L3 A, intégration : M363

I – Exercices préliminaires

On présente ici quelques méthodes de raisonnement qui seront utilisées en théorie de la mesure.

Exercice 1 Pour tout entier naturel non nul n, on définit les fonctions symétriques élémentaires $\sigma_{n,k}: \mathbb{R}^n \to \mathbb{R}$, l'entier k étant compris entre 0 et n, par :

$$\forall \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n, \ \sigma_{n,k}(\alpha) = \begin{cases} 1 \ si \ k = 0 \\ \sum_{1 \le i_1 < \dots < i_k \le n} \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k} \ si \ k \in \{1, \dots, n\} \end{cases}$$

Soit $P(X) = \prod_{k=1}^{n} (X - \alpha_k)$ un polynôme scindé unitaire de degré $n \ge 1$ dans $\mathbb{R}[X]$.

Montrer que l'on a $P(X) = \sum_{k=0}^{n} a_k X^{n-k}$ avec :

$$\forall k \in \{0, 1, \dots, n\}, \ a_k = (-1)^k \sigma_{n,k} (\alpha_1, \dots, \alpha_n)$$

Exercice 2 Soit Ω un ensemble non vide.

À toute partie A de Ω , on associe la fonction indicatrice (ou caractéristique) de A définie par :

$$\mathbf{1}_A: \ \Omega \to \left\{ \begin{array}{l} \{0,1\} \\ x \mapsto \left\{ \begin{array}{l} 1 \ si \ x \in A \\ 0 \ si \ x \notin A \end{array} \right. \end{array} \right.$$

On note $\mathcal{P}(\Omega)$ l'ensemble de toutes les parties de Ω .

- 1. Montrer que l'application qui associe à une partie A de Ω sa fonction indicatrice $\mathbf{1}_A$ réalise une bijection de $\mathcal{P}(\Omega)$ sur $\{0,1\}^{\Omega}$ (ensemble des applications de Ω dans $\{0,1\}$). Préciser son inverse.
- 2. Soient A, B deux parties de Ω . Exprimer $\mathbf{1}_{\Omega\setminus A}$, $\mathbf{1}_{A\cap B}$, $\mathbf{1}_{AUB}$, $\mathbf{1}_{B\setminus A}$, $\mathbf{1}_{A\Delta B}$, en fonction de $\mathbf{1}_A$ et $\mathbf{1}_B$.
- 3. Plus généralement, pour toute suite finie $(A_k)_{1 \leq k \leq n}$ de parties de Ω , exprimer $\mathbf{1}_{\bigcap_{k=1}^{n} A_k}$ et $\mathbf{1}_{\bigcap_{k=1}^{n} A_k}$ en fonction des $\mathbf{1}_{A_k}$.
- 4. Montrer qu'il n'existe pas de bijection de Ω sur $\mathcal{P}(\Omega)$ (théorème de Cantor). On en déduit en particulier que $\mathcal{P}(\mathbb{N})$ et $\{0,1\}^{\mathbb{N}}$ ne sont pas dénombrables.
- 5. Soient $(A_k)_{1 \leq k \leq n}$ une suite finie de parties de Ω et A une partie de Ω . Montrer que :

$$((A_k)_{1 \le k \le n} \text{ est une partition de } A) \Leftrightarrow \left(\mathbf{1}_A = \sum_{k=1}^n \mathbf{1}_{A_k}\right)$$

Exercice 3 On dit qu'une série numérique (réelle ou complexe) $\sum u_n$ est commutativement convergente si, pour toute permutation σ de \mathbb{N} , la série $\sum u_{\sigma(n)}$ est convergente.

Montrer qu'une série $\sum u_n$ absolument convergente est commutativement convergente et que pour toute permutation σ de \mathbb{N} , on a $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$ (cela justifie l'écriture $\sum_{n\in\mathbb{N}} u_n$ dans le cas d'une série absolument convergente, ce qui est utilisé implicitement dans la définition d'une mesure).

Exercice 4

- 1. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite de réels positifs ou nuls indexée par (n,m) dans \mathbb{N}^2 . On suppose que :
 - pour tout $n \in \mathbb{N}$, la série $\sum_{m} u_{n,m}$ est convergente de somme S_n ;
 - la série $\sum_{n} S_n$ étant convergente de somme S.

Montrer alors que dans ces conditions :

- pour tout $m \in \mathbb{N}$, la série $\sum_{n} u_{n,m}$ est convergente de somme T_m ;
- la série $\sum_{m} T_{m}$ est convergente de somme S, soit :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

Dans le cas où l'une des sommes $\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m}\right)$ ou $\sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m}\right)$ est finie, on dit que la série

double $\sum u_{n,m}$ est convergente et on note $\sum_{(n,m)\in\mathbb{N}^2} u_{n,m}$ la valeur commune de $\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m}\right)$

$$et \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right).$$

Étant donnée une suite double $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ de nombres complexes, on dit que la série double $\sum u_{n,m}$ est absolument convergente (ou que la suite $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ est sommable) si la série double $\sum |u_{n,m}|$ est convergente.

2. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite double telle que la série double $\sum u_{n,m}$ soit absolument convergente.

Montrer alors que dans ces conditions, pour tout $n \in \mathbb{N}$ [resp. pour tout $m \in \mathbb{N}$], la série $\sum_{m} u_{n,m}$ [resp. $\sum_{n} u_{n,m}$] est absolument convergente et en notant S_n [resp. T_m] la somme de

cette série, la série $\sum S_n$ [resp. $\sum T_m$] est absolument convergente et on a $\sum_{n=0}^{+\infty} S_n = \sum_{m=0}^{+\infty} T_m$, soit :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

- 3. En justifiant la convergence, calculer la somme $\sum_{m=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^m}$.
- 4. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^*\times\mathbb{N}^*}$ la suite double définie par :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^*, \ u_{n,m} = \begin{cases} 0 \ si \ n = m \\ \frac{1}{n^2 - m^2} \ si \ n \neq m \end{cases}$$

Montrer, en les calculant, que les sommes $\sum_{n=1}^{+\infty} \left(\sum_{m=1}^{+\infty} u_{n,m}\right)$ et $\sum_{m=1}^{+\infty} \left(\sum_{n=1}^{+\infty} u_{n,m}\right)$ sont définies et différentes.

Exercice 5 Soient E un espace vectoriel normé complet et a < b deux réels.

Une fonction $f:[a,b] \to E$ est dite réglée si elle admet une limite à droite en tout point de [a,b] et une limite à gauche en tout point de [a,b].

On notera $f(x^-)$ [resp. $f(x^+)$] la limite à gauche [resp. à droite] en $x \in [a, b]$ [resp. en $x \in [a, b]$].

- 1. Montrer qu'une fonction réglée est bornée.
- 2. Montrer qu'une limite uniforme de fonctions réglées de [a, b] dans E est réglée.
- 3. Soit $f:[a,b]\to E$ une fonction réglée et $\varepsilon>0$. On note :

$$E_{\varepsilon} = \left\{ x \in \left] a, b \right] \mid il \text{ existe } \varphi \text{ en escaliers sur } \left[a, x \right] \text{ telle que } \sup_{t \in \left[a, x \right]} \left\| f \left(t \right) - \varphi \left(t \right) \right\| < \varepsilon \right\}$$

Montrer que $E_x \neq \emptyset$, puis que $b = \max(E_{\varepsilon})$.

- 4. Montrer qu'une fonction $f:[a,b] \to E$ est réglée si, et seulement si, elle est limite uniforme sur [a,b] d'une suite de fonctions en escaliers.
- 5. Rappeler comment le résultat de la question précédente est utilisé pour définir l'intégrale de Riemann d'une fonction réglée $f:[a,b]\to E$.
- 6. Montrer qu'une fonction réglée $f:[a,b] \to E$ est continue sur [a,b] privé d'un ensemble D dénombrable (éventuellement vide).
- 7. La fonction $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$ est-elle réglée ?
- 8. En désignant par E(t) la partie entière d'un réel t, montrer que la fonction f définie sur [0,1] par :

$$f(x) = \sum_{n=1}^{+\infty} \frac{E(nx)}{2^n}$$

est réglée, puis calculer $\int_0^1 f(x) dx$ (il s'agit d'une intégrale de Riemann).

Exercice 6 [a, b] est un intervalle fermé borné fixé avec a < b réels.

1. Montrer que les fonctions en escaliers positives sur [a, b] sont exactement les fonctions du type :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $n \in \mathbb{N}^*$, les a_k sont des réels positifs ou nuls et les I_k sont des intervalles contenus dans [a,b].

- 2. Montrer que si $(\varphi_k)_{1 \le k \le n}$ est une suite finie de fonctions en escaliers sur [a,b], alors la fonction $\varphi = \max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.
- 3. Soit f une fonction réglée définie sur [a,b] et à valeurs positives.
 - (a) Montrer qu'il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escaliers qui converge uniformément vers f sur [a,b] et telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in [a, b], \ \varphi_n(x) \le f(x)$$

(b) On désigne par $(\psi_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [a,b] par $\psi_0=0$ et pour tout $n\geq 1$:

$$\psi_n = \max(0, \varphi_1, \cdots, \varphi_n)$$

Monter que $(\psi_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions en escaliers qui converge uniformément vers f sur [a,b].

- (c) Montrer qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].
- 4. Montrer que les fonctions réglées à valeurs positives sur [a,b] sont exactement les fonctions de la forme :

$$f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$$

où les $(a_n)_{n\in\mathbb{N}}$ est une suite de réels positifs ou nuls, $(I_n)_{n\in\mathbb{N}}$ est une suite d'intervalles contenus dans [a,b] et la série considérée converge uniformément sur [a,b].

5. Avec les notations de la question précédente, justifier l'égalité :

$$\int_{a}^{b} f(x) dx = \sum_{n=0}^{+\infty} a_{n} \ell(I_{n})$$

 $où \ell(I_n)$ est la longueur de l'intervalle I_n .

Exercice 7 La longueur d'un intervalle réel I est définie par :

$$\ell\left(I\right) = \sup\left(I\right) - \inf\left(I\right) \in \left[0, +\infty\right] = \mathbb{R}^+ \cup \left\{+\infty\right\}$$

1. Soient I = [a, b] un intervalle fermé, borné et $(I_k)_{1 \le k \le n}$ une famille finie d'intervalles telle que :

$$I \subset \bigcup_{k=1}^{n} I_k$$

Montrer que :

$$\ell\left(I\right) \le \sum_{k=1}^{n} \ell\left(I_{k}\right)$$

2. Soient I=[a,b] un intervalle fermé, borné et $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

3. Soient I un intervalle et $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que:

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

4. Soit $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles deux à deux disjoints inclus dans un intervalle I. Montrer que :

$$\ell\left(I\right) \ge \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

Exercice 8 Pour tous réels a < b, on désigne par $C^0([a,b],\mathbb{R})$ l'espace des fonctions continues de [a,b] dans \mathbb{R} .

- Soit (f_n)_{n∈ℕ} une suite croissante dans C⁰ ([a,b],ℝ) qui converge simplement vers une fonction f∈ C⁰ ([a,b],ℝ).
 Montrer que la convergence est uniforme sur [a,b] (théorème de Dini). On donnera deux démonstrations de ce résultat, l'une utilisant la caractérisation des compacts de Bolzano-Weierstrass et l'autre utilisant celle de Borel-Lebesque.
- 2. Le résultat précédent est-il encore vrai dans $C^0(I,\mathbb{R})$ si on ne suppose plus l'intervalle I compact ?
- 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $C^0([a,b],\mathbb{R}^+)$ telle que la série de fonctions $\sum f_n$ converge simplement vers une fonction $f \in C^0([a,b],\mathbb{R})$.

 Montrer que:

$$\int_{a}^{b} f(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_{n}(t) dt$$

4. On désigne par A la famille des parties de \mathbb{R}^2 de la forme :

$$A(f,g) = \{(x,y) \in [a,b] \times \mathbb{R} \mid f(x) \le y \le g(x)\}$$

où f,g sont dans $C^{0}\left(\left[a,b\right],\mathbb{R}\right)$ telles que $f\leq g$ et on note :

$$\mu\left(A\left(f,g\right)\right) = \int_{a}^{b} \left(g\left(t\right) - f\left(t\right)\right) dt$$

Montrer que cette application μ est σ -additive sur \mathcal{A} , c'est-à-dire que pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints (i. e. $A_n \cap A_m = \emptyset$ pour $n \neq m$ dans \mathbb{N}), on a :

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu\left(A_n\right)$$

- II - Mesures et probabilités élémentaires

X est un ensemble non vide et $\mathcal{P}(X)$ est l'ensemble des parties de X.

Définition : Une σ -algèbre (ou tribu) sur X est une partie \mathcal{A} de $\mathcal{P}(X)$ telle que :

- $-\emptyset\in\mathcal{A}$:
- $\forall A \in \mathcal{A}, X \setminus A \in \mathcal{A}$ (\mathcal{A} est stable par passage au complémentaire);
- Si $I \subset \mathbb{N}$ et $(A_i)_{i \in I}$ est une famille d'éléments de \mathcal{A} alors $\bigcup_{i \in I} A_i \in \mathcal{A}$ (\mathcal{A} est stable par réunion

dénombrable).

Définition: Si \mathcal{A} est une σ -algèbre sur X, on dit alors que le couple (X, \mathcal{A}) est un espace mesurable.

Dans le cadre probabiliste, l'ensemble X est noté Ω et appelé univers, ses éléments sont appelés éventualités, ceux de \mathcal{A} sont appelés événements, les singletons sont les événements élémentaires et on dit que (Ω, \mathcal{A}) est un espace probabilisable.

Deux événements disjoints sont dits incompatibles.

Définition: Une mesure sur l'espace mesurable (X, A) est une application

$$\mu: \mathcal{A} \to [0, +\infty] = \mathbb{R}^+ \cup \{+\infty\}$$

telle que :

- $-\mu(\emptyset)=0$;
- pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints (i. e. $A_n\cap A_m=\emptyset$ pour $n\neq m$ dans \mathbb{N}), on a :

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu\left(A_n\right)$$

 $(\sigma$ -additivité de μ).

Avec ces conditions, on dit que le triplet (X, \mathcal{A}, μ) est un espace mesuré.

Dans le cas où (Ω, \mathcal{A}) est un espace probabilisable et $\mu(\Omega) = 1$, on notera \mathbb{P} la mesure de probabilité μ , on dit que \mathbb{P} est une probabilité sur (Ω, \mathcal{A}) et que $(\Omega, \mathcal{A}, \mathbb{P})$ est un espace probabilisé.

Pour tout événement $A \in \mathcal{A}$, $\mathbb{P}(A)$ est la probabilité de A.

Pour tout entier $r \geq 1$, on dit que les événements A_1, \dots, A_r sont mutuellement indépendants dans l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ si, pour toute partie J non vide de $\{1, 2, \dots, r\}$, on a :

$$\mathbb{P}\left(\bigcap_{j\in J} A_j\right) = \prod_{j\in J} \mathbb{P}\left(A_j\right)$$

Définition : Si \mathcal{A} est une famille de parties de X, on dit alors que l'intersection de toutes les σ -algèbres sur X qui contiennent \mathcal{A} est la σ -algèbre engendrée par \mathcal{A} . C'est aussi la plus petite σ -algèbre sur X (pour l'ordre de l'inclusion sur $\mathcal{P}(X)$) qui contient \mathcal{A} .

On la note $\sigma(A)$ et on a :

$$\sigma\left(\mathcal{A}\right) = \bigcap_{\substack{\mathcal{B} \text{ tribu sur } X\\ \mathcal{A} \subset \mathcal{B}}} \mathcal{B}$$

Si $f: X \to X'$ est une application de X dans un ensemble X', alors pour toute tribu \mathcal{A}' sur X', l'image réciproque :

$$f^{-1}\left(\mathcal{A}'\right) = \left\{ f^{-1}\left(A'\right) \mid A' \in \mathcal{A}' \right\}$$

est une tribu sur X.

Pour toute famille \mathcal{A}' de parties de X', on a :

$$\sigma\left(f^{-1}\left(\mathcal{A}'\right)\right) = f^{-1}\left(\sigma\left(\mathcal{A}'\right)\right)$$

Définition : Si X est un espace topologique, la tribu de Borel sur X est la σ -algèbre engendrée par les ouverts de X.

On la note $\mathcal{B}(X)$ et ses éléments sont les boréliens de X.

Une mesure de Borel sur X est une mesure sur $\mathcal{B}(X)$.

Pour $X = \mathbb{R}^p$, on peut vérifier que $\mathcal{B}(\mathbb{R}^p)$ est la tribu engendré par les pavés ouverts du type :

$$P = \prod_{k=1}^{p} \left[a_k, b_k \right[$$

les $a_k < b_k$, pour k compris entre 1 et p, étant tous rationnels.

La mesure ℓ des intervalles réels se prolonge de manière unique en une mesure sur la tribu $\mathcal{B}(\mathbb{R})$ des boréliens, cette mesure étant invariante par translation, ce qui signifie que pour tout borélien B et tout réel a, on a ℓ (a+I)=l (I).

Cette mesure ℓ est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Exercice 9 Soit A une tribu sur X. Montrer que :

- 1. $X \in \mathcal{A}$;
- 2. $si\ A, B\ sont\ dans\ A$, $alors\ A \cup B$, $A \cap B$, $A \setminus B\ et\ A \triangle B\ sont\ dans\ A$;
- 3. si $(A_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathcal{A} alors $\bigcap_{n\in\mathbb{N}} A_n \in \mathcal{A}$ (\mathcal{A} est stable par intersection dénombrable).

Exercice 10 Soient (X, A) un espace mesurable et E un sous ensemble non vide de X. Montrer que la famille :

$$\mathcal{A}_{E} = \{ B \in \mathcal{P}(E) \mid \exists A \in \mathcal{A} ; B = A \cap E \}$$

est une tribu sur E (tribu trace de A su E).

Exercice 11 Soient (X, \mathcal{A}, μ) un espace mesuré et $(A_k)_{1 \leq k \leq n}$ une suite d'éléments de \mathcal{A} telle que $\mu\left(\bigcup_{k=1}^{n} A_k\right) < +\infty$.

Montrer aue :

$$\mu\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} (-1)^{k-1} \mu_{k,n}$$

où on a noté pour $1 \le k \le n$:

$$\mu_{k,n} = \sum_{1 < i_1 < \dots < i_k < n} \mu \left(A_{i_1} \cap \dots \cap A_{i_k} \right)$$

(formule de Poincaré).

