Facultat d'Informàtica de Barcelona

Xarxes de Computadors

<u>Lab 3</u>

Encaminamiento dinámico: RIPv1 y RIPv2

José Suárez-Varela

jsuarezv@ac.upc.edu

Conceptos básicos

Objetivo \rightarrow Encaminamiento dinámico en Cisco IOS

Lab 2 → Encaminamiento estático (Cisco IOS)

Lab 3 → Encaminamiento dinámico

Protocolo RIP (RFC-2453)

- Métrica -> Número de saltos para alcanzar el destino
- Mensajes periódicos entre vecinos cada 30 segundos (UDP broadcast al puerto 520)

Conceptos básicos

Protocolo RIP (RFC-2453)

- Contenido mensajes RIP → Destino (prefijo red) + metrica (saltos)
- Shortest path → Para cada red de destino (IP + mascara), se elige el router vecino que anuncia menos saltos hasta el destino
- Si se dejan de recibir mensajes de un vecino (180 seg por defecto) se considera que se ha perdido la conexión y no se puede encaminar tráfico hacia dicho vecino
- Métrica infinito

 16 saltos (no hay conexión)
- RIPv1 utiliza máscaras predefinidas de la clase IP \rightarrow E.g., Clase C (192.168.1.0 \rightarrow 255.255.255.0)
- RIPv2 → Permite utilizar máscaras personalizadas (subnetting)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Conceptos básicos

Problema "count to infinity"

Cambio en la topología

Convergencia muy lenta

Conceptos básicos

Problema "count to infinity"

Soluciones:

- 1) **Split-horizon** \rightarrow Se eliminan entradas cuyo gateway se accede a través de la propia interfaz de salida
- 2) **Holddown timer** (Cisco) → Cuando se recibe un anuncio de que una red es inaccesible, se anuncia como inaccesible y se inicia un temporizador (*holddown*). Se ignoran actualizaciones sobre la ruta mientras esté activo el *holdown timer*, excepto si proceden de la misma interfaz que notificó que la red era inaccesible.
- 3) **Triggered updates** \rightarrow Actualizaciones inmediatas cuando se produce un cambio (en lugar de a los 30 segs)

Comandos básicos

• Asignar IPs en routers:

R# configure terminal

R(config)# interface <if_name>

R(config-if)# ip address <IP> <mask>

R(config-if)# no shutdown

• Configuración RIP:

R# configure terminal

R (config)# ip routing \rightarrow No es necesario

R (config-router)# router rip

R (config-router)# network <IP_net> → Sobre todas las redes que se desean anunciar con RIP!

..

R (config-router)# version 2 → Opcional para RIPv2

Comandos básicos

Configurar versiones RIP en una interfaz:

R# configure terminal R(config)# interface e0/0 **R(config-if)**# ip rip receive version 1 2 **R(config-if)**# ip rip send version 2

Añadir ruta por defecto (estática):

R# configure terminal R(config)# ip route <IP_dest> <mask> <IP_gw> \rightarrow Default: IP=0.0.0.0; mask=0.0.0.0

Comandos de consulta de estado y debugging:

R# show ip protocols → Configuración del protocolo RIP

R# debug ip rip → Contenido mensajes RIP enviados y recibidos; Para desactivar: R# no debug ip rip

R# show ip route → Consultar la tabla de encaminamiento; "C" (Connected), "S" (static), "R" (RIP)

R# show ip interface brief → Consulta configuración y estado de interfaces

Pasos a seguir

- 1) Montar esquema de red (routers 1841 con interfaz serie WIC-1T)
- 2) Configurar IPs y gateway en PCs (menu "config")
- 3) Configurar IPs en routers y entrada por defecto (sólo en R2)
- 4) Configurar protocolo RIP

Parte 1

- Subnetting redes PC1 Y PC2 → Máscara "/25" = 255.255.255.128; Clase C → 255.255.255.0
- Se puede usar una calculadora IP para comprobar las máscaras
- Asumimos que PC3 está conectado a Internet (ruta por defecto en R2 hacia PC3)

Parte 1

- Si no se aplica el comando "# network <IP>" a una red, no se anunciará esta red al resto de redes, ni se anuncian las entradas del router a través de la interfaz asociada a la red → Es necesario añadir redes de PC1 y PC2 en R1
- R2 tiene una ruta estática por defecto hacia PC3 -> R(config-router)# redistribute static
- No es necesario ejecutar "R(config-router)# network 100.PC1.0.0" en R2 (entrada por defecto hacia esta red)

Parte 1

R# show ip route \Rightarrow En los mensajes RIP se suma 1 a los saltos hacia el destino (RIP: 1 salto = directamente conectados) R# debug ip rip \Rightarrow Comprobar **auto-sum** [R(config-router)# no auto-sum] y **split horizon** [R(config-if)# no ip split-horizon] R# show ip protocols \Rightarrow Aunque se desactive "auto-sum" las entradas se ven agregadas al ejecutar este comando

Parte 2

- Replicar las redes (con diferentes IPs) y conectar los routers R2 (no es necesario un switch intermedio)
- Conectar a traves de R2 y configurar las IPs de las nuevas interfaces
- Añadir en R2 la red 10.0.0.0 para que se reciban y anuncien rutas de RIP por esta interfaz

Repaso práctica 2

Destino	Máscara de subred	Dirección IP del próximo salto	Interfaz de salida
130.100.0.0	255.255.0.0	130.100.2.2	130.100.2.2
192.168.100.0	255.255.255.0	192.168.100.2	192.168.100.2
10.0.0.0	255.0.0.0	130.100.1.1	130.100.2.2
40.0.0.0	255.0.0.0	192.168.100.1	192.168.100.2

- Direcciones especiales (no asignar a hosts!)
 - Red \rightarrow x.y.z.0
 - Broadcast → x.y.z.255
- Direcciones válidas hosts → x.y.z.<1-254>

Repaso práctica 2

Destino	Máscara de subred	Dirección IP del próximo salto	Interfaz de salida
130.100.0.0	255.255.0.0	130.100.2.2	130.100.2.2
192.168.100.0	255.255.255.0	192.168.100.2	192.168.100.2
10.0.0.0	255.0.0.0	130.100.1.1	130.100.2.2
40.0.0.0	255.0.0.0	192.168.100.1	192.168.100.2

- Los gateways tienen que indicar IPs cuya interfaz esté directamente conectada al equipo (e.g., PC1 No puede tener como gateway PCR-e2)
- El campo TTL define el número máximo de saltos hasta que se descarte el paquete (evita bucles infinitos de encaminamiento). Descarte de paquete y Mensaje de error ICMP al origen (time exceeded)

Minicontrol

Herramienta WebTest:

```
# su (password: root)
```

udhcpc -i e0

- User y password (DNI sin letra)
- 4 preguntas tipo test (multirrespuesta o respuesta única)
- No se puede volver atrás
- No penalizan respuestas erróneas
- Se puede usar cuaderno de prácticas y calculadora del PC
- Quitar móviles de encima de la mesa

Dudas / preguntas?

Contacto:

José Suárez-Varela

jsuarezv@ac.upc.edu