Modeling-Classification

June 2, 2021

1 Modeling

1.1 Classification

in this notebook we are going to apporach the classification problem, our available datasets consits of two classification problems, binary and multiclass. although some machine learning algorithms are capable of both, there are some which can only do binary or multiclass classification. so, if a specific algorithm is not performed for a dataset, its because that datasets classification problem couldn't be done with that specific algorithm.

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import matplotlib.patches as patches
     import warnings
     import matplotlib
     warnings.filterwarnings("ignore")
     pd.set_option('display.max_rows', 200)
     import seaborn as sns
     from openpyxl import load_workbook
     np.set_printoptions(suppress=True)
     pd.set_option('display.float_format', lambda x: '%.2f' % x)
     from sklearn import preprocessing
     from sklearn.model_selection import KFold, cross_val_score, train_test_split
     from tqdm import tqdm_notebook, tqdm
     from sklearn.metrics import confusion_matrix
     from sklearn.metrics import roc_auc_score
     from sklearn.metrics import roc curve
     from sklearn import metrics
     import itertools
     import seaborn as sns
```

```
[2]: xls = pd.ExcelFile("data/main dataset v3.0 .xlsx")
    ad_post = pd.read_excel(xls, 'Ad-Post')
    ad_story = pd.read_excel(xls, 'Ad-Story')
    influencer = pd.read_excel(xls, 'Influencer')
    leaders_post = pd.read_excel(xls, 'Leaders-Post')
```

```
leaders_story = pd.read_excel(xls, 'Leaders-Story')
post = pd.read_excel(xls, 'Post')
story = pd.read_excel(xls, 'Story')
print('Datasets Loaded Completely.')
```

Datasets Loaded Completely.

```
[3]: #dummying dataset
     # advertising posts
     dummy_field = pd.get_dummies(ad_post['field'], prefix='field')
     ad_post_dummy = pd.concat([ad_post, dummy_field], axis=1)
     ad_post_dummy.drop(['field'], axis=1, inplace=True)
     # advertising stories
     dummy_field = pd.get_dummies(ad_story['field'], prefix='field')
     ad_story_dummy = pd.concat([ad_story, dummy_field], axis=1)
     ad_story_dummy.drop(['field'], axis=1, inplace=True)
     #influencer
     dummy_gender = pd.get_dummies(influencer['gender'], prefix='gender')
     dummy_field = pd.get_dummies(influencer['field'], prefix='field')
     influencer_dummy = pd.concat([influencer, dummy_gender, dummy_field], axis=1)
     influencer_dummy.drop(['gender', 'field'], axis=1, inplace=True)
     #leaders posts
     dummy_gender = pd.get_dummies(leaders_post['gender'], prefix='gender')
     leaders_post_dummy = pd.concat([leaders_post, dummy_gender], axis=1)
     leaders_post_dummy.drop(['gender'], axis=1, inplace=True)
```

```
[4]: # label encoding dataset

# advertising posts
labels, _ = pd.factorize(ad_post['field'])
ad_post_labelencoded = ad_post
ad_post_labelencoded['field_labelencoded'] = labels.tolist()

# advertising stories
labels, _ = pd.factorize(ad_story['field'])
ad_story_labelencoded = ad_story
ad_story_labelencoded['field_labelencoded'] = labels.tolist()

# influencer
labels, _ = pd.factorize(influencer['gender'])
influencer_labelencoded = influencer
influencer_labelencoded['gender_labelencoded'] = labels.tolist()
labels, _ = pd.factorize(influencer['field'])
influencer_labelencoded['field_labelencoded'] = labels.tolist()
```

```
# leaders post
labels, _ = pd.factorize(leaders_post['gender'])
leaders_post_labelencoded = leaders_post
leaders_post_labelencoded['gender_labelencoded'] = labels.tolist()
```

```
[5]: ad_post_y = np.asarray(ad_post_dummy[['benefit']])
   ad_post_x = np.asarray(ad_post_dummy[['follower', 'view', 'cost', 'field_art &_
    ad_story_y = np.asarray(ad_story_dummy[['benefit']])
   ad_story_x = np.asarray(ad_story_dummy[['view', 'follower', 'action',_
    →'interaction', 'impression', 'cost', 'field_art & culture', 'field_fact',
    'field_news', 'field_video', u
    influencer_y = np.asarray(influencer_dummy[['benefit']])
   influencer_x = np.asarray(influencer_dummy[['follower', 'view', 'action', u
    →'impression', 'cta', 'interaction', 'cost', 'gender_family', ⊔
    'field_cooking', 'field_health', u
    →'field_lifestyle', 'field_sport', 'field_tourism']])
   leaders_post_y = np.asarray(leaders_post_dummy[['benefit']])
   leaders_post_x = np.asarray(leaders_post_dummy[['follower', 'view', 'like',_
    'gender_female', 'gender_male']])
```

1.1.1 Logistic Regression (Both)

Advertising Post

```
[6]: from sklearn.linear_model import LogisticRegression from sklearn import preprocessing
```

Normalizing independent variables:

```
[7]: ad_post_x = preprocessing.StandardScaler().fit(ad_post_x).transform(ad_post_x)
ad_story_x = preprocessing.StandardScaler().fit(ad_story_x).

→transform(ad_story_x)
influencer_x = preprocessing.StandardScaler().fit(influencer_x).

→transform(influencer_x)
leaders_post_x = preprocessing.StandardScaler().fit(leaders_post_x).

→transform(leaders_post_x)
```

```
[8]: c_lst = [1, .5, .25, .1, .05, .025, .01, .005, .0025, .001]
```

```
[9]: temp_lst = []
    for i in range(2, 6):
       kf = KFold(n_splits = i)
       for train_index, test_index in kf.split(ad_post_x):
          X_train, X_test = ad_post_x[train_index], ad_post_x[test_index]
          y_train, y_test = ad_post_y[train_index], ad_post_y[test_index]
          for c in c lst:
              clf_lr = LogisticRegression(penalty='12', C=c, solver='liblinear')
              clf lr.fit(X train, y train)
              y_hat = clf_lr.predict(X_test)
              y_hat_prob = clf_lr.predict_proba(X_test)
              temp lst2 = []
              temp_lst2.append(i)
              temp_lst2.append(c)
              temp_lst2.append(metrics.accuracy_score(y_train, clf_lr.
    →predict(X_train)))
              temp lst2.append(metrics.accuracy score(y test, y hat))
              temp_lst2.append(metrics.f1_score(y_test, y_hat))
              temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
              temp_lst.append(temp_lst2)
    temp df = pd.DataFrame(temp lst,
                       columns=['k', 'c', 'Train-set Accuracy', 'Test-set⊔
    →Accuracy', 'F1 Score', 'Jaccard Score'])
    temp_lst = []
    for k in range(2, 6):
       for c in c_lst:
          temp 1st2 = []
          temp_lst2.append(k)
          temp lst2.append(c)
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
    temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
     temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
    temp lst.append(temp lst2)
    clf lr eval df = pd.DataFrame(temp lst,
                             columns=['k', 'c', 'Train-set Accuracy', __
    →'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
    clf_lr_eval_df
```

```
[9]:
               c Train-set Accuracy Test-set Accuracy F1 Score
                                                                     Jaccard Score
          k
          2 1.00
                                                     0.63
      0
                                 0.85
                                                               0.70
                                                                               0.54
          2 0.50
                                                     0.59
      1
                                 0.81
                                                               0.64
                                                                               0.47
      2
          2 0.25
                                 0.81
                                                     0.59
                                                               0.64
                                                                               0.47
          2 0.10
      3
                                 0.81
                                                     0.52
                                                               0.58
                                                                               0.41
      4
          2 0.05
                                 0.81
                                                     0.52
                                                               0.58
                                                                               0.41
      5
          2 0.03
                                 0.81
                                                     0.56
                                                               0.60
                                                                               0.43
          2 0.01
                                 0.81
                                                     0.56
                                                                               0.43
      6
                                                               0.60
      7
          2 0.01
                                 0.81
                                                     0.56
                                                               0.60
                                                                               0.43
          2 0.00
      8
                                 0.81
                                                     0.56
                                                               0.60
                                                                               0.43
      9
          2 0.00
                                 0.81
                                                     0.56
                                                                               0.43
                                                               0.60
      10 3 1.00
                                 0.87
                                                     0.74
                                                               0.72
                                                                               0.66
      11 3 0.50
                                 0.85
                                                     0.74
                                                               0.72
                                                                               0.66
      12 3 0.25
                                 0.80
                                                     0.74
                                                               0.72
                                                                               0.66
      13 3 0.10
                                 0.78
                                                     0.78
                                                               0.73
                                                                               0.67
                                                     0.78
      14 3 0.05
                                 0.76
                                                               0.72
                                                                               0.63
      15 3 0.03
                                 0.74
                                                     0.74
                                                               0.69
                                                                               0.57
      16 3 0.01
                                 0.70
                                                     0.70
                                                               0.64
                                                                               0.52
      17 3 0.01
                                 0.70
                                                     0.70
                                                               0.64
                                                                               0.52
      18 3 0.00
                                 0.70
                                                     0.70
                                                               0.64
                                                                               0.52
      19 3 0.00
                                 0.70
                                                     0.70
                                                                               0.52
                                                               0.64
      20 4 1.00
                                 0.86
                                                     0.69
                                                               0.71
                                                                               0.61
      21 4 0.50
                                                     0.69
                                                                               0.61
                                 0.85
                                                               0.71
      22 4 0.25
                                 0.83
                                                     0.69
                                                               0.71
                                                                               0.61
      23 4 0.10
                                 0.80
                                                     0.65
                                                               0.69
                                                                               0.57
      24 4 0.05
                                 0.76
                                                     0.62
                                                               0.64
                                                                               0.51
      25 4 0.03
                                 0.76
                                                     0.67
                                                                               0.48
                                                               0.62
      26 4 0.01
                                 0.74
                                                     0.67
                                                               0.62
                                                                               0.48
      27 4 0.01
                                 0.75
                                                     0.67
                                                                               0.48
                                                               0.62
      28 4 0.00
                                 0.75
                                                     0.67
                                                               0.62
                                                                               0.48
      29 4 0.00
                                                     0.67
                                 0.75
                                                               0.62
                                                                               0.48
      30 5 1.00
                                 0.87
                                                     0.69
                                                               0.70
                                                                               0.59
      31 5 0.50
                                 0.81
                                                     0.69
                                                               0.70
                                                                               0.59
      32 5 0.25
                                 0.80
                                                     0.66
                                                               0.67
                                                                               0.55
      33 5 0.10
                                 0.80
                                                     0.63
                                                               0.63
                                                                               0.51
      34 5 0.05
                                 0.81
                                                     0.63
                                                                               0.51
                                                               0.63
      35 5 0.03
                                 0.82
                                                     0.67
                                                               0.65
                                                                               0.53
      36 5 0.01
                                 0.77
                                                     0.67
                                                               0.65
                                                                               0.53
      37
          5 0.01
                                 0.75
                                                     0.67
                                                               0.65
                                                                               0.53
      38 5 0.00
                                 0.75
                                                     0.67
                                                               0.65
                                                                               0.53
      39 5 0.00
                                 0.74
                                                     0.67
                                                                               0.53
                                                               0.65
[10]: clf_lr_eval_df.nlargest(3, 'Test-set Accuracy')
                  Train-set Accuracy Test-set Accuracy F1 Score
[10]:
                                                                      Jaccard Score
          k
               С
      13 3 0.10
                                 0.78
                                                     0.78
                                                               0.73
                                                                               0.67
      14 3 0.05
                                 0.76
                                                     0.78
                                                               0.72
                                                                               0.63
```

10 3 1.00 0.87 0.74 0.72 0.66

```
[11]: kf = KFold(n splits = 3)
      temp_lst = []
      clf lr = LogisticRegression(penalty='12', C=.10, solver='liblinear')
      for train_index, test_index in kf.split(ad_post_x):
          X_train, X_test = ad_post_x[train_index], ad_post_x[test_index]
          y_train, y_test = ad_post_y[train_index], ad_post_y[test_index]
          clf_lr.fit(X_train, y_train)
          y_hat = clf_lr.predict(X_test)
          y_hat_prob = clf_lr.predict_proba(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_lr.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
          temp_lst2.append(metrics.log_loss(y_test, y_hat_prob))
          temp lst2.append(y test)
          temp_lst2.append(y_hat)
          temp lst2.append(X test)
          temp lst.append(temp lst2)
[12]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp_lst:
          for i in row[5]:
              temp_lst_ytest.append(i)
          for j in row[6]:
              temp_lst_yhat.append(j)
          for k in row[7]:
              temp_lst_xtest.append(k)
      cnf_ytest = np.array(temp_lst_ytest)
      cnf_yhat = np.array(temp_lst_yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
```

	precision	recall	f1-score	support
0	0.80	0.67	0.73	12
1	0.76	0.87	0.81	15
2 6 6 11 7 2 6 17			0.78	27
accuracy macro avg	0.78	0.77	0.78	27 27
weighted avg	0.78	0.78	0.77	27

```
[13]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat, labels=[1,0])
    plt.figure(figsize=(8,6))
    sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
    plt.xlabel('Predicted Value')
    plt.ylabel('True Value')
    plt.show()
```



```
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
```


Advertising Stories

```
[15]: temp lst = []
      for i in range(2, 6):
          kf = KFold(n_splits = i)
          for train_index, test_index in kf.split(ad_story_x):
              X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
              y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
              for c in c_lst:
                  clf_lr = LogisticRegression(penalty='12', C=c, solver='liblinear')
                  clf_lr.fit(X_train, y_train)
                  y_hat = clf_lr.predict(X_test)
                  y_hat_prob = clf_lr.predict_proba(X_test)
                  temp_1st2 = []
                  temp_lst2.append(i)
                  temp_lst2.append(c)
                  temp_lst2.append(metrics.accuracy_score(y_train, clf_lr.
       →predict(X_train)))
                  temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
```

```
temp_lst2.append(metrics.f1_score(y_test, y_hat))
         temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
         temp_lst.append(temp_lst2)
temp_df = pd.DataFrame(temp_lst,
                  \verb|columns=['k', 'c', 'Train-set Accuracy', 'Test-set_{\sqcup}|
→Accuracy', 'F1 Score', 'Jaccard Score'])
temp_lst = []
for k in range(2, 6):
   for c in c_lst:
      temp_1st2 = []
      temp_lst2.append(k)
      temp_lst2.append(c)
      temp_lst2.append(np.round(np.mean(temp_df['k'] == k) &__
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
temp lst2.append(np.round(np.mean(temp df[(temp df['k'] == k) & L
temp_lst.append(temp_lst2)
clf_lr_eval_df = pd.DataFrame(temp_lst,
                        columns=['k', 'c', 'Train-set Accuracy', ⊔
→'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
clf_lr_eval_df
```

[15]:		k	С	Train-set Accuracy	Test-set Accuracy	F1 Score	Jaccard Score
	0	2	1.00	0.96	0.82	0.84	0.72
	1	2 (0.50	0.93	0.82	0.84	0.72
	2	2 (0.25	0.93	0.82	0.84	0.72
	3	2 (0.10	0.93	0.78	0.81	0.68
	4	2 (0.05	0.93	0.70	0.75	0.60
	5	2 (0.03	0.89	0.66	0.70	0.55
	6	2 (0.01	0.85	0.66	0.70	0.55
	7	2 (0.01	0.82	0.66	0.70	0.55
	8	2 (0.00	0.82	0.63	0.67	0.52
	9	2 (0.00	0.82	0.63	0.67	0.52
	10	3	1.00	0.96	0.74	0.79	0.67
	11	3 (0.50	0.96	0.74	0.79	0.67
	12	3 (0.25	0.94	0.74	0.79	0.67
	13	3 (0.10	0.94	0.70	0.75	0.61
	14	3 (0.05	0.94	0.70	0.75	0.61
	15	3 (0.03	0.94	0.70	0.75	0.61
	16	3 (0.01	0.93	0.63	0.67	0.54
	17	3 (0.01	0.93	0.63	0.67	0.54

```
0.93
                                                                             0.54
      18 3 0.00
                                                   0.63
                                                             0.67
      19 3 0.00
                                0.93
                                                   0.63
                                                             0.67
                                                                             0.54
      20 4 1.00
                                0.98
                                                   0.74
                                                             0.79
                                                                             0.66
      21 4 0.50
                                0.94
                                                   0.74
                                                                             0.66
                                                             0.79
      22 4 0.25
                                0.90
                                                   0.74
                                                             0.79
                                                                             0.66
      23 4 0.10
                                0.88
                                                   0.74
                                                             0.79
                                                                             0.66
      24 4 0.05
                                0.88
                                                   0.74
                                                             0.79
                                                                             0.66
                                                                             0.52
      25 4 0.03
                                0.85
                                                   0.62
                                                             0.66
      26 4 0.01
                                0.85
                                                   0.59
                                                             0.65
                                                                             0.50
      27 4 0.01
                                0.85
                                                   0.59
                                                             0.65
                                                                             0.50
      28 4 0.00
                                0.86
                                                   0.59
                                                                             0.50
                                                             0.65
      29 4 0.00
                                0.86
                                                   0.59
                                                             0.65
                                                                             0.50
      30 5 1.00
                                0.98
                                                   0.75
                                                             0.80
                                                                             0.68
      31 5 0.50
                                0.97
                                                   0.75
                                                             0.80
                                                                             0.68
      32 5 0.25
                                0.93
                                                   0.75
                                                                             0.68
                                                             0.80
      33 5 0.10
                                0.89
                                                   0.71
                                                             0.74
                                                                             0.63
      34 5 0.05
                                0.89
                                                   0.71
                                                                             0.63
                                                             0.74
      35 5 0.03
                                0.88
                                                   0.71
                                                             0.74
                                                                             0.63
      36 5 0.01
                                0.87
                                                                             0.63
                                                   0.71
                                                             0.74
      37 5 0.01
                                0.83
                                                   0.67
                                                             0.68
                                                                             0.57
      38 5 0.00
                                0.84
                                                   0.67
                                                             0.68
                                                                             0.57
      39 5 0.00
                                0.84
                                                   0.67
                                                             0.68
                                                                             0.57
[16]: clf_lr_eval_df.nlargest(3, 'Test-set Accuracy')
[16]:
         k
              c Train-set Accuracy Test-set Accuracy F1 Score Jaccard Score
      0 2 1.00
                               0.96
                                                  0.82
                                                             0.84
                                                                            0.72
      1 2 0.50
                               0.93
                                                  0.82
                                                             0.84
                                                                            0.72
      2 2 0.25
                               0.93
                                                  0.82
                                                             0.84
                                                                            0.72
[17]: kf = KFold(n_splits = 2)
      temp lst = []
      clf_lr = LogisticRegression(penalty='12', C=1, solver='liblinear')
      for train_index, test_index in kf.split(ad_story_x):
          X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
          y train, y test = ad story y[train index], ad story y[test index]
          clf_lr.fit(X_train, y_train)
          y_hat = clf_lr.predict(X_test)
          y_hat_prob = clf_lr.predict_proba(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_lr.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
          temp_lst2.append(metrics.log_loss(y_test, y_hat_prob))
          temp_lst2.append(y_test)
          temp_lst2.append(y_hat)
```

```
temp_lst2.append(X_test)
temp_lst.append(temp_lst2)
```

```
[18]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
for row in temp_lst:
    for i in row[5]:
        temp_lst_ytest.append(i)
    for j in row[6]:
        temp_lst_yhat.append(j)
    for k in row[7]:
        temp_lst_xtest.append(k)

cnf_ytest = np.array(temp_lst_ytest)
cnf_yhat = np.array(temp_lst_yhat)
cnf_xtest = np.array(temp_lst_xtest)
print(metrics.classification_report(cnf_ytest, cnf_yhat))
```

	precision	recall	f1-score	support
0	0.75	0.82	0.78	11
1	0.87	0.81	0.84	16
accuracy			0.81	27
macro avg	0.81	0.82	0.81	27
weighted avg	0.82	0.81	0.82	27

```
[19]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat, labels=[1,0])
    plt.figure(figsize=(8,6))
    sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
    plt.xlabel('Predicted Value')
    plt.ylabel('True Value')
    plt.show()
```



```
Influencer
[21]: temp_lst = []
      for i in range(2, 6):
          kf = KFold(n_splits = i)
          for train_index, test_index in kf.split(influencer_x):
              X_train, X_test = influencer_x[train_index], influencer_x[test_index]
              y_train, y_test = influencer_y[train_index], influencer_y[test_index]
              for c in c_lst:
                  clf_lr = LogisticRegression(penalty='12', C=c, solver='newton-cg')
                  clf_lr.fit(X_train, y_train)
                  y_hat = clf_lr.predict(X_test)
                  y_hat_prob = clf_lr.predict_proba(X_test)
                  temp_1st2 = []
                  temp_lst2.append(i)
                  temp_lst2.append(c)
                  temp_lst2.append(metrics.accuracy_score(y_train, clf_lr.
       →predict(X_train)))
                  temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
                  temp_lst2.append(metrics.f1_score(y_test, y_hat, average='micro'))
                  temp_lst2.append(metrics.jaccard_score(y_test, y_hat,__
       →average='micro'))
                  temp_lst.append(temp_lst2)
```

```
temp_df = pd.DataFrame(temp_lst,
                 columns=['k', 'c', 'Train-set Accuracy', 'Test-set_
→Accuracy', 'F1 Score', 'Jaccard Score'])
temp lst = []
for k in range(2, 6):
   for c in c lst:
      temp 1st2 = []
      temp_lst2.append(k)
      temp_lst2.append(c)
      temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
temp lst2.append(np.round(np.mean(temp df[(temp df['k'] == k) & L
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
temp lst.append(temp lst2)
clf_lr_eval_df = pd.DataFrame(temp_lst,
                      columns=['k', 'c', 'Train-set Accuracy', u
→'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
clf_lr_eval_df
```

[21]:	k	С	Train-set Accuracy	Test-set Accuracy	F1 Score	Jaccard Score
0	2	1.00	0.92	0.65	0.65	0.48
1	2	0.50	0.89	0.61	0.61	0.44
2	2	0.25	0.85	0.63	0.63	0.46
3	2	0.10	0.81	0.59	0.59	0.42
4	2	0.05	0.78	0.60	0.60	0.43
5	2	0.03	0.76	0.59	0.59	0.42
6	2	0.01	0.70	0.51	0.51	0.36
7	2	0.01	0.54	0.45	0.45	0.30
8	2	0.00	0.53	0.47	0.47	0.31
9	2	0.00	0.53	0.42	0.42	0.27
1	0 3	1.00	0.94	0.49	0.49	0.33
1	1 3	0.50	0.90	0.46	0.46	0.31
1	2 3	0.25	0.85	0.43	0.43	0.28
1	3 3	0.10	0.84	0.41	0.41	0.26
1	4 3	0.05	0.82	0.33	0.33	0.21
1		0.03	0.77	0.32	0.32	0.20
1		0.01	0.64	0.27	0.27	0.16
1	7 3	0.01	0.60	0.23	0.23	0.13
1		0.00	0.51	0.21	0.21	0.12
1		0.00	0.50	0.21	0.21	0.12
2	0 4	1.00	0.92	0.56	0.56	0.40
2	1 4	0.50	0.88	0.55	0.55	0.39

