

Ciência da Computação Disciplina de Modelagem e Simulação Introdução Aula 01

Professor: André Flores dos Santos

Professor André:

- **Graduação em Ciência da Computação** (Bacharelado) pela Universidade Franciscana (UFN).
- Graduação no Programa Especial de Graduação de Formação de Professores
 para a Educação Profissional (Licenciatura) pela Universidade Federal de Santa
 Maria (UFSM).
- Mestrado em Microeletrônica pela Universidade Federal do Rio Grande do Sul (UFRGS).
- **Doutorado em Nanociências** pela Universidade Franciscana (UFN).

Trabalhos desenvolvidos ao longo da vida acadêmica em temas relacionados à tecnologia da informação, programação de computadores, software e hardware. Conhecimento e aprendizado em Física, Química, Biologia, Biotecnologia, Bioinformática e nanoestruturas, visando o desenvolvimento de pesquisas no Programa de Pós-Graduação em Nanociências (UFN).

APRESENTAÇÃO DOS ALUNOS

- > Cada um falar o seu nome, cidade, se já tem experiência na área de computação, etc.
- > Quais os planos para o seu futuro, se pretende ser programador, desenvolvedor de jogos, etc.
- > E o que acha sobre Modelagem e Simulação, onde é aplicado e de que forma?

Primeira Aula - Conceitos Fundamentais

Objetivos da Disciplina

O que você vai aprender

Compreender Modelos

Entender conceitos fundamentais de construção de modelos computacionais para sistemas reais.

Aplicar Simulações

Desenvolver projetos de simulação e analisar comportamento de sistemas complexos.

Dominar Ferramentas

Utilizar software especializado para criar simulações computacionais eficazes.

Resolver Problemas

Aplicar conhecimentos em situações reais da área de computação.

Agenda da Aula

O que veremos hoje

Ferramentas e Próximos Passos

Software e continuidade da disciplina

O que é Modelagem?

Definição

Conjunto de técnicas que traduzem fenômenos reais em representações matemáticas que podem ser simuladas em computadores.

Analogia do Mapa

Como um mapa não é o território real, mas uma representação útil que nos ajuda a navegar.

Modelo Computacional

Versão simplificada do sistema real que podemos estudar virtualmente.

Objetivo: Criar representações úteis para estudar sistemas complexos

Conceitos Fundamentais

Terminologia essencial

Modelo

Representação matemática ou algorítmica de um sistema real.

Simulação

Execução do modelo no computador para observar seu comportamento.

Sistema

Conjunto de elementos que interagem para alcançar um objetivo comum.

(x) Variáveis

Características mensuráveis do sistema que podem mudar.

Parâmetros

Valores que controlam o comportamento do modelo.

Tipos de Modelagem

Abordagens principais

Resultado único e previsível para um conjunto de entradas.

Exemplo:

Cálculo de trajetória de projétil

- Para um mesmo conjunto de entradas, o sistema sempre produzirá a mesma saída.
- Não há incerteza.

Estocástica

Incorpora elementos aleatórios, produzindo diferentes resultados possíveis.

Exemplo:

Previsão meteorológica

- O comportamento futuro n\u00e3o pode ser previsto com certeza, apenas com uma certa probabilidade.
- Envolvem variáveis aleatórias.

Baseada em Agentes

Simula comportamentos individuais que geram padrões coletivos.

Exemplo:

Comportamento de multidões

- Autonomia: Cada agente age por conta própria, como se fosse um "personagem" com suas próprias regras.
- Interação: O que acontece no sistema depende das trocas e relações entre os agentes e o ambiente.

Processo de Modelagem

Primeiras Etapas (1-4)

Definição do Problema

Identificar o que queremos estudar e quais perguntas responder.

Coleta e Análise de Dados

Reunir informações sobre o sistema e identificar variáveis importantes.

Formulação Matemática

Traduzir o problema em equações e estabelecer simplificações.

