

Introdução à Probabilidade e Estatística Soluções da Ficha Nº1: Estatística Descritiva

Para as licenciaturas em: Eng. Civil, Eng. das Energias Renováveis, Eng. Geológica, Eng. Informática e Eng. Mecatrónica

2º semestre 2014/15 — 2h Teóricas + 2h Práticas

Docentes: Patrícia Filipe e Ana Isabel Santos

- $1.\,$ O número de chamadas telefónicas recebidas, por minuto, numa determinada central telefónica ...
 - (a) A=9, B=50, C=1 e D=4.

X_i'	n_i	f_i	N_i	F_i
0	6	0,12	6	$0,\!12$
1	20	0,40	26	$0,\!52$
2	9	0,18	35	0,70
3	10	0,2	45	0,90
4	5	0,1	50	1

- (b) $\overline{x}=1,76$: Em média, foram recebidas por minuto 1,76 chamadas; $\widehat{x}=1$: Observou-se com maior frequência a recepção de 1 chamada por minuto. s=1,205: O número de chamadas recebidas por minuto, apresentou um desvio típico em torno da média de cerca de 1,2 chamadas.
- (c) Complete as seguintes frases:
 - i. Em 18% dos minutos foram recebidas 2 chamadas;
 - ii. Em 30% dos minutos foram recebidas mais de 2 chamadas;
 - iii. Em 26 minutos foi recebida no máximo 1 chamada.
- (d) A distribuição dos dados é assimétrica positiva e ligeiramente platicúrtica.
- 2. O responsável técnico de uma empresa pretende averiguar qual a origem das interrupções diárias do sistema. (...)
 - (a) Em média, verificou-se 1,74 interrupções diárias do sistema. O que se verificou com mais frequência foi a ausência de interrupções diárias do sistema. Em 50% dos dias, observou-se no máximo 1 interrupção diária dos sistema. O desvio

típico em torno da número médio de interrupções diárias do sistema é de cerca de 1,76 interrupções.

- (b) **C**.
- (c) Verdadeira, uma vez que $p_{85} = 3$
- (d) Assimétrica positiva e leptocúrtica.
- 3. Um fabricante da indústria cerâmica pretende determinar se duas novas ligas *premium*, uma nacional e uma importada, ...
 - (a) Interprete os valores da média, mediana e desvio-padrão observados para a temperatura de resistência da liga *premium* nacional.
 - (b) $CV_1=0.591\%$; $CV_2=0.486\%$ e $CV_3=0.667\%$. Para as três ligas, verificamos que a temperatura de resistência média é bastante representativa (CV < 50%).
 - (c) As representações gráficas sugerem: para a liga premium importada uma distribuição assimétrica positiva e leptocúrtica; para a liga premium nacional uma distribuição assimétrica positiva e mesocúrtica (ou ligeiramente platicúrtica); para a liga standard uma distribuição simétrica e mesocúrtica.
- 4. Na seguimento do exercício anterior, são disponibilizados os seguintes dados da temperatura máxima de resistência ao calor...
 - (a) $\overline{x} = 1541, 68$; $\hat{x} = 1539, 30$; $\tilde{x} = 1540, 53$; s = 6, 6;
 - (b) $q_1 = 1536,705$: Em 25% dos testes, verificou-se uma temperatura de resistência ao calor inferior ou igual a 1536,705; $p_{80} = 1547,21$: Em 80% dos testes a temperatura de resistência ao calor foi no máximo de 1547,21.
 - (c) A distribuição dos dados é assimétrica positiva e ligeiramente platicúrtica.
- 5. Um estudo sobre os atrasos nos 100 voos europeus durante um Verão...

(a)

Classes	$X_i^{'}$	n_i	f_i	N_i	F_i
[0; 10[5	35	0,35	35	0,35
[10; 20[15	25	$0,\!25$	60	0,6
[20; 30[25	20	$0,\!20$	80	0,8
[30; 40[35	15	$0,\!15$	95	0,95
[40; 50]	45	5	0,05	100	1

- (b) $\bar{x} = 18 \text{ minutos e } s^2 \simeq 152,5253$
- (c) Pela observação do histograma podemos dizer que os dados apresentam uma assimetria à esquerda (ou positiva). Pelo que a proporção de voos com pequenos atrasos é superior à proporção de voos com grandes atrasos.
- 6. Foi feito um estudo de modo a avaliar quantas vezes durante uma tarde de estudo (5 horas) os alunos enviam e/ou recebem mensagens sms...

