第15讲

Some facts about cardinal numbers

- (3.4) + and · are associative, commutative and distributive.
- $(3.5) \quad (\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}.$
- $(3.6) \quad \kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}.$
- $(3.7) \quad (\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}.$
- (3.8) If $\kappa \leq \lambda$, then $\kappa^{\mu} \leq \lambda^{\mu}$.
- (3.9) If $0 < \lambda \le \mu$, then $\kappa^{\lambda} \le \kappa^{\mu}$.
- (3.10) $\kappa^0 = 1$; $1^{\kappa} = 1$; $0^{\kappa} = 0$ if $\kappa > 0$.

To prove (3.4)–(3.10), one has only to find the appropriate one-to-one functions.

Proof of (3.6)

1.7 Theorem

- (a) $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$.
- (b) $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$.
- (c) $(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$.

Proof. Let $\kappa = |K|$, $\lambda = |L|$, $\mu = |M|$. To show (a), assume that L and M are disjoint. We construct a one-to-one mapping F of $K^L \times K^M$ onto $K^{L \cup M}$. If $(f,g) \in K^L \times K^M$, we let $F(f,g) = f \cup g$. We note that $f \cup g$ is a function, in fact a member of $K^{L \cup M}$, and every $h \in K^{L \cup M}$ is equal to F(f,g) for some $(f,g) \in K^L \times K^M$ (namely, $f = h \upharpoonright L$, $g = h \upharpoonright M$). It is easily seen that F is one-to-one.

Proof of (3.5) and (3.7)

To prove (b), we look for a one-to-one map F of $K^{L\times M}$ onto $(K^L)^M$. A typical element of $K^{L\times M}$ is a function $f:L\times M\to K$. We let F assign to f the function $g:M\to K^L$ defined as follows: for all $m\in M$, $g(m)=h\in K^L$ where h(l)=f(l,m) (for all $l\in L$). We leave it to the reader to verify that F is one-to-one and onto.

For a proof of (c) we need a one-to-one mapping F of $K^M \times L^M$ onto $(K \times L)^M$. For each $(f_1, f_2) \in K^M \times L^M$, let $F(f_1, f_2) = g : M \to (K \times L)$ where $g(m) = (f_1(m), f_2(m))$, for all $m \in M$. It is routine to check that F is one-to-one and onto.

Cardinal numbers and Alephs

An ordinal α is called a *cardinal number* (a cardinal) if $|\alpha| \neq |\beta|$ for all $\beta < \alpha$. We shall use κ , λ , μ , ... to denote cardinal numbers.

If W is a well-ordered set, then there exists an ordinal α such that $|W| = |\alpha|$. Thus we let

|W| = the least ordinal such that $|W| = |\alpha|$.

Clearly, |W| is a cardinal number.

Every natural number is a cardinal (a *finite cardinal*); and if S is a finite set, then |S| = n for some n.

The ordinal ω is the least infinite cardinal. Note that all infinite cardinals are limit ordinals. The infinite ordinal numbers that are cardinals are called alephs.

A lemma

Lemma 3.4.

- (i) For every α there is a cardinal number greater than α .
- (ii) If X is a set of cardinals, then $\sup X$ is a cardinal.

For every α , let α^+ be the least cardinal number greater than α , the cardinal successor of α .

Proof. (i) For any set X, let

(3.11) $h(X) = \text{the least } \alpha \text{ such that there is no one-to-one function of } \alpha \text{ into } X.$

There is only a set of possible well-orderings of subsets of X. Hence there is only a set of ordinals for which a one-to-one function of α into X exists. Thus h(X) exists.

If α is an ordinal, then $|\alpha| < |h(\alpha)|$ by (3.11). That proves (i).

(ii) Let $\alpha = \sup X$. If f is a one-to-one mapping of α onto some $\beta < \alpha$, let $\kappa \in X$ be such that $\beta < \kappa \leq \alpha$. Then $|\kappa| = |\{f(\xi) : \xi < \kappa\}| \leq \beta$, a contradiction. Thus α is a cardinal.

