

RESEARCH MEMORANDUM

AERODYNAMIC CHARACTERISTICS AT A MACH NUMBER OF 4.06

OF A TYPICAL SUPERSONIC AIRPLANE MODEL USING

BODY AND VERTICAL-TAIL WEDGES TO IMPROVE

DIRECTIONAL STABILITY

By Robert W. Dunning

Langley Aeronautical Laboratory
Langley Field, Va.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

December 3, 1957 Declassified February 8, 1960

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

AERODYNAMIC CHARACTERISTICS AT A MACH NUMBER OF 4.06

OF A TYPICAL SUPERSONIC AIRPLANE MODEL USING

BODY AND VERTICAL-TAIL WEDGES TO IMPROVE

DIRECTIONAL STABILITY

By Robert W. Dunning

SUMMARY

An investigation at a Mach number of 4.06 has been conducted on a typical supersonic airplane model with a 40° sweptback wing. The purpose of the investigation was to determine the effectiveness of using wedges on the body and on the vertical tail to increase the static directional stability. Data were obtained for angles of attack from -3° to 7° at angles of sideslip of -1° to 4° . An analysis of the data showed that the use of both wedges increased the static directional stability $\binom{\text{Cn}}{\beta}$ by as much as 0.001, with the tail wedge being considerably more effective than the body wedge.

INTRODUCTION

As the Mach number of an airplane increases in the supersonic speed range the center of pressure, both lateral and longitudinal, moves forward. The end result for a given airplane is a decrease in stability, with increasing Mach number, with the possibility that maximum potential performance cannot be obtained. This trend can be calculated theoretically and is the result of a decreasing lift-curve slope of the lifting surfaces with increasing supersonic Mach number while the lift-curve slope of the body (with its forward center of pressure) remains constant or increases. One possible solution to the problem (ref. 1) is the use of wedges to supply additional stability. These wedges could be used either on the body or on the tail, but a proper choice would have to depend on the aerodynamic and structural characteristics of these locations. The present investigation was undertaken to determine some of

the aerodynamic characteristics of such wedges on a typical supersonic airplane configuration. A model of the Bell X-2 airplane was chosen for this investigation because a great deal of experimental data were available (for example, ref. 2) which indicated the trends with Mach number. The present tests on the basic configuration without wedges and with wedges on the body, on the vertical tail, and on both the body and vertical tail were conducted at a Mach number of 4.06 and a Reynolds number of 2.7 \times 10 6 based on the wing mean aerodynamic chord.

SYMBOLS

The results of the tests are presented in coefficient form. The data are referred to the body axis (fig. 1), with the reference center of gravity at 25 percent of the wing mean aerodynamic chord.

F_X	force along X axis
F_{Y}	force along Y axis
F_Z	force along Z axis
M_{Υ}	moment about Y axis
M_{Z}	moment about Z axis
q	dynamic pressure
S	total wing area including area submerged in fuselage
С	wing chord
ē	wing mean aerodynamic chord
$^{\mathrm{c}}t$	horizontal-tail chord
Ъ	wing span
α	angle of attack, deg
β	angle of sideslip, deg
$^{\rm C}{\rm N}$	normal-force coefficient, $\frac{-F_Z}{qS}$

c_A	axial-force coefficient (corrected so that base pressure is equal to stream static pressure), $\frac{-F_X}{qS}$
$C_{\mathbf{L}}$	lift coefficient, $C_{ ext{N}}\cos \alpha$ - $C_{ ext{A}}\sin \alpha$
$C_{\mathbb{D}}$	drag coefficient, $C_A \cos \alpha + C_N \sin \alpha$
$C_{\mathbf{Y}}$	side-force coefficient, $\frac{F_{\underline{Y}}}{qS}$
C _m	pitching-moment coefficient, $\frac{M_{Y}}{qS\bar{c}}$
Cn	yawing-moment coefficient, $\frac{M_Z}{qSb}$
δ_{T}	wedge angle on vertical tail, deg
δ _B	wedge angle on body, deg
М	Mach number
R	Reynolds number
$\frac{9C^{M}}{9C^{m}}$	longitudinal-stability parameter
L/D	lift-drag ratio, $C_{ m L}/C_{ m D}$
$^{\mathrm{C}}\mathrm{L}_{\alpha}$	lift-curve slope per deg
Np	neutral point (longitudinal aerodynamic center at $C_{\rm m}$ = 0), percent \bar{c}
$C_{Y_{\beta}}$	side-force-curve slope per deg
$C_{n_{\beta}}$	yawing-moment-curve slope per deg

$$\Delta c_{Y_{\beta}}$$
 $\begin{pmatrix} c_{Y_{\beta} \text{wedge open}} & -c_{Y_{\beta} \text{wedge off}} \end{pmatrix}_{\alpha=0}$ $\Delta c_{n_{\beta}}$ $\begin{pmatrix} c_{n_{\beta} \text{wedge open}} & -c_{n_{\beta} \text{wedge off}} \end{pmatrix}_{\alpha=0}$

APPARATUS

The tests were conducted in the Langley 9- by 9-inch Mach number 4 blowdown jet. Both a description and a calibration of the blowdown jet are given in reference 3. The settling-chamber pressure, which was held constant by a pressure-regulating valve, and the corresponding air temperature were continuously recorded during each run. A sting-mounted internal strain-gage balance which measured normal force, pitching moment, side force, and yawing moment, and a second sting-mounted internal strain-gage balance which measured axial forces were used to obtain the data.

MODELS

A three-view drawing of the model (which is a model of the Bell X-2 airplane) is shown in figure 2, and the geometric characteristics are presented in table I. Details of the wedges are given in figure 3 and table I. Photographs of the basic model and the model with wedges are shown in figure 4.

The airplane-model wing was swept back 40° at the quarter-chord line and had an aspect ratio of 4, a taper ratio of 0.5, and 10-percent-thick circular-arc airfoil sections normal to the quarter-chord line.

The tail wedge extended from the vertical-tail maximum-thickness line to the trailing edge and had an aspect ratio of 5.24 (obtained by considering the horizontal tail to act as a reflection plane for the tail wedge).

The body wedges extended from fuselage station 6.577 to the trailing edge of the model (fuselage station 7.567) and had an aspect ratio of 0.46. The surface of the body wedges was curved into a radius equal to the body radius at station 6.577. This radius was constant for all body-wedge angles. The wedge angles for both body and tail wedges were 0° , 5° , and 10° . The basic body and vertical tail were boattailed at their trailing edge. The average angle of boattail over the area covered by the body wedge was -10° and the average angle of boattail over the area covered by the vertical-tail wedge was -6° .

TESTS

The settling-chamber stagnation temperature during any single run varied from approximately 70° to 40° Fahrenheit, and the settling-chamber stagnation pressure was held at approximately 185 lb/sq in. absolute. These conditions correspond to an average Reynolds number of $2.7 \times 10^{\circ}$, based on wing mean aerodynamic chord. The tests were run at humidities below $5 \times 10^{-\circ}$ pounds of water vapor per pound of dry air, which is believed to be low enough to eliminate water condensation effects. The test-section static temperature and pressure did not reach the point where liquifaction of air would take place. Data were obtained for angles of attack from -3° to 7° at angles of sideslip of -1° to 4° .

