Chinese Remainder Theorem

Learning Objectives. By the end of class, students will be able to:

- Solve system of linear equations in one variable.
- Prove the Chinese Remainder Theorem. .

Example 1. Consider the system of linear equations

$$x \equiv 2 \pmod{5}$$

 $x \equiv 3 \pmod{7}$
 $x \equiv 1 \pmod{8}$.

A slow way to find an integer x that satisfies all three congruences is to write out the congruence classes:

$$2, 2 + 5, 2 + 5(2), 2 + 5(3), \dots$$

 $3, 3 + 7, 3 + 7(2), 3 + 7(3), \dots$
 $1, 1 + 8, 1 + 8(2), 1 + 8(3), \dots$

and see what integers are on all three lists. In addition to being tedius, we this doesn't help find all such integers.

To find all such integers, define M = 5(7)(8) = 280, and $M_1 = \frac{M}{5} = 7(8)$, $M_2 = \frac{M}{7} = 5(8)$, $M_3 = \frac{M}{8} = 5(7)$. Then each M_i is relatively prime to M by construction. Thus, by ?? the congruences

$$M_1x_1 \equiv 1 \pmod{5},$$
 $7(8)x_1 \equiv x_1 \equiv 1 \pmod{5}$
 $M_2x_2 \equiv 1 \pmod{7},$ $5(8)x_2 \equiv 5x_2 \equiv 1 \pmod{7}$
 $M_3x_3 \equiv 1 \pmod{8},$ $5(7)x_3 \equiv 3x_3 \equiv 1 \pmod{8}$

have solutions. Thus, $x_1 \equiv 1 \pmod{5}$, $x_2 \equiv 3 \pmod{7}$, and $x_3 \equiv 3 \pmod{8}$.

Note that

$$M_1x_1(2) = 56(1)(2) \equiv 2 \pmod{5},$$
 $M_2 \equiv M_3 \equiv 0 \pmod{5}$
 $M_2x_2(3) = 40(3)(3) \equiv 3 \pmod{7},$ $M_1 \equiv M_3 \equiv 0 \pmod{7}$
 $M_3x_3(1) = 35(3)(1) \equiv 1 \pmod{8},$ $M_1 \equiv M_2 \equiv 0 \pmod{8}$

Thus,

$$x = M_1 x_1(2) + M_2 x_2(3) + M_3 x_3(1) = 56(1)(2) + 40(3)(3) + 35(3)(1)$$

is a solution to all three congruences.

Learning outcomes: Author(s): Claire Merriman **Theorem 1** (Chinese Remainder Theorem). Let $m_1, m_2, \dots m_k$ be pairwise relatively prime positive integers (that is, any pair $gcd(m_i, m_j) = 1$ when $i \neq j$). Let b_1, b_2, \dots, b_k be integers. Then the system of congruences

$$x \equiv b_1 \pmod{m_1}$$

 $x \equiv b_2 \pmod{m_2}$
 \vdots
 $x \equiv b_n \pmod{m_k}$

has a unique solution modulo $M = m_1 m_2 \dots m_k$. This solution has the form

$$x = M_1 x_1 b_1 + M_2 x_2 b_2 + \dots + M_k x_k b_k,$$

where $M_i = \frac{M}{m_i}$ and $M_i x_i \equiv 1 \pmod{m_i}$.

Proof Let $m_1, m_2, \ldots m_k$ be pairwise relatively prime positive integers. We start by constructing a solution modulo $M = m_1 m_2 \ldots m_k$. By construction, $M_i = \frac{M}{m_i}$ is an integer. Since each the m_i are pairwise relatively prime, $(M_i, m_i) = 1$. Thus, by $\ref{m_i}$, for each i there is an integer x_i where $M_i x_i \equiv 1 \pmod{m_i}$. Thus $M_i x_i b_i \equiv b_i \pmod{m_i}$. We also have that $(M_i, m_j) = m_j$ when $i \neq j$, so $M_i b_i \equiv 0 \pmod{m_j}$ when $i \neq j$. Let

$$x = M_1 x_1 b_1 + M_2 x_2 b_2 + \dots + M_k x_k b_k.$$

Then $x \equiv M_i x_i b_i \equiv b_i \pmod{m_i}$ for each i = 1, 2, ..., k and $x \equiv M_i x_i b_i \equiv 0 \pmod{m_j}$ when $i \neq j$. Thus, we have found a solution to the system of equivalences.

To show the solution is unique modulo M, consider two solutions x_1, x_2 . Then $x_1 \equiv x_2 \pmod{m_i}$ for each $i = 1, 2, \ldots, k$. Thus $m_i \mid x_2 - x_1$. Since $(m_i, m_j) = 1$ when $i \neq j$, $M = [m_1, m_2, \ldots, m_k]$ and $M \mid x_2 - x_1$. Thus, $x_1 \equiv x_2 \pmod{M}$.