Publishing the 15th Italian Population and Housing Census in Linked Open Data

Monica Scannapieco, R. M. Aracri, S. De Francisci, A. Pagano, L. Tosco, L. Valentino

Istituto Nazionale di Statistica – Istat

NSIs & LOD

- NSIs produce data
 - Data dissemination is a fundamental phase
- Different models are adopted by NSIs to represent data:
 - DDI (Document Data Initiative) (1995)
 - Neuchâtel model (2004)
 - SDMX (Statistical Data and Metadata Exchange) (2004)
 - GSIM (Generic Statistical Information Model) (2013)
- Need to broaden the dissemination to non-statistical users

- Data dissemination in LOD format!
- Among NSIs who published data in LOD format: Istat (Italy), INSEE (France), ABS (Australia), EL.Stat (Greece), CSO (Ireland)

Istat SDMX-based Data Dissemination - 1

Istat LOD-based Dissemination - 2

The CensLOD Project: Main Phases & Workflow

The project consists of three main phases:

- Domain analysis and Ontology definition
- Triples generation
- 3. LOD publishing

Phase 1: Domain Analysis

- Territory dataset :describing the Italian territorial features from both administrative and geographical perspectives
- Censpop dataset: describing the population and housing Census indicators, at the territorial level of Census section
 - Published in the past as CSV files or as XLS files (http://www.istat.it/it/archivio/104317)

COD_PRO	COD_COM	PRO_COM	SEZ2001	SEZIONE	P1	P2	P3	P4	P5	P6	P7
5	5 1	5001	50010000005	5	9	6	3	3	4	0	2
5	5 5	5005	50050000343	343	34	17	17	12	15	2	5
5	5 118	5118	51180000013	13	13	7	6	5	5	1	1
5	120	5120	51200000001	1	292	141	151	104	133	7	45
5	121	5121	51210000037	37	23	11	12	10	8	0	4

Data size

- √ 402.903 Census Sections
- √ 74.482 Localities
- √ 2.200 Census Areas
- √ 3.631 Geomorphological entities
- ✓ And others classes ...

- √ 43 indicators for each entity (currently loaded):
 - ✓ Resident Population Males
 - ✓ Resident Population age > 74 years
 - ✓ Foreigners and stateless persons resident in Italy – Males
 - **√** ...

Phase 1: Ontologies Definition

- Two distinct Ontologies:
 - Territorial Ontology
 - Census Data Ontology (population & housing)
- OWL Ontologies
- Use of Meta Ontologies:
 - SKOS and XKOS: skos:Concept, ...
 - ADMS: adms:AssetRepository, ...
 - Data Cube Vocabulary: qb:DataSet, qb:Observation, ...
 - PROV: prov:wasGeneratedBy, ...
 - GeoNames: gn:name, gn:countryCode, gn:parentCountry, ...

Territorial Ontology

- Description of principal classes of the domain:
 - 95 entities
 - Regions
 - Province
 - Locations
 -
 - 200 roles:
 - appartiene ACDDASC

 (links municipality with its sub-municipalities components)
 - equivalentTo (links entity with the relative Geonames entity)
 -

Census Data Ontology

- Use of RDF Data Cube Vocabulary that allows to publish multi-dimensional data
- Dimensions:
 - Sex
 - Age classes
 - Citizenship
 - Territory (territory defined in the Territorial Ontology)
 - Construction Period
 - Number of floors
 - •
- Measures:
 - Number of residents
 - Foreigners and stateless resident in Italy
 - Number of Housing
 -

Dimensions: Sex Age Marital status Dimensions: Construct period Intended use Number of floors

Measure Resident Population Measure Number of dwellings

Certifying Istat Data

- Istat data are the results of established methodological procedures:
 - Official Statistics has a precise meaning in terms of quality and trust of the statistical information product

- We used the W3C PROV Ontology as a structured description of the provenance of the data
 - Where data come from
 - Official data sources according to European and National regulation
 - Domain standard conformance (e.g., variant and version of a statistical classification)
 - ...

