

Representasi Bilangan Pecahan

Pertemuan 13

Materi

- Fixed Point
- Floating Point

Sub-CPMK

 Mahasiswa mampu merepresentasikan bilangan pecahan dalam bentuk biner dan hexadesimal (C3, A3)

1.

Fixed Point

Bilangan Fixed Point

- Untuk menyatakan pecahan dalam bentuk point yang sudah ditetapkan
- Terdiri dari dua bagian:
 - Bagian integer
 - Bagian Pecahan
- Point pemisah integer dengan pecahan dapat digeser sesuai keperluan.
- Range dibatasi oleh digit signifikan yang digunakan untuk merepresentasikan bilangan
- Fixed Point dinyatakan dengan dua parameter
 - Lebar bilangan
 - Posisi point biner dalam bilangan
- Direpresentasikan dg

$$\dots 2^5 2^4 2^3 2^2 2^1 2^0 \cdot 2^{-1} 2^{-2} 2^{-3} \dots$$

Contoh fixed point

- Contoh fixed<8,3> menandakan sebuah bilangan fixed point dengan 3 bit terkanan adalah pecahan
- Jika diberikan bilangan biner 00010110
 - Maka 00010 adalah bilangan fixed point dan 110 adalah pecahan
 - Direpresentasikan sbg

$$00010.110_{(2)} = 1 * 2^{1} + 1 * 2^{-1} + 1 * 2^{-1}$$

= 2 + 0.5 + 0.25
= 2.75

7

Floating Point

Bilangan Floating Point

- Floating Point

 menyatakan bilangan pecahan yang mempunyai keakuratan pecahan dimana titik yang memisahkan pecahan dapat disesuaikan dengan ketepatan pecahan yang diperlukan sehingga dapat menghasilkan nilai yang sangat besar ataupun sangat kecil.
- Bilangan direpresentasikan dengan mantissa yang berisi bit signifikan dan eksponen dari radix R
- Format Terdiri dari Sign, Exponent dan Mantissa
 - Sign

Menandai bilangan negatif atau positif. Pada bilangan bier floating point, 1 sebagai negatif, 0 sebagai positif

- Mantissa
 - Menyatakan bilangan pokok floating point
- Exponent

Menyatakan pangkat dari basis yang mengatur ketepatan pecahan

- Format: mantisa X Reksponen
- Contoh:

$$1.2345 = 12345 \times 10^{-4}$$

Contoh Floating Point

Untuk menyatakan nilai ½

$$\frac{1}{2} \rightarrow 0.5 \rightarrow 5 \times 10^{-1}$$

- 5 adalah mantissa
- -1 adalah exponent
- Untuk menyatakan nilai -½

$$-\frac{1}{2} \rightarrow -0.5 \rightarrow -5 \times 10^{-1}$$

- Adalah sign (tanda) negatif untuk mantissa
- 5 adalah mantissa
- -1 adalah exponent

Binary Floating Point

- Format:
 - Sign | Exponent | Mantissa
- Nilai pada sign:
 - $1 \rightarrow \text{negatif}$
 - $0 \rightarrow positif$
- Panjang bit pada Mantissa dan exponent tergantung jenis / panjang floating point

Bias Exponent

- Merupakan bilangan exponent yang disajikan dalam bentuk bias.
- Penggunaan nilai bias untuk menyatakan exponent dikarenakan nilai exponent pada floating point harus dapat merepresentasikan negatif maupun positif.
- Tetapi karena sign magnitude sudah dipergunakan pada bit biner dari floating point, maka untuk exponent sudah tidak dapat mempergunakan sign magnitude lagi agar tidak menimbulkan kerancuan bagi para engineer

Representasi Bias Exponent

- Misalkan suatu bilangan floating point memiliki panjang bit exponent adalah 8 bit, maka range nilai dari ke delapan bit tersebut adalah 0 sampai 255, mempunyai 256 variasi nilai
- Maka diambil nilai pada tengah range sebagai 0.
- Pada exponent 8 bit, Tengah range dari 0 sampai 255 diambil 127
- Dengan demikian 127 adalah 0, sedangkan 126 adalah -1, 125 adalah -2 dst, kemudian 128 adalah 1, 129 adalah 2 dst

