Review of Analysis and Modeling Techniques for Incompressible, Turbulent Bluff-Body Wakes

Logan D. Halstrom* and Federico Zabaleta[†] *University of California, Davis, California, 95616*

abstract here LH&FZ

Nomenclature

LH&FZ

 ρ = density, kg/m^3

Subscripts

 $()_{\infty}$ = freestream quantity

Acronyms

CFD = Computational Fluid Dynamics

I. Introduction

TNTRO sentence to paper should have this fancy capitalization.

- Driving Physical Phenomena FZ
 - differences from potential flow
 - blunt/bluff body definition, differences from streamlined body flow
 - massively separated flow
 - base pressure
 - wake
 - Real World Applications *LH*
 - parachute
 - reentry capsule
 - vehicles
 - buildings
 - show similarity between cylinder/sphere wake and more complex bluff body

^{*}Graduate Student, Mechanical And Aerospace Engineering Department, One Shields Avenue

[†]Graduate Student, Civil and Environmental Engineering Department, One Shields Avenue

II. Experimental Methods And Results

FZ

- Historical Study
- Experimental techniques
 - ballistic range?
- Applications
 - Simple cases: cylinder/sphere
 - * Drag vs Re?
 - * Wake velocity profiles?
 - * Wake structure?
 - Sharp vs bluff: sphere vs cube
 - Complex cases: capsule/building

III. Computational Methods and Results

LH

- Historical Study
- Computational techniques
- Applications
 - Simple cases: cylinder/sphere
 - Sharp vs bluff: sphere vs cube
 - Complex cases: capsule/building

A. Turbulence Modeling Aspects

LH

- Compare turbulence model performance for sphere/cylinder
 - SA
 - SST
 - SAS
 - URANS
 - LES
 - DES
 - DNS?

LIST ALL FIGURES HEAR, REORDER AND DESCRIBE LATER

Fig. 1 curve backstep velocity profile les vs rans [1]

IV. Current State of Bluff-Body Turbulence Analysis

- Current State of Knowledge
- Remaining Challenges

A. Experimental Methods

FZ

B. Computational Methods

LH

V. Conclusions

LH&FZ

Acknowledgments

LH&FZ

Example citations

[2]

References

- [1] Durbin, P. A., "Some Recent Developments in Turbulence Closure Modeling," *Annual Review of Fluid Mechanics*, Vol. 50, No. 1, 2018, pp. 77–103. doi:10.1146/annurev-fluid-122316-045020.
- [2] Nakamura, Y., "Bluff-body aerodynamics and turbulence," *Journal of Wind Engineering and Industrial Aerodynamics*, Vol. 49, No. 1, 1993, pp. 65 78. doi:https://doi.org/10.1016/0167-6105(93)90006-A, URL http://www.sciencedirect.com/science/article/pii/016761059390006A.