

CROISSANCE EXPONENTIELLE

Résumé

Seconde croissance étudiée cette année : la croissance exponentielle dont le vocabulaire est régulièrement utilisé dans le langage commun.

1 Suites géométriques

Définition

Soient $q \neq 0$ et (u_n) une suite numérique définie sur **N** par la relation de récurrence :

$$u_{n+1} = q \times u_n$$
.

 (u_n) est appelée **suite géométrique** de **raison** q.

Exemple Soit (u_n) une suite géométrique de raison 2 et de premier $u_0 = 1,3$. Alors, $u_1 = 2 \times u_0 = 3 \times 1,3 = 2,6$. De même, $u_2 = 2 \times u_1 = 5,2$. On peut continuer indéfiniment : $u_3 = 10,4$, $u_4 = 20,8$, $u_5 = 41,6$, ...

Propriété

Une suite $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison q et de premier terme u_0 si, et seulement si, pour tout $n\in\mathbb{N}$,

$$u_n = u_0 \times q^n$$

Exemple Représentons la suite géométrique (u_n) de raison 1,2 et de premier terme 0,5.

Théorème | Variations d'une suite géométrique

Soit (u_n) une suite géométrique de raison q et de premier terme u_0 **strictement positif**.

- \blacktriangleright (u_n) est strictement croissante si, et seulement si, q > 1.
- \blacktriangleright (u_n) est constante si, et seulement si, q=1.
- \blacktriangleright (u_n) est strictement décroissante si, et seulement si, 0 < q < 1.

Exemples Soit (u_n) la suite définie par : $u_n = 3^n$. C'est une suite géométrique de raison 3 et de premier terme 1 donc elle est strictement croissante.

Soit (v_n) la suite définie par : $\begin{cases} v_0 = 2 \\ v_{n+1} = \frac{2}{10}v_n \end{cases}$. (v_n) est une suite géométrique de raison $\frac{2}{10}$ et de premier terme 2. Elle est donc strictement décroissante.

2 Fonctions exponentielles de base a

Définition | Exponentielle de base a

Soit (u_n) une suite géométrique de raison a > 0 et de premier terme 1. On peut prolonger (u_n) en une fonction f: la **fonction exponentielle de base** a.

Cette fonction est définie sur R par :

$$f(x) = a^x$$
.

On prend la convention $a^{-x} = \frac{1}{a^x}$ si $x \le 0$.

Exemples $> f(x) = 2^x$ est l'expression d'une fonction exponentielle de base 2.

► $f(x) = 0.3^x$ est l'expression d'une fonction exponentielle de base 0.3.

Propriétés | Variations d'une fonction exponentielle

Soit f la fonction exponentielle de base a > 0.

▶ Si a > 1, alors f est strictement **croissante** sur \mathbf{R} .

▶ Si 0 < a < 1, alors f est strictement **décroissante** sur **R**.

Exemples \blacktriangleright Soit f d'expression $f(x) = 2^x$. f est strictement croissante car sa base est strictement supérieur à 1.

Soit f d'expression $f(x) = \left(\frac{7}{8}\right)^x$. f est strictement décroissante car sa base est strictement comprise entre 0 et 1.

▶ Soit f d'expression $f(x) = -3 \times 5^x$. f est strictement décroissante car $x \mapsto 5^x$ est strictement croissante.

Exercice

Donner les variations des fonctions suivantes définies sur R.

1.
$$f: x \mapsto 5 \times 9^x$$

2.
$$g: x \mapsto -2 \times 0.6^x$$

$$3. h: x \mapsto \frac{f(x)}{g(x)}$$

Propriétés

Les propriétés connues du calcul exponentiel sont toujours vraies. Soient $a, b \in \mathbb{R}_+^*$ et $x, y \in \mathbb{R}$:

$$a^x a^y = a^{x+y}$$

$$\rightarrow a^x b^x = (ab)^x$$

$$(a^x)^y = a^{xy}$$

Définition

Lors de n évolutions successives à des taux $t_1, t_2, ..., t_n$ entre une valeur initiale V_0 et une valeur finale V_n , on appelle **taux d'évolution moyen** le taux noté t_{moven} , qu'il faut appliquer n fois successivement à la valeur V_0 pour obtenir la valeur V_n .

$$(1 + t_{\text{moyen}})^n = (1 + t_1)(1 + t_2) \cdots (1 + t_n)$$

Propriété

Calculer un taux d'évolution moyen revient à trouver t_{moyen} tel que son coefficient multiplicateur associé est solution de : $x^n = CM$ où CM > 0 est le **coeffi**cient multiplicateur global.

$$t_{\text{moyen}} = CM^{\frac{1}{n}} - 1$$

D'après l'association 60 Millions de consommateurs, le prix des pâtes a augmenté d'environ 11,4% entre février 2021 et février 2022. Ainsi, l'évolution a suivi un coefficient multiplicateur C_M de 1 + 0,114 = 1,114.

Finalement, le coefficient multiplicateur moyen est $C_M^{\frac{1}{12}}$ et le taux moyen est :

$$t_{\text{moyen}} = (1+0,114)^{\frac{1}{12}} - 1.$$