Chapter 2: Non-parametric spectral estimation

PSD definitions and properties

Assume a wide sense stationary random sequence y(n).

Denote $r(k) = R_Y(k)$ its autocorrelation sequence, which can be defined more generally as

$$r(k) = E\{y(n)y^*(n-k)\}.$$
 (5)

Note that r(k) becomes the autocovariance sequence (ACS) if the process has zero mean. Let S(f) be its **PSD**.

Our goal:

Spectral estimation problem

From a finite length record $\{y(n)\}_{n=0}^{N-1}$ of y(n), determine an estimate $\hat{S}(\omega)$ of its power spectral density $S(\omega)$.

Non-parametric spectral estimation is based on the definitions of PSD:

First definition of the PSD: from the Wiener-Khinchin Theorem

$$S(\omega) = \mathcal{F}\{r(k)\} = \sum_{k=-\infty}^{+\infty} r(k) e^{-j\omega k}$$
 (6)

cf. eqn. (3) — note that $S(\omega)$ and S(f) are related through the change of variable $\omega=2\pi f$.

26 / 76

PSD definitions and properties (cont'd)

Second definition of the PSD: exploiting ergodicity

$$S(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{n=0}^{N-1} y(n) e^{-j\omega n} \right|^2 \right\}$$
 (7)

This second definition of the PSD is based on the fact that, for a wide sense ergodic process:

$$r(k) = \lim_{N \to \infty} E\left\{\frac{1}{N} \sum_{n=0}^{N-1} y(n)y^*(n-k)\right\}$$

and is valid under the condition that the sequence r(k) decays sufficiently rapidly:

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k=-N}^{N}|k||r(k)|=0.$$

These expressions will be justified in tutorial.

Properties of the PSD

- $S(\omega)$ is real valued and $S(\omega) \geq 0, \forall \omega \in \mathbb{R}$.
- $\bullet \ \ S(\omega+2\pi)=S(\omega), \forall \omega\in\mathbb{R} \ \Rightarrow \text{ we can restrict our attention to } \omega\in[-\pi,\pi[\text{ or } f\in[-\frac{1}{2},\frac{1}{2}[.$
- $S(\omega) = S(-\omega)$ if $y(n) \in \mathbb{R}$. Otherwise, $S(\omega) \neq S(-\omega)$ in general.

Periodogram and correlogram methods

By dropping the expectation and the limit in 2nd PSD definition (7), we can naturally define the

Periodogram

$$\hat{S}_{P}(\omega) = \frac{1}{N} \left| \sum_{n=0}^{N-1} y(n) e^{-j\omega n} \right|^{2} = \frac{1}{N} |Y_{N}(\omega)|^{2}$$
(8)

where $Y_N(\omega) = \mathcal{F}\{y_N(n)\}\$ is the DTFT of the *N*-point data sequence:

$$y_N(n) = \left\{ egin{array}{ll} y(n) & 0 \leq n \leq (N-1) \\ 0 & ext{otherwise.} \end{array} \right.$$

By truncating the sum and using an ACS estimate in 1st PSD definition (6), we can define the

Correlogram

$$\hat{S}_{C}(\omega) = \sum_{k=-(N-1)}^{N-1} \hat{r}(k) e^{-j\omega k}$$
(9)

where $\hat{r}(k)$ is an estimate of the covariance r(k) at lag k, from $y_N(n)$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Estimation of the autocovariance sequence (ACS)

Unbiased ACS estimator

$$\hat{r}(k) = \frac{1}{N-k} \sum_{n=k}^{N-1} y(n) y^*(n-k), \qquad 0 \le k \le N-1$$
 (10)

Unbiased because $E\{\hat{r}(k)\} = r(k)$.

Biased ACS estimator

$$\hat{r}(k) = \frac{1}{N} \sum_{n=k}^{N-1} y(n) y^*(n-k), \qquad 0 \le k \le N-1$$
 (11)

Biased because $E\{\hat{r}(k)\} = \left(1 - \frac{|k|}{N}\right) r(k)$.

In both cases, we constrain $\hat{r}(k) = \hat{r}^*(-k)$ for k < 0.

The biased ACS estimator is preferred because:

- it presents reduced variance for large k (take, e.g., k = N 1)
- it is guaranteed to be semi-definite positive (important when introducing the covariance matrix; it will be recalled in [Chap. 3])
- the estimation error in $\hat{r}(k)$ is on the order of $\frac{1}{\sqrt{N}}$.

