56-10

Proceedings of the American Academy of Arts and Sciences.

Vol. 56. No. 10.- July, 1921.

THE RUMFORD FUND.

Awards of the Premium and Grants for Research in Light and Heat.

COMPILED BY CHARLES R. CROSS.

VOLUME 56.

- Kennelly, A. E., and Kurokawa, K.— Acoustic Impedance and its Measurement. pp. 1-42. February, 1921. \$1.25.
- 2. Bell, Louis.- Ghosts and Oculars. pp. 43-58. February, 1921. \$.85.
- BRIDGMAN, P. W.— Electrical Resistance under Pressure, including certain liquid Metals. pp. 59-154. February, 1921. \$1.25.
- LIPKA, JOSEPH.— Motion on a Surface for any Positional Field of Force. pp. 155-182.
 March, 1921. \$1.00.
- WILLEY, A.—Arctic Copepoda in Passamaquoddy Bay. pp. 183-196. May, 1921.
 \$.75.
- Jones, Grinnell, and Schumb, W. C.—The Potential of the Thallium Electrode and the Free Energy of Formation of Thallous Iodide. pp. 197-236. April, 1921. \$1.10.
- Heidel, W. A.— Anaximander's Book, The Earliest Known Geographical Treatise. pp. 237-288. April, 1921.
 \$1.00.
- WHEELER, W. M.—Observations on Army Ants in British Guiana. pp. 289-328.
 June, 1921. \$1.25.
- HITCHCOCK, FRANK L.— The Axes of a Quadratic Vector. pp. 329-351. June, 1921.
 \$.75.
- CROSS, CHARLES R. The Rumford Fund. Awards of the Premium and Grants for Research in Light and Heat. pp. 353-373. July, 1921. \$.45.

Proceedings of the American Academy of Arts and Sciences.

Vol. 56. No. 10.- July, 1921.

THE RUMFORD FUND.

AWARDS OF THE PREMIUM AND GRANTS FOR RESEARCH IN LIGHT AND HEAT.

COMPILED BY CHARLES R. CROSS.

THE RUMFORD FUND.

Awards of the Premium and Grants for Research in Light and Heat.

COMPILED BY CHARLES R. CROSS.

Received April 29, 1921.

Presented May 11, 1921.

A number of years since the Rumford Committee came to realize that there was a great lack of knowledge in the educated community in general and to some extent even within the Academy itself regarding the Rumford Fund and the part it had played in stimulating scientific research in this country. For this reason it was decided to issue a somewhat detailed printed statement which should give an account of the origin of the Rumford Fund and the circumstances under which it came to assume its present important position. Of still greater moment was the fact that no collected statement had ever been published of the grants for research which had been made during the previous years, of the papers which had been published with aid from the Fund, or even of the Rumford Medals which had been awarded by the Academy. To remove this deficiency the Rumford Committee prepared a comprehensive paper which was printed by the Academy in 1905, making a pamphlet of thirty-two pages, entitled "The Rumford Fund." Together with a historical sketch were given a list of the awards of the Rumford Premium by the American Academy of Arts and Sciences, 1839 to 1904, a list of the awards of the Rumford Premium of the Royal Society of London, 1802 to 1904, a list of the grants for research made from the Rumford Fund, 1832 to May 1905, and a list of papers published with aid from the Rumford Fund in the Memoirs or Proceedings of the Academy, 1833 to 1905.

A Supplement of nineteen pages to this publication was issued in 1912, which continued the list of awards of the Rumford Premium of the Academy up to and including 1912, and gave data regarding the individual medals of the complete series which had not been ascertained previously. It also continued the lists of the Royal Society's awards of that Premium, from 1905 to 1910, and the Grants for Research made by the Rumford Committee from October, 1905 to May, 1912 together with a list continued up to that date of the papers published by the Academy from 1905 to 1912 with aid from the Rumford

Fund. In addition to these there was given a list as reported by their authors of all published researches which had received aid from the Rumford Fund but which had been published elsewhere than in the publications of the Academy from 1892 to 1912. Prior to 1892 it had been understood that researches thus aided should be presented for publication to the Academy.

At the time of issue of the 'Supplement' it was felt by the Committee that it would be well regularly, perhaps every five years, to continue the lists of grants and published papers up to date. 1917, however, was not a favorable time for doing this, and it was evident that in any event such regular publication would most conveniently begin at the end of the second decade of the century. It seemed best also to print future publications of the kind in the Proceedings of the Academy.

The list of grants now published includes all from the beginning down to and including December, 1920. They have also been numbered, every entry being included for convenience of reference, although it may not indicate actual appropriation of funds. A complete list of the awards of the Rumford Premium is also given.

