Сборник готовых задач на различные виды распределений дискретной случайной величины

Дополнительный материал к теме «Дискретная случайная величина»: http://mathprofi.ru/sluchainaya_velichina.html

Оглавление:

(кликабельно)

1. Произвольные, изначально известные дискретные распределения	2
2. Распределения, полученные с помощью прямого применения теорем	8
3. Распределения, близкие к геометрическому	19
4. Биномиальное распределение вероятностей	26
5. Задачи на распределение Пуассона	45
6. Гипергеометрическое распределение вероятностей	

1. Произвольные, изначально известные дискретные распределения

Задача 1. Закон распределения дискретной случайной величины X имеет вид:

X_i	-2	-1	0	1	2
p_{i}	0,2	0,1	0,2	p_4	p_5

Найти вероятности p_4 , p_5 и дисперсию D(X) , если математическое ожидание M(X) = 0.1

Решение: случайная величина X может принимать только пять значений, соответствующие события образуют полную группу, поэтому:

$$p_1 + p_2 + p_3 + p_4 + p_5 = 1$$

 $0.2 + 0.1 + 0.2 + p_4 + p_5 = 1$
 $p_4 + p_5 = 0.5$

По определению математического ожидания:

$$M(X) = x_1 p_1 + x_2 p_2 + x_3 p_3 + x_4 p_4 + x_5 p_5$$

$$0.1 = -2 \cdot 0.2 - 1 \cdot 0.1 + 0 \cdot 0.2 + p_4 + 2 p_5$$

$$p_4 + 2 p_5 = 0.6$$

Вероятности p_4 и p_5 найдем из решения системы:

$$\begin{cases} p_1 + p_5 = 0.5 \\ p_4 + 2p_5 = 0.6 \end{cases} \Rightarrow p_5 = 0.1$$

$$p_4 = 0.5 - p_5 = 0.5 - 0.1 = 0.4$$

Для нахождения дисперсии заполним вспомогательную расчетную таблицу:

X_i	-2	-1	0	1	2	Суммы:
p_{i}	0,2	0,1	0,2	0,4	0,1	1
x_i^2	4	1	0	1	4	
$x_i^2 p_i$	0,8	0,1	0	0,4	0,4	1,7

$$D(X) = M(X^2) - (M(X))^2 = \sum x_i^2 p_i - (0.1)^2 = 1.7 - 0.01 = 1.69$$

Ответ: $p_4 = 0.4$, $p_5 = 0.1$, D(X) = 1.69

Задача 2. Дискретная случайная величина X задана законом распределения:

X_i	-2	-1	3	8	9
p_{i}	4p	0,2	0,3	p	0,4

Найти: а) p; б) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины; в) интегральную функцию распределения F(x) и начертить её график; г) P(-5 < x < 2).

Решение:

а) Найдем неизвестное значение p.

Случайная величина X может принимать только 5 значений, поэтому:

$$4p + 0.2 + 0.3 + p + 0.4 = 1$$

$$0.9 + 5p = 1$$

$$5p = 0.1$$

$$p = 0.02$$

б) Найдём математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$. Заполним расчетную таблицу:

X_i	-2	-1	3	8	9	Суммы:
p_{i}	0,08	0,2	0,3	0,02	0,4	1
$x_i p_i$	-0,16	-0,2	0,9	0,16	3,6	4,3
$x_i^2 p_i$	0,32	0,2	2,7	1,28	32,4	36,9

Математическое ожидание: M(X) = 4.3

Дисперсию вычислим по формуле:

$$D(X) = M(X^2) - (M(X))^2 = 36.9 - (4.3)^2 = 36.9 - 18.49 = 18.41$$
.

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{18,41} \approx 4,29$

в) Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le -2; \\ 0,08 & npu \ -2 < x \le -1; \\ 0,28 & npu \ -1 < x \le 3; \\ 0,58 & npu \ 3 < x \le 8; \\ 0,6 & npu \ 8 < x \le 9; \\ 1 & npu \ x > 9. \end{cases}$$

Выполним чертеж:

г) Найдем вероятность того, что случайная величина X примет значение из данного интервала: P(-5 < x < 2) = F(2) - F(-5) = 0.28 - 0 = 0.28

Задача 3. Дискретная случайная величина (ДСВ) X задана законом распределения:

V	X_i	-4	-2	х
Λ	p_{i}	0,3	0,5	p

Известно, что M(X) = -1.8. Найти: p, x, D(X), $P(-3 \le X < x)$

Решение: дискретная случайная величина X может принимать только три значения, соответствующие события образуют полную группу, поэтому:

$$p_1 + p_2 + p = 1$$

 $0.3 + 0.5 + p = 1$
 $p = 0.2$

По определению математического ожидания:

$$M(X) = x_1 p_1 + x_2 p_2 + xp$$
$$-4 \cdot 0.3 - 2 \cdot 0.5 + 0.2x = -1.8$$
$$0.2x = 0.4$$
$$x = 2$$

Вычислим дисперсию:

$$D(X) = x_1^2 p_1 + x_2^2 p_2 + x^2 p - (M(X))^2 = (-4)^2 \cdot 0.3 + (-2)^2 \cdot 0.5 + 2^2 \cdot 0.2 - (-1.8)^2 = 4.8 + 2 + 0.8 - 3.24 = 4.36$$

Вычислим $P(-3 \le X < x) = P(-3 \le X < 2)$. Сначала составим функцию распределения вероятностей:

$$F(X) = \begin{cases} 0; x \le -4 \\ 0,3; -4 < x \le -2 \\ 0,8; -2 < x \le 2 \\ 1; x > 2 \end{cases}$$

 $P(-3 \le X < 2) = F(2) - F(-3) = 0,8 - 0,3 = 0,5$ – вероятность того, что случайная величина X примет значение из данного интервала.

Other:
$$p = 0.2$$
, $x = 2$, $D(X) = 4.36$, $P(-3 \le X < 2) = 0.5$

Задача 4. Дискретная случайная величина X имеет распределение вероятностей, заданное таблицей:

X_i	10	12	15	17	21
p_{i}	0,2	0,2	0,4	0,1	а

Требуется:

- 1) найти число a;
- 2) построить многоугольник распределения;
- 3) найти функцию распределения F(x) и построить ее график;
- 4) вычислить вероятность попадания случайной величины X на промежутки [-1;10), [11;15], [12;21);
- 5) найти математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$.

Решение:

1) Найдем неизвестное значение вероятности a.

Случайная величина X может принимать только 5 значений, поэтому:

$$0.2 + 0.2 + 0.4 + 0.1 + a = 1$$

$$0.9 + a = 1$$

$$a = 0.1$$

2) Построим многоугольник распределения:

3) Найдем функцию распределения и построим ее график:

$$F(x) = \begin{cases} 0 & npu \ x \le 10; \\ 0.2 & npu \ 10 < x \le 12; \\ 0.4 & npu \ 12 < x \le 15; \\ 0.8 & npu \ 15 < x \le 17; \\ 0.9 & npu \ 17 < x \le 21; \\ 1 & npu \ x > 21. \end{cases}$$

Выполним чертеж:

4) Вычислим вероятность попадания случайной величины X на промежутки:

$$P(-1 \le X < 10) = F(10) - F(-1) = 0 - 0 = 0$$

 $P(11 \le X \le 15) = P(11 \le X < 15) + P(15) = F(15) - F(11) + p_3 = 0,4 - 0,2 + 0,4 = 0,6$
 $P(12 \le X < 21) = F(21) - F(12) = 0,9 - 0,2 = 0,7$

5) Найдём математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$.

Заполним расчетную таблицу:

X_i	10	12	15	17	21	Суммы:
p_i	0,2	0,2	0,4	0,1	0,1	1
$x_i p_i$	2	2,4	6	1,7	2,1	14,2
$x_i^2 p_i$	20	28,8	90	28,9	44,1	211,8

Математическое ожидание: M(X) = 14,2

Дисперсию вычислим по формуле:

$$D(X) = M(X^2) - (M(X))^2 = 211.8 - (14.2)^2 = 211.8 - 201.64 = 10.16$$
.

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{10,16} \approx 3,19$

Задача 5. Найти M(X), D(X) и $\sigma(X)$, если:

X_i	2	12	32	47	60
p_{i}	0,1	0,1	0,5	0,2	?

Найти F(x) и построить её график.

Решение: Найдем неизвестное значение вероятности.

Случайная величина X может принимать только 5 значений, поэтому:

$$0.1 + 0.1 + 0.5 + 0.2 + p_5 = 1$$

$$0.9 + p_5 = 1$$

$$p_5 = 0.1$$

Заполним расчетную таблицу:

X_i	2	12	32	47	60	Суммы:
p_{i}	0,1	0,1	0,5	0,2	0,1	1
$x_i p_i$	0,2	1,2	16	9,4	6	32,8
$x_i^2 p_i$	0,4	14,4	512	441,8	360	1328,6

Математическое ожидание: M(X) = 32.8

Дисперсию вычислим по формуле:

$$D(X) = M(X^2) - (M(X))^2 = 1328.6 - (32.8)^2 = 1328.6 - 1075.84 = 252.76$$
.

Среднее квадратическое отклонение:
$$\sigma(X) = \sqrt{D(X)} = \sqrt{252,76} \approx 15,90$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 2; \\ 0.1 & npu \ 2 < x \le 12; \\ 0.2 & npu \ 12 < x \le 32; \\ 0.7 & npu \ 32 < x \le 47; \\ 0.9 & npu \ 47 < x \le 60; \\ 1 & npu \ x > 60. \end{cases}$$

Выполним чертеж:

2. Распределения, полученные с помощью прямого применения теорем

Задача 6. Рабочий обслуживает 3 станка, вероятности выхода из строя каждого из которых в течение часа соответственно равны 0,2; 0,15; 0,1. Составить закон распределения числа станков, не требующих ремонта в течение часа. Найти математическое ожидание и дисперсию этой случайной величины

Решение: по условию $q_1 = 0.2$, $q_2 = 0.15$, $q_3 = 0.1$ – вероятности выхода из строя соответствующих станков в течение часа. Тогда вероятности их безотказной работы:

$$p_1 = 1 - q_1 = 1 - 0.2 = 0.8$$

 $p_2 = 1 - q_2 = 1 - 0.15 = 0.85$
 $p_3 = 1 - q_3 = 1 - 0.1 = 0.9$

Используя теоремы сложения вероятностей несовместных и умножения независимых событий, составим закон распределения случайной величины X — числа станков, не требующих ремонта в течение часа:

0)
$$x = 0$$
 (все станки вышли из строя)

$$p(0) = q_1 \cdot q_2 \cdot q_3 = 0.2 \cdot 0.15 \cdot 0.1 = 0.003$$

1)
$$x = 1$$
 (два станка вышли из строя)

$$p(1) = p_1 \cdot q_2 \cdot q_3 + q_1 \cdot p_2 \cdot q_3 + q_1 \cdot q_2 \cdot p_3 = 0.8 \cdot 0.15 \cdot 0.1 + 0.2 \cdot 0.85 \cdot 0.1 + 0.11 \cdot 0.11 \cdot$$

$$0.2 \cdot 0.15 \cdot 0.9 = 0.012 + 0.017 + 0.027 = 0.056$$

2) x = 2 (один станок вышел из строя)

$$p(2) = p_1 \cdot p_2 \cdot q_3 + q_1 \cdot p_2 \cdot p_3 + p_1 \cdot q_2 \cdot p_3 = 0.8 \cdot 0.85 \cdot 0.1 + 0.2 \cdot 0.85 \cdot 0.9 + 0.00 \cdot 0.00 \cdot$$

$$0.8 \cdot 0.15 \cdot 0.9 = 0.068 + 0.153 + 0.108 = 0.329$$

3) x = 3 (все станки проработали безотказно)

$$p(3) = p_1 \cdot p_2 \cdot p_3 = 0.8 \cdot 0.85 \cdot 0.9 = 0.612$$

Заполним расчетную таблицу:

X_i	0	1	2	3	Суммы:
p(i)	0,003	0,056	0,329	0,612	1
$x_i p(i)$	0	0,056	0,658	1,836	2,55
$x_i^2 p(i)$	0	0,056	1,316	5,508	6,88

Искомый закон распределения случайной величины X сведен в две верхние строки таблицы.

Математическое ожидание:
$$M(X) = \sum x_i p(i) = 2,55$$

Дисперсию вычислим по формуле:

$$D(X) = M(X^{2}) - (M(X))^{2} = \sum_{i=1}^{n} x_{i}^{2} p(i) - (2,55)^{2} = 6,88 - 6,5025 = 0,3775$$

Ответ:

o i bei i									
X_i	0	1	2	3					
p(i)	0,003	0,056	0,329	0,612					

$$M(X) = 2.55, D(X) = 0.3775$$

В Задачах № 7-9 требуется: найти закон распределения указанной случайной величины X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$. Построить график функции распределения F(x).

Задача 7. Вероятность перевыполнения плана для СУ-1 равна 0,9, для СУ-2 – 0,8, для СУ-3 – 0,7. Случайная величина X – число СУ, перевыполнивших план.

Решение: По условию $p_1 = 0.9$, $p_2 = 0.8$, $p_3 = 0.7$ — вероятности перевыполнения плана для соответствующих СУ.

