Polynésie. 2016. Enseignement de spécialité. Corrigé

EXERCICE 1

Partie A

- 1) Pour tout réel positif t, C'(t) est le coefficient directeur de la tangente à la courbe \mathscr{C} au point d'abscisse t. Sur la courbe \mathscr{C}_1 ou sur la courbe \mathscr{C}_2 , le coefficient directeur le plus grand est celui de la tangente en le point de coordonnées (0,0). Donc, la vitesse d'apparition dans le sang est maximale à l'instant t=0 c'est-à-dire au moment où l'individu ingère l'alcool.
- 2) Le coefficient directeur de la tangente à \mathcal{C}_1 en le point de coordonnées (0,0) est plus grand que le coefficient directeur de la tangente à \mathcal{C}_2 en ce même point. Donc, la personne P_1 subit plus vite les effets de l'alcool que la personne P_2 . La personne la plus corpulente est donc la personne P_2 .
- 3) a) La fonction f est dérivable sur $[0, +\infty[$ en tant que produit de fonctions dérivables sur $[0, +\infty[$ et pour tout réel $t \ge 0$,

$$f'(t) = A(1 \times e^{-t} + t \times (-1)e^{-t}) = A(1-t)e^{-t}.$$

En particulier, $f'(0) = A(1-0)e^0 = A$.

b) Plus A est grand, plus vite la personne subit les effets de l'alcool et donc moins la personne est corpulente. L'affirmation de l'énoncé est fausse.

Partie B. Un cas particulier

1) D'après le calcul effectué à la question précédente, pour tout réel $t \ge 0$,

$$f'(t) = 2(1-t)e^{-t}$$
.

Pour tout réel $t \ge 0$, $2e^{-t} > 0$ et donc, pour tout réel $t \ge 0$, le signe de f'(t) est le signe de 1 - t. On en déduit le tableau de variations de la fonction f.

t	0		1		$+\infty$
f'(t)		+	0	_	
f	0-	/	2e ^{−1} .	\	/

- 2) La concentration d'alcool dans le sang de Paul est maximale 1 heure après l'ingestion de l'alcool. La valeur maximale de cette concentration est $2e^{-1}$ gramme par litre soit 0,74 gramme par litre en arrondissant à 10^{-2} .
- 3) D'après un théorème de croissances comparées, $\lim_{t\to+\infty}\frac{e^t}{t}=+\infty$. Or, pour tout réel strictement positif t,

$$f(t) = 2te^{-t} = 2 \times \frac{t}{e^t} = 2 \times \frac{1}{e^t/t}.$$

$$\mathrm{Puisque} \ \lim_{t \to +\infty} \frac{e^t}{t} = +\infty, \ \mathrm{on} \ \mathrm{a} \ \lim_{t \to +\infty} \frac{1}{e^t/t} = 0 \ \mathrm{puis} \ \lim_{t \to +\infty} f(t) = 2 \times 0 = 0.$$

Ceci signifie qu'après un très long moment, l'alcool a presque complètement disparu dans le sang.

4) a) La fonction f est continue sur [0,1]. De plus, f(0)=0 et donc f(0)<0,2 et aussi $f(1)=2e^{-1}=0,7...$ et donc f(1)>0,2. D'après le théorème des valeurs intermédiaires, il existe un réel t_1 dans [0,1] et même [0,1] tel que $f(t_1)=0,2$.

De même, la fonction f est continue sur $[1, +\infty[$ avec f(1) > 0, 2 et $\lim_{t \to +\infty} f(t) < 0, 2$. D'après une généralisation du théorème des valeurs intermédiaires, il existe un réel t_2 dans $[1, +\infty[$ et même $]1, +\infty[$ tel que $f(t_2) = 0, 2$.

b) Puisque la fonction f est strictement décroissante sur $[1, +\infty[$, pour t dans $[1, +\infty[$, si $t < t_2$, alors f(t) > 0, 2 et si $t > t_2$, alors f(t) < 0, 2. Paul devra donc attendre t_2 heures avant de reprendre le volant.

La calculatrice fournit $f(3,57)=0,201\ldots$ et $f(3,58)=0,19\ldots$ On en déduit que $3,575< t_2 < 3,58$ ou encore 3 h 34,5 min $< t_2 < 3$ h 34,8 min. Donc, $t_2=3$ h 35 min arrondi à la minute la plus proche.

5) a) $\lim_{t\to+\infty} f(t) = 0$. Donc, il existe un intervalle de la forme $[T, +\infty[$ tel que pour $t \in [T, +\infty[$, $f(t) < 5 \times 10^{-3}$. A partir de l'instant T (et peut-être même avant), la concentration d'alcool dans le sang n'est plus détectable.

b) Tableau complété.

