Formelsammlung Physik

Zeichen	SI-Basisgröße	Basiseinheit	Symbol	Definition
l	Länge	Meter	m	
m	Masse	Kilogramm	kg	
t	Zeit	Sekunde	S	
I	Elektrische Stromstärke	Ampere	Α	
T	Temperatur	Kelvin	K	237,15K = 0 °C
n	Stoffmenge	Mol	Mol	
lv	Lichtstärke	Candela	cd	
Zeichen	Größe	Einheit	Symbol	Definition
f	Frequenz	Hertz	Hz	1/s
φ	Ebener Winkel	Radiant	rad	m / m = 1 ≈ 57.2958°
Ω	Raumwinkel	Steradiant	sr	$m^2 / m^2 = 1$
F	Kraft	Newton	N	$kg \cdot m / s^2 = J / m$
р	Druck, mech. Spannung	Pascal	Pa	$kg / (m \cdot s^2) = N / m^2$
E,W	Energie, Arbeit, Wärmemenge	Joule	J	$(kg \cdot m^2)/s^2 = Nm = Ws = Pa \cdot m^3$
Р	Leistung, Wärmestrom	Watt	W	$(kg \cdot m^2)/s^3 = J/s = VA$
Q	Elektrische Ladung	Coulomb	С	As
U	Elektrische Spannung	Volt	V	$kg \cdot m^2 / (s^3 \cdot A) = W / A = J / C$
С	Elektrische Kapazität	Farad	F	$s^4 \cdot A^2 / (kg \cdot m^2) = C / V = C^2 / J$
R	Elektrischer Widerstand	Ohm	Ω	$kg \cdot m^2 / (s^3 \cdot A^2) = V / A = Js / C^2$
G	Elektrischer Leitwert	Siemens	S	$s^3 \cdot A^2 / (kg \cdot m^2) = A / V = 1 / \Omega$
Ф	Magnetischer Fluss	Weber	Wb	$kg \cdot m^2 / (s^2 \cdot A) = Vs$
В	Magnetische Flussdichte	Tesla	Т	$kg / (s^2 \cdot A^2) = Wb / m^2 = Vs / m^2$
L	Induktivität	Henry	Н	$kg \cdot m^2 / (s^2 \cdot A^2) = Wb / A = Vs / A$
Zeichen	abgeleitete Größe	Einheitenname	Symbol	Definition
T	T Differenz zu 273.15 K	Grad Celsius	°C	K
Ф	Lichtstrom	Lumen	lm	cd · sr
E	Beleuchtungsstärke	Lux	lx	$cd \cdot sr / m^2 = Im / m^2$

10 ²⁴	Yotta	Υ
10 ²¹	Zetta	Z
10 ¹⁸	Exa	Е
10 ¹⁵	Peta	Р
10 ¹²	Tera	Т
10 ⁹	Giga	G
10 ⁶	Mega	М
10 ³	Kilo	k
10 ²	Hekto	h
10 ¹	Deka	da

10 ⁻¹	Dezi	d
10-2	Zenti	С
10 ⁻³	Milli	m
10-6	Mikro	μ
10 -9	Nano	n
10-12	Piko	р
10 ⁻¹⁵	Femto	f
10 ⁻¹⁸	Atto	а
10 ⁻²¹	Zepto	Z
10 ⁻²⁴	Yokto	У

Zeichen	Größe	Einheit	Zeichen	Größe	Einheit
J	Massenträgheitsmoment	kg⋅m²			
ρ	Massendichte	kg / m ³			
ω	Kreisfrequenz	rad / s			
М	Drehmoment	Nm			

Zeit	1d = 24h = 1440min = 86400s, 1h = 60min = 3600s, 1min = 60s
Ebener Winkel	1 °= π/180 rad= 3600 arcsec, 1 ′= 1° /60= π/(180·60)rad, 1 ″= 1′/60= 1°/3600= π/(180·3600)rad
Kraft	$1 \text{ dyn} = 1 \cdot 10^{-5} \text{ N}, 1 \text{kp} = 9.80665 \text{ N}$
Druck	TA: 1 at = 1 kp/cm ² = 98066.5 Pa, SA: 1 atm = 1013250 dyn/cm ² = 101325, Bar: 1 bar = 10 ⁵ Pa

Interpolationsgerade durch 2 Punkte:

