

Wrists and End Effectors

The joint in the kinematic chain between the arm and end effector are referred to as the waist. *Wrist center point is the common point where three joints axes intersect*. Wrist can have 1,2 or 3 DOF depending on application.

Example on 1 DOF Wrist orientation

A 1 DOF wrist mechanism is shown as example.

Example on three-link Wrists orientation

A three link wrist mechanism is shown as example. Let first get DH parameters for this mechanism.

DH of three-link Wrist mechanism

Link	a_i	α_i	d_i	θ_i
4	0	-90	0	θ_4^*
5	0	90	0	θ_5^*
6	0	0	d_6	θ_6^*

*: denote variables

DH of three-link Wrist mechanism

X6

 Z_4

This table is always used

*: denote variables

Transformation Matrix for three-link Wrist mechanism

Link	a_i	α_i	d_i	θ_i
4	0	-90	0	θ_4^*
5	0	90	0	θ_5^*
6	0	0	d_6	θ_6^*

$$A_4 = egin{bmatrix} c_4 & 0 & -s_4 & 0 \ s_4 & 0 & c_4 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$
 $A_5 = egin{bmatrix} c_5 & 0 & s_5 & 0 \ s_5 & 0 & -c_5 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$
 $A_6 = egin{bmatrix} c_6 & -s_6 & 0 & 0 \ s_6 & c_6 & 0 & 0 \ 0 & 0 & 1 & d_6 \ 0 & 0 & 0 & 1 \end{bmatrix}$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{6} - s_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{6} - s_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Wrist Mechanism

RPP

Link	a _i	α_i	di	ą
1	0	0	0 (offset)	ø,*
2	0	-90°	d_2^{\star}	0
3	0	0	d_3^{ullet}	0

$$x_0$$
 z_0
 Q_0
 y_0
 RPP

$$T_3^0 = A_1 A_2 A_3 = \begin{bmatrix} c_1 & 0 & -s_1 & -s_1 d_3 \\ s_1 & 0 & c_1 & c_1 d_3 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

RPP

$$T_3^0 = A_1 A_2 A_3 = \begin{bmatrix} c_1 & 0 & -s_1 & -s_1 d_3 \\ s_1 & 0 & c_1 & c_1 d_3 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Wrist
$$T_6^3 = A_4 A_5 A_6 = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \\ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \\ -s_5 c_6 & s_5 s_6 & c_5 & c_5 d_6 \\ 0 & 0 & 1 \end{bmatrix}$$

RRP (SCARA) with 1 DOF Wrist mechanism

RRP

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ^{\star}
2	a_2	180	0	θ^{\star}
3	0	0	d^{\star}	0
4	0	0	d_4	θ^{\star}

1 DOF Wrist Mechanism

RRP (SCARA) with 1 DOF Wrist mechanism

RRP (SCARA) with 1 DOF Wrist mechanism

$$T_4^0 = A_1 \cdots A_4$$

$$= \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$