Exercises:

```
Exercise1.m:
% APPM3021 Lab 5 Exercise 1
% Tyson Cross 1239448
clear all;
syms x y;
x0 = 0;
xf = 3;
y0 = 1;
f(x,y) = y*(1 -(4*x)/3);
function_name = func2str(matlabFunction(f));
function_name = function_name(8:end);
N = 10;
% Numerical solution
[X,Y] = Euler(f,x0,y0,N,xf);
% Confirm exact solution
[X_solution,Y_solution,sol] = ExactODE(f,x0,y0,N,xf);
err = abs((Y_solution - Y)./Y_solution);
% Display results
Exercise1_Disp
```

When Exercise1.m is run in the workspace, the following output is displayed to the command window:

```
N = 10

h = 0.3

x is an element of [0,3]

f(x,y) = y.*(x.*(4.0./3.0)-1.0)

Exact Solution: y = exp(-(x*(2*x - 3))/3)
```

Euler's Method:

Х	У	Exact	RE
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7	1 1.3 1.534 1.626 1.5285 1.2534 0.87735 0.50886 0.23408 0.079586 0.017509	1 1.2712 1.4333 1.4333 1.2712 1 0.69768 0.43171 0.23693 0.11533 0.049787	0.022616 0.070235 0.13445 0.20234 0.25335 0.25753 0.17871 0.012037 0.3099 0.64832

Exercise2.m:

```
% APPM3021 Lab 5 Exercise 2
% Tyson Cross 1239448
clear all;
syms x y;
x0 = 0;
xf = 3;
y0 = 1;
f(x,y) = y*(1 -(4*x)/3);
function_name = func2str(matlabFunction(f));
function_name = function_name(8:end);
N = 10;
```

```
% Numerical solution
[X,Y] = Heun(f,x0,y0,N,xf);
% Confirm exact solution
[X_solution,Y_solution,sol] = ExactODE(f,x0,y0,N,xf);
err = abs((Y_solution - Y)./Y_solution);
% Display results
Exercise2_Disp
```

When Exercise2.m is run in the workspace, the following output is displayed to the command window:

```
N = 10

h = 0.3

x is an element of [0,3]

f(x,y) = y.*(x.*(4.0./3.0)-1.0)

Exact Solution: y = exp(-(x*(2*x - 3))/3)
```

Heun's Method:

X	У	Exact	RE
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7	1 1.267 1.4259 1.4233 1.2602 0.99178 0.69722 0.44162 0.25534 0.13722 0.070121	1 1.2712 1.4333 1.4333 1.2712 1 0.69768 0.43171 0.23693 0.11533 0.049787	0.0033425 0.005196 0.0069867 0.008689 0.00822 0.00065216 0.022954 0.077732 0.18987 0.40841

Exercise3.m:

```
% APPM3021 Lab 5 Exercise 3
% Tyson Cross 1239448
clear all;
syms \times y;
 x0 = 0;
xf = 3;
y0 = 1;
f(x,y) = y*(1 - (4*x)/3);
function_name = func2str(matlabFunction(f));
function_name = function_name(8:end);
N = 10;
% Numerical solution
[X,Y] = Midpoint(f,x0,y0,N,xf);
% Confirm exact solution
[X_solution,Y_solution,sol] = ExactODE(f,x0,y0,N,xf);
err = abs((Y_solution - Y)./Y_solution);
% Display results
Exercise3_Disp
```

When Exercise3.m is run in the workspace, the following output is displayed to the command window:

0	1	1	0
0.3	1.276	1.2712	0.0037372
0.6	1.4429	1.4333	0.0066777
0.9	1.4429	1.4333	0.0066777
1.2	1.2749	1.2712	0.0029089
1.5	0.9965	1	0.0035013
1.8	0.69157	0.69768	0.0087522
2.1	0.42933	0.43171	0.0055218
2.4	0.24128	0.23693	0.018376
2.7	0.12489	0.11533	0.082916
3	0.060895	0.049787	0.22311

Exercise4.m:

```
% APPM3021 Lab 5 Exercise 4
% Tyson Cross 1239448
clear all;
syms x y;
x0 = 0;
xf = 3;
y0 = 1;
f(x,y) = y*(1 -(4*x)/3);
function_name = func2str(matlabFunction(f));
function_name = function_name(8:end);
N = 10;
% Numerical solution
[X,Y] = RK4(f,x0,y0,N,xf);
% Confirm exact solution
[X_solution,Y_solution,sol] = ExactODE(f,x0,y0,N,xf);
err = abs((Y_solution - Y)./Y_solution);
% Display results
Exercise4_Disp
```

When Exercise4.m is run in the workspace, the following output is displayed to the command window:

```
N = 10

h = 0.3

x is an element of [0,3]

f(x,y) = y.*(x.*(4.0./3.0)-1.0)

Exact Solution: y = exp(-(x*(2*x - 3))/3)
```

