第八章 线性方程组的迭代解法

线性方程组Ax=b的解法可分为直接法和迭代法两大类。当A是大型稀疏矩阵时,常使用迭代解法。

但是迭代法也有缺点,它要求方程组的系数矩阵具有某种特殊性质,以保证迭代过程的收敛性。发散的 迭代过程是没有实用价值的。

本章将讨论怎样构造迭代法,分析其收敛性,并给出收敛的判别条件。

方程组迭代法的构造原则

先将方程组Ax=b改写为等价的形式: x=Bx+f

然后得到迭代格式: $\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{f}$

B称为迭代矩阵,方程组的不同等价形式可以 得到不同的迭代格式,相应的迭代矩阵也不同。

一、Jacobi迭代

$$\begin{cases} 10x_1 - 2x_2 - x_3 = 3 \\ -2x_1 + 10x_2 - x_3 = 15 \\ -x_1 - 2x_2 + 5x_3 = 10 \end{cases}$$
 /# 7 # 7 # 7 | 2 | 3

从第k个方程中解出 x_k , 得到等价的方程组:

$$\begin{cases} x_1 = 0.2x_2 + 0.1x_3 + 0.3 \\ x_2 = 0.2x_1 + 0.1x_3 + 1.5 \\ x_3 = 0.2x_1 + 0.4x_2 + 2 \end{cases}$$

构造迭代格式:
$$\begin{cases} x_1^{(k+1)} = 0.2x_2^{(k)} + 0.1x_3^{(k)} + 0.3\\ x_2^{(k+1)} = 0.2x_1^{(k)} + 0.1x_3^{(k)} + 1.5\\ x_3^{(k+1)} = 0.2x_1^{(k)} + 0.4x_2^{(k)} + 2 \end{cases}$$
 (*1)

在(*1)中, 令k=0,取
$$x_1^{(0)} = 0$$
, $x_2^{(0)} = 0$, $x_3^{(0)} = 0$ 代入,

得到:
$$x_1^{(1)} = 0.3, x_2^{(1)} = 1.5, x_3^{(1)} = 2$$

再今k=1.代入,得:

$$x_1^{(2)} = 0.8, \ x_2^{(2)} = 1.76, \ x_3^{(2)} = 2.66$$

再令k=2,代入,得:

$$x_1^{(3)} = 0.918, \ x_2^{(3)} = 1.921, \ x_3^{(3)} = 2.864$$

$$\begin{cases} x_1^{(k+1)} = & 0.2x_2^{(k)} + 0.1x_3^{(k)} + 0.3\\ x_2^{(k+1)} = 0.2x_1^{(k)} & +0.1x_3^{(k)} + 1.5\\ x_3^{(k+1)} = 0.2x_1^{(k)} + 0.4x_2^{(k)} & +2 \end{cases}$$
(*1)

在(*1)中, 令k=0,取
$$x_1^{(0)} = 0$$
, $x_2^{(0)} = 0$, $x_3^{(0)} = 0$ 代入,

得到:

$$x_1^{(1)} = 0.3, \quad x_2^{(1)} = 1.5, \quad x_3^{(1)} = 2$$

再令k=1,代入,得:

$$x_1^{(2)} = 0.8, \ x_2^{(2)} = 1.76, \ x_3^{(2)} = 2.66$$

再令k=2,代入,得:

$$x_1^{(3)} = 0.918, \ x_2^{(3)} = 1.921, \ x_3^{(3)} = 2.864$$

k	$x_1^{(k+1)}$	$x_2^{(k+1)}$	$\chi_3^{(k+1)}$
3	0.9716	1.97	2.954
4	0.9894	1.98972	2.98232
5	0.996176	1.996112	2.993768
• • •	••••	••••	•••••
8	0.999814032	1.999814544	2.999693216
9	0.999932230	1.999932128	2.999888624
10	0.999975288	1.999975308	2.999959297

迭代格式 (*1):

$$\begin{cases} x_1^{(k+1)} = & 0.2x_2^{(k)} + 0.1x_3^{(k)} + 0.3 \\ x_2^{(k+1)} = 0.2x_1^{(k)} & + 0.1x_3^{(k)} + 1.5 \end{cases}$$
 称为Jacobi迭代格式
$$x_3^{(k+1)} = 0.2x_1^{(k)} + 0.4x_2^{(k)} & + 2 \end{cases}$$

写为矩阵向量形式: $\vec{x}^{(k+1)} = B \cdot \vec{x}^{(k)} + \vec{f}$

$$\vec{x}^{(k)} = \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & 0.1 \\ 0.2 & 0.4 & 0 \end{pmatrix} \qquad \vec{f} = \begin{pmatrix} 0.3 \\ 1.5 \\ 2 \end{pmatrix}$$

B称为迭代矩阵

于一般方程Ax=b,
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

 $(第k个方程中解出x_k)$

Jacobi 迭代公式:
$$\begin{cases} x_1^{(k+1)} = \frac{1}{a_{11}}(b_1 - a_{12}x_2^{(k)} - a_{13}x_3^{(k)} \cdots - a_{1n}x_n^{(k)}) \\ x_2^{(k+1)} = \frac{1}{a_{22}}(b_2 - a_{21}x_1^{(k)} - a_{23}x_3^{(k)} \cdots - a_{2n}x_n^{(k)}) \\ \cdots \cdots \cdots \end{cases}$$

 $x_n^{(k+1)} = \frac{1}{a} (b_n - a_{n1} x_1^{(k)} - a_{n2} x_2^{(k)} \cdots - a_{nn-1} x_{n-1}^{(k)}$

或写为:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} (b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)}), \qquad i = 1, 2, \dots, n$$

为讨论Jacobi迭代的收敛性,需将其表示为矩阵向量形式.

