

11 1717071613		
HW+Lab		
D+2		

การบ้านปฏิบัติการ 13 Lists, Tuples, Sets and Dictionaries (20 คะแนน)

g/	0			
ขอ	กา	เหเ	น	0

- การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข if __name__ == '__main__' : เพื่อความ
 สะดวกในการ import จาก Script อื่น ๆ
- ii. สามารถใช้ Iteration หรือ Recursion แก้ปัญหาได้
- 1) 4 คะแนน (Lab13_1_6XXXXXXX.py) ให้เขียนฟังก์ชัน matching_sum(t, target_value) เพื่อ<u>คืนค่า</u> list ของจำนวนเต็มสองจำนวนใน tuple t ที่มีผลรวมเท่ากับจำนวนเต็ม target_value ทั้งนี้สมาชิกใน tuple t จะ เป็นจำนวนเต็มเท่านั้นและจะมีสมาชิกอย่างน้อย 1 ตัวเสมอ โดยหากไม่สามารถหาจำนวนสองจำนวนดังกล่าวได้ ให้ คืนค่า list ว่าง และหากมีสมาชิกใน t มากกว่า 1 คู่ ที่สามารถเป็นคำตอบได้ ให้คืนค่า<u>เพียงคำตอบเดียว</u>เท่านั้น Hint: การจับคู่สมาชิกทั้งหมด แล้วนำมาตรวจสอบผลบวกทีละคู่ จะทำให้เวลาบน Grader เกิน ควรแก้ปัญหาโดยใช้ collections ที่เรียนในสัปดาห์นี้

Function Call Output

<pre>matching_sum((1,), 1)</pre>	[]
matching_sum((5, 2), 7)	[5, 2]
	[2, 5]
matching_sum((10, -1, 1, -8, 3, 1), 2)	[10, -8]
	[-8, 10]
	[-1, 3]
	[1, 1]
matching_sum((10, -1, 1, -8, 3, 1), 10)	[]

_	A	6 9	-
•	การวิเคร	าะหา	ไถเหา

	จ้านวนข้อมูล	ชนดขอมูล	
(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
	((แสดงค่า) จำนวนข้อมูล	(แสดงค่า) จำนวนข้อมูลชนิดข้อมูล

<u>Input</u>	<u>Output</u>
--------------	---------------

fourteen	14
two hundred forty-eight	248
one hundred eleven	111
forty-two billion six hundred forty-one million three hundred twenty-three thousand eight hundred sixty-two	42641323862

• การวิเคราะห์ปัญหา

Input: จำนวนข้อมูล ชนิดข้อมูล
 Output: (แสดงค่า) จำนวนข้อมูล ชนิดข้อมูล
 (คืนค่า) จำนวนข้อมูล ชนิดข้อมูล

3) **4 คะแนน** (HW13_1_6XXXXXXX.py) ให้เขียนฟังก์ชัน scramble(word) เพื่อ<u>คืนค่า</u> 1ist ของคำที่เป็นไปได้ ทั้งหมดจากการสลับอักษรใน str word (ไม่มีอักขระอื่นนอกจากตัวอักษรภาษาอังกฤษ) โดย 1ist ที่ได้จะต้อง<u>ไม่</u> <u>มี</u>สมาชิกซ้ำกัน ทั้งนี้<u>ไม่อนุญาตให้ import โมดูล</u>เพิ่มเติมในการแก้ปัญหา

<u>Input</u> <u>Output</u>

'Cat'	['Cat', 'Cta', 'aCt', 'atC', 'tCa', 'taC']
'bee'	['bee', 'ebe', 'eeb']
'bEe'	['Ebe', 'Eeb', 'bEe', 'beE', 'eEb', 'ebE']

หมายเหตุ: ลำดับของผลลัพธ์ภายใน list ที่คืนค่าไม่จำเป็นต้องเหมือนตัวอย่าง

• การวิเคราะห์ปัญหา

Input: จำนวนข้อมูล____ชนิดข้อมูล_____
 Output: (แสดงค่า) จำนวนข้อมูล_____ชนิดข้อมูล_____
 (คืนค่า) จำนวนข้อมูล_____ชนิดข้อมูล_____