Тогда вероятности того, что план не будет перевыполнен:

$$q_1 = 1 - p_1 = 1 - 0.9 = 0.1$$

 $q_2 = 1 - p_2 = 1 - 0.8 = 0.2$
 $q_3 = 1 - p_3 = 1 - 0.7 = 0.3$

Используя теоремы умножения вероятностей независимых и сложения несовместных событий, составим закон распределения случайной величины X – количества CY, перевыполнивших план:

$$p(0) = q_1 q_2 q_3 = 0.1 \cdot 0.2 \cdot 0.3 = 0.006$$
1) $x = 1$

$$p(1) = p_1 q_2 q_3 + q_1 p_2 q_3 + q_1 q_2 p_3 = 0.9 \cdot 0.2 \cdot 0.3 + 0.1 \cdot 0.8 \cdot 0.3 + 0.1 \cdot 0.2 \cdot 0.7 = 0.054 + 0.024 + 0.014 = 0.092$$

2)
$$x = 2$$

 $p(2) = p_1 p_2 q_3 + p_1 q_2 p_3 + q_1 p_2 p_3 = 0.9 \cdot 0.8 \cdot 0.3 + 0.9 \cdot 0.2 \cdot 0.7 + 0.1 \cdot 0.8 \cdot 0.7 = 0.216 + 0.126 + 0.056 = 0.398$

3)
$$x = 3$$
 (все СУ перевыполнили план) $p(3) = p_1 p_2 p_3 = 0.9 \cdot 0.8 \cdot 0.7 = 0.504$

0) x = 0 (все СУ не перевыполнили план)

Таким образом, искомый закон распределения:

x_i	0	1	2	3
p(i)	0,006	0,092	0,398	0,504

Проверка:
$$0,006 + 0,092 + 0,398 + 0,504 = 1$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,006 & npu \ 0 < x \le 1; \\ 0,098 & npu \ 1 < x \le 2; \\ 0,4968 & npu \ 2 < x \le 3; \\ 1 & npu \ x > 3. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$. Заполним расчетную таблицу:

X_i	0	1	2	3	Суммы:
p_{i}	0,006	0,092	0,398	0,504	1
$x_i p(i)$	0	0,092	0,796	1,512	2,4
$x_i^2 p(i)$	0	0,092	1,592	4,536	6,22

Математическое ожидание: M(X) = 2,4

Дисперсию вычислим по формуле:

$$D(X) = M(X^2) - (M(X))^2 = 6.22 - (2.4)^2 = 6.22 - 5.76 = 0.46$$
.

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{0.46} \approx 0.68$

Задача 8. Вероятность безотказной работы в течение гарантийного срока для телевизоров первого типа равна 0,9, второго типа - 0,7, третьего типа - 0,8. Случайная величина X — число телевизоров, проработавших гарантийный срок, среди трех телевизоров разных типов.

Решение: по условию $p_1 = 0.9$, $p_2 = 0.7$, $p_3 = 0.8$ — вероятности безотказной работы в течение гарантийного срока телевизоров соответствующих типов. Тогда вероятности их отказа:

$$q_1 = 1 - p_1 = 1 - 0.9 = 0.1$$

$$q_2 = 1 - p_2 = 1 - 0.7 = 0.3$$

$$q_3 = 1 - p_3 = 1 - 0.8 = 0.2$$

Используя теоремы умножения вероятностей независимых и сложения несовместных событий, составим закон распределения случайной величины X — количества телевизоров, проработавших гарантийный срок, среди трех телевизоров разных типов:

0)
$$x = 0$$
 (все телевизоры вышли из строя) $p(0) = q_1q_2q_3 = 0,1 \cdot 0,3 \cdot 0,2 = 0,006$

1)
$$x = 1$$

 $p(1) = p_1 q_2 q_3 + q_1 p_2 q_3 + q_1 q_2 p_3 = 0.9 \cdot 0.3 \cdot 0.2 + 0.1 \cdot 0.7 \cdot 0.2 + 0.1 \cdot 0.3 \cdot 0.8 = 0.054 + 0.014 + 0.024 = 0.092$

2)
$$x = 2$$

 $p(2) = p_1 p_2 q_3 + p_1 q_2 p_3 + q_1 p_2 p_3 = 0.9 \cdot 0.7 \cdot 0.2 + 0.9 \cdot 0.3 \cdot 0.8 + 0.1 \cdot 0.7 \cdot 0.8 = 0.126 + 0.216 + 0.056 = 0.398$

3)
$$x=3$$
 (все телевизоры проработали гарантийный срок) $p(3)=p_1p_2p_3=0.9\cdot0.7\cdot0.8=0.504$

Таким образом, искомый закон распределения:

x_i	0	1	2	3
p(i)	0,006	0,092	0,398	0,504

Проверка:
$$0.006 + 0.092 + 0.398 + 0.504 = 1$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,006 & npu \ 0 < x \le 1; \\ 0,098 & npu \ 1 < x \le 2; \\ 0,4968 & npu \ 2 < x \le 3; \\ 1 & npu \ x > 3. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$. Заполним расчетную таблицу:

X_i	0	1	2	3	Суммы:
p_{i}	0,006	0,092	0,398	0,504	1
$x_i p(i)$	0	0,092	0,796	1,512	2,4
$x_i^2 p(i)$	0	0,092	1,592	4,536	6,22

Математическое ожидание: M(X) = 2,4

Дисперсию вычислим по формуле:

$$D(X) = M(X^2) - (M(X))^2 = 6,22 - (2,4)^2 = 6,22 - 5,76 = 0,46$$
.

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{0.46} \approx 0.68$

Задача 9. Производятся три выстрела по мишени. Вероятность поражения мишени первым стрелком равна 0,4, вторым -0,5, третьим -0,6. Случайная величина X — число поражений мишени.

Решение: По условию $p_1 = 0.4$, $p_2 = 0.5$, $p_3 = 0.6$ — вероятности попадания соответствующих стрелков. Тогда вероятности их промаха:

$$q_1 = 1 - p_1 = 1 - 0.4 = 0.6$$

$$q_2 = 1 - p_2 = 1 - 0.5 = 0.5$$

$$q_3 = 1 - p_3 = 1 - 0.6 = 0.4$$

Используя теоремы умножения вероятностей независимых и сложения несовместных событий, составим закон распределения случайной величины X — числа поражений мишени.

$$0)$$
 $x = 0$ (все промахнулись)

$$p(0) = q_1 q_2 q_3 = 0.6 \cdot 0.5 \cdot 0.4 = 0.12$$

1)
$$x = 1$$

$$p(1) = p_1q_2q_3 + q_1p_2q_3 + q_1q_2p_3 = 0.4 \cdot 0.5 \cdot 0.4 + 0.6 \cdot 0.5 \cdot 0.4 + 0.6 \cdot 0.5 \cdot 0.6 = 0.08 + 0.12 + 0.18 = 0.38$$

2)
$$x = 2$$

$$p(2) = p_1 p_2 q_3 + p_1 q_2 p_3 + q_1 p_2 p_3 = 0.4 \cdot 0.5 \cdot 0.4 + 0.4 \cdot 0.5 \cdot 0.6 + 0.6 \cdot 0.5 \cdot 0.6 = 0.08 + 0.12 + 0.18 = 0.38$$

3)
$$x = 3$$

$$p(3) = p_1 p_2 p_3 = 0.4 \cdot 0.5 \cdot 0.6 = 0.12$$

Таким образом, искомый закон распределения:

x_i	0	1	2	3
p(i)	0,12	0,38	0,38	0,12

Проверка:
$$0.12 + 0.38 + 0.38 + 0.12 = 1$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0.12 & npu \ 0 < x \le 1; \\ 0.5 & npu \ 1 < x \le 2; \\ 0.88 & npu \ 2 < x \le 3; \\ 1 & npu \ x > 3. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$. Заполним расчетную таблицу:

X_i	0	1	2	3	Суммы:
p(i)	0,12	0,38	0,38	0,12	1
$x_i p(i)$	0	0,38	0,76	0,36	1,5
$x_i^2 p(i)$	0	0,38	1,52	1,08	2,98

Математическое ожидание: M(X) = 1,5

Дисперсию вычислим по формуле:

$$D(X) = M(X^2) - (M(X))^2 = 2.98 - (1.5)^2 = 2.98 - 2.25 = 0.73$$
.

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{0.73} \approx 0.85$

Задача 10. Два стрелка стреляют по одной мишени, делая независимо друг от друга по два выстрела. Вероятность попадания в мишень первого стрелка равна 0,5, для второго -0,6. Построить ряд распределения X и найти M(X), где X — общее число попаданий.

Решение: по условию $p_1 = 0.5$, $p_2 = 0.6$ — вероятности попадания соответствующих стрелков. Тогда вероятности их промахов:

$$q_1 = 1 - p_1 = 1 - 0.5 = 0.5$$

$$q_2 = 1 - p_2 = 1 - 0.6 = 0.4$$

Составим ряд распределения случайной величины X — общего число попаданий.

Используя теоремы умножения вероятностей независимых и сложения несовместных событий, составим ряд распределения случайной величины X:

0)
$$x = 0$$

 $p_{x=0} = q_1 q_1 q_2 q_2 = 0.5 \cdot 0.5 \cdot 0.4 \cdot 0.4 = 0.04$

1)
$$x = 1$$

 $p_{x=1} = p_1 q_1 q_2 q_2 + q_1 p_1 q_2 q_2 + q_1 q_1 p_2 q_2 + q_1 q_1 q_2 p_2 = 0.5 \cdot 0.5 \cdot 0.4 \cdot 0.4 + 0.5 \cdot 0.5 \cdot 0.4 \cdot 0.4 + 0.5 \cdot 0.5 \cdot 0.4 \cdot 0.6 = 0.04 + 0.04 + 0.06 + 0.06 = 0.2$

2)
$$x = 2$$

 $p_{x=2} = p_1 p_1 q_2 q_2 + p_1 q_1 p_2 q_2 + p_1 q_1 q_2 p_2 + q_1 p_1 p_2 q_2 + q_1 p_1 q_2 p_2 + q_1 q_1 p_2 p_2 =$
 $= 0.5 \cdot 0.5 \cdot 0.4 \cdot 0.4 + 0.5 \cdot 0.5 \cdot 0.6 \cdot 0.4 + 0.5 \cdot 0.5 \cdot 0.4 \cdot 0.6 + 0.5 \cdot 0.5 \cdot 0.6 \cdot 0.4 +$
 $+ 0.5 \cdot 0.5 \cdot 0.4 \cdot 0.6 + 0.5 \cdot 0.5 \cdot 0.6 \cdot 0.6 = 0.04 + 0.06 + 0.06 + 0.06 + 0.06 + 0.09 = 0.37$

3)
$$x = 3$$

 $p_{x=3} = p_1 p_1 p_2 q_2 + p_1 p_1 q_2 p_2 + p_1 q_1 p_2 p_2 + q_1 p_1 p_2 p_2 = 0.5 \cdot 0.5 \cdot 0.6 \cdot 0.4 + 0.5 \cdot 0.5 \cdot 0.4 \cdot 0.6 + 0.5 \cdot 0.5 \cdot 0.6 \cdot 0.6 + 0.5 \cdot 0.5 \cdot 0.6 \cdot 0.6 + 0.06 + 0.06 + 0.00 + 0.09 = 0.3$

4)
$$x = 4$$

 $p_{x=0} = p_1 p_1 p_2 p_2 = 0.5 \cdot 0.5 \cdot 0.6 \cdot 0.6 = 0.09$

Таким образом, искомый ряд распределения:

X_i	0	1	2	3	4
$p_{x=i}$	0,04	0,2	0,37	0,3	0,09

Проверка:
$$0.04 + 0.2 + 0.37 + 0.3 + 0.09 = 1$$

Вычислим математическое ожидание:

$$M(X) = \sum_{i} x_i p_{x=i} = 0.004 + 1.002 + 2.0037 + 3.003 + 4.009 = 0.004 + 0.004 + 0.004 + 0.004 = 0.004 + 0.004 + 0.004 = 0.004 = 0.004 + 0.004 =$$

Задача 11. Рассматривается прибор, состоящий из двух независимо работающих блоков A и B, каждый из которых состоит из нескольких элементов. Известны вероятности отказа каждого из элементов:

$$p_1 = 0.3$$
, $p_2 = 0.2$, $p_3 = 0.1$, $p_4 = 0.1$, $p_5 = 0.2$, $p_6 = 0.2$, $p_7 = 0.3$

При отказе блока он подлежит полной замене, причем стоимость замены блока A составляет $C_1 = 5$, блока $B - C_2 = 8$ единиц стоимости. Предполагается, что за период времени T замененный блок не выйдет еще раз из строя.

Составим закон распределения случайной величины η – стоимости восстановления прибора за период времени T. Найти среднюю цену замены блока, дисперсию и стандартное отклонение. Построить полигон и функцию распределения.

