- Soit la suite (u_n) définie sur \mathbb{N} par $u_0 = 2$ et tout entier naturel n par $u_{n+1} = \frac{1}{4}u_n + 2$.
 - 1. Démontrer que pour tout entier naturel n, $u_n \leqslant u_{n+1}$.
 - 2. En déduire le sens de variation de la suite $(u_n).$
- On considère (u_n) une suite réelle telle que pour tout entier naturel n, on a : $n < u_n < n + 1$. Démontrer que la suite (u_n) est croissante.
- On considère la suite (u_n) définie sur \mathbb{N} par :

$$u_{n+1} = \frac{1}{3}u_n + \frac{14}{3}$$
 et $u_0 = 1$.

- 1. Démontrer par récurrence que la suite (u_n) est majorée par 7.
- 2. Étudier la monotonie de la suite (u_n) .
- Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n=5+\cos(n^2)$. Démontrer que la suite (v_n) est bornée.
- Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{n}{n+1}$. Démontrer que la suite (u_n) est bornée
- On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = 2$ et pour tout entier naturel n,

$$u_{n+1} = \frac{2}{3}u_n + 2n + 1.$$

- 1. Conjecturer la limite de la suite (u_n) à la calculatrice.
- 2. On considère le programme Python:

Compléter la fonction Python ci-dessus pour qu'elle retourne le premier terme de la suite strictement supérieur à 100.

- Calculer les limites des suites (u_n) suivantes :
 - 1. $u_n = \sqrt{n} \left(4 + \frac{1}{n} \right)$
 - 2. $u_n = -n^3(3n^2 + 5)$
 - 3. $u_n = \left(-7 + \frac{2}{\sqrt{n}}\right)(1-n)$
- Déterminer la limite (si elle existe) de la suite (u_n) dans les cas suivants :
 - 1. $u_n = n + (-1)^n$ où $n \in \mathbb{N}$.

$$2. \ u_n = \frac{(-1)^n}{n^2} \text{ où } n \in \mathbb{N}^*.$$

3.
$$u_n = \frac{1}{n}\cos(n)$$
 où $n \in \mathbb{N}^*$.

- Déterminer la limite de la suite $(u_n)_{n\geqslant 0}$ dans les cas suivants:
 - 1. $u_n = \frac{1}{n} (n^2 + n + 2)$;
 - 2. $u_n = \frac{n^2 2n + 3}{4n^3 + 1}$;
 - 3. $u_n = \frac{\sqrt{n+n}}{4n+5}$.
- 35
- 1. Soit (u_n) telle que $\forall n \in \mathbb{N}, u_n \geqslant 5n$. Déterminer la limite de la suite (u_n) .
- 2. Soit (v_n) telle que $\forall n \in \mathbb{N}, \ v_n \leqslant -n^2$. Déterminer la limite de la suite (v_n) .
- 3. On considère une suite (w_n) qui vérifie $-\frac{1}{n}+3 \le w_n \le \frac{1}{n}+3$ pour tout entier naturel Calculer la limite de la suite (w_n) .
- 36
- En utilisant les théorèmes de comparaison des limites, calculer les limites des suites suivantes dont on donne le terme général ci-dessous :
 - $1. \ u_n = n \cos n$
 - $2. \ v_n = -n^2 + (-1)^n$
 - 3. $w_n = \frac{4n + (-1)^n}{2n + 3}$
 - 4. $z_n = \frac{n \sin n}{\cos n + 2}$
- Soit $(u_n)_{n\in\mathbb{N}}$ vérifiant pour tout entier naturel $n:1\leqslant u_n\leqslant 1+\frac{1}{n}.$ Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.

38 Soit $(u_n)_{n\in\mathbb{N}}$ vérifiant pour tout entier naturel $n:1-\frac{1}{n}\leqslant u_n\leqslant 2+\frac{4}{n}.$ La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente? Justifier.

Soit q un réel et (u_n) la suite définie par $u_n = q^n$ pour tout entier naturel n non nul.

