Geostatystyka

Sprawozdanie pt. "Model jakościowy"

Autor:

Maciej Niemiec (xHeput)

1. Parametry ogólne sprawozdania i określenie zakresu analizy

Tabela 1 - Parametry ogólne

Identyfikator zestawu danych (\$ID)	198
Identyfikator obwiedni (\$ON)	6
Zrealizowany wariant	podstawowy
Nazwa złoża	Kamieńsk
Współrzędne geograficzne	51.164995N, 19.553098E
Województwo	łódzkie
Narożnik	SE
Wymiary złoża	4000 x 2200 x 5000

2. Utworzenie kompozytów i ocena wpływu tej operacji na rozkład modelowanego parametru

a) Określenie standardowej długości kompozytu (CI) wraz z uzasadnieniem w poszczególnych warstwach

Standardowa długość kompozytu (CI) została określona na podstawie histogramu dla parametru LENGTH w warstwie 1, dlatego wykorzystany plik to "holes". Mediana to wartość na podstawie, której wybrano CI (należy zaokrąglić do liczb całkowitych) i wynosi ona 48.

Standardowa długość kompozytu została określona na podstawie histogramu dla parametru LENGTH w warstwie 4, dlatego wykorzystany plik to "holes". Mediana to wartość na podstawie, której wybrano Cl (należy zaokrąglić do liczb całkowitych) i wynosi ona 3.

Standardowa długość kompozytu została określona na podstawie histogramu dla parametru LENGTH w warstwie 5, dlatego wykorzystany plik to "holes". Mediana to wartość na podstawie, której wybrano Cl (należy zaokrąglić do liczb całkowitych) i wynosi ona 15.

Tabela 2 - Przyjęte wartości dla standardowej długości kompozytu

	Standardowa długość kompozytu
Warstwa Nr. 1	48
Warstwa Nr. 4	3
Warstwa Nr. 5	15

b) Histogram i statystyki opisowe długości próbek oraz kompozytów (w jednej wybranej warstwie). Wartości statystyk zaokrąglone do 1 miejsca po przecinku, umieszczone w polach tabeli lub na wykresach histogramów.

Tabela 3 - Statystyki opisowe dla parametru LENGHT w warstwie nr 1

Parametr: LENGTH	ZONE: 1	Próbki	Kompozyty			
Liczba próbek / komp	pozytów	267	338			
	Maksimum	161.30	71.90			
	Minimum	22.80	25.30			
Statystyki opisowe parametru	Średnia	57.104	45.042			
parametra a	Odchylenie standardowe	25.877	8.112			
	Skośność	1.616	0.715			
Histogram	długości próbek	Histogram dłu	ugości kompozytów			
Histogram fo	or LENGTH ZONE 1	Histogram for LENGTH ZONE 1				
Mean : 57.1	04	Mean : 45.0	042			
50th Percentile : 48.0	00	50th Percentile : 43.	700			
Total Samples : 22.8 Minimum : 22.8 Maximum : 161.3 StdDeviation : 25.8 Skewness : 1.6	00 77	Minimum : 25. Maximum : 71. StdDeviation : 8.				
100 80 60 40 20 50	00 150 200 250 LENGTH	60 50 40 40 20 20 30 40	50 60 70 80 LENGTH			

Tabela 4 - Statystyki opisowe dla parametru LENGHT w warstwie nr 4

Parametr: LENGTH	ZONE: 1	Próbki	Kompozyty			
Liczba próbek / kom	pozytów	267	338			
	Maksimum	161.30	71.90			
	Minimum	22.80	25.30			
Statystyki opisowe parametru	Średnia	57.104	45.042			
Paramon	Odchylenie standardowe	25.877	8.112			
	Skośność	1.616	0.715			
Histogram	n długości próbek	Histogram o	długości kompozytów			
Histogram	for LENGTH ZONE 4	Histogram for LENGTH ZONE 4				
Mean : 2.	629	Mean :	2.998			
50th Percentile : 3.	000	50th Percentile :	3.000			
Minimum : 0. Maximum : 76. StdDeviation : 3.	237 000 900 079 765	Maximum : StdDeviation :	5469 2.567 3.333 0.049 0.624			
2500		1000				
2000 - 1500 - 10		800 - 600 - 400 - 200 -				
	6 8 10 12 14 LENGTH	2,4 2,6	2,8 3 3,2 3,4 3,6 LENGTH			

c) Charakterystyka statystyczna parametru DENSITY w zbiorze próbek holes1s i zbiorze kompozytów holes1c_Z4

