

Université Sultan Moulay Slimane Ecole Supérieure de Technologie Département Mécatronique

Electronique Numérique

Chapitre 2 : Opérations arithmétiques binaires
Pr. Assia ARSALANE

Plan du chapitre

- I. Introduction
- II. Addition binaire
- III. Débordement
- IV. Multiplication binaire
- V. V. Multiplication ou division par une puissance de 2
- VI. Soustraction binaire
- VII. Addition/soustraction binaire en signé
- VIII. Addition/soustraction binaire en complément à 2 : débordement
- IX. Addition/soustraction binaire en complément à 2 : Exemples

I. Introduction

- Les opérations arithmétiques (addition, soustraction, multiplication, division) sont réalisables dans toute base B
 - Avec mêmes règles que pour la base décimale
 - Retenues également mais dépendant de la base
 - Quand on additionne 2 chiffres a et b dans la base B
 - Si la somme des valeurs décimales de a et b dépasse ou égale B alors il y a une retenue
- Exemple : principes de l'addition binaire
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 1 + 1 = 10 soit 0 avec une retenue de 1
 - 1 + 1 + 1 = 11 soit 1 avec une retenue de 1

II. Addition binaire

```
Exemple: 10 + 1011

0010 = 2

+ 1011 = 11

1101 = 13
```

• Exemple : 1101 + 1010

- Addition de 2 nombres de 4 bits : on a besoin dans cet exemple de 5 bits
- Potentiel problème de débordement

III. Débordement

- Débordement : la taille allouée (8, 16 ... bits) au codage d'un entier est trop petite pour coder ou stocker le résultat d'un calcul
- Exemple avec addition, sur 8 bits, non signé :
 - 10110011 + 10000101 = 100111000
 - Besoin de 9 bits pour coder le nombre
 - Stockage du résultat impossible sur 8 bits
- Exemple avec addition, sur 8 bits, signé:
 - **0**1110011 + **0**1000101 = **1**0111000
 - Addition de 2 positifs donne un négatif!

III. Débordement

Exercice à faire :

- Faire Addition binaire sur 8 bits des deux nombres a et b
 - a = 11000101
 - b = 11100011
- Représenter a, b en hexadécimal et faite la somme en hexadécimal.
- Si on effectue la somme avec a et b codés sur 16 bits. Quel est l'état de C ? Justifiez votre réponse

IV. Multiplication binaire

- Comme en décimal
- N'utilise que du décalage de bits et additions
- Exemple : 101 x 110 :

```
101 = 5

x 110 = 6

000 - Décalage d'un bit vers la gauche =

+ 1010 multiplication

- Décalage d'un bit vers la droite =

11110 = 30 division entière par 2
```

V. Multiplication ou division par une puissance de 2

1. Multiplication par 2^k

- La multiplication d'un entier a codé sur n bits par 2^k est obtenue par un décalage de la suite de bits de a de k positions vers la gauche.
- Les bits de plus faible poids sont remplacés par des '0'.
- Si le résultat n'est représentable, un débordement est généré.
- Exemple : soit l'opération 10*4 = 40. Cette opération réalisée sur 8 bits donne :
 - 10 = 0000 1010
 - 0000 1010 décalé à gauche de 2 postions donne : 0010 1000 soit 40
- Exercice à faire : à quoi correspond l'opération 16*3.

V. Multiplication ou division par une puissance de 2

2. Division par 2^k

- La division d'un entier a codé sur n bits par 2^k est obtenue par un décalage de la suite de bits de a de k positions vers la droite.
- Le bit de signe est recopié dans les bits de poids le fort
- Ce type de décalage est dit arithmétique, dans le décalage dit logique, les k positions de poids fort sont remplies de 0.
- Exemple : Réaliser l'opération $\frac{20}{2} = 10$
- 20 = 16 + 4 = 0001 0100 et 0001 0100 décalé à droite d'une position donne 0000 1010 soit 10.
- Exercice à faire : à quoi correspond l'opération $\frac{30}{2} = 15$

VI. Soustraction en binaire

• Soustraction binaire : peut se faire comme en décimal

$$0-0=0$$

 $1-0=1$
 $0-1=1$ on emprunt 1
 $1-1=0$

Exemple: 1101 – 1011:

$$\begin{array}{rcl}
 & 1101 & = 13 \\
 & - & 1011 & = 11 \\
 & 0010 & = 2
 \end{array}$$

