Metropolis-Hasting for two-sided logit

Anh Le

April 5, 2016

1 Notation

Characteristics (observed data):

- $WW_{(njobs \times nw)}$ is a matrix of job characteristics, whose jth row WW_j is job j's characteristics $(nw \times 1)$
- XX is a matrix of worker characteristics, whose ith row XX_i is the characteristics of worker i

Preferences (parameters to be estimated):

- $\alpha : \text{a vector of workers' preference for jobs' characteristics}$
- β : a matrix of employers' preference for workers' characteristics. Each employer $(nx \times njobs)$ has his own set of preference. β_j β 's jth column—is the preference of employer j.

Matching structure:

• Worker i's opportunity set is O_i , which includes unemployment and other jobs that are offered to worker i.

2 Updating the opportunity set

We update the opportunity set by sampling $J^*(i)$ as a new job to be considered for worker i. The M-H acceptance ratio is $rr1 \times rr2$, with rr1 coming from $P(A|O,\alpha)$ and rr2 coming from $P(O|\beta)$. To calculate rr1, rr2 for worker i:

$$den_i = \sum_{j:j \in O_i} \exp(\alpha' W W_j) \qquad \text{line 81, den <- opp %*% avec}$$
 (1)

$$denstar_{i} = \begin{cases} den_{i} - \exp(\alpha'WW_{J^{*}(i)}) & \text{if } J^{*}(i) \text{ is already offered} \\ den_{i} + \exp(\alpha'WW_{J^{*}(i)}) & \text{if } J^{*}(i) \text{ is not yet offered} \end{cases}$$
 (2)

line
$$125$$
, denstar <- den+avec[new]*plusminus (3)

$$rr1 = \frac{den_i}{denstar_i} \qquad \qquad line 126, rr1 \leftarrow den/denstar$$

$$rr2 = \begin{cases} -\exp(\beta'_{J^*(i)}XX_1) & \text{if } J^*(i) \text{ is already offered} \\ \exp(\beta'_{J^*(i)}XX_1) & \text{if } J^*(i) \text{ is not yet offered} \end{cases} \qquad line 129, rr2 \leftarrow \exp(\text{plusminus*xb})$$

$$(5)$$

In sum, the MH acceptance ratio for the proposed new job $J^*(i)$ for worker i is:

$$rr1 \times rr2 = \frac{den_i}{denstar_i} \times rr2$$

$$= \frac{\sum_{j:j \in O_i} \exp(\alpha'WW_j)}{\sum_{j:j \in O_i} \exp(\alpha'WW_j) \pm \exp(\alpha'WW_{J^*(i)})} \times \pm \exp(\beta'_{J^*(i)}XX_1)$$
(7)