M3396: April 12th 2024.

0.632.

Say, we are doing bootstrap.

Let our original sample be $x_1, x_2, ..., x_n$

With the bootstrap, we draw with replacement from the original sample.

Focusing on say, x_1 , the probability of it not being chosen in one draw is: $1-\frac{1}{n}$

But, there are n independent draws. So, the total probability of never choosing x_1 is

 $\left(1-\frac{1}{n}\right)^n \xrightarrow[n\to\infty]{} e^{-1} \approx 0.368$

So, $1-e^{-1} = 0.632$ is the proportion (on average) of the data points that end up in any bootstrapped sample.

39. You are given a dataset with two variables, which is graphed below. You want to predict y using x.

Determine which statement regarding using a generalized linear model (GLM) or a random forest is true.

- (A) A random forest is appropriate because the dataset contains only quantitative variables. Qualitative are better addressed in RF.

 (B) A random forest is appropriate because the data does not follow a straight line.

 (C) A GLM is not appropriate because the variance of y given x is not constant. The variance constant.

 (D) A random forest is appropriate because there is a clear relationship between y and x.
 - (E) A GLM is appropriate because it can accommodate polynomial relationships.

In trees in general:
$$f(x) = \sum_{j=1}^{J} C_j \mathbb{I}_{[x \in R_j]}$$
all regions