Prep: bring ID, water, glasses, jacket, pen and a handwritten version of this set of notes **You got this!**

Union Find Disjoint Set (UFDS)

rank(x): height of subtree below node x (excl)

- $\forall x \; \operatorname{rank}(x) \leq \operatorname{rank}(\pi(x))$ with equality if and only if $x = \pi(x)$ ($\pi(x) = \text{parent of } x$)
- Any root node of rank(k) has ≥ 2^k nodes in its subtree (excl)
- For n nodes, at most $\frac{n}{2^k}$ nodes of rank k
- [Corollary] All nodes have rank $\leq \log n$. Hence, find and union takes $O(\log n)$

Path compression: a sequence of n make_sets and m union / find takes $O(n + m \cdot \alpha(m, n))$

Proof for $O((m+n)\log^* n) (\log^* (2 \uparrow i) = i)$:

- Group nodes by rank; consider intervals $[0], [1], (1,2), ..., (2 \uparrow i, 2 \uparrow (i+1)], ...$
- Largest nonempty interval $i = \log^* n 1$
- # of nodes in $(2 \uparrow i, 2 \uparrow (i+1)] \le \frac{n}{2 \uparrow i}$

Set Cover

Given $U = \{1, ..., n\}$, subsets $S_1, ..., S_m \subset U$ s.t $\bigcup_{i=1}^m S_i = U$, find collection of minimal cardinality $J = \{S_i\}$ s.t. $\bigcup_{i \in J} S_i = U$.

<u>Greedy algorithm</u>: Repeatedly pick S_i that covers the maximum # of uncovered elements

<u>Theorem</u>: If optimal solution uses k sets, Greedy uses at most $k \ln n$ sets. Greedy is the best efficient approximation for Set Cover.

<u>Key idea</u>: Let n_t be number of elements not covered after t iterations of Greedy. Suffices to show $n_{k \ln n} < 1$. Claim: $n_{t+1} \leq n_t \left(1 - \frac{1}{k}\right)$

Linear Programming

Definitions:

- Vertex: x s.t. x is **feasible** and n of inequalities are tight (n is dimension of the problem i.e. $x \in \mathbb{R}^n$)
 - For every subset of n constraints, solve for point of intersection; check feasibility
- Unbounded: objective value $p^* = \infty$
 - Primal unbounded ⇒ Dual infeasible and has no vertices
 - Can check for boundedness by using linear combinations of constraints
- Feasible: solution $p^* < \infty$
 - Primal feasible ⇒ Dual feasible and lower-bounded
 - Dual feasible ⇒ Primal upper-bounded

Facts:

- Feasible region of LP is always convex
- ∀LP, ∃x a solution that is a vertex
 - o Find all vertices, get optimal value

Duality

Primal LP	Dual LP
$\max_{x} c^{T} x$	$\min_{\mathbf{y}} b^T \mathbf{y}$
subject to $Ax \leq b$	subject to $A^T y \ge c$,
and $x \ge 0$	$y \ge 0$

Max Flow

Algorithm:

- Start with zero flow
- Repeat: choose viable path from s to t; increase flow along the edges as much as possible; change weights of residue graph

$$\begin{split} G^f &= (V, E^f) \text{ is the residual graph of } G = (V, E) \\ f(x) &= \begin{cases} c_{uv} - f_{uv}, & (u, v) \in E, f_{uv} \leq c_{uv} \\ f_{uv}, & (u, v) \in E, f_{uv} > 0 \end{cases} \end{split}$$

Definitions:

- s-t cut: (L,R) s.t. $L \cup R = V$, $s \in L$, $t \in R$
- Capacity of (L, R): $\sum_{u \to v: u \in L, v \in R} c_{u \to v}$

Theorems and Facts:

- Max-Flow Min-Cut: Size of maximum flow in a network = capacity of smallest s - t cut
- For any flow f and any cut (L,R), $f \le \operatorname{capacity}(L,R)$
- If all capacities $\in \mathbb{Z}$, maximum flow is integral
- No flow of value k from s to $t \Rightarrow$ min cut has capacity < k with $s \in S, t \in T$
- Flow of value k from s to $t \Rightarrow$ min cut has capacity $\geq k$

Techniques:

Phantom source, sink, nodes and edges

=	
$\min_{x} c^{T} x$	$\max_{y} b^{T} y$
subject to $Ax \ge b$	subject to $A^T y \leq c$,
and $x \ge 0$	$y \ge 0$

Duality Theorems:

- [Weak] Objective value of any feasible solution to primal \leq objective value of any feasible solution to dual i.e. $p^* \leq d^*$
 - Solutions of dual upper bounds primal
 - Solutions of primal lower bounds dual
- [Strong] If $p^* < \infty$, then $p^* = d^*$.
 - o If LP has bounded optimum p^* , so does its dual, and $p^* = d^*$

Interpretation of y: Lagrange multiplier for constraints; i.e. weights the importance placed on each constraint.

