${\bf Suites, La\ Pratique}_{\bf Corrig\'e}$

DARVOUX Théo

Novembre 2023

Exercices.	
Avant de parler de convergence	2
Exercice 13.1	2
Exercice 13.2	2
Exercice 13.3	2
Exercice 13.4	3
Exercice 13.5	3
Exercice 13.6	4
Exercice 13.7	4
Encadrement	4
Exercice 13.8	4
Exercice 13.9	4

Une suite croissante est une fonction croissante sur \mathbb{N} .

Démontrer que le titre de l'exercice dit vraie, c'est à dire, pour une suite réelle $(u_n)_{n\in\mathbb{N}}$ l'équivalence entre

1. $\forall n \in \mathbb{N} \ u_{n+1} \ge u_n$.

2. $\forall (n,p) \in \mathbb{N}^2 \ n \leq p \Longrightarrow u_n \leq u_p$.

Supposons 2, montrons 1.

Soit $n \in \mathbb{N}$

On a $n \leq n+1$. D'après 2, $u_n \leq u_{n+1}$. ez

Supposons 1, montrons 2.

Soit $(n, p) \in \mathbb{N}^2$ tels que $n \leq p$. On sait que $u_{n+1} \geq u_n$, $u_{n+2} \geq u_{n+1}$, $u_{n+3} \geq u_{n+2}$, etc...

Par récurrence triviale et par transitivité, pour tout entier $q \geq n$, $u_q \geq u_n$.

En particulier, $u_p \ge u_n$

Soit a un réel supérieur à 1 et $(u_n)_{n\geq 0}$ la suite définie par $\forall n\in\mathbb{N}\ u_n=\frac{a^n}{n!}$.

Démontrer que l'ensemble des termes de la suite possède un maximum, qu'on exprimera en fonction de a. (u_n) est strictement positive sur \mathbb{N} .

Soit $n \in \mathbb{N}$.

On peut donc écrire : $\frac{u_{n+1}}{u_n} = \frac{a}{n+1}$. Ainsi, (u_n) est croissante $(a \ge n+1)$ puis décroissante $(a \le n+1)$, ce qui implique qu'un maximum existe. Ce maximum est atteint lorsque a = n + 1 c'est à dire quand n = |a|.

Ainsi, le maximum de la suite u est : $\frac{a^{\lfloor a \rfloor}}{|a|!}$

Pour $n \in \mathbb{N}$, on pose

$$u_n = \sum_{k=n+1}^{2n} \frac{k \sin k}{k^2 + 1}.$$

Prouver que la suite (u_n) est bornée.

Soit $n \in \mathbb{N}$, on a : $-1 \le \sin n \le 1$. Donc :

$$\left| \sum_{k=n+1}^{2n} \frac{k \sin k}{k^2 + 1} \right| \le \sum_{k=n+1}^{2n} \frac{k}{k^2 + 1}$$

$$\le \sum_{k=n+1}^{2n} \frac{n+1}{(n+1)^2 + 1}$$

$$\le \frac{n^2 + n}{n^2 + 2n + 2}$$

$$< 1$$

Majorer en valeur absolue c'est borner

2023-2024

Exercice 13.4 $[\Diamond \Diamond \Diamond]$

Soit $\alpha \in]0,1[$ et (u_n) la suite définie par $\begin{cases} u_0 = \alpha(1-\alpha) \\ \forall n \geq 0 \ u_{n+1} = (1-\alpha)u_n + \alpha(1-\alpha) \end{cases}$

- 1. Exprimer le terme général de la suite en fonction de α et n.
- 2. Donner $\lim u_n$.
- 1. Soit $n \in \mathbb{N}$.

On pose l'équation au point fixe : $x = (1 - \alpha)x + \alpha(1 - \alpha)$.

Sa solution est : $x = 1 - \alpha$.

On a: $u_{n+1} - (1 - \alpha) = (1 - \alpha)u_n + \alpha(1 - \alpha) - (1 - \alpha)$.

Ainsi, $u_{n+1} + \alpha - 1 = (1 - \alpha)(u_n + \alpha - 1)$.

On pose $v_n := u_n + \alpha - 1$. Par définition, v est géométrique, de raison $1 - \alpha$.

