Evaluating ML Models for Modelling Piezo Dynamics

29.7.24

David Kleindiek

Introduction

- Nanoprobing
- Semiconductors Failure Analysis

- Driven by piezo motors
- Sub-nanometre accuracy

Devices

MM3E

Three axis

Input voltage: -80V to 80V

• Max displacement: a, b=20μm, c=3μm

• Encoder resolution: a, b=250nm c=20nm

Challenges: Hysteresis

Non-linear relation between input voltage and displacement

Dependent on current and past applied voltages

Challenges: Creep

- Slow drift of displacement after voltage step
- Up to 15% deviation from desired position
- Time dependent on previous applied voltages

Data collection

- Modified random walk
- >32 hours of movement data
- >7 hours of creep recording

Feature enginering

- Dependency on past applied voltages
- Step size

- → Rolling exponential sums
- **→**Lagged position
- → Voltage differentiating
- Lasso regression for feature selection

Models

- Linear Regression
- Vanilla Neural Network
- Long short-term memory
- Kolmogorov-Arnold Networks

Hyperparameter Optimization Framework:

KAN: Kolmogorov-Arnold Networks

Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$
Model (Shallow)	fixed activation functions on nodes learnable weights on edges	learnable activation functions on edges sum operation on nodes
Formula (Deep)	$MLP(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$KAN(\mathbf{x}) = (\mathbf{\Phi}_3 \circ \mathbf{\Phi}_2 \circ \mathbf{\Phi}_1)(\mathbf{x})$
Model (Deep)	(c)	(d) Φ_3 Φ_2 $nonlinear, learnable$

- Faster scaling
- Interpretability

KAN: Training

Figure 2.4: An example of how to do symbolic regression with KAN.

Metrics

Metrics for Hysteresis and Creep Prediction

Evaluation: Hysteresis

• Turning points pose a problem for neural network

Evaluation: Hysteresis

Evaluation: Creep

- Vanilla NN and LSTM deficate slightly
- KAN near perfect

Evaluation: Creep

• Endposition + encoder noise characteristic

Outlook

- Create an inverse model to compensate the effects
- Extend model to predict voltage for goal position
- Integrate models into the controller of the manipulators