Scilab Textbook Companion for Microelectronic Circuits by A. S. Sedra And K. C. Smith¹

Created by
Shruthi S.H
B.Tech (pursuing)
Electronics Engineering
NIT, Surathkal
College Teacher
Mrs Rekha S, NIT Surathkal
Cross-Checked by
Giridharan, IITB

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Microelectronic Circuits

Author: A. S. Sedra And K. C. Smith

Publisher: Oxford University Press

Edition: 5

Year: 2004

ISBN: 0-19-514252-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Introduction to Electronics	7
2	Operational Amplifiers	12
3	Diodes	14
4	MOS Field Effect Transistors	21
5	Bipolar Junction Transistor	30
6	single stage integrated circuit amplifiers	44
7	Differential and multistage amplifier	62
8	Feedback	71
9	Operational amplifier and data converter circuits	7 6
10	Digital CMOS logic circuits	83
11	Memory and advanced digital circuits	88
12	Filters and tuned amplifiers	91
14	Output Stages and amplifier	92

List of Scilab Codes

Exa 1.1	Amplifier gain power and efficiency
Exa 1.2	Gain of transistor amplifier
Exa 1.3	Overall voltage gain of three stage amplifier
Exa 1.4	Bipolar junction transistor
Exa 1.5	DC gain 3dB frequency and frequency at which gain . 10
Exa 1.6	Evaluation of tPHL
Exa 2.1	Closed loop and open loop gain
Exa 2.3	Design instrumentation amplifier
Exa 3.1	Peak value of diode current and maximum reverse vo . 14
Exa 3.2	Values of Iand V for the circuit given
Exa 3.3	Evaluating junction scaling constant
Exa 3.4	To determine ID and VD
Exa 3.5	Repeating example 4 using piecewise linear model 16
Exa 3.6	Power supply ripple
Exa 3.7	Percentage change in regulated voltage
Exa 3.8	line regulation load regulation
Exa 3.9	Value of capacitance C that will result in peak pe 19
Exa 4.1	To determine operating point parameters
Exa 4.2	Design of given circuit
Exa 4.3	Design of given circuit
Exa 4.4	Design of given circuit
Exa 4.5	To determine all node voltages and currents throug 24
Exa 4.6	Design of given circuit
Exa 4.7	To determine drain currents and output voltage 25
Exa 4.9	Design of given circuit
Exa 4.10	Small signal analysis
Exa 4.11	To determine all parameters of transistor amplifie 27
Exa 4.12	Midband gain and upper 3dB frequency

Exa 4.13	Coupling capacitor values
Exa 5.1	Design of given circuit with current 2mA 30
Exa 5.2	Consider a common Emitter circuit
Exa 5.3	Determine RB
Exa 5.4	Analyse the circuit to find node voltages and bran 32
Exa 5.5	Analyse the circuit to find node voltages and bran 33
Exa 5.7	Analyse the circuit to find node voltages and bran 34
Exa 5.8	Analyse the circuit to find node voltages and bran 35
Exa 5.9	Analyse the circuit to find node voltages and bran 35
Exa 5.10	Analyse the circuit to find node voltages and bran 36
Exa 5.11	Analyse the circuit to find node voltages and bran 37
Exa 5.13	Design of bias network of the amplifier
Exa 5.14	Analysis of transistor amplifier
Exa 5.17	Amplifier parameters
Exa 5.18	Midband gain and 3dB frequency 41
Exa 5.19	To select values of capacitance required
Exa 6.1	To find the operating point of NMOS transistor 44
Exa 6.2	Comparison between NMOS transistor and npn transis 45
Exa 6.3	Comparison between NMOS transistor and npn transis 46
Exa 6.4	Design of the circuit with output current 100uA 49
Exa 6.5	Determine 3dB frequency
Exa 6.6	To determine midband gain and upper 3dB frequency 50
Exa 6.7	Application of miller theorem
Exa 6.8	Analysis of CMOS CS amplifier 51
Exa 6.9	Analysis of CMOS CS amplifier
Exa 6.10	To determine AM ft fZ f3dB
Exa 6.11	Avo Rin Rout Gi Gis Gv fH
Exa 6.12	Comparison between Cascode amplifier and CS amplif 56
Exa 6.13	Analysis of CC CE amplifier
Exa 6.14	To determine required resistor values 60
Exa 7.1	Analysis of differential amplifier
Exa 7.2	Analysis of Active loaded MOS differential amplifi 63
Exa 7.3	To determine all parameters for different transist 65
Exa 7.5	Analysis of given circuit
Exa 8.1	Analysis of op amp connected in an inverting conf 71
Exa 8.2	Feedback triple
Exa 8.3	Small signal analysis
Exa 8.4	Small signal analysis

Exa 9.1	Design of two stage CMOS op amp	76
Exa 9.2	To determine Av ft fP SR and PD of folded casc	78
Exa 9.3	To determine input offset voltage	32
Exa 10.1	To determine tPHL tPLH and tP 8	33
Exa 10.2	WbyL ratios for the logic circuit	34
Exa 10.3	To determine the parameters of pseudo NMOS inverte	34
Exa 10.4	To determine parameters for NMOS transistor 8	36
Exa 11.1	Min WbyL ratio to ensure flip flop will switch 8	38
Exa 11.2	Design of two stage CMOS op amp	39
Exa 11.3	Time required	90
Exa 12.4	To design tuned amplifier	91
Exa 14.1	To design a Class B Output Amplifier	92
Exa 14.2	To determine quiescent current and power	93
Exa 14.3	Redesign the output stage of Example 2	94
Exa 14.4	To determine thermal resistance junction temperat 9	94
Exa 14.5		95

Chapter 1

Introduction to Electronics

Scilab code Exa 1.1 Amplifier gain power and eficiency

```
1 // Example1.1: Amplifier gain, power and eficiency
\frac{2}{\sqrt{-10-V}} Amplifier operates at +10-V/-10-V power supply.
3 A_v=9/1; // sinusoidal voltage input of 1V peak and
      sinusoidal output voltage of 9V peak
4 I_o=9/1000; // 1 kilo ohms load
5 disp(A_v, "Voltage gain (V/V) =")
6 \operatorname{disp}(20 * \log 10(A_v), "Voltage gain (dB) =")
7 I_i=0.0001 // sinusoidal current input of 0.1mA peak
8 \quad A_i = I_o/I_i;
9 disp(A_i, "Current gain (A/A) =")
10 disp(20*log10(A_i), "Current gain (dB) =")
11 V_{orms} = 9/sqrt(2);
12 I_{orms} = 9/sqrt(2);
13 P_L=V_orms*I_orms; // output power in mW
14 V_irms=1/sqrt(2);
15 I_irms=0.1/sqrt(2);
16 P_I=V_irms*I_irms; // input power in mW
17 A_p=P_L/P_I;
18 disp(A_p, "Power gain (W/W) =")
19 disp(10*log10(A_p), "Power gain (dB) =")
20 P_dc=10*9.5+10*9.5; // amplifier draws a current of
```

```
9.5mA from each of its two power supplies
21 disp(P_dc,"Power drawn from the dc supplies (mW) =")
22 P_dissipated=P_dc+P_I-P_L;
23 disp(P_dissipated,"Power dissipated in the amplifier (mW)")
24 n=P_L/P_dc*100;
25 disp(n,"Amplifier efficiency in percentage")
```

Scilab code Exa 1.2 Gain of transistor amplifier

```
1 // Example 1.2: Gain of transistor amplifier
2 // Amplifier has transfer characteristics v_O
      =10-(10^{\circ}-11)*(\exp^{\circ}40*v_{-}1) applies for v<sub>-</sub>1 is
      greater than or equal OV and vo is greater than
      or equal to 0.3V
3 L_1 = 0.3; // limit L_-
4 disp(L_1, "The limit L_- (V) =")
5 \text{ v_I} = 1/40 * \log ((10-0.3)/10^-11); // \text{ from the transfer}
      characteristics and v_o=0.3V
6 disp(v_I, "v_I in volts =")
7 L_u=10-10^-11; // obtained by v_I=0 in transfer
      characteristics
8 disp(L_u," the limit L_+ (V) =")
9 V_I = 1/40 * log((10-5)/10^-11); // V_O = 5V
10 disp(V_I,"The value of the dc bias voltage that
      results in V_O=5V(V)=")
11 A_v = -10^-11 * exp(40 * V_I) * 40; // A_v = dv_O/dv_I
12 disp(A_v, "Gain at the operating point (V/V) =")
13 disp("NOTE the gain is negative that implies the
      amplifier is an inverting amplifier")
```

Scilab code Exa 1.3 Overall voltage gain of three stage amplifier

```
1 // Example 1.3 : Overall voltage gain of cthree-
                 stage amplifier
  2 gainloss_in=10^6/(1*10^6+100*10^3); // fraction of
                 input signal is obtained using voltage divider
                 rule, gainloss_in= v_i1/v_s
  3 \text{ A_v1} = 10*100000/(100000+1000); // \text{ A_v1} = \text{v_i2/v_i1} \text{ is}
                    the voltage gain at first stage
  4 A_v2=100*10000/(10000+1000); // A_v2 = v_i3/v_i2 is
                 the voltage gain at second stage
  5 \text{ A_v3} = 100/(100+10); // \text{ A_v3} = \text{v_L/v_i3} is the voltage
                    gain at the output stage
  6 A_v = A_v + A_
  7 \operatorname{disp}(A_v, "The overall voltage gain (V/V) =")
  8 disp(20*log10(A_v), "The overall voltage gain (dB) ="
  9 gain_src_ld=A_v*gainloss_in;
10 disp(gain_src_ld,"The voltage gain from source to
                 gain (V/V) = ")
11 disp(20*log10(gain_src_ld), "The voltage gain from
                 source to load (dB) = ")
12 A_i = 10^4 + A_v; // A_i = i_0 / i_i = (v_L / 100) / (v_i 1 / 10^6)
13 disp(A<sub>i</sub>, "The current gain (A/A)=")
14 \operatorname{disp}(20*\log 10(A_i)), "The current gain (dB) =")
15 A_p=818*818*10^4; // A_p=P_L/P_I=v_L*i_o/v_i1*i_i
16 disp(A_p, "The power gain (W/W) =")
17 disp(10*log10(A_p), "The power gain (dB) =")
```

Scilab code Exa 1.4 Bipolar junction transistor

```
6 \text{ r_pi=2.5*10^3; // (ohm)}
7 R_s=5*10^3; // (ohm)
8 R_L=5*10^3 // (ohm)
9 \text{ g_m} = 40 * 10^{-3}; // \text{ (mho)}
10 r_o=100*10^3; // (ohm)
11 gain=-(r_pi*g_m*(R_L*r_o/(R_L+r_o)))/(r_pi+R_s); //
      gain=v_o/v_s
12 disp(gain, "The voltage gain (V/V) =")
13 gain_negl_r_o=-r_pi*g_m*R_L/(r_pi+R_s);
14 disp(gain_negl_r_o, "Gain neglecting the effect of
      r_{-0} (V/V) = ")
15
16 // 1.4 b
17 // Bi_b=g_m*v_be
18 // B is short circuit gain
19 B=g_m*r_pi;
20 disp(B, "The short circuit gain (A/A) =")
```

Scilab code Exa 1.5 DC gain 3dB frequency and frequency at which gain

```
// Example 1.5 : DC gain, 3dB frequency and
frequency at which gain=0 of voltage amplifier

// 1.5b

R_s = 20*10^3; // (ohm)

R_i = 100*10^3; // (ohm)

C_i = 60*10^-12; // (ohm)

u = 144; // (V/V)

R_o = 200; // (ohm)

R_L = 1000; // (ohm)

K=u/((1+R_s/R_i)*(1+R_o/R_L));

disp(K,"The dc gain (V/V)=")

disp(20*log10(K)," The dc gain (dB) =")

w_o=1/(C_i*R_s*R_i/(R_s+R_i));

disp(w_o,"The 3-dB frequency (rad/s) =")
```

Scilab code Exa 1.6 Evaluation of tPHL

```
1  // Example 1.6: Time for the output to reach (V_OH+ V_OL)/2
2  V_DD=5; // (V)
3  R=1000; // (ohm)
4  R_on=100; // (ohm)
5  V_offset=0.1; // (V)
6  C=10*10^-12; // (F)
7  V_OH=5; // (V)
8  V_OL=V_offset+(V_DD-V_offset)*R_on/(R+R_on);
9  T=R*C;
10  v_o_t_PLH=(V_OH+V_OL)/2; //to find t_PLH
11  t_PLH=0.69*T; // t_PLH is low to high propogition delay
12  disp(t_PLH,"time required for he output to reach (V_OH+V_OL)/2 (seconds) =")
```

Chapter 2

Operational Amplifiers

Scilab code Exa 2.1 Closed loop and open loop gain

```
1 // Example 2.1 : Closed loop and open loop gain
2 // Consider inverting configuration
3
4 // 2.1 a
5 R_1 = 1000; // (ohm)
6 R_2=100*10^3; // (ohm)
7 A=10^3; // (V/V)
8 disp(A, "A (V/V)")
9 G=-R_2/R_1/(1+(1+R_2/R_1)/A);
10 disp(-G, "G")
11 e=(-G-(R_2/R_1))/(R_2/R_1)*100;
12 disp(e, "e (\%)")
13 v_1 = 0.1; // (V)
14 v_1 = G * v_1 / A;
15 disp(v_1, "v_1 (V)")
16 A=10^4; //(V/V)
17 disp(A,"A(V/V)")
18 G=-R_2/R_1/(1+(1+R_2/R_1)/A);
19 disp(-G, "G")
20 e=(-G-(R_2/R_1))/(R_2/R_1)*100;
21 disp(e,"e(\%)")
```

```
v_1 = 0.1; // (V)
23 v_1 = G * v_1 / A;
24 \text{ disp(v_1,"v_1(V)")}
25 A=10^5; // (V/V)
26 disp(A, "A (V/V)")
27 G=-R_2/R_1/(1+(1+R_2/R_1)/A);
28 disp(-G, "G")
29 e=(-G-(R_2/R_1))/(R_2/R_1)*100;
30 disp(e,"e (\%)")
31 v_1 = 0.1; // (V)
32 v_1 = G * v_1 / A;
33 disp(v_1, "v_1 (V)")
34
35 // 2.1 b
36 A=50000; // (V/V)
37 \operatorname{disp}(A, "A (V/V)")
38 G=-R_2/R_1/(1+(1+R_2/R_1)/A);
39 disp(-G, "G")
40 disp("Thus a -50\% change in the open loop gain
      results in only -0.1\% in the closed loop gain")
```

Scilab code Exa 2.3 Design instrumentation amplifier

```
1 // Example 2.3 : Design instrumentation amplifier
2 R_2=1-50000-1/1000+50;
3 disp(R_2,"R_2 (ohm)")
4 R_1=2*R_2/999;
5 disp(R_1,"R_1 (ohm)")
```

Chapter 3

Diodes

Scilab code Exa 3.1 Peak value of diode current and maximum reverse vo

```
//Example 3.1: Peak value of diode current and
maximum reverse voltage
//v_s is sinusoidal input voltage with peak 24V
//battery charges to 12V
I_d=(24-12)/100
max_v_rev=24+12;
disp(I_d,"peak value of diode current (A)",
max_v_rev,"maximum reverse voltage acrossthe
diode (V)")
```

Scilab code Exa 3.2 Values of Iand V for the circuit given

```
1 //Example 3.2 : Values of Iand V for the circuit
      given
2 disp("Consider fig 3.6(a). Assume both diodes are
      conducting")
3 I_D2=(10-0)/10;
4 I=(0-(-10))/5-I_D2; // node equation at B for fig
      3.6(a)
```

```
5 V_B = 0;
6 V = 0;
7 disp(I,"I (mA)=", V,"V (V)","D_1 is conducting as
      assumed originally")
8 disp("Consider fig 3.6(a). Assume both diodes are
      conducting")
  I_D2 = (10-0)/5;
10 I=(0-(-10))/10-2; // node eqution at B for fig 3.6(b)
11 disp(I,"I (mA)=", V,("V (V)"))
12 disp("Implies assumption is wrong. lets assume D<sub>-</sub>1
      is off and D<sub>2</sub> is on")
13 I_D2 = (10 - (-10))/15;
14 V_B = -10 + 10 * I_D2;
15 I=0;
16 disp(I,"I (mA)", V_B,"V (V)","D_1 is reverse biased
      ")
```

