4. LA SUBCAPA DE CONTROL DE ACCESO AL MEDIO

- 4.1 El problema de la asignación del canal
- 4.2 Protocolos de acceso múltiple: Aloha
- 4.3 Protocolos de acceso múltiple con detección de portadora
- 4.4 Protocolos libres de colisiones

Canales de difusión

- Tipos de redes:
 - Conexiones punto a punto
 - Canales de difusión

 Un canal de difusión es un único medio de comunicación compartido entre múltiples usuarios

Red P2P

Red de difusión

- En los canales de difusión la clave es determinar quien utiliza el canal
- Hay muchas maneras de hacerlo: protocolos
- Los protocolos pertenecen a la subcapa MAC: Medium Access Control
- MAC: parte inferior ↓ de la capa 2

- LANs utilizan canales de difusión
 - ☐ MAC es fundamental en las LANs
- WANs usan canales Punto a Punto, excepto las redes satelitales

4.1 El problema de la asignación del canal

- Dos tipos de asignación del canal:
 - Estática
 - □ Dinámica

Asignación estática del canal

- Lo tradicional es FDM
- El ancho de banda se divide en N subcanales
- Es práctico para número pequeño y fijo de usuarios
- A cada usuario se le asigna un subcanal
- No hay interferencia entre usuarios
- Es menos eficiente

- No es práctico FDM cuando:
 - □ n de usuarios grande y varía continuamente
 - □ N es el número fijo de subcanales
 - □ Tráfico en ráfagas: desborda el canal
- Si n < N, se desperdician canales
- Si n > N, a algunos de ellos se les negará el acceso

- El tráfico de las redes de computadores es en ráfagas
- Tráfico pico / tráfico promedio = 1.000
- La mayoría de los canales están desocupados casi todo el tiempo

Asignación estática del canal. Desempeño de FDM

- Teoría de colas
- Tasa de servicio de Poisson

Siméon Denis Poisson Francia: 1781 - 1840

Tasa de servicio

- T tiempo promedio que necesita la estación para despachar la cola: s/trama
- C capacidad del canal en bps
- tasa de llegada de tramas a la cola: tramas/s
- $1/\mu$ tamaño promedio de las tramas: bits/trama
- Tasa de salida de tramas de la cola (tasa de servicio de Poisson)
- $Tasa de salida = \frac{capacidad del canal}{tamaño promedio de las tramas}$
- $Tasa\ de\ salida = \frac{C}{1/\mu} = \mu C\ \left[\frac{bits/s}{bits/trama}\right] = \mu C\ \left[\frac{tramas}{s}\right]$

Tasa promedio de disminución de la cola:

Tasa de salida – tasa de llegada = $\mu C - \lambda$ = [tramas/s]

Tiempo para despachar la cola:

$$T = \frac{1}{tasa\ promedio\ de\ disminución\ de\ la\ cola} [s/trama],\ T = \frac{1}{\mu C - \lambda} [s/tramas]$$

- Si $\lambda = 0$, $T = \frac{1}{\mu C} = \frac{1/\mu}{C} = \frac{tamaño promedio de las tramas}{capacidad del canal}$
- Si $\lambda = \mu C$, la cola se mantiene del mismo tamaño
- Si $\lambda > \mu C$, la cola aumenta de tamaño
- En los dos últimos casos, nunca se termina de despachar la cola

Ejemplo

- C capacidad del canal = 100 Mbps
- λ tasa de llegada = 5.000 tramas/s
- $1/\mu$ tamaño promedio de las tramas = 10.000 bits/trama
- Tasa de salida $\mu C = \frac{C}{1/\mu} = \frac{100 \times 10^6 \ bps}{10 \times 10^3 \ b/trama} = 10.000 \ tramas/s$
- Tiempo para despachar la cola $T = \frac{1}{\mu C \lambda} = \frac{1}{10.000 \frac{tramas}{s} \frac{5.000tramas}{s}}$
- $T = 200 \,\mu\text{s/trama}$
- Con $\lambda = 0$:
- $T = \frac{1}{\mu C} = 100 \ \mu s/trama$

