Discrete Mathematics(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Assignment 1

Mengxuan Wu

Q.1

(a)

 $p \wedge \neg q$

(b)

 $p \to q$

(c)

 $\neg p \rightarrow \neg q$

(d)

 $p \to q$

(e)

 $q \to p$

Q.2

(a)

			$(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$											
p	q	$\neg p$	$p \leftrightarrow q$	$\neg p \leftrightarrow q$	$(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$									
F	F	Т	Τ	F	${ m T}$									
F	Τ	Τ	\mathbf{F}	${ m T}$	${ m T}$									
Τ	F	F	\mathbf{F}	${ m T}$	${ m T}$									
Τ	Τ	F	${ m T}$	\mathbf{F}	T									

(b)

			$(p \oplus q) \wedge (p \oplus \neg q)$											
p	q	$\neg q$	$p \oplus q$	$p \oplus \neg q$	$(p \oplus q) \land (p \oplus \neg q)$									
F	F	Т	F	Τ	F									
F	Τ	F	${ m T}$	F	\mathbf{F}									
T	\mathbf{F}	Τ	${ m T}$	F	\mathbf{F}									
Τ	Τ	F	F	Τ	F									

Q.3

(a)

Equivalent.

				$(p \rightarrow q)$	<i>p</i> -	$\rightarrow (q \lor r)$	
p	q	r	$p \to q$	$p \rightarrow r$	$(p \to q) \lor (p \to r)$	$q \vee r$	$p \to (q \vee r)$
F	F	F	Т	Т	T	F	Т
F	F	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	Τ	F	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	Τ	\mathbf{T}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
${ m T}$	F	F	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
T	F	\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$
T	Τ	F	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$
\mathbf{T}	Τ	T	${ m T}$	${ m T}$	${ m T}$	T	${ m T}$

(b)

Not equivalent.

			(p	$\rightarrow q) \rightarrow r$	$p \to (q \to r)$				
p	q	r	$p \to q$	$(p \to q) \to r$	$q \to r$	$p \to (q \to r)$			
F	F	Т	Τ	T	Τ	${ m T}$			
F	Τ	F	Τ	\mathbf{F}	\mathbf{F}	${ m T}$			
\mathbf{F}	Τ	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$			
Τ	F	F	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$			
Τ	F	Τ	\mathbf{F}	${ m T}$	T	${ m T}$			
Τ	Τ	F	${ m T}$	${ m F}$	\mathbf{F}	${ m F}$			
Т	Τ	Τ	Τ	T	Τ	T			

(c)

Equivalent.

			(p	$\vee q) \rightarrow r$	$(p \to r) \land (q \to r)$					
p	q	r	$p \vee q$	$(p \vee q) \to r$	$p \to r$	$q \rightarrow r$	$(p \to r) \land (q \to r)$			
F	F	F	F	Т	Т	Т	T			
F	F	Τ	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$			
F	Τ	F	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}			
F	Τ	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$			
T	F	F	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}			
T	F	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$			
T	Τ	F	${ m T}$	F	\mathbf{F}	\mathbf{F}	\mathbf{F}			
T	Τ	Τ	Τ	${ m T}$	${ m T}$	${ m T}$	T			

Q.4

(a)

Proof.

$$\neg p \to (q \to r) \equiv \neg p \to (\neg q \lor r)$$
$$\equiv p \lor (\neg q \lor r)$$
$$\equiv \neg q \lor (p \lor r)$$
$$\equiv q \to (p \lor r)$$

(b)

Proof.

$$(p \to q) \to ((r \to p) \to (r \to q)) \equiv \neg (p \to q) \lor ((r \to p) \to (r \to q))$$

$$\equiv \neg (p \to q) \lor (\neg (r \to p) \lor (r \to q))$$

$$\equiv (\neg (p \to q) \lor \neg (r \to p)) \lor (r \to q)$$

$$\equiv \neg ((p \to q) \land (r \to p)) \lor (r \to q)$$

$$\equiv \neg (r \to q) \lor (r \to q)$$

$$\equiv T$$

Since the statement is always true, it is a tautology.

