Exercises, Pages 664-665

1. about $\frac{2}{3}$; rotation 90° 3. $\overrightarrow{RS} \parallel \overrightarrow{R'S'}$ 5. 2; 3 7. y = 2x + 3 9. Refer to Sel. Ans. for p. 527.

Exercises, Pages 666-667

1. rt. 3. obt. 5. a. slope of $\overline{AB} = \frac{3}{2}$, slope of $\overline{BC} = -\frac{2}{3}$; $\overline{AB} \perp \overline{BC}$ b. $(AB)^2 = 13$, $(BC)^2 = 52$, $(AC)^2 = 65$ 7. \mathcal{R}_{N_1-90} followed by $D_{N_1,2}$; 2 9. The left fig. has area c^2 ; the right fig. has area $b^2 + a^2$. This suggests the Pyth. Thm. 11-21. Refer to Sel. Ans. of specified pages.

Exercises, Pages 668-669

1. a. $(x-6)^2+y^2=25$ b. Yes c. No 3. b. M(-1,7) c. slope of $\overline{OM}=-7$; slope of $\overline{AB}=\frac{1}{7}$; Thm. 13-4 5. radius of outer $\bigcirc=\sqrt{225}=15$, radius of inner $\bigcirc=\sqrt{25}=5$, dist. bet. ctrs. of \bigcirc s is 10; 10+5=15 7. a. $\bigcirc O$; the other tan. to $\bigcirc O$ from P b. \overline{PA} and its image are \cong . c. Thm. 9-1 Cor. 9. To find B, rotate $C-60^\circ$ about A. 11-17. Refer to Sel. Ans. of specified pages.

Exercises, Page 670

3. 1:4 5. |x| + |y| = 10

7. Rotate $\odot P$ 90° about A to locate two points, C_1 and C_2 , then rotate each -90° about A to get B_1 and B_2 .

9-15. Refer to Sel. Ans. of specified pages.

Exercises, Pages 671-672

1. 32 3. 64 5. a. -60° , $\frac{1}{2}$ b. reg. II; reg. III; reg. IV c. $\frac{1}{4}$, $\frac{1}{16}$, $\frac{1}{64}$

Exercises, Pages 674-675

1. Plans for proofs: a. Use Thm. 4-5 b. Reflect $\triangle ADC$ to $\triangle ABC$. The isom. preserves dist. c. Assign coords. A(0, a), B(b, 0), C(0, -c), D(-b, 0) and use the dist. form. 3. a. Plan for proof: Use SAS to prove $\triangle XBC \cong \triangle ABY$. b. \overline{XC} Answers may vary in Exs. 5-17. 5. square; use a coord. approach. 7. Use a syn. or coord. approach. 9. Use a syn. approach. Draw $\overline{XY} \parallel \overline{BC}$ through P with X on \overline{AB} and Y on \overline{DC} . 11. Use a syn. approach. Extend \overline{AB} and \overline{DC} to int. at rt. $\angle X$. Then use the Pyth. Thm. 13. Use a transf. approach. Trans. I toward I a dist. I 15. Use a transf. approach. See the figure at the right. Const. I lines I, I, I. Choose I on I. Rotate I 60° about I to get I on I. Rotate I 60° about I to get I on I.

