PROCESSAMENTO DIGITAL DE SINAIS Teste Nº 1

2 de Maio de 2016 Duração: 1h30mn

- 1. Considere o sinal contínuo e periódico $x(t) = -2 + \cos(3\pi t)\cos(6\pi t)$.
- $\{2.0v\}$ (a) Represente graficamente o espectro de amplitude |X(f)| e de fase $\angle X(f)$ do sinal x(t).
- $\{1.0v\}$ (b) Qual é a expressão analítica do sinal discreto, x[n], que se obtém quando x(t) é amostrado com $F_s=30$ Hz. Qual o período fundamental de x[n]?
- $\{1.0\mathrm{v}\}$ (c) Considere que x(t) é digitalizado com 16 bits por amostra, e com $F_s=30$ Hz. Qual o tamanho do ficheiro produzido quando x(t) tem uma duração de 5 minutos.
- $\{2.0v\}$ (d) Considere agora o sinal $y(t)=x(t-1)+\sin(4\pi t+\frac{\pi}{5})+3$. Qual o período fundamental de y(t)? Represente graficamente o espectro de amplitude de y(t).
 - 2. Considere que X_k representa os coeficientes da série de Fourier do sinal x(t)

$$X_k = \left\{ \begin{array}{ll} \frac{e^{-j\pi k/3}}{jk+\sqrt{3}} &, & k=0,\pm 1,\pm 3 \\ 0 &, & {\rm caso\ contrário} \end{array} \right.$$

- $\{2.0v\}$ (a) Represente graficamente em função de k, $|X_k|$ e $\angle X_k$.
- $\{3.0v\}$ (b) Considerando que a frequência fundamental é $10\,\mathrm{Hz}$, determine a expressão analítica de x(t).
- $\{2.0v\}$ (c) Calcule a potência de x(t) através da relação de Parseval.
 - 3. Considere o sinal contínuo e periódico, x(t) de período $T_0=3$ segundos, do qual se representa um troço na figura.
- $\{3.0v\}$ (a) Determine a série de Fourier de x(t).
- {2.0v} (b) Represente graficamente o espectro de amplitude e de fase.
- $\{2.0v\}$ (c) Seja $y(t)=2x(t+\frac{1}{2})+1$. Represente graficamente y(t). Calcule Y_k .