Runge-Kutta Method:

Х	У	Exact	RE
x 0 0.3 0.6 0.9 1.2 1.5 1.8	y 1 1.2712 1.4333 1.2712 0.99998 0.69769 0.43183	1.2712 1.4333 1.4333 1.2712 0.69768	RE 0 1.2232e-05 1.4336e-05 1.6542e-05 1.9416e-05 2.0822e-05 0.00028245
2.4 2.7 3	0.43163 0.23723 0.11579 0.05033	0.23693 0.11533 0.049787	0.0012564 0.0012564 0.0040528 0.0109

```
% APPM3021 Lab 5 Exercise 5a
% Tyson Cross 1239448
clc; clear all; set(0,'ShowHiddenHandles','on'); delete(get(0,'Children')); syms x y; x0 = 0;
xf = 3;
y0 = 1;
f(x,y) = (1 -(4/3)*x)*y;
% g = @(y1,y2) [y1;y2;-(4/3)*y1];
function_name = func2str(matlabFunction(f));
function_name = function_name(7:end);
N1 = 30;
N2 = 300;
%% Calculations
fprintf('Calculating...');
                                                              tic:
[X1,Y1] = Euler(f,x0,y0,N1,xf);

[X2,Y2] = Euler(f,x0,y0,N2,xf);
                                                              fprintf('.');
fprintf('.');
% Confirm exact solution
[X_sol1,Y_sol1] = ExactODE(f,x0,y0,N1,xf);
                                                               fprintf('.');
fprintf('.');
[X\_sol2,Y\_sol2,sol] = ExactODE(f,x0,y0,N2,xf);
err1 = abs((Y_sol1 - Y1)./Y_sol1);
err1(isnan(err1)) = 0;
err2 = abs((Y_sol2 - Y2)./Y_sol2);
err2(isnan(err2)) = 0;
t = toc;
                                                               fprintf('\n');
disp(['Calculations complete in ',num2str(t)]);
% Display results
Exercise5a_Disp
% Plot results
Exercise5a_Plot
When Exercise5a.m is run in the workspace, the following output is displayed to the command window:
Calculating.....
Calculations complete in 6.4687
N1 = 30
h1 = 0.1
x is an element of [0,3]
f(x,y) = -y.*(x.*(4.0./3.0)-1.0)
Exact Solution: y = exp(-(x*(2*x - 3))/3)
              Euler's Method:
```

x	у	Exact	RE
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1 2.1 2.2	1 1.1 1.1953 1.283 1.36 1.4234 1.4709 1.5003 1.5103 1.5103 1.5002 1.4702 1.4212 1.3549 1.2736 1.1802 1.0779 0.97013 0.86018 0.75123 0.64605 0.54699 0.45583 0.37378	1 1.0978 1.1893 1.2712 1.3409 1.3956 1.4333 1.4526 1.4526 1.4526 1.4526 1.4526 1.4526 1.2712 1.1893 1.2712 1.1893 1.0978 0.69768 0.69768 0.69768 0.69768 0.51342 0.43171 0.3582	0.0019788 0.0051047 0.0092366 0.019936 0.019936 0.026201 0.032861 0.039747 0.046678 0.053466 0.05991 0.065801 0.077922 0.075039 0.077922 0.076754 0.072288 0.065396 0.055396 0.055396 0.055396 0.055396 0.055396 0.055863 0.043493

```
      2.3
      0.30151
      0.29327
      0.028117

      2.4
      0.2392
      0.23693
      0.0095965

      2.5
      0.18658
      0.18888
      0.012169

      2.6
      0.14304
      0.14857
      0.037236

      2.7
      0.10776
      0.11533
      0.06561

      2.8
      0.079741
      0.088331
      0.097241

      2.9
      0.057945
      0.066759
      0.13202

      3
      0.041334
      0.049787
      0.16978
```

N2 = 300 h2 = 0.01 x is an element of [0,3] f(x,y) = -y.*(x.*(4.0./3.0)-1.0)Exact Solution: y = exp(-(x*(2*x - 3))/3)

