

Due Date: 23:59, October 30th, 2022

Exercise 3.1 (30%)

Find v_o in the following op amp circuit.

Exercise 3.2 (30%)

A four-bit R-2R ladder digital-to-analog converter is shown below.

(a) (15%) Show that the output voltage is given by

$$-V_o = R_f(\frac{V_1}{2R} + \frac{V_2}{4R} + \frac{V_3}{8R} + \frac{V_4}{16R})$$

(b) (15%) if $R_f = 12k\Omega$ and $R = 10k\Omega$, find $|V_o|$ for $[V_1V_2V_3V_4] = [1001]$ and $[V_1V_2V_3V_4] = [1010]$.

Exercise 3.3 (20%)

The voltage across a 50-mH inductor is given by

$$v(t) = [5e^{-2t} + 2t + 4]V$$

for t > 0.

Determine the current i(t) through the inductor. Assume that i(0) = 0A.

Exercise 3.4 (20%)

Find L_{eq} at the terminals of the following circuit.

