Parallel Computing

Max. Marks: 60 Date: November 29th, 2006 Duration 3.00 Hrs.

- **Note:** 1. Attempt <u>any and only five</u> questions.
 - 2. Draw neat diagrams, if needed.
 - 3. Please write answer to the sub sections in correct order.
- **Q.1 (A)** If $n = 2^m$ numbers stored in an array A of dimension (2n-1) from A[n], [6] A[n+1],..., A[2n-1]. Write a PRAM algorithm to compute prefix sum such that at the end A[i] stores A[1] \oplus A[2] \oplus ... \oplus A[i].
 - **(B)** Explain how do we achieve decentralize dynamic load balancing in a **[6]** message passing program.
- **Q.2 (A)** Develop a row-oriented message passing parallel program to multiply [8] two $n \times n$ matrices. Obtain its parallel time complexity.
 - **(B)** Consider the following program segment of an Open_MP program and **[4]** comment on the execution.

```
#include <stdio.h>
int main(int argc, char *argv[])
{
    int i = 0, j = 0;
    int result = 0;
    #pragma omp parallel for private(i) reduction(+:result)
    for (i = 0; i < 3; i++) {
        for (j = i + 1; j < 4; j++) {
            printf("Hello.\n");
            #pragma omp critical
            result = result + 1;
        }
    }
    printf("Number of times printed Hello = %d\n", result);
}</pre>
```

- Q.3 (A) What criteria are used to understand effectiveness in implementing efficient parallel algorithms on real architecture?
 - **(B)** What are the qualifiers used to explicitly qualify variables in a parallel [4] loop of an OpenMp program. Explain working of any two.
 - (C) Explain theoretical W-RAM model of parallel computation. Which [4]

realistic parallel model is based on it?

Q.4 (A)	Devise a parallel algorithm for finding factorial of 'n' using doubling technique. What is the parallel time and processors complexity?	[4]
(B)	Consider the following program segment (assuming the syntax is correct) of a MPI program and comment on the execution. What if the buffer space is insufficient?	[4]
	<pre>if (rank == 0) then</pre>	
(C)	How do you classify clusters?	[4]
Q. 5(A)	Explain the shuffle exchange network of processors.	[4]
(B)	Propose a parallel algorithm for the bucket sort; discuss its parallel time and processor's complexity.	[4]
(C)	Explain Foster's design methodology with an example.	[4]
Q.6 (A)	Devise a parallel algorithm for finding x^n (x power n) using balanced binary tree technique. What is the parallel time and processors complexity?	[4]
(B)	Write schemes for static load balancing. What problems encountered in it and how do you solve them?	[4]
(C)	How do you compute the integration of a function using mean value theorem? Propose a multithreaded program for your algorithm.	[4]
Q. 7(A)	Propose a parallel algorithm for <i>Satisfiability problem</i> with k variables (or negation), represented in CNF or DNF formula. How many processors are needed to achieve k time parallel complexity.	[6]
(B)	List down advantages and disadvantages of using asymmetrical multi-computers.	[4]
(C)	Define: i. Efficient parallel algorithm ii. Optimal parallel algorithm	[2]
	Best of Luck	