División del canal en N subcanales: FDM

- Análogo al sistema telefónico
- Capacidad de cada subcanal = $\frac{C}{N}$
- λ tasa de llegada = $\frac{\lambda}{N}$
- Tiempo para despachar la cola $T_{FDM} = \frac{1}{\frac{\mu C}{N} \frac{\lambda}{N}} = \frac{N}{\mu C \lambda}$
- $T_{FDM} = NT$

 Lo mismo ocurre si reemplazamos una red de 100 Mbps por diez redes de 10 Mbps

- Dividir un canal en varios subcanales, provoca el aumento de tiempo de despacho de la cola
- Para evitar este problema existen otras alternativas
- Dos estrategias básicas de adquisición del canal:
 - Métodos por contienda
 - Métodos libres de colisión

4.2 Protocolos de Acceso Múltiple: Aloha

- El canal de comunicación se asigna dinámicamente
- Desarrollado en la década de 1970
- Universidad de Hawaii
- Se desarrollaron dos versiones:
 - Aloha continuo
 - □ Aloha ranurado
- Se llaman métodos de contienda porque las estaciones compiten entre ellas por hacer uso del canal

Norman Abramson 1932 - 2020

20

Aloha continuo o puro

- Los usuarios transmiten en cualquier momento que tengan datos para enviar
- Se pueden producir colisiones
- Tramas que colisionan se dañan
- El emisor oye el canal para saber si hay colisión luego de transmitir la trama
- En una LAN la retroalimentación es inmediata (distancias cortas)
- Vía satélite hay un retardo promedio de ¼ segundo
- Si la trama colisiona, el emisor espera un tiempo aleatorio y lo reenvía

Figura 4-1. En ALOHA puro, las tramas se transmiten en tiempos completamente arbitrarios.

Aloha continuo

- Es más eficiente con tramas de longitud uniforme
- Si en una colisión sólo se daña un bit de una trama, hay que volver a transmitir

Eficiencia del canal Aloha (1/7)

- Calcularemos la fracción de tramas transmitidas que no colisionan
- ¿Cuál es la velocidad real o efectiva de transporte S?
- L longitud de la trama
- C capacidad del canal: bps
- lacktriangleright T tiempo de trama: tiempo para transmitir una trama de tamaño L a través de un canal de capacidad C
- $T = \frac{L}{C} = \left[\frac{bits/trama}{bits/segundo}\right] = \left[segundos/trama\right]$

24

Eficiencia del canal Aloha (2/7)

- Sea N el número de nuevas tramas generadas por las estaciones en el tiempo de trama T
- N máximo debería ser 1
- Si N > 1 las estaciones están generando tramas a una tasa mayor que la que puede manejar el canal, y casi todas las tramas sufrirían una colisión
- Lo deseable es que 0 < N < 1

M

Eficiencia del canal Aloha (3/7)

- Las estaciones en conjunto generan en promedio *G* tramas nuevas más la retransmisión de tramas colisionadas en el tiempo de trama *T*
- \blacksquare G = transmisión de tramas nuevas + retransmisión de tramas colisionadas
- Vemos que $G \ge N$
- Con carga baja ($N \approx 0$) hay pocas colisiones y retransmisiones: $G \approx N$
- lacktriangle Con carga alta G > N hay much as colisiones y retransmisiones

Eficiencia del canal Aloha (4/7)

- Una trama no colisiona si no se envían otras tramas en el tiempo de trama
- Arr P₀ = probabilidad de que una trama **no** colisione

$$P_0 \le 1$$

Velocidad efectiva de transporte es:

$$S = P_0 * G$$

27

Figura 4-2. Periodo vulnerable para la trama sombreada.