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$
 $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$

Näherungsgerade durch N Punke:

$$y = bx + c$$
 mit $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$, $b = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$ $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$, $c = \bar{y} - b\bar{x}$

Differenztialrechnung:

Produktregel: $f(x) = u \cdot v \rightarrow f'(x) = u' \cdot v + u \cdot v'$

Quotientenregel: $f(x) = \frac{u}{v} \rightarrow f'(x) = \frac{u' \cdot v - u \cdot v'}{v^2}$

Kettenregel: $f(g(x)) \rightarrow f' \cdot (g(x)) \cdot g'(x)$

Korrespondenzen:

f(x)	$f^{'}(x)$	f(x)	f'(x)
$ \ln x , x \neq 0 $	$\frac{1}{x}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\log_b x , b > 0$	$\frac{1}{x \ln(b)}$	$\sqrt[n]{x}, n \neq 0$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$
1	_1_	e^x	e^x
\overline{x}	x^2	b^x , $b>0$	$b^x \ln(b)$
$\frac{1}{x^2}$	$-\frac{2}{x^3}$	$\arcsin(x)$	$\sqrt{1-x^2}$
$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
	<u> </u>	$\arctan(x)$	$\frac{1}{x^2+1}$

Integralrechnung Korrespondezen:

f(x)	F(x)	f(x)	F(x)
	1	$\sin(x)$	$-\cos(x)$
x^n	$\frac{1}{n+1}x^{n+1}, n \neq -1$	$\cos(x)$	$\sin(x)$
1		tan(x)	$-\ln(\cos(x))$
$\frac{\frac{1}{x}}{1}$	$\frac{\ln x , x \neq 0}{1}$	$(\sin(x))^2$	$\frac{1}{2}(x-\sin(x)\cos(x))$
$\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}}, n \neq 1$	$(\cos(x))^2$	$\frac{1}{2}(x+\sin(x)\cos(x))$
\sqrt{x}	$\frac{2}{3}x^{\frac{3}{2}}$	$(\tan(x))^2$	tan(x) - x
$\sqrt[n]{x}$	$\frac{n}{n+1}x^{\frac{n+1}{n}}, n \neq -1, n \neq 0$	$\sin(ax)\cos(ax)$	$ax) = \frac{1}{2a}(\sin(ax))^2$
$\frac{1}{\sqrt{x}}$	$\frac{n+1}{2\sqrt{x}}$	$x\sin(ax)$	$\frac{1}{a^2}\sin(ax) - \frac{x}{a}\cos(ax)$
$\frac{\sqrt{x}}{e^x}$	e^x	$x\cos(ax)$	$\frac{1}{a^2}\cos(ax) + \frac{x}{a}\sin(ax)$
xe^{ax}	$\frac{ax-1}{a^2}e^{ax}$	$\arcsin(x)$	$x \arcsin(x) + \sqrt{1 - x^2}$
$e^{ax}\sin(b)$	eax	arccos(x)	$x \arccos(x) - \sqrt{1 - x^2}$
$e^{ax}\cos(e^{ax})$	eax	arctan(x)	$x\arctan(x) - \frac{1}{2}\ln(1+x^2)$
b^x	$\frac{1}{\ln(b)}b^x, b > 0, b \neq 1$	$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right), a \neq 0$
$\ln(x)$	$x(\ln(x) - 1), x > 0$	$\frac{x^2}{x^2+1}$	$x - \arctan(x)$
$\log_b(x)$	$\frac{1}{\ln(b)}x(\ln(x)-1)$	-	

Geometrie: Dreieckregeln:

Höhensatz: $c_1 \cdot c_2 = h_c^2$

Kathetensatz: $c \cdot c_2 = a^2$ $c \cdot c_1 = b^2$

Sinussatz: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = \frac{a \cdot b \cdot c}{2 \cdot A}$

Cosinussatz: $a^2 + b^2 - 2ab \cdot cos(\gamma) = c^2$

$$a^2 + c^2 - 2ac \cdot \cos(\beta) = b^2$$

СТ

G A G

H H A

S

$$b^2 + c^2 - 2ac \cdot \cos(\alpha) = a^2$$

Kreis:

Umfang: $U = 2 \cdot \pi \cdot r = \pi \cdot d$

Fläche: $A = \pi \cdot r^2$

Kreissektor:

