Zhengdong Zhang

Homework - Chapter 1 Exercises

Email: zhengz@uoregon.edu ID: 952091294

Course: MATH 681 - Algebraic Geometry I Term: Fall 2025 Instructor: Professor Nick Addington Due Date: Oct 6th, 2025

Exercise 1.1

Show that $(y - x^2)$ is prime, and hence radical. Let $\alpha \in k$ and let $\mathfrak{a} = (y - x^2, y - \alpha x)$. Show that \mathfrak{a} is a radical ideal when $\alpha \neq 0$, but not when $\alpha = 0$.

Solution: Consider the quotient ring $k[x,y]/(y-x^2) \cong k[x,x^2] \cong k[x]$. It is a domain, so the ideal $(y-x^2)$ is a prime ideal.

For the ideal \mathfrak{a} , the quotient ring

$$k[x,y]/\mathfrak{a} \cong k[x,y]/(y-x^2,y-\alpha x)$$
$$\cong k[x,x^2]/(x^2-\alpha x)$$
$$\cong k[x]/(x(x-\alpha))$$

If $\alpha = 0$, then $k[x, y]/\mathfrak{a}$ is not reduced as x is a nilpotent element in $k[x]/(x^2)$, so the ideal $\mathfrak{a} = (y - x^2, y - \alpha x)$ is not radical. If $\alpha \neq 0$, then the ring

$$k[x]/(x(x-\alpha)) \cong k[x]/(x) \oplus k[x]/(x-\alpha) \cong k^2$$

has no nilpotent elements, so the ideal \mathfrak{a} is radical.

Exercise 1.2

Show that a cubic curve in $\mathbb{A}^2(\mathbb{C})$ defined by an equation with real coefficients always has real points. Generalize to curves with real equations of odd degrees.

Solution: Let $f \in \mathbb{C}[x,y]$ be a polynomial with real coefficients. Suppose $\deg f = d$ is odd. Write $X = Z(f) \subseteq \mathbb{A}^2(\mathbb{C})$ to be the curve defined by f. Consider the intersection of X with Y = Z(x-y). Then the points $(x,x) \in X \cap Y$ are the solutions to the following equation f(x,x) = 0. Since d is odd, f(x,x) = 0 is an odd degree equation in x with real coefficients, and we know that f(x,x) = 0 has at least one real solutions. Thus, X must have at least one real point.

Exercise 1.3

Let $f \in k[x_1, ..., x_n]$. Show that the ideal (f) is radical if and only if no factor of f is multiple.

Solution: Suppose (f) is a radical ideal. If at least one factor of f is multiple, i.e., there exists $g, h \in k[x_1, \ldots, x_n]$ such that $f = g^N h$ for some integer N > 1. We know that $(gh)^N = h^{N-1} f \in (f)$, but $gh \notin (f)$ because every polynomial in (f) must have a factor g to the power at least N > 1. A contradiction. So no factor of f is multiple.

Conversely, assume no factor of f is multiple. If (f) is not radical, then there exists $g, h \in k[x_1, \ldots, x_n]$ such that $fh = g^N \in (f)$ but $g \notin (f)$. $k[x_1, \ldots, x_n]$ is a UFD, so we could write $f = f_1 \cdots f_m$ where f_1, \ldots, f_m are irreducible polynomials, at least one f_i for $1 \le i \le m$ does not divide g(otherwise $g \in (f)$). Suppose it is f_1 . Then $f_1|f$ but $f_1 \nmid g^N$. A contradiction. This implies that the ideal (f) is radical.

Exercise 1.4

Assume that the characteristic of k is 0. Let f(x) be a polynomial in k[x]. Show that the relation $\sqrt{(f)} = (f:f')$ holds. Give a counterexample if k is of positive characteristic.

Solution: Let $d = \gcd(f, f') \in k[x]$. We have the following claim:

<u>Claim</u>: The colon ideal (f:f') is generated by $\frac{f}{d}$.

<u>Proof:</u> Write $f = d \cdot h_1$ and $f' = d \cdot h_2$ for some $h_1, h_2 \in k[x]$ and $(h_1, h_2) = 1$. Then for any $g \in (f : f')$. We know that $gf' \in (f)$. This means there exist $t \in k[x]$ such that

$$gdh_2 = gf' = ft = dh_1t.$$

That is $gh_2 = h_1t$. Since h_1 and h_2 are coprime, we know that

$$\frac{f}{d} = h_1|g.$$

This proves that g is a multiple of h_1 . Moreover, $h_1f' = h_1h_2d = fh_2 \in (f)$. So $h_1 \in (f:f')$. This implies that $(h_1) = (f:f')$ because k[x] is a principal ideal domain.