Tabela 5 - Charakterystyka statystyczna parametru DENSITY dla warstwy nr 4

Parametr: DENSITY	ZONE: 4		opisowe na awie:	Różnica wzgl. (a-
Paramett. DENSITI	ZONE. T	Próbek (a)	Kompozytów (b)	b)/a [%]
Liczb próbka / kompozytów	6237	5466	12.36	
Maksimum	1.489	1.185	20.42	
Minimum	Minimum		0.956	-6.10
Zakres		0.588	0.230	60.88
Średnia		1.125	1.128	-0.27
Odchylenie standardowe		0.048	0.039	18.75
Skośność		-1.047	-0.913	12.80
Eksces		2.349	0.515	78.08

Wykres liniowy określony na podstawie próbek i kompozytów przedstawione na wspólnym wykresie (wielkość przedziału: 0.9 – 1.3)

d) Wnioski

Analizując rozkład parametru, można zauważyć, że zakres wartości dla próbek (0.588) jest większy niż dla kompozytów (0.230). Średnia wartość parametru dla próbek wynosi 1.125, a dla kompozytów 1.128, co wskazuje na niewielką różnicę (-0.27%). Odchylenie

standardowe próbek (0.048) jest większe niż dla kompozytów (0.039) o około 18.75%. Skośność dla próbek wynosi -1.047, podczas gdy dla kompozytów wynosi -0.913, co oznacza, że rozkład wartości dla próbek jest bardziej skośny w lewo. Eksces dla próbek (2.349) jest znacznie większy niż dla kompozytów (0.515), co wskazuje na większe występowanie ekstremalnych wartości w zbiorze próbek. Wykres liniowy na podstawie próbek i kompozytów przedstawia porównanie wartości w przedziale od 0.9 do 1.3. Ten wykres pozwala wizualnie ocenić podobieństwo lub różnice między próbkami a kompozytami w tym zakresie. Transformacja próbek do kompozytów wpływa na rozkład parametru poprzez zmniejszenie liczby danych, zmianę wartości maksymalnej, minimalnej, zakresu oraz rozkładu wartości. Analiza różnic między próbkami a kompozytami wskazuje na niewielkie różnice w średnich wartościach, odchyleniach standardowych i skośności. Jednakże, występuje znaczna różnica w ekscesie, co wskazuje na różnice w występowaniu ekstremalnych wartości.

2. Identyfikacja domen estymacyjnych

a) Analiza porównawcza rozkładów parametru DENSITY w poszczególnych warstwach (w zbiorach kompozytów).

Tabela 6 - Porównanie rozkładów parametru DENSITY

Parametr: DENSIT	Υ	ZONE: 1	ZONE: 4	ZONE: 5
Liczba odwiertów	267	267	267	
Średnia odległośc	160	160	160	
Liczba kompozyto	338	5469	513	
	Maksimum	1.6	1.185	1.761
	Kwantyl Q3	1.509	1.160	1.680
	Kwantyl Q2	1.462	1.136	1.652
	Kwantyl Q1	1.449	1.103	1.626
Statystyki opisowe	Minimum	1.428	0.956	1.606
parametru	Zakres	0.172	0.230	0.155
	Średnia	1.481	1.128	1.656
	Odchylenie standardowe	0.040	0.039	0.034
	Skośność	1.052	-0.920	0.681
	Eksces	0.398	0.537	0.104

b) Identyfikacja domen estymacyjnych i weryfikacja normalności rozkładu analizowanego prawdopodobieństwa w każdej z domen

Tabela 7 - Wnioski z analizy statystycznej

ZONE	Parametr	Liczba kompozytów	Wartość średnia	Potwierdzony roz. normalnych (T/N)	Możliwa analiza	Planowana analiza geostatystyczna
1	DENSITY	338	1.481	N	z anizotropią	obligatoryjna
2	DENSITY	-		-	-	bez analizy
3	DENSITY	-		-	-	bez analizy
4	DENSITY	5469	1.128	N	z anizotropią	obligatoryjna
5	DENSITY	513	1.656	N	z anizotropią	dodatkowa

3. Wyniki analizy anizotropii zmienności parametru.

a) Tabela dla domeny warstwy nr 1

Tabela 8 - Analiza anizotropii zmienności parametru DENSITY w warstwie nr 1

b) Tabela dla domeny warstwy nr 4

Tabela 9 - Analiza anizotropii zmienności parametru DENSITY w warstwie nr 4

10

4. Wyniki dopasowania modelu wariogramu.

Tabela 10 - Model semiwariancji parametru DENSITY dla domeny nr 1

Parametr: DENSITY **Domena:** ZONE = 1

Liczba odwiertów z wartością parametru: 267 Średnia odległość między odwiertami: 160 m

