Cluster Analysis

Intuitive Idea

What is Cluster Analysis?

- Cluster: a collection of observations
 - Similar to one another within the same cluster
 - Dissimilar to the observations in other clusters
- Cluster analysis
 - Grouping a set of data observations into classes
- Clustering is unsupervised classification: no predefined classes—descriptive data mining.
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Let $x_1, \dots x_n$ denote the *p*-dimensional feature vectors of *n* objects:

	Feature 1	Feature 2	 Feature p	no Target concept
\mathbf{x}_1	x_{1_1}	x_{1_2}	 x_{1_p}	c_1
\mathbf{x}_2	x_{2_1}	x_{2_2}	 x_{2p}	c_2
÷				
\mathbf{x}_n	x_{n_1}	x_{n_2}	 x_{n_p}	c_n

30 two-dimensional feature vectors (n = 30, p = 2):

What is Cluster Analysis?

• Find groups (clusters) of data points such that data points in a group will be similar (or related) to one another and different from (or unrelated to) the data points in other groups

Applications of clustering

Understanding

- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

Specific Examples—Where Clusters Help

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Spatial Data Analysis: Create thematic maps by identifying areas of similar land use (by clustering feature spaces) in an earth observation dataset
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- Fraud: Identifying groups of individuals that, as a group, are very different to the other groups.
- WWW: Document classification, question categorisation, and web log data to discover similar access patterns.
- City Planning: Identify services for households according to their house type, value, and geographic location.

WHAT IS GOOD CLUSTERING?

- High Quality:
 - high intra-class similarity
 - low inter-class similarity
- The Quality depends on:
 - similarity measure
 - algorithm for searching

 Depends on the opinion of the user, and the algorithm's ability to discover hidden patterns that are of interest to the user.

Main Stages of a Cluster Analysis

Feature Extraction and Preprocessing

Required are (possibly new) features of high variance. Approaches:

- analysis of dispersion parameters
- dimension reduction: PCA, factor analysis, MDS
- visual inspection: scatter plots, box plots

Feature standardization can dampen the structure and make things worse:

_	0		_	0
0	0 0		0	0 0
00	000		00	000
00	000	_	00	00
0 0	000	7	0	000
0 0	0 0		0 0	0 0
0	0 0		0	0 0

Feature Scale

- old problem: how to choose appropriate relative scale for features?
 - [length (in meters or cms?), weight(in in grams or kgs?)]
 - In supervised learning, can normalize to zero mean unit variance with no problems
 - in clustering this is more problematic, if variance in data is due to cluster presence, then normalizing features is not a good thing

Computation of Distances or Similarities

	Feature 1	Feature 2	 Feature p
\mathbf{x}_1	x_{1_1}	x_{1_2}	 x_{1_p}
\mathbf{x}_2	x_{2_1}	x_{2_2}	 x_{2_p}
:			
\mathbf{x}_n	x_{n_1}	x_{n_2}	 x_{n_p}

		\mathbf{x}_1	\mathbf{x}_2	 \mathbf{x}_n
	$\overline{\mathbf{x}_1}$	0	$d(\mathbf{x}_1, \mathbf{x}_2)$	 $d(\mathbf{x}_1, \mathbf{x}_n)$
→	\mathbf{x}_2	_	0	 $d(\mathbf{x}_2,\mathbf{x}_n)$
	:			
	\mathbf{x}_n	-	-	 0

Merging Principles