Implementação Computacional

Converter o modelo matemático em código executável.

Processo de Modelagem

Etapas Finais (5-7)

Sistemas Contínuos

Mudanças suaves e contínuas

Características

- Variáveis mudam de forma suave
- Qualquer valor dentro de um intervalo
- Modelados com equações diferenciais
- Tempo como variável contínua

Matemática

dy/dt = f(t, y)

Equações Diferenciais

Equações diferenciais são equações matemáticas que relacionam uma função (por exemplo, a posição, temperatura, velocidade, etc.) com suas derivadas (ou seja, com a taxa de variação dessa função em relação ao tempo ou a outra variável).

Em outras palavras, elas descrevem **como uma quantidade muda continuamente**. Por isso, são ideais para representar sistemas onde as variáveis mudam de forma suave e contínua, sem saltos.

Exemplos Computacionais

Dinâmica de Fluidos: Simulação CFD

Circuitos Analógicos: Modelagem elétrica

Controle Industrial: Processos automáticos

Fenômenos Físicos: Calor, ondas, luz

Representação Visual

Curva suave e contínua

Sistemas Contínuos

Mudanças suaves e contínuas

- •Variáveis mudam de forma suave e contínua. Isso significa que elas podem assumir qualquer valor dentro de um intervalo, incluindo casas decimais, frações, e valores irracionais.
- •As mudanças ocorrem a todo instante, não em pontos específicos no tempo.
- •Pense em uma **temperatura** que varia de 20°C para 21°C. Ela passa por 20.1°C, 20.5°C, 20.99°C, etc. Não salta de 20 para 21.
- •Outros exemplos: velocidade de um carro, pressão em um sistema hidráulico, nível de água em um reservatório.

Sistemas Discretos

Valores específicos e saltos

Características

- Valores específicos (inteiros)
- Mudanças em instantes pontuais
- Equações de diferenças
- Tempo em intervalos discretos

Matemática

x[n+1] = f(x[n])Equações de Diferenças

As variáveis de um sistema discreto só podem assumir certos valores, geralmente inteiros ou contáveis. Por exemplo, o número de pessoas em uma sala pode ser 0, 1, 2, 3... mas nunca 1,5 pessoas.

Exemplos Computacionais

Redes de Computadores: Pacotes de dados

Sistemas de Filas: Atendimento discreto

Jogos Digitais: Estados do jogo

Sinais Digitais: Processamento DSP

Representação Visual

Pontos discretos e degraus

Sistemas Discretos Valores específicos e saltos

Mudanças em instantes pontuais:

As mudanças no sistema acontecem em momentos específicos, chamados de eventos. Entre esses eventos, o sistema permanece no mesmo estado. Por exemplo, a cada chegada ou saída de um cliente em uma fila, o número de pessoas muda.

Equações de diferenças:

Ao invés de usar equações diferenciais (como nos sistemas contínuos), sistemas discretos são modelados por equações de diferenças, que descrevem como o estado do sistema muda de um instante para o outro.

Exemplo:

x[n+1]=f(x[n]) = Aqui, x[n] é o valor da variável no instante n, e x[n+1] é o valor no próximo instante.

Tempo em intervalos discretos:

O tempo é contado em passos ou intervalos separados (por exemplo, t = 0, 1, 2, 3...). Não existe o "meio termo" entre dois instantes, como t = 1,5.

Exemplos:

- Número de clientes em uma fila de banco (você só pode ter 0, 1, 2, 3 clientes, nunca 2,7 clientes).
- Número de carros passando por um pedágio a cada minuto.
- Estados de um semáforo (verde, amarelo, vermelho).

Importância na Computação

Por que é fundamental?

- Sistemas com milhares de variáveis
- Comportamentos emergentes
- Padrões não óbvios

- Testa cenários futuros
- Avalia impacto de mudanças
- Decisões baseadas em dados

- Redução de custos de prototipagem
- Menor tempo de desenvolvimento
- Evita experimentos perigosos

Formação

- Raciocínio algorítmico
- Abstração de problemas
- Preparação para IA e Data Science

Importância na Computação

Por que é fundamental?