PRECISION OF DATA

The probable uncertainties in the test data due to the accuracy limitations of the balances and the recording equipment and the ability of the system to repeat data points are as follows:

$C_{\mathbf{N}}$								•					٠													±0.001
$C_{\mathbf{Y}}$																										±0.0005
$C_{\mathbf{L}}$																										±0.001
C_{D}																										±0.0006
																										±0.0005
C_n	•	٠	•	٠	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•		•	٠	±0.00005
α																										±0.1
β																										±0.1

RESULTS AND DISCUSSION

The basic data for the configurations with and without wedges are presented in table II. The parts of this table are as follows:

Part	Tail-wedge angle, δ_{T} , deg	Body-wedge angle, δ _B , deg			
a	None	None			
b	None	0			
c	None	5			
d e	0	None 10			
f	5	None			
g	5	0			
h	5	5			
i	5	10			
j	10	None			
k	10	0			
l	10	5			
m	10	10			

An examination of the data revealed that the trends with wedge angle and angles of attack and sideslip could be easily seen by comparing the results obtained for the maximum and minimum values; therefore, only representative parts of the data of table II are shown in the figures. The examination of the data also showed little or no interaction between the body wedge and the tail wedge, which is to be expected in view of the Mach number and of the horizontal tail between them.

Longitudinal Characteristics

Figure 5 presents the variations of the normal-force coefficient and the pitching-moment coefficient with angle of attack for representative wedges at sideslip angles of 0° and 4°. Figure 6 presents the effect on the pitching-moment coefficient of increasing the wedge angles, and figure 7 presents the variation of the pitching-moment coefficient with normal-force coefficient. The normal-force coefficient was little affected either by the addition of body and tail wedges or by changing the sideslip angle. The pitching-moment coefficient, however, showed a positive increment when the tail wedge was added, and this increment increased with increasing wedge angle (figs. 5 and 6). This increment is mostly due to the drag of the wedge acting above the body center line, with the remainder being the result of the wedge interference pressure on the upper surface of the horizontal tail. As the angle of

NACA RM L57IlO

attack increases to 7°, the pitching-moment increment decreases, thereby indicating that the drag increment of the tail wedge is smaller. This smaller drag increment is because of the lower "q" of the wing flow field over the tail (an effect more completely described in ref. 4). When the body wedge is added no change is noticed in the pitching moment at zero angle of attack (figs. 5 and 6), but at an angle of attack of 7° the flat underside of the wedge acts as a lifting surface and a negative pitching-moment increment is produced. Unpublished data indicate that there is no "q" effect of body flow field at these small angles. Figures 5 and 6 also show that when the model is yawed 4° at the higher angles of attack, a small loss in pitching moment results.

The longitudinal-stability parameter $\partial C_m/\partial C_N$ is presented in figure 8. At a Mach number of 4.06 there seems to be adequate longitudinal stability over the ranges of angle of attack and angle of sideslip tested and an indication that at higher angles of attack there might be increasing longitudinal stability.

Data for the lift, drag, and lift-drag ratio for the model without body wedges or tail wedges is presented in figure 9. The effect of Mach number on the airplane configuration without body or tail wedges is presented in figure 10. Only data for supersonic speeds is shown since this is the speed range of interest for the present tests. The present data extends the trends established in reference 2, with the exception of the neutral point. As pointed out in the Introduction, however, this variation of the neutral point with Mach number is to be expected because the wing and tail-surface lift coefficients decrease with increasing supersonic Mach number while the body lift coefficient increases or remains constant. If this neutral-point data is extended to higher Mach numbers (fig. 10) it appears probable that this configuration will become longitudinally neutrally stable (center of pressure at 0.25c) at about Mach number 5. The lift-curve slope of the configuration has decreased with Mach number such that at Mach number 4.06 the slope is only 38 percent of the value at Mach number 1.4. In order to obtain a value for the lift-drag ratio curve at a Mach number of 4.06 and C_T = 0.1, it was necessary to extrapolate slightly the results of figure 9. However, since the extrapolation was only about 10 percent of the scale and since the data was only slightly nonlinear the value obtained was felt to be representative of the actual experimental results.

Lateral Characteristics

The side-force and yawing-moment characteristics are presented in figures 11 and 12. With no body or tail wedges at zero angle of attack the body is just barely stable ($c_{n_{\beta}} = 0.00006$). At an angle of attack

NACA RM L57IlO

of 7° the basic model is directionally unstable $\left(C_{n_{\beta}}=-0.00040\right)$ because the vertical tail passes through the low "q" field (ref. 4) of the wing. The addition of a tail wedge produces a large increase in the yawing moment, although this tail-wedge increment also decreases at an angle of attack of 7° for the same reason just stated for the tail. Even with the tail wedge the configuration will probably become unstable at an angle of attack of approximately 10° ($C_{N}\approx0.26$). The body wedge is not in the wing flow field and, as can be seen from figure 12, there is little apparent effect of increasing angle of attack (increasing C_{N}) on its small increment. Also, as pointed out previously, there is no effect of body flow field at these small angles.

The effect of wedge angle on $C_{Y_{\beta}}$ and $C_{n_{\beta}}$ is shown in figure 13. The tail wedge has a linear increase in $C_{n_{\beta}}$ with wedge deflection angle which is representative of a flat-plate section. The body wedge, however, is curved and with increasing wedge angle exhibits the non-linear characteristics of a body.

As might be expected because of its larger area, the tail wedge gives a greater increase in c_{n_β} per degree of deflection than the body wedge (fig. 13). When the contribution per unit of area to c_{γ_β} and c_{n_β} is considered, figure 14 shows that the tail wedge is still much more effective than the body wedge. This increased effectiveness can be attributed to the fact that the tail wedge has a much higher aspect ratio than the body wedge and, in addition, the tail-wedge surface is flat, whereas the body-wedge surface is curved.

The variations of $C_{Y_{\beta}}$ and $C_{n_{\beta}}$ with Mach number are presented in figure 15. The loss in $C_{Y_{\beta}}$ and $C_{n_{\beta}}$ with increasing C_L at Mach number 4, as compared with the lower Mach numbers (ref. 2), is due to two reasons. First, the loss in effectiveness (force-curve slope, $C_{Y_{\beta}}$) of the upper tail is more pronounced at the higher Mach numbers and, second, it takes a larger angle of attack, with a resultant lower "q" field, to obtain a given C_L at the higher Mach numbers than at the lower Mach numbers.

CONCLUSIONS

An investigation at a Mach number of 4.06 has been conducted on a typical supersonic airplane model to determine the effectiveness of wedges on the body and on the vertical tail to increase the static directional stability. An analysis of the data indicated the following conclusions.

