

# LABORATORIO DI RETI DI CALCOLATORI

Configurazione indirizzi di rete, subnetting

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

1/40

# IP addressing (IPv4)

- ❖ indirizzo proprio di Network L.: 32 bit unsigned long
  - □ dotted notation: trascrizione del valore di ogni ottetto
    - es: 159.149.134.9
- indirizzo deve essere globalmente unico
  - □ assegnazione da IANA (Internet Assigned Numbers Authority) ai RIR (Regional Internet Registries)
  - □ IANA è dipartimento di ICANN Internet Corporation for Assigned Names and Numbers
- 5 schemi assegnazione indirizzi:
  - class-based addressing vs. classless addressing (CIDR)
  - subnetting
  - □ network address translation (NAT)
  - □ ... e poi c'è IPv6

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

# **Class-based addressing**

- indirizzo IP contiene network ID + host ID
  - $\square$  hostID = 0  $\rightarrow$  la rete stessa
  - $\square$  netID = 0  $\rightarrow$  l'host indicato sulla stessa rete della source
  - □ tutti '1' → broadcast sulla rete della sorgente
  - □ hostID tutti '1' → broadcast sulla rete destinataria
- ❖ 5 classi di indirizzi
  - □ classe A: 127 reti (7 bit) da 2<sup>24</sup>-1 host (16777215)
  - □ classe B: 2<sup>14</sup>-1 reti da 2<sup>16</sup>-1 host (65535)
  - □ classe C: 2<sup>21</sup>-1 reti da 255 host
  - □ classe D per multicast (2<sup>28</sup>-1 gruppi)
    - permanent address da ICANN (e.g. ALL\_ROUTERS)
  - □ classe E per usi futuri

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

3/40

# Classi di indirizzi



...quindi in notazione puntata ogni componente è tra 0 e 255, vero?!

Elena Pagar

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

AIAC

# Indirizzi particolari

- $\bullet$  0.0.0.0  $\rightarrow$  this network
- ❖ 255.255.255.255 → broadcast on this network (TTL=1)
- ❖ <netID>.<000...000> → indirizzo base della rete
- ♦ <netID>.<111.111> → broadcast sulla rete target
- i valori intermedi possono essere usati per gli apparati
- se usiamo x bit per netID e y=32-x bit per hostID, allora netmask composta da x bit 1 seguiti da y bit 0
  - □ routing table entry: <dest, netmask, oif, metric, flags>
  - □ AND bit a bit tra pkt.dest & netmask → dest
  - □ altrimenti 2<sup>32</sup> linee nelle routing table...
- ❖ facciamo un po' di esercizio!

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

5/40

# Indirizzamento a Livello 3

128 64 32 16 8 4 2 1

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

# Indirizzamento a Livello 3

128 64 32 16 8 4 2 1

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

7/40

# **Classless Inter-Domain Routing**

- PROBLEMA: gli indirizzi in IPv4 sono esauriti
- amministratori evitano indirizzi di classe C (fino a 256 host) a favore della classe B (fino a 65535 host)
- molte delle esistenti reti di classe B hanno meno di 256 host...
- meccanismo per utilizzo più efficiente degli indirizzi e per controllare dimensioni routing table
- aumentare livelli in indirizzamento gerarchico? peggio!

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

#### **CIDR**

- ❖ indirizzo <u>base</u> di rete x.y.w.z / n
  - □ n indica #bit usati per netID, indipendentemente da classe
  - □ in indirizzo base gli ultimi 32-n bit **devono** essere 0
- IDEA; raggruppare classi C in insiemi da usare come spazio contiguo di indirizzi
  - □ ES: 32 reti C ospitano 32 x 256 = 8192 apparati per gruppo
- ❖ 194.0.0.0 195.255.255.255 Europa
- ❖ 198.0.0.0 199.255.255.255 Nord America
- 200.0.0.0 201.255.255.255 Centro-Sud America
- 202.0.0.0 203.255.255.255 Asia, Australia

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

9/40

#### **CIDR**

- reti di classe C: ultimo ottetto per host ID
- **194.0.0.0 194.255.255.255 195.0.0.0 195.255.255.255**