Son terme général est : $v_n = v_0(1-\alpha)^n$.

Or $v_0 = u_0 + \alpha - 1 = \alpha(1 - \alpha) + \alpha - 1 = (\alpha - 1)(1 - \alpha)$.

On en déduit que $v_n = (\alpha - 1)(1 - \alpha)^{n+1}$.

Finalement, $u_n = (\alpha - 1)(1 - \alpha)^{n+1} - \alpha + 1$.

Exercice 13.5 $[\Diamond \Diamond \Diamond]$

Soit $\theta \in \mathbb{R}$.

1. Donner la forme du terme général d'une suite $(u_n)_{n\in\mathbb{N}}$ de $\mathbb{R}^{\mathbb{N}}$ telle que

$$\forall n \in \mathbb{N} \ u_{n+2} - 2\cos(\theta)u_{n+1} + u_n = 0.$$

2. Supposons dans cette question que $\theta \notin \pi \mathbb{Z}$. Donner sous forme factorisée le terme général de l'unique suite (u_n) satisfaisant la relation ci-dessus et telle que $u_0 = u_1 = 1$.

Polynome caractéristique : $r^2 - 2\cos(\theta)r + 1$. $\Delta = -4\sin^2(\theta)$. $r_1 = \cos(\theta) + i\sin(\theta)$ et $r_2 = \cos(\theta) - i\sin(\theta)$.

Lorsque $\theta \in \pi \mathbb{Z}$: $\exists ! (\lambda, \mu) \in \mathbb{R}^2 \ \forall n \in \mathbb{N}, \ u_n = \lambda n \cos^n(\theta) + \mu \cos^n(\theta)$.

Lorsque $\theta \notin \pi \mathbb{Z}$: $\exists ! (\lambda, \mu) \in \mathbb{R}^2 \ \forall n \in \mathbb{N}, \ u_n = \lambda \cos(n\theta) + \mu \sin(n\theta)$.

2. Soient $\lambda, \mu \in \mathbb{R}$ tels que $\forall n \in \mathbb{N}, u_n = \lambda \cos(n\theta) + \mu \sin(n\theta)$.

On a $u_0 = \lambda = 1$ et $u_1 = \cos(\theta) + \mu \sin(\theta) = 1$ donc $\mu = \frac{1 - \cos(\theta)}{\sin(\theta)}$

Ainsi, $\forall n \in \mathbb{N}n, \ u_n = \cos(n\theta) + \frac{1 - \cos(\theta)}{\sin(\theta)}\sin(n\theta)$

Comment tu factorises ça wtf

Exercice 13.6 $[\Diamond \Diamond \Diamond]$

Soit (u_n) , définie par récurrence par $\begin{cases} u_0 = 1 \\ \forall n \ge 0, \ u_{n+1} = 3u_n + 2^n \end{cases}$

- 1. Prouver qu'il existe une suite (a_n) géométrique de raison 2 qui satisfait la relation de récurrence.
- 2. Donner le terme général de (u_n) .
- 1. Soit $n \in \mathbb{N}$ et soit (a_n) une suite géométrique de raison 2. On a :

$$\forall n \in \mathbb{N}, \ a_n = a_0 2^n$$

On cherche (a_n) telle que $a_{n+1} = 3a_n + 2^n = 3a_02^n + 2^n = 2^n(3a_0 + 1)$.

Posons $a_0 = -1$. On a $a_{n+1} = 2^n(-2) = -2^{n+1} = a_0 2^{n+1}$.

Ainsi, la suite géométrique (a_n) de raison 2 et de premier terme -1 satisfait la relation de récurrence.

2. On a $u_{n+1} - 2a_n = 3u_n + 2^n - 2a_n \iff u_{n+1} - a_{n+1} = 3(u_n - a_n)$.

On pose $v_n := u_n - a_n$. Alors $v_0 = u_0 - a_0 = 2$ et $v_n = 2 \cdot 3^n$.

On en déduit que $u_n = v_n + a_n = 2 \cdot 3^n - 2^n = 2(3^n - 2^{n-1})$

On a $u_{n+1} = 2(3^{n+1} - \cdot 2^n)$

 $\begin{cases} u_0 > 0; u_1 > 0 \\ \forall n \ge 0 \ u_{n+2} = \sqrt{u_{n+1} u_n} \end{cases}.$ Étudier la suite (u_n) , définie par récurrence par

Soit $n \in \mathbb{N}$.

