Отчет по лабораторной работе №7

Команды безусловного и условного переходов в Nasm. Программирование ветвлений

Мальянц Виктория Кареновна

Содержание

1	. Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
	3.1 Реализация переходов в NASM	. 8
	3.2 Изучение структуры файлы листинга	. 13
	3.3 Выполнение заданий для самостоятельной работы	. 16
4	Выводы	23

Список иллюстраций

3.1	Создание каталога и фаила для программы	8
3.2	Копирование файла и просматривание содержимого каталога	8
3.3	Открытие файла lab7-1.asm в текстовом редакторе gedit	8
3.4	Редактирование файла	9
3.5	Запуск исполняемого файла	9
3.6	Открытие файла lab7-1.asm в текстовом редакторе gedit	9
3.7	Редактирование файла	10
3.8	Запуск исполняемого файла	10
3.9	Открытие файла lab7-1.asm в текстовом редакторе gedit	10
3.10	Редактирование файла	11
3.11	Запуск исполняемого файла	11
3.12	Создание файла	11
3.13	Открытие файла lab7-2.asm в текстовом редакторе gedit	11
3.14	Редактирование файла	12
3.15	Редактирование файла	12
3.16	Запуск исполняемого файла	13
3.17	Запуск исполняемого файла	13
3.18	Запуск исполняемого файла	13
3.19	Создание файла листинга	13
3.20	Открытие файла lab7-2.lst в текстовом редакторе mcedit	13
3.21	Строка под номером 15	14
	Строка под номером 19	14
3.23	Строка под номером 22	14
	Открытие файла lab7-2.asm в текстовом редакторе gedit	14
3.25	Редактирование файла	15
3.26	Запуск исполняемого файла	15
3.27	Открытие файла lab7-2.lst в текстовом редакторе mcedit	15
3.28	Просмотр файла	16
3.29	Создание файла	16
3.30	Открытие файла lab7-3.asm в текстовом редакторе gedit	16
3.31	Редактирование файла	17
3.32	Запуск исполняемого файла	17
3.33	Создание файла	19
	Открытие файла lab7-4.asm в текстовом редакторе gedit	19
3.35	Редактирование файла	20
3.36	Запуск исполняемого файла	20

3.37 Запуск исполняемого файла	 20
oror ourry on morrowing or roro quinta	

Список таблиц

1 Цель работы

Изучить команды условного и безусловного переходов. Приобрести навыки написания программ с использованием переходов. Познакомиться с назначением и структурой файла листинга.

2 Задание

- 1. Реализация переходов в NASM
- 2. Изучение структуры файлы листинга
- 3. Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

3.1 Реализация переходов в NASM

Создаю каталог для программ лабораторной работы № 7, перехожу в него и создаю файл lab7-1.asm (рис. 3.1).

```
vkmaljyanc@vbox:-$ mkdir ~/work/arch-pc/lab07
vkmaljyanc@vbox:-$ cd ~/work/arch-pc/lab07
vkmaljyanc@vbox:-/work/arch-pc/lab07$ touch lab7-1.asm
```

Рис. 3.1: Создание каталога и файла для программы

С помощью команды ср копирую файл in_out.asm и просматриваю содержимое каталога lab07 с помощью команды ls (рис. 3.2).

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ cp -/Загрузки/in_out.asm in_out.asm
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ls
in_out.asm lab7-1.asm
```

Рис. 3.2: Копирование файла и просматривание содержимого каталога

Открываю файл lab7-1.asm в текстовом редакторе gedit через терминал (рис. 3.3).

Рис. 3.3: Открытие файла lab7-1.asm в текстовом редакторе gedit

Ввожу в файл lab7-1.asm программу с использованием инструкции jmp (рис. 3.4).

```
| Total | To
```

Рис. 3.4: Редактирование файла

Создаю исполняемый файл и запускаю его. Убеждаюсь в том, что безусловный переход изменяет порядок выволнения инструкций (рис. 3.5).

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ./lab7-1
Cooofuenue № 2
```

Рис. 3.5: Запуск исполняемого файла

Открываю файл lab7-1.asm в текстовом редакторе gedit через терминал (рис. 3.6).