Q.5

Proof.

$$(q \to (r \lor p)) \to ((\neg r \lor s) \land \neg s) \equiv \neg (q \to (r \lor p)) \lor ((\neg r \lor s) \land \neg s)$$

$$\equiv \neg (\neg q \lor (r \lor p)) \lor ((\neg r \lor s) \land \neg s)$$

$$\equiv (q \land \neg (r \lor p)) \lor ((\neg r \lor s) \land \neg s)$$

$$\equiv (q \land (\neg r \land \neg p)) \lor ((\neg r \lor s) \land \neg s)$$

$$\equiv (\neg r \land (q \land \neg p)) \lor ((\neg r \lor s) \land \neg s)$$

$$\equiv (\neg r \land (q \land \neg p)) \lor ((\neg r \land \neg s) \lor (s \land \neg s))$$

$$\equiv (\neg r \land (q \land \neg p)) \lor ((\neg r \land \neg s) \lor F)$$

$$\equiv (\neg r \land (q \land \neg p)) \lor (\neg r \land \neg s)$$

$$\equiv \neg r \land ((q \land \neg p) \lor \neg s)$$

The original statement implies $\neg r$ now becomes

$$\neg r \land ((q \land \neg p) \lor \neg s) \rightarrow \neg r$$

which is a tautology. (Simplification rule)

Q.6

(a)

$$\forall x F(x, Fred)$$

(b)

$$\forall x \exists y F(x,y)$$

(c)

$$\neg \exists x \forall y F(x,y)$$

(d)

$$\forall y \exists x F(x,y)$$

(e)

$$\neg \exists x (F(x, Fred) \land F(x, Jerry))$$

(f)

$$\exists x \exists y (F(Nancy, x) \land F(Nancy, y) \land x \neq y \land \forall z (F(Nancy, z) \rightarrow (z = x \lor z = y)))$$

(g)

$$\exists y (\forall x F(x, y) \land \forall z (\forall x F(x, z) \rightarrow z = y))$$

$$\exists x \exists y (F(x,y) \land \forall z (F(x,z) \to z = y) \land x \neq y)$$

Q.7

(1) $\forall x \exists y \exists z Parent(y, x) \land Parent(z, x) \land x \neq y \land x \neq z \land y \neq z$

(2)
$$Parent(x,y) \vee \exists z (Parent(z,y) \wedge Ancestor(x,z)) \rightarrow Ancestor(x,y)$$

Q.8

(a)

$$\neg(\exists x \exists y P(x,y) \land \forall x \forall y Q(x,y)) \equiv \neg \exists x \exists y P(x,y) \lor \neg \forall x \forall y Q(x,y)$$
$$\equiv \forall x \forall y \neg P(x,y) \lor \exists x \exists y \neg Q(x,y)$$

(b)

$$\neg(\forall x \exists y P(x,y) \lor \forall x \exists y Q(x,y)) \equiv \neg \forall x \exists y P(x,y) \land \neg \forall x \exists y Q(x,y)$$
$$\equiv \exists x \forall y \neg P(x,y) \land \exists x \forall y \neg Q(x,y)$$

(c)

$$\neg(\forall x \exists y (P(x,y) \to Q(x,y))) \equiv \neg \forall x \exists y (\neg P(x,y) \lor Q(x,y))$$
$$\equiv \exists x \forall y \neg (\neg P(x,y) \lor Q(x,y))$$
$$\equiv \exists x \forall y (P(x,y) \land \neg Q(x,y))$$

Q.9

Proof.

Step	Reason
1. $\exists x \forall y P(x, y)$ 2. $\forall y P(x_0, y)$ 3. $P(x_0, y_0)$ 4. $\exists x P(x, y_0)$	Premise Existential instantiation from 1 Universal instantiation from 2 Existential generalization from 3
5. $\forall y \exists x P(x, y)$	Universal generalization from 4

Hence, we can conclude that $\exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$ is a tautology.

