CMPE 322/327 - Theory of Computation Week 11: Turing Machines & Decision Problems

Burak Ekici

May 9-13, 2022

Outline

A Ouick Recap

•000000000

- 1 A Quick Recap
- 2 Turing Machine
- B Decision Problems
- 4 Encoding
- Diagonalization

A Ouick Recap

000000000

• NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - Σ : input alphabet

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - Σ : input alphabet Γ : stack alphabet

Diagonalization

Definitions

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - Σ : input alphabet
 - Γ: stack alphabet
 - δ : finite subset of $(Q \times (Σ \cup {ε}) \times Γ) \times (Q \times Γ^*)$

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - Σ : input alphabet
 - Γ : stack alphabet
 - δ: finite subset of $(Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$
 - $s \in O$: start state

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - Σ : input alphabet
 - Γ: stack alphabet
 - Φ δ: finite subset of $(Q \times (Σ \cup {ε}) \times Γ) \times (Q \times Γ^*)$
 - $s \in Q$: start state

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - \mathfrak{D} : input alphabet
 - Γ: stack alphabet
 - Φ δ: finite subset of $(Q \times (Σ \cup {ε}) \times Γ) \times (Q \times Γ^*)$
 - $s \in Q$: start state
 - \bigcirc ⊥ ∈ Γ: initial stack symbol
 - $F \subseteq Q$: final states

Example

A Ouick Recap

000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\})\}$

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - O: finite set of states
 - Σ : input alphabet
 - Γ : stack alphabet
 - δ : finite subset of $(Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$
 - $s \in O$: start state
 - $\bot \in \Gamma$: initial stack symbol
 - $F \subseteq O$: final states
- configuration: element of $Q \times \Sigma^* \times \Gamma^*$

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - O: finite set of states
 - Σ : input alphabet
 - Γ : stack alphabet
 - δ : finite subset of $(Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$
 - $s \in O$: start state
 - \bigcirc ⊥ ∈ Γ: initial stack symbol
 - $F \subseteq O$: final states
- configuration: element of $Q \times \Sigma^* \times \Gamma^*$ (current state, remaining input, stack content)

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - Σ : input alphabet

 - Φ δ: finite subset of $(Q \times (Σ \cup {ε}) \times Γ) \times (Q \times Γ^*)$
 - $s \in Q$: start state

 - $\mathcal{F} \subseteq Q$: final states
- configuration: element of $Q \times \Sigma^* \times \Gamma^*$ (current state, remaining input, stack content)
- start configuration on input x: (s, x, \bot)

A Ouick Recap

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - O: finite set of states

 - Σ: input alphabet
 Γ: stack alphabet
 δ: finite subset of (
 s ∈ Q: start state δ : finite subset of $(Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$

 - \bigcirc ⊥ ∈ Γ: initial stack symbol
 - $F \subseteq O$: final states
- configuration: element of $Q \times \Sigma^* \times \Gamma^*$ (current state, remaining input, stack content)
- start configuration on input x: (s, x, \bot)
- next configuration relation is binary relation $\frac{1}{M}$ defined as: $(p, ay, A\beta) \frac{1}{M} (q, y, \gamma\beta)$ for all $((p, a, A), (q, \gamma)) \in \delta$ with $a \in \Sigma \cup \{\epsilon\}$ and $y \in \Sigma^*, \beta \in \Gamma^*$

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

input:

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

input:

state: stack:

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

input:

state: stack:

0000000000

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
```

Decision Problems

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

input: state: 1 1 stack: $\perp \perp$ Decision Problems

A Ouick Recap

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
  Q = \{1, 2\}
        \Sigma = \{[,]\}
        \Gamma = \{\bot, [\}
       F = \{2\}
  s = 1
        \delta = \{((1, [, \bot), (1, [\bot)), ((1, ], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}
                                                 input:
                                                 state:
                                                               1 1
                                                 stack:
                                                               \perp \perp
```

0000000000

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
  Q = \{1, 2\}
        \Sigma = \{[,]\}
        \Gamma = \{\bot, [\}
       F = \{2\}
  s = 1
        \delta = \{((1, [, \bot), (1, [\bot)), ((1, ], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}
                                                 input:
                                                 state:
                                                                1 1 1
                                                 stack:
                                                                \bot \bot \bot
```

Decision Problems

Example

A Ouick Recap

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\} is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with Q = \{1, 2\}
```

- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
             1111
stack:
             \bot \bot \bot \bot \bot
```

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
  Q = \{1, 2\}
        \Sigma = \{[,]\}
        \Gamma = \{\bot, [\}
       F = \{2\}
  6
       s = 1
        \delta = \{((1, [, \bot), (1, [\bot)), ((1, ], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}
                                                 input:
                                                 state:
                                                                1111
                                                 stack:
                                                                \bot \bot \bot \bot \bot
```

0000000000

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
  Q = \{1, 2\}
        \Sigma = \{[,]\}
        \Gamma = \{\bot, [\}
       F = \{2\}
  s = 1
        \delta = \{((1, [, \bot), (1, [\bot)), ((1, ], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}
                                                  input:
```

11111 \bot \bot \bot \bot \bot \bot

state:

stack:

Decision Problems

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
  Q = \{1, 2\}
        \Sigma = \{[,]\}
        \Gamma = \{\bot, [\}
       F = \{2\}
  s = 1
        \delta = \{((1, [, \bot), (1, [\bot)), ((1, ], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}
                                                 input:
                                                 state:
                                                                11111
                                                                \bot \bot \bot \bot \bot \bot
                                                 stack:
```

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

Decision Problems

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
             111111
             \bot \bot \bot \bot \bot \bot \bot
stack:
```

Decision Problems

A Ouick Recap

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
             111111
             \bot \bot \bot \bot \bot \bot \bot
stack:
```

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

Decision Problems

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
             1111111
stack:
             \bot \bot \bot \bot \bot \bot \bot \bot
```

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

Decision Problems

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
             1111111
stack:
             \bot \bot \bot \bot \bot \bot \bot \bot
```

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
             11111111
stack:
             \bot \bot \bot \bot \bot \bot \bot \bot \bot
```

0000000000

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
```

Decision Problems

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
             11111111
stack:
             \bot \bot \bot \bot \bot \bot \bot \bot \bot
```

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
       111111111
stack:
```

Decision Problems

A Ouick Recap

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
```

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
       111111111
stack:
```

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
stack:
```

Decision Problems

Example

A Ouick Recap

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- ④ $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\})\}$

Example

A Ouick Recap

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\})\}$

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
          111111111
                                        11111
stack:
                                        \bot \bot \bot \bot \bot \bot
```

Decision Problems

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
           111111111
                                            11117
stack:
                                            \bot \bot \bot \bot \bot \varepsilon
```

0000000000

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- 6 s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
           111111111
                                            11112
stack:
                                            \bot \bot \bot \bot \bot \varepsilon
```

Decision Problems

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

NPDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

• $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*}_{M} (q, \varepsilon, \alpha)$ with $q \in F$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{N}$$

- $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*}_{M} (q, \varepsilon, \alpha)$ with $q \in F$
- $L_f(M) = \{x \in \Sigma^* \mid x \text{ is accepted by final state}\}$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

- $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*} (q, \varepsilon, \alpha)$ with $q \in F$
- $L_f(M) = \{x \in \Sigma^* \mid x \text{ is accepted by final state}\}$
- $x \in \Sigma^*$ is accepted by empty stack if $(s, x, \bot) \xrightarrow{*}_{M} (q, \varepsilon, \varepsilon)$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

- $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*} (q, \varepsilon, \alpha)$ with $q \in F$
- $L_f(M) = \{x \in \Sigma^* \mid x \text{ is accepted by final state}\}$
- $x \in \Sigma^*$ is accepted by empty stack if $(s, x, \bot) \xrightarrow{*}_{M} (q, \varepsilon, \varepsilon)$
- $L_e(M) = \{x \in \Sigma^* \mid x \text{ is accepted by empty stack}\}$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

- $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*} (q, \varepsilon, \alpha)$ with $q \in F$
- $L_f(M) = \{x \in \Sigma^* \mid x \text{ is accepted by final state}\}$
- $x \in \Sigma^*$ is accepted by empty stack if $(s, x, \bot) \xrightarrow{*}_{M} (q, \varepsilon, \varepsilon)$
- $L_e(M) = \{x \in \Sigma^* \mid x \text{ is accepted by empty stack}\}$

Theoren

A Ouick Recap

000000000

CFGs and NPDAs are equivalent:

- 1 A = L(G) for some CFG $G \iff$
- $A = L_f(M)$ for some NPDA M

Encodina

A Ouick Recap

0000000000

CFGs and NPDAs are equivalent:

- A = L(G) for some CFG $G \iff$
- $A = L_f(M)$ for some NPDA $M \iff$
- $A = L_e(M)$ for some NPDA M

Theoren

A Ouick Recap

0000000000

CFGs and NPDAs are equivalent:

- 2 $A = L_f(M)$ for some NPDA $M \iff$
- $A = L_e(M)$ for some NPDA $M \iff$
- 4 $A = L_e(M) = L_f(M)$ for some NPDA M

A deterministic pushdown automaton (DPDA) is an octuple $M = (Q, \Sigma, \Gamma, \delta, \bot, \dashv, s, F)$

- \bullet is a special symbol not in Σ , called the right endmarker
- 2 for any $p \in Q$, $a \in \Sigma \cup \{\epsilon\}$, $A \in \Gamma$, the set $\delta \subseteq (Q \times (\Sigma \cup \{\exists\} \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ contains
 - at most one element of the form $((p, a, A), (q, \beta))$
 - exactly one transition of the form $((p, a, A), (q, \beta))$ or $((p, \varepsilon, A), (q, \beta))$