Exercice 12 Soit $(X, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(A_i)_{i \in I}$ une famille d'événements deux à deux incompatibles.

Montrer que l'ensemble d'indice :

$$D = \{ k \in I \mid \mathbb{P}(A_k) \in [0, 1] \}$$

est dénombrable (fini ou infini).

En particulier, l'ensemble :

$$\{x \in X \mid \mathbb{P}(\{x\}) \in [0,1]\}$$

est dénombrable.

Exercice 13

1. Montrer que, pour tout $x \in X$, l'application :

$$\delta_x: \mathcal{P}(X) \to \{0, 1\}
A \mapsto \mathbf{1}_A(x)$$

est une mesure de probabilité sur $(X, \mathcal{P}(X))$ (mesure de Dirac en x).

2. On suppose que $X = \{x_n \mid n \in \mathbb{N}\}$ est un ensemble dénombrable.

Montrer que pour toute suite $(p_n)_{n\in\mathbb{N}}$ de réels positifs ou nuls tels que $\sum_{n=0}^{+\infty} p_n = 1$, l'application :

$$\mathbb{P}: \mathcal{P}(X) \to \mathbb{R}^{+}$$

$$A \mapsto \sum_{n=0}^{+\infty} p_{n} \delta_{x_{n}}(A)$$
(1)

est une mesure de probabilité sur $(X, \mathcal{P}(X))$.

3. Réciproquement, montrer que toute mesure de probabilité \mathbb{P} sur $(X, \mathcal{P}(X))$ peut s'exprimer sous la forme (1).

Exercice 14 Soient A une partie de P(X) telle que :

- $-\emptyset\in\mathcal{A}$:
- $\forall A \in \mathcal{A}, \ X \setminus A \in \mathcal{A} \ (\mathcal{A} \ est \ stable \ par \ passage \ au \ complémentaire);$
- $\forall (A, B) \in \mathcal{A}^2, A \cap B \in \mathcal{A} \ (A \ est \ stable \ par \ intersection \ finie);$

 $(A \text{ est une algèbre de Boole}) \text{ et } \mu : A \to [0, +\infty] \text{ une application telle que } :$

- $-\mu(\emptyset)=0$;
- μ est σ -additive (i. e. $\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$ pour toute suite $\left(A_n\right)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints telle que $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$).
- 1. Montrer que, pour toute suite finie $(A_k)_{1 \le k \le n}$ d'éléments de \mathcal{A} , on a $\bigcap_{k=1}^n A_k \in \mathcal{A}$, $\bigcup_{k=1}^n A_k \in \mathcal{A}$ et $A_n \setminus \bigcup_{k=1}^{n-1} A_k \in \mathcal{A}$ (dans le cas où $n \ge 2$).
- 2. Montrer que μ est croissante.
- 3. Soient $A \in \mathcal{A}$ et $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} telle que $A \subset \bigcup_{n \in \mathbb{N}} A_n$. Montrer que :

$$\mu\left(A\right) \leq \sum_{n \in \mathbb{N}} \mu\left(A_n\right)$$

(inégalité de Boole).

Exercice 15 On se propose de montrer qu'une tribu dénombrable sur X est nécessairement finie de cardinal égal à une puissance de 2.

Ce qui revient aussi à dire qu'une tribu infinie est non dénombrable.

Soit A une σ -algèbre dénombrable sur X.

Pour tout $x \in X$, on note:

$$A\left(x\right) = \bigcap_{\substack{A \in \mathcal{A} \\ x \in A}} A$$

 $(atome \ de \ x).$

- 1. Montrer que, pour tout $x \in X$, A(x) est le plus petit élément de A qui contient x.
- 2. Soient x, y dans X. Montrer que si $y \in A(x)$, on a alors A(x) = A(y).
- 3. Montrer que, pour tous x, y dans X, on a $A(x) \cap A(y) = \emptyset$ ou A(x) = A(y).
- 4. En désignant par $(x_i)_{i\in I}$ la famille des éléments de X telle que les $A(x_i)$ soient deux à deux disjoints, montrer que cette famille est dénombrable et que pour tout $A \in \mathcal{A}$, on a une partition $A = \bigcup_{i \in I} A(x_i)$, où J est une partie de I.
- 5. En déduire que A est finie, son cardinal étant une puissance de 2.

Exercice 16 Soit X un ensemble dénombrable.

Montrer que la σ -algèbre engendrée par les singletons de X est $\mathcal{P}(X)$.

Exercice 17 Soit X un ensemble non dénombrable.

- 1. Montrer que la famille A formée des parties A de X telles que A ou ou $X \setminus A$ est dénombrable est une σ -algèbre sur X.
- 2. Montrer que A est la σ -algèbre engendrée par les singletons de X.
- 3. Montrer que l'application :

est une mesure de probabilité sur (X, A).

Exercice 18 Soit (X, \mathcal{A}, μ) un espace mesuré.

1. Montrer que si A, B sont des éléments de A tels que $A \subset B$ et $\mu(B) < +\infty$, on a alors :

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

- 2. Soient $(A_n)_{n\in\mathbb{N}}$ une suite croissante d'éléments de \mathcal{A} et $A = \bigcup_{n\in\mathbb{N}} A_n$. Montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en croissant vers $\mu(A)$ (continuité croissante de μ).
- 3. Soient $(A_n)_{n\in\mathbb{N}}$ une suite décroissante d'éléments de \mathcal{A} et $A=\bigcap_{n\in\mathbb{N}}A_n$. En supposant qu'il existe $n_0\in\mathbb{N}$ tel que $\mu(A_{n_0})<+\infty$, montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en décroissant vers $\mu(A)$ (continuité décroissante de μ).

Exercice 19 Soient \mathbb{P} une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et F la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ F(x) = \mathbb{P}(]-\infty, x])$$

(fonction de répartition de \mathbb{P}).

1. Montrer que F est croissante avec, pour tout réel x :

$$\lim_{t\to x^{+}}F\left(t\right)=F\left(x\right),\ \lim_{t\to x^{-}}F\left(t\right)=F\left(x\right)-\mathbb{P}\left(\left\{x\right\}\right)$$

et:

$$\lim_{t \to -\infty} F(t) = 0, \ \lim_{t \to +\infty} F(t) = 1$$

2. Montrer que l'ensemble :

$$\mathcal{D} = \{ x \in \mathbb{R} \mid \mathbb{P}(\{x\}) > 0 \}$$

est dénombrable.

Exercice 20 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Que dire d'un événement A qui est indépendant de tout autre événement?

Exercice 21 Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et A_1, \dots, A_n , où $n \geq 2$, des événements mutuellement indépendants dans \mathcal{A} .

- 1. Montrer que $\Omega \setminus A_1, A_2, \dots, A_n$ sont mutuellement indépendants.
- 2. En déduire que pour tout entier k compris entre 1 et n, les événements $\Omega \setminus A_1, \dots, \Omega \setminus A_k, A_{k+1}, \dots, A_n$ sont mutuellement indépendants.

Exercice 22 Soit n > 2 un entier naturel.

On considère l'espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$, où $\Omega = \{1, \dots, n\}$ et :

$$\forall k \in \Omega, \ \mathbb{P}(\{k\}) = \frac{1}{n}$$

ce qui revient à considérer l'expérience aléatoire qui consiste à choisir de manière équiprobable un entier compris entre 1 et n.

Pour tout diviseur positif d de n, on désigne par A_d l'événement :« le nombre choisi est divisible par $d \gg$.

- 1. Calculer $\mathbb{P}(A_d)$ pour tout diviseur positif d de n.
- 2. Montrer que si $2 \le p_1 < p_2 < \cdots < p_r$ sont tous les diviseurs premiers de n, les événements A_{p_1}, \cdots, A_{p_r} sont alors mutuellement indépendants.
- 3. On désigne par φ la fonction indicatrice d'Euler définie sur \mathbb{N}^* par

$$\varphi\left(n\right)=\operatorname{card}\left\{ k\in\left\{ 1,\cdots,n\right\} \mid k\wedge n=1\right\}$$

Montrer que

$$\varphi\left(n\right) = n \prod_{k=1}^{r} \left(1 - \frac{1}{p_k}\right)$$

- 4. Soit d'un diviseur positif d'de n. Calculer la probabilité de l'événement B_d : « le nombre a choisi est tel que $a \wedge n = d$ ».
- 5. En déduire que :

$$n = \sum_{d/n} \varphi\left(\frac{n}{d}\right)$$

Exercice 23 On munit l'ensemble \mathbb{N}^* de la tribu $\mathcal{P}(\mathbb{N}^*)$.

On rappelle que la fonction dzéta de Riemann est définie par :

$$\forall \alpha > 1, \ \zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

 $On \ note:$

$$2 = p_1 < p_2 < \dots < p_n < p_{n+1} < \dots$$

la suite infinie des nombres premiers rangée dans l'ordre strictement croissant.

1. Montrer que l'on définit une probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ en posant :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(\{n\}) = \frac{1}{\zeta(\alpha)} \frac{1}{n^{\alpha}}$$

2. Montrer que :

$$\forall p \in \mathbb{N}^*, \ \mathbb{P}\left(p\mathbb{N}^*\right) = \frac{1}{p^{\alpha}}$$

où on a noté $p\mathbb{N}^*$ l'ensemble de tous les multiples positifs de p.

3. Montrer que :

$$\mathbb{P}\left(\bigcap_{n=1}^{+\infty} \left(\mathbb{N}^* \setminus p_n \mathbb{N}^*\right)\right) = \frac{1}{\zeta\left(\alpha\right)}$$

4. En déduire que :

$$\forall \alpha > 1, \ \prod_{n=1}^{+\infty} \frac{1}{1 - \frac{1}{p_{\alpha}^{\alpha}}} = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

5.

- (a) Montrer que $\lim_{\alpha \to 1^+} \zeta(\alpha) = +\infty$.
- (b) Déduire de la question précédente que $\sum_{n=1}^{+\infty} \frac{1}{p_n} = +\infty$.

Exercice 24 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle strictement décroissante et de limite nulle. Déterminer un réel λ pour lequel il existe une mesure de probabilité \mathbb{P} sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ telle que :

$$\forall n \in \mathbb{N}, \ \mathbb{P}\left(\mathbb{N} \cap [n, +\infty[\right) = \lambda u_n\right)$$

Exercice 25 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

Pour tous A, B dans A, on note:

$$d(A, B) = \mathbb{P}(A \triangle B)$$

1. Montrer que, pour tous A, B, C dans A, on a:

$$d(A,C) \le d(A,B) + d(B,C)$$

2. En déduire que, pour tous A, B dans A, on a :

$$|\mathbb{P}(B) - \mathbb{P}(A)| \le \mathbb{P}(A \triangle B)$$

Exercice 26 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Montrer que, pour toute suite $(A_n)_{n \in \mathbb{N}}$ d'événements deux à deux incompatibles, on a $\lim_{n \to +\infty} \mathbb{P}(A_n) = 0$.

Exercice 27 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Montrer que, pour toute suite finie $(A_k)_{1 \leq k \leq n}$ d'événements, on a :

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right) \leq \mathbb{P}\left(\bigcap_{k=1}^{n} A_{k}\right) + (n-1)$$

Exercice 28 Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(A_n)_{n \in \mathbb{N}}$ une suite d'événements. On note :

$$\limsup_{n \to +\infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k > n} A_k \text{ et } \liminf_{n \to +\infty} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k > n} A_k$$

 $\limsup_{n\to +\infty} A_n \ est \ l'ensemble \ des \ x\in \Omega \ qui \ appartiennent \ \grave{a} \ une \ infinit\acute{e} \ de \ A_n \ et \ li\min_{n\to +\infty} A_n \ est \ l'ensemble \ des \ x\in \Omega \ qui \ appartiennent \ \grave{a} \ tous \ les \ A_n \ sauf \ au \ plus \ un \ nombre \ fini.$

1. Montrer que :

$$\Omega \setminus \limsup_{n \to +\infty} A_n = \liminf_{n \to +\infty} (\Omega \setminus A_n)$$

$$\Omega \setminus \liminf_{n \to +\infty} A_n = \limsup_{n \to +\infty} (\Omega \setminus A_n)$$

$$\left(x \in \limsup_{n \to +\infty} A_n\right) \Leftrightarrow \left(\sum_{n \in \mathbb{N}} \mathbf{1}_{A_n}(x) = +\infty\right)$$

$$\left(x \in \liminf_{n \to +\infty} A_n\right) \Leftrightarrow \left(\sum_{n \in \mathbb{N}} \mathbf{1}_{\Omega \setminus A_n}(x) < +\infty\right)$$

2. Montrer que :

(a) si la série
$$\sum \mathbb{P}(A_n)$$
 converge, on a alors $\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)=0$;

- (b) si les événements A_n sont mutuellement indépendants et la série $\sum \mathbb{P}(A_n)$ diverge, on a alors $\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)=1$ (loi du zéro-un de Kolmogorov).
- 3. Montrer qu'il n'existe pas de mesure de probabilité \mathbb{P} sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ telle que :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}\left(n \cdot \mathbb{N}^*\right) = \frac{1}{n}$$

- III - Fonctions mesurables

Définition: Soient (X, \mathcal{A}) et (Y, \mathcal{B}) deux espaces mesurables. On dit qu'une fonction $f: X \to Y$ est mesurable si, pour tout $B \in \mathcal{B}$, $f^{-1}(B) \in \mathcal{A}$.

Dans le cas où X, Y sont deux espaces topologiques et \mathcal{A}, \mathcal{B} sont les tribus de Borel, une fonction mesurable de X dans Y est dite borélienne.

Une fonction continue est mesurable (i. e. borélienne).

Une fonction $f:(X,\mathcal{A})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ est mesurable si, et seulement si, on a $f^{-1}(]-\infty,a[)\in\mathcal{A}$ pour tout réel a.

La composée, la somme, le produit et une limite simple de fonctions mesurables est mesurable.

Les fonctions réglées de [a, b] dans un espace de Banach E sont boréliennes (c'est le cas par exemples, pour les fonctions monotones et les fonctions continues par morceaux de [a, b] dans \mathbb{R}).

Dans le cas où (Ω, \mathcal{A}) est un espace probabilisable, on appelle variable aléatoire réelle toute fonction mesurable de (Ω, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et variable aléatoire vectorielle (ou vecteur aléatoire) toute fonction mesurable de (Ω, \mathcal{A}) dans $(\mathbb{R}^p, \mathcal{B}(\mathbb{R}^p))$.

Dans le cas d'une variable aléatoire réelle, on note pour tout borélien $B \in \mathcal{B}(\mathbb{R})$, $(X \in B)$ l'événement $X^{-1}(B) \in \mathcal{A}$, soit :

$$(X \in B) = X^{-1}(B) = \{ \omega \in \Omega \mid X(\omega) \in B \}$$

Dans le cas particulier des intervalles, on note respectivement (X = x), (X < a), $(a \le X < b)$, \cdots , les événements $X^{-1}(\{x\})$, $X^{-1}(]-\infty, a[)$, $X^{-1}([a,b[),\cdots$

La loi d'une variable aléatoire réelle X sur un espace probabilisé $(X, \mathcal{A}, \mathbb{P})$ est la mesure de probabilité \mathbb{P}_X définie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ par :

$$\forall B \in \mathcal{B}(\mathbb{R}), \ \mathbb{P}_X(B) = \mathbb{P}(X \in B)$$

(mesure image de \mathbb{P} par X).

On dit qu'une partie N d'un espace mesurable (X, \mathcal{A}, μ) est négligeable si elle est contenue dans une partie $A \in \mathcal{A}$ de mesure nulle.

On dit que deux fonctions f, g de (X, \mathcal{A}, μ) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ sont égales μ -presque partout si l'ensemble :

$$N = \{x \in X \mid f(x) \neq g(x)\}\$$

est négligeable, ce qui équivaut à dire qu'il existe une partie $A \in \mathcal{A}$ de mesure nulle tel que f(x) = g(x) pour tout $x \in X \setminus A$.

Dans le cas où f et g sont mesurables, l'ensemble $N = (f - g)^{-1} \{\mathbb{R}^*\}$ est mesurable et f = g presque partout si, et seulement si, $\mu(N) = 0$.

Dans le cas de deux variables aléatoires réelles X et Y sur un espace probabilisé $(X, \mathcal{A}, \mathbb{P})$, on dit que X = Y presque sûrement si X = Y presque partout, ce qui équivaut à dire que $\mathbb{P}(X \neq Y) = 0$ ou encore que $\mathbb{P}(X = Y) = 1$.

Si $f:(X,\mathcal{A},\mu)\to\mathbb{R}^+$ est mesurable, il existe alors une suite $(a_n)_{n\in\mathbb{N}}$ de réels positifs et une suite $(A_n)_{n\in\mathbb{N}}$ de parties mesurables de X telles que $f=\sum_{n\in\mathbb{N}}a_n\mathbf{1}_{A_n}$ et :

$$\int_{X} f d\mu = \sum_{n \in \mathbb{N}} a_n \mu (A_n) \le +\infty$$

Soit (X, \mathcal{A}, μ) un espace mesuré. On dit que $f: X \to \mathbb{R}$ est intégrable (ou sommable) si elle est mesurable et $\int_X |f| \, d\mu < +\infty$.

Dans ce cas, on a:

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

où $f^+ = \max(f, 0)$ et $f^- = \max(-f, 0)$.

L'ensemble des fonctions intégrables de (X, \mathcal{A}, μ) dans \mathbb{R} est un espace vectoriel et l'application $f \mapsto \int_{\mathbb{R}} f d\mu$ est une forme linéaire positive avec :

$$\left| \int_{X} f d\mu \right| \le \int_{X} |f| \, d\mu < +\infty$$

Exercice 29 Soient (X, \mathcal{A}, μ) un espace mesuré et f, g deux fonctions mesurables de X dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que les fonctions |f|, f+g et fg sont mesurables.

Exercice 30 On se place sur \mathbb{R} muni de la tribu de Borel $\mathcal{B}(\mathbb{R})$ et de la mesure de Lebesgue λ . Soient f, g deux fonctions continues de \mathbb{R} dans \mathbb{R} .

Montrer que f est égale à g presque partout si, et seulement si, f = g partout.

Exercice 31 La mesure ℓ des intervalles réels se prolonge de manière unique en une mesure sur la tribu $\mathcal{B}(\mathbb{R})$ des boréliens, cette mesure étant invariante par translation. C'est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Nous allons vérifier que cette mesure ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.

