Attorney's Docket No.: 12406-126001 / 1998P6012 US

DEC 0 7 2005

#### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

pplicant: Franz Schellhorn et al.

Art Unit : 2883

Serial No.: 09/868,364

Examiner: Timothy L. Rude

Filed

: October 12, 2001

Title

: LIGHT SOURCE ELEMENT WITH LATERAL, OBLIQUE LIGHT INFEED

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

#### TRANSMITTAL OF PRIORITY DOCUMENT UNDER 35 USC §119

Applicant hereby confirms his claim of priority under 35 USC §119 from the following application(s):

· German Application No. 198 60 696.6 filed December 29, 1998

A certified copy of the application from which priority is claimed is submitted herewith.

Please apply any charges or credits to Deposit Account No. 06-1050, referencing 12406-126001.

Respectfully submitted,

Marc M. Wefers Reg. No. 56,842

Fish & Richardson P.C. 225 Franklin Street Boston, MA 02110

Telephone: (617) 542-5070 Facsimile: (617) 542-8906

21219835.doc

CERTIFICATE OF MAILING BY FIRST CLASS MAIL

I hereby certify under 37 CFR §1.8(a) that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Date of Deposit

Signature

Typed or Printed Name of Person Signing Certificate

# BUNDESREPUBLIK DEUTSCHLAND



# CERTIFIED COPY OF PRIORITY DOCUMENT

# Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

198 60 696.6

Anmeldetag:

29. Dezember 1998

Anmelder/Inhaber:

Siemens Aktiengesellschaft, 80333 München/DE

Bezeichnung:

Lichtquellenelement mit seitlicher schräger Lichtein-

kopplung

IPC:

G 09 F, G 02 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 15. November 2005 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Stark



#### Beschreibung

20

30

35

Lichtquellenelement mit seitlicher schräger Lichteinkopplung

Die Erfindung bezieht sich auf ein Lichtquellenelement gemäß dem Oberbegriff des Patentanspruchs 1 zur Hinterleuchtung von Flüssigkristall-Displays und zur ambienten Beleuchtung oder Umgebungsbeleuchtung.

Bei der Hinterleuchtung von Flüssigkristall-Displays besteht eine wichtige Aufgabe darin, die Flüssigkristall-Anzeigefläche mit einer möglichst homogenen monochromen oder polychromen Lichtstrahlung ausreichend hoher Leuchtdichte auszuleuchten. Dazu muß die aus einer oder mehreren Lichtquellen emittierte Lichtstrahlung einerseits möglichst homogen auf die Anzeigefläche verteilt werden, wobei andererseits die Verluste möglichst minimiert werden sollten.

In der EP-0 500 960 ist ein flächiges Lichtquellenelement beschrieben, welches zur Hinterleuchtung bei einem Flüssigkristall-Display eingesetzt werden soll. Bei diesem Lichtquellenelement ist an einer Stirnseitenfläche als einer Lichteinfallsfläche eines transparenten Lichtwellenleiters eine Lichtquelle angeordnet. Eine zu der Lichteinfallsfläche senkrechte Oberfläche des Lichtwellenleiters dient als eine Lichtaustrittsfläche und auf der dieser Lichtaustrittsfläche gegenüberliegenden Oberfläche des Lichtwellenleiters ist eine lichtreflektierende Schicht angeordnet. Ferner ist ein Streuglied derart angeordnet, daß das aus der Lichtaustrittsfläche austretende Licht diffus gestreut wird. Die Homogenisierung der Lichtstrahlung über die Fläche des Lichtquellenelements wird nun dadurch erreicht, daß eine oder beide Oberflächen des Lichtwellenleiters aufgerauhte Abschnitte und ebene Abschnitte aufweisen und das Flächenverhältnis der aufgerauhten zu den ebenen Abschnitten entlang dem Wellenleiter kontinuierlich verändert wird. Die ebenen Abschnitte haben die Eigenschaft, daß Lichtstrahlen von ihnen aufgrund von Totalreflexion in den Wellenleiter zurückreflektiert werden, während an den aufgerauhten Abschnitten die Lichtstrahlen gestreut werden. Da an der Lichteintrittsseite des Lichtwellenleiters die Leuchtdichte zunächst relativ hoch ist, wird dort ein relativ hoher Anteil an ebenen Flächen eingestellt, so daß sich die Lichtwellen in diesem Bereich mit einer relativ hohen Wahrscheinlichkeit durch mehrfache Totalreflexion in dem Wellenleiter fortbewegen werden. Dieser Flächenanteil an ebenen Abschnitten wird im Verlauf des Wellenleiters kontinuierlich zurückgeführt, so daß die Lichtstrahlung mehr und mehr an dem zunehmenden Anteil an aufgerauhten Flächen gestreut werden kann. Dadurch gelingt es, eine relativ gleichmäßige Ausgangsstrahlung an der Lichtaustrittsfläche des Lichtquellenelements zu erzeugen.

