

- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)

<u>Когнитивная радиооптика (cognitive radiooptics)</u> ЭМИИА – машинное зрение на принципах радиооптики с применением искусственных нейронных сетей. Детекция, распознавание образов, вычисление координат и скорости динамических объектов посредством радиоволн, в том числе и за радиопрозрачными преградами.

Разработка архитектуры автономной нейросетевой модели, наборов данных и методов обучения в <u>машинном зрении.</u>

AIIMA | EMIIA

→ ПРЕЗЕНТАЦИЯ ПРОЕКТА ЭМИИА (PDF)

Сравнительные характеристики программно-аппаратных решений Направление: радиооптика	Цена (руб.)	Соответствие санитарным нормам использование в промышленных и бытовых помещениях	Интеграция технологии в бытовые и промышленные устройства IoT/IIoT	Нейронная сеть Online	Нейронная сеть Offline
Встраиваемые контроллеры и модули ЭМИИА Разработчик: ЭМИИА Россия	3 000	+	+	+	_
Радиолокатор Данник-5 Разработчик: ФГУП СКБ ИРЭ РАН Россия	200 000	_		_	_
Портативный радар РО-900 Разработчик: ЛОГИС-ГЕОТЕХ Россия	300 000	_		_	_
Прибор EMERALD на базе Wi-Fi poyтepa Разработчик: Массачусетский технологический институт MIT США	70 000	+	+	+	_

ЭМИИА: https://www.emiia.ru/p/radiooptics.html

EMERALD: https://www.emeraldinno.com/

PO-900: http://www.geotech.ru/safety_equipment/bezopasnost/radary_obnaruzhiteli_lyudej_za_stenami_stenovizory/portativnyj_radar_dlya_operativn ogo_obnaruzheniya_obektov_za_zhelezobetonnymi_i_raznesennymi_stenami_r o900/

Данник-5: http://www.sdbireras.ru/produkcziya/blizhnyaya-radiolokacziya/radiolokator-dlya-obnaruzheniya-lyudej-za-stenami-dannik-5

Сравнительные характеристики программных решений Направление: нейронные сети для задач машинного зрения на принципах радиооптики (когнитивная радиооптика)	Цена (руб.)	Активная фазированная антенная решетка	Нейросетевая модель, (Offline самообучение)	Нейросетевые фильтры (обработка цифровых сигналов Offline)	Требуемые Вычислительные мощности	Размер нейросетевых инструментов датасеты, скрипты, библиотеки, архивы
Встраиваемые нейросетевые элементы на базе контроллеров и модулей ЭМИИА Разработчик: ЭМИИА Россия	500	_	_		от 1 MFLOPS до 30 GFLOPS CPU (в зависимости от задач и формата)	100 MB
Нейросетевые элементы в приборе EMERALD на базе Wi-Fi роутера Разработчик: Массачусетский технологический институт МІТ США	5 000	+	_	_	140-177 GFLOPS CPU/GPU	1.7 GB

ССЫЛКИ НА НАИБОЛЕЕ БЛИЗКИЕ К ИССЛЕДОВАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТИ ЭМИИА МЕЖДУНАРОДНЫЕ ПАТЕНТЫ И ЗАЯВКИ, ОБЛАДАТЕЛЯМИ КОТОРЫХ ЯВЛЯЮТСЯ ТРЕТЬИ ЛИЦА

Fog/Edge Computing (периферийные вычисления) — обработка, хранение данных и запуск программного кода на границе устройств и локальной беспроводной сети без использования облачных мощностей и локальных серверов:

Huawei Technologies Co., Ltd. U.S. Provisional Patent Application No. 62/514,594, entitled Method and System for Supporting Edge Computing, filed Jun. 2, 2017, the content of which is incorporated herein by reference in its entirety:

https://patents.justia.com/patent/20180352050

Cisco Technology Inc US9600494B2 Line rate visual analytics on edge devices: https://patents.google.com/patent/US9600494

Hewlett Packard Enterprise (Hewlett-Packard Development Company , L.P.) WO2016018332A1 **Data storage in fog computing**: https://patents.google.com/patent/WO2016018332A1/en

Радиооптика— используется для задач машинного зрения детекция, распознавание образов, вычисление координат и скорости динамических объектов посредством радиоволн:

Massachusetts Institute Of Technology WO2015102713A2 Motion tracking via body radio reflections: https://patents.google.com/patent/WO2015102713A2/en

Massachusetts Institute Of Technology WO2015175078A3 Object tracking via radio reflections: https://patents.google.com/patent/WO2015175078A3/de

НАУЧНЫЕ ПУБЛИКАЦИИ/ЦИТИРУЕМОСТЬ ЭМИИА

Цитирование Учебник для магистратуры "Криминология цифрового мира"

В. С. Овчинский. — М. : Норма : ИНФРАМ, 2018. — 352 с. **(стр. 316, раздел IV)**

https://emiia.github.io/1/Criminology.pdf

Цитирование

Сборник научных трудов по материалам I Международной научнопрактической конференции «Ключевые проблемы и передовые разработки в современной науке».

