Analisi Matematica A.A 2022-2023

10 Sviluppi di Taylor

10.1 Fattoriale

Definizione 10.1.1 (Fattoriale). Dato un $n \in \mathbb{N}$ con $n \geq 1$ definiamo un fattoriale come il prodotto dei primi n numeri naturali:

$$n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n$$

Note 10.1.1. Nota che 0! = 1 per definizione.

Esempio 10.1.1.
$$1! = 1$$
 $2! = 1 \cdot 2 = 2$ $3! = 1 \cdot 2 \cdot 3 = 6$ $4! = (1 \cdot 2 \cdot 3) \cdot 4 = 24$

Possiamo definire un uguaglianza per definire il fattoriale:

$$(n+1)! = n! \cdot (n+1)$$
 dove $(n+1)! = [1 \cdot 2 \cdot ... \cdot n] \cdot (n+1) = n! \cdot (n+1)$

10.2 Sommatorie

Supponiamo di avere dei numeri naturali indicizzati con un numero naturale.

$$a_1, a_2, ..., a_n \in a_j \in \mathbb{R} \text{ con } j \in \mathbb{N}$$

Per esempio si potrebbe prendere $a_j=\frac{1}{j}$ quindi: $a_1=\frac{1}{1},\ a_2=\frac{1}{2},\ a_3=\frac{1}{3},$ ecc. Oppure possiamo $a_j=\sqrt{j}$ quindi: $a_1=\sqrt{1},\ a_2=\sqrt{2},$ ecc.

Definizione 10.2.1 (Sommatoria). Definisco sommatoria degli a_j per j che va da m ad n dove $m, n \in \mathbb{N}$ e $m \leq n$, e si scrivere⁹:

$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + a_{m+2} + \dots + a_n$$

Esempio 10.2.1.
$$\sum_{j=1}^{5} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{5}$$

Esempio 10.2.2.
$$\sum_{j=0}^{3} j^2 = 0^2 + 1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14$$

10.3 Formula di Taylor

10.3.1 Taylor con resto di Peano

Supponiamo di avere una funzione f derivabile nel punto $x_0 \in (a,b)$, allora abbiamo visto che posso scrivere $f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + o(x - x_0)$ per $x \to x_0$. Abbiamo dunque un polinomi di grado 1 ungule a $f(x_0) + f'(x_0) \cdot (x - x_0)$ ed un resto $o(x - x_0)$, f quindi differisce dal polinomio per un resto che è infinitesimo rispetto a $x - x_0$ cioè $\lim_{x \to x_0} = \frac{o(x - x_0)}{x - x_0} = 0$.

Posso precisare meglio la quantità di $o(x-x_0)$ ma f deve essere derivabile più volte nel punto x_0 .

Definizione 10.3.1 (Formula di Taylor con resto di Peano). Dato una funzione $f:(a,b) \to \mathbb{R}$ e $x_0 \in (a,b)$. Se f è derivabile n volte in x_0 ed almeno n-1 volte nel resto dell'intervallo (a,b) (cioè in $(a,b) \setminus \{x_0\}$) allora esiste un unico polinomio $P_n(x)$ di grado $\leq n$ ed una funzione $R_n(x)$ tale che:

$$f(x) = P_n(x) + R_n(x) e R_n(x) = o(x - x_0)^n per x \to x_0$$

Il polinomio $P_n(x)$ ha la seguente forma:

$$P_n(x) = \sum_{j=0}^n \frac{f^{(j)}(x_0)}{j!} \cdot (x - x_0)^j$$

Scritto in maniera esplicita:

$$P_n = f(x_0) + f'(x_0) \cdot (x - x_0) + f''(x_0) \frac{f''(x_0)}{2} \cdot (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$$

Osservazione 10.3.1. Il grado massimo del polinomio è correlato all'ordine di infinitesimo del resto. Cioè P_n è di grado n e $R_n = o(x-x_0)^n$. Questo vuol dire che: $f(x) - P_n(x) = o((x-x_0)^n)$, $o((x-x_0)^n)$ è la differenza fra la funzione ed il polinomio che l'approssima.

 $^{^9\}mathrm{Usiamo}~j$ per convenzione ma è possibile utilizzare qualsiasi variabile

Analisi Matematica A.A 2022-2023

10.3.2 Taylor con resto di Lagrange

Definizione 10.3.2 (Formula di Taylor con resto di Lagrange). Dato una funzione $f:(a,b)\to\mathbb{R}$ e $x_0 \in (a,b)$ e f derivabili in n+1 volte in $(a,b)\setminus\{x_0\}$ e n volte in x_0 . Allora $f(x)=P_n+R_n(x)$ ed esiste z compreso tra x e x_0 tale che:

$$R_n(x) = \frac{f^{n+1}(z)\cdot(x-x_0)^{n+1}}{(n+1)!}$$

Dico un punto compreso fra x e x_0 perché a priori non so quali dei due valori sta a destra e quale sta a sinistra, quindi parlo semplicemente di punto compreso.

10.3.3 Esempi di formula di Taylor

Esempio 10.3.1. $f(x) = e^x$ e $f'(x) = e^x$, $f''(x) = e^x$, ... $f^{(j)}(x) = e^x \ \forall j \in \mathbb{N}$. La calcolo in $x_0 = 0$

$$f(0) = 1, f'(0) = 1, ..., f^{j}(0) = 1. \text{ Quindi } e^{x} = \left(\sum_{j=0}^{n} \frac{x^{j}}{j!}\right) + o(x^{n}) = \left(\sum_{j=0}^{n} \frac{f^{(j)}(0)}{j!} \cdot (x - 0)^{j}\right) + o(x^{n})$$
$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + ... + \frac{x^{n}}{n!} + o(x^{n}).$$

Per esempio in ordine 2: $e^x = 1 + x + \frac{x^2}{2} + o(x^2)$, se lo confrontiamo con il limite notevole $e^x = 1 + x + o(x)$ vediamo che o(x) (che è $R_1(x)$)in realtà è $\frac{x^2}{2} + o(x^2)$ (che è $R_2(x)$)

Osservazione 10.3.2. $R_2(x)$ in particolare è un o(x) perché se faccio $\frac{R_2(x)}{x} = \frac{x^2 + o(x^2)}{x} = \frac{x}{2} + o(x) \to 0$ se $x \to 0$. Quella con il grado 2 è più precisa di quella con il grado 1.

Esemplo 10.3.2. $f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$.

$$f(0) = 0, f'(0) = 0, f''(0) = 0, f'''(0) = -1. \sin x = \sum_{i=0}^{n} \frac{f^{(i)}(0)}{j!} \cdot x^{j} + R_{n}(x).$$

$$\sin x = 0 + \frac{x}{1} + 0 \cdot \frac{x^2}{2} - \frac{x^3}{3! + o(x^3)} = x - \frac{x^3}{6} + o(x^3)$$
. Ordine $n = 3$.

In questo caso $P_3(x) = x - \frac{x^3}{6}$ e $R_3(x) = o(x^3)$.

Proviamo con ordine 4: $\sin x = 0 + 1 \cdot x + 0 \cdot \frac{x^2}{2} - 1 \frac{x^3}{3!} + o \cdot \frac{x^4}{4!} + o(x^4) = x - \frac{x^3}{6} + o(x^4)$.

In questo caso invece $P_4(x) = x - \frac{x^3}{6}$ e $R_4(x) = o(x^4)$, vediamo che in questo caso $P_3(x) = P_4(x)$.

Ora confrontiamo:

$$\sin x = x - \frac{x^3}{6} + o(x^3)$$
 ordine 3 $\sin x = x - \frac{x^3}{6} + o(x^4)$ ordine 4.

 $\sin x = x - \frac{x^3}{6} + o(x^3)$ ordine $3 = \sin x = x - \frac{x^3}{6} + o(x^4)$ ordine 4. Possiamo vedere che sono vere entrambi ma la seconda è più precisa perché ha un resto più piccolo. Allo stesso modo $\sin x = x + o(x)$ ma visto che sappiamo che la derivata seconda del seno calcolato in 0 è 0 possiamo scrivere in maniera più precisa $\sin x = x + o(x^2)$.

Taylor per le funzioni elementari 10.4

Possiamo dunque ora scrivere le varie formule di Taylo per delle funzioni ricorrenti.

Formula seno:
$$\sin x = (\sum_{j=0}^{n} \frac{(-1)^{j} \cdot x^{2j+1}}{(2j+1)!}) + o(x^{2n+2})$$

Esempio 10.4.1. Proviamo questa formula con n=2.

$$\frac{(-1)^{0} \cdot x^{2 \cdot 0 + 1}}{(2 \cdot 0 + 1)} + \frac{(-1)^{1} \cdot x^{2 \cdot 1 + 1}}{(2 \cdot 1 + 1)!} + \frac{(-1)^{2} \cdot x^{2 \cdot 2 \cdot 1}}{(2 \cdot 2 + 1)!} + o(x^{2 \cdot 2 + 2}) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + o(x^{6}).$$

Formula coseno:
$$\cos x = (\sum_{j=0}^{n} \frac{(-1)^{j} \cdot x^{2j+1}}{(2j)!}) + o(x^{2n+1})$$

Esempio 10.4.2. Formula di Taylor di grado 7 per il coseno: $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + o(x^7).$

¹⁰Si dice che in questo caso si fa centrato in 0

Analisi Matematica A.A 2022-2023

Formula logaritmo: $\log(1+x) = (\sum_{j=1}^{n} (-1)^{j+1} \frac{x^{j}}{j}) + o(x^{n})$

Esempio 10.4.3. Facciamo un esempio con n=4 della formula del logaritmo: $\log(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+o(x^4)$

Note 10.4.1. Nota che il coseno è una funzione peri ed il polinomio dalla funzione di Taylor contiene sempre potenze pari mentre il seno essendo dispari contiene solo dispari.

Formula tangente: per la tangente la formula è molto complicata quindi scriviamo semplicemente: $\tan(x) = x + o(x^2)$ e $\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^6)$.

Formula Arcotangente: $\arctan(x) = (\sum_{j=0}^{n} (-1)^j \frac{x^{2j+1}}{2j+1}) + o(x^{2n+2})$ Quindi sviluppata al settimo grado: $\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + o(x^8)$

Note 10.4.2. Nota che anche nell'arcotangente come nel logaritmo non c'è il fattoriale.

Formula Binomiale: dato $\alpha \in \mathbb{R}$ possiamo scrivere:

$$(1+\alpha) = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} \cdot x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} \cdot x^3 + \ldots + \frac{\alpha(\alpha-1)(\alpha-2) \ldots (\alpha-n+1)}{n!} \cdot x^n + o(x^n) = 0$$

Esempio 10.4.4. Con $\alpha = \frac{1}{2}$ quindi $\sqrt{1+x} = (1+x)^{\frac{1}{2}}$. $(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2} \cdot x^2 + o(x^2) = 1 + \frac{x}{2} - \frac{1}{8}x^2 + o(x^2)$.

Esempio 10.4.5. Con invece
$$\alpha = -1$$
 quindi con $(1+x)^{-1} = \frac{1}{1+x}$.
$$\frac{1}{1+x} = 1 - x + \frac{(-1)(-2)}{2!} \cdot x^2 + \frac{(-1)(-2)(-3)}{3!} \cdot x^3 + o(x^3) = 1 - x + \frac{2}{2}x^2 - \frac{3!}{3!} \cdot x^3 + o(x^3) = 1 - x + x^2 + x^3 + o(x^3)$$

Quindi se sostituiamo x=-t abbiamo che: $\frac{1}{1-t}=1-(-t)+(-t)^2-(-t^3)+o(t^3)=1+t+t^2+t^3+o(t^3),$ generalizzando possiamo scrivere: $\frac{1}{1-t}=1-(-t)+(-t)^2-(-t^3)+\ldots+t^n+o(t^n)$

$$e^{x} \qquad 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\log(1+x) \qquad x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + o(x^{n})$$

$$\sin(x) \qquad x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + (-1)^{n} \frac{x^{2x+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\cos(x) \qquad 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\tan(x) \qquad x + \frac{x^{3}}{3} + \frac{2}{15}x^{5} + o(x^{6})$$

$$\arctan(x) \qquad x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots + (-1)^{n} \frac{x^{2x+1}}{(2n+1)} + o(x^{2n+2})$$

$$\arcsin x \qquad x + \frac{x^{3}}{6} + \frac{3}{40}x^{5} + o(x^{6})$$

$$\sqrt{1+x} \qquad 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} + o(x^{3})$$

$$(1+x)^{\alpha} \qquad 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^{3} + o(x^{3})$$

Table 8: Formule di taylor

Analisi Matematica A.A 2022-2023

Utilizzo di Taylor nei limiti

Esempio 10.5.1. Calcolare $\lim_{x\to 0} \frac{\sin x - x}{e^x - \log(1+x) - 1}$. Si può utilizzare gli o-piccoli: $\sin x = x + o(x^2)$ $e^x = 1 + x + o(x)$ $\log(1+x) = x + o(x)$

$$\sin x = x + o(x^2)$$
 $e^x = 1 + x + o(x)$ $\log(1+x) = x + o(x)$

$$\frac{\sin x - x}{e^x - \log(1 + x) - 1} = \frac{x + o(x^2) - x}{1 + x + o(x) - (x + o(x)) - 1} = \frac{o(x^2)}{o(x)}$$
ma anche questo è indeterminato.

Dobbiamo quindi andare un po' avanti negli sviluppi del numeratore e del denominatore.

$$\sin x = x - \frac{x^3}{6} + o(x^4)$$
 $e^x = 1 + x + \frac{x^2}{2} + o(x^2)$ $\log(1+x) = x - \frac{x^2}{2}o(x^2)$

$$\frac{\sin x - x}{e^x - \log(1 + x) - 1} = \frac{x - \frac{x^3}{6} + o(x^4) - x}{1 + x + \frac{x^2}{2} + o(x^2) - (x - \frac{x^2}{2} + (x^2)) - 1} = \frac{-\frac{x^3}{6} + o(x^4)}{\frac{x^2}{2} + \frac{x^2}{2} + o(x^2)} = \frac{-\frac{x^3}{6} + o(x^4)}{x^2 + o(x^2)} = \frac{-\frac{x}{6} + o(x^4)}{1 + o(x^2)} = \frac{0}{1} = 0$$

$$\sin t = t + o(t^2) \qquad t = x^2$$

Esempio 10.5.2.
$$\lim_{x\to 0} \frac{(\sin x)^2 - \sin x^2}{x^4}$$

 $\sin t = t + o(t^2)$ $t = x^2$
 $\sin x^2 = (x + o(x^2))^2 = x^2 + 2x \cdot o(x^2) + (o(x^2))^2 = x^2 + o(x^3) + o(x^4) = x^2 + o(x^3)$ $\sin x^2 = x^2 + o(x^4)$

$$\frac{(\sin x)^2 - \sin x^2}{x^4} = \frac{x^2 + o(x^3) - x^2 + o(x^4)}{x^4} = \frac{o(x^2)}{x^4} = \frac{o(x^2)}{x^3} \cdot \frac{1}{x} = 0 \cdot \infty$$

 $\frac{(\sin x)^2 - \sin x^2}{x^4} = \frac{x^2 + o(x^3) - x^2 + o(x^4)}{x^4} = \frac{o(x^2)}{x^4} = \frac{o(x^2)}{x^3} \cdot \frac{1}{x} = 0 \cdot \infty$ Questa è una forma indeterminata perché $\frac{o(x^2)}{x^3} \to 0$ e $\frac{1}{x} \to \infty$. Quindi aumentiamo il grado

$$(\sin x)^2 = (x - \frac{x^3}{6} + o(x^4))^2 = x^2 + \frac{x^6}{36} + (o(x^4))^2 - 2x \cdot \frac{x^2}{6} + 2x \cdot o(x^4) - 2 \cdot \frac{x^3}{6} \cdot o(x^4) = x^2 \cdot \frac{x^6}{36} + o(x^8) - \frac{x^4}{6} + o(x^5) + o(x^7) - x^2 - \frac{x^4}{6} + o(x^5)$$

Questa è una forma indeterminata perché
$$\frac{o(x^{-})}{x^{3}} \to 0$$
 e $\frac{1}{x} \to \infty$. Quindi aumentiamo il grado dell'approssimazione andando a migliorare $(\sin x)^{2}$. $\sin x = x - \frac{x^{3}}{6} + o(x^{4})$ $(\sin x)^{2} = (x - \frac{x^{3}}{6} + o(x^{4}))^{2} = x^{2} + \frac{x^{6}}{36} + (o(x^{4}))^{2} - 2x \cdot \frac{x^{2}}{6} + 2x \cdot o(x^{4}) - 2 \cdot \frac{x^{3}}{6} \cdot o(x^{4}) = x^{2} \cdot \frac{x^{6}}{36} + o(x^{8}) - \frac{x^{4}}{3} + o(x^{5}) + o(x^{7}) = x^{2} - \frac{x^{4}}{3} + o(x^{5})$ $\frac{(\sin x)^{2} - \sin x^{2}}{x^{4}} = \frac{x^{2} - \frac{x^{4}}{3} + o(x^{5}) - x^{2} + o(x^{4})}{x^{4}} = \frac{x^{2} - \frac{x^{4}}{3} + o(x^{5})}{x^{4}} = \frac{x^{2} - \frac{x^{4}}{3} + o(x^{5})}{x^{4}} = \frac{1}{3} + o(x^{5})$ (Divido sopra e sotto per x^{4})