

Elektromagnetische **Feldtheorie**

Sonstiges

Begriffe

- quasi-statisch: ausschließlich als eine Abfolge von Gleichgewichtszuständen bestehend
- homogen: gleichmäßig aufgebaut
- homegene DGL bedeutet keine Quellenterme (nach 0 auflösbar)
- isotrop: Unabhängigkeit einer Eigenschaft von der Richtung
- \bullet Funktional: Eine Funktion aus einem Vektorraum V in den Körper, der dem Vektorraum zugrunde liegt

Formelzeichen und Einheiten

-ormeizeichen und Einneiten			
Name	Formelzeichen	Einheit	SI
El. Stromsärke	1	Α	Α
El. Spannung	U,V	V	$\frac{kgm^2}{\Delta s^3}$
El. Raumladungsdichte	ho	$\frac{C}{m^3}$	$\frac{A_s^3}{A_s^3}$
El. Feld	$ec{E}$	$\frac{\frac{C}{m^3}}{\frac{V}{m}}$	$\frac{kgm}{4 \times 3}$
El. Flussdichte	$ec{D}$		$\frac{As}{Vm^2}$
El. Stromdichte	$ ilde{\jmath}$		$\frac{V_m^2}{\frac{A}{m^2}}$
Mag. Flussdichte	$ec{B}$	$\frac{Vs}{m^2}$	TODO
Mag. Feld	$ec{H}$	111	$\frac{A}{m}$

Konstanten

Mathematik

• div
$$\vec{E} \times \vec{H} = \nabla \cdot (\vec{E} \times \vec{H}) = \operatorname{rot} \vec{E} \vec{H} - \operatorname{rot} \vec{H} \vec{E}$$

- Koaxialkabel: Energie wird nicht von Leitern, sondern von Feld zwischen beiden Leiterpotentialen übertragen. Vorteil ist, dass durch diese Schirmung keine Strahlung nach Außen auftritt. Fallunterscheidungen für Innenleiter, Zwischenraum, Außenleiter und
- Plattenkondensator analog: Energie im Feld/Dielektrikum
- Ladungsanordnung im Würfel: 12 Kanten mit Länge a und 12 Seitendiagonalen mit Abstand $\sqrt{2}a$ sowie 4 Diagonalen durch den Mittelpunkt mit Abstand $\sqrt{3}a$ (Raumdiagonale)
- ullet Spule mit N Wicklungen: $\int_{\partial A} \vec{H} d\vec{a} = IN$

1. Klassische Kontinuitätstheorie

1.1. Gleichungen

1.1.1. Maxwellsche Gleichungen

Differentielle Form: • Gauss'sches Gesetz:

 $\operatorname{div} \vec{D} = \rho$

Faradavs Inkduktionsgesetz:

 $\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

Quellenfreiheit:

 $\operatorname{div} \vec{B} = 0$ Ampere'sches Durchflutungsgesetz:

 $\operatorname{rot} \vec{H} = \tilde{\jmath} + \frac{\partial \vec{D}}{\partial t}$

Bedeutung:

- · Elektrische Felder werden erzeugt
 - von elektrischer Ladungsverteilung
 - durch schnell zeitlich veränderliches Magnetfeld
- Magnetische Felder werden erzeugt
 - durch elektrische Stromverteilung
 - durch schnell zeitlich veränderliches elektrisches Feld

Elektromagnetisches Feld:

(starker dynamischer Zusammenhang)

1.1.2. Matrialgleichungen

- $\vec{D} = \epsilon \vec{E}$ (Polarisation)
- $\vec{B} = \mu \vec{H}$ (Magnetisierung)

• $\tilde{i} = \sigma \vec{E}$ (Drift)

Gültigkeitsbereich eingeschränkt! Randwerte zur eindeutigen Lösung des Systems notwendig

1.2. Energie von elektromagnetischen Feldern

1.2.1. Elektrische Energiedichte

Energie zum Aufbau einer diskreten Ladungsverteilung GRAFIK

k-te Ladung:

$$\Delta W_{el}^k = q_k \frac{1}{4\pi\epsilon} \sum_{i=1}^{k-1} \frac{q_i}{|\vec{r}_k - \vec{r}_i|}$$

$$\Delta W_{el} = \sum_{k=2}^{n} \Delta W_{el} = \sum_{i < k}^{N} \sum_{i,k=1}^{N} \frac{1}{4\pi\epsilon} \frac{q_{k}q_{i}}{|\vec{r}_{k} - \vec{r}_{i}|} = \frac{1}{2} \frac{1}{4\pi\epsilon} \sum_{i \neq k}^{N} \sum_{i,k=1}^{N} \frac{q_{k}q_{i}}{|\vec{r}_{k} - \vec{r}_{i}|} \begin{cases} 0, \text{ fallsquasistatisch} \\ \text{totalabgestrahlteLeistung, fallsdynamisch} \end{cases}$$