```
0.48
                                                                            0.33
      22 4 0.25
                                0.85
                                                             0.48
      23 4 0.10
                                0.79
                                                   0.47
                                                             0.47
                                                                            0.32
                                                   0.42
      24 4 0.05
                                0.77
                                                             0.42
                                                                            0.28
      25 4 0.03
                                0.74
                                                   0.42
                                                                            0.27
                                                             0.42
      26 4 0.01
                                0.68
                                                   0.41
                                                             0.41
                                                                            0.28
                                                                            0.13
      27 4 0.01
                                0.62
                                                   0.23
                                                             0.23
      28 4 0.00
                                0.57
                                                   0.20
                                                             0.20
                                                                            0.11
      29 4 0.00
                                                                            0.11
                                0.53
                                                   0.20
                                                             0.20
      30 5 1.00
                                0.93
                                                   0.63
                                                             0.63
                                                                            0.51
      31 5 0.50
                                0.90
                                                   0.57
                                                             0.57
                                                                            0.44
      32 5 0.25
                                0.85
                                                   0.45
                                                                            0.32
                                                             0.45
      33 5 0.10
                                0.80
                                                   0.47
                                                             0.47
                                                                            0.36
      34 5 0.05
                                0.76
                                                   0.48
                                                             0.48
                                                                            0.37
      35 5 0.03
                                0.73
                                                   0.46
                                                             0.46
                                                                            0.35
      36 5 0.01
                                0.71
                                                   0.51
                                                             0.51
                                                                            0.38
      37 5 0.01
                                0.60
                                                   0.41
                                                             0.41
                                                                            0.28
      38 5 0.00
                                                                            0.25
                                0.57
                                                   0.37
                                                             0.37
      39 5 0.00
                                0.51
                                                   0.30
                                                             0.30
                                                                             0.18
[22]: clf_lr_eval_df.nlargest(3, 'Test-set Accuracy')
[22]:
               c Train-set Accuracy Test-set Accuracy F1 Score Jaccard Score
          k
          2 1.00
                                0.92
                                                   0.65
                                                                            0.48
                                                             0.65
      0
      30 5 1.00
                                0.93
                                                   0.63
                                                             0.63
                                                                            0.51
          2 0.25
      2
                                0.85
                                                   0.63
                                                             0.63
                                                                            0.46
[23]: kf = KFold(n_splits = 2)
      temp_lst = []
      clf_lr = LogisticRegression(penalty='12', C=1, solver='newton-cg')
      for train_index, test_index in kf.split(ad_story_x):
          X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
          y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
          clf_lr.fit(X_train, y_train)
          y_hat = clf_lr.predict(X_test)
          y_hat_prob = clf_lr.predict_proba(X_test)
          temp lst2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_lr.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat, average='micro'))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat, average='micro'))
          temp_lst2.append(metrics.log_loss(y_test, y_hat_prob))
          temp_lst2.append(y_test)
          temp_lst2.append(y_hat)
          temp_lst2.append(X_test)
          temp_lst.append(temp_lst2)
```

```
[24]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
for row in temp_lst:
    for i in row[5]:
        temp_lst_ytest.append(i)
    for j in row[6]:
        temp_lst_yhat.append(j)
    for k in row[7]:
        temp_lst_xtest.append(k)

cnf_ytest = np.array(temp_lst_ytest)
    cnf_yhat = np.array(temp_lst_yhat)
    cnf_xtest = np.array(temp_lst_xtest)
    print(metrics.classification_report(cnf_ytest, cnf_yhat))
```

```
precision
                           recall f1-score
                                               support
           0
                   0.70
                             0.64
                                        0.67
                                                    11
           1
                   0.76
                             0.81
                                        0.79
                                                    16
                                        0.74
                                                    27
   accuracy
  macro avg
                                        0.73
                   0.73
                             0.72
                                                    27
weighted avg
                   0.74
                             0.74
                                        0.74
                                                    27
```

```
[25]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
   plt.figure(figsize=(8,6))
   sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
   plt.xlabel('Predicted Value')
   plt.ylabel('True Value')
   plt.show()
```



```
Leaders Post
[27]: temp lst = []
      for i in range(2, 6):
          kf = KFold(n_splits = i)
          for train_index, test_index in kf.split(leaders_post_x):
              X_train, X_test = leaders_post_x[train_index],_
       →leaders_post_x[test_index]
              y_train, y_test = leaders_post_y[train_index],_
       →leaders_post_y[test_index]
              for c in c_lst:
                  clf_lr = LogisticRegression(penalty='12', C=c, solver='newton-cg')
                  clf_lr.fit(X_train, y_train)
                  y_hat = clf_lr.predict(X_test)
                  y_hat_prob = clf_lr.predict_proba(X_test)
                  temp_1st2 = []
                  temp_lst2.append(i)
                  temp_lst2.append(c)
                  temp_lst2.append(metrics.accuracy_score(y_train, clf_lr.
       →predict(X_train)))
                  temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
                  temp_lst2.append(metrics.f1_score(y_test, y_hat, average='micro'))
                  temp_lst2.append(metrics.jaccard_score(y_test, y_hat,__
       →average='micro'))
```

```
temp_lst.append(temp_lst2)
temp_df = pd.DataFrame(temp_lst,
                 columns=['k', 'c', 'Train-set Accuracy', 'Test-set_
→Accuracy', 'F1 Score', 'Jaccard Score'])
temp lst = []
for k in range(2, 6):
   for c in c lst:
      temp_1st2 = []
      temp_lst2.append(k)
      temp_lst2.append(c)
      temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
temp_lst.append(temp_lst2)
clf_lr_eval_df = pd.DataFrame(temp_lst,
                       columns=['k', 'c', 'Train-set Accuracy', u
→'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
clf_lr_eval_df
```

[27]:	k c	Train-set Accuracy	Test-set Accuracy	F1 Score	Jaccard Score
0	2 1.00	1.00	0.35	0.35	0.22
1	2 0.50	1.00	0.35	0.35	0.22
2	2 0.25	0.88	0.45	0.45	0.29
3	2 0.10	0.88	0.45	0.45	0.29
4	2 0.05	0.78	0.45	0.45	0.29
5	2 0.03	0.78	0.45	0.45	0.29
6	2 0.01	0.78	0.45	0.45	0.29
7	2 0.01	0.78	0.45	0.45	0.29
8	2 0.00	0.78	0.45	0.45	0.29
9	2 0.00	0.78	0.45	0.45	0.29
10	3 1.00	1.00	0.44	0.44	0.30
11	3 0.50	0.89	0.44	0.44	0.30
12	3 0.25	0.89	0.33	0.33	0.20
13	3 0.10	0.83	0.33	0.33	0.20
14	3 0.05	0.78	0.33	0.33	0.20
15	3 0.03	0.72	0.33	0.33	0.20
16	3 0.01	0.72	0.44	0.44	0.30
17	3 0.01	0.72	0.44	0.44	0.30
18	3 0.00	0.72	0.44	0.44	0.30
19	3 0.00	0.72	0.44	0.44	0.30

```
21 4 0.50
                                0.96
                                                   0.42
                                                             0.42
                                                                             0.29
      22 4 0.25
                                0.85
                                                   0.46
                                                             0.46
                                                                             0.30
      23 4 0.10
                                                                             0.30
                                0.82
                                                   0.46
                                                             0.46
      24 4 0.05
                                0.77
                                                   0.46
                                                             0.46
                                                                             0.30
      25 4 0.03
                                0.70
                                                   0.46
                                                             0.46
                                                                             0.30
      26 4 0.01
                                0.60
                                                   0.58
                                                             0.58
                                                                             0.47
      27 4 0.01
                                0.56
                                                   0.58
                                                             0.58
                                                                             0.47
      28 4 0.00
                                0.56
                                                   0.58
                                                             0.58
                                                                             0.47
      29 4 0.00
                                0.56
                                                   0.58
                                                             0.58
                                                                             0.47
      30 5 1.00
                                1.00
                                                   0.50
                                                                             0.40
                                                             0.50
      31 5 0.50
                                0.89
                                                   0.50
                                                             0.50
                                                                             0.40
      32 5 0.25
                                0.84
                                                   0.50
                                                             0.50
                                                                             0.40
      33 5 0.10
                                0.81
                                                   0.50
                                                             0.50
                                                                             0.40
      34 5 0.05
                                0.81
                                                   0.50
                                                             0.50
                                                                             0.40
      35 5 0.03
                                0.72
                                                   0.50
                                                             0.50
                                                                             0.40
      36 5 0.01
                                0.59
                                                   0.60
                                                                             0.53
                                                             0.60
      37 5 0.01
                                0.56
                                                   0.60
                                                             0.60
                                                                             0.53
      38 5 0.00
                                0.56
                                                   0.60
                                                             0.60
                                                                             0.53
      39 5 0.00
                                0.56
                                                   0.60
                                                             0.60
                                                                             0.53
[28]: clf_lr_eval_df.nlargest(3, 'Test-set Accuracy')
[28]:
          k
                  Train-set Accuracy Test-set Accuracy F1 Score Jaccard Score
      36 5 0.01
                                                   0.60
                                                             0.60
                                0.59
                                                                             0.53
      37 5 0.01
                                0.56
                                                   0.60
                                                             0.60
                                                                             0.53
      38 5 0.00
                                0.56
                                                   0.60
                                                             0.60
                                                                             0.53
[29]: kf = KFold(n_splits = 5)
      temp lst = []
      clf_lr = LogisticRegression(penalty='12', C=.01 ,solver='newton-cg')
      for train_index, test_index in kf.split(leaders_post_x):
          X_train, X_test = leaders_post_x[train_index], leaders_post_x[test_index]
          y_train, y_test = leaders_post_y[train_index], leaders_post_y[test_index]
          clf_lr.fit(X_train, y_train)
          y hat = clf lr.predict(X test)
          y_hat_prob = clf_lr.predict_proba(X_test)
          temp 1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_lr.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat, average='micro'))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat, average='micro'))
          temp_lst2.append(0)
          temp_lst2.append(y_test)
          temp_lst2.append(y_hat)
          temp_lst2.append(X_test)
          temp_lst.append(temp_lst2)
```

0.42

0.42

1.00

20 4 1.00

0.29

```
[30]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
for row in temp_lst:
    for i in row[5]:
        temp_lst_ytest.append(i)
    for j in row[6]:
        temp_lst_yhat.append(j)
    for k in row[7]:
        temp_lst_xtest.append(k)

cnf_ytest = np.array(temp_lst_ytest)
    cnf_yhat = np.array(temp_lst_yhat)
    cnf_xtest = np.array(temp_lst_xtest)
    print(metrics.classification_report(cnf_ytest, cnf_yhat))
```

	precision	recall	f1-score	support
-1	0.00	0.00	0.00	2
0	0.56	1.00	0.71	5
1	0.00	0.00	0.00	2
accuracy			0.56	9
macro avg	0.19	0.33	0.24	9
weighted avg	0.31	0.56	0.40	9

```
[31]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
   plt.figure(figsize=(8,6))
   sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
   plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
   plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
   plt.xlabel('Predicted Value')
   plt.ylabel('True Value')
   plt.show()
```


1.1.2 Support Vector Machine (Both)

Advertising Post

```
clf_svm.fit(X_train, y_train)
              y_hat = clf_svm.predict(X_test)
              temp_1st2 = []
              temp_lst2.append(i)
              temp_lst2.append(c)
              temp_lst2.append(kernel_type)
              temp_lst2.append(metrics.accuracy_score(y_train, clf_svm.
→predict(X_train)))
              temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
              temp_lst2.append(metrics.f1_score(y_test, y_hat))
              temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
              temp_lst.append(temp_lst2)
temp_df = pd.DataFrame(temp_lst,
                     columns=['k', 'c', 'kernel', 'Train-set Accuracy', |
→'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
temp_lst = []
for k in range(2, 6):
   for c in c_lst:
       for kernel_type in kernel_lst:
           temp_1st2 = []
           temp_lst2.append(k)
           temp_lst2.append(c)
           temp_lst2.append(kernel_type)
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
→Accuracy']), decimals=4))
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
→Accuracy']), decimals=4))
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
→(temp_df['c'] == c) & (temp_df['kernel'] == kernel_type)]['F1 Score']), u
→decimals=4))
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
→ (temp_df['c'] == c) & (temp_df['kernel'] == kernel_type)]['Jaccard Score']), □
→decimals=4))
           temp_lst.append(temp_lst2)
clf_svm_eval_df = pd.DataFrame(temp_lst,
                           columns=['k', 'c', 'kernel', 'Train-set⊔
→Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
clf_svm_eval_df
         С
            kernel Train-set Accuracy Test-set Accuracy F1 Score \
```

2	2 1.00	rbf	0.81	0.63	0.69
3	2 1.00	sigmoid	0.77	0.52	0.63
4	2 0.50	linear	0.81	0.59	0.70
5	2 0.50	poly	0.77	0.45	0.33
6	2 0.50	rbf	0.73	0.45	0.33
7	2 0.50	sigmoid	0.77	0.55	0.65
8	2 0.25	linear	0.85	0.55	0.67
9	2 0.25	poly	0.77	0.45	0.33
10	2 0.25	rbf	0.70	0.41	0.32
11	2 0.25	sigmoid	0.70	0.41	0.32
12	2 0.10	linear	0.81	0.63	0.69
13	2 0.10	poly	0.73	0.45	0.33
14	2 0.10	rbf	0.59	0.41	0.32
15	2 0.10	sigmoid	0.59	0.41	0.32
16	2 0.05	linear	0.74	0.41	0.32
17	2 0.05	poly	0.63	0.45	0.33
18	2 0.05	rbf	0.59	0.41	0.32
19	2 0.05	sigmoid	0.59	0.41	0.32
20	2 0.03	linear	0.63	0.41	0.32
21	2 0.03	poly	0.63	0.41	0.32
22					
	2 0.03	rbf	0.59	0.41	0.32
23	2 0.03	sigmoid	0.59	0.41	0.32
24	2 0.01	linear	0.59	0.41	0.32
25	2 0.01	poly	0.59	0.41	0.32
26	2 0.01	rbf	0.59	0.41	0.32
27	2 0.01	sigmoid	0.59	0.41	0.32
28	2 0.01	linear	0.59	0.41	0.32
29	2 0.01	poly	0.59	0.41	0.32
30	2 0.01	rbf	0.59	0.41	0.32
31	2 0.01		0.59	0.41	0.32
		sigmoid			
32	2 0.00	linear	0.59	0.41	0.32
33	2 0.00	poly	0.59	0.41	0.32
34	2 0.00	rbf	0.59	0.41	0.32
35	2 0.00	sigmoid	0.59	0.41	0.32
36	2 0.00	linear	0.59	0.41	0.32
37	2 0.00	poly	0.59	0.41	0.32
38	2 0.00	rbf	0.59	0.41	0.32
39	2 0.00	sigmoid	0.59	0.41	0.32
40	3 1.00	linear	0.89	0.74	0.77
41	3 1.00	poly	0.78	0.70	0.78
42	3 1.00	rbf	0.78	0.63	0.70
43	3 1.00	sigmoid	0.76	0.78	0.72
44	3 0.50	linear	0.85	0.74	0.77
45	3 0.50	poly	0.80	0.52	0.55
46	3 0.50	rbf	0.69	0.33	0.36
47	3 0.50	sigmoid	0.72	0.48	0.43
48	3 0.25	linear	0.80	0.70	0.74
10	0 0.20	-1112QI	0.00	0.70	0.17

49	3 0.25	poly	0.72	0.41	0.42
50	3 0.25	rbf	0.69	0.37	0.40
51	3 0.25	sigmoid	0.65	0.41	0.42
52	3 0.10	linear	0.78	0.70	
					0.76
53	3 0.10	poly	0.67	0.41	0.42
54	3 0.10	rbf	0.59	0.37	0.40
55	3 0.10	sigmoid	0.59	0.37	0.40
56	3 0.05	linear	0.78	0.44	0.41
57	3 0.05	poly	0.63	0.41	0.42
58	3 0.05	rbf	0.59	0.37	0.40
59	3 0.05	sigmoid	0.59	0.37	0.40
60	3 0.03	linear	0.69	0.41	0.42
61					
	3 0.03	poly	0.63	0.37	0.40
62	3 0.03	rbf	0.59	0.37	0.40
63	3 0.03	sigmoid	0.59	0.37	0.40
64	3 0.01	linear	0.59	0.37	0.40
65	3 0.01	poly	0.59	0.37	0.40
66	3 0.01	rbf	0.59	0.37	0.40
67	3 0.01	sigmoid	0.59	0.37	0.40
68	3 0.01	linear	0.59	0.37	0.40
69	3 0.01	poly	0.59	0.37	0.40
70		rbf			
	3 0.01		0.59	0.37	0.40
71	3 0.01	sigmoid	0.59	0.37	0.40
72	3 0.00	linear	0.59	0.37	0.40
73	3 0.00	poly	0.59	0.37	0.40
74	3 0.00	rbf	0.59	0.37	0.40
75	3 0.00	sigmoid	0.59	0.37	0.40
76	3 0.00	linear	0.59	0.37	0.40
77	3 0.00	poly	0.59	0.37	0.40
78	3 0.00	rbf	0.59	0.37	0.40
79	3 0.00	sigmoid	0.59	0.37	0.40
80	4 1.00	linear	0.85	0.69	0.71
81	4 1.00	poly	0.79	0.68	0.74
82	4 1.00	rbf	0.80	0.58	0.65
83	4 1.00	sigmoid	0.76	0.69	0.71
84	4 0.50	linear	0.86	0.65	0.70
85	4 0.50	poly	0.79	0.68	0.74
86	4 0.50	rbf	0.75	0.47	0.59
87	4 0.50	sigmoid	0.78	0.54	0.63
88	4 0.25	linear	0.84	0.65	0.70
89	4 0.25	poly	0.75	0.54	0.63
90		rbf	0.70		
	4 0.25			0.33	0.39
91	4 0.25	sigmoid	0.67	0.36	0.40
92	4 0.10	linear	0.80	0.65	0.70
93	4 0.10	poly	0.67	0.43	0.47
94	4 0.10	rbf	0.67	0.33	0.39
95	4 0.10	sigmoid	0.67	0.33	0.39
		-			

	4 0 0 =				0.00
96	4 0.05	linear	0.75	0.61	0.69
97	4 0.05	poly	0.63	0.43	0.47
98	4 0.05	rbf	0.67	0.33	0.39
99	4 0.05	sigmoid	0.67	0.33	0.39
100	4 0.03	linear	0.64	0.40	0.44
101	4 0.03	poly	0.60	0.40	0.45
102	4 0.03	rbf	0.67	0.33	0.39
103	4 0.03	sigmoid	0.67	0.33	0.39
103	4 0.03	_			
		linear	0.64	0.36	0.42
105	4 0.01	poly	0.59	0.40	0.45
106	4 0.01	rbf	0.67	0.33	0.39
107	4 0.01	sigmoid	0.67	0.33	0.39
108	4 0.01	linear	0.64	0.36	0.42
109	4 0.01	poly	0.59	0.40	0.45
110	4 0.01	rbf	0.67	0.33	0.39
111	4 0.01	sigmoid	0.67	0.33	0.39
112	4 0.00	linear	0.64	0.36	0.42
113	4 0.00	poly	0.59	0.40	0.45
114	4 0.00	rbf	0.67	0.33	0.39
115	4 0.00	sigmoid	0.67	0.33	0.39
116	4 0.00	linear	0.64	0.36	0.42
117	4 0.00	poly	0.59	0.40	0.45
118	4 0.00	rbf	0.67	0.33	0.39
119	4 0.00		0.67	0.33	0.39
120	5 1.00	sigmoid			
		linear	0.84	0.73	0.72
121	5 1.00	poly	0.79	0.65	0.72
122	5 1.00	rbf	0.80	0.55	0.61
123	5 1.00	sigmoid	0.79	0.55	0.61
124	5 0.50	linear	0.81	0.58	0.64
125	5 0.50	poly	0.79	0.65	0.72
126	5 0.50	rbf	0.77	0.45	0.55
127	5 0.50	sigmoid	0.76	0.48	0.56
128	5 0.25	linear	0.80	0.55	0.61
129	5 0.25	poly	0.74	0.66	0.73
130	5 0.25	rbf	0.74	0.45	0.55
131	5 0.25	sigmoid	0.72	0.49	0.56
132	5 0.10	linear	0.78	0.59	0.66
133	5 0.10	poly	0.66	0.63	0.71
134	5 0.10	rbf	0.61	0.46	0.52
135	5 0.10	sigmoid	0.60	0.46	0.52
136	5 0.05	linear	0.74	0.51	0.60
137	5 0.05	poly	0.63	0.49	0.53
138	5 0.05	rbf	0.63		
				0.46	0.52
139	5 0.05	sigmoid	0.60	0.46	0.52
140	5 0.03	linear	0.69	0.52	0.63
141	5 0.03	poly	0.61	0.46	0.52
142	5 0.03	rbf	0.61	0.46	0.52

143	5 0.03	sigmoid	0.60	0.46	0.52
144	5 0.01	linear	0.60	0.46	0.52
145	5 0.01	poly	0.57	0.46	0.52
146	5 0.01	rbf	0.61	0.46	0.52
147	5 0.01	sigmoid	0.60	0.46	0.52
148	5 0.01	linear	0.59	0.46	0.52
149	5 0.01	poly	0.57	0.46	0.52
150	5 0.01	rbf	0.61	0.46	0.52
151	5 0.01	sigmoid	0.60	0.46	0.52
152	5 0.00	linear	0.59	0.46	0.52
153	5 0.00	poly	0.57	0.46	0.52
154	5 0.00	rbf	0.61	0.46	0.52
155	5 0.00	sigmoid	0.60	0.46	0.52
156	5 0.00	linear	0.59	0.46	0.52
157	5 0.00	poly	0.57	0.46	0.52
158	5 0.00	rbf	0.61	0.46	0.52
159	5 0.00	sigmoid	0.60	0.46	0.52
		-			

Jaccard Score

0	0.62
1	0.25
2	0.53
3	0.46
4	0.54
5	0.25
6	0.25
7	0.48
8	0.50
9	0.25
10	0.23
11	0.23
12	0.53
13	0.25
14	0.23
15	0.23
16	0.23
17	0.25
18	0.23
19	0.23
20	0.23
21	0.23
22	0.23
23	0.23
24	0.23
25	0.23
26	0.23
27	0.23

28	0.23
29	0.23
30	0.23
21	0.00
31	0.23
32	0.23
33	0.23
34	0.23
	0.00
35	0.23
36	0.23
37	0.23
38	0.23
39	0.23
40	0.69
41	0.68
	0 50
42	0.59
43	0.63
40	0.03
44	0.69
45	0.44
16	0.06
46	0.26
47	0.33
48	0.65
49	0.32
50	0.30
50	0.30
51	0.32
52	0.69
53	0.32
54	0.30
94	
55	0.30
56	0.32
F.7	0.20
57	0.32
58	0.30
59	0.30
60	0.32
61	0.30
62	0.30
63	0.30
C 1	
64	0.30
65	0.30
66	0.30
67	0.30
68	0.30
00	0.30
69	0.30
70	0.30
71	0.30
72	0.30
73	0.30
7 /	0.30
74	

75	0.30
76	0.30
77	0.30
78	0.30
79	0.30
80	0.61
81	0.65
82	0.52
83	0.61
84	0.60
85	0.65
86	0.44
87	0.48
88	0.60
89	0.50
90	0.27
91	
	0.29
92	0.60
93	0.38
94	0.27
95	0.27
96	0.57
97	0.38
98	0.27
99	0.27
100	0.33
101	0.36
102	0.27
103	0.27
104	0.32
105	0.36
106	0.27
107	0.27
108	0.32
109	0.36
110	0.27
111	0.27
	0.32
112	
113	0.36
114	0.27
115	0.27
116	0.32
117	0.36
118	0.27
119	0.27
120	0.63
121	0.61

