实验六 实验考核

实验报告

姓名: ____赵文亮____

学号: 2016011452 ___

班级: _____自64

桌号: ___6

日期: 2018年6月15日

目录

1	电路设	计						 	 		 		 	 			 		1
2	电路仿	真						 	 		 		 	 			 		1
3	实验步	骤						 	 		 		 	 	 		 		3
4	数据处	理						 	 		 		 	 			 		5
	4.1	压扎	空作。	用				 	 		 		 	 			 		5
	4.2	锯齿	5波	测量				 	 		 		 	 			 		5
	4.3	矩升	形波:	测量				 	 		 		 	 			 		6
	4.4	FPG	A测	量				 	 		 		 	 			 		7
	实验中:			• / — //	,-	. ~	• / •	 •											
_	考文献																		
附:	录							 	 		 	 	 	 			 	 1	0

1 电路设计

压控振荡器的电路如图 1所示。该电路参考了教材386页的电路图。输出级的稳压管D2是为了让输出电压的变化范围约为-0.7V~5V,以便驱动FPGA。

图 1 压控振荡器电路

2 电路仿真

用四通道示波器测量电路的部分输出,如图 2所示。从中可以读出稳压管D3 负极的电压(V18)变化范围为-5.832~5.887V,最后输出的电压(V20)变化范围为-0.733~4.993V,电平适合于驱动FPGA。

图 2 压控振荡器仿真波形

下面通过改变 $u_{\rm I}$,测量输出频率,来检验压控振荡器的性能。 $u_{\rm I}=1$ V, 3V, 5V时的频率测量如图 3-图 5所示。

图 3 $u_I = 1V$ 时频率测量仿真

图 $4 u_I = 3V$ 时频率测量仿真

图 5 $u_I = 5V$ 时频率测量仿真

计算得到频率值,如表 1所示。

表 1 压控振荡器输出频率与输入电压关系仿真测量表

$u_{\rm I}/{ m V}$	T/ms	f/Hz
1	10.058	99.42
3	3.340	299.40
5	2.008	498.01

3 实验步骤

- (1) 观察压控作用,即改变V测量相应输出信号f(自选3个测量点)。
- (2) 测定输出锯齿波的正程时间。

本测量题以及下面的测量提在指定的控制电压 V_I 下完成。

- (3) 测定输出锯齿波的频率。
- (4) 测定输出锯齿波的平均脉宽。
- (5) 测定输出矩形波的上升时间。
- (6) 测定输出矩形波的下降时间。
- (7) 调整输出矩形波的脉冲幅度,使高电平最小值 $V_{H(min)}$ 约为5V,低电平最

大值 $V_{L(max)}$ 约为-0.7V。将该信号作为FPGA的输入信号,如果信号不能驱动FPGA,可以添加驱动电路。

- (8) 使用FPGA设计一个2分频电路。
- (9) 用示波器同时监测FPGA输入、输出信号,画出2分频电路时序图;并在图中标注输入、输出信号的高、低电平值和周期。
- (10) 测量并记录FPGA输入、输出信号的上升时间、下降时间和传输延迟时间。

4 数据处理

4.1 压控作用

表 表	2 压控作用测量数据
$u_{ m I}/{ m V}$	f/Hz

4.2 锯齿波测量

控制电压 $V_{\rm I}$ =

表 3 锯齿波测量数据

	加西次州主共加
正程时间	频率

4.3 矩形波测量

平均脉宽

表 4 矩形波平均脉宽测量数据

上升时间与下降时间

表 5 矩形波上升时间与下降时间测量数据

上升时间	下降时间

脉冲幅度

表 6 矩形波脉冲幅度测量数据

高电平/V	低电平/V

4.4 FPGA 测量

2分频时序图

图 6 2分频时序图

上升时间、下降时间

表 7 FPGA输入输出上升下降时间测量数据

输入上升时间	输入下降时间	输出上升时间	输出下降时间

传输延迟时间

表 8 FPGA输入输出传输延迟时间测量数据

44 .1. 11 .1 .71 .11	
输出为上升沿 t_{pd1}	输出为上升沿 t_{cd1}
输出为下降沿 t_{pd2}	输出为下降沿 t_{cd2}

5 实验中遇到的问题及解决方法

参考文献

[1]模拟电子技术基础/童诗白,华成英主编;清华大学电子教研组编.-5版.-北京:高等教育出版社,,2015.7

附录

图 7 CD40106引脚图

PIN CONNECTIONS

图 8 LF347引脚图