H21T1A2

Es sei $f : \mathbb{R} \to \mathbb{R}$ eine Lipschitz-stetige Funktion mit den folgenden beiden Eigenschaften:

- (i) f(x) = 0 genau dann, wenn $x \in \{-1, 1\}$
- (ii) f(-2) > 0, f(0) > 0 und f(2) < 0.

Betrachtet wird das Anfangswertproblem $x'=f(x), x(0)=\xi$ (1) mit $\xi \in \mathbb{R}$. Sie dürfen ohne Begründung von der Existenz und Eindeutigkeit einer maximalen Lösung von (1) ausgehen.

- a) Bestimmen Sie alle $\xi \in \mathbb{R}$, für die die maximale Lösung von (1) streng monoton wächst und alle $\xi \in \mathbb{R}$, für die die Lösung von (1) streng monoton fällt. Begründen Sie jeweils kurz Ihre Antwort.
- b) Zeigen Sie: Für jedes $\xi \in \mathbb{R}$ enthält das Existenzintervall I(ξ) der maximalen Lösung von (1) das Intervall [0, ∞ [.
- c) Zeigen Sie, dass x = 1 ein asymptotisch stabiler und x = -1 ein instabiler Gleichgewichtspunkt der Differentialgleichung x' = f(x) ist.

Zu a)

Da f stetig und reellwertig ist folgt aus den Voraussetzungen (i) und (ii) nach dem Zwischenwertsatz: f(x) > 0 für $x \in]-\infty; -1[$, f(x) > 0 für $x \in]-1; 1[$ und f(x) > 0 für $x \in]1; \infty[$. (2)

Für alle $\xi \in \mathbb{R}$ hat (1) eine eindeutige maximale Lösung λ_{ξ} : $]a_{\xi}$; $b_{\xi}[\to \mathbb{R}$ mit $a_{\xi} < 0 < b_{\xi}$.

Nach (i) sind $\lambda_{-1}: \mathbb{R} \to \mathbb{R}$; $x \to -1$ und $\lambda_1: \mathbb{R} \to \mathbb{R}$; $x \to 1$ die einzigen konstanten Lösungen von (1). Da die Graphen maximaler Lösungen disjunkt sind, folgt aus dem Zwischenwertsatz

$$\lambda_{\xi}(t) \in \begin{cases}]-\infty; -1[\ \forall t \in \left] a_{\xi}; b_{\xi} \left[& \text{für } \xi \in \left] -\infty; -1[\\]-1; 1[\ \forall t \in \left] a_{\xi}; b_{\xi} \left[& \text{für } \xi \in \left] -1; 1[\ \text{In Verbindung mit (2) folgt} \\]1; \infty[\ \forall t \in \left] a_{\xi}; b_{\xi} \left[& \text{für } \xi \in \left] 1; \infty[\\ \end{cases} \end{cases}$$

$$\lambda'_{\xi}(t) = f(\lambda_{\xi}(t)) \begin{cases} > 0 & \text{für } \xi \in]-\infty; -1[\\ > 0 & \text{für } \xi \in]-1; 1[\text{ also ist} \\ < 0 & \text{für } \xi \in]1; \infty[\end{cases}$$

$$\begin{cases} \text{str. mon. steigend} & \text{für } \xi \in]-\infty; 1[\cup]-1; 1[\\ \text{str. mon. fallend} & \text{für } \xi \in]1; \infty[\\ & \text{konstant} & \text{für } \xi \in \{\pm 1\} \end{cases}$$

Zub)

Zu zeigen ist: a_{ξ} ; $b_{\xi} \supseteq 0$; ∞ [, d.h. $a_{\xi} < 0$ und $b_{\xi} = \infty$.

 $a_{\xi} < 0$ ist automatisch erfüllt, da $x(0) = \xi$, also $0 \in a_{\xi}$; b_{ξ} . Für $b_{\xi} = \infty$ betrachte die vier Fälle:

Fall 1: $\xi \in]-\infty; 1[$. Da λ_{ξ} streng monoton steigend und $\lambda_{\xi}(]a_{\xi}; b_{\xi}[) \subseteq]-\infty; -1[$ ist, gilt

 $\Gamma_{+}(\lambda_{\xi}) \coloneqq \left\{ \left(t, \lambda_{\xi}(t) \right) \colon t \in \left[0; b_{\xi} \right[\right\} \subseteq \left[0; b_{\xi} \right[\times \left[\xi; -1 \right] \text{ und im Fall } b_{\xi} < \infty \text{ folgt, dass } \overline{\Gamma_{+}(\lambda_{\xi})} \subseteq \left[0; b_{\xi} \right] \times \left[\xi; -1 \right] \text{ eine relativ kompakte Teilmenge von } \mathbb{R}^{2} \text{ ist, was im Widerspruch zur Charakterisierung der maximalen Lösung steht.}$

Fall 2: ξ ∈]−1; 1[→ analog zu 1.