(a)

$X_{i}^{'}$	n_i	f_i	N_i	F_i
0	1	0,01	1	0,01
1	20	0,2	21	0,21
2	25	$0,\!25$	46	0,46
3	3	0,03	49	0,49
4	28	0,28	77	0,77
5	12	0,12	89	0,89
6	5	0,05	94	0,94
7	4	0,04	98	0,98
8	2	0,02	100	1

(b)

$$\begin{array}{ll} \text{(c)} & \text{i. } \overline{x}=3.25; \\ & \text{ii. } m_o=m_e=4; \end{array}$$

iii.
$$s = 1.86$$
;

iv.
$$q_1 = 2$$
;

v.
$$p_{75} = 4$$
;

vi.
$$d_8 \equiv p_{80} = 5$$
.

- (d) $g_B = -1$, a distribuição dos dados é assimétrica negativa.
- (e) i. 0.51;

ii. 0.68.

7. Devido não só ao aumento dos preços dos preços combustíveis...

(a)

Tempo (em horas)	X_i'	F_i	N_i	n_i	f_i
[3, 10[6,5	0,015	3	3	0,015
[10, 12[11	0,03	6	3	0,015
[12, 15[13,5	0,07	14	8	0,04
[15, 20[17,5	0,245	49	35	0,175
[20, 30[25	0,695	139	90	0,45
[30, 60[45	0,945	189	50	0,25
[60, 120]	90	1	200	11	0,055

(b)

- (c) $\overline{x} = 31.315 \text{ e } s^2 = 317.29 \text{ (} s = 17.813\text{)}.$
- (d) Classe modal e classe mediana: [20, 30].
- 8. O encarregado do controlo de qualidade de uma fábrica de relógios digitais...
 - (a) $\overline{x} = 1.405$, $m_e = m_o = 1$.
 - (b)

X_i'	n_i	f_i	N_i	F_i
0	53	0,265	53	0,265
1	68	0,34	121	0,605
2	44	0,22	165	0,825
3	17	0,085	182	0,91
4	16	0,08	198	0,99
5	2	0,01	200	1

(c) $q_1 = q_{0.25} = 0$, 25% das amostras de 5 relógios não tem nenhum relógio defeituoso.

 $q_2=q_{0.5}=1,\;50\%$ das amostras de 5 relógios tem no máximo um relógio defeituoso.

 $q_3=q_{0.75}=2,\ 75\%$ das amostras de 5 relógios tem no máximo 2 relógios defeituosos.

- (d) $p10=q_{0.1}=0,\ 10\%$ das amostras de 5 relógios não tem nenhum relógio defeituoso. $p75=q_{0.75}=2$
- (e) s=1.244 e cv=88.5%. $cv_B=46.8\%$, pelo que os resultados da fábrica B são menos dispersos, logo mais homogéneos.
- 9. Numa empresa recolheu-se uma amostra aleatória relativa à produção de energia eléctrica...

(a)

Classes	X_i'	n_i	f_i	N_i	F_i
[2.74, 5.634[4.187	6	0.222	6	0.222
[5.634, 8.528[7.081	1	0.037	7	0.259
[8.528, 11.422[9.975	11	0.407	18	0.666
[11.422, 14.316]	12.869	5	0.185	23	0.851
[14.316, 17.21]	15.763	4	0.149	27	1
		27	1		

- (b) $\overline{x} = 9.975$ (dados agrupados), $\overline{x} = 10.027$ (dados não agrupados). Em geral, nunca são iguais. Contudo, quanto maior for o arredondamento na amplitude das classes, maior será esta diferença.
- (c)
- (d) i. Gerador I: $\overline{x}=10.027,\ m_e=9.72$ e s=4.207. Gerador II: $m_e=10.05;\ q_3=11.08$ e $a_{IQ}=3.01.$
 - ii. $q_{0.85} = 14.3$.
- 10. De modo a estudar a performance dos atletas de alta competição do Eborense Futebol Clube...

(a)

X_{i}^{\prime}	n_i	f_i	N_i	F_i
14,6	24	0,24	24	0,24
17,8	29	0,29	53	$0,\!53$
21	18	0,18	71	0,71
24,2	18	0,18	89	0,89
27,4	3	0,03	92	0,92
30,6	4	0,04	96	0,96
33,8	4	0,04	100	1

- (b) Moda e mediana para a localização e amplitude interquartílica para dispersão.
- (c) Distribuição é assimétrica positiva.
- 11. Tal como no caso do exercício anterior, pretendia estudar-se a performance dos atletas agora não profissionais, do Eborense Futebol Clube.
 - (a) $q_B = -0,362$. Donde se conclui que a distribuição dos dados é assimétrica negativa.
 - (b) $q_{0,7} = 71,20$ metros.
- 12. De modo a estudar a rapidez com que os alunos resolviam problemas de estatística...
 - (a) n=25. Número de classes: $k=\left[\frac{ln25}{ln2}\right]+1=5$. $\Delta=max-min=63-17=46.$ Amplitude das classes: $\frac{46}{5}=9,2$.

