# Linear and Logistic Regression

Amos Azaria

#### Estimating Galaxy-Phone Cost by Name



# Formalizing Linear Regression

- y = wx + b
- What would we do if we had only 2 training examples?
   We could solve 2 equations with 2 parameters
- Our prediction will be h(x) = wx + b
- $Y = \{y_1, y_2, y_3...y_m\}, X = \{x_1, x_2, x_3, ...x_m\}$
- Loss function:  $J(w,b) = \frac{1}{m} \sum_{i=1}^{m} |wx_i + b y_i|$
- Or:  $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (wx_i + b y_i)^2$  $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$
- Find w, b that will minimize J(w,b)

## **Gradient Descent**



## What is the gradient $(\nabla)$ ?

- A vector which represents the derivation of a function, which has multiple parameters.
- Each entry is the function's derivative with respect to one of the parameters.

$$f_1(j_1, j_2) = 2j_1 \cdot j_2 + 7j_1$$

$$\nabla(f_1(j_1, j_2)) = (2j_2 + 7, 2j_1)$$

$$f_2(j_1, j_2, j_3) = 3j_1^2 j_2 j_3^3 + 5j_1 j_2$$

$$\nabla(f_2) = (6j_1 j_2 j_3^3 + 5j_2, 3j_1^2 j_3^3 + 5j_1, 9j_1^2 j_2 j_3^2)$$

# The Gradient for Linear Regression

Our loss function:  $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (wx_i + b - y_i)^2$ 

$$\frac{\partial J}{\partial w} = \frac{1}{2m} \sum_{i=1}^{m} 2((wx_i + b - y_i)x_i)$$
$$= \frac{1}{m} \sum_{i=1}^{m} (wx_i + b - y_i)x_i$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (wx_i + b - y_i)$$

$$\nabla(J) = \left(\frac{1}{m} \sum_{i=1}^{m} (wx_i + b - y_i) x_i, \frac{1}{m} \sum_{i=1}^{m} (wx_i + b - y_i)\right)$$

### **Gradient Descent in Linear Regression**

- Pick random w, b
- Select the learning rate,  $\alpha$ , (hyper-parameter), e.g. 0.01
- Repeat until convergence:

– Update w to w-
$$\alpha \frac{1}{m} \sum_{i=0}^{n} x_i (h(x_i) - y_i)$$

$$w_{next} = w_{curr} - \alpha \frac{1}{m} \sum_{i=0}^{n} x_i (w_{curr}(x_i) + b_{curr} - y_i)$$

- Update b to b-
$$\alpha \frac{1}{m} \sum_{i=0}^{n} 1 \cdot (h(x_i) - y_i)$$

$$b_{next} = b_{curr} - \alpha \frac{1}{m} \sum_{i=0}^{n} 1 \cdot (w_{curr}(x_i) + b_{curr} - y_i)$$

## Linear Regression with SGD in Python

(Using the Galaxy Data-set)

```
import numpy as np
galaxy data = np.array([[2,70],[3,110],[4,165],[6,390],[7,550]])
w = 0
b = 0
                                            b_{next} = b_{curr} - \alpha \frac{1}{m} \sum_{i=0}^{n} 1 \cdot (w_{curr}(\mathbf{q}) + b_{curr} - \mathbf{y}_i)
alpha = 0.01
for iteration in range(10000):
  deriv b = np.mean(1*((w*galaxy_data[:,0]+b)-galaxy_data[:,1]))
  deriv_w = np.mean(galaxy_data[:,0] *((w*galaxy_data[:,0]+b)-galaxy_data[:,1]))
   b -= alpha*deriv b
                                                  w_{next} = w_{curr} - \alpha \frac{1}{m} \sum_{i=0}^{n} \mathbf{w}_{i} (w_{curr}(\mathbf{w}_{i}) + b_{curr} - \mathbf{y}_{i})
   w -= alpha*deriv w
  if iteration \% 200 == 0:
    print("it:%d, grad_w:%.3f, grad_b:%.3f, w:%.3f, b:%.3f" %(iteration, deriv_w, deriv_b, w, b))
print("Estimated price for Galaxy S5: ", w*5 + b)
```

