IO-Link (S7-1200)									
Julita Wójcik Jakub Szczypek	31 V 2022	wtorek, 19:45	3A						

1. Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z technologią IO-Link na przykładzie sterownika S7-1200 marki Siemens, wyposażonego w czterokanałowy moduł IO-Link Master, do którego podłączony jest ultradźwiękowy czujnik odległości UGT205 z interfejsem IO-Link. Poniżej przedstawiamy moduł IO-Link Master oraz czujnik odległości UGT205.

Rysunek 1. moduł IO-Link Master oraz czujnik odległości UGT205

Po zapoznaniu się z opisem powyższego modułu w katalogu zaskoczył nas czas realizacji w przypadku chęci dokonania zakupu – wynosi on 60 dni.

2. Wstęp teoretyczny

IO-Link to cyfrowy, szeregowy protokół komunikacyjny, stosowany do połączenia inteligentnych czujników i elementów wykonawczych z PLC. IO-Link jest systemem połączeniowym typu point-to-point. System został opracowany w wyniku powstania nowych możliwości stosowania mikrokontrolerów wbudowanych w niedrogie czujniki i siłowniki. Powodami powstania nowej technologii była:

- potrzeba tanich czujników i elementów wykonawczych do wymiany danych diagnostycznych i konfiguracyjnych ze sterownikiem (PC lub PLC)
- potrzeba niedrogiej technologii komunikacji cyfrowej i zastąpienie podatnej na błędy transmisji analogowej, takiej jak 0–10 V

- potrzeba zachowani kompatybilności wstecznej z aktualnymi sygnałami wejścia/wyjścia cyfrowego (DI/DO).
- potrzeba redukcji kosztów sprzętu i okablowania

Do głównych zalet IO-Link możemy zaliczyć:

- prostą instalację interfejsu IO-Link
- gwarancję odporności komunikacji cyfrowej na odporność na awarie bez konieczności używania drogiego, ekranowego okablowania – sygnały analogowe są przy tym digitalizowane bez strat - dzięki właściwej konwersji.
- szybką i bezbłędną wymianę czujników i skracanie czasu wymaganego do uruchomienia linii
- optymalizację procesu eksploatacji urządzeń
- spójną komunikację pomiędzy czujnikami/urządzeniami wykonawczymi i sterownikiem
- dostęp do wszystkich danych procesowych, danych diagnostycznych i informacji w urządzeniu
- dynamiczna zmiana parametrów czujników i urządzeń wykonawczych przez sterownik
- automatyczna parametryzacja po wymianie modułu

Każde urządzenie zgodne ze standardem IO-Link można podłączyć do dowolnego dostępnego portu urządzenia nadrzędnego. Urządzenia dokonują konwersji sygnału analogowego (fizycznego) na wersję cyfrową, a następnie przekazują wynik bezpośrednio w standardowym formacie za pomocą kodowanego przełączania linii sygnalizacyjnej 24 V, eliminując w ten sposób potrzebę stosowania różnych modułów DI, DO, AI, AO i różnorodność kabli.

3. Przebieg ćwiczenia

W pierwszej kolejności skonfigurowaliśmy sterownik PLC i modułu IO-Link Master. W tym celu w prostym projekcie w środowisku TIA Portal V14 skonfigurowano CPU oraz moduł SM 1278 4xIO-Link master. W trakcie ćwiczenia korzystano ze sterownika SIMATIC S7-1200 z CPU 1215C DC/DC/RLY – wybrano odpowiednią wersję sterownika, ustawiono adres IP oraz maskę. Następnie do projektu dodano moduł SM 1278 4xIO-Link master, w jego ustawieniach włączono diagnostykę tylko dla portu numer 1, ustawiono początkowy adres wejść na 16 i przesłano przygotowane ustawienia.