```
0.49
122
123
               0.49
124
               0.53
125
               0.61
126
               0.43
127
               0.44
128
               0.49
129
               0.64
130
               0.43
131
               0.44
132
               0.53
133
               0.61
134
               0.43
135
               0.43
136
               0.48
137
               0.44
138
               0.43
               0.43
139
140
               0.51
141
               0.43
142
               0.43
143
               0.43
144
               0.43
145
               0.43
               0.43
146
147
               0.43
148
               0.43
149
               0.43
150
               0.43
151
               0.43
152
               0.43
153
               0.43
154
               0.43
155
               0.43
156
               0.43
157
               0.43
158
               0.43
159
               0.43
```

[35]: clf_svm_eval_df.nlargest(3, 'Test-set Accuracy')

```
[35]:
         k
              С
                  kernel Train-set Accuracy
                                              Test-set Accuracy F1 Score \
     43 3 1.00 sigmoid
                                        0.76
                                                           0.78
                                                                     0.72
     40 3 1.00
                  linear
                                        0.89
                                                           0.74
                                                                     0.77
     44 3 0.50
                  linear
                                        0.85
                                                           0.74
                                                                     0.77
```

Jaccard Score

```
40
                   0.69
      44
                   0.69
[36]: kf = KFold(n splits = 3)
      temp lst = []
      clf svm = SVC(C=1, kernel='sigmoid')
      for train_index, test_index in kf.split(ad_post_x):
          X_train, X_test = ad_post_x[train_index], ad_post_x[test_index]
          y_train, y_test = ad_post_y[train_index], ad_post_y[test_index]
          clf_svm.fit(X_train, y_train)
          y_hat = clf_svm.predict(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_svm.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
          temp lst2.append(y test)
          temp_lst2.append(y_hat)
          temp lst2.append(X test)
          temp_lst.append(temp_lst2)
[37]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp_lst:
          for i in row[4]:
              temp_lst_ytest.append(i)
          for j in row[5]:
              temp_lst_yhat.append(j)
          for k in row[6]:
              temp_lst_xtest.append(k)
      cnf_ytest = np.array(temp_lst_ytest)
      cnf_yhat = np.array(temp_lst_yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
                                recall f1-score
                   precision
                                                    support
                0
                        0.75
                                   0.75
                                             0.75
                                                         12
                1
                        0.80
                                   0.80
                                             0.80
                                                         15
                                             0.78
                                                         27
         accuracy
                        0.78
                                  0.78
                                             0.78
                                                         27
        macro avg
     weighted avg
                        0.78
                                   0.78
                                             0.78
                                                         27
```

0.63

43

```
[38]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat, labels=[1,0])
   plt.figure(figsize=(8,6))
   sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
   plt.xlabel('Predicted Value')
   plt.ylabel('True Value')
   plt.show()
```


Advertising Stories

```
[39]: temp_lst = []
for i in range(2, 6):
    kf = KFold(n_splits = i)
    for train_index, test_index in kf.split(ad_story_x):
        X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
        y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
        for c in c_lst:
            for kernel_type in kernel_lst:
```

```
clf_svm = SVC(C=c, kernel=kernel_type)
              clf_svm.fit(X_train, y_train)
              y_hat = clf_svm.predict(X_test)
              temp_lst2 = []
              temp_lst2.append(i)
              temp_lst2.append(c)
              temp_lst2.append(kernel_type)
              temp_lst2.append(metrics.accuracy_score(y_train, clf_svm.
→predict(X_train)))
              temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
              temp_lst2.append(metrics.f1_score(y_test, y_hat))
              temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
              temp_lst.append(temp_lst2)
temp_df = pd.DataFrame(temp_lst,
                     columns=['k', 'c', 'kernel', 'Train-set Accuracy', L
→'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
temp_lst = []
for k in range(2, 6):
   for c in c_lst:
       for kernel_type in kernel_lst:
          temp_1st2 = []
           temp_lst2.append(k)
          temp_lst2.append(c)
           temp_lst2.append(kernel_type)
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
→ (temp df['c'] == c) & (temp df['kernel'] == kernel type)]['Train-set_|
→Accuracy']), decimals=4))
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
→ (temp_df['c'] == c) & (temp_df['kernel'] == kernel_type)]['Test-set_
→Accuracy']), decimals=4))
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
→decimals=4))
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
→decimals=4))
           temp_lst.append(temp_lst2)
clf_svm_eval_df = pd.DataFrame(temp_lst,
                           columns=['k', 'c', 'kernel', 'Train-set⊔
→Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
clf_svm_eval_df
```

```
[39]: k c kernel Train-set Accuracy Test-set Accuracy F1 Score \
0 2 1.00 linear 0.96 0.82 0.84
```

1	2 1.00	poly	0.89	0.66	0.75
2	2 1.00	rbf	0.93	0.70	0.76
3	2 1.00	sigmoid	0.85	0.63	0.72
4	2 0.50	linear	0.96	0.82	0.84
5	2 0.50	poly	0.81	0.52	0.56
6	2 0.50	rbf	0.82	0.55	0.65
7	2 0.50	sigmoid	0.74	0.59	0.70
8	2 0.25	linear	0.93	0.82	0.84
9	2 0.25	poly	0.70	0.41	0.33
10	2 0.25	rbf	0.63	0.37	0.32
11	2 0.25	sigmoid	0.63	0.37	0.32
12	2 0.10	linear	0.93	0.70	0.76
13	2 0.10	poly	0.70	0.41	0.33
14	2 0.10	rbf	0.63	0.37	0.32
15	2 0.10	sigmoid	0.63	0.37	0.32
16	2 0.05	linear	0.85	0.59	0.70
17	2 0.05	poly	0.66	0.41	0.33
18	2 0.05	rbf	0.63	0.37	0.32
19	2 0.05	sigmoid	0.63	0.37	0.32
20	2 0.03	linear	0.63	0.37	0.32
21	2 0.03	poly	0.66	0.41	0.33
22	2 0.03	rbf	0.63	0.37	0.32
23	2 0.03	sigmoid	0.63	0.37	0.32
24	2 0.00	linear	0.63	0.37	0.32
25	2 0.01	poly	0.63	0.37	0.32
26	2 0.01	rbf	0.63	0.37	0.32
27	2 0.01	sigmoid	0.63	0.37	0.32
28	2 0.01	linear	0.63	0.37	0.32
29	2 0.01	poly	0.63	0.37	0.32
30	2 0.01	rbf	0.63	0.37	0.32
31	2 0.01	sigmoid	0.63	0.37	0.32
32	2 0.00	linear	0.63	0.37	0.32
33	2 0.00	poly	0.63	0.37	0.32
34	2 0.00	rbf	0.63	0.37	0.32
35	2 0.00	sigmoid	0.63	0.37	0.32
		_			
36	2 0.00	linear	0.63	0.37	0.32
37	2 0.00	poly	0.63	0.37	0.32
38	2 0.00	rbf	0.63	0.37	0.32
39	2 0.00	sigmoid	0.63	0.37	0.32
40	3 1.00	linear	0.94	0.74	0.79
41	3 1.00	poly	0.80	0.67	0.76
42	3 1.00	rbf	0.91	0.70	0.77
43	3 1.00	sigmoid	0.83	0.63	0.72
44	3 0.50	linear	0.94	0.74	0.79
45	3 0.50	poly	0.74	0.67	0.77
46	3 0.50	rbf	0.74		
				0.56	0.68
47	3 0.50	sigmoid	0.80	0.59	0.70

48	3 0.25	linear	0.93	0.74	0.79
49	3 0.25	poly	0.70	0.67	0.77
50	3 0.25	rbf	0.76	0.52	0.67
51	3 0.25	sigmoid	0.72	0.52	0.67
52	3 0.10	linear	0.93	0.70	0.77
53	3 0.10	poly	0.69	0.67	0.77
54	3 0.10	rbf	0.76	0.52	0.67
55	3 0.10	sigmoid	0.72	0.52	0.67
56	3 0.05	linear	0.89	0.63	0.72
57	3 0.05	poly	0.67	0.67	0.77
58	3 0.05	rbf	0.76	0.52	0.67
59	3 0.05	sigmoid	0.72	0.52	0.67
60	3 0.03	linear	0.78	0.52	0.67
61	3 0.03	poly	0.67	0.67	0.77
62	3 0.03	rbf	0.76	0.52	0.67
63	3 0.03	sigmoid	0.72	0.52	0.67
64	3 0.01	linear	0.76	0.52	0.67
65	3 0.01	poly	0.63	0.59	0.73
66	3 0.01	rbf	0.76	0.52	0.67
67	3 0.01	sigmoid	0.72	0.52	0.67
68	3 0.01	linear	0.76	0.52	0.67
69	3 0.01	poly	0.63	0.59	0.73
70	3 0.01	rbf	0.76	0.52	0.67
71	3 0.01	sigmoid	0.72	0.52	0.67
72	3 0.00	linear	0.76	0.52	0.67
73	3 0.00		0.63		0.73
		poly		0.59	
74 75	3 0.00	rbf	0.76	0.52	0.67
75	3 0.00	sigmoid	0.72	0.52	0.67
76	3 0.00	linear	0.76	0.52	0.67
77	3 0.00	poly	0.63	0.59	0.73
78	3 0.00	rbf	0.76	0.52	0.67
79	3 0.00	sigmoid	0.72	0.52	0.67
80	4 1.00	linear	0.95	0.77	0.81
81	4 1.00	poly	0.85	0.59	0.69
82	4 1.00	rbf	0.93	0.70	0.76
83	4 1.00	sigmoid	0.81	0.66	0.74
84	4 0.50	linear	0.95	0.77	0.81
85	4 0.50	poly	0.75	0.66	0.74
86	4 0.50	rbf	0.88	0.59	0.69
87	4 0.50	sigmoid	0.81	0.55	0.67
88	4 0.25	linear	0.90	0.74	0.79
89	4 0.25	poly	0.78	0.62	0.72
90	4 0.25	rbf	0.62	0.33	0.46
91	4 0.25	sigmoid	0.62	0.33	0.46
92		_	0.89	0.70	0.46
	4 0.10	linear			
93	4 0.10	poly	0.69	0.41	0.49
94	4 0.10	rbf	0.62	0.33	0.46

95	4 0.10	sigmoid	0.62	0.33	0.46
96	4 0.05	linear	0.88	0.59	0.69
97	4 0.05	poly	0.67	0.41	0.49
98	4 0.05	rbf	0.62	0.33	0.46
99	4 0.05	sigmoid	0.62	0.33	0.46
		_			
100	4 0.03	linear	0.72	0.40	0.57
101	4 0.03	poly	0.67	0.41	0.49
102	4 0.03	rbf	0.62	0.33	0.46
103	4 0.03	sigmoid	0.62	0.33	0.46
104	4 0.01	linear	0.62	0.33	0.46
105	4 0.01	poly	0.62	0.33	0.46
106	4 0.01	rbf	0.62	0.33	0.46
107	4 0.01	sigmoid	0.62	0.33	0.46
108	4 0.01	linear	0.62	0.33	0.46
109	4 0.01	poly	0.62	0.33	0.46
110	4 0.01	rbf	0.62	0.33	0.46
111	4 0.01		0.62	0.33	0.46
		sigmoid			
112	4 0.00	linear	0.62	0.33	0.46
113	4 0.00	poly	0.62	0.33	0.46
114	4 0.00	rbf	0.62	0.33	0.46
115	4 0.00	sigmoid	0.62	0.33	0.46
116	4 0.00	linear	0.62	0.33	0.46
117	4 0.00	poly	0.62	0.33	0.46
118	4 0.00	rbf	0.62	0.33	0.46
119	4 0.00	sigmoid	0.62	0.33	0.46
120	5 1.00	linear	0.94	0.79	0.83
121	5 1.00	poly	0.84	0.63	0.73
122	5 1.00	rbf	0.93	0.71	0.77
123	5 1.00		0.82	0.64	0.72
		sigmoid			
124	5 0.50	linear	0.95	0.75	0.77
125	5 0.50	poly	0.72	0.66	0.75
126	5 0.50	rbf	0.87	0.68	0.75
127	5 0.50	sigmoid	0.81	0.64	0.72
128	5 0.25	linear	0.90	0.75	0.80
129	5 0.25	poly	0.70	0.66	0.75
130	5 0.25	rbf	0.66	0.42	0.57
131	5 0.25	sigmoid	0.62	0.42	0.57
132	5 0.10	linear	0.87	0.67	0.74
133	5 0.10	poly	0.69	0.66	0.75
134	5 0.10	rbf	0.60	0.39	0.51
135	5 0.10	sigmoid	0.60	0.39	0.51
136	5 0.10	_	0.86	0.64	
		linear			0.72
137	5 0.05	poly	0.68	0.66	0.75
138	5 0.05	rbf	0.60	0.39	0.51
139	5 0.05	sigmoid	0.60	0.39	0.51
140	5 0.03	linear	0.77	0.53	0.67
141	5 0.03	poly	0.66	0.46	0.55

142	5 0.03	rbf	0.60	0.39	0.51
143	5 0.03	sigmoid	0.60	0.39	0.51
144	5 0.01	linear	0.60	0.39	0.51
145	5 0.01	poly	0.60	0.39	0.51
146	5 0.01	rbf	0.60	0.39	0.51
147	5 0.01	sigmoid	0.60	0.39	0.51
148	5 0.01	linear	0.60	0.39	0.51
149	5 0.01	poly	0.60	0.39	0.51
150	5 0.01	rbf	0.60	0.39	0.51
151	5 0.01	sigmoid	0.60	0.39	0.51
152	5 0.00	linear	0.60	0.39	0.51
153	5 0.00	poly	0.60	0.39	0.51
154	5 0.00	rbf	0.60	0.39	0.51
155	5 0.00	sigmoid	0.60	0.39	0.51
156	5 0.00	linear	0.60	0.39	0.51
157	5 0.00	poly	0.60	0.39	0.51
158	5 0.00	rbf	0.60	0.39	0.51
159	5 0.00	sigmoid	0.60	0.39	0.51

T	car	-1 CI		
120	rran	n 🥆	-	~_

0	0.72
1	0.61
2	0.62
3	0.57
4	0.72
5	0.40
6	0.48
7	0.55
8	0.72
9	0.25
10	0.23
11	0.23
12	0.62
13	0.25
14	0.23
15	0.23
16	0.55
17	0.25
18	0.23
19	0.23
20	0.23
21	0.25
22	0.23
23	0.23
24	0.23
25	0.23
26	0.23

27	0.23
28	0.23
29	0.23
30	0.23
31	0.23
32	0.23
33	0.23
34	0.23
35	0.23
36	0.23
37	0.23
38	0.23
39	0.23
40	0.67
41	0.61
42	0.63
43	0.57
44	0.67
45	0.63
46	0.52
47	0.54
48	0.67
49	0.63
50	0.50
51	0.50
52	0.63
53	0.63
54	0.50
55	0.50
56	0.57
57	0.63
58	0.50
59	0.50
60	0.50
61	0.63
62	0.50
63	0.50
64	0.50
65	0.59
66	0.50
67	0.50
68	0.50
69	0.59
70	0.50
71	0.50
72	0.50
73	0.59
. •	0.00

74	0.50
75	0.50
76	0.50
77	0.59
78	0.50
79	0.50
80	0.71
81	0.54
82	0.62
83	0.62
84	0.71
85	0.62
86	0.53
87	0.51
88	0.66
89	0.58
90	0.33
91	0.33
92	0.62
93	0.37
94	0.33
95	0.33
	0.53
96	0.55
97	0.37
98	0.33
99	0.33
100	0.40
101	0.37
102	0.33
103	0.33
104	0.33
105	0.33
106	0.33
107	0.33
108	0.33
109	0.33
110	0.33
111	0.33
112	0.33
113	0.33
114	0.33
	0.33
115	
116	0.33
117	0.33
118	0.33
119	0.33
120	0.73

```
122
                     0.65
      123
                     0.58
      124
                     0.68
      125
                     0.63
      126
                     0.63
      127
                     0.58
      128
                     0.68
      129
                     0.63
      130
                     0.42
      131
                     0.42
      132
                     0.60
      133
                     0.63
      134
                     0.39
      135
                     0.39
      136
                     0.58
      137
                     0.63
      138
                     0.39
                     0.39
      139
      140
                     0.51
      141
                     0.43
      142
                     0.39
      143
                     0.39
      144
                     0.39
      145
                     0.39
      146
                     0.39
      147
                     0.39
      148
                     0.39
      149
                     0.39
      150
                     0.39
      151
                     0.39
      152
                     0.39
      153
                     0.39
      154
                     0.39
      155
                     0.39
      156
                     0.39
      157
                     0.39
      158
                     0.39
      159
                     0.39
[40]: clf_svm_eval_df.nlargest(3, 'Test-set Accuracy')
[40]:
         k
              c kernel Train-set Accuracy Test-set Accuracy F1 Score \
      0 2 1.00
                 linear
                                         0.96
                                                             0.82
                                                                        0.84
      4 2 0.50 linear
                                         0.96
                                                                        0.84
                                                             0.82
```

121

0.58

0.82

0.84

0.93

8 2 0.25 linear

```
Jaccard Score
      0
                  0.72
                  0.72
      4
      8
                  0.72
[41]: kf = KFold(n splits = 2)
      temp lst = []
      clf_svm = SVC(C=1, kernel='linear')
      for train_index, test_index in kf.split(ad_story_x):
          X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
          y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
          clf_svm.fit(X_train, y_train)
          y_hat = clf_svm.predict(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_svm.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
          temp_lst2.append(y_test)
          temp lst2.append(y hat)
          temp lst2.append(X test)
          temp lst.append(temp lst2)
[42]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp_lst:
          for i in row[4]:
              temp_lst_ytest.append(i)
          for j in row[5]:
              temp_lst_yhat.append(j)
          for k in row[6]:
              temp lst xtest.append(k)
      cnf ytest = np.array(temp lst ytest)
      cnf_yhat = np.array(temp_lst_yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
                   precision
                                recall f1-score
                                                    support
                0
                        0.75
                                  0.82
                                             0.78
                                                         11
                        0.87
                                  0.81
                                             0.84
                                                         16
                                             0.81
                                                         27
         accuracy
```

0.82

27

27

macro avg

weighted avg

0.81

0.82

0.82

```
[43]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat, labels=[1,0])
   plt.figure(figsize=(8,6))
   sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
   plt.xlabel('Predicted Value')
   plt.ylabel('True Value')
   plt.show()
```



```
Influencers
[44]: temp_lst = []
for i in range(2, 6):
    kf = KFold(n_splits = i)
    for train_index, test_index in kf.split(influencer_x):
        X_train, X_test = influencer_x[train_index], influencer_x[test_index]
        y_train, y_test = influencer_y[train_index], influencer_y[test_index]
    for c in c_lst:
        for kernel_type in kernel_lst:
```