设
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
, A可以分裂为: A=D-L-U

A=D-L-U, 方程组Ax=b 可以写为: (D-L-U)x=b

其分量形式:
$$x_i^{(k+1)} = \frac{1}{a_{ii}}(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)}), i = 1, 2, \dots, n$$

正是Jacobi迭代, B= D⁻¹(L+U) 为Jacobi迭代的迭代矩阵

Gauss-Seidel迭代

例2:将例1中的迭代

$$\begin{cases} x_1^{(k+1)} = & 0.2x_2^{(k)} + 0.1x_3^{(k)} + 0.3\\ x_2^{(k+1)} = 0.2x_1^{(k)} & + 0.1x_3^{(k)} + 1.5\\ x_3^{(k+1)} = 0.2x_1^{(k)} + 0.4x_2^{(k)} & + 2 \end{cases}$$
 (*1)

数与为
$$\begin{cases} x_1^{(k+1)} = 0.2x_2^{(k)} + 0.1x_3^{(k)} + 0.3 \\ x_2^{(k+1)} = 0.2x_1^{(k+1)} + 0.1x_3^{(k)} + 1.5 \\ x_3^{(k+1)} = 0.2x_1^{(k+1)} + 0.4x_2^{(k+1)} + 2 \end{cases}$$
 (*2)

(*2)称为 Gauss-Seidel迭代 格式, 特点是每个分量的迭代 中,及时引入分量的新信息.

在(*2)中,取 $x_1^{(0)} = 0$, $x_2^{(0)} = 0$, $x_3^{(0)} = 0$ 逐次迭代,得

K	$x_1^{(k)}$	$\mathcal{X}_2^{(k)}$	$x_3^{(k)}$
0	0	0	0
1	0.3	1.56	2.684
2	0.8804	1.94448	2.953872
3	0.9842832	1.9922438	2.9937542
4	0.9978242	1.9989403	2.9991409
5	0.9997021	1.9998545	2.9998822
6	0.9999591	1.99998	2.9999838

本例中, Gauss-Seidel迭代的收敛速度较快.

立一般方程Ax=b,
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

$(第k个方程中解出<math>x_k$)

改写为等价方程组:
(第
$$k$$
个方程中解出 x_k)
$$x_1 = \frac{1}{a_{11}}(-a_{12}x_2 - a_{13}x_3 \cdots - a_{1n}x_n + b_1)$$

$$x_2 = \frac{1}{a_{22}}(-a_{21}x_1 - a_{23}x_3 \cdots - a_{2n}x_n + b_2)$$

$$\dots \dots \dots$$

$$x_n = \frac{1}{a_{nn}}(-a_{n1}x_1 - a_{n2}x_2 \cdots - a_{nn-1}x_{n-1} + b_n)$$

$$\begin{cases} x_1^{(k+1)} = \frac{1}{a_{11}} (b_1 - a_{12} x_2^{(k)} - a_{13} x_3^{(k)} & \cdots - a_{1n} x_n^{(k)}) \end{cases}$$

$$x_2^{(k+1)} = \frac{1}{a_{22}} (b_2 - a_{21} x_1^{(k+1)} - a_{23} x_3^{(k)} \cdots - a_{2n} x_n^{(k)})$$

Gauss-Seidel注代:
$$\begin{cases} x_3^{(k+1)} = \frac{1}{a_{33}}(b_3 - a_{31}x_1^{(k+1)} - a_{32}x_2^{(k+1)} & -a_{34}x_4^{(k)} \cdots - a_{3n}x_n^{(k)}) \end{cases}$$

$$x_n^{(k+1)} = \frac{1}{a_{nn}} (b_n - a_{n1} x_1^{(k+1)} - a_{n2} x_2^{(k+1)} - a_{nn-1} x_{n-1}^{(k+1)})$$

Gauss-Seidel迭代:

或与为:
$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n$$

将Gauss-Seidel迭代表示为矩阵向量形式.

