Ejercicios

Primer Ejercicio:

Diseñe un autómata finito que reconozca el lenguaje: $L = \{ w \in \{0,1,2\}^* / w \text{ contiene un único "1" y la cantidad total de "0" es impar }$

Posibles Lineas Aceptadas:

{ 012, 2222012, 220001 }

Lineas que rechazaría :

{001, 0002, 2222, 01112}

Con esto tenemos 4 posibilidades de estados para el automata finito

Caso 1 : La cantidad de 0 es par y no ha entrado el 1

Caso 2 : La cantidad de 0 es impar y no ha entrado el 1

Caso 3 : La cantidad de 0 es par y ya entró el 1 Caso 4 : La cantidad de 0 es impar y ya entró el 1

Autómata

Nota: En C3 y C4 ya no se pueden aceptar mas 1 por eso no estan en el autómata

Segundo Ejercicio : Hacer autómata para tiras de 0 y 1 (BINARIO) que son divisibles entre

Posibles Lineas Aceptadas:

{ 00, 100, 111111100 }

Lineas que rechazaría :

{0, 1, 11, 110}

Tercer Ejercicio : Hacer autómata para tiras de 0 y 1 (BINARIO) que acepte solo tiras con cantidad par de 0.

Cuarto Ejercicio:

Diseñar una máquina de estados finita, que acepte strings que representan números binarios divibles entre 3

Para este ejercicio debemos jugar con los residuos, con las siguientes tiras veamos cuál sería el resultado de los residuos :

 $\{0\} = 0$

 $\{11\} = 0$

 $\{100\} = 1$

 $\{101\} = 2$

 $\{110\} = 0$

 $\{111\} = 1$

 $\{1000\} = 2$

 $\{1001\} = 0$

 $\{1010\} = 1$

 $\{1011\} = 2$

Podemos ver que se sigue una secuencia de "0, 1, 2, 0" con los residuos, con esto podemos crear cada estado que represente los residuos