On a:

$$u_{n+2} = \sqrt{u_{n+1}u_n} \iff \ln(u_{n+2}) = \ln(\sqrt{u_{n+1}u_n})$$

 $\iff \ln(u_{n+2}) = \frac{1}{2}(\ln(u_{n+1}) + \ln(u_n))$

On pose $v_n := \ln(u_n)$.

On obtient : $v_{n+2} = \frac{1}{2}v_{n+1} + \frac{1}{2}v_n$.

C'est une suite récurrente linéaire d'ordre 2!

Polynome caractéristique : $r^2 - \frac{1}{2}r - \frac{1}{2}$. $\Delta = \frac{9}{4}$. $r_1 = 1$ et $r_2 = -\frac{1}{2}$.

Ainsi, $v_n = \lambda + \frac{\mu(-1)^n}{2^n} \mid (\lambda, \mu) \in \mathbb{R}^2$. Soient $(\lambda, \mu) \in \mathbb{R}^2$ et v_n une telle suite.

Alors $v_0 = \lambda + \mu$ et $v_1 = \lambda - \frac{\mu}{2}$.

On a $v_0 + 2v_1 = 3\lambda = \ln(u_0 u_1^2)$. Donc $\lambda = \ln(\sqrt[3]{u_0 u_1^2})$.

On a $u_n = e^{\lambda} \cdot e^{\frac{\mu(-1)^n}{2^n}} \to e^{\lambda}$. Ainsi, $u_n \to \sqrt[3]{u_0 u_1^2}$.

Soit a > 1. Pour $n \ge 1$, on définit $u_n = (|a^n|)^{1/n}$.

Montrer que (u_n) est convergente et donner sa limite.

On a:

$$a^{n} - 1 < \lfloor a^{n} \rfloor \le a^{n} \iff (a^{n} - 1)^{\frac{1}{n}} < \lfloor a^{n} \rfloor^{\frac{1}{n}} \le a$$

П

On peut appliquer la fonction $x \mapsto \frac{1}{n}$: elle est croissante sur \mathbb{R}_+ et a > 1.

D'une part, $(a^n - 1)^{\frac{1}{n}} = (a^n (1 - \frac{1}{a^n}))^{\frac{1}{n}} = a(1 - \frac{1}{a^n})^{\frac{1}{n}} \to a$.

D'autre part, $a \rightarrow a \ (big \ brain)$

Ainsi, d'après le théorème des gendarmes : $|a^n|^{\frac{1}{n}} \to a$.

Pour tout $n \in \mathbb{N}^*$, on note $u_n = \prod_{n=1}^{n} \left(1 + \frac{k}{n^2}\right)$.

1. Montrer que pour tout $x \ge 0$, $x - \frac{x^2}{2} \le \ln(1+x) \le x$.

2. Montrer que u converge et déterminer sa limite.

1. On pose $f: x \mapsto \ln(1+x) - x$. f est dérivable comme somme et $f': x \mapsto -\frac{x}{1+x}$. f décroissante sur \mathbb{R}_+ . Or f(0) = 0 donc $f(x) \le 0$. Ainsi, $\ln(1+x) \le x$.

On pose $g: x \mapsto x - \frac{x^2}{2} - \ln(1+x)$. g est dérivable comme somme, $g': x \mapsto -\frac{x^2}{1+x}$. g décroissante sur \mathbb{R}_+ .

Or g(0) = 0 donc $g(x) \le 0$. Ainsi, $x - \frac{x^2}{2} \le \ln(1+x)$.

2. Posons $v_n := \ln(u_n)$. Alors $v_n = \sum_{k=1}^n \ln\left(1 + \frac{k}{n^2}\right)$.

Alors $\sum_{k=1}^{n} \left(\frac{k}{n^2} - \frac{k^2}{2n^4} \right) \le v_n \le \sum_{k=1}^{n} \frac{k}{n^2} : \frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \le v_n \le \frac{n+1}{2n}.$

Par théorème des gendarmes, $v_n \to \frac{1}{2}$. Ainsi, $u_n \to \sqrt{e}$.