On désigne par C le groupe quotient \mathbb{R}/\mathbb{Q} .

- 1. Vérifier que, pour toute classe d'équivalence $c \in C$, on peut trouver un représentant x dans [0,1[.
 - Pour tout $c \in C$, on se fixe un représentant x_c de c dans [0,1[(axiome du choix) et on désigne par A l'ensemble de tous ces réels x_c .
- 2. Montrer que les translatés r + A, où r décrit $[-1,1] \cap \mathbb{Q}$, sont deux à deux disjoints et que :

$$[0,1] \subset \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A) \subset [-1,2]$$

3. En déduire que A n'est pas borélien et que ℓ ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.

Exercice 32 On propose de retrouver le résultat de l'exercice précédent sans utiliser les groupes quotients.

Dans le \mathbb{Q} -espace vectoriel \mathbb{R} , on désigne par H un supplémentaire de la droite vectorielle $\mathbb{Q} \cdot 1$ (axiome du choix), soit :

$$\mathbb{R} = \mathbb{O} \cdot 1 \oplus H$$

- 1. Montrer qu'il existe un sous-ensemble A de [0,1[tel que tout réel x puisse s'écrire de façon unique x=r+a avec $r\in\mathbb{Q}$ et $a\in A$.
- 2. Montrer que les translatés r+A, où r décrit $[0,1]\cap \mathbb{Q}$, sont deux à deux disjoints et que :

$$B = \bigcup_{r \in [0,1] \cap \mathbb{Q}} (r+A) \subset [0,2[$$

3. En déduire que A n'est pas borélien et que ℓ ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.

Exercice 33 Donner un exemple de fonctions $f : \mathbb{R} \to \mathbb{R}$ et $g : \mathbb{R} \to \mathbb{R}$ non mesurables telles que les fonctions |f|, f + g et fg soient mesurables (\mathbb{R} étant muni de la tribu de Borel.

Exercice 34 \mathbb{R} est muni de la tribu de Borel.

Soit $f : \mathbb{R} \to \mathbb{R}$. Montrer que f est mesurable si, et seulement si, la restriction de f à tout segment [a,b] est mesurable.

Exercice 35 Soient E un espace vectoriel normé complet et a < b deux réels. Montrer qu'une fonction réglée $f : [a, b] \to E$ est borélienne.

Exercice 36 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Montrer que sa dérivée f' est borélienne.

Exercice 37

- 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de \mathbb{R} dans \mathbb{R} . L'ensemble des réels x tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ soit convergente est-il ouvert? fermé?
- 2. Soient (X, A) un espace mesurable et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R} $(\mathbb{R}$ étant muni de la tribu borélienne).

 Montrer que l'ensemble des éléments x de X tels que la suite $(f_n(x))_{n \in \mathbb{N}}$ soit convergente [resp. divergente] est mesurable.

Exercice 38 Soient (X, A), (Y, B) deux espaces mesurables et f une application de X vers Y.

1. Montrer que la famille :

$$\mathcal{C} = \left\{ B \in \mathcal{B} \mid f^{-1}(B) \in \mathcal{A} \right\}$$

est une σ -algèbre.

2. On suppose que \mathcal{B} est engendrée par une famille \mathcal{F} de parties de Y ($\mathcal{B} = \sigma(\mathcal{F})$). Montrer que f est mesurable si, et seulement si, $f^{-1}(F) \in \mathcal{A}$ pour tout $F \in \mathcal{F}$. On en déduit en particulier qu'une fonction $f:(X,\mathcal{A}) \to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ est mesurable si, et seulement si, on a $f^{-1}(]-\infty,a[) \in \mathcal{A}$ pour tout réel a.

Exercice 39 Soit (X, A) un espace mesurable.

- 1. Soit $(\mu_n)_{n\in\mathbb{N}}$ une famille de mesures sur X telle que pour tout $A\in\mathcal{A}$, la suite $(\mu_n(A))_{n\in\mathbb{N}}$ est croissante.
 - (a) Montrer que, pour tout $A \in \mathcal{A}$, la suite $(\mu_n(A))_{n \in \mathbb{N}}$ converge vers un élément $\mu(A)$ de $\mathbb{R}^+ \cup \{+\infty\}$.
 - (b) Montrer que l'application :

$$\mu: A \to \mathbb{R}^+ \cup \{+\infty\}$$

 $A \mapsto \lim_{n \to \infty} \mu_n(A)$

définit une mesure sur (X, A).

- 2. Soit $(\mu_n)_{n\in\mathbb{N}}$ une famille de mesures sur X.
 - (a) Montrer que l'application :

$$\mu: \mathcal{A} \to \mathbb{R}^+ \cup \{+\infty\}$$

$$A \mapsto \sum_{n \in \mathbb{N}} \mu_n(A)$$

définit une mesure sur (X, A).

(b) On suppose que, pour tout entier $n \in \mathbb{N}$, μ_n est une probabilité sur (X, \mathcal{A}) et on se donne une suite $(p_n)_{n \in \mathbb{N}}$ de réels positifs ou nuls telle que $\sum p_n = 1$.

Montrer que l'application :

$$\mathbb{P}: \ \mathcal{A} \to \mathbb{R}$$

$$A \mapsto \sum_{n \in \mathbb{N}} p_n \mu_n (A)$$

définit une mesure de probabilité sur (X, A).

Exercice 40 (X, \mathcal{A}, μ) est un espace mesuré avec $\mu \neq 0$ et \mathbb{R} est muni de la tribu de Borel. On dit qu'une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions mesurables de X dans \mathbb{R} converge en mesure vers une fonction mesurable $f: X \to \mathbb{R}$ si:

$$\forall \varepsilon > 0, \lim_{n \to +\infty} \mu\left(|f - f_n| > \varepsilon\right) = 0$$

où on a noté:

$$(|f - f_n| > \varepsilon) = \{x \in X \mid |f(x) - f_n(x)| > \varepsilon\}$$

Montrer que si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions mesurables de X dans \mathbb{R} qui converge en mesure vers les fonctions mesurables $f: X \to \mathbb{R}$ et $g: X \to \mathbb{R}$, on a alors f = g presque partout.

Exercice 41 $(\Omega, \mathcal{A}, \mathbb{P})$ est un espace probabilisé et \mathbb{R} est muni de la tribu de Borel. On dit qu'une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires réelles sur $(\Omega, \mathcal{A}, \mathbb{P})$ converge en probabilité vers une variable aléatoire $X: \Omega \to \mathbb{R}$ si:

$$\forall \varepsilon > 0, \lim_{n \to +\infty} \mathbb{P}\left(|X - X_n| > \varepsilon\right) = 0$$

où on a noté:

$$(|X - X_n| > \varepsilon) = \{\omega \in \Omega \mid |X(\omega) - X_n(\omega)| > \varepsilon\}$$

- 1. Montrer que si $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires réelles sur $(\Omega, \mathcal{A}, \mathbb{P})$ qui converge en probabilité vers les variables aléatoires $X : \Omega \to \mathbb{R}$ et $Y : \Omega \to \mathbb{R}$, on a alors X = Y presque sûrement.
- 2. Soient $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles sur $(\Omega, \mathcal{A}, \mathbb{P})$ et X une variable aléatoire réelle sur $(\Omega, \mathcal{A}, \mathbb{P})$.

 Montrer que s'il existe une suite (Y_n) de variables aléatoires de Ω dans \mathbb{P}^+ qui converge en

Montrer que s'il existe une suite $(Y_n)_{n\in\mathbb{N}}$ de variables aléatoires de Ω dans \mathbb{R}^+ qui converge en probabilité vers la variable aléatoire nulle et telle que $|X-X_n|\leq Y_n$ pour tout $n\in\mathbb{N}$, la suite $(X_n)_{n\in\mathbb{N}}$ converge alors en probabilité vers Y.

- 3. Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites de variables aléatoires réelles sur $(\Omega, \mathcal{A}, \mathbb{P})$ qui convergent en probabilité vers les variables aléatoires $X : \Omega \to \mathbb{R}$ et $Y : \Omega \to \mathbb{R}$ respectivement. Montrer que la suite $(X_n + Y_n)_{n\in\mathbb{N}}$ converge en probabilité vers X + Y.
- 4. Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites de variables aléatoires réelles sur $(\Omega, \mathcal{A}, \mathbb{P})$ qui convergent en probabilité vers la variable aléatoire nulle.

 Montrer que la suite $(X_nY_n)_{n\in\mathbb{N}}$ converge en probabilité vers la variable aléatoire nulle.
- 5. Montrer que, pour toute variable aléatoire $X: \Omega \to \mathbb{R}$, on a :

$$\lim_{k \to +\infty} \mathbb{P}\left(|X| > k\right) = 0$$

6. Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites de variables aléatoires réelles sur $(\Omega, \mathcal{A}, \mathbb{P})$ qui convergent en probabilité vers les variables aléatoires $X : \Omega \to \mathbb{R}$ et $Y : \Omega \to \mathbb{R}$ respectivement.

- (a) Montrer que les suites de variables aléatoires $(X(Y-Y_n))_{n\in\mathbb{N}}$ et $((X-X_n)Y_n)_{n\in\mathbb{N}}$ convergent en probabilité vers la variable aléatoire nulle.
- (b) Montrer que la suite $(X_n Y_n)_{n \in \mathbb{N}}$ converge en probabilité vers XY.

Exercice 42 (X, \mathcal{A}, μ) est un espace mesuré, la mesure μ étant finie, \mathbb{R} est muni de la tribu de Borel, $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions mesurables de X dans \mathbb{R} et f est une fonction mesurable f de X dans \mathbb{R} .

On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge presque uniformément vers f sur X si pour tout réel $\alpha>0$, il existe une partie mesurable A de X telle que $\mu(A)<\alpha$ et la convergence de $(f_n)_{n\in\mathbb{N}}$ vers f est uniforme sur $X\setminus A$.

- 1. Montrer que si $(f_n)_{n\in\mathbb{N}}$ converge presque uniformément vers f sur X, elle converge alors presque partout vers f.
- 2. On suppose que la suite $(f_n)_{n\in\mathbb{N}}$ converge presque partout sur X vers f. Pour tout réel $\lambda > 0$ et tout entier $k \in \mathbb{N}$, on note :

$$(|f - f_k| \ge \lambda) = \{x \in X \mid |f(x) - f_k(x)| \ge \lambda\}$$

(a) Montrer que, pour tout entier $n \in \mathbb{N}$ et tout réel $\lambda > 0$, l'ensemble :

$$A_{\lambda,n} = \bigcup_{k=n}^{+\infty} (|f - f_k| \ge \lambda)$$

est mesurable et que $\lim_{n\to+\infty} \mu\left(A_{\lambda,n}\right) = 0.$

(b) Montrer que pour tout réel $\alpha > 0$ et tout réel $\lambda > 0$, il existe un entier n_0 tel que $\mu(A_{\lambda,n_0}) < \alpha$ et :

$$\forall x \in \langle A_{\lambda,n_0}, \ \forall k \ge n_0, \ |f(x) - f_k(x)| < \lambda$$

- (c) Montrer que $(f_n)_{n\in\mathbb{N}}$ converge presque uniformément vers f sur X (théorème d'Egorov). Indication : on pourra utiliser la question précédente avec les réels $\lambda_p = \frac{1}{p}$, où p décrit \mathbb{N}^* .
- (d) Montrer que $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers f sur X.
- 3. Donner un exemple de suite $(f_n)_{n\in\mathbb{N}}$ qui converge presque partout sur X vers f et pour laquelle il n'est pas possible de trouver A de mesure nulle telle la convergence de $(f_n)_{n\in\mathbb{N}}$ vers f soit uniforme sur $X\setminus A$ (on ne peut pas prendre $\alpha=0$ dans le théorème d'Egorov).
- 4. Montrer que le théorème d'Egorov n'est plus valable pour $\mu(X) = +\infty$.

Exercice 43 Soient (X, \mathcal{A}, μ) un espace mesuré, la mesure μ étant finie, et f une fonction mesurable de X dans \mathbb{R}^+ (\mathbb{R} est muni de la tribu de Borel).

On définit les suites $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ de parties mesurables de X par :

$$A_n = f^{-1}([n, +\infty[), B_n = f^{-1}([n, n+1[)$$

et g est la fonction définie sur X par :

$$g = \sum_{n=1}^{+\infty} n \mathbf{1}_{B_n}$$

1. Montrer que, pour tout entier $n \in \mathbb{N}$, on a :

$$\mu\left(A_{n}\right) = \sum_{k=n}^{+\infty} \mu\left(B_{k}\right)$$

- 2. Montrer que g est la partie entière de f.
- 3. Montrer que f est intégrable si, et seulement si, la série $\sum_{n\geq 1} n\mu\left(B_n\right)$ est convergente.
- 4. Montrer que, pour tout entier $n \in \mathbb{N}^*$, on a :

$$\sum_{k=1}^{n} k\mu(B_k) = \sum_{k=1}^{n} \mu(A_k) - n\mu(A_{n+1})$$

- 5. Montrer que f est intégrable si, et seulement si, la série $\sum_{n\geq 1}\mu\left(A_{n}\right)$ est convergente.
- 6. Le résultat précédent est-il valable dan le cas où $\mu\left(X\right)=+\infty$?

Exercice 44 On se place sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ muni de la mesure de comptage :

$$\forall A \in \mathcal{P}(\mathbb{N}), \ \mu(A) = \operatorname{card}(A) \in \mathbb{N} \cup \{+\infty\}$$

Pour tout $n \in \mathbb{N}$, on désigne par δ_n la mesure de Dirac en n (pour $A \in \mathcal{P}(\mathbb{N})$, on a $\delta_n(A) = \mathbf{1}_A(n)$).

1. Montrer que :

$$\mu = \sum_{n \in \mathbb{N}} \delta_n$$

2. Montrer que pour toute suite réelle positive $x=(x_n)_{n\in\mathbb{N}}$, on a :

$$\int_{\mathbb{N}} x d\mu = \sum_{n \in \mathbb{N}} x_n$$

3. Donner une condition nécessaire et suffisante pour qu'une suite numérique $x=(x_n)_{n\in\mathbb{N}}$ soit sommable.

Exercice 45 On se place sur $(X, \mathcal{P}(X))$ muni d'une mesure de Dirac $\mu = \delta_x$, où $x \in X$ est fixé. Calculer $\int_X f d\mu$ pour toute fonction $f: X \to \mathbb{R}^+$.

Exercice 46 Soient X, Y deux espaces métriques munis de leur tribu borélienne respective. Montrer qu'une fonction $f: X \to Y$ qui est continue sur X privé d'un ensemble D dénombrable est borélienne.

Exercice 47 On se place $sur(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, où λ est la mesure de Lebesgue.

- 1. Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un ouvert \mathcal{O} dense dans \mathbb{R} tel que $\lambda(\mathcal{O}) < \varepsilon$ (on peut utiliser la densité de \mathbb{Q} dans \mathbb{R}).
- 2. Montrer qu'une partie mesurable bornée de R est de mesure finie. La réciproque est-elle vraie?
- 3. Montrer qu'une partie mesurable de \mathbb{R} d'intérieur non vide est de mesure non nulle. La réciproque est-elle vraie?
- 4. Montrer qu'une partie mesurable A de [0,1] de mesure égale à 1 est dense dans [0,1]. Réciproquement un ouvert dense de [0,1] est-il de mesure égale à 1?

Exercice 48 (X, \mathcal{A}, μ) est un espace mesuré avec $\mu \neq 0$, \mathbb{R} est muni de la tribu de Borel et les fonctions considérées sont à valeurs réelles.

- 1. Montrer que si f, g sont deux fonctions mesurables de X dans \mathbb{R} , les fonctions f + g et fg sont mesurables.
- 2. Montrer que la somme de deux fonctions intégrables est intégrable.
- 3. Le produit de deux fonctions intégrables est-il intégrable?
- 4. La composée de deux fonctions intégrables est-il intégrable?
- 5. Soit $f: X \to \mathbb{R}$ une fonction intégrable positive. Montrer que pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que :

$$(A \in \mathcal{A} \ et \ \mu(A) < \eta) \Rightarrow \int_{A} f d\mu < \varepsilon$$

6. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer que pour tout réel $\varepsilon > 0$, il existe une partie mesurable A de X telle que $\mu(A) > 0$ et $|f(y) - f(x)| < \varepsilon$ pour tous x, y dans A (on peut utiliser la densité de \mathbb{Q} dans \mathbb{R}).

7. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que pour tout réel $\alpha > 0$, on a :

$$\mu\left(f^{-1}\left(\left[\alpha,+\infty\right[\right)\right) \le \frac{1}{\alpha} \int_{X} f d\mu$$

(inégalité de Markov).

- 8. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que $\int_X f d\mu = 0$ si, et seulement si, f est nulle presque partout.
- 9. Soit $f: X \to \overline{\mathbb{R}^+}$ une fonction mesurable positive. Montrer que si $\int_X f d\mu < +\infty$, on a alors $f(x) < +\infty$ presque partout.
- 10. Soient f, g deux fonctions mesurables positives sur X. Montrer que si f = g presque partout, alors $\int_X f d\mu = \int_X g d\mu$.
- 11. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer qu'il existe une partie mesurable A de X telle que $\mu(A) > 0$ et f est bornée sur A.
- 12. Soit $f: X \to \mathbb{R}$ une fonction mesurable telle que $f \neq 0$ presque partout. Montrer qu'il existe une partie mesurable A de X telle que $\mu(A) > 0$ et |f| est minorée sur A par une constante strictement positive.
- 13. Soit $f: X \to \mathbb{R}$ une fonction intégrable. Montrer que si $\int_A f d\mu = 0$ pour toute partie A mesurable dans X, alors la fonction f est nulle presque partout.

- V - Convergence monotone, dominée

Les théorèmes importants sont les théorèmes de convergence monotone et de convergence dominée. (X, \mathcal{A}, μ) est un espace mesuré.

Théorème 49 (Convergence monotone) Soit $(f_n)_{n\in\mathbb{N}}$ une suite croissante de fonctions mesurables de X dans \mathbb{R}^+ .

