Теория СДУ

ПМИ-4

December 1, 2017

Contents

1	Стохастические дифференциальные уравнения (СДУ)	1
_	1.1 Винеровский процесс	1
	1.2 Свойства условного среднего	2
	1.3 Стохастический интеграл и стохастичесий дифференциал	3
	1.4 Мартингалы	4
	1.5 Формула Ито	4
	1.6 Многомерный стохастический интеграл	5
2	Многомерная формула Ито	6
3	Стохастические дифференциальные уравнения (СДУ)	7
4	Марковские процессы	10
5	Генератор эволюционного семейства $\mathbf{u}(\mathbf{s,t})$	10
6	Марковское свойство решения стохастических уравнений	11
	6.1 Уравнение колмогорова, обратное уравнение	11
	6.2 Формула Фейнмана Каца	12
7	Генерация марковского процесса	13
	7.1 Вероятностное представление решения задачи Коши для нелинейного	
	параболического уравнения	14
8	Новый раздел, чтобы перезапустить нумерацию	16
	07.09.17 лекция	
1	Стохастические дифференциальные уравнен:	ия
	(СДУ)	
1.	1 Винеровский процесс.	
Пу	усть (Ω, \mathcal{F}, P) - заданное вероятностное пространство.	
	$C_{HYMON MARKON POLYMAN AND MARKON POLYMAN OF THE PROPERTY OF THE PROPERTY$	

Случайная величина - это измеримое отображение $\Omega \to \mathcal{R}, \, \{\omega : \xi(\omega) \leq x\} \in \mathcal{F}.$

Винеровский процесс $w\left(t\right)$ - это случайный процесс, обладающий следующими свойствами:

1.
$$w(0) = 0$$

- 2. Приращение $\Delta_t w = w (t + \Delta t) w (t)$ гауссовская СВ с распределением $\mathcal{N}(0, \Delta t)$, т.е.
 - (a) $E\Delta_t w = 0$
 - (b) $E \left| \Delta_t w \right|^2 = \Delta t$
- 3. Приращение $\Delta_t w$ и $\Delta_S w$, где $0 \le s < t$ на непересекающихся интервалах независимы, . Из этого следует, что $E\Delta_t w\Delta_s w = 0$.

Пусть (Ω, \mathcal{F}) - измеримое пространство и μ и ν - вероятностные меры, заданные на нем. Рассмотрим σ - подалгебру \mathcal{H} σ - алгебры \mathcal{F} (сигма-подалгебра: каждое множество из \mathcal{H} лежит в \mathcal{F} , т.е. из того, что мы попадаем в \mathcal{H} мы попадаем в \mathcal{F} , но не наоборот).

Тогда условное математическое ожидание случайной величины ξ относительно \mathcal{H} обозначим $E\left[\xi|\mathcal{H}\right]$. Условное математическое ожидание - это \mathcal{H} - измеримая случайная величина, определяемая соотношением

$$\int_{H} E\left[\xi|\mathcal{H}\right] P\left(dw\right) = \int_{H} \xi\left(\omega\right) P\left(d\omega\right), \forall H \in \mathcal{H}$$

Пусть μ и ν - две вероятностные меры, определенные на (Ω, \mathcal{F}) и пусть ν абсолютно непрерывна относительно μ .

Напомним, что это значит следующее: $\mu\left(A\right)=0, A\in\mathcal{F}$, то $\nu\left(A\right)=0$. Обозначают это $\nu<<\mu$.

Если при этом $\mu << \nu$, то меры называются **эквивалентыми**: $\mu \sim \nu$.

Теорема Радона-Никодима (Р-Н): Если μ, ν - вероятностные меры на (Ω, \mathcal{F}) и $\nu << \mu$, то существует единственная положительная измеримая функция

$$\rho(\omega):\nu(H) = \int_{H} \rho(\omega) \mu(d\omega), \forall H \in \mathcal{F}$$

Функция $\rho(\omega) = \frac{\nu(d\omega)}{\mu(d\omega)}$ (не деление, это такое же деление, как когда пишем производную) называется производной Радона-Никодима (Р-Н).

Возвращаясь к определению условного среднего, рассмотрим меру $\mu\left(H\right)=\int_{H}\xi\left(\omega\right)P\left(d\omega\right),H\in\mathcal{H}.$

Эта мера $\mu(H)$ абсолютно непрерывна относительно $P(d\omega)|_H$ и ее производная Р-Н - это $E[\xi|\mathcal{H}]$.

1.2 Свойства условного среднего

- 1. $E\left[\alpha\xi + \beta\eta/\mathcal{H}\right] = \alpha E\left[\xi|\mathcal{H}\right] + \beta E\left[\xi|\mathcal{H}\right]$, где $\alpha, \beta \in \mathcal{R}$.
- 2. $E\left[\xi|\mathcal{H}\right]=\xi$ если ξ \mathcal{H} измеримо.
- 3. $E[\xi|\mathcal{H}] = E[\xi]$??? Правильная ли формула
- 4. $E[E[\xi|\mathcal{H}]] = E\xi$
- 5. Рассмотрим σ -подалгебру $\mathcal{F}_0 = \{\emptyset, \Omega\}$, при этом $E\xi \equiv E[\xi|\mathcal{F}_0]$. Пусть $\mathcal{H} \supset \mathcal{H}_1$ подалгебры алгебры \mathcal{F} , тогда $E[E[\xi|\mathcal{H}_1]|\mathcal{H}] = E[\xi|\mathcal{H}_1]$
- 6. $E\left[\xi\eta|\mathcal{H}\right]=\eta E\left[\xi|\mathcal{H}\right]$ если η \mathcal{H} -измеримая CB.

1.3 Стохастический интеграл и стохастичесий дифференциал.

Пусть A(s)- \mathcal{F}_s -измеримый случайный процесс, где $\mathcal{F}_s \equiv \mathcal{F}_s^w$ - поток σ -подалгебр, порожденный винеровским процессом.

Предположим, что A(s)- ступенчатая функция и рассмотрим CB

$$I(A) = \sum_{k=1}^{n} A(s_k) \Delta_{s_k} w = \sum_{k=1}^{n} A(s_k) [w(s_k + \Delta s) - w(s_k)]$$

Это очень похоже на вычисление площади под графиком.

 $I\left(A\right)$ называется **стохастическим интегралом** от ступенчатой функции $A\left(s\right)$. Его свойства:

1. EI(A). Для того, чтобы вычислить EI(A) воспользуемся свойствами условных средних

$$E\sum_{k=1}^{n} A\left(s_{k}\right) \Delta_{s_{k}} w = E\left[\sum_{k=1}^{n} E\left(A\left(s_{k}\right) \Delta_{s_{k}} w\right) / \mathcal{F}_{s_{k}}\right] = E\left[\sum_{k=1}^{n} A\left(s_{k}\right) E\left[\Delta_{s_{k}} w | \mathcal{F}_{s_{k}}\right]\right] = 0$$

2. $E |I(A)|^2 = E \left[\sum A(s_k) \Delta_{s_k} w\right]^2 = E \sum (A(s_k) \Delta_{s_k} w)^2 + E \left[\sum \sum A(s_k) \Delta_{s_k} w A(s_k) \Delta_{s_k} w A(s_k) \Delta_{s_k} w A(s_j) \Delta_{s_k} w A(s_j) \Delta_{s_j} w\right] E \sum E \left[[A(S_k) \Delta_{s_k} w]^2 |\mathcal{F}_{s_k}\right] = E \sum A^2(s_k) E \left[\Delta_{s_k} w\right]^2 |\mathcal{F}_{s_k} = E \sum A^2(s_k) \left[s_{k+1} - s_k\right]$

$$E\left|I\left(A\right)\right|^{2} = \sum EA^{2}\left(s_{k}\right)\Delta_{k}s_{k}$$

??? В формулах выше должно быть \mathcal{F} или F

Другими словами, для ступенчатых функций $I\left(A\right)=\int_{0}^{T}A\left(s\right)dw\left(s\right)$ и $E\left[\int_{0}^{T}A\left(s\right)dw\left(s\right)\right]=0,$ $E\left[\int_{0}^{T}A\left(s\right)dw\left(s\right)\right]^{2}=\int_{0}^{T}EA^{2}\left(s\right)ds$

Нам нужно понять - на какие классы функций мы можем распространить этот объект.

Построение стохастического интеграла можно продолжить на следующий класс случайных функций \mathcal{H}_s , таких что $E\int_0^T \left(A\left(s\right)-A_n\left(s\right)\right)^2 ds \to 0$ при $n\to\infty$ где $A_n\left(s\right)$ - это ступенчатая функция

$$A_{n}\left(s\right) = \begin{cases} A\left(s_{k}\right) & s_{k} \leq s < s_{k+1} \\ 0 & \text{в противном случае} \end{cases}, k = 1, ..., n$$

Для функций из этого класса $I(A) = \lim I_n(A)$ по вероятности.

При этом $EI(A) = 0, E[I(A)]^2 = \int_0^T EA^2(s) ds$

Мы будем пользоваться этим достаточно часто.

Соответствующий интеграл с переменным верхним пределом, определим соотношение

$$\int_{0}^{t} A(s) dw(s) = \int_{0}^{T} I(s \le t) A(s) dw(s)$$

Стохастический интеграл $\int_0^t A(s) dw(s)$, определенный выше, является \mathcal{F}_t -мартингалом (локальным).

Мартингалы.

Случайный процесс $X\left(t\right)$ является \mathcal{F}_{t} - мартингалом, если

$$E\left|X\left(t\right)\right| < \infty, E\left[M\left(\mathrm{T}\right)\right|\mathcal{F}_{t}\right] = M\left(t\right)$$

Если $E\left|X\left(t\right)\right|<\infty$ при $t\leq T,$ то говорят, что X - локальный мартингал.

Примеры:

№1. Винеровский процесс.

$$E\left[w\left(T\right)|\mathcal{F}_{t}\right]=w\left(t\right),\,E\left[w\left(T\right)-w\left(t\right)+w\left(t\right)|\mathcal{F}_{t}\right]=w\left(t\right).$$

Заметим, что w(t)- это локальный мартингал, т.к. $E|w(t)|^2 = t$ **№2.** Стохастический интеграл $\int_0^t A(s) dw(s)$ тоже является локальным \mathcal{F}_t мартингалом: $E\left[\int_{0}^{T}A\left(s\right)dw\left(s\right)|\mathcal{F}_{t}\right]=\int_{0}^{t}A\left(s\right)dw\left(s\right).$

$$E\left[\left[\int_{0}^{T}A\left(s\right)dw\left(s\right)-\int_{0}^{t}A\left(s\right)dw\left(s\right)\right]+\int_{0}^{t}A\left(s\right)dw\left(s\right)\left|\mathcal{F}_{t}\right]\right.=\left.\int_{0}^{t}A\left(s\right)dw\left(s\right)\right.$$
 поскольку
$$E\left[\int_{t}^{T}A\left(s\right)dw\left(s\right)\left|\mathcal{F}_{t}\right]\right]=0$$

№3. $w^{2}\left(t
ight)$ - **не является мартингалом**. Для любого мартингала $X\left(t
ight)$ справедливо соотношение $E\left[X\left(T\right)-X\left(t\right)|\mathcal{F}_{t}\right]=0\;\left(X\left(T\right)-X\left(t\right)\right)$ - мартингал-разность)

Случайный процесс $w^{2}(t)$ обладает свойством $Ew^{2}(t)=t$, при этом $w^{2}(t)-t$ является \mathcal{F}_{t} - мартингалом и называется **квадратичным мартингалом**.

