МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра «Кибернетических систем»

ПРОГРАММИРУЕМЫЕ УСТРОЙСТВА ВВО-ДА/ВЫВОДА

Методические указания к лабораторной работе №3 по дисциплине «Микропроцессорные системы в автоматизации и управлении,
направления: 15.03.04 — «Автоматизация технологических процессов и производств» профиль: «Автоматизация технологических процессов и производств в нефтяной и газовой промышленности»

«Микропроцессорные системы» для студентов специальности:
направление: 13.03.02 — «Электроэнергетика и электротехника»
профиль: «Электропривод и автоматика»
форма обучения: очная/заочная(5 лет),заочная(3,6 г.)

Тюмень ТИУ 2018 Методические указания к выполнению лабораторной работы № 3 [Текст] / сост. Н.В. Попова, Н.В. Лапик, Тюменский индустриальный университет.— 2-е изд., испр.— Тюмень: Издательский центр БИК ТИУ 201.—32 с.

Методические указания рассмотрены и рекомендованы к изданию на заседании кафедры автоматизации и вычислительной техники «__» ____ 2018 года, протокол №.

Аннотация

Методические указания и индивидуальные задания по дисциплине «Микропроцессорные системы в автоматизации и управлении» предназначены для студентов, обучающихся по направлению 15.03.04 — «Автоматизация технологических процессов и производств» профиль: «Автоматизация технологических процессов и производств в нефтяной и газовой промышленности» и дисциплине «Микропроцессорные системы» для студентов специальности: направление: 13.03.02 — «Электроэнергетика и электротехника» профиль: «Электропривод и автоматика» форма обучения: очная/заочная(5 лет), заочная(3,6 г.)Данная дисциплина изучается в одном семестре.

Приведены основные теоретические сведения из дисциплины. Приведены варианты заданий для и контрольных вопросов.

Техника безопасности при работе на ПК

При работе на персональном компьютере необходимо обратить внимание на следующие факторы: повышенная напряжённость электрического и электромагнитного полей, статическое электричество, повышенный уровень шума системного блока, пониженная контрастность монитора, недостаточная освещённость рабочей зоны, выделение токсических веществ в воздух. Это серьёзные факторы риска и следует от них максимально обезопаситься.

Для улучшения эргономичности рабочего места необходимо предпринять следующие меры.

- 1. Монитор должен располагаться так, чтобы его верхняя точка находилась прямо перед глазами или выше, что позволит держать голову прямо, и исключит развитие шейного остеохондроза. Расстояние от монитора до глаз должно быть не меньше 45 см;
- 2. Стул должен иметь спинку и подлокотники, а также такую высоту, при которой ноги могут прочно стоять на полу;
- 3. Освещение рабочего места не должно вызывать блики на экране монитора. Не рекомендуется ставить монитор рядом с окном;
- 5. При работе с клавиатурой, угол сгиба руки в локте должен быть прямым (90 градусов);
- 6. При работе с мышкой кисть должна быть прямой, и лежать на столе как можно дальше от края.

Работая за компьютером, необходимо следить за освещением, осанкой, делать перерывы, проводить влажную уборку и проветривание помещения—всё это поможет повысить трудоспособность и избавит от серьёзных болезней.

Несоблюдение требований техники безопасности при работе за компьютером приводит к тому, что через некоторое время студент начинает испытывать определённый дискомфорт: головные боли, резь в глазах, боли в спине и в суставах кистей рук.

Назначение методических указаний

Современные специалисты в области электронной техники и те, кто только ещё изучает, должны обладать знаниями в области микропроцессоров и микропроцессорных систем, то есть сведениями как об аппаратной, так и о программной частях.

В методических указаниях приводится основная информация касающаяся вопросов программируемого устройства ввода/вывода.

ПРОГРАММИРУЕМЫЕ УСТРОЙСТВА ВВОДА/ВЫВОДА

Цель работы: Исследование методов подключения и организации обмена информацией с простейшими устройствами ввода - вывода при использовании БИС КР580BB55.

Технологическое оборудование оснащено информационными устройствами, с помощью которых система управления собирает информацию о состоянии технологического оборудования.

Технологическое оборудование оснащено исполнительными устройствами, с помощью которых система управления управляет работой оборудования и ходом технологического процесса.

Система управления:

получает информацию о состоянии технологического процесса; обрабатывает полученные данные по определенному алгоритму; определяет параметры и состояние технологического процесса;

формирует и выдает команды управления ходом технологического процесса и изменяет режимы работы технологического оборудования.