Kreisbogen-Länge(φ in °): $b = 2\pi r \cdot \frac{\varphi}{360^{\circ}}$

Kreisbogen-Länge(φ in rad): $b = r \cdot \varphi$

Kreisbogen-Fläche(ϕ in °): $A = \pi r^2 \cdot \frac{\phi}{360^\circ}$

Kreisbogen-Fläche(ϕ in rad): $A=\frac{1}{2}r^2\phi=\frac{1}{2}rb$

Umrechnung Radiant und Grad: $\frac{x}{2\pi} = \frac{\alpha}{360^{\circ}}$

Trigonometrische Formeln:

$$\begin{split} \sin(-x) &= -\sin(x) & \sin(2x) &= 2\sin(x)\cos(x) \\ \cos(-x) &= \cos(x) & \cos(2x) &= 2(\cos x)^2 - 1 \\ \tan(-x) &= -\tan(x) & \tan(2x) &= \frac{2\tan(x)}{1 - (\tan x)^2} \\ \sin\left(\frac{\pi}{2} - x\right) &= \cos(x) & \sin\left(\frac{x}{2}\right) &= \pm\sqrt{\frac{1}{2}(1 - \cos(x))} \\ \cos\left(\frac{\pi}{2} - x\right) &= \sin(x) & \cos\left(\frac{x}{2}\right) &= \pm\sqrt{\frac{1}{2}(1 + \cos(x))} \\ \cot\left(\frac{\pi}{2} - x\right) &= \tan(x) & \tan\left(\frac{x}{2}\right) &= \pm\sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}} \\ (\cos x)^2 + (\sin x)^2 &= 1 & \sin(x \pm y) &= \sin(x)\cos(y) \pm \cos(x)\sin(y) \\ \tan(x) &= \frac{\sin(x)}{\cos(x)} & \cos(x \pm y) &= \cos(x)\cos(y) \mp \sin(x)\sin(y) \\ \tan(x \pm y) &= \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x)\tan(y)} \end{split}$$

Vektorrechnung:

Winkel zwischen Vektoren: $\varphi = \arccos \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$

Orthogonale Projektion eines Vektor \vec{b} auf Vektor \vec{a} :

$$\vec{b}_{\vec{a}} = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a} = (\vec{b} \cdot \frac{\vec{a}}{|\vec{a}|}) \frac{\vec{a}}{|\vec{a}|}$$

$$|\vec{b}_{\vec{a}}| = |\vec{b}| \cos \varphi$$

Mittelpunkt M zwischen Punkten A und B:

$$\vec{m} = \frac{1}{2}(\vec{a} + \vec{b})$$

Elementare Statistik:

Relative Häufigkeit: $h_i = h(E_i) = \frac{n_i}{n_i}$

Arithmetisches Mittel:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

Geometrisches Mittel:
$$\bar{x}_G = \sqrt[n]{\prod_{i=1}^n x_i} = (x_1 x_2 \cdots x_n)^{1/n}$$

Harmonisches Mittel:
$$\bar{x}_H = \left(\frac{1}{n}\sum_{i=1}^n \frac{1}{x_i}\right)^{-1} = \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}}$$

Mittlere absolute Abweichung:
$$e_x = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

Median: n ungerade:
$$\frac{n+1}{2} = x_m \rightarrow M = w_m$$

n gerade:
$$x_{m1} = \frac{n}{2}$$
 $x_{m2} = x_{m1} + 1 \rightarrow M = \frac{w_{m1} + w_{m2}}{2}$

Quantil:
$$\frac{n \cdot \%}{100} = x_Q \rightarrow Q = w_Q$$
 Modus: häufigster Wert

Wahrer Fehler:
$$\delta x_{i,w} = x_i - x_w$$
 Scheinbarer Fehler: $\delta x_i = x_i - \overline{x}$

Relativer Fehler:
$$\delta x_{i,rel} = \frac{\delta x_i}{\overline{x}}$$
 oder $\delta x_{i,w,rel} = \frac{\delta x_{i,w}}{x_w}$

(Standardabweichung von
$$\overline{x}$$
)
Unsicherheit: $u_x = \frac{s_x}{\sqrt{n}}$ Gesamtunsicherheit: $u_{x,\text{ges}} = \sqrt{u_{x,1}^2 + u_{x,2}^2 + \cdots}$

