Name:	
J#:	Dr. Clontz
Date:	

${\bf MASTERY~QUIZ~DAY~18}$

Math 237 – Linear Algebra Fall 2017

Version 5 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.

Mark:

Determine if the set of polynomials $\{-3x^3 - 8x^2, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Standard S3. $\begin{bmatrix} & & & \\ & & \\ 1 & & \\ 2 & & \\ 1 & & \\ \end{bmatrix}, \begin{bmatrix} 3 & & \\ 3 & \\ 6 & \\ 3 \end{bmatrix}, \begin{bmatrix} 3 & & \\ -1 & \\ 3 & \\ -2 \end{bmatrix}, \begin{bmatrix} 7 & \\ -1 & \\ 8 & \\ -3 \end{bmatrix} \end{bmatrix}.$ Find a basis for W.

Standard S4.
$$\begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
 Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}\right\}\right)$. Compute the dimension of W .

Standard A1.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 + 3x_1\end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Standard A2.	Mark:

Standard A2.

Determine if the map $T: \mathcal{P}^6 \to \mathcal{P}^6$ given by T(f) = f(x) - f(0) is a linear transformation or not.

Additional Notes/Marks