

## 262,144-color, 240RGB x 320 dot graphics liquid crystal controller driver for Amorphous-Silicon TFT Panel

REJxxxxxxx-xxxx Rev.1.03a 22 December 2005

| Description6                                                                                                                                        |                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Features 7                                                                                                                                          |                                                |
| Power Supply Specifications                                                                                                                         |                                                |
| Block Diagram9                                                                                                                                      |                                                |
| Block Function                                                                                                                                      | )<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 10. Internal Logic Power Supply Regulator                                                                                                           |                                                |
| PAD Arrangement                                                                                                                                     | 8                                              |
| PAD Coordinates                                                                                                                                     |                                                |
| Connection Example 3                                                                                                                                | 5                                              |
| GRAM Address Map                                                                                                                                    | 6                                              |
| Instruction       3.         Outline       38         Instruction Data Format       38         Index (IR)       39         Display Control       39 | 8                                              |

| Device Code Read (R00h)                                                                    | 39  |
|--------------------------------------------------------------------------------------------|-----|
| Driver Output Control (R01h)                                                               | 40  |
| LCD Driving Wave Control (R02h)                                                            | 40  |
| Entry Mode (R03h)                                                                          | 41  |
| Resizing Control (R04h)                                                                    | 44  |
| Display Control 1 (R07h)                                                                   | 45  |
| Display Control 2 (R08h)                                                                   | 47  |
| Note on Setting BP and FP                                                                  | 47  |
| Display Control 3 (R09h)                                                                   | 48  |
| Display Control 4 (ROAh)                                                                   | 50  |
| External Display Interface Control 1 (R0Ch)                                                |     |
| Frame Marker Position (R0Dh)                                                               |     |
| External Display Interface Control 2 (R0Fh)                                                |     |
| Power Control                                                                              |     |
| Power Control 1 (R10h)                                                                     | 54  |
| Power Control 2 (R11h)                                                                     |     |
| Power Control 3 (R12h)                                                                     |     |
| Power Control 4 (R13h)                                                                     |     |
| Power Control 5 (R15h)                                                                     |     |
| Power Control 6 (R17h)                                                                     |     |
| RAM Access Instruction                                                                     |     |
| RAM Address Set (Horizontal Address) (R20h) RAM Address Set (Vertical Address) (R21h)      |     |
| RAM Data Write (R22h)                                                                      |     |
| RAM Data Read (R22h)                                                                       |     |
| VCOM Potential Setting                                                                     |     |
| Power Control 7 (R29h)                                                                     |     |
| γControl                                                                                   |     |
| γ Control 1 ~ 14 (R30h to R3Dh)                                                            |     |
| Window Address Control Instruction                                                         |     |
| Window Horizontal RAM Address Start/End (R50h/R51h)                                        |     |
| Window Vertical RAM Address Start/End (R52h/R53h)                                          |     |
| Base Image Display Control Instruction                                                     |     |
| Driver Output Control (R60h)                                                               |     |
| Base Image Display Control (R61h)                                                          |     |
| Vertical Scroll Control (R6Ah)                                                             |     |
| Partial Display Control Instruction                                                        | 72  |
| Partial Image 1: Display Position (R80h), RAM Address (Start/End Line Address) (R81h/R82h) |     |
| Partial Image 2: Display Position (R83h), RAM Address (Start/End Line Address) (R84h/R85h) |     |
| Panel Interface Control Instruction                                                        |     |
| Panel Interface Control 1(R90h)                                                            |     |
| Panel Interface Control 2(R92h)                                                            |     |
| Panel Interface Control 3(R93h)                                                            |     |
|                                                                                            |     |
| Panel Interface Control 4(R95h)                                                            |     |
| Panel Interface Control 5(R97h)                                                            |     |
| Panel Interface Control 6(R98h)<br>Oscillation Control Instruction                         |     |
| Oscillation Control (RA4h)                                                                 |     |
| UNCHUMUM UNITOH (RA4N)                                                                     | / / |

| Instruction List                                                        | 79  |
|-------------------------------------------------------------------------|-----|
| Reset Function                                                          | 80  |
|                                                                         |     |
| Basic Mode Operation of the R61505                                      | 82  |
| Interface and Data Format                                               | 83  |
| System Interface                                                        | 86  |
| 80-System 18-Bit Bus Interface                                          | 87  |
| 80-System 16-Bit Bus Interface                                          |     |
| Data Transfer Synchronization in 16-Bit Bus Interface Operation         |     |
| 80-System 9-bit Bus Interface                                           |     |
| Data Transfer Synchronization in 9-Bit Bus Interface Operation          |     |
| 80-System 8-Bit Bus Interface                                           |     |
| Data Transfer Synchronization in 8-Bit Bus Interface Operation          | 95  |
| Serial Interface                                                        |     |
| VSYNC Interface                                                         | 99  |
| Notes on VSYNC Interface Operation                                      |     |
| External Display Interface                                              | 103 |
| RGB Interface                                                           |     |
| Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals                  |     |
| RGB Interface Timing                                                    |     |
| 16-/18-Bit RGB Interface Timing                                         |     |
| 6-Bit RGB Interface Timing                                              |     |
| RAM Access via System Interface in RGB Interface Operation              |     |
| 6-Bit RGB Interface                                                     |     |
| Data Transfer Synchronization in 6-Bit Bus Interface Operation          |     |
| 16-Bit RGB interface                                                    |     |
| 18-Bit RGB interface                                                    |     |
| Notes on External Display Interface Operation                           |     |
| RAM Address and Display Position on the Panel                           | 114 |
| Restrictions in Setting Display Control Instruction                     |     |
| Instruction Setting Example                                             |     |
| Designing Eurotion                                                      | 110 |
| Resizing Function                                                       |     |
| Resizing Setting                                                        |     |
| Example of 1/2 Resizing                                                 |     |
| Resizing Instruction                                                    |     |
| Notes on Resizing Function                                              | 122 |
| FMARK Function                                                          | 123 |
| Example of FMP Setting                                                  | 124 |
| Display Operation Synchronous Data Transfer Using FMARK                 | 125 |
| Notes on Display Operation Synchronous Data Transfer Using FMARK Signal | 127 |

| High-Speed RAM Write Function                                                                                                                                   | 128 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Notes on High-Speed RAM Write Function                                                                                                                          |     |
| High-Speed RAM Data Write in a Window Address Area                                                                                                              |     |
| Window Address Function                                                                                                                                         | 131 |
| Scan Mode Setting                                                                                                                                               | 132 |
| 8-Color Display Mode                                                                                                                                            | 133 |
| Line Inversion AC Drive                                                                                                                                         |     |
| Frame-Frequency Adjustment Function                                                                                                                             | 136 |
| Relationship between Liquid Crystal Drive Duty and Frame Frequency                                                                                              | 136 |
| Partial Display Function                                                                                                                                        | 137 |
| Liquid Crystal Panel Interface Timing                                                                                                                           | 138 |
| Internal Clock OperationRGB Interface Operation                                                                                                                 |     |
| Oscillator                                                                                                                                                      | 140 |
| γ Correction Function<br>γCorrection Registers<br>γCorrection Register Settings and γCurve Relationship                                                         | 141 |
| Power-Supply Generating Circuit  Power Supply Circuit Connection Example 1 (Vci1 = VciOUT)  Power Supply Circuit Connection Example 2 (Vci1 = Vci Direct Input) | 144 |
| Specifications of Power-supply Circuit External Elements                                                                                                        | 146 |
| Voltage Setting Pattern Diagram  Liquid Crystal Application Voltage Waveform and Electrical Potential                                                           |     |
| Power Supply Instruction Setting                                                                                                                                | 149 |
| Instruction Setting                                                                                                                                             | 150 |
| Display ON/OFF Sequences                                                                                                                                        | 150 |
| Sleep Mode SET/EXIT Sequences                                                                                                                                   | 151 |
| Deep Standby Mode IN/EXIT Sequences                                                                                                                             | 152 |
| 8-Color Mode Setting                                                                                                                                            | 153 |
| Partial Display Setting                                                                                                                                         | 153 |
| Absolute Maximum Ratings                                                                                                                                        | 154 |

| Electrical Characteristics                                     | 155 |
|----------------------------------------------------------------|-----|
| DC Characteristics                                             | 155 |
| Step-Up Circuit Characteristics                                | 157 |
| AC Characteristics                                             | 157 |
| 80-System Bus Interface Timing Characteristics (18/16-bit I/F) | 158 |
| 80-System Bus Interface Timing Characteristics (8-bit I/F)     | 159 |
| Serial interface Timing Characteristics                        | 160 |
| Reset Timing Characteristics                                   | 160 |
| RGB Interface Timing Characteristics                           | 161 |
| LCD Driver Output Characteristics                              | 162 |
| Notes to Electrical Characteristics                            | 163 |
| Test Circuits                                                  | 168 |
| Timing Characteristics                                         | 169 |
| 80-System Bus Interface                                        | 169 |
| Clock Synchronous Serial Interface                             | 170 |
| Reset Operation                                                | 170 |
| RGB Interface                                                  | 171 |
| LCD Driver and Vcom Outputs                                    | 171 |

#### **Description**

The R61505 is a one-chip liquid crystal controller driver LSI for a-Si TFT panel, comprising RAM for a maximum 240 RGB x 320 dot graphics display, source driver, gate driver and power supply circuit. For the efficiency of data transfer, the R61505 supports high-speed interface via 8-/9-/16-/18-bit ports as system interface to microcomputer and high-speed RAM write function. As moving picture interface, the R61505 supports RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0).

Also, the R61505 incorporates step-up circuit and voltage follower circuit to generate TFT liquid crystal panel drive voltages.

The R61505's power management functions such as 8-color display and deep standby and so on make this LSI an ideal driver for the medium or small sized portable products with color display system such as digital cellular phones or small PDAs, where long battery life is a major concern.

#### **Features**

- A one-chip controller driver incorporating a gate circuit and a power supply circuit for a maximum 240RGB x 320dots graphics display on amorphous TFT panel in 262k colors
- System interface
  - High-speed interfaces via 8-, 9-, 16-, 18-bit parallel ports
  - Clock synchronous serial interface
- Moving picture display interface
  - 6-, 16-, 18-bit RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0)
  - VSYNC interface (System interface + VSYNC)
  - FMARK interface (System interface + FMARK)
- High-speed RAM write function
- Window address function to specify a rectangular area in the internal RAM to write data
- Write data within a rectangular area in the internal RAM via moving picture interface
- Reduce data transfer by specifying the area in the RAM to rewrite data
- Enable displaying the data in the still picture RAM area with a moving picture simultaneously
- Resizing function (x 1/2, x 1/4)
- Abundant color display and drawing functions
  - Programmable γ-correction function for 262k-color display
  - Partial display function
- Low-power consumption architecture (allowing direct input of interface I/O power supply)
  - Deep standby function
  - 8-color display function
  - Input power supply voltages:  $Vcc = 2.5V \sim 3.3 \text{ V}$  (logic regulator power supply)

$$IOVcc = 1.65V \sim 3.3 V$$
 (interface I/O power supply)

 $Vci = 2.5V \sim 3.3 \text{ V}$  (liquid crystal analog circuit power supply)

- Incorporates a liquid crystal drive power supply circuit
  - Source driver liquid crystal drive/Vcom power supply: DDVDH-GND =  $4.5V \sim 6.0 V$

$$VCI\text{-}GND = -1.9V \sim -3.0V$$

- Gate drive power supply: VGH-GND =  $10.0V \sim 15.0 V$ 

$$VGL\text{-}GND = -4.5V \sim -12.5V$$

$$VGH\text{-}VGL \leq 25V$$

Vcom drive (Vcom power supply): VcomH = 3.0V ~ (DDVDH-0.5)V

$$VcomL = (VCL+0.5)V \sim 0V$$

VcomH-VcomL amplitude = 6.0V (max.)

- Liquid crystal power supply startup sequencer
- TFT storage capacitance: Cst only (common Vcom formula)
- 172,800-byte internal RAM
- Internal 720-channel source driver and 320-channel gate driver
- One-chip solution for COG module with the arrangement of gate circuits on both sides of the glass substrate

## **Power Supply Specifications**

Table 1

| No. | Item                                                 |                                                                                  | R61505                                                                                                             |
|-----|------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1   | TFT data lines                                       |                                                                                  | 720 output                                                                                                         |
| 2   | TFT gate lines                                       |                                                                                  | 320 output                                                                                                         |
| 3   | TFT display sto                                      | orage capacitance                                                                | Cst only (Common Vcom formula)                                                                                     |
| 4   | Liquid crystal                                       | S1~S720                                                                          | V0 ~ V31 grayscales                                                                                                |
|     | drive output                                         | G1~320                                                                           | VGH-VGL                                                                                                            |
|     |                                                      | Vcom                                                                             | Change VcomH-VcomL amplitude with electronic volume                                                                |
|     |                                                      |                                                                                  | Change VcomH with either electronic volume or from VcomR                                                           |
| 5   | Input voltage                                        | IOVcc                                                                            | 1.65V ~ 3.30V                                                                                                      |
|     |                                                      | (interface voltage)                                                              | Power supply to IM0/ID, IM1-3, RESET*, DB17-0, RD*, SDI, SDO, WR/SCL, RS, CS*, VSYNC, HSYNC, DOTCLK, ENABLE, FMARK |
|     |                                                      | Connect to Vcc and Vci on the FPC when the electrical potentials are the same.   |                                                                                                                    |
|     |                                                      | Vcc                                                                              | 2.50V ~ 3.30V                                                                                                      |
|     | (logic regulator power supply) <sup>see Note 1</sup> | Connect to IOVcc and Vci on the FPC when the electrical potentials are the same. |                                                                                                                    |
|     |                                                      | Vci                                                                              | 2.50V ~ 3.30V                                                                                                      |
|     |                                                      | (liquid crystal drive power supply voltage)                                      | Connect to IOVcc and Vcc on the FPC when the electrical potentials are the same.                                   |
| 6   | Liquid crystal                                       | DDVDH                                                                            | 4.5V ~ 6.0V                                                                                                        |
|     | drive<br>voltages                                    | VGH                                                                              | 10.0V ~ 15.0V                                                                                                      |
|     | voltages                                             | VGL                                                                              | -4.5V ~ -12.5V                                                                                                     |
|     |                                                      | VGH-VGL                                                                          | Max. 25V                                                                                                           |
|     |                                                      | VCL                                                                              | -1.9V ~ -3.0V                                                                                                      |
|     |                                                      | VCI-VCL                                                                          | Max. 6.0V                                                                                                          |
| 6   | 6 Internal                                           | VLOUT1 (DDVDH)                                                                   | Vci1 x 2, x 3                                                                                                      |
|     | step-up<br>circuits                                  | VLOUT2 (VGH)                                                                     | Vci1 x 6, x 7, x 8                                                                                                 |
|     | Sil odito                                            | VLOUT3 (VGL)                                                                     | Vci1 x -3, x -4, x -5                                                                                              |
|     |                                                      | VCL                                                                              | Vci1 x -1                                                                                                          |

Note: When using the internal logic regulator circuit.

## **Block Diagram**



Figure 1

#### **Block Function**

#### 1. System Interface

The R61505 supports 80-system high-speed interface via 8-, 9-, 16-, 18-bit parallel ports and a clock synchronous serial interface. The interface is selected by setting the IM3-0 pins.

The R61505 has a 16-bit index register (IR), an 18-bit write-data register (WDR), and an 18-bit read-data register (RDR). The IR is the register to store index information from control register and internal GRAM. The WDR is the register to temporarily store data to be written to control register and internal GRAM. The RDR is the register to temporarily store the data read from the GRAM. The data from the MPU to be written to the internal GRAM is first written to the WDR and then automatically written to the internal GRAM in internal operation. The data is read via RDR from the internal GRAM. Therefore, invalid data is sent to the data bus when the R61505 performs the first read operation from the internal GRAM. Valid data is read out when the R61505 performs the second and subsequent read operation.

The instruction execution time except that of starting oscillation takes 0 clock cycle to allow writing instructions consecutively.

 Table 2
 Register Selection (80-system 8/9/16/18-bit Parallel Interface)

| WR* | RD* | RS | Function                                            |
|-----|-----|----|-----------------------------------------------------|
| 0   | 1   | 0  | Write index to IR                                   |
| 1   | 0   | 0  | Setting disabled                                    |
| 0   | 1   | 1  | Write to control registers or internal GRAM via WDR |
| 1   | 0   | 1  | Read from internal GRAM via RDR                     |

 Table 3
 Register Selection (Serial Interface)

#### **Start Byte**

| R/W | RS | Function                                            |
|-----|----|-----------------------------------------------------|
| 0   | 0  | Write index to IR                                   |
| 1   | 0  | Setting disabled                                    |
| 0   | 1  | Write to control registers or internal GRAM via WDR |
| 1   | 1  | Read from internal GRAM via RDR                     |

Table 4

| IM3 | IM2 | IM1 | IMO | System Interface                           | DB Pins         | RAM Write Data                                                                                                  | Instruction Write<br>Transfer             |
|-----|-----|-----|-----|--------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 0   | 0   | 0   | 0   | Setting disabled                           | -               | -                                                                                                               | -                                         |
| 0   | 0   | 0   | 1   | Setting disabled                           | -               | -                                                                                                               | -                                         |
| 0   | 0   | 1   | 0   | bu-system 10-bit DB8-1 2 transfers (1st: 2 |                 | Single transfer (16 bits)<br>2 transfers (1st: 2 bits, 2nd: 16 bits)<br>2 transfers (1st: 16 bits, 2nd: 2 bits) | Single transfer<br>(16 bits )             |
| 0   | 0   | 1   | 1   |                                            |                 | 2 transfers<br>(1st: 8 bits, 2nd: 8 bits)                                                                       |                                           |
| 0   | 1   | 0   | *   | Clock synchronous serial interface         | -<br>(SDI, SDO) | 2 transfers (1st: 8 bits, 2nd: 8 bits)                                                                          | 2 transfers<br>(1st: 8 bits, 2nd: 8 bits) |
| 0   | 1   | 1   | 0   | Setting disabled                           | -               | -                                                                                                               | -                                         |
| 0   | 1   | 1   | 1   | Setting disabled                           | -               | -                                                                                                               | -                                         |
| 1   | 0   | 0   | 0   | Setting disabled                           | -               | -                                                                                                               | -                                         |
| 1   | 0   | 0   | 1   | Setting disabled                           | -               | -                                                                                                               | -                                         |
| 1   | 0   | 1   | 0   | 80-system 18-bit interface                 | DB17-0          | Single transfer (18 bits)                                                                                       | Single transfer (16 bits)                 |
| 1   | 0   | 1   | 1   | 80-system 9-bit interface                  | DB17-9          | 2 transfers (1st: 9 bits, 2nd: 9 bits)                                                                          | 2 transfers<br>(1st: 8 bits, 2nd: 8 bits) |
| 1   | 1   | *   | *   | Setting disabled                           |                 | -                                                                                                               | -                                         |

#### 2. External Display Interface (RGB, VSYNC Interfaces)

The R61505 supports RGB interface and VSYNC interface as the external interface to display moving picture. When the RGB interface is selected, the display operation is synchronized with externally supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface operation, data (DB17-0) is written in synchronization with these signals when the polarity of enable signal (ENABLE) allows write operation in order to prevent flicker while updating display data.

In VSYNC interface operation, the display operation is synchronized with the internal clock except frame synchronization, which synchronizes the display operation with the VSYNC signal. The display data is written to the internal GRAM via system interface. When writing data via VSYNC interface, there are constraints in speed and method in writing data to the internal RAM. For details, see the "VSYNC interface" section.

The R61505 allows switching interface by instruction according to the display, i.e. still and/or moving picture(s). The R61505 writes all display data via RGB interface to the internal GRAM in order to transfer data only when updating the data and thereby reduce the data transfer and power consumption for moving picture display.

#### 3. Address Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of the register to set a RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As the R61505 writes data to the internal GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only within the rectangular area specified in the GRAM.

#### 4. Graphics RAM (GRAM)

GRAM is graphics RAM, which can store bit-pattern data of 172,800 (240RGB x 320 (dots) x 18(bits)) bytes at maximum, using 18 bits per pixel.

#### 5. Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates liquid crystal drive voltages according to the grayscale data in the  $\gamma$ -correction registers to enable 262k-color display. For details, see the  $\gamma$ -Correction Register section.

#### 6. Liquid Crystal Drive Power Supply Circuit

The liquid crystal drive power supply circuit generates VDH, VGH, VGL and Vcom levels to drive liquid crystal.

#### 7. Timing Generator

The timing generator generates a timing signal for the operation of internal circuit such as the internal GRAM. The timing signal for display operation such as RAM read operation and the timing signal for internal operation such as RAM access from the MPU are generated separately in order to avoid mutual interference.

#### 8. Oscillator (OSC)

The R61505 generates the RC oscillation clock just by connecting an external oscillation resistor between the OSC1 and OSC2 pins. The oscillation frequency can be changed by changing the resistance of the external resistor. Adjust the oscillation frequency according to operating voltage and frame frequency. While the R61505 is in deep standby mode, RC oscillation is halted to reduce power consumption. For details, see "Oscillator".

#### 9. Liquid Crystal Driver Circuit

The liquid crystal driver circuit of the R61505 consists of a 720-output source driver (S1  $\sim$  S720) and a 320-output gate driver (G1 $\sim$ G320). The display pattern data is latched when 720 bits of data are inputted. The latched data control the source driver and output drive waveforms. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 720-bit source output from the source driver can be changed by setting the SS bit and the shift direction of gate output from the gate driver can be changed by setting the GS bit. The scan mode by the gate driver can be changed by setting the SM bit. Sets the gate driver pin arrangement in combination with the GS bit to select the optimal scan mode for the module.

#### 10. Internal Logic Power Supply Regulator

The internal logic power supply regulator generates internal logic power supply VDD.

## **Pin Function**

Table 5

| Signal           | I/O | Connect<br>to     | Function | n       |         |            |                                                                |                   |                       | When not in Use   |
|------------------|-----|-------------------|----------|---------|---------|------------|----------------------------------------------------------------|-------------------|-----------------------|-------------------|
| IM3-1,<br>IM0/ID | I   | IOGND or<br>IOVcc | ·        |         |         |            |                                                                |                   |                       | -                 |
|                  |     |                   | IM3      | IM2     | IM1     | IM0/I<br>D | Interface Mode                                                 | DB Pin            | Colors                |                   |
|                  |     |                   | 0        | 0       | 0       | 0          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   | 0        | 0       | 0       | 1          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   | 0        | 0       | 1       | 0          | 80-system 16-bit interface                                     | DB17-10,<br>DB8-1 | 262,144<br>see Note 1 |                   |
|                  |     |                   | 0        | 0       | 1       | 1          | 80-system 8-bit interface                                      | DB17-10           | 262,144<br>see Note 2 |                   |
|                  |     |                   | 0        | 1       | 0       | *(ID)      | Clock synchronous serial interface                             | -                 | 65,536                |                   |
|                  |     |                   | 0        | 1       | 1       | 0          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   | 0        | 1       | 1       | 1          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   | 1        | 0       | 0       | 0          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   | 1        | 0       | 0       | 1          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   | 1        | 0       | 1       | 0          | 80-system 18-bit<br>interface                                  | DB17-0            | 262,144               |                   |
|                  |     |                   | 1        | 0       | 1       | 1          | 80-system 9-bit interface                                      | DB17-9            | 262,144               |                   |
|                  |     |                   | 1        | 1       | 0       | 0          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   | 1        | 1       | 0       | 1          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   | 1        | 1       | 1       | 0          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   | 1        | 1       | 1       | 1          | Setting disabled                                               | -                 | -                     |                   |
|                  |     |                   |          | ,       |         |            | ne transfer mode<br>o transfers mode                           |                   |                       |                   |
| CS*              | I   | MPU               | Low: the | e R61   | 505 is  | select     | ude: IOVcc-IOGND<br>ed and accessible<br>elected and not acces | sible.            |                       | IOVCC             |
| RS               | I   | MPU               |          | lect In | dex o   | statu      | nplitude: IOVcc-IOGN<br>s register<br>er                       | D                 |                       | IOVcc             |
| WR*/SCL          | I   | MPU               | write op | eratio  | n whe   | n WR*      | ystem bus interface of is low. Synchronous Amplitude: IOVcc-IO | clock signa       |                       | IOVcc             |
| RD*              | I   | MPU               |          |         |         |            | system bus interface of is low. Amplitude: IO                  |                   |                       | IOVcc             |
| SDI              | I   | MPU               |          |         |         |            | in serial interface ope<br>e of the SCL signal. A              |                   |                       | IOGND or<br>IOVcc |
| SDO              | I/O | MPU               |          | ed on t | he fall | ing ed     | oin in serial interface o                                      | peration.         | The data is           | Open              |

| Signal I/O Connect to |     |                            | Function                                                                                                                                                                                                          |                   |  |  |  |
|-----------------------|-----|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| DB0-DB17              | I/O | MPU                        | 18-bit parallel bi-directional data bus for 80-system interface operation (Amplitude: IOVcc-IOGND).                                                                                                               | IOGND or<br>IOVcc |  |  |  |
|                       |     |                            | 8-bit I/F: DB17-DB10 are used.<br>9-bit I/F: DB17-DB9 are used.<br>16-bit I/F: DB17-DB10 and DB8-1 are used.<br>18-bit I/F: DB17-DB0 are used.                                                                    |                   |  |  |  |
|                       |     |                            | 18-bit parallel bi-directional data bus for RGB interface operation (Amplitude: IOVcc-IOGND).                                                                                                                     |                   |  |  |  |
|                       |     |                            | 6-bit I/F: DB17-DB12 are used.<br>16-bit I/F: DB17-DB13 and DB11-1 are used.<br>18-bit I/F: DB17-DB0 are used.                                                                                                    |                   |  |  |  |
| ENABLE                | I   | MPU                        | Data enable signal for RGB interface operation. (Amplitude: IOVcc-IOGND).                                                                                                                                         | IOGND or<br>IOVcc |  |  |  |
|                       |     |                            | Low: accessible (select) High: Note accessible (Not select)                                                                                                                                                       |                   |  |  |  |
|                       |     |                            | The polarity of ENABLE signal can be inverted by setting the EPL bit.                                                                                                                                             |                   |  |  |  |
| VSYNC                 | I   | MPU                        | Frame synchronous signal for RGB interface operation. Low active. (Amplitude: IOVcc-IOGND).                                                                                                                       | IOGND or<br>IOVcc |  |  |  |
| HSYNC                 | I   | MPU                        | Line synchronous signal for RGB interface operation. Low active. (Amplitude: IOVcc-IOGND).                                                                                                                        | IOGND or<br>IOVcc |  |  |  |
| DOTCLK                | I   | MPU                        | Dot clock signal for RGB interface operation. The data input timing is on the rising edge of DOTCLK. (Amplitude: IOVcc-IOGND).                                                                                    | IOGND or<br>IOVcc |  |  |  |
| FMARK                 | 0   | MPU                        | Frame head pulse signal, which is used when writing data to the internal RAM. (Amplitude: IOVcc-IOGND).                                                                                                           | Open              |  |  |  |
| RESET*                | I   | MPU or external RC circuit | Reset signal. Initializes the R61505 when it is low. Make sure to execute a power-on reset when turning on power supply (IOVCC-IOGND amplitude signal).                                                           | -                 |  |  |  |
| OSC1<br>OSC2          | 0   | Oscillator                 | Connect an external resistor for RC oscillation.                                                                                                                                                                  | -                 |  |  |  |
| Vcc                   | -   | Power supply               | Power supply to internal logic regulator circuit: Vcc = 2.5V~3.3V.<br>Vcc ≥ IOVcc                                                                                                                                 | -                 |  |  |  |
| GND                   | -   | Power supply               | Internal logic GND: GND = 0V.                                                                                                                                                                                     | -                 |  |  |  |
| RGND                  | -   | Power supply               | Internal RAM GND. RGND must be at the same electrical potential as GND. In case of COG, connect to GND on the FPC to prevent noise.                                                                               | -                 |  |  |  |
| VDD                   | 0   | Stabilizing capacitor      | Internal logic regulator output, which is used as the power supply to internal logic. Connect a stabilizing capacitor.                                                                                            | -                 |  |  |  |
| IOVcc                 | -   | Power supply               | Power supply to the interface pins: RESET*, CS*, WR, RD*, RS, DB17-0, VSYNC, HSYNC, DOTCLK, ENABLE.  IOVcc = 1.65V ~ 3.3V. Vcc ≥ IOVcc. In case of COG, connect to Vcc on the FPC if IOVcc=Vcc, to prevent noise. | -                 |  |  |  |
| IOGND                 | -   | Power supply               | GND for the interface pins: RESET*, CS*, WR, RD*, RS, DB17-0, VSYNC, HSYNC, DOTCLK, ENABLE. IOGND = 0V. In case of COG, connect to GND on the FPC to prevent noise.                                               | -                 |  |  |  |

| Signal I/O Connect to                                |     |                              | Function                                                                                                                                                                                                                                                                                                                                                              |      |  |  |  |
|------------------------------------------------------|-----|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| AGND                                                 | -   | Power supply                 | Analog GND (for logic regulator and liquid crystal power supply circuit): AGND = 0V. In case of COG, connect to GND on the FPC to prevent noise.                                                                                                                                                                                                                      | -    |  |  |  |
| Vci                                                  | I   | Power supply                 | Power supply to the liquid crystal power supply analog circuit. Connect to an external power supply of 2.5V ~ 3.3V.                                                                                                                                                                                                                                                   | -    |  |  |  |
| VciLVL                                               | I   | Reference<br>power<br>supply | VciLVL must be at the same electrical potential as Vci. VciLVL = 2.5V ~ 3.3V. Connect to external power supply. In case of COG, connect to Vci on the FPC to prevent noise.                                                                                                                                                                                           | -    |  |  |  |
| VciOUT                                               | 0   | Stabilizing capacitor, Vci1  | Internal reference voltage generated between Vci and GND. The output level is set by instruction (VC bits).                                                                                                                                                                                                                                                           | -    |  |  |  |
| Vci1                                                 | I/O | VciOUT                       | Reference voltage for the step-up circuit 1. Make sure to set the Vci1 voltage so that VLOUT1, VLOUT2 and VLOUT3 voltages are set within the respective ranges.                                                                                                                                                                                                       | -    |  |  |  |
| VLOUT1                                               | 0   | Stabilizing capacitor, DDVDH | Output voltage from the step-up circuit 1, generated from Vci1. The step-up factor is set by instruction (BT bits). VLOUT1 = 4.5V ~ 6.0V                                                                                                                                                                                                                              | -    |  |  |  |
| DDVDH                                                | I   | VLOUT1                       | Power supply for the source driver liquid crystal drive unit and Vcom drive. Connect to VLOUT1. DDVDH = 4.5V ~ 6.0V                                                                                                                                                                                                                                                   | -    |  |  |  |
| VLOUT2                                               | 0   | Stabilizing capacitor, VGH   | Output voltage from the step-up circuit 2, generated from Vci1 and DDVDH. The step-up factor is set by instruction (BT bits). VLOUT2 = max 15.0V                                                                                                                                                                                                                      | -    |  |  |  |
| VGH                                                  | I   | VLOUT2                       | Liquid crystal drive power supply. Connect to VLOUT2.                                                                                                                                                                                                                                                                                                                 | =    |  |  |  |
| VLOUT3                                               | 0   | Stabilizing capacitor, VGL   | Output voltage from the step-up circuit 2, generated from Vci1 and DDVDH. The step-up factor is set by instruction (BT bits). VLOUT3 = min –12.5V                                                                                                                                                                                                                     | -    |  |  |  |
| VGL                                                  | I   | VLOUT3                       | Liquid crystal drive power supply. Connect to VLOUT3.                                                                                                                                                                                                                                                                                                                 | -    |  |  |  |
| VCL                                                  | 0   | Stabilizing capacitor        | VCOML drive power supply. VCL = -1.9V ~ -3.0V                                                                                                                                                                                                                                                                                                                         | -    |  |  |  |
| C11+, C11-<br>C12+, C12-                             | 0   | Step-up capacitor            | Capacitor connection pins for the step-up circuit 1.                                                                                                                                                                                                                                                                                                                  | -    |  |  |  |
| C13+, C13-<br>C21+, C21-<br>C22+, C22-<br>C23+, C23- | 0   | Step-up capacitor            | Capacitor connection pins for the step-up circuit 2. Connect capacitors where they are required according to the step-up factor.                                                                                                                                                                                                                                      | -    |  |  |  |
| VREG1<br>OUT                                         | 0   | Stabilizing capacitor        | Output voltage generated from the reference voltage. The factor is determined by instruction (VRH bits).                                                                                                                                                                                                                                                              | Open |  |  |  |
|                                                      |     |                              | VREG10UT is used for (1) source driver grayscale reference voltage VDH, (2) VcomH level reference voltage, and (3) Vcom amplitude reference voltage. Connect to a stabilizing capacitor when in use. $ \label{eq:VREG10UT} VREG10UT = 3.0V \sim (DDVDH - 0.5)V $ When the load is on current to the maximum, $ VREG10UT = 3.0V \sim (DDVDH - 0.3) $ is also possible. |      |  |  |  |
| Vcom                                                 | 0   | TFT panel common electrode   | Power supply to TFT panel's common electrode. Vcom alternates between VcomH and VcomL. The alternating cycle is set by internal register. Also, the Vcom output can be started and halted by register setting.                                                                                                                                                        | Open |  |  |  |

| Signal         | I/O | Connect to                | Function                                                                                                                                                                                 | When not in Use |
|----------------|-----|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| VcomH          | 0   | Stabilizing capacitor     | The High level of Vcom amplitude. The output level can be adjusted by either external resistor (VcomR) or electronic volume.                                                             | Open            |
| VcomL          | 0   | Stabilizing capacitor     | The Low level of Vcom amplitude. The output level can be adjusted by instruction (VDV bits). VcomL = $(VCL+0.5)V \sim 0V$                                                                | Open            |
| VcomR          | I   | Variable resistor or open | Connect a variable resistor when adjusting the VcomH level between VREG10UT and GND.                                                                                                     | Open            |
| VGS            | I   | GND                       | Reference level for the grayscale voltage generating circuit.                                                                                                                            | -               |
| S1~S720        | 0   | LCD                       | Liquid crystal application voltages. To change the shift direction of segment signal output, set the SS bit as follows.                                                                  | Open            |
|                |     |                           | When SS = 0, the data in the RAM address h00000 is outputted from S1. When SS = 1, the data in the RAM address h00000 is outputted from S720.                                            |                 |
| G1~G320        | 0   | LCD                       | Gate line output signals.                                                                                                                                                                | Open            |
|                |     |                           | VGH: gate line select level<br>VGL: gate line non-select level                                                                                                                           |                 |
| V0T, V31T      | I/O | Open                      | Test pins. Leave them open.                                                                                                                                                              | Open            |
| VTEST          | 0   | Open                      | Test pin. Leave it open.                                                                                                                                                                 | Open            |
| VREFC          | I   | AGND                      | Test pin. Make sure to fix to the AGND level.                                                                                                                                            | -               |
| VREF           | 0   | Open                      | Test pin. Leave it open.                                                                                                                                                                 | Open            |
| VDDTEST        | I   | AGND                      | Test pin. Make sure to fix to the AGND level.                                                                                                                                            | -               |
| VREFD          | 0   | Open                      | Test pin. Leave it open.                                                                                                                                                                 | Open            |
| VMON           | 0   | Open                      | Test pin. Leave it open.                                                                                                                                                                 | Open            |
| TESTA5         | 0   | Open                      | Test pin. Leave it open.                                                                                                                                                                 | Open            |
| IOVCCDUM1-2    | 0   | -                         | Use them to fix the electrical potentials of unused interface pins and fixed pins. When not in use, leave it open.                                                                       | Open            |
| VCCDUM1        | 0   | -                         | Test pin. Leave it open                                                                                                                                                                  | Open            |
| IOGNDDUM1-3    | 0   | -                         | Use them to fix the electrical potentials of unused interface pins and fixed pins. When not in use, leave it open.                                                                       | Open            |
| OSC1DUM1-4     | 0   | -                         | Test pins. Leave them open.                                                                                                                                                              | Open            |
| OSC2DUM1-2     | 0   | -                         | Test pins. Leave them open.                                                                                                                                                              | Open            |
| AGNDDUM1-4     | 0   | -                         | Use them to fix VREFC, VDDTEST.                                                                                                                                                          | Open            |
| DUMMYR<br>1-10 | -   | -                         | DUMMYR1 and DUMMYR10, DUMMYR2 and DUMMYR9, DUMMYR3 and DUMMYR4, DUMMYR5 and DUMMYR8, and DUMMYR6 and DUMMYR7 are short-circuited within the chip for COG contact resistance measurement. | Open            |
| VGLDMY<br>1-4  | 0   | -                         | Dummy pads. Leave them open.                                                                                                                                                             | Open            |

| Signal      | 1/0 | Connect to   | Function                               | When not in Use |
|-------------|-----|--------------|----------------------------------------|-----------------|
| TESTO1-38   | 0   | -            | Dummy pads. Leave them open.           | Open            |
| TEST1, 2, 5 | I   | IOGND        | Test pins. Connect to IOGND.           | IOGND           |
| TEST3       | I   | IOVcc        | Test pin. Connect to IOVcc.            | IOVcc           |
| TEST4       | I   | IOVcc        | Test pin. Connect to IOVcc on the FPC. | IOVcc           |
| TSC         | I   | AGND         | Test pin. Connect to IOGND.            | IOGND           |
| TS8-0       | 0   | Open         | Test pins. Leave them open.            | Open            |
| VPP1-3      | -   | Power supply | Test pins. Leave them open.            | Open            |

Patents of dummy pin which is used to fix pin to VCC or GND are pending or granted.

PATENT ISSUED: United States Patent No. 6,323,930

PATENT PENDING: Japanese Application No. 10-514484, Korean Application No. 19997002322

Taiwanese Application No.086103756, (PCT/JP96/02728(W098/12597)







Chip size: 21.58 mm x 1.87 mm Chip thickness: 400µm (typ.) PAD coordinates: PAD center PAD coordinates origin: Chip center

Au bump size

(1) 50μm × 80μm

I/O output side:

No. 1 - No. 298

(2)  $21\mu m \times 100\mu m$ 

Liquid crystal output side:

No. 299 - No. 1354

Au bump pitch: See PAD coordinates table

Au bump height:  $15\mu m (typ.)$  No. in the Figure corresponds to No. in the

PAD coordinates table

#### Alignment mark

| Alignment mark shape | Х        | Υ      |
|----------------------|----------|--------|
| Tuno A               | -10613.0 | -753.0 |
| Type A               | 10613.0  | -753.0 |
| Type B               | -10572.0 | -613.0 |
| Type C               | 10572.0  | -613.0 |