Eficiencia del canal Aloha (5/7)

- Tiempo de vulnerabilidad de trama = 2 * (tiempo de trama) = 2T
- Probabilidad P(k) de que se generen k tramas en el tiempo de trama T
- $P(k) = \frac{G^k e^{-G}}{k!}$; distribución de probabilidad de Poisson
- Distribución discreta que expresa la probabilidad de que ocurra un número k de eventos (tramas generadas) en cierto intervalo de tiempo (tiempo de trama T), a partir de una frecuencia promedio de ocurrencia G (tramas transmitidas + retransmitidas en T)
- k es una variable aleatoria, independiente de cualquier intervalo anterior
- El promedio de tramas generadas en el tiempo de vulnerabilidad (2T) es: 2G

Eficiencia del canal Aloha (6/7)

$$P(k) = \frac{G^k e^{-G}}{k!}$$

Probabilidad de que no haya colisiones ocurre cuando no se generen tramas (k = 0) en el tiempo de trama, esto es:

$$P(0) = \frac{G^0 e^{-G}}{0!} = e^{-G}$$

■ Probabilidad de que no haya colisiones en el tiempo de vulnerabilidad es:

$$P_0 = e^{-2G}$$

■ Si la velocidad efectiva de transporte es $S = P_0G$, entonces

$$S = e^{-2G}G$$

Eficiencia del canal Aloha (7/7)

$$S = e^{-2G}G$$

- Velocidad máxima efectiva de transporte : S_{max} = ?
- $\frac{dS}{dG} = \frac{d}{dG}(e^{-2G}G) = e^{-2G} 2Ge^{-2G} = (1 2G)e^{-2G} = 0$
- 1 2G = 0
- G = 0.5

- Reemplazando G = 0.5 en $S = e^{-2G}G$
- $S_{max} = 0.5e^{-2(0.5)} = 0.184$
- La eficiencia máxima S_{max} de un canal Aloha puro es del 18,4%
- Solo el 18.4% de las tramas transmitidas no colisionan

Figura 4-3. Velocidad real de transporte contra tráfico ofrecido en los sistemas ALOHA.

Aloha ranurado

- No se envían tramas en cualquier momento
- Se divide el tiempo en intervalos discretos o ranuras
- Cada intervalo es igual al tiempo de trama
- Se espera el inicio de una ranura para enviar una trama
- Se necesita sincronizar los inicios de cada ranura
- Para ello una estación central emite señales de reloj
- Se logra duplicar la capacidad del Aloha puro

Aloha ranurado

- Período vulnerable = 1 tiempo de trama
- G = número medio de tramas nuevas y retransmitidas en 1 tiempo de trama
- $P(k) = \frac{G^k e^{-G}}{k!}$ Distribución de probabilidad de Poisson
- Probabilidad de que la trama no colisione ocurre cuando no se generan tramas (k=0) en el período vulnerable
- Aloha continuo
 - \square En el período vulnerable 2T se generan 2G. $P(k=0)=P_0=e^{-2G}$
- Aloha ranurado
 - \square En el período vulnerable T se generan G. $P(k=0) = P_0 = e^{-G}$

- Velocidad efectiva de transporte: $S = P_0G = Ge^{-G}$
- $\frac{dS}{dG} = \frac{d}{dG}(Ge^{-G}) = e^{-G} Ge^{-G} = (1 G)e^{-G} = 0$
- G = 1
- $S = Ge^{-G}$
- $S_{max} = e^{-1} = 0.367; S_{max} = 36.7\%$
- El 36.7% de las tramas transmitidas no colisionan

Figura 4-3. Velocidad real de transporte contra tráfico ofrecido en los sistemas ALOHA.

