

AEW Worksheet 5 Ave Kludze (akk86) MATH 1920

Name:	
Collaborators:	

1

Determine if the following statements are true(T) or false(F). Mark the correct answer. No justification needed.

- (a) TF $f_y(a,b) = \lim_{y \to b} \frac{f(a,y) f(a,b)}{y b}$
- (b) T F If $f(x,y) = \sin x + \sin y$ then $-\sqrt{2} \le D_u f(x,y) \le \sqrt{2}$ for all unit vectors u.
- (c) T F If $f_x(a,b)$ and $f_y(a,b)$ both exist then f is locally linear at (a,b)

2

The kinetic energy of a body with mass m and velocity ν is $K = \frac{1}{2}m\nu^2$. Find a product of two partial derivatives with respect to m and ν such that kinetic energy is constant.

3

Find the directional derivative of $f(x, y, z) = xz^2 - 3xy + 2xyz - 3x + 5y - 17$ from the point (2,-6,3) in the direction of the origin.

4

Find (x_0, y_0) so that the plane tangent to the surface $z = f(x, y) = x^2 + 3xy - y^2$ at $(x_0, y_0, f(x_0, y_0))$ is parallel to the plane 16x - 2y - 2z = 23.

5

Let

$$f(x,y) = e^{x^2 + 2y^2}$$

Find the unit vector $\mathbf{u} = \langle \mathbf{a}, \mathbf{b} \rangle$ which minimizes the directional derivative $D_{\mathbf{u}}f$ at the point (x, y) = (2, 3).

6 (Challenge)

Find $\frac{\partial f}{\partial x}(0,1)$ and $\frac{\partial f}{\partial y}(0,1)$ for:

$$f(x,y) = \sin x + y^2 \cos x + y^4 \arctan\left(x\left(y^2 - 1\right)\right) + \ln\left(2e^{\sin x} - 1\right)\sec(xy)\tan(y - 1)$$

Hint: there is an *extremely easy* way and there is a hard way.