Unit (µm) e: 40 a: 30 b: 40 c: 30 f: 30 g: 100 h: 100

d: 30



Type C С d b а Non-pattern area

Unit (μm) a: 50 b: 20

## R61505 PAD coordinates (Unit: μm)

|        | nod nome  |          | Υ      |
|--------|-----------|----------|--------|
| pad No | pad name  | X        | -      |
|        | DUMMYR1   | -10395.0 |        |
|        | DUMMYR2   | -10325.0 |        |
|        | TESTO1    | -10255.0 | -801.5 |
|        | VCCDUM1   | -10185.0 | -801.5 |
|        | VPP1      | -10115.0 | -801.5 |
| 6      | VPP1      | -10045.0 | -801.5 |
| 7      | VPP1      | -9975.0  | -801.5 |
| 8      | VPP2      | -9905.0  | -801.5 |
| 9      | VPP2      | -9835.0  | -801.5 |
| 10     | VPP2      | -9765.0  | -801.5 |
| 11     | VPP2      | -9695.0  | -801.5 |
| 12     | VPP2      | -9625.0  | -801.5 |
| 13     | VPP3      | -9555.0  | -801.5 |
| 14     | VPP3      | -9485.0  | -801.5 |
| 15     | VPP3      | -9415.0  | -801.5 |
|        | TESTO2    | -9345.0  | -801.5 |
| 17     | IOGNDDUM1 | -9275.0  | -801.5 |
| 18     | TESTO3    | -9205.0  | -801.5 |
| 19     | TEST1     | -9135.0  | -801.5 |
| 20     | TEST2     | -9065.0  | -801.5 |
| 21     | TEST4     | -8995.0  | -801.5 |
| 22     | TEST5     | -8925.0  | -801.5 |
| 23     | TEST3     | -8855.0  | -801.5 |
| 24     | IM0/ID    | -8785.0  | -801.5 |
|        | IM1       | -8715.0  | -801.5 |
| 26     | IM2       | -8645.0  | -801.5 |
| 27     | IM3       | -8575.0  | -801.5 |
|        | TESTO4    | -8505.0  | -801.5 |
|        | IOVCCDUM1 | -8435.0  | -801.5 |
|        | TESTO5    | -8365.0  | -801.5 |
|        | RESET*    | -8295.0  | -801.5 |
|        | VSYNC     | -8225.0  | -801.5 |
|        | HSYNC     | -8155.0  | -801.5 |
|        | DOTCLK    | -8085.0  | -801.5 |
|        | ENABLE    | -8015.0  | -801.5 |
|        | DB17      | -7945.0  | -801.5 |
|        | DB16      | -7875.0  | -801.5 |
|        | DB15      | -7805.0  | -801.5 |
|        | DB14      | -7735.0  | -801.5 |
|        | DB13      | -7665.0  | -801.5 |
| 41     |           | -7595.0  | -801.5 |
|        | DB11      | -7525.0  | -801.5 |
|        | DB10      | -7455.0  | -801.5 |
|        | DB9       | -7385.0  | -801.5 |
|        | DB8       | -7315.0  | -801.5 |
|        |           | -7245.0  | -801.5 |
| 47     |           | -7175.0  | -801.5 |
| 48     |           | -7105.0  | -801.5 |
|        | DB7       | -7035.0  | -801.5 |
|        | DB6       | -6965.0  | -801.5 |
| 50     | טטט       | -0303.0  | -001.0 |

|        |           | 2005.00 | .24 1671.2 |
|--------|-----------|---------|------------|
| pad No | pad name  | Χ       | Υ          |
| 51     | DB5       | -6895.0 | -801.5     |
| 52     | DB4       | -6825.0 | -801.5     |
| 53     | DB3       | -6755.0 | -801.5     |
| 54     | DB2       | -6685.0 | -801.5     |
| 55     | DB1       | -6615.0 | -801.5     |
| 56     | DB0       | -6545.0 | -801.5     |
| 57     | SDO       | -6475.0 | -801.5     |
| 58     | SDI       | -6405.0 | -801.5     |
| 59     | RD*       | -6335.0 | -801.5     |
|        | WR*/SCL   | -6265.0 | -801.5     |
| 61     | RS        | -6195.0 | -801.5     |
| 62     | CS*       | -6125.0 | -801.5     |
| 63     | TESTO8    | -6055.0 | -801.5     |
|        | IOVCCDUM2 | -5985.0 | -801.5     |
| 65     | TESTO9    | -5915.0 | -801.5     |
|        |           | -5845.0 | -801.5     |
| 67     | TS8       | -5775.0 | -801.5     |
| 68     | TS7       | -5705.0 | -801.5     |
|        | TS6       | -5635.0 | -801.5     |
|        | TS5       | -5565.0 | -801.5     |
| 71     | TS4       | -5495.0 | -801.5     |
| 72     | TS3       | -5425.0 | -801.5     |
| 73     | TS2       | -5355.0 | -801.5     |
| 74     | TS1       | -5285.0 | -801.5     |
|        | TS0       | -5215.0 | -801.5     |
|        | TSC       | -5145.0 | -801.5     |
| 77     | TESTO10   | -5075.0 | -801.5     |
|        | IOGNDDUM3 | -5005.0 | -801.5     |
| 79     | TESTO11   | -4935.0 | -801.5     |
| 80     |           | -4865.0 | -801.5     |
|        | OSC1DUM1  | -4795.0 | -801.5     |
|        | OSC1DUM2  | -4725.0 | -801.5     |
|        |           | -4655.0 | -801.5     |
|        | OSC1DUM3  | -4585.0 |            |
|        | OSC1DUM4  | -4515.0 | -801.5     |
|        | OSC2      | -4445.0 | -801.5     |
|        | OSC2DUM1  | -4375.0 | -801.5     |
|        |           | -4305.0 | -801.5     |
|        | DUMMYR3   | -4235.0 | -801.5     |
| 90     | DUMMYR4   | -4165.0 | -801.5     |
| 91     | IOGND     | -4095.0 | -801.5     |
|        | IOGND     | -4025.0 | -801.5     |
|        | IOGND     | -3955.0 | -801.5     |
|        | IOGND     | -3885.0 | -801.5     |
|        | IOGND     | -3815.0 | -801.5     |
|        | IOGND     | -3745.0 | -801.5     |
| 97     | IOGND     | -3675.0 | -801.5     |
|        | IOVCC     | -3605.0 | -801.5     |
|        | IOVCC     | -3535.0 | -801.5     |
|        |           | -3465.0 | -801.5     |
| .00    |           | 5 100.0 | 301.0      |

| pad No   | pad name   | X                  | Υ Υ              |
|----------|------------|--------------------|------------------|
|          | IOVCC      |                    |                  |
|          | IOVCC      | -3395.0            |                  |
|          | IOVCC      | -3325.0            |                  |
|          |            | -3255.0            | -801.5           |
|          | IOVCC      | -3185.0            | -801.5           |
|          | VCC        | -3115.0            | -801.5           |
|          | VCC        | -3045.0            | -801.5           |
|          | VCC        | -2975.0            | -801.5           |
|          | VCC<br>VCC | -2905.0            | -801.5           |
|          | VCC        | -2835.0<br>-2765.0 | -801.5<br>-801.5 |
|          |            |                    |                  |
|          | VCC        | -2695.0            | -801.5           |
|          | VCC        | -2625.0            | -801.5           |
|          | VDD        | -2555.0            | -801.5           |
|          | VDD        | -2485.0            | -801.5           |
|          | VDD        | -2415.0            | -801.5           |
|          | VDD<br>VDD | -2345.0            | -801.5           |
|          | VDD        | -2275.0            | -801.5           |
|          | VDD        | -2205.0            | -801.5           |
|          | VDD        | -2135.0            | -801.5           |
|          | VDD        | -2065.0            | -801.5           |
|          |            | -1995.0            | -801.5           |
|          | VDD<br>VDD | -1925.0            | -801.5           |
|          | VDD        | -1855.0            | -801.5           |
|          | VDD        | -1785.0<br>-1715.0 | -801.5<br>-801.5 |
|          | TESTO13    | -1645.0            | -801.5           |
|          | VREFD      | -1575.0            | -801.5           |
|          | TESTO14    | -1575.0            |                  |
|          | VREF       | -1435.0            | -801.5<br>-801.5 |
|          | TESTO15    | -1365.0            | -801.5           |
|          | VREFC      | -1295.0            | -801.5           |
|          | TESTO16    | -1225.0            | -801.5           |
|          | VDDTEST    | -1225.0            | -801.5           |
| <b>-</b> | AGND       | -1085.0            | -801.5           |
| <b>-</b> | AGND       | -1005.0            | -801.5           |
|          | AGND       | -945.0             | -801.5           |
|          | AGND       | -875.0             | -801.5           |
|          | AGND       | -805.0             | -801.5           |
| <b>-</b> | AGND       | -735.0             | -801.5           |
|          | AGND       | -665.0             | -801.5           |
| 141      |            | -595.0             | -801.5           |
| <b>-</b> | AGND       | -525.0             | -801.5           |
|          | AGND       | -455.0             | -801.5           |
| <b>-</b> | AGND       | -385.0             | -801.5           |
| <b>-</b> | GND        | -315.0             | -801.5           |
|          | GND        | -245.0             | -801.5           |
| 147      |            | -175.0             | -801.5           |
|          | GND        | -105.0             | -801.5           |
|          | GND        | -35.0              | -801.5           |
|          | GND        | 35.0               | -801.5           |
|          |            | 30.0               | 551.0            |

| pad No | pad name | Х      | Υ      |
|--------|----------|--------|--------|
| 151    | RGND     | 105.0  | -801.5 |
| 152    | RGND     | 175.0  | -801.5 |
| 153    | RGND     | 245.0  | -801.5 |
| 154    | RGND     | 315.0  | -801.5 |
| 155    | RGND     | 385.0  | -801.5 |
|        | RGND     | 455.0  | -801.5 |
|        | RGND     | 525.0  | -801.5 |
| 158    | RGND     | 595.0  | -801.5 |
|        | RGND     | 665.0  | -801.5 |
|        | RGND     | 735.0  | -801.5 |
|        | TESTO17  | 805.0  | -801.5 |
|        | VTEST    | 875.0  | -801.5 |
|        | TESTO18  | 945.0  | -801.5 |
|        | VGS      | 1015.0 | -801.5 |
|        | TESTO19  | 1085.0 | -801.5 |
|        | VOT      | 1155.0 | -801.5 |
|        | TESTO20  | 1225.0 | -801.5 |
|        | VMON     | 1295.0 | -801.5 |
|        | TESTO21  | 1365.0 | -801.5 |
|        | V31T     | 1435.0 | -801.5 |
|        | VCOM     | 1505.0 | -801.5 |
|        | VCOM     | 1575.0 | -801.5 |
|        | VCOM     | 1645.0 | -801.5 |
|        | VCOM     | 1715.0 | -801.5 |
|        | VCOM     | 1785.0 | -801.5 |
|        | VCOM     | 1855.0 | -801.5 |
|        | VCOMH    | 1925.0 | -801.5 |
|        | VCOMH    | 1995.0 | -801.5 |
|        | VCOMH    | 2065.0 | -801.5 |
|        | VCOMH    | 2135.0 | -801.5 |
|        | VCOMH    | 2205.0 | -801.5 |
|        | VCOMH    | 2275.0 | -801.5 |
|        | VCOML    | 2345.0 | -801.5 |
|        | VCOML    | 2415.0 |        |
|        | VCOML    | 2485.0 | -801.5 |
|        | VCOML    | 2555.0 | -801.5 |
|        | VCOML    | 2625.0 | -801.5 |
|        | VCOML    | 2695.0 | -801.5 |
|        | TESTO22  | 2765.0 | -801.5 |
|        | TESTO23  | 2835.0 | -801.5 |
|        | VREG1OUT | 2905.0 | -801.5 |
|        | TESTO24  | 2975.0 | -801.5 |
|        | TESTA5   | 3045.0 | -801.5 |
|        | TESTO25  | 3115.0 | -801.5 |
|        | VCOMR    | 3185.0 | -801.5 |
|        | TESTO26  | 3255.0 | -801.5 |
|        | VCL      | 3325.0 | -801.5 |
|        | VCL      | 3395.0 | -801.5 |
|        | VCL      | 3465.0 | -801.5 |
|        | VLOUT1   | 3535.0 | -801.5 |
| _50    |          |        | 300    |

|        | AD COOI GIII at |        |        |
|--------|-----------------|--------|--------|
| pad No | •               | X      | Υ      |
|        | VLOUT1          | 3605.0 | -801.5 |
| 202    | VLOUT1          | 3675.0 | -801.5 |
| 203    | DDVDH           | 3745.0 | -801.5 |
| 204    | DDVDH           | 3815.0 | -801.5 |
| 205    | DDVDH           | 3885.0 | -801.5 |
| 206    | DDVDH           | 3955.0 |        |
| 207    | DDVDH           | 4025.0 | -801.5 |
| 208    | DDVDH           | 4095.0 | -801.5 |
| 209    | DDVDH           | 4165.0 |        |
| 210    | VCIOUT          | 4235.0 | -801.5 |
| 211    | VCIOUT          | 4305.0 | -801.5 |
|        | VCIOUT          | 4375.0 | -801.5 |
| 213    | VCI1            | 4445.0 |        |
|        | VCI1            | 4515.0 |        |
|        | VCI1            | 4585.0 |        |
|        | VCI1            | 4655.0 | -801.5 |
|        | VCI1            | 4725.0 | -801.5 |
|        | VCILVL          | 4795.0 |        |
|        | VCI             | 4865.0 |        |
| 220    |                 | 4935.0 |        |
|        | VCI             | 5005.0 |        |
| 222    |                 | 5075.0 | -801.5 |
| 223    |                 | 5145.0 | -801.5 |
| 224    |                 | 5215.0 | -801.5 |
| 225    |                 | 5285.0 |        |
| 226    |                 | 5355.0 | -801.5 |
|        | C12-            | 5425.0 | -801.5 |
|        | C12-            | 5495.0 | -801.5 |
|        | C12-            | 5565.0 | -801.5 |
|        | C12-            | 5635.0 | -801.5 |
|        | C12-            | 5705.0 |        |
|        | C12+            | 5775.0 |        |
|        | C12+            | 5845.0 |        |
|        | C12+            | 5915.0 |        |
|        | C12+            | 5985.0 | -801.5 |
|        | C12+            | 6055.0 | -801.5 |
|        | C11-            | 6125.0 | -801.5 |
|        | C11-            | 6195.0 | -801.5 |
|        | C11-            | 6265.0 | -801.5 |
|        | C11-            | 6335.0 | -801.5 |
|        | C11-            | 6405.0 | -801.5 |
|        | C11+            | 6475.0 | -801.5 |
|        | C11+            | 6545.0 | -801.5 |
|        | C11+            | 6615.0 | -801.5 |
|        | C11+            | 6685.0 | -801.5 |
|        | C11+            | 6755.0 | -801.5 |
|        | AGNDDUM1        | 6825.0 | -801.5 |
|        | VLOUT3          | 6895.0 | -801.5 |
|        | VLOUT3          | 6965.0 | -801.5 |
|        | VGL             | 7035.0 | -801.5 |
| 250    | √ OL            | 1035.0 | -001.3 |

|        |          |         | .24 1671.2 |
|--------|----------|---------|------------|
| pad No | pad name | Χ       | Υ          |
| 251    | VGL      | 7105.0  | -801.5     |
| 252    | VGL      | 7175.0  | -801.5     |
| 253    | VGL      | 7245.0  | -801.5     |
| 254    | VGL      | 7315.0  | -801.5     |
| 255    | VGL      | 7385.0  | -801.5     |
|        | VGL      | 7455.0  | -801.5     |
| 257    | VGL      | 7525.0  | -801.5     |
| 258    | VGL      | 7595.0  | -801.5     |
|        | VGL      | 7665.0  | -801.5     |
|        | AGNDDUM2 | 7735.0  | -801.5     |
|        | AGNDDUM3 | 7805.0  | -801.5     |
|        | AGNDDUM4 | 7875.0  | -801.5     |
|        | VLOUT2   | 7945.0  | -801.5     |
|        | VLOUT2   | 8015.0  | -801.5     |
|        | VGH      | 8085.0  | -801.5     |
|        | VGH      | 8155.0  | -801.5     |
|        | VGH      | 8225.0  | -801.5     |
|        | VGH      | 8295.0  | -801.5     |
|        | TESTO27  | 8365.0  | -801.5     |
|        | C13-     | 8435.0  | -801.5     |
|        | C13-     | 8505.0  | -801.5     |
|        | C13-     | 8575.0  | -801.5     |
|        | TESTO28  | 8645.0  | -801.5     |
|        | C13+     | 8715.0  | -801.5     |
|        | C13+     | 8785.0  | -801.5     |
|        | C13+     | 8855.0  | -801.5     |
|        | TESTO29  | 8925.0  | -801.5     |
|        | C21-     | 8995.0  | -801.5     |
|        | C21-     | 9065.0  | -801.5     |
|        | C21-     | 9135.0  | -801.5     |
|        | C21+     | 9205.0  | -801.5     |
|        | C21+     | 9275.0  | -801.5     |
|        | C21+     | 9345.0  | -801.5     |
|        | C22-     | 9415.0  | -801.5     |
|        | C22-     | 9485.0  | -801.5     |
|        | C22-     | 9555.0  | -801.5     |
|        | C22+     | 9625.0  | -801.5     |
|        | C22+     | 9695.0  | -801.5     |
|        | C22+     | 9765.0  | -801.5     |
|        | C23-     | 9835.0  | -801.5     |
|        | C23-     | 9905.0  | -801.5     |
|        | C23-     | 9975.0  | -801.5     |
|        | C23+     | 10045.0 | -801.5     |
|        | C23+     | 10115.0 | -801.5     |
|        | C23+     | 10185.0 | -801.5     |
|        | TESTO30  | 10255.0 | -801.5     |
|        | DUMMYR5  | 10325.0 | -801.5     |
|        | DUMMYR6  | 10325.0 | -801.5     |
|        | TESTO31  | 10670.0 | 796.5      |
|        | TESTO32  | 10650.0 | 671.5      |
|        |          |         | 30         |

| pad No | pad name           | X       | Y     |
|--------|--------------------|---------|-------|
|        | •                  |         |       |
|        | DUMMYR7<br>DUMMYR8 | 10630.0 | 796.5 |
|        |                    | 10610.0 | 671.5 |
|        | VGLDMY1            | 10590.0 | 796.5 |
| 304    |                    | 10570.0 | 671.5 |
| 305    |                    | 10550.0 | 796.5 |
| 306    |                    | 10530.0 | 671.5 |
| 307    |                    | 10510.0 | 796.5 |
| 308    |                    | 10490.0 | 671.5 |
|        | G11                | 10470.0 | 796.5 |
|        | G13                | 10450.0 | 671.5 |
|        | G15                | 10430.0 | 796.5 |
|        | G17                | 10410.0 | 671.5 |
|        | G19                | 10390.0 | 796.5 |
|        | G21                | 10370.0 | 671.5 |
|        | G23                | 10350.0 | 796.5 |
|        | G25                | 10330.0 | 671.5 |
|        | G27                | 10310.0 | 796.5 |
|        | G29                | 10290.0 | 671.5 |
|        | G31                | 10270.0 | 796.5 |
|        | G33                | 10250.0 | 671.5 |
|        | G35                | 10230.0 | 796.5 |
|        | G37                | 10210.0 | 671.5 |
|        | G39                | 10190.0 | 796.5 |
|        | G41                | 10170.0 | 671.5 |
|        | G43                | 10150.0 | 796.5 |
|        | G45                | 10130.0 | 671.5 |
|        | G47                | 10110.0 | 796.5 |
|        | G49                | 10090.0 | 671.5 |
|        | G51                | 10070.0 | 796.5 |
|        | G53                | 10050.0 | 671.5 |
|        | G55                | 10030.0 | 796.5 |
|        | G57                | 10010.0 | 671.5 |
|        | G59                | 9990.0  | 796.5 |
|        | G61                | 9970.0  | 671.5 |
|        | G63                | 9950.0  | 796.5 |
|        | G65                | 9930.0  | 671.5 |
|        | G67                | 9910.0  | 796.5 |
|        | G69                | 9890.0  | 671.5 |
|        | G71                | 9870.0  | 796.5 |
|        | G73                | 9850.0  | 671.5 |
|        | G75                | 9830.0  | 796.5 |
|        | G77                | 9810.0  | 671.5 |
|        | G79                | 9790.0  | 796.5 |
|        | G81                | 9770.0  | 671.5 |
|        | G83                | 9750.0  | 796.5 |
|        | G85                | 9730.0  | 671.5 |
| 347    |                    | 9710.0  | 796.5 |
|        | G89                | 9690.0  | 671.5 |
|        | G91                | 9670.0  | 796.5 |
| 350    | G93                | 9650.0  | 671.5 |

| pad No | pad name | X      | Υ     |
|--------|----------|--------|-------|
| 351    | G95      | 9630.0 | 796.5 |
| 352    | G97      | 9610.0 | 671.5 |
| 353    | G99      | 9590.0 | 796.5 |
| 354    | G101     | 9570.0 | 671.5 |
| 355    | G103     | 9550.0 | 796.5 |
| 356    | G105     | 9530.0 | 671.5 |
| 357    | G107     | 9510.0 | 796.5 |
| 358    | G109     | 9490.0 | 671.5 |
| 359    | G111     | 9470.0 | 796.5 |
| 360    | G113     | 9450.0 | 671.5 |
| 361    | G115     | 9430.0 | 796.5 |
| 362    | G117     | 9410.0 | 671.5 |
| 363    | G119     | 9390.0 | 796.5 |
| 364    | G121     | 9370.0 | 671.5 |
| 365    | G123     | 9350.0 | 796.5 |
| 366    | G125     | 9330.0 | 671.5 |
|        | G127     | 9310.0 | 796.5 |
|        | G129     | 9290.0 | 671.5 |
|        | G131     | 9270.0 | 796.5 |
|        | G133     | 9250.0 | 671.5 |
|        | G135     | 9230.0 | 796.5 |
|        | G137     | 9210.0 | 671.5 |
|        | G139     | 9190.0 | 796.5 |
|        | G141     | 9170.0 | 671.5 |
|        | G143     | 9150.0 | 796.5 |
|        | G145     | 9130.0 | 671.5 |
|        | G147     | 9110.0 | 796.5 |
|        | G149     | 9090.0 | 671.5 |
|        | G151     | 9070.0 | 796.5 |
|        | G153     | 9050.0 | 671.5 |
|        | G155     | 9030.0 | 796.5 |
|        | G157     | 9010.0 | 671.5 |
| 383    | G159     | 8990.0 | 796.5 |
|        | G161     | 8970.0 | 671.5 |
|        | G163     | 8950.0 | 796.5 |
|        | G165     | 8930.0 | 671.5 |
|        | G167     | 8910.0 | 796.5 |
|        | G169     | 8890.0 | 671.5 |
| 389    | G171     | 8870.0 | 796.5 |
|        | G173     | 8850.0 | 671.5 |
|        | G175     | 8830.0 | 796.5 |
|        | G177     | 8810.0 | 671.5 |
|        | G179     | 8790.0 | 796.5 |
| 394    | G181     | 8770.0 | 671.5 |
|        | G183     | 8750.0 | 796.5 |
|        | G185     | 8730.0 | 671.5 |
|        | G187     | 8710.0 | 796.5 |
|        | G189     | 8690.0 | 671.5 |
|        | G191     | 8670.0 | 796.5 |
|        | G193     | 8650.0 | 671.5 |
|        |          |        |       |

|          | AD COOldinat |         | Y      |
|----------|--------------|---------|--------|
| pad No   | pad name     | X       |        |
|          | G195         | 8630.0  | 796.5  |
|          | G197         | 8610.0  | 671.5  |
|          | G199         | 8590.0  | 796.5  |
|          | G201         | 8570.0  | 671.5  |
|          | G203         | 8550.0  | 796.5  |
| <b>-</b> | G205         | 8530.0  | 671.5  |
|          | G207         | 8510.0  | 796.5  |
|          | G209         | 8490.0  | 671.5  |
|          | G211         | 8470.0  | 796.5  |
|          | G213         | 8450.0  | 671.5  |
|          | G215         | 8430.0  | 796.5  |
|          | G217         | 8410.0  | 671.5  |
| 413      | G219         | 8390.0  | 796.5  |
| 414      | G221         | 8370.0  | 671.5  |
| 415      | G223         | 8350.0  | 796.5  |
| 416      | G225         | 8330.0  | 671.5  |
| 417      | G227         | 8310.0  | 796.5  |
| 418      | G229         | 8290.0  | 671.5  |
| 419      | G231         | 8270.0  | 796.5  |
| 420      | G233         | 8250.0  | 671.5  |
| 421      | G235         | 8230.0  | 796.5  |
| 422      | G237         | 8210.0  | 671.5  |
| 423      | G239         | 8190.0  | 796.5  |
| 424      | G241         | 8170.0  | 671.5  |
| 425      | G243         | 8150.0  | 796.5  |
| 426      | G245         | 8130.0  | 671.5  |
| 427      | G247         | 8110.0  | 796.5  |
| 428      | G249         | 8090.0  | 671.5  |
| 429      | G251         | 8070.0  | 796.5  |
| 430      | G253         | 8050.0  | 671.5  |
| 431      | G255         | 8030.0  | 796.5  |
| 432      | G257         | 8010.0  | 671.5  |
| 433      | G259         | 7990.0  | 796.5  |
|          | G261         | 7970.0  | 671.5  |
|          | G263         | 7950.0  | 796.5  |
|          | G265         | 7930.0  | 671.5  |
|          | G267         | 7910.0  | 796.5  |
|          | G269         | 7890.0  | 671.5  |
|          | G271         | 7870.0  | 796.5  |
|          | G273         | 7850.0  | 671.5  |
| 441      |              | 7830.0  | 796.5  |
|          | G277         | 7810.0  | 671.5  |
|          | G279         | 7790.0  | 796.5  |
|          | G281         | 7770.0  | 671.5  |
|          | G283         | 7750.0  | 796.5  |
|          | G285         | 7730.0  | 671.5  |
| 447      |              | 7710.0  | 796.5  |
|          | G289         | 7690.0  | 671.5  |
|          | G291         | 7670.0  | 796.5  |
|          | G293         | 7650.0  | 671.5  |
| .00      |              | . 555.0 | 57 1.0 |

|        |          | 2005.00 | .24 1671.2 |
|--------|----------|---------|------------|
| pad No | pad name | Χ       | Υ          |
| 451    | G295     | 7630.0  | 796.5      |
| 452    | G297     | 7610.0  | 671.5      |
| 453    | G299     | 7590.0  | 796.5      |
| 454    | G301     | 7570.0  | 671.5      |
| 455    | G303     | 7550.0  | 796.5      |
| 456    | G305     | 7530.0  | 671.5      |
| 457    | G307     | 7510.0  | 796.5      |
| 458    | G309     | 7490.0  | 671.5      |
| 459    | G311     | 7470.0  | 796.5      |
| 460    | G313     | 7450.0  | 671.5      |
| 461    | G315     | 7430.0  | 796.5      |
| 462    | G317     | 7410.0  | 671.5      |
| 463    | G319     | 7390.0  | 796.5      |
|        | VGLDMY2  | 7370.0  | 671.5      |
| 465    | TESTO33  | 7350.0  | 796.5      |
| 466    | TESTO34  | 7130.0  | 796.5      |
|        | S720     | 7110.0  | 671.5      |
| 468    | S719     | 7090.0  | 796.5      |
| 469    | S718     | 7070.0  | 671.5      |
| 470    | S717     | 7050.0  | 796.5      |
| 471    | S716     | 7030.0  | 671.5      |
| 472    | S715     | 7010.0  | 796.5      |
|        | S714     | 6990.0  | 671.5      |
|        | S713     | 6970.0  | 796.5      |
|        | S712     | 6950.0  | 671.5      |
|        | S711     | 6930.0  | 796.5      |
|        | S710     | 6910.0  | 671.5      |
|        | S709     | 6890.0  | 796.5      |
|        | S708     | 6870.0  | 671.5      |
|        | S707     | 6850.0  | 796.5      |
|        | S706     | 6830.0  | 671.5      |
|        | S705     | 6810.0  | 796.5      |
|        | S704     | 6790.0  | 671.5      |
|        | S703     | 6770.0  | 796.5      |
|        | S702     | 6750.0  | 671.5      |
|        | S701     | 6730.0  | 796.5      |
|        | S700     | 6710.0  | 671.5      |
|        | S699     | 6690.0  | 796.5      |
|        | S698     | 6670.0  | 671.5      |
|        | S697     | 6650.0  | 796.5      |
| 491    |          | 6630.0  | 671.5      |
|        | S695     | 6610.0  | 796.5      |
|        | S694     | 6590.0  | 671.5      |
|        | S693     | 6570.0  | 796.5      |
|        | S692     | 6550.0  | 671.5      |
|        | S691     | 6530.0  | 796.5      |
|        | S690     | 6510.0  | 671.5      |
|        | S689     | 6490.0  | 796.5      |
|        | S688     | 6470.0  | 671.5      |
|        | S687     | 6450.0  | 796.5      |
|        |          |         |            |

| pad No | pad name | X                | Y              |
|--------|----------|------------------|----------------|
| •      | S686     | 6430.0           | 671.5          |
|        | S685     | 6410.0           | 796.5          |
|        | S684     | 6390.0           | 671.5          |
|        | S683     | 6370.0           | 796.5          |
|        | S682     | 6350.0           | 671.5          |
|        | S681     | 6330.0           | 796.5          |
|        | S680     | 6310.0           | 671.5          |
|        | S679     | 6290.0           | 796.5          |
|        | S678     | 6270.0           | 671.5          |
|        | S677     | 6250.0           | 796.5          |
|        | S676     | 6230.0           | 671.5          |
|        | S675     | 6210.0           | 796.5          |
|        | S674     | 6190.0           | 671.5          |
|        | S673     |                  |                |
|        | S672     | 6170.0<br>6150.0 | 796.5          |
|        | S672     | 6130.0           | 671.5<br>796.5 |
|        | S670     | 6110.0           | 671.5          |
|        | S669     | 6090.0           | 796.5          |
|        | S668     | 6070.0           | 671.5          |
|        | S667     | 6050.0           | 796.5          |
|        | S666     | 6030.0           | 671.5          |
|        | S665     | 6010.0           | 796.5          |
|        | S664     | 5990.0           | 671.5          |
|        | S663     | 5970.0           |                |
|        | S662     | 5950.0           | 796.5<br>671.5 |
|        | S661     | 5930.0           | 796.5          |
| 527    |          | 5910.0           | 671.5          |
|        | S659     | 5890.0           | 796.5          |
|        | S658     | 5870.0           | 671.5          |
|        | S657     | 5850.0           | 796.5          |
|        | S656     | 5830.0           | 671.5          |
|        | S655     | 5810.0           | 796.5          |
|        | S654     | 5790.0           |                |
|        | S653     | 5770.0           | 796.5          |
|        | S652     | 5750.0           | 671.5          |
|        | S651     | 5730.0           | 796.5          |
|        | S650     | 5710.0           | 671.5          |
|        | S649     | 5690.0           | 796.5          |
|        | S648     | 5670.0           | 671.5          |
|        | S647     | 5650.0           | 796.5          |
|        | S646     | 5630.0           | 671.5          |
|        | S645     | 5610.0           | 796.5          |
| 543    | S644     | 5590.0           | 671.5          |
|        | S643     | 5570.0           | 796.5          |
|        | S642     | 5550.0           | 671.5          |
|        | S641     | 5530.0           | 796.5          |
|        | S640     | 5510.0           | 671.5          |
|        | S639     | 5490.0           | 796.5          |
| 549    | S638     | 5470.0           | 671.5          |
| 550    | S637     | 5450.0           | 796.5          |
| 550    | - 50.    | 5 100.0          | . 00.0         |

| pad No | pad name | X      | Υ     |
|--------|----------|--------|-------|
| 551    | S636     | 5430.0 | 671.5 |
| 552    | S635     | 5410.0 | 796.5 |
| 553    | S634     | 5390.0 | 671.5 |
| 554    | S633     | 5370.0 | 796.5 |
| 555    | S632     | 5350.0 | 671.5 |
| 556    | S631     | 5330.0 | 796.5 |
| 557    | S630     | 5310.0 | 671.5 |
| 558    | S629     | 5290.0 | 796.5 |
| 559    | S628     | 5270.0 | 671.5 |
| 560    | S627     | 5250.0 | 796.5 |
| 561    | S626     | 5230.0 | 671.5 |
| 562    | S625     | 5210.0 | 796.5 |
| 563    | S624     | 5190.0 | 671.5 |
| 564    | S623     | 5170.0 | 796.5 |
| 565    | S622     | 5150.0 | 671.5 |
| 566    | S621     | 5130.0 | 796.5 |
|        | S620     | 5110.0 | 671.5 |
| 568    | S619     | 5090.0 | 796.5 |
|        | S618     | 5070.0 | 671.5 |
| 570    | S617     | 5050.0 | 796.5 |
| 571    | S616     | 5030.0 | 671.5 |
|        | S615     | 5010.0 | 796.5 |
|        | S614     | 4990.0 | 671.5 |
|        | S613     | 4970.0 | 796.5 |
|        | S612     | 4950.0 | 671.5 |
|        | S611     | 4930.0 | 796.5 |
|        | S610     | 4910.0 | 671.5 |
|        | S609     | 4890.0 | 796.5 |
|        | S608     | 4870.0 | 671.5 |
|        | S607     | 4850.0 | 796.5 |
|        | S606     | 4830.0 | 671.5 |
|        | S605     | 4810.0 | 796.5 |
| 583    | S604     | 4790.0 | 671.5 |
|        | S603     | 4770.0 | 796.5 |
|        | S602     | 4750.0 | 671.5 |
|        | S601     | 4730.0 | 796.5 |
|        | S600     | 4710.0 | 671.5 |
|        | S599     | 4690.0 | 796.5 |
|        | S598     | 4670.0 | 671.5 |
|        | S597     | 4650.0 | 796.5 |
|        | S596     | 4630.0 | 671.5 |
|        | S595     | 4610.0 | 796.5 |
|        | S594     | 4590.0 | 671.5 |
|        | S593     | 4570.0 | 796.5 |
|        | S592     | 4550.0 | 671.5 |
|        | S591     | 4530.0 | 796.5 |
|        | S590     | 4510.0 | 671.5 |
|        | S589     | 4490.0 | 796.5 |
|        | S588     | 4470.0 | 671.5 |
|        | S587     | 4450.0 | 796.5 |
|        |          | •      |       |

|        | AD COOLUITAL |        |       |
|--------|--------------|--------|-------|
| pad No | pad name     | Х      | Υ     |
| 601    | S586         | 4430.0 | 671.5 |
|        | S585         | 4410.0 | 796.5 |
|        | S584         | 4390.0 | 671.5 |
| 604    | S583         | 4370.0 | 796.5 |
| 605    | S582         | 4350.0 | 671.5 |
| 606    | S581         | 4330.0 | 796.5 |
| 607    | S580         | 4310.0 | 671.5 |
|        | S579         | 4290.0 | 796.5 |
|        | S578         | 4270.0 | 671.5 |
| 610    | S577         | 4250.0 | 796.5 |
| 611    | S576         | 4230.0 | 671.5 |
| 612    | S575         | 4210.0 | 796.5 |
| 613    | S574         | 4190.0 | 671.5 |
|        | S573         | 4170.0 | 796.5 |
|        | S572         | 4150.0 | 671.5 |
| 616    | S571         | 4130.0 | 796.5 |
|        | S570         | 4110.0 | 671.5 |
| 618    | S569         | 4090.0 | 796.5 |
| 619    | S568         | 4070.0 | 671.5 |
|        | S567         | 4050.0 | 796.5 |
| 621    | S566         | 4030.0 | 671.5 |
| 622    | S565         | 4010.0 | 796.5 |
| 623    | S564         | 3990.0 | 671.5 |
| 624    | S563         | 3970.0 | 796.5 |
| 625    | S562         | 3950.0 | 671.5 |
| 626    | S561         | 3930.0 | 796.5 |
| 627    | S560         | 3910.0 | 671.5 |
| 628    | S559         | 3890.0 | 796.5 |
| 629    | S558         | 3870.0 | 671.5 |
| 630    | S557         | 3850.0 | 796.5 |
| 631    | S556         | 3830.0 | 671.5 |
| 632    | S555         | 3810.0 | 796.5 |
| 633    | S554         | 3790.0 | 671.5 |
| 634    | S553         | 3770.0 | 796.5 |
| 635    | S552         | 3750.0 | 671.5 |
| 636    | S551         | 3730.0 | 796.5 |
| 637    | S550         | 3710.0 | 671.5 |
| 638    | S549         | 3690.0 | 796.5 |
| 639    | S548         | 3670.0 | 671.5 |
| 640    | S547         | 3650.0 | 796.5 |
| 641    | S546         | 3630.0 | 671.5 |
| 642    | S545         | 3610.0 | 796.5 |
| 643    | S544         | 3590.0 | 671.5 |
| 644    | S543         | 3570.0 | 796.5 |
| 645    | S542         | 3550.0 | 671.5 |
| 646    | S541         | 3530.0 | 796.5 |
| 647    | S540         | 3510.0 | 671.5 |
| 648    | S539         | 3490.0 | 796.5 |
| 649    | S538         | 3470.0 | 671.5 |
| 650    | S537         | 3450.0 | 796.5 |
|        |              |        |       |

| pad No | pad name | Х      | Υ     |
|--------|----------|--------|-------|
| 651    | S536     | 3430.0 | 671.5 |
| 652    | S535     | 3410.0 | 796.5 |
| 653    | S534     | 3390.0 | 671.5 |
| 654    | S533     | 3370.0 | 796.5 |
| 655    | S532     | 3350.0 | 671.5 |
| 656    | S531     | 3330.0 | 796.5 |
| 657    | S530     | 3310.0 | 671.5 |
| 658    | S529     | 3290.0 | 796.5 |
| 659    | S528     | 3270.0 | 671.5 |
| 660    | S527     | 3250.0 | 796.5 |
| 661    | S526     | 3230.0 | 671.5 |
| 662    | S525     | 3210.0 | 796.5 |
|        | S524     | 3190.0 | 671.5 |
|        | S523     | 3170.0 | 796.5 |
|        | S522     | 3150.0 | 671.5 |
|        | S521     | 3130.0 | 796.5 |
|        | S520     | 3110.0 | 671.5 |
|        | S519     | 3090.0 | 796.5 |
|        | S518     | 3070.0 | 671.5 |
|        | S517     | 3050.0 | 796.5 |
|        | S516     | 3030.0 | 671.5 |
|        | S515     | 3010.0 | 796.5 |
|        | S514     | 2990.0 | 671.5 |
|        | S513     | 2970.0 | 796.5 |
|        | S512     | 2950.0 | 671.5 |
|        | S511     | 2930.0 | 796.5 |
|        | S510     | 2910.0 | 671.5 |
|        | S509     | 2890.0 | 796.5 |
|        | S508     | 2870.0 | 671.5 |
|        | S507     | 2850.0 | 796.5 |
|        | S506     | 2830.0 | 671.5 |
|        | S505     | 2810.0 | 796.5 |
|        | S504     | 2790.0 | 671.5 |
|        | S503     | 2770.0 | 796.5 |
|        | S502     | 2750.0 | 671.5 |
|        | S501     | 2730.0 | 796.5 |
|        | S500     | 2710.0 | 671.5 |
|        | S499     | 2690.0 | 796.5 |
|        | S498     | 2670.0 | 671.5 |
|        | S497     | 2650.0 | 796.5 |
|        | S496     | 2630.0 | 671.5 |
|        | S495     | 2610.0 | 796.5 |
|        | S494     | 2590.0 | 671.5 |
| 694    | S493     | 2570.0 | 796.5 |
|        | S492     | 2550.0 | 671.5 |
|        | S491     | 2530.0 | 796.5 |
|        | S490     | 2510.0 | 671.5 |
|        | S489     | 2490.0 | 796.5 |
|        | S488     | 2470.0 | 671.5 |
|        | S487     | 2450.0 | 796.5 |
|        |          | •      |       |

|          | AD COOldinat |         | Υ Υ    |
|----------|--------------|---------|--------|
| pad No   | pad name     | X       |        |
|          | S486         | 2430.0  | 671.5  |
|          | S485         | 2410.0  | 796.5  |
|          | S484         | 2390.0  | 671.5  |
|          | S483         | 2370.0  | 796.5  |
|          | S482         | 2350.0  | 671.5  |
| <b>-</b> | S481         | 2330.0  | 796.5  |
|          | S480         | 2310.0  | 671.5  |
|          | S479         | 2290.0  | 796.5  |
|          | S478         | 2270.0  | 671.5  |
|          | S477         | 2250.0  | 796.5  |
|          | S476         | 2230.0  | 671.5  |
| 712      | S475         | 2210.0  | 796.5  |
| 713      | S474         | 2190.0  | 671.5  |
| 714      | S473         | 2170.0  | 796.5  |
| 715      | S472         | 2150.0  | 671.5  |
| 716      | S471         | 2130.0  | 796.5  |
| 717      | S470         | 2110.0  | 671.5  |
| 718      | S469         | 2090.0  | 796.5  |
| 719      | S468         | 2070.0  | 671.5  |
| 720      | S467         | 2050.0  | 796.5  |
| 721      | S466         | 2030.0  | 671.5  |
| 722      | S465         | 2010.0  | 796.5  |
| 723      | S464         | 1990.0  | 671.5  |
| 724      | S463         | 1970.0  | 796.5  |
| 725      | S462         | 1950.0  | 671.5  |
| 726      | S461         | 1930.0  | 796.5  |
| 727      | S460         | 1910.0  | 671.5  |
| 728      | S459         | 1890.0  | 796.5  |
| 729      | S458         | 1870.0  | 671.5  |
| 730      | S457         | 1850.0  | 796.5  |
| 731      | S456         | 1830.0  | 671.5  |
|          | S455         | 1810.0  | 796.5  |
| 733      | S454         | 1790.0  | 671.5  |
|          | S453         | 1770.0  | 796.5  |
|          | S452         | 1750.0  | 671.5  |
|          | S451         | 1730.0  | 796.5  |
|          | S450         | 1710.0  | 671.5  |
|          | S449         | 1690.0  | 796.5  |
|          | S448         | 1670.0  | 671.5  |
|          | S447         | 1650.0  | 796.5  |
| 741      |              | 1630.0  | 671.5  |
|          | S445         | 1610.0  | 796.5  |
|          | S444         | 1590.0  | 671.5  |
|          | S443         | 1570.0  | 796.5  |
|          | S442         | 1550.0  | 671.5  |
|          | S441         | 1530.0  | 796.5  |
| 747      |              | 1510.0  | 671.5  |
|          | S439         | 1490.0  | 796.5  |
|          | S438         | 1470.0  | 671.5  |
| 750      |              | 1450.0  | 796.5  |
| , 00     | J . J .      | , 100.0 | , 50.0 |

| pad No | pad name | Х      | Υ     |
|--------|----------|--------|-------|
| 751    | S436     | 1430.0 | 671.5 |
| 752    | S435     | 1410.0 | 796.5 |
| 753    | S434     | 1390.0 | 671.5 |
| 754    | S433     | 1370.0 | 796.5 |
| 755    | S432     | 1350.0 | 671.5 |
| 756    | S431     | 1330.0 | 796.5 |
| 757    | S430     | 1310.0 | 671.5 |
| 758    | S429     | 1290.0 | 796.5 |
| 759    | S428     | 1270.0 | 671.5 |
| 760    | S427     | 1250.0 | 796.5 |
| 761    | S426     | 1230.0 | 671.5 |
| 762    | S425     | 1210.0 | 796.5 |
| 763    | S424     | 1190.0 | 671.5 |
| 764    | S423     | 1170.0 | 796.5 |
| 765    | S422     | 1150.0 | 671.5 |
| 766    | S421     | 1130.0 | 796.5 |
|        | S420     | 1110.0 | 671.5 |
| 768    | S419     | 1090.0 | 796.5 |
| 769    | S418     | 1070.0 | 671.5 |
| 770    | S417     | 1050.0 | 796.5 |
| 771    | S416     | 1030.0 | 671.5 |
|        | S415     | 1010.0 | 796.5 |
|        | S414     | 990.0  | 671.5 |
| 774    | S413     | 970.0  | 796.5 |
|        | S412     | 950.0  | 671.5 |
| 776    | S411     | 930.0  | 796.5 |
| 777    | S410     | 910.0  | 671.5 |
| 778    | S409     | 890.0  | 796.5 |
| 779    | S408     | 870.0  | 671.5 |
| 780    | S407     | 850.0  | 796.5 |
| 781    | S406     | 830.0  | 671.5 |
| 782    | S405     | 810.0  | 796.5 |
| 783    | S404     | 790.0  | 671.5 |
| 784    | S403     | 770.0  | 796.5 |
| 785    | S402     | 750.0  | 671.5 |
| 786    | S401     | 730.0  | 796.5 |
| 787    | S400     | 710.0  | 671.5 |
| 788    | S399     | 690.0  | 796.5 |
| 789    | S398     | 670.0  | 671.5 |
| 790    | S397     | 650.0  | 796.5 |
| 791    | S396     | 630.0  | 671.5 |
| 792    | S395     | 610.0  | 796.5 |
| 793    | S394     | 590.0  | 671.5 |
| 794    | S393     | 570.0  | 796.5 |
| 795    | S392     | 550.0  | 671.5 |
| 796    | S391     | 530.0  | 796.5 |
| 797    | S390     | 510.0  | 671.5 |
| 798    | S389     | 490.0  | 796.5 |
| 799    | S388     | 470.0  | 671.5 |
| 800    | S387     | 450.0  | 796.5 |
|        |          |        |       |

|        | AD COOLGINAL |        |        |
|--------|--------------|--------|--------|
| pad No | pad name     | X      | Y      |
|        | S386         | 430.0  | 671.5  |
|        | S385         | 410.0  | 796.5  |
|        | S384         | 390.0  | 671.5  |
|        | S383         | 370.0  | 796.5  |
|        | S382         | 350.0  | 671.5  |
|        | S381         | 330.0  | 796.5  |
|        | S380         | 310.0  | 671.5  |
|        | S379         | 290.0  | 796.5  |
|        | S378         | 270.0  | 671.5  |
|        | S377         | 250.0  | 796.5  |
|        | S376         | 230.0  | 671.5  |
|        | S375         | 210.0  | 796.5  |
|        | S374         | 190.0  | 671.5  |
|        | S373         | 170.0  | 796.5  |
|        | S372         | 150.0  | 671.5  |
| 816    | S371         | 130.0  | 796.5  |
|        | S370         | 110.0  | 671.5  |
|        | S369         | 90.0   | 796.5  |
| 819    | S368         | 70.0   | 671.5  |
|        | S367         | 50.0   | 796.5  |
| 821    | S366         | 30.0   | 671.5  |
| 822    | S365         | 10.0   | 796.5  |
| 823    | S364         | -10.0  | 671.5  |
| 824    | S363         | -30.0  | 796.5  |
| 825    | S362         | -50.0  | 671.5  |
| 826    | S361         | -70.0  | 796.5  |
| 827    | S360         | -90.0  | 671.5  |
| 828    | S359         | -110.0 | 796.5  |
| 829    | S358         | -130.0 | 671.5  |
| 830    | S357         | -150.0 | 796.5  |
| 831    | S356         | -170.0 | 671.5  |
| 832    | S355         | -190.0 | 796.5  |
| 833    | S354         | -210.0 | 671.5  |
| 834    | S353         | -230.0 | 796.5  |
| 835    | S352         | -250.0 | 671.5  |
| 836    | S351         | -270.0 | 796.5  |
| 837    | S350         | -290.0 | 671.5  |
| 838    | S349         | -310.0 | 796.5  |
| 839    | S348         | -330.0 | 671.5  |
|        | S347         | -350.0 | 796.5  |
| 841    | S346         | -370.0 | 671.5  |
|        | S345         | -390.0 | 796.5  |
| 843    | S344         | -410.0 | 671.5  |
| 844    | S343         | -430.0 | 796.5  |
|        |              | -450.0 | 671.5  |
|        | S341         | -470.0 | 796.5  |
| 847    |              | -490.0 | 671.5  |
|        | S339         | -510.0 | 796.5  |
|        | S338         | -530.0 | 671.5  |
| 850    | S337         | -550.0 | 796.5  |
| 555    |              | 330.0  | . 55.5 |

|        |          | 2005.00 |       |
|--------|----------|---------|-------|
| pad No | pad name | Χ       | Υ     |
| 851    | S336     | -570.0  | 671.5 |
| 852    | S335     | -590.0  | 796.5 |
| 853    | S334     | -610.0  | 671.5 |
| 854    | S333     | -630.0  | 796.5 |
| 855    | S332     | -650.0  | 671.5 |
|        | S331     | -670.0  | 796.5 |
| 857    | S330     | -690.0  | 671.5 |
| 858    | S329     | -710.0  | 796.5 |
| 859    | S328     | -730.0  | 671.5 |
| 860    | S327     | -750.0  | 796.5 |
|        | S326     | -770.0  | 671.5 |
|        | S325     | -790.0  | 796.5 |
|        | S324     | -810.0  | 671.5 |
|        | S323     | -830.0  | 796.5 |
|        | S322     | -850.0  | 671.5 |
|        | S321     | -870.0  | 796.5 |
|        | S320     | -890.0  | 671.5 |
|        | S319     | -910.0  | 796.5 |
|        | S318     | -930.0  | 671.5 |
|        | S317     | -950.0  | 796.5 |
|        | S316     | -970.0  | 671.5 |
|        | S315     | -990.0  | 796.5 |
|        | S314     | -1010.0 | 671.5 |
|        | S313     | -1030.0 | 796.5 |
|        | S312     | -1050.0 | 671.5 |
|        | S311     | -1070.0 | 796.5 |
|        | S310     | -1090.0 | 671.5 |
|        | S309     | -1110.0 | 796.5 |
|        | S308     | -1130.0 | 671.5 |
|        | S307     | -1150.0 | 796.5 |
|        | S306     | -1170.0 | 671.5 |
|        | S305     | -1190.0 | 796.5 |
|        | S304     | -1210.0 | 671.5 |
|        | S303     | -1230.0 | 796.5 |
|        | S302     | -1250.0 | 671.5 |
|        | S301     | -1270.0 | 796.5 |
|        | S300     | -1290.0 | 671.5 |
|        | S299     | -1310.0 | 796.5 |
|        | S298     | -1330.0 | 671.5 |
|        | S297     | -1350.0 | 796.5 |
|        | S296     | -1370.0 | 671.5 |
|        | S295     | -1390.0 | 796.5 |
|        | S294     | -1410.0 | 671.5 |
|        | S293     | -1430.0 | 796.5 |
|        | S292     | -1450.0 | 671.5 |
|        | S291     | -1470.0 | 796.5 |
|        | S290     | -1490.0 | 671.5 |
|        | S289     | -1510.0 | 796.5 |
|        | S288     | -1530.0 | 671.5 |
|        | S287     | -1550.0 | 796.5 |
|        |          |         |       |

