

wherein, R₁ is -OH, -OC₂H₅, or -OCH₂CH₃; and

The reaction scheme illustrates the synthesis of a silanol (VI) from three precursors:

- (III)**: A silane derivative where a cyclopropane ring is attached to a R_1Si group, which is further attached to an R_2OH silanol.
- (IV)**: A cyclopropane ring attached to an R_1Si group, which is further attached to an R_2OH silanol.
- (V)**: A cyclopropane ring attached to an R_1Si group, which is further attached to an R_2OH silanol.

The reaction involves the addition of **(IV)** and **(V)** to **(III)** to form the final silanol product **(VI)**.

PH dependent ion exchange matrices are provided, with methods for making such matrices, and methods for using such matrices to isolate a target nucleic acid, as such as plasmid DNA, chromosomal DNA, or RNA from contaminates, including proteins, lipids, cellular debris, or other nucleic acids. Each PH dependent ion exchange matrix of this invention comprises at least two different ion exchange functional groups, one of which is capable of acting as an anion exchanger at a first PH, and the other of which is capable of acting as a cation exchanger at a second, higher PH. The matrix has an overall netural charge in a PH range between the first and second PH. The PH dependent ion exchange matrices of the present invention are designed to bind to the target nucleic acid at a PH wherein the overall charge of the matrix is positive, and to release the target nucleic acid as the PH of the surrounding solution is increased. The target nucleic acid can be released from the PH dependent matrix in little or no salt and at about a neutral PH.

The matrices and methods of this invention enable one to isolate a target nucleic acid in very few steps, without the use of hazardous chemicals. Target nucleic acids isolated using the PH dependent ion exchange matrices according to the present invention can be used immediately without further purification or isolation.

(57) Abstract

(54) Title: PH DEPENDENT ION EXCHANGE MATRIX AND METHOD OF USE IN THE ISOLATION OF NUCLEIC ACIDS

(51) International Patent Classification 7 :	WO 00/69872	(43) International Publication Date:	23 November 2000 (23.11.00)
(21) International Application Number:	PCT/US00/12186	(22) International Filing Date:	5 May 2000 (05.05.00)
(81) Designated States:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FR, GE, GH, GM, HR, HU, ID, IL, IN, IS, PR, KG, KP, KR, LZ, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), European patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, ME, NL, PT, SE), OAPI patent (BF, BI, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).		
(72) Inventors:	SMITH, Craig, E.; 969 Autumn Woods Lane, Oregon, WI 53575 (US); HOLMES, Diana, L.; 4818 Tie Line Road, Crystal Lake, IL 60012 (US); SIMPSON, Daniel, J.; 1329 North High Point Middleton, WI 53562 (US). Without international search report and to be republished upon receipt of that report.		
(74) Agents:	FRENCHICK, Grady, J., et al.; Michael Best & Friedrich LLP, One South McKinley Street, Suite 700, P.O. Box 1806, Madison, WI 53701-1806 (US).		
(11) International Publication Number:	A2	(43) International Publication Date:	23 November 2000 (23.11.00)

INTERNATIONAL PUBLICATION UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

PCT

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

is not, in fact, present in the sample. Contaminants also include macromolecular
interest, (also referred to herein as a "target nucleic acid") when the nucleic acid of interest
"background" indicative of the presence in a sample of a quantity of a nucleic acid of
nucleic acid of interest. Substances of this last type can block or mask by providing a
or other biological material of interest, or substances which block or mask detection of the
techniques), substances that catalyze the degradation or depolymerization of a nucleic acid
enzymatically catalyzed reactions and other types of reactions used in molecular biological
imhibit chemical reactions, (e.g., substances that block or inhibit nucleic acid hybridizations,
or analyses procedures. Such contaminants generally include substances that block or
techniques be substantially free of contaminants capable of interfering with such processing
restriction analysis, amplification and sequencing require that nucleic acids used in the
Many molecular biological techniques such as reverse transcription, cloning,
25

BACKGROUND OF THE INVENTION

pH dependent ion exchange materials in isolating target nucleic acids.
differ from the first pH. This invention also relates to methods of making and using such
desorb the target nucleic acid in the presence of a second solution at a second pH which is
capacity to adsorb a target nucleic acid in the presence of a solution at a first pH and to
acids. This invention relates, particularly, to pH dependent ion exchange materials with the
hybrids from contaminants, such as proteins, lipids, cellular debris, and non-target nucleic
nucleic acid, such as plasmid DNA, chromosomal DNA, total RNA, mRNA, or RNA/DNA
This invention relates generally to materials and methods for isolating a target
15

TECHNICAL FIELD

Not applicable.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

10

09/312,172, filed 14 May 1999.
This application claims the benefit of U.S. Patent Application Serial No.

5

CROSS-REFERENCE TO RELATED APPLICATIONS

PH DEPENDENT ION EXCHANGE MATRIX AND METHOD OF USE IN THE ISOLATION OF NUCLEIC ACIDS

System (Promega Corp., Madison, WI; see Promega's Technical Manual No. TM031), and chromatography (e.g., U.S. Pat. No. 5,712,383; and PolyATrac[®] mRNA Purification 30 Chromatography, J. of Chromatog. 722:135-142 (1996); U.S. Pat. No. 5,057,426, by affinity No. 5,856,192; 5,82,988; 5,660,984; and 4,699,717), by reversed phase (e.g., Hirabayashi et al., J. of Chromatog. 508:61-73 (1990); Nucl. Acids Research 21(12):2913-2915 (1993); U.S. Pat. developed for the isolation of nucleic acids by ion-exchange chromatography (e.g., J. of Chromatog. 508:61-73 (1990); Nucl. Acids Research 21(12):2913-2915 (1993); U.S. Pat. of nucleic acids from complex biological materials. For example, matrices have been 30 developed for the isolation of nucleic acids by ion-exchange chromatography (e.g., Hirabayashi et al., J. of Chromatog. 508:61-73 (1990); Nucl. Acids Research 21(12):2913-2915 (1993); U.S. Pat. In recent years, many different matrices have been developed for use in the isolation of nucleic acids from complex biological materials. For example, matrices have been reaction.

reaction.

25 techniques, such as sequencing, transfection, restriction analysis, or the polymerase chain ultracentrifugation was required before the DNA could be used in downstream processing bromide and cesium chloride from the resulting band of plasmid DNA obtained by (1989), pp. 1,42-1,50. Ethidium bromide is a neurotoxin. Removal of both ethidium bromide and ethidium bromide. See, e.g., Molecular Cloning, ed. by Sambrook et al. 20 typically isolated further by ultra-centrifugation of plasmid DNA in the presence of cesium bromide procedures. Closed circular nucleic acid molecules, such as plasmid DNA, was most such procedures. Hazardous chemicals, such as chloroform and phenol or mixtures thereof, were used in complex systems typically involve multiple organic extraction and precipitation steps. The earliest techniques developed for use in isolating target nucleic acids from such 15 acid of interest must be isolated before being used in a molecular biological procedure.

acid, typically include significant quantities of contaminants from which the target nucleic out, typically include significant quantities of contaminants from which the target nucleic polyacrylamide gels, or solutions in which target nucleic acid amplification has been carried as blood, lymph, milk, urine, feces, semen, or the like, cells in culture, agarose or acid is typically found. These systems, e.g., cells from tissues, cells from body fluids such 10 biological applications is complicated by the complex systems in which the target nucleic obtaining target nucleic acid sufficiently free of contaminants for molecular 25 of this last type include trace metals, dyes, and organic solvents.

other materials used to isolate the material from other substances. Common contaminants can also be introduced into a target biological material from chemicals or macromolecular substances such as enzymes, other types of proteins, polysaccharides, or 30 poly nucleotides, as well as lower molecular weight substances, such as lipids, low molecular weight enzymes inhibitors, oligonucleotides, or non-target nucleic acids. Contaminants can also be introduced into a target biological material from chemicals or substances from the *in vivo* or *in vitro* medium which a target nucleic acid is isolated, - 2 -

One of the first solid phases developed for use in isolating nucleic acids was a specialized resin of porous silica gel particles designed for use in high performance liquid chromatography (HPLC). The surface of porous silica gel particles was functionalized with anion-exchangers which could exchange with plasmid DNA under certain salt and pH conditions. See, e.g., U.S. Pat. No's: 4,699,717, and 5,057,426. Machery-Nagel Co. (Duren, Germany) was one of the first companies to provide HPLC columns packed with such anion-exchange silica gel particles, and it continues to sell such columns today. See, e.g., Information about NUCLEOGEN® 4000-TDEAE in product information downloaded from the Machery-Nagel homepage on the Internet on 6/12/98, at <http://www.machery-nagel.com>. Each such column was designed so that plasmid DNA bound thereto is eluted in aqueous solution containing a high concentration of a highly corrosive salt (e.g., plasmid DNA is eluted from the NUCLEOGEN® 4000-TDEAE column in 6 M urea). Each such column had to be washed thoroughly between each isolation procedure to remove the corrosive salt and contaminants bound to the column with the DNA from the system. The nucleic acid solution eluted thereto also had to be processed further to remove the corrosive salt the elution solution before it could be used in standard molecular biology techniques, such as cloning, transformation, digestion with restriction enzymes, or amplification.

Various silica-based solid phase separation systems have been developed since the early HPLC systems described above. (See, e.g., the silica gel and glass mixture for isolating nucleic acids according to U.S. Pat. No. 5,658,548, and the porous support with silane bonded phase used to isolate oligonucleotides according to U.S. Pat. No. 4,767,670.) Modern silica-based systems utilize controlled pore glass, filters embedded with silica particles, silica gel particles, resins comprising silica in the form of diatomaceous earth, glass fibers or mixtures of the above. Each modern silica-based solid phase separation system is configured to reversibly bind nucleic acid materials when placed in contact with a medium containing such materials in the presence of chaotropic agents. Such solid phases are designed to remain bound to the nucleic acid material while the solid phase is exposed to an external force such as centrifugation or vacuum filtration to separate the matrix and nucleic acid material bound thereto from the remaining media components. The nucleic acid material is then eluted from the solid phase by exposing the solid phase to an elution solution, such as water or an elution buffer. Numerous commercial sources offer silica-

much as nucleic acid samples contaminated with the proteins the proteases are introduced to digest. Specifically, given the proper solution conditions, proteases in a nucleic acid solution will digest any proteins introduced into the solution, including enzymes introduced thereto to modify, cut, or transcribe the nucleic acid contained therein for downstream processing or analysis. Protease addition, incubation and removal steps also drive up the cost of nucleic acid isolation, costing time and money compared to isolation systems with no such additional steps.

In all the solid phase systems described above, each solid phase used therein has a substantially uniform surface composition designed to bind to a nucleic acid of interest, in the form of a silica or silica gel surface, or in the form of a silica gel or polymer surface modified with chemical groups exhibiting anion exchange activities. Bimodal and multimedial systems have also been developed, such as systems: (1) in which multiple columns each of which contains a solid phase modified with a different chemical group from the other columns in the system (e.g., Wheateley J. B., *J. Chromatogr.* (1992) 603; 273); (2) in which a single column is used with a single solid phase with at least two different chemical groups (e.g., Patent, 680; Little, E. L. et al., *Anal. Chem.* (1991) 63: 33); or (3) in which two different solid phases are employed in the same column, wherein the two solid phases are separated from one another within the column by solid porous dividers (e.g., U.S. Patent No. 5,660,984). Each of the chemical groups on the surface of the solid supports in the single column or multicolumn multimodal systems is configured to bind to different materials in whatever substrate is introduced into the system. Only a few such bimodal or multimodal column chromatography systems have been developed specifically for nucleic acid isolation (see, e.g., U.S. Pat. No. 5,316,680). Surface group combinations used in such solid phase systems include reverse phase, ion exchange, size exclusion, normal phase, hydrophobic interaction, hydrophilic interaction, and affinity chromatography. Such systems are designed such that only one of the surface groups binds target species, such as a nucleic acid, while the other surface group(s) bind to and remove one or more non-target species in a mixture.

Bi-modal and multimodal systems are far from simple, efficient alternatives to conventional organic or resin methods of nucleic acid isolation described above. Multi-column systems are inherently complex to run, as each column requires a unique set of mobile conditions to bind and/or release the desired target or non-target species bound to the stationary solid phase of the system. Non-target species tend to block adjacent columns and thus interfere with the isolation process. In addition, the stationary phase may be irreversibly adsorbed to the stationary phase, thereby reducing the efficiency of the system.

At least one mixed mode ion exchange solid phase system has been developed for use in isolating certain types of target compounds, such as proteins or peptides, from aqueous solution. See U.S. Pat. No. 5,652,348 (hereinafter, "Burton et al., '348") at col. 4, lines 21 to 25. The mixed mode ion exchange system of Burton et al., '348 comprises a solid support matrix with ionizable ligands covalently attached to the solid support matrix. The ionizable ligand is capable of exchanging with and adsorbing the target compound at a first pH and of releasing or desorbing the target compound at a second pH. The ionizable functional group is either further electrostatically charged or charged at a different polarity at the second pH. (Burton et al., '348, claim 1, col. 25, lines 46-50). The examples of mixed mode ion exchange solid phase systems provided in the Burton et al., '348 patent contain only a single ionizable functionality, an amine residue capable of acting as an anion exchange group at the first pH. The concentration of ionizable ligands present on the solid support matrices disclosed in Burton et al., '348 is sufficiently high to "permit target protein binding at both high and low ionic strength". The only ligand density specifically disclosed and claimed as sufficiently high for the mixed mode ion exchange solid phase of Burton et al., '348 to bind to target proteins at high and low ionic strength is a ligand density which is greater than the smaller of at least about 1 mmol/g/gram dry weight of resin or at least about 150 μmol/ml of resin" (col. 13, lines 22-23; and claim 1). The mixed mode ion exchange system of Burton et al., '348, is specifically designed for use in the isolation of proteins and peptides, not nucleic acids or oligonucleotides.

Materials and methods are needed which can quickly, safely, and efficiently isolate target nucleic acids which are sufficiently free of contaminants to be used in molecular biology procedures. The present invention addresses the need for materials and methods which provide a rapid and efficient means for isolating target nucleic acids from any mixture of target nucleic acids and contaminants, including lysates of gram-negative bacteria, thereby providing purified nucleic acids which can be used in a variety of biology procedures.

Materials and methods are needed which can quickly, safely, and efficiently isolate target nucleic acids which are sufficiently free of contaminants to be used in molecular biology procedures. The present invention addresses the need for materials and methods which provide a rapid and efficient means for isolating target nucleic acids from any mixture of target nucleic acids and contaminants, including lysates of gram-negative bacteria, thereby providing purified nucleic acids which can be used in a variety of biology procedures.

species from other species for which functional groups have affinity.

functional groups configured to bind to the target species, thus adversely affecting overall yield. Also, all the bimodal or multimodal systems are only designed to separate a target

Briefly, in one aspect, the present invention is a pH dependent ion exchange matrix designed for use in isolating a target nucleic acid by adsorbing to the target nucleic acid at an adsorption pH and by releasing the target nucleic acid at a desorption pH which is higher than the adsorption pH.

