wind: wORKFLOW FOR PiRNAs AnD BEYONd

Computational workflow for the preprocessing of the GSE68246 dataset regarding Human Breast MCF-7 Cell Line with Cancer Stem Cell Properties

Constantinos Yeles (Konstantinos Geles)

Fri Oct 16 2020

Contents

The Data set
Data accuisition and preprocessing
i. Downloading the samples
ii. Preprocessing of the samples
Alignment and Quantification
i. Transcript abundances with Salmon
Alignment and quantification of sequenced reads with STAR and Feature counts
ii. Alignment with STAR
R docker
iv. featureCounts
We work on:

The Data set

We will work on a public dataset with GEO accession number: GSE68246, that it has been used in the publications: Phenotypic and microRNA transcriptomic profiling of the MDA-MB-231 spheroid-enriched CSCs with comparison of MCF-7 microRNA profiling dataset and MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line

Data against and preprocessing

i. Downloading the samples

We use a script to download the fastq samples with samtools-kit that it is included in the docker with the name download_SRA.sh

Using the \mathbf{SRA} selector we download a file with the Accession List and rename the file to $\mathbf{GSE68246_samples.txt}$

```
docker run --rm -ti -v $(pwd):/home/my_data congelos/sncrna_workflow
# run the script to download the SRA
./download_SRA.sh GSE124507_samples.txt 8
```

ii. Preprocessing of the samples

We perform quality control(QC) on the fastq files to get basic information about the samples. We work with the **Fastqc** tool to perform QC.

```
mkdir my_data/qc_first

'fastqc' --threads 6 --outdir=my_data/qc_first/ my_data/downloaded_SRA/GSE_samples/*.fastq.gz

for file in my_data/downloaded_SRA/GSE_samples/*.fastq.gz;
do ./spar_prepare/smrna_adapter_cut.sh $file 6;
done

mkdir my_data/mouse_datasets/Torrela/complete_exp/qc_after

'fastqc' --threads 6 --outdir=my_data/qc_after/ my_data/downloaded_SRA/GSE_samples/*.trimmed.fastq.gz
exit
```

Alignment and Quantification

regex="\${file%%.sam}";

i. Transcript abundances with Salmon

We will use a public docker image to run salmon

```
# run the docker
docker run --rm -it -v $(pwd):/home/my_data combinelab/salmon

# create the index
salmon index -t ncRNA_transcripts_100bp_RNA_Central_piRNAbank_hg38.fa -i genome_transc_human/ncRNA_Cent
mkdir my_data/smallRNA-breast-cancer/GSE68246/quants/
# run the samples

#!/bin/bash

for fn in my_data/smallRNA-breast-cancer/GSE68246/GSE_samples/*trimmed.fastq.gz;
do samp=`basename ${fn}`;
echo "Processing sample ${samp}";
salmon quant -i my_data/genome_transc_human/ncRNA_Central_piRNAB_hg38_index -l A -r ${fn} --seqBias --g
done

#save as bam files
for file in my_data/smallRNA-breast-cancer/GSE68246/quants/*.sam;
```

```
echo samtools view -0 bam -o ${regex}.bam -@ 6 ${file};
done
exit
```

Alignment and quantification of sequenced reads with STAR and Featurecounts

We use the **STAR** aligner and then perform quantification with featureCounts from **Rsubread** package. With the a docker images that contains STAR and **Samtools** we get sorted BAM files and use them for quantification / annotation for smallRNAs.

ii. Alignment with STAR

```
docker run --rm -ti -v "$PWD":/home/my_data congelos/spar

STAR --runMode genomeGenerate --genomeDir my_data/mouse_data/GRCh38 --genomeFastaFiles my_data/mouse_da

mkdir my_data/smallRNA-breast-cancer/GSE68246/star_results

for file in my_data/smallRNA-breast-cancer/GSE68246/GSE_samples/*.trimmed.fastq.gz;
do

samp=`basename ${file}`;
regex="${samp%.trimmed.fastq.gz}";
echo "Processing sample ${samp} start: $(date)";
STAR --genomeDir my_data/genome_transc_human/human_data/GRCh38_2_7_4a --genomeLoad LoadAndKeep --readFi
echo "end:$(date)";
done
exit
```

Next, we run a docker image which includes varius R packages that will be used futhermore in the downstream analysis following featurecounts for the exploratory data analysis of piRNA data

R docker

```
docker run --rm -v $(pwd):/home/0 -p 8787:8787 -e PASSWORD=12345 -e USER=$UID congelos/rocker_tidyverse
```

From here on we work in R using a browser. we input http://localhost:8787/ on browser and 0 for username and 12345 for password.

iv. featureCounts

```
path_gtf <- "../genome_transc_human/ncRNA_transcripts_100bp_RNA_Central_piRNAbank_hg38.gtf"
todate <- format(Sys.time(), "%d_%b_%Y")</pre>
fc <- featureCounts(files = list.BAM,</pre>
                    annot.ext = path_gtf,
                    isGTFAnnotationFile = TRUE,
                    GTF.featureType = "exon",
                    GTF.attrType.extra = c("gene type", "sRNA id", "seq RNA"),
                    nthreads = 6,
                    useMetaFeatures = TRUE,
                    allowMultiOverlap = TRUE,
                    minOverlap = 10,
                    largestOverlap = TRUE,
                    fraction = TRUE,
                    strandSpecific = 0,
                    verbose = TRUE,
                    reportReads = "BAM",
                    reportReadsPath = "GSE68246/star_results")
fc %>% write_rds(str_glue("GSE68246/feature_counts_GSE68246_{todate}.rds"))
```

Next we will follow the workflow of data_exploration_salmon_fc ## R Session Info

```
sessionInfo()
R Under development (unstable) (2019-12-06 r77536)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 10 (buster)
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.3.5.so
locale:
[1] LC_CTYPE=en_US.UTF-8
                              LC NUMERIC=C
 [3] LC TIME=en US.UTF-8
                              LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8
                              LC_MESSAGES=C
 [7] LC PAPER=en US.UTF-8
                              LC NAME=C
 [9] LC ADDRESS=C
                              LC TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats
             graphics grDevices utils
                                         datasets methods
                                                             base
other attached packages:
 [1] forcats_0.5.0
                       stringr_1.4.0
                                           dplyr_0.8.4
                                                              purrr_0.3.3
 [5] readr_1.3.1
                       tidyr_1.0.2
                                           tibble_2.1.3
                                                              ggplot2_3.2.1
 [9] tidyverse_1.3.0
                       Rsubread_2.1.2
                                          BiocManager_1.30.10
loaded via a namespace (and not attached):
 [1] Rcpp 1.0.3 cellranger 1.1.0 pillar 1.4.3
                                                   compiler 4.0.0
[5] dbplyr_1.4.2
                    tools_4.0.0
                                     lubridate_1.7.4 jsonlite_1.6.1
[9] lifecycle_0.1.0 nlme_3.1-144
                                     gtable_0.3.0
                                                     lattice_0.20-40
[13] pkgconfig_2.0.3 rlang_0.4.5
                                     reprex_0.3.0
                                                     Matrix_1.2-18
[17] cli 2.0.2 DBI 1.1.0
                                     rstudioapi 0.11 xfun 0.12
[21] haven_2.2.0 knitr_1.28 withr_2.1.2 xml2_1.2.2
```

```
[25] httr_1.4.1
                                      generics_0.0.2 vctrs_0.2.3
                     fs_1.3.1
[29] hms_0.5.3
                     grid_4.0.0
                                      tidyselect_1.0.0 glue_1.3.1
[33] R6_2.4.1
                     fansi_0.4.1
                                                      modelr_0.1.6
                                     readxl_1.3.1
[37] magrittr_1.5
                     backports_1.1.5 scales_1.1.0
                                                      rvest_0.3.5
[41] assertthat_0.2.1 colorspace_1.4-1 stringi_1.4.6
                                                      lazyeval_0.2.2
[45] munsell_0.5.0
                     broom_0.5.5
                                      crayon_1.3.4
```

We work on:

```
[root@localhost GSE124507_brain_project]# cat /etc/*-release
CentOS Linux release 7.8.2003 (Core)
NAME="CentOS Linux"
VERSION="7 (Core)"
ID="centos"
ID_LIKE="rhel fedora"
VERSION_ID="7"
PRETTY_NAME="CentOS Linux 7 (Core)"
ANSI_COLOR="0;31"
CPE NAME="cpe:/o:centos:centos:7"
[root@localhost GSE124507_brain_project]# docker version
Client: Docker Engine - Community
Version:
                    19.03.8
 API version:
                    1.40
Go version:
                    go1.12.17
                    afacb8b
Git commit:
                    Wed Mar 11 01:27:04 2020
Built:
 OS/Arch:
                    linux/amd64
                    false
 Experimental:
Server: Docker Engine - Community
 Engine:
 Version:
                    19.03.8
  API version:
                    1.40 (minimum version 1.12)
 Go version:
                    go1.12.17
 Git commit:
                    afacb8b
 Built:
                    Wed Mar 11 01:25:42 2020
 OS/Arch:
                    linux/amd64
 Experimental:
                    false
 containerd:
  Version:
                    1.2.13
 GitCommit:
                    7ad184331fa3e55e52b890ea95e65ba581ae3429
 runc:
  Version:
                    1.0.0-rc10
  GitCommit:
                    dc9208a3303feef5b3839f4323d9beb36df0a9dd
 docker-init:
                    0.18.0
  Version:
  GitCommit:
                    fec3683
```

[root@localhost GSE124507_brain_project]# git version
git version 1.8.3.1

[root@localhost GSE124507_brain_project]# pigz --version pigz 2.3.4