|          | AD COOLUMNAL |         |       |
|----------|--------------|---------|-------|
| pad No   | •            | Χ       | Υ     |
|          | S286         | -1570.0 | 671.5 |
|          | S285         | -1590.0 | 796.5 |
|          | S284         | -1610.0 | 671.5 |
| 904      | S283         | -1630.0 | 796.5 |
| 905      | S282         | -1650.0 | 671.5 |
| 906      | S281         | -1670.0 | 796.5 |
| 907      | S280         | -1690.0 | 671.5 |
|          | S279         | -1710.0 | 796.5 |
|          | S278         | -1730.0 | 671.5 |
| 910      | S277         | -1750.0 | 796.5 |
| 911      | S276         | -1770.0 | 671.5 |
| 912      | S275         | -1790.0 | 796.5 |
| 913      | S274         | -1810.0 | 671.5 |
| 914      | S273         | -1830.0 | 796.5 |
| 915      | S272         | -1850.0 | 671.5 |
| 916      | S271         | -1870.0 | 796.5 |
| 917      | S270         | -1890.0 | 671.5 |
| 918      | S269         | -1910.0 | 796.5 |
| 919      | S268         | -1930.0 | 671.5 |
| 920      | S267         | -1950.0 | 796.5 |
| 921      | S266         | -1970.0 | 671.5 |
| 922      | S265         | -1990.0 | 796.5 |
|          | S264         | -2010.0 | 671.5 |
| 924      | S263         | -2030.0 | 796.5 |
| 925      | S262         | -2050.0 | 671.5 |
| 926      | S261         | -2070.0 | 796.5 |
| 927      | S260         | -2090.0 | 671.5 |
| 928      | S259         | -2110.0 | 796.5 |
| 929      | S258         | -2130.0 | 671.5 |
| 930      | S257         | -2150.0 | 796.5 |
|          | S256         | -2170.0 | 671.5 |
|          | S255         | -2190.0 | 796.5 |
|          | S254         | -2210.0 | 671.5 |
|          | S253         | -2230.0 | 796.5 |
|          | S252         | -2250.0 | 671.5 |
|          | S251         | -2270.0 | 796.5 |
|          | S250         | -2290.0 | 671.5 |
|          | S249         | -2310.0 | 796.5 |
|          | S248         | -2330.0 | 671.5 |
| <b>-</b> | S247         | -2350.0 | 796.5 |
|          | S246         | -2370.0 | 671.5 |
|          | S245         | -2390.0 | 796.5 |
|          | S244         | -2410.0 | 671.5 |
|          | S243         | -2430.0 | 796.5 |
| <b>-</b> | S242         | -2450.0 | 671.5 |
|          | S241         | -2470.0 | 796.5 |
| 947      |              | -2490.0 | 671.5 |
|          | S239         | -2510.0 | 796.5 |
|          | S238         | -2530.0 | 671.5 |
| 950      |              | -2550.0 | 796.5 |
|          | _            | 3.2.2.0 |       |

|        |          | 2005.00 |       |
|--------|----------|---------|-------|
| pad No | pad name | Х       | Υ     |
| 951    | S236     | -2570.0 | 671.5 |
| 952    | S235     | -2590.0 | 796.5 |
| 953    | S234     | -2610.0 | 671.5 |
| 954    | S233     | -2630.0 | 796.5 |
| 955    | S232     | -2650.0 | 671.5 |
| 956    | S231     | -2670.0 | 796.5 |
| 957    | S230     | -2690.0 | 671.5 |
| 958    | S229     | -2710.0 | 796.5 |
| 959    | S228     | -2730.0 | 671.5 |
| 960    | S227     | -2750.0 | 796.5 |
| 961    | S226     | -2770.0 | 671.5 |
| 962    | S225     | -2790.0 | 796.5 |
| 963    | S224     | -2810.0 | 671.5 |
| 964    | S223     | -2830.0 | 796.5 |
| 965    | S222     | -2850.0 | 671.5 |
| 966    | S221     | -2870.0 | 796.5 |
| 967    | S220     | -2890.0 | 671.5 |
| 968    | S219     | -2910.0 | 796.5 |
| 969    | S218     | -2930.0 | 671.5 |
| 970    | S217     | -2950.0 | 796.5 |
| 971    | S216     | -2970.0 | 671.5 |
| 972    | S215     | -2990.0 | 796.5 |
| 973    | S214     | -3010.0 | 671.5 |
| 974    | S213     | -3030.0 | 796.5 |
| 975    | S212     | -3050.0 | 671.5 |
| 976    | S211     | -3070.0 | 796.5 |
| 977    | S210     | -3090.0 | 671.5 |
| 978    | S209     | -3110.0 | 796.5 |
| 979    | S208     | -3130.0 | 671.5 |
| 980    | S207     | -3150.0 | 796.5 |
| 981    | S206     | -3170.0 | 671.5 |
| 982    | S205     | -3190.0 | 796.5 |
| 983    | S204     | -3210.0 | 671.5 |
| 984    | S203     | -3230.0 | 796.5 |
| 985    | S202     | -3250.0 | 671.5 |
| 986    | S201     | -3270.0 | 796.5 |
| 987    | S200     | -3290.0 | 671.5 |
| 988    | S199     | -3310.0 | 796.5 |
| 989    | S198     | -3330.0 | 671.5 |
| 990    | S197     | -3350.0 | 796.5 |
| 991    | S196     | -3370.0 | 671.5 |
| 992    | S195     | -3390.0 | 796.5 |
| 993    | S194     | -3410.0 | 671.5 |
| 994    | S193     | -3430.0 | 796.5 |
| 995    | S192     | -3450.0 | 671.5 |
| 996    | S191     | -3470.0 | 796.5 |
| 997    | S190     | -3490.0 | 671.5 |
| 998    | S189     | -3510.0 | 796.5 |
|        | S188     | -3530.0 | 671.5 |
| 1000   | S187     | -3550.0 | 796.5 |
|        |          |         |       |

|        | AD COOLUITAL |         |       |
|--------|--------------|---------|-------|
| pad No | •            | X       | Y     |
|        | S186         | -3570.0 | 671.5 |
|        | S185         | -3590.0 | 796.5 |
|        | S184         | -3610.0 | 671.5 |
|        | S183         | -3630.0 | 796.5 |
|        | S182         | -3650.0 | 671.5 |
|        | S181         | -3670.0 | 796.5 |
|        | S180         | -3690.0 | 671.5 |
|        | S179         | -3710.0 | 796.5 |
|        | S178         | -3730.0 | 671.5 |
|        | S177         | -3750.0 | 796.5 |
|        | S176         | -3770.0 | 671.5 |
|        | S175         | -3790.0 | 796.5 |
|        | S174         | -3810.0 | 671.5 |
|        | S173         | -3830.0 | 796.5 |
|        | S172         | -3850.0 | 671.5 |
|        | S171         | -3870.0 | 796.5 |
|        | S170         | -3890.0 | 671.5 |
|        | S169         | -3910.0 | 796.5 |
|        | S168         | -3930.0 | 671.5 |
|        | S167         | -3950.0 | 796.5 |
| 1021   | S166         | -3970.0 | 671.5 |
| 1022   | S165         | -3990.0 | 796.5 |
| 1023   | S164         | -4010.0 | 671.5 |
| 1024   | S163         | -4030.0 | 796.5 |
| 1025   | S162         | -4050.0 | 671.5 |
|        | S161         | -4070.0 | 796.5 |
| 1027   | S160         | -4090.0 | 671.5 |
| 1028   | S159         | -4110.0 | 796.5 |
| 1029   | S158         | -4130.0 | 671.5 |
| 1030   | S157         | -4150.0 | 796.5 |
| 1031   | S156         | -4170.0 | 671.5 |
|        | S155         | -4190.0 | 796.5 |
| 1033   | S154         | -4210.0 | 671.5 |
| 1034   | S153         | -4230.0 | 796.5 |
| 1035   | S152         | -4250.0 | 671.5 |
| 1036   | S151         | -4270.0 | 796.5 |
| 1037   | S150         | -4290.0 | 671.5 |
| 1038   | S149         | -4310.0 | 796.5 |
|        | S148         | -4330.0 | 671.5 |
|        | S147         | -4350.0 | 796.5 |
| 1041   | S146         | -4370.0 | 671.5 |
| 1042   | S145         | -4390.0 | 796.5 |
|        | S144         | -4410.0 | 671.5 |
| 1044   | S143         | -4430.0 | 796.5 |
|        | S142         | -4450.0 | 671.5 |
|        | S141         | -4470.0 | 796.5 |
|        | S140         | -4490.0 | 671.5 |
|        | S139         | -4510.0 | 796.5 |
|        | S138         | -4530.0 | 671.5 |
|        | S137         | -4550.0 | 796.5 |
|        |              | .500.0  |       |

| pad No | pad name | Х       | Υ     |
|--------|----------|---------|-------|
| •      | S136     | -4570.0 | 671.5 |
|        | S135     | -4590.0 | 796.5 |
|        | S134     | -4610.0 | 671.5 |
|        | S133     | -4630.0 | 796.5 |
|        | S132     | -4650.0 | 671.5 |
|        | S131     | -4670.0 | 796.5 |
|        | S130     | -4690.0 | 671.5 |
|        | S129     | -4710.0 | 796.5 |
|        | S128     | -4730.0 | 671.5 |
|        | S127     | -4750.0 | 796.5 |
|        | S126     | -4770.0 | 671.5 |
|        | S125     | -4790.0 | 796.5 |
|        | S124     | -4810.0 | 671.5 |
|        | S123     | -4830.0 | 796.5 |
|        | S122     | -4850.0 | 671.5 |
|        | S121     | -4870.0 | 796.5 |
|        | S120     | -4890.0 | 671.5 |
|        | S119     | -4910.0 | 796.5 |
|        | S118     | -4930.0 | 671.5 |
|        | S117     | -4950.0 | 796.5 |
|        | S116     | -4970.0 | 671.5 |
|        | S115     | -4990.0 | 796.5 |
|        | S114     | -5010.0 | 671.5 |
|        | S113     | -5030.0 | 796.5 |
|        | S112     | -5050.0 | 671.5 |
|        | S111     | -5070.0 | 796.5 |
|        | S110     | -5090.0 | 671.5 |
|        | S109     | -5110.0 | 796.5 |
|        | S108     | -5130.0 | 671.5 |
|        | S107     | -5150.0 | 796.5 |
|        | S106     | -5170.0 | 671.5 |
|        | S105     | -5190.0 | 796.5 |
| 1083   | S104     | -5210.0 | 671.5 |
|        | S103     | -5230.0 | 796.5 |
|        | S102     | -5250.0 | 671.5 |
|        | S101     | -5270.0 | 796.5 |
| 1087   | S100     | -5290.0 | 671.5 |
| 1088   | S99      | -5310.0 | 796.5 |
| 1089   | S98      | -5330.0 | 671.5 |
| 1090   | S97      | -5350.0 | 796.5 |
| 1091   | S96      | -5370.0 | 671.5 |
| 1092   | S95      | -5390.0 | 796.5 |
| 1093   | S94      | -5410.0 | 671.5 |
| 1094   | S93      | -5430.0 | 796.5 |
| 1095   |          | -5450.0 | 671.5 |
| 1096   | S91      | -5470.0 | 796.5 |
| 1097   |          | -5490.0 | 671.5 |
| 1098   | S89      | -5510.0 | 796.5 |
| 1099   |          | -5530.0 | 671.5 |
| 1100   | S87      | -5550.0 | 796.5 |
|        |          |         |       |

| pad No       | pad name | X                  | Y              |
|--------------|----------|--------------------|----------------|
| 1101         | •        | -5570.0            | 671.5          |
| 1101         |          | -5590.0            | 796.5          |
| 1102         |          | -5610.0            | 671.5          |
|              |          |                    |                |
| 1104         |          | -5630.0            | 796.5          |
| 1105         |          | -5650.0            | 671.5          |
| 1106         |          | -5670.0<br>-5690.0 | 796.5          |
| 1107         |          |                    | 671.5          |
| 1108         |          | -5710.0            | 796.5          |
| 1109         |          | -5730.0            | 671.5          |
| 1110         |          | -5750.0            | 796.5          |
| 1111         |          | -5770.0            | 671.5          |
| 1112         |          | -5790.0            | 796.5          |
| 1113         |          | -5810.0            | 671.5          |
| 1114         |          | -5830.0            | 796.5          |
| 1115         |          | -5850.0            | 671.5          |
| 1116         |          | -5870.0            | 796.5          |
| 1117         |          | -5890.0            | 671.5          |
| 1118         |          | -5910.0            | 796.5          |
| 1119         |          | -5930.0            | 671.5          |
| 1120         |          | -5950.0            | 796.5          |
| 1121         |          | -5970.0            | 671.5          |
| 1122         |          | -5990.0            | 796.5          |
| 1123         |          | -6010.0            | 671.5          |
| 1124         |          | -6030.0            | 796.5          |
| 1125         |          | -6050.0            | 671.5          |
| 1126         |          | -6070.0            | 796.5          |
| 1127         |          | -6090.0            | 671.5          |
| 1128         |          | -6110.0            | 796.5          |
| 1129         |          | -6130.0            | 671.5          |
| 1130         |          | -6150.0            | 796.5          |
| 1131<br>1132 |          | -6170.0<br>-6190.0 | 671.5          |
| 1132         |          | -6210.0            | 796.5<br>671.5 |
|              |          |                    |                |
| 1134         |          | -6230.0            | 796.5          |
| 1135<br>1136 |          | -6250.0            | 671.5          |
| 1136         |          | -6270.0<br>-6290.0 | 796.5<br>671.5 |
| 1137         |          | -6290.0            | 796.5          |
| 1136         |          | -6330.0            | 671.5          |
| 1139         |          |                    | 796.5          |
| 1140         |          | -6350.0<br>-6370.0 |                |
| 1141         |          | -6390.0            | 671.5<br>796.5 |
| 1142         |          | -6410.0            | 671.5          |
| 1143         |          | -6430.0            | 796.5          |
| 1144         |          | -6450.0            | 671.5          |
| 1145         |          |                    |                |
| 1146         |          | -6470.0<br>-6490.0 | 796.5          |
| 1147         |          |                    | 671.5          |
|              |          | -6510.0<br>-6530.0 | 796.5          |
| 1149<br>1150 |          | -6550.0            | 671.5<br>796.5 |
| 1150         | 001      | -0000.0            | 7 90.3         |

| pad No | pad name     | X                  | Υ      |
|--------|--------------|--------------------|--------|
| 1151   | S36          | -6570.0            | 671.5  |
| 1152   | S35          | -6590.0            | 796.5  |
| 1153   | S34          | -6610.0            | 671.5  |
| 1154   | S33          | -6630.0            | 796.5  |
| 1155   | S32          | -6650.0            | 671.5  |
| 1156   | S31          | -6670.0            | 796.5  |
| 1157   | S30          | -6690.0            | 671.5  |
| 1158   | S29          | -6710.0            | 796.5  |
| 1159   | S28          | -6730.0            | 671.5  |
| 1160   | S27          | -6750.0            | 796.5  |
| 1161   | S26          | -6770.0            | 671.5  |
| 1162   | S25          | -6790.0            | 796.5  |
| 1163   | S24          | -6810.0            | 671.5  |
| 1164   |              | -6830.0            | 796.5  |
| 1165   |              | -6850.0            | 671.5  |
|        |              | -6870.0            | 796.5  |
| 1167   | S20          | -6890.0            | 671.5  |
|        |              | -6910.0            | 796.5  |
| 1169   |              | -6930.0            | 671.5  |
| 1170   |              | -6950.0            | 796.5  |
| 1171   |              | -6970.0            | 671.5  |
| 1172   |              | -6990.0            | 796.5  |
| 1173   |              | -7010.0            | 671.5  |
| 1174   |              | -7030.0            | 796.5  |
| 1175   |              | -7050.0            | 671.5  |
| 1176   |              | -7070.0            | 796.5  |
| 1177   |              | -7090.0            | 671.5  |
| 1178   |              | -7110.0            | 796.5  |
|        |              | -7130.0            | 671.5  |
| 1180   |              | -7150.0            | 796.5  |
| 1181   |              | -7170.0            | 671.5  |
| 1182   |              | -7190.0            | 796.5  |
| 1183   |              | -7210.0            | 671.5  |
| 1184   |              | -7230.0            | 796.5  |
| 1185   |              | -7250.0            | 671.5  |
| 1186   |              | -7270.0            | 796.5  |
|        | TESTO35      | -7290.0            | 671.5  |
|        | TESTO36      | -7350.0            | 796.5  |
|        | VGLDMY3      | -7370.0            | 671.5  |
|        |              | -7370.0            | 796.5  |
| 1191   | G318         | -7410.0            | 671.5  |
| 1192   |              | -7430.0            | 796.5  |
| 1193   |              | -7450.0            | 671.5  |
|        | G312         | -7470.0            | 796.5  |
|        | G310         | -7490.0            | 671.5  |
| 1195   |              | -7490.0<br>-7510.0 | 796.5  |
| 1190   | G306         | -7510.0            | 671.5  |
|        | G304         | -7550.0            | 796.5  |
|        | G304<br>G302 | -7570.0            | 671.5  |
|        | G302<br>G300 | -7570.0            | 796.5  |
| 1200   | 2000         | . 555.0            | 7 00.0 |

|        | nod nome |         | Y     |  |  |  |  |  |
|--------|----------|---------|-------|--|--|--|--|--|
| pad No | •        | X       |       |  |  |  |  |  |
|        | G298     | -7610.0 | 671.5 |  |  |  |  |  |
|        | G296     | -7630.0 | 796.5 |  |  |  |  |  |
|        | G294     | -7650.0 | 671.5 |  |  |  |  |  |
| 1204   | G292     | -7670.0 | 796.5 |  |  |  |  |  |
| 1205   | G290     | -7690.0 | 671.5 |  |  |  |  |  |
| 1206   | G288     | -7710.0 | 796.5 |  |  |  |  |  |
| 1207   | G286     | -7730.0 | 671.5 |  |  |  |  |  |
|        | G284     | -7750.0 | 796.5 |  |  |  |  |  |
|        | G282     | -7770.0 | 671.5 |  |  |  |  |  |
|        | G280     | -7790.0 | 796.5 |  |  |  |  |  |
|        | G278     | -7810.0 | 671.5 |  |  |  |  |  |
|        | G276     | -7830.0 | 796.5 |  |  |  |  |  |
|        | G274     | -7850.0 | 671.5 |  |  |  |  |  |
|        | G272     | -7870.0 | 796.5 |  |  |  |  |  |
|        | G270     | -7890.0 | 671.5 |  |  |  |  |  |
|        | G268     | -7910.0 | 796.5 |  |  |  |  |  |
|        | G266     | -7930.0 | 671.5 |  |  |  |  |  |
| 1218   | G264     | -7950.0 | 796.5 |  |  |  |  |  |
|        | G262     | -7970.0 | 671.5 |  |  |  |  |  |
|        | G260     | -7990.0 | 796.5 |  |  |  |  |  |
| 1221   | G258     | -8010.0 | 671.5 |  |  |  |  |  |
| 1222   | G256     | -8030.0 | 796.5 |  |  |  |  |  |
| 1223   | G254     | -8050.0 | 671.5 |  |  |  |  |  |
| 1224   | G252     | -8070.0 | 796.5 |  |  |  |  |  |
| 1225   | G250     | -8090.0 | 671.5 |  |  |  |  |  |
| 1226   | G248     | -8110.0 | 796.5 |  |  |  |  |  |
| 1227   |          | -8130.0 | 671.5 |  |  |  |  |  |
| 1228   | G244     | -8150.0 | 796.5 |  |  |  |  |  |
| 1229   | G242     | -8170.0 | 671.5 |  |  |  |  |  |
| 1230   | G240     | -8190.0 | 796.5 |  |  |  |  |  |
| 1231   | G238     | -8210.0 | 671.5 |  |  |  |  |  |
| 1232   | G236     | -8230.0 | 796.5 |  |  |  |  |  |
| 1233   | G234     | -8250.0 | 671.5 |  |  |  |  |  |
| 1234   | G232     | -8270.0 | 796.5 |  |  |  |  |  |
| 1235   | G230     | -8290.0 | 671.5 |  |  |  |  |  |
| 1236   | G228     | -8310.0 | 796.5 |  |  |  |  |  |
| 1237   | G226     | -8330.0 | 671.5 |  |  |  |  |  |
| 1238   | G224     | -8350.0 | 796.5 |  |  |  |  |  |
| 1239   | G222     | -8370.0 | 671.5 |  |  |  |  |  |
| 1240   | G220     | -8390.0 | 796.5 |  |  |  |  |  |
| 1241   | G218     | -8410.0 | 671.5 |  |  |  |  |  |
| 1242   | G216     | -8430.0 | 796.5 |  |  |  |  |  |
| 1243   | G214     | -8450.0 | 671.5 |  |  |  |  |  |
| 1244   | G212     | -8470.0 | 796.5 |  |  |  |  |  |
| 1245   | G210     | -8490.0 | 671.5 |  |  |  |  |  |
| 1246   | G208     | -8510.0 | 796.5 |  |  |  |  |  |
| 1247   | G206     | -8530.0 | 671.5 |  |  |  |  |  |
| 1248   | G204     | -8550.0 | 796.5 |  |  |  |  |  |
| 1249   | G202     | -8570.0 | 671.5 |  |  |  |  |  |
| 1250   | G200     | -8590.0 | 796.5 |  |  |  |  |  |
|        |          |         |       |  |  |  |  |  |

|        |          | 2005.00 | .24 1671.2 |
|--------|----------|---------|------------|
| pad No | pad name | Χ       | Υ          |
| 1251   | G198     | -8610.0 | 671.5      |
| 1252   | G196     | -8630.0 | 796.5      |
| 1253   | G194     | -8650.0 | 671.5      |
| 1254   | G192     | -8670.0 | 796.5      |
| 1255   | G190     | -8690.0 | 671.5      |
| 1256   | G188     | -8710.0 | 796.5      |
| 1257   | G186     | -8730.0 | 671.5      |
| 1258   | G184     | -8750.0 | 796.5      |
| 1259   | G182     | -8770.0 | 671.5      |
| 1260   | G180     | -8790.0 | 796.5      |
| 1261   | G178     | -8810.0 | 671.5      |
| 1262   | G176     | -8830.0 | 796.5      |
| 1263   | G174     | -8850.0 | 671.5      |
| 1264   | G172     | -8870.0 | 796.5      |
| 1265   | G170     | -8890.0 | 671.5      |
| 1266   | G168     | -8910.0 | 796.5      |
| 1267   | G166     | -8930.0 | 671.5      |
| 1268   | G164     | -8950.0 | 796.5      |
| 1269   | G162     | -8970.0 | 671.5      |
| 1270   | G160     | -8990.0 | 796.5      |
| 1271   | G158     | -9010.0 | 671.5      |
| 1272   | G156     | -9030.0 | 796.5      |
| 1273   | G154     | -9050.0 | 671.5      |
| 1274   | G152     | -9070.0 | 796.5      |
| 1275   | G150     | -9090.0 | 671.5      |
| 1276   | G148     | -9110.0 | 796.5      |
| 1277   | G146     | -9130.0 | 671.5      |
| 1278   | G144     | -9150.0 | 796.5      |
| 1279   | G142     | -9170.0 | 671.5      |
| 1280   | G140     | -9190.0 | 796.5      |
| 1281   | G138     | -9210.0 | 671.5      |
| 1282   | G136     | -9230.0 | 796.5      |
| 1283   | G134     | -9250.0 | 671.5      |
| 1284   | G132     | -9270.0 | 796.5      |
| 1285   | G130     | -9290.0 | 671.5      |
| 1286   | G128     | -9310.0 | 796.5      |
| 1287   | G126     | -9330.0 | 671.5      |
| 1288   | G124     | -9350.0 | 796.5      |
|        |          | -9370.0 | 671.5      |
| 1290   | G120     | -9390.0 | 796.5      |
| 1291   | G118     | -9410.0 | 671.5      |
|        | G116     | -9430.0 | 796.5      |
|        | G114     | -9450.0 | 671.5      |
|        | G112     | -9470.0 | 796.5      |
|        | G110     | -9490.0 | 671.5      |
|        | G108     | -9510.0 | 796.5      |
| 1297   |          | -9530.0 | 671.5      |
|        | G104     | -9550.0 | 796.5      |
|        | G102     | -9570.0 | 671.5      |
| 1300   | G100     | -9590.0 | 796.5      |
|        |          |         |            |

## R61505 PAD coordinates (Unit: μm)

| pad No       | pad name | X                  | Υ Υ            |
|--------------|----------|--------------------|----------------|
|              | •        |                    |                |
| 1301<br>1302 |          | -9610.0            | 671.5<br>796.5 |
|              |          | -9630.0            |                |
| 1303<br>1304 |          | -9650.0<br>-9670.0 | 671.5<br>796.5 |
|              |          |                    |                |
| 1305<br>1306 |          | -9690.0<br>-9710.0 | 671.5<br>796.5 |
| 1307         |          |                    |                |
|              |          | -9730.0            | 671.5          |
| 1308         |          | -9750.0            | 796.5          |
| 1309         |          | -9770.0            | 671.5          |
| 1310         |          | -9790.0            | 796.5          |
| 1311         |          | -9810.0            | 671.5          |
| 1312         |          | -9830.0            | 796.5          |
| 1313         |          | -9850.0            | 671.5          |
| 1314         |          | -9870.0            | 796.5          |
| 1315         |          | -9890.0            | 671.5          |
| 1316         |          | -9910.0            | 796.5          |
| 1317         |          | -9930.0            | 671.5          |
| 1318         |          | -9950.0            | 796.5          |
| 1319         |          | -9970.0            | 671.5          |
| 1320         |          | -9990.0            | 796.5          |
| 1321         |          | -10010.0           | 671.5          |
| 1322         |          | -10030.0           | 796.5          |
| 1323         |          | -10050.0           | 671.5          |
| 1324         |          | -10070.0           | 796.5          |
| 1325         |          | -10090.0           | 671.5          |
| 1326         |          | -10110.0           | 796.5          |
| 1327         |          | -10130.0           | 671.5          |
| 1328         |          | -10150.0           | 796.5          |
| 1329         |          | -10170.0           | 671.5          |
| 1330         |          | -10190.0           | 796.5          |
| 1331         |          | -10210.0           | 671.5          |
| 1332         |          | -10230.0           | 796.5          |
| 1333         |          | -10250.0           | 671.5          |
| 1334         |          | -10270.0           | 796.5          |
| 1335         |          | -10290.0           | 671.5          |
| 1336         |          | -10310.0           | 796.5          |
| 1337         |          | -10330.0           | 671.5          |
| 1338         |          | -10350.0           | 796.5          |
| 1339         |          | -10370.0           | 671.5          |
| 1340         |          | -10390.0           | 796.5          |
| 1341         |          | -10410.0           | 671.5          |
| 1342         |          | -10430.0           | 796.5          |
| 1343         |          | -10450.0           | 671.5          |
| 1344         |          | -10470.0           | 796.5          |
| 1345         |          | -10490.0           | 671.5          |
| 1346         |          | -10510.0           | 796.5          |
| 1347         |          | -10530.0           | 671.5          |
| 1348         |          | -10550.0           | 796.5          |
| 1349         |          | -10570.0           | 671.5          |
| 1350         | VGLDMY4  | -10590.0           | 796.5          |

| pad No | pad name | Χ        | Υ     |
|--------|----------|----------|-------|
| 1351   | DUMMYR9  | -10610.0 | 671.5 |
| 1352   | DUMMYR10 | -10630.0 | 796.5 |
| 1353   | TESTO37  | -10650.0 | 671.5 |
| 1354   | TESTO38  | -10670.0 | 796.5 |

| Alignment mark | Χ        | Y      |
|----------------|----------|--------|
| 1-a            | -10613.0 | -753.0 |
| 1-b            | 10613.0  | -753.0 |
| 2-a            | -10572.0 | -613.0 |
| 2-b            | 10572.0  | -613.0 |
| 5-a            | -10613.0 | -285.8 |
| 5-b            | 10613.0  | -285.8 |

## **BUMP Arrangement**



Figure 2



## **GRAM Address Map**

Table 6 GRAM Address and Display Position on the Panel (SS = 0, BGR = 0)

| S/G  | pin  | S1                          | S2   | S3                 | S4     | S5        | Se         | S7                | 88     | 89                       | S10            | S11    | S12    |              | 8208   | S710          | S711            | S712     | S713   | S714   | S715   | S716   | S717 | S718     | S719 | S720 |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
|------|------|-----------------------------|------|--------------------|--------|-----------|------------|-------------------|--------|--------------------------|----------------|--------|--------|--------------|--------|---------------|-----------------|----------|--------|--------|--------|--------|------|----------|------|------|--------|--------|----|--------|------|--------|------|--------|----|--------|----|--------|--|--|----|------|---|----|------|---|---|------|---|----|------|----|
| GS=0 | GS=1 | W                           | D[17 | :0]                | W      | D[17      | :0]        | WD[17:0] WD[17:0] |        |                          | 17:0] WD[17:0] |        |        |              | W      | D[17          | :0]             | W        | D[17   | :0]    | W      | D[17   | :0]  | WD[17:0] |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G1   | G320 | h                           | 0000 | 0                  | h00001 |           |            | h00001 h00002     |        |                          |                |        |        |              | h000EC |               |                 | h000ED   |        |        | h000EE |        |      | h000EF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G2   | G319 | h                           | 0010 | 0                  | h      | 0010      | l01 h00102 |                   |        | 2                        | h00103         |        |        |              | h(     | h001EC h001   |                 |          |        |        |        |        | E    | h001EF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G3   | G318 | h                           | 0020 | 0                  | h      | h00201 h0 |            |                   |        |                          |                | 0020   | 3      |              | h002EC |               |                 | h002ED   |        |        | h002EE |        |      | h002EF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G4   | G317 | h                           | 0030 | 0                  | h00301 |           |            |                   |        |                          |                |        |        | h            | 0030   | 2             | h               | 0030     | 3      |        | h(     | 003E   | С    | h(       | 003E | D    | h      | 003E   | Ε  | h(     | 003E | :F     |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G5   | G316 | h                           | 0040 | 0                  | h      | 0040      | 1          | h                 | 0040   | 2                        | h              | 0040   | 3      |              | h(     | 004E          | С               | h(       | 004E   | D      | h      | 004E   | E    | h004EF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G6   | G315 | h                           | 0050 | 0                  | h      | 0050      | 1          | h                 | 0050   | 2                        | h              | 0050   | 3      |              | h(     | 005E          | С               | h(       | 005E   | D      | h      | 005E   | Ε    | h005EF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G7   | G314 | h                           | 0060 | 0                  | h      | 0060      | 1          | h                 | 0060   | 2                        | h              | 0060   | 3      |              | h(     | 006E          | С               | h(       | 006E   | D      | h      | 006E   | Ε    | h(       | 006E | :F   |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G8   | G313 | h                           | 0070 | 0                  | h      | 0070      | 1          | h                 | 0070   | 2                        | h              | 0070   | 3      |              | h(     | 007E          | С               | h(       | 007E   | D      | h      | 007E   | Ε    | h(       | 007E | :F   |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G9   | G312 | h                           | 0080 | 0                  | h      | 0080      | 1          | h                 | 0080   | 2                        | h              | 0800   | 3      |              | h(     | 008E          | С               | h(       | 008E   | D      | h      | 008E   | Ε    | h(       | 008E | F    |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G10  | G311 | h                           | 0090 | 0                  | h      | 0090      | 1          | h                 | 0090   | 2                        | h              | 0090   | 3      |              | h(     | 009E          | С               | h(       | 009E   | D      | h      | 009E   | Ε    | h(       | 009E | :F   |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G11  | G310 | h                           | 00A0 | 00                 | h      | 00A0      | )1         | h                 | 00A0   | 2                        | h              | 00A0   | 3      |              | hC     | 00AE          | С               | h(       | OOAE   | D      | h      | 00AE   | Ε    | h(       | 00AE | ΞF   |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G12  | G309 | h                           | 00B0 | 00                 | h      | 00B0      | )1         | h                 | 00B0   | 2                        | h              | 00B0   | 3      |              | h(     | )0BE          | С               | h(       | OOBE   | D      | h      | 00BE   | Ε    | h00BEF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G13  | G308 | h                           | 00C0 | 00                 | h      | 00C0      | )1         | h                 | 00C0   | 2                        | h              | 00C0   | 3      |              | hC     | OCE           | C               | h(       | OOCE   | D      | h      | 00CE   | Ε    | h00CEF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G14  | G307 | h                           | 00D0 | 00                 | h      | 00D0      | )1         | h                 | 00D0   | 2                        | h00D03         |        |        |              | hC     | 00DE          | C               | h00DED   |        |        | h      | 00DE   | Ε    | h00DEF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G15  | G306 | h                           | 00E0 | 00                 | h00E01 |           |            | h                 | 00E0   | 2                        | h00E03         |        |        |              | h(     | 0EE           | С               | h00EED   |        |        | h00EEE |        |      | h00EEF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G16  | G305 | h                           | 00F0 | 0                  | h      | 00F0      | )1         | h00F02            |        |                          | h00F03         |        |        | h00FEC       |        | C             | h00FED          |          | h00FEE |        | Ε      | h00FEF |      | :F       |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G17  | G304 | h                           | 0100 | 0                  | h      | h01001    |            | h                 | 0100   | 2                        | h01003         |        |        | h010EC h010E |        | D             | h010EE          |          | Ε      | h010EF |        | :F     |      |          |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G18  | G303 | h                           | 0110 | 0                  | h      | 0110      | 1          | h01102            |        |                          | h01103         |        |        |              | h(     | )11E          | С               | h011ED h |        |        | 011E   | h011EF |      | :F       |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G19  | G302 | h01200                      |      | h01200             |        | h01200    |            | h01200            |        |                          |                | h01200 |        |              | h01200 |               | h01201          |          |        | 0120   | 2      | h      | 0120 | 3        |      | h(   | )12E   | С      | h( | 012E   | D    | h      | 012E | Ε      | h( | )12E   | :F |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G20  | G301 | h                           | 0130 | 0                  | h      | 0130      | 1          | h01302            |        |                          | h              | h01303 |        |              | h013EC |               | С               | h013ED   |        | h013E  |        | ΞE     |      | h013EF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| :    | :    |                             | :    |                    |        | :         |            |                   | :      |                          |                | :      |        | :            |        | :             |                 |          | :      |        |        | :      |      |          | :    |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G305 | G16  | h                           | 1300 | 0                  | h      | 1300      | 1          | h                 | 1300   | 2                        | h130           |        | 3      |              | h′     | 130E          | С               | h'       | 130E   | D      | h      | 130E   | E    | h'       | 130E | :F   |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G306 | G15  | h13100                      |      |                    | h13101 |           |            | h                 | 1310   | 2                        | h              | 1310   | 3      |              | h′     | 131E          | С               | h′       | 131E   | D      | h      | 131E   | E    | h'       | 131E | :F   |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G307 | G14  | h                           | 1320 | 0                  | h      | 1320      | 1          | h                 | 1320   | 2                        | h              | 1320   | 3      |              | h′     | h132EC h132ED |                 |          |        |        | h      | 132E   | E    | h132EF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G308 | G13  | h                           | 1330 | 0                  | h      | 1330      | 1          | h                 | 1330   | 2                        | h              | 1330   | 3      |              | h′     | 133E          | С               | h'       | 133E   | D      | h      | 133E   | E    | h'       | 133E | :F   |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G309 | G12  | h                           | 1340 | 0                  | h      | 1340      | 1          | h                 | 1340   | 2                        | h              | h1340  |        | h13403       |        | h13403        |                 | h13403   |        | h13403 |        | h13403 |      | h13403   |      |      |        | h13403 |    | h13403 |      | h13403 |      | h13403 |    | h13403 |    | h13403 |  |  | h′ | 134E | С | h' | 134E | D | h | 134E | E | h' | 134E | :F |
| G310 | G11  | h                           | 1350 | 3500 h13501 h13502 |        |           |            |                   |        | h13501 h13502 h13503 h13 |                |        |        |              |        | 135E          | C h135ED h135EE |          |        |        |        |        | E    | h'       | 135E | :F   |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G311 | G10  | h13600 h13601 h13602 h13603 |      |                    |        | h13601    |            |                   |        | h′                       | 136E           | С      | h'     | 136E         | D      | h             | 136E            | E        | h'     | 136E   | :F     |        |      |          |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G312 | G9   | h                           | 1370 | 0                  | h      | 1370      | 1          | h                 | h13702 |                          | h13702         |        | h13702 |              | h13702 |               | h               | 1370     | 3      |        |        | 137E   |      | h'       | 137E | D    |        | 137E   |    | -      | 137E |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G313 | G8   |                             | 1380 |                    |        | 1380      |            |                   | 1380   |                          |                | 1380   |        |              |        | 138E          |                 |          | 138E   |        |        | 138E   |      | _        | 138E |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G314 | G7   |                             | 1390 |                    |        | 1390      |            |                   | 1390   |                          |                | 1390   |        |              |        | 139E          |                 |          | 139E   |        |        | 139E   |      |          | 139E |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G315 | G6   |                             | 13A0 |                    |        | 13A0      |            |                   | 13A0   |                          |                | 13A0   |        |              |        | 3AE           |                 |          | 13AE   |        |        | 13AE   |      | h13AEF   |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G316 | G5   |                             | 13B0 |                    |        | 13B0      |            |                   | 13B0   |                          | _              | 13B0   |        |              |        | 3BE           |                 | _        | 13BE   |        |        | 13BE   |      | _        | 13BE |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G317 | G4   |                             | 13C0 |                    |        | 13C0      |            |                   | 13C0   |                          |                | 13C0   | _      |              |        | 3CE           |                 |          | 13CE   |        |        | 13CE   |      |          | 3CE  | _    |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G318 | G3   |                             | 13D0 |                    |        | 13D0      |            | h13D02            |        |                          | h13D02         |        |        |              | 13D0   | _             |                 | h13DEC   |        |        | h13DED |        |      | h13DEE   |      |      | h13DEF |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G319 | G2   |                             | 13E0 |                    |        | 13E0      |            |                   | 13E0   |                          |                | 13E0   |        |              |        | 3EE           |                 |          | 13EE   |        |        | 13EE   |      |          | 13EE |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |
| G320 | G1   | h                           | 13F0 | 0                  | h      | 13F0      | )1         | h                 | 13F0   | 2                        | h              | 13F0   | 3      |              | h1     | 13FE          | С               | 13FE     | E      | h13FEF |        |        |      |          |      |      |        |        |    |        |      |        |      |        |    |        |    |        |  |  |    |      |   |    |      |   |   |      |   |    |      |    |

Table 7 GRAM Address and Display Position on the Panel (SS = 1, BGR = 1)

| S/G          | 6 pin    | S720 | S719 | S718 | S717 | S716 | S715 | S714 | S713  | S712 | S711 | S710 | 8709 |   | S12 | S11  | S10 | S9 | S8   | S7   | Se | S5   | S4  | S3 | S2    | S1  |
|--------------|----------|------|------|------|------|------|------|------|-------|------|------|------|------|---|-----|------|-----|----|------|------|----|------|-----|----|-------|-----|
| GS=0         | GS=1     | W    | D[17 | :01  | W    | D[17 | :01  | ١    | VD[17 | 7:01 | W    | D[17 | :01  |   | W   | D[17 | :01 | W  | D[17 | ':01 | W  | D[17 | :01 | WI | D[17: | :01 |
| G1           | G320     |      | 0000 | -    | -    | 0000 | -    | +-   | h000  | -    |      | 0000 | _    |   |     | 000E | -   |    | 000E | -    | -  | 000E | -   |    | 000E  | _   |
| G2           | G319     |      | 0010 | _    |      | 0010 |      | +-   | h001  |      |      | 0010 |      |   |     | 001E |     |    | 001E |      |    | 001E |     |    | 001E  |     |
| G3           | G318     |      | 0020 |      | h    | 0020 | )1   |      | h002  | 02   |      | 0020 |      |   | h(  | 002E | С   | h( | 002E | ED.  | h  | 002E | E   | hC | 002E  | F   |
| G4           | G317     |      | 0030 |      |      | 0030 |      | +    | h003  |      |      | 0030 |      |   |     | 003E |     |    | 003E |      |    | 003E |     |    | 003E  |     |
| G5           | G316     | h    | 0040 | 0    | h    | 0040 | )1   |      | h004  | 02   | h    | 0040 | 3    |   | h(  | 004E | С   | h( | 004E | ED   | h  | 004E | E   | hC | 004E  | F   |
| G6           | G315     | h    | 0050 | 0    | h    | 0050 | )1   |      | h005  | )2   | h    | 0050 | 3    |   | h(  | 005E | С   | h( | 005E | Đ    | h  | 005E | E   | hC | 005E  | F   |
| G7           | G314     | h    | 0060 | 0    | h    | 0060 | )1   |      | h006  | 02   | h    | 0060 | 3    |   | h(  | 006E | С   | h( | 006E | ED   | h  | 006E | E   | hC | 006E  | F   |
| G8           | G313     | h    | 0070 | 0    | h    | 0070 | )1   |      | h007  | )2   | h    | 0070 | 3    |   | h(  | 07E  | С   | h( | 007E | D    | h  | 007E | E   | hC | 07E   | F   |
| G9           | G312     | h    | 0080 | 0    | h    | 0800 | )1   |      | h008  | )2   | h    | 0080 | 3    |   | h(  | 008E | С   | h( | 008E | D    | h  | 008E | E   | hC | 008E  | F   |
| G10          | G311     | h    | 0090 | 0    | h    | 0090 | )1   |      | h009  | )2   | h    | 0090 | 3    |   | h(  | 009E | С   | h( | 009E | Đ    | h  | 009E | E   | hC | 009E  | F   |
| G11          | G310     | h    | 00A0 | 00   | h    | 00A0 | )1   |      | h00A  | 02   | h    | 00A0 | 3    |   | hC  | 00AE | С   | h( | OOAE | ΞD   | h  | 00AE | Ε   | hC | 00AE  | F   |
| G12          | G309     | h    | 00B0 | 00   | h    | 00B0 | )1   |      | h00B  | 02   | h    | 00B0 | 3    |   | h(  | )0BE | С   | h( | OOBE | ΕD   | h  | 00BE | Ε   | hC | 00BE  | :F  |
| G13          | G308     | h    | 00C0 | 00   | h    | 00C0 | )1   |      | h00C  | 02   | h    | 00C0 | 3    |   | hC  | OCE  | C   | h( | OOCE | ΕD   | h  | 00CE | Ε   | h0 | 0CE   | :F  |
| G14          | G307     | h    | 00D0 | 00   | h    | 00D0 | )1   |      | h00D  | 02   | h    | 00D0 | 3    |   | hC  | 00DE | C   | h( | OODE | ΞD   | h  | 00DE | Ε   | h0 | 0DE   | :F  |
| G15          | G306     | h    | 00E0 | 00   | h    | 00E0 | )1   |      | h00E  | 02   | h    | 00E0 | 3    |   | hC  | 0EE  | С   | h( | DOEE | ΞD   | h  | 00EE | Ε   | hC | 0EE   | :F  |
| G16          | G305     | h    | 00F0 | 0    | h    | 00F0 | )1   |      | h00F  | 02   | h    | 00F0 | 3    |   | h(  | 00FE | С   | h( | OOFE | ED   | h  | 00FE | Ε   | hC | 0FE   | :F  |
| G17          | G304     | h    | 0100 | 0    | h    | 0100 | )1   |      | h010  | )2   | h    | 0100 | 3    |   | h(  | )10E | С   | h( | 010E | D    | h  | 010E | E   | hC | )10E  | :F  |
| G18          | G303     | h    | 0110 | 0    | h    | 0110 | )1   |      | h011  | )2   | h    | 0110 | 3    |   | h(  | )11E | С   | h( | 011E | D    | h  | 011E | E   | hC | )11E  | :F  |
| G19          | G302     | h    | 0120 | 0    | h    | 0120 | )1   |      | h012  | 02   | h    | 0120 | 3    |   | h(  | )12E | С   | h( | 012E | D    | h  | 012E | E   | hC | )12E  | :F  |
| G20          | G301     | h    | 0130 | 0    | h    | 0130 | )1   |      | h013  | 02   | h    | 0130 | 3    |   | h(  | )13E | С   | h( | 013E | D    | h  | 013E | E   | hC | )13E  | :F  |
| :            | :        |      | :    |      |      | :    |      |      | :     |      |      | :    |      | : |     | :    |     |    | :    |      |    | :    |     |    | :     |     |
| G305         | G16      | h    | 1300 | 0    | h    | 1300 | )1   |      | h130  | )2   | h    | 1300 | 3    |   | h′  | 130E | С   | h' | 130E | ED   | h  | 130E | E   | h1 | 130E  | :F  |
| G306         | G15      | h    | 1310 | 0    | h    | 1310 | )1   |      | h131  | )2   | h    | 1310 | 3    |   | h′  | 131E | С   | h' | 131E | D    | h  | 131E | E   | h1 | 131E  | :F  |
| G307         | G14      | h    | 1320 | 0    | h    | 1320 | )1   |      | h132  | )2   | h    | 1320 | 3    |   | h′  | 132E | С   | h′ | 132E | D    | h  | 132E | E   |    | 132E  |     |
| G308         | G13      |      | 1330 |      |      | 1330 |      | +    | h133  |      |      | 1330 |      |   |     | 133E |     |    | 133E |      |    | 133E |     |    | 133E  |     |
| G309         | G12      |      | 1340 |      |      | 1340 |      | +    | h134  |      |      | 1340 |      |   |     | 134E | _   |    | 134E |      |    | 134E |     |    | 134E  |     |
| G310         | G11      |      | 1350 |      |      | 1350 |      | +    | h135  |      |      | 1350 |      |   |     | 135E | _   |    | 135E |      |    | 135E |     |    | 135E  |     |
| G311         | G10      |      | 1360 |      |      | 1360 |      | +    | h136  |      |      | 1360 |      |   |     | 136E |     |    | 136E |      |    | 136E |     |    | 136E  |     |
| G312         | G9       |      | 1370 |      |      | 1370 |      | +    | h137  |      |      | 1370 |      |   |     | 137E | _   |    | 137E |      |    | 137E |     |    | 137E  |     |
| G313         | G8       | _    | 1380 |      | -    | 1380 |      | +    | h138  |      | _    | 1380 |      |   |     | 138E |     |    | 138E |      | _  | 138E |     |    | 138E  |     |
| G314         | G7       |      | 1390 |      |      | 1390 |      | +-   | h139  |      |      | 1390 |      |   |     | 139E |     |    | 139E |      |    | 139E |     |    | 139E  | _   |
| G315         | G6       |      | 13A0 |      |      | 13A0 |      | +    | h13A  |      |      | 13A0 |      |   |     | 13AE |     |    | 13AE |      |    | 13AE |     |    | 3AE   | _   |
| G316         | G5       |      | 13B0 |      |      | 13B0 |      | +-   | h13B  |      |      | 13B0 |      |   |     | 13BE |     |    | 13BE |      |    | 13BE |     |    | 3BE   |     |
| G317         | G4       |      | 13C0 |      |      | 13C0 |      | +-   | h13C  |      |      | 13C0 |      |   |     | 3CE  |     |    | 13CE |      |    | 13CE |     |    | 3CE   |     |
| G318<br>G319 | G3<br>G2 | _    | 13D0 |      |      | 13D0 |      | +-   | h13D  |      |      | 13D0 |      |   |     | 3DE  |     |    | 13DE |      | _  | 13DE |     |    | 3DE   |     |
|              |          |      | 13E0 |      |      | 13E0 |      | +    | h13E  |      |      | 13E0 |      |   |     | 13EE |     |    | 13EE |      |    | 13EE |     |    | 3EE   |     |
| G320         | G1       | n    | 13F0 | IU   | n    | 13F0 | JΊ   |      | h13F  | JZ   | n    | 13F0 | 3    |   | n′  | 13FE | U   | n' | 13FE | ט    | n  | 13FE | _   | n1 | 13FE  | :F  |

#### Instruction

#### Outline

The R61505 adopts 18-bit bus architecture in order to interface to high-performance microcomputer in high speed. The R61505 starts internal processing after storing control information of externally sent data (16, 8, 1 bit(s)) in the instruction register (IR) and the data register (DR). Since the internal operation of the R61505 is controlled by the signals sent from the microcomputer, the register selection signal (RS), the read/write signal (R/W), and the internal 16-bit data bus signals (IB15  $\sim$  IB0) are called instruction. When accessing the R61505's internal RAM, data is processed in units of 18 bits. The following are the kinds of instruction of the R61505.