```
clf_svm = SVC(C=c, kernel=kernel_type)
             clf_svm.fit(X_train, y_train)
             y_hat = clf_svm.predict(X_test)
             temp_lst2 = []
             temp_lst2.append(i)
             temp_lst2.append(c)
             temp_lst2.append(kernel_type)
             temp_lst2.append(metrics.accuracy_score(y_train, clf_svm.
→predict(X_train)))
             temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
             temp_lst2.append(metrics.f1_score(y_test, y_hat,__
→average='micro'))
             temp_lst2.append(metrics.jaccard_score(y_test, y_hat,__
→average='micro'))
             temp_lst.append(temp_lst2)
temp_df = pd.DataFrame(temp_lst,
                   columns=['k', 'c', 'kernel', 'Train-set Accuracy', |
→'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
temp lst = []
for k in range(2, 6):
   for c in c lst:
      for kernel_type in kernel_lst:
          temp_1st2 = []
          temp_lst2.append(k)
          temp_lst2.append(c)
          temp_lst2.append(kernel_type)
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) \&
→Accuracy']), decimals=4))
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
→Accuracy']), decimals=4))
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
→decimals=4))
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
→decimals=4))
          temp_lst.append(temp_lst2)
clf_svm_eval_df = pd.DataFrame(temp_lst,
                        columns=['k', 'c', 'kernel', 'Train-set⊔
→Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
clf_svm_eval_df
```

[44]:	k	: с	kernel	Train-set Accuracy	Test-set Accuracy	F1 Score \
		1.00	linear	0.89	0.68	0.68
		1.00	poly	0.85	0.55	0.55
		1.00	rbf	0.83	0.58	0.58
		1.00	sigmoid	0.74	0.67	0.67
		0.50	linear	0.88	0.58	0.58
		0.50	poly	0.75	0.53	0.53
		0.50	rbf	0.80	0.52	0.52
		0.50	sigmoid	0.70	0.66	0.66
		0.25	linear	0.83	0.58	0.58
		0.25	poly	0.65	0.50	0.50
		0.25	rbf	0.71	0.43	0.43
		0.25	sigmoid	0.54	0.50	0.50
		0.10	linear	0.76	0.61	0.61
		0.10	poly	0.61	0.48	0.48
		0.10	rbf	0.48	0.42	0.42
		0.10	sigmoid	0.53	0.42	0.42
		0.05	linear	0.76	0.61	0.61
		0.05	poly	0.56	0.44	0.44
		0.05	rbf	0.42	0.42	0.42
		0.05	sigmoid	0.42	0.42	0.42
		0.03	linear	0.74	0.53	0.53
		0.03	poly	0.44	0.42	0.42
		0.03	rbf	0.42	0.42	0.42
		0.03	sigmoid	0.42	0.42	0.42
		0.01	linear	0.57	0.42	0.42
		0.01	poly	0.44	0.42	0.42
		0.01	rbf	0.42	0.42	0.42
		0.01	sigmoid	0.42	0.42	0.42
4		0.01	linear	0.53	0.42	0.42
4	29 2	0.01	poly	0.44	0.42	0.42
;	30 2	0.01	rbf	0.42	0.42	0.42
	31 2	0.01	sigmoid	0.42	0.42	0.42
;	32 2	0.00	linear	0.44	0.42	0.42
;	33 2	0.00	poly	0.44	0.42	0.42
;	34 2	0.00	rbf	0.42	0.42	0.42
;	35 2	0.00	sigmoid	0.42	0.42	0.42
;	36 2	0.00	linear	0.42	0.42	0.42
;	37 2	0.00	poly	0.42	0.42	0.42
;	38 2	0.00	rbf	0.42	0.42	0.42
		0.00	sigmoid	0.42	0.42	0.42
		1.00	linear	0.93	0.49	0.49
		1.00	poly	0.81	0.47	0.47
		1.00	rbf	0.84	0.38	0.38
		1.00	sigmoid	0.80	0.44	0.44
		0.50	linear	0.91	0.51	0.51
4	45 3	0.50	poly	0.73	0.32	0.32

46	3 0.50	rbf	0.81	0.38	0.38
47	3 0.50	sigmoid	0.73	0.37	0.37
48	3 0.25	linear	0.85	0.51	0.51
49	3 0.25	poly	0.70	0.32	0.32
50	3 0.25	rbf	0.74	0.26	0.26
51	3 0.25	sigmoid	0.67	0.24	0.24
52		_	0.82	0.42	
	3 0.10	linear			0.42
53	3 0.10	poly	0.59	0.26	0.26
54	3 0.10	rbf	0.50	0.21	0.21
55	3 0.10	sigmoid	0.51	0.21	0.21
56	3 0.05	linear	0.79	0.42	0.42
57	3 0.05	poly	0.57	0.23	0.23
58	3 0.05	rbf	0.50	0.21	0.21
59	3 0.05	sigmoid	0.50	0.21	0.21
60	3 0.03	linear	0.74	0.35	0.35
61	3 0.03	poly	0.50	0.21	0.21
62	3 0.03	rbf	0.50	0.21	0.21
63	3 0.03	sigmoid	0.50	0.21	0.21
64	3 0.01	linear	0.66	0.25	0.25
65	3 0.01	poly	0.50	0.21	0.21
66	3 0.01	rbf	0.50	0.21	0.21
67	3 0.01	sigmoid	0.50	0.21	0.21
68	3 0.01	linear	0.55	0.21	0.21
69	3 0.01	poly	0.50	0.21	0.21
70	3 0.01	rbf	0.50	0.21	0.21
71	3 0.01	sigmoid	0.50	0.21	0.21
72	3 0.00	linear	0.50	0.21	0.21
73	3 0.00	poly	0.50	0.21	0.21
74	3 0.00	rbf	0.50	0.21	0.21
75	3 0.00	sigmoid	0.50	0.21	0.21
76	3 0.00	linear	0.50	0.21	0.21
77	3 0.00	poly	0.50	0.21	0.21
78	3 0.00	rbf	0.50	0.21	0.21
79	3 0.00	sigmoid	0.50	0.21	0.21
80	4 1.00	linear	0.92	0.61	0.61
81	4 1.00	poly	0.77	0.48	0.48
82	4 1.00	rbf	0.80	0.33	0.33
83	4 1.00	sigmoid	0.77	0.50	0.50
84	4 0.50	linear	0.88	0.55	0.55
85	4 0.50	poly	0.72	0.45	0.45
86	4 0.50	rbf	0.80	0.35	0.35
87	4 0.50	sigmoid	0.70	0.45	0.45
88	4 0.25	linear	0.83	0.48	0.48
89	4 0.25	poly	0.71	0.48	0.48
90	4 0.25		0.73	0.34	0.40
		rbf			
91	4 0.25	sigmoid	0.66	0.39	0.39
92	4 0.10	linear	0.78	0.41	0.41

		_			
93	4 0.10	poly	0.60	0.43	0.43
94	4 0.10	rbf	0.53	0.20	0.20
95	4 0.10	sigmoid	0.57	0.20	0.20
96	4 0.05	linear	0.76	0.43	0.43
97	4 0.05	poly	0.54	0.29	0.29
98	4 0.05	rbf	0.45	0.28	0.28
99	4 0.05	sigmoid	0.47	0.28	0.28
100	4 0.03	linear	0.72	0.41	0.41
101	4 0.03	poly	0.51	0.28	0.28
102	4 0.03	rbf	0.45	0.28	0.28
103	4 0.03	sigmoid	0.45	0.28	0.28
104	4 0.01	linear	0.66	0.32	0.32
105	4 0.01	poly	0.46	0.28	0.28
106	4 0.01	rbf	0.45	0.28	0.28
107		sigmoid	0.45	0.28	0.28
108	4 0.01	linear	0.59	0.26	0.26
109	4 0.01	poly	0.46	0.28	0.28
110	4 0.01	rbf	0.45	0.28	0.28
111	4 0.01	sigmoid	0.45	0.28	0.28
112	4 0.00	linear	0.50	0.28	0.28
113	4 0.00	poly	0.46	0.28	0.28
114	4 0.00	rbf	0.45	0.28	0.28
115	4 0.00	sigmoid	0.45	0.28	0.28
116	4 0.00	linear	0.45	0.28	0.28
117	4 0.00	poly	0.45	0.28	0.28
118	4 0.00	rbf	0.45	0.28	0.28
119	4 0.00	sigmoid	0.45	0.28	0.28
120	5 1.00	linear	0.93	0.71	0.71
121	5 1.00	poly	0.75	0.54	0.54
122	5 1.00	rbf	0.81	0.41	0.41
123	5 1.00	sigmoid	0.74	0.56	0.56
124	5 0.50	linear	0.89	0.63	0.63
125	5 0.50	poly	0.71	0.46	0.46
126	5 0.50	rbf	0.76	0.42	0.42
127	5 0.50	sigmoid	0.72	0.50	0.50
128	5 0.25	linear	0.83	0.55	0.55
129	5 0.25	poly	0.67	0.50	0.50
130	5 0.25	rbf	0.72	0.34	0.34
131	5 0.25	sigmoid	0.64	0.38	0.38
132	5 0.10	linear	0.77	0.51	0.51
133	5 0.10	poly	0.61	0.44	0.44
134	5 0.10	rbf	0.50	0.24	0.24
135	5 0.10	sigmoid	0.57	0.37	0.37
136	5 0.05	linear	0.75	0.50	0.50
137	5 0.05	poly	0.55	0.42	0.42
138	5 0.05	rbf	0.43	0.24	0.24
139	5 0.05	sigmoid	0.46	0.24	0.24
		-			

140	5 0.03	linear	0.71	0.47	0.47
141	5 0.03	poly	0.52	0.32	0.32
142	5 0.03	rbf	0.43	0.24	0.24
143	5 0.03	sigmoid	0.43	0.24	0.24
144	5 0.01	linear	0.63	0.41	0.41
145	5 0.01	poly	0.44	0.24	0.24
146	5 0.01	rbf	0.43	0.24	0.24
147	5 0.01	sigmoid	0.43	0.24	0.24
148	5 0.01	linear	0.57	0.37	0.37
149	5 0.01	poly	0.44	0.24	0.24
150	5 0.01	rbf	0.43	0.24	0.24
151	5 0.01	sigmoid	0.43	0.24	0.24
152	5 0.00	linear	0.50	0.24	0.24
153	5 0.00	poly	0.44	0.24	0.24
154	5 0.00	rbf	0.43	0.24	0.24
155	5 0.00	sigmoid	0.43	0.24	0.24
156	5 0.00	linear	0.43	0.24	0.24
157	5 0.00	poly	0.44	0.24	0.24
158	5 0.00	rbf	0.43	0.24	0.24
159	5 0.00	sigmoid	0.43	0.24	0.24

	Jaccard	Score
0		0.51
1		0.38
2		0.41
3		0.50
4		0.41
5		0.36
6		0.35
7		0.49
8		0.41
9		0.34
10		0.28
11		0.33
12		0.44
13		0.32
14		0.27
15		0.27
16		0.44
17		0.28
18		0.27
19		0.27
20		0.36
21		0.27
22		0.27
23		0.27
24		0.27

25	0.27
26	0.27
27	0.27
21	0.21
28	0.27
29	0.27
30	0.27
31	0.27
20	0.07
32	0.27
33	0.27
34	0.27
35	0.27
36	0.27
37	0.27
31	0.21
38	0.27
39	0.27
40	0.34
11	0.21
41	0.31
42	0.24
43	0.29
44	0.36
4 E	0 00
45	0.20
46	0.24
47	0.23
48	0.35
40	0 00
49	0.20
50	0.15
51	0.14
52	0.27
го.	0 10
53	0.16
54	0.12
J -1	0.12
55	0.12
56	0.27
57	0.13
EO	0 10
58	0.12
59	0.12
60	0.22
61	0.12
62	0.12
UZ	
63	0.12
64	0.14
65	0.12
66	0.12
67	0.12
68	0.12
69	0.12
70	0.12
71	0.12
	V.12

70	0 10
72	0.12
73	0.12
74	0.12
75	0.12
76	0.12
70	0.12
77	0.12
78	0.12
	0 10
79	0.12
80	0.45
81	0.33
82	0.20
83	0.33
84	0.40
85	0.32
86	0.22
87	0.31
88	0.33
90	0.35
89	0.35
90	0.24
91	0.25
00	0.06
92	0.26
93	0.30
94	0.11
	0 11
95	0.11
96	0.28
97	0.17
98	0.17
99	0.17
100	0.29
101	0.17
102	0.17
103	0.17
104	0.21
105	0.17
106	0.17
107	0.17
108	0.15
100	
109	0.17
110	0.17
111	0.17
112	0.17
113	0.17
114	0.17
115	0.17
116	0.17
117	
	0 17
117	0.17
117	0.17 0.17

```
119
                     0.17
      120
                     0.59
      121
                     0.42
                     0.29
      122
      123
                     0.43
      124
                     0.49
      125
                     0.33
      126
                     0.33
      127
                     0.37
      128
                     0.40
      129
                     0.36
      130
                     0.24
      131
                     0.25
      132
                     0.40
      133
                     0.30
      134
                     0.13
      135
                     0.24
                     0.39
      136
                     0.29
      137
      138
                     0.13
      139
                     0.13
      140
                     0.37
      141
                     0.20
      142
                     0.13
      143
                     0.13
      144
                     0.27
      145
                     0.13
      146
                     0.13
      147
                     0.13
      148
                     0.24
      149
                     0.13
      150
                     0.13
      151
                     0.13
      152
                     0.13
      153
                     0.13
      154
                     0.13
      155
                     0.13
      156
                     0.13
      157
                     0.13
      158
                     0.13
      159
                     0.13
[45]: clf_svm_eval_df.nlargest(3, 'Test-set Accuracy')
```

[45]:

k

5 1.00

2 1.00

120

0

С

linear

linear

```
3
           2 1.00 sigmoid
                                          0.74
                                                              0.67
                                                                        0.67
           Jaccard Score
      120
                    0.59
      0
                    0.51
                    0.50
      3
[46]: kf = KFold(n_splits = 5)
      temp_lst = []
      clf_svm = SVC(C=1, kernel='linear')
      for train_index, test_index in kf.split(influencer_x):
          X train, X test = influencer_x[train_index], influencer_x[test_index]
          y_train, y_test = influencer_y[train_index], influencer_y[test_index]
          clf_svm.fit(X_train, y_train)
          y_hat = clf_svm.predict(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_svm.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat, average='micro'))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat, average='micro'))
          temp lst2.append(y test)
          temp lst2.append(y hat)
          temp_lst2.append(X_test)
          temp_lst.append(temp_lst2)
[47]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp_lst:
          for i in row[4]:
              temp_lst_ytest.append(i)
          for j in row[5]:
              temp_lst_yhat.append(j)
          for k in row[6]:
              temp_lst_xtest.append(k)
      cnf_ytest = np.array(temp_lst_ytest)
      cnf_yhat = np.array(temp_lst_yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
                   precision
                                recall f1-score
                                                    support
               -1
                        0.82
                                   0.61
                                             0.70
                                                         23
                0
                        0.60
                                   0.91
                                             0.72
                                                         43
                1
                        0.95
                                   0.53
                                             0.68
                                                         36
         accuracy
                                             0.71
                                                        102
                                             0.70
                                                        102
        macro avg
                        0.79
                                   0.68
                                   0.71
                                             0.70
     weighted avg
                        0.77
                                                        102
```

```
[48]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
   plt.figure(figsize=(8,6))
   sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
   plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
   plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
   plt.xlabel('Predicted Value')
   plt.ylabel('True Value')
   plt.show()
```



```
Leaders Post

[49]: temp_lst = []
  for i in range(2, 6):
          kf = KFold(n_splits = i)
          for train_index, test_index in kf.split(leaders_post_x):
```

```
X_train, X_test = leaders_post_x[train_index],_
 →leaders_post_x[test_index]
       y_train, y_test = leaders_post_y[train_index],_
→leaders_post_y[test_index]
       for c in c_lst:
           for kernel_type in kernel_lst:
               clf_svm = SVC(C=c, kernel=kernel_type)
               clf_svm.fit(X_train, y_train)
               y_hat = clf_svm.predict(X_test)
               temp_lst2 = []
               temp_lst2.append(i)
               temp lst2.append(c)
               temp_lst2.append(kernel_type)
               temp_lst2.append(metrics.accuracy_score(y_train, clf_svm.
 →predict(X_train)))
               temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
               temp_lst2.append(metrics.f1_score(y_test, y_hat,__
 →average='micro'))
               temp_lst2.append(metrics.jaccard_score(y_test, y_hat,__
→average='micro'))
               temp_lst.append(temp_lst2)
temp_df = pd.DataFrame(temp_lst,
                      columns=['k', 'c', 'kernel', 'Train-set Accuracy',
→'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
temp lst = []
for k in range(2, 6):
   for c in c lst:
       for kernel_type in kernel_lst:
           temp lst2 = []
           temp_lst2.append(k)
           temp_lst2.append(c)
           temp_lst2.append(kernel_type)
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
 →Accuracy']), decimals=4))
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
 →(temp_df['c'] == c) & (temp_df['kernel'] == kernel_type)]['Test-set_
 →Accuracy']), decimals=4))
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__

→(temp_df['c'] == c) & (temp_df['kernel'] == kernel_type)]['F1 Score']), □
 →decimals=4))
           temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
 → (temp df['c'] == c) & (temp df['kernel'] == kernel type)]['Jaccard Score']),
 →decimals=4))
           temp_lst.append(temp_lst2)
```

[49]:		k	С	kernel	Train-set Accuracy	Test-set Accuracy	F1 Score \
	0	2	1.00	linear	1.00	0.35	0.35
	1	2	1.00	poly	0.78	0.57	0.57
	2	2	1.00	rbf	1.00	0.45	0.45
	3	2	1.00	sigmoid	0.78	0.45	0.45
	4	2	0.50	linear	1.00	0.35	0.35
	5	2	0.50	poly	0.78	0.57	0.57
	6	2	0.50	rbf	0.78	0.45	0.45
	7	2	0.50	sigmoid	0.78	0.45	0.45
	8	2	0.25	linear	1.00	0.35	0.35
	9	2	0.25	poly	0.68	0.57	0.57
	10	2	0.25	rbf	0.78	0.45	0.45
	11	2	0.25	sigmoid	0.78	0.45	0.45
	12	2	0.10	linear	0.88	0.45	0.45
	13	2	0.10	poly	0.68	0.57	0.57
	14	2	0.10	rbf	0.78	0.45	0.45
	15	2	0.10	sigmoid	0.78	0.45	0.45
	16	2	0.05	linear	0.88	0.45	0.45
	17	2	0.05	poly	0.68	0.57	0.57
	18	2	0.05	rbf	0.78	0.45	0.45
	19	2	0.05	sigmoid	0.78	0.45	0.45
	20	2	0.03	linear	0.78	0.45	0.45
	21	2	0.03	poly	0.68	0.57	0.57
	22	2	0.03	rbf	0.78	0.45	0.45
	23	2	0.03	sigmoid	0.78	0.45	0.45
	24	2	0.01	linear	0.78	0.45	0.45
	25	2	0.01	poly	0.68	0.57	0.57
	26	2	0.01	rbf	0.78	0.45	0.45
	27	2	0.01	sigmoid	0.78	0.45	0.45
	28	2	0.01	linear	0.78	0.45	0.45
	29	2	0.01	poly	0.68	0.57	0.57
	30	2	0.01	rbf	0.78	0.45	0.45
	31	2	0.01	sigmoid	0.78	0.45	0.45
	32	2	0.00	linear	0.78	0.45	0.45
	33	2	0.00	poly	0.68	0.57	0.57
	34	2	0.00	rbf	0.78	0.45	0.45
	35	2	0.00	sigmoid	0.78	0.45	0.45
	36	2	0.00	linear	0.78	0.45	0.45
	37		0.00	poly	0.68	0.57	0.57
	38		0.00	rbf	0.78	0.45	0.45
	39	2	0.00	sigmoid	0.78	0.45	0.45

40	3 1.00	linear	1.00	0.56	0.56
41	3 1.00	poly	0.83	0.44	0.44
42	3 1.00	rbf	0.83	0.44	0.44
43	3 1.00	sigmoid	0.83	0.44	0.44
44	3 0.50	linear	0.89	0.56	0.56
45	3 0.50	poly	0.83	0.44	0.44
46	3 0.50	rbf	0.72	0.44	0.44
47	3 0.50	sigmoid	0.72	0.44	0.44
48	3 0.25	linear	0.83	0.56	0.56
49	3 0.25	poly	0.78	0.44	0.44
50	3 0.25	rbf	0.72	0.44	0.44
51	3 0.25	sigmoid	0.72	0.44	0.44
52	3 0.10	linear	0.83	0.56	0.56
53	3 0.10	poly	0.72	0.44	0.44
54	3 0.10	rbf	0.72	0.44	0.44
55	3 0.10	sigmoid	0.72	0.44	0.44
56	3 0.05	linear	0.83	0.44	0.44
57	3 0.05	poly	0.67	0.44	0.44
58	3 0.05	rbf	0.72	0.44	0.44
59	3 0.05	sigmoid	0.72	0.44	0.44
60	3 0.03	linear	0.78	0.44	0.44
61	3 0.03	poly	0.67	0.44	0.44
62	3 0.03	rbf	0.72	0.44	0.44
63	3 0.03	sigmoid	0.72	0.44	0.44
64	3 0.01	linear	0.72	0.44	0.44
65	3 0.01	poly	0.67	0.44	0.44
66	3 0.01	rbf	0.72	0.44	0.44
67	3 0.01	sigmoid	0.72	0.44	0.44
68	3 0.01	linear	0.72	0.44	0.44
69	3 0.01		0.67	0.44	0.44
		poly			
70	3 0.01	rbf	0.72	0.44	0.44
71	3 0.01	sigmoid	0.72	0.44	0.44
72	3 0.00	linear	0.72	0.44	0.44
73	3 0.00	poly	0.67	0.44	0.44
74	3 0.00	rbf	0.72	0.44	0.44
75	3 0.00	sigmoid	0.72	0.44	0.44
76	3 0.00	linear	0.72	0.44	0.44
77	3 0.00	poly	0.67	0.44	0.44
78	3 0.00	rbf	0.72	0.44	0.44
79	3 0.00	sigmoid	0.72	0.44	0.44
80	4 1.00	linear	1.00	0.42	0.42
81	4 1.00	poly	0.82	0.58	0.58
82	4 1.00	rbf	0.82	0.46	0.46
83	4 1.00	sigmoid	0.82	0.46	0.46
84	4 0.50	linear	0.89	0.42	0.42
85	4 0.50	poly	0.78	0.58	0.58
86	4 0.50	rbf	0.60	0.58	0.58
	1 0.00	101	0.00	0.00	0.00

0.77	4 0 50		0.71	0.40	
87	4 0.50	sigmoid	0.74	0.46	0.46
88	4 0.25	linear	0.85	0.42	0.42
89	4 0.25	poly	0.71	0.58	0.58
90	4 0.25	rbf	0.56	0.58	0.58
91	4 0.25	sigmoid	0.56	0.58	0.58
92	4 0.10	linear	0.82	0.54	0.54
93	4 0.10	poly	0.63	0.58	0.58
94	4 0.10	rbf	0.56	0.58	0.58
95	4 0.10	sigmoid	0.56	0.58	0.58
96	4 0.05	linear	0.82	0.46	0.46
97	4 0.05	poly	0.56	0.58	0.58
98	4 0.05	rbf	0.56	0.58	0.58
99	4 0.05	sigmoid	0.56	0.58	0.58
100	4 0.03	linear	0.70	0.58	0.58
101	4 0.03	poly	0.56	0.58	0.58
102	4 0.03	rbf	0.56	0.58	0.58
103	4 0.03	sigmoid	0.56	0.58	0.58
104	4 0.01	linear	0.56	0.58	0.58
105	4 0.01	poly	0.56	0.58	0.58
106	4 0.01	rbf	0.56	0.58	0.58
107	4 0.01	sigmoid	0.56	0.58	0.58
108	4 0.01	linear	0.56	0.58	0.58
109	4 0.01		0.56	0.58	
110	4 0.01	poly rbf			0.58
			0.56	0.58	0.58
111 112	4 0.01	sigmoid	0.56	0.58	0.58
113	4 0.00	linear	0.56	0.58	0.58
	4 0.00	poly	0.56	0.58	0.58
114	4 0.00	rbf	0.56	0.58	0.58
115	4 0.00	sigmoid	0.56	0.58	0.58
116	4 0.00	linear	0.56	0.58	0.58
117	4 0.00	poly	0.56	0.58	0.58
118	4 0.00	rbf	0.56	0.58	0.58
119	4 0.00	sigmoid	0.56	0.58	0.58
120	5 1.00	linear	1.00	0.50	0.50
121	5 1.00	poly	0.81	0.50	0.50
122	5 1.00	rbf	0.81	0.50	0.50
123	5 1.00	sigmoid	0.81	0.50	0.50
124	5 0.50	linear	0.89	0.50	0.50
125	5 0.50	poly	0.78	0.60	0.60
126	5 0.50	rbf	0.61	0.60	0.60
127	5 0.50	sigmoid	0.72	0.50	0.50
128	5 0.25	linear	0.81	0.50	0.50
129	5 0.25	poly	0.67	0.60	0.60
130	5 0.25	rbf	0.56	0.60	0.60
131	5 0.25	sigmoid	0.61	0.60	0.60
132	5 0.10	linear	0.81	0.50	0.50
133	5 0.10	poly	0.67	0.60	0.60

134	5 0.10	rbf	0.56	0.60	0.60
135	5 0.10	sigmoid	0.56	0.60	0.60
136	5 0.05	linear	0.81	0.50	0.50
137	5 0.05	poly	0.56	0.60	0.60
138	5 0.05	rbf	0.56	0.60	0.60
139	5 0.05	sigmoid	0.56	0.60	0.60
140	5 0.03	linear	0.72	0.50	0.50
141	5 0.03	poly	0.56	0.60	0.60
142	5 0.03	rbf	0.56	0.60	0.60
143	5 0.03	sigmoid	0.56	0.60	0.60
144	5 0.01	linear	0.56	0.60	0.60
145	5 0.01	poly	0.56	0.60	0.60
146	5 0.01	rbf	0.56	0.60	0.60
147	5 0.01	sigmoid	0.56	0.60	0.60
148	5 0.01	linear	0.56	0.60	0.60
149	5 0.01	poly	0.56	0.60	0.60
150	5 0.01	rbf	0.56	0.60	0.60
151	5 0.01	sigmoid	0.56	0.60	0.60
152	5 0.00	linear	0.56	0.60	0.60
153	5 0.00	poly	0.56	0.60	0.60
154	5 0.00	rbf	0.56	0.60	0.60
155	5 0.00	sigmoid	0.56	0.60	0.60
156	5 0.00	linear	0.56	0.60	0.60
157	5 0.00	poly	0.56	0.60	0.60
158	5 0.00	rbf	0.56	0.60	0.60
159	5 0.00	sigmoid	0.56	0.60	0.60

	Jaccard	Score
0		0.22
1		0.42
2		0.29
3		0.29
4		0.22
5		0.42
6		0.29
7		0.29
8		0.22
9		0.42
10		0.29
11		0.29
12		0.29
13		0.42
14		0.29
15		0.29
16		0.29
17		0.42
18		0.29

10	0 00
19	0.29
20	0.29
21	0.42
22	0.29
23	0.29
	0 00
24	0.29
25	0.42
26	0.29
27	0.29
28	0.29
29	0.42
30	0.29
31	0.29
	0.29
32	0.29
33	0.42
34	0.29
35	0.29
36	0.29
37	0.42
38	0.29
39	0.29
40	0.40
41	0.30
42	0.30
43	0.30
44	0.40
45	0.30
46	0.30
47	0.30
48	0.40
49	0.30
50	0.30
51	0.30
52	0.40
53	0.30
54	0.30
55	0.30
56	0.30
57	0.30
58	0.30
59	0.30
60	0.30
61	0.30
62	0.30
63	0.30
64	0.30
65	0.30
00	0.50

66	0.30
67	0.30
68	0.30
69	0.30
70	0.30
71	0.30
72	0.30
73	0.30
74	0.30
75	0.30
76	0.30
77	0.30
78	0.30
79	0.30
80	0.29
81	0.47
82	0.30
83	0.30
84	0.29
85	0.47
86	0.47
87	0.30
88	0.29
89	0.47
90	0.47
91	0.47
92	0.38
93	0.47
94	0.47
95	0.47
96	0.30
97	0.47
98	0.47
99	0.47
100	0.47
101	0.47
102	0.47
103	0.47
104	0.47
105	0.47
106	0.47
107	0.47
108	0.47
109	0.47
110	0.47
111	0.47
112	0.47

113	0 47
113	0.47
114	0.47
115	0.47
116	0.47
	0.47
117	0.47
118	0.47
119	0.47
120	0.40
121	0.40
122	0.40
123	0.40
124	0.40
125	0.53
126	0.53
127	0.40
128	0.40
129	0.53
129	
130	0.53
131	0.53
132	0.40
132	
133	0.53
134	0.53
195	0.53
135	0.55
136	0.40
137	0.53
120	0 E2
138	0.53
139	0.53
140	0.40
141	0.53
141	
142	0.53
143	0.53
144	0.53
144	0.55
145	0.53
146	0.53
147	0.53
141	0.55
148	0.53
149	0.53
150	0 50
150	0.53
151	0.53
152	0.53
153	0 53
199	0.53
154	0.53
155	0.53
156	0.53
157	0.53
158	0.53
159	0.53

