A common divisor graph for skew braces

Joint work with Arne Van Antwerpen (Arxiv:2306.12415)

Silvia Properzi June 30, 2023

NOTATIONS

A skew brace is a triple $(A, +, \circ)$, where (A, +) and (A, \circ) are groups and

$$a \circ (b+c) = a \circ b - a + a \circ c.$$

(A, +) is the additive group and (A, \circ) is the multiplicative group.

The inverse of a in (A, +) is -a and the inverse of a in (A, \circ) is a'.

Examples: Let (G, \cdot) be a group.

- ▶ The trivial skew brace on G is (G, \cdot, \cdot) .
- ▶ The almost trivial skew brace on G is (G, \cdot^{op}, \cdot) .

λ -ACTION

The λ -action of a skew brace $(A, +, \circ)$ is

$$\lambda: (A, \circ) \to \operatorname{Aut}(A, +)$$
 $\lambda_a: b \mapsto -a + a \circ b.$

- ▶ skew left distributivity: $a \circ (b + c) = a \circ b + \lambda_a(c)$.
- ▶ $I \subseteq A$ is an ideal if: $(I,+) \trianglelefteq (A,+)$, $(I,\circ) \trianglelefteq (A,\circ)$ and $\lambda_a(I) = I$ for all $a \in A$.
- ▶ The map r_A : $A \times A \rightarrow A \times A$ defined by

$$(a,b)\mapsto (\lambda_a(b),\lambda_a(b)'\circ a\circ b)$$

is a set-theoretic solution to the Yang-Baxter equation.

λ -ACTION

For $b \in A$, the λ -orbit of b is

$$\Lambda(b) = \{\lambda_a(b) \colon a \in A\}.$$

The union of the trivial λ -orbits is an additive subgroup:

$$Fix(A) = \{b \in A : \lambda_a(b) = b \quad \forall a \in A\}.$$

Examples: Let (G, \cdot) be a group.

► Trivial skew brace (G, \cdot, \cdot) :

$$\lambda_q(h) = g^{-1} \cdot g \cdot h = h.$$

► Almost trivial skew brace (G, \cdot^{op}, \cdot) :

$$\lambda_g(h) = g^{-1} \cdot ^{\mathsf{op}} (g \cdot h) = g \cdot h \cdot g^{-1}.$$

DEFINITION

Definition

For a finite skew brace A, let $\Gamma(A)$ be the graph with vertices the non-trivial λ -orbits of A where two vertices C_1 , C_2 are adjacent if $\gcd(|C_1|,|C_2|) \neq 1$.

[Bertram-Herzog-Mann] If (G, \cdot) is a finite group, $\Gamma(G)$ is the graph with vertices the non-trivial conjugacy classes of G where two vertices C_1, C_2 are adjacent if $\gcd(|C_1|, |C_2|) \neq 1$.

Connection:

 $\Gamma(G, \cdot^{op}, \cdot) = \Gamma(G)$: on the skew brace (G, \cdot^{op}, \cdot) , the λ -action is

$$\lambda_g(h) = g \cdot h \cdot g^{-1}.$$

EXAMPLES

Let $(A, +, \circ)$ be a finite skew brace.

- $\Gamma(A)$ has no vertices if and only if $+ = \circ$.
- If $|A| = p^2$, then $\Gamma(A)$ is empty or a complete graph with p-1 vertices. [Complete classification by Bachiller.]
- If |A| = pq, then $\Gamma(A)$ is completely determined by |Fix(A)|. [Complete classification by Acri–Bonatto.]

EXAMPLE: SIZE 6

(A, +)	$(n,m)\circ(s,t)$	Fix(A)	Γ(A)
$\mathbb{Z}/3\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	(n+s,m+t)	6	
$\mathbb{Z}/3\mathbb{Z} \rtimes_{-1} \mathbb{Z}/2\mathbb{Z}$	$(n+(-1)^m s, m+t)$	6	
$\mathbb{Z}/3\mathbb{Z} \rtimes_{-1} \mathbb{Z}/2\mathbb{Z}$	$((-1)^t n + (-1)^m s, m+t)$	3	•
$\mathbb{Z}/3\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	$(n+(-1)^m s, m+t)$	2	•-•
$\mathbb{Z}/3\mathbb{Z} \rtimes_{-1} \mathbb{Z}/2\mathbb{Z}$	(n+s,m+t)	2	•-•
$\mathbb{Z}/3\mathbb{Z} \rtimes_{-1} \mathbb{Z}/2\mathbb{Z}$	$((-1)^t n + s, m + t)$	1	• •

Table: Skew braces of size 6.

