

ME414 - Estatística para Experimentalistas

Parte 14

Distribuição amostral e Teorema Central do Limite

Estimar uma proporção: Eleições para a prefeitura

- · Quero saber se o candidato A vai ganhar as eleições para prefeito.
- · Quero saber parâmetro populacional p = proporção de pessoas que votam em A.

- Posso esperar o resultado das eleições para saber, ou seja, teríamos as respostas de todas as pessoas da cidade.
- · Posso usar uma amostra para estimar a proporção de votos para A.
- · Quão boa é a estimativa? É precisa?
- · Posso pensar no problema de duas formas: Modo 1 e Modo 2.

- · Cidade com N pessoas.
- $X_i = 1$ se a pessoa i vota em A
- · $X_i = 0$ se a pessoa i não vota em A.
- $\mathbf{X} = (X_1, X_2, \dots, X_N)$: respostas de toda a população (temos no dia da eleição).
- · Média populacional:

· Variância populacional:

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (X_{i} - p)^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (X_{i}^{2} - 2pX_{i} + p^{2})$$

$$= \frac{\sum_{i=1}^{N} X_{i}^{2} - 2p \sum_{i=1}^{N} X_{i} + \sum_{i=1}^{N} p^{2}}{N}$$

$$= \frac{\sum_{i=1}^{N} X_{i} - 2p \sum_{i=1}^{N} X_{i} + \sum_{i=1}^{N} p^{2}}{N}$$

$$= \frac{Np - 2pNp + Np^{2}}{N} = p(1 - p)$$

- p = proporção de pessoas que votam em A na cidade
- $\sigma^2 = p(1-p)$ é a variância da população.
- · Até o dia da eleição, não sabemos p.
- \cdot Coletamos uma amostra aleatória de tamanho n para uma pesquisa eleitoral.
- \hat{p} : proporção de pessoas que votam em A na amostra.
- · Quão boa é a estimativa? É precisa?
- · Se outra pessoa também coleta uma amostra aleatória de tamanho n e calcula \hat{p} teremos o mesmo valor?

$$X = (X_1, X_2, \dots, X_5) = (1, 0, 1, 0, 1)$$

$$p = \frac{\sum_{i=1}^{5} X_i}{5} = \frac{3}{5} = 0.6$$

$$\sigma^2 = \frac{1}{5} \sum_{i=1}^{N} (X_i - p)^2$$

$$= \frac{3 \times (1 - 0.6)^2 + 2 \times (0 - 0.6)^2}{5}$$

$$= 0.24$$

$$= p(1 - p)$$

Gráfico de barras (proporção) dos dados populacionais:

 $N^n = 25$ amostras possíveis.

Primeira pessoa	Segunda pessoa	\hat{p}
1	1	1.0
2	1	0.5
3	1	1.0
4	1	0.5
5	1	1.0
1	1 1 2 2 2 2 2 3 3 3 3 3	0.5
2	2	0.0
3	2	0.5
4	2	0.0
5	2	0.5
1	3	1.0
2	3	0.5
3	3	1.0
4	3 2	0.5
1	<i>5</i> Л	1.0 0.5
2	4	0.0
3	4	0.5
4	4	0.0
5	4	0.5
1	5	1.0
2	5	0.5
3	5	1.0
2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5	5 5 5 5	0.5
5	5	1.0

Distribuição **amostral** de \hat{p} :

```
 P(\hat{p} = x) 
0 0.16
0.5 0.48
1 0.36
 E(\hat{p}) = 0 \times 0.16 + 0.5 \times 0.48 + 1 \times 0.36 = 0.6 = p
 Var(\hat{p}) = E[(\hat{p} - p)^2] 
 = 0.16 \times (0 - 0.6)^2 + 0.48 \times (0.5 - 0.6)^2 + 0.36 \times (1 - 0.6)^2 
 = 0.12 = \frac{0.24}{2} = \frac{p(1 - p)}{n}
```

Distribuição amostral de \hat{p} :

 $N^n = 125$ amostras possíveis.

Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	\hat{p}
1	1	1	1.000
2	1	1	0.667
3	1	1	1.000
4	1	1	0.667
5	1	1	1.000
1	2	1	0.667
2	2	1	0.333
3	2 2 2 3 3 3 3	1	0.667
4	2	1	0.333
5	2	1	0.667
1	3	1	1.000
2	3	1	0.667
3	3	1	1.000
4	3	1	0.667
5		1	1.000
1	4	1	0.667
2	4	1	0.333
3	4	1	0.667
4	4	1	0.333
5	4	1	0.667
1	5	1	1.000
2	5	1	0.667
3	5 5 5 5	1	1.000
4	5	1	0.667
5	5	1	1.000

	Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	\hat{p}
26	1	1	2	0.667
27	2	1	2 2	0.333
28	3	1	2	0.667
29	4	1	2 2	0.333
30	5	1		0.667
31	1	2	2	0.333
32	2	2 2 2	2	0.000
33	3	2	2	0.333
34	4	2	2	0.000
35	5	2 3 3 3 3 3	2	0.333
36	1	3	2	0.667
37	2	3	2	0.333
38	3	3	2 2	0.667
39	4	3		0.333
40	5	3	2	0.667
41	1	4	2 2	0.333
42	2 3	4	2	0.000
43		4	2	0.333
44	4	4	2 2	0.000
45	5	4	2	0.333
46	1	5	2	0.667
47	2 3	5	2 2	0.333
48		5 5 5 5	2	0.667
49	4	5	2 2	0.333
50	5	5	2	0.667

	Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	\hat{p}
51	1	1	3	1.000
52	2	1	3 3	0.667
53	3	1	3	1.000
54	4	1	3	0.667
55	5	1	30 30 30 30 30 30 30 30 30 30 30 30 30 3	1.000
56	1	2	3	0.667
57	2	2	3	0.333
58	3	2	3	0.667
59	4	2	3	0.333
60	5	2	3	0.667
61	1	3 3 3 3	3	1.000
62	2	3	3	0.667
63	3	3	3	1.000
64	4	3	3	0.667
65	5	3	3	1.000
66	1	4	3	0.667
67	2	4	3	0.333
68	3	4	3	0.667
69	4	4	3 3 3	0.333
70	5	4	3	0.667
71	1	5		1.000
72	2	5	3 3	0.667
73	3	5	3	1.000
74	4	5 5	3 3	0.667
75	5	5	3	1.000

	Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	\hat{p}
76	1	1	4	0.667
77	2	1	4	0.333
78	3	1	4	0.667
79	4	1	4	0.333
80	5	1	4	0.667
81	1	2	4	0.333
82	2	2 2 2 2 3 3 3 3 3	4	0.000
83	3	2	4	0.333
84	4	2	4	0.000
85	5	2	4	0.333
86	1	3	4	0.667
87	2	3	4	0.333
88	3	3	4	0.667
89	4	3	4	0.333
90	5		4	0.667
91	1	4	4	0.333
92	2	4	4	0.000
93	3	4	4	0.333
94	4	4	4	0.000
95	5	4	4	0.333
96	1	5	4	0.667
97	2	5	4	0.333
98	3	5 5 5 5	4	0.667
99	4	5	4	0.333
100	5	5	4	0.667

	Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	\hat{p}
101	1	1	5	1.000
102	2	1	5 5	0.667
103	3	1	5	1.000
104	4	1	5	0.667
105	5	1	5	1.000
106	1	2	5 5 5 5 5 5 5	0.667
107	2	2 2 2 2 2 3 3 3 3 3	5	0.333
108	3	2	5	0.667
109	4	2	5	0.333
110	5	2		0.667
111	1	3	5 5 5 5	1.000
112	2	3	5	0.667
113	3	3	5	1.000
114	4	3	5	0.667
115	5		5	1.000
116	1	4	5	0.667
117	2	4	5	0.333
118	3	4	5	0.667
119	4	4	5 5 5 5 5 5	0.333
120	5	4	5	0.667
121	1	5	5	1.000
122	2	5 5 5 5	5 5 5 5	0.667
123	3	5	5	1.000
124	4	5	5	0.667
125	5	5	5	1.000

Distribuição **amostral** de \hat{p} :

$$x P(\hat{p} = x)$$
0 0.064
0.333 0.288
0.667 0.432
1 0.216

$$E(\hat{p}) = 0 \times 0.064 + 0.333 \times 0.288 + 0.667 \times 0.432 + 1 \times 0.216$$

$$= 0.6 = p$$

$$Var(\hat{p}) = E[(\hat{p} - p)^2]$$

$$= 0.08 = \frac{0.24}{3} = \frac{p(1 - p)}{n}$$

Distribuição amostral de \hat{p} :

