Guías

Moisés Amundarain 13-05-2024

${\bf \acute{I}ndice}$

Guía 04
1.1. entorno quote
1.2. entorno flushletf
1.3. listas
Guía 05
2.1. ecuación de Schrödinger
2.2. más ecuaciones
2.3. ecuaciones de mecánica

1. Guía 04

1.1. entorno quote

"El primer principio es que no te debes engañar a ti mismo y tú eres la persona que más fácilmente te engaña. Así que hay que tener mucho cuidado con eso. Una vez que no te engañas a ti mismo, es fácil que no engañes a los otros científicos" Richard Feynman [1]

1.2. entorno flushletf

"El primer principio es que no te debes engañar a ti mismo y tú eres la persona que más fácilmente te engaña. Así que hay que tener mucho cuidado con eso. Una vez que no te engañas a ti mismo, es fácil que no engañes a los otros científicos" Richard Feynman [2]

1.3. listas

Esta es una lista

- uno
- \bullet dos
- **3**

Esta es otra lista

- 1. 1
- 2. 2
- 3. tres

2. Guía 05

2.1. ecuación de Schrödinger

$$-\frac{\hbar^2}{2m}\nabla^2\Psi + V(\vec{x})\Psi = i\hbar\frac{\partial\Psi}{\partial t}$$

2.2. más ecuaciones

$$\int \sin^2(x)dx = \frac{x - \sin(x)\cos(x)}{2}$$
$$v = c\sqrt{1 - \frac{m^2c^4}{(mc^2 + K)}}$$
$$\vec{F} = \frac{d\tilde{p}}{dt} = \frac{d(\gamma\tilde{v})}{dt} = m\gamma\vec{a} = \frac{m\vec{a}}{[1 - (v/c)]^{3/2}}$$

2.3. ecuaciones de mecánica

$$\Delta \vec{r} = \Delta r_x \hat{x} + \Delta r_y \hat{y} + \Delta r_z \hat{z} \tag{1}$$

$$\langle \vec{v} \rangle \frac{\Delta \vec{r}}{\Delta t}$$
 (2)

Referencias

- [1] Guía 04 CC cita de Richard Feynman
- [2] Guía 04 CC cita de $Richard\ Feynman$