PROPERTIES

Proposition

If **A** is a finite skew brace such that $\Gamma(A)$ is connected, the diameter of $\Gamma(A)$ is

$$d(\Gamma(A)) \leq 4$$
.

Proposition

If **A** is a finite skew brace, the number of connected components of $\Gamma(A)$ is

$$n(\Gamma(A)) \leq 2$$
.

TWO DISCONNECTED VERTICES

Theorem

Let **A** be a finite skew brace. If $\Gamma(A)$ has exactly two disconnected vertices, then $A \cong (S_3, \cdot^{op}, \cdot)$.

(A, +)	$(n,m)\circ(s,t)$	Fix(A)	Г(А)
$\mathbb{Z}/3\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	(n+s,m+t)	6	
$\mathbb{Z}/3\mathbb{Z} \rtimes_{-1} \mathbb{Z}/2\mathbb{Z}$	$(n+(-1)^m s, m+t)$	6	
$\mathbb{Z}/3\mathbb{Z} \rtimes_{-1} \mathbb{Z}/2\mathbb{Z}$	$((-1)^t n + (-1)^m s, m+t)$	3	•
$\mathbb{Z}/3\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	$(n+(-1)^m s, m+t)$	2	•-•
$\mathbb{Z}/3\mathbb{Z} \rtimes_{-1} \mathbb{Z}/2\mathbb{Z}$	(n+s,m+t)	2	•-•
$\mathbb{Z}/3\mathbb{Z} \rtimes_{-1} \mathbb{Z}/2\mathbb{Z}$	$((-1)^t n + s, m + t)$	1	• •

Table: Skew braces of size 6.

ONE VERTEX

Theorem

Let A be a skew brace of size $n=2^md$, for $\gcd(2,d)=1$. If $\Gamma(A)$ has exactly one vertex, then $(A,+)\cong F\rtimes \mathbb{Z}/2\mathbb{Z}$ and there exists an abelian group G of odd order such that

$$F = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \times G \quad \text{ or } \quad F = \mathbb{Z}/2^{m-1}\mathbb{Z} \times G.$$

The number of isomorphism classes of skew braces A with one-vertex graph $\Gamma(A)$ is

$$\begin{cases} m \operatorname{Ab}(d) & \text{if } 0 \leq m \leq 3, \\ 2 \operatorname{Ab}(d) & \text{if } m \geq 4, \end{cases}$$

Ab(d) = number of abelian groups of order d [OEIS: A001055].

QUESTIONS

- Applications to solution to the YBE?
- Can we characterize skew braces with a graph with two connected components?
 (Group analog: quasi-Frobenius with abelian kernel and complement [Bertram-Herzog-Mann].)
- Is it true that in the connected case, $d(\Gamma(A)) \leq 3$? (For groups [Chillag-Herzog-Mann].)
- When is $d(\Gamma(A)) \leq 2$?

REFERENCES

E. Acri and M. Bonatto.

Skew braces of size pq.

Comm. Algebra, 48(5):1872-1881, 2020.

D Bachiller

Classification of braces of order p^3 .

J. Pure Appl. Algebra, 219(8):3568-3603, 2015.

E. A. Bertram, M. Herzog, and A. Mann.

On a graph related to conjugacy classes of groups.

Bull. London Math. Soc., 22(6):569-575, 1990.

D. Chillag, M. Herzog, and A. Mann.

On the diameter of a graph related to conjugacy classes of groups.

Bull. London Math. Soc., 25(3):255-262, 1993.

S. Properzi and A. V. Antwerpen.

A common divisor graph for skew braces.

arXiv:2306.12415, 2023.