Kombinationsmöglichkeiten: K = N(N-1)

Achtung bei Formeln (teilweise nur in eine Richtung beachten!) Übergang zu kontinuierlicher Ladungsverteilung

$$(q_i, \vec{r}_i)_{i=1,\dots,N} \to \rho(\vec{r})$$

$$q_i = dQ_i(\vec{r}_i) = \rho(\vec{r}_i)d^3$$

 $q_i=dQ_i(ec{r}_i)=
ho(ec{r}_i)d^3r$ Prinzip der virtuellen Verschiebung: Änderung der Position $ec{r}_l$ durch \deltaec{r}_l für zu Änderung der elektrischen Arbeit $\delta W_{el}=rac{\partial W_{el}}{\delta x_l}$. Elektrostatische Kraft \vec{F}_l wirkt auf Ladung q_l während $\delta \vec{r}_l \Rightarrow \delta W_{mech} = \vec{F} \delta \vec{r}_l$. Energiererhaltung $\delta W_m + \delta W_{el} = 0 \Rightarrow \vec{F}_l = -\frac{\partial W_{el}}{\partial \vec{r}_l}$

$$\sum_{i=1}^{N} \dots, \vec{r}_i, \dots q_i \to \int_{V} \dots, \vec{r}, \dots \rho(\vec{r}) d^3r$$

Doppelintegral

$$W_{el} = \frac{1}{8\pi\epsilon} \int_{V} \int_{V} \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d^{3}r d^{3}r'$$

Elektrische Energie als Funktional der Feldquellen

 $W_{el} = W_{el}[\rho]$

1. Variation von W_{el} bezüglich kleiner Änderung $\delta \rho$:

$$\delta W_{el}[\rho, \delta \rho] := \frac{d}{d\alpha} W_{el}[\rho + \alpha \delta \rho]|_{\alpha=0}$$

Differentielle Änderung mit von Ladungsverteilung erzeugtem Coulomb-Potential:

 $\delta W_{el} = \int_{V} \Phi(\vec{r}) \delta \rho(\vec{r}) d^{3}r$

Mit Verwendung von div $\delta \vec{D} = \delta \rho$ und Kugelradius $R \to \infty$: $\delta W_{el} = \int_{\mathbf{p}3} \vec{E} \delta \vec{D} d^3 r$

Aus $W_{el} = \int_{\mathbf{R}^3} w_{el}(\vec{r}) d^3 r$ folgt:

$$\delta W_{el} = \int_{\mathbf{R}^3} \delta w_{el} \vec{r} d^3 r$$

Lokale differentielle Änderung der Energiedichte im elektrischen Feld: $\delta w_{el} = \vec{E} \delta \vec{D}$

Wegintegral zur Berechnung der lokalen Energiedichte des el. Feldes:

$$w_{el} = \int_{\vec{J}}^{\vec{D}} \vec{E}(\vec{D}') d\vec{D}'$$

Gesamte elektrische Energie: $W_{el} = \int_{V} w_{el} dV$

Sonderfall: streng lineares Dielektrikum $\begin{aligned} w_{el} &= \frac{1}{2\epsilon} \vec{D}^2 = \frac{\epsilon}{2} \vec{E}^2 = \frac{1}{2} \vec{E} \vec{D} \\ \text{Für matrixwertiges Epsilon:} \\ w_{el} &= \frac{1}{2} \vec{E}^\top \underline{\epsilon} \vec{E} \end{aligned}$

1.2.2. Magnetische Energiedichte

Externe zu erbringende Leistung (mechanische Arbeit), um in dem elektromagnetischen System eine Stromverteilung aufzubauen und aufrechtzuer-