Scilab code Exa 3.3 Evaluating junction scaling constant

```
1 //Example 3.3 : Evaluating junction scaling constant
2 //i-I_S*exp(v/(n*V_T)) implies I_S=i*exp(-v/(n*V_T))
3 n=1;
4 i=10^-3; // (A)
5 v=700; // (V)
6 V_T=25; // (V)
7 I_S=i*exp(-v/(n*V_T))
8 disp(I_S,"I_S (A) for n=1")
9 n=2;
10 I_S=i*exp(-v/(n*V_T))
11 disp(I_S,"I_S (A) for n=2")
12 disp("These values implies I_S is 1000 times greater ")
```

Scilab code Exa 3.4 To determine ID and VD

```
//Example 3.4: To determine I_D and V_D
V_DD=5; // (V)
R=1000; // (ohm)
I_1=1*10^-3; // (A)
V_D=0.7; // (V)
V_1=V_D;
I_D=(V_DD-V_D)/R;
I_2=I_D;
V_2=V_1+0.1*log10(I_2/I_1);
I_D=(V_DD-V_2)/R;
I_D=(V_DD-V_2)/R;
I_disp(I_D,"The diode current (A)")
V_D=V_2+0.1*log10(I_D/I_2)
disp(V_D,"The diode volage (V)")
```

Scilab code Exa 3.5 Repeating example 4 using piecewise linear model

```
1 // Example 3.5 : Repeating example 3.4 using
    piecewise linear model
2 V_D0=0.65; // (V)
3 r_D=20; // (ohm)
4 R=1000; // (ohm)
5 V_DD=5; // (V)
6 I_D=(V_DD-V_D0)/(R+r_D);
7 disp(I_D,"I_D (A)")
8 V_D=V_D0+I_D*r_D;
9 disp(V_D,"The diod voltage (V)")
```

Scilab code Exa 3.6 Power supply ripple

```
1 // Example 3.6 : Power supply ripple
2 V_S=10; // V_S=V_+
3 V_D=0.7; // (V)
4 R=10*10^3; // (ohm)
5 n=2;
6 V_T=25*10^-3; // (V)
7 V_s=1; // (V)
8 I_D=(V_S - V_D)/R;
9 r_D=n*V_T/I_D;
10 v_d=V_s*r_D/(R+r_D);
11 disp(v_d,"v_d(peak (V))")
```

Scilab code Exa 3.7 Percentage change in regulated voltage

```
1 // Example 3.7 : Percentage change in regulated
     voltage
2 V_DD=10; // (V)
3 V_D=0.7*3; // string of 3 diodes provide this
     constant voltage
4 R=1*10^3;
5 I_D = (V_DD - V_D)/R;
6 n=2;
7 V_T = 25*10^-3; // (V)
8 r_d=n*V_T/I_D; // incremental resistance
9 r=3*r_d; // total incremental resistance
10 deltav_0=2*r/(r+R); // deltav is peak to peak change
      in output voltage
11 disp(deltav_0, "Percentage change (V) in regulated
     voltage caused by 10% change in power supply")
12 I=2.1*10^-3; // The current drawn from the diode
     string
13 deltav_O=-I*r; // Decrease in voltage across diode
     string
```

```
14 disp(deltav_0), Decrease in voltage across diode string (V)")
```

Scilab code Exa 3.8 line regulation load regulation

```
1 // Example 3.8 : line regulation load regulation
3 V_Z=6.8; // (V)
4 I_Z=0.005; // (A)
5 r_Z=20; // (ohm)
6 \text{ V=10}; \text{ // V=V_+}
7 R=0.5*10^3; // (ohm)
9 // 3.8a
10 V_ZO = V_Z - r_Z * I_Z;
11 I_Z = (V - V_Z O) / (R + r_Z)
12 V_0 = V_Z0 + I_Z * r_Z;
13 disp(V_O,"V_O (V)")
14
15 // 3.8 \,\mathrm{b}
16 deltaV=1; // change in V is +1 and -1
17 deltaV_O=deltaV*r_Z/(R+r_Z); // corresponding change
       in output voltage
18 disp(deltaV_0, "Line regulation (V/V)")
19
20 // 3.8 c
21 I_L=1*10^-3; // load current
22 deltaI_L=1*10^-3;
23 deltaI_Z=-1*10^-3; // change in zener current
24 deltaV_O=r_Z*deltaI_Z;
25 disp(deltaV_0, "Load regulation (V/A)")
26
27 // 3.8 d
28 I_L=6.8/2000; // load current with load resistance
      of 2000
```

```
29 deltaI_Z=-I_L;
30 deltaV_O=r_Z*deltaI_Z;
31 disp(deltaV_0, "Corresponding change in zener voltage
       (V) for zener current change of -3.4\text{mA}")
32
33 // 3.8 e
34 R_L=0.5*10^3; // (ohm)
35 V_0 = V * R_L / (R + R_L);
36 disp(V_0, "V_0 (V) \text{ for } R_L = 0.5 \text{K ohm"})
37
38 // 3.8 f
39 I_Z=0.2*10^-3; // Zener t be at the edge of
      breakdown I_Z=I_ZK
40 V_Z = 6.7; // V_Z = V_Z K
41 I_Lmin=(9-6.7)/0.5; // Lowest current supplied to R
42 I_L=I_Lmin-I_Z; // load current
43 R_L=V_Z/I_L;
44 disp(R_L,"R_L (ohm)")
```

Scilab code Exa 3.9 Value of capacitance C that will result in peak pe

```
1 // Example 3.9 : Value of capacitance C that will
    result in peak-peak ripple of 2V
2 V_P=100; // (V)
3 V_r=2; // (V)
4 f=60; // (Hz)
5 R=10*10^3; // (ohm)
6 I_L=V_P/R;
7 C=V_P/(V_r*f*R);
8 disp(C,"C (V)")
9 wdeltat=sqrt(2*V_r/V_P);
10 disp(wdeltat,"Conduction angle (rad)")
11 i_Dav=I_L*(1+%pi*sqrt(2*V_P/V_r));
12 disp(i_Dav,"i_Dav (A)")
13 i_Dmax=I_L*(1+2*%pi*sqrt(2*V_P/V_r));
```

 $disp(i_Dmax,"i_Dmax(A)")$

Chapter 4

MOS Field Effect Transistors

Scilab code Exa 4.1 To determine operating point parameters

```
1 // Example 4.1 : To determine operating point
       parameters
 2 L_min=0.4*10^-6; // (m)
 3 \text{ t_ox} = 8*10^-9; // (s)
4 u_n=450*10^-4; // (A/V^2)
 5 V_t = 0.7; // (V)
 6 e_{ox}=3.45*10^{-11};
8 // 4.1 a
9 \quad C_ox = e_ox/t_ox;
10 \operatorname{disp}(C_{\operatorname{ox}}, C_{\operatorname{ox}}(F/m^2))
11 k_n=u_n*C_ox;
12 \operatorname{disp}(k_n, k_n (A/V^2))
13
14 // 4.1 b
15 // Operation in saturation region
16 W=8*10^-6; // (m)
17 L=0.8*10^-6; // (m)
18 i_D=100*10^-6; // (A)
19 V_{GS=sqrt}(2*L*i_D/(k_n*W)) + V_t;
20 disp(V_GS, "V_GS(V)")
```

```
21  V_DSmin=V_GS-V_t;
22  disp(V_DSmin,"V_DSmin (V)")
23
24  // 4.1c
25  // MOSFET in triode region
26  r_DS=1000; // (ohm)
27  V_GS=1/(k_n*(W/L)*r_DS)+V_t;
28  disp(V_GS,"V_GS (V)")
```

Scilab code Exa 4.2 Design of given circuit

```
1 // Example 4.2: Design of given circuit to obtain
      I_{-}D = 0.4 \text{mA} and V_{-}D = 0.5 \text{V}
2 // NMOS transistor is operating in saturation region
3 I_D=0.4*10^-3; // (A)
4 V_D = 0.5; // (V)
5 V_t = 0.7; // (V)
6 uC_n=100*10^--6; // (A/V^2)
7 L=1*10^-6; // (m)
8 W=32*10^-6; // (m)
9 V_SS = -2.5; // (V)
10 V_DD = 2.5; // (V)
11 V_0V = sqrt(I_D*2*L/(uC_n*W));
12 V_GS = V_t + V_OV;
13 disp(V_GS, "V_t(V)")
14 V_S = -1.2; // (V)
15 R_S = (V_S - V_SS)/I_D;
16 disp(R_S,"R_S (ohm)")
17 V_D = 0.5; // (V)
18 R_D = (V_DD - V_D) / I_D;
19 disp(R_D, "R_D (ohm)")
```

Scilab code Exa 4.3 Design of given circuit

```
1 // Example 4.3: Design of given circuit to obtain
      I_D = 80uA
2 // FET is operating in saturation region
3 I_D=80*10^-6; // (A)
4 V_t = 0.6; // (V)
5 uC_n=200*10^-6; // (A/V^2)
6 L=0.8*10^-6; // (m)
7 W=4*10^-6; // (m)
8 V_DD=3; // (V)
9 V_OV=sqrt(2*I_D/(uC_n*(W/L)));
10 V_GS = V_t + V_OV;
11 V_DS = V_GS;
12 V_D=V_DS;
13 disp(V_D, "V_D (V)")
14 R = (V_DD - V_D) / I_D;
15 disp(R, "R (ohm)")
```

Scilab code Exa 4.4 Design of given circuit

Scilab code Exa 4.5 To determine all node voltages and currents through

```
1 // Example 4.5: To determine all node voltages and
      currents through all branches
V_t = 1; // (V)
3 \text{ K=1*10^--3; } // \text{ K=k'_n (W/L)}
4 V_DD=10; // (V)
5 R_G1 = 10 * 10^6; // (ohm)
6 R_G2=10*10^6; // (ohm)
7 R_D = 6*10^3; // (ohm)
8 R_S=6*10^3; // (ohm)
9 p=poly([8 -25 18], 'I_D', 'coeff');
10 I_D=roots(p);
11 // I_D = 0.89 \text{mA} will result in transistor cut off
      hence we take the other root of the equation
12 V_G = V_DD * R_G2 / (R_G2 + R_G1);
13 I_D=I_D(1)*10^-3;
14 disp(I_D,"I_D (A)")
15 V_S = I_D * R_S;
16 \operatorname{disp}(V_S, "V_S(V)")
17 V_GS = V_G - V_S;
18 disp(V_GS, "V_GS(V)")
19 V_D = V_DD - R_D * I_D;
20 \operatorname{disp}(V_D, "V_D (V)")
21 // V_D>V_G-V_t the transistor is operating in
      saturation as initially assumed
```

Scilab code Exa 4.6 Design of given circuit

```
1 // Example 4.6; Design of given circuit to obtain I\_D\!=\!0.5mA and V\_D\!=\!\!3V 2 // MOSFET is in saturation
```

```
3  V_DD=5; // (V)
4  V_D=3; // (V)
5  I_D=0.5*10^-3; // (A)
6  V_t=-1; // (V)
7  K=1*10^-3; // K=k'_n(W/L)
8  V_OV=sqrt(2*I_D/K);
9  V_GS=V_t+(-V_OV)
10  R_D=V_D/I_D;
11  V_Dmax=V_D-V_t; // - sign as magnitude of V_t is considered
12  R_D=V_Dmax/I_D;
13  disp(R_D,"R_D (ohm)")
```

Scilab code Exa 4.7 To determine drain currents and output voltage

```
1 // Example 4.7: To determine drain currents and
       output voltage
2 K_n =1*10^-3; // K_n=k_n*W_n/L_n (A/V^2)
3 K_p = 1*10^-3; // K_p = k_p * W_p / L_p (A/V^2)
 4 V_{tn} = 1; // (V)
 5 \text{ V_tp= -1; } // \text{ (V)}
 6 V_I = -2.5:2.5:2.5; // (V)
 7 V_DD = 2.5; // (V)
8 R=10; // (kilo ohm)
 9 // For V_I=0
10 I_DP = (K_p * (V_DD - V_{tn})^2)/2;
11 I_DN = I_DP;
12 \operatorname{disp}(I_DP, I_DN, "I_DP (A) \text{ and } I_DN (A) \text{ for } V_I = 0V")
13 disp(0,"V_O for V_I = 0V")
14 // For V_I = 2.5V
15 \hspace{0.1cm} // \hspace{0.1cm} I_{-}DN{=}K_{-}N \hspace{0.1cm} (\hspace{0.1cm} V_{-}GS{-}V_{-}t\hspace{0.1cm} n\hspace{0.1cm})\hspace{0.1cm} V_{-}DS
16 // I_DN=v_O/R
17 // Solving the two equations we get
18 I_DN=0.244*10^-3; // (V)
19 V_0 = -2.44; // (V)
```

```
20 disp(I_DN,V_O,"V_O and I_DN for V_I=2.5V")
21 // For V_I=-2.5V Q_N is cut off
22 I_DP=2.44*10^-3; // (A)
23 V_O=2.44; // (V)
24 disp(0,I_DP,V_O,"V_O(V), I_DP (A) and I_DN (A) for V_I=-2.5V")
```

Scilab code Exa 4.9 Design of given circuit

```
1 // Example 4.9 : Design of given circuit to obtain
      I_D = 0.5 \text{mA}
2 I_d=0.5*10^-3; // (A)
3 I_S=0.5*10^-3; // (A)
4 V_t=1:0.5:1.5; // (V)
5 K_n=1*10^-3; // K_n=k_n*W/L (A/V^2)
6 \text{ V_DD=15; } // \text{ (V)}
7 V_D=10; // (V)
8 V_S=5; // (V)
9 R_D = (V_DD - V_D) / I_d;
10 R_S=V_S/I_S;
11 V_{OV} = sqrt(I_d*2/K_n);
12 V_GS = V_t + V_OV;
13 V_G = V_S + V_GS;
14 // V_t = 1.5V
15 // I_D=K(V_GS-V_t)^2/2
16 // 7 = V_GS + 10I_D
17 // solving above equations
18 I_D=0.455*10^-3;
19 deltaI_D=I_D-I_d; // Change in I_D (A)
20 change=deltaI_D*100/I_d; // Change in \%
21 disp(change, "Change in I_D (%)")
```

Scilab code Exa 4.10 Small signal analysis

```
1 // Example 4.10 : Small signal analysis
2 V_t=1.5; // (V)
3 K=0.00025; //K= k_nW/L (A/V^2)
4 V_A = 50; // (V)
5 I_D=1.06*10^-3; // (A)
6 \quad V_D = 4.4; // (V)
7 R_D = 10000; // (ohm)
8 R_L=10000; // (ohm)
9 V_GS = V_D;
10 g_m = K * (V_GS - V_t);
11 r_o=V_A/I_D;
12 A_v = -g_m * (R_L * R_D * r_o) / (R_D * R_L + R_D * r_o + R_L * r_o);
13 disp(A_v, "Voltage gain (V/V)")
14 R_G=10*10^6; //(ohm)
15 // i_i = v_i * (1 - A_v) / R_G
16 R_{in}=R_G/(1-(A_v));
17 disp(R_in, "Input resistance (ohm)")
18 // v_DSmin=v_GSmin-V_t
19 v_i=V_t/(1+(-A_v)); //-sign to make A_v positive
20 disp(v_i," Largest allowable input signal (V)")
```

Scilab code Exa 4.11 To determine all parameters of transistor amplifie

```
12 disp(R_i, "R_i")
13 disp("assume R<sub>L</sub> = 10 kilo ohm is connected")
14 v_0 = 70; // (V)
15 v_i = 8; // (V)
16 A_v=v_o/v_i;
17 disp(A_v, "A_v (V/V)")
18 G_v = v_o/A_vo;
19 disp(G_v, "G_v(V/V)")
20 R_o = R_L * (A_vo - A_v) / A_v;
21 disp(R_o, "R_o (ohm)")
22 R_out = R_L*(G_vo-G_v)/G_v;
23 disp(R_out, "R_out (ohm)")
24 R_{in} = (v_i * 100) / (v_sig - v_i);
25 \operatorname{disp}(R_{in}, R_{in} (\operatorname{ohm}))
26 \quad G_m = A_vo/R_o;
27 disp(G_m, "G_m (mho)")
28 A_i = A_v * R_i / R_L;
29 disp(A_i, "A_i (V/V)")
30 R_{inL0}=R_{sig}/((1+R_{sig}/R_{i})*(R_{out}/R_{o})-1); // R_{in}
      R_L = 0 (ohm)
31 disp(R_inL0, "R_in at R_L=0")
32 A_{is} = A_{vo} * R_{inL0} / R_{o};
33 disp(A_is, "A_is (A/A)")
```

