The Order of the Symplectic Groups

Elliot Costi

February 2006

1

Theorem 1.1 If \mathbb{F}_q is finite then $|\operatorname{Sp}(2m,q)| = |q^{m^2}| \prod_{i=1}^m (q^{2i}-1)$ and $\operatorname{PSp}(2m,q) = |q^{m^2}| \prod_{i=1}^m (q^{2i}-1)$ $\frac{|\mathrm{Sp}(2m,q)|}{(2,q-1)}.$

PROOF: Let n=2m. Any one of the q^n-1 non-zero vectors of V will do for the first vector u om a hyperbolic pair. Now, $|q^{\perp}| = q^{n-1}$ and so there are $q^n - q^{n-1}$ choices of vector v such that $f(u,v) \neq 0$. Thus, there are $(q^n - q^{n-1})/(q-1) = q^{n-1}$ choices of v such that f(u,v)=1. Hence, there are $(q^n-1)q^{n-1}$ distinct hyperbolic pairs (number of choices of u times number of choices of v). If (u, v) is a hyperbolic pair and W is the hyperbolic plane with $\{u,v\}$ as a basis then $\sigma \in \operatorname{Stab}_{Sp(V)}((u,v))$ if and only if $\sigma|_W = 1_W$. As we saw in the proof that Sp(V) is primitive on $\mathbb{P}_{n-1}(V)$, we have that $\operatorname{Stab}_{Sp(V)} \cong \operatorname{Sp}(W^{\perp})$. Thus $|\operatorname{Sp}(n,q)| = (q^n-1)q^{n-1}|\operatorname{Sp}(n-2,q)|$ by the Orbit-Stabilizer Theorem. We now proceed by induction. When m = 1 (and so n = 2) we have that $|\operatorname{Sp}(2,q)| = |\operatorname{SL}(2,q)| = q(q^2 - 1)$. Assume inductively that $|\operatorname{Sp}(n-2,q)| = q^{(m-1)^2} \prod_{i=1}^{m-1} (q^{2i} - 1)$. Then, $|\operatorname{Sp}(n,q)| = q^{2m-1}(q^{2m} - 1)q^{(m-1)^2} \prod_{i=1}^{m-1} (q^{2i} - 1) = q^{m^2} \prod_{i=1}^{m} (q^{2i} - 1)$.