求例1中方程组两种迭代的迭代矩阵

則:
$$D = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
, $L = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 2 & 0 \end{pmatrix}$, $U = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ 注意L, U 元素的符号

Jacobi迭代:
$$B=D^{-1}(L+U) = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & 0.1 \\ 0.2 & 0.4 & 0 \end{pmatrix}$$

Gauss-Seidel迭代:
$$G = (D-L)^{-1}U = \begin{pmatrix} 10 & 0 & 0 \\ -2 & 10 & 0 \\ -1 & -2 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0 & 0.04 & 0.12 \\ 0 & 0.056 & 0.068 \end{pmatrix}$$

将例1中的方程组按方程②,③,①的次序重排,得:

$$\begin{cases} -2x_1 + 10x_2 - x_3 = 15 \\ -x_1 - 2x_2 + 5x_3 = 10 \\ 10x_1 - 2x_2 - x_3 = 3 \end{cases}$$

按Jacobi迭代格式计算,

取
$$x_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, 得: $x_1 = \begin{pmatrix} -7.5 \\ -5 \\ -3 \end{pmatrix}$, $x_2 = \begin{pmatrix} -31 \\ -8.75 \\ -68 \end{pmatrix}$, $x_3 = \begin{pmatrix} -85.25 \\ -190.5 \\ -285.5 \end{pmatrix}$, ... 发散

需要讨论,在何条件下可保证迭代格式的收敛性。

迭代格式的收敛性

设方程组Ax=b的准确解为x*, 迭代格式为:

$$\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{f}$$
 B为迭代矩阵

若迭代产生的序列 $\{x^{(k)}\}$ 收敛,设 $\lim_{k\to\infty} x^{(k)} = \tilde{x}$

对 $\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{f}$ 两边求极限,得 $\tilde{x} = B\tilde{x} + f$

而 x=Bx+f 是Ax=b的等价方程组,所以有 $A\tilde{x}=b$,

即 \tilde{x} 是方程组Ax=b的准确解。

因此,只要迭代格式收敛,一定收敛到方程组的准确解。

令 $\varepsilon^{(k)} = x^{(k)} - x^*$, $\varepsilon^{(k)}$ 为第k次迭代解与准确解的误差。

$$x^{(k)} = Bx^{(k-1)} + f,$$
$$x^* = Bx^* + f,$$

相减: $\varepsilon^{(k)} = B\varepsilon^{(k-1)}$

递推:
$$\varepsilon^{(k)} = B\varepsilon^{(k-1)} = B \cdot B\varepsilon^{(k-2)} = \cdots = B^k \varepsilon^{(0)}$$

显然,误差向量 $\varepsilon^{(k)} \to 0$ 的充要条件是矩阵

$$B^k \to O, \qquad (k \to \infty)$$

所以,迭代格式的收敛性问题转化为迭代矩阵的幂趋向于O矩阵的问题。

定理. $\lim_{k\to\infty} B^k = O$ 的充要条件是B的谱半径 $\rho(B)<1$.

注意: $\rho(B) = \max_{i} |\lambda_{i}(B)|$, 是B的按模最大特征值。

- 推论1 迭代格式 $\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{f}$ 所得序列 $\{\mathbf{x}^{(k)}\}$ 收敛的 充要条件是 \mathbf{B} 的谱半径小于 $\mathbf{1}$ 。
- 推论2 迭代格式 $\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{f}$ 所得序列 $\{\mathbf{x}^{(k)}\}$ 收敛的充分条件是 \mathbf{B} 的任何一种范数 $\mathbf{y} = \mathbf{y}$
- 证明: 若B的某种矩阵范数 $\|B\|<1$, 由第七章性质1, $\rho(B) \leq \|B\|<1$, 从而迭代格式收敛。

谱半径的性质 $\rho(A) = \max |\lambda(A)|$

谱半径是A的按模最大特征值.

性质1. 设||A||是A的任意一种算子范数,则有:

$$\rho (A) \leq ||A||$$

即谱半径是一切矩阵算子范数的下界.或,A的算子范数是A任一特征值的上界.

证明:设 λ 是A的任一特征值, x为相应特征向量, $Ax = \lambda x$ $|\lambda| \cdot ||x|| = ||\lambda \cdot x|| = ||Ax|| \le ||A|| \cdot ||x||$

$$\therefore |\lambda| \le |A| \to \max |\lambda| \le |A| \to \rho(A) \le |A|$$

迭代格式的收敛速度问题

设迭代矩阵B有n个线性无关特征向量 $\mathbf{u}_1,\mathbf{u}_2,...\mathbf{u}_n$ 相应特征值为 $\lambda_1, \lambda_2, ... \lambda_n$ 。线性无关向量 $\mathbf{u}_1,\mathbf{u}_2,... \mathbf{u}_n$ 可以作为 \mathbf{R}^n 空间的一组基,任意向量可用 $\mathbf{u}_1,\mathbf{u}_2,... \mathbf{u}_n$ 展开。 $\mathbf{x}_1 \in \mathbf{x}_2 \in \mathbf{x}_1 \in \mathbf{x}_2$

$$\therefore \varepsilon^{(k)} = B^k \varepsilon^{(0)} = \sum_{i=1}^n c_i B^k u_i = \sum_{i=1}^n c_i \lambda_i^k u_i$$

$$\|\varepsilon^{(k)}\| = \left|\sum_{i=1}^n c_i \lambda_i^k u_i\right| \leq \sum_{i=1}^n |c_i| \cdot |\lambda_i|^k \cdot \|u_i\| \leq \rho^k (B) \sum_{i=1}^n |c_i| \cdot \|u_i\|$$

 \therefore 若 $\rho(B)$ 〈1,则 $\|\varepsilon^{(k)}\| \to 0$,迭代收敛。(推论1的充分性得证)

ho(B)<1越小, $\|arepsilon^{(k)}\|$ 趋于0的速度越快,因此,可用ho(B)衡量收敛速度。

迭代格式的收敛性判别

- 推论**1** 迭代格式 $\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{f}$ 所得序列 $\{\mathbf{x}^{(k)}\}$ 收敛的 充要条件是**B**的谱半径小于**1**。
- 推论2 迭代格式 $x^{(k+1)} = Bx^{(k)} + f$ 所得序列 $\{x(k)\}$ 收敛的 充分条件是B的任何一种范数 $\|B\| < 1$ 。

因为 $\rho(B) = \max_{i} |\lambda_i(B)|$ 计算困难,一般先用推论2,

由||B||<1判别收敛性.