It is intended shortly to publish a continuation of the lists of published papers up to and including December, 1920.

AWARDS OF THE RUMFORD PREMIUM OF THE AMERICAN ACADEMY.

- Robert Hare, of Philadelphia, for his invention of the compound or oxyhydrogen blowpipe.
- 1862. John Ericsson, of New York, for his improvements in the management of heat, particularly as shown in his caloric engine of 1858.
- 1865. Daniel Treadwell, of Cambridge, for improvements in the management of heat, embodied in his investigations and inventions relating to the construction of cannon of large calibre, and of great strength and endurance.
- 1866. Alvan Clark, of Cambridge, for his improvements in the manufacture of refracting telescopes, as exhibited in his method of local correction.
- 1869. George Henry Corliss, of Providence, for his improvement in the steam-engine.
- 1871. Joseph Harrison, Jr., of Philadelphia, for his mode of constructing steam-boilers, by which great safety has been secured.

1873. Lewis Morris Rutherfurd, of New York, for his improvements in the processes and methods of astronomical photography.

1875. John William Draper, of New York, for his researches on radiant energy.

1880. Josiah Willard Gibbs, of New Haven, for his researches in thermodynamics.

1883. Henry Augustus Rowland, of Baltimore, for his researches in light and heat.

1886. Samuel Pierpont Langley, of Allegheny, for his researches in radiant energy.

1888. Albert Abraham Michelson, of Cleveland, for his determination of the velocity of light, for his researches upon the motion of the luminiferous ether, and for his work on the absolute determination of the wave-lengths of light.

1891. Edward Charles Pickering, of Cambridge, for his work on the photometry of the stars and upon stellar spectra.

1895. Thomas Alva Edison, of Orange, N. J., for his investigations in electric lighting.

1898. James Edward Keeler, of Allegheny, for his application of the spectroscope to astronomical problems, and especially for his investigations of the proper motions of the nebulae, and the physical constitution of the rings of the planet Saturn, by the use of that instrument.

1899. Charles Francis Brush, of Cleveland, for the practical development of electric arc-lighting.

1900. Carl Barus, of Providence, for his various researches in heat.

1901. Elihu Thomson, of Lynn, for his inventions in electric welding and lighting.

1902. George Ellery Hale, of Chicago, for his investigations in solar and stellar physics and in particular for the invention and perfection of the spectro-beliograph.

1904. Ernest Fox Nichols, of New York, for his researches on radiation, particularly on the pressure due to radiation, the heat of the stars, and the infra-red spectrum.

1907 Edward Goodrich Acheson, of Niagara Falls, for the application of heat in the electric furnace to the industrial production of carborundum, graphite, and other new and useful substances.

1909. Robert Williams Wood, of Baltimore, for his discoveries in light, and particularly for his researches on the optical properties of sodium and other metallic vapors.

1910. Charles Gordon Curtis, of New York, for his improvements in the utilization of heat as work in the steam turbine. 1911. James Mason Crafts, of Boston, for his researches in hightemperature thermometry and the exact determination of new fixed points on the thermometric scale. Frederic Eugene Ives, of Woodcliff-on-Hudson, for his optical inventions, particularly in color photography and photoengraving. 1913. Joel Stebbins, of Urbana, for his development of the selenium photometer and its application to astronomical problems. 1914. William David Coolidge, of Schenectady for his invention of ductile tungsten and its application in the production of radiation. 1915. Charles Greeley Abbot, of Washington, for his researches on solar radiation. 1917. Percy Williams Bridgman, of Cambridge, for his thermodynamical researches at extremely high pressures. 1918. Theodore Lyman, of Cambridge, for his researches on light of very short wave-length. 1920. Irving Langmuir, of Schenectady, for his researches on thermionic and allied phenomena.

GRANTS FOR RESEARCH FROM THE RUMFORD FUND.

1832-1	862.	1. Observatory at Cambridge. For telescope and other apparatus
	2.	Enoch Hale. For rain gauges and sundry expenses for experiments and investigations relating to the
		fall of rain
1862.	3.	Philander Shaw. Experiments relating to air-
		engines
1863.	4.	Ogden N. Rood. Physical relations of iodized plate to light. (Appropriation subsequently trans- ferred to another research, viz., photometry, 7.) 300
1864.	5	Wolcott Gibbs. For purchase of a Meyerstein
1004.	J.	spectrometer and Regnault's apparatus for measuring vapor tension 600
1865.	6.	Josiah P. Cooke, Jr. For purchase of glass prisms to be used in an investigation of metallic spectra. (These prisms were purchased from the Academy by Professor Cooke in 1871.)

