XXII МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА «ШЕЛКОВЫЙ ПУТЬ» МАРТ 2023 ГОДА

Внимание! Так как XXII Математическая олимпиада «Шёлковый путь» проводится в разных странах в разные дни, мы вас убедительно просим **не разглашать** эти задачи и не обсуждать их (особенно по Интернету) до 25 мая 2023 года.

Решения задач и схемы оценки

Задача №1. Внутри трапеции $ABCD~(AD \parallel BC)$ выбрана точка M, а внутри треугольника BMC точка N так, что $AM \parallel CN$, $BM \parallel DN$. Докажите, что у треугольников ABN и CDM площади равны. (Cedpakrh~H.)

Решение. Докажем сначала следующую лемму.

Лемма. На боковых сторонах XY и ZT трапеции XYZT взяты точки N и M, соответственно. Известно, что $XM \parallel ZN$. Тогда $YM \parallel TN$.

Доказательство. Так как

$$S_{NYZM} = S_{NYZ} + S_{NZM} = S_{NYZ} + S_{XNZ} = S_{XYZ} = S_{YZT} = S_{YZM} + S_{YMT}$$

TO

$$S_{YZM} + S_{YMT} = S_{NYZM} = S_{YZM} + S_{NYM},$$

а значит $S_{YMT} = S_{NYM}$. Поэтому, $YM \parallel NT$.

Вернемся к решению задачи. Пусть R и K такие точки, взятые на прямых BA и CD соответственно так, что $RN \parallel BC \parallel MK$. Пусть при параллельном переносе на вектор \overline{MK} точки B' и A' оказались образами точек B и A, соответственно.

Так как $CN \parallel AM \parallel A'K$ и $DN \parallel BM \parallel B'K$, то $CN \parallel A'K$ и $DN \parallel B'K$. Пусть CN пересекает B'A' в точке N'. Так как $A'K \parallel CN'$, то, по лемме, примененной к трапеции A'B'CD, $B'K \parallel N'D$. Значит, $DN \parallel B'K \parallel N'D$ и N' = N. То есть, точка N лежит на прямой B'A'.

Следовательно, $\overrightarrow{RN}=\overrightarrow{BB'}=\overrightarrow{MK}$. Пусть CH — высота треугольника CDA. Тогда расстояние между прямыми BC и DA равно CH и

$$S_{MCD} = \frac{1}{2} MK \cdot CD \cdot \sin \angle (MK, CD) = \frac{1}{2} MK \cdot CD \cdot \sin \angle HDC = \frac{1}{2} MK \cdot CH.$$

Аналогично, $S_{BAN} = \frac{1}{2} RN \cdot CH$. Так как MK = RN, то $S_{MCD} = S_{BAN}$, что и требовалось доказать.

Схема оценки.

За вычислительное решение (в координатах, в комплексных числах, в векторах, тригонометрическое, и т.д.), не доведённое до конца, можно получить баллы только если результаты промежуточных вычислений сформулированы в виде равносильных геометрических утверждений, указанных в схеме оценки.

Задача №2. Дано натуральное n. В клетчатом квадрате $2n \times 2n$ каждая клетка покрашена в какойто из $4n^2$ цветов (при этом некоторые цвета могли не использоваться). Доминошкой будем называть любой прямоугольник из двух клеток в нашем квадрате. Будем говорить, что доминошка разноцветная, если клетки в ней разных цветов.

Пусть k — количество разноцветных доминошек среди всех доминошек в нашем квадрате. Пусть ℓ — наибольшее целое число такое, что в любом разрезании квадрата на доминошки найдётся хотя бы ℓ разноцветных доминошек. Найдите наибольшее возможное значение выражения $4\ell - k$ по всем возможным раскраскам квадрата. (Богданов ℓ)

Ответ. 4n.

Решение. Рассмотрим раскраску квадрата, в которой все клетки покрашены в попарно различные цвета. При такой раскраске любая доминошка разноцветная, а значит $k=2\cdot 2n\cdot (2n-1)=8n^2-4n$ и $\ell=(2n)^2/2=2n^2$. Следовательно, для этой раскраски, $4\ell-k=4n$.

Теперь достаточно доказать, что $4\ell - k \leqslant 4n$ для любой раскраски. Рассмотрим четыре разрезания квадрата на доминошки, изображенные на картинке снизу. Разрезания \mathcal{P}_1 и \mathcal{P}_2 состоят только из горизонтальных и только из вертикальных доминошек, соответственно. В разрезании \mathcal{P}_3 самый левый и самый правый столбцы разрезаются на вертикальные доминошки, а оставшаяся часть — на горизонтальные. Разрезание \mathcal{P}_4 получается из \mathcal{P}_3 поворотом на 90° .

Заметим, что любая доминошка присутствует не более чем в двух из этих четырех разрезаний. Более того, есть ровно 4n доминошек, присутствующих в двух разрезаниях — вертикальные доминошки в \mathcal{P}_3 и горизонтальные в \mathcal{P}_4 .

По условию, в каждом из четырех разрезаний, указанных выше, хотя бы ℓ разноцветных доминошек. Но разноцветных доминошек всего в квадрате k, и максимум 4n из них встречаются в двух разрезаниях. Следовательно, $4\ell \leqslant k + 4n \implies 4\ell - k \leqslant 4n$, что и требовалось.

Схема оценки.

- 1. Приведен пример раскраски, при которой $4\ell-k=4n$, и правильно посчитаны k и ℓ 1 балл
- 2. Доказана оценка $4\ell k \leqslant 4n$: 6 баллов

Задача №3. Пусть p — простое число. Построим ориентированный граф на p вершинах, пронумерованных целыми числами от 0 до p-1. В графе проводится ребро из вершины x в вершину y тогда и

только тогда, когда y равно остатку от деления на p числа $x^2 + 1$. Через f(p) обозначим длину самого длинного ориентированного цикла в этом графе. Докажите, что f(p) может принимать сколь угодно большие значения.

Решение. Рассмотрим рекуррентную последовательность целых чисел $\{a_n\}_{n=0}^{\infty}$, заданную как $a_0=0$ и $a_{n+1}=a_n^2+1$ для всех $n\geqslant 0$. Для натурального x, через d(x) будем обозначать множество его простых делителей. Пусть множество $S=\bigcup_{n=1}^{\infty}d(a_n)$, то есть множество всех простых чисел, которые делят хотя бы один положительный элемент последовательности. Докажем, что множество S бесконечно. Для этого нам понадобится следующая лемма:

Лемма. Пусть n > m — произвольные неотрицательные целые числа. Тогда если существует простое число p, делящее a_n и a_m , то p также делит $a_{\text{НОД}(n,m)}$, где НОД(n,m) — наибольший общий делитель чисел n и m.

Доказательство. Так как $a_m \equiv 0 \equiv a_0 \pmod{p}$, то $a_{m+1} \equiv a_m^2 + 1 \equiv 1 \equiv a_1 \pmod{p}$. Далее, по индукции можно доказать, что для любого неотрицательного целого k будет $a_{m+k} \equiv a_k \pmod{p}$. Следовательно, $0 \equiv a_n \equiv a_{m+(n-m)} \equiv a_{n-m} \pmod{p}$, то есть a_{n-m} делится на p. Но это значит, что мы можем применить алгоритм Евклида к индексам n и m и, в итоге, получить, что p делит $a_{\text{НОД}(n,m)}$. \square

Следствие. Если q — произвольное простое число, то a_q взаимно просто с каждым из $a_1, a_2, \ldots, a_{q-1}$, так как для $1 \leqslant k \leqslant q-1$ имеем HOД(k,q)=1, то есть если простое p делит a_q и a_k , то p делит $a_{\text{HOД}(k,q)}=a_1=1$, что невозможно.

Пусть $p_1=2, p_2=3, p_3=5, \ldots$ — последовательность всех простых чисел. Тогда все множества $d(a_{p_1}), d(a_{p_2}), d(a_{p_3}), \ldots$ непустые и попарно непересекающиеся, следовательно, множество S бесконечно.

Теперь вернемся к исходной задаче. Зафиксируем произвольное натуральное число N. Так как S бесконечно, а множество $\bigcup_{n=1}^N d(a_n)$ простых делителей только среди первых N положительных элементов конечно, то существует простое число $p \in S$ такое, что p не делит a_n для всех $1 \le n \le N$, но делит a_M для какого-то M > N.

Посмотрим на описанный в условии граф для этого простого p. Заметим, что переход $a_n \to a_{n+1}$ соответствует переходу по ребру из вершины $a_n \pmod p$ в вершину $a_{n+1} \pmod p$. Так как $a_M \equiv 0 \equiv a_0 \pmod p$, то вершина 0 лежит на каком-то простом цикле в этом графе. Так как ни одно из a_1, a_2, \ldots, a_N не делится на p, то длина этого цикла не может быть меньше N+1, то есть f(p) точно не меньше N+1. Раз мы фиксировали произвольное натуральное N и доказали существование простого p такого, что f(p) > N, то f(p) может принимать сколь угодно большие значения.

Схема оценки.

- 1. Рассмотрена рекуррентная последовательность целых (не по модулю p) чисел $\{a_n\}: \dots 1$ балл

Задача №4. Пусть $\mathcal{M} = \mathbb{Q}[x,y,z]$ — множество многочленов с рациональными коэффициентами от трех переменных. Докажите, что для любого ненулевого многочлена $P \in \mathcal{M}$ существуют такие ненулевые многочлены $Q, R \in \mathcal{M}$, что

$$R(x^2y, y^2z, z^2x) = P(x, y, z)Q(x, y, z).$$

(Navid Safaei)

Решение. Сначала докажем следующую лемму.

Лемма. Для любого ненулевого $P \in \mathcal{M}$ существует такой ненулевой $R \in \mathcal{M}$, что $R(x^3, y, z)$ делится на P(x, y, z).

Доказательство. Пусть $n = \deg P$ и

$$P(x,y,z) = \sum_{i=0}^{n} a_i x^i B_i(y,z) \quad (B_i \in \mathbb{Q}[y,z]),$$
$$A_j(x,y,z) = \sum_{\substack{0 \le i \le n \\ i \equiv j \pmod{3}}} a_i x^i B_i(y,z) \quad (0 \le j \le 2).$$

Рассмотрим многочлен

$$A_0^3 + A_1^3 + A_2^3 - 3A_0A_1A_2 \not\equiv 0.$$

С одной стороны, так как переменная x входит в каждый его одночлен в степени, кратной 3, то для какого-то $R \in \mathcal{M}$ он равен $R(x^3, y, z)$. С другой стороны,

$$A_0^3 + A_1^3 + A_2^3 - 3A_0A_1A_2 = (A_0 + A_1 + A_2)(A_0^2 + A_1^2 + A_2^2 - A_0A_1 - A_1A_2 - A_2A_0) =$$

$$= P(A_0^2 + A_1^2 + A_2^2 - A_0A_1 - A_1A_2 - A_2A_0),$$

то есть $R(x^3,y,z)$ делится на P(x,y,z). Лемма доказана.

Следствие. Для любого ненулевого $P \in \mathcal{M}$ и любых целых неотрицательных k, t, ℓ , существует такой ненулевой $R \in \mathcal{M}$, что $R(x^{3^k}, y^{3^t}, z^{3^\ell})$ делится на P(x, y, z). Это легко доказывается по индукции, применяя лемму при переходе.

Вернемся к решению задачи. Следствие из леммы, в частности, говорит о существовании такого $S \in \mathcal{M}$, что $S(x^9, y^9, z^9)$ делится на P(x, y, z). Пусть $n = \deg S$. Рассмотрим многочлен

$$(xyz)^{6n}S(x^9, y^9, z^9) \not\equiv 0.$$

Любой его одночлен имеет вид

$$\alpha(xyz)^{6n}x^{9a}y^{9b}z^{9c} = \alpha(xyz)^{6(n-a-b-c)}(xyz)^{6(a+b+c)}x^{9a}y^{9b}z^{9c} =$$

$$= \alpha(xyz)^{6(n-a-b-c)}(xyz)^{6(a+b+c)}x^{9a}y^{9b}z^{9c} =$$

$$= \alpha(xyz)^{6(n-a-b-c)}(x^2y)^{6a+3b}(y^2z)^{6b+3c}(z^2x)^{6c+3a} =$$

$$= \alpha(x^2y)^{6a+3b+2(n-a-b-c)}(y^2z)^{6b+3c+2(n-a-b-c)}(z^2x)^{6c+3a+2(n-a-b-c)}.$$

Следовательно, существует такой $R \in \mathcal{M}$, что

$$R(x^2y, y^2z, z^2x) = (xyz)^{6n}S(x^9, y^9, z^9).$$

Так как $S(x^9,y^9,z^9)$ делится на P(x,y,z), то и $R(x^2y,y^2z,z^2x)$ делится на P(x,y,z).

Комментарий. Лемму можно доказать и другим способом. Пусть $\omega = e^{\frac{2\pi i}{3}}$ (первообразный корень из единицы третьей степени) и

$$H(x, y, z) = P(x, y, z)P(\omega x, y, z)P(\omega^{2}x, y, z).$$

Так как $\overline{\omega} = \omega^2$, то, для $x, y, z \in \mathbb{R}$,

$$\overline{P(\omega x, y, z)} = P(\overline{\omega}x, y, z) = P(\omega^2 x, y, z) \implies$$

$$\implies \overline{H(x,y,z)} = H(x,y,z).$$

Можно показать, что тогда у H действительные (и рациональные) коэффициенты (оставим это в качестве упражнения). Пусть $m = \deg H$ и

$$H(x, y, z) = \sum_{i=0}^{m} h_i x^i C_i(y, z) \quad (C_i \in \mathbb{Q}[y, z]),$$

$$D_j(x, y, z) = \sum_{\substack{0 \le i \le n \\ i \equiv j \pmod{3}}} h_i x^i C_i(y, z) \quad (0 \le j \le 2).$$

Заметим, что

$$H(x, y, z) = H(\omega x, y, z) = H(\omega^2 x, y, z) \implies$$

$$\implies D_0 + D_1 + D_2 = D_0 + \omega D_1 + \omega^2 D_2 = D_0 + \omega^2 D_1 + \omega D_2 \implies$$

$$\implies D_1 = D_2 = 0 \implies H = D_0.$$

Следовательно, для какого-то $R \in \mathcal{M}$,

$$R(x^3, y, z) = H(x, y, z).$$

Пусть

$$Q(x, y, z) = P(\omega x, y, z)P(\omega^2 x, y, z).$$

Можно показать, что $Q \in \mathcal{M}$. Так как

$$R(x^3, y, z) = H(x, y, z) = P(x, y, z)Q(x, y, z),$$

то $R(x^3, y, z)$ делится на P(x, y, z).

Схема оценки.