Scattering Spectroscopy of Plasmonic Janus Particles

Supplementary Material

Felix H. Patzschke, A. Markus Anton and *Frank Cichos

Orientation Definition

The orientation of the system is characterised by the angles between three unit vectors;

- \hat{k} , the propagation direction of the incident light, with respect to which scattering angles are defined,
- ô, the "forward" direction along the optical axis, equivalent to the central axis of the objective's collection cone and
- \hat{z} , the symmetry axis of the particle, oriented such that the Au cap lies in the positive and the PS side in the negative *z*-direction.

In terms of these, the out-of-plane orientation of the JP is defined as $\alpha := \measuredangle(\hat{o}, \hat{z})$. Similarly, we define the illumination angle $\zeta := \measuredangle(\hat{k}, \hat{z})$, which, in this model, is the only orientation parameter needed to define the light-matter interaction of the JP.

Scattering angles are defined for each plane-wave contribution to the scattered field: Let that contribution have a propagation direction \hat{k}' . Then, $\theta := \angle(\hat{k}', \hat{k})$ is the polar component of the scattering angle. Additionally, there is an azimuthal component ϕ , the choice of reference point for which being somewhat arbitrary. In the following, it will be chosen such that if \hat{k}' lies in the (\hat{k}, \hat{z}) plane, then $\phi = 0$.

These definitions are illustrated in [Figure].

Derivation of the probability density for the out-of-plane angle

The model JP is cylindrically symmetric. Therefore its orientation in space is completely described by the direction of its axis of symmetry, \hat{z} . For the random orientation, let \hat{z} be evenly distributed over \mathcal{S}^2 . For a PDF p_{Ω} w.r.t. the solid angle Ω , this means

$$\iint_{\mathcal{T}} p_{\Omega} \, d\Omega = \frac{\iint_{\mathcal{T}} d\Omega}{\iint_{S^2} d\Omega} \quad \forall \; \mathcal{T} \subseteq \mathcal{S}^2 \, .$$

 $\iint_{S^2} d\Omega$ is nothing else than the surface area of the unit sphere, 4π . Therefore,

$$\iint_{\mathcal{T}} p_{\Omega} \, \mathrm{d}\Omega = \frac{1}{4\pi} \, \iint_{\mathcal{T}} \mathrm{d}\Omega \quad \forall \, \mathcal{T} \subseteq \mathcal{S}^2 \,,$$

which implies that

$$p_{\Omega} = \frac{1}{4\pi}$$
.

Now, we parametrise S^2 in spherical coordinates (α, β) , where α is the polar coordinate and β is the azimuthal coordinate. The differential solid angle is

$$d\Omega = \sin\alpha \ d\alpha \ d\beta \ .$$

The PDFs w.r.t. these coordinates, p_{α} and p_{β} , must satisfy

a)
$$\int_0^\pi p_\alpha \; \mathrm{d}\alpha = 1$$

$$b) \qquad \int_0^{2\pi} p_\beta \; \mathrm{d}\beta = 1$$
 and c)
$$\iint_{\mathcal{T}} p_\alpha \cdot p_\beta \; \mathrm{d}\alpha \; \mathrm{d}\beta = \iint_{\mathcal{T}} p_\Omega \; \mathrm{d}\Omega \quad \forall \; \mathcal{T} \subseteq \mathcal{S}^2 \; .$$

From c), it follows that

$$p_{\alpha} \cdot p_{\beta} \, d\alpha \, d\beta = p_{\Omega} \, d\Omega$$

= $\frac{1}{4\pi} \sin \alpha \, d\alpha \, d\beta$.

Cancelling $d\alpha d\beta$ yields

$$p_{\alpha} \cdot p_{\beta} = \frac{1}{4\pi} \sin \alpha .$$

To separate p_{α} and p_{β} , let's assume that p_{α} and p_{β} are invariant w.r.t. β and α , respectively. Then, substitution in a) yields

$$\frac{1}{p_{\beta}} \int_{0}^{\pi} p_{\alpha} \cdot p_{\beta} \, d\alpha = 1$$

$$\frac{1}{4\pi p_{\beta}} \underbrace{\int_{0}^{\pi} \sin \alpha \, d\alpha}_{=2} = 1 \quad \therefore \quad p_{\beta} = \frac{1}{2\pi} ,$$

which also satisfies b). It follows that

$$p_{\alpha}=\frac{\sin\alpha}{2}.$$

Integration of the Far-Field Intensities

For a given incident wavelength and illumination angle, let the scattering intensity in the far-field be

$$I_{\text{far}}(\theta,\phi)$$
.

The data retrieved from the simulation are I_n , samples of I_{far} in points (θ_n, ϕ_n) on the unit sphere S^2 . To compute

$$\iint_{\mathcal{T}} I_{ ext{far}} \; \mathrm{d}\Omega pprox \sum_{n \mid (heta_n, \phi_n) \in \mathcal{T}} I_n \; \Delta\Omega_n$$
 ,

we must determine the values of $\Delta\Omega_n$. [TODO: Notation]

We project the spherical coordinates (θ_n, ϕ_n) into the Euclidean plane, obtaining the cartesian coordinates (x_n, y_n) . We then compute the Voronoi tesselation which maps each projected sample point (x_n, y_n) to an area element²

$$P_n = \left\{ (x, y) \in \mathbb{R}^2 \middle| \arg\min_{n'} \left(m_{\mathcal{E}} \left((x, y) - (x_{n'}, y_{n'}) \right) \right) = n \right\}$$

with the Euclidean metric $m_{\rm E}$. The area elements $\Delta\Omega_n$ are then given as

$$\Delta\Omega_n = \mu\left(P_n \cap \mathcal{T}\right) \cdot \tau\left(\theta_n, \phi_n\right)$$

where $\mu(\cdot)$ denotes the measure of a subset of \mathbb{R}^2 and τ is the area element transfer function associated with the chosen projection.

More Angular Distributions

¹The choice of projection is somewhat arbitrary, we chose the stereographic projection.

 $^{^{2}}$ the fact of which being a convex polygon being computationally convenient, yet analytically irrelevant

Figure 1: Scattering intensity of the JP versus scattering angle. **A** and **B** show the cylindrically symmetric cases of illumination from the PS side and from the Au side, respectively, i.e. where $\hat{k} \parallel \hat{z}$. In **C** and **D**, the light is incident side-on $(\hat{k} \perp \hat{z}, \zeta = \pi/2)$. The scattering intensities are taken from the (\hat{k}, \hat{y}) plane in **C** (note, that the system is still symmetric under inversion of y) and from the (\hat{k}, \hat{z}) plane, where spatial symmetry is entirely broken, in **D**. Here, the Au side lies in the positive θ direction.