A deterministic pushdown automaton (DPDA) is an octuple $M = (Q, \Sigma, \Gamma, \delta, \bot, \dashv, s, F)$

- $oldsymbol{1}$ H is a special symbol not in Σ , called the right endmarker
- 2 for any $p \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, $A \in \Gamma$, the set $\delta \subseteq (Q \times (\Sigma \cup \{\exists\} \cup \{\varepsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ contains
 - at most one element of the form $((p, a, A), (q, \beta))$
 - exactly one transition of the form $((p, a, A), (q, \beta))$ or $((p, \varepsilon, A), (q, \beta))$

Remark

DPDAs are strictly less powerful than NPDAs

A deterministic pushdown automaton (DPDA) is an octuple $M = (Q, \Sigma, \Gamma, \delta, \bot, \dashv, s, F)$

- $lue{1}$ H is a special symbol not in Σ , called the right endmarker
- ② for any $p \in Q$, $a \in \Sigma \cup \{\epsilon\}$, $A \in \Gamma$, the set $\delta \subseteq (Q \times (\Sigma \cup \{\exists\} \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ contains
 - at most one element of the form $((p, a, A), (q, \beta))$
 - exactly one transition of the form $((p, a, A), (q, \beta))$ or $((p, \varepsilon, A), (q, \beta))$

Remark

- DPDAs are strictly less powerful than NPDAs
- deterministic context-free language is set accepted by DPDA

A deterministic pushdown automaton (DPDA) is an octuple $M = (Q, \Sigma, \Gamma, \delta, \bot, \dashv, s, F)$

- **1** Is a special symbol not in Σ , called the right endmarker
- 2 for any $p \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, $A \in \Gamma$, the set $\delta \subseteq (Q \times (\Sigma \cup \{A\} \cup \{\varepsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ contains
 - at most one element of the form $((p, a, A), (q, \beta))$
 - exactly one transition of the form $((p, a, A), (q, \beta))$ or $((p, \varepsilon, A), (q, \beta))$

Remark

- DPDAs are strictly less powerful than NPDAs
- deterministic context-free language is set accepted by DPDA

$$A = \{a^i b^j c^k \mid i = i \text{ or } i = k\}$$

Theoren

A Ouick Recap

000000000

context-free sets are effectively closed under

- union
- concatenation
- asterate
- · homomorphic image
- homomorphic preimage

Theorer

A Ouick Recap

000000000

context-free sets are effectively closed under

- union
- concatenation
- asterate
- · homomorphic image
- homomorphic preimage

context-free sets are not closed under

- intersection
- complement

Theoren

A Ouick Recap

000000000

deterministic context-free sets are effectively closed under

- complement
- homomorphic preimage

000000000

deterministic context-free sets are effectively closed under

- complement
- homomorphic preimage

deterministic context-free sets are not closed under

- union
- intersection
- concatenation
- asterate
- homomorphic image

Outline

- 1 A Quick Recap
- 2 Turing Machines
- 3 Decision Problem
- 4 Encoding
- Diagonalization

A Ouick Recap

A Ouick Recap

Turing machine (TM) is 9-tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ with

Q: finite set of states

A Ouick Recap

- Q: finite set of states
- Σ : input alphabet

A Ouick Recap

Turing machine (TM) is 9-tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ with

Q: finite set of states

 Σ : input alphabet

 $\Gamma \supseteq \Sigma$: tape alphabet

A Ouick Recap

- Q: finite set of states
- Σ : input alphabet
- $\Gamma \supseteq \Sigma$: tape alphabet
- $\vdash \in \Gamma \Sigma$: left endmarker

A Ouick Recap

- Q: finite set of states
- \bigcirc Σ : input alphabet
- **6** $\Gamma \supseteq \Sigma$: tape alphabet
- Φ ⊢ ∈ Γ − Σ: left endmarker
- ⑤ $\sqcup \in \Gamma \Sigma$: blank symbol

- Q: finite set of states
- \bigcirc Σ : input alphabet
- Φ ⊢ ∈ Γ − Σ: left endmarker
- **⑤** \Box ∈ Γ − Σ : blank symbol
- $δ: Q × Γ → Q × Γ × {L, R}: (partial) transition function$

- Q: finite set of states
- Σ : input alphabet
- $\Gamma \supseteq \Sigma$: tape alphabet
- $\vdash \in \Gamma \Sigma$: left endmarker
- $\sqcup \in \Gamma \Sigma$: blank symbol
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: (partial) transition function
- $s \in O$: start state

A Ouick Recap

- Q: finite set of states
- Σ : input alphabet
- $\Gamma \supseteq \Sigma$: tape alphabet
- $\vdash \in \Gamma \Sigma$: left endmarker
- $\sqcup \in \Gamma \Sigma$: blank symbol
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: (partial) transition function
- $s \in O$: start state
- $t \in Q$: accept state

Definition

Turing machine (TM) is 9-tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ with

- Q: finite set of states
- $\ \ \, \Sigma$: input alphabet
- Φ ⊢ ∈ Γ − Σ: left endmarker
- $δ: Q × Γ → Q × Γ × {L, R}$: (partial) transition function
- \emptyset $s \in Q$: start state
- $0 t \in Q$: accept state

Definition

A Ouick Recap

Turing machine (TM) is 9-tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ with

- Q: finite set of states
- Σ : input alphabet
- $\Gamma \supseteq \Sigma$: tape alphabet
- $\vdash \in \Gamma \Sigma$: left endmarker
- $\sqcup \in \Gamma \Sigma$: blank symbol

- $s \in O$: start state
- $t \in Q$: accept state
- $r \in O \{t\}$: reject state

$$\forall a \in \Gamma \ \exists b, c \in \Gamma \ \exists d, e \in \{L, R\} \colon \delta(t, a) = (t, b, d) \ \text{and} \ \delta(r, a) = (r, c, e)$$

Definition

A Ouick Recap

Turing machine (TM) is 9-tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ with

- Q: finite set of states
- \bigcirc Σ : input alphabet
- Φ ⊢ ∈ Γ − Σ: left endmarker
- ⑤ $\sqcup \in \Gamma \Sigma$: blank symbol

- \emptyset $s \in Q$: start state
- $t \in Q$: accept state
- 0 $r \in Q \{t\}$: reject state

such that

$$\forall a \in \Gamma \exists b, c \in \Gamma \exists d, e \in \{L, R\} : \delta(t, a) = (t, b, d) \text{ and } \delta(r, a) = (r, c, e)$$

 $\forall p \in Q \exists q \in Q : \delta(p, F) = (q, F, R)$

Encodina

A Ouick Recap

 $A = \{a^n b^n c^n \mid n \ge 0\} = L(M) \text{ for TM } M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, 1, t, r) \text{ with }$

- $\Sigma = \{a, b, c\}$
- $\Gamma = \{a, b, c, \vdash, \sqcup, X, x\}$

4	δ	-	а	b	С	П	X	X
	1	(1 , ⊢, <i>R</i>)	(2 , ⊢ , <i>R</i>)	(<i>r</i> , -, -)	(r , -, -)	(t, -, -)	(5, X, R)	(<i>r</i> , -, -
	2	$(1, \vdash, R)$ $(r, -, -)$ $(r, -, -)$	(2, a, R)	(3, X, R)	(r, c, R)	(r, -, -)	(2, X, R)	(<i>r</i> , –, –
	3	(<i>r</i> , -, -)	(r, -, -)	(3, b, R)	(4, x, L)	(r, -, -)	(r, -, -)	(3, x, R)
	4	(1 , ⊢, <i>R</i>)	(4, a, L)	(4, b, L)	(4, c, L)	(r, -, -)	(4, X, L)	(4, x, L)
	5	$(1,\vdash,R)$ $(r,-,-)$	(r, a, R)	(r, -, -)	(r, c, R)	(t, X, R)	(5, X, R)	(5, x, R)

A Ouick Recap

 $A = \{a^n b^n c^n \mid n \ge 0\} = L(M) \text{ for TM } M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, 1, t, r) \text{ with }$

- $\Sigma = \{a, b, c\}$
- $\Gamma = \{a, b, c, \vdash, \sqcup, X, x\}$

4	δ	⊢	a	b	С	П	X	X
	1	(1 , ⊢, <i>R</i>)	(2 , ⊢ , R)	(<i>r</i> , -, -)	(r , -, -)	(t, -, -)	(5, X, R)	(<i>r</i> , –, –
	2	(r, -, -)	(2, a, R)	(3, X, R)	(r, c, R)	(r, -, -)	(2, X, R)	(<i>r</i> , -, -
	3	(r, -, -)	(r, -, -)	(3, b, R)	(4, x, L)	(r, -, -)	(r, -, -)	(3, x, R)
	4	$(1,\vdash,R)$	(4, a, L)	(4, b, L)	(4, c, L)	(r, -, -)	(4, X, L)	(4, x, L)
	5	(r, -, -)	(r, a, R)	(r, -, -)	(r, c, R)	(t, X, R)	(5, X, R)	(5, x, R)
	t	_	_	_	_	_	_	_
	r	_	_	_	_	_	_	_

