Demographic Fairness: Balance

Inspiration

Disparate Impact [FFMSV 15]

- Griggs vs Duke Power Co.: used non-racial features (notably, employee testing) as a proxy for race in order to discriminate against black employees in promotion
 - Duke Power Co. lost in the Supreme court, and this was deemed unlawful
 - This ruling and general philosophy helped promote affirmative action and anti-discrimination laws
 - Why is this bad:

It had a "disproportionate and adverse impact on certain individuals."

In other words, disparate impact.

- Applied to ML: Ensure that the impact of a system across protected groups is proportionate.
- Applied to Clustering:
 - The impact on a group is measured by how many individuals of that group are in each cluster.
 - Thus, we must ensure that the number of individuals from each group in each cluster is proportional to group size

Demographic Fairness - Balance

Recall: we are given points \mathcal{C} in a metric space. We pick centers $S \subseteq \mathcal{C}$ and create a map $\varphi \colon \mathcal{C} \to S$. We also represent the clustering as a partitioning of points S.

Assume the points in C are given colors red or blue, representing protected classes.

For a cluster *C* :

$$balance(C) = \min\left(\frac{\#red(C)}{\#blue(C)}, \frac{\#blue(C)}{\#red(C)}\right)$$

For a clustering S: $balance(S) = \min_{C \in S} balance(C)$

We want balance to be high (close to 1).

Results for Balance [CKLV 18]

Lemma: Let $balance(C) \ge b/r$ for minimum integral b and r. Then we can find a clustering S with balance at least b/r and minimum cluster size b+r.

- 7 red, 10 blue
- $balance(\mathcal{C}) \geq 3/5$

Method: Using the previous lemma, create a *fairlet decomposition* Y, which is a fair clustering with small (but possibly too many) clusters. Run a vanilla clustering algorithm on the fairlets centers as points duplicated to equal the size of the *fairlet*, call this set Y'.

Structural result: for k-median and k-center, let the objective value be ψ :

$$\psi(\mathcal{C},S) = \overline{\psi(\mathcal{C},Y)} + \overline{\psi(Y',S)}$$

Further Results for Balance [CKLV 18]

Balanced problem solved	Balance achieved	Approximation factor	Subroutine used	Soubroutine approximation
1-center	1	3	1-center	2
<i>k</i> -center	1/t'	4	k-center	2
<i>k</i> -median	1	$2+\sqrt{3}+\epsilon$	k-median	$1+\sqrt{3}+\epsilon$
<i>k</i> -median	1/t'	$t' + 1 + \sqrt{3} + \epsilon$	k-median	$1 + \sqrt{3} + \epsilon$

Hardness: it is NP-hard to optimally find a 1/t'-balanced k-median clustering.

Fairness and Privacy [RS 18]

General fairness results

- Finds a 12-approximate fairlet decomposition on any number of colors
- Implies:
 - 14-approximation for *k*-center
 - 15-approximation for k-supplier

Fair and private clustering

- Privacy: lower bounds on the size of clusters
- Results:
 - 40-approximate private and fair k-center
 - 41-approximate private and fair k-supplier

Strongly private clustering

- Strong privacy: lower bounds on number of points of a color per cluster
- Results
 - 4-approximate strongly private *k*-center
 - 5-approximate strongly private *k*-supplier

Fairness and Essential Fairness [BGKKRSS 19]

General fairness results

- 5-approximate fair *k*-center
- 7-approximate fair *k*-supplier

Essentially fair results

- Clusterings with only additive fairness violations:
 - E.g., you can have one extra red point in a cluster
- Results:
 - 3-approximate essentially fair *k*-center
 - 5-approximate essentially fair *k*-supplier
 - 3.488-approximate essentially fair facility location
 - 4.675-approximate essentially fair *k*-median
 - 62.856-approximate essentially fair *k*-means

4 red, 8 blue: r/b = 1/2

Fair Spectral Clustering [KSAM 19]

Definition – Stochastic Block Model

- There is a fair ground truth clustering
- Generate edges of weight +1 according to color and ground truth cluster

Fair spectral clustering

- Spectral clustering: create a clustering that minimizes the value of RatioCut
 - $RatioCut(S) = \sum_{C \in S} \frac{\sum_{e \in C \times V \setminus C} w(e)}{|C|}$, e.g., the sum of the ratios of the weights exiting a cluster to the size of the cluster
- Proposes a new spectral clustering algorithm:
 - Bounds the error relative to the ground truth clustering
 - Uses $O(n^3)$ time, $O(n^2)$ space

Same color, same cluster: prob *a*Same color, different cluster: prob *b*Same cluster, different color: prob *c*———— Different cluster, different color: prob *d*

Summary - Balance

First introduced as a concept in 2018 [CKLV 18]

• They also developed the "fairlet decomposition" technique and came up with initial results

Many of the best approximations are from [BGKKRSS 19], who studied many clustering problems.