Euler's Method:

x	у 	Exact	RE
0.01 0.02 0.03 0.04 0.05 0.07 0.08 0.11 0.11 0.11 0.11 0.12 0.22 0.22 0.31 0.33 0.41 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.55 0.5	1 1.01 1.02 1.0299 1.0398 1.0496 1.0594 1.0692 1.0789 1.0885 1.0981 1.1076 1.117 1.1264 1.1357 1.145 1.1541 1.1632 1.1722 1.1811 1.1899 1.2973 1.2158 1.2243 1.2256 1.2408 1.2489 1.2569 1.2648 1.2725 1.2802 1.2877 1.2951 1.3023 1.3164 1.3233 1.3365 1.3429 1.3459	1 1.01 1.0199 1.0298 1.0397 1.0495 1.0593 1.069 1.0787 1.0883 1.0978 1.1073 1.1167 1.1261 1.1353 1.1445 1.1537 1.1627 1.1716 1.1805 1.1979 1.2065 1.215 1.2234 1.2338 1.2478 1.2234 1.2398 1.2478 1.2478 1.2558 1.2478 1.3281 1.3471 1.3281 1.3471 1.3531 1.3471 1.3471 1.3471 1.3531 1.3471 1.34	0 1.6998e-05 3.5307e-05 5.4911e-05 7.5792e-05 9.7932e-05 0.00012132 0.00014592 0.00017174 0.0002692 0.00025626 0.00028673 0.0003848 0.00041965 0.00045555 0.00045555 0.00049248 0.00056939 0.00065022 0.00069206 0.00077851 0.000828309 0.00069206 0.00077851 0.0001588 0.0011084 0.001588 0.0011084 0.0015875 0.0014214 0.0014761 0.0015313 0.0015872 0.0018758 0.0018758 0.0019349 0.00194761 0.0015875 0.0014214 0.0014761 0.0015875 0.0014214 0.0015875 0.00187585 0.0019349 0.00194761 0.0015875 0.00187580 0.0019349 0.0019349 0.0019349 0.0019349 0.0019349 0.00123634 0.0024896

2.15 2.17 2.18 2.19 2.21 2.22 2.23 2.23 2.33 2.33 2.41 2.33 2.33 2.41 2.33 2.42 2.33 2.43 2.44 2.55 2.55 2.66 2.77 2.77 2.77 2.77 2.77 2.77 2.77	0.39585 0.385840 0.37394 0.37394 0.37394 0.37394 0.35977 0.35281 0.34594 0.332587 0.31292 0.30658 0.30032 0.29416 0.28808 0.2947618 0.27036 0.26463 0.27636 0.26463 0.25898 0.25343 0.24795 0.22185 0.21199 0.20217 0.19326 0.21888 0.21199 0.20717 0.19326 0.1887 0.18437 0.18004 0.17579 0.17579 0.17579 0.17579 0.17589 0.184816 0.14491 0.13741 0.113775 0.11471 0.11589 0.12087 0.11471 0.11589 0.12087 0.11471 0.11589 0.12087 0.11471 0.11589 0.12087 0.11471 0.11589 0.12087 0.11471 0.11589 0.12087 0.11471 0.11589 0.12087	0.3939 0.3859 0.373659 0.377222 0.36517 0.3582 0.35132 0.34452 0.33781 0.33119 0.32465 0.299327 0.28725 0.28725 0.28725 0.228725 0.228725 0.227547 0.26404 0.25845 0.226404 0.225294 0.224218 0.23697 0.226408 0.21674 0.21189 0.221666 0.21674 0.21189 0.221689 0.17186 0.16381 0.18022 0.17186 0.16381 0.15228 0.14439 0.13789 0.13447 0.11533 0.112461 0.11533 0.112461 0.11533 0.112461 0.11533 0.112461 0.11533 0.112461 0.11533 0.112461 0.10382 0.0907471 0.098431 0.098431 0.098431 0.098431 0.098431 0.098431 0.098431 0.098699 0.097479 0.0766999 0.0767919 0.0766996 0.0666759	0.0049577 0.0048474 0.0047346 0.0047346 0.0045012 0.0043806 0.0042574 0.0041316 0.003872 0.0037381 0.0036016 0.0034623 0.0033203 0.0031756 0.0032817 0.0025687 0.0025687 0.0022482 0.002837 0.0019162 0.0017459 0.0015726 0.0013964 0.0012772 0.001351 0.00084994 0.0012772 0.001351 0.00047058 0.00027633 7.9027e-05 0.0013964 0.0012172 0.0013893 0.0016118 0.00053145 0.00074118 0.00053145 0.00074118 0.00053145 0.00075382 0.0035082 0.0035082 0.0035082 0.0035082 0.0035082 0.0035082 0.0035082 0.0035082 0.0035082 0.0037601 0.0042741 0.0045362 0.0040154 0.0042741 0.0045362 0.0040154 0.0042741 0.0045362 0.007055 0.007050 0.0073468 0.0076472 0.0079512 0.0079512 0.0078512 0.0078512 0.0078512 0.0078512 0.0078512 0.0078512 0.0078512 0.0078512 0.0088848 0.0092033 0.0095254 0.0098512 0.0011531
2.87	0.071946	0.072711	0.010514
2.88	0.069913	0.070679	0.010851

```
2.94
         0.058693
                       0.059463
                                       0.012951
2.95
2.96
2.97
2.98
         0.056979
                       0.057748
                                       0.013314
         0.055308
                       0.056075
                                       0.013681
         0.053678
                       0.054443
                                       0.014052
                       0.052852
         0.052089
                                       0.014427
                         0.0513
2.99
          0.05054
                                       0.014806
   3
         0.049031
                       0.049787
                                       0.015188
```