Modelowany zakres odległości: 2000 m

Rodzaj modelu: anizotropowy

Model w jednostkach transformowanych

Wykres wariogramu anizotropowego

Variogram(s) for DENSITY

Var	Type	Sill	Range	X	Range	Y	Range	Z
DENSITY	Nugget	0.001						
DENSITY	Exponential	0.001	365.1		842.0		22.0	

Model w jednostkach oryginalnych. Uzyskany w wyniku transformacji odwrotnej: nie

Wykres wariogramu anizotropowego

Variogram(s) for DENSITY

	Type	Sill	Range	Х	Range	Y	Range	Z
DENSITY	Nugget	0.001						
DENSITY	Spherical	0.000	836.6		345.1		60.1	
DENSITY	Spherical	0.000	945.2		5818.7	•	48.6	

Liczba struktur: Model 1 posiada 2 struktury, Model 2 posiada 3 struktury

Typ: Nuggetowy (ang. Nugget) **Próg:** 0.001

Typ: Wykładniczy (ang. Exponential) Próg: 0.001 Zakres X: 365.1 Zakres Y: 842.0 Zakres Z: 22.0

Typ: Nuggetowy (ang. Nugget) **Próg:** 0.001

Typ: Sferyczny (ang. Spherical) Próg: 0.0 Zakres X: 836.6 Zakres Y: 345.1 Zakres Z: 60.1

Typ: Sferyczny (ang. Spherical) Próg: 0.0 Zakres X: 945.2 Zakres Y: 5818.7 Zakres Z: 48.6

Tabela 11 - Model semiwariancji parametru DENSITY dla domeny nr 1

Parametr: DENSITY **Domena:** ZONE = 4

Liczba odwiertów z wartością parametru: 267 Średnia odległość między odwiertami: 160 m

Modelowany zakres odległości: 2000 m

Rodzaj modelu: anizotropowy

Model w jednostkach transformowanych.

Wykres wariogramu anizotropowego

Variogram(s) for DENSITY

Var Type Sill Range X Range Y Range Z DENSITY Nugget 0.001 DENSITY Exponential 0.001 365.1 842.0 22.0

Uzyskany w wyniku transformacji odwrotnej: tak

Wykres wariogramu anizotropowego

Variogram(s) for DENSITY

Var	Type	Sill	Range	Х	Range Y	Range	Z
DENSITY	Nugget	0.001					
DENSITY	Spherical	0.000	836.6		345.1	60.1	
DENSITY	Spherical	0.000	945.2		5818.7	48.6	

Liczba struktur: Model 1 posiada 2 struktury, Model 2 posiada 3 struktury

Typ: Nuggetowy (ang. Nugget) **Próg:** 0.001

Typ: Wykładniczy (ang. Exponential) Próg: 0.001 Zakres X: 365.1 Zakres Y: 842.0 Zakres Z: 22.0

Typ: Nuggetowy (ang. Nugget) **Próg:** 0.001

Typ: Sferyczny (ang. Spherical) Próg: 0.0 Zakres X: 836.6 Zakres Y: 345.1 Zakres Z: 60.1

Typ: Sferyczny (ang. Spherical) Próg: 0.0 Zakres X: 945.2 Zakres Y: 5818.7 Zakres Z: 48.6

5. Weryfikacja modelu teoretycznego wariogramu analizowanego parametru metodą *cross-validation*.

Tabela 12 - Weryfikacja modeli wariogramu metodą cross-validation parametru DENSITY dla domeny nr 1

Parametr: DENSITY Domena: ZONE 1

Liczba odwiertów z wartością parametru: 267 Średnia odległość między odwiertami: 160 m

Zastosowana transformacja wartości parametru: Transformacja logarytmiczna

Uzasadnienie: Stosowana, gdy dane mają skośny rozkład. Transformacja logarytmiczna pomaga przekształcić takie dane w sposób zbliżony do rozkładu normalnego.

Metoda estymacji: Kriging zwyczajny punktowy

Uzasadnienie: Nieobciążony estymator liniowy wartości średniej jest używany do estymacji parametru. Wyznaczone wagi i wartości prób determinują głównie estymowaną wartość. W przeciwieństwie do tego same wagi nie zależą od wartości pomiarów, więc niepewność estymacji zależy przede wszystkim od konfiguracji prób i wyznaczonego modelu semiwariancji.

