3/22/23, 11:14 PM Print Test

PRINTABLE VERSION

Quiz 10

You scored 100 out of 100

Question 1

Your answer is CORRECT.

Use the "Division Algorithm" to compute $32 \div 14$, and then determine which of the following statements is true.

- a) \bigcirc The value of the quotient is q=14 and the value of the remainder is r=32.
- **b)** The value of the quotient is q=2 and there are two possible remainder values r=4 and r=18.
- c) The value of the quotient is q = 32 and the value of the remainder is r = 14.
- d) \bigcirc The value of the quotient is q = 4 and the value of the remainder is r = 2.
- e) \odot The value of the quotient is q = 2 and the value of the remainder is r = 4.

Question 2

Your answer is CORRECT.

A mathematician used the division algorithm to divide the number 15 by another number b. Their computation resulted in the facts that the quotient q=3 and the remainder r=3. Determine the value of b.

- a) b = 4
- **b)** \bigcirc **b** = 16
- **c)** \bigcirc **b** = 15
- **d)** 0 b = 48
- e) 0 = 3

Question 3

Your answer is CORRECT.

What are the possible values for the remainder r when using the Division Algorithm to divide an integer a by the number 24?

- a) \bigcirc There is only one unique value for r, and that is r = 5.
- **b)** \circ $r \in \{-24, -23, \dots, -2, -1, 0, 1, 2, \dots, 23, 24\}$
- c) $r \in \{0, 1, 2, \dots, 23, 24\}$
- d) \bigcirc The remainder r can take on any integer value.
- e) \circ r $\in \{0, 1, 2, \dots, 23\}$

Ouestion 4

Your answer is CORRECT.

A mathematician used the division algorithm to divide an integer a by the number 11. Their computation resulted in the facts that the quotient q=5 and the remainder r=10. Determine the value of a.

- **b)** There must have been a mistake, as there is no value of a that makes this possible.
- **c)** \bigcirc a = 11
- **d)** \bigcirc a = 105
- $\mathbf{e)} \bigcirc \mathbf{a} = \frac{1}{5}$

Question 5

Your answer is CORRECT.

The Fundamental Theorem of Arithmetic states

- a) © Every integer greater than 1 can be uniquely expressed as a product of prime numbers (up to the order of the factors).
- **b)** Every prime greater than 1 can be expressed as a product of integers.
- c) Every prime greater than 1 can be uniquely expressed as a product of integers.
- d) Every integer greater than 1 can be expressed as a product of prime numbers.

	_				_			
`	Corner		~	41	1			
e)	Every	meger	orealer	ınan		19	Яnr	1 me
C 1	LIVELY	IIIICECI	SICULOI	uiuii		10	upi	11110

Question 6

Your answer is CORRECT.

What is the remainder when the Division Algorithm is used to divide 9 by 6?

- a) \bigcirc The remainder is $r = \frac{3}{2}$.
- **b)** \bigcirc The remainder is r = 6.
- c) \bigcirc The remainder is $r = \frac{1}{2}$.
- d) \odot The remainder is r = 3.
- e) \bigcirc The remainder is r = 9.

Ouestion 7

Your answer is CORRECT.

A mathematician used the division algorithm to divide an integer a by the number 18, and they found that the remainder r=15. Based on this information determine which of the following statements is true.

Print Test

- a) \bigcirc The only possible value of a is a = 33.
- **b)** \bigcirc a $\in \{18m : m \in Z\}$
- c) a 15 is a multiple of 18.
- d) \bigcirc a is a multiple of 33.

Question 8

Your answer is CORRECT.

The statement gcd(84, 68) = 2 is false. Which of the following best explains why?

- a) \bigcirc 2 is not a common divisor. 2|68, but 2 /| 84.
- **b)** \odot 2 is a common divisor for both 84 and 68, but it is not the greatest one.
- c) Wait a minute.. 2 is the greatest common divisor for 84 and 68. This statement is true!

d) \bigcirc The statement is false because the gcd(84, 68) = 1428

e) \bigcirc The statement is false because the gcd(84, 68) = 84.

Question 9

Your answer is CORRECT.

Of the options provided below, which pair of numbers is relatively prime?

a) 949,38

b) 038, 76

c) One of these pairs are relatively prime.

d) \bigcirc 35, 25

e) 049,49

Question 10

Your answer is CORRECT.

Recall Bezout's Identity:

$$\forall a, b \in \mathbb{Z}, \exists x, y \in \mathbb{Z}, ax + by = \gcd(a, b)$$

If we apply this identity to the pair of integers a = 4 and b = 21 we produce the statement

$$\exists x, y \in \mathbb{Z}, 4x + 21y = \gcd(4, 21).$$

Of the options provided, which values can we use for x and y to show this statement is true? Are there *other* or additional values one can use for x and y?

b) \bigcirc x = 21 and y = 0, and this pair is the only *unique* solution!

c) x = 16 and y = -3, and this pair is the only *unique* solution!

d) \bigcirc x = 21 and y = 0, and yes there are other solutions!

e) There are no solutions to this equation. Bezout's Identity does not apply because the integers a and b are too big..