Ordered Sampling with (out) Replacement

Sampling

Many problems in probability and statistics are concerned with choosing an element from a set repeatedly, i.e. sampling

Four Cases:

- ordered with replacement ordered without ruplacement
- unordered with
- unordered without

Ordered Sampling with Replacement

The element is replaced in the set before the next element is whosen, and the order matters.

Proposition (2)

Consider on ordered sample of size r laken from the set: {a,,. a,} as follows:

- 1) select an element a; , and record it; (replacement);
- 3 repeat r times,

so that a sample (air, ..., air is registered, where air is the element selected in the k-th step

Then the number of all possible such samples is $N = n^r$

Proof

- After an element is shown we replace it book in the set
- Therefore the experiment is identical to choosing one item from redistribut sets A., Az, ---, Ar each containing n elements
- Proposition (1) then applies with $n_1 = n_2 = \dots = n_r = n$, showing that there are N = n'. distinct ordered samples (a... a:

N=n', distinct ordered samples (a;, ..., a;

- Obviously, this is a special case of the mulliplication principle where there are r groups and each group has n elements

Ordered Sampling without Replacement

Here the denut is not replaced in the set and is taken away.

Proposition (3)

Given a set of n element {a, , ..., a, }, form all possible combinations of r (r s n) distinct elements taking into account their order. Then then number of all the samples is

$$N = \frac{n!}{(n-r)!} = n \vee (n-r) \times ... \times (n-r-1).$$

Preso

- = no replacement, n-1
- k elements chosen, n-k
- corresponds to proposition (i) n=n,n=n-1,..., n=n-r+1
- proposition (1) gives $N = n \times (n-1) \times \dots \times (n-r+1) = \frac{n!}{(n-r)!}$

Example: Birthday Problem

What is the probability that N(N(365) students have distinct birthdays? Assume a year has 365, and that a student's birthday can fall on any day with the same probability

Let $A = \{$ at least two have the same birthday $\}$ $A = \{$ all belongs are distinct $\}$

$$N(\bar{A}) = 365 \times - \times (365 - N + 1)$$
 hence

Another Example

A brain with n coaches is boarded by r passengers (r.s.n) each entering a coach at random. What is the probability of all the passengers endup in different coaches?

I = {(i,,.. ir) | ij \ \{1,2,..., n} for 1 < j < r }

IR 1 = n' A = {all pasengers choose a different coach}
A occurs (=) ij ≠ ik for j≠k

lot passenger = n 2nd = = n-1

IAI = Nx(n-1)x ... x (n-r+1) elementary events for which A occurs

Hus $P(A) = \frac{n(n-1)\cdots(n-r+1)}{n^r}$