Diagonalization

Diagonalization

Example								
δ	⊢ (1, ⊢, R)	а	b	C	П	X	X	
1	(1 , ⊢, <i>R</i>)	(2 , ⊢ , <i>R</i>)	(<u>r</u> , -, -)	(<u>r</u> , -, -)	(t, -, -)	(5, X, R)	(<u>r</u> , -, -)	
2	(<i>r</i> , -, -) (<i>r</i> , -, -)	(2, a, R)	(3, X, R)	(r, c, R)	(r, -, -)	(2, X, R)	(2, -, -)	
3	(r, -, -)	(r, -, -)	(3, b, R)	(4, x, L)	(r, -, -)	(r, -, -)	(3, x, R)	
4	$(1,\vdash,R)$ (r,-,-)	(4, a, L)	(4, b, L)	$(4, \mathbf{c}, \mathbf{L})$	(r, -, -)	(4, X, L)	(4, x, L)	
							(5, x, R)	
FaabbccL 1	$1^{\omega} \xrightarrow{1}_{M} F$ aa	ibbcc ⊔ ^ω	$\frac{1}{M}$ H ab	bcc ⊔ ^ω 1/M	FF abbc	c u ^ω		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Example									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		δ	F	a	b	C	Ш	X	X	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	(1 , ⊢ , <i>R</i>)	$(2,\vdash,R)$	(<i>r</i> , -, -)	(r, -, -)	(t, -, -)	(5, X, R)	(<i>r</i> , -, -)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	(r, -, -)	(2, a, R)	(3, X, R)	(r, c, R)	(r, -, -)	(2, X, R)	(2, -, -)	
\vdash_{1} habbee $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash_{1}$ habbee $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash_{2}$ habbee $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash_{1}$ habbee $\sqcup^{\omega} \xrightarrow{1}_{M}$ habbee $\sqcup^{\omega} \xrightarrow{1}_{M}$		3	(r, -, -)	(<i>r</i> , -, -)	(3, b, R)	(4, x, L)	(<i>r</i> , -, -)	(r, -, -)	(3, x, R)	
\vdash_{1} habbee $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash_{1}$ habbee $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash_{2}$ habbee $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash_{1}$ habbee $\sqcup^{\omega} \xrightarrow{1}_{M}$ habbee $\sqcup^{\omega} \xrightarrow{1}_{M}$		4	$(1, \vdash, R)$	(4, a, L)	(4, b, L)	$(4, \mathbf{c}, \mathbf{L})$	(r, -, -)	(4, X, L)	(4, x, L)	
	$a^2b^2c^2$	5	(r, -, -)	(r, a, R)	(r, -, -)	(r, c, R)	(t, X, R)	(5, X, R)	(5, x, R)	
$\frac{1}{2}$ ++ aXbcc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω}		⊢aabbccL	$1^{\omega} \xrightarrow{1 \atop M} \vdash a_1$	abbcc ⊔ ^ω	$\frac{1}{M}$ $\vdash \vdash ab$	$bcc \sqcup^{\omega} \stackrel{1}{\xrightarrow{M}}$	→ ⊢⊢ a <i>b</i> bc	$C \sqcup^{\omega} \xrightarrow{1}_{M}$	⊢⊢ a X b cc ⊔ ^ω	
M 3 M 4 M 4 M 4			$\xrightarrow{1}_{M}$ \vdash	aXbcc ⊔ ^ω 3	$\xrightarrow{1}_{M}$ $\vdash\vdash$ aX	$\frac{1}{4}$ $\frac{1}{M}$	→ ⊢⊢ aXb	$X \subset \coprod^{\omega} \xrightarrow{1}_{M}$	⊢⊢ aXbxc ⊔ ^ω	

Example		
	δ	
	2 $(r,-,-)$ (2, a, R) (3, X, R) (r,c,R) $(r,-,-)$ (2, X, R) (2, -, -)	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	4 $(1, \vdash, R)$ $(4, a, L)$ $(4, b, L)$ $(4, c, L)$ $(r, -, -)$ $(4, X, L)$ $(4, x, L)$	
$a^2b^2c^2$		
	$\frac{1}{M}$ $\frac{1}$	
	$\frac{1}{M}$ + H aXbcc \coprod^{ω} $\frac{1}{M}$ + H aXbxc \coprod^{ω} $\frac{1}{M}$ + H aXbxc \coprod^{ω} $\frac{1}{M}$ + H aXbxc \coprod^{ω}	
	$\frac{1}{M} \stackrel{\text{H-}}{=} \frac{1}{M} \frac{1}{M} \stackrel{\text{H-}}{=} \frac{1}{M} \stackrel{\text{H-}}{=} \frac{1}{M} \frac{1}{M} \stackrel{\text{H-}}{=} \frac{1}{M} \stackrel{\text{H-}}$	

Example								
	δ	⊢	a	b	C	П	X	X
	1	(1 , ⊢, <i>R</i>)	$(2,\vdash,R)$	(r , -, -)	(r, -, -)	(t, -, -)	(5, X, R)	(r,-,-)
	2	(r, -, -)	(2, a, R)	(3, X, R)	(r, c, R)	(r, -, -)	(2, X, R)	(2, -, -)
	3	(r, -, -)	(r, -, -)	(3, b, R)	(4, x, L)	(r, -, -)	(r, -, -)	(3, x, R)
		$(1,\vdash,R)$						
$a^2b^2c^2$	5	(<i>r</i> , -, -)	(r, a, R)	(r, -, -)	(r, c, R)	(t, X, R)	(5, X, R)	(5, x, R)
	FaabbccL	$J^{\omega} \xrightarrow{1}_{M} \vdash \underset{1}{a}$	abbcc ⊔ ^ω	$\frac{1}{M}$ ++ $\frac{ab}{2}$	$bcc \sqcup^{\omega} \stackrel{1}{\xrightarrow{M}}$	→ FF a <i>b</i> bc	$C \sqcup^{\omega} \xrightarrow{1}_{M}$	⊢⊢ a X <i>b</i> cc ⊔ ^ω ₃
		$\frac{1}{M}$ \vdash	aXbcc ⊔ ^ω	$\frac{1}{M}$ $\vdash \vdash aX$	$\int_{4}^{b} x c \sqcup^{\omega} \frac{1}{M}$	→ FF aXb	$X \subset \coprod^{\omega} \xrightarrow{\frac{1}{M}}$	⊢⊢ aXbxc ⊔ ^ω
		$\xrightarrow{\frac{1}{M}}$ \vdash	aXbxc ⊔ ^ω	$\frac{1}{M}$ $\vdash \vdash aX$	$(bxc \sqcup^{\omega} \frac{1}{N})$	+ +++ Xb. 2	$X \subset \coprod^{\omega} \xrightarrow{1}_{M}$	⊢⊢ <i>Χb</i> xc ⊔ ^α
		$\frac{1}{M}$ \vdash	- XXxc ⊔ ^ω					

Example (r, -, -) (2, a, R) (3, X, R) (r, c, R) (r, -, -) (2, X, R) (2, -, -) 3 (r,-,-) (r,-,-) (3,b,R) (4,x,L) (r,-,-) (r,-,-) (3,x,R)4 $(1, \vdash, R)$ $(4, \mathsf{a}, L)$ $(4, \mathsf{b}, L)$ $(4, \mathsf{c}, L)$ (r, -, -) (4, X, L) (4, x, L) $5 \mid (r, -, -) \mid (r, a, R) \mid (r, -, -) \mid (r, c, R) \mid (t, X, R) \mid (5, X, R) \mid (5, X, R)$ $a^2b^2c^2$ \vdash aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash abbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash abbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash a \vdash abbcc $\sqcup^{\omega} \vdash$ $\frac{1}{M}$ H aXbcc \coprod^{ω} $\frac{1}{M}$ H aXbxc \coprod^{ω} $\frac{1}{M}$ H aXbxc \coprod^{ω} H aXbxc \coprod^{ω} $\frac{1}{M}$ H- $\frac{1$ $\frac{1}{M}$ $\vdash\vdash\vdash XXXC \sqcup^{\omega} \xrightarrow{1} \vdash\vdash\vdash XXXC \sqcup^{\omega}$

Example								
	δ	⊢	a	b	C	П	X	X
	1	(1 , ⊢, <i>R</i>)	$(2,\vdash,R)$	(r , -, -)	(r , -, -)	(t, -, -)	(5, X, R)	(<i>r</i> , -, -)
	2	(<i>r</i> , -, -)	(2, a, R)	(3, X, R)	(r, c, R)	(r, -, -)	(2, X, R)	(2, -, -)
	3			(3, b, R)				
	4	$(1,\vdash,R)$	(4, a, L)	(4, b, L)	(4, c, L)	(r, -, -)	(4, X, L)	(4, x, L)
$a^2b^2c^2$	5	(r, -, -)	(r, a, R)	(r, -, -)	(r, c, R)	(t, X, R)	(5, X, R)	(5, x, R)
	⊢aabbccL 1	$J^{\omega} \xrightarrow{1}_{M} \vdash \underset{1}{a}$	abbcc ⊔ ^ω	$\frac{1}{M}$ $\vdash\vdash ab$	$bcc \sqcup^{\omega} \stackrel{1}{\xrightarrow{M}}$	→ FF a <i>b</i> bo	$C \sqcup^{\omega} \xrightarrow{1}_{M}$	⊢⊢ a X b cc ⊔ ^ω
		$\frac{1}{M}$ \vdash	aXbcc ⊔ ^ω	$\frac{1}{M}$ $\vdash\vdash a\lambda$	$\frac{1}{4}$	→	$X \subset \coprod^{\omega} \xrightarrow{1}_{M}$	⊢⊢ aXbxc ⊔ ^ω
		$\xrightarrow{1}_{M}$ \vdash	aXbxc ⊔ ^ω	$\frac{1}{M}$ \vdash \vdash $\frac{a}{M}$	$(bxc \sqcup^{\omega} \frac{1}{N})$	+ +++ Xb 2	$X \subset \coprod^{\omega} \xrightarrow{1}_{M}$	⊢⊢⊢ Xbxc ⊔ ^ω
		$\xrightarrow{1}_{M}$ \vdash \vdash	- XXxc ⊔ ^ω ³	$\frac{1}{M}$ +++ λ	< X x c ⊔ ^ω - 1/Λ	$\stackrel{\Gamma}{\rightarrow}$ $\vdash\vdash\vdash XX$	(χχ⊔ ^ω 4	

