Результаты исследования открытых обучаемых систем морфологического и синтаксического анализа на public-тесте GramEval2020

Для исследования были выбраны:

- <u>UDPipe</u>;
- <u>Turku-neural-parser-pipeline</u> (TurkuNLP);
- SyntaxNet;
- MaltParser;
- модуль <u>syntactic parsing</u> из <u>DeepPavlov AI library</u>.

Первые три системы собирались на основе исходных кодов, извлечённых из соответствующих git-peпозиториев¹ в период с 06.02.2020 по 16.02.2020. MaltParser v.1.9.2 был загружен в виде готового jar. deeppavlov разворачивался как python-библиотека (19.02.2020).

Для обучения моделей использовались *только* данные из <u>git-репозитория GramEval2020</u>. А именно, файлы:

Train set	Dev set (validation set)
GramEval2020-GSD-train.conllu	GramEval2020-GSD-wiki-dev.conllu
GramEval2020-SynTagRus-train.conllu	GramEval2020-RuEval2017-Lenta-news-dev.conllu
GramEval2020-Taiga-news-train.conllu	GramEval2020-RuEval2017-social-dev.conllu
GramEval2020-Taiga-poetry-train.conllu	GramEval2020-SynTagRus-dev.conllu
GramEval2020-Taiga-social-train.conllu	GramEval2020-Taiga-poetry-dev.conllu
MorphoRuEval2017-JZ-gold.conllu	
MorphoRuEval2017-Lenta-train.conllu	
MorphoRuEval2017-VK-gold.conllu	

Таким образом, из обучающих данных были исключены тексты 17-century. Кроме того:

• из GramEval2020-Taiga-social-train.conllu было удалено предложение, состоящее из одного слова

#междуреченский#тобольск#нефтеюганск#тюмень#девушкитюмени#тмн#селфитюмень#новостн аятюмень#тюменьинстаграммная#меняюсебя#урай#ишим#ирбит#ижевск#томск#омск#тавда#ни жневартовск#когалым#югорск#нягань#лангепас#сахалин#салехард#инстакрасотки#девушкитюме ни#мамавдекрете#декретныебудни#мамыонитакие#горемать

(оно вызвало затруднения у UDPipe, имеющего ограничение на длину токена);

• во всех файлах в поле XPOS принудительно записан символ подчёркивания.

Train set был объединён в один файл размером ≈ 88 Mб. Dev set — в файл размером ≈ 0.3 Мб.

¹ SyntaxNet собран на основе кодов из репозитория https://git.nk2.eu/nk2/syntaxnet_rus.git

UDPipe

При работе с UDPipe почти сразу удалось построить модель с высокими показателями в морфологии. Поэтому большая часть экспериментов свелась к попыткам обучения синтаксического анализатора.

UDPipe способен копировать части модели из одного файла в другой. В данном исследовании за основу взята модель <u>russian-syntagrus-ud-2.5-191206.udpipe</u>, которая в дальнейшем модифицировалась, замещением сначала теггера, а затем и парсера.

Поиск «достаточно хорошего» теггера ограничился тремя экспериментами:

- обучение с параметрами по умолчанию (одномодельный tagger);
- обучение с параметрами, использовавшимися авторами UDPipe при обучении модели russian-syntagrus-ud-2.5-191206.udpipe (см. файл params_tagger в архиве <u>udpipe-ud-2.5-191206-reproducible training.zip</u>);
- обучение двумодельного tagger'a с параметрами по умолчанию.

