LES OPERATEURS ENSEMBLISTES EN ALGEBRE RELATIONNELLE

SANE ARNAUD et Dr N'GUESSAN GERARD

Table des matières

I - Objectifs	3
II - L'UNION ET L'INTERSECTION EN ALGEBRE RELATIONNELLE	3
4	
III - EVALUATION N°1	7
IV - LA DIFFERENCE ET LA DIVISION	8
V - EVALUATION N°2	10

Object ifs

- Réaliser des requêtes portant sur l'UNION et l'INTERSECTION en Algèbre Relationnelle
 Réaliser des requêtes portant sur la DIFFERENCE et la DIVISION en Algèbre Relationnelle

1. L'UNION

Elle génère une relation R3 comprenant des n-uplets appartenant soit à la relation1 (R1) uniquement, soit à la relation2 (R2) ou aux deux. Elle élimine les enregistrements en double (les doublons). Pour appliquer l'union entre deux relations, il faut que celles-ci aient les mêmes attributs.

Syntaxe: R1 U R2

Exemple:

R1

A	В
A001	ТОТО
A002	THOMAS
A003	ANDRE
A004	SYLVAIN
A005	ANDERSON

R2

A	В
A003	ANDRE
B001	KONAN
A002	THOMAS
A006	YANN

R3=R1 U R2

A	В
A001	ТОТО
A002	THOMAS
A003	ANDRE
A004	SYLVAIN
A005	ANDERSON
B001	KONAN
A006	YANN

2. L'INTERSECTION

1

Elle génère une relation R3 comprenant des n-uplets appartenant à la fois à la relation (R1) et à la relation (R2). Pour appliquer l'intersection entre deux relations, il faut que celles-ci aient les mêmes attributs.

Exemple:

R1

A	В
A001	ТОТО
A002	THOMAS
A003	ANDRE
A004	SYLVAIN
A005	ANDERSON

R2

A	В
A003	ANDRE
B001	KONAN
A002	THOMAS
A006	YANN

A	В
A002	THOMAS
A003	ANDRE

EVALUATION N°1

Exercice 1

 $Quelle\ est\ la\ particularit\'e\ de\ l'INTERSECTION\ de\ deux\ relations\ R1\ et\ R2?$

- O Elle retourne une relation R dont les enregistrements proviennent de la relation R1
- O Elle retourne une relation R dont les enregistrements proviennent soit de R1 ou de R2
- O Elle retourne une relation R dont les enregistrements sont à la fois issues de R1 et de R2

Exercice 2

CLIENT(matcli, nomcli, pnomcli, contactcli)

FOURNISSEUR(refour, nomfour, pnomfour, contact four)

De ces requêtes définies ci-dessous, quelle est celle qui retourne la liste les clients qui sont à la fois fournisseurs de l'entreprise X?

- \bigcirc R = CLIENT \bigcap FOURNISSEUR
- \bigcirc R = CLIENT *U* FOURNISSEUR
- \bigcirc R = CLIENT X FOURNISSEUR

LA DIFFERENCE ET LA DIVISION

1. LA DIFFERENCE

Elle génère une relation R3 comprenant des n-uplets appartenant à la première relation (R1) mais n'appartenant pas à la seconde relation (R2). Pour appliquer la différence entre deux relation, il faut que celles-ci aient les mêmes attributs.

Syntaxe: R1 - R2

Exemple:

R1

A	В
A001	ТОТО
A002	THOMAS
A003	ANDRE
A004	SYLVAIN
A005	ANDERSON

R2

A	В
A003	ANDRE
B001	KONAN
A002	THOMAS
A006	YANN

R3=R1 - R2

A	В
A001	ТОТО
A004	SYLVAIN
A005	ANDERSON

2. LA DIVISION

la division de R1 par R2 génère une relation R3 dont chaque enregistrement est en relation avec tous

ceux de la relation R2. Ces enregistrements générés constituent un sous-ensemble de la relation R1. Chaque enregistrement de R3 concaténé avec chacun des enregistrements de R2 génère des enregistrements constituant des sous-ensembles de R1.

Syntaxe: R3=R1 / R2

Exemple:

R1	
CLIENT	PRODUIT
CLIENT01	PR001
CLIENT05	PR001
CLIENT01	PR002
CLIENT05	PR002
CLIENT03	PR002
CLIENT04	PR001
CLIENT02	PR002
CLIENT01	PR003
CLIENT05	PR003

R2
PRODUIT
CLIENT01
CLIENT03
CLIENT05

R3=R1 / R2
PRODUIT
PR001
PR002
PR003
·

EVALUATION N°2

Exercice 1

Quelle est la particularité de la DIFFERENCE de R1 et R2 (R1 - R2)?

- C Elle retourne les n-uplets contenus dans la relation R2 mais qui n'existent pas dans la relation R1.
- Elle retourne les n-uplets contenus dans la relation R1 mais qui n'existent pas dans la relation R2.
- C Elle retourne les n-uplets contenus soit dans la relation R1 ou dans la relation R2 mais pas dans les deux à la fois.

Exercice 2

 $CLIENT(matcli,\ nomcli,\ pnomcli,\ contactcli)$

PRODUIT(prodid, prodlib, prixprod)

ACHETER(#matcli, #prodid, dateachat)

Quelle requête retourne la liste des clients qui ont acheté tous les produits ?

- R1 = PRODUIT X ACHETER(PRODUIT.prodid=ACHETER.prodid)
 - R2 = R1 X CLIENT(R1.matcli= CLIENT.matcli)
 - R3=PROJECTION.R2(matcli, nomcli, pnomcli contactcli, prodid, prodlib, prixprod)
 - R4=R3 / PRODUIT
- R1 = PRODUIT X ACHETER(PRODUIT.prodid=ACHETER.prodid)
 R2=PROJECTION.R1(matcli, nomcli, pnomcli contactcli, prodid, prodlib, prixprod)
 R3=R2 / R1
- \bigcirc R1 = PRODUIT X CLIENT(PRODUIT.prodid=CLIENT.matcli) R2=PROJECTION.R1(matcli, nomcli, pnomcli contactcli, prodid, prodlib, prixprod) R3=R2 / PRODUIT