Решение:

Сначала найдем вероятности безотказной работы соответствующих элементов. По теореме сложения вероятностей противоположных событий:

$$q_1 = 1 - p_1 = 1 - 0.3 = 0.7$$

 $q_2 = 1 - p_2 = 1 - 0.2 = 0.8$
 $q_3 = 1 - p_3 = 1 - 0.1 = 0.9$
 $q_4 = 1 - p_4 = 1 - 0.1 = 0.9$
 $q_5 = 1 - p_5 = 1 - 0.2 = 0.8$
 $q_6 = 1 - p_6 = 1 - 0.2 = 0.8$
 $q_7 = 1 - p_7 = 1 - 0.3 = 0.7$

Найдем вероятность P(A) выхода из строя блока A. Данный блок выйдет из строя в том случае, если откажет элемент № 1 и хотя бы один из элементов № 2, 3. По теоремам сложения вероятностей несовместных и умножения независимых событий:

$$P(A) = p_1 p_2 p_3 + p_1 q_2 p_3 + p_1 p_2 q_3 = 0.3 \cdot 0.2 \cdot 0.1 + 0.3 \cdot 0.8 \cdot 0.1 + 0.3 \cdot 0.2 \cdot 0.9 = 0.006 + 0.024 + 0.054 = 0.084$$

Вероятность безотказной работы блока:

$$P(\overline{A}) = 1 - P(A) = 1 - 0.084 = 0.916$$

Найдём вероятность $P(\overline{B})$ безотказной работы блока. Блок будет безотказно работать, если исправны оба элемента № 4, 5 и хотя бы один из элементов № 6, 7. По теоремам сложения вероятностей несовместных и умножения независимых событий:

$$P(\overline{B}) = q_4 q_5 q_6 q_7 + q_4 q_5 p_6 q_7 + q_4 q_5 q_6 p_7 =$$

$$= 0.9 \cdot 0.8 \cdot 0.8 \cdot 0.7 + 0.9 \cdot 0.8 \cdot 0.2 \cdot 0.7 + 0.9 \cdot 0.8 \cdot 0.8 \cdot 0.3 = 0.4032 + 0.1008 + 0.1728 = 0.6768$$

Вероятность отказа блока:

$$P(B) = 1 - P(\overline{B}) = 1 - 0.6768 = 0.3232$$

Составим закон распределения случайной величины η — стоимости восстановления прибора за период времени T .

Случайная величина η может принимать только 4 значения:

 $x_1 = 0$ — оба блока не отказали.

 $x_2 = 5$ — отказал блок A, но не отказал блок B

 $x_3 = 8$ — отказал блок B, но не отказал блок A

 $x_4 = 13$ — отказали оба блока.

Далее через p_1 , p_2 , p_3 , p_4 будем обозначать вероятности соответствующих значений x_i .

По теоремам умножения вероятностей независимых событий:

$$p_1 = P(\overline{A})P(\overline{B}) = 0.916 \cdot 0.6768 \approx 0.6199$$

$$p_2 = P(A)P(\overline{B}) = 0.084 \cdot 0.6768 \approx 0.0569$$

$$p_3 = P(\overline{A})P(B) = 0.916 \cdot 0.3232 \approx 0.2961$$

$$p_A = P(A)P(B) = 0.084 \cdot 0.3232 \approx 0.0271$$

Таким образом, искомый закон распределения:

X_i	0	5	8	13
p_i	0,6199	0,0569	0,2961	0,0271

Проверка: 0,6199 + 0,0569 + 0,2961 + 0,0271 = 1

Постоим полигон распределения:

Составим функцию распределения вероятностей:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,6199 & npu \ 0 < x \le 5; \\ 0,6768 & npu \ 5 < x \le 8; \\ 0,9729 & npu \ 8 < x \le 13; \\ 1 & npu \ x > 13 \end{cases}$$

Выполним чертёж:

Найдём математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$.

Заполним расчетную таблицу:

X_i	0	5	8	13	Суммы:
p_{i}	0,6199	0,0569	0,2961	0,0271	1
$x_i p_i$	0	0,2843	2,3684	0,3529	3,0056
$x_i^2 p_i$	0	1,4213	18,9473	4,5881	24,9567

Математическое ожидание: $M(X) = 3,0056 \approx 3$ ден. ед.

Дисперсию вычислим по формуле:

$$D(X) = M(X^2) - (M(X))^2 = 24,9567 - (3,0056)^2 = 24,9567 - 9,0336 = 15,9231.$$

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{15,9231} \approx 4$ ден. ед.

Задача 12. Бросают игральный кубик. Найти математическое ожидание и дисперсию случайной величины $Y(x) = \sin \left[\frac{\pi(x-3)}{6} \right]$, где x – число выпавших очков.

Решение: Составим ряд распределения случайной величины X

1)
$$x = 1$$

$$y_1 = \sin \left[-\frac{\pi}{3} \right] = -\frac{\sqrt{3}}{2}$$

2)
$$x = 2$$

$$y_2 = \sin \left[-\frac{\pi}{6} \right] = -\frac{1}{2}$$

3)
$$x = 3$$

 $y_3 = \sin 0 = 0$

4)
$$x = 4$$

 $y_4 = \sin \frac{\pi}{6} = \frac{1}{2}$

5)
$$x = 5$$

 $y_5 = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$

$$6) x = 6$$
$$y_6 = \sin \frac{\pi}{2} = 1$$

Поскольку выпадение любой грани кубика равновероятно, то вероятность появления каждого значения: $p=\frac{1}{6}$.

Построенный ряд распределения сведем в таблицу:

y_i	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1
p_i	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Вычислим математическое ожидание:

$$M(Y) = \sum y_i p_i = -\frac{\sqrt{3}}{2} \cdot \frac{1}{6} - \frac{1}{2} \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + \frac{1}{2} \cdot \frac{1}{6} + \frac{\sqrt{3}}{2} \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} = \frac{1}{6}$$

Вычислим дисперсию:

$$D(Y) = M(Y^{2}) - (M(Y))^{2} = \sum y_{i}^{2} p_{i} - (M(Y))^{2} =$$

$$= \left(-\frac{\sqrt{3}}{2}\right)^{2} \cdot \frac{1}{6} + \left(-\frac{1}{2}\right)^{2} \cdot \frac{1}{6} + 0^{2} \cdot \frac{1}{6} + \left(\frac{1}{2}\right)^{2} \cdot \frac{1}{6} + \left(\frac{\sqrt{3}}{2}\right)^{2} \cdot \frac{1}{6} + 1^{2} \cdot \frac{1}{6} - \left(\frac{1}{6}\right)^{2} =$$

$$= \frac{1}{6} \cdot \left(\frac{3}{4} + \frac{1}{4} + 0 + \frac{1}{4} + \frac{3}{4} + 1 - \frac{1}{6}\right) = \frac{1}{6} \cdot \frac{17}{6} = \frac{17}{36}$$

Ответ:
$$M(Y) = \frac{1}{6}$$
, $D(Y) = \frac{17}{36}$

3. Распределения, близкие к геометрическому

Задача 13. Вероятность изготовления нестандартного изделия при налаженном технологическом процессе постоянна и равна 0,1. Для проверки качества изготовляемых изделий отдел технического контроля берет из партии не более 4 изделий. При обнаружении нестандартного изделия вся партия задерживается. Составить закон распределения числа изделий, проверяемых из каждой партии. Найти математическое ожидание, среднее квадратическое отклонение этой случайной величины.

Решение: составим закон распределения случайной величины X — количества проверенных изделий. По условию:

q = 0,1 — вероятность того, что изделие будет нестандартным. Тогда: p = 1 - q = 1 - 0,1 = 0,9 — вероятность того, что изделие будет стандартным:

Найдем закон распределения случайной величины X:

1)
$$x = 1$$

 $p_1 = q = 0.1$

2)
$$x = 2$$

 $p_2 = pq = 0.9 \cdot 0.1 = 0.09$

3)
$$x = 3$$

 $p_3 = ppq = 0.9 \cdot 0.9 \cdot 0.1 = 0.081$

4) x = 4. Соответствующее событие состоит в двух несовместных исходах: четвертое проверяемое изделие будет либо стандартным, либо нет. Проверка в любом случае прекращается.

$$p_4 = pppq + pppp = (0.9)^3 \cdot 0.1 + (0.9)^4 = (0.9)^3 \cdot (0.1 + 0.9) = (0.9)^3 = 0.729$$

Заполним расчетную таблицу. Искомый закон распределения случайной величины X сведен в верхние две строки таблицы:

V	X_i	1	2	3	4	Σ
Λ	p_{i}	0,1	0,09	0,081	0,729	1
$x_i p_i$	i	0,1	0,18	0,243	2,916	3,439
$x_i^2 p$) _i	0,1	0,36	0,729	11,664	12,853

Вычислим математическое ожидание:

$$M(X) = \sum x_i p_i = 3,439$$

Вычислим дисперсию:

$$D(X) = \sum_{i} x_{i}^{2} p_{i} - (M(X))^{2} = 12,853 - 3,439^{2} = 12,853 - 11,82672 \approx 1,02628$$

Вычислим среднее квадратическое отклонение:

$$\sigma(X) = \sqrt{D(X)} \approx \sqrt{1,026279} \approx 1,01$$

Задача 14. Испытывается надежность партии из 5 приборов. Для каждого прибора вероятность выдержать испытание равна 0,75. Проверка заканчивается при первом отказе.

Для случайной величины X — числа проверенных приборов, составить ряд распределения, построить полигон распределения, найти функцию распределения F(x), нарисовать ее график, вычислить M(X), D(X).

Решение: по условию:

p = 0.75 — вероятность того, что прибор выдержит испытание, тогда: q = 1 - p = 1 - 0.75 = 0.25 вероятность того, что прибор не выдержит испытание.

Найдем закон распределения случайной величины X:

1)
$$x = 1$$

 $p_1 = q = 0.25$

2)
$$x = 2$$

 $p_2 = pq = 075 \cdot 0.25 = 0.1875$

3)
$$x = 3$$

 $p_3 = ppq = 075 \cdot 075 \cdot 0.25 = 0.140625$

4)
$$x = 4$$

 $p_4 = pppq = 0.75 \cdot 0.75 \cdot 0.75 \cdot 0.25 = 0.10546875$

5) x = 5 Соответствующее событие состоит в двух несовместных исходах: пятый проверяемый прибор либо выдержит испытание, либо нет. Проверка в любом случае прекращается.

$$p_5 = ppppq + ppppp = (0.75)^4 \cdot 0.25 + (0.75)^5 = (0.75)^4 \cdot (0.25 + 0.75) = (0.75)^4 = 0.31640625$$

Заполним расчетную таблицу. Искомый закон распределения случайной величины X сведен в верхние две строки таблицы:

V	X_i	1	2	3	4	5	\sum
A	p_{i}	0,25	0,1875	0,140625	0,10546875	0,31640625	1
$x_i p_i$	i	0,25	0,375	0,421875	0,421875	1,58203125	3,05078125
$x_i^2 p$	O_i	0,25	0,75	1,265625	1,6875	7,91015625	11,86328125

Математическое ожидание:

$$M(X) = \sum x_i p_i = 3,05078125 \approx 3,05$$

Вычислим дисперсию:

$$D(X) = \sum x_i^2 p_i - (M(X))^2 = 11,86328125 - 9,307266235 = 2,556015015 \approx 2,556$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 1; \\ 0,25 & npu \ 1 < x \le 2; \\ 0,4375 & npu \ 2 < x \le 3; \\ 0,578125 & npu \ 3 < x \le 4; \\ 0,68359375 & npu \ 4 < x \le 5; \\ 1 & npu \ x > 5. \end{cases}$$

Изобразим полигон распределения и функцию распределения:

Задача 15. Стрелок, получив пять патронов, стреляет по мишени, причем каждый выстрел стоит ему 1 р. При первом попадании он получает приз, равный $\frac{120}{m}$, где m- число попыток, нужны для попадания. Вероятность попадания при одном выстреле равна 0.5

Для случайной величины X — дохода, полученного стрелком, составить ряд распределения, построить полигон распределения, найти функцию распределения F(x), нарисовать ее график, вычислить M(X), D(X).

Решение: случайная величина X имеет геометрическое распределение. Найдем закон распределения случайной величины X:

p = 0.5 — вероятность попадания стрелка при каждом выстреле;

q = 1 - p = 1 - 0.5 = 0.5 – вероятность промаха при каждом выстреле;

Найдем закон распределения случайной величины X:

- стрелок промахнулся все пять раз

Доход стрелка: x = -5 рублей (приза нет, затраты на патроны);

Соответствующая вероятность:

$$p_{x=-5} = qqqqq = (0.5)^5 = 0.03125$$

- стрелок попал с пятой попытки

Доход стрелка:
$$x = \frac{120}{5} - 5 = 19$$
 рублей

$$p_{x=19} = qqqqp = (0.5)^5 = 0.03125$$

- стрелок попал с четвертой попытки

Доход стрелка:
$$x = \frac{120}{4} - 4 = 26$$
 рублей

$$p_{x=26} = qqqp = (0.5)^4 = 0.0625$$

– стрелок попал с третьей попытки

Доход стрелка:
$$x = \frac{120}{3} - 3 = 37$$
 рублей

$$p_{x=37} = qqp = (0.5)^3 = 0.125$$

- стрелок попал со второй попытки

Доход стрелка:
$$x = \frac{120}{2} - 2 = 58$$
 рублей

$$p_{x=58} = qp = (0.5)^2 = 0.25$$

- стрелок попал с первой попытки

Доход стрелка:
$$x = \frac{120}{1} - 1 = 119$$
 рублей

$$p_{x=119} = p = 0.5$$

Заполним расчетную таблицу. Искомый закон распределения случайной величины

Х сведен в верхние две строки таблицы:

21	и сведен в верхние две строки таблицы.							
v	X_i	-5	19	26	37	58	119	
X	$p(x_i)$	0,03125	0,03125	0,0625	0,125	0,25	0,5	$\sum = 1$
	$x_i p(x_i)$	-0,15625	0,59375	1,625	4,625	14,5	59,5	$\sum = 80,6875$
	$x_i^2 p(x_i)$	0,78125	11,28125	42,25	171,125	841	7080,5	$\sum = 8146,9375$

Математическое ожидание:

$$M(X) = \sum x_i p(x_i) = 80,6875$$

Дисперсия:

$$D(X) = \sum_{i} x_{i}^{2} p(x_{i}) - (M(X))^{2} = 8146,9375 - (80,6875)^{2} = 8146,9375 - 6510,472656 =$$

$$= 1636,464844 \approx 1636,5$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le -5; \\ 0,03125 & npu \ -5 < x \le 19; \\ 0,0625 & npu \ 19 < x \le 26; \\ 0,125 & npu \ 26 < x \le 37; \\ 0,25 & npu \ 37 < x \le 58; \\ 0,5 & npu \ 58 < x \le 119; \\ 1 & npu \ x > 119. \end{cases}$$

Изобразим полигон распределения и функцию распределения.

