Homework 5 by Jingmin Sun

Feb. 27 2020

ALL REFERENCE NUMBERS ARE CORRESPONDING TO THE TEXT

1. Page 78, 1

We can prove by contradiction, suppose dim range(T) = m, and T(x) = Ax.

Assume there are n nonzero entries in A, where n < m, so we have at most n linearly independent rows of A, Then:

$$\dim \operatorname{range} T = \dim(Ax) \le n < m$$

which contradicts with dim range(T) = m, so there are at least m nonzero entries in A.

2. Page 78, 3

We can construct such basis by first find the set of basis of $\operatorname{null}(T) \subseteq V$, call them $\{v_1, v_2 \cdots v_m\}$, and assume $\dim V = n$, and we can extend the basis to span the whole V, which is $\{v_1, v_2 \cdots v_m, v_{m+1} \cdots v_n\}$. And we can apply the linear map T to $v_{m+1}, \cdots v_n$, and $\{T(v_{m+1}), \cdots T(v_n)\}$ are linearly independent. so we can extend the basis to $\{T(v_{m+1}), \cdots T(v_n), w_{n+1}, \cdots w_p\}$, if $\dim(W) = p - m$. And we can get such basis satisfies $\mathcal{M}(T)$ is a sparse matrix with nonzero entries on the diagonal.

Sketch of proof of independency:

Consider

$$v_{m+1} = \begin{bmatrix} v_{m+1,1} \\ v_{m+1,2} \\ \vdots \\ v_{m+1,n} \end{bmatrix} \quad \cdots \quad v_n = \begin{bmatrix} v_{n,1} \\ v_{n,2} \\ \vdots \\ v_{nn} \end{bmatrix}$$

which can be written as

$$v_{m+1} = v_{m+1,1}e_1 + \dots + v_{m+1,n}e_n$$

 \dots
 $v_n = v_{n,1}e_1 + \dots + v_{n,n}e_n$

And

$$T(v_{m+1}) = v_{m+1,1}T(e_1) + \cdots + v_{m+1,n}T(e_n)$$

$$T(v_n) = v_{n,1}T(e_1) + \cdots + v_{n,n}T(e_n)$$

So if $\mathcal{M}(T)$ is diagonal, so if $v_{m+1}\cdots v_n$ are linearly independent, then $T(v_{m+1})\cdots T(v_n)$ is linearly independent.

3. Page 78, 4

$$Tv_k = A_{1,k}w_1 + \cdots A_{m,k}w_m$$

If $Tv_1 = 0$, then for any basis of $w_1 \cdots w_m$, we can have let $A_{1,:} = 0$, and satisfy the above equation.

If $Tv_1 \neq \vec{0}$, we can set $w_1 = Tv_1$, so

$$Tv_1 = w_1 + 0 + 0 + \cdots = w_1$$

satisfy the above equation.

4. Page 79, 6

 \implies If dim range (T) = 1. Then we can have range $(T) = \alpha \cdot p$, so there must exists a basis of W, such that $p = \alpha_1 p_1 + \cdots + \alpha_n p_n$, let $w_i = \alpha_i p_i$, so we have $p = \sum w_i$, and for all basis of V, $Tv_k = \sum w_i$, which means the element of $\mathcal{M}(T) = 1$

 \Leftarrow If all the element of $\mathcal{M}(T) = 1$, we can have $Tv_k = \sum w_i$ for all v_k , so dim range (T) = 1.

5. Page 78, 12

Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 and $C = \begin{bmatrix} -1 & 2 \\ 2 & 2 \end{bmatrix}$

$$AC = \begin{bmatrix} 1 & 4 \\ -3 & 0 \end{bmatrix}$$
$$CA = \begin{bmatrix} 1 & -3 \\ 4 & 0 \end{bmatrix}$$

6. Page 88, 1

Suppose both S and T are invertible, which means both S and T are injective and surjective, since S and T are both injective, so we can have if T is surjective, T(u) = T(v) implies u = v, and if S is surjective, S(T(u)) = S(T(v)) implies T(u) = T(v), and u = v follows, so ST is surjective. Since T is injective, so we can have range T(u) = T(v), and similarly, range T(u) = T(v), since T(u) = T(v), so range T(u) = T(v), and similarly, range T(u) = T(v), since T(u) = T(v), so range T(u) =