Dans ces conditions, la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction mesurable $f:X\to\overline{\mathbb{R}^+}$ et on a:

$$\int_X f d\mu = \lim_{n \to +\infty} \int_X f_n d\mu$$

On en déduit que si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions mesurables de X dans \mathbb{R}^+ , la série de fonctions $\sum f_n$ converge alors simplement vers une fonction mesurable $f:X\to\overline{\mathbb{R}^+}$ et on a :

$$\int_{X} f d\mu = \sum_{n=0}^{+\infty} \int_{X} f_n d\mu$$

On en déduit également le lemme de Fatou :

Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions mesurables de X dans $\overline{\mathbb{R}^+}$, on a alors :

$$\int_{X} \liminf_{n \to +\infty} (f_n) d\mu \le \liminf_{n \to +\infty} \int_{X} f_n d\mu$$

On rappelle que:

$$\liminf_{n \to +\infty} u_n = \sup_{n \in \mathbb{N}} \left(\inf_{p \ge n} u_p \right) \text{ et } \limsup_{n \to +\infty} u_n = \inf_{n \in \mathbb{N}} \left(\sup_{p \ge n} u_p \right)$$

Théorème 50 (Convergence dominée) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{C} et qui converge simplement presque partout sur X vers une fonction f.

S'il existe une fonction intégrable $\varphi: X \to \mathbb{R}^+$ telle que $|f_n(x)| \le \varphi(x)$ pour tout $n \in \mathbb{N}$ et presque tout tout $x \in I$ alors les fonctions f_n et f sont intégrables sur I et on a:

$$\int_{X} f d\mu = \lim_{n \to +\infty} \int_{X} f_n d\mu$$

Dans le cadre des séries de fonctions, on en déduit le résultat suivant.

Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions mesurables de X dans \mathbb{C} , telle la série numérique $\sum \int_X |f_n| \, d\mu$ soit convergente, alors toutes les fonctions f_n sont intégrables, la série de fonctions $\sum f_n$ converge simplement presque partout vers une fonction intégrable $f: X \to \mathbb{C}$ et on a :

$$\int_{X} f d\mu = \sum_{n=0}^{+\infty} \int_{X} f_n d\mu$$

Exercice 51 Soient (X, \mathcal{A}, μ) un espace mesuré.

1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R}^+ qui converge presque partout vers une fonction f.

Montrer que s'il existe une constante M > 0 telle que $\int_X f_n d\mu \leq M$ pour tout $n \in \mathbb{N}$, on a alors $\int_X f d\mu \leq M$.

2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite décroissante de fonctions mesurables de X dans \mathbb{R}^+ qui converge presque partout vers une fonction f.

Montrer que si f_0 est intégrable, il en est alors de même de toutes les fonctions f_n ainsi que de f et qu'on a:

$$\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$$

Le résultat subsiste-t-il si $\int_X f_0 d\mu = +\infty$?

3. Soient $f: X \to \overline{\mathbb{R}}$ une fonction intégrable et $(A_n)_{n \in \mathbb{N}}$ la suite de parties mesurables de X définie par :

$$A_n = |f|^{-1} \left([n, +\infty] \right)$$

(a) Montrer que f est finie presque partout et que :

$$\lim_{n \to +\infty} \int_{A_n} |f| \, d\mu = 0$$

(b) Montrer que pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que :

$$(A \in \mathcal{A} \ et \ \mu(A) < \eta) \Rightarrow \int_{A} |f| \, d\mu < \varepsilon$$

(c) En prenant $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ où λ est la mesure de Lebesgue, montrer que la fonction F définie sur \mathbb{R} par :

$$F\left(x\right) = \int_{0}^{x} f\left(t\right) dt$$

est uniformément continue sur \mathbb{R} $(\int_0^x f(t) dt$ désigne l'intégrale de f sur l'intervalle d'extrémités 0 et x).

Exercice 52 On se place $sur\left(\mathbb{N},\mathcal{P}\left(\mathbb{N}\right)\right)$ muni de la mesure de comptage :

$$\forall A \in \mathcal{P}(\mathbb{N}), \ \mu(A) = \operatorname{card}(A) \in \mathbb{N} \cup \{+\infty\}$$

Pour tout $n \in \mathbb{N}$, on désigne par δ_n la mesure de Dirac en n.

1. Montrer que :

$$\mu = \sum_{n \in \mathbb{N}} \delta_n$$

2. Montrer que pour toute suite réelle positive $x = (x_n)_{n \in \mathbb{N}}$, on a :

$$\int_{\mathbb{N}} x d\mu = \sum_{n \in \mathbb{N}} x_n$$

- 3. Donner une condition nécessaire et suffisante pour qu'une suite $x = (x_n)_{n \in \mathbb{N}}$ à valeurs complexes soit sommable.
- 4. Soit $(x_{n,k})_{(n,k)\in\mathbb{N}^2}$ une suite double de nombres complexes telle que :

$$\forall k \in \mathbb{N}, \ \lim_{n \to +\infty} x_{n,k} = \ell_k \in \mathbb{C}$$

On suppose qu'il existe une suite $(\alpha_k)_{k\in\mathbb{N}}$ de réels positifs telle que la série $\sum \alpha_k$ soit convergente et :

$$\forall k \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ |x_{n,k}| \le \alpha_k$$

Montrer que :

$$\lim_{n\to +\infty}\sum_{k=0}^{+\infty}x_{n,k}=\sum_{k=0}^{+\infty}\ell_k$$

5. Calculer:

$$\lim_{n \to +\infty} \sum_{k=1}^{+\infty} \frac{n}{k} \sin\left(\frac{1}{kn}\right)$$

6. Soit $(a_k)_{k\in\mathbb{N}}$ une suite numérique telle que la série $\sum a_k$ soit absolument convergente et $(b_k)_{k\in\mathbb{N}}$ une suite numérique bornée.

Calculer:

$$\lim_{n \to +\infty} \sum_{k=0}^{+\infty} a_k \left(1 + \frac{b_k}{n} \right)^n$$

Exercice 53 Soit $f:]0,1[\to \mathbb{R}$ la fonction définie par f(x) = 0 si x est irrationnel et par $f(x) = \frac{1}{q}$ si $x = \frac{p}{q}$ est rationnel où p,q sont entiers naturels non nuls premiers entre eux.

- 1. Justifier le fait que f est Lebesgue-intégrable et calculer son intégrale de Lebesgue.
- 2. Justifier le fait que f est Riemann-intégrable et calculer son intégrale de Riemann.

Exercice 54 Soient a < b deux réels et $f : [a, b] \to \mathbb{R}$ une fonction bornée. Pour tout réel $x \in [a, b]$ et tout réel $\eta > 0$, on note :

$$\mathcal{V}_{x,\eta} = |x - \eta, x + \eta[\cap [a, b]]$$

et le diamètre de $f(\mathcal{V}_{x,\eta})$ est le réel :

$$\delta\left(f\left(\mathcal{V}_{x,\eta}\right)\right) = \sup_{\left(y,z\right) \in \left(\mathcal{V}_{x,\eta}\right)^{2}} \left|f\left(y\right) - f\left(z\right)\right|$$

L'oscillation de f en $x \in [a,b]$ est le réel défini par :

$$\omega\left(x\right) = \inf_{n>0} \delta\left(f\left(\mathcal{V}_{x,\eta}\right)\right)$$

On note D l'ensemble des points de discontinuité de f et G l'ensemble des points de [a,b] où f a une limite à gauche. On notera $f(x^-)$ la limite à gauche en un point x de [a,b] quand cette dernière existe.

1. Montrer que :

$$D = \{x \in [a, b] \mid \omega(x) > 0\}$$

2. Montrer que, pour tout entier $n \geq 1$, l'ensemble :

$$G_n = \left\{ x \in G \mid \omega\left(x\right) > \frac{1}{n} \right\}$$

est dénombrable.

- 3. En déduire que $D \cap G$ est dénombrable.
- 4. Montrer que la fonction bornée $f:[a,b] \to \mathbb{R}$ est Riemann-intégrable si, et seulement si, l'ensemble $[a,b] \setminus G$ est négligeable (on suppose connu le fait que D est mesurable et le critère de Riemann-intégrabilité de Lebesgue : une fonction bornée $f:[a,b] \to \mathbb{R}$ est Riemann-intégrable si, et seulement si, elle est presque partout continue).

Exercice 55 Calculer

$$\lim_{n\to+\infty} \int_0^1 n^2 x \left(1-x\right)^n dx$$

et conclure.

Exercice 56 Soient a, b deux réels strictement positifs et f la fonction définie sur $\mathbb{R}^{+,*}$ par :

$$\forall x \in \mathbb{R}^{+,*}, \ f(x) = \frac{xe^{-ax}}{1 - e^{-bx}}$$

Montrer que :

$$\int_{\mathbb{R}^{+,*}} f(x) \, dx = \sum_{n=0}^{+\infty} \frac{1}{(a+nb)^2}$$

Exercice 57 Pour tout réel $\alpha > 0$, on désigne par $(I_n(\alpha))_{n \in \mathbb{N}^*}$ la suite réelle définie par :

$$I_n(\alpha) = \int_0^{n^{\frac{1}{\alpha}}} \left(1 - \frac{x^{\alpha}}{n}\right)^n dx$$

Montrer que cette suite est convergente et calculer sa limite.

Exercice 58 Pour tout réel $\alpha > 0$, on désigne par $(I_n(\alpha))_{n \in \mathbb{N}^*}$ la suite réelle définie par :

$$I_n\left(\alpha\right) = \int_1^{+\infty} n^{\alpha} \sin\left(\frac{x}{n}\right) e^{-n^2 x^2} dx$$

Montrer que cette suite est convergente et calculer sa limite.

Exercice 59

1. Montrer que:

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n \ln\left(t\right) dt = \int_0^{+\infty} e^{-t} \ln\left(t\right) dt$$

2. Montrer que :

$$\int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} \ln\left(t\right) dt = \frac{n}{n+1} \left(\ln\left(n\right) - \sum_{k=1}^{n+1} \frac{1}{k}\right)$$

En déduire la valeur de $\int_0^{+\infty} e^{-t} \ln(t) dt$.

Exercice 60 En justifiant l'égalité :

$$\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n} = \sum_{n=1}^{+\infty} \int_0^1 t^{n-1} \sin(nx) \, dt = \int_0^1 \left(\sum_{n=1}^{+\infty} t^{n-1} \sin(nx) \right) dt$$

et en calculant la dernière intégrale, on obtient :

$$\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n} = \frac{\pi - x}{2}$$

pour tout réel $x \in]0, 2\pi[$.

1. Montrer que, tout couple de réels (x,t) dans $\mathbb{R} \times]-1,1[$, la série $\sum t^{n-1}\sin{(nx)}$ est convergente et calculer sa somme.

On notera f(x,t) cette somme.

2. Montrer que, pour tout réel $x \in]0,\pi[\,,$ on a :

$$\int_0^1 f(x,t) dt = \frac{\pi - x}{2}$$

3. Monter que, pour tout réel $x \in [0, 2\pi[$, on a :

$$\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n} = \frac{\pi - x}{2}$$

4. Montrer que la convergence de la série de fonctions $\sum \frac{\sin(nx)}{n}$ est uniforme sur tout segment $[a,b] \subset]0,\pi[$ et en déduire que, pour tout réel $x \in [0,2\pi]$, on a:

$$\sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^2} = \frac{\pi^2}{6} - \frac{x(2\pi - x)}{4}$$

Exercice 61 Soient a < b deux réels et $(a_n)_{n \ge 1}$, $(b_n)_{n \ge 1}$ deux suites réelles telles que :

$$\forall x \in \left[a, b\right[, \lim_{n \to +\infty} \left(a_n \cos\left(nx\right) + b_n \sin\left(nx\right)\right) = 0$$

Montrer que $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = 0$ (lemme de Cantor).

On peut raisonner par l'absurde en utilisant une suite de fonctions définie par :

$$f_k(x) = \frac{(a_{n_k}\cos(n_k x) + b_{n_k}\sin(n_k x))^2}{a_{n_k}^2 + b_{n_k}^2}$$

où la suite d'entiers $(n_k)_{k>1}$ est judicieusement choisie.

Exercice 62 Transformation de Laplace

1. Soit $f: \mathbb{R}^{+,*} \to \mathbb{C}$ une fonction Lebesgue-intégrable. Montrer que la fonction :

$$\mathcal{L}\left(f\right): x \in \mathbb{R}^{+} \mapsto \int_{0}^{+\infty} f\left(t\right) e^{-xt} dt$$

est bien définie, continue sur \mathbb{R}^+ et de limite nulle à l'infini.

- 2. Soit $f: \mathbb{R}^{+,*} \to \mathbb{C}$ une fonction Lebesgue-mesurable et bornée. Montrer que la fonction $\mathcal{L}(f)$ est définie, de classe \mathcal{C}^{∞} sur $\mathbb{R}^{+,*}$ et de limite nulle à l'infini.
- 3. Soit $f: \mathbb{R}^+ \to \mathbb{C}$ une fonction continue telle que $\int_0^{+\infty} f(t) dt$ soit convergente (ce qui ne signifie pas nécessairement que f est intégrable sur \mathbb{R}^+). Nous allons montrer de deux manières différentes la continuité de la transformée de Laplace sur \mathbb{R}^+ .
 - (a) On désigne par R la fonction définie par :

$$\forall x \in \mathbb{R}^+, \ R\left(x\right) = \int_{x}^{+\infty} f\left(t\right) dt$$

i. Montrer que pour tous réels $x \geq 0$ et v > u > 0, on a :

$$\left| \int_{u}^{v} e^{-xt} f(t) dt \right| \le 3 \sup_{t \ge u} |R(t)|$$

ii. En déduire que la fonction $\mathcal{L}(f)$ est bien définie sur \mathbb{R}^+ .

iii. Montrer que pour tout entier $n \geq 1$, la fonction :

$$F_n: x \in \mathbb{R}^+ \mapsto \int_0^n f(t) e^{-xt} dt$$

est continue sur \mathbb{R}^{+} et en déduire que $\mathcal{L}(f)$ est aussi continue sur \mathbb{R}^{+} .

(b) Montrer que pour tous réels $x \ge 0$ et v > u > 0, il existe un réel $c_x \in [u, v]$ tel que :

$$\int_{u}^{v} e^{-xt} f(t) dt = e^{-xu} \int_{u}^{c_x} f(t) dt$$

puis en déduire que la fonction $\mathcal{L}(f)$ est bien définie et continue sur \mathbb{R}^+ .

Exercice 63 L'intégrale de Gauss $\int_0^{+\infty} e^{-t^2} dt$.

On propose ici plusieurs méthodes pour calculer la valeur de l'intégrale de Gauss $\int_0^{+\infty} e^{-t^2} dt$.

1. On considère les fonctions F et G définies sur \mathbb{R}^+ par :

$$F(x) = \left(\int_0^x e^{-t^2} dt\right)^2, \ G(x) = \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt$$

- (a) Montrer que ces fonctions sont de classe C^{∞} sur \mathbb{R}^+ et que F' + G' = 0.
- (b) En déduire la valeur de l'intégrale de Gauss.
- 2. Soit f la fonction définie sur $\mathbb{R}^{+,*}$ par :

$$\forall t \in \mathbb{R}^{+,*}, \ f(t) = \frac{1}{\sqrt{t}(1+t)}$$

(a) Montrer que la transformée de Laplace de f :

$$\mathcal{L}(f): x \in \mathbb{R}^+ \mapsto \int_0^{+\infty} f(t) e^{-xt} dt$$

est bien définie, continue sur \mathbb{R}^+ et de limite nulle en $+\infty$.

- (b) Montrer que $\mathcal{L}(f)$ est de classe \mathcal{C}^1 sur $\mathbb{R}^{+,*}$ et solution d'une équation différentielle de la forme $y'-y=-\frac{\lambda}{\sqrt{x}}$, où λ est une constante réelle.
- (c) Résoudre cette équation différentielle et en déduire la valeur de l'intégrale de Gauss.
- 3. Soit f la fonction définie sur \mathbb{R}^+ par :

$$f(x) = \int_{0}^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$$

- (a) Montrer que f est continue sur \mathbb{R}^+ et de classe \mathcal{C}^1 sur $\mathbb{R}^{+,*}$.
- (b) Montrer que f est solution d'une équation différentielle d'ordre 1 et en déduire la valeur de l'intégrale de Gauss.
- 4. Pour tout réel R > 0, on note :

$$I_R = \int_0^R e^{-t^2} dt$$

(a) Montrer que :

$$I_R^2 = 2 \iint_{T_R} e^{-\left(x^2 + y^2\right)} dx dy$$

où:

$$T_R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le x \le R\}$$

(b) Montrer que:

$$I_R^2 = \frac{\pi}{4} - \int_0^{\frac{\pi}{4}} e^{-\frac{R^2}{\cos^2(\theta)}} d\theta$$

et en déduire la valeur de l'intégrale de Gauss.

5.

(a) Montrer que :

$$\iint_{(\mathbb{R}^+)^2} e^{-(x^2+y^2)} dx dy = \left(\int_0^{+\infty} e^{-t^2} dt \right)^2$$

- (b) Calculer $\iint_{(\mathbb{R}^+)^2} e^{-(x^2+y^2)} dxdy$ en utilisant les coordonnées polaires et en déduire la valeur de l'intégrale de Gauss.
- 6. On désigne par $(W_n)_{n\in\mathbb{N}}$ la suite des intégrales de Wallis définies par :

$$\forall n \in \mathbb{N}, \ W_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$$

(a) Montrer que :

$$W_n \underset{\alpha \to +\infty}{\backsim} \sqrt{\frac{\pi}{2n}}$$

(on vérifiera que $W_{n+2} = \frac{n+1}{n+2}W_n$, que la suite $(nW_nW_{n-1})_{n\in\mathbb{N}^*}$ est constante, puis que $W_{n+1} \leq W_n \leq W_{n-1}$).

(b) Montrer que, pour tout entier $n \ge 1$ et tout réel $t \in [0, \sqrt{n}]$, on a :

$$\left(1 - \frac{t^2}{n}\right)^n \le e^{-t^2} \le \left(1 + \frac{t^2}{n}\right)^{-n}$$

(c) Montrer que pour tout entier $n \geq 1$, on a :

$$\sqrt{n}W_{2n+1} \le \int_0^{\sqrt{n}} e^{-t^2} dt \le \sqrt{n}W_{2(n-1)}$$

- (d) En déduire la valeur de l'intégrale de Gauss.
- (e) Pour tout entier $n \ge 1$, on désigne par p_n la probabilité d'obtenir n fois pile et n fois face sur 2n lancés indépendants d'une pièce équilibrée. Montrer que :

i.

$$\forall n \ge 1, \ p_n = \prod_{k=1}^n \frac{2k-1}{2k}$$

ii.

$$\forall n \ge 1, \ p_n^2 = \frac{1}{2n+1} \prod_{k=1}^n \frac{4k^2 - 1}{4k^2} = \frac{1}{2n+1} \frac{W_{2n}}{W_{2n+1}} \frac{2}{\pi}$$

iii.

$$p_n \underset{n \to +\infty}{\backsim} \frac{1}{\sqrt{\pi n}}$$

7. En munissant, pour tout entier $n \geq 1$, \mathbb{R}^n de sa structure euclidienne canonique, calculer $\int_{\mathbb{R}^n} e^{-\|x\|^2} dx.$

Exercice 64 L'intégrale de Dirichlet

On propose plusieurs méthodes de calcul de l'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

1.

