Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 42884

HM6264 Series

Maintenance Only

(Substitute HM6264A)

8192-word x 8-bit High Speed CMOS Static RAM

. FEATURES

Fast access Time

100ns/120ns/150ns (max.)

Low Power Standby

0.1mW (tvp.) Standby:

Low Power Operation

10μW (typ.) L-/LL-version Operating: 200mW/MHz (tvp.)

Package

- Single +5V Supply
- Completely Static Memory. . . . No clock or Timing Strobe Required
- Equal Access and Cycle Time
- Common Data Input and Output, Three State Output
- Directly TTL Compatible: All Input and Output
- Standard 28pin Package Configuration
- Pin Out Compatible with 64K EPROM HN482764
- Capability of Battery Back Up Operation (L-/LL-version)

Access Time

. . . .

ORDERING INFORMATION

Type No.

.....

HM6264P-10		
IM6264P-12 120ns		
HM6264P-15	150ns	
HM6264LP-10	100ns	600 mil 30 min
HM6264LP-12	120ns	600 mil 28 pin
HM6264LP-15	150ns	Plastic DIP
HM6264LP-10L	100ns	
HM6264LP-12L	120ns	
HM6264LP-15L	150ns	
HM6264FP-10	100ns	
HM6264FP-12	120ns	
HM6264FP-15	150ns	
HM6264LFP-10	100ns	20
HM6264LFP-12	120ns	28 pin
HM6264LFP-15	150ns	Plastic SOP (Note)
HM6264LFP-10L	100ns	(11010)
HM6264LFP-12L	120ns	1
HM6264LFP-15L	150ns	
HM6264LFP-15L 150n		

Note) A character T is added to the end of type No. for SOP of 3.00 mm (max.) thickness.

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit	
Terminal Voltage * !	VT	-0.5 *2 to +7.0	V	
Power Dissipation	PT	1.0	w	
Operating Temperature	Topt	0 to +70	°C	
Storage Temperature	Tstg	-55 to +125	°C	
Storage Temperature Under Bias	Thias	-10 to +85	°C	

Notes) *1. With respect to VSS

*2. -3.0V for pulse width ≤ 50 ns

HM6264P Series
Manney Manney
(DP-28)
HM6264FP Series
and the second s
(FP-28D/DA)

PIN ARRANGEMENT

Note) This device is not available for new application.

CAPACITANCE ($f = 1 \text{MHz}, T_a = 25^{\circ}\text{C}$)

Item	Symbol	Test Condition	typ	max	Unit
Input Capacitance	Cin	Vin = 0V	-	6	pF
Input/Output Capacitance	C1/0	$V_{I/O} = 0V$	-	8	pF

Note) This parameter is sampled and not 100% tested.

■ AC CHARACTERISTICS (V_{CC} = 5V±10%, Ta = 0 to +70°C)

. AC TEST CONDITIONS

Input Pulse Levels: 0.8 to 2.4V Input Rise and Fall Times: 10ns

Input and Output Timing Reference Level: 1.5V

Output Load: 1TTL Gate and CL (100pF) (including scope and jig)

. READ CYCLE

ltem		Symbol	HM6264-10		HM6264-12		HM6264-15		
		Symbol	min	max	min	max	min	max	Unit
Read Cycle Time		1RC	100	-	120	-	150	 -	ns
Address Access Time		!AA	-	100	-	120	-	150	ns
Chip Selection to Output	CS I	1001	_	100	-	120	-	150	ns
	ĊS2	1CO2	_	100	-	120	-	150	ns
Output Enable to Output Valid		tOE	_	50	-	60	_	70	ns
Chip Selection to Output in Low Z	CS1	!LZ1	10	_	10	_	15	-	ns
	CS2	ILZ2	10	_	10	 -	15	-	ns
Output Enable to Output in Low Z		IOLZ	5	-	5	-	5	-	ns
Chip Deselection to Output in High Z	CSI	(HZI	U	3.5	0	40	0	50	ns
	CS2	¹HZ2	0	35	0	40	0	50	ns
Output Disable to Output in High Z		IOHZ	0	35	0	40	0	50	ns
Output Hold from Address Change		10H	10	-	10	-	15	_	ns

Notes) 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.

At any given temperature and voltage condition, IHZ max is less than ILZ min both for a given device and from
device to device.

. READ CYCLE

. WRITE CYCLE (2) (OE Low Fix)

- Notes)
 1. A write occurs during the overlap of a low CSI, a high CS2 and a low WE. A write begins at the latest transition among CSI going low, CS2 going high and WE going low. A write ends at the earliest transition among CSI going high, CS2 going low and WE going high. twp is measured from the beginning of write to the end of write.
 - t_{CW} is measured from the later of CSI going low or CS2 going high to the end of write.
 - 3. t_{AS} is measured from the address valid to the beginning of write.
 - 4. t_{WR} is measured from the end of write to the address change. t_{WR1} applies in case a write ends at CS1 or WE going high. t_{WR2} applies in case a write ends at CS2 going low.
 - 5. During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
 - If CSI goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance state.
 - 7. Dout is the same phase of the latest written data in this write cycle.
 - 8. Dout is the read data of next address.
 - 9. If CS1 is low and CS2 is high during this period, I/O pins are in the output state. Therefore, the input signals of opposite phase to the outputs must not be applied to them.

SUPPLY CURRENT vs.

ACCESS TIME VS. SUPPLY VOLTAGE