В настоящее время почти 90% систем управления представляют собой электрические (цифровые) системы управления, где вся информация представляется в виде электрических (цифровых) сигналов. Подавляюще большинство таких систем оснащаются вычислительной техникой (как правило, микроконтроллерами).

Когда невозможно применение электрических систем управления (взрывоопасная и пожароопасная обстановка), применяют пневматические, механические или гидравлические системы.

Рисунок 1 Структурная схема одномашинной системы управления

Микро-ЭВМ – управляющая Микро-ЭВМ (обычно строится на базе микропроцессорных систем) включает в себя: процессор, память, шинные формирователи и т.д.

МВВ ЦС – модуль ввода вывода цифровых сигналов (цифровой сигнал – дискретный сигнал с четко различимыми уровнями).

MBB AC – модуль ввода вывода аналоговых сигналов (аналоговый сигнал – непрерывный сигнал, представленный функциональной зависимостью).

АЦП – аналогово-цифровой преобразователь.

ЦАП – цифро-аналоговый преобразователь.

ДША ВУ – дешифратор адреса внешних устройств.

ВУ – внешние устройства

В состав системы управления, при необходимости, могут быть включены:

таймер, который используется для создания различных временных "картин", необходимых для работы технологического комплекса.

последовательный интерфейс, который позволяет передавать данные в последовательном формате.

контроллер приоритетных прерываний — позволяет организовать работу микропроцессора в режиме прерываний (от 8 до 64 запросов)

контроллер прямого доступа к памяти — позволяет осуществить высокоскоростной обмен между памятью микропроцессора и памятью внешних устройств.

1.МОДУЛЬ ВВОДА-ВЫВОДА ЦИФРОВЫХ СИГНАЛОВ

Позволяет загрузить в микропроцессор дискретные сигналы и выдать на внешние устройства дискретные команды (типа «да» - «нет», «включено» - «выключено», «0» - «1»).

Чаще всего такой модуль строится на базе программируемого параллельного интерфейса (ППИ) КР 580 BB55. Он предназначен для организации процедуры ввода — вывода параллельной информации и позволяет и позволяет организовать большинство известных протоколов ввода — вывода. Может использоваться для сопряжения с различными периферийными устройствами.

2.ПАРАЛЛЕЛЬНЫЙ ПРОГРАММИРУЕМЫЙ ИНТЕРФЕЙС **18255** (КР580BB55)

Для организации обмена информации МП системы с внешними периферийными устройствами в параллельном восьмиразрядном коде в комплект микросхем входит БИС программируемого параллельного интерфейса (ППИ) KP580BB55 (Intel 8255).

В ППИ КР580ВВ55 входит схема управления выводом, вводом и двунаправленный буфер данных, предназначенный для подключения внутренней шины ППИ к шине данных МП системы, и три 8 разрядных порта A, B и C для обмена между МП и периферией. Порты A и B состоят из входных и

выходных 8 разрядных регистров, порт С из двух входных и выходных 4 разрядных регистров.

Условное графическое изображение микросхемы ППИ и ее подключение к микропроцессорной системе показано на рисунке 1.

Микросхема КР580ВВ55 представляет универсальную программно управляемую интерфейсную БИС с помощью которой возможно организация в параллельном практически с любым интерфейсным устройством

Рисунок 2 - Структурная схема программируемого параллельного интерфейса KP580BB55.

БЛОКИ:

ВМД – внутренняя магистраль данных.

DB – 8-ми разрядный двунаправленный буфер данных.

RWCU – блок управления чтение-запись – обеспечивает управление внешними и внутренними передачами данных, управляющих слов и информации о состоянии ППИ.

CUA – схема управления группой A (PORT A и старшие разряды PORT C) CUB – схема управления группой B (PORT B и младшие разряды PORT C) PORT A, PORT B, PORT C – 8-ми разрядные порты ввода-вывода.

ВХОДЫ:

RD — чтение — 0 на этом входе разрешает считать информацию с одного из регистров ППИ на шину данных, адрес регистров определяется состоянием входов A0 и A1.

WR- запись -0 на этом входе разрешает запись информации с шины данных (D0-D7) в один из регистров ППИ, адрес регистров определяется состоянием входов A0 и A1.

А0 и А1 – входы для адресации внутренних регистров ППИ.

