Probability

G V V Sharma*

1

1

CONTENTS

Abstract—This book provides solved examples on Probability

1 Axioms of Probability

- 1 Axioms of Probability
- 2 Markov Chain

1.1.

2 Markov Chain

2.1. **Step 1.** Flip a coin twice.

Step 2. If the outcomes are (TAILS, HEADS) then output Y and stop.

Step 3. If the outcomes are either (HEADS, HEADS) or (HEADS, TAILS), then output N and stop.

Step 4. If the outcomes are (TAILS, TAILS), then go to Step 1.

The probability that the output of the experiment is Y is (upto two decimal places)..... **Solution:** Given, a fair coin is tossed is tossed two times. Let's define a Markov chain $\{X_n, n = 0, 1, 2, ...\}$, where $X_n \in S = \{1, 2, 3\}$, such that

TABLE 2.1.1: States and their notations

Notation	State
S = 1	getting {TT}
S=2	getting output Y
S=3	getting output N

The state transition matrix for the Markov chain is

$$P = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0.25 & 0.25 & 0.5 \\ 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{bmatrix}$$
 (2.1.1)

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Clearly, the state 1 are transient, while 2,3 are absorbing. The standard form of a state transition matrix is

$$P = \begin{array}{cc} A & N \\ A & \begin{bmatrix} I & O \\ R & Q \end{bmatrix} \end{array}$$
 (2.1.2)

where, Converting (2.1.1) to standard form, we

TABLE 2.1.2: Notations and their meanings

Notation	Meaning
A	All absorbing states
N	All non-absorbing states
I	Identity matrix
0	Zero matrix
R,Q	Other submatices

get

$$P = \begin{array}{cccc} 2 & 3 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0.25 & 0.5 & 0.25 \end{array}$$
 (2.1.3)

From (2.1.2),

$$R = \begin{bmatrix} 0.25 & 0.5 \end{bmatrix}, Q = \begin{bmatrix} 0.25 \end{bmatrix}$$
 (104.5)

The limiting matrix for absorbing Markov chain is

$$\bar{P} = \begin{bmatrix} I & O \\ FR & O \end{bmatrix} \tag{2.1.4}$$

where,

$$F = (I - Q)^{-1} \tag{2.1.5}$$

is called the fundamental matrix of P. On solving, we get

$$\bar{P} = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0.33 & 0.17 & 0 \end{bmatrix}$$
 (2.1.6)

A element \bar{p}_{ij} of \bar{P} denotes the absorption probability in state j, starting from state i. Then, the absorption probability in state 2 (i.e getting output Y) starting from state 1 is

 \bar{p}_{12} .

$$\therefore \bar{p}_{12} = 0.33$$
 (correct upto 2 decimal places) (2.1.7)

Markov chain diagram