— Международный научно-информационный центр «Наукосфера». Смоленск: ООО «Новаленсо», 2017. 238 с.

(ЭМИИА стр. 122, раздел V)

https://emiia.github.io/1/Klyuch-probl-i-per-razrab-okt-2017.pdf

Публикации

Сборник материалов научно-технической конференции с

представителями сектора исследований и разработок, коммерческого сектора, высшего профессионального образования Крымского федерального округа в рамках участия в 2015 году в реализации федеральных целевых программ и внепрограммных мероприятий, заказчиком которых является Минобрнауки России, г. Севастополь, 01-02 декабря 2015 г. / Редакция Е.Б. Мелков, В.А. Куликов, А.С. Слепокуров. – Севастополь: СРО ВОИР, 2017. – 167 с.

(ЭМИИА, В.В. Старостин, А.Н. Люман, Н.В. Филиппова, стр. 164, раздел I)

https://emiia.github.io/1/CollectionMON.pdf

Scholar Google Citations
Список публикаций/цитирований
Профиль проекта и авторов с разделом соавторы:
https://scholar.google.ru/citations?user=ffHMwpwAAAAJ&hl

РАЗРАБОТАН ОПЫТНЫЙ ОБРАЗЕЦ УСТРОЙСТВА НА ПРОГРАММНО-АППАРАТНОЙ БАЗЕ ВСТРАИВАЕМОГО SMART КОНТРОЛЛЕРА ЭМИИА MONOCLE (ТЕСТОВАЯ МОДЕЛЬ В КРУГЛОМ КОРПУСЕ)

- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)

Transmitting antenna T

Transmitting antenna T₂

$$T_1 = -L_2$$
 $T_2 = L_1$

Damping Effect compensated. Zero forcing.

Встраиваемый контроллер ЭМИИА с интегрированным микроконтроллерным блоком (модуль) #emonocle/MONOCLE

Встраиваемый модуль ЭМИИА #emonocle/MONOCLE (микроконтроллерный блок)

Аппаратно-программное решение: встраиваемый Smart контроллер с модулем ЭМИИА.

Четыре группы антенн G1, G2, G3, G4, осуществляют обнаружение и захват восьми движущихся объектов.

В одной группе G1 три направленных антенны: две антенны используются для передачи сигнала (Transmitting) Т1, Т2 в противофазе, и одна для приема (Receive) R1.

Компенсация эффекта затухания радиоволн Damping Effect Compensated (DEC) достигается посредством аппаратного элемента X в системе (подлежит патентованию) и обнуления MIMO Zero forcing (ZF), реализуется с использованием программных фильтров для статических объектов. Что позволяет вычислять радиоволны H2 которые отразились от движущихся объектов сквозь оптически непрозрачные преграды и материалы. А также более точно отслеживать координаты объектов с применением техники обратного радиолокационного синтезирования апертуры.

T1=-L2 T2=L1 Эффект затухания радиоволн компенсирован. Обнуление радиоволн отраженных от статических объектов.

Используются дециметровые и сантиметровые волны ультравысокой и сверхвысокой частоты (СВЧ и УВЧ) в частотных диапазонах 2,4 ГГц, 5 ГГц.

Радиоволны проходят сквозь препятствия и их неметаллические элементы H3 H4, отражаются от движущихся объектов H2 и несут информацию к приемнику. Принцип действия аналогичный радару или гидролокатору.

Волна проходит через группу антенн G1, таким образом сигналы H1 отраженные от неподвижных объектов не принимаются к обработке приемной антенной R1 (программные фильтры). В общем линейном потоке H2 регистрируются только те данные которые отразились от движущихся объектов, аппаратный элемент X компенсируют эффект затухания радиоволн, а программные фильтры выполняют обнуление MIMO ZF (статические объекты). Модуль использует алгоритм сканирования для определения параметров объектов вычисляя время и мощность отраженного сигнала, рассчитывает последовательность пространственных меток.