- · $\mathbf{X} = (X_1, \dots, X_N)$ é fixo
- · Amostra aleatória de tamanho *n*
- \hat{p} é v.a. (pelo processo de amostragem)
- $E(\hat{p}) = p$
- · $Var(\hat{p}) = \frac{p(1-p)}{n}$

${\rm Modo}\, {\rm 1-Exemplo}\, N = 10000000\, {\rm e}\, n = 100$

p=0.6. Distribuição **amostral** de \hat{p} :

Modo 1 - Exemplo $N = 10000000 \, \mathrm{e} \, n = 1000$

p=0.6. Distribuição **amostral** de \hat{p} :

Suponha que a resposta de uma pessoa da cidade sobre se vota ou não no candidato A possa ser representada por uma **variável aleatória**. X que assume o valor 1 com probabilidade p ou 0 com probabilidade 1-p.

$$X \sim Bernoulli(p)$$

$$\mathbb{E}(X) = 1 \times P(X = 1) + 0 \times P(X = 0)$$

$$= 1 \times p + 0 \times (1 - p) = p$$

$$Var(X) = \mathbb{E}[(X - p)^{2}]$$

$$= (1 - p)^{2} \times P(X = 1) + (0 - p)^{2} \times P(X = 0)$$

$$= p(1 - p)^{2} + (1 - p)p^{2}$$

$$= p(1 - p)$$

Distribuição da variável X:

Modo 2 - Exemplo n=2

Todas as combinações possíveis de amostras com n=2 são:

$$(X_1 = 1, X_2 = 1)$$

$$(X_1 = 1, X_2 = 0)$$

$$(X_1 = 1, X_2 = 1)$$
 $(X_1 = 1, X_2 = 0)$ $(X_1 = 0, X_2 = 1)$ $(X_1 = 0, X_2 = 0)$

$$(X_1 = 0, X_2 = 0)$$

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$P(X_1 = i, X_2 = j)$$

$$p^2$$

$$p(1 - p)$$

$$(1-p)p$$

$$(1 - p)^2$$

$$\mathbb{E}(\hat{p}) = 1 \times p^2 + 0.5 \times p(1-p) + 0.5 \times (1-p)p + 0 \times (1-p)^2 = p$$

$$Var(\hat{p}) = \mathbb{E}[(\hat{p} - p)^2]$$

$$= (1-p)^2 \times p^2 + (0.5-p)^2 p(1-p) + (0.5-p)^2 (1-p)p + (0-p)^2 (1-p)^2 = \frac{p(1-p)}{2}$$

Note que:
$$\mathbb{E}(\hat{p}) = p = \mathbb{E}(X)$$
 e $Var(\hat{p}) = \frac{Var(X)}{n}$.

Resultado

Seja X uma v.a. com média μ e variância σ^2 e X_1,\ldots,X_n uma amostra aleatória simples de X.

A média amostral

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

tem as seguintes propriedades:

$$\mathbb{E}(\bar{X}_n) = \mu$$
 e $Var(\bar{X}_n) = \frac{\sigma^2}{n}$.

(propriedade de linearidade da esperança e da variância, esta última em caso de independência)

Ou seja, embora μ seja desconhecido, sabemos que o valor esperado da média amostral é μ .

Além disso, conforme o tamanho amostral aumenta, a imprecisão da média amostral para estimar μ fica cada vez menor, pois $Var(\bar{X}) = \sigma^2/n$ é inversamente proporcional ao tamanho amostral n.

Resultado

Seja X uma v.a. com distribuição de Bernoulli com parâmetro p. Sabe-se que E(X)=p e Var(X)=p(1-p).

A proporção amostral

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

tem as seguintes propriedades:

$$\mathbb{E}(\hat{p}) = p$$
 e $Var(\hat{p}) = \frac{p(1-p)}{n}$.

(propriedade de linearidade da esperança e da variância, esta última em caso de independência)

Ou seja, embora p seja desconhecido, sabemos que o valor esperado da proporção amostral é p.

Além disso, conforme o tamanho amostral aumenta, a imprecisão de \hat{p} para estimar p fica cada vez menor, pois $Var(\hat{p}) = p(1-p)/n$ é inversamente proporcional ao tamanho amostral n.

