ME644

Home Assignment 5: System Identification for Simple Pendulum

Priyank Agnihotri [230797]

Problem Statement

To discover the governing equation of a simple pendulum from experimental data using machine learning techniques. The dataset contains 1000 observations with three variables:

- θ (theta): Angular displacement in radians
- $\dot{\theta}$ (theta_dot): Angular velocity in radians/second
- **\bar{\theta}** (theta_double_dot): Angular acceleration in radians/second²

Solution Procedure

The systematic approach involves:

1. Exploratory Data Analysis (EDA):

- Calculate correlation matrix to identify key relationships
- Generate scatter plots to visualize variable interactions
- o Analyze data distributions and quality

2. Hypothesis Space Development:

- Propose features based on pendulum physics
- O Justify relevant features (sin θ , $\dot{\theta}^2$) selection using correlation analysis

3. Model Fitting:

Apply ridge regression with regularization

- Use cross-validation for hyperparameter selection
- Standardize features for optimal performance

4. Model Validation:

- o Perform k-fold cross-validation (k = 3, 5, 10)
- o Evaluate multiple performance metrics
- Analyze residuals and prediction accuracy

Exploratory Data Analysis

Correlation Matrix Analysis

The correlation matrix reveals strong relationships between variables:

Variable	θ	Θ̈́	Ö	sin θ	$\dot{\theta}^2$
θ	1.000	-0.045	-0.941	0.999	-0.006
θ	-0.045	1.000	0.061	-0.046	0.049
Ö	-0.941	0.061	1.000	-0.941	-0.006
sin θ	0.999	-0.046	-0.941	1.000	-0.005
$\dot{\theta}^2$	-0.006	0.049	-0.006	-0.005	1.000

Key Insights

- Strong negative correlation between θ and θ (-0.941) indicates primary restoring force
- Strong negative correlation between $\sin \theta$ and $\ddot{\theta}$ (-0.941) confirms nonlinear pendulum dynamics
- **Weak correlations** for velocity terms suggest minimal damping effects
- High correlation between θ and $\sin \theta$ (0.999) expected for small angle oscillations

Scatter Plot Analysis

Visual analysis reveals:

- θ vs θ: Clear negative linear relationship with minimal scatter
- $\sin \theta$ vs $\ddot{\theta}$: Similar strong negative relationship to θ vs $\ddot{\theta}$
- **Ö** vs **Ö**: Weak positive relationship with significant scatter
- $\dot{\theta}^2$ vs $\ddot{\theta}$: Very weak relationship, mostly noise
- **θ distribution:** Approximately normal, indicating balanced sampling

3. Hypothesis Space Development

Proposed Governing Equation

Based on pendulum physics and correlation analysis, we propose:

$$\ddot{\theta} = a_1 \cdot \theta + a_2 \cdot \sin(\theta) + a_3 \cdot \dot{\theta} + a_4 \cdot \dot{\theta}^2 + b$$

Feature Justification

- 1. θ term (Linear restoring force):
 - Small angle approximation: $\sin \theta \approx \theta$
 - Strong correlation (-0.941) supports inclusion
 - o Represents Hooke's law analogy

2. $\sin \theta$ term (Nonlinear restoring force):

- ο Exact pendulum dynamics: $\ddot{\theta} = -(g/L)\sin\theta$
- Strong correlation (-0.941) confirms importance
- o Captures large angle behavior

3. θ term (Linear damping):

- Air resistance and friction effects
- Weak correlation (0.061) suggests minor contribution

Standard in damped oscillator models

4. $\dot{\theta}^2$ term (Nonlinear damping):

- Velocity-dependent drag forces
- Very weak correlation (-0.006) indicates minimal effect
- o Included for completeness

5. Constant term b:

- o Bias/offset correction
- o Accounts for systematic measurement errors

4. Ridge Regression Model Fitting

Model Configuration

- **Features**: θ , $\sin \theta$, $\dot{\theta}$, $\dot{\theta}^2$
- Target: θ
- **Regularization:** Ridge regression with $\alpha = 1.592283$
- **Feature scaling:** StandardScaler normalization
- **Cross-validation:** 5-fold for hyperparameter selection

Hyperparameter Selection

Ridge regression alpha parameter optimized using cross-validation:

- **Search range:** 10⁻⁴ to 10⁴ (100 logarithmically spaced values)
- **Optimal** α: 1.592283
- **CV score (MSE):** 0.019875

Model Coefficients (Original Scale)

Feature	Coefficient	Physical Interpretation	
θ	-0.5298	Strong negative restoring force	
sin θ	-0.4149	Nonlinear pendulum dynamics	
Ġ	0.0187	Minimal positive damping	
θ ²	-0.0225	Weak nonlinear damping	
Intercept	-0.0024	Near-zero bias (good!)	

