fortiss

Munich, 2017-10-16

OntoBREP: An Ontology for CAD Data and Geometric Constraints

A Link Between Product Models and Semantic Robot Task Descriptions

W3C LBD Community Group Meeting

Dr. Markus Rickert, Alexander Perzylo

fortiss GmbH Landesforschungsinstitut des Freistaats Bayern An-Institut Technische Universität München

fortiss gemeinnützige GmbH

An-Institut Technische Universität München

Research and transfer institute associated with the Technical University Munich in the legal form of a non-profit organization (founded 2008)

Proprietors

- State of Bavaria (2/3)
- Fraunhofer Gesellschaft (1/3)

Board of Management

- Dr. Harald Rueß
- Thomas Vallon

Scientific Directors

- Prof. Helmut Krcmar (Sprecher)
- Prof. Alois Knoll
- Prof. Alexander Pretschner
- Dr. habil. Bernhard Schätz

Research Fellows

- Prof. Heinrich Hussmann (LMU)
- Prof. Uwe Baumgarten

Motivation and Context

Industrial robots in mass production

Challenges in automation for SMEs

No robot experts, short production cycles

Robot programming: State-of-the-art

High complexity for non-experts and no connection to process

FOR i = 1 TO 6 STEP 1

DECL POS P1 = {X 900, Y 0, Z 800, A 0, B 0, C 0, S 6, T 19}

PTP P1 CONT Vel= 100 % PDAT1

LIN P2 CONT Vel= 2 m/s CPDAT1

CIRC P3, P4, CA 260 C_ORI

ENDFOR

FOR i := 1 TO 6 DO
P1 := POS(294, 507, 1492, 13, 29, 16)
MOVE ARM[1] TO P1
MOVE ARM[1] LINEAR TO P2
MOVE ARM[1] CIRCULAR TO P4 VIA P3
ENDFOR

Representation and query of knowledge

Semantic web and ontologies

Humans with very efficient task descriptions for complex problems

Underspecified commands through natural language

Understanding requires common and domain-specific knowledge

Service robotics with goal specifications but no explicit step-by-step programming

Understanding of capabilities of hardware and software components required

Logical reasoning and inference

Semantic web with structured modelling of knowledge

Access to basic knowledge such as colors, sizes, etc.

Explicit process description instead of function calls

Semantic process description

Processes, tasks, and robot skills

P1 := **POS**(1100, -200, 800, 180, 0, 90)

MOVE ARM[1] TO P1

\$DOUT[602] := FALSE

\$DOUT[601] := TRUE

WAIT FOR \$DIN[602] = FALSE

WAIT FOR \$DIN[601] = TRUE

P2 := **POS**(1100, -200, 650, 180, 0, 90)

MOVE ARM[1] LINEAR TO P2

\$DOUT[601] := FALSE

\$DOUT[602] := TRUE

WAIT FOR \$DIN[601] = FALSE

WAIT FOR \$DIN[602] = TRUE

MOVE ARM[1] LINEAR TO P1

Semantic descriptions as backbone

Intuitive interfaces at the front

Semantic description of processes

Connection of parts and assembly tasks

Semantic description of objects

Geometry, mass, material, ...

Bounding box

Width/height/depth

Origin

X/Y/Z axis

Weight

Material properties

Grasp poses

BREP (CAD)

Polygon triangulation

• • •

Geometry models of solid objects

Different approaches

Approximation

- Polygons (curves are represented by a chain of straight line segments, required for 3D rendering on graphics cards)
- Voxels (regular grid in 3D space)
- Fixed level of detail

Exact representation

- Constructive solid geometry (CSG): Boolean composition of primitives
- Boundary representation (BREP) used by CAD model standards (STEP, IGES)
- Mathematical models are known
- Triangulated data generated on-the-fly for different applications

Boundary Representation (BREP)

Overview

OntoBREP

Semantic description language for CAD data

- Using the Web Ontology Language (OWL)
- Taxonomy of topological and geometric entities
- Properties, i.e., topological relations and geometric parameters

Complete example: Cuboid

Representation of geometry information

Semantic description of CAD data

The cuboid step-by-step

Description language for BREP

Taxonomies for topological and geometric entities

Annotate geometry data with functional properties

Example application

Geometric interrelation constraints

Example application

- Defined between topological entities, e.g. edges or faces
 - Fixed geometry and constrained geometry
- Describes (potentially underspecified) relative poses
- Used in task parameterization, e.g.
 - assembly poses,
 - grasp poses,
 - approach poses

