Лабораторная работа №3

Анализ трафика в Wireshark

Студент: БАНСИМБА КЛОДЕЛИ ДЬЕГРА

Группа: НПИбд 02-22

<u>дисциплина:</u> Сетевые технологии (Lab 03)

Цель работы

Целью данной работы является изучение посредством Wireshark кадров Ethernet, анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP.

```
PS C:\Users\bansi> ipconfig
Настройка протокола IP для Windows
 Неизвестный адаптер Подключение по локальной сети:
  Состояние среды. . . . . . . : Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер Ethernet Ethernet:
   DNS-суффикс подключения . . . . :
   Локальный IPv6-адрес канала . . . : fe80::6913:a1e4:1fca:fd04%5
   IPv4-адрес. . . . . . . . . . : 192.168.56.1
   Маска подсети . . . . . . . . : 255.255.255.0
  Основной шлюз. . . . . . . . :
 Адаптер беспроводной локальной сети Подключение по локальной сети* 1
   Состояние среды. . . . . . . Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
Адаптер беспроводной локальной сети Подключение по локальной сети* 1
  Состояние среды. . . . . . . : Среда передачи недоступна.
  DNS-суффикс подключения . . . . :
 Адаптер беспроводной локальной сети Беспроводная сеть:
   DNS-суффикс подключения . . . . : rudn.ru
   Локальный IPv6-адрес канала . . . : fe80::cde2:1581:c9f:eefc%8
   IPv4-адрес. . . . . . . . . . : 192.168.169.37
   Маска подсети . . . . . . . . . . . . . . 255.255.224.0
   Основной шлюз. . . . . . . . : 192.168.160.1
Адаптер Ethernet Сетевое подключение Bluetooth:
   Состояние среды. . . . . . . : Среда передачи недоступна.
```

Рис. 1.1. Вывод информации о текущем сетевом соединении.

```
Состояние среды. . . . . . . : Среда передачи недоступна.
  DNS-суффикс подключения . . . . :
PS C:\Users\bansi>
PS C:\Users\bansi> ipconfig /all
Настройка протокола IP для Windows
  Имя компьютера . . . . . . . : Claudely
 Основной DNS-суффикс . . . . . :
  Тип узла. . . . . . . . . . : Гибридный
  IP-маршрутизация включена . . . : Нет
  WINS-прокси включен . . . . . . . Нет
 Порядок просмотра суффиксов DNS . : rudn.ru
Неизвестный адаптер Подключение по локальной сети:
  Состояние среды. . . . . . . . Среда передачи недоступна.
  DNS-суффикс подключения . . . . :
  Описание. . . . . . . . . . : TAP-Windows Adapter V9
Физический адрес. . . . . . . : 00-FF-E5-B7-8A-10
  DHCP включен. . . . . . . . . . . . . . . . . .
  Автонастройка включена. . . . . . Да
Адаптер Ethernet Ethernet:
 DNS-суффикс подключения . . . . :
 Описание. . . . . . . . . . . : VirtualBox Host-Only Ethernet
Adapter
  DHCP включен. . . . . . . . . . . . . . . .
  Автонастройка включена. . . . . : Да
  Локальный IPv6-адрес канала . . . : fe80::6913:a1e4:1fca:fd04%5(0
  Основной шлюз. . . . . . . :
  IAID DHCPv6 . . . . . . . . . : 587857959
  DUID клиента DHCPv6 . . . . . . : 00-01-00-01-2E-10-16-36-D4-E9
 NetBios через TCP/IP. . . . . . . : Включен
Адаптер беспроводной локальной сети Подключение по локальной сети* 1
  Состояние среды. . . . . . . : Среда передачи недоступна.
```