Задача 16. На пути движения автомобиля установлено 6 светофоров. Зеленый свет горит 30 секунд, желтый – 3 сек., красный – 20 сек., желтый – 3 сек.

Для случайной величины X — числа светофоров, пройденных автомобилем до первой остановки, составить ряд распределения, построить полигон распределения, найти функцию распределения F(X), нарисовать ее график, вычислить M(X), D(X).

Решение: Случайная величина X имеет геометрическое распределение. По правилам дорожного движения автомобиль обязан остановиться на красный свет, а также на желтый (после зеленого для пешеходов).

Период переключения светофоров: 30+3+20+3=56 сек.

Таким образом:

$$q = \frac{23}{56}$$
 — вероятность остановки автомобиля на каждом светофоре;

$$p = \frac{33}{56}$$
 — вероятность проезда автомобиля на каждом светофоре.

Найдем закон распределения случайной величины X:

0)
$$x = 0$$
 (остановка на первом же светофоре)

$$p_0 = q = \frac{23}{56} \approx 0.4107$$

1)
$$x = 1$$

$$p_1 = pq = \frac{33}{56} \cdot \frac{23}{56} \approx 0,2420$$

2)
$$x = 2$$

$$p_2 = ppq = \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{23}{56} \approx 0,1426$$

3)
$$x = 3$$

$$p_3 = pppq = \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{23}{56} \approx 0,0840$$

4)
$$x = 4$$

$$p_4 = ppppq = \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{23}{56} \approx 0,0495$$

5)
$$x = 5$$

$$p_5 = pppppq = \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{23}{56} \approx 0,0292$$

6)
$$x = 6$$

$$p_6 = ppppppp = \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \cdot \frac{33}{56} \approx 0,0419$$

Заполним расчетную таблицу. Искомый закон распределения случайной величины X сведен в верхние две строки таблицы:

v	\mathcal{X}_{i}	0	1	2	3	4	5	6	\sum
Λ	p_{i}	0,4107	0,2420	0,1426	0,0840	0,0495	0,0292	0,0419	1
$x_i p_i$		0	0,2420	0,2852	0,2521	0,1981	0,1459	0,2513	1,3747
$x_i^2 p$	i	0	0,2420	0,5705	0,7564	0,7924	0,7296	1,5075	4,5985

Математическое ожидание:

$$M(X) = \sum x_i p_i = 1,3747$$

Дисперсия:

$$D(X) = \sum x_i^2 p_i - (M(X))^2 = 4,5985 - 1,8898 = 2,7087$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,4107 & npu \ 0 < x \le 1; \\ 0,6527 & npu \ 1 < x \le 2; \\ 0,7954 & npu \ 2 < x \le 3; \\ 0,8794 & npu \ 3 < x \le 4; \\ 0,9289 & npu \ 4 < x \le 5; \\ 0,9581 & npu \ 5 < x \le 6; \\ 1 & npu \ x > 6. \end{cases}$$

Изобразим полигон распределения и функцию распределения.

4. Биномиальное распределение вероятностей

В Задачах № 17-23 требуется: найти закон распределения указанной случайной величины X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$. Построить график функции распределения F(x).

Задача 17. Вероятность выпуска прибора, удовлетворяющего требованиям качества, равна 0.9. В контрольной партии 3 прибора. Случайная величина X — число приборов, удовлетворяющих требованиям качества.

Решение: случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

$$P_n^x = C_n^x p^x q^{n-x}$$

В данной задаче:

n = 3 — всего приборов в контрольной партии;

 $x = \{0,1,2,3\}$ — вероятное количество приборов, удовлетворяющих требованиям качества.

 P_{n}^{x} — вероятность того, что из n приборов ровно x будут удовлетворять требованиям качества.

По условию:

p = 0.9 — вероятность того, что прибор удовлетворяет требованиям качества.

q=1-p=1-0.9=0.1 — вероятность того, что прибор не удовлетворяет требованиям качества.

0)
$$x = 0$$

 $P_3^0 = C_3^0 \cdot (0.9)^0 \cdot (0.1)^3 = (0.1)^3 = 0.001$

1)
$$x = 1$$

 $P_3^1 = C_3^1 \cdot (0.9)^1 \cdot (0.1)^2 = 3 \cdot 0.9 \cdot (0.1)^2 = 0.027$

2)
$$x = 2$$

 $P_3^2 = C_3^2 \cdot (0.9)^2 \cdot (0.1)^1 = 3 \cdot 0.81 \cdot 0.1 = 0.243$

3)
$$x = 3$$

 $P_3^3 = C_3^3 \cdot (0.9)^3 \cdot (0.1)^0 = (0.9)^3 = 0.729$

Таким образом, искомый закон распределения:

X_i	0	1	2	3
p_{i}	0,001	0,027	0,243	0,729

Проверка: 0.001 + 0.027 + 0.243 + 0.729 = 1

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,001 & npu \ 0 < x \le 1; \\ 0,028 & npu \ 1 < x \le 2; \\ 0,271 & npu \ 2 < x \le 3; \\ 1 & npu \ x > 3. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$.

Вычислим математическое ожидание: $M(X) = np = 3 \cdot 0.9 = 2.7$

Найдем дисперсию: $D(X) = npq = 3 \cdot 0.9 \cdot 0.1 = 0.27$

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{0.27} \approx 0.52$

Задача 18. Вероятность выхода из строя каждого из трех блоков прибора в течение гарантийного срока равна 0,3. Случайная величина X — число блоков, вышедших из строя в течение гарантийного срока.

Решение: случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

$$P_n^x = C_n^x p^x q^{n-x}$$

В данной задаче:

n = 3 — всего блоков;

 $x = \{0,1,2,3\}$ — вероятное количество блоков, вышедших из строя в течение гарантийного срока.

 P_n^x — вероятность того, что из n блоков из строя выйдет ровно x блоков в течение гарантийного срока.

По условию:

p = 0.3 — вероятность выхода из строя каждого блока.

q = 1 - p = 1 - 0.3 = 0.7 – вероятность безотказной работы каждого из блоков.

0)
$$x = 0$$

 $P_3^0 = C_3^0 \cdot (0.3)^0 \cdot (0.7)^3 = (0.7)^3 = 0.343$

1)
$$x = 1$$

 $P_3^1 = C_3^1 \cdot (0,3)^1 \cdot (0,7)^2 = 3 \cdot 0,3 \cdot (0,7)^2 = 0,441$

2)
$$x = 2$$

 $P_3^2 = C_3^2 \cdot (0.3)^2 \cdot (0.7)^1 = 3 \cdot 0.09 \cdot 0.7 = 0.189$

3)
$$x = 3$$

 $P_3^3 = C_3^3 \cdot (0.3)^3 \cdot (0.7)^0 = (0.3)^3 = 0.027$

Таким образом, искомый закон распределения:

X_i	0	1	2	3
p_{i}	0,343	0,441	0,189	0,027

Проверка:
$$0.343 + 0.441 + 0.189 + 0.027 = 1$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,343 & npu \ 0 < x \le 1; \\ 0,784 & npu \ 1 < x \le 2; \\ 0,973 & npu \ 2 < x \le 3; \\ 1 & npu \ x > 3. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$.

Вычислим математическое ожидание: M(X) = np = 3.0,3 = 0.9

Найдем дисперсию: $D(X) = npq = 3 \cdot 0.3 \cdot 0.7 = 0.63$

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{0.63} \approx 0.79$

Задача 19. Вероятность попадания в цель при одном выстреле равна 0,8. Случайная величина X — число попаданий в цель при трех выстрелах.

Решение: случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

$$P_n^x = C_n^x p^x q^{n-x}$$

В данной задаче:

n = 3 — всего выстрелов;

 $x = \{0,1,2,3\}$ – вероятное число попаданий в цель.

p = 0.8 — вероятность попадания в цель при каждом выстреле.

 $q=1-p=1-0.8=0.2\,$ — вероятность того, что цель не будет поражена при каждом выстреле.

 P_3^x – вероятность того, что после 3 выстрелов цель будет поражена ровно x раз.

0)
$$x = 0$$

 $P_3^0 = C_3^0 \cdot (0.8)^0 \cdot (0.2)^3 = (0.2)^3 = 0.008$

1)
$$x=1$$

 $P_3^1 = C_3^1 \cdot (0.8)^1 \cdot (0.2)^2 = 3 \cdot 0.8 \cdot (0.2)^2 = 0.096$

2)
$$x = 2$$

 $P_3^2 = C_3^2 \cdot (0.8)^2 \cdot (0.2)^1 = 3 \cdot 0.64 \cdot 0.2 = 0.384$

3)
$$x = 3$$

 $P_3^3 = C_3^3 \cdot (0.8)^3 \cdot (0.2)^0 = (0.8)^3 = 0.512$

Таким образом, искомый закон распределения:

x_i	0	1	2	3
p_{i}	0,008	0,096	0,384	0,512

Проверка: 0.008 + 0.096 + 0.384 + 0.512 = 1

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,008 & npu \ 0 < x \le 1; \\ 0,104 & npu \ 1 < x \le 2; \\ 0,488 & npu \ 2 < x \le 3; \\ 1 & npu \ x > 3. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$. Используем соответствующие формулы для биномиального распределения.

Вычислим математическое ожидание: M(X) = np = 3.0.8 = 2.4

Найдем дисперсию: $D(X) = npq = 3 \cdot 0.8 \cdot 0.2 = 0.48$

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{0.48} \approx 0.6928$

Задача 20. Автомобиль должен проехать по улице, на которой установлено четыре независимо работающих светофора. Каждый светофор с интервалом в 2 мин подает красный и зеленый сигналы. Случайная величина X — число остановок на этой улице.

Решение: случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

$$P_n^x = C_n^x p^x q^{n-x}$$
, а данной задаче:

n = 4 – всего светофоров;

 $x = \{0,1,2,3,4\}$ — вероятное количество остановок автомобиля на красный свет.

 P_n^x – вероятность того, что будет ровно x остановок из n.

Из условия следует:

p = 0.5 — вероятность остановки автомобиля на красный свет.

q = 1 - p = 1 - 0.5 = 0.5 — вероятность проезда автомобиля на зеленый свет

0)
$$x = 0$$

 $P_4^0 = C_4^0 \cdot (0.5)^0 \cdot (0.5)^4 = (0.5)^4 = 0.0625$

1)
$$x = 1$$

 $P_4^1 = C_4^1 \cdot (0.5)^1 \cdot (0.5)^3 = 4 \cdot 0.5 \cdot (0.5)^3 = 0.25$

2)
$$x = 2$$

 $P_4^2 = C_4^2 \cdot (0.5)^2 \cdot (0.5)^2 = 6 \cdot 0.25 \cdot 0.25 = 0.375$

3)
$$x = 3$$

 $P_4^3 = C_4^3 \cdot (0.5)^3 \cdot (0.5)^1 = 4 \cdot (0.5)^3 \cdot 0.5 = 0.25$

4)
$$x = 4$$

 $P_4^4 = C_4^4 \cdot (0.5)^4 \cdot (0.5)^0 = (0.5)^4 = 0.0625$

Таким образом, искомый закон распределения:

X_i	0	1	2	3	4
p_{i}	0,0625	0,25	0,375	0,25	0,0625

Проверка:
$$0.0625 + 0.25 + 0.375 + 0.25 + 0.0625 = 1$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,0625 & npu \ 0 < x \le 1; \\ 0,3125 & npu \ 1 < x \le 2; \\ 0,6875 & npu \ 2 < x \le 3; \\ 0,9375 & npu \ 3 < x \le 4; \\ 1 & npu \ x > 4. \end{cases}$$

Выполним чертеж:

Используя соответствующие формулы, вычислим математическое ожидание, дисперсию и среднее квадратическое отклонение:

$$M(X) = np = 4 \cdot 0.5 = 2$$

$$D(X) = npq = 4 \cdot 0.5 \cdot 0.5 = 1$$

$$\sigma(X) = \sqrt{D(X)} = \sqrt{1} = 1$$

Задача 21. При установившемся технологическом процессе предприятие выпускает $\frac{2}{3}$ своих изделий первым сортом и $\frac{1}{3}$ вторым сортом. Случайная величина X — число изделий первого сорта из взятых наугад четырех.

Решение: Случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

$$P_n^x = C_n^x p^x q^{n-x}$$
, в данной задаче:

n = 4 — всего изделий в выборке;

 $x = \{0,1,2,3,4\}$ — вероятное количество изделий первого сорта в выборке.

 P_n^x – вероятность того, что из n изделий ровно x будут первого сорта.

По условию:

$$p = \frac{2}{3}$$
 — вероятность того, что изделие окажется первосортным.

$$q = 1 - p = 1 - \frac{2}{3} = \frac{1}{3}$$
 — вероятность того, что изделие будет второсортным.

