The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC

Matias Quiroz, Minh-Ngoc Tran, Mattias Villani Robert Kohn and Khue-Dung Dang

> Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

Overview

- ► Pseudo-Marginal MCMC and Subsampling MCMC
- ► The Block-Poisson likelihood estimator
- **▶** Optimal subsample size
- **▶** Empirical results

Motivation

- ► MCMC is still the workhorse for Bayesian inference.
- ► MCMC is often slooow
 - Many iterations
 - Need to evaluate the likelihood function in each iteration
- ► Hamiltonian Monte Carlo (HMC)
 - quickly traverse high-dimensional parameter spaces
 - ... at the cost of a very large number of gradient evaluations.
- ▶ **Subsampling MCMC**: **estimate the likelihood** from a subsample in each MCMC iteration. Fewer evaluations. Faster!

Likelihood evaluations are so expensive nowadays

► High-dimensional spatio-temporal problems (GMRFs)

► Models where **numerical methods** are needed for evaluating $p(y_i|\theta)$ (ODEs, optimization, etc)

▶ **Doubly intractable problems** with costly normalization constants (ERGMs)

So called Big data problems with many observations.

The Metropolis-Hastings (MH) algorithm

- ▶ Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ..., N
 - 1. Sample $\theta_p \sim q\left(\cdot|\theta^{(i-1)}\right)$ (the **proposal distribution**)
 - 2. Compute the acceptance probability

$$\alpha = \min \left(1, \frac{p(\mathbf{y}|\theta_p)p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)}|\theta_p\right)}{q\left(\theta_p|\theta^{(i-1)}\right)} \right)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

MCMC with an unbiased likelihood estimator

- ▶ The likelihood $L(\theta) \equiv p(\mathbf{y}|\theta)$ may be costly to evaluate.
- ▶ **Unbiased estimator** $\hat{p}(\mathbf{y}|\theta,\mathbf{u})$ of the likelihood

$$\int \hat{p}(\mathbf{y}|\theta, \mathbf{u})p(\mathbf{u})d\mathbf{u} = p(\mathbf{y}|\theta)$$

- **u** are auxilliary variables used to compute $\hat{p}(\mathbf{y}|\theta,\mathbf{u})$.
- ► Monte Carlo integration: **u** are the random numbers. Random effects.
- ▶ **Subsampling**: **u** are indicators for selected observations.
- Subsampling to estimate the log-likelihood for iid data $(\ell(y_i|\theta) = \log p(y_i|\theta))$

$$\hat{\ell}(\mathbf{y}|\theta,\mathbf{u}) = \frac{n}{m} \sum_{i \in \mathbf{u}} \ell(y_i|\theta)$$

where n is the sample size, m the subsample size.

The Pseudo-Marginal MH (PMMH) algorithm

- ▶ Initialize $(\theta^{(0)}, \mathbf{u}^{(0)})$ and iterate for i = 1, 2, ..., N
 - 1. Sample $\theta_p \sim q\left(\cdot|\theta^{(i-1)}\right)$ and $\mathbf{u}_p \sim p(\mathbf{u})$ to obtain the **unbiased** estimate $\hat{p}(\mathbf{y}|\theta_p, \mathbf{u}_p)$
 - 2. Compute the acceptance probability

$$\alpha = \min \left(1, \frac{\hat{\mathbf{p}}\left(\mathbf{y} | \theta_p, \mathbf{u}_p\right) p(\theta_p)}{\hat{\mathbf{p}}\left(\mathbf{y} | \theta^{(i-1)}, \mathbf{u}^{(i-1)}\right) p(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)} | \theta_p\right)}{q\left(\theta_p | \theta^{(i-1)}\right)} \right)$$

- 3. With probability α set $\left(\theta^{(i)}, \mathbf{u}^{(i)}\right) = \left(\theta_p, \mathbf{u}_p\right)$ and $\left(\theta^{(i)}, u^{(i)}\right) = \left(\theta^{(i-1)}, \mathbf{u}^{(i-1)}\right)$ otherwise.
- ► Targets a joint distribution $\tilde{p}(\theta, \mathbf{u}|\mathbf{y})$ with marginal $p(\theta|\mathbf{y})$ [1].
- ► This is true **for any** $\mathbb{V}(\hat{p}(\mathbf{y}|\theta,\mathbf{u}))$...
- ▶ ... but $\mathbb{V}(\hat{p}(\mathbf{y}|\theta,\mathbf{u}))$ has to be low for **efficient sampling**.

