Mesures de dependència basades en rangs: Kendall i Spearman

Mètodes no paramètrics i de remostratge Grau interuniversitari en Estadística UB – UPC

Prof. Jordi Ocaña Rebull Departament d'Estadística, Universitat de Barcelona • Probabilitat de concordança, π_C , i de discordança, π_D , entre dues v.a. X i Y:

$$\pi_{C} = \Pr\{X_{1} < X_{2}, Y_{1} < Y_{2}\} + \Pr\{X_{1} > X_{2}, Y_{1} > Y_{2}\}$$

$$= \Pr\{(X_{1} - X_{2})(Y_{1} - Y_{2}) > 0\}$$

$$\pi_{D} = \Pr\{(X_{1} - X_{2})(Y_{1} - Y_{2}) < 0\}$$

per dues observacions independents

de
$$(X,Y)$$
: (X_1,Y_1) i (X_2,Y_2)

Probabilitats de concordança i discordança

 Pel cas absolutament continu (considerat a partir d'ara):

$$\pi_C + \pi_D = 1$$
, i si X, Y estocàsticament

independents:
$$\pi_C = \pi_D = \frac{1}{2}$$

• Coeficient τ de Kendall poblacional:

$$\tau = \pi_C - \pi_D$$

o bé:

$$\tau = \pi_C - (1 - \pi_C) = 2\pi_C - 1$$

Coeficient τ ("tau") de Kendall Concepte

• Propietats de τ :

1)
$$-1 \le \tau \le +1$$
, $|\tau| = 1$ sii relació funcional monòtona perfecta

2)
$$X,Y$$
 independents $\Rightarrow \tau = 0$

3) Si
$$(X,Y)$$
 ~ normal bivariant:

$$\tau = 0 \Leftrightarrow \rho = 0$$

(raó:
$$\tau = (2 / \pi) \arcsin(\rho)$$
)

Coeficient τ de Kendall. Propietats

$$\binom{n}{2} = \frac{n(n-1)}{2}$$
 possibles parelles X_i, X_j

(o Y_i, Y_i). Per tant:

$$\hat{\pi}_{C} = \frac{\#\{(X_{i} - X_{j})(Y_{i} - Y_{j}) > 0\}}{n(n-1)/2} = \frac{2n_{C}}{n(n-1)}$$

$$\hat{\pi}_{D} = \frac{\#\{(X_{i} - X_{j})(Y_{i} - Y_{j}) < 0\}}{n(n-1)/2} = \frac{2n_{D}}{n(n-1)}$$

Estimació de les probabilitats de concordança i de discordança

$$\hat{\tau}_n = \hat{\pi}_C - \hat{\pi}_D = \frac{2(n_C - n_D)}{n(n-1)} = \frac{2S}{n(n-1)}$$

(*S* = "Estadístic de Kendall", sovint també designat *K*) o bé:

$$\hat{\tau}_n = 2\hat{\pi}_C - 1 = \frac{4n_C}{n(n-1)} - 1$$

Coeficient τ de Kendall mostral

 $\hat{\tau}_n = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} \operatorname{sgn}(X_i - X_j) \operatorname{sgn}(Y_i - Y_j)$

on:

$$\operatorname{sgn}(z) = \begin{cases} -1 & \text{si } z < 0 \\ +1 & \text{si } z > 0 \end{cases}$$

Coeficient τ de Kendall mostral. **Forma alternativa**

- Propietats de $\hat{\tau}_n$:
 - 1) Estadístic basat en rangs: a totes les expressions anteriors, es podrien substituir els valors (X_i, Y_i) pels seus rangs (R_i, S_i)
 - 2) No esbiaixat: $E(\hat{\tau}_n) = \tau$
 - 3) $-1 \le \hat{\tau}_n \le +1$
 - 4) $\operatorname{var}(\hat{\tau}_n) \xrightarrow[n \to \infty]{} 0$
 - 5) Consistent: $\hat{\tau}_n \xrightarrow{P} \tau$