## Linear Regression with SGD in Python

(Using the Galaxy Data-set)

```
import numpy as np
galaxy_data = np.array([[2,70],[3,110],[4,165],[6,390],[7,550]])
w = 0
b = 0
                                              b_{next} = b_{curr} - \alpha \frac{1}{m} \sum_{i=0}^{n} 1 \cdot (w_{curr}(\mathbf{v}) + b_{curr} - \mathbf{v})
alpha = 0.01
for iteration in range(10000):
  deriv_b = np.mean(1*((w*galaxy_data[:,0]+b)-galaxy_data[:,1]))
  deriv_w = np.mean(galaxy_data[:,0] *((w*galaxy_data[:,0]+b)-galaxy_data[:,1]))
   b -= alpha*deriv b
                                                  w_{next} = w_{curr} - \alpha \frac{1}{m} \sum_{i=0}^{n} \mathbf{w}_{i} (w_{curr}(\mathbf{w}_{i}) + b_{curr} - \mathbf{y}_{i})
   w -= alpha*deriv w
  if iteration \% 200 == 0:
     print("it:%d, grad_w:%.3f, grad_b:%.3f, w:%.3f, b:%.3f" %(iteration, deriv_w, deriv_b, w, b))
print("Estimated price for Galaxy S5: ", w*5 + b)
```

#### Value of b in a certain iteration

 $galaxy\_data = np.array([[2,70],[3,110],[4,165],[6,390],[7,550]])$  $deriv\_b = np.mean(1*((w*galaxy\_data[:,0]+b)-galaxy\_data[:,1]))$ 

w=11; b=5

$$mean \begin{pmatrix} 1 \\ 1 \\ 4 \\ 6 \\ 7 \end{pmatrix} + 5 - \begin{bmatrix} 70 \\ 110 \\ 165 \\ 390 \\ 550 \end{pmatrix} = mean \begin{bmatrix} 22 + 5 - 70 \\ 33 + 5 - 110 \\ 44 + 5 - 165 \\ 66 + 5 - 390 \\ 77 + 5 - 550 \end{bmatrix} = mean \begin{bmatrix} -43 \\ -72 \\ -116 \\ -319 \\ -468 \end{bmatrix} = -203.6$$

b -= alpha\*deriv\_b b =5- 0.1\*(-203.6) = 25.36

#### Value of w in a certain iteration

```
galaxy_data = np.array([[2,70],[3,110],[4,165],[6,390],[7,550]])

deriv_w = np.mean(galaxy_data[:,0] *((w*galaxy_data[:,0]+b)-galaxy_data[:,1]))

w=11 : b=5
```

$$mean \begin{pmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \\ 7 \end{pmatrix} \times \begin{pmatrix} 11 \times \begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \\ 7 \end{pmatrix} + 5 - \begin{bmatrix} 70 \\ 110 \\ 165 \\ 390 \\ 550 \end{bmatrix} \end{pmatrix} = mean \begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \\ 7 \end{bmatrix} \times \begin{bmatrix} 11 * 2 + 5 - 70 \\ 11 * 3 + 5 - 110 \\ 11 * 4 + 5 - 165 \\ 11 * 6 + 5 - 390 \\ 11 * 7 + 5 - 550 \end{bmatrix} = mean \begin{pmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \\ 7 \end{bmatrix} \times \begin{bmatrix} -43 \\ -72 \\ -116 \\ 6 \\ 7 \end{bmatrix} = mean \begin{bmatrix} -86 \\ -219 \\ -464 \\ -357 \\ -3276 \end{bmatrix} = -880.4$$

```
w = alpha*deriv_w

w = 11 - 0.1*(-880.4) = 99.04
```

#### **Result:**

```
it:0, grad w:1464.000, grad b:257.000, w:14.640, b:2.570
it:200, grad_w:3.825, grad_b:-19.693, w:70.598, b:-33.968
it:400, grad w:2.859, grad b:-14.720, w:77.230, b:-68.115
it:600, grad w:2.137, grad b:-11.003, w:82.188, b:-93.639
it:800, grad w:1.597, grad b:-8.224, w:85.893, b:-112.717
it:1000, grad_w:1.194, grad_b:-6.147, w:88.663, b:-126.977
it:1400, grad_w:0.667, grad_b:-3.434, w:92.280, b:-145.604
it:1800, grad w:0.373, grad b:-1.919, w:94.301, b:-156.010
it:2600, grad w:0.116, grad b:-0.599, w:96.062, b:-165.073
it:3600, grad w:0.027, grad b:-0.140, w:96.674, b:-168.226
it:4400, grad w:0.008, grad b:-0.044, w:96.802, b:-168.886
it:5400, grad w:0.002, grad b:-0.010, w:96.847, b:-169.116
it:6200, grad w:0.001, grad b:-0.003, w:96.856, b:-169.164
it:7000, grad w:0.000, grad b:-0.001, w:96.859, b:-169.179
it:7800, grad w:0.000, grad b:-0.000, w:96.860, b:-169.184
it:9800, grad w:0.000, grad b:-0.000, w:96.860, b:-169.186
Estimated price for Galaxy S5: 315.116281573
```

- Actual price was: \$250
- Estimated price for Galaxy S1 is: -72.22 ⊗
- What would happen with alpha=0.5?

