

HOUSE PRICE PREDICTION

Team Insight Explorers - Präsentation

DATA EXPLORATION PROJECT

AGENDA

- > Idee & Zielsetzung
- > Setup
 - > Datensatz
 - > Technologien und Bibliotheken
 - > Generelles Vorgehen
 - > Wie setzen wir Machine Learning ein?
- > Umsetzung & Ergebnisse
 - > Exploratory Analysis
 - > Datenvorverarbeitung
 - > Gütemaß RMSE
 - > Vorstellung der Ergebnisse
 - Kritische Reflexion

Idee & Zielsetzung

 Vorhersage von Hauspreisen in den USA auf Basis verschiedener Faktoren (Grundstückgröße, Baujahr, Lage...) durch den Einsatz von ML-Regressions-Modellen Wirtschaftlicher Nutzen: Die Vorhersage von Preisen führt zu einer besseren Informationslage, die es ermöglicht, bessere Kaufentscheidungen zu treffen.

Introduction

Haus 1

Wohnfläche: 109m²

Bäder: 1

Stockwerke: 1

Baujahr: 1955

Preis: 221.900\$

Haus 2

Wohnfläche: 156m²

Bäder: 2

Stockwerke: 1

Baujahr: 1987

Preis: 510.000\$

Setup

Unser Datensatz:

- Id
- Date
- Price
- Bedrooms
- Bathrooms
- Sqft_living
- Sqft_lot
- Floors

- Waterfront
- View
- Condition
- Grade
- Design
- Sqft_above
- Sqft_basement
- Yr built

- Yr_renovated
- Zipcode
- Lattitude
- Longitude
- Sqft_living15
- Sqft_lot15

Technologien und Bibliotheken

Entwicklungsumgebung: Google Collab

- → Notebooks
- → Gehostete Laufzeit
- → Gemeinsames Coden
- → Einfaches Sharing

Bibliotheken:

Bekannte Python-Module

- NumPy
- Pandas
- Scikit-learn
- Matplotlib

Generelles Vorgehen

Wie setzen wir Machine Learning ein?

Umsetzung & Ergebnisse

Exploratory Analysis

- Genereller Datenüberblick
- Statistischer Datenüberblick
- Histogramme
- Korrelationen
- Geografische Lage

Überblick über den Datensatz verschaffen

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
count	2.161300e+04	2.161300e+04	21613.000000	21613.000000	21613.000000	2.161300e+04	21613.000000
mean	4.580302e+09	5.400881e+05	3.370842	2.114757	2079.899736	1.510697e+04	1.494309
std	2.876566e+09	3.671272e+05	0.930062	0.770163	918.440897	4.142051e+04	0.539989
min	1.000102e+06	7.500000e+04	0.000000	0.000000	290.000000	5.200000e+02	1.000000
25%	2.123049e+09	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000

Methoden *info()* und *describe()* für schnelle Beschreibung des Datensatzes

Plotten von Histogrammen

Suche nach Korrelationen mit corr()

Exploratory Analysis

Vorverarbeitung

- Train-Test-Split:80% Trainingsdaten, 20% Testdaten
- > Split mit scikit-learn Funktion
- > Cross-Validierung erfolgt später

Vorverarbeitung

Gütemaß RMSE

RMSE als zentrales Maß

-> RMSE: Root Mean Square Error

$$= \sqrt{(f-o)^2}$$

(f = Vorhersagen, o = reale Daten)

"Um wieviel Dollar liegt die Vorhersage im Schnitt daneben?"

Vorstellung unserer Ergebnisse

Lineare Regression

RMSE:

Train data	X-Validation	Test data
190 195	190 736	189 827

R2-Wert auf Testdaten: 0,71

- Underfitting, Modell zu einfach
- Zu viele Features sind nicht linear

```
Correlations to price
price
              1.000000
sqft living
             0.702035
grade
             0.667434
sqft above
             0.605567
sqft living15
             0.585379
             0.525138
bathrooms
             0.397293
view
sqft basement
             0.323816
             0.308350
bedrooms
             0.307003
lat
waterfront
             0.266369
floors
             0.256794
             0.126434
yr renovated
             0.089661
saft lot
sqft lot15
             0.082447
yr built
             0.054012
condition
             0.036362
             0.021626
long
id
             -0.016762
zipcode
             -0.053203
Name: price, dtype: float64
```

Ensemble Methoden

Quelle: ML Review. Gradient Boosting from scratch. Abrufbar unter https://blog.mlreview.com/gradient-boosting-from-scratch-1e317ae4587d

Vorstellung unserer Ergebnisse

Random Forest Regression

RMSE:

Train data X-Validation Test data

45 617 122 635 120 174

R2-Wert auf Testdaten: 0,88

- Overfitting
- Deutlich besser als linear Regression

Quelle: Start it up. Random Forest Regression. Abrufbar unter: https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f

Vorstellung unserer Ergebnisse

Gradient Boosting Regression

RMSE:

Train data X-Validation

Test data

115 619

127 740

127 794

R2-Wert auf Testdaten: 0,87

- Leichtes Overfitting
- Gute Alternative zum Random Forest

Quelle: ML Review. Gradient Boosting from scratch. Abrufbar unter https://blog.mlreview.com/gradient-boosting-from-scratch-1e317ae4587d

Vorstellung unserer Ergebnisse: Vergleich der Modelle

 Random Forest Regressor mit der höchsten Performance

 Gradient Boosting ähnlich passend und zudem mit weniger Overfitting als der Random Forest

 Mit Hyperparameter-Optimierung (Grid Search) konnten wir nur einen kleinen Einfluss auf die Performance nehmen

Kritische Reflexion

Lessons Learned:

- Erlernte Theorie konnte erfolgreich in Praxis umgesetzt werden
- Modell-Performance noch nicht optimal
- Zeitlicher Aspekt wird nicht berücksichtigt
- → Dataset könnte noch größer sein
- → Dataset sollte Kaufpreise mehrerer Jahre beinhalten

Vielen Dank!

Insight Explorers