ASSIGNMENT-1: Reg. No. -9922005061

Summary of "Generative Adversarial Nets" (NIPS 2014) This Paper introduces Generative Adversarial Networks (GIANS), a novel framework for estimating generative models using an adversarial process. It proposes training two neural Networks simultaneously:

- 1) Generator (G): Generates synthetic data that aims to resemble real data.
- 2) Discriminator (D): Evaluates whether a given data sample is real (from the dataset) or fake (from the generator).

key concepts:

- x The training process is modeled as a minimax game: The generatori tries to complete realistic data to fool the discriminator, while the discrimi--nator tries to distinguish between real and fake samples, and mental tion in the
- * The competition between two networks improves their perfogimance until the generated samples become indistinguishable real data
- & Unlike previous génerative models, GIANS do not requise Markov Chains or approximate inference methoderdes esteembly utilizated and a 101 of 67 + 79 G

Theogretical insights:

* The Paper proves that, in the ideal Case where both is and D have infinite capacity and training time, the generation will converge to the true data distribution. wormands have ushed steel permeters person of the

* The loss function is derived from a Jensen-Shannon divergence" minimization between the real and generated distributions.

experiments

The authors evaluate GANS on MNIST, Toronto face patabase (TFD), and CIFAR 10 datasets.

* They demonstrate that GIANS generate high-quality samples that age competitive with existing generative models.

*The paper acknowledges the Challenge of evaluating generative models and estimates livelihood using parzen window-based methods. Advantages and challenges:

Advantages:

- * No need for Markov chains.
- * uses only backpropagation for optimization.
- * Can generate short, high-dimensional images.

challenges:

* Training instability: The generator and discriminator must be conefully synchronized, * No explicit probability density estimation for generated data.

Future Directions: Ford Remain 15101

- * conditional Grans (for generating data conditioned on specific inputs).
- * Semi-supervised learning applications
- *9m Proving training Stability and efficiency.

This foundational work laid the groundwork for numerous advancements in generative modelling, leading to applications in image synthesis, style transfer, and AI-generated media.