TOSHIBA MOS MEMORY PRODUCTS

256K BIT (32K WORD × 8 BIT) MASK ROM

N-CHANNEL SILICON GATE

020468

TMM23256P

DESCRIPTION

The TMM23256P is a 262,144 bit read only memory organized as 32,768 words by 8 bits with a low bit cost, thus being most suitable for use in character generator.

Consisting of static memory cells and clocked peripheral circuitry, the TMM23256P provides a high speed and low power dissipation (access time 150ns, operating current 40mA).

The TMM23256P also features an automatic standby power mode. When deselected by Chip Enable (CE), the operating current is reduced from 40mA to

FEATURES

• Single 5V Power Supply

• Fast Access Time: 150ns (Max.)

• Low Power Dissipation

Average Current: 40mA (Max.) Standby Current: 10mA (Max.)

 Inputs protected : All Inputs have Protection Against Static Charge

PIN CONNECTION

PIN NAMES

A ₀ ~ A ₁₄	Address Inputs
$D_0 \sim D_7$	Data Outputs
ŌĒ	Output Enable Input
CE	Chip Enable Input
N.C.	No Connection
Vcc	Power Supply Terminal
GND	Ground

10mA. Output Enable (\overline{OE}) is effective in preventing data confliction on a common bys line.

The TMM23256P uses the address latch system that the falling edge of \overline{CE} latches all inputs except for \overline{OE} , thus can be easily connected to a system where address and data buses are commonly used.

The TMM23256P is fabricated with ion implanted N-channel silicon gate technology. This technology allows a production on high performance.

The TMM23256P is moulded in a 28 pin standard plastic package, 0.6 inch in width.

Edge Enabled Operation : CE
Output Buffer Control

• Input and Output: TTL Compatible

Three State Outputs: Wired OR Capability

• 28 pin Standard Plastic DIP

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power Supply Voltage	-0.5 ~ 7.0	V
V _{IN} , V _{OUT}	Input and Output Voltage	-0.5 ~ 7.0	V
TOPR	Operating Temperature	0 ~ 70	°C
T _{STRG}	Storage Temperature	-55 ~ 150	°C
TSOLDER	Soldering Temperature - Time	260 · 10	°C · sec
P _D	Power Dissipation (Ta = 70°C)	1.0	W

D.C. OPERATING CONDITIONS (Ta=0~70°C)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	-	2.2	_	V _{CC} + 1	V
VIL	Input Low Voltage	_	-0.5	_	0.8	V
V _{CC}	Power Supply Voltage	_	4.5	5,0	5.5	V

D.C. and OPERATING CHARACTERISTICS

(T	a =	0	~	70	°C
----	-----	---	---	----	----

SYMBOL	PARAMETER	COND	ITIONS	MIN.	TYP.	MAX.	UNIT
I _{IH}	Input High Current	V _{IN} = 5.5V		_	0.05	10	μΑ
I _{IL}	Input Low Current	V _{IN} = GND		-	-0.05	-10	μΑ
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu A$		2.4	3.3		V
V _{OL}	Output Low Voltage	I _{OL} = 3,2mA		_	0.3	0.4	V
I _{LOH}		V _{OUT} = 5.5V	CE = 2.2V or	_	0.05	10	μΑ
LOL	Output Leakage Current	V _{OUT} = 0.4 V	OE = 2.2V		-0.1	-20	μΑ
lCC1	Standby Current	CE = 2.2V		_	_	10	mA
I _{CC2}	Average Current	t _{CYC} = 230ns,	I _{OUT} = 0mA	_	_	40	mA

[•] Typical values are at Ta = 25°C and V_{CC} = 5V.

CAPACITANCE (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
C _{IN}	Input Capacitance	V _{IN} = A.C. GND	_	5	10	pF
Cout	Output Capacitance	V _{OUT} = A.C. GND	_	8	15	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS $(T_a = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%)$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{CE}	ČE pulse width	_	150		_	ns
tAS	Address Setup Time	-	0	 	_	ns
t _{AH}	Address Hold Time		30	-		ns
†ACC	Access Time	_			150	ns
too	Output Delay Time form OE	_	<u> </u>		70	ns
top	Output Turn off Delay	_			70	ns
tcc	CE off Time	_	70	_	_	ns
tcyc	Cycle Time	$t_{AS} = 0$ ns, t_r , $t_f = 5$ ns	230			ns

[•] Typical values are at Ta = 25°C and V_{CC} = 5V.

A.C. TEST CONDITIONS

• Output Load : 1TTL Gate + 100pF

• Input Rise and Fall Times (10% \sim 90%) : 5ns

• Input Pulse Levels : 0.8 ~ 2.4V

• Timing Measurement Reference Levels : Input ; 1V and 2.2V

Output; 0.8V and 2.0V

TIMING WAVEFORMS

Note (1) t_{OD} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

OPERATION INFORMATION

The TMM23256P has two control functions.

The chip enable (CE) controls the operation power and should be used for device selection. The falling edge of the CE will activate the device and latch the addresses. The output enable (\overline{OE}) control the out-

put buffers, independent of device selection. Assuming that $\overline{OE} = V_{IL}$, the output data is valid at the outputs after tACC (150ns) from the falling edge of the \overline{CE} .

The operation modes of the TMM23256P are listed in the following table.

MODE	CE	ADDRESS	ŌĒ	OUTPUT	POWER
Standby	Н	*	*	High Impedance	Standby
Latch	†	Valid	*	High Impedance	_
Read	L	**	L	Data Out	Active
Output Deselect	L	*	Н	High Impedance	Active

Note * : Don't care

** : Address may change after tah

APPLICATION INFORMATION

1. POWER SUPPLY DECOUPLING

The operating current I_{CC} waveforms for TMM 23256P are shown in Fig. 1, 2.

The TMM23256P is a clocked device, so the transient current peaks are produced on the \overline{CE} transition and \overline{CE} active level.

The I_{CC} current transients require adequate decoupling of V_{CC} power supply.

2. POWER ON

The TMM23256P requires initialization prior to normal operation. Two initialization methods are as follows:

- (1) A minimum 100 µs time delay is required after the application of V_{CC} (+5V) before proper device operation is achieved. And during this period, CE must be at V_{IH} level.
- (2) A minimum 100 µs time delay is required after the application of V_{CC} (5V), and then a minimum of one initialization cycle must be performed before proper device operation is acheived.

Initialization cycle: An initialization cycle is one Chip Enable clock cycle from the first down edge of the $\overline{\text{CE}}$ till the next down edge.

Fig. 1 I_{CC} vs. Time (1)

Fig. 2 I_{CC} vs. Time (2)

OUTLINE DRAWINGS

Unit: mm

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No.1 and No.28 leads.