# A Hierarchical Reinforced Sequence Operation Method for Unsupervised Text Style Transfer

Chen Wu<sup>1</sup>, Xuancheng Ren<sup>2</sup>, Fuli Luo<sup>2</sup>, Xu Sun<sup>2,3</sup> Presented at ACL-2019

<sup>&</sup>lt;sup>1</sup>Tsinghua University

 $<sup>^2</sup>$ MOE Key Laboratory of Computational Linguistics, School of EECS, Peking University

<sup>&</sup>lt;sup>3</sup>Center for Data Science, Beijing Institute of Big Data Research, Peking University

Background

Our Approach

Main Experiment

Background

Our Approach

Main Experiment

## **Unsupervised Text Style Transfer**

- © I will be going back and enjoying this great place!
- → ② I won't be going back and suffering at this terrible place!

#### Training data (Unsupervised)

- $\mathcal{X}_1 = \{x_1^{(1)}, \dots, x_1^{(n)}\}$  of style  $s_1$
- $\mathcal{X}_2 = \{x_2^{(1)}, \dots, x_2^{(m)}\}$  of style  $s_2$
- Non-aligned!

#### Goal

- $p(x_{1\rightarrow 2}|x_1)$  that transfers style  $s_1$  into style  $s_2$
- $p(x_{2\rightarrow 1}|x_2)$  that transfers style  $s_2$  into style  $s_1$

#### **Prior Work**

#### **Disentanglement Approach**

Disentangling latent style and content<sup>1,2,3</sup>

#### Two-step Approach

Neutralization (deletion) + stylization (reconstruction)<sup>4,5</sup>

ACL-18.

<sup>&</sup>lt;sup>1</sup>Hu et al. "Toward Controlled Generation of Text". ICML-17.

<sup>&</sup>lt;sup>2</sup>Fu et al. "Style Transfer in Text: Exploration and Evaluation". AAAI-18.

<sup>&</sup>lt;sup>3</sup>John et al. "Disentangled Representation Learning for Non-Parallel Text Style Transfer". ACL-19.

<sup>&</sup>lt;sup>4</sup>Li et al. "Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer". *NAACL-HLT-18*.

 $<sup>^5</sup>$ Xu et al. "Unpaired Sentiment-to-Sentiment Translation: A Cycled Reinforcement Learning Approach".

# Challenges

#### **Poor Content Preservation**

| Original            | staffed primarily by teenagers that do n't ${\color{black} {\tt understand}}$ customer service . |
|---------------------|--------------------------------------------------------------------------------------------------|
| Li et al. (2018)    | staffed , the best and sterile by flies , how fantastic customer service .                       |
| Xu et al. (2018)    | staffed established each tech feel when great customer service profes-                           |
|                     | sional.                                                                                          |
| Zhang et al. (2019) | staffed distance that love customer service .                                                    |

# Lack of Interpretability

Background

Our Approach

Main Experiment

## **An Example Case**



# A Hierarchy of Agents

#### **The Options Framework**

An HRL framework proposed by Sutton et al. (1999)

## **High-Level Agent**

Propose a position to be operated around

## **Low-Level Agent**

Select an operator from the table and generate a word  $\hat{w}$  (optional)

| Operator                      | Operation                               |  |  |  |  |
|-------------------------------|-----------------------------------------|--|--|--|--|
| $	ext{IF}_{\phi_1}$           | Insert a word $\hat{w}$ in the Front    |  |  |  |  |
| $\mathrm{IB}_{\phi_2}$        | Insert a word $\hat{w}$ <b>B</b> ehind  |  |  |  |  |
| $\operatorname{Rep}_{\phi_3}$ | <b>Rep</b> lace the word with $\hat{w}$ |  |  |  |  |
| DC                            | Delete the Current word                 |  |  |  |  |
| DF                            | Delete the word in the Front            |  |  |  |  |
| DB                            | Delete the word Behind                  |  |  |  |  |
| Skip                          | Do not change anything                  |  |  |  |  |

# **Graphical Overview for Training**



# **Hierarchical Policy Learning**

· Language model reward



# **Hierarchical Policy Learning**

- · Classification confidence reward
- · Auxiliary task: style classification



# **Hierarchical Policy Learning**

- Self-supervised reconstruction loss
- · Reconstruction reward



# **Single-Step Training + Multi-Step Inference**

#### **Single-Step Training**

• Only one modification in each episode

#### **Iterative and Dynamic Inference**

- Enumerate the operators and select the best one in each iteration
- Greedy modifications
- Mask-mechanisms
- Until the sentence does not show the original style anymore (or beyond maximum iterations)

Background

Our Approach

Main Experiment

#### **Automatic Evaluation**

|                    | Y    | elp   | Amazon |       |  |
|--------------------|------|-------|--------|-------|--|
|                    | Acc  | BLEU  | Acc    | BLEU  |  |
| CrossAligned       | 74.7 | 9.06  | 75.1   | 1.90  |  |
| MultiDecoder       | 50.6 | 14.54 | 69.9   | 9.07  |  |
| StyleEmbedding     | 8.4  | 21.06 | 38.2   | 15.07 |  |
| TemplateBased      | 81.2 | 22.57 | 64.3   | 34.79 |  |
| DeleteOnly         | 86.0 | 14.64 | 47.0   | 33.00 |  |
| Del-Ret-Gen        | 88.6 | 15.96 | 51.0   | 30.09 |  |
| BackTranslate      | 94.6 | 2.46  | 76.7   | 1.04  |  |
| UnpairedRL         | 57.5 | 18.81 | 56.3   | 15.93 |  |
| UnsuperMT          | 97.8 | 22.75 | 72.4   | 33.95 |  |
| Human              | 74.7 | -     | 43.2   | -     |  |
| Point-Then-Operate | 91.5 | 29.86 | 40.2   | 41.86 |  |

- Classification accuracy is low for human references
- BLEU of our method outperforms baselines by a large margin

## **Human Evaluation**<sup>6</sup>

|                    | Yelp |       |      |        | Amazon |       |      |        |
|--------------------|------|-------|------|--------|--------|-------|------|--------|
|                    | Flu. | Cont. | Sty. | Suc    | Flu.   | Cont. | Sty. | Suc    |
| TemplateBased      | 3.47 | 3.76  | 3.25 | 68.0 % | 3.46   | 4.08  | 2.15 | 9.0 %  |
| Del-Ret-Gen        | 3.82 | 3.73  | 3.52 | 70.3 % | 4.02   | 4.31  | 2.69 | 21.0 % |
| UnpairedRL         | 3.54 | 3.59  | 2.90 | 53.8 % | 2.58   | 2.55  | 2.44 | 4.5 %  |
| UnsuperMT          | 4.26 | 4.24  | 4.03 | 82.5 % | 4.24   | 4.13  | 3.05 | 35.5 % |
| Point-Then-Operate | 4.39 | 4.56  | 3.78 | 81.5 % | 4.28   | 4.47  | 3.31 | 47.0 % |

- Better overall performance
- Sacrificed style polarity on Yelp

<sup>&</sup>lt;sup>6</sup>Baselines for human evaluation are selected based on automatic evaluation

Background

Our Approach

Main Experiment

- A sequence operation method with hierarchical reinforcement learning (HRL) for unsupervised text style transfer
- 2. Address two challenges
  - Content preservation
  - Interpretability
- Provide an iterative and dynamic mask-based inference algorithm that allows for single-option trajectory training



We make our code public.