In one embodiment of the present invention, the pH dependent ion exchange matrix comprises a solid support and a plurality of first ion exchange ligands, wherein each first amine is selected from the group consisting of a primary, a secondary, or a tertiary amine; a spacer comprising a linker alkyl chain covalently attached to the solid support at a first end of the linker alkyl chain and covalently attached to the amine chain with an amine terminus, and an acidic moiety covalently attached to the amine chain at a second end of the spacer alkyl chain; and a cap comprising an amine with a pK_a of less than about 9, wherein the ion exchange ligand comprises:

10 a cap comprising an amine with a pK_a of less than about 9, wherein the amine is selected from the group consisting of a primary, a secondary, or a tertiary amine;

15 a spacer comprising a linker alkyl chain covalently attached to the solid support at a first end of the linker alkyl chain and covalently attached to the amine chain with an amine terminus, and an acidic moiety covalently attached to the amine chain at a second end of the spacer alkyl chain.

20 In another embodiment, the present invention is a bimodal pH dependent ion exchange matrix having the same basic structure as the matrix described above except that the spacer does not include an acidic moiety, wherein the bimodal pH dependent ion exchange matrix further comprises a plurality of second ion exchange ligands covalently attached to the solid support. Each second ion exchange ligand comprises an alkyl chain with an acidic substituent covalently attached to the alkyl chain.

25 In another aspect, the present invention is a method of isolating a target nucleic acid using a pH dependent ion exchange matrix, according to steps comprising:

- (a) providing the pH dependent ion exchange matrix;
- (b) combining the matrix with a mixture comprising the target nucleic acid and at least one contaminant;
- (c) incubating the matrix and mixture at an adsorption pH, wherein the target nucleic acid adsorbs to the matrix, forming a complex;
- (d) separating the complex from the mixture; and

BRIEF SUMMARY OF THE INVENTION

specificaly includes stationary phases in liquid chromatography (LC), high pressure liquid chromatography (HPLC), particulate matrices embedded into or bound to filters, and magnetic or non-magnetic porous matrix particles which interact with solutes when added directly to a solution mixture.

The term "silica gel" as used herein refers to chromatography grade silica gel, a substance which is commercially available from a number of different sources. Silica gel is most commonly prepared by acidifying a solution containing silicate, e.g., by acidifying sodium silicate to a pH of less than 11, and then allowing the acidified solution to gel. See, e.g., silica preparation discussion in Kun-Othmer Encyclopedia of Chemical Technology, Vol. 21, 4th ed., Mary Howe-Grant, ed., John Wiley & Sons, pub., 1997, p. 1021.

The term "glass particles" as used herein means particles of crystalline or vitreous silicas, even though crystalline silicas are not formally "glasses" because they are not amorphous, or particles of glass made primarily of silica. The term includes quartz, vitreous silicas, even though crystalline silicas are not formally "glasses" because they are not magnetized in the presence of a magnetic field but which are not themselves magnetic in the form a magnetic dipole when exposed to a magnetic field, i.e., materials capable of being magnetized in the presence of a magnetic field.

As used herein, the term "silica magnetic particles" refers to silica based solid phases which are further comprised of materials which have no magnetic field but which are paramagnetic or superparamagnetic materials. The term "magnetic", as used herein, also encompasses temporarily magnetic materials, such as ferromagnetic or ferrimagnetic materials. Except where indicated otherwise below, the silica magnetic particles used in this invention preferably comprise a superparamagnetic core coated with siliconous oxide, having a hydrous siliconous oxide adsorptive surface (i.e., a surface characterized by the presence of silanol groups).

The term "surface", as used herein, refers to the portion of the support material of a solid phase which comes into direct contact with a solution when the solid phase is combined therewith.

The term "nucleic acid" as used herein refers to any DNA or RNA molecule or a DNA/RNA hybrid molecule. The term includes plasmid DNA, amplified DNA or RNA fragments, total RNA, mRNA, and genomic DNA.

30

25

20

15

10

5

The item, "target nucleic acid" as used herein refers to the particular species of nucleic acid to be isolated in any particular application of the methods or use of the PH dependent ion exchange matrix of the present invention. The target nucleic acid is preferably at least 20 nucleotides long, more preferably at least 100 nucleotides long, and most preferably at least 1,000 nucleotides long.

The solid support component of the PH dependent ion exchange matrix can be made of any common support material, including soft gel supports such as agarose, polyacrylamide, or cellulose, or hard support material such as polystyrene, latex methacrylate, or silica. When the solid phase support material is silica, it is preferably in the form of silica gel, siliceous oxide, solid silica such as glass or diamaceous earth, or a mixture of two or more of the above. Silica based solid phases suitable for use in the PH dependent ion exchange matrices of the present invention include the mixture of silica gel and glass described in U.S. Pat. No. 5,658,548, the silica magnetic particles described in PCT Publication Number WO 98/31840, and solid phases sold by Promega Corporation for use in plasmid DNA isolation, i.e., Wizard® Minipreps DNA Purification Resin. Silica gel exchange matrix and methods of the present invention. Silica gel particles are stable at least one centamijamnt after the solute mixture is combined therewith, by application of an extremeal force. A skilled artisan would appreciate that the type of extremeal force suitable for is presented to the solute mix, and upon the physical properties of the matrix itself. For example, gravity can be used to separate the PH dependent ion exchange matrix from the solution mix when the matrix is in the form of silica particles (e.g., controlled pore glass, silica column, when the matrix is in the form of silica particles (e.g., controlled pore glass, silica gel particles, or silica magnetic particles) which are added batch-wise to a solution mixture 20 and then separated therefrom by decantation or filtration, or when the mixed-mode matrix is in the form of a filter with silica particles or chromatographic resin embedded into or attached thereto.

The external force used in the method of isolation is high pressure liquid when the pH dependent ion exchange matrix is the stationary phase of a high pressure liquid chromatography column (HPLC). Other forms of external force suitable for use in the method of this invention include vacuum filtration (e.g. when the solid phase component of the matrix is particles of controlled pore glass, particles of silica gel or silica magnetic (e.g. when the mixed-bed solid phase comprises magnetic or paramagnetic particles, or mixtures of one or more of the above types of particles embedded into or attached to a filter), centrifugation (e.g. when the mixed-bed solid phase is particulate), or when the solid phase component of the pH dependent ion exchange matrix is a silica gel particle, it is most preferably a silica magnetic particle. A silica magnetic particle can be separated from a solution using any of the extreme means described above for use with other types of solid phases, such as those described above. However, unlike the other silica magnetic particles provide more surface area (on a per weight unit basis) for covalent attachment to the plurality of ion exchange ligands, but smaller particles are limited in the amount of magnetic material which can be incorporated into such particles compared to larger particles. The median particle size of the silica magnetic particles used in a particular embodiment of the present invention is about 1 to 15 μm , more preferably about 3 to 10 μm , and most preferably about 4 to 7 μm . The particle size distribution may also be varied. However, a relatively narrow monodal particle size distribution is preferred. The monodal particle size distribution is preferable such that about 80% by weight of the particles are within a 10 μm range of the median particle size, more distribution is preferred. The monodal particle size distribution is preferable such that about 80% by weight of the particles are within a 10 μm range of the median particle size, more

When the solid support component of the pH dependent ion exchange matrix is a silica magnetic particle, the size of the particle is preferably selected as follows. Smaller silica magnetic particles provide more surface area (on a per weight unit basis) for covalent attachment to the plurality of ion exchange ligands, but smaller particles are limited in the amount of magnetic material which can be incorporated into such particles compared to larger particles. The median particle size of the silica magnetic particles used in a particular embodiment of the present invention is about 1 to 15 μm , more preferably about 3 to 10 μm , and most preferably about 4 to 7 μm . The particle size distribution may also be varied. However, a relatively narrow monodal particle size distribution is preferred. The monodal particle size distribution is preferable such that about 80% by weight of the particles are within a 10 μm range of the median particle size, more

When the solid support component of the pH dependent ion exchange matrix is a quick and efficient means of separating a matrix from a solution.

When the solid phase component of the pH dependent ion exchange matrix is a silica gel particle, it is most preferably a silica magnetic particle. A silica magnetic particle can be separated from a solution using any of the extreme means described above for use with other types of solid phases, such as those described above. However, unlike the other silica magnetic particles provide more surface area (on a per weight unit basis) for covalent attachment to the plurality of ion exchange ligands, but smaller particles are limited in the amount of magnetic material which can be incorporated into such particles compared to larger particles. The median particle size of the silica magnetic particles used in a particular embodiment of the present invention is about 1 to 15 μm , more preferably about 3 to 10 μm , and most preferably about 4 to 7 μm . The particle size distribution may also be varied. However, a relatively narrow monodal particle size distribution is preferred. The monodal particle size distribution is preferable such that about 80% by weight of the particles are within a 10 μm range of the median particle size, more

When the solid support component of the pH dependent ion exchange matrix can be preferably within 8 μm range, and most preferably within a 6 μm range.

When the solid support component of the pH dependent ion exchange matrix is a quick and efficient means of separating a matrix from a solution.

When the solid support component of the pH dependent ion exchange matrix is a silica magnetic particle, the size of the particle is preferably selected as follows. Smaller silica magnetic particles provide more surface area (on a per weight unit basis) for covalent attachment to the plurality of ion exchange ligands, but smaller particles are limited in the amount of magnetic material which can be incorporated into such particles compared to larger particles. The median particle size of the silica magnetic particles used in a particular embodiment of the present invention is about 1 to 15 μm , more preferably about 3 to 10 μm , and most preferably about 4 to 7 μm . The particle size distribution may also be varied. However, a relatively narrow monodal particle size distribution is preferred. The monodal particle size distribution is preferable such that about 80% by weight of the particles are within a 10 μm range of the median particle size, more

nitrogen BET method, is preferably at least about 0.2 ml/g of particle mass. The total pore surface of the pores. The total pore volume of a silica magnetic particle, as measured by interior of the solid phase particle, and to bind to functional groups on silica on the interior controlled size range sufficiently large to admit the target nucleic acid material into the pores or non-porous. When the solid support is porous, the pores are preferably of a porosized or non-porous. The solid support component of the pH dependent ion exchange matrix can be

5 Volume of porous silica magnetic particles particularly preferred for use as components of
the pH dependent ion exchange matrix of the present invention, as measured by nitrogen BET,
is preferably at least about 50% of the pore volume is contained in pores having a
diameter of 600 Å or greater.

Silica magnetic particles may contain substances, such as transition metals or
volatile organics, which could adversely affect the utility of target nucleic acids

10 substantially contaminated with such substances. Specifically, such contaminants could
inhibiting enzyme activity or nicking or degrading the target nucleic acids isolated
therewith. Any such substances present in the silica magnetic particles used in the present
invention are preferably present in a form which does not readily leach out of the particle
and into the isolated biological target material produced according to the methods of the
present invention. Iron is one such undesirable at least one contaminant, particularly when

15 iron, in the form of magnetite, is present at the core of particulary preferred forms
of silica magnetic particles used as the solid phase component of the pH dependent ion
exchange matrices of the present invention. Iron has a broad absorption peak between 260
and 270 nanometers (nm). Target nucleic acids have a peak absorption at about 260 nm, so
that iron contamination in a target nucleic acid sample can adversely affect the accuracy of the
results of quantitative spectrophotometric analysis of such samples. Any iron containing

20 silica magnetic particles used to isolate target nucleic acids using the present invention
preferably do not produce isolated target nucleic acid material sufficiently contaminated
with iron for the iron to interfere with spectrophotometric analysis of the material at or
around 260 nm.
The most preferred silica magnetic particles used in the matrices and methods of the
present invention, siliceous oxide coated silica magnetic particles, each no more than 50
ppm, more preferably no more than 10 ppm, and most preferably no more than 5 ppm of
transition metals when assayed as follows. Specifically, the particles are assayed as
follows: 0.33 g of the particles (oven dried @ 110°C) are combined with 20 ml. of 1N HCl
aqueous solution (using deionized water). The resulting mixture is then agitated only to
disperse the particles. After about 15 minutes total contact time, a portion of the liquid from
the mixture is then analyzed for metals content. Any conventional elemental analysis

25 follows: 0.33 g of the particles (oven dried @ 110°C) are combined with 20 ml. of 1N HCl
transition metals when assayed as follows. Specifically, the particles are assayed as
ppm, more preferably no more than 10 ppm, and most preferably no more than 5 ppm of
present invention, siliceous oxide coated silica magnetic particles, each no more than 50
present invention, silica magnetic particles used in the matrices and methods of the
around 260 nm.

20 The most preferred silica magnetic particles used in the matrices and methods of the
present invention, siliceous oxide coated silica magnetic particles, each no more than 50
ppm, more preferably no more than 10 ppm, and most preferably no more than 5 ppm of
transition metals when assayed as follows. Specifically, the particles are assayed as
follows: 0.33 g of the particles (oven dried @ 110°C) are combined with 20 ml. of 1N HCl
aqueous solution (using deionized water). The resulting mixture is then agitated only to
disperse the particles. After about 15 minutes total contact time, a portion of the liquid from
the mixture is then analyzed for metals content. Any conventional elemental analysis

15 follows: 0.33 g of the particles (oven dried @ 110°C) are combined with 20 ml. of 1N HCl
transition metals when assayed as follows. Specifically, the particles are assayed as
ppm, more preferably no more than 10 ppm, and most preferably no more than 5 ppm of
present invention, silica magnetic particles used in the matrices and methods of the
around 260 nm.

The most preferred silica magnetic particles used in the matrices and methods of the
present invention, siliceous oxide coated silica magnetic particles, each no more than 50
ppm, more preferably no more than 10 ppm, and most preferably no more than 5 ppm of
transition metals when assayed as follows. Specifically, the particles are assayed as
follows: 0.33 g of the particles (oven dried @ 110°C) are combined with 20 ml. of 1N HCl
aqueous solution (using deionized water). The resulting mixture is then agitated only to
disperse the particles. After about 15 minutes total contact time, a portion of the liquid from
the mixture is then analyzed for metals content. Any conventional elemental analysis

25 follows: 0.33 g of the particles (oven dried @ 110°C) are combined with 20 ml. of 1N HCl
transition metals when assayed as follows. Specifically, the particles are assayed as
ppm, more preferably no more than 10 ppm, and most preferably no more than 5 ppm of
present invention, silica magnetic particles used in the matrices and methods of the
around 260 nm.

comprises a five or six member aromatic amine ring, such as imidazole or pyridine. In one embodiment of the present invention, wherein the plurality of first ion exchange ligands are the only ion exchange ligands attached to the solid phase, the

wherein the wavy line represents a surface of the solid phase. LINKEER comprises a linker alkyl chain, preferably an alkyl chain which includes three (3) to eight (8) carbon atoms. The LINKEER preferably also includes at least one additional member selected from the group consisting of oxygen, amine, and carboxyl. The LINKEER is preferably an epoxide, such as a glycidyl moiety, or a urea linkage. The SPACER comprises a spacer alkyl chain with an amine terminus, wherein the amine terminus is covalently attached to the LINKEER. The other end of the spacer alkyl chain is covalently attached to the CAP. The SPACER alkyl chain can be substituted by at least one sulphur residue. The CAP comprises a primary, secondary, or tertiary amine with a pK_a value less than 9. The CAP preferably further comprises an aromatic hydrocarbon ring, wherein the amine is either attached to or a member of the ring. When the CAP comprises an aromatic hydrocarbon ring and an amine, the amine is preferably a member of the ring. The CAP more preferably attaches to the aromatic hydrocarbon ring and an amine, the amine is preferably a member of the ring.

