(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年10 月30 日 (30.10.2003)

PCT

(10) 国際公開番号 WO 03/089410 A1

(51) 国際特許分類⁷: C07D 207/327, 213/81, 215/36, 241/44, 295/155, 307/68, 213/82, 213/89, 401/12, 215/36, 295/185, 295/192, 295/26, 295/215, 271/113, 285/08, 487/04, 257/02, 319/06, A61K 31/495, 31/496, 31/497, 31/506, 31/551, 38/05, 31/498, 31/535, 31/40, A61P 1/04, 3/10, 9/10, 11/06, 13/12, 17/00, 17/06, 19/02, 25/00, 29/00, 35/00, 37/00, 37/06, 43/00, C07K 5/065

(21) 国際出願番号: PCT/JP03/04970

(22) 国際出願日: 2003 年4 月18 日 (18.04.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2002-117841 2002 年4 月19 日 (19.04.2002)

- (71) 出願人 /米国を除く全ての指定国について): 協和 酸酵工業株式会社 (KYOWA HAKKO KOGYO CO., LTD.) [JP/JP]; 〒100-8185 東京都 千代田区 大手町一 丁目 6 番 1 号 Tokyo (JP).
- (72) 発明者: および
- (75) 発明者/出願人 (米国についてのみ): 中里 宜資 (NAKASATO, Yoshisuke) [JP/JP]; 〒411-8731 静岡県 駿東郡 長泉町下土狩 1 1 8 8 協和醱酵工業株式 会社 医薬総合研究所内 Shizuoka (JP). 太田 公規 (OHTA, Kiminori) [JP/JP]; 〒981-0908 宮城県 仙台市 青葉区東照宮 1-1 3-3 5 Miyagi (JP). 新井 恵理 (ARAI, Eri) [JP/JP]; 〒411-8731 静岡県 駿東郡 長泉町下土狩 1 1 8 8 協和醱酵工業株式会社 医薬総合研

究所内 Shizuoka (JP). 佐久 磨 (SAKU,Osamu) [JP/JP]; 〒411-8731 静岡県 駿東郡 長泉町下土狩 1 1 8 8 協和醱酵工業株式会社 医薬総合研究所内 Shizuoka (JP). 日下 浩子 (KUSAKA,Hiroko) [JP/JP]; 〒411-8731 静岡県 駿東郡 長泉町下土狩 1 1 8 8 協和醱酵工業株式会社 医薬総合研究所内 Shizuoka (JP). 中西 聡 (NAKANISHI,Satoshi) [JP/JP]; 〒100-8185 東京都 千代田区 大手町一丁目 6 番 1 号 協和醱酵工業株式会社 本社内 Tokyo (JP). 真部 治彦 (MANABE,Haruhiko) [JP/JP]; 〒411-8731 静岡県 駿東郡 長泉町下土狩 1 1 8 8 協和醱酵工業株式会社 医薬総合研究所内 Shizuoka (JP). 小川 暁 (OGAWA,Akira) [JP/JP]; 〒411-8731 静岡県 駿東郡 長泉町下土狩 1 1 8 8 協和醱酵工業株式会社 医薬総合研究所内 Shizuoka (JP).

- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

[続葉有]

(54) Title: PHENYLALANINE DERIVATIVE

(54) 発明の名称: フェニルアラニン誘導体

(57) **Abstract:** A phenylalanine derivative represented by the formula (I): (I) (wherein m and n are the same or different and each is 1 or 2; R^2 represents (un)substituted lower alkyl, etc.; R^1 represents (un)substituted lower alkyl, etc.; and R^3 , R^4 , R^5 , and R^6 are the same or different and each is hydrogen, (un)substituted lower alkyl, oxo, etc.) or a pharmacologically acceptable salt of the derivative. They are useful as an α 4 integrin inhibitor.

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約:

本発明は、α4インテグリン阻害剤として、有用な式(I)

$$\begin{array}{c|ccccc}
R^3 & & & & & & \\
R^7 & & & & & & & \\
R^7 & & & & & & & \\
R^4 & & & & & & \\
R^6 & & & & & & \\
R^8 & & & & & & \\
R^8 & & & & & & \\
R^8 & & & & & & \\
R^1 & & & & & & \\
R^6 & & & & & & \\
R^8 & & & & & & \\
R^1 & & & & & & \\
R^6 & & & & & & \\
R^1 & & & & & & \\
R^2 & & & & & & \\
R^1 & & & & & \\
R^1 & & & & & \\
R^1$$

(式中、mおよびnは同一または異なって、1または2を表し、R²は置換もしくは非置換の低級アルキル等を表し、R¹は置換もしくは非置換の低級アルキル等を表し、、R³、R⁴、R⁵およびR⁶は同一または異なって、水素原子、置換もしくは非置換の低級アルキルまたはオキソ等を表す)で表されるフェニルアラニン誘導体またはその薬理学的に許容される塩を提供する。

明細書

フェニルアラニン誘導体

技術分野

本発明は、α4インテグリン阻害剤として有用なフェニルアラニン 誘導体またはその薬理学的に許容される塩に関する。

背景技術

細胞と細胞または細胞外マトリックスとの接着は、白血球の炎症部位への遊走、接着や、個体発生時の幹細胞の移動に重要な働きをしている。これらの過程ではさまざまな接着分子が介在していることが明らかになっているが、特に接着分子の1つであるインテグリンは細胞上に発現するリガンドと相互作用し、細胞と細胞または細胞外マトリックスとの接着の調節に重要な働きをしている[アドヒージョン・モレキュールズ・イン・ヘルス・アンド・ディジーズ (Adhesion Molecules In Health And Disease); ポール(Paul, L.C.), イシュクーツ (Issekutz, T.Z.) 著; マーセル・デッカー:ニューヨーク (Marcel Dekker: New York), 297-300頁 (1997年)]。

 α 4インテグリンには、 β 1インテグリンとヘテロダイマー(α 4 β 1) を形成するVLA-4(very late antigeN-4)と β 7インテグリンとヘテロダイマー(α 4 β 7)を形成するLPAM-1(lymphocyte Peyer's patch HEV adhesion molecule-1)の二種類の分子の存在が知られている。VLA-4は、リンパ球、単球、好酸球およびマスト細胞上に発現し、血管内皮上に発現するVCAM-1 (Vascular Cell Adhesion Molecule-1)とフィブロネクチンがそのリガンドである。またLPAM-1は、リンパ球、単球、好酸球、および好塩基球上に発現し、VCAM-1とフィブロネクチンならびに腸管粘膜、腸間膜リンパ節、パイエル板および脾臓中の高内皮細静脈(HEV)に発現するMadCAM-1 (mucosal addressin cell adhesion molecule)がそのリガンドである。

炎症反応時にはVLA-4およびLPAM-1と、VCAM-1またはMadCAM-1との相互作用により、炎症細胞と血管内皮細胞が強固に接着することが知られている[アドヒージョン・モレキュールズ・イン・ヘルス・アンド

・ディジーズ (Adhesion Molecules In Health And Disease); ポール (Paul, L.C.), イシュクーツ (Issekutz, T.Z.) 著; マーセル・デッカー:ニューヨーク (Marcel Dekker: New York), 297-300頁 (1997年)]。

種々の病理学的過程にα4インテグリンを介した接着が関与するこ とが知られており、該病理学的過程としては例えば、実験的自己免疫 性脳脊髄炎 (EAE) 、多発性硬化症 (MS) 、脳髄炎等の炎症性脳障害「 ネーチャー (Nature), 356巻, 63頁 (1992年)、ジャーナル・オブ・エ クスペリメンタル・メディシン (J. Exp. Med.), 177巻, 57頁 (1993) 年)]、喘息[ジャーナル・オブ・エクスペリメンタル・メディシン(J. Exp. Med.), 180巻, 795頁 (1994年)、ジャーナル・オブ・クリニカル ・インベスティゲーション (J. Clin. Invest.), 93巻, 776頁 (1994 年)、ジャーナル・オブ・イムノロジー (J. Immunology), 150巻, 2407 頁 (1993年)]、炎症性腸疾患(潰瘍性大腸炎およびクローン病を含む) [ジャーナル・オブ・イムノロジー (J. Immunology), 152巻, 3238 頁 (1994年)]、慢性関節リウマチ [ジャーナル・オブ・イムノロジー (J. Immunology), 147巻, 4207頁 (1991年)、アナルス・オブ・リュー マティック・ディジィーズ (Annals Rheumatic Dis.), 52巻, 672頁 (1993年)、ジャーナル・オブ・クリニカル・インベスティゲーション 「(J. Clin. Invest.), 93巻, 405頁 (1994年)、ジャーナル・オブ・ク リニカル・インベスティゲーション (J. Clin. Invest.), 89巻, 1445 頁 (1991年)]、糖尿病(急性若年性糖尿病を含む) [プロシーディン グ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシーズ・オ ブ・ユー・エス・エー (Proc. Nat. Acad. Sciences of U. S. A), 90 巻, 10494頁 (1993年)、ダイアビーティーズ (Diabetes), 43巻, 529 頁 (1994年)、ジャーナル・オブ・クリニカル・インベスティゲーショ ン (J. Clin. Invest.), 93巻, 1700頁 (1994年)] 、腫瘍転移 [キャ ンサー・リサーチ (Can. Res.), 54巻, 233頁 (1994年)、インターナ ショナル・ジャーナル・オブ・キャンサー (Int. J. Can.), 58巻, 298 頁 (1994年)、ザ・ジャーナル・オブ・パソロジー (J. Path.), 170巻

、429頁(1993年)、ディフェレンシエーション(Diff.)、52巻、239頁(1993年)、ブリティッシュ・ジャーナル・オブ・キャンサー(British J. Cancer)、68巻、862頁(1993年)、ジャパニーズ・ジャーナル・オブ・キャンサー・リサーチ(Japanese J. Cancer Res.)、83巻、1304頁(1992年)]、アテローム性硬化症[サイエンス(Science)、251巻、788頁(1991年)、、アーテリオスクレロシス・トロンボシス(Arterioscler. Thromb.)、13巻、197頁(1993年)]、組織移植[トランスプランテーション・プロシーディングス(Transpl. Proceed.)、25巻、813頁(1993年)]、痴呆症[アメリカン・ジャーナル・オブ・パソロジー(Am. J. Path.)、144巻、27頁(1994年)]、アトピー性皮膚炎[ジャーナル・オブ・アレルギー・クリニカル・イムノロジー(J. Allergy Clin. Immunol.)、102巻、461頁(1998年)]、アルツハイマー病、AIDS、髄膜炎、脳炎、発作および他の脳障害、腎炎、網膜炎、乾癬、心筋虚血ならびに成人呼吸窮迫症候において起こるような急性白血球媒介肺障害等があげられる。

 α 4インテグリン阻害剤の抗炎症効果は、 α 4インテグリンとそのリガンドとの相互作用を阻害する抗 α 4抗体を用い、さまざまな炎症モデルで検討されている。例えば、実験的自己免疫性脳脊髄炎(EAE)、多発性硬化症(MS)[ネーチャー(Nature)、356巻、63頁(1992年)、ニューロロジー(Neurology)、47巻、1053頁(1996年)]、喘息[ジャーナル・オブ・アレルギー・クリニカル・イムノロジー(J. Allergy Clin. Immunol.),100巻、242頁(1997年)、インターナショナル・アーカイブス・オブ・アレルギー・アンド・イムノロジー(Int. Arch. Allergy Immunol.),112巻、287頁(1997年)]、慢性関節リウマチ[ジャーナル・オブ・リューマトロジー(J. Rheumatol.),23巻、2086頁(1996年)、イムノロジー(Immunology)、88巻、569頁(1996年)]、糖尿病[ジャーナル・オブ・クリニカル・インベスティゲーション(J. Clin. Invest.),93巻、1700頁(1994年)]、腎炎[ジャーナル・オブ・イムノロジー(J. Immunol.),162巻、5519頁(1999年)]、組織移植[ジャーナル・オブ・クリニカル・インベスティゲーション(J. Clin.

Invest.), 95巻, 2601頁(1995年)]、炎症性腸疾患[ジャーナル・オブ・クリニカル・インベスティゲーション(J. Clin. Invest.), 92巻, 372頁(1993年)]、接触過敏症[ヨーロッパ・ジャーナル・オブ・イムノロジー(Eur. J. Immunol.), 23巻, 682頁(1993年)]等において α 4インテグリン阻害剤が有効である。

フェニルアラニン骨格をその構造中に有する化合物が、W098/53814, W098/53817, W099/20272, W099/25685, W099/26922, W099/26923, W001/12183, W001/14328, W098/58902, W099/64395. US6291511, W099/06431, W099/36393, W002/18320, W099/06390. W099/06435, W000/43354, W000/43369, W000/43371, W000/43372, W000/43413, WOO2/08202, W099/10312, W099/10313, W000/43415, W000/51974, W001/42225, W099/37618, W099/64390. W000/48994, W001/42215, W000/18759. W000/73260, W001/47867, W002/04426, W099/67230, W000/37444, JP01/163802, W001/21584, W001/32610, W000/35855, W001/36376, W002/16329, DE19962936, W002/14272, W001/68586, WOO2/02556, WOO1/47868, WOO2/20522, WOO2/28830, WOO2/57242, WO 02/42264, W002/68398, US6410781 にα4インテグリン阻害剤として 記載されている。

しかしながら、これらの化合物において実際の治療に用いられている α 4インテグリン阻害剤は存在せず、より活性の強い化合物、より経口吸収性がよい化合物等、治療および予防のための使用に好ましい性質を有する α 4インテグリン阻害剤の開発が望まれている。

発明の開示

本発明の目的は、α4インテグリン阻害剤として有用であり、α4インテグリンを介した接着機構が関与する各種疾患(例えば、多発性硬化症、喘息、炎症性腸疾患、慢性関節リウマチ、糖尿病、腫瘍転移、動脈硬化症、アトピー性皮膚炎、腎炎、乾癬、心筋虚血、臓器移植時の細胞拒絶反応等)の治療および/または予防等に有用なフェニルアラニン誘導体またはその薬理学的に許容される塩を提供することにある。

本発明は、以下の(1)~(11)に関する。

(1)式(I)

{式中、mおよびnは同一または異なって、1または2を表し、R²は置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルキニル、置換もしくは非置換のシクロアルケニル、置換もしくは非置換のシクロアルケニル、置換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基または置換もしくは非置換の脂環式複素環基を表し、

 R^1 は置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルキニル、置換もしくは非置換のシクロアルキル、置換もしくは非置換のアリール、置換もしくは非置換の脂環式複素環基、一 $C(=Y)NR^9R^{10}$ (式中、Yは酸素原子または硫黄原子を表し、 R^9 および R^{10} は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルキール、置換もしくは非置換のシクロアルキル、置換もしくは非置換のシクロアルキル、置換もしくは非置換のが香族複素環基または置換もしくは非置換の脂環式複素環基を表す)、 $-C(=0)R^{9a}$ (式中、 R^{9a} は前記 R^9 と同義である)、 $-C(=0)OR^{9b}$ (式中、 R^{9b} は前記 R^9 の定義から水素原子を除いたものと同義である)または $-SO_2R^{11}$ [式中、 R^{11} は前記 R^{9b} と同義であるか、または、 $-NR^{9c}R^{10c}$ (式中、 R^{9c} および R^{10c} はそれぞれ前記 R^{9b} および R^{10} と同義である)を表す]を表し、 R^3 、 R^4 、 R^5 および R^6 は同一または異なって、水素原子、置換もしくは非置換の低級アルキ

ルまたはオキソを表すか、R³、R⁴、R⁵およびR⁶のうち、同一炭素原子上に存在する2つが、該炭素原子と一緒になって、飽和単環式炭化水素環を形成するか、または、R³、R⁴、R⁵およびR⁶のうちの2つが一緒になって低級アルキレンを形成してもよく、R⁻およびR⁶は同一または異なって、水素原子、ハロゲン、ニトロ、置換もしくは非置換のアミノ、置換もしくは非置換の低級アルコキシ、置換もしくは非置換の低級アルキルチオ、置換もしくは非置換の低級アルカノイル、置換もしくは非置換の低級アルキル、置換もしくは非置換のアリール、置換もしくは非置換の皆環式複素環基を表す}で表されるフェニルアラニン誘導体またはその薬理学的に許容される塩。

- (2) R²がR^{2A}<式中、R^{2A}は前記R²と同義であるが、
- (A) 窒素原子上の置換基として、
- (a) $-C(=Y^{1A})NR^{12A}R^{13A}$ (式中、 Y^{1A} は酸素原子または硫黄原子を表し、 R^{12A} および R^{13A} は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルキニルまたは置換もしくは非置換のシクロアルキルを表す)、
 - (b) C(=0) R^{12Aa} (式中、R^{12Aa}は前記 R^{12A}と同義である)、
 - (c)-C(=0)OR^{12Ab} (式中、R^{12Ab}は前記R^{12A}と同義である) または
- (d) $-SO_2R^{13A}$ [式中、 R^{13A} は前記 R^{12A} の定義に加え、 $-NR^{12Ac}R^{13Ac}$ (式中、 R^{12Ac} および R^{13Ac} はそれぞれ前記 R^{12A} および R^{13A} と同義である)を表す]を有する、置換もしくは非置換の2-ピロリルまたは4位置換4-ピペリジニル、
- (B) 4位(R^2 に隣接するカルボニルとの結合位置を1位とする)に置換基として $-NR^{14}$ [式中、 R^{14} は $-C(=Y^{1A})NR^{12A}R^{13A}$ (式中、 Y^{1A} 、 R^{12A} および R^{13A} はそれぞれ前記と同義である)、 $-C(=0)R^{12Aa}$ (式中、 R^{12Aa} は前記と同義である)または $-SO_2R^{13A}$ (式中、 R^{13A} は前記と同義である)を表す]で置換された低級アルキル、低級アルケニルもしくは低級アルキニルを有する、置

換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基 または置換もしくは非置換の脂環式複素環基、

- (C) 3位に置換基を有する、2,2-ジメチルシクロペンチル、1,2,2-トリメチルシクロペンチル、2,2,3-トリメチルシクロペンチル
 - (D) 置換基として、
- $(a)-NR^{15}SO_2R^{16}$ (式中、 R^{15} および R^{16} は同一または異なってそれぞれ前記 R^{12A} と同義である)、
- (b) 環構造中の1位(R^2 に隣接するカルボニルとの結合位置を1位とする)が窒素原子であり2位部分(R^2 に隣接するカルボニルとの結合位置を1位とする)が $-SO_2$ -で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基、
- (c) 環構造中の 2位(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が $-SO_2R^{16}$ (式中、 R^{16} は前記と同義である)で置換された窒素原子で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基、または
- (d) 環構造中の 1 位(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が $-NR^{15}SO_2R^{16}$ (式中、 R^{15} および R^{16} はそれぞれ前記と同義である)で置換された炭素原子で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基または置換もしくは非置換のシクロアルキルを有する置換もしくは非置換の低級アルキル、または

、 R^5 および R^6 がそれぞれ R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} (式中、 R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} はそれぞれ R^3 、 R^4 、 R^5 および R^6 と同義であるが、 R^{2A} が酸素原子および硫黄原子から選ばれる 1 または 2 個の原子を有する置換もしくは非置換の脂環式複素環基であるとき、 R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} のいずれも置換もしくは非置換の低級アルキルまたはオキソとはならない)である上記(1)記載のフェニルアラニン誘導体またはその薬理学的に許容される塩。

- (3) R²がR^{2B} [式中、R^{2B}は前記R²と同義であるが、
- (A) 置換 2 ピロリルまたは 1 位と 4 位に置換基を有する 4 ピペリジニル、
- (B) 4 位の置換基として置換低級アルキル、置換低級アルケニルもしくは置換低級アルキニルを有する、置換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基または置換もしくは非置換の脂環式複素環基、
 - (C) 置換シクロペンチル、
 - (D) 置換基として、
 - (a) $-NR^{15}SO_2R^{16}$ (式中、 R^{15} および R^{16} はそれぞれ前記と同義である)、
- (b) 環構造中の1位 (R^2 に隣接するカルボニルとの結合位置を1位とする) が窒素原子であり2位部分が $-SO_2$ -で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基、
- (c) 環構造中の 2 位(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が $-SO_2R^{16}$ (式中、 R^{16} は前記と同義である)で置換された窒素原子で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基、または
- (d) 環構造中の 1 位(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が $-NR^{15}SO_2R^{16}$ (式中、 R^{15} および R^{16} はそれぞれ前記と同義である)で置換された炭素原子で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基または置換もしくは非置換のシクロアルキルを有する置換もしくは非置換の低級アルキル、または
 - (E) 環構造中の2位および3位部分 (R²に隣接するカルボニルとの結

合位置を 1 位とする)が-C(=0) NH-または-C(=S) NH-で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基とはならない〕であり、 R^1 が R^{1A} (式中、 R^{1A} は前記と同義である)であり、 R^3 、 R^4 、 R^5 および R^6 がそれぞれ R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} (式中、 R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} はそれぞれ前記と同義である)である上記(1)記載のフェニルアラニン誘導体またはその薬理学的に許容される塩。

- (4) R^1 が置換もしくは非置換の低級アルキル、置換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基、置換もしくは非置換の脂環式複素環基、 $-C(=S)NR^9R^{10}$ (式中、 R^9 および R^{10} はそれぞれ前記と同義である)、 $-C(=0)R^{9a}$ (式中、 R^{9a} は前記と同義である)または $-SO_2R^{11}$ (式中、 R^{11} は前記と同義である)である上記(1)記載のフェニルアラニン誘導体またはその薬理学的に許容される塩。
- (5) R^2 が置換もしくは非置換のアリール、置換もしくは非置換の 芳香族複素環基または式(II)

(式中、Qは $-CH_2$ -または硫黄原子を表し、 R^{17} は置換もしくは非置換の低級アルキル、置換もしくは非置換のアリールまたは置換もしくは非置換の芳香族複素環基を表す)を表す上記(1)または(4)記載のフェニルアラニン誘導体またはその薬理学的に許容される塩。

- (6) R³、R⁴、R⁵およびR⁵が水素原子である上記(1)、(4) および(5) のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩。
- (7)上記(1)~(6)のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩を有効成分として含有する医薬。
 - (8) 上記 (1) ~ (6) のいずれかに記載のフェニルアラニン誘

導体またはその薬理学的に許容される塩を有効成分として含有する α 4インテグリン阻害剤。

- (9)上記(1)~(6)のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩を有効成分として含有する抗炎症剤。
- (10) α 4インテグリン阻害剤の製造のための(1) \sim (6) のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩の使用。
- (11) 抗炎症剤の製造のための(1)~(6) のいずれかに記載 のフェニルアラニン誘導体またはその薬理学的に許容される塩の使用。
- (12) (1) ~ (6) のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩の有効量を投与する工程を含むことを特徴とするα4インテグリン阻害剤を介した接着機構が関与する疾患の治療方法。
- (13) (1) ~ (6) のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩の有効量を投与する工程を含むことを特徴とする炎症の治療方法。
 - 式(I)および(II)の各基の定義において、
- (i) 低級アルキルとしては、例えば直鎖状または分枝状の炭素数1~10のアルキル、具体的にはメチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、イソオクチル、ノニル、デシル等があげられる。低級アルコキシ、低級アルキルチオ、低級アルカノイルおよびモノもしくはジ低級アルキルアミノの低級アルキル部分は、前記低級アルキルと同義であり、ジ低級アルキルアミノの2つの低級アルキル部分は同一でも異なっていてもよい。また、 R^3 、 R^4 、 R^5 および R^6 のうちの2つが一緒になって形成される低級アルキレンとしては、前記の低級アルキルから水素原子を1つ除いたもの等があげられる。
 - (ii)低級アルケニルとしては、例えば直鎖状または分枝状の炭素数2

~8のアルケニル、具体的にはビニル、アリル、1 - プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、オクタジエニル等があげられる。

- (iii)低級アルキニルとしては、例えば直鎖状または分枝状の炭素数2~8のアルキニル、具体的にはエチニル、1 プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、プロパルギル等があげられる。
- (iv)シクロアルキルとしては、例えば炭素数3~10の、飽和単環式炭化水素基または二環系もしくは三環系の飽和架橋環式炭化水素基、具体的にはシクロプロピル、シクロブチル、シクロペンチル、シクロペチシル、シクロペプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロ[2.2.1] ペプチル、ノルアダマンチル、アダマンチル等があげられる。R³、R⁴、R⁵およびR⁶のうち、同一炭素原子上に存在する2つが、該炭素原子と一緒になって、形成される飽和単環式炭化水素環としては、例えば炭素数3~10のものがあげられ、具体的には、シクロプロパン、シクロブタン、シクロペンタン、シクロペキサン、シクロペプタン、シクロオクタン、シクロノネン、シクロデカン等があげられる。
- (v)シクロアルケニルとしては、例えば炭素数3~8の不飽和単環式炭化水素基、具体的にはシクロプロペニル、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロオクテニル、シクロペンタジエニル、シクロペナタジエニル、シクロペンタジエニル、シクロヘナジエニル、シクロヘプタジエニル等があげられる。
- (vi)アリールとしては、例えば炭素数 $6\sim30$ の $6\sim14$ 員環の単環性芳香環基または二環~五環系の縮合芳香環基、好ましくは炭素数 $6\sim14$ の $6\sim8$ 員環の単環性芳香環基または $3\sim8$ 員環が縮合した二環~五環系の縮合芳香環基があげられ、縮合芳香環基は飽和炭素環を含んでいてもよく、具体的にはフェニル、ナフチル、ペンタレニル、インデニル、アントリル、フェナントリル、インダニル、インダセニル、1, 2, 3, 4ーテトラヒドロナフチル、6, 7, 8, 9ーテトラヒドロー5

Hーベンゾシクロヘプチル等があげられる。

(vii)芳香族複素環基としては、例えば窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む5員または6員の単環性芳香族複素環基、3~8員の環が縮合した二環または三環性で窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む縮環性芳香族複素環基等があげられ、具体的にはピリジル、ピラジニル、ピリミジニル、ピリダジニル、ベンゾイミダゾリル、2ーオキソベンゾイミダゾリル、ベンゾトリアゾリル、ベンゾフリル、ベンゾチエニル、プリニル、ベンゾオキサゾリル、インインドリル、プリニル、キノリル、インダゾリル、フタラジニル、ナフチルリジニル、キノキサリニル、ピロリル、ピラゾリル、キナゾリニル、シンノリニル、トリアゾリル、トリアジニル、テトラゾリル、インチアゾリル、オキサゾリル、インオキサゾリル、チアジアゾリル等があげられる。

(viii)脂環式複素環基としては、例えば窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む5員または6員の単環性脂環式複素環基、3~8員の環が縮合した二環または三環性で窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む縮環性脂環式複素環基等があげられ、具体的にはピロリジニル、2,5ージオキソピロリジニル、チアゾリジニル、オキサゾリジニル、ピペリジル、ピペリジノ、ピペラジニル、ホモピペラジニル、ホモピペリジル、ホモピペリジノ、ピペラジニル、ホモピペラジニル、ホモピペリジル、ホモピペリジノ、モルホリニル、モルホリノ、チオモルホリニル、チオモルホリノ、ピラニル、テトラヒドロピリジル、テトラヒドロピラニル、テトラヒドロフラニル、テトラヒドロキノリル、インドリニル、インインドリニル、ペルヒドロアゼピニル、ペルヒドロアゾシニル、1,3ージオキサニル等があげられる。

- (ix)ハロゲンは、フッ素、塩素、臭素およびヨウ素の各原子を表す。
- (x) 置換低級アルキル、置換低級アルケニル、置換低級アルキニル、

置換低級アルコキシ、置換低級アルキルチオおよび置換低級アルカノ イルにおける置換基としては、同一または異なって例えば置換数1~3 の、ハロゲン、ヒドロキシ、ニトロ、シアノ、オキソ、メルカプト、 アジド、アミノ、置換もしくは非置換の低級アルコキシ、置換もしく は非置換の低級アルキルチオ、置換もしくは非置換の低級アルカノイ ル、モノもしくはジ低級アルキルアミノ、置換もしくは非置換のシク ロアルキル、置換もしくは非置換のシクロアルケニル、置換もしくは 非置換のアリール、置換もしくは非置換のアリールオキシ、置換もし くは非置換の芳香族複素環基、置換もしくは非置換の脂環式複素環基、 -C(=Y¹)NR¹²R¹³ (式中、Y¹は酸素原子または硫黄原子を表し、R¹²およ びR¹³は同一または異なって、水素原子、置換もしくは非置換の低級ア ルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換 の低級アルキニル、置換もしくは非置換のシクロアルキル、置換もし くは非置換のアリール、置換もしくは非置換の芳香族複素環基または 置換もしくは非置換の脂環式複素環基を表すか、R12およびR13が隣接す る窒素原子と一緒になって複素環基を形成してもよい)、-C(=0)R12a (式中、R12aは水素原子、置換もしくは非置換の低級アルキル、置換も しくは非置換の低級アルケニル、置換もしくは非置換の低級アルキニ ル、置換もしくは非置換のシクロアルキル、置換もしくは非置換のア リール、置換もしくは非置換の芳香族複素環基または置換もしくは非 置換の脂環式複素環基を表す)、-C(=0)OR^{12b}(式中、R^{12b}は前記R^{12a} と同義である)、 $-SO_2R^{14}$ [式中、 R^{14} は前記 R^{12} °と同義であるか、また は-NR¹²°R¹³°(式中、R¹²°およびR¹³°はそれぞれ前記R¹²およびR¹³と同義で ある)を表す]、-NH SO_2R^{12d} (式中、 R^{12d} は前記 R^{12} aと同義である)、 -NHC(=S)NHR^{12e} (式中、R^{12e}は前記R¹² °と同義である) または-NHC(=0)(CH₂)₀0 R^{12f}(式中、pは、1~8の整数を表し、R^{12f}は前記R¹² eと 同義である) 等があげられる。

ここで示した低級アルコキシ、低級アルキルチオ、低級アルカノイルおよびモノもしくはジ低級アルキルアミノの低級アルキル部分、シクロアルキル、シクロアルケニル、アリールおよびアリールオキシの

アリール部分、芳香族複素環基、脂環式複素環基ならびにハロゲンは、それぞれ前記低級アルキル(i)、シクロアルキル(iv)、シクロアルケニル(v)、アリール(vi)、芳香族複素環基(vii)、脂環式複素環基(viii) およびハロゲン(ix)と同義であり、ジ低級アルキルアミノの2つの低級アルキル部分は、同一でも異なっていてもよい。

ここで示した置換低級アルコキシ、置換低級アルキルチオ、置換低級アルカノイル、置換シクロアルキルおよび置換シクロアルケニルにおける置換基としては、同一または異なって例えば置換数1~3の、ハロゲン等があげられ、置換アリール、置換アリールオキシ、置換芳香族複素環基および置換脂環式複素環基における置換基としては、同一または異なって例えば置換数1~3の、ハロゲン、ヒドロキシ、ニトロ、シアノ、オキソ、メルカプト、アジド、アミノ、カルボキシ、置換もしくは非置換の低級アルキルにおける置換基としては、同一または異なって例えば置換数1~3の、ヒドロキシ、ハロゲン等があげられる]、置換もしくは非置換の低級アルコキシ「該置換低級アルコキシにおける置換基としては、同一または異なって例えば置換数1~3の、ハロゲン等があげられる]、低級アルキルチオ、低級アルカノイル、モノもしくはジ低級アルキルアミノ、シクロアルキル、シクロアルケニル、アリール、アリールオキシ、芳香族複素環基等があげられる。

また、ここで示した低級アルキル、低級アルコキシ、低級アルキルチオ、低級アルカノイルおよびモノもしくはジ低級アルキルアミノの低級アルキル部分、シクロアルキル、シクロアルケニル、アリールおよびアリールオキシのアリール部分、芳香族複素環基、脂環式複素環基ならびにハロゲンは、それぞれ前記低級アルキル(i)、シクロアルキル(iv)、シクロアルケニル(v)、アリール(vi)、芳香族複素環基(vii)、脂環式複素環基(viii)およびハロゲン(ix)と同義であり、ジ低級アルキルアミノの2つの低級アルキル部分は、同一でも異なっていてもよい。

また、ここで示したR¹²およびR¹³が隣接する窒素原子と一緒になって

形成する複素環基としては、例えば少なくとも1個の窒素原子を含む5員または6員の単環性複素環基(該単環性複素環基は、他の窒素原子、酸素原子または硫黄原子を含んでいてもよい)、3~8員の環が縮合した二環または三環性で少なくとも1個の窒素原子を含む縮環性複素環基(該縮環性複素環基は、他の窒素原子、酸素原子または硫黄原子を含んでいてもよい)等があげられ、具体的にはピロリジニル、ピペリジノ、ピペラジニル、モルホリノ、チオモルホリノ、ホモピペリジノ、ホモピペラジニル、テトラヒドロピリジニル、テトラヒドロキノリニル、デトラヒドロイソキノリニル等があげられる。

(xi)置換シクロアルキル、置換シクロアルケニル、置換アリール、置換芳香族複素環基、置換脂環式複素環基、置換2-ピロリル、4位置換4-ピペリジニル、3位に置換基を有する、2,2ージメチルシクロペンチル、1,2,2ートリメチルシクロペンチル、2,2,3ートリメチルシクロペンチルおよび1,2,2,3ーテトラメチルシクロペンチル、1位と4位に置換基を有する4ーピペリジニルならびに置換シクロペンチルにおける置換基としては、前記置換低級アルキルにおける置換基(x)の定義であげた基に加え、置換もしくは非置換の低級アルキル等があげられる。

ここで示した低級アルキルは、前記低級アルキル(i)と同義であり、置換低級アルキルにおける置換基としては、同一または異なって例えば置換数1~3の、ヒドロキシ、ハロゲン(該ハロゲンは前記ハロゲン(ix)と同義である)等があげられる。