Description of geometric constraints

Example: Assembly of parts

Automatic conversion to OntoBREP formalism

Import of STEP and IGES models

Conversion tool utilizing

- OpenCascade (OCC) CAD kernel
- JNI-based Java wrapper for OCC
- OWL API

Quantitative Evaluation

- Conversion time
- Load time in Sesame triple store (OWLIM)

Model	Converting STEP	Loading OWL in Sesame			
	time in ms	time in ms	axioms per ms		
CUBE	365	25	57.2		
<i>FRAME</i>	805	343	77.0		
ROTOR	1018	704	60.9		

rotor

Quantitative evaluation (1)

OWL model related metrics

Comparison of file sizes of

- Standard CAD formats and OWL representations
- Compressed and uncompressed variants

Model		File Size in kB										
	BI	BREP		STEP		IGES		OWL Manchester		OWL RDF/XML		
	plain	zipped	plain	zipped	plain	zipped	plain	zipped	plain	zipped		
CUBE	4.0	0.9	15.9	2.9	21.2	1.6	51.6	3.1	150.0	4.7		
FRAME	143.5	15.9	353.7	38.9	444.7	27.4	1010.3	49.6	2764.3	69.6		
ROTOR	170.8	20.0	650.8	63.3	896.0	54.6	1636.9	79.6	4455.3	115.8		

Quantitative evaluation (2)

From BREP entities to OWL axioms

Model	Number of topological BREP entities								
	Ve a	Ed ^b	Fa c	Wi ^d	Sh e	So f	CS g	Co h	Total
CUBE	8	12	6	6	1	1	0	1	35
FRAME	152	228	114	114	19	19	0	1	647
ROTOR	270	405	153	155	9	9	0	1	1002

^aVertex ^bEdge ^cFace ^dWire ^eShell ^fSolid ^gCompSolid ^hCompound

Num	Number of OWL axioms								
Ci	OP j	DP k	I^1	CA ^m	<i>OPA</i> ⁿ	DPA°	Total		
15	12	17	206	206	281	694	1431		
16	12	17	3915	3915	5358	13186	26419		
19	12	18	6068	6068	8342	22314	42841		

ⁱClass ^jObject property ^kData property ^lIndividual ^mClass assertion ⁿObject property assertion ^oData property assertion

cube

frame

rotor

Semantic description of an assembly task

Partial ordering specifies assembly sequence

Semantic description of workcell and factory

Modeling of sensors, robots, and tools

Semantic process description

From abstract task to concrete execution

Related publications

Nikhil Somani, Markus Rickert, and Alois Knoll. <u>An exact solver for geometric constraints with inequalities</u>. *IEEE Robotics and Automation Letters*, 2(2):1148-1155, April 2017. Accepted for presentation at ICRA 2017.

Alexander Perzylo, Nikhil Somani, Stefan Profanter, Ingmar Kessler, Markus Rickert, and Alois Knoll. <u>Intuitive instruction of industrial</u> <u>robots: Semantic process descriptions for small lot production</u>. In *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pages 2293-2300, Daejeon, Republic of Korea, October 2016.

Nikhil Somani, Alexander Perzylo, Caixia Cai, Markus Rickert, and Alois Knoll. <u>Object detection using boundary representations of primitive shapes</u>. In *Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)*, Zhuhai, China, December 2015.

Alexander Perzylo, Nikhil Somani, Markus Rickert, and Alois Knoll. <u>An ontology for CAD data and geometric constraints as a link</u> <u>between product models and semantic robot task descriptions</u>. In *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pages 4197-4203, Hamburg, Germany, September 2015.

Visualization plugin for OntoBREP models

Integration in Protégé ontology editor (work in progress)

Open source release (partial release)

OntoBREP on GitHub

GitHub repository:

https://github.com/ontobrep

- OWL ontology
- SWIG project for generating Java bindings for OpenCascade library (C++)

Dr. Markus Rickert, Alexander Perzylo

fortiss GmbH

Landesforschungsinstitut des Freistaats Bayern An-Institut Technische Universität München Guerickestraße 25 · 80805 München · Germany

tel +49 89 3603522 43 fax +49 89 3603522 50

{rickert,perzylo}@fortiss.org www.fortiss.org

