Category \mathcal{O} , Problem Set 4

D. Zack Garza

Thursday 9th April, 2020

Contents

1	Humphreys 3.1 1.1 Solution	1
2	Humphreys 3.2 2.1 Solution	2
3	Humphreys 3.4 3.1 Solution	2
	Humphreys 3.7 4.1 a	

1 Humphreys 3.1

Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ and identify $\lambda \in \mathfrak{h}^{\vee}$ with a scalar. Let N be a 2-dimensional $U(\mathfrak{b})$ -module defined by letting x act as 0 and h act as $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

Show that the induced $U(\mathfrak{g})$ -module structure $M := U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} N$ fits into an exact sequence which fails to split:

$$0 \longrightarrow M(\lambda) \longrightarrow M \longrightarrow M(\lambda) \longrightarrow 0$$

1.1 Solution

Reference 1 Reference 2

Hence $M \notin \mathcal{O}$.

2 Humphreys 3.2

Show that for $M \in \mathcal{O}$ and dim $L < \infty$,

$$(M \otimes L)^{\vee} \cong M^{\vee} \otimes L^{\vee}$$

Reference for Dual of Sum

2.1 Solution

By theorem 3.2d, we have

$$M, N \in \mathcal{O} \implies (M \oplus N)^{\vee} \cong M^{\vee} \oplus N^{\vee}$$

and by definition, $M^{\vee} := \bigoplus_{\lambda \in \mathfrak{h}^{\vee}} M_{\lambda}^{\vee}$ is the direct sum of the duals of various weight spaces.

3 Humphreys 3.4

Show that $\Phi_{[\lambda]} \cap \Phi^+$ is a positive system in the root system $\Phi_{[\lambda]}$, but the corresponding simple system $\Delta_{[\lambda]}$ may be unrelated to Δ .

For a concrete example, take Φ of type B_2 with a short simple root α and a long simple root β . If $\lambda := \alpha/2$, check that $\Phi_{[\lambda]}$ contains just the four short roots in Φ .

3.1 Solution

We would like to show the following two propositions:

- 1. $\Phi_{[\lambda]}^+ := \Phi_{[\lambda]} \cap \Phi^+$ is a positive system in $\Phi_{[\lambda]}$,
- 2. The simple system $\Delta_{[\lambda]}$ corresponding to $\Phi_{[\lambda]}^+$ is *not* generally given by $\Delta_{[\lambda]} = \Phi_{[\lambda]} \bigcap \Delta$, where Δ is the simple system corresponding to Φ .

We proceed by first showing (2) using the hinted counterexample when Φ is of type B_2 with $\Delta = \{\alpha, \beta\}$ with α a short root and β a long root. Concretely, we can realize Φ as a subset of \mathbb{R}^2 in the following way:

$$\Phi = \left\{[1,0],[0,1],[-1,0],[0,-1]\right\}\bigcup \left\{[1,1],[-1,1],[1,-1],[-1,-1]\right\},$$

where we note that the first set consists of short roots and the second of long roots.

4 Humphreys 3.7

4.1 a

If a module M has a standard filtration and there exists an epimorphism $\phi: M \longrightarrow M(\lambda)$, prove that ker ϕ admits a standard filtration.

4.2 b

Show by example that when $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ that the existence of a monomorphism $\phi: M(\lambda) \longrightarrow M$ where M has a standard filtration fails to imply that coker ϕ has a standard filtration.