(xii)置換アミノにおける置換基としては、同一または異なって置換数 $1\sim2$ の、低級アルキル、低級アルカノイル等があげられる。ここで示した低級アルキルおよび低級アルカノイルの低級アルキル部分は、前記低級アルキル(i)と同義である。

以下、式(I)で表される化合物を化合物(I)という。他の式番号の化合物についても同様である。

化合物(I)の薬理学的に許容される塩としては、毒性のない、水溶性のものが好ましく、例えば酸付加塩、金属塩、アンモニウム塩、有機

アミン付加塩、アミノ酸付加塩等があげられる。

酸付加塩としては、例えば塩酸塩、臭化水素酸塩、硝酸塩、硫酸塩、 リン酸塩等の無機酸塩、ベンゼンスルホン酸塩、安息香酸塩、クエン 酸塩、フマル酸塩、グルコン酸塩、乳酸塩、マレイン酸塩、リンゴ酸 塩、シュウ酸塩、メタンスルホン酸塩、酒石酸塩等の有機酸塩等があ げられる。

金属塩としては、例えばナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アルミニウム塩、亜鉛塩等があげられる。

アンモニウム塩としては、例えばアンモニウム、テトラメチルアンモニウム等があげられ、有機アミン付加塩としては、例えばモルホリン付加塩、ピペリジン付加塩等があげられ、アミノ酸付加塩としては、例えばグリシン付加塩、フェニルアラニン付加塩、リジン付加塩、アスパラギン酸付加塩、グルタミン酸付加塩等があげられる。

次に化合物(I)の製造法について説明する。

なお、以下に示した製造法において、定義した基が反応条件下変化するか、または方法を実施するのに不適切な場合、有機合成化学で常用される方法、例えば官能基の保護、脱保護等 [例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第三版 (Protective Groups in Organic Synthesis, third edition)、グリーン (T. W. Greene) 著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド (John Wiley & Sons Inc.) (1999年)参照] の手段に付すことにより容易に製造を実施することができる。また、必要に応じて置換基導入等の反応工程の順序を変えることもできる。

化合物(I)は、例えば以下に示す製造法によって得ることができる。 製造法1:

$$\mathbb{R}^{7}$$
 \mathbb{R}^{8} \mathbb{R}^{3} \mathbb{R}^{1} \mathbb{R}^{1} \mathbb{R}^{1} \mathbb{R}^{7} \mathbb{R}^{4} \mathbb{R}^{1} \mathbb{R}^{1} \mathbb{R}^{6} \mathbb{R}^{5} \mathbb{R}^{8} \mathbb{R}^{8} \mathbb{R}^{6} \mathbb{R}^{5} \mathbb{R}^{9} \mathbb{R}^{1} \mathbb{R}^{1}

く式中、Xはハロゲン(該ハロゲンは前記ハロゲン(a)と同義である)または $-0S0_2$ W{Wは置換もしくは非置換の低級アルキル[該低級アルキルは前記低級アルキル(i)と同義であり、該置換低級アルキルにおける置換基としては、同一または異なって置換数 $1\sim3$ のハロゲン(該ハロゲンは前記ハロゲン(a)と同義である)等があげられる]または置換もしくは非置換のアリール[該アリールは前記アリール(vi)と同義であり、該置換アリールにおける置換基としては、同一または異なって置換数 $1\sim3$ のハロゲン(該ハロゲンは前記ハロゲン(a)と同義である)、低級アルキル(該低級アルキルは前記低級アルキル(i)と同義である)等があげられる]を表す}を表し、 P^1 は低級アルキル(該低級アルキルキルは前記低級アルキル(該低級アルキルは前記低級アルキル(な低級アルキルなが、 P^1 、 P^2 、 P^3 、 P^4 、 P^5 、 P^6 、 P^7 および P^8 はそれぞれ前記と同義である>

[工程1]

本反応は公知の方法 [例えばジャーナル・オブ・アメリカン・ケミカル・ソサエティ (J. Am. Chem. Soc.), 118巻, 7215頁 (1996年)、テトラヘドロン・レターズ (Tetrahedron Lett.), 38巻, 6363頁 (1997年)、ジャーナル・オブ・オーガニック・ケミストリー (J. Org. Chem.), 66巻, 2498頁 (2001年)] 等に準じて行うことができる。

例えば化合物(III)を、反応に不活性な溶媒中、触媒量~1当量のパラジウム錯体、触媒量~1当量のリン配位子および1当量~10当量の塩基存在下、1当量~過剰量の化合物(IV)と反応させることにより、化合物(V)を得ることができる。

また R^7 または R^8 がニトロ等の電子吸引基の場合は、化合物(III)を、 反応に無溶媒もしくは不活性な溶媒中、1当量~過剰量の化合物(IV)と 反応させることにより、化合物(V)を得ることもできる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばテトラヒドロフラン、トルエン、キシレン、1,4ージオキサン、ジメトキシエタン、ジメチルホルムアミド等を単独でまたはそれらを混合して用いることができ、中でもテトラヒドロフランまたはトルエンが好ましい。

パラジウム錯体としては、例えば酢酸パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、テトラキストリフェニルホスフィンパラジウム等を用いることができ、中でも酢酸パラジウムまたはトリス(ジベンジリデンアセトン)ジパラジウムが好ましい。

リン配位子としては、例えばトリフェニルホスフィン、トリーtert ーブチルホスフィン、トリーtort ーブチルホスフィン、トリーtort (ジフェニルホスフィノ) フェロセン、tort 2, tort 3, tort 3, tort 3, tort 4, tort 4, tort 4, tort 4, tort 6, tort 6, tort 6, tort 6, tort 6, tort 7, tort 6, tort 6, tort 6, tort 6, tort 6, tort 7, tort 6, tort 6, tort 7, tort 6, tort 6, tort 7, tort 7, tort 6, tort 7, tort 7, tort 7, tort 7, tort 7, tort 8, tort 7, tort 8, tort 9, tort 9,

塩基としては、例えば炭酸セシウム、リン酸カリウム、ナトリウム tert-ブトキシド、水素化ナトリウム、トリエチルアミン等を用いるこ とができ、中でも炭酸セシウムまたはナトリウムtert-ブトキシドが好 ましい。

反応は室温~120℃の間の温度、好ましくは60℃~100℃の間の温度 で行われ、通常5分間~48時間で終了する。

化合物(III)としてはW098/53817、W099/36393等に記載の方法に準じて合成したものを用いることができる。化合物(IV)としては市販品または新実験化学講座、14巻、日本化学会(1978年)等に記載の方法に準じて合成したものを任意に用いることができる。

[工程2]

工程1で得られる化合物(V)を、例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第三版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(John Wiley & Sons Inc.)(1999年)等に記載のカルボン酸の保護基を脱保護する方法に準じて処理することにより、化合物(I)を得ることができる。

例えばP¹がメチル、エチル等である場合は、反応に不活性な溶媒中、例えば水酸化ナトリウム、水酸化カリウムまたは水酸化リチウム等のアルカリの水溶液中で加水分解処理することにより、P¹がtert-ブチル等である場合は、不活性な溶媒中または無溶媒で、例えばトリフルオロ酢酸、塩酸等で酸処理することにより化合物(I)を得ることが可能である。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばテトラヒドロフラン、ジオキサン、1,2ージメトキシエタン、ベンゼン、トルエン、キシレン、ジメチルホルムアミド、ジメチルアセトアミド、Nーメチルピロリドン、メタノール、エタノール、Nープロパノール、イソプロピルアルコール等を単独でまたはそれらを混合して用いることができる。

前述の化合物(V)は、例えば以下に示す方法によっても得ることができる。

製造法2:

[式中、 P^2 は低級アルキルオキシカルボニル(該低級アルキルは前記低級アルキル(i)と同義である)、ベンジル等のアミノ基の保護基を表し、 X^1 は前記Xと同義であり、m、n、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 および P^1 はそれぞれ前記と同義である〕

[工程3]

工程1と同様にして、化合物(VI)に化合物(IV)を反応させることにより、化合物(VII)を得ることができる。化合物(VI)としては例えばW098/53817、W099/36393等に記載の方法に準じて合成したものを任意に用いることができる。

「工程4]

工程 3 で得られる化合物 (VII) を、例えばプロテクティブ・グループス・イン・オーガニック・シンセシス第三版 (Protective Groups in Organic Synthesis, third edition)、グリーン (T.W. Greene) 著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド (John Wiley & Sons Inc.) (1999年) 等に記載のアミノ基の保護基を脱保護する方法に付して、化合物 (VIII)を得ることができる。

例えばP²がtert-ブトキシカルボニルである場合は、不活性な溶媒中または無溶媒で、例えばトリフルオロ酢酸、塩酸等で酸処理することにより、またP²がベンジル等である場合は、不活性な溶媒中、触媒量

のパラジウムー活性炭等の存在下、水素化分解することにより脱保護が可能である。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばジクロロメタン、クロロホルム、テトラヒドロフラン、トルエン、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタン、ベンゼン、トルエン、キシレン、ジメチルホルムアミド、ジメチルアセトアミド、Nーメチルピロリドン、メタノール、エタノール、Nープロパノール、イソプロピルアルコール等を単独でまたはそれらを混合して用いることができる。

[工程 5]

工程4で得られる化合物(VIII)を、反応に不活性な溶媒中、1当量~10当量の縮合剤の存在下、1当量~5当量のカルボン酸(IX)と反応させることにより、化合物(V)を得ることができる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばジクロロメタン、クロロホルム、ジクロロエタン、ジメチルホルムアミド、ジメチルアセトアミド、Nーメチルピロリドン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ベンゼン、トルエン、キシレン、酢酸エチル、アセトニトリル等を単独でまたはそれらを混合して用いることができ、中でもジメチルホルムアミドもしくはテトラヒドロフランまたはそれらの混合溶媒が好ましい。

縮合剤としては、例えばジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、N-x チルーN, - (3-ジメチルアミノプロピル)カルボジイミドまたはその塩酸塩、ベンゾトリアゾールー1-イルートリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン化物塩、ジフェニルホスホリルアジド等が用いられ、中でもN-x チルーN, - (3-ジメチルアミノプロピル)カルボジイミドまたはその塩酸塩が好ましい。

また、この反応は、必要に応じて1当量~5当量の添加剤の共存下に 行われる。

添加剤としては、例えばNーヒドロキシコハク酸イミド、1ーヒドロキシベンゾトリアゾール、3ーヒドロキシー4ーオキソー3,4ージヒドロー1,2,3ーベンゾトリアジン等が用いられ、中でも1ーヒドロキシベンゾトリアゾールが好ましい。

反応は0℃~150℃の間の温度、好ましくは室温~80℃の間の温度で行われ、通常5分間~48時間程度で終了する。

また上述の方法以外に、相当するカルボン酸(IX)の反応性等価体、例えばカルボン酸(IX)の酸クロライド、活性エステルまたは混合酸無水物等をカルボン酸(IX)のかわりに用い、反応に不活性な溶媒中または無溶媒で、塩基の存在下または非存在下、化合物(VIII)と反応させることにより、化合物(V)を得ることもできる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばジクロロメタン、クロロホルム、テトラヒドロフラン、ジオキサン、トルエン、酢酸エチル、アセトニトリル、ピリジン等が用いられ、中でもジクロロメタンまたはテトラヒドロフランが好ましい。

塩基としては、例えばトリエチルアミン、ピリジン、ジイソプロピルエチルアミン、ジメチルアミノピリジン等の有機塩基、ジイソプロピルアミノメチルポリスチレン、ポリビニルピリジン、モルホリノメチルポリスチレン等の固相に担持された塩基等が用いられ、中でもトリエチルアミンまたはピリジンが好ましく、並列合成法(コンビナトリアル・ケミストリー等)で反応を行う場合には、ジイソプロピルアミノメチルポリスチレンが好ましい。

反応は0℃~100℃の間の温度、好ましくは室温~80℃の間の温度で行われ、通常5分間~48時間程度で終了する。

化合物(IX)としては、市販品または新実験化学講座、14巻、日本化学会(1978年)等に記載の方法に準じで合成したものを任意に用いることができる。

前述の化合物(VII)のうちのいくつかの化合物は、以下に示す方法によっても得ることができる。

製造法3:

[式中、 P^{2a} は低級アルキルオキシカルボニル(該低級アルキルは前記低級アルキル(i)と同義である)、ベンジル等のアミノ基の保護基を表し、m、n、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 および P^1 はそれぞれ前記と同義である

「工程 6]

化合物(X)を、例えばプロテクティブ・グループス・イン・オーガニック・シンセシス第三版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W. Greene)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(John Wiley & Sons Inc.)(1999年)等に記載のアミノ基の保護基を脱保護する方法に付して、化合物(XI)を得ることができる。

例えばP^{2®}がtert-ブトキシカルボニルである場合は、不活性な溶媒中または無溶媒で、例えばトリフルオロ酢酸、塩酸等で酸処理することにより、またP^{2®}がベンジル等である場合は、不活性な溶媒中、触媒量のパラジウムー活性炭等の存在下、水素化分解することにより、または2-クロロエチルクロロホルメートと不活性な溶媒中または無溶媒で、反応後、メタノール中で還流させることにより[シンレット(Synlett.),195頁 (1993年)]脱保護が可能である。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよ く、特に限定されるものではないが、例えばジクロロメタン、クロロ

ホルム、テトラヒドロフラン、トルエン、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタン、ベンゼン、トルエン、キシレン、ジメチルホルムアミド、ジメチルアセトアミド、Nーメチルピロリドン、メタノール、エタノール、Nープロパノール、イソプロピルアルコール等を単独でまたはそれらを混合して用いることができる。

化合物(X)は、上述の製法2の工程3に記載の方法またはそれに準じて合成することができる。

[工程 7]

化合物 (VII) のうち、 R^1 が R^{1a} [式中、 R^{1a} は-C(=0) R^{9a} (式中、 R^{9a} は前記と同義である)、-C(=0) 0 R^{9b} (式中、 R^{9b} は前記と同義である)または $-SO_2R^{11}$ (式中、 R^{11} は前記と同義である)を表す]である化合物 (VIIa) は、以下に示す方法によって得ることができる。

(式中、m、n、 R^{1a} 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 P^1 および P^2 は、それぞれ前記と同義である)

化合物(VIIa)は、工程 6 で得られる化合物(XI)を、反応に不活性な溶媒中または無溶媒で、 $1\sim5$ 当量の $R^{9a}C(=0)$ X^2 (式中、 R^{9a} は前記と同義であり、 X^2 は前記 Xと同義である)、 $R^{9b}OC(=0)$ X^{2a} (式中、 R^{9b} は前記と同義であり、 X^{2a} は前記 Xと同義である)または R^{11} SO $_2$ X^{2b} (式中、 R^{11} は前記と同義であり、 X^{2b} は前記 Xと同義である)と、 $1\sim5$ 当量の塩基存在下または非存在下、反応させることにより得ることができる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばジクロロメタン、クロロ

ホルム、テトラヒドロフラン、ジオキサン、トルエン、酢酸エチル、 アセトニトリル、ピリジン等を単独でまたはそれらを混合して用いる ことができ、中でもジクロロメタンまたはテトラヒドロフランが好ま しい。

塩基としては、例えばトリエチルアミン、ピリジン、ジイソプロピルエチルアミン、ジメチルアミノピリジン等の有機塩基、ジイソプロピルアミノメチルポリスチレン、ポリビニルピリジン、モルホリノメチルポリスチレン等の固相に担持された塩基等が用いられ、中でもトリエチルアミンまたはピリジンが好ましく、並列合成法(コンビナトリアル・ケミストリー等)で反応を行う場合には、ジイソプロピルアミノメチルポリスチレンが好ましい。

反応は0℃~100℃の間の温度で、好ましくは室温~80℃の間の温度 で行われ、通常5分間~48時間で終了する。

「工程8]

化合物 (VII) のうち、 R^1 が R^{1b} [式中、 R^{1b} は-C(=Y) NH R^{10} (式中、Yおよび R^{10} はそれぞれ前記と同義である) を表す] である化合物 (VIIb) は、以下に示す方法によって得ることができる。

(式中、m、n、 R^{1b} 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 P^1 および P^2 は、それぞれ前記と同義である)

化合物 (VIIb) は、工程 6 で得られる化合物 (XI) を、反応に不活性な溶媒中、 $1\sim5$ 当量の $R^{10}NC(=Y)$ (式中、 R^{10} およびYは、それぞれ前記と同義である)と、 $1\sim5$ 当量の塩基存在下または非存在下、反応させることにより得ることができる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えば水、メタノール、エタノール、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルスルオキシド、Nーメチルピペリドン等を単独でまたはそれらを混合して用いることができ、中でもテトラヒドロフランが好ましい。

塩基としては、例えば炭酸カリウム、水素化ナトリウム等の無機塩基、トリエチルアミン、ピリジン等の有機塩基、ジイソプロピルアミノメチルポリスチレン、ポリビニルピリジン、モルホリノメチルポリスチレン等の固相に担持された塩基等が用いられ、中でもトリエチルアミンまたはピリジンが好ましく、並列合成法(コンビナトリアル・ケミストリー等)で反応を行う場合には、ジイソプロピルアミノメチルポリスチレンが好ましい。

反応は0℃~150℃の間の温度、好ましくは室温~80℃の間の温度で行われ、通常5分間~48時間で終了する。

[工程9]

化合物(VII)のうち、R¹がR¹° [式中、R¹°は前記R¹の定義のうち、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルキニル、置換もしくは非置換のシクロアルキル、置換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基または置換もしくは非置換の脂環式複素環基を表す]である化合物(VIIc)は、以下に示す方法によって得ることができる。

(式中、m、n、 R^{1c} 、 R^{3} 、 R^{4} 、 R^{5} 、 R^{6} 、 R^{7} 、 R^{8} 、 P^{1} および P^{2} は、それぞれ前記と同義である)

化合物 (VIIc) は、工程 6 で得られる化合物 (XI) を、反応に不活性な溶媒中、 $1\sim10$ 当量の $R^{1\circ}X^{2\circ}$ (式中、 $R^{1\circ}$ は前記と同義であり、 $X^{2\circ}$ は前記 Xと同義である)と、 $1\sim15$ 当量の塩基存在下または非存在下、反応させることにより得ることができる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばアセトン、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルスルオキシド、Nーメチルピペリドン等を単独でまたはそれらを混合して用いることができ、中でもテトラヒドロフランが好ましい。

塩基としては、例えば炭酸カリウム、水素化ナトリウム等の無機塩基、トリエチルアミン、ピリジン等の有機塩基、ジイソプロピルアミノメチルポリスチレン、ポリビニルピリジン、モルホリノメチルポリスチレン等の固相に担持された塩基等が用いられ、中でも炭酸カリウムまたは水素化ナトリウムが好ましく、並列合成法(コンビナトリアル・ケミストリー等)で反応を行う場合には、ジイソプロピルアミノメチルポリスチレンが好ましい。

反応は0℃~150℃の間の温度、好ましくは室温~80℃の間の温度で行われ、通常5分間~48時間程度で終了する。

[工程10]

化合物 (VIIc) のうち、 R^{1c} が $-CH_2R^{1d}$ (式中、 R^{1d} は前記 R^1 の定義における置換もしくは非置換の低級アルキルから末端の $-CH_2$ -を1つ除いた基を表す)である化合物 (VIId) は、以下に示す方法によっても得ることができる。

化合物 (VIId) は、工程 6 で得られる化合物 (XI) を、反応に不活性な溶媒中、 $1\sim10$ 当量の還元剤存在下、 $1\sim3$ 当量の $R^{1d}CHO$ (式中、 R^{1d} は前記と同義である)と反応させることにより得ることができる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばメタノール、エタノール、ジクロロメタン、クロロホルム、ジクロロエタン、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ベン

ゼン、トルエン、キシレン、ジメチルホルムアミド等を単独でまたは それらを混合して用いることができ、中でもメタノールまたはテトラ ヒドロフランが好ましい。

還元剤としては、例えばトリアセトキシ水素化ホウ素ナトリウム、 水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム等が用いら れ、中でもトリアセトキシ水素化ホウ素ナトリウムが好ましい。

反応は0 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ 0 間の温度、好ましくは0 $^{\circ}$ $^{\circ}$ 0 での間の温度で行われ、通常5分間~48時間程で終了する。

前述の化合物(V)のうち、mおよびnが1であり、R³がピペラジン環の6位(ピペラジン環が隣接するベンゼン環と結合する部位を1位とする)にあり、R⁴およびR⁵がピペラジン環の5位(ピペラジン環が隣接するベンゼン環と結合する部位を1位とする)にあり、R⁶がピペラジン環の3位(ピペラジン環が隣接するベンゼン環と結合する部位を1位とする)に存在するオキソである化合物(Va)は、以下に示す方法によっても得ることができる。

製造法4:

$$\mathbb{R}^7$$
 \mathbb{NH}_2 \mathbb{R}^8 \mathbb{R}^4 \mathbb{R}^5 \mathbb{R}^1 \mathbb{R}^7 \mathbb{NH} \mathbb{R}^7 \mathbb{NH} \mathbb{R}^8 \mathbb{N} \mathbb{R}^1 \mathbb{R}^8 \mathbb{N} \mathbb{R}^1 \mathbb{R}^8 \mathbb{N} \mathbb{N}^1 \mathbb{R}^8 \mathbb{N} \mathbb{N}^1 \mathbb{N}^1

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^7 、 R^8 および P^1 は、それぞれ前記と同義である)

本反応は、例えばテトラヘドロン・レターズ (Tetrahedron Lett.), 41巻, 6309頁 (2000年)等に記載の方法に準じて行うことができる。
[工程11]

化合物(XII)を、反応に不活性な溶媒中、1~10当量の還元剤存在下、1~3当量の(XIII)と反応させることにより、化合物(XIV)を得ることができる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばメタノール、エタノール、ジクロロメタン、クロロホルム、ジクロロエタン、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ベンゼン、トルエン、キシレン、ジメチルホルムアミド等を単独でまたはそれらを混合して用いることができ、中でもメタノールまたはテトラヒドロフランが好ましい。

還元剤としては、例えばトリアセトキシ水素化ホウ素ナトリウム、 水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム等が用いら れ、中でもトリアセトキシ水素化ホウ素ナトリウムが好ましい。

また、この反応は、必要に応じてモレキュラーシーブスの共存下に 行うこともできる。

反応は0℃ \sim 100%の間の温度、好ましくは0% \sim 50%の間の温度で行われ、通常5分間 \sim 48時間で終了する。

化合物(XII)としては例えばW099/10312等に記載の方法に準じて合成したものを任意に用いることができる。化合物(XIII)としては例えばテトラヘドロン・レターズ (Tetrahedron Lett.), 41巻, 6309頁 (2000年)等に記載の方法に準じて合成したものを任意に用いることができる。

[工程12]

工程11で得られる化合物(XIV)を、反応に不活性な溶媒中、1~10 当量の塩基で処理することにより、化合物(Va)を得ることができる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばアセトン、テトラヒドロ

フラン、ジオキサン、ジメチルホルムアミド、ジメチルスルオキシド、 Nーメチルピペリドン等を単独でまたはそれらを混合して用いること ができ、中でもテトラヒドロフランが好ましい。

塩基としては、例えば炭酸カリウム、トリエチルアミン、ピリジン、水素化ナトリウム等が用いられ、中でも炭酸カリウムまたは水素化ナトリウムが好ましい。

反応は0℃~150℃の間の温度、好ましくは室温~80℃の間の温度で行われ、通常5分間~48時間で終了する。

また、前述の化合物(V)のうち、mおよびnが1であり、R³がピペラジン環の5位または6位(ピペラジン環が隣接するベンゼン環と結合する部位を1位とする)にあり、R⁴およびR⁵がピペラジン環の3位(ピペラジン環が隣接するベンゼン環と結合する部位を1位とする)にあり、R⁵がピペラジン環の2位(ピペラジン環が隣接するベンゼン環と結合する部位を1位とする)に存在するオキソである化合物(Vb)は、以下に示す方法によっても得ることができる。

製造法5:

$$R^{2}$$
 R^{8} R^{1} R^{1} R^{5} R^{1} R^{1} R^{2} R^{3} R^{1} R^{2} R^{3} R^{4} R^{5} R^{2} R^{2} R^{3} R^{4} R^{5} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{5} R^{2} R^{2} R^{3} R^{4} R^{4} R^{2} R^{3} R^{4} R^{4}

工程14 R⁷ N R⁴ R⁸ O R⁵ (Vb)

(式中、R¹、R²、R³、R⁴、R⁵、R⁷、R⁸およびP¹は前記と同義である)
 本反応は、例えばテトラヘドロン・レターズ (Tetrahedron Lett.),
 41巻,8735頁(1998年)等に記載の方法に準じて行うことができる。

[工程13]

工程11と同様にして、化合物(XII)に化合物(XV)を反応させることにより、化合物(XVI)を得ることができる。

化合物(XII)としては例えばW099/10312等に記載の方法に準じて合成したものを任意に用いることができる。化合物(XV)としては例えばテトラヘドロン・レターズ (Tetrahedron Lett.), 41巻,8735頁 (2000年) 等に記載の方法に準じて合成したものを任意に用いることができる。

「工程14]

工程13で得られる化合物(XVI)を、反応に不活性な溶媒中、1~10 当量の塩基存在下で処理することにより、化合物(Vb)を得ることがで きる。

反応に不活性な溶媒は、反応に不活性なものであればいずれでもよく、特に限定されるものではないが、例えばメタノール、エタノール、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルスルオキシド、Nーメチルピペリドン等を単独でまたはそれらを混合して用いることができ、中でもメタノールまたはテトラヒドロフランが好ましい。

塩基としては、例えばカリウムtert-ブトキシド、、水素化ナトリウム、リチウムジイソプロピルアミド等が用いられ、中でもカリウムtert-ブトキシドまたは水素化ナトリウムが好ましい。

反応は0℃~150℃の間の温度、好ましくは室温~80℃の間の温度で行われ、通常5分間~48時間で終了する。

また、条件によっては、P¹がはずれカルボン酸が生成することもある。

さらに、化合物(I)、原料化合物および中間体化合物における各官能基の変換および置換基に含まれる官能基の変換は、公知の方法 [例えば、コンプリヘンシブ・オーガニック・トランスフォーメーションズ第二版 (Comprehensive Organic Transformations, second edition)

、ラロック(R. C. Larock)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(John Wiley & Sons Inc.)(1999年)]等によって行うことができる。

上記の方法等を適宜組み合わせて実施することにより、所望の位置 に所望の官能基を有する化合物(I)を得ることができる。

上記製造法における生成物および中間体の単離、精製は、通常の有機合成で用いられる方法、例えばろ過、抽出、洗浄、乾燥、濃縮、結晶化、各種クロマトグラフィー等を適宜組み合わせて行うことができる。さらに一般的な並列合成法(コンビナトリアル・ケミストリー等)で常用される精製法、例えばベンゾイルクロライドポリマーバウンド、ポリ(4ービニルピリジン)、ポリアミン、ベンズアルデヒドポリマーバウンド、トリチルクロリドポリマーバウンド等のスカベンジャーレジン、例えばAG1-X80H-レジン(バイオラッド社製)等のイオン交換レジン等の樹脂を用いた精製法により行うこともできる。また、中間体においては、特に精製することなく次の反応に供することもできる。

化合物(I)には、位置異性体、幾何異性体または光学異性体のような 異性体が存在し得るものもあるが、これらを含め可能な全ての異性体 および該異性体のいかなる比率における混合物も本発明の化合物に包 含される。

化合物(I)の塩を取得したい場合には、化合物(I)の塩が得られるときはそのまま精製すればよく、また化合物(I)が遊離の形で得られるときは化合物(I)を適当な溶媒に溶解または懸濁し、酸または塩基を加えて塩を形成させればよい。

また、化合物(I)またはその薬理学的に許容される塩は、水または各種溶媒(例えば、エタノール、テトラヒドロフラン、ジオキサン等)との付加物の形で存在することもあるが、それら付加物も本発明の化合物に包含される。

化合物(I)の具体例を第3表-1~第3表-3に示す。なお、第3表-1~第3表-3に記載される化合物の R^1 および R^2 の一部の基は、それ

ぞれ別途第1表および第2表に示す通りである。ただし、本発明の化 合物はこれらに限定されることはない。

第1表

为 1 及	
R ¹	R ¹
A-01	A-07
A-02 CH ₃	A-08 CN
A-03	A-09 H,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
A-04 OCH ₃	A-10
A-05	A-11 N
A-06 O CI	A-12

第1表続き

 			
	R ¹		R ¹
A-13	•—\$———————————————————————————————————	A-19	O OCF3
A-14	O ≕S−CH ₃ O	A-20	O=S=O N
A-15	0=0=0	A-21	0=0=0
A-16	O S S O O O O O O O O	A-22	O CH ₃ SI CH ₃ O CH ₃
A-17	o S S O CI	A-23	O CH ₃ -S-N CH ₃
A-18	O -S O CH ₃	A-24	SO ₂

第1表続き

	·		
	R ¹		R ¹
A-25	O NH	A-31	O N H F
A-26	O CF ₃	A-32	O N CI
A -27	CH ₃ CH ₃	A-33	N CH ₃
A-28	N CH ₃	A-34	H
A-29	H ₃ CO O N	A-35	O CH ₃ CH ₃ CH ₃
A-30	o Ph	A-36	O N

第2表

	F	₹ ²	
O=\$=0	CH ₃ O=S=O N 1111	CH ₃ O=S=O N,'' ₁ S	
B-01	B- 02	B-03	B-04
F	CI		N ₃
B-05	B-06	B-07	B-08

第2表続き

	I	\mathbb{R}^2	
PhO ₂ S	PhO ₂ SHN	PhO ₂ S	PhO ₂ S Et Et
B-09	· B-10	B-11	B-12
SO ₂ Ph N Me B-13	SO ₂ Ph N Me Me B-14	Me O H Me	e N Et Et B-16
Ac N S Me Me	CO ₂ Me N S Me Me	Me Me Me	H N S Me
B-17	B-18	B-19	B-20
Me ₂ N O	SO ₂ Me	Ac N N Me Me	Ac
B-21	B-22	B-23	B-24
CI Si OH B-25	CI N N B-26		

第2表続き

	F	<u>2</u>	
CI N CI B-27	CI N+ CI B-28	CI CI B-29	HOH ₂ C CI
NC CI B-31	MeO ₂ C CI	HO ₂ C CI	H ₂ NOC CI B-34
HO ₂ C CI	H N N-N B-36	CI ON B-37	CI S N O B-38
HO CI HO	CI	MeO ₂ SHN CI	PhO ₂ SHN CI
F ₃ CO ₂ SHN	ci MeHN N	CI	,
B-43	B-44		

第 3 表
$$-1$$
 R² N CO_2H

>14			
化合物番号	R ¹	R ²	MS m/z
1	CN	B-02	602 (M+H) ⁺
2	•—	B-02	575 (M-H) +
3	CH₃O •—	B-02	607 (M+H) +
4	OCH ₃	B-02	607 (M+H) +
5	•—⟨¯_⟩—OCH ₃	B-02	605 (M-H) +
6	► CH ₃	B-02	591 (M+H) ⁺
7	H ₃ C CH ₃	B-02	605 (M+H) ⁺
8		B-02	645 (M+H) ⁺

	, <u></u>	<u></u> .	
9	•—————CI	B-02	611(M+H) ⁺
10	•	B-02	653 (M+H) ⁺
11	•—(B-02	622 (M+H) +
12	•——F	B-02	595 (M+H) ⁺
13	F	B-02	595 (M+H) +
14	• N	B-02	578 (M+H) +
15	→ N=	B-02	578 (M+H) +
16	⊷\N=\ N=\ N	B-02	579 (M+H) ⁺
17	•—N=———————————————————————————————————	B-02	579 (M+H) ⁺
18	•—CH ₃	B-02	513 (M-H) +
19	•	B-02	567 (M-H) ⁺
20	• O •HCI	B-02	585 (M-H) ⁺
21		B-02	589 (M-H) ⁺
22	N	B-02	592 (M+H) ⁺
23	O O CH ₃	B-02	601 (M+H) ⁺

24	O CH₃	B-02	541 (M-H) ⁺
25		B-02	629(M-H) ⁺
26	O= S= O CH ₃	B-02	593 (M-H) ⁺
27	CH₃	B-01	577 (M+H) ⁺
28	CI	B-01	597(M+H) ⁺
29	NO ₂	В-01	608(M+H) ⁺
30	CN	В-01	588(M+H) ⁺
31	CF ₃	B-01	631 (M+H) ⁺
32	N=N	B-01	565 (M+H) ⁺
33	-	B-01	607 (M+H) ⁺
34	NO ₂ —CF ₃	B-01	674(M+H) ⁺

35	CI	B-01	632(M+H) ⁺
36	CN N	B-01	589 (M+H) ⁺
37	CH ₃	N-CH₃ ₂ H	527(M-H) ⁺
38	CH ₃ O=S=O O N CO ₂ H	N OCH ₃	621 (M+H) ⁺
39	CN	O=S=O	656 (M+H) ⁺
40	0=5=0 0 N N CO	H ²	577 (M+H) ⁺
41	•—(B-06	498(M+H) ⁺
42	•	B-01	563(M+H) ⁺

43		CI	532(M+H) ⁺
44	•	F	466 (M+H) ⁺
45	•	В-03	595(M+H) ⁺
46	•	B-04	527 (M+H) +
47	•—	CH ₃ O CH ₃ O	488 (M+H) +
48	•—	B-05	466 (M+H) +
49	•—	F CF ₃	516(M+H) ⁺
50	•—	CI CI O=S=O	629(M-H) ⁺
51	A-01	B-01	591 (M+H) ⁺
52	A-01	B-02	605 (M+H) ⁺
53	A-01	B-03	623 (M+H) ⁺
54	A-01	B-04	555 (M+H) ⁺
55	A-01	B-05	494(M+H) ⁺

