Proyecto 3: Reemplazo de Equipos

Emily Sanchez Viviana Vargas

Curso: Investigación de Operaciones II Semestre 2025

26 de septiembre de 2025

Problema de Reemplazo de Equipos

El algoritmo de reemplazo de equipos se utiliza en Investigación de Operaciones para decidir cuándo conviene reemplazar una máquina o equipo que se deteriora con el tiempo.

La idea básica es comparar dos tipos de costos:

- Costo de mantener el equipo actual: Incluye reparaciones, mantenimiento y costos de operación, que normalmente aumentan con los años de uso.
- Costo de reemplazarlo por uno nuevo: Incluye el costo inicial de adquisición y el valor de rescate (lo obtenido al vender el equipo viejo).

El objetivo es minimizar el costo promedio anual (o el valor presente de los costos) a lo largo del tiempo.

Variaciones comunes del problema:

- Ganancias por año: La productividad del equipo disminuye con la edad, afectando los ingresos.
- Inflación: Los precios de adquisición y mantenimiento cambian según el año.
- Nuevas tecnologías: Equipos más modernos pueden ofrecer mejores rendimientos y menores costos operativos.

Fórmula del costo: $C_{t,j} = \text{Compra} + \sum_{t} \text{Mantenimiento}_k - \text{Venta}_{j-t}$ Algoritmo: Programación Dinámica Función recursiva: $g(t) = \min_{\substack{j=t+1 \ j=t+1}} \{C_{t,j} + g(j)\} \text{ con } g(n) = 0$

Datos del Problema

■ Costo inicial (compra): \$500.00

 \blacksquare Plazo del proyecto: 5 años

■ Vida útil del equipo: 3 años

Cuadro 1: Datos del equipo por año de uso

Año de Uso	Mantenimiento	Valor Residual	Beneficio
1	\$30.00	\$400.00	\$0.00
2	\$40.00	\$300.00	\$0.00
3	\$60.00	\$250.00	\$0.00

Cálculo de Costos $C_{t,j}$

Cuadro 2: Cálculo detallado de costos por período

Período (t-j)	Duración	Fórmula	Costo
0-1	1 año	500 + 30 - 400	\$130.00
0-2	2 años	500 + 30 + 40 - 300	\$270.00
0-3	3 años	500 + 30 + 40 + 60 - 250	\$380.00
1-2	1 año	500 + 30 - 400	\$130.00
1-3	2 años	500 + 30 + 40 - 300	\$270.00
1-4	3 años	500 + 30 + 40 + 60 - 250	\$380.00
2-3	1 año	500 + 30 - 400	\$130.00
2-4	2 años	500 + 30 + 40 - 300	\$270.00
2-5	3 años	500 + 30 + 40 + 60 - 250	\$380.00
3-4	1 año	500 + 30 - 400	\$130.00
3-5	$2 \text{ a}\tilde{\text{n}}\text{o}\text{s}$	500 + 30 + 40 - 300	\$270.00
4-5	1 año	500 + 30 - 400	\$130.00

Cálculo de g(t) (Programación Dinámica)

- g(5) = 0 (caso base)
- $g(4) = \min\{C_{4,5} + g(5) = 130,00\} = \$130,00 \text{ (j=5)}$
- $g(3) = \min\{C_{3,4} + g(4) = 260,00, C_{3,5} + g(5) = 270,00\} = $260,00$ (j=4)
- $g(2) = \min\{C_{2,3} + g(3) = 390,00, C_{2,4} + g(4) = 400,00, \mathbf{C_{2,5}} + \mathbf{g(5)} = \mathbf{380,00}\} = \$380,00 \ (\mathbf{j=5})$
- $g(1) = \min\{\mathbf{C_{1,2}} + \mathbf{g(2)} = \mathbf{510,00}, C_{1,3} + g(3) = 530,00, \mathbf{C_{1,4}} + \mathbf{g(4)} = \mathbf{510,00}\} = \$510,00 \text{ (Empate: } \mathbf{j=2, j=4)}$
- $g(0) = \min\{\mathbf{C_{0,1}} + \mathbf{g(1)} = \mathbf{640,00}, C_{0,2} + g(2) = 650,00, \mathbf{C_{0,3}} + \mathbf{g(3)} = \mathbf{640,00}\} = \$640,00 \text{ (Empate: } \mathbf{j=1, j=3)}$

Empates

Se han resaltado en **negrita** las opciones óptimas.

Empates encontrados:

- En g(0): múltiples opciones óptimas con j = 1, 3 (costo: \$640.00)
- En g(1): múltiples opciones óptimas con j = 2, 4 (costo: \$510.00)

Los empates indican que existen múltiples estrategias óptimas para reemplazar el equipo.

Solución Óptima

Costo mínimo total: \$640.00 Planes óptimos encontrados: 3

Grafos de Planes Óptimos

A continuación se presentan los grafos de saltos de rana para cada plan óptimo encontrado.

Figura 1: Plan Óptimo 1: 0-1-2-5

Plan 1: 0-1-2-5

■ Período 0-1: 1 año, Costo: \$130.00

• Período 1-2: 1 año, Costo: \$130.00

■ Período 2-5: 3 años, Costo: \$380.00

Figura 2: Plan Óptimo 2: 0-1-4-5

Plan 2: 0-1-4-5

■ Período 0-1: 1 año, Costo: \$130.00

■ Período 1-4: 3 años, Costo: \$380.00

■ Período 4-5: 1 año, Costo: \$130.00

Figura 3: Plan Óptimo 3: 0-3-4-5

Plan 3: 0-3-4-5

■ Período 0-3: 3 años, Costo: \$380.00

■ Período 3-4: 1 año, Costo: \$130.00

■ Período 4-5: 1 año, Costo: \$130.00