0)
$$x = 0$$

$$P_4^0 = C_4^0 \cdot \left(\frac{2}{3}\right)^0 \cdot \left(\frac{1}{3}\right)^4 = \frac{1}{81} \approx 0.0123$$

1)
$$x = 1$$

$$P_4^1 = C_4^1 \cdot \left(\frac{2}{3}\right)^1 \cdot \left(\frac{1}{3}\right)^3 = 4 \cdot \frac{2}{81} = \frac{8}{81} \approx 0,0988$$

2)
$$x = 2$$

$$P_4^2 = C_4^2 \cdot \left(\frac{2}{3}\right)^2 \cdot \left(\frac{1}{3}\right)^2 = 6 \cdot \frac{4}{81} = \frac{24}{81} \approx 0,2963$$

3)
$$x = 3$$

$$P_4^3 = C_4^3 \cdot \left(\frac{2}{3}\right)^3 \cdot \left(\frac{1}{3}\right)^1 = 4 \cdot \frac{8}{81} = \frac{32}{81} \approx 0.3951$$

4)
$$x = 4$$

$$P_4^4 = C_4^4 \cdot \left(\frac{2}{3}\right)^4 \cdot \left(\frac{1}{3}\right)^0 = \frac{16}{81} \approx 0,1975$$

Таким образом, искомый закон распределения:

X_i	0	1	2	3	4
p_{i}	$\frac{1}{81} \approx 0.0123$	$\frac{8}{81} \approx 0.0988$	$\frac{24}{81} \approx 0,2963$	$\frac{32}{81} \approx 0.3951$	$\frac{16}{81} \approx 0.1975$

Проверка:
$$0.0123 + 0.0988 + 0.2963 + 0.3951 + 0.1975 = 1$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,0123 & npu \ 0 < x \le 1; \\ 0,1111 & npu \ 1 < x \le 2; \\ 0,4074 & npu \ 2 < x \le 3; \\ 0,8025 & npu \ 3 < x \le 4; \\ 1 & npu \ x > 4. \end{cases}$$

Выполним чертеж:

Вычислим числовые характеристики данной случайной величины:

математическое ожидание:
$$M(X) = np = 4 \cdot \frac{2}{3} = \frac{8}{3}$$

дисперсию:
$$D(X) = npq = 4 \cdot \frac{2}{3} \cdot \frac{1}{3} = \frac{8}{9}$$

среднее квадратическое отклонение:
$$\sigma(X) = \sqrt{D(X)} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \approx 0,94$$

Задача 22. 90% панелей, изготавливаемых на железобетонном заводе — высшего сорта. Случайная величина X — число панелей высшего сорта из четырех, взятых наугад.

Решение: Случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

$$P_n^x = C_n^x p^x q^{n-x}$$

В данной задаче:

n = 4 – всего панелей в выборке;

 $x = \{0,1,2,3,4\}$ — вероятное количество панелей высшего сорта в выборке.

 P_n^x – вероятность того, что из n панелей ровно x будут высшего сорта.

Из условия следует:

p = 0.9 — вероятность того, что панель будет высшего сорта.

q = 1 - p = 1 - 0.9 = 0.1 – вероятность того, что панель не будет высшего сорта

0)
$$x = 0$$

 $P_4^0 = C_4^0 \cdot (0.9)^0 \cdot (0.1)^4 = (0.1)^4 = 0.0001$

1)
$$x = 1$$

 $P_4^1 = C_4^1 \cdot (0.9)^1 \cdot (0.1)^3 = 4 \cdot 0.9 \cdot (0.1)^3 = 0.0036$

2)
$$x = 2$$

 $P_4^2 = C_4^2 \cdot (0.9)^2 \cdot (0.1)^2 = 6 \cdot 0.81 \cdot 0.01 = 0.0486$

3)
$$x = 3$$

 $P_4^3 = C_4^3 \cdot (0.9)^3 \cdot (0.1)^1 = 4 \cdot (0.9)^3 \cdot 0.1 = 0.2916$

4)
$$x = 4$$

 $P_4^4 = C_4^4 \cdot (0.9)^4 \cdot (0.1)^0 = (0.9)^4 = 0.6561$

Таким образом, искомый закон распределения:

X_i	0	1	2	3	4
p_{i}	0,0001	0,0036	0,0486	0,2916	0,6561

Проверка:
$$0,0001 + 0,0036 + 0,0486 + 0,2916 + 0,6561 = 1$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,0001 & npu \ 0 < x \le 1; \\ 0,0037 & npu \ 1 < x \le 2; \\ 0,0523 & npu \ 2 < x \le 3; \\ 0,3439 & npu \ 3 < x \le 4; \\ 1 & npu \ x > 4. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$. Используем соответствующие формулы для биномиального распределения:

$$M(X) = np = 4 \cdot 0.9 = 3.6$$

$$D(X) = npq = 4 \cdot 0.9 \cdot 0.1 = 0.36$$

$$\sigma(X) = \sqrt{D(X)} = \sqrt{0.36} = 0.6$$

Задача 23. Вероятность выигрыша по одному билету лотереи равна $\frac{1}{6}$. Случайная величина X — число выигрышных билетов из четырех.

Решение: случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

$$P_n^x = C_n^x p^x q^{n-x}$$

В данной задаче:

n = 4 — всего билетов в выборке;

 $x = \{0,1,2,3,4\}$ – вероятное количество выигрышных билетов в выборке.

 P_n^x – вероятность того, что из n билетов выиграют ровно x.

По условию:

 $p = \frac{1}{6}$ — вероятность того, что билет будет выигрышным.

 $q = 1 - p = 1 - \frac{1}{6} = \frac{5}{6}$ — вероятность того, что билет будет безвыигрышным.

0)
$$x = 0$$

$$P_4^0 = C_4^0 \cdot \left(\frac{1}{6}\right)^0 \cdot \left(\frac{5}{6}\right)^4 = \frac{625}{1296} \approx 0,4823$$

1)
$$x = 1$$

 $P_4^1 = C_4^1 \cdot \left(\frac{1}{6}\right)^1 \cdot \left(\frac{5}{6}\right)^3 = 4 \cdot \frac{125}{1296} = \frac{125}{324} \approx 0.3858$

2)
$$x = 2$$

 $P_4^2 = C_4^2 \cdot \left(\frac{1}{6}\right)^2 \cdot \left(\frac{5}{6}\right)^2 = 6 \cdot \frac{25}{1296} = \frac{25}{216} \approx 0,1157$

3)
$$x = 3$$

 $P_4^3 = C_4^3 \cdot \left(\frac{1}{6}\right)^3 \cdot \left(\frac{5}{6}\right)^1 = 4 \cdot \frac{5}{1296} = \frac{5}{324} \approx 0,0154$

4)
$$x = 4$$

 $P_4^4 = C_4^4 \cdot \left(\frac{1}{6}\right)^4 \cdot \left(\frac{5}{6}\right)^0 = \frac{1}{1296} \approx 0,0008$

Таким образом, искомый закон распределения:

X_i	0	1	2	3	4
p_i	$\frac{625}{1296} \approx 0,4823$	$\frac{125}{324} \approx 0.3858$	$\frac{25}{216} \approx 0,1157$	$\frac{5}{324} \approx 0,0154$	$\frac{1}{1296} \approx 0,0008$

Проверка:
$$0,4823 + 0,3858 + 0,1157 + 0,0154 + 0,0008 = 1$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,4823 & npu \ 0 < x \le 1; \\ 0,8681 & npu \ 1 < x \le 2; \\ 0,9838 & npu \ 2 < x \le 3; \\ 0,9992 & npu \ 3 < x \le 4; \\ 1 & npu \ x > 4. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание, дисперсию и среднее квадратическое отклонение:

$$M(X) = np = 4 \cdot \frac{1}{6} = \frac{2}{3}$$

$$D(X) = npq = 4 \cdot \frac{1}{6} \cdot \frac{5}{6} = \frac{5}{9}$$

$$\sigma(X) = \sqrt{D(X)} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \approx 0,7453$$

В Задачах № 24-26 требуется: составить ряд распределения случайной величины X, построить полигон распределения, найти функцию распределения F(x), нарисовать ее график, вычислить M(X), D(X).

Задача 24. Для лечения больных применяется метод лечения, который с вероятностью 0,75 дает положительный результат. На отделении находится 6 больных, при лечении которых используется данный метод

X – число больных, при лечении которых достигнут положительный результат.

Решение: случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

 $P_n^x = C_n^x p^x q^{n-x}$, в данной задаче:

n = 6 – всего больных;

 $x = \{0,1,2,3,4,5,6\}$ – вероятное количество вылеченных больных;

p = 0.75 — вероятность того, что метод лечения даст положительный результат;

q=1-p=1-0.75=0.25 — вероятность того, что метод лечения не даст положительного результата;

 P_n^x — вероятность того, что в x случаях из n метод лечения даст положительный результат.

0)
$$x = 0$$

 $P_6^0 = C_6^0 \cdot (0,75)^0 \cdot (0,25)^6 = (0,25)^6 \approx 0,00024$
1) $x = 1$
 $P_6^1 = C_6^1 \cdot (0,75)^1 \cdot (0,25)^5 = 6 \cdot 0,75 \cdot (0,25)^5 \approx 0,00439$
2) $x = 2$
 $P_6^2 = C_6^2 \cdot (0,75)^2 \cdot (0,25)^4 = \frac{6!}{4!2!} \cdot (0,75)^2 \cdot (0,25)^4 = \frac{5 \cdot 6}{2} \cdot (0,75)^2 \cdot (0,25)^4 = 0,03296$
3) $x = 3$
 $P_6^3 = C_6^3 \cdot (0,75)^3 \cdot (0,25)^3 = \frac{6!}{3!3!} \cdot (0,75)^3 \cdot (0,25)^3 = \frac{4 \cdot 5 \cdot 6}{6} \cdot (0,75)^3 \cdot (0,25)^3 = 0,13184$
4) $x = 4$
 $P_6^4 = C_6^4 \cdot (0,75)^4 \cdot (0,25)^2 = \frac{6!}{2!4!} \cdot (0,75)^4 \cdot (0,25)^2 = \frac{5 \cdot 6}{2} \cdot (0,75)^4 \cdot (0,25)^2 = 0,29663$
5) $x = 5$
 $P_6^5 = C_6^5 \cdot (0,75)^5 \cdot (0,25)^1 = 6 \cdot (0,75)^5 \cdot 0,25 = 0,35596$
6) $x = 6$
 $P_6^6 = C_6^6 \cdot (0,75)^6 \cdot (0,25)^0 = (0,75)^6 = 0,17798$

Таким образом, искомый закон распределения:

17	X_i	0	1	2	3	4	5	6		
X	$p(x_i)$	0,00024	0,00439	0,03296	0,13184	0,29663	0,35596	0,17798	$\sum = 1$	

Построим полигон распределения:

Найдем функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,00024 & npu \ 0 < x \le 1; \\ 0,00464 & npu \ 1 < x \le 2; \\ 0,03760 & npu \ 2 < x \le 3; \\ 0,16943 & npu \ 3 < x \le 4; \\ 0,46606 & npu \ 4 < x \le 5; \\ 0,82202 & npu \ 5 < x \le 6; \\ 1 & npu \ x > 6. \end{cases}$$

Выполним чертёж:

Вычислим математическое ожидание: $M(X) = np = 6 \cdot 0.75 = 4.5$ и дисперсию: $D(X) = npq = 6 \cdot 0.75 \cdot 0.25 = 1.125$

Задача 25. При перевозке повреждается в среднем одна деталь из 12. Отправлена партия из 6 деталей.

Решение: случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

$$P_n^x = C_n^x p^x q^{n-x}$$
, в данной задаче:

n = 6 — всего деталей;

 $x = \{0,1,2,3,4,5,6\}$ — вероятное количество поврежденных деталей.

Из условия следует, что:

$$p = \frac{1}{12}$$
 — вероятность того, что деталь будет повреждена;

$$q = 1 - p = 1 - \frac{1}{12} = \frac{11}{12}$$
 — вероятность того, что деталь не будет повреждена;

 P_n^x – вероятность того, что из n деталей ровно x будут повреждены.

0)
$$x = 0$$

 $P_6^0 = C_6^0 \cdot (1/12)^0 \cdot (11/12)^6 = (11/12)^6 \approx 0,5932922$

1)
$$x = 1$$

$$P_6^1 = C_6^1 \cdot (1/12)^1 \cdot (11/12)^5 = 6 \cdot \frac{1}{12} \cdot (11/12)^5 \approx 0,3236139$$

2)
$$x = 2$$

$$P_6^2 = C_6^2 \cdot (1/12)^2 \cdot (11/12)^4 = \frac{6!}{4! \cdot 2!} \cdot (1/12)^2 \cdot (11/12)^4 = \frac{5 \cdot 6}{2} \cdot (1/12)^2 \cdot (11/12)^4 \approx 0,0735486$$

3)
$$x = 3$$

$$P_6^3 = C_6^3 \cdot (1/12)^3 \cdot (11/12)^3 = \frac{6!}{3! \cdot 3!} \cdot (1/12)^3 \cdot (11/12)^3 = \frac{4 \cdot 5 \cdot 6}{6} \cdot (1/12)^3 \cdot (11/12)^3 \approx 0,0089150$$

4)
$$x = 4$$

$$P_6^4 = C_6^4 \cdot (1/12)^4 \cdot (11/12)^2 = \frac{6!}{2! \cdot 4!} \cdot (1/12)^4 \cdot (11/12)^2 = \frac{5 \cdot 6}{2} \cdot (1/12)^4 \cdot (11/12)^2 \approx 0,0006078$$

5)
$$x = 5$$

$$P_6^5 = C_6^5 \cdot (1/12)^5 \cdot (11/12)^1 = 6 \cdot (1/12)^5 \cdot \frac{11}{12} \approx 0,0000221$$

6)
$$x = 6$$

$$P_6^6 = C_6^6 \cdot (1/12)^6 \cdot (11/12)^0 = (1/12)^6 \approx 0,0000003$$

Таким образом, искомый закон распределения случайной величины X:

v	X_i	0	1	2	3	4	5	6	
X	$p(x_i)$	0,5932922	0,3236139	0,0735486	0,0089150	0,0006078	0,0000221	0,0000003	$\sum = 1$

Построим полигон распределения:

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,5932922 & npu \ 0 < x \le 1; \\ 0,9169061 & npu \ 1 < x \le 2; \\ 0,9904547 & npu \ 2 < x \le 3; \\ 0,9993697 & npu \ 3 < x \le 4; \\ 0,99999776 & npu \ 4 < x \le 5; \\ 0,9999997 & npu \ 5 < x \le 6; \\ 1 & npu \ x > 6. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание: $M(X) = np = 6 \cdot \frac{1}{12} = \frac{1}{2}$

Вычислим дисперсию: $D(X) = npq = 6 \cdot \frac{1}{12} \cdot \frac{11}{12} = \frac{11}{24} \approx 0,46$

Задача 26. В гараже 6 машин. Вероятность выхода из строя в течение дня отдельной машины равна 0,1.

