Curso de Estatística e Probabilidade DPAA-2,339 - Estatística e Probabilidade

Prof. Thiago VedoVatto thiago.vedovatto@ifg.edu.br thiagovedovatto.site

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus de Goiânia

Data da Atualização: 27 de julho de 2021

Valor esperado e variância de uma variável aleatória contínua

Valor esperado de uma variável aleatória contínua

Considere a variável aleatória X contínua com FDP f(x). A esperança, média ou valor esperado da variável aleatória X é dada por:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

Valor esperado de uma função de uma variável aleatória contínua

Seja X uma variável aleatória contínua com FDP f(x) e h(x) uma função qualquer. A média ou valor esperado da variável transformada h(X) é dado por:

$$\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x)f(x) dx$$

A "diferença básica" entre essas relações e as equivalentes para as variáveis discretas é que aqui "trocamos" o somatório por uma integral.

Variância de uma variável aleatória contínua

Seja X uma variável aleatória contínua com FDP f(x):

$$var(X) = \int_{-\infty}^{\infty} [x - \mathbb{E}(X)]^2 f(x) dx$$

Desvio padrão de uma variável aleatória contínua (ou discreta)

O desvio padrão de X é dado por:

$$dp(X) = \sqrt{\operatorname{var}(X)}$$

Variância de uma variável aleatória contínua (ou discreta)

Se X é variável aleatória, então:

$$var(X) = \mathbb{E}(X^2) - \mathbb{E}^2(X)$$

Variância de uma variável aleatória contínua (ou discreta)

Se X for uma variável aleatória e h(X) = aX + b, onde a e b são constantes, então:

Note que esses resultados são iguais aos obtidos no caso de variáveis aleatórias discretas.

Moda de uma variável aleatória

A moda Mo de uma variável aleatória X com densidade f(x) é definida como:

$$Mo = \arg\max_{x} f(x).$$

A moda é a abscissa do ponto de máximo global da densidade.

Uma variável aleatória X pode ser unimodal quando só há uma moda multimodal quando só há mais de uma moda (modas locais) amodal quando não há uma moda

Mediana de uma variável aleatória

A mediana Me dessa mesma variável é definida como:

$$\mathbb{P}(X > Me) = 0, 5.$$

Exercício Ref.:2K93

Considere a FDP:

$$f(x) = \begin{cases} 1/6 & \text{se } -3 < x < 3\\ 0 & \text{caso contrário} \end{cases}$$

- \bullet $\mathbb{E}(X)$
- $\mathbb{E}(X^2)$
- \bullet $\mathbb{E}(|X|)$
- **1** $\mathbb{E}(3X-5)$
- \circ var(X)
- $\mathbf{g} F(x)$
- noda moda
- 1 mediana

Exercício Ref.:6HJ1

Considere a FDP:

$$f(x) = \begin{cases} x & \text{se } 0 < x \le 1\\ 2 - x & \text{se } 1 < x < 2\\ 0 & \text{caso contrário} \end{cases}$$

- \bullet $\mathbb{E}(X)$
- \bullet $\mathbb{E}(X^2)$
- \bullet $\mathbb{E}(|X|)$
- **1** $\mathbb{E}(3X-5)$
- \circ var(X)
- \circ F(X)
- noda moda
- 1 mediana

$$f(x) = \begin{cases} 4x/5 & \text{se } 0 < x \le 1\\ \frac{2}{5}(3-x) & \text{se } 1 < x < 2\\ 0 & \text{caso contrário} \end{cases}$$

- \bullet $\mathbb{E}(X)$
- \bullet $\mathbb{E}(X^2)$
- $\mathbb{E}(|X|)$
- **1** $\mathbb{E}(3X-5)$
- o var(X)
- var(3X 5)
- $\mathbf{g} F(X)$
- noda moda
- 1.
- 1 mediana

$$f(x) = \begin{cases} x/2 & \text{se } 0 < x \le 1\\ 3 - x/4 & \text{se } 1 < x \le 2\\ 1/4 & \text{se } 2 < x < 3\\ 0 & \text{caso contrário} \end{cases}$$

