Escuela Rafael Díaz Serdán 3° de Secundaria (2023-2024) Ciencias y Tecnología: Química Examen de la Unidad 2

Prof.: Julio César Melchor Pinto

Nombre del alumno:		Fecha:							
Evaluador:									
Instrucciones: Lee con atención cada pregunta y realiza lo que se te pide. Desarrolla tus respuestas en el espacio determinado para cada solución. De ser necesario, utiliza una hoja en blanco por separado, anotando en ella tu nombre completo, el número del problema y la solución propuesta.	Reglos: Al comenzar este exam X No se permite sa X No se permite in X No se permite el X No se permite el X No se permite m X No se permite la Si no consideraste algu-	alir del salón de tercambiar o uso de celular uso de apunte sirar el examen comunicación	e clas pres o co es, li de o o ca	ses. star ualq bro otro l o e	ning luier s, no s alu scrit	gún otr otas imn	tipo o d o fo os.	ispo ormu ros a	ositivo. ılarios. alumnos.
Aprendizajes a evaluar:	,	Calificac	iór	า:					
Deduce información acerca de la estructura a tos experimentales sobre propiedades atómic	as periódicas.	Pregunta Puntos Obtenidos	1 10	10	3 5	10	5 10	6 10	7
 Representa y diferencia mediante esquemas, química, elementos y compuestos, así como á Explica y predice propiedades físicas de los modelos submicroscópicos sobre la estructura o iones, y sus interacciones electrostáticas. 	ntomos y moléculas. materiales con base en	Pregunta Puntos Obtenidos	8 10	9 5	10 5	11 5	12 10		Total
 1	s y buenos con- If La Ig El	masa de un n Verdadero número de ma	ieutr	rón Falso	O				-
en el último nivel de energía. Uerdadero Falso			□ I						
La fórmula H ₂ O expresa que la mo está constituida por dos átomos do de hidrógeno.	e oxígeno y uno tem	número total rmina el grupo Verdadero	al o	que	per			n át	omo lo de
□ Verdadero □ Falso 1d Los subíndices expresan el número los elementos presentes en una mod fórmula. □ Verdadero □ Falso	o de átomos de el lécula o unidad co su	n una fórmula número de m mo también el stancia. Verdadero	oléc	ulas nero	s o to de	unic	lade	es fá	órmula; as
El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico. D Verdadero D Falso D Verdadero D Falso									

de 10 pts | Relaciona la especie química con la cantidad de protones y electrones de valencia.

A. Ión de Aluminio (Al^{3+})

B. Ión de Nitrógeno (N³⁻)

C. Ión de Flúor (F⁻)

D. Litio (Li)

E. Ión de Potasio (K⁺)

F. Ión de Berilio (Be⁻)

G. Ión de Azúfre (S^{2+})

H. Ión de Cloro (Cl⁻)

I. Ión de Hierro (Fe³⁺)

J. Fósforo (P)

- 13 protones y 8 electrones de valencia.
- (2b)17 protones y 8 electrones de valencia.
- 9 protones y 8 electrones de valencia.
- 2d4 protones y 3 electrones de valencia.
- _ 16 protones y 4 electrones de valencia.

- 15 protones y 5 electrones de valencia.
- 26 protones y 2 electrones de valencia.
- 7 protones y 8 electrones de valencia.
- 3 protones y 1 electrón de valencia.
- 19 protones y 8 electrones de valencia.

de 5 pts Relaciona cada concepto con su definición.

- A. Las sustancias se representan sólo con símbolos atómicos.
- B. Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C. Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- D. Esquema tridimensional en el que no es posible identificar a los enlaces químicos.
- _ Diagrama de esferas.
- _ Fórmula estructural.
- _ Fórmula condensada.
- _ Diagrama de esferas y barras.

- [_de 10 pts] Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.
 - (4a) 2 Na + ZnI₂ \longrightarrow 2 NaI + Zn
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4b) $C_8HO_{18} + calor \uparrow \longrightarrow C_6H_{14} + C_2H_4$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4c) Zn(s) + 2 HCl(ac) \longrightarrow ZnCl₂(ac) + H₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4d) 2 C(s) + O₂(g) \longrightarrow 2 CO(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (4e) 2 Na + H₂O \longrightarrow 2 NaOH + H₂
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento

- $4f) 2 Al(s) + 3 S(s) \longrightarrow Al_2 S_3(s)$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4g) Mg(s) + H₂O(l) \longrightarrow Mg(OH)₂(s)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (4h) Al + H₂SO₄ \longrightarrow Al₂(SO₄)₃ + H₂
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - D. Dobie despiazamiento
- (4j) SO₂(g) + H₂O(l) \longrightarrow H₂SO₃(ac)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- 5 [_ de 10 pts] Balancea la siguiente ecuación química:

$$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$$

Ciencias y Tecnologia: Quimica	Examen de la Unidad 2	3° de Secundaria (2023-2024)
6 [_de 10 pts] Balancea la siguiente ec	uación química:	
	$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$	
7 [_ de 10 pts] Balancea la siguiente ecc	uación química:	
	$NH_4NO_3 \longrightarrow N_2 + H_2O + O_2$	
8 [_de 10 pts] Contesta a las siguientes	s preguntas, argumentando ampliament	e tu respuesta.
8a Explica bajo qué condiciones dátomo.	el número atómico permite deducir el r	número de electrones presentes en ur

