Fundação Getulio Vargas Escola de Matemática Aplicada

Wellington José

Resumo de EDO

22/02 - Equações Diferenciais de Primeira Ordem

Vamos considerar a equação diferencial linear de Primeira ordem com p(x) e g(x) funções contínuas em $I \subset \mathbb{R}$:

$$y' + p(x)y = g(x)$$

Se g(x) = 0, temos uma equação homogênea, de solução:

$$y(x) = e^{-\int p(x)dx} \cdot e^c$$

Para o caso geral a ideia é multiplicar a equação por um fator integrante transformando-a numa forma imediatamente integrável. Seja u(x) este fator integrante, então

$$u(x)y' + u(x)p(x)y = u(x)g(x)$$

Chegamos que:

$$y(x) = \frac{1}{u(x)} \int u(x)g(x)dx + c$$

е

$$u(x) = e^{\int p(x)dx}$$

24/02 - Equação de Bernoulli e Equações separáveis

Um exemplo de equação de Primeira ordem que não é linear é a **equação** de Bernoulli:

$$y' + p(x)y = q(x)y^n, \ n \in \mathbb{R}$$

Equações separáveis

São equações diferenciais do tipo

$$M(x) + N(x)\frac{dy}{dx} = 0$$

ou

$$M(x)dx + N(y)dy = 0 \ (*)$$

Suponhamos $H_1 = \int M(x) dx$ e $H_2 = \int N(y) dy$, então (*) tem como solução

$$H_1(x) + H_2(y) = c$$

que geralmente está na forma implícita.