

Real-time framework for ITER control systems

W. Lee¹, A. Zagar¹, B. Bauvir¹, T. Tak¹, A. Winter², S. Lee³, M. Knap⁴, P. Karlovsek⁴, P. Perek⁵, D. Makowski⁵

¹ ITER Organization, St. Paul Lez Durance Cedex, France.

² Max Planck Institut für Plasmaphysik, Greifswald, Germany

³ Korea Institute of Fusion Energy, Daejeon, Republic of Korea

⁴ Cosylab d.d., Ljubljana, Slovenia

⁵ Lodz University of Technology, Lodz, Poland

woongryol.lee@iter.org

Outline

- ☐ Introduction RTF (what it is and how it works)
- ☐ Evaluation of RTF from a use case study
- Conclusion

* The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Introduction

- **EPICS** is an application framework to build the applications for controllers and servers (records databases and state machines)
- Real-Time Framework (RTF) is a middleware providing common services and capabilities to build real-time control applications in ITER, such as the Plasma Control System (PCS) and plasma diagnostics.
- ☐ The Plasma Control System is a dominant factor for the ITER pulsed operation. It controls all aspects of the plasma discharge from powering the superconducting magnets up to the plasma termination.
- **Diagnostics** adopted by plasma physicists for measuring plasma properties requires a lengthy process due to complex algorithms.

Slide 3 /19

Introduction

- Approximately 190 control functions must be harmonized and coordinated as a whole, and the control scheme can be different for each pulse depending on the goal in a relatively short time interval.
- Thus a flexible high-performance software suite was needed to facilitate the development and deployment of complex real-time applications. Initially aimed to the control algorithms, the RTF can also be the basis for real-time data processing applications in diagnostics.
- A rigorous software quality assurance process compliant with CODAC Software Integrity Level 1[1] reinforced its reliability for building mission-critical systems.
- ☐ The architecture design fully considered the modularity and portability of the software, and is applicable and extendable even in none-ITER environments.

[1] SEQA-45 - Software Engineering and Quality Assurance for CODAC (2NRS2K)

Overview of Real-Time Framework

■ RTF context diagram [1]

- Managers for resource, service and factories.
- Services provide site-specific facilities orthogonal to function blocks. Services include mechanisms for transferring data between nodes, logging, archiving, monitoring and control.
- Real-time threads that execute all processable objects
- □ Function blocks are chained by connecting output ports to input ports of other function blocks.

[1] Software Architecture and Design Document for the ITER real-time framework (PKT5S7)

Function Block

- An atomic component to build an application.
- Influenced by parameters, event triggers or event handlers, each function block accepts *inputs* and produces *outputs* whenever it is *processed*.
- ☐ Factory design pattern for configuration-driven instantiation.
- Encapsulation of other function blocks giving the RT application an apparent hierarchical structure.


```
FunctionBlock Name="evtGen" Type="EventGenerator<int32>">
     <EventTrigger Name="GenerateEvent" Id="event::LHtransition"/>
:/FunctionBlock>
<FunctionBlock Name="Hpid" Type="kPID<int32>" >
  <Parameter Name="Kp" Value="1.0"/>
 <Parameter Name="K1" Value="0.0"/>
  <Parameter Name="Kd" Value="0.0"/>
  <Parameter Name="Dt" Value="0.001"/>
  <Parameter Name="Uh" Value="10.0"/>
  <Parameter Name="Ul" Value="0"/>
 <InputPort Name="Setpoint" Signal="ref H:out"/>
 <InputPort Name="Feedback" Signal="densityH:out"/>
  <InputPort Name="errorThH" Signal="errThrd H:out"/>
 <OutputPort Name="Out" Signal="Hpid:cmd"/>
  <OutputPort Name="Out" Signal="Hpid:error"/>
 <OutputPort Name="Out" Signal="Hpid:Pval"/>
 <OutputPort Name="Out" Signal="Hpid:Ival"/>
 <OutputPort Name="Out" Signal="Hpid:Dval"/>
 <EventHandler Name="ResetHandler<T>" Id="event::LHtransition"/
/FunctionBlock>
```

Supports various types of signals e.g. scalar, none-scalar, nested data inside framework.

