

Tracker calibration studies in FairShip

Kevin Sedlaczek

July to September 2017

Summer Student Programme

content

- 1. motivation
- 2. data sets
- 3. reconstructed distance to target
- 4. particle flux in strawtubes
- 5. summary
- 6. outlook

3 / 36

motivation

- check for reconstruction effects on MC truth
- 2. reconstruct target position from measured tracks?
- **3.** cuts on IP for analysis
- 4. calibration of strawtubes
- 5. → what is the expected flux at tracker?

Used data sets

- Working with different samples that vary in the magnetic field of the muon shield
- Constructed via the FairShip framework
 - run_SimScript.py with flags --MuonBack --FollowMuon and --Field customized to change the field of the muon shield.
 - ShipReco.py to simulate the reconstruction and detector
 - files with different magnetic fields muShield. B of the muon shield
 - And also without any magnetic field in all detector components before T1 (c.tauMS.B= 1,5 T/c.EmuMagnet.B= 1T)
 - samples with 100 000 events

Calculated distance to target (impact parameter)

Calculation of impact parameter

The reconstructed tracks (namely the fitted states) are accessed via:

```
for event in t00:

for track in event.FitTracks:

state = track.getFittedState()

mom = state.getMom()

pos = state.getPos()

pdg = state.getPDG()
```

They yield a spatial vector $\vec{r}_{\text{track}} = (x,y,z)$ and a momentum vector $\vec{p} = (p_x,p_y,p_z)$. The spatial vector is used as a starting point, while the momentum vector defines the direction. The so defined straight line in 3D space can then be extrapolated to the z-component of the target centre.

Calculation of impact parameter

- The target centre is located at $z_t = -7067.0$, so that the x and y coordinates of the fitted tracks can be calculated.
- So the track is described by

$$\vec{r}(t) = \vec{p} \cdot t + \vec{r}_{\mathsf{track}} \tag{1}$$

Thus one only needs to calculate the t for the z-component and apply it to x and y.

- $t = \frac{z_{\text{target}} z}{n_z}$
- $\blacksquare x_{\mathsf{target}} = p_x \cdot t + x$
- $y_{\text{target}} = p_y \cdot t + y$
- lacksquare this then gives the distance in the x-y-plane: $d=\sqrt{x_{\mathrm{target}}^2+y_{\mathrm{target}}^2}$

μ^+	all momenta	p > 10 GeV	$p < 10\mathrm{GeV}$
mean x /cm	$23,84 \pm 2,38$	$9,4 \pm 1,5$	$53,37 \pm 6,39$
mean y /cm	$-0,733 \pm 2,356$	$-0,12 \pm 1,56$	$-1,93 \pm 6,26$
RMS x /cm	92,28	46,73	142,1
RMS y /cm	92,27	49,6	142,7
μ^-	all momenta	$p > 10 \mathrm{GeV}$	$p<{\rm 10GeV}$
mean x /cm	29,31 ± 3,17	8,13 ± 1,95	$64,38 \pm 7,45$
mean y /cm	$9,931 \pm 3,128$	$1,725 \pm 1,902$	$22,95 \pm 7,46$
RMS x /cm	102,3	49,74	147,4
RMS y /cm	102	48,58	151,3

Table: Means and RMS of the x- and y-projections of the reconstructed IP.

Dependence of asymmetry

- asymmetry in x-projection: mean shifted to one side
- mostly independent of charge of the muon
- momentum dependence: x- distribution moves to the same direction for both charges when setting momentum cuts

Dependence of asymmetry

- asymmetry in x-projection: mean shifted to one side
- mostly independent of charge of the muon
- momentum dependence: x- distribution moves to the same direction for both charges when setting momentum cuts
- almost gone for momentum-cut above 50 GeV

Also occured when using the extrapolator to go to z=0 and using a linear fit to go to the target.

