Introduction to Regression

Dr Tom Ilvento

Department of Food and Resource Economics

Regression

- We are looking at the relationship between two or more variables
 - One is called the Dependent Variable (Y), which is to modeled or predicted
 - The others are called Independent Variables (X or a set of Xs), which are used to explain, estimate, or predict Y
- In a bivariate (two variable) case, one way to express the relationship is in terms of covariance and correlation:
 - Expressed as a linear measures of association
 - Symmetric measures
- Regression is an extension of correlation/covariance
 - Still linear
 - No longer symmetric
 - Covariance is the basic building block of regression

3

Overview

- The last part of the course will focus on Regression Analysis
- This is one of the more powerful statistical techniques
 - Provides estimates from a model
 - Allows for inference and testing hypotheses
 - Extends our abilities from ANOVA
 - Enable us to test theories
- We will start will simple, bivariate models: Y is a function of a single X variable
- And then move toward the complex, multivariate models:
 Y is a function of a set of X variables

2

Regression Models

- Regression models represent an assortment of models with assumptions about the dependent variable - continuous or discrete - and the form of the relationship with independent variables - linear or nonlinear
- We will focus on the following

Fahrenheit versus Celsius

	F	С
When I go to Europe I have to deal	10	-12.22
with temperatures in Celsius	15	-9.44
with temperatures in ocisius	20	-6.67
 How do I convert from C to F? 	25	-3.89
Tion do Footivoir iroin o to F.	30 -1.11 32 0.00 35 1.67 45 7.22	
A friend once told me a quick "rule	32	0.00
of thumb" was to double C and add		
30		
30	50	10.00
 I used my calculator to make a small 	55	12.78
data set of values	60	15.56
data set of values	65	18.33
 And I used it in a regression 	70	21.11
7 that ascalt in a regression	75	23.89
	80	26.67
	85	29.44
	90	32.22
	95	35.00

Fitting a Line to the data

- The relationship between F and C is perfect, r = 1
- It is a deterministic function
- I will run a regression of F on C and see what equation I get.
- Regression will generate a "best fitting line" to the data
- In Excel I will use
 - Tools, Data Analysis
 - Regression

5

6

Regression of F on C

- This is the regression result from Excel
- The estimated equation is
 - F = 32 + 1.8 C

SUMMARY OUTPUT

Regression Statistics					
Multiple R	1				
R Square	1				
Adjusted R Square	1				
Standard Error	7.0966E-05				
Observations	18				

ANOVA

	df	SS	MS	F	Sig F
Regression	1	12372.94	12372.94	2456783461497.83	0.00
Residual	16	0.00	0.00		
Total	17	12372.94			

	Coefficients	Std Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	32.0	0.0	1519489.6	0.	0 32.0	32.0
С	1.8	0.0	1567413.0	0.	0 1.8	1.8 7

Requirements of Regression

- We specify one variable as **Dependent**
 - Usually represented as Y
 - It must be measured as a continuous variable not a dichotomy or ordinal
- The dependent variable is thought to be a function of one or more <u>Independent</u> variables
 - Usually represented as X
 - Can be continuous, dichotomies, or ordinal
- Regression is limited to Linear Relationships in the parameters in the form of:
 - $Y = b_0 + b_1X_1 + b_2X_2 + ... b_kX_k$
 - We will will have **k** independent variables

Nonlinear relationships that can be represented by regression

- It is possible to represent a nonlinear relationship with a linear approach, such as a Polynomial or Log function
- Log function take the log of both sides
 - Y = aX^b
 - Ln(Y) = Ln(a)+ b*Ln(X)
- Polynomial of the kth order
 - $Y = b_0 + b_1X + b_2X^2 + b_3X^3 + ...b_kX^k$
- It is not terribly restrictive to be limited to linear relationships

9

Equation of a Line

- Y = 5 + .5X
 - X=0 then Y=5 The intercept
 - X=10 then Y=10
 - X=20 then Y=15
 - X=30 then Y=20
- The slope shows how much Y changes for a unit change in X: Y changes .5 for each 1 unit change in X
- This is a deterministic model there is an exact relationship between the two variables

The equation of a Line

- I suspect you have seen the equation of a line written as
 - Y = mX + b
 - Where m is the slope and b is the intercept
- We specify a dependent variable Y, and independent variable X
- We will use the form $Y = b_0 + b_1 X_1$
- Note: in multiple regression there may be more than one X:
 Y = b₀ + b₁X₁ + b₂X₂
- When referring to the population I will use Greek terms:

$$Y = \beta_0 + \beta_1 X_1$$

10

In reality, we often have a random component

 A Probabilistic Model has a deterministic component and a random error component, denoted as e_i or ε_i

$$Y_i = \beta_0 + \beta_1 X_{i1} + \varepsilon_{i1}$$

Our Expectation of Y is the deterministic component

$$E(Y_i) = \beta_0 + \beta_1 X_{i1}$$

П

The error term in our model

• The error component is very important

Observed in population/sample

$$Y_i = \beta_0 + \beta_1 X_{i1} + \varepsilon_i$$

Predicted from model

$$\widehat{Y}_i = \beta_o + \beta_1 X_{i1}$$

• The difference between what we predict and what we observe

$$\varepsilon_i = \hat{Y}_i - Y_i$$

13

Have we seen the error term before?

