Notes on Replicating "Taxing Top Incomes and Tax Avoidance" by Alessandro Di Nola, Georgi Kocharkov, Almuth Scholl, Anna-Mariia Tkhir and Haomin Wang

January 22, 2025

Abstract

These notes serve as a guide to the computer programs used in the quantitative analysis of the paper. A brief summary of the structure of the computer code, the data, and the execution procedures are presented.

1 Structure

The folder has these directories:

- Code: Code and relevant folders for the main model.
 - exe: executable files.
 - input: model parameter values.
 - matlab: Matlab code to process Fortran-generated output. Main scripts are: matlab_plotter, compstat_plotter, comptran_plotter and NoAvoidanceExp_plotter.
 - output: stores Fortran-generated output.
 - src: Fortran source files.
- Robustness: Code and relevant folders for the robustness check (Fixing Total Pension Benefits). The file-structure is the same as Code.
- Data:

- IRS data for Section 2
- moments

2 Software Requirements

The code was run on Matlab R2024b and Stata 18 on Windows 11 on a computer with 12th gen Intel-core-i9-12900K CPU 3.20 GHz and 64 GB RAM. The runtime for the Fortran code for computing the steady-state is about 30 seconds, for the transition about 3 minutes. The runtime for the Stata code is just a few seconds. The code is compiled using the Intel ifx compiler, Version 2024.0.2. The Fortran code makes use of OpenMP and the MKL libraries provided by Intel.

3 Data Sources

Data for the empirical analysis and computation of data moments come from public sources:

- SCF: Raw data file and Summary Extract Public Data are downloaded from
 - https://www.federalreserve.gov/econres/scf_2013.htm.
- IRS tax return tables: https://www.irs.gov/statistics.
- SUSB tables: https://www.census.gov/programs-surveys/susb/data/tables.html
- BDS tables: https://data.census.gov/table/BDSTIMESERIES.BDSESIZE
- FRED data: https://fred.stlouisfed.org/
- OECD data: https://data-explorer.oecd.org/
- TAXSIM: https://taxsim.nber.org/stata.

4 Model Solution and Experiments

The model is solved in Fortran. The following part contains a *step-by-step* description on how to configure and run the code in order to replicate the benchmark quantitative model.

4.1 Benchmark model

To solve the benchmark model in general equilibrium, follow these steps:

- 1. Set your current directory to Code.
- 2. Set relevant options in src\main.f90. In particular, to replicate the benchmark model, set

```
cf_avoidance = 0
cf_occpol = 0
do_run = 0
do_GE = 1
do_benchmark = .true.
do_CEV_decomp = 0
file_params = "estim_params_benchmark.txt"
dir_bench = trim(savedir)//trim("ss_bench")//trim(slash)
```

3. Compile the Fortran source files using the file makefile_win. In your command window, type

```
nmake /f makefile_win
```

This will generate the executable file run.exe in subfolder exe.

4. To run the code, type the following

```
exe/run.exe
```

After the model is solved, model output (in the form of txt files) is saved in subfolder output\ss_bench. In subfolder output you will see targets_model_manual.txt which saves all model parameters and moments.

4.2 Re-calibrated equal-tax-treatment model

To solve the re-calibrated equal-tax-treatment model in general equilibrium, set relevant options in ${\tt src}\mbox{\tt main.f90}$ as follows

```
cf_avoidance = 2
cf_occpol = 0
do_run = 0
do_GE = 1
do_benchmark = .true.
do_CEV_decomp = 0
file_params = "estim_params_CF2.txt"
dir_bench = trim(savedir)//trim("CF2_bench")//trim(slash)
```

The steps are the same as those in section 4.1.

4.3 Tax reform experiments

- 1. Follow the above steps to solve the model benchmark
- 2. Change flags in src\main.f90 as follows. For the equal tax treatment experiment without fiscal neutrality

```
cf_avoidance = 2
do_GE = 1
do_benchmark = .false.
```

For the sole-proprietor only experiment without fiscal neutrality,

```
cf_avoidance = 3
do_GE = 1
do_benchmark = .false.
```

The remaining flags are set the same way as in the benchmark model. With fiscal neutrality, set do_GE = 2.

4.4 Revenue maximization (comparative statics)

To run revenue maximization in the benchmark model, set flags in src\main.f90 as follows

```
cf_avoidance = 0
cf_occpol = 0
do_run = 2
do_GE = 1
n_tau_h =52
```

```
do_benchmark = .false.
do_CEV_decomp = 0
file_params = "estim_params_benchmark.txt"
dir_bench
           = trim(savedir)//trim("ss_bench")//trim(slash)
To run revenue maximization in the equal tax treatment economy, set flags
in src\main.f90 as follows
cf_avoidance = 2
cf_{occpol} = 0
do_run = 2
do_GE = 1
n_{tau} = 52
do_benchmark = .false.
do_CEV_decomp = 0
file_params = "estim_params_CF2.txt"
dir_bench = trim(savedir)//trim("CF2_bench")//trim(slash)
```

4.5 Welfare maximization with transition dynamics

To run welfare maximization with transition in benchmark model, set flags in src\main.f90 as follows

```
cf_avoidance = 0
cf_occpol = 0
do_run = 3
do_GE = 2
do_benchmark = .true.
do_CEV_decomp = 1
file_params = "estim_params_benchmark.txt"
dir_bench = trim(savedir)//trim("ss_bench")//trim(slash)
```

To run welfare maximization with transition in the equal tax treatment economy, set flags in src\main.f90 as follows

```
cf_avoidance = 2
cf_occpol = 0
do_run = 3
do_GE = 2
do_benchmark = .true.
do_CEV_decomp = 1
n_tau_h =52
file_params = "estim_params_CF2.txt"
dir_bench = trim(savedir)//trim("CF2_bench")//trim(slash)
```

4.6 Tax Reform Act of 1986 experiment

Change flags in src\main.f90 as follows.

```
cf_avoidance = 0
cf_occpol = 0
do_run = 1
do_GE = 2
do_benchmark = .false.
n_tau_h =3
```

The remaining flags are set the same way as in the benchmark model (section 4.1).

