Last Compiled on November 28, 2012

Due Date: Nov 19

General Instruction

- failure to follow the instruction will result in severe penalty (graded at 90% or even worse)
 - no second grading is planned for this homework set
 - type up your own homework (i.e., no copy-and-pasting from others & you know one can easily check this)
- from the home directory ~/, make a directory for this homework set
 - use mkdir nhleeHW3.git for the directory name
 - create a Sweave file called nhleeHW3.Rnw
 - replace nhlee with the "left-hand side" of your school email
- initialize it as a git folder
 - do this from inside of the git folder for your own sake
 - make sure to verify that your folder contains a hidden folder called .git
 - set it up from RStudio as a RStudio project with git support
 - look for [COMMIT] from the text below for the location where you are supposed to add & commit
- using RStudio for editing and compiling your Rnw file is highly recommended
 - to compile, find and press "Complie PDF" button within the RStudio editor window (typically, the upper left corner window)
 - alternatively, you can use R CMD <Sweave/pdflatex> from bash-shell command line provided that you are in the "appropriate" directory
 - R CMD Sweave yourfilename.Rnw R CMD pdflatex yourfilename.tex
- use the homeworkset3.tex file as a starting point for typesetting your homework solution
 - find it from the course git folder
 - do not delete the problem statements
 - do not delete/modify the existing codes in the preamble area
- once completed, compress the folder as a .nhleeHW3.zip or nhleeHW3.tar.gz, where nhlee is replaced with one from your school email
 - make sure that your compressed file can actually be decompressed

- on the due date,
 - submit a paper copy to the instructor during the class
 - upload the compressed folder to the designated BB discussion forum before midnight
 - any commit made after the class meeting time will be discarded using git reset -hard, and will not be counted as a part of your homework submission

Problems from Chapter 7: Matrix Algebra for MDS

Ex 7.18

- (a) [COMMIT] Use Sweave to accomplish this
 - Use

```
#Your R codes goes here
library(Matrix)
A=matrix(c(1,2,3,2,3,4,3,4,5,4,5,6),nrow=4,byrow=TRUE)
B=matrix(c(1,2,3,2,4,6,3,6,9,4,8,12),nrow=4,byrow=TRUE)
Avec<-cbind(A[,1],A[,2])
Bvec<-cbind(B[,1],B[,2])
plot.new()
plot.window(xlim=c(0,6),ylim=c(0,10))
axis(1)
axis(2)
title(main="")
title(xlab="X")
title(ylab="Y")
box()
lines(Avec,type="b",cex=0.6,pch=21,col='red')
lines(Bvec,type="b",cex=0.6,pch=17,col='Blue')</pre>
```


– Make sure to label the horizontal axis, the vertical axis and give the main title, and give different color for A and B e.g., by filling out the space between the quotation marks, and choose a different symbol for A and B by specifying a number for cex and pch

```
plot(xydataA,xlab='',ylab='',main='',color='',cex=,pch=)
points(xydataB,cex=,pch=,cex=,color='')
```

- [COMMIT] Include your R codes using lstlisting making sure that it has an appropriate caption
- (b) [COMMIT] Supplement your calculation using R/Sweave
 - computations need to be done before using them in the text using or concurrently

```
\begin{Schunk}
\begin{Sinput}
> A = matrix(c(1,0,0,1),nrow=2,byrow=TRUE)
> retval = det(A)
\end{Sinput}
\end{Schunk}
The determinant is 1 or equivalently 1.
```

The determinant is 2 or equivalently 2.

(c) [COMMIT] directly use the code and output from R/S weave, but make sure to explain your answers

```
> #Combination of A
> c<-c(0,0,0)
> z<-as.matrix(c)</pre>
> a1<-cbind(z[1,],z[1,],A[,1])
> a1
     [,1] [,2] [,3]
[1,]
              0
        0
                   1
[2,]
                   2
        0
              0
[3,]
        0
              0
                   3
              0
                   4
[4,]
        0
> A1<-cbind(A[,1],A[,2],A[,3]+A[,1])
> A1
     [,1] [,2] [,3]
[1,]
        1
              2
                   4
[2,]
        2
              3
                   6
[3,]
        3
              4
                   8
              5
[4,]
        4
                  10
> a2 < -cbind(z[1,],z[1,],-2*A[,2])
> a2
     [,1] [,2] [,3]
                  -4
[1,]
        0
              0
[2,]
        0
              0
                  -6
[3,]
        0
              0
                  -8
              0
[4,]
        0
                -10
> A2<-cbind(A[,1],A[,2],A[,3]+A[,1]-2*A[,2])
> A2
     [,1] [,2] [,3]
[1,]
        1
              2
                   0
[2,]
        2
              3
                   0
[3,]
        3
              4
                   0
              5
        4
                   0
[4,]
```