# **Adding Features**

- Screen size
- Number of cores
- Core speed
- •

# Adding Features (cont.)

- $X_1 = \{X_{11}, X_{12}, X_{13}, ..., X_{1k}\}$
- $W = \{w_1, w_2, w_3, ..., w_k\}$
- Loss(W,b) =  $\frac{1}{2m}\sum (y-(Wx+b))^2$
- Sometimes we set: x<sub>i0</sub> = 1; w<sub>0</sub>=b
   So that x<sub>i</sub> = {x<sub>i0</sub>, x<sub>i1</sub>, x<sub>i2</sub>, x<sub>i3</sub>,..., x<sub>ik</sub>}
   => no need for "b"
- $W = \{w_0 = b, w_1, w_2, ...\}$
- Loss =  $\frac{1}{2m}\sum (y-Wx)^2$

# Gradient Descent with Multiple Features (is actually the same...)

- $\nabla$  is:  $\sum_{i=0}^{n} \overleftarrow{x_i} (h(\overleftarrow{x_i}) y_i)$
- Initialize W
- Repeat:
  - Calculate  $\nabla : \frac{1}{m} \sum_{i=0}^{n} \overleftarrow{x_i} (h(\overleftarrow{x_i}) y_i)$

Update: W = W -  $\alpha$   $\nabla$ 

## Adding quadratic feature

- We can add a feature which is simply a square of the first feature.
- We will end up with 2 weights and one bias:

$$- w_1 x + w_2 x^2 + b$$

• This way, instead of fitting a linear line, we are actually fitting a quadratic function (parabola).

#### Quadratic Feature

```
import numpy as np
data x = np.array([[2,4],[3,9],[4,16],[6,36],[7,49]])
data y = np.array([70,110,165,390,550])
w1 = 0
w^2 = 0
                                                h(x) - y
b = 0
alpha = 0.001
for iteration in range(1000000):
  deriv b = np.mean(1*((w1*data x[:,0]+w2*data x[:,1]+b))-data y))
  deriv w1 = np.dot(((w1*data_x[:,0]+w2*data_x[:,1]+b)-data_y), data_x[:,0]) *
1.0/len(data y)
  deriv w2 = np.dot(((w1*data x[:,0]+w2*data x[:,1]+b)-data y), data x[:,1]) *
1.0/len(data y)
  b -= alpha * deriv_b
  w1 -= alpha * deriv w1
  w2 -= alpha * deriv w2
print("Estimated price for Galaxy S5: ", np.dot(np.array([5,25]),np.array([w1, w2])) + b)
print("Estimated price for Galaxy S1: ", np.dot(np.array([1,1]),np.array([w1, w2])) + b)
```

#### Value of b in a certain iteration

```
data_x = np.array([[2,4],[3,9],[4,16],[6,36],[7,49]])
data_y = np.array([70,110,165,390,550])
deriv_b = np.mean(1*((w1*\frac{1}{2}))
```

$$mean \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 4 & 1 \\ 6 & 7 & 7 \end{pmatrix} + 7 \times \begin{bmatrix} 4 & 1 \\ 9 & 16 \\ 36 & 49 \end{bmatrix} + 5 - \begin{bmatrix} 70 \\ 110 \\ 165 \\ 390 \\ 550 \end{bmatrix} = mean \begin{bmatrix} 22 + 28 + 5 - 70 \\ 33 + 63 + 5 - 110 \\ ... \\ ... \end{bmatrix} = mean \begin{bmatrix} -15 \\ -9 \\ ... \\ ... \end{bmatrix} = ...$$

b -= alpha \* deriv\_b

#### Value of w1 in a certain iteration

```
\begin{aligned} &\text{data\_x} = \text{np.array}([[\frac{2}{4}],[\frac{3}{9}],[\frac{4}{16}],[\frac{6}{36}],[\frac{7}{49}]])\\ &\text{data\_y} = \text{np.array}([\frac{70}{110},\frac{165}{390},\frac{550}])\\ &\text{deriv\_w1} = \text{np.dot}(((\text{w1*}\frac{\text{data\_x}[:,0]}{\text{w2*}}\text{data\_x}[:,1] + \text{b})-\frac{\text{data\_y}}{\text{data\_x}[:,0]})^* \ 1.0/\text{len}(\text{data\_y})\\ &\text{w1=11; w2=7 ; b=5} \end{aligned}
```

