The Two-Period Model

Livio Maya †

†Insper

Evolution of Government Spending

Inflation

Course Content

- 1. The Two-Period Model
- 2. Production + Marginal Taxation
- 3. Uncertainty and Income Insurance
- 4. Overlapping Generations and Pension
- 5. Classical Monetary-Fiscal Interactions
- 6. Fiscal Theory of the Price Level
- 7. Fiscal Multipliers
- 8. Brazilian Case

Grading

- 20% Four problem sets
 - Dynamic programming
- 30% Group project (06/17)
 - Up to 3 students / group
 - Fiscal policy issue relate to Brazil
 - Slides + Presentation (no paper)
- 50% Exam (06/24)
 - Theory, not empirics

The Two-Period Model

• Government issues real debt

$$b_{-1} = q_0 b_0 + au_0 - g_0$$
 $b_0 = au_1 - g_1$ $\Longrightarrow \left[b_{-1} = au_0 - g_0 + q_0 (au_1 - g_1) \right]$

• Households, utility $u(c_0) + \beta u(c_1)$

$$q_0a_0 + c_0 = a_{-1} + y_0 - \tau_0$$
 $c_1 = a_0 + y_1 - \tau_1$

$$\implies a_{-1} = c_0 + \tau_0 - y_0 + q_0(c_1 + \tau_1 - y_1)$$

- No borrowing: $a_0 \ge \underline{a} = -(y_1 \tau_1)$ (natural limit, same as $c \ge 0$)
- Intertemporal choice: (Euler) $q_0u'(c_0) = \beta u'(c_1)$
- Market-Clearing: y = c + g

Kormendi (1983)

$$\Delta PC_t = a_0 + a_1 \Delta Y_t + a_2 \Delta GS_t + a_3 \Delta W_t + a_4 \Delta TR_t$$

$$+ a_5 \Delta TX_t + a_6 \Delta RE_t + a_7 \Delta GINT_t + a_8 \Delta GB_t + u_t$$

- Standard approach: GS = 0 $TX, RE, GINT \neq 0$ GB > 0
- *Consolidated* approaches: the opposite, with GB = 0.

			1931-40/
	1931-76	1931-76	1947-76
Υ,	.29	.32	.33
	(.04)	(.02)	(.02)
	[7.3]	[14.8]	[14.1]
Y_{t-1}	.07	.06	.05
	(.02)	(.02)	(.02)
	[3.3]	[3.0]	[2.2]
GS_t	23	23	21
	(.02)	(.02)	(.06)
	[-12.8]	[-13.2]	[-3.5]
W,	.025	.028	.032
•	(800.)	(.008)	(.009)
	[3.0]	[3.4]	[3.5]
TR,	.83	.78	.74
	(.15)	(.14)	(.009)
	[5.6]	[5.6]	[3.5]

TABLE 58

m 14		·	(,
TX_{t}	.07	-	-
	(.08)		
	[0.9]		
RE,	.10	**	
	(.11)		
	[0.9]		
GINT,	1.15	**	
	(.91)		
	[1.3]		
GB_{r}	055	036	032
•	(.018)	(.015)	(.020
	[-2.9]	[-2.4]	[-1.6
R^2	.911	.902	.910

Modigliani and Sterling (1986)

• The Life-Cycle Hypothesis: $C_t = c \left[A_t + \sum_i m_i q_i (Y_{t+i} - T_{t+i}) \right]$

$$C_{t} = a + b_{0} A_{t} + b_{1} G_{t} + \sum_{i} c_{i} (Y_{t-i} - T_{t-i}) + \sum_{i} d_{i} D_{t-i}$$

- RE: $b_1 = -b_0$, $\sum_i d_i = -\sum_i c_i$
- LCH: $b_1 \approx 0$, $\sum_i d_i \approx 0$

Modigliani and Sterling (1986)

