CS217 - Data Structures & Algorithm Analysis (DSAA)

Lecture #3

Divide-and-Conquer

Prof. Pietro S. Oliveto

Department of Computer Science and Engineering

Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn
https://faculty.sustech.edu.cn/olivetop

Reading: Section 2.3 and Section 4.5

(optional: lots more details in Chapter 4)

CSE217: Data Structures & Algorithm Analysis

Aims of this lecture

- To introduce the divide-and-conquer design paradigm.
- To introduce the MergeSort algorithm a recursive algorithm using divide-and-conquer.
- To show how to prove correctness for a recursive algorithm
- To show how to analyse the runtime of recursive algorithms using recurrence equations.
- To show how to solve recurrence equations

Problem: Find a number in a sorted array

I have a sorted array of integers;

- Is the number 40 in the array?
- If we scan the array from the beginning to the end what is the worst case runtime? $\theta(n)$ linear search
- What if we always check the middle point and discard the "wrong" half of the subarray? $2^k = n \Rightarrow \theta(\log n) binary search$
- By dividing the problem size by half at each step we have reduced the runtime of the algorithm from linear to logarithmic!

Design Paradigms

- InsertionSort used an incremental approach:
 - Having sorted the subarray A[1..j-1], we inserted A[j] into its proper place, yielding the sorted subarray A[1..j].
 - Idea: incrementally build up a solution to the problem.
- Alternative design approach: divide-and-conquer
 - **1. Divide:** Break the problem into smaller subproblems, smaller instances of the original problem.
 - 2. Conquer: Solve these problems recursively.
 - **3. Combine** the solutions to subproblems into the solution for the original problem.

MergeSort

- MergeSort sorting using divide-and-conquer:
 - 1. Divide the n-element sequence to be sorted into two subsequences of n/2 elements each.
 - **2. Conquer:** Sort the two subsequences **recursively** using MergeSort.
 - **3. Combine:** merge the two subsequences to produce the sorted answer.
- The recursion stops when the sequence is just 1 element.
- Key here is the procedure Merge
- Tedious bit: copying elements between arrays.

Merge(A, p, q, r)

- Assume subarrays A[p ... q] and A[q + 1 ... r] are sorted.
- Copy these subarrays to new arrays L and R.
- ullet Merge L and R back into A by comparing L[i] and R[j] .

```
MERGE(A, p, q, r)
```

```
1: n_1 = q - p + 1
2: n_2 = r - q
 3: let L[1 \dots n_1 + 1] and R[1 \dots n_2 + 1] be new arrays
 4: for i = 1 to n_1 do
 5: L[i] = A[p+i-1]
 6: for j = 1 to n_2 do
 7: R[j] = A[q+j]
8: L[n_1+1]=\infty
9: R[n_2+1]=\infty
10: i = 1
11: j = 1
12: for k = p to r do
    if L[i] \leq R[j] then
13:
           A[k] = L[i]
14:
    i = i + 1
15:
        else
16:
            A[k] = R[j]
17:
            j = j + 1
18:
```

Set up arrays L and R (boring)

Actual merge

```
MERGE(A, p, q, r)
 1 n_L = q - p + 1 // length of A[p:q]
2 n_R = r - q // length of A[q+1:r]
 3 let L[0:n_L-1] and R[0:n_R-1] be new arrays
 4 for i = 0 to n_L - 1 // copy A[p:q] into L[0:n_L - 1]
 5 	 L[i] = A[p+i]
 6 for j = 0 to n_R - 1 // copy A[q + 1:r] into R[0:n_R - 1]
 R[j] = A[q+j+1]
 8 i = 0 // i indexes the smallest remaining element in L
 9 j = 0 // j indexes the smallest remaining element in R
10 k = p // k indexes the location in A to fill
11 // As long as each of the arrays L and R contains an unmerged element,
          copy the smallest unmerged element back into A[p:r].
12 while i < n_L and j < n_R
13 if L[i] \leq R[j]
      A[k] = L[i]
14
15 i = i + 1
16 else A[k] = R[j]
j = j + 1
   k = k + 1
18
19 // Having gone through one of L and R entirely, copy the
    " remainder of the other to the end of A[p:r].
20 while i < n_L
21 	 A[k] = L[i]
i = i + 1
23 	 k = k + 1
24 while j < n_R
25 	 A[k] = R[j]
j = j + 1
27 	 k = k + 1
```

