

May 27, 2021

© Coral Lipid Assay for 96-well plates

Colleen B Bove¹, Justin Baumann²

¹Boston University; ²Bowdoin College

dx.doi.org/10.17504/protocols.io.bvcfn2tn

ABSTRACT

This protocol is designed to work with coral host tissue slurry that has been processed by airbrushing to remove the tissue from the skeleton and after removal of symbiont cells and homoginization. This protocol will allow quantification of lipid concentrations of samples using 96-well plates for rapid assessment.

This protocol was adapted from Folch et al 1957¹ and Cheng et al 2011². For calculation of lipid concentrations, follow the directions presented in the materials section or use the custom Markdown file that can be found on my GitHub (<u>LipidAssay_96wellplate</u>).

- 1. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497-509. PMID: 13428781.
- Cheng YS, Zheng Y, VanderGheynst JS. Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids. 2011 Jan;46(1):95-103. doi: 10.1007/s11745-010-3494-0. Epub 2010 Nov 11. PMID: 21069472.

ATTACHMENTS

Folch et al (1957) A Simple cheng 2010.pdf
Method For The Isolation
And Purification Of Total
Lipides From Animal
Tissues.pdf

DOI

dx.doi.org/10.17504/protocols.io.bvcfn2tn

PROTOCOL CITATION

Colleen B Bove, Justin Baumann 2021. Coral Lipid Assay for 96-well plates. **protocols.io** https://dx.doi.org/10.17504/protocols.io.bvcfn2tn

KEYWORDS

Coral, lipid assay, 96-well plate

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

May 27, 2021

LAST MODIFIED

May 27, 2021

Citation: Colleen B Bove, Justin Baumann (05/27/2021). Coral Lipid Assay for 96-well plates. https://dx.doi.org/10.17504/protocols.io.bvcfn2tn

PROTOCOL INTEGER ID

50279

MATERIALS TEXT

Reagents:

Lipid extraction

- CH₃OH (Methanol)
- CHCl₃(Chloroform)
- 0.05 M NaCl in water

Lipid Assay

- 17% Phosphoric acid (H₃PO₄)
- 0.2 mg/mL vanillin in 17% phosphoric acid
- Concentrated (18M) sulfuric acid
- CH₃OH
- CHCl₃
- Corn Oil

Equipment:

- 96-well plates
- 1.5 mL tubes
- Vortex
- Plate shaker
- Centrifuge
- Hotplate
- Ice bucket/ice
- Fume hood
- Plate reader (can read absorbance at 540 nm)

Standard Preparation:

0.05M NaCl:

• 0.1461g NaCl in 50 mL DI water

Corn Oil

245 μL of corn oil in 14.755 ml CHCl₃

Information:

- Corn oil standard: Sigma Aldrich 47112-U Corn Oil analytical standard (1000 mg)
- Density = 0.9188 g/ml (Noureddini et al., 1992)
- Total volume of amuple = 1 g* (1ml / 0.9188g) =1.08837614 ml
- Known concentration of ampule= 1000mg / 1.088ml = 918.8 mg/ml (same as known density)

Stock 1.5 mg/mL corn oil standard (15 mL): 1.5 mg/mL *15mL = 918mg/mL * X mL

Stock 0.2 mg/mL vanillin in 17% phosphoric acid:

- \bullet 20 mL of 17% H_3PO_4 (4 mL 85% H_3PO_4 ; 16 mL of DI water)
- Stock vanillin solution. (20 mL 17% H₃PO₄; 4 mg vanillin)

Coral total lipid calculation:

- 1. Create standard curve with known standard concentrations and absorbance values (y = mx + b)
- 2. Using the resulting equation, convert sample absorbance to concentrations (mg/mL)
- 3. Multiply sample concentration (mg/mL) by total slurry volume (mL) and dilution factor (600/1360 μ L), then divide by surface area (cm²) for resulting units: mg/cm²
- 4. Alternatively, you can use custom Rmarkdown script to calculate concentrations per sample well (*Lipid Calculation Script.Rmd*) found on my GitHub (*LipidAssay_96wellplate*)

05/27/2021

Citation: Colleen B Bove, Justin Baumann (05/27/2021). Coral Lipid Assay for 96-well plates. https://dx.doi.org/10.17504/protocols.io.bvcfn2tn

<u>/:</u>\

All portions of this protocol should be performed in a fume hood as much as possible with appropriate safety precautions, including gloves, lab coat, and closed toe shoes.

