- 1. 硅突变 pn 结的 N 区,N 区施主杂质掺杂浓度为: $N_D = 1 \times 10^{15}$ cm⁻³, P 区受主杂质掺杂浓度为 $N_A = 1 \times 10^{18}$ cm⁻³。所有施主和受主均电离,计算 300 K 下:
- (1) 内建电势差:
- (2) 耗尽层宽度:
- (3) 零偏下内建电场的最大值。
- 2. 考虑掺杂浓度为 $N_D = N_A = 2 \times 10^{16} \text{ cm}^{-3}$ 的硅突变 pn 结, T=300 K,
- (1) 计算中性区内P区与N区费米能级的位置;内建电势 V_{bi} ;结两侧空间电荷区宽度 x_n, x_p
- (2) 画出pn结平衡能带图并标注(1) 中计算结果。
- 4、T=300 K 时,GaAs 反偏 pn结的最大电场为 | E_{max} | =2.5×10⁵ V/cm,掺杂浓度 为N_A=8×10¹⁵ cm⁻³,N_D=5×10¹⁵ cm⁻³。确定产生这个最大电场的反偏电压的大小。
- 5、硅PIN 结的掺杂曲线如图,"I"对应着理想本征区。本征区内没有杂质掺杂。给PIN 结外加一个反偏电场,以使空间电荷区占据从-1.5 μm 到1.5 μm 的所有区域。
 - (a)采用泊松方程计算出 x=0 处的电场,(b)画出PIN 结电场随距离变化的曲线,
 - (c)计算出外加反偏电压的大小。

6、考虑 T=300K 时的均匀掺杂 GaAs pn 结,其N区的 E_F - E_{Fi} = 0.365 eV,P区的 E_{Fi} - E_F = 0.330 eV,α = 5.4×10⁻⁴ eV/K,β = 204 K,T=300K 时 n_i 为 1×10⁷cm⁻³。杂质完全电离。请参考以下两式:

$$E_g(T) = E_g(0) - \frac{\alpha T^2}{T - \beta}$$

$$(\hat{m} \oplus N_c + N_c \exp\left(-\frac{E_c - E_i}{kT}\right)) = N_v \exp\left(-\frac{E_i - E_v}{kT}\right)$$

$$= \sqrt{N_c N_v} \exp\left(-\frac{E_g}{2kT}\right)$$

$$= 4.9 \times 10^{15} \left(\frac{m_{de} m_{dh}}{m_0^2}\right)^{3/4} M_c^{1/2} T^{3/2} \exp\left(-\frac{E_g}{2kT}\right)$$
(28)

(施敏教材第14页 式28)

画出T=400 K时该pn结的能带图,标注费米能级的位置。给出计算过程。

第二章第3-4讲

- 1、施加正向偏压时,求 pn 结空间电荷区边缘处的少子空穴浓度。T=300~K,掺杂浓度为 $N_A=6\times10^{15}~cm^{-3}$, $N_D=10^{16}~cm^{-3}$,正偏电压为 $V_f=0.6~V$ 。假定 $n_i=1.02\times10^{10}~cm^{-3}$ 。
- 2、GaAs pn 结的掺杂浓度为 N_A =4× 10^{16} cm⁻³, N_D =2× 10^{17} cm⁻³,结面积为A= 10^{-3} cm²,外加正偏电压 V=1.5 V。设 n_i =1.8× 10^{6} cm⁻³, D_n =205 cm²/s, D_p =9.8 cm²/s, τ_{n0} =5× 10^{-8} s, τ_{p0} = 10^{-8} s。计算(1)靠近p区的空间电荷区边缘的少子电子扩散电流;(2)靠近n区的空间电荷区边缘的少子空穴扩散电流;(3)pn 结二极管的总电流。
- 3、理想硅 pn 结的掺杂浓度为 N_D =3×10¹⁶ cm⁻³, N_A =2.5×10¹⁶ cm⁻³,结的横截面积为 $A=4\times10^{-4}$ cm²。 D_n =25 cm²/s, D_p =10 cm²/s, τ_{n0} =2×10⁻⁷ s, τ_{p0} =8×10⁻⁸ s。设 n_i =1.5×10¹⁰cm⁻³。计算(1)空穴形成的理想反向饱和电流;(2)电子形成的理想反向饱和电流;(3)外加正偏压 V_a =0.6 V_{bi} 时, x_n 处的空穴浓度;(4)外加正偏压 V_a =0.8 V_{bi} 时, x_n 处的电子浓度。

要求:

计算最终结果保留三位有效数字,本次作业 3.13(下周三)上课交。