Поляризация обнаружения движущихся объектов: вертикально-горизонтальная. Визуализация интерфейса 2D.

t=0,90m – максимальные значение в коммерческом применении, компенсация эффекта затухания радиоволн DEC и обнуления ZF. Общая максимальная толщина стен, архитектурных конструкций, оптически непрозрачных преград и материалов в метрах.

d=9m – максимальное значение в коммерческом применении, компенсация эффекта затухания радиоволн DEC и обнуления ZF. Вертикально-горизонтальный радиус обнаружения и захвата движущихся объектов в метрах.

Для вывода всех параметров обязательным условием является применение осциллографа, программной среды MATLAB, спецоборудования и программного обеспечения.

Рис. Скриншот параметров системы на мониторе компьютера

Рис. Скриншот видео тестирования работы системы.

Видео: https://youtu.be/cHT3bFJCbSo

id="path818" d="m 94.87779,47.028008 c 0,0.336925 -0,263607,0.601613 -0.5991,0.601613 -0.359462,1 -0.623066,-0.264688 -0.623066, -0.601613 0,-0.336911 0,2633604, -0.625678 0.623066,-0.625678 0,335493,0 0.5991 0,288767 0,5991,0.625678 z"

id="path820" d="m 86.706063,53.357054 c 0,0.336911 -0.263604,0.601613 -0.623064,0.601613 -0.335496,0 -0.599099,-0.264702 -0.599099,-0.601613 0,-0.336911 0.263603,-0.625692 0.599099,-0.625692 0,35946, 0 0.623064,0.288781 0,623064,0.625692 z"

id="path826" d="m 101.63564,47.028008 c 0.0.336925 -0.28757.0.601613 -0.62307.0.601613 -0.33549.0 -0.5991,-0.264688 -0.5991,-0.601613 0 -0.336911 0.26361, -0.625678 0.5991,-0.625678 0.3355,0 0.62307, 0.288767 0.62307,0.625678 2"

id="path828" d="m 103.81636,53.597704 c 0,0.360963 -0.2636,0.625679 -0.5991,0.625679 -0.35946, 0 -0.62306,-0.264716 -0.62306,-0.625679 0,-0.336911 0,2636 -0.601613 0,62306,-0.601613 0,3355,0 0,5991, 0.264702 0,5991,0.601613 z"

id="path822" d="m 94.87779,52.009423 c 0.0.336911 -0.263607.0.601627 -0.5991,0.601627 -0.359462.0 -0.623066-0.264716 -0.623066-0.601627 0,-0.360962 0.26360 -0.625691 0.623066,-0.625691 0.335493,0 0.5991, 0.264729 0.5991.0.625691 z"

id="path824" d="m 89.413996,49.434488 c 0,0.336911 -0.263603,0.625678-0.5991,0.625678-0.335496, 0-0.623064,-0.288767-0.623064,-0.625678 0, -0.336884 0.287568,-0.625678 0.623064,-0.625678 0.335497

Цифровая векторная модель ML, псевдо 3D, 2-10 Kbyte, HTML5/JS/JSON, без включения аналоговойрастровой графики

 \rightarrow ТЕСТОВЫЙ КОД МОДЕЛИ ML

Data Set size (fragment 2D) of standard models ML: 100 Kbyte

Size of the Data Set (fragment 2D) of the EMIIA models ML: 2-10 Kbyte

Raster Analog Graphics ML

EMIIA Vector Digital Graphics ML

Сравнительные характеристики фрагментов растрового датасета (слева), и векторного датасета ЭМИИА (справа).

ДОПОЛНИТЕЛЬНЫЕ ПРОГРАММНЫЕ ИНСТРУМЕНТЫ ПРИМЕНЯЕМЫЕ В РАЗРАБОТКАХ

Построение и тренировка нейросетевой модели ЭМИИА: TensorFlow Lite — открытая программная библиотека для глубокого машинного обучения. (машинное зрение, ⁶текст, голос offline)

→ TENSORFLOW LITE

→ VIRTUAL ASSISTANT OFFLINE

→ TENSORFLOW LITE JS

Нейросетевые программные инструменты и модель машинного обучения интегрируются в аппаратную часть периферийных устройств <u>loT/lloT edge</u>. За счет автономности и компактных датесетов данный формат позволяет повысить уровень информационной безопасности, увеличить скорость обработки данных, исключить локальные сервера и облачные ресурсы.

