Sprawozdanie

Projekt specjalnościowy ARR

Modelowanie obiektu manipulatora 2R (EDDA)

Marcin Bober, 249426

Prowadzący: Dr inż. Mirela Kaczmarek

Katedra Cybernetyki i Robotyki Wydziału Elektroniki, Fotoniki i Mikrosystemów Politechniki Wrocławskiej

Spis treści

1	Cel ćwiczenia
2	Algorytm Qui Dorsey'a
	2.1 Opis
	2.2 Wyniki
	2.3 Wnioski
3	Algorytm dokładnej linearyzacji 3.1 Opis
	3.2 Zależność od nastaw
	3.3 Zależność od wartości początkowej
	3.4 Wnioski
4	Podsumowanie

1 Cel ćwiczenia

Celem ćwiczenia jest zbadanie zachowania dwóch algorytmów sterowania sprzężonych z manipulatorem 2R. Mają one zrealizować zadanie śledzenia zadanej trajektorii.

2 Algorytm Qui Dorsey'a

2.1 Opis

Algorytm Qui Dorsey'a jest algorytmem globalnym. Jego zasada działania jest tożsama z działaniem liniowego regulatora PD. Z powodu liniowej natury algorytmu i nieliniowego charakteru obiektu, sterowanie obiektem nie będzie proste. W celu zbadania właściwości nastaw regulatora na błąd śledzenia trajektorii (uchyb) został przeprowadzony szereg symulacji. Przetestowane nastawy wraz z rzędem błędu sterowania zostały podane w tabeli 1.

2.2 Wyniki

W tabeli 1 znajduje się zestaw sześciu par nastaw dla KP i KD regulatora. W kolejnych kolumnach został umieszczony rząd błędu sterowania odpowiadający podany parametrom.

Р	D	e_1	e_2
10	1	10^{-1}	10^{-1}
100	10	10^{-1}	10^{-2}
1000	100	10^{-2}	10^{-3}
10000	1000	10^{-3}	10^{-4}
100000	10000	10^{-4}	10^{-5}
1000000	100000	10^{-5}	10^{-6}
10000000	1000000	10^{-6}	10^{-7}

Tabela 1: Nastawy PD i odpowiadający im rząd błędu

Dziesięciokrotny wzrost wzmocnienia skutkuje dziesięciokrotnym spadkiem błędu. Błędy drugiego przegubu są niższe niż dla pierwszego. Dla nastaw dążących do nieskończoności, błąd śledzenia zmierza do zera.

Rysunek 1: KP = 10, KD = 1

Niewielkie nastawy sprawiają że obiekt ma znaczne problemy ze śledzeniem zadanej trajektorii. Błąd śledzenia dla KP = 10 i KD = 1 w zależności do czasu został zaprezentowany na rysunku 1.

Rysunek 2: KP = 100, KD = 10

Konsekwentne zwiększanie nastaw regulatora przynosi wymierne efekty w postaci malejącego błędu. Można je zaobserwować porównująć wykresy 3 oraz 4.

Rysunek 3: KP = 1000, KD = 100

Rysunek 4: KP = 10000, KD = 1000

Pomimo malejącego błedu należy zaznaczyć że uzyskane przbiegi w każdej iteracji posiadają charakter niegasnących oscylacji.

Rysunek 5: KP = 100000, KD = 10000

Rysunek 6: KP = 1000000, KD = 100000

Stosowanie coraz to większych parametrów regulatora PD powoduje znaczący wzrost złożoności obliczeniowej.

2.3 Wnioski

Symulacje wykazały że algorytm realizuje cel minimalizacji błędu śledzenia dokładnej w przypadku zastosowania większych nastaw. Jednakże osiągnięcie zerowego błędu nie jest możliwe ponieważ wymagałoby ono nieskończonej wartości nastaw. W każdym zbadanym przypadku przebiegi błędów mają charakter niegasnących oscylacji.

3 Algorytm dokładnej linearyzacji

3.1 Opis

Algorym dokładnej linearyzacji może być zastosowany jedynie dla obiektów z pełni znanych. Pierwszym etapem jest przeprowadzenie linearyzacji statycznej w celu otrzymania układu liniowego podówjego integratora.

- 3.2 Zależność od nastaw
- 3.3 Zależność od wartości początkowej
- 3.4 Wnioski
- 4 Podsumowanie