```
[50]: clf_svm_eval_df.nlargest(3, 'Test-set Accuracy')
[50]:
                c kernel Train-set Accuracy Test-set Accuracy F1 Score \
      125 5 0.50
                    poly
                                        0.78
                                                           0.60
                                                                      0.60
      126 5 0.50
                    rbf
                                        0.61
                                                           0.60
                                                                      0.60
      129 5 0.25
                                        0.67
                                                           0.60
                                                                      0.60
                   poly
           Jaccard Score
      125
                    0.53
      126
                    0.53
      129
                    0.53
[51]: kf = KFold(n splits = 5)
      temp lst = []
      clf_svm = SVC(C=1, kernel='linear')
      for train_index, test_index in kf.split(leaders_post_x):
          X_train, X_test = leaders_post_x[train_index], leaders_post_x[test_index]
          y_train, y_test = leaders_post_y[train_index], leaders_post_y[test_index]
          clf_svm.fit(X_train, y_train)
          y_hat = clf_svm.predict(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_svm.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat, average='micro'))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat, average='micro'))
          temp lst2.append(y test)
          temp lst2.append(y hat)
          temp lst2.append(X test)
          temp_lst.append(temp_lst2)
[52]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp lst:
          for i in row[4]:
              temp_lst_ytest.append(i)
          for j in row[5]:
              temp_lst_yhat.append(j)
          for k in row[6]:
              temp_lst_xtest.append(k)
      cnf_ytest = np.array(temp_lst_ytest)
      cnf_yhat = np.array(temp_lst_yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
                   precision
                                recall f1-score
                                                    support
               -1
                        0.00
                                  0.00
                                             0.00
                                                          2
```

5

0

0.50

```
0.00
                              0.00
           1
                                        0.00
                                                      2
                                        0.44
                                                      9
    accuracy
   macro avg
                   0.17
                              0.27
                                        0.21
                                                      9
                                        0.34
                                                      9
weighted avg
                   0.28
                              0.44
```

```
[53]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
   plt.figure(figsize=(8,6))
   sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
   plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
   plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
   plt.xlabel('Predicted Value')
   plt.ylabel('True Value')
   plt.show()
```


1.1.3 K-Nearest Neighbor

Advertising Posts

```
[54]: from sklearn.neighbors import KNeighborsClassifier
      from matplotlib.colors import ListedColormap
[55]: weights_lst = ['uniform', 'distance']
[56]: temp_lst = []
      for i in range(2, 6):
          kf = KFold(n_splits = i)
          for train_index, test_index in kf.split(ad_post_x):
              X_train, X_test = ad_post_x[train_index], ad_post_x[test_index]
              y_train, y_test = ad_post_y[train_index], ad_post_y[test_index]
              for n_neighbor in range(1, 10):
                  for weight_type in weights_lst:
                      clf knn = KNeighborsClassifier(n neighbors=n neighbor, ...
       →weights=weight_type)
                      clf_knn.fit(X_train, y_train)
                      y_hat = clf_knn.predict(X_test)
                      temp_1st2 = []
                      temp_lst2.append(i)
                      temp_lst2.append(n_neighbor)
                      temp_lst2.append(weight_type)
                      temp_lst2.append(metrics.accuracy_score(y_train, clf_knn.
       →predict(X_train)))
                      temp lst2.append(metrics.accuracy score(y test, y hat))
                      temp_lst2.append(metrics.f1_score(y_test, y_hat))
                      temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
                      temp_lst.append(temp_lst2)
      temp_df = pd.DataFrame(temp_lst,
                             columns=['k', 'Number of Neighbors', 'Weight Type', _
       →'Train-set Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
      temp_lst = []
      for k in range(2, 6):
          for n_neighbor in range(1, 10):
              for weight_type in weights_lst:
                  temp_lst2 = []
                  temp_lst2.append(k)
                  temp_lst2.append(n_neighbor)
                  temp_lst2.append(weight_type)
                  temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
       → (temp df['Number of Neighbors'] == n neighbor) & (temp df['Weight Type'] == ___
       →weight_type)]['Train-set Accuracy']), decimals=4))
```

```
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__

→ (temp_df['Number of Neighbors'] == n_neighbor) & (temp_df['Weight Type'] == ____
       →weight_type)]['Test-set Accuracy']), decimals=4))
                  temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
       → (temp_df['Number of Neighbors'] == n_neighbor) & (temp_df['Weight Type'] == __
       →weight_type)]['F1 Score']), decimals=4))
                  temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
       →weight_type)]['Jaccard Score']), decimals=4))
                  temp lst.append(temp lst2)
      clf_knn_eval_df = pd.DataFrame(temp_lst,
                                    columns=['k', 'Number of Neighbors', 'Weight_
      →Type', 'Train-set Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard

Score'])
      clf_knn_eval_df
            Number of Neighbors Weight Type
[56]:
                                             Train-set Accuracy Test-set Accuracy \
                                     uniform
                                                            1.00
                                                                                0.55
                               1
      1
          2
                               1
                                    distance
                                                            1.00
                                                                                0.55
          2
                                                            0.85
      2
                               2
                                     uniform
                                                                                0.63
      3
          2
                               2
                                                            1.00
                                                                                0.55
                                    distance
      4
          2
                               3
                                     uniform
                                                            0.85
                                                                                0.59
      5
          2
                               3
                                                            1.00
                                                                                0.63
                                    distance
      6
          2
                               4
                                     uniform
                                                            0.85
                                                                                0.59
      7
          2
                               4
                                    distance
                                                            1.00
                                                                                0.59
      8
          2
                               5
                                     uniform
                                                            0.77
                                                                                0.62
      9
          2
                               5
                                    distance
                                                            1.00
                                                                                0.55
      10
          2
                               6
                                     uniform
                                                            0.74
                                                                                0.45
          2
                               6
                                    distance
                                                            1.00
      11
                                                                                0.55
      12
          2
                               7
                                                            0.66
                                     uniform
                                                                                0.55
         2
                               7
                                                            1.00
      13
                                    distance
                                                                                0.59
      14
                               8
                                     uniform
                                                            0.74
                                                                                0.41
      15
          2
                               8
                                    distance
                                                            1.00
                                                                                0.63
                               9
                                                            0.67
                                                                                0.41
      16
          2
                                     uniform
      17
          2
                               9
                                    distance
                                                            1.00
                                                                                0.63
      18
                                                            1.00
                                                                                0.59
          3
                               1
                                     uniform
      19
          3
                               1
                                    distance
                                                            1.00
                                                                                0.59
      20
          3
                               2
                                     uniform
                                                            0.83
                                                                                0.63
                               2
                                                            1.00
      21
          3
                                    distance
                                                                                0.59
      22
          3
                               3
                                     uniform
                                                            0.81
                                                                                0.70
      23
          3
                               3
                                    distance
                                                            1.00
                                                                                0.74
                                                            0.78
      24
         3
                               4
                                     uniform
                                                                                0.59
      25
         3
                               4
                                    distance
                                                            1.00
                                                                                0.63
                               5
                                     uniform
                                                            0.69
                                                                                0.63
      26
         3
```

0.69

0.63

0.52

distance

uniform

5

6

27 3

28 3

00	0			4 00	0.70
29	3	6	distance	1.00	0.70
30	3	7	uniform	0.67	0.74
31	3	7	distance	1.00	0.74
32	3	8	uniform	0.74	0.70
33	3	8	distance	1.00	0.74
34	3	9	uniform	0.65	0.67
35	3	9	distance	1.00	0.74
36	4	1	uniform	1.00	0.62
37	4	1	distance	1.00	0.62
38	4	2	uniform	0.85	0.65
39	4	2	distance	1.00	0.62
40	4	3	uniform	0.83	0.61
41	4	3	distance	1.00	0.73
42	4	4	uniform	0.84	0.54
43	4	4	distance	1.00	0.58
44	4	5	uniform	0.73	0.58
45	4	5	distance	1.00	0.54
46	4	6	uniform	0.73	0.61
47	4	6	distance	1.00	0.61
48	4	7	uniform	0.68	0.68
49	4	7	distance	1.00	0.65
50	4	8	uniform	0.75	0.65
51	4	8	distance	1.00	0.65
52	4	9	uniform	0.69	0.58
53	4	9	distance	1.00	0.65
54	5	1	uniform	1.00	0.73
55	5	1	distance	1.00	0.73
56	5	2	uniform	0.84	0.67
57	5	2	distance	1.00	0.73
58	5	3	uniform	0.84	0.52
59	5	3	distance	1.00	0.66
60	5	4	uniform	0.84	0.59
61	5	4	distance	1.00	0.55
62	5	5	uniform	0.77	0.52
63	5	5	distance	1.00	0.58
64	5	6	uniform	0.74	0.59
65	5	6	distance	1.00	0.58
66	5	7	uniform	0.69	0.62
67	5	7	distance	1.00	0.61
68	5	8	uniform	0.74	0.65
69	5	8	distance	1.00	0.58
70	5	9	uniform	0.70	0.58
71	5	9	distance	1.00	0.61
	T. 0 7 3 2				

F1 Score Jaccard Score
0 0.65 0.48
1 0.65 0.48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	0.69 0.65 0.67 0.69 0.67 0.67 0.67 0.73 0.65 0.42 0.65 0.62 0.67 0.32 0.69 0.41 0.69 0.65 0.65 0.65 0.65 0.78 0.80 0.65 0.70 0.72 0.71 0.50 0.78 0.80 0.80 0.78 0.80 0.78 0.80 0.78	0.53 0.48 0.51 0.53 0.51 0.50 0.58 0.48 0.29 0.48 0.23 0.54 0.57 0.57 0.67 0.72 0.67 0.72 0.65 0.72
30	0.80	0.72
32	0.78	0.67
35 36	0.80	0.72 0.47
37	0.60	0.47
38 39	0.62 0.60	0.49 0.47
40	0.68	0.57
41	0.74	0.64
42 43	0.56 0.63	0.42
44	0.66	0.53
45	0.60	0.46
46 47	0.69 0.68	0.58
48	0.74	0.65

```
50
              0.71
                             0.60
                             0.60
      51
              0.70
      52
                             0.54
              0.67
      53
              0.70
                             0.60
                             0.61
      54
              0.72
      55
              0.72
                             0.61
      56
                             0.50
              0.63
      57
              0.72
                             0.61
      58
              0.61
                             0.48
      59
              0.67
                             0.55
      60
              0.66
                             0.53
      61
              0.61
                             0.49
                             0.48
      62
              0.61
      63
              0.64
                             0.53
      64
              0.66
                             0.53
      65
              0.64
                             0.53
      66
              0.70
                             0.60
      67
              0.67
                             0.57
      68
              0.72
                             0.61
      69
              0.64
                             0.53
      70
              0.67
                             0.56
      71
              0.67
                             0.57
[57]: clf_knn_eval_df.nlargest(3, 'Test-set Accuracy')
[57]:
          k Number of Neighbors Weight Type Train-set Accuracy Test-set Accuracy \
      23 3
                               3
                                     distance
                                                             1.00
                                                                                 0.74
      30 3
                               7
                                      uniform
                                                             0.67
                                                                                 0.74
      31 3
                               7
                                     distance
                                                             1.00
                                                                                 0.74
          F1 Score Jaccard Score
      23
              0.80
                             0.72
      30
              0.80
                             0.72
      31
              0.80
                             0.72
[58]: kf = KFold(n_splits = 3)
      temp lst = []
      clf_knn = KNeighborsClassifier(n_neighbors=3, weights='distance')
      for train_index, test_index in kf.split(ad_post_x):
          X_train, X_test = ad_post_x[train_index], ad_post_x[test_index]
          y_train, y_test = ad_post_y[train_index], ad_post_y[test_index]
          clf_knn.fit(X_train, y_train)
          y_hat = clf_knn.predict(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_knn.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
```

49

0.70

```
temp_lst2.append(metrics.f1_score(y_test, y_hat))
temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
temp_lst2.append(y_test)
temp_lst2.append(y_hat)
temp_lst2.append(X_test)
temp_lst2.append(temp_lst2)
```

```
[59]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
for row in temp_lst:
    for i in row[4]:
        temp_lst_ytest.append(i)
    for j in row[5]:
        temp_lst_yhat.append(j)
    for k in row[6]:
        temp_lst_xtest.append(k)

cnf_ytest = np.array(temp_lst_ytest)
cnf_yhat = np.array(temp_lst_yhat)
cnf_xtest = np.array(temp_lst_xtest)
print(metrics.classification_report(cnf_ytest, cnf_yhat))
```

	precision	recall	f1-score	support
0	1.00	0.42	0.59	12
1	0.68	1.00	0.81	15
accuracy			0.74	27
macro avg	0.84	0.71	0.70	27
weighted avg	0.82	0.74	0.71	27

```
[60]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
    plt.figure(figsize=(8,6))
    sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
    # plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
    # plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
    plt.xlabel('Predicted Value')
    plt.ylabel('True Value')
    plt.show()
```



```
[61]: fig = plt.figure(figsize = (16, 6))
    ax1 = fig.add_subplot(1,2,1)
    ax2 = fig.add_subplot(1,2,2)

X,y = ad_post_x[:,:3], ad_post_y
h = .01
    cmap_light = ListedColormap(['lightcoral', 'palegreen'])
    cmap_bold = ['r', 'g']
    X_follower = X[:,(0,2)]
    X_view = X[:,(1,2)]

xx_follower, xx_view = None, None
    yy_follower, yy_view = None, None
    Z_follower, Z_view = None, None
    g1, g2 = None, None
```

```
X_lst = [X_follower, X_view]
xx_lst = [xx_follower, xx_view]
yy_lst = [yy_follower, yy_view]
Z_lst = [Z_follower, Z_view]
ax_1st = [ax1, ax2]
g_1st = [g1, g2]
x_label_lst = ['Follower', 'View']
labels=['Non-Profit','Profit']
red patch = patches.Patch(color='r', label='Non-Profit')
green_patch = patches.Patch(color='g', label='Profit')
def plot_calc(x, y = y):
    111
    This function is for calculating the area to plot with colors according to \sqcup
\hookrightarrow the input
        input \rightarrow x \ and \ y.
        return -> xx, yy, Z which are needed to drawing the contour and plot.
    clf_knn.fit(x, y)
    x_{min}, x_{max} = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_{min}, y_{max} = x[:, 1].min() - 1, <math>x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = clf_knn.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return xx, yy, Z
for ax_, xx_, yy_, Z_, X_, x_label_, g_ in zip(ax_lst, xx_lst, yy_lst, Z_lst,_u
\rightarrowX_lst, x_label_lst, g_lst):
    xx_, yy_, Z_ = plot_calc(X_, y)
    ax_.contourf(xx_, yy_, Z_, cmap=cmap_light)
    g_ = sns.scatterplot(x=X_[:, 1], y=X_[:, 0], hue=ad_post['benefit'],__
 →palette=cmap_bold, alpha=1.0, edgecolor='black', ax=ax_)
    ax_.set_title(f'Cost vs {x_label_} KNN Classification Model (n = 3, weight_
ax_.set_xlim(xx_.min(), xx_.max())
    ax_.set_ylim(yy_.min(), yy_.max())
    ax_.set_xlabel(f'{x_label_} (Normalized)')
    ax_.set_ylabel('Cost (Normalized)')
    ax_.legend(handles=[green_patch, red_patch],loc = 'upper left', fontsize = u
\hookrightarrow10);
plt.show()
```


Advertising Story

```
[62]: temp lst = []
      for i in range(2, 6):
          kf = KFold(n_splits = i)
          for train_index, test_index in kf.split(ad_story_x):
              X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
              y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
              for n_neighbor in range(1, 10):
                  for weight_type in weights_lst:
                      clf_knn = KNeighborsClassifier(n_neighbors=n_neighbor,__
       →weights=weight_type)
                      clf_knn.fit(X_train, y_train)
                      y_hat = clf_knn.predict(X_test)
                      temp 1st2 = []
                      temp_lst2.append(i)
                      temp_lst2.append(n_neighbor)
                      temp_lst2.append(weight_type)
                      temp_lst2.append(metrics.accuracy_score(y_train, clf_knn.
       →predict(X_train)))
                      temp lst2.append(metrics.accuracy score(y test, y hat))
                      temp_lst2.append(metrics.f1_score(y_test, y_hat))
                      temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
                      temp_lst.append(temp_lst2)
      temp_df = pd.DataFrame(temp_lst,
                             columns=['k', 'Number of Neighbors', 'Weight Type', L
       →'Train-set Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
      temp_lst = []
      for k in range(2, 6):
          for n_neighbor in range(1, 10):
```

```
for weight_type in weights_lst:
          temp_lst2 = []
          temp_lst2.append(k)
          temp_lst2.append(n_neighbor)
          temp_lst2.append(weight_type)
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
→weight_type)]['Train-set Accuracy']), decimals=4))
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__

→ (temp_df['Number of Neighbors'] == n_neighbor) & (temp_df['Weight Type'] == ____
→weight_type)]['Test-set Accuracy']), decimals=4))
          temp lst2.append(np.round(np.mean(temp df[(temp df['k'] == k) &___
→weight_type)]['F1 Score']), decimals=4))
          temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
→(temp_df['Number of Neighbors'] == n_neighbor) & (temp_df['Weight Type'] ==_
→weight_type)]['Jaccard Score']), decimals=4))
          temp_lst.append(temp_lst2)
clf knn eval df = pd.DataFrame(temp lst,
                          columns=['k', 'Number of Neighbors', 'Weight_
→Type', 'Train-set Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard

Score'])
clf_knn_eval_df
```

[62]:		k	Number	of	Neighbors	Weight Type	Train-set Accuracy	Test-set Accura	cv \
	0	2			1	uniform	1.00		78
	1	2			1	distance	1.00	0.	78
	2	2			2	uniform	0.89	0.	78
	3	2			2	distance	1.00	0.	78
	4	2			3	uniform	0.74	0.	62
	5	2			3	distance	1.00	0.	74
	6	2			4	uniform	0.70	0.	66
	7	2			4	distance	1.00	0.	70
	8	2			5	uniform	0.74	0.	70
	9	2			5	distance	1.00	0.	74
	10	2			6	uniform	0.74	0.	66
	11	2			6	distance	1.00	0.	70
	12	2			7	uniform	0.70	0.	59
	13	2			7	distance	1.00	0.	70
	14	2			8	uniform	0.70	0.	52
	15	2			8	distance	1.00	0.	70
	16	2			9	uniform	0.70	0.	59
	17	2			9	distance	1.00	0.	66
	18	3			1	uniform	1.00	0.	74
	19	3			1	distance	1.00	0.	74
	20	3			2	uniform	0.89	0.	74

21	3	2	distance	1.00	0.74
22	3	3	uniform	0.81	0.67
23	3	3	distance	1.00	0.78
24	3	4	uniform	0.83	0.74
25	3	4	distance	1.00	0.78
26	3	5	uniform	0.72	0.70
27	3	5	distance	1.00	0.78
28	3	6	uniform	0.76	0.70
29	3	6	distance	1.00	0.81
30	3	7	uniform	0.63	0.59
31	3	7	distance	1.00	0.78
32	3	8	uniform	0.65	0.59
33	3	8	distance	1.00	0.81
34	3	9	uniform	0.61	0.59
35	3	9	distance	1.00	0.74
36	4	1	uniform	1.00	0.74
37	4	1	distance	1.00	0.74
38	4	2	uniform	0.90	0.74
39	4	2	distance	1.00	0.74
40	4	3	uniform	0.83	0.66
41	4	3	distance	1.00	0.78
42	4	4	uniform	0.83	0.70
43	4	4	distance	1.00	0.74
44	4	5	uniform	0.73	0.70
45	4	5	distance	1.00	0.71
46	4	6	uniform	0.75	0.66
47	4	6	distance	1.00	0.74
48	4	7	uniform	0.65	0.58
49	4	7	distance	1.00	0.70
50	4	8	uniform	0.72	0.58
51	4	8	distance	1.00	0.77
52	4	9	uniform	0.64	0.58
53	4	9	distance	1.00	0.67
54	5	1	uniform	1.00	0.75
55	5	1	distance	1.00	0.75
56	5	2	uniform	0.90	0.71
57	5	2	distance	1.00	0.75
58	5	3	uniform	0.83	0.67
59	5	3	distance	1.00	0.79
60	5	4	uniform	0.82	0.71
61	5	4	distance	1.00	0.75
62	5	5	uniform	0.74	0.77
63	5	5	distance	1.00	0.79
64	5	6	uniform	0.79	0.77
65	5	6	distance	1.00	0.81
66	5	7	uniform	0.65	0.59
67	5	7	distance	1.00	0.85

68 69	5 5	8 8	uniform distance	0.69 1.00	0.63 0.81
70	5	9		0.62	
71	5	9	uniform distance	1.00	0.63 0.82
11	5	9	distance	1.00	0.62
	F1 Score	Jaccard Score			
0	0.82	0.69			
1	0.82	0.69			
2	0.82	0.69			
3	0.82	0.69			
4	0.75	0.62			
5	0.80	0.66			
6	0.77	0.64			
7	0.77	0.64			
8	0.79	0.69			
9	0.80	0.66			
10	0.77	0.64			
11	0.77	0.64			
12	0.73	0.59			
13	0.77	0.64			
14	0.65	0.48			
15	0.77	0.64			
16	0.72	0.58			
17	0.75	0.61			
18	0.78	0.64			
19	0.78	0.64			
20	0.78	0.64			
21	0.78	0.64			
22	0.76	0.61			
23	0.82	0.71			
24	0.80	0.67			
25	0.82	0.71			
26	0.79	0.68			
27	0.82	0.71			
28	0.79	0.68			
29	0.86	0.75			
30	0.73	0.59			
31	0.83	0.71			
32	0.73	0.59			
33	0.86	0.75			
34	0.73	0.59			
35	0.80	0.67			
36	0.74	0.61			
37	0.74	0.61			
38	0.74	0.61			
39	0.74	0.61			
40	0.74	0.60			

```
0.70
      41
              0.82
      42
              0.76
                               0.63
      43
              0.79
                               0.66
      44
              0.76
                               0.64
      45
              0.78
                               0.64
      46
              0.74
                               0.61
                               0.67
      47
              0.79
      48
              0.71
                               0.58
              0.77
                               0.63
      49
      50
              0.71
                               0.57
                               0.69
      51
              0.81
      52
              0.71
                               0.58
      53
                               0.60
              0.74
      54
              0.76
                               0.65
      55
              0.76
                               0.65
      56
              0.72
                               0.58
      57
                               0.65
              0.76
      58
              0.75
                               0.61
      59
              0.82
                               0.72
      60
              0.77
                               0.63
      61
              0.80
                               0.67
              0.81
                               0.70
      62
      63
              0.82
                               0.72
                               0.70
      64
              0.81
                               0.73
      65
              0.84
                               0.59
      66
              0.71
      67
              0.87
                               0.78
      68
              0.74
                               0.62
      69
              0.84
                               0.73
      70
              0.74
                               0.62
      71
              0.85
                               0.75
[63]: clf_knn_eval_df.nlargest(3, 'Test-set Accuracy')
[63]:
          k
             Number of Neighbors Weight Type
                                                Train-set Accuracy Test-set Accuracy \
      67
          5
                                                                1.00
                                                                                     0.85
                                 7
                                      distance
      71
          5
                                 9
                                      distance
                                                                1.00
                                                                                     0.82
      29
          3
                                 6
                                                                1.00
                                                                                     0.81
                                      distance
          F1 Score
                    Jaccard Score
      67
              0.87
                               0.78
      71
              0.85
                               0.75
      29
              0.86
                               0.75
[64]: kf = KFold(n_splits = 5)
      temp_lst = []
      clf_knn = KNeighborsClassifier(n_neighbors=7, weights='distance')
```

```
for train_index, test_index in kf.split(ad_story_x):
          X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
          y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
          clf_knn.fit(X_train, y_train)
          y_hat = clf_knn.predict(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_knn.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp lst2.append(metrics.f1 score(y test, y hat))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
          temp lst2.append(y test)
          temp_lst2.append(y_hat)
          temp lst2.append(X test)
          temp_lst.append(temp_lst2)
[65]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp_lst:
          for i in row[4]:
              temp_lst_ytest.append(i)
          for j in row[5]:
              temp_lst_yhat.append(j)
          for k in row[6]:
              temp_lst_xtest.append(k)
      cnf_ytest = np.array(temp_lst_ytest)
      cnf yhat = np.array(temp lst yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
                                recall f1-score
                   precision
                                                    support
                0
                        0.89
                                  0.73
                                             0.80
                                                         11
                1
                        0.83
                                  0.94
                                             0.88
                                                         16
                                             0.85
                                                         27
         accuracy
                                  0.83
                                             0.84
                                                         27
        macro avg
                        0.86
     weighted avg
                        0.86
                                  0.85
                                             0.85
                                                         27
[66]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
      plt.figure(figsize=(8,6))
      sns.heatmap(cnf matrix, square=True, annot=True, cbar=False)
      # plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
      # plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
      plt.xlabel('Predicted Value')
      plt.ylabel('True Value')
      plt.show()
```



```
[67]: fig = plt.figure(figsize = (24, 12))
    ax1 = fig.add_subplot(2,3,1)
    ax2 = fig.add_subplot(2,3,2)
    ax3 = fig.add_subplot(2,3,3)
    ax4 = fig.add_subplot(2,3,4)
    ax5 = fig.add_subplot(2,3,5)

X,y = ad_story_x[:,:6], ad_story_y
h = .01
cmap_light = ListedColormap(['lightcoral', 'palegreen'])
cmap_bold = ['r', 'g']
X_view = X[:,(0,5)]
X_follower = X[:,(1,5)]
X_action = X[:,(2,5)]
X_interaction = X[:,(3,5)]
```

```
X_{impression} = X[:,(4,5)]
xx_view, xx_follower, xx_action, xx_interaction, xx_impression = None, None,
→None, None, None
yy view, yy follower, yy action, yy interaction, yy impression = None, None,
→None, None, None
Z view, Z follower, Z action, Z interaction, Z impression = None, None, None,
→None, None
g1, g2, g3, g4, g5 = None, None, None, None, None
X_lst = [X_view, X_follower, X_action, X_interaction, X_impression]
xx_lst = [xx_view, xx_follower, xx_action, xx_interaction, xx_impression]
yy lst = [yy view, yy follower, yy action, yy interaction, yy impression]
Z_lst = [Z_view, Z_follower, Z_action, Z_interaction, Z_impression]
ax_1st = [ax1, ax2, ax3, ax4, ax5]
g_1st = [g1, g2, g3, g4, g5]
x_label_lst = ['view', 'follower', 'action', 'interaction', 'impression']
labels=['Non-Profit','Profit']
red_patch = patches.Patch(color='r', label='Non-Profit')
green_patch = patches.Patch(color='g', label='Profit')
def plot_calc(x, y = y):
    111
    This function is for calculating the area to plot with colors according to \sqcup
\hookrightarrow the input
        input \rightarrow x \ and \ y.
        return -> xx, yy, Z which are needed to drawing the contour and plot.
    clf_knn.fit(x, y)
    x_{\min}, x_{\max} = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_{min}, y_{max} = x[:, 1].min() - 1, x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = clf knn.predict(np.c [xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return xx, yy, Z
for ax_, xx_, yy_, Z_, X_, x_label_, g_ in zip(ax_lst, xx_lst, yy_lst, Z_lst,_u
\hookrightarrowX_lst, x_label_lst, g_lst):
    xx_, yy_, Z_ = plot_calc(X_, y)
    ax_.contourf(xx_, yy_, Z_, cmap=cmap_light)
    g_ = sns.scatterplot(x=X_[:, 1], y=X_[:, 0], hue=ad_story['benefit'],__
→palette=cmap_bold, alpha=1.0, edgecolor='black', ax=ax_)
    ax .set title(f'Cost vs {x label } KNN Classification Model (n = 7, weight_1)
 →= distance)')
```

```
ax_.set_xlim(xx_.min(), xx_.max())
ax_.set_ylim(yy_.min(), yy_.max())
ax_.set_xlabel(f'{x_label_} (Normalized)')
ax_.set_ylabel('Cost (Normalized)')
ax_.legend(handles=[green_patch, red_patch],loc = 'upper left', fontsize =_
$\infty 10)$;

plt.show()
```


Influencer

```
[68]: temp_lst = []
      for i in range(2, 6):
          kf = KFold(n_splits = i)
          for train_index, test_index in kf.split(influencer_x):
              X train, X test = influencer_x[train_index], influencer_x[test_index]
              y_train, y_test = influencer_y[train_index], influencer_y[test_index]
              for n_neighbor in range(1, 10):
                  for weight_type in weights_lst:
                      clf_knn = KNeighborsClassifier(n_neighbors=n_neighbor,__
       →weights=weight_type)
                      clf_knn.fit(X_train, y_train)
                      y_hat = clf_knn.predict(X_test)
                      temp_lst2 = []
                      temp_lst2.append(i)
                      temp_lst2.append(n_neighbor)
                      temp_lst2.append(weight_type)
```

```
→predict(X_train)))
                      temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
                      temp lst2.append(metrics.f1 score(y test, y hat,
       →average='micro'))
                      temp_lst2.append(metrics.jaccard_score(y_test, y_hat,__
       →average='micro'))
                      temp lst.append(temp lst2)
      temp df = pd.DataFrame(temp lst,
                             columns=['k', 'Number of Neighbors', 'Weight Type', |
      →'Train-set Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
      temp_lst = []
      for k in range(2, 6):
          for n_neighbor in range(1, 10):
              for weight_type in weights_lst:
                  temp_1st2 = []
                  temp lst2.append(k)
                  temp_lst2.append(n_neighbor)
                  temp lst2.append(weight type)
                  temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
       → (temp df['Number of Neighbors'] == n neighbor) & (temp df['Weight Type'] == 1
       →weight_type)]['Train-set Accuracy']), decimals=4))
                  temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
       → (temp_df['Number of Neighbors'] == n_neighbor) & (temp_df['Weight Type'] == ___
       →weight_type)]['Test-set Accuracy']), decimals=4))
                  temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
       → (temp df['Number of Neighbors'] == n neighbor) & (temp df['Weight Type'] == 1
       →weight_type)]['F1 Score']), decimals=4))
                  temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__

→ (temp_df['Number of Neighbors'] == n_neighbor) & (temp_df['Weight Type'] == ___
       →weight_type)]['Jaccard Score']), decimals=4))
                  temp_lst.append(temp_lst2)
      clf_knn_eval_df = pd.DataFrame(temp_lst,
                                    columns=['k', 'Number of Neighbors', 'Weight⊔
       →Type', 'Train-set Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard
       →Score'])
      clf_knn_eval_df
[68]:
             Number of Neighbors Weight Type Train-set Accuracy Test-set Accuracy \
                               1
                                     uniform
                                                             1.00
                                                                                0.61
          2
                               1
                                    distance
                                                             1.00
                                                                                0.61
      1
      2
          2
                               2
                                     uniform
                                                             0.96
                                                                                0.67
      3
          2
                               2
                                    distance
                                                             1.00
                                                                                0.61
          2
                               3
                                     uniform
                                                             0.97
                                                                                0.60
```

temp_lst2.append(metrics.accuracy_score(y_train, clf_knn.

5	2	3	distance	1.00	0.58
6	2	4	uniform	0.89	0.61
7	2	4	distance	1.00	0.60
8	2	5	uniform	0.84	0.65
9	2	5	distance	1.00	0.56
10	2	6	uniform	0.77	0.63
11	2	6	distance	1.00	0.65
12	2	7	uniform	0.78	0.62
13	2	7	distance	1.00	0.67
14	2	8	uniform	0.75	0.53
15	2	8	distance	1.00	0.70
16	2	9	uniform	0.70	0.48
17	2	9	distance	1.00	0.59
18	3	1	uniform	1.00	0.48
19	3	1	distance	1.00	0.48
20	3	2	uniform	0.96	0.50
21	3	2	distance	1.00	0.48
22	3	3	uniform	0.97	0.53
23	3	3	distance	1.00	0.51
24	3	4	uniform	0.88	0.45
25	3	4	distance	1.00	0.51
26	3	5	uniform	0.87	0.51
27	3	5	distance	1.00	0.51
28	3	6	uniform	0.83	0.47
29	3	6	distance	1.00	0.53
30	3	7	uniform	0.80	0.45
31	3	7	distance	1.00	0.47
32	3	8	uniform	0.81	0.39
33	3	8	distance	1.00	0.43
34	3	9	uniform	0.78	0.39
35	3	9	distance	1.00	0.41
36	4	1	uniform	1.00	0.54
37	4	1	distance	1.00	0.54
38	4	2	uniform	0.95	0.52
39	4	2	distance	1.00	0.54
40	4	3	uniform	0.96	0.52
41	4	3	distance	1.00	0.57
42	4	4	uniform	0.88	0.44
43	4	4	distance	1.00	0.57
44	4	5	uniform	0.87	0.51
45	4	5	distance	1.00	0.57
46	4	6	uniform	0.82	0.45
47	4	6	distance	1.00	0.60
48	4	7	uniform	0.80	0.45
49	4	7	distance	1.00	0.57
50	4	8	uniform	0.79	0.37
51	4	8	distance	1.00	0.50

52	4	9	uniform	0.78	0.33
53	4	9	distance	1.00	0.44
54	5	1	uniform	1.00	0.52
55	5	1	distance	1.00	0.52
56	5	2	uniform	0.95	0.52
57	5	2	distance	1.00	0.52
58	5	3	uniform	0.96	0.53
59	5	3	distance	1.00	0.53
60	5	4	uniform	0.87	0.45
61	5	4	distance	1.00	0.53
62	5	5	uniform	0.86	0.50
63	5	5	distance	1.00	0.53
64	5	6	uniform	0.84	0.44
65	5	6	distance	1.00	0.54
66	5	7	uniform	0.79	0.44
67	5	7	distance	1.00	0.47
68	5	8	uniform	0.80	0.40
69	5	8	distance	1.00	0.46
70	5	9	uniform	0.79	0.32
71	5	9	distance	1.00	0.39

	C 1	Score	Jaccard	Scoro
0	I. I	0.61	Jaccaru	0.44
1		0.61		0.44
2		0.67		0.50
3		0.61		0.44
4		0.60		0.43
5		0.58		0.41
6		0.61		0.44
7		0.60		0.43
8		0.65		0.48
9		0.56		0.39
10		0.63		0.46
11		0.65		0.48
12		0.62		0.45
13		0.67		0.50
14		0.53		0.36
15		0.70		0.53
16		0.48		0.32
17		0.59		0.42
18		0.48		0.33
19		0.48		0.33
20		0.50		0.34
21		0.48		0.33
22		0.53		0.37
23		0.51		0.35
24		0.45		0.29

25	0.51	0.35
26	0.51	0.34
27	0.51	0.34
28	0.47	0.32
29	0.53	0.36
30	0.45	0.30
31	0.47	0.31
32	0.39	0.25
33	0.43	0.28
34	0.39	0.25
35	0.41	0.26
36	0.54	0.39
37	0.54	0.39
38	0.52	0.38
39	0.54	0.39
40	0.52	0.36
41	0.57	0.41
42	0.44	0.29
43	0.57	0.41
44	0.51	0.35
45	0.57	0.41
46	0.45	0.30
47	0.60	0.43
48	0.45	0.30
49	0.57	0.40
50	0.37	0.24
51	0.50	0.34
52	0.33	0.21
53	0.44	0.29
54	0.52	0.39
55	0.52	0.39
56	0.52	0.38
57	0.52	0.39
58	0.53	0.38
59	0.53	0.38
60	0.45	0.31
61	0.53	0.38
62	0.50	0.35
63	0.53	0.38
64	0.44	0.31
65	0.54	0.38
66	0.44	0.30
67	0.47	0.32
68	0.40	0.28
69	0.46	0.31
70	0.32	0.22
71	0.39	0.25

```
[69]: clf_knn_eval_df.nlargest(3, 'Test-set Accuracy')
[69]:
          k Number of Neighbors Weight Type Train-set Accuracy Test-set Accuracy \
      15
                               8
                                    distance
                                                            1.00
                                                                                0.70
      2
          2
                               2
                                     uniform
                                                            0.96
                                                                                0.67
      13 2
                               7
                                    distance
                                                            1.00
                                                                                0.67
          F1 Score Jaccard Score
      15
              0.70
                             0.53
      2
              0.67
                             0.50
      13
              0.67
                             0.50
[70]: kf = KFold(n splits = 2)
      temp lst = []
      clf_knn = KNeighborsClassifier(n_neighbors=8, weights='distance')
      for train_index, test_index in kf.split(influencer_x):
          X_train, X_test = influencer_x[train_index], influencer_x[test_index]
          y_train, y_test = influencer_y[train_index], influencer_y[test_index]
          clf_knn.fit(X_train, y_train)
          y_hat = clf_knn.predict(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_knn.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat, average='micro'))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat, average='micro'))
          temp lst2.append(y test)
          temp lst2.append(y hat)
          temp lst2.append(X test)
          temp_lst.append(temp_lst2)
[71]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp 1st:
          for i in row[4]:
              temp_lst_ytest.append(i)
          for j in row[5]:
              temp_lst_yhat.append(j)
          for k in row[6]:
              temp_lst_xtest.append(k)
      cnf_ytest = np.array(temp_lst_ytest)
      cnf_yhat = np.array(temp_lst_yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
                   precision
                                recall f1-score
                                                    support
               -1
                        0.75
                                  0.65
                                             0.70
                                                         23
```

0.68

43

0

0.69

0.67

```
0.68
           1
                              0.75
                                        0.71
                                                    36
                                        0.70
    accuracy
                                                    102
   macro avg
                   0.71
                              0.69
                                        0.70
                                                    102
weighted avg
                   0.70
                              0.70
                                        0.70
                                                    102
```

```
[72]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
    plt.figure(figsize=(8,6))
    sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
    plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
    plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
    plt.xlabel('Predicted Value')
    plt.ylabel('True Value')
    plt.show()
```



```
[73]: fig = plt.figure(figsize = (24, 12))
      ax1 = fig.add_subplot(2,3,1)
      ax2 = fig.add_subplot(2,3,2)
      ax3 = fig.add_subplot(2,3,3)
      ax4 = fig.add_subplot(2,3,4)
      ax5 = fig.add_subplot(2,3,5)
      X,y = influencer_x[:,:7], influencer_y
      h = .01
      cmap light = ListedColormap(['lightcoral', 'gold', 'palegreen'])
      cmap_bold = ['r', 'y', 'g']
      X_{follower} = X[:,(0,6)]
      X_{view} = X[:,(1,6)]
      X_{action} = X[:,(2,6)]
      X_{impression} = X[:,(3,6)]
      X_interaction = X[:,(5,6)]
      xx_follower, xx_view, xx_action, xx_impression, xx_interaction = None, None,
      →None, None, None
      yy_follower, yy_view, yy_action, yy_impression, yy_interaction = None, None, u
       →None, None, None
      Z_follower, Z_view, Z_action, Z_impression, Z_interaction = None, None, None,
      →None, None
      g1, g2, g3, g4, g5 = None, None, None, None
      X_lst = [X_follower, X_view, X_action, X_impression, X_interaction]
      xx_lst = [xx_follower, xx_view, xx_action, xx_impression, xx_interaction]
      yy_lst = [yy_follower, yy_view, yy_action, yy_impression, yy_interaction]
      Z_lst = [Z_follower, Z_view, Z_action, Z_impression, Z_interaction]
      ax_1st = [ax1, ax2, ax3, ax4, ax5]
      g_1st = [g1, g2, g3, g4, g5]
      x_label_lst = ['follower', 'view', 'action', 'impression', 'interaction']
      labels=['Non-Profit','Neutral', 'Profit']
      red_patch = patches.Patch(color='r', label='Non-Profit')
      yellow_patch = patches.Patch(color='y', label='Neutral')
      green_patch = patches.Patch(color='g', label='Profit')
      def plot_calc(x, y = y):
          111
          This function is for calculating the area to plot with colors according to \sqcup
       \hookrightarrow the input
              input \rightarrow x \ and \ y.
              return -> xx, yy, Z which are needed to drawing the contour and plot.
```

```
clf_knn.fit(x, y)
    x_{\min}, x_{\max} = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_{min}, y_{max} = x[:, 1].min() - 1, x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = clf_knn.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return xx, yy, Z
for ax_, xx_, yy_, Z_, X_, x_label_, g_ in zip(ax_lst, xx_lst, yy_lst, Z_lst,_u
\rightarrowX_lst, x_label_lst, g_lst):
    xx_, yy_, Z_ = plot_calc(X_, y)
    ax_.contourf(xx_, yy_, Z_, cmap=cmap_light)
    g_ = sns.scatterplot(x=X_[:, 1], y=X_[:, 0], hue=influencer['benefit'],__
→palette=cmap_bold, alpha=1.0, edgecolor='black', ax=ax_)
    ax_.set_title(f'Cost vs {x_label_} KNN Classification Model (n = 8, weight_
 →= distance)')
    ax_.set_xlim(xx_.min(), xx_.max())
    ax_.set_ylim(yy_.min(), yy_.max())
    ax_.set_xlabel(f'{x_label_} (Normalized)')
    ax_.set_ylabel('Cost (Normalized)')
    ax_.legend(handles=[green_patch, yellow_patch, red_patch],loc = 'upper_u
 →right', fontsize = 10);
plt.show()
```


 $Leaders_post$

