Daily Prep Assignment for March 11th

Overview

In section 10.7 we will learn how to find the maximum and minimum values of a function of several variables. The main ideas are the same as they were in single variable calculus but we will need to be more careful. We will define *critical* points and discuss the higher dimension version of the second derivative test.

Basic learning objectives

These are the tasks you should be able to perform with reasonable fluency when you arrive at our next class meeting. Important new vocabulary words are indicated *in italics*.

- Understand that at a maximum or minimum the tangent plane is horizontal so all partial derivatives are zero.
- Know the definition of a *critical point* and how they relate to maxima and minima values.
- Understand how concavity can tell us if a critical point is a max or min.

Advanced learning objectives

In addition to mastering the basic objectives, here are the tasks you should be able to perform **after class**, **with practice**.

- Identify all critical points on a function of several variables.
- Give examples of critical points that are not maxima or minima.
- Use the Hessian matrix and the second derivative test to identify critical points.

To prepare for class

Preview activities: Read the example preview activity solution on the course website then,

• Preview activity 10.7.1

Reading:

- read section 10.7
- Also, if you do not watch the section overview, watch this 7 min video explaining the second derivative test: https://youtu.be/8jHvMyooxSQ

Watching: Watch these additional resources if you need support reading the text.

1. Overview of extra 10.7: https://youtu.be/xpN4QnQwItU

During and after class

- Activity 10.7.2
- Activity 10.7.3
- Activity 10.7.4
- Activity 10.7.5
- Activity 10.7.6
- This activity is about understanding the second derivative test in higher dimensions.
 - a) The function f(x, y, z) = xy + xz + 2yz 1/x has a critical point at (1, -1/2, -1/2). Explain why graphing this function is not a very successful way of determining what type or critical point this is.
 - b) The Hessian matrix for a function of three variables is a 3×3 matrix of all the second order partials

$$\begin{pmatrix}
f_{xx} & f_{xy} & f_{xz} \\
f_{yx} & f_{yy} & f_{yz} \\
f_{zx} & f_{zy} & f_{zz}
\end{pmatrix}$$

Compute the Hessian for the function f(x, y, z) = xy + xz + 2yz - 1/x.

- c) Find the three eigenvalues of this matrix at our critical point.
- d) If our intuition from the two variable case carries over, what kind of critical point do you think (1,-1/2,-1/2) is?
- This activity is about understanding the importance of conditions in the extreme value theorem.

Extreme Value Theorem: Let f = f(x, y) be a continuous function on a closed and bounded region R. Then f has an absolute maximum and an absolute minimum in R.

- 1. Give an example of a function f(x,y) and a region R where the region is closed but not bounded and no absolute maximum is achieved on R.
- 2. Give an example of a function g(x,y) and a region that is bounded but not closed and no absolute maximum is achieved on R.