FEUILLE D'EXERCICES N°2

Différentiabilité sur les espaces euclidiens

Démonstrations de cours

Les exercices de cette section ne seront pas traités en TD, les corrigés se trouvant dans le polycopié. Les exercices marqués & sont exigibles au partiel et à l'examen.

♣ Exercice 1 – Différentielle et dérivées partielles

Module A2 – Corollaires 1 et 2

Soit E un espace euclidien de dimension n. Soient U un ouvert de E et $f:U\to\mathbb{R}$ une fonction différentiable en $a \in U$.

(a) Soit $i \in [1, n]$. On note e_i le *i*-ème vecteur de la base canonique de E et on pose

$$g_i: t \mapsto f(a+t e_i)$$

Justifier que g_i est dérivable en 0 et montrer que

$$g_i'(0) = df_a(e_i) = \langle \nabla f(a), e_i \rangle$$

(b) En déduire que

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_i}(a)\right)_{1 \le i \le r}$$

et que

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_i}(a)\right)_{1 \le i \le n}$$

$$\forall h \in E, \qquad df_a(h) = \langle \nabla f(a), h \rangle = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) h_i$$

Exercice 2 – Règles de calcul pour la différentielle seconde

Module A2 – Propositions 8

Soient U un ouvert de E, $a \in U$ et $f, g : U \to \mathbb{R}$ deux fonctions deux fois différentiables en a. Soit $(\lambda, \mu) \in \mathbb{R}^2$.

(a) Justifier que ∇f et ∇g sont différentiables en a. En déduire que $\lambda \nabla f + \mu \nabla g$ est différentiable en x voisin de a et que

$$d_x(\lambda f + \mu g)(h) = \lambda J(\nabla f)(x) h + \mu J(\nabla g)(x) h$$

(b) Justifier que $\lambda f + \mu g$ est deux fois différentiable en a et que

$$\operatorname{Hess}(\lambda f + \mu g) = \lambda \operatorname{Hess} f(a) + \mu \operatorname{Hess} g(a)$$

Exercices fondamentaux

Soient $f: \mathbb{R}^2 \to \mathbb{R}$ et $a = (a_1, a_2) \in \mathbb{R}^2$. Pour chacune des affirmations Exercice 3 – Vrai/faux suivantes, dire si elle est vraie ou fausses (sans justification).

- (a) f est continue en a. Donc $\frac{\partial f}{\partial x}(a)$ et $\frac{\partial f}{\partial y}(a)$ existent.
- (b) $x \mapsto f(x, a_2)$ et $y \mapsto f(a_1, y)$ sont continues en a_1 et a_2 respectivement. Donc f est continue en a.
- (c) $x \mapsto f(x, a_2)$ et $y \mapsto f(a_1, y)$ sont \mathcal{C}^1 en a_1 et a_2 respectivement. Donc f est de classe \mathcal{C}^1 en a.
- (d) f est différentiable en a. Donc $\frac{\partial f}{\partial x}(a)$ et $\frac{\partial f}{\partial y}(a)$ existent.
- (e) $\frac{\partial f}{\partial x}(a)$ et $\frac{\partial f}{\partial u}(a)$ existent. Donc f est différentiable en a.
- (f) $\frac{\partial f}{\partial x}(a)$ et $\frac{\partial f}{\partial y}(a)$ existent. Donc f est continue en a.

Exercice 4 – Gradient Pour les fonctions suivantes, répondre aux questions suivantes :

- 1. Montrer que la différentielle existe sur un ouvert que l'on déterminera.
- 2. Calculer le gradient aux points où il existe, puis la différentielle.
- **3.** La fonction est-elle de classe C^1 ?

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & 2x^2 + 6y^2 \end{array} \right.$$

(c)
$$h: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ (x,y) & \mapsto & \ln(x^2 + y^2 - y^2) \end{array} \right.$$

(b)
$$g: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R} \\ (x, y, z) & \mapsto & y e^{x-z} \end{array} \right.$$

(c)
$$h: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & \ln(x^2 + y^2 + 1) \end{array} \right.$$

(d) $k: \left\{ \begin{array}{ccc} \mathbb{R}^{+*} \times \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y,z) & \mapsto & \ln(x) + \cos(y^2 - z) \end{array} \right.$

Exercice 5 – Matrice jacobienne Pour les fonctions suivantes, répondre aux questions suivantes :

- 1. Montrer que la différentielle existe sur un ouvert que l'on déterminera.
- 2. Calculer la matrice jacobienne aux points où elle existe, puis la différentielle.
- **3.** La fonction est-elle de classe C^1 ?