Variance reduction - control variates

▶ Recall: subsampling to estimate the log-likelihood for iid data

$$\hat{\ell}(\mathbf{y}|\theta,\mathbf{u}) = \frac{n}{m} \sum_{i \in \mathbf{u}} \ell(y_i|\theta)$$

▶ **Difference estimator** with **control variates** $q_i(\theta) \approx \ell(y_i|\theta)$ [2]

$$\hat{\ell}(\mathbf{y}|\theta,\mathbf{u}) = \sum_{i=1}^{n} q_i(\theta) + \frac{n}{m} \sum_{i \in \mathbf{u}} \underbrace{(\ell(y_i|\theta) - q_i(\theta))}_{d_i(\theta)}$$

- Two types of control variates
 - ► Parameter-expanded [3]
 - ► Data-expanded [2]
- ▶ [2] propose estimating $L(\theta) = \exp(\ell(\mathbf{y}|\theta, \mathbf{u}))$ by (approximately) bias-correcting $\exp(\hat{\ell}(\mathbf{y}|\theta, \mathbf{u}))$. HMC extension [4].
- ► Targets a **perturbed posterior** with TV-norm error of $O(n^{-1}m^{-2})$.

Doubly intractable problems

Doubly intractable

$$p(\theta|\mathbf{y}) \propto \frac{f(\mathbf{y};\theta)p(\theta)}{Z(\theta)}$$

- ► Common:
 - **Graph-based models (ERGMs)** $Z(\theta)$ is a sum over all graphs
 - Spatial models like Potts model.
 - ▶ **Directional statistics** $Z(\theta)$ is an intractable integral over the sphere.
- Exponential augmentation trick: $v \sim \text{Exp}(Z(\theta))$

$$\tilde{\pi}(\theta, v) \propto \exp(-vZ(\theta))f(\mathbf{y}; \theta)p(\theta)$$

Variance reduction - dependent PMMH

What really matters for MH is the variance of

$$\log \frac{\hat{\boldsymbol{p}}\left(\mathbf{y}|\theta_{p},\mathbf{u}_{p}\right)}{\hat{\boldsymbol{p}}\left(\mathbf{y}|\theta^{(i-1)},\mathbf{u}^{(i-1)}\right)}$$

- ► Correlated Pseudo Marginal (CPM) [5, 6]: correlate the **u** over MH iterations using an autoregressive proposal $\mathbf{u}^{(i)} = \phi \mathbf{u}^{(i-1)} + \epsilon$.
- Subsampling context: correlate binary subsampling indicators with Gaussian copula [2].
- ▶ **Block Pseudo Marginal (BPM)** [7]: partition $\mathbf{u} = (u_1, ..., u_m)$ in blocks and **update a single block** jointly with θ at each iteration.

The Block-Poisson estimator

▶ The **Block-Poisson estimator** of the likelihood $L(\theta)$:

$$\hat{L}_B(\theta) \equiv \exp(q) \prod_{l=1}^{\lambda} \xi_l$$

$$\xi_l \equiv \exp\left(\frac{a+\lambda}{\lambda}\right) \prod_{h=1}^{\mathcal{X}_l} \left(\frac{\hat{d}_m^{(h,l)} - a}{\lambda}\right)$$

- $q \equiv \sum_{i=1}^{n} q_i(\theta)$ is the sum of the control variates
- ▶ $\lambda \in \mathbb{N}^+$ and $a \in \mathbb{R}$
- $ightharpoonup \hat{d}_m^{(h,l)}$ is an unbiased estimator of $d=\ell-q$ from a batch of m obs
- $ightharpoonup \mathcal{X}_1, ..., \mathcal{X}_{\lambda} \stackrel{iid}{\sim} \operatorname{Pois}(1)$
- Product form allows us to use Block Pseudo Marginal (BPM).
- $\hat{L}_B(\theta)$ requires on average λm evaluations of ℓ_i 's.

