Network Intrusion Detection and Prevention System (NIDPS)

Lab Assignment - 3

System and Network Security (CS5.470)

Hard Deadline: 7 April 2025 (23:59 PM)

Total Marks: 100

Introduction to IDS

- An **intrusion** is an unauthorized attempt to access, manipulate, or harm a system.
- Examples of intrusions:
 - Unauthorized login: A hacker using leaked passwords from a data breach to access your online banking account.
 - Malware injection: Clicking on a fake email link (phishing) that downloads ransomware, locking all files until a ransom is paid.
 - **Spyware**: A rogue app on your smartphone tracking your keystrokes and stealing your personal information.
 - **Denial-of-Service (DoS) attack**: Attackers flooding an e-commerce website with fake traffic, making it inaccessible to real customers.
- An IDS monitors and analyzes network/system activities to identify potential security threats.

Signature-based IDS

- Detects attacks by comparing activities to a database of known attack patterns.
- Similar to an **antivirus**, which scans files for known malware signatures.
- Highly effective against previously identified threats.

• Limitations:

- Cannot detect new or modified attacks (zero-day threats).
- Requires constant updates to stay effective.

Example:

 A system detects a brute-force attack because it matches a known pattern of failed login attempts within a short time.

Anomaly-based IDS

- Monitors normal system behavior and flags deviations as potential threats.
- Can detect new, unknown, or evolving attacks.
- Uses machine learning, statistical models, or other approaches for behavior analysis.

• Limitations:

- Higher chance of **false positives** (flagging normal activities as threats).
- Requires proper training data to define normal behavior accurately.

• Example:

 In a company, a new unknown device with an unrecognized MAC address tries to access restricted files.

Intrusion Prevention vs Detection

- Intrusion Prevention (Stopping Attacks Before They Happen):
 - Setting up strong password policies.
 - Firewalls blocking malicious traffic.
 - Multi-factor authentication.
 - Access controls to prevent unauthorized access.
- Intrusion Detection (Catching Attacks When They Happen):
 - Like a alarm/notification that detects an intruder breaking into your system.
 - Antivirus detecting malware or IDS monitoring network activity for suspicious behavior.
 - Monitoring network traffic and system logs to detect threats.

Prevention versus Detection

Figure: Tasks performed by an IDS.

NIDPS

Assignment Tasks:

Develop a Network Intrusion Detection and Prevention System (NIDPS)

- Detect malicious activities using signature and anomaly-based methods.
- Log detected attacks.
- Dynamically block threats.
- Provide a CLI-based management interface.

Sample Package Installation (Python):

Install scapy, python-nmap, numpy sklearn

1. Network Traffic Monitoring [10]

Capturing Network Packets using Scapy

- Use Packet sniffer Import the sniff function from Scapy.
- Define a callback function to print summary of the captured packet.
- Start sniffing each network packets.
- Print packet information

Time: timestamp, Src: srcip: srcport, Dst: dstip: dstport, Protocol: protocol

2. Intrusion Detection Module [30]

1. Port Scanning Detection \rightarrow Anomaly-Based Detection

1. Multiple Port Scanning

- Identifies abnormal behavior by tracking connection attempts to multiple ports within a short time window
- Legitimate users rarely connect to multiple random ports rapidly, so deviation from normal behavior is flagged as an attack.

For example:

Identify hosts that attempt to connect to more than 6 different ports within 15 seconds.

2. Intrusion Detection Module

2. Sequential Port Scanning

- Detects a pattern of sequential port accesses from the same IP address.
- Attacker (single IP) systematically scans multiple ports in a sequential order (e.g., 80, 81, 82, 83, ...)

Action [1,2]: Logging Attacker's IP and Targeted Ports

- The system should flag and log such suspicious IP addresses along with the ports they attempt to access.
- Identify repeated scanning attempts from the same attacker.
- ** Grace Marks for Further Extension

2. Intrusion Detection Module

2. OS Fingerprinting Detection \rightarrow Signature-Based Detection

- Attackers determine an operating system by analyzing its response to specially crafted TCP packets.
- Uses predefined patterns of SYN, ACK, and FIN flag combinations to classify OS behavior.
- Each OS responds uniquely based on its TCP/IP stack implementation.
- Active tools (e.g., nmap -0 target_ip) send multiple TCP probes.
- The system detects multiple unique TCP packets from the same source.
- IDS logs: Suspicious OS fingerprinting attempt from target_ip.

