Automates à pile

Rationnels et Algébriques

Par des grammaires linéaires

Par automates finis

Par des grammaires algébriques

Par automates à pile

Reconnaitre

Automate Fini vs Automate à Pile

- Comparables aux AFND auxquels on a ajouté un composant supplémentaire : Une PILE
- La pile procure une mémoire additionnelle à celle finie de l'unité de contrôle.
- · On peut reconnaître les langages algébriques.
- Un langage est algébrique SSI il est reconnu par un automate à pile
- Permet de montrer l'algébricité d'un langage donné en sus de la construction d'une grammaire algébrique.

Schéma d'un Automate à pile

b

- Lecture/écriture de symboles dans la pile
- Opérations:
 - Empiler des symboles
 - Dépiler un symbole => Lire le symbole de sommet

entrée

 Permet le stockage de nombre illimité de symboles

Rappel

- Pourquoi un AF ne peut reconnaître {anbn:n≥0}?
 - Impossibilité de mémoriser la valeur de n avec ses seuls états
 - On peut toujours trouver un mot trop grand qui « sature » la mémoire de l'AF
- Alors qu'avec un AP peut mémoriser n dans sa pile et vérifier qu'il y a autant de a que de b.

L'idée

■ Scénario:

- A la lecture d'un a
 - Empiler un symbole
- A la lecture du premier b
 - Dépiler un symbole et changer d'état
- A la lecture d'un b
 - Dépiler un symbole
- A la fin, la pile est vide.

Reconnaissance

- Comment AP accepte l'entrée?
- A la fin de la lecture de l'entrée,
 - On est dans un état particulier
 - *La pile est vide
- Deux manières de reconnaître un mot :
 - *En atteignant un état de reconnaissance
 - *Lorsque la pile est vide
- On verra l'équivalence de ces deux critères de reconnaissance.

Définition (Q, Σ , Γ , δ ,i,Z,T)

- Q : ensemble fini d'états
- Σ : alphabet fini des symboles d'entrée
- · Γ : alphabet fini des symboles de pile
- · i : état initial
- $Z \in \Gamma$: symbole de fond de pile
- T⊆Q: ensemble des états terminaux
- δ : $Qx(\Sigma \cup \{\epsilon\})x \Gamma \rightarrow P(Qx\Gamma^*)$

- $\bullet \delta : \mathbb{Q} \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow P(\mathbb{Q} \times \Gamma^*)$
- Lit l'état courant, le symbole courant, le sommet de la pile
- Renvoie un nouvel état, empile un mot
- La fonction de transition prend en compte
 - L'état de l'unité de contrôle
 - Le caractère lu par la tête de lecture
 - Le symbole au sommet de la pile
- Et doit pouvoir
 - Changer l'état courant de l'UC
 - Empiler des symboles
- Remarque: L'image d'un triplet (état, lettre, sommet de pile) est un sous-ensemble de $Qx\Gamma^*$; on a donc un modèle a priori non déterministe

Déterminisme

Un AP est déterministe lorsque, à chaque instant, il n'y a pas plus d'une transition applicable.

Plus formellement,

 $\forall q \in \mathbb{Q}, \ \forall X \in \Gamma, \ \text{si} \ \delta(q, \epsilon, X) \neq \emptyset, \ \text{alors} \ \forall a \in \Sigma, \ \delta(q, a, X) = \emptyset$

Retire le choix entre un déplacement indépendant de l'entrée et un déplacement consommant un symbole d'entrée

 $\forall q \in \mathbb{Q}, \forall X \in \Gamma, \forall a \in \Sigma \cup \{\epsilon\}, |\delta(q,a,X)| < 2$

Empêche d'avoir un choix de déplacement pour un triplet donné.

Déterminisme

 Si, pour les AF, les AFD et les AFND acceptent les mêmes langages, ce n'est plus vrai pour les AP

Exemple:

Le langage $\{ww^R : w \in \{0,1\}^+\}$ (palindromes) Est accepté par un AP non déterministe N'est pas accepté par aucun AP déterministe

Exemple d'AP déterministe

état	lecture	pile	nouv. état	pile
0	a	Z	0	AZ
0	a	A	0	AA
0	b	A	1	3
1	b	A	1	3
1	3	Z	1	3

Reconnaît {anbn:n>0} par pile vide

Exemple d'AP déterministe

état	lecture	pile	nouv. état	pile
0	a	Z	1	AZ
1	a	A	1	AA
1	b	A	2	3
2	b	A	2	3
2	3	Z	3	3

Reconnaît {anbn:n>0} par état final (état 3)

Configuration et dérivation

- Une configuration représente
 - L'état courant, la partie du mot qui reste à lire, le contenu de la pile

- (0,aaabbb,Z) est la configuration initiale de notre exemple
- (0,aabbb,AZ) est la configuration après une transition

Configuration et dérivation

- Une dérivation correspond à l'application de la fonction de transition
 - Entrée : une configuration
 - Sortie: {configurations} (l'AP est a priori non déterministe)

$$(e,aw,P\gamma)\rightarrow(e',w,\alpha\gamma)$$
 Si $(e',\alpha)\in\delta(e,a,P)$

- -(0,aaabbb,Z)
- \bullet (0,aabbb,AZ)
- \bullet (0,abbb,AAZ)

Lecture d'un mot

Lecture = suite des configurations prises par l'AP

- Commence
 - Dans un état initial
 - Symbole de fond de pile
- Termine soit
 - Dans un état terminal
 - Avec la pile vide

état	lecture	pile	nouv. état	pile
0	a	Z	0	AZ
0	а	A	0	AA
0	Ь	A	1	3
1	b	A	1	3
1	3	Z	1	3