Properties of the Block-Poisson estimator

$$\hat{L}_B(\theta) = \exp(q) \prod_{l=1}^{\lambda} \xi_l$$
, where $\xi_l = \exp\left(\frac{a+\lambda}{\lambda}\right) \prod_{h=1}^{\mathcal{X}_l} \left(\frac{\hat{a}_m^{(h,l)} - a}{\lambda}\right)$

- ▶ **Unbiased**: $\mathbb{E}(\hat{L}_B(\theta)) = L(\theta)$ for all $\theta \in \Theta$.
- ▶ **Positive**: $\hat{L}_B(\theta)$ is almost surely positive only if $\hat{d}_m^{(h,l)} \ge a$ almost surely for all h and l.
- ▶ For a given λ , $\mathbb{V}(\hat{L}_B(\theta))$ is minimized for $a = d \lambda$.
- ▶ $\mathbb{V}(\hat{L}_B(\theta)) = \mathbb{V}(\hat{L}_P(\theta))$ where $\hat{L}_P(\theta)$ is the usual Poisson estimator in e.g. [8].

Signed PMMH

- ► Forcing *a* to be a **lower bound** for all $\hat{d}_m^{(h,l)}$ is impractical:
 - ▶ Usually need to know ℓ_i for all data points.
 - $a = d \lambda$ implies that λ will be large. Costly!
- ▶ **Soft lower bound:** $\Pr(\hat{a}_m^{(h,l)} \ge a)$ close to one. More efficient, but $\hat{L}_B(\theta) < 0$ possible.
- ► Signed PMMH [9]
 - **Run PMMH on absolute value** $|\hat{L}_B(\theta)| p(\theta)$
 - ► Correct for the sign $s = \text{Sign}(\hat{L}_B(\theta))$ using importance sampling

$$\widehat{\mathbb{E}\psi(\theta)} = \frac{\sum_{i=1}^{N} \psi(\theta^{(i)}) s^{(i)}}{\sum_{i=1}^{N} s^{(i)}}.$$

Optimal tuning of Signed PMMH based on $\hat{L}_B(\theta)$

- ▶ **Optimal** subsample size *m* in regular PMMH?
- Minimize (normalized) asymptotic variance of PMMH estimates of $\mathbb{E}\left[\psi(\theta)\right]$ per unit of computing time

$$CT(m) \propto m \cdot IF(\sigma_{\log \hat{L}}^2)$$

- ► Regular PMMH is optimal when $V(\log \hat{L}(\theta)) \approx 1$ [10, 11].
- ▶ **Optimal** λ and m in **signed PMMH** minimizes

$$\operatorname{CT}(\lambda, m) \propto m\lambda \cdot \frac{\operatorname{IF}\left[\sigma_{\log|\hat{L}_B|}^2(\lambda, m)\right]}{\left(2\tau(\lambda, m) - 1\right)^2}$$

- ▶ Optimal λ and m balances
 - 1. The **cost** of computing \hat{L}_B , which is $m\lambda$ on average
 - 2. MH inefficiency, IF
 - 3. Probability of a **positive sign** $\tau(\lambda, m)$

Optimal tuning of Signed PMMH

- ▶ To compute $CT(\lambda, m)$, we need expressions for:
 - ► IF(·) ► $\sigma_{\log|\hat{L}_B|}^2(\lambda, m)$ ► $\tau(\lambda, m)$
- ► The **derivation of IF** is an extension of the theory in [10] to blocked signed PMMH.
- ▶ Idealized assumptions:
 - Perfect MH proposal for θ
 - $\sigma_{\log|\hat{L}_B|}^2$ is not a function of θ
- ▶ **Heuristic guidelines**. But accurate in experiments.
- **Conservative guidelines**: $m\lambda$ is not suggested too small.

