Prenom:		
NOM :		
Section de laboratoire :	Matricule:	

Polytechnique Montréal

Département de génie informatique et génie logiciel

INF1995: Projet initial en ingénierie informatique et travail en équipe

Évaluation écrite du volet technique - session hiver 2018

mardi 13 février 2017, 20h30

Enseignant : Jérôme Collin, ing., M. Sc. A.

Directives:

- l'évaluation est sur 20 points et est évaluée sur MoodleQuiz;
- la pondération pour la session est de 15%;
- la documentation, le robot et la calculatrice ne sont pas permis;
- il y a toujours un seul choix valide parmi les 5 proposé pour les guestions de 1 à 15;
- la question 16 demande de faire 5 associations;
- la durée est de 50 minutes.

Question 1 (1 point)

On veut utiliser la minuterie timer1 du ATmega324pa. Peu importe le mode d'opération voulu, on est certain que toutes les sous-composantes matérielles du timer1 interviendront <u>sauf une</u>, laquelle ?

- 1) Le compteur TCNT1
- 2) Au moins un des registres de configuration TCCR1x.
- 3) Une horloge, de fréquence réduite par un diviseur d'horloge ou non.
- 4) Le signal d'interruption TOV1.
- 5) Un signal de direction de l'unité logique de contrôle pour indiquer si le compteur compte à rebours ou non.

Question 2 (1 point) [Pour évaluation de la qualité de l'ingénieur 12]

Une seule affirmation parmi les suivantes caractérise une trace sur un circuit imprimé?

- 1) On soude directement dessus.
- 2) Est une indication blanche avec de la peinture sur le circuit.
- 3) Est comme un fil mais plutôt formé d'une partie isolée dans la plaque de cuivre.
- 4) Permet le passage de vis pour le montage.
- 5) Est la partie isolante du circuit imprimé.

Question 3 (1 point) [Pour évaluation de la qualité de l'ingénieur 2]

Considérant cet extrait de code:

```
DDRD = 0xFF;
while ( 1 ) {
    PORTD = 0x01;
    _delay_ms ( 5 );
    PORTD = 0x00;
    _delay_ms (10);
}
```

Qu'est-ce que l'on peut affirmer à propos de ce code qui est faux (une seule réponse)?

- 1) Si on veut obtenir un signal de direction à 1 sur le pont-en-H avec les câbles à bout Molex sertis en laboratoire, on devrait en plus faire sortir une constante 1 sur la broche 2 ou 3 du port D.
- 2) On pourrait faire l'équivalent avec la minuterie timer1 du ATmega324pa, mais en utilisant d'autres broches du port D.
- 3) Cet extrait de code doit s'accompagner d'une gestion d'interruption quelque part ailleurs dans le code.

- 4) Il ne serait pas facile de modifier ce code pour permettre au processeur de faire autre chose durant les délais (delay ms) tout en préservant le même signal généré.
- 5) On peut très légèrement changer ce code pour faire tourner un autre moteur à la même vitesse sur d'autres broches du port D.

Question 4 (1 point)

En considérant cet extrait de code des travaux pratiques en laboratoire:

```
do {
} while ( minuterieExpiree == 0 && boutonPoussoir == 0 );
```

Une affirmation est <u>fausse</u> parmi les suivantes, laquelle?:

- 1) On devrait utiliser la fonction cli() à l'intérieur de la boucle.
- 2) On pourrait fort probablement faire du travail plus utile à l'intérieur de cette boucle sans créer de problème dans le reste du code si on avait à le faire.
- 3) Dans cette situation, on attend un signal d'interruption pour effectuer un traitement par la suite.
- 4) Il doit y avoir deux fonctions ISR distinctes pour gérer cette situation.
- 5) MinuterieExpiree et boutonPoussoir sont fort probablement des variables ayant le qualificatif *volatile*.

Question 5 (1 point)

En considérant cette image, une des affirmations suivantes est fausse:

- 1) Ce circuit est impliqué dans la génération de PWM de façon matérielle.
- 2) Les signaux de contrôle COMnx1 et COMnx0 proviennent de TCCRnx.
- 3) Un circuit plus complet et plus complexe montrerait une autre bascule D nommée PIN également.
- 4) Un oscilloscope peut aider à voir le résultat produit par ce circuit.
- 5) Ce circuit est utilisé pour contrôler des interruptions.

Question 6 (1 point)

De l'oscilloscope disponible en laboratoire, on peut affirmer que les énoncés suivants sont vrais, <u>sauf</u> un, lequel ?

- 1) On doit opérer en mode analogique ou numérique, mais pas les deux en même temps.
- 2) On peut analyser 16 signaux numériques d'un seul coup.
- 3) On peut ajuster facilement l'amplitude d'un signal analogique à l'écran.
- 4) On peut figer un signal dans temps en appuyant sur le bouton «Stop».
- 5) Appuyer sur le bouton «auto-scale» nous donne d'excellentes chances d'obtenir un signal PWM directement à l'écran si on a fait les bons branchements à l'appareil.

Question 7 (1 point)

On doit s'assurer de tous ces éléments pour effectuer une entrée valide avec l'interrupteur à usage général sur la carte mère utilisée en laboratoire, <u>sauf un</u>, lequel ?

- 1) Avoir un cavalier sur IntEN pour relier l'interrupteur à la broche D2.
- 2) S'assurer de ne pas utiliser D2 en sortie.
- 3) D'une façon ou d'une autre, attendre un délai de quelques millisecondes pour laisser passer rebonds et pour ainsi confirmer la première valeur.
- 4) Procéder par interruption ou par scrutation, au choix, selon la situation.
- 5) Énumérer correctement les états d'une machine à états.

