基础知识: 2019.12.16-2020.

一. MOOC-大数据与城市规划(2019秋)

学校	清华大学		
老师	龙瀛(清华大学 建筑学院)		
体验频率	1小时/天		
体验行为	看视频+笔记+kaggle实战		
体验中的评估和反馈	* 线上的问答题 * 线下和本校建筑规划设计学院同学参加比赛 和交流		
可能的认知偏见	* 行业术语理解		

1.1 课程概论

• 课程大纲

以这样的研究方向为指导,整个课程可以分为以下几个章节:

章节	大致内容
概述篇(第1-3章)	
技术篇(第4-8章)	
数据篇(第9–11章)	
应用篇(第12–14章)	
展望篇(第15章)	

• 预计的收获

_	(田 年	土山市	거거 로프	
0	课程	4 . JIII	ロソアル	LI

□ 数据:提供的案例地区一整套的城市空间数据集

□ 方法: 基本的数据抓取、分析和可视化

□ 思维: 利用新数据、新技术认识城市和规划设计城市

。 我的预计(实时拓展)

□ 数据: 这套的城市空间数据集涉及的城市维度和获取难易的评估

□ 方法: 数据抓取、分析和可视化在这个场景中可能遇到的问题和解决方案,现有科研成果

或产品的解决方案

□ 思维: 大数据或人工智能算法在城市规划上的科研和商业路径、战略思维

1.2 概述篇 (第1-3章)

• 概念

城市

- 。 城市规划学科同定义(经济学、地理学、社会学等等),城市规划学科中的思考维度:
 - 行政领域,市辖区/市区=市域-县
 - 实地领域,城镇化用地
 - 功能领域,与实际功能上的关联,比如人口、就业

城市群:比如长三角、珠三角

城市变化

- 。 全天候在线化
 - 传感设备的应用和普及-多元的线上线下数据

研究机构与项目	项目内容
芝加哥城市运算和数据中心 "物联城市" (Array of Things)	通过搭建城市传感器网络·为居民、城市管理者和科学家 提供认识·分析和改造城市的数据基础。
哥伦比亚大学 智慧城市研究中心	构建了智慧社 区的传感器系统·提出营造社区安全性的方案
麻省理工学院(MIT) 市民数据设计实验室	通过开发新型传感器·测量公共空间中的人群感知与行为。
清华同衞技术创新中心团队 "CITYGRID城市数据传感器"	CITYGRID支援的测量指数多元、精细、可结合路灯、站牌等 处悬挂安装、从街道层面获取实时且准确的人口、交通、或 环境状况等流动数据、以支持更永续、更智慧的城市决策。

- 。 小型化
 - 室内外公共空间的新元素(路边KTV、录音亭、自动贩卖机、自主按摩椅等)
- 。 居家化
 - 人流、物流流向的该变(比如外卖)
 - 居住空间的混合使用(上门修手机、美甲等)
- 。 个性化
 - 以体验为目的的小众需求
- 。 智能化
 - 取代高危险性、重复性的工作(比如无人商店,阿里的广告设计机器人"鲁班")
- 。 算法化