1. Determine, with proof, whether each statement below is true.

(i)
$$(\forall x \in \mathbb{Q}^+)(\exists y \in \mathbb{N})(x^2 - y^2 = 0)$$

Solution. The statement is false. We prove the negation by considering $x=\frac{1}{2}\in\mathbb{Q}^+$. Since the square of any natural number is an integer and $\frac{1}{4}$ is not an integer we have that $\frac{1}{4}-y^2\neq 0$ for every natural number y. The proof is complete.

(ii)
$$(\forall x \in \mathbb{Q}^+)(\exists y \in \mathbb{Q}^+)(x^2 - y^2 = 0)$$

Solution. The statement is true. Let $x \in \mathbb{Q}^+$. Consider $y = x \in \mathbb{Q}^+$. Then $x^2 - y^2 = x^2 - x^2 = 0$. The proof is complete.

(iii)
$$(\forall x \in \mathbb{Q}^+)(\exists! y \in \mathbb{R})(x^2 - y^2 = 0)$$

Solution. The statement is false. We prove the negation by considering $x = 1 \in \mathbb{Q}^+$. For this choice of x there are two elements $y \in \mathbb{R}$ such that $x^2 - y^2 = 0$, namely y = 1 and y = -1. The proof is complete.

2. Prove that for arbitrary sets A, B, and C

$$(A \cap B) \cup C \subseteq (A \cup B \cup C) \setminus (A \setminus (B \cup C)).$$

Solution. Let $x \in (A \cap B) \cup C$.

Case 1) $x \in C$. Since $x \in C$, we know that $x \in A \cup B \cup C$. Since $x \in C$, we know that $x \in B \cup C$ and hence $x \notin A \setminus (B \cup C)$. Thus, $x \in A \cup B \cup C) \setminus (A \setminus (B \cup C))$, as desired.

Case 2) $x \in A \cap B$. Since $x \in A$, we know that $x \in A \cup B \cup C$. Moreover, since $x \in B$ we have $x \in B \cup C$, so $x \notin A \setminus (B \cup C)$. Thus, $x \in A \cup B \cup C \setminus (A \setminus (B \cup C))$, as desired.

In either of the possible cases, the desired result holds.

3. Recall that an integer larger than 1 is prime if and only if it has only 1 and itself as positive integer factors. Prove that for any prime number $p \ge 3$, there exist **unique** positive integers x and y such that

$$p = x^2 - y^2.$$

Solution. Let p be a prime number greater than or equal to 3. Note, in particular, that this means that p is odd. As in class, we observe that $x = \frac{p+1}{2}$ and $y = \frac{p-1}{2}$ are positive integers satisfying $p = x^2 - y^2$.

To show uniqueness, let x and y be positive integers such that $p = x^2 - y^2 = (x - y)(x + y)$. Since p and x + y are positive, so too is x - y and hence (x - y)(x + y) is a positive integer factorization of p. Since p is prime, we conclude that x - y = 1 and x + y = p (we used that fact that x - y < x + y here). Adding the two equations and dividing by two yields $x = \frac{p+1}{2}$. Subtracting the first equation from the second and dividing by two yields $y = \frac{p-1}{2}$, as desired.

4. Define $f: \mathbb{R} \to \mathbb{R}^+$ via

$$f(x) = \begin{cases} 3 - 2x & \text{if } x \le 1\\ 1/x & \text{if } x > 1 \end{cases}$$

Show that f is a bijection. You needn't show well-definedness of any functions that you use.

Solution. Define $g: \mathbb{R}^+ \to \mathbb{R}$ via

$$g(x) = \begin{cases} 1/x & \text{if } x \le 1\\ \frac{3-x}{2} & \text{if } x > 1 \end{cases}$$

To see that g is a right inverse for f, let $x \in \mathbb{R}^+$ and consider f(g(x)). If $x \leq 1$, then f(g(x)) = f(1/x) = 1/(1/x) = x, where we used the fact that $1/x \geq 1$ in the selection of the formula for f. If x > 1, then $f(g(x)) = f(\frac{3-x}{2}) = 3 - 2(\frac{3-x}{2}) = x$, where we used the fact that 1/x < 1 in the selection of the formula for f.

To see that g is a left inverse for f, let $x \in \mathbb{R}$ and consider g(f(x)). If $x \leq 1$, then $g(f(x)) = g(3-2x) = \frac{3-(3-2x)}{2} = x$, where we used the fact that $3-2x \geq 1$ in the selection of the formula for g. If x > 1, then g(f(x)) = g(1/x) = 1/(1/x) = x, where we used the fact that 1/x < 1 in the selection of the formula for g.

Since f has a two-sided inverse, f is a bijection.

- **5.** Let X be a set with a function $f: X \to X$.
- (i) Show that

$$(\forall B \subseteq X)(B \subseteq f[X]) \implies f \text{ is surjective.}$$

Solution. Assume the hypothesis. Let $y \in X$. Then $\{y\} \subseteq X$ and so $\{y\} \subseteq f[X]$. This means that $y \in f[X]$ and hence that there is $x \in X$ such that f(x) = y, as desired.

(ii) Show that

$$f$$
 is surjective $\implies (\forall B \subseteq X)(B \subseteq f[X]).$

Solution. Assume the hypothesis. Let $B \subseteq X$. Let $y \in B$. Then $y \in X$ and since f is a surjection, there is $x \in X$ such that f(x) = y. This means that $y \in F[X]$ so $B \subseteq f[X]$, as desired.

Bonus. Determine, with proof, whether the following statement is true:

There exist functions $f:\mathbb{R}\to\mathbb{R}$ and $g:\mathbb{R}\to\mathbb{R}$ such that for all real numbers x and y

$$f(x)g(y) - g(x)f(y) = x.$$

Solution. Assume for sake of contradiction that such functions, f and g, exist. Then taking x = y = 1, we have f(1)g(1) - g(1)f(1) = 0 = 1, a contradiction. Thus, no such functions exist.