SCHOOL OF MATHEMATICS AND STATISTICS UNIVERSITY OF NEW SOUTH WALES MATH5425 Graph Theory Semester 2 2015 Problem Sheet 1, Introduction

- 1. Find a graph which is isomorphic to its complement. (Is yours the smallest nontrivial such graph?)
- 2. The idea of this question is to get you thinking about diameter: you are not expected to supply any proofs.
 - (a) Let G be a connected graph on n vertices. Find upper and lower bounds on the diameter of G, and find graphs which attain these bounds.
 - (b) Now suppose that G is a connected graph with n vertices and maximum degree d. Find examples of graphs with high diameter and with low diameter, and express the diameter as a function of n and d.
- 3. Prove that a graph is bipartite if and only if it contains no odd cycles. (A cycle is *odd* if its length is odd.)
- 4. Prove Euler's theorem: a connected graph is Eulerian if and only if every vertex has even degree. (*Hint: consider a walk of maximal length which uses no edge more than once. Show it is closed and is an Euler tour.*) Try to avoid looking at Diestel's proof (Proposition 1.8.1).
- 5. We will prove a result called Mantel's theorem: any graph with n vertices and more than $\lfloor n^2/4 \rfloor$ edges contains a triangle (that is, a cycle of length 3). In fact, we prove the contrapositive.
 - (a) Let G = (V, E) be a graph on n vertices with no triangle. Prove that $d(x) + d(y) \le n$ whenever $xy \in E$.
 - (b) Hence prove that $\sum_{x \in V} d(x)^2 \le n|E|$.
 - (c) Using the Cauchy-Schwarz inequality and (b), show that $|E| \leq n^2/4$.
 - (d) For any integer $n \ge 2$, describe a graph with n vertices, no triangle and exactly $\lfloor n^2/4 \rfloor$ edges. (*Hint: use Question 3.*)

(Recall that the Cauchy-Schwarz inequality for \mathbb{R}^N says that

$$\left(\sum_{j=1}^{N} a_j b_j\right)^2 \le \left(\sum_{j=1}^{N} a_j^2\right) \left(\sum_{j=1}^{N} b_j^2\right).$$

for any $(a_1, ..., a_N), (b_1, ..., b_N) \in \mathbb{R}^N$.)

(Please turn over for Questions 6 and 7...)

- 6. In this question we show that $\kappa(G) \leq \lambda(G) \leq \delta(G)$ for any graph G with at least two vertices. (That is, connectivity \leq edge-connectivity \leq minimum degree.) Our argument follows Diestel's proof (Proposition 1.4.2) but please try it yourself first!
 - (i) First prove $\lambda(G) \leq \delta(G)$.
 - (ii) Prove that $\kappa(G) < \lambda(G)$ when G is complete.

Now suppose that F is a set of $\lambda(G)$ edges such that G - F is disconnected. That is, F is a minimal separating set of edges. Let $v \in V(G)$ be a vertex and let H be the connected component of G - F which contains v.

- (iii) Explain why no edge of H joins two vertices of F.
- (iv) Suppose that v is not incident with any edge of F. Find a set of at most $\lambda(G)$ vertices in H which separate v from G-H. Hence conclude that $\kappa(G) \leq \lambda(G)$.

Now suppose that G is not complete but that every vertex of G is incident with an edge of F. Choose vertex v which has at least one non-neighbour w in G.

- (v) Prove that $d_G(v) \leq \lambda(G)$.
- (vi) Hence conclude that $\kappa(G) \leq \lambda(G)$.
- 7. Prove the lemma on trees stated in lectures, namely that for any graph G the following are equivalent:
 - (i) G is a tree.
 - (ii) There exists a unique path between any two distinct vertices of G.
 - (iii) G is minimally connected (that is, G is connected but if you delete any edge, it is not connected).
 - (iv) G is maximally acyclic (that is, G is acyclic but adding any edge between two non-neighbours of G creates a cycle).

(Hint: prove that each condition is equivalent to (ii).)