- \bullet $\mathbb{E}(X)$
- \bullet $\mathbb{E}(X^2)$

$$f(x) = \begin{cases} x/2 & \text{se } 0 < x \le 1 \\ 3 - x/4 & \text{se } 1 < x \le 2 \\ 1/4 & \text{se } 2 < x < 3 \\ 0 & \text{caso contrário} \end{cases}$$

- \bullet $\mathbb{E}(|X|)$
- **b** $\mathbb{E}(3X-5)$

$$f(x) = \begin{cases} x/2 & \text{se } 0 < x \le 1 \\ 3 - x/4 & \text{se } 1 < x \le 2 \\ 1/4 & \text{se } 2 < x < 3 \\ 0 & \text{caso contrário} \end{cases}$$

- \bullet var(X)
- **b** var(3X 5)

$$f(x) = \begin{cases} x/2 & \text{se } 0 < x \le 1\\ 3 - x/4 & \text{se } 1 < x \le 2\\ 1/4 & \text{se } 2 < x < 3\\ 0 & \text{caso contrário} \end{cases}$$

- a moda
- \bullet mediana

Exercício Ref.:8IJK

O tempo em minutos, de digitação de um texto por secretárias experientes é uma variável aleatória contínua X. Sua densidade é apresentada a seguir:

$$f(x) = \begin{cases} 1/4 & \text{se } 0 \le x < 2; \\ 1/8 & \text{se } 2 \le x < 6; \\ 0 & \text{caso contrário.} \end{cases}$$

Determine:

- a $\mathbb{P}(X > 3)$.
- **b** $\mathbb{P}(1 < X \leq 4)$.
- **1** Um número b tal que $\mathbb{P}(X > b) = 0, 6$.
- \bullet O valor esperado, a variância, o desvio padrão, a moda e a mediana da X.

Magalhães & Lima (2015, p. 187)

Exercício Ref.:JKNI

Arqueólogos estudaram uma certa região e estabeleceram um modelo teórico para a variável C, comprimento de fósseis da região (em cm). Suponha que C é uma variável contínua com a seguinte FDP:

$$f(c) = \begin{cases} \frac{1}{40} \left(\frac{c}{10} + 1 \right), & 0 \le c \le 20; \\ 0, & \text{caso contrário.} \end{cases}$$

- 1 Ilustre graficamente a FDP da variável aleatória C.
- Qual a probabilidade de um fóssil escolhido ao acaso apresentar comprimento inferior à 12? Resp.: 0,48
- **3** $\mathbb{P}(C > 12 | C > 5)$? Resp.: 0,62
- $oldsymbol{0}$ Determine a média, a variância e o desvio padrão de C.

Magalhães & Lima (2015, p. 181)

Exercício Ref.:NJH5

A quantia gasta anualmente, em milhões de reais, na manutenção do asfalto em uma cidade do interior é representada pela variável Y com densidade dada por:

$$f(y) = \begin{cases} 4/9(2y-1) & 0,5 \le y < 2; \\ 0 & \text{caso contrário} \end{cases}$$

Obtenha:

- **1** $\mathbb{P}(Y < 0, 8)$. R.: 0,04
- **2** $\mathbb{P}(Y > b1, 5|Y \ge 1)$. R.: 5/8
- **3** $\mathbb{P}(Y > 0,75|Y \ge 1)$. R.: 1
- **4** O valor esperado e a variância de Y. R.: $\mathbb{E}(Y) = 3/2$ e var(Y) = 1/8.
- **6** A mediana e a moda de Y. R.: A densidade é amodal e a mediana é $\frac{1+\sqrt{7/2}}{2}$.

Magalhães & Lima (2015, p. 188)

Exercício Ref.:K4F5

Numa certa região, fósseis de pequenos animais são frequentemente encontrados e um arqueólogo estabeleceu o seguinte modelo de probabilidade para o comprimento, em centímetros, desses fósseis.

$$f(x) = \begin{cases} x/40, & 4 \le x < 8 \\ -x/20 + 3/5, & 8 \le x < 10 \\ 1/10, & 10 \le x < 11 \\ 0, & \text{caso contrário} \end{cases}$$

- Faça o gráfico da FDP e da FDA.
- 2 Para um fóssil encontrado nessa região, determine a probabilidade de o comprimento ser inferior a 6 cm? E de ser superior a 5 mas inferior a 10,5 cm?
- 3 Encontre o valor esperado para o comprimento dos fósseis da região?