When Exercise5a.m is run in the workspace, the following figure is generated:

Figure 1. Exercise 5a

Exercise5b.m:

```
% APPM3021 Lab 5 Exercise 5b
% Tyson Cross 1239448

clc; clear all; set(0,'ShowHiddenHandles','on'); delete(get(0,'Children'));
syms x y;
x0 = 0;
xf = 3;
y0 = 1;
f(x,y) = y*(1 -(4*x)/3);
function_name = func2str(matlabFunction(f));
function_name = function_name(8:end);
N = 300;

%% Calculations
fprintf('Calculating...');
[X,Y_Euler] = Euler(f,x0,y0,N,xf);
[~,Y_Heun] = Heun(f,x0,y0,N,xf);
[~,Y_Heun] = Heun(f,x0,y0,N,xf);
[~,Y_Midpoint] = Midpoint(f,x0,y0,N,xf);
[~,Y_Midpoint] = M
```

When Exercise5b.m is run in the workspace, the following output is displayed to the command window:

```
Calculating......
Calculations complete in 33.8954

N = 300

h = 0.01

x is an element of [0,3]

f(x,y) = y.*(x.*(4.0./3.0)-1.0)

Exact Solution: y = \exp(-(x*(2*x - 3))/3)
```

Comparison of Methods:

Euler	Heun	Midpoint	RK4	Exact
1 1.01 1.02 1.0299 1.0398 1.0496 1.0594 1.0692 1.0789 1.0885 1.0981 1.1076 1.117 1.1264 1.1357 1.145 1.1632 1.1722 1.1811 1.1632 1.1722 1.1811 1.1899 1.1987 1.2073 1.2158 1.2243 1.2326 1.2408 1.22489 1.2569 1.2648 1.2725 1.2802 1.2807 1.2802 1.2877 1.3023 1.3164 1.3233 1.333	1 1.01 1.0199 1.0298 1.0397 1.0495 1.0593 1.069 1.0787 1.0883 1.0978 1.1167 1.1261 1.1353 1.1445 1.1537 1.1627 1.1716 1.1805 1.1893 1.1979 1.2065 1.215 1.2234 1.2316 1.2398 1.2478 1.2557 1.2636 1.2712 1.2788 1.2862 1.2936 1.3077 1.3078 1.3147 1.3215 1.3281	1 1.01 1.0199 1.0298 1.0397 1.0495 1.0593 1.069 1.0787 1.0883 1.0978 1.1073 1.1167 1.1261 1.1353 1.1445 1.1537 1.1627 1.1716 1.1805 1.1893 1.1979 1.2065 1.215 1.2234 1.2316 1.2398 1.2478 1.2398 1.2478 1.2558 1.2636 1.2713 1.2788 1.2788 1.2788 1.2788 1.2863 1.2788 1.2863 1.3007 1.3078 1.3078 1.3147 1.3215 1.3281	1 1.01 1.0199 1.0298 1.0397 1.0495 1.0593 1.069 1.0787 1.0883 1.0978 1.1167 1.1261 1.1353 1.1445 1.1537 1.1627 1.1805 1.1893 1.1979 1.2065 1.215 1.2316 1.2398 1.2478 1.2316 1.2398 1.2478 1.2478 1.2558 1.2478 1.2558 1.2478 1.2558 1.2478 1.2558 1.2478 1.3281 1.3077 1.3078 1.3078 1.3078 1.3147 1.3215 1.3281	1 1.01 1.0199 1.0298 1.0397 1.0495 1.0593 1.069 1.0787 1.0883 1.0978 1.1073 1.1167 1.1261 1.1353 1.1445 1.1537 1.1627 1.1716 1.1805 1.1893 1.1979 1.2065 1.215 1.2316 1.2316 1.2318 1.2478 1.2478 1.2558 1.2478 1.2558 1.2712 1.2788 1.2936 1.3077 1.3078 1.3078 1.3147 1.3215 1.3281

