UAS DAA-1

Anggota Kel 7:

- 1. Stephen J. Rusli (211401059)
- 2. A. Nurcahaya Tampubolon (211401071)
- 3. Agus Selian (211401072)
- A. Algoritma Data Statis
 - 1. Pada sesi pilih menu, pilih opsi 1 untuk menuju data statis

2. Data statis menggunakan game shopee pets sebagai acuan. User akan dibawa ke menu selanjutnya, pilih opsi 1 untuk menambah teman pet.

```
1. Statis
2. Dinamis
3. Keluar
Ans : 1
SELAMAT DATANG DI SHOPEE PETS
MENU SHOPEE PET
1. Tambah teman pet
2. Tampilkan teman pet
3. Ubah teman pet
4. Hapus teman pet
5. Urutkan teman pet
6. Keluar
>> 1
```

3. Input data teman pet sesuai format yang diberikan

```
SELAMAT DATANG DI SHOPEE PETS
                     MENU SHOPEE PET
l. Tambah teman pet
2. Tampilkan teman pet
3. Ubah teman pet
1. Hapus teman pet
. Urutkan teman pet
. Keluar
> 1
Nama pemilik pet : Cahaya
Nama pet
                : mimi
Tanggal lahir pet
       Tanggal : 24
       Bulan
       Tahun
                : 2022
                : 135
Jmur pet
Zodiak pet
                : gemini
```

4. Setelah menginput data, program akan kembali ke menu shopee pet.

Pilih opsi 1 untuk menginput data ke-2 . Lakukan proses tersebut berulang-kali untuk memasukkan data sebanyak 5 inputan

```
Nama pemilik pet : yoman
Nama pet : yoyok
Tanggal lahir pet :
Tanggal : 23
Bulan : 12
Tahun : 2022
Umur pet : 23
Zodiak pet : sagitarius
```

Vama pemilik pet : angsaa
Vama pet : udin
Tanggal lahir pet :
Tanggal : 12
Bulan : 12
Tahun : 2022
Jmur pet : 120
Zodiak pet : virgo

```
Nama pemilik pet : ali
Nama pet : apas
Tanggal lahir pet :
Tanggal : 4
Bulan : 12
Tahun : 2022
Umur pet : 12
Zodiak pet : aries
```

Nama pemilik pet : Luwakk Nama pet : kopio Tanggal lahir pet : Tanggal : 26 Bulan Tahun : 2022 Umur pet : 178 Zodiak pet : Taurus

5. Untuk menampilkan data,pilih opsi 2

SELAMAT DATANG DI SHOPEE PETS MENU SHOPEE PET

- 1. Tambah teman pet
- 2. Tampilkan teman pet

- 3. Ubah teman pet 4. Hapus teman pet 5. Urutkan teman pet
- 6. Keluar
- >> 2

6. Data muncul dan diberi label "Data teman di shopee pet 1 sampai 5"

```
C:\Users\Acer\Downloads\uts_daa.exe
Data teman di Shopee Pet ke-1 :
Nama Pemilik Pet : Cahaya
Nama Pet : mimi
Tanggal Lahir : 24-2-2022
Umur Pet : 135 hari
Zodiak Pet : gemini
Data teman di Shopee Pet ke-2 :
Nama Pemilik Pet : yoman
Nama Pet : yoyok
Tanggal Lahir : 23-12-2022
Umur Pet : 23 hari
Zodiak Pet : sagitarius
Data teman di Shopee Pet ke-3 :
Nama Pemilik Pet : angsaa
Nama Pet : udin
Tanggal Lahir : 12-12-2022
Umur Pet : 120 hari
Zodiak Pet : virgo
Data teman di Shopee Pet ke-4 :
Nama Pemilik Pet : ali
Nama Pet : apas
Tanggal Lahir : 4-12-2022
Umur Pet : 12 hari
Zodiak Pet : aries
Data teman di Shopee Pet ke-5 :
Nama Pemilik Pet : Luwakk
Nama Pet : kopio
Tanggal Lahir : 26-4-2022
Umur Pet : 178 hari
Zodiak Pet : Taurus
```

7. Pilih opsi 3 untuk ubah teman pet.

Pilih teman pet ke berapa yang ingin di ubah, misalkan kita ingin mengubah teman pet ke-1.

```
SELAMAT DATANG DI SHOPEE PETS
                      MENU SHOPEE PET

    Tambah teman pet

2. Tampilkan teman pet
3. Ubah teman pet
4. Hapus teman pet
5. Urutkan teman pet
6. Keluar
>> 3
Pilih teman pet yang ingin diubah : 1_
Nama pemilik pet : Udina
                 : ulul
Nama pet
Tanggal lahir pet :
       Tanggal : 11
        Bulan
                : 11
        Tahun
                 : 2022
Umur pet
                 : 67
Zodiak pet
                : Gemini
```

8. Untuk menghapus teman pet, pilih opsi 4 dan input teman pet keberapa yang akan dihapus

```
SELAMAT DATANG DI SHOPEE PETS

MENU SHOPEE PET

1. Tambah teman pet

2. Tampilkan teman pet

3. Ubah teman pet

4. Hapus teman pet

5. Urutkan teman pet

6. Keluar

>> 4

pilih teman pet yang ingin kamu hapus (1 s.d. 10) : 4
```