- l. The additions of both the body and tail wedges make the configuration quite stable directionally at zero angle of attack and move the angle of attack for neutral directional stability from 1° without wedges to an extrapolated angle of 10° with wedges.
- 2. The high-aspect-ratio (5.24) flat-surface tail wedge produces much greater side forces and yawing moments per unit area than the low-aspect-ratio (0.46) curved-surface body wedge.
- 3. The vertical-tail wedges produce a positive increment in pitching-moment coefficient which becomes smaller with increasing angle of attack. The body wedges produce no pitching-moment increment at zero angle of attack, but their flat underside causes an increasingly negative increment in pitching-moment coefficient with increasing angle of attack.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 20, 1957.

REFERENCES

- 1. McLellan, Charles H.: A Method for Increasing the Effectiveness of Stabilizing Surfaces at High Supersonic Mach Numbers. NACA RM L54F21, 1954.
- 2. Spearman, M. Leroy, and Robinson, Ross B.: The Aerodynamic Characteristics of a Supersonic Aircraft Configuration With a 40° Swept-back Wing Through a Mach Number Range From 0 to 2.4 As Obtained From Various Sources. NACA RM L52A21, 1952.
- 3. Ulmann, Edward F., and Lord, Douglas R.: An Investigation of Flow Characteristics at Mach Number 4.04 Over 6- and 9-Percent-Thick Symmetrical Circular-Arc Airfoils Having 30-Percent-Chord Trailing-Edge Flaps. NACA RM L51D30, 1951.
- 4. Ulmann, Edward F., and Ridyard, Herbert W.: Flow-Field Effects on Static Stability and Control at High Supersonic Mach Numbers. NACA RM L55L19a, 1956.

TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

Wing:					
Area (including area submerged in fuselage), sq in					10.416
Span, in					6.456
Mean aerodynamic chord, in					1.676
Root chord, in					2.150
Tip chord, in					1.075
Taper ratio					0.5
Aspect ratio					4.01
Airfoil section normal to quarter-chord line 10-percer					
Sweep of leading edge, deg					42.67
Sweep of quarter-chord line, deg					40
Incidence at fuselage center line, deg					3
Dihedral, deg					3
Geometric twist, deg		 •			0
Distance of wing leading edge below fuselage center line					0 01 5
(at fuselage center line)				•	0.247
Horizontal tail:					
Area (including area submerged in fuselage), sq in					1 767
Span, in					1.763
Root chord, in				•	2.567
Tip chord, in.					0.917
Taper ratio					
Aspect ratio					0.5 3.73
Airfoil section					
Sweep of leading edge, deg		•	• TAT	164	42.83
Sweep of quarter-chord line, deg				•	40.09
Dihedral, deg			• •		0
Height of tail center line above fuselage center line					0.492
neight of tall contact line above tuberage center line				•	0.492
Vertical tail:					
Area (exposed), sq in					1.548
Taper ratio (ratio of tip chord to exposed root chord)					0.337
Aspect ratio (based on exposed area and span)					1.17
Sweep of leading edge, deg					40.6
Airfoil section, root					
Airfoil section, tip					
Fuselage:					
Length, in					7.567
Maximum diameter (neglecting dorsal and ventral fairings), in.					0.804
Fineness ratio (neglecting dorsal and ventral fairings)					9.42
Base diameter, in					0.450
Distance from nose to moment reference (0.25c), in					4.507
Body wedges:					
Area of wedge, sq in					0.446
Aspect ratio					0.46
Tail wedges:					
Area of wedge, sq in					0.687
Aspect ratio (considering horizontal tail as a reflection plane	e)				5.24

TABLE II.- STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES

[Body-axis data; M = 4.06; $R = 2.7 \times 10^{6}$]

(a) Basic model

(a) pasic model										
a, deg	β, deg	$^{\rm C}{}_{ m N}$	C_{m}	CY	C _n					
-3	-1 0 1 2 3 4	-0.0402 0416 0433 0428 0435 0423	0.0135 .0136 .0136 .0134 .0133 .0127	0.0079 0014 0106 0202 0301 0397	-0.0001 .0002 .0004 .0006 .0008					
-2	-1 0 1 2 3	-0:0178 -:0190 -:0183 -:0209 -:0210 -:0191	0.0098 .0099 .0099 .0098 .0098	0.0080 0009 0102 0195 0291 0387	0.0000 .0002 .0003 .0005 .0007 .0008					
-1	-1 0 1 2 3	-0.0001 .0019 .0023 .0036 .0024 .0031	0.0070 .0069 .0065 .0063 .0065 .0062	0.0076 0008 0097 0187 0283 0373	0.0001 .0002 .0003 .0004 .0006 .0006					
0	-1 0 1 2 3	0.0237 .0261 .0247 .0249 .0248 .0250	0.0039 .0033 .0036 .0036 .0037 .0035	0.0076 0007 0092 0179 0271 0357	0.0001 .0002 .0002 .0003 .0004 .0004					
1	-1 0 1 2 3	0.0455 .0448 .0446 .0455 .0469 .0472	0.0013 .0015 .0012 .0011 .0014	0.0080 0006 0088 0176 0261 0349	0.0002 .0002 .0002 .0002 .0002 .0002					
2	-1 0 1 2 3	0.0664 .0667 .0665 .0676 .0682 .0671	-0.0012 0013 0019 0016 0014 0013	0.0081 0004 0083 0167 0255 0341	0.0002 .0002 .0001 .0001 .0001					
3	-1 0 1 2 3	0.0893 .0912 .0892 .0897 .0916 .0900	-0.0046 0046 0043 0047 0046 0042	0.0074 0004 0079 0161 0248 0334	0.0003 .0002 .0001 .0000 0001					
5	-1 0 1 2 3	0.1367 .1382 .1358 .1360 .1371 .1357	-0.0098 0100 0099 0097 0088 0078	0.0076 0002 0077 0152 0241 0320	0.0004 .0002 0001 0002 0005 0007					
7	-1 0 1 2 3 4	0.1885 .1882 .1884 .1884 .1875 .1869	-0.0178 0176 0178 0176 0162 0150	0.0074 0003 0076 0154 0232 0311	0.0006 .0002 0002 0005 0008					

Table II.- Static Longitudinal and lateral aerodynamic Characteristics of an Airplane Configuration with various stabilizing wedges - Continued Body-axis data; M = 4.06; $R = 2.7 \times 10^6$

