1	Cardinal d'un ensemble fini.			
	1.1	Cardinal d'un ensemble, d'une partie	1	
	1.2	Cardinal et réunion.	2	
	1.3	Cardinal et produit cartésien.	3	
	1.4	Cardinal et applications entre ensembles finis	3	
2	Listes et combinaisons.			
	2.1	p-uplets d'un ensemble fini.	4	
	2.2	Parties d'un ensemble fini	5	
E	Exercices			

1 Cardinal d'un ensemble fini.

1.1 Cardinal d'un ensemble, d'une partie.

Définition 1 (point de vue naïf).

Soit E un ensemble non vide. Il est dit fini s'il a un nombre fini d'éléments.

Ce nombre est appelé cardinal de E et noté |E|, ou #E, ou $\operatorname{Card}(E)$.

On pose que l'ensemble vide est fini et que son cardinal est 0.

Par exemple, Card $(\{\bigstar, \blacktriangledown, \Box\}) = 3$ et pour $n \in \mathbb{N}^*$, $|\mathbb{U}_n| = n$.

Si a et b sont deux entiers relatifs avec $a \leq b$, Card([a, b]) = .

Proposition 2 (La partie et le tout).

Soit E un ensemble fini et A une partie de E.

- Toute partie A de E est un ensemble fini et $|A| \leq |E|$.
- ullet Si A et B sont des parties de E, alors

$$A = B \quad \Longleftrightarrow \quad \left\{ \begin{array}{l} A \subset B \\ |A| = |B| \end{array} \right.$$

Ce résultat est admis, faute de définition suffisamment solide pour les ensembles finis et leurs cardinaux. Le slogan derrière l'implication = : si la partie est aussi grande que le tout, alors elle est égale au tout.

1.2 Cardinal et réunion.

La proposition suivante est admise sans démonstration. Après, promis, on se met au travail.

Proposition 3 (Réunion de parties disjointes).

Soit E un ensemble fini et A et B deux parties de E disjointes $(A \cap B = \emptyset)$; alors la partie $A \cup B$ est finie et a pour cardinal

$$|A \cup B| = |A| + |B|.$$

Plus généralement, pour $n \in \mathbb{N}^*$, si $A_1, \ldots A_n$ n parties d'un ensemble fini E, deux à deux disjointes, alors, leur réunion est un ensemble fini de cardinal

$$\left| \bigcup_{k=1}^{n} A_k \right| = \sum_{k=1}^{n} |A_k|.$$

Dans le cas où les ensembles ci-dessus sont de même cardinal, on reformule ainsi :

« Le cardinal de la réunion de n ensembles disjoints, tous de cardinal p, est de cardinal np. »

L'énoncé précédent est appelé principe du berger: dans un troupeau de n brebis, il y a 4n pattes de brebis.

Proposition 4 (Cardinal du complémentaire).

Soit E un ensemble fini et soient A et B deux parties de E . Alors

$$|A \setminus B| = |A| - |A \cap B|.$$

Notamment, le complémentaire de A dans E a pour cardinal $|\overline{A}| = |E \setminus A| = |E| - |A|$.

Proposition 5 (Réunion de parties quelconques).

Soit E un ensemble fini et A et B deux parties de E. La partie finie $A \cup B$ a pour cardinal

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Exemple 6.

Compter tous les couples d'entiers (i,j) de $[1,n]^2$ tels que $i \geq j$.

Exemple 7 (Formule du crible pour trois parties).

Soient A, B, C trois parties d'un ensemble fini. Justifier que

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$

1.3 Cardinal et produit cartésien.

Rappel : si A_1, \ldots, A_p sont p ensembles, leur $produit \ cart\'esien$, ensemble de p-uplets, est défini par

$$A_1 \times A_2 \times \ldots \times A_p = \{(a_1, \ldots, a_p), \quad a_1 \in A_1, \ldots, a_p \in A_p\}.$$

Proposition 8 (Cardinal d'un produit cartésien).

