Activity-3

RI) Prove by PMI that 1+2+3+ ... +4 = n(4+1) Soly Let P(h) be the Statement that 1+2+3+ . . +4 = 15(4+1) Step (i) put n=1 UHIS=1 $R.H.S = \frac{1}{2} (1+1) = \frac{1}{2} + \frac{1}{2} = 1$ · LIH'S ERIH'S . p(i) is true Step (ii) Assure that p(n) is true for h=K let P(V) is true 1+2+3 - .. +12 K(12+1) 8 tep (iii) Now, we have to prove that dh) is true for h= (1c+1) L. H. 3 & P(k+1) 142+3+ ·· + 11+11 = (11+1) (11+2) NOW 1, 1+2+3, ... +K+1K+1 = 1 < (14) + (141) = (141) [= 1] = (1c+1) (1c+2) R.H.S ... Plh) is true for hEN is town + n EN/ proved.

92) prove by PM, that 12+22+33+ . - +42 = 4 (4+1) (24+1) let Ph) be the Statement that i2+22+32+ - +62 = h(4+1) (24+1) Step (1) Inductive base put h=1 UH13=12=1 R. H. S = 1 (1+1) (2+1+1) - 1×2×3 = 6/=1 i's Littil = Ritil i - p(v) is true Step (ii) Inductive hypothesis Assume that Ph) is true for h=1 12+22+32+ . . . +122 = 12(12+1) (212+1) , . P(k) is true, we have to prove that p(h) is true for h= (14+1) Step (iii) Inductive step 12+22+32+ ... + (14+1)2 = 14+1 (14+2) (216+3) L. H. S = 12+22+32 - . + 12+ (K+1)2 = 12 (141) 124+) + (141)2 [from step (i)] - (141) [12 EK+1) + (14+1)] - (141) [2×2+16+616+6] = (141) [2K2+7K+6] = (141) [2K2+4K+3K+6] = (K+1) [(142) (2143)] = R. H.3

```
ei UHIS = RIHIS
    i P(h) is true for hEN,
                   proved 11
Prove by pm, that \frac{1}{112} + \frac{1}{23} + \frac{1}{11(11)} = \frac{5}{11}
Soly let P(h) be the Statement that 11 that 11 that 11 11 11 11 11
    Step (i) inductive bage
           Put h =1
           :. LH.8 = RIHY : P(1) is frue,
    Step (ii) inductive hypothesis
          Assume that P. (b) is true for h=1
         112+23+ · · · + 1 = 16
         . , p(K) is true,
     Step (iii) inductive Test
         we have to prove that P(h) is true for h=(K+1)
         13+2+33+···+(K+1)3
   LIAY 13+2+3+ . . +103+ (14H)2
       = [k[k+1]]+ (k+1)3 (from yet)
      = 12 (141)2 + (v+1)3
       = (1C+1)2 [K3 +K+1]
      = (141)2 [IC(R+1)]2 R:H'3
        i'. P(h) is tome for browd //
```

Qy) prove by pm, that 13+23+33+ -. 13= [4 (4+1)] soly let P(h) be the Statement that 13+23+33+... 43 = |h (h+1) | Step (i) inductive base put n=1 UHIS = B = 1 RIHIS = [1(1+1)] = 1 · L. H.S. = R. His . P(1) is true Step (ii) inductive hypothesis Assure that p(b) istrue for h=11 13+23+32+ ... 163 [16 (1641)] -. P(k) is there Step (ili) inductive test we have to provethant p(h) is true for h= (12+1) 13+23+33+ . . +(14)3 LHY 13+23+3 + ... +K3+ (1C+1)2 = [K(K+1)] + (K+1) (from Step 1) = 1c2 (kH)2 + (k+1)3 =(141)2 /102 +141) = (12+1)2 /12+2/C+2 RI HIS = (141)2 [12 (12+1)]2

.. ph) is true for then proved//) counting principle fould that, 25 slad (25) tha survey of 6 People, it was 26 read forture News week magazine 26 read time, gread both i Newy week & fortune, I read both New Wood atime 8 read both time a fortune 3 read of three rogatine a) Find the no of People who read at least one of the 3 Magarine. Soly Gives (NI = 25 | NAF) = 9 U=60 IT = 26 [NAT)=11 INATAFI=3 [Fl=26 |TNF]=8 a) atteast the of the 3 magazine NorT Or F [NUTUF| = [NITT|+ |NNT)- |NNF)- |TNF)+ [NNTNF] = 25+26+26-9-11-8+3 b) Fill in the Vens diagram with correct value in eight

= 20×10×17 = 1400/

bries, 5 evories, to form the committee or 5 menters you should have 2 morres. Gives total = 11 Menbely = 5 According to Consideration her = 4! $3c_1 \times c_3 = 5! \times 6!$ $2!3! \times 3!3!$ = 3x4 x3 x2x1 X6×5 ×4×3×2×1 2×1×3×2×1 3 X2X1X3X2X1 = 5×4 ×6×5×4
2×1 3×2×1 = 20 X120 $=10 \times 20$ = 200 //. =) Prolugion - Exclusion prihaple

93)

A computes company must hire 20 programmes to habite System programming jobs and 30 programmes for applications programming of those hired (are expected to Perform jobs of both types.

How many programmers runt be hired?

```
Gives
      (A) = 20
      101=30
      [A13] =5
      | AUB1 = ?
    :  [AUD] = (A)+(B) - [AND]
             =20+30-5
             -50-5
             =45/1
   Solve the Securrence Selations or-tar +10ar-2=0
    given that Go=0, 91=3
solv Given recurrence relation is
     ar-7ar-1+100-20 -0
   abdgives that a = 0, Qu = 3
  This is second order recurrence relations
  The characteristic cauation is
          M^2 - 7M + 10 = 0
       =)(M-2)(m-5)=0
      => M=245
      " The general solution is
              ar= (1/2)2+ (2/5)2-70
```

Putting in equ
$$0$$
, $a_0 = 0$ i.e $a_7 = 0$ and $a = 0$

$$C_1(z)^0 + (z(5)^6 = 0)$$

$$= > C_1 + (z = 0) - 3$$

Again putting In Equation @ 9,=3 i.e ar=3 andr=1 C1(2) + (2 (5) = 3 => 2C, +5c2 =3-79 Solving ean Ba a we get C1 =- 1 and Cz = 1 . The required general solution is put is an @ 198 = 5 = 24