注: 只能用推论2判别迭代格式的收敛, 不能用推论2判别迭代格式的发散.

在前面给出的例1中的方程组,两种迭代的迭代矩阵

則:
$$D = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
, $L = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 2 & 0 \end{pmatrix}$, $U = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ 注意L, U 元素的符号

Jacobi迭代:
$$B=D^{-1}(L+U) = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & 0.1 \\ 0.2 & 0.4 & 0 \end{pmatrix}$$

Gauss-Seidel迭代:
$$G = (D-L)^{-1}U = \begin{pmatrix} 10 & 0 & 0 \\ -2 & 10 & 0 \\ -1 & -2 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0 & 0.04 & 0.12 \\ 0 & 0.056 & 0.068 \end{pmatrix}$$

Jacobi迭代矩阵为B

$$B = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & 0.1 \\ 0.2 & 0.4 & 0 \end{pmatrix} \quad : ||B||_1 = 0.6 < 1, : Jacobi 迭代收敛。$$

Gauss-Seidel迭代矩阵为G

$$G = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0 & 0.04 & 0.12 \\ 0 & 0.056 & 0.068 \end{pmatrix}$$
 :: $||G||_1 = 0.296 < 1$, :: Gauss-Seidel 迭代收敛。

实际上,可以求出: $\rho(B) = 0.3646$, $\rho(G) = 0.137$ $\rho(G)$ 较小,收敛速度快。这与算例中,Gauss—Seidel迭代收敛较快相一致。

例3. 方程组
$$Ax = b$$
, $A = \begin{pmatrix} 0.1 & 0 \\ -0.3 & 0.2 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $max = \begin{pmatrix} 10 \\ 25 \end{pmatrix}$

将方程组写为等价的形式,x=(I-A)x+b,

构造迭代格式: $x^{(k+1)} = (I-A)x^{(k)} + b$

迭代矩阵
$$B = I - A = \begin{pmatrix} 0.9 & 0 \\ 0.3 & 0.8 \end{pmatrix}$$
,

求出: $||B||_{\infty} = 1.1 > 1$, $||B||_{1} = 1.2 > 1$, $||B||_{F} = 1.241 > 1$, 但是不能得出迭代发散的结论。

实际上,B的特征值为0.9,0.8, ρ (B)=0.9<1, 迭代是收敛的。但 ρ (B)=0.9较大,收敛较慢。

$$\mathbf{x}_{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \mathbf{x}_{10} = \begin{bmatrix} 6.51322 \\ 15.07652 \end{bmatrix} \quad \mathbf{x}_{25} = \begin{bmatrix} 9.2821 \\ 22.8652 \end{bmatrix} \quad \mathbf{x}_{50} = \begin{bmatrix} 9.94846 \\ 24.84546 \end{bmatrix} \quad \mathbf{x}_{100} = \begin{bmatrix} 9.99973 \\ 24.9992 \end{bmatrix}$$

由迭代矩阵||B||<1不但可判别收敛性,还可估计迭代的精度。

定理2 设方程组Ax=b的迭代格式 $x^{(k+1)}=Bx^{(k)}+f$,若B的某种矩阵范数 $||B||_v<1$,则:

1) 迭代法收敛

2)
$$\|x^{(k)} - x^*\|_{v} \le \frac{\|B\|_{v}}{1 - \|B\|_{v}} \|x^{(k)} - x^{(k-1)}\|_{v}$$

3)
$$\|x^{(k)} - x^*\|_{v} \le \frac{\|B\|_{v}^{k}}{1 - \|B\|_{v}} \|x^{(1)} - x^{(0)}\|_{v}$$

证明: 1) ρ(B)≤||B||_v<1, 迭代法收敛。

2)
$$\|x^{(k)} - x^*\|_{v} \le \frac{\|B\|_{v}}{1 - \|B\|_{v}} \|x^{(k)} - x^{(k-1)}\|_{v}$$

$$\text{iff 2)} \quad :: x^{(k)} - x^* = \left(Bx^{(k-1)} + f\right) - \left(Bx^* + f\right) = B\left(x^{(k-1)} - x^*\right)$$

$$\therefore \left(1 - \|B\|_{v}\right) \|x^{(k)} - x^{*}\|_{v} \le \|B\|_{v} \cdot \|x^{(k-1)} - x^{(k)}\|_{v}$$

$$||x^{(k)} - x^*||_v \le \frac{||B||_v}{1 - ||B||_v} ||x^{(k)} - x^{(k-1)}||_v$$
 2) \Rightarrow 2)

$$\text{iff } \mathbf{3}) \quad x^{(k)} - x^{(k-1)} = \left(Bx^{(k-1)} + f\right) - \left(Bx^{(k-2)} + f\right) = B\left(x^{(k-1)} - x^{(k-2)}\right)$$