Говорят, что случайный процесс $\xi(t)$ обладает **стохастическим дифференциалом** $d\xi(t) = a(t) dt + A(t) dw(t)$ если с вероятностью 1 справедливо соотношение $\xi(t) = \xi(s) + t$ $\int_{a}^{t} a(\vartheta) d\vartheta + \int_{a}^{t} A(\vartheta) dw(\vartheta)$

1.5 Формула Ито

Пусть $\xi(t)$ - случайный процесс, обладающий стохастическим дифференциалом,

 $d\xi = a(t) dt + A(t) dw(t)$ и f(t,x) - неслучайная функция, дифференцируемая по t и дважды дифференцируепмая по $x \in \mathcal{R}$.

$$a(\vartheta) \in \mathcal{R}, A(\vartheta) \in \mathcal{R}.$$

Тогда случайный процесс $\eta(t) = f(t, \xi(t))$ обладает стохастическим дифференциалом вида

$$d\eta\left(t\right) = \left[\frac{\partial f}{\partial t}\left(t,\xi\left(t\right)\right) + a\left(t\right)\frac{\partial f}{\partial x}\left(t,\xi\left(t\right)\right) + \frac{1}{2}A^{2}\left(t\right)\frac{\partial^{2} f}{\partial x^{2}}\left(t,\xi\left(t\right)\right)\right]dt + \frac{\partial f\left(t,\xi\left(t\right)\right)}{\partial x}A\left(t\right)dw\left(t\right)$$

Доказательство этой формулы основано на формуле Тейлора и свойствах винеровского процесса.

В силу формулы Тейлора $f\left(t+\Delta t,x\left(t+\Delta t\right)\right)=f\left(t,x\left(t\right)\right)+f_{t}'\left(\ldots\right)\Delta t+f_{x}'\left(\ldots\right)\Delta x+$ $\frac{1}{2}f_{x}''(...)\Delta^{2}x+...,\Delta x=x\left(t+\Delta t\right)-x\left(t\right),$ если бы была неслучайная ситуация, то на третьем слагаемом мы бы остановились.

При переходе к стохастическому случаю

$$f\left(t + \Delta t, \xi\left(t + \Delta t\right)\right) = f\left(t, \xi\left(t\right)\right) + f_t'\left(t, \xi\left(t\right)\right) \Delta t + f_x'\left(t, \xi\left(t\right)\right) \Delta \xi + \frac{1}{2}f_x''\left(t, \xi\left(t\right)\right) \left(\Delta \xi\left(t\right)\right)^2 + \dots$$

$$\Delta \xi = a\left(t\right) \Delta t + A\left(t\right) \Delta w$$

$$\left(\Delta \xi\right)^2 \sim a^2\left(T\right) \Delta t$$

Винеровский процесс обладает свойством: $\Delta w \sim \sqrt{\Delta t}$, мы этим воспользовались.

Интегральный вид формулы Ито.

Если
$$d\xi = a(t) dt + A(t) dw(t)$$
, то $\eta(t) = f(t, \xi(t))$ имеет вид $f(t, \xi(t)) = f(s, \xi(s)) + f \int_{s}^{t} \left[\frac{\partial f}{\partial \vartheta} + a(\vartheta) \frac{\partial f}{\partial x} + \frac{1}{2} A^{2}(\vartheta) \frac{\partial^{2} f}{\partial x^{2}} \right] (\vartheta, \xi(\vartheta)) d\vartheta + \int_{s}^{t} \frac{\partial f(\vartheta, \xi(\vartheta))}{\partial x} A(\vartheta) dw(\vartheta)$

Примеры

Первый пример:

$$\eta\left(t\right) = \left(w\left(t\right)\right)^{2}$$

$$d\xi = dw, f(x) = x^2$$

 $a = 0, A = 1$
 $f'(x) = 2x, f''(x) = 2$
Тогда $d\eta = dt + 2w(t) dw(t)$

Из этой формулы следует, что интеграл $\int_0^T w(t) dw(t) = \frac{1}{2} w^2(T) - \frac{T}{2} = (w(T))^2 - \frac{T}{2}$ $\left(w\left(0\right)\right)^{2} = T - 0 = 2\int_{0}^{T} w\left(t\right) dw\left(t\right)$

Второй пример: $d\xi(t) = 2\xi(t) dt + 4t dw(t), f(t,x) = |x|^2, f'_t = 0, f'_x = 2x, f''_x = 2$, a(t) = 2t, A(t) = 4t.

$$d\eta = [2t \cdot 2\xi(t) + 16t^2] dt + 2\xi(t) \cdot 4t dw(t)$$

Третий пример: $d\xi = a(t)dt + A(t)dw(t)$, $f(t,x) = \exp x$, $f'_x = f''_x = \exp x$,

$$\eta(t) = \exp(\xi(t)) = e^{\xi(t)}$$

$$d\eta = \left[exp\left(\xi\left(t\right)\right)a\left(t\right) + \frac{1}{2}A^{2}\left(t\right)exp\left(\xi\left(t\right)\right)\right]dt + \exp\left(\xi\left(t\right)\right)A\left(t\right)dw\left(t\right)$$

 $d\eta = \left[\exp\left(\xi\left(t\right)\right)a\left(t\right) + \frac{1}{2}A^{2}\left(t\right)\exp\left(\xi\left(t\right)\right)\right]dt + \exp\left(\xi\left(t\right)\right)A\left(t\right)dw\left(t\right)$ $d\eta = \eta\left(t\right)\left[a\left(t\right) + \frac{1}{2}A^{2}\left(t\right)\right]dt + \eta\left(t\right)A\left(t\right)dw\left(t\right) - \text{линейное стохастическое уравнение.}$ Теперь, мы знаем как его решать: $\exp(\xi(t))$.

$$d\xi = tdt + 5dw(t)$$

$$f(t,x) = \ln x, \ a = t, A = 5, f'_t = 0, f'_x = \frac{1}{x}, f''_x = -\frac{1}{x^2}$$
$$d\eta = \left[t \cdot \frac{1}{\xi(t)} - \frac{25}{2} \frac{1}{\xi^2(t)}\right] dt + \frac{5}{\xi(t)} dw(t)$$

Многомерный стохастический интеграл 1.6

Многомерный винеровский процесс $w(t) \in \mathcal{R}^d$ - это случайный процесс, такой, что его компоненты $w(t) = (w_1(t), w_2(t), ..., w_d(t)) w_k(t)$ - это независимые винеровские процессы (скалярные).

Напомним, что в одномерном случае, $w(t) \in \mathcal{R}$ имеет плотность распределения

$$f(t,x) = \frac{1}{\sqrt{2\pi t^2}} e^{-\frac{x^2}{2t}}, F(t,x) = P(\xi_t \le x)$$

$$f(t,x) = \frac{1}{(\sqrt{2\pi t})^d} e^{-\frac{||x||^2}{2t}} = \frac{1}{(\sqrt{2\pi t})^d} \prod_{k=1}^d e^{-\frac{x_k^2}{2t}}$$

При этом $E\left|\left|w\left(t\right)\right|\right|^{2}=\sum_{k=1}^{d}E\left|w_{k}\left(t\right)\right|^{2}=td$ Стохастические дифференциальные интегралы (многомерный случай)

$$w\left(0\right) = 0$$

$$E\Delta w = 0$$

$$E\left(\Delta w\right)^2 = \Delta t$$

$$p(t, x, y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-x)^2}{2t}}$$

1.
$$w(t) \in \mathcal{R}^n, w(t) = (w_1(t), ..., w_n(t))$$

2.
$$Ew_i(t) w_k(t) = 0, i \neq k = 1, ..., n$$

3.
$$E||w(t)||^2 = E\sum_{i=1}^n (w_i(t))^2 = n \cdot t$$

4.
$$p(t,x,y) = \frac{1}{\sqrt{(2\pi t)^n}} e^{-\frac{||y-x||^2}{2t}}, x,y \in \mathcal{R}^n$$
??? Правильны ли эти свойства,

Стохастический интеграл: пусть $A(t) \in \mathcal{R}^n \otimes \mathcal{R}^n \equiv Matr^n$ - ступенчатая функция:

$$A(t)$$

$$\begin{cases} A(t_k) & t_k \le t < t_{k+1} \\ 0 & \text{иначе} \end{cases}$$

Зададим стохастический интеграл соотношением

$$I(A) = \sum A(t_k) \Delta_k w \in \mathcal{R}^n$$

Заметим, что A(t) - F_t^w - измерима

 $(x,y) = \sum x_k \cdot y_k$ - скалярное произведение

 $EI(A)=E\sum A\left(t_{k}\right)\Delta_{k}w=E\sum A\left(t_{k}\right)E\left[\Delta_{k}w/F_{t_{k}}
ight]=0$, т.к. $A\left(t_{k}\right)$ - $F_{t_{k}}$ - измеримая. ??? Здесь нет лишнего Е

$$(I(A))_{l} = \sum_{k=1}^{m} \sum_{i=1}^{t} A_{jl} \Delta_{k} w_{j}$$

$$\Delta_k w_j \left(t_k + 1 \right) - w_j \left(t_k \right)$$

$$E(I(A)^2) = \sum_k ... AA \Delta_k t$$

Special netral minimistro is
$$(I(A))_{l} = \sum_{k=1}^{m} \sum_{k=1}^{t} A_{jl} \Delta_{k} w_{j}$$

$$\Delta_{k} w_{j} (t_{k} + 1) - w_{j} (t_{k})$$

$$E(I(A)^{2}) = \sum_{k} ... AA \Delta_{k} t$$

$$E||I(A)||^{2} = E||\sum_{k} A(t_{k}) \Delta_{k} w||^{2}$$

При вычислении:

$$E\left(A\left(t_{k}\right)\Delta_{k}w,A\left(t_{j}\right)\Delta_{j}w\right)$$

Пусть
$$t_k > t_j$$
, тогда $= E\left[E\left[(A|t_k)\,\Delta_k w, A\left(t_j\right)\Delta_j w|F_{t_j}\right]\right]$

Заметим, что:

 $(A\left(t_{k}\right)\Delta_{k}w,A\left(t_{j}\Delta_{j}w\right))=\sum_{j}A_{lq}\left(t_{l}\right)\Delta_{j}w_{q}\cdot\sum_{m}A_{lm}\left(t_{k}\right)\Delta_{k}w_{m}=\sum_{l}\sum_{m}A_{ml}\left(t_{k}\right)\Delta_{k}w_{m}=A_{ql}\left(t_{l}\right)p_{j}\cdot w_{q}$??? ЧТО С ИНДЕКСАМИ? Кажется, здесь есть серьезная ошибка.