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x,y) & \mapsto & (x^2 - y^2 - 2 \, x \, y, y, y^3) \end{array} \right.$$

(b)
$$g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (2x^2 + 6y^2, \ln(x^2 + y^2 + 1)) \end{array} \right.$$

Exercice 6 – Matrice hessienne Pour les fonctions suivantes, répondre aux questions suivantes :

- 1. Montrer que la différentielle seconde existe sur l'ensemble de définition.
- 2. Calculer la matrice hessienne, puis la différentielle seconde.

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & 2x^2 + 6y^2 \end{array} \right.$$

(b)
$$g: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R} \\ (x, y, z) & \mapsto & y e^{x-z} \end{array} \right.$$

Exercice 7 – Dérivabilité partielle et différentiabilité On considère la fonction définie par

$$\forall (x,y) \in \mathbb{R}^2, \qquad f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- (a) Montrer que la fonction f admet des dérivées partielles selon ses deux variables en tout point de \mathbb{R}^2 . Sont-elles continues en (0,0)?
- (b) La fonction f est-elle continue en (0,0)?
- (c) La fonction f est-elle différentiable sur \mathbb{R}^2 ?

Compléments

Exercice 8 – Forme bilinéaire Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_{n,n}(\mathbb{R})$. On considère la fonction suivante

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \langle Ax, x \rangle \end{array} \right.$$

Soit $a \in \mathbb{R}^n$.

- $\forall h \in \mathbb{R}^n, \qquad f(a+h) = \langle A \, a, a \rangle + \langle A \, a, h \rangle + \langle A \, h, a \rangle + \langle A \, h, h \rangle$ (a) Vérifier que
- $\begin{cases}
 \mathbb{R}^n & \to \mathbb{R} \\
 h & \mapsto \langle A a, h \rangle + \langle A h, a \rangle
 \end{cases}$ (b) Montrer que

est linéaire et continue.

(c) Montrer que $\forall h \in \mathbb{R}^n$, $|\langle A h, h \rangle| \le ||A h||_2 ||h||_2 \le ||A|| ||h||_2 ||h||_2$

En déduire que f est différentiable sur \mathbb{R}^n et déterminer sa différentielle.

(d) Justifier que $f(a+h) = f(a) + df(a) \cdot h + \langle Ah, h \rangle + o(\|h\|_2^2)$

Peut-on en déduire que f est deux fois différentiable en a?

- (e) Déterminer le gradient de f en a.
- (f) Montrer que ∇f est différentiable en a. En déduire que f est deux fois différentiable en a et calculer la jacobienne de ∇f en a.
- (g) Vérifier que $\forall\,h\in\mathbb{R}^n,\qquad \langle A\,h,h\rangle=\frac{1}{2}\,\langle J(\nabla f)(a)\,h,h\rangle$

Que vaut $\operatorname{Hess} f(a)$? Justifier votre réponse.

- * Exercice 9 Espace de matrices Posons $\mathcal{X} = \mathcal{M}_{n,n}(\mathbb{R})$.
- (a) On considère l'application $F: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathcal{X} \\ A & \mapsto & A^2 \end{array} \right.$

Montrer que F est de classe \mathcal{C}^1 sur \mathcal{X} et calculer pour tout $A \in \mathcal{X}$ sa différentielle dF(A).

(b) On considère l'application $G: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathcal{X} \\ A & \mapsto & \sum_{k=0}^{+\infty} \frac{A^k}{k!} \end{array} \right.$

Montrer que cette application est différentiable en 0 et calculer sa différentielle dG(0).

(c) On considère l'application $H: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathcal{X} \\ A & \mapsto & \operatorname{tr}(A) \, A \end{array} \right.$

Montrer que H est de classe \mathcal{C}^1 et calculer dH(A) pour tout $A \in \mathcal{X}$.