

Association metrics in neural transition-based dependency parsing

Patricia Fischer, Sebastian Pütz and Daniël de Kok Tübingen University, SFB 833/A3

Content

- 1. Ambiguity resolution with association metrics
- 2. Association metrics in transition-based dependency parsing
- 3. Parser results
- 4. Outlook

AMBIGUITY RESOLUTION WITH ASSOCIATION METRICS

Ambiguity resolution in German

'Students solve these problems quickly.'

Ambiguity resolution in German

'Students solve these problems quickly.'

Ambiguity resolution in German

'Students solve these problems quickly.'

Summary

Lexical preferences improve:

✓ neural transition-based dependency parsing by 0.26 LAS

✓ accuracy on two ambiguity solving tasks by 2.33 points

The baseline parser: De Kok and Hinrichs (2016)¹

- Parser configuration
 - Words
 - Part-of-speech tags
 - Dependency relations
 - Prefix and suffix characters
 - Topological field information
- Trained on TüBa-D/Z, release 10 (1.8M tokens, 96K sentences), manually labeled, non-gold PoS, gold topological fields
- Accuracy: 92.01 LAS

¹ De Kok and Hinrichs (2016). Transition-Based Dependency Parsing with Topological Fields. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics: Volume 2, Short Papers*, p.1–7.

Frequent errors by the De Kok and Hinrichs (2016) parser

Relation	Error count	Percent of all errors
Prepositional phrase/object	7,037	24.68%
Accusative object	1,796	6.30%
Subject	1,670	5.85%

Pointwise mutual information^{2,3}

Procedure

- Retrieve all head-dependent pairs with dependency relation
- Calculate the PMI for all triples with minimum frequency n

Data

- Berliner Tageszeitung *taz and* German Wikipedia (1.2B tokens, 62.7M sentences)

² Hindle and Rooth. 1993. Structural Ambiguity and Lexical Relations. *Computational Linguistics*, 19(1):103–120.

³ Van Noord. 2007. Using Self-Trained Bilexical Preferences to Improve Disambiguation Accuracy. *Proceedings of the 10th Conference on Parsing Technologies*:1–10.

Pointwise mutual information

PMI variants

- Normalized PMI: NPMI $(h \xrightarrow{r} d)$ [-1, 1]

- Positive NPMI: PNPMI $(h \xrightarrow{r} d)$ [0, 1]

Examples (NPMI)

- lösen $\stackrel{OBJ}{\rightarrow}$ Probleme: 0.484 \checkmark 'solve problems'

- lösen → Studenten: - ×

'solve students'

Dependency embedding-based association scores

X Sparsity of PMIs

Dependency embeddings⁴ predict probabilities for dependency triples $h \xrightarrow{r} d$

✓ Separate embeddings for h and $\stackrel{r}{\rightarrow} d$

Data:

- taz, German Wikipedia and europarl (1.25B tokens and 64.9M sentences), annotated by baseline parser
- non-projective / pseudo-projectivized

⁴ Levy and Goldberg (2014). Dependency-Based Word Embeddings. *Proceedings of the 52nd Annual Meeting for the Association for Computational Linguistics, Volume 2: Short Papers*:302–308.

Dependency embedding-based association scores

• For each head candidate *h*, dependent candidate *d* and any possible dependency relation *r*, compute:

$$assoc_{dep}(h \xrightarrow{r} d) = \sigma(W_h \cdot C_{d,r})$$
 (0,1)

with

- W: word embedding matrix

- C: context embedding matrix

Examples

- lösen $\stackrel{OBJ}{\rightarrow}$ Probleme: 0.999

- lösen $\stackrel{OBJ}{\rightarrow}$ Studenten: 0.400 \checkmark

ASSOCIATION METRICS IN PARSING

An example: Parsing with embedding-based scores

Diese Probleme lösen Studenten schnell. 'Students solve these problems quickly.'

Transitions: LeftArc ($s_0 \rightarrow s_1$) and RightArc ($s_1 \rightarrow s_0$), Shift

Dependencies: SUBJ, OBJ, PP

An example: Parsing with association scores

$$V_{assoc} = [assoc(\mathbf{s_0,s_1},r) \mid \forall r \in R]$$

with $R = \{SUBJ, OBJ, PP\}$

assoc assoc assoc (lösen, Probleme, SUBJ) (lösen, Probleme, OBJ) (lösen, Probleme, PP)

An example: Parsing with association scores

$$V_{assoc} = [assoc(\mathbf{s_1,s_0},r) \mid \forall r \in R]$$

with $R = \{SUBJ, OBJ, PP\}$

assoc	assoc	assoc
(Probleme, lösen, SUBJ)	(Probleme, lösen, OBJ)	(Probleme, lösen, PP)

An example: Parsing with association scores

$$v_{assoc} = [assoc(s_0, s_1, r), \, assoc(s_1, s_0, r) \mid \forall r \in R]$$
 with $R = \{SUBJ, \, OBJ, \, PP\}$

assoc	assoc	assoc	assoc	assoc	assoc
(I., P., SUBJ)	(I., P., OBJ)	(I., P., PP)	(P., I., SUBJ)	(P., I., OBJ)	(P., I., PP)

Binary indicators as default markers

- PMIs
 - binary

assoc_{PMI} / 0.0

PMI ∈ table?

- Embedding-based scores
 - binary

assoc_{dep} / 0.5 $h \in W$? $\xrightarrow{\mathbf{r}} \mathbf{d} \in \mathbf{C}$?

- triple-binary

assoc_{dep} / 0.5

 $h \in W$?

 $\xrightarrow{\mathbf{r}} \mathbf{d} \in \mathbf{C}$?

 $d \in W$?