- 1. Specify index
- 2. Display control
- 3. Power management control
- 4. Set internal GRAM address
- 5. Transfer data to and from the internal GRAM
- 6. γ-correction
- 7. Window address control
- 8. Screen Display Control

Normally, the instruction to write data is used the most often. The internal GRAM address is updated automatically as data is written to the internal GRAM, which, in combination with the window address function, contributes to minimizing data transfer and thereby lessens the load on the microcomputer. The R61505 writes instructions consecutively by executing the instruction within the cycle when it is written (instruction execution time: 0 cycle).

### **Instruction Data Format**

As the following figure shows, the data bus used to transfer 16 instruction bits (IB[15:0]) is different according to the interface format. Make sure to transfer the instruction bits according to the format of the selected interface.

The following are detail descriptions of instruction bits (IB15-0). Note that the instruction bits IB[15:0] in the following figures are transferred according to the format of the selected interface.

Write 0 or 1 to the instruction bit to which no instruction is allocated, following the figures of registers. When some of the instruction bit settings are changed, the setting should be made for the instruction bits that the settings are not changed in the same index.

# Index (IR)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10       | IB9       | IB8       | IB7       | IB6       | IB5       | IB4       | IB3       | IB2       | IB1       | IB0       |
|-----|----|------|------|------|------|------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| W   | 0  | *    | *    | *    | *    | *    | ID<br>[10] | ID<br>[9] | ID<br>[8] | ID<br>[7] | ID<br>[6] | ID<br>[5] | ID<br>[4] | ID<br>[3] | ID<br>[2] | ID<br>[1] | ID<br>[0] |

The index register specifies the index R00h to RFFh of the control register or RAM control to be accessed using a binary number from "0000\_0000" to "1111\_1111". The access to the register and instruction bits in it is prohibited unless the index is specified in the index register.

# **Display Control**

#### Device Code Read (R00h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W   | 1  | *    | *    | *    | *    | *    | *    | *   | *   | *   | *   | *   | *   | *   | *   | *   | 1   |
| R   | 1  | 0    | 0    | 0    | 1    | 0    | 1    | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 1   |

The device code "1505"H is read out when reading out this register forcibly.

# **Driver Output Control (R01h)**

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | SM   | 0   | SS  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**SS:** Sets the shift direction of output from the source driver.

When SS = "0", the source driver output shift from S1 to S720.

When SS = "1", the source driver output shift from S720 to S1.

The combination of SS and BGR settings determines the RGB assignment to the source driver pins S1  $\sim$  S720.

When SS = "0" and BGR = "0", RGB dots are assigned one to one from S1 to S720.

When SS = "1" and BGR = "1", RGB dots are assigned one to one from S720 to S1.

When changing the SS and BGR bits, RAM data must be rewritten.

SM: Controls the scan mode in combination with GS setting. See "Scan mode setting".

# LCD Driving Wave Control (R02h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 1    | BC0 | EOR | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 1    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**BC0:** Selects the liquid crystal drive waveform VCOM. See "Line Inversion AC Drive" for details.

B/C = 0: frame inversion waveform is selected.

B/C = 1: line inversion waveform is selected when EOR = 1.

In either liquid crystal drive method, the polarity inversion is halted in blank period (back and front porch periods).

**EOR:** Enables liquid-crystal line-inversion drive when EOR = 1 and BC0 = 1

#### Entry Mode (R03h)

| R/W    | RS      | IB15       | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5        | IB4        | IB3 | IB2 | IB1 | IB0 |  |
|--------|---------|------------|------|------|------|------|------|-----|-----|-----|-----|------------|------------|-----|-----|-----|-----|--|
| W      | 1       | TRIR<br>EG | DFM  | 0    | BGR  | 0    | 0    | HWM | 0   | ORG | 0   | I/D<br>[1] | I/D<br>[0] | AM  | 0   | 0   | 0   |  |
| Defaul | t value | 0          | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 1          | 1          | 0   | 0   | 0   | 0   |  |

The entry mode register includes instruction bits for setting how to write data from the microcomputer to the internal GRAM of the R61505.

**AM:** Sets either horizontal or vertical direction in updating the address counter automatically as the R61505 writes data to the internal GRAM.

AM = "0", sets the horizontal direction.

AM = "1", sets the vertical direction.

When making a window address area, the data is written only within the area in the direction determined by I/D1-0, AM bits.

**I/D[1:0]:** Either increments (+1) or decrements (-1) the address counter (AC) automatically as the data is written to the GRAM. The I/D[0] bit sets either increment or decrement in horizontal direction (updates the address AD[7:0]). The I/D[1] bit sets either increment or decrement in vertical direction (updates the address AD[8:16]). The AM bit sets either horizontal or vertical direction in updating RAM address counter automatically when writing data to the internal RAM.

**ORG:** Moves the origin address according to the ID setting when a window address area is made. This function is enabled when writing data within the window address area using high-speed RAM write function. Also see Figure 3 and Figure 4.

ORG = 0: The origin address is not moved. In this case, specify the address to start write operation according to the GRAM address map within the window address area.

ORG = 1: The origin address "h00000" is moved according to the I/D[1:0] setting.

Notes: 1. When ORG = 1, only the origin address "h00000" can be set in the RAM address set registers (R20h, R21h).

2. In RAM read operation, make sure to set ORG = 0.

**HWM:** The R61505 writes data in high speed with low power consumption by setting HWM = 1. The data to be written within the window address area is buffered in order to write the data in units of horizontal lines. This can minimize the number of RAM access and the power consumption required in data write operation.

When HWM = 1, make sure to set AM = 0 (horizontal direction) and write the data in each horizontal line of the window address area at a time. If the data is not enough to rewrite the horizontal line of the window address area, the GRAM data in that line is not overwritten.

Notes: 1. The R61505 requires no dummy write operation in high-speed write operation.

2. When terminating RAM data write operation in the middle of the line and executing another instruction, the data in the buffer is cleared.

3. When switching from high-speed RAM write operation to index write operation, wait at least 2 normal-write cycle periods (2 t<sub>cycw</sub> periods).

**BGR:** Reverses the order from RGB to BGR in writing 18-bit pixel data in the GRAM.

BGR = 0: Write data in the order of RGB to the GRAM.

BGR = 1: Reverse the order from RGB to BGR in writing data to the GRAM.

#### BGR = 0

| D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| R5  | R4  | R3  | R2  | R1  | R0  | G5  | G4  | G3 | G2 | G1 | G0 | В5 | B4 | В3 | B2 | B1 | В0 |

#### BGR = 1

| D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| В5  | B4  | В3  | В2  | B1  | В0  | G5  | G4  | G3 | G2 | G1 | G0 | R5 | R4 | R3 | R2 | R1 | R0 |

**DFM:** In combination with the TRIREG setting, sets the format to develop 16-/8-bit data to 18-bit data when using either 16-bit or 8-bit bus interface. Make sure to set DFM = 0 when not transferring data via 16-bit or 8-bit interface.

**TRIREG:** Selects the format to transfer data bits via 16-bit or 8-bit interface.

In 8-bit interface operation,

TRIREG = 0: 16-bit RAM data is transferred in two transfers.

TRIREG = 1: 18-bit RAM data is transferred in three transfers.

In 16-bit bus interface operation,

TRIREG = 0: 16-bit RAM data is transferred in one transfer.

TRIREG = 1: 18-bit RAM data is transferred in two transfers.

Make sure TRIREG = 0 when not transferring data via 16-bit or 8-bit interface. Also, set TRIREG = 0 during read operation.



Figure 3 Automatic Address Update (ORG = 0, AM, ID)

Note: When writing data within the window address area with ORG = 0, any address within the window address area can be designated as the starting point of RAM write operation.



Figure 4 Automatic Address Update (ORG = 1, AM, ID)

- Notes: 1. When ORG = 1, make sure to set the address "h00000" in the RAM address set registers (R210h, R21h). Setting other addresses is inhibited.
  - 2. When ORG = 1, the starting point of writing data within the window address area can be set at either corner of the window address area ("S" in circle in the above figure).

# Resizing Control (R04h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9        | IB8        | IB7 | IB6 | IB5        | IB4        | IB3 | IB2 | IB1        | IB0        |  |
|--------|---------|------|------|------|------|------|------|------------|------------|-----|-----|------------|------------|-----|-----|------------|------------|--|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | RCV<br>[1] | RCV<br>[0] | 0   | 0   | RCH<br>[1] | RCH<br>[0] | 0   | 0   | RSZ<br>[1] | RSZ<br>[0] |  |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0          | 0          | 0   | 0   | 0          | 0          | 0   | 0   | 0          | 0          |  |

**RSZ[1:0]:** Sets the resizing factor. When the RSZ bits are set for resizing, the R61505 writes the data according to the resizing factor so that the original image is displayed in horizontal and vertical dimensions contracted according to the factor. See "Resizing Function".

**RCH[1:0]:** Sets the number of pixels made as the remainder in horizontal direction when resizing a picture. By specifying the number of remainder pixels with RCH bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCH = 2'h0 when not using the resizing function (RSZ = 2'h0) or there are no remainder pixels.

**RCV[1:0]:** Sets the number of pixels made as the remainder in vertical direction when resizing a picture. By specifying the number of remainder pixels with the RCV bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCV = 2'h0 when not using the resizing function (RSZ = 2'h0) or there are no remainder pixels.

Table 8 Resizing Factor (RSR)

| RSR [1:0] | Resizing Scale    |
|-----------|-------------------|
| 2'h0      | No resizing (x1)  |
| 2'h1      | x 1/2             |
| 2'h2      | Setting inhibited |
| 2'h3      | x 1/4             |

Table 9 Remainder Pixels in Horizontal Direction (RCH)

| RCH [1: | 0]             | Number of Remainder Pixels in Horizontal Direction |
|---------|----------------|----------------------------------------------------|
| 2'h0    |                | 0 pixel                                            |
| 2'h1    |                | 1 pixel                                            |
| 2'h2    |                | 2 pixels                                           |
| 2'h3    |                | 3 pixels                                           |
| Note:   | 1 pixel = 1RGB |                                                    |

**Table 10 Remainder Pixels in Vertical Direction (RCV)** 

| RCV [1: | Number of Remainder Pixels in Vertical Direction |  |
|---------|--------------------------------------------------|--|
| 2'h0    | 0 pixel                                          |  |
| 2'h1    | 1 pixel                                          |  |
| 2'h2    | 2 pixels                                         |  |
| 2'h3    | 3 pixels                                         |  |
| Noto:   | 1 pixel = 1PCP                                   |  |

Note: 1 pixel = 1RGB

# Display Control 1 (R07h)

| R/W    | RS      | IB15 | IB14 | IB13        | IB12        | IB11 | IB10 | IB9 | IB8       | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1      | IB0      |
|--------|---------|------|------|-------------|-------------|------|------|-----|-----------|-----|-----|-----|-----|-----|-----|----------|----------|
| W      | 1       | 0    | 0    | PTDE<br>[1] | PTDE<br>[0] | 0    | 0    | 0   | BASE<br>E | 0   | VON | GON | DTE | COL | 0   | D<br>[1] | D<br>[0] |
| Defaul | t value | 0    | 0    | 0           | 0           | 0    | 0    | 0   | 0         | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0        |

**D[1:0]:** A graphics display is turned on the screen when writing D1 = "1", and is turned off when writing D1 = "0". When writing D1 = "0", the graphics display data is retained in the internal GRAM and the R61505 displays the data when writing D1 = "1". When D1 = "0", i.e. while no display is shown on the panel, all source outputs becomes the GND level to reduce charging/discharging current, which is generated within the LCD while driving liquid crystal with AC voltage.

When the display is turned off by setting D1-0=2'b01, the R61505 continues internal display operation. When the display is turned off by setting D1-0=2'b00, the R61505's internal display operation is halted completely. In combination with the GON setting, the D[1:0] setting controls display ON/OFF. For details, see "Instruction Setting".

**Table 11 Source Output Level and Display Operation** 

| D[1:0] | BASEE | Source Output (S1-240) | FMARK Signal | Internal Operation |  |  |
|--------|-------|------------------------|--------------|--------------------|--|--|
| 2'h0   | *     | GND                    | Halt         | Halt               |  |  |
| 2'h1   | *     | GND                    | Operation    | Operation          |  |  |
| 2'h2   | *     | Non-lit display        | Operation    | Operation          |  |  |
| 2'h3   | 0     | Non-lit display        | Operation    | Operation          |  |  |
| 2113   | 1     | Base-image display     | Operation    | Operation          |  |  |

Notes: 1: The data write operation from the microcomputer is not affected by the D[1:0] setting.

2: The PTS bits set the source output level for "Non-lit display".

**COL:** When COL = 1, the R61505 halts 32 grayscale amplifiers to display in 8-colors with low power consumption. When setting 8-color display mode, follow the sequence of 8-color display mode setting.

Table 12

| COL | Operating Amplifier | Display Color |
|-----|---------------------|---------------|
| 0   | 32                  | 262,144       |
| 1   | 2                   | 8             |

Note: When COL = 1, do not write the data corresponding to the grayscales, for which the operation of amplifier is halted.

**GON, DTE:** The combination of GON and DTE settings set the output level form gate lines ( $G1 \sim G320$ ). When GON = 0, the Vcom output level becomes the GND level.

Table 13

| APE | GON | DTE | G1~G320     |
|-----|-----|-----|-------------|
| 0   | *   | *   | VGL (= GND) |
|     | 0   | 0   | VGH         |
| 1   | 0   | 1   | VGH         |
| '   | 1   | 0   | VGL         |
|     | 1   | 1   | VGH/VGL     |

VON: Controls VcomH, VcomL, Vcom amplitude signal output.

Table 14

| APE | VON | VcomH/VcomL Output  | Vcom Output                 |
|-----|-----|---------------------|-----------------------------|
| 0   | *   | GND                 | GND                         |
| 1   | 0   | GND                 | GND                         |
|     | 1   | Output VcomH, VcomL | Vcom amplitude: VcomH/VcomL |

BASEE: Base image display enable bit.

BASEE = 0: No base image is displayed. The R61505 drives liquid crystal with non-lit display level or drives only partial image display areas.

BASEE = 1: A base image is displayed on the screen.

The D[1:0] setting has precedence over the BASEE setting.

**PTDE[1:0]:** PTDE[0] is the display enable bit of partial image 1. PTDE[1] is the display enable bit of partial image 2. When PTDE1/0 = 0, the partial image is turned off and only base image is displayed on the screen. When PTDE1/0 = 1, the partial image is displayed on the screen. In this case, turn off the base image by setting BASEE = 0.

# Display Control 2 (R08h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11      | IB10      | IB9       | IB8       | IB7 | IB6 | IB5 | IB4 | IB3       | IB2       | IB1       | IB0       |
|--------|---------|------|------|------|------|-----------|-----------|-----------|-----------|-----|-----|-----|-----|-----------|-----------|-----------|-----------|
| W      | 1       | 0    | 0    | 0    | 0    | FP<br>[3] | FP<br>[2] | FP<br>[1] | FP<br>[0] | 0   | 0   | 0   | 0   | BP<br>[3] | BP<br>[2] | BP<br>[1] | BP<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 1         | 0         | 0         | 0         | 0   | 0   | 0   | 0   | 1         | 0         | 0         | 0         |

**FP** [3:0]: Sets the number of lines for a front porch period (a blank period following the end of display).

**BP** [3:0]: Sets the number of lines for a back porch period (a blank period made before the beginning of display).

In external display interface operation, a back porch (BP) period starts on the falling edge of the VSYNC signal and the display operation starts after the back porch period. A blank period will start after a front porch (FP) period and it will continue until next VSYNC input is detected.

# Note on Setting BP and FP

Set the BP and FP bits as follows in respective operation modes.

Table 15 BP and FP Settings

| Internal clock operation mode | BP ≥ 2 lines              | FP ≥ 2 lines              | FP + BP ≤ 16 lines |
|-------------------------------|---------------------------|---------------------------|--------------------|
| RGB interface operation       | $BP \geq 2 \text{ lines}$ | $FP \geq 2 \text{ lines}$ | FP + BP ≤ 16 lines |
| VSYNC interface operation     | $BP \geq 2 \ lines$       | FP ≥ 2 lines              | FP + BP = 16 lines |

Table 16 Front and Back Porch Period (Line Periods)

FP[3:0] BP[3:0] Front and Back Porch Period (Line Periods)

| 4'h1       Setting inhibited         4'h2       2 lines         4'h3       3 lines         4'h4       4 lines         4'h5       5 lines         4'h6       6 lines         4'h7       7 lines         4'h8       8 lines         4'h9       9 lines         4'hA       10 lines         4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines         4'hF       Setting inhibited | 4'h0 | Setting inhibited |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|
| 4'h3       3 lines         4'h4       4 lines         4'h5       5 lines         4'h6       6 lines         4'h7       7 lines         4'h8       8 lines         4'h9       9 lines         4'hA       10 lines         4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                      | 4'h1 | Setting inhibited |
| 4'h4       4 lines         4'h5       5 lines         4'h6       6 lines         4'h7       7 lines         4'h8       8 lines         4'h9       9 lines         4'hA       10 lines         4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                                                 | 4'h2 | 2 lines           |
| 4'h5       5 lines         4'h6       6 lines         4'h7       7 lines         4'h8       8 lines         4'h9       9 lines         4'hA       10 lines         4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                                                                            | 4'h3 | 3 lines           |
| 4'h6       6 lines         4'h7       7 lines         4'h8       8 lines         4'h9       9 lines         4'hA       10 lines         4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                                                                                                       | 4'h4 | 4 lines           |
| 4'h7       7 lines         4'h8       8 lines         4'h9       9 lines         4'hA       10 lines         4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                                                                                                                                  | 4'h5 | 5 lines           |
| 4'h8       8 lines         4'h9       9 lines         4'hA       10 lines         4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                                                                                                                                                             | 4'h6 | 6 lines           |
| 4'h9       9 lines         4'hA       10 lines         4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                                                                                                                                                                                        | 4'h7 | 7 lines           |
| 4'hA       10 lines         4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                                                                                                                                                                                                                   | 4'h8 | 8 lines           |
| 4'hB       11 lines         4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                                                                                                                                                                                                                                               | 4'h9 | 9 lines           |
| 4'hC       12 lines         4'hD       13 lines         4'hE       14 lines                                                                                                                                                                                                                                                                                                                                                           | 4'hA | 10 lines          |
| 4'hD       13 lines         4'hE       14 lines                                                                                                                                                                                                                                                                                                                                                                                       | 4'hB | 11 lines          |
| 4'hE 14 lines                                                                                                                                                                                                                                                                                                                                                                                                                         | 4'hC | 12 lines          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4'hD | 13 lines          |
| 4'hF Setting inhibited                                                                                                                                                                                                                                                                                                                                                                                                                | 4'hE | 14 lines          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4'hF | Setting inhibited |



Figure 5 Front and Back Porch Periods

# Display Control 3 (R09h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10       | IB9        | IB8        | IB7 | IB6 | IB5        | IB4        | IB3        | IB2        | IB1        | IB0        |
|--------|---------|------|------|------|------|------|------------|------------|------------|-----|-----|------------|------------|------------|------------|------------|------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | PTS<br>[2] | PTS<br>[1] | PTS<br>[0] | 0   | 0   | PTG<br>[1] | PTG<br>[0] | ICS<br>[3] | ICS<br>[2] | ICS<br>[1] | ICS<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0          | 0          | 0          | 0   | 0   | 0          | 0          | 0          | 0          | 0          | 0          |

**ICS[3:0]:** Set the scan cycle when PTG[1:0] selects interval scan in non-display area drive period. The scan cycle is defined by n frame periods, where n is an odd number from 3 to 31. The polarity of liquid crystal drive voltage from the gate driver is inverted in the same timing as the interval scan cycle.

Table 17

| ISC[3:0] | Scan Cycle       | Time for Interval when (fFLM) = 60Hz |
|----------|------------------|--------------------------------------|
| 4'h1     | Setting disabled | -                                    |
| 4'h2     | 3 frames         | 50ms                                 |
| 4'h3     | 5 frames         | 84ms                                 |
| 4'h4     | 7 frames         | 117ms                                |
| 4'h5     | 9 frames         | 150ms                                |
| 4'h6     | 11 frames        | 184ms                                |
| 4'h7     | 13 frames        | 217ms                                |
| 4'h8     | 15 frames        | 251ms                                |

| ISC[3:0] | Scan Cycle | Time for Interval when (fFLM) = 60Hz |  |  |  |
|----------|------------|--------------------------------------|--|--|--|
| 4'h9     | 19 frames  | 317ms                                |  |  |  |
| 4'hA     | 21 frames  | 351ms                                |  |  |  |
| 4'hB     | 23 frames  | 384ms                                |  |  |  |
| 4'hC     | 25 frames  | 418ms                                |  |  |  |
| 4'hD     | 27 frames  | 451ms                                |  |  |  |
| 4'hE     | 29 frames  | 484ms                                |  |  |  |
| 4'hF     | 31 frames  | 518ms                                |  |  |  |

**PTG[1:0]:** Sets the scan mode in non-display area. The scan mode selected by PTG[1:0] bits is applied in the non-display area when the base image is turned off and the non-display area other than the first and second partial display areas.

Table 18

| PTG[1:0] | Scan Mode in Non-Display<br>Area | Source Output Level in<br>Non-Display Area | Vcom Output           |
|----------|----------------------------------|--------------------------------------------|-----------------------|
| 2'h0     | Normal scan                      | PTS[2:0] setting                           | VcomH/VcomL amplitude |
| 2'h1     | Setting disabled                 | -                                          | -                     |
| 2'h2     | Interval scan                    | PTS[2:0] setting                           | VcomH/VcomL amplitude |
| 2'h3     | Setting disabled                 | -                                          | -                     |

Note: Select frame-inversion AC drive when interval scan is selected.

**PTS[2:0]:** Sets the source output level in non-display area drive period. When PTS[2] = 1, the operation of amplifiers which generates the grayscales other than V0 and V31 are halted and the step-up clock frequency becomes half the normal frequency in non-display drive period in order to reduce power consumption.

Table 19 Source Output Level and Voltage Generating Operation in Non-Display Drive Period

| PTS[2:0]               | Source Output Le  | evel              | <b>Grayscale Amplifier</b> | Step-Up Clock Frequency           |  |  |  |  |  |
|------------------------|-------------------|-------------------|----------------------------|-----------------------------------|--|--|--|--|--|
| F 13[2.0]              | Positive Polarity | Negative Polarity | in Operation               | Step-op Glock Frequency           |  |  |  |  |  |
| 3'h0                   | V31               | V0                | V0 to V31                  | Register setting (DC0, DC1)       |  |  |  |  |  |
| 3'h1 Setting inhibited |                   | Setting inhibited | -                          | -                                 |  |  |  |  |  |
| 3'h2                   | GND               | GND               | V0 to V31                  | Register setting (DC0, DC1)       |  |  |  |  |  |
| 3'h3                   | Hi-Z              | Hi-Z              | V0 to V31                  | Register setting (DC0, DC1)       |  |  |  |  |  |
| 3'h4                   | V31               | V0                | V0 and V31                 | 1/2 the frequency set by DC0, DC1 |  |  |  |  |  |
| 3'h5                   | Setting inhibited | Setting inhibited | -                          | -                                 |  |  |  |  |  |
| 3'h6                   | GND               | GND               | V0 and V31                 | 1/2 the frequency set by DC0, DC1 |  |  |  |  |  |
| 3'h7                   | Hi-Z              | Hi-Z              | V0 and V31                 | 1/2 the frequency set by DC0, DC1 |  |  |  |  |  |

Notes: 1. The power efficiency improved by halting grayscale amplifiers and slowing down the step-up clock frequency can be obtained in non-display drive period.

2. The gate output level in non-display drive period is controlled by the PTG setting (off-scan mode).

# Display Control 4 (R0Ah)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3         | IB2        | IB1        | IB0        |  |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-------------|------------|------------|------------|--|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | FMAR<br>KOE | FMI<br>[2] | FMI<br>[1] | FMI<br>[0] |  |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0           | 0          | 0          | 0          |  |

**FMI[2:0]:** Sets the output interval of FMARK signal according to the display data rewrite cycle and data transfer rate.

**FMARKOE:** When FMARKOE = 1, the R61505 starts outputting FMARK signal from the FMARK pin in the output interval set by FMI[2:0] bits. See "FMARK" for details.

Table 20

| FMI[2]   | FMI[1]  | FMI[0] | Output Interval  |  |  |  |  |  |  |  |
|----------|---------|--------|------------------|--|--|--|--|--|--|--|
| 0        | 0       | 0      | 1 frame          |  |  |  |  |  |  |  |
| 0        | 0       | 1      | 2 frames         |  |  |  |  |  |  |  |
| 0        | 1       | 1      | 4 frames         |  |  |  |  |  |  |  |
| 1        | 0       | 1      | 6 frames         |  |  |  |  |  |  |  |
| Other se | ettings |        | Setting disabled |  |  |  |  |  |  |  |

# **External Display Interface Control 1 (R0Ch)**

| R/W    | RS      | IB15 | IB14       | IB13       | IB12       | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5       | IB4       | IB3 | IB2 | IB1        | IB0        |
|--------|---------|------|------------|------------|------------|------|------|-----|-----|-----|-----|-----------|-----------|-----|-----|------------|------------|
| W      | 1       | 0    | ENC<br>[2] | ENC<br>[1] | ENC<br>[0] | 0    | 0    | 0   | RM  | 0   | 0   | DM<br>[1] | DM<br>[0] | 0   | 0   | RIM<br>[1] | RIM<br>[0] |
| Defaul | t value | 0    | 0          | 0          | 0          | 0    | 0    | 0   | 0   | 0   | 0   | 0         | 0         | 0   | 0   | 0          | 0          |

**RIM[1:0]:** Sets the interface format when RGB interface is selected by RM and DM bits. Set RIM[1:0] bits before starting display operation via RGB interface. Do not change the setting while the R61505 performs display operation.

**Table 21 RGB Interface Operation** 

| RIM[1:0] | RGB Interface Operation                                        | Colors  |
|----------|----------------------------------------------------------------|---------|
| 2'h0     | 18-bit RGB interface (1 transfer/pixel) via DB17-0             | 262,144 |
| 2'h1     | 16-bit RGB interface (1 transfer/pixel) via DB17-13 and DB11-1 | 65,536  |
| 2'h2     | 6-bit RGB interface (3 transfers/pixel) via DB17-12            | 262,144 |
| 2'h3     | Setting inhibited                                              | -       |

Notes: 1: Instruction bits are set via system interface.

2: Transfer the RGB dot data one by one in synchronization with DOTCLK in 6-bit RGB interface operation.

**DM[1:0]:** Selects the interface for the display operation. The DM[1:0] setting allows switching between internal clock operation mode and external display interface operation mode. However, switching between the RGB interface operation mode and the VSYNC interface operation mode is prohibited.

**Table 22 Display Interface** 

| DM[1:0] | Display Interface         |  |  |  |  |  |  |  |  |
|---------|---------------------------|--|--|--|--|--|--|--|--|
| 2'h0    | Internal clock operations |  |  |  |  |  |  |  |  |
| 2'h1    | RGB interface             |  |  |  |  |  |  |  |  |
| 2'h2    | VSYNC interface           |  |  |  |  |  |  |  |  |
| 2'h3    | Setting inhibited         |  |  |  |  |  |  |  |  |

**RM:** Selects the interface for RAM access operation. RAM access is possible only via the interface selected by the RM bit. Set RM = 1 when writing display data via RGB interface. When RM = 0, it is possible to write data via system interface while performing display operation via RGB interface.

**Table 23 RAM Access Interface** 

| RM | RAM Access Interface             |  |  |  |  |  |  |  |  |
|----|----------------------------------|--|--|--|--|--|--|--|--|
| 0  | System interface/VSYNC interface |  |  |  |  |  |  |  |  |
| 1  | RGB interface                    |  |  |  |  |  |  |  |  |

**ENC[2:0]:** Sets the RAM write cycle via RGB interface.

Table 25 RAM Write Cycle

| ENC[2:0] | RAM Write Cycle (Frame Periods) |
|----------|---------------------------------|
| 3'h0     | 1 frame                         |
| 3'h1     | 2 frames                        |
| 3'h2     | 3 frames                        |
| 3'h3     | 4 frames                        |
| 3'h4     | 5 frames                        |
| 3'h5     | 6 frames                        |
| 3'h6     | 7 frames                        |
| 3'h7     | 8 frames                        |

# Frame Marker Position (R0Dh)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8        | IB7        | IB6        | IB5        | IB4        | IB3        | IB2        | IB1        | IB0        |
|--------|---------|------|------|------|------|------|------|-----|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | FMP<br>[8] | FMP<br>[7] | FMP<br>[6] | FMP<br>[5] | FMP<br>[4] | FMP<br>[3] | FMP<br>[2] | FMP<br>[1] | FMP<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

**FMP[8:0]:** Sets the output position of frame cycle signal (frame marker). When FMP[8:0] = 9'h000, a high-active pulse FMARK is outputted at the start of back porch period for 1H period (IOVcc-IOGND amplitude signal). FMARK can be used as the trigger signal for frame synchronous write operation. See "FMARK" for details.

Make sure the setting restriction  $9^{\circ}h000 \le FMP \le BP+NL+FP$ .

Table 24

| FMP[8:0] | FMARK Output Position  |
|----------|------------------------|
| 9"h000   | 0 <sup>th</sup> line   |
| 9'h001   | 1 <sup>st</sup> line   |
| 9"h002   | 2 <sup>nd</sup> line   |
| :        | :                      |
| 9"h175   | 373 <sup>rd</sup> line |
| 9'h176   | 374 <sup>th</sup> line |
| 9"h177   | 375 <sup>th</sup> line |

# **External Display Interface Control 2 (R0Fh)**

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4  | IB3  | IB2 | IB1 | IB0 |   |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|------|------|-----|-----|-----|---|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | VSPL | HSPL | 0   | EPL | DPL | 1 |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0   | 0   | 0   | ı |

**DPL:** Sets the signal polarity of DOTCLK pin.

DPL = 0: input data on the rising edge of DOTCLK DPL = 1: input data on the falling edge of DOTCLK

**EPL:** Sets the signal polarity of ENABLE pin.

EPL = 0: writes data DB17-0 when ENABLE = "0" and disables data write operation when ENABLE = "1".

EPL = 1: writes data DB17-0 when ENABLE = "1" and disables data write operation when ENABLE = "0".

**HSPL:** Sets the signal polarity of HSYNC pin.

HSPL = 0: low active HSPL = 1: high active

VSPL: Sets the signal polarity of VSYNC pin.

VSPL = 0: low active VSPL = 1: high active

#### **Power Control**

#### Power Control 1 (R10h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11      | IB10      | IB9       | IB8       | IB7 | IB6 | IB5       | IB4       | IB3 | IB2  | IB1 | IB0 |
|--------|---------|------|------|------|------|-----------|-----------|-----------|-----------|-----|-----|-----------|-----------|-----|------|-----|-----|
| W      | 1       | 0    | 0    | 0    | SAP  | BT<br>[3] | BT<br>[2] | BT<br>[1] | BT<br>[0] | APE | 0   | AP<br>[1] | AP<br>[0] | 0   | DSTB | SLP | 0   |
| Defaul | t value | 0    | 0    | 0    | 0    | 0         | 0         | 0         | 0         | 0   | 0   | 0         | 0         | 0   | 0    | 0   | 0   |

**AP[1:0]:** Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. The larger constant current enhances the drivability of the LCD, but it also increases the current consumption. Adjust the constant current taking the trade-off into account between the display quality and the current consumption. In no-display period, set AP1-0 = 2'h0 to halt the operational amplifier circuits and the step-up circuits to reduce current consumption.

Table 25 Constant Current in Amplifier in LCD Power Supply, Grayscale Voltage Generating Circuits

|   | AP[1:0] | LCD Power Supply Circuits | Grayscale Voltage Generating Circuit |
|---|---------|---------------------------|--------------------------------------|
|   | 2'h0    | Halt operation            | Halt operation                       |
|   | 2'h1    | 0.5                       | 0.62                                 |
|   | 2'h2    | 0.75                      | 0.71                                 |
| - | 2'h3    | 1                         | 1                                    |

Note: In this table, the constant current in operational amplifiers is the ratio to the constant current when AP[1:0] is set to 2'h3.

**SAP:** The grayscale voltage generating circuit is halted by setting SAP = 0. Grayscale voltages are generated when SAP = 1. When starting the operation of LCD power supply circuit in Power ON operation and so on, make sure SAP = 0. Set SAP = 1, after starting up the LCD power supply circuit.

**BT[3:0]:** Sets the factor used in the step-up circuits. Select the optimal step-up factor for the operating voltage. To reduce power consumption, set a smaller factor.

**APE:** Liquid crystal power supply enable bit. Set APE = 1 and follow the sequence when starting up the liquid crystal power supply.

Table 26

| APE | Liquid Crystal Power Supply Circuit | Grayscale Voltage Generating Circuit |
|-----|-------------------------------------|--------------------------------------|
| 0   | Halt                                | Halt                                 |
| 1   | Operate                             | Operate                              |

**SLP:** When SLP = 1, the R61505 enters the sleep mode. In sleep mode, the internal display operation except RC oscillation is halted to reduce power consumption. No change to the GRAM data and instruction setting is accepted and he GRAM data and the instruction setting are maintained in sleep mode.

**DSTB:** When DSTB = 1, the R61505 enters the deep standby mode. In deep standby mode, the internal logic power supply is turned off to reduce power consumption. The GRAM data and instruction setting are not maintained when the R61505 enters the deep standby mode, and they must be reset after exiting deep standby mode.

Table 27 Step-Up Factor and Output Voltage Level

| BT[3:0] | DDVDH             | VCL             | VGH                        | VGL                           | Capacitor Connection Pins                                     |  |  |  |
|---------|-------------------|-----------------|----------------------------|-------------------------------|---------------------------------------------------------------|--|--|--|
| 4'h0    |                   |                 |                            | -(Vci1 + DDVDH x 2)<br>[x -5] | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±, C23± |  |  |  |
| 4'h1    |                   |                 | DDVDH x 4 [x 8]            | -(DDVDH x 2)<br>[x -4]        | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C21±, C22±, C23±       |  |  |  |
| 4'h2    |                   |                 |                            | -(Vci1 + DDVDH)<br>[x -3]     | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±, C23± |  |  |  |
| 4'h3    | Vci1 x 2<br>[x 2] |                 |                            | -(Vci1 + DDVDH x 2)<br>[x -5] | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±, C23± |  |  |  |
| 4'h4    |                   |                 | Vci1 + DDVDH x<br>3 [x 7]  | -(DDVDH x 2)<br>[x -4]        | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C21±, C22±, C23±       |  |  |  |
| 4'h5    |                   |                 |                            | -(Vci1 + DDVDH)<br>[x -3]     | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±, C23± |  |  |  |
| 4'h6    |                   |                 | DDVDH v 2 [v 6]            | -(DDVDH x 2)<br>[x -4]        | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C21±, C22±             |  |  |  |
| 4'h7    |                   |                 | DDVDH x 3 [x 6]            | -(Vci1 + DDVDH)<br>[x -3]     | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±       |  |  |  |
| 4'h8    |                   | -Vci1<br>[x –1] | DDVDH x 4 [x<br>12]        | -(Vci1 + DDVDH x 2)<br>[x -7] | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±, C23± |  |  |  |
| 4'h9    |                   |                 |                            | -(DDVDH x 2)<br>[x -6]        | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C21±, C22±, C23±       |  |  |  |
| 4'hA    |                   |                 |                            | -(Vci1 + DDVDH)<br>[x -4]     | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±, C23± |  |  |  |
| 4'hB    | Vci1 x 3          |                 |                            | -(Vci1 + DDVDH x 2)<br>[x -7] | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±, C23± |  |  |  |
| 4'hC    | [x 3]             |                 | Vci1 + DDVDH x<br>3 [x 10] | -(DDVDH x 2)<br>[x -6]        | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C21±, C22±, C23±       |  |  |  |
| 4'hD    |                   |                 |                            | -(Vci1 + DDVDH)<br>[x -4]     | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±, C23± |  |  |  |
| 4'hE    |                   |                 | DDVDH x 3 [x 9]            | -(DDVDH x 2)<br>[x -6]        | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C21±, C22±             |  |  |  |
| 4'hF    |                   |                 | [ פאן כא חטאטט             | -(Vci1 + DDVDH)<br>[x -4]     | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22±       |  |  |  |

Notes: 1. The step-up factor from Vci1 is shown in the brackets [].

- 2. Connect capacitors where required when using DDVDH, VGH, VGL, VCL voltages.
- 3. Set the following voltages within the respective ranges: DDVDH = 6.0V (max.), VGH = 15.0V (max.), and VGL = -12.5V (max.), VCL = -3.0V (max).

# Power Control 2 (R11h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10       | IB9        | IB8        | IB7 | IB6        | IB5        | IB4        | IB3 | IB2       | IB1       | IB0       |
|--------|---------|------|------|------|------|------|------------|------------|------------|-----|------------|------------|------------|-----|-----------|-----------|-----------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | DC1<br>[2] | DC1<br>[1] | DC1<br>[0] | 0   | DC0<br>[2] | DC0<br>[1] | DC0<br>[0] | 0   | VC<br>[2] | VC<br>[1] | VC<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 1          | 1          | 0          | 0   | 1          | 1          | 0          | 0   | 0         | 0         | 0         |

**Table 28** Step-Up Frequency (Step-Up Circuit 1)

| DC0[2:0] | Step-Up Circuit 1: Step-Up Frequency (f <sub>DCDC1</sub> ) |
|----------|------------------------------------------------------------|
| 3'h0     | fosc                                                       |
| 3'h1     | fosc / 2                                                   |
| 3'h2     | fosc / 4                                                   |
| 3'h3     | fosc / 8                                                   |
| 3'h4     | fosc / 16                                                  |
| 3'h5     | Setting inhibited                                          |
| 3'h6     | Halt Step-up circuit 1                                     |
| 3'h7     | Setting inhibited                                          |

Note: Make sure the DC0, DC1 setting restriction:  $f_{DCDC1} \ge f_{DCDC2}$ .

**Table 29 Step-Up Frequency (Step-Up Circuit 2)** 

| DC1[2:0] | Step-Up Circuit 2: Step-Up Frequency (f <sub>DCDC2</sub> ) |
|----------|------------------------------------------------------------|
| 3'h0     | fosc / 16                                                  |
| 3'h1     | fosc / 32                                                  |
| 3'h2     | fosc / 64                                                  |
| 3'h3     | fosc / 128                                                 |
| 3'h4     | fosc / 256                                                 |
| 3'h5     | Setting inhibited                                          |
| 3'h6     | Halt Step-up circuit 2                                     |
| 3'h7     | Setting inhibited                                          |
|          |                                                            |

Note: Make sure the DC0, DC1 setting restriction:  $f_{DCDC1} \ge f_{DCDC2}$ .

Table 30 VciOUT Output Level

| VC[2:0] | VciOUT (Reference Voltage) (Vci1 Voltage) |
|---------|-------------------------------------------|
| 3'h0    | 0.94 x VciLVL                             |
| 3'h1    | 0.89 x VciLVL                             |
| 3'h2    | Setting inhibited                         |
| 3'h3    | Setting inhibited                         |
| 3'h4    | 0.76 x VciLVL                             |
| 3'h5    | Setting inhibited                         |
| 3'h6    | Setting inhibited                         |
| 3'h7    | 1.00 x VciLVL                             |

# Power Control 3 (R12h)

|   | R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8  | IB7 | IB6 | IB5   | IB4 | IB3 | IB2 | IB1 | IB0 |
|---|--------|---------|------|------|------|------|------|------|-----|------|-----|-----|-------|-----|-----|-----|-----|-----|
| Ī | 11/    | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | VCM  | 0   | 0   | PSON  | PON | VRH | VRH | VRH | VRH |
|   | W      | 1       | U    | U    | 0    | U    | U    | U    | U   | R[0] | U   | U   | 1 301 | FON | [3] | [2] | [1] | [0] |
| L |        |         |      |      |      |      |      |      |     |      |     |     |       |     |     |     |     |     |
|   | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0   | 0   | 0     | 0   | 0   | 0   | 0   | 0   |
|   |        |         | ,    |      | ,    |      | ,    |      | ,   |      |     | ,   |       | ,   |     |     |     |     |

**VRH[3:0]:** Sets the factor to generate VREG1OUT from VciLVL.

Table 31 VREG1OUT

| VRH[3:0]    | VREG1OUT Voltage  |
|-------------|-------------------|
| 4'h0 – 4'h3 | Halt (Hi-Z)       |
| 4'h4 – 4'h7 | Setting inhibited |
| 4'h8        | VciLVL x 1.60     |
| 4'h9        | VciLVL x 1.65     |
| 4'hA        | VciLVL x 1.70     |
| 4'hB        | VciLVL x 1.75     |
| 4'hC        | VciLVL x 1.80     |
| 4'hD        | VciLVL x 1.85     |
| 4'hE        | VciLVL x 1.90     |
| 4'hF        | Setting inhibited |

Note: Make sure the VC and VRH setting restrictions: VREG1OUT ≤ (DDVDH-0.5)V. When the load is on current to the maximum, VREG1OUT (DDVDH – 0.3V is also possible.

**PON:** Controls the operation to generate VLOUT3. In setting the PON bit, follows the power-supply startup sequence.

PON = 0: Halts the step-up operation to generate VLOUT3.

