MTAT.05.008 Fou Math

Assoc. Prof. Dirk Oliver Theis

Homework #03

Handed out: 3 Oct, 2022

Due: 17 Oct, 2022

In TeX as PDF by email to dotheis@ut.ee

Subject: FOUMATH-HW03-lastname

Multiplication with Special Matrices

You should thoroughly understand and memorize all the facts you're asked to figure out on this problem sheet.

Problem 1

For given $\alpha \in \mathbb{C}$, $n \in \mathbb{N}$, $k_0, \ell_0 \in \{1, ..., n\}$, $k_0 \neq \ell_0$, consider the following matrix, $E^{(k_0, \ell_0)}$:

$$E_{k,\ell}^{(k_0,\ell_0)} = egin{cases} 1, & ext{if } k=\ell; \ lpha & ext{if } k=k_0 ext{ and } \ell=\ell_0; \ 0, & ext{otherwise}. \end{cases}$$

Describe the effects of the following matrix multiplications, in one sentence each.

- (a) Multiplying E^* on the left to a generic complex n-by-m matrix X, i.e., $Y=E^{(k_0,\ell_0)}\cdot X;$
- (b) Multiplying E^* on the right to a generic complex m-by-n matrix X, i.e., $Y = X \cdot E^{(k_0,\ell_0)}$.

Problem 2

A positive integer $n \in \mathbb{N}$ and a permutation π on $\{1, \ldots, n\}$ (i.e., $\pi \colon \{1, \ldots, n\} \to \{1, \ldots, n\}$ is a bijection) are given. Consider the following matrix, $E^{(\pi)}$:

$$E_{k,\ell}^{(\pi)} = \begin{cases} 1, & \text{if } k = \pi(\ell); \\ 0, & \text{otherwise.} \end{cases}$$

Describe the effects of the following matrix multiplications, in one sentence each.

- (a) Multiplying E^* on the left to a generic complex n-by-m matrix X, i.e., $Y=E^{(\pi)}\cdot X;$
- (b) Multiplying E^* on the right to a generic complex m-by-n matrix X, i.e., $Y = X \cdot E^{(\pi)}$.

Problem 3

With the notations of Problem 2, for two permutations π, σ describe the matrix $E^{(\pi)} \cdot E^{(\sigma)}$.

Problem 4

Consider the $(n \times n)$ -matrix A which has, as its diagonal entries $A_{1,1} = \lambda_1$, ..., $A_{n,n} = \lambda_n$, for complex numbers $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$; all non-diagonal entries of A are zero.

Describe the matrix $B := A^r$, for each $r = 0, 1, 2, \ldots$