Backward Substitution: Example 6 (Based on Theorem)

Example: Let $t_n = kt_{n-1}$ for $n \ge 0$. Let $t_3 = 343$ and $t_4 = 2401$.

What is the value of assuming the initial condition $t_0 = 1$?

Solution:

It can be observed that the solution for this recurrence equation is $t_n = k^n t_0$ (Using the Theorem: $t_n = r^n t_0$)

Therefore,

$$t_3 = k^3 t_0$$
 and $t_4 = k^4 t_0$

$$\therefore \frac{t_4}{t_3} = \frac{k^4 \times t_0}{k^3 \times t_0} = k$$

This implies that $k = \frac{2401}{343} = 7$.

Therefore, the value of k in the recurrence equation is 7.

Alternative,

Example: Let
$$T(n) = k \times T(n-1)$$
 for $n \ge 0$.
Let $T(3) = 343$ and $T(4) = 2401$.

What is the value of assuming the initial condition T(0) = 1?

Solution:

It can be observed that the solution for this recurrence equation is $T(n) = k^n T(0)$ (Using the Theorem:

$$T(n) = r^n T(0))$$

Therefore,

$$T(3) = k^3 T(0)$$
 and $T(4) = k^4 T(0)$

$$\therefore \frac{T(4)}{T(3)} = \frac{k^4 \times T(0)}{k^3 \times T(0)} = k$$

This implies that
$$k = \frac{T(4)}{T(3)} = \frac{2401}{343} = 7$$
.

Therefore, the value of k in the recurrence equation is 7.