15

20

10

5

Bei der beschriebenen Anordnung muß die Lichtstrahlung an einer Stirnseite des Lichtquellenelements in den Lichtwellenleiter eingekoppelt werden. Bei Verwendung beispielsweise einer längs dieser Seite angeordneten Leuchtstoffröhre, die von einem metallischen Reflektor umgeben ist, läßt sich sicher in vielen Fällen eine ausreichende Leuchtdichte für die Hinterleuchtung eines Flüssigkristall-Display bereitstellen. Dennoch ist diese Anordnung relativ unflexibel, da aufgrund der Beschränkung hinsichtlich der verwendbaren Lichtquelle die Leuchtdichte nicht über ein bestimmtes Maß hinaus gesteigert werden kann. Außerdem ist die Anbringung der Lichtquelle an die seitliche Stirnfläche des Lichtquellenelements auch aus Platzgründen ungünstig, weil der hierfür benötigte Platz letztlich die Breite der Anzeigefläche des Flüssigkristall-Displays beschränkt.

30

35

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Lichtquellenelement, insbesondere zur Hinterleuchtung von Flüssigkristall-Displays, zu schaffen, mit welchem einerseits eine Erhöhung der Leuchtdichte ermöglicht werden kann und bei welchem andererseits die Anbringung der Lichtquellen nicht mit einer Einschränkung in der Breite der Lichtemissionsfläche des Lichtquellenelements verbunden ist.

Weiterhin ist es auch bei den im Stand der Technik bekannten Lichtquellenelementen, die die Funktion der ambienten Beleuchtung oder Umgebungsbeleuchtung haben, aufgrund der Art der Einkopplung der Lichtstrahlung an den Stirnseiten des Lichtwellenleiters ein Problem, die Leuchtdichte zu steigern. Somit ist es eine weitere Aufgabe der vorliegenden Erfindung, ein Lichtquellenelement zur Umgebungsbeleuchtung zu schaffen, welches eine höhere Leuchtdichte und/oder eine größere Lichtaustrittsfläche aufweist.

Die oben geschilderten Probleme des Standes der Technik werden mit einem Lichtquellenelement gemäß Patentanspruch 1 gelöst.

Allen Ausführungsformen der vorliegenden Erfindung ist gemeinsam, daß die Lichtstrahlung nicht mehr wie beim Stand der Technik an einer oder beiden Stirnflächen in den Lichtwellenleiter eingekoppelt wird, sondern an Oberflächen, die in Längsrichtung des Lichtquellenelements verlaufen, wobei die Lichtstrahlung mit einem schiefen Winkel in den Lichtwellenleiter eingekoppelt wird. Da entlang dieser Oberflächen mehr Platz für die Positionierung der Lichtquellen vorhanden ist, kann eine Mehrzahl von Lichtquellen vorgesehen werden. Dadurch wird die Möglichkeit geschaffen, daß die Leuchtdichte eines erfindungsgemäßen Lichtquellenelements gesteigert werden kann.

