PROYECTO COMPILANDO CONOCIMIENTO

ECUACIONES DIFERENCIALES

La Transformada de Laplace

Introducción

AUTOR:

Rosas Hernandez Oscar Andres

Índice general

1.	La Transformada de Laplace															2					
	1.1.	Definic	ción																		3
		1.1.1.	Ejemplo																		3
		1.1.2.	Ejemplo																		3

Capítulo 1

La Transformada de Laplace

1.1. Definición

Dada una función f(t) definida para toda $t \le 0$ la tranformada de Laplace de f es la función F(s) definida de la Siguiente manera:

$$L\{f(t)\} = F(s) = \int_0^\infty e^{-st} f(t)dt$$
 (1.1)

en todos los valoers de S para los cuales la Integral Impropia converge. Recuerda que una Integral Impropia:

$$\int_0^\infty g(t)dt = \lim_{b \to \infty} \int_a^b g(t)dt$$

1.1.1. Ejemplo

Calcule la Tranformada de Laplace cuando f(t) = 1

$$L\{1\} = F(s) = \int_0^\infty e^{-st} 1 dt$$

$$= \lim_{b \to \infty} \int_0^b e^{-st} dt$$

$$= \lim_{b \to \infty} \frac{e^{-st}}{-s} \Big|_0^b$$

$$= \lim_{b \to \infty} \left[\frac{1}{s} - \frac{e^{-sb}}{s} \right]$$

$$= \frac{1}{s}$$

1.1.2. Ejemplo

Calcule la Tranformada de Laplace cuando $f(t)=e^{at}$

$$L\{1\} = F(s) = \int_0^\infty e^{-st} \cdot e^{at} dt$$

$$= \lim_{b \to \infty} \int_0^b e^{-st+at} dt$$

$$= \lim_{b \to \infty} \int_0^b e^{-(s-a)t} dt$$

$$= \lim_{b \to \infty} \frac{e^{-(s-a)t}}{-(s-a)} \Big|_0^b$$

$$= \lim_{b \to \infty} \left[\frac{e^{-(s-a)b}}{-(s-a)} - \frac{e^{-(s-a)0}}{-(s-a)} \right]$$

$$= \frac{1}{s-a}$$

Bibliografía

[1] ProbRob Youtube.com