Pytania – egzamin inżynierski

Lidia J. Opuchlik

Polsko – Japońska Akademia Technk Komputerowych s16478@pjwstk.edu.pl

3 lutego 2021

Agenda

- Pytanie nr 8
 - Twierdzenie Bayesa.
- 2 Pytanie nr 22
 - Najważniejsze algorytmy wyszukiwania i sortowania.
 - Wyszukiwanie
 - Sortowanie
- 3 Pytanie nr 34
 - Przetwarzanie strumieniowe (środki pakietu java.util.stream).

Twierdzenie Bayesa

Twierdzenie Bayesa

Twierdzenie Bayesa

- Thomas Bayes.
- Mówi o prawdopodobieństwie warunkowym. Pozwala określić prawdopodobieństwo zajścia jakiegoś zdarzenia, o ile zaszło jakieś inne zdarzenie.

Treść (dla dwóch zdarzeń)

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}, \quad oraz \ P(B) > 0 \ i \ P(A) \geqslant 0$$

gdzie:

P(A|B) – prawdopodobieństwo zajścia zdarzenia A, gdy zachodzi zdarzenie B (posterior probability),

P(B|A) – prawdopodobieństwo zajścia zdarzenia B, gdy zachodzi zdarzenie A (likelihood),

P(A) – prawdopodobieństwo zajścia zdarzenia A (prior probability),

P(B) – prawdopodobieństwo zajścia zdarzenia B (evidence).

Dowód (dla dwóch zdarzeń*)

Rysunek: Iloczyn zbiorów A i B.

Z definicji:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Leftrightarrow P(A \cap B) = P(A|B) \cdot P(B)$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \Leftrightarrow P(A \cap B) = P(B|A) \cdot P(A)$$

Dowód c. d.

$$P(A \cap B) = P(A|B) \cdot P(B)$$

$$P(A \cap B) = P(B|A) \cdot P(A)$$

$$P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$$

$$\Downarrow$$

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

^{*}dowód dla wiekszej liczby zdarzeń jest dużo bardziej skomplikowany

W czym przydatne jest twierdzenie Bayesa?

Trywialny przykład

Treść zadania:

Obliczyć prawdopodobieństwo, że osoba jest chora na grypę, gdy występuje u niej gorączka, wiedząc, że: zdarzenie A – osoba jest chora na grypę, zdarzenie B – u osoby występuje gorączka. W zadaniu dane są następujące prawdopodobieństwa: P(B|A)=0.7, P(A)=0.1, P(B)=0.2.

Rozwiązanie:

Korzystając ze wzoru Bayesa obliczamy P(grypa|goraczka):

$$P(grypa|goraczka) = \frac{P(goraczka|grypa) \cdot P(grypa)}{P(goraczka)}$$

$$P(grypa|goraczka) = \frac{0.7 \cdot 0.1}{0.2} = \mathbf{0.35}$$

Wyszukiwanie i sortowanie

Najważniejsze algorytmy wyszukiwania i sortowania

Wyszukiwanie i sortowanie

Wyszukiwanie

- Iiniowe
- binarne
- skok co k-ty element

Sortowanie

- przez wybieranie (selection sort)
- bąbelkowe (bubble sort)
- przez scalanie (merge sort)
- szybkie (quick sort)
- przez wstawianie (insertion sort)
- o zliczeniowe (counting sort)

Wyszukiwanie

Wyszukiwanie

Wyszukiwanie – na czym polega?

Polega na odszukaniu elementu o danej wartości (klucza) w nieposortowanej lub posortowanej strukturze danych (tablicy lub liście) i zwrócenie indeksu, pod którym znaleziony element się znajduje*. Jeżeli element nie zostanie znaleziony, wyświetlany jest stosowny komunikat (często wartość -1).

^{*}Jeżeli jest kilka takich samych elementów w ciągu, to zwracany jest indeks pierwszego napotkanego.

^{**} klucz i indeksy są liczbami całkowitymi

Wyszukiwanie liniowe

Na czym polega??

- 1. Wartości kolejnych elementów ciągu zaczynając od tego pod indeksem 0 a kończąc na n-1 porównuje się z wartością klucza.
- 2. Zwraca się indeks znalezionego elementu, bądź -1 w przypadku gdy nie został on znaleziony.
 - struktura danych nie musi być posortowana
 - pesymistyczna złożoność O(n)

Wyszukiwanie binarne

Na czym polega??