65536

= 131072

- ❖ sulle 4 regioni 131072 x 4 = 524288 classi C
- per ogni regione 131072 x 256 = 33.554.432 indirizzi di host
- avanzano 204.0.0 223.255.255 ovvero 256 x 256 x (223 203) = 1.310.720 reti di classe C

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

### **CIDR** e routing

- se mi capita pkt con indirizzo 194.\_ o 195.\_ so che devo inoltrarlo verso l'Europa
  - □ analogamente per gli altri raggruppamenti
  - □ 2 entry in routing table per >33M indirizzi
- indirizzamento con maschere nelle routing table
- ES: 1! entry per rete da 194.24.8.0 a 194.24.11.255
   indirizzo base 11000010.00011000.00001000.0000000

mask calcolata come (256 - #reti assegnate)

- ☐ mask deve estrarre indirizzo di base, nascondendo bit aggiuntivi delle altre reti del gruppo
- □ 4 reti quindi netmask = 255.255.252.0? Verifichiamo! →

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

11/40

# **CIDR** e routing

- ES: Univ. Edimburgo ha da 194.24.8.0 a 194.24.11.255
   (mask 11111111111111111111100.00000000)
  - □\_.8.\_ 11000010.00011000.000010 00.
  - □\_.9. 11000010.00011000.000010 01.\_
    - 1

252

- **1**.10. 11000010.00011000.000010 10.\_
- \_\_.11.\_ 11000010.00011000.000010 11.\_
- in tutti e 4 i casi lo AND con mask produce 11000010.00011000.00001000.00000000 che è l'indirizzo ricordato nella routing table come indirizzo base
- la cardinalità dei gruppi è una potenza di 2

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

#### maschere CIDR

- Edimburgo: 194.24.8.\_ a 194.24.11.\_ ovvero 4 reti per (256 x 4=) 1024 indirizzi, da 11000010.00011000.00001000.\_ a 11000010.00011000.00001011.\_
  - □ mask: 255.255.252.0 = [1].[1].11111100.[0]
- Cambridge: 194.24.0.\_ a 194.24.7.\_ ovvero da 11000010.00011000.00000000.\_ a 11000010.00011000.00000111.\_
  - □ sono 256 x 8 = 2048 indirizzi su 8 reti -> 256-8=248
  - □ mask: 255.255.248.0 = [1].[1].11111000.[0]
- Oxford: 194.24.16.\_ a 194.24.31.\_ ovvero 16 reti per (256 x 16=) 4096 indirizzi, da 11000010.00011000.00010000.\_ a 11000010.00011000.00011111.
  - □ mask: 255.255.240.0 = [1].[1].11110000.[0]

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

13/40

# **CIDR** e routing

- calcolo (pkt dest address AND mask)
- confronto risultato con indirizzi base
- indirizzo base che corrisponde è usato per decidere routing
- NB: stesso principio adattato a tutti gli indirizzi. Perciò si può allocare spazio indirizzamento indipendentemente da classi
  - e la notazione dice tutto sull'allocazione
- 🌣 facciamo un po' di esercizio!

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

Indirizzamento a Livello 3

128 64 32 16 8 4 2 1

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

15/40

Indirizzamento a Livello 3

128 64 32 16 8 4 2 1

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

# Procedura configurazione in PT

- 1. calcolare i parametri delle sottoreti
  - per ogni subnet, scegliere potenza di 2 minima per indirizzare
     <u>tutti</u> i dispositivi (end systems + gateway + broadcast + base)
- 2. in PT assegnare opportuni indirizzi a interfacce router
  - e ricordarsi di mettere a ON l'interfaccia
  - □ <u>le interfacce di un router devono essere tutte su reti diverse!</u>
- 3. per ogni host:
  - 1. assegnare opportuno indirizzo all'interfaccia di rete
  - indicare come indirizzo gateway l'indirizzo del router associato all'interfaccia appartenente alla stessa subnet dello host
    - // tab Config → Settings
- 4. test di connettività tra host in stessa o diversa subnet