- (a) Montrer que pour tout réel $\alpha > 0$ les intégrales $\int_1^{+\infty} \frac{\cos{(t)}}{t^{\alpha}} dt$ et $\int_1^{+\infty} \frac{\sin{(t)}}{t^{\alpha}} dt$ sont convergentes.
- (b) Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est semi-convergente.

2.

(a) Montrer que la transformée de Laplace $\mathcal{L}(f)$ de la fonction définie sur \mathbb{R}^+ par :

$$\forall t \in \mathbb{R}^+, \ f(t) = \begin{cases} 1 \ si \ t = 0 \\ \frac{\sin(t)}{t} \ si \ t > 0 \end{cases}$$

est bien définie, continue sur \mathbb{R}^+ , de classe \mathcal{C}^{∞} sur $\mathbb{R}^{+,*}$ et de limite nulle à l'infini.

(b) Calculer $\mathcal{L}(f)(x)$ pour tout réel $x \in \mathbb{R}^{+,*}$ et en déduire la valeur de l'intégrale de Dirichlet $\int_{0}^{+\infty} \frac{\sin(t)}{t} dt.$

3.

(a) Montrer que, pour tout réel $x \ge 0$, les intégrales généralisées $\int_0^{+\infty} \frac{\sin(t)}{x+t} dt$ et $\int_0^{+\infty} \frac{\sin^2(t)}{(x+2t)^2} dt$ sont convergentes et que l'on a:

$$\int_0^{+\infty} \frac{\sin(t)}{x+t} dt = 4 \int_0^{+\infty} \frac{\sin^2(t)}{(x+2t)^2} dt$$

- (b) En déduire que la fonction $x \mapsto \int_0^{+\infty} \frac{\sin(t)}{x+t} dt$ est continue sur \mathbb{R}^+ et de classe \mathcal{C}^{∞} sur $\mathbb{R}^{+,*}$.
- (c) Pour $f: t \mapsto \frac{1}{1+t^2}$, montrer que la fonction $\mathcal{L}(f)$ est solution de l'équation différentielle $y'' + y = \frac{1}{x}$, résoudre cette équation différentielle et en déduire la valeur de l'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

4.

(a) Montrer que pour toute fonction f de classe \mathbb{C}^1 de [a,b] dans \mathbb{R} , on $a\lim_{n\to+\infty}\int_a^b f(x)\sin(nx)\,dx=0$.

(b) Montrer que:

$$\forall n \in \mathbb{N}, \ \int_0^{\frac{\pi}{2}} \frac{\sin\left((2n+1)t\right)}{\sin\left(t\right)} dt = \frac{\pi}{2}$$

(c) Après avoir justifié que :

$$\forall n \in \mathbb{N}, \ \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{t} dt = \frac{\pi}{2} + \int_0^{\frac{\pi}{2}} \sin((2n+1)t) \left(\frac{1}{t} - \frac{1}{\sin(t)}\right) dt$$

montrer que :

$$\int_{0}^{+\infty} \frac{\sin(t)}{t} dx = \frac{\pi}{2}$$

Exercice 65 La méthode de Laplace

1. Soit $f:]0,1[\to \mathbb{R}$ une fonction Lebesgue intégrable qui admet une limite finie ℓ en 1^- . On se propose de montrer que :

$$\lim_{n \to +\infty} n \int_0^1 x^n f(x) \, dx = \ell \tag{2}$$

 $soit\ que\ \int_{0}^{1}x^{n}f\left(x\right)dx\ \underset{n\rightarrow+\infty}{\backsim}\ \frac{\ell}{n}\ si\ \ell\neq0\ ou\ \underset{n\rightarrow+\infty}{\lim}\ n\int_{0}^{1}x^{n}f\left(x\right)dx=0\ si\ \ell=0.$

- (a) Montrer que $\lim_{n \to +\infty} \int_0^1 x^n f(x) dx = 0$.
- (b) Montrer (2) dans le cas où la fonction f est de classe C^1 sur le segment [0,1].
- (c) Montrer (2) dans le cas général.

Exercice 66 Soient I, un intervalle réel d'intérieur non vide, a un point de I et f, g deux fonctions intégrables de I dans \mathbb{R} .

Montrer f = g presque partout si, et seulement si, $\int_{a}^{x} f(t) dt = \int_{a}^{x} g(t) dt$ pour tout $x \in I$.

Exercice 67

1. Soient I un intervalle réel non réduit à un point et $a \in I$.

On se donne une fonction mesurable bornée, $f:I\to\mathbb{R}$ et on désigne par F la fonction définie sur I par :

 $\forall x \in I, \ F(x) = \int_{a}^{x} f(t) dt$

Montrer que F est lipschitzienne (donc uniformément continue) sur I et qu'elle est dérivable en tout point $x_0 \in I$ où la fonction f est continue avec $F'(x_0) = f(x_0)$.

2. Montrer que si $f:[a,b] \to \mathbb{R}$ est une fonction dérivable de dérivée bornée, alors f' est intégrable sur [a,b] et :

$$\int_{a}^{b} f'(t) dt = f(b) - f(a)$$

3. En considérant la fonction f définie sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$ par f(0) = 0 et :

$$f(x) = \frac{x}{\ln(|x|)}\cos\left(\frac{1}{x}\right)$$

pour $x \neq 0$, vérifier que le résultat précédent n'est plus valable pour f dérivable de dérivée non bornée.

Exercice 68 On désigne par H le demi-plan complexe défini par :

$$\mathcal{H} = \{ z \in \mathbb{C} \mid \Re(z) > 0 \}$$

- 1. Montrer que, pour tout nombre complexe z, la fonction $t\mapsto t^{z-1}e^{-t}$ est intégrable sur $]1,+\infty[$.
- 2. Soit z un nombre complexe. Montrer que la fonction $t \mapsto t^{z-1}e^{-t}$ est intégrable sur]0,1[si, et seulement si, $z \in \mathcal{H}$.

La fonction gamma d'Euler est la fonction définie sur \mathcal{H} par :

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \int_{0}^{+\infty} t^{z-1} e^{-t} dt$$

3. Montrer que :

$$\Gamma(1) = 1 \ et \ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

4. Montrer que la fonction gamma vérifie l'équation fonctionnelle :

$$\forall z \in \mathcal{H}, \ \Gamma(z+1) = z\Gamma(z) \tag{3}$$

5. Montrer que pour tout entier naturel n, on a :

$$\Gamma(n+1) = n! \ et \ \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

6.

- (a) Soient z et α deux nombres complexes. Montrer que la fonction $t \mapsto \frac{t^z e^{-\alpha t}}{1 e^{-t}}$ est intégrable sur $]0, +\infty[$ si, et seulement si, $(z, \alpha) \in \mathcal{H}^2$.
- (b) Montrer que:

$$\forall (z, \alpha) \in \mathcal{H} \times \mathbb{R}^{+,*}, \int_{0}^{+\infty} \frac{t^{z} e^{-\alpha t}}{1 - e^{-t}} dt = \Gamma(z + 1) \zeta(z + 1, \alpha)$$

où ζ est la fonction dzéta de Hurwitz définie par :

$$\forall (z, \alpha) \in \mathcal{H} \times \mathbb{R}^{+,*}, \ \zeta(z+1, \alpha) = \sum_{n=0}^{+\infty} \frac{1}{(n+\alpha)^{z+1}}$$

En particulier, pour $\alpha = 1$, on a:

$$\forall z \in \mathcal{H}, \int_{0}^{+\infty} \frac{t^{z}}{e^{t} - 1} dt = \Gamma(z + 1) \zeta(z + 1)$$

 $où \zeta$ est la fonction dzéta de Riemann.

7. Pour tout entier $n \geq 1$ et tout $z \in \mathcal{H}$, on note :

$$I_n(z) = \frac{n!n^z}{z(z+1)\cdots(z+n)}$$

(a) Montrer que :

$$\forall z \in \mathcal{H}, \ \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{z-1} dt = I_{n}\left(z\right)$$

(b) En déduire que :

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$

(formule d'Euler).

8. Montrer que:

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{2^{2n}}{\sqrt{n} \binom{2n}{n}}$$

soit:

$$\binom{2n}{n} \underset{n \to +\infty}{\backsim} \frac{1}{\sqrt{\pi}} \frac{2^{2n}}{\sqrt{n}}$$

(formule de Wallis).

9.

(a) Montrer que, pour tout entier $n \geq 1$ et tout $z \in \mathcal{H}$, on a :

$$I_{2n}\left(z\right) = 2^{z-1} \left(1 + \frac{z}{2n+1}\right) \frac{I_n\left(\frac{z}{2}\right) I_n\left(\frac{z+1}{2}\right)}{I_n\left(\frac{1}{2}\right)}$$

(b) Montrer que, pour tout $z \in \mathcal{H}$, on a :

$$\Gamma\left(z\right) = \frac{2^{z-1}}{\sqrt{\pi}} \Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right)$$

(formule de Legendre).

10. On désigne par f la fonction définie sur $\mathbb{R}^{+,*} \times \mathbb{R}$ par :

$$\forall (x, u) \in \mathbb{R}^{+,*} \times \mathbb{R}, \ f(x, u) = \begin{cases} 0 \ si \ u \le -\sqrt{x} \\ \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}} \ si \ u > -\sqrt{x} \end{cases}$$

(a) Montrer que pour tout réel x > 0, on a :

$$\Gamma(x+1) = \sqrt{x} \left(\frac{x}{e}\right)^x \int_{-\infty}^{+\infty} f(x, u) du$$

(b) Montrer que, pour tout réel u, on a :

$$\lim_{x \to +\infty} f(x, u) = e^{-\frac{u^2}{2}}$$

(c) Montrer que pour tout $(x, u) \in [1, +\infty[\times \mathbb{R}, \text{ on } a :$

$$0 \le f(x, u) \le \varphi(u) = \begin{cases} e^{-\frac{u^2}{2}} si \ u \le 0\\ (1 + u) e^{-u} si \ u > 0 \end{cases}$$

(d) En déduire la formule de Stirling :

$$\Gamma(x+1) \underset{x \to +\infty}{\backsim} \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$

Pour x = n entier naturel non nul, on retrouve la formule usuelle :

$$n! \underset{n \to +\infty}{\backsim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

11. Montrer que la fonction gamma est continue sur \mathcal{H} et indéfiniment dérivable sur $\mathbb{R}^{+,*}$ avec pour tout entier naturel non nul n et tout réel strictement positif x:

$$\Gamma^{(n)}(x) = \int_0^{+\infty} (\ln(t))^n t^{x-1} e^{-t} dt$$

- 12. En utilisant l'équation fonctionnelle (3), montrer que la fonction Γ peut être prolongée en une fonction continue sur $\mathbb{C} \setminus \mathbb{Z}^-$ et que ce prolongement vérifie la même équation fonctionnelle. Pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$, on notera encore $\Gamma(z)$ ce prolongement.
- 13. Montrer que, pour tout entier naturel n, on a :

$$\Gamma(z) \underset{z \to -n}{\backsim} \frac{(-1)^n}{n!} \frac{1}{z+n}$$

14. La formule des compléments.

On désigne par φ la fonction définie sur \mathcal{H} par :

$$\forall z \in \mathcal{H}, \ \varphi(z) = \int_0^1 \frac{t^{z-1}}{1+t} dt$$

et par \mathcal{D} la bande ouverte du plan complexe définie par :

$$\mathcal{D} = \{ z \in \mathbb{C} \mid 0 < \Re(z) < 1 \}$$

(a) Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\int_{0}^{+\infty} \frac{t^{z-1}}{1+t} dt = \varphi(z) + \varphi(1-z)$$

(b) Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\Gamma(z)\Gamma(1-z) = \varphi(z) + \varphi(1-z)$$

(c) Montrer que, pour tout $z \in \mathcal{H}$, on a :

$$\varphi(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z}$$

(d) Montrer que, pour tout $z \in \mathcal{D}$, on a:

$$\Gamma(z)\Gamma(1-z) = \frac{1}{z} - 2z\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2}$$

(e) Montrer que, pour tout nombre complexe $z \in \mathbb{C} \setminus \mathbb{Z}$ et tout réel $t \in [0, \pi]$, on a :

$$\cos(zt) = \frac{\sin(\pi z)}{\pi} \left(\frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} \cos(nt) \right)$$

(f) Montrer que, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a :

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

(g) Montrer que, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a :

$$\Gamma(z)\Gamma(-z) = -\frac{\pi}{z\sin(\pi z)}$$

(h) En déduire que, pour tout $z \in \mathbb{C}$, on a :

$$\sin(\pi z) = \pi z \prod_{n=1}^{+\infty} \left(1 - \frac{z^2}{n^2}\right)$$

- VII - Théorèmes de changement de variables et de Fubini sur \mathbb{R}^n

Rappelons les théorèmes de Fubini et de changement de variables.

Pour les fonctions mesurables positives, on dispose du théorème de Fubini-Tonelli utile pour justifier l'intégrabilité d'une fonction de plusieurs variables.

On place sur $\mathbb{R}^p \times \mathbb{R}^q$ muni de la mesure de Lebesgue.

Théorème (Fubini-Tonelli) : Pour $f: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^+$ mesurable, toutes les intégrales considérées ci-dessous ont un sens et on a l'égalité dans $\overline{\mathbb{R}^+}$:

$$\iint_{\mathbb{R}^{p}\times\mathbb{R}^{q}}f\left(x,y\right)dxdy = \int_{\mathbb{R}^{q}}\left(\int_{\mathbb{R}^{p}}f\left(x,y\right)dx\right)dy = \int_{\mathbb{R}^{p}}\left(\int_{\mathbb{R}^{q}}f\left(x,y\right)dy\right)dx$$

Théorème (Fubini-Lebesgue) : Une fonction mesurable $f: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{C}$ est intégrable si, et seulement si :

$$\int_{\mathbb{R}^q} \left(\int_{\mathbb{R}^p} f(x, y) \, dx \right) dy < +\infty$$

les rôles de x et y pouvant être permutés.

Dans ce cas, on a:

$$\iint_{\mathbb{R}^{p} \times \mathbb{R}^{q}} f\left(x, y\right) dx dy = \int_{\mathbb{R}^{q}} \left(\int_{\mathbb{R}^{p}} f\left(x, y\right) dx \right) dy = \int_{\mathbb{R}^{p}} \left(\int_{\mathbb{R}^{q}} f\left(x, y\right) dy \right) dx$$

Théorème (changement de variables) : Soient U, V deux ouverts de \mathbb{R}^n et $\varphi : V \to U$ un \mathcal{C}^1 -difféomorphisme.

En notant $J_{\varphi}: x \in V \mapsto \det(d\varphi(x))$ le déterminant jacobien de φ , une fonction mesurable $f: U \to \mathbb{C}$ est intégrable sur U si, et seulement si, la fonction $(f \circ \varphi)|J_{\varphi}|$ est intégrable sur V et dans ce cas, on a :

$$\int_{U} f(y) dy = \int_{V} f(\varphi(x)) |J_{\varphi}(x)| dx$$

Exercice 69 Quelle est l'image de $\mathcal{U} = (\mathbb{R}_+^*)^2$ par l'application qui à (x,y) associe (x+y,y)? Montrer que cette application est un \mathcal{C}^1 -difféomorphisme de \mathcal{U} sur son image. En déduire la valeur de $\int_{\mathcal{U}} e^{-(x+y)^2} dx \, dy$.

Exercice 70

- 1. Montrer que la fonction $f:(x,y)=e^{-y}\sin{(2xy)}$ est intégrable sur $[0,1]\times\mathbb{R}_+^{\star}$.
- 2. En déduire la valeur de $\int_0^{+\infty} \frac{\sin^2(y) e^{-y}}{y} dy$.

Exercice 71 Soient a et b deux réels tels que -1 < a < b.

- 1. Montrer que la fonction $f:(x,y)\mapsto y^x$ est intégrable sur le rectangle $[a,b]\times[0,1]$.
- 2. En déduire la valeur de $\int_0^1 \frac{y^b y^a}{\ln(u)} dy$.

Exercice 72 La fonction $f:(x,y)\mapsto e^{-xy}\sin(x)\sin(y)$ est-elle intégrable sur $(\mathbb{R}_+^*)^2$?

Exercice 73 Soit f la fonction définie sur $R = [0,1]^2$ par :

$$f(x,y) = \frac{x-y}{(x^2+y^2)^{\frac{3}{2}}}$$

- 1. La fonction f est-elle intégrable sur R?
- 2. Calculer une primitive de $\frac{1}{(1+t^2)^{\frac{3}{2}}}$ sur \mathbb{R} .
- 3. Calculer, pour tout $y \in]0,1[$:

$$\varphi(y) = \int_{0}^{1} f(x, y) dx$$

4. Montrer que :

$$\int_0^1 \left(\int_0^1 f(x, y) \, dx \right) dy \neq \int_0^1 \left(\int_0^1 f(x, y) \, dy \right) dx$$

Exercice 74 Soient f, g les fonctions définies sur $R =]0,1[^2$ par :

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 et $g(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$

- 1. Montrer que f est intégrable sur R et calculer $\int_{R} f(x,y) dxdy$.
- 2.
- (a) Calculer, pour tout $y \in]0,1[$:

$$\varphi\left(y\right) = \int_{0}^{1} g\left(x, y\right) dx$$

(b) Calculer:

$$\int_{0}^{1} \left(\int_{0}^{1} g\left(x,y\right) dx \right) dy \ et \ \int_{0}^{1} \left(\int_{0}^{1} g\left(x,y\right) dy \right) dx$$

et conclure.

Exercice 75 Fonction Béta.

On désigne par \mathcal{H} le demi plan complexe défini par :

$$\mathcal{H} = \{ z \in \mathbb{C} \mid \Re(z) > 0 \}$$

1. Soient u, v deux nombres complexes. Montrer que la fonction $t \mapsto t^{u-1} (1-t)^{v-1}$ est intégrable sur]0,1[si, et seulement si, $(u,v) \in \mathcal{H}^2$.

