Public and Private IPv4 Addresses

Private Addresses:

- 10.0.0.0/8 or 10.0.0.0 to10.255.255.255
- 172.16.0.0 /12 or 172.16.0.0 to 172.31.255.255
- 192.168.0.0 /16 or 192.168.0.0 to 192.168.255.255

Private addresses cannot be routed over the Internet

Special Use IPv4 Addresses

- Loopback addresses 127.0.0.0 /8 or 127.0.0.1 to 127.255.255.254
- Link-Local addresses or Automatic Private IP Addressing (APIPA) addresses 169.254.0.0 /16 or 169.254.0.1 to 169.254.255.254
- TEST-NET addresses 192.0.2.0/24 or 192.0.2.0 to 192.0.2.255

Pinging the Loopback Interface

```
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\NetAcad> ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes-32 time<1ms TTL-128
Ping statistics for 127.0.0.1:
    Packets: Sent - 4, Received - 4, Lost - 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum - Oms, Maximum - Oms, Average - Oms
C:\Users\NetAcad> ping 127.1.1.1
Pinging 127.1.1.1 with 32 bytes of data:
Reply from 127.1.1.1: bytes-32 time<1ms TTL-128
Ping statistics for 127.1.1.1:
    Packets: Sent - 4, Received - 4, Lost - 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum - Oms, Maximum - Oms, Average - Oms
C:\Users\NetAcad>
```

© 2013 Cisco and/or its affiliates. All rights reserved Cisco Public

Legacy Classful Addressing

Class A Specifics	
Address block	0.0.0.0 - 127.0.0.0*
Default Subnet Mask	/8 (255.0.0.0)
Maximum Number of Networks	128
Number of Host per Network	16,777,214
High order bit	0xxxxxxx

^{* 0.0.0.0} and 127.0.0.0 are reserved and cannot be assigned

Class B Specifics	
Address block	128.0.0.0 - 191.255.0.0
Default Subnet Mask	/16 (255.255.0.0)
Maximum Number of Networks	16,384
Number of Host per Network	65,534
High order bit	10xxxxxx

Class C Specifics	
Address block	192.0.0.0 - 223.255.255.0
Default Subnet Mask	/24 (255.255.255.0)
Maximum Number of Networks	2,097,152
Number of Host per Network	254
High order bit	110xxxxx

Classless Addressing

- Formal name is Classless Inter-Domain Routing (CIDR, pronounced "cider").
- Created a new set of standards that allowed service providers to allocate IPv4 addresses on any address bit boundary (prefix length) instead of only by a class A, B, or C address.

Assignment of IP Addresses

Section 7.2: IPv6 Addresses

Upon completion of this section, you should be able to:

- Explain the need for IPv6 addressing.
- Describe the representation of an IPv6 address.
- Describe types of IPv6 network addresses.
- Configure global unicast addresses.
- Describe multicast addresses.

The Need for IPv6

RIR IPv4 Exhaustion Dates

IPv4 and IPv6 Coexistence

- The migration techniques can be divided into three categories: Dual Tack, Tunneling, and Translation.
- Dual-stack allows IPv4 and IPv6 to coexist on the same network.
 Devices run both IPv4 and IPv6 protocol stacks simultaneously.

IPv4 and IPv6 Coexistence (cont.)

Tunneling is a method of transporting an IPv6 packet over an IPv4 network. The IPv6 packet is encapsulated inside an IPv4 packet.

Tunnelling

IPv4 and IPv6 Coexistence (cont.)

 Translation: Network Address Translation 64 (NAT64) allows IPv6-enabled devices to communicate with IPv4-enabled devices using a translation technique similar to NAT for IPv4. An IPv6 packet is translated to an IPv4 packet, and vice versa.

IPv6 Address Representation

Hextets – 4 Hexadecimal digits = 16 binary digits

IPv6 Address Representation (cont.)

Hexadecimal Numbering

Decimal and Binary equivalents of 0 to F Hexadecimal

Decimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal
0
1
2
3
4
5
6
7
8
9
A
В
С
D
E
F

IPv6 Address Representation (cont.)

Preferred Format Examples

2001	:	0DB8	:	0000	:	1111	:	0000	:	0000	:	0000	:	0200
2001	:	0DB8	:	0000	:	00A3	:	ABCD	:	0000	:	0000	:	1234
2001	:	0DB8	:	000A	:	0001	:	0000	:	0000	:	0000	:	0100
2001	:	0DB8	:	AAAA	:	0001	:	0000	:	0000	:	0000	:	0200
FE80	:	0000	:	0000	:	0000	:	0123	:	4567	:	89AB	:	CDEF
FE80	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
FF02	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
FF02	:	0000	:	0000	:	0000	:	0000	:	0001	:	FF00	:	0200
0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000

Rule 1 – Omit Leading 0's

Example 1

Preferred	2001:0DB8:0000:1111:0000:0000:0000:020							
No leading 0s	2001: DB8:	0:1111:	0:	0:	0: 200			

Example 2

Preferred	2001:0DB8:0000:A300:ABCD:0000:0000:1234							
No leading 0s	2001: DB8:	0:A300:ABCD:	0:	0:1234				

Example 3

Preferred	FF02:0000:0000:0000:0001:FF00:0						
No leading 0s	FF02:	0:	0:	0:	0:	1:FF00: 200	

Rule 2 – Omit All 0 Segments

Example 1

Preferred	2001:0DB8:0000:1111:0000:0000:0000:0200								
No leading 0s	2001: DB8: 0:1111: 0: 0: 0: 200								
Compressed	2001:DB8:0:1111::200								

Example 2

Rule 2 – Omit All 0 Segments (cont.)

Example 3

Preferred	FF02:0000:0000:0000:0000:0000:0000							
No leading 0s	FF02;	0:	0:	0:	0:	0:	0:	1
Compressed	FF02::1	L						

Example 4

Preferred	0000:0000:0000:0000:0000:0000:0000								
No leading 0s		0:	0:	0;	0:	0:	0:	0:	0
Compressed	::								