305343 - คอมพิวเตอร์และการสื่อสารข้อมูล

อ.สุชัยศรี ใลออน ภาคต้น ปีการศึกษา 2554 สัปคาห์ที่ 13

วัตถุประสงค์

- รู้จักเทคนิควิธีการสื่อสัญญาณดิจิทัล
- รู้จักเทคนิคการแปลงสัญญาณแอนะล็อกไปเป็นคิจิทัล
- เข้าใจภาวะการสื่อสัญญาณข้อมูลคิจิทัล และสามารถ เปรียบเทียบประสิทธิภาพได้

305343 – 1/2554

Digital Transmission Outline

- Transmission concept
- Coding
- Analog to Digital conversion
- Transmission mode

Transmission Concept

- แนวคิดการออกแบบการสื่อสาร
 - แปลงข้อมูลข่าวสารให้อยู่ในรูปแบบสัญญาณ
 - ดิจิทัล
 - แอนะล็อก

Digital Transmission

- การสื่อสัญญาณดิจิทัล
- เทคนิคและวิธีการที่จะจัดส่งข้อมูลดิจิทัล
 - การแปลงข้อมลเลขฐานสอง(ลำคับบิต) > สัญญาณคิจิทัล

305343 - 1/2554

อ้างอิง: รปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

5

Digital Encoding Scheme

- การเข้ารหัสสายสัญญาณ (Line coding) ข้อมูลดิจิทัล ที่ใช้ แรงคัน 2 ระดับ (บวก และ ลบ)
 - NonReturn to Zero (NRZ) Encoding
 - NRZ-Level (NRZ-L)
 - NRZ-Invert (NRZ-I)
 - Return to Zero (RZ)
 - Manchester Encoding
 - Differential Manchester Encoding

Coding Scheme

NRZ Encoding

- NRZ
 - ระดับความต่างศักย์จะมีค่าคงที่ในระหว่างช่วงเวลาที่ส่งข้อมูลแต่ละ บิต
- NRZ-L
 - ระดับของสัญญาณขึ้นอยู่กับชนิดหรือสถานะของบิต (0 หรือ 1)
 - กำหนดให้บิต 0 แทนระดับความต่างศักย์สูง(บวก)

าโต 1 แทนระดับความต่างศักย์ต่ำ(ลบ)

NZR-L Encoding Example

• 10100110

305343 – 1/2554

NRZ-I Encoding

- แนวคิดเดียวกับ NRZ-L
- ต่างกันตรงจะมีการผกผันสัญญาณถ้าสัญญาณถัดไปเป็น ของบิต 1
- มีผลทำให้สถานีรับข้อมูลสามารถประสานเวลากับ สัญญาณนาฬิกาของสถานีส่งข้อมูลได้

NZR-L Encoding Example

• 01111101

305343 – 1/2554

NZR-I Encoding Example

• 01111101

RZ Encoding

- ใช้ 3 ค่า(บวก ลบ และศูนย์) ในการเปลี่ยนแต่ละบิต
 - ช่วยเรื่องการประสานเวลาได้
- การแทนบิตใช้ตาม NRZ-L แต่ต่างกันตรงช่วงครึ่งเวลาของแต่ ละช่วงบิต ระดับสัญญาณจะมีค่าเท่ากับศูนย์

305343 - 1/2554

อ้างอิง: รูปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

13

Manchester Encoding

- มีการเปลี่ยนระดับความต่างศักย์ระหว่างกึ่งกลางของช่วง ระยะเวลาที่ส่งข้อมูลแต่ละบิต
- กำหนดให้
 - บิต 0 แทนการเปลี่ยนระดับความต่างศักย์สูง→ ต่ำ
 (จากระดับสัญญาณบวก → ลบ)
 - บิต 1 แทนการเปลี่ยนระดับความต่างศักย์ต่ำ → สูง
 (จากระดับสัญญาณลบ → บวก)