Example (r, -, -) (2, a, R) (3, X, R) (r, c, R) (r, -, -) (2, X, R) (2, -, -) $3 \mid (r, -, -) \mid (r, -, -) \mid (3, b, R) \mid (4, x, L) \mid (r, -, -) \mid (r, -, -) \mid (3, x, R)$ 4 $(1, \vdash, R)$ $(4, \mathbf{a}, L)$ $(4, \mathbf{b}, L)$ $(4, \mathbf{c}, L)$ (r, -, -) (4, X, L) (4, x, L)[r, -, -) [r, a, R] [r, -, -) [r, c, R] [t, X, R] [t, X, R] [t, X, R] $a^2b^2c^2$ \vdash aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash abbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash aXbcc $\sqcup^{\omega} \vdash$ $\frac{1}{M}$ ++ aXbxc \cup^{ω} $\frac{1}{M}$ ++ aXbxc \cup^{ω} $\frac{1}{M}$ ++ aXbxc \cup^{ω} $\frac{1}{M}$ H- $\frac{1$ $\frac{1}{M}$ HH XXXCU $^{\omega}$ $\frac{1}{M}$ HH XXXCU $^{\omega}$ $\frac{1}{M}$ HH XXXXU $^{\omega}$ $\frac{1}{M}$ HH XXXXU $^{\omega}$

Example								
	δ Η	· a	b	С	П	X	Х	
	1 (1, F	$(2, \vdash, R)$	(r, -, -)	(r, -, -)	(t, -, -)	(5, X, R)	(r, -, -)	
		$(2, \mathbf{a}, R)$						
		(r,-,-)						
		$(4, \mathbf{a}, L)$						
$a^2b^2c^2$		(r, a, R)						
	\vdash aabbcc $\sqcup^{\omega} \xrightarrow{1}_{M}$	⊢ aabbcc ⊔ ^ω	$\frac{1}{M}$ \vdash \vdash $\frac{ab}{2}$	$bcc \sqcup^{\omega} \xrightarrow{1}_{M}$	⊢⊢ abbo	$C \sqcup^{\omega} \xrightarrow{1}_{M}$	⊢⊢ a X b cc ⊔ ^ω ³	
	$\frac{1}{M}$	⊢⊢ aXbcc ⊔ ^ω	$\frac{1}{M}$ \vdash \vdash aX	$bxc \sqcup^{\omega} \xrightarrow{1 \atop M}$	+	$KC \sqcup^{\omega} \xrightarrow{1}_{M}$	⊢⊢ aXbxc ⊔ ^ω	
	$\frac{1}{M}$	⊢⊢ aXbxc ⊔ ^ω	$\frac{1}{M}$ $\vdash \vdash aX$	$bxc \sqcup^{\omega} \xrightarrow{1}_{M}$	► ⊢⊢ Xb.	$X \subset \coprod^{\omega} \xrightarrow{1}_{M}$	⊢⊢⊢ Xbxc ⊔ ^a)
	$\xrightarrow{1}_{M}$	⊢⊢⊢ XXxc ⊔ ^ω ³	$\frac{1}{M}$ $\vdash\vdash\vdash \lambda$	$(X \times C \sqcup^{\omega} \stackrel{1}{\underset{M}{\longrightarrow}}$	→ +++ XX	$\begin{array}{c} XX \sqcup^{\omega} & \xrightarrow{1} \\ 4 \end{array}$	⊢⊢⊢ <i>XXxx</i> ⊔ 4	ω
	$\xrightarrow{\frac{1}{M}}$	⊢⊢⊢ XXxx ⊔ ^ω 4						

Example					
ě	5	b c	Ц	X	X
1	$ (1,\vdash,R) (2,\vdash,R) $	(r,-,-) $(r,-,-)$	(t,-,-)	(5, X, R)	(<i>r</i> , -, -)
2	(r,-,-) (2, a, R)	(3, X, R) (r, c, c)	(r,-,-)	(2, X, R)	(2, -, -)
3					
	$\{ (1,\vdash,R) (4,a,L)$				
$a^2b^2c^2$	(r,-,-) (r,a,R)	(r,-,-) $(r,c,$	(t, X, R)	(5, X, R)	(5, x, R)
Haabbo 1	$CCL^{\omega} \xrightarrow{1}_{M} \vdash \underset{1}{aabbcc} L^{\omega}$	$\stackrel{1}{\longrightarrow}$ ${\mapsto}$ ${\mapsto}$ $\stackrel{abbcc}{\longrightarrow}$	$\frac{1}{M}$ ++ abbo	$\Box \subset \sqcup^{\omega} \xrightarrow{1}_{M}$	⊢⊢ a X <i>b</i> cc ⊔ ^ω
	$\frac{1}{M}$ \vdash	$\stackrel{1}{\xrightarrow{M}} \vdash AXbxc \sqcup$	$\stackrel{\omega}{\longrightarrow} \stackrel{1}{\longrightarrow} \vdash \vdash \stackrel{aXb}{\overset{a}{\longrightarrow}}$	$X \subset \coprod^{\omega} \xrightarrow{1}_{M}$	⊢⊢ $_{4}^{aXbxc}$ ⊔ $_{4}^{\omega}$
	$\xrightarrow{\frac{1}{M}}$ \vdash	$\stackrel{1}{\longrightarrow} \vdash \vdash \underset{1}{aXbxc} \sqcup$	$\omega \xrightarrow{1}_{M} \vdash \vdash \vdash X_{b}$	$XC \sqcup^{\omega} \xrightarrow{1}_{M}$	$\vdash\vdash\vdash X_{bxc} \sqcup^{\omega}$
	$\xrightarrow{\frac{1}{M}}$ $\vdash \vdash \vdash XXx \subset \sqcup^{G}$	$\stackrel{\cup}{\longrightarrow} \stackrel{1}{\longrightarrow} \vdash \vdash \vdash XXX_{\stackrel{\bullet}{C}} \bot$	$1^{\omega} \xrightarrow{1}_{M} \vdash \vdash \vdash XX$	$(xx \sqcup^{\omega} \xrightarrow{1}_{M}$	⊢⊢⊢ <i>XXxx</i> ⊔ ^a
	$\xrightarrow{1}_{M}$ $\vdash\vdash\vdash XXxx \sqcup^{c}$	$\stackrel{\omega}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{\vdash}{\vdash} XXxx L$	J^ω		

Example $1 (1, \vdash, R) (2, \vdash, R) (r, -, -) (r, -, -) (t, -, -) (5, X, R) (r, -, -)$ (r, -, -) (2, a, R) (3, X, R) (r, c, R) (r, -, -) (2, X, R) (2, -, -) $3 \mid (r, -, -) \mid (r, -, -) \mid (3, b, R) \mid (4, x, L) \mid (r, -, -) \mid (r, -, -) \mid (3, x, R)$ 4 $(1, \vdash, R)$ $(4, \mathbf{a}, L)$ $(4, \mathbf{b}, L)$ $(4, \mathbf{c}, L)$ (r, -, -) (4, X, L) (4, x, L)[r, -, -) [r, a, R] [r, -, -) [r, c, R] [t, X, R] [t, X, R] [t, X, R] $a^2b^2c^2$ \vdash aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash abbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash abbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash aXbcc \sqcup^{ω} $\frac{1}{M}$ ++ aXbcc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω} $\frac{1}{M}$ ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ bxbxc \coprod^{ω} +++ Xbxc \coprod^{ω} +++ Xbxc \coprod^{ω} $\frac{1}{M}$ +++ XXxcu $^{\omega}$ $\frac{1}{M}$ +++ XXxcu $^{\omega}$ $\frac{1}{M}$ +++ XXxxu $^{\omega}$ $\frac{1}{M}$ HHH XXxx \coprod^{ω} $\frac{1}{M}$ HHH XXxx \coprod^{ω} $\frac{1}{M}$ HHH XXxx \coprod^{ω}

Example 1 $(1, \vdash, R)$ $(2, \vdash, R)$ (r, -, -) (r, -, -) (t, -, -) (5, X, R) (r, -, -)(r,-,-) (2, a, R) (3, X, R) (r, c, R) (r, -, -) (2, X, R) (2, -, -) $3 \mid (r, -, -) \mid (r, -, -) \mid (3, b, R) \mid (4, x, L) \mid (r, -, -) \mid (r, -, -) \mid (3, x, R)$ 4 $(1, \vdash, R)$ $(4, \mathbf{a}, L)$ $(4, \mathbf{b}, L)$ $(4, \mathbf{c}, L)$ (r, -, -) (4, X, L) (4, x, L) $5 \mid (r, -, -) \mid (r, a, R) \mid (r, -, -) \mid (r, c, R) \mid (t, X, R) \mid (5, X, R) \mid (5, X, R)$ $a^2b^2c^2$ \vdash aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash abbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash abbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash aXbcc \sqcup^{ω} $\frac{1}{M}$ ++ aXbcc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω} $\xrightarrow{1}$ H- aXbxc \sqcup^{ω} $\xrightarrow{1}$ H- aXbxc \sqcup^{ω} $\xrightarrow{1}$ H- Xbxc \sqcup^{ω} $\xrightarrow{1}$ H- Xbxc \sqcup^{ω} $\frac{1}{M}$ +++ XXxcu $^{\omega}$ $\frac{1}{M}$ +++ XXxcu $^{\omega}$ $\frac{1}{M}$ +++ XXxxu $^{\omega}$ $\frac{1}{M}$ HHH XXXX \sqcup^{ω} $\frac{1}{M}$ HHH XXXX \sqcup^{ω} $\frac{1}{M}$ HHH XXXX \sqcup^{ω}

