Test Plot 1#: PTT FM 12.5 kHz_Face Up_136.0125 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 136.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 136.012 MHz; $\sigma = 0.752 \text{ S/m}$; $\varepsilon_r = 53.539$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.67, 7.67, 7.67); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (71x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.259 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.85 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.297 W/kg

SAR(1 g) = 0.226 W/kg; SAR(10 g) = 0.173 W/kg

Maximum value of SAR (measured) = 0.235 W/kg

0 dB = 0.235 W/kg = -6.29 dBW/kg

SAR Plots Plot 1#

Test Plot 2#: PTT FM 12.5 kHz_Face Up_143.9875 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 143.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143.988 MHz; $\sigma = 0.766$ S/m; $\varepsilon_r = 53.112$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.67, 7.67, 7.67); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.24 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 37.04 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.57 W/kg

SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.898 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

0 dB = 1.23 W/kg = 0.90 dBW/kg

SAR Plots Plot 2#

Test Plot 3#: PTT FM 12.5 kHz_Face Up_151 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 151 MHz; Duty Cycle: 1:1

Medium parameters used: f = 151 MHz; $\sigma = 0.783$ S/m; $\varepsilon_r = 52.737$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.67, 7.67, 7.67); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.608 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.43 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.622 W/kg

SAR(1 g) = 0.469 W/kg; SAR(10 g) = 0.358 W/kg

Maximum value of SAR (measured) = 0.489 W/kg

0 dB = 0.489 W/kg = -3.11 dBW/kg

SAR Plots Plot 3#

Test Plot 4#: PTT FM 12.5 kHz_Face Up_158 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 158 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158 MHz; $\sigma = 0.791$ S/m; $\varepsilon_r = 52.363$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.67, 7.67, 7.67); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.308 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.06 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.297 W/kg

SAR(1 g) = 0.217 W/kg; SAR(10 g) = 0.164 W/kg

Maximum value of SAR (measured) = 0.222 W/kg

0 dB = 0.222 W/kg = -6.54 dBW/kg

SAR Plots Plot 4#

Test Plot 5#: PTT FM 12.5 kHz_Face Up_165 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 165 MHz; Duty Cycle: 1:1

Medium parameters used: f = 165 MHz; $\sigma = 0.795$ S/m; $\varepsilon_r = 51.989$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.67, 7.67, 7.67); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.187 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.52 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.234 W/kg

SAR(1 g) = 0.175 W/kg; SAR(10 g) = 0.132 W/kg

Maximum value of SAR (measured) = 0.182 W/kg

0 dB = 0.182 W/kg = -7.40 dBW/kg

SAR Plots Plot 5#

Test Plot 6#: PTT FM 12.5 kHz_Face Up_173.9875 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 173.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 173.988 MHz; $\sigma = 0.809 \text{ S/m}$; $\varepsilon_r = 51.501$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.67, 7.67, 7.67); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0454 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.261 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.0570 W/kg

SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.033 W/kg

Maximum value of SAR (measured) = 0.0449 W/kg

0 dB = 0.0449 W/kg = -13.48 dBW/kg

SAR Plots Plot 6#

Test Plot 7#: PTT 4FSK 12.5 kHz_Face Up_143.9875 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: 4FSK; Frequency: 143.988 MHz; Duty Cycle: 1:2

Medium parameters used: f = 143.988 MHz; $\sigma = 0.766$ S/m; $\varepsilon_r = 53.112$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.67, 7.67, 7.67); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.623 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.63 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.606 W/kg; SAR(10 g) = 0.451 W/kg

Maximum value of SAR (measured) = 0.623 W/kg

0 dB = 0.623 W/kg = -2.06 dBW/kg

SAR Plots Plot 7#

Test Plot 8#: PTT FM 12.5 kHz_Body Back_136.0125 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 136.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 136.012 MHz; $\sigma = 0.791$ S/m; $\varepsilon_r = 62.327$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.3, 7.3, 7.3); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.00 W/kg

