Evolutionary Computation

What is Evolutionary Computation (EC)?

The analogy:

- Fitness: How fit the individuals are.
- Quality: How good the solutions are.

Inspirations from Darwinian Evolution

- Survival of the fittest
 - Natural selection: Finite / limited resources
 - Compete efficiently → Chances to reproduce
- Phenotypic variations/diversity
 - Phenotypic traits
 - Behavioral or physical features
 - Inheritance, development, and random changes
 - Determine the fitness of individuals
 - "Good" traits tend to increase in future
 - Recombination

Inspirations from Genetics

- DNA: The code of life
 - Genotype → Inside, structure
 - Phenotype → Outside, property
- Gene: Functional unit
- Genome: Complete genetic material
 - Chromosome: DNA Strands
- Crossover
- Mutation

What's Special about EC?

- Uniform approach for different problems
 - No need to design or develop specific algorithms
- Black-box optimization
 - No need to analyze or understand the problem
 - Interactive, subjective, or even no function
- Population of individuals (solutions)
 - Non-deterministic in nature
 - Providing alternative solutions
- Multi-objective capability
 - Several objectives can be handled naturally
 - Providing solutions that cannot be compared

Applicability of Evolutionary Algorithms

Progress in Evolutionary Algorithms

So, what actually happens?

- Early phase:
 - Randomly distributed

- Mid-phase:
 - Around or on hills

- Late phase:
 - Concentrated on hills

How Evolutionary Algorithms Work

A general scheme:

Population

- Unit of evolution
- Multiple chromosomes/individuals
- Fixed size or variable size
- Diversity
 - Many indicators/many ways to measure
- Initialization
 - Usually totally random to ensure enough raw genetic materials
 - Good initial points can be employed
 - Problem domain knowledge can be used

Selection and Replacement

- Selection: Select the parents to mate
 - Depends on the fitness in some way
 - Usually probabilistic
 - ◆ High fitness → High probability to reproduce
- Replacement: Select victims to be replaced
 - Usually deterministic
 - Fitness-based
 - Age-based (e.g., FIFO)
 - Elitism: The best individuals never die

Variation Operators

- Mutation: more of exploitation
 - Unary operation: One parent
 - Random changes → New stuff from nowhere
- Crossover: more of exploration
 - *N*-ary operation: *N* parents (usually N=2)
 - Non-deterministic
 - Explore combinations of traits/genes
- Mutation vs. Crossover
 - Relative importance?
 - Depends on representation
 - Use both in practice

Termination

- Common termination criteria:
 - Number of generations: Maximum allowed
 - Certain fitness/objective values
 - Estimator of diversity (check of convergence)

Example: 8-Queens

Representation:

Phenotype: A board configuration

■ **Genotype**: A permutation of integers 1 ... 8

Example: 8-Queens

Fitness Function:

- Penalty:
 - Number of mutually attacking pairs
 - To be minimized
- Fitness:
 - Reverse the penalty in some way
 - To be maximized

Bit-String Representation

■ Representation: Binary (bit) strings → All kinds of information can be coded.

Bit-String Representation: Mutation

- \blacksquare Alter each gene independently with probability p_m .
- $ightharpoonup p_m$ typically is 1/n (n = number of bits)

After: 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1

Bit-String Representation: Crossover

- 1-point crossover
 - Choose a random position on the two parents
 - Create children by exchanging tails
 - p_c typically in the range of [0.6, 0.9]
- Can have n-point crossover as well
- Nearby genes tend to stay together

Bit-String Representation: Crossover

- Uniform crossover: Dependence on loci (gene positions) removed.
 - For each bit, the parents exchange that gene with a probability.

■ With 50% probability, each child has 50% of genes from each of its parents.

Beyond Bit-String Representation

What can be in a gene?

- Integer representations:
 - Discrete variables (e.g., counts of items)
 - Enumeration or category variables
- Permutations (when the objective is to identify good "ordering", such as the TSP problem)
- Real-number representations (lots of problems)
- Representation using bit strings still work
 - More bits → Longer chromosomes → Higher precision

Integer Representation

- Mutation:
 - Random change by one or some step size
 - Random number from its possible values
- Crossover:
 - N-point or uniform crossover
 - Arithmetic crossover (mean, etc.)

Real-Valued Representation

Crossover:

- Gene-wise crossover: just the same as when the genes are bits.
- Arithmetic recombination (replace some children with weighted means of their respective source)
- Blend recombination (2 children with opposite weights in arithmetic recombination)
- Simplex recombination (>2 parents): Each child is a randomly selected point in the simplex formed by parents.

