Numerische Grundlagen – SS 2019

Formelsammlung

Lukas Heiland – last updated:

7. April 2019

Inhaltsverzeichnis

1	Grundlagen														3							
	1.1	Absol	uter und	l relativer	Fehler																	3
		1.1.1	Norm																			3

1 Grundlagen

1.1 Absoluter und relativer Fehler

Um Fehler mathematisch exakt quantifizieren zu können, müssen wir messen. Für das Messen benötigen wir eine Norm:

1.1.1 Norm

Eine Norm auf einem \mathbb{K} -Vektorraum V (V ist entweder \mathbb{R} oder \mathbb{C}) ist eine Abbildung $||\cdot||$ mit folgenden Eigenschaften:

- Definitheit: $\forall v \in V: ||v|| \geq 0$ und dazu $||v|| = 0 \leftrightarrow v = 0$
- Homogenität: $\forall a \in \mathbb{K}, v \in V : ||av|| = |a| \cdot ||v||$
- Dreiecksungleichung: $\forall v, w \in V : ||v + w|| \le ||v|| + ||w||$