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

17/40

# Reti e aritmetica binaria...

- virtualmente solo 30 dimensioni possibili di rete
  - □ escludendo gli indirizzi di tutti bit 0 e tutti bit 1...
  - □ ho 30 punti di taglio da x.y.w.z/1 a x.y.w.z/30
  - perché non anche x.y.w.z/31? Quanti apparati ci stanno?
- per ogni ottetto ci sono solo 9 valori possibili che può assumere nella maschera:

 $10000000 \rightarrow 128$  $11000000 \rightarrow 192$  $11100000 \rightarrow 224$  $11110000 \rightarrow 240$  $11111000 \rightarrow 248$  $1111110 \rightarrow 252$  $1111111 \rightarrow 255$ 

 $00000000 \rightarrow 0$  MEMO: tutti 1 a sinistra e tutti 0 a destra...

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

# Tabella progettazione reti

128 64 32 16 8 4 2 1

- 2 host connessi da cavo cross
- rete 10.0.0.0/29
  - □ netID: 3 ottetti + 5 bit del 4°
- netmask ha nel 4° ottetto il binario 11111|000 → 248
  - netmask: 255.255.255.248
- broadcast ha nel 4° ottetto il valore 00000 | 111 → 7
  - □ broadcast: 10.0.0.7

| INFO          | 2 PC                |
|---------------|---------------------|
| IND. BASE     | 10.0.0.0/29         |
| IND.BROADCAST | 10.0.0.7            |
| IND.GATEWAY   | (*)                 |
| PRIMO IP      | 10.0.0.1            |
| ULTIMO IP     | 10.0.0.6            |
| NETMASK       | 255.255.255.248     |
| WILDCARD      |                     |
| NOTE          | 3 bit → 6 indirizzi |

(\*) in questo caso non vi è alcun gateway, altrimenti...

<u>Best practice:</u> il gateway ha sempre il primo oppure sempre l'ultimo indirizzo usabile

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

19/40

# Tabella progettazione reti

128 64 32 16 8 4 2 1

- ❖ 4 host + 1 hub
  - es.3.5 della dispensa
- rete 192.168.90.0/27
  - netID:
- ♦ netmask ha →
  - netmask:
- ♦ broadcast ha →
  - broadcast:

| INFO             |         |
|------------------|---------|
| IND. BASE        |         |
| IND.BROADCAST    |         |
| IND.GATEWAY      |         |
| PRIMO IP         |         |
| ULTIMO IP        |         |
| NETMASK          |         |
| WILDCARD         |         |
| NOTE             |         |
| / <del>+</del> \ | • • • • |

(\*) in questo caso non vi è alcun gateway

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

# Tabella progettazione reti

128 64 32 16 8 4 2 1

- 4 host + 2 hub + 1 bridgees.3.6 della dispensa
- rete 130.192.0.0/16
  - netID:
- ♦ netmask ha
  - netmask:
- ♦ broadcast ha
  - broadcast:

| INFO          | 0 |
|---------------|---|
| IND. BASE     |   |
| IND.BROADCAST |   |
| IND.GATEWAY   |   |
| PRIMO IP      |   |
| ULTIMO IP     | , |
| NETMASK       |   |
| WILDCARD      |   |
| NOTE          |   |

(\*) in questo caso non vi è alcun gateway

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

21/40

# Tabella progettazione reti

128 64 32 16 8 4 2 1

- 4 host + 4 bridge + 1 hub
  - es.3.7 della dispensa
- rete 87.194.96.0/20netID:
- ❖ netmask ha →

  netmask:
- ♦ broadcast ha →
  - broadcast:

| INFO          |  |
|---------------|--|
| IND. BASE     |  |
| IND.BROADCAST |  |
| IND.GATEWAY   |  |
| PRIMO IP      |  |
| ULTIMO IP     |  |
| NETMASK       |  |
| WILDCARD      |  |
| NOTE          |  |

(\*) in questo caso non vi è alcun gateway

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

# Tabella progettazione reti

128 64 32 16 8 4 2 1

- ❖ 5 host + 1 switch
  - □ es.3.8 della dispensa
- \* rete 215.151.59.0/24
  - netID:
- ♦ netmask ha
  - netmask:
- ❖ broadcast ha →
  - broadcast:

| INFO          |   |
|---------------|---|
| IND. BASE     |   |
| IND.BROADCAST |   |
| IND.GATEWAY   |   |
| PRIMO IP      |   |
| ULTIMO IP     | , |
| NETMASK       |   |
| WILDCARD      |   |
| NOTE          |   |
|               |   |