Рис. 3.6: Открытие файла lab7-1.asm в текстовом редакторе gedit

Изменяю программу таким образом, чтобы сначала выводилось "Сообщение N° 2", а затем "Сообщение N° 3" (рис. 3.7).

```
lab7-1.asm
    Открыть ▼ 🛨
                                                                                                                    Сохранить
                                                                                                                                       =
 1 %include 'in_out.asm' ; подключение внешнего файла 2 SECTION .data
 3 msgl: DB 'Сообщение № 1',0
4 msg2: DB 'Сообщение № 2',0
5 msg3: DB 'Сообщение № 3',0
  6 SECTION .text
  7 GLOBAL _start
  8 start:
9 jmp _label2
10 _label1:
11 mov eax, msgl ; Вывод на экран строки
12 call sprintLF ; 'Сообщение № 1'
13 jmp _end
14 _label2:
15 mov eax, msg2 ; Вывод на экран строки
16 call sprintLF ; 'Сообщение № 2'
17 jmp _label1
18 _label3:
19 mov eax, msg3 ; Вывод на экран строки
20 call sprintLF ; 'Сообщение № 3'
21 _end:
22 call quit ; вызов подпрограммы завершения
                                                                         Matlab ▼ Ширина табуляции: 8 ▼ Ln 22, Col 42 INS
```

Рис. 3.7: Редактирование файла

Создаю исполняемый файл и запускаю его. Убеждаюсь в том, что изменения применены корректно (рис. 3.8).

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 1
```

Рис. 3.8: Запуск исполняемого файла

Открываю файл lab7-1.asm в текстовом редакторе gedit через терминал (рис. 3.9).

Рис. 3.9: Открытие файла lab7-1.asm в текстовом редакторе gedit

Изменяю программу таким образом, чтобы сначала выводилось "Сообщение N° 3", потом "Сообщение N° 2", а затем "Сообщение N° 1" (рис. 3.10).

Рис. 3.10: Редактирование файла

Создаю исполняемый файл и запускаю его. Убеждаюсь в том, что изменения применены корректно (рис. 3.11).

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
```

Рис. 3.11: Запуск исполняемого файла

С помощью команды touch создаю файл lab7-2.asm (рис. 3.12).

Рис. 3.12: Создание файла

Открываю файл lab7-2.asm в текстовом редакторе gedit через терминал (рис. 3.13).

Рис. 3.13: Открытие файла lab7-2.asm в текстовом редакторе gedit

Ввожу в файл lab7-2.asm программу, которая определяет и выводит на экран наибольшую из 3 целочисленных переменных: A,B и C (рис. 3.14) (рис. 3.15).

```
lab7-2.asm
   Открыть ▼ 🛨
                                                                                         Сохранить
                                                                                                       =
 1 %include 'in_out.asm'
 2 section .data
3 msg1 db 'Введите В: ',0h
 4 msg2 db "Наибольшее число: ",0h
 5 A dd '20'
6 C dd '50'
 7 section .bss
 8 max resb 10
 9 B resb 10
10 section .text
11 global _start
12 _start:
13 ; -----
14 mov eax,msgl
             ---- Вывод сообщения 'Введите В: '
15 call sprint
16; ------
17 mov ecx,B
18 mov edx,10
             ---- Ввод 'В'
19 call sread
               Преобразование 'В' из символа в число
22 call atoi ; Вызов подпрограммы перевода символа в число
23 mov [B],eax ; запись преобразованного числа в
24 : ---- Записываем 'А' в переменную 'max'
26 mov [max],ecx; 'max = A'
27; ----- Сравниваем 'A' и 'C' (как символы)
28 cmp ecx,[C]; Сравниваем 'A' и 'C'
29 jg check_B; ecли 'A>C', то переход на метку 'check_B',
30 mov ecx,[C] ; иначе 'ecx = C'
31 mov [max],ecx; 'max
32 ; -----
33 check_B:
               -- Преобразование 'max(A,C)' из символа в число
34 mov eax, max
35 call atoi ; Вызов подпрограммы перевода символа в число
36 mov [max],eax ; запись преобразованного числа в `max
               -- Сравниваем 'max(A.C)' и 'B' (как числа)
                                                       Matlab ▼ Ширина табуляции: 8 ▼ Ln 49, Col 18
```

