

ROS机械臂开发

—— 4. 移动机器人SLAM与导航

- ▶ 1. Spark机器人简介
- ▶ 2. ROS中的SLAM功能包简介
- ▶3. ROS导航框架简介


```
spark git:(master) x ./onekey.sh
 SPARK 一键安装管理脚本
 ---- J.xiao | www.nxrobo.com ----
 请根据右侧的功能说明选择相应的序号。
 注意: 101~103为相关环境的安装与设置,如果已执行过,不要再重复执行。
   0. 单独编译SPARK
   1. 让机器人动起来
   2. 远程(手机APP)控制SPARK
   3. 让 SPARK跟 着 你 走
   4. 让 SPARK使 用 激 光 雷 达 绘 制 地 图
   5. 让 SPARK使 用 深 度 摄 像 头 绘 制 地 图
   6. 让 SPARK使 用 激 光 雷 达 进 行 导 航
   7. 让 SPARK使 用 深 度 摄 像 头 进 行 导 航
   8. 机械臂与摄像头标定
  9. 让 SPARK通 过 机 械 臂 进 行 视 觉 抓 取
  10. 使用 tensorflow进行物品检测
  11. 语音移动控制
  12. 微信移动控制
 100. 问题反馈
 101. 完整安装
 102. 单独安装ROS环境
 103. 单独安装 SPARK依赖
注意 ] 当前系统版本 Ubuntu 16.04.5 LTS !
注意] 当前ROS版本 kinetic!
请输入数字:
```

```
spark git:(master) x ./onekey.sh
 SPARK 一键安装管理脚本
 ---- J.xiao | www.nxrobo.com ----
 请根据右侧的功能说明选择相应的序号。
 注意: 101~103为相关环境的安装与设置,如果已执行过,不要再重复执行。
   0. 单独编译SPARK
   1. 让机器人动起来
   2. 远程(手机APP)控制SPARK
   3. 让 SPARK跟 着 你 走
   4. 让 SPARK使 用 激 光 雷 达 绘 制 地 图
   5. 让 SPARK使用深度摄像头绘制地图
   6. 让 SPARK使 用 激 光 雷 达 进 行 导 航
   7. 让 SPARK使 用 深 度 摄 像 头 进 行 导 航
   8. 机械臂与摄像头标定
   9. 让 SPARK通 过 机 械 臂 进 行 视 觉 抓 取
  10. 使用 tensorflow进行物品检测
  11. 语音移动控制
  12. 微信移动控制
 100. 问题反馈
 101. 完整安装
 102. 单独安装ROS环境
 103. 单独安装 SPARK依赖
注意] 当前系统版本 Ubuntu 16.04.5 LTS!
 注意 ] 当前 ROS版本 kinetic!
请输入数字:
```


Spark键盘控制

SLAM , 全称simultaneous localization and mapping , 即时定位与地图构建。即机器人自身位置不确定的情况下,在完全未知的环境中创建地图 , 同时利用地图进行自主定位和导航。

设计图

SLAM产生的高精度地图

gmapping功能包

- 基于激光雷达
- Rao-Blackwellized 粒子滤波算法
- 二维栅格地图
- 需要机器人提供里程计信息
- OpenSlam开源算法
- 输出地图话题:

nav_msgs/OccupancyGrid_o

论文可参考: http://openslam.org/gmapping.html

安装gmapping

\$ sudo apt-get install ros-kinetic-gmapping

gmapping功能包 中的话题和服务

	名称	类型	描述
Topic 订阅	tf	tf/tfMessage	用于激光雷达坐标系,基坐标系, 里程计坐标系之间的变换
72.1-2	scan	sensor_msgs/LaserScan	激光雷达扫描数据
_	map_metadata	nav_msgs/MapMetaData	发布地图Meta数据
Topic 发布	map	nav_msgs/OccupancyGrid	发布地图栅格数据
	~entropy	std_msgs/Float64	发布机器人姿态分布熵的估计
Service	dynamic_map	nav msgs/GetMap	获取地图数据

gmapping功能包 中的TF变换

		TF变换	描述
	必需的TF变换	<scan frame=""> → base_link</scan>	激光雷达坐标系与基坐标系之间的变换,一般由 robot_state_publisher或_static_transform_publisher发布
		base_link → odom	基坐标系与里程计坐标系之间的变换,一般由里程计节点 发布
	发布的TF变换	map → odom	地图坐标系与机器人里程计坐标系之间的变换,估计机器 人在地图中的位姿

hector slam功能包

- 基于激光雷达
- 高斯牛顿方法
- 二维栅格地图
- 不需要里程计数据
- 输出地图话题:

nav_msgs/OccupancyGrid

hector_slam功能包的总体框架

安装<u>hector_slam</u> \$ sudo apt-get install <u>ros</u>-kinetic-hector-slam

hector功能包中 的话题和服务

		名称	类型	描述
†	Topic 订阅	scan	sensor_msgs/LaserScan	激光雷达扫描的深度数据
		syscommand	std_msgs/String	系统命令。 如果字符串等于"reset", 地图和机器人姿态重置为初始状态
	Topic 发布	map metadata	nav_msgs/MapMetaData	发布地图Meta数据
		map	nav_msgs/OccupancyGrid	发布地图栅格数据
		slam_out_pose	geometry_msgs/PoseStamped	估计的机器人位姿(没有协方差)
		poseupdate	geometry_msgs/ PoseWithCovarianceStamped	估计的机器人位姿(具有高斯估计的不 确定性)
	Service	dynamic_map	nav_msgs/GetMap	获取地图数据

hector功能包 中的TF变换

		TF变换	描述
	必需的TF 变换	<scan frame=""> → base_link</scan>	激光雷达坐标系与基坐标系之间的变换,一般由 robot state publisher或者 static transform publisher发布
	发布的TF 变换	map → <u>odom</u>	地图坐标系与机器人里程计坐标系之间的变换,估计机器人在地图中 的位姿

