IN THE CLAIMS

Claims 1-6. (Canceled)

7. (Currently Amended) A method for the preparation of a cathode active material composed of a compound having a general formula comprising $\text{Li}_x\text{FePO}_{4x}$ where 0 < x [[<]] ≤ 1.0 , and a carbon material, with having a carbon content per unit weight being not less than 3 wt% and with a powder density being not lower than 2.2 g/cm³, comprising:

mixing a plurality of starting materials for synthesis for a compound represented by the general formula $\text{Li}_x\text{FePO}_4[[,]]$:

milling and sintering the resulting mixture; and

adding [[a]] the carbon material at any time point in during the course of the mixing, milling and sintering,

wherein said the carbon material has a Raman spectrum with a D peak at is such that, with an intensity area appearing in a number of waves of 1350 to 1360 cm⁻¹ and a G peak at an intensity area appearing in the number of waves of 1570 to 1590 cm⁻¹ in the Raman spectrometry being D and G, respectively, and an intensity area ratio A of D to G is $\geq 0.30[[,]]$;

wherein lithium phosphate (Li₃PO₄) and iron phosphate <u>hydrides hydrates</u> (Fe₃(PO₄)₂.nH₂O Fe₃(PO₄)₂.nH₂O, where n denotes the number of water molecules)[[,]] are used as the starting material for the synthesis of Li_xFePO₄.

- 8. (Original) The method for the preparation of the cathode active material according to claim 7 wherein said carbon material is added before milling.
- 9. (Original) The method for a preparation of the cathode active material according to claim 7 wherein said carbon material is added after sintering and wherein said milling is carried out after addition of the carbon material.

Response to Notice of Non-Compliant Amendment Application No. 09/942,008 Page 4

- 10. (Cancelled)
- 11. (Original) The method for the preparation of the cathode active material according to claim 7 wherein said sintering is carried out in a temperature range of 400 C to 900 C.
- 12. (Currently Amended) A method for a preparation of a non-aqueous electrolyte cell including a cathode containing a cathode active material composed of a compound having a general formula comprising Li_xFePO_4 where 0 < x [[<]] ≤ 1.0 , and a carbon material, with a carbon content per unit weight being not less than 3 wt% and with a powder density being not lower than 2.2 g/cm³, an anode containing an anode active material, and a non-aqueous electrolyte, said method including comprising

mixing a plurality of starting materials for synthesis for a compound represented by the general formula $\text{Li}_x\text{FePO}_4[[,]]$;

milling and sintering the resulting mixture; and

adding [[a]] the carbon material at any time point in during the course of the mixing, milling and sintering,

wherein said carbon material is such that, with an intensity area appearing in a number of waves of 1350 to 1360 cm⁻¹ and an intensity area appearing in the number of waves of 1570 to 1590 cm^{-1} in the Raman spectrometry being D and G, respectively, an intensity area ratio A of D to G is ≥ 0.30 , wherein lithium phosphate (Li₃PO₄) and iron phosphate hydrides hydrates (Fe₃(PO₄)₂.nH₂O, where n denotes the number of water molecules), are used as the starting material for the synthesis of Li_xFePO₄.

13. (Original) The method for the preparation of a non-aqueous electrolyte cell according to claim 12 wherein said carbon material is added before milling.

Response to Notice of Non-Compliant Amendment Application No. 09/942,008 Page 5

- 14. (Original) The method for the preparation of the non-aqueous electrolyte cell according to claim 12 wherein said carbon material is added after sintering and wherein said milling is carried out after addition of the carbon material.
 - 15. (Canceled)
- 16. (Original) The method for the preparation of the non-aqueous electrolyte cell according to claim 12 wherein said sintering is carried out in a temperature range of 400 C to 900 C.
- 17. (Original) The method for the preparation of the non-aqueous electrolyte cell according to claim 12 wherein said non-aqueous electrolyte is a solution-based non-aqueous electrolyte.
- 18. (Original) The method for the preparation of the non-aqueous electrolyte cell according to claim 12 wherein said non-aqueous electrolyte is a polymer-based non-aqueous electrolyte.
- 19. (New) A method for the preparation of a cathode active material comprising Li_xFePO_4 , where $0 < x \le 1.0$, and a carbon material having a carbon content per unit weight not less than 3 wt% and a powder density not lower than 2.2 g/cm³, comprising:

mixing a plurality of starting materials for synthesis for a compound represented by the general formula Li_xFePO₄;

milling and sintering the resulting mixture; and

adding the carbon material at any time during the course of the mixing, milling and sintering;

wherein lithium phosphate (Li₃PO₄) and iron phosphate hydrates (Fe₃(PO₄)₂·nH₂O, where n denotes the number of water molecules) are used as the starting material for the synthesis of Li_xFePO₄.

20. (New) A method for the preparation of a cathode active material comprising Li_xFePO_4 , where $0 < x \le 1.0$, and a carbon material having a carbon content per unit weight not less than 3 wt% and a powder density not lower than 2.2 g/cm³, comprising:

mixing a plurality of starting materials for synthesis for a compound represented by the general formula Li_xFePO₄;

milling and sintering the resulting mixture; and

adding the carbon material at any time during the course of the mixing, milling and sintering;

wherein the number of water molecule n is equal to or greater than 1.

21. (New) The method for the preparation of the cathode active material according to claim 7 wherein the milling is carried out by one of a planetary ball mill, a shaker type ball mill, and a mechano-fusion mill.