30

35

5

10

20

Der Lichtwellenleiter ist in allen Ausführungsformen zumindest an der der Lichtaustrittsfläche gegenüberliegenden Oberfläche und an den die Lichtaustrittsfläche und die gegenüberliegende Oberfläche verbindenden Längsseitenflächen mit einem Reflektor bedeckt, in den gegebenenfalls Öffnungsbereiche zur Anordnung von Lichteinkopplungseinheiten geformt sind.

Bei einer ersten Ausführungsform eines erfindungsgemäßen Lichtquellenelements werden die Lichtquellen an den Längsseitenflächen des Lichtwellenleiters angeordnet. An den Längsseitenflächen kann eine Mehrzahl von Lichtquellen wie Lichtemissionsdioden oder dergleichen angeordnet werden und damit die Leuchtdichte des Lichtquellenelements gesteigert werden.

Bei einer zweiten Ausführungsform eines erfindungsgemäßen Lichtquellenelements werden die Lichtquellen an der der Lichtaustrittsseite gegenüberliegenden Oberfläche des Lichtquellenelements angeordnet. Eine solche Ausführungsform dient z.B. als Lichtquellenelement für die Umgebungsbeleuchtung.

Die erfindungsgemäßen Lichtquellenelemente können z.B. flächig ausgebildet werden und somit in idealer Weise zur Hinterleuchtung von Flüssigkristall-Displays eingesetzt werden.

Weiterhin können die erfindungsgemäßen Lichtquellenelemente zur ambienten Beleuchtung oder Umgebungsbeleuchtung verwendet werden. Durch die Möglichkeit der Vielfacheinleuchtung wird die Dämpfung des Lichtwellenleiters praktisch ausgeschaltet, so daß Lichtwellenleiter beliebiger Länge ausgeleuchtet und für die Beleuchtung der Umgebung verwendet werden können.

25

35

20

5

10

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen in den Zeichnungen näher beschrieben. In den Zeichnungen zeigen:

Fig.1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen flächigen Lichtquellenelements für die Hinterleuchtung von Flüssigkristall-Displays;

Fig.2 einen Querschnitt durch das Lichtquellenelement der Fig.1 entlang der Linie II-II.

Fig.3 ein zweites Ausführungsbeispiel eines erfindungsgemäßen Lichtquellenelements für die Umgebungsbeleuchtung;

10

30

35

Fig.4 ein drittes Ausführungsbeispiel eines erfindungsgemäßen Lichtquellenelements; Fig.4a einen Querschnitt entlang einer Linie IV-IV in Fig.4;

Fig.5 eine spezielle Form des Ausführungsbeispiels der Fig.4.

In der Fig.1 ist eine Ausführungsform eines erfindungsgemäßen Lichtquellenelements 10 dargestellt, wie es beispielsweise zur Hinterleuchtung eines Flüssigkristall-Displays verwendet werden kann. In Fig.2 ist das Lichtquellenelement in einem Querschnitt entlang der Linie II-II in der Fig.1 zusammen mit einem Flüssigkristallelement dargestellt.

Das Kernstück des Lichtquellenelements 10 der Fig.1 ist ein flächiger Lichtwellenleiter 1, der im Prinzip aus jedem transparenten Material, z.B. aus einem thermoplastischen Harz wie Acrylharz, Polycarbonatharz, oder auch aus Plexiglas oder PMMA geformt werden kann. Das in diesen Lichtwellenleiter 1 eingekoppelte Licht wird homogen über die rechteckige Fläche verteilt und einer (nicht dargestellten) Anzeigefläche eines Flüssigkristall-Displays zugeführt. Zu diesem Zweck ist der Lichtwellenleiter 1 allseitig von Reflektoren 4 umgeben, durch welche die auftreffende Lichtstrahlung diffus zurückgeworfen wird.

