# Queueing Delay Minimization in Overloaded Networks via Rate Control

#### **Motivation**

#### **Network Overload:** demand > capacity

- Occurs more frequently in datacenter due to increasing demand-capacity gap [1]
- Non-economic to provision capacity for bursty traffic (e.g. 8x than usual [2])





Q: Optimal rate control to minimize queueing delay under overload?

### **Contributions**

- 1) Prove routing policies to minimize average and max delay simultaneously in single-hop networks.
- 2) Generalize the delay-optimal policies to multi-stage networks, e.g., Clos; Fat-tree.
- 3) Show 10%  $\downarrow$  in  $\overline{D}_{ava}$ , 50%  $\downarrow$  in  $\overline{D}_{max}$  on Clos structure with different fan-in fan-out structures, compared to max-rate serving.

# **Delay Model**



Delay of **red** packet arrived to node 1 at t

$$D_{1}(t) = \frac{q_{1}(t)}{g_{12}} + \frac{q_{2}\left(t + \frac{q_{1}(t)}{g_{12}}\right)}{\mu}$$

### **Main Results**

## **Proportional Policy Design** To minimize $\overline{D}_{ava}$ & $\overline{D}_{max}$

# Single-hop



$$\frac{\sum_{k=1}^{N} g_{ik}(t)}{\sum_{k=1}^{N} g_{jk}(t)} = \frac{\lambda_i}{\lambda_j}, \forall i \neq j$$

$$\frac{\sum_{k=1}^{M} g_{ki}(t)}{\sum_{k=1}^{M} g_{kj}(t)} = \frac{\mu_i}{\mu_j}, \forall i \neq j$$

$$\sum_{i=1}^{M} g_{ij}(t) \geq \mu_j, \forall j = 1, \dots, N$$

#### Clos: (keep same I/O ratio of nodes in same layer)



Extension: Fat-tree; Queue-based policy

# **Delay Metrics**

 $\overline{D}_{avg}$  &  $\overline{D}_{max}$ 

 $\overline{D}_i$ : Mean delay of packets sent to  $s_i$  in [0, T]  $\overline{D}_i = \frac{1}{T} \int_0^T D_i(t) dt$ 

$$\overline{D}_i = \frac{1}{T} \int_0^T D_i(t) dt$$

Average delay

Max ingress delay

$$\overline{D}_{avg} = \sum_{i=1}^{N} \frac{\lambda_i}{\sum_{k=1}^{N} \lambda_k} \overline{D}_i \quad \overline{D}_{max} = \max_{i=1,2,\dots,N} \overline{D}_i$$

## Simulation

Our delay-optimal policy minimizes & well balances delay

Exp: 16 x 12 x 8 x 6



| Clos Topology  | Policy | $\bar{D}_{avg}$ , Gap |      | $\bar{D}_{max}$ , Gap |      | $\bar{D}_{max}/\bar{D}_{avg}$ |      |
|----------------|--------|-----------------------|------|-----------------------|------|-------------------------------|------|
|                |        | Mean                  | Max  | Mean                  | Max  | Mean                          | Max  |
| 15x12x9x12x15  | OPT    | 1.12                  | 1.16 | 1.12                  | 1.16 | 1.00                          | 1.01 |
|                | BP     | 1.34                  | 1.93 | 1.37                  | 2.11 | 1.02                          | 1.15 |
|                | MAX    | 1.49                  | 2.28 | 1.52                  | 2.34 | 1.02                          | 1.07 |
| 9x12x15x12x9   | OPT    | 1.12                  | 1.16 | 1.12                  | 1.16 | 1.00                          | 1.00 |
|                | BP     | 1.53                  | 2.70 | 1.56                  | 2.71 | 1.02                          | 1.09 |
|                | MAX    | 1.45                  | 2.74 | 1.47                  | 2.76 | 1.01                          | 1.07 |
| 12x12x12x12x12 | OPT    | 1.12                  | 1.16 | 1.12                  | 1.16 | 1.00                          | 1.00 |
|                | BP     | 1.41                  | 2.49 | 1.44                  | 2.72 | 1.02                          | 1.09 |
|                | MAX    | 1.51                  | 2.64 | 1.54                  | 2.70 | 1.02                          | 1.07 |

[1] Singh, Arjun, et al. "Jupiter rising: A decade of clos topologies and centralized control in google's datacenter network." ACM SIGCOMM computer communication review 45.4 (2015): 183-197.

[2] Zhang, Yiwen, et al. "Aequitas: admission control for performance-critical RPCs in datacenters." Proceedings of the ACM SIGCOMM 2022 Conference. 2022.