Coeficient τ de Kendall mostral **Propietats**

$$((X_1, Y_1), ..., (X_n, Y_n))$$
 m.a.s. de (X, Y)
 $((R_1, S_1), ..., (R_n, S_n))$ els seus rangs,
 $R_1, ..., R_n$ rangs de $X_1, ..., X_n$, i per separat,
 $S_1, ..., S_n$ rangs de $Y_1, ..., Y_n$, llavors:
 $\#\{(X_i - X_j)(Y_i - Y_j) > 0\} =$
 $\#\{(R_i - R_j)(S_i - S_j) > 0\}$, etc.

Punt 1) anterior: τ mostral és un estadístic basat en rangs

 $H_0: X,Y$ estocàsticament independents

$$H_1: \tau(X,Y) \neq 0$$

(o
$$H_1'$$
: $\tau(X,Y) < 0$, o H_1'' : $\tau(X,Y) > 0$)

Test d'independència basat en el coeficient τ de Kendall mostral

Si H_0 és certa:

- 1) Distribució de $\hat{\tau}_n$ simètrica i independent de la distribució de (X,Y)
- $2) E(\hat{\tau}_n) = 0$
- 3) Per mides mostrals no molt grans està tabulada

Test d'independència exacte

Si H_0 és certa:

1) Per mides mostrals grans, es pot fer servir la següent aproximació a la variància de $\hat{\tau}_n$:

$$\operatorname{var}(\hat{\tau}_n) \cong \frac{2(2n+5)}{9n(n-1)}$$

2) Distribució asimptòtica (força adequada per n > 10):

$$Z = \frac{\hat{\tau}_n - 0}{\sqrt{\operatorname{var}(\hat{\tau}_n)}} = \frac{3\sqrt{n(n-1)}}{\sqrt{2(2n+5)}} \hat{\tau}_n \approx N(0,1)$$

Test d'independència aproximat

- Alternativa bilateral: rebutjarem H_0 si $|\hat{\tau}_n| \ge \tau_{\alpha}(n)$ (valor crític bilateral pel nivell α i mida mostral n) (o bé si $|S| \ge$ valor crític per S)
- Alternatives unilaterals $H_1': \tau(X,Y) < 0$ o $H_1'': \tau(X,Y) > 0$: rebutjarem H_0 si $|\hat{\tau}_n| \ge \tau_\alpha^*(n)$ (valor crític unilateral pel nivell α i mida mostral n) i $\hat{\tau}_n$ té el mateix signe indicat a H_1 (o bé si $|S| \ge \ldots$)

Test exacte

es rebutja
$$H_1$$
: $\tau \neq 0$ H_1 : $\tau < 0$ H_1 : $\tau > 0$ es rebutja H_0 si: $|Z| \geq Z_{\alpha}$ $|Z| \leq -Z_{2\alpha}$ $|Z| \leq Z_{2\alpha}$

 z_p valor crític >0 a taula N(0,1) per prova bilateral per nivell de significació p

Test asimptòtic

"tau-a": estadístic de Kendall sense empats

"tau-b":
$$\hat{\tau}_B = \frac{n_C - n_D}{\sqrt{(N-t)(N-u)}}$$

$$N = n(n-1)/2$$

$$t = \sum_{i=1}^{s_X} t_i (t_i - 1) / 2$$
, s_X sèries d'empats per X , de llargada t_i , $i = 1, ..., s_X$

$$u = \sum_{i=1}^{s_Y} u_i (u_i - 1)/2$$
, s_Y sèries d'empats per Y , de llargada u_i , $i = 1, ..., s_Y$

