DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8

CMPU 1018

DT228 BSc Computer Science DT282 BSc Computer Science (International)

YEAR I

WINTER EXAMINATIONS 2014/2015

MATHEMATICS 1

Mr. P. O'REILLY Dr. C. HILLS

Wednesday, 17th December 2014

9.30 - 11.30 am

Full marks for complete answers to **Question 1** and any other 2 Questions. Question 1 carries 40 marks. All other questions carry 30 marks.

Mathematics Tables and graph paper provided

1 (a) Given that the inverse of the matrix

$$A = \left(\begin{array}{cc} 3 & -2 \\ 2 & 1 \end{array}\right)$$

is

$$A^{-1} = \frac{1}{7} \left(\begin{array}{cc} 1 & 2 \\ -2 & 3 \end{array} \right)$$

solve the set of simultaneous equations:

$$3x - 2y = 11$$

$$2x + y = 12.$$

[5 marks]

(b) Simplify

i. $3\log_3 x - 2\log_3 x^2$.

ii. $2\ln(2x) - \ln(4x^2)$.

[5 marks]

(c) Let A be the set of characters appearing in the string "binary", B be the set of characters in the string "mathematics" and C be the set of characters in the string "science". List the elements of the following sets:

(i)
$$(A \cap C)$$
 (ii) $(A \cap C) \setminus B$ (iii) $(B \cup C) \cap (A \cup C)$.

[5 marks]

(d) Calculate the mean, mode and median of the following set of numbers:

[5 marks]

(e) Simplify

$$x^{-2}\sqrt{\frac{(x^2)^3}{x^4}}.$$

[5 marks]

(f) Calculate the following modular operations:

i. $(10+2) \mod 5$.

ii. $(9 \times 14) \mod 11$.

[5 marks]

- (g) Solve the equations, giving your solutions to 2 decimal places:
 - i. $10^x = 8$.
 - ii. $e^y = 12$.

[5 marks]

(h) Given the matrices $B = \begin{pmatrix} 1 & 2 \\ 5 & 3 \end{pmatrix}$ and $C = \begin{pmatrix} 3 & 5 \\ 2 & 4 \\ 1 & 7 \end{pmatrix}$

Evaluate (if possible):

- i. $(CB)^T$.
- ii. C^{-1} .

[5 marks]

2 (a) In computer graphics the rotation of the plane counter clockwise about the origin (0,0) through an angle θ is given by the matrix

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Show that the inverse matrix R_{θ}^{-1} is given by

$$R_{\theta}^{-1} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

[12 marks]

(b) A triangle has vertices in homogenous coordinates

$$A = \begin{pmatrix} 16 \\ 8 \\ 1 \end{pmatrix} B = \begin{pmatrix} 22 \\ 8 \\ 1 \end{pmatrix} C = \begin{pmatrix} 22 \\ 5 \\ 1 \end{pmatrix} D = \begin{pmatrix} 16 \\ 5 \\ 1 \end{pmatrix}$$

Find the image of this rectangle under the rotation of the plane through an angle of 45° clockwise about the origin.

[12 marks]

(c) Use the Euclidean Algorithm to find the highest common factor, HCF, of 8435 and 720.

[6 marks]

- 3 (a) Let $A = \{1, 2, 5, 7\}$ and $B = \{2, 6, 7, 9, 10, 12\}$, Two relations from A to B, R and S, are defined as:
 - i. aRb if and only if 2a/b
 - ii. aSb if and only if a = b 7

List the elements of R and S, and find #S and #R.

[11 marks]

- (b) Given $f(x) = 7x^3 + 7x + 2$ and $g(x) = \frac{x+5}{7}$:
 - i. Calculate f(-1), g(9) and g(x+16).
 - ii. Find the composite function $g \circ f$.
 - iii. Find the inverse function $g^{-1}(x)$.

[9 marks]

- (c) Using truth tables:
 - i. Show $(P \to Q) \lor (Q \to P)$ is a tautology.
 - ii. Test whether $\neg(A \lor B)$ and $\neg A \land \neg B$ are logically equivalent.

[10 marks]

4 (a) Write out the operational tables for Z_6 .

Use Fermats Little Theorem to find the inverse of

Use Fermats Little Theorem to find the inverse of 5 modulo 6. Check your answers against the multiplication table for Z_6 .

[10 marks]

(b) Use the Euclidean Algorithm to find the multiplication inverse of 23 mod 126 i.e. in \mathbb{Z}_{126} .

[10 marks]

- (c) i. Use Caesar's Shift algorithm with key k=3 to encrypt the message: "Hide this message".
 - ii. Using the Caesar Shift with key k=7, decrypt the message: "Ohcl h nvvk joypzathz".

[10 marks]

COLLEGE EXAMINATIONS

AMENDMENTS TO EXAMINATION QUESTION PAPER

COURSE REF: W228 /282 /101C

VENUE: Baseren + I

SUBJECT: Mathematics I

DATE: 14/12/2014

TIME: 4.30 au - 11, 30 au.

SIGNED: france función

INSTRUCTIONS:

2(b) A rectangle has vertices in homogenaus coordinates

$$A = \begin{pmatrix} 16 \\ 8 \\ 1 \end{pmatrix} \quad B = \begin{pmatrix} 22 \\ 8 \\ 1 \end{pmatrix} \quad C = \begin{pmatrix} 22 \\ 5 \\ 1 \end{pmatrix} \quad D = \begin{pmatrix} 16 \\ 5 \\ 1 \end{pmatrix}$$

Find the image of this rectangle under the votation of the plane through an angle of 45° clockwise about the origin.