Matrices Assignment - Line

Dukkipati Vijay Sai

Get Python code for the figure from

https://github.com/dukkipativijay/Fwciith2022/tree/main/Assignment%201/Codes/src

Get LaTex code from

https://github.com/dukkipativijay/Fwciith2022/tree/main/Assignment%201%20-%20Assembly/Codes

1 Question

Class 9, Exercise 9.2, Q(1)

In the Figure, ABCD is a parallelogram, $AE \perp DC$ and $CF \perp AD$. If AB = 16cm, AE = 8cm, and CF = 10cm, find AD.

Figure 1 - Parallelogram ABCD

2 Construction

Symbol	Value	Description
D	Origin (0,0)	Vertex D
AB	16cm	$\parallel \mathbf{B} - \mathbf{A} \parallel$
CD	16cm	$\parallel \mathbf{D} - \mathbf{C} \parallel = \parallel \mathbf{B} - \mathbf{A} \parallel$
С	(16,0)	Vertex C (: $CD = 16cm$)
AE	8cm	$\parallel \mathbf{E} - \mathbf{A} \parallel$

CF	10cm	F – C
A	(10,8)	$Ay = Dy + \overrightarrow{AE} $
		$Ax = \sqrt{\frac{CF^2}{AB^2 - CF^2}}$
В	(26,8)	$By = Dy + \overrightarrow{AE} $
		Bx = Ax + AB
F	(6.25,5)	Fy = 0.8 X Fx
Е	(10,0)	Ex = Ax, Ey=0

3 Solution

From the properties of Parallelogram we know that, Opposite sides are equal in length. Hence, we can write,

$$|\overrightarrow{CD}| = |\overrightarrow{AB}|$$

Hence, $||\mathbf{D} - \mathbf{C}|| = ||\mathbf{B} - \mathbf{A}|| = 16cm$

We also know that,

Since, it is given that $\overrightarrow{AE} \perp \overrightarrow{CD}$ from the figure 1 we can write,

Area of a Parallelogram = Base x Height

Area of Parallelogram ABCD =
$$|\overrightarrow{CD}| x |\overrightarrow{AE}|$$
 (1)
= $||\mathbf{D} - \mathbf{C}|| x ||\mathbf{E} - \mathbf{A}||$

But it is also given that $\overrightarrow{CF} \perp \overrightarrow{AD}$. Hence we can similarly write,

Area of Parallelogram ABCD =
$$|\overrightarrow{AD}| x |\overrightarrow{CF}|$$
 (2)
= $||\mathbf{D} - \mathbf{A}|| x ||\mathbf{F} - \mathbf{C}||$

Observing Eq. (1) and Eq. (2), we see that both are equal. Hence we get,

$$\|\mathbf{D} - \mathbf{C} \| x \| \mathbf{E} - \mathbf{A} \| = \|\mathbf{D} - \mathbf{A} \| x \| \mathbf{F} - \mathbf{C} \|$$

$$|16|x|8| = \|\mathbf{D} - \mathbf{A} \| x |10|$$

$$128 = \|\mathbf{D} - \mathbf{A} \| x |10$$

$$\|\mathbf{D} - \mathbf{A} \| = \frac{128}{10}$$

$$\therefore |\overrightarrow{\mathbf{AD}}| = \mathbf{12.8 cm}$$

Hence, This is the required value of AD.