Моделирование нейросетевой модели ЭМИИА: MATLAB/Simulink: Signal Processing Toolbox, DSP System Toolbox, Image Processing Toolbox, Wavelet Toolbox, Communications System Toolbox — наборы функций и объектов, позволяющих решать широкий спектр задач обработки сигналов, изображений, проектирования цифровых фильтров и систем связи.

→ MATLAB/SIMULINK

Проектирование и моделирование системы цифровой обработки сигналов с фазированной антенной решеткой: MATLAB/Simulink: Phased Array System Toolbox предоставляет алгоритмы и приложения для проектирования, моделирования и анализа систем сенсорных матриц в приложениях радиолокации и беспроводной связи. Продукт обеспечивает полную реализацию всего спектра многофункциональных систем с фазированной решеткой, требующих частоты, PRF, формы волны и гибкости диаграммы направленности.

→ PHASED ARRAY SYSTEM TOOLBOX

<u>Системы управления реляционными базами данных (СУРБД) используемые в проекте ЭМИИА</u>: SQLite — компактная встраиваемая СУРБД, исходный код библиотеки передан в общественное достояние.

→ MHTEPHET-PECYPC SQLite

Создание векторная графики нейросетевой модели ЭМИИА HTML5, JS, JSON: Adobe Animate.

→ NHTEPHET-PECYPC ADOBE ANIMATE

Входные данные радиоволн преобразованные в дискретный код формируются в структуру SVG (Scalable Vector Graphics - язык разметки масштабируемой векторной графики) для обработки, хранения и машинного обучение. на SVG (XML) данных. В некоторых случаях вес моделей не превышает 1 Мб и включает в себя всю необходимую информацию для решения задач машинного зрения. Малый размер позволяет интегрировать инструменты для работы с искусственными нейронными сетями непосредственно на аппаратную базу большинства электронных устройств (контроллеры, микрокомпьютеры, сетевое оборудование). Что дает возможность системе не использовать облачные ресурсы функционировать без интернет-соединения в автономном режиме. Данный метод не требует создания и хранения громадного количества фото/видео примеров с трудоемким процессом по их разметке правильными ответами, а также больших вычислительных мощностей для последующей обработки данных.

Необходимым условием для задач радиооптики является два микроконтроллера с Wi-Fi IEEE 802.11 b/g/n интерфейсом на каждый микроконтроллер и их взаимодействием между собой, как на программном, так и на аппаратном уровне. Мощность электромагнитного излучения на один микроконтроллер должна быть в пределах 20 dBm или более

Система (когнитивная радиооптика) вычисляет объем объекта по образцу цифровой контурной маски радиоволн, маркерам х,у, в SVG и распознает его. В процессе самообучения нейронная сеть способна автономно дополнять и изменять общие модели SVG образов, следовательно более точно определять типы движущихся объектов, подстраиваться к границам пространства, конкретным пользователям и задачам, а также принимать самостоятельно операционные действия относительно автоматизации процессов.

*Моделирование системы осуществляется посредством инструментов MATLAB с дальнейшим компилированием кода для среды машинного обучения TensorFlow Lite.

Цифровая контурная маска в SVG формате с маркерами по значениям хуг (движение человека), модель для обучения нейронной сети, сгенерированная программными инструментами МАТLАВ, устройствами вывода и ввода, аппаратными средствами и специализированным ПО для анализа и преобразования данных.

В процессе получения данных были устранены радио-шумы посредством программных фильтров.

Объект: взрослый человек. Время фиксации движения: четыре секунды, с детекцией на 1-й секунде и распознавании образа, определение скорости и координат на 2-й секунде.

Рис. Радиограммы с маркерами контуров без цифровых значений (2D).

HTML (XML) код SVG модели движения взрослого человека с цифровыми маркерами, контурами, значениями и координатами х,у, г (емкость объекта): http://www.emiia.ru/p/version1.html

Разнесенные группы направленных антенн горизонтально-вертикальной поляризации: Блок #1 передняя часть устройства (три координатных сектора)
Блок #2 задняя часть устройства (три координатных сектора)

