나. 최종목표의 성격 및 설정근거

연 번	연구 목표	최종 성과품	목표 의 성격	목표 설정 근거
1	고강도콘 크리트 생산 기술 및 설비 구축	시험 성적서	시공 기술 개발	 본 연구의 최종 개발 제품은 설계기준강도 60~80 MPa 수준의 콘크리트 강도를 목표로 한다. 현재 당 컨소시엄의 당진공장에서 운용하고 있는 배치 플랜트는 40~60MPa 강도에 최적화된 설비를 가지고 있다. 그러나 과거 본 공장에서 PHC 말뚝을 생산한 경험이 있으므로 60~80MPa의 설계 강도를 갖는 콘크리트 생산은 무리가 없을 것으로 판단된다.
2	프리덴션 과 트덴이 고 드립이 전 기술 보자 의 후보	(요소) 실험 보고서	설계 기술 개발	 현재 국내에 상용증인 분절 PSC I 거더는 RC세그먼트로 공장에서 제작하여 가설 현장으로 운반한 후, 포스트텐션 기법으로 긴장력을 도입하여 조립하는 공정을 거친다. 본 연구에서 개발하고자 하는 제품의 두 번째 핵심기술은 상부 분절 세그먼트에 공장에서 프리텐션으로 긴장력을 도입한 상태로 제작한 한 후 현장에서는 조립에 필요한 최소한의 긴장력만을 도입하여 거더를 완성하는 기술이다. 인천대교의 경우처럼 단면이 크고 경간 가설을 하는 박스거더교에 프리텐션과 포스트텐션 기법이 병용된 사례가 있으나 PSC I 거더와 같이 횡방향 강성이 적고 단면이 얇은 구조에 프리텐션과 포스트텐션 방식을 병용하게 되면 프리텐션이 도입된 구간은 캠버가발생하게 되므로 이를 정밀하게 시공하기는 매우 어려워 시공 사례가 매우 드물다. 특히 프리텐션 거더는 단부 휨균열강도 및 전단강도는 정착장 내에서 강연선 부착률의 함수로 주어지지만 관련 설계 기술이 국내에는 충분히 확산되지 않은 상태이다. 반면 ㈜한맥기술은 프리텐션 거더에 관한선행 연구를 통하여 충분한 기술 노하우를 축적하고 있다. 1~5항의 요소기술은 1차년도 내에 모두 실험 검증을 마치고 기술 보고서를 제작할 예정이다. 요소기술에 대한 검증이 종료될 시점에서 시제품을 시공하고 공개 성능 평가 실험을 수행한다.
		시제품	시작 품 개발	
		(실물) 실험 보고서	설계 기술 개발	
		시험 성적서	기술 가치 증대	
		논문 발표	기술 가치 증대	