Рис. 1.2. Отображение полной конфигурации ТСР/ІР для всех адаптеров.

```
PS C:\Users\bansi> ipconfig /displaydns
Hастройка протокола IP для Windows
    edgedl.me.gvt1.com
    Имя записи. . . . : edgedl.me.gvt1.com
    Тип записи. . . . . : 1
    Срок жизни. . . . . : 265
    Длина данных. . . . : 4
    Раздел. . . . . . : Ответ
    А-запись (узла) . . : 34.104.35.123
    1.240.30.172.in-addr.arpa
    Имя записи. . . . . : 1.240.30.172.in-addr.arpa.
    Тип записи. . . . . : 12
    Срок жизни. . . . . :
    Длина данных. . . . : 8
    Раздел. . . . . . : Ответ
    PTR-запись. . . . . : DESKTOP-PATH1A1.mshome.net
    desktop-path1a1.mshome.net
    Нет записей типа АААА
    desktop-path1a1.mshome.net
    Имя записи. . . . . DESKTOP-PATH1A1.mshome.net
    Срок жизни. . . . . : 518878
    Длина данных. . . . : 4
    Раздел. . . . . . . : Ответ
А-запись (узла) . . . : 172.30.240.1
```

Рис. 1.3. Отображение содержимого кэша сопоставителя DNS-клиента, включающее как записи, предварительно

загруженные из локального файла Hosts, так и все недавно полученные записи ресурсов для запросов имен, разрешенных компьютером.

```
PS C:\Users\bansi> ipconfig /setclassid
Ошибка: неопознанная или неполная командная строка.
ИСПОЛЬЗОВАНИЕ:
    ipconfig [/allcompartments] [/? | /all |
                                 /renew [adapter] | /release [adapter] |
                                 /renew6 [adapter] | /release6 [adapter] |
                                 /flushdns | /displaydns | /registerdns |
                                 /showclassid adapter |
                                 /setclassid adapter [classid] |
                                 /showclassid6 adapter
                                 /setclassid6 adapter [classid] ]
    adapter
                        Имя подключения
                        (допускаются подстановочные знаки * и ?, см. примеры)
    Параметры:
                        Вывод справки по использованию
       /all
                        Отображение полных сведений о конфигурации
       /release
                        Освобождение IPv4-адреса для указанного адаптера.
       /release6
                        Освобождение IPv6-адреса для указанного адаптера.
       /renew
                      Освобождение IPv4-адреса для указанного адаптера.
       /renew6
                       Освобождение IPv6-адреса для указанного адаптера.
       /flushdns
                        Очищает кэш сопоставителя DNS.
       /registerdns
                        Обновляет все аренды DHCP и повторно регистрирует DNS-име
       /displaydns
                        Отображение содержимого кэша сопоставителя DNS.
       /showclassid
                        Отображает все ИД класса DHCP, разрешенные для адаптеров.
       /setclassid
                        Изменяет ИД класса DHCP.
       /showclassid6
                        Отображает все ИД класса DHCP IPv6, разрешенные для адапт
```

Рис. 1.6. Определение МАС-адреса сетевых интерфейсов на нашем компьютере.

Рис. 2.1. Установка на нашем устройстве Wireshark.

Рис. 2.2. Запуск Wireshark. Выбор активного сетевого интерфейса.

```
Адаптер беспроводной локальной сети Беспроводная сеть:

DNS-суффикс подключения . . . . : rudn.ru
Локальный IPv6-адрес канала . . . : fe80::cde2:1581:c9f:eefc%8
IPv4-адрес. . . . . . . . . . . . : 192.168.169.37
Маска подсети . . . . . . . . . : 255.255.224.0
Основной шлюз. . . . . . . . . : 192.168.160.1
```

Рис. 2.3. Определение ІР-адреса устройства и шлюза по умолчанию.

```
PS C:\Users\bansi> ping 192.168.160.1

Обмен пакетами с 192.168.160.1 по с 32 байтами данных:
Ответ от 192.168.160.1: число байт=32 время=7мс TTL=254
Ответ от 192.168.160.1: число байт=32 время=8мс TTL=254
Ответ от 192.168.160.1: число байт=32 время=15мс TTL=254
Ответ от 192.168.160.1: число байт=32 время=3мс TTL=254

Статистика Ping для 192.168.160.1:
Пакетов: отправлено = 4, получено = 4, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 3мсек, Максимальное = 15 мсек, Среднее = 8 мсек
PS C:\Users\bansi>
```

Рис. 2.4. Пинг шлюза по умолчанию.