• Soient A et B deux ensembles finis. Leur produit cartésien $A \times B = \{(x,y) \mid x \in A, y \in B\}$ est un ensemble fini, de cardinal

$$|A \times B| = |A| \cdot |B|.$$

• Plus généralement, si $A_1, A_2, \dots A_p$ sont p ensembles finis $(p \in \mathbb{N}^*)$. Alors

$$|A_1 \times A_2 \times \dots A_p| = \prod_{k=1}^p |A_k|.$$

1.4 Cardinal et applications entre ensembles finis.

Proposition 9.

Soient E et F deux ensembles finis et $f: E \to F$ une application. Alors,

- 1. Si f est injective, alors $|E| \leq |F|$.
- 2. Si f est surjective, alors $|E| \ge |F|$.

Corollaire 10 (Principe des tiroirs).

Soient E et F deux ensembles finis. Si |E| > |F|, alors il n'existe pas d'injection de E vers F.

« Lorsqu'on range des chaussettes dans des tiroirs, s'il y a (strictement) plus de chaussettes que de tiroirs, alors au moins un tiroir contiendra plus de deux chaussettes. »

Proposition 11 (Caractérisation de la bijectivité à l'aide du cardinal).

Soit E et F deux ensembles finis et une application $f: E \to F$. Alors

1)
$$f$$
 est bijective \iff $\left\{ \begin{array}{ll} f \text{ est injective} \\ |E| = |F|. \end{array} \right.$ 2) f est bijective \iff $\left\{ \begin{array}{ll} f \text{ est surjective} \\ |E| = |F|. \end{array} \right.$

Proposition 12 (Compter les applications de E dans F).

L'ensemble des applications de E vers F (finis), noté F^E est un ensemble fini et son cardinal est $|F^E| = |F|^{|E|}.$

2 Listes et combinaisons.

Lorsqu'on voudra dénombrer (ou *compter*) des objets, on essaiera de modéliser la situation à l'aide d'objets mathématiques connus, appartenant à des ensembles dont on connaît le cardinal. Les objets qui seront utilisés sont essentiellement de deux types : les <u>p-uplets</u>, et les <u>parties à p éléments</u>. Avant de passer aux résultats de dénombrement proprement dit, on fait ci-dessous quelques rappels, et on introduit les mots *listes* et *combinaisons*, utilisés en combinatoire.

Définition 13 (vocabulaire spécifique au dénombrement).

Soit E un ensemble et p un entier naturel non nul.

Un élément de E^p , c-à-d un p-uplet (x_1, \ldots, x_p) d'éléments de E peut être appelé p-liste de E.

Dans un p-uplet, (x_1, \ldots, x_p) de E^p , certaines coordonnées peuvent être égales. De plus, l'ordre d'écriture des coordonnées est primordial. Ainsi,

(1,2,3,3,2) est un 5-uplet de \mathbb{N} (une 5-liste), différent de (1,2,2,3,3).

Définition 14 (vocabulaire spécifique au dénombrement).

Soit E un ensemble et p un entier naturel.

Une partie de E à p éléments $\{x_1, \ldots, x_p\}$ pourra être appelée p-combinaison de E.

L'ensemble $\{1, 2, 4, 4\}$ est égal à l'ensemble $\{1, 2, 4\}$. C'est donc une 3-combinaison de \mathbb{N} .

Lorsqu'on écrira que $\{x_1, \ldots, x_p\}$ est une p-combinaison de E, p sera alors le cardinal de E: pour une telle écriture, les x_i sont forcément deux à deux distincts.

Dans l'écriture $\{x_1, \ldots, x_p\}$, l'ordre d'écriture des x_i n'a aucune importance :

 $\{1,2,3\}$ et $\{3,2,1\}$ sont la même 3-combinaison.

2.1 p-uplets d'un ensemble fini.

Proposition 15 (Compter les p-uplets d'éléments de E).

Soit E un ensemble fini de cardinal n et un entier naturel non nul p.

Le nombre de p-uplets d'éléments de E est n^p .