(\*) in questo caso non vi è alcun gateway

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

23/40

# **Subnetting (RFC 950)**

- suddivisione logica di reti grandi
  - per ridurre dimensioni tabelle instradamento interne a organizzazione
    - il resto del mondo non conosce nulla
  - es: rete classe B (14 bit netw ID, 16 bit host ID)
    - voglio non più di 64 sotto-reti con non più di 1022 apparati
    - subnet ID tra 0 e 63 → 6 bit

|        | •  | 32 Bits — |   |    |    |   |    |    |     |     |   |   |   |   |   |     | • | - |    |    |    |   |   |   |   |   |   |   |    |   |   |   |   |   |
|--------|----|-----------|---|----|----|---|----|----|-----|-----|---|---|---|---|---|-----|---|---|----|----|----|---|---|---|---|---|---|---|----|---|---|---|---|---|
|        | ш  | I         |   | _1 | _1 |   | _1 | _[ | 1   | _1  |   |   | _ | I | Ī | 1   |   | Ī | Ī  |    |    | L | L | Ĺ | I |   | ī | Ī | Ī  | 1 | Ī | Ī | 1 |   |
| Subnet | 10 | í         |   |    |    |   |    | Ne | etw | orl | < |   |   |   |   |     |   |   | Sı | ub | ne | t |   |   |   |   |   | Н | os | t |   |   |   | 1 |
| mask   | 1  | 1         | 1 | 1  | 1  | 1 | 1  | 1  | 1   | 1   | 1 | 1 | 1 | 1 | • | 1 1 | 1 |   | 1  | 1  | 1  | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0 | 0 |   |

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

#### **Subnetting**

- subnet mask: tutti bit 1 in corrispondenza di network e subnet addr; tutti bit 0 per host addr
- entry routing table:
  - < network addr, 0 > per rete remota
  - □ < 0 , host addr > per host locali
  - < 0 , subnet addr , 0 > per host locali ma in altre subnet
  - < 0, 0, host addr > per host in subnet locale
- router calcola AND tra indirizzo IP destinazione in header pkt e subnet mask
  - □ isola indirizzo rete e confronta con entry in tabella

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

25/40

# esempio subnetting

- ❖ rete di classe B: 162.148.0.0/16  $\rightarrow$  65534 host
- voglio suddividere in sotto-reti ognuna comprendente massimo 100 host
- quanti bit ho bisogno per host ID?
  - ☐ 7 bit (128 host circa)
- quanti bit restano per netID?
  - □ 16 7 = 9 bit e quindi 512 sottoreti
- oppure a rovescio: quante subnet ho bisogno ...



# **Dimensionamento sottoreti**



rete 192.168.20.96/27

quanti apparati in subnet verde? e in quella arancio?

- ❖ verde: 4 host + 1 router + broadcast + base = 7 indirizzi → 3 bit
  - □ netmask: , base: // calcolare in binario!
  - □ broadcast: , range indirizzi:
- arancio: 2 host + router + broadcast + base = 5 indirizzi → 3 bit
  - □ netmask: , base: // calcolare in binario!
  - □ broadcast: , range indirizzi:

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

27/40

# Dimensionamento sottoreti (es.)

128 64 32 16 8 4 2 1

- ❖ Acme Inc: 192.168.20.96/27
- 96  $\rightarrow$  011|00000 ultimo ottetto indirizzo base
- ❖ Verde (7):
  - ☐ Indirizzo base; netmask
  - Broadcast;
- **❖ Arancio** (5):
  - Indirizzo base ; netmask
  - Broadcast
  - **-**

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

# **Processing nei router**

```
if (I'm NOT a router in Acme_Inc) then
  if (pkt.dest & netmask/27 == 192.168.20.96) then
    use oif towards Acme Inc.
```

elseif (I'm a router in Acme Inc)

if (pkt.dest & netmask/29 == 192.168.20.96) then
 use oif towards Acme\_Inc.verde

elseif (pkt.dest & netmask/29 == 192.168.20.104) then

use oif towards Acme\_Inc.arancio

si noti che resta ancora un po' di spazio usabile, infatti da 192.168.20.96/27 → broadcast 011|1111= 192.168.20.127