Kolejnym krokiem z użyciem zewnętrznego narzędzia S7-PCT (Port Configuration Tool) sparametryzowano Urządzenie (IO-Link Device) i Mastera (IO-Link Master). Z katalogu ifm electronic gmbh zaimportowano czujnik UGT205 i przeciągnięto go do portu 1. Po nawiązaniu połączenia zaobserwowaliśmy STATUS jako *Device Type OK* oraz czas cyklu. Zapoznaliśmy się z dokumentacji z innymi możliwymi do otrzymania komunikatami – tabela 1.

Tabela 1. Tabela z danymi z dokumentacji

Name	Description	Data type	Bit offset	Bit length	Value range	Gradient	Offset	Unit
PDV1	Current process data 1	IntegerT	16	16	100 to 1700 (-32760) UL (32760) OL	1	0	mm
Device status	Current device status, a copy of the variable [Device Status] in the process data channel	UIntegerT	4	4	(0) Device is OK (1) Maintenance required (2) Out of specification (3) Functional check (4) Failure			
OUT2	Status depends on [OU2]	BooleanT	1		(false) inactive (true) active			
OUT1	Status depends on SSC1-Config.Logic and SSC1-Config.Mode	BooleanT	0		(false) inactive (true) active			

W zakładce Adresses zaobserwowano adresację zmiennych procesowych urządzenia – ustawienie adresu początkowego na 16 zostało potwierdzone – wartość PDV1 została zapisana w rejestrze o adresie %IW16.

Rysunek 2. Adresacja zmiennych procesowych

W zakładce Parameters sprawdziliśmy parametry, które urządzenie przechowuje – zrozumienie ich znaczenia wiązało się z zapoznaniem się z odpowiednią dokumentacją. Przykładowe parametry wraz z wyjaśnieniem z karty informacyjnej przedstawiono na rysunkach 3 i 4.

□ Digital output 1									
SSC1 Param - SP1	1600		mm	loaded	Setpoint 1				
SSC1 Param - SP2	150		mm	loaded	Setpoint 2				
SSC1 Config - Logic	High active			loaded	Setpoint logic / State for target detected				
SSC1 Config - Mode	Window			loaded	Setpoint mode				
SSC1 Config - Hyst	5		mm	loaded	Setpoint hysteresis				
SSC1 Switch-On delay	0		ms	loaded	Switchching signal channel 1, Switch-On delay				
SSC1 Switch-Off delay	0		ms	loaded	Switchching signal channel 1, Switch-Off delay				

Rysunek 3. Przykładowe parametry

Тур	Parametr	Wartość parametru	Wyjaśnienia	Ustawienia fabryczne	
UGT / UIT	Background suppression	on off	Aktywacja i dezaktywacja tłumienia tła. Ustawia punkt przełączania bezpośrednio przed tłem. Możliwa tylko w trybie pracy 1 punktowej.	(off)	
UGT/UIT/UGR	SSC1 Config. Logic	High active Low active	Konfiguracja wyjścia przełączającego kanał 1: Logika przełączania / logika wykrywania obiektu. High active: normalnie otwarte (NO) Low active: normalnie zamknięte (NC)	(High active)	
UGT / UIT	SSC1 Config. Mode	1Point Window 2Point	Konfiguracja wyjścia przełączającego kanał 1: Wybór funkcji dla SSC1. 1Point: Czujnik przełącza przed nauczonym punktem Window: Czujnik przełącza w wybranym obszarze 2Point: Ustawia punkt przełączenia (SP2) i punkt zerowania (SP1)	(1Point) or (Window)* *Depending on the article no.	
UGT / UIT / UGR	SSC1 Config. Hyst	mm	Konfiguracja wyjścia przełączającego kanał 1: Ustawienia histerezy.	UGT (5 mm) UGR (14 mm)	
UGT/UIT/UGR	Teach SP TP1 / Teach SP TP2	virtual teach button	Wirtualny przycisk uczenia . Czujnik wykrywa aktualny zasięg działania dla wybranego punktu	-	
UGT / UIT / UGR	SSC1 Switch- On delay	ms	Regulowane opóźnienie rozruchu (maks. 2000 ms).	(0 ms)	
UGT / UIT / UGR	SSC1 Switch- Off delay	ms	Regulowane opóźnienie zerowania (maks. 2000 ms).	(0 ms)	