Real-Time application

- The RT application defines the processing logic that executes the desired behaviour according to the designer's intention.
- The framework handles the dependency-based execution of FBs in either single-threaded or multi-threaded environments as specified in the deployment configuration.
- Implicit insertion inserts necessary gateway function blocks to implement interthread or inter-process (or node) communication

Real-Time application

- The RT application defines the processing logic that executes the desired behaviour according to the designer's intention.
- The framework handles the dependency-based execution of FBs in either single-threaded or multi-threaded environments as specified in the deployment configuration.
- Implicit insertion inserts necessary gateway function blocks to implement interthread or inter-process (or node) communication

Real-Time application

- The RT application defines the processing logic that executes the desired behaviour according to the designer's intention.
- The framework handles the dependency-based execution of FBs in either single-threaded or multi-threaded environments as specified in the deployment configuration.
- Implicit insertion inserts necessary gateway function blocks to implement interthread or inter-process (or node) communication

Processing of FB in a thread

- FBs are instantiated and serialized in the loading phase. The ordering is determined by the relation between function blocks once the configuration is parsed.
- Executing the FBs is implemented with busy-wait rather than through interrupts or callbacks to avoid context switching; they effectively minimize jitter and response times.

- **RT process**: handles processing of the logic. All the inputs/outputs get updated in this stage.
- **Process events**: handles processing of all the events that have been triggered.
- **Process parameters**: updates the mutable parameters.
- Validate: validates the execution times and/or parameters to be validated.
- Archive: archives signals and all archivable objects.
- The RT process should be constant over all the cycles. The underneath rule of execution of FB is to execute the process method periodically under rt-thread, and thus ensure predictability of the execution times.

Framework Life Cycle Management

- Since the framework is part of a distributed control system, it needed to centrally control multiple instances in an organized manner
- Life Cycle Management Service (LCMS) allows centrally orchestrate the state transition in conjunction with loading configuration.
- □ Provision of external interface can be customized to site-specific requirements. Two basic interfaces were supported: *pvAccess* protocol from EPICS v7 and native *TCP/IP*.

```
leew2 @ diag-fc1.codac.iter.org : ~ $ pvlist localhost
CTRL_PCS:N1-LOAD-APP
CTRL_PCS:N1-LOAD-SERVICE
CTRL_PCS:N1-RTF-OPREQ
CTRL_PCS:N1-RTF-OPSTATE
CTRL_PCS:N1-RTF-RESET
[ 12:26:17 ]
leew2 @ diag-fc1.codac.iter.org : ~ $
```

Operational PVs for interworking with central supervision system

Slide 11 /19

Framework Life Civala Managamant lieew2 @ diag-fc1.codac.iter.org : ~/rtf-workspace/m-pcs-sim-platform/src/main/rtf/ CTRL-PCS:N1-LOAD-APP CTRL-PCS:N1-LOAD-SERVICE Since the framewo CTRL-PCS:N1-RTF-OPREQ CTRL-PCS:N1-RTF-OPSTATE needed to CTRL-PCS:N1-RTF-RESET centrally control muCTRL-PCS:N1-app.myTimer.GlobalSignals.Master_Timer.ControlStartTime CTRL-PCS:N1-app.myTimer.GlobalSignals.Segment_watchdog.SegList CTRL-PCS:N1-app.myTimer.GlobalSignals.Segment watchdog.WatchdogTime CTRL-PCS:N1-app.myTimer.GlobalSignals.console:elapsedTime.Topic Life Cycle Manage CTRL-PCS:N1-app.myTimer.GlobalSignals.console:elapsedTime.Transport estrate the state CTRL-PCS:N1-app.myTimer.GlobalSignals.console:elapsedTime.TransportLayer CTRL-PCS:N1-app.myTimer.GlobalSignals.segID.Init transition in conjuncTRL-PCS:N1-app.myTimer.Global CTRL-PCS:N1-app.myTimer.PROGRAM01-GlobalFault.errorDetector.Depth CTRL-PCS:N1-app.myTimer.PROGRAM01-GlobalFault.errorDetector.Flag changed Provision of extern CTRL-PCS:N1-app.myTimer.PROGRAM01-GlobalFault.errorDetector.Flag_unchanged fic requirements. CTRL-PCS:N1-app.myTimer.PROGRAM01-GlobalFault.faultGen.Value CTRL-PCS:N1-app.myTimer.Period ı EPICS v7 and Two basic interface CTRL-PCS:N1-app.myTimer.Period CTRL-PCS:N1-app.myTimer.PhaseShift CTRL-PCS:N1-app.myTimer.Repetitions native TCP/IP. CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-1-starter.MappingID CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-1-starter.MySegID CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-2.MappingID CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-2.MySegID CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-3.MappingID CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-3.MySegID leew2 @ diag-fcl.codac.iter. OCTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-4.MappingID CTRL PCS:N1-LOAD-APP CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-4.MySegID CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-5.MappingID CTRL PCS:N1-LOAD-SERVICE CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-5.MySegID CTRL PCS:N1-RTF-OPREQ CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-99-terminator.MappingID CTRL PCS:N1-RTF-OPSTATE CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-99-terminator.MySegID CTRL PCS:N1-RTF-RESET CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-MUX.SegList CTRL-PCS:N1-app.myTimer.WFselection.console:target plasma current.Topic [12:26:17] CTRL-PCS:N1-app.myTimer.WFselection.console:target plasma current.Transport leew2 @ diag-fc1.codac.iter.octrl.pcs:N1-app.myTimer.WFselection.console:target_plasma_current.TransportLayer CTRL-PCS:N1-app.myTimer.WFselection.console:temp wf.Topic Operational PVs for interwoctrl-PCS:N1-app.myTimer.WFselection.console:temp_wf.Transport CTRL-PCS:N1-app.myTimer.WFselection.console:temp.wf.TransportLayer CTRL-PCS:N1-app.myTimer.target current.wfbreakdown.X-vector