Случайная величина X – числа машин в исправном состоянии

Решение: случайная величина X имеет биномиальное распределение. Найдем закон распределения случайной величины X, используя формулу Бернулли:

$$P_n^x = C_n^x p^x q^{n-x}$$
, в данной задаче:

n = 6 – всего машин в гараже;

 $x = \{0,1,2,3,4,5,6\}$ – вероятное количество исправных машин.

 P_n^x – вероятность того, что из n машин ровно x будут в исправном состоянии.

По условию:

q = 0,1 — вероятность выхода из строя машины в течение дня, тогда:

p = 1 - q = 1 - 0,1 = 0,9 — вероятность того, что машина будет исправна.

0)
$$x = 0$$

 $P_6^0 = C_6^0 \cdot (0.9)^0 \cdot (0.1)^6 = (0.1)^6 \approx 0.000001$

1)
$$x = 1$$

 $P_6^1 = C_6^1 \cdot (0.9)^1 \cdot (10.1)^5 = 6 \cdot 0.9 \cdot (0.1)^5 \approx 0.000054$

2)
$$x = 2$$

$$P_6^2 = C_6^2 \cdot (0.9)^2 \cdot (0.1)^4 = \frac{6!}{4! \cdot 2!} \cdot (0.9)^2 \cdot (0.1)^4 = \frac{5 \cdot 6}{2} \cdot (0.9)^2 \cdot (0.1)^4 \approx 0.001215$$

3)
$$x = 3$$

$$P_6^3 = C_6^3 \cdot (0.9)^3 \cdot (0.1)^3 = \frac{6!}{3! \cdot 3!} \cdot (0.9)^3 \cdot (0.1)^3 = \frac{4 \cdot 5 \cdot 6}{6} \cdot (0.9)^3 \cdot (0.1)^3 \approx 0.01458$$

4)
$$x = 4$$

$$P_6^4 = C_6^4 \cdot (0.9)^4 \cdot (0.1)^2 = \frac{6!}{2! \cdot 4!} \cdot (0.9)^4 \cdot (0.1)^2 = \frac{5 \cdot 6}{2} \cdot (0.9)^4 \cdot (0.1)^2 \approx 0.098415$$

5)
$$x = 5$$

$$P_6^5 = C_6^5 \cdot (0.9)^5 \cdot (0.1)^1 = 6 \cdot (0.9)^5 \cdot 0.1 \approx 0.354294$$

6)
$$x = 6$$

$$P_6^6 = C_6^6 \cdot (0.9)^6 \cdot (0.1)^0 = (0.9)^6 \approx 0.531441$$

Таким образом, искомый закон распределения случайной величины X:

v	X_i	0	1	2	3	4	5	6	
X	$p(x_i)$	0,000001	0,000054	0,001215	0,01458	0,098415	0,354294	0,531441	$\sum = 1$

Вычислим математическое ожидание: M(X) = np = 6.0,9 = 5,4

Вычислим дисперсию: $D(X) = npq = 6 \cdot 0.9 \cdot 0.1 = 0.54$

Построим полигон распределения:

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,000001 & npu \ 0 < x \le 1; \\ 0,000055 & npu \ 1 < x \le 2; \\ 0,001270 & npu \ 2 < x \le 3; \\ 0,015850 & npu \ 3 < x \le 4; \\ 0,114265 & npu \ 4 < x \le 5; \\ 0,468559 & npu \ 5 < x \le 6; \\ 1 & npu \ x > 6. \end{cases}$$

Выполним чертеж:

Задача 27. Вероятность появления события A в каждом из 12 повторных испытаний P(A) = 0.75. Определить среднее значение и дисперсию случайной величины числа появления события A в 12 независимых повторных испытаниях.

Решение: данная случайная величина имеет биномиальное распределение Математическое ожидание (среднее значение) и дисперсию вычислим по соответствующим формулам:

$$M(X) = np = 12 \cdot 0.75 = 9$$

 $D(X) = npq = 9 \cdot 0.25 = 2.25$

Ответ: M(X) = 9, D(X) = 2.25

Задача 28. Составить закон распределения числа появлений события A при 8 независимых испытаниях, если P(A) = p = 0.8.

Решение: используем формулу Бернулли:

 $P_n^m = C_n^m p^m q^{n-m}$, в данной задаче:

n = 8 — всего независимых испытаний;

 $m = \{0;1;2;3;4;5;6;7;8\}$ — вероятное количество наступлений события A в восьми испытаниях:

p = 0.8 — вероятность наступления события A в каждом испытании;

q=1-p=1-0,2=0,8- вероятность того, что событие A не наступит в каждом из испытаний;

 $P_{\rm s}^{m}$ – вероятность того, что в 8 испытаниях событие A наступит ровно m раз.

Используя формулу Бернулли, построим биномиальный закон распределения числа появлений события A в 8 испытаниях:

m	0	1	2	3	4	5	6	7	8
P_8^m	0,00000256	0,00008192	0,0011469	0,00917504	0,0458752	0,14680064	0,29360128	0,33554432	0,16777216

Задача 29. Написать закон распределения указанной случайной величины, вычислить среднее значение и дисперсию случайной величины, начертить многоугольник распределения, построить график функции распределения данной случайной величины X.

Монету подбрасывают 9 раз. Случайная величина X — число появления герба в 9 бросаниях монеты.

Решение: случайная величина X имеет биномиальное распределение. Построим закон распределения случайной величины, используем формулу Бернулли:

$$P_n^m = C_n^m p^m q^{n-m}$$
, в данной задаче:

n = 9 — всего бросков;

m — вероятное количество выпадения герба;

p = 0.5 – вероятность выпадения герба;

q = 1 - p = 1 - 0,5 = 0,5 – вероятность выпадение цифры;

 P_{0}^{m} – вероятность того, что в 9 бросках герб выпадет ровно *m* раз.

Построим биномиальный ряд распределения (округление до 6 знаков):

m	0	1	2	3	4	5	6	7	8	9
P_n^m	0,001953	0,017578	0,070313	0,164063	0,246094	0,246094	0,164063	0,070313	0,017578	0,001953
Накопле нные	0,001953	0,019531	0,089844	0,253906	0,5	0,746094	0,910156	0,980469	0,998047	1

Найдем математическое ожидание: $M(X) = np = 9 \cdot 0.5 = 4.5$

Найдем дисперсию: $D(X) = npq = 9 \cdot 0.5 \cdot 0.5 = 2.25$

Построим многоугольник распределения:

Составим функцию распределения:

$$0 npu x \le 0;$$

 $0,001953 \ npu \ 0 < x \le 1;$

 $0,019531 \ npu \ 1 < x \le 2;$

 $0.089844 \ npu \ 2 < x \le 3;$

 $0,253906 \ npu \ 3 < x \le 4;$

$$F(x) = \begin{cases} 0.5 & npu \ 4 < x \le 5; \end{cases}$$

 $0,746094 \ npu \ 5 < x \le 6;$

 $0.910156 \ npu \ 6 < x \le 7;$

 $0,980469 \ npu \ 7 < x \le 8;$

 $0,998047 \ npu \ 8 < x \le 9;$

1 $npu \ x > 9$.

Выполним чертёж:

5. Задачи на распределение Пуассона

Задача 30. Вероятность сбоя в работе телефонной станции при каждом вызове равна 0,004. Поступило 500 вызовов. Определить вероятность того, что было 9 сбоев.

Решение: используем формулу Пуассона:

$$P_m = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$
, в данной задаче: $\lambda = np = 500 \cdot 0,004 = 2$ — среднее количество сбоев; $m = 9$.

Таким образом:

$$P_9 = \frac{2^9}{9!} \cdot e^{-2} \approx 0,0002$$
 — вероятность того, что будет 9 сбоев.

Ответ: $P_9 \approx 0,0002$

Задача 31. Среди семян ржи 0,04% сорняков. Какова вероятность при случайном отборе 5000 семян обнаружить 5 семян сорняков?

Решение: используем формулу Пуассона:

$$P_m \approx \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$

В данном случае:

 $\lambda = np = 5000 \cdot (0.01 \cdot 0.04) = 2$ — среднее количество сорных семян; m = 5 — искомое количество сорных семян.

Таким образом:

 $P_5 \approx \frac{5^2}{5!} \cdot e^{-2} \approx 0.0361$ — вероятность того, что среди пяти тысяч семян ржи будет ровно 5 сорных семян.

Ответ: ≈ 0,0361

Задача 32. Вероятность того, что на строительной панели окажутся трещины, равна 0,002. На стройку поступила партия из 400 панелей. Найти вероятность того, что с трещинами окажется 5 панелей; от 3 до 7 панелей.

Решение: используем формулу Пуассона:

$$P_m \approx \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$

В данном случае:

 $\lambda = np = 400 \cdot 0{,}002 = 0{,}8$ — среднее количество панелей с трещинами в данной партии;

m = 5 — вероятное количество панелей с трещинами.

Таким образом:

$$P_5 \approx \frac{(0.8)^5}{5!} \cdot e^{-0.8} \approx 0,0012$$
 — вероятность того, что с трещинами окажется 5 панелей.

По теореме сложения вероятностей несовместных событий:

$$P(3 \le m \le 7) \approx P_3 + P_4 + P_5 + P_6 + P_7 \approx 0.0383 + 0.0077 + 0.0012 + 0.0002 + 0.0000 = 0.0474$$
 — вероятность того, что с трещинами окажется от 3 до 7 панелей.

Otbet:
$$P_5 \approx 0.0012$$
 $P(3 \le m \le 7) \approx 0.0474$

Задача 33. Учебник издан тиражом 10000 экземпляров. Вероятность того, что он сброшюрован неправильно, равна 0,0007. Найти вероятность того, что тираж содержит: а) ровно 1 бракованную книгу; б) хотя бы одну бракованную книгу.

Решение: используем формулу Пуассона:

$$P_m \approx \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$

В данном случае:

 $\lambda = np = 0.0007 \cdot 10000 = 7$ — среднее ожидаемое количество бракованных экземпляров в тираже.

m = 1 — вероятное количество бракованных экземпляров в тираже.

а) По формуле Пуассона:

 $P_1 \approx \frac{7^1}{1!} \cdot e^{-7} \approx 0,0064$ — вероятность того, что тираж содержит ровно 1 бракованную книгу.

б) $P_0 \approx \frac{7^0}{0!} \cdot e^{-7} \approx 0,0009 - \text{вероятность того, что тираж не содержит бракованных книг.}$

По теореме сложения вероятностей противоположных событий:

 $P(m \ge 1) \approx 1 - 0,0009 = 0,9991$ — вероятность того, что тираж содержит хотя бы одну бракованную книгу.

Задача 34. Вероятность наступления события A в каждом из 900 независимых испытаний равна 0,002. Найти вероятность того, что событие A произойдет не менее 3 раз.

Решение: используем формулу Пуассона:

$$P_m \approx \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$

В данном случае:

$$\lambda = np = 900 \cdot 0,002 = 1,8$$

m — вероятное количество появлений события A.

По теореме сложения вероятностей несовместных событий:

$$P(m < 3) \approx P_0 + P_1 + P_2 \approx \frac{1.8^0}{0!} \cdot e^{-1.8} + \frac{1.8^1}{1!} \cdot e^{-1.8} + \frac{1.8^2}{2!} \cdot e^{-1.8} =$$

= 0.1653 + 0.2975 + 0.2678 = 0.7306 — вероятность того, что в 900 независимых испытаниях событие A появится менее трёх раз.

По теореме сложения вероятностей противоположных событий:

 $P(m \ge 3) = 1 - P(m < 3) \approx 1 - 0.7306 = 0.2694$ — вероятность того, что в 900 независимых испытаниях событие *A* появится не менее трёх раз.

Ответ: ≈ 0,2694

Задача 35. Число атак истребителей, которым может подвергнуться бомбардировщик над территорией противника, есть случайная величина, распределенная по закону Пуассона с математическим ожиданием a=3. Каждая атака с вероятностью 0,4 заканчивается поражением бомбардировщика. Определить вероятность поражения бомбардировщика в результате трех атак.

Решение: используем формулу Пуассона $P_m = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$, найдём:

$$P_3 = \frac{3^3}{3!} \cdot e^{-3} \approx 0,2240$$
 — вероятность того, что будет совершено 3 три атаки.

По теореме умножения вероятностей независимых событий:

 $q = 0.6 \cdot 0.6 \cdot 0.6 = 0.216$ — вероятностью того, что 3 атаки окажутся неуспешными.

Тогда: p = 1 - q = 1 - 0.216 = 0.784 — вероятность того, что бомбардировщик в трёх атаках будет поражен хотя бы один раз.