9. Untuk mengurutkan teman pet, pilih opsi 5

```
MENU SHOPE

    Tambah teman pet

2. Tampilkan teman pet
Ubah teman pet
4. Hapus teman pet
5. Urutkan teman pet
Keluar
>> 5
Teman pet ke-1:
Nama
     pet
                 : Cahaya
Umur
                : 135 hari
      pet
Zodiak pet : gemini
Tanggal lahir pet : 24-2-2022
Teman pet ke-2:
Nama
                 : yoman
      pet
                : 23 hari
Umur
      pet
            : sagitarius
Zodiak pet
Tanggal lahir pet : 23-12-2022
Teman pet ke-3:
Nama
      pet
                 : angsaa
                : 120 hari
Umur
      pet
           : virgo
Zodiak pet
Tanggal lahir pet : 12-12-2022
Teman pet ke-4:
Nama
                 : Luwakk
      pet
Umur
      pet
                 : 12 hari
Zodiak pet
               : aries
Tanggal lahir pet : 26-4-2022_
```

B. Algoritma Data Dinamis

1. Untuk ke struktur data dinamis pilih opsi 6 untuk Keluar dan opsi 2 untuk struktur data dinamis

```
SELAMAT DATANG DI SHOPEE PETS

MENU SHOPEE PET

1. Tambah teman pet

2. Tampilkan teman pet

3. Ubah teman pet

4. Hapus teman pet

5. Urutkan teman pet

6. Keluar

>> 6_
```

```
C:\Users\Acer\Downloads\uts_daa.exe

Data Structure :

1. Statis

2. Dinamis

3. Keluar

Ans : 2
```

2. Masukkan jumlah mahasiswa 5

```
Data Structure :
1. Statis
2. Dinamis
3. Keluar
Ans : 2
Masukkan jumlah data mahasiswa : 5
Masukkan data mahasiswa ke 1 :
Vama : _
```

3. Input data nilai mahasiswa sesuai format yang diberikan sebanyak 5 kali

```
Masukkan jumlah data mahasiswa : 5
Masukkan data mahasiswa ke 1 :
Nama : angst
Nilai Tugas : 89
Nilai UTS : 90
Nilai UAS : 88
Masukkan data mahasiswa ke 2 :
Nama : ali
Nilai Tugas : 88
Nilai UTS : 96
Nilai UAS : 95
Masukkan data mahasiswa ke 3 :
Nama : Luwak
Nilai Tugas : 78
Nilai UTS : 83
Nilai UAS : 79
Masukkan data mahasiswa ke 4 :
Nama : Yohan
Nilai Tugas : 98
Nilai UTS : 97
Nilai UAS : 92
Masukkan data mahasiswa ke 5 :
Nama : Medeia
Nilai Tugas : 84
Nilai UTS : 87
Nilai UAS : 90
```

4. Kemudian klik enter untuk menampilkan urutan data nilai mahasiswa yang sudah di sorting berdasarkan nilai total terbesar.

C. Kompresi Data (ETDC)

1. Statis

String:

"Cahaya mimi 24-2-2022 135 hari gemini yoman yoyok 23-12-2022 23 hari sagitarius angsaa udin 12-12-2022 120 hari virgo alia pas 4-12-2022 12 hari aries Luwakk kopio 26-4-2022 178 hari Taurus"

Char	Freq	ASCII Code	Bit	Bit x Freq
space	29	00100000	8	232
2	26	00110010	8	208
a	19	01100001	8	152
i	16	01101001	8	128
-	10	00101101	8	80
r	9	01110010	8	72
1	8	00110001	8	64
h	6	01101000	8	48
0	6	01101111	8	48
0	6	00110000	8	48
S	5	01110011	8	40
u	5	01110101	8	40
m	4	01101101	8	32
g	4	01100111	8	32
n	4	01101110	8	32
k	4	01101011	8	32
у	3	01111001	8	24
4	3 3 2	00110100	8	24
3	3	00110011	8	24
e	2	01100101	8	16
	2	01110000	8	16
p C	1	01000011	8	8
5	1	00110101	8	8
t	1	01110100	8	8
d	1	01100100	8	8

V	1	01110110	8	8
1	1	01101100	8	8
L	1	01001100	8	8
W	1	01110111	8	8
6	1	00110110	8	8
7	1	00110111	8	8
8	1	00111000	8	8
T	1	01010100	8	8
Total:				1488

b = 3

i	Char	Freq	ETDC	Bit	Bit x Freq
0	spasi	29	100	3	87
1	2	26	101	3	78
2	a	19	110	3	57
3	i	16	111	3	48
4	-	10	000 100	6	60
5	r	9	000 101	6	54
6	1	8	000 110	6	48
7	h	6	000 111	6	36
8	О	6	001 100	6	36
9	0	6	001 101	6	36
10	S	5	001 110	6	30
11	u	5	001 111	6	30
12	m	4	010 100	6	24
13	g	4	010 101	6	24
14	n	4	010 110	6	24
15	k	4	010 111	6	24
16	y	3	011 100	6	18
17	4	3	011 101	6	18
18	3	3	011 110	6	18
19	e	2	011 111	6	12
20	р	2	000 000 100	9	18
21	C	1	000 000 101	9	9
22	5	1	000 000 110	9	9
23	t	1	000 000 111	9	9
24	d	1	000 001 100	9	9
25	V	1	000 001 101	9	9
26	1	1	000 001 110	9	9
27	L	1	000 001 111	9	9
28	W	1	000 010 100	9	9
29	6	1	000 010 101	9	9
30	7	1	000 010 110	9	9
31	8	1	000 010 111	9	9