Q.10

Let Dis(x) means x has taken a course in discrete mathematics and Alg(x) means x can take a course in algorithm. And we assume that the domain consists of all students. Then the premises can be written as:

$$\forall x(Dis(x) \rightarrow Alg(x)), Dis(A), Dis(B), Dis(C), Dis(D), Dis(E)$$

The process of deduction for A is as follows:

Step	Reason
$1. \ \forall x(Dis(x) \to Alg(x))$	Premise
2. $Dis(A) \rightarrow Alg(A)$	Universal instantiation from 1
$3. \ Dis(A)$	Premise
4. $Alg(A)$	Modus ponens from 2 and 3

Since this is true for each of A, B, C, D and E, we can conclude that

$$Alg(A) \wedge Alg(B) \wedge Alg(C) \wedge Alg(D) \wedge Alg(E)$$
 (Reason: Conjunction)

Q.11

(a)

Proof.

$$P \equiv \neg(p \leftrightarrow (q \lor \neg p))$$

$$\equiv \neg((p \land (q \lor \neg p)) \lor (\neg p \land \neg(q \lor \neg p)))$$

$$\equiv \neg((p \land (q \lor \neg p)) \lor (\neg p \land (\neg q \land p)))$$

$$\equiv \neg((p \land q) \lor (p \land \neg p) \lor ((\neg p \land p) \land \neg q))$$

$$\equiv \neg((p \land q) \lor F \lor (F \land \neg q))$$

$$\equiv \neg((p \land q) \lor F \lor F)$$

$$\equiv \neg(p \land q)$$

$$\equiv \neg p \lor \neg q$$

(b)

Proof.

		No T		one	Т		two Ts						three Ts				four Ts
p	q	$p \wedge \neg p$	$\neg p \wedge \neg q$	$\neg p \wedge q$	$p \wedge \neg q$	$p \wedge q$	$\neg p \wedge \neg p$	$\neg q \wedge \neg q$	$p \leftrightarrow q$	$\neg p \leftrightarrow q$	$q \wedge q$	$p \wedge p$	$\neg p \vee \neg q$	$\neg p \vee q$	$p \vee \neg q$	$p \vee q$	$p \vee \neg p$
F	F	F	Т	F	F	F	Т	Т	Т	F	F	F	Т	Т	Т	F	Т
F	Τ	F	F	T	F	F	T	F	F	T	T	F	T	T	F	T	T
T	F	F	F	F	T	F	F	T	F	T	F	T	T	F	T	T	T
T	Τ	F	F	F	F	T	F	F	T	F	T	T	F	T	T	T	T

As listed above, statement in the form of $A \square B$ can produce all possible truth tables consist of two atomic propositions, where \square is one of \land , \lor , \leftrightarrow , and A and B are chosen from $\{p, \neg p, q, \neg q\}$. For each possible proposition P consist of atomic propositions p and q, we can find a statement $A \square B$ that has the same truth table as P, which means that P is logically equivalent to $A \square B$.

Q.12

Disproof.

When a=2 and $b=\frac{1}{2},\,a^b=\sqrt{2}$ which is an irrational number.

Q.13

(1)

Disproof.

When a = e and $b = \ln 2$, $a^b = 2$ which is a rational number.

(2)

Proof by contrapositive.

If \sqrt{a} is a rational number, we can write $\sqrt{a} = \frac{m}{n}$ where $m, n \in \mathbb{Z}$. Then we can infer that $a = (\sqrt{a})^2 = \frac{m^2}{n^2}$. Therefore, a is a rational number.

Q.14

Proof by contradiction.

We assume that $\sqrt[3]{2}$ is a rational number. Then we can write $\sqrt[3]{2} = \frac{m}{n}$ where $m, n \in \mathbb{Z}$. Without loss of generality, we assume that $\gcd(m,n) = 1$. Since $(\sqrt[3]{2})^3 = 2 = \frac{m^3}{n^3}$, we can infer that $m^3 = 2n^3$. Then m^3 is an even number, which means m is also an even number. Let m = 2k where $k \in \mathbb{Z}$, then $m^3 = 8k^3 = 2n^3$. Hence, we have $n^3 = 4k^3$, which means n^3 is an even number, which means n is also an even number. Since both m and n are even numbers, $\gcd(m,n)$ is at least 2, which contradicts with our original assumption.

Q.15

Proof.

Lemma 1. For any rational number r and any irrational number s, r + s is irrational.

Proof by contradiction.