注1: 定理2表示,当**x**^(k)与**x**^(k-1)充分接近时,

一般, $\mathbf{x}^{(k)}$ 与 \mathbf{x}^* 也充分接近。

因此,可用 $\|x^{(k)} - x^{(k-1)}\| < \varepsilon$ 作为迭代的停止准则。

注**2:** 当 $\|B\|$ <1且充分接近**1**时, $\frac{\|B\|}{1-\|B\|}$ 很大,

尽管 $\|x^{(k)}-x^{(k-1)}\|$ 很小,但 $\|x^{(k)}-x^*\|$ 仍然较大,迭代收敛可能很慢。

例如: 方程组
$$\begin{cases} 10^6 x_1 - 999999 x_2 = 1 \\ -999999 x_1 + 10^6 x_2 = 1 \end{cases}$$
解 $x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Jacobi迭代:
$$\vec{x}^{(k+1)} = \begin{pmatrix} 0 & 0.999999 \\ 0.999999 & 0 \end{pmatrix} \vec{x}^{(k)} + \begin{pmatrix} 10^{-6} \\ 10^{-6} \end{pmatrix}$$

取
$$x^{(0)} = \begin{pmatrix} 0.1\\0.1 \end{pmatrix}$$
,得: $x^{(1)} = \begin{pmatrix} 0.100001\\0.100001 \end{pmatrix}$, $x^{(2)} = \begin{pmatrix} 0.100002\\0.100002 \end{pmatrix}$, $x^{(3)} = \begin{pmatrix} 0.100003\\0.100003 \end{pmatrix}$,…

此时, $x^{(k)}$ 与 $x^{(k+1)}$ 很接近, $\|x^{(3)}-x^{(2)}\|_{\infty} < 10^{-6}$,

但 $x^{(k)}$ 与 x^* 相差很远。原因 $\|B\|_1 = 0.999999$,很接近1

用 $||x^{(k-1)} - x^{(k)}|| < \varepsilon$ 作为迭代的停止准则要注意这一点。

Jacobi迭代, Gauss-Seidel迭代 的收敛性判别 (由A的性质判别)

对方程组Ax=b,考虑由A本身来判别 Jacobi迭代, Gauss-Seidel迭代收敛性。

定义1: 如果n 阶方阵 $A = \{a_{ij}\}$ 满足:

$$|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|$$
 $(i = 1, 2, \dots, n)$

即A各行主对角线元素的绝对值大于同行其它元素

绝对值之和:则称 A 为严格对角占优。

定义2: 如果n 阶方阵 $A=\{a_{ij}\}$ 满足:

$$\left|a_{ii}\right| \ge \sum_{j=1, j \ne i}^{n} \left|a_{ij}\right| \qquad (i = 1, 2, \dots, n)$$

且至少对一个i成立不等式,则称A为弱对角占优。

定义3(可约与不可约矩阵) 设 $A = (a_{ij}) \in R^{n \times n}$, 当 $n \ge 2$ 时,如果存在n 阶排列矩阵P 使得

$$P^T A P = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

成立,其中 A_{11} 为r 阶子矩阵, A_{22} 为n-r 阶子矩阵($1 \le r \le n$),则称A 是可约的.如果不存在排列阵P 使得上式成立,则称A 是不可约的.

A是可约矩阵,意味着Ax = b可经过若干行列重排(若A经过两行交换的同时进行相应的两列交换,称对A进行一次行列重排),化为两个低阶方程组求解.

事实上,由Ax = b可化为 $P^T AP(P^T x) = P^T b$,且记

$$y = P^T x = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, P^T b = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}, 其中 y_1, d_1 为 r$$
维向量.

于是,求解Ax = b化为求解 $\begin{cases} A_{11}y_1 + A_{12}y_2 = d_1 \\ A_{22}y_2 = d_2 \end{cases}$

易知,A是可约矩阵的充要条件是存在一个下标的非空子集 $J \subset \{1,2,\cdots,n\}$ 使得 $a_{kj} = 0, \quad k \in J, j \notin J.$

等价的定义:

 $A = \{a_{ij}\}_{nxn}$, 设 $N = \{1,2,...,n\}$, 若存在集合N的子集 I , J 满足 $I \cup J = N$, $I \cap J = \Phi$, 使得对 $i \in I$, $j \in J$ 的一切 $a_{ij} = 0$,则称A为可约矩阵,否则称A为不可约。

例子:

$$A = \begin{pmatrix} \times & \times & \times & \times \\ 0 & \times & \times & 0 \\ 0 & \times & \times & 0 \\ \times & \times & \times & \times \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad P^{T}AP = \begin{pmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \end{pmatrix}$$

或: $N = \{1,2,3,4\}$, 取 $I = \{2,3\}$, $J = \{1,4\}$, 对任意 $i \in I$, $j \in J$, 有 $a_{ij} = 0$. 因此A是可约矩阵。

