The hypermodular structure of tripartite ecological networks

Rafael Pinheiro, Luciano Cagnolo, Guadalupe Peralta and Thomas Lewinsohn

2024-11-22

Contents

README	3
Datasets	4
Dataset 1 : AZORES	4
Dataset 2 : AZORES	9
Dataset 3: AZORES	14
Dataset 4: GALAPAGOS	19
Dataset 5 : DORSET	24
Dataset 6: NORWOOD	29
Dataset 7: NORWOOD	34
Dataset 8: NORWOOD	39
Dataset 9: BORNEO	44
Dataset 10 : COIMBRA	49
Dataset 11 : BEIRA	54
Dataset 12: PURBECK	59
Dataset 13: HAWAII	64
Dataset 14: BRISTOL	69
Dataset 15: POLAND	74
Dataset 16: GALAPAGOS	79
Dataset 17: MOZAMBIQUE	84
Dataset 18: NEW ZEALAND	89
Dataset 19 : CORDOBA1	94
Dataset 20 : CORDOBA2	99
Dataset 21 : CORDOBA2	104
Dataset 22 : CORDOBA2	109
Dataset 23 : CORDOBA2	114
Dataset 24 : CORDOBA2	119
Dataset 25 : COSTA RICA	124
Dataset 26 : MULLER	127
Dataset 27 : SERENGUETI	130
Dataset 28 : dattilo	
Dataset 29: hackett HH	
Dataset 30: hackett HH	
Dataset 31: SMOKY MOUNTAINS	
Dataset 32 : SHINOHARA	
Dataset 33 : Vitali	154
Dataset 34 : Zhang	
Dataset 35 : ARAUJO	
Dataset 36 : BASSET BCI	
Dataset 37 · RASSET BCI	

	Dataset 38: BASSET KHC	179
	Dataset 39 : BASSET WAN	184
	Dataset 40 : BASSET WAN	189
	Dataset 41 : dattilo -REMOVED	194
	Dataset 42: hackett HH -REMOVED	197
	Dataset 43: hackett HH -REMOVED	202
	Dataset 44: hackett TP -REMOVED-	
	Dataset 45: hackett TP -REMOVED	212
	Dataset 46: hackett TP -REMOVED-	
	Dataset 47: BASSET KHC -REMOVED	
Sı:	immary of null model analysis	227
50	Null Model 1	
	Null Model 2	
	Num Model 2	223
$\mathbf{S}\mathbf{u}$		23 0
	Datasets Info	230
	Bipartite networks	231
	Tripartite networks	232
Fo	orked vs. Stacked	233
	Realized Congruence	
	Adjusted Congruence	
	Hypermodularity	
	Try permodularity	200
M		233
	DATASET3	
	DATASET14	235
	DATASET18	
	DATASET19	237
	DATASET20	239
	DATASET21	241
	DATASET22	242
	DATASET23	244
	DATASET24	246
	DATASET29	247
	DATASET30	249
	DATA $SET 29$	251

README

This document describes step-by-step the results of the study "The hypermodular structure of tripartite ecological networks".

The PDF was generated by a R Markdown and other files, available at: https://github.com/pinheirorbp/tri partite_hypermodules. Codes to reproduce all analysis are also provided.

Datasets

Dataset 1: AZORES

Topology BN (A-B): Plant - Seed disperser

Modularity

••

Observed Modularity: 0.34 Number of Modules: 4

Comparison between observed modularity (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 30

Nestedness between species in the same module: 57 Nestedness between species in different modules: 19

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Seed disperser - Parasite

Modularity

..

Observed Modularity: 0.8 Number of Modules: 9

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 3.5 Nestedness between species in the same module 100 Nestedness between species in different modules 0

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.92

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

. . .

BN (A-B) Specialization (H2') 0.38

BN (A-B) Connectance 0.26

BN (B-C) Specialization (H2') 1

BN (B-C) Connectance 0.11

Plant richness in BN (A-B): 41

Seed disperser richness in BN (A-B): 7

Seed disperser richness in BN (B-C): 9

Parasite richness in BN (B-C): 13

Richness of shared Seed dispersers:9

Number of modules in BN (A-B) 4

Number of modules in BN (A-B) (only for shared species) 4 Number of modules in BN (B-C) (only for shared species) 7

Hipermodule Congruence

Optmization procedure

.. Adjusted Congruence: 0.69 Realized Congruence: 1 Hypermodularity: 0.48

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.005

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 2: AZORES

Topology BN (A-B): Herbivore - Plant

Modularity

..

Observed Modularity: 0.49 Number of Modules: 8

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix: 28

Nestedness between species in the same module: 66 Nestedness between species in different modules: 19

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Plant - Seed disperser

${\bf Modularity}$

..

Observed Modularity: 0.34 Number of Modules: 5

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 30 Nestedness between species in the same module 61 Nestedness between species in different modules 19

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.54

BN (A-B) Connectance 0.082

BN (B-C) Specialization (H2') 0.38

BN (B-C) Connectance 0.26

Herbivore richness in BN (A-B): 36

Plant richness in BN (A-B): 31

Plant richness in BN (B-C): 41

Seed disperser richness in BN (B-C): 7

Richness of shared Plants:41

Number of modules in BN (A-B) 8

Number of modules in BN (A-B) (only for shared species) 8 Number of modules in BN (B-C) (only for shared species) 5 $\,$

Hipermodule Congruence

Optmization procedure

••

..

 $\begin{array}{lll} {\rm Adjusted\ Congruence:} & 0.35 \\ {\rm Realized\ Congruence:} & 0.67 \\ {\rm Hypermodularity:} & 0.13 \end{array}$

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.001

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.62

Dataset 3: AZORES

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.49 Number of Modules: 9

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix: 28

Nestedness between species in the same module: 68 Nestedness between species in different modules: 19

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Parasitoid

${\bf Modularity}$

..

Observed Modularity: 0.61 Number of Modules: 5

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 11 Nestedness between species in the same module 48 Nestedness between species in different modules 0.73

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.01

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.54

BN (A-B) Connectance 0.082

BN (B-C) Specialization (H2') 1

BN (B-C) Connectance 0.12

Plant richness in BN (A-B): 31

Herbivore richness in BN (A-B): 36

Herbivore richness in BN (B-C): 13

Parasitoid richness in BN (B-C): 12

Richness of shared Herbivores:13

Number of modules in BN (A-B) 9

Number of modules in BN (A-B) (only for shared species) 6 Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

..

..

Adjusted Congruence: 0.6 Realized Congruence: 0.85 Hypermodularity: 0.48

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.006

Dataset 4: GALAPAGOS

Topology BN (A-B): Seed disperser - Plant

Modularity

..

Observed Modularity: 0.53 Number of Modules: 5

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 16

Nestedness between species in the same module: 51 Nestedness between species in different modules: 6

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Plant - Pollinator

Modularity

..

Observed Modularity: 0.34 Number of Modules: 8

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 13 Nestedness between species in the same module 27 Nestedness between species in different modules 9.8

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

...

BN (A-B) Specialization (H2') 0.39

BN (A-B) Connectance 0.11

BN (B-C) Specialization (H2') 0.37

BN (B-C) Connectance 0.052

Seed disperser richness in BN (A-B): 21

Plant richness in BN (A-B): 84

Plant richness in BN (B-C): 110

Pollinator richness in BN (B-C): 212

Richness of shared Plants:110

Number of modules in BN (A-B) 5

Number of modules in BN (A-B) (only for shared species) 5 Number of modules in BN (B-C) (only for shared species) 7

Hipermodule Congruence

Optmization procedure

.. Adjusted Congruence: 0.23 Realized Congruence: 0.62 Hypermodularity: 0.19

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.004

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.44

Dataset 5: DORSET

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.3 Number of Modules: 4

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 34

Nestedness between species in the same module: 57 Nestedness between species in different modules: 23

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Parasitoid

${\bf Modularity}$

..

Observed Modularity: 0.47 Number of Modules: 5

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 21 Nestedness between species in the same module 62 Nestedness between species in different modules 11

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.32

BN (A-B) Connectance 0.2

BN (B-C) Specialization (H2') 0.48

BN (B-C) Connectance 0.19

Plant richness in BN (A-B): 11

Herbivore richness in BN (A-B): 25

Herbivore richness in BN (B-C): 11

Parasitoid richness in BN (B-C): 15

Richness of shared Herbivores:11

Number of modules in BN (A-B) 4

Number of modules in BN (A-B) (only for shared species) 3 Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

••

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.24 \\ {\rm Realized\ Congruence:} & 0.73 \\ {\rm Hypermodularity:} & 0.14 \end{array}$

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.052

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.39

Dataset 6: NORWOOD

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.62 Number of Modules: 6

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 24

Nestedness between species in the same module: 86 Nestedness between species in different modules: 0.37

Number of Matrices in Null Model: 1000

P-Value: 0.66

CONCLUSION: BN (A-B) has a purely modular topology

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.52Number of Modules: 5

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 17 Nestedness between species in the same module 41 Nestedness between species in different modules 8.8

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.018

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.99

BN (A-B) Connectance 0.18

BN (B-C) Specialization (H2') 0.45

BN (B-C) Connectance 0.25

Plant richness in BN (A-B): 6

Herbivore richness in BN (A-B): 19

Herbivore richness in BN (B-C): 17

Parasitoid richness in BN (B-C): 17

Richness of shared Herbivores:17

Number of modules in BN (A-B) 6

Number of modules in BN (A-B) (only for shared species) 4 Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

..

• •

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.59 \\ {\rm Realized\ Congruence:} & 1 \\ {\rm Hypermodularity:} & 0.52 \end{array}$

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0

Dataset 7: NORWOOD

Topology BN (A-B): Herbivore - Plant

Modularity

..

Observed Modularity: 0.87 Number of Modules: 13

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 2.3

Nestedness between species in the same module: 36 Nestedness between species in different modules: 0.13

Number of Matrices in Null Model: 1000

P-Value: 0.87

CONCLUSION: BN (A-B) has a purely modular topology

Topology BN (B-C): Plant - Pollinator

Modularity

..

Observed Modularity: 0.5 Number of Modules: 17

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 12 Nestedness between species in the same module 58 Nestedness between species in different modules 7.6

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

. . .

