Übungen zur Linearen Algebra und Analytischen Geometrie Sommersemester 2025 Esentepe-Gharbi

Blatt 9

- (1) Eine Matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ heißt *involutory*, wenn $A^2 = I$, wobei I die Einheitsmatrix ist.
 - (a) Zeigen Sie, dass

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

involutory ist.

- (b) Wahr oder falsch: Wenn $A^2 = I$, dann gilt A = -I oder A = I.
- (c) Finden Sie den Fehler im folgenden Argument:
 - (i) Wenn $A^2 = I$, dann gilt $A^2 I = 0$.
 - (ii) Wenn $A^2 I = 0$, dann gilt (A + I)(A I) = 0.
 - (iii) Wenn (A+I)(A-I)=0, dann gilt A+I=0 oder A-I=0.
 - (iv) Wenn A + I = 0 or A I = 0, dann gilt A = -I oder A = I.
- (2) Sei $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ eine involutory Matrix.
 - (a) Zeigen Sie dass det(A) = 1 oder det(A) = -1.
 - (b) Zeigen Sie, dass wenn c is ein Eingenwert von A ist, dann gilt c = 1 oder c = -1.
- (3) Eine Matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ nilpotent, wenn $A^m = 0$ für ein m.
 - (a) Finden Sie eine 2×2 Matrix A, sodass $A^2 = 0$, aber $A \neq 0$.
 - (b) Finden Sie eine 3×3 Matrix A, sodass $A^2 = 0$, aber $A \neq 0$.
 - (c) Finden Sie eine 3×3 Matrix A, sodass $A^3 = 00$, aber $A^2 \neq 0$.
 - (d) Zeigen Sie, dass when A nilpotent ist, dann 0 ein Eigenwert von A ist.
 - (e) Zeigen Sie, dass when A nilpotent ist und c ist ein Eigenwert von A ist, dann c = 0.
- (4) Sei V ein n-dimensionaler Vektorraum and U ein m-dimensionaler Unterraum mit $0 \subsetneq U \subsetneq V$. Sei $\pi \colon V \to V$ die orthogonale Projektion auf U. Bestimmen Sie das charakteristiche Polynom von π .
- (5) Es sei

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}.$$

1

Bestimmen Sie die erste Spalte von A^{2025} . (Hinweis: Können Sie einen Eigenvektor von A erkennen?)