

Informe N°9 Laboratorio de Máquinas

"Curvas características de una bomba centrífuga"

Nombre: Mauricio Carrasco Cornejo

Curso: ICM557-3

Profesor: Cristóbal Galleguillos Kettere

Resumen

En el ensayo realizado se vieron diferentes mediciones de una bomba centrifuga, en mediciones en diferentes velocidades, (3070,2900 Y 2700 RPM). Donde se apreció que este trabaja de forma óptima, sus curvas son de tendencia parecida a las que aparecen en los apuntes te turbomáquinas del profesor Don Ramiro Mège y catálogos de las bombas centrifugas. Con sus curvas características se pudo apreciar su funcionamiento y punto de rendimiento óptimo.

Índice

Resumen	2
Introducción	4
Objetivo	5
Trabajo de laboratorio	6
Desarrollo	7
Tabla de valores medidos	7
Tabla 2: Valores Medidos En El Ensayo	7
	8
Tabla 3: Valores Medidos En El Ensayo	8
Formulas	8
Tabla de valores calculados	10
De isorendimiento y potencia vs caudal	11
¿Cuáles son las condiciones óptimas de operación de esta bomba?	13
¿Las curvas tiene la forma esperada?	13
¿Cuál es la potencia máxima consumida?	13
¿Qué tipo de curvas son?	13
Trace el siguiente gráfico en una hoja completa: Curva Ψ vs Φ	14
¿La nube de puntos que conforman esta curva son muy dispersos?	14
Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Justifíquelo	14
Calcule la velocidad específica y determine si las características constructivas y operacionale concordantes con esa velocidad específica y su respuesta 3.4.3.2	
Conclusión	
Referencias	17

Introducción

La bomba centrífuga, es también denominada bomba rotodinámica, actualmente es la máquina más utilizada para bombear fluidos incompresibles (líquidos). Las bombas centrífugas son siempre rotativas y son un tipo de bomba hidráulica que transforma la energía mecánica de un impulsor en energía cinética o de presión de un fluido incompresible.

En este ensayo se detallará el comportamiento de una Bomba centrifuga, calculando parámetros de operación y graficando las curvas características de esta bomba.

Objetivo

- Analizar el comportamiento de una bomba centrífuga mediante sus curvas características.

Trabajo de laboratorio.

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente para que se estabilice su funcionamiento, tome las siguientes medidas:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, en [rpm].
- pax% presión de aspiración, en [%].
- pdx% presión de descarga, en [%].
- •Δhx caudal de la bomba, presión diferencial en el venturímetro en [mmHg].
- Fx fuerza medidas en la balanza, en [kp].
- t_a temperatura de agua en el estanque, en [°C].
- P_{atm} presión atmosférica, en [mmHg].

Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba.

Se repite lo anterior para otras dos velocidades de ensayo.

Mida los valores siguientes:

cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm]. cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

Desarrollo

Tabla de valores medidos

					VALORES	MEDIDOS				
					3070	[rpm]				
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7
13										

Tabla 1: Valores Medidos En El Ensayo

					VALORES	MEDIDOS				
					2900	[rpm]				
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7
13										

Tabla 2: Valores Medidos En El Ensayo

					VALORES	MEDIDOS				
					2700	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7
0	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7

Tabla 3: Valores Medidos En El Ensayo

Formulas

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left[\frac{m^3}{h}\right]$$

Presión de aspiración:

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax = 115 [mm]

cpdx=165 [mm]

Presión de descarga:

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} \quad \left[\mathbf{m}_{ca}\right]$$

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$

Altura corregida:

$$H = Hx \left(\frac{n}{nx}\right)^2 \quad \left[m_{ca}\right]$$

Potencia en el eje de la bomba:

$$Nex = 0,0007355 Fxnx [kW]$$

Potencia en el eje de la bomba corregida:

$$Ne = Nex \left(\frac{n}{nx}\right)^3$$
 [kW]

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600}$$
 [kW]

γ peso específico del agua en [N/m³]

Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D₂ diámetro exterior del rodete