1866.	7.	Ogden N. Rood. Photometry. (Appropriation 4, for relations of iodized plate to light, \$300, transferred to this purpose.)	
1867.		Wolcott Gibbs. For repairing Meyerstein spectrom- eter belonging to the Academy. (Additional to	\$100
1869.	9.	5.)	
1870.	10.	of August, 1869 Benjamin Apthorp Gould. For photometric and spectroscopic apparatus for the Observatory at Cordova. (Apparatus subsequently purchased	300 500
1875.	11.	by the Argentine Government.)	500
1876.	12.	Henry A. Rowland. New determination of me-	000
		chanical equivalent of heat	600
	13.	Samuel P. Langley. Researches on radiant energy	600
1877.	14.	Benjamin O. Peirce, Jr. Investigation of the conduction of heat in the interior of bodies. (\$60.	200
	15	only, called for.)	200 520
1878.		Wolcott Gibbs, John Trowbridge, Edward C. Pickering. Experiments on photometry and polarimetry. (A small portion only of this appro-	520
	17.	priation was called for.)	500
		eclipse of July 29, 1878. (Appropriation not called for.)	300
	18.	Nathaniel S. Shaler. Investigation on loss of internal heat of earth in the neighborhood of	
		Boston. (Appropriation not called for.)	200
	19.	William W. Jacques. Experiments on the distribution of heat in the spectrum	100
	20.	Wolcott Gibbs, Edward C. Pickering, John Trowbridge. Determination of indices of refraction. (A small portion only of this appropriation was	100
1070	01	called for.)	500
1879.		John Trowbridge. Heat developed by magnetization and demagnitization of magnetic metals .	200
	22.	William W. Jacques. Radiation at high temperatures. (Additional to 19.)	200

	23. William A. Rogers. To procure a metric standard	
	of length	\$350
1880.		250
	25. Wolcott Gibbs. Construction of dynamo-electric	
	machine of a new plan	150
	26. Samuel P. Langley. Distribution of heat in diffrac-	
	tion spectrum. (Additional to 13.)	300
1882.	27. Edward C. Pickering. Stellar photography, with a	
	view of obtaining a method of estimating the	
	brightness of stars	500
	28. John Trowbridge. Thomson effect and allied sub-	
	iects	250
1883.	jects	
20001	appropriation	100
	30. Frank N. Cole. Experiments on Maxwell's theory	100
	of light	50
1884.	31. Rumford Committee. For purchase of Rowland	00
1001.		40
	grating	40
	52. William 11. Fickering. Experiments in photog-	200
	raphy	200
	R. Cross. Experiments on standard of light.	300
	34. Edward C. Pickering. Photometry. (Additional	300
		200
	to 27.)	200
	35. William A. Rogers. Production of constant tem-	100
	peratures	100
	36. John Trowbridge. Effect of changes of tempera-	100
1005	ture on magnetism	100
1885.	37. William A. Rogers. For Construction of constant	00
	temperature room. (Additional to 35.)	82
	38. Edward C. Pickering. Photometry. (Additional	200
	to 34.)	300
	39. William H. Pickering. Photography and new	
	standard of light. (Additional to 32.)	300
1886.	40. William H. Pickering. Observations of Solar	
	Corona, Eclipse of August, 1886	500
	41. Henry P. Bowditch. Calorimetric observations on	
	the heat of the human body. (\$100, only, called	
	for.)	500
	42. John Trowbridge. Standard of light. (Appropria-	
	tion subsequently transferred to another research,	
	viz., radiant energy, 44.)	250

	43.	Charles R. Cross. Thermo-electric effect in Munich	975
1887.	44	shunt method. (Appropriation not called for.) . John Trowbridge. Investigations on radiant	\$75
1001.	44.	energy. (Appropriation 42, for Standard of light, \$250, transferred to this purpose.)	
	45.	Charles R. Cross and Silas W. Holman. Ther-	
		mometry	250
	46.	Erasmus D. Leavitt, Jr. Investigations upon a	
		pyrometer. (Appropriation not called for.)	250
		John Trowbridge. Metallic spectra	250
1888.	48.	John Trowbridge. Metallic spectra. (Additional to 47.)	500
	49.	William H. Pickering. For observations on solar	
		eclipse of Jan., 1889	500
1889.	50.	Charles C. Hutchins. Investigation on lunar	
		radiation	250
	51.	Edwin H. Hall. Investigations on cylinder	
		temperature	100
		Henry A. Rowland. Metallic spectra	500
1890.	53.	Edwin H. Hall. Investigations on cylinder temperature. (Additional to 51.)	100
,	54.	Benjamin O. Peirce. Temperature changes in	
		interior of solids. (Appropriation not called for.)	200
1892.	55.	Daniel W. Shea. Velocity of light in magnetic	
		field	250
	56.	Benjamin O. Peirce. Propagation of heat within	
		certain solid bodies. (Reappropriation of 54.) .	200
	57.	Henry A. Rowland. Investigations on solar spec-	
1000	**	trum. (Additional to 52.)	250
1893.	58.	William A. Rogers. Investigation on the pulsation	175
		of thermometers	175
	59.	William H. Pickering. Observations in Arizona on transparency and steadiness of the air and on	
		the changes in temperature on the planet Mars.	
		(Appropriation not called for.)	500
1894.	60	Frank A. Laws. Thermal conductivity of metals.	300
1001.		Edward L. Nichols. Radiation from carbon at	000
	UI.	different temperatures	250
1895.	62.	Edwin H. Hall. Thermal conductivity of metals.	250
		Arthur G. Webster. Velocity of electric waves.	250
	64.	Benjamin O. Peirce. Thermal conductivities of	
		poor conductors. (Additional to 56.)	250

