RWorksheet_Perez#4a

2024 - 10 - 14

1. The table below shows the data about shoe size and height. Create a data frame.

```
shoe_data <- read.csv("/cloud/project/ShoeData.csv")
shoe_data</pre>
```

##		Shoe.size	Height	Gender
##	1	6.5	66.0	F
##	2	9.0	68.0	F
##	3	8.5	64.5	F
##	4	8.5	65.0	F
##	5	10.5	70.0	М
##	6	7.0	64.0	F
##	7	9.5	70.0	F
##	8	9.0	71.0	F
##	9	13.0	72.0	M
##	10	7.5	64.0	F
##	11	10.5	74.5	M
##	12	8.5	67.0	F
##	13	12.0	71.0	M
##	14	10.5	71.0	M
##	15	13.0	77.0	M
##	16	11.5	72.0	M
##	17	8.5	59.0	F
##	18	5.0	62.0	F
##	19	10.0	72.0	M
##	20	6.5	66.0	F
##	21	7.5	64.0	F
##	22	8.5	67.0	M
##	23	10.5	73.0	M
##	24	8.5	69.0	F
##	25	10.5	72.0	M
##	26	11.0	70.0	M
##	27	9.0	69.0	М
##	28	13.0	70.0	M

a. Describe the data.

The data consists of the respondents' shoe sizes, as well as their height and gender.

b. Create a subset by males and females with their corresponding shoe size and height. What its result? Show the R scripts.

```
males <- subset(shoe_data, Gender == "M", select = c(Shoe.size, Height))
males</pre>
```

```
## Shoe.size Height
## 5 10.5 70.0
## 9 13.0 72.0
## 11 10.5 74.5
```

```
## 13
            12.0
                    71.0
## 14
            10.5
                    71.0
## 15
            13.0
                    77.0
                    72.0
## 16
            11.5
## 19
            10.0
                    72.0
## 22
             8.5
                    67.0
## 23
            10.5
                    73.0
## 25
            10.5
                    72.0
## 26
            11.0
                    70.0
## 27
             9.0
                    69.0
## 28
            13.0
                    70.0
females <- subset(shoe_data, Gender == "F", select = c(Shoe.size, Height))</pre>
females
##
      Shoe.size Height
## 1
             6.5
                    66.0
## 2
             9.0
                    68.0
## 3
             8.5
                    64.5
## 4
             8.5
                    65.0
## 6
             7.0
                    64.0
## 7
             9.5
                    70.0
                    71.0
## 8
             9.0
## 10
             7.5
                    64.0
## 12
             8.5
                    67.0
## 17
             8.5
                    59.0
## 18
             5.0
                    62.0
## 20
             6.5
                    66.0
             7.5
                    64.0
## 21
                    69.0
## 24
             8.5
```

c. Find the mean of shoe size and height of the respondents. Write the R scripts and its result.

```
mean(shoe_data$Shoe.size)
## [1] 9.410714
mean(shoe_data$Height)
```

[1] 68.57143

d. Is there a relationship between shoe size and height? Why?

```
relationship <- cor(shoe_data$Height, shoe_data$Shoe.size)
relationship</pre>
```

[1] 0.7766089

The results show that there is some kind of relationship between shoe size and height, but it's not the strongest. Some shoe sizes go up with height, but a few doesn't seem to be the case.

2. Construct character vector months to a factor with factor() and assign the result to factor_months_vector. Print out factor_months_vector and assert that R prints out the factor levels below the actual values.

Consider data consisting of the names of months: "March", "April", "January", "November", "January", "September", "October", "September", "November", "August", "January", "November", "November", "February", "May", "August", "July", "December", "August", "August", "September", "November", "February, April"

```
months_vector <- c("March", "April", "January", "November", "January",</pre>
"September", "October", "September", "November", "August",
"January", "November", "November", "February", "May", "August", "July", "December", "August", "August", "Septemb
factor_months_vector <- factor(months_vector)</pre>
factor_months_vector
##
    [1] March
                          April
                                            January
                                                              November
                                            October
##
    [5] January
                          September
                                                              September
   [9] November
                                                              November
                          August
                                            January
## [13] November
                          February
                                            May
                                                              August
## [17] July
                          December
                                                              August
                                            August
## [21] September
                          November
                                            February, April
## 12 Levels: April August December February February, April January ... September
  3. Then check the summary() of the months vector and factor months vector. | Inter- pret the results
     of both vectors. Are they both equally useful in this case?
summary(months_vector)
##
      Length
                  Class
                               Mode
##
           23 character character
summary(factor_months_vector)
##
              April
                               August
                                              December
                                                                February February, April
##
                  1
                                    4
                                                      1
                                                                        1
                                                                                          1
##
            January
                                 July
                                                  March
                                                                     May
                                                                                  November
##
                                    1
                                                      1
                                                                        1
                                                                                          5
##
            October
                           September
##
  4. Create a vector and factor for the table below.
Direction Frequency East 1 West 4 North 3
direction <- c("East", "West", "North")</pre>
frequency \leftarrow c(1, 4, 3)
factor_direction <- factor(direction)</pre>
factor_frequency <- factor(frequency)</pre>
factor_direction
## [1] East West North
## Levels: East North West
factor_frequency
## [1] 1 4 3
## Levels: 1 3 4
Note: Apply the factor function with required order of the level. new_order_data <- factor(factor_data,levels
= c("East","West","North")) print(new_order_data)
new_order_direction <- factor(factor_direction, levels = c("East", "West", "North"))</pre>
print(new_order_direction)
## [1] East West North
## Levels: East West North
```

```
new_order_frequency <- factor(factor_frequency, levels = c(1, 4, 3))
print(new_order_frequency)</pre>
```

```
## [1] 1 4 3
## Levels: 1 4 3
```

5. Enter the data below in Excel with file name = $import_march.csv$

```
read.csv("/cloud/project/import_march.csv")
```

##		${\tt Students}$	Strategy.1	Strategy.2	Strategy.3
##	1	Male	8	10	8
##	2		4	8	6
##	3		0	6	4
##	4	Female	14	4	15
##	5		10	2	12
##	6		6	0	9

a. Import the excel file into the Environment Pane using read.table() function. Write the code.

```
march <- read.table("/cloud/project/import_march.csv", header = TRUE, sep = ",")</pre>
```

b. View the dataset. Write the R scripts and its result.

${\tt march}$

#	#		${\tt Students}$	Strategy.1	Strategy.2	Strategy.3
#	#	1	Male	8	10	8
#	#	2		4	8	6
#	#	3		0	6	4
#	#	4	Female	14	4	15
#	#	5		10	2	12
#	#	6		6	0	9