305343 - 1/2554

Manchester Encoding Example

• 10100110

Differential Manchester Encoding

- มีการเปลี่ยนระดับความต่างศักย์ระหว่างกึ่งกลางของช่วง ระยะเวลาที่ส่งข้อมูลแต่ละบิต
- การเริ่มต้นสัญญาณการส่งแต่ละบิตขึ้นอยู่กับระดับสัญญาณ
 เริ่มต้นของแต่ละช่วงเวลาที่ใช้กำหนดสัญญาณบิต
- กำหนดให้
 - บิต 0 แทนการเปลี่ยนระคับความต่างศักย์ ณ จุดเริ่มต้นเวลาที่จะส่ง ผกผันกับระดับความต่างศักย์ของก่อนหน้า
 - บิต 1 แทนการเปลี่ยนระดับความต่างศักย์ต่อจากระดับความต่างศักย์ ของก่อนหน้า

Differential Manchester Encoding Example

• 10100110

305343 – 1/2554

Block Coding

- ต.ย. การเข้ารหัส 4R/5R
 - แทนกลุ่มรหัส 4 บิต ด้วยรหัส 5 บิต
 - สร้างกลุ่มบิตที่เป็นไปได้ทั้งหมดจากจำนวนบิตที่ใช้
 - เลือกกลุ่มบิตแทนที่ที่สามารถประสานเวลาและตรวจหาความ

Block Coding

- เพิ่มประสิทธิภาพของการเข้ารหัสสายสัญญาณ
 - โดยการเพิ่มบิตซ้ำซ้อน ซึ่งทำให้
 - มีการประสานเวลาระหว่างสถานีรับ-ส่งข้อมูล
 - สามารถตรวจจับข้อผิคพลาคได้
- ขั้นตอน
 - 1. แบ่งลำดับบิตเป็นกลุ่ม ๆ ละ m บิต
 - 2. แทนที่กลุ่ม m บิตด้วยรหัสกลุ่ม n บิต
 - 3. เข้ารหัสสายสัญญาณ

Combining n-bit groups into a stream

305343 - 1/2554

อ้างอิง: รูปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

Block Coding

- ต.ย. การเข้ารหัส 4B/5B
 - เข้ารหัสกลุ่มบิตแทนที่ด้วยวิธีการเข้ารหัสสายสัญญาณวิธีใด
 วิธีหนึ่ง เช่น NRZ-I
 - ฝั่งผู้รับก็ดำเนินการแปลงกลับด้วยวิธีการเช่นเดียวกัน

305343 - 1/2554

อ้างอิง: รูปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

20

18

Analog to Digital Conversion

305343 - 1/2554

305343 - 1/2554

อ้างอิง: รปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

21

(Quantization)

Pulse Amplitude Modulation (PAM)

- การกล้ำแอมพลิจูดของพัลส์ (แพม)
 - ใช้หลักการ Sampling ในการสุ่มสัญญาณแอนะล็อกที่ต่อเนื่องตาม ช่วงเวลาที่มีระยะเท่ากัน โดยทำให้ค่าของสัญญาณเป็นค่าไม่ต่อเนื่อง

305343 - 1/2554

อ้างอิง: รปภาพจากหนังสือ Understanding Data Communications and Network ของ Shav W.

22

Pulse Code Modulation (PCM)

- การกล้ำรหัสของพัลส์ (พีซีเอ็ม)
 - คำหนดรหัสให้กับพัลส์ที่ได้จาก PAM ให้เป็นดิจิทัลโดยวิธีการแบ่งนับ

Nyquist Sampling Theorem

อัตราการสู่ม (Sampling rate) ต้องมีค่าอย่างน้อยสองเท่าของความถี่สูงสุด ของสัญญาณที่ต้องการสุ่ม

- เสียงที่ใช้ในการสื่อสารทางโทรศัพท์ มีความถี่สูงสุด 4000 Hz
- อัตราการสุ่ม (s) = sample per second

