)$ =19,67513757 - квантил от ред p=0,95 на χ^2 -

разпределение с n=11 степени на свобода.

p n	0,025	0,050	0,900	0,950	0,975	0,990	0,999
1	0,000982069	0,454936425	2,705543971	3,841459149	5,02388647	6,634896712	10,82756622
2	0,050635616	1,386294376	4,605170186	5,991464547	7,377758908	9,210340372	13,81551056
3	0,215795283	2,365973893	6,251388457	7,814727764	9,348403568	11,34486668	16,26623615
4	0,484418557	3,356694001	7,77944034	9,487729037	11,14328678	13,27670414	18,46682695
5	0,831211616	4,351460222	9,236356938	11,07049775	12,83250201	15,08627247	20,51500566
6	1,237344247	5,348120843	10,64464068	12,59158724	14,44937534	16,81189383	22,45774449
7	1,689869192	6,345811373	12,01703656	14,06714043	16,01276427	18,47530691	24,32188634
8	2,179730752	7,344121629	13,36156614	15,50731306	17,53454614	20,09023503	26,12448156
9	2,700389522	8,342832783	14,68365662	16,91897762	19,0227678	21,66599433	27,87716488
10	3,246972789	9,34181805	15,98717917	18,30703805	20,48317735	23,20925116	29,58829845
11	3,81574828	10,34099825	17,27500852	19,67513757	21,92004926	24,72497031	31,26413362
12	4,403788517	11,34032282	18,54934779	21,02606982	23,33666416	26,21696731	32,90949041
13	5,008750539	12,33975614	19,81192931	22,3620325	24,73560489	27,68824961	34,52817898
14	5,628726168	13,33927471	21,06414421	23,68479131	26,11894805	29,14123774	36,12327368
15	6,262137817	14,33885982	22,30712958	24,99579013	27,48839286	30,57791417	37,69729823
16	6,907664402	15,33849951	23,54182892	26,29622761	28,84535072	31,99992691	39,25235481
17	7,564186467	16,33818271	24,76903535	27,58711164	30,1910091	33,4086636	40,79021671
18	8,230746229	17,337903	25,9894231	28,86929943	31,52637844	34,80530572	42,31239633
19	8,906516548	18,33765323	27,20357106	30,14352721	32,85232686	36,19086911	43,82019596
20	9,590777511	19,33742983	28,41198058	31,41043286	34,16960691	37,56623475	45,31474662
21	10,28289782	20,33722858	29,61508943	32,67057337	35,47887591	38,93217269	46,79703804
22	10,98232081	21,33704534	30,81328234	33,92443852	36,7807121	40,28936044	48,26794229
23	11,68855204	22,3368793	32,00689967	35,17246163	38,07562727	41,63839812	49,72823246
24	12,40115026	23,33672677	33,19624426	36,4150285	39,36407706	42,97982015	51,17859777
25	13,1197201	24,33658743	34,38158698	37,65248413	40,64646916	44,31410491	52,61965576
26	13,8439051	25,33645925	35,56317121	38,88513865	41,92317015	45,64168268	54,05196237
27	14,57338291	26,3363399	36,74121675	40,11327205	43,19451096	46,96294214	55,47602018
28	15,30786062	27,3362301	37,91592255	41,33713813	44,46079183	48,27823579	56,89228537
29	16,04707179	28,3361282	39,08746978	42,55696777	45,7222858	49,5878845	58,30117346
30	16,79077241	29,33603221	40,25602376	43,77297178	46,97924223	50,89218135	59,70306426
40	24,43303947	39,33534592	51,80505719	55,75847932	59,34170704	63,69073973	73,40195753
50	32,35736408	49,33493921	63,16712082	67,50480652	71,42019524	76,15389117	86,66081523
60	40,48174843	59,33466815	74,39700583	79,08194439	83,29767502	88,37941893	99,60723316
70	48,75756563	69,33447649	85,52704303	90,53122518	95,02318414	100,4251843	112,3169318
80	57,1531735	79,33433312	96,57820347	101,8794741	106,6285676	112,3287926	124,839224
90	65,64661856	89,33422171	107,5650082	113,1452703	118,1358924	124,1163189	137,2083541
100	74,22192813	99,33413538	118,4980039	124,3421137	129,5611969	135,8067231	149,4492527

Критични точки на F-разпределението при ниво на значимост α =0,01 Пример: $F_{0,01}(9,~5)$ =6,057 - критична точка от ред α =0,01 със степени на свобода: n_1 =5 на числителя и n_2 =9 на знаменателя.

