1 Clustering problem

The Clustering problem is NP-hard [1]. It is defined as follows: There is a finite set X of objects (|X| = N), a distance $d(x,y) \in \mathbb{Z}_0^+$ for each pair $x,y \in X$, and two positive integers K and B. Is there a partition of X into disjoint sets X_1, X_2, \dots, X_K such that, for all pairs $x, y \in X_i$, $d(x,y) \leq B$, where $1 \leq i \leq K$?

2 Experiments

There were 12 randomly generated problem instances for the Clustering problem. Details of the generating procedure, as well as configurations, are described in the GitHub repository.¹. Problems' specification are depicted in Table 1.

3 Results

Table 1 presents the experiment results of the Clustering problem. DLV achieved the best results in all problems. WMaxSAT was the second losing against Clingo in the first two problems only. Similarly, cmodels outperformed Clingo for larger problems but lost completly againts WMaxSAT. Eventually, smodel performed very poorly compared to other solvers.

Table 1: The Clustering problems' specification and the results. *Dec.* denotes a *decision*.

Problem	N	K	В	Dec.	Clingo	DLV	smodels	cmodels	WMaxSAT
problem01	744	6	39	Yes	3.27 s	0.90 s	126.17 s	4.33 s	3.91 s
problem02	744	6	38	No	$3.34 \mathrm{\ s}$	$1.21 \mathrm{\ s}$	TL	6.16 s	$4.68 \ s$
problem03	992	5	45	Yes	$5.84 \mathrm{\ s}$	$1.50 \ { m s}$	$_{ m TL}$	$7.20 \ s$	5.03 s
problem04	992	5	44	No	$5.91 \ s$	$1.66 \ s$	$_{ m TL}$	$8.35 \ s$	5.22 s
problem05	1271	5	49	Yes	$11.27 \ s$	$2.31 \ s$	58.12 s	$9.43 \ s$	6.42 s
problem06	1271	5	48	No	11.17 s	$2.41 \mathrm{\ s}$	$_{ m TL}$	$10.73 \ s$	6.74 s
problem07	1401	5	43	Yes	$15.23 \ s$	$2.90 \mathrm{\ s}$	$_{ m TL}$	15.93 s	$9.18 \; s$
problem08	1401	5	42	No	15.39 s	$3.24 \mathrm{\ s}$	$_{ m TL}$	18.33 s	$9.66 \ s$
problem09	1887	4	55	Yes	31.40 s	$4.86 \ s$	172.54 s	19.64 s	$9.30 \ s$
problem10	1887	4	54	No	31.55 s	$4.92 \ s$	TL	20.73 s	$9.68 \; s$
problem11	2223	4	57	Yes	51.26 s	$6.75 \ s$	224.80 s	24.74 s	11.56 s
problem12	2223	4	56	No	$51.98~\mathrm{s}$	$6.91 \mathrm{\ s}$	TL	$26.99~\mathrm{s}$	12.19 s

References

[1] Peter Brucker. On the complexity of clustering problems. In *Optimization* and *Operations Research: Proceedings of a Workshop Held at the University* of Bonn, October 2–8, 1977, pages 45–54. Springer, 1978.

¹https://github.com/lazarow/ASP-via-WMaxSat/tree/master/clustering