BN (A-B) Specialization (H2') 0.89

BN (A-B) Connectance 0.046

BN (B-C) Specialization (H2') 0.57

BN (B-C) Connectance 0.044

Herbivore richness in BN (A-B): 28

Plant richness in BN (A-B): 30

Plant richness in BN (B-C): 47

Pollinator richness in BN (B-C): 241

Richness of shared Plants:47

Number of modules in BN (A-B) 13

Number of modules in BN (A-B) (only for shared species) 12 Number of modules in BN (B-C) (only for shared species) 11

Hipermodule Congruence

Optmization procedure

Adjusted Congruence: 0.83 Realized Congruence: 1 Hypermodularity: 0.6

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.47

Dataset 8: NORWOOD

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.87 Number of Modules: 15

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

. .

Nestedness in the entire matrix: 2.3

Nestedness between species in the same module: 36 Nestedness between species in different modules: 0.13

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.54

CONCLUSION: BN (A-B) has a purely modular topology

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.48 Number of Modules: 4

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 30 Nestedness between species in the same module 53

Nestedness between species in different modules 24

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.24

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.89

BN (A-B) Connectance 0.046

BN (B-C) Specialization (H2') 0.57

BN (B-C) Connectance 0.21

Plant richness in BN (A-B): 30

Herbivore richness in BN (A-B): 28

Herbivore richness in BN (B-C): 9

Parasitoid richness in BN (B-C): 11

Richness of shared Herbivores:9

Number of modules in BN (A-B) 15

Number of modules in BN (B-C) 4

Number of modules in BN (A-B) (only for shared species) 7 Number of modules in BN (B-C) (only for shared species) 4

Hipermodule Congruence

Optmization procedure

Adjusted Congruence: 0.49 Realized Congruence: 0.78 Hypermodularity: 0.48

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.003

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 9: BORNEO

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.55 Number of Modules: 6

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix: 17

Nestedness between species in the same module: 40 Nestedness between species in different modules: 11

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Defender

${\bf Modularity}$

..

Observed Modularity: 0.36 Number of Modules: 6

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 21 Nestedness between species in the same module 47 Nestedness between species in different modules 14

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.43

BN (A-B) Connectance 0.15

BN (B-C) Specialization (H2') 0.3

BN (B-C) Connectance 0.21

Plant richness in BN (A-B): 32

Herbivore richness in BN (A-B): 13

Herbivore richness in BN (B-C): 13

Defender richness in BN (B-C): 43

Richness of shared Herbivores: 13

Number of modules in BN (A-B) 6

Number of modules in BN (B-C) 6

Number of modules in BN (A-B) (only for shared species) 6 Number of modules in BN (B-C) (only for shared species) 6

Hipermodule Congruence

Optmization procedure

..

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.57 \\ {\rm Realized\ Congruence:} & 0.83 \\ {\rm Hypermodularity:} & 0.32 \end{array}$

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.18

Dataset 10: COIMBRA

Topology BN (A-B): Plant - Seed disperser

Modularity

..

Observed Modularity: 0.27 Number of Modules: 4

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 55

Nestedness between species in the same module: 71 Nestedness between species in different modules: 46

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Seed disperser - Parasite

Modularity

..

Observed Modularity: 0.12 Number of Modules: 3

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 59 Nestedness between species in the same module 64 Nestedness between species in different modules 57

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.22

BN (A-B) Connectance 0.25

BN (B-C) Specialization (H2') 0.17

BN (B-C) Connectance 0.43

Plant richness in BN (A-B): 29

Seed disperser richness in BN (A-B): 15

Seed disperser richness in BN (B-C): 18

Parasite richness in BN (B-C): 6

Richness of shared Seed dispersers:18

Number of modules in BN (A-B) 4

Number of modules in BN (B-C) 3

Number of modules in BN (A-B) (only for shared species) 3 Number of modules in BN (B-C) (only for shared species) 3

Hipermodule Congruence

Optmization procedure

••

..

 $\begin{array}{lll} {\rm Adjusted\ Congruence:} & 0.19 \\ {\rm Realized\ Congruence:} & 0.62 \\ {\rm Hypermodularity:} & 0.072 \end{array}$

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.35

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 11: BEIRA

Topology BN (A-B): Plant - herbivore

Modularity

..

Observed Modularity: 0.19 Number of Modules: 14

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix: 9.3

Nestedness between species in the same module: 93 Nestedness between species in different modules: 0

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.027

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.46 Number of Modules: 6

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 10 Nestedness between species in the same module 33 Nestedness between species in different modules 3.3

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.97

BN (A-B) Connectance 0.062

BN (B-C) Specialization (H2') 0.69

BN (B-C) Connectance 0.1

Plant richness in BN (A-B): 22

herbivore richness in BN (A-B): 31

herbivore richness in BN (B-C): 18

Parasitoid richness in BN (B-C): 40

Richness of shared herbivores:18

Number of modules in BN (A-B) 14

Number of modules in BN (B-C) 6

Number of modules in BN (A-B) (only for shared species) 9 Number of modules in BN (B-C) (only for shared species) 6

Hipermodule Congruence

Optmization procedure

realized congruence

0.0 0.4 0.8

0 5000 10000 15000

iteration

.. Adjusted Congruence: 0.67 Realized Congruence: 1 Hypermodularity: 0.39

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0

Dataset 12: PURBECK

Topology BN (A-B): Plant - Pollinator

Modularity

..

Observed Modularity: 0.13 Number of Modules: 3

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 88

Nestedness between species in the same module: 93 Nestedness between species in different modules: 87

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Pollinator - Parasitoid

${\bf Modularity}$

..

Observed Modularity: 0.06 Number of Modules: 2

Comparison between observed modularity (blue line) and proportional null model (density in black)

.

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 70 Nestedness between species in the same module 66 Nestedness between species in different modules 74

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.085

BN (A-B) Connectance 0.78

BN (B-C) Specialization (H2') 0.15

BN (B-C) Connectance 0.53

Plant richness in BN (A-B): 4

Pollinator richness in BN (A-B): 9

Pollinator richness in BN (B-C): 9

Parasitoid richness in BN (B-C): 11

Richness of shared Pollinators:9

Number of modules in BN (A-B) 3

Number of modules in BN (B-C) 2

Number of modules in BN (A-B) (only for shared species) 3 Number of modules in BN (B-C) (only for shared species) 2

Hipermodule Congruence

Optmization procedure

realized congruence
0.0 0.4 0.8
0 5000 10000 15000
iteration

Adjusted Congruence: 0.22 Realized Congruence: 0.67 Hypermodularity: 0.062

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.24

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.50

Dataset 13: HAWAII

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.47 Number of Modules: 10

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 19

Nestedness between species in the same module: 51 Nestedness between species in different modules: 12

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.34 Number of Modules: 5

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 19 Nestedness between species in the same module 68 Nestedness between species in different modules 8.8

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.005

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.64

BN (A-B) Connectance 0.084

BN (B-C) Specialization (H2') 0.67

BN (B-C) Connectance 0.21

Plant richness in BN (A-B): 32

Herbivore richness in BN (A-B): 28

Herbivore richness in BN (B-C): 13

Parasitoid richness in BN (B-C): $7\,$

Richness of shared Herbivores:13

Number of modules in BN (A-B) 10

Number of modules in BN (B-C) 5

Number of modules in BN (A-B) (only for shared species) 9 Number of modules in BN (B-C) (only for shared species) 5 $\,$

Hipermodule Congruence

Optmization procedure

••

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.54 \\ {\rm Realized\ Congruence:} & 0.85 \\ {\rm Hypermodularity:} & 0.12 \end{array}$

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.55

Dataset 14: BRISTOL

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.54 Number of Modules: 23

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

. .

Nestedness in the entire matrix: 4.8

Nestedness between species in the same module: 29 Nestedness between species in different modules: 1.2

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Parasitoid

${\bf Modularity}$

..

Observed Modularity: 0.22 Number of Modules: 7

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 3 Nestedness between species in the same module 9.6

Nestedness between species in different modules 1.7

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.86

BN (A-B) Connectance 0.015

BN (B-C) Specialization (H2') 0.49

BN (B-C) Connectance 0.019

Plant richness in BN (A-B): 139

Herbivore richness in BN (A-B): 357

Herbivore richness in BN (B-C): 157

Parasitoid richness in BN (B-C): 192

Richness of shared Herbivores:157

Number of modules in BN (A-B) 23

Number of modules in BN (B-C) 7

Number of modules in BN (A-B) (only for shared species) 21 Number of modules in BN (B-C) (only for shared species) 7

Hipermodule Congruence

Optmization procedure

..

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.32 \\ {\rm Realized\ Congruence:} & 0.55 \\ {\rm Hypermodularity:} & 0.27 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0

Dataset 15: POLAND

Topology BN (A-B): Seed disperser - Plant

Modularity

..

Observed Modularity: 0.34 Number of Modules: 4

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix: 54

Nestedness between species in the same module: 56 Nestedness between species in different modules: 53

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Plant - Pollinator

Modularity

..

Observed Modularity: 0.39 Number of Modules: 9

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 23 Nestedness between species in the same module 41 Nestedness between species in different modules 19

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.27

BN (A-B) Connectance 0.26

BN (B-C) Specialization (H2') 0.43

BN (B-C) Connectance 0.23

Seed disperser richness in BN (A-B): 34

Plant richness in BN (A-B): 15

Plant richness in BN (B-C): 15

Pollinator richness in BN (B-C): 308

Richness of shared Plants:15

Number of modules in BN (A-B) 4

Number of modules in BN (B-C) 9

Number of modules in BN (A-B) (only for shared species) 4 Number of modules in BN (B-C) (only for shared species) 9

Hipermodule Congruence

Optmization procedure

.. Adjusted Congruence: 0.48 Realized Congruence: 0.8 Hypermodularity: 0.27

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.35

Dataset 16: GALAPAGOS

Topology BN (A-B): Plant - Seed disperser

Modularity

..

Observed Modularity: 0.52 Number of Modules: 6

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 23

Nestedness between species in the same module: 62 Nestedness between species in different modules: 12

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Seed disperser - Parasite

${\bf Modularity}$

..