Example		
	<u>δ</u>	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$3 \mid (r, -, -) \mid (r, -, -) \mid (3, b, R) \mid (4, x, L) \mid (r, -, -) \mid (r, -, -) \mid (3, x, R)$	
	4 $(1, \vdash, R)$ $(4, a, L)$ $(4, b, L)$ $(4, c, L)$ $(r, -, -)$ $(4, X, L)$ $(4, x, L)$	
$a^2b^2c^2$		
	$\frac{1}{M}$ $+$	
	$\frac{1}{M} + H = aXbcc \sqcup^{\omega} + \frac{1}{M} + H = aXbxc \sqcup^{\omega} + \frac{1}{M} + H = aXbxc \sqcup^{\omega} + \frac{1}{M} + H = aXbxc \sqcup^{\omega}$	
	$\frac{1}{M}$ ++ $\frac{1}{M}$ aXbxc \coprod^{ω} $\frac{1}{M}$ ++ $\frac{1}{M}$ bxc \coprod^{ω} +++ $\frac{1}{M}$ bxc \coprod^{ω} +++ $\frac{1}{M}$ bxc \coprod^{ω}	
	$\frac{1}{M}$ +++ XXxc $^{\square}$ $\frac{1}{M}$ +++ XXxc $^{\square}$ $\frac{1}{M}$ +++ XXxx $^{\square}$ $\frac{1}{M}$ +++ XXxx $^{\square}$	
	$\frac{1}{M} \hspace{0.2cm} \vdash \vdash \vdash XX \times X \sqcup^{\omega} \hspace{0.2cm} \frac{1}{M} \hspace{0.2cm} \vdash \vdash \vdash XX \times X \sqcup^{\omega} \hspace{0.2cm} \frac{1}{M} \hspace{0.2cm} \vdash \vdash \vdash XX \times X \sqcup^{\omega} \hspace{0.2cm} \frac{1}{M} \hspace{0.2cm} \vdash \vdash \vdash XX \times X \sqcup^{\omega}$	
	$\frac{1}{M}$ $\vdash \vdash \vdash XX \times X \sqcup^{\omega}$	

Example	
	δ \vdash a b c \sqcup X X
	1 $(1, \vdash, R)$ $(2, \vdash, R)$ $(r, -, -)$ $(r, -, -)$ $(t, -, -)$ $(5, X, R)$ $(r, -, -)$
	3 $(r,-,-)$ $(r,-,-)$ $(3,b,R)$ $(4,x,L)$ $(r,-,-)$ $(r,-,-)$ $(3,x,R)$
	4 $(1, \vdash, R)$ $(4, a, L)$ $(4, b, L)$ $(4, c, L)$ $(r, -, -)$ $(4, X, L)$ $(4, x, L)$
$a^2b^2c^2$	5 $(r, -, -)$ (r, a, R) $(r, -, -)$ (r, c, R) (t, X, R) $(5, X, R)$
⊢aal 1	$\frac{1}{M}$ $+$
	$\frac{1}{M} \vdash \vdash aXbxc \sqcup^{\omega} \xrightarrow{1}_{M} \vdash \vdash aXbxc \sqcup^{\omega} \xrightarrow{1}_{M} \vdash \vdash aXbxc \sqcup^{\omega} \xrightarrow{1}_{M} \vdash \vdash aXbxc \sqcup^{\omega}$
	$\frac{1}{M} + \frac{1}{4} \frac{AXbxc}{4} \perp \frac{1}{M} + \frac{1}{4} \frac{AXbxc}{4} \perp \frac{1}{M} + \frac{1}{4} \frac{Xbxc}{4} \perp \frac{1}{M} + \frac{1}{4} \frac{Xbxc}{4$
	$\frac{1}{M} \text{ FFF } XXXC \sqcup^{\omega} \xrightarrow{1}_{M} \text{ FFF } XXXC \sqcup^{\omega} \xrightarrow{1}_{M} \text{ FFF } XXXX \sqcup^{\omega} \xrightarrow{1}_{M} \text{ FFF } XXXX \sqcup^{\omega}$
	$\frac{1}{M} \vdash \vdash XXxx \sqcup^{\omega} \xrightarrow{\frac{1}{M}} \vdash \vdash XXxx \sqcup^{\omega} \xrightarrow{\frac{1}{M}} \vdash \vdash XXxx \sqcup^{\omega} \xrightarrow{\frac{1}{M}} \vdash \vdash XXxx \sqcup^{\omega}$
	$\xrightarrow{\frac{1}{M}} \begin{array}{ccc} \vdash \vdash XXxX \sqcup^{\omega} & \xrightarrow{\frac{1}{M}} & \vdash \vdash \vdash XXxX \sqcup^{\omega} \\ & & 5 \end{array}$

Example	
	δ \vdash a b c \sqcup X x
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$3 \mid (r, -, -) \mid (r, -, -) \mid (3, b, R) \mid (4, x, L) \mid (r, -, -) \mid (r, -, -) \mid (3, x, R)$
	4 $(1, \vdash, R)$ $(4, a, L)$ $(4, b, L)$ $(4, c, L)$ $(r, -, -)$ $(4, X, L)$ $(4, x, L)$
$a^2b^2c^2$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\frac{1}{M} \vdash \vdash aXbxc \sqcup^{\omega} \xrightarrow{\frac{1}{M}} \vdash \vdash aXbxc \sqcup^{\omega} \xrightarrow{\frac{1}{M}} \vdash \vdash aXbxc \sqcup^{\omega} \xrightarrow{\frac{1}{M}} \vdash \vdash aXbxc \sqcup^{\omega}$
	$\frac{1}{M} \underset{4}{\vdash} + \frac{1}{A}Xbxc \sqcup^{\omega} \xrightarrow{\frac{1}{M}} \underset{1}{\vdash} + \frac{1}{A}Xbxc \sqcup^{\omega} \xrightarrow{\frac{1}{M}} \underset{2}{\vdash} + \vdash + \underset{2}{\downarrow} Xbxc \sqcup^{\omega}$
	$\frac{1}{M} \vdash \vdash \vdash XXXC \sqcup^{\omega} \frac{1}{M} \vdash \vdash \vdash XXXC \sqcup^{\omega} \frac{1}{M} \vdash \vdash \vdash XXXX \sqcup^{\omega} \frac{1}{M} \vdash \vdash \vdash XXXX \sqcup^{\omega}$
	$\frac{1}{M} \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Example 1 $(1, \vdash, R)$ $(2, \vdash, R)$ (r, -, -) (r, -, -) (t, -, -) (5, X, R) (r, -, -)(r, -, -) (2, a, R) (3, X, R) (r, c, R) (r, -, -) (2, X, R) (2, -, -)(r,-,-) (r,-,-) (3,b,R) (4,x,L) (r,-,-) (r,-,-) (3,x,R)4 (1, \vdash , R) (4, a, L) (4, b, L) (4, c, L) (r, -, -) (4, X, L) (4, X, L) | (r, -, -) (r, a, R) (r, -, -) (r, c, R) (t, X, R) (5, X, R) $a^2b^2c^2 \in L(M)$ \vdash aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ aabbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash abbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash abbcc $\sqcup^{\omega} \xrightarrow{1} \vdash$ \vdash aXbcc \sqcup^{ω} $\frac{1}{M}$ ++ aXbcc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω} ++ aXbxc \coprod^{ω} $\stackrel{1}{\longrightarrow}$ H- aXbxc \sqcup^{ω} $\stackrel{1}{\longrightarrow}$ H- aXbxc \sqcup^{ω} $\stackrel{1}{\longrightarrow}$ H- Xbxc \sqcup^{ω} $\frac{1}{M}$ +++ XXxc \cup^{ω} $\frac{1}{M}$ +++ XXxc \cup^{ω} $\frac{1}{M}$ +++ XXxx \cup^{ω} $\frac{1}{M}$ +++ XXxx \cup^{ω} $\frac{1}{M}$ +++ XXxx \sqcup^{ω} $\frac{1}{M}$ +++ XXxx \sqcup^{ω} $\frac{1}{M}$ +++ XXxx \sqcup^{ω} $\frac{1}{M}$ HH- XXXX \sqcup^{ω} $\frac{1}{M}$ HH- XXXX \sqcup^{ω} $\frac{1}{M}$ HH- XXXXX \sqcup^{ω}

A Quick Recap

δ	⊢	a	b	С	П	X	X
1	(1 , ⊢, <i>R</i>)	(2, ⊢, <i>R</i>)	(r, -, -)	(r, -, -)	(t, -, -)	(5, X, R)	(r, -, -)
2	(r, -, -)	(2, a, R)	(3, X, R)	(r, c, R)	(r, -, -)	(2, X, R)	(r, -, -)
3	(r, -, -)	(r, -, -)	(3, b, R)	(4, x, L)	(r, -, -)	(r, -, -)	(3, x, R)
	$(1, \vdash, R)$						
	(<i>r</i> , -, -)						

acb

⊢acb⊔^ω

A Ouick Recap

acb

$$\vdash$$
 acb $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash$ acb \sqcup^{ω}

A Ouick Recap

acb

$$\vdash$$
 acb $\sqcup^{\omega} \xrightarrow{1 \atop M} \vdash$ acb $\sqcup^{\omega} \xrightarrow{1 \atop M} \vdash$ \vdash cb \sqcup^{ω}