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

29/40

# Indirizzamento a Livello 3

128 64 32 16 8 4 2 1

- indirizzo base rete 192.168.20.96/27
- subnet S1 con 5 apparati; subnet S2 con 14 apparati (inclusi router)
- ❖ S1: 5 apparati + broadcast + base = 7 indirizzi → 3 bit
  - □ netmask:, base:
  - □ broadcast:, range: (GW)
- ❖ S2: 14 apparati + broadcast + base = 16 indirizzi → 4 bit
  - netmask:, base:
  - broadcast:, range: (GW)
- può essere saggio controllare gli indirizzi host più basso e più alto per ogni rete...

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

#### **Allineamento**

- rete 192.168.20.96/27; S1 con 5 apparati; S2 con 14 apparati
- \* è corretto? vediamo un po'...

h1 in S2: 192.168.20.105 → 11000000 10101000 00010100 0110 1001

h2 in S2: 192.168.20.118  $\rightarrow$  11000000 10101000 00010100 0111 0110

netmask: 255.255.255.240  $\rightarrow$  11111111 11111111 11111111 11110000

i due host «in S2» risultano in realtà stare in reti diverse!

- in effetti: da 192.168.20.105 a 192.168.20.111 sono ancora in S1
- realizzare la rete in PT t.c. i 4 host a sinistra (S1) hanno indirizzi da
   .97 a .100, e i due host di destra (S2) hanno indirizzi .105 e .106
  - □ ping tra uno host di S1 e uno di S2 che risultato dà?
  - ☐ Simulation (solo ICMP nel filtro): il pkt ICMP arriva al router che non trova la rotta e rende messaggio di errore

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

31/40

# Sovrapposizione reti



...e durante la costruzione della rete e la configurazione di host e router, PT non ha segnalato alcun problema...

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

#### **Allineamento**

- ❖ <u>REGOLA:</u> Una rete di dimensione 2<sup>n</sup> (ovvero che contenga 2<sup>n</sup> indirizzi) può iniziare solo a intervalli regolari multipli di 2<sup>n</sup> (a posizioni pari a k × 2<sup>n</sup> per k≥0); ovvero il primo indirizzo disponibile nello host address range deve essere composto da tutti 0 negli ultimi n bit per qualsiasi sottorete.
- esempi
  - □ taglia 64 può iniziare a 0, 64, 128, 192
  - □ taglia 32 può iniziare a 0, 32, 64, 96, 128, 160, 192, 224
  - □ taglia 128 può iniziare a 0 e 128
- esempio precedente: rete di taglia 16 è stata fatta iniziare a 104, ma i valori ammissibili sono
  - **1** 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

33/40

# Esempio soluzione secondo regola

- rete 192.168.20.96/27; S1 con 5 apparati; S2 con 14 apparati
- ❖ S1: 5 apparati + broadcast + base = 7 indirizzi  $\rightarrow$  3 bit (2<sup>3</sup> = 8)
  - □ 96 è multiplo di 2³=8, quindi è un buon punto di partenza
  - netmask: 255.255.255.248 (111|11|000), base: 192.168.20.96/29
  - □ 96 = 011|00|000  $\rightarrow$  broadcast 011|00|111 = 103 in 4° ottetto
  - □ broadcast: 192.168.20.103, range: 192.168.20.97 192.168.20.102
  - □ *verifica*: 97 = 01100|001; 102 = 01100|110
- ❖ S2: 14 apparati + broadcast + base = 16 indirizzi  $\rightarrow$  4 bit (2<sup>4</sup> = 16)
  - □ 1° multiplo di 2<sup>4</sup>=16 *successivo a 103* è 112 (= 16 x 7)
  - Ind. base: 192.168.20.112/28; netmask: 255.255.255.240 (4° 11110000)
  - □  $112 = 011|1|0000 \rightarrow broadcast 011|1|1111 = 127 \rightarrow 192.168.20.127$
  - □ Range 192.168.20.113 (011|1|0001) 192.168.20.126 (011|1|1110)
- $\star$  mask S1 (01100---) e S2 (0111----) differiscono nel 4 $^{\circ}$  bit