В исследовании данные модели получили имена m5, m6 и m7, соответственно. Точные параметры командной строки сведены в таблицу ниже.

```
./udpipe --train m5.udpipe trainset.conllu --heldout=devset.conllu --
m5
               tokenizer=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe -
               parser=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe
               ./udpipe --train m6.udpipe trainset.conllu --heldout=devset.conllu --
m6
               tokenizer=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe --
               tagger='models=2;templates_1=tagger;guesser_suffix_rules_1=10;guesser_enrich_dictionary_1=6;guess
               er_prefixes_max_1=0;use_lemma_1=1;use_xpostag_1=1;use_feats_1=1;provide_lemma_1=0;provide_xpostag
               _1=1;provide_feats_1=1;prune_features_1=1;templates_2=lemmatizer;guesser_suffix_rules_2=8;guesser
                _enrich_dictionary_2=5;guesser_prefixes_max_2=4;use_lemma_2=1;use_xpostag_2=0;use_feats_2=0;provi
               de_lemma_2=1;provide_xpostag_2=0;provide_feats_2=0;prune_features_2=1' --
               parser=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe
               ./udpipe --train m7.udpipe trainset.conllu --heldout=devset.conllu --
               tokenizer=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe -
               parser=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe --
               tagger='models=2; templates\_1=tagger; use\_lemma\_1=1; use\_xpostag\_1=0; use\_feats\_1=1; provide\_lemma\_1=0; use\_feats\_1=1; use\_feat
                ;provide_xpostag_1=0;provide_feats_1=1;templates_2=lemmatizer;use_lemma_2=1;use_xpostag_2=0;use_f
               eats_2=1;provide_lemma_2=1;provide_xpostag_2=0;provide_feats_2=0'
```

Испытание этих моделей на тестовом множестве показало, что m7 немного лучше других.

	POS quality		Morpho features			Lemmatization			
	m5	m6	m7	m5	m6	m7	m5	m6	m7
GramEval2020- <u>17cent</u> -dev.conllu	0.9167	0.9207	0.9246	0.8187	0.8277	0.8244	0.5074	0.5044	0.5094
GramEval2020-test-fiction.v02.conllu	0.9671	0.9691	0.9652	0.9584	0.9663	0.9605	0.9304	0.9383	0.9453
ru_taiga-ud-train- <u>poetry</u> .conllu	0.9794	0.9884	0.9915	0.9784	0.9907	0.9923	0.9694	0.9926	0.9997
ru_taiga-ud-dev- <u>poetry</u> .conllu	0.9600	0.9791	0.9814	0.9683	0.9922	0.9940	0.9323	0.9938	0.9990
ru_taiga-ud-test- <u>poetry</u> .conllu	0.9907	0.9787	0.9898	0.9676	0.9656	0.9757	0.9944	0.9944	0.9990
ru_taiga-ud-train- <u>news</u> .conllu	1.0	1.0	1.0	1.0	0.9950	1.0	1.0	1.0	1.0
ru_taiga-ud-test- <u>news</u> .conllu	1.0	0.9937	0.9937	1.0	1.0	1.0	0.9937	1.0	1.0
ru_taiga-ud-train- <u>social</u> .conllu	0.9867	0.9829	0.9854	0.9743	0.9721	0.9741	0.9916	0.9943	0.9978
ru_taiga-ud-dev- <u>social</u> .conllu	0.9886	0.9862	0.9878	0.9962	0.9938	0.9950	0.9941	0.9977	0.9996
ru_taiga-ud-test- <u>social</u> .conllu	0.9908	0.9882	0.9904	0.9737	0.9713	0.9737	0.9929	0.9938	0.9981

Дальнейшие исследования преимущественно опирались на теггер модели m7.

Обучение синтаксического анализатора UDPipe с параметрами по умолчанию для двух вариантов transition system дало отправную точку.

```
m17 ./udpipe --train m17.udpipe trainset.conllu --heldout=devset.conllu --
tokenizer=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe --
tagger=from_model=file:m7.udpipe --parser='transition_system=projective'

m12 ./udpipe --train m12.udpipe trainset.conllu --heldout=devset.conllu --
tokenizer=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe --
tagger=from_model=file:m7.udpipe --parser='transition_system=swap'
```

	UAS				
	m17 (proj)	m12 (swap)			
GramEval2020-17cent-dev.conllu	0.5540	0.5708			
GramEval2020-test- <u>fiction</u> .v02.conllu	0.7157	0.7176			
ru_taiga-ud-train- <u>poetry</u> .conllu	0.6622	0.6679			
ru_taiga-ud-dev- <u>poetry</u> .conllu	0.6091	0.6410			
ru_taiga-ud-test- <u>poetry</u> .conllu	0.7257	0.7045			
ru_taiga-ud-train-news.conllu	0.8088	0.7941			
ru_taiga-ud-test- <u>news</u> .conllu	0.7861	0.8427			
ru_taiga-ud-train-social.conllu	0.7290	0.7390			
ru_taiga-ud-dev- <u>social</u> .conllu	0.6816	0.7062			
ru_taiga-ud-test-social.conllu	0.7123	0.7259			

