קומבי 11 (כנראה) \sim נטלי שלום \sim איזומורפיה ומסלולים

פרץ שחר

2024 ביוני

1 המשך – איזומורפיה

1.1 תזכורות

- . גרף (במקרה שלנו, גרף פשוט ולא מכוון או ממושקל) הוא $G=\leq V, E
 angle$ כאשר G קבוצת הקודקודים (צמתים) סופית, ולא ריקה. במקרה שלנו, גרף פשוט ולא מכוון או ממושקל) הוא $G=\leq V, E
 angle$ הקשתות (צלעות).
 - 2. שני קודקודים נקראים שכנים, אם יש ביניהם קשת.
 - .3 הדרגה של של קודקוד $v \in V$ היא קבוצת שכניו. d(v) = |N(v)| היא קבוצת שכניו.
 - כלומר: משמר שכנויות, כלומר: הם איזומורפים אם איזומורפים אם איזומורפים הם איזומורפים הם איזומורפים .4

$$\forall u, v \in V_1.\{u, v\} \in E_1 \iff \{f(u), f(v)\} \in E_2$$

הפונקציה הזו תקרא איזומורפיזם.

- . באורך השקילות של המעגלים באורך C_n ים השלמים על הגרפים השלמים של הגרפים השלמים על המעגלים באורך . K_n
 - $.\overline{E}=\mathcal{P}_2(V)\setminus E$ כך ש־ $\overline{G}=\langle V,\overline{E}
 angle$ הוא $G=\langle V,E
 angle$ של 6. הגרף המשלים של

הערה: גרף שלם = גרף מלא = קליקה

2 תרגילים

2.1

 C_5 איזומורפי ל־גרף המשלים שלו? [ציור בסיכומים אחרים, בו מספור של הקודקודים מ־0 עד 4]. נגדיר זיווג:

$$0 \mapsto 0$$
, $1 \mapsto 2$, $2 \mapsto 4$, $3 \mapsto 1$, $4 \mapsto 3$

. [הערה: יש צורך לצייר בשביל לבחור סימון לכל הקודקודים]. מותר לרשום את הזיווג גם בצורת פונקציה. **פתרון:** כן

2.2 תרגיל המשך

 C_6 איזומורפי למשלים שלו? תרגיל: האם

 $|E|=|\mathcal{P}_2(V)\setminus E|$ בתרון: דרך אחת תהיה להשתמש בדרגות. נראה דברים דומים בהמשך. אך נדבוק בדרך אחרת. ב- C_6 יש C_6 קשתות. נראה דברים דומים בהמשך. אך נדבוק בדרך אחרת. ב- $|\mathcal{P}_2(V)|-|E|=\binom{6}{2}-6=\frac{6\cdot 5}{2}-6=15-6=9$ ועל ביניהם.

2.3 תרגיל המשך

. תרגיל: הוכיחו שלא קיים גרף בעל 6 קודקודים שאיזומורפי למשלים שלו

. פתרון: נניח בשלילה שקיים גרף כזה, אזי |E|=|E| ומצד שני וומצד שני $|E|+|\overline{E}|=(6)=15$ וסה"כ סתירה כי |E|=15 איז־זוגי.

2.4

נניח כי $G=\langle V,E' \rangle$ הוכיחו בין $G=\langle V,E \rangle$ הוכיחו איזומורפיזם בין

$$\forall v \in V. \underbrace{d_G(v)}_{\text{supp}} = d_{G'}(f)$$

G'ב f(v) את קבוצת השנים של f[N] היא שכיניו. נוכיח את ב־N את השנים של ב־ $v \in V$ הוכחה. יהי

G'יהי f(v) של שכן של נוכיח נוכיח $w \in f[N]$ יהי

- $\{x,f(v)\}=x$ כלומר x=f(y) כך ש־ $y\in V$ כד, מוניח כי $x\in f[N]$ ליווג ובפרט על, לכן קיים $y\in V$ כלומר $y\in S$ יהי $y\in S$ משמרת שכנויות נקבל ש־ $y\in S$ כלומר $y\in S$ כלומר ש־ $y\in S$ ומאחר ש־ $y\in S$ משמרת שכנויות נקבל ש־ $y\in S$ כלומר $y\in S$ כלומר $y\in S$ מהכלה דו כיוונית $y\in S$ כלומר $y\in S$ (מוני $y\in S$ (מוני y

2.5

שאלה: תנו דוגמה לשני גרפים בעלי אותה סדרת דרגות שאינם איזומורפים עם: (א) 6 קודקודים (ב) 5 קודקודים n-2 יפתור זאת. תשובה של שחר מהעתיד (שראה פתרונות בסוף השיעור): קו באורך n, ומנגד גרף של קו באורך n ומעגל באורך n-2 יפתור זאת. נחזור לבעיה בסוף השיעור.