1.2945 1.2871 1.2795 1.2718 1.264 1.2561 1.2481 1.2339 1.2316 1.2233 1.2148 1.2062 1.1975 1.1887 1.1709 1.1618 1.1709 1.1618 1.17527 1.1435 1.1342 1.1248 1.1154 1.1058 1.1058 1.0769 1.0671 1.0573 1.0474 1.0375 1.0276 1.0176 1.0075	1.2862 1.2788 1.2712 1.2636 1.2557 1.2478 1.2398 1.2316 1.2234 1.215 1.2065 1.1979 1.1893 1.1805 1.1716 1.1627 1.1537 1.1445 1.1537 1.1445 1.1073 1.1073 1.0978 1.0883 1.0787 1.069 1.0593 1.0495 1.0397 1.0298 1.0199 1.01	1.2863 1.2788 1.2713 1.2636 1.2558 1.2478 1.2398 1.2316 1.2234 1.215 1.2065 1.1979 1.1893 1.1716 1.1627 1.1537 1.1445 1.1537 1.1445 1.1627 1.1537 1.1069 1.0787 1.0883 1.0787 1.0893 1.0787 1.0998 1.0199 1.0199	1.2863 1.2788 1.2712 1.2636 1.2558 1.2478 1.2398 1.2316 1.2234 1.215 1.2065 1.1979 1.1893 1.1805 1.1716 1.1627 1.1537 1.1445 1.1537 1.1445 1.1537 1.1627 1.1537 1.1069 1.0787 1.0883 1.0787 1.0893 1.0787 1.0893 1.0787 1.0978 1.0199 1.0199	1.2863 1.2782 1.2712 1.2636 1.2558 1.2478 1.2398 1.2316 1.2234 1.215 1.2065 1.1979 1.1893 1.1805 1.1716 1.1627 1.1537 1.1445 1.1537 1.1445 1.1073 1.0978 1.0978 1.0978 1.0978 1.0978 1.0998 1.0199 1.0199
0.99745 0.98735 0.98735 0.97721 0.96705 0.95686 0.94665 0.93643 0.92619 0.91594 0.90568 0.89542 0.885415 0.87488 0.86462 0.854363 0.81342 0.83386 0.82363 0.772261 0.77278 0.77278 0.77268 0.77268 0.77261 0.77269 0.77261 0.71269 0.77261 0.71269 0.70281 0.71269 0.70281 0.66373 0.66373 0.66373 0.66373 0.66373 0.66373 0.66373 0.65408 0.59738 0.56986 0.56081 0.55184	0.98998 0.97994 0.96986 0.95977 0.94965 0.93951 0.92935 0.91919 0.90901 0.89883 0.88864 0.85807 0.8479 0.84773 0.82757 0.81743 0.82757 0.81743 0.79719 0.77704 0.767704 0.767704 0.767704 0.767704 0.767704 0.767704 0.767704 0.769768 0.66859 0.66859 0.66859 0.63049 0.63049 0.63049 0.63049 0.63049 0.63049 0.655712 0.54824	0.98998 0.97994 0.96986 0.95976 0.94964 0.93951 0.92935 0.91918 0.90901 0.89882 0.88864 0.87845 0.86826 0.85807 0.82756 0.81742 0.80729 0.79718 0.77704 0.7677 0.75699 0.74702 0.73707 0.72716 0.71729 0.70746 0.69767 0.68793 0.66858 0.65897 0.64942 0.63993 0.63048 0.6211 0.61177 0.6025 0.59329 0.58415 0.57507 0.59329 0.58423	0.98998 0.97994 0.96986 0.95977 0.94965 0.93951 0.92935 0.91919 0.90901 0.89883 0.88864 0.87845 0.86826 0.85807 0.84789 0.79719 0.7871 0.77704 0.767 0.7699 0.74702 0.73707 0.7173 0.70747 0.69768 0.68878 0.66858 0.66858 0.668588 0.63993 0.63048 0.6211 0.61177 0.69768 0.63993 0.63048 0.6211 0.61177 0.59329 0.58415 0.57507 0.56605 0.55711 0.54823	0.98998 0.97994 0.96986 0.95977 0.94965 0.93951 0.92935 0.91919 0.89883 0.88864 0.85807 0.84782 0.82757 0.81742 0.80729 0.77770 0.77770 0.77770 0.77777 0.7173 0.70747 0.69768 0.68793 0.66858 0.66858 0.66858 0.63993 0.63048 0.6211 0.61177 0.59329 0.59329 0.59329 0.557507 0.556605 0.55711 0.54823

