Step 2: find the longest eigenstrings	need eigenstrings to "not intersect"	Ex: Continue with A:
I listing the tops of the	- need eigenstring bottoms to be	. We need basis (dy,, dr) of Nul (A-SI)
1. Kac(v-20) = dim Ker(v-10)	linearly independent ()	: (A-3I)=0, so Nul(A-32)
Suppose dim her waximal eigenstring length —i.e. m is the maximal eigenstring length	(0-22)m-1(Ker (0-22)m)	$(A-3I)^2=0, \text{ so Nul}(A-3I)^2=U$ $\therefore \text{ we can take } \alpha_1=e_1, \alpha_2=e_2, \alpha_3=e_3, \alpha_4=e_4$ $\therefore \text{ we can take } \alpha_1=e_1, \alpha_2=e_3, \alpha_3=e_3, \alpha_4=e_4$
(in example A, m=2, r=4)	(0-11)	· (onsider ((A)) (E)
	· Find a basis [x,, x,] of Ker(o-20)	Here, (A-3I)(e:) are the columns of A-3I.
find die Ker (o-22) Ker (o-22) - this is not enough: possible to have	. (1 (,	cula pecamie x = e:
- this is not enough: possible to home	· Consider { (o-21)m-1 (d), , (o-21)m-1 (dr)}	· linearly independent subset = columns with pirot i.e. 2 and 4.
d, d,	I meanly independent subset of 4	
i.e. $(o-\lambda c)\alpha_1 = (o-\lambda c)\alpha_2$	(e.g. casting at algorithm) — the corresponding	eigenstring tops can be examble eq.
	I di are the tops we want.	

$$(A-3I)e_{2}$$

$$(A-3I)e_{2}$$

$$(A-3I)e_{3}$$

$$(A-3I)e_{3}$$

$$(A-3I)e_{4}$$

$$(A-3I)e_{5}$$

$$B = \left\{ \begin{pmatrix} -2 \\ -3 \\ 8 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 8 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$(4^{-3})e_4$$
 β_3 $(4^{-3})e_4$ β_3 $(7^{-1})e_4$ $(8^{-1})e_4$ $(9^{-1})e_4$ $(9$