

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction

Itai Lang*, Dvir Ginzburg*, Shai Avidan, Dan Raviv

*Equal contribution

Dense Correspondence Applications

Character Animation

Medical Alignment

Virtual Try-on

Action Recognition

Spectral Approach

Spatial Approach

Our Method

Our Method

Visual Comparison for SHREC'19

Summary

- A new method for dense shape correspondence
 - Directly on point clouds, unsupervised, real-time
- Assignment by construction
 Rather than regression by a decoder
- Surpasses existing methods by a large margin For both human and animal shapes
- Paper and code are available https://github.com/dvirginz/DPC

THANK YOU!

Reference shape

Our result