0.54294 0.53411 0.52566 0.53415 0.51666 0.516665 0.499106 0.48268 0.47437 0.46615 0.4458015 0.4458015 0.441853 0.41853 0.41853 0.41853 0.41853 0.41853 0.338846 0.338846 0.338846 0.338846 0.338846 0.338846 0.338846 0.335281 0.336687 0.335281 0.336688 0.325880 0.276188 0.2269 0.226880 0.2276880 0.226880	0.53943 0.53943 0.53069 0.52202 0.51343 0.49646 0.49646 0.47159 0.463466 0.4554 0.43953 0.43172 0.42399 0.41635 0.40878 0.40131 0.39391 0.3866 0.37938 0.37224 0.36518 0.37938 0.37224 0.36518 0.37938 0.37224 0.36518 0.37938 0.37938 0.37938 0.37938 0.37938 0.37938 0.37938 0.37938 0.37938 0.37938 0.37938 0.37938 0.32467 0.31822 0.31186 0.30558 0.29939 0.29328 0.28727 0.26405 0.247549 0.26973 0.26405 0.25296 0.247549 0.247549 0.252969 0.247549 0.252969 0.247549 0.252969 0.247549 0.252969 0.247549 0.252969 0.247540 0.252969 0.247540 0.252969 0.247540 0.21675 0.21191 0.20715 0.20247 0.19334 0.18889 0.18452 0.18023 0.17602 0.17188 0.16382 0.17602 0.17188 0.16382 0.17602 0.17188 0.16382 0.17602 0.17188 0.16382 0.17602 0.17188 0.16382 0.17602 0.17188 0.16382 0.17602 0.17188 0.16382 0.17602 0.171881 0.15991 0.15606 0.15229 0.14496 0.13149 0.13449 0.13449 0.13449 0.13449 0.13449 0.13449 0.13479 0.112462 0.11374 0.112462 0.11374 0.112462 0.112467 0	0.53942 0.53942 0.539681 0.513422 0.49645 0.49645 0.49645 0.47979 0.471585 0.461347 0.423984 0.40877 0.43171 0.423984 0.40877 0.43951 0.379227 0.386517 0.379227 0.379227 0.37938 0.37938 0.37938 0.31184 0.30557 0.299387 0.299387 0.299387 0.299387 0.299387 0.299387 0.299387 0.21674 0.21674 0.217607 0.15605 0.15888 0.18459 0.171878 0.15899 0.158995 0.15895 0	0.53942 0.53948 0.53968 0.51342 0.49645 0.49645 0.471545 0.46345 0.471545 0.43171 0.42398 0.441633 0.40129 0.386517 0.3865	0.53942 0.53948 0.51342 0.51342 0.49645 0.49645 0.4779 0.47138 0.46345 0.43171 0.42398 0.443171 0.42398 0.40129 0.38659 0.377222 0.386517 0.386517 0.386517 0.386517 0.31845 0.31184 0.32937 0.28737 0.26404 0.25845 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.221674 0.217189 0.15685 0.16381 0.16381 0.1766 0.16381 0.1767 0.17878 0.18888 0.18451 0.18361 0.19382 0.144959 0.15605 0.15228 0.14495 0.152367 0.152461 0.15361 0.112461 0.112461 0.11336 0.112461 0.112461 0.11336 0.112365
0.11471	0.11534	0.11533	0.11533	0.11533

0.097737	0.098447	0.098439	0.098431	0.098431
0.097737	0.095837	0.09583	0.095822	0.095822
0.092556	0.093285	0.093277	0.093269	0.093269
0.090051	0.090788	0.09078	0.090772	0.090772
0.087601	0.088346	0.088339	0.088331	0.088331
0.085207	0.085959	0.085951	0.085943	0.085943
0.082866	0.083624	0.083617	0.083609	0.083609
0.080579	0.081343	0.081336	0.081328	0.081328
0.078345	0.079113	0.079106	0.079098	0.079098
0.076161	0.076934	0.076927	0.076919	0.076919
0.074029	0.074805	0.074798	0.07479	0.07479
0.071946	0.072725	0.072719	0.072711	0.072711
0.069913	0.070694	0.070687	0.070679	0.070679
0.067927	0.06871	0.068704	0.068696	0.068696
0.065989 0.064097	0.066773 0.064882	0.066767 0.064876	0.066759 0.064868	0.066759 0.064868
0.062251	0.063036	0.06303	0.063022	0.063022
0.06045	0.061235	0.061229	0.061221	0.061221
0.058693	0.059477	0.059471	0.059463	0.059463
0.056979	0.057761	0.057756	0.057748	0.057748
0.055308	0.056088	0.056083	0.056075	0.056075
0.053678	0.054456	0.054451	0.054443	0.054443
0.052089	0.052865	0.052859	0.052852	0.052852
0.05054	0.051313	0.051308	0.0513	0.0513
0.049031	0.0498	0.049795	0.049787	0.049787

When Exercise5b.m is run in the workspace, the following figure is generated:

Figure 2. Exercise 5b


```
Exercise6.m:
% APPM3021 Lab 5 Exercise 6
% Tyson Cross 1239448
clc; clear all;
N = 30;
xspan = [0 5];
y0 = [0 0 1];
%{
    *Notes*
   y''' + y'' = 0
{y' = dy/dx}
    which leads to
         y' = y(2)
y'' = y(3)
y''' = -y(3)
%}
% function handles
f = @(x,y) [y(2);y(3);-y(3)];
function_name = 'y'''' + y''' = 0';
%% Calculations
fprintf('Calculating...');
% Numerical solution
[X,Y] = RK4system(f,xspan,y0,N);
                                                      fprintf('.');
% Confirm exact solution
tspan = linspace(xspan(1),xspan(end),N+1)';
[X_sol, Y_sol] = ode45(f, tspan, y0);
                                                          fprintf('.');
% Display results
Exercise6_Disp
When Exercise6.m is run in the workspace, the following output is displayed to the command window:
Calculating....
N = 30
h = 0.16667
x is an element of [0 5]
f(x,y) = y''' + y'' = 0
              Runge-Kutta System Method:
```

