

5. Supply chain inventory control

Prof. Dr. Stefan Minner
Logistics & Supply Chain Management
TUM School of Management

Source: Graves and Willems (2003)

Data and results

Parameters for Bulldozer Supply Chain

Stage name	Nominal time	Stage cost (\$)
Boggie assembly	11	575
Brake group	8	3850
Case	15	2200
Case & frame	16	1500
Chassis/platform	7	4320
Common subassembly	5	8000
Dressed-out engine	10	4100
Drive group	9	1550
Engine	7	4500
Fans	12	650
Fender group	9	900
Final assembly	4	8000
Final drive & brake	6	3680
Frame assembly	19	605
Main assembly	8	12,000
Pin assembly	35	90
Plant carrier	9	155
Platform group	6	725
Roll over group	8	1150
Suspension group	7	3600
Track roller frame	10	3000
Transmission	15	7450

Optimal Service Times and Safety Stock Costs under Guaranteed-Service Model

Stage name	Service time	Stage safety stock cost (\$		
Boggie assembly	11	0		
Brake group	8	0		
Case	0	12,614		
Case & frame	15	6373		
Chassis/platform	16	0		
Common subassembly	20	0		
Dressed-out engine	20	0		
Drive group	9	0		
Engine	7	0		
Fans	10	1361		
Fender group	9	0		
Final assembly	0	607,969		
Final drive & brake	15	0		
Frame assembly	0	3904		
Main assembly	28	0		
Pin assembly	21	499		
Plant carrier	9	0		
Platform group	6	0		
Roll over group	8	0		
Suspension group	28	0		
Track roller frame	10	0		
Transmission	15	0		

Battery example

Demand Information for Battery Supply Chain

Stage name	Mean demand	Standard deviation of demand
Central DC A	43,422	67,236
Central DC B	16,350	39,552
Central DC C	5536	11,213
East DC A	67,226	109,308
East DC B	15,765	34,079
East DC C	6416	14,125
West DC A	65,638	119,901
West DC B	10,597	23,277
West DC C	3519	6576

Data and results

Manufacturing

Other Raw Materials

Parameters for Battery Supply Chain

Stage name	Nominal time	Stage cost (\$	
Bulk battery manufacturing	5	0.07	
Central DC A	6	0.02	
Central DC B	6	0.01	
Central DC C	4	0.01	
East DC A	4	0.00	
East DC B	4	0.01	
East DC C	4	0.01	
EMD	2	0.13	
Label	28	0.06	
Nail wire	24	0.02	
Other raw materials	1	0.24	
Pack SKU A	11	0.07	
Pack SKU B	11	0.12	
Pack SKU C	9	0.24	
Packaging A	28	0.16	
Packaging B	28	0.24	
Packaging C	28	0.36	
Separator	2	0.02	
Spun zinc	2 5	0.05	
West DC A		0.01	
West DC B	8	0.03	
West DC C	6	0.06	

Optimal Service Times using Guaranteed-Service Model

Stage name	Service time	Stage safety stock cost (\$
Bulk battery manufacturing	7	0
Central DC A	0	56,889
Central DC B	0	38,245
Central DC C	0	11,066
East DC A	0	73,716
East DC B	0	26,907
East DC C	0	13,940
EMD	2	0
Label	2 2 2	23,361
Nail wire	2	7163
Other raw materials	1	0
Pack SKU A	0	251,253
Pack SKU B	0	94,741
Pack SKU C	0	37,573
Packaging A	7	52,953
Packaging B	7	25,852
Packaging C	7	13,022
Separator	7 7 7 2 2	0
Spun zinc		0
West DC A	0	91,507
West DC B	0	26,531
West DC C	0	8279

Central DC C

West DC C

5.1 Ordering policies

Serial Chain

External Customer External Supplier External Customer External Customer External Customer External Customer

Assembly

External Customer External Supplier External Customer External Customer External Customer External Customer