4)	4 คะแนน (HW13_2_6XXXXXXXX.py) ให้เขียนฟังก์ชัน subset_sum(set_a) เพื่อ <u>คืนค่า</u> list ของ ผลบวก
	สมาชิกของแต่ละเซตย่อยทั้งหมดของ set_a ซึ่งเซตย่อยดังกล่าวนั้นรวมถึงเซตว่าง (\emptyset) และ set_a เองด้วย โดย
	กำหนดให้ผลบวกของเซตว่าง คือ 0 ทั้งนี <u>้ไม่อนุญาตให้ import โมดูล</u> เพิ่มเติมในการแก้ปัญหา
	ในทางคณิตศาสตร์ถ้า S เป็นเซต {1, 2, 3} แล้วเซตย่อยของ S ได้แก่:

1 0 1		{}	(อาจเขียนแท	นด้วย (ø ˈ	ได้แก่เซตว่าง)
-------	--	----	-------------	---------	-----	----------------

- [] {1}
- [] {2}
- [] {3}
- $\lceil \lceil \{1, 2\} \rceil$
- [] {1, 3}
- [] {2, 3}
- {1, 2, 3}

<u>Input</u>	<u>Output</u>
{1, 2, 3}	[0, 1, 2, 3, 3, 4, 5, 6]

- การวิเคราะห์ปัญหา
 - Input:

จำนวนข้อมูล_ ชนิดข้อมูล

(แสดงค่า) • Output:

จำนวนข้อมูล__ ___ชนิดข้อมูล_

(คืนค่า)

จำนวนข้อมูล__ _ชนิดข้อมูล_

5) **4 คะแนน (HW1**3_3_6XXXXXXXX.py) ให้เขียนฟังก์ชัน sum_d_product(m) <mark>เพื่อ<u>คืนค่า</u>ผลบวกของผลคูณ</mark> ทแยงใน matrix m ที่มีขนาด $n \times n$ เมื่อ n สามารถเขียนในรูปของ 2^x (x เป็นจำนวนเต็มบวก)

โดยกรณี matrix m ขนาด 2 imes 2 เช่น c

d

สามารถหาผลลัพธ์ได้จากสูตร $a \times d + c \times b$

ดังนั้น matrix 3

 $\frac{4}{3}$ จะมี sum_d_product() = $(1 \times 4) + (3 \times 2) = 10$

กรณีต้องการหา sum_d_product() ของ matrix ขนาดใหญ่กว่า 2 × 2 ทำได้โดยการหา sum_d_product() ของ matrix ย่อย ขนาด 2 × 2 ก่อน แล้วหา sum_d_product() ของ matrix ผลลัพธ์อีกที่ เช่นกรณี matrix ขนาด 4 × 4 จะมีขั้นตอนดังนี้

7	О	9	6	
4	8	0	2	
9	3	5	3	
5	9	1	6	

หรือกรณี matrix 8 × 8

Hint: ฟังก์ชัน main() ควรอ่าน Input จากไฟล์ด้วยวิธี Command Redirection เพื่อความสะดวกในการทดสอบและ หาข้อผิดพลาด

<u>Input</u>	Output
[[3, 3, 3, 2], [2, 0, 3, 1], [2, 1, 2, 3], [1, 0, 2, -1]	33
[[1, 1, 5, -1], [12, 2, -2, 0], [4, 8, 8, 12], [4, 12, 12, 15]]	3856
[[0, -1, -1, 3, 2, 3, -1, 3], [3, -1, -1, 2, 0, -1, 2, 1], [3, 0, 1, 2, 3, 1, 3, 1], [2, 2, 1, -1, -1, 2, 0, 3], [1, 3, 2, 1, 3, 2, 2, 1], [1, 2, 2, 1, 3, 3, 1, 3], [2, 2, 2, 2, 2, 2, 3, 3], [1, 3, 2, 3, 1, 1, 2, 2]]	-6290

• การวิเคราะห์ปัญหา

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	· · · · · · · · · · · · · · · · · · ·
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	

การ<u>ส่งงาน</u>

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผล จะ<u>ต้องเป็นไปตามที่ระบ</u>ุในตัวอย่างการ run
- 2. ไฟล์งานที่ส่ง จะต้องมีการแทรก comment ที่ต้นไฟล์ตามข้อกำหนดใน canvas รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการแทรก pseudocode เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยังระบบตรวจให้คะแนนอัตโนมัติ <u>https://cmu.to/gdr111</u>