RESET — сброс — 1 на этом входе очищает регистр управляющего слова и устанавливает все порты в режим ввода.

CS — выбор микросхемы. 0 на этом входе активизирует ППИ и подключает его к системным магистралям микропроцессора. При отсутствии сигнала (высокий уровень) выводы шины данных D0-D7 находятся в соответствии с высоким выходным сопротивлением

PORT A(7-0) – входы-выходы порта А.

PORT B(7-0) – входы-выходы порта В.

PORT C(7-0) – входы-выходы порта С.

Таблица 2.1 выводы подключения

II. ra a appropria	Адрес регистра		
Имя регистра	A1	A0	
PORT A	0	0	
PORT B	0	1	
PORT C	1	0	
Регистр управляющего слова	1	1	

Выводы D0-D7 напрямую подключаются к шине данных МП системы. Выводы /WR и /RD подключаются к шине управления. Вывод RESET также подключается к шине управления.

Выводы A0 и A1 подключаются к соответствующим разрядам шины адреса. Остальная часть шины адреса подключается к дешифратору, который выставив низкий потенциал на своем выходе подключит выводы D0-D7 микросхемы к шине данных МП системы (так как он соединен с выводом /CS БИС).

Выводы A0 и A1 шины адреса поступают непосредственно на БИС и адресуют регистры каналов A, B, C или регистра управляющего слова (таблица 2.1).

Перед началом работы ППИ производится настройка (инициализация БИС ППИ) на конкретный режим работы. Это производится путем подачи с помощью команды ОUТ в регистр управляющего слова (чтение информации из этого регистра недопустимо).

К командам ввода - вывода МП КР580 относятся команды IN <A> и OUT <A>. При выполнении команды IN <A > микро-ЭВМ считывает число из входного устройства с адресом < A > и записывает его в аккумулятор. При выполнение команды OUT<A> МП БИС записывает число из аккумулятора в выходное устройство с адресом < A >. Так как адрес устройства указывается в одном байте, то с помощью этих команд микро-ЭВМ может обмениваться информацией не более чем с 256 внешними устройствами.

В составе микропроцессорного комплекта БИС серии КР580 имеется две БИС, которые могут применятся для организации ввода/вывода в микро - ЭВМ:

КР580ВВ55 - БИС программируемого параллельного интерфейса КР580ВВ51 - БИС программируемого последовательного интерфейса.

В УМК для организации обмена информацией с внешними устройствами используется БИС КР580ВВ55 .

Перед началом работы программным способом путем передачи в БИС специальных команд инициализации назначаются режимы работы каждого из каналов.

При наличии на старших разрядах шины адреса AB(2-15) шины адреса нужного сочетания сигналов на входе CS БИС KP580BB55 с помощью внешнего адресного дешифратора формируется сигнал низкого уровня. Сигналы младших разрядов A(0), A(1) шины адреса поступают на БИС непосредственно и адресуют регистры каналов A, B, C или регистр управляющего слова (таблица 2.2) .

Таблица 2.2 Управляющие сигналы БИС КР580ВВ55.

Обозначение	Наименование	Назначение			
CS	Выбор микросхемы	Разрешение работы БИС. При отсут-			
		ствии сигнала (высокий уровень)			
		выводы шины данных D0-D7 нахо-			
		дятся в соответствии с высоким вы-			
		ходным сопротивлением			
A (0)	Адрес разряд 0	Обращение к одному из трех каналов			
A (1)	Адрес разряд 1	или регистру управляющего слова			
RD	Чтение	Чтение данных из БИС KP580BB55			
		на шину данных D0-D7.			
WR	Запись	Запись байта данных в БИС			
		KP580BB55 с шины данных D (0 – 7)			

Продолжение таблицы2.2

Обозначение	Наименование	Назначение
RESET	Сброс	Сброс БИС КР580ВВ55 при этом все
		регистры переводятся в нулевое со-
		стояние. Все каналы переводятся в
		режим ввода.

Таблица 2.3 Зависимость вида и направления передачи информации от комбинации входных сигналов.