icmp								+			
No.	Time	Soi	urce I	Destination	Protocol Le	ngtł	Info				
→	207 154.	095952 192	2.168.169.37	192.168.160.1	ICMP	74	Echo	(ping)	request	id=0x0001,	seq=276/5121
←	208 154.	103471 192	2.168.160.1	192.168.169.37	ICMP	74	Echo	(ping)	reply	id=0x0001,	seq=276/5121
	209 155.	110420 192	2.168.169.37	192.168.160.1	ICMP	74	Echo	(ping)	request	id=0x0001,	seq=277/5377
	210 155.	118331 192	2.168.160.1	192.168.169.37	ICMP	74	Echo	(ping)	reply	id=0x0001,	seq=277/5377
	211 156.	126983 192	2.168.169.37	192.168.160.1	ICMP	74	Echo	(ping)	request	id=0x0001,	seq=278/5633
	212 156.	142603 192	2.168.160.1	192.168.169.37	ICMP	74	Echo	(ping)	reply	id=0x0001,	seq=278/5633
	213 157.	139294 192	2.168.169.37	192.168.160.1	ICMP	74	Echo	(ping)	request	id=0x0001,	seq=279/5889
	214 157.	142663 192	2.168.160.1	192.168.169.37	ICMP	74	Echo	(ping)	reply	id=0x0001,	seq=279/5889

Рис. 2.5. Остановка захвата трафика. Фильтр істр.

Рис. 2.6. Кадр ICMP — эхо-запрос.

Рис. 2.7. Кадр ІСМР — эхо-ответ.

Рис. 2.8. Изучение кадров данных протокола ARP и данных в полях заголовка Ethernet II.

```
PS C:\Users\bansi> ping www.yandex.ru

Обмен пакетами с www.yandex.ru [77.88.55.88] с 32 байтами данных:
Ответ от 77.88.55.88: число байт=32 время=8мс TTL=54
Ответ от 77.88.55.88: число байт=32 время=10мс TTL=54
Ответ от 77.88.55.88: число байт=32 время=11мс TTL=54
Ответ от 77.88.55.88: число байт=32 время=29мс TTL=54

Статистика Ping для 77.88.55.88:
Пакетов: отправлено = 4, получено = 4, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 8мсек, Максимальное = 29 мсек, Среднее = 14 мсек
PS C:\Users\bansi>
```


Рис. 2.10. МАС-адрес источника.

Рис. 2.11. МАС-адрес получателя.

3ax	ват из Беспроводна	я сеть			_	
Файл	Правка Вид 3	Запуск Захват Анализ	Статистика Телефония	Беспроводн	ая связь Инструмент	ы Справка
		🔀 🕝 🤇 👄 👄 窒 🖥	<u> </u>	1 2 3		
При	имените фильтр ото	бражения <ctrl-></ctrl->				+
No.	Time	Source	Destination	Protocol	Lengtl Info	
F	1 0.000000	192.168.169.37	87.250.251.15	TCP	55 53722 → 443	[ACK] Seq=1
\$	2 0.005775	87.250.251.15	192.168.169.37	TCP	66 443 → 53722	[ACK] Seq=1
	3 0.466298	192.168.169.37	5.255.255.77	TCP	55 53715 → 443	[ACK] Seq=1
	4 0.471649	5.255.255.77	192.168.169.37	TCP	66 443 → 53715	[ACK] Seq=1
	5 3.727257	192.168.169.37	152.199.19.161	TCP	54 54040 → 443	[RST, ACK]
	6 3.727258	192.168.169.37	139.45.207.59	TCP	54 54028 → 443	[RST, ACK]
	7 5.527143	192.168.169.37	192.168.80.63	DNS	83 Standard que	ry 0x597f A
	8 5.529054	192.168.80.63	192.168.169.37	DNS	227 Standard que	ry response
	9 5.530230	192.168.169.37	88.221.132.19	TCP	66 54289 → 80 [SYN] Seq=0
	10 5.533390	88.221.132.19	192.168.169.37	TCP	66 80 → 54289 [SYN, ACK] S

Рис. 3.1. Запуск Wireshark. Выбор активного сетевого интерфейса.

http://info.cern.ch - home of the first website

From here you can:

- Browse the first website
- Browse the first website using the line-mode browser simulator
- Learn about the birth of the web
- Learn about CERN, the physics laboratory where the web was born

Рис. 3.2. Открытие в браузере сайта CERN.