> #Combination of B

Ex 7.24

- [COMMIT] use 1stlisting to list your R code
- [COMMIT] use R/Sweave for computation, but do not use the built-in dist function

```
\begin{Schunk}
\begin{Sinput}
> AT<-t(A)
> B<-A%*%AT
> c<-diag(B)</pre>
> One<-matrix(c(1,1,1,1),byrow=T)
> D2<-c%*%t(One)+One%*%c-2*B
> D<-sqrt(D2)
> print(D)
\end{Sinput}
\begin{Soutput}
         [,1]
                   [,2]
                            [,3]
[1,] 0.000000 1.732051 3.464102 5.196152
[2,] 1.732051 0.000000 1.732051 3.464102
[3,] 3.464102 1.732051 0.000000 1.732051
[4,] 5.196152 3.464102 1.732051 0.000000
\end{Soutput}
\end{Schunk}
```

• [COMMIT] use R/Sweave for computation, and this time, do use the built-in dist function for comparison

```
> AT<-t(A)

> B<-A%*%AT

> c<-diag(B)

> One<-matrix(c(1,1,1,1),byrow=T)

> D2<-c%*%t(One)+One%*%c-2*B

> D<-sqrt(D2)

> print(D)

[,1] [,2] [,3] [,4]

[1,] 0.000000 1.732051 3.464102 5.196152

[2,] 1.732051 0.000000 1.732051 3.464102

[3,] 3.464102 1.732051 0.000000 1.732051

[4,] 5.196152 3.464102 1.732051 0.000000
```

• [COMMIT] make sure to explain your computation, e.g., compare the two computations

```
> dist(A)
```

```
1 2 3
2 1.732051
3 3.464102 1.732051
4 5.196152 3.464102 1.732051
```

Ex 7.30 Omit (c), (d) and (e). The necessary data is saved in matlabclown.RData and can be found from the course git folder. The followings are the equivalent R version:

```
load('matlabclown.RData')
image(X) # omit this in your Sweave code
svdX = svd(X)
U = svdX$u
S = diag(svdX$d)
V = svdX$v
k = 10
M = U[,1:k,drop=FALSE] %*% S[1:k,1:k,drop=FALSE] %*% t(V[,1:k,drop=FALSE])
image(M) # omit this in your Sweave code
image(M,col=gray.colors(k))
```

- (a) [COMMIT] choose a small, a medium and a large value for k
 - for each k,
 - * do [COMMIT]
 - * your performance evaluation is to be included as a caption, and change tinyK, width and height accordingly

```
\begin{figure}
  \centering
\begin{Schunk}
\begin{Sinput}
> tinyK = 1
> #smallK = 5
> #mediumK = 10
> #largeK = 20
> #Your R codes go here
\end{Sinput}
\end{Schunk}
\includegraphics{ywu67HW3-008}
\caption{<YOUR PERFORMANCE EVALUATION> on $1$}
\label{fig:matlabclownKaNumber}
\end{figure}
```

```
> tinyK = 1
> #smallK = 5
> #mediumK = 10
> #largeK = 20
> load('matlabclown.RData')
> image(X) # omit this in your Sweave code
> svdX = svd(X)
> U = svdX$u
> S = diag(svdX$d)
> V = svdX$v
> k = tinyK
> M = U[,1:k,drop=FALSE] %*% S[1:k,1:k,drop=FALSE] %*% t(V[,1:k,drop=FALSE])
> image(M) # omit this in your Sweave code
> image(M,col=gray.colors(k))
```


Test of small

```
> tinyK = 1
> #smallK = 5
> #mediumK = 10
> #largeK = 20
> load('matlabclown.RData')
> image(X) # omit this in your Sweave code
> svdX = svd(X)
> U = svdX$u
> S = diag(svdX$d)
> V = svdX$v
> k = tinyK
> M = U[,1:k,drop=FALSE] %*% S[1:k,1:k,drop=FALSE] %*% t(V[,1:k,drop=FALSE])
> image(M) # omit this in your Sweave code
> image(M,col=gray.colors(k))
```


