COMP90054 - Week 2 tutorial

Last updated: 20 March 2023

Intro to AI and Planning

Rationally acting agents

- Knowledge & Percepts & Performance measure -> Action
- Maximise expected performance given its percept and knowledge
- Problem -> Solver -> Solution

Classical planning

Problem -> Solver -> Solution

Model -> Planner -> Action sequence

Planning is a **model-based approach** to autonomous behaviour:

- We use **model** to specify a **problem** *P*
- The system can be in one of many states
- Task of planning: Find action sequence to drive initial state into goal state
- Submit model to **planner** so it can come up with a **plan** (action sequence)

State-space model

$$S(P) = \langle S, s_0, S_G, A, f, c \rangle$$

- S State space S, finite and discrete
- s_0 A **known** Initial state s_0 (c.f. belief of initial state)
- S_G A set of goal states $S_G \subseteq S$
- A A set of actions, with $A(s) \subseteq A$ for each $s \in S$
- f A **deterministic** transition function $f:(a,s) \rightarrow s'$ for $a \in A(s)$
- c Positive **action cost** functions c(a, s)

Blind search algorithms

Why graph search?

- Model -> Planner -> Action sequence (Plan)
- We want to solve problem P by using **graph search algorithms** over the graph associate with $\mathcal{S}(P)$

Blind Search algorithms

- "Blind" means not requiring any input beyond problem *P* (c.f. Heuristics/informed search algorithms, coming up soon!)
- Algorithms
 - Breadth-First Search (BrFS)
 - Depth-First Search (DFS)
 - Iterative Deepening (ID)
- Overview

How to extract plans

By following/reversing steps of the search node expansion in search space A search node σ contains

- $state(\sigma)$ Associated search state
- $parent(\sigma)$ Pointer to search node from which σ is reached $state(\sigma)$
- $action(\sigma)$ An action leading from $state(parent(\sigma))$ to
- $g(\sigma)$ Cost of path from the root node to σ