Generating Sets and Cayley Graphs

Def: Let G be a group and S=G a subset.

The subgroup $\langle S \rangle$ generated by S is $\langle S \rangle = \{s_{1}s_{2}...s_{r} \mid r>1 \text{ and } s_{1},...,s_{r}\in S\} \cup \{e\}$ We say S is a generating set for G or S generates G

if G= $\langle S \rangle$.

Notation: $\langle s_{1},...,s_{r} \rangle = \langle \{s_{1},...,s_{r}\} \rangle$

 $Ex: S_3$ is generated by $\{(12), (23)^2\}$ because (12)(23) = (123) Combined with e, (23)(12) = (132) this is all the elements. (12)(23)(12) = (13)

 E_X : S_N is generated by $S = \{(ik) \mid j,k \in \{1,2,...,n\}\}$

Def: Elements of the form (jk) are called transpositions.

 $\frac{E_X}{E_X}$: The group of symmetries of a square is generated by the matrices $R = \begin{bmatrix} 0 - 1 \\ 1 & 0 \end{bmatrix}$ and $S = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$.

We can draw a picture of a group G with a generating get S using a Cayley digraph.

Def: A directed graph or digraph 75 a collection of restices connected together with directed edges called arcs.

In general these can be decorated with various colors, symbols, line styles, etc. to improve understanding.

Def: The Cayley digraph X(G,S) associated to a group G with generating set S has vertices given by the elements of G. There is an arc from vertex a to vertex b if and only if $ba^{-1} \in S$.

$$E_{x}$$
: $G = S_{3}$, $S = \{(12), (23)\}$

$$E_{\times}!$$
 $G = S_3, S = {(12), (123)}$

$$\underline{\mathsf{E}_{\mathsf{X}}}: \; \mathsf{G}=\mathsf{TL}_{\mathsf{G}}, \quad \mathsf{S}=\mathsf{E}_{\mathsf{L}}^{\mathsf{L}}$$

Compare with Sz above

Q: How can we tell if a group 13 Abelian from its Cayley graph?

Structure of Groups

Goal: Try to view (fruite) groups on some uniform way.

Cayley's Theorem: Every fruite group 13 3 morphic to a subgroup of Sn for some n.

Def: A subgroup of Sn 75 called a permutation group.

Ex: The group of symmetries of the square has the following 8 elements.

The label the corners, we can see that each map define a permutation of \$1,2,3,43

Ex:

1 2 3 (1234)

In this way, we identify

$$T \leftrightarrow e$$
 $S \leftrightarrow (14)(23)$
 $R \leftrightarrow (1234)$ $SR \leftrightarrow (13)$
 $R^2 \leftrightarrow (13)(24)$ $SR^2 \leftrightarrow (12)(34)$
 $R^3 \leftrightarrow (1432)$ $SR^3 \leftrightarrow (24)$

Def: A function $f: G \to \widetilde{G}$ satisfying f(a*b) = f(a) * f(b) is called a group homomorphism.

More specifically: injecture group homomorphism = monomorphism serjective group homomorphism = epimorphism bijective aroup homomorphism = isomorphism. Anatony of a homomorphism: f:G→G

Codomain > image Kernel & domath Def: The kund and mage of f are (respectively) km f = { ge G (f(g) = & 3 = f (e). rmgf = 1 f(g) | g = 6} = f(G) Theorem: These are both subgroups Cayley's Theorem: If G 13 a front, Hun Hure exists an order n>0 and a monomorphism f: G -> 8n. In particular, G 73 isomorphic to the permutation group imag(f) & Sn.

Now it makes a lot of sense to study permutations!

Proof of Cayley's Theorem: Let $G = \{9_1, ..., 9_n\}$. Then for each '1, k there exists a tribeger $\sigma(j,k) \in \{1,2,...,n\}$ with $g_j g_k = g_{\sigma(j,k)}$.

Note $\sigma_j : k \mapsto \sigma(j,k)$ is a permutation of $\{1,3,...,n\}$

because of 9=9:-1, Hun 9+(1,5(i,h))=9=95(i,h)=90312k=91
and Hurefore of 13 the tweet of 5;
Can easily chech girs of is a monomorphism
Proputres of Permutations
(1) Each & ES man be united as a smaller
(1) Each 5 e Sn may be written as a product of disjoint cycles uniquely, up to the order of the product
(2) Each of & Sh can be written as a product
of transpositions (not uniquely!)
(3) If 5= (aa,)(a23)(a,azit)
cmd $\sigma = (b_0b_1)(b_2b_3)(b_{2k}b_{2k })$ Huen $j = k$ mad 2 .
Then J= K mad 2.
Def: The parity of a permutation is even if it can be written as a product of con even # of transpositions. Otherwise it is odd. The sign is
even if it can be written as a product
of con even # of transpositions. Olluwise
it'is odd. The sign is
$Sgn(G) = \begin{cases} 1, & \sigma \text{ even} \\ -1, & \sigma \text{ odd} \end{cases}$
Thrown: The map $sqn: S_n \rightarrow U_z = \{\pm 1\}$ 13 a group homomorphism.
13 a group homomorphism.
0. 1

Ref: The herrel of sign is the alternating growt An