Gravitational Algorithm for Anomaly Detection

Javier Fumanal Idocin¹, Alfonso Induráin¹, María Minárová², Mikel Ferrero Jaurrieta¹, Humberto Bustince¹ 3rd February, 2022

16th International Conference on Fuzzy Set Theory and Applications Liptovský Ján, Slovak Republic

Public University of Navarre

² Slovak University of Technology in Bratislava

Table of Contents

- 1. Gravitation Clustering
- 2. Anomaly Detection and Gravitational Clustering
- 3. Modification of the original Gravitational Clustering
- 4. Experimental results

Gravitational clustering

Classical gravitational clustering

What is cluster analysis?

- maximal mutual similarity inside a cluster
- minimal similarity between clusters

Algorithm

Gravitational clustering algorithm (Wright, 1977) alternating of two steps:

- (A) **Attracting** driven by Newton gravitational law controlling parameter: δ maximal shift (of the fastest particle) within one time step
- (C) Clustering controlling parameter: ϵ limiting distance of particles
 - Setting:
 - initial time to zero
 - influencing parameters ϵ and $\delta,\delta<\epsilon$
 - initial mass of each particle to 1

Algorithm

- Repeating (i)-(vi) until 1 particle remains
 - (i) checking the distances of particles. If less than ϵ , unification in new one: mass = sum of masses, position in the center of gravity
 - (ii) movement driving function $\forall p_i, \ \forall [t, t+dt]$

$$ec{g}_i(t) = rac{1}{2}G\sum_{j \neq i} rac{1}{m_i(t)} rac{ec{s}_j(t) - ec{s}_i(t)}{|ec{s}_j(t) - ec{s}_i(t)|^3} dt^2, \quad G > 0$$

- (iii) the fastest particle: $I = \arg(\max_i \{ |\vec{g_i}|(t) \}), p_I$
- (iv) current time step length computation: $|ec{g}_l(t)| = \delta \Rightarrow dt(t)$
- (v) new position of each particle p_i : $\vec{s}_i(t+dt(t)) = \vec{s}_i(t) + \vec{g}_i(t)$
- (vi) $t \leftarrow t + dt(t)$

Anomaly detection and Gravitational Clustering

Borgia Clustering

Borgia Clustering. Generalizing the gravitational clustering algorithm to form communities like the conquests of Cesare Borgia.

Figure 1: Italy in times of the Borgias. Italy's lordships before Cesare Borgia's campaign as Commander in Chief of the Papal Army. Each colour represents a different faction.

Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., & Minárová, M. (2020). Community detection and social network analysis based on the Italian wars of the 15th century. *Future Generation Computer Systems*, 113, 25-40.

Borgia Clustering

Borgia Clustering.

- 1. Different natural affinities between parties \rightarrow affinity functions.
- 2. Balance of power \rightarrow particle mass.
- 3. Scaling size: small communities differ from big communities
 - \rightarrow change the behaviour while communities grow.

Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., & Minárová, M. (2020). Community detection and social network analysis based on the Italian wars of the 15th century. *Future Generation Computer Systems*, 113, 25-40.

Borgia Clustering

Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., & Minárová, M. (2020). Community detection and social network analysis based on the Italian wars of the 15th century. *Future Generation Computer Systems*, 113, 25-40.

There is always the weird one...

There is always the weird one...

A challenge... and an opportunity

Sometimes particles are too far away... bad results!

A challenge... and an opportunity

Can we exploit this?

Gravitational Clustering

Modifications to the original

Anomaly detection

Anomaly. A rare item or observation which deviate significantly from the majority of the data (Hawkins, 1980).

Anomaly clusters

If a particle/cluster is "too far away" is an anomaly!

Two checks:

- How far: percentage of the simulation that took place before it joined the rest of the observations
- 2. How **big**: if a lot of observations are close, then they are not anomalies. (Cluster size)

Anomaly clusters

Setting. P = Maximum anomaly cluster size. T = coupling time. If a particle/cluster takes up more than T to join other cluster can be considered an anomaly.