I	bias exponent	-127	-126	-125	-124	 -2	-1	0	1	2	 126	127	128
ı	nilai desimal	0	1	2	3	 125	126	127	128	129	 253	254	255
ŀ	bit biner	0000 0000	0000 0001	0000 0010	0000 0011	 0111 1101	0111 1110	0111 1111	1000 0000	1000 0001	 1111 1101	1111 1110	1111 1111

•

- Misalkan diketahui suatu panjang bit exponent 8 bit,
- didapat kan nilai bit exponent adalah 0111 1011₍₂₎
- Maka nilai desimalnya adalah 123₍₁₀₎
- Jadi bilangan exponentnya adalah 123-127 = -4

Bilangan Floating-Point 32-bit (single-precision)

- IEEE mendefinisikan format 32-bit (single precision) untuk nilai floating-point (IEEE 754-1985)
 - Sign/Tanda: 1 bit
 - Eksponen: 8 bit → direpresentasikan dalam bentuk bias
 - $E_{\text{min}} = 1$, $E_{\text{max}} = 254$, menghasilkan eksponen (bias=127):
 - E = 1 127 = -126 dan E = 254 127 = 127

Nilai bilangan:

$$\mathbf{V}(\mathbf{B}) = (-1)^{\mathbf{S}} \left(\mathbf{1} + \sum\limits_{i=1}^{23} \mathbf{b}_{-i} \times \mathbf{2}^{-i}
ight) imes \mathbf{2}^{\mathbf{E} - 127}$$

Contoh

Contoh Representasi bilangan float

Contoh konversi bilangan pecahan ke floating Point

```
Bilangan: -113.3125
```

$$113_{(10)} = 1110001_{(2)}$$

$$0.3125 \times 2 = 0.625 \longrightarrow 0 \text{ sisa } 0.625$$

$$0.625 \times 2 = 1.25 \longrightarrow 1 \text{ sisa } 0.25$$

$$0.25 x 2 = 0.5 --> 0 sisa 0.5$$

$$0.5$$
 x 2 = 1.0 \longrightarrow 1 sisa 0

$$113.3125_{(10)} = 1110001.0101_{(2)}$$

Contoh konversi bilangan pecahan ke floatingPoint (lanjutan)

```
normalisasi:
1110001.0101 \times 2^{0} = 1.1100010101 \times 2^{6}
bit 1 adalah implied 1 bit bit ke 1 dapat dihilangkan
Signifikan \rightarrow 1100000010101
lengkapi menjadi 23 bit
Signifikan \rightarrow 1100000010101 0000000000
Signifikan \rightarrow 1100000010101000000000
bilangan pemangkat adalah 6 --> 6+127 = 133
133_{(10)} = 10000101_{(2)}
sign bit negatif adalah 1
1 | 10000101 | 11000101010000000000
C2E2A000<sub>(16)</sub>
```


Contoh Lain

Binary Value	Biased Exponent	Sign, Exponent, Mantissa
-1.11	127	1 01111111 1100000000000000000000000000
+1101.101	130	0 10000010 101101000000000000000
00101	124	1 01111100 0100000000000000000000000000
+100111.0	132	0 10000100 001110000000000000000
+.0000001101011	120	0 01111000 101011000000000000000

• Sign/Tanda: 1 bit

• Eksponen: 11 bit

Mantisa: 52 bit

Ringkasan

- Fixed Point untuk menyatakan pecahan dalam bentuk point yang sudah ditetapkan,
- Fixed point erdiri dari dua bagian yaitu bagian integer dan bagian Pecahan
- Floating Point menyatakan bilangan pecahan yang mempunyai keakuratan pecahan dimana titik yang memisahkan pecahan dapat disesuaikan dengan ketepatan pecahan yang diperlukan sehingga dapat menghasilkan nilai yang sangat besar ataupun sangat kecil.

Ringkasan (lanjutan)

- Floating point terdiri dari Sign, Exponent dan Mantissa
 - Sign: untuk menandai bilangan negatif atau positif. 1 sebagai negatif,
 0 sebagai positif
 - Mantissa Menyatakan bilangan pokok floating point
 - Exponent Menyatakan pangkat dari basis yang mengatur ketepatan pecahan
- Penggunaan nilai bias untuk menyatakan exponent dikarenakan nilai exponent pada floating point harus dapat merepresentasikan negatif maupun positif.

Terimakasih

TUHAN Memberkati Anda

Teady Matius Surya Mulyana (tmulyana@bundamulia.ac.id)