The Risk of not Being Secure in a Post Quantum World

Nastja Cepak - Phd Cryptography, Security Officer, CREAplus Alexandra Günnewig – Head of Product Marketing, UTIMACO

Quantum computers take advantage of quantum physics for solving <u>selected</u> problems that even the **fastest** supercomputers couldn't solve in a reasonable amount of time today.

This will have an impact on complex search algorithms & data analysis simulations.

Major industry players

What is the Difference?

Classical computer

Uses classical bits

Possible values are just two: **0** and **1**

Example: 2 bits can encode 4 values (00, 01, 10, 11)

Computation ends with a single bit state

Result is **deterministic**

Quantum computer

Uses qubits

Can take values 0, 1, or infinitely many superpositions in-between

2 qubits can encode any superposition of the 4 states

Computation ends when we measure the result and the superpositions collapse

Result is **probabilistic**

Wonderings Surrounding Quantum

CREA plus

Will quantum computers one day **completely replace** the classical computers?

VS VS

Did we already **achieve quantum supremacy?**

Are quantum computers already

commercially available?

D::Wave

Are quantum computers really going to devastate our digital security?

Mega Trend: Quantum Computer

Problem Statement

- Shor's Algorithm
 breaks asymmetric crypto
 - Breaks RSA by quickly factoring large numbers
 - Breaks Elliptic Curve
 Cryptography and Diffie-Hellman by solving the discrete log problem
- Grover's Algorithm
 weakens symmetric crypto
 - Square-root speedup on search algorithms
 - Weakens symmetric encryption and hashing by 50%

Туре	Algorithm	Key Strength Classic (bits)	Key Strength Quantum (bits)	Quantum Attack
Asymmetric	RSA 2048	112	0	Shor's Algorithm
	RSA 3072	128		
	ECC 256	128		
	ECC 521	256		
Symmetric	AES 128	128	64	Grover's
	AES 256	256	128	Algorithm

What does this mean for you?

Ask your IT security vendor...

- TLS key agreement
- IPSec key agreement
- SSH key agreement
- ... all breakable
- User authentication
- Device authentication
- ... mostly breakable
- ... impersonation attacks
- Integrity and authenticity of contracts, crypto wallets, land records – digital signatures in general etc.
- ... gone

Problem Statement – Why should you care ... now?

How long is it going to take you?

Progress in development and standardization of PQC

How to respond to the quantum threat?

^{*} Based on xyz

Get support

https://csrc.nist.gov/CSRC/media/Presentations/Let-s-Get-Ready-to-Rumble-The-NIST-PQC-Competiti/images-media/PQCrypto-April2018_Moody.pdf

Challenges

- Increased complexity:
 Choose the right algorithm
 - Key size
 - Storage space required
 - Speed of execution

- Identify the impact on your business
- Start *now* to prepare for migration!
- Learn about the impact of the new algorithms on your infrastructure

Get the tools

Quantum-Safe Cryptography	Digital Signature	Public-Key Encryption	Key Agreement
Hash-based Signatures (XMSS, HSS,)	X		
Lattices (Dilithium, Kyber, NewHope*, Frodo,)	X	X	X
Error Correcting Codes (Classic McEliece,)	X	X	
Elliptic Curve Isogenies (SIKE*)	Х	X	X
Multivariate (Rainbow,)	X	X	

^{*} Available on project basis

Q-safe is the only commercially available HSM extension in the market today, that allows you to run quantum-safe algorithms within the secure perimeter of an HSM.

3 UTIMACO PQC building blocks: Knowhow & network, consultancy, tools

UTIMACO offers you the knowhow and the tools to

- assess which part of your technical infrastructure is at risk,
- determine your PQC roadmap & identify critical paths
- implement the technical **tools** to make your crypto infrastructure quantum secure.

CREAplus

We inform frequently about Quantum related topics

Follow us

hsm.utimaco.com/blog

UTIMACO Applied Crypto Symposium

- 1st week December
- Michele Mosca confirmed
- Lily Chen confirmed

UTIMACO Blog

hsm.utimaco.com/blog

Itan Barmes Deloitte

Lily Chen NIST

Michele Mosca University of Waterloo

Germanusstraße 4 52080 Aachen Germany Phone +49 241 1696-0
Web hsm.utimaco.com
E-Mail hsm@utimaco.com

Copyright © 2020 - UTIMACO GmbH

UTIMACO® is a trademark of UTIMACO GmbH. All other named Trademarks are Trademarks of the particular copyright holder. All rights reserved. Specifications are subject to change without notice.