```
[74]: temp_lst = []
      for i in range(2, 6):
          kf = KFold(n_splits = i)
          for train_index, test_index in kf.split(leaders_post_x):
              X_train, X_test = leaders_post_x[train_index],_
       →leaders_post_x[test_index]
              y_train, y_test = leaders_post_y[train_index],_
       →leaders_post_y[test_index]
              for n_neighbor in range(1, 5):
                  for weight_type in weights_lst:
                      clf_knn = KNeighborsClassifier(n_neighbors=n_neighbor,__
       →weights=weight_type)
                      clf_knn.fit(X_train, y_train)
                      y_hat = clf_knn.predict(X_test)
                      temp_1st2 = []
                      temp_lst2.append(i)
                      temp_lst2.append(n_neighbor)
                      temp_lst2.append(weight_type)
                      temp_lst2.append(metrics.accuracy_score(y_train, clf_knn.
       →predict(X_train)))
                      temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
                      temp_lst2.append(metrics.f1_score(y_test, y_hat,_
       →average='micro'))
                      temp_lst2.append(metrics.jaccard_score(y_test, y_hat,__
       →average='micro'))
                      temp lst.append(temp lst2)
      temp df = pd.DataFrame(temp lst,
                             columns=['k', 'Number of Neighbors', 'Weight Type', |
      →'Train-set Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard Score'])
      temp_lst = []
      for k in range(2, 6):
          for n_neighbor in range(1, 5):
              for weight_type in weights_lst:
                  temp_1st2 = []
                  temp_lst2.append(k)
                  temp lst2.append(n neighbor)
                  temp_lst2.append(weight_type)
                  temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__

→ (temp_df['Number of Neighbors'] == n_neighbor) & (temp_df['Weight Type'] == ___
       →weight_type)]['Train-set Accuracy']), decimals=4))
                  temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
       → (temp df['Number of Neighbors'] == n neighbor) & (temp df['Weight Type'] == 1
       →weight_type)]['Test-set Accuracy']), decimals=4))
```

```
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      →weight_type)]['F1 Score']), decimals=4))
                 temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_

    →(temp_df['Number of Neighbors'] == n_neighbor) & (temp_df['Weight Type'] == |
      →weight_type)]['Jaccard Score']), decimals=4))
                 temp_lst.append(temp_lst2)
     clf_knn_eval_df = pd.DataFrame(temp_lst,
                                   columns=['k', 'Number of Neighbors', 'Weight
      →Type', 'Train-set Accuracy', 'Test-set Accuracy', 'F1 Score', 'Jaccard

¬Score'])
     clf_knn_eval_df
[74]:
            Number of Neighbors Weight Type Train-set Accuracy
                                                                Test-set Accuracy \
                              1
                                    uniform
                                                           1.00
                                                                              0.35
     1
         2
                              1
                                   distance
                                                           1.00
                                                                              0.35
     2
         2
                              2
                                    uniform
                                                           0.65
                                                                              0.35
         2
                              2
                                   distance
                                                           1.00
     3
                                                                              0.35
     4
         2
                              3
                                    uniform
                                                           0.88
                                                                              0.45
     5
         2
                              3
                                   distance
                                                           1.00
                                                                              0.35
     6
         2
                              4
                                    uniform
                                                           0.78
                                                                              0.57
     7
         2
                              4
                                   distance
                                                           1.00
                                                                              0.45
     8
         3
                              1
                                    uniform
                                                           1.00
                                                                              0.56
     9
         3
                              1
                                   distance
                                                           1.00
                                                                              0.56
                              2
         3
                                                           0.67
                                                                              0.44
     10
                                    uniform
     11
         3
                              2
                                   distance
                                                           1.00
                                                                              0.56
                              3
                                    uniform
                                                           0.72
     12
         3
                                                                              0.44
                              3
                                                           1.00
     13
         3
                                   distance
                                                                              0.44
     14
         3
                              4
                                    uniform
                                                           0.61
                                                                              0.22
     15
         3
                              4
                                   distance
                                                           1.00
                                                                              0.44
         4
                              1
                                    uniform
                                                           1.00
                                                                              0.42
     16
```

17

18 4

19 4

20

21

22

23 4

24 5

25 5

26

27 5

28 5

29 5

30

31 5

4

4

5

5

```
0.35
                               0.22
      0
               0.35
                               0.22
      1
      2
               0.35
                               0.22
      3
               0.35
                               0.22
      4
                               0.29
               0.45
      5
               0.35
                               0.22
      6
                               0.42
               0.57
      7
               0.45
                               0.29
               0.56
                               0.40
      8
      9
               0.56
                               0.40
                               0.30
      10
               0.44
               0.56
                               0.40
      11
      12
               0.44
                               0.30
               0.44
                               0.30
      13
      14
               0.22
                               0.13
                               0.30
      15
               0.44
               0.42
                               0.29
      16
      17
               0.42
                               0.29
      18
               0.33
                               0.22
      19
               0.42
                               0.29
      20
               0.46
                               0.30
      21
               0.33
                               0.22
                               0.30
      22
               0.46
               0.46
                               0.30
      23
      24
               0.50
                               0.40
      25
               0.50
                               0.40
      26
               0.50
                               0.40
                               0.40
      27
               0.50
      28
               0.50
                               0.40
      29
               0.50
                               0.40
      30
               0.40
                               0.33
      31
               0.50
                               0.40
      clf_knn_eval_df.nlargest(3, 'Test-set Accuracy')
[75]:
         k
            Number of Neighbors Weight Type
                                                 Train-set Accuracy
                                                                       Test-set Accuracy \
         2
                                 4
                                       uniform
                                                                 0.78
                                                                                     0.57
      6
      8
         3
                                 1
                                       uniform
                                                                 1.00
                                                                                     0.56
         3
                                 1
                                      distance
                                                                 1.00
                                                                                     0.56
```

F1 Score

F1 Score

0.57

0.56

0.56

6

8

9

Jaccard Score

0.42

0.40

0.40

Jaccard Score

```
[76]: kf = KFold(n_splits = 2)
      temp_lst = []
      clf_knn = KNeighborsClassifier(n_neighbors=4, weights='uniform')
      for train_index, test_index in kf.split(influencer_x):
          X train, X test = influencer_x[train_index], influencer_x[test_index]
          y_train, y_test = influencer_y[train_index], influencer_y[test_index]
          clf_knn.fit(X_train, y_train)
          y_hat = clf_knn.predict(X_test)
          temp lst2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_knn.predict(X_train)))
          temp lst2.append(metrics.accuracy score(y test, y hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat, average='micro'))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat, average='micro'))
          temp_lst2.append(y_test)
          temp_lst2.append(y_hat)
          temp_lst2.append(X_test)
          temp_lst.append(temp_lst2)
[77]: | temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp_lst:
          for i in row[4]:
              temp_lst_ytest.append(i)
          for j in row[5]:
              temp lst yhat.append(j)
          for k in row[6]:
              temp_lst_xtest.append(k)
      cnf_ytest = np.array(temp_lst_ytest)
      cnf_yhat = np.array(temp_lst_yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
                   precision
                                recall f1-score
                                                    support
               -1
                        0.71
                                  0.52
                                             0.60
                                                         23
                0
                        0.54
                                  0.72
                                             0.62
                                                         43
                        0.68
                                  0.53
                                             0.59
                                                         36
         accuracy
                                             0.61
                                                        102
                                             0.60
                                                        102
        macro avg
                        0.64
                                  0.59
     weighted avg
                        0.63
                                  0.61
                                             0.61
                                                        102
[78]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
      plt.figure(figsize=(8,6))
      sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
      plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
      plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
```

```
plt.xlabel('Predicted Value')
plt.ylabel('True Value')
plt.show()
```



```
fig = plt.figure(figsize = (24, 24))
ax1 = fig.add_subplot(3,3,1)
ax2 = fig.add_subplot(3,3,2)
ax3 = fig.add_subplot(3,3,3)
ax4 = fig.add_subplot(3,3,4)
ax5 = fig.add_subplot(3,3,5)
ax6 = fig.add_subplot(3,3,6)
ax7 = fig.add_subplot(3,3,7)
ax8 = fig.add_subplot(3,3,8)
ax9 = fig.add_subplot(3,3,9)
```

```
X,y = leaders_post_x[:,:10], leaders_post_y
h = .01
cmap_light = ListedColormap(['lightcoral', 'gold', 'palegreen'])
cmap_bold = ['r', 'y', 'g']
X_{follower} = X[:,(0,9)]
X_{\text{view}} = X[:,(1,9)]
X_{\text{like}} = X[:,(2,9)]
X_{comment} = X[:,(3,9)]
X_{share} = X[:,(4,9)]
X \text{ save} = X[:,(5,9)]
X_{profile_visit} = X[:,(6,9)]
X_{reach} = X[:,(7,9)]
X_{impression} = X[:,(8,9)]
xx follower, xx_view, xx_like, xx_comment, xx_share, xx_save, xx_profile_visit,_
→xx_reach, xx_impression = None, None, None, None, None, None, None, None, None,
→None
yy_follower, yy_view, yy_like, yy_comment, yy_share, yy_save, yy_profile_visit,u
→yy_reach, yy_impression = None, None, None, None, None, None, None, None, None,
→None
Z_follower, Z_view, Z_like, Z_comment, Z_share, Z_save, Z_profile_visit,
\rightarrowZ_reach, Z_impression = None, None, None, None, None, None, None, None, None
g1, g2, g3, g4, g5, g6, g7, g8, g9 = None, None, None, None, None, None, None,
→None, None
X_lst = [X_follower, X_view, X_like, X_comment, X_share, X_save,_
→X_profile_visit, X_reach, X_impression]
xx_lst = [xx_follower, xx_view, xx_like, xx_comment, xx_share, xx_save,_
→xx_profile_visit, xx_reach, xx_impression]
yy_lst = [yy_follower, yy_view, yy_like, yy_comment, yy_share, yy_save,_
→yy_profile_visit, yy_reach, yy_impression]
Z 1st = [Z follower, Z view, Z like, Z comment, Z share, Z save, ]
→Z_profile_visit, Z_reach, Z_impression]
ax_1st = [ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]
g_1st = [g1, g2, g3, g4, g5, g6, g7, g8, g9]
x_label_lst = ['follower', 'view', 'like', 'comment', 'share', 'save', _
labels=['Profit','Neutral', 'Non-Profit']
red_patch = patches.Patch(color='r', label='Non-Profit')
yellow_patch = patches.Patch(color='y', label='Neutral')
green_patch = patches.Patch(color='g', label='Profit')
def plot_calc(x, y = y):
```

```
This function is for calculating the area to plot with colors according to \sqcup
 \hookrightarrow the input
        input \rightarrow x \ and \ y.
        return -> xx, yy, Z which are needed to drawing the contour and plot.
    clf knn.fit(x, y)
    x_{\min}, x_{\max} = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_{min}, y_{max} = x[:, 1].min() - 1, x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x min, x max, h), np.arange(y min, y max, h))
    Z = clf_knn.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return xx, yy, Z
for ax_, xx_, yy_, Z_, X_, x_label_, g_ in tqdm(zip(ax_lst, xx_lst, yy_lst, u)
→Z_lst, X_lst, x_label_lst, g_lst)):
    xx_, yy_, Z_ = plot_calc(X_, y)
    ax_.contourf(xx_, yy_, Z_, cmap=cmap_light)
    g_ = sns.scatterplot(x=X_[:, 1], y=X_[:, 0], hue=leaders_post['benefit'],__
→palette=cmap_bold, alpha=1.0, edgecolor='black', ax=ax_)
    ax_.set_title(f'Cost vs {x_label_} KNN Classification Model (n = 2, weight_
→= uniform)')
    ax_.set_xlim(xx_.min(), xx_.max())
    ax_.set_ylim(yy_.min(), yy_.max())
    ax_.set_xlabel(f'{x_label_} (Normalized)')
    ax_.set_ylabel('Cost (Normalized)')
    ax_.legend(handles=[green_patch, yellow_patch, red_patch],loc = 'upper_u
→right', fontsize = 10);
plt.show()
```

9it [01:04, 7.11s/it]

1.1.4 Decision Tree

Advertising Posts

```
[80]: from sklearn.tree import DecisionTreeClassifier, plot_tree
from matplotlib.colors import ListedColormap

[81]: criterion = ['gini', 'entropy']

[82]: temp_lst = []
for i in tqdm_notebook(range(2, 9)):
    kf = KFold(n_splits = i)
    for train_index, test_index in kf.split(ad_post_x):
        X_train, X_test = ad_post_x[train_index], ad_post_x[test_index]
        y_train, y_test = ad_post_y[train_index], ad_post_y[test_index]
```

```
for c in criterion:
                dtc = DecisionTreeClassifier(criterion = c)
                dtc.fit(X_train, y_train)
                temp_1st2 = []
                temp_lst2.append(i)
                temp_lst2.append(c)
                temp_lst2.append(dtc.score(X_train, y_train))
                temp_lst2.append(dtc.score(X_test, y_test))
                temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTC Train Score', _
      → 'DTC Test Score'])
     temp_lst = []
     for k in range(2, 9):
         for c_ in criterion:
            temp_1st2 = []
            temp_lst2.append(k)
            temp lst2.append(c )
            temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      temp_lst.append(temp_lst2)
     dt_clf_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTC Train_
      →Score', 'DTC Test Score'])
     dt_clf_eval_df
    HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0),
     →HTML(value='')))
[82]:
         k Criterion DTC Train Score DTC Test Score
                                              0.67
     0
         2
               gini
                               1.00
         2
                               1.00
                                              0.67
     1
            entropy
     2
         3
                               1.00
                                              0.70
               gini
     3
         3
            entropy
                               1.00
                                              0.67
     4
         4
               gini
                               1.00
                                              0.69
                                              0.64
     5
        4
            entropy
                               1.00
     6
        5
                               1.00
                                              0.69
               gini
     7
        5
                               1.00
                                              0.58
            entropy
     8
         6
                               1.00
                                              0.72
               gini
     9
         6
                               1.00
                                              0.68
            entropy
     10 7
               gini
                               1.00
                                              0.55
     11 7
                               1.00
                                              0.58
            entropy
     12 8
               gini
                               1.00
                                              0.61
```

```
13 8
              entropy
                                  1.00
                                                  0.68
[83]: dt_clf_eval_df.nlargest(3, 'DTC Test Score')
[83]:
         k Criterion DTC Train Score DTC Test Score
      8 6
                                 1.00
                                                 0.72
                gini
                                                 0.70
      2 3
                                 1.00
                gini
                                                 0.69
      6 5
                gini
                                 1.00
[84]: kf = KFold(n splits = 3)
      temp lst = []
      clf_dt = DecisionTreeClassifier(criterion = 'entropy')
      for train_index, test_index in kf.split(ad_post_x):
          X_train, X_test = ad_post_x[train_index], ad_post_x[test_index]
          y_train, y_test = ad_post_y[train_index], ad_post_y[test_index]
          clf_dt.fit(X_train, y_train)
          y_hat = clf_dt.predict(X_test)
          y_hat_prob = clf_dt.predict_proba(X_test)
          temp_1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_dt.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
          temp_lst2.append(metrics.log_loss(y_test, y_hat_prob))
          temp lst2.append(y test)
          temp_lst2.append(y_hat)
          temp_lst2.append(X_test)
          temp_lst.append(temp_lst2)
[85]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp_lst:
          for i in row[5]:
              temp_lst_ytest.append(i)
          for j in row[6]:
              temp_lst_yhat.append(j)
          for k in row[7]:
              temp_lst_xtest.append(k)
      cnf ytest = np.array(temp lst ytest)
      cnf_yhat = np.array(temp_lst_yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
                   precision
                                recall f1-score
                                                    support
                0
                        0.73
                                  0.67
                                             0.70
                                                         12
                1
                        0.75
                                  0.80
                                             0.77
                                                         15
```

```
      accuracy
      0.74
      27

      macro avg
      0.74
      0.73
      0.73
      27

      weighted avg
      0.74
      0.74
      0.74
      27
```

```
[86]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
  plt.figure(figsize=(8,6))
  sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
  # plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
  # plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
  plt.xlabel('Predicted Value')
  plt.ylabel('True Value')
  plt.show()
```



```
[87]: fig = plt.figure(figsize = (16, 6))
ax1 = fig.add_subplot(1,2,1)
ax2 = fig.add_subplot(1,2,2)
```

```
X,y = ad_post_x[:,:3], ad_post_y
h = .01
cmap_light = ListedColormap(['lightcoral', 'palegreen'])
cmap_bold = ['r', 'g']
X_{follower} = X[:,(0,2)]
X_{view} = X[:,(1,2)]
xx_follower, xx_view = None, None
yy_follower, yy_view = None, None
Z_follower, Z_view = None, None
g1, g2 = None, None
X_lst = [X_follower, X_view]
xx_lst = [xx_follower, xx_view]
yy_lst = [yy_follower, yy_view]
Z_lst = [Z_follower, Z_view]
ax_1st = [ax1, ax2]
g_1st = [g1, g2]
x_label_lst = ['Follower', 'View']
labels=['Non-Profit','Profit']
red_patch = patches.Patch(color='r', label='Non-Profit')
green_patch = patches.Patch(color='g', label='Profit')
def plot_calc(x, y = y):
    This function is for calculating the area to plot with colors according to \sqcup
\hookrightarrow the input
        input \rightarrow x \ and \ y.
        return -> xx, yy, Z which are needed to drawing the contour and plot.
    ,,,
    clf_dt.fit(x, y)
    x_{min}, x_{max} = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = clf_dt.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return xx, yy, Z
for ax_, xx_, yy_, Z_, X_, x_label_, g_ in zip(ax_lst, xx_lst, yy_lst, Z_lst,_u
\hookrightarrow X_{lst}, x_{label_{lst}}, g_{lst}):
    xx_, yy_, Z_ = plot_calc(X_, y)
    ax_.contourf(xx_, yy_, Z_, cmap=cmap_light)
    g_ = sns.scatterplot(x=X_[:, 1], y=X_[:, 0], hue=ad_post['benefit'],__
 →palette=cmap_bold, alpha=1.0, edgecolor='black', ax=ax_)
```


Advertising Story

```
[88]: temp_lst = []
     for i in tqdm_notebook(range(2, 9)):
         kf = KFold(n_splits = i)
         for train_index, test_index in kf.split(ad_story_x):
            X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
            y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
            for c in criterion:
                dtc = DecisionTreeClassifier(criterion = c)
                dtc.fit(X_train, y_train)
                temp_1st2 = []
                temp lst2.append(i)
                temp lst2.append(c)
                temp_lst2.append(dtc.score(X_train, y_train))
                temp_lst2.append(dtc.score(X_test, y_test))
                temp_lst.append(temp_lst2)
     temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTC Train Score', _
      → 'DTC Test Score'])
     temp_lst = []
     for k in range(2, 9):
         for c_ in criterion:
            temp_1st2 = []
            temp_lst2.append(k)
            temp_lst2.append(c_)
            temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
      temp lst2.append(np.round(np.mean(temp df[(temp df['k'] == k) & |
      temp_lst.append(temp_lst2)
     dt_clf_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTC Train_
      →Score', 'DTC Test Score'])
     dt_clf_eval_df
    HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0),
     →HTML(value='')))
[88]:
         k Criterion DTC Train Score DTC Test Score
     0
         2
               gini
                               1.00
                                              0.66
                               1.00
         2
                                              0.74
     1
            entropy
     2
        3
               gini
                               1.00
                                              0.59
     3
        3
                               1.00
                                              0.70
            entropy
        4
                                              0.74
     4
                               1.00
               gini
     5
        4
                               1.00
                                              0.63
            entropy
         5
                                              0.71
               gini
                               1.00
```

```
7
         5
              entropy
                                  1.00
                                                  0.63
                                  1.00
                                                  0.67
          6
                 gini
      9
          6
              entropy
                                  1.00
                                                  0.55
      10 7
                                                  0.70
                 gini
                                  1.00
      11 7
                                  1.00
                                                  0.80
             entropy
      12 8
                                  1.00
                                                  0.74
                 gini
                                                  0.74
      13 8
                                  1.00
              entropy
[89]: dt_clf_eval_df.nlargest(3, 'DTC Test Score')
[89]:
         k Criterion DTC Train Score DTC Test Score
                                  1.00
                                                  0.80
      11 7
              entropy
      4
        4
                 gini
                                  1.00
                                                  0.74
      12 8
                 gini
                                  1.00
                                                  0.74
[90]: kf = KFold(n_splits = 8)
      temp_lst = []
      clf_dt = DecisionTreeClassifier(criterion = 'entropy')
      for train_index, test_index in kf.split(ad_story_x):
          X_train, X_test = ad_story_x[train_index], ad_story_x[test_index]
          y_train, y_test = ad_story_y[train_index], ad_story_y[test_index]
          clf_dt.fit(X_train, y_train)
          y_hat = clf_dt.predict(X_test)
          y_hat_prob = clf_dt.predict_proba(X_test)
          temp 1st2 = []
          temp_lst2.append(metrics.accuracy_score(y_train, clf_dt.predict(X_train)))
          temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
          temp_lst2.append(metrics.f1_score(y_test, y_hat))
          temp_lst2.append(metrics.jaccard_score(y_test, y_hat))
          temp_lst2.append(y_test)
          temp_lst2.append(y_hat)
          temp_lst2.append(X_test)
          temp_lst.append(temp_lst2)
[91]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
      for row in temp 1st:
          for i in row[4]:
             temp_lst_ytest.append(i)
          for j in row[5]:
              temp_lst_yhat.append(j)
          for k in row[6]:
              temp_lst_xtest.append(k)
      cnf_ytest = np.array(temp_lst_ytest)
      cnf_yhat = np.array(temp_lst_yhat)
      cnf_xtest = np.array(temp_lst_xtest)
      print(metrics.classification_report(cnf_ytest, cnf_yhat))
```

	precision	recall	f1-score	support
0	0.80	0.73	0.76	11
1	0.82	0.88	0.85	16
			0.01	07
accuracy macro avg	0.81	0.80	0.81 0.81	27 27
weighted avg	0.81	0.81	0.81	27

```
[92]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
   plt.figure(figsize=(8,6))
   sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
   # plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
   # plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
   plt.xlabel('Predicted Value')
   plt.ylabel('True Value')
   plt.show()
```