Example:

If an IP sends 5+ different SYN, ACK, and FIN flag combinations within 20 seconds, it is flagged.

3. Intrusion Prevention and Logging [20]

Block detected threats

- Use iptables firewall commands.
- Dynamically block malicious IPs upon detection.
- Prevent further malicious attempts from flagged attackers.
- Provide an option to manually unblock previously blocked IPs.

Example: Blocking with iptables

- sudo iptables -A INPUT -s 192.168.1.5 -j DROP
- This command blocks all traffic from the attacker's IP.
- To unblock: sudo iptables -D INPUT -s 192.168.1.5 -j DROP

4. Alert and Logging System [20]

Maintain a log file (ids.log) for detected intrusions.

- Displays a summary report of detected intrusions upon request.
- Log should contain:
 - Date, Time: When the attack occurred.
 - Intrusion Type: Port scan, OS fingerprinting, etc.
 - Attacker IP: Source of the attack.
 - Targeted Ports/Flags: Specific attack details.
 - Time Span of Attack: Duration of suspicious activity.

Log format:

Date Time — Intrusion Type — Attacker IP — Targeted Ports — Time Span Of Attack Sample Entry:

21-03-25 14:30:12 — Port Scanning — 192.168.1.5 — 22, 80, 443, 8080 — 12s

5. Command-Line Interface (CLI) for IDS Management [10]

- Provide an interactive interface for managing the Intrusion Detection System (IDS).
- Enable users to monitor, control, and configure IDS operations efficiently.

Key Functionalities for Display Menu:

- 1. Start/Stop IDS: Enable or disable the intrusion detection system.
- 2. View Live Traffic: Display ongoing network activity in real-time.
- 3. View Intrusion Logs: Check recorded attack details from the log file.
- 4. Display Blocked IPs: Show a list of IPs currently blocked by the system.
- 5. Clear Block List: Remove all blocked IPs at once.
- 6. Unblock an IP: Allow a specific IP to regain access.
- 7. Note: If you extend any functionality, add in menu.
- 8. Exit: Quit the CLI interface.

Testing & Validation

- The IDS will run in the background, listening for malicious activity.
- The attack simulation scripts will send packets to different ports on the local machine
- The IDS will detect and log suspicious activity.
- The difference in seconds between two timestamps can be used to detect frequent connections (potential attack).
- Port similarity checks can be used to unblock connections
- Validate if a given IP address is in the correct format using dot count and character checks

Testing Module Overview

- Simulates a test of the Intrusion Detection System (IDS) by creating a list of packets and analyzing them.
- Analyze the packet to extract port address and IP details
- Identify the protocol used and the flags specified
- Specific flags with TCP module can be used to simulate flooding attack
- Simulate port scan attacks using tools like nmap and custom scripts
- For generating test attacks of signature based anomalies, hping3 can be used

Details for testing script implementation

Network traffic can be simulated using IP and TCP classes from scapy

Use localhost as source and destination IPs

The packets simulate various scenarios

- 1. Normal traffic (e.g., ACK and PSH flags).
- 2. SYN flood attack (multiple SYN packets to a port).
- 3. Port scan attack (multiple SYN packets from the same source port to different destination ports).

** Further Extension (Optional)

For Example:

- Identify new or unknown scanning behaviors using statistical thresholds.
- Generate a detailed summary of detected intrusions.
- Save and export intrusion logs for future analysis.
- Implement a GUI-based interface for ease of use.
- Enable automatic rule updates for improved threat detection, etc.

Submission Instructions

Submit a zipped file named <team_ID>_lab3.zip containing:

- Source Code files
- Documentation / README [10]
 - Setup instructions on how to build and run each program.
 - Explanation of implementation steps.
 - Description of input and output formats.
- Log file (ids.log): Contains records of detected intrusions.