定理1. 若A为严格对角占优或不可约弱对角

占优矩阵,则A必为非奇异矩阵。

证明: 以严格对角占优矩阵为例。

反证法,若A奇异,则|A|=0,方程组Ax=0有非零解. 记为 $x=(x_1,x_2,...,x_n)$,设 $|x_k|=max\{|x_1|,...,|x_n|\}$

考察第**k**个方程:
$$\sum_{j=1}^{n} a_{kj} x_j = 0 \rightarrow a_{kk} x_k = -\sum_{j=1, j \neq k}^{n} a_{kj} x_j$$

$$|a_{kk}x_k| = \left|\sum_{j=1, j \neq k}^n a_{kj}x_j\right| \le \sum_{j=1, j \neq k}^n |a_{kj}| \cdot |x_j| \le |x_k| \sum_{j=1, j \neq k}^n |a_{kj}|$$

$$|a_{kk}| \leq \sum_{j=1,j\neq k}^{n} |a_{kj}|$$
,与A严格对角占优矛盾,所以A非奇异

定理2: 设线性方程组Ax=b,若A为严格对角占优或不可约弱对角占优矩阵,则对任意的初值x₀, Jacobi迭代法和Gauss-Seidel迭代法收敛。

定理3: 设线性方程组Ax=b,若A为对称正定矩阵,则Gauss-Seidel迭代收敛。

证明1.设A严格对角占优,证Jacobi迭代收敛。

$$\therefore |a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \qquad (i = 1, 2, \dots, n) \quad \therefore \sum_{j=1, j \neq i}^{n} \left| \frac{a_{ij}}{a_{ii}} \right| < 1 \qquad (i = 1, 2, \dots, n)$$

Jacobi迭代收敛 $\Leftrightarrow \rho(B) < 1$,其中 $B = D^{-1}(L + U)$

$$B = D^{-1}(L+U) = -\begin{pmatrix} 0 & \frac{a_{12}}{a_{11}} & \frac{a_{13}}{a_{11}} & \cdots & \frac{a_{1n}}{a_{11}} \\ \frac{a_{21}}{a_{22}} & 0 & \frac{a_{23}}{a_{22}} & \cdots & \frac{a_{2n}}{a_{22}} \\ & \cdots & 0 & \cdots & \\ \frac{a_{n1}}{a_{nn}} & \frac{a_{n1}}{a_{nn}} & \cdots & 0 \end{pmatrix} \|D^{-1}(L+U)\|_{\infty} = \max_{i} \sum_{j=1, j \neq i}^{n} \left| \frac{a_{ij}}{a_{ii}} \right| < 1$$

$$\therefore \rho(B) = \rho(D^{-1}(L+U)) \le ||D^{-1}(L+U)||_{\infty} < 1$$

因此,Jacobi迭代收敛

证明2.设A不可约弱对角占优, 证G-S迭代收敛。

G-S迭代收敛
$$\Leftrightarrow \rho(G) < 1$$
,其中 $G = (D - L)^{-1}U$ $\Leftrightarrow G$ 的任一特征值 λ 满足: $|\lambda| < 1$.

设λ是G的特征值,则

$$\det(G - \lambda I) =$$
等价于
$$\det(\lambda D - \lambda L - U) = 0$$
$$\det(G - \lambda I) = \det[(D - L)^{-1}U - \lambda I]$$
$$= \det(D - L)^{-1} \cdot \det[U - \lambda(D - L)] = 0$$

若| λ |≥1是G的特征值,因A=D-L-U不可约弱对角占优则 $\lambda D - \lambda L - U$ 也是不可约弱对角占优。

由定理 $\mathbf{1}$, $\lambda D - \lambda L - U$ 非奇异,

$$\det(\lambda D - \lambda L - U) \neq 0$$
, $\det(G - \lambda I) \neq 0$

因此任意|λ|≥1的λ,都不是G的特征值。

∴
$$G$$
没有 $|\lambda| \ge 1$ 的特征值,∴ $\rho(G) = \max_{j} |\lambda_{j}| < 1$

于是,Gauss-Seidel迭代收敛。

注1: 对不满足定理2的矩阵A, J迭代和G-S迭代的收敛可能不一致。

如,
$$A_1 = \begin{pmatrix} 1 & -2 & 2 \\ -1 & 1 & -1 \\ -2 & -2 & 1 \end{pmatrix}$$
, J迭代收敛,G-S迭代不收敛。

$$A_2 = \begin{pmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{pmatrix}$$
, G-S 迭代收敛,J 迭代不收敛。

注2: 两者都收敛时,并不总是G-S迭代的收敛速度 快于J迭代的收敛速度.

三、超松驰迭代法

为加快迭代法的收敛速度,考察Gauss-Seidel迭代:

$$x_{i}^{(k+1)} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)} \right)$$

$$= x_{i}^{(k)} + \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i}^{n} a_{ij} x_{j}^{(k)} \right), \quad i = 1, 2, \dots, n$$

第k+1次的迭代值可以看成是第k次迭代值加修正项. 为加速收敛,对修正项乘以调节因子 ω :

$$x_i^{(k+1)} = x_i^{(k)} + \mathbf{\omega} \cdot \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^{n} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n$$

ω称为松弛因子,可通过改变ω的值加速收敛。 方法称为逐次超松弛迭代法,简称为SOR迭代法.

