CS6046: Multi-Armed Bandits Worksheet - 2

For questions (1), (2) and (3) let $\Omega = [0, 1]$, and \mathcal{F} be the Borel sigma algebra formed by the open sets, and let $\mathbb{P}((a, b)) = b - a, 0 < a < b < 1$.

- (1) Let the random variables X_n be defined as, $X_n(\omega) = \omega^n, \omega \in [0,1]$. Calculate the following
 - (i) Find the distribution function $F_{X_n}(x) = \text{Prob}(X_n < x)$. Try to sketch the same.
 - (ii) Find the density function $f_{X_n}(x) = \frac{dF_{X_n}(x)}{dx}$. Try to sketch the same.
- (2) Define random variables X_1 and X_2 which are independent of each other, such that
 - (i) $Prob(X_i = -1) = 1/4$, $Prob(X_i = +1) = 1/4$ and $Prob(X_i = +2) = 1/2$
 - (ii) Find the distribution function $F_{X_i}(x)$.
 - (iii) Find $\mathbb{P}(\{\omega: X_1(\omega)=X_2(\omega)\})$, $\mathbb{P}(\{\omega: X_1(\omega)\neq X_2(\omega)\})$, $\mathbb{P}(\{\omega: X_1(\omega)\geq X_2(\omega)\})$.
- (3) Let $X_n(\omega) = n^2 \omega$ if $0 < \omega < \frac{1}{n}$, and $X_n(\omega) = 0$ otherwise. Find out if the sequence $\{X_n\}_{n\geq 0}$ converges in almost surely, probability, mean squared or distribution.
- (4) Let X be a random variable uniformly distributed between [0, 1]. Let Z = 3X + 2 be a random variable. Find the distribution $F_Z(z)$, and density $f_Z(z) = \frac{dF_Z(z)}{dz}$
- (5) Let X be a random variable uniformly distributed between [0,1]. Let $Z=X^2$ be a random variable. Find the distribution $F_Z(z)$, and density $f_Z(z)=\frac{dF_Z(z)}{dz}$
- (6) Let X be a random variable uniformly distributed between [0,1]. Let $Z=e^{-X}$ be a random variable. Find the distribution $F_Z(z)$, and density $f_Z(z)=\frac{dF_Z(z)}{dz}$