Homework 5

CST 311, Introduction to Computer Networks, Spring 2020

READ INSTRUCTIONS CAREFULLY BEFORE YOU START THE HOMEWORK.

This homework is due on Sunday, May 3, 2020.

Homework must be submitted electronically through iLearn on https://ilearn.csumb.edu by 11:55 pm on the due date. Late homeworks will not be accepted.

Homework must in pdf format only. Any other formats will not be accepted. You must submit a single file for the entire homework. The naming convention of the file should be HW5_yourlastname.pdf. **Put your name in the document as well.** Your homework submission should present the problems in the original order and be properly labeled.

This homework is worth 50 points. Each part of a question carries equal weight unless specified otherwise.

Name:	Adam Ayala

Link Layer

- 1. (20 points) Calculate the 2-dimensional parity of the following bit sequences: 1001010, 11111111, 0000000, 0101010, 1101101, 0110010, 0011001
 - a. Consider odd parity

b. Consider even parity

- 2. (10 points) Calculate the checksum of the following 16-bit strings:
 - a. A2B4 and FE9C

b. D789 and FF91

3. (20 points) Calculate the CRC for the following. Give the bit string that must be sent (that includes the CRC).

```
a. D = BA78, G = 1001
```

```
1 0101 0111 0001 001
             1001 | 1011 1010 0111 1000 000
                    <u>1001</u>
                      10 10
                       1001
                          1110
                          1001
                           1110
                           <u>1001</u>
                            1111
                            1001
                             1101
                             1001
                              1001
                              1001
                                  01000
                                    1001
                                       1000
                                       1001
                                           1
       1011 1010 0111 1000 000
      1011 1010 0111 1000 001
          b. D = F096, G = 1101
                      1 0111 0101 0000 1
            1101 | 1111 0000 1001 0110 000
                   <u>1101</u>
                     1000
                     1101
                      1010
                      1101
                        1110
                        1101
                          1110
                          <u>1101</u>
                            1101
                             <u>1101</u>
                                001100
                                   1101
                                       100
1111 0000 1001 0110 000
```

1111 0000 1001 0110 100