Empirical Approach to Software Engineering

COSC EASE PROJECT

# 見積と品質

~見積、外れたらどうする? 外さないためにどうする?~

SEA Forum @ 全国情報サービス産業厚生年金会館 7 階会議室

大杉 直樹

国立大学法人奈良先端科学技術大学院大学

Copyright © 2006 Nara Institute of Science and Technology 2006年12月14日

# 見積とは

COSC EASE PROJECT

- あらかじめ、大体の計算をすること。
  - Shin Meikai Kokugo Dictionary, 5th edition © Sanseido Co., Ltd. 1972,1974,1981,1989,1997.
  - ソフトウェア開発に係る見積の例
    - 工数見積:開発に要する工数(人月、コスト)を見積もる。
    - 工期見積: 開発に要する時間を見積もる。
    - 品質見積:成果物の品質(潜在的な不具合の数、必要テストケース数)を 見積もる。



工数(人月、コスト)



工期



品質(不具合数、テストケース数

Copyright © 2006 Nara Institute of Science and Technology

### 見積と品質の関係

COSC EASE PROJECT

- 見積が甘いと、品質が低下しやすい。
  - 工数が足りなかったので、止むを得ずテストの一部を省略した。
  - 納期を守るため、不具合を残したままとりあえず納品した。
  - どう考えても時間が足りないので、納品時に客先でテストした。





Copyright © 2006 Nara Institute of Science and Technology

3 of 20

### どうすればよいか

COSC EASE PROJECT

- 見積が外れたときの対応策について予め検討しておく。
  - 雲行きが怪しくなりそうなら、対応策をステークホルダ間(例えば、 ラインと QA 担当)で相談する。
- できるだけ正確に見積もる。



\_\_\_\_\_

# 見積が外れたときの対応策を検討 追加工数を入れる(発注者もち/受注者もち/従業員もち)。 開発のスコープを狭める。 品質の低下に目をつぶる。 必要な工数 不足分 でつべんの星をつけないことにしよう (発注者をうまく説得しないといけないが…) Copyright © 2006 Nara Institute of Science and Technology 5 of 20



#### 省略(例) 結合テストを省略 • 利点:結合テストの一部をシステムテストで代替できる。 • 欠点:不具合除去に必要な時間が増える。 - とりわけ原因箇所の調査に要する時間が増える。 見積工数(使える工数) 提案 検収 システムテスト 要件定義 基本設計 詳細設計 単体テスト コーディング コードレビュー 品質作り込み 品質保証 Copyright © 2006 Nara Institute of Science and Technology 7 of 20



#### とりあえず渡してしまう(例) 検収の裏でシステムテスト • 利点: 最終的には品質低下を抑えられる。 • 欠点:受注者からヒンシュクを買う可能性がある。 - 検収で多くの/重大な不具合が出てしまう。 見積工数(使える工数) 提案 検収 要件定義 システムテスト 基本設計 結合テスト 詳細設計 単体テスト コードレビュー コーディング 品質作り込み 品質保証 Copyright © 2006 Nara Institute of Science and Technology 9 of 20

# できるだけ正確に見積もるには

COSC EASE PROJECT

- 複数のエキスパートが見積もる。
  - (例)3名以上で個別に見積を出し、最終的な見積やリスク(見積のばらつき)を検討する枠組みをつくる。
- 見積をレビューする。
  - (例)リスク管理の一環として、見積や計画の妥当性を検証する 会議を設置する。
- 定量的データに基づいて見積もる。
  - 次頁以降で説明。

Copyright © 2006 Nara Institute of Science and Technology

### 定量的データに基づく見積

COSC EASE PROJECT

- 定義済モデルに基づく見積
  - COCOMO, COCOMO II, Agile COCOMO...
- 過去プロジェクトのデータに基づく見積
  - モデルベース手法(重回帰分析、機械学習、CoBRA、...)
  - メモリベース手法(事例ベース推論、EASE:CF法、OSR、...)



# 見積に用いるデータ

COSC EASE PROJECT

- ソフトウェア開発の特徴を表すデータ項目を、各プロジェクトについて収集したもの。
  - データ項目の例
    - 終了した工程に費やした工数、工期、要員数、要員のスキル、用いた技術/言語、プロセスモデル、用いたツール、ファンクションポイント、コード行数、レビュー指摘件数、テスト項目数、母体システムのファンクションポイント/品質、顧客の知識/協力姿勢、要件の安定性、...

|          | プログラム<br>言語 | 開発種別 | 概算 FP | <br>データ<br>項目 <i>n</i> |
|----------|-------------|------|-------|------------------------|
| プロジェクト 1 | Java        | 新規   | 1500  | <br>値 1- <i>n</i>      |
| プロジェクト 2 | Java        | 新規   | 2500  | <br>值 2- <i>n</i>      |
|          |             |      |       | <br>                   |
| プロジェクト m | COBOL       | 保守   | 3000  | <br>值 <i>m-n</i>       |

