程 程 程 程 程 程

Designing Matter:

- > Links to Session 1: Light/Matter
- > History of Making Things
- > Structure and Reactivity 101
- > Design Process/Matter Lifecycle
- > Fraser Research: Polymeric Metal Complexes

- > Links to Session 1: Light/Matter
- > History of Making Things
- > Structure and Reactivity 101
- > Design Process/Matter Lifecycle
- > Fraser Research: Polymeric Metal Complexes

> Links to Session 1 Light/Matter

- Key points: Session 1 light and matter
- Kinds of chemistry: measurement, theory, synthesis

•Summary: Session 1 light and matter

- Light is a tool for understanding the structure of matter
- Matter is a source of specific kinds of light (i.e. laser)
- Lasers as tool for creating new behavior in matter and for understanding molecular dynamics

•Kinds of chemistry: measurement

•Kinds of chemistry: theory

•Kinds of chemistry: synthesis

- > Links to Session 1: Light/Matter
- > History of Making Things
- > Structure and Reactivity 101
- > Design Process/Matter Lifecycle
- > Fraser Research: Polymeric Metal Complexes

> History of Making Things

- Understanding nature: theories of matter, elements
- Copying nature
- Making brand new things (chance vs design)

Theories of matter: old

- Aristotle/Ancient Greeks: earth, air, fire, water; atomistic

Theories of matter: old

- Aristotle/Ancient Greeks: earth, air, fire, water; atomistic
- Alchemy: spiritual/magical and technological/practical

idea: all metals same; degrees of purity/maturation

goal: hasten maturation; catalyst/Philosopher's stone

Theories of matter: old

- Aristotle/Ancient Greeks: earth, air, fire, water; atomistic
- Alchemy: spiritual/magical and technological/practical

idea: all metals same; degrees of purity/maturation

goal: hasten maturation; catalyst/Philosopher's stone

- Bacon, natural philosophers, 17th c

old: vitalist notion: matter spirits; living matter special

new: study natural laws separate from spiritual/magic experimental scientific communities knowledge shared not secret

goals: "Nature to be commanded must be obeyed" dominate, improve upon nature wish list: Magnalia Naturae (natural wonders)

Theories of matter: new

Isolation, identification of fundamental particles
 elements (vs compounds): 18th: e.g. Lavoisier, O
 atoms: 19th: theory, wts, Dalton; 20th: experiment

Theories of matter: new

- Isolation, identification of fundamental particles
 elements (vs compounds): 18th: e.g. Lavoisier, O
 atoms: 19th: theory, wts, Dalton; 20th: experiment
- Classification: 19th: periodic table, Mendeleev, 1868; atomic #

Theories of matter: new

- Isolation, identification of fundamental particles
 elements (vs compounds): 18th: e.g. Lavoisier, O
 atoms: 19th: theory, wts, Dalton; 20th: experiment
- Classification: 19th: periodic table, Mendeleev, 1868; atomic #
- Structure of matter

molecular shape: 19th, valency, stereochemistry; (M's: 20th variable valency)

subatomic particles: protons, neutrons, electrons quantum theory: orbitals, energies, spectroscopy (session 1)

Copying nature

- Isolation, characterization of natural products determine active agents
- Duplicating in laboratory:

by synthetic pathways:

E.J. Corey, Nobel Prize in Chemistry 1990

gibberillic acid plant hormone ginkgolide chinese medicine: circulation

by natural pathway: molecular biology, protein engineering

Making brand new things

- Elaboration, improvement, optimization of nature

sweeteners: sucrose vs saccharin, nutrasweet

fats/oils: natural vs olestra

soaps: fatty acids vs detergents

drugs: natural products vs synthetic drugs; SARs

Making brand new things

- Elaboration, improvement, optimization of nature

sweeteners: sucrose vs saccharin, nutrasweet

fats/oils: natural vs olestra

soaps: fatty acids vs detergents

drugs: natural products vs synthetic drugs; SARs

Making brand new things

dyes: 1856, Perkins mauve, aniline dye trying to make quinine, first synthetic dye start of chemical industry, retired age 36

polymers: plastics, molecular biology (DNA, peptides)

- > Links to Session 1: Light/Matter
- > History of Making Things
- > Structure and Reactivity 101
- > Design Process/Matter Lifecycle
- > Fraser Research: Polymeric Metal Complexes

> Structure and Reactivity 101

- Elements and their compounds have tendencies depending on where they are in the periodic table (structure, reactivity)
- Orbitals are important for understanding molecular shape (s, p, d orbitals; single, double, triple bonds).
- The spatial distribution of charge density in a molecule is helpful in predicting reactivity (ions, electronegativity, polarized bonds).
- Chemists represent molecular structure in all kinds of different ways.

