ET 520 - Princípios de Conversão Eletromecânica de Energia

2º Semestre de 2010 – 1ª Prova – Prof. Edson Bim

Questão 1 (25 Pontos):

Na estrutura magnética mostrada na Figura Exercício 1, a permeabilidade magnética do núcleo têm permeabilidade infinita. Determine a corrente i de excitação necessária para que a densidade de fluxo de entreferro seja $B_g=0,8$ T, se N=64 espiras, $l_g=2$ mm e $A_g=10$ cm².

Figura Exercício 1

Questão 2 (2,5 Pontos):

O núcleo magnético do dispositivo mostrado na Figura-Exercício 2 é montado com chapas de aço silicioso, cuja permeabilidade magnética relativa é 5.000. O fator de empilhamento do núcleo é 0,94, o número de espiras de cada bobina é 150 e as dimensões geométricas do núcleo são as seguintes: a =3 cm, b =11a, c = 5a e d = 5 cm. Quando as correntes forem positivas, elas circularão nas bobinas como indicadas nas Figura-Exercício 2. Desprezar a dispersão de fluxo e a não-linearidade magnética. Determinar o valor de cada corrente quando $B_1 = B_2 = B_3 = 1$ T.

Figura-Exercício 2

Questão 3 (25 Pontos):

Um dispositivo magneticamente linear funciona com densidade de fluxo no núcleo é igual a $B_c=0,4$ T e seu núcleo tem seção $A_c=4\,\mathrm{cm}^2$, comprimento médio $l_c=20$ cm e permeabilidade relativa $\mu_r=5.000$. Determinar a energia armazenada no núcleo e no entreferro nas seguintes casos:

(a)
$$A_g = 4 \text{ cm}^2 \text{ e } l_g = 0.20 \text{ cm}.$$

(b)
$$A_g = 2 \text{ cm}^2 \text{ e } l_g = 0.12 \text{ cm}.$$

Questão 4 (2,5 Pontos):

O dispositivo de rotação mostrado na Figura Exercício 4 é excitado por um ímã permanente cuja curva de

desmagnetização é uma linha reta. A densidade de fluxo remanescente é 1,0 T e a permeabilidade relativa da reta de recuo é 1. Determine a densidade de fluxo do entreferro em função das medidas geométricas mostradas na Figura Exercício 4, se o rotor está alinhado com a linha do polo. As medidas são dadas em mm.

Figura- Exercício $4\,$