NOTES ON PARABOLIC HIGGS BUNDLES

1. PARABOLIC BUNDLES

Let X be a smooth projective complex variety with a reduced simple normal crossing divisor $D = \sum D_i$. Let $j: U = X - D \to X$ denote the inclusion of the complement. We fix this notation throughout the paper. For our purposes, a parabolic bundle on (X, D) consists of a vector bundle E on E0 with an increasing E1-indexed filtration E2 E3 by locally free E4.

- P1. $E_0 = E$
- P2. $E_{\alpha+1} = E_{\alpha}(D)$
- P3. $E_{\alpha+c} = E_{\alpha}$ for some c > 0 independent of α .
- P4. $Gr_{\alpha}E := E_{\alpha}/E_{\alpha-\epsilon}$, $0 < \epsilon \ll 1$, is a locally free \mathcal{O}_D -module.

This definition is equivalent, with minor changes in notation, to the definition by Yokogawa [?, 3.1]. These conditions ensure that the filtration has a finite number of jumps in an interval, i.e. values α such that $Gr_{\alpha_i}E \neq 0$. We arrange the jumps in [0,1) in increasing order $0 \leq \alpha_1 < \alpha_2 < \dots \alpha_\ell < 1$. These numbers are called weights. The subsheaves $E_{\alpha_i} \subset E(D)$ determine the whole filtration. Setting $E_i = E_{\alpha_i}$ gives a finite filtration on E(D) called a quasiparabolic structure. From this point of view, a parabolic bundle is a bundle with a quasiparabolic structure plus a choice of weights. Parabolic bundles will be denoted by E_* .

We describe a few basic examples.

Example 1.1. Any vector bundle E can be given a parabolic structure with integral weights and $E_i = E(iD)$. We refer to this as a trivial parabolic bundle.

Example 1.2. Choose a line bundle L and coefficients $\beta_i \in [0,1)$ and let

(1)
$$L_{\alpha} = L(\sum \lfloor \alpha + \beta_i \rfloor D_i)$$

Any parabolic line bundle is of this form. Zariski locally, any parabolic bundle is a sum of parabolic line bundles.

Example 1.3. Suppose that (V^o, ∇^o) is a vector bundle with an integrable connection with regular singularities. By Deligne [?] there exists a unique extension

$$\nabla_{\alpha}: V_{\alpha} \to \Omega^1_X(\log D) \otimes V_{\alpha}$$

with residues having real part in $[-\alpha, 1-\alpha)$. This again forms a parabolic bundle, that we refer to as the Deligne parabolic bundle. If the monodromy of ∇^o around components of D is unipotent, then V_* has trivial parabolic structure. This is because the eigenvalues of the monodromy of ∇^o around components of D can is given by $\exp(2\pi i\alpha)$. So if the monodromy is unipotent, α must be integers.

A parabolic Higgs bundle on (X, D) is a parabolic bundle E_* together with holomorphic map

$$\theta: E \to \Omega^1_X(\log D) \otimes E$$

such that

$$\theta \wedge \theta = 0$$

and

$$\theta(E_{\alpha}) \subseteq E_{\alpha}$$

2. Biswas's correspondence

We will assume in this section that the weights are rational with denominator dividing a fixed positive integer N. Recall that Kawamata [?, thm17] has constructed a smooth projective variety Y, and a Galois covering $\pi: Y \to X$, such that $\pi^*D_i = k_i N(\tilde{D}_i)$ for some $k_i > 0$, where $\tilde{D}_i = (\pi^*D_i)_{red}$. Let G denote the Galois group. A G-equivariant vector bundle on Y, is a bundle $p: V \to Y$ (viewed geometrically rather than as a sheaf) on which G acts compatibly with p.

We list some basic classes of examples.

Example 2.1. X, then π^*V' can made into a G-equivariant bundle, so that the projections p

$$\begin{array}{ccc}
\pi^* V' & \longrightarrow V' \\
\downarrow^p & \downarrow^p \\
Y & \xrightarrow{\pi} X/
\end{array}$$

are compatible with the G-action.

Example 2.2. The line bundle $\mathcal{O}_Y(\tilde{D}_i)$ has an equivariant structure compatible with the one on $\pi^*\mathcal{O}_X(D_i)$ under the isomorphism $\mathcal{O}_Y(\tilde{D}_i)^{\otimes k_i N} \cong \pi^*\mathcal{O}_X(D_i)$.

Theorem 2.3 (Biswas [?]). There is an equivalence $E_* \to \tilde{E}$ between the category of parabolic bundles on X with weights in $\frac{1}{N}\mathbb{Z}$ and G-equivariant bundles on Y.

We recall the construction in one direction. Given an equivariant bundle \tilde{E} on Y, we obtain a parabolic bundle

$$E_{\alpha} = \pi_* (\mathcal{E} \otimes \mathcal{O}_Y(\lfloor \alpha \pi^* D \rfloor))^G$$

where $\lfloor \alpha \pi^* D \rfloor = \sum_i \lfloor \alpha k_i N \rfloor \tilde{D}_i$.

