1. $C = \{0,9\} \cup \{1,8\} \cup \{2,7\} \cup \{3,6\} \cup \{4,5\}$

Since you have to pick 6 integers, and there are 5 "pigeonholes" (pairs of numbers that sum to 9), at least one pair of numbers in the 6 chasen has to sum to 9.

- If f is Ital, Suppose f is not onto, then there exists a $b \in B$ s.t. $f(x) \neq b$ for any $x \in A$. Since |A| = |B|, $\longrightarrow \longleftarrow$, thus f is onto.
- 3. $|B| = {5 \choose 3} = 10$ |A| = 5 A = B, $\# \ oF$ Functions = $|B|^{14}$ $10^5 = 100,000$
 - b). $P(10,5) = \frac{10!}{(10-5)!} = \frac{10!}{5!} = \frac{30,240}{5!}$
 - There are none, because since IA[LIB], once all elements in A have a arresponding element in B, there are still 5 elements in B left unlit, no matter the function from A = > B.
 - $\beta \longrightarrow A$, $|A|^{181} = 5^{10} = 9,765,625$

There are no Ital Gundians Grom $B \longrightarrow A$, blc There has to be at least one element in the codomain (A) that gets hit more than once if $|A| \angle |B|$.

9 765 625 -
$$\binom{5}{1}$$
410 + $\binom{5}{2}$ 310 - $\binom{5}{3}$ 219 + $\binom{5}{4}$ 110 - $\binom{5}{5}$ 010
= 5,103,000

$$\frac{(n-n)i}{0i} \qquad \frac{0i}{5i} = \frac{1}{5}i = \frac{150}{150}$$

4.

A: 1992

B:
$$(\frac{4}{7})(\frac{4}{7})(\frac{4}{7})(\frac{4}{7}) = 256$$

$$(: (\frac{9}{1})(\frac{9}{1})(\frac{9}{1})(\frac{9}{1})(\frac{6}{1}) = 3,024$$

1A(+1B1+1C1- | AMB1-1AMC1-1BMC1+ | AMBMC1

5.
$$f: S \longrightarrow \mathbb{Z}$$
 , $f(x) = - \int x$

Ital: Let
$$x,y \in S$$

$$f(x) = f(y)$$

$$-\sqrt{x} = -\sqrt{y}$$

$$x = y \checkmark$$

$$y = -\int x$$

$$-y = \int x$$

$$x = (-y)^{2}$$

for
$$\forall y \in \mathbb{Z}^-$$
, there exists an $x \in S$.

$$f(x) = -Jx$$
 is a bijection, $f:S \longrightarrow Z$