La definició d'espai topològic és molt general i per tant, molt difícil provar teoremes en aquest context tan ampli. A la pràctica s'estudien diferents classes d'espais topològics que poden ser més o menys generals. Les restriccions que imposem poden ser de diferents tipus. En aquest seminari discutirem un tipus de restricció: els axiomes de separació que es refereixen a les diferents maneres en que podem "separar" punts i tancats en un espai topològic. Anirem de propietats menys restrictives a més restrictives. El que és important és que siguin propietats topològiques, és a dir, si X les satisfà i Y és homeomorf a X aleshores Y també la satisfà.

Per què la lletra T? en alemany, axioma de separació és Trennungsaxiom.

1 De T_0 a T_2

Comencem amb el primer bloc d'axiomes per imposar restriccions.

Espais T_0 o Kolmogorov

Comencem amb la propietat menys restrictiva de totes les que veurem. Un espai topològic X és T_0 si per tot parell de punts diferents $x \neq y \in X$ existeix un obert que conté un dels punts i no l'altre.

Fixeu-vos que la topologia grollera no és T_0 si X té més d'un punt, i que la topologia discreta discreta sempre ho és. Anem a veure un altre exemple "més fi" que no és T_0 .

Sigui X un conjunt que té més d'un punt, i $A \subset X$ tal que $|X \setminus A| > 1$. Definim la següent topologia: els subconjunts oberts són els subconjunts de A i també el total X. Comproveu que és una topologia i que no compleix T_0 .

Espais T_1 o Fréchet

Un espai topològic X és T_1 si per tot parell de punts diferents $x \neq y \in X$, existeix un obert $U \subset X$ tal que $x \in U$ i $y \notin U$. (Per simetria fixeu-vos que també existeix un obert $V \subset X$ tal que $y \in V$ i $x \notin V$).

Fixeu-vos que T_1 és una propietat més restrictiva que T_0 : tot espai topològic T_1 és T_0 però no al revès. Un exemple d'espai T_0 que no és T_1 ja el coneixem....l'espai de Sierpinski en $\{0,1\}$. Però aquí en teniu un altre. Sigui X un conjunt amb més d'un punt, i ara definirem els subconjunts tancats. Fixem $x_0 \in X$ i declarem: un subconjunt és tancat si és buit o bé conté $\{x_0\}$.

Hi ha caracterizacions diferents de la propietat T_1 . Són equivalents:

- 1. X és T_1
- 2. Per tot $x \in X$, $\{x\}$ és la intersecció de tots els entorns que contenen x.
- 3. Per tot $x \in X$, $\{x\}$ és tancat.

Un exemple d'espai topològic que és T_1 és el de la topologia cofinita. Ara bé, la topologia cofinita en un conjunt X infinit no és Hausdorff....per què? aquesta és la propietat T_2 .

Espais T_2 o Hausdorff

Un espai topològic X és T_2 (o de Hausdorff) si per tot parell de punts diferents $x \neq y \in X$, existeixen oberts $U, V \subset X$ tal que $x \in U$, $y \in V$ i $U \cap V = \emptyset$.

Fixeu-vos que T_2 és una propietat més restrictiva que T_1 : tot espai topològic T_2 és T_1 però no al revès. Per exemple, com ja hem vist la topologia cofinita en un conjunt infinit.

També hi ha diferents caracterizacions de la propietat T_2 . Són equivalents:

- 1. X és T_2 .
- 2. Per tot $x \in X$, $\{x\}$ és la intersecció de tots les clausures dels entorns que contenen x.
- 3. La diagonal $\Delta(X) = \{(x, x) \in X \times X | x \in X\} \subset X \times X$ és tancat.

Però, que dos conjunts $U, V \subset X$ siguin disjunts no vol dir que estiguin "separats", pots passar que $Cl(U) \cap Cl(V) \neq \emptyset$. Diem que $U, V \subset X$ estan separats si $Cl(U) \cap Cl(V) = \emptyset$. Així podem posar una condició una mica més restrictiva.

Un espai topològic X és $T_{2\frac{1}{2}}$ (o de Urysohn) si per tot parell de punts diferents $x \neq y \in X$, existeixen oberts separats $U, V \subset X$ tal que $x \in U$, $y \in V$.

Es pot comprovar que aquesta és més restrictiva que T_2 però hi ha exemples de T_2 que no són $T_{2\frac{1}{2}}$, no ens n'ocuparem ara.

2 De T_3 a T_4

D'aquí en endavant assumirem que els nostres espais són T_1 ja que voldrem que els punts sigui tancats per mantenir condicions més restrictives.

Espais T_3 o regulars

Un espai topològic X és T_3 (o regular) si és T_1 i donats $x \in X$ i $F \subset X$ tancat amb $x \notin F$, existeixen oberts $\mathcal{U}, \mathcal{V} \subset X$ tal que $x \in \mathcal{U}, F \subset \mathcal{V}$ i $\mathcal{U} \cap \mathcal{V} = \emptyset$.

Cal que X sigui T_1 per a que sigui una condició més restrictiva que T_2 , tot espai T_3 aleshores també és T_2 . Ara, construir exemples de T_2 que no són T_3 ja és una mica més complicat.

Anem a veure'n un! Sigui $X=\mathbb{R}$ la recta real, i $Z=\{\frac{1}{n}|0\neq n\in\mathbb{Z}\}\subset\mathbb{R}$. Considerem els subconjunts $U_n(x)=(x-\frac{1}{n},x+\frac{1}{n})$ si $x\neq 0$ i $U_n(0)=(-\frac{1}{n},\frac{1}{n})\setminus Z$, i prenem $\mathcal{B}=\{U_n(x)|n\in\mathbb{N},x\in X\}$. La col.lecció \mathcal{B} compleix les propietats per generar una topologia a la recta real. Fixeu-vos que Z és tancat a X, $0\not\in Z$ però tot obert que contingui Z i tot obert que contingui 0 s'han de tallar.

També hi ha altres caracterizacions de la propietat T_3 . Són equivalents:

- 1. X és T_3 .
- 2. Per tot $x \in X$ i $x \in U \subset X$ obert, existeix un obert $V \subset X$ tal que $x \in Cl(V) \subset U$.

Espais T_4 o normals

Un espai topològic X és T_4 (o normal) si és T_1 i donats $K \subset X$ i $F \subset X$ tancats disjunts, existeixen oberts $U, V \subset X$ tal que $K \subset U, F \subset V$ i $U \cap V = \emptyset$.

Els espais mètric són normals. Hi ha caracterizacions diferents de la propietat T_4 . Són equivalents:

- 1. X és T_4 .
- 2. Per tot $K \subset X$ tancat i $K \subset U \subset X$ obert, existeix un obert $V \subset X$ tal que $K \subset V \subset Cl(V) \subset U$.

$$T_4 \subsetneq T_3 \subsetneq T_2 \subsetneq T_1 \subsetneq T_0$$
 (1)

Appendix: El Lemma d'Uryshon

Aquest és un resultat MOOOOLT important en topologia ja que permet construir aplicacions cap a [0,1]. És una propietat de separació per funcions contínues. Diu així (i és equivalent a T_4):

Sigui X un espai normal, i $A, B \subset X$ tancats, aleshores existeix una funció contínua $f: X \to [0, 1]$ tal que $A \subset f^{-1}(0)$ i $B \subset f^{-1}(1)$.