Messunsicherheiten:

analog: $u = a/\sqrt{6}$ (2a = Abstand Skalenstrichen) digital: : $u = a/\sqrt{3}$ (2a = Auflösung)

Anzahl der Wieder-	Statistischer Vertrauensbereich p			
holungsmessungen n	68,27%	95,45%	99,73%	
	$t_{0,6827}$	$t_{0,9545}$	$t_{0,9973}$	
1	1,84	13,97	235,80	
2	1,32	4,53	19,2	
3	1,20	3,31	9,22	
4	1,14	2,87	6,62	
5	1,11	2,65	5,5	
6	1,09	2,52	4,90	
7	1,08	2,43	4,50	
8	1,07	2,37	4,28	
9	1,06	2,32	4,09	
10	1,05	2,28	3,96	
15	1,03	2,18	3,59	
20	1,03	2,13	3,42	
30	1,02	2,09	3,27	
50	1,01	2,05	3,16	
100	1,01	2,03	3,07	
200	1,00	2,01	3,03	
∞	1,00	2,00	3,00	

Wertebereich: $\bar{x} - t_p + u_x \le x_w \le \bar{x} + t_p + u_x$

Fehlerfortpflanzung:

$$\textbf{Messabweichung:} \quad \delta y \approx \frac{\partial f}{\partial v}(\bar{v},\bar{w},\ldots) \, \delta v + \frac{\partial f}{\partial w}(\bar{v},\bar{w},\ldots) \, \delta w + \ldots$$

Absolute Fehlergrenze:
$$\delta y_{\max} pprox \left| \frac{\partial f}{\partial v}(\bar{v}, \bar{w}, \ldots) \, \delta v_{\max} \right| + \left| \frac{\partial f}{\partial w}(\bar{v}, \bar{w}, \ldots) \, \delta w_{\max} \right| + \ldots$$

Relative Fehlergrenze:
$$\delta y_{\rm rel} \approx \delta y_{\rm max}/\bar{y}$$

Messunsicherheit (Gaußsches Fehlerfortpflanzungsgesetz):

$$u_y \approx \sqrt{\left(\frac{\partial f}{\partial v}(\bar{v}, \bar{w}, \dots) u_v\right)^2 + \left(\frac{\partial f}{\partial w}(\bar{v}, \bar{w}, \dots) u_w\right)^2 + \dots}$$

Drehbewegung:

Frequenz:
$$f = \frac{1}{T}$$
 Kreisfrequenz: $\omega = 2\pi \cdot f = \frac{2\pi}{T}$

Winkeländerung:
$$\Delta \varphi = \varphi - \varphi_0$$
 Bogenlänge: $\Delta s = r \cdot \Delta \varphi$

Winkelgeschwindigkeit:
$$\omega = \frac{\Delta \varphi}{\Delta t}$$

Winkelbeschleunigung:
$$\alpha = \frac{\Delta \omega}{\Delta t}$$

Bahngeschwindigkeit:
$$v_t = \frac{\Delta s}{\Delta t}$$
 $v_t(t) = r \cdot \dot{\varphi}(t) = r \cdot \omega(t)$

Bahnbeschleunigung:
$$a_t(t) = r \cdot \ddot{\varphi}(t) = r \cdot \dot{\omega}(t) = r \cdot \alpha(t)$$

Gleichförmige Rotation:

$$\varphi(0) = \varphi_0 \quad \alpha(t) = 0 = const. \quad \omega(t) = \omega_0 = const.$$

$$\varphi(t) = \varphi_0 + \omega_0 \cdot t$$

Gleichmäßig beschleunigte Rotation:

$$\varphi(0) = \varphi_0 \quad \omega(0) = \omega_0 \quad \alpha(t) = \alpha_0 = const.$$

$$\omega(t) = \omega_0 + \alpha_0 \cdot t$$

$$\varphi(t) = \varphi_0 + \omega_0 \cdot t + 0.5 \cdot \alpha_0 \cdot t^2$$

$$\omega^2(t) = \omega_0^2 + 2 \cdot \alpha_0 \cdot (\varphi(t) - \varphi_0)$$

Ebene Drehbewegung:

$$\vec{r}(t) = r(t) \cdot \overrightarrow{e_r}(t)$$

$$\vec{v}(t) = \dot{\vec{r}}(t) = \dot{\vec{r}}(t) \cdot \overrightarrow{e_r}(t) + r(t) \cdot \omega(t) \cdot \overrightarrow{e_{\theta}}(t)$$