15

general structure of formula (I), below:

The pH dependent ion exchange matricies of the present invention all include a copolymerization of first ion exchange ligands covalently attached to a solid phase, according the plurality of first ion exchange ligands covalently attached to a solid phase, according the

At least two commercial silica magnetic particles are particularly preferred for use in the matrix of the present invention, BioMag® Magnetic Particles from PerSeptive Biosystems, and the MagneSil™ Particles available from Promega Corporation (Madison, Wisconsin). Any source of magnetic force sufficiently strong to separate the silica magnetic particles from a solution would be suitable for use in the nucleic acid isolation methods of the present invention. However, the magnetic force is preferably provided in the form of a magnetic separation stand, such as one of the MagneSphere® Technology liquid, but inductively coupled plasma spectrometry (ICP) is preferred.

At least two commercial silica magnetic particles are particularly preferred for use in the matrix of the present invention, BioMag® Magnetic Particles from PerSeptive Biosystems, and the MagneSil™ Particles available from Promega Corporation (Madison, Wisconsin). Any source of magnetic force sufficiently strong to separate the silica magnetic particles from a solution would be suitable for use in the nucleic acid isolation methods of the present invention. However, the magnetic force is preferably provided in the form of a magnetic separation stand, such as one of the MagneSphere® Technology liquid, but inductively coupled plasma spectrometry (ICP) is preferred.

Technique may be employed to quantify the amount of transition metal in the resulting liquid, but inductively coupled plasma spectroscopy (ICP) is preferred.

In this second embodiment of the pH dependent ion exchange matrix, each first ion exchange ligand can have the same structure as set forth in Formula I, above, except that the first ion exchange ligand need not have an acidic moiety covalently attached to the spacer alkyl chain when the second ion exchange ligand includes such a moiety. When the second ion exchange ligand includes an acidic moiety, it is preferably a carboxylic acid residue, more preferably a carboxylic acid residue covalently attached to the terminus of the second alkyl chain.

The second type of pH ion exchange matrix described immediately above is the second after the "bimodal" ion exchange matrix, preferably has an acidic moiety on one ligand, the second ion exchange ligand, and at least one basic moiety on the other ligand which is a member of the aromatic hydrocarbon ring component of the first ion exchange ligand. In that preferred configuration, target nucleic acid binding and release capacity of the matrix can be controlled and even fine tuned by varying the relative proportion of first and second ion exchange ligands covalently bound to the solid support. This feature of the bimodal ion exchange matrix makes it particularly desirable for use in the methods of the present invention, although the monomodal ion exchange matrix described above is also well suited for use in the isolation of target nucleic acids according to the present method.

In another embodiment, the present invention is a pH dependent ion exchange matrix comprising a plurality of first ion exchange ligands and a plurality of second ion exchange ligands covalently attached to the same solid support, such as the same silica magnetic particle. The second ion exchange ligand comprises a second alkyl chain and an unbranched alkane of one (1) to five (5) carbon atoms. The ion exchange residue is preferably an acidic moiety, more preferably a carboxylic acid. The second ion exchange ligand is most preferably propionate.

SPACER further comprises a first acidic moiety covalently attached to the spacer alkyl chain. The acidic moiety is preferably a carboxyl residue. In this embodiment of the invention, at least one basic (the amine member of the aromatic hydrocarbon) and at least one acidic moiety are both members of the first ligand. The SPACER is preferably selected from the group consisting of cysteine, alanine, and the alkyl chain portion of a polar amino acid consisting of an alkyl chain and an aromatic hydrocarbon such as histamine and histidine. SPACER and CAP together most preferably define a histamine or a histidine 5

invention is 500 μmol per gram of dry weight. The lowest ligand density suitable for use in target nucleic acid. The highest ligand density suitable for use in the matrices of the present and ligand density can be adjusted to ensure optimal adsorption and desorption of a given use in the isolation of target nucleic acids. Both the ligand configuration, described above, 30 The pH dependent ion exchange solid phase of the present invention is designed for

of hydroxyl and carboxyl.

cation-exchange moiety is an acidic moiety, preferably selected from the group consisting from the group consisting of a primary, secondary, or tertiary amine. The at least one exchange matrix is at least one amine with a pK of less than 9, wherein the amine is selected cation-exchange moiety. The at least one anion-exchange moiety of the pH dependent ion 25 exchange matrix is at least one amine with a pK of less than 9, wherein the amine is selected of hydroxyl and carboxyl.

The plurality of ligands include at least one anion-exchange moiety and at least one exchange matrix. Upon the nature of the plurality of ion exchange ligands component of the pH dependent ion matrix at the second pH. The possible pH range for each of the first and second pH depends ligand. The target nucleic acid can adsorb to the matrix at the first pH and desorb from the neutral to negatively charged depending on the pK of the acidic moiety of the ion exchange matrix present is neutral to positively charged. At a second, higher pH the matrix becomes ion exchange matrix of the present invention is an anion exchanger at a first pH in which the 15 exchange between the anion-exchanger and the target nucleic acid. The pH dependent be exchanged reversibly bind to anion-exchangers under solution conditions where ions can can, therefore, reversibly bind to anion-exchangers under solution conditions where ions can target nucleic acids are irreversibly negatively charged at any pH higher than 2, and

zero, the connection is through a silane polymer.

Ligand is connected to the solid support through a silane monomer. When y is greater than is represented by the formula -(OSiR₁₂)_y-R₂, wherein y is at least 0. When y is zero (0), the 10 where, R₁ is selected from the group consisting of -OH, -CCH₃, and -OCH₂CH₃; and R₂

5

When the solid phase is silica based, each ion exchange ligand is preferably covariantly attached to the solid phase through a silane group, as shown in formula (II), below:

The method of isolating a target nucleic acid of the present invention can employ either type of pH dependent ion exchange matrix of the present invention described above alone, or a mixed bed of a pH dependent ion exchange matrix and another type of matrix capable of binding and releasing the target nucleic acid under a different set of solution conditions such as is described in the concurrently filed U.S. Patent Application No. 09/312,139 for MIXED BED SOLID PHASE AND ITS USE IN THE ISOLATION OF 20 nucleic acids. The present method comprises the steps of providing the pH dependent ion exchange matrix to be used in the method, providing a mixture comprising the target nucleic acid and at least one contaminant, combining the mixture and the matrix at a first pH under conditions where the target nucleic acid adsorbs to the matrix to form a complex separating the complex from the mixture, and desorbing the target nucleic acid from the complex by combining the complex with an elution solution at a desorption pH. The exact solution conditions necessary to ensure adsorption and desorption of the target nucleic acid to the matrix vary depending upon several factors, including the nature of the target nucleic acid (e.g., RNA or DNA, molecular weight, and nucleotide sequence composition), the pH 25 to the matrix and the concentration of the target nucleic acid in the solution. The exact solution conditions necessary to ensure adsorption and desorption of the target nucleic acid to the matrix vary depending upon several factors, including the nature of the target nucleic acid (e.g., RNA or DNA, molecular weight, and nucleotide sequence composition), the pH 30 to the matrix and the concentration of the target nucleic acid in the solution.

between 50 and 200 μ mol/g dry weight of solid phase. The amion exchange moiety and cation exchange moiety of the present matrix vary in charge depending upon solution conditions. In the presence of a solution having a first PH, the basic moiety (i.e., the amine) is positively charged and the matrix is capable of exchanging with the target nucleic acid. In the presence of a solution having a second PH which is higher than the first PH, the acidic moiety has a negative charge and the basic moiety has a neutral charge. The matrix is designed to adsorb the target nucleic acid at the first PH and to desorb the target nucleic acid at a PH which is at least about the second PH. PH conditions necessary to ensure adsorption and desorption of the target nucleic acid to the matrix of the present invention depend upon the salt conditions of the adsorption and desorption solutions, and upon the specific composition and density of the plurality of ligands attached to the solid phase. Specifically, the first PH, at which desorption takes place, is preferably between PH 6 and 8 when the ionic strength of the solution is preferably no higher than about 1 M salt, more preferably no higher than about 500M salt, and most preferably no higher than about 50 M salt.

WO 00/69872 PCT/US00/12186 - 24 -

5 diameter), median particle size of 5.5 μm, and iron leach of 2.0 ppm. Specifications of glass particles used in the examples below are provided below.

One skilled in the art of the present invention will be able to use the teachings of the present disclosure to select and use solid supports other than the three silica based solid supports used to make the pH dependent ion exchange particles whose synthesis and use is illustrated in the Examples below. The Examples should not be construed as limiting the scope of the present invention. Other pH dependent ion exchange matrices, and methods of using the matrices to isolate target material according to the present invention will be apparent to those skilled in the art of chromatographic separations and molecular biology.

5 Examples below were analyzed according to procedures described in Samples of target nucleic acids isolated according to various aspects of the invention, The following examples are given to illustrate various aspects of the invention, without limiting the scope thereof:

EXAMPLES

10 EXAMPLE 1 - GEL ELECTROPHORESIS

Samples of target nucleic acids isolated according to procedures described in Examples below were analyzed for contamination with non-target nucleic acids, and for size as follows. The samples were fractionated on an agarose gel of appropriate density (e.g., a 1.0% agarose gel was used to analyze plasmid DNA, while a 1.5% agarose gel was used to analyze RNA). The fractionated nucleic acid was visualized using a fluorescent label or by dyning the gel with a DNA sensitive stain, such as ethidium bromide or silver staining. The resulting fractionated, visualized nucleic acid was either photographed or visualized using a fluorimager and the resulting image printed out using a laser printer.

20 In some cases, size standards were fractionated on the same gel as the target nucleic acid, and used to determine the approximate size of the target nucleic acid. In every case where a gel assay was done, the photograph or fluorimage of the fractionated images of fractionated samples of plasmid DNA were inspected for RNA, which runs considerably faster than DNA on the same gel, and for chromosomal DNA, which runs considerably slower than plasmid DNA on the same gel. Images of isolated plasmid DNA were also inspected to determine whether most of the plasmid DNA shown in the image is intact, supercoiled plasmid DNA.

EXAMPLE 2 - ABSORPTION SPECTROPHOTOMETRY

EXAMPLE 3 - SYNTHESIS OF POROUS SILICA MAGNETIC PH DEPENDENT ION

Samples of target nucleic acids isolated from various media, as described below, were also analyzed using absorption spectrophotometry. Absorption measurements were taken at wavelengths of 260, 280, and 230 nanometers (nm). A_{260}/A_{280} absorption ratios were computed from the measurements. An A_{260}/A_{280} of greater than or equal to 1.80 was interpreted to indicate the sample analyzed therein was relatively free of protein contamination. The concentration of nucleic acid in each sample was determined from the absorption reading at 260 nm (A₂₆₀).

EXCHANGE PARTICLES

1. Silica magnetic particles were activated by heating under vacuum at 110°C.

as described in subsequent Examples, below.

exchange particles synthesized as described herein were used to isolate target nucleic acids.

Various pH dependent ion exchange mechanisms have been proposed.

EXCHANGE PARKICLES

EXCHANGE PARTICLES

2. 10 g of the activated particles were suspended in 100 ml of toluene in a flask, and 3.2 ml of 3-glycidylpropyl-trimethoxysilane was added thereto.

3. The flask containing the mixture was fitted with a condenser and the reaction was refluxed for 5 hr. After cooling to room temperature, the reaction mixture sat for 48 hr at room temperature.

4. The reaction mixture was then filtered and the retentate, including glycidyl-modified silica particles produced in the reflux reaction, were washed with toluene (2 x 100 ml), hexanes (2 x 100 ml) and ethyl ether (1 x 150 ml). The washed product was then left dry in the air.

5. A small portion of the product was further dried in a 110°C oven and submitted for elemental analysis. The results (%C 0.75; %H 0.58) are consistent with glycidyl-modified silica particles.

5. A small portion of the product was further dried in a 110°C oven and submitted dry in the air. Elemental analysis. The results (%C 0.75; %H 0.58) are consistent with glycid modification of silica gel particles, as illustrated in Formula (III), below. The wavy line indicates a solid phase, a porous silica magnetic particle in this particular example.

30

the resulting mixture was refluxed overnight.

2. To this solution 2 g. of glycidyl-modified silica magnetic particles were added, and
1. 3-(3-pyridyl)-D-alanine (1g) was dissolved in 20 ml of water.

C. Synthesis of Glycidyl-Alanine Modified Silica Magnetic Particles

wherein, R is -OH, OC₂H₅, or -OCH₂CH₃.

4. A small portion of the dried solid from step 3 was further dried at 110°C and submitted for elemental analysis. Results: %C 1.35; %H 0.68; %N 0.50. This results are consistent with glycidyl-histidine linkage, such as is shown in Figure (XVII), below:

20

3. After cooling to room temperature the reaction mixture was filtered, and the retentate, which included glycidyl-histidine modified silica magnetic particles, was washed once with 100 ml of acetone, three times with 150 ml of water, and once with 150 ml of ether. The solid was air dried.

15

2. To this suspension, 2 g of glycidyl-modified silica magnetic particles was added and 20 ml of water by heating the solution to reflux.

1. 2.0 g. of D,L-histidine was dissolved in a mixture of 20 ml of tetrahydrofuran and

B. Synthesis of Glycidyl-Histidine Modified Silica Magnetic Particles

10

6. The glycidyl-modified silica magnetic particles produced as described above were then further modified by the linkage of an amino acid, such as histidine, alanine, or cysteine to the particles, by reaction with the terminal ring of the glycidyl moiety, as described below.

5 where R is -OH, OC₂H₅, or -OCH₂CH₃.

5

Illustrated in formula (XVIII), below:

4. Elemental analysis of a sample of the product from step 3 showed: %C 0.98; %H 0.56; %N 0.20. This result is consistent with glycidyl-alanine modification, as oncoc with ethyl ether.

3. After cooling, the reaction mixture was filtered and washed twice with water, and

(XVIII)

10

wherein, R is -OH, -OCH₃, or -OCH₂CH₃.

1. 1 g of S-[2-(4-Pyridyl)ethyl]-L-cysteine was suspended in 20 ml of water, and heated to dissolve the material.

2. To this solution 2.5 g of glycidyl-modified silica magnetic particles were added and refluxed overnight.

3. After cooling the reaction mixture was filtered and washed three times with water and ethyl ether. The material was air dried.

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N 0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

wherein, R is -OH, -OCH₃, or -OCH₂CH₃.

25

according to formula (XIX), below:

particles, as

20

and ethyl ether. The material was air dried.

2. To this solution 2.5 g of glycidyl-modified silica magnetic particles were added and refluxed overnight.

3. After cooling the reaction mixture was filtered and washed three times with water and ethyl ether. The material was air dried.

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

and ethyl ether. The material was air dried.

3. After cooling the reaction mixture was filtered and washed three times with water and ethyl ether. The material was air dried.

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

4. Elemental analysis of the material from step 3 showed: %C 1.08; %H 0.42; %N

0.16. These results are consistent with glycidyl-cysteine modification of silica magnetic

A. Synthesis of Glycidyl-Histidine Modified Non-Porous Silica Magnetic

PHASES

EXAMPLE 4 - SYNTHESIS OF NON-POROUS MAGNESIUM GLASS FIBER, AND STERIC GEL GLYCIDYL-LINKED pH DEPENDENT ION EXCHANGE SOLID

- 86 -

Modification with Urea: 5 g of histidine ethyl ester dihydrochloride was suspended in 50 ml of chloroform and 4.0 ml of triethylamine. 4.8 g of 3-isocyanatopropyl trimethoxysilane was added to this solution drop-wise, via an addition funnel, and the resulting silane/chloroform solution was stirred overnight. 2.0 g of porous silica magnetic particles were suspended in 25.0 ml of the silane/chloroform solution, and this mixture was placed on a rotovap for 20 hr. The resulting reaction mixture was filtered, and the product was washed with chloroform and dried under vacuum.

