Moto di caduta libera

Definizione: è il moto di un corpo che cade da fermo, dove l'attrito dell'aria è trascurabile.

Tempo impiegato

Legge oraria:

•
$$S(t) = S_0 + v_0(t - t_0) + a \frac{(t - t_0)^2}{2}$$

o
$$t_0 = 0$$
 $v_0 = 0$ $a = -g \implies S(t) = S_0 + \frac{-gt^2}{2}$

 $\star a = -g$ perché l'orientamento è verso l'alto, mentre a accelera verso il basso

o
$$t = t_c$$
 $S(t_c) = 0$ $S_0 = h \implies t_c = \sqrt{\frac{2h}{g}}$

 $\star t$ è il tempo di caduta quindi $S(t_c)$ è nullo perché il corpo tocca terra

Velocità finale

$$\bullet \ v(t) = v_0 + a(t - t_0)$$

o
$$t = t_c$$
 \Rightarrow $v_f = -\sqrt{2hg}$

Moto di salita libera

•
$$S(t) = S_0 + v_0 (t - t_0) + \frac{a(t - t_0)^2}{2}$$

o
$$t_0 = 0$$
 $a = -g$ \Rightarrow $S(t) = v_0 \cdot t + \frac{-gt^2}{2}$
o $t = t_s$ \Rightarrow $h = v_0 \cdot t_s - g\frac{t_s^2}{2}$

$$\bullet \ v(t) = v_0 + a(t - t_0)$$

*Un corpo si ferma se la sua velocità è nulla, quindi $\boldsymbol{v}_f = 0$ nel caso della salita libera

$$\bullet \ h = g \frac{t_s^2}{2}$$

•
$$t_s = \sqrt{\frac{2h}{g}}$$

$$\bullet v_0 = \sqrt{2hg}$$