Summary for Elementary Probability

SEUNGWOO HAN

Contents

CHAPTER 1	Basic Concepts	PAGE 2
1.1	Events and Probability	2
1.2	Random Variables and Their Distributions	3
1.3	Conditional Probability and Independence	5

Chapter 1

Basic Concepts

1.1 Events and Probability

Definition 1.1.1: Probability Space

A probability space contains of a triple (Ω, \mathcal{F}, P) where

- Ω is the sample space,
- $\mathcal{F} \subseteq 2^{\Omega}$ (each $A \in \mathcal{F}$ is called an *event*), and
- $P: \mathcal{F} \to [0,1]$ maps each event $A \in \mathcal{F}$ to the *probability* of A

which satisfies the following conditions:

Axioms Relative to the Events The family \mathcal{F} of events must be a σ -field on Ω :

- (1) $\Omega \in \mathcal{F}$;
- (2) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (where A^c is the complement of A);
- (3) If $\langle A_n \rangle_{n \in \mathbb{Z}_+}$ is a sequence on \mathcal{F} , then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Axioms Relative to the Probability The function *P* must satisfy the following conditions:

- (1) $P(\Omega) = 1$;
- (2) σ -additivity holds: if $\langle A_n \rangle_{n \in \mathbb{Z}_+}$ is a sequence of pairwise disjoint events, then

$$P\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}P(A_{n}).$$

Note

Here are immediate properties of probability:

- $P(A^{c}) = 1 P(A);$
- $\emptyset = \Omega^{c} \in \mathcal{F}$ and $P(\emptyset) = 0$;
- If $\langle A_n \rangle_{n \in \mathbb{Z}_+}$ is a sequence of events, then $\bigcap_{n=1}^{\infty} A_n$ is also an event;
- $A, B \in \mathcal{F}$ and $A \subseteq B$ implies $P(A) \le P(B)$.

Lemma 1.1.2 sub- σ -additivity

If $\langle A_n \rangle_{n \in \mathbb{Z}_+}$ is a sequence of events, then

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} P(A_n).$$

Proof. Let $B_n = A_n \setminus \bigcup_{i=1}^{n-1} A_i$ for each $n \ge 1$ and use σ -additivity.

Lemma 1.1.3 Inclusion-Exclusion Principle

If A_1, \dots, A_n are events, then

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\varnothing \neq I \subseteq [n]} (-1)^{|I|-1} P\left(\bigcap_{i \in I} A_{i}\right).$$

Proof. Classic.

Theorem 1.1.4 Sequential Continuity of Probability

(1) Let $\langle B_n \rangle_{n \in \mathbb{Z}_+}$ be a sequence of events such that $B_n \subseteq B_{n+1}$ for all $n \ge 1$. Then,

$$P\left(\bigcup_{n=1}^{\infty}B_n\right)=\lim_{n\to\infty}P(B_n).$$

(2) Let $\langle C_n \rangle_{n \in \mathbb{Z}_+}$ be a sequence of events such that $C_n \supseteq C_{n+1}$ for all $n \ge 1$. Then,

$$P\left(\bigcap_{n=1}^{\infty}C_{n}\right)=\lim_{n\to\infty}P(C_{n}).$$

Proof.

(1) Let $B'_n := B_n \setminus B_{n-1}$ for each $n \ge 2$ and $B'_1 := B_1$. so that $B_m = \bigcup_{n=1}^m B'_n$ and B'_i 's are pairwise disjoint. Hence, by σ -additivity, we have

$$P\left(\bigcup_{n=1}^{\infty}B_{n}\right)=P\left(\bigcup_{n=1}^{\infty}B_{n}'\right)=\sum_{n=1}^{\infty}P(B_{n}')=P(B_{1})+\sum_{n=1}^{\infty}\left(P(B_{n})-P(B_{n-1})\right)=\lim_{n\to\infty}P(B_{n}).$$

(2) Let $C'_n := C_n^c$ for each $n \ge 1$ so that $C'_n \subseteq C'_{n+1}$ for all n. Hence, by (1), we have $P\left(\bigcup_{n=1}^{\infty} C'_n\right) = \lim_{n \to \infty} P(C'_n)$. The result follows from the fact that $\bigcup_{n=1}^{\infty} C'_n = \Omega \setminus \bigcap_{n=1}^{\infty} C_n$.

