07/12 -> 60,69,26, 35,31,24,46 24

DATO UND HOAP, CANCOLI (\$1 rin-> (HEAPIFY) HEAP (B.T. QUAS) SIMESI COLLORELLO) $CASO 1 \rightarrow 0$ ercore. COND. DI NG GOLARITÀ >AT(M/D) EX f(M) D RISOURD PORK, N

YK, YN

$2T(\frac{M}{2})+C$	-> ALBONO
O[lg2(n)+1]	> Q (log (n))
REC_FUNCA)	
IF A==1	M/2
ROTURN RSE- RSC	FUN (A, P, R) + FUN (A, P, Q) - M/2
DIVIDS 5T (?) MRPSPLA	ANDAT ORDINATION CIN 1000 CRESCENTE
k , con $1 \le k < n$, tale che $A[k+1n]A[1k]$ sia	nza ripetizioni $A[1,n]$ è <u>semi-ordinato</u> se esiste un indice ordinato, ovvero i <u>sottoarray</u> $A[k+1n]$ e $A[1k]$ sono viene detto il centro dell'array. Ad esempio l'array che
la correttezza dell'algoritmo e valutarne la compl	ray A semi-ordinato ne restituisce il centro. Giustificare lessità.
1 1156 - CHSO -	-> DIVI'DS 5T IT ASKA

CONTRE (A)

CENTRE (A)

RETURN COMPRE NOC (A,1, N)

DIVIDS 5T IMPORA

Esercizio 1 (10 punti) Realizzare una funzione Prod(A,k) che dato un array A di interi ≥ 0 ordinato in senso crescente e un valore intero $k \geq 0$ verifica se esistono due indici i e j tali che k = A[i]*A[j]. Valutarne la complessità. Adattare la soluzione al caso in cui i valori nell'array possono essere negativi (assumendo ancora $k \geq 0$).

SE VAUS UNA SPOCKFICA CONI SUGU

>> WHILE (IEN, SEN, KZ>ASI) -A[J])

Esercizio 2 (10 punti) Si consideri il problema di selezione di attività compatibili, con n attività a_1, \ldots, a_n che ci vengono date attraverso due vettori \mathbf{s} e \mathbf{f} di tempi di inizio e fine, e ordinate per tempo di *inizio* (cioè $0 < s_1 \le s_2 \le \cdots \le s_n$).

- (a) Scrivere un algoritmo greedy iterativo che implementa la scelta greedy di selezionare l'attività che inizia per ultima.
- (b) Determinare l'insieme di attività restituito dall'algoritmo al punto (a) quando eseguito sul seguente insieme di 6 attività, caratterizzate dai seguenti vettori s e f di tempi di inizio e fine:

$$\mathbf{s} = (1, 2, 3, 5, 7, 10)$$
 $\mathbf{f} = (3, 9, 10, 7, 11, 12)$

(c) Dimostrare la proprietà di scelta greedy, cioè che esiste soluzione ottima che contiene l'attività che inizia per ultima.

ALGORITU (P SE UDO CODICÓ) GREGS Y

A OPT = $\frac{1}{4}$ WHILE ($i \le N$)

IF (Ai U A OPT $\pm d$)

A OPT = A OPT U Ai

Esercizio 2 (9 punti) Data una stringa $X=x_1,x_2,\ldots,x_n,$ si consideri la seguente quantità $\ell(i,j),$ definita per $1\leq i\leq j\leq n$:

$$\ell(i,j) = \begin{cases} 1 & \text{se } i = j \\ 2 & \text{se } i = j-1 \\ 2 + \ell(i+1,j-1) & \text{se } (i < j-1) \text{ e } (x_i = x_j) \\ \sum_{k=i}^{j-1} (\ell(i,k) + \ell(k+1,j)) & \text{se } (i < j-1) \text{ e } (x_i \neq x_j). \end{cases}$$

- 1. Scrivere una coppia di algoritmi INIT $\underline{L}(X)$ e REC $\underline{L}(X,i,j)$ per il calcolo memoizzato di $\ell(1,n)$.
- 2. Si determini la complessità al caso migliore $T_{\text{best}}(n)$, supponendo che le uniche operazioni di costo unitario e non nullo siano i confronti tra caratteri.

sowered

M5710132AZIONS -> RICORSIO (INT - R5C

```
INIT_L(X)
n <- length(X)
 if n = 1 then return 1
 if n = 2 then return 2
for i=1 to n-1 do
   L[i,i] <- 1
  L[i,i+1] <- 2
 L[n,n] < -1
 for i=1 to n-2 do
  for j=i+2 to n do
    L[i,j] \leftarrow 0
 return REC_L(X,1,n)
REC_L(X,i,j)
 if L[i,j] = 0 then
   if x_i = x_j then L[i,j] \leftarrow 2 + REC_L(X,i+1,j-1)
   else for k=i to j-1 do
           L[i,j] \leftarrow L[i,j] + REC_L(X,i,k) + REC_L(X,k+1,j)
 return L[i,j]
```

L'ALG SNOTO