6.869 Mini-Places Challenge

Eduardo De Leon, Harini Suresh, Nicholas Locascio, Tiffany Wong

Scene Classification Task

- Goal: identify scene categories depicted in a photograph.
- Output: for each image, the top 5 scene categories
 - (1) locations can be multipurpose e.g. restaurant & bar
 - o (2) humans use different words to describe the same place e.g. woods, forest

Problems with Traditional Scene Classification Model Training

Assumption that scenes exist in orthogonal space is not true.

True Label: Shower

Ideally should penalize the model **more** for thinking it is a "Volcano"

Object Annotations

- We should penalize the model more for confusing scene to be Volcano.
- Dataset contains object annotations useful to this end.
- Can create auxiliary tasks to predict these object annotations
- Auxiliary tasks create more informative loss function
 - Results in smoother gradient

Related Works

- Training with auxiliary targets [1]
 - Train using auxiliary targets
 - Help disentangle confounding factors
 - Better characterize what distinguishes different scenes
 - Regularizing effect
- Utilizing label text embeddings [2]
 - Easier for the network to predict a semantic label embedding
 - o Provides a way to incorporate additional information into the network

Goal: Explore Effect of Object Embeddings on Scene Prediction

Choosing an Object Representation

- a. Multi-hot object encoding
- b. Multi-Hot Object Autoencoder Embedding
- c. Semantic Object Embedding via Word2Vec word vectors

Our Model

Multi-Hot Encodings as Auxiliary Task

- Each object has a category label
- Sum all category labels of objects in image to create Multi-Hot Encoding

Auto-Encoded Object Embeddings as Auxiliary Task

- Train an autoencoder on training and validation Multihot-Encodings
- Pass each Multi-Hot Encoding through the encoder for a 40 dimensional Relational Encoding of the image objects

Semantic Embeddings as Auxiliary Task

- Each object has a string label
- For each object, get the string label, run word through pretrained
 Word2Vec model
 - Some object categories are multi-word, so for these we average all the words embeddings of an object together.
- Average all these together for all objects in an image to get Semantic Embedding

- Run 5 different models
 - Scene Classification Baseline
 - Scene + Multihot Objects
 - Scene + Co-Occurrence Embedding
 - Scene + Semantic Embedding
 - Scene + All Embeddings

- Run 5 different models
 - Scene Classification Baseline
 - Scene + Multihot Objects
 - Scene + Co-Occurrence Embedding
 - Scene + Semantic Embedding
 - Scene + All Embeddings

- Run 5 different models
 - Scene Classification Baseline
 - Scene + Multihot Objects
 - Scene + Co-Occurrence Embedding
 - Scene + Semantic Embedding
 - Scene + All Embeddings

- Run 5 different models
 - Scene Classification Baseline
 - Scene + Multihot Objects
 - Scene + Co-Occurrence Embedding
 - Scene + Semantic Embedding
 - Scene + All Embeddings

- Run 5 different models
 - Scene Classification Baseline
 - Scene + Multihot Objects
 - Scene + Co-Occurrence Embedding
 - Scene + Semantic Embedding
 - Scene + All Embeddings

Results

Discussion

- We achieve best results using our full model (+0.46%)
- Marginal improvement over baseline why so little?
- Main Reason: We only have object annotations for 3.5% of training images.
 - This means that our gradient updates are the same for 96.5% of all training examples for all 5 models.
- **Future work:** Try techniques on a dataset that contains objects annotations for all images, not just 3.5%