$12n_{0034} (K12n_{0034})$

Ideals for irreducible components² of X_{par}

 $v^{12} - v^{11} - 4v^{10} - 5v^9 + 19v^8 + 9v^7 - 31v^6 + 29v^5 + 31v^4 - 18v^3 + 3v^2 - 3v + 1$

$$\begin{split} I_1^u &= \langle 1.80347 \times 10^{133} u^{37} - 4.04668 \times 10^{133} u^{36} + \dots + 1.44050 \times 10^{137} b + 7.58135 \times 10^{136}, \\ &2.78701 \times 10^{134} u^{37} - 5.34254 \times 10^{134} u^{36} + \dots + 2.01671 \times 10^{138} a + 5.65465 \times 10^{138}, \\ &u^{38} - 2u^{37} + \dots + 12288u + 4096 \rangle \\ I_2^u &= \langle u^3 - u^2 + b + 2u, \ -u^2 + a + u - 1, \ u^4 + u^2 + u + 1 \rangle \\ I_3^u &= \langle 3u^5 - u^4 + 5u^3 - 3u^2 + b + 4u - 4, \ 2u^5 + 3u^3 - u^2 + a + 2u - 2, \ u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1 \rangle \\ I_1^v &= \langle a, \ -963772v^{11} + 658631v^{10} + \dots + 707733b + 3141326, \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 60 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 1.80 \times 10^{133} u^{37} - 4.05 \times 10^{133} u^{36} + \dots + 1.44 \times 10^{137} b + 7.58 \times 10^{136}, \ 2.79 \times 10^{134} u^{37} - 5.34 \times 10^{134} u^{36} + \dots + 2.02 \times 10^{138} a + 5.65 \times 10^{138}, \ u^{38} - 2u^{37} + \dots + 12288u + 4096 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.000138196u^{37} + 0.000264914u^{36} + \dots + 2.22627u - 2.80391 \\ -0.000125197u^{37} + 0.000280921u^{36} + \dots + 3.09647u - 0.526298 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0000643751u^{37} + 0.000175800u^{36} + \dots - 4.14636u + 0.169342 \\ 0.0000210320u^{37} - 0.0000415391u^{36} + \dots - 0.351856u - 0.288364 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0000103293u^{37} + 5.50817 \times 10^{-6}u^{36} + \dots + 0.765170u + 1.22937 \\ -0.0000463037u^{37} + 0.0000938416u^{36} + \dots + 0.102969u - 0.0432937 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.000154935u^{37} + 0.000266148u^{36} + \dots + 3.91415u - 3.54515 \\ -0.000183169u^{37} + 0.000323095u^{36} + \dots + 2.91568u - 0.405958 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0000125731u^{37} - 0.0000323095u^{36} + \dots - 0.598837u + 0.850308 \\ 0.0000180956u^{37} - 0.0000598188u^{36} + \dots - 0.780260u - 0.190793 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -5.52255 \times 10^{-6}u^{37} + 0.0000275093u^{36} + \dots + 0.181423u + 1.04110 \\ 0.0000180956u^{37} - 0.0000598188u^{36} + \dots - 0.780260u - 0.190793 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0000555017u^{37} - 0.0000873032u^{36} + \dots + 0.298354u + 1.16548 \\ 0.0000451724u^{37} - 0.0000873032u^{36} + \dots + 0.298354u + 1.16548 \\ 0.0000451724u^{37} - 0.0000928114u^{36} + \dots + 0.298354u + 1.16548 \\ 0.0000147500u^{37} + 0.000264914u^{36} + \dots + 2.22627u - 2.80391 \\ -0.000138196u^{37} + 0.000264914u^{36} + \dots + 2.22627u - 2.80391 \\ -0.000147500u^{37} + 0.000264914u^{36} + \dots + 2.28637u - 0.573314 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.000218010u^{37} + 0.000603676u^{36} + \dots 22.4576u 0.864966$