(b) Basic model with 0° body wedge

α, deg	β, deg	$C_{\mathbf{N}}$	C _m	CY	Cn
-3	-1 0 1 2 3 4	-0.0430 0417 0435 0443 0442 0434	0.0149 .0146 .0148 .0146 .0141	0.0078 0016 0107 0204 0308 0405	-0.0001 .0002 .0005 .0007 .0010
- 2	-1 0 1 2 3	-0.0180 0203 0212 0213 0220 0227	0.0106 .0108 .0109 .0107 .0106 .0101	0.0079 0012 0103 0196 0296 0393	0.0000 .0002 .0004 .0006 .0008
-1	-1 0 1 2 3 4	-0.0017 .0022 .0023 .0017 .0024 .0031	0.0078 .0074 .0071 .0072 .0068 .0064	0.0079 0009 0097 0191 0284 0373	0.0000 .0002 .0003 .0005 .0006
0	-1 0 1 2 3 4	0.0233 .0245 .0257 .0255 .0258 .0251	0.0038 .0042 .0038 .0039 .0036	0.0078 0004 0092 0180 0276 0367	0.0001 .0002 .0003 .0004 .0005
1	-1 0 1 2 3	0.0461 .0453 .0460 .0465 .0477 .0461	0.0013 .0015 .0012 .0010 .0009	0.0076 0006 0085 0173 0268 0352	0.0002 .0002 .0002 .0003 .0003
2	-1 0 1 2 3 4	0.0659 .0659 .0678 .0674 .0683 .0670	-0.0013 0012 0015 0014 0018 0014	0.0077 .0000 0085 0169 0254 0343	0.0002 .0002 .0002 .0002 .0001 .0001
3	-1 0 1 2 3	0.0939 .0917 .0916 .0926 .0917 .0908	-0.0050 0049 0045 0047 0047	0.0076 0003 0083 0161 0249 0336	0.0004 .0002 .0001 .0000 .0000
5	-1 0 1 2 3 4	0.1392 .1391 .1366 .1391 .1379 .1375	-0.0113 0112 0109 0110 0100 0093	0.0075 0004 0077 0153 0239 0321	0.0005 .0003 .0000 0002 0004 0006
6	0	0.1643	-0.0154	-0.0004	0.0003
7	-1 0 1 2 3 4	0.1906 .1903 .1903 .1897 .1884 .1878	-0.0203 0201 0203 0197 0182 0169	0.0072 .0001 0077 0153 0236 0318	0.0005 .0002 0001 0004 0007 0010

TABLE II.- STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Continued Body-axis data; M = 4.06; R = 2.7×10^6

(c) Basic model with 5° body wedge

a, deg	β, deg	CN	C _m	$^{\mathrm{C}}\mathbf{Y}$	Cn
-3	-1 0 1 2 3	-0.0444 0429 0433 0444 0462 0443	0.0163 .0157 .0159 .0158 .0157 .0147	0.0076 0019 0110 0209 0315 0414	0.0000 .0003 .0006 .0009 .0013
-2	-1 0 1 2 3	-0.0200 0202 0209 0206 0237 0225	0.0115 .0115 .0117 .0115 .0116 .0108	0.0078 0013 0105 0200 0298 0394	0.0000 .0002 .0005 .0008 .0011
-1	-1 0 1 2 3	-0.0004 .0029 .0023 .0010 .0008	0.0083 .0076 .0077 .0080 .0080	0.0079 0008 0098 0193 0285 0379	0.0001 .0002 .0004 .0007 .0008 .0010
0	-1 0 0 1 1 2 2 3 3 4	0.0211 .0258 .0250 .0257 .0246 .0246 .0246 .0230 .0246	0.0048 .0046 .0044 .0042 .0042 .0045 .0045 .0047 .0044 .0043	0.0081 0007 0006 0093 0091 0181 0181 0277 0271 0368 0361	0.0002 .0002 .0002 .0004 .0004 .0005 .0005 .0006 .0006
1	-1 0 1 2 3	0.0464 .0462 .0459 .0451 .0462 .0454	0.0012 .0012 .0012 .0015 .0012	0.0083 0003 0087 0175 0265 0352	0.0002 .0002 .0003 .0004 .0004
2	-1 0 1 2 3	0.0687 .0672 .0687 .0686 .0678 .0648	-0.0022 0021 0019 0017 0019 0012	0.0085 .0001 0081 0165 0250 0343	0.0002 .0002 .0003 .0002 .0002
3	-1 0 1 2 3	0.0937 .0901 .0915 .0908 .0904 .0891	-0.0059 0058 0053 0048 0047 0045	0.0081 .0001 0077 0158 0244 0332	0.0003 .0002 .0001 .0001 .0001
4	1	0.1143	-0.0086	-0.0071	0.0001
5	-1 0 1 2 3	0.1405 .1392 .1393 .1389 .1377 .1362	-0.0132 0129 0126 0121 0113 0100	0.0086 .0002 0067 0147 0230 0316	0.000 ¹ 4 .0002 .0000 0002 0003 0005
7	-1 0 1 2 3	0.1926 .1920 .1913 .1913 .1889	-0.0234 0232 0230 0222 0204 0187	0.0082 .0014 0064 0144 0225 0310	0.0005 .0002 0001 0003 0006 0009

TABLE II.- STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Continued

Body-axis data; M = 4.06; $R = 2.7 \times 10^6$

(d) Basic model with 0° tail wedge

a, deg	β, deg	$^{\mathrm{C}}\mathrm{_{N}}$	C _m	CY	Cn
-3	0 1 2 3 4	-0.0404 0387 0404 0409 0408	0.0150 .0146 .0146 .0143 .0139	-0.0009 0104 0210 0308 0413	0.0003 .0008 .0013 .0018 .0023
-2	-1 0 1 2 3 4	-0.0168 0186 0161 0173 0183 0182	0.0113 .0116 .0110 .0107 .0107 .0105	0.0092 0007 0099 0206 0296 0399	-0.0002 .0003 .0007 .0013 .0017
-1	-1 0 1 2 3	0.0009 .0038 .0026 .0023 .0011 .0021	0.0085 .0080 .0081 .0079 .0080	0.0097 0004 0096 0199 0289 0391	-0.0002 .0003 .0007 .0012 .0015
0	-1 0 1 2 3	0.0279 .0269 .0251 .0277 .0278 .0267	0.0049 .0049 .0048 .0044 .0047 .0044	0.0095 0001 0086 0189 0273 0371	0.0000 .0003 .0007 .0011 .0013 .0016
1	-1 0 1 2 3 4	0.0499 .0481 .0486 .0482 .0495 .0478	0.0021 .0024 .0021 .0020 .0018	0.0097 .0002 0081 0180 0257 0362	0.0000 .0003 .0006 .0009 .0011
2	-1 0 1 2 3 4	0.0732 .0683 .0678 .0679 .0675 .0672	-0.0010 0001 0004 0004 0005 0006	0.0093 .0005 0079 0170 0252 0352	0.0001 .0003 .0006 .0008 .0010
3	-1 0 1 2 3	0.0922 .0891 .0888 .0898 .0893 .0874	-0.0033 0026 0028 0031 0029 0024	0.0091 .0009 0077 0164 0246 0340	0.0002 .0003 .0005 .0006 .0008
5	-1 0 1 2 3	0.1395 .1362 .1379 .1383 .1389	-0.0094 0086 0090 0088 0083 0070	0.0097 .0015 0068 0151 0237 0322	0.0003 .0003 .0003 .0003 .0002 .0003
7	-1 0 1 2 3 4	0.1939 .1923 .1914 .1895 .1879 .1806	-0.0182 0177 0177 0171 0158 0131	0.0094 .0017 0057 0145 0232 0316	0.0004 .0003 .0001 0001 0002 0003

