Post-processing Bias Mitigation

ROC (Receiver Operating Characteristic)

Slides merging Lectures from:

Bradley Malin - Carnegie Mellon University

And

Ricco RAKOTOMALALA - Université Lumière Lyon 2

Why Should I Care?

- Imagine you have 2 different probabilistic classification models
 - e.g. logistic regression vs. neural network
- How do you know which one is better?
- How do you communicate your belief?
- Can you provide quantitative evidence beyond a gut feeling and subjective interpretation?

Recall Basics: Contingencies

		MODEL PREDICTED	
		It's NOT a Heart Attack	Heart Attack!!!
GOLD STANDARD TRUTH	Was NOT a Heart Attack	Α	В
	Was a Heart Attack	С	D

Some Terms

		MODEL PREDICTED		
		NO EVENT	EVENT	
GOLD STANDARD TRUTH	NO EVENT	TRUE NEGATIVE	В	
	EVENT	С	TRUE POSITIVE	

Some More Terms

		MODEL PREDICTED		
		NO EVENT	EVENT	
GOLD STANDARD TRUTH	NO EVENT	А	FALSE POSITIVE (Type 1 Error)	
	EVENT	FALSE NEGATIVE (Type 2 Error)	D	

Accuracy

- What does this mean?
- What is the difference between "accuracy" and an "accurate prediction"?
- Contingency Table Interpretation

```
(True Positives) + (True Negatives)

(True Positives) + (True Negatives)

+ (False Positives) + (False Negatives)
```

Is this a good measure? (Why or Why Not?)

Accuracy?

Accuracy: a too restrictive measure

Standad schema of models' evaluation

Conclusion: Model 1 would be better than Model 2

This conclusion -- based on Test dataset - assumes that the Matrix of misclassification cost is sysmetric and unitary

Accuracy?

Introduction of Error cost matrix

Conclusion: Model 2 would be better than Model 1 in this case???

Cost matrices are often the result of cyclical opportunities. Should we test all possible cost matrices to compare M1 and M2?

Is it possible to benefit from a system that allows for global comparison of models, regardless of the misclassification cost matrix?

Objectives of the ROC Curve

- The ROC curve is a tool for evaluating and comparing models Independent of
- misclassification cost matrices
 It provides insight into whether M1 will always be better than M2 regardless of the cost matrix
- Operational even in the case of very unbalanced distributions
 Without the perverse effects of the confusion matrix related to the need to carry out an assignment
- A graphical tool that allows you to visualize performance

 A single glance should allow us to see the model(s) that are likely to be of interest to us
- An associated synthetic indicator Easily interpretable

Its scope goes far beyond the interpretations (indicators) derived from the analysis of the confounding matrix.

Note on Discrete Classes

- TRADITION ... Show contingency table when reporting predictions of model.
- BUT ... probabilistic models do not provide discrete calculations of the matrix cells!!!
- IN OTHER WORDS ... Regression does not report the number of individuals predicted positive (e.g. has a heart attack) ... well, not really
- INSTEAD ... report probability the output will be certain variable (e.g. 1 or 0)

Visual Perspective

- Originated from signal detection theory
 - Binary signal corrupted by Guassian noise
 - What is the optimal threshold (i.e. operating point)?

- Dependence on 3 factors
 - Signal Strength
 - Noise Variance
 - Personal tolerance in Hit / False Alarm Rate

Receiver operator characteristic

- Summarize & present performance of any binary classification model
- Models ability to distinguish between false & true positives

Use Multiple Contingency Tables

- Sample contingency tables from range of threshold/probability.
- TRUE POSITIVE RATE (also called SENSITIVITY)

True Positives
(True Positives) + (False Negatives)

FALSE POSITIVE RATE (also called 1 - SPECIFICITY)

<u>False Positives</u>
(False Positives) + (True Negatives)

Plot Sensitivity vs. (1 – Specificity) for sampling and you are done

Framework for Using the ROC Curve

We are in a 2-class problem

In fact, in all cases where we have the possibility to define the modality (+) of the variable to be predicted

The prediction model provides P(Y=+/X)

Or any quantity proportional to P(Y=+/X) that will allow the observations to be classified

ROC Curve Principle

Confusion Matrix

	^positive	^negative
positve	TP	FN
Negative	FP	TN

ROC Curve Principle

P(Y=+/X) >= P(Y=-/X) Equivalent to an assignment rule P(Y=+/X) >= 0.5 (threshold = 0.5) This assignment rule provides an MC1 confusion matrix, and thus 2 TPR1 and FPR1 indicators

The idea of the ROC curve is to vary the "threshold" from 1 to 0 and, for each case, calculate the TPR and the FPR that are plotted in a graph: on the x-axis the FPR, on the y-axis the TPR.

