

ENGLISH ABSTRACT FOR DE2018353 (FR2043403)

1 / 1 WPAT - ©Thomson Derwent

Accession Nbr :

1970-79352R [43]

Title :

Electroluminescent device for converting in - fr red radiation visible radiation

Derwent Classes :

L03 U14 X25 X26

Patent Assignee :

(AMTT) WESTERN ELECTRIC CO INC

Nbr of Patents :

8

Nbr of Countries :

7

Patent Number :

DE2018353 A 0 DW1970-43 *

NL7005417 A 0 DW1970-43

FR2043403 A 0 DW1971-17

US3621340 A 0 DW1971-49

CA-908970 A 0 DW1972-38

GB1317731 A 0 DW1973-21

DE2018353 B 0 DW1973-26

JP73042392 B 0 DW1973-50

Priority Details :

1969US-0816764 19690416

IPC s :

H05B-033/16

Abstract :

DE2018353 A

Infra red radiation falling onto a crystalline phosphor is converted into visible radiation without the application of a voltage.

The phosphor is a stoichiometric mixture of oxyhalide crystals of the form M₁R₄, M₂X₂ where M₁ is a monovalent metal and M₂ is a divalent metal. The mixture must contain 5% of the cation Yb⁺⁺⁺. When the phosphor is irradiated with infra red containing the absorption spectrum of ytterbium, visible light is emitted. The conversion uses two energy levels in the phosphor layer, producing different emission waves. The phosphor mixture can also contain the ion pairs YbEr, YbHo and YbErHo all as trivalent cations where the erbium is present at 1/16% and the holmium as 1/50% of the unit cell group.

Manual Codes :

CPI: L03-D04

Update Basic :

1970-43

Update Equivalents :

1970-43; 1971-17; 1971-49; 1972-38; 1973-21; 1973-26; 1973-50

English Abstract for DE2018353 (FR2043403)

Abstract :

DE2018353 A

Infra red radiation falling onto a crystalline phosphor is converted into visible radiation without the application of a voltage.

The phosphor is a stoichiometric mixture of oxyhalide crystals of the form M₁R₄, M₂X₂ where M₁ is a monovalent metal and M₂ is a divalent metal. The mixture must contain 5% of the cation Yb⁺⁺⁺. When the phosphor is irradiated with infra red containing the absorption spectrum of ytterbium, visible light is emitted. The conversion uses two energy levels in the phosphor layer, producing different emission waves. The phosphor mixture can also contain the ion pairs YbEr, YbHo and YbErHo all as trivalent cations where the erbium is present at 1/16% and the holmium as 1/50% of the unit cell group.