PySNES – EIN SNES Emulator in PYTHON

SNES Memory Mapping

Inhalt

- Speicheraufbau
- LoROM vs. HiROM
- ExLoROM vs. ExHiROM
- Implementierung

- Die SNES CPU hat eine Daten- und eine Adressleitung
- 24-Bit Adressleitung: Hexadezimal 0xXXXXXX
- 16-Bit Datenleitung
- Signal ob Daten in/aus den Speicher gelesen/geschrieben werden
- Der Cartrigetyp (LoROM, HiROM, etc ...) bestimmt die Verkabelung mit den Adressleitungen
- Ablauf:
 - Signal auf Adressleitung
 - Signal ob Lesen oder Schreiben
 - Daten auf Datenleitung wandern
 - Verarbeitung in CPU

- Bank: 64 Kilobyte Speicherabschnitt (aus Sicht der CPU)
- Bis zu 255 Bänke (2 ²⁴ -1)
- Das SNES hat jedoch nicht 16 MB Speicher
- Das MSB einer Adresse wählt die Bank z.B. 0x1FABCD wählt Bank 0x1F mit dem Offset ABCD

- Eine Bank besteht aus 16 Speicherseiten (Page) a 4 Kilobyte
- Seiten sind unteilbar: Eine Seite muss als Ganzes durch den Speicher bewegt werden (smallest mappable unit)

Eine 24-Bit Adresse 0xXXXXXXX besteht aus:

- Zwei Byte für die Bank
- Vier Byte für die Position in der Bank (Offset)
- Notation XX:XXXX
- Was sich danach im Speicher befindet hängt von der gewählten Bank und vom Cartrigetyp LoROM / HiRom ab
- Eine Adresse könnte ...
 - Den RAM adressieren
 - Den ROM adressieren
 - Die PPU adressieren
 - ... USW.

Was adressiert man denn nun?

- Die Verkabelung und damit der Cartrigetyp entscheidet!
- Auch gibt es Unterschiede je nach gewählter Bank.
- ROM-Bank: Speicherabschnitt auf der ROM
 - Achtung: potentielle Namensverwirrung!
 - LoROM: 32KB ROM Bank
 - HiROM: 64KB ROM Bank

Speicherspiegel

Memory-Mirror: Ein Speicherbereich der aus Sicht des Prozessors exakt dieselben Daten enthält.

- Ursache sind nicht verkabelte Adressleitungen
- Beispiel: LoROM Offset

Adresse 0x7FFF ist binär 0111 1111 1111 1111

Adresse 0xFFFF ist binär 1111 1111 1111 1111.

Wird Adressleitung 15 nicht genutzt, sind die Adressen gleich

Beispiel: Bank-Mirror

Adresse 0x7F ist binär 0111 1111

Adresse 0xFF ist binär 1111 1111

MSB von Bit 16 bis 23 bestimmt Bank

Wird Adressleitung 23 nicht genutzt, sind die Adressen gleich

Memory-Shadowing (Speicherüberdeckung):

Manchmal überlagert ein anderer Speicherbereich die ROM-Abbildung Beispiel: Bei HiRom ist nur der obere ROM-Teil im Speicherbereich abgebildet und wird von System-Adressen überdeckt.

- 64K Bank zwischen 0x00-0x2F (also die erste 48 Bänke)
- LoROM:
 - Offset in unterer Hälfte wird auf System abgebildet. Was genau abgebildet wird schwankt in den online Dokus.
 - Offset in oberer Hälfte wird auf 32K ROM (0x00-0x17) Bänke abgebildet

- Offset in unterer Hälfte wird auf System abgebildet. Was genau abgebildet wird schwankt in den online Dokus.
- Offset in oberer Hälfte wird auf 64K ROM (0x00-0x17) Bänke abgebildet.
 - **Achtung**: Es wird nur die obere Hälfte abgebildet! Offset 0x0000 0x7FFF ist durch dieses Mapping nicht zugänglich (kommt später)

- 64K Bank zwischen 0x00-0x2F (0-47)
- LoROM:

