

SEQUENCE LISTING

<110> Abuin, Alejandro Clapham, Hohn

<120> Transgenic Rodent Comprising A Polynucleotide Encoding A Human UCP3 Polypeptide

<130> P32426

<160> 2

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 936

<212> DNA

<213> Homo sapiens

<400> 1

atggttggac	tgaagccttc	agacgtgcct	cccaccatgg	ctgtgaagtt	cctgggggca	60
ggcacagcag	cctgttttgc	tgacctcgtt	acctttccac	tggacacagc	caaggtccgc	120
ctgcagatcc	agggggagaa	ccaggcggtc	cagacggccc	ggctcgtgca	gtaccgtggc	180
gtgctgggca	ccatcctgac	catggtgcgg	actgagggtc	cctgcagccc	ctacaatggg	240
ctggtggccg	gcctgcagcg	ccagatgagc	ttcgcctcca	tccgcatcgg	cctctacgac	300
tccgtcaagc	aggtgtacac	ccccaaaggc	gcggacaact	ccagcctcac	tacccggatt	360
ttggccggct	gcaccacagg	agccatggcg	gtgacctgtg	cccagcccac	agatgtggtg	420
aaggtccgat	ttcaggccag	catacacctc	gggccatcca	ggagcgacag	aaaatacagc	480
gggactatgg	acgcctacag	aaccatcgcc	agggaggaag	gagtcagggg	cctgtggaaa	540
ggaactttgc	ccaacatcat	gaggaatgct	atcgtcaact	gtgctgaggt	ggtgacctac	600
gacatcctca	aggagaagct	gctggactac	cacctgctca	ctgacaactt	cccctgccac	660
tttgtctctg	cctttggagc	cggcttctgt	gccacagtgg	tggcctcccc	ggtggacgtg	720
gtgaagaccc	ggtatatgaa	ctcacctcca	ggccagtact	tcagccccct	cgactgtatg	780
ataaagatgg	tggcccagga	gggccccaca	gccttctaca	agggatttac	accctccttt	840
ttgcgtttgg	gatcctggaa	cgtggtgatg	ttcgtaacct	atgagcagct	gaaacgggcc	900
ctgatgaaag	tccagatgtt	acgggaatca	ccgttt			936

<210> 2

<211> 312

<212> PRT

<213> Homo sapiens

	< 4	100>	2												
Met	Val	Gly	Leu	Lys	Pro	Ser	Asp	Val	Pro	Pro	Thr	Met	Ala	Val	Lys
1				5					10					15	
Phe	Leu	Gly	Ala 20	Gly	Thr	Ala	Ala	Cys 25	Phe	Ala	Asp	Leu	Val 30	Thr	Phe
Pro	Leu	Asp 35	Thr	Ala	Lys	Val	Arg 40	Leu	Gln	Ile	Gln	Gly 45	Glu	Asn	Gln
Ala	Val 50	Gln	Thr	Ala	Arg	Leu 55	Val	Gln	Tyr	Arg	Gly 60	Val	Leu	Gly	Thr
Ile 65	Leu	Thr	Met	Val	Arg 70	Thr	Glu	Gly	Pro	Cys 75	Ser	Pro	Tyr	Asn	Gly 80
Leu	Val	Ala	Gly	Leu 85	Gln	Arg	Gln	Met	Ser 90	Phe	Ala	Ser	Ile	Arg 95	Ile
_		Tyr	100					105					110		
		Ser 115					120					125			
Met	Ala 130	Val	Thr	Cys	Ala	Gln 135	Pro	Thr	Asp	Val	Val 140	Lys	Val	Arg	Phe
Gln 145	Ala	Ser	Ile	His	Leu 150	Gly	Pro	Ser	Arg	Ser 155	Asp	Arg	Lys	Tyr	Ser 160
Gly	Thr	Met	Asp	Ala 165	Tyr	Arg	Thr	Ile	Ala 170	Arg	Glu	Glu	Gly	Val 175	Arg
Gly	Leu	Trp	Lys 180	Gly	Thr	Leu	Pro	Asn 185	Ile	Met	Arg	Asn	Ala 190	Ile	Val
Asn	Cys	Ala 195	Glu	Val	Val	Thr	Tyr 200	Asp	Ile	Leu	Lys	Glu 205	Lys	Leu	Leu
Asp	Tyr 210	His	Leu	Leu	Thr	Asp 215	Asn	Phe	Pro	Cys	His 220	Phe	Val	Ser	Ala
Phe 225	Gly	Ala	Gly	Phe	Cys 230	Ala	Thr	Val	Val	Ala 235	Ser	Pro	Val	Asp	Val 240
Val	Lys	Thr	Arg	Tyr 245	Met	Asn	Ser	Pro	Pro 250	Gly	Gln	Tyr	Phe	Ser 255	Pro
Leu	Asp	Cys	Met 260	Ile	Lys	Met	Val	Ala 265	Gln	Glu	Gly	Pro	Thr 270	Ala	Phe
Tyr	Lys	Gly 275	Phe	Thr	Pro	Ser	Phe 280	Leu	Arg	Leu	Gly	Ser 285	Trp	Asn	Val
Val	Met 290	Phe	Val	Thr	Tyr	Glu 295	Gln	Leu	Lys	Arg	Ala 300	Leu	Met	Lys	Val
Gln 305	Met	Leu	Arg	Glu	Ser 310	Pro	Phe								