Observed Modularity: 0.46 Number of Modules: 5

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 26

Nestedness between species in the same module 75

Nestedness between species in different modules 15

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.5

BN (A-B) Connectance 0.15

BN (B-C) Specialization (H2') 0.55

BN (B-C) Connectance 0.21

Plant richness in BN (A-B): 46

Seed disperser richness in BN (A-B): 16

Seed disperser richness in BN (B-C): 15

Parasite richness in BN (B-C): 13

Richness of shared Seed dispersers:15

Number of modules in BN (A-B) 6

Number of modules in BN (B-C) 5

Number of modules in BN (A-B) (only for shared species) 6 Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

..

 $\begin{array}{lll} {\rm Adjusted\ Congruence:} & 0.45 \\ {\rm Realized\ Congruence:} & 0.86 \\ {\rm Hypermodularity:} & 0.34 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.002

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.11

${\bf Dataset~17:~MOZAMBIQUE}$

Topology BN (A-B): Mycorrhiza - Plant

Modularity

..

Observed Modularity: 0.4 Number of Modules: 8

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 20

Nestedness between species in the same module: 48 Nestedness between species in different modules: 12

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Plant - Seed disperser

${\bf Modularity}$

..

Observed Modularity: 0.34 Number of Modules: 7

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 23 Nestedness between species in the same module 72 Nestedness between species in different modules 16

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.38

BN (A-B) Connectance 0.18

BN (B-C) Specialization (H2') 0.42

BN (B-C) Connectance 0.16

Mycorrhiza richness in BN (A-B): 55

Plant richness in BN (A-B): 16

Plant richness in BN (B-C): 16

Seed disperser richness in BN (B-C): 16

Richness of shared Plants:16

Number of modules in BN (A-B) 8

Number of modules in BN (B-C) 7

Number of modules in BN (A-B) (only for shared species) 6 Number of modules in BN (B-C) (only for shared species) 6

Hipermodule Congruence

Optmization procedure

••

..

 $\begin{array}{lll} {\rm Adjusted\ Congruence:} & 0.59 \\ {\rm Realized\ Congruence:} & 0.9 \\ {\rm Hypermodularity:} & 0.44 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.38

Dataset 18: NEW ZEALAND

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.42 Number of Modules: 5

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

. .

Nestedness in the entire matrix: 22

Nestedness between species in the same module: 31 Nestedness between species in different modules: 18

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.58 Number of Modules: 8

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 9.2

Nestedness between species in the same module 34

Nestedness between species in different modules 4.7

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.33

BN (A-B) Connectance 0.08

BN (B-C) Specialization (H2') 0.5

BN (B-C) Connectance 0.074

Plant richness in BN (A-B): 75

Herbivore richness in BN (A-B): 90

Herbivore richness in BN (B-C): 49

Parasitoid richness in BN (B-C): 60

Richness of shared Herbivores:49

Number of modules in BN (A-B) 5

Number of modules in BN (B-C) 8

Number of modules in BN (A-B) (only for shared species) 4 Number of modules in BN (B-C) (only for shared species) 8

Hipermodule Congruence

Optmization procedure

Adjusted Congruence: 0.29 Realized Congruence: 0.55 Hypermodularity: 0.32

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.022

Dataset 19: CORDOBA1

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.89 Number of Modules: 38

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 1.9

Nestedness between species in the same module: 39 Nestedness between species in different modules: 0.51

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.55 Number of Modules: 4

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

. .

Nestedness in the entire matrix 7.6 Nestedness between species in the same module 14 Nestedness between species in different modules 4.3

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

...

BN (A-B) Specialization (H2') 0.96

BN (A-B) Connectance 0.018

BN (B-C) Specialization (H2') 0.6

BN (B-C) Connectance 0.042

Plant richness in BN (A-B): 111

Herbivore richness in BN (A-B): 131

Herbivore richness in BN (B-C): 103

Parasitoid richness in BN (B-C): 232

Richness of shared Herbivores:103

Number of modules in BN (A-B) 38

Number of modules in BN (B-C) 4

Number of modules in BN (A-B) (only for shared species) 35 Number of modules in BN (B-C) (only for shared species) 4

Hipermodule Congruence

Optmization procedure

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.3 \\ {\rm Realized\ Congruence:} & 0.63 \\ {\rm Hypermodularity:} & 0.12 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.33

Dataset 20: CORDOBA2

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.63 Number of Modules: 21

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 12

Nestedness between species in the same module: 50 Nestedness between species in different modules: 8.6

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.56 Number of Modules: 6

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 8.6 Nestedness between species in the same module 34 Nestedness between species in different modules 1.7

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

...

BN (A-B) Specialization (H2') 0.58

BN (A-B) Connectance 0.045

BN (B-C) Specialization (H2') 0.88

BN (B-C) Connectance 0.078

Plant richness in BN (A-B): 109

Herbivore richness in BN (A-B): 85

Herbivore richness in BN (B-C): 27

Parasitoid richness in BN (B-C): $27\,$

Richness of shared Herbivores:27

Number of modules in BN (A-B) 21

Number of modules in BN (B-C) 6

Number of modules in BN (A-B) (only for shared species) 16 Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

Lealized congruence

0.0

0.0

0.0

10000

15000

20000

iteration

Adjusted Congruence: 0.56 Realized Congruence: 0.85 Hypermodularity: 0.39

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.12

Dataset 21: CORDOBA2

Topology BN (A-B): Plant defender - Plant

Modularity

..

Observed Modularity: 0.23 Number of Modules: 4

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

. .

Nestedness in the entire matrix: 59

Nestedness between species in the same module: 68 Nestedness between species in different modules: 55

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Plant - Herbivore

Modularity

..

Observed Modularity: 0.63 Number of Modules: 20

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 12 Nestedness between species in the same module 43 Nestedness between species in different modules 8.8

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.18

BN (A-B) Connectance 0.31

BN (B-C) Specialization (H2') 0.58

BN (B-C) Connectance 0.045

Plant defender richness in BN (A-B): 33

Plant richness in BN (A-B): 16

Plant richness in BN (B-C): 109

Herbivore richness in BN (B-C): 85

Richness of shared Plants:109

Number of modules in BN (A-B) 4

Number of modules in BN (B-C) 20

Number of modules in BN (A-B) (only for shared species) 4 Number of modules in BN (B-C) (only for shared species) 6

Hipermodule Congruence

Optmization procedure

••

..

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.48 \\ {\rm Realized\ Congruence:} & 0.8 \\ {\rm Hypermodularity:} & 0.26 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.002

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.14

Dataset 22: CORDOBA2

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.63 Number of Modules: 15

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 12

Nestedness between species in the same module: 37 Nestedness between species in different modules: 8.7

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Predator

Modularity

..

Observed Modularity: 0.39 Number of Modules: 7

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 19 Nestedness between species in the same module 31 Nestedness between species in different modules 17

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

••

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.58

BN (A-B) Connectance 0.045

BN (B-C) Specialization (H2') 0.37

BN (B-C) Connectance 0.16

Plant richness in BN (A-B): 109

Herbivore richness in BN (A-B): 85

Herbivore richness in BN (B-C): 33

Predator richness in BN (B-C): 23

Richness of shared Herbivores:33

Number of modules in BN (A-B) 15

Number of modules in BN (B-C) 7

Number of modules in BN (A-B) (only for shared species) 12 Number of modules in BN (B-C) (only for shared species) 7

Hipermodule Congruence

Optmization procedure

..

. .

Adjusted Congruence: 0.4 Realized Congruence: 0.61 Hypermodularity: 0.16

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.59

Dataset 23: CORDOBA2

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.63 Number of Modules: 20

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 12

Nestedness between species in the same module: 48 Nestedness between species in different modules: 8.7

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Defender

Modularity

..

Observed Modularity: 0.33 Number of Modules: 5

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 25 Nestedness between species in the same module 42 Nestedness between species in different modules 20

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.58

BN (A-B) Connectance 0.045

BN (B-C) Specialization (H2') 0.24

BN (B-C) Connectance 0.16

Plant richness in BN (A-B): 109

Herbivore richness in BN (A-B): 85

Herbivore richness in BN (B-C): 36

Defender richness in BN (B-C): 26

Richness of shared Herbivores:36

Number of modules in BN (A-B) 20

Number of modules in BN (B-C) 5

Number of modules in BN (A-B) (only for shared species) 18 Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

..

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.47 \\ {\rm Realized\ Congruence:} & 0.72 \\ {\rm Hypermodularity:} & 0.28 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.16

Dataset 24: CORDOBA2

Topology BN (A-B): Defender - Herbivore

Modularity

..

Observed Modularity: 0.33 Number of Modules: 6

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

. .

Nestedness in the entire matrix: 24

Nestedness between species in the same module: 44 Nestedness between species in different modules: 20

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Enemy

Modularity

..

Observed Modularity: 0.44 Number of Modules: 7

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 9.4

Nestedness between species in the same module 20

Nestedness between species in different modules 7.5

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.24

BN (A-B) Connectance 0.16

BN (B-C) Specialization (H2') 0.4

BN (B-C) Connectance 0.088

Defender richness in BN (A-B): 26

Herbivore richness in BN (A-B): 37

Herbivore richness in BN (B-C): 40

Enemy richness in BN (B-C): 50

Richness of shared Herbivores:40

Number of modules in BN (A-B) 6

Number of modules in BN (B-C) 7

Number of modules in BN (A-B) (only for shared species) 6 Number of modules in BN (B-C) (only for shared species) 7

Hipermodule Congruence

Optmization procedure

••

 $\begin{array}{lll} {\rm Adjusted\ Congruence:} & 0.31 \\ {\rm Realized\ Congruence:} & 0.56 \\ {\rm Hypermodularity:} & 0.077 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.73

Dataset 25: COSTA RICA

BINARY DATASET

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.91 Number of Modules: 20

Low-level nestedness

..

Nestedness in the entire matrix: 0.52

Nestedness between species in the same module: 5.9 Nestedness between species in different modules: 0.25

Topology BN (B-C): Herbivore - Parasitoid

Modularity

. .

Observed Modularity: 0.61 Number of Modules: 9

Low-level nestedness

.