Primal	Dual
$\max_{\mathcal{X}} c_1 \mathcal{X}_1 + \dots + c_n \mathcal{X}_n$ $a_{i1} x_1 + \dots + a_{in} x_n \leq b_i \text{ for } i \in I$ $a_{i1} x_1 + \dots + a_{in} x_n = b_i \text{ for } i \in E$ $x_j \geq 0 \text{ for } j \in N$	$\max_{y} b_1 y_1 + \dots + b_m y_m$ $a_{1j} y_1 + \dots + a_{mj} y_m \ge c_j \text{ for } j \in \mathbb{N}$ $a_{1j} y_1 + \dots + a_{mj} y_m = c_j \text{ for } j \notin \mathbb{N}$ $y_i \ge 0 \text{ for } i \in \mathbb{I}$

Zero Sum Games

For game matrix $G = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, expected payoff $=\sum_{i,j} G_{ij} \mathbb{P}[R=i,C=j]$ (R plays i, C plays j)

Theorems and Facts:

- Once a player's strategy is fixed, there is a optimal pure strategy for the other player.
- [Von Neumann] For $A \in \mathbb{R}^{m \times n}$

$$\max_{x \in X} \min_{y \in Y} x^T A y = \min_{y \in Y} \max_{x \in X} x^T A y$$

$$\max_{x} \min_{y} \sum_{i,j} G_{ij} x_i y_j = \min_{y} \max_{x} \sum_{i,j} G_{ij} x_i y_j$$

Linear Programs

Game #1: Row announces her strategy p $\max_{p_1,p_2:p_1+p_2=1,p_1,p_2\geq 0} \min(ap_1+cp_2,bp_1+dp_2)$ $\max_{p} \min_{q \text{ mixed}} p^{T} A q = \max_{p} \min_{q \text{ pure}} p^{T} A q$

Game #2: Column announces her strategy q $\min_{\substack{q_1, q_2: q_1 + q_2 = 1, q_1, q_2 \ge 0 \\ \text{min } \max_{\substack{q \text{ mixed}}} p^T A q = \min_{\substack{q \text{ } p \text{ pure}}} \max_{\substack{p \text{ pure}}} p^T A q}$

Note: In min max P(r,c), row goes second \Rightarrow has more information.

- Bipartite matching: have phantom nodes s, t, find max flow from s to t. \exists matching \Leftrightarrow can send n units of flow
- Hall's Marriage Lemma

LP Algorithms (Simplex, Ellipsoid, Interior Point)

SIMPLEX(v): # returns optimal vertex while obj(v') > obj(v) and v' neighbor of v: return SIMPLEX(v') return v

- Two vertices $\in \mathbb{R}^n$ are neighbors if they share n-1 inequalities in common
- Number of neighbors of v in LP with nvariables and m constraints $\leq (m-n) \cdot n$
- $O\left(\binom{m+n}{n}mn\right)$ (worst case exponential time)
- Problems with Simplex and Solutions
 - Starting vertex (find by transforming LP)
 - Degeneracy (introduce perturbation)
 - o Unboundedness (opt increases to ∞; halt and complain)

Ellipsoid algorithm and Interior Point method are polynomial time algorithms

Multiplicative Weights Update

Problem: $n \in E_1, ..., E_n$. On tth day, expert E_i incurs a loss $l_i^{(t)} \in \{0,1\}$. Pick E_i and incurs loss $l_i^{(t)}$. Want to minimize regret after T days = Total loss – Total loss of best expert in hindsight