A. Silica Magnetic Particles Linked to Histidine Through Urea

DEPENDENT ION EXCHANGE PARTICLES

EXAMPLE 5 - PREPARATION OF POROUS SILICA MAGNETIC UREA-LINKED PH

formula (IV), above.

2. Histidine linkage: 10 g of all of the above modified silica was suspended in 30 ml of tetrahydrofuran and 50 ml of water. To this solution 3.8 g of DL-Histidine was added and the resulting suspension was refluxed overnight (about 18 hr). After cooling to room temperature the reaction mixture was filtered, washed once with 200 ml of methanol and once with 50 ml of ethyl ether. The resulting product was dried under vacuum in a desiccator over phosphorous pentoxide. Elemental analysis is revealed: %C 9.88; %H 1.92; %N 1.68. These results are consistent with glycidyl-histidine modification according to modicumation.

Glycidine Modification: 10.0 g of Silica Gel 110HP [Chromatographic Silica Grade 10HP from W.R. Grace (Baltimore, MD)] was suspended in 45 ml of toluene, and 5.0 ml of 3-glycidylpropyl-trimethoxysilane was added to the suspension. The resulting mixture was placed on a rotovap at 0°C and 0.05 mm Hg until dry. The residue was washed once with 20 ml of methylene chloride and once with 20 ml of ethyl acetate. The product was dried under vacuum in a desiccator over phosphorous pentoxide. Elemental analysis: %C 7.75; %H 1.67. These results are consistent with glycidine.

C. Synthesis of Glycidyl-Histidine Modified Silica Gel

suspension was refluxed for 20 hr. After cooling to room temperature the liquids were removed from the reaction by pipetting and the filters were washed extensively with water and methanol. The washed filters were air dried overnight. Elemental analysis of the product showed: %C 0.55; %H 0.16; %N 0.0. These results are consistent with jycidyl-histidine linkage, according to formula (IV), above.

(t, 2H); 2.72 (t, 2H); 1.55 (m, 2H), 1.2 (m, 6H).

B. Synthesis of Silica Magnetic Particles Linked to Histamine and Propionate

- Synthesis of N-2-(4-imidazole)-ethyl-N'-3-propylmethoxysilylurea: 4.5 g of histamine was suspended in 50 ml of Chloroform. 9.8 g of 3-isocyanatopropylmethoxysilane was added drop-wise to the suspension, via an addition funnel, and the resulting reaction stirred overnight. After this period the reaction was evaporated to dryness. The product was not further purified. Results of analysis of this intermediate product using nuclear magnetic resonance spectroscopy (NMR) were consistent with what one would expect from N-2-(4-imidazole)-ethyl-N'-3-propylmethoxysilylurea. Specifically, NMR (CD_{3}OD) results found were: 7.6 ppm (s, 1H); 6.8 (s, 1H); 4.7 (broad s, 4H); 3.8 (q, 4H); 3.6 (t, 2H); 3.30 (m, 1H); 3.07 (1H).

wherein, R is -OH, -OCH₃, or -OC(CH₃)₂.

20

urea, as illustrated in formula (X), below:

retentate, which included silica magnetic particles modified in the reactor, was washed once with 50 ml of chloroform and once with 50 ml of ethyl ether. The washed product was dried in a desiccator under vacuum over phosphorous pentoxide. Elemental analysis showed: %C 2.38; %H 0.96; %N 0.81. These results are consistent with what one would expect from a silica particle linked to histidine via pentoxide. Elemental analysis showed: %C 1.59; %H 0.84; %N 0.55. These results are consistent with what one would expect from a silica particle linked to histidine via pentoxide. The washed solid was dried under vacuum in a desiccator over phosphorous ethyl ether. The washed solid was dried under vacuum in a desiccator over phosphorous was washed once with 50 ml of water, once with 50 ml of methanol, and once with 50 ml of water, and filtered. The retentate, which included the modified silica magnetic particles, particles were separated from the HCl solution, washed with water, resuspended in 25 ml of 2. 1.0 g of the modified particles was suspended in 5% HCl and stirred for 4 hr. The expected from a silica magnetic particles modified with urea.

2. Linkage of Histamine via Urea: 1.0 g of silica magnetic particles was suspended in 10 ml of chloroform, and 1.2 g of the N-2-(4-imidazole)-ethyl-N³⁻-propylmethoxysilylurea produced in step 1, above, was added to the suspension. The resulting mixture was placed on a rotovap for 48 hr. The reaction was filtered and resuspended in 40 ml of chloroform. The solid was filtered and washed with chloroform and ethanol. The solid was dried in a desiccator under vacuum over phosphorous pentoxide for 2 hr. The reaction mixture stirred for 2 hr. After this time, the solid was filtered and washed with chloroform and ethanol. After this time, the solid was filtered and washed with chloroform and ethanol. The product was dried under vacuum for 1 hr in a desiccator over phosphorous pentoxide. Elemental analysis results (%C 5.46; %H 1.16; %N 2.35) were consistent with those expected to obtain from silica magnetic particles modified with histamine.

3. Methyl Propionate Modification: 1 g of the entire amount of histamine modified silica magnetic particles from step 2, above, was suspended in 10 ml of toluene and 1.0 ml of Z-(carbomethoxy)ethylimidochlorosilane was added drop-wise with stirring. The resulting reaction mixture stirred for 2 hr. After this time, the solid was filtered and washed with chloroform and ethanol. The product was dried under vacuum over phosphorous pentoxide for 2 hr. The product was washed with chloroform and ethanol. The solid was dried in a desiccator over phosphorous pentoxide for 1 hr. The reaction mixture stirred for 2 hr. After this time, the solid was filtered and washed with chloroform and ethanol. The product was dried under vacuum for 1 hr in a desiccator over phosphorous pentoxide. Elemental analysis results (%C 7.24; %H 1.52; %N 2.07) were consistent with methyl propionate modification of histamine modified particles.

4. Removal of Methyl Group from the Propionate Residues: 1 g of silica magnetic particles modified in Step 3 was suspended in 5% HCl and stirred for 4 hrs. The reaction products were separated from the solution by filtration. The retentate of reaction product, which included the modified particles, was washed with water and methanol. The washed product was dried under vacuum in a desiccator over phosphorous pentoxide. Elemental analysis results (%C 6.14; %H 1.37; %N 1.47) were consistent with silica magnetic particles linked to histamine through urea and also modified by propionate, according to the formula (XXI), below:

(XXI)

C. Synthesis of Silica Magnetic Particles Linked to Histidine and Propionate

1. Histidine was covalently attached to silica magnetic particles via a urea linkage, using a procedure similar to that used to attach histamine in part A of this Example, above.
2. The same final two steps used to covalently attach propionate to the urea-linked histamine particles in part B of the Example, above were used to covalently attach propionate to the silica magnetic particles linked to histidine via propionates.

EXAMPLE 6 - PREPARATION OF CLEARED LYSATE OF PLASMID DNA

E. coli bacteria cells, DH5α strain, were transformed with pGL3-Control Vector (Promega) plasmid DNA, and grown in an overnight culture of Luria Broth ("LB") medium at 37°C, then harvested by centrifugation.

The following solutions were used to prepare a lysate of the harvested cells, as described below:

15 Cell Resuspension Solution:
50mM Tris-HCl, pH 7.5
10mM EDTA
100μg/ml DNase-free nucleic acid release A (RNase A)
Wizard® Neutralization Buffer (Promega Corp.):
1.32M KOAc (potassium acetate), pH 4.8
Cell Lysis Solution:
0.2M NaOH
1% SDS (sodium dodecyl sulfate)

20 A cleared lysate of the transformed cells was produced as follows:

1. The cells from 1 to 10ml of bacterial culture were harvested by centrifuging the culture for 1-2 minutes at top speed in a microcentrifuge. The harvested cells were suspended in 250μl of Cell Resuspension Solution, and transferred to a microcentrifuge tube. The resulting solution of resuspended cells was cloudy.
2. 250μl of Cell Lysis Solution was then added to the solution of resuspended cells and mixed by inversion until the solution became relatively clear, indicating the resuspended cells had lysed.

EXAMPLE 7 - ISOLATION OF PLASMID DNA USING POROUS SILICA MAGNETIC GLYCIDYL-HISTIDINE PH DEPENDENT ION EXCHANGE PARTICLES

4. The solution was then spun in a microcentrifuge at top speed (about 12,000 rpm) for 10 minutes to clear the lysate.

3. 350 μ l of Wizard® Neutralization Buffer was added to the lysate solution, and mixed by inversion. The lysate became cloudy after the Neutralization Solution was added.

10 All preps were processed in 1.5ml tubes, and all steps were performed at room temperature:

1. The cleared lysate from step 5 of Example 6 was transferred to a clean 1.5 ml tube containing 150 μ l of an pH dependent porous silica magnetic ion exchange particles prepared as described in Example 3B. The resulting mixture of particles and solution was (15 mg of particles) linked to histidine through a glycidyl moiety, wherein the particles were washed with the lysate solution four times by inversion, and allowed to sit for 1 minute at room temperature. The solution was removed and discarded.

2. The silica magnetic ion exchange particles contained in the tube were held against the inner side-wall of the tube by magnetic force, while the tube cap and side-wall were washed with the tube by magnetic force, while the tube cap and side-wall were washed with the lysate solution four times by inversion, and allowed to sit for 1 minute at room temperature. The solution was removed and discarded.

3. The particles tube and cap were washed with 1.0 ml nanopure water.

4. Magnetic force was used to hold the silica magnetic particles in the tube while liquid in the tube was removed therefrom and from the tube cap. The liquid was discarded.

5. The particles were resuspended by vortexing in 300 μ l of 66mM potassium acetate and 800mM NaCl (pH 4.8). Step 3 was repeated.

20 6. Step 5 was repeated three times, for a total of four salt washes.

7. The silica magnetic particles remaining in the tube were resuspended in 1.0 ml of nanopure water.

8. The silica magnetic particles were separated from the water by magnetic force. The tube cap and side-wall was washed with water by tube inversion (4X), and allowed to sit 1 minute.

9. Liquid was removed from the tube and cap.

30 ml of nanopure water.

The column was washed with 400 μ l of 10mM Tris pH 8.0 (which was removed by column centrifugation), and washed again with 2 X 700 μ l of 100mM Tris, 2.0M NaCl (also column centrifugation), and washed again with 2 X 700 μ l of 100mM Tris, 2.0M NaCl (also removed by column centrifugation). The column was then washed with 700 μ l of nanopure water, (removed by column centrifugation), and air dried for 12 hours at room temperature.

an A₂₆₀/A₂₈₀ ratio of 1.86.

20 A cleared lysate from 5 ml of an overnight culture of DHSa cells transformed with pGL3 Control Vector plasmid DNA was prepared as described in Example 3. The cleared
 21 lysate was added to a column containing 42 mg of Ahlstrom 121 glass fiber modified by
 22 glycidyl-histidine, as described in Example 4B, above. After 10 minutes of binding time,
 23 the column was centrifuged to remove the alkaline lysate solution. The column was then
 24 washed using 700 µl of nanopure water, which was removed by column centrifugation. This
 25 water wash was repeated twice (for a total of three washes). The DNA was eluted with
 100 µl of 10 mM Tris pH 8.0, and the solution collected into a 1.5 ml tube by column
 centrifugation. The eluted DNA was examined by gel electrophoresis according to the
 procedure set forth in Example 1, and no RNA or chromosomal DNA contamination was
 detected. Analysis by atomic absorption spectroscopy showed a DNA yield of 36 µg, and

GLYCIDYL-HISTIDINE GLASS FIBERS

EXAMPLE 8 - ISOLATION OF PLASMID DNA FROM A CLEARED LYSTATE USING

Analytical analysis of the eluent from step 12 showed that plasmid DNA was obtained which was relatively free of contaminating proteins or other nucleic acids. Specifically, analysis of the eluent using gel electrophoresis according to the procedure set forth in Example 1, above, showed no RNA or chromosomal RNA contamination. Although analysis of the eluent using absorption spectroscopy as described in Example 2, showed the yield of pGL-3 plasmid DNA to be 30%g. Absorbance ratio results (A_{260}/A_{280} ratio of 1.84) indicated the plasmid DNA isolated according to the procedure described above was free of protein contamination.

12. The silica magnetic ion exchange particles were separated from the eluent tube was vortexed thoroughly.

11. 100μl of 10mM Tris pH 8.0 was added to the tube to elute the DNA, and the

10. Steps 7-9 were repeated for a total of 2 washes, with water.

30 avoid sheering genomic DNA.

3. 250 μ l of Wizard® Lysis Buffer was added per tube, and gently mixed to
2. 265 μ l of resuspended cells were added to two tubes.
1. 2.5 ml of Wizard® Resuspension Solution was added to a 50 ml pellet of PGM-3Z⁺-DNA, as follows. Preps were processed in 1.5 ml tubes. All steps were performed at room temperature, except where indicated otherwise below.

Plasmid DNA was isolated from DH5α E. coli bacteria cells transformed with PGM-POROUS SILICA MAGNETIC GLYCIDYL-ALANINE

EXAMPLE 10 - ISOLATION OF PLASMID DNA FROM A CLEARED LYSTATE

161 1.61

An analysis by gel electrophoresis, according to the procedure of Example 1, showed removed by positive pressure into a clean 1.5 ml tube.

The lysate was then pushed through the syringe barrel, by positive pressure. Two 1.0 ml washes with nanopure water were performed, using positive pressure to remove the chromosomal DNA or RNA. Absorption analysis of the eluent, according to the procedure of Example 2, showed a yield of 10mg of DNA, and an absorbance ratio of A₂₆₀/A₂₈₀ of

20

the eluent to contain supercoiled plasmid DNA, with no evidence of contamination with silica particles in a 3 ml syringe barrel, and allowed to sit at room temperature for 1 hour.

The cleared lysate was combined with 15mg of the glycidyl-histidine non-porous 15

described in Example 4A, as follows:

10

A cleared lysate of DH5α cells transformed with pGL3 Control Vector plasmid Buffer was added to the lysed cells in step 3, rather than 350 μ l. Plasmid DNA was isolated from the cleared lysate using non-porous glycidyl-histidine silica particles prepared as

5 EXAMPLE 9 - ISOLATION OF PLASMID DNA FROM A CLEARED LYSTATE USING NON-POROUS GLYCIDYL-HISTIDINE ION EXCHANGE PARTICLES

FUNCTIONALIZED WITH GLYCIDYL-HISTIDINE

30 μ g and A₂₆₀/A₂₈₀ ratio of 1.84.