Strategia selekcji próbek:

- a) orientacja układu odniesienia (U,V,W), ewentualnie parametry rotacji: Z = -76, X = 79, Z = 177
- b) maksymalne zasięgi wyszukiwania w kierunkach zgodnych z układem odniesienia: X = 3510, Y = 21362, Z = 924
- c) wymagana minimalna liczba próbek do przeprowadzenia estymacji: 5
- d) maksymalna liczba próbek w sektorze: 30

Model I

Model II

Decyzja: przyjętym modelem semiwariancji jest model (I): Ze względu na identyczne wartości dla parametrów średnich i wariancji modeli. Decyzja została podjęta na podstawie Wsp. Korelacji który jest większy dla modelu 1

Tabela 13 – Weryfikacja modeli wariogramu metodą cross-validation parametru DENSITY dla domeny nr 4

Parametr: DENSITY Domena: ZONE 4

Liczba odwiertów z wartością parametru: 267 Średnia odległość między odwiertami: 160 m

Zastosowana transformacja wartości parametru: Transformacja logarytmiczna

Uzasadnienie: Stosowana, gdy dane mają skośny rozkład. Transformacja logarytmiczna pomaga przekształcić takie dane w sposób zbliżony do rozkładu normalnego.

Metoda estymacji: Krigging zwyczajny punktowy

Uzasadnienie: Nieobciążony estymator liniowy wartości średniej jest używany do estymacji parametru. Wyznaczone wagi i wartości prób determinują głównie estymowaną wartość. W przeciwieństwie do tego same wagi nie zależą od wartości pomiarów, więc niepewność estymacji zależy przede wszystkim od konfiguracji prób i wyznaczonego modelu semiwariancji.

Strategia selekcji próbek:

- a) orientacja układu odniesienia (U,V,W), ewentualnie parametry rotacji: Z = -76, X = 79, Z = 177
- b) maksymalne zasięgi wyszukiwania w kierunkach zgodnych z układem odniesienia: X = 3510, Y = 21362, Z = 924
- c) wymagana minimalna liczba próbek do przeprowadzenia estymacji: 5
- d) maksymalna liczba próbek w sektorze: 30

(PC_DIFF)

(KV_VMOD)

Średnia wariancja krigingu

Decyzja: przyjętym modelem semiwariancji jest model (I): Ze względu na identyczne wartości dla parametrów średnich i wariancji modeli. Decyzja została podjęta na podstawie Wsp. Korelacji który jest większy dla modelu 1

0.001

Średnia wariancja krigingu

(KV_VMOD)

0.001

6. Analiza otoczenia krigingu modelowanego parametru.

a) Model semiwariancji uzyskany dla domeny nr. 1

Tabela 14 - Wynik przeprowadzonej analizy otoczenia krigingu parametru DENSITY dla domeny nr 1

Parametr: DENSITY Domena: ZONE = 1

Liczba odwiertów z wartością parametru: 267 Średnia odległość między

odwiertami: 160m

Orientacja układu odniesienia zgodnego z kierunkami anizotropii (U,V,W)

Oś 1 = Z	Kąt 1 = -76	Oś 2 = X	Kąt 2 =	79 Oś	s 3 = Z	Kąt 3 = 177
Lokalizacja pur	nktów testowych			Współ. X	Współ. Y	Współ. Z
W obszarze gęs	stego opróbowar	nia:		536443	367460	209
		la a		F27012	267774	100

w obszarze średniej gęstości opróbowania: 537912 367774 199
w obszarze rzadkiego opróbowania: 535961 368459 189

Liczba testowych bloków w jednej lokalizacji w kierunkach: X = 7 , Y = 7 , Z = 5

Optymalizacja liczby punktów dyskretyzacji

Wymiar testowanych bloków w kierunkach: X = 40, Y = 40, Z = 48

Zależność BLKCOV od liczby punktów w kier. X

0.0016375 0.0016375 0.0016375 0.0016365

Zależność BLKCOV od liczby punktów w kier. Y

Zależność BLKCOV od liczby punktów w kier. Z

Przyjęta optymalna liczba punktów dyskretyzacji w kierunkach: X = 6, Y = 6, Z = 6