<u> </u>			1
56	A-01	B-06	526 (M+H) ⁺
57	A-01	B-07	526 (M+H) ⁺
58	A-01	B-08	519 (M-H) ⁺
59	A-02	B-01	529 (M+H)+
60	A-02	B-02	543 (M+H)+
61	A-02	B-03	561 (M+H) ⁺
62	A-02	B-04	493 (M+H) ⁺
63	A-02	B-05	432 (M+H) ⁺
64	A-02	B-06	464 (M+H) +
65	A-02	B-07	464 (M+H)+
66	A-02	B-08	459 (M+H)+
67	A-03	B-01	592 (M+H) ⁺
68	A-03	B-02	606 (M+H)+
69	A-03	B-03	624(M+H) ⁺
70	A-03	B-04	556 (M+H) ⁺
71	A-03	B-05	495 (M+H) ⁺
72	A-03	B-06	527 (M+H) +
73	A-03	B-07	525 (M-H)
74	A-03	B-08	520 (M+H) +

75	A-04	B-01	621 (M+H) ⁺
76	A-04	B-02	635 (M+H) +
77	A-04	B-03	653 (M+H) +
78	A-04	B-04	585 (M+H) +
79	A-04	B-05	524 (M+H) +
. 80	A-04	B-06	556 (M+H) +
81	A-04	B-07	556 (M+H) +
82	A-04	B-08	551 (M+H) +
83	A-05	B-01	617 (M+H) +
84	A-05	B-02	631 (M+H) ⁺
85	A-05	B-03	649 (M+H) ⁺
86	A-05	B-04	581 (M+H) ⁺
87	A-05	В-05	520 (M+H) +
88	A-05	B-06	552 (M+H) +
89	A-05	B-07	552 (M+H) ⁺
90	A-05	B-08	547 (M+H) +
91	A-06	B-01	659 (M+H) +
92	A-06	B-02	673 (M+H)+
93	A-06	B-03	691 (M+H) +

94	A-06	B-04	623 (M+H) ⁺
95	A-06	B-05	562 (M+H)+
96	A-06	B-06	594 (M+H) ⁺
97	A-06	В-07	594 (M+H) +
98	A-06	B-08	589 (M+H) ⁺
99	A-07	B-01	581 (M+H) ⁺
100	A-07	B-02	595 (M+H) ⁺
101	A-07	B-03	613 (M+H) +
102	A-07	B-04	545 (M+H) ⁺
103	A-07	. В-05	484 (M+H) ⁺
104	A-07	B-06	516 (M+H) ⁺
105	A-07	B-07	516 (M+H) ⁺
106	A-07	B-08	509 (M-H) ⁺
107	A-08	B-01	616 (M+H) ⁺
108	A-08	B-02	630 (M+H) ⁺
109	A-08	B-03	648 (M+H) +
110	A-08	B-04	578 (M-H) ⁺
111	A-08	B-05	517 (M-H) +
112	A-08	B-06	549 (M-H) +

113	A-08	B-07	549 (M-H) ⁺
114	A-08	B-08	546 (M+H) +
115	A-09	B-01	649 (M+H) +
116	A-09	B-02	663 (M+H) ⁺
117	A-09	B-03	679 (M-H) ⁺
118	A-09	B-04	613 (M+H) ⁺
119	A-09	B-05	552 (M+H) ⁺
120	A-09	B-06	584 (M+H) ⁺
121	A-09	В-07	584 (M+H) ⁺
122	A-09	B-08	579 (M+H) ⁺
123	A-10	B-01	592 (M+H) ⁺
124	A-10	B-02	606 (M+H) ⁺
125	A-10	B-03	622 (M-H) +
126	A-10	B-04	554 (M-H) ⁺
127	A-10	B-05	493 (M-H) ⁺
128	A-10	В-06	527 (M+H) +
129	A-10	B-07	527 (M+H) ⁺
130	A-10	B-08	520 (M+H) ⁺
131	A-11	B-01	643 (M+H) ⁺

132	A-11	B-02	657 (M+H) ⁺
133	A-11	B-03	675 (M+H) +
134	A-11	B-04	607 (M+H) ⁺
135	A-11	B-05	546 (M+H) ⁺
136	A-11	B-06	578 (M+H) +
137	A-11	B-07	578 (M+H) ⁺
138	A-11	B-08	571 (M+H) ⁺
139	A-12	B-01	555 (M+H) ⁺
140	A-12	B-02	569 (M+H) ⁺
141	A-12	B-03	587 (M+H) ⁺
142	A-12	B-04	519 (M+H) ⁺
143	A-12	B-05	458 (M+H) ⁺
144	A-12	B-06	490 (M+H) +
145	A-12	B-07	490 (M+H) ⁺
146	A-12	B-08	485 (M+H) ⁺
147	A-13	B-01	627 (M+H) +
148	A-13	B-02	641 (M+H) ⁺
149	A-13	B-03	659 (M+H) ⁺
150	A-13	B-04	591 (M+H) ⁺

151	A-13	B-05	530 (M+H) +
152	A-13	B-06	562(M+H) ⁺
153	A-13	B-07	562 (M+H) ⁺
154	A-13	B-08	557 (M+H) ⁺
155	A-14	B-01	565 (M+H) ⁺
156	A-14	B-02	579 (M+H) ⁺
157	A-14	B-03	597 (M+H) +
158	A-14	B-04	529 (M+H) +
159	A-14	B-05	468 (M+H) +
160	A-14	B-06	500 (M+H) ⁺
161	A-14	В-07	500 (M+H) ⁺
162	A-14	B-08	493 (M-H) ⁺
163	A-15	B-01	641 (M+H) +
164	A-15	B-02	655 (M+H) ⁺ .
165	A-15	B-03	673 (M+H) ⁺
166	A-15	B-04	605 (M+H) ⁺
167	A-15	B-05	544 (M+H) +
168	A-15	B-06	576 (M+H) ⁺
169	A-15	B-07	576 (M+H) +

170	A-15	B-08	571 (M+H) +
171	A-16	B-01	657 (M+H) +
172	A-16	· B-02	671 (M+H) +
173	A-16	B-03	689 (M+H) +
174	A-16	B-04	621 (M+H) +
175	A-16	B-05	560 (M+H) +
176	A-16	B-06	592 (M+H) ⁺
177	A-16	B-07	592 (M+H) +
178	A-16	B-08	587 (M+H) +
179	A-17	B-01	661 (M+H) ⁺
180	A-17	B-02	675 (M+H) ⁺
181	A-17 ·	B-03	693 (M+H) ⁺
182	A-17	B-04	625 (M+H) +
183	A-17	B-05	564 (M+H) ⁺
184	A-17	B-06	596 (M+H) +
185	A-17	B-07	596 (M+H) +
186	A-17	B-08	591 (M+H) +
187	A-18	B-01	607 (M+H) +
188	A-18	B-02	621 (M+H) ⁺

189	A-18	B-03	639 (M+H) +
190	A-18	B-04	571 (M+H) +
191	A-18	B-05	510 (M+H) *
192	A-18	B-06	542 (M+H) +
193	A-18	B-07	542 (M+H) +
194	A-18	B-08	537 (M+H) +
195	A-19	B-01	711 (M+H) +
196	A-19	B-02	725 (M+H) *
197	A-19	B-03	743 (M+H) +
198	A-19	B-04	675 (M+H) ⁺
199	A-19	B-05	614 (M+H) +
200	A-19	B-06	646 (M+H) ⁺
201	A-19	B-07	646 (M+H) ⁺
202	A-19	. B-08	639 (M-H) ⁺
203	A-20	B-01	678 (M+H) ⁺
204	A-20	B-02	692 (M+H) ⁺
205	A-20	B-03	708 (M-H) +
206	A-20	B-04	642 (M+H) ⁺
207	A-20	B-05	581 (M+H)+

208	A-20	B-06	613 (M+H) +
209	A-20	B-07	613 (M+H) +
210	A-20	B-08	606 (M+H) +
211	A-21	B-01	677 (M+H) +
212	A-21	B-02	691 (M+H) ⁺
213	A-21	B-03	709 (M+H) +
214	A-21	B-04	641 (M+H) +
215	A-21	B-05	580 (M+H) +
216	A-21	B-06	612 (M+H) +
217	A-21	B-07	612 (M+H) +
218	A-21	B-08	607 (M+H) +
219	A-22	B-01	593 (M+H) +
220	A-22	B-02	607 (M+H) +
221	A-22	B-03	625 (M+H) +
222	A-22	B-04	557 (M+H) +
223	A-22	B-05	496 (M+H) +
224	A-22	B-06	528 (M+H) +
225	A-22	B-07	528 (M+H)+
226	A-22	B-08	523 (M+H) +

227	A-23	B-01	594 (M+H) ⁺
228	A-23	B-02	608 (M+H) +
229	A-23	B-03	626 (M+H) +
230	A-23	B-04	558 (M+H) ⁺
231	A-23	B-05	497 (M+H) +
232	A-23	B-06	529 (M+H) ⁺
233	A-23	B-07	529 (M+H) +
234	A-23	В-08	524 (M+H) ⁺
235	A-24	B-01	701 (M+H) +
236	A-24	B-02	714 (M+H) +
237	A-24	В-03	732 (M+H) +
238	A-24	B-04	665 (M+H) ⁺
239	A-24	B-05	604 (M+H) +
240	A-24	B-06	636 (M+H) +
241	A-24	B-07	636 (M+H) ⁺
242	A-24	B-08	631 (M+H) +
243	A-25	B-01	606 (M+H) ⁺
244	A-25	B-02	620 (M+H) +
245	A-25	B-03	638 (M+H) ⁺

246	A-25	B-04	570 (M+H) +
247	A-25	B-05	509 (M+H) ⁺
248	A-25	B-06	541 (M+H) ⁺
249	A-25	B-07	541 (M+H) +
250	A-25	B-08	534 (M-H) +
251	A-26	B-01	674 (M+H) +
252	A-26	B-02	686 (M-H) +
253	A-26	B-03	706 (M+H) +
254	A-26	B-04	638 (M+H) +
255	A-26	B-05	575 (M-H) *
256	A-26	B-06	607 (M-H) +
257	A-26	B-07	609 (M+H) ⁺
258	A-26	B-08	602 (M-H) +
259	A-27	B-01	648 (M+H) +
260	A-27	B-02	662 (M+H) +
261	A-27	B-03	680 (M+H) ⁺
262	A-27	B-04	612 (M+H) +
263	A-27	B-05	551 (M+H)+
264	A-27	B-06	583 (M+H) +

265	A-27	В-07	583 (M+H) +
266	A-27	В-08	576 (M-H) +
267	A-28	B-01	600 (M+H) ⁺
268	A-28	B-02	614 (M+H) ⁺
269	A-28	B-03	632 (M+H) +
270	A-28	B-04	564 (M+H) ⁺
271	A-28	B-05	503 (M+H) ⁺
272	A-28	B-06	535 (M+H) +
273	A-28	B-07	535 (M+H) ⁺
274	A-28	B-08	528 (M-H)
275	A-29	B-01	636 (M+H) ⁺
276	A-29	B-02	650 (M+H) ⁺
277	A-29	B-03	668 (M+H) ⁺
278	A-29	B-04	600 (M+H) +
279	A-29	В-05	539 (M+H) ⁺
280	A-29	B-06	571 (M+H) ⁺
281	A-29	В-07	571 (M+H) ⁺
282	A-29	B-08	564 (M+H) ⁺
283	A-30	B-01	680 (M-H)

284	A-30	B-02	696 (M+H) +
285	A-30	B-03	714(M+H) ⁺
286	A-30	B-04	646 (M+H) ⁺
287	A-30	B-05	585 (M+H) ⁺
288	A-30	B-06	617 (M+H) ⁺
289	A-30	B-07	617 (M+H) +
290	A-30	B-08	610 (M-H) +
291	A-31	B-01	642 (M+H) +
292	A-31	B-02	656 (M+H) +
293	A-31	B-03	674 (M+H) ⁺
294	A-31	B-04	606 (M+H) ⁺
295	A-31	B-05	545 (M+H) +
296	A-31	B-06	575 (M-H) ⁺
297	A-31	B-07	577 (M+H) +
298	A-31	B-08	570 (M-H) ⁺
299	A-32	B-01	640 (M+H) +
300	A-32	B-02	654 (M+H) +
301	A-32	B-03	672 (M+H) +
302	A-32	B-04	604 (M+H) +

303	A-32	B-05	541 (M-H) +
304	A-32	B-06	575 (M+H) +
305	A-32	B-07	573 (M-H) +
306	A-32	B-08	570 (M+H) +
307	A-33	B-01	558 (M+H) +
308	A-33	B-02	572 (M+H) +
309	A-33	B-03	588 (M-H) +
310	A-33	B-04	522 (M+H) +
311	A-33	B-05	461 (M+H) +
312	A-33	B-06	493 (M+H)+
313	A-33	B-07	493 (M+H) +
314	A-33	B-08	486 (M-H) +
315	A-34	B-01	620 (M+H) +
316	A-34	B-02	634 (M+H) +
317	A-34	B-03	652 (M+H) +
318	A-34	B-04	584 (M+H) +
319	A-34	B-05	523 (M+H) +
320	A-34	B-06	553 (M-H) +
321	A-34	В-07	555 (M+H) +

-			
322	A-34	B-08	548 (M-H) +
323	A-35	B-01	586 (M+H) +
324	A-35	B-02	600 (M+H) +
325	A-35	B-03	618 (M+H) +
326	A-35	B-04	550 (M+H) ⁺
327	A-35	B-05	489 (M+H) +
328	A-35	B-06	521 (M+H) +
329	A-35	B-07	521 (M+H) ⁺
330	A-35	B-08	514 (M-H) +
331	A-36	B-01	612 (M+H) +
332	A-36	B-02	626 (M+H) ⁺
333	A-36	В-03	644 (M+H) ⁺
334	A-36	B-04	576 (M+H) +
335	A-36	B-05	515 (M+H) ⁺
336	A-36	B-06	547 (M+H) +
337	A-36	B-07	547 (M+H) +
338	A-36	B-08	540 (M-H) +

339	Ph	B-09	561 (M) ⁺ .
340	Ph	B-10	589 (M-H) ⁺
341	Ph	B-11	534 (M+H) ⁺
342	Ph	B-12	564 (M+H) ⁺
343	Ph	B-13	577 (M+H) ⁺
344	Ph	B-14	609 (M+H) ⁺
345	Ph	B-15	587 (M+H) ⁺
346	Ph	B-16	521 (M+H) ⁺
347	Ph	B-17	511 (M+H) ⁺
348	Ph	B-18	527 (M+H) ⁺
349	Ph	B-19	511 (M+H) ⁺
350	Ph	B-20	469 (M+H) ⁺
351	Ph	B-21	539(M) ⁺
352	Ph ·	B-22	547 (M+H) ⁺
353	Ph	B-23	511 (M+H) ⁺
354	Ph	B-24	482 (M) +
355	Ph	B-25	648 (M+H) ⁺
356	Ph	B-26	648 (M+H) ⁺
357	Ph	B-27	497 (M-H) ⁻

358	Ph	B-28	549 (M+H) ⁺
359	Ph	B-29	584 (M+H) ⁺
360	Ph	B-30	528 (M+H) ⁺
361	Ph	B-31	523 (M+H) ⁺
362	Ph	B-32	556 (M+H) +
363	Ph	B-33	542(M+H) ⁺
364	Ph	B-34	541 (M+H) ⁺
365	Ph	B-35	568 (M+H) ⁺
366	Ph	B-36	566 (M+H) ⁺
367	Ph	В-37	582(M+H) ⁺
368	Ph	B-38	598 (M+H) +
369	Ph	B-39	514(M+H) ⁺
370	Ph	B-40	572 (M+H) ⁺
371	Ph	B-41	591 (M+H) ⁺
372	Ph	B-42	653(M+H) ⁺
373	Ph	B-43	646 (M+2H) ⁺
374	Ph	B-44	586 (M+H) ⁺
375	NC NC	B-01	611 (M-H) ⁻

376	NC NC	B-06	546 (M-H)
377	NC NC	B-28	549(M+H) ⁺
378		B-33	592(M+H) ⁺
379	CI CI	В-33	610 (M+H) ⁺
380	A-23	В-33	573 (M+H) ⁺

第3表-2

$$\mathbb{R}^4$$
 \mathbb{R}^3 \mathbb{R}^1 \mathbb{R}^5 \mathbb{R}^6 \mathbb{R}^7 \mathbb{R}^5

化合物番号	R ²	R ¹	R³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	MASS (m/z)
381	B-06	Ph	Ме	Ме	Ме	Ме	Н	Н	554(M) ⁺
382	B-27	Ph	Ме	Мe	Me	Ме	Н	Н	555(M) ⁺
383	B-06	Ph	Ме	Мe	Н	Н	Н	Н	526 (M+H) +
384	B-27	Ph	Ме	Ме	Н	Н	Н	Н	527 (M+H) +
385	B-27	Ph	Et	Et	Н	Н	Н	Н	599 (M+H) ⁺
386	B-06	Ph	Н	Н	Н	Н	NO_2	Н	543(M) ⁺
387	B-06	×	ベンゼン環に下式が結合				NO_2	Н	573(M) ⁺
388	B-06	Ph	Ме	Ме	Н	Н	NO_2	Н	571 (M+H) ⁺

					,	r			r
389	В-06	Ph	<		Н	Н	NO_2	H	597(M) ⁺
390	B-06	Ph	<	>	Н	Н	NO ₂	Н	583 (M) ⁺
391	B-06	Ph	Н	Н	Н	Н	NO_2	NO_2	588 (M) ⁺
392	B-06	Ph	Н	Н	Н	Н	$\mathrm{NH_2}$	Н	513(M) ⁺
393	B-06	Ph	Ме	Ме	Н	Н	NH ₂	Н	541 (M) +
394	B-06	Ph	<		Н	Н	NH_2	Н	569 (M+H) ⁺
395	B-06	Ph	Н	Н	Н	Н	$\mathrm{NH_2}$	NH ₂	528(M)+
396	B-06	Ph	Н	Н	Н	Н	Br	Н	576 (M-H) ⁺
397	B-06	Ph	Н	Н	Н	Н	C1	Н	532(M) ⁺
398	B-06	Ph	Н	Н	Н	Н	I	Н	624(M) ⁺
399	B-06	Ph	Н	Н	Н	Н	SMe	Н	544(M) ⁺
400	B-06	Ph	Н	Н	Н	Н	-N	Н	563(M) ⁺
401	B-06	Ph	Мe	Мe	Н	Н	NHAc	Н	582 (M) ⁺
402	B-27	Ph	Ме	Мe	Н	Н	NHAc	Н	584 (M+H) +
403	B-06	Ph	Me	Ме	Н	Н	NMe ₂	Н	569 (M) ⁺
404	B-06	Ph	Me	Me	Н	Н	NHMe	Н	555 (M) +

405	B-36	CI	Н	Н	Н	Н	C1	Н	668 (M+H) +	
-----	------	----	---	---	---	---	----	---	-------------	--

第3表-3

化合物 番号	R ¹	R ²	R³	R ⁴	MASS (m/z)
406	Ph	B-06	Me ·	Me	540(M+1)
407	Ph	B-27	Мe	Me	541(M+1)
408	CI	В-06	Ме	Me	608(M+1)
409	CI	B-27	Мe	Ме	609(M+1)
410	F	В-06	Ме	Me	574(M-1)
411	F	B-27	Ме	М́е	575 (M-1)

412	-CI	B-06	Ме	Ме	572(M-1)
413	-CI	B-27	Мe	Ме	573 (M-1)
414	Me	B-06	Ме	Ме	568 (M) ⁺
415	Ph	В-06	<		566 (M) ⁺
416		B-06	Мe	Ме	552 (M-1)
417		В-27	Me	Ме	553(M-1)
418	Me	B-06	Ме	Me	478 (M+1)
419		B-06	Ме	Me	516 (M-1)
420		В-06	Ме	Me	560(M+1)
421	Ph	B-06	Н	Н	526 (M+1)
422	Ph	B-06	Ме	Н	512 (M+1)
423	Ph	B-27	Ме	Н	526 (M+1)
424	Ph	B-06		= 0	527 (M+1)

上記の表中、Meはメチルを表し、Etはエチルを表し、Phはフェニルを表し、Acはアセチルを表す。

次に、代表的な化合物(I)の薬理作用について試験例により具体的に

説明する。

試験例1:VLA-4/VCAM-1結合阻害(細胞接着阻害)試験

ヒトrecombinant soluble VCAM-1 (R & D System社) を50 mmol/L リ ン酸ナトリウム緩衝液 (PBS, pH 6.0) で0.25 μg/mLの濃度に調整し、 96穴タイタープレートに 1 穴あたり50 μLずつ分注して、4℃で終夜放 置した(VCAM-1の固相化)。この分注した各穴の溶液から上清を除き、 1 穴あたり100 μLのPBSで一度洗浄した後、RPMI-1640培地 (Sigma社)で希釈した被検薬剤溶液を1穴あたり90 μL添加した。VLA-4を発現 していることが知られているヒトT細胞株Jurkat (ATCC、TIB-152)を、 RPMI-1640培地 (Sigma社) で2 x 10⁷ cells/mLの濃度に調整し、1穴 あたり10 µLずつ分注した。37℃で1時間、これら細胞を接着させた (VLA-4/VCAM-1結合により接着させた)後、RPMI-1640培地(Gibco社、 フェノールレッド不含)でプレートを洗浄し、非接着細胞を除去した。 ここへ1穴あたり100 μLのRPMI-1640培地 (Gibco社、フェノールレッ ド不含)を添加し、さらに10 mmo1/L WST-1(同仁堂)水溶液と0.4 mmo1/L フェナジンメトサルフェート(Sigma社)水溶液を等量で混合した溶液 を、1 穴あたり10 μ Lずつ分注した。5% CO,インキュベーターで2~4 時間培養して接着細胞を発色させ、マイクロプレート吸光光度計(EL 340、BIO-TEK社)を用いて450 nm (対照波長630 nm) での吸光度を測 定した。細胞接着阻害率は以下の式より算出した。なお、VCAM-1を固 相化せずにJurkat細胞を重層した群(VCAM-1非固相化群)をバックグ ラウンドとした。また、細胞接着を50%阻害する化合物濃度を50%阻害 濃度として、Excel FitのAll 205式を用いて算出した。

細胞接着阻害率(%)=

100× {1-(被験薬剤添加群の吸光度-VCAM-1 非固相化群の吸光度)/(被験薬剤無添加群の吸光度-VCAM-1 非固相化群の吸光度)}

その結果を、第4-1表および第4-2表に示す。

第4-1表

	50%阻害濃度
化合物番号	(nmol/L)
1	110
2	120
16	84
18	240
21	230
24	390
26	140
41	1100
42	76
50	28

第4-2表

	50%阻害濃度
化合物番号	(nmol/L)
355	28
356	31
357	570
363	42
366	29
379	22
393	86
405	30
406	39

試験例2:LPAM-1/VCAM-1 結合阻害試験

ヒトrecombinant soluble VCAM-1(R & D System社)を50 mmol/Lリン酸ナトリウム緩衝液(pH 6.0)で $2~\mu$ g/mLの濃度に調製し、96穴タイタープレートに 1 穴あたり $50~\mu$ L分注して、4 $^{\circ}$ で終夜放置した(VCAM-1の固相化)。この分注した各穴の溶液から上清を除き、1~ 穴あたり $100~\mu$ LのPBSで一度洗浄後、アッセイバッファー [25 mmol/L HEPES(2-[4-(2-hydroxyethy1)-1-piperaziny1]ethanesulfonic acid),150 mmol/L NaCl,3~mmol/L KCl,2~mmol/L 5~ml 5~0.1% BSA(bovine serum albumin),1~1mmol/L 1~1mmol/L 1~2mmol/L 1~2mmol/L 1~3mmol/L 1~3mmol/L

の濃度に調製し、1 穴あたり10 μ L分注した。37℃で30分、これら細胞を接着させた後、RPMI-1640培地 (フェノールレッド不含)でプレートを洗浄し、非接着細胞を除去した。ここへ1 穴あたり50 μ LのXTT溶液 (Cell proliferation KitII、ロシュ・ダイアグノスティックス社)を50 μ L分注した。5% CO2インキュベーターで2~3時間培養して接着細胞を発色させ、マイクロプレート吸光光度計(EL 340、BIO-TEK社)を用いて450 nm(対照波長630 nm)の吸光度を測定した。細胞接着阻害率は以下の式より算出した。なお、VCAM-1で固相化せずにJY細胞を重層した群(VCAM-1非固相化群)をバックグラウンドとした。また、細胞接着を50%阻害する化合物濃度を50%阻害濃度として、Excel FitのA11 205式を用いて算出した。

細胞接着阻害率(%)=

100× {1-(被験薬剤添加群の吸光度-VCAM-1 非固相化群の吸光度) /(被験薬剤無添加群の吸光度-VCAM-1 非固相化群の吸光度)} 結果を第4-3表に示す。

第4-3表

	50%阻害濃度
化合物番号	(nmol/L)
41	22
357	9
393	1.9
406	0.53

なお、上記の試験例以外にも、例えばジャーナル・オブ・ファーマコロジー・アンド・エクスペリメンタル・セラピューティックス (Journal of Pharmacology and Experimental Therapeutics) 、278巻、

847頁(1996年)に記載のモルモット喘息モデル、ジャーナル・オブ・イムノロジー(Journal of Immunology)、163巻、403頁(1999年)に記載のマウス気道過敏性モデル、ジャーナル・オブ・イムノロジー(Journal of Immunology)、167巻、3980頁(2001年)に記載の遅延型過敏症モデル、ジャーナル・オブ・イムノロジー(Journal of Immunology)、167巻、1004頁(2001年)に記載のコラーゲン関節炎モデル、ジャーナル・オブ・イムノロジー(Journal of Immunology)、163巻、1265頁(1999年)に記載のオキサゾロン誘発接触性皮膚炎モデル、ジャーナル・オブ・インベスティゲーティブ・ダーマトロジー(Journal of Investigative Dermatology)、111巻、86頁(1998年)に記載のオキサゾロン誘発アトピー性皮膚炎モデル等、抗炎症作用を評価するために一般的に用いられる各種評価モデルにより、本発明の化合物の優れた薬理作用を示すことができる。

本発明により提供されるこれらの化合物の用途は本発明の医薬の有効成分としての使用に限定されることはなく、他の医薬の有効成分や他の化合物の製造用中間体等の用途に使用することもできる。本発明の化合物の用途には、このような他の用途が包含されることはいうまでもない。

本発明の医薬は、化合物(I)およびその薬理学的に許容される塩、ならびにそれらの水和物および溶媒和物からなる群から選ばれる物質を有効成分として含むことを特徴とする。本発明の医薬としては、有効成分である化合物(I)をそのまま単独で投与してもよいが、一般的には、有効成分である化合物(I)と1または2以上の製剤用添加物とを含む医薬組成物の形態で投与することが望ましい。

本発明に係わる医薬組成物は、活性成分として化合物(I)またはその薬理学的に許容される塩を単独で、あるいは任意の他の治療のための有効成分との混合物として含有することができる。また、それら医薬組成物は、活性成分を薬理学的に許容される一種またはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られている任意の方法により製造される。なお、本発明の医薬は、ヒトを含む哺乳類

動物に適用可能である。

本発明の医薬の投与経路は特に限定されず、経口または静脈内投与 等の非経口投与のいずれかから治療および/または予防のために最も 効果的な投与経路を適宜選択することができる。

経口投与に適する液体製剤の製造には、例えば、水、蔗糖、ソルビット、果糖等の糖類、ポリエチレングリコール、プロピレングリコール等のグリコール類、ごま油、オリーブ油、大豆油等の油類、p-ヒドロキシ安息香酸エステル類等の防腐剤、ストロベリーフレーバー、ペパーミント等のフレーバー類等の製剤用添加物を用いることができる。また、錠剤等の固形製剤の製造には、例えば、乳糖、マンニット等の賦形剤、澱粉等の崩壊剤、ステアリン酸マグネシウム等の滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース等の結合剤、脂肪酸エステル等の界面活性剤、グリセリン等の可塑剤等を用いることができる。

非経口投与に適する製剤のうち注射剤等の血管内投与用製剤は、好ましくはヒト血液と等張の水性媒体を用いて調製することができる。例えば、注射剤は、塩溶液、ブドウ糖溶液、および塩水とブドウ糖溶液の混合物から選ばれる水性媒体を用い、常法に従って適当な助剤とともに溶液、懸濁液、または分散液として調製することができる。非経口投与用の製剤の製造には、例えば、希釈剤、香料、防腐剤、賦形剤、崩壊剤、滑沢剤、結合剤、界面活性剤、可塑剤等から選択される1または2以上の製剤用添加物を用いることができる。

本発明の医薬の投与量および投与頻度は特に限定されず、有効成分である上記物質の種類、投与経路、治療および/または予防の目的、患者の年齢および体重、症状の性質および重篤度等の種々の条件に応じて適宜選択することが可能である。例えば、成人1日当り1~50mg/kgを3~4回に分けて投与するのが好ましい。しかしながら、これら投与量および投与回数は前述の種々の条件により変動する。

発明を実施するための最良の形態

以下、本発明を実施例および参考例によりさらに具体的に説明する

が、本発明の範囲はこれらの実施例に限定されることはない。なお、以下の実施例および参考例における化合物の番号は第3表に具体例として示した化合物の番号に対応する。また、得られた化合物は質量分析(MS)、プロトン核磁気共鳴(¹H-NMR)等により同定した。各化合物の質量分析結果を、前述の第3表に併せて記載する。

代表的化合物のプロトン核磁気共鳴スペクトルデータを、第5~6 表および実施例中に示す。

下記実施例中の各化合物の物理化学データは、以下の機器類によって測定した。

¹H-NMR: JEOL JNM-EX270 (270 MHz)またはJEOL JNM-GX270 (270 MHz) MS: Micromass LCTまたはMicromass Quatro (APCI法またはESI法で測定)

参考例1:N-(トルエン-4-スルホニル)-L-プロリル-O-(トリフルオロメタンスルホニル)-L-チロシンtert-ブチルエステル (化合物a)

W099/06390に記載の方法に準じて得られたNー(トルエンー4ースルホニル)ーLープロリルーLーチロシンtertーブチルエステル(32.9 g, 67.3 mmo1)をジクロロメタン(200 mL)に溶解し、氷冷下、ピリジン(16.0 mL, 198 mmo1)と無水トリフルオロメタンスルホン酸(14.6 mL, 86.8 mmo1)を加え、室温で4時間攪拌した。反応溶液に希塩酸とジクロロメタンを加え、抽出した後、有機層を飽和重曹水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)で精製し、無色結晶の標題化合物を87%(36.5 g, 58.8 mmo1)で得た。

 1 H-NMR (CDC1₃) δ (ppm): 7.84 (d, J = 8.3 Hz, 2H), 7.36-7.28 (m, 6H), 7.17 (d, J = 8.4 Hz, 2H), 4.78-4.70 (m, 1H), 4.08-4.03 (m, 1H), 3.38-3.03 (m, 4H), 2.21 (s, 3H), 2.05-2.00 (m, 1H), 1.56-1.40 (m, 3H), 1.45 (s, 9H).

参考例2:N-ベンゼンスルホニル-L-プロリル-O-(トリフル

オロフメタンスルホニル)ーLーチロシンtertーブチルエステル (化合物b)

参考例1と同様の方法により、W099/06390に記載の方法に準じて得られたNーベンゼンスルホニルLープロリルーLーチロシンtertーブチルエステルから、標題化合物を得た。

¹H-NMR (CDC1₃) δ (ppm): 7.84 (d, J = 7.8 Hz, 2H), 7.67-7.52 (m, 3H), 7.37-7.26 (m, 3H), 7.19 (d, J = 8.4 Hz, 2H), 4.78-4.70 (m, 1H), 4.09-4.05 (m, 1H), 3.39-3.03 (m, 4H), 2.04-2.00 (m, 1H), 1.57-1.39 (m, 3H), 1.46 (s, 9H).

参考例 3: N-(3, 5-ジクロロベンゼンスルホニル)-L-プロリル-O-(トリフルオロフメタンスルホニル)-L-チロシン<math>tert-ブチルエステル(化合物c)

参考例 1 と同様の方法により、W099/06390に記載の方法に準じて得られたN-(3,5-ジクロロベンゼンスルホニル)- L-プロリル- L-チロシンtert-ブチルエステルから、標題化合物を得た。

¹H-NMR (CDC1₃) δ (ppm): 7.73 (d, J = 1.8 Hz, 2H), 7.61 (t, J = 1.8 Hz, 1H), 7.31 (t, J = 8.6 Hz, 2H), 7.21 (d, J = 8.6 Hz, 2H), 4.80-4.70 (m, 1H), 4.15-4.05 (m, 1H), 3.43-3.05 (m, 4H), 2.13-2.05 (m, 1H), 1.70-1.50 (m, 3H), 1.46 (s, 9H).

