Capstone Project -2

<u>Problem Statement:-</u> The project will simplify the product searching activity by providing the facility to get the most appropriate match of the product based on the image of the product available to the end user. The model also recommends the similar products available ,which narrow downs the search activity when the user has a specific requirements for the product he/she is willing to buy.

Git hub link-

https://github.com/shivamkk32/CP-2/blob/main/ReverseImageSearch.ipynb

Dataset: The dataset contains a collection of images of different product category along with a csv file that maps the images with their respective attributes.

Dataset

Link-https://www.kaggle.com/paramaggarwal/fashion-product-images-class ifier/data

Attributes used in the project are ['masterCategory', 'subCategory', 'articleType', 'baseColour', 'productImage']

Grouping the products according to the attributes

product_df.groupby(['masterCategory','subCategory','articleType','baseColo
ur']).agg({'productImage':'sum'})

This leads to cluster the product images into below form

productimage				
	baseColour	articleType	subCategory	masterCategory
31187.jpg19926.jpg31186.jpg23114.jpg25076.jpg2	Black	Accessory Gift Set	Accessories	Accessories
19929.jpg17366.jpg25047.jpg23115.jpg25046.jpg2	Blue			
25055.jpg31204.jpg25064.jpg25062.jpg25065.jpg2	Brown			
25049.jpg25084.jpg23105.jpg	Grey			
58920.jpg17367.jpg23106.jpg17368.jpg17372.jpg2	Maroon			
58921.jpg	Multi			
25063.jpg23100.jpg25077.jpg	Navy Blue			
23101.jpg25072.jpg	Pink			
17369.jpg23108.jpg17359.jpg17361.jpg25054.jpg2	Purple			
17360.jpg23112.jpg25083.jpg19933.jpg58924.jpg1	Red			

Model Description: In this project Resnet50 is used as a base model. A classification CNN model is created on top of Resnet50 by removing the top layer the pre-trained model. The objective of the model is to classify the master category of the image.

The model works with an accuracy of 89 percent.

Model Summary

Model: "sequential_1"

Layer (type)	Output Shape	Param #
resnet50 (Functional)	(None, 3, 3, 2048)	23587712
flatten (Flatten)	(None, 18432)	0
dense (Dense)	(None, 1024)	18875392
dense_1 (Dense)	(None, 512)	524800
dense_2 (Dense)	(None, 256)	131328
dropout (Dropout)	(None, 256)	0
dense_4 (Dense)	(None, 6)	1542

Total params: 43,120,774 Trainable params: 43,067,654 Non-trainable params: 53,120

The list of master categories are {0: 'Accessories', 1: 'Apparel', 2: 'Footwear', 3: 'Free Items', 4: 'Personal Care', 5: 'Sporting Goods'}

<u>Image Preprocessing</u> - To extract the region of interest of the image a pre trained yolov3 model weight is used trained on fashion dataset is used. This creates a rectangular contour around the product items detected .Post detecting the contour grabcut is used to removed the irrelevant part of the image.

This result image is further used for master category classification

Post getting the master category of the image ,to get the most relevant product category the below process is followed.

- 1. Feature extraction of the test image
- 2. Feature extraction of a random image from the target category
- 3. Feature extraction of a random image from a different category

Model for feature extraction

Layer (type)	Output Shape	Param #
resnet50 (Functional)	(None, 3, 3, 2048)	23587712
flatten_9 (Flatten)	(None, 18432)	0
dense_29 (Dense)	(None, 4096)	75501568
dense_30 (Dense)	(None, 4096)	16781312
dense_31 (Dense)	(None, 1000)	4097000
	(None, 1000, 1)	100

Feature vector is obtained from the model is later normalized.

Post getting the feature vector of the above images triplet loss function is calculated and the image with the least loss value is considered as the most relevant search category

Model Improvement -

70

- In place a pre-trained yolo model weight , train the model on own custom dataset to detect the object and identify the sub category the image . This will remove the master category classification CNN model and also reduce the list of target category.
- 2. Train a siamese network over the dataset to get the most similar products.