Die Lichteinkopplung erfolgt über Lichteinkopplungseinheiten 5, die an den Längsseitenflächen 1C und 1D des Lichtquellenelements 10 angebracht sind, und die jeweils aus einem Öffnungsbereich 5B des jeweiligen Reflektors 4 und einer Lichtquelle 5A bestehen. Die Lichtquelle 5A ist beispielsweise eine Halbleiter-Lichtemissionsdiode (LED) für eine monochrome Hinterleuchtung, kann aber auch eine Weißlichtquelle wie eine Halogenleuchte oder dergleichen sein. In einer speziellen Ausführungsform kann eine UV-Strahlungsquelle verwendet werden, wobei dann die Ober- und Unterseiten des Lichtwellenleiters mit einem phosphoreszierenden Material be-

10

30

35

schichtet werden. Die Lichtquelle 5A ist derart angeordnet, daß die Lichtstrahlung in einem bestimmten schiefen Winkel zu einer Hauptachse des Lichtwellenleiters 1 in diesen eingestrahlt wird. Der Einstrahlwinkel kann dabei beliebig eingestellt werden.

Die Fig.1 zeigt eine Ausführungsform, bei der auf der Längsseitenfläche 1C vier Lichteinkopplungseinheiten und auf der gegenüberliegenden Längsseitenfläche 1D zwei Lichteinkopplungseinheiten an den Lichtwellenleiter 1 angebaut sind.

Das Ausführungsbeispiel der Fig.1 sieht vor, daß bei jeder Lichteinkopplungseinheit ein dreieckförmiger Vorsprung des Lichtwellenleiters 1 vorhanden ist. Eine Seitenfläche dieses Vorsprungs ist mit einem Reflektor 4 bedeckt, während die andere Seitenfläche nach außen freiliegt und somit den Öffnungsbereich 5B bildet.

In dem Ausführungsbeispiel der Fig.1 sind in vorteilhafter

20 Weise auch die Stirnflächen 1E und 1F mit Reflektoren bedeckt. damit kein Licht an den Stirnseiten ausgekoppelt wird.

Die Reflektoren 4 sind vorzugsweise einstückig geformt und durch Spritzguß aus Pocan® (thermisches Polyester auf der Basis von Polybutylenterephtalat) hergestellt. Dieses Material ist weiß und bildet einen idealen diffusen Reflektor. Es ist jedoch auch ebenso denkbar, als Reflektor ein Folienmaterial aufzubringen. Dieses kann z.B. eine Folie auf der Basis von Polycarbonat sein, die mit weißer Farbe beschichtet oder bedruckt ist. Um das Herstellungsverfahren noch weiter zu vereinfachen, könnte die Folie auch bereits während der Spritzgußformung des Lichtwellenleiters 10 aufgebracht werden, indem vor dem Spritzguß die Form der Spritzgußapparatur mit der Folie ausgelegt wird. Nach Aushärtung der Kunststoffmasse haftet die Folie an dem Wellenleiter an und kann zusammen mit diesem aus der Spritzgußapparatur entnommen werden.

10

15

20

30

35

Die Homogenisierung der Leuchtdichte wird im Prinzip ebenso wie bei der EP-A-0 500 960 mit einem veränderlichen Flächenverhältnis aus lichtstreuenden und ebenen Flächen herbeigeführt, die auf der Lichtaustrittsfläche 1A und/oder der dieser gegenüberliegenden Oberfläche 1B des Lichtwellenleiters 1 oder auf beiden geformt sind.