Сигна	лы на н	входах			Вид передаваемой информации	Направление передачи
A(0)	A(1)	RD	WR	CS	тіфортидії	
0	0	1	0	0	данные	$A(0-7) \Rightarrow D(0-7)$
0	1	1	0	0	данные	$B(0-7) \Rightarrow D(0-7)$
1	0	1	0	0	данные	$C(0-7) \Rightarrow D(0-7)$
0	0	0	1	0	данные	$D(0-7) \Rightarrow A(0-7)$
0	1	0	1	0	данные	$D(0-7) \Rightarrow B(0-7)$
1	0	0	1	0	данные	$D(0-7) \Rightarrow C(0-7)$
1	1	1	0	0	управляющее сло-	D(0-7)⇒РУС
					ВО	
_	_	-	_	1-		нет передачи

Программируемый параллельный интерфейс может работать в одном из нескольких режимах:

«0» - режим «0» - основной режим ввода-вывода.

«1» - режим «1» - стробируемый ввод-вывод.

«2» - режим двунаправленной передачи информации.

Режим работы ППИ устанавливается с помощью управляющего слова. Одним управляющим словом можно задать различные режимы работы для каждого канала ППИ.

Порт A может работать в любом режиме (0,1,2).

Порт B может работать в 2-х режимах (0,1).

Порт С может работать на передачу данных только в режиме «0» - в остальных режимах служит для передачи управляющих сигналов, которые сопровождают обмен данными по каналам A и B.

Задание режимов для каналов A, B, C осуществляется одной командой назначения режима, эти каналы могут одновременно работать в разных режимах.

Формат управляющего слова для ППИ

Рисунок 3. Управляющее слово БИС КР580ВВ55

При D7= 1 ППИ можно настроить на работу в одном из режимов (0,1,2).

При D7= 0 ППИ будет переведен в режим установки нуля или единицы в требуемом разряде канала С. В этом режиме управляющее слово будет выглядеть следующим образом:

D7	D6	D5	D4	D3	D2	D1	D0
0	X	X	X	1	1	0	1 ,
			(~		

№ требуемого разряда порта С что установить (0 или 1) (задан в двоичной форме номер шестого разряда канала С)

При подаче такого управляющего слова в шестом разряде канала С установится единица.

3. РЕЖИМЫ РАБОТЫ ПРОГРАММИРУЕМОГО ПАРАЛЛЕЛЬНОГО ИНТЕРФЕЙСА

В режиме 0 информация, поступающая на БИС КР580ВВ55 с шины данных, запоминается в буферном регистре соответствующего канала и сразу же передается на его выходы. При вводе информации с каналов без A , B , С записывается в буферные регистры этих каналов без стробирования и далее при поступлении сигнала RD передаются на шину данных DB .

В режиме 0 направление передачи определяется отдельно для каждого из каналов.

Режимы работы каналов A и B могут быть заданы независимо друг от друга. Канал C делится на две части PC 7- PC 4 и PC 3 - PC 0 , режимы работы которых определяются соответственно режимами работы каналов A и B , если последние работают в режиме 1 или 2 . Если каналы A и B работают в режиме 0 , каждая половина канала C может работать как отдельный канал в режиме 0 . Режим 0 позволяет организовать синхронный обмен информации между МП и внешними устройствами.

Режим 0 - в этом режиме каждый порт ППИ работает автономно и может быть настроен на ввод или вывод информации. Порт С дополнительно разделен на два порта по четыре разряда, при этом эти половины также могут быть настроены на ввод или вывод информации

Режим 1 — в этом режиме ППИ обеспечивает стробируемый однонаправленный обмен информацией с внешних устройств (ВУ). Передача данных осуществляется по портам А и В, а линии порта С являются служебными и управляют процессом передачи информации. В этом режиме предусмотрены три варианта настройки (рисунки 5-7):

Рисунок 4 - Составление управляющего слова

Ввод данных.

Информация принимается по портам PA и PB, а разряды порта PC управляют процессом передачи данных путем генерации следующих сигналов:

Рисунок 5- Ввод данных

STB – строб приема – входной сигнал от ВУ, указывает на готовность ВУ передать информацию;

INTR (запрос прерывания) — выходной сигнал на микропроцессор, позволяющий вызвать подпрограмму (в режиме прерывания) для приема данных от внешнего устройства.

IBF – подтверждение приема – выходной сигнал на ВУ, указывающий на окончание приема данных.

Вывод данных.

Информация выдается по портам PA и PB, а разряды порта PC управляют процессом передачи данных путем генерации следующих сигналов:

Рисунок 6- Вывод данных

OBF – выходной сигнал на ВУ, указывающий на готовность вывода информации от микропроцессора.

INTR - выходной сигнал на микропроцессор, вызывающий подпрограмму в режиме прерывания для выдачи данных.

