Notes about Loukas Grafakos' Classical Fourier Analysis

Notes taken by 89hao

March 18, 2020

Abstract

This is a learning note about Chapter 1 of Grafako's Classical Fourier Analysis.

Contents

1	L^p Spaces and Interpolation		
	1.1	L^p and Weak L^p	1
	1.2	Convergence in Measure	٩
	1.3	A First Glimpse at Interpolation	4
2	Convolution an Approximate Identities		
		Convolutin	
	2.2	Basic Convolution Inequalities	-

1 L^p Spaces and Interpolation

1.1 L^p and Weak L^p

Definition 1.1. For f a measurable function on X, the distribution function of f is the function d_f defined on $[0, \infty)$ as follows:

$$d_f(\alpha) = \mu \left(\left\{ x \in X : |f(x)| > \alpha \right\} \right).$$

Proposition 1.2. Let (X, μ) be a σ -finite measure space. Then for f in $L^p(X, \mu)$, 0 , we have

$$||f||_{L^p}^p = p \int_0^\infty \alpha^{p-1} d_f(\alpha) d\alpha.$$
 (1)

Moreover, for any increasing continuously differentiable function φ on $[0, \infty)$ with $\varphi(0) = 0$ and every measurable function f on X with $\varphi(|f|)$ integrable on X, we have

$$\int_{X} \varphi(|f|) d\mu = \int_{0}^{\infty} \varphi'(\alpha) d_{f}(\alpha) d\alpha.$$
 (2)

Proof.

$$p \int_{0}^{\infty} \alpha^{p-1} d_{f}(\alpha) d\alpha = p \int_{0}^{\infty} \alpha^{p-1} \int_{X} \chi_{\{x:|f(x)| > \alpha\}} d\mu(x) d\alpha$$

$$= \int_{X} \int_{0}^{|f(x)|} p \alpha^{p-1} d\alpha d\mu(x)$$

$$= \int_{X} |f(x)|^{p} d\mu(x)$$

$$= ||f||_{L^{p}}^{p}.$$

$$\int_{0}^{\infty} \varphi'(\alpha) d_{f}(\alpha) d\alpha = \int_{0}^{\infty} \varphi'(\alpha) \int_{X} \chi_{\{x:|f(x)| > \alpha\}} d\mu(x) d\alpha$$

$$= \int_{X} \int_{0}^{|f(x)|} \varphi'(\alpha) d\alpha d\mu(x)$$

$$= \int_{X} \varphi(|f|) d\mu.$$

Definition 1.3. For $0 , the space weak <math>L^p(X, \mu)$ is defined as the set of all μ -measurable functions f such that

$$||f||_{L^{p,\infty}} = \inf \left\{ C > 0 : d_f(\alpha) \le \frac{C^p}{\alpha^p} \text{ for all } \alpha > 0 \right\}$$
$$= \sup \left\{ \gamma d_f(\gamma)^{1/p} : \gamma > 0 \right\}$$

is finite. The space weak $L^{\infty}(X,\mu)$ is by definition $L^{\infty}(X,\mu)$.

Proposition 1.4. Since

$$\alpha^p d_f(\alpha) \le \int_{\{x:|f(x)|>\alpha\}} |f(x)|^p d\mu(x) \le ||f||_{L^p}^p,$$

we get

$$||f||_{L^{p,\infty}} \le ||f||_{L^p}$$

for any f in $L^{p(X,\mu)}$. Hence the embedding $L^p(X,\mu) \subset L^{p,\infty}(X,\mu)$ holds.