Question 8 (1 point)

Les affirmations suivantes concernant le pont-en-H situé sous la carte mère du montage du robot utilisé en laboratoire. Elles sont toutes vraies, sauf une, laquelle ?

- 1) Le pont-en-H permet d'inverser le sens de rotation des moteurs.
- 2) Un fusible protège le circuit s'il y a trop de courant consommé.
- 3) Pour chaque moteur, il y a un signal E (enable PWM) et D (direction).
- 4) Le pont-en-H a son signal de mise à la masse (ground) relié à celui de la carte mère.
- 5) Contient des diodes électroluminescentes (DEL) qui s'allument si l'une ou l'autre des roues (et donc du moteur correspondant) bloque.

Question 9 (1 point) [Pour évaluation de la qualité de l'ingénieur 2]

Qu'est-ce que fait l'expression suivante exactement:

```
PORTB &= \sim(1 << 3);
```

- 1) Remise à zéro du bit 3 (broche 4) du port B.
- 2) Au final, revient à assigner la valeur 3 à port B.
- 3) Mise à 1 de tous les bits du port B, sauf le 3ème (broche 4) qui est à zéro.
- 4) Mise à 1 de tous les bits du port B, sauf le 3ème (broche 4) qui est à zéro, suivi d'un complément à deux.
- 5) Le 3ème bit (broche 4) du port B est mis à 1, suivi d'un complément à un.

Question 10 (1 point)

Que vaut la variable result à la fin des opérations suivantes:

```
uint8_t result = 0xFF;
result = result ^ 0x03;
result = result >> 1;
```

- 1) result = 0x7E
- 2) result = 0xFE
- 3) result = 0xF7
- 4) result = 0x00
- 5) result = 0x7F

Question 11 (1 point)

Une des affirmations suivantes concernant la gestion des interruptions par fonction ISR est fausse, laquelle ?

- 1) Une fonction ISR n'a pas de valeur de retour.
- 2) Une fonction ISR peut être appelée directement quand une interruption se présente, peu importe où on en est dans l'exécution du code principal si on a permis les interruptions.
- 3) On doit faire un réglage pour permettre le bon type d'interruption d'être pris en charge avant que la fonction ISR soit appelée.
- 4) On ne voit pas, à lire le code principal, un appel direct à une fonction ISR.
- 5) Une fonction ISR devrait appeler elle-même de nombreuses autres fonctions pour être complète et bien remplir son rôle de manière efficace.

Question 12 (1 point)

On peut affirmer que la diode électroluminescente (DEL) usager de la carte mère a les propriétés ou comportements suivants sauf un qui est <u>faux</u>, lequel ?

- 1) Elle peut prendre la couleur rouge ou verte et toutes les combinaisons de couleurs possibles entre les deux.
- 2) Elle peut être sensible à une onde PWM.
- 3) Elle est polarisée et on doit en tenir compte à son montage.
- 4) Il y a deux diodes de même type sur le pont-en-H.
- 5) Placer la valeur 0x03 en sortie sur le port A (on suppose ici que la DEL est reliée aux deux premières broches du port A) donnera la couleur rouge.

Question 13 (1 point) [Pour évaluation de la qualité de l'ingénieur 12]

On peut dire toutes ces caractéristiques du type uint8_t sont correctes sauf une, laquelle?

- 1) Un entier de 8 bits.
- 2) Est non signé.
- 3) Son usage est à privilégier par rapport à un type «int» avec un ATmega324pa autant que possible.
- 4) Correspond à la largeur du bus des données du ATmega324pa.

5) Est un type qui doit être défini par le programme de l'application, d'où le suffixe _t.

Question 14 (1 point)

Dans une démarche d'établissement d'une machine à états finis logicielle, une seule des étapes suivantes est pertinente ou souhaitable pour la clarté du code:

- 1) La minimisation logique des fonctions commandant les changements d'états.
- 2) Privilégier le développement d'un code utilisant de nombreuses variables correspondant à la situation du problème sans recourir à un diagramme ou une table des états.
- 3) Avoir des structures if-then-else bien claires pour commander les changements d'états.
- 4) S'assurer d'avoir une machine de Moore pour bien générer les sorties.
- 5) Avoir un type énuméré (enum) pour lister les états possibles.

Question 15 (1 point) [Pour évaluation de la qualité de l'ingénieur 12]

Laquelle des commandes Git suivantes n'en est pas une, en fait ?

- 1) git uncommit
- 2) git add
- 3) git log
- 4) git status
- 5) git commit

Question 16 (5 points)

Pour chacun des cinq énoncés, de A à E tout au bas (1 point chacun), associer le bon numéro en choisissant parmi les choix proposés. Bien <u>inscrire le numéro</u> au bas.

Choix possibles:

	1 – AVR	11 - MCU	
	2 – PrgSEL	12 – Output Enable	
	3 – Diviseur d'horloge	13 – EIMSK	
	4 – Makefile	14 – Geany	
	5 - AVRlibC	15 – On	
	6- F_CPU	16 – Micrologiciel (firmware)	
	7 – Reset	17 - INTO_vect	
	8 – Reload	18 – VtgEN	
	9 - In-System Programming	19 – Cristal	
	10 – Output Compare	20 - PRJSRC	
A)	A) Correspond à un regroupement de fonctions de programmation de base :		
B)	B) Ce qui est provoqué par le bouton-poussoir qui <u>n</u> 'est <u>pas</u> celui usager de la carte mère :		
-,		qui <u>a con pare com</u> acongon de monte mener	
C)	C) Interruption externe associée au bouton-poussoir sur D2 :		
D) Pour spécifier la fréquence pour avoir de bons délais avec _delay_ms() :			
ر ح	Toda opcomer la rrequerior pour avoir	30 30110 dolato avoo _dolay_1110()	

E) Pour rendre effectifs les canaux en sortie d'une source de tension :