Very simple book with mathematical formulas

Very simple book with mathematical formulas				

Table of Contents

List of Examples

1.1

Chapter 1. $\mathbb{J}AT_{\mathbb{E}}XMath$

The Java package $\mathbb{J} \mathbb{L}^{A} \mathbb{T}_{E} X Math$ combining with FOP gives the possibility to write $\mathbb{L}^{A} \mathbb{T}_{E} X$ commands in Docbook.

For example:

$$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2 \frac{\partial D_n(R)}{\partial R} \right] dR$$

We can use an example block:

Example 1.1.

$$\det\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & a_{nn} \end{bmatrix} \stackrel{\text{def}}{=} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{k=1}^n a_{k\sigma(k)}$$

The formulas can be in displaystyle $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ or in textstyle $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.