M 431: Assignment 1

Nathan Stouffer

Page 7 — Problem 14

Problem. If C is a finite set, let m(C) denote the number of elements in C. If A, B are finite sets, prove that

$$m(A \cup B) = m(A) + m(B) - m(A \cap B)$$

Proof. We take for granted the fact that $m(A \cup B) = m(A) + m(B)$ if A, B are disjoint sets. Now let's establish some notation. Let $A' = A \setminus (A \cap B)$ and $B' = B \setminus (A \cap B)$.

We now show a quick proof of the fact that $m(A \cap B)$ is finite. By definition of intersection, $A \cap B \subset A$. But then A cannot contain fewer elements than $A \cap B$, so we must have $m(A) \geq m(A \cap B)$. Then since A is finite, $A \cap B$ is also finite.

We also show that $A' \cap B' = \emptyset$. $A' = A \setminus (A \cap B)$ and $B' = B \setminus (A \cap B)$ so

$$A' \cap B' = \{x \mid x \in A' \text{ and } x \in B'\}$$

$$= \{x \mid x \in A \setminus (A \cap B) \text{ and } x \in B \setminus (A \cap B)\}$$

$$= \{x \mid (x \in A \text{ and } x \notin A \cap B) \text{ and } (x \in B \text{ and } x \notin A \cap B)\}$$

$$= \{x \mid x \in A \text{ and } x \in B \text{ and } x \notin A \cap B\}$$

$$= \{x \mid x \in A \cap B \text{ and } x \notin A \cap B\}$$

$$= \emptyset$$

So $A' \cap B' = \emptyset$.

We now show, via induction, that given $k \in \{0,1,2,...,m(A\cap B)\}$, every subset $C\subset A\cap B$ such that m(C)=k satisfies $m(A'\cup B'\cup C)=m(A'\cup C)+m(B'\cup C)-m(C)$. We will denote a subset of $A\cap B$ containing k elements as C_k . Consider the base case where k=0. Then there is only one C_k and it must be $C_k=\emptyset$. So we must show that $m(A'\cup B'\cup \emptyset)=m(A'\cup \emptyset)+m(B'\cup \emptyset)-m(\emptyset)$. But then

$$m(A' \cup B' \cup \emptyset) = m(A' \cup \emptyset) + m(B' \cup \emptyset) - m(\emptyset)$$

$$m(A' \cup B') = m(A') + m(B') - 0$$

$$m(A' \cup B') = m(A') + m(B')$$

which we already know to be true since A' and B' are disjoint sets. So the base case is proved.

Now suppose that for some $i \in \{0, 1, 2, ..., m(A \cap B) - 1\}$, that we have $m(A' \cup B' \cup C_i) = m(A' \cup C_i) + m(B' \cup C_i) - m(C_i)$ for all $C_i \subset A \cap B$. We must now show that $m(A' \cup B' \cup C_{i+1}) = m(A' \cup C_{i+1}) + m(B' \cup C_{i+1}) - m(C_{i+1})$ for all $C_{i+1} \subset A \cap B$.

For every i, we C_{i+1} contains one more element than C_i so we must have $m(C_{i+1}) = m(C_i) + 1 \iff m(C_i) = m(C_{i+1}) - 1$. Furthermore, we constructed A', B' so that for any $k, A' \cap C_k = B' \cap C_k = (A' \cup B') \cap C_k = \emptyset$. Then we can use our fact about disjoint sets to say that

$$m(A' \cup B' \cup C_i) = m(A' \cup C_i) + m(B' \cup C_i) - m(C_i)$$

$$m(A' \cup B') + m(C_i) = m(A') + m(C_i) + m(B') + m(C_i) - m(C_i)$$

$$m(A' \cup B') + m(C_{i+1}) - 1 = m(A') + m(C_{i+1}) - 1 + m(B') + m(C_{i+1}) - 1 - (m(C_{i+1}) - 1)$$

$$m(A' \cup B' \cup C_{i+1}) - 1 = m(A' \cup C_{i+1}) - 1 + m(B' \cup C_{i+1}) - 1 - m(C_{i+1}) + 1$$

Then the ones cancel, leaving $m(A' \cup B' \cup C_{i+1}) = m(A' \cup C_{i+1}) + m(B' \cup C_{i+1}) - m(C_{i+1})$, which completes the induction.

