Computer Organization Lab4

Name: 吳文心

ID: 109550022

Architecture diagrams:

Hardware module analysis:

(explain how the design work and its pros and cons)

在 ALU 和 ALU_Ctrl 中多加了關於 MULT 的運算。

因為實做 pipeline CPU 須在各個 stage 之間加上 register 來存取各 stage 的 instruction 的 state,由 Lab_3 的 Simple CPU 出發,照電路圖將各 stage 之間的 register 定好,再接上所有元件之間相連的電路即可完成這次作業。

使用 IF_ID, ID_EX,EX_MEM 及 MEM_WB 四個 register 分別作為 stage 之間的暫存器。

除上所述,本次作業的架構基本都和 Lab3 一樣。

Finished part:

(show the screenshot of the simulation result and waveform, and explain it)

test 1:

Register:									
r0=	0, r1=	3, r2=	4, r3=	1, r4=	6, r5=	2, rб=	7, r7=	1	
r8=	1, r9=	0, r10=	3, r11=	0, r12=	0, r13=	0, r14=	0, r1	5=	0
r16=	0, r17=	0, r18=	0, r19=	0, r20=	= 0, r21	= 0, r22	e= 0, :	r23=	I
r2 4=	0, r25=	0, r26=	0, r27=	0, r28=	= 0, r29	= 0, r30	J= 0, :	r31=	ı
Memory===									
m0=	O, m1=	3, m2=	0, m3=	O, m4=	0, m5= 0	, мб= О,	m7= 0		
m8=	0, m9=	0, m10=	O, m11=	O, m12=	O, m13=	O, m14=	O, m15=	0	
r16=	0, m17=	O, m18=	0, m19=	0, m20=	0, m21=	0, m22=	0, m23=	0	
m24=	0, m25=	0, m26=	0, m27=	O, m28=	O, m29=	0, m30=	0, m31=	0	
begin:	addi \$1,\$	\$0,3; // (\$1	L) = 3						
addi \$	2,\$0,4; //	(\$2) = 4							
addi \$	3,\$0,1; //	(\$3) = 1							
sw \$1,	,4(\$0); //	m1 = 3							
add \$4	4,\$1,\$1; /,	/ (\$4) = 2*	(\$1) = 2*3	3 = 6					
or \$6,	\$1,\$2; // ((\$6)= (\$1)	(\$2) = 0	112 or 100)2 = 1112 =	7			
· ·			, , ,		$1001_2 = 00$	12 = 1			
•	,, ,, ,,,	/ (\$5) = (\$ ⁴	,,						
		(\$8)= (\$1)							
• •		,, ,,,,	, , ,	•	•	為兩 regist	er中的值	直分別	
為3	□ 4 => (\$1	L) != (\$2) [,]	所以並沒	沒有 brand	ch				
lw \$10	0,4(\$0); //	' (\$10) = m	1 = 3						

Problems you met and solutions:

經過前幾次 Lab 的訓練,這次 Lab 很快就完成了,只是接線的部分要特別小心,時間主要花在檢查哪條線接錯(就是檢查應相連的電路元件是否有一樣的變數)。

Bonus (optional):

Register											
r0=	0, r1=	16, r2=	20, r3=	8, r4=	16, r5=	8, r6=	24, r7=	26			
r8=	8, r9=	100, r10=	0, r11=	0, r12=	0, r13=	0, r14=	0, r15=	0			
r16=	0, r17=	0, r18=	0, r19=	0, r20=	= 0, r21	l= 0, r22=	0, r23=	0			
r24=	0, r25=	0, r26=	0, r27=	0, r28=	= 0, r29	9= 0, r30=	0, r31=	0			
Memory======											
m0=	O, m1=	16, m2=	O, m3=	O, m4=	O, m5= C), m6= 0, m	7= 0				
m8=	0, m9=	0, m10=	O, m11=	0, m12=	O, m13=	O, m14=	0, m15=	0			
r16=	0, m17=	O, m18=	0, m19=	0, m20=	0, m21=	0, m22=	O, m23=	0			
m24=	0, m25=	0, m26=	0, m27=	0, m28=	0, m29=	0, m30=	O, m31=	0			

I6: 00000000100000110010100000100010

For I1/I2: 將 I3 和 I10 移到 I1、I2 之間 \Rightarrow 相差兩個 instructions For I5/I6: 將 I7 和 I9 移到 I5、I6 之間 \Rightarrow 相差兩個 instructions

For I8/I9: 將 I8 移到 I5 之前 => 相差兩個 instructions

Summary:

這四次作業下來,只能說由衷敬佩寫硬體語言的工程師們,他們真的太強了,邏輯超清晰!