По теореме умножения вероятностей зависимых событий:

 $P_{3} \cdot p \approx 0.2240 \cdot 0.784 \approx 0.1756$ — вероятность поражения бомбардировщика в результате трех атак

Ответ: ≈ 0,1756

Задача 36. При работе ЭВМ время от времени возникают сбои. Поток сбоев можно считать простейшим. Среднее число сбоев за сутки равно 1,5. Найти вероятность того, что в течение суток произойдет хотя бы один сбой

Решение: Используем формулу Пуассона для простейшего потока событий:

$$P_m = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$
, в данной задаче: $\lambda = 1,5$ – число сбоев сутки.

Найдем вероятность того, что за сутки не будет сбоев.

$$P_0 = \frac{1.5^0}{0!} \cdot e^{-1.5} \approx 0.2231$$

По теореме сложения вероятностей противоположных событий:

 $P(m \ge 1) = 1 - P_0 \approx 1 - 0.2231 \approx 0.777$ — вероятность того, что за сутки будет хотя бы один сбой.

Ответ: ≈ 0,777

Задача 37. Поток заявок, поступающих на телефонную станцию, представляет собой простейший пуассоновский поток. Математическое ожидание числа вызовов за 1 ч равно 30. Найти вероятность того, что за 1 мин. поступит не менее двух вызовов.

Решение: используем формулу Пуассона для простейшего потока событий:

$$P_m = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$
, в данной задаче:

$$\lambda = \frac{N}{60} = \frac{30}{60} = 0,5$$
 — среднее количество вызовов в минуту;

Найдем вероятность того, что за одну минуту станция получит менее двух вызовов. По теореме сложения вероятностей несовместных событий:

$$P(m < 2) = P_0 + P_1 = \frac{0.5^0}{0!} \cdot e^{-0.5} + \frac{0.5^1}{1!} \cdot e^{-0.5} \approx 0,6065 + 0,3033 = 0,9098$$

По теореме сложения вероятностей противоположных событий:

 $P(m \ge 2) = 1 - P(m < 2) \approx 1 - 0.9098 = 0.0902$ — вероятность того, что за одну минуту станция получит не менее двух вызовов

Ответ: ≈ 0.0902

Задача 38. Автоматическая телефонная станция получает в среднем за час N = 60 вызовов. Определить вероятность того, что за данную минуту она получит: ровно два вызова; более двух.

Решение: используем формулу Пуассона для простейшего потока событий:

$$P_m = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$
, в данной задаче:

$$\lambda = \frac{N}{60} = \frac{60}{60} = 1$$
 — среднее количество вызовов в минуту;

m = 2 — искомое количество вызовов в минуту.

Таким образом:

 $P_2 = \frac{1^2}{2!} \cdot e^{-1} \approx 0,1839$ — вероятность того, что за данную минуту станция получит ровно два вызова.

Найдем вероятность того, что за данную минуту станция получит не более двух вызовов:

$$P(m \le 2) = P_0 + P_1 + P_2 \approx 0.3679 + 0.3679 + 0.1839 = 0.9197$$

Используя теорему о противоположных событиях, найдем вероятность того, что за данную минуту станция получит более двух вызовов:

$$P(m > 2) = 1 - P(m \le 2) \approx 1 - 0.9197 = 0.0803$$
 – искомая вероятность.

Ответ: $P_2 \approx 0.1839$, $P(m > 2) \approx 0.0803$

Задача 39. Средняя сдельная выработка часового мастера за 1 час составляет 3 заказа. Найти вероятность того, что: а) за 2 часа он выполнит 7 заказов; б) за 2/3 часа он выполнит менее 3 заказов

Решение: используем формулу Пуассона для простейшего потока событий:

$$P_m \approx \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$

а) $\lambda = 3 \cdot 2 = 6$ – среднее количество заказов за 2 часа;

m = 7 — искомое количество заказов за 2 часа.

Таким образом:

 $P_7 \approx \frac{6^7}{7!} \cdot e^{-6} \approx 0,1377$ — вероятность того, что за 2 часа мастер выполнит ровно 7 заказов.

б)
$$\lambda = \frac{2}{3} \cdot 3 = 2$$
 — среднее количество заказов за 2/3 часа;

По теореме сложения вероятностей несовместных событий:

 $P(m < 3) \approx P_0 + P_1 + P_2 \approx 0.1353 + 0.2707 + 0.2707 = 0.6767$ — вероятность того, что за 2/3 часа мастер выполнит менее 3 заказов.

б)
$$P(m < 3) \approx 0.6767$$

Задача 40. Распространитель театральных билетов реализует за час в среднем 4 пары билетов. Найти вероятность того, что: а) за 3 часа он продаст 10 пар билетов; б) за 45 минут не менее 3 билетов.

Решение: Используем формулу Пуассона для простейшего потока событий:

$$P_m \approx \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$

а) $\lambda = 3 \cdot 4 = 12$ — среднее количество проданных билетов за 3 часа;

m = 10 — искомое количество проданных билетов за 3 часа.

Таким образом:

 $P_{10} \approx \frac{12^{10}}{10!} \cdot e^{-12} \approx 0,1048$ — вероятность того, что за 3 часа будет продано 10 пар билетов.

б)
$$\lambda = \frac{3}{4} \cdot 4 = 3$$
 — среднее количество проданных билетов за 3/4 часа;

По теореме сложения вероятностей несовместных событий:

 $P(m < 3) \approx P_0 + P_1 + P_2 \approx 0.0498 + 0.1494 + 0.2240 = 0.4232$ — вероятность того, что за 45 минут будет продано менее 3 билетов.

По теореме сложения вероятностей противоположных событий:

 $P(m \ge 3) = 1 - P(m < 3) \approx 1 - 0.4232 = 0.5768$ — вероятность того, что за 45 минут будет продано не менее 3 билетов.

б)
$$P(m ≥ 3) ≈ 0.5768$$

6. Гипергеометрическое распределение вероятностей

Задача 41. В группе из шести человек два отличника. Наугад выбрали двух человек. Составить закон распределения случайной величины X — число отличников среди выбранных. Найти математическое ожидание и дисперсию.

Решение: случайная величина X имеет гипергеометрическое распределение. Найдем закон распределения случайной величины X, используя формулу:

$$P_x = \frac{C_M^x \cdot C_{N-M}^{n-x}}{C_N^n}$$
, в данной задаче:

N = 6 – всего людей;

M = 2 – общее количество отличников;

n = 2 – размер выборки;

 $x = \{0,1,2\}$ – возможное количество отличников в выборке.

$$C_N^n = C_6^2 = \frac{6!}{4! \cdot 2!} = \frac{5 \cdot 6}{2} = 15$$
 способами можно выбрать двух человек.

0) x = 0 – в выборке нет отличников.

$$P_0 = \frac{C_2^0 \cdot C_4^2}{C_6^2} = \frac{1 \cdot 6}{15} = \frac{6}{15}$$

1) x = 1 - в выборке один отличник.

$$P_1 = \frac{C_2^1 \cdot C_4^1}{C_6^2} = \frac{2 \cdot 4}{15} = \frac{8}{15}$$

2) x = 2 - в выборке два отличника.

$$P_2 = \frac{C_2^2 \cdot C_4^0}{C_6^2} = \frac{1 \cdot 1}{15} = \frac{1}{15}$$

Таким образом, искомый закон распределения случайной величины X:

	X_i	0	1	2	
X	p_i	$\frac{6}{15}$	$\frac{8}{15}$	$\frac{1}{15}$	$\sum = 1$

Математическое ожидание:

$$M(X) = \sum x_i p_i = 0 \cdot \frac{6}{15} + 1 \cdot \frac{8}{15} + 2 \cdot \frac{1}{15} = 0 + \frac{8}{15} + \frac{2}{15} = \frac{10}{15} = \frac{2}{3}$$

Дисперсию вычислим по формуле:

$$D(X) = M(X^{2}) - (M(X))^{2} = 0^{2} \cdot \frac{6}{15} + 1^{2} \cdot \frac{8}{15} + 2^{2} \cdot \frac{1}{15} - \left(\frac{2}{3}\right)^{2} =$$

$$= \frac{12}{15} - \frac{4}{9} = \frac{4}{5} - \frac{4}{9} = \frac{36}{45} - \frac{20}{45} = \frac{16}{45}$$

Задача 42. В партии из 15 телефонных аппаратов 5 неисправных. Составить закон распределения указанной случайной величины X — числа неисправных аппаратов среди трех случайным образом отобранных. Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$. Построить график функции распределения F(x).

Решение: случайная величина X имеет гипергеометрическое распределение. Найдем закон распределения случайной величины X, используя формулу:

$$p_x = \frac{C_M^x \cdot C_{N-M}^{n-x}}{C_N^n}$$

В данной задаче:

N = 15 — всего телефонных аппаратов;

M = 5 – количество неисправных телефонных аппаратов;

n = 3 — размер выборки;

 $x = \{0,1,2,3\}$ — возможное количество неисправных телефонных аппаратов в выборке.

$$C_{15}^3 = \frac{15!}{12! \cdot 3!} = \frac{13 \cdot 14 \cdot 15}{6} = 455$$
 способами можно выбрать 3 телефонных аппарата.

0)
$$x = 0$$

$$p_0 = \frac{C_5^0 \cdot C_{10}^3}{C_{15}^3} = \frac{120}{455} \approx 0,264$$
1) $x = 1$

$$p_1 = \frac{C_5^1 \cdot C_{10}^2}{C_{15}^3} = \frac{5 \cdot 45}{455} \approx 0,495$$
2) $x = 2$

$$p_2 = \frac{C_5^2 \cdot C_{10}^1}{C_{15}^3} = \frac{10 \cdot 10}{455} \approx 0,220$$
3) $x = 3$

$$p_3 = \frac{C_5^3 \cdot C_{10}^0}{C_{15}^3} = \frac{10}{455} \approx 0,022$$

Таким образом, искомый закон распределения:

X_i	0	1	2	3
p_{i}	0,264	0,495	0,219	0,022

Проверка:
$$0.264 + 0.495 + 0.219 + 0.022 = 1$$

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,264 & npu \ 0 < x \le 1; \\ 0,759 & npu \ 1 < x \le 2; \\ 0,978 & npu \ 2 < x \le 3; \\ 1 & npu \ x > 3. \end{cases}$$

Выполним чертеж:

Вычислим математическое ожидание и дисперсию, используем соответствующие формулы для гипергеометрического распределения:

$$M(X) = \frac{M}{N} \cdot n = \frac{5}{15} \cdot 3 = 1$$

$$D(X) = \frac{M}{N} \cdot n \cdot \frac{(N-n)}{N} \cdot \frac{(N-M)}{(N-1)} = \frac{5}{15} \cdot 3 \cdot \frac{12}{15} \cdot \frac{10}{14} = \frac{4}{7} \approx 0,571$$

Среднее квадратическое отклонение: $\sigma(X) = \sqrt{D(X)} = \sqrt{\frac{4}{7}} \approx 0.76$

Задача 43. Партия из 50 изделий содержит 5 бракованных. Из партии наугад взято 3 изделия. Пусть X — число бракованных изделий среди трех взятых. Составьте закон распределения случайной величины X. Найдите M(X), D(X).

Решение: случайная величина X имеет гипергеометрическое распределение. Найдем закон распределения случайной величины X, используя формулу:

$$p_x = \frac{C_M^x \cdot C_{N-M}^{n-x}}{C_N^n}$$

В данной задаче:

N = 50 — всего изделий в партии;

M = 5 – количество бракованных изделий;

n = 3 – размер выборки;

 $x = \{0,1,2,3\}$ — возможное количество бракованных изделий в выборке.

$$C_{50}^3 = \frac{50!}{47! \cdot 3!} = \frac{48 \cdot 49 \cdot 50}{6} = 19600$$
 способами можно выбрать 3 изделия из 50.

0)
$$x = 0$$

$$p_1 = \frac{C_5^0 \cdot C_{45}^3}{C_{50}^3} = \frac{1 \cdot \frac{45!}{42!3!}}{19600} = \frac{14190}{19600} = \frac{1419}{1960}$$

1)
$$x = 1$$

$$p_2 = \frac{C_5^1 \cdot C_{45}^2}{C_{50}^3} = \frac{5 \cdot \frac{45!}{43!2!}}{19600} = \frac{4950}{19600} = \frac{99}{392}$$

2)
$$x = 2$$

$$p_3 = \frac{C_5^2 \cdot C_{45}^1}{C_{50}^3} = \frac{10 \cdot 45}{19600} = \frac{450}{19600} = \frac{9}{392}$$

3)
$$x = 3$$

$$p_4 = \frac{C_5^3 \cdot C_{45}^0}{C_{50}^3} = \frac{10 \cdot 1}{19600} = \frac{1}{1960}$$

Таким образом, искомый закон распределения случайной величины X:

	x_i	0	1	2	3	
X	p_i	1419 1960	99 392	9 392	$\frac{1}{1960}$	$\sum = 1$

Вычислим математическое ожидание:

$$M(X) = \frac{M}{N} \cdot n = \frac{5}{50} \cdot 3 = 0.3$$

Вычислим дисперсию:

$$D(X) = \frac{M}{N} \cdot n \cdot \frac{(N-n)}{N} \cdot \frac{(N-M)}{(N-1)} = \frac{5}{50} \cdot 3 \cdot \frac{47}{50} \cdot \frac{45}{49} \approx 0,26$$

Задача 44. В ящике находится 17 однотипных деталей, из которых 7 деталей имеют брак. Случайная величина X — число деталей с браком среди взятых 4 деталей.

1) Составить закон распределения случайной величины X.

