

UFR SATIC

Licence I D2A: TD Algèbre, Fiche: 1

Resp. Dr FALL/M. FALL/M. NDONGO

Année Académique 2019-2020

Exercice 1 : Soient P,Q et R trois propositions. Montrer que les propositions suivantes sont vraies.

- 1. $P \iff non(nonP)$.
- 2. $(P \text{ et } Q) \iff (Q \text{ et } P)$
- 3. $(P \text{ ou } Q) \iff (P \text{ ou } Q)$
- 4. $non(P \text{ et } Q) \iff (nonP) \text{ ou } (nonQ)$
- 5. $non(P \text{ ou } Q) \iff (nonP) \text{ et } (nonQ)$
- 6. $P \text{ et } (Q \text{ ou } R) \iff (P \text{ et } Q) \text{ ou } (P \text{ et } R)$
- 7. $P \text{ ou } (Q \text{ et } R) \iff (P \text{ ou } Q) \text{ et } (P \text{ ou } R)$
- 8. $(P \implies Q) \iff (NonQ \implies nonP)$

Exercice 2 : Soient P,Q et R trois propositions. Déterminer la table de vérité des propositions suivantes :

- 1. $[(P \land R) \Longrightarrow Q] \lor [(\overline{P \lor Q}) \Longrightarrow R]$
- 2. $[(P \lor Q) \land R] \Longrightarrow [P \land (Q \lor R)]$
- 3. $[(P \lor Q) \land R] \iff [P \lor (Q \land R)]$
- 4. $[(P \Longrightarrow Q) \land \overline{Q}] \Longrightarrow \overline{P}$
- $5. \ [(R \Longrightarrow S) \land (S \Longrightarrow T] \Longrightarrow [(R \Longrightarrow S)]$

Exercice 3

- 1. En raisonnant par contraposition, soit x un irrationnel positif. Montrer que \sqrt{x} est un irrationnel.
- 2. En raisonnant par récurrence, Montrer que $2^n>n^2$ pour tout entier $n\geq 5.$
- 3. En raisonnant par récurrence, Montrer que $n! \ge n^2$ pour tout entier $n \ge 4$.
- 4. En raisonnant par la méthode direct.

Montrer que si x est un réel strictement positif $\frac{x+2}{x+3} < \frac{x+4}{x+5}$.

Exercice 4: Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=4$ et $u_{n+1}=\frac{2u_n^2-3}{u_n+2}$.

- 1. Montrer que : $\forall n \in \mathbb{N} u_n > 3$.
- 2. Montrer que : $\forall n \in \mathbb{N} \ u_{n+1} 3 > \frac{3}{2}(u_n 3)$
- 3. Montrer que : $\forall n \in \mathbb{N} \ u_n > (\frac{3}{2})^n + 3$.
- 4. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente?

Exercice 5: Les parties suivantes sont-elles des sous-espaces vectoriels de \mathbb{R}^2

a)
$$S_1 = \{(x, y) \in \mathbb{R}^2 \mid x \le y\},$$
 b) $S_2 = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$

c)
$$S_3 = \{(x, y) \in \mathbb{R}^2 \mid x = y\}, d)$$
 $S_4 = \{(x, y) \in \mathbb{R}^2 \mid x + y = 1\}$

Exercice 6 : Les parties suivantes suivantes sont-elles des sev de \mathbb{R}^3 ?

- 1. $A = \{(x, y, 2x y), x, y \in \mathbb{R}\}$
- 2. $B = \{(x^2, y, 2x y), x, y \in \mathbb{R}\}\$
- 3. $C = \{(x+2, y, 2x y), x, y \in \mathbb{R}\}\$
- 4. $D = \{(x, y, 3), x, y \in \mathbb{R}\}$

Exercice 7:

- 1. Montrer que les vecteurs u,v,w constituent une base de \mathbb{R}^3 , avec $u_1 = (2,1,0); u_2 = (0,2,1); u_3 = (2,0,1).$
- 2. Exprimer le vecteur u = (2, 2, 3) dans cette base.
- 3. Soient $\{v_1 = (1, 2, -5, 3); v = (2, -1, 4, 7)\}$. Déterminer les réels α et β pour que le vecteur $(\alpha, \beta, -37, -3) \in \text{vect}(v_1, v_2)$.

Exercice 8 : Soient $F_1 = \text{vect}(G_1)$ et $F_2 = \text{vect}(G_2)$ les sous espaces vectoriels de \mathbb{R}^4 engendrés respectivement par $G_1 = (u_1, u_2, u_3)$ et $G_2 = (v_1, v_2)$ avec $u_1 = (1, 0, 4, 2); u_2 = (1, 2, 3, 1); u_3 = (1, -2, 5, 3), v_1 = (4, 2, 0, 1); v_2 = (1, 4, 2, 1).$

- 1. Montrer que la famille $G_1 = (u_1, u_2, u_3)$ est liée et donner une relation de dependance linéaire.
- 2. Montrer que la famille $G'_1 = G_1 \setminus (u_3)$ et G_2 sont libres.
- 3. En déduire la dimension et une base des sous espaces vectoriels de F_1 et F_2 .
- 4. Montrer que les sous espaces vectoriels F_1 et F_2 sont supplémentaires.

Exercice 9 : Soit $E = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$. Soient $u_1 = (1, -2, 3)$ et $u_2 = (2, 1, -1)$ deux vecteurs. On pose $F = \text{vect}(u_1, u_2)$.

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Determiner E + F en déduire la dimension de E + F.
- 3. E et F sont ils supplémentaires.

Exercice 10 : Soit $F = \{(x, y, z) \in \mathbb{R}^3, x + 2y - 3z = 0\}$. u = (1, 2, -3); On pose G = vect(u).

- 1. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Determiner une base de F et en déduire la dimension.
- 3. Verifier si F et G sont des supplémentaires de \mathbb{R}^3 .