29 / 76

V. Zarzoso

Link between periodogram and correlogram

Link between $\hat{S}_{\text{C}}(\omega)$ and $\hat{S}_{\text{P}}(\omega)$

If the biased ACS estimate of r(k) is used in $\hat{S}_{C}(\omega)$, then:

$$\hat{S}_{\mathsf{C}}(\omega) = \hat{S}_{\mathsf{P}}(\omega).$$

Proof: in tutorial.

Consequence: both can be analyzed simultaneously.

Spectral estimators are random processes

Each N-sample realization of y(n) will provide a (generally) different spectral estimate.

Hence, $\hat{S}_{C}(\omega)$, $\hat{S}_{P}(\omega)$ and in general any spectral estimator can be considered as random processes that are functions of frequency ω .

Consequence: spectral estimation quality can be measured by means of performance indices (statistics) such as mean, variance and mean square error.

Performance analysis

Parameter estimation accuracy: mean square error (MSE), bias, variance

Let $\hat{\theta}$ be an estimator of a quantity $\theta \in \mathbb{R}$. The estimator's **mean square error (MSE)** is given by

$$\mathsf{MSE}\{\hat{\theta}\} \stackrel{\mathsf{def}}{=} \mathsf{E}\{(\hat{\theta} - \theta)^2\} = (\mathsf{E}\{\hat{\theta}\} - \theta)^2 + \mathsf{E}\{(\hat{\theta} - \mathsf{E}\{\hat{\theta}\})^2\} = \mathsf{bias}\{\hat{\theta}\}^2 + \mathsf{var}\{\hat{\theta}\}$$

where bias $\{\hat{\theta}\} = (\mathsf{E}\{\hat{\theta}\} - \theta)$ and $\mathsf{var}\{\hat{\theta}\} = \mathsf{E}\{(\hat{\theta} - \mathsf{E}\{\hat{\theta}\})^2\}$.

Extension to complex-valued case is straightforward by replacing $|\cdot|^2$ for $(\cdot)^2$.

Unbiasedness

Let $\hat{\theta}_N$ be an estimator of a quantity θ computed from a set of N samples of available data. The estimator is said to be **unbiased** if $\mathbf{E}\{\hat{\theta}_N\} = \theta$.

The estimator is asymptotically unbiased if $\lim_{N\to\infty} E\{\hat{\theta}_N\} = \theta$.

Consistency

An estimator $\hat{\theta}$ is said to be **consistent** if $\lim_{N\to\infty} \text{var}\{\hat{\theta}_N\} = 0$.

The estimator is **MSE** consistent if $\lim_{N\to\infty} MSE\{\hat{\theta}_N\} = 0$.

MSE consistency implies variance consistency and asymptotic unbiasedness.

Performance analysis — bias of the periodogram

From the link between $\hat{S}_{P}(\omega)$ and $\hat{S}_{C}(\omega)$, and the definition of correlogram (9):

$$\mathsf{E}\{\hat{S}_\mathsf{P}(\omega)\} = \mathsf{E}\{\hat{S}_\mathsf{C}(\omega)\} = \sum_{k=-(N-1)}^{N-1} \mathsf{E}\{\hat{r}(k)\}\mathsf{e}^{-\jmath\omega k}.$$

From the definition of the biased ACS estimate (11):

$$\mathsf{E}\{\hat{S}_{\mathsf{P}}(\omega)\} = \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N}\right) r(k) \mathrm{e}^{-\jmath \omega k}.$$

Define the Bartlett or triangular window:

$$w_{\mathrm{B}}(k) = \left\{ egin{array}{ll} 1 - rac{|k|}{N} & 0 \leq |k| \leq N-1 \\ 0 & \mathrm{otherwise.} \end{array}
ight.$$

Then:

$$\mathsf{E}\{\hat{S}_{\mathsf{P}}(\omega)\} = \sum_{k=-\infty}^{+\infty} w_{\mathsf{B}}(k) r(k) e^{-j\omega k}.$$

DTFT of a product \Leftrightarrow convolution of the true PSD and Bartlett window in the frequency domain:

$$\mathsf{E}\{\hat{\mathsf{S}}_{\mathsf{P}}(\omega)\} = \mathsf{S}(\omega) * W_{\mathsf{B}}(\omega) \stackrel{\mathsf{def}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathsf{S}(\xi) W_{\mathsf{B}}(\omega - \xi) d\xi.$$

V. Zarzoso

PNS - ELEC4 - Spectral Ana

Performance analysis — bias of the periodogram (cont'd)

The mean of the estimator is the convolution of the actual PSD $S(\omega)$ and the Bartlett kernel:

$$W_{\mathrm{B}}(f) = \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N}\right) \mathrm{e}^{-\jmath \omega k} = \frac{1}{N} \left[\frac{\sin(\omega N/2)}{\sin(\omega/2)}\right]^2$$

Figure: Normalized DTFT of the Bartlett window, $W_B(f)/W_B(0)$, for N=25 samples.