Exemplos de experimentos perigosos na prática

- •Indústria química: Testar uma reação química nova pode gerar explosões, liberar gases tóxicos ou causar incêndios. Simular o processo antes evita riscos à vida e ao ambiente.
- •Aeronáutica: Não é seguro testar o que acontece se um avião perde uma asa em voo real. Mas é possível simular esse cenário no computador para estudar o comportamento e planejar respostas.
- •Engenharia civil: Simular o colapso de uma ponte ou prédio para entender os limites estruturais, sem precisar destruir uma construção real.
- •Medicina: Simular o efeito de um novo medicamento ou cirurgia em um modelo virtual do corpo humano, evitando riscos aos pacientes.
- •Energia nuclear: Testar falhas em reatores nucleares é extremamente perigoso na vida real, mas pode ser feito com segurança em simulações.

Aplicações Práticas

Exemplos do mundo real

Indústria

- Otimização de linhas de produção
- Simulação de fluxos industriais
- Análise de confiabilidade
- Design de produtos virtuais

Medicina

- Propagação de epidemias
- Descoberta de medicamentos
- Análise de fluxo sanguíneo
- Dinâmica molecular

Jogos

- Física de jogos realística
- Simulação de multidões
- Efeitos visuais avançados
- · Inteligência artificial

5 Finanças

- Modelagem de risco financeiro
- Simulação Monte Carlo (inserir valores aleatórios)
- Análise de mercados
- Otimização de portfólios

Ferramentas e Tecnologias

O que usar para começar

Para Iniciantes

Aplicações Específicas

Próximos Passos

Próximas Aulas

- Teoria das Filas
- Modelos de Atendimento
- Simulação Prática
- Projetos Aplicados

Para Casa

- Escolher área de interesse
- Começar com modelos simples
- Praticar com Python
- Estudar exemplos da literatura

♥ Lembre-se: Todo especialista já foi iniciante.
O importante é começar e manter a curiosidade!

Prof. André Flores dos Santos • Universidade Franciscana • 2025/2

Referências e material de apoio

PIDD, Michael. Modelagem empresarial: ferramentas para tomada de decisão. Porto Alegre: Artes Médicas: Bookman, 1998. 314 p.

PRADO, Darci; X PRADO, Darci Santos do. Teoria das filas e da simulação. Belo Horizonte, MG: Instituto de Desenvolvimento Gerencial - INDG, 1999. 122 p. (Pesquisa Operacional; 2).

Vicente Falconi Campos. Usando o Arena em simulação, 2000. (Biblioteca Digital)

KELTON, W. David; LAW, Averill M. Simulation modeling and analysis. 4. ed. Boston: Mc Graw Hill, 2007. 768 p.

BANKS, Catherine M., 1960-; SOKOLOWSKI, John A., 1953-. Principles of modeling and simulation: a multidisciplinary approach . New Jersey: Wiley, 2010. xiii, 259 p. : il. ISBN 978-0-470-28943-3

CHWIF, Leonardo; MEDINA, Afonso C. Modelagem e simulação de eventos discretos: teoria & aplicações. 2. ed. São Paulo, SP: Os Autores, c2007. 254 p.

ZEIGLER, Bernard P.; PRAEHOFER, Herbert; KIM, Tag Gon. Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems. 2nd ed. San Diego, Califórnia: Academic Press, 2010. xxi, 510 p. ISBN 9780127784557.

BARBETTA, Pedro Alberto; REIS, Marcelo Menezes; BORNIA, Antonio Cezar. Estatística para cursos de engenharia e informática. São Paulo, SP: Atlas, 2004. 410 p.

Thank you for your attention!!

Email: andre.flores@ufn.edu.br