Scilab code Exa 4.12 Midband gain and upper 3dB frequency

```
1 // Example 4.12 : Midband gain and upper 3dB
    frequency
2 R_sig= 100*10^3; // (ohm)
3 R_G=4.7*10^6; // (ohm)
4 R_D=15*10^3; // (ohm)
5 R_l=15*10^3; // (ohm)
6 g_m=1*10^-3; // (mho)
7 r_o=150*10^3; // (ohm)
8 C_gs=1*10^-12; // (F)
```

```
9 C_gd=0.4*10^-12; // (F)

10 R_L= 1/(1/r_o + 1/R_D + 1/R_l)

11 A_M=R_G/(R_G + R_sig)*g_m*R_L;

12 disp(A_M, "midband gain A_M (V/V)")

13 C_eq=(1+g_m*R_L)*C_gd;

14 C_in=C_gs+C_eq;

15 f_H=(R_G+R_sig)/(2*%pi*C_in*R_sig*R_G);

16 disp(f_H, "f_H (Hz)")
```

Scilab code Exa 4.13 Coupling capacitor values

```
1 // Example 4.13 : Coupling capacitor values
2 R_G=4.7*10^6; // (ohm)
3 R_D=15*10^3; // (ohm)
4 R_L=15*10^3; // (ohm)
5 R_sig=100*10^3; // (ohm)
6 g_m=1*10^-3; // (mho)
7 \text{ f_L=100; } // \text{ (Hz)}
8 C_S = g_m/(2*\%pi*f_L)
9 disp(C_S, "C_S (F)")
10 f_P2=1/(2*\%pi*C_S/g_m);
11 f_P1=10; // (Hz)
12 f_P2=10; // (Hz)
13 C_C1=1/(2*\%pi*(R_G+R_sig)*10)
14 disp(C_C1, "C_C1 (F)")
15 C_C2=1/(2*\%pi*(R_D+R_L)*10)
16 disp(C_C2, "C_C2 (F)")
```

Chapter 5

Bipolar Junction Transistor

Scilab code Exa 5.1 Design of given circuit with current 2mA

```
1 // Example 5.1 : Design of given circuit with
      current 2mA
2 // BJT will be operating in active mode
3 B=100; // B is beta value
4 a=B/(B+1); // a is alpha value
5 v_BE=0.7; // v_BE (V) at i_C=1mA
6 i_C=1*10^-3:1*10^-3:2*10^-3; // (A)
7 I_C=2*10^-3; // (A)
8 V_T = 25*10^-3; // (V)
9 \ V_C = 5; // (V)
10 V_CC=15; // (V)
11 V_B = 0; // (V)
12 V_RC=V_CC-V_C; // V_RC is the voltage drop across
      resistor R_C
13 R_C=V_RC/I_C;
14 disp(R_C, "Collector Resistance R_C (ohm)")
15 V_BE=v_BE+V_T*\log(i_C(2)/i_C(1));
16 disp(V_BE, "Base emitter voltage V_BE (V) at i_C=2mA"
     )
17 V_E = V_B - V_BE;
18 disp(V_E, "Emitter voltage V_E (V)")
```

```
19 I_E=I_C/a;
20 disp(I_E, "Emitter current I_E (A)")
21 R_E=(V_E-(-V_CC))/I_E;
22 disp(R_E, "Emitter resistance R_C (ohm)")
```

Scilab code Exa 5.2 Consider a common Emitter circuit

```
1 // Example 5.2 : Consider a common Emitter circuit
2 I_S=10^-15; // (A)
3 R_C=6.8*10^3; // (ohm)
4 V_CC=10; // (V)
5 \text{ V_CE=3.2; } // \text{ (V)}
6 V_T = 25*10^-3; // (V)
7
8 // 5.2 a
9 I_C = (V_CC - V_CE)/R_C;
10 disp(I_C, "Collector current (A)")
11 V_BE=V_T*log(I_C/I_S);
12 \text{ disp}(V\_BE,"V\_BE (V)")
13
14 // 5.2 b
15 V_in=5*10^-3; // sinuosoidal input Of peak amplitide
       5<sub>m</sub>v
16 A_v = -(V_CC - V_CE)/V_T;
17 disp(A_v, "Voltage gain")
18 V_o=-A_v*V_in; // negative sign to make positive
      value of voltage gain
19 disp(V_o, "Amplitude of output voltage (V)")
20
21 // 5.2 c
22 \text{ v_CE=0.3// (V)}
23 i_C = (V_CC - v_CE)/R_C;
24 disp(i_C, "i_C (A)")
25 v_be=V_T*log(i_C/I_C); // v_BE is positive increment
       in v<sub>BE</sub>
```

```
disp(v_be, required increment (V)")

// 5.2d

v_0=0.99*V_CC;

R_C=6.8*10^3; // (ohm)

i_C=(V_CC-v_0)/R_C;

I_C=1*10^-3; // (A)

disp(i_C, i_C (A)")

v_be=V_T*log(i_C/I_C);

disp(v_be, regative increment in v_BE (V)")
```

Scilab code Exa 5.3 Determine RB

```
1 // Example 5.3 : Determine R_B
2 // transistor is specified to have B value in the range of 50 to 150
3 V_C=0.2; // V_C=V_CEsat
4 V_CC=10; // (V)
5 R_C=10^3; // (ohm)
6 V_BB=5; // (V)
7 V_BE=0.7; // (V)
8 bmin=50; // range of bete is 50 to 150
9 I_Csat=(V_CC-V_C)/R_C;
10 I_BEOS=I_Csat/bmin; // I_B(EOS)=I_BEOS
11 I_B=10*I_BEOS; // base current for an overdrive factor 10
12 R_B=(V_BB-V_BE)/I_B;
13 disp(R_B, "Value of R_B (ohm)")
```

Scilab code Exa 5.4 Analyse the circuit to find node voltages and bran

```
1 // Example 5.4 : Analyse the circuit to find node voltages and branch currents
```

```
2 V_BB = 4; // (V)
3 V_CC=10; // (V)
4 V_BE=0.7; // (V)
5 b=100; // beta = 100
6 R_E=3.3*10^3; // (ohm)
7 R_C=4.7*10^3; // (ohm)
8 V_E = V_BB - V_BE;
9 disp(V_E, "Emitter voltage (V)")
10 I_E = (V_E - 0) / R_E;
11 disp(I_E, "Emitter current (A)")
12 a=b/(b+1) // alpha value
13 I_C=I_E*a;
14 disp(I_C, "Collector current (A)")
15 V_C=V_CC-I_C*R_C; // Applying ohm's law
16 disp(V_C, "Collector voltage (V)")
17 I_B=I_E/(b+1);
18 disp(I_B, "Base current (A)")
```

Scilab code Exa 5.5 Analyse the circuit to find node voltages and bran

```
// Example 5.5 : Analyse the circuit to find node
    voltages and branch currents

disp("Assuming active mode operation")

V_CC=10; // (V)

R_C=4.7*10^3; // (V)

R_E=3.3*10^3; // (ohm)

V_BE=0.7; // (V)

V_BB=6; // (V)

V_CEsat=0.2; // (V)

V_E=V_BB-V_BE;

disp(V_E, "Emitter voltage (V)")

I_E=V_E/R_E;

disp(I_E, "Emitter current (A)")

V_C=V_CC-I_E*R_C; // I_E=I_C

disp(V_C, "Collector voltage (V)")
```

Scilab code Exa 5.7 Analyse the circuit to find node voltages and bran

```
1 // Example 5.7: Analyse the circuit to find node
      voltages and branch currents
2 V_CC = -10; // (V)
3 R_E = 2000; // (ohm)
4 R_C=1000; // (ohm)
5 V_EE = 10; // (V)
6 V_E=0.7; // (V) emitter base junction will be
      forward biased with V_E=V_EB=0.7V
7 disp(V_E, "Emitter base junction is forward biased
      with V_{-}E (V)")
8 \quad I_E = (V_EE - V_E)/R_E;
9 disp(I_E, "Emitter current (A)")
10 B=100; // Assuming beta 100
11 a=B/(B+1);
12 I_C=a*I_E; // Assuming the transistor to operate in
      active mode
13 disp(I_C, "Collector current (A)")
```

```
14  V_C=V_CC+I_C*R_C;
15  disp(V_C, "Collector voltage (V)")
16  I_B=I_E/(B+1);
17  disp(I_B, "Base current (A)")
```

Scilab code Exa 5.8 Analyse the circuit to find node voltages and bran

```
1 // Example 5.8 : Analyse the circuit to find node
      voltages and branch currents
2 \text{ V_CC= } 10; // (V)
3 R_C=2000; // (ohm)
4 V_BB=5; // (V)
5 R_B = 100 * 10^3; // (ohm)
6 B=100; // beta value
7 I_B = (V_BB - V_BE)/R_B;
8 disp(I_B, "Base current (A)")
9 I_C=B*I_B;
10 disp(I_C, "Collector current (A)")
11 V_C = V_CC - I_C * R_C;
12 disp(V_C, "Collector voltage (V)")
13 V_B=0.7; //V_B=V_BE
14 disp(V_B, "Base voltage (V)")
15 I_E = (B+1) * I_B;
16 disp(I_E, "Emitter current (A)")
```

Scilab code Exa 5.9 Analyse the circuit to find node voltages and bran

```
1 // Example 5.9 : Analyse the circuit to find node
    voltages and branch currents
2 // assuming that the transistor is saturated
3 V_CC=-5; // (V)
4 V_EE=5; // (V)
5 R_B=10000; // (ohm)
```

```
6 R_C=10000; // (ohm)
7 R_E = 1000; // (ohm)
8 V_{EB} = 0.7; // (V)
9 V_ECsat=0.2; // (V)
10 // using the relation I_E=I_C+I_B
11 V_B=3.75/1.2; //(V)
12 disp(V_B, "Base voltage (V)")
13 V_E = V_B + V_EB;
14 disp(V_E, "Emitter voltage (V)")
15 V_C=V_E-V_ECsat;
16 disp(V_C, "Collector voltage (V)")
17 I_E = (V_EE - V_E) / R_E;
18 disp(I_E, "Emitter current (A)")
19 I_B=V_B/R_B;
20 disp(I_B, "Base current (A)")
21 I_C = (V_C - V_CC) / R_C;
22 disp(I_C, "Collector current (A)")
23 Bforced=I_C/I_B; // Value of forced beta
24 disp(Bforced, "Forced Beta value")
```

Scilab code Exa 5.10 Analyse the circuit to find node voltages and bran

```
// Exampe 5.10 : Analyse the circuit to find node
    voltages and branch currents

V_CC=15; // (V)

R_C=5000; // (ohm)

R_B1=100*10^3; // (ohm)

R_B2=50*10^3; // (ohm)

R_E=3000; // (ohm)

V_BE=0.7; // (V)

B=100; // beta value

V_BB=V_CC*R_B2/(R_B1+R_B2);

disp(V_BB, "V_BB (V)")

R_BB=R_B1*R_B2/(R_B1+R_B2);

disp(R_BB, "R_BB (ohm)")
```

Scilab code Exa 5.11 Analyse the circuit to find node voltages and bran

```
1 // Example 5.11 : Analyse the circuit to find node
      voltages and branch currents
2 V_{CC}=15; // (V)
3 R_C1 = 5000; // (ohm)
4 R_B1=100*10^3; // (ohm)
5 R_B2=50*10^3; // (ohm)
6 R_E=3000; // (ohm)
7 V_BE=0.7; // (V)
8 R_E2 = 2000; // (ohm)
9 R_C2 = 2700; // (ohm)
10 V_EB = 0.7; // (V)
11 B=100; // beta value
12 V_BB=V_CC*R_B2/(R_B1+R_B2);
13 R_BB=R_B1*R_B2/(R_B1+R_B2);
14 I_E1 = (V_BB - V_BE) / (R_E + (R_BB/(B+1)))
15 disp(I_E1, "I_E1 (A)")
16 I_B1 = I_E1/(B+1)
17 disp(I_B1,"I_B1 (A)")
18 V_B1 = V_BE + I_E * R_E;
```

```
19 disp(V_B1,"V_B1 (V)")
20 a=B/(B+1); // alpha value
21 // beta and alpha values are same for the two
      transistors
22 I_C1=a*I_E
23 disp(I_C1,"IC1 (A)")
V_C1 = V_CC - I_C1 * R_C1;
25 \operatorname{disp}(V_C1, "V_C1 (V))")
V_E2 = V_C1 + V_EB;
27 disp(V_E2, "V_E2(V)")
28 I_E2 = (V_CC - V_E2)/R_E2;
29 disp(I_E2,"I_E2 (A)")
30 I_C2=a*I_E2;
31 disp(I_C2,"I_C2 (A)")
32 V_C2 = I_C2 * R_C2;
33 \quad disp(V_C2,"V_C2 (V)")
34 I_B2=I_E2/(B+1);
35 disp(I_B2,"I_B2 (A)")
```

Scilab code Exa 5.13 Design of bias network of the amplifier

```
// Example 5.13 : Design of bias network of the
amplifier

I_E=1*10^-3; // (A)

V_CC=12; // (V)

B=100; // beta value

V_B=4; // (V)

V_BE=0.7; // (V)

R1=80; // (ohm)

R2=40; // (ohm)

V_C=8; // (V)

V_E=V_B-V_BE;

disp(V_E, "Emitter voltage (V)")

R_E=V_E/I_E;

disp(R_E, "Emitter resistance (ohm)")
```

```
14  I_E=(V_B-V_BE)/(R_E+(R1*R2/(R1+R2))/(B+1));
15  disp(I_E,"more accurate value for I_E (A) for R1=80 ohm and R2=40 ohm")
16  R1=8; // (ohm)
17  R2=4; // (ohm)
18  I_E=(V_B-V_BE)/(R_E+(R1*R2/(R1+R2))/(B+1));
19  disp(I_E,"more accurate value for I_E (A) for R1=8 ohm and R2=4 ohm")
20  R_C=(V_CC-V_C)/I_E; // I_E=I_C
21  disp(R_C,"Collector resistor (ohm)")
```

Scilab code Exa 5.14 Analysis of transistor amplifier

```
1 // Example 5.14 : Analysis of transistor amplifier
2 V_{CC}=10; // (V)
3 R_C = 3000; // (ohm)
4 R_BB=100*10^3; // (ohm)
5 \text{ V}_BB=3; // (V)
6 V_BE=0.7; // (V)
7 V_T = 25 * 10^{-3}; // (V)
8 I_B = (V_BB - V_BE)/R_BB;
9 disp(I_B, "Base current (A)")
10 I_C=B*I_B;
11 disp(I_C, "Collector current (A)")
12 V_C = V_CC - I_C * R_C;
13 disp(V_C, "Collecor voltage (V)")
14 I_E=B*I_C/(B+1);
15 r_e=V_T/I_E;
16 disp(r_e, "r_e (ohm)")
17 g_m = I_C/V_T;
18 disp(g_m, "g_m (mho)")
19 r_pi=B/g_m;
20 disp(r_pi, "r_pi (ohm)")
21 // v_i is input voltage let us assume it to be 1 V
22 v_i = 1;
```

```
23  v_be=v_i*r_pi/(r_pi+R_BB)
24  disp(v_be,"v_be")
25  v_o=-g_m*R_C*v_be;
26  disp(v_o,"Output voltage (V)")
27  A_v=v_o/v_i;
28  disp(A_v,"Voltage gain")
```

Scilab code Exa 5.17 Amplifier parameters

```
1 // Example 5.17 : Amplifier parameters
2 // Transistor amplifier is having a open circuit
       voltage of v_sig of 10mV
3 \text{ v_sig=10*10^-3; } // (V)
4 R_L=10*10^3; // (ohm)
5 R_sig=100*10^3; // (ohm)
6 disp("Calculation with R<sub>-</sub>L infinite")
7 \text{ v_i=9; } // \text{ (V)}
8 \text{ v_o} = 90; // (V)
9 A_vo=v_o/v_i;
10 disp(A_vo, "A_vo (V/V)")
11 G_{vo} = v_{o}/A_{vo};
12 \operatorname{disp}(G_{vo}, G_{vo}(V/V))
13 R_i = G_v \circ *R_sig/(A_v \circ -G_v \circ)
14 disp(R_i, "R_i (ohm)")
15 disp("Calculations with R_L = 10k ohm")
16 v_o = 70*10^-3; // (V)
17 v_i = 8*10^-3; // (V)
18 A_v=v_o/v_i;
19 \operatorname{disp}(A_v, \operatorname{Voltage gain } A_v (V/V))
20 \quad G_v = v_o * 10^3 / 10;
21 disp(G_v, "G_v(V/V)")
22 R_o = (A_vo - A_v) * R_L/A_v;
23 disp(R_o, "R_o (ohm)")
24 R_{out} = (G_{vo} - G_{v}) * R_L/G_v;
25 \operatorname{disp}(R_{\operatorname{out}}, "R_{\operatorname{out}} (\operatorname{ohm})")
```

```
26  R_in=v_i*R_sig/(v_sig-v_i);
27  disp(R_in, "R_in (ohm)")
28  G_m=A_vo/R_o;
29  disp(G_m, "G_m (A/V)")
30  A_i=A_v*R_in/R_L;
31  disp(A_i, "A_i (A/A)")
32  R_ino=R_sig/((1+R_sig/R_i)*(R_out/R_o)-1); // R_ino
    is  R_in at  R_L=0
33  disp(R_ino, "R_in at  R_L=0")
34  A_is=A_vo*R_ino/R_o;
35  disp(A_is, "A_is (A/A)")
```

