Ex 1 Etudier la convergence de la série $\sum u_n$ dans les cas suivants :

a)
$$u_n = \ln\left(1 + \frac{2}{n\sqrt{n}}\right)$$

b)
$$u_n = \frac{1}{\tan\left(\frac{\pi}{4} + \frac{1}{n}\right)} - 1$$

c)
$$u_n = \sqrt[n]{n} - \sqrt[n+1]{n}$$

d)
$$u_n = \frac{\arctan n}{n^2}$$

$$e) u_n = e - \left(1 + \frac{1}{n}\right)^n$$

f)
$$u_n = \left(\frac{n+a}{n+b}\right)^{n^2} \quad (-b \notin \mathbb{N})$$

g)
$$u_n = \ln \cos \frac{1}{n}$$

h)
$$u_n = \frac{n!}{n^n}$$
 (majorer convenablement)

$$i) u_n = \frac{(1+n)\sin n}{n^2 \sqrt{n}}$$

j)
$$u_n = \arccos \frac{n}{n+1}$$
 (rappel: $\sin \arccos x = \sqrt{1-x^2}$)

k)
$$u_n = \frac{a^n}{b^n + n}$$
, en discutant sur $a > 0$, $b > 0$

k)
$$u_n = \frac{a^n}{b^n + n}$$
, en discutant sur $a > 0$, $b > 0$ l) $u_n = \frac{1}{n \ln n}$ (comparer à une intégrale)

$$m) u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin^2 t}{t^2} dt$$

$$n) u_n = \int_n^{2n} \frac{dt}{1 + t\sqrt{t}}$$

Ex 2 Montrer que $(2+\sqrt{3}^n)+(2-\sqrt{3})^n\in 2\mathbb{N}$ et en déduire la nature de $\sum\sin\left(\left(2+\sqrt{3}\right)^n\right)$

Ex 3 On admet que $\sum \frac{(-1)^n}{n}$ converge (cf critère des séries alternées).

Montrer que $\sum \sin \left(2\pi \sqrt{n^2 + (-1)^n}\right)$ est convergente mais non absolument convergente.

Ex 4 On admet que $\sum \frac{(-1)^n}{\sqrt{n}}$ converge (cf critère des séries alternées).

A l'aide d'un développement asymptotique, montrer que $\sum \frac{(-1)^n}{\sqrt{n}-(-1)^n}$ diverge.

Ex 5 Soit (u_n) une suite positive. Montrer que la convergence d'une des séries suivantes entraine celle des autres :

$$\sum u_n$$
, $\sum \frac{u_n}{1+u_n}$, $\sum \ln (1+u_n)$

Ex 6 Montrer que les séries suivantes converge et calculer leur somme :

a)
$$\sum_{n\geq 1} \frac{1}{n(n+1)}$$
 (fraction rationnelle) b) $\sum_{n\geq 1} \frac{1}{n(n+1)(n+2)}$ c) $\sum_{n\geq 2} \ln\left(1-\frac{1}{n^2}\right)$

b)
$$\sum_{n \ge 1} \frac{1}{n(n+1)(n+2)}$$

c)
$$\sum_{n\geqslant 2} \ln\left(1 - \frac{1}{n^2}\right)$$

Ex 7 Soit $x \in]0,1[$. A l'aide de la fonction $t \to \frac{1}{1-t}$, montrer la convergence et calculer la somme des séries :

$$\sum nx^{n-1}$$
, $\sum nx^n$, $\sum n(n-1)x^n$, $\sum n^2x^n$ et $\sum \frac{n^2-(-1)^n}{3^n}$

Ex 8 Montrer que les séries suivantes sont convergentes et calculer leur somme :

$$\sum \frac{n^2+n-1}{n!}, \sum \frac{n^3+1}{n!}$$

Indication: décomposer les polynômes sur la base (1, X, X(X-1), X(X-1)(X-2))

Ex 9 Soit (u_n) définie par $u_0 > 0$ et $\forall n \ge 0, \ u_{n+1} = u_n e^{-u_n}$. Etudier la suite (u_n) et déterminer la nature de la série $\sum u_n$

Ex 10 Soit (u_n) une suite réelle bornée telle que $\delta_n = u_n - u_{n+1}$ soit croissante.

En considérant la série $\sum \delta_n$ montrer que $\forall n \in \mathbb{N}, \ \delta_n \leq 0$, et en déduire que (u_n) est convergente

Ex 11 Soit f une fonction continue positive décroissante sur \mathbb{R}_+ . On pose si $n \ge 1$, $w_n = \int_{-\infty}^n f - f(n)$. Montrer que $\sum w_n$ converge.