CSE217: Data Structures & Algorithm Analysis

> Runtime of Merge

 $T(n) = \Theta(n)$

MERGE(A, p, q, r)

```
1: n_1 = q - p + 1
2: n_2 = r - q
 3: let L[1 \dots n_1 + 1] and R[1 \dots n_2 + 1] be new arrays
 4: for i = 1 to n_1 do
5: L[i] = A[p+i-1] \Theta(n)
 6: for j = 1 to n_2 do
7: R[j] = A[q+j] \quad \Theta(n)
8: L[n_1+1]=\infty
9: R[n_2+1]=\infty
10: i = 1
                                        only 1 loop
11: j = 1
12: for k = p to r do
                                  \Theta(n)
    if L[i] \leq R[j] then
13:
            A[k] = L[i]
14:
    i = i + 1
15:
        else
16:
             A[k] = R[j]
17:
            j = j + 1
18:
```

Set up arrays L and R (boring)

Actual merge

Correctness of Merge (1)

- Loop invariant: At the start of the iteration of the last for loop,
 - the subarray $A[p\dots k-1]$ contains the k-p smallest elements of $L[1\dots n_1+1]$ and $R[1\dots n_2+1]$, in sorted order and
 - L[i] and R[j] are the smallest elements of their arrays that have not been copied back to A.
- Initialisation: the loop starts with k=p, hence A[p ... k-1] is empty and contains the k-p=0 smallest elements of L,R. As i=j=1,L[i] and R[j] are the smallest uncopied elements.

$$A = \begin{bmatrix} 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ ... & 2 & 4 & 5 & 7 & 1 & 2 & 3 & 6 & ... \\ \hline k & & & & & & \\ L & 2 & 4 & 5 & 7 & \infty & R & 1 & 2 & 3 & 6 & \infty \\ \hline i & & & & & & & \\ j & & & & & & \\ \end{bmatrix}$$

CSE217: Data Structures & Algorithm Analysis

Correctness of Merge (2)

- Loop invariant: At the start of the iteration of the last for loop,
 - the subarray $A[p\dots k-1]$ contains the k-p smallest elements of $L[1\dots n_1+1]$ and $R[1\dots n_2+1]$, in sorted order and
 - L[i] and R[j] are the smallest elements of their arrays that have not been copied back to A.
- Maintenance: suppose R[j] < L[i] .Then R[j] is the smallest element not copied back. $A[p \dots k-1]$ contains the k-p smallest elements, and after copying R[j] into $A[k], A[p \dots k]$ contains the k-p+1 smallest elements. Incrementing k and j reestablishes the loop condition.

Argue similarly for $R[j] \ge L[i]$.

Correctness of Merge (3)

- Loop invariant: At the start of the iteration of the last for loop,
 - the subarray $A[p \dots k-1]$ contains the k-p smallest elements of $L[1 \dots n_1+1]$ and $R[1 \dots n_2+1]$, in sorted order and
 - L[i] and R[i] are the smallest elements of their arrays that have not been copied back to A.
- **Termination:** at termination, k = r + 1. By the loop invariant, A[p ... k 1] = A[p ... r] contains the $k p = r p + 1 = n_1 + n_2$ smallest elements of $L[1 ... n_1 + 1]$ and $R[1 ... n_2 + 1]$, in sorted order. That's all elements in L and R apart from the two ∞ .

MergeSort: The Complete Algorithm

Notation: $\lfloor x \rfloor$ means "floor of x" (rounding down).

MergeSort(A, p, r)

```
1: if p < r then
```

2:
$$q = |(p+r)/2|$$

- 3: MERGESORT(A, p, q)
- 4: MERGESORT(A, q + 1, r)
- 5: MERGE(A, p, q, r)

Initial call: MERGESORT(A, 1, A.length)

Operation of MergeSort

MergeSort(A, p, r)

- 1: if p < r then
- 2: $q = \lfloor (p+r)/2 \rfloor$
- 3: MERGESORT(A, p, q)
- 4: MERGESORT(A, q + 1, r)
- 5: MERGE(A, p, q, r)

Correctness of MergeSort

$\frac{\text{MERGESORT}(A, p, r)}{1: \text{ if } p < r \text{ then}}$ $2: \quad q = \lfloor (p + r)/2 \rfloor$ $3: \quad \text{MERGESORT}(A, p, q)$ $4: \quad \text{MERGESORT}(A, q + 1, r)$ $5: \quad \text{MERGE}(A, p, q, r)$

Proof by Induction:

Assume MergeSort sorts correctly arrays of size <n and show that it sorts correctly an array of size n

- Base case: n=1 => the algorithm returns at line 1 with the sorted array
 of a single element
- Inductive step: by inductive assumption lines 3 and 4 return two subarrays sorted correctly. We have already proved that **Merge** is correct hence after its execution the algorithm will return the array A sorted

MergeSort: Runtime Analysis

- Looking for time T(n): time for MergeSort to sort n elements.
- Assume for simplicity that n is an exact power of 2.