At tth day, for distribution $x^{(t)} = (x_1^{(t)}, \dots, x_n^{(t)})$

- Loss of algorithm on day $t = \sum_{i=1}^{n} x_i^{(t)} \cdot l_i^{(t)}$
- Total loss over T days = $\sum_{i=1}^{T} \sum_{i=1}^{n} x_i^{(t)} \cdot l_i^{(t)}$
- $R_T = \sum_{i=1}^{T} \sum_{i=1}^{n} x_i^{(t)} \cdot l_i^{(t)} \min_{1 \le i \le n} \sum_{t=1}^{T} l_i^{(t)}$
- Exists an algorithm s.t. $\lim_{T\to\infty} R = \lim_{T\to\infty} \frac{R_T}{T} = 0$

Key Idea:

- Fix ϵ ; $\forall i, w_i^{(0)} = 1$
- For each expect, assign weight $w_i^{(t)}$ (weight of expert i on day t)
- On day t, $\mathbb{P}[\operatorname{pick} i] = x_i^{(t)} = \frac{w_i^{(t)}}{\sum_{i=1}^n w_i^{(t)}}$
- At end of day t, update weights via: $w_i^{(t+1)} =$ $w_i^{(t)}(1-\epsilon)^{l_i^{(t)}}$

Results:

Last Resort

- Think DP (including change of states), Greedy, Graphs, DnC; on the fly trick
- Check LPs; don't be tricked by the direction of inequalities
- Is the question asking about dual or primal problem?
- Huffman coding: inequality of leaf nodes does not matter

• After T days, regret $R_T \le \epsilon T + \frac{\ln n}{\epsilon}$

• Average regret $R \in O\left(\sqrt{\frac{\ln n}{T}}\right)$

Variants and Corollaries:

- Online algorithm
- Constant # of variables per expert (decreasing n lowers memory)
- # of timesteps affect runtime of algorithm
- $m{\epsilon}$ affects calculations of weights

If losses
$$\in [a, b], R_T \le (b - a) \left(\epsilon T + \frac{\ln n}{\epsilon} \right)$$

Appendix of Pseudo-codes and DP Recurrences

(for quick referencing)

All Pairs Shortest Path $O(n^3)$

d[i,j,k] denotes length of shortest $i \rightarrow j$ path where intermediate vertices are in $\{1, ..., k\}$

- $\bullet \quad d[i,j,0] = w(i,j)$
- $d[i, j, k] = \min(d[i, j, k 1], d[i, k, k 1] + d[k, j, k 1])$

APSP(G):

```
for (i,j) \in E: d[i,j,0] \leftarrow w(i,j)

for (i,j) \notin E: d[i,j,0] \leftarrow \infty

for k = 1,...,n:

for i = 1,...,n:

d[i,j,k] \leftarrow \min(d[i,j,k-1],d[i,k,k-1])

return d
```

Shortest Path in DAG O(n+m)

```
dp[i] denotes length of shortest s \to i path dp[v] = \min_{u:(u,v) \in E} \{dp[u] + w(u,v)\}
```

$$\begin{aligned} & \mathsf{SP_DAG}(G,s): \\ & \forall u \ \mathsf{dp}[u] \leftarrow \infty \\ & \mathsf{dp}[s] \leftarrow 0 \\ & \mathsf{for} \ v \in G \ \mathsf{in} \ \mathsf{linearized} \ \mathsf{order}: \\ & \mathsf{dp}[v] \leftarrow \min_{u:(u,v) \in E} \{ \mathsf{dp}[u] + w(u,v) \} \\ & \mathsf{return} \ \mathsf{dp}[t] \end{aligned}$$

Shortest Path Problem O(k(|V| + |E|))

Given directed G = (V, E), edge weights can be positive or negative, $s, t \in V$, integer k, output length of shortest path using at most k edges

$$dp(v,i) = \min\left(\min_{u:(u,v)\in E} \{dp(u,i-1) + w(u,v)\}, dp(v,i-1)\right)$$

SHORTEST_K_PATH(G, s, t, k):

```
\begin{aligned} \operatorname{dist}[v,0] &\leftarrow \infty \\ \operatorname{dist}[s,0] &\leftarrow 0 \\ \operatorname{for} i &= 1, \dots, K \\ \operatorname{for} v &\in V \\ \operatorname{dist}[v,i] &\leftarrow \min \left( \min_{u:(u,v) \in E} \{ \operatorname{dist}(u,i-1) + w(u,v) \}, \operatorname{dist}(v,i-1) \right) \\ \operatorname{return} \operatorname{dist}[t,k] \end{aligned}
```

Travelling Salesman Problem $O(2^n \cdot n^2)$

Problem: find shortest tour starting at 1 (i.e. visits every node exactly once and ends at 1)