- 1. W posortowanym ciągu porównuje się wartość klucza z wartością środkowego elementu. Jeżeli są takie same, zwracany jest indeks.
- 2a. Jeżeli klucz < środkowy element, to ogranicza się dalsze przeszukiwanie do lewego podciągu.
- 2b. Jeżeli klucz > środkowy element, to ogranicza się dalsze przeszukiwanie do prawego podciągu.
- 3. Powtarza się kroki od punktu 1.
- 4. Zwraca się indeks pasującego elementu lub -1, gdy nie został znaleziony.
 - struktura danych musi być posortowana
 - wykorzystywany jest algorytm "dziel i rządź"
 - pesymistyczna złożoność O(logn)

Wyszukiwanie poprzez skoki co k-ty element

Na czym polega??

- 1. W posortowanym ciągu przeskakuje się co k elementów i porównuje się wartość bieżącego elementu z wartością klucza.
- 2a. Gdy element jest mniejszy niż klucz, przeskakuje się o następne k elementów.
- 2b. Gdy element jest większy niż wartość klucza, to należy sprawdzić już tylko k-1 ostatnio przeskoczonych elementów.
- 3. Zwraca się indeks pasującego elementu lub -1, gdy nie został znaleziony.
 - struktura danych musi być posortowana
 - algorytm jest k razy szybszy niż algorytm liniowy

Sortowanie

Sortowanie

Sortowanie

Polega na ułożeniu elementów jakiejś nieuporządkowanej struktury danych w określonym porządku, np. rosnąco, malejąco, niemalejąco, ale też np. alfabetycznie.

Algorytmy sortowania w zależności od implementacji charakteryzują się różną wydajnością sortowania.

- ograniczę się do sortowania liczb całkowitych
- przedstawione opisy algorytmów będą dotyczyć sortowania niemalejącego (od najmniejszego do największego elementu)

Sortowanie – kilka przydatnych pojęć

Operacja domunująca

Operacja decydująca o złożoności algorytmu, np. porównanie dwóch elementów.

Złożoność algorytmu

Mówi o tym ile operacji dominujących musi wykonać dany algorytm w najmniej korzystnym (pesymistyczna), przeciętnym (przeciętna) i najbardziej korzystnym (optymistyczna) przypadku wyjściowego ułożenia elementów w strukturze danych.

Sortowanie – kilka przydatnych pojęć c.d.

Stabilność

Mówi o tym, czy elementy o jednakowej wartości występują w niezmienionej kolejności w strukturze poczatkowej i po przeprowadzeniu algorytmu sortowania.

Stabilne: np. bąbelkowe, przez scalanie, posiada O(1) space complexity.

Niestabilne: np. szybkie.

Algorytmy "in-place", "out-place"

Mówi o tym, czy do wykonania algorytmu sortowania niezbędne jest wprowadzenie dodatkowych struktur danych (list/tablic). "In-place": np. szybkie, przez wstawianie.

"Out-place": np. przez scalanie.

Sortowanie przez wybieranie

Algorytm

- Ustawia się zmienną pomocniczą np. i na indeks 0.
- 2 Szuka się najmniejszego elementu listy.
- Porównuje się wartość znalezionego minimum z wartością elementu znajdującego się pod bieżącym indeksem – i.
- Jeżeli znaleziona wartość minimum jest mniejsza od bieżącego elementu to robi się zamianę wartości pod wskazanymi indeksami i inkrementuje się indeks o 1.
- Jeżeli znaleziona wartość minimum jest większa od bieżącego elementu to inkrementuje się indeks o 1.
- 6 Powtarza się od 2-giego kroku aż cała lista będzie posortowana.
- algorytm ten dzieli wejściową strukturę danych na podstrukturę posortowaną (lewa) i do posortowania (prawa)

Sortowanie przez wybieranie

Sortowanie przez wybieranie

Złożoność czasowa pesymistyczna	n ²
Złożoność czasowa	n ²
przeciętna	- 11
Złożoność czasowa	n
optymistyczna	11
Stabilność	_
Złożoność	1
pamięciowa	1

nr iteracji (wartość i)	tablica
0	[9,1,6,8,4,3,2, <mark>0</mark>]
1	[0,1,6,8,4,3,2,9]
2	[0,1, 6,8,4,3,2,9]
3	[0,1,2, 8,4,3,6,9]
4	[0,1,2,3,4,8,6,9]
5	[0,1,2,3,4, 8,6,9]
6	[0,1,2,3,4,6, 8,9]

Rysunek: Sortowanie przez wybieranie.