## Quadratic Feature (Weights as Vectors)

```
data_x = np.array([[2,4],[3,9],[4,16],[6,36],[7,49]])
data_y = np.array([70,110,165,390,550])
w = np.array([0.,0])
b = 0
alpha = 0.001
for iteration in range(1000000):
  deriv_b = np.mean(1*((np.dot(data_x,w)+b)-data_y))
  gradient_w = 1.0/len(data_y) * np.dot(((np.dot(data_x,w)+b)-data_y), data_x)
  b -= alpha*deriv_b
  w -= alpha*dradient_w
```

print("Estimated price for Galaxy S5: ", np.dot(np.array([5,25]),w) + b)
print("Estimated price for Galaxy S1: ", np.dot(np.array([1,1]),w) + b)

$$\nabla^{\overrightarrow{w}} = \begin{pmatrix} \begin{bmatrix} 2 & 4 \\ 3 & 9 \\ 4 & 16 \\ 6 & 36 \\ 7 & 49 \end{pmatrix} \times \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + b - \begin{bmatrix} 70 \\ 110 \\ 165 \\ 390 \\ 550 \end{pmatrix} \times \begin{bmatrix} 2 & 4 \\ 3 & 9 \\ 4 & 16 \\ 6 & 36 \\ 7 & 49 \end{bmatrix} = \begin{bmatrix} 2 * w_1 + 4 * w_2 + b - 70 \\ \cdots \\ \cdots \\ \cdots \\ \cdots \end{bmatrix} \times \begin{bmatrix} 2 & 4 \\ 3 & 9 \\ 4 & 16 \\ 6 & 36 \\ 7 & 49 \end{bmatrix} = \begin{bmatrix} \nabla w_1 \\ \nabla w_2 \end{bmatrix}$$

#### Results

Prediction for Galaxy S5: \$263.63

(actual: \$250)



Prediction for Galaxy S1: \$71.81

(actual: \$30)



# Adding (too) Many Features

- We can add more and more features by adding additional polynomial terms (e.g. x³, x⁴, etc.)
- (We need to make sure not to overflow, so we should really normalize the values we get).
- Should we add 20 features? What can happen?

# Over-Fitting



# Over-Fitting

#### **Galaxy-Price on ebay**



# Results with "only" 10 features

Loss = 0.0049



# Train/Test error



#### **Train-Test-Validation**

- If we want the test set to be a good prediction to what will happen with new data, it should be used only once.
- Therefore, we may want to have a validation set.
- The hyper-parameters / model complexity will be determined such that they maximize the accuracy of the validation set.

#### Closed form solution

Linear regression has a closed-form solution:

$$W = (X^T X)^{-1} X^T Y$$

- We won't be focusing on it since we will be moving beyond linear regression to problems that do not have closed-form solution.
- Furthermore, the closed form solution may be less practical for big data.
- We will be using gradient descent (and its variants) until the end of the course.

#### BGD, SGD, MB-GD

- Batch Gradient Descent (BGD): uses all Data-set to compute gradient (this is what we learnt).
  - May be too large, or take too long:
- Stochastic Gradient Descent (SGD): uses only a single example at a time (shuffle data first):
  - More iterations, since each iteration is less accurate
- Mini-Batch Gradient Descent (MB-GD): uses only a subset of the data-set, (e.g. 50) at a time:
  - A compromise which takes advantage of vectorization.

#### **CLASSIFICATION**

#### Classification

- Suppose we wanted to classify phones into new (1) or old/used (0), using the price as a single feature.
- Could we use linear regression?



## Logistic Regression

• The Logistic function is:

$$\bullet \ h(x) = \frac{1}{1 + e^{-(Wx + b)}}$$



A prediction of 1 will mean that we are certain

that the value is 1.

 Instead of using least squares, likelihood we will use the following loss function:

This is actually the loss function we get when we try to maximize the likelihood of the data

$$J(w,b) = -\frac{1}{m} \sum_{i=1}^{m} (y_i(log(h(x_i))) + (1 - y_i)log(1 - h(x_i)))$$

It turns out that the Gradient of the loss is:

• 
$$\frac{1}{m}\sum_{i=0}^{n}x_i(h(x_i)-y_i)$$

## Logistic Regression

The Logistic function is:

$$\bullet \ h(x) = \frac{1}{1 + e^{-(Wx + b)}}$$



A prediction of 1 will mean that we are certain

that the value is 1.

