Ausgabe: 23. März 2023 _____

Besprechung: 03 April 2023

Einführung in die angewandte Stochastik

Übungsblatt 0

Dieses Übungsblatt dient der Wiederholung mathematischer Inhalte und wird in der Globalübung am 3. April besprochen.

Aufgabe W 1

(a) Es seien \mathcal{A} und \mathcal{B} zwei Aussagen. Zeigen Sie die folgende Behauptung mittels einer Wahrheitstafel:

$$^{\neg}(\mathcal{A} \wedge \mathcal{B}) \wedge \mathcal{A} \Longleftrightarrow ^{\neg}\mathcal{B} \wedge \mathcal{A}.$$

(b) Gegeben seien Teilmengen A, B der Grundmenge Ω , also $A \subseteq \Omega$ und $B \subseteq \Omega$. Dann bezeichnen

$$A \backslash B = \{ \omega \in \Omega \mid \omega \in A \text{ und } \omega \notin B \}$$

das Differenzereignis von A und B und

$$B^c = \{ \omega \in \Omega \, | \, \omega \notin B \} = \Omega \backslash B$$

das Komplementärereignis von B (in Ω). Zeigen Sie die Gültigkeit der folgenden Mengen - Gleichungen:

- (1) $A \backslash B = A \cap B^c$
- $(2) A = (A \cap B) \cup (A \cap B^c),$

Aufgabe W 2

Entscheiden und begründen Sie, welche der Folgen $(a_n)_{n\in\mathbb{N}}$ beschränkt bzw. (streng) monoton ist. Untersuchen Sie die Folgen ebenfalls auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

(a)
$$a_n = \left(\frac{1}{n}\right)^{-1}$$

(b)
$$a_n = \frac{9+n}{n^2+1}$$

Aufgabe W 3

(a) Untersuchen Sie die nachstehend definierte Folge $(s_n)_{n\in\mathbb{N}}$ auf Konvergenz, und bestimmen Sie gegebenenfalls ihren Grenzwert:

$$s_n = \sum_{k=2}^n \left(\frac{1}{2}\right)^k, \quad n \in \mathbb{N}$$

(b) Bestimmen Sie den Grenzwert

$$\lim_{n \to \infty} \left(\sum_{k=1}^n \frac{3^k - 2}{5^k} \right) \, .$$

Aufgabe W 4

Berechnen Sie die folgenden Integrale:

(a)

$$\int_{1}^{e^2} x^4 \ln(x) \, dx$$

(b)

$$\int_{-2}^{2} x^2 e^{x^3} \, dx$$

(c)

$$\int_0^\infty e^{-kx} \, dx, \quad k > 0$$