A Post-Quantum Oblivious PRF from Isogenies

Andrea Basso

Oblivious PRF

- Password-checking in Microsoft Edge
 - •OPAQUE

• ,,,,,

- Privacy pass
- Private-set intersection
 Adaptive OT

HashDH OPRF

- Server doesn't learn
 anything
 Output is
 deterministic
 deterministic
- Client only learns one output -

Post-quantum OPRFs

 Generic MPC techniques many rounds (≥ 5) round optimal VOPRF based on lattices [ADDS19] • feasibility result (> 2⁴⁰ bits of comms) six rounds VOPRF based on SIDH [BKW20] broken by attack on PR and on SIDH three rounds (OT required) OPRF based on CSIDH [BKW20] CSIDH parameters?

The original OPRF [BKW20]

$$F(k, m) = H(m, j_{mk}, E')$$

Breaking pseudorandomness [BKMPS21]

Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

Part 2

- Repeat the attack 3 times
- Find a basis on E_k
- Evaluate the PRF on any message

Countermeasures?

It seems hard to prevent an attacker from recovering a basis on Ek

Idea: make the basis on Ek not enough for an attack

An efficient countermeasure

[BKM20]

 $Ker = \langle P + H(m)Q \rangle$ E_m Attacker recovers $P', Q' \text{ on } E_k$ Can evaluate the PRFon any message

Our countermeasure

Preventing the SIDH attacks

First attempt

SIDH attacks requires N torsion to recover a N² - degree isogeny

not really an OPRF

SIDH countermeasures

only works for one party

• Longer isogenies

Masked-degree isogenies [Mor22]
 hard to build proofs

Masked torsion points [Fou22]

it works

large prime

needs new PolK

PolK with masked torsion

challenges from {-1, 0, 1}

soundness error = 2/3 \rightarrow need 1.7λ repetitions

 $a = a_1 \times a_2 \times a_3$

Verifiability

[BKW20] uses 3 proofs:

Interactive (5 rounds)

Putting it all together

- Pseudorandomness countermeasure more efficient than original
- SIDH counteremeasures would require p ≈ 26000
- New SIDH proof requires a larger prime requires p ≈ 29000
- New Popi more efficient than original round optimal

Protocol	Rounds	Bandwidth (avg.)	Verifiable	Secure
[ADDS21] (LWE)	2	>128 GB	✓	✓
[BKW20] (SIDH)	6	1.4 MB		X
[BKW20] (CSIDH)	3	$424~\mathrm{kB}$	X	
[This work]	2	1.9 MB		