8b)	En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

- 9 [_de5pts] Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:
 - 9a ¿Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A. El carácter metálico y la electronegatividad
 - B. El potencial de Ionización y el carácter metálico
 - C. El carácter no metálico y el potencial de ionización
 - D. La electronegatividad y la afinidad electrónica
 - E. Ninguna de las anteriores
 - 9b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A. La electronegatividad y el tamaño atómico
 - B. El radio atómico y el radio iónico
 - C. El carácter metálico y la afinidad electrónica
 - D. Potencial de ionización y electronegatividad
 - E. Ninguna de las anteriores
 - 9c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - A. Derecha y hacia arriba
 - B. Derecha y hacia abajo
 - C. Izquierda y hacia arriba
 - D. Izquierda y hacia abajo

- (9d) El tamaño de los átomos aumenta cuando:
 - A. Se incrementa el número de período
 - B. Disminuye el número de período
 - C. Se incrementa el número de grupo
 - D. Disminuye el número de bloque
 - E. Ninguna de las anteriores
- 9e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - A. Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B. Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un gru-
 - C. Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - D. Todos son correctos

10 [_de 5 pts] Completa la siguiente tabla determinando para cada especie, la cantidad de protones (+), neutrones (n) y electrones (-).

Especie	Símbolo	\oplus	n	<u>-</u>
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

11) [_de5pts] Escribe el grupo (familia), el período y el tipo de clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla

Elemento	${\rm Grupo/Familia}$	Período	Tipo
Paladio			
Oro			
Argón			
Samario			
Talio			

2 _ de 10 pts	Relaciona cada el	lemento con las características que le corresponden.
12a	_ Titanio	A. Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
(12b)	_ Oro	${f B}.$ Elemento metálico con ${f Z}=31.$
12c	_ Helio	C. Elemento metaloide, ubicado en el tercer período de la tabla periódica.
(12d)	_ Boro	D. Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
12e	_ Radón	E. Elemento con 22 protones y 22 electrones.
(12f)	_ Yodo	F. Elemento de la familia de los Halógenos con 74 neutrones.
(12g)	_ Bismuto	G. Elemento de la familia de metales alcalino-terreos con 138 neutrones.
(12h)	_ Radio	\mathbf{H} . Elemento no metálico con $\mathbf{Z}=83$.
(12i)	_ Galio	I. Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
(12i)	_ _ Silicio	J. Metal brillante utilizado en joyería.

Tabla 1: Tabla Periódica de los Elementos.