Nestedness in the entire matrix 7.1

Nestedness between species in the same module 24 Nestedness between species in different modules 5

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') NA

BN (A-B) Connectance 0.029

BN (B-C) Specialization (H2') NA

BN (B-C) Connectance 0.034

Plant richness in BN (A-B): 37

Herbivore richness in BN (A-B): 58

Herbivore richness in BN (B-C): 58

Parasitoid richness in BN (B-C): 102

Richness of shared Herbivores:58

Number of modules in BN (A-B) 20

Number of modules in BN (B-C) 9

Number of modules in BN (A-B) (only for shared species) 20

Number of modules in BN (B-C) (only for shared species) 9

Hipermodule Congruence

Optmization procedure

• •

Adjusted Congruence: 0.45 Realized Congruence: 0.62 Hypermodularity: 0.42

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.094

Dataset 26: MULLER

BINARY DATASET

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.78 Number of Modules: 12

Low-level nestedness

..

Nestedness in the entire matrix: 3.7

Nestedness between species in the same module: 0 Nestedness between species in different modules: 4.1

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.55 Number of Modules: 6

Low-level nestedness

.

Nestedness in the entire matrix 24

Nestedness between species in the same module 68 Nestedness between species in different modules 15

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') NA

BN (A-B) Connectance 0.082

BN (B-C) Specialization (H2') NA

BN (B-C) Connectance 0.14

Plant richness in BN (A-B): 21

Herbivore richness in BN (A-B): 14

Herbivore richness in BN (B-C): 14

Parasitoid richness in BN (B-C): 18

Richness of shared Herbivores:14

Number of modules in BN (A-B) 12

Number of modules in BN (B-C) 6

Number of modules in BN (A-B) (only for shared species) 12

Number of modules in BN (B-C) (only for shared species) 6

Hipermodule Congruence

Optmization procedure

..
Adjusted Congruence: 0.71
Realized Congruence: 0.93
Hypermodularity: 0.55

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.42

Dataset 27: SERENGUETI

BINARY DATASET

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.4 Number of Modules: 6

Low-level nestedness

. .

Nestedness in the entire matrix: 38

Nestedness between species in the same module: 67 Nestedness between species in different modules: 23

Topology BN (B-C): Herbivore - Predator

Modularity

. .

Observed Modularity: 0.21 Number of Modules: 4

Low-level nestedness

.

Nestedness in the entire matrix 74

Nestedness between species in the same module 65 Nestedness between species in different modules 76

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') NA

BN (A-B) Connectance 0.17

BN (B-C) Specialization (H2') NA

BN (B-C) Connectance 0.4

Plant richness in BN (A-B): 129

Herbivore richness in BN (A-B): 23

Herbivore richness in BN (B-C): 22

Predator richness in BN (B-C): 9

Richness of shared Herbivores:22

Number of modules in BN (A-B) 6

Number of modules in BN (B-C) 4

Number of modules in BN (A-B) (only for shared species) 6

Number of modules in BN (B-C) (only for shared species) 4

Hipermodule Congruence

Optmization procedure

••

..
Adjusted Congruence: 0.36
Realized Congruence: 0.71
Hypermodularity: 0.17

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.03

Dataset 28 : dattilo BINARY DATASET

Topology BN (A-B): Plant defender - Plant

Modularity

. .

Observed Modularity: 0.29 Number of Modules: 7

Low-level nestedness

. .

Nestedness in the entire matrix: 49

Nestedness between species in the same module: 60 Nestedness between species in different modules: 46

Topology BN (B-C): Plant - Pollinator

Modularity

. .

Observed Modularity: 0.54 Number of Modules: 13

Low-level nestedness

..

Nestedness in the entire matrix 7.9

Nestedness between species in the same module 26 Nestedness between species in different modules 6.4

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') NA

BN (A-B) Connectance 0.17

BN (B-C) Specialization (H2') NA

BN (B-C) Connectance 0.026

Plant defender richness in BN (A-B): 30

Plant richness in BN (A-B): 40

Plant richness in BN (B-C): 93

Pollinator richness in BN (B-C): 173

Richness of shared Plants:93

Number of modules in BN (A-B) 7

Number of modules in BN (B-C) 13

Number of modules in BN (A-B) (only for shared species) 4

Number of modules in BN (B-C) (only for shared species) 9

Hipermodule Congruence

Optmization procedure

..
Adjusted Congruence: 0.53
Realized Congruence: 0.77
Hypermodularity: 0.24

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.5

Dataset 29: hackett HH

Topology BN (A-B): Herbivore - Plant

Modularity

..

Observed Modularity: 0.82 Number of Modules: 15

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 6.3

Nestedness between species in the same module: 80 Nestedness between species in different modules: 0.032

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.37

CONCLUSION: BN (A-B) has a purely modular topology

Topology BN (B-C): Plant - Pollinator

Modularity

..

Observed Modularity: 0.43 Number of Modules: 10

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 13 Nestedness between species in the same module 44 Nestedness between species in different modules 7.8

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 1

BN (A-B) Connectance 0.068

BN (B-C) Specialization (H2') 0.41

BN (B-C) Connectance 0.056

Herbivore richness in BN (A-B): 39

Plant richness in BN (A-B): 15

Plant richness in BN (B-C): 43

Pollinator richness in BN (B-C): 220

Richness of shared Plants:43

Number of modules in BN (A-B) 15

Number of modules in BN (B-C) 10

Number of modules in BN (A-B) (only for shared species) 7 Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

realized congruence

0.0 0.4 0.8

0 5000 10000 15000

iteration

.. Adjusted Congruence: 0.78 Realized Congruence: 1 Hypermodularity: 0.58

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 30: hackett HH

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.82 Number of Modules: 15

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

. .

Nestedness in the entire matrix: 6.3

Nestedness between species in the same module: 80 Nestedness between species in different modules: 0.032

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.33

CONCLUSION: BN (A-B) has a purely modular topology

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.79 Number of Modules: 12

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 2.4 Nestedness between species in the same module 45 Nestedness between species in different modules 0.21

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.73

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 1

BN (A-B) Connectance 0.068

BN (B-C) Specialization (H2') 0.82

BN (B-C) Connectance 0.088

Plant richness in BN (A-B): 15

Herbivore richness in BN (A-B): 39

Herbivore richness in BN (B-C): 14

Parasitoid richness in BN (B-C): 17

Richness of shared Herbivores: 14

Number of modules in BN (A-B) 15

Number of modules in BN (B-C) 12

Number of modules in BN (A-B) (only for shared species) 8 Number of modules in BN (B-C) (only for shared species) 12

Hipermodule Congruence

Optmization procedure

..

. . .

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.78 \\ {\rm Realized\ Congruence:} & 1 \\ {\rm Hypermodularity:} & 0.72 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.53

Dataset 31 : SMOKY MOUNTAINS BINARY DATASET

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.78 Number of Modules: 27

Low-level nestedness

..

Nestedness in the entire matrix: 3.6

Nestedness between species in the same module: 19 Nestedness between species in different modules: 2.9

Topology BN (B-C): Herbivore - Defender

Modularity

. .

Observed Modularity: 0.63 Number of Modules: 5

Low-level nestedness

..

Nestedness in the entire matrix 16

Nestedness between species in the same module 32 Nestedness between species in different modules 12

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') NA

BN (A-B) Connectance 0.017

BN (B-C) Specialization (H2') NA

BN (B-C) Connectance 0.15

Plant richness in BN (A-B): 120

Herbivore richness in BN (A-B): 97

Herbivore richness in BN (B-C): 19

Defender richness in BN (B-C): 10

Richness of shared Herbivores:19

Number of modules in BN (A-B) 27

Number of modules in BN (B-C) 5

Number of modules in BN (A-B) (only for shared species) 9

Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

..
Adjusted Congruence: 0.53
Realized Congruence: 0.75
Hypermodularity: 0.37

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.91

Dataset 32: SHINOHARA

Topology BN (A-B): Herbivore - Plant

Modularity

..

Observed Modularity: 0.73 Number of Modules: 21

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix: 4.6

Nestedness between species in the same module: 43 Nestedness between species in different modules: 2.1

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Plant - Pollinator

Modularity

..

Observed Modularity: 0.4 Number of Modules: 9

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 21 Nestedness between species in the same module 51 Nestedness between species in different modules 14

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.67

BN (A-B) Connectance 0.036

BN (B-C) Specialization (H2') 0.42

BN (B-C) Connectance 0.081

Herbivore richness in BN (A-B): 93

Plant richness in BN (A-B): 58

Plant richness in BN (B-C): 48

Pollinator richness in BN (B-C): 52

Richness of shared Plants:48

Number of modules in BN (A-B) 21

Number of modules in BN (B-C) 9

Number of modules in BN (A-B) (only for shared species) 13 Number of modules in BN (B-C) (only for shared species) 8

Hipermodule Congruence

Optmization procedure

••

••

Adjusted Congruence: 0.61 Realized Congruence: 0.85 Hypermodularity: 0.47

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.41

Dataset 33: Vitali

Topology BN (A-B): Pollinator - Plant

Modularity

..

Observed Modularity: 0.48 Number of Modules: 10

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix: 12

Nestedness between species in the same module: 30 Nestedness between species in different modules: 9

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Plant - Seed disperser

Modularity

..

Observed Modularity: 0.48 Number of Modules: 3

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 48 Nestedness between species in the same module 69 Nestedness between species in different modules 40

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.043

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.51

BN (A-B) Connectance 0.096

BN (B-C) Specialization (H2') 0.88

BN (B-C) Connectance 0.47

Pollinator richness in BN (A-B): 95

Plant richness in BN (A-B): 34

Plant richness in BN (B-C): 10

Seed disperser richness in BN (B-C): 4

Richness of shared Plants:10

Number of modules in BN (A-B) 10

Number of modules in BN (B-C) 3

Number of modules in BN (A-B) (only for shared species) 6 Number of modules in BN (B-C) (only for shared species) 3

Hipermodule Congruence

Optmization procedure

..

..

Adjusted Congruence: 0.53 Realized Congruence: 1 Hypermodularity: 0.41

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.005

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.11

Dataset 34: Zhang

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.72 Number of Modules: 19

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

. .

Nestedness in the entire matrix: 8

Nestedness between species in the same module: 73 Nestedness between species in different modules: 3.5

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Herbivore - Defender

Modularity

..