Crossings	u-Polynomials at each crossing
c_1	$u^{38} + 28u^{37} + \dots + 159u + 1$
c_2, c_5	$u^{38} + 8u^{37} + \dots + 11u + 1$
c_3	$u^{38} - 8u^{37} + \dots + 17360u + 1732$
c_4, c_7	$u^{38} + 2u^{37} + \dots - 12288u + 4096$
	$u^{38} - 4u^{37} + \dots - 3u + 1$
c ₈	$u^{38} - 3u^{37} + \dots - 11264u + 1024$
c_9, c_{12}	$u^{38} + 13u^{37} + \dots + 8u + 1$
c_{10}	$u^{38} + 2u^{37} + \dots + 575973u + 248449$
c_{11}	$u^{38} + 8u^{37} + \dots - 149993u + 47809$

Crossings	Riley Polynomials at each crossing		
c_1	$y^{38} - 28y^{37} + \dots - 10893y + 1$		
c_2, c_5	$y^{38} + 28y^{37} + \dots + 159y + 1$		
<i>c</i> ₃	$y^{38} - 84y^{37} + \dots + 436784552y + 2999824$		
c_4, c_7	$y^{38} + 70y^{37} + \dots + 134217728y + 16777216$		
<i>c</i> ₆	$y^{38} + 4y^{37} + \dots + 19y + 1$		
c ₈	$y^{38} - 69y^{37} + \dots - 7864320y + 1048576$		
c_{9}, c_{12}	$y^{38} + y^{37} + \dots - 84y + 1$		
c_{10}	$y^{38} - 84y^{37} + \dots + 1086486467931y + 61726905601$		
c_{11}	$y^{38} + 48y^{37} + \dots + 51838210455y + 2285700481$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.269512 + 0.935520I		
a = -0.458289 - 0.782512I	-0.61516 + 8.47206I	-1.23185 - 12.18265I
b = 0.677405 + 0.518877I		
u = 0.269512 - 0.935520I		
a = -0.458289 + 0.782512I	-0.61516 - 8.47206I	-1.23185 + 12.18265I
b = 0.677405 - 0.518877I		
u = -0.615656 + 0.694581I		
a = -0.427914 + 0.398057I	1.12636 - 1.44186I	2.40380 + 3.54555I
b = 0.267942 + 0.980799I		
u = -0.615656 - 0.694581I		
a = -0.427914 - 0.398057I	1.12636 + 1.44186I	2.40380 - 3.54555I
b = 0.267942 - 0.980799I		
u = -0.690714 + 0.617908I		
a = -0.599875 - 0.724392I	0.91553 - 4.18220I	3.10264 + 7.31279I
b = -0.695539 + 0.625151I		
u = -0.690714 - 0.617908I		
a = -0.599875 + 0.724392I	0.91553 + 4.18220I	3.10264 - 7.31279I
b = -0.695539 - 0.625151I		
u = -0.962152 + 0.487944I		
a = 0.020845 + 0.197190I	0.067821 + 0.704860I	1.59983 - 2.96425I
b = -0.32060 + 1.60868I		
u = -0.962152 - 0.487944I		
a = 0.020845 - 0.197190I	0.067821 - 0.704860I	1.59983 + 2.96425I
b = -0.32060 - 1.60868I		
u = 0.334991 + 0.821597I		
a = -0.428276 + 0.927379I	-3.35491 - 0.78621I	-8.48784 + 2.29609I
b = -0.299801 - 0.583140I		
u = 0.334991 - 0.821597I		
a = -0.428276 - 0.927379I	-3.35491 + 0.78621I	-8.48784 - 2.29609I
b = -0.299801 + 0.583140I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.730737 + 0.068723I		
a = 0.810489 + 0.363992I	-0.42860 - 2.78462I	1.78865 + 4.97070I
b = 1.45774 + 1.16856I		
u = 0.730737 - 0.068723I		
a = 0.810489 - 0.363992I	-0.42860 + 2.78462I	1.78865 - 4.97070I
b = 1.45774 - 1.16856I		
u = 0.154768 + 0.641440I		
a = -0.858708 + 0.997854I	-1.32113 - 1.32492I	-1.95750 + 1.98412I
b = 0.415361 - 0.487054I		
u = 0.154768 - 0.641440I		
a = -0.858708 - 0.997854I	-1.32113 + 1.32492I	-1.95750 - 1.98412I
b = 0.415361 + 0.487054I		
u = 1.336190 + 0.226899I		
a = 0.552450 + 0.930807I	-0.61371 - 2.86891I	-0.25435 + 4.83204I
b = 0.80282 + 3.46642I		
u = 1.336190 - 0.226899I		