В силу независимости $\Delta_k w_m$ и $\Delta_j w_q$ при $j \neq q$

$$E(I(A))^{2} = \int_{0}^{T} EA^{2}(t) dt$$

$$E \sum_{k} |A_{ml}(t_{k}) \Delta_{k} w_{m}|^{2}$$

$$A^{2} = AA^{T}$$

$$E \sum |A_{ml}(t_k) \Delta_k w_m|^2$$

$$A^2 = AA^T$$

 $A_{ml}(t_k) A_{lq} \Delta_k w_m \Delta_k w_q$

$$A_{ml}A_{lm}=TrA^2$$
 , где $TrA=\sum_{i=1}^n B_{ii}$

 $A_{ml}A_{lm}=TrA^2$, где $TrA=\sum_{i=1}^n B_{ii}$ Класс интегрируемых функций - это матричные функции $A\left(t\right)$ такие, что $E\int_{0}^{T}TrA^{2}\left(au\right) \Delta au<\infty$

Случайный процесс $\xi\left(t
ight)\in\mathcal{R}^{n}$ имеет стохастический дифференциал

$$d\xi = a(t) dt + A(t) dw(t)$$
(1.1)

где $w(t) \in \mathcal{R}, a(t) \in \mathcal{R}^n, A(t) \in Matr^n$ если с вероятностью 1 справедливо равенство

$$\xi(t) = \xi(s) + \int_{s}^{t} a(\vartheta) d\vartheta + \int_{s}^{t} A(\vartheta) dw(\vartheta)$$
(1.2)

2 Многомерная формула Ито

Пусть $\xi(t)$ имеет стохастический дифференциал вида (1) и $f(t,x) \in \mathcal{R}, t \in [0,T], x \in \mathcal{R}^n$ - это диференцируемая на t и дважды дифференцируемая по x скалярная функция Тогда случайный процесс $\eta(t) = f(t, \xi(t))$ имеет стохастический дифференциал вида

$$d\eta = \left[\frac{\partial f}{\partial t} + \sum_{i=1}^{n} a_i(t) \frac{\partial f}{\partial x_i} + \sum_{i,k,j} A_{ik}(t) \frac{\partial^2 f}{\partial x_i \partial x_j} A_{kj}(t)\right] (t, \xi(t)) dt + \sum_{i,l} \frac{\partial f}{\partial x_l} A_k(t) dw_k(t)$$
(2.1)

??? Правильная ли эта формула? Также вопрос к индексам Пусть
$$\nabla f\left(x\right) = \left(\frac{\partial f}{\partial x_1},..,\frac{\partial f}{\partial x_n}\right),\,f''\left(x\right) = \left(\frac{\partial^2 f}{\partial x_i\partial x_j}\right)_{i,j=1}^n$$

Тогда формулу (3.3) можно переписать в виде:

$$d\eta = \left[\frac{\partial f\left(t,\xi\left(t\right)\right)}{\partial t} + \left(a\left(t\right),\nabla f\left(t,\xi\left(t\right)\right)\right) + \frac{1}{2}TrA\left(t\right)f''\left(t,\xi\left(t\right)\right)A^{T}\left(t\right)\right]dt + \left(\nabla f,A\left(t\right)dw\left(t\right)\right)$$
(2.2)

Примеры опущены 05.10.17

3 Стохастические дифференциальные уравнения (СДУ)

Пусть a(t,x) и A(t,x) заданные функции.

Пусть (Ω, \mathcal{F}, P) - заданное вероятностное пространство и $w\left(t\right)$ - стандартный винеровский процесс.

Рассмотрим СДУ вида

$$d\xi = a(t, \xi(t)) dt + A(t, \xi(t)) dw(t)$$
(3.1)

Заметим, что $a\left(t,x\right)$ и $A\left(t,x\right)$ могут быть случайными, но тогда мы будем предполагать, что они F_{t}^{w} - измеримы.

Мы будем решать задачу Коши для СДУ (3.1) с условиями

$$\xi(s) = x$$
 (или $\xi(s) = \xi_0 - F_s$ – измерима) (3.2)

Будем говорить, что процесс $\xi(t)$ является решением (5.1), (5.2) если с вероятностью 1 справедливо равенство

$$\xi(T) = \xi(s) + \int_{s}^{T} a(\xi, \xi(\vartheta)) d\vartheta + \int_{s}^{T} A(\vartheta, \xi(\vartheta)) dw(\vartheta)$$
(3.3)

Рассмотрим уравнение

$$\xi(t) = x + \int_{s}^{t} a(\vartheta, \xi(\vartheta)) d\vartheta + \int_{s}^{t} A(\vartheta, \xi(\vartheta)) dw(\vartheta)$$
(3.4)

Сформулируем необходимое и достаточное условие существования решения уравнения (3.4). Будем говорить, что выполнено условие У1, если справедилвы оценки:

$$|a\left(t,x\right)|^{2}+|A\left(t,x\right)|^{2}\leq C\left[1+|x|^{2}\right]$$

$$|a\left(t,x\right)-a\left(t,y\right)|^{2}+|A\left(t,x\right)-A\left(t,y\right)|^{2}\leq L\left(x,y\right)^{2}$$

$$C,L-$$
 неслучайные постоянные

При этом оценки выполняются либо с вероятностью 1, либо в среднем квадратичном. **Теорема 3.1:** Пусть коэффициенты (3.1) (3.2) (или 3.4) удовлетворяют условию У1. Тогда существует единственно ерешение $\xi(t) = \xi_{s,x}(t)$

Доказательство: Построим систему последовательных приближений:

$$\xi\left(t\right)=x+\int_{s}^{t}a\left(\vartheta,x\right)d\vartheta+\int_{s}^{T}A\left(\vartheta,x\right)dw\left(\vartheta\right)$$
 $\xi^{2}\left(t\right)=x\int_{s}^{t}a\left(\vartheta,\xi^{1}\left(\vartheta\right)\right)d\vartheta+\int_{s}^{t}A\left(\vartheta,\xi^{1}\left(\vartheta\right)\right)dw\left(\vartheta\right)$ Общий вид: $\xi^{n}\left(t\right)=x+\int_{s}^{t}a\left(\vartheta,\xi^{n-1}\left(\vartheta\right)\right)d\vartheta+\int_{s}^{t}A\left(\vartheta,\xi^{n-1}\left(\vartheta\right)\right)d\vartheta$ Обозначим $\mathcal{H}_{T}^{2}=\left\{ \xi\left(\vartheta\right),0\leq\vartheta\leq T:\sup_{\vartheta}E\xi^{2}\left(\vartheta\right)<\infty\right\}$

Наша цель показать, что $\xi^n \in \mathcal{H}^2_T$ и существует единственный предел $\lim_{n \to \infty} \xi^n(t) = s(t)$, удовлетворяющий (5.4).

Для доказательства единственности решения уравнения (5.4) воспользуемся леммой Гронуолла.

Лемма Гронуолла: Пусть $\alpha\left(t\right)$ - положительная функция, уодвлетворяющая неравенству

$$\alpha(t) \le A + \int_0^t B\alpha(\tau) d\tau \tag{3.5}$$

Тогда

$$\alpha\left(t\right) \le Ae^{Bt} \tag{3.6}$$

Доказательство леммы: проитерируем оценку

$$\alpha(t) \le A + \int_0^t B\left[A + \int_0^\tau B\alpha(\vartheta)\,d\vartheta\right]d\tau = A + ABt + \int_0^t \int_0^\tau B\alpha(\vartheta)\,d\vartheta \le At$$

 $\alpha\left(t\right) \leq A + \int_{0}^{t} B\left[A + \int_{0}^{\tau} B\alpha\left(\vartheta\right) d\vartheta\right] d\tau = A + ABt + \int_{0}^{t} \int_{0}^{\tau} B\alpha\left(\vartheta\right) d\vartheta \leq \alpha\left(t\right) \leq A\left(1 + Bt\right) + B\int_{0}^{t} \int_{0}^{\tau} A + \int_{0}^{\vartheta_{1}} B\alpha\left(\vartheta\right) \alpha\vartheta d\vartheta d\tau \dots ??? A+ - \text{ не нужно ли поставить}$ скобку? Ведь перед А нет дифференциала

$$= A \left(1 + Bt + B + B^2 \int_{2} \int \int \dots \right)$$

$$\int_0^t \int_0^\tau d\vartheta d\tau = \int_0^t \tau d\tau = \frac{t^2}{2}$$

 $=A\left(1+Bt+B+B^2\int\int\int\ldots\right)$ $\int_0^t\int_0^\tau d\vartheta d\tau=\int_0^t\tau d\tau=\frac{t^2}{2}$ Повторяя эти оценки, мы получим неравенство

$$\alpha(t) \le A \left[1 + Bt + B^2 \frac{t^2}{2!} + \dots + B^n \frac{t^n}{n!} + \dots \right] = Ae^{Bt}$$

Замечание: аналогично доказывается, что если $\alpha\left(t\right)\leq A+\int_{0}^{t}B\left(\tau\right)\alpha\left(\tau\right)d\tau$, то $\alpha\left(t\right)\leq A$ $Ae^{\int_0^t B(\tau)d\tau}$

Вернемся к доказательству теоремы 5.1:

Для того, чтобы доказать единственность, мы предположим обратное, т.е. пусть суещствует 2 решения уравнения $(5.4) \xi(t)$ и $\eta(t)$.

Оценим разность

$$\alpha\left(t\right) = E\left|\xi\left(t\right) - \eta\left(t\right)\right|^{2} = E\left\{\int_{0}^{t} \left[a\left(\vartheta, \xi\left(\vartheta\right)\right) - a\left(\vartheta, \eta\left(\vartheta\right)\right)\right] d\vartheta + \int_{0}^{t} A\left(\vartheta, \xi\left(\vartheta\right)\right) - A\left(\vartheta, \eta\left(\vartheta\right)\right) dw\left(\vartheta\right)\right\}^{2} d\vartheta\right\}$$

$$\leq$$
Воспользуемся тем, что $|a+b|^2 \leq 2a^2 + 2b^2$??? это правильно?
$$\left| \int_0^t a\left(\tau\right) d\tau \right|^2 \leq \left[\int_0^t 1 \cdot a\left(\tau\right) d\tau \right]^2 \leq \int_0^t 1^2 d\tau \leq \int_0^t a^2\left(\tau\right) d\tau = t \int_0^t a^2\left(\tau\right) d\tau, \ \left| \left(c,b\right) \right|^2 \leq \left| c \right|^2 \left| b \right|^2$$

$$E \left| \int_0^t A(\tau) dw(\tau) \right|^2 \le \int_0^t A^2(\tau) d\tau$$

$$\alpha(t) \le t \int_0^t E\left[a\left(\vartheta, \xi\left(\vartheta\right)\right) - a\left(\vartheta, \eta\left(\vartheta\right)\right)\right]^2 d\vartheta + \int_0^t E\left[A\left(\vartheta, \xi\left(\vartheta\right)\right) - A\left(\vartheta, \eta\left(\vartheta\right)\right)\right]^2 d\vartheta$$

Тогда
$$\alpha\left(t\right) \leq t \int_{0}^{t} E\left|a\left(\vartheta,\xi\left(\vartheta\right)\right) - a\left(\vartheta,\eta\left(\vartheta\right)\right)\right|^{2} d\vartheta + \int_{0}^{t} E\left[A\left(\vartheta,\xi\left(\vartheta\right)\right) - A\left(\vartheta,\eta\left(\vartheta\right)\right)\right]^{2} d\vartheta$$
 Используя условие У1 мы получим
$$\alpha\left(t\right) \leq Lt \int_{0}^{t} \alpha\left(\vartheta\right) d\vartheta + L \int_{0}^{t} \alpha\left(\vartheta\right) d\vartheta = L\left(1+t\right) \int_{0}^{t} \alpha\left(\vartheta\right) d\vartheta \text{ в силу леммы Гронуолла}$$

$$E\left|\xi\left(t\right) - \eta\left(t\right)\right|^{2} = 0$$

Доказано

Для доказательства существования решения рассмотрим

$$\xi^{n+1}(t) = x + \int_{s}^{t} a(\vartheta, \xi^{n}(\vartheta)) d\vartheta + \int_{s}^{t} A(\vartheta, \xi^{n}(\vartheta)) dw(\vartheta)$$

$$\xi^{n+2}\left(t\right)=x+\int_{s}^{t}a\left(\vartheta,\xi^{n+1}\left(\vartheta\right)\right)d\vartheta+\int_{s}^{t}A\left(\vartheta,\xi^{n+1}\left(\vartheta\right)\right)dw\left(\vartheta\right)$$
 и оценим