1896.	65.	effects of electric are	\$400
	66	Robert O. King. Thomson effect in metals	100
1897.		Arthur G. Webster. Velocity of light. (Appro-	100
1001.	01.	priation not called for.)	500
	68	George E. Hale. For the construction of spectro-	000
	00.		400
	69.	heliograph	250
	70	Arthur G. Webster and Robert R. Tatnall. The	200
	10.	Zeeman effect. (Appropriation not called for.)	100
1898.	71	Wallace C. Sabine. Researches on ultra-violet	100
1000.	41.		400
	72.	radiation	400
	12.	grating. (Echelon spectroscope.)	500
	73	Theodore W. Richards. For the construction of a	000
		microkinetoscope, to be applied to a study of the	
		birth and growth of crystals	200
1899.	74.	Wallace C. Sabine. Further researches on ultra-	200
1000.		violet wave-length. (Additional to 71.)	200
	75.	Henry Crew. Spectrum of the electric arc. (Ad-	
		ditional to 65.)	200
	76.	Arthur G. Webster. Distribution of energy in	
		various spectra studied by means of the Michel-	
		son interferometer and the radiometer. (Appro-	
		priation not called for.)	200
	77.	Edwin B. Frost. To aid in the construction of a	
		spectrograph especially designed for the measure-	
		ment of stellar velocities in the line of sight	500
1900.	78.	Edward C. Pickering. For constructing a new type	
		of photometer to be used in an investigation on the	
		brightness of faint stars, to be carried out by coöρ-	
		eration with certain observatories possessing large	
		telescopes. (Additional to 38.)	500
	79.	Theodore W. Richards. Transition temperatures	
		of crystallized salts	100
	80.	Arthur L. Clark. Molecular properties of vapors in	250
	01	the neighborhood of the critical point	250
	81.	Charles E. Mendenhall. Investigations on a	200
		hollow bolometer. (\$100 only, called for.)	200

	82.	George E. Hale. Application of the radiometer to the study of the infra-red spectrum of the chromo-	\$500
	83.	sphere	300
1901.	84.	Theodore W. Richards. Research on the expansion of gases	500
		Henry Crew. Order of appearance of the different lines of the spark spectrum. (Additional to 75.)	100
		Robert W. Wood. Anomalous dispersion of sodium vapor	350
		Arthur G. Webster. For purchase of fluorite plates	65
1902.	88.	Ernest F. Nichols. For the purchase of a spectrom- eter, in furtherance of a research on resonance in connection with heat radiations	200
	89.	Theodore W. Richards. For the construction of a mercurial compression pump to be used in a research on the Joule-Thomson effect. (Appro-	300
		priation subsequently transferred to another research, viz., the experimental study of chemical thermodynamics, 92.)	750
	90.		300
	91.	Ralph S. Minor. Dispersion and absorption of substances for ultra-violet radiation	150
1903.		Theodore W. Richards. Experimental study of chemical thermodynamics. (Appropriation 89 for compression pump, \$750, transferred to this purpose.)	
	93.	Sidney D. Townley. For the construction of a stellar photometer	100
	94.	Edwin B. Frost. For the construction of a special lens for use in connection with the stellar spectrograph of the Yerkes Observatory for the study of radial velocities of faint stars. (Additional to 77.)	200
	95.	Ernest F. Nichols and Gordon F. Hull. In aid of the investigation of the relative motion of the earth and the ether by the method of "Fizeau's	

