The Derivative

The derivative dy/dt of a function y(t) is the slope of the tangent line to that function at time t:

Derivatives of some common functions in engineering:

Function, $y(t)$	Derivative, <i>dy/dt</i>
$sin(\omega t)$	$\omega cos(\omega t)$
$cos(\omega t)$	$-\omega sin(\omega t)$
e^{st}	se^{st}
t^n	nt^{n-1}
cy(t)	cdy/dt
$y_1(t) + y_2(t)$	$dy_1/dt + dy_2/dt$

In the above table, ω , s, n and c are constants (not functions of t).

GENERAL FORMULAS

$$1. \ \frac{d}{dx}(c) = 0$$

3.
$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

5.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
 (Product Rule)

7.
$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$
 (Chain Rule)

$$2. \ \frac{d}{dx}[cf(x)] = cf'(x)$$

4.
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$

6.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$
 (Quotient Rule)

8.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 (Power Rule)

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

$$9. \ \frac{d}{dx}(e^x) = e^x$$

$$11. \frac{d}{dx} \ln|x| = \frac{1}{x}$$

$$10. \ \frac{d}{dx}(a^x) = a^x \ln a$$

$$12. \ \frac{d}{dx} (\log_a x) = \frac{1}{x \ln a}$$

TRIGONOMETRIC FUNCTIONS

$$\mathbf{13.} \ \frac{d}{dx}(\sin x) = \cos x$$

14.
$$\frac{d}{dx}(\cos x) = -\sin x$$

15.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$16. \frac{d}{dx} (\csc x) = -\csc x \cot x$$

17.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

18.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

INVERSE TRIGONOMETRIC FUNCTIONS

19.
$$\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

20.
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

21.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

22.
$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

23.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

24.
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

HYPERBOLIC FUNCTIONS

25.
$$\frac{d}{dx}(\sinh x) = \cosh x$$

$$26. \ \frac{d}{dx}(\cosh x) = \sinh x$$

27.
$$\frac{d}{dx}(\tanh x) = \mathrm{sech}^2 x$$

28.
$$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$$

29.
$$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

30.
$$\frac{d}{dx} \left(\coth x \right) = -\operatorname{csch}^2 x$$

INVERSE HYPERBOLIC FUNCTIONS

31.
$$\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{1 + x^2}}$$

32.
$$\frac{d}{dx} \left(\cosh^{-1} x \right) = \frac{1}{\sqrt{x^2 - 1}}$$

33.
$$\frac{d}{dx} \left(\tanh^{-1} x \right) = \frac{1}{1 - x^2}$$

34.
$$\frac{d}{dx} \left(\operatorname{csch}^{-1} x \right) = -\frac{1}{|x| \sqrt{x^2 + 1}}$$

35.
$$\frac{d}{dx} (\operatorname{sech}^{-1} x) = -\frac{1}{x\sqrt{1-x^2}}$$

36.
$$\frac{d}{dx} \left(\coth^{-1} x \right) = \frac{1}{1 - x^2}$$