Scilab code Exa 5.18 Midband gain and 3dB frequency

```
1 //Example 5.18 : Midband gain and 3dB frequency
^2 // Transistor is biased at I_C=1mA
3 \text{ V_CC=10; } // \text{ (V)}
4 V_EE = 10; // (V)
5 I=0.001; // (A)
6 R_B = 100000; // (ohm)
7 R_C = 8000; // (ohm)
8 R_sig=5000; //(ohm)
9 R_L=5000; // (ohm)
10 B=100; // beta value
11 V_A = 100; // (V)
12 C_u=1*10^-12; // (F)
13 f_T=800*10^6; // (Hz)
14 I_C=0.001; // (A)
15 r_x=50; // (ohm)
16 // Values of hybrid pi model parameters
17 g_m = I_C/V_T;
18 r_pi=B/g_m;
19 r_o=V_A/I_C;
20 \text{ w}_T = 2 * \% \text{pi} * f_T;
21 CpiplusCu=g_m/w_T; // C_u+C_pi
```

Scilab code Exa 5.19 To select values of capacitance required

```
1 // Example 5.19 : To select values of capacitance
      required
2 R_B = 100000; // (ohm)
3 r_pi=2500; // (ohm)
4 R_C=8000; // (ohm)
5 R_L = 5000; // (ohm)
6 R_sig=5000; // (ohm)
7 B=100; // beta value
8 \text{ g_m=0.04; } // \text{ (A/V)}
9 r_pi = 2500; //(ohm)
10 f_L=100; // (Hz)
11 r_e=25; // (ohm)
12 R_C1=R_B*r_pi/(R_B+r_pi)+R_sig; // Resistance seen
      by C_C1
13 R_E=r_e+R_B*R_sig/((R_B+R_sig)*(B+1)); // Resistance
       seen by C<sub>-</sub>E
14 R_C2=R_C+R_L; // Resistance seen by C_C2
15 \text{ w_L=2*\%pi*f_L};
16 C_E=1/(R_E*0.8*w_L); //C_E is to contribute only 80\%
       of the value of w_L
```

Chapter 6

single stage integrated circuit amplifiers

Scilab code Exa 6.1 To find the operating point of NMOS transistor

```
1 // Example 6.1: To find the operating point of NMOS
      transistor
2 // Consider NMOS transistor
4 // 6.1a
5 I_D=100*10^-6; // (A)
6 K_n=387*10^-6*10; // K_n=u_n*C_{ox}(W/L) (A/V<sup>2</sup>)
7 \text{ V_th=0.48; } // \text{ (V)}
8 V_OV=sqrt(2*I_D/K_n);
9 \text{ disp}(V_OV, "V_OV (V)")
10 V_GS = V_th + V_OV;
11 \operatorname{disp}(V_{GS}, "V_{GS}(V)")
12
13 // 6.1 b
14 I_C=100*10^-6; // (A)
15 I_S=6*10^-18 // (A)
16 V_T = 0.025; // (V)
17 V_BE=V_T*log(I_C/I_S);
18 disp(V_BE, "V_BE(V)")
```

Scilab code Exa 6.2 Comparison between NMOS transistor and npn transis

```
1 // Example 6.2 : Comparison between NMOS transistor
      and npn transistor
3 disp("For NMOS transistor")
4 I_D=100*10^-6; // (A)
5 V_a=5; // V'_A=V_a (A)
6 L=0.4; // (um)
7 K_n = 267*4/0.4*10^-6; // K_n = u_n * C_o x * (W/L) (A/V^2)
8 V_OV=sqrt(2*I_D/K_n);
9 g_m=sqrt(2*K_n*I_D)
10 \operatorname{disp}(g_m, g_m (A/V))
11 disp("R_in is infinite")
12 r_o=V_a*L/I_D;
13 disp(r_o, "r_o (ohm)")
14 \quad A_0 = g_m * r_o;
15 disp(A_0, "A_0 (V/V)")
16 disp("For npn transistor")
17 I_C=0.1*10^-3; // collector current
18 B_o=100; // beta value
19 V_A = 35; // (V)
20 g_m = I_C/V_T;
21 \operatorname{disp}(g_m, g_m (A/V))
22 R_{in} = B_{o/g_m};
23 \operatorname{disp}(R_{in}, R_{in} (\operatorname{ohm}))
24 r_o=V_A/I_C;
25 disp(r_o, "r_o (ohm)")
26 A_0 = g_m * r_o;
27 disp(A_0, "A_0 (V/V)")
```

Scilab code Exa 6.3 Comparison between NMOS transistor and npn transis

```
1 // Example 6.3 : Comparison between NMOS transistor
      and npn transistor
2 // For npn transistor
3 disp("For npn transistor")
4 I_C=10*10^-6; // (A)
5 V_T = 0.025; // (V)
6 \text{ V}_A = 35; // (V)
7 C_{je0}=5*10^{-15}; // (F)
8 C_u0=5*10^-15; // (F)
9 C_L=1*10^-12; // (F)
10 disp("The data calculated for I_C=10uA")
11 g_m=I_C/V_T;
12 disp(g_m, "g_m (A/V)")
13 r_o=V_A/I_C;
14 disp(r_o, "r_o (ohm)")
15 A_0 = V_A / V_T;
16 disp(A_0, "A_0 (V/V)")
17 T_F = 10 * 10^-12;
18 C_de=T_F*g_m;
19 disp(C_de, "C_de (F)")
20 C_{je}=2*C_{je};
21 disp(C_je, "C_je (F)")
22 C_pi=C_de+C_je;
23 \operatorname{disp}(C_{pi}, "C_{pi}(F)")
24 \quad C_u = C_u ;
25 \operatorname{disp}(C_u, C_u(F))
26 f_T=g_m/(2*\%pi*(C_pi+C_u));
27 disp(f_T, "f_T (Hz)")
28 f_t=g_m/(2*\%pi*C_L);
29 disp(f_t, "f_t (Hz)")
30 disp("The data calculated for I_C=100uA")
31 I_C=100*10^-6;
32 g_m = I_C/V_T;
33 disp(g_m, "g_m (A/V)")
34 \text{ r_o=V_A/I_C};
```

```
35 disp(r_o, "r_o (ohm)")
36 \quad A_0 = V_A / V_T;
37 disp(A_0, "A_0 (V/V)")
38 \text{ T_F} = 10 * 10^{-12};
39 C_de = T_F * g_m;
40 disp(C_de, "C_de (F)")
41 C_je=2*C_jeO;
42 disp(C_je, "C_je (F)")
43 \quad C_pi = C_de + C_je;
44 disp(C_pi, "C_pi (F)")
45 \quad C_u = C_u ;
46 disp(C_u, "C_u (F)")
47 f_T=g_m/(2*\%pi*(C_pi+C_u));
48 disp(f_T, "f_T (Hz)")
49 f_t=g_m/(2*\%pi*C_L);
50 disp(f_t, "f_t (Hz)")
51 disp("The data calculated for I_C=lmA")
52 I_C=1*10^-3;
53 \text{ g_m=I_C/V_T};
54 \operatorname{disp}(g_m, g_m (A/V))
55 r_o=V_A/I_C;
56 disp(r_o, "r_o (ohm)")
57 \quad A_O = V_A / V_T;
58 disp(A_0, "A_0 (V/V)")
59 T_F = 10 * 10^-12;
60 C_de = T_F * g_m;
61 disp(C_de, "C_de (F)")
62 \quad C_je=2*C_je0;
63 \operatorname{disp}(C_{je}, "C_{je}(F)")
64 C_pi=C_de+C_je;
65 disp(C_pi, "C_pi (F)")
66 \quad C_u = C_u ;
67 disp(C_u, "C_u (F)")
68 f_T=g_m/(2*\%pi*(C_pi+C_u));
69 disp(f_T, "f_T (Hz)")
70 f_t = g_m/(2*\%pi*C_L);
71 disp(f_t, "f_t (Hz)")
72 // For NMOS transistor
```

```
73 L=0.4*10^--6; // (m)
 74 C_L=1*10^-12; // (F)
75 disp("The data calculated for I_D = 10uA")
76 I_D=10*10^-6; // (A)
77 WbyL=0.12*I_D; // WbyL=(W/L)
 78 disp(WbyL*10^6,"(W/L)")
 79 g_m = 8 * I_D;
80 disp(g_m, "g_m (A/V)")
81 r_o = 2/I_D;
82 disp(r_o, "r_o (ohm)")
83 A_0 = g_m * r_o;
84 disp(A_0, "A_0 (V/V)")
85 C_gs = (2/3) * WbyL * 0.4 * 0.4 * 5.8 + 0.6 * WbyL * 0.4;
86 \operatorname{disp}(C_{gs}, C_{gs} (fF))
87 C_gd=0.6*WbyL*0.4;
88 disp(C_gd, "C_gd (fF)")
89 f_T=g_m/(2*\%pi*(C_gs*10^-15+C_gd*10^-15));
90 disp(f_T, "f_T (Hz)")
91 f_t = g_m/(2*\%pi*C_L)
92 \text{ disp}(f_t, "f_t (Hz)")
93 disp("The data calculated for I_D = 100uA")
94 I_D=100*10^-6; // (A)
95 WbyL=0.12*I_D; // WbyL=(W/L)
96 disp(WbyL*10^6,"(W/L)")
97 \text{ g_m} = 8 * I_D;
98 disp(g_m, "g_m (A/V)")
99 r_o=2/I_D;
100 disp(r_o, "r_o (ohm)")
101 A_0 = g_m * r_o;
102 disp(A_0, "A_0 (V/V)")
103 C_gs = (2/3) * WbyL * 0.4 * 0.4 * 5.8 + 0.6 * WbyL * 0.4;
104 disp(C_gs, "C_gs (fF)")
105 \text{ C_gd=0.6*WbyL*0.4};
106 disp(C_gd, "C_gd (fF)")
107 f_T=g_m/(2*\%pi*(C_gs*10^-15+C_gd*10^-15));
108 disp(f_T, "f_T (Hz)")
109 f_t = g_m/(2*\%pi*C_L)
110 disp(f_t, "f_t (Hz)")
```

```
111 disp("The data calculated for I_D = 1mA")
112 I_D=1*10^-3; // (A)
113 WbyL=0.12*I_D; // WbyL=(W/L)
114 disp(WbyL*10^6,"(W/L)")
115 g_m = 8 * I_D;
116 \operatorname{disp}(g_m, g_m (A/V))
117 r_o=2/I_D;
118 disp(r_o, "r_o (ohm)")
119 A_0 = g_m * r_o;
120 disp(A_0, "A_0 (V/V)")
121 C_gs = (2/3) * WbyL * 0.4 * 0.4 * 5.8 + 0.6 * WbyL * 0.4;
122 disp(C_gs, "C_gs (fF)")
123 C_gd=0.6*WbyL*0.4;
124 disp(C_gd, "C_gd (fF)")
125 f_T=g_m/(2*\%pi*(C_gs*10^-15+C_gd*10^-15));
126 disp(f_T, "f_T (Hz)")
127 f_t = g_m/(2*\%pi*C_L)
128 disp(f_t, "f_t (Hz)")
```

Scilab code Exa 6.4 Design of the circuit with output current 100uA

```
14  V_Omin=V_OV;
15  disp(V_Omin,"V_min (V)")
16  r_o2=V_A/I_REF;
17  disp(r_o2,"r_o2 (ohm)")
18  V_O=V_GS;
19  deltaV_O=1; // Change in V_O (V)
20  deltaI_O=deltaV_O/r_o2; // Corresponding change in I_O (A)
21  disp(deltaI_O,"The corresponding change in I_O (A)")
```

Scilab code Exa 6.5 Determine 3dB frequency

Scilab code Exa 6.6 To determine midband gain and upper 3dB frequency

```
1 // Example 6.6 : To determine midband gain and upper
        3dB frequency
2 R_in=420*10^3; // (ohm)
3 R_sig=100*10^3; // (ohm)
4 g_m=4*10^-3; // (mho)
5 R_L=3.33*10^3; // R_L=R'_L (ohm)
6 C_gs=1*10^-12; // F
7 C_gd=C_gs;
8 A_M=-R_in*g_m*R_L/(R_in+R_sig)
9 disp(A_M, "Midband frequency gain A_M (V/V)")
10 R_gs=R_in*R_sig/(R_in+R_sig);
```

Scilab code Exa 6.7 Application of miller theorem

```
1 // Example 6.7 : Application of miller's theorem
3 / 6.7a
4 // By miller's theorem
5 Z=1000*10^3; // (ohm)
6 \text{ K} = -100; // (V/V)
7 R_sig=10*10^3; // (ohm)
8 \quad Z_1 = Z/(1-K);
9 disp(Z_1, "Z_1 (ohm)")
10 Z_2=Z/(1-(1/K));
11 disp(Z_2, "Z_2 (ohm)")
12 VobyVsig=-100*Z_1/(Z_1+R_sig); // VobyVsig=(V_{-0}/
      V_sig)
13 disp(VobyVsig," (V_{-0}/V_{-sig}) (V/V)")
14
15 / 6.7b
16 // Applying miller's theorem
17 f_3dB=1/(2*\%pi*1.01*10^-6);
18 disp(f_3dB, "f_3dB (Hz)")
```

Scilab code Exa 6.8 Analysis of CMOS CS amplifier

```
1 // Example 6.8 : Analysis of CMOS CS amplifier
2 k_n = 200 * 10^- - 6; // (A/V^2)
3 W=4*10^-6; // (m)
4 L=0.4*10^-6; // (m)
5 I_REF = 100 * 10^-6; // (A)
6 V_An = 20; // (A)
7 I_D1=0.1*10^-3; // (A)
8 V_Ap=10; // (V)
9 V_DD=3; // (V)
10 I_D2=0.1*10^-3; // (A)
11 V_{tp}=0.6; // (V)
12 V_{tn} = 0.6; // (V)
13 g_m1=sqrt(2*k_n*(W/L)*I_REF);
14 disp(g_m1, "g_m1 (A/V)")
15 r_o1=V_An/I_D1;
16 disp(r_o1, "r_o1 (ohm)")
17 r_o2=V_Ap/I_D2;
18 disp(r_o2, "r_o2 (ohm)")
19 A_v = -g_m1 * r_o1 * r_o2/(r_o1 + r_o2);
20 disp(A_v, "A_v (v/V)")
21 I_D=100*10^-6; // (A)
22 k_n=65*10^-6; // (A/V^2)
23 \quad V_0V3 = 0.53; // (V)
V_SG=V_tp+V_0V3;
25 disp(V_SG,"V_SG(V)")
26 V_0A = V_DD - V_0V3;
27 disp(V_OA, "V_OA(V)")
28 V_{IB} = 0.93; // (V)
29 V_IA = 0.88; // (V)
30 disp(V_IA, V_IB, "Coordinates of the extremities of
      the amplifier V<sub>IB</sub> and V<sub>IA</sub>")
31 deltavI=V_IB-V_IA; // width of amplifier region
32 \quad V_OB = 0.33; // (V)
33 deltavO=V_OB-V_OA; // corresponding output range (V)
34 deltavObydeltavI=-deltavO/deltavI; // Large signal
      voltage gain (V/V)
35 disp(deltavObydeltavI,"Large signal voltage gain (V/
      V)")
```