Ordering systems

- Centralized
 - Material/Distribution Requirements Planning
 - Echelon stock policies (basing on inventories of that and all downstream installations)
- Decentralized
 - Installation stock policies (basing only on inventories of the respective installation)
 - Coordination of local reorder-point systems
- Review
 - Periodic vs. continuous

Stock definitions

Example

Data

Demands

t	1	2	3	4	5	6
D1	100	150	120	80	50	100
D2	200	150	300	250	100	200

- Lead times: $L_W=1$, $L_1=2$, $L_2=1$
- Initial inventories
 - $-y_{W}=300, y_{1}=150, y_{2}=250$
 - Outstanding order retailer 1: 200

Replenishment policies

- Distribution Requirements Planning
 - Demand forecasts
 - Safety stocks: $SS_w=0$, $SS_1=20$, $SS_2=40$
- Local (R,S)-policies (installation stock policy)
 - $-R=1, S_W=300, S_1=320, S_2=440$
- Echelon-stock policy
 - $-R=1, S_{W}=1000, S_{1}=300, S_{2}=400$

DRP results

	Period						
Demand	1	2	3	4	5	6	
1	100	150	120	80	50	100	
2	200	150	300	250	100	200	

y_w=300, y₁=150, y₂=250 Outstanding order retailer 1: 200

	1	2	3	4	5	6
Retailer 2	L ₂ =1					
Gross	200	150	300	250	100	200
Inventory	250	50	40	40	40	40
Replenishment	0	140	300	250	100	200
Order	140	300	250	100	200	0
Retailer 1	L ₁ =2					
Gross	100	150	120	80	50	100
Inventory	150	250	100	20	20	20
Replenishment	0	0	40	80	50	100
Order	40	80	50	100	0	0
Wholesaler	L _w =1					
Gross	180	380	300	200	200	0
Inventory	300	120	0	0	0	0
Replenishment	0	260	300	200	200	0
Order	260	300	200	200	0	0

Inventory rationing

- Simple Policies
 - Priority rationing
 - Proportional rationing

- Optimization
 - Fair share

- Other policies
 - Balanced stock rationing

Installation stock policy

$$S_W = 300,$$

 $S_1 = 320,$
 $S_2 = 440$

Lead times:

 L_W =1, L_1 =2, L_2 =1 Initial inventories y_W =300, y_1 =150, y_2 =250 Outstanding order retailer 1: 200

		Inventory	Inv. Position	Order	Demand	Final Inventory	Fulfilled demand
P1	R1	150	350	0	100	50	100
	R2	250	250	190	200	50	200
	W	300	110	190	190	110	0,190
P2	R1	250	250	70	150	100	150
	R2	240	240	200	150	90	150
	W	300	30	270	270	30	70,200
Р3	R1	100	170	150	120	-20	100
	R2	290	290	150	300	-10	290
	W	300	0	300	300	0	150,150
P4	R1	50	200	120	80	-30	70 (20+50)
	R2	140	140	300	250	-110	150 (10+140)
	W	300	-120	420	420	-120	86,214
P5	R1	120	240	80	50	70	80
	R2	104	190	250	100	4	210
	W	300	-30	330	330	-30	107,313
Р6	R1	156	270	50	100	56	100
	R2	317	340	100	200	117	200
	W	300	150	150	150	150	57,123

Echelon stock policy

S _W =1000,
S ₁ =300,
S ₂ =400

Lead times:

 L_W =1, L_1 =2, L_2 =1 Initial inventories y_W =300, y_1 =150, y_2 =250 Outstanding order retailer 1: 200

