8.1																									
Wedn	esday, A	April 18,	, 2018	2:1	8 AM																				
	C	7	دم لـ	0		7, .	71-	7	0		1 01	.L /		٠,	<i>_</i> ,	1	. L	714	7	ر بر	d .	(dn	m (m	رمه	(44)
C	· T ·		H U U	un	1	7.0	K 1 d		froi	u	te	ح ک	700V	(J		-1 · (30	, •	(β	, 40 (V	y)

ME 608 Fluid Dynamics

Using the continuity equation in differential form, evaluate which of the following velocity distributions (sets of equations) represent possible three-dimensional incompressible flow case

- (a) $u = 2y^2 + 2xz$; $v = -2yz + 6x^2yz$; (b) u = xyzt; $v = -xyzt^2$; (c) $u = x^2 + 2y + z^2$; v = x 2y + z;

- $w = 3x^{2}z^{2} + x^{3}y^{4}$ $w = z^{2}(xt^{2} yt)$ $w = -2xz + y^{2} + 2z$

Continuity equation:
$$\frac{Ds}{Dt} + s\nabla \cdot \vec{v} = 0$$

in compressible flow:
$$\frac{\partial s}{\partial t} = \frac{\partial s}{\partial t} + \vec{v} \cdot \nabla s = \frac{\partial s}{\partial t} + u \frac{\partial s}{\partial x} + v \frac{\partial s}{\partial y} + u \frac{\partial s}{\partial z} = \phi$$

 $\langle \rangle \nabla \cdot \vec{v} = \frac{\partial u}{\partial \tau} + \frac{\partial v}{\partial \gamma} + \frac{\partial w}{\partial t} = 0$

: With velocity fields given, deach whether they satisfy $\nabla \cdot \vec{v} = 0$

(a)
$$u = 2y^2 + 2xz \Rightarrow \frac{\partial u}{\partial x} = 2z$$

$$V = -2\gamma z + 6x^2\gamma z \implies \frac{\partial v}{\partial \gamma} = -2z + 6x^2z$$

$$W = 3x^2z^2 + x^3y^4 \implies \frac{\partial u}{\partial z} = 6x^2z$$

 $\nabla \cdot \vec{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$

 $= 12 x^2 \neq 9$

(Not incompressible

(b) u = xyzt

$$\Rightarrow \frac{\partial u}{\partial x} = y + t$$

$$V = -xytt^2$$

$$\Rightarrow \frac{\partial v}{\partial y} = -x z + c^2$$

$$W = z^2(xt^2-yt) =$$

$$\Rightarrow \frac{\partial w}{\partial t} = 2xzt^2 - 2yzt$$

 $\nabla \cdot \vec{v} = -\gamma z t + \nu z t^2$

(Not incompressible

$$u = x^2 + 2y + z^2 \implies \frac{\partial u}{\partial x} = 2x$$

$$v = \lambda - 2y + 2 \Rightarrow \frac{\partial v}{\partial y} = -2$$

$$\omega = -2xz + y^2 + 2z \Rightarrow \frac{\partial \omega}{\partial z} = -2x + 2$$

 $\nabla \cdot \vec{v} = 2x - 2 - 2x + 2 = \phi$

(incompressible)

=> divergence-free velocity field

A useful approximation for the x component of velocity in an incompressible, two-dim boundary layer is a parabolic variation from u=0 at the surface (y=0) to the freestream velocity, U_{∞} , at the edge of the boundary layer $(y=\delta)$. The equation for the profile is $u - \text{profile is given:} \qquad \frac{u}{U_{\infty}} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$

< look for key words.

$$u$$
-profile is given: $\frac{u}{U_{\infty}} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$

where $\delta = cx^{0.5}$ and c is a constant. Using the continuity equation in differential form, show that the simplest expression for the y component of velocity is

5 x x =

Thow that v-profice is:
$$\frac{v}{U_m} = \frac{\delta}{x} \left[\frac{1}{2} \left(\frac{y}{\delta} \right)^2 - \frac{1}{3} \left(\frac{y}{\delta} \right)^3 \right]$$

Thow that v-profite is: $\frac{v}{U_{\infty}} = \frac{\delta}{x} \left[\frac{1}{2} \left(\frac{y}{\delta} \right)^2 - \frac{1}{3} \left(\frac{y}{\delta} \right)^3 \right]$ For $\delta = 5mm$ and x = 0.5m, plot v/U_{∞} versus y/δ to find the location of the max. value of ratio v/U_{∞}

 $\frac{Dg}{\partial +} + g\nabla \cdot \vec{v} = 0$ $\underline{\alpha:} = \frac{\partial s}{\partial t} + \vec{V} \cdot \nabla s + s \nabla \cdot \vec{V} = \frac{\partial s}{\partial t} + \nabla \cdot (s\vec{V}) =$ $=\frac{\partial s}{\partial t}+\frac{\partial (su)}{\partial x}+\frac{\partial (su)}{\partial y}+\frac{\partial (su)}{\partial t}=$ $= \frac{\partial s}{\partial t} + u \frac{\partial s}{\partial x} + s \frac{\partial u}{\partial x} + v \frac{\partial s}{\partial y} + s \frac{\partial v}{\partial y} + u \frac{\partial s}{\partial t} + s \frac{\partial w}{\partial t} = 0$ =37.V