32	T	1	000 011 100	9	9
Total:					888

String bit:

|String bit| = 888 bit : 8 = 111 (habis dibagi 8)

Compression Ratio:

$$C_r = \frac{uncompressed\ bits}{compressed\ bits}$$

$$C_r = \frac{1488}{888} = 1,6756$$

Ratio of Compression:

$$R_c = \frac{compressed\ bits}{uncompressed\ bits}\ x\ 100\%$$

$$R_c = \frac{888}{1488} \times 100\% = 59,67\%$$

Space Savings:

$$SS = 100\% - 59,67\% = 40,33\%$$

2. Dinamis

String:

"angst 89 90 88 ali 88 96 95 Luwak 78 83 79 Yohan 98 97 92 Medeia 84 87 90"

Char	Freq	ASCII Code	Bit	Bit x Freq	
space	19	00100000	8	152	
8	10	00111000	8	80	
9	9	00111001	8	72	
a	5	01100001	8	40	
7	4	00110111	8	32	
n	2	01101110	8	16	
0	2 2	00110000	8	16	
i	2	01101001	8	16	
e	2	01100101	8	16	
g	1	01100111	8	8	
S	1	01110011	8	8	
t	1	01110100	8	8	
1	1	01101100	8	8	
6	1	00110110	8	8	
5	1	00110101	8	8	
L	1	01001100	8	8	
u	1	01110101	8	8	
W	1	01110111	8	8	
k	1	01101011	8	8	
3	1	00110011	8	8	
Y	1	01011001	8	8	
0	1	01101111	8	8	
h	1	01101000	8	8	
2	1	00110010	8	8	
M	1	01001101	8	8	
d	1	01100100	8	8	
4	1	00110100	8	8	
	Total:				

b = 3

i	Char	Freq	ETDC	Bit	Bit x Freq
0	space	19	100	3	57
1	8	10	101	3	30
2	9	9	110	3	27
3	a	5	111	3	15
4	7	4	000 100	6	24
5	n	2	000 101	6	12
6	0	2	000 110	6	12
7	i	2	000 111	6	12

8	e	2	001 100	6	12
9	g	1	001 101	6	6
10	S	1	001 110	6	6
11	t	1	001 111	6	6
12	1	1	010 100	6	6
13	6	1	010 101	6	6
14	5	1	010 110	6	6
15	L	1	010 111	6	6
16	u	1	011 100	6	6
17	W	1	011 101	6	6
18	k	1	011 110	6	6
19	3	1	011 111	6	6
20	Y	1	000 000 100	9	9
21	О	1	000 000 101	9	9
22	h	1	000 000 110	9	9
23	2	1	000 000 111	9	9
24	M	1	000 001 100	9	9
25	d	1	000 001 101	9	9
26	4	1	000 001 110	9	9
Total :					330

String bit:

|String bit| = 330 bit : 8 = 41,25. Perlu 6 bit lagi agar dapat habis dibagi 8

Sehingga ditambahkan padding bit sebanyak 6 bit = 000000, dan

flag bit = 00000110

String bit setelah ditambah padding bit dan flag bit :

|String bit| = 330 bit + 6 bit (padding) + 8 bit (flag) = 344 bit

Compression Ratio:

$$C_r = \frac{uncompressed\ bits}{compressed\ bits}$$

$$C_r = \frac{584}{344} = 1,6976$$

Ratio of Compression:

$$R_c = \frac{compressed\ bits}{uncompressed\ bits}\ x\ 100\%$$

$$R_c = \frac{344}{584} \times 100\% = 58,9\%$$

Space Savings:

$$SS = 100\% - 58.9\% = 41.1\%$$

D. MST

1. MST Data Statis

Disini kita menggunaan metode Prim's Algorithm, metode ini diawali dengan menentukan titik awal/start point, kemudian akan dilanjutkan dengan menghubungkan satu titik ke titik lainnya. Karena di sini kita memilih titik 0 sebagai source maka akan dihubungkan ke titik 1 sebagai iterasi pertama, begitu pula seterusnya

2. MST Data Dinamis

Disini kita menggunaan metode Prim's Algorithm, metode ini diawali dengan menentukan titik awal/start point, kemudian akan dilanjutkan dengan menghubungkan satu titik ke titik lainnya. Karena di sini kita memilih titik 0 sebagai source maka akan dihubungkan ke titik 1 sebagai iterasi pertama, begitu pula seterusnya