For S s.t. $i \in S$, denote T[S,i] as the length of shortest path that starts at 1, visits every node in subset S, ends at i

$$T[s,i] = \min_{j \in S \setminus \{i\}} \left\{ T[S \setminus \{i\}, j] + d_{ij} \right\}$$

$$\begin{split} \mathsf{TSP}(G) \colon & & T[\{1\},1] \leftarrow 0 \\ & \mathsf{for} \ s = 2, \dots, n \colon \\ & \mathsf{for} \ S \ \mathsf{s.t.} \ |S| = s, \ 1 \in S \colon \\ & \mathsf{for} \ i \in S \colon \\ & & T[S,i] \leftarrow \min_{j \in S, j \neq i} \big\{ T[S \backslash \{i\},j] + d_{ij} \big\} \end{split}$$

Remark: For shortest path, return dist[t, n-1]

Maximum Independent Set (Trees) O(|V| + |E|)

Find S s.t. for $u, v \in S$, $(u, v) \notin E$

I(v) = size of largest independent set in T_v (the subtree rooted v)

$$I(v) = \max \left\{ 1 + \sum_{w \in grandchild} I(w), \sum_{u \in child} I(u) \right\}$$

Horn SAT

HORN_SAT(
$$X$$
):
 $\forall i, x_i \leftarrow \text{False}$
while \exists unsatisfied $(x_i \land ... \land x_j) \Rightarrow x_k$:
 $x_k \leftarrow \text{True}$
if every $(\bar{x}_i \lor ... \bar{x}_j)$ satisfied:
return $(x_1, ..., x_n)$
else return "not satisfiable"

Longest Increasing Subsequence $O(|a|^2)$

Denote L[j] as the length of the longest LIS in $a_1, ..., a_j$ that ends in a_j

$$L[x] = 1 + \max_{i < x} \{ L[x] : a_i < a_x \}$$

$$\begin{aligned} & \text{LIS}(a) \text{:} \\ & \text{for } x = 1, \dots, n \text{:} \\ & \text{if } \exists i < x \text{ s.t. } a_i < a_x \text{:} \\ & L[x] \leftarrow 1 + \max_{i < x} \{ L[x] \text{:} a_i < a_x \} \\ & \text{else: } L[x] \leftarrow 1 \\ & \text{return } \max_{x \in \{1, \dots n\}} L[x] \end{aligned}$$

Edit Distance O(|s||t|)

Edits allowed: insert one character, delete one character, substitute one character

$$E[i,j] =$$
edit distance of $s[1,...,i], t[1,...,j]$

$$E[i,j] = \min\{1 + E(i-1,j), 1 + E(i,j-1), E(i-1,j-1) + \text{diff}(i,j)\}$$

$$diff(i,j) = \begin{cases} 0, & s[i] = t[j] \\ 1, & \text{otherwise} \end{cases}$$

EDIT DISTANCE(s, t):

for
$$i = 0, ..., m$$
: $E[i, 0] \leftarrow i$
for $j = 0, ..., n$: $E[0, j] \leftarrow j$
for $i = 1, ..., m$:
for $j = 1, ..., n$:
 $E[i, j] = \min\{E[i - 1, j] + 1, E[i, j - 1] + 1, E[i - 1, j -$

Knapsack with Replacement O(nW)

K(C) denote the maximum value that can be achieved with total weight $\leq C$

$$K(C) = \max_{i:w_i \le C} \{v_i + K(C - w_i)\}$$

KNAPSACK(W):

$$K(0) \leftarrow 0$$

for $C = 1, ..., W$:
 $K(C) \leftarrow \max_{i:w_i \leq C} \{v_i + K(C - w_i)\}$
return $K(W)$

Knapsack without Replacement O(nW)

K(C,j) is the max value achievable with total weight C using items $1, \dots, j$

$$K(C,j) = \max\{v_j + K(C - w_i, j - 1), K(C, j - 1)\}$$

KNAPSACK(W):

$$\forall j \ K(0,j) \leftarrow 0$$

 $\forall i \ K(i,0) \leftarrow 0$
for $j = 1, ..., n$:
for $C = 1, ..., W$:
if $w_j > C$: $K(C,j) \leftarrow K(C,j-1)$
else: $K(C,j) \leftarrow \max\{v_j + K(C-w_j,j-1), K(C,j-1)\}$
return $K(W,n)$