The Number of Bits per Sample

• จำนวนบิต(n) ที่ใช้สำหรับแต่ละ sample

อัตราบิต (Bit rate) =

25 305343 - 1/2554

Transmission vs. Communication

- Transmission เป็นความรู้เกี่ยวกับการส่งข้อมูล
- ตัวอย่างการสนทนามีการส่งข้อมูลเกิดขึ้นระหว่างคู่สนทนา แต่ ถ้าผู้ส่งสารพูดเร็วเกินไป ผู้ฟังก็ฟังไม่ทัน แสดงการว่าการ สื่อสารจะไม่เกิดขึ้น
- การสื่อสารอิเล็กทรอนิกส์ ก็เช่นเดียวกันกับการสนทนา นั่นคือ สถานีรับข้อมูลต้องเข้าใจข่าวสารที่ได้รับ หมายถึงมีการสื่อสาร เกิดขึ้น

Analog data to Digital signal

305343 - 1/2554

อ้างอิง: รปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

26

Transmission Mode

- การสื่อสัญญาณข้อมูลระหว่างอุปกรณ์ผ่านสายสื่อสาร
 - ส่ง 1 บิต ในหนึ่งช่วงเวลา
 - ส่งเป็นกลุ่มของบิต ในหนึ่งช่วงเวลา
- ภาวะการสื่อสัญญาณข้อมูล
 - Parallel transmission: ส่งกลุ่มบิตในแต่ละหนึ่งเสียงสัญญาณนาฬิกา
 - Serial transmission: ส่งหนึ่งบิตในแต่ละหนึ่งเสียงสัญญาณนาฬิกา

Transmission Mode

29 305343 - 1/2554

Asynchronous Transmission

- บิตข้อมูลจะถูกแบ่งเป็นกลุ่มเล็กๆ (กลุ่มละ 1 ใบต์)
- แต่ละกลุ่มจะเพิ่มบิตบอกสถานะเริ่มต้นและสุดท้าย

Parallel and Serial Transmission

• 01101100

305343 - 1/2554

Asynchronous Transmission Example

- การแสดงตัวเลข 321 ที่หน้าจอคอมพิวเตอร์
- กำหนดให้บิตบอกสถานะ
 - ให้ 0 เป็นสถานะเริ่มต้นการส่งกลุ่มบิต
 - ให้ 1 เป็นสถานะจบการส่งกลุ่มบิต
- จาก extended ASCII code
 - 1 แทนด้วย 00110001
 - 2 แทนด้วย 00110010
 - 3 แทนด้วย 00110011

30

Asynchronous Transmission Example

• สมมติให้การส่งแต่ละตัวเลขเป็นการส่งบิตที่มีนัยสำคัญ น้อยสุดก่อนโดยใช้การเข้ารหัสแบบ NRZ

305343 - 1/2554

Synchronous Transmission

- เป็นการนำส่งบิตข้อมูลไปพร้อมกันคราวละมากๆ
- แต่ละชุดของบิต (เรียกแทนด้วย Data) จะบรรจุอยู่ใน "เฟรมข้อมูล"
- เฟรมข้อมูลจะมีรูปแบบขึ้นกับโพรโทคอลที่ใช้
 - แบบ bit-oriented protocol
 - แบบ character-oriented protocol

305343 - 1/2554

Synchronous Transmission Frame Format

Asynchronous vs. Synchronous **Efficiency**

- สมมติต้องการส่งข้อมูลจำนวน 500 ใบต์ (4,000 บิต)
- Asynchronous: จะต้องเพิ่มบิต start และ stop ในแต่ละ ใบต์ จะได้ข้อมูลที่ต้องส่งทั้งหมค = 5,000 บิต
 - ภาระในการส่งข้อมูลเพิ่มขึ้น =
- Synchronous: สมมติส่วนที่ไม่ใช่ข้อมูลในแต่ละเฟรมมี จำนวน 100 กิต
 - การะในการส่งข้อมูลเพิ่มขึ้น =

34

35