CS258: Information Theory

Fan Cheng Shanghai Jiao Tong University

http://www.cs.situ.edu.cn/~chengfan/ chengfan@situ.edu.cn Spring, 2020

Outline

- Law of Large Numbers
- Asymptotic Equipartition Property
- Typical Set
- Data Compression

Grand Picture

1%的人掌握了99%的财富,1%的事件占据了99%的概率 20%的人完成了80%的工作,20%的任务耗费了80%的资源 一种信息论的观点

■ 人多势众 → 势众人多?

$X = x_1$	$X = x_2$	 	$X = x_n$
p_1	p_2	 	p_n

- We say the occurrence of some events is 99% in probability.
 - The number of such events may be very small.
- Two different points of view
 - Utility maximization
 - Fairness

Terminology of Probability Theory

- lacksquare X: sample space or alphabet. X: random variable. x: an event in x
- (i.i.d.): independent, identically distributed
- \blacksquare Pr(X=x): the probability of event $x\in X$
- \blacksquare For a set A,

$$\Pr(A) := \sum_{x \in A} \Pr(X = x)$$

We say that events occurred in probability Pr(A) or the probability of set A is Pr(A) If X and X' are i.i.d. random variables, then

$$\Pr(X = X') = \sum_{x} \Pr(X = x) \Pr(X' = x) = \sum_{x} p^{2}(x)$$

For two independent random variables X and Y, the probability mass function of Z = X + Y is the **convolution** of the p.m.fs of X and Y

$$Pr(Z = z) = \sum_{x \in \mathcal{X}} Pr(X = x) Pr(Y = z - x)$$

■ By counting the number of frogs,

Pr(frogs stay in the lower triangle) =
$$\frac{3}{4}$$

If the probability of the frog in the upper triangle is $\frac{2}{3}$, then $\Pr(\text{frogs stay in the lower triangle}) = \frac{1}{3}$

Convergence of random variables

Definition (Convergence of random variables). Given a sequence of random variables,

 X_1, X_2, \dots , we say that the sequence X_1, X_2, \dots , converges to a random variable X:

- 1. In probability if for every $\epsilon > 0$, $\Pr\{|X_n X| > \epsilon\} \to 0$
- 2. In mean square if $E(X_n X)^2 \rightarrow 0$
- 3. With probability 1 (also called almost surely) if $\Pr\{\lim_{n\to\infty}X_n=X\}=1$

The corresponding $\epsilon - \delta$ form

1. In probability

- The set of events $A: |X_n X| > \epsilon$
- For any $\epsilon' > 0$, there exists $n > N(\epsilon')$, $\Pr(A) < \epsilon'$
- **Equivalently,** $\Pr(|X_n X| \le \epsilon) \to 1$ or $\Pr(A^c) \to 1$

2. In mean square

For any
$$\epsilon' > 0$$
, there exists $n > N(\epsilon')$, $E(X_n - X)^2 < \epsilon'$

3. With probability 1

■ Let
$$Y = \lim_{n \to \infty} X_n$$
. $Y = X$: For any $\epsilon' > 0$, there exists $n > N(\epsilon')$,

$$|X_n - Y| < \epsilon'$$

$$Pr(Y = X) = 1$$

■
$$(2) \rightarrow (1), (3) \rightarrow (1)$$

Law of Large Numbers

For i.i.d. random variables $X_1, X_2, ..., X_n \sim p(x)$

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \,,$$

Strong law of large number

$$\Pr\{\lim_{n\to\infty}\overline{X_n} = E(X_1)\} = 1.$$

■ Weak law of large number

$$\overline{X_n} \to E(X_1)$$

in probability

 \blacksquare E(X) may not exist

The $\epsilon-\delta$ form of weak law of large numbers

■ By the definition of "convergence in probability"

$$\Pr(\left|\overline{X_n} - E(X_1)\right| > \epsilon) \to 0$$

■ For any $\epsilon' > 0$, there exists $N(\epsilon')$, when $n > N(\epsilon')$

$$\Pr(\left|\overline{X_n} - E(X_1)\right| > \epsilon) < \epsilon'$$

When
$$n$$
 is sufficiently large, $\Pr(\left|\overline{X_n} - E(X_1)\right| \le \epsilon) > 1 - \epsilon'$; i.e., $\Pr(\left|\overline{X_n} - E(X_1)\right| \le \epsilon) \to 1$