A Ouick Recap

acb \notin L(M)

$$\frac{1}{1}$$
 $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{1}$ $\frac{1}{M}$ $\frac{1}$

A Ouick Recap

acb \notin L(M)

$$\frac{1}{1}$$
 $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{1}$ $\frac{1}{M}$ $\frac{1}$

abca

Fabca⊔^ω

Encodina

Example

A Ouick Recap

acb \notin L(M)

$$\frac{1}{1}$$
 $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{1}$ $\frac{1}{M}$ $\frac{1}$

$$\vdash abca \sqcup^{\omega} \xrightarrow{1}_{M} \vdash abca \sqcup^{\omega}$$

A Ouick Recap

acb ∉ L(M)

$$\frac{1}{1}$$
 $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{1}$ $\frac{1}{M}$ $\frac{1}$

$$\vdash$$
abca $\sqcup^{\omega} \xrightarrow{1 \atop M} \vdash$ abca $\sqcup^{\omega} \xrightarrow{1 \atop M} \vdash$ bca \sqcup^{ω}

A Ouick Recap

acb ∉ L(M)

$$\vdash$$
acb $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash$ acb $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash$ \vdash cb $\sqcup^{\omega} \xrightarrow{1}_{M} \vdash$ \vdash cb \sqcup^{ω}

$$\frac{1}{1}$$
 $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{1}$ $\frac{1}{M}$ $\frac{1}$

A Ouick Recap

acb \notin L(M)

$$\frac{1}{1}$$
 $\frac{1}{M}$ $\frac{1}$

A Ouick Recap

acb \notin L(M)

$$\frac{1}{1}$$
 $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{1}$ $\frac{1}{M}$ $\frac{1}$

A Ouick Recap

acb ∉ L(M)

$$\frac{1}{1}$$
 $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{1}$ $\frac{1}{M}$ $\frac{1}$

A Ouick Recap

acb \notin L(M)

$$\frac{1}{1}$$
 $\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{1}$ $\frac{1}{M}$ $\frac{1}$

A Ouick Recap

Decision Problems

acb ∉ L(M)

$$\frac{1}{M}$$
 $\frac{1}{M}$ $\frac{1}$

A Ouick Recap

acb \notin L(M)

$$-\operatorname{lacb} \sqcup^{\omega} \xrightarrow{1}_{M} + \operatorname{lacb} \sqcup^{\omega} \xrightarrow{1}_{M} + \operatorname{lacb} \sqcup^{\omega} \xrightarrow{1}_{M} + \operatorname{lacb} \sqcup^{\omega}$$

abca ∉ L(M)

A Quick Recap

• configuration: element of $Q \times \{y \sqcup^{\omega} \mid y \in \Gamma^*\} \times \mathbb{N}$

Decision Problems

Definitions

- configuration: element of $Q \times \{y \sqcup^{\omega} \mid y \in \Gamma^*\} \times \mathbb{N}$
- start configuration on input $x \in \Sigma^*$: $(s, \vdash x \sqcup^{\omega}, 0)$

A Ouick Recap

- configuration: element of $Q \times \{y \sqcup^{\omega} \mid y \in \Gamma^*\} \times \mathbb{N}$
- start configuration on input $x \in \Sigma^*$: $(s, \vdash x \sqcup^{\omega}, 0)$
- next configuration relation is binary relation $\frac{1}{M}$ defined as:

$$(p,z,n) \xrightarrow{1} \begin{cases} (q,z',n-1) & \text{if } \delta(p,z_n) = (q,b,L) \\ (q,z',n+1) & \text{if } \delta(p,z_n) = (q,b,R) \end{cases}$$

with

• z_n : n-th symbol of z

A Ouick Recap

- configuration: element of $O \times \{y \sqcup^{\omega} \mid y \in \Gamma^*\} \times \mathbb{N}$
- start configuration on input $x \in \Sigma^*$: $(s, \vdash x \sqcup^{\omega}, 0)$
- next configuration relation is binary relation $\xrightarrow{1}$ defined as:

$$(p,z,n) \xrightarrow{1} \begin{cases} (q,z',n-1) & \text{if } \delta(p,z_n) = (q,b,L) \\ (q,z',n+1) & \text{if } \delta(p,z_n) = (q,b,R) \end{cases}$$

with

• z_n : n-th symbol of z

Encodina

Definitions

A Ouick Recap

- configuration: element of $O \times \{y \sqcup^{\omega} \mid y \in \Gamma^*\} \times \mathbb{N}$
- start configuration on input $x \in \Sigma^*$: $(s, \vdash x \sqcup^{\omega}, 0)$
- next configuration relation is binary relation $\frac{1}{M}$ defined as:

$$(p,z,n) \xrightarrow{1} \begin{cases} (q,z',n-1) & \text{if } \delta(p,z_n) = (q,b,L) \\ (q,z',n+1) & \text{if } \delta(p,z_n) = (q,b,R) \end{cases}$$

with

- z_n : n-th symbol of z
- z': string obtained from z by substituting b for z_n (at position n)

- configuration: element of $O \times \{y \sqcup^{\omega} \mid y \in \Gamma^*\} \times \mathbb{N}$
- start configuration on input $x \in \Sigma^*$: $(s, \vdash x \sqcup^{\omega}, 0)$
- next configuration relation is binary relation $\frac{1}{M}$ defined as:

$$(p,z,n) \xrightarrow{1} \begin{cases} (q,z',n-1) & \text{if } \delta(p,z_n) = (q,b,L) \\ (q,z',n+1) & \text{if } \delta(p,z_n) = (q,b,R) \end{cases}$$

with

- z_n : n-th symbol of z
- z': string obtained from z by substituting b for z_n (at position n)

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$
 $\frac{*}{M} = \bigcup_{n \ge 0} \frac{n}{M}$

- configuration: element of $Q \times \{y \sqcup^{\omega} \mid y \in \Gamma^*\} \times \mathbb{N}$
- start configuration on input $x \in \Sigma^*$: $(s, \vdash x \sqcup^{\omega}, 0)$
- next configuration relation is binary relation $\frac{1}{M}$ defined as:

$$(p,z,n) \xrightarrow{1} \begin{cases} (q,z',n-1) & \text{if } \delta(p,z_n) = (q,b,L) \\ (q,z',n+1) & \text{if } \delta(p,z_n) = (q,b,R) \end{cases}$$

with

- z_n : n-th symbol of z
- z': string obtained from z by substituting b for z_n (at position n)
- $\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$ $\frac{*}{M} = \bigcup_{n \ge 0} \frac{n}{M}$

A Ouick Recap

• $x \in \Sigma^*$ is accepted by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*}_{M} (t, y, n)$

Encodina

Definitions

- $x \in \Sigma^*$ is accepted by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*}_{M} (t, y, n)$
- L(M) is set of strings accepted by M

- $x \in \Sigma^*$ is accepted by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*} (t, y, n)$
- L(M) is set of strings accepted by M
- $x \in \Sigma^*$ is rejected by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*} (r, y, n)$

- $x \in \Sigma^*$ is accepted by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*} (t, y, n)$
- L(M) is set of strings accepted by M
- $x \in \Sigma^*$ is rejected by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*}_{M} (r, y, n)$
- M halts on x if it accepts or rejects x, otherwise M loops on x

- $x \in \Sigma^*$ is accepted by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*} (t, y, n)$
- L(M) is set of strings accepted by M
- $x \in \Sigma^*$ is rejected by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*} (r, y, n)$
- M halts on x if it accepts or rejects x, otherwise M loops on x
- M is total if it halts on all inputs

Decision Problems

Definitions

- $x \in \Sigma^*$ is accepted by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*} (t, y, n)$
- L(M) is set of strings accepted by M
- $x \in \Sigma^*$ is rejected by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*}_{M} (r, y, n)$
- M halts on x if it accepts or rejects x, otherwise M loops on x
- M is total if it halts on all inputs
- set A is
 - recursively enumerable (r.e.) if A = L(M) for some TM M

- $x \in \Sigma^*$ is accepted by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*}_{M} (t, y, n)$
- L(M) is set of strings accepted by M
- $x \in \Sigma^*$ is rejected by M if $\exists y \exists n$ such that $(s, \vdash x \sqcup^{\omega}, 0) \xrightarrow{*} (r, y, n)$
- M halts on x if it accepts or rejects x, otherwise M loops on x
- M is total if it halts on all inputs
- set *A* is
 - recursively enumerable (r.e.) if A = L(M) for some TM M
 - recursive if A = L(M) for some total TM M

Turing Machines 000000000●00 Decision Problems

Encoding 0000000 Diagonalization 0000

Theoren

• every recursive set is r.e.

