Charlie Clark ECO 322.01 Spring 2022 Project 1 – COVID-19 Data March 4, 2021

Stringency Index Notes

Indicators:

Containment & Closure Policies

 $C1 - School closing \in \{0, 1, 2, 3, Blank\}$

C2 – Workplace closing $\in \{0, 1, 2, 3, Blank\}$

C3 – Cancel Public Events $\in \{0, 1, 2, Blank\}$

C4 – Gathering Restrictions $\in \{0, 1, 2, 3, 4, Blank\}$

C5 – Public Transport Closed $\in \{0, 1, 2, Blank\}$

C6 - Stay at Home Requirements $\in \{0, 1, 2, 3, Blank\}$

C7 – Internal Movement Restrictions $\in \{0, 1, 2, Blank\}$

C8 – International Movement Restrictions $\in \{0, 1, 2, 3, 4, Blank\}$

Health Policies

H1 – Public Information Campaigns $\in \{0, 1, 2, Blank\}$

Calculation:

Each time t index is simply an arithmetic mean of k indicator sub-indices, where k is the number of indicators used in calculating the index.

$$Index_t = \frac{1}{k} \sum_{j=1}^{k} I_{j,t}$$

In the above equation, $I_{j,t}$ is the time t calculated sub-index for the j-th indicator.

For stringency index, $Indicator_j \in \{C1, C2, C3, C4, C5, C6, C7, C8, H1\}$, and k = 9.

Each time t sub-index $I_{j,t}$ is calculated using the formula

$$I_{j,t} = 100 \left\{ \frac{v_{j,t} - \frac{1}{2} (F_j - f_{j,t})}{N_j} \right\}$$

where N_j is the maximum value of indicator j, F_j is an flag variable which indicates whether or not indicator j has a Boolean flag component (see next page), $v_{j,t}$ is the recorded policy value on date t using indicator j's ordinal scale, and $f_{j,t}$ is the value of the Boolean flag component for indicator j on date t.

$$F_j = \begin{cases} 0, & \text{if there is no Boolean flag component} \\ 1, & \text{if there is a Boolean flag component} \end{cases}$$

Note, if $v_{j,t} = 0$, then $I_{j,t} = 0$.

Therefore,

Stringency Index_t =
$$\frac{1}{9} \sum_{j=1}^{9} I_{j,t}$$

= $\frac{1}{9} \sum_{j=1}^{9} 100 \left\{ \frac{v_{j,t} - \frac{1}{2} (F_j - f_{j,t})}{N_j} \right\}$
= $\frac{100}{9} \sum_{j=1}^{9} \frac{1}{N_j} \left\{ v_{j,t} - \frac{1}{2} (F_j - f_{j,t}) \right\}$