приолижения
$$\xi^{n+1}\left(t\right) = x + \int_{s}^{t} a\left(\vartheta, \xi^{n}\left(\vartheta\right)\right) d\vartheta + \int_{s}^{t} A\left(\vartheta, \xi^{n}\left(\vartheta\right)\right) dw\left(\vartheta\right)$$

$$\xi^{n+2}\left(t\right) = x + \int_{s}^{t} a\left(\vartheta, \xi^{n+1}\left(\vartheta\right)\right) d\vartheta + \int_{s}^{t} A\left(\vartheta, \xi^{n+1}\left(\vartheta\right)\right) dw\left(\vartheta\right) \text{ и оценим }$$

$$E\left|\xi^{n+2}\left(t\right) - \xi^{n+1}\left(t\right)\right|^{2} \leq L\left(t+1\right) \int_{s}^{t} E\left|\xi^{n+1}\left(\vartheta\right) - \xi^{n}\left(\vartheta\right)\right|^{2} d\vartheta \leq L\left(t+1\right) \int_{0}^{t} \int_{0}^{\vartheta} L\left(\vartheta+1\right) E\left|\xi^{n}\left(\vartheta\right) - \xi^{n-1}\left(\vartheta\right)\right|^{2} d\vartheta \leq L\left(t+1\right) \int_{s}^{t} \left|\xi^{n+1}\left(\vartheta\right) - \xi^{n}\left(\vartheta\right)\right|^{2} d\vartheta \leq L\left(t+1\right) \int_{s}^{t} \left|\xi^{n+1}\left(\vartheta\right) - \xi^{n}\left(\vartheta\right)\right|^{2} d\vartheta \leq L\left(t+1\right) \int_{s}^{t} \left|\xi^{n}\left(\vartheta\right) - \xi^{n-1}\left(\vartheta\right)\right|^{2} d\vartheta$$

$$L(t+1)\int_0^t \int_0^{\vartheta} L(\vartheta+1) E \left| \xi^n(\vartheta) - \xi^{n-1}(\vartheta) \right|^2 d\vartheta \le$$

$$\leq \frac{[L(t+1)]^n}{n!} \leq \dots$$

$$\leq \frac{[L(t+1)]^n}{n!} \leq \dots$$

$$\text{If } \lim_{n \to \infty} \frac{[L(t+1)]^n}{n!} = 0$$

При этом пределеная функция (предельный процесс) у
одвлетворяет оценке $E\left|\left|\xi\left(t\right)\right|\right|^{2}<$

$$E ||\xi(t)||^{2} \leq 3 ||x||^{2} + t \int_{0}^{t} |\vartheta, \xi(\vartheta)|^{2} d\vartheta + \int_{0}^{t} E |A(\vartheta, \xi(\vartheta))|^{2} d\vartheta$$

В силу У1

$$E |\xi(t)|^{2} \leq 3|x|^{2} + L(t+1) \int_{0}^{t} C[1+\xi^{2}(\tau)] d\tau \leq [3|x|^{2} + LC(t+1)t] + \int_{0}^{t} CE |\xi^{2}(\tau)|^{2} d\tau \leq$$

$$\leq \left[3 |x|^{2} + LC(t+1) t \right] e^{Ct} \text{ } \text{ } \text{ } \sup_{0 \leq t \leq T} E |\xi(t)|^{2} < \infty$$

Свойства решений СДУ.

$$d\xi(t) = a(\xi(t)) dt + A(\xi(t)) dw(t)$$
(3.7)

и покажем, что его решение нерперывно по начальным данным.

Для этого оценим разность

$$E |\xi_{s,x}(t) - \xi_{s,y}(t)|^{2} \leq 3 |x - y|^{2} + (t - s) \int_{s}^{t} E |a| \xi_{s,x}(\theta) - (\xi_{s,y}(\theta)) |^{2} d\theta + \int_{s}^{t} E |A| \xi_{s,x}(\theta) - A (\xi_{s,y}(\theta)) |^{2} d\theta$$

$$\xi_{s,x}(t) = x + \int_{s}^{t} a(\xi_{s,x}(\vartheta)) d\vartheta + A(\xi_{s,x}(\vartheta)) dw(\vartheta)$$

$$\left|\xi_{s,x}\left(t\right) - \xi_{s,y}\left(t\right)\right|^{2} = \left[\left[x - y\right] + \int_{s}^{t} a\left(\xi_{s,x}\left(\vartheta\right)\right) - a\left(\xi_{s,y}\left(\vartheta\right)\right)\right] d\vartheta + \left[\left[x - y\right] + \int_{s}^{t} a\left(\xi_{s,x}\left(\vartheta\right)\right) - a\left(\xi_{s,y}\left(\vartheta\right)\right)\right] d\vartheta + \left[\left[x - y\right] + \int_{s}^{t} a\left(\xi_{s,x}\left(\vartheta\right)\right) - a\left(\xi_{s,y}\left(\vartheta\right)\right)\right] d\vartheta + \left[\left[x - y\right] + \int_{s}^{t} a\left(\xi_{s,x}\left(\vartheta\right)\right) - a\left(\xi_{s,y}\left(\vartheta\right)\right)\right] d\vartheta + \left[\left[x - y\right] + \int_{s}^{t} a\left(\xi_{s,x}\left(\vartheta\right)\right) - a\left(\xi_{s,y}\left(\vartheta\right)\right)\right] d\vartheta$$

 $\int_{s}^{t} \left[A\left(\xi_{s,x} \left(\vartheta \right) \right) - A\left(\xi_{s,y} \left(\vartheta \right) \right) dw \right]^{2}$

$$= 3(x-y)^{2} + 3(t-s+1???) \int_{s}^{t} EL |\xi_{s,x}(\vartheta) - \xi_{s,y}(\vartheta)|^{2} d\vartheta \leq 3(x-y)^{2} e^{kT}, \quad k = 3(T+1) L, 0 \leq s \leq t \leq T$$

??? Не мог бы кто-нибудь проверить эту формулу

№2. Гладкость решений СДУ.

Пусть $\xi_{s,x}(t)$ - это решение (5.4). Обозначим $\frac{\partial}{\partial x}\xi_{s,x}(t) = \lim_{\Delta x \to 0} \frac{\xi_{s,x+\Delta}(t) - \xi_{s,x}(t)}{\Delta x}$, где предел понимается в среднеквадратичном.

При этом процесс $\eta(t) = \frac{\partial}{\partial x} \xi_{s,x}(t)$ удовлетворяет СДУ

$$d\eta(\vartheta) = a'_{r}(\xi(\vartheta))\eta(\vartheta)d\vartheta + A'_{r}(\xi(\vartheta))\eta(\vartheta)dw(\vartheta)$$
(3.8)

Таким образом, если коэффициент a(x) и A(x) к раз дифференцируемы, k=1,2,...,то решения $\xi_{s,x}(t)$ уравнения (3.4) тоже k раз дифференцируемы.

Если a'(x) и A'(x)- ограниченные, то уравнение (3.8) определено корректно, т.е. его коэффициенты удовлетворяют У1.

Обозначим $\gamma(t) = \frac{\partial^2 \xi_{s,x}(t)}{\partial x^2}$

Формально, мы получим, что $\gamma\left(t\right)$ удовлетворяет СДУ

$$d\gamma(t) = a'_{x}(\xi_{s,x}(\vartheta))\gamma(\vartheta)d\vartheta + A'_{x}(\xi_{s,x}(\vartheta))\gamma(\vartheta)dw(\vartheta) + a''_{x}(\xi(\vartheta))\eta(\vartheta)d\vartheta + A''(\xi_{s,x}(\vartheta))\eta^{2}(\vartheta)dw(\vartheta)$$
(3.9)

???Мне кажется, что где-то ошибка

Решение уравнения (3.8) имеет вид

$$\eta(t) = \exp\left[\int_{s}^{t} a'\left(\xi_{s,x}\left(\vartheta\right)\right) d\vartheta + \int_{s}^{t} A'\left(\xi_{s,x}\left(\vartheta\right)\right) dw\left(\vartheta\right) - \frac{1}{2} \int_{s}^{t} \left[A'\left(\xi_{s,x}\left(\vartheta\right)\right)\right]^{2} d\vartheta\right]$$

19.10.17

$$d\xi = a(\xi(t)) dt + A(\xi(t)) dw(t)$$

$$\xi(s) = x, u(t,x)$$

$$\eta(t) = u(t, \xi(t))$$

$$d\eta(t) = \left[\frac{\partial u(t,\xi(t))}{\partial t} + a(\xi(t)) + a(\xi(t)) \frac{\partial u(t,\xi(t))}{\partial x} + \frac{1}{2}A^2(\xi(t)) \frac{\partial^2 u(t,\xi(t))}{\partial x^2} \right] dt + C(t)$$

$$\frac{\partial u(t,\xi(t))}{\partial x} A\left(\xi\left(t\right)\right) dw\left(t\right) = du\left(t,\xi\left(t\right)\right)$$

$$\frac{\partial u}{\partial s} + a\left(x\right) \frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right) \frac{\partial^{2}u}{\partial x^{2}} = 0$$

$$u\left(T,x\right) = u_{0}\left(x\right), s \leq t \leq T$$

$$u(T,x) = u_0(x), s < t < T$$

Проинтегрируем наши
$$d\eta\left(t\right)$$
 от s до T $u\left(T,s\left(T\right)\right)-u\left(s,x\right)=\int_{s}^{T}\left[\ldots\right]dt+\int_{s}^{T}\frac{\partial u}{\partial x}\left(t,\xi\left(t\right)\right)A\left(\xi t\right)d\omega\left(t\right)$

$$Eu_0(s(T)) - u(s,x) = 0$$

Математическое ожидание стохастического процесса раво нулю. Дисперсия равна au.

$$\begin{array}{l} u\left(s,x\right) = Eu_{0}\left(\xi\left(T\right)\right)\\ \frac{\partial u}{\partial s} + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2} u}{\partial x^{2}} = f\left(x\right)\\ \frac{\partial u(t,\xi(t))}{\partial t} + a\frac{\partial u(t,\xi(t))}{\partial x} + \frac{1}{2}A^{2}\left(\xi\left(t\right)\right)\frac{\partial^{2} u(t,\xi(t))}{\partial x} + f\left(\xi\left(t\right)\right) - f\left(\xi\left(t\right)\right)]dt + \frac{\partial u(t,\xi(t))}{dx}A\left(\xi\left(t\right)\right)dw\left(t\right) =\\ d\eta\left(t\right) = du\left(t,\xi\left(x\right)\right)\\ u\left(s,x\right) = E\left[u_{0}\left(\xi\left(T\right)\right) - \int_{s}^{T}f\left(\xi\left(t\right)\right)dt\right]\\ \mathbf{\Piример:}\\ d\xi = \sin\left(\xi\left(t\right)\right)dt + \cos\xi\left(t\right)dw\left(t\right)\\ \xi\left(s\right) = x\\ f\left(t,x\right) = t\sin x\\ \frac{\partial f}{\partial x} = t\cos x, \ \frac{\partial^{2} f}{\partial x^{2}} = -t\sin x\\ d\eta = \sin x + \sin\left(\xi\left(t\right)\right)t\cos x - \frac{1}{2}\cos^{2}\left(\xi\left(t\right)\right)t\sin x = 0 \end{array}$$

4 Марковские процессы

Случайный процесс называется марковским относительно потока σ -аглебр \mathcal{F}_t , если справедливо соотношение:

$$E\left[f\left(\xi\left(T\right)\right)|\mathcal{F}_{t}\right] = E\left[f\left(\xi\left(T\right)\right)|\xi\left(t\right)\right]$$

для любой измеримой ограниченной функции f(x), $0 \le t \le T$.