Observed Modularity: 0.1 Number of Modules: 5

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 57 Nestedness between species in the same module 68 Nestedness between species in different modules 54

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.91

BN (A-B) Connectance 0.078

BN (B-C) Specialization (H2') 0.062

BN (B-C) Connectance 0.21

Plant richness in BN (A-B): 41

Herbivore richness in BN (A-B): 24

Herbivore richness in BN (B-C): 20

Defender richness in BN (B-C): 35

Richness of shared Herbivores:20

Number of modules in BN (A-B) 19

Number of modules in BN (B-C) 5

Number of modules in BN (A-B) (only for shared species) 16 Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

••

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.59 \\ {\rm Realized\ Congruence:} & 0.9 \\ {\rm Hypermodularity:} & 0.3 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.72

Dataset 35: ARAUJO

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.95 Number of Modules: 44

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix: 1.3

Nestedness between species in the same module: 84 Nestedness between species in different modules: 0

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.12

CONCLUSION: BN (A-B) has a purely modular topology

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.48 Number of Modules: 18

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.015

Low-level nestedness

.

Nestedness in the entire matrix 2.4

Nestedness between species in the same module 8.9

Nestedness between species in different modules 1.9

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.008

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

...

BN (A-B) Specialization (H2') 1

BN (A-B) Connectance 0.023

BN (B-C) Specialization (H2') 0.049

BN (B-C) Connectance 0.05

Plant richness in BN (A-B): 44

Herbivore richness in BN (A-B): 80

Herbivore richness in BN (B-C): 59

Parasitoid richness in BN (B-C): 68

Richness of shared Herbivores:59

Number of modules in BN (A-B) 44

Number of modules in BN (B-C) 18

Number of modules in BN (A-B) (only for shared species) 35 Number of modules in BN (B-C) (only for shared species) 18

Hipermodule Congruence

Optmization procedure

..

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.67 \\ {\rm Realized\ Congruence:} & 0.78 \\ {\rm Hypermodularity:} & 0.51 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.084

Dataset 36: BASSET BCI

Topology BN (A-B): Plant - pulp.feeder

Modularity

..

Observed Modularity: 0.86 Number of Modules: 63

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 1.4

Nestedness between species in the same module: 30 Nestedness between species in different modules: 0.66

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): pulp.feeder - Parasitoid

${\bf Modularity}$

..

Observed Modularity: 0.87 Number of Modules: 19

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 1.3 Nestedness between species in the same module 53 Nestedness between species in different modules 0

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.86

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.86

BN (A-B) Connectance 0.012

BN (B-C) Specialization (H2') 1

BN (B-C) Connectance 0.053

Plant richness in BN (A-B): 157

pulp.feeder richness in BN (A-B): 214

pulp.feeder richness in BN (B-C): 19

Parasitoid richness in BN (B-C): 30

Richness of shared pulp.feeders:19

Number of modules in BN (A-B) 63

Number of modules in BN (B-C) 19

Number of modules in BN (A-B) (only for shared species) 18 Number of modules in BN (B-C) (only for shared species) 19

Hipermodule Congruence

Optmization procedure

..

. .

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.94 \\ {\rm Realized\ Congruence:} & 1 \\ {\rm Hypermodularity:} & 0.83 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 37: BASSET BCI

Topology BN (A-B): Plant - seed predator

Modularity

..

Observed Modularity: 0.91 Number of Modules: 89

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 0.6

Nestedness between species in the same module: 36 Nestedness between species in different modules: 0.11

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): seed predator - Parasitoid

${\bf Modularity}$

..

Observed Modularity: 0.86 Number of Modules: 28

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 3.5 Nestedness between species in the same module 82 Nestedness between species in different modules 0

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.9

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.97

BN (A-B) Connectance 0.0072

BN (B-C) Specialization (H2') 1

BN (B-C) Connectance 0.036

Plant richness in BN (A-B): 181

seed predator richness in BN (A-B): 311

seed predator richness in BN (B-C): 28

Parasitoid richness in BN (B-C): 53

Richness of shared seed predators:28

Number of modules in BN (A-B) 89

Number of modules in BN (B-C) 28

Number of modules in BN (A-B) (only for shared species) 25 Number of modules in BN (B-C) (only for shared species) 28 $\,$

Hipermodule Congruence

Optmization procedure

••

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.96 \\ {\rm Realized\ Congruence:} & 1 \\ {\rm Hypermodularity:} & 0.81 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.91

Dataset 38: BASSET KHC

Topology BN (A-B): Plant - pulp.feeder

Modularity

..

Observed Modularity: 0.62 Number of Modules: 26

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 5.8

Nestedness between species in the same module: 29 Nestedness between species in different modules: 4.2

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): pulp.feeder - Parasitoid

${\bf Modularity}$

..

Observed Modularity: 0.57 Number of Modules: 9

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 12 Nestedness between species in the same module 65 Nestedness between species in different modules 4.6

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.63

BN (A-B) Connectance 0.027

BN (B-C) Specialization (H2') 0.64

BN (B-C) Connectance 0.12

Plant richness in BN (A-B): 170

pulp.feeder richness in BN (A-B): 161

pulp.feeder richness in BN (B-C): 12

Parasitoid richness in BN (B-C): 24

Richness of shared pulp.feeders:12

Number of modules in BN (A-B) 26

Number of modules in BN (B-C) 9

Number of modules in BN (A-B) (only for shared species) 8 Number of modules in BN (B-C) (only for shared species) 9

Hipermodule Congruence

Optmization procedure

Adjusted Congruence: 0.79 Realized Congruence: 1 Hypermodularity: 0.54 iteration

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.059

Dataset 39: BASSET WAN

Topology BN (A-B): Plant - pulp.feeder

Modularity

..

Observed Modularity: 0.29 Number of Modules: 29

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix: 19

Nestedness between species in the same module: 33 Nestedness between species in different modules: 18

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): pulp.feeder - Parasitoid

Modularity

..

Observed Modularity: 0.81 Number of Modules: 20

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 3.1Nestedness between species in the same module 52Nestedness between species in different modules 0.38

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.001

CONCLUSION: BN (B-C) has a compound topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.4

BN (A-B) Connectance 0.033

BN (B-C) Specialization (H2') 0.87

BN (B-C) Connectance 0.04

Plant richness in BN (A-B): 184

pulp.feeder richness in BN (A-B): 193

pulp.feeder richness in BN (B-C): 38

Parasitoid richness in BN (B-C): 51

Richness of shared pulp.feeders:38

Number of modules in BN (A-B) 29

Number of modules in BN (B-C) 20

Number of modules in BN (A-B) (only for shared species) 18 Number of modules in BN (B-C) (only for shared species) 20 $\,$

Hipermodule Congruence

Optmization procedure

..

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.73 \\ {\rm Realized\ Congruence:} & 0.92 \\ {\rm Hypermodularity:} & 0.64 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.023

Dataset 40: BASSET WAN

Topology BN (A-B): Plant - seed predator

Modularity

..

Observed Modularity: 0.78 Number of Modules: 21

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 4

Nestedness between species in the same module: 30 Nestedness between species in different modules: 1.9

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): seed predator - Parasitoid

Modularity

..

Observed Modularity: 0.56 Number of Modules: 6

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix 21 Nestedness between species in the same module 82 Nestedness between species in different modules 5.1

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.15

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

. . .

BN (A-B) Specialization (H2') 0.8

BN (A-B) Connectance 0.03

BN (B-C) Specialization (H2') 0.86

BN (B-C) Connectance 0.19

Plant richness in BN (A-B): 132

seed predator richness in BN (A-B): 77

seed predator richness in BN (B-C): 12

Parasitoid richness in BN (B-C): 8

Richness of shared seed predators:12

Number of modules in BN (A-B) 21

Number of modules in BN (B-C) 6

Number of modules in BN (A-B) (only for shared species) 10 Number of modules in BN (B-C) (only for shared species) 6

Hipermodule Congruence

Optmization procedure

..

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.69 \\ {\rm Realized\ Congruence:} & 1 \\ {\rm Hypermodularity:} & 0.56 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.044

Dataset 41 : dattilo -REMOVED-BINARY DATASET

Topology BN (A-B): Seed disperser - Plant

Modularity

..

Observed Modularity: 0.48 Number of Modules: 7

Low-level nestedness

. .

Nestedness in the entire matrix: 30

Nestedness between species in the same module: 57 Nestedness between species in different modules: 25

Topology BN (B-C): Plant - Pollinator

Modularity

..

Observed Modularity: 0.54 Number of Modules: 23

Low-level nestedness

..

Nestedness in the entire matrix 7.9

Nestedness between species in the same module 33 Nestedness between species in different modules 6.7

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') NA

BN (A-B) Connectance 0.1

BN (B-C) Specialization (H2') NA

BN (B-C) Connectance 0.026

Seed disperser richness in BN (A-B): 46

Plant richness in BN (A-B): 27

Plant richness in BN (B-C): 93

Pollinator richness in BN (B-C): 173

Richness of shared Plants:93

Number of modules in BN (A-B) 7

Number of modules in BN (B-C) 23

Number of modules in BN (A-B) (only for shared species) 3

Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

..
Adjusted Congruence: 0.44
Realized Congruence: 1
Hypermodularity: 0.26

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.071

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 0.48

Dataset 42: hackett HH -REMOVED-

Topology BN (A-B): Pollinator - Plant

Modularity

..

Observed Modularity: 0.42 Number of Modules: 5

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 13

Nestedness between species in the same module: 33 Nestedness between species in different modules: 7.3

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Plant - Seed predator

Modularity

..

Observed Modularity: 0.6 Number of Modules: 8

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 11 Nestedness between species in the same module 67 Nestedness between species in different modules 2.2

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.05

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.41

BN (A-B) Connectance 0.056

BN (B-C) Specialization (H2') 0.84

BN (B-C) Connectance 0.14

Pollinator richness in BN (A-B): 220

Plant richness in BN (A-B): 43

Plant richness in BN (B-C): 9

Seed predator richness in BN (B-C): 20

Richness of shared Plants:9

Number of modules in BN (A-B) 5

Number of modules in BN (B-C) 8

Number of modules in BN (A-B) (only for shared species) 2 Number of modules in BN (B-C) (only for shared species) 4

Hipermodule Congruence

Optmization procedure

..

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.38 \\ {\rm Realized\ Congruence:} & 1 \\ {\rm Hypermodularity:} & 0.36 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.26

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 43: hackett HH -REMOVED-

Topology BN (A-B): Plant - seed predator

Modularity

..

Observed Modularity: 0.66 Number of Modules: 8

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 1.9

Nestedness between species in the same module: 33 Nestedness between species in different modules: 0.64

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.93

CONCLUSION: BN (A-B) has a purely modular topology

Topology BN (B-C): seed predator - Parasitoid

Modularity

..