Variants explored:

- With privacy [RS 18]
- Spectral Clustering [KSAM 19]
- Essential fairness [BGKKRSS 19]

Demographic Fairness: Bounded Representation

Demographic Fairness – Bounded Representation [BGKKRSS 19]

Instead of requiring perfect balance, we are only constrained by given bounds. There are multiple versions studied:

α -bounded for constant α :

Every color must represent at most an α fraction of any cluster

α , β -bounded, for vectors α , β :

For any color $i \in \{1, ..., c\}$, color i must represent at most an α_i fraction of any cluster and at least a β_i fraction of any cluster

A clustering is fair if every cluster satisfies the bounded representation constraint.

Fair up to α =3/8 Fair down to α_{red} =3/8, α_{blue} =3/8, α_{green} =1/4 Fair up to β_{red} =3/8, β_{blue} =3/8, β_{green} =1/4

Mitigating Over-Representation [AEKM 19]

Fairness constraint: general lower bound α

Important technique: create a threshold graph on bichromatice edges of weight $\leq \tau$

Results

- General α: 3-approximation with violation 2
- $\alpha=1/t$: 3-approximation with violation 1
- α =1/2: 12-approximation with *no* violation

Fair Correlation Clustering [AEKM 20]

Fairness constraint: general lower bound α (also generalizes further)

Definition – correlation clustering

- Edges are all +1 or -1
- Minimize: the (weighted) sum of the +1 edges between clusters and -1 edges within clusters

Fair correlation clustering (on c colors)

- α =1/2: 256-approximation
- $\alpha=1/c$: (16.48c²)-approximation
- α =1/t: O(tp)-approximation for p-approximate median cost fairlet decomposition

Fair Hierarchical Clustering [AEKKMMPVW 20]

Fairness constraint: general lower bound α (also generalizes further)

Hierarchical clustering objectives

- Cost: initial objective, APX-hard
- Revenue: dual to cost, const-approximable
- Value: cost variant, const-approximable

Results

- Cost: $O(n^{5/6}log^{5/4}n)$ -approximation (highly combinatorial methods)
- Revenue: (1/3-o(1))-approximation if α =1/t or 2 colors
- Value: $(2/3-\varepsilon)(1-o(1))$ -approximation

General Bounds, Overlapping Groups [BCFN 19]

Fairness constraint: specific lower and upper bound vectors α , β , also vertices can be in *multiple* groups (bounded by Δ)

Fair assignment problem: given a set of centers, what is the best way to create a fair clustering by assigning points to the centers?

Results

• Given a ρ -approximate vanilla k-clustering for the p-norm, gives a ρ +2 approximation with additive fairness violation 4Δ +3

Probabilistic Fair Clustering [EBTD 20]

Fairness constraint: specific lower and upper bound vectors α , β , also vertices can be in *multiple* groups (bounded by Δ)

Probabilistic setting

- Colors are not given. Each point has a probability of being assigned some color
- We guarantee that the expected number of each color in each cluster is bounded above/below
- Addresses any p-norm

Results

- Given a vanilla ρ-approximation, there is a ρ+2approximation with +1 violation (2 colors)
- Given a vanilla ρ-approximation, there is a ρ+2approximation with +1 violation (FPT, large clusters)

Fixing a Bounded Cost [EBSD 21]

Fairness constraint: specific lower and upper bound vectors α , β , also vertices can be in *multiple* groups (bounded by Δ)

Fair clustering under bounded cost

- Fix an upper bound for the clustering cost
- $^{\circ}$ Minimize the degree of unfairness for any color (i.e., the proportional violation Δ of upper and lower bounds)
 - Utilitarian: minimize the sum of Δs
 - Egalitarian: minimize the maximum Δ
 - Leximin: minimize the maximum Δ, then second largest Δ, ...