Fall 3: $\xi \in]1; \infty[$. Da λ_{ξ} streng monoton fallend und $\lambda_{\xi}([a_{\xi}; b_{\xi}]) \subseteq]1; \infty[$ ist, gilt

 $\Gamma_+(\lambda_\xi) := \{(t, \lambda_\xi(t)) : t \in [0; b_\xi[\} \subseteq [0; b_\xi[\times [1; \xi[\text{ und im Fall } b_\xi < \infty \text{ folgt, dass } \overline{\Gamma_+(\lambda_\xi)} \subseteq [0; b_\xi] \times [1; \xi] \text{ eine relativ kompakte Teilmenge von } \mathbb{R}^2 \text{ ist, was im Widerspruch zur Charakterisierung der maximalen Lösung steht.}$

Fall 4: $\xi \in \{\pm 1\}$. Hier ist λ_{ξ} auf ganz \mathbb{R} definiert.

Somit gilt in allen vier Fällen $b_{\xi} = \infty$, also insgesamt a_{ξ} ; $b_{\xi} \supseteq 0$; ∞ [.

Zu c)

- (i) Für $\xi \in]-1$; 1[ist λ_{ξ} streng monoton steigend und durch 1 nach oben beschränkt, also existiert $c := \lim_{t \to \infty} \lambda_{\xi}(t) = \sup\{\lambda_{\xi}(t) : t \geq 0\} \in]-1$; 1[. Angenommen c < 1, dann ist $\lambda_{\xi}(t) = \xi + \int_{0}^{t} \lambda_{\xi}'(s) ds = \xi + \int_{0}^{t} f\left(\lambda_{\xi}(t)\right) ds \geq \xi + t \underbrace{\inf\{f(s) : s \in [\xi; c]\}}_{> 0 \ nach \ (a)} \xrightarrow[t \to \infty]{} \infty$, was im Widerspruch zu $\lambda_{\xi}(t) < 1$ steht. Damit ist $\lim_{t \to \infty} \lambda_{\xi}(t) = 1$ für $\xi \in]-1$; 1[.
- (ii) $\lim_{t\to\infty} \lambda_1(t) = 1$ folgt direkt aus der Definition.
- (iii) Für $\xi \in]1; \infty[$ ist λ_{ξ} streng monoton fallend und durch 1 nach unten beschränkt, also existiert $b \coloneqq \lim_{t \to \infty} \lambda_{\xi}(t) = \inf\{\lambda_{\xi}(t): t \ge 0\} \in]1; \infty[$. Angenommen b > 1, dann ist $\lambda_{\xi}(t) = \xi + \int_{0}^{t} \lambda'_{\xi}(s) ds = \xi + \int_{0}^{t} f\left(\lambda_{\xi}(t)\right) ds \le \xi + t \underbrace{\sup\{f(s): s \in [\xi; c]\}}_{< 0 \ nach \ (a)} \xrightarrow[t \to \infty]{} -\infty,$ was im Widerspruch zu $\lambda_{\xi}(t) > 1$ steht. Damit ist $\lim_{t \to \infty} \lambda_{\xi}(t) = 1$ für $\xi \in]1; \infty[$.

Insgesamt ist also $\lim_{t\to\infty} \lambda_{\xi}(t) = 1$ für $\xi\in]-1;\infty[$ also hat die Ruhelage 1 den Einzugsbereich $]-1;\infty[$ und ist damit attraktiv. Da f reellwertig und (lokal) Lipschitz-stetig ist, ist jede attraktive Ruhelage auch stabil, insgesamt also asymptotisch stabil.

Für $\xi \in]-1$; 1[ist λ_{ξ} streng monoton steigend mit $\lim_{t\to\infty}\lambda_{\xi}(t)=1$. Somit gibt es für jedes $\varepsilon>0$ ein $T_{\xi,\varepsilon}>0$ mit $\lambda_{\xi}(t)>\xi+\varepsilon$ für alle $t\geq T_{\xi,\varepsilon}$, und daher ist $\left|\lambda_{-1}(t)-\lambda_{\xi}(t)\right|=\left|-1-\lambda_{\xi}(t)\right|\geq |-1-(\xi+\varepsilon)|\geq \varepsilon$ (da -1 < ξ < ξ + ε), also kann die Ruhelage -1 nicht stabil sein.