Asymptotic Equipartition Property

Theorem (AEP 渐近均分性) If
$$X_1, X_2, \ldots$$
 are i.i.d. $\sim p(x)$, then
$$-\frac{1}{n}\log p(X_1, X_2, \ldots, X_n) \to H(X)$$
 in probability.

Proof.

$$-\frac{1}{n}\log p(X_1, X_2, ..., X_n) = -\frac{1}{n}\sum_{i}\log p(X_i)$$

$$\rightarrow -E\log p(X) \text{ in probability}$$

$$= H(X)$$

- $\blacksquare \quad -\frac{1}{n}\log p(X_1,\dots,X_n) \to H(X)$
- 总概率→1

The counterpart of L.L.N in information theory

$$H(X) - \epsilon \le -\frac{1}{n} \log p(X_1, X_2, \dots, X_n) \le H(X) + \epsilon \text{ in prob.}$$

$$\mathbf{2}^{-n(H(X) + \epsilon)} \le p(X_1, X_2, \dots, X_n) \le \mathbf{2}^{-n(H(X) - \epsilon)} \Rightarrow A_{\epsilon}^{(n)}$$

Typical Set

The **typical set** (典型集) $A_{\epsilon}^{(n)}$ with respect to p(x) is the set of sequences $(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$ with the property $2^{-n(H(X)+\epsilon)} \leq p(x_1, x_2, \ldots, x_n) \leq 2^{-n(H(X)-\epsilon)}$

- 1. If $(x_1, x_2, ..., x_n) \in A_{\epsilon}^{(n)}$, then $H(X) \epsilon \le -\frac{1}{n} \log p(x_1, x_2, ..., x_n) \le H(X) + \epsilon$
- 2. $\Pr\left\{A_{\epsilon}^{(n)}\right\} \ge 1 \epsilon$ for n sufficiently large.
- 3. $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, where |A| denotes the number of elements in the set A.
- 4. $\left|A_{\epsilon}^{(n)}\right| \ge (1-\epsilon)2^{n(H(X)-\epsilon)}$ for n sufficiently large.

Intuition

- 2. The typical set has probability nearly 1
- 3. All elements of the typical set are nearly equiprobable (等概率)
- lacksquare 4. The number of elements in the typical set is nearly 2^{nH}

Typical Set (cont'd)

The **typical set** (典型集) $A_{\epsilon}^{(n)}$ with respect to p(x) is the set of sequences $(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$ with the property $2^{-n(H(X)+\epsilon)} \leq p(x_1, x_2, \ldots, x_n) \leq 2^{-n(H(X)-\epsilon)}$

By definition and $\epsilon-\delta$ form

1. If $(x_1,x_2,\ldots,x_n)\in A_{\epsilon}^{(n)}$, then $H(X)-\epsilon\leq -\frac{1}{n}\log p(x_1,x_2,\ldots,x_n)\leq H(X)+\epsilon$ Proof. By the definition of typical set.

2. $\Pr\left\{A_{\epsilon}^{(n)}\right\} \ge 1 - \epsilon$ for n sufficiently large.

Proof. By AEP Theorem, the probability of the event $(X_1,X_2,\ldots,X_n)\in A_{\epsilon}^{(n)}$ tends to 1 as $n\to\infty$. Thus, for any $\delta>0$, there exists an n_0 such that for all $n\geq n_0$, we have

$$\Pr\left\{\left|-\frac{1}{n}\log p(X_1, X_2, \dots, X_n) - H(X)\right| < \epsilon\right\} > 1 - \delta$$

Setting $\delta = \epsilon$.