$$\tau \equiv \Pr(\hat{L}_B \geq 0)$$

▶ Under the minimum variance condition $a = d - \lambda$

$$\hat{L}_B(\theta) = \exp(q) \prod_{l=1}^{\lambda} \xi_l$$
, where $\xi_l = \exp\left(\frac{d}{\lambda}\right) \prod_{h=1}^{\mathcal{X}_l} \left(\frac{\hat{d}_m^{(h,l)} - d}{\lambda} + 1\right)$

- $\hat{L}_B(\theta) > 0$ whenever an even number of ξ_l are negative.
- ▶ $\xi_l > 0$ whenever an even number of $A_m = \frac{\hat{d}_m d}{\lambda} + 1$ are negative.
- ► Applying a result from Feller's first book twice:

$$\Pr(\hat{L}_B \ge 0) = \frac{1}{2} \left[1 + (1 - 2\Psi(m, \lambda))^{\lambda} \right]$$

where

$$\Psi(m,\lambda) \equiv \Pr(\xi_l < 0) = \frac{1}{2} \sum_{j=1}^{\infty} \left[1 - (1 - 2\Pr(A_m < 0))^j \right] \Pr(\mathcal{X}_l = j),$$

$$\mathcal{X}_l \stackrel{\textit{iid}}{\sim} \operatorname{Pois}(1) \text{ and } A_m = \frac{\tilde{d}_m - d}{\lambda} + 1.$$

$$\sigma_{\log|\hat{L}_B|}^2(\lambda, m)$$

▶ Under the condition $a = d - \lambda$ we have

$$\log |\hat{L}| = q + d + \sum_{l=1}^{\lambda} \sum_{h=1}^{\mathcal{X}_l} \log \left(\left| \frac{\hat{d}_m^{(h,l)} - d}{\lambda} + 1 \right| \right)$$

$$= q + d + \frac{1}{2} \sum_{l=1}^{\lambda} \sum_{h=1}^{\mathcal{X}_l} \log \left(\frac{\hat{d}_m^{(h,l)} - d}{\lambda} + 1 \right)^2$$

- $\hat{d}_m^{(h,l)} \sim \text{Normal} \Rightarrow \sigma_{\log|\hat{L}_B|}^2(\lambda, m)$ is the variance of a random sum of logs of non-central χ^2 variables.
- Non-central χ^2 is a Poisson mixture of central χ^2 [12]
- ► Moments of log central χ^2 are known from [13]
- Law of total variance

Optimal tuning - normal case

- Assume $\hat{d}_m^{(h,l)} \sim \text{Normal}$.
- ▶ Both $\Pr(\hat{L}_B \ge 0)$ and $\sigma_{\log|\hat{L}_B|}^2(\lambda, m)$ are functions of the variance of $\hat{d}_m^{(h,l)}$

$$\mathbb{V}(\hat{d}_m^{(h,l)}(\theta)) = \frac{n^2}{m} \sigma_{d_i}^2(\theta)$$

- ▶ Optimal tuning therefore depends on $\sigma_{d_i}^2(\theta)$.
- ▶ Solution: estimate $\sigma_{d_i}^2(\theta)$ from a subsample for some selected θ .
- ▶ What if $\hat{d}_m^{(h,l)}$ are not normal?
- ▶ Set m = 20 and rely on the CLT. Optimize only λ .
- ▶ However, numerical experiments tell us that m = 1 is optimal.

