Day 11 Date: April 25, 2018

Moving towards Cauhcy's Theorem... Primitives

Definition let $f: \Omega \to \mathbb{C}$ be holomorphic. A primitive a.k.a. anti-derivative for f is a holomorphic function say $F: \Omega \to \mathbb{C}$ s.t. F'(z) = f(z).

Example f(z) = 2z is holomorphic on \mathbb{C} and $F = z^2$ is a primitive.

Exmaple let $\Omega = \mathbb{C} \setminus \{0\}$ and let $f(z) = \frac{1}{z^n}$ for $n \ge 1$.

- Case 1: $n \ge 2$ in this case F(z) is $\frac{1}{-n+1}z^{-n+1} = \frac{1}{(1-n)z^{n-1}}$ is a primitive.
- Case 2: if n=1 i.e. $f(z)=\frac{1}{z}$ does not have a primitive on $\Omega=\mathbb{C}\setminus\{0\}$. However if we consider $\Omega=\mathbb{C}\setminus(-\infty,0]$. On this region, f(z) has F(z)=Log(z).

Evaluating integrals with primitives

Theorem Let $f:\Omega\to\mathbb{C}$ be holomorphic with primitive F. Suppose we have a path γ in Ω . Then

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a))$$

pf. F'(z) = f(z). Use the F.T.C. with inverse chain rule in integrand.

Theorem let $f: \Omega \to \mathbb{C}$ be holomorphic with primitive $F: \Omega \to \mathbb{C}$ and let γ be closed curve in Ω . Then $\int_{\gamma} f(z)dz = 0$. pf use previous theorem.

Now we see why f(z)=1/z does not have a primitive on $\mathbb{C}\setminus\{0\}$. If it did, then we would have $\int_{|z|=1}^1 \frac{1}{z} dz=0$. This is wrong. In fact, let $\gamma(t)=e^{it}$ then $\int_0^{2\pi}=\frac{1}{e^{it}} i e^{it} dt=2\pi i\neq 0$.

Homotopy - continuously deforming one curve into another

Definition let Ω be a region in \mathbb{C} and let $\gamma_0, \gamma_1 : [0,1] \to \mathbb{C}$ be two closed curves in Ω . We say that γ_0 is Ω -homotopic to γ_1 if \exists continuous function $h : [0,1] \times [0,1] \to \Omega$ such that $h(t,0) = \gamma_0(t)$ and $h(t,1) = \gamma_1(t)$. Finally, we want h(0,s) = h(1,s) for closure.

Notaiton: $\gamma_0 \sim_{\Omega} \gamma_1$ signifies homotopy.

Theorem Let $\Omega \subseteq \mathbb{C}$ be a region and let $f: \Omega \to \mathbb{C}$ be holomorphic. Let $\gamma_0 \sim_{\Omega} \gamma_1$ be curves in Ω . Then

$$\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz.$$