Offset Inhalt 0x0000-0x0FFF LowRAM (WRAM Page 0) 0x1000-0x1FFF LowRAM (WRAM Page 1) 0x2000-0x2FFF 0x2100-0x21FF: PPU1, APU 0x3000-0x3FFF SuperFX, DSP, ... 0x4000-0x4FFF 0x4000-0x41FF: Controller 0x4200-0x44FF: PPU2, DMA, ... 0x5000-0x5FFF Unused 0x6000-0x6FFF Unused / enhancement chips memory 0x7000-0x7FFF Unused / enhancement chips memory 0x8000-0x8FFF LoROM 0x9000-0x9FFF LoROM 0xA000-0xAFFF LoROM 0xB000-0xBFFF LoROM 0xC000-0xCFFF LoROM 0xD000-0xDFFF LoROM 0xE000-0xEFFF LoROM 0xF000-0xFFFF LoROM

Offset	Inhalt
0x0000-0x0FFF	LowRAM (WRAM Page 0)
0x1000-0x1FFF	LowRAM (WRAM Page 1)
0x2000-0x2FFF	0x2100-0x21FF: PPU1, APU
0x3000-0x3FFF	SuperFX, DSP,
0x4000-0x4FFF	0x4000-0x41FF: Controller 0x4200-0x44FF: PPU2, DMA,
0x5000-0x5FFF	Unused
0x6000-0x6FFF	Unused / enhancement chips memory
0x7000-0x7FFF	Unused / enhancement chips memory
0x8000-0x8FFF	HiROM
0x9000-0x9FFF	HIROM
0xA000-0xAFFF	HiROM
0xB000-0xBFFF	HiROM
0xC000-0xCFFF	HiROM
0xD000-0xDFFF	HIROM
0xE000-0xEFFF	HiROM
0xF000-0xFFFF	HiROM

LoROM Bank-Switching: Bank zwischen 0x00-0x2F (0-47)

0x00

0x09

Beispiel Bank 0x00 SNES-RAM: ROM:

Offset	Inhalt
0x0000-0x7FFF	Anderes
0x8000-0xFFFF	LoROM 0 (32K)

Beispiel Bank 0x09 SNES-RAM:

Offset	Inhalt
0x0000-0x7FFF	Anderes
0x8000-0xFFFF	LoROM 9 (32K)

Adresse **ROM-Bank** LoROM 0 0x000000-0x007FFF LoROM 1 -000800x0 0x00FFFF 0x010000-LoROM 2 0x017FFF 0x018000-LoROM 3 0x01FFFF 0x020000-LoROM 4 0x027FFF 0x028000-LoROM 5 0x02FFFF 0x030000-LoROM 6 0x037FFF LoROM 7 0x038000-0x03FFFF 0x040000-LoROM 8 0x047FFF 0x048000-LoROM 9 0x04FFFF ... usw.

- 64K Bank zwischen 0x30-0x3F (also Bank 48 bis 63)
- LoROM:
 - Wie vorher bei Bänken 0 bis 48
 - 32K ROM Bank (bis ROM Bank 0x1F)

- HiROM:
 - Offset in oberer Hälfte wird auf 64K ROM (0x20-0x3F) Bänke abgebildet.
 Achtung: Es wird nur die obere Hälfte abgebildet! Offset 0x0000 0x7FFF ist durch dieses Mapping nicht zugänglich (kommt später)
 - Im Offset 0x6000-0x7FFF befindet sich jeweils 8KB SRAM

- 64K Bank zwischen 0x30-0x3F (48-63)
- LoROM:

Offset Inhalt 0x0000-0x0FFF LowRAM (WRAM Page 0) 0x1000-0x1FFF LowRAM (WRAM Page 1) 0x2000-0x2FFF 0x2100-0x21FF: PPU1, APU 0x3000-0x3FFF SuperFX, DSP, ... 0x4000-0x4FFF 0x4000-0x41FF: Controller 0x4200-0x44FF: PPU2, DMA, ... 0x5000-0x5FFF Unused 0x6000-0x6FFF Unused / enhancement chips memory Unused / enhancement chips memory 0x7000-0x7FFF 0x8000-0x8FFF LoROM 0x9000-0x9FFF LoROM 0xA000-0xAFFF LoROM 0xB000-0xBFFF LoROM 0xC000-0xCFFF LoROM 0xD000-0xDFFF LoROM 0xE000-0xEFFF LoROM 0xF000-0xFFFF LoROM