参考例4:4-(4-フェニルピペラジン-1-イル)-L-フェニルアラニンメチルエステル(化合物 d)

工程1

W099/36393に記載の方法に準じて得られたN- (tert-ブトキシカルボニル) -O- (トリフルオロフメタンスルホニル) -L-チロシンメチルエステル(5.0 g, 12 mmol)と1-フェニルピペラジン(2.3 g, 14 mmol)をテトラヒドロフラン(50 mL)に溶解し、炭酸セシウム(5.3 g, 16 mmol)、2- [ジ (tert-ブチル) ホスフィノ] ビフェニル(263 mg, 0.88 mmol)およびトリス (ジベンジリデンアセトン) ジパラジウム(266 mg, 0.29 mmol)を加え、60°Cで3時間攪拌した。反応溶液に飽和塩化アンモニウム水溶液と酢酸エチルを加え、抽出した後、有機層を飽和食

塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)で精製し、無色結晶のN-(tert-ブトキシカルボニル) -4-(4-フェニルピペラジン-1-イル) -L-フェニルアラニンメチルエステルを60%(3.1 g, 7.1 mmol)で得た。

 1 H-NMR (CDCl₃) δ (ppm): 7.30 (t, J = 7.6 Hz, 2H), 7.04 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 7.6 Hz, 2H), 6.92-6.86 (m, 3H), 3.72 (s, 3H), 3.33 (s, 8H), 3.01 (m, 2H), 1.42 (s, 9H).

工程2

工程1

工程1で得られたNー(tertーブトキシカルボニル)ー4ー(4ーフェニルピペラジンー1ーイル)ーLーフェニルアラニンメチルエステル(2.4 g, 5.5 mmol)をジクロロメタン(40 mL)に溶解し、トリフルオロ酢酸(15 mL)を加え、室温で30分間攪拌した。反応溶液を減圧濃縮し、得られた残渣を酢酸エチルで希釈した。この溶液を飽和炭酸水素ナトリウム水溶液に加え、分液した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、無色結晶の標題化合物を99%(1.8 g, 5.4 mmol)で得た。

¹H-NMR (CDCl₃) δ (ppm): 7.29 (dt, J = 1.8 Hz, 6.9 Hz, 2H), 7.11 (d, J = 8.6 Hz, 2H), 7.00-6.86 (m, 5H), 3.72 (s, 3H), 3.70 (dd, J = 5.1 Hz, 7.7 Hz), 3.33 (s, 8H), 3.03 (dd, J = 5.1 Hz, 14 Hz, 1H), 2.80 (dd, J = 7.7 Hz, 14 Hz, 1H).

参考例 5 : N - (tert-ブトキシカルボニル) - 4 - (ピペラジンー 1-イル) - L - フェニルアラニンメチルエステル (化合物e)

参考例4の工程1と同様の方法により、N-(tert-ブトキシカルボニル)-O-(トリフルオロフメタンスルホニル)-L-チロシンメチルエステルとベンジルピペラジンから、N-(tert-ブトキシカルボニル)-4-(4ーベンジルピペラジン-1-イル)-L-フェニルアラニンメチルエステルを得た。

 $^{1}\text{H-NMR}(\text{CDC1}_{3})$ δ (ppm): 7.42-7.22 (m, 5H), 6.99 (d, J = 8.7 Hz, 2H),

6.83 (d, J = 8.7 Hz, 2H), 4.95-4.85 (m, 1H), 4.60-4.50 (m, 1H), 3.71 (s, 3H), 3.56 (s, 2H), 3.19-3.15 (m, 4H), 3.05-2.95 (m, 2H), 2.65-2.58 (m, 4H), 1.41 (s, 9H).

工程2

工程1で得られたNー(tertーブトキシカルボニル)-4-(4-ベンジルピペラジン-1ーイル)-L-フェニルアラニンメチルエステル(12.2 g, 27 mmo1)をジクロロメタン(120 mL)に溶解し、氷冷下、2-クロロエチルクロロホルメート(4 mL, 38 mmo1)を加え、室温で2時間攪拌した。反応溶液に飽和食塩水を加え、酢酸エチルで2回抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)で精製することにより、褐色油状物を得た。得られた化合物をメタノール(150 mL)に溶解し1時間加熱還流を行った。反応溶液を減圧濃縮し、得られた残渣に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、無色結晶の標題化合物を78%(7.7 g, 21.2 mmo1)で得た。

 1 H-NMR (CDCl $_{3}$) δ (ppm): 7.02 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 4.96-4.90 (m, 1H), 4.60-4.50 (m, 1H), 3.82-3.74 (m, 4H), 3.71 (s, 3H), 3.16-3.10 (m, 4H), 3.03-3.00 (m, 2H), 1.31 (s, 9H). 参考例 $6:N-(2,6-\tilde{\upsilon})$ ロロベンゾイル) -3-= トロー4-O-(トリフルオロメタンスルホニル) -L- フェニルアラニンエチルエステル (化合物 f)

工程1

3-=トローLーチロシンエチルエステル塩酸塩(10.0 g, 36.9 mmol)と炭酸ナトリウム(5.87 g, 55.4 mmol)を水(100 mL)とアセトン(100 mL)の混合溶媒に溶解し、氷冷下で 2, 6 ージクロロベンゾイルクロリド(9.25 g, 44.3 mmol)を加え、室温で 1 時間攪拌した。 2.0 mol/L 塩酸で中和し、生じた固体をろ取し、黄色固体のN-(2, 6 ージクロロベンゾイル)-3 ーニトローLーチロシンエチルエステルを

100% (16.0g, 36.9 mmol)で得た。

工程2

工程1で得られたN-(2,6-ジクロロベンゾイル)-3-ニトローLーチロシンエチルエステル(15.0 g,35.1 mmol)とピリジン(11.0 g,140 mmol)をジクロロメタン (140 mL)に溶解し、氷冷下で無水トリフルオロメタンスルホン酸(14.8 g,52.7 mmol)を加え、室温で1時間攪拌した。反応液にクロロホルムを加え、水、2.0 mol/L塩酸および飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製し、白色固体の標題化合物を100%(5.71 g,10.0 mmol)で得た。

参考例 7:4-(3,3-ジメチル-2-オキソー4-フェニルピペラジン-1-イル)-L-フェニルアラニンメチルエステル (化合物 g) 工程 <math>1

N-アリルアニリン(19 mL, 140 mmo1)をジメチルホルムアミド(190 mL)に溶解し、炭酸カリウム(29 g, 210 mmo1)およびブロモ酢酸メチル (16 mL, 168 mmo1)を加え、70 \mathbb{C} で2時間攪拌した。反応溶液に飽和塩化アンモニウム水溶液と酢酸エチルを加え、有機層を抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル= 1/20)で精製し、淡黄色液体のN-アリル-N-フェニルアミノ酢酸メチルを 89% (26 g, 125 mmo1)で得た。

 $^{1}\text{H-NMR}(\text{CDC1}_{3}) \ \delta \ (\text{ppm}): \ 7.25-7.17 \, (\text{m}, 2\text{H}), \ 6.73 \, (\text{t}, J=7.3 \, \text{Hz}, 1\text{H}), \ 6.65 \, (\text{dd}, J=0.91 \, \text{Hz}, 8.8 \, \text{Hz}, 2\text{H}), \ 5.96-5.82 \, (\text{m}, 1\text{H}), \ 5.22 \, (\text{dt}, J=1.6 \, \text{Hz}, 15 \, \text{Hz}, 1\text{H}), \ 5.18 \, (\text{dt}, J=1.6 \, \text{Hz}, 8.5 \, \text{Hz}, 1\text{H}), \ 4.03 \, (\text{s}, 2\text{H}), \ 4.02 \, (\text{dt}, J=1.6 \, \text{Hz}, 6.4 \, \text{Hz}, 2\text{H}), \ 3.73 \, (\text{s}, 3\text{H}).$

工程2

工程1で得られたN-アリル-N-フェニルアミノ酢酸メチル(4.0 g, 19 mmol)をテトラヒドロフラン(30 mL)に溶解し、-78℃に冷却した

リチウムへキサメチルジシラジド(29%テトラヒドロフラン溶液、55 mL, 95 mmo1)に加え、30 分間攪拌した。その後ヨードメタン(5.9 mL, 95 mmo1)を加え、0℃にして 30 分間攪拌した。反応溶液に飽和塩化アンモニウム水溶液と酢酸エチルを加え、有機層を抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー (ヘキサン/酢酸エチル=1/20) で精製し、淡黄色液体の 2 ー (NーアリルーNーフェニルアミノ) ー 2 ーメチルプロピオン酸メチルを 75% (3.4 g, 15 mmo1) で得た。

 $^{1}\text{H-NMR} \, (\text{CDC1}_{3}) \, \, \delta \, \, (\text{ppm}) \, : \, 7. \, 19 \, (\text{t}, \, \, \text{J} = 8.0 \, \, \text{Hz}, \, \, 2\text{H}) \, , \, \, 6. \, 90 \, (\text{t}, \, \, \text{J} = 8.0 \, \, \text{Hz}, \, \, 1\text{H}) \, , \, \, 6. \, 88 \, (\text{d}, \, \, \text{J} = 8.0 \, \, \text{Hz}, \, \, 2\text{H}) \, , \, \, 5. \, 91 - 5. \, 80 \, (\text{m}, \, \, 1\text{H}) \, , \, \, 5. \, 24 \, (\text{dd}, \, \, \text{J} = 1.8 \, \, \text{Hz}, \, \, 17 \, \, \text{Hz}, \, \, 1\text{H}) \, , \, \, 5. \, 06 \, (\text{dd}, \, \, \text{J} = 1.8 \, \, \text{Hz}, \, \, 10 \, \, \text{Hz}, \, \, 1\text{H}) \, , \, \, 3. \, 93 \, (\text{dt}, \, \, \text{J} = 1.8 \, \, \text{Hz}, \, \, 4.4 \, \, \text{Hz}, \, \, 2\text{H}) \, , \, \, 3. \, 70 \, (\text{s}, \, \, 3\text{H}) \, , \, \, 1. \, 48 \, (\text{s}, \, \, 6\text{H}) \, .$

工程3

工程 2 で得られた 2-(N-r)リルーN-rフェニルアミノ) -2-メチルプロピオン酸メチル (2.4~g,~10~mmo1)をテトラヒドロフラン (25~mL) と水 (25~mL) の混合溶媒に溶解し、0 \mathbb{C} に冷却後、四酸化オスミウム (25~mg,~0.10~mmo1)を加え攪拌した。メタ過ヨウ素酸ナトリウム (4.36~g,~20~mmo1)を 4~0分間かけて加え、室温にして 2 時間攪拌した。反応溶液に酢酸エチルを加え、有機層を抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー (-1.4~g,~1.4~g) で精製し、無色液体の 2-(N-r)ルメチル -1.4~g で精製し、無色液体の 2-(N-r)ルメチル -1.4~g で -1.4~g で

¹H-NMR (CDCl₃) δ (ppm): 9.71(t, J = 1.6 Hz, 1H), 7.25(t, J = 7.7 Hz, 2H), 7.06(t, J = 7.7 Hz, 1H), 7.02(d, J = 7.7 Hz, 2H), 4.04(d, J = 1.6 Hz, 2H), 3.73(s, 3H), 1.44(s, 6H).

工程4

工程3で得られた2-(N-ホルミルメチル-N-フェニルアミノ)

-2 ーメチルプロピオン酸メチル (1.4 g, 6.0 mmol) と 4 ーアミノーN ー (tertーブトキシカルボニル) ー L ーフェニルアラニンメチルエステル (1.8 g, 6.0 mmol) を 1 , 2 -ジクロロエタン (30 mL) に溶解し、 0 ℃に冷却後、酢酸 (1.0 mL, 18 mmol)、モレキュラーシーブス 4 Å (1.5 g) およびトリアセトキシ水素化ホウ素ナトリウム (1.9 g, 9.0 mmol) を加え、室温にして 2 時間攪拌した。反応溶液に飽和炭酸水素ナトリウム水溶液と酢酸エチルを加え、有機層を抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。 ろ過後、ろ液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=1/9)で精製し、黄色固体の Nー(tertーブトキシカルボニル) -4 ~ $\{2$ ~ [N ~ (1 ~

¹H-NMR (CDC1₃) δ (ppm): 7. 29-7. 24 (m, 2H), 7. 19-7. 12 (m, 3H), 6. 87 (d, J = 8.5 Hz, 2H), 6. 47 (d, J = 8.5 Hz, 2H), 4. 91 (brd, J = 8.2 Hz, 1H), 4. 49 (brs, 1H), 3. 75 (s, 3H), 3. 69 (s, 3H), 3. 31 (t, J = 5.6 Hz, 2H), 2. 94 (d, J = 5.9 Hz, 2H), 2. 84 (t, J = 5.6 Hz, 2H), 1. 41 (s, 9H), 1. 30 (s, 6H).

工程 5

工程 4 で得られた N - (tert-ブトキシカルボニル) - 4 - {2 -[N - (1 -メトキシカルボニル-1 -メチルエチル) -N -フェニルアミノ} -L -フェニルアラニンメチルエステル (960 mg, 1.9 mmo1) をメタノール (20 mL) に溶解し、ナトリウムメトキシド (1.0 g; 19 mmo1) を加え、60 $^{\circ}$ で 12 時間攪拌した。反応溶液を減圧濃縮し、水 (10 mL) を加え、攪拌しながら 0.2 mo1/L 塩酸を滴下し、溶液の p H を 3 程度に調整した。酢酸エチルを加え、有機層を抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。 ろ過後、ろ液を減圧 濃縮し、白色固体の N - (tert-ブトキシカルボニル) -4 - (3,3 -ジメチル-2 - オキソ-4 - フェニルピペラジン-1 - イル) - L - フェニルアラニンを 99% (870 mg, 1.9 mmo1) で得た。 得られた化合

物は、これ以上の精製はせずに次工程に用いた。

工程 6

工程5で得られたN-(tert-ブトキシカルボニル)-4-(3,3-ジメチル-2-オキソー4-フェニルピペラジン-1-イル)-L-フェニルアラニン(870 mg, 1.9 mmol)をジメチルホルムアミド(9.0 mL)に溶解し、炭酸カリウム(280 mg, 2.1 mmol)およびヨードメタン(0.13 mL, 2.1 mmol)を加え、室温で1時間攪拌した。反応溶液に飽和塩化アンモニウム水溶液と酢酸エチルを加え、有機層を抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル =1/3)で精製し、無色結晶のN-(tert-ブトキシカルボニル)-4-(3,3-ジメチル-2-オキソー4-フェニルピペラジン-1-イル)-L-フェニルアラニンメチルエステルを82%(730 mg, 1.5 mmol)で得た。

1H-NMR(CDC1₃) δ (ppm): 7.35-7.29(m, 3H), 7.20-7.14(m, 6H), 4.97(br d, J = 8.1 Hz, 1H), 4.58(brd, J = 7.4 Hz, 1H), 3.75(t, J = 5.3 Hz, 2H), 3.73(s, 3H), 3.51(t, J = 5.3 Hz, 2H), 3.10(brs, 2H), 1.42(s, 6H).

工程7

工程6で得られたN-(tert-ブトキシカルボニル)-4-(3,3-ジメチル-2-オキソー4-フェニルピペラジン-1-イル)-L-フェニルアラニンメチルエステル(150 mg, 0.31 mmol)をジクロロメタン(3 mL)に溶解し、トリフルオロ酢酸(1 mL)を加え、室温で 30分間攪拌した。反応溶液を減圧濃縮し、得られた残渣を酢酸エチルで希釈し、飽和炭酸水素ナトリウム水溶液に加えた。有機層を抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、無色結晶の標題化合物を 99%(120 mg, 0.31 mmol)で得た。

 $^{1}H-NMR(CDC1_{3})$ δ (ppm): 7.37-7.13(m, 9H), 3.77-3.73(m, 6H), 3.51(t, J = 5.1 Hz, 2H), 3.12(dd, J = 4.9 Hz, 14 Hz, 1H),

2.86 (dd, J = 8.1 Hz, 14 Hz, 1H), 1.42 (s, 6H).

実施例1:N-(トルエン-4-スルホニル)-L-プロリルー4-[4-(2-シアノフェニル)ピペラジン-1-イル]-L-フェニルアラニン

工程1

参考例1で得られた化合物 a (623 mg, 1.00 mmol)と1-(2-シア ノフェニル)ピペラジン(229 mg, 1.22 mmol)をテトラヒドロフラン(2.0 mL)に溶解し、炭酸セシウム(462 mg, 1.42 mmol)、2- [ジ (tert-ブチル) ホスフィノ] ビフェニル(23.0 mg, 0.0771 mmol)および酢酸 パラジウム(11.0 mg, 0.0490 mmol)を加え、60℃で4時間攪拌した。 反応溶液に飽和食塩水と酢酸エチルを加え、有機層を抽出し、無水硫 酸マグネシウムで乾燥した。溶媒を留去し、得られた残渣をシリカゲ ルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1)で精製し、 無色結晶のN-(トルエン-4-スルホニル)-L-プロリル-4-[4-(2-シアノフェニル) ピペラジン-1-イル] -L-フェニ ルアラニンtert-ブチルエステルを35% (230 mg, 0.350 mmol)で得た。 $^{1}H-NMR(CDC1_{3})$ δ (ppm): 7.72 (d, J = 8.4 Hz, 2H), 7.58 (dd, J = 0.8) Hz, 8. 1 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 7.31-7.30 (m, 1H), 7.09 (d, J = 8.4 Hz, 2H), 7.07-7.01 (m, 2H), 6.89 (d, J = 8.4 Hz, 2H), 4.72-4.65 (m, 1H), 4.09-4.07 (m, 1H), 3.36-3.35 (m, 9H), 3.16 (dd, J = 5.7 Hz, 13.8 Hz, 1H), 3.13-3.07(m, 1H), 2.98 (dd, J = 7.0 Hz, 14.0 Hz, 1H), 2.43 (s, 3H), 1.48 (s, 9H), 1.47-1.42 (m, 4H).

工程 2

工程1で得られたN-(N-1) (トルエンー4ースルホニル) ーLープロリルー4ー [4ー(2ーシアノフェニル) ピペラジンー1ーイル]ーLーフェニルアラニンtert-ブチルエステル(230 mg, 0.350 mmo1)をジクロロメタン(5 mL)に溶解し、トリフルオロ酢酸(1 mL、13.0 mmo1)を加え、室温で12時間攪拌した。溶媒およびトリフルオロ酢酸を減圧下

留去し、残渣に 1 mol/L水酸化ナトリウム水溶液を加え、完全に溶解させた。この溶液に酢酸を加え、析出した結晶をろ取し、無色結晶の標題化合物を71% (149 mg, 0.248 mmol)で得た。

 1 H-NMR (CDCl₃) δ (ppm): 7.69 (d, J = 7.3 Hz, 2H), 7.55 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 8.1 Hz, 1H), 7.19 (d, J = 6.5 Hz, 2H), 7.08-6.98 (m, 4H), 6.81 (d, J = 7.6 Hz, 2H), 4.74-4.64 (m, 1H), 4.10-4.05 (m, 1H), 3.28-3. 25 (m, 10H), 2.98-2.77 (m, 2H), 2.33 (s, 3H), 1.78-1.75 (m, 1H), 1.37-1. 33 (m, 2H), 1.17-1.14 (m, 1H).

実施例1と同様にして、化合物2~36を実施例2~36として合成した。得られた化合物のプロトン核磁気共鳴スペクトルデータを、第5表に示す。

第 5 表

化合物	測定	¹H-NMRδ (ppm):
番号	溶媒	
2	DMSO-d 6	8.00 (d, J = 7.9 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.24 (t, J = 8.5 Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 7.00 (d, J = 7.9 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 4.38-4.50 (m, 1H), 4.10-4.15 (m, 1H), 3.26 (brs, 8H), 3.60-2.85 (m, 4H), 2.40 (s, 3H), 1.70-1.35 (m, 4H)
3	CDCl ₃	7.73 (d, J = 7.9 Hz, 2H), 7.38·7.26 (m, 3H), 7.14 (d, J = 8.2 Hz, 2H), 7.06·6.86 (m, 6H), 4.90·4.65 (m, 1H), 4.20·4.05 (m, 1H), 3.87 (s, 3H), 3.32·3.21 (m, 8H), 3.20·2.90 (m, 4H), 2.40 (s, 3H), 2.05·1.85 (m, 1H), 1.60·1.35 (m, 3H)

		7.68 (d, J = 8.1 Hz, 2H), 7.50 (m, 1H),
		7.41-7.25 (m, 6H), 6.89-6.86 (m, 2H), 6.72
		(d, $J = 8.1 \text{ Hz}, 2H), 4.85-4.78$ (m, 1H),
4	CDCl_3	4.09-4.06 (m, 1H), 3.80-3.74 (m, 8H),
		3.44·3.41 (m, 1H), 3.33·3.05 (m, 3H), 2.43
		(s, 3H), 1.60·1.53 (m, 3H), 1.27·1.26 (m,
		1H)
		7.72 (d, $J = 7.6$ Hz, 2H), 7.37 (d, $J = 7.3$
1100		Hz, $1H$), 7.30 (d, $J = 8.1$ Hz , $2H$), 7.13 (d, J
1		= 7.6 Hz, 2H), 6.99 (d, J = 9.2 Hz, 2H),
5	CDCl_3	6.91-6.84 (m, 4H), 4.75-4.72 (m, 1H),
		4.11-4.08 (m, 1H), 3.78 (s, 3H), 3.38-3.15
		(m, 10H), 3.15-2.95 (m, 2H), 2.41 (s, 3H),
		1.99-1.96 (m, 1H), 1.52-1.47 (m, 3H)
		7.71-7.66 (m, 4H), 7.57 (d, J = 8.1 Hz, 1H),
		7.46-7.11 (m, 8H), 4.85-4.78 (m, 1H),
6	CDCl_3	4.11-4.06 (m, 1H), 3.69-3.68 (m, 8H),
		3.41-3.07 (m, 4H), 2.42 (s, 3H), 2.35 (s,
		3H), 2.00-1.96 (m, 1H), 1.57-1.49 (m, 3H)
		7.70 (d, J = 8.3 Hz, 2H), $7.39 \cdot 6.92$ (m,
	,	10H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H),
7	$CDCl_3$	3.44-3.13 (m, 12H), 2.42 (s, 3H), 2.27 (s,
		3H), 2.23 (s, 3H), 2.02-2.01 (m, 1H),
		1.55-1.52 (m, 3H)

		7.70 (d, $J = 7.8$ Hz, 2H), 7.49 (d, $J = 8.6$ Hz,
		2H), $7.30-7.26$ (m, 2H), 7.12 (d, $J = 8.1$ Hz,
		2H), 6.94 (d, $J = 8.6 Hz$, $2H$), 6.88 (d, $J = 8.4$
8	CDCl_3	Hz, 2H), 4.77-4.73 (m, 1H), 4.08-4.03 (m,
		1H), 3.39·3.37 (m, 4H), 3.26·3.25 (m, 6H),
		3.07-2.91 (m, 2H), 2.40 (s, 3H), 1.89-1.85
		(m, 1H), 1.49-1.25 (m, 3H)
		7.72 (d, J = 7.8 Hz, 2H), 7.65 (d, J = 5.7 Hz,
		1H), 7.40 (d, $J = 8.1 Hz$, 2H), 7.23 (d, $J = 8.9$
	DMSO-d6	Hz, 2H), $6.99 \cdot 6.96$ (m, 4H), 6.79 (d, $J = 8.6$
9		Hz, 2H), 3.98-3.94 (m, 2H), 3.24-3.21 (m,
		4H), 3.17-3.15 (m, 4H), 3.10-2.93 (m, 4H),
		2.38 (s, 3H), 1.77-1.71 (m, 1H), 1.37-1.33
		(m, 3H)
		7.70 (d, J = 8.2 Hz, 2H), 7.57-7.51 (m, 4H),
	CDCl₃	7.43-7.37 (m, 2H), 7.31-7.25 (m, 4H), 7.14
10		(d, $J = 8.2 \text{ Hz}, 2\text{H}), 7.02$ (d, $J = 8.9 \text{ Hz}, 2\text{H}),$
		6.93 (d, J = 8.6 Hz, 2H), 4.81-4.74 (m, 1H),
		4.11-4.09 (m, 1H), 3.35-3.23 (m, 10H),
		3.14-3.08 (m, 2H), 2.40 (s, 3H), 2.04-2.02
		(m, 1H), 1.51-1.43 (m, 3H)

8.11 (d, J = 9.7 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 9.7 Hz, 2H), 4.82-4.75 (m, 1H), 4.09-4.06 (m, 1H), 3.58-3.54 (m, 4H), 3.40-3.30 (m, 6H), 3.23-3.09 (m, 2H), 2.43 (s, 3H), 2.04-2.03 (m, 1H), 1.50-1.47 (m, 3H) 7.69 (d, J = 8.3 Hz, 2H), 7.42-7.11 (m, 8H), 7.02 (d, J = 8.3 Hz, 2H), 4.82-4.77 (m, 1H), 4.08-4.06 (m, 1H), 3.49-3.39 (m, 9H), 3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m, 1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 3H), 2.06-2.04 (m, 1H), 1.54-1.51 (m, 3H)			
Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 9.7 Hz, 2H), 4.82·4.75 (m, 1H), 4.09·4.06 (m, 1H), 3.58·3.54 (m, 4H), 3.40·3.30 (m, 6H), 3.23·3.09 (m, 2H), 2.43 (s, 3H), 2.04·2.03 (m, 1H), 1.50·1.47 (m, 3H) 7.69 (d, J = 8.3 Hz, 2H), 7.42·7.11 (m, 8H), 7.02 (d, J = 8.3 Hz, 2H), 4.82·4.77 (m, 1H), 4.08·4.06 (m, 1H), 3.49·3.39 (m, 9H), 3.31·3.12 (m, 3H), 2.43 (s, 3H), 2.05·2.03 (m, 1H), 1.54·1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38·7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19·7.01 (m, 8H), 4.82·4.75 (m, 1H), 4.09·4.07 (m, 1H), 3.40·3.26 (m, 11H), 3.16·3.09 (m, 1H), 2.43 (s, 4.82·4.75 (m, 1H), 4.09·4.07 (m, 1H), 3.40·3.26 (m, 11H), 3.16·3.09 (m, 1H), 2.43 (s, 4.82·4.75 (m, 11H), 3.16·3.09 (m, 11H), 3.40·3.00 (m, 11H), 3.4			8.11 (d, J = 9.7 Hz, 2H), 7.68 (d, J = 8.4 Hz,
8.6 Hz, 2H), 6.83 (d, J = 9.7 Hz, 2H), 4.82·4.75 (m, 1H), 4.09·4.06 (m, 1H), 3.58·3.54 (m, 4H), 3.40·3.30 (m, 6H), 3.23·3.09 (m, 2H), 2.43 (s, 3H), 2.04·2.03 (m, 1H), 1.50·1.47 (m, 3H) 7.69 (d, J = 8.3 Hz, 2H), 7.42·7.11 (m, 8H), 7.02 (d, J = 8.3 Hz, 2H), 4.82·4.77 (m, 1H), 4.08·4.06 (m, 1H), 3.49·3.39 (m, 9H), 3.31·3.12 (m, 3H), 2.43 (s, 3H), 2.05·2.03 (m, 1H), 1.54·1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38·7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19·7.01 (m, 8H), 4.82·4.75 (m, 1H), 4.09·4.07 (m, 1H), 3.40·3.26 (m, 11H), 3.16·3.09 (m, 1H), 2.43 (s,			2H), 7.40 (d, $J = 7.6$ Hz, $1H$), 7.32 (d, $J = 7.8$
11 CDCl ₃ 4.82-4.75 (m, 1H), 4.09-4.06 (m, 1H), 3.58-3.54 (m, 4H), 3.40-3.30 (m, 6H), 3.23-3.09 (m, 2H), 2.43 (s, 3H), 2.04-2.03 (m, 1H), 1.50-1.47 (m, 3H) 7.69 (d, J = 8.3 Hz, 2H), 7.42-7.11 (m, 8H), 7.02 (d, J = 8.3 Hz, 2H), 4.82-4.77 (m, 1H), 4.08-4.06 (m, 1H), 3.49-3.39 (m, 9H), 3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m, 1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s,			Hz, 2H), 7.15 (d, $J = 8.6$ Hz, 2H), 6.92 (d, $J =$
4.82-4.75 (m, 1H), 4.09-4.06 (m, 1H), 3.58-3.54 (m, 4H), 3.40-3.30 (m, 6H), 3.23-3.09 (m, 2H), 2.43 (s, 3H), 2.04-2.03 (m, 1H), 1.50-1.47 (m, 3H) 7.69 (d, J = 8.3 Hz, 2H), 7.42-7.11 (m, 8H), 7.02 (d, J = 8.3 Hz, 2H), 4.82-4.77 (m, 1H), 4.08-4.06 (m, 1H), 3.49-3.39 (m, 9H), 3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m, 1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.40-3.26 (m, 11H), 3.40-3.26 (m,	1.1	CD CI	8.6 Hz, 2H), 6.83 (d, J = 9.7 Hz, 2H),
3.23-3.09 (m, 2H), 2.43 (s, 3H), 2.04-2.03 (m, 1H), 1.50-1.47 (m, 3H) 7.69 (d, J = 8.3 Hz, 2H), 7.42-7.11 (m, 8H), 7.02 (d, J = 8.3 Hz, 2H), 4.82-4.77 (m, 1H), 4.08-4.06 (m, 1H), 3.49-3.39 (m, 9H), 3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m, 1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.40-3.26 (m, 11H), 3.40-3.26 (TT	CDC13	4.82-4.75 (m, 1H), 4.09-4.06 (m, 1H),
1H), 1.50-1.47 (m, 3H) 7.69 (d, J = 8.3 Hz, 2H), 7.42-7.11 (m, 8H), 7.02 (d, J = 8.3 Hz, 2H), 4.82-4.77 (m, 1H), 4.08-4.06 (m, 1H), 3.49-3.39 (m, 9H), 3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m, 1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s,			3.58-3.54 (m, 4H), 3.40-3.30 (m, 6H),
7.69 (d, J = 8.3 Hz, 2H), 7.42-7.11 (m, 8H), 7.02 (d, J = 8.3 Hz, 2H), 4.82-4.77 (m, 1H), 4.08-4.06 (m, 1H), 3.49-3.39 (m, 9H), 3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m, 1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s,			3.23-3.09 (m, 2H), 2.43 (s, 3H), 2.04-2.03 (m,
7.02 (d, J = 8.3 Hz, 2H), 4.82-4.77 (m, 1H), 4.08-4.06 (m, 1H), 3.49-3.39 (m, 9H), 3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m, 1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s,			1H), 1.50-1.47 (m, 3H)
12 CDCl ₃ 4.08-4.06 (m, 1H), 3.49-3.39 (m, 9H), 3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m, 1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.16-3.09 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.43 (s, 1H), 3.43 (s, 1H), 3.44-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.43 (s, 1H), 3.44-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.44-3.16 (m,		CDCl ₃	7.69 (d, $J = 8.3$ Hz, 2H), $7.42-7.11$ (m, 8H),
3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m, 1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s, 1H), 3.16-3.09 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 3.43 (s, 1H), 3.16-3.09 (m, 1H), 3.43 (s, 1H), 3.16-3.09 (m, 1H), 3.43 (s, 1H), 3.45-3.09 (m, 1H), 3.45-3.			7.02 (d, J = 8.3 Hz, 2H), 4.82-4.77 (m, 1H),
1H), 1.54-1.48 (m, 3H) 7.70 (d, J = 8.2 Hz, 2H), 7.38-7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s,	12		4.08-4.06 (m, 1H), 3.49-3.39 (m, 9H),
7.70 (d, J = 8.2 Hz, 2H), 7.38·7.35 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.19·7.01 (m, 8H), 4.82·4.75 (m, 1H), 4.09·4.07 (m, 1H), 3.40·3.26 (m, 11H), 3.16·3.09 (m, 1H), 2.43 (s,			3.31-3.12 (m, 3H), 2.43 (s, 3H), 2.05-2.03 (m,
7.32 (d, J = 7.9 Hz, 2H), 7.19-7.01 (m, 8H), 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s,			1H), 1.54-1.48 (m, 3H)
13 CDCl ₃ 4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H), 3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s,			7.70 (d, J = 8.2 Hz, 2H), $7.38-7.35$ (m, 1H),
3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s,	13		7.32 (d, J = 7.9 Hz, 2H), $7.19-7.01$ (m, 8H),
		CDCl ₃	4.82-4.75 (m, 1H), 4.09-4.07 (m, 1H),
3H), 2.06·2.04 (m, 1H), 1.54·1.51 (m, 3H)			3.40-3.26 (m, 11H), 3.16-3.09 (m, 1H), 2.43 (s,
			3H), 2.06-2.04 (m, 1H), 1.54-1.51 (m, 3H)

	·1	
14	CD3OD	8.12 (d, J = 7.6 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 7.8 Hz, 4H), 6.90 (d, J = 8.9 Hz, 2H), 4.54-4.49 (m, 1H), 4.11-4.08 (m, 1H), 3.32-3.29 (m, 8H), 3.22-3.02 (m, 3H), 2.42 (s, 3H), 1.88-1.81 (m, 1H), 1.65-1.51 (m, 4H)
15	CDCl ₃	8.18 (d, J = 4.9 Hz, 1H), 7.70-7.68 (m, 2H), 7.50-7.45 (m, 2H), 7.17-7.13 (m, 2H), 7.05-7.01 (m, 2H), 6.79-6.75 (m, 2H), 6.67-6.60 (m, 2H), 4.65-4.60 (m, 1H), 4.06-4.03 (m, 1H), 3.62-3.60 (m, 4H), 3.31-3.26 (m, 2H), 3.14-3.12 (m, 4H), 2.94-2.90 (m, 2H), 2.31 (s, 3H), 1.77-1.73 (m, 1H), 1.33-1.25 (m, 3H)
16	CDCl ₃	8.20 (br s, 1H), 8.13 (br s, 1H), 7.88 (br s, 1H), 7.69 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 4.84-4.76 (m, 1H), 4.09-4.07 (m, 1H), 3.87-3.86 (m, 4H), 3.36-3.23 (m, 7H), 3.16-3.11 (m, 1H), 2.43 (s, 3H), 2.06-2.03 (m, 1H), 1.58-1.53 (m, 3H)