- Autre technique
 - Utiliser les compléments à 2 et ne faire que des additions

VII. Addition/soustraction binaire en signé

- Codage en complément à 2 (CV)
 - Simplifie les additions et soustractions
 - On peut additionner directement des nombres, quels que soient leurs signes, le résultat sera directement correct (si pas de débordement) et « bien codé »
 - Soustraction d'un nombre = addition de son complément à 2
 - A B = A + CV(B)
 - Valable dans tous les cas, quels que soient les signes de A et B
 - Là aussi le résultat est directement valide si pas de débordement

VIII. Addition/soustraction binaire en complément à 2 : débordement

- Gestion des débordements différent de l'addition non signée
- Une retenue sur un bit supplémentaire par rapport à la précision ne veut pas forcément dire que le résultat n'est pas stockable avec la précision utilisée
- On regarde les retenues des deux derniers bits (poids forts) additionnés pour savoir s'il y a eu débordement
 - Si retenues identiques (00 ou 11) : pas de débordement
 - Si retenues différentes (01 ou 10) : débordement
- On néglige systématiquement la retenue sur le bit supplémentaire pour déterminer le résultat final
 - S'il n'y a pas de débordement, le résultat tient dans la précision requise, la retenue n'a aucune signification

VIII. Addition/soustraction binaire en complément à 2 : débordement

- Débordement (suite)
 - Règles valables pour toute addition ou soustraction utilisant des entiers signés codés en complément à 2
 - Avec ce mode de codage des nombres signés, le débordement est différent du codage des entiers non signés
- Signe du résultat : on regarde le bit de poids fort
 - Si 0 : résultat est un nombre positif
 - Si 1 : nombre négatif
 - Le résultat est directement codé en complément à 2
 - Sa valeur absolue est trouvée par le calcul de la Grandeur Exacte.

 Exemples de calcul avec codage des entiers signés en complément à 2, précision de 5 bits

```
• 9 = (01001)_2 8 = (01000)_2 5 = (00101)_2

• -9 = (10111)_2 -8 = (11000)_2 -5 = (11011)_2
```

Calcul de 9 + 8 :

```
01 \rightarrow \text{retenues}

01001 = 9

01000 = 8

010001
```

- Résultat tient sur 5 bits mais calcul faux
- Car 2 dernières retenues sont différentes

```
• Calcul de 9 – 8 = calcul de 9 + CV (8)

= calcul de 9 + (-8)

11 \rightarrow retenues

01001 = 9

+ 11000 = -8

100001
```

- Résultat ne tient pas sur 5 bits mais calcul correct
- Car 2 dernières retenues sont identiques
- Le bit de débordement (le 6ème bit) est à ignorer, il n'a aucune signification
- Le 5^{ème} bit = 0 : nombre positif
 - Résultat = $(00001)_2 = 1$

```
• Calcul de 5 – 8 = calcul de 5 + CV (8)

= calcul de 5 + (-8)

00 \rightarrow retenues

00101 = 5

+ 11000 = -8

011101
```

- Calcul correct car 2 dernières retenues sont identiques
- Le 5^{ème} bit = 1 : nombre négatif
- Valeur absolue du résultat = CV(11101) = (00011)₂ = 3
- Donc résultat de 5 8 = 3

• Calcul de
$$-9 - 8 = \text{calcul de CV}(9) + \text{CV}(8)$$

 $= \text{calcul de }(-9) + (-8)$
 $10 \rightarrow \text{retenues}$
 $10111 = -9$
 $+ 11000 = -8$
 101111

Calcul incorrect car 2 dernières retenues sont différentes

```
• Calcul de -5 - 8 = \text{calcul de CV}(5) + \text{CV}(8)
= calcul de (-5) + (-8)
11 \rightarrow \text{retenues}
11011 = -5
+ 11000 = -8
110011
```

- Calcul correct car 2 dernières retenues sont identiques
- Le 5^{ème} bit = 1 : nombre négatif
- Valeur absolue du résultat = $CV(10011) = (01101)_2 = 13$
 - On ignore systématiquement le 6^{ème} bit
- Donc résultat de 5 8 = 13