MATH 392 Problem Set 6

Sam D. Olson

Exercise from the book

9.1 #1

Q: Let X have the exponential distribution with parameter β . Suppose that we wish to test the hypotheses $H_0: \beta \geq 1$ versus $H_1: \beta < 1$. Consider the test procedure δ that rejects H_0 if $X \geq 1$.

 (\mathbf{A})

Determine the power function of the test.

Let δ demote a test, specifically:

 δ :{Reject H_0 when $X \geq 1$ }

Then for $\beta > 0$ we note the power function as follows, $\pi(\beta \mid \delta) = Pr(X \ge 1 \mid \beta) = e^{-\beta}$

(B)

Compute the size of the test.

By the definition of size, we have:

$$size(\delta) = sup_{\beta \ge 1} \pi (\beta \mid \delta)$$

Note the power function from (A), $\pi(\beta \mid \delta) = e^{-\beta}$, such that $\pi(\beta \mid \delta)$ is a decreasing function of β . Thus, the power function takes a maximum at $\beta = 1$, and we may say:

The size of the test is $\pi(\beta = 1 \mid \delta) = e^{-1}$.

9.1 # 2

Q: Suppose that $X_1, ..., X_n$ form a random sample from the uniform distribution on the interval $[0, \theta]$, and that the following hypotheses are to be tested:

 $H_0: \theta \geq 2$

 $H_1: \theta < 2$

Let $Y_n = max(X_1, ..., X_n)$ and consider a test procedure such that the critical region contains all the outcomes for which $Y_n \leq 1.5$.

(A)

Determine the power function of the test.

Note, for $0 < y < \theta$, then $Pr(Y_n \le y) = \left(\frac{y}{\theta}\right)^n$.

Additionally note, if $y \ge \theta$, then $Pr(Y_n \le y) = 1$.

Thus, for the stated condition, if $\theta \leq 1.5$, then $\pi(\theta) = Pr(Y_n \leq 1.5) = 1$.

And if $\theta > 1.5$, then $\pi(\theta) = Pr(Y_n \le 1.5) = \left(\frac{1.5}{\theta}\right)^n$

(B)

Determine the size of the test.

The size of the test, $size(\delta) = \alpha = sup_{\theta \geq 2}\pi(\theta) = sup_{\theta \geq 2}\left(\frac{1.5}{\theta}\right)^n = \left(\frac{1.5}{2}\right)^n = \left(\frac{3}{4}\right)^n$.

9.1 #14

Plus: plot power functions in R

Q: Let $X_1,...,X_n$ be i.i.d. with exponential distribution with parameter θ . Suppose that we wish to test the hypotheses:

 $H_0: \theta \geq \theta_0$

 $H_1: \theta < \theta_0$

Let $X = \sum_{i=1}^{n} X_i$. Let δ_c be the test that rejects H_0 if $X \geq c$.

(A)

Show that $\pi(\theta \mid \delta_c)$ is a decreasing function of θ

(B)

Find c in order to make δ_c have size α_0 .

(C)

Let $\theta_0 = 2$, n = 1, and $\alpha_0 = 0.1$. Find the precise form of the test δ_c and sketch its power function.

```
theta <- 250
n < (1:50)
mle_mse <- rep(NA, 50)</pre>
mom_mse \leftarrow rep(NA, 50)
mle_adj_mse <- rep(NA, 50)
for (i in 1:50){
 mle_mse[i] \leftarrow ((theta ^ 2) * 2) / ((n[i] + 1) * (n[i] + 2))
 mom_mse[i] <- (theta ^ 2) / (3 * n[i])
 mle_adj_mse[i] <- (theta ^ 2) / ((n[i] * (n[i] +2)))</pre>
df <- data.frame(n,mle_mse,mom_mse, mle_adj_mse)</pre>
ggplot(df, aes(n)) +
  geom_line(aes(y=mle_mse), colour="red") +
  geom_line(aes(y=mom_mse), colour="green") +
  geom_line(aes(y=mle_adj_mse), colour="blue") +
  geom_text(x=3.5, y=500, label="MLE adj.") +
  geom_text(x=20, y=2500, label="MOM") +
  geom_text(x=8, y=3000, label="MLE") +
  ggtitle("MSE of MLE, MOM, and adjusted MLE Estimators") +
  labs(y="MSE", x = "n (observations)")
```

MSE of MLE, MOM, and adjusted MLE Estimators

9.2 #2

Q: Consider two p.d.f.'s $f_0(x)$ and $f_1(x)$ that are defined as follows:

$$f_{0}(x) = \begin{cases} 1 \text{ for } 0 \leq x \leq 1 \\ 0 \text{ otherwise} \end{cases}$$

and

$$f_{1}(x) = \begin{cases} 2x \text{ for } 0 \leq x \leq 1\\ 0 \text{ otherwise} \end{cases}$$

Suppose that a single observation X is taken from a distribution for which the p.d.f. f(x) is either $f_0(x)$ or $f_1(x)$, and the following simple hypotheses are to be tested:

$$H_0: f(x) = f_0(x)$$

$$H_1: f(x) = f_0(x)$$

(A)

Describe a test procedure δ for which the value of $\alpha\left(\delta\right)+2\beta\left(\delta\right)$ is a minimum.