		polarization experiment." (Appropriation transferred to another research, viz., effect of motion of earth on intensity of radiation, 98)	\$250
	96.	George E. Hale. For the purchase of a Rowland	Φ200
		concave diffraction grating to be used in the photographic study of the brighter stars	300
	97.	Edward C. Pickering. For the construction of two stellar photometers to be placed at the disposal of	
	98.	the Rumford Committee. (Additional to 78.) . Ernest F. Nichols and Gordon F. Hull. Effect of the motion of the earth on the intensity of radia-	150
		tion. (Appropriation 95 for Fizeau's polarization experiment, \$250, transferred to this purpose.)	
	99.	Frederic L. Bishop. Thermal conductivity of lead	75
	100.	Frederick A. Saunders. Characteristics of spectra produced under varying conditions	200
	101.	William J. Humphreys. Shift of spectrum lines due to pressure	300
	102.	Norton A. Kent. Circuit conditions influencing electric spark lines	250
	103.	Edward W. Morley. Nature and effects of ether drift	500
1904.	104.	John A. Dunne. Fluctuations in solar activity as evinced by changes in the difference between maximum and minimum temperatures	200
	105.	Carl Barus. Optical method of study of radio- actively produced condensation nuclei. (Ap- propriation not called for.)	200
	106.	Dewitt B. Brace. Double refraction in gases in an electrical field	200
	107.	Robert W. Wood. Optical and other physical properties of sodium vapor. (Additional to 86.)	350
	108.	Norton A. Kent. (Additional to 102.) Circuit conditions influencing electric spark lines	100
	109.	Arthur L. Clark. Molecular properties of vapors in the neighborhood of the critical point.	
1905.	110.	(Additional to 80.)	150
		an electrical field. (Additional to 106.)	200

	111.	Charles B. Thwing. Thermo-electric power of metals and alloys.	\$150
	112.	Harry W. Morse. Fluorescence	500
	113.	John Trowbridge. Electric double refraction of	000
		light	200
	114.	Edwin H. Hall. Thermal and thermo-electric properties of iron and other metals. (Addi-	200
	115	tional to 62.)	200
	116.	John A. Parkhurst. For the purchase of a Hart-	200
	110.	mann photometer	225
	117.	Charles B. Thwing. Thermo-electric power of metals. (Additional to 111.)	400
1906.	118.	Edwin H. Hall. Thermo-electric properties of	
		metals. (Additional to 114.)	100
	119.	Frederick E. Kester. Joule-Thomson effect in	
		gases	50
		Edwin H. Hall. Thermo-electric properties of metals. (Additional to 118.)	25
	121.	Sidney D. Townley. Appropriation of \$100 for a stellar photometer, 93, returned.	
	122.	Arthur A. Noyes. For the construction of a cal- orimeter for the determination of heats of reac-	
		tion at high temperatures. (Additional to 90.).	300
	123.	Robert W. Wood. For the purchase of quartz mercury lamps. (Additional to 107.)	200
	124.	Norton A. Kent. Spectral lines. (Additional to	
		108.)	75
		Leonard R. Ingersoll. Kerr effect in the infra- red rays	200
	126.	Frederick E. Kester. Thermal properties of gases	
		flowing through porous plug. (Additional to 119.)	315
1907.		Harry W. Morse. Fluorescence. (Additional to 112.)	400
	128.	Percy W. Bridgman. Optical and thermal prop- erties of bodies under extreme pressures	400
	129.	Percy W. Bridgman. Optical and thermal properties of bodies under extreme pressures. (Additional to 128.)	400
1908.	130.	Lawrence J. Henderson. New method for the	

		direct determination of physiological heats of reaction. (Balance of appropriation, \$100, re-	
		turned.)	\$200
	131.	Joel Stebbins. Use of selenium in photometry	100
		Willard J. Fisher. Viscosity of gases. (Balance	
		of appropriation, \$41, subsequently transferred	
		to Edward L. Nichols. See 175.)	100
	133.	Norton A. Kent. For the purchase of a set of	
	2001	echelon plates. (Additional to 124.)	400
	134.	Joel Stebbins. Use of selenium in stellar pho-	
		tometry. (Additional to 131.)	100
1909.	135.	William W. Campbell. For the purchase of a	
		Hartmann photometer to be used in the measure-	
		ment of polarigraphic images of the solar corona	250
	136.	Robert W. Wood. Optical properties of mercury	
		vapor. (Additional to 123.)	150
	137.	Martin A. Rosanoff. Fractional distillation of	
		binary mixtures	300
	138.	Charles E. Mendenhall. Free expansion of gases	300
		William W. Campbell. For the purchase of cer-	
		tain parts of a quartz spectrograph	300
	140.	Martin A. Rosanoff. Fractional distillation of	
		binary mixtures. (Additional to 137.)	200
		Leonard R. Ingersoll. Optical constants of metals	300
	142.	Joel Stebbins. Researches with the selenium	
		photometer. (Additional to 134.)	350
	143.	William W. Campbell. Polariscopic study of the	
		solar corona by means of a Hartmann photo-	
		meter. (Additional to 135.)	125
1910.	144.	Charles E. Mendenhall and Augustus Trowbridge.	
		Influence of ether drift upon the intensity of	
		radiation	250
	145.	Charles E. Mendenhall. Free expansion of gases.	0.50
	1.40	(Additional to 138.)	250
	146.	Frank W. Very. For the purchase of photo-	
		graphic glass plates of the spectrum by George	50
	1.47	Higgs	50
	147.	equilibrium of the system of materials employed	
		industrially in the carbide process for the fixa-	
		tion of atmospheric nitrogen	100
		tion of atmospheric introgen	100