The column was reused, following the same procedure as outlined above. The resulting DNA again showed no visible RNA by gel electrophoresis, and a DNA yield of

particle used in this Example was silica magnetic particles linked directly to propionate and histidine (E particles), prepared as described in Example 5A, above. The other type of linked to histidine through a urea residue (referred to in the present Example as "urea-linked procedure. One of the two types of particles used in this assay was silica magnetic particles 30 was assayed at each of several different pH's, according to the following procedure. DNA from each of two different types of silica magnetic pH dependent ion exchange particles was each of two different types of silica magnetic pH dependent ion exchange 35 DNA from each of two different types of silica magnetic pH dependent ion exchange particles. The minimum amount of sodium chloride and a buffer required to elute plasmid

EXAMPLE 11 - COMPARISON OF COUNTERTION CONDITIONS REQUIRED TO ELUTE PLASMID DNA FROM SILICA MAGNETIC UREA-LINKED HISTAMINE AND PROPIONATE AND SILICA MAGNETIC UREA-LINKED HISTAMINE AND PROPIONATE 25 BIOMODAL ION EXCHANGE PARTICLES AT VARIOUS PH'S

- 20 Duplicate isolations conducted according to the procedure described above yielded 21.7 μ g (A260/280 of 1.86) and 16.1 μ g (A260/280 of 1.89) of plasmid DNA. No RNA was visible by analysis using gel electrophoresis.
- 25 The eluent solution in each tube was transferred to a clean tube.
13. The particles were separated from the resulting eluent by magnetic force. To the particles to elute the eluent.
15. The particles and buffer were mixed well to allow plasmid DNA which had adsorbed to tube. An elution buffer of 100 μ l of 20mM Tris-HCl, pH 9.5, was added to each tube. Steps 9 and 10 were repeated twice, for a total of 3 washes.
12. Steps 7 and 8 were repeated.
11. Tubes were washed with 1.0 ml of nanopure water.
10. Steps 9 and 10 were repeated twice, including caps.
9. The tube caps were washed by tube inversion (4X), and incubated 1 minute.
7. The particles were separated from the mixture, using a magnetic separator for 5 minutes.
5. The mixture was vortexed, and incubated as described in Example 3C, above. The resulting mixture was vortexed, and incubated 5 containing 150 μ l of 100mg/ml (15mg) silica magnetic glycyl-l-alanine particles prepared as described in Example 3C, above. The resulting mixture was vortexed, and incubated 5 minutes.
4. 350 μ l of Wizard® Neutralization Solution was added per tube, and mixed gently.
3. The tubes were centrifuged at 14k rpm for 10 minutes.
6. The cleared solution was removed and placed in a clean 1.5 ml tube.
5. The particles were separated from the mixture, using a magnetic separator for 5 minutes.
8. Liquid was removed from tubes, including caps.
9. Tubes were washed with 1.0 ml of nanopure water.
10. Steps 7 and 8 were repeated.
11. Steps 9 and 10 were repeated twice, for a total of 3 washes.
12. An elution buffer of 100 μ l of 20mM Tris-HCl, pH 9.5, was added to each tube.
13. The eluent solution in each tube was transferred to a clean tube.
- 20 Duplicate isolations conducted according to the procedure described above yielded 21.7 μ g (A260/280 of 1.86) and 16.1 μ g (A260/280 of 1.89) of plasmid DNA. No RNA was visible by analysis using gel electrophoresis.

3. The particles were magnetically separated in 300 μ l of the putative elution solution. The particles were magnetically separated in 1.5ml of the solution with 1.0ml of -20°C ethanol. The DNA was pelleted by centrifugation in a tube. The salt concentration of the elution solution has modified, by addition of either water or 5M NaCl, to a final concentration of 1M NaCl. The DNA (if present) was concentrated 30

25 For all the sets of samples except those to be eluted at a pH of below pH 5 (e.g. samples to the particles, separated from the particles by magnetic force, and removed from the tube. removed from each tube. 1.0 ml of nanopure water was added to each tube, used to wash 2. The particles and solution were separated by magnetic force, and the solution minutes.

20 1. 700 μ l of the cleared lysate was added to each 1.5 ml microfuge tube in each of four sets of two samples for each of the two types of particles tested. Each 1.5 ml microfuge tube contained 150 μ l of either of the two types of particles (15 mg). Each tube was capped and mixed by inversion. The resulting suspension was incubated at room temperature for 5

15 minutes. The urea-histidine IE particles and bimodal-histamine-propionate IE particles were tested and compared to one another for their capacity to bind to and release plasmid DNA to isolate plasmid DNA with each of the two types of particles varied, with a pH ranging from the cleared lysate prepared as described immediately above. The elution solution used from the cleared lysate for the other type of particles was the same as the elution solution used to isolate plasmid DNA with each of the two types of particles varied, with a pH ranging between pH 4.2 and 9.5:

10 1. Cleared lysates were prepared from the DH5 α strain of *E. coli* bacteria cells transfected with pGLO™-Control Vector (Promega), as described in Example 6, above, modified as follows. Cells from 50ml of an overnight culture of the transformants were harvested by centrifugation, and resuspended in 2.5ml of Wizard® Resuspension Solution. The cells were lysed by adding 2.5ml of Wizard® Lysis Solution to the resuspended cells. 3.5 ml of Wizard® Neutralization Solution was added to the resulting lysate. The lysate was cleared by centrifugation, and the supernatant transferred to a sterile 50ml tube.

5 2. Histamine-propionate IE particles showed 260 nmoles of histamine and 900 nmoles of histamine-propionate IE particles prepared as described in Example 5B, above. Elemental analysis of the bimodal-histamine-propionate IE particles ("bimodal-histamine-propionate IE particles") linked to histamine through a urea residue (hereinafter, "bimodal-histamine-propionate IE

from such particles.

The results above demonstrate that the addition of propionate groups to urea-histidine IE particles reduces the amount of cation concentration required to elute DNA.

PH	Urea-Histidine IE Particles	Bifunctional IE Particles	100μl of 50mM Tris HCl
9.5			
8.7			100μl of 10mM Tris HCl
8.0	100mM Tris / 300mM NaCl	100mM Tris / no NaCl	
7.3	100mM Tris HCl / 600mM NaCl	100mM Tris / 300mM NaCl	
4.8	33mM KOAc / 1.7M NaCl		
4.2	33mM KOAc / 2.15M NaCl		

TABLE I

shown in Table I, below:

Elution conditions used on each set of samples prepared as described above are shown in Table I, below:

PH	Urea-Histidine IE Particles	Bifunctional IE Particles	100μl of 50mM Tris HCl
9.5			
8.7			100μl of 10mM Tris HCl
8.0	100mM Tris / 300mM NaCl	100mM Tris / no NaCl	
7.3	100mM Tris HCl / 600mM NaCl	100mM Tris / 300mM NaCl	
4.8	33mM KOAc / 1.7M NaCl		
4.2	33mM KOAc / 2.15M NaCl		

Once the approximate concentration was determined, the procedure was repeated to confirm the concentration of potassium acetate and NaCl at pH 4.8, and the concentration of Tris HC1 and NaCl at pH 7.3, and pHs above 7.3.

Once the approximate concentration was determined, the procedure was repeated to confirm the concentration of potassium acetate and NaCl at pH 4.8, and the concentration of Tris HC1 and NaCl at pH 7.3, and pHs above 7.3.

Electrophoresis to determine the minimum concentration needed for DNA elution, DNA elution at 10mM Tris HC1, even at pH 9.5. The eluted DNA was examined by gel electrophoresis to determine the minimum concentration needed for DNA elution.

For elution conditions above pH 8.0, 100μl of 10mM Tris HC1 was used in the case of the bifunctional IE particles. Similar testing of the urea-histidine IE particles showed no difference in elution conditions above pH 8.0, 100μl of 10mM Tris HC1 was used in the case of the bifunctional IE particles. Similar testing of the urea-histidine IE particles showed no difference in elution conditions above pH 8.0, 100μl of 10mM Tris HC1 was used in the case of the bifunctional IE particles. Similar testing of the urea-histidine IE particles showed no difference in elution conditions above pH 8.0, 100μl of 10mM Tris HC1 was used in the case of the bifunctional IE particles.

5. For elution conditions above pH 8.0, 100μl of 10mM Tris HC1 was used in the case of the bifunctional IE particles. Similar testing of the urea-histidine IE particles showed no difference in elution conditions above pH 8.0, 100μl of 10mM Tris HC1 was used in the case of the bifunctional IE particles.

6. The particles remaining from step 3 were washed once with 1.0 ml nanopure water, resuspended in 100μl of 10mM Tris HC1 pH 9.5.

microutrifuge at 12,000 X g for 10 minutes. The pellets were dried to remove ethanol, and

EXAMPIE 12 - ISOLATION OF PCR AMPLIFIED DNA FROM UNINCOPORATED NUCLEOTIDES AND PRIMERS, USING NON-POROUS SILICA MAGNETIC PURIFICATION OF PCR AMPLIFIED DNA USING POROUS SILICA MAGNETIC GLYCIDYL-CYSTEINE PH DEPENDENT ION EXCHANGE PARTICLES. SIMILAR THE HUMAN APC (*Adenomatous Polyposis Coli*) gene was amplified in a PCR amplification reaction, wherein human genomic template DNA was added to a reaction mix containing:
 40 μ l 10X AmplicTaq[®] PCR buffer (no Mg⁺⁺) [Perkin Elmer];
 13 μ l 10mM dNTP mix;
 40 μ l 25mM MgCl₂;
 13 μ l APC primers (50 pmoles/ μ l), with nucleotide sequences: 5'-GGA TCC TAA
 TAC GAC TCA CTA TAG GAA CAG ACC ACC ATG CAA ATC CTA AGA GAG
 AAC AAC TGT C3. [SEQ ID NO:1], and 5'-CAC AAT AGT CCT GTA TTG TTG CTT C3'.
 The amplification reaction was run for 35 cycles on a Perkin Elmer 4800 thermocycler.
 A 1.8 kb DNA product was the result of the amplification.
 The resulting PCR amplified gene was isolated from other components in the reaction mix, above according to the following isolation procedure:
 1. 20 μ l of the PCR reaction mix was added to 200 μ l of 66mM KOAc+900mM NaCl, pH 4.8, and mixed. Then, 20 μ l (2 mg) of non-porous glycidyl-histidine silica magnetic particles was added.
 2. After mixing, the solution was incubated for 5 minutes at room temperature.
 The particles were separated by vortexing in 200 μ l of nanopure water, to a clean 1.5 ml tube.
 3. The particles were resuspended by vortexing in 200 μ l of nanopure water, and separated from the resulting solution. The particles were separated using a magnetic separator, the cap and side-wall of the tube were washed by inverting the tube, and the solution was removed from the cap and tube, and placed in a clean 1.5 ml tube.
 30

5. Using gel electrophoresis (see Example 1), the solutions obtained from steps 2, 3, and 4 were compared with a sample of the original PCR reaction. The solution from steps 2 and 4 showed no visible PCR amplified DNA. The solution from step 2 showed a small amount (about 10% of the initial amount) of the PCR DNA. The solution from step 2 showed no visible PCR amplified DNA. The solution from step 4 showed an amount of PCR DNA >80% of the initial amount in the reaction mix, and no visible unincorporated primers and nucleotides, as seen in the initial PCR reaction solution.

The same procedure was followed using MagneSIL™ (no histidine ligand) porous particles, and resulted in no visible DNA at the end of step 4.

10 5. The same procedure was followed using MagneSIL™ (no histidine ligand) porous particles, and resulted in no visible DNA using MagneSIL™ (no histidine ligand) porous particles (as a control), according to the following procedure:

15 1. Three 1.5 ml tubes were set up with 200μl of amplification mixture mixed with 200μl of 33mM KOAc / 400mM NaCl, pH 4.8. To tubes 1 and 2, 20 μl (2mg) of Mag-IE-glycidyl-cysteine was added and mixed. To tube 3, 20μl of MagneSIL™ particles was added and mixed.

2. Each tube was incubated 10 minutes at 20°C, and the particles in each tube

20 separated from the solution in each tube by magnetic force, for 2 minutes.

3. The solution from each tube was removed. The solutions from tubes 1 and 2 were processed according to steps 4-5, below. The particles in tube 3 were resuspended in 33mM KOAc / 400mM NaCl, pH 4.8, magnetically separated for 2 minutes, and the solution removed and processed according to steps 4-5, below.

25 4. The particles were resuspended in 200μl of nanopure water, magnetically separated, and the solution removed from the tube.

5. DNA was eluted in 20μl of 50mM Tris HCl pH 9.5

Aliquots of the original amplification reaction products and of the eluents from MagneSIL™ (tube 1, above) and from Mag-IE-glycidyl-histidine (tubes 2-3 above) were stained with ethidium bromide, and a photograph thereof taken under UV light. Figure 4 shows the gel, with:

30

Line 1: Eluent from the MagnesiTM particles (tube 1, above).
Line 2: Eluent from the Mag-IE-glycidyl-histidine particles (tube 2, above), with no wash step prior to transfer of the particles from the amplification reaction solution to nanopure water in step 4, above.
Line 3: Eluent from the Mag-IE-glycidyl-histidine particles (tube 3, above), after washing the particles in 33M KOAc/400M NaCl, pH 4.8 prior to transfer to nanopure water in step 4, above.

Note that the amplified DNA reaction mixture includes bands other than the desired amplicon product. The MagnesiTM particles appear to have failed to isolate any detectable quantity of the amplified DNA fragments, as no bands are visible in lane 1 of figure 4. Both isolation procedures with Mag-IE-glycidyl-histidine produced amplified

10 Figure 4. Both isolation procedures with Mag-IE-glycidyl-histidine produced amplified DNA isolated from low molecular weight species (the band below the primary band in lane 4). However, considerably more amplified DNA was produced from tube 2, without the additional wash step, than was isolated from tube 3 with the additional wash step.

EXAMPLE 13: ISOLATION OF HUMAN GENOMIC DNA FROM BUCCAL SWABS,
L.SING NON-POROUS SILICA MAGNETIC GLYCIDYL-HISTIDINE PARTICLES
20 Genomic DNA was isolated from buccal swabs using non-porous silica magnetic glycidiyl-histidine ion exchange particles, synthesized as described in Example 3B, above, as follows:

Tissue samples were obtained from two inner cheek areas of human subjects, using solution swabs (buccal collection), and the swabs were allowed to sit at room temperature for 10 minutes, with occasional swirling, in 700 μl of a cell lysis buffer (75mM Na Citrate pH 7.0 / 1.5% Tween) in a 1.5 ml microfuge tube. The swabs were removed and the liquid in the swabs was pressed out by running it over the opening of the tube, pressing the swab into the interior side of the tube.

30 μl of protease K (18mg/ml) was added to each tube, and 50 μl (5 mg) of non-porous silica magnetic glycidiyl-histidine particles was added per tube, and mixed well. Samples were incubated at room temperature for 5 minutes, with occasional mixing by tube inversion.

The tubes were placed on a magnetic rack to allow separation of the solution and particles, and the solution was removed from the tube.

EXAMPLE 14: COMPARISON OF COUNTERTOP CONDITIONS REQUIRED TO ELUTE PLASMID DNA FROM SILICA MAGNETIC UREA-HISTIDINE PH DEPENDENT ION EXCHANGE PARTICLES

The eluted DNA was examined by gel electrophoresis, as described in Example 1, above, and compared to a control sample of a known amount of genomic DNA to estimate the quantity of DNA eluted. Each 40 μ l sample of eluted DNA was found to contain greater than 100 ng of genomic DNA.

ELUTE PLASMID DNA FROM SILICA MAGNETIC UREA-HISTIDINE PH DEPENDENT ION EXCHANGE PARTICLES AND SILICA MAGNETIC UREA-HISTIDINE PH PROPIONATE BIMODAL PH DEPENDENT ION EXCHANGE PARTICLES

The minimum amount of sodium chloride and a buffer required to elute plasmid DNA from each of two different types of silica magnetic pH dependent ion exchange particles was determined at each of several pH's, according to the following procedure.

Silica magnetic urea-histidine TE particles prepared as described in Example 5A, and silica magnetic bimodal urea-histidine -propionate TE particles prepared as described in Example 5C were used to isolate plasmid DNA from a cleared lysate, as follows.

