(b)
$$l_{\mathbf{d}} = \int_{\alpha(a)}^{\alpha(b)} \|\mathbf{d}'(s)\| ds$$

$$= \int_{s=\alpha(a)}^{s=\alpha(b)} \|\mathbf{d}'(\alpha(t))\| \alpha'(t) dt$$

$$= \int_{t=a}^{t=b} \|\mathbf{d}'(\alpha(t))\alpha'(t)\| dt$$

$$= \int_{a}^{b} \|\mathbf{c}'(t)\| dt = l_{\mathbf{c}}.$$

- (c) Diferenciar d usando la regla de la cadena.
- **17.** (a) $l_{\mathbf{c}} = \int_{a}^{b} \|\mathbf{c}'(s)\| ds = \int_{a}^{b} ds = b a.$
 - (b) $\mathbf{T}(s) = \mathbf{c}'(s)/\|\mathbf{c}'(s)\| = \mathbf{c}'(s)$, de modo que $\mathbf{T}'(s) = \mathbf{c}''(s)$. Entonces $k = \|\mathbf{T}'\| = \|\mathbf{c}''(s)\|$.
 - (c) Demostrar que si \mathbf{v} y \mathbf{w} están en \mathbb{R}^3 , $\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{w} (\mathbf{v} \cdot \mathbf{w}/\|\mathbf{v}\|^2)\mathbf{v}\|\cdot\|\mathbf{v}\|$. Utilizar esto para probar que si $\boldsymbol{\rho}(t) = (x(t), y(t), z(t))$ nunca es (0,0,0) y $\mathbf{f}(t) = \boldsymbol{\rho}(t)/\|\boldsymbol{\rho}(t)\|$, entonces

$$\frac{d\mathbf{f}}{dt} = \frac{1}{\|\boldsymbol{\rho}(t)\|} \left[\boldsymbol{\rho}'(t) - \frac{\boldsymbol{\rho}(t) \cdot \boldsymbol{\rho}'(t)}{\|\boldsymbol{\rho}(t)\|^2} \boldsymbol{\rho}(t) \right]$$

$$y \frac{d\mathbf{f}}{dt} = \frac{\|\boldsymbol{\rho}(t) \times \boldsymbol{\rho}'(t)\|}{\|\boldsymbol{\rho}(t)\|^2}.$$

Con $\rho(t) = \mathbf{c}'(t)$, esto da

$$\mathbf{T}'(t) = \frac{\mathbf{c}''(t)}{\|\mathbf{c}'(t)\|} - \frac{\mathbf{c}'(t) \cdot \mathbf{c}''(t)}{\|\mathbf{c}'(t)\|^3} \mathbf{c}'(t)$$
$$\mathbf{y} \|\mathbf{T}'(t)\| = \frac{\|\mathbf{c}'(t) \times \mathbf{c}''(t)\|}{\|\mathbf{c}'(t)\|^2}.$$

Si s es la longitud de arco de \mathbf{c} , $ds/dt = \|\mathbf{c}'(t)\|$, y por tanto

$$\left\| \frac{d\mathbf{T}}{dt} \right\| = \left\| \frac{d\mathbf{T}}{ds} \cdot \frac{ds}{dt} \right\| = k \|\mathbf{c}'(t)\|.$$

Por tanto,

$$k = \frac{1}{\|\mathbf{c}'(t)\|} \frac{d\mathbf{T}}{dt} = \frac{\|\mathbf{c}'(t) \times \mathbf{c}''(t)\|}{\|\mathbf{c}'(t)\|^3}.$$

(Este resultado es útil en el Ejercicio 21).

- (d) $1/\sqrt{2}$.
- **19.** (a) $\|\mathbf{c}'(t)\| = \|(-\sin t, \cos t)\| = 1$.
 - (b) $k = \|\mathbf{T}'(t)\| = \|(-\cos t, -\sin t)\| = 1.$

21. (a) Dado que \mathbf{c} está parametrizada mediante la longitud de arco, $\mathbf{T}(s) = \mathbf{c}'(s)$ y $\mathbf{N}(s) = \mathbf{c}''(s)/\|\mathbf{c}''(s)\|$. Utilizar el Ejercicio 17 para demostrar que

$$\frac{d\mathbf{B}}{ds} = \left(\mathbf{c''} \times \frac{\mathbf{c''}}{\|\mathbf{c''}\|}\right) + \mathbf{c'} \times \left(\frac{\mathbf{c'''}}{\|\mathbf{c''}\|} - \frac{\mathbf{c''} \cdot \mathbf{c'''}}{\|\mathbf{c''}\|^3} \mathbf{c''}\right)$$