Définition : la fonction béta (ou fonction de Bessel de seconde espèce) est la fonction définie sur \mathcal{H}^2 par :

$$\forall (u, v) \in \mathcal{H}^2, \ B(u, v) = \int_0^1 t^{u-1} (1-t)^{v-1} dt$$

2. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a :

$$B(u, v) = B(v, u)$$
 et $B(u + 1, v) = \frac{u}{u + v} B(u, v)$

3. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a:

$$\lim_{n \to +\infty} n^{u} B\left(u, v + n + 1\right) = \Gamma\left(u\right)$$

- 4. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a $B(u, v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}$.
- 5. Calculer B(n+1, m+1), pour n, m entiers naturels.

- VII - Variables aléatoires

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

Une variable aléatoire réelle est une fonction mesurable X de (Ω, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

La loi de X est la mesure de probabilité \mathbb{P}_X définie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ par :

$$\forall B \in \mathcal{B}(\mathbb{R}), \ \mathbb{P}_X(B) = \mathbb{P}(X \in B)$$

(mesure image de \mathbb{P} par X).

Si μ est une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, on dit qu'une variable aléatoire réelle X sur $(\Omega, \mathcal{A}, \mathbb{P})$ suit la loi μ , si $\mathbb{P}_X = \mu$ et on note alors $X \hookrightarrow \mu$.

Une variable aléatoire $X:(\Omega,\mathcal{A},\mathbb{P})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ est dite intégrable si $\int_{\Omega}|X|\,d\mathbb{P}<+\infty$ et dans ce cas son espérance est le réel :

$$\mathbb{E}\left(X\right) = \int_{\Omega} X d\mathbb{P}$$

Pour X à valeurs positives, on peut définir $\mathbb{E}(X)$ qui est éventuellement infini.

Cette espérance dépend de \mathbb{P} et devrait être notée $\mathbb{E}_{\mathbb{P}}(X)$.

Le théorème de transfert nous dit que :

$$\mathbb{E}\left(X\right) = \int_{\mathbb{R}} x d\mathbb{P}_X$$

où \mathbb{P}_X est la loi de X, c'est-à-dire la mesure de probabilité définie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ par :

$$\forall B \in \mathcal{B}(\mathbb{R}), \ \mathbb{P}_X(B) = \mathbb{P}(X \in B)$$

(mesure image de \mathbb{P} par X).

On note $\mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$ l'ensemble de toutes les variables aléatoires réelles intégrables sur $(\Omega, \mathcal{A}, \mathbb{P})$. C'est un espace vectoriel et l'espérance \mathbb{E} est linéaire.

Une variable aléatoire $X:(\Omega,\mathcal{A},\mathbb{P})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ est dite de carré intégrable si $\int_{\Omega}X^2d\mathbb{P}<+\infty$ (ce qui revient à dire que $X^2\in\mathcal{L}^1(\Omega,\mathcal{A},\mathbb{P})$).

On note $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$ l'ensemble de toutes les variables aléatoires réelles de carré intégrable sur $(\Omega, \mathcal{A}, \mathbb{P})$.

Si X, Y sont dans $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$, alors XY est dans $\mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$ (ce qui résulte de $|XY| \leq \frac{1}{2}(X^2 + Y^2)$) et on a :

$$\left|\mathbb{E}\left(XY\right)\right| \leq \sqrt{\mathbb{E}\left(X^{2}\right)}\sqrt{\mathbb{E}\left(Y^{2}\right)}$$

(inégalité de Cauchy-Schwarz).

Il en résulte que $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$ est un sous-espace vectoriel de $\mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$ $(Y = 1 \in \mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P}), \text{donc } X = X \cdot 1 \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P}) \text{ si } X \in \mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})).$

La covariance de X et Y dans $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$ est le réel :

$$\operatorname{cov}\left(X,Y\right) = \mathbb{E}\left(\left(X - \mathbb{E}\left(X\right)\right)\left(Y - \mathbb{E}\left(Y\right)\right)\right) = \mathbb{E}\left(XY\right) - \mathbb{E}\left(X\right)\mathbb{E}\left(Y\right)$$

et la variance de $X \in \mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$ est le réel :

$$\mathbb{V}\left(X\right) = \mathbb{E}\left(\left(X - \mathbb{E}\left(X\right)\right)^{2}\right) = \mathbb{E}\left(X^{2}\right) - \left(\mathbb{E}\left(X\right)\right)^{2}$$

Pour $X \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$, on peut définir $\mathbb{V}(X)$ qui est éventuellement infini.

De l'inégalité de Cauchy-Schwarz sur les espérances, on déduit que :

$$\left|\operatorname{cov}\left(X,Y\right)\right| \leq \sqrt{\mathbb{V}\left(X\right)}\sqrt{\mathbb{V}\left(Y\right)}$$

l'égalité étant réalisée si, et seulement si, il existe un réel a > 0 et un réel b tels que Y = aX + b presque sûrement (i. e. $\mathbb{P}(Y = aX + b) = 1$).

La fonction de répartition d'une variable aléatoire $X:(\Omega,\mathcal{A},\mathbb{P})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ est la fonction de répartition de sa loi \mathbb{P}_X définie par :

$$\forall x \in \mathbb{R}, \ F_X(x) = \mathbb{P}_X(]-\infty, x]) = \mathbb{P}(X \le x)$$

Deux variables aléatoires ont la même loi si, et seulement si, elles ont la même fonction de répartition puisque $\mathcal{B}(\mathbb{R})$ est engendré par les intervalles de la forme $]-\infty,x]$.

La fonction de répartition F_X est croissante avec, pour tout réel x:

$$\lim_{t \to x^{+}} F_{X}(t) = F_{X}(x), \lim_{t \to x^{-}} F_{X}(t) = F_{X}(x) - \mathbb{P}(\lbrace x \rbrace)$$

$$\lim_{t \to -\infty} F_{X}(t) = 0, \lim_{t \to +\infty} F_{X}(t) = 1$$

et l'ensemble $\mathcal{D}_X = \{x \in \mathbb{R} \mid \mathbb{P}(\{x\}) > 0\}$ de ses points de discontinuité est dénombrable.(exercice 19).

Une famille $(X_k)_{1 \leq k \leq n}$ de variables aléatoires réelles sur $(\Omega, \mathcal{A}, \mathbb{P})$ est indépendante si, et seulement si, pour tout famille $(B_k)_{1 \leq k \leq n}$ de boréliens, on a :

$$\mathbb{P}\left(\bigcap_{k=1}^{n} (X_k \in B_k)\right) = \prod_{k=1}^{n} \mathbb{P}\left(X_k \in B_k\right)$$

Une variable aléatoire réelle X est dite à densité si sa loi \mathbb{P}_X est à densité, c'est-à-dire qu'il existe une fonction mesurable $f_X : \mathbb{R} \to \mathbb{R}^+$ telle que pour tout borélien B de \mathbb{R} , on a :

$$\mathbb{P}\left(X \in B\right) = \mathbb{P}_X\left(B\right) = \int_{\mathbb{R}} \mathbf{1}_B\left(x\right) f_X\left(x\right) dx = \int_B f_X\left(x\right) dx$$

(intégrale de Lebesgue).

Cette densité est uniquement déterminée modulo l'égalité presque partout.

En particulier, on a:

$$\int_{\mathbb{R}} f_X(x) dx = \mathbb{P}_X(\mathbb{R}) = 1$$

donc f_X est Lebesgue-intégrable.

Pour tous réels a < b, on a :

$$\mathbb{P}\left(a \le X \le b\right) = \mathbb{P}\left(a < X \le b\right) = \mathbb{P}\left(a \le X < b\right) = \mathbb{P}\left(a < X < b\right)$$
$$= \int_{a}^{b} f_{X}\left(x\right) dx$$

$$\mathbb{P}\left(a \leq X\right) = \mathbb{P}\left(a < X\right) = \int_{a}^{+\infty} f_X\left(x\right) dx$$

et:

$$F_X(a) = \mathbb{P}(a \ge X) = \mathbb{P}(a > X) = \int_{-\infty}^a f_X(x) dx$$

Si X et Y sont deux variables aléatoires indépendantes de densités respectives f et g, la variable aléatoire X + Y est alors de densité h définie par :

$$h(x) = \int_{\mathbb{R}} f(t) g(x - t) dt = \int_{\mathbb{R}} g(t) f(x - t) dt$$

La fonction h est le produit de convolution de f et g et est notée f * g.

Exercice 76 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Montrer que :

1. pour tout $X \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$, on a:

$$\forall \alpha > 0, \ \mathbb{P}(|X| \ge \alpha) \le \frac{\mathbb{E}(|X|)}{\alpha}$$

(inégalité de Markov);

2. pour tout $X \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$, on a:

$$(\mathbb{P}(X \ge \alpha) = 1) \Rightarrow (\mathbb{E}(X) \ge \alpha)$$

$$(\mathbb{P}(X \le \alpha) = 1) \Rightarrow (\mathbb{E}(X) \le \alpha)$$

$$(\mathbb{P}(X = \alpha) = 1) \Rightarrow (\mathbb{E}(X) = \alpha)$$

3. pour toute fonction strictement croissante $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ et tout $X \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$, on a :

$$\forall \alpha > 0, \ \mathbb{P}(|X| \ge \alpha) \le \frac{\mathbb{E}(\varphi \circ |X|)}{\varphi(\alpha)}$$

4. pour tout $X \in \mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$, on a:

$$\forall \alpha > 0, \ \mathbb{P}\left(|X - \mathbb{E}\left(X\right)| \ge \alpha\right) \le \frac{\mathbb{V}\left(X\right)}{\alpha^2}$$

(inégalité de Tchebychev);

5. pour toutes variables aléatoires X, Y dans $\mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$ telles que X > 0, Y > 0 et $XY \ge 1$ presque sûrement, on a :

$$\mathbb{E}\left(X\right)\mathbb{E}\left(Y\right) \ge 1$$

6. pour tout $X \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$ telle que X > 0 presque sûrement, on a :

$$\mathbb{E}\left(X\right)\mathbb{E}\left(\frac{1}{X}\right) \geq 1$$

Exercice 77 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

1. Montrer que, pour tous A, B dans A, on a :

(a)

$$\mathbb{E}\left(\mathbf{1}_{A}\right) = \mathbb{P}\left(A\right), \ \operatorname{cov}\left(\mathbf{1}_{A}, \mathbf{1}_{B}\right) = \mathbb{P}\left(A \cap B\right) - \mathbb{P}\left(A\right) \mathbb{P}\left(B\right), \ \mathbb{V}\left(\mathbf{1}_{A}\right) = \mathbb{P}\left(A\right) \left(1 - \mathbb{P}\left(A\right)\right)$$

(b)

$$|\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| \le \frac{1}{4}$$

(c)

$$|\mathbb{P}(B) - \mathbb{P}(A)| \le \mathbb{P}(A \triangle B)$$

2. Soit $(A_k)_{1 \leq k \leq n}$ une suite d'éléments de \mathcal{A} . En utilisant la formule de Poincaré pour les fonctions indicatrices, montrer que :

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \mathbb{P}\left(A_{i_1} \cap \dots \cap A_{i_k}\right)$$

(formule de Poincaré).

Exercice 78 Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(A_n)_{n \in \mathbb{N}}$ une suite d'événements. On rappelle que :

$$\lim_{n \to +\infty} \sup A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k \text{ et } \lim_{n \to +\infty} \inf A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k$$

Montrer que :

$$\mathbb{P}\left(\liminf_{n\to+\infty}A_n\right) \leq \liminf_{n\to+\infty}\mathbb{P}\left(A_n\right) \leq \limsup_{n\to+\infty}\mathbb{P}\left(A_n\right) \leq \mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)$$

Exercice 79 Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(A_n)_{n \in \mathbb{N}}$ une suite d'événements mutuellement indépendants.

1. En notant $\mathbb{P}(A)$ la probabilité qu'aucun des événements A_n ne soit réalisé, montrer que :

$$\mathbb{P}\left(A\right) \le \exp\left(-\sum_{n=0}^{+\infty} \mathbb{P}\left(A_n\right)\right)$$

2. En déduire que :

$$\left(\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right) = 1\right) \Leftrightarrow \left(\sum_{n=0}^{+\infty} \mathbb{P}\left(A_n\right) = +\infty\right) \Leftrightarrow \left(\sum_{n=0}^{+\infty} \ln\left(1 - \mathbb{P}\left(A_n\right)\right) = -\infty\right)$$

Exercice 80 Soit X une variable aléatoire réelle de densité f sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Montrer que, pour tout \mathcal{C}^1 -difféomorphisme $\varphi : \mathbb{R} \to]a, b[$ avec $-\infty \le a < b \le +\infty$, la variable aléatoire $\varphi(X)$ a pour densité la fonction $g = f \circ \varphi^{-1} |(\varphi^{-1})'| \mathbf{1}_{]a,b[}$. Préciser le cas où φ est une fonction affine.

Exercice 81 Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, $(X_k)_{1 \leq k \leq n}$ une famille finie de variables aléatoires indépendantes sur $(\Omega, \mathcal{A}, \mathbb{P})$ et $(F_k)_{1 \leq k \leq n}$ la suite des fonctions de répartition correspondantes.

1. Montrer que la fonction de répartition de la variable aléatoire $X = \min_{1 \le k \le n} X_k$ est :

$$F_X = 1 - \prod_{k=1}^{n} (1 - F_k)$$

et que celle de la variable aléatoire $Y = \max_{1 \le k \le n} X_k$ est :

$$F_Y = \prod_{k=1}^n F_k$$

2. Montrer que, pour tous réels x < y, on a:

$$\mathbb{P}\left(x < X \le Y \le y\right) = \prod_{k=1}^{n} \left(F_k\left(y\right) - F_k\left(x\right)\right)$$

Exercice 82 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

1. Montrer que pour toute variable aléatoire réelle X sur $(\Omega, \mathcal{A}, \mathbb{P})$, on a :

$$\forall B \in \mathcal{B}(\mathbb{R}), \begin{cases} \mathbf{1}_{B}(X) = \mathbf{1}_{X^{-1}(B)} \\ \mathbb{E}(\mathbf{1}_{B}(X)) = \mathbb{P}(X \in B) \end{cases}$$

En particulier, on a:

$$\forall x \in \mathbb{R}, \ F_X(x) = \mathbb{E}\left(\mathbf{1}_{]-\infty,x]}(X)\right)$$

2. Montrer que pour toute variable aléatoire réelle X sur $(\Omega, \mathcal{A}, \mathbb{P})$ admettant une densité f, on a:

$$\forall B \in \mathcal{B}(\mathbb{R}), \ \mathbb{E}(\mathbf{1}_B(X)) = \int_B f(x) dx$$

3. Soient X une variable aléatoire réelle sur $(\Omega, \mathcal{A}, \mathbb{P})$ et $\varphi = \sum_{n \in \mathbb{N}} b_n \mathbf{1}_{B_n} : \mathbb{R} \to \mathbb{R}^+$ une fonction borélienne positive (les b_n sont des réels positifs et les B_n des boréliens). Montrer que :

$$\mathbb{E}\left(\varphi\left(X\right)\right) = \sum_{n \in \mathbb{N}} b_n \mathbb{P}\left(X \in B_n\right)$$

dans $\overline{\mathbb{R}^+}$.

4. Soient X une variable aléatoire réelle sur $(\Omega, \mathcal{A}, \mathbb{P})$ admettant une densité f et $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction borélienne telle que $\varphi(X)$ soit intégrable.

Montrer que :

$$\mathbb{E}\left(\varphi\left(X\right)\right) = \int_{\mathbb{R}} \varphi\left(x\right) f\left(x\right) dx$$

(théorème de transfert).

Pour $\varphi(x) = x^{\alpha}$, où $\alpha > 0$, la quantité :

$$\mathbb{E}\left(X^{\alpha}\right) = \int_{\mathbb{R}} x^{\alpha} f\left(x\right) dx$$

est le moment d'ordre α de X.

Pour $\alpha > 1$ et $\varphi(x) = (x - \mathbb{E}(X))^{\alpha}$, la quantité :

$$\mathbb{E}\left(\left(X - \mathbb{E}\left(X\right)\right)^{\alpha}\right) = \int_{\mathbb{R}} \left(x - \mathbb{E}\left(X\right)\right)^{\alpha} f\left(x\right) dx$$

est le moment centré d'ordre α de X.

- 5. Soit $(X_k)_{1 \le k \le n}$ une famille finie de variables aléatoire réelle indépendantes sur $(\Omega, \mathcal{A}, \mathbb{P})$.
 - (a) Montrer que, pour toute famille finie $(B_k)_{1 \le k \le n}$ de boréliens, on a l'égalité dans \mathbb{R}^+ :

$$\mathbb{E}\left(\prod_{k=1}^{n} \mathbf{1}_{B_k}\left(X_k\right)\right) = \prod_{k=1}^{n} \mathbb{E}\left(\mathbf{1}_{B_k}\left(X_k\right)\right)$$

(b) Montrer que, pour toute famille finie $(\varphi_k)_{1 \leq k \leq n}$ de fonctions étagées de \mathbb{R} dans \mathbb{R}^+ , on a l'égalité dans \mathbb{R}^+ :

$$\mathbb{E}\left(\prod_{k=1}^{n}\varphi_{k}\left(X_{k}\right)\right)=\prod_{k=1}^{n}\mathbb{E}\left(\varphi_{k}\left(X_{k}\right)\right)$$

(c) Montrer que, pour toute famille finie $(\varphi_k)_{1 \leq k \leq n}$ de fonctions boréliennes de \mathbb{R} dans \mathbb{R}^+ , on a l'égalité dans \mathbb{R}^+ :

$$\mathbb{E}\left(\prod_{k=1}^{n}\varphi_{k}\left(X_{k}\right)\right)=\prod_{k=1}^{n}\mathbb{E}\left(\varphi_{k}\left(X_{k}\right)\right)$$

(d) Montrer que, pour toute famille finie $(\varphi_k)_{1 \leq k \leq n}$ de fonctions boréliennes de \mathbb{R} dans \mathbb{R} telle que chaque variable aléatoire $\varphi_k(X_k)$ soit intégrable, on a l'égalité dans \mathbb{R} :

$$\mathbb{E}\left(\prod_{k=1}^{n}\varphi_{k}\left(X_{k}\right)\right)=\prod_{k=1}^{n}\mathbb{E}\left(\varphi_{k}\left(X_{k}\right)\right)$$

- 6. Soit X une variable aléatoire réelle sur $(\Omega, \mathcal{A}, \mathbb{P})$. Montrer que pour toute fonction borélienne bornée $\varphi : \mathbb{R} \to \mathbb{R}$, la variable aléatoire $\varphi(X)$ est intégrable.
- 7. Soit $(X_k)_{1 \leq k \leq n}$ une famille finie de variables aléatoire réelle sur $(\Omega, \mathcal{A}, \mathbb{P})$.

