Assessment Schedule – 2013

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Assessment Criteria

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding involves describing, identifying, naming, drawing, calculating, or giving an account of bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires the use of chemistry vocabulary, symbols and conventions.	Demonstrate in-depth understanding involves making and explaining links between the bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires explanations that use chemistry vocabulary, symbols and conventions.	Demonstrate comprehensive understanding involves elaborating, justifying, relating, evaluating, comparing and contrasting, or analysing links between bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires the consistent use of chemistry vocabulary, symbols and conventions.

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	Lewis diagrams shown (Appendix One).	• In (a) TWO Lewis structures correct.		
(b)	BF ₃ : trigonal planar: 120° bond angles. PF ₃ : trigonal pyramidal; ≈ / < 109.5° (107°). Shape is determined by the number of regions of electron density / electron clouds and whether they are bonding / non-bonding. BF ₃ has three regions of electron density / electron clouds around the central B atom. The regions of electrons are arranged as far apart as possible from each other / to minimise repulsion, which results in a trigonal planar arrangement with a bond angle of 120°. All three regions of electrons are bonding, so the overall shape is trigonal planar. PF ₃ has four regions of electron density / electron clouds around the central P atom. The regions of electrons make a tetrahedral arrangement with a bond angle of 109.5°. Only three regions of electrons are bonding and one is non-bonding, so the overall shape is trigonal pyramidal. The non-bonding electrons have increased repulsion, therefore decreasing the bond angle to < 109.5°	 In (b) TWO shapes correct. In (b) TWO bond angles correct. 	 In (b) the arrangement of electrons around the central atom is used to explain the shape of the molecule. In (b) the arrangement of electrons around the central atom is used to explain the bond angle. 	In (b) the arrangement of the electron density / electron clouds around the central atom is used to explain the shapes and angles of the molecules. Includes a comparison of the different shape and bond angles.

(c)(ii)	The NH ₃ molecule is polar. The N-H bond is polar due to differences in electronegativity of N and H. The shape of the molecule is trigonal pyramidal, therefore the N-H polar bonds are not arranged symmetrically around the N atom. This means that the dipoles will not cancel. This results in a molecule which is polar. Polar: bent Non-polar: linear If MX ₂ is polar, this indicates that the polar M-X bonds are not spread symmetrically around the central M atom. There must be either three or four regions of negative charge with only two bonded atoms therefore the shape must be bent. Three regions of negative charge: \[\begin{array}{c} M \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		 In (c) N-H polar. Predicts pon NH₃ correction one piece of supporting evidence. Predicts or possible sh MX₂. Polarity deflupon the sylon of the mole. 	plarity of ettly with of the plane for epends symmetry	electr s betv H is t expla bonds OR In (c) sprea to ove molect	ence in conegativitie ween N and used to in the N–H is are polar. (i) links d of charge erall cule polarity. (ii) links the metric d of polar is to the	In (c)(i) the polarit molecule is explain justified in terms or regions of bond poland asymmetry. In (c)(ii) the predict shapes of the mole are explained and diagrams are draw showing labelled decomposition.	ned and of the olarity eted ocules
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.		2a	4a	5a	3m	4m	3e with minor error / omission / additional information.	3e

Appendix One: Question One (a)

Molecule	Lewis structure
CH ₄	H:C:H or H-C-H H: H H
H ₂ O	H:Ö: or H-Ö: H H
N ₂	:N::N: or :N≡N:

Q		Evidenc	e	Achievement	Merit	Excellence	
TWO (a)	Type of substance	Type of particle	Attractive forces between particles	ONE row or ONE column correct.	Table completely correct.		
	Covalent network	Atom	Covalent (and weak intermolecular forces)	Chlorine:	Explains and links why		
	Molecular	Molecules	Weak intermolecular forces	is a gas at room temperature	point OR	chlorine is a gas and copper chloride is a solid at room	
	Ionic	Ion	Ionic bonds / electrostatic attraction		temperature. Eg: Chlorine: has low melting	Contrasts with reference to bonding and structure why chlorine is a gas at	
	Metal	Atom / cations and electrons	Metallic bonds / electrostatic attraction	intermolecular forces OR little energy is	point <u>and</u> is a gas at room temperature <u>because</u> it has	room temperature and copper chloride is a solid at room temperature.	
(b)(ii)	composed of together by The weak in require much boiling poin temperature at room tem? Copper chlor is composed copper ions held togethe between the These are strequire consthem and macopper chlor temperature. For a substamust have of free to move Graphite is a composed or bonded to the remaining value of the condition of copper at electrons are attracted to the Cu atoms; is directional.	weak intermote termolecular heat energy to is low (low or); therefore coperature. The same is an ior of a lattice of and negative or by electrosse positive arrong forces, iderable energed the copperide is a solid conce to conduct harged particle. The covalent near the flayers of Correct other Correct of a covalent near the correct of the correct of the correct of the correct over the correct of the correct	plecules held plecular forces. Forces do not to break, so the er than room hlorine is a gas and successive to the positive of	needed to turn it into a gas. Copper chloride: High melting point OR is a solid at room temperature AND because it has strong ionic bonds OR a lot of energy would be needed to change it from a solid. For something to conduct there must be free moving charged particles. Graphite conducts because it has free moving electrons. Copper conducts because it has free moving electrons. For something to be made into wires it needs to be able to be stretched without breaking / ductile	weak intermolecular forces and little energy is needed to turn it into a gas Eg: CuCl ₂ : High melting point and is a solid at room temperature because it has strong ionic bonds and a lot of energy would be needed to change it from a solid. Explains why both graphite and copper conduct electricity. Explains why copper is ductile but graphite is not.	Contrasts with reference to bonding and structure why both graphite and copper can conduct electricity, however only copper is ductile.	