4.3 Protocolos de acceso múltiple con detección de portadora

- En LANs las estaciones escuchan a las otras y deciden transmitir sobre esta información
- Esto es «detectar de portadora»: CS carrier sense
- Si nadie transmite, el medio está en silencio, es decir no hay señal eléctrica en el medio
- Si alguien está transmitiendo, existe una señal eléctrica en el medio
- Son más eficientes que Aloha puro (estaciones que transmiten en cualquier momento. No detectan lo que hacen las otras estaciones)
- Protocolos que detectan portadora antes de transmitir son:
 - □ CSMA persistente
 - ☐ CSMA no persistente
 - □ CSMA persistente-p
 - □ CSMA/CD

CSMA persistente-1 (1/3)

- CSMA Carrier Sense Multiple Access
- Una estación antes de transmitir escucha el canal para saber si otra está transmitiendo
 - ☐ Si es así, escucha persistentemente el canal hasta que esté desocupado
 - □ Si no, transmite con probabilidad 1; es decir, transmite inmediatamente
- El retardo de propagación del carrier es clave en el desempeño del protocolo
- A mayor retardo de propagación, menor desempeño del protocolo

CSMA persistente-1 (2/3)

- Si justo luego de que A empieza a transmitir, B escucha el canal
 - □ El carrier de A no habrá llegado aun a B
 - □ B no detecta ningún carrier
 - □ B transmite
 - ☐ Habrá una colisión
- Aun si el tiempo de propagación es cero habrá colisiones
 - □ Si dos estaciones que desean transmitir escuchan que el canal está desocupado: transmitirán
 - Se producirá una colisión

CSMA persistente-1 (3/3)

- Persistencia: Dos estaciones listas para transmitir cuando una tercera transmite, esperan hasta que ésta termine y entonces comienzan a transmitir simultáneamente en forma inmediata
- Hay una colisión
- Si no fueran impacientes habrían menos colisiones

.

CSMA **no** persistente

- La estación escucha el canal
- Si el canal está desocupado la estación transmite
- Si el canal está en uso, la estación no lo escucha persistentemente
- Espera un tiempo aleatorio y vuelve a escuchar el canal
- Este algoritmo usa mejor el canal pero produce mayores retardos que CSMA persistente

CSMA persistente-p

- Se aplica a canales ranurados
- Cuando una estación está lista para enviar, escucha el canal
- Si el canal está inactivo:
 - □ La estación transmite con probabilidad p,
 - O espera a la siguiente ranura con probabilidad 1 p

4.2 PROTOCOLOS DE ACCESO MÚLTIPLE

Figura 4-4. Comparación de la utilización del canal contra la carga para varios protocolos de acceso aleatorio.

CSMA/CD (1/4)

- Carrier Sense Multiple Access / Collision Detection
- Es la base de LAN Ethernet
- La estación escucha el canal antes de transmitir
- Las estación aborta su transmisión si detecta colisión: CD
- Se ahorra tiempo y ancho de banda

Transmisiones abortadas

Figura 4-5. El CSMA/CD puede estar en uno de tres estados: contención, transmisión o inactivo.

CSMA/CD (2/4)

- En t₀ la estación termina de transmitir su trama
- Cualquier estación con una trama por enviar, ahora puede intentar hacerlo
- Si dos estaciones deciden transmitir simultáneamente, hay colisión
- Las colisiones se detectan comparando la potencia de la señal enviada con la recibida

CSMA/CD (3/4)

- La estación que detecta colisión, aborta la transmisión
- Espera un tiempo aleatorio
- Intenta de nuevo
- Hay períodos de:
 - Contienda
 - □ Transmisión
 - Inactividad

Contienda en CSMA/CD (4/4)

- Dos estaciones inician su transmisión en t_0
- Una estación detecta la colisión en el tiempo promedio de propagación τ de la señal
- ullet es la clave para fijar el tiempo de contienda y la tasa de transporte
- El tiempo máximo de detección de colisión es 2τ
- Entonces el tiempo de contienda debe ser 2τ

4.4 Protocolos libres de colisiones

- Estos protocolos son:
 - □ Protocolo de mapa de bits
 - □ Conteo descendente binario
- N estaciones, cada una con una dirección única de 0 a N-1