In der Figur 2 sind lediglich beispielhaft in die Lichtaustrittsfläche 1A des Lichtwellenleiters 1 geformte lichtstreuende Flächen 6 und ebene Flächen 7 angedeutet. Das Flächenverhältnis der ebenen Flächen 7 zu den lichtstreuenden Flächen 6 hängt von der Leuchtdichte an dem jeweiligen Ort in dem Lichtwellenleiter 1 ab. In Gebieten relativ hoher Leuchtdichte im Lichtwellenleiter 1 wird ein relativ hohes Flächenverhältnis eingestellt, während dieser Anteil in Gebieten relativ niedriger Leuchtdichte niedrig eingestellt wird. Für die Form der lichtstreuenden Flächen 6 gibt es mehrere Möglichkeiten. Eine besonders einfache Herstellungsweise ist das Erzeugen aufgerauhter Bereiche durch Abschmirgeln der jeweiligen Oberfläche. An den Stellen, an denen eine geringe Leuchtdichte vorhanden ist, wird die Fläche vergleichsweise intensiv geschmirgelt, um das auftreffende Licht zur Streuung zu bringen. Die lichtstreuenden Bereiche 6 können aber auch z.B. kleine Erhebungen sein, die in gezielter Weise als Punktmatrix auf die Oberfläche aufgebracht werden. Die Dichteverteilung in der Punktmatrix kann beispielsweise durch ein Simulationsprogramm ermittelt werden, in welches im wesentlichen die Dimensionen des Lichtwellenleiters 1 und die Orte und Intensitäten der Lichteinkopplung sowie die Reflexionsverhältnisse eingegeben werden.

In der Fig.2 ist zusätzlich ein Flüssigkristallelement 9 dargestellt, welches oberhalb der Lichtaustrittsfläche 1A des Lichtwellenleiters 1 angeordnet ist und von dieser mittels Abstandshaltern getrennt.

In der Fig.3 ist ein zweites Ausführungsbeispiel eines erfindungsgemäßen Lichtquellenelements 20 in einer Explosionsdarstellung von der Seite dargestellt. Dieses stellt gleichzeitig die zweite Ausführungsform der Erfindung dar, bei der die Lichteinkopplung nicht über die Längsseitenflächen sondern über die der Lichtaustrittsfläche gegenüberliegende Oberfläche erfolgt.

Wie im ersten Ausführungsbeispiel sind die der Licht-10 austrittsfläche 21A gegenüberliegende Oberfläche 21B und die Längsseitenflächen eines Lichtwellenleiters 21 mit Reflektoren 24 bedeckt. Für diese Reflektoren gelten die Ausführungen für das erste Ausführungsbeispiel, d.h. vorzugsweise sind diese einstückig geformt, so daß durch sie praktisch ein wan-15 nenförmiger Kanal gebildet wird, in den der Lichtwellenleiter 21 eingesetzt wird. In der der Lichtaustrittsfläche 21A gegenüberliegenden Oberfläche 21B sind Öffnungsbereiche 25B geformt, in die der Lichtwellenleiter 21 mit dreieckförmigen Vorsprüngen eingreift. Vor diesen Öffnungsbereichen 25B sind 20 wiederum Lichtquellen 25A derart angeordnet, daß sie in schiefem Winkel zu einer Haupt- oder Längsachse des Lichtwellenleiters 21 in diesen eingekoppelt wird. Die Öffnungsbereiche 25B in der reflektierenden Schicht 24 und die jeweils zugehörigen Lichtquellen 25A bilden eine Mehrzahl von Lichteinkopplungseinheiten 25. Für die Anordnung dieser Lichteinkopplungseinheiten 25 steht nunmehr die gesamte, der Lichtaustrittsfläche 21A gegenüberliegende Oberfläche 2!B zur Verfügung, so daß eine Vielzahl davon vorgesehen werden kann.

Auch bei dieser Ausführungsform können zur Homogenisierung der Lichtstrahlung lichtstreuende und ebene Flächen in einem variablen Verhältnis auf der Lichtaustrittsfläche vorgesehen sein, wie dies im Zusammenhang mit der ersten Ausführungsform beschrieben wurde. Die Lichtquellen können LEDs oder polychrome Weißlichtquellen sein.

