PSL Project1:

In order to predict the housing prices in Ames, I built two predictive models, utilizing XGBoost and Elastic Net respectively.

Technical Details

Model 1: XGBoost

As for the XGBoost model, I used all variables except 'PID'. After dropping 'PID', X_train has 81 variables in total, in which 35 variables are numerical and 46 are categorical.

As for numerical variables, the only pre-processing step I did is filling the missing values in the 'Garage_Yr_Blt' column with 0. As for Categorical variables, I used OneHotEncoder for one-hot encoding to transfer categorical values into numerical values. I set the parameter handle_unknown='ignore' to ignore new levels present in the X_test that were not seen during the training process. After these pre-processing steps, X_train has a shape of (2051, 346).

Then I utilized XGBoost for regression modeling. Specifically, I employed the XGBRegressor package in python and set the parameters as: max_depth=6, eta=0.05, n_estimators=5000, subsample=0.6.

Model 2: Elastic Net

As for the Elastic Net model, I removed following variables: 'PID', 'Street', 'Utilities', 'Condition_2', 'Roof_Matl', 'Heating', 'Pool_QC', 'Misc_Feature', 'Low_Qual_Fin_SF', 'Pool_Area', 'Longitude', 'Latitude'

After dropping, X_train has 70 variables in total, in which 31 variables are numerical and 39 are categorical.

As for numerical variables, I filled the missing values in the 'Garage_Yr_Blt' column with 0. I winsorized the following numerical variables by calculating the 95th percentile (referred to as M) based on the training data. Any value in both the training and test datasets that exceeds M is then replaced with M. The winsorized variables includes:

```
"Lot_Frontage", "Lot_Area", "Mas_Vnr_Area", "BsmtFin_SF_2", "Bsmt_Unf_SF", "Total_Bsmt_SF", "Second_Flr_SF", 'First_Flr_SF', "Gr_Liv_Area", "Garage_Area", "Wood_Deck_SF", "Open_Porch_SF", "Enclosed_Porch", "Three_season_porch", "Screen_Porch", "Misc_Val"
```

As for Categorical variables, I used OneHotEncoder for one-hot encoding to transfer categorical values into numerical values. I set the parameter handle_unknown='ignore' to ignore new levels present in the X_test that were not seen during the training process. After these pre-processing steps, X_train has a shape of (2051, 309).

Then I utilized Elastic Net for regression modeling. Specifically, I employed the ElasticNet package in python and set the parameters as: alpha=0.001, I1_ratio=0.1, max_iter=10000.

Performance Metrics:

The computer system used is: MacBook Pro 13.3" Laptop - Apple M2 chip - 24GB Memory - 1TB SSD (Latest Model) - Silver.

The performance and the execution time (including pre-processing and evaluation) on the 10 splits are as follows:

Model 1: XGBoost

root_mean_squared_error	execution time
0.11779035873404123	4.96525502204895
0.12066295714352665	5.520492076873779
0.115153310738678	4.629983186721802
0.11728299814668453	4.441195964813232
0.11356525326153337	4.116149187088013
0.1270769902491383	5.2610907554626465
0.13399286588561624	4.702088117599487
0.12740473127481133	4.386313438415527
0.1331163714093709	4.922964811325073
0.11957428474335385	4.3986499309539795

Model 2: Elastic Net

0.12062059672817009	0.8061611652374268
0.1157528153658965	0.4147939682006836
0.11104198238335992	0.951470136642456
0.11516257752812245	0.43228912353515625
0.10857993553821996	0.5212709903717041
0.1341710879790037	0.8441569805145264
0.1323482635513255	0.38021397590637207
0.12470938493460917	0.5832960605621338
0.12984569028446144	0.31334805488586426
0.12284628665471527	0.3178989887237549