MATAVIMŲ REZULTATAI

MATAVIMŲ
REZULTATŲ
PAKLAIDOS IR JŲ
ĮVERTINIMAS

I. Matavimas – tai palyginimas.

1. Tiesioginiai matavimai:

```
masės, ilgio, temperatūros, laiko.
```

2. Netiesioginiai matavimai:

```
ploto,
tūrio,
greičio ir t.t.
```

II. Matavimų paklaidos:

- a) pagal atsiradimo priežasties rūšį:
 - sisteminės,

(įvertinamos)

atsitiktinės,

(ivertinamos)

grubūs netikslumai;

(nejvertinamos)

- b) pagal skaičiavimo tipą:
 - absoliutinės paklaidos <u>Ax</u>,
 - santykinės paklaidos ε.

• x_o – tikrasis dydis

• x - išmatuotasis dydis

• Δx – absoliutinė paklaida

$$\Delta x = |x_o - x|$$

• $\varepsilon = \Delta x / x$ – santykinė paklaida

Tikrojo dydžio užrašymas:

$$x_o = (x \pm \Delta x)$$

I. Vienkartinių tiesioginių matavimų rezultatų paklaidos

- LINIUOTĖS MATAVIMO PAKLAIDA:
 - \square $\Delta \ell = 1 \text{ mm}$
- SLANKMAČIO MATAVIMO PAKLAIDA:
 - D = 0.1 mm
 - D = 0.05 mm
- MIKROMETRO MATAVIMO PAKLAIDA:
 - $\Delta D = 0.01 \text{ mm}$

SVARSTYKLIŲ PAKLAIDA:

$$-\Delta m = 0.05 \text{ g}$$

SEKUNDOMETRO PAKLAIDA:

$$\Delta t = 0.2 + 0.2 = 0.4 \text{ s}$$

TERMOMETRO PAKLAIDA:

$$\Box$$
 $\Delta t^{\circ} = 1^{\circ} C$

Atsitiktinių paklaidų skaičiavimo teorija (*Gauso*) yra pagrįsta dviem teiginiais:

 Lygaus absoliutinio didumo, bet priešingų ženklų paklaidos yra vienodai tikimos.

• Kuo didesnis paklaidos absoliutinis didumas, tuo toji paklaida yra mažiau tikima.

Normalinio pasiskirstymo kreivė

Atskirų matavimų ir jų paklaidų pasiskirstymas

P – pasikliovimo tikimybė

 Tai tikimybė, kad matuojamojo dydžio reikšmė x yra tarp

$$(x-\Delta x)$$
 ir $(x+\Delta x)$.

$$P = \int_{-\infty}^{+\infty} f(\Delta x) \cdot d(\Delta x) = 1$$

• Intervalą nuo $(x - \Delta x)$ iki $(x + \Delta x)$ vadiname pasikliautinuoju intervalu.

II. Daugkartinių tiesioginių matavimų atsitiktinių paklaidų skaičiavimas

1. Atliekame *n* matavimų:

$$x_1, x_2, ..., x_n$$
 (*n*- matavimų skaičius).

2. Randame išmatuoto *x* dydžio **aritmetinį** vidurkį:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

3. Randame standartinę paklaidą:

$$S_x = \sqrt{\frac{(\overline{x} - x_1)^2 + (\overline{x} - x_2)^2 + ... + (\overline{x} - x_n)^2}{n \cdot (n-1)}} =$$

$$=\sqrt{\frac{\sum_{i=1}^{n}(\overline{x}-x_{i})^{2}}{n\cdot(n-1)}}$$

4. Naudojantis dėstytojo nurodyta pasikliovimo tikimybe *P* ir atliktų matavimų skaičiumi *n*, randame lentelėse **Stjudento koeficientą** (kai matavimų skaičius *n*<25):

$$t_{P,n-1}$$

5. Randame matuojamojo dydžio absoliutinę paklaidą:

$$\Delta x_{P} = t_{P,n-1} \cdot S_{x}$$

III. Netiesioginių matavimų rezultato paklaidos skaičiavimo formulės išvedimo algoritmas

1. Ieškomojo dydžio matematinę išraiškos formulę logaritmuojame natūriniu logaritmu (*ln x*).

2. Gautąją išraišką **diferencijuojame** (*dx/x*).

3. Jei yra reikalinga, diferencijuojame dar kartą.

4. Diferencialo ženklą keičiame į pokytį $(d \rightarrow \Delta)$.

5. Gautus minusus, pakeičiame į pliusus, kadangi skaičiuosime pokyčio absoliutinį didumą.

6. Išreiškiame dydžio absoliutinės maksimalios paklaidos skaičiavimo formulę (Δx_{max}).

Norėdami rasti realią paklaidą:

7. \(\alpha \lambda \lambda \rangle \) išraiškoje kiekvieną abiejų lygybės pusių narį keliame kvadratu.

8. Iš abiejų lygybės pusių traukiame kvadratinę šaknį.

9. Išreiškiame realią absoliutinę paklaidą 1x.

REZULTATO IR JO PAKLAIDOS APVALINIMAS

- 1. Paklaida ir rezultatas išreiškiami tais pačiais matavimo vienetais ir ta pačia eile.
- 2. Paklaida apvalinama iki pirmo arba antro reikšminio skaičiaus.
- 3. Tokiu pat tikslumu, kaip ir paklaida, apvalinamas rezultatas.

REZULTATO UŽRAŠYMAS

$$x = \left(\overline{x} \pm \Delta \overline{x}_P\right)$$

Siūloma literatūra

• K.Jankauskas. **Matavimų paklaidos** ir jų įvertinimas, Klaipėda, 1994.

V.Bulbenkienė, K.Jankauskas,
O.Kubiliūnienė, J.Vaupšas,
M.Žadvydas. Fizikos laboratoriniai darbai (I dalis), Klaipėda, 2005.