

- Introducing multiple features to the data
- Adapting the Gradient Descent function
- Polynomial Regression
- Normal Equations
- Normal Equations with Non-Invertibility

Consider the Features X1, X2, X3, X4			7		
512e(feet) X1 2104 1416 1534 1534 1552 is the 1 Xi) is the 1 training	5 3 3 2 14h train	ing sample	Age of house (years) X4 45 40 30 36 (2) = 141 32	460 232 315 178	Withing Samples The example = 2

Hypothesis Function

Linear Regression

Gradient Descent

Algorithm Adaptation

Feature Scaling

Faster time reaching the global minimum

Mean Normalization

where M is the ave. value of X; and S is the range or Std. dev. hen X = X, -Ms.

Polynomial Regression

Normal Equation

- Analytically solve for theta using matrices
 - If theta is a real number
 - Set the derivative to 0 and solve
 - Else set the partial derivative to 0 and solve

Normal Equation

$$J(\underline{\theta}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

$$\frac{\partial}{\partial \theta_i} J(\underline{\theta}) = 0 \text{ and solve}$$
at every j

Example

Let m=4 and Xo=1							
Xo		Number of bedrooms	Numbors Floors	Age of House (years) X4	8000 (\$1000)		
	2104 416 534	533	2	45 40	460 232 315		
	852	2		36	178		

Comparisons

Gradient Descent

- Chosen alpha component
- Many Iterations
- Works well with large n (10,000)
- Works well with data of features > 1000

Normal Equations

- No chosen alpha component
- No iterations
- Slow when n is large 1,000
- Works well with the number of features
 1000

Non-Invertibility

If some matrix X times its transpose is invertible the strategy is:

- Delete some features (especially ones that are redundant)
- Use regularization
- Generalized Inverse

Sources

- https://www.ritchieng.com/
- https://towardsdatascience.co m/super-simple-machine-learni ng-by-me-multiple-linear-regre ssion-part-1-447800e8b624
- http://www.dmi.unict.it/farinell a/SMM/Lectures/25_Nov2015 _2.pdf