1.2 Random Variables and Their Distributions

Definition 1.2.1: Random Variable

A random variable on (Ω, \mathcal{F}) is any mapping $X : \Omega \to \overline{\mathbb{R}}$ such that for all $a \in \mathbb{R}$, $\{X \le a\} \triangleq \{\omega \in \Omega \mid X(\omega) \le a\} \in \mathcal{F}$. Here, $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$.

- If *X* only takes finite values, *X* is called a *real random variable*.
- If X only takes only a countable set of values $\{a_n\}_{n\in\mathbb{Z}_{\geq 0}}$, X is called a *discrete random variable*.

Definition 1.2.2: Cumulative Distribution Function

The *cumulative distribution function* (CDF) of a random variable X is the function $F: \mathbb{R} \to [0,1]$ defined by

$$F(x) = P(X \le x) \triangleq P(\{X \le x\}).$$

Lemma 1.2.3

Let F be a cumulative distribution function of a random variable X.

- (1) *F* is monotone increasing.
- (2) *F* is right-continuous.
- (3) If we define $F(\infty) := \lim_{x \to \infty} F(x)$ and $F(-\infty) = \lim_{x \to -\infty} F(x)$, then $1 F(\infty) = P(X = \infty)$ and $F(-\infty) = P(X = -\infty)$.

Proof.

- (1) Take any $x, y \in \mathbb{R}$ with $x \le y$. Then, $\{X \le x\} \subseteq \{X \le y\}$. Hence, $F(x) = P(X \le x) \le P(X \le y) \le F(y)$.
- (2) Take any decreasing nonnegative sequence $\langle \varepsilon_n \rangle_{n \in \mathbb{Z}_+}$ of real numbers converging to zero and a real number x. Let $C_n \coloneqq \{X \le x + \varepsilon_n\}$ so that $\langle C_n \rangle_{n \in \mathbb{Z}_+}$ is a decreasing sequence of events. Note also that $\{X \le x\} = \bigcap_{n=1}^{\infty} C_n$ Then, by Theorem 1.1.4 (2),

$$F(x) = P(X \le x) = \lim_{n \to \infty} P(X \le x + \varepsilon_n) = \lim_{n \to \infty} F(x + \varepsilon_n).$$

(3) Let $B_n := \{X \le n\}$ for each $n \in \mathbb{Z}_+$ so that $\bigcup_{n=1}^{\infty} B_n = \{X < \infty\}$ and $\langle B_n \rangle_{n \in \mathbb{Z}_+}$ is an increasing sequence of events. By Theorem 1.1.4 (1),

$$1 - P(X = \infty) = P(X < \infty) = P\left(\bigcup_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} P(B_n) = \lim_{n \to \infty} F(n) = F(\infty).$$

The last equality is due to (1).

Definition 1.2.4: Probability Density

If a real random variable *X* admits a cumulative distribution function *F* such that

$$F(x) = \int_{-\infty}^{x} f(y) \, \mathrm{d}y$$

for some nonnegative function f, then X is said to admit the *probability density* f.

Note

Note that the probability density *f* satisfies

$$\int_{-\infty}^{\infty} f(y) \, \mathrm{d}y = 1.$$

1.3 Conditional Probability and Independence

Definition 1.3.1: Conditional Probability

Let *B* be an event with P(B) > 0. For any event *A*, we define

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)}$$

and it is called the *probability of A given B*.

Definition 1.3.2: Independent Events

- (1) Two events *A* and *B* are said to be *indepenent* if $P(A \cap B) = P(A)P(B)$.
- (2) Let A be a nonempty family of events. A is said to be a *family of independent events* if for any finite subfamily $\langle A_1, \dots, A_n \rangle$ of A,

$$P\left(\bigcap_{i=1}^n A_i\right) = \prod_{i=1}^n P(A_i).$$

Note

When P(B) > 0, A and B are independent if and only if $P(A \mid B) = P(A)$.