B₂ ancho exterior del rodete

Phi:

$$\phi = \frac{cm_2}{U_2} \quad [-]$$

Psi:

$$\psi = \frac{2gH}{U_2^2} \quad [-]$$

 ψ ϕ η

Tabla de valores calculados

	VALORES CALCULADOS												
	n= 3070 [RPM]												
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	U2	cm ₂	φ	Ψ
m3/h	m3/h	mca	mca	mca	mca	kW	kW	kW	-	m/s	m/s	-	-
118,7	118,401	-1,145	2,755	3,901	3,916	3,483	3,466	1,265	36,491	21,702	3,185	0,145	0,161
107,9	107,603	-0,899	5,567	6,511	6,491	3,801	3,779	1,906	50,433	21,702	2,902	0,132	0,270
100,8	100,411	-0,621	7,911	8,499	8,401	4,051	4,026	2,335	58,001	21,702	2,711	0,121	0,354
97,21	97,011	-0,405	9,922	10,355	10,299	4,185	4,161	2,731	65,622	21,702	2,612	0,19	0,429
90,1	89,796	-0,154	11,811	11,948	11,894	4,277	4,248	2,915	68,62	21,702	2,412	0,111	0,495
79,1	78,882	0,052	13,889	13,801	13,745	4,324	4,29	2,967	69,158	21,702	2,125	0,097	0,571
71,9	71,521	0,401	16,667	16,244	16,221	4,347	4,313	3,166	73,41	21,702	1,921	0,087	0,671
64,6	64,221	0,624	18,559	17,999	17,988	4,279	4,245	3,151	74,209	21,702	1,741	0,079	0,742
57,5	57,312	0,875	19,801	18,941	18,899	4,143	4,111	2,95	71,27	21,702	1,521	0,069	0,784
36	35,918	1,299	21,854	20,489	20,254	3,825	3,799	2,024	53,271	21,702	0,968	0,042	0,861
28,6	28,452	1,314	22,899	21,640	21,451	3,509	3,482	1,681	48,282	21,702	0,772	0,032	0,895
0	0	1,935	25,001	23,069	22,990	2,558	2,538	0	0	21,702	0	0	0,952

	VALORES CALCULADOS												
						n= 2900	O [RPM]						
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	U2	cm ₂	φ	Ψ
m3/h	m3/h	mca	mca	mca	mca	kW	kW	kW	-	m/s	m/s	-	-
108	107,886	-0,954	2,626	3,601	3,599	2,925	2,916	1,058	36,277	20,498	2,907	0,145	0,167
104,4	104,288	-0,711	5,194	5,987	5,945	3,139	3,129	1,691	54,003	20,498	2,802	0,139	0,277
97,2	97,11	-0,424	6,521	7,201	7,184	3,309	3,299	1,902	57,621	20,498	2,611	0,129	0,335
93,6	93,501	-0,115	8,665	8,894	8,841	3,459	3,448	2,278	66,081	20,498	2,514	0,124	0,417
86,41	86,311	-0,056	10,521	10,561	10,541	3,523	3,512	2,502	71,231	20,498	2,311	0,115	0,495
75,61	75,511	0,221	12,314	12,094	12,075	3,61	3,578	2,493	69,158	20,498	2,026	0,099	0,565
68,4	68,112	0,431	14,321	13,891	13,851	3,586	3,595	2,581	71,802	20,498	1,836	0,09	0,647
64,6	64,221	0,684	16,245	15,451	15,398	3,416	3,578	2,737	76,482	20,498	1,735	0,086	0,724
54	53,124	0,875	17,541	17,001	16,945	3,181	3,406	2,491	73,214	20,498	1,446	0,072	0,791
36	35,41	1,112	19,382	18,191	18,145	2,926	3,172	1,787	56,324	20,498	0,959	0,047	0,851
28,6	28,211	1,321	20,621	19,221	19,057	2,926	2,914	1,507	51,641	20,498	0,773	0,038	0,898
0	0	1,8278	22,598	20,671	20,641	2,008	1999	0	0	20,498	0	0	0,965