Results

- Fair clustering (or assignment) under bounded cost is NP-hard
- Given a vanilla approximation, there are approximations for the fair bounded cost problem

Normal linear program

Minimize: *cost(S)*

Subject to: $\alpha_i |C| \leq |i(C)| \leq \beta_i |C|$

New linear program

Minimize: $\sum \Delta$ or max Δ or max max ...

Subject to: $cost(S) \leq upper\ bound$

and: $(\alpha_i + \Delta)|C| \le |i(C)| \le (\beta_i + \Delta)|C|$

Summary: Bounded Representation

Two versions:

- α-capped clustering
 - Solved with very little to no additive fairness violation [AEKM 19]
- \circ α , β -bounded, with upper and lower bound vectors
 - Solved with additive fairness violation [<u>BCFN 19</u>]

Variants explored:

- α-capped correlation clustering
- α-capped hierarchical clustering
- α, β-bounded probabilistic clustering
- α , β -bounded clustering with bounded cost

However, both are stated in terms of "union closed" constraints

Demographic Fairness: Bounds on Chosen Centers

Demographic Fairness – Bounds on Chosen Centers

Data summarization: do a *k*-clustering. The resulting centers are then outputted as *representatives* of the data set.

Fairness: for every color i, there must be at least k_i centers of color i.

Let $k_{red} = k_{blue} = k_{green} = 1$ This clustering is not fair. However this alternate clustering is fair

Data Summarization [KAM 19, JNN 20]

First introduced the fairness with regards to bounds on chosen centers.

Results [KAM 19]

- Fair data summarization for k-center has a 5approximation on 2 colors (tight) that runs in time O(kn)
- Fair data summarization for k-center has a $(3 \times 2^{c-1} 1)$ approximation on c colors that runs in time $O(kc^2n + kc^4)$

Results [JNN 20]

 Fair data summarization for k-center has a 3approximation on c colors (tight) that runs in time O(kn)

Diversity-Aware *k*-Means [TOG 21]

		NP-Hard?	FPT(<i>k</i>)?	Approx factor	Approx method
General case		Yes	No	X	X
c colors	$\sum_{i \in [c]} k_i = k$	Yes	?	8	LP
c colors	$\sum_{i \in [c]} k_i < k$	Yes	?	8	O(k ^{c-1}) LP calls
2 colors	$k_1 + k_2 = k$	Yes	?	3+ε	Local search
2 colors	$k_1 + k_2 < k$	Yes	?	3+ε	O(k) local search calls

Demographic Fairness: Proportionality

Demographic Fairness – Proportionality

Idea: Every set of at least n/k points is entitled to its own cluster.

Blocking coalition: a set of $\rho n/k$ points such that we can add a center that is closer to all points in the set than their assigned center.

"ρ-proportional"

Benefits

- Pareto optimality: Let X and X' be two proportional solutions. Then there is some point that X "treats" at least as well as X'.
- Oblivious: Independent of sensitive attributes.
- Robust: Outliers cannot form coalitions.
- Scale invariant

Proportionally Fair Clustering [CFLM 19]

Introduced the problem of proportionally fair clusterings.

Hardness

There may be no 2-proportional solution

Results

- $(1+\sqrt{2})$ -proportional solution
- O(1)-proportional solution 8-approximates k-median
- Uniform random sampling approximately preserves the proportionality of any set of centers w.h.p.
- Good heuristic local search algorithm that finds nearly proportional solutions

More Proportionally Fair Clustering [MS 20]

Considers [CFLM 19] in metric spaces defined by different norms.

Results

- $(1+\sqrt{2})$ general approximation is really a 2-approximation for L²
- Shows tightness of $(1+\sqrt{2})$ approximation for L¹ and L^{∞}
- In L², we cannot do better than $2/\sqrt{3}$
- In L^1 and L^{∞} , we cannot do better than 1.4
- Using tree distance or graph distance when $k \ge n/2$, exact proportionality exists
- In L² and many dimensions, checking existence is NP-hard, and the original algorithm is only in NP (it is a PTAS in the dimensionality)
- When there are infinitely many centers, proportionality preservation under random sampling holds even in L² and many dimensions

(End slide)

Demographically Fair Clustering with Outliers

k-Clustering with Outliers

- Points \mathcal{C} in metric space with distance $d: \mathcal{C}^2 \to \mathbb{R}_{\geq 0}$
- ightharpoonup Pick $S \subseteq \mathcal{C}$ with $|S| \le k$
- ightharpoonup Pick $\mathcal{A} \subseteq \mathcal{C}$ with $|\mathcal{A}| \geq m$
- \triangleright Construct φ: A → S such that some objective is minimized
- Allowed to exclude a certain number of points from the optimization objective:
 - Robustness: Avoid noise in the data
 - Scarce resources: Servicing only a certain fraction of the population is acceptable

Motivational Examples

Clustering Setting:

- The points are users of a website.
- The website wants to cluster its users in groups of high similarity, so that it offers relevant recommendations.
- ❖ The cluster center is thought of as the most representative point of the cluster.
- ❖ Points with unique profiles might be excluded.