Cleared lysates were prepared as described in example 11. The procedure for comparing the elution profiles of the two particles was as described in example 11. The pH's tested were 4.8, 7.3, and 9.5. The results obtained are shown in Table 3, below:

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
928

TABLE 3

MAGNETIC PARTICLE ELUTION/NON-ELUTION AND PH CONDITIONS CONDITIONS	ELUTION/NON-ELUTION AND PH CONDITIONS CONDITIONS	Bimodal urea-histidine propionate IE particles, pH 4.8	DNA eluted in 33mM KOAc / 0.80M NaCl, did not elute in 33mM KOAc / 1.40M NaCl	Urea-histidine IE particles, pH 4.8	DNA eluted in 100mM Tris HCl, did not elute in 80mM Tris HCl	Bimodal Urea-histidine propionate IE particles, pH 7.3	DNA eluted in 60mM Tris HCl, did not elute in 50mM Tris HCl	Urea-histidine IE particles, pH 7.3	DNA eluted in 50mM Tris HCl, did not elute in 30mM Tris HCl	Bimodal Urea-histidine propionate IE particles, pH 9.5	Eluted in 100uL of 10mM Tris HCl but eluted in 100uL of 100mM Tris HCl	Bimodal Urea-histidine propionate IE particles, pH 9.5
By spectrophotometric analysis, the elutions in 100uL of 10mM Tris HCl at pH 9.5 yielded 30 μ g (A ₂₆₀ /A ₂₈₀ of 1.78) of DNA for the bimodal urea-histidine -propionate IE particles and less than 2 μ g of DNA for the urea-histidine IE particles. No DNA was detected on analysis of the eluent from the urea-histidine IE particles, by gel electrophoresis.	The results above indicate that the addition of propionate to the urea-histidine particles lowered the needed concentration of counter-ion (chloride) required for elution of the DNA at pH 4.8, 7.3 and 9.5.	5										

By spectrophotometric analysis, the elutions in 100uL of 10mM Tris HCl at pH 9.5 yielded 30 μ g (A₂₆₀/A₂₈₀ of 1.78) of DNA for the bimodal urea-histidine -propionate IE particles and less than 2 μ g of DNA for the urea-histidine IE particles. No DNA was detected on analysis of the eluent from the urea-histidine IE particles, by gel electrophoresis. Particles and less than 2 μ g of DNA for the urea-histidine IE particles. No DNA was detected on analysis of the eluent from the urea-histidine IE particles, by gel electrophoresis. The results above indicate that the addition of propionate to the urea-histidine particles lowered the needed concentration of counter-ion (chloride) required for elution of the DNA at pH 4.8, 7.3 and 9.5.

What is claimed is:

1. A pH dependent ion exchange matrix, comprising:
a solid support, and
a cap comprising an amine with a pk of less than about 9;
a plurality of first ion exchange ligands, each first ion exchange ligand comprising:
a spacer covalently attached to the cap, the spacer comprising a
spacer alkyl chain with an amine terminus and an acidic moiety covalently
attached to the spacer alkyl chain; and
a linker comprising a linker alkyl chain covalently attached to the
amine terminus of the spacer at a second end of the linker alkyl chain;
wherein the matrix has a capacity to adsorb to a target nucleic acid at a first pH, and
to release the target nucleic acid at a desorption pH which is higher than the first pH.

10

2. The matrix of claim 1, wherein the solid support is a silica based material.
3. The matrix of claim 2, wherein the silica based material is a glass fiber.
4. The matrix of claim 2, wherein the silica based material is a silica gel particle.
5. The matrix of claim 4, wherein the silica gel particle is paramagnetic.
6. The matrix of claim 4, wherein the silica gel particle is porous.
7. The matrix of claim 4, wherein the silica gel particle is non-porous.
8. The matrix of claim 1, wherein the cap further comprises an aromatic hydrocarbon ring.

25

9. The matrix of claim 8, wherein at least one member of the aromatic hydrocarbon ring is the amine with a pk of less than about 9.

30

WO 00/69872
PCT/US00/12186

11. The matrix of claim 1, wherein the amine with a pK of less than 9 has a pK of at least about 4 and up to about 6.

12. The matrix of claim 1, wherein the acidic moiety is selected from the group consisting of hydroxyl, carboxyl, and carbonyl.

13. The matrix of claim 1, wherein the spacer alkyl chain comprises two (2) to five (5) carbon atoms.

14. The matrix of claim 1, wherein the spacer is selected from the group consisting of cysteine and alanine.

15. The matrix of claim 1, wherein the aromatic hydrocarbon covariantly linked to the spacer define a basic amine acid moiety selected from the group consisting of histidine and histamine.

16. The matrix of claim 1, wherein the linker alkyl chain comprises three (3) to eight (8) carbon atoms.

17. The matrix of claim 1, wherein the linker alkyl chain includes at least one member selected from the group consisting of oxygen and amine.

18. The matrix of claim 1, wherein the linker is selected from the group consisting of glycidine and urea.

19. The matrix of claim 1, wherein the matrix is an anion exchanger capable of exchanging with the target nucleic acid at the first pH, and the matrix has a net neutral or negative charge at the desorption pH.

20. The matrix of claim 1, wherein the desorption pH is at least about 4.0 and up to about pH 10.0.

21. The matrix of claim 1, wherein the matrix can be reused through at least two cycles of adsorption of the target nucleic acid to the matrix at the first pH and of release from the matrix at the desorption pH.

22. A pH dependent ion exchange matrix for isolating a target nucleic acid, comprising: a silica magnetic particle; and a plurality of first ion exchange ligands, each first ion exchange ligand comprising: an aromatic hydrocarbon ring, wherein at least one member of the spacer covariantly attached to the aromatic hydrocarbon ring is an amine with a PK of less than about 9;

23. The matrix of claim 22, wherein the cap further comprises an aromatic hydrocarbon to release the target nucleic acid at a desorption pH which is higher than the first pH, and wherein the matrix has a capacity to adsorb to a target nucleic acid at a first pH, and second end of the linker alkyl chain;

24. The matrix of claim 23, wherein at least one member of the aromatic hydrocarbon ring is the amine with a PK of less than about 9.

25. The matrix of claim 24, wherein the aromatic hydrocarbon ring is selected from the group consisting of pyridine, and imidazole.

26. The matrix of claim 22, wherein the amine with a PK of less than 9 has a PK of at least about 4 and up to about 6.

WO 00/69872
PCT/US00/12186

27. The matrix of claim 22, wherein the acidic moiety is selected from the group consisting of hydroxyl, carboxyl, and carbonyl.

28. The matrix of claim 22, wherein the spacer chain comprises two (2) to five (5) carbon atoms.

29. The matrix of claim 22, wherein the spacer is selected from the group consisting of cysteine and alanine.

30. The matrix of claim 22, wherein the aromatic hydrocarbon covariantly linked to the spacer define a basic amino acid moiety selected from the group consisting of histidine and histamine.

31. The matrix of claim 22, wherein the linker alkyl chain comprises three (3) to eight (8) carbon atoms.

32. The matrix of claim 22, wherein the linker alkyl chain includes at least one member selected from the group consisting of oxygen and azine.

33. The matrix of claim 22, wherein the linker is selected from the group consisting of glycidime and urea.

34. The matrix of claim 22, wherein the matrix is an anion exchanger capable of exchanging with the target nucleic acid at the first pH, and the matrix was a net neutral or negative charge at the desorption pH is not.

35. The matrix of claim 22, wherein the matrix can be reused through at least two cycles of adherence of the target nucleic acid to the matrix at the first pH and release from the matrix at the desorption pH.

36. A multimedal pH dependent ion exchange matrix, comprising:

a solid support;

5 a plurality of first ion exchange ligands, each first ion exchange ligand comprising:
 a cap comprising an amine with a PK of less than about 9;
 a spacer covalently attached to the cap, the spacer comprising a
 spacer alkyl chain with an amine terminus, and
 a linker comprising a linker alkyl chain covalently attached to the
 solid support at a first end of the linker alkyl chain and covalently attached
 to the amine terminus of the spacer at a second end of the linker alkyl chain;
 a plurality of second ion exchange ligands, each second ion exchange ligand
 comprising:
 a second alkyl chain; and
 a second acidic moiety covalently attached to the second alkyl chain,
 wherein the matrix has a capacity to adsorb to a target nucleic acid at a first PH, and
 to release the target nucleic acid at a desorption PH which is higher than the first PH.

10 37. The matrix of claim 36, wherein the solid support is a silica based material.

15 38. The matrix of claim 37, wherein the silica based material is a silica magnetic
 particle.

20 39. The matrix of claim 36, wherein the solid support is porous.

25 40. The matrix of claim 36, wherein the solid support is non-porous.

30 41. The matrix of claim 36, wherein the cap further comprises an aromatic hydrocarbon
 ring is the amine with a PK of less than about 9.

35 42. The matrix of claim 41, wherein at least one member of the aromatic hydrocarbon
 group consisting of pyridine and aniline.

40 43. The matrix of claim 41, wherein the aromatic hydrocarbon ring is selected from the

44. The matrix of claim 36, wherein the second acidic moiety is a carboxylic acid residue.

45. The matrix of claim 36, wherein the spacer alkyl chain comprises two (2) to five (5) carbon atoms.

46. The matrix of claim 41, wherein the aromatic hydrocarbon covalently linked to the spacer define a basic amino acid moiety selected from the group consisting of histidine and histamine.

47. The matrix of claim 36, wherein the linker alkyl chain comprises three (3) to eight (8) carbon atoms.

48. The matrix of claim 36, wherein the linker alkyl chain includes at least one member selected from the group consisting of oxygen and amine.

49. The matrix of claim 30, wherein the linker is urea.

50. The matrix of claim 30, wherein the matrix is an anion exchanger capable of exchanging with the target nucleic acid at the first pH, neutral at a second pH which is higher than the first pH, and a cation exchanger at a third pH which is higher than the first pH, and a cation exchange capacity of second pH is at least about 4.0 and up to about 25. pH 10.0.

51. The matrix of claim 44, wherein the second pH is at least about 4.0 and up to about 25. pH 10.0.

52. The matrix of claim 30, wherein the proportion of the plurality of first ion exchange ligands and the plurality of second ion exchange ligands covalently attached to the solid support comprising a target nucleic acid at the first pH, the matrix preferentially binds to the target phase is designed to ensure that when the matrix comes into contact with a solution ligands and the plurality of second ion exchange ligands covalently attached to the solid support comprising a target nucleic acid.

54. A method of isolating a target nucleic acid using a pH dependent ion exchange matrix at the desorption pH.

53. The matrix of claim 30, wherein the matrix can be reused through at least two cycles of adherence of the target nucleic acid to the matrix at the first pH and release from the matrix, comprising the steps of:

(a) providing a pH dependent ion exchange matrix comprising:

a plurality of first ion exchange ligands, each first ion exchange ligand a solid support, and

the amine is selected from the group consisting of a primary, a cap comprising an amine with a pK_a of less than 9, wherein a spacer covalently attached to the cap, the spacer secondary, and a tertiary amine;

10 a cap comprising a spacer alkyl chain with an amine terminus, and an acidic moiety covalently attached to the spacer alkyl chain; and

a linker comprising a linker alkyl chain covalently attached to the solid support at a first end of the linker alkyl chain and covidentally attached to the amine terminus of the spacer at a second end of the linker alkyl chain;

15 wherein the matrix has a capacity to adsorb to a target nucleic acid at a first pH, and to release the target nucleic acid at a desorption pH which is higher than the first pH.

20 (b) provide a mixture comprising the target nucleic acid;

(c) combine the mixture and the matrix and incubate at the first pH until the nucleic acid adsorbs to the matrix, forming a complex;

(d) separate the complex from the mixture; and

(e) combine the complex with an elution solution at the desorption pH.

25 35. The method of claim 54, wherein the solid phase of the matrix provided in step (a) is a silica based material.

56. The method of claim 54, wherein the silica based material is glass fiber.

WO 00/69872

57. The method of claim 55, wherein the silica based material is a silica gel particle.

58. The method of claim 55, wherein the silica based material is a silica magnetic particle.

59. The method of claim 54, wherein the cap further comprises an aromatic hydrocarbon ring.

60. The method of claim 59, wherein the amine with a PK of less than about 9 is a member of the aromatic hydrocarbon ring.

61. The method of claim 54, wherein the spacer alkyl chain of the matrix provided in step (a) comprises two (2) to five (5) carbon atoms.

62. The method of claim 54, wherein the spacer of the matrix provided in step (a) is selected from the group consisting of cysteine and alanine.

63. The method of claim 54, wherein the aromatic hydrocarbon covariantly linked to the spacer of the matrix provided in step (a) define a basic amino acid moiety selected from the group consisting of histidine and histamine.

64. The method of claim 54, wherein the linker alkyl chain of the matrix provided in step (a) comprises three (3) to eight (8) carbon atoms.

65. The method of claim 54, wherein the linker alkyl chain of the matrix provided in step (a) includes at least one member selected from the group consisting of oxygen, amine, and sulfur.

66. The method of claim 54, wherein the linker of the matrix provided in step (a) is selected from the group consisting of glycidine and urea.

alkyl chain; and
with an amino terminus; and an acidic substituent which is covalently attached to the spacer
30 attached to the aromatic hydrocarbon, wherein the spacer comprises a spacer alkyl chain
ring, wherein at least one member of the ring is an amine; a spacer which is covalently
provided in accordance with claim 54, wherein the matrix provided in step (a) further
comprises a second ion exchange ligands covalently attached to the solid phase;
thereby producing a linker-modified solid phase;
25 end; (c) combining the silica based solid phase and the linker under conditions where
a covalent bond is formed between the solid phase and the first end of the linker alkyl chain,
(b) providing a linker comprising an alkyl chain having a first end and a second
(a) providing a solid phase;
75. A method of making a pH dependent ion exchange matrix, comprising the steps of:
20 74. The method of claim 71, wherein the target nucleic acid is genomic DNA.
73. The method of claim 71, wherein the target nucleic acid is plasmid DNA.
epoxide, histidine via urea, histidine via sulfhydryl, pyridylalanine, pyridyl cysteine.
15 step (a) is selected from the group consisting of: histamine via epoxide, histamine via
72. The method of claim 54, wherein the plurality of ligands of the matrix provided in
epoxydized by disrupting biological material containing the target nucleic acid.
10 71. The method of claim 54, wherein the target nucleic acid is DNA.
70. The method of claim 54, wherein the target nucleic acid material is RNA.
material is obtained by disrupting biological material containing the target nucleic acid.
69. The method of claim 54, wherein the mixture comprising the target nucleic acid
5 ligands is a propionate residue.
68. The matrix of claim 54, wherein at least one of the plurality of second ion exchange
plurality of second ion exchange ligands covalently attached to the solid phase.
67. The method of claim 54, wherein the matrix provided in step (a) further comprises a
WO 0069872A2 | 2

96. A method of making a pH dependent ion exchange matrix, comprising the steps of:
 selected from the group consisting of histamine and histidine.

85. The method of claim 75, wherein the acidic aromatic amine is an amino acid members.

84. The method of claim 75, wherein the aromatic hydrocarbon ring has at least five oxytropic and alamine.

83. The method of claim 75, wherein the spacer is selected from a group consisting of 25

82. The method of claim 79, wherein the silica gel particle is non-porous.

81. The method of claim 79, wherein the silica gel particle is porous.

80. The method of claim 79, wherein the silica gel particle is paramagnetic.

79. The method of claim 76, wherein the silica based material is a silica gel particle. 15

78. The method of claim 76, wherein the silica based material is glass fiber.

77. The method of claim 76, wherein the linker is covalently attached to the solid phase -(OSiR₂)_x-R₁, wherein R₁ is the same group as the first subunit, and x is at least 0. under conditions where a covalent bond is formed between the amino terminus of the spacer alkyl chain of the acidic aromatic amine and the second end of the linker.

