

MATEMÁTICAS

Límites de Funciones Reales I

Prof. Dr. Jorge Crespo Álvarez

Objetivo

Iniciar el estudio de los Límites de funciones reales de una variable

- Definición intuitiva de límite
- Límites laterales
- Límites Infinitos
- Leyes de los Límites

Definición Intuitiva de Límite

www.uneatlantico.es

Investigue el comportamiento de la función $f(x) = x^2 - x + 2$ para valores de x cercanos a 2.

Х	f(x)	Х	f(x)
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000	2.1	4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100	2.01	4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001

$$\lim_{x \to 2} (x^2 - x + 2) = 4$$

1 Definición intuitiva de un límite Suponga que f(x) está definida cuando x está cerca del número a. (Esto significa que f está definida en algún intervalo abierto que contiene a a, excepto posiblemente en a misma.) Entonces se escribe

$$\lim_{x \to a} f(x) = L$$

y se dice que "el límite de f(x), cuando x tiende a a, es igual a L"

si se puede hacer que los valores de f(x) estén arbitrariamente cercanos a L (tan cercanos a L como se quiera), tomando valores de x suficientemente cerca de a (por ambos lados de a), pero no iguales a a.

Una notación alternativa para

$$\lim_{x \to a} f(x) = L$$

es

$$f(x) \to L$$
 cuando $x \to a$

que suele leerse "f(x) tiende a L cuando x tiende a a".

1 Definición intuitiva de un límite Suponga que f(x) está definida cuando x está cerca del número a. (Esto significa que f está definida en algún intervalo abierto que contiene a a, excepto posiblemente en a misma.) Entonces se escribe

$$\lim_{x \to a} f(x) = L$$

y se dice que "el límite de f(x), cuando x tiende a a, es igual a L"

si se puede hacer que los valores de f(x) estén arbitrariamente cercanos a L (tan cercanos a L como se quiera), tomando valores de x suficientemente cerca de a (por ambos lados de a), pero no iguales a a.

Ejemplo:

Infiera el valor de $\lim_{x\to 1} \frac{x-1}{x^2-1}$

<i>x</i> < 1	f(x)
0.5	0.666667
0.9	0.526316
0.99	0.502513
0.999	0.500250
0.9999	0.500025

x > 1	f(x)
1.5	0.400000
1.1	0.476190
1.01	0.497512
1.001	0.499750
1.0001	0.499975

Definición Intuitiva de Límite

Ejemplo:

Calcule el valor de $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±1.0	0.162277
±0.5	0.165525
±0.1	0.166620
±0.05	0.166655
±0.01	0.166666

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{1}{6}$$

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±0.001	0.166667
± 0.0001	0.166670
±0.00001	0.167000
±0.000001	0.000000

Ejemplo:

Calcule el valor de $\lim_{x\to 0} \operatorname{sen} \frac{\pi}{x}$

$$f(1) = \sin \pi = 0 \qquad f(\frac{1}{2}) = \sin 2\pi = 0$$

$$f(\frac{1}{3}) = \sin 3\pi = 0 \qquad f(\frac{1}{4}) = \sin 4\pi = 0$$

$$f(0.1) = \sin 10\pi = 0 \qquad f(0.01) = \sin 100\pi = 0$$

Límites Laterales

Ejemplo:

La función de Heaviside *H* se define por:

$$H(t) = \begin{cases} 0 & \text{si} \quad t < 0 \\ 1 & \text{si} \quad t \ge 0 \end{cases}$$

$$\lim_{t \to 0^{-}} H(t) = 0 \qquad \text{y} \qquad \lim_{t \to 0^{+}} H(t) = 1$$

2 Definición de límites unilaterales Cuando se escribe

$$\lim_{x \to a^{-}} f(x) = L$$

se expresa que el **límite por la izquierda de** f(x) **cuando** x **se aproxima a** a [o el **límite de** f(x) **cuando** x **tiende a** a **por la izquierda**] es igual a L si se puede hacer que los valores de f(x) se acerquen arbitrariamente a L, tanto como se quiera, tomando x suficientemente cercanos a a, pero menores que a.