Rysunek 4. Fragment karty informacyjnej

Następnym etapem ćwiczenia był odczyt danych procesowych. W TIA Portal zdefiniowano odpowiednie tagi dla zmiennych procesowych – przedstawionych na rysunku 5

Rysunek 5. Zdefiniowane tagi

W celu obserwacji aktualnej wartości tagów utworzono Watch table. Sprawdzono działanie pomiaru odległości przesuwając obiekt wzdłuż linijki, oddalając go i przybliżając do czujnika. Zaobserwowano wskazania PDV1, którego wartość wpływała na wartości wyjść cyfrowych OUT1 i OUT2. Wyjścia te są aktywne dla określonego zestawu Setpointów. Domyślnie oba wyjścia mają przypisane takie same punkty: SP1 = 1600, SP2 = 150. Zaobserwowano zmianę wartości na wyjściu w zależności od zadanej odległości – wyjścia cyfrowe zachowują się zgodnie z oczekiwaniem.

Rysunek 6. Otrzymanie na wyjściu logicznego zera – false

Rysunek 7. Otrzymanie na wyjściu logicznej jedynki – true

Rysunek 8. Błąd odczytu dla pomiaru poniżej 10 [cm]

W celu odczytywania i zapisywania parametrów urządzenia z poziomu PLC, przygotowano zestaw tagów do obsługi bloczka IO_LINK_DEVICE.

Rysunek 9. Zdefiniowane tagi

W drzewie projektu rozwinęliśmy Program blocks i otworzyliśmy blok Main. Przypisaliśmy wejścia i wyjścia bloku IO_LINK_DEVICE do odpowiednich tagów, jak poniżej:

Rysunek 10. Przygotowany bloczek IO_LINK_DEVICE

Lista parametrów dostępna jest w dokumentacji urządzenia. Odczytaliśmy z niej parametry SP1 i SP2 – rysunek 11.

SSC1 Param	Switching signal channel 1, parameter	60		RecordT	32 Bit	rw					
SP1	Setpoint 1		Sub 1	IntegerT	16 Bit		(1600)	150 to 1600	1	0	mm
SP2	Setpoint 2		Sub 2	IntegerT	16 Bit		(150)	150 to 1600	1	0	mm

Rysunek 11. Opis parametrów SP1 i SP2

Z tabelki odczytaliśmy indeks parametrów – 60, długość – po 16 bitów oraz wartość fabryczną – 150 – 1600. W celach sprawdzenia poprawności programu odczytano te wartości z przygotowanego Watch table.

Rysunek 12. Odczytanie wartości SP1 i SP2

Odczytaliśmy parametry urządzenia o nazwie Vendor name – z dokumentacji odczytano jego indeks i subindex – rysunek 13.

Rysunek 13. Opis parametru Vendor name

W Watch table zmieniliśmy wartość indeksu i subindexu na 16 i 0 oraz typ wyświetlania sekcji DATA Words na Character. Wynik operacji przedstawiliśmy na rysunku 14.

Rysunek 14. Odczytany parametr Vendor name

Wynik pozytywnie nas zaskoczył – otrzymany zbiór liter to nazwa niemieckiego przedsiębiorstwa IFM Electronic.

Ostatnim etapem zadania byłą zmiana fabrycznych wartości SP1 i SP2 na 500 [mm] i 150 [mm]. Każdą z wartości wprowadzono do tablicy DATA w postaci 2 bajtów – zrobiono to w postaci szesnastkowej. Do Watch Table dodaliśmy zmienne readWrite oraz writeLen z DB Bloku IO-LINK_INTF. Wartości zmiennych ustawiliśmy odpowiednio na True – zapis do tablicy parametrów urządzenia oraz 4 – liczba zapisywanych bajtów. Zaobserwowaliśmy nowe parametry w sekcji DATA Words – rysunek 15. Sprawdziliśmy poprawność działania nowego zakresu – po przekroczeniu odległości 500 [mm] wyjście OUT1 deaktywowało się.