(e) combining the linker-modified solid phase with the acidic aromatic amine under conditions where a covalent bond is formed between the amino terminus of the spacer and step (a) is a silica based material.

76. The method of claim 75, wherein the solid phase provided in step (a) is a silica

charged at an acidic pH.

92. The method of claim 90, wherein the second ion exchange ligand is negatively

30 exchange at an acidic pH.

91. The method of claim 90, wherein the second ion exchange ligand is a cation

exchange ligand.

the protecting group from the second ion exchange precursor, forming a second ion 25 attaching a second ion exchange ligand precursor to the solid support, wherein the second

ion exchange precursor includes an ion exchange terminus blocked by a protecting group, 89. The method of claim 86, wherein the method further comprises a step of removing attaching a second ion exchange ligand precursor to the solid support, wherein the second

20 ion exchange precursor includes an ion exchange terminus blocked by a protecting group.

removed from the carboxyl residue after step (c).

ligand is a carboxyl residue protected by a methyl group, wherein the methyl group is 88. The method of claim 87, wherein the acidic substituent of the first ion exchange

15 silylurea.

87. The method of claim 86, wherein the first ion exchange ligand is an imidazole

chain.

where a covalent bond is formed between solid phase and the first end of the linker alkyl 10 (c) combining the solid phase and the first ion exchange ligand under conditions

wherein the second end is covalently attached to the amine terminus of the spacer; 5 a linker comprising a linker alkyl chain having a first end and a second end, to the spacer alkyl chain; and

chain and with an amine terminus, an acidic substituent which is covalently attached 10 a spacer covalently attached to the cap, the spacer comprising a spacer alkyl

selected from the group consisting of a primary, a secondary, or a tertiary amine; 5 a cap comprising an amine with a pk of less than 9, wherein the amine is

(b) providing a first ion exchange ligand comprising:

(a) providing a solid support;

93. The method of claim 90, wherein relative proportions of a plurality of the first ion exchange residue and a plurality of the second ion exchange residue covalently attached to the solid phase are designed to control the charge ratio on the solid support surface, thereby controlling the binding affinity (capacity) remains more a property of the available particle surface) of the solid support to bind to the target nucleic acid material.

94. The method of claim 86, wherein the solid support material is a silica gel particle.

95. The method of claim 94, wherein the silica gel particle is paramagnetic.

96. The method of claim 86, wherein the spacer is selected from a group consisting of cysteine and alanine.

97. The method of claim 86, wherein the cap further comprises an aromatic hydrocarbon ring having at least five members.

98. The method of claim 86, wherein the acidic cap and spacer comprise an amino acid selected from the group consisting of histidine and histidine.

99. A method of making a bimodal pH dependent ion exchange matrix, comprising the steps of:

- providing a solid support;
- providing a first ion exchange ligand comprising:

(b) a cap comprising an amine with a pK of less than about 9, wherein the amine is selected from the group consisting of a primary, a secondary, or a tertiary amine;

a spacer covalently attached to the cap, the spacer comprising a spacer alkyl chain and with an amine terminus; and

a linker comprising a linker alkyl chain having a first end and a second end, wherein the second end is covalently attached to the amine terminus of the spacer;

30

15

proportionate residue.

100. The method of claim 99, wherein the second ion exchange ligand is a

removing the protective group therefrom.

- 10 (f) protecting the acidic residue of the second ion exchange ligand by the protected second ion exchange ligand and the solid phase; and with a second ligand under conditions which promote formation of a covalent bond between (e) combining the solid phase with the first ion exchange ligand attached thereto and an acidic residue covalently attached thereto, wherein the acidic residue has a protective group covalently attached thereto;
- 5 (d) providing a second ion exchange ligand, comprising a second alkyl chain, where a covalent bond is formed between solid phase and the first end of the linker alkyl chain;
- (c) combining the solid phase and the first ion exchange ligand under conditions where a covalent bond is formed between solid phase and the first end of the linker alkyl

FIG. 1

wherein, R_1 is $-\text{OH}$, $-\text{OCH}_3$, or $-\text{OCH}_2\text{CH}_3$; and

FIG. 2

wherein, R_1 is -OH, -OCH₃, or -OCH₂CH₃

FIG. 3

wherein, R_1 and R_3 are independently -OH, -OCH₃, or -OCH₂CH₃; R is -OH, -OCH₃, -OCH₂CH₃, or Cl; and R_2 is -(OSiR₁²)_y-R₁, wherein y is at least 0; and R_4 is -(OSiR₃²)_z-R₃, wherein z is at least 0.

FIG. 4

4/4

WO 00/69872

SEQUENCE LISTING

PCT/US00/12186

<110> Promega Corporation

<120> pH DEPENDENT ION EXCHANGE MATRIX AND METHOD OF USE IN
THE ISOLATION OF NUCLEIC ACIDS

<140> PCT/US00/—————
<141> 2000-05-05

<150> 09/312,172
<151> 1999-05-14

<170> Patentin Ver. 2.1
<160> 2

<210> 1
<211> 64
<212> DNA
<213> Homo sapiens
<220> Polypropolis Coli gene
<223> Oligonucleotide primer of the Adenomatous

<400> 1
ggatccat acgacttacat ataggAACAG ACCACCATGC AATTCCTAAG agagAACAAc 60
64
<400> 2
tgcc

24
<210> 2
<211> 24
<212> DNA
<213> Homo sapiens
<220> Polypropolis Coli gene
<223> Oligonucleotide primer of the Adenomatous
<230> Homo sapiens
<240> cacaataagt ctgtatggtc ttct
<400> 2

(57) Abstract: PH DEPENDENT ION EXCHANGE MATRIX AND METHOD OF USE IN THE ISOLATION OF NUCLEIC ACIDS

used immediately without further extraction or isolation.

use of hazardous chemicals. Target nucleic acids isolated using the pH enable one to isolate a target nucleic acid in very few steps, without the salt and about a neutral pH. The matrices and methods of this invention nucleic acid can be released from the pH dependent matrix in little or no nucleic acid as the pH of the surrounding solution is increased. The target wherein the overall charge of the matrix is positive, and to release the target present invention are designed to bind to the target nucleic acid at a pH the first and second pH. The pH dependent ion exchange matrixes of the higher pH. The matrix has an overall neutral charge in a pH range between the other of which is capable of acting as a cation exchanger at a first pH, and one of which is capable of acting as an anion exchanger at a first pH, and invention comprises at least two different ion exchange functional groups, or other nucleic acids. Each pH dependent ion exchange matrix of this RNA from contaminants, such as plasmid DNA, chromosomal DNA, isolate a target nucleic acid, as such as plasmid DNA, chromosomes, cellular debris, or proteins, lipids, nucleic acids to make such matrices, and methods for using such matrices to methods for making such matrices, and methods for using such matrices to (57) Abstract: PH DEPENDENT ION EXCHANGE MATRIX AND METHOD OF USE IN THE ISOLATION OF NUCLEIC ACIDS

wherein, R₁ is -OH, -OCH₃, or -OC(CH₃)₂; and

wherein, R₁ is -OH, -OCH₃, or -OC(CH₃)₂; and

(VI)

(V)

(VI)

(VII)

(VIII)

(IX)

(X)

(XI)

(XII)

(XIII)

(XIV)

(XV)

(XVI)

(XVII)

(XVIII)

(XIX)

(XX)

(XXI)

(XXII)

(XXIII)

(XXIV)

(XXV)

(XXVI)

(XXVII)

(XXVIII)

(XXIX)

(XXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

(XXXIV)

(XXXV)

(XXXVI)

(XXXVII)

(XXXVIII)

(XXXIX)

(XXXX)

(XXXI)

(XXXII)

(XXXIII)

<p style="text

(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(88) Date of publication of the international search report:
15 February 2001

(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published: With international search report

For two-letter codes and other abbreviations, refer to the "Guide
and Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 00/69872 A3

A. CLASSIFICATION OF SUBJECT MATTER		IPC 7 C12N 5/10 B01J 41/06 C07H 21/00	
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED		IPC 7 C12N 5/10 B01J 41/06 C07H 21/00	
Minimum document search (classification system followed by classification symbols)			
IPC 7 C12N 5/10 B01J 41/06 C07H 21/00			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic base consulted during the international search (name of data base used, where practical, search terms used)			
Category Citation of document, with indication, where appropriate, of the relevant passages			
A	US 5 652 348 A (HAGGARTY NEILL MARD ET AL) 29 JULY 1997 (1997-07-29) Cited in the application Column 4, line 21 - Column 6, line 14 Figures 1-7 Abstract US 5 898 071 A (HAWKINS TREVOR) 27 APRIL 1999 (1999-04-27) L. W. MCALUGHIN: "Mixed-mode chromatography of nucleic acids" CHEM. REV., Vol. 89, 1989, pages 309-319, XPO02152137 Page 312 - page 313		
A	75, 86 1, 22, 54, 22 36		
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Relevant to claim No.			
Category Citation of document, with indication, where appropriate, of the relevant passages			
EPO-Internal, MPI Data, PAJ, CHEM ABS Data			
Electronic base consulted during the international search (name of data base used, where practical, search terms used)			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Relevant to claim No.			
Category Citation of document, with indication, where appropriate, of the relevant passages			
A	US 5 652 348 A (HAGGARTY NEILL MARD ET AL) 29 JULY 1997 (1997-07-29) Cited in the application Column 4, line 21 - Column 6, line 14 Figures 1-7 Abstract US 5 898 071 A (HAWKINS TREVOR) 27 APRIL 1999 (1999-04-27) L. W. MCALUGHIN: "Mixed-mode chromatography of nucleic acids" CHEM. REV., Vol. 89, 1989, pages 309-319, XPO02152137 Page 312 - page 313		
A	75, 86 1, 22, 54, 22 36		
D. DOCUMENTATION SEARCHED			
Information on fields searched (classification system followed by classification symbols)			
IPC 7 C12N 5/10 B01J 41/06 C07H 21/00			
According to International Patent Classification (IPC) or to both national classification and IPC			
E. DOCUMENTS CONSULTED			
Information on documents consulted during the international search (name of data base used, where practical, search terms used)			
IPC 7 C12N 5/10 B01J 41/06 C07H 21/00			
According to International Patent Classification (IPC) or to both national classification and IPC			
F. OTHER INFORMATION			
X Further documents are listed in the continuation of box C.			
Special categories of cited documents:			
A. Document defining the general state of the art which is not claimed but published on or after the filing date			
B. Document defining the particular relevance of theory underlying the invention but published after the filing date			
C. Document containing information not yet published but considered novel or creative under the law of inventiveness			
D. Document containing information not yet published but considered to involve an inventive step when the claimed invention is taken alone			
E. Document containing information not yet published but considered to involve an inventive step when the claimed invention is taken in combination with one or more other such documents			
F. Document containing information not yet published but considered to involve an inventive step when the claimed invention is taken in combination with one or more other such documents			
G. Document containing information not yet published but considered to involve an inventive step when the claimed invention is taken in combination with one or more other such documents			
H. Document containing information not yet published but considered to involve an inventive step when the claimed invention is taken in combination with one or more other such documents			
I. Document containing information not yet published but considered to involve an inventive step when the claimed invention is taken in combination with one or more other such documents			
J. Document containing information not yet published but considered to involve an inventive step when the claimed invention is taken in combination with one or more other such documents			
K. Document containing information not yet published but considered to involve an inventive step when the claimed invention is taken in combination with one or more other such documents			
L. Document which is cited to establish the publication date of another document or other means			
M. Document referring to an oral disclosure, use, exhibition or sale before the priority date of the invention			
N. Document published prior to the international filing date but which is cited to establish the publication date of another document			
O. Document referred to in a specification (as specified)			
P. Document published prior to the international filing date but which is cited to establish the publication date of another document			
Q. Document defining the general state of the art which is not claimed but published on or after the filing date			
R. Document defining the particular relevance of theory underlying the invention but published after the filing date			
S. Document containing information not yet published but considered novel or creative under the law of inventiveness			
T. Later document published after the implementation date of the application but which is not concerned with the invention but which nevertheless refers to it			
U. Document containing information not yet published but which is concerned with the invention but which nevertheless refers to it			
V. Document containing information not yet published but which is concerned with the invention but which nevertheless refers to it			
W. Document containing information not yet published but which is concerned with the invention but which nevertheless refers to it			
X. Document containing information not yet published but which is concerned with the invention but which nevertheless refers to it			
Y. Document containing information not yet published but which is concerned with the invention but which nevertheless refers to it			
Z. Document containing information not yet published but which is concerned with the invention but which nevertheless refers to it			
Date of mailing of the international search report			
30/11/2000			
Date of the actual completion of the international search			
7 NOVEMBER 2000			
Name and mailing address of the EPO			
EPO-European Patent Office, P.O. Box 5818 Palellaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax. 31 651 000			
de Noot, A			
Authorized officer			
A. CLASSIFICATION OF SUBJECT MATTER			
Item Application No. PCT/US 00/12186			
INTERNATIONAL SEARCH REPORT			

INTERNATIONAL SEARCH REPORT

Item Application No.
PCT/US 00/12186

C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
Category: Citation of document, with indication, where appropriate, of the relevant passages
Relevant to claim No.