1.2 Convergence in Measure

Definition 1.5. Let $f, f_n, n = 1, 2, \dots$, be measurable functions on the measure space (X, μ) . The sequence f_n is said to *converge in measure* to f if for all $\varepsilon > 0$ there exists an $n_0 \in \mathbb{Z}^+$ such that

$$n > n_0 \Longrightarrow \mu\left(\left\{x \in X : |f_n(x) - f(x)| > \varepsilon\right\}\right) < \varepsilon. \tag{3}$$

Proposition 1.6. The preceding definition is equivalent to the following statement:

For all
$$\varepsilon > 0$$
 $\lim_{n \to \infty} \mu\left(\left\{x \in X : |f_n(x) - f(x)| > \varepsilon\right\}\right) = 0.$ (4)

Proof. Clearly (4) implies (3). To see the converse, given $\varepsilon > 0$, pick $0 < \delta < \varepsilon$ and apply (3) for this δ .

Proposition 1.7. Let $0 and <math>f_n, f$ be in $L^{p,\infty}(X, \mu)$.

- a. If f_n, f are in L^p and $f_n \to f$ in L^p , then $f_n \to f$ in $L^{p,\infty}$.
- b. If $f_n \to f$ in $L^{p,\infty}$, then f_n converges to f in measure.

Theorem 1.8. Let f_n and f be complex-valued measurable functions on a measure space (X, μ) and suppose that f_n converges to f in measure. Then some subsequence of f_n converges to f μ -a.e.

Proof. For all $k = 1, 2, \dots$, choose inductively n_k such that

$$\mu\left(\left\{x \in X : |f_{n_k}(x) - f(x)| > 2^{-k}\right\}\right) < 2^{-k} \tag{5}$$

and such that $n_1 < n_2 < \cdots < n_k < \cdots$. Define the sets

$$A_k = \left\{ x \in X : |f_{n_k}(x) - f(x)| > 2^{-k} \right\}. \tag{6}$$

The left work is to prove

$$\mu\left(\bigcap_{m=1}^{\infty}\bigcup_{k=m}^{\infty}A_k\right) = 0\tag{7}$$

Definition 1.9. We say that a sequence of measurable functions $\{f_n\}$ on the measure space (X, μ) is Cauchy in measure if for every $\varepsilon > 0$, there exists an $n_0 \in \mathbb{Z}^+$ such that for $n, m > n_0$ we have

$$\mu\left(\left\{x\in X:\left|f_m(x)-f_n(x)\right|>\varepsilon\right\}\right)<\varepsilon.$$

Theorem 1.10. Let f_n be a complex-valued sequence that is Cauchy in measure. Then some subsequence of f_n converges μ -a.e.

Proof. The proof is similar to Theorem 1.8.

1.3 A First Glimpse at Interpolation

Proposition 1.11. Let 0 and let <math>f in $L^{p,\infty}(X,\mu) \cap L^{q,\infty}(X,\mu)$, where X is a σ -finite measure space. Then f is in $L^r(X,\mu)$ for all p < r < q and

$$||f||_{L^r} \le \left(\frac{r}{r-p} + \frac{r}{q-r}\right)^{\frac{1}{r}} ||f||_{L^{p,\infty}}^{\frac{\frac{1}{r} - \frac{1}{q}}{\frac{1}{p} - \frac{1}{q}}} ||f||_{L^{q,\infty}}^{\frac{\frac{1}{p} - \frac{1}{r}}{\frac{1}{p} - \frac{1}{q}}}, \tag{8}$$

with the interpretation that $\frac{1}{\infty} = 0$.

Proof. First assume $q < \infty$. We know that

$$d_f(\alpha) \le \min\left(\frac{\|f\|_{L^{p,\infty}}}{\alpha^p}, \frac{\|f\|_{L^{q,\infty}}^q}{\alpha^q}\right). \tag{9}$$

Set

$$B = \left(\frac{\|f\|_{L^{q,\infty}}^q}{\|f\|_{L^{p,\infty}}^p}\right)^{\frac{1}{q-p}}.$$
 (10)

We now estimate the L^r norm of f.

