Computational Physics Exercise 2

Lukas Bayer & Jan Glowacz

November 18, 2020

1 Intro

The Ising model consists of a lattice of sites x with spins $s_x \in \{\pm 1\}$ attached. In this exercise we study the 2-dim Ising model. Each spin couples to its neighbouring spins and an external magnetic field. Thus the Ising Hamiltonian of a spin configuration $s = \{s_x : \forall x\}$ is:

$$\mathcal{H}(s) = -J \sum_{\langle s_x, s_y \rangle} s_x s_y - h \sum_x s_x \tag{1}$$

were $\langle s_x, s_y \rangle$ denotes a pair of neighbouring spins. For more information on the Ising model, please refer to the exercise sheet or the relevant literature.

To simulate the 2-dim Ising model we implement a Monte-Carlo simulation using the Metropolis-Hastings algorithm.

- 1. Generate random initial spin configuration
- 2. Choose random spin flip
- 3. Calculate change in action due to spinflip $\Delta S = \beta \left(\mathcal{H}(s') \mathcal{H}(s') \right)$ (in our case $\beta = 1$)
- 4. sample random number x between 0 and 1 from uniform distribution
- 5. if $x < \exp(-\Delta S)$ accept spinflip, else reject
- 6. repeat steps 2 5 until thermalized
- 7. sweep through the lattice, performing steps 3-5 once on each spin
- 8. take measurement
- 9. repeat steps 7 and 8 until enough measurements are taken
- 10. average measurements

We will be using 1000 thermalization and 2000 measurement steps for the analysis.

2 Question 2

The numerical cost of the calculation of the energy for a given spin configuration scales proportional to Λ if the lattice is larger than 2 in both x and y direction.

3 Question 3

The numerical cost of the calculation of the change in energy for a given spin flip does not depend on Λ if the lattice is larger than 2 in both x and y direction.

4 Question 4

At h = 0 there is a phase transition at

$$J_c = \frac{1}{2} \log \left(1 + \sqrt{2} \right) \approx 0.440686793509772 \tag{2}$$

At values of J below J_c the average magnetization is $\langle m \rangle = 0$ while at above J_c the average magnetization is either +1 or -1, i.e. $|\langle m \rangle| = 1$. Only in a short interval close to J_c are mean magnetizations other than 0, -1 and +1. This is the region of the transition.

Figure 1: Dependence of the magnetization on J at h = 0 and N = 12.

5 Question 5

Figure 2: Dependence of the magnetization on h at N=12 and J=0.25.

6 Question 6

Figure 3: Dependence of the magnetization on J at h=0 and N=12.

7 Question 7

Figure 4: Dependence of the absolute value of the magnetization on and J^{-1} at h=0 and N=12