Legenda: czerwony – minumum, czarny pogrubiony – elementy do posortowania, niebieski – elementy

 elementy do posortowania, niebieski – elementy na właściwym miejscu.

Sortowanie bąbelkowe

Algorytm

- Zaczynając od początku listy porównuje się wartości dwóch kolejnych elementów listy.
- 2 Jeżeli ich kolejność jest prawidłowa, to inkrementuje się indeks o 1.
- 3 Jeżeli ich kolejność jest nieprawidłowa, to zamienia się elementy miejscami i inkrementuje się indeks o 1.
- Gdy dojdzie się do końca listy, to kroki powtarza się od początku do momentu aż cała lista będzie posortowana.
 - listę przechodzi się tyle razy aż wszystkie elementy będą na swoich miejscach
 - algorytm ten jest zbyt wolny i niepraktyczny w użyciu

Sortowanie bąbelkowe

Sortowanie bąbelkowe

Złożoność czasowa pesymistyczna	n ²
Złożoność czasowa	n^2
przeciętna	<i>"</i>
Złożoność czasowa	n
optymistyczna	11
Stabilność	+
Złożoność	1
pamięciowa	_

$$\underbrace{ \begin{bmatrix} \underline{4}, \underline{2}, 5, 1, 7 \end{bmatrix} \rightarrow [2, \underline{4}, \underline{5}, 1, 7] \rightarrow [2, 4, \underline{5}, 1, 7] \rightarrow [2, 4, 1, \underline{5}, 7] }_{4 < 5} \\ \underbrace{ \begin{bmatrix} 2, 4, 1, 5, 7 \end{bmatrix} \rightarrow [2, \underline{4}, 1, 5, 7] \rightarrow [2, 1, \underline{4}, \underline{5}, 7] }_{4 < 1} \\ \underbrace{ \begin{bmatrix} 2, 1, 4, 5, 7 \end{bmatrix} \rightarrow [1, \underline{2}, 4, 5, 7] }_{2 < 4} \\ \underbrace{ \begin{bmatrix} 2, 1, 4, 5, 7 \end{bmatrix} \rightarrow [1, \underline{2}, 4, 5, 7] }_{2 < 4} \\ \underbrace{ \begin{bmatrix} [1, 2, 4, 5, 7] \end{bmatrix}}_{2 < 4}$$

Rysunek: Sortowanie bąbelkowe.

Sortowanie przez scalanie

Algorytm

- ① Dzieli się początkowy zbiór na kolejne "połowy" dopóki taki podział jest możliwy (tzn. podzbiór zawiera co najmniej dwa elementy).
- Następnie dla każdych dwóch łączonych na danym poziomie podzbiorów definiuje się wskaźniki i porównuje się elementy przez nie wskazywane.
- Elementy łączy się (przenosi na kolejny poziom drzewa) w odpowiedniej kolejności. Przy tym inkrementowany jest wskaźnik tego podzbioru, którego element trafił do podzbioru kolejnego poziomu, po czym wykonuje się następne porównanie na tym samym podzbiorze.
- Porównywanie powtarza się na każdym z poziomów aż do całkowitego posortowania zbioru wyjściowego.
- John von Neumann, 1945
- "dziel i rządź" * algorytm rekurencyjny

^{*}polega na podziale zadania głównego na zadania mniejsze dotąd, aż rozwiązanie stanie się oczywiste

Sortowanie przez scalanie

Sortowanie przez scalanie

Złożoność czasowa pesymistyczna	n∙logn	
Złożoność czasowa	n∙logn	
przeciętna	II-logii	
Złożoność czasowa	n·logn	
optymistyczna		
Stabilność	+	
Złożoność	n	
pamięciowa	n	

Rysunek: Sortowanie przez scalanie.