$$\lim_{x \to a^+} f(x) = L$$

(b)
$$\lim_{x \to a^+} f(x) = L$$

$$\lim_{x \to a} f(x) = L \quad \text{si y solo si} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{y} \quad \lim_{x \to a^{+}} f(x) = L$$

Límites Laterales

Ejemplo:

La gráfica de la función g se muestra a continuación. Utilícela para establecer los valores (si existen) de los siguientes límites:

(a)
$$\lim_{x \to 2^{-}} g(x)$$

(b)
$$\lim_{x \to 2^+} g(x)$$

(c)
$$\lim_{x \to 2} g(x)$$

(d)
$$\lim_{x \to 5^{-}} g(x)$$
 (e) $\lim_{x \to 5^{+}} g(x)$

(e)
$$\lim_{x \to 5^+} g(x)$$

(f)
$$\lim_{x \to 5} g(x)$$

Límites Infinitos

Ejemplo:

Encuentre el valor de $\lim_{x\to 0} \frac{1}{x^2}$ si es que existe.

x	$\frac{1}{x^2}$
±1	1
±0.5	4
±0.2	25
±0.1	100
±0.05	400
±0.01	10,000
±0.001	1,000,000

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Límites Infinitos

4 Definición intuitiva de un límite infinito Sea f una función definida por ambos lados de a, excepto posiblemente en la misma a. Entonces

$$\lim_{x \to a} f(x) = \infty$$

significa que los valores de f(x) pueden hacerse arbitrariamente grandes (tan grandes como se quiera), tomando x suficientemente cerca de a, pero no igual a a.

5 Definición Sea f definida por ambos lados de a, excepto posiblemente en a misma. Entonces

$$\lim_{x \to a} f(x) = -\infty$$

significa que los valores de f(x) pueden ser negativos arbitrariamente grandes, tomando x suficientemente cerca de a, pero no igual a a.

Definición La recta x = a se llama **asíntota vertical** de la curva y = f(x) si al menos uno de los enunciados siguientes son verdaderos:

$$\lim_{x \to a} f(x) = \infty \qquad \qquad \lim_{x \to a^{-}} f(x) = \infty \qquad \qquad \lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty \qquad \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

Límites Infinitos

Ejemplo:

Encuentre el valor de $\lim_{x\to 3} \frac{2x}{x-3}$

Leyes de los límites Suponga que c es una constante y que los límites

$$\lim_{x \to a} f(x) \qquad \text{y} \qquad \lim_{x \to a} g(x)$$

existen. Entonces

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{si} \lim_{x \to a} g(x) \neq 0$$

Leyes de los límites Suponga que c es una constante y que los límites

$$\lim_{x \to a} f(x) \qquad \text{y} \qquad \lim_{x \to a} g(x)$$

existen. Entonces

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$
 donde *n* es un número entero positivo

7.
$$\lim_{x \to a} c = c$$

$$8. \quad \lim_{x \to a} x = a$$

- 9. $\lim_{x \to a} x^n = a^n$ donde n es un entero positivo
- 10. $\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$ donde n es un entero positivo (Si n es par, se supone que a > 0.)
- 11. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ donde n es un entero positivo

[[Si *n* es par, se supone que
$$\lim_{x \to a} f(x) > 0$$
.]

Propiedad de sustitución directa Si f es una función polinomial o una función racional y a está en el dominio de f, entonces

$$\lim_{x \to a} f(x) = f(a)$$

Ejemplo:

Encuentre el valor de $\lim_{x\to 1} \frac{x-1}{x^2-1}$

1 Teorema
$$\lim_{x \to a} f(x) = L$$
 si y solo si $\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$

Teorema Si $f(x) \le g(x)$ cuando x tiende a a (excepto posiblemente en a) y los límites de f y g existen cuando x tiende a a, entonces

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

3 El teorema de la compresión Si $f(x) \le g(x) \le h(x)$ cuando x tiende a a (excepto posiblemente en a) y

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

entonces

$$\lim_{x \to a} g(x) = L$$

Leyes de los Límites

Ejemplo:

Encuentre el valor de $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$

Leyes de los Límites

Ejemplo:

Demuestre que
$$\lim_{x\to 0} x^2 \operatorname{sen} \frac{1}{x} = 0$$

