

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination

April 2018

Max. Marks: 100 Class: S.E.

Course Code: IT41 / CE41

Name of the Course: Design And Analysis of Algorithms

Duration: 3 Hrs Semester: IV

Branch: IT/COMP

Instructions:

(1) All Questions are Compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Question	Overt			
No. Q. 1 a)	Question Write a short note on Growth function.			
0.11)		05	C	
Q. 1 b)	Solve the given recurrence using Master Method Theorem: i) $T(n)=3T(n/2)+n^2$ ii) $T(n)=T(n/2)+2^n$	05	CC	
Q. 1 c)	Write an algorithm :			
	to find Min and Max on the following elements. Show the tree of recursive 22 13 -5 -8 15 60 17 31 47	10	CO	
	Apply Dynamic programming approach to solve Traveling Sales Persons problem for the given instance of cost matrix 0 2 9 10			
	$ \begin{array}{c ccccc} 0 & 2 & 9 & 10 \\ \hline 1 & 0 & 6 & 4 \\ 15 & 7 & 0 & 8 \\ 6 & 3 & 12 & 0 \end{array} $	10	CO3	
7-5 m	onsider the following set of frequencies. =2, B=6, C=4, D=15, E=7, F=22, G=9, H=17. and the Huffman code for the same.			
	OR I	0 0	CO4	
		1	1	

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(Autonomous College Affiliated to University of Mumbai)

	Write an a example of	algorithm of S	String matchin	ng with Finit	e Automata. Give	one		
Q.5a)	Logo-motion is a sports apparel firm that manufactures jackets, hats, sweat outfits, and T-shirts for college and professional athletic teams. It has contracted with the State University Bookstore for two types of logo jackets, a deluxe jacket and a regular jacket. The deluxe jacket is heavier, with more pockets, a nicer lining, and an embroidered school name and logo. The regular jacket has sewn-on prefabricated logos and lettering. The major steps in the manufacture of these jackets are cutting the material, sewing, and decorating with embroidery or sewn-on items. The following table shows the resource requirements for each type of jacket and total weekly availability of resources.							
	School Jacket	Cutting (hr.)	Sewing (hr.)	Decoration (hr.)	Profit(\$)			
	Deluxe	0.16	0.47	0.40	18		CO	
	Regular 3	0.15	0.28	0.14	12			
	Resource Availability	40.00	80.00	55.00				
	maximize profii) Write the Liii) Convert the	it. P model derive given LP Prin	ed in (i) into sl mal Problem i	lack form. nto Dual Prob	etermine how man oduce in order t	05 02 03		
(. b)						1		
. b)	subject to $10x_1 + 2x_2 + 8x_3 + 8x_4 + 8x_5$	$0x_2 \le 120$ $2 \le 80$						
5. b)	subject to $10x_1 + 2x_1$	$0x_2 \le 120$ $2 \le 80$	₹ OR					