ROC Curve Construction (1/2)

Construction de la courbe ROC (2/2) Mettre en relation FPR (x-axis) and TPR (y-axis)

Individu	Score (+)	Class	TFP	TVP		
		е				
			0	0.000		
1	1	+	0.000	0.167		
2	0.95	+	0.000	0.333		
3	0.9	+	0.000	0.500		
4	0.85	-	0.071	0.500		
5	0.8	+	0.071	0.667		
6	0.75	-	0.143	0.667		
7	0.7	-	0.214	0.667		
8	0.65	+	0.214	0.833		
9	0.6	-	0.286	0.833		
10	0.55	-	0.357	0.833		
11	0.5	-	0.429	0.833		
12	0.45	+	0.429	1.000		
13	0.4	-	0.500	1.000		
14	0.35	-	0.571	1.000		
15	0.3	-	0.643	1.000		
16	0.25	-	0.714	1.000		
17	0.2	-	0.786	1.000		
18	0.15	-	0.857	1.000		
19	0.1	-	0.929	1.000		
20	0.05	<u>-</u>	1.000	1.000		

Practical Calculation

FPR (i) = Number of negatives among the first "i's" / (total number of negatives)

TPR (i) = Number of positives among the first i's / (total number of positives)

ROC Curve

Interpretation: AUC, the area under the curve

AUC indicates the probability that the SCORE function will place a positive before a negative (best-case AUC = 1)

If SCORE randomly classifies individuals (i.e., the prediction model is useless), AUC = 0.5Symbolized by the main diagonal in the graph

AUC – Practical Calculation – Integration with the Trapezoid Method

Derived directly from the definition: surface = integral

Individu	Score (+)	Classe	TFP	TVP	Largeur	Hauteur	Surface
			0	0.000			
1	1	+	0.000	0.167	0.000	0.083	0.000
2	0.95	+	0.000	0.333	0.000	0.250	0.000
3	0.9	+	0.000	0.500	0.000	0.417	0.000
4	0.85	-	0.071	0.500	0.071	0.500	0.036
5	0.8	+	0.071	0.667	0.000	0.583	0.000
6	0.75	-	0.143	0.667	0.071	0.667	0.048
7	0.7	-	0.214	0.667	0.071	0.667	0.048
8	0.65	+	0.214	0.833	0.000	0.750	0.000
9	0.6	-	0.286	0.833	0.071	0.833	0.060
10	0.55	-	0.357	0.833	0.071	0.833	0.060
11	0.5	-	0.429	0.833	0.071	0.833	0.060
12	0.45	+	0.429	1.000	0.000	0.917	0.000
13	0.4	-	0.500	1.000	0.071	1.000	0.071
14	0.35	-	0.571	1.000	0.071	1.000	0.071
15	0.3	-	0.643	1.000	0.071	1.000	0.071
16	0.25	-	0.714	1.000	0.071	1.000	0.071
17	0.2	-	0.786	1.000	0.071	1.000	0.071
18	0.15	-	0.857	1.000	0.071	1.000	0.071
19	0.1	-	0.929	1.000	0.071	1.000	0.071
20	0.05	-	1.000	1.000	0.071	1.000	0.071
						AUC	0.881

$$AUC = \sum_{i} s_{i}$$

AUC = SUM (Trapezoid Area)

Sidebar: Use More Samples

(These are plots from a much larger dataset – See Malin 2005)

Theory: Model Optimality

- Classifiers on convex hull are always "optimal"
 - e.g. Net & Tree
- Classifiers below convex hull are always "suboptimal"
 - e.g. Naïve Bayes

Building Better Classifiers

- Classifiers on convex hull can be combined to form a strictly dominant hybrid classifier
 - ordered sequence of classifiers
 - can be converted into "ranker"

Some Statistical Insight

- Curve Area:
 - Take random healthy patient → score of X
 - Take random heart attack patient → score of Y
 - Area estimate of P[Y > X]
- Slope of curve is equal to likelihood:

P(score | Signal)
P(score | Noise)

- ROC graph captures all information in conting. table
 - False negative & true negative rates are complements of true positive & false positive rates, resp.

Can Always Quantify Best Operating Point

 When misclassification costs are equal, best operating point is ...

 45° tangent to curve closest to (0,1) coord.

 Verify this mathematically (economic interpretation)

Why?

Quick Question

- Are ROC curves always appropriate?
- Subjective operating points?
- Must weight the tradeoffs between false positives and false negatives
 - ROC curve plot is independent of the class distribution or error costs
- This leads into utility theory (not touching this today)

Equality of Opportunity (Hardt et al. method, 2016)

Principle

- This method, necessarily true as a postprocessing method, requires only knowledge about membership in a protected class as well as the predictions of a method.
- It then imposes a fairness model of equality of opportunity, meaning that for each group, of the individuals who should have a positive label (ground truth), their probability of having a positive label is the same.

How it works?

Definition 2.1 (Equalized odds). We say that a predictor \widehat{Y} satisfies *equalized odds* with respect to protected attribute A and outcome Y, if \widehat{Y} and A are independent conditional on Y.

$$\Pr\left\{\widehat{Y} = 1 \mid A = 0, Y = y\right\} = \Pr\left\{\widehat{Y} = 1 \mid A = 1, Y = y\right\}, \quad y \in \{0, 1\}$$
 (2.1)

Definition 2.2 (Equal opportunity). We say that a binary predictor \widehat{Y} satisfies *equal opportunity* with respect to A and Y if $\Pr{\widehat{Y} = 1 \mid A = 0, Y = 1} = \Pr{\widehat{Y} = 1 \mid A = 1, Y = 1}$.