Using Thm. 9.2.1 with a-1,b=2, we have:

$$\delta$$
 :{Do not reject H_0 if $\frac{f_1(x)}{f_0(x)}<\frac{1}{2}\}$

Note, as
$$\frac{f_1(x)}{f_0(x)} = 2x \rightarrow 2x < \frac{1}{2}$$

Thus we may say the procedure is: Do not reject H_0 if $x < \frac{1}{4}$, and likewise to reject H_0 if $x > \frac{1}{4}$.

(B)

Determine the minimum value of $\alpha(\delta) + 2\beta(\delta)$ attained by that procedure.

Note the following formulations:

$$\alpha(\delta) = Pr(RejectH_0 \mid f_0) = \int_{\frac{1}{4}}^{1} f_0(x)dx = \frac{3}{4}$$

$$\beta(\delta) = Pr(FailtoRejectH_0 \mid f_1) = \int_0^{\frac{1}{4}} 2x dx = \frac{1}{16}$$

Therefore, we have:

$$\alpha\left(\delta\right) + 2\beta\left(\delta\right) = \frac{3}{4} + 2\frac{1}{16} = \frac{7}{8}$$

9.2 #3

Q: Consider again the conditions of Exercise 2 (9.2.2), but suppose now that it is desired to find a test procedure for which the value of $3\alpha(\delta) + \beta(\delta)$ is a minimum.

(A)

Determine the procedure.

Using Thm. 9.2.1. with a = 3, b = 1, we have:

$$\delta$$
:{Do not reject H_0 if $\frac{f_1(x)}{f_0(x)} < 3 \rightarrow 2x < 3$ }

Since all values of X lie in the interval (0, 1), the optimal procedure is to not reject H_0 for every possible observed value (as $max(X) = 1 \rightarrow 2 \cdot max(X) = 2 < 3$).

(B)

Determine the minimum value of $3\alpha(\delta) + \beta(\delta)$ attained by the procedure.

Since we never reject H_0 under the stated conditions, we have:

$$\alpha(\delta) = 0, \beta(\delta) = 1$$
 and we thus have:

$$3\alpha(\delta) + \beta(\delta) = 1$$

9.2 #10

Q: Suppose that $X_1, ..., X_n$ form a random sample from the Poisson distribution with unknown mean λ . Let λ_0 and λ_1 be specified values such that $\lambda_1 > \lambda_0 > 0$, and suppose that it is desired to test the following simple hypotheses:

$$H_0: \lambda = \lambda_0$$

$$H_1: \lambda = \lambda_1$$

(A)

Show that the value of $\alpha(\delta) + \beta(\delta)$ is minimized by a test procedure which rejects H_0 when $\bar{X}_n > c$.

(B)

Find the value of c.

 (\mathbf{C})

For $\lambda_0 = \frac{1}{4}$, $\lambda_1 = \frac{1}{2}$, and n = 20, determine the minimum value of $\alpha(\delta) + \beta(\delta)$ that can be attained.

9.3 #1

Q: Suppose that $X_1,...,X_n$ form a random sample from the Poisson distribution with unknown mean λ ($\lambda > 0$). Show that the joint p.f. of $X_1,...,X_n$ has a monotone likelihood ratio in the statistic $\sum_{i=1}^n X_i$.

Let
$$y = \sum_{i=1}^{n} x_i$$

We may note the joint p.f. of the data as:

$$f_n(\bar{X} \mid \lambda) = f_n(X_1 \mid \lambda)...f_n(X_n \mid \lambda) = \frac{e^{-\lambda}\lambda^{x_1}}{x_1!}...\frac{e^{-\lambda}\lambda^{x_n}}{x_n!} = \frac{e^{-n\lambda}\lambda^y}{\prod_{i=1}^n x_i!}$$

Thus, for $0 < \lambda_1 < \lambda_2$, we have:

$$\frac{f_n(\bar{X}|\lambda_2)}{f_n(\bar{X}|\lambda_1)} = \frac{\prod\limits_{i=1}^{e^{-n\lambda_2}\lambda_2^y}}{\prod\limits_{i=1}^{n}x_i!}$$

Noting the factorials of x_i cancel out, we then have:

$$\frac{f_n(\bar{X}|\lambda_2)}{f_n(\bar{X}|\lambda_1)} = e^{-n(\lambda_2 - \lambda_1)} \cdot \left(\frac{\lambda_2}{\lambda_1}\right)^y$$

Note, as $0 < \lambda_1 < \lambda_2$, this is an increasing function of y and we conclude the joint p.f. of $X_1, ..., X_n$ has a monotone likelihood ratio in the statistic $\sum_{i=1}^{n} X_i$.

9.3 #2

Q: Suppose that $X_1, ..., X_n$ form a random sample from the normal distribution with known mean μ and unknown variance σ^2 ($\sigma^2 > 0$). Show that the joint p.d.f. of $X_1, ..., X_n$ has a monotone likelihood ratio in the statistic $\sum_{i=1}^{n} (X_i - \mu)^2$.

9.3 #13

Q: Suppose that four observations are taken at random from the normal distribution with unknown mean μ and known variance 1. Suppose also that the following hypotheses are to be tested:

 $H_0: \mu \geq 10$

 $H_1: \mu < 10$

(A)

Determine a UMP test at the level of significance $\alpha_0 = 0.1$

 (\mathbf{B})

Determine the power of this test when $\mu = 9$.

(C)

Determine the probability of not rejecting H_0 if $\mu = 11$.