С каждым марковским процессом связана его переходная вероятность

$$p(s, x, t, G) = P\{\xi(t) \in G | \xi(s) = x\}, G \in \mathcal{R}, G = [a; b)$$

В терминах переходной вероятности, марковское свойство описывается уравнением Чепмена-Колмогорова

$$P(s, x, t, G) = \int_{-\infty}^{\infty} p(s, x, \vartheta, dz) p(\vartheta, z, t, G)$$

Если
$$P(s, x, t, G) = \int_G p(s, x, t, y) dy$$

Если $P\left(s,x,t,G\right)=\int_{G}p\left(s,x,t,y\right)dy$ Тогда уравнение Чепмена-Колмогорова имеет вид:

$$p(s,x,t,y) = \int_{-\infty}^{\infty} p(s,x,\vartheta,z) \, p(\vartheta,z,t,y) \, dz$$

Каждый марковский процесс порождает эволюционное семейство, действующее в пространстве V измеримых ограниченных функций.

$$u(s,t) f(x) = \int_{-\infty}^{\infty} f(y) p(s,x,t,y) dy$$

Эволюционное свойство $u\left(s,t\right)$ т.е. равенство $u\left(s,t\right)=u\left(s,\vartheta\right)u\left(\vartheta,t\right)$ следует из уравнения Ч-К.

Действительно:

$$u\left(s,t\right)f\left(x\right)=\int_{-\infty}^{\infty}f\left(y\right)p\left(s,x,t,y\right)dy=\int_{-\infty}^{\infty}f\left(x\right)\left[\int_{-\infty}^{\infty}p\left(s,x,\vartheta,z\right)p\left(\vartheta,z,t,y\right)dz\right]dy$$
 =изменяем порядок интегрирования, $u\left(\vartheta,t\right)f\left(z\right)=\phi\left(z\right)$, далее

$$= \int_{-\infty}^{\infty} p(s, x, \vartheta, z) \left[\int_{-\infty}^{\infty} f(y) p(\vartheta, z, t, y) dy \right] dz$$

$$= \int_{-\infty}^{\infty} p(s, x, \vartheta, z) (u(\vartheta, t) f) (z) dz = \int_{-\infty}^{\infty} p(s, x, \vartheta, z) \phi(z) dz = u(s, \vartheta) \phi(z) = u(s, \vartheta) u(\vartheta, t) f(x)$$

Генератор эволюционного семейства $\mathbf{u}(\mathbf{s},\mathbf{t})$ 5

Генератор эволюционного семейства u(s,t) - это оператор A, задаваемый соотношением:

ератор эволюционного семеиства
$$u(s,t)$$
 - это оператор $\lim_{\Delta s\to 0} \frac{u(s,s+\Delta s)-I}{\Delta s} f(x) = Af(x), I$ - единичный оператор.

Генератор марковского процесса называют оператор L, задаваемы йсоотношением $\lim_{\Delta s \to 0} \frac{Ef(\xi_{s,x}(s+\Delta s)) - f(x)}{\Delta s d} = Lf\left(x\right)$

Если $u\left(s,t\right)f\left(x\right)=\int_{-\infty}^{\infty}f\left(y\right)p\left(s,x,t,y\right)dy$, т.е. $u\left(s,t\right)$ порожден марковским процессом $\xi\left(t
ight)$ с плотностью переходной вероятности $p\left(s,x,t,y
ight)$, то Af=Lf на области их определения.

6 Марковское свойство решения стохастических уравнений

Рассмотрим СДУ

$$d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta), \xi(s) = x \tag{6.1}$$

Мы будем предполагать, что функции a(x), A(x) неслучайные и удовлетворяют условию теоремы существования и единства решения СДУ.

Теорема 6.1 Пусть a(x), A(x) неслучайны и существует решение $\xi_{s,x}(t)$ задачи (6.1). Тогда $\xi_{s,x}(t)$ - марковский процесс.

Доказательство:

Рассмотрим случайный процесс $\xi\left(t\right)=xt$

$$\int_{s}^{t} a\left(\xi\left(\vartheta\right)\right) d\vartheta + \int_{s}^{t} A\left(\xi\left(\vartheta\right)\right) dw\left(\vartheta\right) = \xi\left(\tau\right) + \int_{\tau}^{s} a\left(\xi\left(\vartheta\right)\right) d\vartheta + \int_{\tau}^{t} A\left(\xi\left(\vartheta\right)\right) dw\left(\vartheta\right).$$
 Это равенство вытекает из единственности решения (6.1)

Процесс $\xi_{\tau,\eta}(t)$, $\eta = \xi(t)$ можно представить в виде функции, зависящей от двух переменных ω и ω_1 , где $\omega = \eta(\tau)$ и ω_1 , поражденный стохастическим и обыкновенным интегралом.

В силу свойств стохастических интегралов, ω и ω_1 независимые.

Пусть $\xi(t) = g(\omega, \omega_1)$. g можно представить в виде:

$$g(\omega, \omega_1) = \sum_{k=0}^{\infty} \phi_k(\omega) \psi_k(\omega_1)$$

Используя это свойство можно показать, что в любой измеримой ограниченно функции f(x) справедливо равенство $Ef(\xi(T)|\mathcal{F}_{\tau}) = Ef(\xi(T)|\xi(\tau))$, т.е. $\xi(t)$ - это марковский процесс.

6.1Уравнение колмогорова, обратное уравнение

Пусть $\xi(t)$ - решение уравнения (6.1) со случайными коэффициентами. Рассмотрим функцию $u(s,x) = Ef(\xi_{s,x}(T))$ и выведем уравнение, которому она удовлетворяет.

Вычислим:

$$u(s + \Delta s, x) - u(s, x) = \int f(y) p(s + \Delta s, x, T, y) dy - \int f(y) p(s, x, T, dy)$$
(6.2)

Воспользуемся уравнением Ч-К

$$p(s, x, T, y) = \int_{-\infty}^{\infty} p(s, x, s + \Delta s, z) p(s + \Delta s, z, T, y) dy$$

Из (7.2) получим:

$$u\left(s+\Delta s,x\right)-u\left(s,x\right) = \int f\left(y\right)p\left(s+\Delta s,x,T,y\right)dy - \int f\left(y\right)\int p\left(s,x,s+\Delta s,z\right)\cdot p\left(s+\Delta s,z,T,y\right)d\xi dy$$

$$(6.3)$$

$$u(s,x) = Ef(\xi_{s,x}(T)) = \int f(y) p(s,x,T,y) dy$$

$$\int f\left(y\right)p\left(s+\Delta s,z,T,y\right)=u\left(s+\Delta s,z\right)\text{ то из }(6.3)\text{ следует, что и }u\left(s+\Delta s,x\right)-u\left(s,x\right)=\int f\left(y\right)p\left(s+\Delta s,x,T,y\right)dy-\int u\left(s+\Delta s,z\right)p\left(s+\Delta s,z,T,y\right)dz$$

Таким образом
$$u\left(s+\Delta s,x\right)-u\left(s,x\right)=E\left\{u\left(s+\Delta s,\xi_{s+\Delta s,x}\left(t\right)\right)-u\left(s+\Delta s,\xi_{s+\Delta s,\xi\left(s+\Delta s\right)}\left(T\right)\right)\right\}$$

Перепишем полученные соотношения в следующем виде. Напомним, $u(s,x) = \int f(y) p(s,x,s+\Delta s,y) dy = \int f(y) \int p(s,x,\vartheta,z) p(\vartheta,z,s+\Delta s,y) dy dz$ $Eu\left(s,\xi_{s,x}\left(s+\Delta s\right)\right)$ $u\left(s+\Delta s,x\right)-u\left(s,x\right)=-E\left[u\left(s+\Delta s,\xi_{s,x}\left(s+\Delta s\right)\right)-u\left(s+\Delta s,x\right)\right]$ $u\left(s+\Delta s,\xi_{s,x}\left(s+\Delta s\right)\right)-u\left(s+\Delta s,x\right)$??? Правильная ли формула Используя формулу Ито, получим $\lim_{\Delta s \to 0} \frac{u(s + \Delta s, x) - u(s, x)}{\Delta s} = \frac{\partial u}{\partial s} = -\left[a(x)\frac{\partial u}{\partial x} + \frac{1}{2}A^2(x)\frac{\partial^2 u}{\partial x^2}\right]$

Таким образом, функция $u(s,x) = Ef(\xi_{s,x}(T))$ удовлетворяет задаче Коши $\frac{\partial u}{\partial s}$ + $a\left(x\right)\frac{\partial u}{\partial x}+\frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial x^{2}}=0,\ u\left(T,x\right)=f\left(x\right)$ КР Задание №2

$$d\xi = 3\tilde{f}(\vartheta) d\vartheta + \sin(\xi(\vartheta)) dw, \, \xi(s) = x, \, f(x)$$

$$u\left(s,x\right) = Ef\left(\xi_{s,x}\left(T\right)\right)$$

$$u\left(s,x\right)=Ef\left(\xi_{s,x}\left(T\right)\right)$$

$$\frac{\partial u}{\partial s}+3x\frac{\partial u}{\partial x}+\frac{1}{2}sin^{2}x\frac{\partial^{2}u}{\partial x^{2}}=0\ ,$$
 Другой вариант:
$$\frac{\partial u}{\partial s}+4x\frac{\partial u}{\partial x}-9x^{2}\frac{\partial^{2}u}{\partial x^{2}}=0$$

$$\frac{\partial u}{\partial s} + 4x \frac{\partial u}{\partial x} - 9x^2 \frac{\partial^2 u}{\partial x^2} = 0$$

$$u(T,x) = sinx$$

Написать вероятностное представление:

$$d\xi = 4\xi(\vartheta) \, d\vartheta + 3\sqrt{2}\xi(\vartheta) \, du$$

$$u\left(s,x\right) = Esin\left(\xi_{s,x}\left(T\right)\right)$$

Пример:

No 1.
$$d\xi = \sqrt{3}sin(\xi(\vartheta)) + \sqrt{2}cos(3\xi(\vartheta))dw(\vartheta)$$

$$\xi(s) = x$$

$$f\left(x\right) = \cos x$$

$$u\left(s,x\right) = E\cos\left(\xi_{s,x}\left(T\right)\right)$$

$$a(\xi(\vartheta)) = \sqrt{3}\sin(\xi(\vartheta)), a(x) = \sqrt{3}\sin x$$

$$A\left(\xi\left(\vartheta\right)\right) = \sqrt{2}\cos\left(3\xi\left(\vartheta\right)\right), A\left(x\right) = \sqrt{2}\cos3x$$

$$\frac{\partial u}{\partial s} + \sqrt{3}\sin x \frac{\partial u}{\partial x} + \cos^2 3x \frac{\partial^2 u}{\partial x^2} = 0$$

$$\frac{\partial u}{\partial s} + \sqrt{3}\sin x \frac{\partial u}{\partial x} + \cos^2 3x \frac{\partial^2 u}{\partial x^2} = 0$$

$$u(T,x) = \cos x$$

$$\frac{\overline{\partial u}}{\partial s} + \overline{\sin(x)} \frac{\overline{\partial u}}{\partial x} + \frac{1}{2} \cos^2(x) \frac{\partial^2 u}{\partial x^2} = 0
u(T, x) = 2 \sin x, \ u(s, x) = Ef(\xi_{s,x}(T))
d\xi = \sin(\xi(\vartheta)) d\vartheta + \cos(\xi(\vartheta)) dw\vartheta
u(s, x) = E2 \sin(\xi_{s,x}(T))$$

6.2Формула Фейнмана Каца

Рассмотрим задачу Коши

$$\frac{\partial u}{\partial s} + a(x)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}(x)\frac{\partial^{2} u}{\partial x^{2}} + c(x)u = 0, u(T, x) = f(x)$$
(6.4)

Нужно построить вероятностное представление решения этой задачи.