	8.35 (d, $J = 4.9$ Hz, $2H$), 7.71 (d, $J = 8.6$
	Hz, 2H), 7.38 (d, $J = 6.9$ Hz, 1H), 7.32 (d,
	J = 8.2 Hz, 2H), 7.12 (d, J = 8.6 Hz, 2H),
CDCL	6.91 (d, $J = 8.6$ Hz, $2H$), 6.54 (t, $J = 4.9$
CDC13	Hz, 1H), 4.81-4.74 (m, 1H), 4.11-4.09 (m,
	1H), 3.95-3.91 (m, 4H), 3.42-3.36 (m,
	1H), 3.27·3.06 (m, 7H), 2.42 (s, 3H),
	2.09-2.05 (m, 1H), 1.53-1.46 (m, 3H)
	7.71 (d, $J = 8.3$ Hz, $2H$), 7.30 (d, $J = 8.3$
CDCl ₃	Hz, 2H), 7.15 (d, $J = 8.6$ Hz, 2H), 6.75 (d,
	J = 8.6 Hz, 2H), 4.60-4.55 (m, 1H),
	4.11·4.08 (m, 1H), 3.50·2.90 (m, 12H),
	2.65 (s, 3H), 2.42 (s, 3H), 2.15-2.08 (m,
	1H), 1.68-1.58 (m, 3H)
	7.94 (d, $J = 7.8$ Hz, 1H), 7.69 (d, $J = 8.4$ Hz,
DMSO-d ₆	2H), 7.40 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.4
	Hz, 2H), 6.83 (d, $J = 8.9$ Hz, 2H), $4.42-4.36$
	(m, 1H), 4.13-4.11 (m, 1H), 3.13-3.11 (m,
	6H), 3.01-2.84 (m, 2H), 2.73-2.72 (m, 1H),
	2.40 (s, 3H), 1.86-1.82 (m, 2H)

8.03 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 4.43-4.33 (m, 1H), 4.14-4.12 (m, 1H), 3.33-3.30 (m, 2H), 3.19-3.12 (m, 8H), 3.11-2.85 (m, 2H), 2.40 (s, 3H), 1.60-1.44 (m, 4H) 7.90 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 3.50 (s, 2H), 3.31 (brs, 4H), 3.07 (brs, 4H), 3.05-2.79 (m, 4H), 2.40 (s, 3H), 1.70-1.35 (m, 4H) 8.51 (d, J = 5.9 Hz, 2H), 7.97 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m, 14H), 2.40 (s, 3H), 1.62-1.41 (m, 4H)			
20 DMSO d 6 (m, 1H), 4.14-4.12 (m, 1H), 3.33-3.30 (m, 2H), 3.19-3.12 (m, 8H), 3.11-2.85 (m, 2H), 2.40 (s, 3H), 1.60-1.44 (m, 4H) 7.90 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.40-7.20 (m, 5H), 7.04 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 4.34-4.31 (m, 1H), 4.09-4.11 (m, 1H), 3.50 (s, 2H), 3.31 (brs, 4H), 3.07 (brs, 4H), 3.05-2.79 (m, 4H), 2.40 (s, 3H), 1.70-1.35 (m, 4H) 8.51 (d, J = 5.9 Hz, 2H), 7.97 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,			
(m, 1H), 4.14·4.12 (m, 1H), 3.33·3.30 (m, 2H), 3.19·3.12 (m, 8H), 3.11·2.85 (m, 2H), 2.40 (s, 3H), 1.60·1.44 (m, 4H) 7.90 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.40·7.20 (m, 5H), 7.04 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 4.34·4.31 (m, 1H), 4.09·4.11 (m, 1H), 3.50 (s, 2H), 3.31 (brs, 4H), 3.07 (brs, 4H), 3.05·2.79 (m, 4H), 2.40 (s, 3H), 1.70·1.35 (m, 4H) 8.51 (d, J = 5.9 Hz, 2H), 7.97 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42·4.38 (m, 1H), 4.14·4.11 (m, 1H), 3.57·3.55 (m, 1H), 3.32·3.30 (m, 4H), 3.11·3.09 (m, 4H), 3.08·2.89 (m, 3H), 2.40 (s, 3H), 1.74·1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46·4.38 (m, 1H), 4.15·4.07 (m, 1H), 3.40·2.90 (m,	20	DMCO- d	Hz, 2H), 6.90 (d, $J = 8.6$ Hz, 2H), $4.43-4.33$
2.40 (s, 3H), 1.60·1.44 (m, 4H) 7.90 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.40·7.20 (m, 5H), 7.04 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 3.07 (brs, 4H), 3.50 (s, 2H), 3.31 (brs, 4H), 3.07 (brs, 4H), 3.05·2.79 (m, 4H), 2.40 (s, 3H), 1.70·1.35 (m, 4H) 8.51 (d, J = 5.9 Hz, 2H), 7.97 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42·4.38 (m, 1H), 4.14·4.11 (m, 1H), 3.57·3.55 (m, 1H), 3.32·3.30 (m, 4H), 3.11·3.09 (m, 4H), 3.08·2.89 (m, 3H), 2.40 (s, 3H), 1.74·1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46·4.38 (m, 1H), 4.15·4.07 (m, 1H), 3.40·2.90 (m,	20	DMSO- d 6	(m, 1H), 4.14-4.12 (m, 1H), 3.33-3.30 (m,
21 DMSO-d ₆			2H), 3.19-3.12 (m, 8H), 3.11-2.85 (m, 2H),
2H), 7.40 (d, J = 8.2 Hz, 2H), 7.40-7.20 (m, 5H), 7.04 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 4.34-4.31 (m, 1H), 4.09-4.11 (m, 1H), 3.50 (s, 2H), 3.31 (brs, 4H), 3.07 (brs, 4H), 3.05-2.79 (m, 4H), 2.40 (s, 3H), 1.70-1.35 (m, 4H) 8.51 (d, J = 5.9 Hz, 2H), 7.97 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m, 4H), 4.15-4.07 (m, 1H), 4.15-4.07 (m, 1H), 4			2.40 (s, 3H), 1.60-1.44 (m, 4H)
DMSO-d6 5H), 7.04 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 4.34-4.31 (m, 1H), 4.09-4.11 (m, 1H), 3.50 (s, 2H), 3.31 (brs, 4H), 3.07 (brs, 4H), 3.05-2.79 (m, 4H), 2.40 (s, 3H), 1.70-1.35 (m, 4H) 8.51 (d, J = 5.9 Hz, 2H), 7.97 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m, 4H)			7.90 (d, $J = 7.8$ Hz, 1H), 7.70 (d, $J = 8.2$ Hz,
DMSO-d ₆ Hz, 2H), 4.34-4.31 (m, 1H), 4.09-4.11 (m, 1H), 3.50 (s, 2H), 3.31 (brs, 4H), 3.07 (brs, 4H), 3.05-2.79 (m, 4H), 2.40 (s, 3H), 1.70-1.35 (m, 4H) 8.51 (d, J = 5.9 Hz, 2H), 7.97 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m, 4H), 3.40-2.90 (m, 4H), 4.15-4.07 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m, 4H), 4.15-4.07 (m, 1H), 4.15-4.07 (m,			2H), 7.40 (d, $J = 8.2$ Hz, 2H), 7.40-7.20 (m,
22 DMSO-d6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,			5H), 7.04 (d, $J = 8.7$ Hz, $2H$), 6.80 (d, $J = 8.7$
22 DMSO-d 6	21	DMSO-d ₆	Hz, 2H), 4.34-4.31 (m, 1H), 4.09-4.11 (m,
22 DMSO-d 6 DMSO-d 7 DMS			1H), 3.50 (s, 2H), 3.31 (brs, 4H), 3.07 (brs,
8.51 (d, J = 5.9 Hz, 2H), 7.97 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m, 1H)			4H), 3.05-2.79 (m, 4H), 2.40 (s, 3H),
22 DMSO-d 6 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m, 1H), 4.15-4.07 (m, 1H), 4.15-4.			1.70-1.35 (m, 4H)
Hz, 2H), 7.34 (d, J = 5.4 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,			8.51 (d, $J = 5.9$ Hz, $2H$), 7.97 (d, $J = 7.6$ Hz,
22 DMSO-d 6 = 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H), 4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,	}	DMSO-d6	1H), 7.69 (d, $J = 8.1$ Hz, $2H$), 7.40 (d, $J = 7.8$
4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,			Hz, 2H), 7.34 (d, $J = 5.4$ Hz, 2H), 7.07 (d, J
4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H), 3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H), 3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,	22		= 8.6 Hz, 2H), 6.83 (d, J = 8.1 Hz, 2H),
3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s, 3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,			4.42-4.38 (m, 1H), 4.14-4.11 (m, 1H),
3H), 1.74-1.38 (m, 4H) 8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,			3.57-3.55 (m, 1H), 3.32-3.30 (m, 4H),
8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,			3.11-3.09 (m, 4H), 3.08-2.89 (m, 3H), 2.40 (s,
23 DMSO d 6 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,			3H), 1.74-1.38 (m, 4H)
23 DMSO-d ₆ Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.46-4.38 (m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,	23		8.01(d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz,
(m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,		DMSO-d 6	2H), 7.40 (d, $J = 7.8$ Hz, $2H$), 7.13 (d, $J = 8.6$
			Hz, 2H), 6.90 (d, $J = 8.4$ Hz, 2H), $4.46-4.38$
14H), 2.40 (s, 3H), 1.62-1.41 (m, 4H)			(m, 1H), 4.15-4.07 (m, 1H), 3.40-2.90 (m,
			14H), 2.40 (s, 3H), 1.62-1.41 (m, 4H)

1	
	7.99 (d, $J = 7.6 \text{ Hz}$, 1H), 7.69 (d, $J = 8.4 \text{ Hz}$, 2H),
	7.39 (d, $J = 7.8 \text{ Hz}$, 2H), 7.12 (d, $J = 8.6 \text{ Hz}$, 2H),
DMSO·d 6	6.91 (d, J = 8.4 Hz, 2H), 4.45-4.38 (m, 1H),
	4.13·4.10 (m, 1H), 3.57· 3.55 (m, 4H), 3.35·3.28
	(m, 1H), 3.12-3.05 (m, 4H), 2.99-2.85 (m, 3H),
	2.39 (s, 3H), 2.01 (s, 3H), 1.62-1.39 (m, 4H)
	7.99 (d, J = 7.6 Hz, 1H), $7.74-7.68$ (m, 4H),
	7.51 (d, J = 15.4 Hz, 1H), $7.41-7.39$ (m, 5H),
DMSO-d6	7.30 (d, J = 15.4 Hz, 1H), 7.12 (d, J = 8.4 Hz,
	2H), 6.90 (d, $J = 8.6$ Hz, 2H), 4.47-4.39 (m,
	1H), 4.15-4.11 (m, 1H), 3.84-3.68 (m, 2H),
	3.37·3.33 (m, 4H), 3.13·3.06 (m, 4H),
	3.04-2.86 (m, 2H), 2.40 (s, 3H), 1.64-1.40 (m,
	4H)
DMSO-d6	7.95 (d, $J = 6.8$ Hz, 1H), 7.69 (d, $J = 8.1$ Hz,
	2H), 7.39 (d, $J = 7.6 Hz$, $2H$), 7.08 (d, $J = 8.4$
	Hz, 2H), 6.86 (d, $J = 8.9$ Hz, 2H), $4.40 \cdot 4.32$
	(m, 1H), 4.12-4.08 (m, 1H), 3.30-3.25 (m, 8H),
	3.08-2.92 (m, 4H), 2.39 (s, 3H), 1.63-1.38 (m,
	4H)

27	CDCl_3	7.81 (d, J = 7.1 Hz, 2H), 7.66-7.47 (m, 6H), 7.35 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 7.3 Hz, 2H), 7.15-7.03 (m, 2H), 4.85-4.77 (m, 1H), 4.12-4.09 (m, 1H), 3.66 (brs, 4H), 3.53-3.06 (m, 4H), 3.34 (brs, 4H), 2.31 (s, 3H), 2.10-2.00 (m, 1H), 1.45-1.65 (m, 3H)
28	DMSO-d 6	8.07 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 6.9 Hz, 2H), 7.71 (t, J = 7.6 Hz, 1H), 7.60 (t, J = 7.9 Hz, 2H), 7.43 (d, J = 7.9 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 7.21.7.17 (m, 3H), 7.10.7.04 (m, 3H), 4.50.4.40 (m, 1H), 4.17.4.13 (m, 1H), 3.33 (brs, 6H), 3.18 (brs, 4H), 3.10.2.88 (m, 2H), 1.70.1.40 (m, 4H)
29	D MS O- d 6	7.96 (d, J = 7.3 Hz, 1H), 7.82 (d, J = 6.5 Hz, 2H), 7.80 (s, 1H), 7.70 (t, J = 7.8 Hz, 1H), 7.60 (t, J = 7.8 Hz, 3H), 7.37 (d, J = 8.1 Hz, 1H), 7.15 (t, J = 7.3 Hz, 1H), 7.09 (d, J = 8.4Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 4.40-4.33(m, 1H), 4.12-4.08 (m, 1H), 3.36-3.34 (m, 2H), 3.16-3.14 (m, 4H), 3.13-3.09 (m, 4H), 3.04-2.87 (m, 2H), 1.66-1.41 (m, 4H)

		
		7.93 (d, $J = 7.6$ Hz, 1H), 7.83 (d, $J = 6.8$ Hz,
		2H), 7.71 (t, $J = 7.3$ Hz, 2H), $7.65 \cdot 7.58$ (m, 3H),
30	DMSO-d ₆	7.20 (d, $J = 8.1 \text{ Hz}, 1\text{H}), 7.14 \cdot 7.11$ (m, 1H), 7.10
		(d, $J = 8.6 \text{ Hz}$, 2H), 6.89 (d, $J = 8.4 \text{ Hz}$, 2H),
		4.34-4.30 (m, 1H), 4.16-4.13 (m, 1H), 3.27 (m,
		8H), 3.20-2.89 (m, 4H), 1.69-1.37 (m, 4H)
		$7.92 \cdot 7.60$ (m, 9H), 7.34 (m, 1H), 7.06 (d, $J = 7.8$
31	DMSO- d ₆	Hz, 2H), 6.85 (d, $J = 7.6$ Hz, 2H), $4.22-4.12$ (m,
01	DMSO d 6	2H), 3.33-3.28 (m, 4H), 3.20-3.16 (m, 4H),
		3.02-2.97 (m, 4H), 1.30-1.26 (m, 4H)
		8.37 (s, 1H), 8.10 (s, 1H), 8.02 (d, $J = 5.4$ Hz,
		1H), 7.86-7.80 (m, 3H), 7.69 (d, J = 5.4 Hz, 1H),
32	DMSO- d 6	7.60 (t, J = 8.4 Hz, 2H), 7.13 (d, J = 8.1 Hz,
02	DMSO d 6	2H), 6.93 (d, J = 8.9 Hz, 2H), 4.40-4.37 (m, 1H),
		4.20-4.16 (m, 1H), 3.72-3.69 (m, 8H), 3.21-3.19
		(m, 4H), 1.18·1.13 (m, 4H)
		7.92 (d, J = 7.0 Hz, 1H), 7.83 (d, J = 7.6 Hz,
		2H), 7.70 (t, $J = 7.0 Hz$, $1H$), 7.60 (t, $J = 7.8 Hz$,
		2H), 7.08 (d, $J = 8.1$ Hz, 2H), 6.87 (d, $J = 8.4$)
33	DMSO-d ₆	Hz, 2H), 6.77 (d, $J = 8.6$ Hz, 1H), 6.71 (d, $J =$
00	DMSO U 6	2.2 Hz, 1H), 6.38 (dd, J = 2.2 Hz, 8.4 Hz, 1H),
		5.91 (s, 2H), $4.33-4.28$ (m, 1H), 4.14 (d, $J = 4.9$
		Hz, 1H), 3.29-3.26 (m, 2H), 3.20-3.17 (m, 4H),
		3.13-2.87 (m, 6H), 1.68-1.24 (m, 4H)

		8.04 (br s, 1H), 7.82-7.51 (m, 7H), 7.20-7.12 (m,
34	CDCl3	3H), 6.86 (d, $J = 7.6$ Hz, $2H$), $4.82-4.78$ (m, $1H$),
		4.16-4.14 (m, 1H), 3.38-3.25 (m, 10H), 3.11-3.08
		(m, 2H), 1.95-1.93 (m, 1H), 1.43-1.23 (m, 3H)
		8.45 (s, 2H), 7.87 (d, $J = 7.3 \text{ Hz}$, 2H), 7.71-7.60
		(m, 4H), 6.96 (d, $J = 8.6$ Hz, 2H), 6.79 (d, $J =$
35	DMSO-d ₆	8.4 Hz, 2H), 4.02-3.98 (m, 1H), 3.83-3.78 (m,
		1H), 3.45-3.40 (m, 4H), 3.21-3.16 (m, 4H),
		3.09·2.98 (m, 4H), 1.38·1.24 (m, 4H)
		8.43 (dd, $J = 1.6$ Hz, 5.1 Hz, $1H$), 8.09 (dd, $J =$
		1.6 Hz, 7.6 Hz, 1H), 8.00 (d, J = 7.6 Hz, 1H),
	DMSO-d6	7.82 (d, J = 7.0 Hz, 2H), 7.70 (t, J = 7.0 Hz,
		1H), 7.60 (t, $J = 7.6$ Hz, 2H), 7.11 (d, $J = 8.4$
36		Hz, 2H), 6.95 (dd, $J = 4.6$ Hz, 7.6 Hz, $1H$),
		6.90 (d, J = 8.9 Hz, 2H), 4.43-4.37 (m, 1H),
		4.18·4.14 (m, 1H), 3.75·3.73 (m, 4H),
		3.33-3.22 (m, 6H), 3.03-2.86 (m, 2H),
		1.63-1.35 (m, 4H)

実施例37:N-(トルエン-4-スルホニル)-L-プロリル-4-(4-メチルホモピペラジン-1-イル)-L-フェニルアラニン 実施例1と同様の方法により、参考例1で得られた化合物 a と 1-メ チルホモピペラジンから、標題化合物を得た。

¹H-NMR (DMSO-d₆) δ (ppm): 1.38-1.59 (m, 3H), 1.67-1.80 (m, 1H), 1.91-2.05 (m, 2H), 2.40 (s, 3H), 2.45 (s, 3H), 2.74 (brs, 1H), 2.83 (brs, 1H), 2.85-3.29 (m, 8H), 3.35 (brs, 1H), 3.46 (brs, 1H), 4.04 (m, 1H), 4.21 (m, 1H), 6.57 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.80

(d, J = 6.8 Hz, 1H).

実施例38:N-(トルエン-4-スルホニル)-L-プロリル-4-[4-(3-メトキシフェニル)-3-メチルピペラジン-1-イル]-L-フェニルアラニン

実施例1と同様の方法により、参考例1で得られた化合物 a と 1 - (3 - メトキシフェニル) - 2 - メチルピペラジンから、標題化合物を得た。

 1 H-NMR (DMSO-d₆) δ (ppm): 1.04 (d, J=6.6 Hz, 3H), 1.33-1.77 (m, 4H), 2.40 (s, 3H), 2.70-2.85 (m, 1H), 2.85-3.15 (m, 4H), 3.20-3.48 (m, 4H), 3.48-3.62 (m, 1H), 3.71 (s, 3H), 4.00-4.16 (m, 2H), 4.21-4.38 (m, 1H), 6.36 (d, J=7.9 Hz, 1H), 6.43 (s, 1H), 6.52 (d, J=8.9 Hz, 1H), 6.86 (d, J=8.2 Hz, 2H), 7.05-7.15 (m, 3H), 7.41 (d, J=7.9 Hz, 2H), 7.72 (d, J=7.9 Hz, 2H), 7.91 (d, J=6.3 Hz, 1H). 実施例 39:N-(3,5-5) 29:N-(3,5-5) 29:N-(

実施例1と同様の方法により、参考例3で得られた化合物cと1-(2-シアノフェニル)ピペラジンから、標題化合物を得た。

 1 H-NMR (CDCl₃) δ (ppm): 7.71 (d, J = 1.8 Hz, 2H), 7.61 (t, J = 1.8 Hz, 1H), 7.58-7.48 (m, 2H), 7.19-7.03 (m, 7H), 4.85-4.78 (m, 1H), 4.12-4.09 (m, 1H), 3.45-3.40 (m, 10H), 3.35-3.12 (m, 2H), 2.13-2.11 (m, 1H), 1.68-1.57 (m, 3H).

実施例40:N-ベンゼンスルホニルL-プロリル-4-(3-オキ ソ-4-フェニルピペラジン-1-イル)-L-フェニルアラニン

実施例1と同様の方法により、参考例2で得られた化合物bと1-フェニルピペラジン-2-オンから、標題化合物を得た。

 $^{1}\text{H-NMR} \left(\text{DMSO-d}_{6} \right) \; \delta \; \left(\text{ppm} \right) ; \; 8.\; 02 \; \left(\text{d}, \; \text{J} = 7.\; 9 \; \text{Hz}, \; 1\text{H} \right), \; 7.\; 82 \; \left(\text{d}, \; \text{J} = 7.\; 3 \; \text{Hz}, \; 2\text{H} \right), \; 7.\; 71 \; \left(\text{t}, \; \text{J} = 7.\; 3 \; \text{Hz}, \; 1\text{H} \right), \; 7.\; 60 \; \left(\text{t}, \; \text{J} = 7.\; 3 \; \text{Hz}, \; 2\text{H} \right), \; 7.\; 44-7.\; 33 \; \left(\text{m}, \; 3\text{H} \right), \; 7.\; 28-7.\; 22 \; \left(\text{m}, \; 2\text{H} \right), \; 7.\; 14 \; \left(\text{d}, \; \text{J} = 8.\; 7 \; \text{Hz}, \; 2\text{H} \right), \; 6.\; 90 \; \left(\text{d}, \; \text{J} = 8.\; 7 \; \text{Hz}, \; 2\text{H} \right), \; 4.\; 41 \; \left(\text{dd}, \; \text{J} = 7.\; 9 \; \text{Hz}, \; 13 \; \text{Hz}, \; 1\text{H} \right), \; 4.\; 15 \; \left(\text{m}, \; 1\text{H} \right), \; 3.\; 91 \; \left(\text{M}, \; \text{$

(s, 2H), 3.80 (t, J = 5.3 Hz, 2H), 3.57 (t, J = 5.3 Hz, 2H), 3.16-3.05 (m, 2H), 3.03-2.87 (m, 2H), 1.63-1.42 (m, 4H).

実施例41:N-(2,6-ジクロロベンゾイル)-4-(4-フェニルピペラジン-1-イル)-L-フェニルアラニン

工程1

参考例 4 で得られた化合物 d (926 mg, 2.7 mmo1)をジクロロメタン (15 mL)に溶解し、0 $^{\circ}$ に冷却後、トリエチルアミン (1.1 mL, 8.2 mmo1) および 2 , 6 $^{\circ}$ の $^{\circ}$ の $^{\circ}$ の $^{\circ}$ に冷却後、トリエチルアミン (1.1 mL, 8.2 mmo1) および 2 , 6 $^{\circ}$ の $^{\circ}$ の $^{\circ}$ の $^{\circ}$ の $^{\circ}$ に $^{\circ}$ の $^{\circ}$ の $^{\circ}$ の $^{\circ}$ の $^{\circ}$ に $^{\circ}$ の $^{\circ}$ の $^{\circ}$ の $^{\circ}$ に $^{\circ}$ の $^{\circ$

 1 H-NMR(CDC1₃) δ (ppm): 7.33-7.21 (m, 5H), 7.12 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.91-6.87 (m, 3H), 6.25 (d, J = 8.1 Hz, 1H), 5.16 (dt, J = 5.4 Hz, 8.1 Hz, 1H), 3.77 (s, 3H), 3.31 (s, 8H), 3.21 (d, J = 5.4 Hz, 2H).

工程2

工程1で得られたN- (2, 6-ジクロロベンゾイル) - 4-(4-7

 1 H-NMR (DMSO-d₆) δ (ppm): 8.83 (d, J=8.7 Hz, 1H), 7.46-7.34 (m, 3H), 7.24 (t, J=8.0 Hz, 2H), 7.16 (d, J=8.0 Hz, 2H), 7.00 (d, J=

8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 6.81 (t, J = 8.0 Hz, 1H), 4.55 (dd, J = 5.3 Hz, 8.6 Hz, 1H), 3.24 (s, 8H), 3.04 (dd, J = 5.3 Hz, 14 Hz, 1H), 2.87 (dd, J = 8.7 Hz, 14.0 Hz, 1H).

実施例41と同様にして、化合物42~50を実施例42~50と して合成した。得られた化合物のプロトン核磁気共鳴スペクトルデー タを、第6表に示す。

第 6 表

化合物	測定	0
番号	溶媒	¹ H-NMR δ (ppm):
42	DMSO- d 6	1.38-1.73 (m, 4H), 2.80-3.18 (m, 4H), 3.24 (s, 8H), 4.15-4.17 (m, 1H), 4.40-4.43 (m, 1H), 6.80 (t, J = 7.8 Hz, 2H), 6.91 (d, J = 7.8 Hz, 2H), 6.98 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.60 (t, J = 7.2 Hz, 2H), 7.71 (t, J = 7.2 Hz, 2H), 7.82 (d, J = 7.2 Hz, 2H), 8.01 (d, J = 7.9 Hz, 1H)
43	DMSO- d 6	2.86 (dd, J = 8.6 Hz, 14 Hz, 1H), 3.05 (dd, J = 4.9 Hz, 14 Hz, 1H), 3.23 (s, 8H), 4.53 (dd, J = 4.9 Hz, 8.6 Hz, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.66 (s, 2H), 8.81 (d, J = 7.2 Hz, 1H)

J = 7.6 Hz, 1H), 6.92 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 7.23 (m, 3H), 7.33 (t, J = 9.9 Hz, 1H), 7.56 (dd, J = 9.9 Hz, 15 Hz, 1H), 8.44 (d, J = 11 Hz, 1H) 2.40 (s, 3H), 2.62 (dd, J = 7.6 Hz, 11 Hz, 1H), 2.88·3.04 (m, 3H), 3.24 (s, 8H), 4.22 (d, J = 11 Hz, 1H), 4.40 (dd, J = 7.7 Hz, 13 Hz, 1H), 4.73 (d, J = 11 Hz, 1H), 4.79 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71·1.79 (m, 1H), 2.02·2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			
J = 7.6 Hz, 1H), 6.92 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 7.23 (m, 3H), 7.33 (t, J = 9.9 Hz, 1H), 7.56 (dd, J = 9.9 Hz, 15 Hz, 1H), 8.44 (d, J = 11 Hz, 1H) 2.40 (s, 3H), 2.62 (dd, J = 7.6 Hz, 11 Hz, 1H), 2.88·3.04 (m, 3H), 3.24 (s, 8H), 4.22 (d, J = 11 Hz, 1H), 4.40 (dd, J = 7.7 Hz, 13 Hz, 1H), 4.73 (d, J = 11 Hz, 1H), 4.79 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71·1.79 (m, 1H), 2.02·2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)	44	DMSO-d6	2.93 (dd, $J = 9.6$ Hz, 14 Hz, $1H$), 3.08 (dd, $J = 4.6$
DMSO-d 6 = 7.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 7.23 (m, 3H), 7.33 (t, J = 9.9 Hz, 1H), 7.56 (dd, J = 9.9 Hz, 15 Hz, 1H), 8.44 (d, J = 11 Hz, 1H) 2.40 (s, 3H), 2.62 (dd, J = 7.6 Hz, 11 Hz, 1H), 2.88-3.04 (m, 3H), 3.24 (s, 8H), 4.22 (d, J = 11 Hz, 1H), 4.40 (dd, J = 7.7 Hz, 13 Hz, 1H), 4.73 (d, J = 11 Hz, 1H), 4.79 (m, 1H), 6.80 (t, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			Hz, 14 Hz, 1H), 3.25 (s, 8H), 4.51 (m, 1H), 6.80 (t,
DMSO-d6 DMSO-d7 DMSO-d6 DMS			J = 7.6 Hz, 1H, 6.92 (d, J = 8.6 Hz, 2H), 6.99 (d, J)
15 Hz, 1H), 8.44 (d, J = 11 Hz, 1H) 2.40 (s, 3H), 2.62 (dd, J = 7.6 Hz, 11 Hz, 1H), 2.88-3.04 (m, 3H), 3.24 (s, 8H), 4.22 (d, J = 11 Hz, 1H), 4.40 (dd, J = 7.7 Hz, 13 Hz, 1H), 4.73 (d, J = 11 Hz, 1H), 4.79 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			= 7.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 7.23 (m,
2.40 (s, 3H), 2.62 (dd, J = 7.6 Hz, 11 Hz, 1H), 2.88-3.04 (m, 3H), 3.24 (s, 8H), 4.22 (d, J = 11 Hz, 1H), 4.40 (dd, J = 7.7 Hz, 13 Hz, 1H), 4.73 (d, J = 11 Hz, 1H), 4.79 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			3H), 7.33 (t, $J = 9.9 \text{ Hz}$, 1H), 7.56 (dd, $J = 9.9 \text{ Hz}$,
2.88-3.04 (m, 3H), 3.24 (s, 8H), 4.22 (d, J = 11 Hz, 1H), 4.40 (dd, J = 7.7 Hz, 13 Hz, 1H), 4.73 (d, J = 11 Hz, 1H), 4.79 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			15 Hz, 1H), 8.44 (d, J = 11 Hz, 1H)
2.88-3.04 (m, 3H), 3.24 (s, 8H), 4.22 (d, J = 11 Hz, 1H), 4.40 (dd, J = 7.7 Hz, 13 Hz, 1H), 4.73 (d, J = 11 Hz, 1H), 4.79 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)	45	DMSO- d 6	2.40 (s, $3H$), 2.62 (dd, $J = 7.6$ Hz, 11 Hz, $1H$),
DMSO-d ₆ 11 Hz, 1H), 4.79 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			2.88-3.04 (m, 3H), 3.24 (s, 8H), 4.22 (d, $J = 11$ Hz,
6.90 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			1H), 4.40 (dd, J = 7.7 Hz, 13 Hz, 1H), 4.73 (d, J =
6.90 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			11 Hz, 1H), 4.79 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H),
7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			6.90 (d, $J = 8.5$ Hz, 2H), 6.99 (d, $J = 7.6$ Hz, 2H),
8.08 (d, J = 7.7 Hz, 1H) 1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			7.09 (d, J = 8.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H),
1.71-1.79 (m, 1H), 2.02-2.39 (m, 3H), 2.78 (dd, J = 10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			7.40 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H),
10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz, 1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd, J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10)			8.08 (d, J = 7.7 Hz, 1H)
J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt. J = 4.7 Hz, 10)	46	DMSO-d 6	1.71-1.79 (m, 1H), $2.02-2.39$ (m, 3H), 2.78 (dd, $J =$
J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt. J = 4.7 Hz, 10)			10 Hz, 14 Hz, 1H), 3.06 (dd, J = 4.7 Hz, 14 Hz,
46 DMSO-d ₆ $J = 3.1 \text{ Hz}, 8.7 \text{ Hz}, 1\text{H}), 4.51 \text{ (dt, } J = 4.7 \text{ Hz}, 10$			1H), 3.22 (s, 8H), 3.33 (d, J = 15 Hz, 1H), 3.90 (dd,
40 DMSO-06			J = 3.1 Hz, 8.7 Hz, 1H), 4.51 (dt, J = 4.7 Hz, 10
Hz, 1H), 4.73 (d, $J = 15$ Hz, 1H), 6.80 (t, $J = 7.3$			Hz, 1H), 4.73 (d, $J = 15$ Hz, 1H), 6.80 (t, $J = 7.3$
Hz, 1H), 6.92 (d, $J = 8.6$ Hz, 2H), 7.00 (m, 4H),			Hz, 1H), 6.92 (d, $J = 8.6$ Hz, 2H), 7.00 (m, 4H),
7.10 (d, $J = 8.6 \text{ Hz}$, 2H), 7.20-7.33 (m, 5H), 8.44 (d,			7.10 (d, J = 8.6 Hz, 2H), 7.20-7.33 (m, 5H), 8.44 (d,
J = 8.2 Hz 1H), 12.78 (brs, 1H)			J = 8.2 Hz 1H), 12.78 (brs, 1H)