	148.	Percy W. Bridgman. Thermal and optical properties of bodies under extreme pressures.	
1		(Additional to 129.)	\$400
	149.	Charles L. Norton. Thermal insulation	400
1911.	150.	Joel Stebbins. Researches with the selenium	
		photometer. (Additional to 142.)	200
	151.	Martin A. Rosanoff. Fractional distillation of	
		binary mixtures. (Additional to 140.)	300
	152.	Daniel F. Comstock. Possible effect of the mo-	
		tion of the source on the velocity of light	100
	153.	Gilbert N. Lewis. Free energy changes in chemi-	
		cal reactions	150
	154.	Robert W. Wood. Optical properties of vapors.	
		(Additional to 136.)	150
	155.	Daniel F. Comstock. Possible effect of the mo-	
		tion of the source on the velocity of light. (Ad-	150
	150	ditional to 152.)	150
	150.	Frank W. Very. Intensity of spectrum lines. (Additional to 146.)	150
	157	John Trowbridge. For research of Harvey C.	150
	107.	Hayes on thermo-electricity	300
	158	Robert W. Wood. Optical properties of vapors;	300
	100.	long heat-waves. (Additional to 154.)	150
	159	Arthur L. Clark. Physical properties of vapors	100
	100.	in the neighborhood of the critical point. (Ad-	
		ditional to 109.)	250
1912.	160.	Gilbert N. Lewis. Free energy changes in chemi-	
		cal reactions. (Additional to 153.)	250
	161.	Norton A. Kent. Purchase of a lens for magneto-	
		spectroscopic researches. (Additional to 133.)	375
	162.	Frederick A. Saunders. Spectroscopic studies in	
		the ultra-violet. (Additional to 100.)	100
	163.	William O. Sawtelle. Spectra of light from os-	
		cillatory discharge	250
	164.	George W. Ritchey. Construction of reflecting	
		telescope employing mirrors with new forms of	
1010		curves	500
1913.	165.		
		Roop on effect of temperature on the magnetic	050
	100	susceptibility of gases	250
	100.	Frederick G. Keyes. For payment of computa-	

		tion expenses of thermodynamic tables for am-	#200
	107	monia	\$500
	107.		
		national Tables of Constants (at the request of	100
	100	the Council) through Theodore W. Richards .	100
	168.	Gilbert N. Lewis. Free energy changes in chemi-	000
		cal reactions. (Additional to 160.)	300
	169.	William O. Sawtelle. Spectra of the light from spark in an oscillatory discharge. (Additional	
		to 163.)	300
		Harvey N. Davis. Thermodynamical researches	200
	171.	Louis V. King. To defray expenses of computa- tion for research on scattering and absorption of	
		solar radiation in the earth's atmosphere	250
1914.	172.	Alpheus W. Smith. Hall and Nernst effects in	
		the rare metals	100
	173.	Charles G. Abbot. Applications of solar heat to	
		domestic purposes	150
	174.	Percy W. Bridgman. Thermodynamical re-	
		searches at high pressures. (Additional to 148.)	250
	175.	Edward L. Nichols. Hall effect and allied phe-	
	1.0.	nomena in tellurium and selenium. (Balances of	
		132 and 165, \$282, transferred to this Research.)	
	176	Percy W. Bridgman. Thermal effects of high	
	1.0.	pressures. (Additional to 174.)	150
	177	Frederick A. Saunders. On the spectra of metal-	100
	111.	lic vapors. (Additional to 162.)	100
	178	Frederic Palmer, Jr. Properties of light of	100
	110.	extremely short wave-length	200
	170	Henry Crew. Specific heat of liquids	200
		Charles A. Kraus. Solutions in liquid ammonia;	200
	180.	for purchase of a refrigerating apparatus	300
	101		300
	181.	Herbert P. Hollnagel. Extreme infra-red spec-	300
7015	100	trum; for purchase of motor-generator	300
1915.	182.	Joel Stebbins. Research with improved photo-	
		electric-cell photometer upon variable stars.	4.40
		(Additional to 150.)	140
	183.	Farrington Daniels. Specific heats; for purchase	
		of calorimetric apparatus	330
	184.	Raymond T. Birge. Comparator for spectroscopic	
		researches	200