3 הערות

הערה: תנאים הכרחיים לאיזומורפיזם בין גרפים:

- 1. אותו מס' קודקודים
 - 2. אותו מס' קשתות
- 3. אותה סדרת דרגות (לא חשוב הסדר, אך יש חשיבות לחזרות)

אלו **לא** תנאים מספיקים.

הערה: הכרעת איזומורפיזם בין שני גרפים נתונים, היא בעיה קשה במדמח.

4 מסלולים

4.1 הגדרות

יהי $G = \langle V, E \rangle$ גרף. נגדיר:

- 1. מסלול הוא סדרה של קודקודים $\{v_i,v_{i+1}\}\in E$ מתקיים $0\leq i\leq k-1$ כך שלכל $\{v_0,v_1,\ldots v_k\}$ בין כל זוג קודקודים עוקבים יש קשת] ובנוסף לא עוברים על קשת יותר מפעם אחת (כלומר אסור ללכת שוב ושוב על אותה הקשת). [דוגמה מצויות שכמו תמיד אני אפנה אותכם לסיכומים אחרים כי לי אין כוח לצייר].
- 2. אורך של מסלול הוא מס' הקשתות בו. לדוגמה, האורך של $\langle v_0,\dots,v_k \rangle$ הוא $\langle v_0,\dots,v_k \rangle$ הוא מס' הקשתות בו. לדוגמה, האורך של $\langle v_0,\dots,v_k \rangle$ הוא $\langle v_0,\dots,v_k \rangle$.
 - 3. מסלול פשוט הוא מסלול שבו כל הקודקודים שונים שזה מזה.
 - 0.m>0ו־ $v_0=v_m$ שבו $\langle v_0,\dots,v_m
 angle$ ו־4. מעגל הוא מסלול
 - 5. מעגל פשוט הוא מסלול שבו כל הקודקודים שונים זה מזה פרט לכך שהראשון והאחרון זהים.
- מחבר מסלול המחבר המחבר ביניהם, והוא מסומן ב- $\mathrm{dist}(a,b)$. אם אין מסלול המחבר מסלול המחבר ביניהם, והוא מסומן ב- $\mathrm{dist}(a,b)=\infty$. ביניהם, מגדירים

4.2 טענות והוכחות

טענה: [יהי יהיו תהינה בלה בלה בלה] אם קיים מסלול בין שני קודקודים שונים, אז בהכרח קיים מסלול פשוט ביניהם. m שבו הדרגה המינימלית היא m. הוכיחו, שב־G קיים מסלול פשוט באורך לפחות

 $\langle v \rangle$ הוכחה. אם מהווה מסלול קדוקוד כלשהו ליקח קדוקוד מסלול פשוט באורך m=0 הוכחה. אם m=0

 $k \leq m-1$ אם $\langle v_0, \dots v_k \rangle$ מקסימלי בגרף. אז באורך לכל היותר m-1. ניקח מסלול מקסימלי בגרף. אז בארך. אז v_k אם v_k נניח בשלילה שכל מסלול פשוט הוא באורך לכל היותר להוסיף אותו למסלול ולקבל מסלול ארוך יותר, בסתירה. אם לא קיים ל $\langle v_1, \dots v_{k-1} \rangle$, אז ניתן להוסיף אותו למסלול ולקבל מסלול ארוך יותר, בסתירה. אם לא קיים ל v_k שכן מחוץ לקבוצה זו, אז כל שכניו נמצאים בקבוצה הזו, ובה יש לכל v_k קודקודים כלומר $v_k \leq k \leq m-1$ וזו סתירה לנתון שהדרגה המינימלית היא v_k .