Equal opportunity is a weaker, though still interesting, notion of non-discrimination, and can thus allows for better utility.

Definition 3.1 (Derived predictor). A predictor Y is derived from a random variable R and the protected attribute A if it is a possibly randomized function of the random variables (R,A) alone. In particular, \widetilde{Y} is independent of X conditional on (R,A).

In designing a derived predictor from binary \widehat{Y} and A we can only set four parameters: the conditional probabilities $p_{ya} = \Pr\{\widetilde{Y} = 1 \mid \widehat{Y} = a, A = a\}$. These four parameters, $p = (p_{00}, p_{01}, p_{10}, p_{11})$, together specify the derived predictor \widetilde{Y}_p . To check whether \widetilde{Y}_p satisfies equalized odds we need to verify the two equalities specified by (2.1), for both values of y. To this end, we denote

$$\gamma_a(\widetilde{Y}) \stackrel{\text{def}}{=} \left(\Pr\{\widetilde{Y} = 1 \mid A = a, Y = 0\}, \Pr\{\widetilde{Y} = 1 \mid A = a, Y = 1\} \right). \tag{3.1}$$

How it works?

The components of $\gamma_a(\widetilde{Y})$ are the *false positive rate* and the *true positive rate* within the demographic A=a. Following (2.1), \widetilde{Y} satisfies equalized odds iff $\gamma_0(\widetilde{Y})=\gamma_1(\widetilde{Y})$. But $\gamma_a(\widetilde{Y}_p)$ is just a linear function of p, with coefficients determined by the joint distribution of (Y,\widehat{Y},A) . Since the expected loss $\mathbb{E}\ell(\widetilde{Y}_p,Y)$ is also linear in p, we have that the optimal derived predictor can be obtained as a solution to the following linear program with four variables and two equality constraints:

$$\min_{p} \quad \mathbb{E}\ell(\widetilde{Y}_{p}, Y) \tag{3.2}$$

s.t.
$$\gamma_0(\widetilde{Y}_p) = \gamma_1(\widetilde{Y}_p)$$
 (3.3)

$$\forall_{y,a} 0 \leqslant p_{ya} \leqslant 1 \tag{3.4}$$

To better understand this linear program, let us understand the range of values $\gamma_a(\widetilde{Y}_p)$ can take:

Claim 3.2.
$$\{\gamma_a(\widetilde{Y}_p) \mid 0 \leqslant p \leqslant 1\} = P_a(\widehat{Y}) \stackrel{\text{def}}{=} \text{convhull } \{(0,0), \gamma_a(\widehat{Y})\gamma_a(1-\widehat{Y}), (1,1)\}$$

Figure 1: Finding the optimal equalized odds predictor (left), and equal opportunity predictor (right).

ROC: Rejection Optionbased Classification (Kamiran et al. method, 2012)

How to achieve independence?:

- algorithm postprocessing
- data preprocessing (representation/feature learning)
- e.g., information theory approach

```
Z = \phi(X, A), with \max I(X; Z) and \min I(A; Z)
```

then use $\hat{Y} = g(Z, A)$ rather than $\hat{Y} = g(X, A)$.

Problems:

- ightharpoonup ignores possible correlations between Y and A
- ► Example: since more male SWE than female SWE, even with Z independent of A, Y relates highly to A.
 - \Rightarrow Perfect predictor $\hat{Y} = Y$ unreachable.
- randomly $(\hat{Y} = 1)$ to avoid discrimination!)

Postprocessing: ROC curve (receiver operator curve)

• choose decision threshold r such that (recall R = r(X, A))

$$\mathbb{P}(r(X, A = a) > r \mid Y = y, A = a) = \mathbb{P}(r(X, A = b) > r \mid Y = y, A = b)$$

- ▶ ⇒ crossing point of two conditional decision rules in ROC curve.
- **Careful!** Requires score reparametrization or different thresholds $R > r_a \mid A = a$.

Reparametrization: assume two intersecting ROC curves

$$f_a(r) = (x_a(r), y_a(r)) = (\operatorname{FAR}_a(r), \operatorname{CDR}_a(r)) \quad \text{for} \quad r = r(X, A = a)$$

$$f_b(r) = (x_b(r), y_b(r)) = (\operatorname{FAR}_b(r), \operatorname{CDR}_b(r)) \quad \text{for} \quad r = r(X, A = b)$$
(in particular, $f_c(0) = 0$, $f_c(1) = 1$)

intersection defined as

$$f_a(r_1) = f_b(r_2)$$
 for some r_1, r_2 .

- ▶ Unlikely that $r_1 = r_2!$ Depends on parametrization.
- Reparametrization: When intersecting couple (r_1, r_2) found, scale parameters $r \to r' = h(r)$ so that $f_a \to f_a'$, $f_b \to f_b'$ and

$$f'_a(r) = f_a(h(r_1)) = f_a(r_1) = f_b(r_2) = f_b(h_b(r)) = f'_b(r).$$