Observed Modularity: 0.44 Number of Modules: 3

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.003

Low-level nestedness

..

Nestedness in the entire matrix 24 Nestedness between species in the same module 74 Nestedness between species in different modules 0

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.52

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 1

BN (A-B) Connectance 0.13

BN (B-C) Specialization (H2') 0.89

BN (B-C) Connectance 0.36

Plant richness in BN (A-B): 10

seed predator richness in BN (A-B): 9

seed predator richness in BN (B-C): 3

Parasitoid richness in BN (B-C): 11

Richness of shared seed predators:3

Number of modules in BN (A-B) 8

Number of modules in BN (B-C) 3

Number of modules in BN (A-B) (only for shared species) 3 Number of modules in BN (B-C) (only for shared species) 3

Hipermodule Congruence

Optmization procedure

..

• •

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.67 \\ {\rm Realized\ Congruence:} & 1 \\ {\rm Hypermodularity:} & 0.5 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.16

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 44: hackett TP -REMOVED-

Topology BN (A-B): Herbivore - Plant

Modularity

..

Observed Modularity: 0.61 Number of Modules: 9

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 9

Nestedness between species in the same module: 47 Nestedness between species in different modules: 3.1

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): Plant - Pollinator

Modularity

..

Observed Modularity: 0.49 Number of Modules: 8

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 11 Nestedness between species in the same module 34 Nestedness between species in different modules 8.8

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.54

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.56

BN (A-B) Connectance 0.086

BN (B-C) Specialization (H2') 0.59

BN (B-C) Connectance 0.16

Herbivore richness in BN (A-B): 53

Plant richness in BN (A-B): 21

Plant richness in BN (B-C): 10

Pollinator richness in BN (B-C): 16

Richness of shared Plants:10

Number of modules in BN (A-B) 9

Number of modules in BN (B-C) 8

Number of modules in BN (A-B) (only for shared species) 3 Number of modules in BN (B-C) (only for shared species) 4

Hipermodule Congruence

Optmization procedure

.. Adjusted Congruence: 0.62 Realized Congruence: 1 Hypermodularity: 0.22

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.083

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 45: hackett TP -REMOVED-

Topology BN (A-B): Herbivore - Plant

Modularity

..

Observed Modularity: 0.66 Number of Modules: 8

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 1.9

Nestedness between species in the same module: 33 Nestedness between species in different modules: 0.64

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.93

CONCLUSION: BN (A-B) has a purely modular topology

Topology BN (B-C): Plant - Seed predator

Modularity

..

Observed Modularity: 0.44 Number of Modules: 3

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0.001

Low-level nestedness

..

Nestedness in the entire matrix 24 Nestedness between species in the same module 74 Nestedness between species in different modules 0

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.51

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 1

BN (A-B) Connectance 0.13

BN (B-C) Specialization (H2') 0.89

BN (B-C) Connectance 0.36

Herbivore richness in BN (A-B): 10

Plant richness in BN (A-B): 9

Plant richness in BN (B-C): 3

Seed predator richness in BN (B-C): 11

Richness of shared Plants:3

Number of modules in BN (A-B) 8

Number of modules in BN (B-C) 3

Number of modules in BN (A-B) (only for shared species) 3 Number of modules in BN (B-C) (only for shared species) 3

Hipermodule Congruence

Optmization procedure

..

••

 $\begin{array}{ll} {\rm Adjusted\ Congruence:} & 0.67 \\ {\rm Realized\ Congruence:} & 1 \\ {\rm Hypermodularity:} & 0.5 \end{array}$

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.17

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 46: hackett TP -REMOVED-

Topology BN (A-B): Plant - Herbivore

Modularity

..

Observed Modularity: 0.5 Number of Modules: 9

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 11

Nestedness between species in the same module: 39 Nestedness between species in different modules: 8.6

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0.57

CONCLUSION: BN (A-B) has a purely modular topology

Topology BN (B-C): Herbivore - Parasitoid

Modularity

..

Observed Modularity: 0.53 Number of Modules: 4

Comparison between observed modularity (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 9.7 Nestedness between species in the same module 75 Nestedness between species in different modules 0

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

••

Number of Matrices in Null Model: 1000

P-Value: 0.23

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

..

BN (A-B) Specialization (H2') 0.59

BN (A-B) Connectance 0.16

BN (B-C) Specialization (H2') 1

BN (B-C) Connectance 0.23

Plant richness in BN (A-B): 16

Herbivore richness in BN (A-B): 10

Herbivore richness in BN (B-C): 5

Parasitoid richness in BN (B-C): 7

Richness of shared Herbivores:5

Number of modules in BN (A-B) 9

Number of modules in BN (B-C) 4

Number of modules in BN (A-B) (only for shared species) 2 Number of modules in BN (B-C) (only for shared species) 1

Hipermodule Congruence

Optmization procedure

••

••

Adjusted Congruence: 0 Realized Congruence: 1

Hypermodularity: 0.000000000000000004

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 1

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Dataset 47: BASSET KHC-REMOVED-

Topology BN (A-B): Plant - seed predator

Modularity

..

Observed Modularity: 0.78 Number of Modules: 20

Comparison between observed modularity (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

.

Nestedness in the entire matrix: 4.1

Nestedness between species in the same module: 37 Nestedness between species in different modules: 1.6

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

CONCLUSION: BN (A-B) has a compound topology

Topology BN (B-C): seed predator - Parasitoid

Modularity

..

Observed Modularity: 0.74 Number of Modules: 5

Comparison between observed modularity (blue line) and proportional null model (density in black)

..

Number of Matrices in Null Model: 1000

P-Value: 0

Low-level nestedness

..

Nestedness in the entire matrix 0 Nestedness between species in the same module 0 Nestedness between species in different modules 0

Comparison between observed WNODA SM (blue line) and proportional null model (density in black)

Number of Matrices in Null Model: 1000

P-Value: 1

CONCLUSION: BN (B-C) has a purely modular topology

Bipartite Networks and Intercept

. . .

BN (A-B) Specialization (H2') 0.84

BN (A-B) Connectance 0.033

BN (B-C) Specialization (H2') 1

BN (B-C) Connectance 0.2

Plant richness in BN (A-B): 78

seed predator richness in BN (A-B): 57

seed predator richness in BN (B-C): 5

Parasitoid richness in BN (B-C): 6

Richness of shared seed predators:5

Number of modules in BN (A-B) 20

Number of modules in BN (B-C) 5

Number of modules in BN (A-B) (only for shared species) 5 Number of modules in BN (B-C) (only for shared species) 5

Hipermodule Congruence

Optmization procedure

..

..

Adjusted Congruence: 0.8 Realized Congruence: 1 Hypermodularity: 0.61

Null Model 1

Blue point: realized congruence; Black point: baseline congruence; Red interval: .95 CI based on the null model.

Number of Matrices in Null Model 1: 1000

P-Value: 0.009

Null Model 2

Comparison between observed adjusted congruence (blue line) and Null Model 2 (density in black)

Number of Matrices in Null Model 2: 1000

P-Value: 1

Summary of null model analysis

Null Model 1

Null Model 1

The inspection of these preliminary results reveals that in datasets with too few connector species, the distribution of congruence in the null model usually encompasses all the space for realized congruence (up to 1). Therefore, even a TN with maximal congruence would not be distinguished from the null expectation.

This complete lack of power is prevalent in datasets with less than 7 connector species, with only one exception (dataset 47), but does not occur for the remaining datasets.

These findings led to the selection criteria of at least 7 connector species for datasets, which we follow hereafter.

Null Model 2

Null Model 2

Summary of structural analyses

Datasets Info

	A	В	С	nA	nB_con	nC	nB_AB	nB_BC	dt	tr
dataset 1	Pl	SD	Pa2	41	7	13	7	9	W	
dataset 2	${\rm He}$	Pl	SD	36	21	7	31	41	W	
dataset 3	Pl	He	Pa1	31	13	12	36	13	W	
dataset 4	SD	Pl	Po	21	37	212	84	110	W	2
dataset 5	Pl	${\rm He}$	Pa1	11	11	15	25	11	W	
dataset 6	Pl	${\rm He}$	Pa1	6	17	17	19	17	W	2
dataset 7	$_{\mathrm{He}}$	Pl	Po	28	15	241	30	47	W	2
dataset 8	Pl	${\rm He}$	Pa1	30	9	11	28	9	W	2
dataset 9	Pl	${\rm He}$	De	32	12	43	13	13	W	
dataset 10	Pl	SD	Pa2	29	8	6	15	18	W	
dataset 11	Pl	He	Pa1	22	18	40	31	18	W	1
dataset 12	Pl	Po	Pa1	4	9	11	9	9	W	
dataset 13	Pl	${\rm He}$	Pa1	32	13	7	28	13	W	
dataset 14	Pl	${\rm He}$	Pa1	139	153	192	357	157	W	
dataset 15	SD	Pl	Po	34	15	308	15	15	W	3
dataset 16	Pl	SD	Pa2	46	14	13	16	15	W	
dataset 17	My	Pl	SD	55	10	16	16	16	W	3
dataset 18	Pl	He	Pa1	75	49	60	90	49	W	
dataset 19	Pl	He	Pa1	111	103	232	131	103	W	
dataset 20	Pl	He	Pa1	109	26	27	85	27	W	
dataset 21	De	Pl	$_{\mathrm{He}}$	33	10	85	16	109	W	
dataset 22	Pl	${\rm He}$	\Pr	109	33	23	85	33	W	
dataset 23	Pl	${\rm He}$	De	109	36	26	85	36	W	
dataset 24	De	${\rm He}$	En	26	25	50	37	40	W	
dataset 25	Pl	${\rm He}$	Pa1	37	58	102	58	58	В	
dataset 26	Pl	${\rm He}$	Pa1	21	14	18	14	14	В	
dataset 27	Pl	${\rm He}$	\Pr	129	21	9	23	22	В	
dataset 28	De	Pl	Po	30	13	173	40	93	В	
dataset 29	${\rm He}$	Pl	Po	39	7	220	15	43	W	
dataset 30	Pl	${\rm He}$	Pa1	15	14	17	39	14	W	
dataset 31	Pl	${\rm He}$	De	120	12	10	97	19	В	
dataset 32	${\rm He}$	Pl	Po	93	20	52	58	48	W	
dataset 33	Po	Pl	SD	95	8	4	34	10	W	
dataset 34	Pl	${\rm He}$	De	41	20	35	24	20	W	
dataset 35	Pl	${\rm He}$	Pa1	44	59	68	80	59	W	
dataset 36	Pl	${\rm He}$	Pa1	157	19	30	214	19	W	
dataset 37	Pl	SP	Pa1	181	28	53	311	28	W	
dataset 38	Pl	${\rm He}$	Pa1	170	12	24	161	12	W	
dataset 39	Pl	${\rm He}$	Pa1	184	37	51	193	38	W	
dataset 40	Pl	SP	Pa1	132	12	8	77	12	W	

Only datasets with nB_con>=7. A,B,C= partitions; nA= number of species in partition A; nB_con= number of connector species; nC= number of species in partition C; nB_AB = number of species (connector and non-connector) in partition B of BN (A-B); nB_BC = number of species (connector and non-connector) in partition B of BN (B-C); dt= data type (binary= B, weighted= W); tr= data transformation (1= rounded to whole numbers, 2= log transformed and rounded, 3= rescaled and rounded). In A,B,C: De= Defenders, En= Enemies, He= Herbivores, My= Mycorrhizas, Pa1= Parasitoids, Pa2= Parasites, Pl= Plants, Po= Pollinators, Pr= Predators, SD= Seed Dispersers, SP= Seed Predator.