 Instead of using least squares, likelihood of we will use the following loss function:

This is actually the loss function we get when we try to maximize the likelihood of the data

$$J(w,b) = -\frac{1}{m} \sum_{i=1}^{m} (y_i(log(h(x_i))) + (1 - y_i)log(1 - h(x_i)))$$

It turns out that the Gradient of the loss is:

$$\bullet \ \frac{1}{m} \sum_{i=0}^{n} x_i (h(x_i) - y_i)$$

# Gradient Descent in Logistic Regression

- Pick random w, b
- Select the learning rate,  $\alpha$ , (hyper-parameter), e.g. 0.01
- Repeat until convergence:
  - Update w to w- $\alpha \frac{1}{m} \sum_{i=0}^{n} x_i (h(x_i) y_i)$
  - Update b to b- $\alpha \frac{1}{m} \sum_{i=0}^{n} 1 \cdot (h(x_i) y_i)$

#### How-come?

- Does the previous slide look familiar?
- The previous slide is identical to the slide we have seen in linear regression (I actually did a copypaste and only changed the title).
- So how is logistic regression actually different than linear regression? If it is exactly the same algorithm, why not use linear regression?

----

Obviously, the algorithms are different because the hypothesis (h(x)) is totally different...

## Employed or not?

- We have a data-base with all our users and we want to send out job-offers.
- For that, we need to know all unemployed users, though we only know this information on a fraction of the data.
- We would like to build a classifier that determines whether a user is employed or not, based on the user's age, gender and years of experience.

#### Our dataset

- Employed users:
  - Female, 28 years old, 4 years of experience
  - Female, 60 years old, 34 years of experience
  - Female, 25 years old, 3 year of experience
  - Male, 54 years old, 20 years of experience
  - Male, 24 years old, 2 years of experience
  - Male, 39 years old, 12 years of experience
  - Male, 30 years old, 4 years of experience
- Unemployed users:
  - Female, 36 years old 10 years of experience
  - Female, 26 years old 1 year of experience
  - Male, 44 years old, 9 years of experience

Do you think that a female, 49 year old with 8 years of experience employed?

What about a male, 29 years old with 3 years of experience?

And if it were a female?

This is fake data, sorry about any gender/age biases introduced intentionally...

```
import numpy as np
data_x = np.array([[1,28,4],[1,60,34],[1,25,3],[0,54,20],[0,24,2],[0,39,12],[0,30,4],[1,3,4],[1,3,4],[1,4,4],[1,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,4],[1,4,4,
data_y = np.array([1,1,1,1,1,1,1,0,0,0])
def h(x,w,b):
                                                                                                                                                                                                     h(x) = \frac{1}{1 + e^{-(Wx+b)}}
         return 1/(1+np.exp(-(np.dot(x,w) + b)))
w = np.array([0.,0,0])
b = 0
alpha = 0.001
for iteration in range(100000):
         gradient_b = np.mean(1*(data_y-(h(data_x,w,b))))
         gradient w = np.dot((data y-h(data x,w,b)), data x)*1/len(data y)
         b += alpha*gradient b
         w += alpha*gradient w
print("User [1, 49, 8] prob of working: ", h(np.array([[1, 49, 8]]),w,b))
print("User [0, 29, 3] prob of working: ", h(np.array([[0, 29, 3]]),w,b))
print("User [1, 29, 3] prob of working: ", h(np.array([[1, 29, 3]]),w,b))
```

#### Results

```
User [1, 49, 8] prob of working: [0.21107079]
```

User [0, 29, 3] prob of working: [0.66430518]

User [1, 29, 3] prob of working: [0.43735087]

## Meaning of Logistic Regression Result

- The result given by logistic regression is suppose to relate to the probability of the instance belonging to the class p(y=1 | X).
- Logistic regression is a discriminative model, that is, it tries to model p(y | X) directly.
- Remember that in the naïve Bayes classifier (which is a generative model), we used the Bayes rule, and therefore had to model:

p(y) and p(X | y) (and p(X))

$$p(Y \mid X) = \frac{p(Y)p(X|Y)}{p(X)}$$

## Multiple Classes

- Many times classification is into several labels. E.g. Classify an image to an object: cat/dog/airplane/sea/house
- We could build 5 different classifiers...
- More often we use one-hot vector representations for the labels. E.g.: cat = [1, 0, 0, 0, 0], sea = [0, 0, 0, 1, 0]
- **SoftMax**: as if we do logistic regression for each output alone and then scale:

• 
$$h(y = i \mid x) = \frac{e^{(W_i x + bi)}}{\sum_{j=0}^{k} e^{(W_j x + bj)}}$$

- Note that: 
$$\sum_{i \in \{0,1,...,k-1\}} h(y=i|x)=1$$



## Closing notes



## Closing notes

- Data and Database
- Sql databases
- Normalization
- XML & Json
- NoSql databases
- Java Streams & Spark
- Introduction to Machine Learning

