

FW NXT

Snowflake deep neural network accelerator

Deep Learning

Input Image (3*224*224)Conv (11x11 s4) Maxpool (3x3 s2) Conv (5x5 s1) Maxpool (3x3 s2) Conv (3x3 s1) Conv (3x3 s1) Conv (3x3 s1) FCN (4096) FCN (4096) FC (1000) Prediction

Convolutional Neural Networks

- Compute intensive
- Embarrassingly parallel
- Comprise > 95% of the workload
- Comprised of mult-acc (MAC) ops

Input Image (3*224*224) Conv (11x11 s4) Maxpool (3x3 s2) Conv (5x5 s1) Maxpool (3x3 s2) Conv (3x3 s1) Conv (3x3 s1) Conv (3x3 s1) FCN (4096) FCN (4096) FC (1000) Prediction

Convolutional Neural Networks

- Make up ~1% of the workload
- Lesser parallelism to exploit
- Comprised of comparisons

Input Image (3*224*224) Conv (11x11 s4) Maxpool (3x3 s2) Conv (5x5 s1) Maxpool (3x3 s2) Conv (3x3 s1) Conv (3x3 s1) Conv (3x3 s1) FCN (4096) FCN (4096) FC (1000) Prediction

Convolutional Neural Networks

- Tens of MB of weights
- No weights reuse
- Bandwidth intensive
- Comprised of MACs

Accelerator Hardware

Functional units

- Multiply-accumulate (MAC)
- Comparators (maxpool)

On-chip memory

Buffers for maps and weights

Configuration logic

- Instruct on-chip memory to stream to MACs
- Instruct MACs to write-back results

Types of Parallelism

Intra-map, intra-activation MACs share both input operands MACs share weights Intra-map, inter-activation Inter-map No data sharing Inter-layer No data sharing © FWDNXT 2018

Traces

Require N instrs 1 instr per cycle

Require 1 instr 1 instr per trace Require start addr, length

© FWDNXT 2018

Data Organization

Data Organization

Intra-map, Intra-activation

- Kernel shared by all MACs
- Single bias but need to reduce partials

Inter-map

© FWDNXT 2018

Vector Multiply-Accumulate (vMAC)

Scaling Up with Compute Units

64 KB maps (double) buffer per CU

Types of Parallelism Revisited

Intra-map, intra-activation A vMAC in COOP mode vMACs across CUs Intra-map, inter-activation Inter-map vMACs within a CU Inter-layer vMACs across clusters © FWDNXT 2018

System Specifications

Host CPU	2x ARM Cortex-A9 @800 MHz
Accelerator cores	256 MAC units @ 250 MHz
Peak Throughput	128 G-ops/s
Memory	1GB DDR3 @ 533 MHz
Memory B/W	4.2 GB/s
Power (Board)	12 W
Power (Zynq + mem)	7 W

Benchmarks

Performance

Comparison of Perf. and B/W

AlexNet Layer-wise comparison of performance and bandwidth

GoogLeNet Layer-wise comparison of performance and bandwidth

© FWDNXT 2018

ResNet-50

Layer-wise comparison of performance and bandwidth

Classification Results (top-5)

ambulance, minivan, minibus, golfcart, motor scooter

car, motorcycle, bicycle, watch, shoe

jaguar, dalmatian, banded gecko, leopard, bonnet

lionfish, jellyfish, sea slug, sea anemone, chambered nautilus

koala, wombat, sloth bear, mongoose, madagascar cat

plastic bag, cauliflower, broccoli, swab, zucchini

motorcycle, bicycle, car, toy, watch

lion, cougar, hippopotamus, chimpanzee, book jacket

Thank you