$$\vec{a}(t) = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t)$$

$$= (\ddot{r}(t) - r(t)\omega^{2}(t))\overrightarrow{e_{r}}(t) + (2\dot{r}(t)\omega(t) + r(t)\dot{\omega}(t))\overrightarrow{e_{\varphi}}(t)$$

radial

tangential

Rückrechnung ins kartesische KS

Kreisbewegung:
$$t_0 = 0$$
, $\varphi_0 = \varphi(0)$, $\omega_0 = const$, $r = const$

$$\vec{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} r \cdot \cos(\omega_0 \cdot t + \varphi_0) \\ r \cdot \sin(\omega_0 \cdot t + \varphi_0) \end{bmatrix}$$

$$\overrightarrow{v_t}(t) = \dot{\vec{r}}(t) = \begin{bmatrix} -\omega_0 \cdot r \cdot \sin{(\omega_0 \cdot t + \varphi_0)} \\ \omega_0 \cdot r \cdot \cos{(\omega_0 \cdot t + \varphi_0)} \end{bmatrix}$$

$$v_t = |\overrightarrow{v_t}(t)| = \omega_0 \cdot r$$
 $\overrightarrow{v_t}(t) \perp \overrightarrow{r}(t)$

$$\overrightarrow{a_r}(t) = -\omega_0^2 \cdot \overrightarrow{r}(t) = -\frac{v_t^2}{r^2} \cdot \overrightarrow{r}(t)$$

$$a_r = |\overrightarrow{a_r}(t)| = \omega_0^2 \cdot r = \frac{v_t^2}{r}$$

$$\varphi(t) = \varphi_0 + \omega_0 \cdot t$$

$$\Delta \varphi(t) = \varphi(t) - \varphi_0 = \omega_0 \cdot t$$

$$\Delta s(t) = r \cdot \Delta \varphi(t) = r \cdot \omega_0 \cdot t$$

$$\omega_0 = 2\pi f = \frac{2\pi}{T}$$

Formelsammlung Physik

Mechanik starrer Körper

Verschiebung: $\Delta x = x_E - x_A$ Strecke: $\Delta s = |\Delta x_1| + |\Delta x_2| + ...$

Mittlere Geschwindigkeit: $\bar{v}_{\chi} = \frac{x_E - x_A}{t_E - t_A} = \frac{\Delta x}{\Lambda t}$

Mittlerer Geschwindigkeitsbetrag: $\bar{u}_x = \left| \frac{\Delta s}{\Lambda t} \right|$

Zusammenhang: $a_x(t) = \dot{v}_x(t) = \ddot{x}(t)$

$$v_x(t) = \dot{x}(t) = v_x(t_0) + \int_{t_0}^t a_x(\tau) \ d\tau$$

$$x(t) = x(t_0) + \int_{t_0}^t v_x(\tau) d\tau$$

Gleichförmige Bewegung: $v_x = konst.$ $a_x = 0$ (konst.)

$$x(t) = x_0 + v_x \cdot (t - t_0)$$

Gleichmäßig beschleunigte Bewegung: $a_x = konst.$

$$x(t) = x_0 + v_{0,x} \cdot (t - t_0) + \frac{1}{2} a_x \cdot (t - t_0)^2$$

$$v_x(t) = v_{0,x} + a_x \cdot (t - t_0)$$

$$v_x^2 - v_{0x}^2 = 2a_x(x - x_0)$$

$$\bar{a}_{x} = \frac{\Delta v_{x}}{\Delta t} = \frac{v_{xE} - v_{xA}}{t_{E} - t_{A}}$$