- $X_i \sim Bernoulli(p)$ é v.a. (o voto ou não em A é considerado uma v.a.)
- · Amostra aleatória de tamanho *n*
- \hat{p} é v.a. (é combinação linear de v.a.'s)
- $E(\hat{p}) = p$
- $Var(\hat{p}) = \frac{p(1-p)}{n}$

Modo 2 - Exemplo n = 100

Modo 2 - Exemplo n = 1000

Resumo dos exemplos

- · Modo 1: repostas são "fixas", com média populacional p e variância populacional p(1-p).
- · Modo 2: respostas são v.a.'s $X \sim Bernoulli(p)$, E(X) = p, Var(X) = p(1-p).
- · Em ambos os casos, a partir do momento que retiro uma amostra aleatória de tamanho n, temos as mesmas propriedades e comportamento para a proporção amostral \hat{p} : $E(\hat{p}) = p$ e $Var(\hat{p}) = \frac{p(1-p)}{n}$

E, conforme n aumenta, vimos nos gráficos que: $\hat{p} \sim \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$

Estimar uma média: Salários

- · Quero saber o salário médio das pessoas de uma certa cidade (parâmetro populacional de interesse).
- Posso usar uma amostra e estimar usando a média amostral.
- · Quão boa é a estimativa? É precisa?
- · Posso pensar no problema de duas formas: Modo 1 e Modo 2.

- · Cidade com N pessoas.
- · X_i é o salário da pessoa i.
- $\mathbf{X} = (X_1, X_2, \dots, X_N)$: respostas de toda a população.
- Média populacional: $\mu = \frac{1}{N} \sum_{i=1}^{N} X_i$
- ' Variância populacional: $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i \mu)^2$

- μ = salário médio da população.
- · σ^2 é a variância da população.
- · Coletamos uma amostra aleatória de tamanho n.
- · $ar{X}$: média salarial na amostra.
- · Quão boa é a estimativa? É precisa?
- · Se outra pessoa também coleta uma amostra aleatória de tamanho n e calcula \bar{X} teremos o mesmo valor?

$$\mathbf{X} = (X_1, X_2, \dots, X_5) = (1000, 2000, 3000, 4000, 5000)$$

$$\mu = \frac{\sum_{i=1}^{5} X_i}{5} = 3000$$

$$\sigma^2 = \frac{1}{5} \sum_{i=1}^{N} (X_i - \mu)^2 = 2000000$$

Gráfico de barras (proporção) dos dados populacionais:

 $N^n = 25$ amostras possíveis.

Primeira pessoa	Segunda pessoa	\bar{X}
1	1	1000
2	1	1500
3	1	2000
4	1	2500
5	1	3000
1	1 2 2 2 2 2 3 3 3 3 3	1500
2	2	2000
3	2	2500
4	2	3000
5	2	3500
1	3	2000
2	3	2500
3	3	3000
4	3	3500
5	3	4000
1	4	2500
2	4	3000
5 1	4	3500 4000
4 5	4	4500
1		3000
2	5	3500
3	5	4000
4	5	4500
2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 5 1 2 3 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	5 5 5 5	5000

Distribuição **amostral** de \bar{X} :

```
xP(\bar{X} = x)10000.0415000.0820000.1225000.1630000.2035000.1640000.1245000.0850000.04
```

$$E(\bar{X}) = 3000 = \mu$$

$$Var(\bar{X}) = E[(\bar{X} - \mu)^2] = 10^6$$

$$= \frac{2000000}{2} = \frac{\sigma^2}{n}$$

Distribuição amostral de $ar{X}$:

 $N^n = 125$ amostras possíveis.

Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	$ar{X}$
1	1	1	1000.000
2	1	1	1333.333
3	1	1	1666.667
4	1	1	2000.000
5	1	1	2333.333
1	2	1	1333.333
2	2	1	1666.667
3	2 2 2	1	2000.000
4	2	1	2333.333
5	2	1	2666.667
1	2 3 3 3 3 3	1	1666.667
2	3	1	2000.000
3	3	1	2333.333
4	3	1	2666.667
5	3	1	3000.000
1	4	1	2000.000
2	4	1	2333.333
2 3	4	1	2666.667
4	4	1	3000.000
5	4	1	3333.333
1	5	1	2333.333
2	5	1	2666.667
3	5	1	3000.000
4	5	1	3333.333
5	5	1	3666.667

	Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	\bar{X}
26	1	1	2	1333.333
27	2	1	2	1666.667
28	3	1	2	2000.000
29	4	1	2	2333.333
30	5	1	2 2	2666.667
31	1	2		1666.667
32	2	2	2	2000.000
33	3	2	2	2333.333
34	4	2	2	2666.667
35	5	2	2	3000.000
36	1	3 3 3 3	2	2000.000
37	2	3	2	2333.333
38	3	3	2	2666.667
39	4	3	2	3000.000
40	5	3	2	3333.333
41	1	4	2	2333.333
42	2	4	2	2666.667
43	3	4	2	3000.000
44	4	4	2	3333.333
45	5	4	2	3666.667
46	1	5	2	2666.667
47	2	5	2	3000.000
48	3	5 5 5	2	3333.333
49	4	5	2	3666.667
50	5	5	2	4000.000

	Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	\bar{X}
51	1	1	3	1666.667
52	2	1	3 3	2000.000
53	3	1	3	2333.333
54	4	1	3	2666.667
55	5	1	3	3000.000
56	1	2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2000.000
57	2	2	3	2333.333
58	3	2	3	2666.667
59	4	2	3	3000.000
60	5	2	3	3333.333
61	1	3	3	2333.333
62	2	3 3 3 3	3	2666.667
63	3	3	3	3000.000
64	4	3	3	3333.333
65	5		3	3666.667
66	1	4	3	2666.667
67	2	4	3	3000.000
68	3	4	3	3333.333
69	4	4	3	3666.667
70	5	4	3	4000.000
71	1	5	3	3000.000
72	2	5	3	3333.333
73	3	5	3 3 3	3666.667
74	4	5 5	3	4000.000
75	5	5	3	4333.333

	Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	$ar{X}$
76 77 78 79 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96	Pessoa amostrada 1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 1	Pessoa amostrada 2 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5	Pessoa amostrada 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\bar{X} 2000.000 2333.333 2666.667 3000.000 3333.333 2666.667 3000.000 3333.333 3666.667 2666.667 4000.000 3333.333 3666.667 4000.000 4333.333 33333333
96 97 98 99 100	2 3 4	5 5 5 5 5	4 4 4 4	3333.333 3666.667 4000.000 4333.333 4666.667

	Pessoa amostrada 1	Pessoa amostrada 2	Pessoa amostrada 3	$ar{X}$
101	1	1	5	2333.333
102	2	1	5	2666.667
103	3	1	5	3000.000
104	4	1	5	3333.333
105	5	1	5	3666.667
106	1	2	5	2666.667
107	2		5	3000.000
108	3	2 2 2	5	3333.333
109	4	2	5	3666.667
110	5	2	5	4000.000
111	1	2 3 3 3 3 3	5	3000.000
112	2	3	5	3333.333
113	3	3	5	3666.667
114	4	3	5	4000.000
115	5		5	4333.333
116	1	4	5	3333.333
117	2 3	4	5	3666.667
118		4	5	4000.000
119	4	4	5	4333.333
120	5	4	5	4666.667
121	1	5	5	3666.667
122	2	5	5	4000.000
123	3	5	5	4333.333
124	4	5 5	5	4666.667
125	5	5	5	5000.000

Distribuição **amostral** de \bar{X} :

```
P(\bar{X} = x)
   \mathcal{X}
  1000
          0.008
1333.333
          0.024
1666.667
          0.048
  2000
          0.080
2333.333
          0.120
2666.667 0.144
  3000
          0.152
3333.333 0.144
3666.667
          0.120
 4000
          0.080
4333.333
          0.048
4666.667
          0.024
  5000
          0.008
```

Distribuição amostral de \bar{X} :

Modo 1

- · $\mathbf{X} = (X_1, \dots, X_N)$ é fixo
- · Amostra aleatória de tamanho *n*
- · \bar{X} é v.a.
- $E(\bar{X}) = \mu$
- $Var(\bar{X}) = \frac{\sigma^2}{n}$

Modo 1 - Exemplo N = 1000000 e n = 100

 $\mu=3000$. Distribuição **amostral** de \bar{X} :