4.9 Hz, 14 Hz, 1H), 3.26 (s, 8H), 3.67 (s, 6H), 4.51 (dd, J = 8.2 Hz, 14 Hz, 1H), 6.63 (d, J = 8.2 Hz, 2H), 6.80 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 7.4 Hz, 2H), 7.16 (d, J = 8.6 Hz, 2H), 7.25 (m, 3H), 8.10 (d, J = 8.2 Hz, 1H) 2.86 (dd, J = 9.4 Hz, 14 Hz, 1H), 3.04 (dd, J = 4.9 Hz, 14 Hz, 1H), 3.27 (s, 8H), 4.53 (m, 1H), 6.8 1(t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)			· · · · · · · · · · · · · · · · · · ·
4.51 (dd, J = 8.2 Hz, 14 Hz, 1H), 6.63 (d, J = 8.2 Hz, 2H), 6.80 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 7.4 Hz, 2H), 7.16 (d, J = 8.6 Hz, 2H), 7.25 (m, 3H), 8.10 (d, J = 8.2 Hz, 1H) 2.86 (dd, J = 9.4 Hz, 14 Hz, 1H), 3.04 (dd, J = 4.9 Hz, 14 Hz, 1H), 3.27 (s, 8H), 4.53 (m, 1H), 6.8 1(t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)	47	DMSO- d 6	2.87 (dd, J = 8.2 Hz, 14 Hz, 1H), 2.98 (dd, J =
DMSO-d 6 8.2 Hz, 2H), 6.80 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 7.4 Hz, 2H), 7.16 (d, J = 8.6 Hz, 2H), 7.25 (m, 3H), 8.10 (d, J = 8.2 Hz, 1H) 2.86 (dd, J = 9.4 Hz, 14 Hz, 1H), 3.04 (dd, J = 4.9 Hz, 14 Hz, 1H), 3.27 (s, 8H), 4.53 (m, 1H), 6.8 1(t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6			4.9 Hz, 14 Hz, 1H), 3.26 (s, 8H), 3.67 (s, 6H),
Bond Solution (a), and a second state of the s			4.51 (dd, J = 8.2 Hz, 14 Hz, 1H), 6.63 (d, J =
J = 8.6 Hz, 2H), 7.25 (m, 3H), 8.10 (d, J = 8.2 Hz, 1H) 2.86 (dd, J = 9.4 Hz, 14 Hz, 1H), 3.04 (dd, J = 4.9 Hz, 14 Hz, 1H), 3.27 (s, 8H), 4.53 (m, 1H), 6.8 1(t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)			8.2 Hz, 2H), 6.80 (t, J = 7.4 Hz, 1H), 6.93 (d, J)
Hz, 1H) 2.86 (dd, J = 9.4 Hz, 14 Hz, 1H), 3.04 (dd, J = 4.9 Hz, 14 Hz, 1H), 3.27 (s, 8H), 4.53 (m, 1H), 6.8 1(t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)			= 8.6 Hz, 2H), 6.99 (d, J = 7.4 Hz, 2H), 7.16 (d,
2.86 (dd, J = 9.4 Hz, 14 Hz, 1H), 3.04 (dd, J = 4.9 Hz, 14 Hz, 1H), 3.27 (s, 8H), 4.53 (m, 1H), 6.8 1(t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)			J = 8.6 Hz, 2H), 7.25 (m, 3H), 8.10 (d, J = 8.2
4.9 Hz, 14 Hz, 1H), 3.27 (s, 8H), 4.53 (m, 1H), 6.8 1(t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6			Hz, 1H)
48 DMSO-d 6 6.8 1(t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6	40	DMSO-d6	2.86 (dd, J = 9.4 Hz, 14 Hz, 1H), 3.04 (dd, J =
2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6			4.9 Hz, 14 Hz, 1H), 3.27 (s, 8H), 4.53 (m, 1H),
2H), 7.01 (d, J = 7.6 Hz, 2H), 7.14 (m, 4H), 7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J = 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6			6.8 1(t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.6 Hz,
= 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)	40		2H), 7.01 (d, $J = 7.6$ Hz, $2H)$, 7.14 (m, $4H)$,
= 7.9 Hz, 1H) 2.85 (dd, J = 8.7 Hz, 14 Hz, 1H), 3.00 (dd, J = 5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)			7.24 (t, J = 7.6 Hz, 2H), 7.49 (m, 1H), 9.06 (d, J
5.4 Hz, 14 Hz, 1H), 3.26 (s, 8H), 4.58 (dd, J = 8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6			
8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6		CDCl3	2.85 (dd, $J = 8.7$ Hz, 14 Hz, $1H$), 3.00 (dd, $J =$
6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6			5.4 Hz, $14 Hz$, $1H$), 3.26 (s, $8H$), 4.58 (dd, $J=$
2H), 7.14 (d, J = 8.7 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6			8.1 Hz, 14 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H),
Hz, 2H), 7.58-7.71 (m, 3H), 9.12 (d, J = 8.1 Hz, 1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)	49		6.92 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.6 Hz,
1H) 1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)			2H), 7.14 (d, $J = 8.7$ Hz, $2H$), 7.24 (t, $J = 7.6$
1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01 (m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6			Hz, 2H), $7.58-7.71$ (m, 3H), 9.12 (d, $J = 8.1$ Hz,
(m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31 (d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)			1H)
(d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 14Hz) $(d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 14Hz)$ $(d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 14Hz)$ $(d, J = 7.4 Hz, 1H), 4.41 (dd, J = 7.3 Hz, 13 Hz, 14Hz)$ $(d, J = 7.4 Hz, 1Hz), 4.41 (dd, J = 7.3 Hz, 13 Hz)$	50	DMSO-d6	1.46-1.65 (m, 1H), 1.65-1.85 (m, 3H), 2.84-3.01
50 DMSO-d ₆ 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.6)			(m, 2H), 3.24 (s, 8H), 3.30-3.40 (m, 2H), 4.31
30 DMSO- d 6			(d, $J = 7.4 \text{ Hz}$, 1H), 4.41 (dd, $J = 7.3 \text{ Hz}$, 13 Hz,
			1H), 6.79 (t, $J = 7.6$ Hz, 1H), 6.91 (d, $J = 8.6$
Hz, 2H , 6.98 (d, $J = 7.6 Hz, 2H $, 7.12 (d, $J = $			Hz, $2H$), 6.98 (d, $J = 7.6$ Hz , $2H$), 7.12 (d, $J =$
8.6 Hz, 2H), 7.22 (t, J = 7.6 Hz, 2H), 7.82 (d, J)			
= 1.8 Hz, 2H), 8.00 (t, J = 1.8 Hz, 1H), 8.16 (d,			
J = 8.1 Hz, 1H), 12.77 (brs, 1H)			

実施例51

化合物 5 1 ~ 3 3 8 は、以下の方法で得られた。 工程 1 化合物 (VIIe) の調製

[式中、 R^{10} は、-C(=0) R^{9a} (式中、 R^{9a} は前記と同義である)、 $-S0_2R^{11}$ (式中、 R^{11} は前記と同義である)または-C(=0) NH R^{10} (式中、 R^{10} は前記と同義である)を表す]

参考例 5 で得られた化合物eのテトラヒドロフラン溶液 (0.100 mol/L, 0.500 mL, 0.050 mmol)に、 $R^{9a}C(=0)$ Cl(式中、 R^{9a} は前記と同義である)、 $R^{12}SO_2Cl$ (式中、 R^{12} は前記と同義である)または $R^{10}NC(=0)$ (式中、 R^{10} は前記と同義である)のクロロホルム溶液 (1.000 mol/L, 0.075 mL, 0.075 mol)およびジイソプロピルアミノメチルポリスチレン (Argonaut社製, 約3.72 mmol/g, 0.03 mg)を加え、密閉して室温で12時間撹拌した。反応溶液にポリアミン (Jババイオケム社製、約3 mmol/g、33 mg)およびクロロホルム (0.20 mL)を加え、密閉して室温で24時間撹拌した。反応混合物中のレジンをろ別し、溶媒を留去した。得られた残渣をクロロホルム (0.70 mL) に溶解し、ベンゾイルクロリドポリマーバウンド (約2.5 mmol/g, 33 mg)およびポリ (4- ビニルピリジン)(アルドリッチ社製、33 mg、0.31 mmol)を加えて密閉し、室温で20時間撹拌した。レジンをろ別後、ろ液を濃縮乾固し、化合物 (VIIe) を得た。

工程2 化合物(VIIIe)の調製

$$H_2N$$
 O
 CH_3
(Ville)

(式中、R1°は前記と同義である)

工程 1 で得られた化合物 (VIIe)に、トリフルオロ酢酸 (0.25 mL, 3.24 mmol) およびジクロロメタン (0.25 ml)を加え、室温で5時間攪拌した。溶媒およびトリフルオロ酢酸を留去後、塩化水素のジオキサン溶液 (4 mol/L、0.5 ml)を加えた。

溶媒を留去し、再度同様の操作を行い、化合物(VIIIe)を得た。

工程3-1 化合物(Ve)の調製

(式中、 R^{1e} は前記と同義であり、 R^{2e} は前述の第2表に記載の基から選ばれる基である)

工程 2 で得られた化合物 (VIIIe) をジメチルホルムアミド (0.2 mL) に溶解し、NーエチルーN'ー (3ージメチルアミノプロピル) カルボジイミドのジメチルホルムアミド溶液 (0.075 mL, 1 mol/L, 0.075 mol)、1-ヒドロキシベンゾトリアゾールのジメチルホルムアミド溶液 (0.075 mL, 1 mol/L, 0.075 mol)、および R^{2e} -C00H (式中、 R^{2e} は前記と同義である)のジメチルホルムアミド溶液 (0.075 mL, 1 mol/L, 0.075 mol)を加え、密閉し室温で12時間攪拌した。反応溶媒を留去後、得られた残渣に塩酸水溶液 (1 mol/L, 0.20 mL)を加え、クロロホルム (0.50 mL) で2回抽出した。有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、化合物 (Ve) を得た。

なお、化合物 (Ve) の中には以下の方法によって得たものもある。 工程 3-2 化合物 (Ve) の調製の別法

工程 2 で得られた化合物 (VIIIe)をテトラヒドロフラン (0.50 mL)に溶解し、 R^{2e} -COC1 (式中、 R^{2e} は前記と同義である)のクロロホルム溶液 (1.0 mo1/L, 0.075 mL, 0.075 mo1)およびジイソプロピルアミノメチルポリスチレン (33 mg)を加え、密閉して室温で12時間撹拌した。反応溶液にポリアミン (33 mg)およびクロロホルム (0.20 mL)を加え、密閉して室温で一晩撹拌した。反応混合物中のレジンをろ別し、溶媒を留去した。得られた残渣をクロロホルム (0.70 mL)に溶解し、ベンゾイルクロリドポリマーバウンド (33 mg)およびポリ (4ービニルピリジン) (33 mg)を加えて密閉し、室温で一晩撹拌した。レジンをろ別後、ろ液を濃縮乾固し、化合物 (Ve)を得た。

工程4

工程 3 - 1 または 3 - 2 で得られた化合物 (Ve)をメタノール (0.20 mL) とテトラヒドロフラン (0.10 ml) の混合溶媒に溶解し、水酸化リチウム水溶液 (1 mo1/L, 0.20 mL) を加え室温で4時間攪拌した。反応溶媒を留去後、得られた残渣に塩酸水溶液 (1 mo1/L, 0.20 mL) を加え、クロロホルム (0.40 mL)、ヘキサフルオロイソプロピルアルコール (0.20 mL) およびメタノール (0.04 mL) の混合溶媒で抽出した。 有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、化合物 5 1 ~ 3 3 8 をそれぞれ得た。

代表的化合物のプロトン核磁気共鳴スペクトルデータを以下に示す。 化合物140

¹H-NMR (DMSO-d₆) δ (ppm): 8.01 (d, J = 7.9 Hz, 1H), 7.82-7.79 (m, 2H), 7.73-7.57 (m, 3H), 7.11 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 4.45-4.37 (m, 1H), 4.16-4.13 (m, 1H), 3.79 (brs, 2H), 3.58 (brs, 2H), 3.35-3.30 (m, 2H), 3.15-2.85 (m, 6H), 2.05-1.95 (m, 1H), 1.65-1.38 (m, 4H), 0.74-0.70 (m, 4H).

化合物145

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ (ppm): 8.99 (d, J = 8.7 Hz, 1H), 7.46-7.34 (m, 3H),

7.15(d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.64-4.56 (m, 1H), 3.80 (brs, 2H), 3.60 (brs, 2H), 3.15-3.00 (m, 5H), 2.84 (dd, J = 9.4 Hz, 14.0 Hz, 1H), 2.05-1.97 (m, 1H), 0.77-0.71 (m, 4H). 化合物 2 2 8

 1 H-NMR (DMSO-d₆) δ (ppm): 8.01 (d, J = 7.9 Hz, 1H), 7.82-7.79 (m, 2H), 7.73-7.57 (m, 3H), 7.11 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 4.44-4.36 (m, 1H), 4.17-4.13 (m, 1H), 3.31-3.24 (m, 6H), 3.17-3.12 (m, 4H), 3.03-2.83 (m, 2H), 2.78 (s, 6H), 1.65-1.41 (m, 4H).

化合物 2 3 3

 $^{1}\text{H-NMR}(\text{CDC1}_{3})$ δ (ppm): 8.01 (brs, 1H), 7.30-7.23 (m, 3H), 7.18 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.41 (d, J = 7.8 Hz, 1H), 5.18-5.09 (m, 1H), 3.40-3.37 (m, 4H), 3.27-3.10 (m, 6H), 2.85 (s, 6H).

化合物307

 1 H-NMR (DMSO- 1 d₆) δ (ppm): 8.03 (d, J = 7.9 Hz, 1H), 7.82-7.79 (m, 2H), 7.75-7.57 (m, 3H), 7.11 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 6.52 (t, J = 5.3 Hz, 1H), 4.45-4.37 (m, 1H), 4.16-4.13 (m, 1H), 3.40-3.30 (m, 6H), 3.18-2.85 (m, 6H), 1.65-1.40 (m, 4H), 1.02 (t, J = 7.2 Hz, 3H).

化合物 3 1 2

 1 H-NMR (DMSO- 1 d₆) δ (ppm): 8.94 (d, J = 7.9 Hz, 1H), 7.45-7.35 (m, 3H), 7.14 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.55 (t, J = 5.2 Hz, 1H), 4.62-4.54 (m, 1H), 3.42-3.38 (m, 4H), 3.10-3.00 (m, 7H), 2.84 (dd, J = 9.0 Hz, 14.1 Hz, 1H), 1.02 (t, J = 7.2 Hz, 3H). 実施例 4 1 と同様にして、化合物 3 3 9 ~ 3 7 9、3 8 1 ~ 3 8 5 を実施例 3 3 9 ~ 3 7 9、3 8 1 ~ 3 8 5 として合成した。得られた化合物のプロトン核磁気共鳴スペクトルデータを、以下の第 7 表に示す。

実施例 380: N-(4-カルボキシ-2, 6-ジクロロベンゾイル) -4-(4-ジメチルスルホニルピペラジン-1-イル)-L-フェニルアラニン

工程1

4-(4-ジメチルスルホニルピペラジン-1-イル)-L-フェニ ルアラニンメチルエステル(175 mg, 0.492 mmol)と2, 6 - ジクロロフェニル-4-(1, 3-i)オキサン-2-1ル)安息香酸(186 mg, 0.702 mmol)をジメチルホルムアミド(10 ml)に溶解し、N-エチルー mmo1)、1 - ヒドロキシベンゾトリアゾール (154 mg, 1.00 mmo1)およびトリエチルアミン(0.140 ml, 1.00 mmol)を加え、室温で終夜攪拌し た。反応溶液に飽和炭酸水素ナトリウム水溶液と酢酸エチルを加え、 有機層を2回抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで 乾燥した。ろ過後、ろ液を減圧濃縮し、得られた残渣をシリカゲルク ロマトグラフィー (ヘキサン/酢酸エチル=1/1) で精製し、N-[2, 6-ジクロロー4-(1,3-ジオキサン-2-イル)ベンゾイル] - 4-(4-ジメチルスルホニルピペラジン-1-イル)-L-フェニ ルアラニンメチルエステルを 82% (254 mg, 0.403 mmol)で得た。 $^{1}H-NMR(CDC1_{3}) \delta (ppm): 7.42 (s, 2H), 7.11 (d, J = 8.4 Hz, 2H), 6.82$ (d, J = 8.4 Hz, 2H), 6.64-6.61 (m, 1H), 5.42 (s, 1H), 5.13-5.05(m, 1H), 4.24 (dd, J = 4.9 Hz, 10.5 Hz, 2H), 3.96 (t, J = 12.2 Hz,2H), 3, 74 (s. 3H), 3, 39-3, 35 (m, 4H), 3, 19-3, 16 (m, 6H), 2, 86 (s, 6H), 2.24-2.10 (m, 2H).

工程2

工程1で得られた化合物 (254 mg, 0.403 mmol)をアセトン (10 mL)に溶解し、6 mol/L 塩酸 (5 mL)を加え室温で4時間攪拌した。4 mol/L 水酸化ナトリウム水溶液を加えて中和した後、飽和炭酸水素ナトリウム水溶液と酢酸エチルを加え、有機層を2回抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、N-(2,6-ジクロロ-4-ホルミルベンゾイル)-4-(4-ジメ

チルスルホニルピペラジン-1 - イル) - L - フェニアルアラニンメチルエステルを 76% (188 mg, 0.306 mmol) で得た。

¹H-NMR (CDCl₃) δ (ppm): 9.91 (s, 1H), 7.78 (s, 2H), 7.10 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 6.42 (d, J = 7.3 Hz, 1H), 5.18-5.07 (m, 1H), 3.77 (s, 3H), 3.39-3.35 (m, 4H), 3.20-3.16 (m, 6H), 2.85 (s, 6H).

工程3

工程2で得られた化合物(188 mg, 0.306 mmo1)をメタノール(5 mL)に溶解し、水酸化カリウム(52 mg, 0.918 mmo1)とヨウ素(58 mg, 0.459 mmo1)を加え室温で2時間攪拌した。塩化アンモニウム水溶液と酢酸エチルを加え、有機層を2回抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、N-(2, 6-ジクロロー4ーメトキシカルボニルベンゾイル)-4-(4-ジメチルスルホニルピペラジン-1-イル)-L-フェニルアラニン メチルエステルを60% (114 mg, 0.216 mmo1)で得た。

 1 H-NMR (CDCl₃) δ (ppm): 7.93 (s, 2H), 7.11 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.9 Hz, 2H), 6.41-6.39 (m, 1H), 5.17-5.10 (m, 1H), 3.94 (s, 3H), 3.76 (s, 3H), 3.39-3.35 (m, 4H), 3.20-3.16 (m, 6H), 2.86 (s, 6H).

工程4

工程 3 で得られた化合物 (76.7 mg, 0.119 mmo1)をテトラヒドロフラン (5 mL)と水 (3 m1) の混合溶媒に溶解し、水酸化リチウム一水和物 (51.0 mg, 1.22 mmo1)を加え室温で 5 時間攪拌した。 1 mo1/L 塩酸を加え溶液を酸性にした後、酢酸エチルを加え、有機層を 2 回抽出 し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、N-(4-2) カルボキシー 2 (4-2) (4-2

¹H-NMR (CD₃OD) δ (ppm): 7.90 (s, 2H), 7.20 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 7.6 Hz, 2H), 4.80-4.74 (m, 1H), 3.35-3.34 (m, 4H), 3.16-3.15

(m, 4H), 2.99-2.73 (m, 2H), 2.85 (s, 6H).

実施例386:N-(2,6-ジクロロベンゾイル)-3-ニトロー 4-(4-フェニルピペラジン-1-イル)-L-フェニルアラニン・ エチルエステル

工程1

参考例 6 で得られた化合物 f(5.59 g, 10.0 mmol)に1-フェニルピペラジン (8.1 g, 50 mmol)を加え、室温で一晩攪拌した。反応液をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)で精製し、黄色固体のN-(2, 6-ジクロロベンゾイル)-3-ニトロー4-(4-フェニルピペラジン-1-イル)-L-フェニルアラニンエチルエステルを <math>100% (5.71 g, 10.0 mmol)で得た。

工程2

工程1で得られたN-(2,6-ジクロロベンゾイル)-3-ニトロー4-(4-フェニルピペラジン-1-イル)-L-フェニルアラニンエチルエステル(100 mg,0.180 mmol)をメタノール (1 mL)とテトラヒドロフラン (1 mL)の混合溶媒に溶解し、5% 水酸化リチウム水溶液 (1 mL)を加え、室温で1時間攪拌した。反応液を2 mol/mL 塩酸で中和した後、溶媒を留去し、生じた固体をろ取し、黄色固体の標題化合物を92% (90 mg,0.166 mmol)で得た。

実施例386と同様にして、化合物387~391を実施例387 ~391として合成した。得られた化合物のプロトン核磁気共鳴スペクトルデータを、以下の第7表に示す。

実施例 392: 3-アミノ-N-(2,6-ジクロロベンゾイル)-4-(4-フェニルピペラジン-1-イル)-L-フェニルアラニン工程 <math>1

実施例386の工程1で得られたN-(2,6-ジクロロベンゾイル)-3-ニトロ-4-(4-フェニルピペラジン-1-イル)-L

ーフェニルアラニンエチルエステル (3.00 g, 5.25 mmo1) を濃塩酸(10 mL)とメタノール(40 mL)の混合溶媒に溶解し、室温で亜鉛(3.00 g, 46.2 mmo1)を加え、1 時間攪拌した。反応液にアンモニア水を加え、クロロホルムで抽出した後、有機層を無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー($0 \text{ mather mat$

工程 2

工程 1 で得られた 3-アミノ-N-(2,6-ジクロロベンゾイル) -4-(4-フェニルピペラジン-1-イル)-L-フェニルアラニンエチルエステル(100 mg,0.180 mmol)をメタノール(1 mL)とテトラヒドロフラン(1 mL)の混合溶媒に溶解し、5% 水酸化リチウム水溶液(1 mL)を加え、室温で 1 時間攪拌した。反応液を 2 mol/mL 塩酸で中和した後、溶媒を留去し、生じた固体をろ取し、白色固体の標題化合物を 89%(85 mg,0.166 mmol)で得た。

実施例392と同様にして、化合物393~395を実施例393 ~395として合成した。得られた化合物のプロトン核磁気共鳴スペクトルデータを、以下の第7表に示す。

実施例392の工程1で得られた3-アミノーNー(2,6-ジクロロベンゾイル)ー4ー(4ーフェニルピペラジンー1ーイル)ーLーフェニルアラニンエチルエステル(271 mg,0.500 mmo1)を48%臭化水素水(1 mL)とエタノール(3 mL)の混合溶媒に溶解し、 -10° Cで亜硝酸tert-ブチル(62 mg,0.600 mmo1)をエタノール(1 mL)に溶解したものを加えた後、 0° Cに昇温し、臭化銅(I)(143 mg,1.00 mmo1)を加え、

室温で 2 時間攪拌した。反応液に 28% アンモニア水を加え、クロロホルムで抽出した後、有機層を無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)で精製し、白色固体の 3 ーブロモーN ー (2,6 ージクロロベンゾイル) ー 4 ー (4 ーフェニルピペラジンー 1 ーイル) ー L ーフェニルアラニンエチルエステルを 93% (280 mg, 0.463 mmo1) で得た。

工程 2

工程 1 で得られた 3 ーブロモーNー(2, 6 ージクロロベンゾイル) -4 ー (4 ーフェニルピペラジンー1 ーイル)ー L ーフェニルアラニンエチルエステル(180 mg, 0.298 mmol)をメタノール (2 mL)とテトラヒドロフラン (2 mL)の混合溶媒に溶解し、5% 水酸化リチウム水溶液(1 mL)を加え、室温で 1 時間攪拌した。反応液を 2 mol/mL 塩酸で中和した後、溶媒を留去し、生じた固体をろ取し、白色固体の標題化合物を 84% (145 mg, 0.251 mmol)で得た。

実施例396と同様にして、化合物397~399を実施例397 ~399として合成した。得られた化合物のプロトン核磁気共鳴スペクトルデータを、以下の第7表に示す。

実施例400:N-(2,6-ジクロロベンゾイル)-4-(4-フェニルピペラジン-1-イル)-3-(ピロール-1-イル)-L-フェニルアラニン

工程1

実施例 3 9 2 の工程 1 で得られた 3 - T = 1 - N - (2 , 6 - = 1 - 1 + 1

フィー(ヘキサン/酢酸エチル=2/1)で精製し、白色固体のN-(2,6 ージクロロベンゾイル) -4-(4ーフェニルピペラジン-1-イル) -3-(ピロール-1-イル) -L-フェニルアラニンエチルエステルを 58% (127 mg, 0.245 mmo1)で得た。

工程 2

工程 1 で得られたN-(2,6-ジクロロベンゾイル)-4-(4-フェニルピペラジン-1-イル)-3-(ピロール-1-イル)-L-フェニルアラニンエチルエステル(127 mg,0.245 mmol)をメタノール (1 mL)とテトラヒドロフラン (1 mL)の混合溶媒に溶解し、5% 水酸化リチウム水溶液 (1 mL)を加え、室温で2時間攪拌した。反応液を2 mol/L 塩酸で中和した後、溶媒を留去し、生じた固体をろ取し、白色固体の標題化合物を78% (108 mg,0.192 mmol)で得た。

実施例401:3-アセチルアミノ-N-(2,6-ジクロロベンゾイル)-4-(3,3-ジメチル-4-フェニルピペラジン-1-イル)-L-フェニルアラニン

工程1

実施例 3 9 3 で、化合物 3 9 3 の中間体として得られた 3 ーアミノーNー(2,6ージクロロベンゾイル)ー4ー(3,3ージメチルー4ーフェニルピペラジンー1ーイル)ーLーフェニルアラニンエチルエステル(496 mg,1.0 mmol)とN,Nージイソプロピルエチルアミン(516 mg,4.0 mmol)をクロロホルム(10 mL)に溶解し、室温で無水酢酸(306 mg,3.0 mmol)を加え、一晩攪拌した。反応液を濃縮後、エタノール(4 mL)および 4 mol/L 塩酸ジオキサン溶液(4 mL)を加え一晩攪拌した。反応液に28%アンモニア水を加え中和した後、クロロホルムで2回抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=50/1)にて精製し、白色固体の3ーアセチルアミノーNー(2,6ージクロロベンゾイル)4ー(3,3ージメチルー4ーフェニルピペラジンー1ーイル)ーLーフェニルアラニンエチル

エステルを95% (418 mg, 0.95 mmol)で得た。

工程2

工程1で得られた3-アセチルアミノ-N-(2,6-ジクロロベンゾイル)-4-(3,3-ジメチル-4-フェニルピペラジン-1-イル)-L-フェニルアラニンエチルエステルより、実施例41の工程2と同様な方法により標題化合物を得た。

実施例401と同様にして、化合物402を実施例402として合成した。得られた化合物のプロトン核磁気共鳴スペクトルデータを、以下の第7表に示す。

実施例403: N-(2,6-ジクロロベンゾイル)-3-ジメチルアミノ-4-(3,3-ジメチル-4-フェニルピペラジン-1-イル)-L-フェニルアラニン

実施例 3 9 3 で、化合物 3 9 3 の中間体として得られた 3 ーアミノーNー(2,6ージクロロベンゾイル)ー4ー(3,3ージメチルー4ーフェニルピペラジンー1ーイル)ーLーフェニルアラニンエチルエステル(500 mg,0.879 mmo1)、37%ホルムアルデヒド水溶液(1 mL,12.3 mmo1)および酢酸(1 mL)をアセトニトリル(10 mL)に溶解し、氷冷下でトリアセトキシ水素化ホウ素ナトリウム(746 mg,3.52 mmo1)を加え、室温で1時間攪拌した。反応液を濃縮し、得られた残渣に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去した。得られた残渣にメタノール(4 mL)およびテトラヒドロフラン(4 mL)を加え溶解させた後、5%水酸化リチウム水溶液(4 mL)を加え、室温で4時間攪拌した。反応液を濃塩酸で中和後、溶媒を留去し、得られた残渣に水を加え生じた沈殿をろ取し、白色固体の標題化合物を28%(142 mg,0.250 mmo1)で得た。

実施例403と同様にして、化合物404を実施例404として合

成した。得られた化合物のプロトン核磁気共鳴スペクトルデータを、 ・以下の第7表に示す。

実施例405:3-クロローN-[2,6-ジクロロー4-(テトラゾールー5-イル) ベンゾイル]-4-[4-(3,5-ジクロロフェニル) ピペラジン-1-イル] ーL-フェニルアラニン

工程1

N-(2,6-ジクロロー4ーシアノベンゾイル)ー4ー(4ートリフルオロフメタンスルホニル)ー3ーニトローLーフェニルアラニンエチルエステル(518 mg,0.887 mmol)とNー(2,6-ジクロロフェニル)ピペラジン(504 mg,2.18 mmol)をジクロロメタン(5 ml)に溶解し、トリエチルアミン(0.150 ml,1.07 mmol)を加え、その後室温で終夜攪拌した。反応溶液に水および酢酸エチルを加え、有機層を2回抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=3/1)で精製し、Nー(2,6-ジクロロー4ーシアノベンゾイル)ー4ー[4ー(3,5-ジクロロフェニル)ピペラジンー1ーイル]ー3ーニトローLーフェニルアラニンエチルエステルを72%(423 mg,0.636 mmol)で得た。

 1 H-NMR (CDCl₃) δ (ppm): 7.68 (s, 1H), 7.63 (s, 2H), 7.42 (d, J = 8.1 Hz, 1H), 7.25 (s, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.85 (s, 2H), 6.43 (d, J = 7.2 Hz, 1H), 5.15-5.09 (m, 1H), 4.27 (q, J = 7.2 Hz, 2H), 3.37-3.35 (m, 4H), 3.33-3.26 (m, 2H), 3.23-3.19 (m, 4H), 1.32 (t, J = 7.2 Hz, 3H).

工程 2

工程 1 で得られた化合物 (423 mg, 0.636 mmo1)をメタノール (5 m1) に溶解し、濃塩酸 (1 m1)と亜鉛/銅粉末 (426 mg)を加え、その後室温で 2 時間攪拌した。氷冷下、反応溶液に亜硝酸ナトリウム (65.6 mg, 0.951 mmo1)を加え、室温で 2 時間攪拌した。反応溶液に、塩化銅 (I) (131 mg, 1.33 mmo1)と塩化銅 (II) (160 mg, 1.19 mmo1)を加え、さ

らに 2 時間攪拌後、アンモニア水溶液と酢酸エチルを加え、有機層を 2 回抽出し、飽和食塩水で 3 回洗浄し、無水硫酸マグネシウムで乾燥した。 5 過後、 5 液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー (ヘキサン/酢酸エチル=2/1) で精製し、 3 ークロロー Nー (2,6 ージクロロー4 ーシアノベンゾイル) ー4 ー [4 ー (3,5 ージクロロフェニル)ピペラジンー1 ーイル]ー Lーフェニアルアラニンエチルエステルを 29% (119 mg,0.182 mmo1)で得た。

¹H-NMR (CDCl₃) δ (ppm): 7.60 (s, 2H), 7.14-7.07 (m, 2H), 6.97 (d, J = 8.1 Hz, 1H), 6.83 (s, 1H), 6.79 (s, 2H), 6.37 (d, J = 7.8 Hz, 1H), 5.15-5.06 (m, 1H), 4.11 (q, J = 7.3 Hz, 2H), 3.40-3.12 (m, 10H), 1.26 (t, J = 7.0 Hz, 3H).

工程3

工程 2 で得られた化合物 (119 mg, 0.182 mmo1)をジメチルホルムアミド (5 ml) に溶解し、アジ化ナトリウム (59 mg, 0.908 mmo1)と塩化アンモニウム (50.9 mg, 0.952 mmo1)を加え、その後 100 で 8 時間攪拌した。反応液を放冷後、1 mol/L 塩酸を加えて酸性とした後、酢酸エチルを加え、有機層を 2 回抽出し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=8/2)で精製し、3 ークロローNー(2, 6 ージクロロー4ーテトラゾリルベンゾイル)ー4ー[4 ー(3, 5 ージクロロフェニル)ピペラジンー1 ーイル]ー1 ーフェニルアラニンエチルエステルを 1 29% (127 mg, 1 0.182 mmo1)で得た。

工程4

工程 3 で得られた化合物 (127 mg, 0.182 mmo1)をテトラヒドロフラン (5 ml)と水 (3 ml)の混合溶媒に溶解し、水酸化リチウム・一水和物 (61.0 mg, 1.45 mmo1)を加え室温で7時間攪拌した。反応溶液を濃縮後、得られた残渣に酢酸を加え、生成した結晶をろ取し、標題化合物を 81% (98.4 mg, 0.147 mmo1)で得た。

¹H-NMR (DMSO-d₆) δ (ppm): 9.20-9.14 (m, 1H), 8.03 (s, 2H), 7.28-7.12 (m, 2H), 7.00 (s, 2H), 6.92 (d, J = 8.6 Hz, 1H), 6.89 (s, 1H),

4.75-4.65 (m, 1H), 3.24-3.20 (m, 4H), 3.14-2.84 (m, 2H), 3.07-3.02 (m, 4H).

実施例406:N-(2,6-ジクロロベンゾイル)-4-(3,3-ジメチル-2-オキソー4-フェニルピペラジン-1-イル)-L-フェニルアラニン

実施例41と同様の方法により、参考例7で得られた化合物gから標題化合物を得た。得られた化合物のプロトン核磁気共鳴スペクトルデータを、以下の第8表に示す。

実施例406と同様にして、参考例7の方法に準じて合成された化合物から、化合物407~424を実施例407~424として合成した。得られた化合物のプロトン核磁気共鳴スペクトルデータを、以下の第8表に示す。

第7表

化合物 番号	測定溶媒	¹ H-NMR δ (ppm):
339	CDCl_3	7.89 (d, J = 7.2 Hz, 1H), 7.71-7.25 (m, 14H), 4.86-4.76 (m, 1H), 3.97-3.67 (m, 8H), 2.42-2.12 (m, 4H), 1.86-1.44 (m, 4H).
340	CDCl_3	7.83-7.23 (m, 14H), 7.09 (d, J = 6.5 Hz, 1H), 4.86 (m, 1H), 4.14-3.74 (m, 8H), 3.35-3.28 (m, 2H), 3.03 (s, 3H), 2.37-2.32 (m, 2H), 1.75-1.44 (m, 6H).
341	CDCl ₃	8.32 (d, J = 6.9 Hz, 1H), 7.69 (d, J = 6.8 Hz, 2H), 7.58 (d, J = 6.8 Hz, 1H), 7.44-7.15 (m, 11H), 4.73 (m, 1H), 3.76-3.60 (m, 8H), 3.21 (dd, J = 4.9, 12.7 Hz, 1H), 3.11 (dd, J = 6.2, 12.7 Hz, 1H), 1.85-1.53 (m, 4H).

