

Islamic University of Technology

EEE 4483
Digital Electronics & Pulse Techniques

Lecture-1

Analog and Digital Signals

- Signals can be analog or digital.
- Analog signals can have an infinite number of values in a range.
- Digital signals can have only a limited number of values.

Comparison of Analog and Digital signals

a. Analog signal

b. Digital signal

A sinusoidal wave

Period and frequency

The period and frequency are reciprocals of each other.

$$f = \frac{1}{T} \qquad T = \frac{1}{f}$$

• If the period is 50 μ s, the frequency is

0.02 MHz = 20 kHz.

Two signals with same phase and frequency but different amplitudes

a. A signal with high peak amplitude

b. A signal with low peak amplitude

Angular Measurement

Angular measurements can be made in degrees (°) or radians.

The radian (rad) is the angle that is formed when the arc is equal to the radius of a circle. There are 360° or 2π radians in one complete revolution

Angular Measurement: Continued...

Because there are 2π radians in one complete revolution and 360° in a revolution, the conversion between radians and degrees is easy to write. To find the number of radians, given the number of degrees:

$$rad = \frac{2\pi \text{ rad}}{360^{\circ}} \times \text{degrees}$$

To find the number of degrees, given the radians:

$$\deg = \frac{360^{\circ}}{2\pi \text{ rad}} \times \text{rad}$$

Equation of a sine wave

Instantaneous values of a wave are shown as v or i. The equation for the instantaneous voltage (v) of a sine wave is

Two signals with same phase and amplitude but different frequency

a. A signal with a frequency of 12 Hz

b. A signal with a frequency of 6 Hz

Three sine waves with the same amplitude and frequency, but different phases

a. 0 degrees

b. 90 degrees

c. 180 degrees

Half-wave rectification

Figure 10.24 Half-wave rectifier with resistive load.

Continued...

Figure 10.25 Half-wave rectifier used to charge a battery.