Theoren

- every recursive set is r.e.
- not every r.e. set is recursive

Theorem

- every recursive set is r.e.
- not every r.e. set is recursive
- every context-free set is recursive

Theorem

- every recursive set is r.e.
- not every r.e. set is recursive
- every context-free set is recursive
- not every recursive set is context-free

Theoren

- every recursive set is r.e.
- not every r.e. set is recursive
- every context-free set is recursive
- not every recursive set is context-free (A)

 $A = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \ge 0 \}$

Theorer

A Quick Recap

if A and $\sim A$ are r.e. then A is recursive

Theorem

A Ouick Recap

if A and $\sim A$ are r.e. then A is recursive

- $A = L(M_1)$ for TM $M_1 = TM(Q_1, \Sigma, \Gamma_1, \vdash, \sqcup, \delta_1, s_1, t_1, r_1)$
- $\sim A = L(M_2)$ for TM $M_2 = TM(Q_2, \Sigma, \Gamma_2, \vdash, \sqcup, \delta_2, s_2, t_2, r_2)$

Theoren

A Ouick Recap

if A and $\sim A$ are r.e. then A is recursive

- $A = L(M_1)$ for TM $M_1 = TM(Q_1, \Sigma, \Gamma_1, \vdash, \sqcup, \delta_1, s_1, t_1, r_1)$
- $\sim A = L(M_2)$ for TM $M_2 = TM(Q_2, \Sigma, \Gamma_2, \vdash, \sqcup, \delta_2, s_2, t_2, r_2)$
- define TM M that simulates M_1 and M_2 on separate tracks of its single tape

Theoren

A Ouick Recap

if A and \sim A are r.e. then A is recursive

- $A = L(M_1)$ for TM $M_1 = TM(Q_1, \Sigma, \Gamma_1, \vdash, \sqcup, \delta_1, s_1, t_1, r_1)$
- $\sim A = L(M_2)$ for TM $M_2 = TM(Q_2, \Sigma, \Gamma_2, \vdash, \sqcup, \delta_2, s_2, t_2, r_2)$
- define TM M that simulates M_1 and M_2 on separate tracks of its single tape

Theorem

A Ouick Recap

if A and \sim A are r.e. then A is recursive

- $A = L(M_1)$ for TM $M_1 = TM(Q_1, \Sigma, \Gamma_1, \vdash, \sqcup, \delta_1, s_1, t_1, r_1)$
- $\sim A = L(M_2)$ for TM $M_2 = TM(Q_2, \Sigma, \Gamma_2, \vdash, \sqcup, \delta_2, s_2, t_2, r_2)$
- define TM M that simulates M_1 and M_2 on separate tracks of its single tape

Theorer

A Ouick Recap

recursive sets are effectively closed under complement

Theorer

A Ouick Recap

recursive sets are effectively closed under complement

Theorem

extending TMs with

nondeterminism

does not change the class of recursive (enumerable) languages

A Ouick Recap

recursive sets are effectively closed under complement

extending TMs with

- nondeterminism
- two-way infinite tape

does not change the class of recursive (enumerable) languages

recursive sets are effectively closed under complement

extending TMs with

- nondeterminism
- two-way infinite tape
- multiple tapes

does not change the class of recursive (enumerable) languages

Encodina

Decision Problems

A Ouick Recap

recursive sets are effectively closed under complement

extending TMs with

- nondeterminism
- two-way infinite tape
- multiple tapes
- multidimensional tape

does not change the class of recursive (enumerable) languages

recursive sets are effectively closed under complement

extending TMs with

- nondeterminism
- two-way infinite tape
- multiple tapes
- multidimensional tape
- multiple heads

does not change the class of recursive (enumerable) languages

Encodina

Outline

- 1 A Quick Recap
- 3 Decision Problems

A Ouick Recap

halting problem for TMs

instance: TM M, string x question: does M halt on x?

A Ouick Recap

• halting problem for TMs

instance: TM M, string x question: does M halt on x?

• uniform halting problem for TMs

TMMinstance:

question: does M halt on all inputs?

A Ouick Recap

halting problem for TMs

instance: TM *M*, string *x* question: does *M* halt on *x*?

· uniform halting problem for TMs

instance: TM M

question: does M halt on all inputs?

• membership problem for CFGs

instance: CFG G, string x

question: $x \in L(G)$?

halting problem for TMs

instance: TM *M*, string *x*question: does *M* halt on *x*?

· uniform halting problem for TMs

instance: TM M

question: does *M* halt on all inputs?

• membership problem for CFGs

instance: CFG G, string x question: $x \in L(G)$?

• equivalence problem for regular expressions

instance: regular expressions α , β

question: $L(\alpha) = L(\beta)$?

A Ouick Recap

halting problem for TMs

instance: TM M, string x auestion: does M halt on x?

uniform halting problem for TMs

instance: TMM

question: does *M* halt on all inputs? membership problem for CFGs

instance: CFG G, string x auestion: $x \in L(G)$?

• equivalence problem for regular expressions

instance: regular expressions α , β

question: $L(\alpha) = L(\beta)$?

Decision Problems as Membership Problems

code instance of problem as string over some alphabet

A Ouick Recap

halting problem for TMs

instance: TM M, string x question: does M halt on x?

uniform halting problem for TMs

instance: TM M

question: does *M* halt on all inputs?

membership problem for CFGs

instance: CFG G, string x question: $x \in L(G)$?

equivalence problem for regular expressions

instance: regular expressions α , β

question: $L(\alpha) = L(\beta)$?

Decision Problems as Membership Problems

- code instance of problem as string over some alphabet
- language is set of all strings that correspond to yes instances

0000

A Ouick Recap

for every set A exactly one of following alternatives holds

 \bigcirc A and \sim A are recursive

0000

A Ouick Recap

- \bigcirc A and \sim A are recursive
- A and $\sim A$ are not r.e.

- A and $\sim A$ are recursive
- A and $\sim A$ are not r.e.
- one of A and $\sim A$ is r.e. and other is not r.e.

- A and $\sim A$ are recursive
- A and $\sim A$ are not r.e.
- one of A and $\sim A$ is r.e. and other is not r.e.

- A and $\sim A$ are recursive
- A and $\sim A$ are not r.e.
- one of A and $\sim A$ is r.e. and other is not r.e.

0000

A Ouick Recap

- A and $\sim A$ are recursive
- A and $\sim A$ are not r.e.
- one of A and $\sim A$ is r.e. and other is not r.e.

- A and $\sim A$ are recursive
- A and $\sim A$ are not r.e.
- one of A and $\sim A$ is r.e. and other is not r.e.

- A and $\sim A$ are recursive
- A and $\sim A$ are not r.e.
- one of A and $\sim A$ is r.e. and other is not r.e.

<i>A</i> \ ∼ <i>A</i>	A	В	C
Α	1	×	×
В	×	×	3
C	×	3	2

000

Definitions

A Ouick Recap

decision problem P is

- decidable if there is algorithm (TM that always halts) for P:

 - accepts for every yes instancerejects for every no instance

Definitions

A Ouick Recap

decision problem P is

- decidable if there is algorithm (TM that always halts) for P:
 - accepts for every yes instance
 - 2 rejects for every no instance
- semi-decidable if there is procedure (TM) for P:
 - accepts for every yes instance
 - rejects or loops for every no instance

Definitions

A Ouick Recap

decision problem P is

- decidable if there is algorithm (TM that always halts) for P:
 - accepts for every yes instance
 - rejects for every no instance
- semi-decidable if there is procedure (TM) for P:
 - accepts for every ves instance
 - rejects or loops for every no instance

Remark

decision problem P is (semi-)decidable \iff encoding of *P* is recursive(ly enumerable)

Decision Problems

000

Definitions

A Ouick Recap

decision problem P is

- decidable if there is algorithm (TM that always halts) for P:
 - accepts for every yes instance
 - rejects for every no instance
- semi-decidable if there is procedure (TM) for P:
 - accepts for every ves instance
 - rejects or loops for every no instance

Remark

decision problem P is (semi-)decidable \iff encoding of P is recursive(ly enumerable)

Decision Problems

000

Outline

- 1 A Quick Recap
- 2 Turing Machines
- 3 Decision Problems
- 4 Encoding
- Diagonalization

• 3 computable mappings

 $N \mapsto enc(N)$ from TMs to bit strings

Theorem

A Ouick Recap

• 3 computable mappings

 $N \mapsto enc(N)$ from TMs to bit strings

 $x \mapsto \operatorname{dec}(x)$ from bit strings to TMs

Theorem

A Ouick Recap

• 3 computable mappings

$$N \mapsto \operatorname{enc}(N)$$
 from TMs to bit strings

 $x \mapsto dec(x)$ from bit strings to TMs

Encodina

000000

such that

$$dec(enc(N)) = N$$

A LW N

• 3 computable mappings

$$N \mapsto enc(N)$$
 from TMs to bit strings

 $x \mapsto dec(x)$ from bit strings to TMs

Encodina

000000

such that

$$dec(enc(N)) = N$$

A LW N

$$enc(dec(x)) = \begin{cases} x \\ x \end{cases}$$

if
$$x = enc(N)$$
 for some TM N

$$\forall \, x \in \left\{0,1\right\}^*$$

• 3 computable mappings

$$N \mapsto \operatorname{enc}(N)$$
 from TMs to bit strings

 $x \mapsto dec(x)$ from bit strings to TMs

Encodina 0000000

such that

$$dec(enc(N)) = N$$

A LW N

$$enc(dec(x)) = \begin{cases} x & \text{if } x = enc(N) \text{ for some TM } N \\ enc(N_{trivial}) & \text{otherwise} \end{cases}$$

 $\forall x \in \{0,1\}^*$

where N_{trivial} is some fixed TM with $L(N_{\text{trivial}}) = \emptyset$

A Quick Recap

• TM $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$

A Ouick Recap

• TM $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ without loss of generality

•
$$Q = \{0, 1, ..., n-1\}$$

$$enc(M) = 0^n$$

- TM $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ without loss of generality
 - $Q = \{0, 1, ..., n-1\}$
 - $\Gamma = \{0, 1, ..., m-1\}$

$$enc(M) = 0^n 10^m$$

- TM $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ without loss of generality
 - $Q = \{0, 1, ..., n-1\}$
 - $\Gamma = \{0, 1, ..., m-1\}$ $\Sigma = \{0, 1, ..., k-1\}$

$$enc(M) = 0^n 10^m 10^k$$

- TM $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ without loss of generality
 - $Q = \{0, 1, ..., n-1\}$
 - $\Gamma = \{0, 1, ..., m-1\}$ $\Sigma = \{0, 1, ..., k-1\}$

$$enc(M) = 0^n 10^m 10^k 10^s 10^t 10^r$$

A Ouick Recap

- TM $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ without loss of generality
 - $Q = \{0, 1, ..., n-1\}$
 - $\Gamma = \{0, 1, \ldots, m-1\}$
 - $\Sigma = \{0, 1, ..., k-1\}$
 - **-**= 11