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

#### alternativa: Euristica

- è come fare una valigia: si inizia dalla subnet più grande e via via procedendo in ordine decrescente
- ♦ S2: 14 apparati + broadcast + base = 16 indirizzi → 4 bit
  - netmask: 255.255.255.240, base: 192.168.20.96/28 (011|0|1111)
  - □ broadcast: 192.168.20.111, range: 192.168.20.97 192.168.20.110
- ❖ S1: 5 apparati + broadcast + base = 7 indirizzi → 3 bit
  - netmask: 255.255.255.248, base: 192.168.20.112/29 (011 10 111)
  - □ broadcast: 192.168.20.119, range: 192.168.20.113 192.168.20.118
- ❖ è corretto ora? vediamo un po'...

h1 in S2: 192.168.20.97  $\rightarrow$  11000000 10101000 00010100 0110 0001 h2 in S2: 192.168.20.110  $\rightarrow$  11000000 10101000 00010100 0110 1110

h1 in S1: 192.168.20.113  $\rightarrow$  11000000 10101000 00010100 01110 001 h2 in S1: 192.168.20.118  $\rightarrow$  11000000 10101000 00010100 01110 110

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

35/40

# Alcune proprietà

- la parte hostID dell'indirizzo base deve sempre essere a tutti bit 0
- il primo indirizzo usabile è sempre dispari; l'ultimo indirizzo usabile è sempre pari
- l'indirizzo broadcast è sempre dispari
- i netID delle diverse sottoreti, espressi in binario, sono sempre tutti differenti e non sovrapponibili in almeno un bit
  - es. precedente:

  - il 4° bit è differente nei due casi, quindi non c'è ambiguità
  - $\bigcirc$  01110--- (ind S1) & 11110000 (netmaskS2) = 0111  $\neq$  base S2
    - quindi non si rischia di usare la riga sbagliata in routing table
- facciamo un po' di esercizio!

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

# 10.11.160.0/24 rete di PMI

- ❖ A amministrazione 25 host
- ❖ **G** gestione ordini 14 host
- ❖ K marketing 28 host
- ❖ M magazzino 9 host
- R reparto produzione 58 host



Elena Pagani LABORATORIO di Reti di Calcolatori - A.A. 2023/2024 37/40

# 10.11.160.0/24 PMI (con euristica)

- R reparto produzione 58 host (+gw,bcast,base) = 61 → 64 (6 bit)
  - Base:; netmask:
  - Bcast:; range
- ★ K marketing 28 host (+3) = 31 → 32 (5 bit)
  - Base:; netmask:
  - Bcast:; range
- ❖ A amministrazione 25 host (+3) = 28 → 32 (5 bit)
  - Base:; netmask:
  - Bcast: ; range
- G gestione ordine 14 host (+3) =  $17 \rightarrow 32$  (5 bit)
  - Base:; netmask:
  - Bcast: ; range
- M magazzino 9 host (+3) =  $12 \rightarrow 16$  (4 bit)
  - Base:; netmask:
  - Bcast:; range

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

# 10.11.160.0/24 PMI (con regola)

- ❖ A amministrazione 25 host (+ gw,bcast,base) = 28 → 32 (5 bit)
  - Base:; netmask:
  - Bcast:; range (GW)
- ❖ G gestione ordine 14 host (+3) = 17 → 32 (5 bit) 32 è multiplo di 32, OK!
  - Base:; netmask:
  - Bcast:; range (GW)
- ★ K marketing 28 host (+3) = 31 → 32 (5 bit) 64 è multiplo di 32, OK!
  - Base:; netmask:
  - Bcast:; range (GW)
- ★ M magazzino 9 host (+3) = 12 → 16 (4 bit) 96 è multiplo di 16, OK!
  - Base:; netmask:
  - Bcast:; range (GW)
- ❖ R reparto produzione 58 host (+3) = 61 → 64 (6 bit)
- **128** è multiplo di 64!

- Base:; netmask:
- Bcast:; range (GW)

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

39/40

# Indirizzamento a Livello 3

32 16 2

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024