Real-Valued Representation: Mutation

- Standard method: Change the gene value by an amount drawn from a distribution (e.g., Gaussian)
- Some issues
 - Lower bound on the amount of change
 - Upper bound on the amount of change (constraint on gene value)
 - Adjusting the distribution of change during evolution:
 - Exploration: larger changes
 - Exploitation: smaller changes

Permutations

- Nature of problem: Orders, sequences, permutations
- Example problems: N-queens, travelling salesperson (TSP), job scheduling, etc.
- Two main types (different focus):
 - Order: e.g., sorting, job scheduling
 - Adjacency: e.g., TSP
- Different genetic operators have different effects on orders and adjacency.
 - Select the ones that are more suitable for the problem.

Permutations: Representation

- A sequence of integers: 1, 2, ..., N
- Two different ways to code a permutation:
 - Example: 5 objects: A, B, C, D, E
 - permutation: C, B, E, A, D
 - Code the object index at each location: 3, 2, 5, 1, 4
 - Code the location of each object: 4, 2, 1, 5, 3

Permutations: Representation

- Permutation representation by random keys:
 - Use a set of distinct numbers (integers or real values)
 - Example: 5 objects: A, B, C, D, E
 - → random keys: 0.32, 0.79, 0.04, 0.55, 0.73
 - We can get a permutation by sorting the keys of the objects.
 - → permutation: C, A, D, E, B
 - Genetic operators for real-valued genes are applicable here, as the genes are actually the random keys.

Parent Selection

Fitness based selection:

allocated size ∞ fitness value

Roulette wheel selection:

Stochastic universal sampling:

- Problem:
 - Superstar: The individual with very high fitness will dominate
 - → All individuals become similar
 - Solution: Shift the fitness values (add a constant)

Parent Selection

Ranking selection:

- Probability of being selected is based on ranking.
- Example: Linear ranking: $p(k) = \frac{2-s}{N} + \frac{2k(s-1)}{N(N-1)}$
 - N: count
 - \bullet k: rank of an individual (1:worst; N:best)
 - \bullet s (1<s \le 2): selection pressure

■ Truncation selection:

- For an integer m>1:
 - \bullet Keep only the best 1/m individuals
 - Duplicate these individuals m times

Parent Selection

■ Tournament selection:

- To select one individual:
 - lacktriangle Randomly pick k individuals (k = tournament size)
 - Deterministic tournament: Select the winner
 - Probabilistic tournament: Select from the participants with probabilities based on ranking
 - Example: k = 2, p is 0.8 for the winner and 0.2 for the loser.
- Popular in practice
- Advantages: no dependence on fitness values, no need to know the distribution of the whole population, easy to parallelize, etc.

Control Flow in EAs

- Generational EAs:
 - The entire parental population replaced in each generation.
- Steady-state EAs:
 - Only one or a few individuals are replaced in each generation.
 - "Survivor selection" / replacement done between generations.

Generation gap: The proportion of the population replaced.

Building Blocks Hypothesis

- Why do genetic algorithms work?
- Difficulty in combinatorial optimization
- First, we need to define a **schema** in GA:
 - A set of binary strings with values at some positions fixed. Example: 0**110**
 - Order: Number of fixed positions (4 above)
 - Defining length: Distance between the last and the first fixed positions (5 above)

Building Blocks Hypothesis

- Building blocks: low-order, low-defining-length schemata that have above-average fitness.
- Propagation: Schemata are passed from parents to children.
- Crossover leads to the combination of good schemata (hopefully).
- The count (or share) of good building blocks will grow over generations.

The Concept of Metaheuristics

- Here we try to put EC in the larger scope of search / optimization algorithms.
- Heuristics:
 - Information BEYOND the problem definition that helps to guide the search / optimization process, increasing the likelihood and/or efficiency for finding good solutions.
 - Problem-specific
- Metaheuristics:
 - <u>Procedural</u> approach to guide the search / optimization process, also to increase the likelihood and/or efficiency for finding good solutions.
 - General purpose; usually applicable to a wide range of problems.

The Concept of Metaheuristics

- Representative metaheuristics:
 - Hill climbing.
 - Simulated annealing
 - Tabu search
 - Evolutionary computation
 - Swarm algorithms

The Concept of Metaheuristics

Characteristics:

- Single-solution (as improved local search) or population based (as approximated global search)
- Population based methods require some mechanism for information exchange among the individuals.
- Aims to find good solutions that might not be globally optimal.
- Always includes some mechanism for tuning between exploration and exploitation.
- Memetic search: Combining population based metaheuristics with local search/learning/refinement techniques.