Эксперименты с применением альтернативных векторных представлений позволяют немного улучшить качество анализа. Были опробованы векторная модель из Turku <u>models ru syntagrus</u> (от 05.09.2018) и модель, построенная на данных <u>корпуса PaRuS</u> (word2vec с параметрами size 100, window 1, min-count 50).

```
./udpipe --train m8.udpipe trainset.conllu --heldout=devset.conllu --
m8
       tokenizer=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe --
       tagger=from_model=file:m7.udpipe --
      parser='transition_system=projective;embedding_form=100;embedding_form_file=turku.vectors'
       ./udpipe --train m9.udpipe trainset.conllu --heldout=devset.conllu --
m9
       tokenizer=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe --
       tagger=from model=file:m7.udpipe --
      parser='transition_system=swap;embedding_form=100;embedding_form_file=turku.vectors'
m18 \begin{array}{l} \hbox{./udpipe --train m18.udpipe trainset.conllu --heldout=devset.conllu --heldout=devset.conllu --tokenizer=from\_model=file:russian-syntagrus-ud-2.5-191206.udpipe --} \end{array}
       tagger=from_model=file:m7.udpipe --
      parser='transition_system=projective;embedding_form=100;embedding_form_file=parus.vectors'
m19 ./udpipe --train m19.udpipe trainset.conllu --heldout=devset.conllu --tokenizer=from_model=file:russian-syntagrus-ud-2.5-191206.udpipe --
       tagger=from_model=file:m7.udpipe --
       parser='transition_system=swap;embedding_form=100;embedding_form_file=parus.vectors'
```

	UAS						
	m17 (proj)	m12 (swap)	m8 (proj, turku)	m9 (swap, turku)	m18 (proj, parus)	m19 (swap, parus)	
GramEval2020- <u>17cent</u> -dev.conllu	0.5540	0.5708	0.5738	0.5470	0.5599	0.5470	
GramEval2020-test-fiction.v02.conllu	0.7157	0.7176	0.7067	0.7335	0.6998	0.7147	
ru_taiga-ud-train-poetry.conllu	0.6622	0.6679	0.6703	0.7029	0.6768	0.6952	
ru_taiga-ud-dev- <u>poetry</u> .conllu	0.6091	0.6410	0.6323	0.6697	0.6295	0.6664	
ru_taiga-ud-test- <u>poetry</u> .conllu	0.7257	0.7045	0.7063	0.7257	0.7239	0.7460	
ru_taiga-ud-train-news.conllu	0.8088	0.7941	0.8382	0.8382	0.8382	0.8750	
ru_taiga-ud-test- <u>news</u> .conllu	0.7861	0.8427	0.7924	0.8176	0.8113	0.8238	
ru_taiga-ud-train- <u>social</u> .conllu	0.7290	0.7390	0.7318	0.7768	0.7327	0.7727	
ru_taiga-ud-dev- <u>social</u> .conllu	0.6816	0.7062	0.7051	0.7478	0.6900	0.7310	
ru_taiga-ud-test- <u>social</u> .conllu	0.7123	0.7259	0.7266	0.7568	0.7133	0.7410	

В большинстве случаев swap оказывается лучше projective.

MaltParser

MaltParser решает только задачу синтаксического анализа, поэтому в исследовании он использовался в конвейере с UDPipe. Теггер использовался из модели m7 (см. выше про модели для UDPipe).

Команда конвейера в общем виде:

```
./udpipe --input=conllu --output=conllu --tag m7.udpipe <INPUT.conllu> | \
java -Xms2g -Xmx4g -jar maltparser-1.9.2.jar -c <MODEL> -o <OUTPUT.conllu> -m parse
```

MaltParser не использует validation set, поэтому для его обучения был сформирован файл data.conllu, полученный путём объединения train set и dev set.