Optymalizacja wymiarów bloku

- a) Przyjęta liczba punktów dyskretyzacji w kierunkach: X = 6, Y = 6, Z = 6
- b) Przyjęte wymiary elipsoidy wyszukiwania w kierunkach: X = 3510, Y = 21362, Z = 924
- c) Liczba sektorów, na które dzielona jest elipsoida wyszukiwania: 1
- d) Minimalna liczba próbek/kompozytów w sektorze do estymacji: 3
- e) Optymalna liczba próbek/kompozytów w sektorze do estymacji: 4

Rysunek

Przyjęty optymalny wymiar bloku w kierunkach: X = 40, Y = 40, Z = 55

Optymalizacja strategii selekcji próbek/kompozytów

- a) Przyjęta liczba punktów dyskretyzacji w kierunkach: X = 6, Y = 6, Z = 6
- b) Przyjęty wymiar bloku w kierunkach: X = 40, Y = 40, Z = 55
- c) Przyjęte wymiary elipsoidy wyszukiwania w kierunkach: X = 3510, Y = 21362, Z = 924
- d) Przyjęta minimalna liczba próbek/kompozytów w sektorze do estymacji: 3
- e) Liczba sektorów, na które dzielona jest elipsoida wyszukiwania: 1

Tabela 15 - Wynik przeprowadzonej analizy otoczenia krigingu parametru DENSITY dla domeny nr 4

Parametr: DENSITY Density				Dome	ena: ZONE	= 4		
					ia odlegi ertami: 10	_	dzy	
Orientacja ukła	ndu odniesienia	zgodnego z kier	unkami ani	zotro	pii (U,V,V	V)		
Oś 1 = Z	Kąt 1 = -76	Oś 2 = X	Kąt 2	= 79	Oś 3 = Z			Kąt 3 = 177
Lokalizacja pur	nktów testowyc	h		Ws	spół. X	Współ.	Y	Współ. Z
W obszarze gęs	stego opróbowa	nia:			536443	367	460	209
w obszarze śre	dniej gęstości o	próbowania:			537912	367	774	199
w obszarze rza	dkiego opróbov	vania:			535961	368	459	189
Liczba testowy	ch bloków w jed	dnej lokalizacji v	v kierunkad	ch: X :	= 7 , Y =	7 , Z =	5	
	zby punktów dysk z anych bloków v	retyzacji v kierunkach: X :	= 40 , Y = 40	0 , Z =	= 48			

Zależność BLKCOV od liczby punktów w kier. X

Zależność BLKCOV od liczby punktów w kier. Y

Zależność BLKCOV od liczby punktów w kier. Z

Przyjęta optymalna liczba punktów dyskretyzacji w kierunkach: X = 10, Y = 12, Z = 7

Optymalizacja wymiarów bloku

- a) Przyjęta liczba punktów dyskretyzacji w kierunkach: X = 10, Y = 12, Z = 7
- b) Przyjęte wymiary elipsoidy wyszukiwania w kierunkach: X = 365, Y = 842, Z = 22
- c) Liczba sektorów, na które dzielona jest elipsoida wyszukiwania: 1
- d) Minimalna liczba próbek/kompozytów w sektorze do estymacji: 5
- e) Optymalna liczba próbek/kompozytów w sektorze do estymacji: 31

Rysunek

Optymalizacja strategii selekcji próbek/kompozytów

- a) Przyjęta liczba punktów dyskretyzacji w kierunkach: X = 10, Y = 12, Z = 7
- b) Przyjęty wymiar bloku w kierunkach: X = 20, Y = 25, Z = 55
- c) Przyjęte wymiary elipsoidy wyszukiwania w kierunkach: X = 3510, Y = 21362, Z = 924
- d) Przyjęta minimalna liczba próbek/kompozytów w sektorze do estymacji: 5
- e) Liczba sektorów, na które dzielona jest elipsoida wyszukiwania: 1

Zależność wariancji krigingu

Zależność efektywności krigingu KRIGEFF od liczby kompozytów

Zależność sumy dodatnich wag SUMPOSWT od liczby kompozytów

Przyjęta optymalna liczba kompozytów w sektorze: 5

7. Metoda budowy modelu strukturalno-jakościowego warstw

a) metoda budowy

Utworzenie blokowego modelu strukturalnego, który odwzoruje warstwy stratygraficzne na potrzeby estymacji, wymaga posiadania protomodelu, który przedstawia geometrię złoża surowca mineralnego w trzech wymiarach. Początkowo należało stworzyć nowy protomodel, który określał miąższości komórek na podstawie ich długości. W rezultacie komórki modelu blokowego dla określonej domeny, na przykład ZONE 1, zostaną wybrane. W następnym kroku wymiary komórek protomodelu zostaną zmienione na te, które są idealne w kierunkach XYZ. Proces KNA służył do określenia idealnych rozmiarów. Ostatecznie model blokowy, który jest zoptymalizowany pod względem rozmiaru komórek, jest wykorzystywany do obliczania parametrów złożowych.