	свооода: $n_1 = 5$ на числителя и				$n_2 = 9$ на знаменателя.							
n_1 n_2	1	2	3	4	5	6	7	8	9	10	12	24
5	16,258	13,27	12,06	11,392	10,97	10,672	10,456	10,289	10,16	10,05	9,888	9,467
6	13,745	10,92	9,78	9,1483	8,746	8,4661	8,26	8,1017	7,976	7,874	7,718	7,313
7	12,246	9,547	8,451	7,8466	7,46	7,1914	6,9928	6,84	6,719	6,62	6,469	6,074
8	11,259	8,649	7,591	7,0061	6,632	6,3707	6,1776	6,0289	5,911	5,814	5,667	5,279
9	10,561	8,022	6,992	6,4221	6,057	5,8018	5,6129	5,4671	5,351	5,257	5,111	4,729
10	10,044	7,559	6,552	5,9943	5,636	5,3858	5,2001	5,0567	4,942	4,849	4,706	4,327
11	9,646	7,206	6,217	5,6683	5,316	5,0692	4,8861	4,7445	4,632	4,539	4,397	4,021
12	9,3302	6,927	5,953	5,412	5,064	4,8206	4,6395	4,4994	4,388	4,296	4,155	3,781
13	9,0738	6,701	5,739	5,2053	4,862	4,6204	4,441	4,3021	4,191	4,1	3,96	3,587
14	8,8616	6,515	5,564	5,0354	4,695	4,4558	4,2779	4,1399	4,03	3,939	3,8	3,427
15	8,6831	6,359	5,417	4,8932	4,556	4,3183	4,1415	4,0045	3,895	3,805	3,666	3,294
16	8,531	6,226	5,292	4,7726	4,437	4,2016	4,0259	3,8896	3,78	3,691	3,553	3,181
17	8,3997	6,112	5,185	4,669	4,336	4,1015	3,9267	3,791	3,682	3,593	3,455	3,084
18	6,0289	6,371	6,632	6,6318	7,006	7,0061	7,0061	7,0061	7,006	7,591	7,591	7,591
19	8,1849	5,926	5,01	4,5003	4,171	3,9386	3,7653	3,6305	3,523	3,434	3,297	2,925
20	8,096	5,849	4,938	4,4307	4,103	3,8714	3,6987	3,5644	3,457	3,368	3,231	2,859
21	8,0166	5,78	4,874	4,3688	4,042	3,8117	3,6396	3,5056	3,398	3,31	3,173	2,801
22	6,3707	6,371	6,371	6,3707	6,178	6,1776	6,1776	6,1776	6,178	6,178	6,178	6,178
23	7,8811	5,664	4,765	4,2636	3,939	3,7102	3,539	3,4057	3,299	3,211	3,074	2,702
24	7,8229	5,614	4,718	4,2184	3,895	3,6667	3,4959	3,3629	3,256	3,168	3,032	2,659
25	7,7698	5,568	4,676	4,1774	3,855	3,6272	3,4568	3,3239	3,217	3,129	2,993	2,62
26	7,7213	5,526	4,637	4,14	3,818	3,5911	3,421	3,2884	3,182	3,094	2,958	2,585
27	7,6767	5,488	4,601	4,1056	3,785	3,558	3,3882	3,2558	3,149	3,062	2,926	2,552
28	7,6356	5,453	4,568	4,074	3,754	3,5276	3,3581	3,2259	3,12	3,032	2,896	2,522
29	7,5977	5,42	4,538	4,0449	3,725	3,4995	3,3303	3,1982	3,092	3,005	2,869	2,495
30	6,1776	6,632	7,006	7,0061	7,591	7,591	7,591	7,591	7,591	7,591	8,649	8,649
40	7,3141	5,179	4,313	3,8283	3,514	3,291	3,1238	2,993	2,888	2,801	2,665	2,288
60	7,0771	4,977	4,126	3,649	3,339	3,1187	2,953	2,8233	2,719	2,632	2,496	2,115
80	6,9627	4,881	4,036	3,5631	3,255	3,0361	2,8713	2,742	2,637	2,551	2,415	2,032
100	6,8953	4,824	3,984	3,5127	3,206	2,9877	2,8233	2,6943	2,59	2,503	2,368	1,983
120	6,8509	4,787	3,949	3,4795	3,174	2,9559	2,7918	2,6629	2,559	2,472	2,336	1,95
∞	6,6351	4,605	3,782	3,3194	3,017	2,8022	2,6395	2,5115	2,408	2,321	2,185	1,791