	Initialisation	Étape 1	Étape 2	Étape 3	Étape 4	Étape 5	Étape 6	Étape 7	Étape 8
р	0, 25	0, 25	0, 25	0, 25	0, 25	0, 25	0, 25	0, 25	0, 25
t	3,5	3,75	4	4, 25	4,5	4,75	5	5, 25	5,5
С	0, 21	0, 18	0, 15	0, 12	0, 10	0,08	0,07	0,06	0,04

L'algorithme affiche alors 5,5 qui est un temps, exprimé en heures, à partir duquel la quantité d'alcool dans le sang n'est plus détectable. Plus précisément, l'algorithme affiche une valeur approchée à 0,25 près du temps, exprimé en heures, à partir duquel la quantité d'alcool dans le sang n'est plus détectable.

EXERCICE 2

1) Dans la case C2, on a écrit

$$=$$
B2+2*A2 \wedge 2+3*A2+5

et dans la case B3, on a écrit

$$=2*B2+2*A2\wedge2-A2$$

- 2) La colonne C nous permet de conjecturer que la suite $(v_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme 7 et de raison 2. Montrons ce résultat.
 - $v_0 = u_0 + 5 = 2 + 5 = 7$.
 - Soit $n \ge 0$.

$$\begin{split} \nu_{n+1} &= u_{n+1} + 2(n+1)^2 + 3(n+1) + 5 = u_{n+1} + 2n^2 + 4n + 2 + 3n + 3 + 5 = u_{n+1} + 2n^2 + 7n + 10 \\ &= 2u_n + 2n^2 - n + 2n^2 + 7n + 10 = 2u_n + 4n^2 + 6n + 10 \\ &= 2\left(\nu_n - 2n^2 - 3n - 5\right) + 4n^2 + 6n + 10 \\ &= 2\nu_n. \end{split}$$

Donc, la suite $(v_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme $v_0=7$ et de raison q=2. On en déduit que pour tout entier naturel n,

$$v_n = v_0 \times q^n = 7 \times 2^n,$$

puis que

$$u_n = v_n - 2n^2 - 3n - 5 = 7 \times 2^n - 2n^2 - 3n - 5.$$

Pour tout entier naturel n, $u_n = 7 \times 2^n - 2n^2 - 3n - 5$.

EXERCICE 3

Partie A

1) On sait que pour tout réel $t \ge 0$,

$$P(T \le t) = \int_0^t \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^t = -e^{-\lambda t} - \left(-e^0 \right) = 1 - e^{-\lambda t} = 1 - e^{-0.2t}.$$

Par suite,

$$P(T \le 3) = 1 - e^{-0.2 \times 3} = 1 - e^{-0.6} = 0.451 \text{ arrondi à } 10^{-3}.$$

2) Soit t un réel positif.

$$\begin{split} P(T\leqslant t) = 0,95 &\Leftrightarrow 1-e^{-0,2t} = 0,95 \Leftrightarrow -e^{-0,2t} = -0,05 \Leftrightarrow e^{-0,2t} = 0,05 \\ &\Leftrightarrow -0,2t = \ln(0,05) \Leftrightarrow t = -\frac{\ln(0,05)}{0,2} \Leftrightarrow t = 14,9\dots \\ &\Leftrightarrow t = 15 \text{ min arrondi à la minute.} \end{split}$$

Le groupe doit attendre 15 minutes arrondi à la minute pour avoir une probabilité de 0,95 de voir une nouvelle étoile filante.

3) On sait que l'espérance de T est $\frac{1}{\lambda}$ c'est-à-dire 5. Ceci signifie qu'il s'écoule en moyenne 5 minutes entre deux apparitions d'étoiles filantes ou encore que dans chaque intervalle de temps de 5 minutes, le groupe voit en moyenne une étoile filante. Comme 2 heures sont égales à 24 intervalles de temps de 5 minutes, on peut estimer à 24 en moyenne le nombre d'étoiles filantes vues par le groupe pendant 2 heures (et pas à 25 car le début de la sortie n'a aucune raison de coïncider avec l'apparition d'une étoile filante).

Partie B

1) Notons N l'événement « la personne est un nouvel adhérent » et T l'événement « la personne possède un télescope personnel ».

L'énoncé fournit $P(N)=0,64,\ P\left(\overline{N}\cap T\right)=0,27$ et $P_{N}\left(\overline{T}\right)=0,65.$ La probabilité demandée est P(T)

Tout d'abord,
$$P_{\overline{N}}(T) = \frac{P\left(\overline{N} \cap T\right)}{P\left(\overline{N}\right)} = \frac{0.27}{1-0.64} = \frac{0.27}{0.36} = 0.75$$
. Ensuite, $P\left(\overline{N}\right) = 1 - P(N) = 1 - 0.64 = 0.36$ et $P_{N}(T) = 1 - P_{N}(\overline{T}) = 1 - 0.65 = 0.35$. D'après la formule des probabilités totales,

$$P(T) = P(N) \times P_{N}\left(T\right) + P\left(\overline{N}\right) \times P_{\overline{N}}(T) = 0,64 \times 0,35 + 0,36 \times 0,75 = 0,494.$$

2) La probabilité demandée est $P_T(N)$.

$$P_T(N) = \frac{P(N \cap T)}{P(T)} = \frac{P(N) \times P_N(T)}{P(T)} = \frac{0,64 \times 0,35}{0,494} = 0,453 \text{ arrondi à } 10^{-3}.$$