```
[93]: fig = plt.figure(figsize = (24, 12))
      ax1 = fig.add_subplot(2,3,1)
      ax2 = fig.add_subplot(2,3,2)
      ax3 = fig.add_subplot(2,3,3)
      ax4 = fig.add_subplot(2,3,4)
      ax5 = fig.add_subplot(2,3,5)
      X,y = ad story x[:,:6], ad story y
      h = .01
      cmap light = ListedColormap(['lightcoral', 'palegreen'])
      cmap\_bold = ['r', 'g']
      X_{\text{view}} = X[:,(0,5)]
      X_{follower} = X[:,(1,5)]
      X_{action} = X[:,(2,5)]
      X_interaction = X[:,(3,5)]
      X_{impression} = X[:,(4,5)]
      xx_view, xx_follower, xx_action, xx_interaction, xx_impression = None, None,
      →None, None, None
      yy_view, yy_follower, yy_action, yy_interaction, yy_impression = None, None,
       →None, None, None
      Z_view, Z_follower, Z_action, Z_interaction, Z_impression = None, None, None,
      →None, None
      g1, g2, g3, g4, g5 = None, None, None, None, None
      X_lst = [X_view, X_follower, X_action, X_interaction, X_impression]
      xx lst = [xx view, xx follower, xx action, xx interaction, xx impression]
      yy lst = [yy view, yy follower, yy action, yy interaction, yy impression]
      Z_lst = [Z_view, Z_follower, Z_action, Z_interaction, Z_impression]
      ax_1st = [ax1, ax2, ax3, ax4, ax5]
      g_1st = [g1, g2, g3, g4, g5]
      x_label_lst = ['view', 'follower', 'action', 'interaction', 'impression']
      labels=['Non-Profit','Profit']
      red patch = patches.Patch(color='r', label='Non-Profit')
      green_patch = patches.Patch(color='g', label='Profit')
      def plot_calc(x, y = y):
          This function is for calculating the area to plot with colors according to \sqcup
       \hookrightarrow the input
              input \rightarrow x \ and \ y.
              return -> xx, yy, Z which are needed to drawing the contour and plot.
```

```
clf_dt.fit(x, y)
    x_{min}, x_{max} = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_{min}, y_{max} = x[:, 1].min() - 1, x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = clf_dt.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return xx, yy, Z
for ax_, xx_, yy_, Z_, X_, x_label_, g_ in zip(ax_lst, xx_lst, yy_lst, Z_lst,_u
\rightarrowX_lst, x_label_lst, g_lst):
    xx_, yy_, Z_ = plot_calc(X_, y)
    ax_.contourf(xx_, yy_, Z_, cmap=cmap_light)
    g_= sns.scatterplot(x=X_[:, 1], y=X_[:, 0], hue=ad_story['benefit'],_L
 →palette=cmap_bold, alpha=1.0, edgecolor='black', ax=ax_)
    ax_.set_title(f'Cost vs {x_label_} DT Classification Model (criterion =__
→entropy)')
    ax_.set_xlim(xx_.min(), xx_.max())
    ax_.set_ylim(yy_.min(), yy_.max())
    ax_.set_xlabel(f'{x_label_} (Normalized)')
    ax_.set_ylabel('Cost (Normalized)')
    ax_.legend(handles=[green_patch, red_patch],loc = 'upper left', fontsize =__
\hookrightarrow10);
plt.show()
plt.figure(figsize = (32, 16))
plot_tree(clf_dt, filled=True)
plt.show()
```


Influencer [94]: temp_lst = [] for i in tqdm_notebook(range(2, 9)): kf = KFold(n_splits = i) for train_index, test_index in kf.split(influencer_x): X_train, X_test = influencer_x[train_index], influencer_x[test_index] y_train, y_test = influencer_y[train_index], influencer_y[test_index] for c in criterion: dtc = DecisionTreeClassifier(criterion = c) dtc.fit(X_train, y_train) $temp_1st2 = []$ temp_lst2.append(i) temp_lst2.append(c) temp_lst2.append(dtc.score(X_train, y_train)) temp_lst2.append(dtc.score(X_test, y_test)) temp_lst.append(temp_lst2) temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTC Train Score', _ →'DTC Test Score']) temp lst = [] for k in range(2, 9): for c_ in criterion: $temp_1st2 = []$ temp_lst2.append(k) temp_lst2.append(c_)

```
temp_lst2.append(np.round(np.mean(temp_df['temp_df['k'] == k) &__
      temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &_
      temp_lst.append(temp_lst2)
     dt_clf_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTC Train_

→Score', 'DTC Test Score'])
     dt_clf_eval_df
    HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0),
     →HTML(value='')))
[94]:
         k Criterion DTC Train Score DTC Test Score
                               1.00
                                              0.49
         2
               gini
     0
         2
                                              0.47
     1
                               1.00
            entropy
     2
         3
                               1.00
                                              0.46
               gini
     3
         3
                               1.00
                                              0.41
            entropy
     4
         4
               gini
                               1.00
                                              0.54
         4
     5
                               1.00
                                              0.54
            entropy
     6
                               1.00
                                              0.65
         5
               gini
     7
         5
            entropy
                               1.00
                                              0.50
                                              0.73
     8
         6
                               1.00
               gini
     9
         6
                               1.00
                                              0.72
            entropy
     10 7
               gini
                               1.00
                                              0.58
     11 7
                               1.00
                                              0.73
            entropy
     12 8
               gini
                               1.00
                                              0.71
     13 8
                               1.00
                                              0.78
            entropy
[95]: dt_clf_eval_df.nlargest(3, 'DTC Test Score')
[95]:
         k Criterion DTC Train Score DTC Test Score
     13 8
            entropy
                               1.00
                                              0.78
                               1.00
                                              0.73
     11 7
            entropy
         6
               gini
                               1.00
                                              0.73
[96]: kf = KFold(n_splits = 8)
     temp_lst = []
     clf_dt = DecisionTreeClassifier(criterion = 'entropy')
     for train_index, test_index in kf.split(influencer_x):
         X_train, X_test = influencer_x[train_index], influencer_x[test_index]
         y_train, y_test = influencer_y[train_index], influencer_y[test_index]
         clf_dt.fit(X_train, y_train)
         y_hat = clf_dt.predict(X_test)
         y_hat_prob = clf_dt.predict_proba(X_test)
         temp_1st2 = []
```

```
temp_lst2.append(metrics.accuracy_score(y_train, clf_dt.predict(X_train)))
    temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
    temp_lst2.append(metrics.f1_score(y_test, y_hat, average='micro'))
    temp_lst2.append(metrics.jaccard_score(y_test, y_hat, average='micro'))
    temp_lst2.append(y_test)
    temp_lst2.append(y_hat)
    temp_lst2.append(X_test)
    temp_lst.append(temp_lst2)
[97]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
    for row in temp_lst:
        for i in row[4]:
            temp_lst_ytest.append(i)
        for i in row[5]:
```

```
[97]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
for row in temp_lst:
    for i in row[4]:
        temp_lst_ytest.append(i)
    for j in row[5]:
        temp_lst_yhat.append(j)
    for k in row[6]:
        temp_lst_xtest.append(k)

cnf_ytest = np.array(temp_lst_ytest)
    cnf_yhat = np.array(temp_lst_yhat)
    cnf_xtest = np.array(temp_lst_xtest)
    print(metrics.classification_report(cnf_ytest, cnf_yhat))
```

```
precision
                           recall f1-score
                                               support
          -1
                   0.81
                              0.74
                                        0.77
                                                     23
           0
                   0.77
                              0.79
                                        0.78
                                                     43
           1
                   0.81
                              0.83
                                        0.82
                                                     36
                                        0.79
                                                    102
    accuracy
   macro avg
                   0.80
                              0.79
                                        0.79
                                                    102
weighted avg
                   0.79
                              0.79
                                        0.79
                                                    102
```

```
[98]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
   plt.figure(figsize=(8,6))
   sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
   plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
   plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
   plt.xlabel('Predicted Value')
   plt.ylabel('True Value')
   plt.show()
```



```
[99]: fig = plt.figure(figsize = (24, 12))
    ax1 = fig.add_subplot(2,3,1)
    ax2 = fig.add_subplot(2,3,2)
    ax3 = fig.add_subplot(2,3,3)
    ax4 = fig.add_subplot(2,3,4)
    ax5 = fig.add_subplot(2,3,5)

X,y = influencer_x[:,:7], influencer_y
    h = .01
    cmap_light = ListedColormap(['lightcoral', 'gold', 'palegreen'])
    cmap_bold = ['r', 'y', 'g']
    X_follower = X[:,(0,6)]
    X_view = X[:,(1,6)]
    X_action = X[:,(2,6)]
    X_impression = X[:,(3,6)]
```

```
X_{interaction} = X[:,(5,6)]
xx_follower, xx_view, xx_action, xx_impression, xx_interaction = None, None,
→None, None, None
yy_follower, yy_view, yy_action, yy_impression, yy_interaction = None, None,
→None, None, None
Z follower, Z view, Z action, Z impression, Z interaction = None, None, None,
→None, None
g1, g2, g3, g4, g5 = None, None, None, None, None
X_lst = [X_follower, X_view, X_action, X_impression, X_interaction]
xx_lst = [xx_follower, xx_view, xx_action, xx_impression, xx_interaction]
yy_lst = [yy_follower, yy_view, yy_action, yy_impression, yy_interaction]
Z_lst = [Z_follower, Z_view, Z_action, Z_impression, Z_interaction]
ax_1st = [ax1, ax2, ax3, ax4, ax5]
g_1st = [g1, g2, g3, g4, g5]
x_label_lst = ['follower', 'view', 'action', 'impression', 'interaction']
labels=['Non-Profit','Neutral', 'Profit']
red_patch = patches.Patch(color='r', label='Non-Profit')
yellow_patch = patches.Patch(color='y', label='Neutral')
green_patch = patches.Patch(color='g', label='Profit')
def plot_calc(x, y = y):
    This function is for calculating the area to plot with colors according to \sqcup
\hookrightarrow the input
        input \rightarrow x \ and \ y.
        return -> xx, yy, Z which are needed to drawing the contour and plot.
    111
    clf_dt.fit(x, y)
    x_{min}, x_{max} = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_{min}, y_{max} = x[:, 1].min() - 1, x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = clf_dt.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return xx, yy, Z
for ax_, xx_, yy_, Z_, X_, x_label_, g_ in zip(ax_lst, xx_lst, yy_lst, Z_lst,_u
\hookrightarrowX_lst, x_label_lst, g_lst):
    xx_, yy_, Z_ = plot_calc(X_, y)
    ax_.contourf(xx_, yy_, Z_, cmap=cmap_light)
    g_ = sns.scatterplot(x=X_[:, 1], y=X_[:, 0], hue=influencer['benefit'],__
 →palette=cmap_bold, alpha=1.0, edgecolor='black', ax=ax_)
```


Leaders Post [100]: temp_lst = [] for i in tqdm_notebook(range(2, 9)): kf = KFold(n_splits = i) for train_index, test_index in kf.split(leaders_post_x): X_train, X_test = leaders_post_x[train_index],__ →leaders_post_x[test_index] y_train, y_test = leaders_post_y[train_index],__ →leaders_post_y[test_index] for c in criterion: dtc = DecisionTreeClassifier(criterion = c) dtc.fit(X_train, y_train) $temp_1st2 = []$ temp_lst2.append(i) temp_lst2.append(c) temp_lst2.append(dtc.score(X_train, y_train)) temp_lst2.append(dtc.score(X_test, y_test)) temp_lst.append(temp_lst2) temp_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTC Train Score', _ → 'DTC Test Score']) $temp_lst = []$ for k in range(2, 9): for c_ in criterion: $temp_1st2 = []$ temp_lst2.append(k) temp_lst2.append(c_)

```
temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
       temp_lst2.append(np.round(np.mean(temp_df[(temp_df['k'] == k) &__
       temp_lst.append(temp_lst2)
      dt_clf_eval_df = pd.DataFrame(temp_lst, columns=['k', 'Criterion', 'DTC Train_

¬Score', 'DTC Test Score'])
      dt_clf_eval_df
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0), __
      →HTML(value='')))
[100]:
          k Criterion DTC Train Score DTC Test Score
                                1.00
                                               0.35
          2
                gini
      0
          2
                                               0.45
      1
                                1.00
             entropy
      2
                                               0.44
          3
                gini
                                1.00
      3
          3
                                1.00
                                               0.56
             entropy
      4
          4
                                1.00
                                               0.54
                gini
      5
          4
                                1.00
                                               0.46
             entropy
                                               0.40
      6
          5
                                1.00
                gini
      7
          5
             entropy
                                1.00
                                               0.40
                                               0.50
      8
          6
                                1.00
                gini
      9
          6
                                               0.50
             entropy
                                1.00
      10 7
                                1.00
                                               0.36
                gini
                                1.00
                                               0.36
      11 7
             entropy
      12 8
                gini
                                1.00
                                               0.44
      13 8
                                1.00
                                               0.44
             entropy
[101]: dt_clf_eval_df.nlargest(3, 'DTC Test Score')
[101]:
         k Criterion DTC Train Score DTC Test Score
      3 3
             entropy
                               1.00
                                              0.56
                               1.00
                                              0.54
      4 4
               gini
      8 6
               gini
                               1.00
                                              0.50
[102]: kf = KFold(n_splits = 8)
      temp_lst = []
      clf_dt = DecisionTreeClassifier(criterion = 'entropy')
      for train_index, test_index in kf.split(leaders_post_x):
          X_train, X_test = leaders_post_x[train_index], leaders_post_x[test_index]
          y_train, y_test = leaders_post_y[train_index], leaders_post_y[test_index]
          clf_dt.fit(X_train, y_train)
          y_hat = clf_dt.predict(X_test)
          y_hat_prob = clf_dt.predict_proba(X_test)
          temp_1st2 = []
```

```
temp_lst2.append(metrics.accuracy_score(y_train, clf_dt.predict(X_train)))
           temp_lst2.append(metrics.accuracy_score(y_test, y_hat))
           temp_lst2.append(metrics.f1_score(y_test, y hat, average='micro'))
           temp_lst2.append(metrics.jaccard_score(y_test, y_hat, average='micro'))
           temp_lst2.append(y_test)
           temp_lst2.append(y_hat)
           temp_lst2.append(X_test)
           temp_lst.append(temp_lst2)
[103]: temp_lst_ytest, temp_lst_yhat, temp_lst_xtest = [], [], []
       for row in temp 1st:
           for i in row[4]:
               temp_lst_ytest.append(i)
           for j in row[5]:
               temp_lst_yhat.append(j)
           for k in row[6]:
               temp_lst_xtest.append(k)
       cnf_ytest = np.array(temp_lst_ytest)
       cnf_yhat = np.array(temp_lst_yhat)
       cnf_xtest = np.array(temp_lst_xtest)
       print(metrics.classification_report(cnf_ytest, cnf_yhat))
                    precision
                                 recall f1-score
                                                     support
                -1
                         0.00
                                    0.00
                                              0.00
                                                           2
                 0
                         0.67
                                    0.80
                                              0.73
                                                           5
                         1.00
                                   0.50
                                                           2
                 1
                                              0.67
                                              0.56
                                                           9
          accuracy
         macro avg
                         0.56
                                    0.43
                                              0.46
                                                           9
      weighted avg
                         0.59
                                    0.56
                                              0.55
                                                           9
[104]: cnf_matrix = confusion_matrix(cnf_ytest, cnf_yhat)
       plt.figure(figsize=(8,6))
       sns.heatmap(cnf_matrix, square=True, annot=True, cbar=False)
       plt.xticks([.5, 1.5, 2.5], [-1, 0, 1])
       plt.yticks([.5, 1.5, 2.5], [-1, 0, 1])
       plt.xlabel('Predicted Value')
       plt.ylabel('True Value')
       plt.show()
```



```
[105]: fig = plt.figure(figsize = (24, 24))
    ax1 = fig.add_subplot(3,3,1)
    ax2 = fig.add_subplot(3,3,2)
    ax3 = fig.add_subplot(3,3,3)
    ax4 = fig.add_subplot(3,3,4)
    ax5 = fig.add_subplot(3,3,5)
    ax6 = fig.add_subplot(3,3,6)
    ax7 = fig.add_subplot(3,3,7)
    ax8 = fig.add_subplot(3,3,8)
    ax9 = fig.add_subplot(3,3,9)

    X,y = leaders_post_x[:,:10], leaders_post_y
    h = .01
    cmap_light = ListedColormap(['lightcoral', 'gold', 'palegreen'])
```

```
cmap_bold = ['r', 'y', 'g']
X_{\text{follower}} = X[:,(0,9)]
X_{\text{view}} = X[:,(1,9)]
X_{\text{like}} = X[:,(2,9)]
X_{comment} = X[:,(3,9)]
X_{share} = X[:,(4,9)]
X_{\text{save}} = X[:,(5,9)]
X_{profile_visit} = X[:,(6,9)]
X_{reach} = X[:,(7,9)]
X_{impression} = X[:,(8,9)]
xx_follower, xx_view, xx_like, xx_comment, xx_share, xx_save, xx_profile_visit,__
→xx_reach, xx_impression = None, None, None, None, None, None, None, None, None,
→None
yy_follower, yy_view, yy_like, yy_comment, yy_share, yy_save, yy_profile_visit,__
→yy_reach, yy_impression = None, None, None, None, None, None, None, None, None,
\rightarrowNone
Z_follower, Z_view, Z_like, Z_comment, Z_share, Z_save, Z_profile_visit, __
→Z_reach, Z_impression = None, None, None, None, None, None, None, None, None
g1, g2, g3, g4, g5, g6, g7, g8, g9 = None, None, None, None, None, None, None, None, \square
→None, None
X_lst = [X_follower, X_view, X_like, X_comment, X_share, X_save,_
→X_profile_visit, X_reach, X_impression]
xx_lst = [xx_follower, xx_view, xx_like, xx_comment, xx_share, xx_save,_
→xx_profile_visit, xx_reach, xx_impression]
yy_lst = [yy_follower, yy_view, yy_like, yy_comment, yy_share, yy_save,u
→yy_profile_visit, yy_reach, yy_impression]
Z_lst = [Z_follower, Z_view, Z_like, Z_comment, Z_share, Z_save,_
→Z_profile_visit, Z_reach, Z_impression]
ax 1st = [ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]
g_1st = [g1, g2, g3, g4, g5, g6, g7, g8, g9]
x_label_lst = ['follower', 'view', 'like', 'comment', 'share', 'save', __
labels=['Profit','Neutral', 'Non-Profit']
red_patch = patches.Patch(color='r', label='Non-Profit')
yellow_patch = patches.Patch(color='y', label='Neutral')
green_patch = patches.Patch(color='g', label='Profit')
def plot_calc(x, y = y):
    111
    This function is for calculating the area to plot with colors according to 1
\hookrightarrow the input
        input \rightarrow x \ and \ y.
```

```
return -> xx, yy, Z which are needed to drawing the contour and plot.
    111
    clf_dt.fit(x, y)
    x_{\min}, x_{\max} = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_{min}, y_{max} = x[:, 1].min() - 1, x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = clf_dt.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return xx, yy, Z
for ax_, xx_, yy_, Z_, X_, x_label_, g_ in tqdm(zip(ax_lst, xx_lst, yy_lst, u
 \rightarrowZ_lst, X_lst, x_label_lst, g_lst)):
    xx_, yy_, Z_ = plot_calc(X_, y)
    ax_.contourf(xx_, yy_, Z_, cmap=cmap_light)
    g_ = sns.scatterplot(x=X_[:, 1], y=X_[:, 0], hue=leaders_post['benefit'],_
 →palette=cmap_bold, alpha=1.0, edgecolor='black', ax=ax_)
    ax_.set_title(f'Cost vs {x_label_} DT Classification Model (criterion =__
 →entropy)')
    ax_.set_xlim(xx_.min(), xx_.max())
    ax_.set_ylim(yy_.min(), yy_.max())
    ax_.set_xlabel(f'{x_label_} (Normalized)')
    ax_.set_ylabel('Cost (Normalized)')
    ax_.legend(handles=[green_patch, yellow_patch, red_patch],loc = 'upper_u
 →right', fontsize = 10);
plt.show()
plt.figure(figsize = (16, 8))
plot_tree(clf_dt, filled=True)
plt.show()
```

9it [00:01, 8.51it/s]

1.2 Classification Algorithms Summary

in the table below you can see the performance summary of most accurate classification model which we tested and discussed in this notebook.

```
[106]: data = {
           'Classification Algorithms': ['Logistic Regression', 'Support Vector⊔
        →Machine', 'k-Nearest', 'Decision Tree'],
           'Advertising Post - Train Score': [0.78, 0.76, 1, 1],
           'Advertising Post - Test Score': [0.78, 0.78, 0.74, 0.72],
           'Advertising Story - Train Score': [0.96, 0.96, 1, 1],
           'Advertising Story - Test Score': [0.82, 0.82, 0.87, 0.80],
           'Influencers - Train Score': [0.92, 0.93, 1, 1],
           'Influencers - Test Score': [0.65, 0.71, 0.70, 0.78],
           'Leaders Post - Train Score': [0.59, 0.78, 0.78, 1],
           'Leaders Post - Test Score': [0.60, 0.60, 0.57, 0.56]}
       score_df = pd.DataFrame(data=data)
       score_df
[106]:
        Classification Algorithms Advertising Post - Train Score \
       0
               Logistic Regression
                                                               0.78
            Support Vector Machine
                                                               0.76
       1
       2
                                                               1.00
                         k-Nearest
       3
                     Decision Tree
                                                               1.00
          Advertising Post - Test Score Advertising Story - Train Score \
       0
                                   0.78
                                                                     0.96
```

```
1
                              0.78
                                                                   0.96
2
                              0.74
                                                                   1.00
3
                              0.72
                                                                   1.00
   Advertising Story - Test Score
                                      Influencers - Train Score
0
                               0.82
                                                             0.92
                               0.82
                                                             0.93
1
2
                               0.87
                                                             1.00
3
                               0.80
                                                             1.00
   Influencers - Test Score
                               Leaders Post - Train Score
0
                         0.65
                                                        0.59
1
                         0.71
                                                        0.78
2
                         0.70
                                                        0.78
3
                         0.78
                                                        1.00
   Leaders Post - Test Score
0
                          0.60
1
                          0.60
2
                          0.57
3
                          0.56
```

as you can see in the table above, beside the advertising story dataset, other datasets test accuracy are fairly mediocre, the reason behind that is the low variance and lack of data in those datasets, for instance in decision tree and k nearest algorithms, models scored perfectly in training phase but they performed about $70 \sim 80$ accurate in test phase, the difference between train and test score indiciates the variance of data is not good enough for model to be abale to genaralize, even though other forms of remedy such as different architectures and regularization implemented, but they were fruitless. the only remedy and solution remaining for this problem is increasing data points in order to increasing the data variance. it's anticipated that addition of further campaings data to training phase will increase the model accuracy significantly.

2 Notebook by Ramin F. - @simplyramin

[]: