Package 'psdr'

April 11, 2024

	-	
Title Unified Principal Sufficien	nt Dimension Reduction Package	
Version 1.0.0		
Author Jungmin Shin, Andreas	Artemiou, Seung Jun Shin	
Maintainer Jungmin Shin < jun	ungminshin@korea.ac.kr>	
Description A unified version of principal sufficient dimension reduction methods for both linear and nonliear cases.		
License GPL-2		
Encoding UTF-8		
Roxygen list(markdown = TRU	JE)	
Imports stats, graphics, sympat	th(>=0.970)	
Suggests testthat		
RoxygenNote 7.2.3		
R topics documented:	:	
BostonHousing		
dimension		
•		
-		
-		
*		
Index	10	
ar J. in Va	Boston house price data The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', Environ. Economics & Management, vol.5, 81-102, 1978. Used an Belsley, Kuh & Welsch, 'Regression diagnostics, Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the patter.	

2 dimension

Description

- crim per capita crime rate by town
- zn proportion of residential land zoned for lots over 25,000 sq.ft.
- indus proportion of non-retail business acres per town
- chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- nox nitric oxides concentration (parts per 10 million)
- rm average number of rooms per dwelling
- age proportion of owner-occupied units built prior to 1940
- dis weighted distances to five Boston employment centres
- · rad index of accessibility to radial highways
- tax full-value property-tax rate per \$10,000
- ptratio pupil-teacher ratio by town
- b 1000(Bk 0.63)² where Bk is the proportion of blacks by town
- stat percent lower status of the population
- mdev Median value of owner-occupied homes in \$1000's

Usage

data(BostonHousing)

Format

A data frame with 506 rows and 14 variables

dimension

Determination of structural dimension

Description

Estimation of a structural dimensionality. Choose the k which maximizes a Gn value

Usage

```
dimension(obj, rho)
```

Arguments

obj The psdr object

rho hyperparameter of CVBIC

Value

Estimated Gn scores for a optimal structural dimension will be returned

Author(s)

Jungmin Shin, <jungminshin@korea.ac.kr>, Seung Jun Shin, <sjshin@korea.ac.kr>

new.y

See Also

```
psdr plot.Gn
```

Examples

```
set.seed(1234)
n <- 200; p <- 5; H <- 10; lambda <- 0.001; eps <- 1.0e-6;
max.iter <- 10; h <- 1.0e-5; delta <- 2*1.0e-1;
init.theta <- rnorm(sd=1,n=p)
x <- matrix(rnorm(n*p, 0, 1), n, p)
err <- rnorm(n, 0, .2)
B <- matrix(0, p, 2)
B[1,1] <- 1; B[2,2] <- 1
x1 <- x %*% B[,1]
x2 <- x %*% B[,2]
fx <- x1/(0.5 + (x2 + 1)^2)
y <- fx + err
obj <- psdr(x, y, init.theta, H,lambda, h, delta, eps, max.iter, loss="svm")
d.hat <- dimension(obj, rho=0.005); d.hat
plot(d.hat)</pre>
```

new.y

Predict a response variable for the new explanatory variables

Description

Predict a response after reducing a input data dimension when the response and the input variable have a nonlinear functional relationship.

Usage

```
new.y(x, new.x, d = 2, ...)
```

Arguments

x The object from function npsdr
 new. x new data X
 d true dimension for data x. d=2 is default
 ... additional arguments affecting the predictions produced.

Value

Estimated response variable y return

Author(s)

Jungmin Shin, <jungminshin@korea.ac.kr>, SeungJun Shin, <sjshin@korea.ac.kr>

See Also

npsdr

4 npsdr

Examples

```
set.seed(1)
n <- 200;
p <- 5;
H < - 20;
lambda <- 0.1
eps <- 1.0e-5
max.iter <- 10
h <- 1.0e-6; delta <- 5*1.0e-1
x \leftarrow matrix(rnorm(n*p, 0, 2), n, p)
err <- rnorm(n, 0, .2)
B <- matrix(0, p, 2)
B[1,1] \leftarrow 1; B[2,2] \leftarrow 1
x1 <- x %*% B[,1]
x2 <- x %*% B[,2]
fx <- x1/(0.5 + (x2 + 1)^2)
y \leftarrow c(fx + err) # response
y.binary <- sign(y)</pre>
new.x \leftarrow matrix(rnorm(n*p, 0, 2), n, p)
obj \leftarrow npsdr(x, y, H, h, lambda, delta, k=floor(length(y)/3), eps, max.iter, loss="svm")
new.y(x=obj, new.x, d = 2)
```

npsdr

#'A unified Principal sufficient dimension reduction method via kernel trick

Description

Principal Sufficient Dimension Reduction method

Usage

```
npsdr(
    x,
    y,
    H = NULL,
    h = NULL,
    lambda = NULL,
    delta = NULL,
    k = floor(length(y)/3),
    eps = 1e-05,
    max.iter = NULL,
    loss = NULL,
    a = NULL,
    c = NULL
)
```

Arguments

```
x data matrix
y either continuous or (+1,-1) typed binary response vector
H the number of slices. default value is 10
```

npsdr 5

h	very small interval for calculating numerical derivatives for a given arbitrary loss function
lambda	hyperparameter for the loss function. default value is 0.1
delta	learning rate for gradient descent method. default value is 0.1
k	number of basis functions for a kernel trick, floor(length(y)/3) is default
eps	threshold for stopping iteration with respect to the magnitude of derivative, default value is $1.0e-5$
max.iter	maximum iteration number for the optimization process. default value is 30
loss	pre-specified loss functions are "logistic", svm","l2svm","lwpsvm", and user-defined loss function object also can be used formed by inside double quotation mark
а	the first hyperparameter for the LUM loss function
С	second hyperparameter for the LUM loss function

Value

An estimated kernel matrix and its eigenvalues and eigenvectors for a sufficient dimension reduction will be returned

Author(s)

Jungmin Shin, <jungminshin@korea.ac.kr>, Seung Jun Shin, <sjshin@korea.ac.kr>

See Also

```
new.y
```

Examples

```
set.seed(1)
n <- 200;
p <- 5;
H <- 20;
lambda <- 0.1
eps <- 1.0e-5
max.iter <- 10
h <- 1.0e-6; delta <- 5*1.0e-1
x \leftarrow matrix(rnorm(n*p, 0, 2), n, p)
err <- rnorm(n, 0, .2)
B <- matrix(0, p, 2)
B[1,1] \leftarrow 1; B[2,2] \leftarrow 1
x1 <- x %*% B[,1]
x2 <- x %*% B[,2]
fx <- x1/(0.5 + (x2 + 1)^2)
y \leftarrow c(fx + err) # response
y.binary <- sign(y)</pre>
npsdr(x, y, H, h, lambda, delta, k=floor(length(y)/3), eps,
                max.iter, loss="svm")
```

6 psdr

psdr

 $\hbox{\it\#"Unified Principal sufficient dimension reduction methods}$

Description

Principal Sufficient Dimension Reduction methods

Usage

```
psdr(
   x,
   y,
   init = NULL,
   H = NULL,
   lambda = NULL,
   delta = NULL,
   h = 1e-05,
   eps = 1e-05,
   max.iter = NULL,
   loss = NULL,
   a = NULL,
   c = NULL,
   stochastic = FALSE,
   plot = FALSE
)
```

Arguments

X	data matrix
У	either continuous or (+1,-1) typed binary response vector
init	initial coefficient vector. If not specified, random vector from standard normal distribution is applied by default
Н	the number of slices. default value is 10
lambda	hyperparameter for the loss function. default value is 0.1
delta	learning rate for gradient descent method. default value is 0.1
h	very small interval for calculating numerical derivatives for a given arbitrary loss function, default is 1.0e-5
eps	threshold for stopping iteration with respect to the magnitude of derivative, default value is $1.0\text{e-}5$
max.iter	maximum iteration number for the optimization process. default value is 30
loss	pre-specified loss functions are "logistic", svm","l2svm","lwpsvm", and user-defined loss function object also can be used formed by inside double quotation mark
а	the first hyperparameter for the LUM loss function
С	second hyperparameter for the LUM loss function
stochastic	specify whether the user want to use the stochastic gradient descent algorithm. default is FALSE
plot	visualize user defined loss function. default is FALSE

rtpsdr 7

Value

An estimated basis for central subspace and its eigenvalues and eigenvectors for SDR is returned

Author(s)

Jungmin Shin, <jungminshin@korea.ac.kr>, Seung Jun Shin, <sjshin@korea.ac.kr>

See Also

```
plot.psdr
```

Examples

```
set.seed(1)
n <- 200;
p <- 5;
H <- 10;
lambda <- 0.1
eps <- 1.0e-5
max.iter <- 10
init.theta <- rnorm(p,0,1)</pre>
h <- 1.0e-6; delta <- 5*1.0e-1
x \leftarrow matrix(rnorm(n*p, 0, 2), n, p)
err <- rnorm(n, 0, .2)
B \leftarrow matrix(0, p, 2)
B[1,1] \leftarrow 1; B[2,2] \leftarrow 1
x1 <- x %*% B[,1]
x2 <- x %*% B[,2]
fx <- x1/(0.5 + (x2 + 1)^2)
y \leftarrow c(fx + err) # response
my.hinge <- function(m,...){</pre>
rslt <- (1-m)*(as.numeric((1-m) > 0))
return(rslt)
obj <- psdr(x, y, init.theta, H,lambda, h, delta, eps, max.iter, loss="svm")</pre>
psdr(x, y, init.theta, H,lambda, h, delta, eps, max.iter, loss="my.hinge")
print(obj)
plot(obj)
```

rtpsdr

Real time sufficient dimension reduction through principal least squares SVM

Description

Real time least squares SVM SDR method for a both regression and classification problem

Usage

```
rtpsdr(A, r, n, Xbar, X, y, direction = "forward", H = NULL, lambda = NULL)
```

8 rtpsdr

Arguments

a temporal matrix produced by the previous estimation with original data Α an estimated parameters from the previous estimation with original data r a number of sample size of the original data n Xbar a mean vector from the original data Χ X in new data y in new data, y is continuous У A direction of change of the new data which is either "forward" or "backward". direction default is "forward" Н a number of slices. default is set to 10. lambda hyperparameter for the loss function. default is set to 0.1.

Value

An updated psdr result will be returned in a real time fashion

Author(s)

Jungmin Shin, <jungminshin@korea.ac.kr>, Seung Jun Shin, <sjshin@korea.ac.kr>

See Also

psdr

Examples

```
set.seed(1234)
n <- 300; n2 <- 500; p <- 5; H <- 10; lambda <- 0.1;
x \leftarrow matrix(rnorm(n*p, 0, 1), n, p)
x.new \leftarrow matrix(rnorm(n2*p, 0, 1), n2, p)
err <- rnorm(n, 0, .2); err.new <- rnorm(n2, 0, .2)
B \leftarrow matrix(0, p, 2)
B[1,1] \leftarrow 1; B[2,2] \leftarrow 1
x1 <- x %*% B[,1]
x2 <- x %*% B[,2]
x1.new <- x.new %*% B[,1]
x2.new <- x.new %*% B[,2]
fx <- x1/(0.5 + (x2 + 1)^2)
fx.new <- x1.new/(0.5 + (x2.new + 1)^2)
y \leftarrow fx + err;
                                                                                                                           y.new <- fx.new + err.new
y.binary <- c(sign(fx + err));
                                                                                                                          y.binary.new <- c(sign(fx.new + err.new))</pre>
ls <- psdr(x, y, H=10, lambda=0.1, loss="ls")
wls <- psdr(x, y.binary, H=10, lambda=0.1, loss="wls")
rtpsdr(A=ls$A, r=ls$r, n=ls$N, Xbar=ls$Xbar, X=x.new, y=y.new, direction="forward", H, lambda)
 \verb|rtpsdr(A=wls$A, r=wls$n, xbar=wls$Xbar, X=x.new, y=y.binary.new, | x=x
direction="forward", H, lambda)
```

wisc 9

wisc

Breast Cancer Wisconsin (Diagnostic) Data Set

Description

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. Ten real-valued features are computed for each cell nucleus:

Usage

data(wisc)

Format

A data frame with 569 rows and 32 variables

Details

- ID number
- Diagnosis (M = malignant, B = benign)
- radius (mean of distances from center to points on the perimeter)
- texture (standard deviation of gray-scale values)
- perimeter
- area
- smoothness (local variation in radius lengths)
- compactness (perimeter^2 / area 1.0)
- concavity (severity of concave portions of the contour)
- concave points (number of concave portions of the contour)
- svmmetrv
- fractal dimension ("coastline approximation" 1)

Index

```
* datasets
BostonHousing, 1
wisc, 9

BostonHousing, 1
dimension, 2
new.y, 3, 5
npsdr, 3, 4
psdr, 3, 6, 8
rtpsdr, 7
wisc, 9
```