Рис. 3.14: Редактирование файла

```
38 mov ecx,[max]
39 cmp ecx,[B]; Сравниваем 'max(A,C)' и 'B'
40 jg fin; если 'max(A,C)>B', то переход на 'fin',
41 mov ecx,[B]; иначе 'ecx = B'
42 mov [max],ecx
43; ------ Вывод результата
44 fin:
45 mov eax, msg2
46 call sprint; Вывод сообщения 'Наибольшее число: '
47 mov eax,[max]
48 call iprintLF; Вывод 'max(A,B,C)'
49 call quit; Выход

Мatlab ▼ Ширина табуляции: 8 ▼ Ln 49, Col 18 INS
```

Рис. 3.15: Редактирование файла

Создаю исполняемый файл и запускаю его. Проверяю работу исполняемого файла для значения В равного 10 (рис. 3.16), В равного 30 (рис. 3.17) и В равного 60 (рис. 3.18). Убеждаюсь в том, что программа корректно выводит на экран наибольшую из 3 целочисленных переменных: А,В и С.

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ./lab7-2
Введите В: 10
Наибольшее число: 50
```

Рис. 3.16: Запуск исполняемого файла

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ./lab7-2
Введите В: 30
Наибольшее число: 50
```

Рис. 3.17: Запуск исполняемого файла

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ./lab7-2
Введите В: 60
Наибольшее число: 60
```

Рис. 3.18: Запуск исполняемого файла

3.2 Изучение структуры файлы листинга

Создаю файл листинга для программы из файла lab7-2.lst, указав ключ -l и задав имя файла листинга в командной строке (рис. 3.19)

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm
```

Рис. 3.19: Создание файла листинга

Открываю файл lab7-2.lst в текстовом редакторе mcedit через терминал (рис. 3.20).

```
vkmaljyanc@vbox:~/work/arch-pc/lab07$ mcedit lab7-2.lst
```

Рис. 3.20: Открытие файла lab7-2.lst в текстовом редакторе mcedit

Объяснение содержимого трех строк файла листинга:

1. Строка под номером 15 (рис. 3.21). Первое значение - номер строки (15), второе вхождение - адрес (000000ED), третье вхождение - машинный код (E81DFFFFFF, из которого E8 - префикс команды call, 1DFFFFFF - смещение до адреса подпрограммы sprint), четвертое вхождение - инструкция (call sprint - команда, которая вызывает функцию sprint).

Рис. 3.21: Строка под номером 15

2. Строка под номером 19 (рис. 3.22). Первое значение - номер строки (19), второе вхождение - адрес (000000FC), третье вхождение - машинный код (E842FFFFFF, из которого E8 - префикс команды call, 42FFFFFF - смещение до адреса подпрограммы sread), четвертое вхождение - инструкция (call sread - команда, которая вызывает функцию sread).

Рис. 3.22: Строка под номером 19

3. Строка под номером 22 (рис. 3.23). Первое значение - номер строки (22), второе вхождение - адрес (00000106), третье вхождение - машинный код (E891FFFFFF, из которого E8 - префикс команды call, 91FFFFFF - смещение до адреса подпрограммы atoi), четвертое вхождение - инструкция (call atoi - команда, которая вызывает функцию atoi).

Рис. 3.23: Строка под номером 22

Открываю файл lab7-2.asm в текстовом редакторе gedit через терминал (рис. 3.24).