F, X BINTNER R ET AL: "USE OF MAGNESIUM
PARAMAGNETIC PARTICLES FOR PLASMID
PURIFICATION, PCR CLEANUP, AND
PURIFICATION OF DIDEOXY AND BIG DYE DNA
SEQUENCING REACTIONS"
2000, XP000938886
PROCEEDINGS OF THE SPIE,
the whole document

2000, XP000938886

PROCEEDINGS OF THE SPIE,

the whole document

PROCEEDINGS OF THE SPIE,

the whole document

PROCEEDINGS OF THE SPIE,

the whole document

INTERNATIONAL SEARCH REPORT		Information on patent family members										
Item	PCT/US 00/12186	Patent document	Publication date	Publication date	Entered in search report							
US 5652348	A 29-07-1997	AU 683588 B 13-11-1997	AU 3621295 A 09-04-1996	CA 2200735 A 28-03-1996	EP 0783366 A 16-07-1997	JP 10506987 T 07-07-1998	MO 9609116 A 28-03-1996	NZ 293707 A 29-03-1999	US 5945520 A 31-08-1999	US 5898071 A 27-04-1999	US 5705628 A 06-01-1998	MO 9609379 A 28-03-1996

BACKFILE DOCUMENT INDEX SHEET

APPL PARTS

A DOCPHONIX

IMIS	Internal Misc Paper
LET.	Misc. Incoming Letter
371P	PCT Papers in a 371 Application
A...	Amendment including Elections
ABST	Abstract
ADS	Application Data Sheet
A/FD	Affidavit or Exhibit Received
APPENDIX	Appendix
ARTIFACT	Artifact
BIB	Bid Data Sheet
CLM	Claim
COMPUTER	Computer Program Listing
CRFL	All CRF Papers for Backfile
DRW	Terminal Disclaimer Filed
DIST	Drawings Reference
FPR	Foreign Priority Papers
IDS	IDS including 1449
CTFR	Count Final Rejection
CTEQ	Count Ex parte Quayle
CTAV	Count Advisory Action
APEA	Examiner Answer
APDEC	Board of Appeals Decision
REM	Applicant Remarks in Amendment
XT/	Extension of Time filed separate
PA.	Change in Power of Attorney
N/AP	PA.
C.A.D	Notice of Appeal
AP-B	Abandonment
CTMS	892
CTMS	892
CLM	1449
COMPUTER	Signed 1449
CRFL	892
DRW	892
DIST	ABN
FPR	PA.
IDS	Change of Address
IDS	N/AP
IDS	Change in Power of Attorney
IDS	PA.
IDS	AP-B
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER
IDS	CRFL
IDS	DRW
IDS	DIST
IDS	FPR
IDS	IDS including 1449
IDS	CTFR
IDS	CTEQ
IDS	CTAV
IDS	APEA
IDS	APDEC
IDS	REM
IDS	XT/
IDS	PA.
IDS	N/AP
IDS	C.A.D
IDS	AP-B
IDS	CTMS
IDS	CLM
IDS	COMPUTER

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY		WO 00/70040		(51) International Patent Classification 7:		(52) International Publication Number:		(43) International Publication Date:		(44) International Application Number:		(21) International Filing Date:		(22) International Filing Date:		(30) Priority Data:		(71) Applicant:		(72) Inventors:		(73) Address for Correspondence:		(74) Agents:		(75) Address for Correspondence:		(76) Title:	
B, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, LZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, SL, TI, TM, TR, TT, UA, UG, UZ, VN, ZA, ZW, ARPTO Patient (GH, GM, KE, LS, MW, SD, SI, SZ, TZ, UG, ZW), European patient (AM, AZ, BY, KG, KZ, MD, ES, FI, FR, GR, IE, IT, LU, MC, NL, PT, SE), API patient (BE, BI, CF, CI, CM, GA, GN, GW, ML, MR, RU, IT, TM), European patient (AT, BE, CH, CY, DE, DK, ES, FI, FR, GR, IE, IT, LU, MC, NL, PT, SE), Woods Lane, Oregon, WI 969 Autumn Ridge, Cedarburg, WI 53012 (US), SMTT, Craig, E., 969 Autumn Woods Lane, Oregon, WI 53012 (US), SN, TD, TG).	Published	(72) Inventors: BITTNER, Rex, M.; 53012 (US). SMTT, Craig, E., 969 Autumn Woods Lane, Oregon, WI 53012 (US). SN, TD, TG.	(73) Address for Correspondence: Woods Hollow Road, Madison, WI 53711-5399 (US).	(74) Agents: FRENCHICK, Grady, J., et al.; Michael Best & Friedrich LLP, One South Pinckney Street, Suite 700, Madison, WI 53703 (US).	(76) Title: CELL CONCENTRATION AND LYSAFE CLEARANCE USING PARAMAGNETIC PARTICLES																								
WO 00/70040	WO 00/70040	A1	(11) International Publication Number:	(43) International Publication Date:	(44) International Application Number:	(21) International Filing Date:	(22) International Filing Date:	(30) Priority Data:	(71) Applicant:	(72) Inventors:	(73) Address for Correspondence:	(74) Agents:	(75) Address for Correspondence:	(76) Title:															
(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, CR, GE, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, LZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, SL, TI, TM, TR, TT, UA, UG, UZ, VN, ZA, ZW	(82) International Application Number: PCT/US99/31207	(83) International Filing Date: 30 December 1999 (30.12.99)	(84) International Publication Date: 14 May 1999 (14.05.99)	(85) US	(86) 60/134,156	(87) (20) Priority Date: 2800 (14.05.99)	(88) Woods Hollow Road, Madison, WI 53711-5399 (US).	(89) (21) Applicant: PROMEGA CORPORATION (US/US).	(90) (22) Inventors: BITTNER, Rex, M.; 53012 (US). SMTT, Craig, E., 969 Autumn Woods Lane, Oregon, WI 53012 (US). SN, TD, TG.	(91) (23) Address for Correspondence: Woods Hollow Road, Madison, WI 53711-5399 (US).	(92) (24) Agents: FRENCHICK, Grady, J., et al.; Michael Best & Friedrich LLP, One South Pinckney Street, Suite 700, Madison, WI 53703 (US).	(93) (25) Title: CELL CONCENTRATION AND LYSAFE CLEARANCE USING PARAMAGNETIC PARTICLES																	
WO 00/70040	WO 00/70040	A1	(11) International Publication Number:	(43) International Publication Date:	(44) International Application Number:	(21) International Filing Date:	(22) International Filing Date:	(30) Priority Data:	(71) Applicant:	(72) Inventors:	(73) Address for Correspondence:	(74) Agents:	(75) Address for Correspondence:	(76) Title:															
(94) International Publication Date: 23 November 2000 (23.11.00)	(95) (20) Priority Date: 2000 (23.11.00)	(96) (21) International Filing Date: 23 November 2000 (23.11.00)	(97) (22) International Filing Date: 23 November 2000 (23.11.00)	(98) (23) Address for Correspondence: Woods Hollow Road, Madison, WI 53711-5399 (US).	(99) (24) Agents: FRENCHICK, Grady, J., et al.; Michael Best & Friedrich LLP, One South Pinckney Street, Suite 700, Madison, WI 53703 (US).	(100) (25) Title: CELL CONCENTRATION AND LYSAFE CLEARANCE USING PARAMAGNETIC PARTICLES																							

THE PATENT COOPERATION TREATY (PCT) - A PRACTITIONER'S GUIDE

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

Al Bureau

四

24 MAY 1999 (14:05:33)

(71) Applicant: PROMEGA CORPORATION [US/C3], 2800 Woods Hollow Road, Madison, WI 53711-5399 (US).

LER, Braeden, L.; 249 Dunning Street, Madison, WI 53704
(US), WHITE, Douglas, H.; 1409 Lucy Lane, Madison, WI

74) Agents: FRENCHICK, Gray, J. et al.; Michael Best & Friedrichlich LLP, One South Michigan Street, Suite 700, Milwaukee WI 53703 (US).

With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

United States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, PR, KE, KG, GRD, KR, KZ, LC, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SI, TI, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARBPO patient (GH, GM, KE, LS, MW, SD, SL, SZ, ZW), Eurasian patient (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patient (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SN, TD, TG).

WO 00/70040	(11) International Publication Number:	(12) International Patent Classification 7 :	AI	C12N 15/10, S/00, I/02
	(43) International Publication Date:			(51) International Patent Classification 7 :
	23 November 2000 (23.11.00)			

Codes used to identify States Party to the PCT on the front pages of pamphlets published by International Organizations under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

35

accomplished by mechanical means (e.g., by sonication or by blending in a mixer), by contents of the cell released into the solution surrounding the cell. Such disruption can be cell, such as a target nucleic acid or a protein, the cell membrane must be disrupted and the When it becomes necessary to isolate or analyze certain types of material in the interior of a either can be performed at basic pipette-diluter robotics stations, such as the Biomec[®]. Unfortunatly, neither filtration nor centrifugation is amenable to automation. Specifically, Molecular Cloning, (1989) ed. by Sambrook et al., pp 2-22 and filtration system reference).

30

centrifugation, filtration, or a combination of centrifugation and filtration. (See, e.g., materials therefrom. Most cell harvesting and concentration techniques involve preserved for later use, stained for direct analysis, or processed to isolate target specific Cells in a liquid culture must be concentrated or harvested before they can be

25

BACKGROUND OF THE INVENTION

20

hybrids from non-target material in a cell lysate.

as plasmid DNA, chromosomal DNA, DNA fragments, total RNA, mRNA, or RNA/DNA invention relates, furthermore, to the use of such particles to isolate target nucleic acids, such the use of such particles to clear lysates or homogenates of such cells or tissue. This particles, to harvest or to concentrate cells or biological tissue. This invention also relates to as magnetically responsive silica gel particles or magnetically responsive ion exchange This invention relates generally to the use of magnetically responsive particles, such

15

Not applicable.

10

STATEMENT REGARDING FEDERALLY SPONSORED

RESEARCH OR DEVELOPMENT

60/134,156, filed May 14, 1999.

This application claims the benefit of U.S. Provisional Application Number

5

CROSS-REFERENCE TO RELATED APPLICATIONS

CELL CONCENTRATION AND LYSATE CLEARANCE USING

PARAMAGNETIC PARTICLES

- 1 -

WO 00/70040

PCT/US99/31207

enzymatic digestion (e.g., by digestion with proteases), or by chemical means (e.g., by alkaline lysis followed by addition of a neutralization solution). Whatever means is used to disrupt a cell, the end product, referred to herein as a lysate solution, consists of the target material and many contaminants, including cell debris. The lysate solution must be cleared of as many of the large contaminants as possible before the target material can be further isolated. Either or both of the same two means described above, i.e., centrifugation and filtration, have been used to clear lysate solutions prior to further processing. However, for reasons given above, neither means of clearing a lysate solution is amenable to automation.

Many different systems of materials and methods have been developed for use in the isolation of nucleic acids from cleared lysate solutions. Many such systems are silica based, such as those which employ controlled pure glass filters embedded with silica particles, silica gel particles, resins comprising silica in the form of diatomaceous earth, glass fibers or materials in the presence of chaotropic agents. The silica-based solid phases are designed to remain bound to the nucleic acid material while the solid phase is exposed to an external force such as centrifugation or vacuum filtration to separates the matrix and nucleic acid then eluted from the solid phase by exposing the solid phase to an elution solution, such as water or an elution buffer. Numerous commercial sources offer silica-based resins designed for use in centrifugation and/or filtration isolation systems, e.g., Wizard® DNA purification systems products from Promega Corporation (Madison, Wisconsin, U.S.A.), or the QiaPrep® DNA isolation systems from Qiagen Corp. (Chatsworth, California, U.S.A.). Unfortunately, the type of silica-based solid phases described above all require one use centrifugation or filtration to perform the various isolation steps in each method, limiting the utility of such solid phases in automated systems.

Magnetically responsive solid phases, such as paramagnetic or superparamagnetic particles, offer an advantage not offered by any of the silica-based solid phases described above. Such particles could be separated from a solution by tumbling on and off a magnetic field, or by moving a container on to and off of a magnetic separator. Such activities would be readily adaptable to automation.

Magnetically responsive particles have been developed for use in the isolation of nucleic acids. Such particles generally fall into either of two categories, those designed to reversibly bind nucleic acid materials directly, and those designed to reversibly bind nucleic acid materials through an intermediate. For an example of particles of the first type, see silica based porous particles designed to reversibly bind directly to DNA, such as MagneSiltTM particles from Promega, or BioMalg[®] magnetic particles from PerSeptive Biosystems. For examples of particles and systems of the second type designed to reversibly bind one particular type of nucleic acid (mRNA), see the PolyATrac[®] Series 9600™ mRNA Isolation System from Promega Corporation (Madison, Wisconsin, U.S.A.), or the Biolytac[®] Series 9600™ mRNA Isolation System from Promega Corporation (Madison, Wisconsin, U.S.A.). Both of these systems employ magnetically responsive particles with streptavidin subunits covalently attached thereto, and biotin with an oligo(dT) moiety covalently attached thereto. The biotin-oligo(dT) molecules act as intermediates, hybridizing to the poly(A) tail of mRNA molecules when placed into contact therewith, then binding to the streptavidin on the particles. The mRNA molecules are then released in water.

Indirect binding magnetic separation systems for nucleic acid isolation or separation require at least three components, i.e., magnetic particles, an intermediate, and a medium containing the nucleic acid material of interest. The intermediate often requires a reaction and intermediate/particulate binding reaction often require different solution and/or temperature conditions from one another. Each additional component or solution used in the nucleic acid isolation procedure adds to the risk of contamination of the isolated product by nucleases, metals, and other deleterious substances.

Various types of magnetically responsive silica based particles have been developed for use as solid phases in direct or indirect nucleic acid binding isolation methods. One such particle type is a magnetically responsive glass bead, preferably of a controlled pore size, e.g., Magnetic Porous Glass (MPG) particles from CPG, Inc. (Lincoln Park, New Jersey, U.S.A.); or porous magnetic glass particles described in U.S. Pat. No. 4,395,271. See, e.g., Magnetic Porous Glass (MPG) particles from CPG, Inc. (Lincoln Park, New Jersey, U.S.A.); or 4,233,169; or 4,297,337. Nucleic acid material tends to bind very tightly to glass, however, so that it can be difficult to remove once bound thereto. Therefore, elution efficiencies from magnetic glass particles tend to be low compared to elution efficiencies from particles containing lower amounts of a nucleic acid binding material such as silica.

30 Various types of magnetically responsive silica based particles have been developed for use as solid phases in direct or indirect nucleic acid binding isolation methods. One such particle type is a magnetically responsive glass bead, preferably of a controlled pore size, e.g., Magnetic Porous Glass (MPG) particles from CPG, Inc. (Lincoln Park, New Jersey, U.S.A.); or porous magnetic glass particles described in U.S. Pat. No. 4,395,271. See, e.g., Magnetic Porous Glass (MPG) particles from CPG, Inc. (Lincoln Park, New Jersey, U.S.A.); or 4,233,169; or 4,297,337. Nucleic acid material tends to bind very tightly to glass, however, so that it can be difficult to remove once bound thereto. Therefore, elution efficiencies from magnetic glass particles tend to be low compared to elution efficiencies from particles containing lower amounts of a nucleic acid binding material such as silica.

cells, for the cleaning of solutions of disrupted cells or tissue, and for the isolation of large tissue. Specifically, methods and materials are needed for the concentration or harvesting of 30 possible to quickly and efficiently isolate target nucleic acids from cells or mammalian materials and methods are needed which enable one to automate as many steps as

dependent ionizable ligands covalently attached thereto (e.g., U.S. Pat. No. 5,652,348).

20 A porous divider (e.g., U.S. Patent No. 5,660,984), to a chromatography resin with pH by a porous divider (e.g., U.S.A.), to a column containing two different solid phases separated Inc., Gaithersburg, MD, U.S.A.), to a column containing two different solid phases separated filter, as in DEAE modified filters (e.g., CONCERT[®] Isolation system, Life Technology range in complexity from a single species of ligand covalently attached to the surface of a for use with centrifugation to separate the solid phase from various solutions. Such systems for use as a solid phase of a liquid chromatography system, for use in a filtration system, or capable of exchanging with nucleic acids. However, such systems are generally designed 20 A variety of solid phases have also been developed with ion exchange ligands magnetic material encapsulated in organic polymer." (946 Patent, Col. 2, line 53).

25 magnetic responsive beads recorded for use in this last system are "finely divided is used to isolate the beads and polymer associated therewith from the solution. The is precipitated out of a solution comprising the target polymer and the beads. Magnetic force to become nonspecifically associated with the target polymer, only after the target polymer 5,681,946 and in International Publication No. WO 91/12079. These last beads are designed such as nucleic acids, and methods for their use therein are described in U.S. Pat. No. magnetic responsive beads designed for use in the isolation of target polymers.

30 ensure rapid and efficient isolation of nucleic acid materials bound thereto.

35 predace such particles with a sufficiently uniform and concentrated magnetic capacity to bind nucleic acids directly to each such magnetic particle. It is also difficult to silicon dioxide matrix, tend to leach iron into a medium under the conditions required to 43 07 262. The latter two types of magnetic particles, the agarose particle and the polymeric the matrix of polymetric silicon dioxide compounds, e.g., German Patent Application No. DE binding and isolation of nucleic acids is produced by incorporating magnetic materials into 498. Yet another type of magnetically responsive particle designed for direct Patent 5,395,498. Another type of magnetically responsive particle designed for direct agarose embedded with smaller ferrimagnetic particles and coated with glass, e.g., U.S. direct binding and isolation of nucleic acids, particularly DNA, is a particle comprised of 5 another type of magnetically responsive particle designed for use as a solid phase in