×	у	dy	d2y
0.16667 0.33333 0.5 0.66667 0.83333 1.1667 1.3333 1.5 1.6667 1.8333 2.2.1667 2.3333 2.5 2.6667 2.8333 3.1667 3.3333 3.5 3.6667	0.013149 0.049866 0.10653 0.18009 0.26793 0.36788 0.47807 0.59693 0.72313 0.85554 0.99322 1.1353 1.2812 1.4303 1.5821 1.7362 1.8922 2.0498 2.2088 2.369 2.5302 2.6922	0.15352 0.28347 0.39347 0.48658 0.5654 0.63212 0.68859 0.7364 0.77687 0.81112 0.844012 0.86466 0.88544 0.90303 0.91791 0.93052 0.94118 0.95021 0.95786 0.96433 0.9698 0.97444	0.84648 0.71653 0.60653 0.51342 0.4346 0.36788 0.31141 0.2636 0.22313 0.18888 0.15988 0.15988 0.11456 0.096974 0.082087 0.069485 0.058818 0.049788 0.042145 0.035675 0.030198 0.025562

```
3.8333
             2.855
                       0.97836
                                   0.021638
            3.0183
                       0.98168
                                   0.018316
     4
4.1667
            3.1822
                        0.9845
                                    0.015504
            3.3465
                       0.98688
                                   0.013124
4.3333
   4.5
            3.5111
                       0.98889
                                   0.011109
4.6667
            3.6761
                       0.9906
                                   0.0094039
                       0.99204
4.8333
            3.8413
                                   0.0079602
            4.0067
                       0.99326
                                  0.0067382
```

```
Exercise7a.m:
% APPM3021 Lab 5 Exercise 7a
% Tyson Cross 1239448
Notes:
     f1 = system of equations (inhomogeneous)

y'' = p*y' + p*y + r;

f2 = system of equations (homogeneous)

y'' = p*y' + p*y;

x = [a b];
     y(x0) = y0;
     y(xf) = yf;
p = -3;
q = 2;

r = 2*x + 3;
x = [0 \ 1];

y0 = 2;
yf = \overline{1};
%}
clc; clear all; set(0,'ShowHiddenHandles','on'); delete(get(0,'Children'));
function name = 'y'''' = -3*y'' + 2*y + 2*x + 3';
\begin{array}{lll} f1 = @(x,u) & [u(2); & -3*u(2) + 2*u(1) + 2*x + 3]; \\ f2 = @(x,v) & [v(2); & -3*v(2) + 2*v(1)]; \end{array}
bcs = @(ya,yb) [ya(1)-2; yb(1)-1]; %y'(0) = 2, y(1) = 1
xf = 1;
y0 = 2;
yf = 1;
N = 30;
xspan = [x0 xf];
[X1,Y1] = shootingmethod(f1, f2, x0, y0, yf, N, xf);
[X2,Y2] = findDifference(x0,y0,yf,N,xf);
% Confirm exact solution
solinit = bvpinit([x0 xf],[y0 1]);
sol = bvp4c(f1,bcs,solinit);
x = linspace(x0,xf,N);
y = deval(sol,x);
% Display results
Exercise7a_Disp
% Plot results
Exercise7a Plot
When Exercise7a.m is run in the workspace, the following output is displayed to the command window:
N = 30
h = 0.033333
x is an element of [0 \ 1]
y(0) = 2
```

y(1) = 1 f(x,y) = y'' = -3*y' + 2*y + 2*x + 3 y1: @(x,u)[u(2);-3*u(2)+2*u(1)+2*x+3]y2: @(x,v)[v(2);-3*v(2)+2*v(1)]

Linear Shooting Method (w/RK4system):

X	у	dy
0 0.033333 0.066667 0.1 0.13333 0.16667 0.2 0.23333 0.26667 0.3 0.33333 0.36667 0.4 0.43333 0.46667 0.5 0.53333 0.56667 0.6 0.63333 0.66667 0.7 0.73333 0.76667 0.8 0.8 3333 0.86667 0.9 0.9 3333 0.96667	2 1.7754 1.5792 1.4083 1.2601 1.1321 1.0221 0.92844 0.84928 0.78319 0.72886 0.68511 0.65093 0.62539 0.6077 0.59714 0.59307 0.59495 0.60228 0.61463 0.63162 0.6529 0.6782 0.70725 0.773983 0.77573 0.8148 0.85688 0.90184 0.94958	-7.1961 -6.2956 -5.4919 -4.7743 -4.1329 -3.5592 -3.0455 -2.585 -2.1717 -1.8002 -1.4658 -1.1641 -0.89151 -0.64463 -0.42049 -0.21646 -0.030181 0.14042 0.2972 0.4418 0.57569 0.70018 0.81641 0.92542 1.0281 1.1254 1.2178 1.3062 1.391 1.4728 1.5521