5 Replicating Figures and Tables

5.1 Figures

• Figure 1

- Figure 1a is busreceiptsLFO, 1b is shareLFO, 1c is wageLFO, 1d is laborshare
- Run Section2.m in folder Data\IRS data for Section 2\Datawork
- Data are stored in Data\IRS data for Section 2\Data

The next figures are plotted using code in folder Code.

• Figure 2

- contains 4 subfigures. 2a is share_entre_quint_inc, 2b is share_entre_quint,
 2c is share_lfo_top_quint_inc, 2d is share_lfo_top_quint
- Run model_fit_plotter.m
- Model moments are stored in subfolder output\ss_bench, data moments are subfolder input.

• Figures 3-4-5

- Figure 3 is occpol_prob, Figure 4a is kpol, 4b is npol, Figure 5a is phipol_es and 5b is phipol_ec
- Run matlab_plotter.m
- Model data are stored in subfolder output\ss_bench

• Figure 6

- Figure 6 is cev_z_exp_taxreform
- Run NoAvoidanceExp_plotter.m
- Model data are stored in subfolders output\exp2_fn and output\exp5_fn.

• Figure 7

- Figure 7a is compstat_taxes_inc_corp_div, 7b is compstat_Y, 7c is compstat_inc_share_top1, 7d is compstat_wealth_share_top1
- Run compstat_plotter.m
- Model data are stored in subfolders output\compstat and output\compstat_CF2.

• Figure 8

- Figure 8a is comptran_cev_vec, 8b is comptran_cev_aggcomp_vec,
 8c is comptran_cev_distcomp_vec, 8d is comptran_cev_z, 8e is comptran_base_cev_qo,
 8f is comptran_CF2_cev_qo
- Run comptran_plotter.m
- Model data are stored in subfolders output\comptran_fn and output\comptran_CF2_fn.

• Figure 9 (also called Figure A1)

- Figure 9a is exp2_tran_r_w, 9b is exp2_tran_Y_K, 9c is exp2_tran_avek_Y_entre,
 9d is exp2_tran_taxes, 9e is exp2_tran_share_entre
- Run NoAvoidanceExp_plotter.m
- Model data are stored in subfolder output\exp2_fn.

The remaining figures are based on a robustness check "Fixing Total Pension Benefits". Use folder Robustness instead of Code.

• Figure 10 (also called Figure A2)

- Figure 10 is cev_z_exp_taxreform
- Run NoAvoidanceExp_plotter.m
- Model data are stored in subfolders output\exp2_fn and output\exp5_fn.

• Figure 11 (also called Figure A3)

- Figure 11a is comptran_cev_vec, 11b is comptran_cev_aggcomp_vec,
 11c is comptran_cev_distcomp_vec, 11d is comptran_cev_z, 11e is
 comptran_base_cev_qo, 11f is comptran_CF2_cev_qo
- Run comptran_plotter.m
- Model data are stored in subfolders output\comptran_fn and output\comptran_CF2_fn.

5.2 Tables

- <u>Table 1</u>. Manual input from various sources. Authors' calculations explained below:
 - Dividend tax rate: computed using Stata code Data\moments\do files\main.do.
 - Social security cap: average labor income taken from Data\moments\QCEW\allhlcn13.xlsx cell R2, downloaded from https://www.bls.gov/cew/downloadable-data-files.htm. Social security cap is taken from https://www.ssa.gov/oact/cola/cbb.html. We take the ratio between the social security cap and average labor income.
- <u>Table 2</u>. Manual input based on Code\output\targets_model_manual.txt, an output file from running code to solve the benchmark model (see Section 4.1 above).
- <u>Table 3 and 4</u>. "Model" column: Manual input based on Code\output\targets_model_manual.txt, an output file from running code to solve the benchmark model (see Section 4.1 above). "Data" column: Manual input from various sources. Authors' calculations explained below:
 - Moments from data source "SCF" and "SUSB" are computed using Stata code Data\moments\do files\main.do. Computation is based on dataset Data\moments\work\scf2013_clean.dta.
 - Share of entrepreneurial income declared as wage: calculations done in Data\moments\IRS\Calculations Wage Share.xlsx, based on tax return table of S-corporations 13co04s.xlsx and C-corporations 13co05ccr.xlsx in the same directory.
- <u>Table 5</u>. Manual input based on model results from running tax reform experiments (see Section 4.3 above).

- <u>Table 6</u>. Manual input based on model results from running the Tax Reform Act of 1986 experiment (see Section 4.6 above).
- <u>Table 7</u>. Manual input based on model results from running the revenue maximization code in the benchmark model and in the equal-tax-treatment model (see Section 4.4 above).
- Tables 8 and 9 in Appendix A.4. Manual input based on \understard \understar
- Table 10 in Appendix A.5 Manual input based on model results from running tax reform experiments in the robustness check "Fixing Total Pension Benefits" economy (see Section 4.3 above).