MATH475 Assignment 2

Mihail Anghelici 260928404

October 22, 2020

1 Question 1

Let us multiply $-\Delta u$ by $v \equiv (u - w)$ and take the integral;

$$\begin{split} \int\limits_{\Omega} -\Delta u (u-w) \; \mathrm{d}x &= -\int\limits_{\partial \Omega} g(u-w) \; \mathrm{d}\sigma + \int\limits_{\Omega} \nabla u \cdot \nabla (u-w) \mathrm{d}x = 0 \\ &= -\int\limits_{\partial \Omega} gu \mathrm{d}\sigma + \int\limits_{\partial \Omega} gw \; \mathrm{d}\sigma + \int\limits_{\Omega} |\nabla u|^2 \; \mathrm{d}x - \int\limits_{\Omega} \nabla u \nabla w \; \mathrm{d}x = 0 \end{split}$$

$$\implies \int_{\Omega} |\nabla u|^2 dx - \int_{\partial \Omega} gu d\sigma = \int_{\Omega} \nabla u \nabla w dx - \int_{\partial \Omega} gw d\sigma$$

We use the identity $\nabla u \nabla w \le \frac{1}{2} |\nabla u|^2 + \frac{1}{2} |\nabla w|^2$, getting

$$\int_{\Omega} |\nabla u|^2 dx - \int_{\partial \Omega} gu d\sigma \le \int_{\partial \Omega} \frac{1}{2} |\nabla u|^2 + \frac{1}{2} \int_{\Omega} |\nabla w|^2 - \int_{\partial \Omega} gw d\sigma$$

$$\implies \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\partial \Omega} gu d\sigma \le \frac{1}{2} \int_{\Omega} |\nabla w|^2 dx - \int_{\partial \Omega} gw d\sigma$$

$$\therefore \int_{\partial \Omega} gw d\sigma - \int_{\partial \Omega} gu d\sigma = \int_{\partial \Omega} g \underbrace{(u - w)}_{u - w} d\sigma = 0$$

$$\therefore \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx \le \frac{1}{2} \int_{\Omega} |\nabla w|^2 dx$$

$$\implies E[u] \le E[w]$$

Question 2

We will prove the claim by contradiction. First we note that u is harmonic so it respects the MVP, for which it follows that we can apply the maximum principles. Let us assume $\exists x_0 \in \Omega$ such that $u(x_0) \leq 0$ then by the Strong Maximum Principle this $\Longrightarrow \exists M \in \Omega$ for which

$$\min_{\overline{\Omega}} u = M,$$

since u=g on the boundary, and $g\geq 0 \ \forall x\in\partial\Omega$. Since u is constant in Ω $(\max_{\overline{\Omega}}u=\max_{\Omega}u)$, then we conclude that $u(x)\equiv M\leq 0 \ \forall x\in\Omega$. This is a contradiction since $\exists x\in\partial\Omega$ with $g(x)>0 \implies u>0$. We conclude that $u>0 \ \forall x\in\Omega$.

Question 3

Corollary 1.0.1. If u is a $C^2(\Omega)$ harmonic function on a domain Ω which is $C(\bar{\Omega})$, and the values of u on the boundary are bounded between m and M, then the values of u everywhere are bounded between m and M. (Ref: R. Choksi, p.411)

Let us define $\overline{\Omega} := (x_1, x_2) \times (-1, 1) \subseteq \overline{Q}$, for arbitrary $(x_1 \neq x_2) \in \mathbb{R}$. Then, as defined, $u \equiv 0$ on the boundary of $\overline{\Omega}$, i.e.,

$$\max_{\partial\Omega}u=\min_{\partial\Omega}\equiv0.$$

Following Corollary 1, $u \equiv 0$ everywhere in $\overline{\Omega}$.

Since u(x, y) is periodic in x and since x_1 and x_2 are chosen arbitrarily, we can chose $x_1' = x_1 + 2$ such that $u \equiv 0 \in \overline{\Omega}'$, where $\overline{\Omega}' := (x_1', x_2) \times (-1, 1) \subseteq \overline{Q}$, for arbitrary $x_2 \in \mathbb{R}$. We can repeat this process over any arbitrary x_1 and x_2 with difference ε between them such that for all possible domain subsets of \overline{Q} which include its y boundary $u \equiv 0$ in them. We conclude finally that $u \equiv 0$ in \overline{Q} .

Question 4

Let u(x) be subharmonic such that $-\Delta u(x) \le 0$ on the bounded domain Ω .

