

Kourosh Davoudi kourosh@ontariotechu.ca

Lecture 3: Sort Algorithms I



CSCI 3070U: Design and Analysis of Algorithms

## **Learning Outcomes**

- What is heap?
- Operations on heap
- Applications:
  - Heap Sort
  - Priority Queue



## What is Heap?

- Heap properties:
  - A binary heap is an array which encodes a complete binary tree
  - The height of the tree is, thus,  $\Theta(\log_2 n)$
  - Strict ordering:
    - A heap is ordered from parent to child, but not between siblings



 $A[\operatorname{PARENT}(i)] \ge A[i]$ . In Max-heap

OR

 $A[PARENT(i)] \le A[i]$  In Min-heap



## Data Structure for Heap Tree

Complete binary tree can be easily stored in an array!





## Data Structure for Heap Tree

Complete binary tree can be easily stored in an array!





## **Heap Property**

- The max heap property
  - No parent is smaller than its children

$$A[PARENT(i)] \ge A[i]$$
.

- The min heap property
  - No parent is greater than its children

$$A[PARENT(i)] \le A[i]$$



## **Basic Operations**

#### A basic set of heap operations:

- MAX-HEAPIFY
- BUILD-MAX-HEAP
- HEAP-MAXIMUM
- HEAP-EXTRACT-MAX
- MAX-HEAP-INSERT



## Max-Heapify

- Assume left and right subtrees of *i* are max-heaps.
- Suppose A[i] < max(A[2i], A[2i+1])
  - Heap property is violated
- After MAX-HEAPIFY, subtree rooted at *i* is a max-heap



MAX-HEAPIFY(A, i, n) fixes the heap condition at i

How?



## Max-Heapify



- Node 2 violates the max-heap property
- Compare node 2 with its children, and then swap it with the larger of the two children





 Continue down the tree, swapping until the value is properly placed at the root of a subtree



## Max-Heapify

```
Max-Heapify(A, i)
                                                                       16
    l = LEFT(i)
 2 \quad r = RIGHT(i)
                                                                                10
    if l \leq A. heap-size and A[l] > A[i]
         largest = l
    else largest = i
    if r \leq A. heap-size and A[r] > A[largest]
         largest = r
    if largest \neq i
                                                                      (c)
         exchange A[i] with A[largest]
 9
10
         MAX-HEAPIFY (A, largest)
```



## **Max-Heapify Time Complexity**

- An n-element heap has height  $\log_2(n)$
- We only traverse down a single path
- We (at most) may have to traverse all the way to the leaves
- End conditions:
  - We encounter a subtree that already satisfies the heap property
  - We reach the leaves

$$T(n) = O(\log n)$$





## Build-Max-Heap

This procedure use the procedure MAX-HEAPIFY in a bottom-up manner to convert an array A[1..n] where n = A.length, into a max-heap



$$n = 10$$



## Build-Max-Heap

## BUILD-MAX-HEAP(A)

- 1 A.heap-size = A.length
- 2 for  $i = \lfloor A.length/2 \rfloor$  downto 1
- 3 MAX-HEAPIFY(A, i)

$$O(\log n)$$

**Time Complexity** 

 $O(n \log n)$ 

However, It is not tight enough!



## Build-Max-Heap





16

## **Build-Max-Heap Complexity**

Simple Bound:  $O(n \log n)$ 

#### Tighter analysis:

Two facts:

h=0

h=0

- (1) n-element heap has height  $\lfloor \lg n \rfloor$
- (2) there are at most  $\lceil n/2^{h+1} \rceil$  nodes of height h in any n-element heap.

$$H = \lfloor \log 10 \rfloor = 3 \begin{cases} h=2 & 10 \\ h=2 & 14 \\ h=1 & 8 \\ h=1 & 7 \end{cases} & \# (h=0) : 5 \leq \lceil \frac{10}{2^{0+1}} \rceil = 5 \\ \# (h=1) : 3 \leq \lceil \frac{10}{2^{1+1}} \rceil = 3 \\ \# (h=2) : 1 \leq \lceil \frac{10}{2^{2+1}} \rceil = 2 \\ \# (h=3) : 1 \leq \lceil \frac{10}{2^{3+1}} \rceil = 1 \end{cases}$$



## **Build-Max-Heap Complexity**

Simple Bound:  $O(n \log n)$ 

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
for  $|x| < 1$ .

