Vorlesung 25 - Analysis 1

13.1.2025

Contents

	0.1 Satz 9.34	3
1	9.8 Uneigentliche Integrale Teil 2 (Unbeschränkte Funktionen)	3
2	Definition 9.35	3

0.1 Satz 9.34

$$\int_{-\infty}^{\infty} |f(x)| \mathrm{d}x$$

konvergiert, falls

$$\int_{-R}^{R} |f(x)| \mathrm{d}x \quad \forall R < \infty$$

1 9.8 Uneigentliche Integrale Teil 2 (Unbeschränkte Funktionen)

1.1

Sei $f:[a,b)\to\mathbb{R}$ beschränkt und Riemann Integrierbar (Auf kompakten Teilintervallen), aber f(x) konvergiert gegen $\pm\infty$ falls x gegen a oder b geht.

1.2 Definition 9.35

Falls

$$\lim_{\xi \to b} \int_{a}^{\xi} f(x) dx \left(\lim_{\xi \to a} \int_{\xi}^{b} f(x) dx \right)$$

konvergiert, dann sagen wir dass $\int_a^b f(x) dx$ konvergiert, und setzen

$$\int_{a}^{b} f(x)dx = \lim_{\xi \to b} \int_{a}^{\xi} f(x)dx$$

 $f:[a,b)\to\mathbb{R}$ beschränkt auf allen kompakten Teilintervallen: f beschränkt ist auf $[a,b-\delta]\forall\delta>0$

1.3 Satz 9.36

Falls $|f(x)| \le \phi(x)$ $\forall x \in [a, b)$ und falls $\int_a^b \phi(x) dx$ konvergiert, dann konvergiert $\int_a^b f(x) dx$ absolut.

1.4 Definition 9.37

Falls für ein $x \in (a,b)$ gilt dass $f(x) \to \pm \infty$ für $x \to c$, dann sagen wir dann $\int_a^b f(x) \mathrm{d}x$ konvergiert, falls $\int_a^c f(x) \mathrm{d}x$ und $\int_b^c f(x) \mathrm{d}x$ konvergieren, dann ist

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

1.5 Cauchy Hauptwert

Der Cauchy Hauptwert ist definiert als

$$\lim_{\epsilon \to 0} \int_{(a,b| \setminus (c-\epsilon,c+\epsilon)} f(x) \mathrm{d}x$$

Der Cauchy Hauptwert kann konvergieren ohne dass $\int_a^c f(x) dx$ und $\int_c^b f(x) dx$ konvergieren. Bsp

$$\int_{-1}^{1} \frac{1}{x} \mathrm{d}x$$

2 9.9 Riemannsche Integralkriterium

Sei $f:[1,\infty)\to [0,\infty)$ monoton falled, und definiere $a_n:=f(n)$

2.1 Satz 9.38

 $\sum a_n$ konvergiert genau dann wenn $\int_1^\infty f(x) dx$ konvergiert. *Beweis:*

$$\sum_{n=2}^{N+1} a_n \le \int_1^{N+1} f(x) dx \le \sum_{n=1}^{N} a_n$$