a = 0.552450 - 0.930807I	-0.61371 + 2.86891I	-0.25435 - 4.83204I
b = 0.80282 - 3.46642I		
u = 0.300084 + 0.412662I		
a = 0.10831 + 2.92562I	1.67684 - 2.65330I	7.7232 - 16.8130I
b = -0.16429 + 3.48640I		
u = 0.300084 - 0.412662I		
a = 0.10831 - 2.92562I	1.67684 + 2.65330I	7.7232 + 16.8130I
b = -0.16429 - 3.48640I		
u = -0.392217 + 0.325280I		
a = -1.29311 + 2.21775I	2.15015 - 1.46241I	-0.02794 + 14.08993I
b = -0.16047 + 3.66337I		
u = -0.392217 - 0.325280I		
a = -1.29311 - 2.21775I	2.15015 + 1.46241I	-0.02794 - 14.08993I
b = -0.16047 - 3.66337I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.209980 + 0.250980I		
a = -3.00779 + 0.52768I	1.91078 - 0.79833I	4.44525 - 0.45789I
b = -0.802018 + 0.832176I		
u = -0.209980 - 0.250980I		
a = -3.00779 - 0.52768I	1.91078 + 0.79833I	4.44525 + 0.45789I
b = -0.802018 - 0.832176I		
u = -1.10703 + 1.69579I		
a = 0.928872 - 0.073456I	-6.26733 + 3.08288I	0
b = -2.06666 - 3.80312I		
u = -1.10703 - 1.69579I		
a = 0.928872 + 0.073456I	-6.26733 - 3.08288I	0
b = -2.06666 + 3.80312I		
u = 0.41366 + 2.27352I		
a = 0.273778 - 1.053910I	-12.39510 + 1.09723I	0
b = 0.83748 + 3.68747I		
u = 0.41366 - 2.27352I		
a = 0.273778 + 1.053910I	-12.39510 - 1.09723I	0
b = 0.83748 - 3.68747I		
u = -0.98102 + 2.10542I		
a = -0.285160 - 1.017430I	-16.2164 - 7.5794I	0
b = -3.48637 + 2.72417I		
u = -0.98102 - 2.10542I		
a = -0.285160 + 1.017430I	-16.2164 + 7.5794I	0
b = -3.48637 - 2.72417I		
u = 1.14222 + 2.13195I		
a = -0.006500 + 1.260510I	-15.9377 + 14.9717I	0
b = -6.15185 - 1.87143I		
u = 1.14222 - 2.13195I		
a = -0.006500 - 1.260510I	-15.9377 - 14.9717I	0
b = -6.15185 + 1.87143I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.58138 + 2.41986I		
a = -0.021457 + 1.260750I	-12.2225 - 8.2203I	0
b = 3.60201 - 4.67413I		
u = -0.58138 - 2.41986I		
a = -0.021457 - 1.260750I	-12.2225 + 8.2203I	0
b = 3.60201 + 4.67413I		
u = 1.75400 + 1.85534I		
a = 1.163960 + 0.099561I	-6.74677 + 2.59569I	0
b = -0.64784 + 7.80385I		
u = 1.75400 - 1.85534I		
a = 1.163960 - 0.099561I	-6.74677 - 2.59569I	0
b = -0.64784 - 7.80385I		
u = 0.32782 + 2.75595I		
a = -0.238367 - 1.046580I	-17.5824 + 5.0951I	0
b = 3.58759 + 5.29844I		
u = 0.32782 - 2.75595I		
a = -0.238367 + 1.046580I	-17.5824 - 5.0951I	0
b = 3.58759 - 5.29844I		
u = -0.22384 + 3.07549I		
a = 0.016754 + 1.242340I	-17.7767 + 1.7959I	0
b = 1.64709 - 9.59445I		
u = -0.22384 - 3.07549I		
a = 0.016754 - 1.242340I	-17.7767 - 1.7959I	0
b = 1.64709 + 9.59445I		

II.
$$I_2^u = \langle u^3 - u^2 + b + 2u, -u^2 + a + u - 1, u^4 + u^2 + u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} - u + 1 \\ -u^{3} + u^{2} - 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} - 2u + 1 \\ -u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u^{2} + 1 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u^{2} + u + 1 \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} - u + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $9u^3 2u^2 + 2u + 11$