Offset	Inhalt
0x0000-0x0FFF	LowRAM (WRAM Page 0)
0x1000-0x1FFF	LowRAM (WRAM Page 1)
0x2000-0x2FFF	0x2100-0x21FF: PPU1, APU
0x3000-0x3FFF	SuperFX, DSP,
0x4000-0x4FFF	0x4000-0x41FF: Controller 0x4200-0x44FF: PPU2, DMA,
0x5000-0x5FFF	Unused
0x6000-0x6FFF	SRAM
0x7000-0x7FFF	SRAM
0x8000-0x8FFF	HiROM
0x9000-0x9FFF	HIROM
0xA000-0xAFFF	HiROM
0xB000-0xBFFF	HIROM
0xC000-0xCFFF	HIROM
0xD000-0xDFFF	HIROM
0xE000-0xEFFF	HiROM
0xF000-0xFFFF	HiROM

- 64K Bank zwischen 0x40-0x6F (also Bank 64 bis 111)
- Diese Bänke werden nur auf den ROM abgebildet
- LoROM:
 - Je nach Dekodierchip (MAD-1) auf der Cartrige wird der untere Bereich gespiegelt.
 Der obere Bereich enthält jedoch immer 32K ROM Abschnitte
 - Rom Bank 0x20 bis 0x37
- HiROM:
 - 64K ROM Abschnitte
 - Rom Bank 0x00 bis 0x2F

- 64K Bank zwischen 0x40-0x6F (64-111)
- LoROM:

Offset Inhalt 0x0000-0x0FFF LoROM- Mirror (Kein MAD-1) 0x1000-0x1FFF LoROM- Mirror (Kein MAD-1) 0x2000-0x2FFF LoROM- Mirror (Kein MAD-1) 0x3000-0x3FFF LoROM- Mirror (Kein MAD-1) 0x4000-0x4FFF LoROM- Mirror (Kein MAD-1) 0x5000-0x5FFF LoROM- Mirror (Kein MAD-1) 0x6000-0x6FFF LoROM- Mirror (Kein MAD-1) 0x7000-0x7FFF LoROM- Mirror (Kein MAD-1) 0x8000-0x8FFF LoROM 0x9000-0x9FFF LoROM 0xA000-0xAFFF LoROM 0xB000-0xBFFF LoROM 0xC000-0xCFFF LoROM 0xD000-0xDFFF LoROM 0xE000-0xEFFF LoROM 0xF000-0xFFFF LoROM

Inhalt
HiROM

- 64K Bank zwischen 0x70-0x7D (also Bank 112 bis 125)
- LoROM:
 - Diese Bänke werden nur auf den ROM und SRAM abgebildet. Der SRAM ist auf dem Cartrige
 - Die untere Hälfte der Bank ist der SRAM die obere wie schon vorher der 32K ROM (ab ROM Abschnitt 0x38)
- HiROM:
 - 64K ROM Abschnitte
 - Rom Bank 0x30 bis 0x3D

- 64K Bank zwischen 0x70-0x7D (112-125)
- LoROM:

Offset Inhalt 0x0000-0x0FFF SRAM 0x1000-0x1FFF SRAM 0x2000-0x2FFF SRAM 0x3000-0x3FFF **SRAM** 0x4000-0x4FFF SRAM 0x5000-0x5FFF SRAM 0x6000-0x6FFF SRAM 0x7000-0x7FFF SRAM 0x8000-0x8FFF LoROM 0x9000-0x9FFF LoROM 0xA000-0xAFFF LoROM 0xB000-0xBFFF LoROM 0xC000-0xCFFF LoROM 0xD000-0xDFFF LoROM 0xE000-0xEFFF LoROM 0xF000-0xFFFF LoROM

Offset	Inhalt
0x0000-0x0FFF	HiROM
0x1000-0x1FFF	HIROM
0x2000-0x2FFF	HiROM
0x3000-0x3FFF	HIROM
0x4000-0x4FFF	HIROM
0x5000-0x5FFF	HIROM
0x6000-0x6FFF	HiROM
0x7000-0x7FFF	HiROM
0x8000-0x8FFF	HIROM
0x9000-0x9FFF	HIROM
0xA000-0xAFFF	HIROM
0xB000-0xBFFF	HIROM
0xC000-0xCFFF	HIROM
0xD000-0xDFFF	HIROM
0xE000-0xEFFF	HIROM
0xF000-0xFFFF	HiROM