Optimal tuning - mixture of normals case

- ▶ We can instead assume that $\hat{d}_m^{(h,l)}$ follows a **mixture of normals.**
- ► Mixture of normals are universal approximators.
- ▶ Both $\Pr(\hat{L}_B \ge 0)$ and $\sigma_{\log|\hat{L}_B|}^2$ are still **tractable**.
- ... but estimating $\sigma_{d_i}^2(\theta)$ is not enough anymore.
- ► How to fit a mixture of normals to $\hat{d}_m^{(h,l)}$?
- Matching characteristic functions (c.f.)
 - 1. Fit any distribution to a subsample of d_i 's and get the c.f. $\varphi_d(t)$.
 - 2. Compute the c.f. of $\hat{d}_m^{(h,l)}$ as $\varphi_{\hat{d}_m}(t) = (\varphi_d(t/m))^m$.
 - 3. Approximate the distribution of $\hat{d}_m^{(h,l)}$ by a normal mixture by L2-matching of c.f.'s. Plancherel's theorem.

Matching a 1-component MoN to skewed normal

Matching a 5-component MoN to skewed normal

Relative CT - logistic regression on three real datasets

Relative CT: Signed PMMH vs Approximate PMMH

$$\gamma = n^2 \sigma_{d_i}^2$$

Checking the optimality guidelines

(A) γ does not depend on θ .

(B) γ depends on θ .

Conclusions

- Subsampling to speed up MCMC and HMC.
- Control variates and slowly evolving subsamples are important for efficiency.
- Block-Poisson is an unbiased and efficient estimator of the likelihood.
- Optimal tuning of Signed PMMH with Block-Poisson estimator.
- Very large speed-ups compared to regular MCMC and FireFly MC.
- Can be used to optimally tune Signed PMMH in doubly intractable problems.

References

- C. Andrieu and G. O. Roberts, "The pseudo-marginal approach for efficient Monte Carlo computations," *The Annals of Statistics*, pp. 697–725, 2009.
 M. Quiroz, R. Kohn, M. Villani, and M.-N. Tran, "Speeding up
- mcmc by efficient data subsampling," *Journal of the American Statistical Association*, no. forthcoming, pp. 1–35, 2018.

 R. Bardenet, A. Doucet, and C. Holmes, "On markov chain monte

carlo methods for tall data," The Journal of Machine Learning

- Research, vol. 18, no. 1, pp. 1515–1557, 2017.

 K.-D. Dang, M. Quiroz, R. Kohn, M.-N. Tran, and M. Villani,
 "Hamiltonian monte carlo with energy conserving subsampling,"
 arXiv preprint arXiv:1708.00955, 2017.
- G. Deligiannidis, A. Doucet, and M. K. Pitt, "The correlated pseudo-marginal method," arXiv preprint arXiv:1511.04992, 2015.

- J. Dahlin, F. Lindsten, J. Kronander, and T. B. Schön, "Accelerating pseudo-marginal metropolis-hastings by correlating auxiliary variables," arXiv preprint arXiv:1511.05483, 2015.
 - M. Quiroz, M.-N. Tran, M. Villani, R. Kohn, and K.-D. Dang, "The block-Poisson estimator for optimally tuned exact subsampling MCMC," arXiv preprint arXiv:1603.08232, 2018.
- O. Papaspiliopoulos, "A methodological framework for monte carlo probabilistic inference for diffusion processes," 2009.
- A.-M. Lyne, M. Girolami, Y. Atchade, H. Strathmann, D. Simpson, *et al.*, "On russian roulette estimates for bayesian inference with doubly-intractable likelihoods," *Statistical science*, vol. 30, no. 4, pp. 443–467, 2015.
- M. K. Pitt, R. d. S. Silva, P. Giordani, and R. Kohn, "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," *Journal of Econometrics*, vol. 171, no. 2, pp. 134–151, 2012.

- A. Doucet, M. Pitt, G. Deligiannidis, and R. Kohn, "Efficient implementation of markov chain monte carlo when using an unbiased likelihood estimator," *Biometrika*, vol. 102, no. 2, pp. 295–313, 2015.
- C. Walck, "Hand-book on statistical distributions for experimentalists," tech. rep., 1996. http://inspirehep.net/record/1389910/files/suf9601.pdf.
- S. E. Pav, "Moments of the log non-central chi-square distribution," arXiv preprint arXiv:1503.06266, 2015.