Tighter analysis:

$$T(n) = \sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) \qquad \qquad \sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$$

$$= O\left(n\sum_{h=0}^{\lfloor \lg n\rfloor} \frac{h}{2^h}\right) = O\left(n\sum_{h=0}^{\infty} \frac{h}{2^h}\right) = O(n)$$

Thus, the running time of BUILD-MAX-HEAP is O(n)



## Heap-Maximum

- Returns the maximum element of heap
  - it's the root!

HEAP-MAXIMUM(A)
1 return 
$$A[1]$$
  $\Theta(1)$ 







Returns the maximum element of heap and removes it



1) Take 16 out of node 1



Returns the maximum element of heap and removes it



1) Take 16 out of node 1





- 1) Take 16 out of node 1
- 2) Move 1 from node 10 to node 1 and erase node





- 1) Take 16 out of node 1
- 2) Move 1 from node 10 to node 1 and erase node





- 1) Take 16 out of node 1
- 2) Move 1 from node 10 to node 1 and erase node
- 3) MAX-HEAPIFY from the root to preserve max-heap property







```
HEAP-EXTRACT-MAX(A)

1 if A.heap-size < 1

2 error "heap underflow"

3 max = A[1]

4 A[1] = A[A.heap-size]

5 A.heap-size = A.heap-size - 1

6 MAX-HEAPIFY(A, 1)

7 return max
```



## Max-Heap-Insert

• We insert new element at the end, then move it up into its correct position





#### Max-Heap-Insert

• We insert new element at the end, then move it up into its correct position

```
\begin{array}{ll} \text{Max-Heap-Insert}(A,x) \\ 1 & A.heap\text{-}size = A.heap\text{-}size + 1 \\ 2 & A[A.heap\text{-}size] = x \\ 3 & i = A.heap\text{-}size \\ 4 & \textbf{while } A[i] > A[Parent(i)] \text{ and } i > 1 \quad O(\log n) \\ 5 & \text{Exchange } A[i] \text{ with } A[Parent(i)] \end{array} \right\} O(1)
```



## **Heap Applications**

- Heapsort
  - The algorithm places the maximum element into the correct place in the array by swapping it with the element in the last position in the array.





## **Heap Sort**





## **Heap Applications**

Heapsort

```
HEAPSORT(A)

1 BUILD-MAX-HEAP(A) O(n)

2 for i = A.length downto 2

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size -1

5 MAX-HEAPIFY(A, 1)
```

Time Complexity

 $O(n \log n)$ 



## **Heap Applications**

- Priority queue is an Abstract Data Type (ADT) :
  - Maintains a dynamic set S of elements
  - Each set element has a key—an associated value
- Priority support the following operations:
  - INSERT(S, x): inserts element x into set S
  - MAXIMUM(S): returns element of S with largest key
  - EXTRACT-MAX(S): removes and returns element of S with largest key.

...



# Priority Queue Implementations

|                   | Unsorted Array                           | Sorted Array                | Heap                              |
|-------------------|------------------------------------------|-----------------------------|-----------------------------------|
| INSERT(S, x)      | $\Theta(1)$ Add into the end             | $\Theta(n)$ Shift           | $\Theta(\log n)$ MAX-HEAP-INSERT  |
| MAXIMUM(S)        | $\Theta(n)$<br>Linear Search             | $\Theta(1)$<br>Last Element | $\Theta(1)$<br>HEAP-MAXIMUM       |
| EXTRACT-MAX $(S)$ | $oldsymbol{\Theta}(n)$<br>Search + shift | $\Theta(1)$<br>Shorten      | $\Theta(\log n)$ HEAP-EXTRACT-MAX |



#### Wrap-up

- We learned
  - One interesting data structure called "Heap"
  - We study how heap can be used for:
    - Sort Problem
    - Priority Queue