Критични точки на F-разпределението при ниво на значимост $\,\alpha\!=\!0,\!05\,$ Пример: $\,F_{0,05}(9,\,5)\!=\!3,\!4817\,$ - критична точка от ред $\,\alpha\!=\!0,\!05\,$ със степени на свобода: $\,n_1\!=\!5\,$ на числителя и $\,n_2\!=\!9\,$ на знаменателя.

n_1 n_2	1	2	3	4	5	6	7	8	9	10	12	24
5	6,608	5,786	5,41	5,192	5,05	4,95	4,876	4,818	4,773	4,735	4,678	4,527
6	5,987	5,143	4,757	4,534	4,387	4,284	4,207	4,147	4,099	4,06	4	3,842
7	5,591	4,737	4,347	4,12	3,972	3,866	3,787	3,726	3,677	3,637	3,575	3,411
8	5,318	8,649	7,591	7,006	6,632	6,371	6,178	6,029	5,911	5,814	5,667	5,279
9	5,117	4,257	3,863	3,633	3,482	3,374	3,293	3,23	3,179	3,137	3,073	2,901
10	4,965	4,103	3,708	3,478	3,326	3,217	3,136	3,072	3,02	2,978	2,913	2,737
11	4,844	3,982	3,587	3,357	3,204	3,095	3,012	2,948	2,896	2,854	2,788	2,609
12	4,747	3,885	3,49	3,259	3,106	2,996	2,913	2,849	2,796	2,753	2,687	2,506
13	4,667	3,806	3,411	3,179	3,025	2,915	2,832	2,767	2,714	2,671	2,604	2,42
14	4,6	3,739	3,344	3,112	2,958	2,848	2,764	2,699	2,646	2,602	2,534	2,349
15	4,543	3,682	3,287	3,056	2,901	2,791	2,707	2,641	2,588	2,544	2,475	2,288
16	4,494	3,634	3,239	3,007	2,852	2,741	2,657	2,591	2,538	2,494	2,425	2,235
17	4,451	3,592	3,197	2,965	2,81	2,699	2,614	2,548	2,494	2,45	2,381	2,19
18	3,838	4,066	4,066	4,066	4,459	4,459	4,459	4,459	4,459	4,459	4,459	4,459
19	4,381	3,522	3,127	2,895	2,74	2,628	2,544	2,477	2,423	2,378	2,308	2,114
20	4,351	3,493	3,098	2,866	2,711	2,599	2,514	2,447	2,393	2,348	2,278	2,083
21	4,325	3,467	3,073	2,84	2,685	2,573	2,488	2,421	2,366	2,321	2,25	2,054
22	4,066	3,838	3,838	3,838	3,838	3,838	3,838	3,838	3,838	3,838	3,838	3,838
23	4,279	3,422	3,028	2,796	2,64	2,528	2,442	2,375	2,32	2,275	2,204	2,005
24	4,26	3,403	3,009	2,776	2,621	2,508	2,423	2,355	2,3	2,255	2,183	1,984
25	4,242	3,385	2,991	2,759	2,603	2,49	2,405	2,337	2,282	2,237	2,165	1,964
26	4,225	3,369	2,975	2,743	2,587	2,474	2,388	2,321	2,266	2,22	2,148	1,946
27	4,21	3,354	2,96	2,728	2,572	2,459	2,373	2,305	2,25	2,204	2,132	1,93
28	4,196	3,34	2,947	2,714	2,558	2,445	2,359	2,291	2,236	2,19	2,118	1,915
29	4,183	3,328	2,934	2,701	2,545	2,432	2,346	2,278	2,223	2,177	2,105	1,901
30	3,838	4,066	4,459	4,459	4,459	4,459	4,459	4,459	4,459	4,459	4,459	5,318
40	4,085	3,232	2,839	2,606	2,45	2,336	2,249	2,18	2,124	2,077	2,004	1,793
60	4,001	3,15	2,758	2,525	2,368	2,254	2,167	2,097	2,04	1,993	1,917	1,7
80	3,96	3,111	2,719	2,486	2,329	2,214	2,126	2,056	1,999	1,951	1,875	1,654
100	3,936	3,087	2,696	2,463	2,305	2,191	2,103	2,032	1,975	1,927	1,85	1,627
120	3,92	3,072	2,68	2,447	2,29	2,175	2,087	2,016	1,959	1,911	1,834	1,608
∞	3,842	2,996	2,605	2,372	2,214	2,099	2,01	1,938	1,88	1,831	1,752	1,517