RENDICONTI

DELLE SEDUTE

DELLA REALE ACCADEMIA DEI LINCEI

Classe di scienze fisiche, matematiche e naturali.

MEMORIE E NOTE

DI SOCI O PRESENTATE DA SOCI

pervenute all'Accademia sino al 20 settembre 1903.

Astronomia. — Fotografia della Cometa 1903 c (1). Nota del Corrispondente A. Riccò ed A. Mascari.

Nel presentare all'Accademia alcune fotografie da noi eseguite della cometa 1903 c, abbiamo l'onore di dare anche notizie delle osservazioni fisiche che abbiamo fatte su questo astro, e dei dati che abbiamo ricavati dalle fotografie medesime.

Le osservazioni visuali sono state fatte da A. Riccò al refrattore Merz di 0^m,33 apertura, ed all'equatoriale Cooke di 0^m,15 apertura, ed ai relativi cannocchiali cercatori, al 24 e 25 luglio passato.

La cometa presentava la testa piriforme, abbastanza luminosa, con nucleo semplice, non molto distinto al 24, meglio al 25 luglio: la chioma appariva uniforme senza getti distinti; la coda era rivolta ad oriente, diritta, debole, diffusa: ed al 24 non vi si riconosceva alcun particolare: al 25 luglio però si vedeva a stento al suo lato boreale una piccola appendice divergente dal capo; coi cercatori la coda potevasi seguire fino a 2º a 3º dal capo stesso.

Col fotometro a cuneo di vetro grigio, il nucleo confrontato al 24 luglio con a Ursa Majoris e con a Draconis, risultò della grandezza 6,3. L'insieme dell'astro appariva luminoso come stella di 4^a.

⁽¹⁾ Lavoro eseguito nel R. Osservatorio di Catania.

Rendiconti. 1903, Vol. XII, 1º Sem.

Collo spettroscopio applicato ai detti telescopi, nella testa della cometa si osservavano le solite tre righe o bande degli idrocarburi: la verde più lucida e più lunga, la gialla alquanto più lucida della bleu. Il nucleo dava un debole spettro continuo, esteso solo fra le dette righe.

Al 24 luglio A. Mascari ha fatto da $8^h,50^m$ a $10^h,30^m$ (t. m. Catania), una fotografia della cometa all'equatoriale fotografico di $0^m,328$ apertura; il 25 luglio ne ha fatta un'altra da $8^h,19^m$ a $10^h,10^m$. In queste fotografie un minuto d'arco celeste è dato da un millimetro; le stelle sono rappresentate da tratti rettilinei le cui lunghezze in millimetri sono gli archi di altrettanti minuti percorsi dalla cometa durante la posa. I detti tratti sono lunghi mm. $14^{-1}/_{2}$ e 14 rispettivamente nelle fotografie del 24 e 25 luglio.

Nella prima fotografia (negativa) la parte più lucida della testa ha il diametro trasversale di 3',5, la chioma 10'; nella seconda fotografia quei due diametri sono rispettivamente 4' e 14'.

In entrambe le fotografie la coda si presenta formata di tre appendici che chiameremo a, b, c, le quali nella prima fotografia hanno gli angoli di posizione (nord per est) rispettivamente 85°, 94°, 105°; nella seconda 81°, 94°, 100°. L'appendice a, che è la più corta e meno distinta, ha la lunghezza 11' e 17' nelle due fotografie rispettivamente; l'appendice b è lunga un poco più di mezzo grado, nella prima fotografia, più di un grado, cioè 65', nella seconda; l'appendice c è lunga un poco più di mezzo grado in entrambe le negative.

Dal 24 al 25 luglio l'appendice b ha presentato notevoli mutamenti: mentre al 24 era diffusa, discontinua, meno distinta della c, al 25 era assai più distinta della c, e presentava come una costola rettilinea ben netta (quantunque non forte) ed estesa il doppio della c, mentre invece questa al 25 era meno visibile di quel che era al 24.

Al 26 luglio da 9^h,30^m a 10^h,30^m A. Riccò ha fatto una fotografia della cometa con un obbiettivo *Voigtländer* da ritratti, di 0^m,055 apertura, diaframmato a 0^m,035, attaccato all'equatoriale *Cooke*, che funzionava da collimatore: si teneva puntato il nucleo della cometa con un micrometro a punta in campo oscuro; al 30 luglio da 9^h,13^m a 10^h,48^m si è fatta un'altra fotografia simile. In queste piccole fotografie un grado è rappresentato da 0^m,0034.