(e) Basic model with $0^{\rm O}$ tail wedge and $10^{\rm O}$ body wedge

α, deg	β, deg	$^{\mathrm{C}}\mathrm{_{N}}$	C _m	CY	C _n
-3	-1 0 1 2 3 4	-0.0402 0424 0424 0440 0444 0437	0.0189 .0192 .0188 .0191 .0183 .0178	0.0093 0012 0113 0220 0324 0432	-0.0004 .0003 .0011 .0018 .0034 .0040
- 2	-1 0 1 2 3 4	-0.0197 0198 0209 0206 0204 0201	0.0149 .0147 .0144 .0146 .0140 .0135	0.0098 0008 0103 0214 0311 0413	-0.0003 .0004 .0010 .0017 .0032 .0037
-1	-1 0 1 2 3	0.0018 .0032 .0010 .0010 .0007 .0005	0.0107 .0104 .0106 .0107 .0104 .0101	0.0100 0004 0097 0204 0302 0403	-0.0003 .0003 .0010 .0016 .0030 .0034
0	-1 0 1 2 3	0.0243 .0271 .0247 .0249 .0257 .0259	0.0070 .0066 .0069 .0067 .0067	0.0094 .0001 0092 0188 0287 0382	-0.0001 .0004 .0009 .0013 .0028 .0030
1	-1 0 1 2 3	0.0480 .0496 .0470 .0465 .0472 .0467	0.0031 .0029 .0031 .0036 .0033 .0032	0.0093 .0005 0087 0183 0276 0371	-0.0001 .0004 .0008 .0012 .0025 .0028
2	-1 0 1 2 3	0.0734 .0706 .0676 .0674 .0667 .0673	-0.0010 0005 0001 .0002 .0003	0.0094 .0010 0082 0171 0266 0359	0.0000 .0003 .0007 .0011 .0023 .0025
3	-1 0 1 2 3 4	0.0946 .0905 .0892 .0900 .0882 .0885	-0.0049 0038 0037 0036 0030 0028	0.0096 .0010 0078 0168 0259 0350	0.0001 .0004 .0006 .0008 .0021 .0023
5	-1 0 1 2 3 4	0.1430 .1427 .1400 .1403 .1394 .1374	-0.0136 0134 0128 0126 0113 0100	0.0091 .0016 0068 0150 0240 0333	0.0003 .0003 .0004 .0004 .0015 .0015

TABLE II. - STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Continued

Body-axis data; M = 4.06; $R = 2.7 \times 10^6$

(f) Basic model with 5° tail wedge

a, deg	β, de g	$C_{\mathbf{N}}$	C _m	CY	Cn
-3	-1 0 1 2 3	-0.0384 0395 0416 0422 0427 0439	0.0173 .0173 .0175 .0173 .0171	0.0099 0005 0108 0216 0325 0437	-0.0007 .0002 .0009 .0016 .0024 .0031
-2	-1 -1 0 1 2 3	-0.0153 0152 0193 0190 0206 0202 0199	0.0133 .0130 .0139 .0135 .0136 .0134	0.0102 .0100 0001 0104 0207 0314 0417	-0.0006 0006 .0002 .0008 .0016 .0022
-1	-1 0 1 2 3	0.0051 .0015 .0023 .0014 .0008	0.0100 .0107 .0103 .0104 .0104 .0105	0.0103 0004 0098 0204 0305 0410	-0.0005 .0002 .0008 .0015 .0021
0	-1 0 1 2 3 4	0.0251 .0272 .0259 .0262 .0263 .0247	0.0074 .0074 .0071 .0072 .0073 .0071	0.0101 .0002 0095 0190 0291 0393	-0.0004 .0002 .0008 .0014 .0019
1	-1 0 1 2 3	0.0497 .0493 .0479 .0471 .0486 .0464	0.0042 .0045 .0043 .0044 .0042 .0043	0.0101 .0005 0087 0181 0280 0382	-0.0003 .0002 .0007 .0012 .0017
2	-1 0 1 2 3	0.0719 .0703 .0689 .0669 .0673 .0674	0.0013 .0019 .0017 .0020 .0020	0.0098 .0009 0083 0177 0269 0370	-0.0002 .0002 .0006 .0011 .0015 .0018
3	-1 0 1 2 3	0.0930 .0899 .0889 .0880 .0894 .0868	-0.0011 0005 0007 0007 0005 0001	0.0098 .0012 0078 0164 0265 0358	-0.0001 .0002 .0005 .0009 .0013
5	-1 0 1 2 3	0.1403 .1397 .1391 .1370 .1376 .1362	-0.0072 0067 0071 0068 0062 0057	0.0098 .0015 0070 0150 0246 0341	0.0000 .0002 .0003 .0005 .0007
7	-1 0 1 2 3	0.1911 .1911 .1924 .1902 .1893 .1887	-0.0157 0154 0156 0147 0136 0124	0.0110 .0018 0065 0147 0239 0326	0.0001 .0001 .0001 .0001 .0001

TABLE II.- STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Continued

Body-axis data; M = 4.06; R = 2.7 x 106

(g) Basic model with 5° tail wedge and 0° body wedge

a, deg	β, deg	$c_{ m N}$	C_{m}	$c_{\mathbf{Y}}$	Cn
-3	-1 0 0 1 2 3	-0.0405 0408 0416 0420 0423 0426 0445	0.0185 .0184 .0187 .0182 .0183 .0180	0.0103 0003 0004 0108 0217 0318 0442	-0.0007 .0001 .0001 .0009 .0017 .0024 .0035
- 2	-1 0 0 1 2 3	-0.0160 0203 0195 0196 0197 0209 0197	0.0142 .0146 .0144 .0142 .0142 .0143 .0139	0.0109 .0001 .0000 0103 0207 0308 0425	-0.0007 .0001 .0001 .0009 .0016 .0022 .0030
-1	-1 0 0 1 2 3	0.0038 .0031 .0029 .0016 .0023 .0024	0.0106 .0107 .0108 .0108 .0108 .0107	0.0104 .0000 .0001 0097 0200 0298 0409	-0.0005 .0002 .0002 .0009 .0015 .0021
0	-1 0 0 1 2 3	0.0248 .0282 .0271 .0251 .0259 .0284 .0256	0.0076 .0073 .0074 .0074 .0071 .0067	0.0103 .0005 .0005 0093 0189 0281 0397	-0.0004 .0002 .0002 .0008 .0014 .0019
1	-1 -1 0 0 1 2	0.0493 .0490 .0513 .0508 .0479 .0468 .0471	0.0040 .0041 .0042 .0043 .0042 .0044 .0044	0.0104 .0105 .0007 .0009 0087 0182 0272 0380	-0.0004 0004 .0002 .0002 .0007 .0013 .0017 .0021
2	-1 0 0 1 2 3	0.0698 .0715 .0704 .0672 .0684 .0665	0.0011 .0013 .0015 .0017 .0017 .0017	0.0100 .0010 .0012 0081 0174 0264 0371	-0.0003 .0002 .0002 .0006 .0011 .0015
3	-1 0 0 1 2 3	0.0932 .0892 .0885 .0881 .0884 .0880	-0.0019 0011 0008 0010 0010 0008	0.0101 .0012 .0012 0075 0162 0257 0359	-0.0002 .0002 .0002 .0006 .0009 .0013
5	-1 0 0 1 2 3	0.1406 .1386 .1397 .1373 .1377 .1360 .1393	-0.0087 0083 0083 0081 0080 0069 0065	0.0098 .0018 .0014 0068 0150 0243 0342	0.0000 .0002 .0002 .0003 .0005 .0008
7	-1 0 0 1 2 3	0.1969 .1922 .1927 .1923 .1916 .1894 .1895	-0.0191 0180 0182 0180 0172 0154 0142	0.0099 .0016 .0019 0062 0151 0233 0328	0.0001 .0002 .0002 .0002 .0002 .0003 .0003