Exercício Ref.:10J3

Certa liga é formada pela mistura fundida de dois metais. A liga resultante contém uma porcentagem de chumbo X, que pode ser considerada uma variável aleatória com FDP

$$f(x) = \frac{3}{5}10^{-5}x(100 - x), \quad 0 \le x \le 100.$$

Suponha que L, o lucro obtido na venda dessa liga (por unidade de peso), seja dado por $L=C_1+C_2X$. Calcule o lucro esperado por unidade.

Bussab & Morettin (2013, p. 177)

Exercício Ref.:K234

O acréscimo anual na área atingida por uma certa praga, numa região produtora de frutas, pode ser modelado por uma variável aleatória contínua, medida em hectares (10 mil m^2), com densidades:

$$f(x) = \begin{cases} 2x/3 & 0 < x < 1\\ 1 - x/3 & 1 \le x < 3\\ 0, & \text{caso contrário} \end{cases}$$

- Construa o gráfico dessa densidade.
- 2 Qual seria a probabilidade de a praga atingir entre 2 e 3 hectares esse ano?
- 3 Que área será atingida com 50% de certeza?
- 4 Determine o acréscimo médio anual na área atingida pela praga.

Magalhães & Lima (2015, p. 213)

Exercício Ref.:4J2G

Suponha que estamos atirando dardos num alvo circular de raio 10 cm, e seja X a distância do ponto atingido pelo dardo ao centro do alvo. A FDP de X é:

$$f(x) = \begin{cases} kx & \text{se } 0 \le x \le 10\\ 0 & \text{caso contrário} \end{cases}$$

- Qual a probabilidade de acertar o centro do alvo, se esse for o círculo de 1 cm de raio?
- 2 Mostre que a probabilidade de acertar qualquer círculo concêntrico e proporcional a sua área.

Bussab & Morettin (2013, p. 172)

Exercício Ref.:3K8R

A vida útil em horas de um tubo de rádio é uma variável aleatória com FDP

$$f(x) = \begin{cases} 100/x^2 & x \le 100 \\ 0 & x > 100. \end{cases}$$

Qual a probabilidade de que exatamente dois de um total de cinco tubos no rádio precisem ser repostos nas primeiras 150 horas de operação?

Dica.: Considere os eventos E_i com i=1,2,3,4,5 para indicar que o *i*-ésimo tubo precisará ser substituído. Considere os eventos E_i independentes.

Ross (2010, p. 188)

Exercício Ref.:NK23

O tempo de corrosão, em anos, de uma certa peça metálica é uma variável com densidade:

$$f(x) = \begin{cases} ax & 0 \le x \le 1\\ a & 1 < x \le 2\\ -ax + 3a & 2 < x \le 3\\ 0 & \text{caso contrário.} \end{cases}$$

- \bullet Calcule a constante a.
- 2 Uma peça é considerada como tendo boa resistência à corrosão se dura mais que 1,5 anos. Em que um lote de 3 peças, qual a probabilidade de termos exatamente 1 delas com boa resistência?

Magalhães & Lima (2015, p. 215)

Exercício Ref.:L4J7

O escore em um teste internacional de proficiência na língua inglesa varia de 0 à 700 pontos, com mais pontos indicando um melhor desempenho. Informações, coletadas durante vários anos, permitem estabelecer o seguinte modelo para o desempenho no teste.

Pontos	[0, 200)	[200, 300)	[300, 400)	[400, 500)	[500, 600)	[600, 700]
p_i	0,06	0,15	0,16	0,25	0,28	0,1

Várias universidades americanas, exigem um escore mínimo de 600 pontos para aceitar candidatos de países de língua não inglesa. De um grande grupo de estudantes brasileiros que prestaram o último exame, escolhemos ao acaso 20 deles. Qual seria a probabilidade de no máximo três atenderem ao requisito mínimo exigido?

Magalhães & Lima (2015, p. 88)

Referências

Bussab, W. O. & P. A. Morettin (2013). Estatística Básica. São Paulo: Saraiva.

Magalhães, M. N. & A. C. P. Lima (2015). Noções de Probabilidade e Estatística (7 ed.). São Paulo: EdUSP.

Ross, S. M. (2010). A First Course in Probability (8 ed.). New York: Pearson Hall.