${\rm Modo}\, {\rm 1-Exemplo}\, N = 10000000\, {\rm e}\, n = 1000$

 $\mu=3000$. Distribuição **amostral** de \bar{X} :

Modo 2

Suponha que o salário de uma pessoa possa ser representado por uma variável aleatória uniforme discreta assumindo os valores 1000,2000, 3000, 4000 ou 5000.

$$\mu = \mathbb{E}(X) = \frac{1000 + 2000 + 3000 + 4000 + 5000}{5} = 3000$$

$$\sigma^2 = Var(X) = \frac{1}{5} [(1000 - 3000)^2 + (2000 - 3000)^2 + (3000 - 3000)^2 + (4000 - 3000)^2 + (5000 - 3000)^2]$$

$$= 20000000$$

Modo 2

Distribuição da variável X (do salário de cada indivíduo da população):

Modo 2 - Exemplo n=2

$$\mathbb{E}(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) = E(X) = \mu = 3000$$

$$Var(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} Var(X_i) = \frac{Var(X)}{n} = \frac{\sigma^2}{n} = 1000000$$

(propriedades de linearidade da esperança e variância (a.a.))

Resultado

Seja X uma v.a. com média μ e variância σ^2 e X_1,\ldots,X_n uma amostra aleatória simples de X.

A média amostral

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

tem as seguintes propriedades:

$$\mathbb{E}(\bar{X}_n) = \mu$$
 e $Var(\bar{X}_n) = \frac{\sigma^2}{n}$.

(propriedade de linearidade da esperança e da variância, esta última em caso de independência)

Ou seja, embora μ seja desconhecido, sabemos que o valor esperado da média amostral é μ .

Além disso, conforme o tamanho amostral aumenta, a imprecisão da média amostral para estimar μ fica cada vez menor, pois $Var(\bar{X}) = \sigma^2/n$ é inversamente proporcional ao tamanho amostral n.

Modo 2 - Exemplo n = 100

Modo 2 - Exemplo n=1000

Resultados

Temos uma população com média (proporção) μ (p) e variância σ^2 desconhecida.

Retira-se uma amostra aleatória de tamanho n e calcula-se a média (ou proporção) amostral \bar{X} (ou \hat{p}) para estimar o parâmetro populacional desconhecido μ (ou p).

Temos as propriedades:

$$E(\bar{X}) = \mu \qquad Var(\bar{X}) = \frac{\sigma^2}{n}$$

$$E(\hat{p}) = p \qquad Var(\hat{p}) = \frac{p(1-p)}{n}$$

##

E, conforme n aumenta, pelos gráficos, parece que a distribuição amostral de \bar{X} e \hat{p} se aproxima da normal:

$$\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \qquad \hat{p} \sim \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

Teorema do Limite Central

Temos os resultados:

$$\bar{X}$$
: $\mathbb{E}(\bar{X}) = \mu \ \text{e} \ Var(\bar{X}) = \frac{\sigma^2}{n}$.

$$\hat{p}: \mathbb{E}(\hat{p}) = p \in Var(\hat{p}) = \frac{p(1-p)}{n}.$$

No exemplos, vimos também a distribuição amostral de \bar{X} ou \hat{p} , mas isso só foi possível porque tínhamos informação de todos os valores possíveis na população.

Os exemplos anteriores foram casos hipotéticos apenas para demonstrar como \bar{X} e \hat{p} se comportam quando realizamos a amostragem.

Na prática, não teremos informações suficientes para de fato descrevermos de fato a distribuição de \bar{X} e \hat{p} (se tivermos, nem é preciso fazer amostragem!)

Teorema do Limite Central

Resultado

- · Para uma amostra aleatória X_1, \ldots, X_n coletada de uma população com média μ e variância σ^2
- · a distribuição amostral de \bar{X}_n aproxima-se de uma **distribuição Normal** de média μ e variância $\frac{\sigma^2}{n}$, quando n for suficientemente grande:

$$\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

$$Z = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

Teorema do Limite Central

Exemplo

Seja X_1, \ldots, X_n uma amostra aleatória de tamanho n tal que $X \sim Exp(2)$:

$$f_{X_i}(x) = 2e^{-2x}, \qquad \text{para } x \ge 0$$

Então
$$\mathbb{E}(X_i) = \frac{1}{2} e Var(X_i) = \frac{1}{4}$$
.