Bipartite networks

	dt	tr	M_AE	B pM	_AB N_AB	pN_AB	T_AB	M_BC	pM_	BC N_BC	pN_BC	T_BC
dataset 1	W		0.34	0	57.3	0.00	С	0.80	0	100.0	0.92	M
dataset 2	W		0.49	0	66.4	0.00	\mathbf{C}	0.34	0	61.4	0.00	\mathbf{C}
dataset 3	W		0.49	0	68.4	0.00	\mathbf{C}	0.61	0	47.8	0.01	\mathbf{C}
dataset 4	W	2	0.53	0	51.3	0.00	\mathbf{C}	0.34	0	26.6	0.00	\mathbf{C}
dataset 5	W		0.30	0	57.2	0.00	\mathbf{C}	0.47	0	61.6	0.00	\mathbf{C}
dataset 6	W	2	0.62	0	86.3	0.66	M	0.52	0	40.7	0.02	\mathbf{C}
dataset 7	W	2	0.87	0	36.0	0.87	M	0.50	0	58.1	0.00	\mathbf{C}
dataset 8	W	2	0.87	0	36.0	0.54	M	0.48	0	52.8	0.24	\mathbf{M}
dataset 9	W		0.55	0	39.9	0.00	\mathbf{C}	0.36	0	47.0	0.00	\mathbf{C}
dataset 10	W		0.27	0	71.1	0.00	\mathbf{C}	0.12	0	63.7	0.00	\mathbf{C}
dataset 11	W	1	0.19	0	92.9	0.03	\mathbf{C}	0.46	0	33.4	0.00	\mathbf{C}
dataset 12	W		0.13	0	93.2	0.00	\mathbf{C}	0.06	0	65.7	0.00	\mathbf{C}
dataset 13	W		0.47	0	51.1	0.00	\mathbf{C}	0.34	0	67.7	0.00	\mathbf{C}
dataset 14	W		0.54	0	29.0	0.00	\mathbf{C}	0.22	0	9.6	0.00	\mathbf{C}
dataset 15	W	3	0.34	0	55.7	0.00	\mathbf{C}	0.39	0	41.1	0.00	\mathbf{C}
dataset 16	W		0.52	0	62.1	0.00	\mathbf{C}	0.46	0	75.5	0.00	\mathbf{C}
dataset 17	W	3	0.40	0	48.5	0.00	\mathbf{C}	0.34	0	71.8	0.00	\mathbf{C}
dataset 18	W		0.42	0	31.2	0.00	\mathbf{C}	0.58	0	33.7	0.00	\mathbf{C}
dataset 19	W		0.89	0	38.9	0.00	\mathbf{C}	0.55	0	14.4	0.00	\mathbf{C}
dataset 20	W		0.63	0	50.3	0.00	\mathbf{C}	0.56	0	34.0	0.00	\mathbf{C}
dataset 21	W		0.23	0	67.6	0.00	\mathbf{C}	0.63	0	43.1	0.00	\mathbf{C}
dataset 22	W		0.63	0	36.9	0.00	\mathbf{C}	0.39	0	30.9	0.00	\mathbf{C}
dataset 23	W		0.63	0	47.8	0.00	\mathbf{C}	0.33	0	41.6	0.00	\mathbf{C}
dataset 24	W		0.33	0	44.4	0.00	\mathbf{C}	0.44	0	20.3	0.00	\mathbf{C}
dataset 25	В		0.91	-	5.9	0.00	_	0.61	-	24.3	0.00	-
dataset 26	В		0.78	-	0.0	0.00	_	0.55	-	67.8	0.00	-
dataset 27	В		0.40	_	66.7	0.00	_	0.22	-	65.4	0.00	_
dataset 28	В		0.29	_	59.8	0.00	_	0.54	-	26.3	0.00	_
dataset 29	W		0.82	0	80.3	0.37	M	0.43	0	43.7	0.00	\mathbf{C}
dataset 30	W		0.82	0	80.3	0.33	M	0.79	0	45.5	0.73	\mathbf{M}
dataset 31	В		0.78	_	18.6	0.33	_	0.63	-	32.1	0.73	_
dataset 32	W		0.73	0	42.7	0.00	\mathbf{C}	0.40	0	50.8	0.00	\mathbf{C}
dataset 33	W		0.48	0	30.0	0.00	\mathbf{C}	0.48	0	68.9	0.04	\mathbf{C}
dataset 34	W		0.72	0	72.5	0.00	\mathbf{C}	0.10	0	68.3	0.00	\mathbf{C}
dataset 35	W		0.95	0	83.9	0.12	M	0.48	0.015		0.01	C
dataset 36	W		0.86	0	29.9	0.00	\mathbf{C}	0.87	0	53.3	0.86	M
dataset 37	W		0.91	0	35.7	0.00	Č	0.86	0	82.4	0.90	M
dataset 38	W		0.62	0	29.1	0.00	Č	0.57	0	65.5	0.00	C
dataset 39	W		0.29	0	32.5	0.00	Č	0.81	0	51.9	0.00	$\tilde{\mathrm{C}}$
dataset 40	W		0.78	0	30.2	0.00	Č	0.56	0	81.6	0.15	$\dot{ ext{M}}$

A,B,C= partitions; dt= data type (binary= B, weighted= W); tr= data tranformation (1= rounded to whole numbers, 2= log transformed and rounded, 3= rescaled and rounded); M_AB/M_BC= modularity; pM_AB/pM_BC= P-value of modularity compared to null model; N_AB/N_BC= Nestedness SM; pN_AB/pN_BC= P-value of Nestedness SM compared to null model; T_AB/T_BC= Topology (M= purely modular, C= hierarchical compound). We applied NODF and WNODA to measure nestedness of, respectively, binary and weighted networks.

Tripartite networks

	A	В	\mathbf{C}	SF	C.adj	$\mathrm{C.r}$	Н	p1	p2
dataset 1	Pl	SD	Pa2	S	0.69	1.00	0.48	0 *	1
dataset 2	$_{\mathrm{He}}$	Pl	SD	\mathbf{F}	0.35	0.67	0.13	0 *	0.62
dataset 3	Pl	${\rm He}$	Pa1	\mathbf{S}	0.60	0.85	0.48	0 *	0.01 *
dataset 4	SD	Pl	Po	\mathbf{F}	0.23	0.62	0.19	0 *	0.44
dataset 5	Pl	${\rm He}$	Pa1	\mathbf{S}	0.24	0.73	0.14	0.05	0.39
dataset 6	Pl	${\rm He}$	Pa1	\mathbf{S}	0.59	1.00	0.52	0 *	0 *
dataset 7	Не	Pl	Po	\mathbf{F}	0.83	1.00	0.60	0 *	0.47
dataset 8	Pl	${\rm He}$	Pa1	\mathbf{S}	0.49	0.78	0.48	0 *	1
dataset 9	Pl	${\rm He}$	De	\mathbf{S}	0.57	0.83	0.32	0 *	0.18
dataset 10	Pl	SD	Pa2	\mathbf{S}	0.19	0.62	0.07	0.35	1
dataset 11	Pl	${\rm He}$	Pa1	\mathbf{S}	0.67	1.00	0.39	0 *	0 *
dataset 12	Pl	Po	Pa1	\mathbf{S}	0.22	0.67	0.06	0.24	0.5
dataset 13	Pl	${\rm He}$	Pa1	\mathbf{S}	0.54	0.85	0.12	0 *	0.55
dataset 14	Pl	${\rm He}$	Pa1	\mathbf{S}	0.32	0.55	0.27	0 *	0 *
dataset 15	SD	Pl	Po	\mathbf{F}	0.48	0.80	0.27	0 *	0.35
dataset 16	Pl	SD	Pa2	\mathbf{S}	0.45	0.86	0.34	0 *	0.11
dataset 17	My	Pl	SD	\mathbf{F}	0.59	0.90	0.44	0 *	0.38
dataset 18	Ρĺ	Не	Pa1	\mathbf{S}	0.29	0.55	0.32	0 *	0.02 *
dataset 19	Pl	${\rm He}$	Pa1	\mathbf{S}	0.30	0.63	0.12	0 *	0.33
dataset 20	Pl	${\rm He}$	Pa1	\mathbf{S}	0.56	0.85	0.39	0 *	0.12
dataset 21	De	Pl	$_{\mathrm{He}}$	\mathbf{F}	0.48	0.80	0.26	0 *	0.14
dataset 22	Pl	${\rm He}$	\Pr	\mathbf{S}	0.40	0.61	0.16	0 *	0.59
dataset 23	Pl	${\rm He}$	De	\mathbf{S}	0.47	0.72	0.28	0 *	0.16
dataset 24	De	${\rm He}$	En	\mathbf{F}	0.31	0.56	0.08	0 *	0.73
dataset 25	Pl	${\rm He}$	Pa1	\mathbf{S}	0.45	0.62	0.42	0 *	0.09
dataset 26	Pl	${\rm He}$	Pa1	\mathbf{S}	0.71	0.93	0.55	0 *	0.42
dataset 27	Pl	${\rm He}$	\Pr	\mathbf{S}	0.36	0.71	0.17	0 *	0.03 *
dataset 28	De	Pl	Po	\mathbf{F}	0.53	0.77	0.24	0 *	0.5
dataset 29	He	Pl	Po	\mathbf{F}	0.78	1.00	0.58	0 *	1
dataset 30	Pl	${\rm He}$	Pa1	\mathbf{S}	0.78	1.00	0.72	0 *	0.53
dataset 31	Pl	${\rm He}$	De	\mathbf{S}	0.53	0.75	0.37	0 *	0.91
dataset 32	Не	Pl	Po	\mathbf{F}	0.62	0.85	0.47	0 *	0.41
dataset 33	Po	Pl	SD	\mathbf{F}	0.53	1.00	0.41	0 *	0.11
dataset 34	Pl	${\rm He}$	De	\mathbf{S}	0.59	0.90	0.30	0 *	0.72
dataset 35	Pl	${\rm He}$	Pa1	\mathbf{S}	0.67	0.78	0.51	0 *	0.08
dataset 36	Pl	$_{\mathrm{He}}$	Pa1	\mathbf{S}	0.94	1.00	0.83	0 *	1
dataset 37	Pl	SP	Pa1	\mathbf{S}	0.96	1.00	0.81	0 *	0.91
dataset 38	Pl	$_{\mathrm{He}}$	Pa1	\mathbf{S}	0.79	1.00	0.54	0 *	0.06
dataset 39	Pl	${\rm He}$	Pa1	\mathbf{S}	0.73	0.92	0.64	0 *	0.02 *
dataset 40	Pl	SP	Pa1	S	0.69	1.00	0.56	0 *	0.04 *

