Homework No.4 (MSDS 954:567)

Spring 2022

Due date: 5/3/2022

Problem 1. Let X_1, X_2, \dots, X_6 be a sequence of independent, identically distributed Bernoulli random variables with parameter θ , and suppose we observe $x_1 = x_2 = x_3 = x_4 = x_5 = 1$ and $x_6 = 0$. Derive the posterior probabilities for Model 0 (M_0) : $\theta = \frac{1}{2}$ and Model 1 (M_1) : $\theta > \frac{1}{2}$, assuming the following prior distributions:

- (a) $P(M_0) = 0.5$, $P(M_1) = 0.5$, $\pi_1(\theta) = 2$; $\theta \in (\frac{1}{2}, 1)$.
- (b) $P(M_0) = 0.8$, $P(M_1) = 0.2$, $\pi_1(\theta) = 8(1 \theta)$; $\theta \in (\frac{1}{2}, 1)$.
- (c) $P(M_0) = 0.2$, $P(M_1) = 0.8$, $\pi(\theta) = 48(\theta \frac{1}{2})(1 \theta)$; $\theta \in (\frac{1}{2}, 1)$.

In addition, compute the Bayes factor of Model 0 versus Model 1 in (a)-(c).

[Remark: Use paper and pencil to solve this problem, write down the detailed calculation process.]

Problem 2. Write your OWN code to simulate 100 samples from

- (a) Exponential distribution: $Exp(\lambda)$ with $\lambda = 2.8$.
- (b) Normal distribution using BOTH Box-Muller transformation AND central limit theorem: $N(\mu, \sigma^2)$ with (a) $(\mu, \sigma^2) = (0, 1)$ and (b) $(\mu, \sigma^2) = (3.5, 2)$.
- (c) Log-normal distribution $LN(\mu, \sigma^2)$ with (a) $(\mu, \sigma^2) = (0, 1)$ and (b) $(\mu, \sigma^2) = (-4, 2)$.
- (d) Binomial Distribution: Binomial(n, p) with n = 10, p = 0.24.

In each case, plot the density of sample sets to illustrate (validate) your simulated samples.

For part (b), read the attached slides to learn the two methods.

[Remark: Use a computer to simulate those data; explain your code and results carefully]

Problem 3. Write a computing code and use the rejection sampling method to simulate a set of 150 samples from the following distribution with density

$$f(x) = \begin{cases} \frac{1}{c}\phi(x)(1-\sin(20x)/4), & \text{if } |x| < 3\\ 0, & \text{if } |x| > 3. \end{cases}$$

where $\phi(x)$ is the density function of standard normal distribution N(0,1) and $c = \int_{-3}^{3} \phi(x) (1 - \sin(20x)/4) dx$. Draw the density of those 150 samples.

[Remark: Use a computer to simulate those data; explain your code and results carefully]