Sortowanie szybkie

Algorytm

- Określa się pierwszy element listy jako piwot.
- ② Definiuje się dwie zmienne pomocnicze np. i oraz j i ustawia się je odpowiednio na pierwszym i ostatnim elemencie listy.
- Inkrementuje się i dopóki element lista[i] > piwota.
- Oekrementuje się j dopóki element lista[j] < piwota.</p>
- Gdy i < j wtedy zamienia się miejscami elementy lista[i] i lista[j].</p>
- Opomonia postania postania
- Zamienia się miejscami piwot z elementem lista[j].
- Skontunuuje się na prawej i lewej podstrukturze aż wszystkie lementy będą na swoich miejscach docelowych.

^{*}wartości równe piwotowi idą na arbitralnie ustalaną stronę

Sortowanie szybkie

Sortowanie szybkie		
Złożoność czasowa	n^2	
pesymistyczna	11	
Złożoność czasowa	n∙logn	
przeciętna	II-logii	
Złożoność czasowa	n∙logn	
optymistyczna	n·iogn	
Stabilność	_	
Złożoność	1	
pamięciowa	1	

- wydajny algorytm sortowania – dobrze zaimplemetowany może być nawet 2-3x szybszy od sortowania przez scalanie czy sortowania z użyciem sterty
- najczęściej stosowany algorytm sortowania
- link do animacji: click

Sortowanie przez wstawianie

Algorytm

- Począwszy od drugiego elementu (wskaźnik na drugiej pozycji), wybieramy dany element i porównujemy go z każdym elementem z lewej strony (we wstępnie posortowanej części).
- 2 Przesuwamy i wstawiamy go na odpowiednie miejsce.
- Powtarzamy działanie dla kolejnych elementów ciągu (wskaźnik zawsze przesuwa się o 1 dalej) aż wszystkie elementy będą na swoim miejscu.
 - algorytm wydajny do sortowania małych struktur
 - jest bardziej wydajny niż pozostałe algorytmy posiadające złożoność kwadratową

Sortowanie przez wstawianie

Sortowanie przez

wstawianie przez	
Złożoność czasowa pesymistyczna	n ²
Złożoność czasowa przeciętna	n ²
Złożoność czasowa optymistyczna	n
Stabilność	+
Złożoność pamięciowa	1

Rysunek: Sortowanie przez wstawianie.

Sortowanie zliczeniowe

Algorytm

- 1 Dla każdej wartości w zbiorze przygotowujemy licznik.
- Przeglądamy kolejne elementy zbioru i zliczamy ich wystąpienia w odpowiednich licznikach.
- O Poczynając od drugiego licznika sumujemy zawartość licznika oraz jego poprzednika*.
- Przeglądamy jeszcze raz zbiór wejściowy idąc od ostatniego elementu do pierwszego. Każdy element umieszczamy w zbiorze wynikowym na pozycji równej zawartości licznika dla tego elementu. Po wykonaniu tej operacji licznik zmniejszamy o 1. Dzięki temu następna taka wartość trafi na wcześniejszą pozycję.
- * w każdym liczniku otrzymaliśmy ilość wartości mniejszych lub równych numerowi licznika.

Sortowanie zliczeniowe

Sortowanie zliczeniowe

Złożoność czasowa	n+k
pesymistyczna	
Złożoność czasowa	n+k
przeciętna	<i>II</i> K
Złożoność czasowa	n+k
optymistyczna	
Stabilność	+
Złożoność	n+k
pamięciowa	11 + K

Rysunek: Sortowanie zliczeniowe.

Porównanie wybranych algorytmów sortowania

Tabela: Porównanie parametrów wybranych algorytmów.

Rodzaj	Złoż.	Złoż.	Złoż.	Stabilność	Złoż.
sort.	czas.	czas.	czas.		pamięc.
	pes.	przec.	opt.		
p. wybieranie	n^2	n^2	n	_	1
bąbelkowe	n^2	n^2	n	+	1
p. scalanie	_	n · logn	n · logn	+	n
szybkie	n ²	n · logn	n · logn	_	1
p. wstawianie	n^2	n^2	n	+	1
zliczeniowe	n + k	n + k	n + k	+	n + k

n – liczba elementów struktury danych, k – liczba możliwych wartości

Pakiet java.util.stream

Pakiet java.util.stream

Pakiet java.util.stream