АСК - входной сигнал от ВУ, подтверждающий прием данных.

Ввод /вывод данных.

Информация выдается по порта PA и принимается по порту PB, а разряды порта PC управляют процессом передачи данных путем генерации сигналов, аналогичных предыдущим вариантам настройки.

Рисунок 7- Ввод/вывод данных

Режим 2 - в этом режиме ППИ обеспечивает двунаправленную передачу информации по порту РА. Управление такой передачей осуществляется разрядами порта РС. Свободные линии остальных портов, могут работать в нулевом или в первом режиме.

В качестве примера рассмотрим обмен между клавиатурой и индикаторами Ввод информации с клавиш в МП и вывод информации на индикаторы пульта осуществляется через БИС программируемого интерфейса КР580ВВ55 . Все три канала БИС A, B, C работают в режиме 0 .

Каналы A и B задействованы на программный вывод информации для управления индикацией. Выходные сигналы канала A использованы для подачи напряжения на объединенные 8 катодов - сегментов.

Канал С задействован на программный ввод информации с восьми клавиш. Сигналы от 8 клавиш преобразуется шифратором в 8- разрядный код (таблица 3) и поступают на вход канала С. Расположение катодов - сегментов на индикаторе показано на рисунке 4.

Таблица 3	. Коды	нажатых	клавиш.

Код	Клавиша	Код	Клавиша
FF	Не нажата никакая кла-	EF	5
	виша		
FE	1	DF	6
FD	2	BF	7
FB	3	7F	8
F7	4		

Рисунок 8 -Схема подключения индикаторов и клавиатуры к УМК через БИС КР580ВВ55.

Рисунок 4 - Расположение катодов-сегментов на индикаторе

Шесть семи сегментных знаков индикатора АЛС324Б по схеме с общим анодом индицируют цифру или букву латинского алфавита при определенных сочетаниях высокого уровня напряжения на катодах индикатора и низкого уровня напряжения анода выбранной цифры (позиции дисплея).

Одноименные катоды всех индикаторов соединены между собой и подключены к семи разрядам канала В. Анод каждого индикатора подключен к выходу конкретного разряда канала А. Коды знаков приведены в таблице 4. Адреса портов ввода/вывода соответствующих каналам и регистрам КР580BB55 приведены в таблице 5.

Таблица 4.Сегментные коды знаков.

Знак	Шестнадцатеричный код	Знак	Шестнадцатеричный
			код
0	3F	9	6F
1	06	A	77
2	5B	В	7C
3	4F	С	39
4	66	D	6E
5	6D	Е	79
6	7D	F	71
7	07	Н	76
8	7F	?	53

Таблица 5. Адреса портов ввода/вывода.

БИС	Порт	Адрес порта
КР580ВВ55 (в УМК)	A	F8
	В	F9
	C	FA
	РУС	FB

ЗАДАНИЕ К ЛАБОРАТОРНОЙ РАБОТЕ.

- 1 Изучить работу БИС КР580ВВ55 в режиме 0.
- 2 Изучить назначение каждого разряда управляющего слова, задающего режимы работы БИС КР580BB55.
- 3 Составить программу по заданию преподавателя:
- 4 Программа вывода символа в позицию дисплея, заданную нажатой клавишей.
- 5 Программа «Бегущая строка». Бегущий символ
- 6 Программа, заполняющую дисплей символами.

Содержание отчета.

- 1 Отчет по лабораторной работе оформляется в тетради для лабораторных работ.
- 2 Отчет по лабораторной работе составляется каждым студентом.
- 3 Структура отчета по лабораторной работе:
- 4 Перечень команд ввода вывода для МП КР580ИК80А.
- 5 Программы
- 6 Виды управляющих слов для БИС КР580ВВ55.

Порядок защиты лабораторной работы

Обучающийся, выполнивший лабораторную работу. Оформивший по ней отчет, допускается к защите лабораторной работы.

Защита лабораторной работы проводится по мере её выполнения в часы занятий, отведенных на выполнение лабораторной работы.

Опрос преподавателем проводится в рамках темы лабораторной работы.