WO 01/24625 PCT/GB00/03747

SEQUENCE LISTING

e	<110> SmithKline Beecham									
5	<120> Transgenic rodent									
	<130> P32426									
10	<160> 2									
	<170> FastSEQ for Windows Version 3.0									
15	. <210> 1									
	<211> 936									
	<212> DNA									
	<213> Homo sapiens									
20	<400> 1									
	atggttggac tgaagcette agacgtgeet eccaecatgg etgtgaagtt eetgggggea	60								
	ggcacagcag cctgttttgc tgacctcgtt acctttccac tggacacagc caaggtccgc	120								
	ctgcagatec agggggagaa ccaggeggte cagaeggeee ggetegtgea gtacegtgge	180								
	gtgctgggca ccatcctgac catggtgcgg actgagggtc cctgcagccc ctacaatggg	240								
25	ctggtggccg gcctgcagcg ccagatgagc ttcgcctcca tccgcatcgg cctctacgac	300								
	teegteaage aggtgtacae eeccaaagge geggacaact eeageeteae taceeggatt	360								
	ttggccggct gcaccacagg agccatggcg gtgacctgtg cccagcccac agatgtggtg	420								
	aaggteegat tteaggeeag catacacete gggeeateea ggagegaeag aaaataeage	480								
	gggactatgg acgcctacag aaccatcgcc agggaggaag gagtcagggg cctgtggaaa	540								
30	ggaactttgc ccaacatcat gaggaatgct atcgtcaact gtgctgaggt ggtgacctac	600								
	gacatectea aggagaaget getggactae cacetgetea etgacaaett eccetgeeae	660								
	tttgtctctg cctttggagc cggcttctgt gccacagtgg tggcctcccc ggtggacgtg	720								
	gtgaagaccc ggtatatgaa ctcacctcca ggccagtact tcagccccct cgactgtatg	780								
	ataaagatgg tggcccagga gggccccaca gccttctaca agggatttac accctccttt	840								
35	ttgcgtttgg gatcctggaa cgtggtgatg ttcgtaacct atgagcagct gaaacgggcc	900								
	ctgatgaaag tccagatgtt acgggaatca ccgttt	936								

<210> 2

WO 01/24625 PCT/GB00/03747

<211> 312 <212> PRT <213> Homo sapiens

5 <400> 2 Met Val Gly Leu Lys Pro Ser Asp Val Pro Pro Thr Met Ala Val Lys Phe Leu Gly Ala Gly Thr Ala Ala Cys Phe Ala Asp Leu Val Thr Phe 25 20 Pro Leu Asp Thr Ala Lys Val Arg Leu Gln Ile Gln Gly Glu Asn Gln 10 40 Ala Val Gln Thr Ala Arg Leu Val Gln Tyr Arg Gly Val Leu Gly Thr 60 Ile Leu Thr Met Val Arg Thr Glu Gly Pro Cys Ser Pro Tyr Asn Gly 15 75 70 Leu Val Ala Gly Leu Gln Arg Gln Met Ser Phe Ala Ser Ile Arg Ile 90 85 Gly Leu Tyr Asp Ser Val Lys Gln Val Tyr Thr Pro Lys Gly Ala Asp 105 20 Asn Ser Ser Leu Thr Thr Arg Ile Leu Ala Gly Cys Thr Thr Gly Ala 120 Met Ala Val Thr Cys Ala Gln Pro Thr Asp Val Val Lys Val Arg Phe 135 140 Gln Ala Ser Ile His Leu Gly Pro Ser Arg Ser Asp Arg Lys Tyr Ser 25 155 150 Gly Thr Met Asp Ala Tyr Arg Thr Ile Ala Arg Glu Glu Gly Val Arg 170 165 Gly Leu Trp Lys Gly Thr Leu Pro Asn Ile Met Arg Asn Ala Ile Val 185 30 Asn Cys Ala Glu Val Val Thr Tyr Asp Ile Leu Lys Glu Lys Leu Leu 200 195 Asp Tyr His Leu Leu Thr Asp Asn Phe Pro Cys His Phe Val Ser Ala Phe Gly Ala Gly Phe Cys Ala Thr Val Val Ala Ser Pro Val Asp Val 35 235 230 Val Lys Thr Arg Tyr Met Asn Ser Pro Pro Gly Gln Tyr Phe Ser Pro 250 245 Leu Asp Cys Met Ile Lys Met Val Ala Gln Glu Gly Pro Thr Ala Phe

. 1000000 otoroz

WO 01/24625 PCT/GB00/03747

Tyr
Lys
Gly
Phe
Thr
Pro
Ser
Phe
Leu
Arg
Leu
Gly
Ser
Trp
Asn
Val

Val
Met
Phe
Val
Thr
Tyr
Glu
Glu
Leu
Lys
Arg
Ala
Leu
Met
Lys
Val

Glu
Met
Leu
Arg
Glu
Ser
Pro
Phe
Frage
<td

305 310

5