# Segunda Lista de Problemas **Segunda Parte**

Matemáticas para las Ciencias Aplicadas I Facultad de Ciencias, UNAM

> Flores Morán Julieta Melina Zarco Romero José Antonio

> > 7 de octubre de 2023

# 1. Ejercicio 5

name

Utilice una aproximación cuadrática local apropiada para aproximar tan 61° y compare el resultado con el producido directamente por su utilidad de cálculo.

A fin de encontrar una fórmula para la aproximación cuadrática local de una función f acerca de  $x=x_0$ . Esta aproximación tiene la forma:

$$p_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

Dado que  $61^{\circ} = \frac{\pi}{3} + \frac{\pi}{180} rad$ . Entonces, sea  $f(x_0) = \tan x_0$  y  $x_0 = \frac{\pi}{3}$ ; de este modo:

$$f(x_0) = \tan x_0 \quad f(\frac{\pi}{3}) = \tan \frac{\pi}{3} = \sqrt{3}rad$$

$$f'(x_0) = (\sec x_0)^2 \quad f'(\frac{\pi}{3}) = (\sec \frac{\pi}{3})^2 = 4rad$$

$$f''(x_0) = 2(\sec x_0)^2 \tan x_0 \quad f''(\frac{\pi}{3}) = 2(\sec \frac{\pi}{3})^2 \tan \frac{\pi}{3} = 8\sqrt{3}rad$$

Sustituyendo los valores, tenemos que:

$$p_{2}(x) = \sqrt{3} + 4(x - \frac{\pi}{3}) + \frac{8\sqrt{3}}{2 \cdot 1}(x - \frac{\pi}{3})^{2} = \sqrt{3} + 4(x - \frac{\pi}{3}) + 4\sqrt{3}(x - \frac{\pi}{3})^{2}$$
Ya que  $x = 61^{\circ} = \frac{\pi}{3} + \frac{\pi}{180}rad$ 

$$p_{2}(\frac{\pi}{3} + \frac{\pi}{180}rad) = \sqrt{3} + 4[(\frac{\pi}{3} + \frac{\pi}{180}rad) - \frac{\pi}{3}] + 4\sqrt{3}[(\frac{\pi}{3} + \frac{\pi}{180}rad) - \frac{\pi}{3}]^{2}$$

$$= \sqrt{3} + 4(\frac{\pi}{180}rad) + 4\sqrt{3}(\frac{\pi}{180}rad)^{2} = \sqrt{3} + \frac{\pi}{45}rad + 4\sqrt{3}(\frac{\pi}{180}rad)^{2}$$

$$\therefore p_{2}(61^{\circ}) \approx 1.803974$$

El valor de la aproximación cuadrática local fue de 1.803974, mientras que el produccido directamente por la calculadora fue de 1.804047.

# 2. Ejercicio 10

name

Encuentre los polinomios de Maclaurin de orden n=0,1,2,3,4, y luego encuentre los polinomios de Maclaurin enésimos para la función en notación sigma.

$$\sin \pi x$$

Sea  $f(x) = \sin \pi x$ ; de este modo:

$$f(x) = \sin(\pi x) \quad f(0) = 0$$

$$f'(x) = \pi \cos(\pi x) \quad f'(0) = \pi$$

$$f''(x) = -\pi^2 \sin(\pi x) \quad f''(0) = 0$$

$$f'''(x) = -\pi^3 \cos(\pi x) \quad f'''(0) = -\pi^3$$

$$f^{(4)}(x) = \pi^4 \sin(\pi x) \quad f^{(4)}(0) = 0$$

Dado que el patrón  $0, \pi^k, 0, -\pi^k$  se repetirá a medida que evaluemos derivadas sucesivas en 0; ya que  $f^{(k)}(x) = 0$  cuando k es par y, cuando k es impar el resultado de  $f^{(k)}(x)$  alterna entre  $\pi^k$  y  $-\pi^k$ . Por lo tanto, los polinomios de Maclaurin de orden n = 0, 1, 2, 3, 4 para  $\sin \pi x$  son:

$$p_0(x) = 0$$

$$p_1(x) = 0 + \pi x = \pi x$$

$$p_2(x) = 0 + \pi x + 0 = \pi x$$

$$p_3(x) = 0 + \pi x + 0 + \frac{-\pi^3}{3!} x^3 = \pi - \frac{\pi^3}{3!} x^3 = \pi - \frac{\pi^3}{6} x^3$$

$$p_4(x) = 0 + \pi x + 0 + \frac{-\pi^3}{3!} x^3 + 0 = \pi - \frac{\pi^3}{6} x^3$$

### 3. Ejercicio 20

name

Encuentre los polinomios de Taylor de orden n=0,1,2,3,4 alrededor de  $x=x_0$  y luego encuentre el enésimo polinomio de Taylor para la función en notación sigma.