Решение: случайная величина X имеет гипергеометрическое распределение. Найдем закон распределения случайной величины X, используя формулу:

$$p_x = \frac{C_M^x \cdot C_{N-M}^{n-x}}{C_N^n}$$

В данной задаче:

N = 17 — всего деталей в ящике:

M = 7 – количество деталей с браком;

n = 4 – размер выборки;

 $x = \{0,1,2,3,4\}$ — возможное количество деталей с браком в выборке.

$$C_{17}^4 = \frac{17!}{13! \cdot 4!} = \frac{14 \cdot 15 \cdot 16 \cdot 17}{24} = 2380$$
 способами можно извлечь 4 детали из ящика.

0)
$$x = 0$$

$$p_0 = \frac{C_7^0 \cdot C_{10}^4}{C_{17}^4} = \frac{1 \cdot \frac{7 \cdot 8 \cdot 9 \cdot 10}{24}}{2380} \approx 0,088$$

1)
$$x = 1$$

$$p_1 = \frac{C_7^1 \cdot C_{10}^3}{C_{17}^4} = \frac{7 \cdot \frac{8 \cdot 9 \cdot 10}{6}}{2380} \approx 0,353$$

2)
$$x = 2$$

$$p_2 = \frac{C_7^2 \cdot C_{10}^2}{C_{17}^4} = \frac{\frac{6 \cdot 7}{2} \cdot \frac{9 \cdot 10}{2}}{2380} \approx 0,397$$

3)
$$x = 3$$

$$p_3 = \frac{C_7^3 \cdot C_{10}^1}{C_{17}^4} = \frac{\frac{5 \cdot 6 \cdot 7}{6} \cdot 10}{2380} \approx 0.147$$

4)
$$x = 4$$

$$p_4 = \frac{C_7^4 \cdot C_{10}^0}{C_{17}^4} = \frac{35}{2380} \approx 0.015$$

Таким образом, искомый закон распределения случайной величины X:

W	X_i	0	1	2	3	4	
X	p_{i}	0,088	0,353	0,397	0,147	0,015	$\sum = 1$

2) Найти функцию распределения F(x) случайной величины X и построить ее график.

Решение: составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,088 & npu \ 0 < x \le 1; \\ 0,441 & npu \ 1 < x \le 2; \\ 0,838 & npu \ 2 < x \le 3; \\ 0,985 & npu \ 3 < x \le 4; \\ 1 & npu \ x > 4. \end{cases}$$

Выполним чертеж:

3) Найти математическое ожидание M(X) и дисперсию D(X) случайной величины X .

Решение: используем формулы для гипергеометрического распределения:

$$M(X) = \frac{M}{N} \cdot n = \frac{7}{17} \cdot 4 = \frac{28}{17} \approx 1,65$$

$$D(X) = \frac{M}{N} \cdot n \cdot \frac{(N-n)}{N} \cdot \frac{(N-M)}{(N-1)} = \frac{7}{17} \cdot 4 \cdot \frac{13}{17} \cdot \frac{10}{16} = \frac{455}{578} \approx 0,787$$

Задача 45. Для исследования в стае из 50 редких птиц окольцевали 10 особей. Через некоторое время отловили 5 птиц.

Для случайной величины X — числа окольцованных птиц среди отловленных, составить ряд распределения, построить полигон распределения, найти функцию распределения F(x), нарисовать ее график, вычислить M(X), D(X).

Решение: случайная величина X имеет гипергеометрическое распределение. Найдем закон распределения случайной величины X, используя формулу:

$$p_x = \frac{C_M^x \cdot C_{N-M}^{n-x}}{C_N^n}$$

В данной задаче:

N = 50 — всего птиц в стае;

M = 10 – количество окольцованных птиц;

n = 5 – размер выборки;

 $x = \{0,1,2,3,4,5\}$ — возможное количество окольцованных птиц в выборке.

$$C_{50}^{5} = \frac{50!}{45! \cdot 5!} = \frac{46 \cdot 47 \cdot 48 \cdot 49 \cdot 50}{120} = 2118760$$
 способами можно выбрать 5 птиц из 50.

0)
$$x = 0$$

$$p_0 = \frac{C_{10}^0 \cdot C_{40}^5}{C_{50}^5} = \frac{658008}{2118760} = \frac{82251}{264845} \approx 0,31056$$

1)
$$x = 1$$

$$p_1 = \frac{C_{10}^1 \cdot C_{40}^4}{C_{50}^5} = \frac{10 \cdot 91390}{2118760} = \frac{45695}{105938} \approx 0,43134$$

2)
$$x = 2$$

 $p_2 = \frac{C_{10}^2 \cdot C_{40}^3}{C_{50}^5} = \frac{45 \cdot 9880}{2118760} = \frac{11115}{52969} \approx 0,20984$

3)
$$x = 3$$

$$p_3 = \frac{C_{10}^3 \cdot C_{40}^2}{C_{50}^5} = \frac{120 \cdot 780}{2118760} = \frac{2340}{52969} \approx 0,04418$$

4)
$$x = 4$$

 $p_4 = \frac{C_{10}^4 \cdot C_{40}^1}{C_{50}^5} = \frac{210 \cdot 40}{2118760} = \frac{60}{15134} \approx 0,00396$

5)
$$x = 5$$

$$p_5 = \frac{C_{10}^5 \cdot C_{40}^0}{C_{50}^5} = \frac{252}{2118760} = \frac{9}{75670} \approx 0,00012$$

Таким образом, искомый закон распределения случайной величины X:

17	X_i	0	1	2	3	4	5	
X	p_{i}	0,31056	0,43134	0,20984	0,04418	0,00396	0,00012	$\sum = 1$

Построим полигон распределения:

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0.31056 & npu \ 0 < x \le 1; \\ 0.74190 & npu \ 1 < x \le 2; \\ 0.95174 & npu \ 2 < x \le 3; \\ 0.99592 & npu \ 3 < x \le 4; \\ 0.99988 & npu \ 4 < x \le 5; \\ 1 & npu \ x > 5. \end{cases}$$

Выполним чертёж:

Вычислим математическое ожидание:

$$M(X) = \frac{M}{N} \cdot n = \frac{10}{50} \cdot 5 = 1$$

Вычислим дисперсию:

$$D(X) = \frac{M}{N} \cdot n \cdot \frac{(N-n)}{N} \cdot \frac{(N-M)}{(N-1)} = \frac{10}{50} \cdot 5 \cdot \frac{45}{50} \cdot \frac{40}{49} = \frac{36}{49} \approx 0,7347$$

Задача 46. Среди присутствующих на празднике 20 мальчиков и 30 девочек разыгрываются 6 призов следующим образом. В коробку опускают 20 желтых и 30 красных шаров, перемешивают и наугад достают 6 шаров. Число желтых шаров – количество подарков мальчикам, число красных шаров – подарки девочкам

Для случайной величины X — числа девочек, получивших подарки, составить ряд распределения, построить полигон распределения, найти функцию распределения F(x), нарисовать ее график, вычислить M(X), D(X).

Решение: случайная величина X имеет гипергеометрическое распределение. Найдем закон распределения случайной величины X, используя формулу:

$$p_x = \frac{C_M^x \cdot C_{N-M}^{n-x}}{C_N^n}$$

В данной задаче:

N = 50 — всего детей (и шаров);

M = 30 – количество девочек (красных шаров);

n = 6 – размер выборки;

 $x = \{0,1,2,3,4,5,6\}$ – возможное количество призов, полученных девочками.

$$C_{50}^6 = \frac{50!}{44! \cdot 6!} = \frac{45 \cdot 46 \cdot 47 \cdot 48 \cdot 49 \cdot 50}{720} = 15890700$$
 способами можно извлечь 6 шаров из

коробки.

0)
$$x = 0$$

$$p_0 = \frac{C_{30}^0 \cdot C_{20}^6}{C_{50}^6} = \frac{38760}{15890700} \approx 0,002439$$

1)
$$x = 1$$

$$p_1 = \frac{C_{30}^1 \cdot C_{20}^5}{C_{50}^6} = \frac{30 \cdot 15504}{15890700} \approx 0,029270$$

2)
$$x = 2$$

 $p_2 = \frac{C_{30}^2 \cdot C_{20}^4}{C_{50}^6} = \frac{435 \cdot 4845}{15890700} \approx 0,132629$

3)
$$x = 3$$

$$p_3 = \frac{C_{30}^3 \cdot C_{20}^3}{C_{50}^6} = \frac{4060 \cdot 1140}{15890700} \approx 0,291265$$

4)
$$x = 4$$

$$p_4 = \frac{C_{30}^4 \cdot C_{20}^2}{C_{50}^6} = \frac{27405 \cdot 190}{15890700} \approx 0,327673$$

5)
$$x = 5$$

$$p_4 = \frac{C_{30}^5 \cdot C_{20}^1}{C_{50}^6} = \frac{142506 \cdot 20}{15890700} \approx 0,179358$$

6)
$$x = 6$$

$$p_6 = \frac{C_{30}^6 \cdot C_{20}^0}{C_{50}^6} = \frac{593775}{15890700} \approx 0,037366$$

Таким образом, искомый закон распределения случайной величины X:

V	X_i	0	1	2	3	4	5	6	
X	p_{i}	0,002439	0,029270	0,132629	0,291265	0,327673	0,179358	0,037366	$\sum = 1$

Изобразим полигон распределения:

Составим функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 0; \\ 0,002439 & npu \ 0 < x \le 1; \\ 0,031709 & npu \ 1 < x \le 2; \\ 0,164339 & npu \ 2 < x \le 3; \\ 0,455603 & npu \ 3 < x \le 4; \\ 0,783276 & npu \ 4 < x \le 5; \\ 0,962634 & npu \ 5 < x \le 6; \\ 1 & npu \ x > 6. \end{cases}$$

Выполним чертёж:

Вычислим математическое ожидание:

$$M(X) = \frac{M}{N} \cdot n = \frac{30}{50} \cdot 6 = 3,6$$

Вычислим дисперсию:

$$D(X) = \frac{M}{N} \cdot n \cdot \frac{(N-n)}{N} \cdot \frac{(N-M)}{(N-1)} = \frac{30}{50} \cdot 6 \cdot \frac{44}{50} \cdot \frac{20}{49} \approx 1,3$$

Задача 47. На вступительных экзаменах встречаются задачи 20 типов. Абитуриент знает, как решить задачи 15 типов. В экзаменационный билет входят 7 задач разных типов. Для случайной величины X — числа решенных абитуриентом задач, составить ряд распределения, построить полигон распределения, найти функцию распределения F(x), нарисовать ее график, вычислить M(X), D(X).

Решение: случайная величина X имеет гипергеометрическое распределение. Найдем закон распределения случайной величины X, используя формулу:

$$p_x = \frac{C_M^x \cdot C_{N-M}^{n-x}}{C_N^n}$$
, в данном случае:

N = 20 — всего различных типов задач;

M = 15 – количество типов задач, на которые студент знает ответ;

n = 7 — количество вопросов в экзаменационном билете;

 $x = \{2,3,4,5,6,7\}$ — возможное число решенных абитуриентом задач.

$$C_{20}^7 = \frac{20!}{13!7!} = \frac{14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20}{5040} = 77520$$
 способами можно выбрать 7

экзаменационных вопросов.

2)
$$x = 2$$

 $p_2 = \frac{C_{15}^2 \cdot C_5^5}{C_{20}^7} = \frac{105}{77520} = \frac{7}{5168} \approx 0,00136$

3)
$$x = 3$$

$$p_3 = \frac{C_{15}^3 \cdot C_5^4}{C_{20}^7} = \frac{455 \cdot 5}{77520} = \frac{455}{15504} \approx 0,02935$$

4)
$$x = 4$$

 $p_4 = \frac{C_{15}^4 \cdot C_5^3}{C_{20}^7} = \frac{1365 \cdot 10}{77520} = \frac{455}{2584} \approx 0,17608$

5)
$$x = 5$$

$$p_5 = \frac{C_{15}^5 \cdot C_5^2}{C_{20}^7} = \frac{3003 \cdot 10}{77520} = \frac{1001}{2584} \approx 0,38738$$

6)
$$x = 6$$

$$p_6 = \frac{C_{15}^6 \cdot C_5^1}{C_{20}^7} = \frac{5005 \cdot 5}{77520} = \frac{5005}{15504} \approx 0,32282$$

7)
$$x = 7$$

$$p_7 = \frac{C_{15}^7 \cdot C_5^0}{C_{20}^7} = \frac{6435}{77520} = \frac{429}{5168} \approx 0,08301$$

Таким образом, искомый закон распределения случайной величины X:

17	X_i	2	3	4	5	6	7	
X	p_{i}	0,00136	0,02935	0,17608	0,38738	0,32282	0,08301	$\sum = 1$

Построим многоугольник распределения:

Найдем функцию распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le 2; \\ 0,00136 & npu \ 2 < x \le 3; \\ 0,03071 & npu \ 3 < x \le 4; \\ 0,20679 & npu \ 4 < x \le 5; \\ 0,59417 & npu \ 5 < x \le 6; \\ 0,91699 & npu \ 6 < x \le 7; \\ 1 & npu \ x > 7. \end{cases}$$

Выполним чертёж:

Вычислим математическое ожидание и дисперсию:

$$M(X) = \frac{15}{20} \cdot 7 = \frac{3}{4} \cdot 7 = 5,25$$

$$D(X) = \frac{M}{N} \cdot n \cdot \frac{(N-n)}{N} \cdot \frac{(N-M)}{(N-1)} = \frac{15}{20} \cdot 7 \cdot \frac{13}{20} \cdot \frac{5}{19} = \frac{273}{304} \approx 0,898$$