IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Original): A multilayer ceramic capacitor comprising a laminate including alternately stacked dielectric layers of a sintered compact composed of crystal particles of a dielectric porcelain composite and internal-electrode layers, wherein the dielectric porcelain composite at least comprises a primary constituent containing barium titanate; a first accessory constituent composed of at least one of magnesium oxide (MgO), calcium oxide (CaO), barium oxide (BaO), and strontium oxide (SrO); a second accessory constituent containing silicon oxide as a major constituent; a third accessory constituent composed of at least one of vanadium oxide (V₂O₅), molybdenum oxide (MoO₃), and tungsten oxide (WO₃); a fourth accessory constituent composed of an oxide of R1 (wherein R1 is at least one of Sc, Er, Tm, Yb, and Lu); a fifth accessory constituent composed of CaZrO3 or a combination of CaO and ZrO2; and a sixth accessory constituent composed of an oxide of R2 (wherein R2 is at least one of Y, Dy, Ho, Tb, Gd, and Eu); in the case of 100 moles of barium titanate, there are 0.1 to 3 moles of the first accessory constituent, 2 to 10 moles of the second accessory constituent, 0.01 to 0.5 moles of the third accessory constituent, 0.5 to 7 moles of the fourth accessory constituent (wherein the number of moles of the fourth accessory constituent is that of R1 alone), more than 0 but not more than 5 moles of the fifth accessory constituent, and more than 0 but not more than 9 moles of the sixth accessory constituent; and the crystal particles constituting the dielectric layers have an average particle diameter of not less than 0.2 µm and less than or equal to 0.55 µm.

Claim 2 (Original): The multilayer ceramic capacitor according to claim 1, wherein the dielectric porcelain composite further comprises a seventh accessory constituent

composed of manganese oxide (MnO) or chromium oxide (Cr₂O₃) and in the case of 100 moles of barium titanate, there are 0.01 to 0.5 moles of the seventh accessory constituent.

Claim 3 (Currently Amended): The multilayer ceramic capacitor according to claim 1 or 2, wherein the average particle diameter of the crystal particles constituting the dielectric layers is in the range of not less than 0.2 μ m and less than or equal to 0.35 μ m.

Claim 4 (Currently Amended): The multilayer ceramic capacitor according to any one of claims claim 1 to 3, wherein the difference (D100 - D50) between the maximum particle diameter (D100) and the average particle diameter (D50) of the crystal particles constituting the dielectric layers is 0.4 µm or less.

Claim 5 (New): The multilayer ceramic capacitor according to claim 2, wherein the average particle diameter of the crystal particles constituting the dielectric layers is in the range of not less than $0.2 \mu m$ and less than or equal to $0.35 \mu m$.

Claim 6 (New): The multilayer ceramic capacitor according to claim 2, wherein the difference (D100 - D50) between the maximum particle diameter (D100) and the average particle diameter (D50) of the crystal particles constituting the dielectric layers is $0.4 \mu m$ or less.

Claim 7 (New): The multilayer ceramic capacitor according to claim 3, wherein the difference (D100 - D50) between the maximum particle diameter (D100) and the average

Docket No. 296119US Preliminary Amendment

particle diameter (D50) of the crystal particles constituting the dielectric layers is 0.4 μm or less.

Claim 8 (New): The multilayer ceramic capacitor according to claim 5, wherein the difference (D100 - D50) between the maximum particle diameter (D100) and the average particle diameter (D50) of the crystal particles constituting the dielectric layers is $0.4~\mu m$ or less.