Apr-Jun'20 33 / 76

Performance analysis — bias of the periodogram (cont'd)

Ideally: $\mathsf{E}\{\hat{\mathsf{S}}_\mathsf{P}(\omega)\}$ should be as close as possible to $S(\omega) \Leftrightarrow W_\mathsf{B}(\omega)$ should be as close as possible to Dirac's impulse $\delta(\omega)$.

Asymptotically:

$$\lim_{N\to\infty} W_{\mathsf{B}}(\omega) = \delta(\omega) \quad \Rightarrow \quad \lim_{N\to\infty} \mathsf{E}\{\hat{S}_{\mathsf{P}}(\omega)\} = S(\omega).$$

The periodogram is asymptotically unbiased estimator of the PSD (even though implicitly computed from the biased ACS estimate).

In practice, for finite sample size *N*, **two side effects**:

Spectral smearing (or smoothing): caused by main lobe of $W_B(\omega)$

The half-power bandwidth of $W_{\rm B}(\omega)$ can be shown to be approximately $f_{\rm 3dB} \simeq 1/N$.

This is the fundamental resolution of the periodogram: $\hat{S}_P(\omega)$ cannot resolve frequency components spaced by less than $\Delta f_{\min} \simeq 1/N$ sample⁻¹ (or $\Delta \omega_{\min} \simeq 2\pi/N$ rad/sample).

Power leakage: caused by sidelobes of $W_B(\omega)$

A frequency component present at f_0 will leak at frequencies $f_0 + p/N$, $p \in \mathbb{Z}$.

Performance analysis — variance of the periodogram

Variance of the periodogram

For *N* sufficiently large, we have:

$$\operatorname{var}\{\hat{S}_{\mathsf{P}}(\omega)\} \approx S^2(\omega).$$

Hence, the periodogram is an inconsistent estimator of the PSD.

Consequences:

- Variance <u>cannot</u> be improved by increasing the sample size N.
- Inconsistency as spectral smearing has an adverse effect on resolvability properties.

These results will be illustrated in a computer lab.

35 / 76

Performance analysis — bias of the correlogram with unbiased ACS

What happens if we use the unbiased ACS estimator (10)?

$$\mathsf{E}\{\hat{r}(k)\}=r(k), \qquad k\geq 0.$$

The expected correlogram (9) becomes

$$\mathsf{E}\{\hat{S}_\mathsf{C}(\omega)\} = \sum_{k=-(N-1)}^{N-1} r(k) \mathrm{e}^{-\jmath \omega k} = \sum_{k=-\infty}^{+\infty} w_\mathsf{R}(k) r(k) \mathrm{e}^{-\jmath \omega k}$$

with

$$w_{\mathsf{R}}(k) = \left\{ \begin{array}{ll} 1 & \qquad k = -(N-1),...,0,...,N-1 \\ 0 & \qquad \text{otherwise}. \end{array} \right.$$

 $w_{R}(k)$ is a **rectangular window**, with DTFT:

$$W_{\mathsf{R}}(\omega) = \frac{\sin[(2N-1)\omega/2]}{\sin[\omega/2]}.$$

Performance analysis — bias of the correlogram with unbiased ACS

- Positive effect: narrower main lobe → narrower smearing → improved frequency resolution.
- Negative effect: more prominent sidelobes \rightarrow increased spectral leakage.

Figure: Normalized DTFT of the rectangular window (left) and Bartlett window (right), for N = 25 samples.

4 D > 4 B > 4 B > 4 B > 9 Q P

V. Zarzoso

Improved periodogram-based methods

Motivation

- \bullet Periodogram: based on the FFT \to simple, computationally efficient PSD estimate.
- Asymptotically unbiased but inconsistent estimator: variance does not improve with sample size N.
- Periodogram variance mainly caused by ACS estimates with large |k|, which have large variance due to small number of contributing samples.
- To improve variance, two main families of approaches:
 - periodogram smoothing: Blackman-Tuckey, Daniell
 - periodogram averaging: Bartlett, Welch.