Soit E un ensemble. On s'intéresse dans ce paragraphe aux p-uplets d'éléments de E distincts deux à deux. Ainsi, un p-uplet $(x_1, \ldots, x_p) \in E^p$ est un tel p-uplet si

$$\forall i, j \in [1, p] \quad i \neq j \Longrightarrow x_i \neq x_j$$

Ces p-uplets (ou p-listes) particuliers sont parfois désignés comme des p-arrangements de E. Ainsi, la liste (1,5,3) est un 3-arrangement de \mathbb{N} , (1,5,5) n'en est pas un.

Proposition 16 (Compter les p-uplets d'éléments distincts).

Soit E un ensemble fini de cardinal n et un entier naturel non nul p.

Le nombre de p-uplets d'éléments de E deux à deux distincts est

$$n(n-1)\dots(n-p+1) = \begin{cases} \frac{n!}{(n-p)!} & \text{si} \quad p \le n \\ 0 & \text{si} \quad p > n. \end{cases}$$

Si besoin : une proposition de notation pour l'ensemble des p-arrangements d'un ensemble $E: \mathcal{A}_p(E)$. Le résultat principal de la proposition ci-dessus peut alors se récrire ainsi :

si E est un ensemble fini de cardinal n, et $p \in [0, n]$, alors $|\mathcal{A}_p(E)| = \frac{n!}{(n-p)!}$

Corollaire 17 (Compter les injections, les bijections).

Soient E et F deux ensembles finis de cardinaux respectifs p et n. On suppose $p \leq n$.

Le nombre d'applications injectives allant de E dans F est $\frac{n!}{(n-p)!}$

Il existe donc n! bijections définies entre deux ensembles de même cardinal n.

En particulier, si E est un ensemble fini de cardinal n, son groupe symétrique (le groupe de ses permutations) est de cardinal n!

2.2 Parties d'un ensemble fini.

Proposition 18 (Compter les parties d'un ensemble fini).

Soit E un ensemble fini de cardinal n. Le nombre de parties de E vaut 2^n .

Le résultat peut se récrire ainsi : si E est un ensemble fini, $|\mathcal{P}(E)| = 2^{|E|}$

Rappel: On avait défini le coefficient binomial $\binom{n}{p}$ comme le quotient $\frac{n!}{p!(n-p)!}$ (cas non dégénérés) et prouvé que c'est un entier. Il est temps de comprendre pourquoi il se lit « p parmi n ».

5

Proposition 19 (Compter les parties à p éléments d'un ensemble fini).

Soient E un ensemble fini de cardinal n, et p un entier naturel.

Le nombre de parties de E ayant p éléments est $\binom{n}{p}$.

Si besoin : une proposition de notation pour l'ensemble des parties à p éléments d'un ensemble $E:\mathcal{P}_p(E)$.

Le résultat principal de la proposition ci-dessus peut se récrire ainsi :

si
$$E$$
 est un ensemble fini de cardinal n , et $p \in \mathbb{N}$, alors $|\mathcal{P}_p(E)| = \binom{n}{p}$

On donne pour finir une preuve combinatoire des formules ci-dessous.

Proposition 20.

$$\forall p \in \mathbb{N} \, \binom{n}{p} = \binom{n}{n-p}, \qquad \forall p \in \mathbb{N}^* \, \binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}, \qquad \forall p \in \mathbb{N} \, \binom{n+1}{p+1} = \binom{n}{p+1} + \binom{n}{p}.$$
 (symétrie) (formule sans nom) (formule de Pascal)

Et pourquoi ne pas aussi poser un regard combinatoire sur la formule du binôme... qui devient alors (presque) une évidence : pour $(a,b) \in \mathbb{C}^2$ et $n \in \mathbb{N}$,

$$(a+b)^n = (a+b) \times (a+b) \times (a+b) \times \dots \times (a+b) = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Écrire un terme du développement, c'est choisir a ou b dans chacune des n boîtes.

La question est de savoir, pour k donné, combien de fois on va trouver a^kb^{n-k} en développant tout?

Réponse : il y a
$$\binom{n}{k}$$
 façons de choisir k fois le terme a (et donc $n-k$ fois b)...

