IOITC 2020 TST 1

Counting Intervals

There are N students numbered 1, 2, ..., N. Their teacher wants to select an interval [L, R] ($1 \le L \le R \le N$) and select all students whose number is in that interval. There are M friendships among the students. For each i from 1 to M, a_i and b_i are friends. Note that friendship is a bidirectional relation. The teacher wants to make sure that for each pair of friends, they are either both selected or both not selected. What is the number of different intervals [L, R] the teacher can choose?

Two intervals $[L_1, R_1]$ and $[L_2, R_2]$ are different if and only if $L_1 \neq L_2$ or $R_1 \neq R_2$.

Input

- The first line contains N and M, the number of students and the number of friendships.
- The *i*-th of the next M lines contains two integers, a_i and b_i .

Output

Print the number of different intervals [L, R] which satisfy the teacher's constraint.

Test Data

In all inputs,

- For all valid i, $a_i < b_i$
- No friendship pair is repeated in the M pairs. Formally, for any $i \neq j, a_i \neq a_j$ or $b_i \neq b_j$.

Subtask 1 (8 Points): $1 \le N, M \le 100$

Subtask 2 (27 Points): $1 \le N, M \le 5000$

Subtask 3 (65 Points): $1 \le N, M \le 3 \times 10^5$

Note: Please use fast IO methods.

Sample Input

5 2

1 3

3 4

Sample Output

4

Explanation

The possible intervals are [1,4],[1,5],[2,2] and [5,5]

Limits

Time: 3 seconds Memory: 256 MB