TABLE II.- STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF

AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Continued

Body-axis data; M = 4.06; $R = 2.7 \times 10^6$

(h) Basic model with 5° tail wedge and 5° body wedge

α, deg	β, deg	$C_{ m N}$	C _m	CY	C _n
-3	-1 0 1 2 3	-0.0403 0403 0413 0424 0426 0442 0433	0.0198 .0196 .0197 .0198 .0197 .0194 .0188	0.0107 0006 0106 0111 0215 0325 0433	-0.0009 .0000 .0009 .0009 .0017 .0026
-2	-1 0 1 1 2 3	-0.0192 0151 0206 0204 0196 0209 0208	0.0159 .0149 .0157 .0157 .0155 .0154 .0150	0.0109 .0000 0096 0101 0204 0310 0417	-0.0008 .0001 .0008 .0008 .0016 .0023
-1	-1 0 1 1 2 3	0.0031 .0038 .0026 .0022 .0004 .0011	0.0117 .0116 .0118 .0117 .0121 .0120	0.0104 .0002 0091 0095 0199 0304 0402	-0.0006 .0001 .0008 .0008 .0015 .0022
0	-1 0 1 1 2 3	0.0260 .0264 .0243 .0255 .0254 .0272	0.0082 .0080 .0080 .0080 .0082 .0080 .0081	0.0102 .0007 0087 0094 0188 0290 0387	-0.0005 .0001 .0007 .0007 .0014 .0019
1	-1 0 1 2 3	0.0488 .0501 .0463 .0475 .0476	0.0047 .0046 .0051 .0050 .0050	0.0102 .0010 0086 0179 0280 0372	-0.0005 .0001 .0007 .0012 .0017 .0021
2	-1 0 1 2 3 4	0.0728 .0690 .0686 .0678 .0667 .0663	0.0011 .0018 .0018 .0020 .0023 .0025	0.0101 .0007 0081 0172 0268 0361	-0.0004 .0001 .0006 .0010 .0015
3	-1 0 1 2 3	0.0921 .0903 .0884 .0888 .0879	-0.0020 0015 0010 0009 0006 0001	0.0104 .0011 0075 0164 0257 0356	-0.0003 .0001 .0005 .0008 .0012
5	-1 0 1 2 3 4	0.1415 .1401 .1401 .1374 .1374 .1365	-0.0098 0094 0092 0087 0076 0068	0.0107 .0018 0067 0148 0242 0336	-0.0001 .0001 .0002 .0004 .0007
7	-1 0 1 2 3	0.1949 .1934 .1931 .1915 .1903 .1888	-0.0204 0201 0202 0193 0176 0157	0.0104 .0023 0062 0145 0237 0326	0.0000 .0000 .0001 .0001 .0002 .0003

TABLE II.- STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Continued

Body-axis data; M = 4.06; R = 2.7 × 106

(i) Basic model with 5° tail wedge and 10° body wedge

α, deg	β, deg	c_{N}	C _m	$C_{\mathbf{Y}}$	c_n
-3	-1 0 1 2 3 3	-0.0412 0449 0423 0448 0439 0437 0460	0.0208 .0207 .0207 .0211 .0207 .0205 .0203	0.0109 0004 0113 0224 0328 0324 0453	-0.0010 .0000 .0010 .0019 .0026 .0026
-2	-1 0 1 2 3 3	-0.0201 0196 0221 0215 0219 0224 0207	0.0165 .0161 .0167 .0167 .0163 .0166	0.0112 .0002 0107 0214 0317 0312 0432	-0.0009 .0000 .0009 .0017 .0025 .0024 .0032
-1	-1 0 1 2 3 3	0.0018 .0009 .0013 .0013 .0011 .0004	0.0123 .0124 .0124 .0125 .0124 .0125 .0121	0.0109 .0004 0101 0205 0304 0307 0418	-0.0008 .0001 .0009 .0016 .0023 .0023
0	-1 0 1 2 3 3	0.0240 .0278 .0244 .0251 .0255 .0263 .0268	0.0085 .0080 .0083 .0083 .0084 .0082	0.0109 .0007 0095 0194 0292 0291 0401	-0.0007 .0001 .0008 .0015 .0021 .0020
1	-1 0 1 2 3 3	0.0501 .0497 .0478 .0464 .0472 .0462 .0471	0.0041 .0044 .0045 .0050 .0049 .0051	0.0110 .0010 0089 0186 0281 0283 0390	-0.0006 .0001 .0007 .0013 .0018 .0019
2	-1 0 1 2 3 3	0.0726 .0721 .0687 .0682 .0674 .0664	0.0003 .0007 .0012 .0014 .0017 .0018	0.0104 .0012 0083 0174 0268 0271 0378	-0.0004 .0001 .0006 .0011 .0016 .0016
3	-1 0 1 2 3 3	0.0947 .0901 .0898 .0881 .0879 .0885	-0.0031 0023 0023 0017 0015 0016 0012	0.0103 .0014 0078 0170 0261 0262 0363	-0.0003 .0001 .0005 .0009 .0014 .0014
5	-1 0 1 2 3 3	0.1429 .1423 .1411 .1405 .1380 .1386 .1384	-0.0119 0110 0113 0109 0093 0094 0084	0.0106 .0017 0070 0154 0245 0246 0345	-0.0002 .0001 .0003 .0005 .0009 .0008
7	-1 0 1 2 3 3	0.1956 .1954 .1947 .1945 .1903 .1914 .1909	-0.0237 0236 0234 0225 0198 0203 0187	0.0105 .0022 0064 0153 0238 0244 0337	-0.0001 .0000 .0002 .0003 .0004 .0004