$\overline{\mathrm{MERGESORT}(A,p,r)}$			Time for
1: if $p < r$ then		$\Theta(1)$	✓ MergeSort
2:	$q = \lfloor (p+r)/2 \rfloor$	$\Theta(1)$	to sort $n/2$ elements.
3:	MergeSort(A, p, q)	T(n/2)	elements.
4:	MergeSort(A, q + 1, r)	T(n/2)	
5:	$\mathrm{Merge}(A,p,q,r)$	$\Theta(n)$	

Yields a recurrence equation where T(n) depends on T(n/2):

- If n=1, then p=r, and the algorithm terminates in constant time $\Theta(1)$
- Otherwise: T(n) = D(n) + a T(n/b) + C(n)
 - D(n) time to *divide* into subproblems: $\Theta(1)$
 - a T(n/b) time to solve a subproblems each of size n/b: 2 T(n/2)
 - C(n) time to *conquer* (to combine the obtained sub-solutions): $\frac{O}{16}(n)$

MergeSort: Runtime Analysis

- Looking for time T(n): time for MergeSort to sort n elements.
- Assume for simplicity that n is an exact power of 2.

$\overline{\mathrm{MERGESORT}(A,p,r)}$		Time	Time for
1: if $p < r$ then		$\Theta(1)$	✓ MergeSort
2:	$q = \lfloor (p+r)/2 \rfloor$	$\Theta(1)$	to sort $n/2$ elements.
3:	MergeSort(A, p, q)	T(n/2)	elements.
4:	MergeSort $(A, q + 1, r)$	T(n/2)	
<u>5:</u>	Merge(A, p, q, r)	$\Theta(n)$	

• Yields a recurrence equation where T(n) depends on T(n/2)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 2^0 = 1\\ 2T(n/2) + \Theta(n) & \text{if } n = 2^k, \text{ for } k \ge 1 \end{cases}$$

• "The time for MergeSort to sort n elements is twice the time for MergeSort to sort n/2 elements plus $\Theta(n)$ time (for Merge)."

CSE217: Data Structures & Algorithm Analysis

How to Solve a Recurrence Equation

$$T(n) = \begin{cases} d & \text{if } n = 2^{0} \\ 2T(n/2) + cn & \text{if } n = 2^{k}, \text{ for } k \ge 1 \end{cases}$$

- 1. Substitution method (Sec 4.3): guess a solution and verify using induction (over k).
 - Tutorial exercise.
- 2. Draw a recursion tree (Sec 4.4), add times across the tree.
- 3. Use the **Master Theorem** (Sec 4.5) to solve a general recurrence equation in the shape of:

$$T(n) = aT(n/b) + f(n).$$

Runtime Visualised as Recursion Tree

Runtime Visualised as Recursion Tree

20

Comparison with InsertionSort

- MergeSort always runs in time $\Theta(n \log n)$.
- Way better than worst case and average case of $\Theta(n^2)$ for InsertionSort.
- Worse than the best-case time $\Theta(n)$ of InsertionSort.
 - InsertionSort might be faster if your array is almost sorted.
- MergeSort needs more space than InsertionSort:
 - MergeSort always stores $\Omega(n)$ elements outside the input.
 - InsertionSort only needs O(1) additional space.
 - We say that InsertionSort sorts in place:

A sorting algorithm sorts in place if it only uses O(1) additional space.

