

Stu	don	+ N	Jun	nher
ЭШ	aen	LIN	NIII	mer

u

Mathematical Sciences Institute

EXAMINATION: Semester 1 – Final 2023

MATH3345/6215 — Algebra 2

Exam Duration: 120 minutes. **Reading Time:** 15 minutes.

Materials Permitted In The Exam Venue:

• No books, notes, reference materials are permitted.

• No electronic aids are permitted e.g. laptops, phones, calculators.

Materials To Be Supplied To Students:

• Scribble paper (last 3 pages; ask if you need more).

Instructions To Students:

- The exam is worth a total of 50 points, with the value of each question as shown.
- You may use any result from class, homework, or workshops as long as it does not trivialise the question.
- You must cite what you use either by name ("Using the Fundamental Theorem of Algebra...") or by recalling the statement ("Since C is algebraically closed...").
- The last 3 pages are blank. You may detach them and use them for scratch work.
- Some useful formulas:
 - (a) The discriminant of $x^3 + ax + b$ is $-4a^3 27b^2$.
 - (b) The cubic resolvent of $x^4 + ax^2 + bx + c$ is $x^3 + 2ax^2 + (a^2 4c)x b^2$.

Q1	Q2	Q3	Q4	Q5
12	8	8	8	14

Total / 50	

Question 1		12 pts
State <i>true</i> or <i>false</i> . No jus	tification is neces	sary.
(a) If $\alpha \in \mathbb{C}$ has degree	e 4 over Q, then	x is constructible.
	□ True	□ False
(b) If K/F is a finite Gafinite Galois extens		d L/K is a finite Galois extension, then L/F is a
	□ True	□ False
(c) The Galois group o	f f(x)g(x) is the	product of the Galois groups of $f(x)$ and $g(x)$.
	□ True	□ False
(d) Let F be a finite fiel a^3 for some $a \in F$.	d with 125 elemer	nts. Every element of F is a cube, that is, equal to
	□ True	□ False
(e) If K/F is a field ext contain an element	_	n, then for every m dividing n , the field K must F .
	□ True	□ False

(f) If the Galois group of $f(x) \in \mathbb{Q}[x]$ has order 49, then the roots of f(x) can be written as nested radicals over Q.

> □ False □ True

Question 2

Give an example or state that no example exists. No justification is necessary.

(a) An irreducible polynomial of degree 3 in $F_5[x]$.

(b) An irreducible polynomial of degree 4 in Q[x] whose Galois group is abelian.

(c) A field automorphism of $\mathbb{Q}[2^{1/4}]$ different from the identity.

(d) An element in $\mathbb{Q}[\zeta_7]$ of degree 3 over \mathbb{Q} .

Question 3 8 pts

Let $\phi \colon \mathbf{C} \to \mathbf{C}$ be a field automorphism and let $K \subset \mathbf{C}$ be a subfield that is a finite Galois extension of \mathbf{Q} . Prove that $\phi(K) = K$, that is, ϕ maps K onto itself.

Extra space for previous question		

Question 4 8 pts

Fix a positive integer n. Let F = C(t) and consider $p(x) = x^n - t \in F[x]$. Construct the splitting field K/F of p(x) and describe the group $\operatorname{Aut}(K/F)$. In your description, you must explicitly describe all automorphisms of K/F and also identify the group up to isomorphism. Justify your answer.

Extra space for previous question		

Question 5 14 pts

Let $\alpha, \beta, \gamma \in \mathbb{C}$ be the roots of

$$f(x) = x^3 - 3x - 1.$$

Set

$$K = \mathbb{Q}\left[\sqrt{\alpha}, \sqrt{\beta}, \sqrt{\gamma}\right] \subset \mathbb{C},$$

where the square root symbol denotes one of the two square-roots in C. It turns out that $deg(K/\mathbb{Q}) = 12$ (you may use this freely without having to prove it).

(a) Prove that K/\mathbb{Q} is Galois.

3 pts

(b) Which of the following define field automorphisms of K? Tick all that do. No justification is necessary. 3 pts

$$\ \square \ \sqrt{\alpha} \mapsto \sqrt{\beta}, \quad \sqrt{\beta} \mapsto \sqrt{\alpha}, \quad \sqrt{\gamma} \mapsto \sqrt{\gamma}.$$

$$\ \square \ \sqrt{\alpha} \mapsto \sqrt{\beta}, \quad \sqrt{\beta} \mapsto \sqrt{\gamma}, \quad \sqrt{\gamma} \mapsto \sqrt{\alpha}.$$

$$\Box \quad \sqrt{\alpha} \mapsto -\sqrt{\alpha}, \quad \sqrt{\beta} \mapsto \sqrt{\beta}, \quad \sqrt{\gamma} \mapsto \sqrt{\gamma}.$$

(c) Prove that K has a unique subfield of degree 3 over \mathbb{Q} .			

Scratch work	

Scratch work	

Scratch work		
-	 	