TABLE II.- STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF

AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Continued

Body-axis data; M = 4.06; $R = 2.7 \times 10^{6}$

(j) Basic model with 10° tail wedge

a, deg	β, deg	CM	C _m	CA	Cn
-3	-1 0 1 2 3 4	-0.0433 0433 0439 0460 0463 0464	0.0277 .0274 .0272 .0272 .0268 .0265	0.0109 0006 0114 0241 0343 0468	-0.0012 0001 .0011 .0023 .0032 .0043
- 2	-1 0 1 2 3 4	-0.0217 0220 0229 0232 0238 0226	0.0236 .0234 .0232 .0230 .0229 .0223	0.0109 0001 0107 0229 0331 0451	-0.0011 .0000 .0010 .0021 .0030 .0040
-1	-1 0 1 2 3	0.0022 0011 0004 0019 0022 0011	0.0191 .0197 .0194 .0194 .0192 .0189	0.0112 .0000 0103 0223 0322 0437	-0.0011 0001 .0010 .0020 .0029 .0038
0	-1 -1 0 0 1 1 2 2 3 3 4 4	0.0235 .0226 .0247 .0248 .0235 .0225 .0238 .0239 .0241 .0242 .0242	0.0159 .0163 .0158 .0158 .0157 .0158 .0154 .0154 .0152 .0155 .0151	0.0111 .0107 .0004 .0005 0100 0099 0208 0203 0308 0308 0307 0421 0417	-0.0010 0010 0001 .0000 .0009 .0009 .0019 .0018 .0026 .0026 .0035 .0034
1	-1 0 1 2 3	0.0467 .0462 .0439 .0441 .0445 .0461	0.0128 .0130 .0130 .0125 .0124 .0124	0.0109 .0006 0092 0202 0299 0410	-0.0009 .0000 .0008 .0017 .0025 .0032
2	-1 0 1 2 3 4	0.0697 .0678 .0656 .0660 .0636 .0647	0.0096 .0102 .0098 .0097 .0100	0.0111 .0008 0087 0192 0290 0394	-0.0008 .0000 .0008 .0016 .0023 .0029
3	-1 0 1 2 3	0.0899 .0858 .0862 .0860 .0855 .0852	0.0070 .0078 .0074 .0071 .0073 .0076	0.0109 .0012 0082 0185 0284 0386	-0.0006 .0000 .0007 .0014 .0021 .0027
5	-1 0 1 2 3	0.1405 .1346 .1370 .1347 .1345 .1345	-0.0003 .0010 .0004 .0006 .0013	0.0101 .0014 0073 0170 0263 0363	-0.0004 .0000 .0005 .0010 .0015 .0018
7	-1 0 1 2 3	0.1885 .1884 .1896 .1882 .1875 .1862	-0.0091 0089 0093 0086 0074 0060	0.0105 .0020 0066 0161 0256 0347	-0.0003 .0000 .0003 .0006 .0008

TABLE II. - STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF
AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Continued

Body-axis data; M = 4.06; R = 2.7 x 106

(k) Basic model with 10° tail wedge and 0° body wedge

a, deg	β, deg	CN	C _m	CY	c_n
-3	-1 0 1 1 2 3	-0.0430 0456 0439 0456 0466 0470 0473	0.0261 .0261 .0259 .0258 .0259 .0256 .0252	0.0115 0002 0105 0115 0231 0348 0463	-0.0014 0001 .0010 .0011 .0022 .0033 .0044
-2	-1 0 1 1 2 3	-0.0208 0212 0214 0228 0239 0236 0227	0.0219 .0218 .0216 .0218 .0218 .0214	0.0116 .0002 0100 0108 0221 0333 0446	-0.0012 0001 .0009 .0010 .0021 .0031 .0040
-1	-1 0 1 2 3	-0.0001 0007 .0000 0013 0022 0025 0021	0.0184 .0182 .0183 .0181 .0182 .0180	0.0116 .0007 0094 0105 0214 0323 0433	-0.0011 0001 .0009 .0010 .0020 .0029 .0038
0	-1 0 1 1 2 3	0.0214 .0242 .0213 .0218 .0216 .0232 .0233	0.0152 .0146 .0147 .0145 .0144 .0143 .0144	0.0117 .0007 0089 0101 0206 0509 0417	0010 .0000 .0009 .0009 .0019 .0027 .0035
1	-1 0 1 1 2 3	0.0449 .0489 .0444 .0449 .0445 .0440	0.0119 .0113 .0111 .0112 .0115 .0114	0.0117 .0010 0085 0091 0192 0500 0404	-0.0009 .0000 .0008 .0008 .0017 .0026 .0033
2	-1 0 1 2 3	0.0690 .0675 .0650 .0650 .0647 .0649	0.0085 .0089 .0088 .0087 .0088 .0088	0.0110 .0013 0087 0078 0184 0293 0393	-0.0007 .0000 .0008 .0007 .0016 .0024 .0030
3	-1 0 1 1 2 3	0.0892 .0884 .0860 .0854 .0847 .0857	0.0057 .0062 .0058 .0061 .0061 .0063	0.0109 .0017 0071 0082 0180 0280 0382	-0.0006 .0000 .0006 .0007 .0014 .0021 .0027
5	-1 0 1 1 2 3	0.1378 .1371 .1343 .1351 .1351 .1351	-0.0011 0009 0007 0009 0008 .0000	0.0109 .0016 0065 0074 0164 0264 0362	-0.0004 .0001 .0005 .0005 .0010 .0015
7	-1 0 1 2 3 4	0.1924 .1913 .1888 .1888 .1880 .1858	-0.0109 0109 0105 0099 0087 0070	0.0111 .0020 0068 0159 0255 0352	-0.0003 .0000 .0003 .0006 .0009

TABLE II.- STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Continued

Body-axis data; M = 4.06; R = 2.7 × 106

(1) Basic model with 10° tail wedge and 5° body wedge

α, deg	β, deg	CN	C _m	CY	Cn
-3	-1 0 1 2 3 4	-0.0422 0460 0450 0469 0475 0481	0.0269 .0274 .0270 .0271 .0269 .0265	0.0114 0003 0114 0228 0349 0465	-0.0014 0001 .0011 .0022 .0035 .0045
-2	-1 0 1 2 3 4	-0.0207 0229 0219 0243 0256 0245	0.0226 .0231 .0226 .0228 .0228 .0222	0.0113 .0002 0107 0220 0337 0449	-0.0013 0001 .0010 .0021 .0033 .0042
-1	-1 0 1 2 3 4	0.0008 0001 0020 0023 0022 0031	0.0188 .0188 .0188 .0189 .0190	0.0117 .0003 01.02 0210 0327 0435	-0.0012 0001 .0010 .0020 .0031
0	-1 0 0 1 1 2 2 2 3 3	0.0220 .0250 .0256 .0215 .0223 .0230 .0236 .0235 .0235 .0232	0.0154 .0151 .0151 .0151 .0149 .0149 .0149 .0149 .0149	0.0115 .0007 .0011 0097 0201 0201 0312 0306 0419	-0.0011 0001 0001 .0009 .0008 .0019 .0019 .0028 .0027
1	-1 0 1 2 3	0.0479 .0491 .0446 .0446 .0467 .0438	0.0112 .0113 .0116 .0117 .0119	0.0112 .0010 0091 0193 0302 0407	-0.0010 0001 .0008 .0017 .0026 .0034
2	-1 0 1 2 3 4	0.0699 .0691 .0652 .0653 .0630 .0650	0.0079 .0084 .0087 .0087 .0090	0.0111 .0012 0085 0183 0289 0394	-0.0009 0001 .0007 .0015 .0024
3	-1 0 1 2 3 4	0.0896 .0880 .0860 .0858 .0868 .0853	0.0049 .0055 .0054 .0055 .0060	0.0106 .0016 0079 0175 0279 0385	-0.0007 0001 .0006 .0014 .0021 .0028
5	-1 0 1 2 3	0.1440 .1392 .1373 .1372 .1373 .1356	-0.0038 0028 0026 0024 0013 0003	0.0107 .0018 0071 0158 0258 0362	-0.0006 0001 .0003 .0009 .0015
7	-1 0 1 2 3	0.1931 .1926 .1910 .1908 .1903 .1888	-0.0140 0139 0135 0128 0112 0096	0.0111 .0022 0063 0152 0252 0351	-0.0005 0002 .0001 .0005 .0009

