E0-214 Applied Linear Algebra and Optimization Assignment 2

- 1. Which of the following sets are convex?
 - $\bullet \ \{\boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{x}\|_2^2 \ge 1\}$
 - $\{ \boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{x}\|_2^2 = 1 \}$
 - $\{ \boldsymbol{x} \in \mathbb{R}^n : \max_{i=1,\dots,n} x_i \geq 1 \}$
 - $\{ \boldsymbol{x} \in \mathbb{R}^n : \min_{i=1,\dots,n} x_i \leq 1 \}$
- 2. Let $C_1 = \{(x,y) : x^2 + y^2 \le 1\}$ and $C_2 = \{(x,y) : (x-2)^2 + y^2 \le 1\}$.
 - Show that C_1 and C_2 are closed convex subsets of \mathbb{R}^2 .
 - Are C_1 and C_2 strictly separable? Are C_1 and C_2 strongly separable?
 - Draw the convex hull of $C_1 \cup C_2$.
- 3. Is it true that the union of two convex sets is a convex set? If not, find a counterexample.
- 4. Let $S_1 = \{(x, y) : y \leq 0\}$ and $S_2 = \{(x, y) : y \geq \frac{1}{x}, x \neq 0\}$. Find a hyperplane which separates S_1 and S_2 . Is this a strictly separating hyperplane?
- 5. Find all the supporting hyperplanes of the set $C = \{(x,y) : x \ge 0\} \cap \{(x,y) : y \ge 0\} \cap \{(x,y) : x^2 + y^2 = 1\}.$
- 6. Discuss the convexity and concavity of the following functions:
 - (a) $f(\mathbf{x}) = \log(\sum_{i=1}^{n} e^{x_i})$
 - (b) $f(\mathbf{x}) = e^{\mathbf{x}^T \mathbf{A} \mathbf{x}}$ where \mathbf{A} is a positive definite matrix.
 - (c) $f(\boldsymbol{x}) = \|\boldsymbol{x}\|_2$
 - (d) $f(\mathbf{x}) = -x_1^2 4x_2^2 9x_3^2 + 2x_1x_2 + 3x_1x_3 + 6x_2x_3$
 - (e) $f(x) = \sqrt{1 x^2}, -1 \le x \le 1$
 - (f) $f(\mathbf{x}) = \log(x_1^a x_2^a \dots x_a^n)$ where $x_i > 0 \ \forall i$ and a > 0
- 7. Prove that $2e^{x+y} \le e^{2x} + e^{2y}$ for all $x, y \in \mathbb{R}$.

8. Are the following problems convex programming problems? Justify your answer.

(1)

max
$$\log(1+x_1) + x_2$$

s.t. $2x_1 + x_2 \le 3$
 $x_1, x_2 > 0$

(2)

min
$$|x-1| + |x-4|$$

s.t. $0 \le x \le 5$

9. Solve the problem:

min
$$(x_1 + 2x_2 - 3)^2$$

s.t. $x_1, x_2 \in \mathbb{R}$

- 10. If f and h are convex functions, then show that the function $\max\{f,h\}$ is also convex.
- 11. Show that a convex function defined on a closed real interval attains its maximum at one of the endpoints of the interval.
- 12. Sketch the contours of the functions,

(a)
$$f(\mathbf{x}) = x_1^2 + 4x_2^2 - 4x_1 - 8x_2$$

(b)
$$f(\mathbf{x}) = 8x_1 + 12x_2 + x_1^2 - 2x_2^2$$

Deduce the value x^* which minimizes/maximizes f.

- 13. Find the point (x, y) on the graph of $y = \sqrt{x}$ nearest to the point (4, 0). Formulate this as a constrained optimization problem.
- 14. Let $S = \{ \boldsymbol{x} : x_1^2 + x_2^2 \le 1, x_1 x_2^2 \ge 0 \}$ and $\boldsymbol{y} = (\frac{1}{2}, 5)^T$. We want to find a point \boldsymbol{x}^* in the set S which is "closest" to \boldsymbol{y} . Formulate this as a constrained minimization problem. Also, solve this problem graphically.