ÜK 340 - Zusammenfassung

Stand vom: 15.11.2021 bis 23.11.2021

<u>Inhaltsverzeichnis</u>

Virtualisierung	3
Definition	3
Gründe	3
Schwierigkeiten	3
Hypervisor Typen	4
Unterschied	4
Grafik	4
Container Virtualisierung	5
Cluster	5
Netzwerk-Virtualisierung	6
Aufbau	6
vSwitch (iSCSI, FC, External)	6
VLAN	6
Definition	6
Vorteile	6
Desktop-Virtualisierung	8
Vorteile	8
Mechanismen	8
Applikations-Virtualisierung	8
Vorteile	8
Grenzen	8
Verteilung am Markt	9
Unternehmensstrategie	9
Virtualisierungsstrategie - Grafik	9
Snapshot vs. Backup	10
Grafik - Snapshot	10
Unterschied	10
VDI vs. RDS	10
Definition	10
Grafik	10
Fallstudie	11
Vorgehen	11
Beinhaltung	11
Beispiel-Grafik	11
Definitionen	12

Virtualisierung

Definition

- physische Komponenten werden virtuell abgebildet
- effizientere Ressourcennutzung (Teilen von Ressourcen)
- Konsolidierung von Lizenzen
- Zusammenfassen und Aufteilen von Systemen

Gründe

effiziente Ressourcennutzung	ganze Serversysteme einsparen
Kostenkonsolidierungen	 Hardware → weniger Server Energie → Kühlenergie einsparen Platz sparen Lizenzen → weniger Lizenzen für physische Cores gemeinsame Nutzung von Hardware
Skalierbarkeit	schnelle BereitschaftManagement und Überwachung wird vereinfacht

Schwierigkeiten

- Lizenzierung muss im Voraus genau gerechnet werden (manche Anwendungen sind virtualisiert teurer)
- Hersteller-Wahl kann in der Auswahl der Umsysteme und Technologie einschränken
- Legacy-Applikationen k\u00f6nnen teilweise nicht auf virtualisierten Umgebungen betrieben werden
 - (z.B. mit Hardware-Abhängigkeiten)
- Latenzzeiten unvorhersehbar, da viele verschiedene VMs auf einem Hypervisor laufen

Hypervisor Typen

Unterschied

Typ 1	Тур 2
 VMs laufen isoliert voneinander Hypervisor läuft direkt auf der Hardware Verwaltung über Domain 0 (nicht AD!) Hypervisor verfügt über die notwendigen Gerätetreiber, um Ressourcen zur Verfügung zu stellen z.B. ESXi, Hyper-V Server, XenServer 	 VMs laufen isoliert voneinander Hypervisor läuft auf einem OS auf der Hardware Verwaltung über Host-Betriebssystem Hypervisor nutzt die Gerätetreiber des Betriebssystems, um Ressourcen zur Verfügung zu stellen z.B. VMware Workstation, Oracle VirtualBox

Grafik

Container Virtualisierung

- eine Form der Betriebssystem-Virtualisierung
- bessere Ressourceneinteilung und Accounting
- kurze Zeit fürs Deployment
- bei Container werden lediglich die einzelnen Applikationen & Services virtualisiert
- bspw. Docker liefert fixfertige Images f
 ür Container

Cluster

Netzwerk-Virtualisierung

Aufbau

vSwitch (iSCSI, FC, External)

- external → Verbindung zum physischen Netzwerk (VM-physischer Adapter)
- internal → Verbindung bis zum Host (VM-VM-Host)
- private → Verbindung nur zwischen virtuellen Maschinen (VM-VM)

Aufteilung des Netzwerks

- aufgrund von Perfomance (Netzwerk für...)
 - o Hypervisor Management
 - Speicheranbindung
 - virtuelle Maschinen
 - Live Migration
 - Cluster Shared Volumes (bei Hyper-V Cluster)
- Erhöhung des Durchsatzes mit direkter Zuweisung einer Netzwerkkarte zu einer VM

VLAN

Definition

VLAN steht für Virtual Local Area Network. Wie der Name schon sagt, handelt es sich dabei um ein virtuelles, isoliertes Teilnetzwerk über einen oder mehrere Switches.

Vorteile

- erhöhte Flexibilität
- erhöhte Perfomance
- Senkung von Kosten
- einfachere Verwaltung des Netzwerkes

BYOD Integration

Voraussetzungen

- Netzwerk
- VDI / RDS
- Verantwortlichkeit
 - o Support
 - Diebstahl
- Mindestanforderungen

Desaster Recovery

Voraussetzungen

- Hardware
- Full-Backup
- kompetentes Fachpersonal
 - o genügend Freigabe / Zugriff
 - o Handbuch / Dokumentationen...