TABLE II.- STATIC LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE CONFIGURATION WITH VARIOUS STABILIZING WEDGES - Concluded

Body-axis data; M = 4.06; R = 2.7 x 106

(m) Basic model with $10^{\rm O}$ tail wedge and $10^{\rm O}$ body wedge

a, deg	β, deg	c_{N}	C _m	CY	c _n
-3	-1 0 1 2 3 3 4 4	-0.0448 0475 0472 0483 0482 0486 0480 0493	0.0287 .0293 .0292 .0291 .0285 .0287 .0277 .0281	0.0116 0005 0121 0240 0352 0351 0469 0484	-0.0014 .0000 .0014 .0026 .0038 .0037 .0049
-2	-1 0 1 2 3 3 4 4	-0.0216 0241 0241 0257 0241 0258 0254 0246	0.0240 .0245 .0243 .0245 .0238 .0242 .0236 .0234	0.0118 0002 0117 0230 0338 0359 0452 0467	-0.0013 .0000 .0013 .0025 .0035 .0035 .0046 .0047
-1	-1 0 1 2 3 3 14	0.0005 0014 0010 0026 0038 0041 0046	0.0195 .0199 .0197 .0200 .0201 .0201 .0198 .0197	0.0117 .0001 0111 0222 0331 0352 0439 0453	-0.0012 .0001 .0013 .0024 .0034 .0034 .0043
0	-1 0 1 2 3 3 4 4	0.0222 .0233 .0208 .0225 .0217 .0214 .0213	0.0159 .0159 .0160 .0159 .0159 .0161 .0156	0.0116 .0003 0104 0211 0316 0317 0422 0432	-0.0011 .0000 .0011 .0022 .0031 .0040 .0040
1	-1 0 1 2 3 3 4 4	0.0445 .0480 .0439 .0428 .0437 .0433 .0438	0.0122 .0117 .0122 .0126 .0124 .0125 .0119 .0121	0.0112 .0007 0097 0205 0303 0307 0409 0419	-0.0009 .0000 .0010 .0021 .0029 .0029 .0036
2	-1 0 1 2 3 3 4 4	0.0667 .0679 .0647 .0650 .0631 .0636 .0625	0.0079 .0084 .0088 .0089 .0091 .0091 .0092	0.0113 .0010 0092 0194 0290 0293 0397 0407	-0.0008 .0001 .0010 .0019 .0027 .0026 .0034
3	-1 0 1 2 3 3 4 4	0.0930 .0868 .0865 .0868 .0857 .0865 .0841 .0854	0.0040 .0051 .0050 .0053 .0055 .0055 .0060	0.0111 .0012 0086 0181 0283 0284 0388 0394	-0.0007 .0001 .0008 .0016 .0024 .0024 .0031
5	-1 0 1 2 3 3 4 4	0.1406 .1396 .1375 .1371 .1376 .1360 .1343 .1359	-0.0052 0045 0044 0039 0026 0026 0015 0017	0.0111 .0020 0076 0164 0263 0268 0364 0370	-0.0005 .0000 .0006 .0011 .0017 .0017 .0022
7	-1 0 1 2 3 3 4	0.1938 .1932 .1943 .1931 .1901 .1901 .1885 .1899	-0.0169 0168 0170 0160 0137 0139 0121 0124	0.0110 .0021 0069 0160 0257 0258 0349 0357	-0.0004 .0000 .0004 .0008 .0012 .0011 .0015

Figure 1. - Axis system.

Figure 2.- Details of model of supersonic aircraft configuration. Dimensions in inches unless otherwise noted.

Figure 3. - Details of body and tail wedges. All dimensions in inches.

NACA RM L57I10

(a) Model in tunnel.

L-83148

(b) Three-quarter rear view with 10° wedges. L-89178

Figure 4.- Pictures of model.

	δ_{T}	$\delta_{\mathbb{B}}$
0	None	None
	10	None
Δ	10	10

Figure 5.- Variation of normal-force coefficient and pitching-moment coefficient with angle of attack. M = 4.06; $R = 2.7 \times 10^6$.

Figure 6.- Effect of wedge angle on configuration pitching-moment coefficient. M = 4.06; R = 2.7×10^6 ; β = 0.

Figure 7.- Variation of pitching-moment coefficient with normal-force coefficient. M = 4.06; $R = 2.7 \times 10^6$.

Figure 8.- Variation of longitudinal-stability parameter $\partial C_{\rm m}/\partial C_{\rm N}$ with normal-force coefficient. M = 4.06; R = 2.7 × 10⁶.

Figure 9.- Variation of drag coefficient, lift-drag ratio, and angle of attack with lift coefficient for the configuration without wedges. M 4.06; $R = 2.7 \times 10^6$; $\beta = 0$.

Figure 10.- Variation of longitudinal characteristics with Mach number for the configuration without wedges. $\beta = 0$.

Figure 11.- Variation of side-force coefficient and yawing-moment coefficient with sideslip angle. M = 4.06; $R = 2.7 \times 10^6$.

δ_{T}	δ_{B}
None	None
 10	None
 10	10

Figure 12.- Variation of stability parameters ${^CY}_{\beta}$ and ${^Cn}_{\beta}$ with normal-force coefficient. M = 4.06; R = 2.7 \times 10⁶; β = 0.

(a) Effect of body wedge.

(b) Effect of tail wedge.

Figure 13.- Variation of stability parameters $C_{Y\beta}$ and $C_{n\beta}$ with wedge angle. M = 4.06; R = 2.7 \times 10⁶; β = 0.

Figure 14.- Variation of incremental force and moment per unit area with wedge angle. M = 4.06; $R = 2.7 \times 10^6$; $\beta = 0$.

0

5

Wedge angle, &

10

15

-.0015

Figure 15.- Variation of stability parameters C_{Y_β} and C_{n_β} with Mach number for the configuration without wedges.