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 45.12 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 2.82 W/kg

SAR(1 g) = 1.62 W/kg; SAR(10 g) = 1.11 W/kg

Maximum value of SAR (measured) = 1.72 W/kg

0 dB = 1.72 W/kg = 2.36 dBW/kg

SAR Plots Plot 8#

Test Plot 9#: PTT FM 12.5 kHz_Body Back_143.9875 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 143.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143.988 MHz; $\sigma = 0.806 \text{ S/m}$; $\varepsilon_r = 62.015$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.3, 7.3, 7.3); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.766 W/kg

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.63 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.714 W/kg; SAR(10 g) = 0.515 W/kg

Maximum value of SAR (measured) = 0.753 W/kg

0 dB = 0.753 W/kg = -1.23 dBW/kg

SAR Plots Plot 9#

Test Plot 10#: PTT FM 12.5 kHz_Body Back_151 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 151 MHz; Duty Cycle: 1:1

Medium parameters used: f = 151 MHz; $\sigma = 0.822$ S/m; $\varepsilon_r = 61.741$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.3, 7.3, 7.3); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.431 W/kg

Zoom Scan (6x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.14 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.709 W/kg

SAR(1 g) = 0.394 W/kg; SAR(10 g) = 0.261 W/kg

Maximum value of SAR (measured) = 0.416 W/kg

0 dB = 0.416 W/kg = -3.81 dBW/kg

SAR Plots Plot 10#

Test Plot 11#: PTT FM 12.5 kHz_Body Back_158 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 158 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158 MHz; $\sigma = 0.833$ S/m; $\varepsilon_r = 61.469$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.3, 7.3, 7.3); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.590 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.96 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.779 W/kg

SAR(1 g) = 0.545 W/kg; SAR(10 g) = 0.395 W/kg

Maximum value of SAR (measured) = 0.575 W/kg

0 dB = 0.575 W/kg = -2.40 dBW/kg

SAR Plots Plot 11#

Test Plot 12#: PTT FM 12.5 kHz_Body Back_165 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 165 MHz; Duty Cycle: 1:1

Medium parameters used: f = 165 MHz; $\sigma = 0.839$ S/m; $\varepsilon_r = 61.194$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.3, 7.3, 7.3); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.181 W/kg

Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.43 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.259 W/kg

SAR(1 g) = 0.172 W/kg; SAR(10 g) = 0.124 W/kg

Maximum value of SAR (measured) = 0.181 W/kg

0 dB = 0.181 W/kg = -7.42 dBW/kg

SAR Plots Plot 12#

Test Plot 13#: PTT FM 12.5 kHz_Body Back_173.9875 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: FM; Frequency: 173.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 173.988 MHz; $\sigma = 0.853$ S/m; $\varepsilon_r = 60.843$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.3, 7.3, 7.3); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0624 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.471 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.0830 W/kg

SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.042 W/kg

Maximum value of SAR (measured) = 0.0605 W/kg

0 dB = 0.0605 W/kg = -12.18 dBW/kg

SAR Plots Plot 13#

Test Plot 14#: PTT 4FSK 12.5 kHz_Body Back_136.0125 MHz

DUT: Digital Two-Way Radio; Type: RDR1520V; Serial: 19051600222

Communication System: 4FSK; Frequency: 136.012 MHz; Duty Cycle: 1:2

Medium parameters used: f = 136.012 MHz; $\sigma = 0.791$ S/m; $\varepsilon_r = 62.327$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.3, 7.3, 7.3); Calibrated: 2018/8/20;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA004AA; Serial: 2051

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.30 W/kg

Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.06 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 2.13 W/kg

SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.760 W/kg

Maximum value of SAR (measured) = 1.22 W/kg

0 dB = 1.22 W/kg = 0.86 dBW/kg

SAR Plots Plot 14#