Finite Difference Method:

X	у
0 0.032258 0.064516 0.096774 0.12903 0.16129 0.19355 0.22581 0.25806 0.29032 0.32258 0.352484 0.3871 0.41935 0.45161 0.48387 0.51613 0.54839 0.58065 0.6129 0.64516 0.67742 0.70968 0.74194 0.77419 0.80645 0.83871 0.87097 0.90323 0.90323 0.905774	1.848 1.7112 1.5944 1.4886 1.3184 1.2514 1.1897 1.1402 1.094 1.0544 0.99992 0.97578 0.96014 0.94382 0.93532 0.92527 0.92527 0.92527 0.91952 0.91864 0.92446 0.92694 0.93596 0.94122 0.95292 0.95292 0.9651 0.97449 0.98405

When Exercise7a.m is run in the workspace, the following figure is generated:

Figure 3. Exercise 7

Functions and Code:

Euler.m:

```
function [x,y] = Euler(f,x0,y0,N,xf)
%Euler() solves ODEs with Euler's Method. Outputs an (N+1)*2 matrix, with the
%first column represents the x values , and the second column containing the
%corresponding y values
% Tyson Cross 1239448

x(1,1) = x0;
y(1,1) = y0;
h = (xf-x0)/N;

for ii=2:N+1
    k = ii-1;
    x(ii,1) = x(k)+h;
    y(ii,1) = y(k) + h*f(x(k),y(k));
end
end
```

Heun.m:

```
function [x,y] = Heun(f,x0,y0,N,xf)
%Heun() solves ODEs with Heun's Method (Improved Euler Method)
% Outputs an (N+1)*2 matrix, with the first column represents the x values ,
% and second columns containing the corresponding y values
% Tyson Cross 1239448

x(1,1) = x0;
y(1,1) = x0;
y(1,1) = y0;
h = (xf-x0)/N;

for ii=2:N+1
    k = ii-1;
    x(ii,1) = x(k)+h;
    fx = x(k) + h;
    fy = y(k) + h*f(x(k),y(k));
    y(ii,1) = y(k) + (h/2)*(f(x(k),y(k)) + f(fx,fy));
end
end
```

Midpoint.m:

```
function [x,y] = Heun(f,x0,y0,N,xf)
%Heun() solves ODEs with Heun's Method (Improved Euler Method)
% Outputs an (N+1)*2 matrix, with the first column represents the x values ,
% and second columns containing the corresponding y values
% Tyson Cross 1239448

x(1,1) = x0;
y(1,1) = y0;
h = (xf-x0)/N;

for ii=2:N+1
    k = ii-1;
x(ii,1) = x(k)+h;
    fx = x(k) + h;
    fy = y(k) + h*f(x(k),y(k));
y(ii,1) = y(k) + (h/2)*(f(x(k),y(k)) + f(fx,fy));
end
end
```

RK4.m:

```
RK4system.m:
```

```
function [X,Y] = RK4system(f,xspan,y0,N)
%RK4() solves a system of n ODEs with the Runge-Kutta Method
% Outputs a vector and a (N+1)xn matrix, with the first output column % contains the x values and the matrix containing the corresponding y values % and its derivatives y', y'', ... y^(n-1)
% Tyson Cross 1239448
x0 = xspan(1);
xf = xspan(end);
n = numel(y0);
h = (xf-x0)/N;
X = linspace(xspan(1),xspan(end),N+1)';
Y = zeros(N+1,n);
Y(1,:) = y0;
% solve with RK4, as matrix
for ii=2:N+1
       k = ii-1
  k1 = h*f(X(k),Y(k,:))'; 

 k2 = h*f(X(k) + (h/2), Y(k,:) + (k1./2))'; 

 k3 = h*f(X(k) + (h/2), Y(k,:) + (k2./2))'; 

 k4 = h*f(X(k) + h, Y(k,:) + k3)'; 

 Y(ii,:) = Y(k,:) + (1/6)*(k1 + 2.*k2 + 2.*k3 + k4); 
end
end
```

shootingmethod.m:

findDifference.m:

```
function [X,Y] = findDifference(x0,y0,yf,N,xf)
%findDifference() solves a BVP using the finite difference method
% x0: initial x value
% xf: final x value
% y0: initial y value
% yf: final y value
% N: number of interior points
% Returns X: an (N+2)*1 column vector and Y: an (N+2)*1 column vector
% Tyson Cross 1239448

A = zeros(N);
b = zeros(N,1);
```