Rysunek 15. Ustawienie SP1 i SP2 na wartości 500 i 150

Rysunek 16. Sprawdzenie działania nowego zakresu

Powrócono do ustawień fabrycznych – przywrócono SP1 = 1600 [mm] – rysunek 17. Monitor value Modify value Com Address Display format A "IO_LINK_INTF".request %DB1.DBX240.0 Bool ■ TRUE TRUE 2 60 "IO_LINK_INTF".index %DB1.DBW242 DEC+/-60 V 3 A "IO_LINK_INTF".subindex %DB1.DBW244 DEC+/-0 0 4 "IO_LINK_INTF".done %DB1.DBX232.0 Bool ■ TRUE 5 "IO_LINK_INTF".busy %DB1.DBX232.1 Bool FALSE 6 "IO_LINK_INTF".error %DB1.DBX232.2 Bool FALSE "IO_LINK_INTF".readLen %DB1.DBW238 DEC+/-0 8 // DATA 9 "IO_LINK_INTF".DATA[0] %DB1.DBB0 Hex 16#06 16#06 V 10 "IO_LINK_INTF".DATA[1] %DB1.DBB1 Hex 16#40 16#40 V 11 "IO_LINK_INTF".DATA[2] %DB1.DBB2 Hex 16#00 16#00 ٨ 12 "IO_LINK_INTF".DATA[3] %DB1.DBB3 16#96 16#96 ☑ A Hex 13 "IO_LINK_INTF".DATA[4] %DB1.DBB4 DEC+/-0 14 "IO_LINK_INTF".DATA[5] %DB1.DBB5 DEC+/-0 15 "IO_LINK_INTF".DATA[6] %DB1.DBB6 DEC+/-0 16 "IO_LINK_INTF".DATA[7] %D81.D887 DEC+/-0 17 "IO_LINK_INTF".DATA[8] %DB1.DBB8 DEC+/-0 18 "IO_LINK_INTF".DATA[9] %DB1.DBB9 DEC+/-0 19 "IO_LINK_INTF".DATA[10] %DB1.DBB10 DEC+/-0 20 // Data Words 21 DEC+/-1600 %DB1.DBW0 22 DEC+/-%DB1.DBW2 23 %DB1.DBW4 Character '\$00\$00' 24 %DB1.DBW6 Character '\$00\$00' 25 %DB1.DBW8 Character '\$00\$00' 26 %DB1.DBW10 Character '\$00\$00' 27 %DB1.DBW12 Character \$00\$00 28 %DB1.DBW14 Character '\$00\$00' 29 %DB1.DBW16 Character '\$00\$00' 30 %DB1.DBW18 Character '\$00\$00' 31 %DB1.DBW20 Character '\$00\$00' 32 %DB1.DBW22 Character '\$00\$00' 33 %DB1.DBW24 Character '\$00\$00' 34 *IO_LINK_INTF*.readWrite %DB1.DBX502.0 Bool TRUE TRUE 4 35 "IO_LINK_INTF".writeLen %DB1.DBW504 DEC+/-A 36

Rysunek 17. Powrót do ustawień fabrycznych

4. Wnioski

IO—Link wprowadza wiele udogodnień do świata automatyzacji. Jest to uniwersalny system wymiany danych dla sensorów i urządzeń wykonawczych . Pracując w tym systemie doceniliśmy możliwość łatwej i szybkiej parametryzacji urządzeń oraz sposobu konfiguracji całego systemu. Spójna diagnostyka aż do poziomu czujników i elementów wykonawczych pozwala na minimalizację przestojów i awarii oraz umożliwia optymalizację prac serwisowych. Ośmielamy się twierdzić, że technologia ta będzie odgrywała istotną rolę w przyszłości technologii, a już jest ważnym elementem koncepcji Pzemysłu 4.0. Ćwiczenie pozwoliło na utrwalenie wykonywania podstawowych operacji w poznanym już środowisku TIA Portal V14 (ćwiczenie PLC Siemens) oraz zwiększyło świadomość wyszukiwania i pracy z dokumentacją urządzeń.