Typical Set (cont'd)

The **typical set** (典型集) $A_{\epsilon}^{(n)}$ with respect to p(x) is the set of sequences $(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$ with the property $2^{-n(H(X)+\epsilon)} \leq p(x_1, x_2, \ldots, x_n) \leq 2^{-n(H(X)-\epsilon)}$

3. $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, where |A| denotes the number of elements in the set A. Proof.

$$1 = \sum_{x \in \mathcal{X}^n} p(x)$$

$$\geq \sum_{x \in \mathcal{A}^{(n)}_{\epsilon}} p(x)$$

$$\geq \sum_{x \in \mathcal{A}^{(n)}_{\epsilon}} 2^{-n(H(X) + \epsilon)}$$

$$= 2^{-n(H(X) + \epsilon)} |A^{(n)}_{\epsilon}|$$
Thus, $|A^{(n)}_{\epsilon}| \leq 2^{n(H(X) + \epsilon)}$

Typical Set (cont'd)

The **typical set** (典型集) $A_{\epsilon}^{(n)}$ with respect to p(x) is the set of sequences $(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$ with the property $2^{-n(H(X)+\epsilon)} \leq p(x_1, x_2, \ldots, x_n) \leq 2^{-n(H(X)-\epsilon)}$

$$\begin{array}{l} 4. \left|A_{\epsilon}^{(n)}\right| \geq (1-\epsilon)2^{n(H(X)-\epsilon)} \text{ for } n \text{ sufficiently large.} \\ \text{Proof. For sufficiently large } n, \Pr\left\{A_{\epsilon}^{(n)}\right\} > 1-\epsilon, \text{ so that} \\ 1-\epsilon < \Pr\left\{A_{\epsilon}^{(n)}\right\} \\ \leq \sum_{x \in A_{\epsilon}^{(n)}} 2^{-n(H(X)-\epsilon)} \\ = 2^{-n(H(X)-\epsilon)} |A_{\epsilon}^{(n)}| \end{array}$$
 Thus $\left|A_{\epsilon}^{(n)}\right| \geq (1-\epsilon)2^{n(H(X)-\epsilon)}$

High Probability Set

lacksquare $A_{\epsilon}^{(n)}$ is a very tiny set that contains most of the probability; i.e., high probability set

Definition. For each n=1,2,..., let $B_{\delta}^{(n)}\subseteq\mathcal{X}^n$ be the smallest set with $\Pr\left\{B_{\delta}^{(n)}\right\}\geq 1-\delta$ Theorem. Let $X_1,X_2,...,X_n$ be i.i.d $\sim p(x)$. For $\delta<\frac{1}{2}$ and any $\delta'>0$, if $\Pr\left\{B_{\delta}^{(n)}\right\}\geq 1-\delta$, then $\frac{1}{n}\log|B_{\delta}^{(n)}|>H-\delta'$ for n sufficiently large.

- Intuition: As $A_{\epsilon}^{(n)}$ has $2^{n(H\pm\epsilon)}$ elements, $|B_{\delta}^{(n)}|$ and $|A_{\epsilon}^{(n)}|$ are equal to the first order in the exponent
- Proof: (exercise 3.11)
 - For any two sets A,B, if $\Pr(A) \ge 1 \epsilon_1 \Pr(B) \ge 1 \epsilon_2$, then $\Pr(A \cap B) > 1 \epsilon_1 \epsilon_2$
 - $1 \epsilon \delta \le \Pr\left(A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right) = \sum_{A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} p(x^n) \le \sum_{A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} 2^{-n(H-\epsilon)}$ $= \left|A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right| 2^{-n(H-\epsilon)} \le \left|B_{\delta}^{(n)}\right| 2^{-n(H-\epsilon)}$