Для MaltParser было построено 4 модели со следующими параметрами:

```
m13 java -Xmx8000m -jar maltparser-1.9.2.jar -c ge_ru_nivreeager -i data.conllu -m learn -l liblinear -a nivreeager

m14 java -Xmx32g -jar maltparser-1.9.2.jar -c ge_ru_covnonproj -i data.conllu -m learn -l liblinear -a covnonproj

m15 java -Xmx8000m -jar maltparser-1.9.2.jar -c ge_ru_stackeager -i data.conllu -m learn -l liblinear -a stackeager

m16 java -Xmx8000m -jar maltparser-1.9.2.jar -c ge_ru_stacklazy -i data.conllu -m learn -l liblinear -a stacklazy
```

Результаты уступают UDPipe, хотя у MaltParser ещё остаются возможности для улучшения UAS за счёт пересмотра <u>системы признаков</u> (мы использовали признаки по умолчанию).

	UAS					
	m13	m14	m15	m16		
GramEval2020- <u>17cent</u> -dev.conllu	0.3072	0.3102	0.3458	0.3548		
GramEval2020-test-fiction.v02.conllu	0.4691	0.4433	0.4453	0.4493		
ru_taiga-ud-train- <u>poetry</u> .conllu	0.4522	0.4348	0.4318	0.4288		
ru_taiga-ud-dev- <u>poetry</u> .conllu	0.3920	0.3861	0.3744	0.3776		
ru_taiga-ud-test- <u>poetry</u> .conllu	0.6805	0.6325	0.6463	0.6574		
ru_taiga-ud-train-news.conllu	0.7867	0.7279	0.7720	0.7720		
ru_taiga-ud-test- <u>news</u> .conllu	0.7295	0.7106	0.6540	0.6352		
ru_taiga-ud-train- <u>social</u> .conllu	0.6195	0.5880	0.5899	0.5979		
ru_taiga-ud-dev- <u>social</u> .conllu	0.6057	0.5898	0.6090	0.6090		
ru_taiga-ud-test- <u>social</u> .conllu	0.6137	0.5779	0.5775	0.5767		

SyntaxNet

У SyntaxNet много возможностей для настройки.

В данном исследовании использовалась конфигурация, созданная, вообще говоря, для английского. Но беглый взгляд по <u>системе признаков</u> навёл на мысль, что обучение не безнадёжно. Хотя парсер и не будет ничего знать о морфологических атрибутах, он сможет строить свои гипотезы на основе лексики, информации о частях речи и уже принятых синтаксических решениях. Что делает его сопоставимым с MaltParser.

<u>Параметры обучения</u> были заимствованы в том же репозитории. В результате была обучена модель решающая задачи предсказания части речи и синтаксического разбора. На её основе было сделано два сабмита:

- m10 оценка построенной модели;
- m26 теггирование по m7 + синтаксис по m10.

Результаты представлены в следующей таблице.

	POS o	quality	UAS		
	m10	m26=m7	m10	m26	
GramEval2020- <u>17cent</u> -dev.conllu	0.8543		0.4400	0.5064	
GramEval2020-test-fiction.v02.conllu	0.9254		0.6361	0.6819	
ru_taiga-ud-train- <u>poetry</u> .conllu	0.9442		0.6330	0.6581	
ru_taiga-ud-dev- <u>poetry</u> .conllu	0.9340		0.5863	0.5929	
ru_taiga-ud-test- <u>poetry</u> .conllu	0.9418		0.7128	0.7331	
ru_taiga-ud-train-news.conllu	0.9779		0.8161	0.8382	
ru_taiga-ud-test-news.conllu	0.9937		0.8050	0.8050	
ru_taiga-ud-train- <u>social</u> .conllu	0.9488		0.7191	0.7327	
ru_taiga-ud-dev- <u>social</u> .conllu	0.8908		0.6746	0.6981	
ru_taiga-ud-test- <u>social</u> .conllu	0.9509		0.7201	0.7307	

Перспективным видится эксперимент обучения SyntaxNet с полноценным теггером. Идеи системы признаков можно <u>найти онлайн</u> (см. brain_morpher_features). Также имеет смысл попробовать обучать один только парсер (без теггера частей речи), т. к. при совместном обучении парсер учится на данных, скорректированных обученным теггером частей речи.