PON = 1: Starts the step-up operation to generate VLOUT3.

**PSON:** Power supply ON bit. When turning on the power supply, set PSE = 1 first and then set PSON = 1 to start internal power supply operation.

**VCMR[0]:** Selects either external resistance (VcomR pin) or internal electronic volume (VCM[4:0]) to set the electrical potential of VcomH. The internal electronic volume can be set by VCM bits

Table 32

| VCMR[0]     | VcomH Electrical Potential Setting    | 1 |
|-------------|---------------------------------------|---|
| A CIAIL/IOI | V COIIII LIECUICAI I OLEILIAI DELLIIC | 4 |

|   | <u> </u>                   |  |
|---|----------------------------|--|
| 0 | VcomR                      |  |
| 1 | Internal electronic volume |  |

# Power Control 4 (R13h)

| _ | R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11       | IB10       | IB9        | IB8        | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|---|--------|---------|------|------|------|------|------------|------------|------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|
|   | W      | 1       | 0    | 0    | 0    | 0    | VDV<br>[3] | VDV<br>[2] | VDV<br>[1] | VDV<br>[0] | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|   | Defaul | t value | 0    | 0    | 0    | 0    | 0          | 0          | 0          | 0          | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**VDV[3:0]:** Select the factor of VREG1OUT to set the amplitude of Vcom alternating voltage from 0.70 to 1.00.

Table 33

| n Amplitude (VCS) | VDV[3:0]                                                                                                     | Vcom Amplitude (VCS)                                                                                                          |
|-------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| G1OUT x 0.70      | 4'h8                                                                                                         | VREG1OUT x 0.86                                                                                                               |
| G1OUT x 0.72      | 4'h9                                                                                                         | VREG1OUT x 0.88                                                                                                               |
| G1OUT x 0.74      | 4'hA                                                                                                         | VREG1OUT x 0.90                                                                                                               |
| G1OUT x 0.76      | 4'hB                                                                                                         | VREG1OUT x 0.82                                                                                                               |
| G1OUT x 0.78      | 4'hC                                                                                                         | VREG1OUT x 0.94                                                                                                               |
| G1OUT x 0.80      | 4'hD                                                                                                         | VREG1OUT x 0.96                                                                                                               |
| G1OUT x 0.82      | 4'hE                                                                                                         | VREG1OUT x 0.98                                                                                                               |
| G1OUT x 0.84      | 4'hF                                                                                                         | VREG1OUT x 1.00                                                                                                               |
|                   | G1OUT x 0.70<br>G1OUT x 0.72<br>G1OUT x 0.74<br>G1OUT x 0.76<br>G1OUT x 0.78<br>G1OUT x 0.80<br>G1OUT x 0.82 | G10UT x 0.70 4'h8 G10UT x 0.72 4'h9 G10UT x 0.74 4'hA G10UT x 0.76 4'hB G10UT x 0.78 4'hC G10UT x 0.80 4'hD G10UT x 0.82 4'hE |

Note: Set VDV[3:0] so that Vcom amplitude becomes 6V or less.

# Power Control 5 (R15h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12     | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|----------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | BLD<br>M | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Defaul | t value | 0    | 0    | 0    | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**BLDM:** Selects operation in normal mode and low power mode.

Table 34

| BLDM | Vcom Operation   |
|------|------------------|
| 0    | Normal operation |
| 1    | Low power mode   |

Note:

Vcom low power mode depends on each panel characteristics. Confirm low power mode and image quality before using.

# Power Control 6 (R17h)

| R/W   | RS       | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|-------|----------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W     | 1        | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | PSE |
| Defau | lt value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**PSE:** Power supply startup enable bit. The R61505's power supply is started by setting PSON when PSE =1. When completing the power supply generating operation, PSE is set to 0.

#### **RAM Access Instruction**

# RAM Address Set (Horizontal Address) (R20h) RAM Address Set (Vertical Address) (R21h)

|         | R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8        | IB7        | IB6        | IB5        | IB4        | IB3        | IB2        | IB1       | IB0       |
|---------|--------|---------|------|------|------|------|------|------|-----|------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
| R<br>20 | W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | AD<br>[7]  | AD<br>[6]  | AD<br>[5]  | AD<br>[4]  | AD<br>[3]  | AD<br>[2]  | AD<br>[1] | AD<br>[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R<br>21 | W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | AD<br>[16] | AD<br>[15] | AD<br>[14] | AD<br>[13] | AD<br>[12] | AD<br>[11] | AD<br>[10] | AD<br>[9] | AD<br>[8] |
|         | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |

**AD[16:0]:** A GRAM address set initially in the AC (Address Counter). The address in the AC is automatically updated according to the combination of AM, I/D[1:0] settings as the R61505 writes data to the internal GRAM so that data can be written consecutively without resetting the address in the AC. The address is not automatically updated when reading data from the internal GRAM.

Note 1: In RGB interface operation (RM = "1"), the address AD16-0 is set in the address counter every frame on the falling edge of VSYNC.

Note 2: In internal clock operation and VSYNC interface operation (RM = "0"), the address AD16-0 is set when executing the instruction.

Table 35 GRAM Address Setting Range

| AD[16:0]              | GRAM Data Setting              |
|-----------------------|--------------------------------|
| 17'h00000 – 17'h000EF | Bitmap data on the first line  |
| 17'h00100 – 17'h001EF | Bitmap data on the second line |
| 17'h00200 – 17'h002EF | Bitmap data on the third line  |
| 17'h00300 – 17'h003EF | Bitmap data on the fourth line |
| 17'h00400 – 17'h004EF | Bitmap data on the fifth line  |
| :                     | :                              |
| 17'h16400 - 17'h13CEF | Bitmap data on the 317th line  |
| 17'h16500 – 17'h13DEF | Bitmap data on the 318th line  |
| 17'h16600 – 17'h13EEF | Bitmap data on the 319th line  |
| 17'h16700 – 17'h13FEF | Bitmap data on the 320th line  |
|                       |                                |

# RAM Data Write (R22h)

| R/W | RS             |                                                                           |
|-----|----------------|---------------------------------------------------------------------------|
| W   | 1              | RAM data write (WD[17:0]) bits are sent according to the selected format. |
|     | RGB<br>terface | RAM data write (WD[17:0]) bits are sent according to the selected format. |

**WD[17:0]:** The R61505 develops data into 18 bits internally in write operation. The format to develop data into 18 bits is different in different interface operation.

The GRAM data represents the grayscale level. The R61505 automatically updates the address according to AM and I/D[1:0] settings as it writes data in the GRAM. The DFM bit sets the format to develop 16-bit data into the 18-bit data in 16-bit or 8-bit interface operation.

Note: When writing data in the GRAM via system interface while using the RGB interface, make sure that write operations via two interfaces do not conflict one another.

Table 36 GRAM Data and Corresponding LCD Grayscale Level (REV =1)

| GRAM     | Grayscale Level |             |  |  |  |  |  |  |  |
|----------|-----------------|-------------|--|--|--|--|--|--|--|
| Data RGB | Negative        | Positive    |  |  |  |  |  |  |  |
| 6'h00    | V31             | V0          |  |  |  |  |  |  |  |
| 6'h01    | (V30+V31)/2     | (V0+V1)/2   |  |  |  |  |  |  |  |
| 6'h02    | V30             | V1          |  |  |  |  |  |  |  |
| 6'h03    | (V29+V30)/2     | (V1+V2)/2   |  |  |  |  |  |  |  |
| 6'h04    | V29             | V2          |  |  |  |  |  |  |  |
| 6'h05    | (V28+V29)/2     | (V2+V3)/2   |  |  |  |  |  |  |  |
| 6'h06    | V28             | V3          |  |  |  |  |  |  |  |
| 6'h07    | (V27+V28)/2     | (V3+V4)/2   |  |  |  |  |  |  |  |
| 6'h08    | V27             | V4          |  |  |  |  |  |  |  |
| 6'h09    | (V26+V27)/2     | (V4+V5)/2   |  |  |  |  |  |  |  |
| 6'h0A    | V26             | V5          |  |  |  |  |  |  |  |
| 6'h0B    | (V25+V26)/2     | (V5+V6)/2   |  |  |  |  |  |  |  |
| 6'h0C    | V25             | V6          |  |  |  |  |  |  |  |
| 6'h0D    | (V24+V25)/2     | (V6+V7)/2   |  |  |  |  |  |  |  |
| 6'h0E    | V24             | V7          |  |  |  |  |  |  |  |
| 6'h0F    | (V23+V24)/2     | (V7+V8)/2   |  |  |  |  |  |  |  |
| 6'h10    | V23             | V8          |  |  |  |  |  |  |  |
| 6'h11    | (V22+V23)/2     | (V8+V9)/2   |  |  |  |  |  |  |  |
| 6'h12    | V22             | V9          |  |  |  |  |  |  |  |
| 6'h13    | (V21+V22)/2     | (V9+V10)/2  |  |  |  |  |  |  |  |
| 6'h14    | V21             | V10         |  |  |  |  |  |  |  |
| 6'h15    | (V20+V21)/2     | (V10+V11)/2 |  |  |  |  |  |  |  |
| 6'h16    | V20             | V11         |  |  |  |  |  |  |  |
| 6'h17    | (V19+V20)/2     | (V11+V12)/2 |  |  |  |  |  |  |  |
| 6'h18    | V19             | V12         |  |  |  |  |  |  |  |
| 6'h19    | (V18+V19)/2     | (V12+V13)/2 |  |  |  |  |  |  |  |
| 6'h1A    | V18             | V13         |  |  |  |  |  |  |  |
| 6'h1B    | (V17+V18)/2     | (V13+V14)/2 |  |  |  |  |  |  |  |
| 6'h1C    | V17             | V14         |  |  |  |  |  |  |  |
| 6'h1D    | (V16+V17)/2     | (V14+V15)/2 |  |  |  |  |  |  |  |
| 6'h1E    | V16             | V15         |  |  |  |  |  |  |  |
| 6'h1F    | (V15+V16)/2     | (V15+V16)/2 |  |  |  |  |  |  |  |

| GRAM     | Grayscale Le | evel         |  |  |  |
|----------|--------------|--------------|--|--|--|
| Data RGB | Negative     | Positive     |  |  |  |
| 6'h20    | V15          | V16          |  |  |  |
| 6'h21    | (V14+V15)/2  | (V16+V17)/2  |  |  |  |
| 6'h22    | V14          | V17          |  |  |  |
| 6'h23    | (V13+V14)/2  | (V17+V18)/2  |  |  |  |
| 6'h24    | V13          | V18          |  |  |  |
| 6'h25    | (12+V13)/2   | (V18+V19)/2  |  |  |  |
| 6'h26    | V12          | V19          |  |  |  |
| 6'h27    | (11V12)/2    | (V19+V20)/2  |  |  |  |
| 6'h28    | V11          | V20          |  |  |  |
| 6'h29    | (V10+V11)/2  | (V20+V21)/2  |  |  |  |
| 6'h2A    | V10          | V21          |  |  |  |
| 6'h2B    | (V9+V10)/2   | (V21+V22)/2  |  |  |  |
| 6'h2C    | V9           | V22          |  |  |  |
| 6'h2D    | (V8+V9)/2    | (V22+V23)/2  |  |  |  |
| 6'h2E    | V8           | V23          |  |  |  |
| 6'h2F    | (V7+V8)/2    | (V23+V24)/2  |  |  |  |
| 6'h30    | V7           | V24          |  |  |  |
| 6'h31    | (V6+V7)/2    | (V24+V25)/2  |  |  |  |
| 6'h32    | V6           | V25          |  |  |  |
| 6'h33    | (V5+V6)/2    | (V25+V26)/2  |  |  |  |
| 6'h34    | V5           | V26          |  |  |  |
| 6'h35    | (V4+V5)/2    | (V26+V27)/2  |  |  |  |
| 6'h36    | V4           | V27          |  |  |  |
| 6'h37    | (V3+V4)/2    | (V27+V28)/2  |  |  |  |
| 6'h38    | V3           | V28          |  |  |  |
| 6'h39    | (V2+V3)/2    | (V28+V29)/2  |  |  |  |
| 6'h3A    | V2           | V29          |  |  |  |
| 6'h3B    | (V1+V2)/2    | (V29+V30)/2  |  |  |  |
| 6'h3C    | V1           | V30          |  |  |  |
| 6'h3D    | (V0+V1)/2    | (V30+V31)/2  |  |  |  |
| 6'h3E    | (V1+2V0)/3   | (V30+2V31)/3 |  |  |  |
| 6'h3F    | V0           | V31          |  |  |  |

Note: (Vn+Vn+1)/2, (Vn+2Vn+1)/3 are the effective grayscale levels by FRC (frame rate control).

Table 37 GRAM Data and Corresponding LCD Grayscale Level (REV =0)

| GRAM     | Grayscale Level |             |  |  |  |  |  |  |  |
|----------|-----------------|-------------|--|--|--|--|--|--|--|
| Data RGB | Negative        | Positive    |  |  |  |  |  |  |  |
| 6'h00    | V0              | V31         |  |  |  |  |  |  |  |
| 6'h01    | (V0+V1)/2       | (V30+V31)/2 |  |  |  |  |  |  |  |
| 6'h02    | V1              | V30         |  |  |  |  |  |  |  |
| 6'h03    | (V1+V2)/2       | (V29+V30)/2 |  |  |  |  |  |  |  |
| 6'h04    | V2              | V29         |  |  |  |  |  |  |  |
| 6'h05    | (V2+V3)/2       | (V28+V29)/2 |  |  |  |  |  |  |  |
| 6'h06    | V3              | V28         |  |  |  |  |  |  |  |
| 6'h07    | (V3+V4)/2       | (V27+V28)/2 |  |  |  |  |  |  |  |
| 6'h08    | V4              | V27         |  |  |  |  |  |  |  |
| 6'h09    | (V4+V5)/2       | (V26+V27)/2 |  |  |  |  |  |  |  |
| 6'h0A    | V5              | V26         |  |  |  |  |  |  |  |
| 6'h0B    | (V5+V6)/2       | (V25+V26)/2 |  |  |  |  |  |  |  |
| 6'h0C    | V6              | V25         |  |  |  |  |  |  |  |
| 6'h0D    | (V6+V7)/2       | (V24+V25)/2 |  |  |  |  |  |  |  |
| 6'h0E    | V7              | V24         |  |  |  |  |  |  |  |
| 6'h0F    | (V7+V8)/2       | (V23+V24)/2 |  |  |  |  |  |  |  |
| 6'h10    | V8              | V23         |  |  |  |  |  |  |  |
| 6'h11    | (V8+V9)/2       | (V22+V23)/2 |  |  |  |  |  |  |  |
| 6'h12    | V9              | V22         |  |  |  |  |  |  |  |
| 6'h13    | (V9+V10)/2      | (V21+V22)/2 |  |  |  |  |  |  |  |
| 6'h14    | V10             | V21         |  |  |  |  |  |  |  |
| 6'h15    | (V10+V11)/2     | (V20+V21)/2 |  |  |  |  |  |  |  |
| 6'h16    | V11             | V20         |  |  |  |  |  |  |  |
| 6'h17    | (V11+V12)/2     | (V19+V20)/2 |  |  |  |  |  |  |  |
| 6'h18    | V12             | V19         |  |  |  |  |  |  |  |
| 6'h19    | (V12+V13)/2     | (V18+V19)/2 |  |  |  |  |  |  |  |
| 6'h1A    | V13             | V18         |  |  |  |  |  |  |  |
| 6'h1B    | (V13+V14)/2     | (V17+V18)/2 |  |  |  |  |  |  |  |
| 6'h1C    | V14             | V17         |  |  |  |  |  |  |  |
| 6'h1D    | (V14+V15)/2     | (V16+V17)/2 |  |  |  |  |  |  |  |
| 6'h1E    | V15             | V16         |  |  |  |  |  |  |  |
| 6'h1F    | (V15+V16)/2     | (V15+V16)/2 |  |  |  |  |  |  |  |

| GRAM     | Grayscale Lev | Grayscale Level |  |  |  |  |  |  |  |  |
|----------|---------------|-----------------|--|--|--|--|--|--|--|--|
| Data RGB | Negative      | Positive        |  |  |  |  |  |  |  |  |
| 6'h20    | V16           | V15             |  |  |  |  |  |  |  |  |
| 6'h21    | (V16+V17)/2   | (V14+V15)/2     |  |  |  |  |  |  |  |  |
| 6'h22    | V17           | V14             |  |  |  |  |  |  |  |  |
| 6'h23    | (V17+V18)/2   | (V13+V14)/2     |  |  |  |  |  |  |  |  |
| 6'h24    | V18           | V13             |  |  |  |  |  |  |  |  |
| 6'h25    | (V18+V19)/2   | (12+V13)/2      |  |  |  |  |  |  |  |  |
| 6'h26    | V19           | V12             |  |  |  |  |  |  |  |  |
| 6'h27    | (V19+V20)/2   | (11V12)/2       |  |  |  |  |  |  |  |  |
| 6'h28    | V20           | V11             |  |  |  |  |  |  |  |  |
| 6'h29    | (V20+V21)/2   | (V10+V11)/2     |  |  |  |  |  |  |  |  |
| 6'h2A    | V21           | V10             |  |  |  |  |  |  |  |  |
| 6'h2B    | (V21+V22)/2   | (V9+V10)/2      |  |  |  |  |  |  |  |  |
| 6'h2C    | V22           | V9              |  |  |  |  |  |  |  |  |
| 6'h2D    | (V22+V23)/2   | (V8+V9)/2       |  |  |  |  |  |  |  |  |
| 6'h2E    | V23           | V8              |  |  |  |  |  |  |  |  |
| 6'h2F    | (V23+V24)/2   | (V7+V8)/2       |  |  |  |  |  |  |  |  |
| 6'h30    | V24           | V7<br>(V6+V7)/2 |  |  |  |  |  |  |  |  |
| 6'h31    | (V24+V25)/2   |                 |  |  |  |  |  |  |  |  |
| 6'h32    | V25           | V6              |  |  |  |  |  |  |  |  |
| 6'h33    | (V25+V26)/2   | (V5+V6)/2       |  |  |  |  |  |  |  |  |
| 6'h34    | V26           | V5              |  |  |  |  |  |  |  |  |
| 6'h35    | (V26+V27)/2   | (V4+V5)/2       |  |  |  |  |  |  |  |  |
| 6'h36    | V27           | V4              |  |  |  |  |  |  |  |  |
| 6'h37    | (V27+V28)/2   | (V3+V4)/2       |  |  |  |  |  |  |  |  |
| 6'h38    | V28           | V3              |  |  |  |  |  |  |  |  |
| 6'h39    | (V28+V29)/2   | (V2+V3)/2       |  |  |  |  |  |  |  |  |
| 6'h3A    | V29           | V2              |  |  |  |  |  |  |  |  |
| 6'h3B    | (V29+V30)/2   | (V1+V2)/2       |  |  |  |  |  |  |  |  |
| 6'h3C    | V30           | V1              |  |  |  |  |  |  |  |  |
| 6'h3D    | (V30+V31)/2   | (V0+V1)/2       |  |  |  |  |  |  |  |  |
| 6'h3E    | (V30+2V31)/3  | (V1+2V0)/3      |  |  |  |  |  |  |  |  |
| 6'h3F    | V31           | V0              |  |  |  |  |  |  |  |  |

Note: (Vn+Vn+1)/2, (Vn+2Vn+1)/3 are the effective grayscale levels by FRC (frame rate control).

# RAM Data Read (R22h)

| R/W | RS |                                                                                    |
|-----|----|------------------------------------------------------------------------------------|
| R   | 1  | RAM data read (RD[17:0]) bits are sent according to the selected interface format. |

**RD[17:0]:** 18-bit data read from the GRAM. RAM data read RD[17:0] is transferred via different data bus in different interface operation.

When the R61505 reads data from the GRAM to the microcomputer, the first word read immediately after RAM address set is executed is taken in the internal read-data latch and invalid data is sent to the data bus. Valid data is sent to the data bus when the R61505 reads out the second and subsequent words.

When either 8-bit or 16-bit interface is selected, the LSBs of R and B dot data are not read out.

Note: This register is not available in RGB interface operation.



Figure 6 GRAM Read Sequence

# **VCOM Potential Setting**

# Power Control 7 (R29h)

| R/ | W     | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4         | IB3         | IB2         | IB1         | IB0         |
|----|-------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-------------|-------------|-------------|-------------|-------------|
| 1  | W     | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | VCM<br>1[4] | VCM<br>1[3] | VCM<br>1[2] | VCM<br>1[1] | VCM<br>1[0] |
| D  | efaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0           | 0           | 0           | 0           | 0           |

**VCM1[4:0]:** Sets a factor of VREG1OUT from 0.69 to 1.00 to generate the VcomH voltage (Higher level of Vcom alternating voltage). VcomH voltage can be set either by internal electronic volume or external resistor. Set the VCMR bit to select either external resistor or internal electronic volume for VcomH adjustment.

Table 38

| VCM1[4:0] | VCOMH Voltage   |
|-----------|-----------------|
| 5'h00     | VREG1OUT x 0.69 |
| 5'h01     | VREG1OUT x 0.70 |
| 5'h02     | VREG10UT x 0.71 |
| 5'h03     | VREG1OUT x 0.72 |
| 5'h04     | VREG1OUT x 0.73 |
| 5'h05     | VREG1OUT x 0.74 |
| 5'h06     | VREG1OUT x 0.75 |
| 5'h07     | VREG1OUT x 0.76 |
| 5'h08     | VREG1OUT x 0.77 |
| 5'h09     | VREG1OUT x 0.78 |
| 5'h0A     | VREG1OUT x 0.79 |
| 5'h0B     | VREG1OUT x 0.80 |
| 5'h0C     | VREG1OUT x 0.81 |
| 5'h0D     | VREG1OUT x 0.82 |
| 5'h0E     | VREG1OUT x 0.83 |
| 5'h0F     | VREG1OUT x 0.84 |
|           |                 |

| VCM1[4:0] | VCOMH Voltage   |
|-----------|-----------------|
| 5'h10     | VREG1OUT x 0.85 |
| 5'h11     | VREG1OUT x 0.86 |
| 5'h12     | VREG1OUT x 0.87 |
| 5'h13     | VREG1OUT x 0.88 |
| 5'h14     | VREG1OUT x 0.89 |
| 5'h15     | VREG1OUT x 0.90 |
| 5'h16     | VREG1OUT x 0.91 |
| 5'h17     | VREG1OUT x 0.92 |
| 5'h18     | VREG1OUT x 0.93 |
| 5'h19     | VREG1OUT x 0.94 |
| 5'h1A     | VREG1OUT x 0.95 |
| 5'h1B     | VREG1OUT x 0.96 |
| 5'h1C     | VREG1OUT x 0.97 |
| 5'h1D     | VREG1OUT x 0.98 |
| 5'h1E     | VREG1OUT x 0.99 |
| 5'h1F     | VREG1OUT x 1.00 |

Notes: 1. Set the VcomH voltage between 3.0V to (DDVDH+0.5)V.

2. The VCM1[4:0] setting is enabled when selecting internal electronic volume adjustment by setting VCMR[0] = 1.

# γ Control

# $\gamma$ Control 1 ~ 14 (R30h to R3Dh)

|         | R/W    | RS      | IB15 | IB14 | IB13 | IB12         | IB11         | IB10         | IB9          | IB8          | IB7 | IB6 | IB5 | IB4          | IB3          | IB2          | IB1          | IB0          |
|---------|--------|---------|------|------|------|--------------|--------------|--------------|--------------|--------------|-----|-----|-----|--------------|--------------|--------------|--------------|--------------|
| R<br>30 | W      | 1       | 0    | 0    | 0    | 0            | 0            | P0KP<br>1[2] | P0KP<br>1[1] | P0KP<br>1[0] | 0   | 0   | 0   | 0            | 0            | P0KP<br>0[2] | P0KP<br>0[1] | P0KP<br>0[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>31 | W      | 1       | 0    | 0    | 0    | 0            | 0            | P0KP<br>3[2] | P0KP<br>3[1] | P0KP<br>3[0] | 0   | 0   | 0   | 0            | 0            | P0KP<br>2[2] | P0KP<br>2[1] | P0KP<br>2[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>32 | W      | 1       | 0    | 0    | 0    | 0            | 0            | P0KP<br>5[2] | P0KP<br>5[1] | P0KP<br>5[0] | 0   | 0   | 0   | 0            | 0            | P0KP<br>4[2] | P0KP<br>4[1] | P0KP<br>4[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>33 | W      | 1       | 0    | 0    | 0    | 0            | 0            | 0            | P0FP<br>1[1] | P0FP<br>1[0] | 0   | 0   | 0   | 0            | 0            | 0            | P0FP<br>0[1] | P0FP<br>0[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>34 | W      | 1       | 0    | 0    | 0    | 0            | 0            | 0            | P0FP<br>3[1] | P0FP<br>3[0] | 0   | 0   | 0   | 0            | 0            | 0            | P0FP<br>2[1] | P0FP<br>2[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>35 | W      | 1       | 0    | 0    | 0    | 0            | 0            | P0RP<br>1[2] | P0RP<br>1[1] | P0RP<br>1[0] | 0   | 0   | 0   | 0            | 0            | P0RP<br>0[2] | P0RP<br>0[1] | P0RP<br>0[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>36 | W      | 1       | 0    | 0    | 0    | V0RP<br>1[4] | V0RP<br>1[3] | V0RP<br>1[2] | V0RP<br>1[1] | V0RP<br>1[0] | 0   | 0   | 0   | V0RP<br>0[4] | V0RP<br>0[3] | V0RP<br>0[2] | V0RP<br>0[1] | V0RP<br>0[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>37 | W      | 1       | 0    | 0    | 0    | 0            | 0            | P0K<br>N1[2] | P0K<br>N1[1] | P0K<br>N1[0] | 0   | 0   | 0   | 0            | 0            | P0K<br>N0[2] | P0K<br>N0[1] | P0K<br>N0[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>38 | W      | 1       | 0    | 0    | 0    | 0            | 0            | P0K<br>N3[2] | P0K<br>N3[1] | P0K<br>N3[0] | 0   | 0   | 0   | 0            | 0            | P0K<br>N2[2] | P0K<br>N2[1] | P0K<br>N2[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>39 | W      | 1       | 0    | 0    | 0    | 0            | 0            | P0K<br>N5[2] | P0K<br>N5[1] | P0K<br>N5[0] | 0   | 0   | 0   | 0            | 0            | P0K<br>N4[2] | P0K<br>N4[1] | P0K<br>N4[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |

# $\gamma$ Control 1 ~ 14 (R30h to R3Dh) (continued)

| _       | R/W     | RS      | IB15 | IB14 | IB13 | IB12         | IB11         | IB10         | IB9          | IB8          | IB7 | IB6 | IB5 | IB4          | IB3          | IB2          | IB1          | IB0          |
|---------|---------|---------|------|------|------|--------------|--------------|--------------|--------------|--------------|-----|-----|-----|--------------|--------------|--------------|--------------|--------------|
| R<br>3A | W       | 1       | 0    | 0    | 0    | 0            | 0            | 0            | P0FN<br>1[1] | P0FN<br>1[0] | 0   | 0   | 0   | 0            | 0            | 0            | P0FN<br>0[1] | P0FN<br>0[0] |
|         | Default | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>3B | W       | 1       | 0    | 0    | 0    | 0            | 0            | 0            | P0FN<br>3[1] | P0FN<br>3[0] | 0   | 0   | 0   | 0            | 0            | 0            | P0FN<br>2[1] | P0FN<br>2[0] |
|         | Default | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>3C | W       | 1       | 0    | 0    | 0    | 0            | 0            | P0RN<br>1[2] | P0RN<br>1[1] | P0RN<br>1[0] | 0   | 0   | 0   | 0            | 0            | P0RN<br>0[2] | P0RN<br>0[1] | P0RN<br>0[0] |
|         | Default | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |
| R<br>3D | W       | 1       | 0    | 0    | 0    | V0R<br>N1[4] | V0R<br>N1[3] | V0R<br>N1[2] | V0R<br>N1[1] | V0R<br>N1[0] | 0   | 0   | 0   | V0R<br>N0[4] | V0R<br>N0[3] | V0R<br>N0[2] | V0R<br>N0[1] | V0R<br>N0[0] |
|         | Default | t value | 0    | 0    | 0    | 0            | 0            | 0            | 0            | 0            | 0   | 0   | 0   | 0            | 0            | 0            | 0            | 0            |

| P0KP5-0[2:0]: | $\gamma$ fine-adjustment register for positive polarity |
|---------------|---------------------------------------------------------|
| P0FP3-0[1:0]: | γ fine-adjustment register for positive polarity        |
| P0RP1-0[2:0]: | γ gradient-adjustment register for positive polarity    |
| V0RP1-0[4:0]: | γ amplitude-adjustment register for positive polarity   |
| P0KN5-0[2:0]: | γ fine-adjustment register for negative polarity        |
| P0FN3-0[1:0]: | γ fine-adjustment register for negative polarity        |
| P0RN1-0[2:0]: | γ gradient-adjustment register for negative polarity    |
| V0RN1-0[4:0]: | γ amplitude-adjustment register for negative polarity   |

#### **Window Address Control Instruction**

#### Window Horizontal RAM Address Start/End (R50h/ R51h)

#### Window Vertical RAM Address Start/End (R52h/R53h)

| _       | R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8        | IB7        | IB6        | IB5        | IB4        | IB3        | IB2        | IB1        | IB0        |
|---------|--------|---------|------|------|------|------|------|------|-----|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| R<br>50 | W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | HSA<br>[7] | HSA<br>[6] | HSA<br>[5] | HSA<br>[4] | HSA<br>[3] | HSA<br>[2] | HSA<br>[1] | HSA<br>[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| R<br>51 | W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | HEA<br>[7] | HEA<br>[6] | HEA<br>[5] | HEA<br>[4] | HEA<br>[3] | HEA<br>[2] | HEA<br>[1] | HEA<br>[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | 1          | 1          | 1          | 0          | 1          | 1          | 1          | 1          |
| R<br>52 | W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | VSA<br>[8] | VSA<br>[7] | VSA<br>[6] | VSA<br>[5] | VSA<br>[4] | VSA<br>[3] | VSA<br>[2] | VSA<br>[1] | VSA<br>[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| R<br>53 | W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | VEA<br>[8] | VEA<br>[7] | VEA<br>[6] | VEA<br>[5] | VEA<br>[4] | VEA<br>[3] | VEA<br>[2] | VEA<br>[1] | VEA<br>[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 1          | 0          | 0          | 1          | 1          | 1          | 1          | 1          | 1          |

**HSA[7:0], HEA[7:0]:** HSA[7:0] and HEA[7:0] are the start and end addresses of the window address area in horizontal direction, respectively. HSA[7:0] and HEA[7:0] specify the horizontal range to write data. Set HSA[7:0] and HEA[7:0] before starting RAM write operation. In setting, make sure that  $8^{\circ}h00 \le HSA \le 8^{\circ}hEF$  and  $8^{\circ}h04 \le HEA - HSA$ .

**VSA[8:0], VEA[8:0]:** VSA[8:0] and VEA[8:0] are the start and end addresses of the window address area in vertical direction, respectively. VSA[8:0] and VEA[8:0] specify the vertical range to write data. Set VSA[8:0] and VEA[8:0] before starting RAM write operation. In setting, make sure that 9'h000  $\leq$  VSA  $\leq$  VEA  $\leq$  9'h13F.



Figure 7 GRAM Address Map and Window Address Area

# **Base Image Display Control Instruction**

**Driver Output Control (R60h)** 

Base Image Display Control (R61h)

Vertical Scroll Control (R6Ah)

|         | R/W    | RS      | IB15 | IB14 | IB13      | IB12      | IB11      | IB10      | IB9       | IB8       | IB7       | IB6       | IB5        | IB4        | IB3        | IB2        | IB1        | IB0        |
|---------|--------|---------|------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|
| R<br>60 | W      | 1       | GS   | 0    | NL<br>[5] | NL<br>[4] | NL<br>[3] | NL<br>[2] | NL<br>[1] | NL<br>[0] | 0         | 0         | SCN<br>[5] | SCN<br>[4] | SCN<br>[3] | SCN<br>[2] | SCN<br>[1] | SCN<br>[0] |
|         | Defaul | t value | 0    | 0    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0          | 0          | 0          | 0          |
| R<br>61 | W      | 1       | 0    | 0    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0          | NDL        | VLE        | REV        |
|         | Defaul | t value | 0    | 0    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0          | 0          | 0          | 0          |
| R<br>6A | W      | 1       | 0    | 0    | 0         | 0         | 0         | 0         | 0         | VL<br>[8] | VL<br>[7] | VL<br>[6] | VL<br>[5]  | VL<br>[4]  | VL<br>[3]  | VL<br>[2]  | VL<br>[1]  | VL<br>[0]  |
|         | Defaul | t value | 0    | 0    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0          | 0          | 0          | 0          |

**SCN[5:0]:** Specifies the gate line where the gate driver starts scan.

**NL[5:0]:** Sets the number of lines to drive the LCD at an interval of 8 lines. The GRAM address mapping is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than the number of lines necessary for the size of the liquid crystal panel.

**GS:** Sets the direction of scan by the gate driver. Set GS bit in combination with SM and SS bits for the convenience of the display module configuration and the display direction.

**REV:** Enables the grayscale inversion of the image by setting REV = 1. This enables the R61505 to display the same image from the same set of data whether the liquid crystal panel is normally black or white. The source output level during front, back porch periods and blank periods is determined by register setting (PTS).

Table 39 GRAM Data-Grayscale Level Inversion

| REV   | GRAM Data    | Source Output Level in Display Area |                   |  |  |  |  |  |  |  |
|-------|--------------|-------------------------------------|-------------------|--|--|--|--|--|--|--|
| IXL V | GIVAINI Data | Positive Polarity                   | Negative Polarity |  |  |  |  |  |  |  |
|       | 18'h00000    | V31                                 | V0                |  |  |  |  |  |  |  |
| 0     | :            | :                                   | :                 |  |  |  |  |  |  |  |
|       | 18'h3FFFFF   | V0                                  | V31               |  |  |  |  |  |  |  |
|       | 18'h00000    | V0                                  | V31               |  |  |  |  |  |  |  |
| 1     | :            | :                                   | :                 |  |  |  |  |  |  |  |
|       | 18'h3FFFFF   | V31                                 | V0                |  |  |  |  |  |  |  |

**VLE:** Vertical scroll display enable bit. When VLE = 1, the R61505 starts displaying the base image from the line (of the physical display) determined by VL[8:0] bits. VL[8:0] sets the amount of scrolling, which is the number of lines to shift the start line of the display from the first line of the physical display. Note that the partial image display position is not affected by the base image scrolling.

The vertical scrolling is not available in external display interface operation. In this case, make sure to set VLE = "0".

Table 40

| VLE | Base Image       |
|-----|------------------|
| 0   | Fixed            |
| 1   | Enable scrolling |

NDL: Sets the source output level in non-lit display area. NDL bit can keep the non-display area lit on.

Table 41

| NDL | Non-Display Area |          |  |  |  |  |  |  |  |
|-----|------------------|----------|--|--|--|--|--|--|--|
|     | Positive         | Negative |  |  |  |  |  |  |  |
| 0   | V31              | V0       |  |  |  |  |  |  |  |
| 1   | V0               | V31      |  |  |  |  |  |  |  |

**VL[8:0]:** Sets the amount of scrolling of the base image. The base image is scrolled in vertical direction and displayed from the line which is determined by VL[8:0]. Make sure VL[8:0]  $\leq$  320.

Table 42

| NL[5:0] | Number of Lines   | NL[5:0] | Number of Lines   | NL[5:0]     | Number of Lines   |
|---------|-------------------|---------|-------------------|-------------|-------------------|
| 6'h00   | Setting inhibited | 6'h0E   | Setting inhibited | 6'h1C       | Setting inhibited |
| 6'h01   | Setting inhibited | 6'h0F   | Setting inhibited | 6'h1D       | 240 (lines)       |
| 6'h02   | Setting inhibited | 6'h10   | Setting inhibited | 6'h1E       | 248               |
| 6'h03   | Setting inhibited | 6'h11   | Setting inhibited | 6'h1F       | 256               |
| 6'h04   | Setting inhibited | 6'h12   | Setting inhibited | 6'h20       | 264               |
| 6'h05   | Setting inhibited | 6'h13   | Setting inhibited | 6'h21       | 272               |
| 6'h06   | Setting inhibited | 6'h14   | Setting inhibited | 6'h22       | 280               |
| 6'h07   | Setting inhibited | 6'h15   | Setting inhibited | 6'h23       | 288               |
| 6'h08   | Setting inhibited | 6'h16   | Setting inhibited | 6'h24       | 296               |
| 6'h09   | Setting inhibited | 6'h17   | Setting inhibited | 6'h25       | 304               |
| 6'h0A   | Setting inhibited | 6'h18   | Setting inhibited | 6'h26       | 312               |
| 6'h0B   | Setting inhibited | 6'h19   | Setting inhibited | 6'h27       | 320               |
| 6'h0C   | Setting inhibited | 6'h1A   | Setting inhibited | 6'h28-6'h3F | Setting inhibited |
| 6'h0D   | Setting inhibited | 6'h1B   | Setting inhibited |             |                   |

Table 43

|             | Gate Line No (Scan Start Position) |                  |                  |                  |  |  |  |  |  |  |  |  |
|-------------|------------------------------------|------------------|------------------|------------------|--|--|--|--|--|--|--|--|
| SCN[5:0]    | SM=0                               |                  | SM=1             |                  |  |  |  |  |  |  |  |  |
|             | GS=0                               | GS=1             | GS=0             | GS=1             |  |  |  |  |  |  |  |  |
| 6'h00       | G1                                 | G320             | G1               | G320             |  |  |  |  |  |  |  |  |
| 6'h01       | G9                                 | G312             | G17              | G304             |  |  |  |  |  |  |  |  |
| 6'h02       | G17                                | G304             | G33              | G288             |  |  |  |  |  |  |  |  |
| 6'h03       | G25                                | G296             | G49              | G272             |  |  |  |  |  |  |  |  |
| 6'h04       | G33                                | G288             | G65              | G256             |  |  |  |  |  |  |  |  |
| 6'h05       | G41                                | G280             | G81              | G240             |  |  |  |  |  |  |  |  |
| 6'h06       | G49                                | G272             | G97              | G224             |  |  |  |  |  |  |  |  |
| 6'h07       | G57                                | G264             | G113             | G208             |  |  |  |  |  |  |  |  |
| 6'h08       | G65                                | G256             | G129             | G192             |  |  |  |  |  |  |  |  |
| 6'h09       | G73                                | G248             | G145             | G176             |  |  |  |  |  |  |  |  |
| 6'h0A       | G81                                | G240             | G161             | G160             |  |  |  |  |  |  |  |  |
| 6'h0B       | G89                                | G232             | G177             | G144             |  |  |  |  |  |  |  |  |
| 6'h0C       | G97                                | G224             | G193             | G128             |  |  |  |  |  |  |  |  |
| 6'h0D       | G105                               | G216             | G209             | G112             |  |  |  |  |  |  |  |  |
| 6'h0E       | G113                               | G208             | G225             | G96              |  |  |  |  |  |  |  |  |
| 6'h0F       | G121                               | G200             | G241             | G80              |  |  |  |  |  |  |  |  |
| 6'h10       | G129                               | G192             | G257             | G64              |  |  |  |  |  |  |  |  |
| 6'h11       | G137                               | G184             | G273             | G48              |  |  |  |  |  |  |  |  |
| 6'h12       | G145                               | G176             | G289             | G32              |  |  |  |  |  |  |  |  |
| 6'h13       | G153                               | G168             | G305             | G16              |  |  |  |  |  |  |  |  |
| 6'h14       | G161                               | G160             | G2               | G319             |  |  |  |  |  |  |  |  |
| 6'h15       | G169                               | G152             | G18              | G303             |  |  |  |  |  |  |  |  |
| 6'h16       | G177                               | G144             | G34              | G287             |  |  |  |  |  |  |  |  |
| 6'h17       | G185                               | G136             | G50              | G271             |  |  |  |  |  |  |  |  |
| 6'h18       | G193                               | G128             | G66              | G255             |  |  |  |  |  |  |  |  |
| 6'h19       | G201                               | G120             | G82              | G239             |  |  |  |  |  |  |  |  |
| 6'h1A       | G209                               | G112             | G98              | G223             |  |  |  |  |  |  |  |  |
| 6'h1B       | G217                               | G104             | G114             | G207             |  |  |  |  |  |  |  |  |
| 6'h1C       | G225                               | G96              | G130             | G191             |  |  |  |  |  |  |  |  |
| 6'h1D       | G233                               | G88              | G146             | G175             |  |  |  |  |  |  |  |  |
| 6'h1E       | G241                               | G80              | G162             | G159             |  |  |  |  |  |  |  |  |
| 6'h1F       | G249                               | G72              | G178             | G143             |  |  |  |  |  |  |  |  |
| 6'h20       | G257                               | G64              | G194             | G127             |  |  |  |  |  |  |  |  |
| 6'h21       | G265                               | G56              | G210             | G111             |  |  |  |  |  |  |  |  |
| 6'h22       | G273                               | G48              | G226             | G95              |  |  |  |  |  |  |  |  |
| 6'h23       | G281                               | G40              | G242             | G79              |  |  |  |  |  |  |  |  |
| 6'h24       | G289                               | G32              | G258             | G63              |  |  |  |  |  |  |  |  |
| 6'h25       | G297                               | G24              | G274             | G47              |  |  |  |  |  |  |  |  |
| 6'h26       | G305                               | G16              | G290             | G31              |  |  |  |  |  |  |  |  |
| 6'h27       | G313                               | G8               | G306             | G15              |  |  |  |  |  |  |  |  |
| 6'h28-6'h3F | Setting disabled                   | Setting disabled | Setting disabled | Setting disabled |  |  |  |  |  |  |  |  |

# **Partial Display Control Instruction**

Partial Image 1: Display Position (R80h), RAM Address (Start/End Line Address) (R81h/R82h)

Partial Image 2: Display Position (R83h), RAM Address (Start/End Line Address) (R84h/R85h)

|         | R/W           | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8          | IB7          | IB6          | IB5          | IB4          | IB3          | IB2          | IB1          | IB0          |
|---------|---------------|---------|------|------|------|------|------|------|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| R<br>80 | W             | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | PTDP<br>0[8] | PTDP<br>0[7] | PTDP<br>0[6] | PTDP<br>0[5] | PTDP<br>0[4] | PTDP<br>0[3] | PTDP<br>0[2] | PTDP<br>0[1] | PTDP<br>0[0] |
|         | Defaul        | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| R<br>81 | W             | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | PTSA<br>0[8] | PTSA<br>0[7] | PTSA<br>0[6] | PTSA<br>0[5] | PTSA<br>0[4] | PTSA<br>0[3] | PTSA<br>0[2] | PTSA<br>0[1] | PTSA<br>0[0] |
|         | Default value |         | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| R<br>82 | W             | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | PTE<br>A0[8] | PTE<br>A0[7] | PTE<br>A0[6] | PTE<br>A0[5] | PTE<br>A0[4] | PTE<br>A0[3] | PTE<br>A0[2] | PTE<br>A0[1] | PTE<br>A0[0] |
|         | Defaul        | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
|         |               |         |      |      |      |      |      |      |     |              |              |              |              |              |              |              |              |              |
| R<br>83 | W             | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | PTDP<br>1[8] | PTDP<br>1[7] | PTDP<br>1[6] | PTDP<br>1[5] | PTDP<br>1[4] | PTDP<br>1[3] | PTDP<br>1[2] | PTDP<br>1[1] | PTDP<br>1[0] |
|         | Default valu  |         | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| R<br>84 | W             | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | PTSA<br>1[8] | PTSA<br>1[7] | PTSA<br>1[6] | PTSA<br>1[5] | PTSA<br>1[4] | PTSA<br>1[3] | PTSA<br>1[2] | PTSA<br>1[1] | PTSA<br>1[0] |
|         | Defaul        | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| R<br>85 | W             | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | PTE<br>A1[8] | PTE<br>A1[7] | PTE<br>A1[6] | PTE<br>A1[5] | PTE<br>A1[4] | PTE<br>A1[3] | PTE<br>A1[2] | PTE<br>A1[1] | PTE<br>A1[0] |
|         | Defaul        | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |

**PTDP0[8:0]:** Sets the display position of partial image 1.

PTDP1[8:0]: Sets the display position of partial image 2.

The display areas of the partial images 1 and 2 must not overlap each another. In setting, make sure that

Partial image 1 display area < Partial image 2 display area, and

Coordinates of partial image 1 display position: (PTDP0, PTDP0 + (PTEA0 – PTSA0))

Coordinates of partial image 2 display position: (PTDP1, PTDP1 + (PTEA1 – PTSA1))

If PTDP0 = "9'h000", the partial image 1 is displayed from the first line of the base image.

**PTSA0[8:0] and PTEA0[8:0]:** Sets the start line and end line addresses of the RAM area, respectively for the partial image 1. In setting, make sure that  $PTSA0 \le PTEA0$ .