Рис. 3.24: Открытие файла lab7-2.asm в текстовом редакторе gedit

Удаляю из строки 38 операнд [max] (рис. 3.25).

```
lab7-2.asm
   Открыть ▼ 🛨
                                                                                                             Сохранить
                                                                                                                              =
13; ----- Вывод сообщения 'Введите В:
15 call sprint
16; ------
17 mov ecx,B
                 --- Ввод 'В'
19 call sread
20 ; -----
21 mov eax,B
                   -- Преобразование 'В' из символа в число
22 call atoi ; Вызов подпрограммы перевода символа в число
23 mov [B],eax; запись преобразованного числа в 'B'
24; ------ Записываем 'A' в переменную 'max'
25 mov ecx,[A]; 'ecx = A'
26 mov [max],ecx; 'max = A'
27 ; ----- Сравниваем 'A' и 'C' (как символы)
28 cmp ecx,[C] ; Сравниваем 'A' и 'C'
29 jg check_B ; если 'A>C', то переход на метку 'check_B', 30 mov ecx,[C] ; иначе 'ecx = C'
31 mov [max],ecx; 'max = C'
                    - Преобразование 'max(A,C)' из символа в число
33 check B:
34 mov eax,max
35 call atoi ; Вызов подпрограммы перевода символа в число
35 catt aton; вызов подпрограммы перевода сыльовла с ...
36 mov [max],eax ; запись преобразованного числа в `max
37; ----- Сравниваем 'max(A,C)' и 'В' (как числа)
39 cmp ecx,[B]; Сравниваем 'max(A,C)' и 'B'
40 jg fin; если 'max(A,C)>В', то переход на 'fin',
41 mov ecx,[B]; иначе 'ecx = B'
42 mov [max],ecx
43 ; ----- Вывод результата
44 fin:
45 mov eax, msg2
46 call sprint ; Вывод сообщения 'Наибольшее число: '
47 mov eax, [max]
48 call iprintLF ; Вывод 'max(A,B,C)'
49 call quit ; Выход
                                                  Matlab ▼ Ширина табуляции: 8 ▼ Ln 38, Col 9 INS
```

Рис. 3.25: Редактирование файла

Выполняю трансляцию с получением файла листинга (рис. 3.26). Никакие выходные файла кроме листинга не создаются.

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm
lab7-2.asm:38: error: invalid combination of opcode and operands
```

Рис. 3.26: Запуск исполняемого файла

Открываю файл lab7-2.lst в текстовом редакторе mcedit через терминал (рис. 3.27).

Рис. 3.27: Открытие файла lab7-2.lst в текстовом редакторе mcedit

В листинге добавляется ошибка (рис. 3.28).

```
⊕
                                                                 vkmaljyanc@vbox:~/work/arch-pc/lab07
                                                                                                                                                                              a | ≡
      19 000000FC E842FFFFFF
     21 00000101 B8[0A000000]
     22 00000106 E891FFFFF
23 0000010B A3[0A000000]
                                                                               mov [B],eax ; запись преобразованного числа в 'В
; ----- Записываем 'А' в переменную 'max'
                                                                              ; -------- записываем A в перешенную шол

mov ecx,[A]; 'ecx = A'

mov [max],ecx; 'max = A'

; ------- Сравниваем 'A' и 'C' (как символы)

cmp ecx,[C]; Сравниваем 'A' и 'C'
     25 00000110 8B0D[35000000]
26 00000116 890D[000000000]
                                                                               cmp ecx,[c]; сравниваем "A" и "C"
jg check_B; если 'A>C', то переход на метку 'check_B',
mov ecx,[c]; иначе 'ecx = C'
mov [max],ecx; 'max = C'
; -------- Преобразование 'max(A,C)' из символа в числ
     30 00000124 8B0D[39000000]
31 0000012A 890D[000000000]
                                                                              check_B:
mov eax,max
call atoi ; Вызов подпрограммы перевода символа в число
mov [max],eax ; запись преобразованного числа в `max`
; ------ Сравниваем 'max(A,C)' и 'В' (как числа)
     34 00000130 B8[00000000]
35 00000135 E862FFFFFF
                                                                              mov ecx, error: invalid combination of opcode and operands cmp ecx,[В]; Сравниваем 'max(A,C)' и 'В' jg fin; если 'max(A,C)>В', то переход на 'fin', mov ecx,[В]; иначе 'ecx = В' mov [max], ecx;
     39 0000013F 3B0D[0A0000000]
40 00000145 7F0C
     45 00000153 B8[13000000]
46 00000158 E8B2FEFFFF
     47 0000015D A1[00000000]
48 00000162 E81FFFFFF
     49 00000167 F86FFFFFF
1Помощь <mark>2</mark>Сохран З<mark>Блок 4</mark>Замена 5Копия 6Пер~ить 7Поиск 8Удалить 9МенюМС 10Выхс
```

Рис. 3.28: Просмотр файла

3.3 Выполнение заданий для самостоятельной работы

Задание № 1. С помощью команды touch создаю файл lab7-3.asm (рис. 3.29).

Рис. 3.29: Создание файла

Открываю файл lab7-3.asm в текстовом редакторе gedit через терминал (рис. 3.30).

Рис. 3.30: Открытие файла lab7-3.asm в текстовом редакторе gedit

Ввожу в файл lab7-3.asm программу для нахождения наименьшей из 3 целочисленных переменных a,b и с. Ввожу функцию из варианта №1 (рис. 3.31).