Table 1: Tabela de frequências

Classes	Ponto Médio	n_i	f_i	N_i	F_i
[17; 26, 2[21, 6	4	0, 16	4	0, 16
[26, 2; 35, 4[30, 8	4	0, 16	8	0, 32
[35, 4; 44, 6[40	7	0, 28	15	0, 6
[44, 6; 53, 8[49, 2	5	0, 2	20	0, 8
[53, 8; 63]	58, 4	5	0, 2	25	1
		25	1		

(b)

(c)

$$\overline{x} = \frac{4 \times 21, 6 + \dots + 5 \times 58, 4}{25} = 41,104$$
 minutos

$$s^2 = \frac{4 \times 21, 6^2 + \dots + 5 \times 58, 4^2}{24} - \frac{25}{24}(41, 104)^2 = 157, 4304 \text{ minutos}^2$$

tal que s = 12,547 minutos.

- (d) $g_1 = -0.1916$, pelo que se pode dizer que a distribuição dos dados é assimétrica negativa.
- 13. Foi feito um inquérito a um grupo de compradores de 40 carros novos para determinar quantas reparações...

X'_i	n_i (a)	f_i (b)	N_i (d)	F_i (d)
0	3	0,075	3	0,075
1	12	0,3	15	$0,\!375$
2	10	$0,\!25$	25	0,625
3	8	0,20	33	$0,\!825$
4	4	0,10	37	0,925
5	2	0,05	39	0,975
6	0	0,00	39	0,975
7	1	0,025	40	1
	40	1		

14. Num estudo para analisar a capacidade de germinação de certo tipo de cereal...

X'_i	n_i	f_i	N_i	F_i
0	16	0,0403	16	0,0403
1	32	0,0806	48	$0,\!1209$
2	89	0,2242	137	0,3451
3	137	0,3451	274	0,6902
4	98	0,2469	372	0,9370
5	25	0,0630	397	1
	397	1		

- (a) $\overline{x} = 2,866, m_e = 3 \text{ e } m_0 = 3.$
- (b)
- (c) $\simeq 0,3098$.
- (d) $q_1=2$, isto é, em 25% vasos germinaram 2 ou menos sementes. $q_2=3$, isto é, em 50% vasos germinaram 3 ou menos sementes. E $q_3=4$, isto é, em 75% vasos germinaram 4 ou menos sementes.
- (e) $P75 \equiv Q_3$. $p_{10} = 1$, isto é, em 10% vasos germinaram 0 ou 1 sementes.
- (f) s=1,182 e cv=41,2%, donde se conclui que a média é pouco representativa da amostra.
- 15. Os dados que se seguem referem-se ao comprimento total (em cm) de uma colecção de dados de achigãs de uma barragem:
 - (a) $\overline{x} = 27,4475$, $m_e = 28,5$, s = 8,9035. $q_1 = 19,25$, $q_2 \equiv m_e$, $q_3 = 35,75$. $q_{2/3} = 33,3$ e $q_{0,3} = 19,55$.

(b)

Classes	X'_i	n_i	f_i	N_i	F_i
[12, 6; 17, 4[15	5	0,125	5	0,125
[17, 4; 22, 2[19,8	10	$0,\!25$	15	$0,\!375$
[22, 2; 27[24,6	4	0,1	19	0,475
[27; 31, 8[29,4	5	$0,\!125$	24	0,6
[31, 8; 36, 6[34,2	6	$0,\!15$	30	0,75
[36, 6; 41, 4]	39	10	$0,\!25$	40	1
		40	1		

- (c) $\overline{x} = 27,84$ e $s^2 = 77,258$. [17,4;22,2[e [36,6;41,4[representam as classes modais, ou seja são as classes com maior frequência absoluta.
- 16. O departamento de pessoal de uma certa firma fez um levantamento dos salários dos 120 funcionários...
 - (a)
 - (b) $\overline{x} = 3,65$ e s = 2,274 salários mínimos.
 - (c) Tanto a média como a variância sofrem alterações. Na nova situação, $\overline{x}=7,3,$ ou seja o dobro da anterior, e $s^2=20,68,$ ou seja quatro vezes a variância anterior.
 - (d) Neste caso apenas a média sofre alteração. Na nova situação $\overline{x} = 5,65$.
- 17. Foram medidas a altura e o peso de um grupo de homens e de um grupo de mulheres...
 - (a) cv = 2%. Como esta medida é invariante quanto à escala o valor não se altera qualquer que seja a unidade de medida usada.
 - (b) cv=2% (para a altura das mulheres) e cv=5% (para o peso das mulheres). cv=1,8% (para a altura dos homens) e cv=4,5% (para o peso dos homens). Tanto nos homens como nas mulheres o peso está mais disperso do que a altura, apesar de nas mulheres essa dispersão ser maior.
- 18. No quadro seguinte indicam-se os preços dum bem alimentar...
 - c) r=-0.926, associação linear negativa muito forte.

Docentes: Dulce Gomes, Patrícia Filipe e Ana Isabel Santos