Suponha que X_i modela o tempo de vida de um transistor em horas. Os tempos de vida de 100 transistores são coletados. Desejamos estudar a variável aleatória \bar{X}_{100} (média amostral de uma amostra de tamanho 100).

Sabemos:

$$\mathbb{E}(\bar{X}_{100}) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{100} X_i\right) = \frac{1}{n}\sum_{i=1}^{100} \mathbb{E}(X_i) = \frac{1}{2}$$

Exemplo

$$Var(\bar{X}_{100}) = \frac{1/4}{100} = \frac{1}{400}$$

Pelo TLC, temos que:
$$\bar{X}_n \sim N\left(\frac{1}{2}, \frac{1}{400}\right)$$

X = resultado obtido no lançamento de um dado honesto.

$$x$$
 1 2 3 4 5 6 $p(x) = P(X = x) + \frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$

$$\mathbb{E}(X) = \frac{1}{6} \times (1 + 2 + 3 + 4 + 5 + 6) = \frac{21}{6} = 3.5$$

$$Var(X) = \frac{1}{6}[(1-3.5)^2 + (2-3.5)^2 + \dots + (6-3.5)^2] = \frac{17.5}{6} = 2.92$$

- $\cdot X_i$: resultado do i-ésimo lançamento de um dado honesto.
- · X_i tem distribuição uniforme discreta.

•
$$\mu = \mathbb{E}(X_i) = 3.5$$
 e $\sigma^2 = Var(X_i) = 2.92$

Se temos uma amostra aleatória simples de tamanho $n: X_1, X_2, \ldots, X_n$, pelo TLC sabemos que a distribuição amostral de \bar{X}_n é aproximadamente Normal $\left(3.5, \frac{2.92}{n}\right)$.

O primeiro histograma a seguir mostra o resultado de 100000 repetições do seguinte experimento: observar o resultado do lançamento de 1 dado. Repare que é muito próximo de uma distribuição uniforme discreta (chance 1/6 para cada resultado).

O segundo histograma mostra o resultado de 100000 repetições do seguinte experimento: observar a média do lançamento de 2 dados.

O último histograma mostra o resultado de 100000 repetições do seguinte experimento: observar a média do lançamento de 100 dados.

Repare que conforme o número de dados (tamanho amostral) aumenta, a distribuição da média amostral se aproxima da distribuição normal com média 3.5 e variância cada vez menor (2.92/n).

Teorema do Limite Central (TLC)

Você pode verificar o comportamento de $ar{X}$ para várias distribuições de X:

TCL para proporções TCL para médias

Aproximação da Binomial pela Normal

Aproximação da Binomial pela Normal

Consideremos uma população em que a proporção de indivíduos portadores de uma certa característica seja p.

$$X_i = \begin{cases} 1, & \text{se o indivíduo i possui a característica} \\ 0, & \text{caso contrário} \end{cases}$$

Veja que $X_i \sim Bernoulli(p)$; i = 1, 2, ..., n.

Se as observações são independentes: $S_n = X_1 + ... + X_n \sim Bin(n, p)$.

Após a coleta de uma amostra aleatória simples de n indivíduos, podemos considerar que um estimador de p é dado por:

$$\hat{p} = \frac{S_n}{n}$$
 (média amostral).

Aproximação da Binomial pela Normal

Utilizando a distribuição exata (n pequeno):

$$P\left(\widehat{p} = \frac{k}{n}\right) = P\left(\frac{S_n}{n} = \frac{k}{n}\right) = P\left(S_n = k\right) = \binom{n}{k} p^k (1-p)^{n-k},$$

para k = 0, 1, ..., n.

Utilizando a aproximação para a Normal (n grande):

$$\widehat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

Exemplo

Se p for a proporção de fumantes no estado de SP (p=0.2) e tivermos coletado uma amostra aleatória simples de 500 indivíduos:

$$X_i = \begin{cases} 1, & \text{se o indivíduo i \'e fumante} \\ 0, & \text{caso contr\'ario} \end{cases}$$

Qual a probabilidade de que termos observado não mais que 25% de fumantes na amostra?

O estimador de p é: $\hat{p} = \frac{1}{500} \sum_{i=1}^{500} X_i$.