Note that k is algebraically closed and has characteristic 0. Write

$$f(x) = a(x - a_1)^{n_1} \cdots (x - a_k)^{n_k}, \quad a, a_1, \dots, a_k \in k, n_1, \dots, n_k \in \mathbb{Z}_+$$

Then by direct calculation, we have

$$h_1(x) = \frac{f(x)}{d(x)} = (x - a_1) \cdots (x - a_k).$$

Choose $N = \max\{n_1, \dots, n_k\}$. It is easy to see that $h_1^N \in (f)$. So $(h_1) = (f : f') \subseteq \sqrt{(f)}$.

Conversely, suppose $g \in k[x]$ and for some N > 0, $g^N \in (f)$. This means there exists $h \in k[x]$ such that $g^N = fh = dh_1h$. We know that

$$h_1(x) = (x - a_1) \cdots (x - a_k)$$

has no multiple factors. So $h_1|g$. This implies $g \in (h_1) = (f : f')$. So we have $\sqrt{(f)} \subseteq (f : f')$. Thus, we can conclude that $\sqrt{(f)} = (f : f')$.

Now assume char k = p > 0. Consider $f(x) = x^p \in k[x]$. Note that here we have f' = 0. In this case, $\sqrt{(f)} = (x)$ but (f : f') = k[x] because for any $a \in k[x]$, we have

$$af' = 0 \in (x^p).$$

Exercise 1.5

Let \mathfrak{p} be a prime ideal in $k[x_1, \ldots, x_n]$. Show that \mathfrak{p} is the intersection of all the maximal ideals containing it; that is,

$$\mathfrak{p}=\cap_{\mathfrak{p}\subseteq\mathfrak{m}}\mathfrak{m}.$$

Solution: It is easy to see that

$$\mathfrak{p}\subseteq\cap_{\mathfrak{p}\subset\mathfrak{m}}\mathfrak{m}.$$

Conversely, we want to show that

$$\cap_{\mathfrak{p}\subset\mathfrak{m}}\mathfrak{m}\subseteq\mathfrak{p}.$$

This is the same as proving

$$Z(\mathfrak{p}) \subseteq Z(\cap_{\mathfrak{p} \subset \mathfrak{m}} \mathfrak{m}) = \cup_{\mathfrak{p} \subset \mathfrak{m}} Z(\mathfrak{m}).$$

For any point $p \in Z(\mathfrak{p})$, by Nullstellensatz, $\{p\} = Z(\mathfrak{m})$ for some maximal ideal $\mathfrak{m} \supseteq \mathfrak{p}$. This implies that $p \in \bigcup_{\mathfrak{p} \subseteq \mathfrak{m}} Z(\mathfrak{m})$. We are done.

Exercise 1.6

Consider the closed algebraic set in \mathbb{A}^2 given by the vanishing of the polynomial

$$P(x) = y^2 - x(x+1)(x-1).$$

Let $\alpha \in \mathbb{C}$ and let $\mathfrak{a} = (x - \alpha, P(x))$. Determine $Z(\mathfrak{a})$ for all α . For which α 's is \mathfrak{a} a radical ideal?

Solution: Let $(x,y) \in Z(\mathfrak{a})$. Then we have

$$x = \alpha,$$

$$y^2 = \alpha(\alpha + 1)(\alpha - 1).$$

If chark = 2, then $Z(\mathfrak{a})$ has only one point: $(\alpha, \sqrt{\alpha}(\alpha+1))$. In this case, \mathfrak{a} is not a radical ideal because the quotient ring

$$k[x,y]/\mathfrak{a} \cong k[y]/(y^2 - \alpha(\alpha+1)^2) \cong k[y]/((y - \sqrt{\alpha}(\alpha+1))^2)$$

has a nilpotent polynomial $y - \sqrt{\alpha}(\alpha + 1)$.

If $\alpha = 0, 1, -1$, then $Z(\mathfrak{a})$ has only one point: $(\alpha, 0)$. In this case, \mathfrak{a} is not a radical ideal because the quotient ring

$$k[x,y]/\mathfrak{a} \cong k[y]/(y^2)$$

has a nilpotent polynomial y.

If char $k \neq 2$ and $\alpha \neq 0, 1, -1$, let $s = \sqrt{\alpha(\alpha+1)(\alpha-1)}$, then $Z(\mathfrak{a})$ has two points: (α, s) and $(\alpha, -s)$. In this case, \mathfrak{a} is a radical ideal because the quotient ring

$$k[x,y]/\mathfrak{a} \cong k[y]/(y-s)(y+s)) \cong k^2$$

has no nilpotent elements.