$$\frac{1}{x+2}$$
;  $x_0 = 3$ 

Sea  $f(x_0) = \frac{1}{x_0+2}$  y  $x_0 = 3$ ; de este modo:

$$f(x_0) = \frac{1}{x_0 + 2} \qquad f(3) = \frac{1}{3 + 2} = \frac{1}{5}$$

$$f'(x_0) = -\frac{1}{(x_0 + 2)^2} \qquad f'(3) = -\frac{1}{(3 + 2)^2} = -\frac{1}{5^2} = -\frac{1}{25}$$

$$f''(x_0) = \frac{2}{(x_0 + 2)^3} \qquad f''(3) = \frac{2}{(3 + 2)^3} = \frac{2}{5^3} = \frac{2}{125}$$

$$f'''(x_0) = -\frac{6}{(x_0 + 2)^4} \qquad f'''(3) = -\frac{6}{(3 + 2)^4} = -\frac{6}{5^4} = -\frac{6}{625}$$

$$f^{(4)}(x_0) = \frac{24}{(x_0 + 2)^5} \qquad f^{(4)}(3) = \frac{24}{(3 + 2)^5} = \frac{24}{5^5} = \frac{24}{3125}$$

$$\vdots \qquad \vdots$$

$$f^{(k)}(x_0) = \sum_{k=0}^{n} (-1)^k \frac{k!}{(x+2)^{k+1}} \quad f^{(k)}(3) = \sum_{k=0}^{n} (-1)^k \frac{k!}{5^{k+1}}$$

Por lo tanto, los polinomios de Taylor de orden n = 0, 1, 2, 3, 4 para  $f(x) = \frac{1}{x+2}$  alrededor de  $x_0 = 3$  son:

$$p_{0}(x) = \frac{1}{5}$$

$$p_{1}(x) = \frac{1}{5} + (-\frac{1}{25})x = \frac{1}{5} - \frac{1}{25}x$$

$$p_{2}(x) = \frac{1}{5} + (-\frac{1}{25})x + \frac{\frac{1}{25}}{2!}(x-3)^{2} = \frac{1}{5} - \frac{1}{25}x + \frac{1}{125}(x-3)^{2}$$

$$p_{3}(x) = \frac{1}{5} + (-\frac{1}{25})x + \frac{\frac{12}{25}}{2!}(x-3)^{2} + \frac{-\frac{6}{25}}{3!}(x-3)^{3}$$

$$= \frac{1}{5} - \frac{1}{25}x + \frac{1}{125}(x-3)^{2} - \frac{1}{625}(x-3)^{3}$$

$$p_{4}(x) = \frac{1}{5} + (-\frac{1}{25})x + \frac{\frac{2}{125}}{2!}(x-3)^{2} + \frac{-\frac{6}{625}}{3!}(x-3)^{3} + \frac{\frac{24}{3125}}{4!}(x-3)^{4}$$

$$= \frac{1}{5} - \frac{1}{25}x + \frac{1}{125}(x-3)^{2} - \frac{1}{625}(x-3)^{3} + \frac{1}{3125}(x-3)^{4}$$

Por tanto, sustituyendo  $f^{(k)}(x_0) = \sum_{k=0}^n (-1)^k \frac{k!}{5^{k+1}}$ en la fórmula

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Se obtiene el enésimo polinomio de Taylor para la función  $\frac{1}{x+2}$ ;  $x_0=3$  en notación sigma.

$$p_n(x) = \sum_{k=0}^{n} \frac{(-1)^k}{5^{k+1}} (x-3)^k$$

# 4. Ejercicio 36

$$\frac{1}{e}$$
; precisión de tres decimales

Utilice el método del ejemplo 7 para aproximar la expresión dada a la precisión especificada. Verifique su respuesta con la producida directamente por su utilidad de cálculo.

# 5. Ejercicio 40



- (a) La figura adjunta muestra un sector de radio r y ángulo central  $2\alpha$ . Suponiendo que el ángulo  $\alpha$  es pequeño, utilice la aproximación cuadrática local de  $\cos \alpha$  en  $\alpha = 0$  para demostrar que  $x \approx r\alpha^2/2$ .
- (b) Suponiendo que la Tierra es una esfera de radio 4000mi, use el resultado del inciso (a) para aproximar la cantidad máxima en la que un arco de 100mi a lo largo del ecuador divergirá de su cuerda.

#### 6. Identidad de Euler

Aplicar las definiciones de las funciones exponencial natural, seno y coseno como series de Taylor para demostrar la identidad de Euler:

$$exp(i\theta) = \cos(\theta) + i\sin(\theta)$$

y deducir, de aquí, que:

$$exp(i\pi) + 1 = 0$$