Freier Fall: y(0) = h $v_v(0) = v_0$ $a_v(t) = -g = konst.$

$$v_{v}(t) = v_{0} - g \cdot t$$

$$y(t) = h + v_0 \cdot t - \frac{1}{2} \cdot g \cdot t^2$$

Aufprallzeit: $t_E = t_0 + \frac{1}{a}(v_0 + \sqrt{v_0^2 + 2 \cdot g \cdot h})$

Schiefer Wurf: (2 Dimensionen)

$$\vec{r}(t) = \begin{bmatrix} x_0 + v_{x0} \cdot t \\ y_0 + v_{y0} \cdot t - 0.5gt^2 \end{bmatrix} = \begin{bmatrix} x_0 + v_0 \cdot \cos(\alpha) \cdot t \\ y_0 + v_0 \cdot \sin(\alpha) \cdot t - 0.5gt^2 \end{bmatrix}$$

$$\vec{v}(t) = \begin{bmatrix} v_x(t) \\ v_y(t) \end{bmatrix} = \begin{bmatrix} v_{x0} \\ v_{y0} - gt \end{bmatrix} = \begin{bmatrix} v_0 \cdot \cos(\alpha) \\ v_0 \cdot \sin(\alpha) - 0.5gt \end{bmatrix}$$

$$\vec{a}(t) = \begin{bmatrix} a_x(t) \\ a_y(t) \end{bmatrix} = \begin{bmatrix} 0 \\ -g \end{bmatrix}$$

$$y(x) = y_0 + \frac{v_{y0}(x - x_0)}{v_{y0}} - \frac{g(x - x_0)^2}{2v_{x0}^2}$$

$$= y_0 + \tan(\alpha) \cdot (x - x_0) - \frac{g \cdot (x - x_0)^2}{2 \cdot v_0^2 \cdot \cos^2(\alpha)}$$

Scheitelpunkt
$$\vec{r}(t_s) = \begin{bmatrix} x_s \\ y_s \end{bmatrix} = \begin{bmatrix} x_0 + \frac{v_{x0} \cdot v_{y0}}{g} \\ y_0 + \frac{v_{y0}^2}{2g} \end{bmatrix} = \begin{bmatrix} x_0 + \frac{v_0^2}{g} \sin(\alpha) \cos(\alpha) \\ y_0 + \frac{v_0^2}{2g} \sin^2(\alpha) \end{bmatrix}$$

$$\vec{v}(t_s) = \begin{bmatrix} v_{x,s} \\ v_{y,s} \end{bmatrix} = \begin{bmatrix} v_{x0} \\ 0 \end{bmatrix} = \begin{bmatrix} v_0 \cdot \cos(\alpha) \\ 0 \end{bmatrix}$$

bei
$$t_s = \frac{v_{y0}}{q} = \frac{v_0}{q} \cdot \sin(\alpha)$$

Endpunkt y(t) = y(x) = 0

$$\vec{r}(t_E) = \begin{bmatrix} x_E \\ y_E \end{bmatrix} = \begin{bmatrix} x_0 + \frac{v_{x0}}{g} \left(v_{y0} + \sqrt{2gy_0 + v_{y0}^2} \right) \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} x_0 + \frac{v_0}{g} \cos{(\alpha)} \cdot \left(v_0 \cdot \sin{(\alpha)} + \sqrt{2gy_0 + v_0^2 \sin^2{(\alpha)}} \right) \end{bmatrix}$$

$$\vec{v}(t_E) = \begin{bmatrix} v_{x,E} \\ v_{y,E} \end{bmatrix} = \begin{bmatrix} v_{x0} \\ -\sqrt{2gy_0 + v_{y0}^2} \end{bmatrix} = \begin{bmatrix} v_0 \cos{(\alpha)} \\ -\sqrt{2gy_0 + v_0^2 \cdot \sin^2{(\alpha)}} \end{bmatrix}$$

$$|\vec{v}(t_E)| = \sqrt{v_{x0}^2 + v_{y0}^2 + 2gy_0} = \sqrt{v_0^2 + 2gy_0}$$

$$\beta_E = \arctan\left(\frac{2}{v_{x0}}\sqrt{2 \cdot g \cdot y_0 + v_{y0}^2}\right) = \arctan\left(\sqrt{\frac{2gy_0}{v_0^2 \cdot \cos(\alpha)} + tan^2(\alpha)}\right)$$

Bei
$$t_E = \frac{1}{g} \left(v_{y0} + \sqrt{2gy_0 + v_{y0}^2} \right)$$

= $\frac{1}{g} \left(v_0 \sin(\alpha) + \sqrt{2gy_0 + v_0^2 \sin^2(\alpha)} \right)$

Newtonschen Axiome

Newton 1: $\vec{a} = 0$ wenn $\vec{F} = 0$ (\bar{v} kann $\neq 0$ sein!)