Das in Fig.3 gezeigte Ausführungsbeispiel kann beispielsweise als ein langgestrecktes Lichtquellenelement zur ambienten Umgebung verwendet werden. Insbesondere können mehrere der gezeigten Einheiten zur Herstellung einer beliebigen Länge hintereinander angeordnet werden.

Eine weiteres Ausführungsbeispiel ist in Fig.4 dargestellt. Dieses Ausführungsbeispiel gehört zu der ersten Ausführungsform der Erfindung, da hier das Licht wiederum an den Längsseitenflächen des Lichtquellenelements eingekoppelt wird. Dargestellt ist ein Teil des Lichtquellenelements 30, das im Prinzip in beliebiger Länge geformt werden kann. Das Lichtquellenelement 30 kann beispielsweise zur ambienten Beleuchtung oder Umgebungsbeleuchtung eingesetzt werden.

15

20

30

35

10

5

In Fig.4a ist das Lichtquellenelement 30 im Querschnitt entlang der Linie IV-IV in Fig. 4 dargestellt. Der Lichtwellenleiter 31 weist demnach eine Lichtaustrittsfläche 31A auf und ist an der gegenüberliegenden Oberfläche und den Längsseitenflächen mit Reflektoren 34 bedeckt. Für diese gelten dieselben Aussagen wie für die vorgenannten Ausführungsbeispiele. Der Reflektor 34 ist entlang einer Längsseitenfläche in bestimmten Öffnungsbereichen 35B unterbrochen, vor welchen Lichtquellen 35A derart angeordnet sind, daß die von ihnen emittierte Lichtstrahlung in einem schiefen Winkel zur Längsachse des Lichtwellenleiters 30 in diesen eindringt. Die Öffnungsbereiche 35B in dem Reflektor 34 und die davor angebrachten Lichtquellen 35A bilden Lichteinkopplungseinheiten 35. Die Lichtquellen 35 können - wie schon in den vorhergehenden Ausführungsbeispielen - aus LEDs oder polychromen Weißlichtquellen gebildet werden.

Als besonders vorteilhaft hat es sich erwiesen, wenn der Reflektor 34 ein Stück weit von der in dem Öffnungsbereich 35B freiliegenden Oberfläche des Lichtwellenleiters 31 in diesen eindringt. Dadurch kann die Ausbildung von hellen Leuchterscheinungen ("hot spots") im Lichtwellenleiter 31 im Nahbe-

reich der Lichtquelle 35 vermieden werden. Als weiterhin günstig für die Lichteinkopplung erweist sich im übrigen die abgerundete Form der für die Bildung der Öffnungsbereiche 35B schräg gestellten Reflektorflächen. Dies gilt auch für die Ausführungsform nach Fig.3.

Auch bei dieser Art von Lichtquellenelementen spielt die Lichtdämpfung praktisch keine Rolle mehr und es können Lichtquellenelemente beliebiger Form und Länge geformt werden.

10

15

In Fig.5 ist ein spezielles Ausführungsbeispiel des in Fig.4 gezeigten Lichtquellenelements dargestellt. Dieses weist eine geschlossene Form auf, wobei an seiner inneren Umfangsfläche eine Mehrzahl von hintereinander angeordneten Lichteinkopplungseinheiten 45 vorgesehen sind (die Lichtquellen sind nicht dargestellt). Die Struktur und der Aufbau des Lichtwellenleiters 40 sind wie in Fig.4 dargestellt. Die spezielle Form des geschlossenen Rings kann beliebig gewählt werden.