**PTSA1[8:0] and PTEA1[8:0]:** Sets the start line and end line addresses of the RAM area, respectively for the partial image 2. In setting, make sure that PTSA1  $\leq$  PTEA1.

#### **Panel Interface Control Instruction**

#### Panel Interface Control 1(R90h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9         | IB8         | IB7 | IB6 | IB5 | IB4         | IB3         | IB2         | IB1         | IB0         |
|--------|---------|------|------|------|------|------|------|-------------|-------------|-----|-----|-----|-------------|-------------|-------------|-------------|-------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | DIVI<br>[1] | DIVI<br>[0] | 0   | 0   | 0   | RTNI<br>[4] | RTNI<br>[3] | RTNI<br>[2] | RTNI<br>[1] | RTNI<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0           | 0           | 0   | 0   | 0   | 1           | 0           | 0           | 0           | 0           |

**RTNI[4:0]:** Sets 1H (line) period. This setting is enabled while the R61505's display operation is synchronized with internal clock.

**DIVI[1:0]:** Sets the division ratio of the internal clock frequency. The R61505's internal operation is synchronized with the frequency divided internal clock. When DIVI[1:0] setting is changed, the width of the reference clock for liquid crystal panel control signals is changed.

The frame frequency can be adjusted by register setting (RTNI and DIVI bits). When changing the number of lines to drive the liquid crystal panel, adjust the frame frequency too. For details, see "Frame-Frequency Adjustment Function". The setting in DIVI[1:0] is disabled in RGB interface operation.

# Frame Frequency Calculation

Clocks per line: RTNI

| Frame frequency =             | fosc                                                | - [Hz] |
|-------------------------------|-----------------------------------------------------|--------|
| rraine frequency –            | Clocks per line x division ratio x (line + BP + FP) | [112]  |
| fosc : RC oscillation frequen | ncy                                                 |        |
| Line: Number of lines to dri  | ve the LCD (NL bits)                                |        |
| Division ratio: DIVI          |                                                     |        |

**Table 44** Clocks per Line (Internal Clock Operation: 1 Clock = 1 OSC)

| RTNI[4:0]   | Clocks per Line   | RTNI[4:0] | Clocks per Line | RTNI[4:0] | Clocks per Line |
|-------------|-------------------|-----------|-----------------|-----------|-----------------|
| 5'h00-5'h0F | Setting inhibited | 5'h15     | 21 clocks       | 5'h1B     | 27 clocks       |
| 5'h10       | 16 clocks         | 5'h16     | 22 clocks       | 5'h1C     | 28 clocks       |
| 5'h11       | 17 clocks         | 5'h17     | 23 clocks       | 5'h1D     | 29 clocks       |
| 5'h12       | 18 clocks         | 5'h18     | 24 clocks       | 5'h1E     | 30 clocks       |
| 5'h13       | 19 clocks         | 5'h19     | 25 clocks       | 5'h1F     | 31 clocks       |
| 5'h14       | 20 clocks         | 5'h1A     | 26 clocks       |           |                 |

Table 45 Division ratio of the internal clock

| DIVI[1:0] | <b>Division Ratio</b> | Internal operation clock unit |
|-----------|-----------------------|-------------------------------|
| 2'h0      | 1/1                   | 1 OSC                         |
| 2'h1      | 1/2                   | 2 OSC                         |
| 2'h2      | 1/4                   | 4 OSC                         |
| 2'h3      | 1/8                   | 8 OSC                         |

## Panel Interface Control 2(R92h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10        | IB9         | IB8         | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|------|------|-------------|-------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | NOW<br>I[2] | NOW<br>I[1] | NOW<br>I[0] | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0           | 0           | 0           | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**NOWI[2:0]:** Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation synchronizing with the internal clock.

Table 46

| NOWI[2:0] | Non-Overlap Period           | NOWI[2:0] | Non-Overlap Period           |
|-----------|------------------------------|-----------|------------------------------|
| 3'h0      | 0 (internal clock *see note) | 3'h4      | 4 (internal clock *see note) |
| 3'h1      | 1                            | 3'h5      | 5                            |
| 3'h2      | 2                            | 3'h6      | 6                            |
| 3'h3      | 3                            | 3'h7      | 7                            |

Note: The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits.

#### Panel Interface Control 3(R93h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2         | IB1         | IB0         |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-------------|-------------|-------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | MCP<br>I[2] | MCP<br>I[1] | MCP<br>I[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0           | 0           | 0           |

**MCPI[2:0]:** Sets the source output timing by the number of internal clock from the reference point. The setting is enabled in display operation synchronizing with the internal clock.

Table 47

| MCPI[2:0] | Source Output Position       | MCPI[2:0] | Source Output Position |
|-----------|------------------------------|-----------|------------------------|
| 3'h0      | Setting disabled             | 3'h4      | 4                      |
| 3'h1      | 1 (internal clock *see note) | 3'h5      | 5                      |
| 3'h2      | 2                            | 3'h6      | 6                      |
| 3'h3      | 3                            | 3'h7      | 7                      |

Note: The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits. The source output position is measured from the reference point by the number of internal clock cycle.

#### Panel Interface Control 4(R95h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9         | IB8         | IB7 | IB6 | IB5         | IB4         | IB3         | IB2         | IB1         | IB0         |
|--------|---------|------|------|------|------|------|------|-------------|-------------|-----|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | DIVE<br>[1] | DIVE<br>[0] | 0   | 0   | RTN<br>E[5] | RTN<br>E[4] | RTN<br>E[3] | RTN<br>E[2] | RTN<br>E[1] | RTN<br>E[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0           | 0           | 0   | 0   | 0           | 1           | 1           | 1           | 1           | 0           |

**RTNE[5:0]:** Sets RTNE[5:0] and DIVE[1:0] bits so that the number of DOTCLK calculated from the following formula becomes the number of DOTCLK which should be inputted in 1H period. The RTNE[5:0] setting is enabled in display operation via RGB interface.

DIVE[1:0] (division ratio) x RTNE[5:0] (Number of DOTCLK) 

Number of DOTCLK in 1H period

**DIVE[1:0]:** Sets the division ratio of DOTCLK frequency. The R61505's internal operation is synchronized with the frequency divided DOTCLK. The setting in DIVE[1:0] is enabled in RGB interface operation.

**Table 48 Division Ratio of DOTCLK** 

| DIVE[1:0] | Division         | Inte                             | ernal Operation | Clock Unit (DOTCLK)              |                 |
|-----------|------------------|----------------------------------|-----------------|----------------------------------|-----------------|
| DIVE[1.0] | Ratio            | 18-bit, 1 Transfer RGB interface | DOTCLK = 5 MHz  | 8-bit, 3 Transfers RGB Interface | DOTCLK = 15 MHz |
| 2'h0      | Setting disabled | Setting disabled                 | -               | Setting disabled                 | -               |
| 2'h1      | 1/4              | 4 DOTCLKs                        | 0.8μs           | 12 DOTCLKs                       | 0.8μs           |
| 2'h2      | 1/8              | 8 DOTCLKs                        | 1.6µs           | 24 DOTCLKs                       | 1.6µs           |
| 2'h3      | 1/16             | 16 DOTCLKs                       | 3.2μs           | 48 DOTCLKs                       | 3.2µs           |

Table 49 DOTCLK per Line (1H period)

|           | • • •                | *         |                      |
|-----------|----------------------|-----------|----------------------|
| RTNE[5:0] | DOTCLK per Line (1H) | RTNE[5:0] | DOTCLK per Line (1H) |
| 6'h00     | Setting disabled     | 6'h20     | 32 clocks            |
| 6'h01     | Setting disabled     | 6'h21     | 33 clocks            |
| 6'h02     | Setting disabled     | 6'h22     | 34 clocks            |
| 6'h03     | Setting disabled     | 6'h23     | 35 clocks            |
| 6'h04     | Setting disabled     | 6'h24     | 36 clocks            |
| 6'h05     | Setting disabled     | 6'h25     | 37 clocks            |
| 6'h06     | Setting disabled     | 6'h26     | 38 clocks            |
| 6'h07     | Setting disabled     | 6'h27     | 39 clocks            |
| 6'h08     | Setting disabled     | 6'h28     | 40 clocks            |
| 6'h09     | Setting disabled     | 6'h29     | 41 clocks            |
| 6'h0A     | Setting disabled     | 6'h2A     | 42 clocks            |
| 6'h0B     | Setting disabled     | 6'h2B     | 43 clocks            |
| 6'h0C     | Setting disabled     | 6'h2C     | 44 clocks            |
| 6'h0D     | Setting disabled     | 6'h2D     | 45 clocks            |
| 6'h0E     | Setting disabled     | 6'h2E     | 46 clocks            |
| 6'h0F     | Setting disabled     | 6'h2F     | 47 clocks            |
| 6'h10     | 16 clocks            | 6'h30     | 48 clocks            |
| 6'h11     | 17 clocks            | 6'h31     | 49 clocks            |
| 6'h12     | 18 clocks            | 6'h32     | 50 clocks            |
| 6'h13     | 19 clocks            | 6'h33     | 51 clocks            |
| 6'h14     | 20 clocks            | 6'h34     | 52 clocks            |
| 6'h15     | 21 clocks            | 6'h35     | 53 clocks            |
| 6'h16     | 22 clocks            | 6'h36     | 54 clocks            |
| 6'h17     | 23 clocks            | 6'h37     | 55 clocks            |
| 6'h18     | 24 clocks            | 6'h38     | 56 clocks            |
| 6'h19     | 25 clocks            | 6'h39     | 57 clocks            |
| 6'h1A     | 26 clocks            | 6'h3A     | 58 clocks            |
| 6'h1B     | 27 clocks            | 6'h3B     | 59 clocks            |
| 6'h1C     | 28 clocks            | 6'h3C     | 60 clocks            |
| 6'h1D     | 29 clocks            | 6'h3D     | 61 clocks            |
| 6'h1E     | 30 clocks            | 6'h3E     | 62 clocks            |
| 6'h1F     | 31 clocks            | 6'h3F     | 63 clocks            |

## Panel Interface Control 5(R97h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11        | IB10        | IB9         | IB8         | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|------|-------------|-------------|-------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | 0    | NOW<br>E[3] | NOW<br>E[2] | NOW<br>E[1] | NOW<br>E[0] | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Defaul | t value | 0    | 0    | 0    | 0    | 0           | 0           | 0           | 0           | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**NOWE**[3:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation via RGB interface.

Table 50

| Non-Overlap Period  | NOWE[3:0]                          | Non-Overlap Period                                                                                                                                           |
|---------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 (clock *see note) | 4'h8                               | 8 (clock *see note)                                                                                                                                          |
| 1                   | 4'h9                               | 9                                                                                                                                                            |
| 2                   | 4'hA                               | 10                                                                                                                                                           |
| 3                   | 4'hB                               | 11                                                                                                                                                           |
| 4                   | 4'hC                               | 12                                                                                                                                                           |
| 5                   | 4'hD                               | 13                                                                                                                                                           |
| 6                   | 4'hE                               | 14                                                                                                                                                           |
| 7                   | 4'hF                               | 15                                                                                                                                                           |
|                     | 0 (clock *see note)  1  2  3  4  5 | 0 (clock *see note)       4'h8         1       4'h9         2       4'hA         3       4'hB         4       4'hC         5       4'hD         6       4'hE |

Note: 1 clock = (Number of data transfers/pixel) x DIVE (division ratio) [DOTCLK].

# Panel Interface Control 6(R98h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2         | IB1         | IB0         |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-------------|-------------|-------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | MCP<br>E[2] | MCP<br>E[1] | MCP<br>E[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0           | 0           | 0           |

**MCPE[2:0]:** Sets the source output timing by the number of internal clock from the reference point. The setting is enabled in display operation via RGB interface.

Table 51

| MCPE[2:0] | Source Output Position | MCPE[2:0]               | Source Output Position |
|-----------|------------------------|-------------------------|------------------------|
| 3'h0      | 0 (clock *see note)    | 3'h4                    | 4 (clock *see note)    |
| 3'h1      | 1                      | 3'h5                    | 5                      |
| 3'h2      | 2                      | 3'h6                    | 6                      |
| 3'h3      | 3                      | 3'h7                    | 7                      |
|           |                        | _, <del>, , , _,,</del> |                        |

Note: 1 clock = (Number of data transfers/pixel) x DIVE (division ratio) [DOTCLK].

# **Oscillation Control Instruction**

# Oscillation Control (RA4h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0      |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | CA<br>LB |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        |

**CALB:** Prevents external clock frequency variance.

Rev1.2 '05/12/02

| Mathematical   Math   | R615 | 05 Instruction Li Main category | St      | Sub category                            |          |          |          | Uppe                                             | r code      |                                              |                 |                     | l            |              |                                                  | Lowe            | r code     |            |                 |                                              | Rev1.2 '05/12/02   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------|---------|-----------------------------------------|----------|----------|----------|--------------------------------------------------|-------------|----------------------------------------------|-----------------|---------------------|--------------|--------------|--------------------------------------------------|-----------------|------------|------------|-----------------|----------------------------------------------|--------------------|
| Mathematical Property of the content of the conte   |      | · /                             | Index   |                                         | IB15     | IB14     | IB13     | 1                                                | :           | IB10                                         | IB9             | IB8                 | IB7          | IB6          | IB5                                              | 1               | i          | IB2        | IB1             | IB0                                          | Note               |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -    |                                 | -       |                                         | *        | *        |          |                                                  | *           | *                                            | *               | *                   |              |              |                                                  | 1               |            |            | :               | 1                                            |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0*   | Display control                 | 00h     | Device code read                        | 0        | 0        | 0        | 1                                                | 0           |                                              | 0               |                     | 0            | 0            | 0                                                | 0               | 0          | 1          | 0               | 1                                            | Device code "1505" |
| March   Marc   |      |                                 | 01h     | Driver output control                   | 0        | 0        | 0        | 0                                                | 0           |                                              |                 | (0)                 | 0            | 0            | 0                                                | 0               | 0          | 0          | 0               | 0                                            |                    |
| Marche   M   |      |                                 | 02h     | Liquid crystal drive waveform           |          |          | 0        |                                                  | 0           | 1                                            | (0)             |                     | -            | 0            | 0                                                | 0               |            | 0          | 0               | 0                                            |                    |
| Marie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                 | 03h     | Entry mode                              |          |          | 0        |                                                  | 0           | 0                                            |                 | 0                   |              | 0            | I/D[1](1)                                        | I/D[0](1)       |            | 0          | 0               | 0                                            |                    |
| Marchane    |      |                                 | 04h     | Resize control                          | 0        | 0        | 0        | 0                                                | 0           | 0                                            |                 |                     | 0            | 0            |                                                  |                 | 0          | 0          |                 |                                              |                    |
| Mathematical   Math   |      |                                 | 05h-06h | Setting disabled                        |          |          |          |                                                  |             |                                              | Setting         | Setting             |              |              |                                                  | Setting         |            |            | Setting         | Setting                                      |                    |
| Marchene   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                                 | 07h     | Display control 1                       |          |          | PTDE[1]  | PTDE[0]                                          |             | 1                                            |                 | BASEE               |              | VON          | GON                                              | DTE             | COL        |            | 1               | •                                            |                    |
| March   Marc   |      | ŀ                               |         |                                         | 0        |          | ` '      |                                                  | FP[3]       | FP[2]                                        |                 |                     | 0            | •            | :                                                | :               |            |            | <u> </u>        | <u>:                                    </u> |                    |
| Marchane    |      |                                 |         |                                         |          |          |          |                                                  | (1)         | (-/                                          | \*/             | (*/                 |              | <del> </del> |                                                  |                 |            |            | (0)<br>ISC[1]   |                                              |                    |
| Mathematical Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 |         | Display control 3                       |          |          |          | <del>                                     </del> | -           | (0)                                          | (0)             | (0)                 |              | ļ            | (0)                                              | (0)             | (0)        | (0)        | (0)             | (0)                                          |                    |
| Marie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                 | 0Ah     | Display control 4                       |          |          |          | <u> </u>                                         |             |                                              |                 |                     |              | <u> </u>     | <u> </u>                                         |                 | (0)        | (0)        | (0)             | (0)                                          |                    |
| Marchane    |      |                                 | 0Bh     | Setting disabled                        |          | disabled | disabled | disabled                                         |             |                                              |                 | disabled            |              |              | disabled                                         | disabled        |            |            | disabled        | disabled                                     |                    |
| Marchand    |      |                                 | 0Ch     | External display interface control 1    | 0        |          |          |                                                  | 0           | 0                                            | 0               |                     | 0            | 0            | DM[1]<br>(0)                                     |                 | 0          | 0          |                 |                                              |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 | 0Dh     | Frame marker control                    | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               | FMP[8](0)           | FMP[7](0)    | FMP[6](0)    | FMP[5](0)                                        | FMP[4](0)       | FMP[3](0)  | FMP[2](0)  | FMP[1](0)       | FMP[0](0)                                    |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | -                               | 0Eh     | Setting disabled                        |          |          |          |                                                  |             |                                              |                 |                     |              |              |                                                  |                 |            |            |                 |                                              |                    |
| Tenname                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                 | 0Fh     | External display interface control 2    |          |          |          |                                                  |             | 1                                            |                 | •                   |              | •            |                                                  | VSPL            | HSPL       |            | EPL             | DPL                                          |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1*   | Power control                   |         | • • • • • • • • • • • • • • • • • • • • |          |          |          | SAP                                              | BT[3]       | BT[2]                                        | BT[1]           | BT[0]               |              | <u> </u>     | AP[1]                                            | AP[0]           |            | DSTB       | SLP             |                                              |                    |
| March   Marc   | '    | rower control                   |         |                                         |          | <u> </u> |          |                                                  | 1-7         |                                              | (-/             | (0)                 |              | •            |                                                  |                 |            | . (-/      | . (-/           | •                                            |                    |
| Marchane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                 | 11h     |                                         |          | 0        | 0        | <b></b>                                          | 0           |                                              | (1)             | (0)                 |              |              | (1)                                              | (0)             |            | (0)        | (0)             | (0)                                          |                    |
| Marie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                 | 12h     | Power control 3                         | 0        | 0        | 0        | 0                                                | -           |                                              |                 | (0)                 | 0            | 0            |                                                  |                 |            |            |                 |                                              |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 | 13h     | Power control 4                         | 0        | 0        | 0        | 0                                                |             | VDV[2]<br>(0)                                |                 |                     | 0            | 0            | 0                                                | 0               | 0          | 0          | 0               | 0                                            |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 | 14h     | Setting disabled                        |          |          |          |                                                  |             |                                              |                 | Setting<br>disabled |              |              |                                                  |                 |            |            |                 | Setting<br>disabled                          |                    |
| Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                 | 15h     | Power control 5                         |          | •        |          | BLDM                                             |             | 1                                            |                 | •                   |              | :            | •                                                | 1               |            | •          | i               | •                                            |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | ŀ                               |         | Setting disabled                        | Setting  |          | Setting  | Setting                                          |             |                                              |                 | Setting             |              |              | Setting                                          |                 | Setting    | Setting    |                 | Setting                                      |                    |
| March   Marc   |      | ŀ                               |         |                                         |          |          |          | :                                                |             |                                              |                 | :                   |              | 1            | :                                                | •               |            | 1          | :               | PSE                                          |                    |
| Mathematical Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 |         |                                         |          |          |          |                                                  |             |                                              |                 |                     |              | <u> </u>     | <u> </u>                                         | 1               |            | <u> </u>   | <u> </u>        |                                              |                    |
| Principle   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                                 |         |                                         | disabled | disabled | disabled | disabled                                         | disabled    | disabled                                     | disabled        | disabled            | disabled     | disabled     | disabled                                         | disabled        | disabled   | disabled   | disabled        | disabled                                     |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2*   | RAM access                      | 20h     | RAM address set (horizontal)            | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               | •                   | (0)          | (0)          | (0)                                              | (0)             | (0)        | (0)        | (0)             | (0)                                          |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Power control                   | 21h     | RAM address set (vertical)              | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               |                     |              |              | AD[13]<br>(0)                                    |                 |            |            |                 |                                              |                    |
| Marie   Mari   |      |                                 | 22h     | RAM data write/RAM data read            |          |          |          | RAM data                                         | a write (WD | 017-0)/RAM                                   | l data read     | (RD17-0) b          | oits are sen | nt according | to the sel                                       | ected interfa   | ace format |            |                 |                                              |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 | 23h-28h | Setting disabled                        |          |          |          |                                                  |             |                                              |                 |                     |              |              |                                                  |                 |            |            |                 |                                              |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | ŀ                               | 29h     | Power control 7                         |          | :        |          | :                                                |             | 1                                            |                 | 1                   |              | 1            | :                                                | :               |            |            | •               |                                              |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | ŀ                               |         |                                         | Setting  | Setting  | Setting  | Setting                                          | Setting     | Setting                                      | Setting         | Setting             | Setting      | Setting      | Setting                                          | Setting         | Setting    | Setting    | Setting         | Setting                                      |                    |
| The content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2*   | Commo accitat                   |         |                                         |          |          |          | 1                                                | disabled    | P0KP1[2]                                     | P0KP1[1]        |                     |              | 1            | :                                                | 1               |            |            |                 |                                              |                    |
| Part      | 3"   | Gamma control                   |         |                                         |          |          |          | <del>                                     </del> |             | (0)                                          | (0)             | (0)                 |              | <u> </u>     | <del>                                     </del> | <u> </u>        |            | (0)        | (0)             | (0)                                          |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 | 31h     | Gamma control 2                         | 0        | 0        | 0        | 0                                                | 0           | (0)                                          | (0)             | (0)                 | 0            | 0            | 0                                                | 0               | 0          | (0)        | (0)             | (0)                                          |                    |
| Part      |      |                                 | 32h     | Gamma control 3                         | 0        | 0        | 0        | 0                                                | 0           |                                              | (0)             | (0)                 | 0            | 0            | 0                                                | 0               | 0          |            | (0)             | (0)                                          |                    |
| Part      |      |                                 | 33h     | Gamma control 4                         | 0        | 0        | 0        | 0                                                | 0           | 0                                            |                 |                     | 0            | 0            | 0                                                | 0               | 0          | 0          |                 |                                              |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 | 34h     | Gamma control 5                         | 0        | 0        | 0        | 0                                                | 0           | 0                                            |                 |                     | 0            | 0            | 0                                                | 0               | 0          | 0          |                 |                                              |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | -                               | 35h     | Gamma control 6                         | 0        | 0        | 0        | 0                                                | 0           |                                              | P0RP1[1]        | P0RP1[0]            | 0            | 0            | 0                                                | 0               | 0          |            | P0RP0[1]        | P0RP0[0]                                     |                    |
| Part      |      |                                 | 36h     | Gamma control 7                         | 0        | 0        | 0        |                                                  |             | V0RP1[2]                                     | V0RP1[1]        | V0RP1[0]            | 0            | 0            | 0                                                |                 |            | V0RP0[2]   | V0RP0[1]        | V0RP0[0]                                     |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | ŀ                               |         |                                         | 0        | 0        |          |                                                  |             |                                              |                 |                     | 0            | 0            |                                                  | 1               | ` ` `      |            | . (-)           |                                              |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 |         |                                         |          |          |          |                                                  |             | . (-/                                        | (0)<br>P0KN3[1] | . (-/               | -            |              |                                                  | <u> </u>        |            | \-/        | (0)<br>P0KN2[1] |                                              |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 | 38h     | Gamma control 9                         | 0        | 0        | 0        | 0                                                | 0           | (0)                                          | (0)             | (0)                 | 0            | 0            | 0                                                | 0               | 0          | (0)        | (0)             | (0)                                          |                    |
| Part      |      |                                 | 39h     | Gamma control 10                        | 0        | 0        | 0        | 0                                                | 0           |                                              | (0)             | (0)                 | 0            | 0            | 0                                                | 0               | 0          |            | (0)             | (0)                                          |                    |
| Marie   Mari   |      |                                 | 3Ah     | Gamma control 11                        | 0        | 0        | 0        | 0                                                | 0           | 0                                            |                 |                     | 0            | 0            | 0                                                | 0               | 0          | 0          |                 | (0)                                          |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                 | 3Bh     | Gamma control 12                        | 0        | 0        | 0        | 0                                                | 0           | 0                                            |                 |                     | 0            | 0            | 0                                                | 0               | 0          | 0          |                 |                                              |                    |
| Property of the content of the con   |      |                                 | 3Ch     | Gamma control 13                        | 0        | 0        | 0        | 0                                                | 0           |                                              |                 |                     | 0            | 0            | 0                                                | 0               | 0          |            | P0RN0[1]        |                                              |                    |
| Part      |      |                                 | 3Dh     | Gamma control 14                        | 0        | 0        | 0        |                                                  |             | V0RN1[2]                                     | V0RN1[1]        | V0RN1[0]            | 0            | 0            | 0                                                |                 |            | V0RN0[2]   |                 | V0RN0[0]                                     |                    |
| Processes and state   Processes   Proc     |      |                                 |         |                                         | Setting  | Setting  | Setting  | Setting                                          | Setting     | Setting                                      | Setting         | Setting             | Setting      | Setting      | Setting                                          | Setting         | Setting    | Setting    | Setting         | Setting                                      |                    |
| Marie   Mari   | 4*   | Onttine disabled                |         | -                                       |          |          |          |                                                  |             |                                              |                 |                     |              |              |                                                  |                 |            |            |                 |                                              |                    |
| Part      |      | -                               |         |                                         | disabled | disabled | disabled | disabled                                         | disabled    | disabled                                     | disabled        | disabled            | disabled     | disabled     | disabled                                         | disabled        | disabled   | disabled   | disabled        | disabled                                     |                    |
| Part   Income   Part    | 5*   | Coordinate control              | 50h     | Window horizontal RAM address (start)   | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               | 0                   | (0)          | (0)          | (0)                                              | (0)             | (0)        | (0)        | (0)             | (0)                                          |                    |
| Marie   Mari   |      |                                 | 51h     | Window horizontal RAM address (end)     | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               |                     | (1)          | (1)          | (1)                                              | (0)             | (1)        | (1)        | (1)             | (1)                                          |                    |
| Section of the control of the cont   |      |                                 | 52h     | Window vertical RAM address (start)     | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               |                     |              |              |                                                  |                 |            |            |                 |                                              |                    |
| Part   Section   |      |                                 | 53h     | Window vertical RAM address (end)       | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               |                     |              |              |                                                  |                 |            |            |                 |                                              |                    |
| Particular control   State     |      |                                 | 54h-5Fh | Setting disabled                        |          |          |          |                                                  |             |                                              |                 | Setting             | Setting      | Setting      | Setting                                          | Setting         | Setting    | Setting    | Setting         | Setting                                      |                    |
| Fig.   State properties   Fig.   F   | 6*   | Screen display control          |         | -                                       | GS       |          | NL[5]    | NL[4]                                            | NL[3]       | NL[2]                                        | NL[1]           | NL[0]               |              | 1            | SCN[5]                                           | SCN[4]          | SCN[3]     | SCN[2]     | SCN[1]          | SCN[0]                                       |                    |
| Purise control   Purise integral 2 part   Purise integral 2 part   Purise control   Purise integral 2 part   Purise   Purise   Purise control   Purise integral 2 part   Purise   | -    | Liopiay Contion                 |         | *                                       |          |          | (0)      |                                                  | (0)         | (0)                                          | (0)             | (0)                 | -            | <u> </u>     | (0)                                              | 1               |            |            | (0)             |                                              |                    |
| March   Marc   |      |                                 |         |                                         |          |          |          | <u> </u>                                         |             | <u>.                                    </u> |                 | <u> </u>            |              |              | <u> </u>                                         | <u> </u>        |            | (0)        | (0)             | (0)                                          |                    |
| Value   Valu   |      |                                 |         |                                         | disabled | disabled | disabled | disabled                                         | disabled    | disabled                                     | disabled        | disabled            | disabled     | disabled     | disabled                                         | disabled        | disabled   | disabled   | disabled        | disabled                                     |                    |
| Selfring disabled   Selfring disabled   Selfring Selfring   Selfring disabled   Selfring Selfring   Selfring Selfring   Selfring Selfring   Selfring Selfring   Selfring Selfring   Selfring Selfring Selfring   Selfring Selfring   Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfring Selfri   |      |                                 | 6Ah     | Vertical scroll control                 |          |          |          | <u> </u>                                         |             |                                              |                 | (0)                 | (0)          | (0)          | (0)                                              | (0)             | (0)        | (0)        | (0)             | (0)                                          |                    |
| Selfring S   |      |                                 | 6Bh-6Fh | Setting disabled                        | disabled | disabled | disabled | disabled                                         | disabled    | disabled                                     | disabled        | disabled            | disabled     | disabled     | disabled                                         | disabled        | disabled   | disabled   | disabled        | disabled                                     |                    |
| Particul Image   Part   | 7*   | Setting disabled                | 70h-7Fh | Setting disabled                        |          |          |          |                                                  |             |                                              |                 | disabled            | disabled     | disabled     | disabled                                         | disabled        | disabled   | disabled   | disabled        | disabled                                     |                    |
| Str.   Partial image 1 RAM area (start fine)   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8*   | Partial control                 | 80h     | Partial image 1 display position        | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               |                     |              |              | PTDP0[5]<br>(0)                                  | PTDP0[4]<br>(0) | (0)        | (0)        | PTDP0[1]<br>(0) |                                              |                    |
| Partial image 1 RAM area (end line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                 | 81h     | Partial image 1 RAM area (start line)   | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               | PTSA0[8]            | PTSA0[7]     | PTSA0[6]     |                                                  |                 | PTSA0[3]   | PTSA0[2]   | PTSA0[1]        | PTSA0[0]                                     |                    |
| S3h   Partial image 2 daylay position   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | ŀ                               | 82h     |                                         | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               | PTEA0[8]            | PTEA0[7]     | PTEA0[6]     | PTEA0[5]                                         | PTEA0[4]        | PTEA0[3]   | PTEA0[2]   |                 | PTEA0[0]                                     |                    |
| Partial image 2 RAM area (startal fine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | ŀ                               |         |                                         |          |          |          | <u> </u>                                         |             |                                              |                 | PTDP1[8]            | PTDP1[7]     | PTDP1[6]     | PTDP1[5]                                         | PTDP1[4]        | PTDP1[3]   | PTDP1[2]   | PTDP1[1]        | PTDP1[0]                                     |                    |
| Setting   Partial image 2 RAM area (red fune)   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | -                               |         |                                         |          | <u> </u> |          | <u> </u>                                         |             |                                              |                 | (0)                 | (0)          |              | (0)                                              | . (-/           | (-/        | . (-/      | . (-/           | (0)                                          |                    |
| Setting   Sett   |      |                                 |         |                                         |          |          |          | <del> </del>                                     |             |                                              |                 | (0)                 | (0)          | (0)          | (0)                                              | (0)             | (0)        | (0)        | (0)             | (0)                                          |                    |
| Parel interface control   90h   Panel interface control   1   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                 |         |                                         |          |          |          |                                                  |             |                                              |                 | (0)                 | (0)          | (0)          | (0)                                              | (0)             | (0)        | (0)        | (0)             | (0)                                          |                    |
| 91h Setting disabled  |      |                                 | 86h-8Fh | Setting disabled                        |          |          |          |                                                  |             |                                              |                 |                     |              |              |                                                  |                 |            |            |                 |                                              |                    |
| Parel interface control 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9*   | Panel interface control         | 90h     | Panel interface control 1               |          |          |          | •                                                | ·           |                                              |                 | :                   |              | 1            | !                                                | 1               |            | <u> </u>   |                 | :                                            |                    |
| Panel interface control 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                 | 91h     | Setting disabled                        |          |          |          |                                                  |             |                                              |                 |                     |              |              |                                                  |                 |            |            |                 |                                              | <u> </u>           |
| 93h   Panel interface control 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                 | 92h     | Panel interface control 2               |          | •        |          | :                                                |             | 1                                            |                 | 1                   |              | 1            | :                                                | :               |            |            | 1               |                                              |                    |
| 94h Setting disabled  |      | ŀ                               | 93h     | Panel interface control 3               | 0        | 0        | 0        | 0                                                | 0           | -                                            |                 | <del> </del>        | 0            | 0            | 0                                                | 0               | 0          | MCPI[21(0) | MCPI[11(n)      | MCPI[01(n)                                   |                    |
| Parel interface control 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | ŀ                               |         |                                         | Setting  | Setting  | Setting  | Setting                                          | Setting     | Setting                                      | Setting         | Setting             | Setting      | Setting      | Setting                                          | Setting         | Setting    | Setting    | Setting         | Setting                                      |                    |
| 96h Setting disabled Setting disabled Gisabled G |      |                                 |         |                                         | disabled | disabled | disabled | disabled                                         | disabled    | disabled                                     | disabled        | disabled            | disabled     | disabled     | disabled                                         | disabled        | disabled   | disabled   | disabled        | disabled                                     |                    |
| Part of the first  |      |                                 |         |                                         |          |          |          |                                                  |             |                                              |                 | :                   |              | 1            |                                                  |                 |            |            | :               | <u> </u>                                     |                    |
| 98h Panel interface control 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                 | 96h     | Setting disabled                        |          |          |          |                                                  | disabled    | disabled                                     |                 |                     |              |              |                                                  |                 |            |            |                 |                                              |                    |
| 99h-9Fh Setting disabled disab |      |                                 | 97h     | Panel interface control 5               | 0        | 0        | 0        | 0                                                | NOWE[3](0)  | NOWE[2](0)                                   | NOWE[1](0)      | NOWE[0](0)          | 0            | 0            | 0                                                | 0               | 0          | 0          | 0               | 0                                            |                    |
| A* Oscillation control  A0h-A3h  Abr-AFh  Setting disabled  Setting Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  Setting  |      |                                 | 98h     | Panel interface control 6               | 0        | 0        | 0        | 0                                                | 0           | 0                                            | 0               | 0                   | 0            | 0            | 0                                                | 0               | 0          | MCPE[2](0) | MCPE[1](0)      | MCPE[0](0)                                   |                    |
| A* Oscillation control  A0h-A3h Setting disabled |      |                                 | 99h-9Fh | Setting disabled                        |          |          |          |                                                  |             |                                              |                 |                     |              |              |                                                  |                 |            |            |                 |                                              |                    |
| A4h Oscillation control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A*   | Oscillation control             |         |                                         | Setting  | Setting  | Setting  | Setting                                          | Setting     | Setting                                      | Setting         | Setting             | Setting      | Setting      | Setting                                          | Setting         | Setting    | Setting    | Setting         | Setting                                      |                    |
| A5h-AFh Setting disabled Setting disabled Setting disabled Setting Set |      |                                 |         |                                         |          | :        |          | :                                                |             |                                              |                 | •                   |              | 1            | :                                                | :               |            |            | 1               | :                                            |                    |
| ASII-AFII Setting disabled dis |      |                                 |         |                                         |          |          |          |                                                  |             |                                              |                 |                     |              | <u> </u>     |                                                  | <u> </u>        |            | <u> </u>   | <u> </u>        | <u> </u>                                     |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                 |         |                                         | disabled | disabled | disabled | disabled                                         | disabled    | disabled                                     | disabled        | disabled            | disabled     | disabled     | disabled                                         | disabled        | disabled   | disabled   | disabled        | disabled                                     |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Setting disabled                | F0h-FFh | Setting disabled                        |          |          |          |                                                  |             |                                              |                 |                     |              |              |                                                  |                 |            |            |                 |                                              |                    |

# **Reset Function**

The R61505 is initialized by the RESET input. During reset period, the R61505 is in a busy state and instruction from the MPU and GRAM access are not accepted. The R61505's internal power supply circuit unit is initialized also by the RESET input. The RESET period must be secured for at least 1ms. In case of power-on reset, wait until the RC oscillation frequency stabilizes (for 1 ms). During this period, GRAM access and initial instruction setting are prohibited.

# 1. Initial state of Instruction Bits (Default)

See the instruction list of p.79. The default value is shown in the parenthesis of each instruction bit cell.

#### 2. RAM Data Initialization

The RAM data is not automatically initialized by the RESET input. It must be initialized by software in display-off period (D1-0 = "00").

# 3. Output Pin Initial State \* see Note

|     | LCD 1: 01 0720                         | CNID                                                       |
|-----|----------------------------------------|------------------------------------------------------------|
| 1.  | LCD driver S1~S720                     | : GND                                                      |
|     | G1~G320                                | : VGL (= GND)                                              |
| 2.  | Vcom                                   | : Halt (GND output)                                        |
| 3.  | VcomH                                  | : Vei                                                      |
| 4.  | VcomL                                  | : Halt (GND output)                                        |
| 5.  | VREG1OUT                               | : VGS                                                      |
| 6.  | VciOUT                                 | : Hi-z                                                     |
| 7.  | VLOUT1                                 | : Vci                                                      |
| 8.  | VLOUT2                                 | : DDVDH ( = Vci)                                           |
| 9.  | VLOUT3                                 | : GND                                                      |
| 10. | VCL                                    | : GND                                                      |
| 11. | FMARK                                  | : Halt (GND output )                                       |
| 12. | Oscillator                             | : Oscillate                                                |
| 13. | SDO                                    | : High level (IOVcc) when IM = "010*" (serial interface)   |
|     |                                        | : Hi-z when IM $\neq$ "010*" (other than serial interface) |
| 4.  | Initial State of Input/Output Pins* st | ee Note                                                    |

| 1.  | C11+ | : Hi-z           |
|-----|------|------------------|
| 2.  | C11- | : Hi-z           |
| 3.  | C12+ | : Hi-z           |
| 4.  | C12- | : Hi-z           |
| 5.  | C13+ | : Vci1 (= Hi-z)  |
| 6.  | C13- | : GND            |
| 7.  | C21+ | : DDVDH ( = Vci) |
| 8.  | C21- | : GND            |
| 9.  | C22+ | : DDVDH ( = Vci) |
| 10. | C22- | : GND            |
| 11. | C23+ | : DDVDH ( = Vci) |
| 12. | C23- | : GND            |
| 13. | VDD  | : VDD            |
|     |      |                  |

Note: The above mentioned initial states of output and input pins are those of when the R61505's power supply circuit is connected as exemplified in "Connection Example".

## 5. Note on Reset Function

- (1) When a RESET input is entered into the R61505 while it is in deep standby mode, the R61505 starts up the inside logic regulator and makes a transition to the initial state. During this period, the state of the interface pins may become unstable. For this reason, do not enter a RESET input in deep standby mode.
- (2) When transferring instruction in either two or three transfers via 8-/9-/16-bit interface, make sure to execute data transfer synchronization after reset operation.

# **Basic Mode Operation of the R61505**

The basic operation modes of the R61505 are shown in the following diagram. When making a transition from one mode to another, refer to instruction setting sequence.



Figure 8

#### **Interface and Data Format**

The R61505 supports system interface for making instruction and other settings, and external display interface for displaying a moving picture. The R61505 can select the optimum interface for the display (moving or still picture) in order to transfer data efficiently.

As external display interface, the R61505 supports RGB interface and VSYNC interface, which enables data rewrite operation without flickering the moving picture on display.

In RGB interface operation, the display operation is executed in synchronization with synchronous signals VSYNC, HSYNC, and DOTCLK. In synchronization with these signals, the R61505 writes display data according to data enable signal (ENABLE) via RGB data signal bus (DB17-0). The display data is stored in the R61505's GRAM so that data is transferred only when rewriting the frames of moving picture and the data transfer required for moving picture display can be minimized. The window address function specifies the RAM area to write data for moving picture display, which enables displaying a moving picture and RAM data in other than the moving picture area simultaneously. To access the R61505's internal RAM in high speed with low power consumption, use high-speed write function (HWM = 1) in RGB or VSYNC interface operation.

In VSYNC interface operation, the internal display operation is synchronized with the frame synchronization signal (VSYNC). The VSYNC interface enables a moving picture display via system interface by writing the data to the GRAM at faster than the minimum calculated speed in synchronization with the falling edge of VSYNC. In this case, there are restrictions in setting the frequency and the method to write data to the internal RAM.

The R61505 operates in either one of the following four modes according to the state of the display. The operation mode is set in the external display interface control register (R0Ch). When switching from one mode to another, make sure to follow the relevant sequence in setting instruction bits.

**Table 52 Operation Modes** 

| Operation Mode                                                                      | RAM Access Setting (RM)      | Display Operation Mode (DM)              |
|-------------------------------------------------------------------------------------|------------------------------|------------------------------------------|
| Internal clock operation (displaying still pictures)                                | System interface (RM = 0)    | Internal clock operation<br>(DM1-0 = 00) |
| RGB interface (1) (displaying moving pictures)                                      | RGB interface<br>(RM = 1)    | RGB interface<br>(DM1-0 = 01)            |
| RGB interface (2)<br>(rewriting still pictures while<br>displaying moving pictures) | System interface<br>(RM = 0) | RGB interface<br>(DM1-0 = 01)            |
| VSYNC interface (displaying moving pictures)                                        | System interface<br>(RM = 0) | VSYNC interface<br>(DM1-0 = 10)          |

Notes: 1. Instructions are set only via system interface.

- 2. The RGB and VSYNC interfaces cannot be used simultaneously.
- 3. Do not make changes to the RGB interface operation setting (RIM1-0) while RGB interface is in operation.
- 4. See the "External Display Interface" section for the sequences when switching from one mode to another.
- 5. Use high-speed write function (HWM = 1) when writing data via RGB or VSYNC interface.



Figure 9

#### **Internal Clock Operation**

The display operation is synchronized with signals generated from internal oscillator's clock (OSC) in this mode. All input via external display interface is disabled in this operation. The internal RAM can be accessed only via system interface.

### **RGB Interface Operation (1)**

The display operation is synchronized with frame synchronous signal (VSYNC), line synchronous signal (HSYNC), and dot clock signal (DOTCLK) in RGB interface operation. These signals must be supplied during the display operation via RGB interface.

The R61505 transfers display data in units of pixels via DB17-0 pins. The display data is stored in the internal RAM. The combined use of high-speed RAM write mode and window address function can minimize the total number of data transfer for moving picture display by transferring only the data to be written in the moving picture RAM area when it is written and enables the R61505 to display a moving picture and the data in other than the moving picture RAM area simultaneously.

The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated inside the R61505 by counting the number of clocks of line synchronous signal (HSYNC) from the falling edge of the frame synchronous signal (VSYNC). Make sure to transfer pixel data via DB17-0 pins in accordance with the setting of these periods.

## **RGB Interface Operation (2)**

This mode enables the R61505 to rewrite RAM data via system interface while using RGB interface for display operation. To rewrite RAM data via system interface, make sure that display data is not transferred via RGB interface (ENABLE = high). To return to the RGB interface operation, change the ENABLE setting first. Then set an address in the RAM address set register and R22h in the index register.

#### **VSYNC Interface Operation**

The internal display operation is synchronized with the frame synchronous signal (VSYNC) in this mode. This mode enables the R61505 to display a moving picture via system interface by writing data in the internal RAM at faster than the calculated minimum speed via system interface from the falling edge of frame synchronous (VSYNC). In this case, there are restrictions in speed and method of writing RAM data. For details, see the "VSYNC Interface" section.

As external input, only VSYNC signal input is valid in this mode. Other input via external display interface becomes disabled.

The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated from the frame synchronous signal (VSYNC) inside the R61505 according to the instruction settings for these periods.

# **System Interface**

The following are the kinds of system interfaces available with the R61505. The interface operation is selected by setting the IM3/2/1/0 pins. The system interface is used for instruction setting and RAM access.

Table 53 IM Bit Settings and System Interface

| IM3 | IM2 | IM1 | IMO | Interfacing Mode with MPU          | DB Pins        | Colors                |
|-----|-----|-----|-----|------------------------------------|----------------|-----------------------|
| 0   | 0   | 0   | 0   | Setting inhibited                  | -              | -                     |
| 0   | 0   | 0   | 1   | Setting inhibited                  | -              | -                     |
| 0   | 0   | 1   | 0   | 80-system 16-bit interface         | DB17-10, DB8-1 | 262,144<br>*see Note1 |
| 0   | 0   | 1   | 1   | 80-system 8-bit interface          | DB17-10        | 262,144<br>*see Note2 |
| 0   | 1   | 0   | *   | Clock synchronous serial interface | -              | 65,536                |
| 0   | 1   | 1   | 0   | Setting inhibited                  | -              | -                     |
| 0   | 1   | 1   | 1   | Setting inhibited                  | -              | -                     |
| 1   | 0   | 0   | 0   | Setting inhibited                  | -              | -                     |
| 1   | 0   | 0   | 1   | Setting inhibited                  | -              | -                     |
| 1   | 0   | 1   | 0   | 80-system 18-bit interface         | DB17-0         | 262,144               |
| 1   | 0   | 1   | 1   | 80-system 9-bit interface          | DB17-9         | 262,144               |
| 1   | 1   | 0   | 0   | Setting inhibited                  | -              | -                     |
| 1   | 1   | 0   | 1   | Setting inhibited                  | -              | -                     |
| 1   | 1   | 1   | 0   | Setting inhibited                  | -              | -                     |
| 1   | 1   | 1   | 1   | Setting inhibited                  | -              | -                     |

Notes: 1. 65,536 colors in 16-bit single transfer mode.

