بهينهسازي محدب

نيمسال دوم ۱۴۰۳-۱۴۰۲

مدرس: دكتر امير نجفي

دانشکدهی مهندسی کامپیوتر

تمرین سوم

مسئلهی ۱. کرنلهای PDS (۱۵ نمره)

برای کرنل های زیر اثبات کنید خاصیت PDS را دارند یا خیر.

- $\mathcal{X} = (-1,1)$ به ازای $K(x,y) = \frac{1}{1-xy}$ •
- $\mathcal{X} = \mathbb{R}_+$ به ازای $K(x,y) = \log(1 + xy)$
 - $\mathcal{X} = \mathbb{R}$ به ازای $K(x,y) = \cos(x+y)$ •
 - $\mathcal{X} = \mathbb{R}_+$ به ازای $K(x,y) = \min(x,y)$ •

مسئلهی ۲. توابع کرنل (۱۰ نمره)

فرض کنید \mathcal{X} فضای نمونه، \mathcal{H} فضای هیلبرت و $\mathcal{X} \to \mathcal{H}$ یک نگاشت باشد. تابع \mathbb{R} و انیز تابع کرنل این فضای هیلبرت در نظر بگیرید.

نقاط آموزشی داده شده $S=\{(x_1,y_1),\ldots,(x_m,y_m)\}$ را در نظر بگیرید و فضای برچسبها را به صورت $y_i\in\{+1,-1\}$ فرض کنید. نقطه ی $y_i\in\{+1,-1\}$

$$c_y = \frac{1}{m_y} \sum_{i:y_i = y} \Phi(x_i)$$

که در آن $|\{i:y_i=y\}|$. فرض کنید m_{-1},m_{-1} هر دو ناصفر باشند. الگوریتم زیر را در نظر بگیرید:

$$h(x) = \begin{cases} +1 & \|\Phi(x) - c_+\| \leqslant \|\Phi(x) - c_-\| \\ -1 & \text{otherwise} \end{cases}$$

دهيد: $b = \frac{1}{7} (\|c_-\|^7 - \|c_+\|^7)$ و $\mathbf{w} = c_+ - c_-$ نشان دهيد: .١

$$h(x) = sign(\langle \mathbf{w}, \Phi(x) \rangle + b).$$

۲. روشی برای محاسبه یh(x) بر مبنای تابع کرنل ارائه دهید.

مسئلهی ۳. کوواریانس در RKHS (۱۰ نمره)

کوواریانس میان دو متغیر $X=(y_1,y_7,\ldots,y_n)\in\mathbb{R}^n$ و $Y=(x_1,x_7,\ldots,x_n)\in\mathbb{R}^n$ را به صورت زیر تعریف میکنیم:

$$cov_n(X,Y) = E_n(XY) - E_n(X)E_n(Y),$$

که $E_n(U) = \frac{(\sum_{i=1}^n u_i)}{n}$ که $E_n(U) = E_n(U)$. کوواریانس برای تشخیص روابط خطی میان دو متغیر X و Y مورد استفاده قرار میگیرد. برای گسترش آن جهت یافتن روابط غیرخطی میان X و Y، معیار زیر را تعریف میکنیم:

$$C_n^K(X,Y) = \max_{f,g \in \mathcal{B}_K} \text{cov}_n(f(X), g(Y)),$$

در رابطه ی بالا K یک کرنل مثبت معین روی $\mathbb R$ و $\mathbb R$ توپ واحد از RKHS کرنل K است. همچنین f(U) در رابطه ی بالا K یک کرنل مثبت معین روی $\mathbb R$ و $\mathbb R$ برای بردار $f(U)=(f(u_1),f(u_1),\ldots,f(u_n))$ به شکل $f(U)=(f(u_1),f(u_2),\ldots,f(u_n))$ برای بردار $\mathbb R$

- را به ازای کرنل K(a,b)=ab بنویسید. $C_n^K(X,Y)$.۱
- ۲. به ازای یک کرنل نوعی X ، $C_n^K(X,Y)$ را بر حسب ماتریسهای گرام X و Y بیان کنید.

مسئلهی ۴. تشخیص کرنلها (۱۰ نمره)

• بخش ١

فضای احتمال $(\Omega, \mathcal{F}, \mathbb{P})$ را در نظر بگیرید. نشان دهید که تابع زیر که روی $\mathcal{F} \times \mathcal{F}$ تعریف شده، یک کرنل PDS است.

$$K(A, B) = \mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)$$

• بخش ٢

را یک مجموعه ی متناهی در نظر بگیرید. نشان دهید که تابع زیر که P(A) در آن مجموعه توانی مجموعه ی S است، یک کرنل PSD است.

$$\begin{cases} K: P(S) \times P(S) \to \mathbb{R} \\ K(A, B) = \mathbf{Y}^{|A \cap B|} \end{cases}$$

• بحش ۳

تابع زیر را روی $\mathbb{R}^n \times \mathbb{R}^n$ در نظر بگیرید. قصد داریم PDS بودن این کرنل را نشان دهیم.

$$K_{\alpha}(\mathbf{x}, \mathbf{x}') = \sum_{k=1}^{N} \min(|x_k|^{\alpha}, |x_k'|^{\alpha})$$

Gram matrices\

- ۱. با توجه به تعریف ضرب داخلی $\int_{t=-\infty}^{\infty}f(t)g(t)\,dt$ روی فضای توابع اندازهپذیر، نشان $\min(x,x')$ دهید که $\min(x,x')$ یک کرنل PDS است.
- ۲. به کمک بخش قبل، ابتدا نشان دهید که K_1 یک کرنل PDS است. سپس همین نتیجه را به صورت مشابه برای یک α دلخواه نیز به دست آورید.