Обучающиеся, не защитившие лабораторную работу допускаются к следующей

Контрольные вопросы:

- 1 Как задаются режимы работы каналов БИС КР5800ВВ55?
- 2 Как формируется сегментный код?
- 3 Как в УМК организован обмен информацией между МП, индикаторами и клавиатурой?
- 4 Основные блоки ППИ.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1 Создаем устройства на микроконтроллерах [Текст] / А. В. Белов. СПб. : Наука и Техника, 2007. 304 с. (Радиолюбитель). Библиогр.: с. 295. ISBN 978-5-94387-364-3
- 2 Микропроцессоры семейства i8080A/8085: Системы программирования и отладки. Под ред. Меснякова В.А. –М.: Энергоатомиздат
- 3 Применение микропроцессоров в системах управления [Текст] = Automatisierte Sisteme mit Prozess- und Mikroprozessrechnern : пер. с нем. / В. Фритч. М. : Мир, 2005. 463 с. : граф., табл., рис. Список лит. -Предм. указ.: с. 461-463. . (в пер.) : ГРНТИ 50.09.33
- 4 Токхайм, Р. Микропроцессоры. Курс и упражнения [Text] : пер. с англ. / Р. Токхайм. перераб. и доп. М. : Энергоатомиздат, 2001. 336 с. : ил. Список лит.ГРНТИ 50.09.33 УДК

Приложение А

Команды ассемблера микропроцессора КР580ВМ80А

Команда	Описание	Код
Mov r1,r2	Пересылка данных из регистра r2 в регистр r1	
Mov M, r	Пересылка данных из регистра r в память	
Mov r, M	Пересылка данных из памяти в регистр г	
XCHG	Обмен данными между парами регистров HL и DE	EB
MVI r()	Занесение байта данных в регистр г	LD
MVI M()	Занесение байта данных в память	36
LDA (адрес)	Загрузка содержимого ячейки с указанным адресом в	3A
при (адрес)	накопитель	3A
LHLD (адрес)	Загрузка в регистры Н, L содержимого ячеек с указанным	2A
CT A XZ	адресом и адресом на единицу большим	
STAX rp	Занесение содержимого накопителя в ячейку, косвенно ад-	
CITE A (ресуемую парой регистров гр (В,D)	22
STA (адрес)	Занесение содержимого накопителя в ячейку с указанным адресом	32
SHLD (адрес)	Занесение содержимого регистра НL в память с указанным	22
, ,	адресом и адресом на единицу большим	
LXI rp ()	Занесение двух байтов данных в пару регистров (B,D,H,SP)	
LDAX rp	Загрузка в накопитель содержимого ячейки, косвенно ад-	
r	ресуемую парой регистров гр (В,D)	
ADD	Сложение содержимого регистра г и накопителя	
ADD M	Сложение содержимого ячейки памяти и накопителя	86
ADC r	Сложение содержимого регистра г и накопителя с учётом	
71201	переноса С	
ADC M	Сложение содержимого ячейки памяти и накопителя с учё-	8E
TIDE W	том переноса С	OL
ADI()	Сложение байта с содержимым накопителя	C6
ACI()	Сложение байта с содержимым накопителя с учетом пере-	CE
7101()	носа	CL
SUI()	Вычитание байта из содержимого накопителя	D6
SUB r	Вычитание содержимого регистра г из содержимого накопителя	
SBI()	Вычитание байта из содержимого накопителя с учетом за-	DE
3DI ()	ёма	DE
SUB M	Вычитание содержимого памяти из содержимого накопи-	96
SOD W	теля	70
SBB r	Вычитание содержимого регистра г из содержимого нако-	
3001	пителя с заёмом	
SBB M	Вычитание содержимого памяти из содержимого накопи-	9E
SDD M	теля с заёмом	ЭĽ
ANA r	Подразрядное И над содержимым регистра г и накопителя	
ANA M	Подразрядное И над содержимым регистра ги накопителя	A6
XRA r	Подразрядное и над содержимым памяти и накопителя Подразрядное ИСКЛЮЧАЮЩЕЕ ИЛИ над содержимым	AU
ANAI	· · ·	
VDAM	регистра г и накопителя	ΛD
XRA M	Подразрядное ИСКЛЮЧАЮЩЕЕ ИЛИ над содержимым	AE
	памяти и накопителя	