 $P_{elmag} = -$ mechanische Leistung

 $P_{elmag} = -\sum_{k=1}^{N} q_k \vec{v}_k \vec{E}(\vec{r}_k)$

kontinuierlich: $N \to \infty$

$$P_{elmag} = -\int_{V} \tilde{\jmath}(\vec{r}) \vec{E} d^3 r$$

In Abhängingkeit der Feldgrößen:

$$\begin{array}{l} P_{el\, ma\, g} = - \int_{V} {\rm rot}\, \vec{H} \vec{E} d^3 r + \int_{V} \vec{E} \, \frac{\partial \vec{D}}{\partial t} d^3 r \\ {\rm Wobei}\, \int_{V} \vec{E} \, \frac{\partial \vec{D}}{\partial t} d^3 r = \int_{V} \frac{\partial w_{e} l}{\partial t} d^3 r = \frac{dW_{e} l}{dt} \\ {\rm Kugelgebiet}\, V = K(\vec{0},R) \, {\rm mit}\, R \to \infty \end{array}$$

$$\Rightarrow P_{el\,ma\,g} = \frac{dW_{el}}{dt} + \frac{dW_{ma\,g}}{dt} + \lim_{R \to \infty} \int_{|\vec{r}| = R} (\vec{E} \times \vec{H}) d\vec{a}$$

mit Poynting-Vektor: $(\vec{E} \times \vec{H})$ (zeigt in Ausbreitungsrichtung der Welle, elektromagnetische Energiestromdichte, Leistungsflussdichte) Abschtzung des Limes:

$$\sum_{k=1}^{N} \frac{q_{k}q_{i=}}{|\vec{r}_{k} - \vec{r}_{i}|} \begin{cases} 0, \text{fallsquasistatisch} \\ \text{totalabgestrahlteLeistung, fallsdynamisch} \end{cases}$$

Begründung quasistatisch: $|\vec{E}| \approx \frac{1}{R^2}, |\tilde{\jmath}| \approx \frac{1}{R^2}, |\vec{H}| \approx$ $rac{1}{R^3}, |dec{a}| pprox rac{1}{R^2}$ Differentielle Änderung der gesamten mag. Feldenergie:

$$\delta W_{mag} = \int_{\mathbb{R}^3} \vec{H} \delta \vec{B} d^3 r$$

Differentielle Änderung der Energiedichte des mag. Feldes:

$$\delta w_{maq} = \vec{H} \delta \vec{B}$$

Energiedichte es magnetischen Feldes: (Wegintegral)

$$w_{mag} = \int_{\vec{0}}^{\vec{B}} \vec{H}(\vec{B}') d\vec{B}'$$

gesamte magnetische Energie: $W_{mag} = \int_{V} w_{mag} dV$ **Spezialfall:** streng linear $(\vec{B} = \mu \vec{H}, \mu = \text{const})$

$$w_{mag} = \frac{\mu}{2} \vec{H}^2 = \frac{1}{2} \vec{H} \vec{B} = \frac{1}{2\mu} \vec{B}^2$$

1.2.3. Allgemeine Bilanzgleichung Extensive physikalische Größe X besitzt Volumendichte $x(\vec{r},t)$ sodass in Gebiet V für den enthaltenen Mengeninhalt gilt: X(V) = $\int_V x(\vec{r},t)d^3r$ Beispiele

Ladung (Q, ρ_{el}) , Masse (M, ρ_{M}) , Energie (W_{el}, w_{el}) ,...

Stromdichte einer extensiven Größe:

- 1. Skalarprodukt $\vec{J}_{Y} d\vec{a} = \text{Menge von } X$, welche pro Zeiteinheitdie Kontrollfäche in Normalenrichtung durchfließt
- 2. Durch Oberfäche ∂V von Kontrollvolumen C nach außen strömende Menge der Größe X gegeben durch Flussintegral: $\int_{\partial V} \vec{J}_X d\vec{a}$

Produktionsrate:

 $\prod_{X}(\vec{r},t)$ gibt an welche Menge von X pro Volumeneinheit und Zeiteinheit erzeugt (>0) oder vernichtet (<0) wird.

Bilanzgleichung in integraler Form:

$$\frac{\mathrm{d}X(V)}{\mathrm{d}t} = -\int_{\partial V} \vec{J}_X \mathrm{d}\vec{a} + \int_V \prod_X \mathrm{d}^3 r$$
 Bilanzgleichung in differentieller Form:

Beispiel: Ladungserhaltung $(0=\operatorname{div} \vec{\jmath}+\frac{\partial \rho}{\partial t})$ ohne Ladungsgenerationsrate \prod_Q weil Ladung weder verrichtet, noch erzeugt werden kann.