Рассмотрим СДУ

$$d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta)$$
(6.5)

$$d\eta = c(\xi(\vartheta)) \eta(\vartheta) d\vartheta \tag{6.6}$$

$$\xi\left(s\right) = x, \eta\left(s\right) = 1$$

и функцию u(s,x) вида

$$u(s,x) = E\left[\eta(T) f\left(\xi_{s,x}(T)\right)\right] \tag{6.7}$$

Покажем, что u(s,x) вида (7.7) удовлетворяет 7.4

Заметим, что процесс $\eta(t)$ имеет вид $\eta(t) = \exp \int_{c}^{T} c(\xi(\vartheta)) d\vartheta$ и вычислим $u\left(s+\Delta s,x\right)-u\left(s,x\right)$

$$u\left(s + \Delta s, x\right) - u\left(s, x\right) =$$

Рассмотрим

$$u(s,x) = E\eta(s + \Delta s) f(\xi_{s,x}(s + \Delta s))$$

Тогда
$$u\left(s+\Delta s,x\right)-u\left(s,x\right)=u\left(s+\Delta s,x\right)-E\eta\left(s+\Delta s\right)+f\left(\xi_{s,x}\left(s+\Delta s\right)\right)$$

Примечание: $\eta\left(s + \Delta s\right) = \exp \int_{s}^{s + \Delta s} c\left(\xi\left(a\right)\right) d\vartheta$

Рассмотрим разность
$$E\left[\eta\left(s+\Delta s\right)-\eta\left(s\right)\right]f\left(\xi_{s,x}\left(s+\Delta s\right)\right)$$
 +

$$E\left[\eta\left(s\right)\left[f\left(\xi_{s,x}\left(s+\Delta s\right)\right)-f\left(x\right)\right]$$

$$=E\left[e^{\int_{s}^{s+\Delta s}c(\xi(\vartheta))d\vartheta}-1\right]f\left(\xi_{s,x}\left(s+\Delta s\right)\right)+E\left[f\left(\xi_{s,x}\right)-f\left(x\right)\right]$$

$$\lim_{\Delta s \to 0} \frac{u(s + \Delta s, x) - u(s, x)}{\Delta s} = \frac{\partial u}{\partial s} = -\left(c\left(x\right)u + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2} u}{\partial x^{2}}\right)$$

Отсюда вытекает, что $u\left(s,x\right)=Ee^{\int_{s}^{T}c\left(\xi\left(\vartheta\right)\right)d\vartheta}\cdot f\left(\xi_{s,x}\left(T\right)\right)$ удовлетворяет задаче Коши.

$$\frac{\partial u}{\partial s} + a(x)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}(x)\frac{\partial^{2} u}{\partial x^{2}} + c(x)u(x) = 0, u(T, x) = f(x)$$
(6.8)

Рассмотрим СДУ

$$d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta)$$

и процесс
$$du\left(t,\xi\left(t\right)\right) = \left[u'_{t} + au'_{x} + \frac{1}{2}\Delta^{2}u''_{x}\right]dt + u'_{x}A\left(\xi\left(t\right)\right)dw$$

Пусть $c \equiv 0$. Тогда добавляется и вычитается в квадратных скобках $f\left(\xi\left(t\right)\right)$ получим $du = \left[u_t' + au_x' + \frac{1}{2}A^2 \cdot u_{xx}'' + f - f\right]dt + u_x'Adw$

$$du = \int_{0}^{1} (\xi(t)) dt + u'_{x} A dw$$

Интегрируем по
$$t$$
 от s до T .
$$Eu\left(T,\xi\left(T\right)\right)-u\left(s,x\right)=E\int_{s}^{T}f\left(\xi\left(\vartheta\right)\right)d\vartheta$$

Отсюда следует, что

$$u(s,x) = E\left[f(\xi_{s,x}(T)) + \int_{s}^{T} f(\xi_{s,x}(\vartheta)) d\vartheta\right]$$

02.11.17

7 Генерация марковского процесса

$$Grf\left(x\right)=\lim\frac{Ef(\xi_{s,x}(s+\Delta s)-f(x)(t_k))}{\Delta s}=a\left(x\right)f'\left(x\right)+\frac{1}{2}A^2\left(x\right)F''\left(x\right)\ \ref{eq:constraints}. Tyt точно Grf?$$
 $u\left(s,x\right)=f\left(\xi_{s,x}\left(T\right)\right)$
$$\frac{\partial u}{\partial s}+a\left(x\right)\frac{\partial u}{\partial x}+\frac{1}{2}A^2\left(x\right)\frac{\partial^2 u}{\partial x^2}=0, u\left(T,x\right)=f\left(x\right)$$
 $u\left(s,x\right)=E\left[exp\left[\int_s^T c\left(\xi\left(\vartheta\right)\right)dq\right]\right]_F$
$$\frac{\partial u}{\partial s}+a\left(x\right)\frac{\partial u}{\partial x}+\frac{1}{2}A^2\left(x\right)\frac{\partial^2 u}{\partial x^2}+g\left(x\right)=0$$
 $d\xi=a\left(\xi\left(t\right)\right)dt+A\left(\xi\left(t\right)\right)dw\left(t\right)$ $u\left(s,x\right)$
$$du\left(\vartheta,\xi\left(\vartheta\right)\right)=\left[\frac{\partial u}{\partial \vartheta}+a\frac{\partial u}{\partial x}+\frac{A^2}{2}\frac{\partial^2 u}{\partial x^2}+g-g\right]\left(\vartheta,\xi\left(\vartheta\right)\right)^2+\frac{\partial u}{\partial x}\left(\vartheta,\xi\left(\vartheta\right)\right)A\left(\xi\left(\vartheta\right)\right)dw\left(\vartheta\right)$$
 $\int_s^T Au\left(\vartheta,\xi\left(\vartheta\right)\right)=-\int_s^T g\left(\xi\left(\vartheta\right)\right)d\vartheta+\int_s^T \frac{\partial u}{\partial x}A\left(\xi\left(\vartheta\right)\right)\partial w$ $Eu\left(T,\xi\left(T\right)\right)-u\left(s,x\right)=-E\int_s^T g\left(\xi\vartheta\right)d\vartheta$ $u\left(s,x\right)=E\left[f\left(\xi_{s,x}\left(T\right)\right)+\int_s^T g\left(\xi\left(\vartheta\right)\right)d\vartheta\right]$

7.1 Вероятностное представление решения задачи Коши для нелинейного параболического уравнения

Рассмотрим семилинейное параболическое уравнение

$$\frac{\partial u}{\partial s} + a\left(x, u\left(s, x\right)\right) \frac{\partial u}{\partial x} + \frac{1}{2} A^{2}\left(x, u\left(s, x\right)\right) \frac{\partial^{2} u}{\partial x^{2}} = 0, u\left(T, x\right) = u_{0}\left(x\right)$$

$$(7.1)$$

Наряду с задачей (7.1) рассмотрим стохастическую задачу

$$d\xi = a\left(\xi\left(\vartheta\right), u\left(\vartheta, \xi\left(\vartheta\right)\right)\right) d\vartheta + A\left(\xi\left(\vartheta, \nu\left(\vartheta, \xi\left(\vartheta\right)\right)\right)\right) dw\left(\vartheta\right) \tag{7.2}$$

$$u(s,x) = Eu_0(\xi_{s,x}(T))$$
 (7.3)

Сформулируем условие на коэффициенты a(x, u), A(x, u) и условие $u_0(x)$ при котором существует единственное решение системы (9.2)(9.3)

Условие С9.1

Пусть справедливы оценки

$$|a(x,u)|^{2} + |A(x,u)|^{2} \le C(1+|x|^{2}+|u|^{2p})$$

$$|a(x,u)-a(y,v)|^{2} + |A(x,u)-A(y,v)|^{2} \le L|x-y| + k_{u,v}|u-v|^{2}$$

Решать задачу (9.2) (.3) мы будем с помощью методов последовательного приближения.

Рассмотрим последовательное приближение

$$u^{0}\left(x\right) = u_{0}\left(x\right), \xi^{0}\left(t\right) = x$$

$$\xi^{1}\left(t\right) = x + \int_{s}^{t} a\left(\xi^{1}\left(\vartheta\right), u^{1}\left(\vartheta, \xi^{1}\left(\vartheta\right)\right)\right) d\vartheta + \int_{s}^{t} A\left(\xi^{1}\left(\vartheta\right), u^{1}\left(\vartheta, \xi^{1}\left(\vartheta\right)\right)\right) dw\left(\vartheta\right)$$

$$u^{2}\left(s, x\right) = Eu_{0}\left(\xi_{s, x}^{1}\left(T\right)\right)$$

$$\xi^{2}\left(t\right) = x + \int_{s}^{t} a\left(\xi^{2}\left(\vartheta\right), u^{2}\left(\vartheta, \xi\left(\vartheta\right)\right)\right) d\vartheta + \int_{s}^{T} A\left(\xi^{2}\left(\vartheta\right), u^{2}\left(\vartheta, \xi^{2}\left(\vartheta\right)\right)\right) dw\left(\vartheta\right)$$

$$u^{n}\left(s, x\right) = Eu_{0}\left(\xi^{(n-1)}\left(T\right)\right)$$

$$\xi^{n}\left(t\right) = x + \int_{s}^{t} a\left(\xi^{n}\left(\vartheta\right), u^{n}\left(\vartheta\right), \xi\left(\vartheta\right)\right) d\vartheta + \int_{s}^{T} A\left(\xi^{n}\left(\vartheta\right), u^{n}\left(\vartheta, \xi^{n}\left(\vartheta\right)\right)\right) dw\left(\vartheta\right)$$

Заметим, что в силу условий С9, на каждом шаге последнее приближение можем утверждать существование и единственность решений СДУ.

При этом все функции $u^{n}(s,x)$ равномерно ограничены если функция $u_{0}(x)$ - ограничена, т.е. $\sup |u_{0}(x)| \leq k_{0}$

В силу теоремы Арцела-Асколи, для того, чтобы семейство непрерывных функций $u^n(s,x)$ сходилась к непрерывной функции u(s,x) при фиксированном s, нужно проверить, что функции $u^n(s,x)$ равномерно ограничены и равномерно непрерывны.

Покажем, что семейство функцией $u^n(s,x)$ равномерно непрерывно. Для этого достаточно показать, что семейство $\nu^n(s,x)=\frac{\partial}{\partial x}u^n(s,x)$ равномерно ограничено. Для того, чтобы это доказать расмотрим линейную систему

Пусть $g\left(s,x\right)$ - ограниченная мин??? функция или даже дифференцируемая по x , т.е. $\left|\frac{\partial g\left(s,x\right)}{\partial x}\right| \leq k_g'\left(s\right)$

Рассмотрим СЛУ

$$d\xi = a\left(\xi\left(\vartheta\right), g\left(\vartheta, \xi\left(\vartheta\right)\right)\right) d\vartheta + A\left(\xi\left(\vartheta\right), g\left(\vartheta\right), g\left(\vartheta, \xi\left(\vartheta\right)\right)\right) dw\left(\vartheta\right), \xi\left(s\right) = x \tag{7.4}$$

$$\nu\left(s,x\right) = Eu_0\left(\xi_{s,x}\left(T\right)\right) \tag{7.5}$$

Пусть
$$\eta(\vartheta) = \frac{\partial}{\partial x} \xi_{s,x}(T)$$

 $d\eta(\vartheta) = \left[a'_x(\xi(\vartheta), g(\vartheta), g(\vartheta)) + a'_g(\xi(\vartheta), g(\vartheta), \xi(\vartheta)) \frac{\partial g}{\partial x}(\vartheta, \xi(\vartheta)) \right]$

$$\eta(\vartheta) d\vartheta + \left[A'_{x}(\xi)(\vartheta), g(\vartheta, \xi(\vartheta)) + A'_{g}(\vartheta) \frac{\partial g}{\partial x}(\vartheta, \xi(\vartheta)) \right] \eta(\vartheta) dw(\vartheta)$$
(7.6)

$$\frac{\partial}{\partial x}u_0\left(\xi_{s,x}\left(T\right)\right)$$

 $ilde{\mathsf{H}}$ аша цль - показать, что существует функция $B\left(t\right)$ такая, что если

$$\left| \frac{\partial g(t,x)}{\partial x} \right| \le B\left(t\right)$$
 то и $\left| \frac{\partial \nu(t,x)}{\partial x} \right| \le B\left(t\right)$