Crossings	u-Polynomials at each crossing
c_{1}, c_{6}	$u^4 - 2u^3 + 3u^2 - u + 1$
c_2, c_4	$u^4 + u^2 + u + 1$
c_3	$u^4 + 3u^3 + 4u^2 + 3u + 2$
c_5, c_7	$u^4 + u^2 - u + 1$
<i>c</i> ₈	u^4
c_9	$(u+1)^4$
c_{10}, c_{11}	$u^4 + u^3 + 3u^2 + 2u + 1$
c_{12}	$(u-1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_2, c_4, c_5 c_7	$y^4 + 2y^3 + 3y^2 + y + 1$
c_3	$y^4 - y^3 + 2y^2 + 7y + 4$
c ₈	y^4
c_9, c_{12}	$(y-1)^4$
c_{10}, c_{11}	$y^4 + 5y^3 + 7y^2 + 2y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.547424 + 0.585652I		
a = 1.50411 - 1.22685I	2.62503 - 1.39709I	13.5849 + 5.3845I
b = 0.65230 - 2.13814I		
u = -0.547424 - 0.585652I		
a = 1.50411 + 1.22685I	2.62503 + 1.39709I	13.5849 - 5.3845I
b = 0.65230 + 2.13814I		
u = 0.547424 + 1.120870I		
a = -0.504108 + 0.106312I	-0.98010 + 7.64338I	-3.08487 - 3.81741I
b = -0.152300 - 0.614030I		
u = 0.547424 - 1.120870I		
a = -0.504108 - 0.106312I	-0.98010 - 7.64338I	-3.08487 + 3.81741I
b = -0.152300 + 0.614030I		

$$\begin{aligned} \text{III. } I_3^u = \langle 3u^5 - u^4 + 5u^3 - 3u^2 + b + 4u - 4, \ 2u^5 + 3u^3 - u^2 + a + 2u - \\ 2, \ u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1 \rangle \end{aligned}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{5} - 3u^{3} + u^{2} - 2u + 2 \\ -3u^{5} + u^{4} - 5u^{3} + 3u^{2} - 4u + 4 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u^{5} - 3u^{3} + u^{2} - 3u + 2 \\ -2u^{5} - 4u^{3} + u^{2} - 3u + 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} + 2u^{2} - 2u + 2 \\ -u^{5} - 2u^{3} + u^{2} - u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + u^{2} - u + 1 \\ -u^{5} - 2u^{3} + u^{2} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{5} - 3u^{3} + u^{2} - 2u + 2 \\ -2u^{5} - 3u^{3} + u^{2} - 2u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^5 u^4 + 8u^3 4u^2 + 5u 5$

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$
c_2, c_4	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_3	$(u^3 - u^2 + 1)^2$
c_5, c_7	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
<i>C</i> ₈	u^6
<i>C</i> 9	$(u+1)^6$
c_{10}, c_{11}	$u^6 + 2u^3 + 4u^2 + 3u + 1$
c_{12}	$(u-1)^6$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_2, c_4, c_5 c_7	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
<i>c</i> ₃	$(y^3 - y^2 + 2y - 1)^2$
c ₈	y^6
c_9, c_{12}	$(y-1)^6$
c_{10}, c_{11}	$y^6 + 8y^4 - 2y^3 + 4y^2 - y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498832 + 1.001300I		
a = 0.702221 + 0.130845I	1.37919 - 2.82812I	3.08014 + 1.90022I
b = 0.303615 - 0.669275I		
u = -0.498832 - 1.001300I		
a = 0.702221 - 0.130845I	1.37919 + 2.82812I	3.08014 - 1.90022I
b = 0.303615 + 0.669275I		
u = 0.284920 + 1.115140I		
a = -0.447279 + 0.479689I	-2.75839	-2.43992 - 2.50363I
b = -0.232199 - 0.362106I		
u = 0.284920 - 1.115140I		
a = -0.447279 - 0.479689I	-2.75839	-2.43992 + 2.50363I
b = -0.232199 + 0.362106I		
u = 0.713912 + 0.305839I		
a = 0.74506 - 2.00027I	1.37919 - 2.82812I	-2.14022 + 3.69351I
b = 1.92858 - 2.50729I		
u = 0.713912 - 0.305839I		
a = 0.74506 + 2.00027I	1.37919 + 2.82812I	-2.14022 - 3.69351I
b = 1.92858 + 2.50729I		