Distances and particles

 Anomalies can affect the intuitive process of aggregation forces: a distant particle can create incorrect clustering configurations.

Distances and particles

 Solution: use a more general expression for the aggregation of forces to mitigate extreme values.

Generalizing the distance aggregation of forces

From

$$g_i^d(t) = \sum_{j \neq i} \frac{1}{m_i(t)} \frac{s_j^a(t) - s_i^a(t)}{|\vec{s_j}(t) - \vec{s_i}(t)|^3} dt^2(t)$$

to

$$g_i^d(t) = F_{j \neq i} \frac{1}{m_i(t)} \frac{s_j^d(t) - s_i^d(t)}{|\vec{s}_j(t) - \vec{s}_i(t)|^3} dt^2(t)$$

FG-Sugeno integral

The discrete Sugeno integral with respect to the fuzzy measure m is defined as a function $S_m : [0,1]^n \to [0,1]$, given for every $\mathbf{x} = (x_1, \dots, x_n)$ (Bardozzo et al., 2020)

$$S_m(\mathbf{x}) = F\{G(x_{\sigma(i)}, m(A_i)) | i = 1, ..., n\}$$
 (1)

where \mathbf{x}_{σ} is an increasing permutation of \mathbf{x} such that $0 \leq x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}$. With the convention that $x_{\sigma(0)} = 0$, $A_i = \{(i), (i+1), \ldots, (n)\}$, F is a n-ary function and G is a bi-variant function.

For our experimentation, we take as F the summation and G as the product.

Ad-hoc solution for the Sugeno integral

- We are aggregating vectors of forces (not numbers).
- 1. We sort the vector forces based on their moduli.
- 2. We multiply each vector to the correspondent measure.
- 3. We sum the resulting vectors.

Experimental results

Datasets utilized

Table 1: Imabalance ratio, features and samples for each dataset studied.

Dataset	Imb. Ratio	Features	Samples
Ecoli1	3.36	7	336
Ecoli3	8.6	7	336
Glass6	6.38	9	214
Wisconsin	1.86	8	683
Yeast3	8.1	8	1484

Keel repository: https://sci2s.ugr.es/keel/imbalanced.php

Results

Target metric. F1 score

Table 2: F1 score for the proposed algorithm using different aggregation functions for the attraction forces.

Dataset	Aggregation		
	Sum	Ad-hoc FS-Sugeno like	
Ecoli1	0.8468	0.8350	
Ecoli3	0.9285	0.9432	
Glass6	0.9254	0.9057	
Wisconsin	0.8062	0.7954	
Yeast3	0.9324	0.9324	

Decision making

- Different aggregations \rightarrow different solutions to combine.
- In order to add more diversity we can use some well-known tactics:
 - 1. Sampling only a % of the observations.
 - 2. Using only some features.
- We generate k different models using randomly chosen aggregation, features and samples.
- Majority vote as final decision.

Results for decision making

Table 3: F1 score for the anomaly-Grav algorithm using different numbers of models.

Datasets	Number of Models				
	5	10	15	20	
Ecoli1	0.8841	0.8900	0.8947	0.8952	
Ecoli3	0.8887	0.8918	0.8943	0.8949	
Glass6	0.8925	0.8925	0.8938	0.8944	
Wisconsin	0.8767	0.8904	0.8956	0.8968	
Yeast3	0.8884	0.8897	0.8916	0.8925	

Conclusions and Future lines

Conclusions

- We proposed an adaptation of the gravitational clustering to perform anomaly detection.
- Performance measured using F1 score is good!
- Different aggregations than the sum can lead to better results.
- Decision making schemes seems to be very successful.

Future Lines

- Use more aggregation functions.
- Develop further the decision making scheme.

Thanks for your attention Any questions?

javier.fumanal@unavarra.es