$18\text{VIIIA} \\ \frac{2}{H} \frac{4.0025}{\text{Helio}}$	$\sum_{N \in \mathcal{N}}^{20.180}$	$\overset{18}{A}\overset{39.948}{r}$	$\overset{36}{K}\overset{83.8}{r}$	$\sum_{Xenón}^{54}$	$\mathop{Rad\acute{o}}^{86}_{\mathrm{C}}$	$\frac{118}{0}$ 294	$\overset{71}{\mathbf{L}}$ 174.97 $\overset{71}{\mathbf{L}}$ Luterio	$\frac{103}{L} \frac{262}{L}$ Lawrencio
17 VIIA	9 18.998 Fluor	$\bigcap_{Cloro}^{17} \bigcup_{Cloro}^{35.453}$	\Pr_{Bromo}^{35}	53 126.9 Todo	$\mathop{\mathrm{AL}}_{\mathop{Astato}}^{85}$	$\frac{117}{\text{Teneso}}$	$\sum_{\text{Yterbio}}^{70} \frac{173.04}{\text{N}}$	102 259 Nobelio
16 VIA	8 15.999 Oxígeno	16 32.065 S	$\overset{34}{\mathbf{S}}\overset{78.96}{\mathbf{C}}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po}^{209}$	$\frac{116}{L} \begin{array}{c} 293 \\ \hline \\ \text{Libermonio} \end{array}$	$\prod_{\text{Tulio}}^{69}$	$\overset{\text{101}}{\text{Nendelevio}}$
15 VA	$\sum_{ ext{Nitrógeno}}^{ ext{7}}$	$\overset{15}{P}\overset{30.974}{P}$	${\overset{33}{A}}_{\text{Arsénico}}$	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\text{Bismuto}}$	${\overset{115}{\text{MSCOVio}}}^{288}$	$\frac{68}{E}_{\mathbf{r}}$	Frmio Fermio
14 IVA	6 12.011 Carbono	$\overset{14}{S}\overset{28.086}{\text{Silicio}}$	$\overset{32}{G}\overset{72.64}{e}$ Germanio	$\overset{50}{S}\overset{118.71}{n}$	\Pr_{Pbmo}^{82}	114 289 Flerovio	$\overset{\textbf{67}}{\text{Holmio}}\overset{164.93}{\text{Holmio}}$	99 252 Einsteinio
13 IIIA	$\overset{5}{\mathbf{B}}$	$\overset{13}{A}\overset{26.982}{\text{Aluminio}}$	$\overset{31}{\mathrm{Galo}}$	\prod_{Indo}^{49}	81 204.38 Talio	113 284 Nihonio	$\bigcup_{Disprosio}^{66}$	$\bigcup_{\text{Californio}}^{98}$
		12 IIB	$\overset{30}{Z}\overset{65.39}{\mathrm{n}}$	$\overset{48}{\text{Cadmio}}$	$\overset{80}{H}\overset{200.59}{S}$	$\overset{112}{\bigcirc} \overset{285}{\text{C}}$	$\prod_{Terbio}^{65-158.93}$	$\frac{97}{BK}$
		11 IB	$\overset{29}{\overset{63.546}{U}}$	$^{47}_{ extstyle Ag}$	$\overset{79}{\mathbf{A}}_{0^{\mathrm{ro}}}^{196.97}$	$\underset{\text{Roentgenio}}{\text{111}} \text{280}$	64 157.25 Gd	Omrio
		10 VIIIB	28 58.693 Niquel	$\Pr^{46 \ 106.42}_{Paladio}$	$\Pr^{78-195.08}_{\text{Platino}}$	110 281 DS	$\overset{\textbf{63}}{\text{Europio}}$	$\underset{\text{Americio}}{Am}$
		9 VIIIB	$ \bigcup_{\text{Cobalto}}^{27} $	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\frac{77}{L}$	$\overset{\text{109}}{\text{IM}}\overset{\text{268}}{\text{Meitnerio}}$	$\overset{62}{S}\overset{150.36}{m}$	Plutonio
	ro.	8 VIIIB	$\overset{26}{F}\overset{55.845}{\bullet}$	$\mathop{Ruthenio}^{44}$	$ \bigcup_{\text{Osmio}}^{76 190.23} $	108 277 Hassio	$\underset{\text{Prometio}}{\overset{61}{\text{Prometio}}}$	93 237 Neptunio
gía:	Naturales ntéticos	7 VIIB	$\overset{25}{N}\overset{54.938}{\text{Manganeso}}$	$\prod_{ m Tecnecio}^{43}$	$\mathop{Renio}_{\text{Renio}}^{75 186.21}$	$\overset{\text{107}}{B}\overset{\text{264}}{\text{Bohrio}}$	60 144.24 Neodimio	92 238.03 Uranio
Simbolog	Negro: Natural Gris: Sintéticos	6 VIB	$\bigcup_{Cromo}^{24}\mathbf{\Gamma}$	${\overset{42}{\text{Nolybdeno}}}^{95.94}$	$\frac{74}{\text{NM}}$	106 266 Seaborgio	$\sum_{\mathrm{Praseodymio}}^{59}$	$\overset{91}{\text{Pa}}\overset{231.04}{\text{Protactinio}}$
Sin	$\sum_{ ext{Simbolo}}^{ ext{Z}}$	5 VB	$\sum_{\text{Vanadio}}^{23} 50.942$	$\sum_{\text{Niobio}}^{41} \stackrel{92.906}{\text{N}}$	$\prod_{\text{Tantalo}}^{73} 180.95$	$\bigcup_{\text{Dubnio}}^{105}$	$\overset{58}{\overset{140.12}{Cerio}}$	$\prod_{Tario}^{90-232.04}$
		4 IVB	$\prod_{\text{Titanio}}^{22} 47.867$	$\overset{40}{Z}\overset{91.224}{r}$ Circonio	$\underset{\text{Hafh io}}{\overset{72}{\text{Hz}}}_{\text{Hafh io}}$	$\underset{\text{Rutherfordio}}{\overset{104}{\text{P}}}$	$\sum_{\text{Lantánido}}^{57}$	$\overset{89}{Ac}$
		3 IIIA	$\overset{\scriptscriptstyle{21}}{S}^{\scriptscriptstyle{44.956}}_{c}$ Escandio	$\sum_{\text{ltrio}}^{39} 88.906$	57-71 * Lantánido	. 89-103 . ** 	s -terreos	idos
2 IIA	$\overset{4}{B}\overset{9.0122}{\text{Berilio}}$	${\overset{12}{\mathrm{Mgenesio}}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{\mathrm{Sr}}_{^{87.62}}$	$\overset{56}{\text{Bario}}_{\text{137.33}}$	\mathop{Radio}^{88}	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno Gases Nobles Lantánidos/Actínidos
1 IA 1 1.0079 Hidrógeno	$\sum_{\text{Litio}}^{6.941}$	$\overset{\text{11}}{\text{Na}}\overset{22.990}{\text{Sodio}}$	19 39.098 K	$\mathop{Rb}^{37}\mathop{^{85.468}}_{\text{Rubidio}}$	\sum_{Cesio}^{55}	$\frac{87}{F} \sum_{\text{Francio}}^{223}$	Metales Metales Metal	Metaloide No metal Halógeno Gases Nobles Lantánidos/A
Н	7	က	4	5	9	7		