Assumptions (from problem description):

- in compressible: $\frac{\partial s}{\partial t} = \emptyset \iff \nabla \cdot \vec{\nabla} = \emptyset = \frac{\partial u}{\partial t} + \frac{\partial v}{\partial y} + \frac{\partial u}{\partial t}$
- Two-dimensional: W=0, $\frac{\partial}{\partial z}=0$. $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ governing equation

Given: velocity profile $\frac{u}{L_{T}} = 2\left(\frac{y}{\sigma}\right) - \left(\frac{y}{\sigma}\right)^2$ by $\delta = c \times \frac{1}{2}$ from continuity equ: $\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}$ and: $c^2 = \frac{\delta^2}{x} (**)$ $v = -\int \frac{\partial u}{\partial x} dy + C_2(x)$ most be a punction of x (and still satisfy continuity)

$$w \left| \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left[\overline{U}_{\infty} \left(2 \frac{y}{cx^{\frac{1}{2}}} - \frac{y^{2}}{c^{2}x} \right) \right] = \frac{\partial}{\partial x} \left[\overline{U}_{\infty} \left(2 \frac{y}{c} x^{-\frac{1}{2}} - \frac{y^{2}}{c^{2}} x^{-\frac{1}{2}} \right) \right]$$

 $= \overline{L}_{a} \left(-\frac{1}{2} \frac{2y}{c} + \frac{-3}{2} + \frac{y^{2}}{c^{2}} + \frac{y^{2}}{c^{2}} + \frac{y^{2}}{c^{2}} + \frac{y^{2}}{c^{2}} \left(\frac{c}{\sigma} \right)^{4} \right)$

$$= \overline{U}_{\infty} \frac{c^{2}}{\delta^{2}} \left(-\frac{y}{\sigma} + \left(\frac{y}{\sigma} \right)^{2} \right)$$

 $v = -\int \overline{u}_{x} \frac{c^{2}}{\delta^{2}} \left(-\frac{y}{\delta} + \left(\frac{y}{\delta}\right)^{2}\right) dy + C_{2} cx =$ $= - IT \cdot \frac{c^2}{c^2} \left(-\frac{1}{2} \frac{y^2}{2} \right) + (\cdot c^2) =$

$$= - \text{Tr}_{\infty} \frac{c^{2}}{\sigma^{2}} \left(-\frac{1}{2} \frac{\gamma^{2}}{\sigma^{2}} + \frac{1}{3} \frac{\gamma^{3}}{\sigma^{4}} \right) + \left(2 \cdot \Delta \right) = \frac{1}{2} \frac{c^{2}}{\sigma^{2}} \left(-\frac{1}{2} \frac{\gamma^{2}}{\sigma^{2}} + \frac{1}{3} \frac{\gamma^{3}}{\sigma^{4}} \right) + \left(2 \cdot \Delta \right) = \frac{1}{2} \frac{c^{2}}{\sigma^{2}} = \frac{1}{2} \frac{c^{2}}{\sigma^{2}} \left(-\frac{1}{2} \frac{\gamma^{2}}{\sigma^{2}} - \frac{1}{3} \frac{\gamma^{3}}{\sigma^{2}} \right) + \left(2 \cdot \Delta \right) = \frac{1}{2} \frac{c^{2}}{\sigma^{2}} = \frac{1}{2} \frac{c^{2}}{\sigma^{2}} = \frac{1}{2} \frac{c^{2}}{\sigma^{2}} + \frac{1}{2} \frac{c^{2}}{\sigma^{2}} + \frac{1}{2} \frac{c^{2}}{\sigma^{2}} + \frac{1}{2} \frac{c^{2}}{\sigma^{2}} \right) + \left(2 \cdot \Delta \right) = \frac{1}{2} \frac{c^{2}}{\sigma^{2}} = \frac{1}{2} \frac{c^{2}}{\sigma^{2}} + \frac{1}{2} \frac{c^{2$$

8.4						
Wednesday, A	pril 18, 2018	2:30 AM				
8.41	1 -					
	Given					
			r V			
		1		19		
		9717	7-u(g)=	0(5)		
		14.	7			
	find!	a) 1/2	limetric del	to Rate		
	0		10010			
		b) ang	ular Vilce	if Vector		
		c) Va	that the	tor		
		d) R	to as Arac	les deforma	tien	
	Andrew	2.		3 3	B	
	-	a) V	·V= du	3 3 + DR	2	
			O'X)	29 02		
		12	5. U.	del a fen of	X	
		Val	undrec dilaber	7 = 0	1 7-	
		6) 1/2	(VXV) =	>-1 Ju &	= - = - = = = = = = = = = = = = = = = =	
)		
		2) W	$T = V \times V =$	>- Juk =	- Tx	
		d) rat	a Angelor de	(= m +)	u_1.2	
				TX 5	9 6	