The increasing enumeration of all Alephs

用超限归纳定义 ω_{α} 如下.

Using Lemma 3.4, we define the increasing enumeration of all alephs. We usually use \aleph_{α} when referring to the cardinal number, and ω_{α} to denote the order-type:

$$\aleph_0 = \omega_0 = \omega, \qquad \aleph_{\alpha+1} = \omega_{\alpha+1} = \aleph_{\alpha}^+,$$

 $\aleph_{\alpha} = \omega_{\alpha} = \sup\{\omega_{\beta} : \beta < \alpha\} \quad \text{if } \alpha \text{ is a limit ordinal.}$

Successor cardinals and limit cardinals

Sets whose cardinality is \aleph_0 are called *countable*; a set is *at most countable* if it is either finite or countable. Infinite sets that are not countable are *uncountable*.

A cardinal $\aleph_{\alpha+1}$ is a successor cardinal. A cardinal \aleph_{α} whose index is a limit ordinal is a limit cardinal.

Multiplication of alephs

Addition and multiplication of alephs is a trivial matter, due to the following fact:

Theorem 3.5. $\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$.

As a corollary we have

$$(3.14) \qquad \aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha} \cdot \aleph_{\beta} = \max\{\aleph_{\alpha}, \aleph_{\beta}\}.$$

Exponentiation of cardinals will be dealt with in Chapter 5. Without the Axiom of Choice, one cannot prove that $2^{\aleph_{\alpha}}$ is an aleph (or that $P(\omega_{\alpha})$ can be well-ordered), and there is very little one can prove about $2^{\aleph_{\alpha}}$ or $\aleph_{\alpha}^{\aleph_{\beta}}$.

The canonical well-ordering of $\alpha \times \alpha$

We define a well-ordering of the class $Ord \times Ord$ of ordinal pairs. Under this well-ordering, each $\alpha \times \alpha$ is an initial segment of Ord^2 ; the induced well-ordering of α^2 is called the *canonical well-ordering* of α^2 . Moreover, the well-ordered class Ord^2 is isomorphic to the class Ord, and we have a oneto-one function Γ of Ord^2 onto Ord. For many α 's the order-type of $\alpha \times \alpha$ is α ; in particular for those α that are alephs.

(3.12)
$$(\alpha, \beta) < (\gamma, \delta) \leftrightarrow \text{either max}\{\alpha, \beta\} < \max\{\gamma, \delta\},$$

or $\max\{\alpha, \beta\} = \max\{\gamma, \delta\} \text{ and } \alpha < \gamma,$
or $\max\{\alpha, \beta\} = \max\{\gamma, \delta\}, \alpha = \gamma \text{ and } \beta < \delta.$

Some properties of the canonical well-ordering of $\alpha \times \alpha$

The relation < defined in (3.12) is a linear ordering of the class $Ord \times Ord$. Moreover, if $X \subset Ord \times Ord$ is nonempty, then X has a least element. Also, for each α , $\alpha \times \alpha$ is the initial segment given by $(0, \alpha)$. If we let

$$\Gamma(\alpha,\beta)$$
 = the order-type of the set $\{(\xi,\eta):(\xi,\eta)<(\alpha,\beta)\},$

then Γ is a one-to-one mapping of Ord^2 onto Ord, and

(3.13)
$$(\alpha, \beta) < (\gamma, \delta)$$
 if and only if $\Gamma(\alpha, \beta) < \Gamma(\gamma, \delta)$.

Note that $\Gamma(\omega \times \omega) = \omega$ and since $\gamma(\alpha) = \Gamma(\alpha \times \alpha)$ is an increasing function of α , we have $\gamma(\alpha) \geq \alpha$ for every α . However, $\gamma(\alpha)$ is also continuous, and so $\Gamma(\alpha \times \alpha) = \alpha$ for arbitrarily large α .