· Consider the following model using the mean

 $Y_i = \mu + \varepsilon_i$ A simple model based on the mean

 $\varepsilon_i = Y_i - \mu$ Deviations about the mean

 $\Sigma \varepsilon_i^2 = \Sigma (Y_i - \mu)^2$ Sum of Squared Deviations

 $\Sigma \varepsilon_i^2 / n = \Sigma (Y_i - \mu)^2 / n$ Mean Squared Deviations

 $\Sigma \varepsilon_i^2 / n = \sigma^2$ Population Variance

14

The error term in Regression is important!

- The error term in regression is a measure of the:
 - Variance of the Model
 - Standard Deviation of the Model
 - And ultimately contributes to the estimate of the Standard Error for our coefficients
- We will assume equal variances for Y (dependent variable) across each level of X (independent variable)
- In essence we will pool the measure of the variance in regression
- This is called, Homoscadasticity

How do we fit a line to our data?

- We will use the property of Least Squares
- We will find estimates for β₀ and β₁ that will minimize the squared deviations about the fitted line
- First an example, and then the details
 - A catalog sales company which sells electronic equipment wants to improve its marketing campaign
 - They collect data on a random sample of 1,000 customers
 - The main variable of interest is the amount of sales (in dollars) in the previous year.

- 1

Catalog Sales data

- There is an Excel file (Catalogs.xls) and a JMP file (Catalogs.jmp)
- Y is the Dependent Variable: **SALES**
- X is the Independent Variable: **SALARY**
- The correlation between SALES and SALARY is .700
- Look at a Scatter Plot
- Excel will add a trendline and an equation and R-square which is based on regression

17

19

How to do this in Excel

- Organize data in columns
 - One column contains Y (dependent)
 - Remaining Columns contain contiguous Xs (independent)
- TOOLS Data Analysis Regression
 - Specify Y variable
 - Specify X variables need to be contiguous columns (for more Xs in model, columns must be next to each other)
 - Remember to specify if first row has labels
 - Specify Output
- I modify the output
 - How many decimal places are showing (3 to 4)
 - Change Headings to make them fit
 - Bold Headers

Estimated Regression of Sales on Salary

SALES = -15.332 + .022(SALARY)

- If SALARY = 0
 - SALES = -15.332 + .022(0)
 - SALES = -15.332
- A unit change in SALARY (\$1) results in a .022 change in SALES
 - This is better expressed as: \$1,000 change in SALARY results in Sales of \$22.00
- Our prediction of SALES for a household with a SALARY of \$50.000 is:
 - SALES = -15.332 + .022(\$50,000)
 - SALES = \$1,084.67
- I will refer to this as solving the equation for a person with a salary of \$50,000

18

Excel output

- The correlation and R-square
- The ANOVA Table
- The estimated coefficients

SUMMARY OUTPUT of SALES Regressed on SALARY

Regression Statistics					
Multiple R	0.700				
R Square	0.489				
Adjusted R Square	0.489				
Standard Error	687.068				
Observations	1000				

ANOVA					
	df	SS	MS	F	Sig F
Regression	1	451624335.68	451624335.68	956.71	0.000
Residual	998	471117860.07	472061.98		
Total	999	922742195.74			

	Coef.	Std Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-15.332	45.374	-0.338	0.736	-104.373	73.708
SALARY	0.021961	0.000710	30.931	0.000	0.021	0.023

Output from JMP

21

23

A few points about our model

- It is possible to predict outside the range of the data
 - When Salary = 0: SALES = -15.332 + .022(\$0) = -\$15.33
 - When Salary = 1,000,000 SALES = -15.332 + .
 022(\$1,000,000) = \$21,985
- The model parameters should be interpreted only within the sampled range of the independent variables
- The prediction part of our model is deterministic, but we know we will have some error – our prediction won't match the data exactly
 - · We are fitting a model to the data
 - "All models are wrong, some models are useful" George Box
- We will have the ability to test coefficients and construct confidence intervals - there is a known sampling distribution for regression coefficients

22

How to generate a "Best Fitting Line"

- We will use the property of Least Squares
- We will find estimates for β₀ (intercept) and β₁ (slope) that will minimize the squared deviations about the fitted line
- 'Best Fit' means the Difference Between Actual Y Values
 Predicted Y Values Are a Minimum
- Least Squares generates a set of coefficients that minimizes the Sum of the Squared Errors (SSE)

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y})^2 = \sum_{i=1}^{n} \widehat{\varepsilon}^2 = minimum$$

Bi-variate Regression Formulas for estimates of β_0 and β_1

 I will tend to use b₀ and b₁ for the estimated values

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{i1}$$

 The slope coefficient is based on the covariance of Y and X, adjusted for the variability in X

$$\widehat{\beta}_1 = \frac{SS_{XY}}{SS_X}$$

where
$$SS_{XY} = \sum (X_i - \overline{X})(Y_i - \overline{Y}) = \sum X_i Y_i - \frac{\sum X_i \sum Y_i}{n}$$

$$SS_X = \sum (X_i - \overline{X})^2 = \sum X_i^2 - \frac{\left(\sum X_i\right)^2}{n}$$

The Intercept is based on the estimate of b₁ and the means of the other variables

$$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X}$$

Summary

- Regression is a strategy to model the relationship of a set of independent variables (Xs) on a dependent variable (Y).
- We say we "regress" Y on X or as set of Xs.
- Regression estimates a best fitting line to the data by minimizing squared deviations about that line.
- It is a natural extension of much of what we have covered before, especially ANOVA.
- We will cover the regression output, the ANOVA table, understanding the regression coefficients, inference in regression, and multiple regression.