

Set cover

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema de set cover

Sea

Set X de n elementos

Una lista $F=\{S_1,...,S_m\}$ de subsets de X

Un set cover

es un un subconjunto de F cuya unión es X

Objetivo

Encontrar el set cover S con menor cantidad de subsets

Tratando de construir un buen algoritmo

Construiremos un algoritmo greedy

Iremos seleccionando un subset de F paso a paso para el cover set

Intentaremos

Cubrir la mayor cantidad de elementos aun no seleccionados

Algoritmo propuesto

```
\label{eq:resolvent} \begin{array}{l} R = X \ y \ S = \emptyset \ (sin sets seleccionados) \\ \text{Mientras } R \neq \emptyset \\ \text{Seleccionar set } S_i \ con \ mayor \ S_i \ \cap R \\ \text{Agregar set Si a S} \\ \text{Quitar elementos de } S_i \ de \ R \\ \text{Retornar S} \end{array}
```


Ejemplo

Ejemplo (cont.)

Análisis del algoritmo

El tiempo de ejecución del algoritmos

Esta acotado por la cantidad de subsets y elementos

Y se puede implementar en tiempo polinomial

¿Qué tan diferente es el costo óptimo del Generado en el caso general?

Análisis del algoritmo

Asignamos un costo de 1

A cada set seleccionado por el algoritmo

Distribuimos el costo

Entre los elementos cubiertos por primera vez

Utilizaremos este costo para derivar las relación

Entre el tamaño del resultado optimo C* y el tamaño del resultado retornado por el algoritmo greedy C

Llamemos

Si al i-esimo set seleccionado por el algoritmo greedy

 C_x el costo asignado al elemento x,

Sabemos que

A cada elemento x se le asigna el costo solo 1 vez

Si x es cubierto por por Si

$$c_x = \frac{1}{|S_i - (S_1 \cup S_2 \cup ... \cup S_{i-1})|}$$

Podemos ver que

$$|C| = \sum_{x \in X} c_x$$

Ademas, cada elemento x

se encuentra en al menos un set del resultado optimo. entonces

$$\sum_{s \in C^*} \sum_{x \in S} c_x \ge \sum_{x \in X} c_x$$

En definitiva

$$|C| \leq \sum_{s \in C^*} \sum_{x \in S} c_x$$

Sea S cualquier set de F

Llamamos
$$u_i = |S - (S_1 \cup S_2 \cup ... \cup S_i)|$$

a la cantidad de elementos aun no cubiertos luego del paso i en S

Con

 $U_o = |S|$

Sea k el menor indice

Donde $u_k = 0 \leftarrow no$ quedan elementos sin cubrir en S

Y donde $u_{k-1} > 0 \leftarrow$ aun quedaban elementos sin cubrir en S – $(S_1 \cup S_2 \cup ... \cup S_{k-1})$

Se puede ver que

 $U_{i-1} \ge U_i$

u_{i-1} – u_i es la cantidad de elementos que se cubren por Si

Por lo que podemos expresar

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \frac{1}{|S_i - (S_1 \cup S_2 \cup ... \cup S_{i-1})|}$$

Observar que

$$|S_i - (S_1 \cup S_2 \cup ... \cup S_{i-1})| \ge |S - (S_1 \cup S_2 \cup ... \cup S_{i-1})| = u_{i-1}$$

Por lo tanto

$$\sum_{x \in S} c_x \le \sum_{i=1}^k (u_{i-1} - u_i) \frac{1}{u_{i-1}}$$

Que podemos reescribir como

$$\sum_{i=1}^{k} (u_{i-1} - u_i) \frac{1}{u_{i-1}} = \sum_{i=1}^{k} \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{u_{i-1}}$$

Por la elección greedy, sino en ese paso debería seleccionar a S en vez de Si

Entonces
$$\int_{i=1}^{j \le u_{i-1}} \int_{j=u_i+1}^{j \le u_{i-1}} \frac{1}{u_{i-1}} \le \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{j} = \sum_{i=1}^k \left(\sum_{j=1}^{u_{i-1}} \frac{1}{j} - \sum_{j=1}^{u_i} \frac{1}{j} \right)$$
 Se cancelan las
$$\sum_{i=1}^k \left(\sum_{j=1}^{u_{i-1}} \frac{1}{j} - \sum_{j=1}^{u_i} \frac{1}{j} \right) = \sum_{i=1}^k \left(H(u_{i-1}) - H(u_i) \right) = H(u_0) - H(u_{u_k}) = H(u_0) - H(0) = H(u_0)$$

Por lo tanto

$$\sum_{x \in S} c_x \leq H(u_0) = H(|S|)$$

Como

$$|C| \le \sum_{s \in C^*} \sum_{x \in S} c_x$$
 y $\sum_{x \in s} c_x \le H(|S|)$

Entonces

$$|C| \leq \sum_{S \in C^*} H(|S|) \leq |C^*| H(\max\{|S|: S \in F\})$$

Podemos expresar | S

Por la cantidad n de elementos del set original por lo tanto (como mucho un set tiene los n elementos del conjunto)

$$|C| \leq |C^*| * \log(n)$$

Función armónica

Dada la funcion armónica

Vemos que la misma puede ser acotada por 2 funciones logarítmicas

Conclusión

Podemos expresar |S|

Por la cantidad n de elementos del set original por lo tanto $|C| \le |C^*| * \log(n)$

Por todo lo anterior

Nuestro algoritmo es un (1+logn)-algoritmo de aproximación

Presentación realizada en Julio de 2020