Un protocolo de mapa de bits

- Llamado también protocolo de reserva
- Si la estación j tiene una trama por enviar, transmite un bit 1 en la ranura j
- Cada estación sabe cuáles estaciones quieren transmitir
- Entonces, las estaciones comienzan a transmitir en orden numérico

Conteo descendente binario

- La dirección de cada estación se expresa en binario
- Todas las direcciones tienen la misma longitud en número de bits
- Las estaciones que quieren transmitir difunden su dirección
- Se asume que los retardos son insignificantes
- Todas las estaciones ven las direcciones transmitidas al mismo tiempo
- La estación con dirección más alta tiene derecho a usar el canal
- Luego de que la estación ganadora haya transmitido, se repite el ciclo de contienda

.

Protocolos de contienda limitada

- Depende de la cantidad de carga o tráfico en la red
- A mayor carga mayor retardo

Protocolo	Rendimiento
De contienda	Mejor rendimiento con carga baja
Libres de colisión	Mejor rendimiento con carga alta
De contienda limitada	Contienda en cargas bajas Libre de colisiones en cargas altas

- Los protocolos de contienda estudiados son simétricos
- Simetría: las estaciones tienen la misma probabilidad p para transmitir

Un sistema, podría mejorarse dando diferente p a cada estación

Desempeño de los protocolos simétricos

- \mathbf{k} = número de estaciones que compiten por acceder al canal
- Cada una tiene una probabilidad p de transmitir en una ranura
- La probabilidad de que alguna estación transmita con éxito es:

$$Pe = k*p(1 - p)^{k-1}$$

¿Con qué valor de p se alcanza una probabilidad máxima de transmitir con éxito Pe?

- $Pe = k*p(1 p)^{k-1}$
- lacktriangle El valor óptimo de P_e se obtiene derivando e igualando a cero

$$\frac{d}{dp}(P_e) = \frac{d}{dp}[kp(1-p)^{k-1}] = 0$$

- p = 1/k
- $P_e[con \ p \ óptimo] = \left(1 \frac{1}{k}\right)^{k-1}$

Pr[éxito con *p* óptimo]

- Para un número pequeño de estaciones la probabilidad de éxito es buena
- Pronto esta probabilidad cae a 1/e = 0,36...

8

Protocolos de contienda limitada

- Se reúnen las estaciones en grupos pequeños para aumentar la probabilidad de éxito en la transmisión
- Estaciones del grupo 1 compiten en la ranura 1, estaciones del grupo 2 compiten en la ranura 2, así sucesivamente . . .
- Hay 2 extremos:
 - □ Todas las estaciones en un solo grupo compitiendo en una ranura: Aloha ranurado
 - □ 1 estación en cada grupo. Protocolo libre de colisiones

Protocolo de recorrido de árbol adaptable

- Es una forma dinámica de asignar estaciones a una ranura
- Ideado por el ejército de US para hacer pruebas de sífilis a los soldados en la II Guerra Mundial
- La idea es determinar cuáles solados están infectados
- Se toma una muestra de sangre de N soldados
- Se vacía una parte de cada muestra en un solo tubo de ensayo

- ☐ Si no hay anticuerpos todos los soldados están sanos
- □ Si hay anticuerpos se preparan dos muestras: una de los soldados de 1 a N/2 y la otra muestra del resto de soldados
- El proceso se repite hasta dar con los soldados infectados

Fig. 4-9. The tree for eight stations.

T Transmisión

C Colisión

N No hay transmisión

.