Position in periodic table

S.E. Van Bramer 9/11/97

Periodic Table of the Elements

\mathbf{H}^{1}															13	\mathbf{H}^{1}	He
Li	Be											B	°C	N N	8 O	F F	Ne
Na	$\mathbf{M}\mathbf{g}$										5	Al	Si	15 P	16 S	Cl	Ar
19 K	Ca	Sc	Ti	V 23	Cr	Mn	Fe	Co	Ni	Cu	³⁰ Zn	Ga ³¹	Ge	33 As	Se	35 Br	36 Kr
37 Rb	Sr	39 Y	Zr	Nb	Mo	43 Tc	Ru	Rh	Pd	47 Ag	Cd	49 In	Sn Sn	51 Sb	⁵² Te	53 I	54 Xe
Cs Cs	56 Ba	La	72 Hf	73 Ta	74 W	75 Re	76 Os	Ir	78 Pt	79 Au	80 Hg	81 Tl	Pb	Bi	84 Po	85 At	Rn Rn
Fr	Ra Ra	89 Ac	104 Rf	105 Db	Sg	107 Bh	108 Hs	109 Mt	110	111	112		114		116		118

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92			95							102	
Th	Pa	U				Cm	Bk	Cf	Es	Fm	Md	No	Lr

Position in periodic table

American Chemical Society Periodic Table

- Quantum numbers

n = principle quantum # (n = 1, 2, 3...); period/shell

- Quantum numbers

```
n = principle quantum # (n = 1, 2, 3...); period/shell

I = orbital angular momentum quantum #; (I = 0, 1, ...n-1)

subshells (s = 0, p = 1, d = 2, f = 3)
```

- Quantum numbers

n = principle quantum # (n = 1, 2, 3...); period/shell

I = orbital angular momentum quantum #; (I = 0, 1, ...n-1) subshells (s = 0, p = 1, d = 2, f = 3)

m_I = magnetic quantum #; 2I + 1 (m_I = I, I-1, I-2,-I) boundary surfaces (shapes) of orbitals (90% probability of finding an electron there)

- Quantum numbers

n = principle quantum # (n = 1, 2, 3...); period/shell

I = orbital angular momentum quantum #; (I = 0, 1, ...n-1) subshells (s = 0, p = 1, d = 2, f = 3)

m_I = magnetic quantum #; 2I + 1 (m_I = I, I-1, I-2,-I) boundary surfaces (shapes) of orbitals (90% probability of finding an electron there)

Important principles

- Filled shells are a good thing (octet rule: s, p filled; 18 e- rule: s, p, d filled)
- Elements have different tendencies to give up or accept e-(ionization, electron affinity, electronegativity)
- Group # relates to valency (# atoms attached) and molecular shape (VSEPR)

Bonding and shape

lonic Bonding:

Na has one valence electron (3s1). Na .

CI has 7valence electrons (3s² 3p⁵) :Ci-

Na wants 0, not 1. (if gives up 1,has 8) Cl wants 8 not 1. (if accepts 1, has 8) So Na gives electron to Cl.

Covalent Bonding:

H has one valence electron (1s1). H+

C has 4 valence electrons (2s² and 2p²) • • • • •

C wants 8, not 4. (all 2s and 2p filled) H wants 2 not 1. (all 1s filled) So C teams up with 4 H

Bonding and shape

lonic Bonding:

Na has one valence electron (3s1). Na .

CI has 7valence electrons (3s² 3p⁵) :Ci-

Na wants 0, not 1. (if gives up 1,has 8) Cl wants 8 not 1. (if accepts 1, has 8) So Na gives electron to Cl.

Covalent Bonding:

H has one valence electron (1s1). H+

C has 4 valence electrons (2s² and 2p²) •C •

C wants 8, not 4. (all 2s and 2p filled) H wants 2 not 1. (all 1s filled) So C teams up with 4 H

Try ammonia (NH₃), water (H₂O), and BF₃. (show # valence electrons and shape)

Bonding and charge density

Electrostatic Potential Plots

red = highest electron density in molecule

blue = lowest electron density in molecule

ethane

single bond

ethene (ethylene)

double bond

ethyne (acetylene)

triple bond

Spatial arrangement of charge density

^{*}Spartan structures here and on following pages courtesy of Hill Harman, former Chem 281 TA.

Predicting reactivity

phenol

benzene

perfluorobenzene

More Representations: Glucose