Scilab code Exa 6.9 Analysis of CMOS CS amplifier

```
1 // Example 6.9: Analysis of CMOS CS amplifier
2 // Consider CMOS open source amplifier
3 I_D=100*10^-6; // (A)
4 I_REF = I_D;
5 uC_n=387*10^-6; // u_n*C_ox=uC_n (A/V^2)
6 uC_p=86*10^-6; // u_n*C_ox=uC_n (A/V^2)
7 \text{ W} = 7.2 * 10^{-6}; // (m)
8 L=0.36*10^-6; // (m)
9 V_An=5*10^-6; // (A)
10 R_sig=10*10^3; // (ohm)
11 V_OV=sqrt(2*I_D*L/(W*uC_n));
12 g_m = I_D/(V_OV/2);
13 disp(g_m, "g_m (A/V)")
14 r_o1=5*0.36/(0.1*10^-3);
15 disp(r_o1,"r_o1 (ohm)")
16 \text{ r}_02=6*0.36/(.1*10^-3);
17 disp(r_o2, "r_o2 (ohm)")
18 R_L=r_01*r_02/(r_01+r_02);
19 disp(R_L,"R_L (ohm)")
20 A_m = -g_m * R_L;
21 \operatorname{disp}(A_m, "A_m (V/V)")
22 C_gs = 20*10^-15; // (F)
23 C_gd=5*10^-15; // (F)
24 C_{in}=C_{gs}+C_{gd}*(1+g_m*R_L); // using miller
      equivalence
25 \operatorname{disp}(C_{in}, "C_{in}(F)")
26 f_H=1/(2*\%pi*C_in*R_sig);
27 disp(f_H, "f_H (Hz)")
28 R_gs=10*10^3; // (ohm) using open circuit
      constants methods
29 R_L=9.82*10^3; // (ohm)
30 R_gd=R_sig*(1+g_m*R_L) + R_L;
```

```
31 disp(R_gd, "R_gd (ohm)")
32 R_CL=R_L;
33 T_gs=C_gs*R_gs;
34 disp(T_gs, "T_gs (s)")
35 \quad T_gd=C_gd*R_gd;
36 \quad disp(T_gd, "T_gd (s)")
37 C_L = 25 * 10^- 15;
38 \quad T_CL = C_L * R_CL;
39 disp(T_CL, "T_CL (s)")
40 \quad T_H = T_gs + T_gd + T_CL;
41 disp(T_H,"T_H (s)")
42 f_H=1/(2*\%pi*T_H); // 3dB frequency
43 disp(f_H, "f_H (Hz)")
44 f_Z=g_m/(2*\%pi*C_gd); // frequency of the zero
45 \operatorname{disp}(f_Z, "f_Z (Hz)")
46 // Denominator polynomial
47 p = poly([1 \ 1.16*10^-9 \ 0.0712*10^-18], 's', 'coeff')
48 disp(p, "Denominator polynomial")
49 \text{ s=roots(p)};
50 f_P2=s(2)/(-2*\%pi);
f_P1=s(1)/(-2*\%pi)
52 disp(f_P2,f_P1, "The frequencies f_P1 (Hz) and f_P2
       (Hz) are found as the roots of the denominator
      frequency")
53 f_H=f_P1;
54 disp(f_H, "Another estimate for f_H (Hz)")
```

Scilab code Exa 6.10 To determine AM ft fZ f3dB

```
7 g_m=1.25*10^-3; // (mho)
8 f_H=1/(2*\%pi*(C_L+C_gd)*R_L); // 3dB frequency
9 disp(f_H, "f_H (Hz)")
10 f_t=-A_M*f_H; // Unity-gain frequency - sign to make
       gain positive as only magnitude is considered
11 disp(f_t,"f_t (Hz)")
12 f_Z=g_m/(2*\%pi*C_gd); // frequency of the zero
13 \operatorname{disp}(f_Z, "f_Z (Hz)")
14 I_D=400*10^-6; // I_D must be quadrupled by changing
       I_REF to 400uF
15 V_0V = 0.32;
16 g_m = I_D/(V_OV/2);
17 disp(g_m, "g_m (A/V)")
18 r_01=5*0.36/(0.4*10^-3);
19 disp(r_o1, "r_o1 (ohm)")
20 r_02=6*0.36/(0.4*10^-3);
21 disp(r_o2, "r_o2 (ohm)")
22 R_L = (r_01*r_02)/(r_01+r_02);
23 disp(R_L, "R_L (ohm)")
24 \quad A_M = -g_m * R_L;
25 \operatorname{disp}(A_M, A_M (V/V))
26 f_H=1/(2*\%pi*(C_L+C_gd)*R_L);
27 disp(f_H,"f_H (Hz)")
28 f_t=f_H*-A_M; // Unity gain frequency
29 disp(f_t, "f_t (Hz)")
```

Scilab code Exa 6.11 Avo Rin Rout Gi Gis Gv fH

```
1 // Example 6.11 : Avo Rin Rout Gi Gis Gv fH
2 // Consider the common gate amplifier
3 g_m=1.25*10^-3; // (A/V)
4 r_o=18000; // (ohm)
5 I_D=100*10^-6; // (A)
6 X=0.2;
7 R_S=10*10^3; // (ohm)
```

```
8 R_L=100*10^3; // (ohm)
9 C_gs = 20*10^-15; // (F)
10 C_gd=5*10^-15; // (F)
11 C_L=0; // (F)
12 gmplusgmb=g_m+0.2*g_m; // gmplusgmb=g_m+g_mb
13 A_{vo}=1+(gmplusgmb)*r_o;
14 disp(A_vo, "A_vo (V/V)")
15 R_{in}=(r_o+R_L)/A_{vo};
16 disp(R_in, "R_in (ohm)")
17 R_{out}=r_o+A_{vo}*R_S;
18 disp(R_out, "ohm")
19 G_v = A_v \circ *R_L/(R_L + R_out);
20 \operatorname{disp}(G_v, G_v(V/V))
21 G_{is}=A_{vo}*R_{S}/R_{out};
22 disp(G_is, "G_is (A/A)")
23 G_{i}=G_{i}*R_{out}/(R_{out}+R_{L})
24 \operatorname{disp}(G_i, G_i (A/A))
25 R_gs=R_S*R_in/(R_S+R_in);
26 R_gd=R_L*R_out/(R_L+R_out);
27 T_H=C_gs*R_gs+C_gd*R_gd;
28 f_H=1/(2*\%pi*T_H);
29 disp(f_H,"f_H (Hz)")
```

Scilab code Exa 6.12 Comparison between Cascode amplifier and CS amplif

```
9 C_gd=5*10^-15;
10 C_L=5*10^-15;
11 C_db=5*10^-15;
12 A_o = g_m * r_o;
13 \operatorname{disp}(A_o, "A_o (V/V)")
14 A_v = -A_o/2;
15 \operatorname{disp}(A_v, "A_v (V/V)")
16 T_H = C_g * R_sig + C_g d * [(1 + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] + (C_L + g_m * R_L) * R_sig + R_L] * R_L] * R_sig + R_L] * R_L] * 
                    C_db)*R_L;
17 disp(T_H,"T_H (s)")
18 f_H=1/(2*\%pi*T_H);
19 disp(f_H, "f_H (Hz)")
20 f_t = -A_v * f_H;
21 disp(f_t," f_t (Hz)")
22 // Cascode amplifier
23 \text{ g_m1}=1.25*10^-3;
24 \text{ r}_{0}1=20000;
25 \quad X = 0.2;
26 \text{ r}_{0}2=20000;
27 R_L = 20000;
28 \quad A_o1 = g_m1 * r_o1;
29 disp(A_o1, "A_o1 (V/V)")
30 gm2plusgmb2=g_m1+X*g_m;
31 \quad A_{vo2}=1+(gm2plusgmb2)*r_o2;
32 disp(A_vo2, "A_vo2 (V/V)")
33 R_out1=r_o1;
34 R_{in2}=1/(gm2plusgmb2)+R_L/A_vo2;
35 disp(R_in2, "R_in2 (ohm)")
36 R_d1=R_out1*R_in2/(R_out1+R_in2);
37 disp(R_d1, "R_d1 (ohm)")
38 R_out=r_o2+A_vo2*r_o1;
39 \operatorname{disp}(R_{\operatorname{out}}, "R_{\operatorname{out}} (\operatorname{ohm})")
40 vo1byvi=-g_m1*R_d1;
41 disp(vo1byvi,"(v_o1/v_i)(V/V)")
42 A_v = -A_o1 * A_vo2 * R_L/(R_L + R_out);
43 disp(A_v, "A_v (V/V)")
44 C_gs1=20*10^-15;
45 R_sig=10*10^3;
```

```
46 \text{ gm} 1 \text{Rd} 1 = 1.5;
47 C_gd1=5*10^-15;
48 \quad C_gs2=20*10^-15;
49 \quad C_db2=5*10^-15;
50 C_gd2=5*10^-15;
51 C_db1=5*10^-15;
52 T_H=R_sig*[C_gs1+C_gd1*(1+gm1Rd1)]+R_d1*(C_gd1+C_db1)
      +C_{gs2})+((R_L*R_{out})/(R_L+R_{out}))*(C_L+C_{db2}+
      C_gd2);
f_H=1/(2*\%pi*T_H);
54 disp(T_H,"T_H (s)")
55 disp(f_H,"f_H (Hz)")
56 f_t = -A_v * f_H;
57 disp(f_t, "f_t (Hz)")
58 // 6.12b
59 // CS amplifier
60 \quad A_v = -12.5;
61 R_L = 10 * 10^3;
62 disp(A_v, "A_v (V/V)")
63 T_H = (C_gd + C_L + C_db) * R_L;
64 disp(T_H,"T_H (s)")
65 f_H=1/(2*\%pi*T_H);
66 disp(f_H, "F_H (Hz)")
67 f_t = -A_v * f_H;
68 disp(f_t, "f_t (Hz)")
69 // Cascode amplifier
70 R_L = 640 * 10^3;
71 R_{out}=640*10^3;
72 R_out1 = 20*10^3;
73 A_v = -A_o1 * A_vo2 * R_L/(R_L + R_out);
74 disp(A_v, "A_v (V/V)")
75 R_{in2}=1/gm2plusgmb2+R_L/A_vo2;
76 \operatorname{disp}(R_{in2}, R_{in2} (\operatorname{ohm}))
77 R_d1=R_in2*R_out1/(R_in2+R_out1);
78 disp(R_d1, "R_d1 (ohm)")
79 T_H=R_d1*(C_gd1+C_db1+C_gs2)+(R_L*R_out/(R_L+R_out))
      *(C_L+C_gd2+C_db2);
80 disp(T_H,"T_H (s)")
```

```
81 f_H=1/(2*%pi*T_H);

82 disp(f_H, "f_H (Hz)")

83 f_t=-A_v*f_H;

84 disp(f_t, "f_t (Hz)")
```

Scilab code Exa 6.13 Analysis of CC CE amplifier

```
1 // Example 6.13: Analysis of CC-CE amplifier
2 // Consider a CC-CE amplifier
3 // at an emitter bias current of 1mA for Q<sub>-1</sub> and Q<sub>-2</sub>
4 g_m = 40*10^-3; // (A/V)
5 \text{ r_e=25; } // \text{ (ohm)}
6 B=100; // beta value
7 C_u=2*10^-12; // (F)
8 f_T=400*10^6 // (Hz)
9 \text{ r_pi= B/g_m};
10 disp(r_pi, "r_pi (ohm)")
11 C_{pi=g_m}/(2*\%pi*f_T)-C_u;
12 disp(C_pi, "C_pi (F)")
13 R_in2=2500; // (ohm)
14 r_pi2=2500; // (ohm)
15 r_pi1=2500; // (ohm)
16 r_e1=0.025; // (ohm)
17 B_1=100; // beta value
18 R_{in} = (B_1 + 1) * (r_e1 + R_{in}2);
19 disp(R_in, "R_in (ohm)")
20 R_sig=4*10^3; // (ohm)
21 R_L = 4000; // (ohm)
22 Vb1byVsig=R_in/(R_in+R_sig); // (V_b1/V_sig)
23 disp(Vb1byVsig,"(V_b1/V_sig) (V/V)")
24 Vb2plusVb1=R_{in2}/(R_{in2}+r_{e1}); // (V_{b2}/V_{b1})
25 disp(Vb2plusVb1,"(V_b2/V_b1) (V/V)")
26 VobyVb2=-g_m*R_L; // (V_o/V_b2)
27 disp(VobyVb2,"(V_o/V_b2)(V/V)")
28 A_M=VobyVb2*Vb2plusVb1*Vb2plusVb1;
```

```
29 \operatorname{disp}(A_M, "A_M (V/V)")
30 R_u1=R_sig*R_in/(R_sig+R_in);
31 disp(R_u1, "R_u1 (ohm)")
32 R_{pi1}=(R_{sig}+R_{in2})/(1+(R_{sig}/r_{pi1})+(R_{in2}/r_{e1}));
      // C_pi1 sees a resistance R_pi1
33 disp(R_pi1, "R_pi1 (ohm)")
34 R_out1 = 25 + 4000/101;
35 R_pi2=R_in2*R_out1/(R_in2+R_out1); // C_pi2 sees a
      resistance R_pi2
36 disp(R_pi2, "R_pi2 (ohm)")
37 R_u2 = (1+g_m*R_L)*R_pi2+R_L;
38 disp(R_u2, "R_u2 (ohm)")
39 C_u1=2*10^-12; // (F)
40 R_u1=3940; // (ohm)
41 C_{pi1}=13.9*10^{-12}; // (F)
42 C_u2=2*10^-12; // (F)
43 C_pi2=13.9*10^-12; // (F)
44 T_H=C_u1*R_u1+C_pi1*R_pi1+C_u2*R_u2+C_pi2*R_pi2;
45 disp(T_H,"T_H (s)")
46 f_H=1/(2*\%pi*T_H);
47 disp(f_H, "f_H (Hz)")
48 A_M=r_pi*(-g_m*R_L)/(r_pi+R_sig);
49 \operatorname{disp}(A_M, A_M(V/V))
50 R_{pi=r_pi*R_sig}/(r_{pi+R_sig});
51 disp(R_pi, "R_pi (ohm)")
52 R_u = (1+g_m*R_L)*R_pi + R_L;
53 disp(R_u, "R_u (ohm)")
54 \quad T_H=C_pi*R_pi+C_u*R_u;
55 disp(T_H,"T_H (s)")
56 f_H=1/(2*\%pi*T_H);
57 disp(f_H,"f_H (Hz)")
```

Scilab code Exa 6.14 To determine required resistor values

```
1 // Example 6.14 : To determine required resistor
     values
2 // The circuits generate a constant current I_D=10
     uA which operate at a supply of 10V
3 V_BE=0.7; // (V)
4 V_t=0.025; // (V)
5 I_REF = 10*10^-6; // (A)
6 \text{ V_DD=10}; // (V)
7 I=1*10^-3; // (A)
8 V_BE1=V_BE+V_t*log(I_REF/I); // Voltage drop across
     Q_{-1}
9 disp(V_BE1, "V_BE1 (V)")
10 R_1=(V_DD-V_BE1)/(I_REF); // For the Widlar circuit
     we decide I_REF=1mA and V_BE1=0.7V
11 disp(R_1, "R_1 (ohm)")
12 R_2 = (V_DD - V_BE)/I;
13 disp(R_2, "R_2 (ohm)")
14 R_3 = (V_t/I_REF) * log(I/I_REF);
15 disp(R_3, "R_3 (ohm)")
```

Chapter 7

Differential and multistage amplifier

Scilab code Exa 7.1 Analysis of differential amplifier

```
1 // Example 7.1 Analysis of differential amplifier
2 // Consider the differential amplifier
3 B=100; // beta value
5 // 7.1a
6 V_T = 0.025; // (V)
7 I_E=0.0005; // (A)
8 R_E=150; // (ohm)
9 r_e1=V_T/I_E; // emitter resistance (ohm)
10 r_e2=r_e1; // emitter resistance (ohm)
11 r_e=r_e1;
12 R_id=2*(B+1)*(r_e+R_E);
13 disp(R_id,"The input differential resistance R_id (
     ohm)")
14
15 // 7.1 b
16 R_id=40000; // (ohm)
17 R_sig=5000; // (ohm)
18 R_C=10000; // (ohm)
```

```
19 R_E=150; // (ohm)
20 A_v=R_id/(R_id+R_sig); //A_v=v_o/v_sig (V/V)
21 A_V=2*R_C/(2*(r_e+R_E)); // A_V= v_o/v_id (V/v)
22 A_d = A_v * A_V; // A_d = v_o / v_sig (V/V)
23 disp(A_d, "Overall differential voltage gain (V/V)")
24
25 // 7.1 c
26 R_EE = 200000; // (ohm)
27 deltaR_C=0.02*R_C; // in the worst case
28 \quad A_cm=R_C*deltaR_C/(2*R_EE*R_C)
29 disp(A_cm, "Worst case common mode gain (V/V)")
30
31 // 7.1 d
32 \text{ CMRR} = 20 * \frac{10}{10} (A_d/A_cm)
33 disp(CMRR, "CMRR in dB")
34
35 // 7.1 e
36 \text{ r_o} = 200000; //(\text{ohm})
37 R_{icm} = (B+1)*(R_{EE}*r_o/2)/(R_{EE}+r_o/2);
38 disp(R_icm, "Input common mode resistance (ohm)")
```

