IV | Partial differentiations

Classwork Examples

4.1 Partial derivative and geometrical interpretation

Partial derivative and geometrical interpretation

1	Find the values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point $(4, -5)$, where $f(x, y) = x^2 + 3xy + y - 1$.
	ax ay

C.W.

Answer:
$$\frac{\partial f}{\partial x}\Big|_{(4,-5)} = -7$$
, $\frac{\partial f}{\partial y}\Big|_{(4,-5)} = 13$.

The plane x = 1 intersects the paraboloid $z = x^2 + y^2$. Find the slope of the tangent to the parabola at (1, 2, 5). **C.W.**

Answer:
$$\frac{\partial z}{\partial y}\Big|_{(1,2)} = 4$$
.

Find the first and second order partial derivatives of $z = x^3 + y^3 - 3axy$, where a is a constant. **C.W.**

Answer:
$$\frac{\partial z}{\partial x} = 3x^2 - 3ay$$
, $\frac{\partial z}{\partial y} = 3y^2 - 3ax$,

$$\frac{\partial^2 z}{\partial x^2} = 6x, \frac{\partial^2 z}{\partial x \partial y} = -3a, \frac{\partial^2 z}{\partial y \partial x} = -3a, \frac{\partial^2 z}{\partial y^2} = 6y.$$

If
$$z = x^y + y^x$$
, then verify that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$. **C.W.**

5 Find the first order partial derivatives for the following functions at the specified point.

(i)
$$f(x,y) = \ln\left(\frac{x}{y}\right)$$
, at (2, 3). **C.W.**

(ii)
$$f(x, y) = \frac{x}{\sqrt{x^2 + y^2}}$$
, at (3, 4). **H.W.**

(iii)
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$
, at (2, 1, 2). C.W.

(iv)
$$f(x, y, z) = \ln(x + \sqrt{y^2 + z^2})$$
, at (2, 3, 4). **H.W.**

Answer:

(i)
$$\frac{\partial f}{\partial x}\Big|_{(2,3)} = \frac{1}{2}$$
, $\frac{\partial f}{\partial y}\Big|_{(2,3)} = -\frac{1}{3}$.

$$(ii) \left. \frac{\partial f}{\partial x} \right|_{(3,4)} = \frac{16}{125} , \left. \frac{\partial f}{\partial y} \right|_{(3,4)} = -\frac{12}{125}.$$

Academic Year: 2022-2023

	$\left (iii) \frac{\partial f}{\partial x} \right _{(2,1,2)} = -\frac{2}{27} , \frac{\partial f}{\partial y} \Big _{(2,1,2)} = -\frac{1}{27} , \frac{\partial f}{\partial z} \Big _{(2,1,2)} = -\frac{2}{27} .$
	$ (iv)\frac{\partial f}{\partial x} _{(2,3,4)} = \frac{1}{7}, \frac{\partial f}{\partial y} _{(2,3,4)} = \frac{3}{35}, \frac{\partial f}{\partial z} _{(2,3,4)} = \frac{4}{35}.$
6	Verify that $f_{xy} = f_{yx}$, when f is equal to $\sin^{-1}\left(\frac{y}{x}\right)$. H.W.

4.2 Euler's theorem with corollaries and their applications

Euler's theorem with corollaries and their applications

1	If $z = (8x^2 + y^2)(\log x - \log y)$, then prove that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z$. C.W.
2	If $u = \cos\left(\frac{xy+yz+zx}{x^2+y^2+z^2}\right)$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$. C.W.
3	If $z = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$, then find $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2}$. C.W.
	Answer: 0.
4	If $u = \sin^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$. C.W.
5	If $u = e^{x^2 + y^2}$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 u \log u$. C.W.
6	If $u = \sin^{-1}\left(\frac{\sqrt{x^2+y^2}}{xy}\right)$, then find $x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2}$. C.W.
	Answer: $\tan u (1 + \sec^2 u)$.
7	If $u = x^2 \tan^{-1} \left(\frac{y}{x} \right) - y^2 \tan^{-1} \left(\frac{x}{y} \right)$, then find (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$,
	(ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$. H.W.
	Answer: (i) 2u, (ii) 2u.
8	If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$, then prove that (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$,
	$(ii) x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2\cos 3u \sin u \ or \sin 4u - \sin 2u. \ \mathbf{H.W.}$

4.3 Chain rule

Chain rule

Find
$$\frac{df}{dt}$$
 at $t = 0$ for a function $f(x, y) = x \cos y + e^x \sin y$, where $x = t^2 + 1, y = t^3 + t$. **C.W.**