 $(0,aabb,Z)\rightarrow (0,abb,AZ)\rightarrow (0,bb,AAZ)\rightarrow (1,b,AZ)\rightarrow (1,\epsilon,Z)\rightarrow (1,\epsilon,\epsilon)$ $(0,aabbb,Z)\rightarrow (0,abbb,AZ)\rightarrow (0,bbb,AAZ)\rightarrow (1,bb,AZ)\rightarrow (1,b,Z)$

Dérivation (réussie) de mots

Réussie: On étend la notion de dérivation aux mots

- $(i,w,Z) \rightarrow *(e,\varepsilon,\varepsilon)$ par pile vide
- $(i,w,Z) \rightarrow *(f,\varepsilon,\gamma)$ par état final

Exemple: $(0,aabb,Z) \rightarrow *(1,\epsilon,\epsilon)$ accepte par pile vide

Dérivation (ratée) de mots

Ratée: il n'existe pas de lecture réussie

- Soit parce que pour chaque lecture :
 - On n'arrive pas à lire entièrement le mot (fonction de transition non définie)
 - On n'arrive pas soit
 - *À terminer avec la pile vide
 - *À terminer dans un état de reconnaissance

Exemple:

 $(0,aabbb,Z)\rightarrow*(1,b,Z)$ (Pas de transition définie)

Dérivation de mots

Pour M=(Q, Σ , Γ , δ ,i,Z,T) un \overline{AP} ,

le langage accepté est

 $\blacksquare L_{PV}(M) = \{w \in \Sigma^* : (i, w, Z) \rightarrow^* (p, \varepsilon, \varepsilon), p \in Q\}$

 $L_{EF}(M) = \{ w \in \Sigma^* : (i, w, Z) \rightarrow^* (p, \varepsilon, \gamma), p \in T, \gamma \in \Gamma^* \}$

Le langage $\{ ww^R : w \in \{0,1\}^+ \}$

- Le langage { $ww^R : w \in \{0,1\}^+\}$
- Scénario de fonctionnement
 - Sur la première moitié du mot (état moitié 1)
 - Lecture d'un 0, empiler X, Lecture d'un 1, empiler Y
 - Sur la seconde moitié (état moitié 2)
 - Lecture d'un 0, dépiler X, Lecture d'un 1, dépiler Y
 - Si pile vide accepte
- Le problème est de déterminer le milieu!
 - Résolu par le non déterminisme
 - « On fait » toutes les lectures possibles
 - Si une réussit, on accepte

Remarque

- Un des AP précédents reconnaît par état final.
- L'autre reconnaît par pile vide.
- Mais tous deux reconnaissent le même langage.

- Ce n'est pas un cas particulier
- Théorème [PV=EF]: Tout ce qui est reconnu par pile vide est reconnu par état final et réciproquement

EF-PV

Idée: M' simule le fonctionnement de M jusqu'à la fin. Ensuite, M' termine le travail en vidant tout ce qui reste dans la pile.

$$M=(Q,\Sigma,\Gamma,\delta,i,Z,T)$$

$$M'=(Q\cup\{i',e\},\Sigma,\Gamma\cup\{Z'\},\delta',i',Z',\emptyset)$$

EF-PV

$$M'=(Q\cup\{i',e\},\Sigma,\Gamma\cup\{Z'\},\delta',i',Z',\emptyset)$$

- État e: sert à effacer le contenu de la pile
- État i': sert à passer dans l'état de M avec un symbole de pile différent au départ Z'
- Z': nouveau symbole de pile pour que M' n'accepte pas accidentellement si M vide sa pile trop tôt

EF-PV

- δ' simule le fonctionnement de δ et, de plus
 - $\delta'(i', \epsilon, Z') = (i, ZZ')$ initialise M' comme M avec Z' en fond de pile
 - $\forall f \in T, \forall \gamma \in \Gamma \cup \{Z'\}, \{(e, \varepsilon)\} \in \delta'(f, \varepsilon, \gamma)$
 - si état final, on <u>peut</u> (ND) passer en effacement
 - $\forall \gamma \in \Gamma \cup \{Z'\}, \delta'(e, \epsilon, \gamma) = (e, \epsilon)$
 - effacement de la pile

PV→EF

Idée: l'automate à état final M' doit simuler le fonctionnement de l'automate à pile vide M et détecter quand M efface le contenu de la pile. Il doit alors entrer dans un état final.

$$M=(Q,\Sigma,\Gamma,\delta,i,Z,\varnothing)$$

$$M'=(Q \cup \{i',f\},\Sigma,\Gamma \cup \{Z'\},\delta',i',Z',\{f\})$$

PV→EF

$$M'=(Q \cup \{i',f\},\Sigma,\Gamma \cup \{Z'\},\delta',i',Z',\{f\})$$

- État f: état final de M'
- État i': sert à passer dans l'état de M avec un symbole de pile différent au départ Z'
- Z': nouveau symbole de pile pour que M' puisse passer dans son état final à l'apparition de Z' et accepter l'entrée.

PV→EF

- δ' simule le fonctionnement de δ et, de plus
 - $\delta'(i', \varepsilon, Z') = (i, ZZ')$

Initialise M' comme M avec Z' en fond de pile

- $\forall q \in \mathbb{Q}, \{(f, \varepsilon)\} \in \delta'(q, \varepsilon, Z')$
- À l'apparition du symbole de fond de pile ajouté, M' peut alors passer dans son état final f et accepter l'entrée. On ne considère que les états de M et non ceux de M'.

Exemple de {anbn:n>0}

Reconnaît par pile vide

Reconnaît par état final

(i',aabb,Z')
(0,aabb,ZZ')
(0,abb,AZZ')
(0,bb,AAZZ')
(1,b,AZZ')
(1,
$$\epsilon$$
,ZZ')
(1, ϵ ,ZZ')
(1, ϵ ,Z')