PARSER RESULTS

Parsing with PMIs (n = 5)

Model	LAS	UAS	Inversion accuracy	Preposition accuracy
De Kok and Hinrichs (2016)	92.01	93.88	81.03%	77.80%
+ NPMI	92.27	94.01	81.93%	78.60%
+ NPMI, binary	92.18	93.94	82.57%	78.78%
+ PNPMI	92.21	93.99	82.09%	78.44%

Parsing with embedding-based scores

Model	LAS	UAS	Inversion accuracy	Preposition accuracy
De Kok and Hinrichs (2016)	92.01	93.88	81.03%	77.80%
+ projectivized	92.23	93.97	82.57%	78.55%
+ projectivized, binary	92.24	93.97	83.36%	78.47%
+ projectivized, triple-binary	92.16	93.88	83.36%	78.62%

Parsing with association scores

Model	LAS	UAS	Inversion accuracy	Preposition accuracy
De Kok and Hinrichs (2016)	92.01	93.88	81.03%	77.80%
+ NPMI	92.27	94.01	81.93%	78.60%
+ projectivized, binary	92.24	93.97	83.36%	78.47%

OUTLOOK

Future work

- Trilexical preferences
- Make alternative attachments available, e.g. via constrained beam search
- Compatibility modeling
- Extend experiments to a language similar to German, e.g. Dutch

THANK YOU

BONUS MATERIAL

PMI variants

• PMI variants

- PMI:
$$PMI = \frac{p(h \xrightarrow{r} d)}{p(h \xrightarrow{r}) p(\xrightarrow{r} d)} [-\infty, \infty]$$

- Normalized PMI (NPMI):
$$PMI_{norm} = \frac{PMI(h \xrightarrow{r} d)}{-\log p(h \xrightarrow{r} d)}$$
 [-1, 1]

- Positive NPMI (PNPMI):
$$PMI_{pos\ norm} = max(0, NPMI)$$
 [0, 1]

Parsing with PMIs

Model	LAS	UAS	Inversion accuracy	Preposition accuracy
De Kok and Hinrichs (2016)	92.01	93.88	81.03	77.80
+ NPMI, minfreq 5	92.27	94.01	81.93	78.60
+ NPMI, minfreq 50	92.14	93.92	82.25	78.29
+ NPMI, minfreq 100	92.16	93.92	80.72	78.56
+ NPMI, minfreq 5, bin	92.18	93.94	82.57	78.78
+ NPMI, minfreq 50, bin	92.16	93.93	81.93	78.35
+ NPMI, minfreq 100, bin	92.18	93.96	81.67	78.29
+ PNPMI, minfreq 5	92.21	93.99	82.09	78.44
+ PNPMI, minfreq 50	92.19	93.95	81.46	78.66
+ PNPMI, minfreq 100	92.17	93.94	82.25	78.57

Parsing with embedding-based scores

Model	LAS	UAS	Inversion accuracy	Preposition accuracy
De Kok and Hinrichs (2016)	92.01	93.88	81.03	77.80
+ proj, typed	92.23	93.97	82.57	78.55
+ proj, typed, bin	92.24	93.97	83.36	78.47
+ proj, typed, triple-bin	92.16	93.88	83.36	78.62
+ proj, semi-typed	92.11	93.94	80.66	77.99
+ proj, semi-typed, bin	91.98	93.89	80.61	77.71
+ proj, semi-typed, double-bin	92.07	93.93	81.93	77.98
+ non-proj, typed	92.17	93.93	81.46	78.17
+ non-proj, typed, bin	92.22	93.97	82.20	78.45
+ non-proj, typed, triple-bin	92.08	93.86	82.99	78.26

Binary indicators as default markers

Association score = default score?

• PMIs: binary

assoc_{PMI}

PMI ∈ table?

Embedding-based scores

- binary

assoc_{dep}

 $h \in W$? $d \in C$?

- double-binary

assoc_{dep}

 $h \in W$?

 $d \in C$?

triple-binary

assoc_{dep}

 $h \in W$?

 $\{d,r\}\in C$?

 $d \in W$?

Parsing with PMIs on gold PoS tags

Model	LAS	UAS	Inversion accuracy	Preposition accuracy
De Kok and Hinrichs (2016)	92.49	94.19	81.46	78.35
+ NPMI, minfreq 5	92.77	94.37	82.68	79.05
+ NPMI, minfreq 50	92.65	94.31	81.56	78.90
+ NPMI, minfreq 100	92.57	94.21	83.26	78.66
+ NPMI, minfreq 5, bin	92.64	94.24	82.83	78.85
+ NPMI, minfreq 50, bin	92.64	94.25	82.68	79.21
+ NPMI, minfreq 100, bin	92.64	94.24	83.21	78.84
+ PNPMI, minfreq 5	92.59	94.23	81.62	78.84
+ PNPMI, minfreq 50	92.69	94.31	81.99	79.10
+ PNPMI, minfreq 100	92.65	94.29	81.56	78.92

Parsing with embedding-based scores on gold PoS

Model	LAS	UAS	Inversion accuracy	Preposition accuracy
De Kok and Hinrichs (2016)	92.49	94.19	81.46	78.35
+ proj, typed	92.67	94.29	82.52	78.96
+ proj, typed, bin	92.65	94.25	82.78	78.86
+ proj, typed, triple-bin	92.54	94.16	82.68	78.68
+ proj, semi-typed	92.64	94.28	82.15	78.75
+ proj, semi-typed, bin	92.64	94.31	80.29	78.72
+ proj, semi-typed, double-bin	92.63	94.29	82.89	78.99
+ non-proj, typed	92.64	94.23	82.36	78.85
+ non-proj, typed, bin	92.64	94.24	82.99	78.87
+ non-proj, typed, triple-bin	92.58	94.21	83.31	78.81