 $enc(M) = 0^n 10^m 10^k 10^s 10^t 10^r 10^u$

A Ouick Recap

- TM $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ without loss of generality
 - $Q = \{0, 1, ..., n-1\}$
 - $\Gamma = \{0, 1, \ldots, m-1\}$
 - $\Sigma = \{0, 1, ..., k-1\}$
 - **⊢**= *u*
 - $\sqcup = v$

 $enc(M) = 0^n 10^m 10^k 10^s 10^t 10^r 10^u 10^v 1$

```
• TM M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)
                                                  without loss of generality
```

- $Q = \{0, 1, \dots, n-1\}$
- $\Gamma = \{0, 1, ..., m-1\}$
- $\Sigma = \{0, 1, ..., k-1\}$
- ⊢= !!
- $\sqcup = v$

$$enc(M) = 0^{n}10^{m}10^{k}10^{s}10^{t}10^{r}10^{u}10^{v}1 \cdots 0^{p}10^{a}10^{q}10^{b}10^{c}1 \cdots$$

for all
$$((p, a), (q, b, d)) \in \delta$$
 with $c = \begin{cases} 0 & \text{if } d = L \\ 1 & \text{if } d = R \end{cases}$

Example (Encoding)

A Ouick Recap

```
• TM M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)
                                                  without loss of generality
```

- $Q = \{0, 1, \dots, n-1\}$
- $\Gamma = \{0, 1, \dots, m-1\}$
- $\Sigma = \{0, 1, \dots, k-1\}$
- ⊢= !!
- $\sqcup = v$

$$\mathrm{enc}(\mathit{M}) = 0^{n} 10^{m} 10^{k} 10^{s} 10^{t} 10^{r} 10^{u} 10^{v} 1 \qquad \cdots \qquad 0^{p} 10^{a} 10^{q} 10^{b} 10^{c} 1 \qquad \text{(order is not important)}$$

for all
$$((p, a), (q, b, d)) \in \delta$$
 with $c = \begin{cases} 0 & \text{if } d = L \\ 1 & \text{if } d = R \end{cases}$

• string
$$x = a_1 a_2 \cdots a_n \in \Sigma^*$$

enc(x) = $0^{a_1} 10^{a_2} 1 \cdots 0^{a_n} 1$

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, 2, 3, \delta, 0, 1, 0)$ with

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, 2, 3, \delta, 0, 1, 0)$ with

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, 2, 3, \delta, 0, 1, 0)$ with

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, 2, 3, \delta, 0, 1, 0)$ with

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, 2, 3, \delta, 0, 1, 0)$ with

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, \frac{2}{2}, 3, \delta, 0, 1, 0)$ with

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, 2, 3, \delta, 0, 1, 0)$ with

Encodina

0000000

A Ouick Recap

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, 2, 3, \delta, 0, 1, 0)$ with

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, 2, 3, \delta, 0, 1, 0)$ with

• $N_{\text{trivial}} = (\{0, 1\}, \{0, 1\}, \{0, 1, 2, 3\}, 2, 3, \delta, 0, 1, 0)$ with

Theoren

A Ouick Recap

• 3 computable mappings

$$N \mapsto enc(N)$$
 from TMs to bit strings

 $x \mapsto dec(x)$ from bit strings to TMs

such that

$$dec(enc(N)) = N$$

A LW N

$$enc(dec(x)) = \begin{cases} x & \text{if } x = enc(N) \text{ for some TM } N \\ enc(N_{trivial}) & \text{otherwise} \end{cases}$$

 $\forall x \in \{0,1\}^*$

where N_{trivial} is some fixed TM with $L(N_{\text{trivial}}) = \emptyset$

• 3 computable enumeration of all TMs with input alphabet {0, 1}

$$M_{\varepsilon}$$
, M_0 , M_1 , M_{00} , M_{01} , M_{10} , ...

 $\mathsf{MP} = \{\mathsf{enc}(M) \# \mathsf{enc}(x) \mid x \in L(M)\}$

A Ouick Recap

 $\mathsf{MP} = \{ \qquad M \ \# \qquad x \mid x \in L(M) \}$

A Ouick Recap

 $MP = {$

A Ouick Recap

M #

 $x \mid x \in L(M)$

Theorem (Universal Turing Machine)

 $\exists \mathsf{TM} \mathsf{U} \mathsf{such} \mathsf{that} \mathsf{L}(\mathsf{U}) = \mathsf{MP}$

 $MP = {$

A Ouick Recap

M #

 $x \mid x \in L(M)$

Theorem (Universal Turing Machine)

 $\exists \mathsf{TM} \mathsf{U} \mathsf{such} \mathsf{that} \mathsf{L}(\mathsf{U}) = \mathsf{MP}$

universal TM can simulate any TM

 $MP = {$

A Ouick Recap

M #

 $x \mid x \in L(M)$

Theorem (Universal Turing Machine)

 $\exists TM U \text{ such that } L(U) = MP$

universal TM can simulate any TM

MP is r.e.

How to Prove Undecidability?

- diagonalization
- reduction

How to Prove Undecidability?

- diagonalization
- reduction

Outline

A Ouick Recap

- 1 A Quick Recap

- 5 Diagonalization

A Ouick Recap

• set A is countably infinite if there exists bijection $f: \mathbb{N} \to A$

A Ouick Recap

- set A is countably infinite if there exists bijection $f: \mathbb{N} \to A$
- set is countable if it is finite or countably infinite

A Ouick Recap

- set A is countably infinite if there exists bijection $f: \mathbb{N} \to A$
- set is countable if it is finite or countably infinite

Example

• \mathbb{N} f(n) = n

A Ouick Recap

- set A is countably infinite if there exists bijection $f: \mathbb{N} \to A$
- set is countable if it is finite or countably infinite

Example

- \mathbb{N} f(n) = n
- \mathbb{Z} $f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$

A Ouick Recap

- set A is countably infinite if there exists bijection $f: \mathbb{N} \to A$
- set is countable if it is finite or countably infinite

Example

- \mathbb{N} f(n) = n
- \mathbb{Z} $f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$
- \mathbb{Q} $f(n) = \cdots$

- set A is countably infinite if there exists bijection $f: \mathbb{N} \to A$
- set is countable if it is finite or countably infinite

Example

- \mathbb{N} f(n) = n
- \mathbb{Z} $f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$
- \mathbb{Q} $f(n) = \cdots$

Theorem (Schröder-Bernstein)

 \exists bijection $A \rightarrow B \iff \exists$ injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$

- set A is countably infinite if there exists bijection $f: \mathbb{N} \to A$
- set is countable if it is finite or countably infinite

- \mathbb{N} f(n) = n
- \mathbb{Z} $f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$
- \mathbb{Q} f(n) = n g(0) = 0 $g(\frac{p}{a}) = 2^p 3^q$ $g(-\frac{p}{q}) = 2^p 3^q 5$

Theorem (Schröder-Bernstein)

 \exists bijection $A \rightarrow B \iff \exists$ injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$

- set A is countably infinite if there exists bijection $f: \mathbb{N} \to A$
- set is countable if it is finite or countably infinite

Example

- \mathbb{N} f(n) = n
- \mathbb{Z} $f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$
- \mathbb{Q} f(n) = n g(0) = 0 $g(\frac{p}{a}) = 2^p 3^q$ $g(-\frac{p}{a}) = 2^p 3^q 5$
- Σ^* for finite alphabet Σ is countable

Theorem (Schröder-Bernstein)

 \exists bijection $A \rightarrow B \iff \exists$ injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$

A Quick Recap

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

A Ouick Recap

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

Proof. (Diagonalization)

• suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable

A Ouick Recap

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

Proof. (Diagonalization)

 x_0 x_1 x_2

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable

Encodina

A Ouick Recap

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

Proof. (Diagonalization)

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- · create infinite table

 x_0 x_1 X_2

A Ouick Recap

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- create infinite table

$$A_0$$
 A_1 A_2 ...
 X_0 \times
 X_1 \checkmark
 X_2 \times
 X_3 \times

A Ouick Recap

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- create infinite table

•
$$A_0 = \{x_1\}$$
 $A_1 = \{x_0, x_2, x_7, x_8, \dots\}$

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- create infinite table

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- create infinite table

•
$$A_0 = \{x_1\}$$
 $A_1 = \{x_0, x_2, x_7, x_8, \dots\}$ $A_2 = \{x_2, x_5\}$

• define
$$B = \{x_i \mid x_i \notin A_i\} \in 2^{\Sigma^*}$$

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- create infinite table

- $A_0 = \{x_1\}$ $A_1 = \{x_0, x_2, x_7, x_8, \dots\}$ $A_2 = \{x_2, x_5\}$
- define $B = \{x_i \mid x_i \notin A_i\} \in 2^{\Sigma^*}$
- $B \neq A_i \forall i$

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- create infinite table

- $A_0 = \{x_1\}$ $A_1 = \{x_0, x_2, x_7, x_8, \dots\}$ $A_2 = \{x_2, x_5\}$
- define $B = \{x_i \mid x_i \notin A_i\} \in 2^{\Sigma^*}$
- $B \neq A_i \ \forall i$

Thanks! & Questions?