Scilab code Exa 7.2 Analysis of Active loaded MOS differential amplifi

```
12 R_SS=25000; // (ohm)
13 C_SS=0.2*10^-12; // (F)
14 C_S = 25 * 10^- - 15; // (F)
15 K_n=uC_n*W/L;
16 I_D=100*10^-6; // bias current (A)
17 V_0V = sqrt(2*I_D/K_n);
18 g_m=I/V_OV;
19 g_m1 = g_m;
20 g_m2=g_m;
21 r_o1=V_an*0.36/(0.1*10^-3);
22 r_02=r_01;
23 K_p=uC_p*W/L;
V_0V34 = sqrt(2*I_D/K_p); // V_0V3,4
25 \text{ g_m3} = 2*0.1*10^-3/V_0V34;
26 \text{ g_m4} = \text{g_m3};
27 r_03=V_ap*0.36/(0.1*10^-3);
28 r_o4 = r_o3;
29 A_d = g_m * (r_o 2 * r_o 4) / (r_o 2 + r_o 4);
30 \operatorname{disp}(A_d, "A_d (V/V)")
31 A_cm = -1/(2*g_m3*R_SS);
32 \operatorname{disp}(A_{cm}, "A_{cm} (V/V)")
33 CMRR=20*log10(-A_d/A_cm); // negative sign to make
      A_cm positive
34 disp(CMRR, "CMRR in dB")
35 C_gd1=5*10^-15; // (F)
36 \quad C_db1=5*10^-15; // (F)
37 \text{ C_db3} = 5*10^-15; // (F)
38 C_gs3=20*10^-15; // (F)
39 C_gs4=20*10^-15; // (F)
40 \quad C_m = C_g d1 + C_d b1 + C_d b3 + C_g s3 + C_g s4;
41 C_gd2=5*10^-15; // (F)
42 C_db2=5*10^-15; // (F)
43 C_gd4=5*10^-15; // (F)
44 C_db4=5*10^-15; // (F)
45 C_x = 25 * 10^- - 15; // (F)
46 \quad C_L = C_g d2 + C_d b2 + C_g d4 + C_d b4 + C_x;
47 disp("poles and zeroes of A_d")
48 R_o = r_o 2 * r_o 4 / (r_o 2 + r_o 4)
```

```
49  f_p1=1/(2*%pi*C_L*R_o);
50  disp(f_p1, "f_p1 (Hz)")
51  f_p2=g_m3/(2*%pi*C_m);
52  disp(f_p2, "f_p2 (Hz)")
53  f_Z=2*f_p2;
54  disp(f_Z, "f_Z (Hz)")
55  disp("Dominant pole of CMRR is at location of commom -mode gain zero")
56  f_Z=1/(2*%pi*C_SS*R_SS);
57  disp(f_Z, "f_Z (Hz)")
```

Scilab code Exa 7.3 To determine all parameters for different transist

```
1 // Example 7.3 : To determine all parameters for
      different transistor
2 I_REF = 90*10^-6; // (A)
3 V_{tn} = 0.7; // (V)
4 V_tp=0.8; // Magnitude is cconsidered
5 uC_n=160*10^-6; // uC_n=u_n*C_ox
6 uC_p = 40*10^-6; // uC_p = u_p * C_ox
7 \ V_A = 10; // (V)
8 V_DD=2.5; // (V)
9 V_SS=2.5; // (V)
10 L=0.8*10^-6; // (m)
11 r_o2=222; // (ohm)
12 r_o4 = 222; // (ohm)
13 g_m1 = 0.3; // (mho)
14 A_1 = -g_m1 * r_o2 * r_o4/(r_o2 + r_o4);
15 disp(A_1, "A_1 (V/V)")
16 r_o6=111; // (ohm)
17 r_07 = 111; // (ohm)
18 g_m6=0.6; // (mho)
19 A_2 = -g_m6 * r_o6 * r_o7/(r_o6 + r_o7);
20 disp(A_2, "A_2 (V/V)")
21 disp("For Q_1")
```

```
22 W = 20 * 10^{-6}; // (m)
23 I_D = I_REF/2; // (A)
24 disp(I_D,"I_D (A)")
25 K_p=uC_p*W/L;
V_0V = sqrt(2*I_D/K_p);
27 disp(V_OV,"V_OV(V)")
V_GS = V_tp + V_0V;
29 \operatorname{disp}(V_{GS}, "V_{GS}(V)")
30 g_m = 2 * I_D / V_O V;
31 disp(g_m, "g_m (A/V)")
32 r_o=V_A/I_D;
33 disp(r_o, "r_o (ohm)")
34 disp("For Q_2")
35 \text{ W} = 20 * 10^{-6}; // (m)
36 I_D = I_REF/2; // (A)
37 \text{ disp}(I_D,"I_D (A)")
38 \text{ K_p=uC_p*W/L};
39 V_{OV} = sqrt(2*I_D/K_p);
40 \operatorname{disp}(V_{OV}, "V_{OV}(V)")
41 V_GS=V_tp+V_OV;
42 disp(V_GS,"V_GS(V)")
43 g_m = 2 * I_D / V_O V;
44 disp(g_m, "g_m (A/V)")
45 \quad r_o = V_A/I_D;
46 disp(r_o, "r_o (ohm)")
47 disp("For Q_3")
48 W=5*10^-6; // (m)
49 I_D = I_REF/2; // (A)
50 \quad disp(I_D,"I_D \quad (A)")
51 \quad K_n = uC_n * W/L;
52 \ V_0V = sqrt(2*I_D/K_n);
disp(V_OV,"V_OV(V)")
V_GS=V_tn+V_OV;
55 \operatorname{disp}(V_{GS}, "V_{GS}(V)")
56 \text{ g_m} = 2 * I_D/V_OV;
57 disp(g_m, "g_m (A/V)")
58 r_o=V_A/I_D;
59 disp(r_o, "r_o (ohm)")
```

```
60 disp("For Q_4")
61 \text{ W=}5*10^-6; // (m)
62 \quad I_D = I_REF/2; // (A)
63 \operatorname{disp}(I_D, "I_D (A)")
64 \quad K_n=uC_n*W/L;
65 V_{OV} = sqrt(2*I_D/K_n);
66 \operatorname{disp}(V_{OV}, "V_{OV}(V)")
67 \quad V_GS = V_{tn} + V_OV;
68 \operatorname{disp}(V_{GS}, "V_{GS}(V)")
69 g_m = 2 * I_D / V_O V;
70 \operatorname{disp}(g_m, g_m (A/V))
71 r_o=V_A/I_D;
72 disp(r_o, "r_o (ohm)")
73 disp("For Q_5")
74 W=40*10^-6; // (m)
75 I_D = I_REF; // (A)
76 disp(I_D, "I_D (A)")
77 K_p=uC_p*W/L;
78 V_0V = sqrt(2*I_D/K_p);
79 disp(V_OV,"V_OV(V)")
80 V_GS = V_tp + V_0V;
81 disp(V_GS,"V_GS(V)")
82 g_m = 2 * I_D/V_OV;
83 disp(g_m, "g_m (A/V)")
84 r_o=V_A/I_D;
85 disp(r_o, "r_o (ohm)")
86 disp("For Q_6")
87 W=10*10^-6; // (m)
88 I_D=I_REF;
89 disp(I_D,"I_D (A)")
90 K_n=uC_n*W/L;
91 V_0V = sqrt(2*I_D/K_n);
92 disp(V_OV,"V_OV(V)")
93 V_GS = V_tn + V_OV;
94 \operatorname{disp}(V_{GS}, "V_{GS}(V)")
95 \text{ g_m} = 2 * I_D / V_O V;
96 disp(g_m, "g_m (A/V)")
97 r_o=V_A/I_D;
```

```
98 disp(r_o, "r_o (ohm)")
99 disp("For Q_7")
100 W = 40 * 10^{-6}; // (m)
101 \quad I_D = I_REF;
102 disp(I_D,"I_D (A)")
103 K_p=uC_p*W/L;
104 \ V_0V = sqrt(2*I_D/K_p);
105 \operatorname{disp}(V_{OV}, "V_{OV}(V)")
106 \quad V_GS = V_tp + V_OV;
107 \operatorname{disp}(V_{GS}, "V_{GS}(V)")
108 g_m = 2 * I_D / V_O V;
109 disp(g_m, "g_m (A/V)")
110 r_o=V_A/I_D;
111 disp(r_o, "r_o (ohm)")
112 disp("For Q<sub>-8</sub>")
113 W=40*10^-6; // (m)
114 I_D = I_REF;
115 disp(I_D,"I_D (A)")
116 K_p=uC_p*W/L;
117 V_0V = sqrt(2*I_D/K_p);
118 disp(V_OV, "V_OV(V)")
119 V_GS=V_tp+V_OV;
120 \operatorname{disp}(V_{GS}, "V_{GS}(V)")
121 g_m = 2 * I_D/V_OV;
122 disp(g_m, "g_m (A/V)")
123 r_o=V_A/I_D;
124 disp(r_o, "r_o (ohm)")
125 \quad A_0 = A_1 * A_2;
126 disp(20*log10(A_0), "The dc open loop gain in dB")
127 \text{ v_ICMmin} = -2.5 + 1;
128 disp(v_ICMmin, "Lower limit of input common-mode (V)"
129 v_ICMmax = 2.2 - 1.1;
130 disp(v_ICMmax,"Upper limit of input common-mode (V)"
131 v_Omax = V_DD - V_OV;
132 disp(v_Omax, "Highest allowable output voltage (V)")
133 \text{ v_Omin} = -\text{V_SS} + \text{V_OV};
```

Scilab code Exa 7.5 Analysis of given circuit

```
1 // Example 7.5 : Analysis of given circuit
2 B=100; // beta value
3 I_E=0.2510^-3; // (A)
4 R_1=20000; // (ohm)
5 R_2=20000; // (ohm)
6 R_3=3000; // (ohm)
7 R_4=2300; // (ohm)
8 R_5 = 15700; // (ohm)
9 R_6 = 3000; // (ohm)
10 r_e1=25/0.25; // (ohm)
11 r_e2=r_e1; // (ohm)
12 r_pi1 = (B+1) * r_e1;
13 r_pi2=(B+1)*r_e2;
14 R_id=r_pi1+r_pi2;
15 disp(R_id, "Input differential resistance (ohm)")
16 I_E=1*10^-3;
17 r_e4 = 25/1;
18 r_e5=r_e4;
19 r_pi4 = (B+1) * r_e4;
20 r_{pi5} = (B+1) * r_{e5};
21 R_{i2}=r_{pi4}+r_{pi5};
22 disp(R_i2, "Input resistance of the second stage R_i2
       (ohm)")
23 A_1 = (R_i2*(R_1+R_2)/((R_i2+R_1+R_2)*(r_e1+r_e2)))
24 disp(A_1, "Voltage gain of the first stage (V/V)")
25 \text{ r_e7} = 25/1;
26 R_{i3}=(B+1)*(R_4+r_e7);
27 disp(R_i3,"Input resistance of the third stage R_i3
      (ohm)")
28 A_2 = (-R_3 * R_{i3}) / ((R_3 + R_{i3}) * (r_e4 + r_e5));
29 disp(A_2, "Voltage gain of the second stage (V/V)")
```

Chapter 8

Feedback

Scilab code Exa 8.1 Analysis of op amp connected in an inverting conf

```
1 // Example 8.1: Analysis of op amp connected in an
     inverting configuration
2 // By inspection we can write down the expressions
     for A, B, closed loop gain, the input
     resistance and the output resistance
3 u=10^4; // (ohm)
4 R_id=100*10^3; // (ohm)
5 \text{ r_o=1000; } // \text{ (ohm)}
6 R_L = 2000; // (ohm)
7 R_1 = 1000; // (ohm)
8 R_2=10^6; // (ohm)
9 R_S = 10000; // (ohm)
R_2))/(R_L+R_1+R_2)+r_0)*(R_id+R_S+(R_1*R_2)/(R_1*R_2))
     +R_2)))
11 \operatorname{disp}(A, "Voltage gain without feedback (V/V)")
12 B=R_1/(R_1+R_2); // Beta value
13 disp(B, "Beta value")
14 A_f = A/(1+A*B);
15 disp(A_f, "Voltage gain with feedback (V/V)")
16 R_i=R_S+R_id+(R_1*R_2/(R_1+R_2))//Input resistance
```

```
of the A circuit in fig 8.12a of textbook
17    R_if=R_i*7;
18    R_in=R_if-R_S;
19    disp(R_in, "Input resistance (ohm)")
20    R_o=1/(1/r_o+1/R_L+1/(R_1+R_2));
21    R_of=R_o/(1+A*B);
22    R_out=R_of*R_L/(R_L-R_of);
23    disp(R_out, "the output resistance (ohm)")
```

Scilab code Exa 8.2 Feedback triple

```
1 // Example 8.2: Feedback triple
  2 // Consider the given three stage series-series
                      feedback
  3 h_fe=100;
  4 g_m2=40*10^-3; // (A/V)
  5 \text{ r_e1=41.7; } // \text{ (ohm)}
  6 a_1=0.99; // alpha value
  7 R_C1 = 9000; // (ohm)
  8 R_E1 = 100; //(ohm)
  9 R_F=640; // (ohm)
10 R_E2=100; //(ohm)
11 r_pi2=h_fe/g_m2;
12 R_C2=5000; // (ohm)
13 r_e3=6.25; // (ohm)
14 R_C3=800; //(ohm)
15 // First stage gain A_1=V_c1/V_i
16 A_1 = -a_1 * R_C1 * r_pi2 / ((R_C1 + r_pi2) * (r_e1 + ((R_E1 * (R_F + r_pi2) * (r_e1 + r_pi2) * (r_e1 + r_e1 
                      R_E2))/(R_E1+R_F+R_E2)))
17 disp(A_1, "The voltage gain of the first stage (V/V)"
18 // Gain of the second stage A_2=Vc2/V_c1
19 A_2=-g_m2*{(R_C2*(h_fe+1)/(R_C2+h_fe+1))*[r_e3+(R_E2)]}
                      *(R_F+R_E1))/(R_E2+R_F+R_E1)]}
20 disp(A<sub>2</sub>, "The second stage gain (V/V)")
```

```
21 // Third stage gain A<sub>-</sub>3 I<sub>-</sub>O/V<sub>-</sub>i
22 A_3=1/(r_e3+(R_E2*(R_F+R_E1)/(R_E2+R_F+R_E1)));
23 disp(A_3, "The third stage gain (V/V)")
24 A = A_1 * A_2 * A_3; // combined gain
25 disp(A, "Combined gain (V/V)")
26 B=R_E1*R_E2/(R_E2+R_F+R_E1);
27 disp(B, "Beta value")
28 A_f = A/(1+A*B);
29 disp(A_f, "Closed loop gain (A/V)")
30 A_v = -A_f * R_C3; // Voltage gain
31 \operatorname{disp}(A_v, "Voltage gain (V/V)")
32 R_i = (h_fe+1)*(r_e1+(R_E1*(R_F+R_E2))/(R_E1+R_F+R_E2)
      );
33 R_if = R_i * (1 + A * B);
34 disp(R_if, "Input resistance (ohm)")
35 R_o = (R_E2*(R_F+R_E1)/(R_F+R_E1+R_E2))+r_e3+R_C2/(R_F+R_E1+R_E2)
      h_fe+1);
36 R_of = R_o*(1+A*B);
37 disp(R_of, "Output voltage (ohm)")
38 r_o = 25000; // (ohm)
39 g_m3=160*10^-3; // (mho)
40 r_pi3=625; // (ohm)
41 R_{out}=r_o+(1+g_m3*r_o)*R_of*r_pi3/(R_of+r_pi3);
42 disp(R_out, "R_out (ohm)")
```

Scilab code Exa 8.3 Small signal analysis

```
1  // Example 8.3 : Small signal analysis
2  B=100; // beta value
3  I_B=0.015*10^-3; // (A)
4  I_C=1.5*10^-3; // (A)
5  V_C=4.7; // (V)
6  g_m=40*10^-3;
7  R_f=47000;
8  R_S=10000;
```

```
9 R_C=4700;
10 r_pi=B/g_m;
11 A=-358.7*10^3; // V_o/I_i= -g_m(R_f||R_C)(R_S||R_F|| r_pi)
12 R_i=1400; // R_i=R_S||R_f||r_pi (ohm)
13 R_o=R_C*R_f/(R_C+R_f);
14 B=-1/R_f;
15 A_f=A/(1+A*B); // V_o/I_s
16 A_v=A_f/R_S; // V_o/V_s
17 disp(A_v, "The gain (V/V)")
18 R_if=R_i/(1+A*B);
19 disp(R_if, "R_if (ohm)")
20 R_of=R_o/(1+A*B);
21 disp(R_of, "R_of (ohm)")
```