1.2.4. Energiebilanz des elektromagnetischen Feldes, Poynting-Vektor

$$\vec{J}_{elmag} = \vec{E} \times \vec{H} + \vec{S}_0, \text{div } \vec{S}_0 = 0$$

da sich $\operatorname{div} \vec{J}_{elmag} = \operatorname{div} \vec{S}$ nicht unterscheiden. Beispiel: Wenn $ec{E}, ec{H}$ die dynamisch gekoppelten Komponenten EINES elektromagnetischen Feldes sind (. B. Sendeantenne), dann gilt $\vec{S} = \vec{J}_{elm,a,a}$

1.3. Potentialdarstellung des elektromagnetischen Feldes

1.3.1. Elektromagnetisches Vektor- und Skalarpotential

Allgemeine Definition und Eigenschaften des Vektorpotentials

Auf $\Omega \subset \mathbb{R}^3$ definiertes Vektorfeld $\vec{U}(\vec{r})$ besitzt Vektorpotential $\vec{V}\vec{r}$. falls ein auf Ω differenzierbares Vektorfeld $\vec{V}\vec{r}$ existiert, sodass $\vec{U}(\vec{r})=$ $\operatorname{rot} \vec{V}(\vec{r})$. Dann gilt $\vec{U} = \operatorname{div} \operatorname{rot} \vec{V}(\vec{r})$

Satz von Poincare:

 $\vec{U}(\vec{r})$ ist stetig differenzierbar in kompaktem/sternförmigem Gebiet Ω mit $\operatorname{div} \vec{U} = 0 \Rightarrow \exists \text{ Vektorpotential } \vec{V}(\vec{r}) \in \Omega \text{ mit } \vec{U} = \operatorname{rot} \vec{V} \in \Omega \text{ Ein-}$ deutigkeit ist bis auf additives Gradientenfeld gegeben. Es exitiert also ein Skalarfeld $\mathcal{X}(\vec{r})$ auf Ω . Alle Vektorpotentiale haben also die Form: $\vec{V}' = \vec{V} - \operatorname{grad} \mathcal{X}(\vec{r})$

Elektromagnetisches Vektorpotential:

Global definiertes Vektorfeld $\vec{A}(\vec{r},t)$ mit $\vec{B}(\vec{r},t) = \cot \vec{A}(\vec{r},t)$

Da \vec{A} und $\vec{A}' = \vec{A} - \vec{\nabla} \mathcal{X}$ dasselbe \vec{B} -Feld liefern ist \vec{A} nicht ganz eindeutig. Man nennt ${\mathcal X}$ Eichpotential und kann die Eichfreiheit dazu nutzen, zusätzlich Eichbedingungen zu erfüllen.

Skalares elektromagnetisches Potential

Da $\vec{E} + \frac{\partial \vec{A}}{\partial t}$ ein Gradientienfeld ist, existiert elektromagnetisches skalares Potential (Skalarfeld) $\Phi \vec{r}$, t und das elektrische Feld hat damit die Darstel-

$$\vec{E}(\vec{r},t) = i \operatorname{grad} \Phi \vec{r}, t - \frac{\partial \vec{A}}{\partial t}$$

Eichtransformation Den Prozess $\vec{A}' = \vec{A} - \vec{\nabla} \mathcal{X}$ nennt man 'Umeichen' Hierbei muss aber auch das skalare Potential transformiert werden sodass die umgeeichten elektromagnetischen Potentiale lauten:

$$\vec{A}'(\vec{r},t) = \vec{A}(\vec{r},t) - \vec{\nabla}(\vec{r},t)$$

 $\Phi'(\vec{r},t) = \Phi\vec{r}, t + \frac{\partial \mathcal{X}}{\partial r}(\vec{r},t)$

1.3.2. Maxwellsche Gleichungen in Potentialdarstellung

4-komponentiges partielles Differentialgleichungssystem für Unbekannte (Φ, \vec{A}) bei gegebenen Quellen ρ, \jmath :

$$\operatorname{div} \epsilon \nabla \Phi + \frac{\partial}{\partial t} \operatorname{div} \epsilon \vec{A} = -\rho$$

$$\operatorname{rot} \frac{1}{a} \operatorname{rot} \vec{A} + \epsilon \frac{2\vec{A}}{2t^2} + \epsilon \nabla \left(\frac{\partial \Phi}{\partial t}\right) = j$$