Let $v(x) := u(x) + \varepsilon |x|^2$ for $\varepsilon > 0$. Then by the second derivative test, u achieves an interior maximum if and only if

$$u_{x_ix_i} \le 0 \implies \Delta u \le 0.$$

But by construction,

$$\Delta v(x) = \Delta (u(x) + \varepsilon |x|^2)$$

$$= \underbrace{\Delta u(x)}_{\geq 0, \equiv K} + \Delta |x|^2$$

$$\geq K + \varepsilon \Delta |x|^2$$

Non null and positive perturbation

$$> 0$$

 $\implies \Delta v(x) > 0.$

We conclude that v does not attain an interior maximum ,which implies max v is on the boundary. Let x_0 pe the point at which the maximum occurs, then it follows that

$$u(x) \le v(x) \le v(x_0)$$

$$= u(x_0) + \varepsilon |x_0|^2$$

$$= \max_{\partial \Omega} u + \varepsilon |x_0|^2$$

$$\implies u(x) \le \max_{\partial \Omega} u + \frac{\varepsilon |x_0|^2}{\operatorname{a constant}}$$

$$\implies \lim_{\varepsilon \to 0} u(x) \le \lim_{\varepsilon \to 0} \left(\max_{\partial \Omega} u + \varepsilon |x_0|^2 \right)$$

$$u(x) \le \max_{\partial \Omega} u.$$

Then by the Weak maximum principle,

$$\max_{\partial\Omega} u = \max_{\overline{\Omega}} u \implies u(x) \le \max_{\partial\Omega} u = \max_{\overline{\Omega}} u.$$

Question 5

Let

$$M:=\max_{\overline{B_1(0)}}|f|,$$

and similarly to Question 4 let us consider $\varphi(x) := u(x) + M \frac{|x|^2}{2n}$. Then .

$$\begin{split} -\Delta \varphi(x) &= -\Delta \left(u(x) + M \frac{|x|^2}{2n} \right) \\ &= f - M = f - \max_{\overline{B_1(0)}} |f| \leq 0 \end{split}$$

So we conclude that $\varphi(x)$ is a sub-solution. By construction, it follows that

$$\max_{B_1(0)} u(x) \le \max_{B_1(0)} \varphi(x)$$

Applying the Weak Maximum Principle, since *u* as defined is harmonic, thence satisfies the MVP and hence we may apply the Weak maximum principle,

$$= \max_{\partial B_1(0)} \varphi(x)$$

$$= \max_{\partial B_1(0)} g + M \max_{\partial B_1(0)} \frac{|x|^2}{2n}$$

$$= \max_{\partial B_1(0)} g + \max_{\overline{B_1(0)}} |f| \max_{\partial B_1(0)} \frac{|x|^2}{2n}$$

Let $C := \max_{\partial B_1(0)} \frac{|x|^2}{2n}$, for x a point on the boundary, then

$$= \max_{\partial B_1(0)} g + C \max_{\overline{B_1(0)}} |f|$$

Since $\max |g| \ge \max g$, it follows that

$$\max_{\overline{B_1(0)}} u(x) \leq \max_{\partial B_1(0)} |g| + C \max_{\overline{B_1(0)}} |f|$$

Question 6

There is a discontinuity at x = y for $x, y \in \Omega$. Particularly, this discontinuity occurs in the term $\Phi(x - y)$ in G(x, y), with

$$\Phi(x - y) = \frac{1}{4\pi |x - y|} \text{ which } \xrightarrow[x \to y]{} \infty.$$
 (1)

We cut the domain Ω to Ω_{ε} to remove the discontinuity at the centre. Then $\Omega_{\varepsilon} := \Omega \setminus \{B(x, \varepsilon)\}$. This new domain has 2 boundaries, namely $\partial \Omega_{\varepsilon} = \partial \Omega \cup \partial B(x, \varepsilon)$. Since $\Omega_{\varepsilon} \subseteq \Omega$ and Ω is a bounded and connected domain then it follows that Ω_{ε} is as well; so let us apply the weak maximum principle on u(y) = G(x, y) on Ω_{ε}

$$\begin{aligned} \max_{\Omega_{\varepsilon}} u(y) &= \max_{\Omega_{\varepsilon}} G(x, y) = \max_{\partial \Omega_{\varepsilon}} G(x, y) \\ &= \max \left(\max_{\partial \Omega} G(x, y), \max_{\partial B(x, \varepsilon)} G(x, y) \right) \end{aligned}$$

Since by definition $G(x, \sigma) = 0$ for $\sigma = y \in \partial B$, then we have

$$= \max \left(0, \max_{\partial B(x,\varepsilon)} G(x,y) \right)$$

We send $\varepsilon \to 0$,

$$\lim_{\varepsilon \to 0} \max_{\Omega_{\varepsilon}} G(x, y) = \lim_{\varepsilon \to 0} \max(0, \underbrace{\max_{\partial B(x, \varepsilon)} G(x, y)}_{\to \infty \text{ by (1)}})$$

 $\lim_{arepsilon o 0} \Omega_{arepsilon}$ is precisely Ω therefore,

$$\max_{\Omega} G(x, y) = \max(0, \infty),$$

We conclude that G(x, y) is bounded by 0 and ∞ , implying that the values of G(x, y) in the domain are positive.