$$||f||_{L^{r}(X,\mu)}^{r} = r \int_{0}^{\infty} \alpha^{r-1} d_{f}(\alpha) d\alpha$$

$$\leq r \int_{0}^{\infty} \alpha^{r-1} \min\left(\frac{||f||_{L^{p,\infty}}^{p}}{\alpha^{p}}, \frac{||f||_{L^{q,\infty}}^{q}}{\alpha^{q}}\right) d\alpha$$

$$= r \int_{0}^{B} \alpha^{r-1-p} ||f||_{L^{p,\infty}}^{p} d\alpha + r \int_{B}^{\infty} \alpha^{r-1-q} ||f||_{L^{q,\infty}}^{q} d\alpha$$

$$= \frac{r}{r-p} ||f||_{L^{p,\infty}}^{p} B^{r-p} + \frac{r}{q-r} ||f||_{L^{q,\infty}}^{q} B^{r-q}$$

$$= \left(\frac{r}{r-p} + \frac{r}{q-r}\right) (||f||_{L^{p,\infty}}^{p})^{\frac{q-r}{q-p}} (||f||_{L^{q,\infty}}^{q})^{\frac{r-p}{q-p}}.$$

The case $q = \infty$ is easier and the consequence is

$$||f||_{L^r}^r \le \frac{r}{r-p} ||f||_{L^{p,\infty}}^p ||f||_{L^{\infty}}^{r-p}.$$

Definition 1.12. For $0 , the space <math>L^p_{loc}(\mathbb{R}^n, |\cdot|)$ or simply $L^p_{loc}(\mathbb{R}^n)$ is the set of all Lebesgue-measurable functions f on \mathbb{R}^n that satisfy

$$\int_{K} |f(x)|^p \mathrm{d}x < \infty \tag{11}$$

for any compact subset K of \mathbb{R}^n . Functions that satisfy (12) with p=1 are called locally integrable functions on \mathbb{R}^n .

2 Convolution an Approximate Identities

2.1 Convolutin

Definition 2.1. Let f, g be in $L^1(G)$. Define the convolution $f \cdot g$ by

$$(f \cdot g)(x) = \int_{G} f(y)g(y^{-1}x)d\lambda(y). \tag{12}$$

For instance, if $G = \mathbb{R}^n$ with the usual additive structure, then $y^{-1} = -y$ and the integral in (12) is written as

$$(f \cdot g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y) dy.$$

The right-hand side of (12) is defined a.e., since the following double integral converge absolutely:

$$\int_{G} \int_{G} |f(y)| g(y^{-1}x) |\mathrm{d}d\lambda(y) \mathrm{d}\lambda(x) = \int_{G} \int_{G} |f(y)| g(y^{-1}x) |\mathrm{d}\lambda(x) \mathrm{d}\lambda(y)
= \int |f(y)| \int_{G} |g(y^{-1}x)| \mathrm{d}\lambda(x) \mathrm{d}\lambda(y)
= \int_{G} |f(y)| \int_{G} |g(x)| \mathrm{d}\lambda(x) \mathrm{d}\lambda(y)
= ||f||_{L^{1}(G)} ||g||_{L^{1}(G)} < +\infty.$$
(13)

The change of variables $z = x^{-1}y$ yields that (12) is in fact equal to

$$(f * g)(x) = \int_{G} f(xz)g(z^{-1})d\lambda(z)$$
(14)

where the substitution of $d\lambda(y)$ by $d\lambda(z)$ is justified by left invariance.

Proposition 2.2. For all f, g, h in $L^1(G)$, the following properties are valid:

a.
$$f * (g * h) = (f * g) * h$$
 (associativity),

b.
$$f * (g+h) = f * g + f * h$$
 and $(f+g) * h = f * h + g * h$ (distributivity).

These imply that $L^1(G)$ is a (not necessarily commutative) Banach algebra under the convolution product.

2.2 Basic Convolution Inequalities

Theorem 2.3 (Minkowski's inequality). Let $1 \le p \le \infty$, $f \in L^p(G)$, $g \in L^1(G)$, we have that g * f exists λ -a.e. and satisfies

$$||g * f||_{L^p(G)} \le ||g||_{L^1}(G)||f||_{L^p(G)}.$$
 (15)