b) Definicja protomodelu tworzonego na potrzeby estymacji danej warstwy

Tabela 16 - Definicja protomodelu dla poszczególnych warstw

ZONE	Kierunek	Wymiar komórek (cell size)	Współrzędne punktu początkowego modelu (ORIGIN)	Współrzędne punktu końcowego modelu (Maximum)	Rozmiar modelu (Maximum minus ORIGIN)	Liczba komórek (Cell count)
	X	40	534390	539030	4640.00	116
1	Y	40	366390	369150	2760.00	69
	Z	55	-300	300	600.00	11
	Razem	-	-	-	-	196
4	X	60	534390	539030	4640.00	78
	Y	60	366390	369150	2760.00	46
	Z	10	-300	300	600.00	60
	Razem	-	-	-	-	184

c) Widok z okna 3D prezentujący przekrój pionowy W-E

d) metoda budowy modelu strukturalno-jakościowo analizowanego obszaru

Wcześniejszy model strukturalny należy wykorzystać do stworzenia modelu strukturalno-jakoścowego dla analizowanego obszaru. Po pierwsze, należy określić zbiory, które będą umożliwiać proces estymacji zarówno metodą krigingu tradycyjnego, jak i metodą wag odwrotnie proporcjonalnych do odległości (IPD). Z tego powodu należy ustalić wartości, które określą metodę wyszukiwania prób dla wcześniej wybranego modelu semiwariancji, a także parametry estymacji odpowiadające temu modelowi. W celu uzyskania modelu strukturalnojakościowego należy przeprowadzić proces estymacji parametrów złożowych dla komórek modelu blokowego odpowiedniej domeny za pomocą wcześniej ustalonych zbiorów. W trakcie procesów estymacyjnych należy określić idealną liczbę punktów siatki dyskretyzacji dla kierunków XYZ. W ten sposób każdej strukturalnej komórce modelu blokowego zostają przypisane wartości parametrów, takich jak DENSITY.

e) Ilustracje (na podstawie msq):

- widok z okna 3D, przedstawiający zbiór komórek tylko warstw 4

- fragment widoku z okna 3D, przedstawiający komórki modelu blokowego warstw 1-4

- widok z okna 3D ze zbiorem przekrojów pionowych, przez model blokowy warstw 1-4

- wybrane 2 ortogonalne przekroje N-S i W-E z komórkami widocznymi za płaszczyznami przekrojów

8. Ocena prognozy rozkładu wartości parametrów w modelu strukturalno-jakościowego

Tabela 17 - Rezultat weryfikacji prognozy parametru DENSITY w poszczególnych warstwach

ZONE	1/OK			
	Unweighted Samples	Weighted Samples	Model Cells	
No. of Records	299,00	299,00	50786,00	
No. of Samples	299,00	299,00	50786,00	
Minimum	1,43	1,43	1,43	
Q1	1,46	1,46	1,45	
Median	1,49	1,49	1,46	
Q3	1,52	1,52	1,50	
Maximum	1,60	1,60	1,60	
Mean	1,50	1,50	1,49	
Mean Diff v Model	0,01	0,01	-	
%Mean Diff v Model	0,69	0,71	-	
Std. Dev	0,05	0,05	0,04	
Variance	0,00	0,00	0,00	
%Coeff. Variation	3,15	3,04	2,59	
MAD	0,04	0,04	0,03	
Model Tonnes	-	-	480757600,00	

Rysunek

ZONE	ZONE 2/IPD		
	Unweighted Samples	Weighted Samples	Model Cells
No. of Records	132,00	132,00	4483,00
No. of Samples	132,00	132,00	4483,00
Minimum	1,44	1,44	1,40
Q1	1,46	1,46	1,44
Median	1,47	1,47	1,46
Q3	1,49	1,49	1,48
Maximum	1,52	1,52	1,52
Mean	1,47	1,48	1,47
Mean Diff v Model	0,01	0,01	-
%Mean Diff v Model	0,50	0,66	-
Std. Dev	0,02	0,02	0,02
Variance	0,00	0,00	0,00
%Coeff. Variation	1,11	1,14	1,53
MAD	0,01	0,01	0,02
Model Tonnes	-	-	327944000,00