Scilab code Exa 8.4 Small signal analysis

```
1 // Example 8.4: Small signal analysis
2 R_S=10*10^3; // (ohm)
3 R_B1 = 100 * 10^3; // (ohm)
4 R_B2=15*10^3; // (ohm)
5 R_C1 = 10 * 10^3; // (ohm)
6 R_E1 = 870; // (ohm)
7 R_E2 = 3400; // (ohm)
8 R_C2=8000; // (ohm)
9 R_L=1000; // (ohm)
10 R_f = 10000; // (ohm)
11 B=100; // beta value
12 V_A = 75; // (V)
13 A = -201.45 // I_o / I_i (A/A)
14 R_i=1535; // (ohm)
15 R_o=2690; // (ohm)
16 B=-R_E2/(R_E2+R_f);
17 R_{if} = R_{i}/(1+A*B);
18 disp(R_if)
```

```
19 R_in=1/((1/R_if)-(1/R_S));
20 disp(R_in, "R_in (ohm)")
21 A_f=A/(1+A*B); // I_o/I_S
22 gain=R_C2*A_f/(R_C2+R_L); // I_o/I_S
23 disp(gain, "I_o/I_S (A/A)")
24 R_of=R_o*(1+A*B); // (ohm)
25 r_o2=75/0.0004; // (ohm)
26 g_m2=0.016; // (A/V)
27 r_pi2=6250; // (ohm)
28 R_out=r_o2*[1+g_m2*(r_pi2*R_of/(r_pi2+R_of))]
29 disp(R_out, "R_out (ohm)")
```

Operational amplifier and data converter circuits

Scilab code Exa 9.1 Design of two stage CMOS op amp

```
1 // Example 9.1 Design of two-stage CMOS op-amp
2 \text{ A_v} = 4000; // (V/V)
3 \text{ V_A=20; } // \text{ (V)}
4 k_p=80*10^-6; // k'_n=k_n (A/V<sup>2</sup>)
5 k_n=200*10^-6; // k'_p=k_P (A/V^2)
6 V_SS=1.65; // (V)
7 V_DD = 1.65; // (V)
8 V_{tn} = 0.5; // (V)
9 V_{tp}=0.5; // (V)
10 C_1 = 0.2 * 10^- - 12; // (F)
11 C_2=0.8*10^-12; // (F)
12 I_D=100*10^-6; // (A)
13 V_OV = sqrt(V_A^2/A_v);
14 WbyL_1=I_D*2/(V_0V^2*k_p); // WbyL_1=(W/L)_1
15 disp(WbyL_1, "Required (W/L) ratio for Q_1")
16 WbyL_2=WbyL_1; // \text{WbyL}_2=(W/L)_2
17 disp(WbyL_2, "Required (W/L) ratio for Q_2")
18 WbyL_3=I_D*2/(V_OV^2*k_n); // WbyL_3=(W/L)_3
19 disp(WbyL_3, "Required (W/L) ratio for Q_3")
```

```
20 WbyL_4=WbyL_3; // WbyL_4=(W/L)_4
21 disp(WbyL_4, "Required (W/L) ratio for Q_4")
22 I_D=200*10^-6;
23 WbyL_5=I_D*2/(V_OV^2*k_p); // WbyL_5=(W/L)_5
24 disp(WbyL_5, "Required (W/L) ratio for Q_5")
25 I_D=500*10^-6;
26 WbyL_7=2.5*WbyL_5; // WbyL_7=(W/L)_7
27 disp(WbyL_7, "Required (W/L) ratio for Q_7")
28 WbyL_6=I_D*2/(V_OV^2*k_n); // WbyL_6=(W/L)_6
29 disp(WbyL_6, "Required (W/L) ratio for Q_6")
30 WbyL_8=0.1*WbyL_5; // WbyL_8=(W/L)_8
31 disp(WbyL_8, "Required (W/L) ratio for Q_8")
32 V_ICMmin = -V_SS + V_OV + V_tn - V_tp;
33 disp(V_ICMmin,"The lowest value of input common mode
       voltage")
V_ICMmax = V_DD - V_OV - V_OV - V_tp;
35 disp(V_ICMmax,"The highest value of input common
      mode voltage")
36 \quad v_{omin} = -V_SS + V_OV;
37 disp(v_omin," The lowest value of output swing
      allowable")
38 \quad v_{omax} = V_{DD} - V_{OV};
39 disp(v_omax," The highest value of output swing
      allowable")
40 R_o = 20/(2*0.5);
41 disp(R_o, "Input resistance is practically infinite
      and output reistance is (ohm)")
42 G_m2 = 2 * I_D/V_OV;
43 disp(G_m2, "G_m2 (A/V)")
44 f_P2=3.2*10^-3/(2*\%pi*C_2);
45 disp(f_P2, "f_P2 (Hz)")
46 R=1/G_m2;
47 disp(R, "To move the transmission zero to s=infinite
      , r value selected as (ohm)")
48 f_t=f_P2*tand(15); // Phase margin of 75 degrees,
      thus phase shift due to second pole must be 15
      degrees
49 disp(f_t, "f_t (Hz)")
```

```
50 G_m1=2*100*10^-6/V_0V; // I_D = 100uA

51 C_C1=G_m1/(2*%pi*f_t);

52 disp(C_C1,"C_C1 (F)")

53 SR=2*%pi*f_t*V_0V;

54 disp(SR,"SR (V/s)")
```

Scilab code Exa 9.2 To determine Av ft fP SR and PD of folded casc

```
1 // Example 9.2 : To determine A<sub>v</sub>, f<sub>t</sub>, f<sub>P</sub>, SR and P<sub>D</sub>
        of folded cascode amplifier
2 // Consider a design of the folded-cascode op amp
3 I = 200 * 10^{-6}; // (A)
4 I_B=250*10^-6; // (A)
5 V_0V = 0.25; // (V)
6 k_n=100*10^-6; // k_n=k'_n (A/V^2)
7 k_p=40*10^-6; // k_p=k'_p (A/V^2)
8 V_A = 20; // V_A = V'_A (V/um)
9 V_DD = 2.5; // (V)
10 V_SS=2.5; // (V)
11 V_t=0.75; // (V)
12 L=1*10^-6; // (m)
13 C_L=5*10^-12; // (F)
14 disp("Data calculated for Q1")
15 I_D=I/2;
16 disp(I_D,"I_D (A)")
17 g_m = 2 * I_D / V_O V;
18 \operatorname{disp}(g_m, g_m (A/V))
19 r_o=V_A/I_D;
20 disp(r_o, "r_o (ohm)")
21 WbyL=2*I_D/(k_n*V_0V^2); // WbyL \RightarrowW/L
22 disp(WbyL,"W/L")
23 disp("Data calculated for Q2")
24 I_D=I/2;
25 disp(I_D,"I_D (A)")
26 \text{ g_m} = 2 * I_D / V_O V;
```

```
27 disp(g_m, "g_m (A/V)")
28 r_o=V_A/I_D;
29 disp(r_o, "r_o (ohm)")
30 WbyL=2*I_D/(k_n*V_0V^2); // WbyL =W/L
31 disp(WbyL, "W/L")
32 disp("Data calculated for Q3")
33 I_D=I_B-I/2;
34 disp(I_D,"I_D (A)")
35 \text{ g_m} = 2 * I_D / V_O V;
36 disp(g_m, "g_m (A/V)")
37 r_o=V_A/I_D;
38 disp(r_o, "r_o (ohm)")
39 WbyL=2*I_D/(k_p*V_0V^2); // WbyL \RightarrowW/L
40 disp(WbyL,"W/L")
41 disp("Data calculated for Q4")
42 \quad I_D = I_B - I/2;
43 disp(I_D,"I_D (A)")
44 \text{ g_m} = 2 * I_D / V_O V;
45 disp(g_m, "g_m (A/V)")
46 \text{ r_o=V_A/I_D};
47 disp(r_o, "r_o (ohm)")
48 WbyL=2*I_D/(k_p*V_0V^2); // WbyL \LongrightarrowVL
49 \operatorname{disp}(\operatorname{WbyL}, \operatorname{"W/L"})
50 disp("Data calculated for Q5")
51 I_D = I_B - I/2;
52 disp(I_D,"I_D (A)")
53 \text{ g_m} = 2 * I_D/V_OV;
54 disp(g_m, "g_m (A/V)")
55 r_o=V_A/I_D;
56 disp(r_o, "r_o (ohm)")
57 WbyL=2*I_D/(k_n*V_0V^2); // WbyL \RightarrowW/L
68 \text{ disp}(WbyL,"W/L")
59 disp("Data calculated for Q6")
60 I_D = I_B - I/2;
61 disp(I_D,"I_D (A)")
62 \text{ g_m} = 2 * I_D / V_O V;
63 disp(g_m, "g_m (A/V)")
64 r_o=V_A/I_D;
```

```
65 disp(r_o, "r_o (ohm)")
66 WbyL=2*I_D/(k_n*V_OV^2); // WbyL =W/L
67 disp(WbyL,"W/L")
68 disp("Data calculated for Q7")
69 I_D=I_B-I/2;
70 \operatorname{disp}(I_D, "I_D (A)")
71 g_m = 2 * I_D / V_O V;
72 disp(g_m,"g_m (A/V)")
73 r_o=V_A/I_D;
74 disp(r_o, "r_o (ohm)")
75 WbyL=2*I_D/(k_n*V_0V^2); // WbyL \Longrightarrow/L
76 disp(WbyL,"W/L")
77 disp("Data calculated for Q8")
78 I_D = I_B - I/2;
79 disp(I_D,"I_D (A)")
80 g_m = 2 * I_D / V_O V;
81 disp(g_m, "g_m (A/V)")
82 r_o=V_A/I_D;
83 disp(r_o, "r_o (ohm)")
84 WbyL=2*I_D/(k_n*V_0V^2); // WbyL =W/L
85 disp(WbyL,"W/L")
86 disp("Data calculated for Q9")
87 I_D = I_B;
88 disp(I_D,"I_D (A)")
89 g_m = 2 * I_D / V_O V;
90 disp(g_m, "g_m (A/V)")
91 r_o=V_A/I_D;
92 disp(r_o, "r_o (ohm)")
93 WbyL=2*I_D/(k_p*V_0V^2); // WbyL \RightarrowW/L
94 disp(WbyL,"W/L")
95 disp("Data calculated for Q10")
96 \quad I_D = I_B;
97 disp(I_D,"I_D (A)")
98 \text{ g_m} = 2 * I_D / V_O V;
99 \operatorname{disp}(g_m, g_m (A/V))
100 r_o=V_A/I_D;
101 disp(r_o, "r_o (ohm)")
102 WbyL=2*I_D/(k_p*V_0V^2); // WbyL \RightarrowW/L
```

```
103 \text{ disp}(WbyL,"W/L")
104 disp("Data calculated for Q11")
105 I_D = I;
106 disp(I_D,"I_D (A)")
107 g_m = 2 * I_D/V_OV;
108 disp(g_m, "g_m (A/V)")
109 r_o = V_A / I_D;
110 disp(r_o, "r_o (ohm)")
111 WbyL=2*I_D/(k_n*V_0V^2); // WbyL =W/L
112 \quad disp(WbyL,"W/L")
113 gmro=160; // gmro=g_m*r_o
114 disp(gmro, "g_m*r_o for all transistors is (V/V)")
115 V_{GS}=1;
116 disp(V_GS,"V_GS for all transistors is (V)")
117 V_ICMmin = -V_SS + V_OV + V_OV + V_t;
118 disp(V_ICMmin,"The lowest value of input common mode
        voltage (V)")
119 V_ICMmax = V_DD - V_OV + V_t;
120 disp(V_ICMmax,"The highest value of input common
       mode voltage (V)")
121 v_{omin} = -V_SS + V_OV + V_OV + V_t;
122 disp(v_omin, "The lowest value of output swing
       allowable (V)")
123 v_omax = V_DD - V_OV - V_OV;
124 disp(v_omax,"The highest value of output swing
       allowable (V)")
125 r_o2=200*10^3; // r_o calculated for Q2
126 r_o10=80*10^3; // r_o calculated for Q10
127 R_o4 = gmro*(r_o2*r_o10)/(r_o2+r_o10);
128 r_o8=1333333; // r_o calculated for Q8
129 R_06 = gmro * r_08;
130 R_o = R_o 4 * R_o 6 / (R_o 4 + R_o 6);
131 disp(R_o, "Output resistance (ohm)")
132 \quad G_M = 0.0008;
133 A_v = G_M * R_o;
134 disp(A_v, "Voltage gain (V/V)")
135 f_t=G_M/(2*\%pi*C_L);
136 disp(f_t,"Unity gain bandwidth (Hz)")
```

```
137 f_P=f_t/A_v;
138 disp(f_P,"Dominant pole frequency (Hz)")
139 SR=I/C_L;
140 disp(SR,"Slew Rate (V/s)")
141 I_t=0.5*10^-3; // total current
142 V_S=5; // Supply voltage
143 P_D=I_t*V_S;
144 disp(P_D,"Power dissipated (W)")
```

Scilab code Exa 9.3 To determine input offset voltage

```
1  // Example 9.3 : To determine input offset voltage
2  r_e=2.63*10^3; // (ohm)
3  R=1000; // (ohm)
4  I=9.5*10^-6; // (A)
5  deltaRbyR=0.02; // 2% mismatch between R_1 and R_2
6  G_m1=10^-3/5.26; // (A/V)
7  deltaI=deltaRbyR/(1+deltaRbyR + r_e/R); // Change of deltaI in I_E (A)
8  V_OS=deltaI/G_m1;
9  disp(V_OS,"Offset voltage (V)")
```

Digital CMOS logic circuits

Scilab code Exa 10.1 To determine tPHL tPLH and tP

```
1 // Example 10.1 : To determine t_PHL, t_PLH and t_P
2 // Consider CMOS inverter
3 C_ox = 6*10^-15; // (F/um^2)
4 uC_n = 115*10^-6; //uC_n = u_n * C_ox (A/V^2)
5 uC_p=30*10^-6; //uC_p=u_p*C_ox (A/V^2)
6 V_{tn} = 0.4; // (V)
7 V_{tp} = -0.4; // (V)
8 V_DD = 2.5; // (V)
9 W_n = 0.375*10^-6; // W for Q_N
10 L_n=0.25*10^-6; // L for Q_N
11 W_p=1.125*10^-6; // W for Q_P
12 L_p=0.25*10^-6; // L for Q_P
13 C_gd1=0.3*W_n*10^-9; // (F)
14 C_gd2=0.3*W_p*10^-9; // (F)
15 C_db1=10^-15; // (F)
16 \quad C_db2=10^-15; // (F)
17 \text{ C}_{g3} = 0.375*0.25*6*10^{-15+2*0.3*0.375*10^{-15}}; // (F)
18 \quad C_g4 = 1.125 * 0.25 * 6 * 10^- - 15 + 2 * 0.3 * 1.125 * 10^- - 15; // (F)
19 C_w = 0.2*10^-15; // (F)
20 C=2*C_gd1+2*C_gd2+C_db1+C_db2+C_g3+C_g4+C_w; // (F)
21 i_DN0=uC_n*W_n*(V_DD-V_tn)^2/(2*L_n); // i_DN0 =
```

Scilab code Exa 10.2 WbyL ratios for the logic circuit

```
// Example 10.2 : W/L ratios for the logic circuit
//For basic inverter
n=1.5;
p=5;
L=0.25*10^-6; // (m)
WbyL=2*n; // W/L for Q_NB , Q_NC , Q_ND
disp(WbyL,"W/L ratio for Q_NB")
disp(WbyL,"W/L ratio for Q_NC")
disp(WbyL,"W/L ratio for Q_ND")
WbyL=n; // W/L ratio for Q_NA
disp(WbyL,"W/L ratio for Q_NA
disp(WbyL,"W/L ratio for Q_NA")
WbyL=3*p; // W/L for Q_PA, Q_PC , Q_PD
disp(WbyL,"W/L ratio for Q_PA")
disp(WbyL,"W/L ratio for Q_PA")
disp(WbyL,"W/L ratio for Q_PD")
```