> Compléter la fonction Python ci-dessous pour qu'elle retourne un message indiquant si (u_n) est convergente ou divergente :

40 Déterminer la limite éventuelle des suites $(u_n)_{n\in\mathbb{N}}$ suivantes en utilisant la limite d'une suite géométrique:

1.
$$u_n = \frac{4}{7^n}$$

$$2. \ u_n = \frac{1}{1 + 0,25^n}$$

3.
$$u_n = 9^n - 3^n$$

4.
$$u_n = \frac{(-4)^{n+1}}{5^n}$$

Soit la suite (v_n) définie pour tout entier naturel n par :

$$\begin{cases} v_0 = -\frac{2}{3} \\ v_{n+1} = -2v_n + 1 \end{cases}$$

1. Démontrer par récurrence que pour tout entier naturel n,

$$v_n = \frac{1}{3} - (-2)^n$$

- 2. Étudier la convergence de la suite (v_n) .
- On considère la suite (u_n) définie pour tout entier naturel n par :

$$u_{n+1} = \frac{3u_n + 1}{2u_n + 4}$$
 et $u_0 = 1$.

- 1. Démontrer que pour tout entier naturel $n, u_n \ge 0$.
- 2. On considère alors la suite (t_n) définie pour tout entier naturel n par :

$$t_n = \frac{2u_n - 1}{u_n + 1}.$$

- (a) Démontrer que la suite (t_n) est géométrique de raison $\frac{2}{5}$.
- (b) Exprimer, pour tout entier naturel n, t_n en fonction de n.
- (c) En déduire l'expression de u_n en fonction de n.
- (d) Démontrer que (u_n) converge et déterminer sa limite.
- On considère la suite (u_n) définie pour tout entier naturel n par :

$$\begin{cases} u_0 = 1, 8 \\ u_{n+1} = \frac{2}{3 - u_n} \end{cases}$$

1. Démontrer par récurrence que pour tout entier naturel n,

$$1 \leqslant u_{n+1} \leqslant u_n \leqslant 2.$$

- 2. En déduire que la suite (u_n) est convergente.
- 3. Soit ℓ la limite de la suite (u_n) . Démontrer que ℓ vérifie l'égalité $\ell = \frac{2}{3-\ell}$ puis en déduire la valeur de ℓ .
- Soit $(u_n)_{n\in\mathbb{N}}$ vérifiant pour tout entier naturel $n, u_n \leq u_{n+1} \leq \frac{1}{n+1}$.

 Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.

On définit la suite (u_n) définie pour $n \ge 2$ par :

$$\begin{cases} u_2 = 1 \\ u_{n+1} = \left(1 - \frac{1}{n^2}\right) u_n \end{cases}$$

1. (a) Démontrer que pour entier naturel n supérieur ou égal à 2,

$$0 \leqslant u_n \leqslant 1$$
.

- (b) Étudier le sens de variation de la suite (u_n) .
- 2. Justifier que la suite (u_n) est convergente.
- 3. Montrer que pour tout entier naturel n supérieur ou égal à 2,

$$u_n = \frac{n}{2(n-1)}.$$

- 4. En déduire $\lim_{n\to+\infty} u_n$.
- On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = 1$ et, pour tout $n \ge 0$,

$$u_{n+1} = \frac{1}{10} u_n (20 - u_n).$$

1. Soit f la fonction définie sur [0; 20] par

$$f(x) = \frac{1}{10}x(20 - x).$$

- (a) Étudier les variations de f sur [0; 20].
- (b) En déduire que pour tout $x \in [0; 20]$, $f(x) \in [0; 10]$.
- (c) On donne ci-après la courbe représentative $\mathscr C$ de la fonction f dans un repère orthonormal.

Représenter, sur l'axe des abscisses, à l'aide de ce graphique, les cinq premiers termes de la suite $(u_n)_{n\geqslant 0}$ puis émettre une conjecture quant à son sens de variation et à sa convergence.

2. Montrer par récurrence que pour tout $n \in \mathbb{N}$,

$$0 \leqslant u_n \leqslant u_{n+1} \leqslant 10.$$

3. Montrer que la suite $(u_n)_{n\geqslant 0}$ est convergente et déterminer sa limite.