		7.37 (d, $J = 7.3$ Hz, 2H), 7.29 (t, $J = 7.6$
		Hz, 1H), 7.14-6.94 (m, 11H), 4.42 (m,
342	CDCl_3	1H), 3.29 (m, 8H), 2.91 (dd, $J = 5.1$, 14.0
342	CDC13	Hz, $1H$), 2.81 (dd, $J = 7.0$, 14.0 Hz , $1H$),
		1.79 - 1.52 (m, 4H), 0.67 (t, $J = 7.3$ Hz,
		3H), 0.58 (t, J = 7.3 Hz, 3H).
		7.85 (d, J = 7.2 Hz, 1H), 7.58-7.00 (m,
		14H), 4.81-4.75 (m, 1H), 3.46-3.33 (m,
343	CDCl_3	10H), 3.30 (dd, J = 4.2, 13.8 Hz, 1H),
		3.13 (dd, J = 6.9, 13.8 Hz, 1H), 2.30-1.48
		(m, 4H), 1.57 (s, 3H).
	CDCl_3	7.80 (d, J = 7.2 Hz, 1H), 7.66-7.24 (m,
		14H), 4.94-4.91 (m, 1H), 4.61 (d, J = 9.3)
344		Hz , $\dot{1}H$), 4.29 (d, $J = 9.3 Hz$, $1H$),
		4.37-3.71 (m, 8H), 3.26-3.18 (m, 2H),
		1.21 (s, 3H), 1.00 (s, 3H).
		7.06-6.63 (m, 11H), 6.60 (t, $J = 7.3$ Hz,
		1H), 6.45 (d, $J = 7.8$ Hz, 1H), 4.46 (d, $J =$
		6.5 Hz, 1H), 4.28 (d, J = 4.9 Hz, 1H), 4.18
345	$\mathrm{CDCl_3}$	(s, 2H), 3.12 (m, 8H), 2.86 (dd, $J = 4.9$,
		13.8 Hz, 1H), 2.70 (dd, J = 5.7, 13.8 Hz,
		1H), 1.97 (s, 3H), 1.38-1.24 (m, 3H), 0.57
		(s, 3H), 0.56 (s, 3H).

r		
		7.30 (t, J = 8.1 Hz, 2H), 7.13 (d, J = 8.4)
		Hz, 2H), 7.02 (d, J = 8.1 Hz, 2H),
		6.96-6.91 (m, 3H), 6.62 (d, $J = 7.8$ Hz,
240	CDCI	1H), 4.82-4.80 (m, 1H), 3.41-3.33 (m,
346	CDCl_3	12H), 3.11 (dd, $J = 5.1$, 14.1 Hz, $1H$),
		$2.93 \text{ (dd, J} = 8.4, 14.1 Hz, 1H), } 1.96-1.71$
		(m, 8H), 0.74 (t, J = 7.5 Hz, 3H), 0.62 (t,
		J = 7.5 Hz, 3H).
		7.38-7.03 (m, 9H), 6.67 (d, $J = 7.8$ Hz,
		1H), 4.89-4.59 (m, 4H), 3.46 (m, 8H), 3.18
347	CDCl_3	(dd, J = 4.9, 13.5 Hz, 1H), 3.06 (dd, J =
		8.4, 13.5 Hz, 1H), 2.03 (s, 3H), 1.51 (s,
		3H), 1.18 (s, 3H).
		7.27 (t, $J = 7.6$ Hz, 2H), 7.14 (d, $J = 8.4$
	${ m CDCl_3}$	Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H),
		6.92-6.87 (m, 3H), 6.47 (d, $J = 6.8$ Hz,
348		1H), 4.81 (m, 1H), 4.59 (s, 2H), 4.09 (s,
		1H), 3.65 (s, 3H), 3.30-3.28 (m, 8H),
		3.16-3.03 (m, 2H), 1.48 (s, 3H), 1.17 (s,
		3H).
	CDCl_3	7.30-7.06 (m, 8H), 6.89 (t, $J = 7.2$ Hz,
349		2H), 4.63-4.50 (m, 4H), 3.53-3.45 (m, 8H),
		3.15-3.12 (m, 2H), 2.87 (t, $J = 10.8$ Hz,
		1H), 1.62 (s, 3H), 1.29 (s, 3H), 1.15 (s,
		3H), 1.02 (s, 3H).

·	T	
350		8.98 (d, J = 5.9 Hz, 1H), 7.27-6.99 (m,
		8H), 6.83 (t, $J = 6.5$ Hz, $1H$), 4.48 (m,
	DMSO-d ₆	1H), 4.37 (d, $J = 8.9$ Hz, 1H), 4.31 (d, $J =$
		8.9 Hz, 1H), 3.52 (m, 8H), 3.02 (dd, J =
		4.6, 12.7 Hz, 1H), 2.92 (dd, J=7.6, 12.7
		Hz, 1H), 1.61 (s, 3H), 1.27 (s, 3H).
		7.92 (d, $J = 7.5$ Hz, 1H), 7.20 (d, $J = 7.2$
		Hz, $2H$), 7.07 (d, $J = 8.4$ Hz , $2H$), 6.96 (d,
		J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H),
351	DMSO-d ₆	6.77 (t, $J = 8.4$ Hz, 1H), 4.69 (d, $J = 9.0$
		Hz, 1H), 4.52 (d, J = 9.0 Hz, 1H), 4.33
		(m, 1H), 3.22 (m, 8H), 2.93 (dd, J = 5.4,
		13.8 Hz, 1H), 2.82 (dd, J = 8.1, 13.8 Hz,
		1H), 2.69 (s, 6H), 1.43 (s, 3H), 1.24 (s,
		3H).
		7.66 (d, J = 6.6 Hz, 1H), 7.08-6.83 (m,
	CDCl₃	9H), 5.23 (d, J = 15.0 Hz, 1H), 4.88 (d, J
250		= 15.0 Hz, 1H), 4.59-4.50 (m, 1H),
352		4.44-4.30 (m, 1H), 3.42-3.31 (m, 8H),
		2.95-2.82 (m, 2H), 1.29 (s, 3H), 0.97 (s,
		3H).
		7.39-7.00 (m, 9H), 4.85-4.73 (m, 1H), 4.64
353	CDCl_3	(s, 2H), 4.13 (s, 1H), 3.48 (m, 8H),
บบอ		3.18-3.08 (m, 2H), 2.20 (s, 3H), 1.55 (s,
		3H), 1.31 (s, 3H).

Γ		
		7.54 (t, J = 8.4 Hz, 2H), 7.39 (t, J = 8.1
		Hz, $2H$), 7.30 (d, $J = 7.8$ Hz , $2H$), 7.21 (d,
		J = 6.8 Hz, 2H), 7.11 (t, J = 7.0 Hz, 1H),
354	DMSO-d ₆	5.14-5.09 (m, 1H), 5.06-5.00 (m, 1H), 4.77
	ļ.	(d, J = 9.5 Hz, 1H), 4.69 (m, 1H), 4.54 (d,
5		J = 9.5 Hz, 1H), 3.65-3.44 (m, 8H), 3.36
		(s, 3H), 3.32-3.06 (m, 2H).
		7.98 (t, $J = 1.9$ Hz, $1H$), 7.79 (d, $J = 1.9$
		Hz, 2H), 7.22 (t, J = 7.3 Hz, 2H), 7.08 (d,
		J = 8.4 Hz, 2H), 6.98 (d, J = 8.1 Hz, 2H),
355	DMSO-d ₆	6.87 (d, $J = 8.1$ Hz, $2H$), 6.79 (t, $J = 7.3$
	DIVISO U6	Hz, 1H), 4.28-4.25 (m, 1H), 4.03 (s, 2H),
		3.50-3.21 (m, 10H), 3.04 (dd, $J = 5.1$, 13.5
		Hz, $1H$), 2.96 (dd , $J = 7.0$, 13.5 Hz , $1H$),
		1.60 (d, J = 6.2 Hz, 2H).
	DMSO-d ₆	8.22 (m, 1H), 7.95 (s, 1H), 7.79 (s, 2H),
		7.22 (t, J = 7.8 Hz, 2H), 7.15 (d, J = 8.4
356		Hz, $2H$), 6.98 (d, $J = 8.1$ Hz , $2H$), 6.79 (t,
330		J = 7.3 Hz, 1H), 4.36-4.28 (m, 2H), 4.16
		(m, 1H), 3.36-3.23 (m, 10H), 2.99-2.85
		(m, 2H), 1.88-1.80 (m, 2H).
		9.23 (d, $J = 8.1$ Hz, 1 H), 8.64 (s, 2 H),
		7.24 (t, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4
2577	DMSO-d ₆	Hz, 2H), 7.00 (d, J = 7.8 Hz, 2H), 6.93 (d, J)
357		J = 8.6 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H),
		4.70-4.62 (m, 1H), 3.33-3.24 (m, 8H),
		3.11-2.80 (m, 2H).

358		9.13 (d, $J = 8.1$ Hz, 1H), 8.58 (s, 2H),
		7.24 (t, $J = 8.4$ Hz, 2H), 7.15 (d, $J = 8.4$
	DMSO-d ₆	Hz, 2H , 6.99 (d, $J = 8.1 Hz, 2H $), 6.92 (d,
338	DMSO ue	J = 8.6 Hz, 2H), 6.80 (t, J = 7.3 Hz, 1H),
		4.67-4.59 (m, 1H), 3.25-3.23 (m,8H),
		3.11-2.81 (m, 2H).
		7.39 (s, 2H), 7.32-7.17 (m, 4H), 7.00-6.88
	į	(m, 5H), 6.41 (d, J = 7.6 Hz, 1H), 5.37 (s,
359	CDCl ₃	1H), 5.05-5.03 (m, 1H), 4.24-4.19 (m, 1H),
		3.96-3.88 (m, 2H), 3.33-3.20 (m, 10H),
		2.22-2.08 (m, 1H), 1.46-1.38 (m, 1H).
	DMSO-d ₆	8.94 (d, $J = 8.2$ Hz, 1H), 7.33 (s, 2H),
		7.27-7.14 (m, 4H), 7.00 (d, $J = 8.1$ Hz,
		2H), 6.92 (d, $J = 8.6 Hz$, $2H$), 6.80 (t, $J =$
360		7.3 Hz, 1H), 5.45 (brs, 1H), 4.68-4.58 (m,
		1H), 4.49 (s, 2H), 3.40-3.20 (m, 8H), 3.04
		(dd, J = 5.3, 14.0 Hz, 1H), 2.84 (dd, J =
		9.2, 14.0 Hz, 1H).
	DMSO-d ₆	8.61 (d, J = 7.4 Hz, 1H), 8.06 (s, 2H),
		7.26-7.21 (m, 2H), 7.14 (d, $J = 8.6$ Hz,
		2H), 6.98 (d, $J = 8.1 Hz$, $2H)$, 6.86 (d, $J =$
361		8.6 Hz, 2H), 6.80 (t, J = 7.3 Hz, 1H),
		4.46-4.38 (m, 1H), 3.28-3.20 (m,8H), 3.06
		(dd, J = 5.3, 14.0 Hz, 1H), 2.90 (dd, J =
		9.2, 14.0 Hz, 1H).

		
		7.88 (s, 2H), 7.72-7.65 (m, 1H), 7.26-7.20
		(m, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.98 (d,
362	DMSO-d ₆	J = 8.1 Hz, 2H), 6.84-6.77 (m, 3H),
	DIME U	4.46-4.38 (m, 1H), 3.28-3.20 (m, 8H), 3.06
		(dd, J = 5.3, 14.0 Hz, 1H), 2.90 (dd, J =
		9.2, 14.0 Hz, 1H).
		9.13 (d, $J = 7.4$ Hz, 1H), 7.82 (s, 2H),
		7.29-7.21 (m, 2H), 7.15 (d, $J = 8.6$ Hz,
		2H), 6.98 (d, $J = 8.1 Hz$, $2H$), 6.94 (d, $J =$
363	DMSO-d ₆	8.6 Hz, 2H), 6.80 (t, J = 7.3 Hz, 1H),
		4.69-4.59 (m, 1H), 3.25-3.15 (m, 8H), 3.05
		(dd, J = 5.3, 14.0 Hz, 1H), 2.85 (dd, J =
	l	9.2, 14.0 Hz, 1H).
		9.01 (d, J = 7.4 Hz, 1H), 8.18 (s, 1H),
	$ ext{DMSO-d}_6$	7.87 (s, 2H), 7.70 (s, 1H), 7.26-7.14 (m,
		4H), 6.99 (d, $J = 8.1$ Hz, $2H$), 6.91 (d, $J =$
364		8.6 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H),
		4.64-4.56 (m, 1H), 3.40-3.20 (m, 8H), 3.06
		(dd, J = 5.3, 14.0 Hz, 1H), 2.86 (dd, J =
		9.2, 14.0 Hz, 1H).
		9.05 (d, J = 7.4 Hz, 1H), 7.81 (s, 2H),
	DMSO-d ₆	7.52 (d, $J = 15.7$ Hz, 1H), $7.28-7.21$ (m,
365		4H), 7.05-6.97 (m, 4H), 6.85 (t, $J = 7.3$
		Hz, 1H), 6.70 (d, $J = 15.7 Hz$, 1H), 4.92
-		(brs, 1H), 4.70-4.60 (m, 1H), 3.31 (s, 8H),
		3.06 (dd, J = 5.3, 14.0 Hz, 1H), 2.85 (dd,
		J = 9.2, 14.0 Hz, 1H).

		9.16 (d, $J = 7.4$ Hz, 1H), 8.03 (s, 2H),
366		7.26-7.15 (m, 4H), 7.00-6.94 (m, 4H), 6.80
	DMSO-d ₆	(t, J = 7.3 Hz, 1H), 4.69-4.61 (m, 1H),
		3.25 (s, 8H), 3.06 (dd, $J = 5.3$, 14.0 Hz,
		1H), 2.85 (dd, $J = 9.2$, 14.0 Hz, $1H$).
í.		9.18 (d, J = 7.4 Hz, 1H), 7.81 (s, 2H),
		7.26-7.14 (m, 4H), 6.98 (d, $J = 8.1$ Hz,
367	DMSO-d ₆	2H), 6.91 (d, $J = 8.6 Hz$, $2H$), 6.80 (t, $J =$
307	DMSO u6	7.3 Hz, 1H), 4.68-4.60 (m, 1H), 3.35-3.24
		(m, 8H), 3.06 (dd, J = 5.3, 14.0 Hz, 1H),
		2.85 (dd, $J = 9.2$, 14.0 Hz, $1H$).
		9.16 (d, $J = 7.4$ Hz, 1H), 7.93 (s, 2H),
		7.26-7.14 (m, 4H), 6.98 (d, $J = 8.1$ Hz,
368	DMGO 1	2H), 6.92 (d, $J = 8.6$ Hz, $2H$), 6.81 (t, $J =$
300	DMSO-d ₆	7.3 Hz, 1H), 4.70-4.60 (m, 1H), 3.35-3.25
		(m, 8H), 3.06 (dd, J = 5.3, 14.0 Hz, 1H),
		2.85 (dd, J = 9.2, 14.0 Hz, 1H).
		8.70 (d, J = 7.7 Hz, 1H), 7.25-7.12 (m,
		4H), 6.98 (d, $J = 8.1$ Hz, $2H$), 6.88 (d, $J =$
369		8.4 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H), 6.77
303	${ m DMSO-d_6}$	(s, 2H), $4.57-4.49$ (m, 1H), $3.26-3.20$ (m,
		8H), 3.00 (dd, $J = 5.3$, 14.0 Hz, $1H$), 2.84
		(dd, J = 9.2, 14.0 Hz, 1H).
		8.83 (d, J = 7.4 Hz, 1H), 7.81 (s, 2H),
370	DMSO-d ₆	7.26-7.13 (m, 4H), 7.00-6.88 (m, 4H), 6.92
		(s, 1H), 6.79 (t, $J = 7.3$ Hz, 1H), $4.60-4.50$
		(m, 1H), 4.52 (s, 2H), 3.26-3.20 (m, 8H),
		3.02 (dd, J = 5.3, 14.0 Hz, 1H), 2.84 (dd,
		J = 9.2, 14.0 Hz, 1H).

		8.58 (d, J = 7.7 Hz, 1H), 7.25-7.13 (m,
		4H), 7.08 (s, 2H), 6.98 (d, $J = 8.1$ Hz,
371	DMSO-d ₆	2H), 6.87 (d, $J = 8.6$ Hz, $2H$), 6.79 (t, $J =$
		7.3 Hz, 1H), 4.53-4.45 (m, 1H), 3.26-3.20
		(m, 8H), 3.06-2.82 (m, 2H), 2.98 (s, 3H).
		8.92 (d, $J = 8.3$ Hz, 1H), 7.81 (d, $J = 8.2$
		Hz, 2H), 7.68-7.58 (m, 3H), 7.25-7.20 (m,
		2H), 7.10 (d, J = 8.4 Hz, 2H), 7.05 (s,
279	DMGO 1	2H), 6.98 (d, $J = 8.1 Hz$, $2H$), 6.87 (d, $J =$
372	DMSO-d ₆	8.6 Hz, 2H), 6.79 (t, J = 7.3 Hz, 1H),
ļ		4.57-4.50 (m, 1H), 3.25-3.20 (m, 8H), 2.98
		(dd, J = 5.3, 14.0 Hz, 1H), 2.77 (dd, J =
		9.2, 14.0 Hz, 1H).
		8.92 (d, $J = 7.9$ Hz, 1H), $7.31-7.20$ (m,
		4H), 7.05 (s, 2H), 7.09-7.02 (m, 4H), 6.88
373	DMSO-d ₆	(t, J = 7.3 Hz, 1H), 4.63-4.55 (m, 1H),
		3.35 (s, 8H), 3.05 (dd, $J = 5.3$, 14.0 Hz,
		1H), 2.85 (dd, $J = 9.2$, 14.0 Hz, $1H$).
!		10.10 (brs, 1H), 8.86 (d, J = 7.9 Hz, 1H),
	DMSO-d ₆	8.33 (brs, 1H), 7.61 (s, 2H), 7.27-7.15 (m,
374		4H), 6.99 (d, $J = 8.1 Hz$, $2H)$, 6.91 (d, $J =$
		8.4 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H),
		4.61-4.53 (m, 1H), 3.32 (s, 8H), 3.06 (dd,
		J = 5.3, 14.0 Hz, 1H), 2.91 (d, $J = 4.1$ Hz,
		3H), 2.86 (dd, J = 9.2, 14.0 Hz, 1H).

		8.03 (d, $J = 7.8$ Hz, $2H$), 7.83 (d, $J = 6.9$
		Hz, 2H), 7.71 (t, $J = 7.2 Hz$, 1H), 7.61 (t,
		J = 7.8 Hz, 2H), 7.26 (t, J = 7.8 Hz, 1H),
375	DMSO-d ₆	7.11 (d, $J = 8.4 \text{ Hz}, 2\text{H}$), 6.91 (d, $J = 8.7$
070		Hz, 2H), 4.38-4.34 (m, 1H), 4.16-4.13 (m,
		1H), 3.60-3.58 (m, 4H), 3.29-3.27 (m, 5H),
		3.16-3.08 (m, 1H), 3.06-2.89 (m, 2H),
		1.67-1.41 (m, 4H).
		12.66 (s, 1H), 9.02 (d, $J = 8.4$ Hz, 1H),
		8.03 (d, $J = 7.8$ Hz, 2H), $7.46-7.38$ (m,
376	DMSO-d ₆	3H), 7.27 (t, $J = 7.8 Hz$, $1H)$, 7.17 (d, $J =$
370	DMSO-06	8.4 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H),
		4.67-4.59 (m, 1H), 3.63-3.59 (m, 4H),
		3.32-3.28 (m, 4H), 3.08-2.81 (m, 2H).
		9.24 (d, $J = 8.4$ Hz, 1H), 8.64 (s, 2H),
:	${ m DMSO-d_6}$	8.04 (d, $J = 7.8$ Hz, 2H), 7.27 (t, $J = 7.5$
9.7.7		Hz, $1H$), 7.17 (d, $J = 8.4$ Hz , $2H$), 6.95 (d,
377		J = 8.7 Hz, 2H), 4.70-4.63 (m, 1H),
		3.61-3.60 (m, 4H), 3.32-3.31 (m, 4H),
		3.11-2.81(m, 2H).
		8.17 (d, J = 9.0 Hz, 1H), 7.91-7.88 (m,
270	DMSO-d ₆	3H), 7.61 (d, $J = 8.4 Hz$, 1H), 7.53-7.50
		(m, 2H), 7.45 (t, J = 7.5 Hz, 1H),
378		7.19-7.16 (m, 3H), 6.94-6.91 (m, 2H),
		4.62-4.56 (m, 1H), 3.31-3.17 (m, 8H),
		3.05-2.92 (m, 2H).

379	DMSO-d ₆	9.17-9.14 (m, 1H), 7.85 (s, 2H), 7.16 (d, J = 8.1 Hz, 2H), 7.01 (s, 2H), 6.93-6.90 (m, 3H), 4.65-4.61 (m, 1H), 3.33-3.20 (m, 8H), 2.89-2.50 (m, 2H).
380	$\mathrm{CD_3OD}$	7.90 (s, 2H), 7.20 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 7.6 Hz, 2H), 4.80-4.74 (m, 1H), 3.35-3.34 (m, 4H), 3.16-3.15 (m, 4H), 2.99-2.73 (m, 2H), 2.85 (s, 6H).
381	DMSO-d ₆	9.06 (d, J = 8.1 Hz, 1H), 7.78-7.19 (m, 5H), 7.47-7.36 (m, 3H), 7.20 (d, J = 7.3 Hz, 2H), 6.99 (d, J = 7.3 Hz, 2H), 4.69-4.61 (m, 1H), 3.90-3.82 (m, 4H), 3.06 (dd, J = 4.6, 13.8 Hz, 1H), 2.87 (dd, J = 9.7, 13.8 Hz, 1H), 1.73 (s, 6H), 1.24 (s, 6H).
382	DMSO-d ₆	9.26 (d, J = 8.4 Hz, 1H), 8.65 (s, 2H), 7.77-6.98 (m, 5H), 7.15 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 8.1 Hz, 2H), 4.69-4.68 (m, 1H), 3.90-3.84 (m, 1H), 3.51-3.40 (m, 1H), 3.05 (m, 4H), 1.06 (s, 12H).
383	CDCl_3	7.76 (bs, 1H), 7.49-7.48 (m, 3H), 7.30-7.22 (m, 5H), 7.20 (d, J= 8.1 Hz, 2H), 6.81 (d, J= 8.1 Hz, 2H), 6.57 (d, J= 7.6 Hz, 1H), 5.07-5.00 (m, 1H), 3.59-3.48 (m, 6H), 3.22-3.21 (m, 2H), 1.41 (s, 6H).
384	CDCl_3	8.40 (brs, 2H), 7.39-7.26 (m, 5H), 7.20 (d, J= 7.3 Hz, 2H), 6.76 (d, J= 7.3 Hz, 2H), 4.99-4.93 (m, 1H), 3.53-3.47 (m, 2H), 3.36-3.24 (m, 6H), 1.25 (s, 6H)

385	CDCl ₃	7.75 (brs, 1H), 7.61-7.53 (m, 3H), 7.43 (d, J= 6.9 Hz, 2H), 7.38 (d, J= 6.3 Hz, 2H), 7.30-7.12 (m, 4H), 6.91 (d, J= 6.3 Hz, 1H), 4.99-4.93 (m, 1H), 3.73-3.61 (m, 2H), 3.42-3.17 (m, 6H), 2.10-2.00 (m, 2H), 1.77-1.69 (m, 2H), 0.80-0.68 (m, 6H).
386	DMSO-d ₆	9.07 (d, J = 8.1 Hz, 1H), 7.75 (s, 1H), 7.23 (t, J = 7.8 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.82 (t, J = 7.5 Hz, 1H), 4.75-4.68 (m, 1H), 3.25-3.10 (m, 9H), 3.10-2.92 (m, 1H).
387	$\mathrm{CDCl_3}$	7.60 (d, J = 1.8 Hz, 1H), 7.34-7.20 (m, 4H), 6.87 (t, J = 8.6 Hz, 2H), 6.80 (d, J = 7.6 Hz, 1H), 6.48-6.46 (m, 2H), 6.40 (d, J = 7.8 Hz, 1H), 5.15-5.08 (m, 1H), 4.45 (s, 1H), 4.38 (s, 1H), 3.77-3.66 (m, 2H), 3.35-3.31 (m, 1H), 3.26 (dd, J = 5.4, 14.6 Hz, 1H), 3.17 (dd, J = 5.7, 14.6 Hz, 1H), 2.18-2.09 (m, 2H).
388	${ m DMSO-d_6}$	9.09 (d, J= 8.6 Hz, 1H), 7.85-7.80 (m, 2H), 7.70-7.51 (m, 3H), 7.49-7.36 (m, 5H), 4.80-4.67 (m, 1H), 3.70-3.51 (m, 2H), 3.24 (dd, J= 4.1, 14.3 Hz, 2H), 3.12-2.84 (m, 4H), 1.41 (s, 6H).

	7	
389		7.75 (d, J = 1.6 Hz, 1H), 7.67-7.56 (m,
		3H), 7.49-7.37 (m, 3H), 7.23-7.12 (m,
	CDCl ₃	4H), 6.81 (d, $J = 6.5$ Hz, $1H$), $5.00-4.97$
		(m, 1H), 3.62 (m, 1H), 3.47-3.30 (m, 6H),
		2.05-1.98 (m, 4H), 1.45-1.32 (m, 2H),
		1.36-1.22 (m, 2H).
		7.71 (s, 1H), 7.59-7.26 (m, 10H), 6.70
390	$CDCl_3$	(m, 1H), 5.05 (m, 1H), 3.72 (m, 2H), 3.55
390	CDC13	(m, 4H), 3.36-3.30 (m, 2H), 2.17-2.09 (m,
		4H), 1.65-1.51 (m, 2H).
		7.47-7.35 (m, 3H), 7.24 (t, $J = 7.6$ Hz,
201	DMSO-d ₆	2H), 7.00 (d, $J = 8.6 Hz$, $2H$), 6.85 (t, $J =$
391		7.3 Hz, 1H), 4.88-4.82 (m, 1H), 3.34 (d,
		J = 10.3 Hz, 1H), 3.07-2.97 (m, 9H).
	DMSO-d ₆	8.97 (d, J = 7.9 Hz, 1H), 7.45-7.35 (m,
		3H), 7.23 (t, J = 7.9 Hz, 2H), 6.98 (d, J =
392		8.4 Hz, 2H), 6.84-6.76 (m, 2H), 6.61 (s,
334		1H), 6.50 (d, $J = 8.2$ Hz, 1H), $4.65-4.57$
		(m, 1H), 3.31 (m, 8H), 3.01-2.91 (m, 3H),
		2.80-2.71 (m, 1H).
		9.02 (d, J = 8.1 Hz, 1H), 7.46-7.35 (m,
		3H), 7.30 (t, J = 7.6 Hz, 2H), 7.18-7.11
		(m, 3H), 6.83 (d, J = 8.1 Hz, 1H), 6.62
202	DMGO 1	(s, 1H), 6.52 (d, $J = 8.1$ Hz, 1H),
393	$\mathrm{DMSO} ext{-}\mathbf{d}_{6}$	4.65-4.57 (m, 1H), 3.32 (s, 2H),
		3.23-2.68 (m, 4H), 2.97 (dd, $J = 5.9$, 14.0
		Hz, 1H), 2.76 (dd, $J = 9.2$, 14.0 Hz, $1H$),
		1.09 (s, 6H).

		9.02 (d, J= 8.1 Hz, 1H), $7.46-7.34$ (m,
394		6H), 7.24-7.14 (m, 2H), 6.88 (d, J= 7.8
	$DMSO-d_6$	Hz, 1H), 6.64 (d, J= 1.4 Hz, 1H), 6.54 (d,
334	$DMSO^{-}u_{6}$	J= 7.8 Hz, 1H), 4.66-4.58 (m, 1H),
		3.02-2.72 (m, 8H), 1.81-1.77 (m, 4H),
		1.43-1.42 (m, 2H), 1.26-1.24 (m, 2H).
		8.98 (d, $J = 7.9$ Hz, 1H), $7.46-7.36$ (m,
		3H), 7.23 (t, $J = 2.8 Hz$, $2H)$, 6.98 (d, $J =$
395	DMCO-3	8.0 Hz, 2H), 6.79 (t, J = 7.2 Hz, 1H),
393	${ m DMSO-d_6}$	5.87 (s, 2H), 4.61-4.54 (m, 1H),
		3.33-3.10 (m, 8H), 2.80 (dd, $J = 5.7$, 13.4
		Hz, 1H), 2.60 (dd, $J = 8.6$, 13.6 Hz , 1H).
	CDCl_3	7.52 (s, 1H), 7.37 (d, $J = 9.0$ Hz, 2H),
		7.27-7.19 (m, 5H), 6.95 (d, $J = 8.1$ Hz,
396		1H), 6.86 (d, $J = 9.0$ Hz, $2H$), 6.49 (brs,
		1H), 5.08 (m, 1H), 3.29 (m, 8H), 3.11 (m,
		2H).
		12.8 (brs, 1H), 9.06 (d, $J = 8.4$ Hz, 1H),
		7.44-7.35 (m, 4H), 7.25-7.20 (m, 3H),
		7.13 (d, $J = 8.1 \text{ Hz}$, 1H), 6.99 (d, $J = 7.8$
397	${f DMSO-d_6}$	Hz, $2H$), 6.79 (t, $J = 7.2$ Hz , $1H$),
		4.70-4.62 (m, 1H), 3.32-3.26 (m, 4H),
		3.15-3.06 (m, 5H), 2.85 (dd, $J = 13.2$,
,		16.8 Hz, 1H).

· ·	I	
		9.35 (d, $J = 8.4$ Hz, 1H), 8.10 (d, $J = 1.9$
]	Hz, 1H), $7.77-7.68$ (m, 3H), 7.64 (dd, $J =$
		1.9, 7.8 Hz, 1H), 7.56 (t, J = 7.3 Hz,
398	${ m DMSO} ext{-}{ m d}_{ m 6}$	2H), 7.43 (d, $J = 8.1$ Hz, $1H$), 7.35 (d, J
		= 8.1 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H),
		5.02-4.93 (m, 1H), 3.99-3.65 (m, 9H),
		3.15 (dd, J = 10.3, 14.0 Hz, 1H).
		7.40-7.15 (m, 8H), 7.06-6.95 (m, 3H),
399	CDCl_3	6.51 (d, J = 7.8 Hz, 1H), 5.15-5.09 (m,
	•	1H), 3.44-3.24 (m, 10H), 2.36 (s, 3H).
	$\mathrm{DMSO} ext{-}\mathrm{d}_6$	9.02 (d, J = 8.3 Hz, 1H), 7.50-7.35 (m,
		3H), 7.21-7.05 (m, 6H), 6.94-6.91 (m,
400		2H), 6.92-6.76 (m, 1H), 6.21 (s, 2H),
400		4.82-4.70 (m, 1H), 3.40-3.30 (m, 4H),
		3.25-3.13 (m, 3H), 2.95-2.84 (m, 1H),
		2.80-2.73 (m, 4H).
	$\mathrm{DMSO} ext{-}\mathrm{d}_6$	8.97 (s, 1H), 8.03 (d, J= 7.6 Hz, 1H),
		7.77 (s, 1H), 7.48-7.37 (m, 3H), 7.31 (t,
		J=7.6 Hz, 2H), 7.15 (t, J=7.3 Hz, 2H),
401		7.13 (d, $J=5.7 \text{ Hz}, 1\text{H}), 7.09-7.05 \text{ (m,}$
		2H), 4.47-4.40 (m, 1H), 3.24-2.94 (m,
		6H), 2.64-2.62 (m, 2H), 1.23 (s, 3H),
		1.11 (s, 6H).