```
lab7-3.asm
     Открыть ▼ 🛨
                                                                                                                                                         Сохранить
                                                                                                                                                                                 ≡
   1 %include 'in_out.asm'
 1 % mettade m_out.asm
2 section .data
3 msg1 db 'Введите В: ',0h
4 msg2 db "Наименьшее число: ",0h
5 dd '17'
6 C dd '45'
  7 section .bss
 8 min resb 10
9 B resb 10
10 section .text
11 global _start
12 _start:
13 ; -----
                      ---- Вывод сообщения 'Введите В: '
14 mov eax.msg1
15 call sprint
                       ---- Ввод 'В'
18 mov edx.10
19 call sread
20 ; -----
21 mov eax,B
                       ---- Преобразование 'B' из символа в число
22 call atói ; Вызов подпрограммы перевода символа в число
23 mov [В],eax ; запись преобразованного числа в 'В'
24 ; ----- Запись преобразованного числа в 'в'
24 ; ---- Записьваем 'A' в переменную 'min'
25 mov ecx,[A] ; 'ecx = A'
26 mov [min],ecx ; 'min = A'
27 ; ----- Сравниваем 'A' и 'C' (как символы)
28 cmp ecx,[C] ; Сравниваем 'A' и 'C'
29 jg check_В ; если 'AcC', то переход на метку 'check_В',
30 mov ecx,[C] ; иначе 'ecx = C'
31 mov [min],ecx ; 'min = C'
32; ------- Преобразование 'min(A,C)' из символа в число 33 check_B: 34 mov eax,min 35 call atoi; Вызов подпрограммы перевода символа в число
36 mov [min],eax ; запись преобразованного числа в `min
37: ----- Сравниваем 'min(A.C)' и 'В' (как числа)
                                                                                                Matlab ▼ Ширина табуляции: 8 ▼
                                                                                                                                                                  Ln 40, Col 3
```

Рис. 3.31: Редактирование файла

Создаю исполняемый файл и запускаю его. Задаю значение В равное 23 (рис. 3.32). Убеждаюсь в том, что результат выводится корректно.

```
vkmaljyanc@vbox:~/work/arch-pc/lab07$ nasm -f elf lab7-3.asm
vkmaljyanc@vbox:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.o
vkmaljyanc@vbox:~/work/arch-pc/lab07$ ./lab7-3
Введите В: 23
```

Рис. 3.32: Запуск исполняемого файла

Листинг программы:

```
%include 'in_out.asm'
section .data
msg1 db 'Введите В: ',0h
msg2 db "Наименьшее число: ",0h
A dd '17'
C dd '45'
```

```
section .bss
min resb 10
B resb 10
section .text
global _start
_start:
; ----- Вывод сообщения 'Введите В: '
mov eax, msg1
call sprint
; ----- Ввод 'В'
mov ecx,B
mov edx,10
call sread
; ----- Преобразование 'В' из символа в число
mov eax, B
call atoi ; Вызов подпрограммы перевода символа в число
mov [B],eax; запись преобразованного числа в 'В'
; ----- Записываем 'A' в переменную 'min'
mov ecx, [A] ; 'ecx = A'
mov [min],ecx ; 'min = A'
; ----- Сравниваем 'А' и 'С' (как символы)
стр есх,[С] ; Сравниваем 'А' и 'С'
jg check_B; если 'A<C', то переход на метку 'check_B',
mov ecx,[C]; иначе 'ecx = C'
mov [min],ecx ; 'min = C'
; ----- Преобразование 'min(A,C)' из символа в число
check B:
mov eax, min
call atoi ; Вызов подпрограммы перевода символа в число
```

