ID: 70040441

Computational Physics_PHYS624 HW1: Numerical Differentiation

Numerical Differentiation

<u>HW1</u>

Write a program that compute the first and second derivative of the following function at 2 points in the specified intervals using (i) Forward difference (ii) Backward difference (iii) Central difference (iv) Richardson extrapolation and compare them with the analytic results

 $f(x) = x^2 \cos x; x = [0,4]; h = [0.5, 0.25, 0.125]$

Answer:

Function to be differentiated
$$\Rightarrow f(x) = x^2 \cos x$$

where (x) is measured in Galdans

$$f'(x) = 2x \cos(x) - x^2 \sin(x)$$
 $yusing Product Rule$

$$f''(x) = 2 \cos x - 2x \sin x - 2x \sin x - x^2 \cos x$$

$$f''(x) = 2 \cos x - 4x \sin x - x^2 \cos x$$

the selected points are $x = 1$, $x = 2$

h is defined as a list of 3 values

$$h = [0.5, 0.25, 0.125]$$

The analytic Solution of $1^{51} \neq 2^{12}$ derivative at the two $x = 1$
 $x = 1 \Rightarrow f'(1) = 0.2341336269$

$$f''(1) = -2.825581633$$

at $x = 2 \Rightarrow f'(2) = -5.3017770535$

F"(2) = - 6.4420857415

Computational Physics_PHYS624

HW1: Numerical Differentiation

the Numerical Methods: FD, BD, CD

Calculating the derivative at the three value of (h)

[FDI] Forward difference for the prist derivative h=0.5 $f'(1)=\frac{f(1.5)-f(1)}{0.5}$

$$h = 0.5$$
 $f'(1) = \frac{f(1.5) - f(1)}{0.5}$

at
$$x=1$$
 $h=0.25$ $f'(1) = \frac{f(1.25)-f(1)}{0.25}$

$$h = 0.125$$
 $f'(1) = \frac{f(1.125) - f(1)}{0.125}$

2 BDI Backword difference for the first derivative at d=1 for the 3 values of h

$$f'(1) = \frac{f(1) - f(0.5)}{0.5}$$

CDI Central difference
$$at x=1$$

$$h=0.5 \quad f'(1) = \frac{f(1.5) - f(0.5)}{1}$$

for BDI, CDI same Steps are repeated for h=0.25 & h= 0.125

9 Richardson Extrapolation This step is calculated using the CD method for h = 0. 5 \$ hz = 0.25 only

Same upper four steps are repeated pg. 3 to calculate FD2, BD2, CD2 For the second derivative using their specified formula as mentioned in Lectures

ID: 70040441

Computational Physics PHYS624

HW1: Numerical Differentiation

The script runs as Aullows

1) define the function with it as a double?

- 2) define a function for the first derivative
- 3.) define a function for the second derivative.
- define functions for the numerical methods [FDI, BDI, CDI] - for the first (FDz, BDz, CDz) - for the second derivative

Refine Richardson extrapolation using (hi, hz) 6) Repeating STEP S For Richardson extrapolation for the second derivative.

- (7) selecting of as $\alpha=1$, $\alpha=2$
- (8) Considering has a step to be included in the function definition for each numerical method.
 - (2) Printing out the results

technical tips in the script using "It" as a tab character to Start new lines For the Calculations

ID: 70040441

Computational Physics_PHYS624 **HW1: Numerical Differentiation**

Code results:

The printed results

x N	umerical	_Method	h	First_De	erivativ	ve Secon	d_Derivative		
At x = 1.0000000000									
1.0000	000000	Forward	0.500	0000000	-0.76	522872042	-5.7704097913		
1.0000	000000	Backward	0.50	0000000	0.6	418133308	0.4060440997		
1.0000	000000	Central	0.5000	000000	-0.06	02369367	-2.8082010700		
1.0000	000000	Richardsor	0.50	0000000	0 0.2	363888522	-2.8258195207		
1.0000	000000	Forward	0.250	0000000	-0.19	04444585	-4.5747419658		
1.0000	000000	Backward	0.25	0000000	0.5	149092685	-1.0152324983		
1.0000	000000	Central	0.2500	000000	0.162	2324050	-2.8214149080		
1.0000	000000	Richardsor	n 0.25	50000000	0.2	389601826	-2.8255966846		
1.0000	000000	Forward	0.125	0000000	0.04	32437856	-3.7390119063		
1.0000	000000	Backward	0.12	5000000	0.3	963126907	-1.8975452450		
1.0000	000000	Central	0.1250	000000	0.219	7782382	-2.8245512404		

Analytical first derivative at x = 1.00000000000: 0.2391336269Analytical second derivative at x = 1.0000000000: -2.8255816334

ID: 70040441

Computational Physics_PHYS624 HW1: Numerical Differentiation

At x = 2.0000000000

2.0000000000	Forward	0.5000000000	-6.6851205020	-2.2408984850
2.0000000000	Backward	0.5000000000	-3.6474920999	-5.7704097913
2.0000000000	Central	0.5000000000	-5.1663063009	-6.0752568042
2.0000000000	Richardson	0.5000000000	0 -5.3025656853	-6.4406811844
2.0000000000	Forward	0.2500000000	-6.0621664754	-4.9836322126
2.0000000000	Backward	0.2500000000	-4.4748352030	-6.6187448253
2.0000000000	Central	0.2500000000	-5.2685008392	-6.3493250893
2.0000000000	Richardson	0.250000000	0 -5.3018273733	-6.4419973836
2.0000000000	Forward	0.1250000000	-5.6946725717	-5.8799024591
2.0000000000	Backward	0.1250000000	-4.8923189079	-6.6797392781
2.0000000000	Central	0.1250000000	-5.2934957398	-6.4188293101

Analytical first derivative at x = 2.0000000000: -5.3017770535Analytical second derivative at x = 2.0000000000: -6.4420857415