Empats i τ de Kendall

$$Z_{B} = \frac{n_{C} - n_{D}}{\sqrt{V}} \approx N(0,1)$$

$$V = (V_{0} - V_{t} - V_{u}) / 18 + V_{1} + V_{2}$$

$$V_{0} = n(n-1)(2n+5)$$

$$V_{t} = \sum_{i=1}^{s_{X}} t_{i}(t_{i}-1)(2t_{i}+5)$$

$$V_{u} = \sum_{i=1}^{s_{Y}} u_{i}(u_{i}-1)(2u_{i}+5)$$

$$V_{1} = \sum_{i=1}^{s_{X}} t_{i}(t_{i}-1)\sum_{i=1}^{s_{Y}} u_{i}(u_{i}-1) / (2n(n-1))$$

$$V_{2} = \frac{\sum_{i=1}^{s_{X}} t_{i}(t_{i}-1)(t_{i}-2)\sum_{i=1}^{s_{Y}} u_{i}(u_{i}-1)(u_{i}-2)}{(9n(n-1)(n-2))}$$

Distribució asimptòtica de tau-b

• "tau-c", més apropiat per mostres grans:

$$\hat{\tau}_C = \frac{2k(n_C - n_D)}{n^2(k-1)}$$

$$k = \min\left\{n - \sum_{i=1}^{s_{\chi}} t_i, n - \sum_{i=1}^{s_{\chi}} u_i\right\}$$

mínim nombre d'observacions no empatades a X o a Y

 Es pot utilitzar la mateixa estimació de la variància que amb "tau-b"

Empats i τ de Kendall

- És el coeficient de correlació usual de Pearson, calculat sobre els rangs (R_i, S_i)
 - (Per tant, evidentment és un estadístic basat en rangs)

$$r_{S} = \frac{\sum_{i=1}^{n} (R_{i} - \bar{R})(S_{i} - \bar{S})}{\sqrt{\sum_{i=1}^{n} (R_{i} - \bar{R})^{2} \sum_{i=1}^{n} (S_{i} - \bar{S})^{2}}}$$

 No és gaire clar quin paràmetre poblacional estima...

Coeficient de correlació (mostral) per rangs de Spearman

• ...més ben dit, sí que és clar, però no és gaire clara la seva interpretació:

$$\rho_{S} = 3\{P_{C} - P_{D}\}$$

$$P_{C} = \Pr[(X_{1} - X_{2})(Y_{1} - Y_{3}) > 0]$$

$$P_{D} = \Pr[(X_{1} - X_{2})(Y_{1} - Y_{3}) < 0]$$

per tres observacions independents

de
$$(X,Y)$$
: $(X_1,Y_1),(X_2,Y_2)$ i (X_3,Y_3)

Coeficient de correlació (poblacional) de Spearman

Atès que:

$$\bar{R} = \bar{S} = \frac{n+1}{2}$$

$$\sum_{i=1}^{n} (R_i - \bar{R})^2 = \sum_{i=1}^{n} (S_i - \bar{S})^2 = \frac{n(n^2 - 1)}{12}$$

$$r_S = \frac{12}{n(n^2 - 1)} \sum_{i=1}^n R_i S_i - 3 \frac{n+1}{n-1}$$

Coeficient de correlació per rangs de Spearman. Fórmula de càlcul

1) $-1 \le r_S \le +1$ $r_S = 1 \ sii \ R_i = S_i \ per \ tot \ i$ $r_S = -1 \ sii \ R_i = n - S_i \ per \ tot \ i$

Si *X*, *Y* independents:

- 2) la distribució exacta de r_s és simètrica i no depèn de les distribucions de X i Y
- (3) $E(r_s) = 0$ $var(r_s) = 1/(n-1)$
- $||4) \sqrt{n-1} r_S \approx N(0,1)$

Propietats de r_s

- Les propietats 2 a 4 anteriors permeten construir un test per rebutjar "H₀: X i Y independents"
- En general es considera preferible el test basat en el coeficient de Kendall, ja que:
 - ❖El paràmetre (i per tant el concepte) de dependència que posa de manifest H₁ no té una interpretació clara
 - *La convergència a la normal és més lenta per r_S

Test d'independència basat en el coeficient de Spearman