> Facility Location Setting:

- Points correspond to cities/towns/counties.
- ❖ A state wants to place vaccination sites in a metric space.
- **t** Each point should have a vaccination center in close vicinity.
- ❖ Due to scarce resources, it may be acceptable to provide a good covering guarantee to only a fraction of the population.

Bias in Clustering with Outliers

- Being an outlier is disadvantageous!!!
 - Example 1: Outliers will not receive any recommendations
 - Example 2: Outliers will not enjoy close access to a vaccination center
- Suppose the points of \mathcal{C} come from γ demographic groups $\mathcal{C}_1, \dots, \mathcal{C}_{\gamma}$.
- A solution can be biased if it disproportionately views points from certain groups as outliers.

Fair Clustering with Outliers

- Proposed fix:
 - For each group \mathcal{C}_l we are given a value $m_l \geq 0$
 - ❖ Instead of $|\mathcal{A}| \ge m$, we now require $|\mathcal{A} \cap \mathcal{C}_l| \ge m_l$ for every $l \in [\gamma]$
- Example with $m_{red} = 5$ and $m_{green} = 2$
- \blacktriangleright Arbitrary m_l values can capture a plethora of fairness scenarios
 - Equitable treatment, e.g., $m_l \geq |\mathcal{C}_l|/2$ for all $l \in [\gamma]$
 - Preferential treatment, e.g., give a higher coverage guarantee to demographics that really need it

Results

- The problem has only been studied for the k-center objective, i.e., minimize $\max_{j \in \mathcal{C}} d(j, \varphi(j))$, under the name Fair Colorful k-Center
- It was introduced by Bandyapadhyay et al. ("A Constant Approximation for Colorful k-Center"- ESA 2019), who gave a 17-approximation algorithm for it in the Euclidean plane, when $\gamma = O(1)$.
- Anegg et al. ("A Technique for Obtaining True Approximations for k-Center with Covering Constraints") and Jia et al. ("Fair Colorful k-Center Clustering") independently gave a 4-approximation and a 3-approximation respectively, both appearing in IPCO 2020.
- \triangleright Both of the above algorithms work for general metrics, when $\gamma = O(1)$.
- \triangleright Anegg et al. also showed that when γ is not a constant, there cannot exist any non-trivial approximation for the problem, unless P=NP.

Socially Fair k-Clustering

Motivation

- In many clustering or facility location applications the quantity is $d(j, \varphi(j))$ (referred to as "assignment distance") is what really matters.
 - \diamond Clustering: It measures how representative $\varphi(j)$ is for j.
 - * Facility Location: It represents the distance j needs to travel in order to reach its service provider $\varphi(j)$.
- The smaller $d(j, \varphi(j))$ is the more satisfied the point j.
 - 1) Recall the previously mentioned recommendation system application.
 - 2) Recall the previously mentioned vaccination sites allocation application.
- \triangleright Conclusion: If \mathcal{C} consists of γ demographic groups $\mathcal{C}_1, \dots, \mathcal{C}_{\gamma}$, then we should be fair in terms of the assignment distances provided to the points of different groups.

Example of a Biased Solution

Results

- The problem was introduced independently by Ghadiri et al ("Socially Fair k-Means Clustering") and Abbasi et al. ("Fair Clustering via Equitable Group Representations") at FAccT 2021.
- \triangleright Both papers demonstrated an $O(\gamma)$ -approximation algorithm.
- Makarychev and Vakilian ("Approximation Algorithms for Socially Fair Clustering" COLT 2021) gave an $O(\frac{log\gamma}{loglog\gamma})$ -approximation algorithm. They also showed that this is the best possible approximation ratio for the problem.
- ► Goyal and Jaiswal ("Tight FPT Approximation for Socially Fair Clustering" Arxiv 2021) give a tight (3+ ϵ)-approximation algorithm for the problem, that runs in FPT time of $\left(\frac{k}{\epsilon}\right)^k$.