Aitken-algoritmus

1. Lagrange-interpoláció

Legyen $[a,b] \subset R$ és $f:[a,b] \to R$. Adott az m természetes szám, a $x_i \in [a,b], i=0,1,...,m$ páronként különboző interpolációs csomópont vagy alappont és az $f(x_i)$ függvényértékek a csomópontokban.

- **1. Értelmezés.** A P_m térre és a $\lambda_i(f) = f(x_i), i = 0, 1, ..., m$, öszszefüggéssel értelmezett funkcionálokra vonatkozó interpolációs feladatot Lagrange-interpolációs feladatnak nevezzük.
- **2. Értelmezés.** A feladat megoldását, ha létezik, Lagrange-interpolációs polinomnak nevezzük és L_m f-el jelöljük.
- **1.** Megjegyzés. A Lagrange-interpolációs polinom annak a minimális fokú polinomnak a meghatározását jelenti, amelyre teljesülnek a $P(x_i) = f(x_i), i = 0, 1, ..., m$ feltételek, vagyis amely átmegy az $(x_i, f(x_i)), i = 0, 1, ..., m$ koordinátájú pontokon.
- 1. Tétel. A Lagrange-interpolációs feladatnak egyértelmű megoldása van.

A Lagrange-interpolációs polinom a következő alakú:

$$(L_m f)(x) = \sum_{k=0}^{m} l_k(x) f(x_k)$$
 (1)

ahol minden $0 \le k \le$ m-re az

$$l_k(x) = \frac{(x - x_0)(x - x_1)...(x - x_m)}{(x - x_k)(x_k - x_0)(x_k - x_1)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_m)}$$

polinomokat fundamentális Lagrange-polinomoknak vagy Lagrange-féle bázis-polinomoknak nevezzük.

Az

$$f = L_m f + R_m f \tag{2}$$

képletet Lagrange-interpolációs képletnek nevezzük, ahol $R_m f$ a maradéktag. Ha $\alpha = min \{x_0, x_1, ..., x_m\}$, $\beta = max \{x_0, x_1, ..., x_m\}$ és $f \in C^m[\alpha, \beta]$ illetve létezik $f^{(m+1)}$ az (α, β) intervallumon, akkor létezik $\xi \in (a, b)$ úgy, hogy

$$(R_m f)(x) = \frac{u(x)}{(m+1)!} f^{(m+1)}(\xi).$$

Legyen $x \neq x_i$, ekkor $f(x) \approx (L_m f)(x)$, ahol a közelítés hibáját $(R_m f)(x)$ adja. Ha előre megadott $\epsilon > 0$ pontosságal szeretnénk közelíteni, akkor $|(R_m f)(x)| < \epsilon$. A szükséges fokszám egy adott pontosság eléréséhez általában ismeretlen. Ez a maradéktagból meghatározható, de ehhez ismerni kell $\left\|f^{(m+1)}\right\|_{\infty}$.

A feladat megoldásához a következő táblázatot generáljuk:

ahol $Q_{i,0} = f(x_i)$, illetve $Q_{i,i} = (L_i f)(x)$

$$Q_{i,j+1} = \frac{(x_i - x)Q_{j,j} - (x_j - x)Q_{i,j}}{x_i - x_j}, \ i = \overline{1, m}, \ j = \overline{0, i - 1}.$$

Ha az eljárás konvergens, akkor a $Q_{i,i}$ sorozat az f(x) függvényértékhez konvergál, tehát alkalmazhatjuk a következő megállási feltételt:

$$|Q_{i,i} - Q_{i-1,i-1}| < \epsilon.$$

Az algoritmus gyorsításához rendezzük a csomópontokat az $|x_i-x|$ távolságok növekvő sorrendjében ($|x_i-x|<|x_j-x|,\ i< j$). A fenti módszer az Aitken-algoritmus.

1. Feladat. Ha adottak az x_i csomópontok és ezekben a függvény értékei $f(x_i)$, közelítsük az f(x), $x \neq x_i$ függvényértéket előre megadott $\epsilon > 0$ pontossággal, Aitken módszerrel. Ha a megadott csomópontszám nem elegendő a kért pontosság eléréséhez közöljük a felhasználóval.

PÉLDA

x_i	$f(x_i)$
1.0	0.7651977
1.3	0.6200860
1.6	0.4554022
1.9	0.2818186
2.2	0.1103623

az x = 1.5 pontban $(L_4 f)(1.5) = 0.5118200$, $\epsilon = 10^{-4}$.