Et si on augmente le nombre de termes, à quoi ressemble la formule du multinôme de Newton? Pour $p \in \mathbb{N}^*$ et a_1, \ldots, a_p des nombres complexes, on a

$$(a_1 + \dots, a_p)^n = \sum_{k_1 + \dots + k_p = n} \binom{n}{k_1, \dots, k_p} a_1^{k_1} \cdots a_p^{k_p}$$

Que vaut le coefficient multinomial $\binom{n}{k_1,\dots,k_p}$ pour un p-uplet (k_1,\dots,k_p) d'entiers naturels qui somment à n? Choisir un tel p-uplet, c'est

- 1. Choisir $k_1 \longrightarrow \binom{n}{k_1}$ choix
- 2. Pour chaque valeur de k_1 , on a $\binom{n-k_1}{k_2}$ choix pour $k_2 \longrightarrow \binom{n}{k_1} \times \binom{n-k_1}{k_2}$ choix pour (k_1, k_2) 3. Itérons, pour chaque p-1-uplet (k_1, \ldots, k_{p-1}) , on a $\binom{n-(k_1+\cdots+k_{p-1})}{k_p}$ choix pour $k_p \longrightarrow \binom{n}{k_1} \times \binom{n-k_1}{k_2} \cdots \binom{n-(k_1+\cdots+k_{p-1})}{k_p}$ choix pour (k_1, \ldots, k_p)

Évidemment, il faudrait justifier correctement ce qui précède et notamment l'écriture de produits avec celle d'union, de principes des bergers, etc... On se contentera ici de ce qui est écrit. On a finalement

$$\binom{n}{k_1,\ldots,k_p} = \frac{n!}{k_1!(n-k_1)!} \times \frac{(n-k_1)!}{k_2!(n-(k_1+k_2))!} \cdots \frac{(n-(k_1+\cdots+k_{p-1}))!}{k_p!(n-n)!} = \frac{n!}{k_1!k_2!\cdots k_p!}.$$

Exercices

21.1 [$\Diamond\Diamond\Diamond$]

A Reuste-sur-Linuxe, charmant village francilien, il y a 52 célibataires : 20 femmes et 32 hommes. Combien de nouveaux couples hétérosexuels peuvent être formés dans le village? De couples homosexuels?

21.2 $[\phi \diamondsuit \diamondsuit]$ A l'entrée d'un immeuble, on dispose d'un clavier de 12 touches : trois lettres A, B et C, et les neuf chiffres de 1 à 9. Le code d'ouverture de la porte est composé d'une lettre suivie d'un nombre de quatre chiffres. Par exemple B2923.

- 1. Combien existe-t-il de codes différents?
- 2. Combien existe-t-il de codes comportant au moins une fois le chiffre 7?
- 3. Combien existe-t-il de codes pour lesquels tous les chiffres sont pairs?
- 4. Combien existe-t-il de codes pour lesquels les quatres chiffres sont différents?

21.3 $[\phi \diamondsuit \diamondsuit]$ Mes voisins font la fête et c'est l'heure de trinquer. J'entends 78 tintements de verres. Combien sont-ils?

21.4 $[\blacklozenge \blacklozenge \diamondsuit]$ Combien d'anagrammes ont les mots MATHS, COLLE, et ABRACADABRA?

21.5 $[\phi \phi \diamondsuit]$ On dispose de 8 professeurs, à répartir dans 4 écoles.

Combien de répartitions sont possibles?

Et combien si on impose deux professeurs par école?

- - 1. Rappeler le nombre de parties de E.
 - 2. Pour $k \in [0, n]$, rappeler combien il existe de parties de E ayant k éléments.
 - 3. Sait-on retrouver le résultat de la question 1 en connaissant celui de la question 2?
- [21.7] $[\spadesuit \spadesuit \diamondsuit]$ Soit E un ensemble de cardinal $n \in \mathbb{N}^*$.
 - 1. Combien existe-t-il de couples (A, x) avec A une partie de E et x un élément de E?
 - 2. Combien existe-t-il de couples (A, x) avec A une partie de E et x un élément de A?