Для всех t из некоторого интервала предполагаем, что $u_{0}\left(x\right)$ имеет ограниченную производную, т.е. $\sup_{x} \left| \frac{\partial u_0(x)}{\partial x} \right| \le k'_0$

При этом
$$\sup_{x} \left| \frac{\partial \nu(s,x)}{\partial x} \right|^{2} \leq k_{0} \sup_{x} E \left| \eta \left(T \right) \right|^{2}$$

Оценим $E |\eta(T)|^2$

поскольку
$$E |\eta(t)|^2 = |h|^2 + 2E \int_s^T \left[a_x' + a_q' g'(\vartheta, \xi(\vartheta)) \right] \eta(\vartheta)^2 d\vartheta$$

Практика

Частные случаи

Частные случай
$$\frac{\partial u}{\partial s} + a(x) \frac{\partial u}{\partial x} + \frac{A^2(x)}{2} \frac{\partial^2 u}{\partial x^2} + a(x) u + f(x) = 0$$
 #1: $c(x) \equiv 0$

$$#1: c(x) \equiv 0$$

$$\mathbf{u}(s,x) = E \left[\sin(\xi(T)) + \int_{s}^{T} \sin\xi(\vartheta) d\vartheta \right]$$

#2.
$$f(x) = 0$$

#2.
$$f(x) = 0$$

$$\frac{\partial u}{\partial s} + a(x)\frac{\partial u}{\partial x} + \frac{1}{2}A^2(x)\frac{\partial^2 u}{\partial x^2} + c(x)u = 0$$
 $u(T, x) = u_0(x)$

$$u(T,x) = u_0(x)$$

$$d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta), \xi(s) = x$$

$$d\eta = c(\xi(\vartheta)) \eta(\vartheta) d\vartheta, \eta(s) = 1$$

$$\eta\left(0\right) = e^{\int_{s}^{\vartheta} c(\vartheta(\tau))d\tau}$$

$$u(s,x) = E\left[e^{\int_{s}^{T} c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right)\right] = E\left[e^{\int_{s}^{s+\Delta s} c(\xi(\vartheta))d\vartheta + \int_{s+\Delta s}^{T} c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right)\right]$$

$$u(s+\Delta s,x) - u(s,x) = E\left[e^{\int_{s+\Delta s}^{T} c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s+\Delta s,x}\left(T\right)\right) - e^{\int_{s}^{s+\Delta s} c(\xi(\vartheta))d\vartheta + \int_{s+\Delta s}^{T} c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right)\right]$$

Добавим и вычтем выражение вида

$$e^{\int_{s+\Delta s}^{T} c(\xi(\vartheta))d\vartheta} u_0\left(\xi_{s,x}\left(T\right)\right)$$

Тогда

$$u\left(s+\Delta s,x\right)-u\left(s,x\right)=E\left\{e^{\int_{s+\Delta s}^{T}c(\xi(\vartheta))d\vartheta}\left[u_{0}\left(\xi_{s+\Delta s,x}\left(T\right)\right)-u_{0}\left(\xi_{s,x}\left(T\right)\right)\right]+\right.$$

$$\left.+\left[e^{\int_{s}^{T}c(\xi(\vartheta))d\vartheta}-e^{\int_{s+\Delta s}^{T}c(\xi(\vartheta))d\vartheta}\right]u_{0}\left(\xi_{s,x}\left(T\right)\right)\right\}$$

$$\frac{1}{\Delta}\left[e^{\int_{s}^{s+\Delta s}c(\xi(\vartheta))d\vartheta}-1\right]e^{\int_{s+\Delta s}^{T}c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right)=c\left(x\right)du\left(s,x\right)$$

$$\frac{\partial u}{\partial t}+a\left(x\right)\frac{\partial u}{\partial t}+\frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial t}+c\left(x\right)u=0$$

$$\frac{\partial u}{\partial s} + a\left(x\right) \frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right) \frac{\partial^{2} u}{\partial x^{2}} + c\left(x\right)u = 0$$
Наше решение имеет вид:
$$E\left[e^{\int_{s}^{T} c(\xi(\vartheta))d\vartheta} u_{0}\left(\xi_{s,x}\left(T\right)\right)\right] = u\left(s,x\right)$$

$$u\left(s,x\right) = E\left[e^{\int_{s}^{T} \xi(\vartheta)d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right) + \int_{0}^{T} e^{\int_{0}^{T} \xi(\tau)d\tau}sin\left(\xi\left(\vartheta\right)\right)d\vartheta\right]$$

$$\frac{\partial u}{\partial s} + a(x)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}(x)\frac{\partial^{2} u}{\partial x^{2}} + c(x)u + f(x) = 0$$

$$u(T, x) = u_{0}(x)$$

$$u(T,x) = u_0(x)$$

$$d\xi(\vartheta) = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) du(\vartheta), \xi(s) = x$$

$$d\eta(\vartheta) = c(\xi(\vartheta)) \eta(\vartheta) d\vartheta, \eta(s) = 1$$

$$u(s,x) = E\left[\eta(T) u_0(\xi_{s,x}(T)) - \int_s^T \eta(\vartheta) f(\xi(\vartheta)) d\vartheta\right]$$

01.12.17

8 Новый раздел, чтобы перезапустить нумерацию

$$\begin{split} d\xi &= a\left(\xi\left(\vartheta\right)\right)d\vartheta + A\left(\xi\left(\vartheta\right)\right)dwd\vartheta,\,\xi\left(s\right) = x\\ &\quad \xi\left(t\right) = x + \int_{s}^{t} a\left(\xi\left(\vartheta\right)\right)d\vartheta + \int_{s}^{t} A\left(\xi\left(\vartheta\right)\right)dw\left(\vartheta,w\right)\\ &\quad \xi_{n}\left(t\right) = x + \int_{k=1}^{n} \int_{t_{k}}^{t_{k+1}} a\left(\xi\left(\vartheta\right)\right)d\vartheta + \int_{t_{k}}^{t_{k+1}} A\left(\xi\left(\vartheta\right)\right)dw\left(\vartheta\right)\\ &\quad \xi_{n}\left(t\right) = x + \sum a\left(\xi\left(t_{k}\right)\right)\Delta_{k} + A\left(\xi\left(t_{k}\right)\right)\Delta_{k}w\\ &\quad \Delta_{k}w = w\left(t_{k+1}\right) - w\left(t_{k}\right)\\ &\quad u\left(s,x\right) = E\nu\left(\xi_{s,x}\left(???,w\right)\right)\\ &\quad \frac{\partial u}{\partial s} + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial x^{2}} = 0\\ &\quad u\left(T,x\right) = \nu\left(x\right) \end{split}$$

Напомним, что мы расматриваем систему

$$d\xi = a^{u}(\xi(\vartheta)) d\vartheta + A^{u}(\xi(\vartheta)) dw(\vartheta), \xi(s) = x$$
(8.1)

$$u(s,x) = Eu_0(\xi_{s,x}(T)),$$
где $a^u(x) = a(x, u(s,x))$ (8.2)

Для того, чтобы построить решения системы (8.2) рассмотрим последовательные приближения

$$d\xi_n(\vartheta) = a^{u_n}(\xi_n(\vartheta)) d\vartheta + A^{u_n}(\xi_n(\vartheta)) dw(\vartheta)$$
(8.3)

$$,\xi_{n}\left(s\right) =x\tag{8.4}$$

 $u^{n+1}(s,x) = E_{s,x}u_0(\xi_n(T)),$ где $E_{s,x}(\xi(t)) \equiv E[\xi_{s,x}(t)]$

На каждом шаге системы последовательных приближений мы решаем уравнения вида

$$d\xi = a(\xi(\vartheta), \nu(\vartheta, \xi(\vartheta))) d\vartheta + A(\xi(\vartheta), \nu(\vartheta, \xi(\vartheta))) dw(\vartheta)$$
(8.5)

где $\nu\left(t,x\right)$ известная функция $\left(\nu\left(\vartheta,x\right)\equiv u^{n}\left(\vartheta,x\right)\right)$

$$g(s,x) = Eu_0(\xi_{s,x}(T)) \tag{8.6}$$

где
$$\xi_{s,x}(\vartheta)$$
 - решение (8.5) $u^{1}(s,x) = u_{0}(x), \xi_{0}(0) = x$

Рассмотрим трим??? уравнения (8.5) и (8.6) и положим, что если ν (s,x) - ограниченная Липшицева функция, то и g (s,x) тоже ограниченная Липшецева функцияс одинаковой константой Липшица.

 $|\nu(t,x) - \nu(t,y)| = L(t)|x-y|$, то справедлива оценка $|g(t,x) - g(t,y)| \le L(t)|x-y|$ Лемма 8.1 Пусть коэффициенты $a^u(x)$ и $A^u(x)$ удовлетворяют условиям существования и единственности решения СДУ.

Тогда существует интервал $\{T_1; T\}$ такой, что $g(t,x) - g(t,y) \leq \beta(t) |x-y|$, если $|\nu(t,x) - \nu(t,y)| \leq \beta(t) |x-y|$ для некоторой функции $\beta(t)$ ограниченной на интервале $[T_1,T]$

Доказательство:

Рассмотрим процесс $\xi(t)$

$$E |\xi_{x}(t) - \xi_{y}(t)|^{2} \leq |x - y|^{2} + 2E \int_{s}^{t} \left[a(\xi_{s,x}(\vartheta), \nu(\vartheta, \xi_{s,x}(\vartheta))) - a(\xi_{s,y}(\vartheta), \nu(\vartheta, \xi_{s,y}(\vartheta))) \right] \cdot \left(\xi_{s,x}(\vartheta) - \xi_{s,y}(\vartheta) \right) d\vartheta + E \int_{s}^{t} \left| A(\xi_{s,x}(\vartheta), \nu(\vartheta, \xi_{s,y}(\vartheta))) - A(\xi_{s,y}(\vartheta), \nu(\xi_{s,y}(\vartheta))) \right|^{2} d\vartheta \leq |x - y|^{2} + 2 \int E |\xi_{s,x}(\vartheta) - \xi_{s,y}(\vartheta)|^{2} + K_{0}\beta(\vartheta) |\xi_{s,x}(\vartheta) - \xi_{s,y}(\vartheta)|^{2} d\vartheta$$

Оценим далее $(g(s,x)-g(s,y))^2=|E\nu_0(\xi_{s,x}(T))-\nu_0(\xi_{s,y}(T))|\leq L_0E|\xi_{s,x}(T)-\xi_{s,y}(T)|^2$ где $L_0,K_{???}$ - изнстанта липица??? функции $u_0(x)$ и функции $a(\nu)$

??? Во всем этом разделе что-то не так со скобками, прошу проверить :)

Таким образом:

$$|g\left(s,x\right)-g\left(s,y\right)|^{2} \leq L_{0}E\left|\xi_{s,x}\left(T\right)-\xi_{s,y}\left(T\right)\right|^{2} \leq \left|x-y\right|^{2}\exp\int_{s}^{T}\left[K_{1}+K_{2}\beta\left(\vartheta\right)\right]d\vartheta$$
 Поскольку $E\left|\xi_{s,x}\left(T\right)-\xi_{s,y}\left(T\right)\right|^{2} \leq \left|x-y\right|^{2}+\int_{s}^{T}c\left[\left|\xi_{s,x}\left(t\right)-\xi_{s,y}\left(T\right)\right|^{2}\right]-\left[1-K_{???}\beta\left(\vartheta\right)\right]d\vartheta$ Отсюда в силу леммы Гронуолла: $E\left|\xi_{s,x}\left(T\right)-\xi_{s,y}\left(T\right)\right|^{2} \leq \left|x-y\right|^{2}\exp\int_{s}^{T}\left[1+K_{???}\beta\left(\vartheta\right)\right]d\vartheta$