 Montrer que cette famille est indépendante si, et seulement si, pour toute famille finie $(\varphi_k)_{1 \leq k \leq n}$ de fonctions boréliennes bornées de \mathbb{R} dans \mathbb{R} , on a :

$$\mathbb{E}\left(\prod_{k=1}^{n}\varphi_{k}\left(X_{k}\right)\right)=\prod_{k=1}^{n}\mathbb{E}\left(\varphi_{k}\left(X_{k}\right)\right)$$

Exercice 83 Soit X une variable aléatoire réelle positive sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- 1. Montrer que, pour tout réel $\alpha \geq 0$, la fonction $x \mapsto x^{\alpha} \mathbb{P}(X > x)$ est Lebesgue-mesurable sur $\mathbb{R}^{+,*}$.
- 2. Montrer que, pour tout réel $\alpha \geq 0$ et tout $\omega \in \Omega$, on a :

$$\int_{\mathbb{R}^{+,*}} x^{\alpha} \mathbf{1}_{(X>x)} (\omega) dx = \frac{(X(\omega))^{\alpha+1}}{\alpha+1}$$

3. Montrer que X admet un moment d'ordre $\alpha \geq 1$ si, et seulement si, la fonction $x \mapsto x^{\alpha-1}\mathbb{P}(X > x)$ est Lebesgue-intégrable sur $\mathbb{R}^{+,*}$ et dans ce cas, on a :

$$\mathbb{E}(X^{\alpha}) = \alpha \int_{\mathbb{R}^{+,*}} x^{\alpha - 1} \mathbb{P}(X > x) dx$$

Exercice 84 Soit X une variable aléatoire réelle sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On dit que X est sans mémoire si :

$$\forall (x,y) \in \mathbb{R}^+ \times \mathbb{R}^+, \ \mathbb{P}(X > x + y) = \mathbb{P}(X > x) \, \mathbb{P}(X > x)$$

- 1. Montrer qu'une variable aléatoire réelle suivant une loi exponentielle de paramètre $\lambda > 0$ est sans mémoire.
- 2. On se donne une variable aléatoire sans mémoire X de fonction de répartition F_X .
 - (a) Montrer que $\mathbb{P}(X > 0) = 0$ si, et seulement si, $\mathbb{P}(X > x) = 0$ pour tout réel x > 0.
 - (b) En supposant que $\mathbb{P}(X > 0) > 0$, montrer que X suit une loi exponentielle.

Exercice 85

1. Soit $P(X) = aX^2 - 2bX + c$ un polynôme réel de degré 2 avec a > 0.

$$\int_{\mathbb{R}} e^{-P(t)} dt$$

- 2. Montrer que si X_1, X_2 sont deux variables aléatoires indépendantes qui suivent des lois normales de paramètres respectifs (μ_1, σ_1) et (μ_2, σ_2) , alors la variable aléatoire $X_1 + X_2$ suit une loi normale de paramètres $(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$.
- 3. Soit $(X_k)_{1 \leq k \leq n}$ une suite de variables aléatoires indépendantes telle que, pour tout k compris entre 1 et n, X_k suit une loi normale de paramètres $(\mu_k, \sigma_k) \in \mathbb{R} \times \mathbb{R}^{+,*}$.

Montrer que la variable aléatoire $\sum_{k=1}^{n} X_k$ suit une loi normale de paramètres $\left(\sum_{k=1}^{n} \mu_k, \sqrt{\sum_{k=1}^{n} \sigma_k^2}\right)$.

En particulier, dans le cas où les X_k suivent toutes une même loi normale de paramètres $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^{+,*}$, la variable aléatoire :

$$Y = \frac{1}{\sqrt{n}\sigma} \left(\sum_{k=1}^{n} X_k - n\mu \right)$$

suit une loi normale centrée réduite.

Exercice 86 On dit qu'une variable aléatoire réelle X suit une loi gamma de paramètres a > 0 et $\lambda > 0$ si elle possède une densité définie par :

$$\forall t \in \mathbb{R}, \ f_{a,\lambda}(t) = \frac{\lambda^a}{\Gamma(a)} t^{a-1} e^{-\lambda t} \mathbf{1}_{\mathbb{R}^+}(t)$$

On note $X \hookrightarrow \Gamma(a, \lambda)$.

1. Montrer qu'une variable aléatoire réelle X qui suit une loi $\Gamma(a,\lambda)$ admet une espérance et une variance données par :

$$\mathbb{E}(X) = \frac{a}{\lambda} \ et \ \mathbb{V}(X) = \frac{a}{\lambda^2}$$

2. Soit $(X_k)_{1 \le k \le n}$ une suite de variables aléatoires indépendantes telle que, pour tout k compris entre 1 et n, X_k suit une loi gamma de paramètres $a_k > 0$ et $\lambda > 0$.

Montrer que la variable aléatoire $X = \sum_{k=1}^{n} X_k$ suit une loi gamma de paramètres $a = \sum_{k=1}^{n} a_k$ et λ .

3. Soit $(X_k)_{1 \le k \le n}$ une suite de variables aléatoires indépendantes telle que, pour tout k compris entre 1 et n, X_k suit une loi exponentielle de paramètre $\lambda > 0$.

Montrer que la variable aléatoire $X = \sum_{k=1}^{n} X_k$ suit une loi gamma de paramètres n et λ .

4. Soit $(X_k)_{1 \le k \le n}$ une suite de variables aléatoires indépendantes telle que, pour tout k compris entre 1 et n, X_k suit une loi normale centrée réduite.

Montrer que la variable aléatoire $\sum_{k=1}^{n} X_k^2$ suit une loi gamma de paramètres $\frac{n}{2}$ et $\frac{1}{2}$.

Exercice 87

1. Soient a < b deux réels et f une fonction continue de [a,b] dans \mathbb{R} que l'on prolonge en une fonction continue sur \mathbb{R} en posant f(x) = f(a) pour tout x < a et f(x) = f(b) pour tout x > b.

On suppose que, pour tout réel $x \in [a,b]$, on dispose d'une suite $(Y_{n,x})_{n \in \mathbb{N}}$ de variables aléatoires réelles sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, toutes de carrées intégrables et telles que :

$$\forall n \in \mathbb{N}, \ \mathbb{E}(Y_{n,x}) = x$$

$$\lim_{n \to +\infty} \mathbb{V}\left(Y_{n,x}\right) = 0$$

 $la\ convergence\ \'etant\ uniforme\ sur\ [a,b]\ .$

Montrer que:

$$\lim_{n \to +\infty} \mathbb{E}\left(f\left(Y_{n,x}\right)\right) = f\left(x\right)$$

la convergence étant uniforme sur [a, b].

2. On se donne une fonction continue $f:[0,1]\to\mathbb{R}$ et on lui associe la suite $(B_n)_{n\in\mathbb{N}^*}$ des polynômes de Bernstein définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \ B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

Montrer, en utilisant le résultat de la question précédente, que la suite de fonctions polynomiales $(B_n)_{n\in\mathbb{N}^*}$ converge uniformément vers f sur [0,1].

3. On se donne un réel a>0 et une fonction continue $f:[0,a]\to\mathbb{R}$ que l'on prolonge en une fonction continue sur \mathbb{R}^+ en posant f(x)=f(a) pour tout x>a.

On lui associe la suite de fonctions $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, a], \ u_n(x) = e^{-nx} \sum_{k=0}^{+\infty} f\left(\frac{k}{n}\right) \frac{n^k}{k!} x^k$$

- (a) Montrer que, pour tout entier $n \in \mathbb{N}^*$, la fonction u_n est bien définie et continue sur [0, a].
- (b) Montrer que la suite de fonctions $(u_n)_{n\in\mathbb{N}^*}$ converge uniformément vers f sur [0,a].

$$-$$
 IX $-$ Espaces L^p

Soit (X, \mathcal{A}, μ) un espace mesuré.

Pour $1 \leq p < \infty$, $\mathcal{L}^p = \mathcal{L}^p(X, \mathcal{A}, \mu)$ est l'ensemble des fonctions mesurables de X dans \mathbb{C} telles que :

$$\int_X |f|^p \, d\mu < +\infty$$

Grâce à l'inégalité de Minkowski (qui se déduit de l'inégalité de Hölder), on vérifie que $\mathcal{L}^p(X, \mathcal{M}, \mu)$ est un \mathbb{C} -espace vectoriel.

 $\mathcal{L}^{\infty} = \mathcal{L}^{\infty}(X, \mathcal{A}, \mu)$ est l'espace vectoriel des fonctions qui s'écrivent comme la somme d'une fonction mesurable bornée et d'une fonction nulle presque partout.

Une fonction $f \in \mathcal{L}^{\infty}(X, \mathcal{A}, \mu)$ est de la forme f = g + h où g est mesurable bornée et h = 0 presque partout.

On a donc $|f| \le ||g||_{\infty} = \sup_{x \in X} |f(x)|$ presque partout.

Réciproquement s'il existe un réel M>0 tel que $|f(x)|\leq M$ pour tout $x\in X\setminus A$ où A est une mesurable de X de mesure nulle, on peut écrire que f=g+h avec $g=f\cdot \mathbf{1}_{X\setminus A}$ mesurable bornée et $h=\mathbf{1}_A$ est nulle presque partout.

Pour $1 \leq p \leq \infty$, $L^p = L^p(X, \mathcal{A}, \mu)$ est l'espace vectoriel quotient $\frac{\mathcal{L}^p(X, \mathcal{A}, \mu)}{\mathcal{N}(X, \mathcal{A}, \mu)}$ où $\mathcal{N}(X, \mathcal{A}, \mu)$ est le sous-espace vectoriel de $\mathcal{L}^p(X, \mathcal{A}, \mu)$ formé des fonctions nulles presque partout.

Une fonction $f \in \mathcal{L}^p(X, \mathcal{A}, \mu)$ est identifiée à sa classe d'équivalence $\overline{f} \in L^p(X, \mathcal{A}, \mu)$.

Pour $f = g + h \in \mathcal{L}^{\infty}$ où g est mesurable bornée et h est nulle presque partout, on a $\overline{f} = \overline{g}$ dans L^{∞} et $||f||_{\infty} = ||g||_{\infty} = \sup_{x \in Y} |g(x)|$.

Pour $1 \le p < +\infty$, l'application :

$$f \in L^p \mapsto \|f\|_p = \left(\int_Y |f|^p d\mu\right)^{\frac{1}{p}}$$

est une norme et l'espace $\left(L^{p},\left\|\cdot\right\|_{p}\right)$ est complet.

Pour $1 \leq p < +\infty$, l'ensemble des fonctions continues à support compact est dense dans $\mathcal{L}^{p}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, où λ est la mesure de Lebesgue.

La transformée de Fourier d'une fonction $f \in \mathcal{L}^1$ est la fonction \widehat{f} définie sur \mathbb{R} par :

$$\widehat{f}(x) = \int_{-\infty}^{+\infty} f(t) e^{-ixt} dt$$

Pour toute fonction $f: \mathbb{R} \to \mathbb{C}$, on désigne par Supp (f) l'adhérence dans \mathbb{R} de l'ensemble des réels x tels que $f(x) \neq 0$, soit :

$$\operatorname{Supp}(f) = \overline{f^{-1}(\mathbb{C}^*)}$$

On dit que f est à support compact si Supp (f) est compact.

Exercice 88

1. Soient p, q deux réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$.

Montrer que :

$$\forall (x,y) \in (\mathbb{R}^+)^2, \ xy \le \frac{1}{p}x^p + \frac{1}{q}y^q$$

2. Soient r un entier naturel non nul, p_1, \dots, p_r une suite d'éléments de $[1, +\infty]$ telle que $\sum_{k=1}^r \frac{1}{p_k} = \frac{1}{p_k}$

1 et, pour tout k compris entre 1 et r, f_k une fonction dans $\mathcal{L}^{p_k}(\mathbb{R})$.

Montrer que la fonction
$$f = \prod_{k=1}^r f_k$$
 est dans $\mathcal{L}^1(\mathbb{R})$ et que $||f||_1 \leq \prod_{k=1}^r ||f_k||_{p_k}$.

Exercice 89 On se donne $p \in [1, \infty]$.

- 1. Montrer que, si f, g sont à valeurs réelles et dans \mathcal{L}^p , alors $\max(f, g)$ et $\min(f, g)$ sont aussi dans \mathcal{L}^p .
- 2. Soient $(f_n)_{n\in\mathbb{N}}$ et. $(g_n)_{n\in\mathbb{N}}$ deux suites d'éléments de L^p à valeurs réelles qui convergent dans L^p vers f et g respectivement.

Montrer que les suites $(\max(f_n, g_n))_{n \in \mathbb{N}}$ et $(\min(f_n, g_n))_{n \in \mathbb{N}}$ convergent dans L^p vers $\max(f, g)$ et $\min(f, g)$ respectivement.

- 3. Soient $q \in [1, \infty]$ tel que $\frac{1}{p} + \frac{1}{q} \le 1$ et $r \in [1, \infty]$ défini par $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$.
 - (a) Montrer que si $f \in L^p$ et $g \in L^q$, on a alors $fg \in L^r$ et $\|fg\|_r \le \|f\|_p \|g\|_q$.
 - (b) Si $(f_n)_{n\in\mathbb{N}}$ est une suite d'éléments de L^p qui convergent dans L^p vers f et $(g_n)_{n\in\mathbb{N}}$ une suite d'éléments de L^q qui convergent dans L^q vers g montrer alors que $(f_ng_n)_{n\in\mathbb{N}}$ converge vers fg dans L^r .
- 4. On suppose que p est fini. Si $(f_n)_{n\in\mathbb{N}}$ converge vers f dans L^p et si $(g_n)_{n\in\mathbb{N}}$ est une suite bornée dans L^∞ qui converge vers g presque partout, montrer alors que $(f_ng_n)_{n\in\mathbb{N}}$ converge vers fg dans L^p .

Exercice 90 (X, A, μ) est un espace mesuré avec $0 < \mu(X) < +\infty$.

1. Montrer que pour $1 \le p < q \le +\infty$, on a $\mathcal{L}^q \subset \mathcal{L}^p$ et que :

$$\forall f \in \mathcal{L}^q, \ \|f\|_p \le \|f\|_q \left(\mu\left(X\right)\right)^{\frac{1}{p} - \frac{1}{q}}$$

- 2. Soit $f \in \mathcal{L}^{\infty}$ non identiquement nulle.
 - (a) Montrer que :

$$\limsup_{p \to +\infty} \|f\|_p \le \|f\|_{\infty}$$

(b) Montrer que:

$$\forall \alpha \in]0, \|f\|_{\infty}[, \liminf_{n \to +\infty} \|f\|_{p} \ge \alpha$$

(on pourra utiliser l'ensemble $A_{\alpha} = |f|^{-1} ([\alpha, +\infty[))$ et en déduire que :

$$\lim_{p \to +\infty} \|f\|_p = \|f\|_{\infty}$$

3. Montrer que :

$$\mathcal{L}^{\infty} = \left\{ f \in \bigcap_{p>1} \mathcal{L}^p \mid \sup_{p \ge 1} \|f\|_p < \infty \right\}$$

4. Donner un exemple de fonction $f \in \bigcap_{p \geq 1} \mathcal{L}^p$ telle que $f \notin \mathcal{L}^{\infty}$.

Exercice 91 $\mathbb{R}^{+,*}$ est muni de la tribu de Borel et de la mesure de Lebesgue.

On se donne un réel $p \in]1, \infty[$ et $q = \frac{p}{p-1}$ est l'exposant conjugué de p (on a $q \in]1, \infty[$ et $\frac{1}{p} + \frac{1}{q} = 1$).

1. Montrer que, pour toute fonction $f \in \mathcal{L}^p(\mathbb{R}^{+,*},\mathbb{R})$, on peut définir la fonction F sur \mathbb{R}^+ par :

$$\begin{cases} F(0) = 0 \\ \forall x \in \mathbb{R}^{+,*}, \ F(x) = \int_0^x f(t) dt \end{cases}$$

et que cette fonction est uniformément continue sur \mathbb{R}^+ .

À toute fonction $f \in \mathcal{L}^p(\mathbb{R}^{+,*},\mathbb{R})$, on associe la fonction $\Phi(f)$ définie sur \mathbb{R}_+^* par :

$$\forall x \in \mathbb{R}^{+,*}, \ \Phi(f)(x) = \frac{1}{x} \int_0^x f(t) dt$$

2. On se propose de montrer ici que Φ est une application linéaire continue de $\mathcal{L}^p(\mathbb{R}^{+,*},\mathbb{R})$ dans $\mathcal{L}^p(\mathbb{R}^{+,*},\mathbb{R})$ avec, pour toute fonction $f \in \mathcal{L}^p(\mathbb{R}^{+,*},\mathbb{R})$, $\|\Phi(f)\|_p \leq q \|f\|_p$, ce qui revient à dire que :

$$\int_{\mathbb{D}^{+,*}} \frac{1}{x^p} \left| \int_{0}^{x} f(t) dt \right|^p dx \le q^p \int_{\mathbb{D}^{+,*}} |f(x)|^p dx \tag{4}$$

(inégalité de Hardy).

(a) Montrer que, si $f: \mathbb{R}^{+,*} \to \mathbb{R}$ est continue, à valeurs positive et à support compact dans $\mathbb{R}^{+,*}$, la fonction $\Phi(f)$ est alors dans $\mathcal{L}^p(\mathbb{R}^{+,*},\mathbb{R})$ avec :

$$\int_{\mathbb{R}^{+,*}} (\Phi(f)(x))^p dx = q \int_{\mathbb{R}^{+,*}} (\Phi(f)(x))^{p-1} f(x) dx$$

En déduire que, dans ce cas, l'inégalité (4) est vérifiée.

