B.4: Algebraic Atwood Machine:

Mass 1 [right side] =
$$M$$

Mass 2 [left side] = m

Assume that M > m. For the free-fall acceleration, use g.

- A) Draw a schematic of the Atwood machine.
- B) Draw a free-body diagram of the Atwood machine.
- C) Find the net force acting on the Atwood machine.
- D) Find the total mass of the Atwood machine.
- E) Use Newton's Second Law to find the acceleration of the Atwood machine. Give magnitude and direction.

E, H: Atwood Machines

Name		
INGILL		

C.3: An Atwood machine has three masses:

 m_l on the left side

 m_r on the right side

 m_t on the table (which is frictionless)

Consider clockwise to be the *positive direction* and *counterclockwise* to b the negative direction.

- A) Draw a schematic of the Atwood machine.
- B) Draw a free-body diagram of the Atwood machine.
- C) Find the net force acting on the Atwood machine.
- D) Find the total mass of the Atwood machine.
- E) Use Newton's Second Law to find the acceleration of the Atwood machine. Give magnitude and direction.

E, H: Atwood Machines	E.	H:	Atwood	Machines
-----------------------	----	----	--------	----------

Name		

 ${f D.3}$ An Atwood machine has three masses m_l on the left side m_r on the right side m_t on the table.

The coefficient of kinetic friction between the table and the mass is μ . Consider clockwise to be the *positive direction* and *counterclockwise* to b the negative direction.

Answers:

B.4 Algebraic Atwood Machine:

$$a = g\left(\frac{M-m}{M+m}\right)$$
 in the clockwise direction.

C.3

$$a = g\left(\frac{m_r - m_l}{m_r + m_l + m_t}\right)$$

The direction is clockwise if $m_r > m_l$ the direction is clockwise if $m_r < m_l$

D.3

$$a = g \left(\frac{m_r - m_l \pm \mu m_t}{m_r + m_l + m_t} \right)$$

In which the term \pm is + if $m_l > m_r$ and – if $m_l < m_r$