SVG (Scalable Vector Graphics)

```
id="line32003"
y2="4752.7202"
x2="119.94"
y1="4744.7598"
x1="16243"
56,-46.32 -847.87,364.18 -427.91,412.06 -
603.35,318.5
-864.5,179.2 -55.12,-29.4 -114.12,-60.87 -179.96,-
89.9
-212.13,-93.51 -282.15,-89.81 -450.94,-80.89 -
64.53,3.41
-143.49,7.59 -250.35,7.42 -265.2,-0.42 -461.79,-
188.08
-646.27,-364.19 -161.92,-154.57 -314.4701,-300.2 -
494.8389,
-300.48 -193.92997,-0.3 -329.48997,75.18 -
459.14997.147.38
-119.79,66.69 -234.61,130.63 -386.00001,130.4 -
28.79,-0.05
-56.16,-0.23 -82.23,-0.51 z«
Фрагмент кода цифровой модели движения
взрослого человека с цифровыми маркерам
```

И 3HQYEHUЯМ: https://emiia.ru/neuralmodel1.txt

Рис. Радиограмма с цифровыми маркерами контуров и цифровыми значениями x,y,z (векторы, 2D).

Границы наблюдения-движение отсутствует аналоговый радиосигнал трансформирован в цифровой посредством аппаратной части. Получены оцифрованные данные радиосигналов для последующей обработки и анализа.

(микроконтроллерный блок #emonocle offline)

3.

Определение емкости и распознавание объекта по цифровым маркерам и значениям SVG контуров модели х,у,х (нейронная сеть ЭМИИА online/offline в зависимости от аппаратной части)

2.

Детекция-зафиксировано движение в границах наблюдения, скорость и координаты объекта вычислены посредством прошивки и направленных разнесенных групп антенн. (микроконтроллерный блок #emonocle offline)

4.

Самообучение нейронной сети ЭМИИА усовершенствование и модификация SVG модели конкретного объекта. (online/offline в зависимости от аппаратной части)

G₁ - первая группа антенн модуля сканирования:

L₂- радиолиния №2 Т₂- передающая антенна №2

Н₁ - отраженные радиоволны от статических оптически непрозрачных объектов.

Н₂- отраженные радиоволны от динамических объектов за оптически непрозрачными преградами и материалами.

Н₃- цифровое значение (сила сигнала, время отклика, пространственные метки) радиоволны до прохождения статических оптически непрозрачных преград и материалов.

 H_4 - цифровое значение (мощность сигнала, время отклика, пространственные метки) отраженные

радиоволны от динамических объектов после прохождения статических оптически непрозрачных

преград и материалов.

X- аппаратный элемент позволяющий в комплексе с программно-аппаратными средствами компенсировать эффект затухания радиоволн DEC и выполнить обнуление ZF.

Включение дополнительного аппаратного элемента X позволяет выявить задержки субнаносекундной длительности на линиях L_1 - L_2 , что дает возможность фильтрации радиоволн, **не применяя энергоемкого гигагерцевого оборудования**, задействованы допустимые для бытового использования частоты в диапазоне от 2,4 - 5 ГГц с мощностью более 20 dBm, Wi-Fi сигналы OFDM в открытом диапазоне частот ISM и типичные Wi-Fi чипсеты MIMO.

Radio signal attenuation (Brick & Concrete wall)

Одним из ключевых факторов является поглощение радиоволн встроительных конструкциях внутри здания. Этот фактор накладывает ограничение как на дальность радиосвязи, так и на возможный диапазон частот радиосвязи, поскольку практически все среды, включая и строительные материалы, характеризуются монотонно возрастающим с ростом частоты поглощением радиоволн. При проектировании системы необходимо принимать в расчет поглощение радиоволн на выбранной частоте в «типовой» стене здания. Поглощение радиоволн происходит и в других элементах строительных конструкций (двери, окна, деревянные перегородки), однако на частотах до 10 ГГц ослабление сигнала в них не превышает 1-5 дБ, т.е. существенно меньше, чем в стенах и межэтажных перекрытиях, и если система спроектирована с учетом прохождения сигнала через стену или межэтажное перекрытие, она будет заведомо работоспособна при прохождении радиосигнала через окна и двери.

Анализ: Ослабление сверширокополосных хаотических сигналов диапазона 3-5 ГГц при прохождении через стены зданий: http://www.emiia.ru/p/35.html

BUNDA | EMIIA

124683 г. Москва, г. Зеленоград корп. 1818

Интернет-ресурс проекта: <u>emiia.ru</u>

Блог проекта: blog.emiia.ru

Репозиторий GitHub: github.com/EMIIA

+7 (916) 368-36-89 +7 (978) 898-60-83

emiia@emiia.ru

 \rightarrow ПРЕЗЕНТАЦИЯ ПРОЕКТА ЭМИИА (PDF)

Профили участников, дополнительная информация о проекте и команде:

https://www.emiia.ru/p/information-economy.html