Intro to Data Science

Jonathan Joa Scott McAllister

Topics

- What is Data Science?
- Why Learn Data Science?
- Netflix Example
- Data Science Roles
- Data Science Project Workflow
- Federal Government Example
- Why Python and R?
- Python vs R
- Setting expectations on what we'll learn

What is Data Science?

- Tools and techniques for data analysis
- Problem-solving
- Applying scientific techniques to practical problems

Data Science

Copyright © 2014 by Steven Geringer Raleigh, NC.
Permission is granted to use, distribute, or modify this image, provided that this copyright notice remains intact.

What is Data Science?

Why Learn Data Science?

<u>Data Scientist: The Sexiest Job of the 21st Century</u> (Harvard Business Review)

IBM Predicts Demand For Data Scientists Will Soar 28% By 2020 (Forbes)

50 Best Jobs in America, 2017 (Glassdoor)

The world's most valuable resource is no longer oil, but data (The Economist)

Why Learn Data Science?

NETFLIX amazon.com®

Google

Netflix Example

Source: A.T. Kearney analysis

No one person can be the perfect data scientist, so we need teams.

Involves a variety of roles, not just one

Data Developer	Developer	Engineer	
Data Researcher	Researcher	Scientist	Statistician
Data Creative	Jack of All Trades	Artist	Hacker
Data Businessperson	Leader	Businessperson	Entrepeneur

Involves a variety of skills, not just one

Business	ML / Big Data	Math/OR	Programming	Statistics
Product	Unstructured	Optimization	Systems	Visualization
Developement	Data	Mark	Administration	representation of the
Business	Structured	Math	Back End	Temporal Statistics
Dusiness	Data	Graphical	Programming	Statistics
	Data	Models	raugianining	Surveys and
	Machine	models	Front End	Marketing
	Learning	Bayesian /	Programming	
		Monte Carlo		Spatial
	Big and	Statistics		Statistics
	Distributed	A1		
	Data	Algorithms		Science
		Simulation		Data
		Simulation		Manipulation
				Classical
				Statistics

These roles prioritize different skill sets.

However, all roles involve some part of each skillset.

Where are your strengths and weaknesses?

Derived from the work of Joe Blitzstein and Hanspeter Pfister, originally created for the Harvard data science course http://cs109.org/.

Step 1: Ask an Interesting Question

Identify business/product objectives
Identify and hypothesize goals and
criteria for success

Create a set of questions for identifying correct data set

Step 2: Get the Data

Identify the "right" data set(s)
Import data and set up local or
remote data structure
Determine most appropriate tools to
work with data

Step 3: Explore the Data

Read documentation provided with the data

Perform exploratory data analysis Verify the quality of the data

Step 4: Model the Data

Determine sampling methodology and sample data

Format, clean, slice, and combine data

Create necessary derived columns

from the data

Identify trends and outliers

Document and transform data

Build model

Evaluate and refine model

Step 5: Communicate Results

Summarize findings with narrative, storytelling techniques

Present limitations and assumptions of your analysis

Identify follow up problems and questions for future analysis

OVERVIEW OF THE DATA SCIENCE WORKFLOW

Interdisciplinary Skills COMPUTER SCIENCE MATHEMATICS, STATISTICS, AND DATA MINING GRAPHIC DESIGN acquire parse filter mine represent refine

Recursive Workflow

Federal Government Example

Office of Human Capital Strategy & Management (OHRM) carried out a study on Performance Management

Figure 1. HRDW conceptual framework

Federal Government Example

Office of Human Capital Strategy & Management (OHRM) carried out a study on Performance Management

Figure 2. Data management workflow

OHRM: Real-Time Analysis

Figure 3. Real-time spend analysis: A real-time spending analysis tool displayed cost projections on over \$13.6 million in award spending and over 40,000 hours of award leave. The dashboard, updated daily, provided current progress and projections towards reaching awards budget limits. Analysis at the aggregate, organizational, and individual levels helped agency leaders more proactively determine the impact of performance award percentages.

OHRM: Statistical Analysis on Bias

Statistical Significance Legend

Not Statistically Significant (P-value>.05)

Statistically Significant (P-value<=.05)

Figure 4. Descriptive statistical model: Multi-year statistical models visualized factors most associated with performance ratings outcomes, identifying statistical significance, magnitude, directionality and change over time (variable names are hidden). Percentages indicate the probability of an employee having received the next higher performance rating for each variable, holding other model variables constant.

Why not Excel?

Geeks and repetitive tasks

Why not Excel?

Why Python and R?

R and Python are the <u>two most popular</u> programming languages used by data analysts and data scientists.

Both are free and open source, and were developed in the early 1990s—R for statistical analysis and Python as a general-purpose programming language.

Why Python and R?

- Created for simplicity and readability
- Rapid prototyping, ease of production
- Open source, importable libraries/packages
- Broad range of applications
- Fast growing community

Why Python and R?

Java

```
import javax.swing.JFrame; //Importing class JFrame
 import javax.swing.JLabel; //Importing class JLabel
 public class HelloWorld {
      public static void main(String[] args) {
       JFrame frame = new JFrame();
                                             //Creating frame
       frame.setTitle("Hi!");
                                             //Setting title frame
       frame.add(new JLabel("Hello, world!"));
                                                   //Adding text to frame
       frame.pack();
                                           //Setting size to smallest
       frame.setLocationRelativeTo(null); //Centering frame
       frame.setVisible(true);
                                             //Showing frame
C
                                                      R
#include
                                                      cat('Hello, world!')
int main(void)
      puts("Hello, world!");
                                                      Python
                                                      print('Hello, world')
```

Python vs R

R has an edge in statistics and visualization (these things are syntactically simpler)

Python has the edge in machine learning capabilities and connecting analyses to webapps.

Many advanced Data Scientists learn and use both, switching between the two to handle different tasks.

Choosing which language to start with depends on your situation. Here's a link for a more in-depth analysis

Expectations on What We'll Learn

You **WILL NOT** become a full-fledged Data Scientist after this course.

You **WILL** become familiar enough with Python and R to teach yourself how to read documentation and learn how to become a Data Scientist.

The curiosity advantage: the most important skill for data science

(O'Reilly)