- Las estaciones se consideran como si fueran hojas de un árbol binario
- Todas las estaciones pueden competir para conseguir el canal en la ranura 1
- Si hay colisión, entonces sólo las estaciones que están debajo del nodo 2 pueden competir por el canal en la primera ranura
- Si una estación consigue el canal, la ranura 2 se reserva para las estaciones que están debajo de nodo 3
- Si ocurre una colisión, se examina el árbol con los hijos izquierdo y derecho en forma recursiva para localizar las estaciones listas
- Si vuelve a ocurrir una colisión, continúa la búsqueda

- A más carga, se inicia la búsqueda de la estación a transmitir desde un nivel i más abajo
- Un nodo en nivel i tiene una fracción 2^{-i} estaciones por debajo de él, expresado en por unidad
- El nivel 0 tiene $2^{-0} = 100\%$ estaciones
- El nivel 1 tiene $2^{-1} = 50\%$ estaciones
- El nivel 2 tiene $2^{-2} = 25\%$ estaciones

- q = 4: estaciones que desean transmitir repartidas uniformemente en el árbol
- Un nodo de nivel i tiene una fracción de q que es $2^{-i}q$
- El nodo de nivel 0 tiene $2^{-0}4 = 4$ estaciones que desean transmitir
- Un nodo de nivel 1 tiene $2^{-1}4 = 2$ estaciones que desean transmitir, etc.

■ El nivel óptimo *i* para comenzar a analizar el árbol es aquel cuyo número de estaciones que desean transmitir sea 1

$$2^{-i}q = 1$$

- $q = 2^i$
- $i = log_2q$
- Si q = 4, i = 2

Protocolos de acceso múltiple por división de longitud de onda

- El canal se divide en sub-canales con FDM y/o TDM
- Se permite muchas conversaciones en forma simultánea
- Esquema usado en LANs de fibra óptica
- Se fusionan dos fibras de cada estación a un cilindro de vidrio

Multiplexión

 Se divide el espectro en bandas de longitud de onda

- La estación A solo recibe información en λ_1 , B en λ_2 , etc.
- Si la estación A desea enviar información a C, usa λ_3
- Hay un canal estrecho para control, y un canal ancho para el envío de datos
- El canal de control se usa para solicitar y recibir solicitudes de conexión

Protocolos de LANs inalámbricas

- Laptops requieren de un lugar fijo para trabajar. Ellas son portátiles, no móviles
- Un sistema móvil implica que puede trabajar mientras se desplaza
- La movilidad necesita de un sistema de comunicación inalámbrico
- Una WLAN requieren de estaciones base o puntos de acceso colocados adecuadamente
- Las estaciones base se interconectan con cobre o fibra

- La potencia de la señal de APs y portátiles es baja
- Así se evita que una WLAN interfiera a otra WLAN
- El alcance es de pocas decenas de metros
- Cada oficina es una celda y el edificio un sistema celular
- En telefonía celular una celda tiene cientos o miles de canales a disposición
- Una celda WLAN solo tiene un canal a disposición de todas las estaciones
- Cada canal es 11 a 9600 Mbps y más

- El problema en WLAN es la limitación de alcance
- Por eso, WLANs requieren protocolos MAC especiales
- Un enfoque equivocado es usar CSMA: oír si hay transmisiones y transmitir si nadie más lo hace
- Pero lo que importa es la interferencia en el receptor no en el emisor

Problema de las estaciones ocultas

- En el gráfico, no importa cuáles son AP ni cuáles son portátiles
- A puede alcanzar a B pero no a C
- B puede alcanzar a A y C pero no a D
- Si A transmite a B, C no escucha a A por problema de limitación de alcance
- C pensará falsamente que puede transmitir a B
- Si C transmite se colisionará en B con la transmisión de A

Problema de estación expuesta

- Ahora B transmite a A
- C escucha la transmisión
- C concluye erradamente que no puede transmitir a D
- Pero solo alguna estación que estuviera entre B y C recibiría tramas dañadas

?!