TurkuNLP

Полноценно исследовать этот инструмент не удалось ввиду отсутствия под рукой GPU (lemmatizer без GPU обучаться отказался). Тем не менее получилось обучить теггер и синтаксический анализатор. Исследовались две программные конфигурации:

- m11 теггер и парсер обучены (векторные представления заимствованы из models ru syntagrus от 05.09.2018) + лемматайзер взят из той же models_ru_syntagrus;
- m21 теггер и лемматайзер из m7 + синтаксис из m11.

	POS quality		Morpho features		Lemmatization		UAS	
	m11	m21	m11	m21	m11	m21	m11	m21
GramEval2020- <u>17cent</u> -dev.conllu	0.8860	0.9246	0.8422	0.8244	0.5133	0.5094	0.6412	0.6858
GramEval2020-test-fiction.v02.conllu	0.9552	0.9652	0.9596	0.9605	0.9314	0.9453	0.8210	0.8190
ru_taiga-ud-train- <u>poetry</u> .conllu	0.9521	0.9915	0.9373	0.9923	0.9061	0.9997	0.7800	0.8036
ru_taiga-ud-dev- <u>poetry</u> .conllu	0.9443	0.9814	0.9440	0.9940	0.9032	0.9990	0.7521	0.7692
ru_taiga-ud-test- <u>poetry</u> .conllu	0.9529	0.9898	0.9244	0.9757	0.9353	0.9990	0.7940	0.8153
ru_taiga-ud-train-news.conllu	0.9779	1.0	0.9681	1.0	0.9779	1.0	0.9044	0.9338
ru_taiga-ud-test- <u>news</u> .conllu	0.9937	0.9937	0.9810	1.0	0.9685	1.0	0.8679	0.8867
ru_taiga-ud-train- <u>social</u> .conllu	0.9578	0.9854	0.9507	0.9741	0.9497	0.9978	0.8116	0.8316
ru_taiga-ud-dev-social.conllu	0.9269	0.9878	0.9588	0.9950	0.8918	0.9996	0.8318	0.8604
ru_taiga-ud-test- <u>social</u> .conllu	0.9636	0.9904	0.9462	0.9737	0.9464	0.9981	0.8047	0.8319

DeepPavlov AI

Исследовался только синтаксический модуль, обученный на train/dev-сетах GramEval2020. В качестве сабмита использовалась гибридная модель: теггер и лемматайзер из m7 + синтаксис из deeppavlov.

	UAS
	m31 (deeppavlov)
GramEval2020- <u>17cent</u> -dev.conllu	0.7561
GramEval2020-test- <u>fiction</u> .v02.conllu	0.8359
ru_taiga-ud-train-poetry.conllu	0.8239
ru_taiga-ud-dev- <u>poetry</u> .conllu	0.8084
ru_taiga-ud-test- <u>poetry</u> .conllu	0.8799
ru_taiga-ud-train-news.conllu	0.9044
ru_taiga-ud-test- <u>news</u> .conllu	0.8867
ru_taiga-ud-train-social.conllu	0.8489
ru_taiga-ud-dev- <u>social</u> .conllu	0.8832
ru_taiga-ud-test- <u>social</u> .conllu	0.8389

Выводы

Из исследованных конфигураций наилучший результат (0.9353) по показателю Overall quality получила модель m31 (гибрид UDPipe и DeepPavlov). К сожалению в public-тесте отсутствует LAS-показатель, поэтому о возможностях синтаксических анализаторов данное исследование говорит не так уж много.

Исследование показывает, что в части морфологического анализа UDPipe представляет собой добротное решение (зазор между UDPipe и 1.0 не так уж велик). В синтаксисе есть над чем поработать.

20.02.2020 Игорь Трофимов ИЦИИ ИПС РАН