<sup>2. 65,536</sup> colors in 8-bit 2-transfer mode.

# 80-System 18-Bit Bus Interface



Figure 10 18-Bit Interface



Figure 11 18-Bit Interface Data Format (Instruction Write / Device Code Read)



Figure 12 18-Bit Interface Data Format (RAM Data Write / RAM Data Read)

# 80-System 16-Bit Bus Interface



Figure 13 16-Bit Interface



Figure 14 16-Bit Interface Data Format (Instruction Write / Device Code Read)



Figure 15 16-Bit Interface Data Format (RAM Data Write)



Figure 16 16-bit Interface Data Format (RAM Data Read)

## Data Transfer Synchronization in 16-Bit Bus Interface Operation

The R61505 supports data transfer synchronization function to reset the counters for upper 16-/2-bit and lower 2-/16-bit transfers in 16-bit 2-transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 000H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 2/16 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.



Figure 17 16-Bit Data Transfer Synchronization

## 80-System 9-bit Bus Interface

When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first (the LSB is not used). The RAM write data is also divided into upper and lower 9 bits, and the upper 9 bits are transferred first. The unused DB pins must be fixed at either IOVcc or IOGND level. When transferring the index register setting, make sure to write upper byte (8 bits).



Figure 18 9-Bit interface



Figure 19 9-Bit Interface Data Format (Instruction Write / Device Code Read)



Figure 20 9-Bit Interface Data Format (RAM Data Write/ RAM Data Read)

## Data Transfer Synchronization in 9-Bit Bus Interface Operation

The R61505 supports data transfer synchronization function to reset the counters for upper and lower 9-bit transfers in 9-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 9 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.



Figure 21 9-Bit Data Transfer Synchronization

## 80-System 8-Bit Bus Interface

When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is also divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is expanded into 18 bits internally as shown below. The unused DB pins must be fixed at either IOVcc or IOGND level. When transferring the index register setting, make sure to write upper byte (8 bits).



Figure 22 8-Bit Interface



Figure 23 8-Bit Interface Data Format (Instruction Write / Device Code Read)



Figure 24 8-Bit Interface Data Format (RAM Data Write)



Figure 25 8-Bit Interface Data Format (RAM Data Read)

## Data Transfer Synchronization in 8-Bit Bus Interface Operation

The R61505 supports data transfer synchronization function to reset the counters for upper and lower 8-bit transfers in 8-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 8 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.



Figure 26 8-Bit Data Transfer Synchronization

#### **Serial Interface**

The serial interface is selected by setting the IM3/2/1 pins to the IOGND/IOVcc/IOGND levels, respectively. The data is transferred via chip select line (CS), serial transfer clock line (SCL), serial data input line (SDI), and serial data output line (SDO). In serial interface operation, the IM0/ID pin functions as the ID pin, and the DB17-0 pins, not used in this mode, must be fixed at either IOVcc or GND level.

The R61505 recognizes the start of data transfer on the falling edge of CS input and starts transferring the start byte. It recognizes the end of data transfer on the rising edge of CS input. The R61505 is selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device identification code assigned to the R61505 are compared and both 6-bit data match. Then, the R61505 starts taking in subsequent data. The least significant bit of the device identification code is determined by setting the ID pin. Send "01110" to the five upper bits of the device identification code. Two different chip addresses must be assigned to the R61505 because the seventh bit of the start byte is register select bit (RS). When RS = 0, index register write operation is executed. When RS = 1, either instruction write operation or RAM read/write operation is executed. The eighth bit of the start byte is R/W bit, which selects either read or write operation. The R61505 receives data when the R/W = 0, and transfers data when the R/W = 1.

When writing data to the GRAM via serial interface, the data is written to the GRAM after it is transferred in two bytes. The R61505 writes data to the GRAM in units of 18 bits by adding the same bits as the MSBs to the LSB of R and B dot data.

After receiving the start byte, the R61505 starts transferring or receiving data in units of bytes. The R61505 transfers data from the MSB. The R61505's instruction consists of 16 bits and it is executed inside the R61505 after it is transferred in two bytes (16 bits: DB15-0) from the MSB. The R61505 expands RAM write data into 18 bits when writing them to the internal GRAM. The first byte received by the R61505 following the start byte is recognized as the upper eight bits of instruction and the second byte is recognized as the lower 8 bits of instruction.

When reading data from the GRAM, valid data is not transferred to the data bus until first five bytes of data are read from the GRAM following the start byte. The R61505 sends valid data to the data bus when it reads the sixth and subsequent byte data.

**Table 54 Start Byte Format** 

| Transferred Bits  | S              | 1   | 2        | 3    | 4 | 5 | 6  | 7  | 8   |
|-------------------|----------------|-----|----------|------|---|---|----|----|-----|
| Start byte format | Transfer start | Dev | ice ID d | code |   |   |    | RS | R/W |
|                   |                | 0   | 1        | 1    | 1 | 0 | ID | _  |     |

Note: The ID bit is determined by setting the IM0/ID pin.

Table 55 Functions of RS, R/W bits

| RS | R/W | Function                      |
|----|-----|-------------------------------|
| 0  | 0   | Set index register            |
| 0  | 1   | Setting inhibited             |
| 1  | 0   | Write instruction or RAM data |
| 1  | 1   | Read instruction or RAM data  |



Figure 27 Serial Interface Data Format



Figure 28 Data Transfer in Serial interface

## **VSYNC Interface**

The R61505 supports VSYNC interface, which enables displaying a moving picture via system interface by synchronizing the display operation with the VSYNC signal. VSYNC interface can realize moving picture display with minimum modification to the conventional system operation.



Figure 29 VSYNC Interface

The VSYNC interface is selected by setting DM1-0 = 10 and RM = 0. In VSYNC interface operation, the internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM at faster than the calculated minimum speed (internal display operation speed + margin), it becomes possible to rewrite the moving picture data without flickering the display and display a moving picture via system interface.

The display operation is performed in synchronization with the internal clock signal generated from the internal oscillator and the VSYNC signal. The display data is written in the internal RAM so that the R61505 rewrites the data only within the moving picture area and minimize the number of data transfer required for moving picture display. By writing data using high-speed write function (HWM =1), the R61505 can write data via VSYNC interface in high speed with low power consumption.



Figure 30 Moving Picture Data Transfers via VSYNC Interface

The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which must be more than the values calculated from the following formulas, respectively.

Internal clock frequency (fosc) [Hz]

 $= FrameFrequency \times (DisplayLines(NL) + FrontPorch(FP) + BackPorch(BP)) \times 16(clocks) \times variance$ 

$$RAMWriteSpeed (min.)[Hz] > \frac{240 \times DisplayLines(NL)}{(BackPorch(BP) + DisplayLines(NL) - m \arg ins) \times 16(clocks) \times \frac{1}{fosc}}$$

Note: When RAM write operation is not started right after the falling edge of VSYNC, the time from the falling edge of VSYNC until the start of RAM write operation must also be taken into account.

An example of calculating minimum RAM writing speed and internal clock frequency in VSYNC interface operation is as follows.

# [Example]

Panel size  $240 \text{ RGB} \times 320 \text{ lines (NL} = 6^{\circ}\text{h27}: 320 \text{ lines)}$ 

Total number of lines (NL) 320 lines

Back/front porch 14/2 lines (BP = 4h'E, FP = 4'h2)

Frame frequency 60 Hz

## Internal clock frequency (fosc) [Hz]

 $= 60 \text{ Hz} \times (320 + 2 + 14) \text{ lines} \times 16 \text{ clocks} \times 1.1 / 0.9 = 394 \text{ kHz}$ 

- Notes: 1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of  $\pm 10\%$  for variances and guarantee that display operation is completed within one VSYNC cycle.
  - 2. This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in external resistors and voltage change are not considered in this example. It is necessary to include a margin for these factors.

#### Minimum speed for RAM writing [Hz]

```
> 240 \times 320 / \{((14 + 320 - 2) \text{ lines} \times 16 \text{ clocks}) \times 1/394 \text{ kHz}\} = 5.7 \text{ MHz}
```

- Notes: 1. In this example, it is assumed that the R61505 starts writing data in the internal RAM on the falling edge of VSYNC.
  - 2. There must be at least a margin of 2 lines between the line to which the R61505 has just written data and the line where display operation on the LCD is performed.

In this example, the RAM write operation at a speed of 5.7MHz or more, which starts on the falling edge of VSYNC, guarantees the completion of data write operation in a certain line address before the R61505 starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display.



Figure 31 Write/Display Operation Timing via VSYNC Interface

# **Notes on VSYNC Interface Operation**

- 1. The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margin in setting RAM write speed for VSYNC interface operation.
- 2. The above example shows the values when writing over the full screen. Extra margin will be created if the moving picture display area is smaller than that.



Figure 32 RAM Write Speed Margins

- 3. The front porch period continues from the end of one frame period to the next VSYNC input.
- 4. The instructions to switch from internal clock operation (DM1-0 = 00) to VSYNC interface operation modes and vice versa are enabled from the next frame period.
- 5. The partial display and vertical scroll functions are not available in VSYNC interface operation.
- 6. In VSYNC interface operation, set AM = 0 to transfer display data correctly.
- 7. In VSYNC interface operation, use high-speed write function (HWM = 1) when writing display data to the internal RAM.



Figure 33 Sequences to Switch between VSYNC and Internal Clock Operation Modes

# **External Display Interface**

The R61505 supports the RGB interface. The interface format is set by RM[1:0] bits. The internal RAM is accessible via RGB interface.

Table 56 RGB Interface

| RIM1 | RIM0 | RGB Interface        | DB Pin          |
|------|------|----------------------|-----------------|
| 0    | 0    | 18-bit RGB interface | DB17-0          |
| 0    | 1    | 16-bit RGB interface | DB17-13, DB11-1 |
| 1    | 0    | 6-bit RGB interface  | DB17-12         |
| 1    | 1    | Setting inhibited    | -               |

Note: Using multiple interface at a time is prohibited.

#### **RGB Interface**

The display operation via RGB interface is synchronized with VSYNC, HSYNC, and DOTCLK. The data can be written only within the specified area with low power consumption by using window address function and high-speed write mode (HWM=1). In RGB interface operation, front and back porch periods must be made before and after the display period.



Figure 34 Display Operation via RGB Interface

# Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals

The polarities of VSYNC, HSYNC, ENABLE, and DOTCLK signals can be changed by setting the DPL, EPL, HSPL, and VSPL bits, respectively for convenience of system configuration.

# **RGB Interface Timing**

The timing relationship of signals in RGB interface operation is as follows.

# 16-/18-Bit RGB Interface Timing



Figure 35

Notes: 1. VLW: VSYNC Low period
HLW: HSYNC Low period
DTST: data transfer setup time

2. Use high-speed write function (HWM = 1) when writing data via RGB interface.

## 6-Bit RGB Interface Timing



Figure 36

Notes: 1. VLW: VSYNC Low period
HLW: HSYNC Low period
DTST: Data transfer setup time

2. Use high-speed write function (HWM = 1) when writing data via RGB interface.

3. In 6-bit RGB interface operation, set the VSYNC, HSYNC, ENABLE, DOTCLK cycles so that one pixel is transferred in units of three DOTCLKs via DB17-12 (DB5-0).

#### Moving Picture Display via RGB Interface

The R61505 supports RGB interface for moving picture display and incorporates RAM for storing display data, which provides the following advantages in displaying a moving picture.

- 1. The window address function enables transferring data only within the moving picture area
- 2. The high-speed write function enables RAM access in high speed with low power consumption
- 3. It becomes possible to transfer only the data written over the moving picture area
- 4. By reducing data transfer, it can contribute to lowering the power consumption of the whole system
- 5. The data in still picture area (icons etc.) can be written over via system interface while displaying a moving picture via RGB interface

### RAM Access via System Interface in RGB Interface Operation

The R61505 allows RAM access via system interface in RGB interface operation. In RGB interface operation, data is written to the internal RAM in synchronization with DOTCLK while ENABLE is "Low". When writing data to the RAM via system interface, set ENABLE "High" to stop writing data via RGB interface. Then set RM = "0" to enable RAM access via system interface. When reverting to the RGB interface operation, wait for the read/write bus cycle time. Then, set RM = "1" and the index register to R22h to start accessing RAM via RGB interface. If there is a conflict between RAM accesses via two interfaces, there is no guarantee that the data is written in the RAM.

The following is an example of rewriting still picture data via system interface while displaying a moving picture via RGB interface.



Figure 37 Updating the Still Picture Area while Displaying Moving Picture

#### 6-Bit RGB Interface

The 6-bit RGB interface is selected by setting RIM1-0 = 10. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 6-bit port while data enable signal (ENABLE) allows RAM access via RGB interface. Unused pins DB11-0 (DB17-6) must be fixed at either IOVcc or IOGND level.

Instruction bits can be transferred only via system interface.



Figure 38 Example of 6-Bit RGB Interface and Data Format

#### Data Transfer Synchronization in 6-Bit Bus Interface Operation

The R61505 has the counters, which count the first, second, third 6 bit transfers via 6-bit RBG interface. The counters are reset on the falling edge of VSYNC so that the data transfer will start from the first 6 bits of 18-bit RGB data from the next frame period. Accordingly, the data transfer via 6-bit interface can restart in correct order from the next frame period even if a mismatch occurs in transferring 6-bit data. This function can minimizes the effect from data transfer mismatch and help the display system return to normal display operation when data is transferred consecutively in moving picture operation.



Figure 39 6-Bit Transfer Synchronization

#### 16-Bit RGB interface

The 16-bit RGB interface is selected by setting RIM1-0 = 01. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 16-bit ports while data enable signal (ENABLE) allows RAM access via RGB interface.

Instruction bits can be transferred only via system interface.



Figure 40 Example of 16-Bit RGB Interface and Data Format

#### 18-Bit RGB interface

The 18-bit RGB interface is selected by setting RIM1-0 = 00. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 18-bit ports (DB17-0) while data enable signal (ENABLE) allows RAM access via RGB interface.

Instruction bits can be transferred only via system interface.



Figure 41 Example of 18-Bit RGB Interface and Data Format

#### **Notes on External Display Interface Operation**

1. The following functions are not available in external display interface operation.

Table 57 Functions Not Available in External Display Interface Operation

| Function        | External Display Interface | Internal Display Operation |  |
|-----------------|----------------------------|----------------------------|--|
| Partial display | Not available              | Available                  |  |
| Scroll function | Not available              | Available                  |  |

- 2. The VSYNC, HSYNC, and DOTCLK signals must be supplied during display period.
- 3. The reference clock to generate liquid crystal panel controlling signals in RGB interface operation is DOTCLK, not the internal clock generated from the internal oscillator.
- 4. In 6-bit RGB interface operation, 6-bit dot data (R, G, and B) is transferred in synchronization with DOTCLK. In other words, it takes three DOTCLKs to transfer one pixel data.
- 5. In 6-bit RGB interface operation, make sure to set the cycles of VSYNC, HSYNC, DOTCLK, ENABLE signals so that the data transfer is completed in units of pixels.
- 6. When switching between the internal operation mode and the external display interface operation mode, follow the sequences below in setting instruction.
- 7. In RGB interface operation, front porch period continues after the end of frame period until next VSYNC input is detected.
- 8. In RGB interface operation, use high-speed write function (HWM = 1) when writing data to the internal RAM.
- 9. In RGB interface operation, RAM address AD16-0 is set in the address counter every frame on the falling edge of VSYNC.



Figure 42 RGB and Internal Clock Operation Mode Switching Sequences

## **RAM Address and Display Position on the Panel**

The R61505 has memory to store display data of 240RGB x 320 lines. The R61505 incorporates a circuit to control partial display, which allows switching driving method between full-screen display mode and partial display mode.

The R61505 makes display arrangement setting and panel driving position control setting separately and specifies RAM area for each image displayed on the panel. For this reason, there is no need to take the mounting position of the panel into consideration when designing a display on the panel.

The following is the sequence of setting full-screen and partial display.

- 1. Set (PTSAx, PTEAx) to specify the RAM area for each partial image
- 2. Set the display position of each partial image on the base image by setting PTDPx.
- 3. Set NL to specify the number of lines to drive the liquid crystal panel to display the base image
- 4. After display ON, set display enable bits (BASEE, PTDE0/1) to display respective images

| Normal display      | BASEE = 1                    |
|---------------------|------------------------------|
| Partial display 1/2 | BASEE = $0$ , PTDE $0/1 = 1$ |

5. Changes BASEE, PTDE0/1 settings when turning on and off the full and partial displays 1/2.

In driving the liquid crystal panel, the clock signal for gate line scan is supplied consecutively via interface in accordance with the number of lines to drive the liquid crystal panel (NL setting).

When switching the display position in horizontal direction, set SS bit when writing RAM data.

Table 58

|            | Display ENABLE | Numbers of lines | RAM Area                      |
|------------|----------------|------------------|-------------------------------|
| Base image | BASEE          | NL               | (BSA, BEA) = (9'h000, 9'h13F) |

Notes 1: The base image is displayed from the first line of the screen.

2: Make sure  $NL \le 320$  (lines) = BEA – BSA when setting a base image RAM area. BSA and BEA are fixed to 9'h000, 9'h13F, respectively.

Table 59

|                 | Display ENABLE | Display Position | RAM Area       |
|-----------------|----------------|------------------|----------------|
| Partial Image 1 | PTDE0          | PTDP0            | (PTSA0, PTEA0) |
| Partial Image 2 | PTDE1          | PTDP1            | (PTSA1, PTEA1) |



Figure 43 RAM Address, Display Position and Drive Position

#### **Restrictions in Setting Display Control Instruction**

There are restrictions in coordinates setting for display data, display position and partial display.

#### **Screen Setting**

In setting the number of lines to drive the liquid crystal panel, make sure that the total number of lines is 320 lines or less (NL  $\leq 320$  lines).

#### **Base Image Display**

- 1. The base image is displayed from the first line of the screen:  $BSA = 1^{st}$  line (of the display panel)
- 2. The base image RAM area (specified by BSA = 000, BEA = 13F) must include the same or more number of lines set by NL bits (liquid crystal panel drive lines): BEA BSA = 320 lines  $\geq$  NL

## **Partial Image Display**

Set the partial image RAM area setting registers (PTSAx, PTEAx bits) and the partial position setting registers (PTDPx bits) so that the RAM areas and the display positions of partial images do not overlap one another.

```
0 \le PTDP0 \le PTDP0 + (PTEA0 - PTSA0) < PTDP1 \le PTDP1 + (PTEA1 - PTSA1) \le NL
```

The following figure shows the relationship among the RAM address, display position, and the lines driven for the display.



Figure 44 Display RAM Address and Panel Display Position

Note: This figure shows the relationship between RAM line address and the display position on the panel. In the R61505's internal operation, the data is written in the RAM area specified by the window address setting (R50h~R53h).

# **Instruction Setting Example**

The followings are examples of settings for 240(RGB) x 320(lines) panel.

# 1. Full Screen Display (No Partial Display)

The following is an example of settings for full screen display.

Table 60

| Base Image Display Instruction |       |  |
|--------------------------------|-------|--|
| BASEE                          | 1     |  |
| NL[5:0]                        | 6'h27 |  |
|                                |       |  |
| PTDE0                          | 0     |  |
| PTDE1                          | 0     |  |



Figure 45 Full Screen Display (No Partial)

## 2. Partial Only

The following is an example of settings for displaying partial image 1 only and turning off the base image. The partial image 1 is displayed at the position specified by PTDP0 bit.

Table 61

| Base Image Display Instruction |       |
|--------------------------------|-------|
| BASEE                          | 0     |
| NL[5:0]                        | 6'h27 |

| Partial Image 1 Display Instruction |        |
|-------------------------------------|--------|
| PTDE0                               | 1      |
| PTSA0[8:0]                          | 9'h000 |
| PTEA0[8:0]                          | 9'h00F |
| PTDP0[8:0]                          | 9'h080 |

| Partial Image 2 Display Instruction |        |  |
|-------------------------------------|--------|--|
| PTDE1                               | 0      |  |
| PTSA1[8:0]                          | 9'h000 |  |
| PTEA1[8:0]                          | 9'h000 |  |
| PTDP1[8:0]                          | 9'h000 |  |



Figure 46 Partial Display

## **Resizing Function**

The R61505 supports resizing function (x 1/2, x 1/4), which is performed when writing image data. The resizing function is enabled by setting a window address area and the RSZ bit representing the contraction factor (x1/2 or x1/4) of the image. This function enables the R61505 to write the resized image data directly to the internal RAM, while allowing the system to transfer the original-sized image data.

The resizing function allows the system to transfer data as usual even when resizing of the image is required. This feature makes image resizing easily available with various applications such as camera display, sub panel display, thumbnail display and so on.

The R61505 processes the contraction of an image simply by selecting pixels. For this reason, the resized image may appear distorted when compared with the original image. Check the resized image before use.



Figure 47 Data Transfer in Resizing



Figure 48 Data Transfer, Display Example in Resizing

Table 62

| Original Image Size (X x Y) | Resized Image Size |                  |
|-----------------------------|--------------------|------------------|
|                             | 1/2 (RSZ = 2'h1)   | 1/4 (RSZ = 2'h3) |
| 640x480(VGA)                | 320x240            | 160x120          |
| 352x288 (CIF)               | 176x144            | 88x72            |
| 320x240 (QVGA)              | 160x120            | 80x60            |
| 176x144 (QCIF)              | 88x72              | 44x36            |
| 120x160                     | 60x80              | 30x40            |
| 132x176                     | 66x88              | 33x44            |

#### **Resizing Setting**

The RSZ bit sets the resizing (contraction) factor of an image. When setting a window address area in the internal RAM, the window address area must fit the size of the resized picture. If there are surplus pixels as a result of resizing, which are calculated from the following equations, set RCV, RCH bits to the number of surplus pixels before writing data to the internal RAM.



Figure 49 Resizing Setting, Surplus Pixel Calculation

Table 63
Image (before Resizing)

| Number of data in horizontal direction | Х   |
|----------------------------------------|-----|
| Number of data in vertical direction   | Υ   |
| Resizing ratio                         | 1/N |

## Register Setting in the R61505

| Resizing setting                       | RSZ | N-1 |
|----------------------------------------|-----|-----|
| Number of data in horizontal direction | RCV | L   |
| Number of data in vertical direction   | RCH | М   |

| RAM writing start address | AD  | (X0, Y0)  |
|---------------------------|-----|-----------|
| RAM window address        | HSA | X0        |
|                           | HEA | X0+Rx - 1 |
|                           | VSA | Y0        |
|                           | VEA | Y0+Ry - 1 |

# Example of 1/2 Resizing



Figure 50 Example of Resizing Setting (x 1/2)

Table 64 Original Image (before Resizing)

| Number of data in horizontal direction | Х   | 240 |
|----------------------------------------|-----|-----|
| Number of data in vertical direction   | Υ   | 320 |
| Resizing ratio                         | 1/N | 1/2 |

# Register Setting in the R61505

| Resizing setting                       | RSZ | 2'h1 |
|----------------------------------------|-----|------|
| Number of data in horizontal direction | RCV | 2'h0 |
| Number of data in vertical direction   | RCH | 2'h0 |

| RAM writing start address | AD  | 17'h00000 |
|---------------------------|-----|-----------|
| RAM window address        | HSA | 8'h00     |
|                           | HEA | 8'h77     |
|                           | VSA | 8'h00     |
|                           | VEA | 8'h9F     |

# **Resizing Instruction**

Table 65 Resizing Factor

| RSZ[1:0] | Contraction Factor   |
|----------|----------------------|
| 2h'0     | No resizing (x 1)    |
| 2h'1     | 1/2 resizing (x 1/2) |
| 2h'2     | Setting disabled     |
| 2h'3     | 1/4 resizing (x 1/4) |
| 2h'4     | Setting disabled     |

# **Table 66** Surplus Pixels

# **Vertical Direction**

| RCV[1:0] | Surplus pixels |
|----------|----------------|
| 2h'0     | 0              |
| 2h'1     | 1 pixel        |
| 2h'2     | 2 pixels       |
| 2h'3     | 3 pixels       |

1 pixel = 1 RGB

# horizontal Direction

| RCH[1:0] | Surplus Pixels |
|----------|----------------|
| 2h'0     | 0              |
| 2h'1     | 1 pixel        |
| 2h'2     | 2 pixels       |
| 2h'3     | 3 pixels       |

1 pixel = 1 RGB

# **Notes on Resizing Function**

- 1. Set the resizing instruction bits (RSZ, RCV, and RCH) before writing data to the internal RAM.
- 2. When writing data to the internal RAM using resizing function, make sure to start writing data from the first address of the window address area in units of lines.
- 3. Set the window address area in the internal RAM to fit the size of the resized image.
- 4. Set AD16-0 (R20h, R21h) before start transferring and writing data to the internal RAM.
- 5. Set the RCH, RCV bits only when using resizing function and there are surplus pixels. Otherwise (if RSZ = 2'h0), set RCH = RCV = 2'h0.



Figure 51 RAM Write Operation Sequence in Resizing

## **FMARK Function**

The R61505 outputs an FMARK pulse when the R61505 is driving the line specified by FMP[8:0] bits. The FMARK signal can be used as a trigger signal to write display data in synchronization with display operation by detecting the address where data is read out for display operation.

The FMARK output interval is set by FMI[2:0] bits. Set FMI[2:0] bits in accordance with display data rewrite cycle and data transfer rate. Set FMARKOE = 1 when outputting FMARK pulse from the FMARK pin.

Table 67

| FMP[8:0]     | FMARK Output Position  |
|--------------|------------------------|
| 9'h000       | 0                      |
| 9'h001       | 1 <sup>st</sup> line   |
| 9'h002       | 2 <sup>nd</sup> line   |
| :            | :                      |
| 9'h14D       | 333 <sup>rd</sup> line |
| 9'h14E       | 334 <sup>th</sup> line |
| 9'h14F       | 335 <sup>th</sup> line |
| 9'h150 ~ 1FF | Setting disabled       |

Table 68

| FMI[2]        | FMI[1] | FMI[0] | FMARK Output Interval |
|---------------|--------|--------|-----------------------|
| 0             | 0      | 0      | One frame period      |
| 0             | 0      | 1      | 2 frame periods       |
| 0             | 1      | 1      | 4 frame periods       |
| 1             | 0      | 1      | 6 frame periods       |
| Other setting |        |        | Setting disabled      |

## **Example of FMP Setting**



Figure 52

#### Display Operation Synchronous Data Transfer Using FMARK

The R61505 uses FMARK signal as a trigger signal to start writing data to the internal GRAM in synchronization with display scan operation.



Figure 53 Display Synchronous Data Transfer Interface

In this operation, moving picture display is enabled via system interface by writing data at higher than the internal display operation frequency to a certain degree, which guarantees rewriting the moving picture RAM area without causing flicker on the display. The data is written in the internal RAM in order to transfer only the data written over the moving picture display area and minimize the data transfer required for moving picture display. High-speed write function (HWM = 1) enables writing data in high speed with low power consumption.



Figure 54 Moving Picture Data Transfers via FMARK Function

## R61505

When transferring data in synchronization with FMARK signal, minimum RAM data write speed and internal clock frequency must be taken into consideration. They must be more than the values calculated from the following equations.

Internal clock frequency (fosc) [Hz]

 $= FrameFrequency \times (DisplayLines(NL) + FrontPorch(FP) + BackPorch(BP)) \times 16(clocks) \times variance$ 

$$RAMWriteSpeed (min.)[Hz] > \frac{240 \times DisplayLines (NL)}{(FrontPorch (FP) + BackPorch (BP) + DisplayLines (NL) - m \arg ins) \times 16 (clocks) \times \frac{1}{fosc}}$$

Note: When RAM write operation is not started immediately following the rising edge of FMARK, the time from the rising edge of FMARK until the start of RAM write operation must also be taken into account.

An example of calculating minimum RAM data write speed and internal clock frequency is as follows.

#### [Example]

Panel size  $240 \text{ RGB} \times 320 \text{ lines (NL} = 6^{\circ}\text{h}13)$ 

Total number of lines (NL) 320 lines

Back/front porch 14/2 lines (BP = 4h'E, FP = 4'h2) Frame marker position (FMP) Display end line: 320th (FMP = 9'h14E)

Frame frequency 60 Hz

## Internal clock frequency (fosc) [Hz] = $60 \text{ Hz} \times (320 + 2 + 14) \text{ lines} \times 16 \text{ clocks} \times 1.1 / 0.9 = 394 \text{ kHz}$

- Notes: 1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of  $\pm 10\%$  for variances and guarantee that display operation is completed within one FMARK cycle.
  - 2. This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in external resistors and voltage change are not considered in this example. It is necessary to include a margin for these factors.

# Minimum speed for RAM writing [Hz] $> 240 \times 320 / \{((2+14+320-2) \text{ lines} \times 16 \text{ clocks}) \times 1/394 \text{ kHz}\} = 5.67 \text{ MHz}$

- Notes: 1. In this example, it is assumed that the R61505 starts writing data in the internal RAM on the rising edge of FMARK.
  - 2. There must be at least a margin of 2 lines between the line to which the R61505 has just written data and the line where display operation on the LCD is performed.
  - 3. The FMARK signal output position is set to the line specified by FMP[8:0] bits.

In this example, RAM write operation at a speed of 5.67MHz or more, when starting on the rising edge of FMARK, guarantees the completion of data write operation in a certain line address before the R61505 starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display.



Figure 55 Write/Display Operation Timing

## Notes on Display Operation Synchronous Data Transfer Using FMARK Signal

- 1. The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margin in setting RAM write speed for this operation.
- 2. Use high-speed write function (HWM = 1).

## **High-Speed RAM Write Function**

The R61505 supports high-speed RAM write function to write data to each line of window address area at a time. This function makes the R61505 available with the applications, which require high-speed, low-power-consumption data write operation such as color moving picture display.

When enabling high-speed RAM write function (HWM = "1"), the data is first stored in the internal register of the R61505 in order to rewrite the RAM data in each horizontal line of the window address area at a time. Also, when transferring the data from the internal register to the internal RAM, the data written in the next line of the window address area can be transferred to the internal register of the R61505. The high-speed write function minimizes the number of RAM access in write operation and enables high-speed consecutive RAM write operation required for moving picture display with low power consumption.



Figure 56 High-Speed Consecutive RAM Write Operation



Figure 57 Example of High-Speed RAM Write Operation (HWM = 1)

Note: When switching from high-speed RAM write operation to index write operation, wait at least for two normal RAM write bus cycle periods (2 x teyew) before executing a next instruction.



Figure 58 Example of High-Speed RAM Write Operation via 9-Bit Interface

Note: In high-speed RAM write operation, the R61505 writes data in units of n words. When using 9-bit interface, the R61505 performs write operation 2 x n times in the internal register before writing the data in each line of the window address area.

# **Notes on High-Speed RAM Write Function**

- 1. In high-speed RAM write mode, the R61505 performs write operation to the internal RAM in units of lines. If the data inputted to the internal write register is not enough to rewrite the data in the horizontal line of the window address area, the data is not written correctly in that line address.
- 2. If the IR is set to 22h when HWM = "1", the R61505 always performs RAM write operation. With this setting, the R61505 does not perform RAM read operation. Make sure to set HWM = 0, when performing RAM read operation.
- 3. The high-speed RAM write function cannot be used when writing data in normal RAM write function mode. When switching form one write mode to the other, change modes first and set AD16-0 (RAM address set) before starting write operation.

**Table 69 RAM Write Operation** 

|                            | Normal RAM Write (HWM = 0)                                             | High-Speed RAM Write (HWM = 1)                                          |
|----------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| BGR function               | Available                                                              | Available                                                               |
| RAM address set            | In units of words                                                      | In units of words                                                       |
| RAM read                   | In units of words                                                      | Not available                                                           |
| RAM write                  | In units of words                                                      | In units of words                                                       |
| Window address             | In units of words<br>(minimum window address area:<br>1 word x 1 line) | In units of words<br>(minimum window address area:<br>8 words x 1 line) |
| External display interface | Available                                                              | Available                                                               |
| AM                         | AM = 1/0                                                               | AM = 0                                                                  |

#### High-Speed RAM Data Write in a Window Address Area

The R61505 can perform consecutive high-speed data rewrite operation within a rectangular area (minimum: 8 words x 1 line) made in the internal RAM with the following settings.

When writing data to the internal RAM using high-speed RAM write function, make sure each line of the window address area is overwritten at a time. If the data buffered in the internal register of the R61505 is not enough to overwrite the horizontal line in the window address area, the data is not written correctly in that line.

The following is an example of writing data in the window address area using high-speed write function when a window address area is made by setting HSA = 8'h12, HEA = 8'hA7, VSA = 9'h020, and VEA = 9'h05B.



Figure 59 High-Speed RAM Write Operation in the Window Address Area

#### Window Address Function

The window address function enables writing display data consecutively in a rectangular area (a window address area) made in the internal RAM. The window address area is made by setting the horizontal address register (start: HSA7-0, end: HEA 7-0 bits) and the vertical address register (start: VSA8-0, end: VEA8-0 bits). The AM and I/D bits set the transition direction of RAM address (either increment or decrement, horizontal or vertical, respectively). Setting these bits enables the R61505 to write data including image data consecutively without taking the data wrap position into account.

The window address area must be made within the GRAM address map area. Also, the AD16-0 bits (RAM address set register) must be set to an address within the window address area.

```
[Window address area setting range] (Horizontal direction) 8 \text{'h}00 \le \text{HSA} \le \text{HEA} \le 8 \text{'h}\text{EF} (Vertical direction) 9 \text{'h}000 \le \text{VSA} \le \text{VEA} \le 9 \text{'h}13\text{F} [RAM Address setting range] (RAM address) HSA \le \text{AD7-0} \le \text{HEA} VSA \le \text{AD16-8} \le \text{VEA}
```



Figure 60 Automatic Address Update within a Window Address Area

# **Scan Mode Setting**

The R61505 can set the gate pin assignment and the scan direction in the following 4 different ways by setting SM and GS bits to realize various connections between the R61505 and the LCD panel.



Figure 61

# 8-Color Display Mode

The R61505 has a function to display in eight colors. In this display mode, only V0 and V31 are used and power supplies to other grayscales (V1 to V30) are turned off to reduce power consumption.

In 8-color display mode, the  $\gamma$ -adjustment registers P0KP0-P0KP5, P0KN0-P0KN5, P0RP0, P0RP1, P0RN0, P0RN1, P0FP0-P0FP3, and P0FN0-P0FN3, are disabled and the power supplies to V1 to V30 are halted. The R61505 does not require GRAM data rewrite for 8-color display by writing the MSB to the rest in each dot data to display in 8 colors.



Figure 62 8-Color Display Mode

# **Line Inversion AC Drive**

The R61505, in addition to frame-inversion liquid crystal alternating current drive, supports one-line inversion alternating current drive.



Figure 63 Example of Alternating Signals for n-Line Inversion

#### **Alternating Timing**

The following figure illustrates the liquid crystal polarity inversion timing in different LCD driving methods. In case of frame-inversion AC drive, the polarity is inverted as the R61505 draws one frame, which is followed by a blank period lasting for (BP+FP) periods. In case of line inversion AC drive, polarity is inverted as the R61505 draws one line, and a blank period lasting for (BP+FP) periods is inserted when the R61505 draws one frame.



Figure 64 Alternating Timing

Note: Frame inversion AC drive is available only in 8-color display mode. Check the quality of display on the panel.

# Frame-Frequency Adjustment Function

The R61505 supports a function to adjust frame frequency. The frame frequency for driving liquid crystal can be adjusted by setting the DIV, RTN bits without changing the oscillation frequency.

The R61505 allows changing the frame frequency depending on whether moving picture or still picture is displayed on the screen. In this case, set a high oscillation frequency. By changing the DIV and RTN settings, the R61505 can operate at high frame frequency when displaying a moving picture, which requires the R61505 to rewrite data in high speed, and it can operate at low frame frequency when displaying a still picture.

#### Relationship between Liquid Crystal Drive Duty and Frame Frequency

The following equation represent the relationship between liquid crystal drive duty and frame frequency. The frame frequency can be changed by setting the 1H period adjustment bit (RTN) and the operation clock frequency division ratio setting bit (DIV).

Equation for calculating frame frequency

$$FrameFrequency = \frac{fosc}{Number of Clocks / line \times DivisionRatio \times (Line + FP + BP)} [Hz]$$

fosc: RC oscillation frequency

Number of clocks per line: RTN bit

Division ratio: DIV bit

Line: number of lines to drive the LCD panel (NL bit)

Number of lines for front porch: FP Number of lines for back porch: BP

#### Example of Calculation: when Maximum Frame Frequency = 60 Hz

Number of lines: 320 lines

1H period: 16 clock cycles (RTNI/E[4:0] = "10000")

Division ratio of operating clock: 1/1

Front porch: 2 lines Back porch: 14 lines

$$fosc = 60 \text{ (Hz)} \times 16 \text{ (clocks)} \times 1/1 \times (320+2+14) \text{ (lines)} = 323 \text{ (kHz)}$$

In this case, the RC oscillation frequency must be set to 323kHz. Adjust the value of external resistor connected to the RC oscillator so that RC oscillation frequency becomes 323kHz.

# **Partial Display Function**

The partial display function allows the R61505 to drive lines selectively to display partial images by setting partial display control registers. The lines not used for displaying partial images are driven at non-lit display level to reduce power consumption.

The power efficiency can be enhanced in combination with 8-color display mode. Check the display quality when using low power consumption functions.



Figure 65 Partial Display

Note: See the "RAM Address and Display Position on the Panel" (p.114) for details on the relationship between the display positions of partial images and respective RAM area setting.

# **Liquid Crystal Panel Interface Timing**

The relationships between RGB interface signals and liquid crystal panel control signals in internal operation and RGB interface operations are as follows

## **Internal Clock Operation**



Figure 66

## **RGB Interface Operation**



Figure 67

## **Oscillator**

The R61505 generates RC oscillation with the internal RC oscillator to which an external oscillation resistor is connected between the OSC1 and OSC2 pins. The oscillation frequency varies depending on the value of external resistor, wiring length, operating power supply voltage. For example, the oscillation frequency becomes lower by connecting an external resistor of a larger resistance, or lowering supply voltage.



Figure 68

## γ Correction Function

The R61505 supports  $\gamma$ -correction function to display in 262,144 colors simultaneously using gradient-adjustment, amplitude-adjustment, fine-adjustment, tap-adjustment, and voltage division ratio adjustment registers. Each register consists of positive-polarity register and negative-polarity register to allow optimal gamma correction setting for the characteristics of the panel by enabling different settings for positive and negative polarities.

#### γ Correction Registers

The  $\gamma$ -correction registers of the R61505 consists of gradient-adjustment, amplitude-adjustment, fine-adjustment, tap-adjustment, and voltage division ratio adjustment registers to correct grayscale voltage levels according to the gamma characteristics of the liquid crystal panel. These register settings make adjustments to the relationship between grayscale number and grayscale voltage and the setting can be made differently for positive and negative polarities (the reference level and the register settings are the same for all RGB dots). The function of each register is as follows.



Figure 69

#### 1. Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient, which represents the relationship between grayscale and voltage, without changing the dynamic range. The grayscale voltages for middle grayscale number can be adjusted by this register setting.

#### 2. Amplitude adjustment registers

The amplitude adjustment registers are used to adjust the amplitude of the grayscale voltage.

#### 3. Fine adjustment registers

The fine adjustment registers are used for minute adjustment of grayscale voltage levels.

#### 4. Tap adjustment registers

The tap adjustment registers are for selecting two tap voltage supply points from V3 to V6 and from V25 to V28 by using selector.

## 5. Voltage division ratio adjustment registers

The voltage division ratio adjustment registers are used to change the division ratios between V0 and V1 and between V30 and V31.

Table 70 γ correction Registers

| Register     | Positive    | Negative    | Function                                                                                 |
|--------------|-------------|-------------|------------------------------------------------------------------------------------------|
| Gradient –   | P0RP0 [2:0] | P0RN1 [2:0] | Grayscale V4 variable resistance                                                         |
|              | P0RP1 [2:0] | P0RN0 [2:0] | Grayscale V27 variable resistance                                                        |
| Amplitude    | V0RP0 [4:0] | V0RN1 [4:0] | Voltage level for grayscale V0                                                           |
| Amplitude    | V0RP1 [4:0] | V0RN0 [4:0] | Voltage level for grayscale V31                                                          |
|              | P0KP0 [2:0] | P0KN5 [2:0] | Voltage level for grayscale V1                                                           |
|              | P0KP1 [2:0] | P0KN4 [2:0] | Voltage level for grayscales V3, V4, V5, V6                                              |
|              | P0KP2 [2:0] | P0KN3 [2:0] | Voltage level for grayscale V10                                                          |
|              | P0KP3 [2:0] | P0KN2 [2:0] | Voltage level for grayscale V21                                                          |
|              | P0KP4 [2:0] | P0KN1 [2:0] | Voltage level for grayscales V28, V27, V26, V25                                          |
|              | P0KP5 [2:0] | P0KN0 [2:0] | Voltage level for grayscales V30                                                         |
| Fine         | P0FP0 [1:0] | P0FN3 [1:0] | Division ratio between V0 and V1                                                         |
| adjustment F | P0FP1 [1:0] | P0FN2 [1:0] | P0FP1[1:0]: specify either one of grayscales V3, V4, V5, V6 for the P0KP1[2:0] level     |
|              |             |             | P0FN2[1:0]: specify either one of grayscales V3, V4, V5, V6 for the P0KN4[2:0] level     |
|              | P0FP2 [1:0] | P0FN1 [1:0] | P0FP2[1:0]: specify either one of grayscales V28, V27, V26, V25 for the P0KP4[2:0] level |
|              |             |             | P0FN1[1:0]: specify either one of grayscales V28, V27, V26, V25 for the P0KN1[2:0] level |
|              | P0FP3 [1:0] | P0FN0 [1:0] | Division ratio between V30 and V31                                                       |

# γ Correction Register Settings and γ Curve Relationship



Figure 70



Figure 71 Source Output Waveform and Vcom Polarity Relationship

# **Power-Supply Generating Circuit**

The following figures show the configurations of liquid crystal drive voltage generating circuit of the R61505.

# Power Supply Circuit Connection Example 1 (Vci1 = VciOUT)

In the following example, the VciOUT level is adjusted internally in the VciOUT output circuit.



Figure 72

Note: The wiring resistances between the schottky diode and GND/VGL must be  $10\Omega$  or less.

# Power Supply Circuit Connection Example 2 (Vci1 = Vci Direct Input)

In the following example, the electrical potential Vci is directly applied to Vci1. In this case, the VciOUT level cannot be adjusted internally but step-up operation becomes more effective.



Figure 73

Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be  $10\Omega$  or less.

2. When directly applying the Vci level to Vci1, set VC = 3'h7. Capacitor connection to VciOUT is not necessary.

# **Specifications of Power-supply Circuit External Elements**

The specifications of external elements connected to the power-supply circuit of the R61505 are as follows.

Table 71 Capacitor

| Capacitance         | Voltage Proof | Pin Connection                                                                                           |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------|
| 1µF                 | 6 V           | (1) VREG1OUT, (3) VciOUT, (4) C11-/+, (5) C12-/+, (8) C13-/+, (16) VCL, (17) VcomH, (18) VcomL, (19) VDD |
| (B characteristics) | 10 V          | (6) VLOUT1, (9) C21-/+, (10) C22-/+, (11) C23-/+                                                         |
|                     | 25 V          | (11) VLOUT2, (13) VLOUT3                                                                                 |

Notes: 1. Check with the LC module.

2. The numbers in the parentheses corresponds to the numbers of the elements in Figure 72, Figure 73.

#### **Table 72 Schottky Diode**

| Specification                                                 | Pin Connection                                  |
|---------------------------------------------------------------|-------------------------------------------------|
| VF < 0.4 V/20 mA@25 °C, VR ≥ 25 V (Recommended diode: HSC226) | (15) GND–VGL,<br>(13) Vci–VGH,<br>(7) Vci–DDVDH |

#### **Table 73 Variable Resistor**

| Specification | Pin Connection |
|---------------|----------------|
| > 200 kΩ      | (2) VcomR      |

# **Table 74 Internal Logic Power Supply**

| Capacitance             | Voltage Proof (Recommended) | Pin Connection |
|-------------------------|-----------------------------|----------------|
| 1μF (B characteristics) | 3V                          | VDD            |

#### Table 75 Internal oscillator

| Resistance | Usage Condition          | Pin Connection |
|------------|--------------------------|----------------|
| Rf         | 1mw or less, ±1% or less | OSC1 and OSC2  |

#### **Voltage Setting Pattern Diagram**

The following are the diagrams of voltage generation in the R61505 and the TFT display application voltage waveforms and electrical potential relationship.



