Stochastic Process Lab File

MC - 303

Anish Sachdeva DTU/2K16/MC/13

SNO ·	EXPERIMENT	DATE	SIGNATURE
1.	Discrete State Space: No. of cars washed on n^{th} day in a car wash given minimum 20 cars are washed and maximum 30 cars are washed.		
2.	Continuous State Space: Average time taken for a car to be worked on n^{th} day of month given time required is 2 minutes and maximum time taken is 4 minutes.		
3.	Continuous State Space: Variation in temperature in a time period of 5 minutes given that temperature can vary between 22 and 26 C.		
4.	Discrete State Space: No. of times temperature changed within 5 minutes and when it changed given temperature can change a maximum of 10 times.		
5.	It has been observed that a fuse designed by a company follows bernoulli distribution when being manufactured. If the company sells fuse in a box of 20 and gives guarantee that box will be replaced if no. of defective fuses is greater than 2. Find expected no. of replacements in a lot of 1000 boxes.		
6.	Assuming that a circuit has an IC whose time to failure is exponentially distributed with expected lifetime of 3 months. If there are 10 spare IC's and time from failure to replacement is negligible. What is the probability that circuit is operational for a year? For non homogenous case consider expected lifetime to be 3/n and for renewal		

	consider time to failure is uniformly distributed with b = 3 and a = 0.	
7.	Simple unrestricted random walk	
8.	To implement a transition probability matrix (TPM)	
9.	Plotting a Normal Curve	
10.	Consider an M/M/1 model and for steady state write a program to find the mean and variance of queue length, the mean and variance of waiting time and mean duration of busy period.	

Simulate the following discrete parameter stochastic processes.

Discrete State Space: No. of cars washed on n^{th} day in a car wash given minimum 20 cars are washed and maximum 30 cars are washed.

CODE:

```
x = [1 : 1 : 30]

y = 20 + rand([0, 10], 30, 1);

p = scatter(x, y);

xlabel("Days");

ylabel("No of cars washed on <math>n^{th} day");

title("Discrete parameter Discrete state space");
```


Simulate the following discrete parameter stochastic processes.

Continuous State Space: Average time taken for a car to be worked on n^{th} day of month given time required is 2 minutes and maximum time taken is 4 minutes.

CODE

```
x = [1 : 1 : 30]
y = 120 + 120.*rand(30, 1);
p = scatter(x, y);
xlabel("Days of months");
ylabel("Average time taken for car wash");
title("Discrete parameter continuous state space");
```


Simulate the following continuous parameter stochastic processes.

Continuous State Space: Variation in temperature in a time period of 5 minutes given that temperature can vary between 22 and 26 C.

CODE

```
x = [0.01 : 0.05 : 5]
y = 22 + 4.*rand(100, 1);
p = plot(x, y);
xlabel("Time in minutes");
ylabel("Temp. change");
title("Continuous parameter continuous state space");
```


Simulate the following continuous parameter stochastic processes.

Discrete State Space: No. of times temperature changed within 5 minutes and when it changed given temperature can change a maximum of 10 times.

CODE

```
x = [0.01 : 0.5 : 5]
y = rand([0 : 10], 50, 1);
p = stairs(x, y);
xlabel("Time in minutes");
ylabel("No. Of times temp. change");
title("Continuous parameter discrete state space");
```


It has been observed that a fuse designed by a company follows bernoulli distribution when being manufactured. If the company sells fuse in a box of 20 and gives guarantee that box will be replaced if no. of defective fuses is greater than 2. Find expected no. of replacements in a lot of 1000 boxes. Given -

- 1) Pr[fuse is defective] = 0.01 = p
- 2) $Pr[n^{th}$ fuse is defective] = 0.01n = pn.

CODE

```
ans = 15.1903
```

Assuming that a circuit has an IC whose time to failure is exponentially distributed with expected lifetime of 3 months. If there are 10 spare IC's and time from failure to replacement is negligible. What is the probability that circuit is operational for a year? For non homogenous case consider expected lifetime to be 3/n and for renewal consider time to failure is uniformly distributed with b = 3 and a = 0.

CODE

OUTPUT

```
>> poisson(1, 10) ans = 0.4482
```

CODE

```
function[] = poisson_non_homo(parameter, n)
p = 0;
for i = 0:n
         pr = pr + ((exp(-parameter) * (parameter) ^ i) /
factorial(i));
end
end
```

OUTPUT

```
>>poisson(4, 10)
ans = 0.9972
```

CODE

```
>>uniform_renewal(10, 12, 0, 3)
ans = 0.09492
```

A simple unrestricted random walk with

```
1. p = 0.4, q = 0.6
2. p = 0.4, q = 0.5
```

Find the probability that after 100 steps at n = 100 the particle lies between -15 and 20 in both cases. Find the probability that particle is away from 25 that is position at n = 100 >= 25.