Spark机器人SLAM演示

```
spark git:(master) x ./onekey.sh
 SPARK 一键安装管理脚本
 ---- J.xiao | www.nxrobo.com ----
 请根据右侧的功能说明选择相应的序号。
 注意: 101~103为相关环境的安装与设置,如果已执行过,不要再重复执行。
   0. 单独编译SPARK
   1. 让机器人动起来
   2. 远程(手机APP)控制SPARK
   3. 计 SPARK跟 着 你 走
     让 SPARK使 用 激 光 雷 达 绘 制 地 图
   5. 让 SPARK使 用 深 度 摄 像 头 绘 制 地 图
   6. 让 SPARK使用激光雷达进行导航
   7. 让 SPARK使 用 深 度 摄 像 头 进 行 导 航
   8. 机械臂与摄像头标定
   9. 让 SPARK通 过 机 械 臂 进 行 视 觉 抓 取
  10. 使用 tensorflow进行物品检测
  11. 语音移动控制
  12. 微信移动控制
 100. 问题反馈
 101. 完整安装
 102. 单独安装ROS环境
 103. 单独安装 SPARK依赖
注意] 当前系统版本 Ubuntu 16.04.5 LTS!
 注意 ] 当前 ROS版本 kinetic !
请输入数字:
```


Spark机器人3D SLAM演示

基于move base的导航框架

(\$ sudo apt-get install ros-kinetic-navigation)

- ➤ 全局路径规划(global planner)
- 全局最优路径规划
- Dijkstra或A*算法

- ▶ 本地实时规划(local planner)
- 规划机器人每个周期内的线速度、角速度, 使之尽量符合全局最优路径。
- 实时避障
- Trajectory Rollout 和 Dynamic Window Approaches算法
- 搜索躲避和行进的多条路经,综合各评价标准选取最优路径

- 豪特卡罗定位方法
- ▶ 二维环境定位
- 针对已有地图使用粒子滤波器跟踪一个机器人的姿态

amcl功能包中的话题和服务

	an Th	Mr are	LHAR
	名称	类型	描述
	scan	sensor_msgs/LaserScan	激光雷达数据
	tf	tf/tfMessage	坐标变换信息
Topic 订阅	initialpose	geometry msgs/ PoseWithCovarianceSta mped	用来初始化粒子滤波器的均值和协方差
	map	nav_msgs/OccupancyGr id	use_map_topic参数设置时,amcl订 阅map话题以获取地图数据,用于激光 定位
	amcl_pose	geometry_msgs/ PoseWithCovarianceSta mped	机器人在地图中的位姿估计,带有协方 差信息
Topic 发布	particlecloud	geometry_msgs/PoseAr ray	粒子滤波器维护的位姿估计集合
Χ 1P	tf	tf/tfMessage	发布从odom(可以使用参数 ~odom_frame_id进行重映射)到map 的转换
Service	global_localizat ion	std_srvs/Empty	初始化全局定位,所有粒子被随机撒在 地图上的空闲区域
Service	request_nomot ion_update	std_srvs/Empty	手动执行更新并发布更新的粒子
Services Called	static_map	nav_msgs/GetMap	amcl调用该服务获取地图数据

具体算法可参考:《概率机器人》

Spark机器人导航演示

```
spark git:(master) x ./onekey.sh
 SPARK 一键安装管理脚本
 ---- J.xiao | www.nxrobo.com ----
 请根据右侧的功能说明选择相应的序号。
 注意: 101~103为相关环境的安装与设置,如果已执行过,不要再重复执行。
   0. 单独编译SPARK
   1. 让机器人动起来
   2. 远程(手机APP)控制SPARK
   3. 让 SPARK跟 着 你 走
     让 SPARK使 用 激 光 雷 达 绘 制 地 图
   6. 让 SPARK使 用 激 光 雷 达 进 行 导 航
   7. 让 SPARK使 用 深 度 摄 像 头 进 行 导 航
   8. 机械臂与摄像头标定
   9. 让 SPARK通 过 机 械 臂 进 行 视 觉 抓 取
  10. 使用 tensorflow进行物品检测
  11. 语音移动控制
  12. 微信移动控制
 100. 问题反馈
 101. 完整安装
 102. 单独安装ROS环境
 103. 单独安装 SPARK依赖
注意 ] 当前系统版本 Ubuntu 16.04.5 LTS!
注意] 当前ROS版本 kinetic!
请输入数字:
```

Thank you!