実験2日目

「逆透視変換」、「ポイントクラウド」、 inverse perspective mapping

point cloud

「計測の誤差」 measurement error

これらについて、What?/Why?/How?の あらゆる疑問を解消する文書(実験レポート)を期待しています.

3次元計測

- ✓ 3次元化する
- ✓ 長さや角を測る

前回「視差」を測る

視差 d と奥行き Z の関係

XとYも計算できる

3次元座標の計算手順

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。

$$d = |u_{\rm R} - u_{\rm L}|$$

手順3 奥行きを計算する。 $Z = \frac{f}{d}l$

$$Z = \frac{f}{d}l$$

$$X = \frac{u_{\rm L}}{f} Z$$
, $Y = \frac{v_{\rm L}}{f} Z$

手順4 3次元座標を得る。
$$X = \frac{u_L}{f}Z$$
, $Y = \frac{v_L}{f}Z$ $(X,Y,Z) = \left(\frac{u_L}{d}l,\frac{u_R}{d}l,\frac{f}{d}l\right)$

RealSense を使ってみよう

カラー画像

視差画像(深度画像)

復習: 視差画像 ・・・視差の大小を明暗で表した画像

視差画像

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。

$$d = |u_{\rm R} - u_{\rm L}|$$

手順3 奥行きを計算する。

$$Z = \frac{f}{d}l$$

手順4 3次元座標を得る。

$$X = \frac{u_{\rm L}}{f} Z$$
, $Y = \frac{v_{\rm L}}{f} Z$

画像のすべての点 p_L について 手順1と2で視差を測りまくった結果 (深度カメラから取得できる)

点群(point cloud)

3次元座標をたくさん調べたら・・・!

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。

 $d = |u_{\rm R} - u_{\rm L}|$

手順3 奥行きを計算する。 $Z=rac{f}{d}l$

手順4 3次元座標を得る。 $X = \frac{u_L}{f} Z$, $Y = \frac{v_L}{f} Z$