	185.	Percy W. Bridgman. Thermal phenomena at high pressures. (Additional to 176.)	\$400
	186.	Arthur L. Clark. Physical properties of vapors near critical point. (Additional to 159.)	300
	187.	Gilbert N. Lewis. Free energy. (Additional to 168.)	300
1916.	188.	Harrison M. Randall. Infra-red spectrum. (For salary of assistant.)	200
,	189.	Raymond T. Birge. For purchase of comparator. (Additional to 184.)	175
	190.	Louis V. King. Molecular constants of gases from 25° K to 1273° K. (Research discontinued, appropriation returned.)	250
	191.	Frederic Palmer, Jr. Light of extremely short wave length. (Additional to 178.)	100
	192.	Robert A. Millikan. Photo-electric properties of metals in extreme vacua	500
	193.	John A. Parkhurst. Photometric scale of stellar magnitudes	300
	194.	Everett T. King. Color of pigments	25
		Edward Kremers. Chemical action of light on organic compounds	300
1917.	196.	Floyd K. Richtmyer. Optical properties of thin	500
		films	400
	198.	Ancel St. John. Spectra of X-rays	200
		David L. Webster. Intensity of lines in X-ray spectra. (For payment of assistant.)	100
	200.	Frederic Palmer, Jr. Light of very short wave length. (Additional to 191.)	100
		Bartholomew J. Spence. Color intensity photom-	75
	202.	eter	150
	203.	Roswell C. Gibbs. Absorption of organic and other solutions for ultra-violet, visible and infra-red rays	500
	204.	Wesley M. Baldwin. Sensitization of animal tissues for X-rays by chemical means	125
	205.	Raymond T. Birge. Structure of series spectra. (Additional to 189.)	150

	206.	Ancel. St. John. For the purchase of refrigerat-	
		ing machine for research on crystal structure by	
		X-rays	\$500
	207.	In aid of Publication of Marie's Annual Inter-	
		national Tables of Constants, through Theodore	
		W. Richards. (Additional to 167.)	250
1918.	208.	Floyd K. Richtmyer. Optical properties of thin	
		films. (Additional to 196.)	500
	209.	Arthur L. Foley. Photography of phases of	
		electric discharge	150
	210.	Orin Tugman. Conductivity of thin metallic	
		films when exposed to ultra-violet light	100
	211.	Roswell C. Gibbs. Absorption of organic and	
		silver solutions for ultra-violet and infra-red	
		rays. (Additional to 203.)	250
	212.	Louis T. E. Thompson. Development of a gun-	
		sight for anti-aircraft guns	250
1919.	213.	Harrison M. Randall. Infra-red spectrum. (Ad-	
		ditional to 188.)	200
	214.	Alpheus W. Smith. Hall effect and allied phe-	
		nomena in rare metals and their alloys. (Addi-	
		tional to 172.)	100
	215.	In aid of publication of Marie's Annual Interna-	
		tional Tables of Constants, through Julius Stieg-	
		litz. (Additional to 207.)	250
	216.	Arthur G. Webster. Researches on pyrodynamics	
		and practical interior ballistics	500
	217.	Percy W. Bridgman. Effect of temperature and	
		pressure on physical properties of materials,	
		particularly thermal conductivity. (Addi-	
		tional to 185.)	400
	218.	Horace L. Howes. Effect of temperature on	
		luminescence and selective radiation of rare	=00
	010	earths	500
	219.	Frances G. Wick. Phosphorescence of hexag-	
		onite and fluorite, at ordinary and low tempera-	000
	000	tures	300
	220.	Robert W. Wood. Optical researches. (Addi-	250
	001	tional to 158.)	350
	221.	Frederick G. Keyes. Heats of neutralization at	200
		different temperatures. (Additional to 166.) .	300

CCCCERT	THEFT	
UMFORD	FUND.	

1920.	222.	Frederick A. Saunders. Spectral lines. (Additional to 177.)
	223.	David L. Webster. X-ray spectra. (Additional to 199.)
	224.	In aid of publication of Marie's Annual Interna- tional Tables of Constants, through Julius Stieglitz. (Additional to 215.)
	225.	Leonard R. Ingersoll. Polarizing effect of dif- fraction gratings
	226.	Harrison M. Randall. Structure of spectra, in infra-red. (Additional to 213.)
	227.	Arthur G. Webster. Pyrodynamics and interior ballistics. (Additional to 216.)
	228.	Norton A. Kent. Spectral lines. (Additional to 197.)
	229.	William W. Campbell. For the purchase of a special photographic lens. (Additional to 139.)
	230.	Horace L. Howes. Researches in luminescence. (Additional to 218.)
	231.	Percy W. Bridgman. Thermal and optical properties of bodies under high pressures. (Additional
		to 217)

LIST OF GRANTEES.