- Triples generation by mapping CSV source file into triples using R2RML language (http://www.w3.org/TR/r2rml/)
 - Mapping rules manually written

Mapping Example

```
Example R2RML mapping
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix ex: <a href="http://example.com/ns#">http://example.com/ns#>.
@prefix ter: <http://rdf.istat.it/ter/> .
<#TriplesMapZonaInContestazione>
  rr:logicalTable [ rr:tableName "ZONE IN CONTESTAZIONE" ];
  rr:subjectMap [
     rr:template "http://dati.istat.it/ter/ZonainContestazione/{COD_ZONA_C}";
     rr:class ter:ZonaInContestazione:
                    rr:class ter:AreaSpeciale;
  rr:predicateObjectMap [
     rr:predicate ter:contestatoDa;
     rr:objectMap [ rr:column "PRO COM" ];
rr:predicateObjectMap [
     rr:predicate ter:nomeAreaSpeciale:
     rr:objectMap [ rr:column "NOME AS" ];
```

Mapping rules to obtain all the contested zones showing two properties:

- nomeAreaSpeciale
- contestatoDa

Mapping result

Contested zone #5, named 'Regione Folla', that is a AreaSpeciale and is contested between two municipalities identified by '96001' and '2066'

Result (Turtle)

<http://dati.istat.it/ter/ZonainContestazione/5>
 a ter:ZonalnContestazione ,
ter:AreaSpeciale ;
 ter:contestatoDa "96001" , "2066" ;
 ter:nomeAreaSpeciale "Regione Folla" .

OWL2 Profiles syntactic subsets of OWL 2 - each is more restrictive than OWL DL

- OWL 2 EL
 - polynomial time algorithms
 - particularly suitable for applications
 - very large ontologies are needed
 - expressive power can be traded for performance guarantees
- OWL 2 QL
 - conjunctive queries to be answered in LogSpace (more precisely, AC0) using standard relational database technology
 - particularly suitable for applications
 - relatively lightweight ontologies are used to organize large numbers of individuals
 - it is useful or necessary to access the data directly via relational queries (e.g., SQL)
- OWL 2 RL
 - implementation of polynomial time reasoning algorithms using rule-extended database technologies operating directly on RDF triples
 - particularly suitable for applications
 - relatively lightweight ontologies are used to organize large numbers of individuals
 - it is useful or necessary to operate directly on data in the form of RDF triples

Usage of Oracle Spatial and Graph

Vocabularies & rulebase (for inferencing) supported

OWL with IF Semantic [1]

1. RDF++

- -all RDFS vocabulary constructs
- -owl:InverseFunctionalProperty
- -owl:sameAs

2. OWLSIF

- -all RDFS vocabulary constructs
- -owl:InverseFunctionalProperty
- -owl:TransitiveProperty
- -owl:inverseOf
- -owl:equivalentProperty

Supported semantics for

-owl:someValuesFrom

- -owl:FunctionalProperty
- -owl:SymmetricProperty -owl:sameAs
- -owl:equivalentClass
 - -owl:hasValue
- -owl:allValuesFrom

3. OWL Prime

- -rdfs:subClassOf -rdfs:subPropertyOf
- -rdfs:domain -rdfs:range
- -owl:FunctionalProperty -owl:InverseFunctionalProperty
- -owl:SymmetricProperty -owl:TransitiveProperty
- -owl:sameAs owl:inverseOf
- -owl:equivalentClass -owl:hasValue -owl:someValuesFrom -owl:allValuesFrom -owl:differentFrom
- -owl:disjointWith -owl:complementOf

these value restrictions are only intensional (IF semantics).

4. OWL 2RL & 5. OWL2 EL

As described in

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL http://www.w3.org/TR/owl2-profiles/#OWL_2_EL

[1] Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary, by H.J. Horst, Journal of Web Semantics 3, 2 (2005), 79–115

Inference rulebase chosen

OWLSIF 2. OWLSIF -all RDFS vocabulary constructs -owl:FunctionalProperty -owl:InverseFunctionalProperty -owl:SymmetricProperty -owl:TransitiveProperty -owl:sameAs OWL with IF -owl:inverseOf -owl:equivalentClass Semantic -owl:hasValue -owl:equivalentProperty -owl:someValuesFrom -owl:allValuesFrom

Optimizations applied

- Triples materialization
 - Considerable reduction of response time
- Definition of "ad hoc" inference rules
- Storage of frequent queries

Phase 3: LOD Publishing

Three access points to cover the requirements of the different possible users:

- SPARQL endpoint
 - Advanced users
 - Machine-to-machine communications
- Linked Data Interface (Faceted/Graph browser)
 - Basic users
- Ad-hoc GUI for datasets downloading
 - Basic users

Technological Environment

Performances

Concluding Remarks

- Cens-LOD is the first production process that deploys Istat data on an Istat SPARQL Endpoint
 - 2014: Publication of CensPop and Territory
 - 2015: Addresses
- LOD-based data dissemination will allow:
 - Machine-to-machine data provisioning by Istat (currently only SDMX datasets)
 - Widening the range of Istat data users
 - Improving efficiency of data exchange flows with Italian administrations

 ...and much more ©: like having the knowledge «Eaten»

By Mark Johnstone