

WHAT IS CLAIMED IS:

1. An electrophotographic printing method which comprises using a charge controlling agent containing a monoazo iron complex compound of the formula (1) as an
5 effective component,

10

15 wherein A₁, A₂, B₁ and B₂ are respectively independently H, an alkyl group or a halogen atom, J is H, an alkali metal, NH₄ or an alkylammonium, they may be two or more kinds, X₁ and X₂ are respectively independently H, an alkyl group or a halogen atom, and Y₁ and Y₂ are
20 respectively independently H, an alkyl group or an aromatic group which may have a substituent, provided that a case in which A₁, A₂, B₁, B₂, X₁, X₂, Y₁, and Y₂ are hydrogen at the same time is excluded.

2. The electrophotographic printing method according to
25 Claim 1, wherein the charge controlling agent contains a monoazo iron complex compound of the formula (2) as an effective component,

5

10 wherein J is H, Na, NH_4 or an alkylammonium, they may be
two or more kinds, X_1 and X_2 are respectively
independently H, an alkyl group or a halogen atom, and Y_1
and Y_2 are respectively independently H, an alkyl group
or a halogen atom.

15 3. The electrophotographic printing method according to
Claim 1, wherein the charge controlling agent contains a
monoazo iron complex compound of the formula (3) as an
effective component,

20

25

wherein J is H, Na, NH₄ or an alkylammonium, and they may be two or more kinds.

4. The electrophotographic printing method according to Claim 1, wherein the charge controlling agent contains a 5 monoazo iron complex compound of the formula (4) as an effective component,

15 wherein J is H, Na, NH₄ or an alkylammonium, and they may be two or more kinds.

5. The electrophotographic printing method according to Claim 1, wherein the charge controlling agent contains a 20 monoazo iron complex compound of the formula (5) as an effective component,

6. The electrophotographic printing method according to any one of Claims 1 to 5, wherein the charge controlling agent has a volume average particle size of from 0.1 to 20 μm .

5 7. A negatively chargeable toner which comprises a charge controlling agent as defined in Claim 1, a coloring agent and a binder resin.

8. The toner according to Claim 7, wherein the charge controlling agent is one as defined in any one of Claims
10 2 to 5.

9. The toner according to Claim 7, wherein the monoazo iron complex compound as an effective component of the charge controlling agent is incorporated within toner particles in an amount of from 0.1 to 10 mass parts per
15 100 mass parts of a binder resin.

10. The toner according to Claim 7, wherein the binder resin has an acid value of from 0.1 to 100 mgKOH/g.

11. The toner according to Claim 7, wherein the coloring agent is a magnetic material.

20 12. The toner according to Claim 7, wherein the coloring agent is a non-magnetic coloring agent and is contained in an amount of from 0.1 to 20 mass parts per 100 mass parts of a binder resin.

13. The toner according to Claim 7, wherein a wax is
25 further contained.

14. The toner according to Claim 7, wherein the toner has a volume average particle size of from 2 to 15 μm .

15. A one-component system developer which comprises the toner as defined in Claim 7.
16. A two-component system developer which comprises a negatively chargeable toner and a carrier, wherein the
5 toner contains at least a binder resin, a coloring agent and a monoazo iron complex compound, and the monoazo iron complex compound is a monoazo iron complex compound as an effective component of the charge controlling agent as defined in Claim 1.
- 10 17. The two-component system developer according to Claim 16, wherein the charge controlling agent is one as defined in any one of Claims 2 to 5.
18. The two-component system developer according to Claim 16, wherein the monoazo iron complex compound is
15 incorporated within toner particles in an amount of from 0.1 to 10 mass parts per 100 mass part of the binder resin.
19. The two-component system developer according to Claim 16, wherein the toner contains a styrene-acryl type resin
20 as a binder resin.
20. The two-component system developer according to Claim 16, wherein the binder resin has an acid value of from 0.1 to 100 mgKOH/g.
21. The two-component system developer according to Claim 16, wherein a wax is further contained.
25
22. The two-component system developer according to Claim 16, wherein the toner has a volume average particle size

of from 2 to 15 μm .

23. The two-component system developer according to Claim 16, wherein the carrier is a resin-coated carrier.

24. A monoazo iron complex compound of the formula (3),

5

10

wherein J is H, Na, NH₄ or an alkylammonium, and they may
15 be two or more kinds.

25. A monoazo iron complex compound of the formula (4),

20

25

wherein J is H, Na, NH₄ or an alkylammonium, and they may be two or more kinds.

26. A monoazo iron complex compound of the formula (5),

5

10