Desktop-Virtualisierung

Vorteile

- Arbeitsplatz flexibel
- IT-Investition überschaubar, planbar
- private Endgeräte einfach integrierbar
- Ausfallschutz gewährleistet

Mechanismen

Es gibt 2 verschiedene Mechanismen: Host-basiert & Client-basiert

Es gibt Host-basierte: VMs (VDI) & Sessions (RDS)

Virtual Desktop Infrastructure (VDI)

Remote Desktop Services (RDS)

Applikations-Virtualisierung

Vorteile

- Betrieb von Legacy Applikationen
- einfache Aktualisierung von Anwendungen
- Sparen von Ressourcen
- Erhöhung der Sicherheit durch Isolation

Grenzen

- spezielle Gerätetreiber nicht virtualisierbar
- Anwendungen, welche sehr eng mit dem Betriebssystem gekoppelt sind
- Lizenzierung für Virtualisierung muss durch Hersteller unterstützt sein

Verteilung am Markt

Unternehmensstrategie

Virtualisierungsstrategie - Grafik

Snapshot vs. Backup

Unterschied

Während **Backups Kopien** der Daten sind, die gesichert werden sollen, sind **Snapshots** nur eine **systemseitige Verlinkung** der geänderten Blöcke zur originalen Datei.
Die Daten werden also nicht wie beim Backup dupliziert, sondern sind lediglich eine Art **Änderungsprotokoll**.

Backups werden zudem **extern** gelagert, wobei **Snapshots** direkt **auf** dem **System** gespeichert werden.

Wenn das System **gelöscht** wird sind jegliche **Snapshots**

Grafik - Snapshot

VDI vs. RDS

Definition

VDI stellt für jeden Nutzer eine **separate** virtuelle Maschine (**VM**) zur Verfügung und verwendet darin ein **Desktop-Betriebssystem**. Die Anwender sind dabei voneinander **isoliert**.

Bei **RDS teilen** sich die User eine **VM**, welche ein **Server-Betriebssystem** am Laufen hat. Auch hier sind die Anwender voneinander **isoliert**.

Grafik

Fallstudie

Vorgehen

- Analyse
- Design
- Planung
- Umsetzung (nur auf Papier)

Beinhaltung

- eine Prosabeschreibung der Lösung
- Grafik mit verwendeten Ressourcen und deren Abhängigkeiten
- Detailbeschreibung, wie die verschiedenen Technologien eingesetzt werden und die Benutzer auf diese Services zugreifen
- nachvollziehbare Ressourcenberechnungen (inkl. Redundanz)
 - o pro User:
 - 1x CPU
 - 2GB RAM
 - 20GB Storage
- gezielter Einsatz von Zusatztechnologien:
 - o Applikations-Virtualisierung
 - Desktop-Virtualisierung

Beispiel-Grafik

Definitionen

	Ein Hypervisor ist eine Software die virtuelle Maschinen (VMs) erstellt und ausführt . Er isoliert das Betriebssystem
Hypervisor	und die Ressourcen von den VMs und ermöglicht die Erstellung und Verwaltung dieser.
Hyper-V	Hyper-V ist eine Virtualisierungstechnik von Microsoft.
RPO	Das Recovery Point Object (RPO) befasst sich mit dem Datenverlust und hilft bei der Entwicklung einer Backup-Strategie .
RTO	Das Recovery Time Objective (RTO) befasst sich mit der Zeit bis zur Wiederherstellung und hilft bei der Entwicklung einer Disaster-Recovery-Strategie .
НВА	Ein Host-Bus-Adapter ist eine Hardwareschnittstelle , welches ein Computersystem mit internen und externen
	Geräten wie beispielsweise Speicher - oder Netzwerkgeräte verbindet. Bei einem Server bspw. für Fibre Channel .
NAS	Das Network Attached Storage (NAS) ist ein Speichertyp welcher netzwerktechnisch erschlossen wird, weshalb es
	eher langsam ist. Dafür kann jeder im Netzwerk darauf zugreifen . Das Aufsetzen ist simpel, sogar ein Laie kann dies tun.
SAN	Ein Storage Area Network (SAN) ist ein in sich eigenes Speichernetzwerk . Der Zugriff ist lediglich dann möglich, wenn man sich in diesem befindet. Es werden viele
	Komponenten vorausgesetzt, weshalb es auch eher schnell ist. Ein vSAN ist eine logische Darstellung eines solchen Speichernetzwerkes. Der Laie kann kein SAN einrichten.
DAS	Ein Direct Attached Storage (DAS) ist direkt per Kabel am physischen Gerät verbunden. Es ist also quasi, wie eine
	festeingebundene Festplatte , weshalb es im Diskmanager auch so angezeigt wird. Dadurch ist ein DAS eher schnell , jedoch auch aufwendiger als ein NAS. Zudem wird ein HBA benötigt.
Guest Tools	Guest Tools sind Tools , welche die Verwaltung sowie den Zugriff einer VM vereinfachen . Sie sind quasi Treiber ,
	welche dafür sorgen, dass die Anzeige automatisch skaliert wird, Copy & Paste möglich ist oder um Drag & Drop möglich zu machen.
Memory Ballooning	Memory Ballooning ist eine Technik der Virtualisierung, um die Belegung von ungenutztem Arbeitsspeicher durch virtuelle Maschinen zu vermeiden und eine Überbuchung
	zu ermöglichen.