- CSMA se utiliza antes de transmitir para escuchar si es que hay portadora
- Pero el emisor necesita saber si hay portadora alrededor del receptor
- En sistemas de radio de corto alcance se pueden aceptar transmisiones simultaneas

MACA

- Multiple Access with Carrier Avoid. 1990
- Acceso Múltiple con Prevención de Portadora
- Uno de los primeros protocolos hechos para WLAN
- El emisor pide al receptor (RTS) enviar una trama corta (CTS), para que pida a las estaciones cercanas al **receptor** que no transmitan

- 1. A envía una trama corta de 30 bytes RTS (Request to send) a B
- 2. RTS contiene la longitud de la trama de datos que se enviará luego
- 3. B contesta con CTS (Clear to Send) con la longitud de la trama que recibirá de A
- A inicia la transmisión a B

- Las estaciones que escuchan CTS enviada por B permanecen en silencio hasta que la trama de datos se transmita hacia B
- Pero aún pueden ocurrir colisiones. A y D pueden enviar RTS a B al mismo tiempo

- MACA Wireless
- Es una mejora a MACA (Multiple Access with Carrier Avoid)
- Se utiliza una trama ACK tras una trama exitosa
- Se agregó la detección de portadora para evitar que una estación transmita un RTS al mismo tiempo que otra

4.5 Ethernet

- Hay dos tipos diferentes de Ethernet: Ethernet clásica y Ethernet conmutada
- Ethernet clásica usa hubs con CSMA/CD
- Opera hasta a 10 Mbps. Ya no se utiliza
- Ethernet conmutada usa switches
- Opera a 100 Mbps, 1 Gbps, 10 Gbps
- 100 Mbps Fast Ethernet
- 1 Gbps Gigabit Ethernet
- 10 Gbps 10 Gigabit Ethernet
- Ethernet se recoge en la norma IEEE 802.3

Capa física de Ethernet clásica

- 1ra. LAN construida por Bob Metcalfe y David Boggs en 1976 en Xerox PARC (Ciudad de Palo Alto - California)
- Utilizaba un cable coaxial grueso
- Operaba inicialmente a 3 Mbps y luego a 10 Mbps
- Usa la codificación Manchester: 1 alto-bajo ±0.85V
- En S: XIX se creía que el espacio estaba lleno de ether en el cual se propagan las ondas electromagnéticas y la luz
- En 1983 se convirtió en el estándar IEEE 802.3

Transceptor: codifica los datos digitales en señales eléctricas a ser transmitidas

Protocolo de la subcapa MAC de Ethernet clásica

Figura 4-14. Formatos de trama. (a) Ethernet (DIX). (b) IEEE 802.3.

- Cada byte del Preámbulo es 10101010 para sincronizar el reloj del receptor
- En IEEE, Los dos últimos bits del último byte del Preámbulo se establecen en 11 para indicar el inicio de la trama SOF
- El primer bit de la dirección destino es:
 - 0 para direcciones ordinarias
 - □ 1 para direcciones de grupo: Multidifusión (multicast)

- La dirección con únicamente bits 1 es para difusión (broadcast)
- Las direcciones (48 bits) son únicas a nivel mundial
- Los primeros 3 bytes de la dirección de la tarje NIC identifican al fabricante
- En Ethernet el campo *tipo* indica protocolo de cada de red (ejemplo IPv4)
- En IEEE, el 3er. campo indica la *longitud* de los datos
- La primera porción del campo de datos indica el tipo
- Datos hasta 1500 bytes, límite de la RAM del transceptor del año 1978

- Una trama no siempre transporta datos de usuario sino datos de control, por ejemplo ping
- La trama debe tener una longitud mínima de 64 bytes considerando desde el campo destino hasta el campo de suma de verificación
- Para ello se incluye el campo de relleno de 46 bytes para alcanzar el tamaño mínimo: 6 + 6 + 2 + 46 + 4 = 64

Figura 4-14. Formatos de trama. (a) Ethernet (DIX). (b) IEEE 802.3.

- El tamaño mínimo es para distinguir de los fragmentos de trama como resultado de la interrupción de la transmisión luego de detectar colisión
- También, una trama mínima evita que el emisor termine de transmitir la trama antes de que el primer bit llegue a la estación más lejana
- Un emisor detecta una colisión solo mientras transmite la trama
- Si no hay ruido mientras transmite la trama, se supone transmisión exitosa
- Pero podría ocurrir que luego de terminar la transmisión haya una colisión
- \blacksquare Para evitar esto, las tramas deberán tardar más de 2τ en transmitirse
- \blacksquare 2 τ : tiempo de propagación de ida y vuelta para el peor caso en el cable

Figura 4-15. La detección de una colisión puede tardar hasta 2τ.