 ω <1,为低松弛迭代法; ω >1,为超松弛迭代法。

 $\omega = 1$ 为 Gauss-Seidel迭代。

算法:
$$\begin{cases} y_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right), & i = 1, 2, \dots, n \\ x_i^{(k+1)} = x_i^{(k)} + \omega \left(y_i^{(k+1)} - x_i^{(k)} \right) \end{cases}$$

$$\therefore x_i^{(k+1)} = x_i^{(k)} + \omega (y_i^{(k+1)} - x_i^{(k)}) = (1 - \omega) x_i^{(k)} + \omega y_i^{(k+1)}$$

$$x_i^{(k+1)}$$
是 $x_i^{(k)}$ 与 $y_i^{(k+1)}$ 的加权平均。

求出SOR方法的迭代矩阵

令 A=D-L-U,则
$$Dx^{(k+1)} = ω(b+Lx^{(k+1)}+Ux^{(k)})+(1-ω)Dx^{(k)}$$

$$(D-ωL)x^{(k+1)} = [(1-ω)D+ωU]x^{(k)})+ωb$$
所以,SOR方法的迭代矩阵为:
$$L = (D-ωL)^{-1}[(1-ω)D+ωU]$$
SOR格式: $x^{(k+1)} = Lx^{(k)} + f$
其中, $f = ω(D-ωL)^{-1}b$

对于方程组Ax=b
$$A = \begin{pmatrix} 4 & -1 & 0 & -1 & 0 & 0 \\ -1 & 4 & -1 & \ddots & \ddots & 0 \\ 0 & -1 & 4 & \ddots & \ddots & -1 \\ -1 & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & -1 & 4 & -1 \\ 0 & 0 & -1 & 0 & -1 & 4 \end{pmatrix}$$

同样的精度,用Jacobi迭代法, 需要1154次.($\rho(B_J) = 0.9877$)用G-S迭代法, 需要578次。

用SOR方法

ω	1	1.7	1.72	1.737	1.74
次数	578	78	66	54	57

定理: SOR方法收敛的必要条件是: 0<ω<2.

证明: SOR迭代阵 L = (D-ωL)⁻¹[(1-ω)D+ωU] det(L)=det (D-ωL)⁻¹det [(1-ω)D+ωU] (D-ωL)⁻¹为下三角阵,主对角元 为1/a₁₁, ...,1/a_{nn} [(1-ω)D+ωU]为上三角阵,主对角元为: (1-ω)a₁₁, ..., (1-ω)a_{nn}

所以,**det(L)= (1-ω)**ⁿ

若SOR方法收敛,则 $\rho(L) < 1$ 设L的特征值为 $\lambda_1, \lambda_2, \cdots \lambda_n$ 则 $|\det(L)| = |\lambda_1 \lambda_2 \cdots \lambda_n| \le |\rho(L)|^n < 1$

 $\therefore |(1-\omega)^n|<1, \quad \therefore |1-\omega|<1, \quad \text{得}0<\omega<2.$

定理: 若A是对称正定矩阵,则SOR方法收敛的 充要条件是0<ω<2.

因此在迭代法的收敛性分析中,各种方法的迭代矩阵的性态起着重要的作用:

设
$$A = -L + D - U = [a_{ij}]_{n \times n}$$
, 其中
$$D = \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & a_{nn} \end{bmatrix}, L = \begin{bmatrix} 0 & & \\ -a_{21} & 0 & & \\ \vdots & \vdots & \ddots & \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & \ddots & \vdots & & \\ & \ddots & -a_{n-1,n} \\ 0 & & & \end{bmatrix}$$

$$B_{Jacobi} = D^{-1}(L + U); \qquad B_{G-S} = (D - L)^{-1}U;$$

$$B_{SOR} = (D - \omega L)^{-1} \{ (1 - \omega)D + \omega U \}$$

当A为n阶对称正定矩阵,讨论另一种迭代方法—共轭斜量法(Conjugate Gradient Method,简称 CG方法).我们要解的问题是: Ax = b,则有下列 CG算法:

算法 选定初值 $x_0 \in R^n$ 和阈值 $\varepsilon \succ 0$,设 $r_0 = d_0 = b - Ax_0$, 对 $k = 1, 2, \dots$, 计算

$$x_{k+1} = x_k + \alpha_k d_k, \qquad \alpha_k = (r_k, r_k) / (d_k, Ad_k);$$

上面给出的共轭斜量算法有如下性质:

1.如果对 $1 \le k \le n-1, r_0, r_1, \dots, r_k$ 均不为零,则 d_0, d_1, \dots, d_k 亦不为零,从而 $\alpha_0, \alpha_1, \dots, \alpha_k$ 与 $\beta_0, \beta_1, \dots, \beta_{k-1}$ 都不为零.并且对 $0 \le j < i \le k$ 有

$$(r_i, r_j) = 0,$$
 $(r_i, d_j) = 0,$ $(d_i, Ad_j) = 0.$

2.共轭斜量法程序简单,存储需要量小,每次迭代仅需保留向量x,r,d,Ad;每次迭代的主要工作量是一次矩阵乘向量Ad,特别适合求解大型稀疏问题.