		Inventory	Inventory Position	Order	Demand	Final inventory	Fulfilled Demand	
P1	R1	150	350	0	100	50	100	
	R2	250	250	150	200	50	200	
	W	300	900	100	150	150	0,150	
P2	R1	250	250	50	150	100	150	
	R2	200	200	200	150	50	150	
	W	250	700	300	250	0	50,200	
Р3	R1	100	150	150	120	-20	100	
	R2	250	250	150	300	-50	250	
	W	300	700	300	300	0	150,150	
P4	R1	30	180	120	80	-50	50	
	R2	100	100	300	250	-150	150	
	W	300	580	420	420	-120	86,214	
P5	R1	100	220	80	50	50	100	
	R2	64	150	250	100	-36	214	
								73,227
	W	300	670	330	330	-30	107,313 (tot)	(this)
Р6	R1	136	250	50	100	36	100	
	R2	277	300	100	200	77	236	
	W	300	850	150	150	150	57,123	

Multi-echelon inventory control decisions

- Deterministic models
 - Coordination of lot-sizes

- Stochastic models
 - Safety stock placement and sizes

Depot-Effect

- Model: Economic order quantity
 - Demand rates d_i fixed cost per replenishment A, inventory holding cost h
- Demand consolidation

$$D = \sum_{i=1}^{n} d_i$$

- Transaction effect
 - Individual replenishments
 - Central replenishments
 - Cost comparison

$$Q_i = \sqrt{\frac{2d_i A}{h}}; \quad C_i = \sqrt{2d_i Ah}$$

$$Q = \sqrt{\frac{2DA}{h}}; \quad C = \sqrt{2DAh}$$

$$\Delta = \sqrt{2Ah} \cdot \left(\sum_{i=1}^{n} \sqrt{d_i} - \sqrt{\sum_{i=1}^{n} d_i} \right)$$

Special case: identical demand rates (square root law)

$$C(D) = \sqrt{n} \cdot C(d)$$

Portfolio-Effect

- Statistical context
 - Expected demand μ_i standard deviation σ_i
 - Correlation: covariance, coefficient of correlation
 - ρ = +1: perfect positive correlation
 - ρ = -1: perfect negative correlation
- Joint demand

$$\mu(n) = \sum_{i=1}^{n} \mu_i$$

$$\mu(n) = \sum_{i=1}^{n} \mu_i$$

$$\mu(n) = \sum_{i=1}^{n} \mu_{i}$$

$$\rho_{12} = -1: \sigma(2) = |\sigma_{1} - \sigma_{2}|$$

$$\sigma(n) = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} \cdot \sigma_{i} \cdot \sigma_{j}}; \quad \rho_{ii} = 1$$

Special case: identical demands, no correlation

$$\sigma(n) = \sqrt{n} \cdot \sigma$$

 $\sigma(2) = \sqrt{\sigma_1^2 + 2\rho_{12}\sigma_1\sigma_2 + \sigma_2^2}$

 $\rho_{12} = 1$: $\sigma(2) = \sigma_1 + \sigma_2$

Example

	1	2	3	4	mu	sigma	
D1	80	130	120	70	100	29,44	
D2	150	250	220	180	200	43,97	
Sum	230	380	340	250	300	71,65	0,90
	1	2	3	4	mu	sigma	
D1	80	130	120	70	100	29,44	
D2	220	180	150	250	200	43,97	
Sum	300	310	270	320	300	21,60	-0,90
	1	2	3	4	mu	sigma	
D1	80	130	120	70	100	29,44	
D2	180	250	150	220	200	43,97	
Sum	260	380	270	290	300	54,77	0,08

Parameter estimation

Covariance

$$COV(D_1, D_2) = \sum_{d_1=0}^{\infty} \sum_{d_2=0}^{\infty} (d_1 - \mu_1) \cdot (d_2 - \mu_2) \cdot f(D_1 = d_1, D_2 = d_2)$$

Coefficient of correlation

$$\rho_{ij} = \frac{COV(i, j)}{\sigma_i \cdot \sigma_j} \quad -1 \le \rho_{ij} \le +1$$

• n observations (d_{1i}, d_{2i}) , i=1,2,...,n

$$C\hat{O}V(D_1, D_2) = \frac{\sum_{i=1}^{n} (d_{1i} - \hat{\mu}_1) \cdot (d_{2i} - \hat{\mu}_2)}{n-1}$$