- * final delivered electronically + submitted to D2L Drop Box
- * Monitor via 200m use comerce to show face.
- * Cowers Ch 10-12 Lectures 46-0 17-0 28 HW 14-0 23

2012 Final All 2016 Final All

Fri: HW 24 DZL

Field Transformations

Consider fields as viewed from two inertial fromes. The fields transform as:

$$B_{x}' = B_{x}$$

$$B_{y}' = \delta (B_{y} + \frac{1}{2} E_{t})$$

$$B_{z}' = \delta (B_{z} - \frac{1}{2} E_{y})$$

$$x'^{\circ} = 8(x^{\circ} - \beta x^{\dagger})$$

$$x'' = 7(x' - \beta x^{\circ})$$

$$x'^{2} = x^{2}$$

$$x'^{3} = x^{3}$$

We can immediately reach important general conclusions. Suppose for example that, in the unprimed frame, the sources only produce electric fields, i.e. $\vec{3} = 0$. Then

$$\vec{\nabla} \cdot \vec{E} = \frac{p}{60} = 0 \qquad \vec{\nabla} \cdot \vec{B} = 0 \qquad$$

In this case

$$E_{x}' = E_{x}$$

$$E_{y}' = \lambda E_{y}$$

$$E_{z}' = \lambda E_{z}$$

$$B_{z}' = \lambda \sum_{c} E_{z} = \frac{1}{\sqrt{2}} E_{z}'$$

$$E_{z}' = \lambda E_{z}$$

$$B_{z}' = \lambda \sum_{c} E_{y} = -\frac{1}{\sqrt{2}} E_{y}'$$

Now the velocity of the sources as observed from the primed frame is $\vec{\nabla}_S = -v\hat{x}$. So

$$\vec{\nabla}_{S} \times \vec{E}' = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ -V & O & O \end{vmatrix} = \hat{y} V \vec{E}_{Z}' - \hat{z} V \vec{E}_{Y}' = C^{z} \vec{B}'$$

$$\vec{E}_{X}' \vec{E}_{Y}' \vec{E}_{Z}' = \hat{z} V \vec{E}_{Y}' = C^{z} \vec{B}'$$

Thus we get

If the magnetic field as observed in S is zero then in S' the field is

where \vec{V}_s is the velocity of S as observed from S'

So if the sources are stationary in S then this lets us calculate \vec{E}' and by relatively easy algebra \vec{B}'

1 Point charge moving with constant velocity

A point charge moves with constant velocity $\mathbf{v} = v\hat{\mathbf{x}}$ as observed from the S' frame. Let the S frame be the frame in which the particle is at rest.

- a) Determine an expression for the electric and magnetic fields as observed from the S frame.
- b) With what velocity must the S' frame move with respect to the S frame?
- c) Use the field transformations to determine the fields in the S' frame. Express the results in terms of coordinates for the primed frame.

Answer Suppose particle is at rest in s frame at crigin

$$\frac{1}{\sqrt{1-4}} = -\sqrt{\frac{2}{3}}$$

a)
$$\vec{E} = \frac{q}{4\pi\epsilon_0} \frac{\hat{\Gamma}}{\Gamma^2} = \frac{q}{4\pi\epsilon_0} \frac{\vec{r}}{\Gamma^3}$$

$$\exists \vec{E} = \frac{9}{4 \text{ TIGO}} \frac{x \hat{x} + y \hat{y} + z \hat{z}}{(x^2 + y^2 + z^2)^{3/2}}$$

$$= 0 \quad E_{X} = \frac{9}{4\pi60} \frac{x}{(x^{2}+y^{2}+z^{2})^{3}/2}$$

$$Bx = By = Bz = 0$$

$$E_y = \frac{9}{4\pi60} \frac{y}{(x^2 + y^2 + z^2)^{3/2}}$$

$$E_{\frac{1}{2}} = \frac{9}{4\pi6u} \frac{7}{(x^2+y^2+2^2)^3/2}$$

$$\dot{\nabla} = - \dot{\nabla}$$

C) Here
$$E_{x}' = E_{x}$$

 $E_{y}' = 8(E_{y} + VB_{z}) = 8 E_{y}$
 $E_{z}' = 8(E_{z} - VB_{y}) = 8 E_{z}$

Now
$$x' = x'' = 8(x' - \beta x^{\circ})$$

$$= 0 \qquad x' = 8(x'' + \beta x'^{\circ})$$

$$= 0 \qquad x = 8(x'' - \frac{1}{2}ct') = 8(x'-yt')$$

$$x^2+y^2+z^2=x^2(x'-vt')^2+y'^2+z'^2$$

Thus

$$E_{x}^{\prime} = \frac{q}{4\pi\epsilon_{0}} \frac{8(x'-vt')}{\left[8^{2}(x'-vt')^{2}+y'^{2}+t'^{2}\right]^{3}/2}$$

$$Ey' = \frac{q}{4\pi60} \frac{8y'}{[-1]^{3/2}}$$

$$E_{z'} = \frac{9}{4\pi\epsilon_0} \frac{8z'}{(1-1)^3/2}$$

Noke that
$$\vec{B}' = \frac{1}{C^2} \vec{\nabla} \times \vec{E}'$$

Note that we can use the vector R as defined below:

Then

$$\vec{R} = \underbrace{(x'-vt)}_{R_{\times}} \hat{x} + y'\hat{y} + z'\hat{z}$$

$$R_{\times}$$

$$R_{y}$$

$$R_{\xi}$$

So
$$\forall (x'-vt')^2 + y'^2 + z'^2 = \forall^2 R_x^2 + R_y^2 + R_z^2$$

But
$$R_x = R\cos\theta$$

 $\sqrt{R_y^2 + R_z^2} = R\sin\theta$

give

$$8(-...)^{2} + y'^{2} + z'^{2} = R^{2} \sin^{2}\theta + y^{2}R^{2}\cos^{2}\theta$$

$$= R^{2} \left[\sin^{2}\theta + \delta^{2}\cos^{2}\theta\right]$$

$$= R^{2} \left[\sin^{2}\theta + \delta^{2}\left(1 - \sin^{2}\theta\right)\right]$$

$$= \delta^{2}R^{2}\left[1 + \sin^{2}\theta\left(\frac{1}{\delta^{2}} - 1\right)\right]$$

$$= \delta^{2}R^{2}\left[1 + \sin^{2}\theta\left(1 - \frac{V^{2}}{\delta^{2}} - 1\right)\right]$$

$$= \delta^{2}R^{2}\left[1 - \frac{V^{2}}{\delta^{2}}\sin^{2}\theta\right]$$

Thus:

$$\left[\chi^{2} (x'-vt')^{2} + y'^{2} + z'^{2} \right]^{3/2} = \chi^{3} R^{3} \left[1 - \frac{v^{2}}{c^{2}} \sin^{2}\theta \right]^{3/2}$$

So:

$$E_{\chi}' = \frac{1}{\chi^2} \frac{q}{4 \pi 60} \frac{R_{\chi}}{\left(1 - \frac{V^2}{6^2} \sin^2 \theta\right)^{3/2} R^3}$$

Ey' =
$$\frac{1}{8^2} \frac{9}{4\pi60} \frac{\text{Ry}}{(1-\frac{\text{V}^2}{C^2}\sin^2\theta)^{3/2}} R^3$$

Thus

$$\vec{E}' = \frac{q}{4\pi60} \frac{(1-\frac{\sqrt{2}}{C^2})}{(1-\frac{\sqrt{2}}{C^2})^{3/2}} \frac{\hat{R}}{R^2}$$

This is what we had obtained by direct calculation earlier.

Force Trans formations

Do the field transformation rules generate the correct force transformation rules? We will consider this for the situation where

- 1) the source charges are stationary in frame S
- 2) the force is the relativistic force i.e.

$$F_{x} = \frac{dp'}{dt} \qquad \text{where} \qquad p' = \frac{1}{\sqrt{1 - u_{x/2}^2}} P_{x}$$

$$F_{y} = \frac{dp^2}{dt} \qquad \text{where} \qquad p^2 = \frac{1}{\sqrt{1 - u_{x/2}^2}} P_{y}$$

$$F_{z} = \frac{dp^3}{dt} \qquad \text{where} \qquad p^3 = \frac{1}{\sqrt{1 - u_{x/2}^2}} P_{z}$$
3) the Lorentz force law is correct.

Then in the S frame the sources only produce an electric field E. The Lorentz force law gives

$$\vec{F} = \vec{Q} \vec{E}$$
whose the velocity of the particle in the S frame is \vec{u} .

Now suppose that this is viewed from a frames that moves with velocity $\vec{V} = v\hat{x}$ w.r.t S. Then the force transformation law gives:

In the S' frame the components of the force are:

$$F_{y}' = \frac{1}{8(1-8cux)} F_{y}$$

$$F_{z}' = \frac{1}{8(1-8cux)} F_{z}$$

Based on the Lorentz force law in the S frame and the fields in the S frame, the force in the S' frame is:

On the other hand we could

- transform the fields
- transform the particle velocity
- use the Lorentz force law in S'.

The fields transform as:

$$E_x' = E_x$$
 $B_x' = 0$

hen F'= Q(E'+ i',× B') gives:

$$F'_{x} = Q(E'_{x} + U'_{y}B'_{z} - U'_{z}B'_{y})$$

$$F'_{y} = Q(E'_{y} + U'_{z}B'_{x} - U'_{x}B'_{z})$$

$$F'_{z} = Q(E'_{z} + U'_{x}B'_{y} - U'_{y}B'_{x})$$

Consider the components:

i) The x component

$$F'_{x} = G(E_{x} + u_{y}'(-8\frac{V}{C^{2}}E_{y}) - u_{z}'8\frac{V}{C^{2}}E_{z})$$

$$= G[E_{x} - \frac{\delta V}{C^{2}}(u_{y}'E_{y} + u_{z}'E_{z})]$$

We need the velocity transformations. These are

$$U_{x}' = \underbrace{U_{x} - V}_{I - \underbrace{U_{x} V}_{C^{2}}} = \underbrace{U_{x} - V}_{I - \underbrace{B}_{C} U_{x}}$$

$$u_y' = \frac{u_y}{8(1 - v u_x/c^2)} = \frac{u_x}{8(1 - \frac{\beta}{c} u_x)}$$

$$u_{z}' = \frac{u_{\overline{z}}}{8(1 - v_{ux}/c^{z})} = \frac{u_{\overline{z}}}{8(1 - \frac{\beta}{c}u_{x})}$$

Thus

$$F_{x}' = \frac{Q}{1 - \beta u_{x}} \left[e_{x} - \beta \vec{u} \cdot \vec{E} \right]$$

Matches the force transformed from S!

2) The y component

Matches the force transformed from S!!

Thus we have

The field transformations guarantee that for source charges stationary in one frame, the theory is relativistically invariant.