	VALORES CALCULADOS												
						n= 270	O [RPM]						
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgi	U2	cm ₂	φ	Ψ
m3/h	m3/h	mca	mca	mca	mca	kW	kW	kW	-	m/s	m/s	-	-
100,7	100,725	-0,685	2,485	3,17	3,165	2,305	2,3	0,868	37,733	19,085	2,715	0,142	0,17
97,1	97,092	-0,435	4,365	4,8	4,789	2,465	2,457	1,266	51,521	19,085	2,617	0,137	0,258
93,6	93,496	-0,265	5,965	6,23	6,216	2,584	2,576	1,582	61,421	19,085	2,52	0,132	0,335
90	89,9	-0,115	7,405	7,52	7,503	2,664	2,655	1,836	69,159	19,085	2,423	0,127	0,404
79,2	79,141	0,125	9,205	9,08	9,067	2,743	2,736	1,953	71,382	19,085	2,133	0,112	0,488
72	71,92	0,365	10,925	10,56	10,537	2,783	2,774	2,063	74,364	19,085	1,938	0,102	0,568
68,4	68,324	0,595	13,005	12,41	12,382	2,783	2,774	2,303	83,022	19,085	1,842	0,096	0,667
61,2	61,155	0,795	14,605	13,81	13,79	2,743	2,736	2,296	83,892	19,085	1,648	0,086	0,743
46,8	46,765	1,015	16,125	15,11	15,088	2,584	2,578	1,921	74,511	19,085	1,26	0,066	0,813
32,4	32,364	1,245	17,565	16,32	16,284	2,346	2,338	1,435	61,359	19,085	0,872	0,046	0,877
25,2	25,172	1,375	18,285	16,91	16,872	2,087	2,081	1,156	55,571	19,085	0,678	0,036	0,909
0	0	1,845	19,805	17,96	17,92	1,551	1,546	0	0	19,085	0	0	0,965

De isorendimiento y potencia vs caudal

Nuestras líneas amarillas cortaran en diferentes puntos las curvas de rendimiento, para así ver en que caudal las corta y poder graficar en el grafico de HVS Q, y así obtener el grafico de isorendimiento.

¿Cuáles son las condiciones óptimas de operación de esta bomba? Por lo que podemos observar en los gráficos, las condiciones optimas de rendimiento, es a una velocidad de 2700 [RPM], que se obtiene el mayor rendimiento de, 83,8%.

¿Las curvas tiene la forma esperada?

Si lo comparamos al grafico que se entrego por los profesores del ramo laboratorio de máquinas en el power point IME 447Curvas Características Bomba, se ve que tiene una forma muy parecida, tanto la de rendimiento vs caudal y la de potencia vs caudal, aunque la de rendimiento tiene algunos saltos más abruptos, que la del power point, esto se puede deber a que las calculadas en este ensayo conto con menos cantidad de datos que la original.

¿Cuál es la potencia máxima consumida? Si observamos el grafico de potencia vs caudal, podemos observar que la potencia máxima consumida se obtiene a los 3070 [RPM], que es 4,3 [kw] aproximadamente.

¿Qué tipo de curvas son?

Son curvas creciente-decrecientes la de potencia, y la de altura vs caudal es tipo ascendente, propia de una velocidad especifica media.

Trace el siguiente gráfico en una hoja completa: Curva Ψ vs Φ .

¿La nube de puntos que conforman esta curva son muy dispersos?

No, ya que los puntos siguen una tendencia, y no se encuentran de una forma muy dispersa.

Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Justifíquelo

La bomba es el tipo flujo radial, ya que las curvas de las mixtas y axiales son un poco más inestables debido a sus altas velocidades específicas.

Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta 3.4.3.2.

3070 RPM	2900 RPM	2700 RPM		
Ns	Ns	Ns		
10350	9924	9835		
6754	6691	7080		
5322	5604	5714		
4522	4668	4865		
3910	3938	3959		
3289	3341	3373		
2781	2872	2913		
2447	2569	2541		
2218	2195	2077		
1636	1697	1633		
1422	1459	1401		
0	0	0		

Conclusión

Se pudo ver que, gracias a los gráficos y datos calculados, se puede obtener información crucial para el uso de las bombas, debido que a estos gráficos podemos determinar su punto de trabajo optimo, la potencia generada, y su eficiencia máxima, y también se puede determinar con qué tipo de bomba se está trabajando.

Referencias

- https://es.wikipedia.org/wiki/Bomba_centr%C3%ADfuga
- Apuntes de turbomáquinas Ramiro Mege
- Información entregada por IME 447.