Figure 74

- Notes: 1. The DDVDH, VGH, VGL, and VCL output voltages will become lower than their theoretical levels (ideal voltages) due to current consumption at each output level. Make sure that output voltage level in operation maintains the following relationship: (DDVDH − VREG1OUT) > 0.5V, (VcomL − VCL) > 0.5V. Also make sure VGH-VGL ≤ 25V, Vci-VCL ≤ 6V. When the load is on current to the maximum, (DDVDH − VREG1OUT) 0.3V is also possible. When the alternating cycle of Vcom is high (e.g. polarity inverts every line cycle), current consumption will increase. In this case, check the voltage before use.
  - 2. In operation, setting voltages within the respective voltage ranges are recommended.

# Liquid Crystal Application Voltage Waveform and Electrical Potential



Figure 75

# **Power Supply Instruction Setting**

The following are the sequences for setting power supply ON/OFF instructions. Set power supply ON/OFF instructions according to the following sequences in Display ON/OFF, Sleep set/exit sequences.



Figure 76

# **Instruction Setting**

The following are the sequences for various instruction settings. When setting instruction in the R61505, follow the relevant sequence below.

#### **Display ON/OFF Sequences**



Figure 77

# **Sleep Mode SET/EXIT Sequences**



Figure 78

# **Deep Standby Mode IN/EXIT Sequences**



Figure 79

#### 8-Color Mode Setting



Figure 80]

#### **Partial Display Setting**



Figure 81

# **Absolute Maximum Ratings**

**Table 76 Absolute Maximum Ratings** 

| Item                     | Symbol       | Unit | Ratings            | Notes |
|--------------------------|--------------|------|--------------------|-------|
| Power-supply voltage (1) | Vcc, IOVcc   | V    | -0.3 to +4.6       | 1, 2  |
| Power-supply voltage (2) | Vci - AGND   | V    | -0.3 to +4.6       | 1, 3  |
| Power-supply voltage (3) | DDVDH - AGND | V    | -0.3 to +6.5       | 1, 4  |
| Power-supply voltage (4) | AGND - VCL   | V    | -0.3 to +4.6       | 1     |
| Power-supply voltage (5) | DDVDH - VCL  | V    | -0.3 to +9.0       | 1, 5  |
| Power-supply voltage (6) | VGH - AGND   | V    | -0.3 to +16.0      | 1, 6  |
| Power-supply voltage (7) | AGND - VGL   | V    | -0.3 to +13.0      | 1, 7  |
| Input voltage            | Vt           | V    | -0.3 to IOVcc +0.3 | 1     |
| Operating temperature    | Topr         | °C   | -40 to +85         | 1, 8  |
| Storage temperature      | Tstg         | °C   | -55 to +110        | 1     |

Notes: 1. If used beyond the absolute maximum ratings, the LSI may permanently be damaged. It is strongly recommended to use the LSI within the electrical characteristics conditions in normal operation. Exposure to a condition not within the electrical characteristics may affect device reliability.

- 2. Ensure that Vcc (high)  $\geq$  GND (low) and IOVcc (high)  $\geq$  IOGND (low).
- 3. Ensure that  $Vci (high) \ge AGND (low)$ .
- 4. Ensure that DDVDH (high)  $\geq$  AGND (low).
- 5. Ensure that DDVDH (high)  $\geq$  VCL (low).
- 6. Ensure that VGH (high)  $\geq$  AGND (low).
- 7. Ensure that AGND (high)  $\geq$  VGL (low).
- 8. The DC/AC characteristics of die and wafer products are guaranteed at 85 °C.

# **Electrical Characteristics**

# **DC** Characteristics

Table 77 (Vcc = 2.50V to 3.30V, IOVcc = 1.65V to 3.30V, Ta =  $-40^{\circ}$ C to  $+85^{\circ}$ C\*1)

| Item                                                                                                        | Symbol | Unit | Test Condition                                                                                                                                                                                                                                                | Min.            | Тур. | Max.            | Notes |
|-------------------------------------------------------------------------------------------------------------|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-----------------|-------|
| Input high-level voltage (pins other than OSC1)                                                             | VIH    | V    | IOVCC = 1.65 V to 3.30 V                                                                                                                                                                                                                                      | 0.80 x<br>IOVcc | -    | IOVcc           | 2, 3  |
| Input low-level voltage (pins other than OSC1)                                                              | VIL    | V    | IOVCC = 1.65 V to 3.30 V                                                                                                                                                                                                                                      | -0.3            | -    | 0.20 x<br>IOVcc | 2, 3  |
| Output high voltage (DB0-17 pins and FMARK)                                                                 | VOH1   | V    | IOVCC = 1.65 V to 3.30 V,<br>IOH = -0.1 mA                                                                                                                                                                                                                    | 0.8 x<br>IOVcc  | -    | -               | 2     |
| Output low voltage (DB0-17 pins and FMARK)                                                                  | VOL1   | V    | IOVCC = 1.65 V to 3.30 V,<br>IOL = 0.1 mA                                                                                                                                                                                                                     | -               | -    | 0.20 x<br>IOVcc | 2     |
| I/O leakage current                                                                                         | ILi    | μΑ   | Vin = 0 to IOVcc                                                                                                                                                                                                                                              | <b>–1</b>       | -    | 1               | 4     |
| Current consumption:<br>(IOVcc-IOGND) + (Vcc-GND)                                                           | IOP1   | μA   | fosc = 376 kHz (320 lines),<br>fFLM = 70 Hz,<br>IOVcc = Vcc = 3.00 V,                                                                                                                                                                                         | -               | 175  | 295             | 5, 6  |
| Normal operation mode, 260-k color display                                                                  |        |      | Ta = 25°C,<br>RAM data: 18'h000000<br>For details, see below.                                                                                                                                                                                                 |                 |      |                 |       |
| Current consumption:<br>(IOVcc-IOGND) + (Vcc-GND)                                                           | IOP2   | μΑ   | fosc = 376 kHz (64-line partial),<br>fFLM = 40 Hz,<br>IOVcc = Vcc = 3.00 V,                                                                                                                                                                                   | -               | 140  | -               | 5, 6  |
| 8-color mode,<br>Sub 64-line partial display                                                                | •      |      | Ta = 25°C,<br>RAM data: 18'h00000<br>For details, see below.                                                                                                                                                                                                  |                 |      |                 |       |
| Current consumption: (IOVcc-IOGND) + (Vcc-GND)                                                              | IDST   | μΑ   | IOVcc = Vcc = 3.00 V,<br>Ta = 25°C                                                                                                                                                                                                                            | -               | 0.1  | 1.0             | 5     |
| Deep standby mode                                                                                           |        |      |                                                                                                                                                                                                                                                               |                 |      |                 |       |
| Current consumption: (IOVcc-IOGND)+(Vcc-GND)                                                                | IRAM1  | mA   | IOVcc = 2.40 V,<br>Vcc = 3.00 V,<br>tCYCW = 150 ns,                                                                                                                                                                                                           | -               | 2.0  | -               | 6     |
| RAM access mode 1,<br>Normal write mode<br>(HWM = 0)                                                        |        |      | Ta = 25°C,<br>80-8-bit I/F, TRIREG = 1'h1,<br>consecutive RAM access during<br>display<br>VCM1 = 5'h1D, AP = 3'h3,<br>BC0 = 0, FP = 5, BP = 8,<br>gamma register: 0 (default)<br>COL = 0 (8-color mode)                                                       |                 |      |                 |       |
| Current consumption:<br>(IOVcc-IOGND)+(Vcc-GND)<br>RAM access mode 2,<br>High-speed write mode<br>(HWM = 1) | IRAM2  | mA   | IOVcc = 2.40 V,<br>Vcc = 3.00 V,<br>tCYCW = 75 ns,<br>Ta = 25°C,<br>80-8-bit I/F, TRIREG = 1'h1,<br>consecutive RAM access during<br>display<br>VCM1 = 5'h1D, AP = 3'h3,<br>BCO = 0, FP = 5, BP = 8,<br>gamma register: 0 (default)<br>COL = 0 (8-color mode) | -               | 1.9  | -               | 6     |

# R61505

| Item                                                              | Symbol           | Unit    | Test Condition                                                                                                                                                                                                                                                                                                                                          | Min.         | Тур. | Max. | Notes |
|-------------------------------------------------------------------|------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|------|-------|
| LCD power supply current<br>(VCI-GND)<br>260k color display       | I <sub>ci1</sub> | mA      | IOVcc1 = Vcc = 3.0V, Vci = 3.0V fosc = 376kHz (320 lines), fFLM=70Hz, Ta=25°C, RAM data: 18'h0000000, REV=0, B/C=0, PxKP = 0, PxKN = 0, PxRP = 0, PxRN = 0, VxRP = 0, PxRN = 0, PxFP = 0, PxFN = 0 BT = 4'h6, VC = 3'h7, AP = 3'h3, DC0 = 3'h1, DC1 = 3'h2, VRH = 4'hA, VCM = 5'h1D, VDV = 5'h8, VCMR = 1'h1, COL = 2'h0, GON = 1, No load on the panel | _            | 2.8  | 3.3  | 5, 6  |
| LCD power supply current (VCI-GND) 8-color mode (64-kine partial) | I <sub>ci2</sub> | mA      | IOVcc1 = Vcc = 3.0V, Vci = 3.0V fosc = 376kHz (64 line partial), fFLM = 40Hz, Ta = 25°C, RAM data: 18'h0000000, REV=0, B/C=0, PxKP = 0, PxKN = 0 PxRP = 0, PxRN = 0, VxRP = 0, VxRN = 0, PxFP = 0, PxFN = 0 BT=4'h6, VC=3'h7, AP=3'h3, DC0=3'h1, DC1=3'h2, VRH = 4'hA, VCM = 5'h1D, VDV = 5'h8, VCMR = 1'h1, COL = 2'h0, GON = 1, No load on the panel  | <del>-</del> | 1.0  | _    | 5, 6  |
| Output voltage dispersion                                         | ΔVο              | $^{m}V$ | _                                                                                                                                                                                                                                                                                                                                                       | _            | 5    | _    | 7     |
| Average output voltage variance                                   | ΔVΔ              | mV      | _                                                                                                                                                                                                                                                                                                                                                       | -35          | _    | 35   | 8     |

# **Step-Up Circuit Characteristics**

Table 78

| Item                      |        | Unit | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Min.  | Тур.  | Max.         | Notes |
|---------------------------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------|-------|
| Step-up output<br>voltage | VLOUT1 | V    | $\begin{split} & \text{IOVcc} = \text{Vcc} = \text{Vcc=3.0V},  \text{Vci} = \text{Vci1} = 2.5\text{V} \\ & \text{fosc} = 376\text{kHz},  \text{Ta} = 25^{\circ}\text{C}, \\ & \text{VC} = 3'\text{h7},  \text{AP} = 2'\text{h3},  \text{BT} = 3'\text{h7}, \\ & \text{DC0} = 3'\text{h4}  (\text{div.1/16}),  \text{DC1} = 3'\text{h4}  (1/256), \\ & \text{COL} = 0,  \text{D} = 2'\text{h0},  \text{VON} = 0,  \text{DIV} = 2'\text{h0}, \\ & \text{RTNI} = 5'\text{h0},  \text{FP} = 4'\text{h8},  \text{BP} = 4'\text{h8}, \\ & \text{C11} = \text{C21} = \text{C13} = \text{C21} = \text{C22} = \text{C23} = 1[\mu\text{F}]  /  \text{B} \\ & \text{Characteristics}, \\ & \text{VLOUT1} = \text{VLOUT2} = \text{VLOUT3} = \text{VCL} = \\ & 1[\mu\text{F}]  /  \text{B}   \text{Characteristics}, \\ & \text{I}_{\text{load1}} = -3[\text{mA}],  \text{No load on the panel} \end{split}$ | 4.57  | 4.84  | <del>-</del> | _     |
|                           | VLOUT2 | V    | IOVcc = Vcc = Vcc=3.0V, Vci = Vci1 = 2.5V fosc = 376kHz, Ta = 25°C, VC = 3'h7, AP = 2'h3, BT = 3'h7, DC0 = 3'h4 (div.1/16), DC1 = 3'h4 (1/256), COL = 0, D = 2'h0, VON = 0, DIV = 2'h0, RTNI = 5'h0, FP = 4'h8, BP = 4'h8, C11 = C21 = C13 = C21 = C22 = C23 = 1[μF] / B Characteristics, VLOUT1 = VLOUT2 = VLOUT3 = VCL = 1[μF] / B Characteristics, Ilosd2 = -100[μA], No load on the panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.72 | 14.40 | _            | _     |
|                           | VLOUT3 | V    | IOVcc = Vcc = Vcc=3.0V, Vci = Vci1 = 2.5V fosc = 376kHz, Ta = 25°C, VC = 3'h7, AP = 2'h3, BT = 3'h7, DC0 = 3'h4 (div.1/16), DC1 = 3'h4 (1/256), COL = 0, D = 2'h0, VON = 0, DIV = 2'h0, RTNI = 5'h0, FP = 4'h8, BP = 4'h8, C11 = C21 = C13 = C21 = C22 = C23 = 1[μF] / B Characteristics, VLOUT1 = VLOUT2 = VLOUT3 = VCL = 1[μF] / B Characteristics, $I_{load3} = +100[μA]$ , No load on the panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6.86 | -7.13 | _            | _     |
|                           | VCL    | V    | $\begin{split} &\text{IOVcc} = \text{Vcc} = \text{Vcc=3.0V},  \text{Vci} = \text{Vci1} = 2.5\text{V} \\ &\text{fosc} = 376\text{kHz},  \text{Ta} = 25^{\circ}\text{C}, \\ &\text{VC} = 3'\text{h7},  \text{AP} = 2'\text{h3},  \text{BT} = 3'\text{h7}, \\ &\text{DC0} = 3'\text{h4}  (\text{div.1/16}),  \text{DC1} = 3'\text{h4}  (1/256), \\ &\text{COL} = 0,  \text{D} = 2'\text{h0},  \text{VON} = 0,  \text{DIV} = 2'\text{h0}, \\ &\text{RTNI} = 5'\text{h0},  \text{FP} = 4'\text{h8},  \text{BP} = 4'\text{h8}, \\ &\text{C11} = \text{C21} = \text{C13} = \text{C21} = \text{C22} = \text{C23} = 1[\mu\text{F}]  /  \text{B} \\ &\text{Characteristics}, \\ &\text{VLOUT1} = \text{VLOUT2} = \text{VLOUT3} = \text{VCL} = 1[\mu\text{F}]  /  \text{B}  \text{Characteristics}, \\ &\text{I}_{\text{load4}} = 200[\mu\text{A}],  \text{No load on the panel} \end{split}$              | -2.25 | -2.30 | <del>-</del> | _     |
| Input voltage             | Vci    | V    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5   | _     | 3.3          | _     |

# **AC Characteristics**

(Vcc=2.50V ~ 3.30V, IOVcc = 1.65V ~ 3.30V, Ta =  $-40^{\circ}C$  ~  $+85^{\circ}C^{*}$  ) \*  $^{see~Note~1}$ 

# **Table 79** Clock Characteristics

| Item                 | Symbol | Unit | Test Condition   | Min. | Тур. | Max. | Notes |
|----------------------|--------|------|------------------|------|------|------|-------|
| RC oscillation clock | fosc   | kHz  | Rf = $75k\Omega$ | 285  | 334  | 384  | 9     |

80-System Bus Interface Timing Characteristics (18/16-bit I/F)

Normal Write Operation (HWM= "0"), IOVcc = 1.65V ~ 3.30V Table 80

| Item              |                     | Symbol                | Unit | Timing Diagram | Min | Тур | Max |
|-------------------|---------------------|-----------------------|------|----------------|-----|-----|-----|
| Bus cycle time    | Write               | $t_{\text{CYCW}}$     | ns   | Figure 89      | 150 | _   | _   |
|                   | Read                | tcycr                 | ns   | Figure 89      | 450 | _   | _   |
| Write low-level p | oulse width         | $PW_{LW}$             | ns   | Figure 89      | 50  | _   | _   |
| Read low-level p  | oulse width         | $PW_{LR}$             | ns   | Figure 89      | 170 | _   | _   |
| Write high-level  | pulse width         | $PW_{HW}$             | ns   | Figure 89      | 70  | _   | _   |
| Read high-level   | pulse width         | $PW_{HR}$             | ns   | Figure 89      | 250 | _   | _   |
| Write/Read rise/  | fall time           | t <sub>WRr, WRf</sub> | ns   | Figure 89      | _   | _   | 25  |
| Setup time        | Write (RS~CS*, WR*) | t <sub>AS</sub>       | ns   | Figure 89      | 0   | _   | _   |
|                   | Read (RS~CS*, RD*)  | _                     |      |                | 10  | _   |     |
| Address hold tim  | ne                  | t <sub>AH</sub>       | ns   | Figure 89      | 2   | _   | _   |
| Write data setup  | time                | t <sub>DSW</sub>      | ns   | Figure 89      | 25  | _   | _   |
| Write data hold t | time                | t <sub>H</sub>        | ns   | Figure 89      | 10  | _   | _   |
| Read data delay   | time                | t <sub>DDR</sub>      | ns   | Figure 89      | _   | _   | 150 |
| Read data hold    | time                | t <sub>DHR</sub>      | ns   | Figure 89      | 5   | _   | _   |

Table 81 High-Speed Write Function (HWM= "1"), IOVcc = 1.65V ~ 3.30V

|                  | Item                | Symbol            | Unit | Timing Diagram | Min | Тур | Max |
|------------------|---------------------|-------------------|------|----------------|-----|-----|-----|
| Bus cycle time   | Write               | t <sub>CYCW</sub> | ns   | Figure 89      | 80  | _   | _   |
|                  | Read                | t <sub>CYCR</sub> | ns   | Figure 89      | 450 | _   | _   |
| Write low-level  | oulse width         | $PW_{LW}$         | ns   | Figure 89      | 50  | _   | _   |
| Read low-level   | oulse width         | $PW_{LR}$         | ns   | Figure 89      | 170 | _   | _   |
| Write high-level | pulse width         | $PW_{HW}$         | ns   | Figure 89      | 25  | _   | _   |
| Read high-level  | pulse width         | $PW_{HR}$         | ns   | Figure 89      | 250 | _   | _   |
| Write/Read rise  | fall time           | $t_{WRr, WRf}$    | ns   | Figure 89      | _   | _   | 25  |
| Setup time       | Write (RS~CS*, WR*) | t <sub>AS</sub>   | ns   | Figure 89      | 0   |     | _   |
|                  | Read (RS~CS*, RD*)  |                   |      |                | 10  |     |     |
| Address hold tin | ne                  | $t_{AH}$          | ns   | Figure 89      | 2   | _   | _   |
| Write data setup | time                | t <sub>DSW</sub>  | ns   | Figure 89      | 25  | _   | _   |
| Write data hold  | time                | t <sub>H</sub>    | ns   | Figure 89      | 10  | _   | _   |
| Read data delay  | time                | $t_{DDR}$         | ns   | Figure 89      | _   | _   | 150 |
| Read data hold   | time                | $t_{DHR}$         | ns   | Figure 89      | 5   | _   | _   |

80-System Bus Interface Timing Characteristics (8-bit I/F)

Normal/High-speed Write Function (HWM= "0/1"), IOVcc = 1.65V ~ 3.30V Table 82

|                       | Item                | Symbol                | Unit | <b>Timing Diagram</b> | Min | Тур | Max |
|-----------------------|---------------------|-----------------------|------|-----------------------|-----|-----|-----|
| Bus cycle time        | Write               | t <sub>CYCW</sub>     | ns   | Figure 89             | 80  | _   |     |
|                       | Read                | t <sub>CYCR</sub>     | ns   | Figure 89             | 450 | _   |     |
| Write low-level       | oulse width         | $PW_{LW}$             | ns   | Figure 89             | 50  | _   |     |
| Read low-level        | pulse width         | $PW_{LR}$             | ns   | Figure 89             | 170 | _   |     |
| Write high-level      | pulse width         | $PW_{HW}$             | ns   | Figure 89             | 25  | _   |     |
| Read high-level       | pulse width         | $PW_{HR}$             | ns   | Figure 89             | 250 | _   |     |
| Write/Read rise       | /fall time          | t <sub>WRr, WRf</sub> | ns   | Figure 89             | _   | _   | 25  |
| Setup time            | Write (RS~CS*, WR*) | t <sub>AS</sub>       | ns   | Figure 89             | 0   | _   |     |
|                       | Read (RS~CS*, RD*)  | -                     |      | _                     | 10  |     |     |
| Address hold time     |                     | t <sub>AH</sub>       | ns   | Figure 89             | 2   | _   |     |
| Write data setup time |                     | t <sub>DSW</sub>      | ns   | Figure 89             | 25  | _   |     |
| Write data hold time  |                     | t <sub>H</sub>        | ns   | Figure 89             | 10  | _   |     |
| Read data delay time  |                     | t <sub>DDR</sub>      | ns   | Figure 89             | _   | _   | 150 |
| Read data hold        | time                | t <sub>DHR</sub>      | ns   | Figure 89             | 5   | _   | _   |

# **Serial interface Timing Characteristics**

Table 83 Normal/High-Speed Write Function (HWM= "0/1"),  $IOVcc = 1.65V \sim 3.30V$ 

| Item                         |                    | Symbol                              | Unit      | Timing<br>Diagram | Min. | Тур. | Max.   |
|------------------------------|--------------------|-------------------------------------|-----------|-------------------|------|------|--------|
| Serial clock cycle           | Write (received)   | t <sub>scyc</sub>                   | ns        | Figure 90         | 100  | -    | 20,000 |
| time                         | Read (transmitted) | tscyc                               | ns        | Figure 90         | 350  | -    | 20,000 |
| Serial clock high-level      | Write (received)   | t <sub>sch</sub>                    | ns        | Figure 90         | 40   | -    | -      |
| pulse width                  | Read (transmitted) | t <sub>SCH</sub>                    | ns        | Figure 90         | 150  | -    | =      |
| Serial clock low-level       | Write (received)   | t <sub>SCL</sub>                    | ns        | Figure 90         | 40   | -    | -      |
| pulse width                  | Read (transmitted) | t <sub>SCL</sub>                    | ns        | Figure 90         | 150  | -    | =      |
| Serial clock rise/fall tim   | е                  | t <sub>SCr</sub> , t <sub>SCf</sub> | ns        | Figure 90         | -    | -    | 20     |
| Chip select setup time       |                    | t <sub>CSU</sub>                    | ns        | Figure 90         | 20   | -    | -      |
| Chip select hold time        |                    | t <sub>CH</sub>                     | ns        | Figure 90         | 60   | -    | -      |
| Serial input data setup time |                    | t <sub>SISU</sub>                   | ns        | Figure 90         | 30   | -    | -      |
| Serial input data hold time  |                    | t <sub>SIH</sub>                    | ns        | Figure 90         | 30   | -    | -      |
| Serial output data delay     | t <sub>SOD</sub>   | ns                                  | Figure 90 | -                 | -    | 130  |        |
| Serial output data hold      | t <sub>SOH</sub>   | ns                                  | Figure 90 | 5                 | -    | -    |        |

# **Reset Timing Characteristics**

 $IOVcc = 1.65V \sim 3.30V$ Table 84

| Item                    | Symbol           | Unit | Timing Diagram | Min. | Тур. | Max. |
|-------------------------|------------------|------|----------------|------|------|------|
| Reset "Low" level width | t <sub>RES</sub> | ms   | Figure 91      | 1    | _    | _    |
| Reset rise time         | $t_{rRES}$       | μs   | Figure 91      | _    | _    | 10   |

# **RGB Interface Timing Characteristics**

Table 85 18/16-Bit, 1-Transfer I/F, High-Speed Write Function (HWM= "1"), IOVcc = 1.65V ~

| Item                                | Symbol       | Unit   | Timing<br>Diagram | Min. | Тур. | Max. |
|-------------------------------------|--------------|--------|-------------------|------|------|------|
| VSYNC/HSYNC setup time              | tSYNCS       | clocks | Figure 92         | 0    | _    | 1    |
| ENABLE setup time                   | tENS         | ns     | Figure 92         | 10   | _    | _    |
| ENABLE hold time                    | tENH         | ns     | Figure 92         | 20   | _    | _    |
| DOTCLK "Low" level pulse width      | $PW_{DL}$    | ns     | Figure 92         | 40   | _    | _    |
| DOTCLK "High" level pulse width     | $PW_{DH}$    | ns     | Figure 92         | 40   | _    | _    |
| DOTCLK cycle time                   | tCYCD        | ns     | Figure 92         | 100  | _    | _    |
| Data setup time                     | tPDS         | ns     | Figure 92         | 10   | _    | _    |
| Data hold time                      | tPDH         | ns     | Figure 92         | 40   | _    | _    |
| DOTCLK, VYSNC, HSYNC rise/fall time | Trgbr, trgbf | ns     | Figure 92         | _    | _    | 25   |

Table 86 6-Bit I/F, High-Speed Write Function (HWM= "1"), IOVcc = 1.65V ~ 3.30V

| Item                                | Symbol       | Unit   | Timing<br>Diagram | Min. | Тур. | Max. |
|-------------------------------------|--------------|--------|-------------------|------|------|------|
| VSYNC/HSYNC setup time              | tSYNCS       | clocks | Figure 92         | 0    | _    | 1    |
| ENABLE setup time                   | tENS         | ns     | Figure 92         | 10   | _    | _    |
| ENABLE hold time                    | tENH         | ns     | Figure 92         | 25   | _    | _    |
| DOTCLK "Low" level pulse width      | $PW_{DL}$    | ns     | Figure 92         | 25   | _    | _    |
| DOTCLK "High" level pulse width     | $PW_{DH}$    | ns     | Figure 92         | 25   | _    | _    |
| DOTCLK cycle time                   | tCYCD        | ns     | Figure 92         | 60   | _    | _    |
| Data setup time                     | tPDS         | ns     | Figure 92         | 10   | _    | _    |
| Data hold time                      | tPDH         | ns     | Figure 92         | 25   | _    | _    |
| DOTCLK, VYSNC, HSYNC rise/fall time | Trgbr, trgbf | ns     | Figure 92         | _    | _    | 25   |

# R61505

# **LCD Driver Output Characteristics**

Table 87

| Item                            | Symbol           | Unit | <b>Test Condition</b>                                                                                                                                                                                                                                        | Min. | Тур. | Max. | Note |
|---------------------------------|------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| Source driver output delay time | t <sub>dds</sub> | μs   | Vcc = IOVcc = 3.0V, DDVDH = 5.5V,<br>VREG1OUT = 5.0V, fosc = 376kHz (320<br>lines driven), Ta=25 , REV=0, AP=3'h3,<br>VRH = 4'h0,<br>PxKPx = 3'h0, PxKNx = 3'h0<br>PxRNx = 3'h0, PxRPx = 3'h0,<br>VxRNx = 5'h0, VxRPx = 5'h0,<br>PxFPx = 2'h0, PxFNx = 2'h0, | _    | 33   | _    | 10   |
|                                 |                  |      | Same change from the same grayscale at all time-division source output pins,                                                                                                                                                                                 |      |      |      |      |
|                                 |                  |      | Time to reach the target voltage ± 35mV from Vcom polarity inversion timing,                                                                                                                                                                                 |      |      |      |      |
|                                 |                  |      | R=10k , C=20pF                                                                                                                                                                                                                                               |      |      |      |      |
| Vcom output delay time          | $t_{\sf ddv}$    | μs   | Vcc = IOVcc = 3.0V, DDVDH = 5.5V,<br>VREG10UT = 5.0V, fosc = 376kHz (320<br>lines driven), Ta=25 , REV=0, AP=3'h3,<br>VRH = 4'h0,<br>PxKPx = 3'h0, PxKNx = 3'h0<br>PxRNx = 3'h0, PxRPx = 3'h0,<br>VxRNx = 5'h0, VxRPx = 5'h0,<br>PxFPx = 2'h0, PxFNx = 2'h0, | _    | 33   | _    | 11   |
|                                 |                  |      | Time to reach the target voltage ±35mV from source V0 to V31 inversion timing, R=100 , C=10nF                                                                                                                                                                |      |      |      |      |

#### **Notes to Electrical Characteristics**

- 1. The DC/AC electrical characteristics of bare die and wafer products are guaranteed at 85°C.
- 2. The following figures illustrate the configurations of input, I/O, and output pins.



Figure 82

#### R61505

- 3. The TEST1, TEST2, and TEST5 pins must be fixed to IOGND. The TEST3 and TEST4 pins must be grounded (AGND). The IM3, IM2, IM1, IM0, and ID pins must be fixed at either IOVcc1 or IOGND1.
- 4. This excludes the current in the output-drive MOS.
- 5. This excludes the current in the input/output units. Make sure that the input level is fixed because through current will increase in the input circuit when the CMOS input level takes a middle range level. The current consumption is not affected by whether the CS\*pin is "High" or "Low" while not accessing via interface pins.
- 6. The relationship between voltages and the current consumption is as follows.



Figure 83



Figure 84

- 7. The output voltage deviation is the difference in the voltages from adjacent source pins for the same display data. This value is shown just for reference.
- 8. The average output voltage dispersion is the variance of average source-output voltage of different chips of the same product. The average source output voltage is measured for each chip with same display data.
- 9. This applies to the internal oscillator when external resistor Rf is used.



Figure 85

**Table 88 Oscillation Resistance and Frequency (Reference Data)** 

| Oscillation<br>Resistance (kΩ) | RC Oscillation Frequency fOSC (kHz) |
|--------------------------------|-------------------------------------|
| 51                             | 451                                 |
| 75                             | 334                                 |
| 100                            | 266                                 |
| 110                            | 245                                 |
| 120                            | 228                                 |
| 150                            | 191                                 |
| 200                            | 151                                 |
| 270                            | 119                                 |
| 360                            | 95                                  |

10. The liquid crystal driver output delay time depends on the load on the liquid crystal panel. Adjust the frame frequency and the cycle per line by checking the quality of display on the actual panel in use.



Figure 86

11. See "Load current characteristics (reference data)" for details of the characteristics of step-up circuit.



Figure 87

#### **Test Circuits**



Figure 88

# **Timing Characteristics**

# 80-System Bus Interface



Figure 89

# **Clock Synchronous Serial Interface**



Figure 90

# **Reset Operation**



Figure 91

#### **RGB** Interface



Figure 92

# **LCD Driver and Vcom Outputs**



Figure 93

# Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renessa Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

  2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

  3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

- contact Reneasa Technology Corporation or an authorized Reneasa i recinology Corporation product distribution of the latest product mismatic. Sociology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

  Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (Inttp://www.renesas.com).

  4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

  5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation essentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

  6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.

  7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

  Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.



http://www.renesas.com

Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0

# **Revision Record**

| Rev. | Date       | Contents of Modification                                                                                                          | Drawn by | Approved by |
|------|------------|-----------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| 0.1  | 2005.01.05 | First issue                                                                                                                       |          |             |
| 0.32 | 2005.04.15 | Add pages 17 ~ 153                                                                                                                |          |             |
|      |            | p.6 Add FMARK function. VGH-VGL ≤ 25V p.6, p.7 Change VGL-GND: -4.5V ~ -12.5V                                                     |          |             |
|      |            | p.8 Changes in Block diagram (Figure 1)                                                                                           |          |             |
|      |            | p.9 Error correction in Tables 2, 3                                                                                               |          |             |
|      |            | p.11 Add (6) Liquid crystal drive power supply circuit                                                                            |          |             |
|      |            | p.14 Change VLOUT3 minimum (-12.5V)                                                                                               |          |             |
|      |            | p.15 Changes: VREFC, VDDTEST, IOVCCDUM1/2, TESTA5, IOGNDDUM1~3, VGLDMY1~4, TESTO1~38, TEST1/2, TEST3~5, TSC. Add VPP1~3, VCCDUM1. |          |             |
| 0.42 | 2005.08.01 | p.5. Delete description about DMA transfer                                                                                        |          |             |
|      |            | p.6. Changes in liquid crystal power supply voltage ranges                                                                        |          |             |
|      |            | p.7 Changes in Table 1 (VcomH, VcomL, VCL)                                                                                        |          |             |
|      |            | p.8 Changes in Figure 1 (VcomR, VcomH, VcomL, VcomR)                                                                              |          |             |
|      |            | p.14 Add VCL                                                                                                                      |          |             |
|      |            | p.15, 16 Add VcomH, VcomL, delete VcomDC, VCS, VRS. Changes in description of Vcom.                                               |          |             |
|      |            | p.17 Revise PAD arrangement (rev.1.2)                                                                                             |          |             |
|      |            | p.19 Revise PAD coordinates table                                                                                                 |          |             |
|      |            | p.34 Revise Connection example (rev.1.1)                                                                                          |          |             |
|      |            | p.39 Add EOR                                                                                                                      |          |             |
|      |            | p.44 Delete SOUT1-5 from table 11                                                                                                 |          |             |
|      |            | p.48 Change in Table 18 (Vcom output)                                                                                             |          |             |
|      |            | p.54 Add VCL in table 27                                                                                                          |          |             |
|      |            | p.57 Changes in descriptions of VCMR[0], VDV[3:0]                                                                                 |          |             |
|      |            | p.59 Changes in description of WD[17:0]                                                                                           |          |             |
|      |            | p.63 Changes in register R29h, table 37                                                                                           |          |             |
|      |            | p.71 Change the default value of IB4 (R90h)                                                                                       |          |             |
|      |            | p.77 Changes in Output pin initial state                                                                                          |          |             |
|      |            | p.131 Error correction (n line $\rightarrow$ one line)                                                                            |          |             |
|      |            | p.141, 142 Changes in Figure 72, 73 (VCL, VcomH, VcomL)                                                                           |          |             |
|      |            | p.143 Add Table 74. Changes in Table 70                                                                                           |          |             |
|      |            | p.144 Changes in Figure 74                                                                                                        |          |             |
|      |            | p.145 Changes in Figure 75                                                                                                        |          |             |
|      |            | p.146 Delete "standby mode"                                                                                                       |          |             |

| Rev. | Date       | Contents of Modification                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drawn by | Approved by |
|------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| 0.42 | 2005.08.01 | p.147 Changes in Display ON/OFF sequences (Figure 77)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             |
| 0.43 | 2005.10.26 | p.67 Change the default values of VEA[8:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             |
|      |            | p.77 Add Instruction List (Rev.1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |             |
|      |            | p.147 Error correction Power ON sequence (R <u>17</u> h:PSE = 1'h1)                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |             |
|      |            | p.152 Add Absolute Maximum Ratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |
|      |            | p.153 ~ p.167 Add Electrical characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             |
| 1.0  | 2005.11.17 | p.15 Add "When the load is on current to the maximum, VREG10UT = $3.0V \sim (DDVDH - 0.3)$ is also possible."                                                                                                                                                                                                                                                                                                                                                                                         |          |             |
|      |            | p.55 Add VCL = $-3.0V$ (max) in Note 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |             |
|      |            | p.57 Add "When the load is on current to the maximum, VREG1OUT (DDVDH – 0.3V is also possible."                                                                                                                                                                                                                                                                                                                                                                                                       |          |             |
|      |            | p.58 Move the description of PSE from Power Control 5 to Power Control 6, add the description of BLDM.                                                                                                                                                                                                                                                                                                                                                                                                |          |             |
|      |            | p.59 Add table 34 and the description of BLDM in Power Control 6.                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |             |
|      |            | p.61 Write Data to GRAM $\rightarrow$ RAM Data Write, changes the sentences in the table.                                                                                                                                                                                                                                                                                                                                                                                                             |          |             |
|      |            | p.64 Read Data from GRAM $\rightarrow$ RAM Data Read, changes the sentence in the table.                                                                                                                                                                                                                                                                                                                                                                                                              |          |             |
|      |            | p.65 VCOM High Voltage $\rightarrow$ Power Control 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             |
|      |            | p.78 Change Instruction List (14h-16h $\rightarrow$ 14h, 15h, 16h, 23h-27h $\rightarrow$ 23h-28h, 0 $\rightarrow$ Setting disabled (05h-06h, 0Bh, 0Eh, 14h, 16h, 2Ah-2Fh, 3Eh-3Fh, 54h-5Fh, 86h-8Fh, 91h, 94h, 96h, 99h-9Fh), delete F0h-FFh), add 40h-4Fh and 70h-7Fh, , 0 $\rightarrow$ BLDM, 0 $\rightarrow$ PSE(0), RAM data write/read $\rightarrow$ RAM data write/RAM data read, RAM write data (WD15-0)/RAM read data (WD15-0) $\rightarrow$ RAM data write (WD17-0)/RAM data read (RD17-0)). |          |             |
|      |            | p.143 Change figure 72 (T.B.D. $\rightarrow$ R61505).                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             |
|      |            | p.144 Change figure 73 (T.B.D. $\rightarrow$ R61505).                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             |
|      |            | p.145 Change table 72 (HSC226 $\rightarrow$ HSL226).                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             |
|      |            | p.146 Add "When the load is on current to the maximum, (DDVDH – VREG1OUT) 0.3V is also possible." in Note 1                                                                                                                                                                                                                                                                                                                                                                                           |          |             |
|      |            | p.149 Change figure 77 (add "or R07h: 16'h0072 (BASEE = 0, VON = 1, GON = 1, DTE = 1, D = 2'h2)' in the middle "Display ON").                                                                                                                                                                                                                                                                                                                                                                         | ,        |             |
|      |            | p.153 Delete (Target Specifications) and Note 8, Note 9 $\rightarrow$ Note 8, change table 76 ((9) $\rightarrow$ (8)).                                                                                                                                                                                                                                                                                                                                                                                |          |             |
|      |            | p.154 Delete (Target Specifications), change table 77 (h'00000 $\rightarrow$ 18'h000000, add "For details, see                                                                                                                                                                                                                                                                                                                                                                                        |          |             |

| Rev. | Date       | Contents of Modification                                                                                                                                                                                                                                                                                                                                         | Drawn by | Approved by |
|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
|      |            | below" in 260k-color display and 8-color mode, add "VCM1 = 5'h1D, AP = 3'h3, BC0 = 0, FP = 5, BP = 8, gamma register: 0 (default), COL = 0 (8-color mode)" in RAM access mode 1 and 2, define Typ. (260k-colorb display, 8-color mode, Deep standby mode, RAM access mode 1 and 2) and Max. (260k-color display)).                                               |          |             |
|      |            | p.155 Change table 77 (add (64-line partial), BT = $4$ 'h5 $\rightarrow$ BT = $4$ 'h6, delete "VCOMG = $1$ 'h1, COM = $1$ 'h1, GVD = $4$ 'h06, GVS = $5$ 'h14, SEN = $3$ 'h5", define Typ. and Max. (260k-color display), define Typ. (8-color mode (64-line partial), define Min. (Average output voltage variance)).                                           |          |             |
|      |            | p.156 Delete (Target Specifications), change table 78 (VLOUT4 $\rightarrow$ VCL, define Test Condition, Min., Max., delete 11 from Notes), change table 79 (2.5V $\sim$ 3.1V $\rightarrow$ 2.50V $\sim$ 3.30V, 1.65V $\sim$ 3.1V $\rightarrow$ 1.65V $\sim$ 3.30V, Min.: T.B.D. $\rightarrow$ 285, Typ.: 340 $\rightarrow$ 334, Max.: T.B.D. $\rightarrow$ 384). |          |             |
|      |            | p.157 Delete (Target Specifications), change table 80 (add Figure 89, Min.: $45 \rightarrow 50$ ) and table 81(add Figure 89, Min.: $75 \rightarrow 80$ , $45 \rightarrow 50$ ).                                                                                                                                                                                 |          |             |
|      |            | p.158 Delete (Target Specifications), change table 82 (Figure 87 $\rightarrow$ Figure 89, Min.: 75 $\rightarrow$ 80, 45 $\rightarrow$ 50).                                                                                                                                                                                                                       |          |             |
|      |            | p.159 Delete (Target Specifications), change table 83 (Figure 88 $\rightarrow$ Figure 90) and table 84 (Figure 89 $\rightarrow$ Figure 91).                                                                                                                                                                                                                      |          |             |
|      |            | p.160 Delete (Target Specifications), change tables 85 and 86.(Figure $90 \rightarrow$ Figure $92, 15 \rightarrow 10$ (ENABLE setup time, Data setup time)).                                                                                                                                                                                                     |          |             |
|      |            | p.161 Delete (Target Specifications), define table 87 (30 $\rightarrow$ 33, T.B.D. $\rightarrow$ 33).                                                                                                                                                                                                                                                            |          |             |
|      |            | p.163 Change Note 3 (The TEST1, TEST2 pins must be grounded (IOGND1).) → The TEST 1, TEST2, and TEST 3 pins must be fixed to IOGND. The TEST3 and TEST 4 pins must be grounded (AGND)).                                                                                                                                                                          |          |             |
|      |            | p.164 Define figure 83 (delete T.B.D.).                                                                                                                                                                                                                                                                                                                          |          |             |
|      |            | p.165 Add figure 84 (delete T.B,D,).                                                                                                                                                                                                                                                                                                                             |          |             |
|      |            | p.166 Define table 88 and figure 86 (delete T.B.D.). Delete (T.B.D.) from Note 11.                                                                                                                                                                                                                                                                               |          |             |
|      |            | p.167 Add figure 87, change figure 88 (DB15 $ ightarrow$ DB17, add Test circuit for Vcom output characteristics).                                                                                                                                                                                                                                                |          |             |
|      |            | p.170 Change figure 93 (change Vcom outputs).                                                                                                                                                                                                                                                                                                                    |          |             |
| 1.01 | 2005.12.02 | p.157 Change table 81 (Min. of Write high-level pulse width: $20 \rightarrow 25$ ).                                                                                                                                                                                                                                                                              |          |             |
|      |            | p.158 Change table 82 (Min. of Write high-level pulse width: $20 \rightarrow 25$ ).                                                                                                                                                                                                                                                                              |          |             |

# R61505

| Rev.  | Date       | Contents of Modification                                                                                                                                                                     | Drawn by | Approved by |
|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| 1.02  | 2005.12.05 | p. 39 Add the description before IR.                                                                                                                                                         |          |             |
|       |            | p.49 Change table 18 (the description of PTG[1:0]).                                                                                                                                          |          |             |
|       |            | p.74 Change table 47 (0 (internal clock $\rightarrow$ "Setting disabled").                                                                                                                   |          |             |
|       |            | p.78 Add the description of Oscillation Control.                                                                                                                                             |          |             |
|       |            | p.79 Change Instruction List (add A4h).                                                                                                                                                      |          |             |
|       |            | p.149 Change figure 76 (add "RA4h: CALB = 1" and "1/osc $\times$ 8 wait").                                                                                                                   |          |             |
|       |            | p.150 Change figure 77 (add the description in Display ON (middle)).                                                                                                                         |          |             |
|       |            | p.152 Change figure 79 (add "RA4h: CALB = 1" and "1/osc $\times$ wait").                                                                                                                     |          |             |
| 1.02a | 2005.12.12 | p.156 Correct table 77 (1.8 → 0.8 (Typ.)).                                                                                                                                                   |          |             |
|       |            | p.157 Correct table 78 (3[mA] $\rightarrow$ -3[mA] (VLOUT1),<br>-100[mA] $\rightarrow$ -100[μA] (VLOUT2), +100[mA] $\rightarrow$<br>+100[μA] (VLOUT3), 200[mA] $\rightarrow$ 200[μA] (VCL)). |          |             |
|       |            | p.158 Correct tables 80 and 81 ( $t_{HWR} \rightarrow t_H$ (Write data hold time)).                                                                                                          |          |             |
|       |            | p.159 Correct table 82 ( $t_{HWR} \rightarrow t_{H}$ (Write data hold time).                                                                                                                 |          |             |
|       |            | p.161 Correct table 86 (8-Bit $\rightarrow$ 6-Bit (title)).                                                                                                                                  |          |             |
|       |            | p.162 Correct table 87 (C = 10pF $\rightarrow$ C = 10nF (Vcomoutput delay time)).                                                                                                            | 1        |             |
| 1.03  | 2005.12.14 | p.146 Correct table 72 (HSL226 → HSC226).                                                                                                                                                    |          |             |
|       |            | p.156 Correct table 77 (0.8 $\rightarrow$ 1.0 (Typ.)).                                                                                                                                       |          |             |
|       |            | p.157 Correct table 79 (IOVcc1 $\rightarrow$ IOVcc).                                                                                                                                         |          |             |
|       |            | p.158 Correct tables 80 and 81 (IOVcc1 $ ightarrow$ IOVcc).                                                                                                                                  |          |             |
|       |            | p.160 Correct tables 83 and 84 (IOVcc1 $\rightarrow$ IOVcc).                                                                                                                                 |          |             |
|       |            | p.161 Correct tables 85 and 86 (IOVcc1 $ ightarrow$ IOVcc).                                                                                                                                  |          |             |
|       |            | p.163 Correct figure 82 (IOVcc1 $\rightarrow$ IOVcc).                                                                                                                                        |          |             |
| 1.03a | 2005.12.22 | p.57 Error correction (VCMR[0]: Change from IB9 to IB8)                                                                                                                                      |          |             |