Estructuras de Datos y Algoritmos Grados en Ingeniería Informática

Examen Primer Cuatrimestre, 25 de enero de 2018.

Nombre:		Grupo:
Laboratorio:	Puesto:	Usuario de DOMjudge:

Se dice que un vector ordenado de enteros tiene forma de escalera si sus elementos se repiten un número e_i de veces, dando lugar a peldaños o escalones. Definimos el ancho de un escalón como el número de repeticiones $(e_i > 0)$ del elemento que forma ese escalón. Así, el siguiente vector tendría forma de escalera, con 6 peldaños de anchos 4, 2, 4, 1, 2 y 1:

1	1	1	1	2	2	3	3	3	3	4	7	7	8
---	---	---	---	---	---	---	---	---	---	---	---	---	---

pero el siguiente vector no tendrían forma de escalera, ya que los elementos no están ordenados.

Decimos que una escalera tiene peldaños de *ancho creciente* si el número de elementos de cada escalón es mayor o igual que los del escalón anterior.

1	1	2	2	2	3	2	2	1	1	4	1	1	1
Т	I		4	J	ാ	J	ാ	4	'1	4	4±	4	4±

1. (4 puntos) Implementa un algoritmo iterativo que, dado un vector v de enteros de longitud $0 < n \le 1000$ que representa una escalera válida, diga si es una escalera con peldaños de ancho creciente. Además de implementar el algoritmo, deberás escribir su precondición, postcondición, invariante y función de cota de los bucles y calcular su complejidad.

Entrada	Salida
n v	
3 1 2 2	SI
3 1 2 3	SI
3 1 1 2	NO
3 1 1 1	SI
6 2 2 4 4 6 6	SI
6 2 3 3 4 4 5	NO
1 3	SI
2 3 3	SI
0	

2. (3 puntos) Implementa un algoritmo D&V que, dado un vector v de longitud $0 < n \le 1000$ en escalera, devuelva la anchura del primer escalón, del último y del escalón más ancho.

Nota: los peldaños no tienen por qué tener anchura creciente.

Entrada	Salida
n v	
3 1 2 3	1 1 1
4 1 2 2 3	1 1 2
5 1 1 2 3 3	2 2 2
4 1 1 1 1	4 4 4
6 1 1 1 2 2 2	3 3 3
6 1 1 1 1 2 2	4 2 4
6 1 3 3 3 4 4	1 2 3
0	

- 3. (3 puntos) Implementar un algoritmo que genere todas las posibles escaleras de longitud n, siendo $0 < n \le 30$, válidas para la tercera edad. Una escalera válida para la tercera edad es aquella en la que:
 - El primer escalón está a altura 1.
 - El alto de todos los escalones es 1 (es decir, la altura del segundo escalón es 2, la del tercero 3, etc.).
 - El ancho de los escalones es creciente.

Entrada	Salida
n	
2	1 1
	1 2
3	1 1 1
	1 2 2
	1 2 3
4	1 1 1 1
	1 1 2 2
	1 2 2 2
	1 2 3 3
	1 2 3 4
0	