MA108	/MA110 -	Linear	Algebra	& Differential	Equations:	Endsem -	\mathbf{B}

Name:

Roll No.

Tutorial Batch: D_____ T____

Max. marks: 40

April 23, 2024

14:00 - 16:00

- (1) For x > 0, $y_1(x) = \frac{\cos 2x}{x}$ is a solution of xy'' + 2y' + 4xy = 0. If y_2 is a solution of the DE satisfying $y_2(\frac{\pi}{4}) = 1 = y_2(\frac{\pi}{2})$, then for x > 0, $y_2(x)$ equals $-\frac{\pi \cos 2x}{2x} + \frac{\pi \sin 2x}{4x}$ [1]
- (2) For $x \in \mathbb{R}$, $y_1(x) = \sin^3 x$ is a solution of the DE $y'' + ay' + by = \alpha \cos x + \beta \sin x$, $a, b, \alpha, \beta \in \mathbb{R}$. Let y(x) denote the general solution of the DE. Then [1+1+1]

(a,b) = (0, 9) $(\alpha, \beta) = (0, 6)$ $y(x) = c_1 \cos 3x + c_2 \sin 3x + \frac{3}{4} \sin x$

(3) For x > 0, $x^2 \sin(\ln x^2)$ is a solution of $x^2 y'' + axy' + by = 0$, x > 0, $a, b \in \mathbb{R}$. Then

 $\boxed{a = -3 \qquad \boxed{b = 8}}$

(4) Let $Ly = y'' - y' + \frac{1}{4}y$.

(i) Let y_1, y_2 be two solutions of Ly = 0 satisfying $y_1(0) = 1, y'_1(0) = 0$; $y_2(0) = 0, y'_2(0) = 1$. Then [1+1]

 $y_1(x) = (1 - \frac{x}{2})e^{\frac{x}{2}}$ $y_2(x) = xe^{\frac{x}{2}}$

- (ii) If y_p is a particular solution of $Ly = \cos x$, then $y_p(x) = -\frac{12}{25}\cos x \frac{16}{25}\sin x$ [2]
- (5) Let Ly = (1-x)xy'' + (3x-1)y' 4y. Let y_1, y_2 be linearly independent solutions of Ly = 0, 0 < x < 1 with $y_1(x) = x^2, 0 < x < 1$; $y_2(\frac{1}{2}) = \frac{1}{2} \frac{1}{4}\ln 2$, $y_2'(\frac{1}{2}) = \frac{5}{2} \ln 2$. If W(x) denotes the wronskian of (y_1, y_2) in that order, and $y_p(x) = v_1(x)y_1(x) + v_2(x)y_2(x)$ is a particular solution of $Ly = x^2(1-x)^3$, then [1+1+1+1]

 $y_2(x) = x^2 \ln x + 2x - \frac{1}{2}$ $W(0.5) = \frac{1}{8}$

 $v_1(x) = -\frac{x^3}{3} \ln x + \frac{x^3}{9} - x^2 + \frac{x}{2}$ $v_2(x) = \frac{x^3}{3}$

(6) Let $Ly = x^2y'' - 4xy' + 6y$. Let y_h denote the general solution of Ly = 0, x > 0, y_p denote a particular solution of $Ly = x^3 + \ln x, x > 0$ and $x^2D^2 + axD + b$ annihilates $\ln x, a, b \in \mathbb{R}$. Then

 $y_h(x) = c_1 x^2 + c_2 x^3$ (a,b) = (1,0) $y_p(x) = \frac{5}{36} + \frac{1}{6} \ln x + x^3 \ln x$

(7) Let Ly = y''' - 5y'' + 7y' - 3y. Let y_h denote the general solution of Ly = 0. Then for $x \in \mathbb{R}$, [1]

$$y_h(x) = c_1 e^x + c_2 x e^x + c_3 e^{3x}$$

Particular solution of $Ly = e^x(1 + e^{2x})$ is given by $\left| -\frac{1}{4}x^2e^x + \frac{x}{4}e^{3x} \right|$ [2]

(8) Let $L = x^3D^3 + \alpha x^2D^2 + \beta xD + \gamma$, x > 0 annihilates $x(\ln x)^2$, $\alpha, \beta, \gamma \in \mathbb{R}$. Also let y denote the general solution of Ly = 0. Then

$$(\alpha, \beta, \gamma) = (0, 1, -1)$$

$$y(x) = c_1 x + c_2 x \ln x + c_3 x (\ln x)^2$$

(9) Let a > 0 be such that $y_1(x) = x$, $y_2(x) = x^3 \ln x$, x > 0 are solutions of y'' + p(x)y' + q(x)y = 0, 0 < x < a, where p(x), q(x) are continuous in (0, a). Let α denote the maximum value of a. Then

$$\alpha = \frac{1}{\sqrt{e}} \qquad p(x) = -\frac{5 + 6 \ln x}{x(1 + 2 \ln x)}$$

$$q(x) = \frac{5 + 6 \ln x}{x^2(1 + 2 \ln x)} \qquad \lim_{x \to 0+} xp(x) = -3$$

 $q(x) = \frac{1}{x^2(1+2\ln x)} \qquad \lim_{x \to 0+} xp(x) = -3$

(10) Let $f(t) = \int_0^t \frac{2\sin\tau}{\tau} d\tau$ and $\frac{d}{ds}(sF(s)) = \frac{\alpha}{s^2 + \beta s + 1}$, where F(s) denotes the Laplace transform of f. Then

$$(\alpha, \beta) = (-2, 0)$$
 $F(s) = \frac{2}{s} \cot^{-1} s$

(11) Let $g:[0, \infty) \to \mathbb{R}, h:[0, \infty) \to \mathbb{R}$ be such that g*h is the inverse Laplace transform of $F(s) = \frac{s}{(s+2)(s^2+4)}, s>0.$ [1+1]

(i) If
$$g(t) = e^{-2t}$$
, then $h(t) = \cos 2t$

(ii) If $g * h(t) = a \sin 2t + b \cos 2t + ce^{-2t}$, $a, b, c \in \mathbb{R}$, then $(a, b, c) = (\frac{1}{4}, \frac{1}{4}, -\frac{1}{4})$

12. Show that the IVP

$$y' = 5(y-x)^{\frac{4}{5}} + 1, x \in (-\infty, a),$$

$$y(0) = -2$$

has a unique solution for a = 1. Also find the largest value of a such that the IVP has a unique solution in $(-\infty, a)$.

Solution and marking scheme same as in CODE A

13. Using Laplace transform technique, solve the ${\rm DE}$

$$xy'' + (2x+3)y' + (x+3)y = 3e^{-x}, y(0) = 0.$$

Solution and marking scheme same as in CODE A

[4]