Theory of Computation Regular Expression Part-1

DPP-02

[MSQ]

- 1. Which of the following is/are true?
 - (a) $(a^*b^*)^* = (b^*a^*)^*$
 - (b) $(a + \in)^+ = a^+$
 - (c) $(a + b)^* (ba)^* = (ab)^* (a + b)^*$
 - (d) $(ab + ba)^* = (ab(ab)^* + ba(ba)^*)^*$

[MCQ]

- **2.** Consider the following regular expressions:
 - (I) $a^*b^* + a^*$
 - (II) $(\in + aa^*) (bb^* + \in)$
 - (III) $b^*a^* + a^*b^* + b^*$
 - (IV) aa⁺ bb⁺

Which the following is equivalent to a*b*?

- (a) (I) and (II) only
- (b) (I) only
- (c) (II) and (III) only
- (d) (I) and (IV) only

[MCQ]

- **3.** Which of the following is not correct?
 - (a) $a^*bb^* = a^*b^+$
 - (b) $a^*a^+ = a^+$
 - (c) $a^+a^+=a^+$
 - (d) $\phi^* = \epsilon$

[MSQ]

- **4.** Regular expression can be used in:
 - (a) Lexical Analysis
 - (b) Pattern matching
 - (c) String matching
 - (d) Syntax analysis

[MCQ]

5. Consider the regular expression:

regular expression = $a^*b(a + ba^*)^*$

Above regular expression is equivalent to which of the following below regular expression?

- (a) ba*(bb)*
- (b) $ba^*(a + ba^*b)^*$
- (c) $(b + aa^*b) + (b + aa^*b) (ba^*b + a) (ba^*b + a)^*$
- (d) $a^*b (a + b)^*$

[MCQ]

- **6.** Which of the following statement will generate finite language?
 - (a) PDA with finite stack.
 - (b) Regular expression without kleene star and kleene plus.
 - (c) Regular expression with unary alphabet.
 - (d) Regular expression with binary alphabet.

[MCQ]

- 7. Consider following regular expressions:
 - [I] $(ab)^*a = a(ab)^*$
 - [II] $(bb)^*b^* = b^*$
 - [III] $(b + \in)^+ = b^*$

Which of the following is correct?

- (a) II and III only.
- (b) I and II only.
- (c) All are correct.
- (d) None of these are correct.

[NAT]

8. Consider the string $\left[(ab)^{10} (ab)^7 ((ab)^3)^2 \right]^2$,

the length of the string is _____.

Answer Key

1. (a, c, d)

2. (a)

3. (c)

4. (a, b)

5. (d)

6. (b)

7. (a)

8. (46)

Hints and Solutions

1. (a, c, d)

- (a) $(a^*b^*)^* = \{ \in, a, b, ... \}^*$ $= (a + b)^*$ $(b^*a^*) = \{ \in, a, b, ... \}^*$ $= (a + b)^*$ True
- (b) $(a + \in)^+ = a^+ + \in$ = a^* False
- (c) $(a+b)^*(ba)^* = (a+b)^* \in$ = $(a+b)^*$

It will generate all the strings on alphabet $\{a,b\}$

$$(ab)^* (a + b)^* = \in (a + b)^*$$

= $(a + b)^*$ True

- (d) $\{(ab)(ab)^* + (ba)(ba)^*\}^*$ = $(ab + ba)^*$ True
- 2. (a)

Regular expression = a^*b^*

$$a^* = \epsilon + aa^*$$
$$b^* = \epsilon + bb^*$$

- $a^*b^* + a^* = a^*b^*$
- $a^*b^* + a^* = (\in + aa^*) (bb^* + \in)$ Hence, (a) is correct.

3. (c)

- (a) $a^*bb^* = a^*b^+$ Correct Because $r r^* = r^+$
- (b) $a^*a^+ = a^+$ Correct $r^*r^+ = r^+ = r r^*$ All are equal
- (c) $a^+a^+ = aa^*aa^*$ Incorrect = $(aa)a^*$
- (d) $\phi^* = \in$ Correct

4. (a, b)

Regular expression can be used in pattern matching, lexical analysis, text editing etc.

- 5. (d) $a^*b (a + ba^*)^*$ Put $a^* = \in$ $a^*b (a + b)^*$
- **6.** (b)
 - PDA with finite stack is same as DFA, and DFA can generate finite and infinite language.
 - Regular expression without kleene star(*) always generate finite language.

Note: Kleene plus(+) is an expansion of kleene star(*).

- $a^* = infinite$
- (0+1)* = infinite
- 7. (a)
 - $(ab)^*a = a(ab)^*$ False
 - (bb)* b* = { ∈, b, bb, bbb, bbbb} = b* **True**
 - $(b + \in)^+ = (b^+ + \in) = b^*$ **True**
- 8. (46

$$= \left[(ab)^{10} (ab)^7 ((ab)^3)^2 \right]^2$$
$$= \left((ab)^{17} (ab)^6 \right)^2$$
$$= (ab)^{46}$$

Length of the string = 46.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

^{*} contain minimum string \in .