Data Compression: Problem Formulation

$$X^n = (X_1, \dots, X_n) \longrightarrow$$
 Encoder $\longrightarrow \hat{X}^n$

(Data compression/Source coding) For a source sequence, we seek to find a **shorter encoding** for them:

"苟利国家生死以" →
$$\{00, 01, 1, 110, 111, 010, 1010\}$$

"government of the people, by the people, for the people" $\rightarrow \{\ldots\}$

Problem definition:

- Source: $X_1, X_2, ...,$ are i.i.d. $\sim p(X)$. Source sequences: $X^n = (X_1, ..., X_n)$ denotes the n-tuple that represents a sequence of n source symbols
- Alphabet: $\mathcal{X} = \{1, 2, ..., |\mathcal{X}|\}$ the possible values that each X_i can take on
- lacktriangle Encoder and decoder are a pair of functions f, g such that

$$f: \mathcal{X} \to \{0,1\}^*$$
 and $g: \{0,1\}^* \to \mathcal{X}$

- Probability of error $P_e = P(X^n \neq \widehat{X}^n)$ If $P_e = 0$, "lossless", otherwise "lossy"
- The rate of a scheme: $R = \frac{m}{n}$ ($R = \log |\mathcal{X}|$ is trivial!)

ToDo: Find an encoder and decoder pair such that $P_e o 0$, as $n o \infty$

Data Compression: Procedure

Divide and conquer: $x^n \in A_{\epsilon}^{(n)}$ and $x^n \notin A_{\epsilon}^{(n)}$

- $\blacksquare x^n \in A_{\epsilon}^{(n)}$:
 - Since there are $\leq 2^{n(H+\epsilon)}$ sequences in $A_{\epsilon}^{(n)}$, the indexing requires no more than $n(H+\epsilon)+1$ bits. [The extra bit may be necessary because $n(H+\epsilon)$ may not be an integer.]
- $\blacksquare x^n \notin A_{\epsilon}^{(n)}$:
 - \blacksquare Similarly, we can index each sequence not in $A_{\epsilon}^{(n)}$ by using not more than $n\log |X|+1$ bits.
- lacktriangle To deal with overlap in the $\{0,1\}$ sequences
 - We prefix all these sequences by a 0, giving a total length of $\leq n(H+\epsilon)+2$ bits to represent each sequence in $A_{\epsilon}^{(n)}$
 - lacksquare Prefixing these indices by 1, we have a code for all the sequences in \mathcal{X}^n .

Data Compression: Analysis

$$E(l(X^n)) = \sum_{x^n} p(x^n) l(x^n)$$

$$= \sum_{x^n \in A_{\epsilon}^{(n)}} p(x^n) l(x^n) + \sum_{x^n \notin A_{\epsilon}^{(n)}} p(x^n) l(x^n)$$

$$\leq \sum_{x^n \in A_{\epsilon}^{(n)}} p(x^n) (n(H+\epsilon)+2) + \sum_{x^n \notin A_{\epsilon}^{(n)}} p(x^n) (n \log |\mathcal{X}|+2)$$

$$= \Pr\left\{A_{\epsilon}^{(n)}\right\} (n(H+\epsilon)+2) + \Pr\left\{\left(A_{\epsilon}^{(n)}\right)^c\right\} (n \log |\mathcal{X}|+2)$$

$$\leq n(H+\epsilon) + \epsilon n(\log |\mathcal{X}|) + 2$$

$$= n(H+\epsilon')$$

Thus, we can represent sequences X^n using nH(X) bits on the average.

(Converse). For any scheme with rate r < H(X), $P_e \rightarrow 1$

 $E\left|\frac{1}{n}l(X^n)\right| \leq H(X) + \epsilon$

Let $r=H(X)-\epsilon$. For any scheme with rate r, it can encode at most 2^{nr} different symbols in \mathcal{X}^n . The correct decoding probability is $\approx 2^{nr}2^{-nH}=2^{-n(H-r)}\to 0$ $P_e\to 1$

Summary

All the materials can be found at:

■ T. Cover : Ch. 3