- Longitud del cable: 2500m compuesto por 5 tramos de 500m y 4 repetidores
- Se calcula que la propagación de ida y vuelta es $2\tau = 50 \ \mu s$
- El tiempo de transmisión de trama tiene que ser igual o mayor a $2\tau = 50 \ \mu s$
- Longitud de la trama requerida es $10 Mbps \times 50 \mu s = 500 bits$
- Número de bytes $500 \frac{bits}{8} = 62.5 \ bytes$
- Los cinco campo de la trama suma 64 bytes
- Si la velocidad de transmisión aumenta a 100 Mbps, la longitud mínima de la trama aumenta a 640 bytes
- O disminuir a 250m la longitud del cable para tener el tamaño de 64 bytes

■ El checksum solo detecta, no corrige errores

- Ethernet clásica usa CSMA/CD no persistente
- Si hay una colisión la estación aborta la transmisión y vuelven a intentar luego de un intervalo aleatorio
- El modelo sigue siendo el de la figura 4.5

Figura 4-5. El CSMA/CD puede estar en uno de tres estados: contención, transmisión o inactivo.

- Tras la colisión, el tiempo se divide en ranuras de 2τ
- El algoritmo a seguir se llama retroceso exponencial binario
- Después de la colisión i, las estaciones esperan entre 0 y $2^i 1$ ranuras al azar antes de intentarlo de nuevo

- La ausencia de colisiones no garantiza que la trama no sea alterada por picos de ruido
- Si ocurre un error este se detecta con CRC
- Pero CSMA/CD ni Ethernet no proveen ACK para canales de cobre y fibra óptica con tasas de error bajas
- La recuperación del error se realiza en las capas superiores

Ethernet conmutada

- Ethernet dejó de usar un solo cable extenso por problemas en las conexiones
- Luego cada estación tuvo un cable dedicado que llega a un hub
- Un hub conecta eléctricamente todos los cables como si estuvieran soldados
- En esta configuración es más fácil agregar o quitar una estación
- También las cables rotos afectan a una estación y se pueden detectar con facilidad

- A medida que se agrega una nueva estación, se tiene que compartir la capacidad de transmisión con un número mayor de estaciones
- Entonces surgió Ethernet conmutada
- El corazón del sistema es un switch
- Un switch se ve como un hub

١,

- Hubs y switches usan conectores RJ-45 con cable par trenzado
- Con un switch también es fácil añadir o quitar una estación
- Un switch solo envía la trama a los puertos para los cuales están destinadas
- Los demás puertos ni siquiera saben de que existe la trama
- Para ello, el switch verifica la dirección Ethernet de la estación destino
- Al interno el switch opera a muchos Gbps con un protocolo propietario oculto
- Si varias estaciones trasmiten tramas al mismo tiempo, incluso al mismo destino, no hay colisión porque el switch encola las tramas
- Una estación puede transmitir y recibir tramas al mismo tiempo porque el cable es full-duplex

Fast Ethernet

- Hoy 10 Mbps es insuficiente, solo se utiliza en ciertas aplicaciones
- Hubo la necesidad de crear una versión de Ethernet mucho más rápida
- La velocidad es 100 Mbps
- La nueva versión se recogió en la norma IEEE 802.3u
- Totalmente compatible con Ethernet clásica IEEE 802.3
- Básicamente se reduce los tiempos de bit de 100 nseg. a 10 nseg.
- Se reemplazó el cable coaxial por el cable UTP Cat 3, existente ya en los edificios, más hubs y switches
- Luego vinieron Gigabit Ethernet y 10 Gigabit Ethernet