- (b) [COMMIT] code up all your computation using R/Sweave before starting to type your explanation
 - $-\,$ [COMMIT] write your explanation referring to the numbers computed in the previous step, using

Problems from Chapter 4: Multidimensional Scaling

Ex 4.1

• [COMMIT] Modify the code in Listing 1 for illustrating the first ten objects on a "line"

Listing 1: TikZ Code for Figure 1

```
\begin{tikzpicture}
  \foreach \x in {1,2,...,5,7,8,...,12}
    \foreach \y in {1,...,5}
    {
        \draw (\x,\y) +(-.5,-.5) rectangle ++(.5,.5);
        \draw (\x,\y) node{\footnotesize $(\x,\y)$};
    }
\end{tikzpicture}
```

- [COMMIT] list your R/Sweave codes using 1stlisting
- [COMMIT] use the R/Sweave codes to compute
- [COMMIT] explain your computed numerical values
- make sure to refer to your R code listing via \ref and to the computed values using \Sexpr
- refer to [?] if necessary

(1,5)	(2,5)	(3, 5)	(4, 5)	(5,5)
(1,4)	(2,4)	(3, 4)	(4, 4)	(5,4)
(1,3)	(2,3)	(3, 3)	(4, 3)	(5,3)
(1, 2)	(2,2)	(3, 2)	(4, 2)	(5,2)
(1,1)	(2,1)	(3, 1)	(4, 1)	(5,1)

(7,5)	(8, 5)	(9,5)	(10, 5)	(11, 5)	(12, 5)
(7,4)	(8,4)	(9,4)	(10, 4)	(11, 4)	(12, 4)
(7, 3)	(8,3)	(9,3)	(10, 3)	(11, 3)	(12, 3)
(7, 2)	(8, 2)	(9,2)	(10, 2)	(11, 2)	(12, 2)
(7, 1)	(8,1)	(9,1)	(10, 1)	(11, 1)	(12, 1)

Figure 1: An extension of an example from the TikZ & PGF manual [?]

Ex 4.2

- [COMMIT] list your R code using 1stlisting
- [COMMIT] demonstrate that your function is "functioning" by way of R/Sweave

Ex 4.3

• [COMMIT] list your R code using 1stlisting

```
require(MVA);data(gardenflowers)
mds<-cmdscale(gardenflowers,k=17,eig=T)
mds$eig
#there are negative numbers in eigenvalues
cumsum(abs(mds$eig))/sum(abs(mds$eig))
cumsum((mds$eig)^2)/sum((mds$eig)^2)
x<-mds$points[,1]</pre>
```

```
text(co,rownames(co),cex=0.7)
• [COMMIT] load the data (require (MVA); data(gardenflowers)) and compute using R/Sweave
        require(MVA);data(gardenflowers)
 >
       mds<-cmdscale(gardenflowers,k=17,eig=T)</pre>
       mds$eig
  [1] 1.173085e+00 8.944353e-01 5.732009e-01 4.843006e-01 2.638516e-01
  [6]
       2.298165e-01 8.383417e-02 6.645861e-02 2.984017e-02 -8.326673e-17
 [11] -2.147959e-02 -4.094094e-02 -4.366468e-02 -8.867401e-02 -1.045334e-01
 [16] -1.275889e-01 -1.714295e-01 -2.045124e-01
        #there are negative numbers in eigenvalues
        cumsum(abs(mds$eig))/sum(abs(mds$eig))
  [1] 0.2549273 0.4493002 0.5738645 0.6791096 0.7364481 0.7863903 0.8046086
  [8] 0.8190510 0.8255356 0.8255356 0.8302034 0.8391005 0.8485894 0.8678594
 [15] 0.8905760 0.9183028 0.9555567 1.0000000
        cumsum((mds$eig)^2)/sum((mds$eig)^2)
  [1] 0.4611160 0.7291863 0.8392805 0.9178730 0.9412006 0.9588982 0.9612532
  [8] 0.9627331 0.9630315 0.9630315 0.9631861 0.9637478 0.9643866 0.9670214
```

plot(co,xlab="Coordinate1",ylab="Coordinate2",xlim=range(x)*1.2 ,type='n')

• [COMMIT] include a plot of (relative) positions using R/Sweave

[15] 0.9706829 0.9761377 0.9859851 1.0000000

• [COMMIT] allocate at least a quarter page of text explaining the result

References

y<-mds\$points[,2] co<-cbind(x,y)