Looking at the slopes of the true MC muon tracks, there were only muons with px>0 and py==0.

fix **bug** in MuonBackGenerator: phi=0 was used if phismearing was off instead of true phi

Kevin Sedlaczek | July to September 2017

new data samples

comparison of old and new files

comparison of old and new files

Kevin Sedlaczek | July to September 2017

old data samples

Divided for μ^+ and μ^- all momenta but muon shield field = 10mT

comparison of no field and 10mT in Muon shield

comparison of no field and 10mT in Muon shield

μ^+	$B_{ m mu\ shield}=$ 10 mT	$B_{ m mu\;shield}=0{ m T}$
$mean\;x\;/cm$	$-1,16 \pm 1,50$	$0,512 \pm 1,394$
mean y /cm	$-1,45 \pm 1,47$	$0,911 \pm 1,477$
σ_x /cm	$45,03 \pm 1,46$	$43,40 \pm 1,32$
σ_y /cm	$44,13 \pm 1,41$	$44,43 \pm 1,42$
μ^-	$B_{ m mu\ shield}=$ 10 mT	$B_{ m mu\;shield}={ m 0T}$
$\max x / cm$	$2,215 \pm 1,658$	$-0,363 \pm 1,741$
mean y /cm	$0,281 \pm 1,908$	$-5,136 \pm 2,199$
σ_x /cm	$41,76 \pm 1,52$	$42,965 \pm 1,630$
σ_y /cm	$45,72 \pm 1,88$	$49,077 \pm 2,296$

Table: Means and sigmas of the reconstructed IP for no magnetic field and a 10 mT field in the muon shield.

Investigation of particle flux in T1

Investigation of particle flux in T1

- 4 strawtube stations in SHiP
- each one consists of 8 planes that are made of 2 layers of strawtubes
- 568 straws per layer \rightarrow 1136 straws per plane \rightarrow 9088 straws per station
- data samples with --MuonBack but without --FollowMuon to get total flux
- turned **off** the magnet of τ -station (1,5 T) and the EMuMagnet (1,0 T)

Investigation of particle flux in T1

To get the total flux per spill:

- apply Monte Carlo weights (2571 or 4975) on the events.
- only 100 000 events, so additional factor $\frac{17786274}{100000}$ to get to the 17786274 events of the used file /eos/ship/data/Mbias/pythia8_Geant4-withCharm_onlyMuons_4magTarget.root.
- count strawtubesPoint hits in range of first plane (arbitrary choice) so between
- count strawtubesPoint hits in range of first plane (arbitrary choice) so between z=2580 and z=2581.5.

Particle flux in T1

Particle flux in T1

Number of total hits in first plane of T1 for different B-fields

b-field [T]	hits/s in T1	hits/plane/s	hits/layer/s	hits/straw/s
0,0	1,058 · 10 ¹²	1,344 · 10 ¹¹	6,724 · 10 ¹⁰	1,183 · 10 ⁸
0,2	$8,848 \cdot 10^{11}$	1,101 · 10 ¹¹	$5,506 \cdot 10^{10}$	$9,694 \cdot 10^{7}$
0,4	$4,037 \cdot 10^{11}$	$5,229 \cdot 10^{10}$	$2,614 \cdot 10^{10}$	$4,603 \cdot 10^7$
0,6	1,657 · 10 ¹¹	1,895 · 10 ¹⁰	9,474 · 10 ⁹	$1,668 \cdot 10^7$
0,8	8,816 · 10 ¹⁰	1,191 · 10 ¹⁰	5,952 · 10 ⁹	$1,048 \cdot 10^7$
1,0	$7,971 \cdot 10^8$	1,629 · 10 ⁸	$8,145 \cdot 10^7$	$1,434 \cdot 10^5$
1,2	$2,081 \cdot 10^7$	$6,936 \cdot 10^6$	$3,468 \cdot 10^6$	$6,106 \cdot 10^3$

Table: Particle flux at T1 for different magnetic fields of the muon shield (all other fields turned off). Average calculated from hits in one plane, so the maximum rate varies locally.

summary

- \blacksquare At first: unexpectedly large asymmetry in x (no apparent physical reason)
- found a bug in MuonBackGenerator (→ Thomas fixed it)
- new projection of IP looks as expected
- even 10 mT remnant field in muon shield doesn't shift the mean of the distribution much $(x_{\mu^+}: (0.50 \pm 1.39) \, \text{cm} \rightarrow (-1.16 \pm 1.50) \, \text{cm})$
- particle flux can be regulated by the magnetic field of the muon shield over at least 5 orders of magnitude
- lacktriangleright rates at certain fields seem to be managable with tracker o further more precise studies.

outlook

Of course, this can be improved. A few fields for further studies would be:

- examine bigger data samples
- investigate flux distribution within planes (not only average)
- use more exact extrapolation
- quantitatively compare accuracy of reconstructed IP to MC truth

Back Up

Momentum distribution of the tracks

P distr. of tracks (reco)

Divided for μ^+ and μ^- only momenta > 10 GeV

Divided for μ^+ and μ^- only momenta < 10 GeV