The Master Theorem (1)

- Provides a "cookbook" method for solving recurrences of the form T(n)=aT(n/b)+f(n) where a>0 and b>1
- f(n) is called the driving function and T(n) is called the master recurrence
- The master recurrence T(n) describes the running time of a divide and conquer algorithm that divides a problem of size n into a subproblems each of size n/b < n
 - -> the algorithm solves each subproblem in time *T(n/b)*
- The driving function f(n) describes the cost of dividing the problem before the recursion (divide), as well as the cost of combining the results together (conquer)

The Master Theorem (Statement)

Let a > 0 and b > 1 be constants, and let f(n) be non-negative for large enough n. Then, the solution of the recurrence function defined over $n \in \mathbb{N}$

$$T(n) = a T(n/b) + f(n)$$

has the following asymptotic behaviour:

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

The Master Theorem (Properties)

 Allows you to state the master recurrence T(n) without floors and ceilings even when you don't have problems of exactly the same size

eg.,
$$T(n) = T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lceil \frac{n}{2} \right\rceil) + \theta(n)$$

• The theorem does not apply to all possible recurrence equations but it does cover the vast majority of those that arise in practice

> The Master Theorem: closer look

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
- $n^{\log_b a}$ is called the watershed function
- Case 1: the watershed function must grow polynomially faster than f(n) by at least a factor $\theta(n^{\epsilon})$ for some constant $\epsilon > 0$
- Case 2: watershed and driving (f(n)) functions grow nearly asymptotically at the same rate (you get the same growth for k=0 common situation)
- Case 3: the watershed function must grow polynomially slower than f(n) by at least a factor $\theta(n^{\epsilon})$ for some constant $\epsilon>0$ + regularity condition must hold

> The Master Theorem: MergeSort example

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
- MergeSort: $T(n) = 2T(n/2) + \theta(n)$
- a=2, b=2, f(n) = θ (n) watershed function: $n^{\log_b a} = n^{\log_2 2} = n^1 = n$
- Does Case 1 hold? Does the watershed function grow polynomially faster than f(n)?
- Does Case 3 hold? Does the watershed function grow polynomially slower than f(n)?

> The Master Theorem: MergeSort example

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
- MergeSort: $T(n) = 2T(n/2) + \theta(n)$
- a=2, b=2, f(n) = θ (n) watershed function: $n^{\log_b a} = n^{\log_2 2} = n^1 = n$
 - Does Case 2 hold?

Yes! for k=0,
$$f(n) = \Theta(n^{\log_b a} \log^0 n) = \Theta(n)$$

• So the solution is $T(n) = n^{\log_b a} \log^{k+1} n = \Theta(n \log n)$

> The Master Theorem: Further examples (1)

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
- T(n) = 9T(n/3) + n
- a=9, b=3, f(n) = n watershed function: $n^{\log_b a} = n^{\log_3 9} = n^2$
- Does Case 1 hold? Does the watershed function must grow polynomially faster than f(n)?

Yes!
$$f(n) = n = O(n^{\log_b a - \epsilon}) = O(n^{2 - \epsilon})$$
 for any $\epsilon < 1$

• So the solution is $T(n) = \theta(n^{\log_b a}) = \theta(n^2)$ CSE217: Data Structures & Algorithm Analysis

> The Master Theorem: Further examples (2)

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
- $T(n) = 3T(n/4) + n \log n$
- a=3, b=4, f(n) = n log n, watershed function: $n^{\log_b a} = n^{\log_4 3} = n^{0.793}$
- Does Case 1 hold? Does the watershed function must grow polynomially faster than f(n)?

> The Master Theorem: Further examples (2)

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
- $T(n) = 3T(n/4) + n \log n$
- a=3, b=4, f(n) = n log n, watershed function: $n^{\log_b a} = n^{\log_4 3} = n^{0.793}$
- Does Case 3 hold? Does the watershed function must grow polynomially slower than f(n)?

Yes!
$$f(n) = n \log n = \Omega(n^{\log_b a + \epsilon}) = \Omega(n^{0.793 + \epsilon})$$
 for any $0 < \epsilon < 0.207$ and $af\left(\frac{n}{b}\right) = 3\left(\frac{n}{4}\right)(\log n/4) \le c \ n \log n$ for $c = 3/4$

So the solution is $T(n) = \theta(f(n)) = \theta(n \log n)$ CSE217: Data Structures & Algorithm Analysis

Summary

- The divide-and-conquer design paradigm
 - Divides a problem into smaller subproblems of the same kind
 - Solves these subproblems recursively, and then
 - Combines these solutions to an overall solution.
- MergeSort uses divide-and-conquer to sort in time $\Theta(n \log n)$ (best case = worst case).
- It's possible to sort n elements in worst-case time $\Theta(n \log n)$!
- Drawback: MergeSort does not sort in place.
 - "In place": sorting using only O(1) additional space.
- The runtime of recursive algorithms can be analysed by solving a recurrence equation.