5. Model Validation and Cross-Validation

Cross-Validation Results

CV Folds	MSE (Mean ± Std)	RMSE	R ² (Mean ± Std)
3-fold	0.019802 ± 0.000572	0.140721	0.885059 ± 0.003966
5-fold	0.019878 ± 0.001532	0.140991	0.884554 ± 0.005753
10-fold	0.019885 ± 0.002925	0.141013	0.883635 ± 0.018357

Model Performance Summary

• Cross-validated MSE: 0.019878

• Cross-validated RMSE: 0.140991

• Cross-validated R²: 0.884554

• Training R²: 0.886186

Performance Analysis

• Excellent fit: R² > 0.88 indicates model explains 88.4% of variance

 Consistent results: Similar performance across different CV folds

- Low overfitting: Training and CV scores are very close
- **Optimal regularization:** Alpha = 1.592 provides best bias-variance tradeoff

6. Results and Discussion

Discovered Governing Equation

 $\ddot{\theta} = -0.5298 \cdot \theta - 0.4149 \cdot \sin(\theta) + 0.0187 \cdot \dot{\theta} - 0.0225 \cdot \dot{\theta}^2 - 0.0024$

Physical Interpretation

1. Dominant restoring forces:

- o Linear term (-0.5298· θ): Strong restoring force proportional to displacement
- O Nonlinear term (-0.4149·sin θ): Exact pendulum dynamics for large angles
- Both coefficients negative, confirming restoring nature

2. Damping effects:

- Linear damping (0.0187·θ): Small positive coefficient suggests minimal air resistance
- o Nonlinear damping (-0.0225· $\dot{\theta}^2$): Weak velocity-dependent effects
- Overall damping is minimal, indicating lowfriction system

3. Bias term (-0.0024):

- Near-zero intercept indicates no systematic measurement offset
- o Good experimental setup with minimal bias

Comparison with Theoretical Pendulum

Theoretical equation: $\ddot{\theta} = -(g/L)\sin\theta - c_1\dot{\theta} - c_2\dot{\theta}^2$

Our discovered equation: $\ddot{\theta} = -0.5298 \cdot \theta - 0.4149 \cdot \sin \theta + 0.0187 \cdot \dot{\theta} - 0.0225 \cdot \dot{\theta}^2$

Key observations:

- Model captures both linear (small angle) and nonlinear pendulum behavior
- Negative coefficients for θ and sin θ confirm restoring forces
- Minimal damping terms indicate well-designed experimental setup
- Combined linear and nonlinear terms provide comprehensive description

Model Validation Assessment

- Residual analysis: Random distribution around zero with minimal patterns
- Prediction accuracy: Strong linear relationship between actual and predicted values
- Cross-validation stability: Consistent performance across different fold numbers
- 4. Feature importance: θ and $\sin \theta$ dominate, velocity terms are secondary

7. Conclusion

Summary of Findings

- Successful system identification: Machine learning successfully recovered the pendulum's governing equation from experimental data
- 2. **High model accuracy:** $R^2 = 0.884$ indicates excellent fit with low prediction error (RMSE = 0.141)

- Physically meaningful results: Discovered coefficients align with pendulum physics expectations
- 4. **Robust methodology:** Ridge regression with cross-validation provides reliable parameter estimation

Key Achievements

- Correlation analysis identified the most relevant features for pendulum dynamics
- Feature engineering ($\sin \theta$, $\dot{\theta}^2$) enhanced model representation of nonlinear effects
- Ridge regularization prevented overfitting while maintaining predictive accuracy
- Cross-validation ensured model generalizability and parameter robustness

Physical Insights

The discovered equation reveals:

- **Primary dynamics:** Strong restoring forces from both linear and nonlinear terms
- **Minimal damping:** Low-friction experimental setup with excellent data quality
- Nonlinear effects: sin θ term captures large-angle pendulum behavior
- System parameters: Effective g/L ≈ 0.53-0.41, indicating specific pendulum characteristics

