Linear algebra, Exercise 7

Luqing Ye*

August 15, 2014

Exercise (Tao). Let A and B be similar $n \times n$ matrices. Show that A and B have the same set of eigenvalues.

Proof. A and B are similar matrices, so there exists an invertible $n \times n$ matrix Q such that

$$A = Q^{-1}BQ.$$

Suppose that ν_1 is an eigenvector of A with corresponding eigenvalue λ_1 , which means that

$$\det(A - \lambda_1 I) = 0.$$

So

$$\det(Q^{-1}BQ-\lambda_1Q^{-1}Q)=\det Q^{-1}\det(B-\lambda_1I)\det Q=0,$$

$$\det(B-\lambda_1I)=0,$$

So

$$\det(\mathbf{B} - \lambda_1 \mathbf{I}) = \mathbf{0},$$

So λ_1 is an eigenvalue of B.And vise versa.

^{*}叶卢庆 (1992—),E-mail:yeluqingmathematics@gmail.com