$$\text{IV. } I_1^v = \langle a, \ -9.64 \times 10^5 v^{11} + 6.59 \times 10^5 v^{10} + \dots + 7.08 \times 10^5 b + 3.14 \times 10^6, \ v^{12} - v^{11} + \dots - 3v + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.36177v^{11} - 0.930621v^{10} + \dots + 5.08294v - 4.43857 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.546453v^{11} + 0.201388v^{10} + \dots - 2.43405v + 1.91940 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.181358v^{11} - 0.113940v^{10} + \dots + 1.48874v - 0.345065 \\ -0.678951v^{11} + 0.501804v^{10} + \dots - 2.40704v + 2.15346 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0595846v^{11} - 0.0327468v^{10} + \dots - 1.31733v - 0.160053 \\ 2.02290v^{11} - 1.34063v^{10} + \dots + 7.63126v - 6.61613 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.160053v^{11} - 0.100469v^{10} + \dots - 0.150791v + 0.202506 \\ 0.678951v^{11} - 0.501804v^{10} + \dots + 2.40704v - 1.15346 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.518898v^{11} + 0.401335v^{10} + \dots + 2.40704v - 1.15346 \\ 0.678951v^{11} - 0.501804v^{10} + \dots + 2.40704v - 1.15346 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.181358v^{11} + 0.113940v^{10} + \dots + 2.40704v - 2.15346 \\ 0.678951v^{11} - 0.501804v^{10} + \dots + 2.40704v - 2.15346 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.222666v^{11} - 0.152658v^{10} + \dots - 0.0683153v - 0.431153 \\ 1.36177v^{11} - 0.930621v^{10} + \dots + 5.08294v - 4.43857 \end{pmatrix}$$

(ii) Obstruction class = 1

Crossings	u-Polynomials at each crossing
c_1,c_3,c_5	$(u^2 - u + 1)^6$
c_2	$(u^2+u+1)^6$
c_4, c_7	u^{12}
c_6, c_{11}	$(u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)^2$
c_8, c_{12}	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^2$
c_9, c_{10}	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5	$(y^2 + y + 1)^6$
c_4, c_7	y^{12}
c_6, c_{11}	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2$
c_8, c_9, c_{10} c_{12}	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.695888 + 0.967642I		
a = 0	-1.89061 - 1.10558I	-1.04064 + 1.99047I
b = 0.289622 - 0.827421I		
v = 0.695888 - 0.967642I		
a = 0	-1.89061 + 1.10558I	-1.04064 - 1.99047I
b = 0.289622 + 0.827421I		
v = -1.185950 + 0.118836I		
a = 0	-1.89061 + 2.95419I	-3.79900 - 4.11613I
b = -0.861379 + 0.162890I		
v = -1.185950 - 0.118836I		
a = 0	-1.89061 - 2.95419I	-3.79900 + 4.11613I
b = -0.861379 - 0.162890I		
v = -0.125911 + 0.369768I		
a = 0	1.89061 + 2.95419I	11.02954 - 8.16480I
b = -1.25704 + 1.58618I		
v = -0.125911 - 0.369768I		
a = 0	1.89061 - 2.95419I	11.02954 + 8.16480I
b = -1.25704 - 1.58618I		
v = 0.383184 + 0.075842I		
a = 0	1.89061 + 1.10558I	-0.484082 - 0.231437I
b = -0.74515 + 1.88172I		
v = 0.383184 - 0.075842I		
a = 0	1.89061 - 1.10558I	-0.484082 + 0.231437I
b = -0.74515 - 1.88172I		
v = -1.38214 + 1.64413I		
a = 0	7.72290I	2.83009 - 4.64337I
b = 0.520868 + 0.215334I		
v = -1.38214 - 1.64413I		
a = 0	-7.72290I	2.83009 + 4.64337I
b = 0.520868 - 0.215334I		

