1 Introdução

- 1. Descreva a definição de aprendizado de máquinas segundo Arthur Samuel.
- 2. Descreva a definição de aprendizado de máquinas segundo Tom Mitchell.
- Dê exemplos de aplicações de algoritmos de aprendizado de máquinas no seu dia-a-dia.
- 4. Quais as diferenças e relações entre aprendizado de máquinas, deep learning, inteligência artificial e ciência de dados?
- 5. O que é aprendizado supervisionado? Dê exemplos.
- 6. O que é aprendizado não supervisionado? Dê exemplos.

2 Regressão Linear

- Descreva matematicamente a função de custo da regressão linear, definindo cada elemento envolvido.
- Descreva matematicamente o algoritmo geral do gradiente descendente, definindo cada elemento envolvido.
- 3. Comente sobre as formas de atualização dos parâmetros no gradiente descendente (atualização síncrona e assíncrona).
- 4. Descreva matematicamente o algoritmo do gradiente descendente no caso específico da regressão linear, definindo cada elemento envolvido.
- 5. Deduza matematicamente a expressão do gradiente descendente na regressão linear.
- 6. O que é gradiente descendente em batch?
- 7. Descreva a vetorização da regressão linear.
- Descreva matematicamente o algoritmo do gradiente descendente no caso específico da regressão linear multivariada, definindo cada elemento envolvido.
- 9. Comente sobre as condições assumidas para que o algoritmo da regressão linear seja eficaz.
- 10. Defina os conceitos de *scaling* e *z-score* de atributos e comente sobre as situações mais adequadas para cada abordagem.
- 11. Descreva um procedimento para se obter uma taxa de aprendizado adequada no gradiente descendente da regressão linear. Qual a relação entre a taxa de aprendizado e um aumento ou flutuação no valor do custo?

- 12. Como o algoritmo da regressão linear pode ser adaptado para problemas não lineares?
- 13. Descreva matematicamente o método da equação normal para resolver o problema da regressão linear, definindo cada elemento envolvido.
- 14. Comente sobre os prós e contras do uso de gradiente descendente e equação normal na regressão linear. Quando é recomendável usar cada um desses métodos?
- 15. Quais as causas e solução para uma matriz $\mathbf{X}^T\mathbf{X}$ singular na equação normal?
- 16. Considere os seguintes dados tabelados:

x_1	x_2	y
0.1	0.3	2.5
0.6	-0.2	2.3
0.4	0.5	2.7

Obtenha θ_0 , θ_1 e θ_2 de um modelo de regressão linear $y \approx \theta_0 + \theta_1 x_1 + \theta_2 x_2$ fazendo duas iterações do gradiente descendente e iniciando com $\theta_0 = \theta_1 = \theta_2 = 0$.

17. Resolva o item anterior usando equações normais.