PVs are dynamically created after receive configuration.

Framework Life Civala Managamant [leew2 @ diag-fc1.codac.iter.org : ~/rtf-workspace/m-pcs-sim-platform/src/main/rtf/ CTRL-PCS:N1-LOAD-APP CTRL-PCS:N1-LOAD-SERVICE Since the framewo CTRL-PCS:N1-RTF-OPREQ CTRL-PCS:N1-RTF-OPSTATE needed to CTRL-PCS:N1-RTF-RESET centrally control muCTRL-PCS:N1-app.myTimer.GlobalSignals.Master_Timer.ControlStartTime CTRL-PCS:N1-app.myTimer.GlobalSignals.Segment_watchdog.SegList CTRL-PCS:N1-app.myTimer.GlobalSignals.Segment watchdog.WatchdogTime CTRL-PCS:N1-app.myTimer.GlobalSignals.console:elapsedTime.Topic Life Cycle Manage CTRL-PCS:N1-app.myTimer.GlobalSignals.console:elapsedTime.Topic estrate the state CTRL-PCS:N1-app.myTimer.GlobalSignals.console:elapsedTime.TransportLayer CTRL-PCS:N1-app.myTimer.GlobalSignals.segID.Init transition in conjuncTRL-PCS:N1-app.myTimer.Globals CTRL-PCS:N1-app.myTimer.PR0GRAM01-GlobalFault.errorDetector.Depth CTRL-PCS:N1-app.myTimer.PROGRAM01-GlobalFault.errorDetector.Flag changed Provision of extern CTRL-PCS:N1-app.myTimer.PROGRAM01-GlobalFault.errorDetector.Flag_unchanged fic requirements. CTRL-PCS:N1-app.myTimer.PROGRAM01-GlobalFault.faultGen.Value CTRL-PCS:N1-app.myTimer.Period Two basic interface CTRL-PCS:N1-app.myTimer.Period CTRL-PCS:N1-app.myTimer.PhaseShift ı EPICS v7 and CTRL-PCS:N1-app.myTimer.Repetitions native TCP/IP. CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-1-starter.MappingID CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-1-starter.MySegID CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-2.MappingI^ CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-2.MySegID leew2 @ diag-fcl.codac.iter.org : ~ \$ pvxinfo CTRL PCS:N1-RTF-OPSTATE CTRL PCS:N1-RTF-OPSTATE from 10.130.2.19:5075 CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-3.Mapping1 struct "epics:nt/NTScalar:1.0" { CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-3.MySegID leew2 @ diag-fcl.codac.iter. CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-4.Mapping string value" CTRL PCS:N1-LOAD-APP CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-4.MySeqID struct "alarm t" { int32 t severity CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-5.Mapping CTRL PCS:N1-LOAD-SERVICE int32 t status CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-5.MySegID CTRL PCS:N1-RTF-OPREQ string message" CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-99-terming } alarm CTRL PCS:N1-RTF-OPSTATE CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-99-terming struct "time t" { CTRL PCS:N1-RTF-RESET CTRL-PCS:N1-app.myTimer.SUPERVISIONS.SUPERVISION-MUX.SegLi int64 t secondsPastEpoch CTRL-PCS:N1-app.myTimer.WFselection.console:target plasma [12:26:17] int32 t nanoseconds CTRL-PCS:N1-app.mvTimer.WFselection.console:target plasma int32 t userTag leew2 @ diag-fc1.codac.iter.octrl-PCS:N1-app.myTimer.WFselection.console:target_plasma } timeStamp CTRL-PCS:N1-app.myTimer.WFselection.console:temp wf.Topic Operational PVs for interwoctrl-PCS:N1-app.myTimer.WFselection.console:temp_wf.Transpc Normative type for client interface CTRL-PCS:N1-app.myTimer.WFselection.console:temp.wf.Transpo CTRL-PCS:N1-app.myTimer.target current.wfbreakdown.X-vector

