



| Now, left              | s multiply both sides of eg (17) by                                                                                                                                        | the integrating    |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 4                      | $\exp\left(\frac{i}{RC} + \frac{1}{RC} \cdot V_C\right) = \exp\left(\frac{i}{RC} + \frac{1}{RC} \cdot V_C\right) = \exp\left(\frac{i}{RC} + \frac{1}{RC} \cdot V_C\right)$ | (19                |
| By the in<br>left side | verse product and chain me, we can of the equation:                                                                                                                        | reurite the        |
|                        | $\left[\frac{d}{dt}\right]\left[V_{c}\exp\left(\frac{1}{RC}t\right)\right] = \exp\left(\frac{1}{RC}t\right).$                                                              |                    |
| Moving 11              | e dt ferm over to the right and int                                                                                                                                        | eg rating:         |
|                        | $\int d \left[ V_{c} e^{k} p \left( \frac{1}{R_{c}} t \right) \right] = \int \left[ e^{k} p \left( \frac{1}{R_{c}} t \right) \frac{V_{s}}{R_{c}} \right]$                  |                    |
|                        | $V_c \exp\left(\frac{1}{RC}t\right) = \frac{V_s}{RC} \exp\left(\frac{1}{RC}t\right)$                                                                                       | PC T               |
|                        |                                                                                                                                                                            | const. of integrat |
|                        | $V_c \exp(\frac{t}{Rc} t) = V_s \exp(\frac{t}{Rc} t) + A$                                                                                                                  | (20)               |
| Solving for            | $V_c$ : $V_c = A exp(-\frac{1}{Rc} + \frac{1}{2}) + V_s$                                                                                                                   | (21)               |
| Now me                 |                                                                                                                                                                            |                    |
| Vc = Vc,0.             | need to apply our initial andition. At<br>Substituting this into equation (21) to                                                                                          | solve for A:       |
|                        | $V_{c,o} = A \exp(o) + V_{s}$ $A = V_{c,o} - V_{s}$                                                                                                                        | (22)               |

| Combining eq. (21) and (22):                                                                       |
|----------------------------------------------------------------------------------------------------|
|                                                                                                    |
|                                                                                                    |
| $V_{c} = \left(V_{c,o} - V_{s}\right) \exp\left[-\frac{1}{RC}t\right] + V_{s} \tag{23}$            |
|                                                                                                    |
| Equation (23) is a rather rigorous solution to an RG circuit.                                      |
| In most applications, we judiciously choose Vc, o to be 0.  Thus, equation (23) would simplify to: |
| Thus, equation 123) would simplify 18.                                                             |
| $V_c = V_s \left[ 1 - \exp\left( -\frac{1}{Rc} t \right) \right] $ (24)                            |
|                                                                                                    |
|                                                                                                    |
| To graph this:                                                                                     |
| - when t = 0                                                                                       |
| V <sub>c</sub> (t=0) = V <sub>s</sub> [1 - exp(0)]                                                 |
|                                                                                                    |
| $V_{c}(t=0)=V_{5}(1-1)$                                                                            |
| $V_c(t=0)=0$                                                                                       |
|                                                                                                    |
| · when t > 00:                                                                                     |
| V <sub>E</sub> (± >∞) = V <sub>S</sub> [1-exp(-∞)]                                                 |
|                                                                                                    |
| Vo (E > D) = V= (1- exp(00))                                                                       |
| Vc (t→∞) = Vs                                                                                      |
|                                                                                                    |
| - When t = RC                                                                                      |
| Le this is referred to as the time constant:                                                       |
| $V_c(t=RC)=V_s[1-e\kappa\rho(-\frac{RC}{RC})]$                                                     |
|                                                                                                    |
| $V_c(b=ec)=V_s[1-exp(-1)]$                                                                         |
| Vc (= ec) 2 0.63 Vs "63% completed"                                                                |





| duct and chain  (d) [i exp(-i                                          | $\frac{1}{L} = \exp\left(\frac{R}{L} + \frac{1}{L}\right) \frac{V_S}{L}$ $\frac{1}{L} = \exp\left(\frac{R}{L} + \frac{1}{L}\right) \frac{V_S}{L}$ $\frac{1}{L} = \exp\left(\frac{R}{L} + \frac{1}{L}\right) \frac{V_S}{L}$ | eguation                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\left(\frac{d}{dl}\right)\left[i\exp\left(\frac{d}{dl}\right)\right]$ |                                                                                                                                                                                                                            | eguation                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                        | $\frac{2}{2}$ t) $\frac{1}{2}$ = $e^{k\rho} \left(\frac{R}{L} + \frac{1}{2}\right) \frac{\sqrt{s}}{2}$                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | $= exp(\underline{R} + ) \vee s$                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | - 10 1 1                                                                                                                                                                                                                   | (32)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| term over and                                                          | integrating:                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ) of [ (= +)                                                           | $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[ \frac{(-1)^{2}}{2} \right] \frac{dt}{dt}$                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $i \exp\left(\frac{R}{L}t\right) =$                                    | Vs exp(2 +). 1 + A                                                                                                                                                                                                         | (33)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $exp(\frac{e}{L}t)$ :                                                  |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\dot{\zeta} = \frac{\sqrt{5}}{R} +$                                   | $A exp(-\frac{R}{L}t)$                                                                                                                                                                                                     | (34)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Let $i(t=0)$                                                           | = 1,0 :                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A = 10 -                                                               | Vs R                                                                                                                                                                                                                       | (35)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ns (34) and (32                                                        | 5):                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\left(i_0 - \frac{V_5}{R}\right) \exp$                                |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | $iexp(\frac{e}{L}t) =$ $exp(\frac{e}{L}t):$ $i = \frac{\sqrt{s}}{R} +$ $let  i(t=0)$ $io = \frac{\sqrt{s}}{R} +$ $A = io -$                                                                                                | $\int d \left[ i \exp\left(\frac{e}{L} t\right) \right] = \int \left[ \exp\left(\frac{R}{L} t\right) \frac{V_S}{L} \right] dt$ $i \exp\left(\frac{R}{L} t\right) = \frac{V_S}{L} \exp\left(\frac{R}{L} t\right) \cdot \frac{1}{R} + A$ $\exp\left(\frac{e}{L} t\right) :$ $i = \frac{V_S}{R} + A \exp\left(-\frac{R}{L} t\right)$ $let  i(t=0) = i_0 :$ $i_0 = \frac{V_S}{R} + A \exp(0)$ $A = i_0 - \frac{V_S}{R}$ $(34) \text{ and } (35) :$ |

