

Adversarial Perturbations Fool Deepfake Detectors

Apurva Gandhi and Shomik Jain

What Are Deepfakes?

Source

Target

Deepfake

Malicious applications of deepfakes make detection imperative, especially in pornography, fake news, and social media.

Image Source: https://www.youtube.com/watch?v=rvF5IA7HNKc

Fooling Deepfake Detectors

Our Work

- 1. Deepfake Dataset and Detection
- 2. Adversarial Perturbations
- 3. Defending Against Adversarial Perturbations

Deepfake Dataset and Detection

Deepfake Dataset

Real Images

CelebA Dataset (Liu et al., 2015)

Fake Images

Fewshot Face Translation GAN (Shaoanlu, 2019)

10,000 Images: 5,000 Real and 5,000 Fake.

Deepfake Detection

VGG-16

Very Deep Convolutional Networks for Large Scale Image Recognition (Simonyan and Zisserman, 2015)

Accuracy	99.7 %	AUROC	99.9%
Fake Recall	99.7 %	Real Recall	99.8%

ResNet-18

Deep Residual Learning for Image Recognition (He et al., 2015)

Accuracy	93.2%	AUROC	97.9%
Fake Recall	95.4 %	Real Recall	91.1%

Adversarial Perturbations of Deepfakes

Fast Gradient Sign Method (FGSM)

Explaining and Harnessing Adversarial Examples (Goodfellow, Shlens and Szegedy, 2015)

$$\mathbf{x}_{adv} = \mathbf{x} + \epsilon \operatorname{sign}(\nabla_x J(\mathbf{x}, \mathbf{y}, \theta))$$

Why? Consider the linear approximation of the loss function:

A single step of gradient ascent fools an accurate classifier with simply the sign of the gradient.

Carlini and Wagner L₂ Norm Attack (CW-L₂)

Towards Evaluating the Robustness of Neural Networks (Carlini and Wagner, 2016)

CW-L₂ minimizes an objective function with 2 components:

$$\mathbf{x}_{adv} = \arg\min\{\|\mathbf{x'} - \mathbf{x}\|_2^2 + c \max\{\mathbf{Z}(\mathbf{x'})_{fake} - \mathbf{Z}(\mathbf{x'})_{real}, -\kappa\}\}$$
 similarity misclassification

A change of variables to enforces a box constraint (pixel values in range [0, 1]):

$$\mathbf{x'} = \frac{1}{2}(\tanh(\boldsymbol{\omega}) + 1)$$

CW-L₂ optimizes for both a misclassification and similarity to original image.

Adversarially Perturbed Deepfakes

Unperturbed

FGSM

CW-L₂

Perturbed deepfakes look similar to unperturbed deepfakes but fool detectors.

Types of Adversarial Attacks

Blackbox attacks are more practical. Whitebox attacks are more effective.

Adversarial Attack Results

Adversarial attacks compromise detector accuracy in all cases.

Defending Against Adversarial Perturbations

Lipschitz Regularization

Adversarial explanations for understanding image classification decisions and improved neural network robustness (Woods, Chen and Teuscher, 2019)

Augment the loss function to regularize the norms of the logit gradients with respect to the input:

$$J_{aug}(\mathbf{x}, \mathbf{y}, \theta) = J(\mathbf{x}, \mathbf{y}, \theta) + \frac{\lambda}{CN} \sum_{i=1}^{C} \|\nabla_x \mathbf{Z}(\mathbf{x})_i\|_2^2$$

Why? Consider the linear approximation of the loss function:

$$J(\mathbf{x}_{adv}, \mathbf{y}, \theta) \approx J(\mathbf{x}, \mathbf{y}, \theta) + \nabla_x J(\mathbf{x}, \mathbf{y}, \theta)^T (\mathbf{x}_{adv} - \mathbf{x})$$
$$= J(\mathbf{x}, \mathbf{y}, \theta) + \sum_{i=1}^{C} \frac{\partial J}{\partial \mathbf{Z}_i} \nabla_x \mathbf{Z}(\mathbf{x})_i^T (\mathbf{x}_{adv} - \mathbf{x}).$$

Regularize the gradient norms to make the detector less sensitive to small perturbations.

Regularization Results

Regularization improved detectors on average but accuracy remains low.

Deep Image Prior (DIP)

Deep Image Prior (Ulyanov, Lempitsky and Vedaldi, 2017)

Removing Perturbations from Deepfakes

Let $\mathbf{f}(\theta, \mathbf{z})$ represent a generative CNN and \mathbf{x}_{adv} be a perturbed deepfake.

Solve Optimization Problem:

$$\left|\min_{\theta}\{\mathrm{MSE}(\mathbf{f}(\theta,\mathbf{z}),\mathbf{x}_{adv})\}\right|$$

An **unperturbed** image lies along the optimization path.

DIP Generative CNN

Deep Image Prior (Ulyanov, Lempitsky and Vedaldi, 2017)

Downsampling

$$n_d = [8, 16, 32, 64, 128]$$

 $k_d = [3, 3, 3, 3, 3]$

Skip-Connections

$$n_s = [0, 0, 0, 4, 4]$$

 $k_s = [NA, NA, NA, 1, 1]$

Upsampling

$$n_u = [8, 16, 32, 64, 128]$$

 $k_u = [3, 3, 3, 3, 3]$

DIP optimizes a randomly initialized encoder-decoder architecture for image generation.

DIP Optimization Path

Perturbed (FGSM) Fake Image

An **accurate prediction** lies along the optimization path before the generative CNN learns perturbations.

DIP Optimization Path

Unperturbed Real Image

Unperturbed Fake Image

Perturbed (FGSM) Fake Image

Perturbed (CW-L₂) Fake Image

In all cases, an accurate prediction lies along the optimization path at iteration 6,000.

DIP Defense

DIP Experiments: 100 Image Subsample

Real

Fake

Unperturbed

Perturbed

Blackbox

Whitebox

FGSM

 $CW-L_2$

Correct

Incorrect

DIP Results

Model Accuracy	Accuracy	AUROC	Fake		Real	
	Accuracy		Precision	Recall	Precision	Recall
DIP Defense	97.0%	99.2%	98.9%	97.8%	81.8%	90.0%
Original Detector	60.0%	41.9%	100.0%	55.5%	20.0%	100.0%

The DIP defense achieved 95% accuracy on perturbed deepfakes that fooled the original detector.

Conclusions and Limitations

- 1. Adversarial perturbations of deepfakes fool common CNN-based detectors.
- 2. Lipschitz regularization marginally improved detection of perturbed deepfakes.
- 3. The DIP defense successfully removes perturbations but has high computational cost.

Future work involves finding more efficient methods to improve deepfake detector robustness to adversarial perturbations.