Suppose that (V^o, ∇^o) is a vector bundle with connection satisfying the assumptions of example 1.3. In addition suppose that the eigenvalues of the monodromy around D are Nth roots of unity. Then the weights of the Deligne parabolic bundle lie in $\frac{1}{N}\mathbb{Z}$. Furthermore $(\tilde{V}^o, \Box^o) = (\pi^*V^o, \pi^*\nabla^o)$ has unipotent local monodromies. Let (V_*, ∇_*) and (\tilde{V}, \Box) denote Deligne's extensions of V^o and \tilde{V}^o .

We prove the following

Lemma 2.4. There is an isomorphism of vector bundle

$$\phi: \pi^* V_* \to \tilde{V}$$

sending flat sections of $\pi^*\nabla_*$ to flat sections of \square .

Proof. We will describe this morphism locally, and show it glues. Take a point $y \in Y$, and let $x = \pi(y)$. Let W and U be polydisc neighborhoods of y and x, with coordinates (y_1, y_2, \dots, y_d) and (x_1, x_2, \dots, x_d) , respectively. Without loss of generality, we may assume that \tilde{D}_i is locally defined by y_i and D_i is locally defined by x_i . As $\pi^*D_i = k_iN\tilde{D}_i$, we have

$$x_i = y_i^{k_i N}$$

On U-D let $\langle s_1, \dots, s_r \rangle$ be a free basis of V^o , the connection matrix of ∇_* be

$$A_1 \frac{dx_1}{x_1} + A_2 \frac{dx_2}{x_2} + \dots + A_s \frac{dx_s}{x_s}$$

The generalized eigenvalues of A_i are α_i , the weights of V_* on D_i . So on W, with respect to the frame $\langle e_1, \dots, e_r \rangle = \pi^* \langle s_1, \dots, s_r \rangle$ the connection matrix of $\pi^* \nabla_*$ is

$$k_1 N A_1 \frac{dw_1}{w_1} + k_2 N A_2 \frac{dw_2}{w_2} + \dots + k_s N A_s \frac{dw_s}{w_s}$$

Write $B_i = k_i N A_i$. Let $J(B_i)$ be the Jordan canonical form of B_i , and let D_i be the invertible part of $J(B_i)$. Write $N_i = B_i - D_i$. Then, N_i is nilpotent, and the conection matrix of \tilde{V} , with respect to the frame $\langle e_1, \dots, e_r \rangle$ is

$$N_1 \frac{dy_1}{y_1} + N_2 \frac{dy_2}{y_2} + \dots + N_s \frac{dy_s}{y_s}$$

Let

$$F = \exp -(N_1 \log y_1 + N_2 \log y_2 + \dots + N_s \log y_s)$$

Then, the flat sections of \tilde{V} has coordinates

$$F_1, F_2, \cdots, F_r$$

where F_i is the *i*-th column of F.

Similarly, let

$$G = \exp -(B_1 \log y_1 + B_2 \log y_2 + \dots + B_s \log y_s)$$
$$= \prod_{i=1}^{s} y_i^{-D_i} F$$

Then, the flat sections of $\pi^*\nabla_*$ has coordinates

$$G_1, G_2, \cdots, G_r$$

where G_i is the *i*-th column of G.

Let d_i^j be the j-th eigenvalue of D_i . The map

$$\pi^*V_* \to \tilde{V}$$

$$e_j \mapsto \prod_{j=1}^s y_j^{d_j^j} e_j$$

sends flat sections to flat sections. Hence, it glues to a morphism of vector bundles

$$\phi: \pi^* V_* \to \tilde{V}$$

Lemma 2.5. \tilde{V} admits a G-equivariant action, and Biswas' construction applied to \tilde{V} yields V_* .

Proof. Let $\phi: \pi^*V_* \to \tilde{V}$ be the morphism from 2.4. Set d_i to be the largest eigenvalue of D_i . Then,

$$\phi \otimes O_Y(\sum_{i=1}^s d_i \tilde{D}_i) : \pi^* V_* \otimes O_Y(\sum_{i=1}^s d_i \tilde{D}_i) \to \tilde{V}$$

is an isomorphism. Therefore, we can define an equivariant G-action on \tilde{V} via ϕ . Explicitly, write the Galois group of $\pi: Y \to X$ as

$$G = \bigoplus_{i=1}^{s} \mathbb{Z}/k_i N$$

Let μ_i be a generator of \mathbb{Z}/k_iN , i.e. a primitive k_iN -th root of unity. Then

$$\mu_i \cdot e_j = y_i^{d_i^j} e_j$$

where d_i^j is the j-th eigenvalue of D_i .