Rysunek

ZONE	4/OK				
	Unweighted Samples	Weighted Samples	Model Cells		
No. of Records	5469	5469	20855		
No. of Samples	5469	5469	19409		
Minimum	0.96	0.96	1.04		
Q1	1.1	1.1	1.11		
Median	1.14	1.14	1.13		
Q3	1.16	1.16	1.15		
Maximum	1.19	1.19	1.17		
Mean	1.13	1.13	1.13		
Mean Diff v Model	0	0	-		
%Mean Diff v Model	0.1	-0.06	-		
Std. Dev	0.04	0.04	0.02		
Variance	0	0	0		
%Coeff. Variation	3.48	3.44	2.18		
MAD	0.03	0.03	0.02		
Model Tonnes	-	-	507163200		

b) Rezultaty weryfikacji prognozy parametru DENSITY estymowanego metodą krigingu

Tabela 18 - Rezultat weryfikacji prognozy parametru DENSITY estymowanego metoda krigingu w warstwie nr 4

Parametr: DENSITY Domena: ZONE 4

Liczba odwiertów z wartością parametru: 267 Średnia odległość miedzy odwiertami 160

m

Modelowane wartości: normalizowane

Metoda estymacji: kriging zwyczajny

Uzasadnienie wyboru: Nieobciążony estymator liniowy wartości średniej jest używany do estymacji parametru. Wyznaczone wagi i wartości prób determinują głównie estymowaną wartośc. W przeciwieństwie do tego same wagi nie zależą od wartości pomiarów, więc niepewność estymacji zależy przede wszystkim od konfiguracji prób i wyznaczonego modelu semiwariancji.

Strategia selekcji próbek/kompozytów:

a) Wymiary komórek podstawowych w kierunkach: X = 40, Y = 40, Z = 48

b) Liczba punktów dyskretyzacji w kierunkach: X = 10, Y = 12, Z = 7

c) Wymiar elipsoidy wyszukiwania w kierunkach: X = 3510, Y = 21362, Z = 924

d) Minimalna liczba próbek/kompozytów w sektorze do estymacji: 5

e) Optymalna liczba próbek/kompozytów w sektorze do estymacji: 31

f) Liczba sektorów w elipsoidzie wyszukiwania: 1

optymalna liczba próbek w sektorze: 31

g) Optymalna liczbe próbek z jednego odwiertu: 31

3, 1,	V				
Statystyki	próbki (kompozyty)	model blokowy	Względna zmiana, procentowa	Wariancja krigingu	
Wartość maksymalna	1.185	1.174	-0.00936968	0.000940	
Wartość minimalna	0.956	1.040	0.080769231	0.000080	
Wartość średnia	1.128	1.127	-0.00088731	0.000230	

Rysunek

Rysunek

Rysunek

c) Rezultaty weryfikacji prognozy parametru obligatoryjnego w warstwie, w której nie opracowano modelu semiwariancji.

Tabela 19 - Rezultat weryfikacji prognozy parametru DENSITY w warstwie nr 2

Parametr: DENSITY **Domena:** ZONE 2 **Średnia odległość miedzy odwiertami:** 160 m

Metoda estymacji: średnia ważona z wagami odwrotnie proporcjonalnymi do odległości z wykładnikiem 2

Strategia selekcji próbek/kompozytów:

- a) Wymiary komórek podstawowych w kierunkach: X = 40, Y = 40, Z = 48
- b) Liczba punktów dyskretyzacji w kierunkach: X = 10, Y = 12, Z = 7
- c) Wymiar elipsoidy wyszukiwania w kierunkach: X = 3510, Y = 21362, Z = 924
- d) Minimalna liczba próbek/kompozytów w sektorze do estymacji: 5
- e) Optymalna liczba próbek/kompozytów w sektorze do estymacji: 31
- f) Liczba sektorów w elipsoidzie wyszukiwania: 1

optymalna liczba próbek w sektorze: 31

g) Optymalna liczbę próbek z jednego odwiertu: 31

Wykres wartości średniej w modelu blokowym i w kompozytach, w kierunku W-E Interwał odległości: 300

d) Obraz rozkładu wariancji krigingu, tyko dla parametru DENSITY w warstwie 4

9. Oszacowanie wolumetryczne warstw w zadanym obszarze (msq)

Warstwa ZONE	Objętość [mln m³]	Masa [mln Mg]	DENSITY [Mg/m³]	Średnia wariancja krigingu DENSITY_V
N/A				
1	475891701.37	706798682.05	1.49	0.089527
2	312565608.30	456563684.98	1.46	
Razem 1 - 2	788457309.67	2322721289.91	2.95	
3	145750428.79	167731887.02	1.15	
4	497756921.66	557659503.00	1.12	0.000204
Razem 3 - 4:	643507350.45	1461508659.64	2.27	
5				
Razem 1 - 4	1431964660.13	3784229949.55	5.22	
Razem 1-5				

10. Rozkład miąższości warstw

a) Miąższość warstwy 1 na podstawie model blokowego

b) Miąższość warstwy 1 na podstawie próbek.