у

$$\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N} = -\frac{(\mathbf{c}' \times \mathbf{c}''') \cdot \mathbf{c}''}{\|\mathbf{c}''\|^2} = \frac{(\mathbf{c}' \times \mathbf{c}'') \cdot \mathbf{c}''}{\|\mathbf{c}''\|^2}.$$

(b) Obtener $\mathbf{T}'(t)$ y $\|\mathbf{T}'(t)\|$ como en el Ejercicio 17. \mathbf{B} es un vector unitario en la dirección de $\mathbf{c}' \times \mathbf{T}' = (\mathbf{c}' \times \mathbf{c}'')/\|\mathbf{c}'\|$, de modo que $\mathbf{B} = (\mathbf{c}' \times \mathbf{c}'')/\|\mathbf{c}' \times \mathbf{c}''\|$. Utilizar la solución del Ejercicio 17 con $\boldsymbol{\rho} = \mathbf{c}' \times \mathbf{c}''$ para obtener

$$d\mathbf{B}/dt = (\mathbf{c}' \times \mathbf{c}''')/\|\mathbf{c}' \times \mathbf{c}''\|$$

$$-\{[(\mathbf{c}' \times \mathbf{c}'') \cdot (\mathbf{c}' \times \mathbf{c}''')]/\|\mathbf{c}' \times \mathbf{c}''\|^3\}(\mathbf{c}' \times \mathbf{c}''),$$

y los valores de \mathbf{T}' y $\|\mathbf{T}'\|$ para obtener

$$\mathbf{N} = (\|\mathbf{c}'\|/\|\mathbf{c}' \times \mathbf{c}''\|)(\mathbf{c}'' - (\mathbf{c}' \times \mathbf{c}'')/\|\mathbf{c}'\|^2).$$

Por último, utilizar la regla de la cadena y el producto escalar de estos para obtener

$$\tau = -\left[\frac{d\mathbf{B}}{ds}(s(t))\right] \cdot \mathbf{N}(s(t))$$
$$= -\frac{1}{|ds/dt|} \frac{d\mathbf{B}}{dt} \cdot \mathbf{N} = \frac{(\mathbf{c}' \times \mathbf{c}'') \cdot \mathbf{c}'''}{\|\mathbf{c}' \times \mathbf{c}''\|^2}.$$

- (c) $\sqrt{2}/2$.
- 23. (a) N está definido como $\mathbf{T}'/|\mathbf{T}'|$, de modo que $\mathbf{T}' = ||\mathbf{T}'||\mathbf{N} = k\mathbf{N}$. Puesto que $\mathbf{T} \cdot \mathbf{T}' = 0, \mathbf{T}, \mathbf{N}$ y \mathbf{B} forman una base ortonormal para \mathbb{R}^3 . Diferenciando $\mathbf{B}(s) \cdot \mathbf{B}(s) = 1$ y $\mathbf{B}(s) \cdot \mathbf{T}(s) = 0$ se obtiene $\mathbf{B}' \cdot \mathbf{B} = 0$ y $\mathbf{B}' \cdot \mathbf{T} + \mathbf{B} \cdot \mathbf{T}' = 0$. Pero $\mathbf{T}' \cdot \mathbf{B} = ||\mathbf{T}'||\mathbf{N} \cdot \mathbf{B} = 0$, de modo que también $\mathbf{B}' \cdot \mathbf{T} = 0$. Luego, $\mathbf{B}' = (\mathbf{B}' \cdot \mathbf{T})\mathbf{T} + (\mathbf{B}' \cdot \mathbf{N})\mathbf{N} + (\mathbf{B}' \cdot \mathbf{B})\mathbf{B} = (\mathbf{B}' \cdot \mathbf{N})\mathbf{N} = -\tau \mathbf{N}$. También, $\mathbf{N}' \cdot \mathbf{N} = 0$, dado que $\mathbf{N} \cdot \mathbf{N} = 1$. Luego, $\mathbf{N}' = (\mathbf{N}' \cdot \mathbf{T})\mathbf{T} + (\mathbf{N}' \cdot \mathbf{B})\mathbf{B}$. Diferenciando $\mathbf{N} \cdot \mathbf{T} = 0$ y $\mathbf{N} \cdot \mathbf{B} = 0$ da $\mathbf{N}' \cdot \mathbf{T} = -\mathbf{N} \cdot \mathbf{T}' = -k$ y $\mathbf{N}' \cdot \mathbf{B} = -\mathbf{N} \cdot \mathbf{B}' = \tau$, de donde se deduce la ecuación central.
 - (b) $\omega = \tau \mathbf{T} + k \mathbf{B}$.
- **25.** Seguir la sugerencia del texto.