Abbot, C. G. 173 Baldwin, W. M. 204 Barus, C. 105 Birge, R. T. 184, 189, 205 Bishop, F. L. 99 Bowditch, H. P. 41 Brace, D. B. 106, 110 Bridgman, P. W. 128, 129, 148, 174, 176, 185, 217, 231 Campbell, W. W. 135, 139, 143, 229. Clark, A. L. 80, 109, 159, 186 Cole, F. N. 30 Comstock, D. F. 152, 155 Cooke, J. P. Jr. 6 Crew, H. 65, 75, 85, 179 Cross, C. R. 43; id., et al. 33, 45 Daniels, F. 183 Davis, H. N. 170 Dunne, J. A. 104 Fisher, W. G. 132 Foley, A. L. 209 Frost, E. B. 77, 94 Gibbs, R. C. 203, 211 Gibbs, W. 5, 8, 25, id., et al. 16, 20 Gould, B. A. 10 Hale, E. 2 Hale, G. E. 68, 82, 96 Hall, E. H. 51, 53, 62, 114, 118, 120 Haves, H. C. et al. 157 Henderson, L. J. 130 Hollnagel, H. P. 181 Holman, S. W. 24; id., et al. 45 Howes, H. L. 218, 230 Hull, G. T. et al. 95, 98 Humphreys, W. J. 101 Hutchins, C. C. 50 Ingersoll, L. R. 125, 141, 225 Jacques, W. W. 19, 22 Kent, N. A. 102, 108, 124, 133, 161, 197, 228 Kester, F. E. 119, 126

Keyes, F. G. 166, 221 King, E. T. 194. King, L. V. 171, 190 King, R. O. 66 Kraus, C. A. 180 Kremers, E. 195 Langley, S. P. 13, 26 Lamb, A. B. 115 Laws, F. A. 60 Leavitt, E. D. Jr. 46 Lewis, G. N. 153, 160, 168, 187 Marie's Tables 167, 207, 215, 224 Mendenhall, C. E. 81, 138, 145, id., et al. 144 Michelson, A. A. 72 Millikan, R. A. 192 Minor, R. A. 91 Morley, E. W. 103 Morse, H. W. 112, 127 Nichols, E. F. 88; id., et al. 95, 98 Nichols, E. L. 61, 175, id., et al. 165 Norton, C. L. 149 Noves, A. A. 83, 90, 122 Observatory at Cambridge 1 Palmer, F. Jr. 178, 191, 200 Parkhurst, J. A. 116, 193 Peirce, B. O. Jr. 14, 54, 56, 64 Pickering, E. C. 15, 27, 34, 38, 78, 97, id., et al. 16, 20, 33 Pickering, W. H. 32, 39, 40, 49, 59 Randall, H. M. 188, 213, 226 Richards, T. W. 73, 79, 84, 89, 92 Richtmyer, F. K. 196, 208 Ritchey, G. W. 164 Rogers, W. A. 23, 35, 37, 58 Rood, O. N. 4, 7 Roop, W. P. et al. 165 Rosanoff, M. A. 137, 140, 151 Rowland, H. A. 12, 52, 57 Rumford Committee, 31 Sabine, W. C. 71, 74

Saunders, F. A. 100, 162, 177, 222 Sawtelle, W. O. 163, 169 Shaler, N. S. 18 Shaw, P. 3. Shea, D. W. 55 Smith, A. W. 172, 214 Spence, B. J. 201, 202 St. John, A. 198, 206 Stebbins, J. 131, 134, 142, 150, 182 Tatnall, R. H. et al. 70 Thompson, L. T. E. 212 Thompson, M. deK. 147 Thwing, C. B. 111, 117

Townley, S. D. 93, 121

Trowbridge, A. et al. 144
Trowbridge, J. 11, 21, 28, 29, 36, 42, 44, 47, 48, 113; id., et al., 16, 20, 33, 157
Tugman, O. 210
Very, F. W. 146, 156
Webster, A. G. 63, 67, 69, 76, 87, 216, 227, id., et al. 70
Webster, D. L. 199, 223
Wick, F. G. 219
Winlock, J. 9
Wood, R. W. 86, 107, 123, 136, 154, 158, 220

Young, C. A. 17