	T	
		8.39 (brs, 2H), 8.03 (brs, 2H), 7.63 (dd,
402		J=3.5, 5.7 Hz, 1H), 7.46 (dd, J=3.5, 5.7)
		Hz, 1H), $7.34-7.27$ (m, 4H), 7.08 (d, J=
	CDCl_3	7.6 Hz, 1H), 6.96 (d, J= 7.6 Hz, 1H),
		5.04-5.01 (m, 1H), 3.32-3.05 (m, 6H),
		2.88-2.86 (m, 2H), 2.11 (s, 3H),
		1.30-1.21 (m, 6H).
		9.02 (d, $J = 8.1$ Hz, 1H), $7.45-7.34$ (m,
		3H), 7.29 (t, $J = 7.8 Hz$, $1H)$, 7.17 (d, $J =$
		7.6 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H),
403	CDCl_3	6.86-6.82 (m, 3H), 4.68-4.64 (m, 1H),
		3.32 (m, 1H), 3.07 (dd, $J = 4.6$, 14.0 Hz,
		1H), 2.88 (s, 2H), 2.85-2.76 (m, 4H),
		1.09 (s, 6H).
		9.03 (d, J = 8.4 Hz, 1H), 7.46-7.35 (m,
		3H), 7.35-7.30 (m, 2H), 7.17-7.14 (m,
	DMSO-d ₆	3H), 6.87 (d, $J = 8.1$ Hz, $1H)$, 6.53 (d, J
404		= 8.1 Hz, 1H), 6.49 (s, 1H), 4.66-4.64
		(m, 1H), 3.33 (s, 2H), 3.05 (dd, J = 5.4,
		14.0 Hz, 1H), 2.78 (s, 6H), 2.88-2.67 (m,
		4H), 1.09 (s, 6H).
		9.20-9.14 (m, 1H), 8.03 (s, 2H),
		7.28-7.12 (m, 2H), 7.00 (s, 2H), 6.92 (d,
405	${f DMSO}$ -d $_6$	J = 8.6 Hz, 1H), 6.89 (s, 1H), 4.75-4.65
		(m, 1H), 3.24-3.20 (m, 4H), 3.14-2.84 (m,
		2H), 3.07-3.02 (m, 4H)

第8表

77.03				
化合物	測定	ATT ATTER O/		
番号	溶媒	¹ H-NMR δ(ppm):		
İ		9.07 (d, J = 8.3 Hz, 1H), 7.46-7.32 (m, 7H),		
		7.26-7.20 (m, 4H), 7.15 (t, $J = 7.1$ Hz, 1H), 4.70		
406	DMSO-d6	(m, 1H), 3.67 (t, $J = 5.3$ Hz, 2H), 3.47 (t, $J = 5.3$		
		Hz, $2H$), 3.16 (dd , $J = 4.9$ Hz , 14 Hz , $1H$), 2.93		
		(dd, J = 9.9 Hz, 14 Hz), 1.29 (s, 6H).		
		9.28 (d, $J = 8.3$ Hz, 1H), 8.63 (s, 2H), $7.36-7.12$		
		(m, 9H), 4.74 (m, 1H), 3.67 (t, J = 5.3 Hz, 2H),		
407	DMSO-d6	3.47 (t, $J = 5.3$ Hz, $2H$), 3.20 (dd, $J = 4.5$ Hz,		
	<u> </u>	$14 \mathrm{Hz}, 1 \mathrm{H}), 2.92 (\mathrm{dd}, \mathrm{J} = 10 \ \mathrm{Hz}, 14 \ \mathrm{Hz}, 1 \mathrm{H}), 1.29$		
		(s, 6H).		
	DMSO-d 6	9.07 (d, J = 8.2 Hz, 1H), 7.46-7.23 (m, 10H),		
408		4.70 (m, 1H), 3.68 (t, $J = 5.3$ Hz, 2H), 3.51 (t, J		
100		= 5.3 Hz, 2H), 3.17 (dd, J = 4.6 Hz, 14 Hz, 1H),		
		2.93 (dd, J = 10 Hz, 14Hz, 1H), 1.36 (s, 6H).		
	DMSO-d6	9.29 (d, J = 8.2 Hz, 1H), 8.64 (s, 2H), 7.35 (t, J)		
		= 1.6 Hz, 1H), 7.33 (d, J = 8.9 Hz, 2H), 7.25 (d,		
409		J = 8.9 Hz, 2H), 7.24 (d, J = 1.6 Hz, 2H), 4.75		
		(m, 1H), 3.68 (t, $J = 5.1$ Hz, 2H), 3.51 (t, $J = 5.1$		
		Hz, $2H$), 3.20 (dd , $J = 4.6$ Hz , 14 Hz , $1H$), 2.92		
.		(dd, J = 9.9 Hz, 14 Hz, 1H), 1.36 (s, 6H).		
ļ		9.04 (d, J = 8.7 Hz, 1H), 7.46-7.37 (m, 3H), 7.33		
410		(d, $J = 8.4 \text{ Hz}, 2\text{H}), 7.24$ (d, $J = 8.4 \text{ Hz}, 2\text{H}),$		
	DMSO- d 6	6.99-6.90 (m, $3H$), 4.69 (m, $1H$), 3.68 (t, $J = 5.0$		
		Hz, 2H), 3.50 (t, $J = 5.0$ Hz, 2H), 3.17 (dd, $J =$		
		4.6 Hz, $14 Hz$, $1H$), $2.93 (dd, J = 10 Hz, 14 Hz,$		
		1H), 1.38 (s, 6H).		

		9.29 (d, J = 8.2 Hz, 1H), 8.64 (s, 2H), 7.33 (d, J)
411		= 8.3 Hz, 2H), 7.25 (d, J = 8.3 Hz, 2H), 6.96 (t,
	DMCO	J = 9.3 Hz, 1H), 6.91 (d, J = 7.6 Hz, 2H), 4.75
	DMSO-d ₆	(m, 1H), 3.69 (t, $J = 4.9$ Hz, 2H), 3.51 (t, $J = 4.9$
		Hz, $2H$), 3.20 (dd , $J = 4.4$ Hz , 14 Hz , $1H$), 2.92
		(dd, J = 10 Hz, 14 Hz, 1H), 1.38 (s, 6H).
		9.08 (d, J = 8.4 Hz, 1H), 7.46-7.31 (m, 7H),
		7.26-7.21 (m, 4H), 4.71 (m, 1H), 3.66 (t, $J = 5.3$
412	DMSO-d6	Hz, 2H), 3.45 (t, J = 5.3 Hz, 2H), 3.16 (dd, J =
	:	4.7 Hz, 14Hz, 1H), 2.93 (dd, J = 9.8 Hz, 14 Hz,
		1H), 1.29 (s, 6H).
		9.30 (d, J = 8.4 Hz, 1H), 8.64 (s, 2H), 7.39-7.21
		(m, 8H), 4.75 (m, 1H), 3.67 (t, J = 5.1 Hz, 2H),
413	DMSO·d 6	3.46 (t, $J = 5.1$ Hz, $2H$), 3.21 (dd, $J = 4.5$ Hz, 14
		Hz, 1H), 2.92 (dd, J = 10 Hz, 14 Hz, 1H), 1.29
		(s, 6H).
		7.37-7.21 (m, 6H), 6.80 (d, J= 4.1 Hz, 4H),
	DMSO-d ₆	5.12-5.07 (m, 1H), 3.70 (t, J= 5.4 Hz, 2H), 3.46
414		(t, J= 5.4 Hz, 2H), 3.32-3.29 (m, 2H), 2.31 (s,
		6H), 1.39 (s, 6H).
		7.31-7.12 (m, 12H), 6.67 (dd, J= 3.8 Hz, 8.1 Hz,
	·	1H), 5.23-5.16 (m, 1H), 3.68 (t, J= 5.4 Hz, 2H),
	Darge .	3.54 (t, J= 5.1 Hz, 2H), 3.27 (dd, J= 5.1 Hz, 14.3
415	DMSO·d 6	Hz, 1H), 3.21 (dd, J= 5.1 Hz, 14.3 Hz, 1H),
		2.43-2.34 (m, 2H), 2.01-1.97 (m, 2H), 1.77-1.61
		(m, 4H).

9.07 (d, J = 8.2 Hz, 1H), 7.45-7.22 (m, 8H), 7.29 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.6 Hz, 2H), 4.68 (m, 1H), 3.63 (s, 2H), 3.44 (t, J = 5.3 Hz, 2H), 3.14 (dd, J = 4.8 Hz, 14 Hz, 1H), 2.91 (dd, J = 9.7 Hz, 14 Hz, 1H), 2.73 (t, J = 5.3 Hz, 2H), 1.42 (s, 6H). 9.28 (d, J = 8.2 Hz, 1H), 8.63 (s, 2H), 7.41-7.22 (m, 5H), 7.29 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 4.73 (m, 1H), 3.63 (s, 2H), 3.45 (t, J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.69 (m, 1H), 3.56 (t, J = 5.6 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H), 0.34-0.12 (m, 2H).			
4.68 (m, 1H), 3.63 (s, 2H), 3.44 (t, J = 5.3 Hz, 2H), 3.14 (dd, J = 4.8 Hz, 14 Hz, 1H), 2.91 (dd, J = 9.7 Hz, 14 Hz, 1H), 2.73 (t, J = 5.3 Hz, 2H), 1.42 (s, 6H). 9.28 (d, J = 8.2 Hz, 1H), 8.63 (s, 2H), 7.41-7.22 (m, 5H), 7.29 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 4.73 (m, 1H), 3.63 (s, 2H), 3.45 (t, J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			9.07 (d, J = 8.2 Hz, 1H), 7.45-7.22 (m, 8H), 7.29
2H), 3.14 (dd, J = 4.8 Hz, 14 Hz, 1H), 2.91 (dd, J = 9.7 Hz, 14 Hz, 1H), 2.73 (t, J = 5.3 Hz, 2H), 1.42 (s, 6H). 9.28 (d, J = 8.2 Hz, 1H), 8.63 (s, 2H), 7.41-7.22 (m, 5H), 7.29 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 4.73 (m, 1H), 3.63 (s, 2H), 3.45 (t, J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.69 (m, 1H), 3.56 (t, J = 5.6 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),	416		(d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.6 Hz, 2H),
2H), 3.14 (dd, J = 4.8 Hz, 14 Hz, 1H), 2.91 (dd, J = 9.7 Hz, 14 Hz, 1H), 2.73 (t, J = 5.3 Hz, 2H), 1.42 (s, 6H). 9.28 (d, J = 8.2 Hz, 1H), 8.63 (s, 2H), 7.41-7.22 (m, 5H), 7.29 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 4.73 (m, 1H), 3.63 (s, 2H), 3.45 (t, J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.69 (m, 1H), 3.56 (t, J = 5.6 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),		DMSO: d a	4.68 (m, 1H), 3.63 (s, 2H), 3.44 (t, $J = 5.3$ Hz,
2H), 1.42 (s, 6H). 9.28 (d, J = 8.2 Hz, 1H), 8.63 (s, 2H), 7.41-7.22 (m, 5H), 7.29 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 4.73 (m, 1H), 3.63 (s, 2H), 3.45 (t, J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),	410	DMBO de	2H), 3.14 (dd, $J = 4.8 Hz$, 14 Hz, 1H), 2.91 (dd,
9.28 (d, J = 8.2 Hz, 1H), 8.63 (s, 2H), 7.41-7.22 (m, 5H), 7.29 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 4.73 (m, 1H), 3.63 (s, 2H), 3.45 (t, J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 3.16 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			J = 9.7 Hz, 14 Hz, 1H), 2.73 (t, J = 5.3 Hz,
(m, 5H), 7.29 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 4.73 (m, 1H), 3.63 (s, 2H), 3.45 (t, J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 3.16 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			2H), 1.42 (s, 6H).
DMSO·d 6 8.6 Hz, 2H), 4.73 (m, 1H), 3.63 (s, 2H), 3.45 (t, J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45·7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96·2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42·7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03·0.79 (m, 1H), 0.66·0.45 (m, 2H),			9.28 (d, $J = 8.2$ Hz, 1H), 8.63 (s, 2H), $7.41-7.22$
J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			(m, 5H), 7.29 (d, J = 8.6 Hz, 2H), 7.19 (d, J =
J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz, 1H), 2.90 (dd, J = 9.9 Hz, 14 Hz, 1H), 2.73 (t, J = 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),	417	DMCO. d	8.6 Hz, 2H), 4.73 (m, 1H), 3.63 (s, 2H), 3.45 (t,
= 5.4 Hz, 2H), 1.42 (s, 6H). 9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.69 (m, 1H), 3.56 (t, J = 5.6 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 419 DMSO-d 6 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),	417	DMSO, q 6	J = 5.4 Hz, 2H), 3.18 (dd, J = 4.4 Hz, 14 Hz,
9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.69 (m, 1H), 3.56 (t, J = 5.6 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 419 DMSO-d 6 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			1H), 2.90 (dd, $J = 9.9 Hz$, 14 Hz, 1H), 2.73 (t, J
7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.69 (m, 1H), 3.56 (t, J = 5.6 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			= 5.4 Hz, 2H), 1.42 (s, 6H).
DMSO d 6 2H), 4.69 (m, 1H), 3.56 (t, J = 5.6 Hz, 2H), 3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),		DMSO-d6	9.07 (d, J = 8.2 Hz, 1H), 7.45-7.35 (m, 3H),
3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m, 3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			7.30 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz,
3H), 2.33 (s, 3H), 1.28 (s, 6H). 8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 419 DMSO d 6 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),	418		2H), 4.69 (m, 1H), 3.56 (t, J = 5.6 Hz, 2H),
8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H), 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 419 DMSO-d 6 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			3.14 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.96-2.87 (m,
7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			3H), 2.33 (s, 3H), 1.28 (s, 6H).
2H), 4.73 (m, 1H), 3.60 (brs, 2H), 3.16 (dd, J = 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			8.82 (d, J = 8.3 Hz, 1H), 7.42-7.34 (m, 3H),
DMSO-d ₆ 5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J = 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),	<u>{</u>		7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz,
= 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s, 6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),			2H), 4.73 (m, $1H), 3.60$ (brs, $2H), 3.16$ (dd, $J =$
6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),	419	DMSO- d 6	5.1 Hz, 14 Hz, 1H), 3.07 (brs, 2H), 2.97 (dd, J
			= 9.3 Hz, 14 Hz, 1H), 2.33 (brs, 2H), 1.36 (s,
0.34-0.12 (m, 2H).			6H), 1.03-0.79 (m, 1H), 0.66-0.45 (m, 2H),
			0.34-0.12 (m, 2H).

		12.8 (brs, 1H), 9.08 (d, J = 8.4 Hz, 1H),
420		7.45-7.35 (m, 3H), 7.29 (d, $J = 8.3$ Hz, 2H),
		7.17 (d, $J = 8.3 Hz$, $2H$), 4.69 (m, $1H$), 3.52 (t,
		J = 5.1 Hz, 2H), 3.14 (dd, J = 4.7 Hz, 14 Hz,
	DMSO-d6	1H), 2.91 (dd, $J = 9.9$ Hz, 14 Hz, $1H$), 2.82 (t, J
		= 5.1 Hz, 2H), 2.20 (d, J = 6.8 Hz, 2H),
		1.86-1.74 (m, 2H), 1.74-1.58 (m, 3H), 1.48-1.41
		(m, 1H), 1.40-1.09 (m, 3H), 1.23 (s, 6H),
	,	0.94-0.78 (m, 2H).
	DMSO-d6	9.07 (d, J = 8.2 Hz, 1H), 7.45-7.18 (m, 9H),
		6.98 (d, $J = 8.1$ Hz, $2H$), 6.82 (t, $J = 7.3$ Hz,
401		1H), 4.71 (m, 1H), 3.95 (s, 2H), 3.79 (t, J = 5.2
421		Hz, 1H), 3.62 (t, $J = 5.2 Hz$, 1H), 3.17 (dd, $J =$
		4.8 Hz, 14 Hz, 1H), 2.93 (dd, J = 10 Hz, 14 Hz,
		1H).
		9.05 (d, J = 8.1 Hz, 1H), 7.45-7.21 (m, 9H),
		6.93 (d, $J = 8.1$ Hz, $2H$), 6.76 (t, $J = 7.3$ Hz,
		1H), 4.70 (m, 1H), 4.45 (q, J = 6.8 Hz, 1H),
422	DMSO-d ₆	3.88-3.81 (m, 1H), 3.75-3.67 (m, 2H), 3.54-3.44
		(m, 1H), 3.16 (dd, J = 4.8 Hz, 14 Hz, 1H), 2.93
		(dd, J = 9.9 Hz, 14 Hz, 1H), 1.36 (d, J = 6.8 Hz,
		3H).

423	DMSO-d6	9.27 (d, J = 8.3 Hz, 1H), 8.63 (s, 2H), 7.34-7.21 (m, 6H), 6.94 (d, J = 8.1 Hz, 2H), 6.76 (t, J = 7.2 Hz, 1H), 4.74 (m, 1H), 4.46 (q, J = 7.0 Hz, 1H), 3.89-3.81 (m, 1H), 3.76-3.66 (m, 2H), 3.54-3.44 (m, 1H), 3.20 (dd, J = 4.7 Hz, 14 Hz, 1H), 2.92 (dd, J = 9.9 Hz, 14 Hz, 1H), 1.36 (s, 6H).
424	DMSO-d 6	9.06 (d, J = 8.1 Hz, 1H), 7.47-7.27 (m, 12H), 4.70 (m, 1H), 4.09 (t, J = 6.1 Hz, 2H), 4.07 (t, J = 6.1 Hz, 2H), 3.18 (dd, J = 4.9 Hz, 14 Hz, 1H), 2.95 (dd, J = 9.9 Hz, 14 Hz, 1H).

製剤例1:錠剤

常法により、次の組成からなる錠剤を調製する。

処方	化合物 4 1	20	mg
	乳糖	143.4	mg
	馬鈴薯澱粉	30.	mg
	ヒドロキシプロピルセルロース	6	mg
-	ステアリン酸マグネシウム	0.6	mg
		200	mg

製剤例2:注射剤

常法により、次の組成からなる注射剤を調製する。

処方	化合物 4 1	2	mg
	精製ダイズ油	200	mg
,	精製卵黄レシチン	24	mg
	注射用グリセリン	50	mg
	注射用蒸留水	1.	72 mL

2.00 mL

産業上の利用可能性

本発明により、 α 4インテグリン阻害剤として有用であり、 α 4インテグリンを介した接着機構が関与する各種疾患(例えば、多発性硬化症、喘息、炎症性腸疾患、慢性関節リウマチ、糖尿病、腫瘍転移、動脈硬化症、アトピー性皮膚炎、腎炎、乾癬、心筋虚血、臓器移植時の細胞拒絶反応等)の治療および/または予防等に有用なフェニルアラニン誘導体またはその薬理学的に許容されるが提供される。

請求の範囲

1. 式(I)

$$\begin{array}{c|ccccc}
R^3 & & & & & & & & & \\
R^7 & & & & & & & & & & \\
R^7 & & & & & & & & & & \\
R^7 & & & & & & & & & & \\
R^4 & & & & & & & & & \\
R^6 & & & & & & & & \\
R^5 & & & & & & & & \\
R^8 & & & & & & & & \\
R^2 & & & & & & & & & \\
R^4 & & & & & & & & & \\
OH & & & & & & & & & & \\
R^2 & & & & & & & & & & \\
R^4 & & & & & & & & & \\
OH & & & & & & & & & \\
OH & & & & & & & & & \\
OH & & & & & & & & & \\
OH & & & & & & & & & \\
OH & & & & & & & & & \\
OH & & & & & & & & & \\
OH & & & & & & & & & \\
OH & & & & & & & & \\
OH & & & & & & & & & \\
OH & & & & & & & & \\
OH & & & & & & & & \\
OH & & & & & & & & \\
OH & & & & & & & & \\
OH & & & & & & & & \\
OH & & & & & & & \\
OH & & & & & & & \\
OH & & & & & & & \\
OH & & & & & & & \\
OH & & & & & & & \\
OH & & & & & & & \\
OH & & & & & & & \\
OH & & & & & & & \\
OH & & & & & & & \\
OH & & & & \\
OH & & \\
OH & $

{式中、mおよびnは同一または異なって、1または2を表し、R²は置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルキニル、置換もしくは非置換のシクロアルケニル、置換もしくは非置換のシクロアルケニル、置換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基または置換もしくは非置換の脂環式複素環基を表し、

R¹は置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルキニル、置換もしくは非置換のアリール、置換もしくは非置換の方面族複素環基、置換もしくは非置換の脂環式複素環基、一 $C(=Y)NR^9R^{10}$ (式中、Yは酸素原子または硫黄原子を表し、 R^9 および R^{10} は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルキニル、置換もしくは非置換のシクロアルキル、置換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基または置換もしくは非置換の脂環式複素環基を表す)、 $-C(=0)R^{9a}$ (式中、 R^{9a} は前記 R^9 と同義である)、 $-C(=0)OR^{9b}$ (式中、 R^{9b} は前記 R^9 の定義から水素原子を除いたものと同義である)または $-SO_2R^{11}$ [式中、 R^{11} は前記 R^{9b} と同義であるか、または、 $-NR^{9c}R^{10c}$ (式中、 R^{9c} および R^{10c} はそれぞれ前記 R^{9b} および R^{10c} と同義である)を表す〕を表し、 R^3 、 R^4 、 R^5 および R^6

は同一または異なって、水素原子、置換もしくは非置換の低級アルキルまたはオキソを表すか、またR³、R⁴、R⁵およびR⁶のうち、同一炭素原子上に存在する2つが、該炭素原子と一緒になって、飽和単環式炭化水素環を形成するか、または、R³、R⁴、R⁵およびR⁶のうちの2つが一緒になって低級アルキレンを形成してもよく、R⁻およびR⁶のうちの2つが一緒になって低級アルキレンを形成してもよく、R⁻およびR⁶は同一または異なって、水素原子、ハロゲン、ニトロ、置換もしくは非置換のでミノ、置換もしくは非置換の低級アルカノイル、モノもしくはジ低級アルキルアミノ、置換もしくは非置換の低級アルカノイル、モノもしくはくは非置換のアリール、置換もしくは非置換の医級アルキル、置換もしくは非置換の方香族複素環基または置換もしくは非置換の脂環式複素環基を表すとで表されるフェニルアラニン誘導体またはその薬理学的に許容される塩。

- 2. R²がR^{2A}<式中、R^{2A}は前記R²と同義であるが、
- (A) 窒素原子上の置換基として、
- (a) $-C(=Y^{1A})NR^{12A}R^{13A}$ (式中、 Y^{1A} は酸素原子または硫黄原子を表し、 R^{12A} および R^{13A} は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルキニルまたは置換もしくは非置換のシクロアルキルを表す)、
 - (b)-C(=0)R^{12Aa} (式中、R^{12Aa}は前記R^{12A}と同義である)、
 - $(c) C(=0) OR^{12Ab}$ (式中、 R^{12Ab} は前記 R^{12A} と同義である) または
- (d) $-SO_2R^{13A}$ [式中、 R^{13A} は前記 R^{12A} の定義に加え、 $-NR^{12Ac}R^{13Ac}$ (式中、 R^{12Ac} および R^{13Ac} はそれぞれ前記 R^{12A} および R^{13A} と同義である)を表す〕を有する、置換もしくは非置換の2-ピロリルまたは4位置換4-ピペリジニル、
- (B) 4位(R^2 に隣接するカルボニルとの結合位置を1位とする)に置換基として $-NR^{14}$ [式中、 R^{14} は $-C(=Y^{1A})NR^{12A}R^{13A}$ (式中、 Y^{1A} 、 R^{12A} および R^{13A} はそれぞれ前記と同義である)、 $-C(=0)R^{12Aa}$ (式中、 R^{12Aa} は前記と同義である)または $-SO_aR^{13A}$ (式中、 R^{13A} は前記と同義である)を表す〕で置換された

低級アルキル、低級アルケニルもしくは低級アルキニルを有する、置換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基 または置換もしくは非置換の脂環式複素環基、

- (C) 3位に置換基を有する、2, 2-ジメチルシクロペンチル、<math>1, 2, 2-トリメチルシクロペンチル、<math>2, 2, 3-トリメチルシクロペンチルまたは<math>1, 2, 2, 3-テトラメチルシクロペンチル、
 - (D) 置換基として、
- $(a) NR^{15}SO_2R^{16}$ (式中、 R^{15} および R^{16} は同一または異なってそれぞれ前記 R^{12A} と同義である)、
- (b) 環構造中の 1 位 (R^2 に隣接するカルボニルとの結合位置を 1 位とする) が窒素原子であり 2 位部分 (R^2 に隣接するカルボニルとの結合位置を 1 位とする) が $-SO_2$ 一で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基、
- (c) 環構造中の 2 位(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が $-SO_2R^{16}$ (式中、 R^{16} は前記と同義である)で置換された窒素原子で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基、または
- (d) 環構造中の 1 位(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が $-NR^{15}SO_2R^{16}$ (式中、 R^{15} および R^{16} はそれぞれ前記と同義である)で置換された炭素原子で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基または置換もしくは非置換のシクロアルキルを有する置換もしくは非置換の低級アルキル、または
- (E) 環構造中の 2 位および 3 位部分(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が-C(=0) NH-または-C(=S) NH-で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基とはならない>であり、 R^1 が R^{1A} [式中、 R^{1A} は R^1 と同義であるが、 R^{2A} が酸素原子および硫黄原子から選ばれる 1 または 2 個の原子を有する置換もしくは非置換の脂環式複素環基であるとき、 R^{1A} は置換もしくは非置換の低級アルキル、置換もしくは非置換のアリール、置換もしくは非置換の 芳香族複素環基、置換もしくは非置換の脂環式複素環基または-C(=

0) $0R^{9b}$ (式中、 R^{9b} は前記と同義である)とはならない]であり、 R^3 、 R^4 、 R^5 および R^6 がそれぞれ R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} (式中、 R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} はそれぞれ R^3 、 R^4 、 R^5 および R^6 と同義であるが、 R^{2A} が酸素原子および硫黄原子から選ばれる 1 または 2 個の原子を有する置換もしくは非置換の脂環式複素環基であるとき、 R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} のいずれも置換もしくは非置換の低級アルキルまたはオキソとはならない)である請求の範囲 1 記載のフェニルアラニン誘導体またはその薬理学的に許容される塩。

- 3. R²がR^{2B} [式中、R^{2B}は前記R²と同義であるが、
- (A) 置換 2 ピロリルまたは 1 位と 4 位に置換基を有する 4 ピペリジニル、
- (B) 4 位の置換基として置換低級アルキル、置換低級アルケニルもしくは置換低級アルキニルを有する、置換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基または置換もしくは非置換の脂環式複素環基、
 - (C) 置換シクロペンチル、
 - (D) 置換基として、
 - (a) NR¹⁵SO₂R¹⁶ (式中、R¹⁵およびR¹⁶はそれぞれ前記と同義である)、
- (b) 環構造中の1位(R²に隣接するカルボニルとの結合位置を1位とする)が窒素原子であり2位部分が-SO₂-で構成される単環性5~7 員環の置換もしくは非置換の脂環式複素環基、
- (c) 環構造中の 2 位(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が $-SO_2R^{16}$ (式中、 R^{16} は前記と同義である)で置換された窒素原子で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基、または
- (d) 環構造中の 1 位(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が $-NR^{15}SO_2R^{16}$ (式中、 R^{15} および R^{16} はそれぞれ前記と同義である)で置換された炭素原子で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基または置換もしくは非置換のシクロアルキルを有する置換もしくは非置換の低級アルキル、または

(E) 環構造中の 2 位および 3 位部分(R^2 に隣接するカルボニルとの結合位置を 1 位とする)が-C(=0) NH - または-C(=S) NH - で構成される単環性 $5\sim7$ 員環の置換もしくは非置換の脂環式複素環基とはならない〕であり、 R^1 が R^{1A} (式中、 R^{1A} は前記と同義である)であり、 R^3 、 R^4 、 R^5 および R^6 がそれぞれ R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} (式中、 R^{3A} 、 R^{4A} 、 R^{5A} および R^{6A} はそれぞれ前記と同義である)である請求の範囲 1 記載のフェニルアラニン誘導体またはその薬理学的に許容される塩。

- 4. R^1 が置換もしくは非置換の低級アルキル、置換もしくは非置換のアリール、置換もしくは非置換の芳香族複素環基、置換もしくは非置換の脂環式複素環基、 $-C(=S)NR^9R^{10}$ (式中、 R^9 および R^{10} はそれぞれ前記と同義である)、 $-C(=0)R^{9a}$ (式中、 R^{9a} は前記と同義である)または $-SO_2R^{11}$ (式中、 R^{11} は前記と同義である)である請求の範囲 1 記載のフェニルアラニン誘導体またはその薬理学的に許容される塩。
- 5. R²が置換もしくは非置換のアリール、置換もしくは非置換の芳香 族複素環基または式(II)

(式中、Qは-CH₂-または硫黄原子を表し、R¹⁷は置換もしくは非置換の低級アルキル、置換もしくは非置換のアリールまたは置換もしくは非置換の芳香族複素環基を表す)を表す請求の範囲1または4記載のフェニルアラニン誘導体またはその薬理学的に許容される塩。

- 6. R³、R⁴、R⁵およびR⁶が水素原子である請求の範囲1、4および5の いずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容 される塩。
- 7. 請求の範囲1~6のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩を有効成分として含有する医薬。
- 8. 請求の範囲1~6のいずれかに記載のフェニルアラニン誘導体ま

たはその薬理学的に許容される塩を有効成分として含有する α 4イン テグリン阻害剤。

- 9. 請求の範囲 $1 \sim 6$ のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩を有効成分として含有する抗炎症剤。 $10. \alpha 4$ インテグリン阻害剤の製造のための請求の範囲 $1 \sim 6$ のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩の使用。
- 11. 抗炎症剤の製造のための請求の範囲 $1\sim6$ のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩の使用。 12. 請求の範囲 $1\sim6$ のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩の有効量を投与する工程を含むことを特徴とする α 4インテグリン阻害剤を介した接着機構が関与する疾患の治療方法。
- 13.請求の範囲1~6のいずれかに記載のフェニルアラニン誘導体またはその薬理学的に許容される塩の有効量を投与する工程を含むことを特徴とする炎症の治療方法。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/04970

A. CLASSIFICATION OF SUBJECT MATTER				
Int.Cl ⁷ C07D2O7/327, 213/81, 215/	36, 241/44, 295/155, 307/68,			
	213/82, 213/89, 401/12, 215/36, 295/185, 295/192, 295/26,			
295/215, 271/113, 285/08,				
According to International Patent Classification (IPC) or to both n	national classification and IPC			
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed				
	36, 241/44, 295/155, 307/68,			
	15/36, 295/185, 295/192, 295/26,			
295/215, 271/113, 285/08,	487/04, 257/02, 319/06,			
Documentation searched other than minimum documentation to th	se extent that such documents are included in the fields searched			
Documentation seatened office than imminish documentation to an	to extent that such documents are merged in the needs somewher			
	· · · · · · · · · · · · · · · · · · ·			
Electronic data base consulted during the international search (nan				
CA(STN), REGISTRY(STN), WPIDS(STN)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where a	ppropriate, of the relevant passages Relevant to claim No).		
X WO 01/36376 A (Ajinomoto Co.	., Inc.), 1-11			
25 May, 2001 (25.05.01),				
Claims				
& EP 1233013 A				
	·			
Further documents are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents:	"T" later document published after the international filing date or			
"A" document defining the general state of the art which is not	priority date and not in conflict with the application but cited to			
considered to be of particular relevance "E" earlier document but published on or after the international filing	understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be	10.		
date	considered novel or cannot be considered to involve an inventive			
"L" document which may throw doubts on priority claim(s) or which is	step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be	_		
cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is	·е		
"O" document referring to an oral disclosure, use, exhibition or other	combined with one or more other such documents, such			
means "P" document published prior to the international filing date but later	combination being obvious to a person skilled in the art document member of the same patent family			
than the priority date claimed	accument member of the same patent fairing			
Date of the actual completion of the international search	Date of mailing of the international search report			
02 June, 2003 (02.06.03)	17 June, 2003 (17.06.03)			
0.7 70.17				
Name and mailing address of the ISA/	Authorized officer			
Japanese Patent Office				
Facsimile No.	Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/04970

Box I	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This in	nternational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. ×	
	because they relate to subject matter not required to be searched by this Authority, namely: inventions as set forth in claims 12 and 13 pertain to methods for treatment the human body by therapy.
2.	Claims Nos.:
	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.:
<i>3</i> . ∟	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	(
This In	nternational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remar	k on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/04970

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ A61K31/495, 31/496, 31/497, 31/506, 31/551, 38/05, 31/498, 31/535, 31/40, A61P1/04, 3/10, 9/10, 11/06, 13/12, 17/00, 17/06, 19/02, 25/00, 29/00, 35/00, 37/00, 37/06, 43/00, C07K5/065

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum Documentation Searched (International Patent Classification (IPC))

Int.Cl⁷ A61K31/495, 31/496, 31/497, 31/506, 31/551, 38/05, 31/498, 31/535, 31/40, C07K5/065

Minimum documentation searched (classification system followed by classification symbols)

A. 発明の属する分野の分類(国際特許分類(IPC))

 $Int. \ C1^7 \ C07D207/327, \ 213/81, \ 215/36, \ 241/44, \ 295/155, \ 307/68, \ 213/82, \ 213/89, \ 401/12, \ 215/36, \ 295/185, \ 295/192, \ 295/286, \ 295/215, \ 271/113, \ 285/08, \ 487/04, \ 257/02, \ 319/06, \ A61K31/495, \ 31/496, \ 31/497, \ 31/506, \ 31/551, \ 38/05, \ 31/498, \ 31/535, \ 31/49, \ A61P1/04, \ 3/10, \ 9/10, \ 11/06, \ 13/12, \ 17/00, \ 17/06, \ 19/02, \ 25/00, \ 29/00, \ 35/00, \ 37/00, \ 37/06, \ 43/00, \ C07K5/065$

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. $C1^7$ C07D207/327, 213/81, 215/36, 241/44, 295/155, 307/68, 213/82, 213/89, 401/12, 215/36, 295/185, 295/192, 295/2 6, 295/215, 271/113, 285/08, 487/04, 257/02, 319/06, A61K31/495, 31/496, 31/497, 31/506, 31/551, 38/05, 31/498, 31/535, 3 1/40, C07K5/065

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN), WPIDS (STN)

C. 関連すると認められる文献

引用文献の <u>カテゴリー*</u>	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 01/36376 A (味の素株式会社)2001.05.	$1 - 1 \ 1$
	25,請求の範囲 & EP 1233013 A	

□ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願目前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」 特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

02.06.03

国際調査報告の発送日

17.06.03

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 内藤 伸一 4P 8615

電話番号 03-3581-1101 内線 3492

第I欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)			
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。				
1. X	請求の範囲 <u>12,13</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、			
	請求の範囲12,13の発明は、治療による人体の処置方法に関するものである。			
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、			
з. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。			
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)			
次に立	☆べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。			
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。			
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。			
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。			
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。			
追加調査	至手数料の異議の申立てに関する注意 」 追加調査手数料の納付と共に出願人から異議申立てがあった。 」 追加調査手数料の納付と共に出願人から異議申立てがなかった。			