Copyright © 2006 Nara Institute of Science and Technology

# モデルベース手法: 重回帰分析、機械学習、CoBRA、...

COSC EASE PROJECT

- 過去のデータから重回帰分析によって見積モデル式を構築する。
- 現行プロジェクトの実績を式に代入して工数を見積もる。



Copyright © 2006 Nara Institute of Science and Technology

13 of 20

# モデルベース手法の問題(1)

COSC EASE PROJECT

多様なソフトウェア開発プロジェクトを、ひとつのモデルで表すことが難しい。



Copyright © 2006 Nara Institute of Science and Technology

#### モデルベース手法の問題(2)

COSC EASE PROJECT

- 欠損値(未記録の値)に弱い手法が多い。
  - 部署間で収集するデータが異なるため、欠損値が多くなりがち。
  - 開発過程で得られるデータの多くは、取り直しがきかない。

|      |               | 項目 1  | 項目 2  | 項目 3  |       | 項目 490  |
|------|---------------|-------|-------|-------|-------|---------|
|      | 部署 A プロジェクト 1 | 値 1-1 | 値 1-2 | 欠損値   |       | 欠損値     |
| 部署A  | 部署 A プロジェクト 2 | 値 2-1 | 値 2-2 | 欠損値   |       | 欠損値     |
|      | 部署 A プロジェクト 3 | 値 3-1 | 値 3-2 | 欠損値   |       | 欠損値     |
| 部署 B | 部署 B プロジェクト 4 | 欠損値   | 値 4-2 | 値 4-3 |       | 欠損値     |
|      | 部署 B プロジェクト 5 | 欠損値   | 値 5-2 | 値 5-3 |       | 欠損値     |
|      | 部署 B プロジェクト 6 | 欠損値   | 値 6-2 | 値 6-3 |       | 欠損値     |
|      | 部署 C プロジェクト 7 | 欠損値   | 欠損値   | 値 7-3 |       | 値 7-490 |
| 部署C  | 部署 C プロジェクト 8 | 欠損値   | 欠損値   | 値 8-3 |       | 值 8-490 |
|      | 部署 Cプロジェクト 9  | 欠損値   | 欠損値   | 値 9-3 | * * * | 値 9-490 |

Copyright © 2006 Nara Institute of Science and Technology

15 of 20

### メモリベース手法(例): EASE:CF法(協調フィルタリング)



- Amazon 社の書籍推薦システム(www.amazon.com)
  - 各ユーザが、読み終えた書籍を 5(好き)~1(嫌い)の 5段階で評価する。
  - システムが、好みの傾向が似たユーザを探し出し、そのユーザ が高く評価した書籍を推薦する。



# Amazon 社のオススメ書籍予測



- ステップ1: 類似度計算
  - 推薦対象ユーザと他ユーザ間の類似度を計算する。
  - 類似度の高い k(例えば k=2)人のユーザを選ぶ。
- ステップ2: 予測値計算
  - 類似ユーザの評価を加重平均し、推薦対象ユーザの評価を予測する。

|    |            | 書籍 1  | 書籍 2  | 書籍 3 | 書籍 4  | 書籍 5     |   |
|----|------------|-------|-------|------|-------|----------|---|
| _  | 推薦対象ユーザ X  | 5:大好き | 4:好き  | 2:嫌い | 1:大嫌し | 予測値:4.53 | 9 |
| (對 | [似度:+1.0]1 | 4:好き  | 4:好き  | 欠損値  | 1:大嫌い | 5:大好き    |   |
| (對 | 似度:+0.9 2  | 5:大好き | 欠損値   | 2:嫌い | 1:大嫌い | 4:好き     |   |
| (類 | 似度:-1.0)3  | 欠損値   | 1:大嫌い | 4:好き | 5:大好き | 1:大嫌い    |   |

Copyright © 2006 Nara Institute of Science and Technology

17 of 20

#### 協調フィルタリングによる工数見積



- ステップ1: 類似度計算
  - 現行プロジェクトと過去プロジェクト間の類似度を計算する。
  - 類似度の高い k(例えば k=2)個のプロジェクトを選ぶ。
- ステップ2: 予測値計算
  - 類似プロジェクトの工数を加重平均し、現行プロジェクトの工数を予測する。

|    |                | 開発言語 | 開発種別 | 概算 FP | 要員数 | 開発総工数    |     |
|----|----------------|------|------|-------|-----|----------|-----|
|    | 現行プロジェクト X     | Java | 新規   | 1500  | 10  | 予測値:402. | 5)4 |
| (舞 | 似度:+1.0 上クト 1  | Java | 新規   | 欠損値   | 8   | 400      | Ш   |
| (数 | 似度:+0.9 上クト 2  | Java | 欠損値  | 2500  | 6   | 350      |     |
| (類 | 似度: -1.0 上クト 3 | 欠損値  | 保守   | 3000  | 20  | 2500     |     |

Copyright © 2006 Nara Institute of Science and Technology



# まとめ

#### COSC EASE PROJECT

- 見積、外れたらどうする?
  - 追加工数を入れる。
    - 開発のスコープを狭める。
  - 品質の低下に目をつぶる。
    - どうやって品質を低下させるかについても検討しておく。
- 外れないためにどうする?
  - 複数のエキスパートが見積もる。
  - 見積をレビューする。
  - 定量的データに基づいて見積もる。
    - モデルベース手法、メモリベース手法 (Magi Trial Edition もよろしくお願いします)
- 本日の発表内容について、ご意見、ご質問ございましたら、 下記までご遠慮なくお問い合わせください。
  - 大杉, <u>naoki-o@is.naist.jp</u>, 0743-72-5318(研究室代表)

Copyright © 2006 Nara Institute of Science and Technology