- (b) Montrer que l'inégalité (4) est vérifiée pour $f: \mathbb{R}^{+,*} \to \mathbb{R}$ continue et à support compact dans \mathbb{R}_{+}^{*} .
- (c) Montrer que l'inégalité (4) est vérifiée pour toute fonction $f \in \mathcal{L}^p\left(\mathbb{R}^{+,*},\mathbb{R}\right)$.
- (d) Soit $(f_n)_{n\geq 2}$ la suite de fonctions définie par :

$$\forall n \geq 2, \ \forall t \in \mathbb{R}^{+,*}, \ f_n(t) = t^{-\frac{1}{p}} \mathbf{1}_{]1,n[}(t)$$

- i. Calculer $||f_n||_p$ pour tout entier $n \geq 2$.
- ii. Vérifier que, pour tout entier $n \geq 2$, on peut écrire $\|\Phi(f_n)\|_p^p$ sous la forme :

$$\|\Phi(f_n)\|_p^p = q^p (u_n + \ln(n) + v_n)$$

où:

$$u_n = \int_1^n \left(\left(\frac{1}{x_p^{\frac{1}{p}}} - \frac{1}{x} \right)^p - \frac{1}{x} \right) dx$$

et:

$$v_n = \frac{1}{p-1} \left(1 - \frac{1}{n^{\frac{1}{q}}} \right)^p$$

iii. Montrer que l'application Φ est linéaire continue de $\mathcal{L}^p(\mathbb{R}^{+,*},\mathbb{R})$ dans $\mathcal{L}^p(\mathbb{R}^{+,*},\mathbb{R})$ avec :

$$\|\Phi\| = q = \frac{p}{p-1}$$

Exercice 92

- 1. Soient $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$ et $g \in \mathcal{L}^p(\mathbb{R}, \mathbb{C})$ où $1 \leq p \leq +\infty$. Montrer que :
 - pour tout $x \in \mathbb{R}$, la fonction $t \mapsto f(x-t)g(t)$ est intégrable sur \mathbb{R} ;
 - la fonction $f * g : x \mapsto \int_{\mathbb{R}} f(x t) g(t) dt$ est dans $\mathcal{L}^p(\mathbb{R}, \mathbb{C})$;
 - $\|f * g\|_p \le \|f\|_1 \|g\|_p.$

La fonction f * g est le produit de convolution de f et g.

2. Montrer que $(\mathcal{L}^1(\mathbb{R},\mathbb{C}),+,*)$ est une \mathbb{C} -algèbre commutative non unitaire.

Exercice 93 Soient $f \in \mathcal{L}^p(\mathbb{R}, \mathbb{C})$ et $g \in \mathcal{L}^q(\mathbb{R}, \mathbb{C})$ où $1 \leq p, q \leq +\infty$ avec $\frac{1}{p} + \frac{1}{q} \geq 1$.

- 1. Justifier l'existence de $r \in [1, +\infty]$ tel que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$.
- 2. Pour $\frac{1}{p} + \frac{1}{q} = 1$, montrer que le produit de convolution f * g est bien défini et que $f * g \in \mathcal{L}^{\infty}(\mathbb{R},\mathbb{C})$ avec $\|f * g\|_{\infty} \leq \|f\|_{p} \|g\|_{q}$.
- 3. On suppose que $\frac{1}{p} + \frac{1}{q} > 1$.
 - (a) Vérifier que $1 \le p, q \le r < +\infty$ et $p' = \frac{pr}{r-p}, q' = \frac{qr}{r-q}$ sont dans $[1, +\infty]$ avec $\frac{1}{p'} + \frac{1}{q'} + \frac{1}{r} = 1$.
 - (b) Montrer que, pour tout réel x, la fonction $t \mapsto |f(x-t)|^{\frac{p}{r}} |g(t)|^{\frac{q}{r}}$ est dans $\mathcal{L}^r(\mathbb{R},\mathbb{R}^+)$, la fonction $t \mapsto |f(x-t)|^{1-\frac{p}{r}}$ est dans $\mathcal{L}^{p'}(\mathbb{R},\mathbb{R}^+)$ et la fonction $t \mapsto |g(t)|^{1-\frac{q}{r}}$ est dans $\mathcal{L}^{q'}(\mathbb{R},\mathbb{R}^+)$.
 - (c) En déduire que le produit de convolution f * g est bien défini et que $f * g \in \mathcal{L}^r(\mathbb{R}, \mathbb{C})$ avec $||f * g||_r \le ||f||_p ||g||_q$ (inégalité de Young).

Exercice 94 Pour toute fonction $f: \mathbb{R} \to \mathbb{C}$ et tout réel a, on désigne par $\tau_a f$ la fonction définie sur \mathbb{R} par $\tau_a f(x) = f(a+x)$.

- 1. Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue et à support compact.
 - (a) Justifier l'existence d'un réel $\alpha > 0$ tel que, pour tout réel $h \in [-1, 1]$, on a $|\tau_h f f| \le 2 ||f||_{\infty} \mathbf{1}_{[-\alpha,\alpha]}$.
 - (b) Montrer que, pour tout réel $p \ge 1$, on $a \lim_{h\to 0} \|\tau_h f f\|_p = 0$.
- 2. Montrer que, pour tout réel $p \geq 1$ et toute fonction $f \in \mathcal{L}^p(\mathbb{R}, \mathbb{C})$, on a $\lim_{h \to 0} \|\tau_h f f\|_p = 0$ (théorème de continuité en moyenne dans \mathcal{L}^p).

Exercice 95 On appelle suite régularisante toute suite $(\alpha_n)_{n\in\mathbb{N}}$ de fonctions dans $\mathcal{L}^1(\mathbb{R},\mathbb{C})$ telle que :

- $\forall n \in \mathbb{N}, \int_{\mathbb{R}} \alpha_n(t) dt = 1;$
- la suite $(\|\alpha_n\|_1)_{n\in\mathbb{N}}$ est majorée;

- pour tout réel $\alpha > 0$, on a :

$$\lim_{n \to +\infty} \int_{|t| \ge \alpha} |\alpha_n(t)| \, dt = 0$$

1. On se donne une fonction $\alpha \in \mathcal{L}^1(\mathbb{R}, \mathbb{R}^+)$ telle $\int_{\mathbb{R}} \alpha(t) dt = 1$ et on lui associe la suite de fonctions $(\alpha_n)_{n \in \mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ \forall t \in \mathbb{R}, \ \alpha_n(t) = n\alpha(nt)$$

Montrer que $(\alpha_n)_{n\in\mathbb{N}^*}$ est une suite régularisante.

- 2. Soit $(\alpha_n)_{n\in\mathbb{N}}$ une suite régularisante dans $\mathcal{L}^1(\mathbb{R},\mathbb{C})$.
 - (a) Montrer que pour toute fonction $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$ et tout entier $n \in \mathbb{N}$, la fonction $f * \alpha_n$ est dans $\mathcal{L}^1(\mathbb{R}, \mathbb{C})$.
 - (b) Montrer que si de plus toutes les fonctions α_n sont continues à support compact, alors pour toute fonction $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$, toutes les fonctions $f * \alpha_n$ sont continues sur \mathbb{R} .
 - (c) Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue et à support compact.
 - i. Montrer que la suite $(f * \alpha_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur \mathbb{R} .
 - ii. Montrer que la suite $(f * \alpha_n)_{n \in \mathbb{N}}$ converge vers f dans $(\mathcal{L}^1(\mathbb{R}, \mathbb{C}), \|\cdot\|_1)$.
 - (d) Soit $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$. Montrer que la suite $(f * \alpha_n)_{n \in \mathbb{N}}$ converge vers f dans $(\mathcal{L}^1(\mathbb{R}, \mathbb{C}), \|\cdot\|_1)$.

Exercice 96

- 1. Soit $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$.
 - (a) Montrer qu'on peut définir la fonction \widehat{f} par :

$$\forall x \in \mathbb{R}, \ \widehat{f}(x) = \int_{\mathbb{R}} f(t) e^{-ixt} dt$$

Cette fonction \hat{f} est la transformée de Fourier de f.

- (b) Montrer que cette fonction \widehat{f} est continue et bornée sur \mathbb{R} avec $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$ (ce qui se traduit en disant que l'application $f \mapsto \widehat{f}$ est linéaire continue de $(\mathcal{L}^{1}(\mathbb{R},\mathbb{C}),\|\cdot\|_{1})$ dans $(\mathcal{C}_{b}^{0}(\mathbb{R},\mathbb{C}),\|\cdot\|_{\infty})$, où $\mathcal{C}_{b}^{0}(\mathbb{R},\mathbb{C})$ est l'espace des fonctions continues et bornées de \mathbb{R} dans \mathbb{C}).
- 2. Montrer que, pour toute fonction $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$, on a :

$$\lim_{|x| \to +\infty} \widehat{f}(x) = 0$$

(théorème de Riemann-Lebesgue).

3. Soient f, g dans $\mathcal{L}^1(\mathbb{R}, \mathbb{C})$. Montrer que $f \cdot \widehat{g}$ et $\widehat{f} \cdot g$ sont dans $\mathcal{L}^1(\mathbb{R}, \mathbb{C})$ avec :

$$\int_{\mathbb{R}} f(x) \,\widehat{g}(x) \, dx = \int_{\mathbb{R}} \widehat{f}(x) \, g(x) \, dx$$

- 4. Soient f, g dans $\mathcal{L}^1(\mathbb{R}, \mathbb{C})$. Montrer que $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$.
- 5. Calculer, pour tout réel a > 0, la transformée de Fourier de la fonction $\varphi_a : t \mapsto e^{-at^2}$.
- 6. Soit $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$.

(a) Montrer que, pour tout réel t, on a :

$$\lim_{a\to 0^{+}}\int_{\mathbb{R}}f\left(x\right)e^{-\left(ax^{2}-ixt\right)}dx=\int_{\mathbb{R}}f\left(x\right)e^{ixt}dx$$

(b) En supposant de plus que la fonction f est bornée et que sa transformére de Fourier \hat{f} est dans $\mathcal{L}^1(\mathbb{R},\mathbb{C})$, montrer que pour tout réel x, on a:

$$f(x) = \frac{1}{2\pi} \widehat{\widehat{f}}(-x)$$

(formule d'inversion de Fourier).

7. Soit $(a_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie par :

$$\forall n \in \mathbb{N}^*, \ \forall t \in \mathbb{R}, \ a_n(t) = \frac{1}{2\pi} e^{-\frac{|t|}{n}}$$

- (a) Calculer, pour tout entier $n \in \mathbb{N}^*$, la transformée de Fourier $\alpha_n = \widehat{a_n}$ de a_n .
- (b) Montrer que $(\alpha_n)_{n\in\mathbb{N}^*}$ est une suite régularisante.
- (c) Montrer que, pour toute fonction $f \in \mathcal{L}^1(\mathbb{R}, \mathbb{C})$ et tout entier $n \in \mathbb{N}^*$, on a :

$$(f * \alpha_n)(x) = \int_{\mathbb{R}} \alpha_n(t) \widehat{f}(t) e^{ixt} dt$$

(d) En déduire la formule d'inversion de Fourier.

- X - Séries de Fourier

À toute fonction $f: \mathbb{R} \to \mathbb{C}$ périodique de période 1 et Lebesgue-intégrable sur]0,1[, on associe la suite $(c_n(f))_{n\in\mathbb{Z}}$ de ses coefficients de Fourier exponentiels définis par :

$$\forall n \in \mathbb{Z}, \ c_n(f) = \int_0^1 f(t) e^{-2i\pi nt} dt$$

Comme f est 1-périodique, elle est intégrable sur tout intervalle a, a + 1 et on a :

$$\forall n \in \mathbb{Z}, \ c_n(f) = \int_a^{a+1} f(t) e^{-2i\pi nt} dt$$

En particulier, pour $a = -\frac{1}{2}$, on a :

$$\forall n \in \mathbb{Z}, \ c_n(f) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t) e^{-2i\pi nt} dt$$

ce qui est intéressant pour f paire ou impaire.

On note $(S_n(f))_{n\in\mathbb{N}}$ la suite des sommes partielles de la série de Fourier de f définie par :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ S_n(f)(x) = \sum_{k=-n}^{n} c_k(f) e^{2i\pi kx}$$

et $(T_n(f))_{n\in\mathbb{N}}$ la suite des moyennes de Cesàro des $S_k(f)$ définie par :

$$\forall n \in \mathbb{N}, \ T_n(f) = \frac{1}{n+1} \sum_{k=0}^{n} S_k(f)$$

Le produit de convolution de $f: \mathbb{R} \to \mathbb{C}$ périodique de période 1 qui est dans $\mathcal{L}^1(]0,1[\,,\mathbb{C})$ et $g: \mathbb{R} \to \mathbb{C}$ périodique de période 1 qui est dans $\mathcal{L}^p(]0,1[\,,\mathbb{C})$ où $1 \le p \le +\infty$ est la fonction :

$$f * g : x \in \mathbb{R} \mapsto \int_{0}^{1} f(x - t) g(t) dt$$

Tenant compte de la 1-périodicité de f et g, le changement de variable y=x-t donne :

$$f * g(x) = \int_{x-1}^{x} f(y) g(x - y) dy = g * f(x)$$

Cette fonction est périodique de période 1 et dans $\mathcal{L}^p(]0,1[\,,\mathbb{C})$ (voir l'exercice 92). On note $(D_n)_{n\in\mathbb{N}}$ la suite des noyaux de Dirichlet définie par :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ D_n(x) = \sum_{k=-n}^n e^{2i\pi kx}$$

et $(F_n)_{n\in\mathbb{N}}$ la suite des noyaux de Fejèr définie par :

$$\forall n \in \mathbb{N}, \ F_n = \frac{1}{n+1} \sum_{k=0}^n D_k$$

Exercice 97

1. Soit $\varphi : \mathbb{R} \to \mathbb{C}$ une fonction périodique de période 1 et Lebesgue-intégrable sur]0,1[. Montrer que, pour tout réel $\alpha > 0$, on a:

$$\lim_{n \to +\infty} \frac{1}{n} \int_{0}^{n\alpha} \varphi(t) dt = \alpha \int_{0}^{1} \varphi(t) dt$$

2. Soient $1 , <math>1 \le q < +\infty$ tels que $\frac{1}{p} + \frac{1}{q} = 1$ et $\varphi : \mathbb{R} \to \mathbb{C}$ périodique de période 1 qui est dans $\mathcal{L}^p(]0,1[\,,\mathbb{C})$.

En utilisant la densité de l'ensemble des fonctions en escaliers dans $\left(\mathcal{L}^{q}\left(\left]0,1\right[,\mathbb{C}\right),\left\|\cdot\right\|_{q}\right)$, montrer que pour toute fonction $f\in\mathcal{L}^{q}\left(\left]0,1\right[,\mathbb{C}\right)$, on a:

$$\lim_{n \to +\infty} \int_{0}^{1} \varphi(nt) f(t) dt = \int_{0}^{1} \varphi(t) dt \int_{0}^{1} f(t) dt$$

3. Montrer que, pour toute fonction $f: \mathbb{R} \to \mathbb{C}$ périodique de période 1 et Lebesgue-intégrable sur $]0,1[\ ,\ on\ a:$

$$\lim_{|n|\to+\infty}c_n\left(f\right)=0$$

(théorème de Riemann-Lebesque).

4. Montrer que, pour toute fonction $f: \mathbb{R} \to \mathbb{C}$ périodique de période 1 et Lebesgue-intégrable sur]0,1[, on a:

$$\lim_{n \to +\infty} \int_{0}^{1} \sin^{2}(\pi nt) f(t) dt = \frac{1}{2} \int_{0}^{1} f(t) dt$$

et:

$$\lim_{n \to +\infty} \int_0^1 \left| \sin \left(\pi n t \right) \right| f(t) dt = \frac{2}{\pi} \int_0^1 f(t) dt$$

Exercice 98 Soit $f: \mathbb{R} \to \mathbb{C}$ périodique de période 1 et Lebesgue-intégrable sur]0,1[.

1. Montrer que, pour tout entier naturel k, la fonction θ_k définie sur $\mathbb{R} \setminus \mathbb{Z}$ par :

$$x \mapsto \frac{\sin(k\pi x)}{\sin(\pi x)}$$

se prolonge en une fonction continue sur \mathbb{R} .

2. Montrer que, pour tout entier naturel n et tout réel x, on a :

$$D_n\left(x\right) = \theta_{2n+1}\left(x\right)$$

$$S_n(f)(x) = (f * D_n)(x) = \int_0^1 f(t) \frac{\sin((2n+1)\pi(x-t))}{\sin(\pi(x-t))} dt$$
$$= \int_0^1 f(x-t) \frac{\sin((2n+1)\pi t)}{\sin(\pi t)} dt$$
$$F_n(x) = \frac{1}{n+1} \theta_n^2(x)$$

$$T_n(f)(x) = (f * F_n)(x) = \frac{1}{n+1} \int_0^1 f(t) \frac{\sin^2((n+1)\pi(x-t))}{\sin^2(\pi(x-t))} dt$$

$$= \frac{1}{n+1} \int_0^1 f(x-t) \frac{\sin^2((n+1)\pi t)}{\sin^2(\pi t)} dt$$

3. Montrer que, pour tout entier naturel n et tout réel x, on a :

$$S_n(f)(x) = \int_0^{\frac{1}{2}} (f(x-t) + f(x+t)) \frac{\sin((2n+1)\pi t)}{\sin(\pi t)} dt$$

$$T_n(f)(x) = \frac{1}{n+1} \int_0^{\frac{1}{2}} (f(x-t) + f(x+t)) \frac{\sin^2((n+1)\pi t)}{\sin^2(\pi t)} dt$$

4. Montrer que, pour tout entier naturel n et tout réel x, on a :

$$\int_0^{\frac{1}{2}} \frac{\sin\left(\left(2n+1\right)\pi\left(x-t\right)\right)}{\sin\left(\pi\left(x-t\right)\right)} dt = \frac{1}{2}$$

et:

$$\frac{1}{n+1} \int_0^{\frac{1}{2}} \frac{\sin^2((n+1)\pi(x-t))}{\sin^2(\pi(x-t))} dt = \frac{1}{2}$$

5. Montrer que si f admet une limite à gauche et à droite en tout point, on a alors :

$$\lim_{n \to +\infty} T_n\left(f\right)\left(x\right) = \frac{f\left(x^-\right) + f\left(x^+\right)}{2}$$

6. On dit qu'un réel x est un point de Lebesgue si f(x) est fini et :

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| \, dt = 0$$

Montrer que, pour un tel point, on $a \lim_{n \to +\infty} T_n(f)(x) = f(x)$.

7. Montrer que si f est continue sur \mathbb{R} , alors la suite $(T_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur \mathbb{R} .