

Simple bipolar transistor model

$$i_{C} = I_{S}e^{(\frac{V_{0} + V_{in}}{V_{T}})} = I_{S}e^{(\frac{V_{0}}{V_{T}})} \cdot e^{(\frac{V_{m} \sin \omega t}{V_{T}})}$$

$$= I_{CO} \cdot e^{(\frac{V_{m} \sin \omega t}{V_{T}})} = I_{CO} \cdot (1 + \frac{V_{m} \sin \omega t}{V_{T}})$$

$$= I_{CO} + \frac{I_{CO}}{V_{T}}V_{m} \sin \omega t$$

$$= I_{CO} + g_{m}V_{m} \sin \omega t$$

$$i_B = \frac{i_C}{\beta} = \frac{i_{CO}}{\beta} + \frac{g_m V_{in}}{\beta}$$

Large-signal model

Small-signal model

Bipolar Junction Transistors

Peng Mei Department of Electronic Systems

Email: mei@es.aau.dk

Learning objectives:

Early effect

• Static operating point in power amplifier design

$i_{\rm C} \sim v_{\rm CE}$ curve:

Electrons $E \longrightarrow B \longrightarrow C$

Mode	EBJ	CBJ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward

Saturation region: i_c is mainly controlled by v_{ce} , $\beta i_b > i_c$

$$V_{BE} = 0.7V, V_{CE} < 1V$$

Active region: i_c is basically parallel with v_{ce} , $\beta i_b = i_c$

$$V_{BE} = 0.7V, V_{CE} > 1V$$

Cutoff region: i_c is approaching to 0, $i_b \approx i_c \approx 0$

$$V_{BE} < 0.5V$$

$$u_{
m BE}$$
 - $i_{
m C}$

 $u_{
m BE}$ - $i_{
m B}$

Effects of temperature:

Early effects:

$$I_C = I_S e^{\frac{V_{BE}}{V_T}} \left(1 + \frac{V_{CE}}{V_A} \right)$$
 V_A is early voltage

The effects of early voltage on transconductance:

$$g_{m} = \frac{dI_{C}}{dV_{BE}} = \frac{I_{S}}{V_{T}} e^{\frac{V_{BE}}{V_{T}}} \left(1 + \frac{V_{CE}}{V_{A}} \right) = \frac{I_{C}}{V_{T}}$$

Not change

Inclusion of early effect in large-signal and small-signal models:

$$r_o = \frac{V_A}{I_S e^{\frac{V_{BE}}{V_T}}} \approx \frac{V_A}{I_C}$$

Power amplifier:

DC biasing (Static operating point (Q point)):

$$I_{CQ} \approx \beta \cdot I_{BQ}$$

$$V_{\text{CEQ}} = V_{\text{CC}} - I_{\text{CQ}} R_{\text{c}}$$

 $Q(I_{BQ}, I_{CQ}, V_{CEQ})$

Calculate Q point:

$$V_{\rm CC}$$
=15V, $R_{\rm C}$ =1.5k Ω , $i_{\rm B}$ =20 μ A
Q(20 μ A, 4m A, 9 V)

$$V_{\text{CC}}$$
=12V, R_{C} =1k Ω , V_{BB} =2.2V, R_{b} =50k Ω , V_{BEQ} =0.7V Q(30 μ A, 6m A, 6V)

$$V_{\rm CC}$$
=6V, $R_{\rm C}$ =200 Ω , $V_{\rm BB}$ =3.2V, $R_{\rm b}$ =20k Ω , $V_{\rm BEQ}$ =0.7V
$$Q(125\mu{\rm A}, 25\,{\rm m~A}, 1\,{\rm V})$$

 $Q_1(20\mu A, 4 \text{ m A}, 9 \text{ V})$

 $Q_2(30\mu A,6 \text{ m A},6 \text{ V})$

 $Q_3(125\mu A, 25 \text{ m A}, 1 \text{ V})$

With a perturbation (a sinusoidal signal (alternating signal)):

The effects of static operating point on output voltage

The effects of static operating point on amplification

A proper static operating point should be provided to make the transistor operate at the active mode (amplification region).

The amplitude of output signal is limited by $V_{\rm CC.}$

When AC signal is added directly:

What will happen when $v_s = 0$?

When AC signal is added with capacitors:

Two capacitors are added at input and output ends to isolate DC and AC signals.

The involvements of v_s and v_o do not affect the Q point of the circuit.

The frequency of v_s can not be too small.

DC circuit and AC circuit:

DC circuit: capacitor is open, AC source is open;

AC circuit: capacitor is short, DC source is short;

$$\beta = 80, R_b = 300 \text{k}\Omega, R_c = 2 \text{k}\Omega, V_{CC} = +12 \text{V}$$

V_{BEO} is assumed to be 0

Calculate Q point, which region does the BJT operate?

Q (40 μ A, 3.2mA, 5.6V) Active region

If $R_b=100$ k Ω ,

Q ($120\mu A$, 6.0mA, 0V) Saturation region

If $R_b = 300 \text{k}\Omega$, $R_c = 5 \text{k}\Omega$

Q (40µA, 2.4mA, 0V) Saturation region

Common emitter: signal is input from the base, and output from the collector;

Common collector: signal is input from the base, and output from the emitter;

Common base: signal is input from the emitter, and output from the collector;

Thanks