Academic Year: 2022-2023

	$\left \mathbf{Answer:} \frac{df}{dt} \right _{t=0} = e.$
2	Find $\frac{df}{dt}$ at $t = 0$ for a function $f(x, y, z) = x^3 + xz^2 + y^3 + xyz$, where $x = e^t, y = 0$
	$\cos t$, $z = t^3$. C.W.
	$\mathbf{Answer:} \frac{df}{dt}\Big _{t=0} = 3.$
3	If $z = f(ax + by)$, then prove that $b \frac{\partial z}{\partial x} - a \frac{\partial z}{\partial y} = 0$, where a and b are constants. C.W.
4	If $z = f(x, y)$, $x = e^{2u} + e^{-2v}$, $y = e^{-2u} + e^{2v}$, then show that
	$\frac{\partial f}{\partial u} - \frac{\partial f}{\partial v} = 2 \left[x \frac{\partial f}{\partial x} - y \frac{\partial f}{\partial y} \right]. $ C.W.
5	If $w = f(u, v)$ and $u = \sqrt{x^2 + y^2}$, $v = \cot^{-1}\left(\frac{y}{x}\right)$, then prove that
	$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = \frac{1}{x^2 + y^2} \left[(x^2 + y^2) \left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2 \right]. \text{ C.W.}$
6	If $u = f(x - y, y - z, z - x)$, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. C.W.
7	If $z = f(x, y)$ and $x = u \cos \alpha - v \sin \alpha$, $y = u \sin \alpha + v \cos \alpha$, where α is a constant,
	then prove that $\left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2$. H.W.
8	If $z = \ln(u^2 + v)$, $u = e^{x+y^2}$, $v = x + y^2$, then prove that $2y \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 0$. H.W.

4.4 Implicit functions

Implicit functions

1	Find $\frac{dy}{dx}$ at (1, 1) if $y^3 + y^2 + 5y - x^2 + 4 = 0$. C.W.
	Answer: $\frac{dy}{dx}\Big _{(1,1)} = \frac{1}{5}$.
2	Find $\frac{dy}{dx}$ at $(-1, 1)$ if $xy + y^2 - 3x - 3 = 0$. C.W.
	$\left. \mathbf{Answer:} \frac{dy}{dx} \right _{(-1,1)} = 2.$
3	Assume that the equation $y^2 + xz + z^2 - e^z - c = 0$ defines z as a function of x and
	y say $z = f(x, y)$. Find a value of the constant c such that $f(0, e) = 2$ and compute the
	partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(x, y) = (0, e)$. C.W.
	Answer: $\frac{\partial z}{\partial x}\Big _{(0,e,2)} = \frac{2}{e^2 - 4} \cdot \frac{\partial z}{\partial y}\Big _{(0,e,2)} = \frac{2e}{e^2 - 4}.$

Academic Year: 2022-2023

4	Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(1, 1, 1)$, if $z^3 - xy + yz + y^3 - 2 = 0$. C.W.
	Answer: $\frac{\partial z}{\partial x}\Big _{(1,1,1)} = \frac{1}{4} , \frac{\partial z}{\partial y}\Big _{(1,1,1)} = -\frac{3}{4}.$
5	Find $\frac{dy}{dx}$ at (0, ln 2), if $xe^y + \sin xy + y - \ln 2 = 0$. H.W.
	Answer: $\frac{dy}{dx}\Big _{(0,\ln 2)} = -(2 + \ln 2).$
6	Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at (π, π, π) , if $\sin(x + y) + \sin(y + z) + \sin(x + z) = 0$. H.W.
	Answer: $\frac{\partial z}{\partial x}\Big _{(\pi,\pi,\pi)} = -1$, $\frac{\partial z}{\partial y}\Big _{(\pi,\pi,\pi)} = -1$.

4.5 Total differentials

Total differentials

1	Find total derivative of the function $z = 4x^3 - xy^2 + 3y - 7$. C.W.
	Answer: $dz = (12x^2 - y^2) dx + (3 - 2xy) dy$.
2	If $u = xyz$, then obtain du . C.W.
	Answer: $du = yz dx + zx dy + xy dz$.
3	Find total derivative of the function $z = x \cos y - y \sin x$. H.W.
	Answer: $dz = (\cos y - y \cos x) dx + (-x \sin y - \sin x) dy$.
4	If $u = \ln(x^2 + y^2 + z^2)$, then obtain du . C.W.
	Answer: $du = \left(\frac{2x}{x^2 + y^2 + z^2}\right) dx + \left(\frac{2y}{x^2 + y^2 + z^2}\right) dy + \left(\frac{2z}{x^2 + y^2 + z^2}\right) dz.$