	The key with this protocol is very careful pipetting
2	Pull samples from -80 freezer and allow to thaw (maximum of 24 samples per plate in triplicate)
3	Vortex sample and transfer 600 μL of coral tissue slurry sample to labelled 1.5 mL tube
4	Pre-make new 2:1 (CHCl ₃ :CH ₃ OH) stock every day running plates
5	Add 400 μL of CHCl $_3$ and 200 μL of CH $_3$ OH in a 2:1 ratio to 1.5 mL sample tube
6	Vortex then shake on plate shaker for 20 minutes
7	Add 160 μL of 0.05M NaCl (CHCl ₃ : CH ₃ OH : NaCl is in a 2:1:0.8 ratio – keep this ratio)
8	Invert tubes gently two times and open and reclose lid
9	Centrifuge at 3000 rpm for 5 minutes
10	Remove CHCl $_3$ (top) layer and dispose before taking 100 μ L for the assay (<i>Do three times for 3 replicates of 100 μL</i>)
Lipid As	ssay Standard Creation
11	Make a stock serial dilution in 7 1.5 mL tubes for each plate
12	Add 300 μL of CHCl $_3$ to standard tubes 2 through 7
	Add 600 μL of 1.5 mg/ml stock to standard tube 1.

mprotocols.io 3 05/27/2021

- 14 Pull 300 μ L from tube 1 and place in tube 2. Back pipette to mix.
- 15 Pull 300 μ L from tube 2 and place in tube 3. Back pipette to mix.
- 16 Repeat this process for tubes 3 through 6.
- 17 Discard 300 μ L from tube 6 so total volume equals 300 μ L.
- 18 Tube 7 is a blank of ONLY CHCl₃. DO NOT ADD CORN OIL

Α	В	С	D	Е	F	G	Н
Standard	1	2	3	4	5	6	7 (blank)
(mg/mL)	1.5	0.75	0.375	0.188	0.094	0.047	0.000

Standard concentrations table

Lipid Assay

19 In a 96-well plate, add 100 μ L of sample or standard to each well in triplicate (see template below)

Α	В	С	D	E	F	G	Н	I	J	K	L	М
	1	2	3	4	5	6	7	8	9	10	11	12
A	Std 1	Std 1	Std 1	S1	S1	S1	S9	S9	S9	S17	S17	S17
В	Std 2	Std 2	Std 2	S2	S2	S2	S10	S10	S10	S18	S18	S18
С	Std 3	Std 3	Std 3	S3	S3	S3	S11	S11	S11	S19	S19	S19
D	Std 4	Std 4	Std 4	S4	S4	S4	S12	S12	S12	S20	S20	S20
Е	Std 5	Std 5	Std 5	S5	S5	S5	S13	S13	S13	S21	S21	S21
F	Std 6	Std 6	Std 6	S6	S6	S6	S14	S14	S14	S22	S22	S22
G	Std 7	Std 7	Std 7	S7	S7	S7	S15	S15	S15	S23	S23	S23
Н	Blank	Blank	Blank	S8	S8	S8	S16	S16	S16	S24	S24	S24

Template of sample and standard placement in 96-well plate

- 20 Add $50 \,\mu\text{L}$ of CH_3OH to each well
- 21 Evaporate solvent on a 90°C hotplate for 10 minutes

22	Add 100 μ L H $_2$ SO $_4$ to each well (wells will change from clear to yellow colour)
23	Incubate on hotplate at 90°C for 20 minutes
24	Cool the plate on ice for 2 minutes
25	Transfer 75 μ L of each sample or standard from the microplate to a new 96-well microplate (wells may contain sticky residue and bubbles, but you should be able to avoid that to pull the required 75 μ L)
26	Cover the plate and read background absorbance at 540 nm using microplate reader (this is a baseline measure that is used for correcting the final plate absorbance)
27	Add 34.5 μL of 0.2 mg/mL vanillin in 17% phosphoric acid to each well
28	Incubate for 10 minutes (should change from yellow to pink color)
29	Cover the plate again and read absorbance at 540 nm using microplate reader
30	Calculate sample concentrations following method listed under 'Materials'