PVs are dynamically created after receive configuration.

Interface support

- Foundational networking infrastructure is implemented as a *transport layer service*, and supports communication on all levels of RTF
 - Synchronous Data-bus Network (SDN) for feedback control
 - Data Archiving Network (DAN) for experimental data archiving
 - Plant Operation Network (PON) in EPICS pvAccess protocol
 - Nominal Device Support (NDS) for physical hardware interfacing is under development
 - Any necessary in the future
- Simulink interface uses generated code from Simulink CoderTM
 - The wrapper FB loads the compiled library, and RTF performs a validation process to verify the interface data structure.

Introduction of a use case study

PCS Prototyping: Controller model from the generated code

- Controller model from the Simulink platform can be converted to the code under Simulink constraints.
- A designer can devise a desired function only by changing parameters, while maintaining the same external interface to the other FB.
- Need an appropriate granularity in the controller model for conversion.

Unified Magnetic Controller (UMC) from PCS Simulation Platform

Coil Current Controller (KCURR)

PCS Prototyping: Controller model from the generated code

How to interface in between Simulink and RTF

```
External inputs (root inport signals with default storage) */
typedef struct {
 real_T V_FF[11];
 real_T I_CSPF_ref[11];
 real T I CSPF[11];
  int8_T FlagInom;
 int8_T enable;
} ExtU KCURRsim T;
 real T u[11];
 real T PIDinternalSignals[33];
                                                           Example for
 real T errorSignal[11];
} ExtY KCURRsim T;
                                                            converting to RTF
                                                            configuration
struct P KCURRsim T {
 real_T D[11];
                                      * Referenced by:
```

Header file generated from KCURR model that defines the data structure for the interface to RTF

```
<FunctionBlock Name="KCURR" Type="SimulinkBlock">
 <Parameter Name="LibraryPath" Value="KCURRsim-3/build/libKCURRsim.so"/>
 <Parameter Name="BlockName" Value="KCURRsim"/>
 <Parameter Name="KdRef" Value="[[0.759,0.2246,0.0636,0.0072,0.0037,0.1365</pre>
 <Parameter Name="Ke" Value="[[7.59,2.246,0.636,0.072,0.037,1.365,0.431,0.</pre>
 <Parameter Name="Nd" Value="100"/>
 <Parameter Name="P" Value="[1,1,1,1,1,1,1,1,1,1,1]"/>
 <Parameter Name="D" Value="[0,0,0,0,0,0,0,0,0,0,0]"/>
  rameter Name="I" Value="[0,0,0,0,0,0,0,0,0,0,0]"/>
 Parameter Name="Vlow" Value="[-1050,-1050,-2100,-1050,-1050,-1050,-3150
 <Parameter Name="Vup" Value="[1050,1050,2100,1050,1050,1050,3150,3150,3150]</pre>
 <InputPort Name="V FF" Signal="loaderBuffer1"/>
 <InputPort Name="I CSPF ref" Signal="loaderBuffer2"/>
 <InputPort Name="I CSPF" Signal="loaderBuffer3"/>
 <InputPort Name="FlagInom" Signal="loaderLoader4"/>
 <InputPort Name="enable" Signal="loaderLoader5"/>
```

- Simulink wrapper FB loads the compiled library.
- Interface with structured data e.g., matrix and array is supported in the parameter attribute from the release of v2.2.4.