Finally, we have

$$(ST)^{-1}ST = I$$

$$(ST)^{-1}STT^{-1} = T^{-1}$$

$$(ST)^{-1}S = T^{-1}$$

$$(ST)^{-1}SS^{-1} = T^{-1}S^{-1}$$

$$(ST)^{-1} = T^{-1}S^{-1}$$

7. Page 88, 2

Since it's not close under addition

Suppose
$$T_1 = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$
 and $T_2 = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$

Obviously, both T_1 and T_2 are not invertible, but $T_1 + T_2 = I$ is invertible.

8. Page 88, 7

(a) \bullet $0 \in E$:

Since for a matrix with all 0 entries, we can have $0 \cdot v = 0$ for all $v \in V$, so $0 \in E$.

- Closed under addition If $T_1 \in E$ and $T_2 \in E$, then we can have $T_1v = 0$ and $T_2v = 0$, then we can have $(T_1 + T_2)v = 0$, which means $T_1 + T_2 \in E$.
- Closed under multiplication If $T_1 \in E$, then we can have $T_1v = 0$, and $aT_1v = 0$, which means $aT_1 \in E$ for any $a \in \mathbf{F}$.
- (b) Let $v = v_1 \in V$ be an element of basis of V, and $v \neq 0$. So, we can extend this to the basis of V, $v_1 \cdots v_n$. And since $Tv = Tv_1 = 0$. Since

$$Tv_1 = A_{1,1}w_1 + \cdots + A_{m,1}w_m = 0$$

So we can have $A_{:,1} = 0$.

Then we can have the set D for such matrix A, $\dim(D) = m(n-1)$. Since A is a representation of T, so E and D are isomorphic, which means they have same dimension, which is $\dim W(\dim V - 1)$

9. Page 89, 9

If both matrix are both invertible, then ST is invertible by the previous question.

If ST is invertible, then we can have ST is both surjective and injective, which means if $ST(v_1) = ST(v_2)$, it would imply $v_1 = v_2$. And range ST = V.

Suppose $T(v_1) = T(v_2)$, then we can have $ST(v_1) = ST(v_2)$, and $v_1 = v_2$ follows. So T is injective. Suppose $S(v_1) = S(v_2)$, then we can let $T(v_3) = v_1$, $T(v_4) = v_2$, so $ST(v_3) = ST(v_4)$, and $v_3 = v_4$, which implies $v_1 = v_2$. And S is injective.

Suppose S is not surjective, then range $S \subset V$, so since $T \in \mathcal{L}(V)$, so we can have range $S \subset V \neq V$, so there is an contradiction. Then we can have S is surjective.

Suppose V is not surjective, then range $T \subset V$, since S is injective, so dim range $S(T) = \dim T$ and $S(T) = \dim T$ and $S(T) = \dim T$ is surjective.

10. Page 89, 10

By the uniqueness of inverse (Theorem 3.54), we can have this is true. Proof omit.

11. Page 89, 18

Suppose $A \in \mathcal{L}(\mathbb{F}, V)$, so $A\lambda = v$ for some $v \in V$

Suppose there is a linear map M from V to $\mathcal{L}(\mathbb{F}, V)$, which means M(v) = A, define a set of basis for V, which is $\{v_1 \cdots v_m\}$, and a set of basis for $\mathcal{L}(\mathbb{F}, V)$, which is $\{a_1, a_2 \cdots a_m\}$ (Since dim $\mathcal{L}(\mathbb{F}, V) = \dim V$) Let $\mathcal{M}(M) = M$, and

$$Mv_k = M_{1,k}a_1 + \cdots + M_{m,k}a_m = a_k$$

So M is identity matrix, which is invertible, (easy to proof by both surjective and injective). So M is an isomorphism from V to $\mathcal{L}(\mathbb{F}, V)$, which means they are isomorphic.