FORMULÁRIO DE GEOMETRIA Prof. Hermes Jardim

CAP – 2013

GEOMETRIA PLANA					
FIGURA	PERIMETRO ÁREA				
Quadrado	4a	$A = a^2$			
Retângulo	P = 2.(b + h)	A = b.h			
Paralelogramo	P = 2.(b + a)	A = b.h			
Triângulo	P = a + b + c	$A = \frac{b.h}{2}$			
Trapézio	P = a + b + c + B	$A = \frac{(B+b).h}{2}$			
Losango	P = 4a	$A = \frac{D.d}{2}$			
Círculo	$C = 2\pi r$ $A = \pi r^2$				

TRIÂNGULO EQUILÁTERO				
Altura	Área			
$h = \frac{a_b \sqrt{3}}{2}$	$A = \frac{a_b^2 \sqrt{3}}{4}$			

Relação de Euler				
V + F = A + 2	2A = número de faces × número de arestas de cada face			

GEOMETRIA ESPACIAL							
PRISMA	Área lateral:		Área total:	Volume:			
PKISNIA	A ℓ =	$A \ell = n \cdot a_b h$		$V = A_b \cdot h$			
	Diagonal:		Área total:	Volume:			
PARALELEPÍPEDO	$D_P = \sqrt{a^2 + b^2 + c^2}$		$A_t = 2.(ab + ac + bc)$	V = abc			
CUBO	Diagonal face	Diagonal cubo	Área total:	Volume:			
	$D = a\sqrt{2}$	$D = a\sqrt{3}$	$A_t = 6a^2$	$V = a^3$			
CILINDRO	Área da base:	Área lateral:	Área total:	Volume:			
	$A_b = \pi r^2$	$A \ell = 2\pi rh$	$A_t = 2\pi r.(h+r)$	$V = \pi r^2 h$			
CONE	A relação:	Área lateral:	Área total:	Volume:			
	$g^2 = h^2 + r^2$	$A \ell = \pi rg$	$A_t = \pi r.(g+r)$	$V = \frac{1}{3}\pi r^2 h$			
TRONCO DE CONE	Área lateral	Área total: Volume:		e:			
	$A \ell = \pi g.(R + r)$	$St = A \ell + A_B + A_b$	$V_{T} = \frac{\pi h}{3}.(R^{2} + Rr + r^{2})$				
TETRAEDRO REGULAR	Apótema lateral	Área da base:	Área total:	Volume:			
	$A_{\rm B} = \frac{a\sqrt{3}}{2}$	$A_{\rm B} = \frac{a^2 \sqrt{3}}{4}$	$A_{t} = a^{2}.\sqrt{3}$	$V = \frac{a^3 \sqrt{2}}{12}$			
PIRÂMIDE		Área lateral:	Área total:	Volume:			
		A= n . A _{triângulo}	$A_t = A_b + A\ell$	$V = \frac{1}{3} A_b.h$			
TRONCO DE PIRÂMIDE	Relações:		Volume:				
	$\frac{a_{\rm B}}{a_{\rm b}} = \frac{H}{h} \qquad \frac{A_{\rm B}}{A_{\rm b}}$	$V_{\rm T} = \frac{H^2}{h^2}$ $V_{\rm T} = \frac{H^3}{h^3}$ $V_{\rm T} = \frac{1}{3}h.(A_{\rm B} + \sqrt{A_{\rm B}.A_{\rm b}} + A_{\rm b})$		$\overline{A_{\rm B}.A_{\rm b}} + A_{\rm b}$			
ESFERA				Volume:			
		$A_{se} = 4\pi r^2$		$V = \frac{4}{3}\pi r^3$			