Table 1 — Estimates of the Aggregate Consumption Function, 1952-84a,b

Independent Variables		(1) ^c	(2)°	(3)°	(4)
Constant	а	-0.38	-0.45	- 0.436	-0.436
		(0.06)	(0.12)	(0.052)	(0.061)
Net Worth (A)	b_0	0.023	0.027	0.022	0.022
		(0.005)	(0.005)	(0.004)	(0.005)
Government Debt	b_1	0.073	0.106	0.096	0.096
(G)	-	(0.024)	(0.033)	(0.021)	(0.031)
Net National	$\sum c_{1i}$	0.922	0.901	0.928	0.931
Product (Y)		(0.020)	(0.041)	(0.017)	(0.070)
Net Taxes (T)	$\sum c_{2i}$	-0.922	-0.901	-0.928	-1.081
		(0.020)	(0.041)	(0.017)	(0.151)
Deficit (D)	$\sum d_i$	0.171	0.115	0.187	-
		(0.082)	(0.086)	(0.069)	
Government Expenditure (E)	$\sum d_i^*$	-	-	-	0.146 (0.136)
Transfers (TR)	$\sum t_i$		0.005	-	_
, ,	- 1		(0.102)		
Transitory	$\sum h_i$	-	_	0.633	0.645
Taxes (T^*)	•			(0.182)	(0.339)
SE		0.015	0.014	0.012	0.013
Log Likelihood		96.33	98.50	103.44	103.88
D-W		1.43	1.73	1.92	1.90

Parker et al. (2013)

• 2008 US Economic Stimulus Act: \$600 to \$1200 checks

$$C_{i,t+1} - C_{i,t} = \beta'_0 \text{ Month}_{i,t+1} + \beta'_1 X_i + \beta_2 \text{ ESP}_{i,t+1} + u_{i,t+1}$$

TABLE 2—THE CONTEMPORANEOUS RESPONSE OF EXPENDITURES TO ESP RECEIPT AMONG ALL HOUSEHOLDS

	Food OLS	Strictly nondurables OLS	Nondurable spending OLS	All CE goods and services OLS	Food OLS	Strictly nondurables OLS	Nondurable spending OLS	All CE goods and services OLS
Panel A. Do	llar change in	spending						
ESP	0.016 (0.027)	0.079 (0.046)	0.121 (0.055)	0.516 (0.179)				
I(ESP)					10.9 (31.7)	74.8 (56.6)	121.5 (67.2)	494.5 (207.2)
	Food OLS	Strictly nondurables OLS	Nondurable spending OLS	All CE goods and services OLS	Food 2SLS	Strictly nondurables 2SLS	Nondurable spending 2SLS	All CE goods and services 2SLS
Panel B. Percent change in spending				Panel C. Dollar change in spending				
ESP					0.012 (0.033)	0.079 (0.060)	0.128 (0.071)	0.523 (0.219)
I(ESP)	0.69 (1.27)	1.74 (0.96)	2.09 (0.94)	3.24 (1.17)				

Notes: All regressions also include a full set of month dummies, age, change in the number of adults, and change in the number of children following equation (1). Reported standard errors are adjusted for arbitrary within-house-hold correlations and heteroskedasticity. The coefficients in panel B are multiplied by 100 so as to report a percent change. The last four columns report results from 2SLS regressions where the indicator variable for ESP receipt and the other regressors are used as instruments for the amount of the ESP. All regressions use 17,478 observations except for the first two columns of panel B which have only 17,427 and 17,477, respectively.

•

References I

- Kormendi, R. C. (1983). Government Debt, Government Spending, and Private Sector Behavior. *The American Economic Review*, 73(5):994–1010.
- Modigliani, F. and Sterling, A. (1986). Government Debt, Government Spending and Private Sector Behavior: Comment. *The American Economic Review*, 76(5):1168–1179.
- Parker, J. A., Souleles, N. S., Johnson, D. S., and McClelland, R. (2013). Consumer Spending and the Economic Stimulus Payments of 2008. *American Economic Review*, 103(6):2530–2553.