So now we know that given $k \in \{0, 1, 2, ..., m(A \cap B)\}$, every $C_k \subset A \cap B$ must satisfy $m(A' \cup B' \cup C_k) = m(A' \cup C_k) + m(B' \cup C_k) - m(C_k)$. Take $k = m(A \cap B)$, then there is only one C_k and it must be $C_k = A \cap B$. So we must have $m(A' \cup B' \cup (A \cap B)) = m(A' \cup (A \cap B)) + m(B' \cup (A \cap B)) - m(A \cap B)$. But $A' \cup B' \cup (A \cap B) = A \cup B$, $A' \cup (A \cap B) = A$, and $A' \cup (A \cap B) = A$, so we have $A' \cup B' \cup (A \cap B) = A$, which is what needed to be shown.

Page 7 — Problem 20

Problem. Show, for finite sets A, B, that $m(A \times B) = m(A)m(B)$.

Proof. Again, we take for granted the fact that if A, B are disjoint sets then we have $m(A \cup B) = m(A) + m(B)$. As an edge case, consider if A, B, or both A and B are the empty set. In this case $A \times B = \emptyset$ and $m(A \times B) = m(\emptyset) = 0$. Also m(A)m(B) = 0 because one or both of m(A), m(B) will be 0. Since the statement holds when one or both of A, B is the emptyset, we assume both sets are nonempty for the remainder of the proof.

Now we show that for a singleton $S = \{s\}$ and a nonempty set X, we have $m(S \times X) = m(X)$. We show this equality by establishing a bijection between $S \times X$ and X. Consider $f: S \times X \longrightarrow X$ defined by f((s,x)) = x. To show that f is a bijection, we must show it is surjective and injective. The map f is surjective if every element of X is the image of some element of $S \times X$ under f. For any $x' \in X$, just choose $(s,x') \in S \times X$, then f((s,x')) = x'. So f is surjective, but what about injective? We can show f is injective by proving that $f((s,x_1)) = f((s,x_2))$ implies $(s,x_1) = (s,x_2)$. Suppose we have $f((s,x_1)) = f((s,x_2))$, then it must also be true that $x_1 = x_2$. Since s = s and $x_1 = x_2$, must have $(s,x_1) = (s,x_2)$. Therefore, f is injective. Since f is both injective and surjective, it is a bijection and f(s) = f(s).

We now show, via induction, that for a finite, nonempty collection of mutually disjoint sets $Y = \{Y_1, Y_2, ..., Y_n\}$, we have $m(\bigcup_{i=1}^n Y_i) = \sum_{i=1}^n m(Y_i)$. Consider the base case where n = 1, then $Y = \{Y_1\}$. The left hand-side becomes $m(\bigcup_{i=1}^1 Y_i) = m(Y_1)$ and the right hand side is $\sum_{i=1}^1 m(Y_i) = m(Y_1)$ so the base case is verified.

Now suppose that for some $k \in \mathbb{N}$, $m(\bigcup_{i=1}^k Y_i) = \sum_{i=1}^k m(Y_i)$. Now we prove that the equality holds for $k \perp 1$

We now claim that $A \times B$ is such a finite union of sets and that those sets are mutually disjoint.

Page 13 — Problem 6

Problem. If $f: S \longrightarrow T$ is onto and $g: T \longrightarrow U$ and $h: T \longrightarrow U$ are such that $g \circ f = h \circ f$, then g = h.

Proof. To show that g=h, we must show that g(t)=h(t) for all $t\in T$. Since $g\circ f=h\circ f$, we can say that $(g\circ f)(s)=g(f(s))=(h\circ f)(s)=h(f(s))$ for all $s\in S$. Then since f is onto, for every $t\in T$, there exists $s_t\in S$ such that $f(s_t)=t$. Then f(s) can be replaced with t to give g(f(s))=g(t)=h(f(s))=h(t), which proves that g=h.

Page 20 — Problem 11

Problem. Can you find a positive integer m such that $f^m = i$ for all $f \in S_4$?

Proof.

Page 20 — Problem 13

Problem. Show that there is a positive integer t such that $f^t = i$ for all $f \in S_n$.

Proof.