#### Patentansprüche

10

15

20

- 1. Lichtquellenelement (10, 20, 30, 40), mit
- einem Lichtwellenleiter (1, 21, 31), der
- 5 eine Lichtaustrittsfläche (1A, 21A, 31A) aufweist,
  - dadurch gekennzeichnet, daß
  - die der Lichtaustrittsfläche (1A) gegenüberliegende Oberfläche (1B, 21B, 31B) des Lichtwellenleiters (1, 21, 31)
    und die die Lichtaustrittsfläche (1A, 21A, 31A) und die
    gegenüberliegende Oberfläche (1B, 21B, 31B verbindenden
    Längsseitenflächen (1C, 1D) des Lichtwellenleiters (1, 21,
    31) jeweils mit Licht reflektierenden oder diffus zurückwerfenden Reflektoren (4, 24, 34) bedeckt sind,
  - an den Längsseitenflächen (1C, 1D) oder der Oberfläche (1B) des Lichtwellenleiters (1, 21, 31) mindestens eine Lichteinkopplungseinheit (5, 25, 35, 45) angeordnet ist,
  - welche einen Öffnungsbereich (5B, 25B, 35B) des jeweiligen Reflektors (4, 24, 34) und eine vor dem Öffnungsbereich (5B) angeordnete Lichtquelle (5A, 25A, 35A) derart aufweist, daß
  - die im Betrieb von der Lichtquelle (5A) emittierte Lichtstrahlung mit einem schiefen Winkel in den Lichtwellenleiter (1, 21, 31) eindringt.
- 2. Lichtquellenelement (10, 20, 30, 40) nach Anspruch 1, dadurch gekennzeichnet, daß
  - in mindestens einer Längsseitenfläche (1C, 1D) oder der Oberfläche (1B) des Lichtwellenleiters (1, 21, 31) mindestens ein dreieckförmiger Vorsprung geformt ist,
- 30 dessen eine Seitenfläche von einem Reflektor (4, 24, 34) bedeckt ist und
  - dessen andere Seitenfläche nach außen freiliegt und somit den Öffnungsbereich (5B, 25B, 35B) bildet.
- 35 3. Lichtquellenelement (10, 20, 30, 40) nach Anspruch 1, dadurch gekennzeichnet, daß

- die Lichtaustrittsfläche (1A) und/oder die ihr gegenüberliegende Oberfläche (1B) des Lichtwellenleiters (1) lichtstreuende Abschnitte (6) und ebene Abschnitte (7) aufweist,
- 5 und das Flächenverhältnis der ebenen Abschnitte (7) zu den Abschnitten (6) entlang dem Lichtwellenleiter (1) so eingestellt wird, daß eine gleichmäßige Leuchtdichte des Lichtquellenelements (10) erzielt wird.
- 4. Lichtquellenelement (10, 20, 30, 40) nach Anspruch 1, dadurch gekennzeichnet, daß
  - die Reflektoren (4, 24, 34) einstückig miteinander verbunden sind.
- 15 5. Lichtquellenelement (10, 20, 30, 40) nach Anspruch 1 oder 4,
  - dadurch gekennzeichnet, daß
  - das Material der Reflektoren (4, 24, 34) spritzgußfähig ist und die Reflektoren (4, 24, 34) im Spritzguß hergestellt sind.
  - 6. Lichtquellenelement (10, 20, 30, 40) nach Anspruch 1, dadurch gekennzeichnet, daß
  - das Material der Reflektoren (4, 24, 34) aus einem thermoplastischen Polyester, insbesondere auf der Basis von Polybutylenterephtalat, geformt ist.
  - 7. Lichtquellenelement (10, 20, 30, 40) nach Anspruch 1, dadurch gekennzeichnet, daß
- 30 das Material der Reflektoren (4, 24, 34) Pocan® ist.
  - 8. Lichtquellenelement (10, 20, 30, 40) nach Anspruch 1, dadurch gekennzeichnet, daß
- die Reflektoren (4, 24, 34) aus einem Folienmaterial, ins-35 besondere auf der Basis von Polycarbonat, geformt sind und das Folienmaterial mit weißer Farbe beschichtet oder bedruckt ist.

9. Lichtquellenelement (40) nach Anspruch 1, dad urch gekennzeichnet, daß

- es einen geschlossenen Ring bildet.