PCSI 1 Thiers 2019/2020

Ex 12 Séries de Bertrand :

- a) Déterminer en fonction de $\beta \in \mathbb{R}$ la nature de la série $\sum_{n>2} \frac{1}{n \ln^{\beta} n}$ (comparer à une intégrale)
- b) Montrer que $\sum_{n \geq 2} \frac{1}{n^{\alpha} \ln^{\beta} n}$ converge si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$ ("règle du n^{α} ")

Ex 13 Soit (u_n) définie par $u_0 \in \mathbb{R}^*$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{n-a}{n-b} u_n$, avec $(a,b) \in (\mathbb{R} \setminus \mathbb{N})^2$.

- a) On pose $v_n = n^{\alpha} u_n$. Calculer α pour que $\ln(n^{\alpha} u_n)$ converge vers un réel λ . On pourra faire un développement limité de $\ln v_{n+1} - \ln v_n$.
- b) En déduire que $\sum u_n$ converge si et seulement si a-b>1, ce qu'on supposera au c) :
- c) Montrer que $\forall n \in \mathbb{N}, \ (n+1)u_{n+1} nu_n = (b+1)u_{n+1} au_n$ et en déduire $\sum_{n=0}^{\infty} u_n$.

Ex 14 Soit $(u_n)_{n\geqslant 1}$ une suite positive décroissante telle que $\sum u_n$ converge.

- a) Soit $r_n = \sum_{k=0}^{2n} u_k$. Calculer $\lim r_n$ et comparer $2nu_{2n}$ et r_n . En déduire que $u_n = o\left(\frac{1}{n}\right)$
- b) Montrer que $\sum_{n\geq 1} n \left(u_n u_{n+1}\right)$ converge et que $\sum_{n\geq 1} u_n = \sum_{n\geq 1} n \left(u_n u_{n+1}\right)$
- c) Soit $p\geqslant 1$ et pour tout $n\in\mathbb{N}^*$, $u_n=\frac{1}{n\,(n+1)\cdots(n+p)}$. Montrer que $\sum u_n$ converge et déduire du b) la valeur de $\sum_{n\geq 1}u_n$

Ex 15 <u>Critère des séries alternées</u> : soit a_n une suite positive décroissante et de limite nulle On considère la série $\sum (-1)^n a_n$, et on note (S_n) la somme partielle de cette série.

- a) Montrer que (S_{2n}) et (S_{2n+1}) sont adjacentes et en déduire que $\sum (-1)^n a_n$ converge
- b) Montrer que pour tout $n \in \mathbb{N}, |R_n| \leqslant a_{n+1}$
- c) Etablir la convergence de $\sum u_n$, avec $u_n = \frac{(-1)^n}{n}$, puis avec $u_n = \int_{-\infty}^{(n+1)\pi} \frac{\sin t}{t} dt$

Ex 16 <u>Critère de d'Alembert</u>: soit $(u_n)_{n\geqslant 0}$ une suite strictement positive telle que $\lim \frac{u_{n+1}}{u_n} = \ell$ a) On suppose que $\ell < 1$. On considère $q \in]\ell, 1[$. Montrer qu' $\exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, \ u_{n+1} \leqslant qu_n$.

- En déduire que $\sum u_n$ converge
- b) On suppose que $\ell>1$. Montrer qu' $\exists n_0\in\mathbb{N}\ /\ u_{n+1}\geqslant u_n$. En déduire que $\sum u_n$ diverge.
- c) Applications : nature des séries $\sum \frac{x^n}{n!}$, $\sum \frac{n!}{n^n}$, $\sum_{n>0} \frac{n^3+n+3}{n+1} x^n$ et $\sum_{n>0} \frac{(n!)^2}{(2n+1)!} x^n \ (x>0)$

Ex 17 Règle de Duhamel* (cas où $\ell=1$ dans le critère de d'Alembert)

Soit $(u_n)_{n\geqslant 0}$ une suite strictement positive telle que $\frac{u_{n+1}}{u_n}=1-\frac{\alpha}{n}+o\left(\frac{1}{n}\right)$ avec $\alpha\in\mathbb{R}$. Montrer que si $\alpha > 1$ alors $\sum u_n$ converge et que si $\alpha < 1$ alors $\sum u_n$ diverge

Ex 18 Soient (u_n) et (v_n) des suites positives telles que $\sum u_n$ et $\sum v_n$ divergent. On note S_n et S'_n leurs sommes partielles.

- a) On suppose que $u_n = o(v_n)$. Montrer $S_n = o(S'_n)$
- b) On suppose que $u_n \sim v_n$. Montrer $S_n \sim S_n'$

Ex 19 Développement décimal :

- a) Montrer que tout réel x s'écrit sous la forme $x = \sum_{n=0}^{+\infty} \frac{a_n}{10^n}$ avec $a_0 \in \mathbb{N}$ et $\forall n \geqslant 1, a_n \in [0, 9]$
- b) Montrer que 0,999... = 1. Que penser de l'unicité de l'écriture décimale?
- c) On suppose que la suite (a_n) est stationnaire. Montrer que $x \in \mathbb{Q}$