数例 下面是一个14*14的矩阵

al =													
3,0000	-1.0000	0	0	0	0	0	0	0	0	0	0	0	0.5000
-1,0000	3.0000	-1.0000	0	0	0	0	0	0	0	0	0	0.5000	0
0	-1.0000	3,0000	-1.0000	0	0	0	0	0	0	0	0.5000	0	0
0	0	-1.0000	3.0000	-1.0000	0	0	0	0	0	0.5000	0	0	0
0	0	0	-1.0000	3,0000	-1.0000	0	0	0	0.5000	0	0	0	0
0	0	0	0	-1.0000	3.0000	-1.0000	0	0.5000	0	0	0	0	0
0	0	0	0	0	-1.0000	3,0000	-1.0000	0	0	0	0	0	0
0	0	0	0	0	0	-1.0000	3.0000	-1.0000	0	0	0	0	0
0	0	0	0	0	0.5000	0	-1.0000	3.0000	-1.0000	0	0	0	0
0	0	0	0	0.5000	0	0	0	-1.0000	3,0000	-1,0000	0	0	0
0	0	0	0.5000	0	0	0	0	0	-1,0000	3,0000	-1.0000	0	0
0	0	0.5000	0	0	0	0	0	0	0	-1,0000	3,0000	-1,0000	0
0	0.5000	0	0	0	0	0	0	0	0	0	-1.0000	3,0000	-1.0000
0,5000	0	0	0	0	0	0	0	0	0	0	0	-1,0000	3.0000

由LU分解得到的下三角矩阵L

L =

1.0000	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.3333	1.0000	0	0	0	0	Ō	0	0	0	0	0	0	0
0	-0.3750	1.0000	0	0	0	0	0	0	0	0	0	0	0
0	0	-0.3810	1.0000	0	0	0	0	0	0	0	0	0	0
0	0	0	-0.3818	1.0000	0	0	0	0	0	0	0	0	0
0	0	0	0	-0.3819	1.0000	0	0	0	0	0	0	0	0
0	0	0	0	0	-0.3820	1.0000	0	0	0	0	0	0	0
0	0	0	0	0	0	-0.3820	1.0000	0	0	0	0	0	0
0	0	0	0	0	0.1910	0.0729	-0.3541	1.0000	0	0	0	0	0
0	0	0	0	0.1910	0.0729	0.0279	0.0106	-0.4027	1.0000	0	0	0	0
0	0	0	0.1909	0.0729	0.0279	0.0106	0.0041	-0.0048	-0.4237	1.0000	0	0	0
0	0	0.1905	0.0727	0.0278	0.0106	0.0041	0.0015	-0.0018	-0.0073	-0.4297	1.0000	0	0
0	0.1875	0.0714	0.0273	0.0104	0.0040	0.0015	0.0006	-0.0007	-0.0027	-0.0077	-0.4308	1.0000	0
0.1667	0.0625	0.0238	0.0091	0.0035	0.0013	0.0005	0.0002	-0.0002	-0.0009	-0.0026	-0.0068	-0.4281	1.0000

由LU分解得到的上三角矩阵U

V =

3,0000	-1.0000	0	0	0	0	0	0	0	0	0	0	0	0.5000
0	2.6667	-1.0000	0	0	0	0	0	0	0	0	0	0.5000	0.1667
0	0	2.6250	-1.0000	0	0	0	0	0	0	0	0.5000	0.1875	0.0625
0	0	0	2.6190	-1.0000	0	0	0	0	0	0.5000	0.1905	0.0714	0.0238
0	0	0	0	2.6182	-1.0000	0	0	0	0.5000	0.1909	0.0727	0.0273	0.0091
0	0	0	0	0	2,6181	-1.0000	0	0.5000	0.1910	0.0729	0.0278	0.0104	0.0035
0	0	0	0	0	0	2.6180	-1,0000	0.1910	0.0729	0.0279	0.0106	0.0040	0.0013
0	0	0	0	0	0	0	2.6180	-0.9271	0.0279	0.0106	0.0041	0.0015	0.0005
0	0	0	0	0	0	0	0	2,5623	-1.0319	-0.0122	-0.0046	-0.0017	-0.0006
0	0	0	0	0	0	0	0	0	2.4727	-1.0476	-0.0181	-0.0068	-0.0023
0	0	0	0	0	0	0	0	0	0	2.4444	-1.0503	-0.0189	-0.0063
0	0	0	0	0	0	0	0	0	0	0	2, 4371	-1.0499	-0.0166
0	0	0	0	0	0	0	0	0	0	0	0	2.4381	-1.0437
0	0	0	0	0	0	0	0	0	0	0	0	0	2, 4576

将上述形式的矩阵扩展到高阶的矩阵,用*Matlab*的*LU分解软件进行LU分解*,用*CPU*时间如下(秒):

500阶 1000阶 1500阶 2000阶 2008阶 2500阶 3000阶

0.0470 0.3130 1.1250 5.9840 6.0940 14.8750 27.9220

取精确解X的分量都为1,取初始值为0,用共轭斜量法进行计算:

3000阶,精确度为10⁻¹⁶,cpu时间0.0620秒

100万阶,精确度为10⁻¹⁶,cpu时间15.8910秒

300万阶,精确度为10⁻¹⁶,cpu时间28.4380秒