5

10. Lichtquellenelement (10, 20, 30, 40) nach einem oder mehreren der vorhergehenden Ansprüche,

dadurch gekennzeichnet, daß

- die mindestens eine Lichtquelle (5, 25, 35, 45) eine Halbleiter-Lichtemissionsdiode ist.

- 11. Flüssigkristall-Display mit einem Lichtquellenelement (10) nach einem oder mehreren der vorhergehenden Ansprüche, dad urch gekennzeich net, daß
- auf der Seite der Lichtaustrittsfläche (1A) ein Flüssigkristallelement (9) angeordnet ist.
  - 12. Flüssigkristall-Display nach Anspruch 11, dadurch gekennzeichnet, daß
- das Flüssigkristallelement (9) durch Abstandshalter von der Lichtaustrittsfläche (1A) beabstandet gehaltert ist.

### 5 Bezugszeichenliste

|      | 1   | Lichtwellenleiter     |
|------|-----|-----------------------|
|      | 1A  | Lichtaustrittsfläche  |
|      | 1B  | Oberfläche            |
| . 10 | 1C  | Längsseitenfläche     |
|      | 1D  | Längsseitenfläche     |
|      | 1E  | Stirnfläche           |
|      | 1F  | Stirnfläche           |
| *    | 4   | Reflektor             |
| 15   | 5   | Lichteinkoppeleinheit |
| _    | 5A  | Lichtquelle           |
|      | 5B  | Öffnungsbereich       |
| ,    | 10  | Lichtquellenelement   |
|      | 20  | Lichtquellenelement   |
| 20   | 21  | Lichtwellenleiter     |
|      | 24  | Reflektor             |
|      | 25  | Lichteinkoppeleinheit |
|      | 25A | Lichtquelle           |
|      | 25B | Öffnungsbereich       |
| 25   | 30  | Lichtwellenleiter     |
|      | 34  | Reflektor             |
|      | 35  | Lichteinkoppeleinheit |
|      | 35A | Lichtquelle           |
|      | 35B | Öffnungsbereich       |
| -30  | 40  | Lichtquellenelement   |
|      | 45  | Lichteinkoppeleinheit |
|      |     |                       |

#### Zusammenfassung

Lichtquellenelement mit seitlicher schräger Lichteinkopplung

- Die Erfindung beschreibt ein Lichtquellenelement (10, 20, 30, 5 40), welches zur Hinterleuchtung von Flüssigkristall-Displays oder zur ambienten Beleuchtung oder Umgebungsbeleuchtung einsetzbar ist. Erfindungsgemäß ist vorgesehen, daß die Lichtstrahlung in die jeweiligen Lichtwellenleiter (1, 21, 31) entweder durch eine Längsseitenfläche oder eine der Licht-10 austrittsfläche (1A, 21A, 31A) gegenüberliegende Oberfläche (1B, 21B) des Lichtwellenleiters (1, 21, 31) in diesen eingekoppelt wird. An diesen Oberflächen ist der Lichtwellenleiter (1, 21, 31) von Reflektoren (4, 24, 34) umgeben, in die gegebenenfalls geeignete Öffnungsbereiche (5B, 25B, 35B) geformt 15 sind. Dies ermöglicht die Anordnung einer Vielzahl von Lichtquellen (5, 25, 35, 45) und somit eine entsprechende Steigerung der Leuchtdichte.
- 20 Fig.1







F19-2







Fig. 5

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |  |  |  |
|-------------------------------------------------------------------------|--|--|--|
| BLACK BORDERS                                                           |  |  |  |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |  |  |  |
| ☐ FADED TEXT OR DRAWING                                                 |  |  |  |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                                    |  |  |  |
| ☐ SKEWED/SLANTED IMAGES                                                 |  |  |  |
| COLOR OR BLACK AND WHITE PHOTOGRAPHS                                    |  |  |  |
| ☐ GRAY SCALE DOCUMENTS                                                  |  |  |  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |  |  |  |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                 |  |  |  |
| OTHER:                                                                  |  |  |  |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.