CODE

```
n=input('enter n - ');
p=input('enter p - ');
q=input('enter q - ');
if (p+q)<1
     r=1-p-q;
else
     r=0;
x1=input('\n enter Required points for
Probability [x1<X<x2] \ x1 - ');
x2=input('x2 - ');
x1=x1-0.5;
x2=x2+0.5;
m = p-q;
v = p+q-(p-q)^2;
mu = n*m;
var = n*v;
sigma=sgrt(var);
z1 = (x1-mu)/sigma;
z2 = (x2-mu)/sigma;
p = normcdf(z2) - normcdf(z1);
fprintf('\n P[% f < x < % f] = % f \n', x1, x2,p);
```

OUTPUT

>>random_walk

enter p
$$0.4$$
 enter q 0.6 $P[-16 < x < 21] = 0.3415$

$$P[24 < = x] = 0.000004$$

>>random_walk

enter p
$$0.4$$

enter q 0.5
 $P[-15.5 < x < 20.5] = 0.7194$

$$P[24.5 < = x] = 0.000128$$

To implement a transition probability matrix(TPM).

Find out the transition probability matrix for a random walk with barriers at 1 & 5 where :-

P[Zi = 1] = 0.5, P[Zi = -1] = 0.4, P[Zi = 0] = 0.1. For all 4 cases:

- 1. Both side absorbing barriers
- 2. Left side absorbing and right side reflecting barriers
- 3. Both side reflecting barriers
- 4. Left side reflecting and right side absorbing barriers

THEORY

If Xi = i, we say that the process is in state i at time n. Further we say Pij is the probability that if at time n the process is in state i then at time n + 1 the process will be in state j.

If there are n states in the process then there are n*n transition probability states. The one step transition probabilities are completely specified in the form of a transition probability matrix where:-

- 1. Pij >= 0
- 2. Sum of Pij of all independent rows = 1

CODE

```
Switch c
     Case 1:
           tpm(1, 1) = 1; tpm(n, n) = 1;
     Case 2:
           tpm(1, 1) = 1;
           tpm(n, n) = 1 - q;
           tpm(n, n - 1) = q;
     Case 3:
           tpm(1, 1) = 1 - p;
           tpm(1, 2) = p;
           tpm(n, n) = 1 - q;
           tpm(n, n - 1) = q;
      Case 4:
           tpm(1, 1) = 1 - p;
           tpm(1, 2) = p;
           tpm(n, n) = 1;
end
answer = tpm;
for i = 1:n
     answer = answer * tpm
end
end
OUTPUT
>>markov_chain(0.5, 0.4, 0.1, 5, 1)
   answer =
     1.0000 0
                    0
                             0
                                     0
     0.4444 0.00001
                             0
                                     0
     0.1975
           0.000024 0.00001
                                     0
     0.0876 0.000024 0.000024 0.00009 0
           0
     0
                    Π
                             0
                                     1
>>markov_chain(0.5, 0.4, 0.1, 5, 2)
   answer =
```

1.0000 0

0

0

0

0.4444	0.0001	0	0	0
0.1975	0.00024	0.00001	0	0
0.0876	0.00024	0.000024	0.00001	0
0.0640	0.02368	0.02984	0.0373	0.04

>>markov_chain(0.5, 0.4, 0.1, 5, 3)

answer =

0.171045	0.12393	0	0	0
0.09914	0.071901	0	0	0
0.05752	0.041624	0.00001	0	0
0.03328	0.02424	0.000024	0.00001	0
0.0384	0.04288	0.02984	0.037324	0.046

>>markov_chain(0.5, 0.4, 0.1, 5, 4)

answer =

0.171045	0.12393	0	0	0
0.09914	0.071901	0	0	0
0.05752	0.041624	0.00001	0	0
0.03328	0.02424	0.000024	0.00001	0
0	0	0	0	1

Experiment 9

Question

Write a Program to plot a normal curve

Theory

A normal curve is a bell-shaped curve which shows the probability distribution of a continuous random variable. Moreover, the normal curve represents a normal distribution. The total area under the normal curve logically represents the sum of all probabilities for a random variable. Hence, the area under the normal curve is one. Also, the standard normal curve represents a normal curve with mean 0 and standard deviation 1. Thus, the parameters involved in a normal distribution is mean (μ) and standard deviation (σ).

Characteristics of a normal curve:

- The values of mean, median and mode are same
- It represents a unimodal distribution as it has only one peak.
- It shows a symmetric distribution as 50% of the data set lies on the left side of the mean and 50% of the data set lies on the right side of the mean.
- Empirical rule: 68% of the data fall within μ ± σ , 95% of the data fall within μ ± 2 σ and 99.7% of the data fall within μ ± 3 σ

Code

Output

Question 10

Aim

Consider an M/M/1 model and for steady state write a program to find the mean and variance of queue length, the mean and variance of waiting time and mean duration of busy period.

Code

```
lambda = input('Enter Arrival Rate - ');
mu = input('Enter Service Rate - ');
rho = lambda/mu;
fprintf('Mean length of queue is:')
lq = (rho.^2)/(1-rho)
fprintf('Variance of queue length')
varlq = ((rho.^2)*(1+rho-rho.^2))/(1-rho).^2
fprintf('Mean Waiting time:');
wq = lq/lambda
fprintf('Variance of waiting time;')
varwq = (rho.*(2-rho))/((1 - rho).^2*mu.^2)
fprintf('Mean duration of busy period')
w = wq + 1/mu
```

Output

```
Enter Arrival Rate - 3
Enter Service Rate - 5
Mean length of queue is:
lq = 0.9000

Variance of queue length
var_ql = 2.7900

Mean Waiting time:
mean_wt = 0.3000

Variance of waiting time;
var_wt = 0.2100

Mean duration of busy period
mean_busy_period = 0.5000
```