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 2.11493 + 0.37491I		
a = 0	3.66314I	-2.53591 - 3.55776I
b = -0.446919 + 0.343418I		
v = 2.11493 - 0.37491I		
a = 0	-3.66314I	-2.53591 + 3.55776I
b = -0.446919 - 0.343418I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)^{6}(u^{4} - 2u^{3} + 3u^{2} - u + 1)(u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 1)$ $\cdot (u^{38} + 28u^{37} + \dots + 159u + 1)$
c_2	$(u^{2} + u + 1)^{6}(u^{4} + u^{2} + u + 1)(u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{38} + 8u^{37} + \dots + 11u + 1)$
c_3	$(u^{2} - u + 1)^{6}(u^{3} - u^{2} + 1)^{2}(u^{4} + 3u^{3} + 4u^{2} + 3u + 2)$ $\cdot (u^{38} - 8u^{37} + \dots + 17360u + 1732)$
c_4	$u^{12}(u^4 + u^2 + u + 1)(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)$ $\cdot (u^{38} + 2u^{37} + \dots - 12288u + 4096)$
<i>C</i> ₅	$(u^{2} - u + 1)^{6}(u^{4} + u^{2} - u + 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{38} + 8u^{37} + \dots + 11u + 1)$
<i>C</i> ₆	$(u^{4} - 2u^{3} + 3u^{2} - u + 1)(u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 1)$ $\cdot ((u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1)^{2})(u^{38} - 4u^{37} + \dots - 3u + 1)$
c_7	$u^{12}(u^4 + u^2 - u + 1)(u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1)$ $\cdot (u^{38} + 2u^{37} + \dots - 12288u + 4096)$
c ₈	$u^{10}(u^6 + u^5 + \dots + u + 1)^2(u^{38} - 3u^{37} + \dots - 11264u + 1024)$
<i>c</i> ₉	$((u+1)^{10})(u^6 - u^5 + \dots - u + 1)^2(u^{38} + 13u^{37} + \dots + 8u + 1)$
c_{10}	$(u^{4} + u^{3} + 3u^{2} + 2u + 1)(u^{6} + 2u^{3} + 4u^{2} + 3u + 1)$ $\cdot ((u^{6} - u^{5} - u^{4} + 2u^{3} - u + 1)^{2})(u^{38} + 2u^{37} + \dots + 575973u + 248449)$
c_{11}	$(u^{4} + u^{3} + 3u^{2} + 2u + 1)(u^{6} + 2u^{3} + 4u^{2} + 3u + 1)$ $\cdot (u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1)^{2}$ $\cdot (u^{38} + 8u^{37} + \dots - 149993u + 47809)$
c_{12}	$((u-1)^{10})(u^6 + u^5 + \dots + u + 1)^2(u^{38} + 13u^{37} + \dots + 8u + 1)$ 22

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^{2} + y + 1)^{6})(y^{4} + 2y^{3} + \dots + 5y + 1)(y^{6} - y^{5} + \dots + 8y^{2} + 1)$ $\cdot (y^{38} - 28y^{37} + \dots - 10893y + 1)$
c_2,c_5	$(y^{2} + y + 1)^{6}(y^{4} + 2y^{3} + 3y^{2} + y + 1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{38} + 28y^{37} + \dots + 159y + 1)$
c_3	$(y^{2} + y + 1)^{6}(y^{3} - y^{2} + 2y - 1)^{2}(y^{4} - y^{3} + 2y^{2} + 7y + 4)$ $\cdot (y^{38} - 84y^{37} + \dots + 436784552y + 2999824)$
c_4, c_7	$y^{12}(y^4 + 2y^3 + 3y^2 + y + 1)(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)$ $\cdot (y^{38} + 70y^{37} + \dots + 134217728y + 16777216)$
c_6	$(y^4 + 2y^3 + 7y^2 + 5y + 1)(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)$ $\cdot ((y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2)(y^{38} + 4y^{37} + \dots + 19y + 1)$
c_8	$y^{10}(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2 \cdot (y^{38} - 69y^{37} + \dots - 7864320y + 1048576)$
c_9, c_{12}	$(y-1)^{10}(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$ $\cdot (y^{38} + y^{37} + \dots - 84y + 1)$
c_{10}	$(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)(y^{6} + 8y^{4} - 2y^{3} + 4y^{2} - y + 1)$ $\cdot (y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)^{2}$ $\cdot (y^{38} - 84y^{37} + \dots + 1086486467931y + 61726905601)$
c_{11}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^6 + 8y^4 - 2y^3 + 4y^2 - y + 1)$ $\cdot (y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2$ $\cdot (y^{38} + 48y^{37} + \dots + 51838210455y + 2285700481)$