PCS Prototyping: Controller model from the generated code

How to interface in between Simulink and RTF

```
External inputs (root inport signals with default storage) */
typedef struct {
 real_T V_FF[11];
 real_T I_CSPF_ref[11];
 real T I CSPF[11];
  int8_T FlagInom;
 int8_T enable;
} ExtU KCURRsim T;
 real T u[11];
 real T PIDinternalSignals[33];
                                                           Example for
 real T errorSignal[11];
} ExtY KCURRsim T;
                                                            converting to RTF
                                                            configuration
struct P KCURRsim T {
 real_T D[11];
                                      * Referenced by:
```

Header file generated from KCURR model that defines the data structure for the interface to RTF

```
<FunctionBlock Name="KCURR" Type="SimulinkBlock">
 <Parameter Name="LibraryPath" Value="KCURRsim-3/build/libKCURRsim.so"/>
 <Parameter Name="BlockName" Value="KCURRsim"/>
 <Parameter Name="KdRef" Value="[[0.759,0.2246,0.0636,0.0072,0.0037,0.1365</pre>
 <Parameter Name="Ke" Value="[[7.59,2.246,0.636,0.072,0.037,1.365,0.431,0.</pre>
 <Parameter Name="Nd" Value="100"/>
 <Parameter Name="P" Value="[1,1,1,1,1,1,1,1,1,1,1]"/>
 <Parameter Name="D" Value="[0,0,0,0,0,0,0,0,0,0,0]"/>
  rameter Name="I" Value="[0,0,0,0,0,0,0,0,0,0,0]"/>
 Parameter Name="Vlow" Value="[-1050,-1050,-2100,-1050,-1050,-1050,-3150
 <Parameter Name="Vup" Value="[1050,1050,2100,1050,1050,1050,3150,3150,3150]</pre>
 <InputPort Name="V FF" Signal="loaderBuffer1"/>
 <InputPort Name="I CSPF ref" Signal="loaderBuffer2"/>
 <InputPort Name="I CSPF" Signal="loaderBuffer3"/>
 <InputPort Name="FlagInom" Signal="loaderLoader4"/>
 <InputPort Name="enable" Signal="loaderLoader5"/>
```

- Simulink wrapper FB loads the compiled library.
- Interface with structured data e.g., matrix and array is supported in the parameter attribute from the release of v2.2.4.

■ The Thomson Scattering diagnostics gives a reliable electron temperature and density profiles in magnetically confined plasma.

- The customized DAQ FB archives raw data through RTF transport layer
- The output links to the fitting FB to eliminate back scattered signal.
- Electron temperature is measured using lookup table where calibrated data is stored as per the wavelength from the polychromator signal.

■ The Thomson Scattering diagnostics gives a reliable electron temperature and density profiles in magnetically confined plasma.

- The customized DAQ FB archives raw data through RTF transport layer
- The output links to the fitting FB to eliminate back scattered signal.
- Electron temperature is measured using lookup table where calibrated data is stored as per the wavelength from the polychromator signal.

■ The Thomson Scattering diagnostics gives a reliable electron temperature and density profiles in magnetically confined plasma.

- The customized DAQ FB archives raw da
- The output links to the fitting FB to elimina
- Electron temperature is measured using k data is stored as per the wavelength from

Function block	min	avg	max	Std.
Pulse fitting	0.52 ms	1.31 ms	2.10 ms	0.18 ms
Pulse generation	0.31 ms	0.32 ms	0.54 ms	0.01 ms
T_e calculation	0.01 ms	0.01 ms	0.02 ms	0.00 ms

Actuator control: Poloidal Field coil control

- ITER started implementing a real-life controller in order to evaluate both functional and non-functional behaviour of the PCS.
- 11 PF controllers were devised by complying with KSTAR native function model. Verified 20kHz control cycle in consecutive process pipeline such as exception handler, waveform generator, and PID function.

Conclusions

- The RTF is a flexible high-performance software platform that facilitates the development and deployment of complex real-time applications.
- It was designed to be portable and modular, enabling high reusability and maintainability of components constituting the real-time applications.
- ☐ Factory design pattern and rich function for multi-threaded program enables building application through configuration-driven process.
- Prototyping activities on some of the operating Tokamaks have demonstrated its applicability for the implementation of ITER real-time control systems.

Slide 30 /19

Thank you for your attention!