$233\mathrm{B}$ - Chapter 5 Exercises

Exerc	cise 1. Find all closed points of the real affine plan $\mathbb{A}^2_{\mathbb{R}}$. What are their residue fields?
Soluti	on. \Box
	cise 2. Let $f(x,y) = y^2 - x^2 - x^3$. Describe the affine scheme $X = \text{Spec}R/(f)$ set theoretically e following rings R .
(i) <i>I</i>	$R = \mathbb{C}[x,y]$
(Solution. $y^2 = x^2 + x^3$. It's a self-intersecting elliptic curve. Spec is closed points and zero ideal the curve itself). To show the latter, show that the polynomial is irreducible. Try to factor it linear times quadratic).
(ii) I	$R=\mathbb{C}[[x,y]]$
1	Solution. If a power series has a const term it's invertible. Poly factors here $(y - \sqrt{x^2 + x^3})(y + \sqrt{x^2 + x^3})$. Let $P_{\pm} = (y \pm \sqrt{x^2 + x^3})$. These are prime ideals since they eliminate y upon quotienting, leaving you with $\mathbb{C}[[x]]$, an integral domain. P_{\pm} both contain the maximal ideal $m = (x, y)$.
(iii) I	$R = \mathbb{C}[x,y]_{(x,y)} \subseteq \mathbb{C}(x,y)$. The localization.
Ţ	Solution. Kill all maximal ideals except (x, y) . If $f = \frac{g_1}{h_1} \cdot \frac{g_2}{h_2}$, then $f \cdot h_1 \cdot h_2 = g_1 \cdot g_2$. Polynomials UFD and f is irreducible, so $f g_1$ or $f g_2$, in either cases the factorization is trivial. So the zero deal is prime in the quotient.
Exercise 3.	
(i) Z	X has infinitely many points, and $\dim X = 0$.
Å	Solution. Need infinitely many maximal ideals but no prime ideals. Infinite product of fields. \Box
(ii) Z	X has exactly one point and $\dim X = 1$.
Å	Solution. Can't happen. Dim 1 gives a chain but only one point. \Box
(iii) Z	X has two points, and $\dim X = 1$.
	Solution. So one maximal ideal and one prime ideal containing it. Unique maximal ideal (local ring) and one prime ideal inside. $\mathbb{C}[[x]]$. Or a localization of $\mathbb{C}[x]$ at $x - \alpha$.

Solution. $\mathbb{Z}[x]$ has dimension 2. $(0) \supset (x) \supset (x,2)$. Or $\mathbb{Q}[x,\pi]$ since π is transcendental. Or $\mathbb{Q}[t_1,\ldots,t_n]$ where the t_i are independent complex transcendentals over \mathbb{Q} . Couldn't happen if R was a \mathbb{C} -subalgebra. It'd contain 1 and \mathbb{C} . $R \supseteq \mathbb{C}[f]$ where $f \in R$ (of minimal positive degree?).

(iv) $X = \operatorname{Spec}(R)$ with $R \subseteq \mathbb{C}[x]$, and $\dim X = 2$.

Problem 6. X =union of three coord lines in \mathbb{C}^3 . $Y = \{(x,y) \in \mathbb{C}^2 : xy(x-y) = 0\}$ the union of three concurrent lines in \mathbb{C}^2 . Are X and Y isomorphic as schemes? Use tangent spaces at origin.

 \Box