The G-invariant sections of \tilde{V} are precisely the G-invariant sections of π^*V_* , and G-invariant section of π^*V_* are V_* . Therefore, we have the identification

$$(\pi_*\tilde{V})^G = V_*$$

To show $(\pi_* \tilde{V} \otimes O_Y(\lfloor \alpha \pi^* D \rfloor))^G$ recovers the parabolic structure of V_* , we show it locally by decomposing them into sum of line bundles. Hence, it is enough to assume V_* is a line bundle.

Use the notation from 2.4. $A_i = \alpha_i$ for some rational number α_i . The parabolic structure of V_* is thus

$$V_{*\alpha} = O_X(\lfloor \alpha - \alpha_1 \rfloor D_1 + \dots + \lfloor \alpha - \alpha_s \rfloor D_s)$$

which is the parabolic structure of $(\pi_* \tilde{V} \otimes O_Y(|\alpha \pi^* D|))^G$.

Biswas's correspondence extends to Higgs bundles as well [?, thm 5.5]. Now suppose that (V^o, ∇^o) is part of a polarized variation of Hodge structure etc.

3. Parabolic Chern classes

Given a parabolic line bundle with notation as in 1.2

$$\operatorname{par-c}_1(L_*) = c_1(L) \pm \sum \beta_i[D_i]$$

At this point, we need to check signs. The correct sign is the one which makes $\pi^* \operatorname{par-c}_1(L_*) = c_1(\mathcal{L})$ true, where \mathcal{L} corresponds to L_* under Biswas.

Given a parabolic bundle E_* , the top exterior power det E carries an induced parabolic structure. Set $\operatorname{par-c_1}(E_*) = \operatorname{par-c_1}(\det E_*)$. Fix an ample line bundle H on X. Let $d = \dim X$. The parabolic degree of a parabolic bundle E_* is $c_1(\det E_*) \cdot H^{d-1}$. We can define (semi)stability of parabolic and parabolic Higgs bundles using this [?, ?]. Under Biswas's correspondence semistable parabolic bundles (Higgs bundles) with rational weights correspond to semistable equivariant (Higgs) bundles.

Given a parabolic bundle E_* , let $p: Fl(E) \to X$ denote the full flag bundle of E. The pullback p^*E carries a filtration $F^i \subset E$ by subbundles such that associated graded $G^i = F^i/F^{i+1}$ are line bundles. The parabolic structure on E can be pulled back to a parabolic structure on p^*E along π^*D , and G^i carry induced parabolic structures.

Lemma 3.1. The classes c_i defined below

$$1 + c_1 + c_2 + \ldots = \prod (1 + \text{par-c}(G_*^i))$$

are pullbacks of classes $\operatorname{par-c}_i(E_*) \in H^{2i}(X,\mathbb{R})$.

Since the map $H^*(X) \to H^*(Fl(E))$ is injective, the above property determines the above classes. The following is stated in [?, 4.6].

Lemma 3.2. Suppose that E_* has weights in $\frac{1}{N}\mathbb{Z}$. Let $p:Y\to X$ and \mathcal{E} be as in theorem 2.3, then p^* par- $c_i(E_*)=c_i(\mathcal{E})$.

4. Vanishing

Proposition 4.1. Let (E_*, θ) be a semistable Higgs bundle with zero parabolic Chern classes. There exists a parabolic bundle (E'_*, θ') with the same properties and rational weights with $(E, \theta) = (E', \theta')$.

Given a Higgs bundle (E, θ) , we have complex

$$DR(E,\theta) = E \xrightarrow{\theta} \Omega_X(\log D) \otimes E \to \dots$$

Theorem 4.2. Let (E_*, θ) be a semistable parabolic Higgs bundle on X with vanishing Chern classes and with θ nilpotent. Then

$$H^i(DR(E,\theta)\otimes L)=0$$

for i > d.

Sketch. Use above prop to reduce to case, where E has rational weights. By Biswas, it corresponds to G-equivariant Higgs bundle $(\tilde{E}, \tilde{\theta})$ on Y. We can apply the first main theorem of [?] to conclude

$$H^{i}(Y, DR(\tilde{E}, \theta) \otimes \pi^{*}L) = 0$$

Now take G-invariants.

REFERENCES

- [A] D. Arapura, Kodaira-Saito vanishing via Higgs bundles in characteristic p, Crelle's J. (to appear)
- $[\mathrm{B1}]\,$ I. Biswas, Parabolic bundles as orbifold bundles, Duke (1997)
- [B2] I. Biswas, Chern classes of parabolic bundles, J. Math Kyoto (1998)
- [D] P. Deligne,
- [IS] J. Iyer, C. Simpson, A relation between the parabolic Chern characters of the de Rham bundles, Math Ann (2007)
- [K] Y. Kawamata, Characterization of abelian varieties, Composito (1981)
- [MY] Maruyama, Yokogawa, Moduli of parabolic bundles, Math Ann (1992)
- [Y1] Yokogawa, Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves, J. Math. Kyoto (1993)
- [Y2] Yokogawa, Infinitessimal deformations of parabolic Higgs sheaves, Int. J Math (1995)

Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.