```
mov [min], eax; запись преобразованного числа в `min`; ----------- Сравниваем 'min(A,C)' и 'B' (как числа) mov ecx,[min]
cmp ecx,[B]; Сравниваем 'min(A,C)' и 'B'
jb fin; если 'min(A,C)<B', то переход на 'fin',
mov ecx,[B]; иначе 'ecx = B'
mov [min], ecx
; ----------- Вывод результата
fin:
mov eax, msg2
call sprint; Вывод сообщения 'Наименьшее число: '
mov eax,[min]
call iprintLF; Вывод 'min(A,B,C)'
call quit; Выход
```

Задание № 2. С помощью команды touch создаю файл lab7-4.asm (рис. 3.33).

vkmaljyanc@vbox:~/work/arch-pc/lab07\$ touch lab7-4.asm

Рис. 3.33: Создание файла

Открываю файл lab7-4.asm в текстовом редакторе gedit через терминал (рис. 3.34).

Рис. 3.34: Открытие файла lab7-4.asm в текстовом редакторе gedit

Ввожу в файл lab7-4.asm программу, которая для введенных с клавиатуры значений x и а вычисляет значение заданной функции f(x) и выводит результат вычислений. Ввожу функцию из варианта №1 (рис. 3.35).

```
lab7-4.asm
   Открыть ▼ 🛨
                                                                                                     Сохранить
                                                                                                                      \equiv
  1 %include 'in_out.asm'
  2 section .data
 3 msgl db 'Введите значение переменной х: ', 0
 4 msg2 db 'Введите значение переменной а: ', 0 5 msg3 db 'Результат f(x): ', 0
 8 x: resb 80
9 a: resb 80
10 f: resb 80
12 section .text
13 global _start
14
15 _start:
16 mov eax, msgl
17 call sprint
18 mov ecx, x
19 mov edx, 10
20 call sread
21 mov eax, x
22 call atoi
23 mov [x], eax
25 call iprintLF
27 mov eax, msg2
28 call sprint
29 mov ecx, a
30 mov edx, 10
31 call sread
32 mov eax, a
33 call atoi
34 mov [a], eax
35
36 call iprintLF
37 mov ecx. [a]
                                                                Matlab ▼ Ширина табуляции: 8 ▼ Ln 61, Col 10 INS
```

Рис. 3.35: Редактирование файла

Создаю исполняемый файл и запускаю его. Проверяю работу исполняемого файла для значения х равного 1 и а равного 2 (рис. 3.36) и х равного 2 и а равного 1 (рис. 3.37). Убеждаюсь в том, что результат программы выводится корректно.

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-4.asm
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ./lab7-4
Введите значение переменной х: 1
1
Введите значение переменной а: 2
2
Результат f(x): 3
```

Рис. 3.36: Запуск исполняемого файла

```
vkmaljyanc@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-4.asm
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o
vkmaljyanc@vbox:-/work/arch-pc/lab07$ ./lab7-4
Введите значение переменной х: 2
2
Введите значение переменной а: 1
1
Результат f(x): 8
```

Рис. 3.37: Запуск исполняемого файла

Листинг программы:

```
%include 'in_out.asm'
section .data
msg1 db 'Введите значение переменной х: ', 0
msg2 db 'Введите значение переменной а: ', 0
msg3 db 'Результат f(x): ', 0
section .bss
x: resb 80
a: resb 80
f: resb 80
section .text
global _start
_start:
mov eax, msg1
call sprint
mov ecx, x
mov edx, 10
call sread
mov eax, x
call atoi
mov [x], eax
call iprintLF
mov eax, msg2
call sprint
mov ecx, a
```

mov edx, 10

call sread

mov eax, a

call atoi

mov [a], eax

call iprintLF

mov ecx, [a]

cmp ecx, [x]

jge less

mov edx, 8

mov [f], edx

jmp fin

less:

mov ebx, [x]

mov ax, 2

mul ax

sub eax, ebx

mov [f], eax

fin:

mov eax, msg3

call sprint

mov eax, [f]

call iprintLF

call quit

4 Выводы

Я изучила команды условного и безусловного переходов. Приобрела навыки написания программ с использованием переходов. Познакомилась с назначением и структурой файла листинга.