Команда	Описание	Код
ORA r	Подразрядное ИЛИ над содержимым регистра г и накопи-	
	теля	
ORA M	Подразрядное ИЛИ над содержимым памяти и накопителя	B6
CMP r	Сравнение содержимых регистра г и накопителя	
CMP M	Сравнение содержимых памяти и накопителя	BE
ANI()	Подразрядное И над содержимым накопителя и байтом	E6
XRI()	Подразрядное ИСКЛЮЧАЮЩЕЕ ИЛИ над содержимым	EE
	накопителя и байтом	
ORI()	Подразрядное ИЛИ над содержимым накопителя и байтом	F6
CPI()	Сравнение байта с содержимым накопителя	FE
DAD rp	Сложение содержимого пары регистров гр (B,D,H,SP) с со-	
	держимым пары регистров H,L	
INR r	Увеличение содержимого регистра г на 1	
DCR r	Уменьшение содержимого регистра r на единицу	
DCR M	Уменьшение содержимого памяти на единицу	35
INR M	Увеличение содержимого памяти на единицу	
INX rp	Увеличение содержимого пары регистров гр (B,D,H,SP) на	
	единицу	
DCX rp	Уменьшение содержимого пары регистров гр (B,D,H,SP) на	
	единицу	
RLC	Циклический сдвиг содержимого накопителя влево	7
RRC	Циклический сдвиг содержимого накопителя вправо	0F
RAL	Циклический сдвиг содержимого накопителя влево через	17
	перенос	
RAR	Циклический сдвиг содержимого накопителя вправо через	1F
	перенос	
DAA	Преобразование содержимого накопителя в двоично-	27
	десятичный код	
CMA	Поразрядное инвертирование накопителя	2F
STC	Установка признака переноса в единицу	37
CMC	Инвертирование признака переноса	3F
PCHL	Занесение содержимого регистров Н. С в счетчик команд	E9
ЈМР (адрес)	Безусловный переход по указанному адресу	C3
ЈС (адрес)	Переход при наличии переноса	DA
JNC (адрес)	Переход при отсутствии переноса	D2
JZ (адрес)	Переход при нуле	CA
JNZ (адрес)	Переход при отсутствии нуля	C2
ЈР (адрес)	Переход при плюсе	F2
ЈМ (адрес)	Переход при минусе	FA
ЈРЕ (адрес)	Переход при чётности	EA
ЈРО (адрес)	Переход при нечётности	E2
CALL (адрес)	Вызов подпрограммы	CD
СС (адрес)	Вызов подпрограммы при переносе	DC
CNC (адрес)	Вызов подпрограммы при отсутствии переноса	D4
СZ (адрес)	Вызов подпрограммы при нуле	CC
CNZ (адрес)	Вызов подпрограммы при отсутствии нуля	C4
СР (адрес)	Вызов подпрограммы при плюсе	F4
· · · · · /		

Команда	Описание	Код
СМ (адрес)	Вызов подпрограммы при минусе	FC
СРЕ (адрес)	Вызов подпрограммы при чётности	EC
СРО (адрес)	Вызов подпрограммы при нечётности	E4
RET	Возврат	C9
RC	Возврат при переносе	D8
RNC	Возврат при отсутствии переноса	D0
RZ	Возврат при нуле	C8
RNZ	Возврат при отсутствии нуля	C0
Команда	Описание	Код
RP	Возврат при плюсе	F0
RM	Возврат при минусе	F8
RPE	Возврат при чётности	E8
RPO	Возврат при нечётности	E0
RST (номер)	Повторный запуск с адреса	CF
IN(канал)	Ввод данных из накопителя в указанный канал	D8
OUT(канал)	Вывод данных из накопителя в указанный канал	D3
PUSH rp	Занесение содержимого пары регистров гр (B,D,H,PSW) в стёк	
POP rp	Выдача данных из стёка в пару регистров гр (B,D,H,PSW) в стёк	
XTHL	Обмен данными между вершиной стёка и парой регистров H,L	E3
SPHL	Занести в указатель стёка содержимое регистров H,L	F9
DI	Запретить прерывание	F3
EI	Разрешить прерывание	FB
NOP	Отсутствие операции	0
HLT	Останов	76

Учебное издание

Методические указания для лабораторных работ

Составитель ПОПОВА надежда Владимировна ЛАПИК Наталья Владиславовна КОЗЛОВ Василий Владимирович

В авторской редакции

Подписано в печать . Формат $60x90\ 1/16$. Усл. печ. л. Тираж 100 экз. Заказ № .

Библиотечно-издательский комплекс федерального государственного бюджетного образовательного учреждения высшего образования «Тюменский индустриальный университет». 625000, Тюмень, ул. Володарского, 38.

Типография библиотечно-издательского комплекса. 625039, Тюмень, ул. Киевская, 52.