Newton 2:
$$\frac{d}{dt}\vec{p}(t) = \overrightarrow{F_{res}}(t)$$
 mit $\vec{p}(t) = m(t) \cdot \vec{v}(t)$

$$m(t) \cdot \vec{a}(t) + \dot{m}(t) \cdot \vec{v}(t) = \sum_{i} \vec{F}_{i}(t)$$

Bei konstanter Masse: $m \cdot \vec{a}(t) = \sum_i \vec{F}_i(t) \rightarrow F = m \cdot a$

Newton 3: Wechselwirkungsprinzip $\vec{F}_{12} = -\vec{F}_{21}$

Gravitationskraft: $\vec{F}_{G12} = -G \cdot \frac{m_1 \cdot m_2}{(r_{12})^2} \cdot \frac{\vec{r}_{12}}{r_{12}} \quad F_{G12} = G \cdot \frac{m_1 \cdot m_2}{(r_{12})^2}$

Normalkraft: $F_N = m \cdot g \cdot \cos(\alpha)$

Hangabtriebskraft: $F_H = m \cdot g \cdot \sin(\alpha)$

Reibungskraft: $\vec{F}_R = -\mu_R \cdot F_N \cdot \frac{\vec{v}(t)}{v(t)}$ $F_R = \mu_R \cdot F_N$

Luftreibung: $\vec{F}_W = -\frac{1}{2} c_W \rho A v \vec{v}$ $F_W = -\frac{1}{2} c_W \rho A v^2$

Federkraft: $F_{Zug} = k_F \cdot x$ $F_{Feder} = -k_F \cdot x$ (Hooksches Gesetz)

Zentripetalkraft: $\vec{F}_{ZP} = -m \cdot \omega^2 \cdot \vec{r}$ $F_{ZP} = m \cdot \omega^2 \cdot r$

Allgemein: $\vec{F} = \begin{pmatrix} (+rechts)(-links) & F_x \\ (+oben)(-unten) & F_y \end{pmatrix}$

Trägheitskraft: $\vec{F}_T = -m \cdot \vec{a}_R^{(I)}$

Zentrifugalkraft: $\vec{F}_{ZF} = m \cdot \omega^2 \cdot \vec{r} = -\vec{F}_{ZP}$

Coriolis-Kraft: $\vec{F}_{cor} = 2m \cdot \vec{v} \times \vec{\omega} = 2 \cdot m \cdot |\vec{v}| \cdot |\vec{\omega}| \cdot \sin \angle (\vec{v}, \vec{\omega})$

Coriolis-Beschleunigung:

 $\vec{a}_{Cor} = 2 \cdot v_r \cdot \omega \cdot \vec{e}_{\varphi} = 2 \cdot \vec{v} \times \overrightarrow{\omega} = 2 \cdot |\vec{v}| \cdot |\overrightarrow{\omega}| \cdot sin \angle (\vec{v}, \overrightarrow{\omega})$

Formelsammlung Physik

Seilkraft: überall gleich !!!

Massenmittelpunkt:

wassenmitterpunkt:

$$x_S \cdot (m_1 + m_2) \cdot g = x_1 \cdot m_1 \cdot g + x_2 \cdot m_2 \cdot g$$

$$x_S = \frac{m_1 \cdot x_1 + m_2 \cdot x_2}{m_1 + m_2}$$

Hier noch eine Skizze evtl

Arbeit und Energie:

Arbeit:
$$W = \vec{F} \cdot \vec{s} = |\vec{F}| \cdot |\vec{s}| \cdot cos \angle (\vec{F}, \vec{s})$$

Hubarbeit:
$$W_H = m \cdot g \cdot h \rightarrow E_{pot} = W_H$$

Beschleunigungsarbeit:
$$W_B = F_B \cdot s = \frac{1}{2} \cdot m \cdot v^2 \rightarrow E_{kin} = W_B$$

Arbeit im Kosi:
$$\Delta W = F \cdot \Delta s$$
 (Fläche unter Graphen)

Leistung:
$$P = \frac{dW}{dt} = \vec{F} \cdot \vec{v}$$

Koordinatenarten:

Zylinderkoordinaten: (P, 4, Z)

Kugelkoordinaten Typ 1: (r, φ, θ)

Kugelkoordinate Typ 2: (r, Ψ, Ψ)

Raumwinkel: $\Omega = \frac{A}{r^2}$