This exam has 120 possible points (includes 20 points extra credit).

1. Draw a parse tree for the string a[a.a].a[a] using this context-free grammar: [10 points]

2. Write all strings with length exactly 4 that are accepted by this pushdown automaton: [10 points]

- 3. Let language $L_1 = \{a^m b^n \mid m \le 2n \text{ and } n \le 2m\}$.
 - a. Write a context-free grammar that generates language L₁. Ambiguity is permitted. [10 points]
 - b. Draw a pushdown automaton that accepts language L_1 both by final state and by empty stack. Non-determinism is permitted. [10 points]

- 4. Let language $L_2 = \{a^m b^n c^p d^q \mid m \ge 1, n \ge 1, p \ge 1, q \ge 1, and m + n = p + q\}$. Examples: $a^3 b^2 c^4 d^1 = aaabbccccd, a^2 b^5 c^3 d^4 = aabbbbbcccdddd$.
 - a. Write an unambiguous context-free grammar that generates language L_2 . [10 points] (Half credit for an ambiguous grammar.)

b. Draw a *deterministic* pushdown automaton that accepts language L₂ both by final state and by empty stack. **[10 points]** (Half credit for a non-deterministic machine.)

- - a. Write an *unambiguous* context-free grammar that generates language L₃. **[10 points]** (Half credit for an ambiguous grammar.)

b. Draw a *deterministic* pushdown automaton that accepts language L₃ by final state, with only the bottom-of-stack symbol Z₀ remaining on the stack if the string is accepted. [10 points] (Half credit for a non-deterministic machine.)

6. Eliminate all useless symbols, ε -productions, and unit productions from this context-free grammar. Your grammar should be equivalent to the original grammar. Bonus if you convert the grammar to Chomsky normal form. [10 points + 4 points]

$$S \rightarrow UX \mid TU \mid YT \mid RaR$$

 $T \rightarrow b \mid cT \mid Sd$
 $U \rightarrow e \mid V$
 $V \rightarrow W \mid f$
 $W \rightarrow g \mid h$
 $X \rightarrow \varepsilon \mid TZ \mid XY$
 $Y \rightarrow XX \mid ZS \mid YY$
 $Z \rightarrow ZQ \mid QZ$
 $Q \rightarrow i \mid \varepsilon$
 $R \rightarrow jk \mid \varepsilon$

7. Let $L_4 = \{ a^m b^n c^q \mid q = max(m,n) \}$. Examples: $a^2 b^4 c^4 = aabbbbcccc$, $a^4 b^2 c^4 = aaaabbcccc$, $a^3 b^3 c^3 = aaabbbccc$. Use the pumping theorem to show that L_4 is not context-free. **[16 points]**

First complete this statement of the pumping theorem for context-free languages: For every context-free language L, there exists some constant p such that for every string s with _____ and ____ , it is possible to write ____ such that ____ , ___ , ___ , and for every integer $i \geq 0$, _____ .

Next apply the pumping theorem to show that $L_4 = \{ a^m b^n c^q \mid q = max(m,n) \}$ is not context-free. Choose string $s = \underline{\hspace{1cm}}$.

Determine the possible cases and show a contradiction in each case:

8. Trace the CYK dynamic programming algorithm for input string "abcbab" using this Chomsky normal form grammar. Complete the table below. **[10 points]**

 $S \rightarrow XV \mid WU$ $T \rightarrow WX \mid VT$ $U \rightarrow VW \mid XS$ $V \rightarrow a \mid UX \mid XW$ $W \rightarrow b \mid TW \mid WV$ $X \rightarrow c \mid SV \mid VX$

	1	2	3	4	5	6
1						
2	_					
3	_	_				
4	_	-	_			
5	_	_	_	_		
6	_	-	_	-	-	