Scilab code Exa 10.3 To determine the parameters of pseudo NMOS inverte

```
1 // Example 10.3 : To determine the parameters of
      pseudo NMOS inverter
2 // Consider a pseudo NMOS inverter
3 uC_n=115*10^-6; //uC_n=u_n*C_ox (A/V^2)
4 uC_p=30*10^-6; //uC_p=u_p*C_ox (A/V^2)
5 V_{tn} = 0.4; // (V)
6 V_{tp} = -0.4; // (V)
7 V_DD = 2.5; // (V)
8 W_n=0.375*10^-6; // W for Q_N (m)
9 L_n=0.25*10^-6; // L for Q.N (m)
10 \text{ r=9};
11
12 // 10.3 a
13 V_OH = V_DD;
14 disp(V_OH, "V_OH (V)")
15 V_OL = (V_DD - V_{tn}) * (1 - sqrt (1 - 1/r));
16 disp(V_OL, "V_OL (V)")
17 V_{IL}=V_{tn}+(V_{DD}-V_{tn})/sqrt(r*(r+1));
18 disp(V_IL,"V_IL (V)")
19 V_{IH}=V_{tn}+2*(V_{DD}-V_{tn})/(sqrt(3*r));
20 disp(V_IH, "V_IH (V)")
V_M=V_tn+(V_DD-V_tn)/sqrt(r+1);
22 \operatorname{disp}(V_M, "V_M(V)")
23 \text{ NM}_H = V_OH - V_IH;
24 \text{ NM_L=V_IL-V_OL};
25 disp(NM_L,NM_H,"The highest and the lowest values of
       allowable noise margin (V)")
26
27 // 10.3b
WbyL_p=uC_n*(W_n/L_n)/(uC_p*r); // WbyL_p=(W/L)_p
29 disp(WbyL_p,"(W/L)_p")
30
31 / 10.3 c
32 I_stat = (uC_p*WbyL_p*(V_DD-V_tn)^2)/2;
33 disp(I_stat,"I_stat(A)")
34 P_D = I_stat*V_DD;
35 disp(P_D, "Static power dissipation P_D (W)")
36
```

```
37  //10.3d
38  C=7*10^-15;
39  t_PLH=1.7*C/(uC_p*WbyL_p*V_DD);
40  disp(t_PLH,"t_PLH (s)")
41  t_PHL=1.7*C/(uC_n*(W_n/L_n)*sqrt(1-0.46/r)*V_DD);
42  disp(t_PHL,("t_PHL (s)"))
43  t_p=(t_PHL+t_PLH)/2;
44  disp(t_p,"t_p (s)")
```

Scilab code Exa 10.4 To determine parameters for NMOS transistor

```
1 // Example 10.4 : To determine parameters for NMOS
      transistor
2 // Consider NMOS transistor switch
3 uC_n=50*10^-6; //uC_n=u_n*C_ox (A/V^2)
4 uC_p = 20*10^-6; //uC_px '= u_p*C_ox (A/V<sup>2</sup>)
5 V_t0=1; // (V)
6 y=0.5; //(V^1/2)
7 fie_f=0.6/2; // (V)
8 V_DD=5; // (V)
9 W_n = 4*10^-6; // (m)
10 L_n = 2*10^-6; // (m)
11 C=50*10^-15; // (F)
12
13 / 10.4 a
14 V_t=1.6; // (V)
15 V_OH=V_DD-V_t; // V_OH is the value of v_O at which
     Q stops conducting (V)
16 \operatorname{disp}(V_OH, "V_OH(V)")
17
18 // 10.4 b
19 W_p = 10 * 10^-6; // (m)
20 L_p = 2*10^-6; // (m)
i_DP=uC_p*W_p*((V_DD-V_OH-V_tO)^2)/(2*L_p);
22 disp(i_DP, "Static current of the inverter (A)")
```

```
23 P_D = V_DD * i_DP;
24 disp(P_D, "Power dissipated (W)")
25 V_O=0.08; // Output voltage (V) found by equating
      the current of Q_N=18uA
26 disp(V_O," The output voltage of the inverter (V) ")
27
28 // 10.4 c
29 i_D0=uC_n*W_n*((V_DD-V_t0)^2)/(2*2*10^-6); // i_D0=
      i_D(0) (A) current i_D at t=0
30 \text{ v}_0=2.5; // (V)
31 V_t=V_t0+0.5*(sqrt(v_0+2*fie_f)-sqrt(2*fie_f)); //
      at v_{-}O = 2.5V
32 i_DtPLH = (uC_n*W_n*(V_DD-v_0-V_t)^2)/(2*L_n); //
     i_DtPLH=i_D(t_PLH) (A) current i_D at t=t_PLH
33 i_Dav=(i_D0+i_DtPLH)/2; // i_Dav=i_D | av (A) average
      discharge current
34 t_PLH=C*(V_DD/2)/i_Dav;
35 disp(t_PLH,"t_PHL (s)")
36
37 // 10.4 d
38 // Case with v_t going low
39 i_D0=uC_n*W_n*((V_DD-V_t0)^2)/(2*2*10^-6); // i_D0=
     i_D(0) (A) current i_D at t=0
40 i_DtPHL=uC_n*W_n*((V_DD-V_t0)*v_0-(v_0^2)/2)/(L_n);
     // i_DtPHL=i_D(t_PHL) (A) current i_D at t=T_PHL
41 i_Dav = (i_D0 + i_DtPHL)/2; // i_Dav = i_D | av (A) average
      discarge current
42 t_PHL=C*(V_DD/2)/i_Dav;
43 disp(t_PHL,"t_PHL (s)")
44
45 // 10.4 e
46 \quad t_P = (t_PHL + t_PLH)/2;
47 disp(t_P,"t_P (s)")
```

Memory and advanced digital circuits

Scilab code Exa 11.1 Min WbyL ratio to ensure flip flop will switch

```
1 // Example 10.1 : To determine t_PHL, t_PLH and t_P
2 // Consider CMOS inverter
3 C_ox = 6*10^-15; // (F/um^2)
4 uC_n=115*10^-6; //uC_n=u_n*C_ox (A/V^2)
5 uC_p=30*10^-6; //uC_p=u_p*C_ox (A/V^2)
6 V_{tn} = 0.4; // (V)
7 V_{tp} = -0.4; // (V)
8 V_DD=2.5; // (V)
9 W_n=0.375*10^-6; // W for Q_N
10 L_n=0.25*10^-6; // L for Q_N
11 W_p=1.125*10^-6; // W for Q_P
12 L_p=0.25*10^-6; // L for Q_P
13 C_gd1=0.3*W_n*10^-9; // (F)
14 C_gd2=0.3*W_p*10^-9; // (F)
15 C_db1=10^-15; // (F)
16 C_db2=10^-15; // (F)
17 \text{ C}_{g3} = 0.375*0.25*6*10^{-15+2*0.3*0.375*10^{-15}}; // (F)
18 C_g4=1.125*0.25*6*10^-15+2*0.3*1.125*10^-15; // (F)
19 C_w = 0.2*10^-15; // (F)
```

Scilab code Exa 11.2 Design of two stage CMOS op amp

```
1 // Example 11.2 Design of two-stage CMOS op-amp
3 uC_n=50*10^-6; // u_n*C_ox (A/V<sup>2</sup>)
4 uC_p = 20*10^-6; // u_p * C_ox (A/V^2)
5 V_{tn0}=1; // (V)
6 V_{tp0}=-1; // (V)
7 fie_f=0.6/2; // (V)
8 y=0.5; // (V^1/2)
9 V_DD = 5; // (V)
10 W_n = 4*10^-6; // (m)
11 L_n = 2*10^-6; // (m)
12 W_p=10*10^-6; // (m)
13 L_p = 2*10^-6; // (m)
14 W=10*10^-6; // (m)
15 L=10*10^-6; // (m)
16 C_B=1*10^-12; // bit line capacitance (F)
17 deltaV=0.2; // 0.2 V decrement
18 WbyL_eq=1/(L_p/W_p+L_n/W_n); // WbyL_eq=(W/L)_eq
19 // Equivalent transistor will operate in saturation
```

```
20  I=(uC_n*WbyL_eq*(V_DD-V_tn0)^2)/2
21  r_DS=1/(uC_n*(W_n/L_n)*(V_DD-V_tn0));
22  v_Q=r_DS*I; // v_Q=r_DS*I
23  I_5=0.5*10^-3; // (A)
24  deltat=C_B*deltaV/I_5;
25  disp(deltat, "The time (s) required to develop an output voltage of 0.2V")
```

Scilab code Exa 11.3 Time required

```
1 // Example 11.3 : Time required for v<sub>B</sub> to reach 4.5
2 // Consider sense-amplifier circuit
3 uC_n = 50*10^-6; //uC_n = u_n * C_ox (A/V^2)
4 uC_p=20*10^-6; //uC_p=u_p*C_ox (A/V^2)
5 \text{ W_n=}12*10^-6; // (m)
6 L_n=4*10^-6; // (m)
7 W_p = 30 * 10^-6; // (m)
8 L_p=4*10^-6; // (m)
9 \text{ v}_B = 4.5; // (V)
10 C_B=1*10^-12; // (F)
11 V_{GS} = 2.5; // (V)
12 V_t=1; // (V)
13 deltaV=0.1; // (V)
14 g_mn=uC_n*(W_n/L_n)*(V_GS-V_t); // (A/V)
15 g_mp=uC_p*(W_p/L_p)*(V_GS-V_t); // (A/V)
16 G_m = g_m + g_m ; // (A/V)
17 T=C_B/G_m; // (s)
18 deltat=T*(log(v_B/V_GS)-log(deltaV));
19 disp(deltat, "The time for v_B to reach 4.5V (s)")
```

Filters and tuned amplifiers

Scilab code Exa 12.4 To design tuned amplifier

```
1 // Example 12.4 To design tuned amplifier
2
3 cfg=-10; // Center frequency gain (V/V)
4 g_m=0.005; // (A/V)
5 r_o=10000; // (ohm)
6 f_o=1*10^6; // (Hz)
7 B=2*%pi*10^4; // Bandwidth
8 R=-cfg/g_m;
9 R_L=R*r_o/(r_o-R);
10 disp(R_L,"R_L (ohm)")
11 C=1/(R*B)
12 disp(C,"C (F)")
13 w_o=2*%pi*f_o;
14 L=1/(w_o^2*C);
15 disp(L,"L (H)")
```

Output Stages and amplifier

Scilab code Exa 14.1 To design a Class B Output Amplifier

```
1 // Example 14.1 To design a Class B Output Amplifier
3 P_L=20; // Average power (W)
4 R_L=8; // Load resistance (ohm)
5 V_o=sqrt(2*P_L*R_L);
6 disp(V_o, "Supply voltage required (V)")
7 V_CC=23; // We select this voltage (V)
8 I_o=V_o/R_L;
9 disp(I_o, "Peak current drawn from each supply (A)")
10 P_Sav = V_CC*I_o/\%pi; // P_S + = P_S - = P_Sav
11 P_S=P_Sav+P_Sav; // Total supply power
12 disp(P_S, "The total power supply (W)")
13 n=P_L/P_S; // n is power conversion efficiency
14 disp(n*100, "Power conversion efficiency %")
15 P_DPmax=V_CC^2/(%pi^2*R_L);
16 P_DNmax=P_DPmax;
17 disp(P_DPmax," Maximum power dissipated in each
      transistor (W)")
```

Scilab code Exa 14.2 To determine quiescent current and power

```
1 // Example 14.2 To determine quiescent current and
     power
2 // Consider Class AB Amplifier
3 \text{ V_CC=15; } // \text{ (V)}
4 R_L = 100; // (ohm)
5 v_0=-10:10:10; // Amplitude of sinusoidal output
      voltage (V)
6 I_S=10^-13; // (A)
7 V_T=25*10^-3; // (V)
8 B=50; // Beta value
9 i_Lmax=10/(0.1*10^3); // Maximum current through Q_N
       (A)
10 // Implies max base curent in Q_N is approximately
11 I_BIAS=3*10^-3; // We select I_BIAS=3mA in order to
      maintain a minimum of 1mA through the diodes
12 I_Q=9*10^-3; // The area ratio of 3 yeilds quiescent
       current of 9mA
13 P_DQ = 2 * V_CC * I_Q;
14 disp(P_DQ, "Quiescent power dissipation (W)")
15 //For v_O=0V base current of Q_N is 9/51=0.18 mA
16 // Leaves a current of 3-0.18=2.83mA to flow through
       the diodes
17 I_S= (10^-13)/3; // Diodes have I_S = (1*10^-13)/3
18 V_BB = 2 * V_T * \log ((2.83 * 10^{-3}) / I_S);
19 \operatorname{disp}(V_BB, "V_BB (V) \text{ for } v_O = 0V")
20 // For v_O=+10V, current through the diodes will
      decrease to 1mA
21 V_BB=2*V_T*log((1*10^-3)/I_S);
22 disp(V_BB, "V_BB (V) for v_O = +10V")
23 // For v_O=-10V, Q_N will conduct very small
      current thus base current is negligible
24 // All of the I_BIAS(3mA) flows through the diodes
V_BB = 2 * V_T * \log ((3 * 10^- 3) / I_S);
26 disp(V_BB,"V_BB (V) for v_O = -10V")
```

Scilab code Exa 14.3 Redesign the output stage of Example 2

```
1 // Example 14.3 Redesign the output stage of Example
       14.2
2 V_T = 25 * 10^{-3}; // (V)
3 I_S=10^-14; // (A)
4 I_Q=2*10^-3; // Required quiescent current (A)
5 // We select I_BIAS=3mA which is divided between I_R
       and I_C1
6 // Thus we select I_R = 0.5 \text{mA} and I_C = 2.5 \text{mA}
7 V_BB=2*V_T*log(I_Q/10^-13);
8 disp(V_BB, "V_BB (V)")
9 I_R=0.5*10^-3;
10 R1plusR2=V_BB/I_R; // R1plusR2 = R_1+R_2
11 I_C1=2.5*10^-3;
12 V_BE1=V_T*log(I_C1/I_S);
13 disp(V_BE1, "V_BE1 (V)")
14 R_1 = V_BE1/I_R;
15 disp(R_1, "R_1 (ohm)")
16 R_2=R1plusR2-R_1;
17 disp(R_2, "R_2 (ohm)")
```

Scilab code Exa 14.4 To determine thermal resistance junction temperat

```
1 // Example 14.4 To determine thermal resistance,
         junction temperature
2 // Consider BJT with following specifications
3 P_D0=2; // Maximum power dissipation (W)
4 T_A0=25; // Ambient temperature (degree celcius)
5 T_Jmax=150; // maximum junction temperature (degree celcius)
6
```

```
7 // 14.4 a
8 theta_JA=(T_Jmax-T_A0)/P_D0; // Thermal resistance
9 disp(theta_JA, "The thermal resistance (degree
      celsius/W)")
10
11 // 14.4b
12 T_A=50; // (degree celcius)
13 P_Dmax = (T_Jmax - T_A)/theta_JA;
14 disp(P_Dmax, "Maximum power that can be dissipated at
      an ambient temperature of 50 degree celsius (W)"
     )
15
16 // 14.4 c
17 T_A=25; // (degree celcius)
18 P_D=1; // (W)
19 T_J=T_A+theta_JA*P_D;
20 disp(T_J, "Junction temperature (degree celcius) if
      the device is operating at T_A=25 degree celsius
     and is dissipating 1W")
```

Scilab code Exa 14.5 To determine the maximum power dissipated

```
// Example 14.5 To determine the maximum power
    dissipated
// Consider a BJT with following specifications

T_Jmax=150; // (degree celcius)

T_A=50; // (degree celcius)

// 14.5a

theta_JA=62.5; // (degree celcius/W)

P_Dmax=(T_Jmax-T_A)/theta_JA;

disp(P_Dmax, "The maximum power (W) that can be dissipated safely by the transistor when operated in free air")
```

```
11 //14.5b
12 theta_CS=0.5; // (degree celcius/W)
13 theta_SA=4; // (degree celcius/W)
14 theta_JC=3.12; // (degree celcius/W)
15 theta_JA=theta_JC+theta_CS+theta_SA;
16 P_Dmax = (T_Jmax - T_A)/theta_JA
17 disp(P_Dmax," The maximum power (W) that can be
      dissipated safely by the transistor when operated
      at an ambient temperature of 50 degree celcius
     but with a heat sink for which theta_CS= 0.5 (
      degree celcius/W) and theta-SA = 4 (degree
      celcius/W) (W)")
18
19 // 14.5 c
20 theta_CA=0 // since infinite heat sink
21 P_Dmax=(T_Jmax-T_A)/theta_JC;
22 disp(P_Dmax," The maximum power (W) that can be
      dissipated safely if an infinite heat sink is
     used and T_A=50 (degree celcius)")
```