11. Wnioski z przeprowadzonej analizy geostatystycznej

W ramach zajęć laboratoryjnych z przedmiotu geostatytyka oraz pracy własnej, przeanalizowano parametr gęstości dla poszczególnych warstw (1-4). Do analizy wykorzystane zostały 2 metody tj. kriging zwyczajny oraz IPD.

Analiza otrzymanych danych wskazuje, że Wartości gestości różnią się znacznie między badanymi warstwami. Warstwa 1 charakteryzuje się wyższymi wartościami gestości (średnia gęstość 1.49 Mg/m3), podczas gdy warstwa 4 ma niższą gęstość (średnia gestość 1.12 Mg/m3). To wskazuje na zróżnicowane właściwości geologiczne i skład poszczególnych warstw złoża. Średnia gęstość dla całego złoża, uwzględniając wszystkie badane warstwy, wynosi 5.22 Mg/m3. To sugeruje, że łaczne właściwości gęstościowe złoża są wynikiem kombinacji różnych warstw, w których dominują warstwy o wyższej gęstości. Wartości średniej wariancji krigingu dla gęstości różnią się w zależności od badanej warstwy. Warstwa 1 charakteryzuje się wyższą wartościa wariancji (0.089527), co wskazuje na większe zróżnicowanie gestości w tej warstwie. Warstwa 4 ma niższą wartość wariancji (0.000204), co sugeruje mniejsze zróżnicowanie gęstości w tej warstwie. Warstwa 4 ma najniższą średnią gęstość równą 1,13 Mg/m3 spośród wszystkich warstw. Łączne wartości objętości i masy dla warstw 1 i 2 sa większe niż dla warstw 3 i 4. Wskazuje to na potencjalnie większe zasoby surowców w warstwach 1 i 2 w porównaniu do warstw 3 i 4. Jest to istotnie niższa gestość niż w pozostałych warstwach, co wskazuje na obecność lekkich materiałów lub porowatość w tej warstwie – węgiel brunatny. Różnice w gęstościach między badanymi warstwami i zmienność objętości i masy wskazują na złożona strukture i skład złoża geologicznego. To może mieć istotne znaczenie dla dalszej analizy geologicznej, ekonomicznej i wydobywczej.

Podczas przeprowadzania analizy złoża geologicznego natrafiono na znaczną liczbę błędów, które wynikały zarówno z problemów w programie, jak i błędów użytkownika. Jednym z błędów wystąpił podczas wykonywania procesu swathplt, gdzie program tworzył arkusz Excel i sprawdzał wersję programu. Niestety, ta część kodu była przestarzała dla nowszych wersji Excela, co wymagało ręcznego użycia funkcji Val() w debuggerze w celu prawidłowego sprawdzenia wersji programu. Dodatkowo, zauważono, że program tracił zdolność do wykonywania swoich funkcji, takich jak REBLOCK, PICREC, ESTIMA, co objawiało się błędami w tworzeniu plików tymczasowych. Pomimo podejmowanych prób, nie udało sie ustalić konkretnych przyczyn tych problemów. Niemniej jednak, rozwiązaniem okazało się przeinstalowanie programu, co przywracało pełną funkcjonalność i umożliwiało poprawne tworzenie plików tymczasowych. Napotkane błędy miały znaczący wpływ na proces analizy, ponieważ wymagały dodatkowej interwencji i skomplikowanych działań, takich jak ręczne poprawki kodu i ponowna instalacja programu. Spowodowało to dodatkowe opóźnienia i wysiłek, co mogło wpłynąć na precyzję i terminowość przeprowadzanych analiz. W celu zapewnienia bardziej efektywnego procesu analizy złoża geologicznego w przyszłości, istotne będzie zidentyfikowanie tych błędów i ich przyczyn, aby uniknąć podobnych problemów.

Autor: Maciej Niemiec