21.8 $[\phi \diamondsuit \diamondsuit]$ Soit $n \ge 1$. En développant $(1-1)^n$, démontrer qu'un ensemble E de cardinal n a autant de parties de cardinal pair que de parties de cardinal impair.

21.9 [♦♦♦] 112eme et dernier exercice de la banque CCINP.

Soit $n \in \mathbb{N}^*$ et E un ensemble possédant n éléments. On désigne par $\mathcal{P}(E)$ l'ensemble des parties de E.

- 1. Déterminer le nombre a de couples $(A, B) \in (\mathcal{P}(E))^2$ tels que $A \subset B$.
- 2. Déterminer le nombre b de couples $(A,B) \in (\mathcal{P}(E))^2$ tels que $A \cap B = \emptyset$.
- 3. Déterminer le nombre c de triplets $(A, B, C) \in (\mathcal{P}(E))^3$ tels que A, B et C soient deux à deux disjoints et vérifient $A \cup B \cup C = E$.

Exprimer en fonction de n les sommes

$$\sum_{X\in\mathcal{P}(E)}1, \qquad \sum_{X\in\mathcal{P}(E)}|X|, \qquad \sum_{(X,Y)\in(\mathcal{P}(E))^2}|X\cap Y|, \qquad \sum_{(X,Y)\in(\mathcal{P}(E))^2}|X\cup Y|.$$

21.11 [♦♦♦]

Soit G un groupe fini de cardinal pair. On travaille en notation multiplicative et on note e le neutre du groupe. On souhaite prouver l'existence d'un élément x de G tel que $x^2 = e$ et tel que $x \neq e$. On définit l'ensemble

$$E = \left\{ x \in G \mid x^2 \neq e \right\}.$$

1. On définit sur E la relation \sim par

$$\forall (x,y) \in E^2 \quad x \sim y \iff (x = y \text{ ou } x = y^{-1}).$$

Démontrer que \sim est une relation d'équivalence sur E.

2. Conclure.

Soit (G, \star) un groupe fini et H un sous-groupe de G; on veut montrer que son cardinal divise celui de G. Pour un élément x de G fixé, on note

$$x \star H = \{x \star h \mid h \in H\}.$$

On note aussi \mathcal{R} la relation binaire sur G définie par

$$\forall (x,y) \in G^2 \qquad x \mathcal{R} \ y \iff x^{-1} \star y \in H.$$

- 1. Soit $x \in G$. Démontrer que l'ensemble $x \star H$ a le même cardinal que H.
- 2. Démontrer que \mathcal{R} est une relation d'équivalence sur G.
- 3. Soit $x \in G$. Démontrer que sa classe d'équivalence pour la relation \mathscr{R} est $x \star H$.
- 4. Conclure.

21.13 [$\spadesuit \spadesuit \spadesuit$] Formule de Vandermonde

 $\overline{\text{Soient}}(p,q,n) \in \mathbb{N}^3$. Proposer une démonstration combinatoire de l'identité ci-dessous.

$$\sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k} = \binom{p+q}{n}.$$

$21.14 \quad [\spadesuit \spadesuit \diamondsuit] \text{ Soit } (n,p) \in (\mathbb{N}^*)^2.$

Combien y a-t-il d'applications strictement croissantes de $[\![1,p]\!]$ dans $[\![1,n]\!]$?

21.15 $[\spadesuit \spadesuit \spadesuit]$ Soient $n \in \mathbb{N}^*$ et $p \in \mathbb{N}$. Déterminer le nombre de solutions dans $\{0,1\}^n$ à l'équation

$$x_1 + x_2 + \dots + x_n = p$$

21.16 $[\phi \phi \phi]$ Soient $n \in \mathbb{N}^*$. Combien y a-t-il de surjections de [1, n+1] dans [1, n]?

21.17 $[\spadesuit \spadesuit \spadesuit]$ Soit E un ensemble à n éléments, où n est un entier supérieur à 2.

Combien existe-t-il de fonctions $f: E \to E$ telles que Card(Im(f)) = n - 1?