Рис. 3.3. Анализ информации по протоколу ТСР.

Рис. 3.4. Анализ информации по протоколу UDP.

Рис. 3.5. Анализ информации по протоколу QUIC.

Рис. 4.1. Запуск Wireshark. Выбор активного сетевого интерфейса.

http://info.cern.ch - home of the first website

From here you can:

- Browse the first website
- Browse the first website using the line-mode browser simulator
- Learn about the birth of the web
- Learn about CERN, the physics laboratory where the web was born

Рис. 4.2. Использование соединения по HTTP с сайтом CERN.

Фай	йл Пр	равка Вид За	пуск Захват Анализ	Статистика Телефония	Беспровод	ная связь Инструменты Справка
			Ì 🕝 │ २ 👄 ⇒ 堅 🚹	<u>. 4 = </u>	1 2 3	
t	tcp					
lo.		Time	Source	Destination	Protocol	Lengtl Info
	6201	2386.929102	192.168.169.37	157.240.205.60	TCP	54 52908 → 443 [FIN, ACK] Seq=775 Ack=724 Win=261376
	6202	2386.936390	192.168.169.37	157.240.205.61	TCP	66 52924 → 5222 [SYN] Seq=0 Win=64240 Len=0 MSS=1460
	6203	2386.971292	157.240.205.61	192.168.169.37	TCP	66 5222 → 52924 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=
	6204	2386.971576	192.168.169.37	157.240.205.61	TCP	54 52924 → 5222 [ACK] Seq=1 Ack=1 Win=132096 Len=0
	6205	2386.972217	192.168.169.37	157.240.205.61	TCP	290 52924 → 5222 [PSH, ACK] Seq=1 Ack=1 Win=132096 Ler
	6206	2386.999875	157.240.205.61	192.168.169.37	TCP	54 5222 → 52924 [ACK] Seq=1 Ack=237 Win=66816 Len=0
	6207	2387.123407	157.240.205.61	192.168.169.37	TCP	111 5222 → 52924 [PSH, ACK] Seq=1 Ack=237 Win=66816 Le
	6208	2387.123407	157.240.205.61	192.168.169.37	TCP	150 5222 → 52924 [PSH, ACK] Seq=58 Ack=237 Win=66816 L
	6209	2387.123680	192.168.169.37	157.240.205.61	TCP	54 52924 → 5222 [ACK] Seq=237 Ack=154 Win=131840 Len=
	6210	2387.134533	192.168.169.37	157.240.205.61	TCP	106 52924 → 5222 [PSH, ACK] Seq=237 Ack=154 Win=131846
	6211	2387.152677	157.240.205.61	192.168.169.37	TCP	54 5222 → 52924 [ACK] Seq=154 Ack=289 Win=66816 Len=6
	6212	2387.238765	192.168.169.37	87.229.142.100	TCP	54 [TCP Retransmission] 52907 → 443 [FIN, ACK] Seq=81
	6213	2387.238851	192.168.169.37	157.240.200.60	TCP	54 [TCP Retransmission] 52909 → 443 [FIN, ACK] Seq=79
	6214	2387.238866	192.168.169.37	157.240.205.60	TCP	54 [TCP Retransmission] 52906 → 443 [FIN, ACK] Seq=98
	6215	2387.238879	192.168.169.37	157.240.205.60	TCP	54 [TCP Retransmission] 52908 → 443 [FIN, ACK] Seq=77
	6216	2387.272463	157.240.205.61	192.168.169.37	TCP	100 5222 → 52924 [PSH, ACK] Seq=154 Ack=289 Win=66816
	6217	2387.272463	157.240.205.61	192.168.169.37	TCP	107 5222 → 52924 [PSH, ACK] Seq=200 Ack=289 Win=66816
	6218	2387.272463	157.240.205.61	192.168.169.37	TCP	116 5222 → 52924 [PSH. ACK] Sea=253 Ack=289 Win=66816

Рис. 4.3. Анализ handshake протокола ТСР.

Рис. 4.4. График потока.

Вывод

В ходе выполнения лабораторной работы мы изучили посредством Wireshark кадров Ethernet, анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP.

