

Design and Analysis of Algorithms Recurrence

Si Wu

School of CSE, SCUT cswusi@scut.edu.cn

TA: Wenhao Wu (1565865638@qq.com) Yi Liu (1337545838@qq.com)

Master Method

Master Method

Goal. Recipe for solving common divide-and-conquer recurrences:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

With T(0) = 0 and $T(1) = \Theta(1)$.

Terms.

- $a \ge 1$ is the (integer) number of subproblems.
- b > 1 is the (integer) factor by which the subproblem size decreases.
- f(n) = work to divide and combine subproblems.

Recursion tree.

- Number of levels:
- Number of subproblems at level i:
- Size of subproblem at level i:
- Number of leaves:

Idea of Master Theorem

Build a recursion tree:

Master Method

Goal. Recipe for solving common divide-and-conquer recurrences:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

With T(0) = 0 and $T(1) = \Theta(1)$.

Terms.

- $a \ge 1$ is the (integer) number of subproblems.
- b > 1 is the (integer) factor by which the subproblem size decreases.
- f(n) = work to divide and combine subproblems.

Recursion tree.

- Number of levels: $k = \log_b n$.
- Number of subproblems at level i: a^i .
- Size of subproblem at level $i: n/b^i$.
- Number of leaves: $n^{\log_b a}$.

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Ex.
$$T(n) = 3T(n/2) + 5n$$

 $a = 3, b = 2, f(n) = 5n, k = 1, \log_b a = 1.58$
 $T(n) = \Theta(n^{\log_2 3})$

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$. Then,

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$ and $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Ex.
$$T(n) = 2T(n/2) + 17n \log n$$

 $a = 2, b = 2, f(n) = 17n \log n, k = 1, p = 1, \log_b a = 1$
 $T(n) = \Theta(n \log^2 n)$

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 3. If $f(n) = \Omega(n^k)$ for some constant $k > \log_b a$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Ex.
$$T(n) = 3T(n/2) + n^2$$

 $a = 3, b = 2, f(n) = n^2, k = 2, \log_b a = 1.58$
Regularity condition: $3(n/2)^2 \le cn^2$ for $c = 3/4$
 $T(n) = \Theta(n^2)$

Master Theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$.

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$ and $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Case 3. If $f(n) = \Omega(n^k)$ for some constant $k > \log_b a$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Proof Sketch.

- Use recursion tree to sum up terms (assuming n is an exact power of b)
- Three cases for geometric series.

Master Theorem Need Not Apply

Gaps in master theorem

Number of subproblems must be a constant.

$$T(n) = nT(n/2) + n^2$$

• Number of subproblems must be ≥ 1 .

$$T(n) = \frac{1}{2}T(n/2) + n^2$$

• Non-polynomial separation between f(n) and $\log n$.

$$T(n) = 2T(n/2) + \frac{n}{\log n}$$

• f(n) is not positive.

$$T(n) = 2T(n/2) - n^2$$

Regularity condition does not hold.

$$T(n) = T(n/2) + n(2 - \cos n)$$