Partie C

Sous l'hypothèse que p=0,5, déterminons un intervalle de fluctuation au seuil 95%. On note que n=100 et donc $n \ge 30$ puis np=n(1-p)=50 et donc $np \ge 5$ et $n(1-p) \ge 5$. Un intervalle de fluctuation au seuil 95% est

$$\left[p - 1,96\sqrt{\frac{p(1-p)}{n}}; p + 1,96\sqrt{\frac{p(1-p)}{n}} \right] = \left[0,5 - 1,96\sqrt{\frac{0,5 \times 0,5}{100}}; 0,5 + 1,96\sqrt{\frac{0,5 \times 0,5}{100}} \right]$$

$$= \left[0,5 - 1,96\frac{0,5}{10}; 0,5 + 1,96\frac{0,5}{10} \right] = [0,402;0,598].$$

La fréquence observée est f=0,54. f appartient à l'intervalle de fluctuation. Le résultat du sondage ne l'amène pas à changer d'avis.

EXERCICE 4

1) Soient n un entier naturel puis $N = n^2 + n = n(n+1)$. Le chiffre des unités de N est le reste de la division euclidienne de N par 10. Soit r le reste de la division euclidienne de n par 10. Alors

$$N \equiv r(r+1) [10].$$

r est un entier naturel élément de $\{0, 1, \dots, 9\}$.

- si r = 0, alors r(r + 1) = 0 puis $N \equiv 0$ [10]. Le chiffre des unités de N est 0.
- si r=1, alors r(r+1)=2 puis $N\equiv 2$ [10]. Le chiffre des unités de N est 2.
- si r = 2, alors r(r + 1) = 6 puis $N \equiv 6$ [10]. Le chiffre des unités de N est 6.
- si r = 3, alors r(r + 1) = 12 puis $N \equiv 2$ [10]. Le chiffre des unités de N est 2.
- \bullet si r=4, alors r(r+1)=20 puis $N\equiv 0$ [10]. Le chiffre des unités de N est 0.
- si r=5, alors r(r+1)=30 puis $N\equiv 0$ [10]. Le chiffre des unités de N est 0.
- si r = 6, alors r(r + 1) = 42 puis $N \equiv 2$ [10]. Le chiffre des unités de N est 2. • si r = 7, alors r(r + 1) = 56 puis $N \equiv 6$ [10]. Le chiffre des unités de N est 6.
- si r = 7, alors r(r + 1) = 36 puis $N \equiv 6$ [10]. Le chiffre des unités de N est δ . • si r = 8, alors r(r + 1) = 72 puis $N \equiv 2$ [10]. Le chiffre des unités de N est δ .
- si r = 9, alors r(r + 1) = 90 puis $N \equiv 0$ [10]. Le chiffre des unités de N est 0.

Finalement, le chiffre des unités de N est 0, 2 ou 6 et en particulier, ce chiffre n'est jamais égal à 4.

La proposition 1 est vraie.

2) Pour tout entier naturel non nul n, on a $0 \le u_n \le \frac{20}{n}$. Puisque $\lim_{n \to +\infty} \frac{20}{n} = 0$, le théorème des gendarmes permet d'affirmer que la suite $(u_n)_{n \in \mathbb{N}}$ converge et que $\lim_{n \to +\infty} u_n = 0$.

La proposition 2 est vraie.

3) Soient
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

et

$$BA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

et en particulier, $AB \neq BA$. Ainsi, il existe deux matrices carrées A et B de dimension B telles que $AB \neq BA$ et donc

La proposition 3 est fausse.

4) Soit n un entier naturel. Puisque $X_{n+1} = M \times X_n$, en particulier, $b_{n+1} = 0,45a_n + 0,7b_n$. Mais d'autre part, d'après la formule des probabilités totales,

$$b_{n+1} = P\left(B_{n+1}\right) = P\left(A_n\right) \times P_{A_n}\left(B_{n+1}\right) + P\left(B_n\right) \times P_{B_n}\left(B_{n+1}\right) = a_n \times P_{A_n}\left(B_{n+1}\right) + b_n \times P_{B_n}\left(B_{n+1}\right).$$

En admettant que l'on puisse identifier les coefficients, on a $P_{A_n}(B_{n+1}) = 0,45$.

Soient a_0 et b_0 deux réels de [0,1] tels que $a_0+b_0=1$. On a

$$a_1 = 0.55a_0 + 0.3b_0 = 0.55a_0 + 0.3(1 - a_0) = 0.25a_0 + 0.3$$

et

$$b_1 = 0,45a_0 + 0,7b_0 = 0,45a_0 + 0,7(1 - a_0) = -0,25a_0 + 0,7.$$

Par suite,

$$b_1 = 3a_1 \Leftrightarrow -0,25a_0 + 0,7 = 3(0,25a_0 + 0,3) \Leftrightarrow -0,25a_0 + 0,7 = 0,75a_0 + 0,9 \Leftrightarrow -0,2 = a_0.$$

-0,2 n'est pas élément de [0,1] et donc

la proposition 5 est fausse.