Total No. of Q	estions: 6]
----------------	-------------

SEAT No.	:	
----------	---	--

[Total No. of Pages: 2

P544 APR - 18/TE/Insem. - 147

T.E. (Information Technology)

DESIGNAND ANALYSIS OF ALGORITHMS

(2015 Course) (Semester - II)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Solve Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Reorder the following complexities from the smallest to the largest [5]
 - 1) $n\log_2 n$, $n + n^2 + n^3$, 24, sqrt (n).
 - 2) $n!, 2^n, (n + 1)!, 2^{2n}, n^n, n^{logn}$
 - b) Prove by contradiction that square root of 2 is irrational.

OR

- Q2) a) Explain the potential method of amortized analysis with example. [5]
 - b) Solve the following recurrence relation using substitution method T(n) = T(n-1) + 1, T(0) = 0. [5]
- Q3) a) Solve the following instance of job sequencing problem using greedy approach. Let n = 6, profit (1:6) = (30, 20, 15, 10, 5, 1) and deadlines d(1:6) = (4, 2, 2, 1, 4, 3). [5]
 - b) Write a recurrence relation for Merge sort and Find a time complexity using by Master's theorem. [5]

OR

- **Q4)** a) Write an algorithm to find Minimum Spanning Tree using Kruskal algorithm and analyze it. [5]
 - b) Show the steps in multiplying the following two integers using efficiency integer multiplication 2345 and 678. [5]

P.T.O.

[5]

- **Q5)** a) Let n = 3 and $(a1, a2, a3) = \{do, if, while\}$. Let $P(1:3) = \{05, 0.1, 0.05\}$ and $q(0:3) = \{0.15, 0.1, 0.05, 0.05\}$. Compute and construct OBST for above value using dynamic Programming.
 - b) State and explain the principle of Optimality.

A STANDARD S

[2]

Q6) a) Solve the knapsack problem using Dynamic programming for no. of objects n = 4, given capacity M = 8 [5]

Items 1	2	3	4
Value 15	10	9	5
Weight 1	5	3	4

b) Write a Bellman Ford algorithm to find shortest path and Analyze it. [5]