- 64K Bank zwischen 0x7E-0x7F (also Bank 126 und 127)
- Work Ram (8KB LowRAM, 24KB HighRAM, 96KB Expanded RAM)
- LoROM:
 - Zugriff auf den Arbeitsspeicher (128 KB WRAM)
 - Kein ROM Mapping
- HiROM:
 - Zugriff auf den Arbeitsspeicher (128 KB WRAM)
 - Kein ROM Mapping

- 64K Bank zwischen 0x7E-0x7F (112-125)
- LoROM:

Offset Inhalt 0x0000-0x0FFF **RAM** 0x1000-0x1FFF RAM 0x2000-0x2FFF RAM 0x3000-0x3FFF RAM 0x4000-0x4FFF RAM 0x5000-0x5FFF RAM 0x6000-0x6FFF RAM 0x7000-0x7FFF RAM 0x8000-0x8FFF RAM 0x9000-0x9FFF RAM 0xA000-0xAFFF RAM 0xB000-0xBFFF RAM 0xC000-0xCFFF RAM 0xD000-0xDFFF RAM 0xE000-0xEFFF RAM 0xF000-0xFFFF RAM

Offset	Inhalt
0x0000-0x0FFF	RAM
0x1000-0x1FFF	RAM
0x2000-0x2FFF	RAM
0x3000-0x3FFF	RAM
0x4000-0x4FFF	RAM
0x5000-0x5FFF	RAM
0x6000-0x6FFF	RAM
0x7000-0x7FFF	RAM
0x8000-0x8FFF	RAM
0x9000-0x9FFF	RAM
0xA000-0xAFFF	RAM
0xB000-0xBFFF	RAM
0xC000-0xCFFF	RAM
0xD000-0xDFFF	RAM
0xE000-0xEFFF	RAM
0xF000-0xFFFF	RAM

- 64K Bank zwischen 0x80-0xFD (also Bank 128 bis 253)
 - Hier wiederholt sich die Abbildung
 - Z.B. 0x80:0000 liefert das selbe wie 0x00:0000 usw ...

• LoROM: HiROM:

Bänke	Spiegelung
0x80-0xBF	0x00-0x3F
0xC0-0xEF	0x40-0x6F
0xF0-0xFD	0x70-0x7D

Bänke	Spiegelung
0x80-0x9F	0x00-0x1F
0xA0-0xBF	0x20-0x3F
0xC0-0xFD	0x40-0x7D

Streng genommen ist es nicht der selbe Mirror. Praktisch wird aber 0x80-0xFD in beiden Fällen gespiegelt

- 64K Bank zwischen 0xFE-0xFF (also Bank 254 und 255)
- LoROM:
 - 0x0000 0x7FFF: SRAM
 - 0x8000 0xFFFF: ROM Bank 3F (je 32KB)
- HiROM:
 - ROM Bank 3F (je 64KB)

Zusammenfassung: Unterschiede LoROM/HiROM:

- HiROM: Im Bereich 0x00-0x3F untere ROM Hälfte der
 64KB nicht zugänglich (durch System überlagert)
- HiROM: 61 volle ROM Bänke von 0x40-0x7D
- LoROM-SRAM: in 32KB Blöcken in 0x70-0x7D
 bei Offset 0x0000 0x7FFF
- HiROM-SRAM: in 8KB Blöcken in 0x20-0x3F
 bei Offset 0x6000 0x7FFF
- LoROM/HiROM: Mirror unterschiedlich
- Oberste zwei Bänke unterschiedlich

ExLoROM vs. ExHiROM

- Für noch mehr Speicher
- Brauchen nur wenige Module
- TODO

Implementierung

- Cartrige Type im Header auslesen und Mappertyp bestimmen
- Mapper ist großes if-else mit Referenz auf ROM, RAM, SRAM, APU, PPU, CPU, ...

Quellen

- LoROM Model: https://www.cs.umb.edu/~bazz/snes/cartridges/lorom.html
- Wiki Book SNES Memory Mapping: https://en.wikibooks.org/wiki/Super_NES_Programming/SNES_ memory_map
- Another Mem Map: http://gatchan.net/uploads/Consoles/SNES/Flashcard/SNES_M emMap.txt
- Mem Map: http://www.emulatronia.com/doctec/consolas/snes/SNESMem.txt