	In graphite, the attractive forces holding the layers together are very weak and are broken easily, so the layers easily slide over one another, but the attraction is not strong enough to hold the layers together and allow it to be drawn into wires or although the layers can slide due to weak forces, if graphite was to be made into a wire the very strong covalent bonds within the layers would have to be broken. Copper metal can easily be drawn into wires since, as it is stretched out, the non-directional metallic bonding holds the layers together, allowing it to be stretched without breaking.		broken becaus strong bonds broken • Coppe be stre wires b non din bondin valenc holds i or beca	tched veak are easily or e the very covalent have to be r able to tched into because rectional lg of e electrons t together ause the ic bonds etch							
(c)	Bonds broken: Bonds formed:		1		D.	C					
	C–H×	1	C-Cl×1	- Identif	ies bonds	• Process for calculating $\Delta_r H^\circ$ correct, however		Correctly calculates $\Delta_r H^\circ$, with units and negative sign.			
	Cl-Cl>	< 1	H–C1 × 1	formed							
	414 + 2	242 = 656	324 + 431= -755				one minor error				
	656 kJ +	(-755 kJ) =	–99.0 kJ mol ^{–1}	-							
	Bonds	broken:	Bonds formed:	1							
	C–H×	4	C-Cl×1	1							
	Cl-Cl>	< 1	С–Н х 3								
			H–Cl×1								
	1656+	242 = 1898	324 + 1242+ 431= 1997								
	$1898 \text{ kJ} + (-1997 \text{ kJ}) = -99.0 \text{ kJ mol}^{-1}$										
NØ N1		N2	A3	A4	M5	M6	E7	E8			
No response or no relevant evidence.		2a	5a	7a	3m	4m	2e	3e			

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	Endothermic Gets colder The process is endothermic since the enthalpy change ($\Delta_r H^o$) is positive, which indicates that energy is absorbed by the system as the ammonium nitrate dissolves. Since heat energy is absorbed by the system from the surroundings (water & beaker), the water or beaker will get cooler as they lose heat energy.	• In (a) the reaction is endothermic because the value is positive OR because the ammonium nitrate is absorbing energy from the surroundings OR products have more energy than reactants.	• Explains that since reaction is endothermic heat energy is absorbed by the system from the surroundings (water / beaker) so the beaker feels colder.	In (d) calculations correct with units and statement made about which iron oxide produces more heat energy. AND two bullet points from Merit.
		• In (a) beaker gets colder as heat energy is absorbed by ammonium		
(b)(i)	Exothermic The reaction is exothermic because the enthalpy change $(\Delta_r H^\circ)$ is negative;	nitrate. • In (b)(i)		
(b)(ii)	indicating that heat energy is produced during the reaction. 9800 kJ / 2820 kJ mol ⁻¹ = 3.48 mol	exothermic since value is negative or because glucose reacting is releasing energy OR products have less energy than reactants.		
		• In (b)(ii) calculation is correct.		
(c)(i)	Endothermic. Heat energy is needed to change the butane from a liquid to a gas; the energy is used to break the weak intermolecular forces between the butane molecules.	• In (c) the process is endothermic since energy isneeded to boil butane.	• In (c)(i) explains the use of heat energy to break the weak intermolecular forces between	
(c)(ii)	$n(C_4H_{10}) = 100 \text{ g} / 58.1 \text{ g mol}^{-1}$ = 1.7212 mol -4960 kJ / 1.7212 mol = -2882 kJ mol ⁻¹	• In (c)(ii) one step correct in the calculation.	butane molecules. • In (c)(ii) calculation is correct.	
(d)	$n(Fe) = 2000 \text{ g} / 55.9 \text{ g mol}^{-1} = 35.78 \text{ mol}$ Fe_3O_4 : $3348 \text{ kJ} / 9 = 372 \text{ kJ mol}^{-1}$ $372 \text{ kJ mol}^{-1} \times 35.78 \text{ mol}$ = 13 310.16 kJ $= (2)1.23 \times 10^4 \text{ kJ}$	• In (d) one step correct.	• In (d) two steps correct	
	$= (-)1.33 \times 10^4 \text{ kJ}$			

NCEA Level 2 Chemistry (91164) 2013 — page 7 of 7

	425.5 kJ mo $= (-)1.52 \times$ Therefore F	$425.5 \text{ kJ mol}^{-1} \times 35.78 \text{ mol}^{-1} \times 35.7$	ol = 15 224.4 l	kJ				
NØ	N1	N1 N2 A3			M5	M6	E7	E8
No response or no relevant evidence.	1a	2a	4a	5a	2m	3m	e with minor error / incorrect unit / only 1m.	е

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 7	8 – 13	14 – 18	19 – 24