Рассмотрим соотношение $\beta(t-s) = K_0 \exp \int_s^T \left[K_1 + K_2 \beta(t-\vartheta) \right] d\vartheta$ и дифференциальный вариант

$$\frac{d\beta(t-s)}{ds} = \left[K_1 + K_2\beta(t-s)\right]\beta(t-s), \beta(T) = K_0 \tag{8.7}$$

Перепишем ОДУ (8.7) в виде

$$\frac{d\beta}{(K_1 + K_2\beta)\beta} = ds \tag{8.8}$$

Представим
$$\frac{1}{(K_1+K_2\beta)\beta}=\frac{A_1}{K_1+K_2\beta}+\frac{A_2}{\beta}$$
 $A_1\beta+A_2K_1+A_2K_2\beta=1$

$$A_1 + A_2 K_2 = 0, A_2 K_1 = 1$$

Таким образом, $A_2 = \frac{1}{K_1}, A_1 = -\frac{A_2}{K_1}$

$$\frac{1}{K \cdot K_1[K_1 + K_2\beta]} + \frac{1}{K} \frac{1}{\beta} = ds$$

$$\frac{1}{K_1[K_1+K_2\beta]} + \frac{1}{\beta} = Kds$$
??? правильно?

$$\int_{\beta(s)}^{\beta(T)} \frac{d\beta}{\widetilde{K}_1 + \widetilde{K}_2 \beta} + \int_{\beta(s)}^{\beta(T)} \frac{d\beta}{\beta}, \ \widetilde{K}_1 = K_1^2, \ \widetilde{K}_2 = K_1 K_2$$

таким образом,
$$A_2 = \frac{1}{K_1}$$
, $A_1 = -\frac{1}{K_1}$ и (12.8) приобретает вид
$$\frac{1}{K \cdot K_1[K_1 + K_2 \beta]} + \frac{1}{K} \frac{1}{\beta} = ds$$

$$\frac{1}{K_1[K_1 + K_2 \beta]} + \frac{1}{\beta} = K ds \ ??? \ правильно?$$

$$\int_{\beta(s)}^{\beta(T)} \frac{d\beta}{\widetilde{K}_1 + \widetilde{K}_2 \beta} + \int_{\beta(s)}^{\beta(T)} \frac{d\beta}{\beta}, \ \widetilde{K}_1 = K_1^2, \widetilde{K}_2 = K_1 K_2$$

$$Ln \left[\widetilde{K}_1 + \widetilde{K}_2 \beta \right] |_{\beta(s)}^{\beta(T)} + ln\beta|_{\beta(s)}^{\beta(T)} = (T - s) K$$

Решая полученные алгебраические уравнения мы получим ответ в виде $\beta(T-s) =$ $\frac{\widetilde{K}_1 K_0}{\widetilde{K}_1 + K - K_0 e^{K_2(t-s)}}$

Функция $\beta(T-s)$ ограничена на интервале $[T_1,T]$, где $\widetilde{K}_1+K_0-K_0e^{K_2(T-s)}=0$ $e^{K_2(T-T_1)} = \frac{\tilde{K}_1 + K_0}{K_0}$

 $K_2\left(T-T_1
ight)=\ln\left(1+rac{ ilde{K}_1}{K_0}
ight)$ для всех $\widetilde{T}_1< T_1$ функция $\beta\left(T-s
ight)$ ограничена при $s>T_1$ 0

Практика:
$$\frac{\partial u}{\partial s} + \frac{\partial u(s,x)}{\partial s} + u\left(s,x\right) \frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} = 0$$

$$u\left(T,x\right) = u_0\left(x\right)$$

$$d\xi = u\left(\vartheta,\xi\left(\vartheta\right)\right) d\vartheta + dw$$

$$\nu\left(s,x\right) = Eu_0\left(\xi_{s,x}\left(T\right)\right)$$

$$\frac{\partial \nu}{\partial s} + u\left(s,x\right) \frac{\partial \nu}{\partial x} + \frac{1}{2} \frac{\partial^2 \nu}{\partial x^2} = 0$$

$$\nu\left(s,x\right) \equiv u\left(s,x\right)$$

$$\begin{cases} d\xi = u\left(\vartheta,\xi\left(\vartheta\right)\right) + du \\ u\left(s,x\right) = Eu_0\left(\xi_{s,x}\left(T\right)\right)$$

$$\frac{\partial u}{\partial s} + \left(x + u\left(s,x\right)\right) \frac{\partial u}{\partial x} + \frac{1}{2} u^2 \frac{\partial^2 u}{\partial x^2} = 0$$

$$d\xi = \left[\xi\left(\vartheta\right) + u\left(\vartheta,\xi\left(\vartheta\right)\right)\right] d\vartheta + u\left(\vartheta,\xi\left(\vartheta\right)\right) dw$$

$$u\left(s,x\right) = E\sin\left(\xi_{s,x}\left(T\right)\right)$$

$$\frac{\overline{\partial u} - \overline{1}}{\partial s} + 4x \frac{\partial u}{\partial x} + \frac{x^2}{2} \frac{\partial^2 u}{\partial x^2} + \cos xu + \sin x = 0$$

$$u(T, x) = \sin(x)$$

```
\begin{array}{l} \frac{\partial u}{\partial s}+a\left(x\right)\frac{\partial u}{\partial x}+\frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial x^{2}}+c\left(x\right)u=0\\ u\left(T,x\right)=u_{0}\left(x\right) \end{array}
                        d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta), \xi(s) = x
                      d\eta = c(\xi(\vartheta)) \eta(\vartheta) d\vartheta, \eta(s) = 1
\eta(0) = \exp \int_{s}^{\vartheta} c(\xi(t)) dt
                       u(s,x) = E\eta(T) u_0(\xi_{s,x}(T)) = Ee^{\int_s^T c(\xi(\vartheta))d\vartheta} u_0(\vartheta_{s,x}(T))
                        d\xi = 4\xi(\vartheta) d\vartheta + \xi(\vartheta) dw(\vartheta)
                        d\eta = \cos(\xi(\vartheta)) \eta(\vartheta) d\vartheta
                        u(s,x) = Ee^{\int_{s}^{T} \cos(\xi(\vartheta))d\vartheta} \cdot \sin(\xi_{s,x}(T))
                       \frac{\partial u}{\partial s} + 4x \frac{\partial u}{\partial x} + \frac{x^2}{2} \frac{\partial^2 u}{\partial x^2} + \cos x u + x = 0
\frac{\partial u}{\partial s} + a(x) \frac{\partial u}{\partial x} + \frac{1}{2} A^2(x) \frac{\partial^2 u}{\partial x^2} + f(x) = 0
u(T, x) = u_0(x)
                        d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta), f(s) = x
                       du\left(\vartheta,\xi\left(\vartheta\right)\right) = \int_{s}^{T} \left(\frac{\partial u}{\partial \vartheta} + a\left(\xi\left(\vartheta\right)\right) \frac{\partial u(\vartheta,\xi(\vartheta))}{\partial x} + \frac{1}{2}A^{2}\left(\xi\left(\vartheta\right)\right) \frac{\partial^{2} u(\vartheta,\xi(\vartheta))}{\partial^{2}x^{2}} + f\left(\xi\left(\vartheta\right)\right) - f\left(\xi\left(\vartheta\right)\right)\right) d\vartheta + \frac{1}{2}A^{2}\left(\xi\left(\vartheta\right)\right) \frac{\partial^{2} u(\vartheta,\xi(\vartheta))}{\partial x} + \frac{1}{2}A^{2}\left(\xi\left(\vartheta\right)\right) \frac{\partial^{2} u(\vartheta,\xi(\vartheta))}{\partial x^{2}} + f\left(\xi\left(\vartheta\right)\right) - f\left(\xi\left(\vartheta\right)\right)\right) d\vartheta + \frac{1}{2}A^{2}\left(\xi\left(\vartheta\right)\right) \frac{\partial^{2} u(\vartheta,\xi(\vartheta))}{\partial x} + \frac{1}{2}A^{2}\left(\xi\left(\vartheta\right)\right) \frac{\partial^{
\int_{s}^{T} A \frac{\partial u}{\partial x} dw
                        E\left(u\left(T,\xi\left(T\right)\right)\right) - u\left(s,x\right) = -E\left[\int_{s}^{T} f\left(\xi\left(\vartheta\right)\right) d\vartheta\right]
                       u(s,x) = E\left[u_0(\xi(T)) + \int_s^T f(\xi(\vartheta)) d\vartheta\right]
                        \frac{\partial u}{\partial s} + a(x)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}(x)\frac{\partial^{2} u}{\partial x^{2}} + c(x)u + f(x) = 0
                       u\left(s,x\right) = E\left[\eta\left(T\right)u_{0}\left(\xi_{s,x}\left(T\right)\right) + \int_{s}^{T}\eta\left(\vartheta\right)f\left(\xi_{s,x}\left(\vartheta\right)\right)d\vartheta\right]
                       d\left[u\left(\vartheta,\xi\left(\vartheta\right)\right)\right]\eta\left(\vartheta\right)\right] = du\left(\vartheta,\xi\left(\vartheta\right)\right)\cdot\eta\left(\vartheta\right) + u\left(\vartheta,\xi\left(\vartheta\right)\right)d\eta
                        d\left[\gamma\left(\vartheta\right)\eta\left(\vartheta\right)\right]
                        d\gamma = q\gamma(\vartheta) d\vartheta + Q\gamma(\vartheta) dw(\vartheta)
                        d\eta = c\eta(\vartheta) d\vartheta + c\eta(\vartheta) dw(\vartheta)
                        d(\gamma(\vartheta)\eta(\vartheta)) = \eta(\vartheta)d\gamma(\vartheta) + \gamma(\vartheta)d\eta...
                      d\left(u\left(\vartheta,\xi\left(\vartheta\right)\right)\eta\left(\vartheta\right)\right) \quad = \quad \left(\frac{\partial u}{\partial \xi} + a\frac{\partial u}{\partial x} + \frac{1}{2}A^2\frac{\partial^2 u}{\partial x^2}\right)\eta\left(\vartheta\right) \ + \ uc\left(\xi\left(\vartheta\right)\right)\eta\left(\vartheta\right)d\vartheta \ + \ \dots \right)
   \left(rac{\partial u}{\partial ec{artheta}}+arac{\partial u}{\partial x}+rac{1}{2}A^2rac{\partial^2 u}{\partial x}+cu
ight)\eta\left(artheta
ight),\,dartheta+ мартингал
                        E\left[\eta\left(T\right)u_{0}\left(\xi_{s,x}\left(T\right)\right)-u\left(s,x\right)\right]=E\int_{s}^{T}\eta\left(\vartheta\right)f\left(\xi\left(\vartheta\right)\right)d\vartheta
                       u(s,x) = E\left[\eta(T) u_0(\xi(T)) + \int_s^T \eta(\vartheta) f(\xi(\vartheta)) d\vartheta\right]
                       \eta(\vartheta) = \exp \int_{s}^{\vartheta} c(\xi(\vartheta_1)) d\vartheta_1
                        d\xi = 4\xi(\vartheta) \, d\vartheta + \xi(\vartheta) \, dw(\vartheta)
                        d\eta = \cos(\xi(\vartheta)) \cdot \eta(\vartheta) d\vartheta
                       u(s,x) = E \left[ e^{\int_s^T \cos(\xi(\vartheta)) d\vartheta} \cdot \sin(\xi(T)) + \int_s^T e^{\int_s^T \cos(\xi(\vartheta_1)) d\vartheta_1} \cdot \xi(\vartheta) d\vartheta \right]
```