| Again, equation (3)        | 36) may be too rigorous for practical applications.                                                           |
|----------------------------|---------------------------------------------------------------------------------------------------------------|
|                            | $i = \frac{-\sqrt{5}}{R} \exp\left(-\frac{R}{L}t\right) + \frac{\sqrt{5}}{R}$                                 |
|                            | $\bar{L} = \frac{V_5}{R} \left[ \left( -\frac{e_{Kp}}{L} \left( -\frac{R}{L} + \right) \right] \right] $ (37) |
| Let's graph this t         | to understand the function of inductors:                                                                      |
| • Af t=0:                  | $\bar{c} = \frac{V_5}{R} \left[ 1 - \exp(b) \right]$                                                          |
|                            | $i = \frac{\sqrt{5}}{R} \left[ 1 - 1 \right]$ $i = 0$                                                         |
| • A+                       | $\dot{c} = \frac{V_{5}}{R} \left[ 1 - \exp(-\infty) \right]$                                                  |
|                            | $\bar{c} = \frac{\sqrt{5}}{R} \left[ 1 - \frac{1}{\exp(50)} \right]$                                          |
|                            | $\tilde{c} = \frac{\sqrt{s}}{R}$                                                                              |
| • At $t = \frac{L}{R} = 7$ | $i = \frac{V_S}{R} \left[ 1 - \exp\left(-\frac{R}{L} \cdot \frac{L}{R}\right) \right]$                        |
|                            | $\ddot{c} = \frac{\sqrt{s}}{R} \left[ 1 - \exp(-1) \right]$                                                   |
|                            | i 2 0.63 (2 "63%. Completed"                                                                                  |
|                            |                                                                                                               |



| Moving dt to 16     | re right side        | and integrating!                                             |      |
|---------------------|----------------------|--------------------------------------------------------------|------|
| d                   |                      |                                                              |      |
|                     | JOLVa                | $= \frac{1}{C} \int_{0}^{t} i(t) dt$                         |      |
|                     | Vc =                 | c ∫ot i(1) dt                                                | (34  |
| Calli               |                      |                                                              |      |
| Combining egns (1   |                      |                                                              |      |
|                     | $iR + L \frac{d}{d}$ | $\frac{1}{t} + \frac{1}{c} \int_0^t i(t) dt = V_s$           | (40) |
| Differentiating all | of eq (40)           | with respect to t:                                           |      |
|                     |                      |                                                              | 0.41 |
|                     | dt <sup>2</sup>      | $+ R \frac{di}{dt} + \frac{1}{C} i = Vs$                     | (41) |
| Dividing through    | by L:                |                                                              |      |
|                     | dei<br>dt2           | + P di + I i = Vs<br>L dE + LC i = L                         | (42) |
|                     |                      |                                                              |      |
|                     | 1 -                  | characteristic differential equi<br>for the homogeneous part |      |
| the left side.      |                      |                                                              |      |
|                     | d <sup>2</sup> i     | e di 1 ·                                                     | ( -> |
|                     | dt2                  | $+ \frac{R}{L} \frac{dl}{dt} + \frac{1}{LC} i = 0$           | (43) |
| let's define a      | differential         | operator:                                                    |      |
|                     |                      | $\Upsilon \equiv \frac{d}{dt}$                               |      |
|                     |                      |                                                              |      |
| Applying this       | to eq (43):          |                                                              |      |
|                     | γ²                   | $i + \frac{R}{L} \gamma i + \frac{1}{Lc} i = 0$              |      |
|                     |                      |                                                              |      |



| Equati | ons (46    | a)-(46c)   | just  | describe | the    | homogenou    | s solution.   |
|--------|------------|------------|-------|----------|--------|--------------|---------------|
|        |            |            |       |          |        |              |               |
| The p  | anticula   | n Solution | car   | e found  | by .   | taking the s | eady state    |
| Valu   | <b>د</b> : |            | i. =  | lim i/   | (t)    |              | (47)          |
|        |            |            |       | lim il   |        |              | C 1 17        |
|        |            | sually be  |       |          |        |              |               |
| The    | full se    | plution is | given | by the   | 2 sten | n of the     | nomogeneaus   |
|        |            |            |       |          |        |              |               |
|        |            |            | L     | $=i_h$   | P      |              | (4 <b>8</b> ) |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |
|        |            |            |       |          |        |              |               |