A fixed point lemma

Let $f: Ord \rightarrow Ord$ be normal, that is, f is increasing and continuous, then for any ordinal α , there exists an ordinal β such that $\beta \geq \alpha$ and $f(\beta) = \beta$.

This lemma shows that the class of fixed points of any normal function is nonempty and unbound.

Hint

Let $\alpha_0 = \alpha$, $\alpha_{n+1} = f(\alpha_n)$, $n = 0, 1, 2, \dots$, $\beta = \sup{\alpha_n : n \in \omega}$.

$\Gamma(\alpha \times \alpha)$

除了 $\Gamma(\alpha,\beta)$ 之外,教材中也用了记号 $\Gamma(\alpha \times \alpha)$, 但没有给出 $\Gamma(\alpha \times \alpha)$ 的定义.

这里, $\Gamma(\alpha \times \alpha)$ 实际上是集合 $\alpha \times \alpha$ 的序型. 对任意 $\alpha > 0$, 都有

$$\Gamma(\alpha \times \alpha) = \Gamma(\mathbf{0}, \alpha).$$

例如,

$$\Gamma(\omega \times \omega) = \Gamma(0, \omega) = \omega,$$

$$\Gamma((\omega + 1) \times (\omega + 1)) = \Gamma(0, \omega + 1) = \omega \cdot 3 + 1.$$

Proof of theorem 3.5

Addition and multiplication of alephs is a trivial matter, due to the following fact:

Theorem 3.5. $\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$.

Proof of Theorem 3.5. Consider the canonical one-to-one mapping Γ of $Ord \times Ord$ onto Ord. We shall show that $\Gamma(\omega_{\alpha} \times \omega_{\alpha}) = \omega_{\alpha}$. This is true for $\alpha = 0$. Thus let α be the least ordinal such that $\Gamma(\omega_{\alpha} \times \omega_{\alpha}) \neq \omega_{\alpha}$. Let $\beta, \gamma < \omega_{\alpha}$ be such that $\Gamma(\beta, \gamma) = \omega_{\alpha}$. Pick $\delta < \omega_{\alpha}$ such that $\delta > \beta$ and $\delta > \gamma$. Since $\delta \times \delta$ is an initial segment of $Ord \times Ord$ in the canonical well-ordering and contains (β, γ) , we have $\Gamma(\delta \times \delta) \supset \omega_{\alpha}$, and so $|\delta \times \delta| \geq \aleph_{\alpha}$. However, $|\delta \times \delta| = |\delta| \cdot |\delta|$, and by the minimality of α , $|\delta| \cdot |\delta| = |\delta| < \aleph_{\alpha}$. A contradiction.

Cofinality

Let $\alpha > 0$ be a limit ordinal. We say that an increasing β -sequence $\langle \alpha_{\xi} : \xi < \beta \rangle$, β a limit ordinal, is *cofinal* in α if $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$. Similarly, $A \subset \alpha$ is *cofinal* in α if $\sup A = \alpha$. If α is an infinite limit ordinal, the *cofinality* of α is

cf α = the least limit ordinal β such that there is an increasing β -sequence $\langle \alpha_{\xi} : \xi < \beta \rangle$ with $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$.

Obviously, cf α is a limit ordinal, and cf $\alpha \leq \alpha$. Examples: cf($\omega + \omega$) = cf $\aleph_{\omega} = \omega$.

Lemma 3.6. $\operatorname{cf}(\operatorname{cf} \alpha) = \operatorname{cf} \alpha$.

Proof. If $\langle \alpha_{\xi} : \xi < \beta \rangle$ is cofinal in α and $\langle \xi(\nu) : \nu < \gamma \rangle$ is cofinal in β , then $\langle \alpha_{\xi(\nu)} : \nu < \gamma \rangle$ is cofinal in α .