We assume that r+s is a rational number. Then we can write $r+s=\frac{m_1}{n_1}+s=\frac{m_2}{n_2}$ where $m_1,m_2,n_1,n_2\in Z$. We can infer that $s=\frac{m_2}{n_2}-\frac{m_1}{n_1}=\frac{m_2n_1-m_1n_2}{n_1n_2}$, which means s is a rational number. This contradicts with our premise.

Lemma 2. For any rational number r and any irrational number s, $r \cdot s$ is irrational.

Proof by contradiction.

We assume that $r \cdot s$ is a rational number. Then we can write $r \cdot s = \frac{m_1}{n_1} \cdot s = \frac{m_2}{n_2}$ where $m_1, m_2, n_1, n_2 \in Z$. We can infer that $s = \frac{m_2}{n_2} \cdot \frac{n_1}{m_1} = \frac{m_2 n_1}{m_1 n_2}$, which means s is a rational number. This contradicts with our premise.

For any rational number a and b, assuming a < b without loss of generality, we can always find a number $c = a + \frac{\sqrt{2}}{2}|a - b|$ that satisfies a < c < b. And since lemma 1 and lemma 2 have proved that the sum and product of a rational number and an irrational number is irrational, we can infer that c is an irrational number.

Q.16

Proof by cases.

If $a^2 + b^2$ is even, then a^2 and b^2 must be both even or both odd, which means a and b must be both even or both odd.

Case 1: a and b are both even.

Let a = 2m and b = 2n where $m, n \in \mathbb{Z}$, then a + b = 2m + 2n = 2(m + n), which means a + b is even.

Case 2: a and b are both odd.

Let a=2m+1 and b=2n+1 where $m,n\in \mathbb{Z}$, then a+b=2m+1+2n+1=2(m+n+1), which means a+b is even.

Q.17

Proof by contradiction.

If one real root is neither an integer nor an irrational number, then it must be a fractional number. In that case, we assume that there exist two integers m and h such that gcd(m,h)=1 and $|h|\neq 1$ or 0, and the real root can be expressed as $\frac{m}{h}$. Then we can rewrite the equation as

$$f(\frac{m}{h}) = a_0 + a_1 \frac{m}{h} + a_2 \frac{m^2}{h^2} + \dots + a_{n-1} \frac{m^{n-1}}{h^{n-1}} + \frac{m^n}{h^n}$$
$$= a_0 + \frac{a_1}{h} m + \frac{a_2}{h^2} m^2 + \dots + \frac{a_{n-1}}{h^{n-1}} m^{n-1} + \frac{1}{h^n} m^n$$
$$= 0$$

Then we move the last term $\frac{1}{h^n}m^n$ to the other side

$$-\frac{1}{h^n}m^n = a_0 + \frac{a_1}{h}m + \frac{a_2}{h^2}m^2 + \dots + \frac{a_{n-1}}{h^{n-1}}m^{n-1}$$

We multiply both sides by h^n

$$-m^{n} = a_{0}h^{n} + a_{1}h^{n-1}m + a_{2}h^{n-2}m^{2} + \dots + a_{n-1}hm^{n-1}$$
$$= h(a_{0}h^{n-1} + a_{1}h^{n-2}m + a_{2}h^{n-3}m^{2} + \dots + a_{n-1}m^{n-1})$$

Since all variables are integers, $a_0h^{n-1} + a_1h^{n-2}m + a_2h^{n-3}m^2 + \cdots + a_{n-1}m^{n-1}$ is also an integer. This means h is a factor of m^n .

If we consider the prime factorization of h, we can write $|h| = p_1^{f_1} p_2^{f_2} \cdots p_k^{f_k}$ where p_1, p_2, \cdots, p_k are prime numbers and f_1, f_2, \cdots, f_k are non-negative integers. Since $|h| \neq 1$ or 0, there must exist at least one f_i that is not equal to 0. Without loss of generality, we assume that $f_1 \neq 0$. Then we can infer that $p_1^{f_1}$ is a factor of m^n .

Lemma 3. If a prime p is a factor of some power of an integer, then it is a factor of that integer.

By lemma 3, we can infer that p_1 is also a factor of m, which means $\gcd(m,h) \geq p_1$ However, this contradicts with our original assumption that $\gcd(m,h) = 1$.