Algebra liniowa z geometrią 2

1 Terminy kolowium

- 12.04 pierwszy semestr
- 24.05 drugi semestr (1-11) Jurlewicz

2 Przestrzenie wektorowe

Uwagi: (V, K, \oplus, \odot) - przestrzeń wektorowa

- 1. Elementy ciala K nazywamy **skalarami**, a elementy zbioru V **wektorami**.
- 2. Dla uproszczenia zapisu na skalarach i wektorach działania będziemy oznaczali $+, \cdot$.
- 3. Gdy $K = \mathbb{R}$, to przestrzeń wektorowa $(V, \mathbb{R}, +, \cdot)$ nazywamy rzeczywistą.
- 4. Gdy $K = \mathbb{C}$, to $(V, \mathbb{C}, +, \cdot)$ nazywamy zespoloną.
- 5. Zamiast pisać $(V,K,+,\cdot)$ często piszemy "V jest przestrzenią wektorową".
- 6. Jeśli $x, y \in V$, to zapis x y oznaczamy x + (-y), gdzie -y jest elementem przeciwnym w grupie addytywnej (V, +).
- 7. Element neutralny w grupie (V, +) oznaczamy Θ i nazywamy wektorem zerowym.

Przykład 2.1.

 $(\mathbb{R}^N = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{N}, \mathbb{R}, \oplus, \odot)$ jest przestrzenią wektorową, gdzie działania są zdefiniowane następująco:

$$\forall x = (x_1, \dots, x_N), y = (y_1, \dots, y_N) \in \mathbb{R}^N :$$

$$x \oplus y := (x_1 + y_1, x_2 + y_2, \dots, x_N + y_N) \in \mathbb{R}^N$$

$$\forall \alpha \in \mathbb{R}, \forall x = (x_1, \dots, x_N) \in \mathbb{R}^N :$$

$$\alpha \odot x := (\alpha x_1, \dots, \alpha x_N) \in \mathbb{R}^N.$$

Przykład 2.2.

K - dowolne ciało $(K^N = \underbrace{K \times \ldots \times K}_N, \mathbb{R}, \oplus, \odot)$ - przestrzeń wektorowa z działaniami:

$$\forall x = (x_1, \dots, x_N), y = (y_1, \dots, y_N) \in K^N :$$

$$x \oplus y := (x_1 + y_1, x_2 + y_2, \dots, x_N + y_N)$$

$$\forall \alpha \in K, \forall x = (x_1, \dots, x_N) \in K^N :$$

$$\alpha \odot x := (\alpha x_1, \dots, \alpha x_N).$$

- 3 Podprzestrzenie wektorowe
- 4 Liniowa niezależność wektorów
- 5 Baza
- 6 Wymiar przestrzeni wektorowej

Twierdzenie 6.1. Wszystkie bazy danej przestrzeni wektorowej są równoliczne.

Wniosek. (twierdzenie Steinera)

Jeśli pewna baza przestrzeni V ma n elementów, to każda inna baza tej przestrzeni ma też n elementów.

Definicja 6.1.

- Jeśli przestrzeń wektorowa V ma skończoną bazę, to mówimy, że jest skończenie wymiarowa i oznaczamy dimV.
- Jeśli przestrzeń V ma nieskończoną bazę, to mówimy, że jest nieskończenie wymiarowa i wówczas oznaczamy $\dim V = \infty$.

Uwaga: Powyższa definicja jest poprawna ponieważ wszystkie bazy są równoliczne.

Twierdzenie 6.2.

Założenia: V w przestrzeni wektorowej, $V_1 \subseteq V$ - podprzestrzeń **Teza:**

- 1. $dimV_1 \leq dimV$
- 2. Jeśli $dimV_1 = dim < \infty$, to $V = V_1$??

Dowód:

- 1. Niech B będzie bazą $V_1 \implies dimV_1 = \#B$ $\implies B$ jest zbiorem wektorów liniowo niezależnych w V $\implies B$ można rozszerzyć do bazy $A \supseteq B \le V$ $dimV = \#A > \#B = dimV_1$
- 2. Niech B będzie bazą w V_1 $\implies B$ mogę rozszerzyć do bazy $A \ge B$ w Vale $\#A = \#B < \infty \implies A = B$

$$V_1 = lin(B) = lin(A) = V$$