Pela aproximação Normal, $\hat{p} \sim N\left(0.2, \frac{0.2 \times 0.8}{500}\right) = N\left(0.2, 0.00032\right)$

$$P(\hat{p} \le 0.25) = P(Z \le 2.795) = \Phi(2.795) = 0.9974$$

Aproximação da Binomial pela Normal

Se
$$\widehat{p} = \frac{S_n}{n} \implies S_n = n\widehat{p}$$
.

Quando n é grande o suficiente: $\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$

Nesse caso, qual a distribuição de S_n ?

Vimos que
$$S_n = X_1 + ... + X_n \sim Bin(n, p)$$

Pelas propriedades da distribuição Normal:

$$S_n = n\widehat{p} \sim N(np, np(1-p))$$

Portanto, quando n é grande, $Bin(n, p) \approx N(np, np(1 - p))$

Exemplo

Seja $X \sim Bin(100, 0.4)$.

Qual a probabilidade de X ser menor ou igual a 50?

Sabemos que:

$$E(X) = 100 \times 0.4 = 40$$

$$Var(X) = 100 \times 0.4 \times 0.6 = 24$$

Como n é grande, podemos usar a aproximação $X \approx N(40, 24)$. Portanto,

$$P(X \le 50) = P\left(Z \le \frac{50 - 40}{\sqrt{24}}\right) \approx \Phi\left(\frac{10}{\sqrt{24}}\right) = \Phi(2.04) \approx 0.9793$$

Fundamentos de Inferência

Introdução

Um dos principais objetivos da Estatística é tirar conclusões a partir dos dados.

Dados em geral consistem de uma amostra de elementos de uma população de interesse.

Usar a amostra para tirar conclusões sobre a população.

Quão confiável será utilizar a informação obtida apenas de uma amostra para concluir algo sobre a população?

Introdução

População: todos os elementos ou resultados de um problema que está sendo estudado.

Amostra: subconjunto da população de interesse.

Inferência Estatística

Variável: Característica numérica do resultado de um experimento.

Parâmetros: Característica numérica (desconhecida) da distribuição dos elementos da população.

Estimador/Estatística: Função da amostra, construída com a finalidade de representar, ou estimar um parâmetro de interesse na população.

Estimativa: Valor numérico que um estimador assume para uma dada amostra.

Erro amostral: é a diferença entre um estimador e o parâmetro que se quer estimar.

Inferência Estatística

Estatística

Seja X_1, \ldots, X_n uma amostra e

$$T = f(X_1, \dots, X_n)$$

é uma estatística.

Exemplos:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i = \frac{1}{n} (X_1 + \dots + X_n)$$

$$X_{(1)} = min\{X_1, \dots, X_n\} \text{ ou } X_{(n)} = max\{X_1, \dots, X_n\}$$

· $X_{(i)}$ é o i-ésimo valor da amostra ordenada

Note que uma estatística é uma função que em uma determinada amostra assume um valor específico (estimativa).

Estatística

Para que serve uma estatística?

Para "estimar" características de uma população.

População:

- · Média μ
- · Variância σ^2

Amostra:

· Média Amostral

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

· Variância Amostral

$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Exemplo

Temos interesse em saber a média e a variância da altura dos brasileiros: μ e σ^2 .

Solução 1: Medir a altura de todos os brasileiros.

Solução 2: Selecionar de forma aleatória alguns brasileiros (amostra), analisá-la e inferir propriedades para toda a população.

Parâmetro

- · Cada quantidade de interesse (como μ e σ^2 no exemplo anterior) é chamada de parâmetro da população.
- · Para apresentar uma estimativa de um parâmetro ($\hat{\mu}$ e $\hat{\sigma}^2$), devemos escolher uma estatística (T).
- \cdot Note que da maneira que o plano amostral foi executado (amostra aleatória simples), a estatística T é uma variável aleatória, visto que cada vez que executarmos o plano amostral poderemos obter resultados diversos.
- · Portanto, a estatística T possui uma distribuição de probabilidade, chamada de **distribuição amostral** de T.

Distribuição amostral da estatística usada para estimar o parâmetro de interesse

Leituras

- · Ross: capítulo 7.
- · OpenIntro: seção 4.1.
- · Magalhães: capítulo 7.

Slides produzidos pelos professores:

- · Samara Kiihl
- · Tatiana Benaglia
- · Benilton Carvalho