A,B,C= partitions; S/F= stacked or forked TN; dt= data type (binary= B, weighted= W); tr= data tranformation (1= rounded to whole numbers, 2= log transformed and rounded, 3= rescaled and rounded); C.adj= adjusted congruence; C.r= realized congruence compared to null model 1; C.r= C.r= realized congruence compared to null model 2. In C.r= C.r

Forked vs. Stacked

Realized Congruence

```
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): não é
## possível computar o valor de p exato com o de desempate
## Wilcoxon rank sum test with continuity correction
##
## data: x2_2$C.r by x2_2$SF
## W = 160, p-value = 1
## alternative hypothesis: true location shift is not equal to 0
Adjusted Congruence
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): não é
## possível computar o valor de p exato com o de desempate
##
  Wilcoxon rank sum test with continuity correction
##
## data: x2_2$C.adj by x2_2$SF
## W = 148, p-value = 0.8
\#\# alternative hypothesis: true location shift is not equal to 0
Hypermodularity
##
## Wilcoxon rank sum exact test
```

Mechanism Testing (Mantel tests)

alternative hypothesis: true location shift is not equal to 0

DATASET3

Partition A

Taxonomy x Hypermodules

data: x2_2\$H by x2_2\$SF ## W = 134, p-value = 0.5

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.049

P-Value: [1] 0.82

Permutations: [1] 10
```

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.14
```

P-Value: [1] 1

Permutations: [1] 10

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.27

P-Value: [1] 0.55

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.035

P-Value: [1] 0.55

Permutations: [1] 10

Partition C

Taxonomy x Hypermodules

```
Call: mantel(xdis = TAXODIST, ydis = HYPERMOD_DIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.013

P-Value: [1] 0.82

Permutations: [1] 10

DATASET14

Partition A

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.052

P-Value: [1] 0.091

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.011

P-Value: [1] 0.27

Permutations: [1] 10

Partition B

Partition C

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.039

P-Value: [1] 0.091

Permutations: [1] 10

Distribution x Hypermodules

Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

```
Statistic: [1] -0.031
```

P-Value: [1] 1

Permutations: [1] 10

DATASET18

Partition A

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.091

P-Value: [1] 0.091

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.038

P-Value: [1] 0.18

Permutations: [1] 10

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.032

P-Value: [1] 0.091

Permutations: [1] 10

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.018
```

P-Value: [1] 0.45

Permutations: [1] 10

Partition C

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.0056

P-Value: [1] 0.55

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.0018

P-Value: [1] 0.55

Permutations: [1] 10

DATASET19

Partition A

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.1

```
P-Value: [1] 0.091
```

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

```
Method: [1] "Spearman's rank correlation rho"
```

Statistic: [1] -0.04

P-Value: [1] 1

Permutations: [1] 10

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

```
Method: [1] "Spearman's rank correlation rho"
```

Statistic: [1] 0.25

P-Value: [1] 0.091

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

```
Method: [1] "Spearman's rank correlation rho"
```

Statistic: [1] -0.0046

P-Value: [1] 0.45

Permutations: [1] 10

Partition C

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

```
Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] 0.00029
  P-Value: [1] 0.55
  Permutations: [1] 10
Distribution x Hypermodules
  Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method =
"spearman", permutations = 10)
  Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] 0.033
  P-Value: [1] 0.091
  Permutations: [1] 10
DATASET20
Partition A
Taxonomy x Hypermodules
  Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method =
"spearman", permutations = 10)
  Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] -0.014
  P-Value: [1] 1
  Permutations: [1] 10
Distribution x Hypermodules
  Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method =
"spearman", permutations = 10)
  Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] -0.0019
  P-Value: [1] 0.64
```

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.3

P-Value: [1] 0.091

Permutations: [1] 10
```

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.031

P-Value: [1] 0.45
```

Partition C

Taxonomy x Hypermodules

Permutations: [1] 10

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.18

P-Value: [1] 0.091

Permutations: [1] 10
```

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.063
```

```
P-Value: [1] 0.91
```

DATASET21

Partition A

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.11

P-Value: [1] 0.091

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.028

P-Value: [1] 0.18

Permutations: [1] 10

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.18

P-Value: [1] 0.091

Permutations: [1] 10

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.14

P-Value: [1] 0.91
```

Partition C

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.019

P-Value: [1] 0.18

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.0025

P-Value: [1] 0.55

Permutations: [1] 10

DATASET22

Partition A

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.013

```
P-Value: [1] 0.64
```

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

```
Method: [1] "Spearman's rank correlation rho"
```

Statistic: [1] -0.022

P-Value: [1] 1

Permutations: [1] 10

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

```
Method: [1] "Spearman's rank correlation rho"
```

Statistic: [1] -0.0038

P-Value: [1] 0.45

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.059

P-Value: [1] 0.091

Permutations: [1] 10

Partition C

Taxonomy x Hypermodules

Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

```
Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] 0.029
  P-Value: [1] 0.36
  Permutations: [1] 10
Distribution x Hypermodules
  Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method =
"spearman", permutations = 10)
  Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] 0.0063
  P-Value: [1] 0.27
  Permutations: [1] 10
DATASET23
Partition A
Taxonomy x Hypermodules
  Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method =
"spearman", permutations = 10)
  Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] 0.014
  P-Value: [1] 0.27
  Permutations: [1] 10
Distribution x Hypermodules
  Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method =
"spearman", permutations = 10)
  Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] 0.011
  P-Value: [1] 0.45
```

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.017

P-Value: [1] 0.91

Permutations: [1] 10
```

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.038

P-Value: [1] 0.27

Permutations: [1] 10
```

Partition C

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.095

P-Value: [1] 0.18

Permutations: [1] 10
```

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.016
```

```
P-Value: [1] 0.73
```

DATASET24

Partition A

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.00013

P-Value: [1] 0.36

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.0031

P-Value: [1] 0.64

Permutations: [1] 10

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.089

P-Value: [1] 0.18

Permutations: [1] 10

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"
```

Statistic: [1] 0.032

P-Value: [1] 0.55

Permutations: [1] 10

Partition C

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.036

P-Value: [1] 0.18

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.017

P-Value: [1] 0.55

Permutations: [1] 10

DATASET29

Partition A

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.25

```
P-Value: [1] 0.091
```

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

```
Method: [1] "Spearman's rank correlation rho"
```

Statistic: [1] 0.45

P-Value: [1] 0.091

Permutations: [1] 10

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.1

P-Value: [1] 0.27

Permutations: [1] 10

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)
```

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.18

P-Value: [1] 0.18

Permutations: [1] 10

Partition C

Taxonomy x Hypermodules

Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

```
Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] 0.018
  P-Value: [1] 0.18
  Permutations: [1] 10
Distribution x Hypermodules
  Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method =
"spearman", permutations = 10)
  Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] 0.18
  P-Value: [1] 0.091
  Permutations: [1] 10
DATASET30
Partition A
Taxonomy x Hypermodules
  Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method =
"spearman", permutations = 10)
  Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] -0.076
  P-Value: [1] 0.82
  Permutations: [1] 10
Distribution x Hypermodules
  Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method =
"spearman", permutations = 10)
  Method: [1] "Spearman's rank correlation rho"
  Statistic: [1] 0.29
  P-Value: [1] 0.091
```

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.28

P-Value: [1] 0.091

Permutations: [1] 10
```

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.23

P-Value: [1] 0.091
```

Partition C

Taxonomy x Hypermodules

Permutations: [1] 10

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.16

P-Value: [1] 1

Permutations: [1] 10
```

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.3
```

```
P-Value: [1] 0.091
```

DATASET32

Partition A

Distribution x Hypermodules

```
Call: mantel(xdis = GEODIST, ydis = HYPERMOD_DIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.056

P-Value: [1] 0.091

Permutations: [1] 10
```

Partition B

Taxonomy x Hypermodules

```
Call: mantel.partial(xdis = TAXODIST, ydis = HYPERMOD_DIST, zdis = GEODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] -0.079

P-Value: [1] 0.91

Permutations: [1] 10
```

Distribution x Hypermodules

```
Call: mantel.partial(xdis = GEODIST, ydis = HYPERMOD_DIST, zdis = TAXODIST, method = "spearman", permutations = 10)

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.086

P-Value: [1] 0.36

Permutations: [1] 10
```

Partition C

 $Call: \ mantel(xdis = GEODIST, \ ydis = HYPERMOD_DIST, \ method = "spearman", \ permutations = 10)$

Method: [1] "Spearman's rank correlation rho"

Statistic: [1] 0.03

P-Value: [1] 0.18

Permutations: [1] 10