Individual based models in movement ecology

Animal Movement PhD-course, SLU Ekenäs Herrgård 4-8 September, 2023

What is a model?

Ecological models

Forward approach: mathematical models

Aim: to understand causal relations in a general level

Ecological mechanisms

Observed/predicted patterns

Inverse approach: statistical models

Aim: to find factors that influence observed data

Mathematical models

Mathematical models

What is the population growth dynamics once there are limited resources?

How is the dynamics of a predator-prey system?

Mathematical models

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

$$\frac{dN}{dt} = \alpha N - \beta N P$$

$$\frac{dP}{dt} = \sigma NP - \gamma P$$

Gotelli, A primer of ecology, 2001

Individuals/agents

Movement Behavior Biology

Space

Models Simulations "Rules"

Ecological questions Conservation strategies

- Individual variation
- Variability in space
- Life history details
- Behavior and phenotipic variation
- Experience and learning
- Genetics and evolution
- Complexity and pattern emergence

- Random walk model
- Population model
- Species interaction model

Lévy patterns

Lévy patterns

log P(ℓ)

scale free

X

Lévy patterns

Optimizing the success

of random searches

G. M. Viswanathan*†‡, Sergey V. Buldyrev*, Shlomo Havlin*§, M. G. E. da Luz∥¶, E. P. Raposo∥# & H. Eugene Stanley*

- → Predator-prey interactions are ignored
- → Learning is minimized
- → Interaction among individuals are ignored (one individual simulated at a time)

Environment:

Movement:

- radius of detection, r_d

(i) are there targets inside the radius?

Movement:

- radius of detection, r_d
- (i) are there targets inside the radius?
- (ii) chose of move length and direction

Which is the movement strategy that maximizes the search efficiency?

In each kind of environment?

Results:

Scarce environments: µ ≈ 2

Dense environments: $\mu \rightarrow 3$

NINA

Oxyrrhis marina (Bartumeus et al., 2003)

Apis mellifera (Reynolds et al., 2007a, b)

Makaira nigricans e outros predadores marinhos (Humphries et al., 2010; Sims et al., 2008, 2012; Hays et al., 2012)

Drosophila melanogaster (Reynolds e Frye, 2007)

Diomedea exulans (Humphries et al., 2012)

NINA

BioDIM - Biologically scaled Dispersal Model

Explicit movement!

Movement behavior

Groups

Routine movement

Movement behavior

Routine movement

Individuals dispersing

Dispersal movement

Landscape perspective

Binary landscape

Landscape perspective

Binary landscape

Golden lion tamarins can cross ~100m in matrix

Interaction among agents

Group

Individuals dispersing

Reproduction

Mortality

Simulation Step: 1 week

10 years of simulation

Which fragments are connected?

Movement simulation

- Real data
- Modeled data

Bascompte & Jordano 2007 Ann. Rev. Ecol. Evol.

Ricardo P. Campos Laboratório de Ecologia de Plantas Universidade Federal do Paraná

Bascompte & Jordano 2007 Ann. Rev. Ecol. Evol.

Ricardo P. Campos Laboratório de Ecologia de Plantas Universidade Federal do Paraná

The effect of space in plant—animal mutualistic networks: insights from a simulation study

Space Movement Space Animal behavior

Bascompte & Jordano 2007 Ann. Rev. Ecol. Evol.

WW'

Individuals/agents

Movement

Behavior

Biology

Individuals/agents

Movement Behavior Biology

- Decision scale
- Fruit consumption
- Time stopped
- Gut retention time
- Foraging: 5 h/day
- Fruit regrowth

Individuals/agents

Movement Behavior Biology

Frugivory process
Reconstruction of interaction networks

Day = 1; Time = 1

NINA

0

Day = 1; Time = 1

Hagen et al. 2012 Adv. Ecol. Research

Juan Manuel Morales¹*, Daniel García², Daniel Martínez², Javier Rodriguez-Pérez², José Manuel Herrera²¤

Juan Manuel Morales¹*, Daniel García², Daniel Manuel Herrera²¤

Juan Manuel Morales¹*, Daniel García², Daniel Martínez², Javier Rodriguez-Pérez², José Manuel Herrera²¤

Juan Manuel Morales¹*, Daniel García², Daniel Martínez², Javier Rodriguez-Pérez², José Manuel Herrera²¤

Frugivore Be A Multi-Spec

Juan Manuel Morales¹ Manuel Herrera^{2¤}

Literature

Donald L. DeAngelis Louis J. Gross *Editors*

Individual-Based Models and Approaches on Ecology Individual-based Modeling and Ecology

g-r May 17, 2004

Volker Grimm Steven F. Railsback

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

A standard protocol for describing individual-based and agent-based models

Overview	Purpose
	State variables and scales
	Process overview and scheduling
Design concepts	Design concepts
Details	Initialization
	Input
	Submodels

Entities, time and spatial scales
What variables will be registered?

Summary of "rules"

Tools

- NetLogo
- R:
 - <u>SiMRiv</u>: An R package for simulation and analysis of spatially-explicit individual multistate (animal) movements in any landscape
 - <u>abmAnimalMovement</u>: An R package for simulating animal movement using an agent-based mode
 - <u>aniMotum</u>: an R package for animal movement data: Rapid quality control, behavioural estimation and simulation
 - amt: redistribution_kernel() and simulate_path()
 - moveHMM: simData()

Cooperation and expertise for a sustainable future

Bernardo Brandão Niebuhr bernardo.brandao@nina.no