Nella negativa del 26 luglio la coda principale (tipo 1° di Bredichin) è risultata debole, degradante lentamente fin alla distanza di circa 8° dalla testa; al suo lato sud si vede un piccolo e debole pennacchio, alquanto divergente dalla coda principale.

Nella fotografia del 30 la coda principale, stretta e forte presso la testa della cometa, si allarga sensibilmente, indebolendosi fino a svanire alla distanza di circa 10° dalla testa; la coda medesima ha l'angolo di posizione 84°, e col suo asse passa a 20° a sud della stella e Ursæ Majoris,

la quale dista 7°,6′ della testa della cometa; la detta coda principale, nella fotografia apparisce formata da striscie discontinue. Il pennacchio a sud è lungo circa un grado, e forma colla coda principale un angolo di circa 13°.

I particolari di questa cometa sono così delicati, che riuscirono solo parzialmente nelle positive su carta sensibile che presentiamo, e sarebbe poi impossibile riprodurli in zincotipia.

Chimica. — Preparazione dei tio-acidi aromatici e delle loro amidi (1). Nota di C. Ulpiani e U. Ciancarelli, presentata dal Socio E. Paternò.

Nel campo della serie aromatica non si conoscono attualmente tio-acidi del tipo:

quindi in questo studio ci siamo proposto appunto di giungere a composti di questo tipo nella serie aromatica sottoponendo all'azione dell'idrogeno solforato l'acido benzoilformico.

Inoltre tanto nel campo della serie grassa, quanto in quella dell'aromatica non si conoscono amidi dello stesso tipo:

per cui abbiamo voluto studiare il comportamento dell'idrogeno solforato sulla benzoilformamide.

Löven nella sua prima memoria sui tioderivati ottenuti per azione dell'idrogeno solforato sull'acido piruvico (2) descrive il tiolattico, il tiodilattico, il ditiodilattico ed accenna ad un acido tritiodilattico, credendolo un prodotto secondario e solo in una pubblicazione molto più recente (3) sugli stessi tio-acidi riesce a delineare in modo netto l'andamento delle reazioni.

Egli scopre anzitutto che il primo prodotto che si otteneva direttamente dall'acido piruvico esposto per un certo tempo ad una corrente di

⁽¹⁾ Lavoro eseguito nell'Istituto Chimico della R. Università di Roma.

⁽²⁾ Journ. f. prakt. Ch. B. 29, pag. 366.

⁽³⁾ Journ. f. prakt. Ch. B. 47, pag. 178.

idrogeno solforato era appunto il tritiodilattico:

prodotto cristallizzato, da cui per idrogenazione otteneva il tiolattico:

e da questo per ossidazione con Fe Cl3 il ditio-dilattico:

A composti perfettamente analoghi siamo giunti partendo dall'acido benzoilformico ed abbiamo potuto confermare anche per essi l'andamento generale descritto da Löven ossia il passaggio graduale dell'acido benzoilformico ai composti:

tritiodifenilacetico:

tiofenilacetico:

e ditiodifenilacetico:

seguendo un procedimento simile con una sola modificazione nel passaggio del tritio al tio a causa del diverso comportamento del tritio-difenilacetico all'azione dell'idrogeno nascente.

Sottoponendo all'azione dell'idrogeno solforato una soluzione di acido benzoilformico, tre molecole di idrogeno solforato reagiscono sul gruppo chetonico di due molecole d'acido formando acqua ed un composto insolubile in acqua avente la formola grezza

a cui attribuiamo la formola di struttura

chiamandolo acido tritiodifenilacetico. La reazione, che avviene, può essere espressa dalla seguente equazione:

Quest'acido trattato a caldo con una quantità calcolata di potassa o di soda caustica e poi demolito con acido cloridrico, svolge H₂S e dà luogo ad un composto oleoso della formula grezza C⁸H⁸O²S a cui diamo la formula di struttura:

chiamandolo acido tiofenilacetico. Esso ha la proprietà caratteristica di dare una colorazione bleu ad una soluzione di cloruro ferrico riducendo il cloruro ferrico in ferroso e formando, ossidandosi, un prodotto di condensazione cristallino della formula grezza

la cui formola di struttura si deduce dalla reazione stessa:

e che chiamiamo acido ditiodifenilacetico. Da questo per azione dell'idrogeno nascente si ha la reazione inversa e si ottiene così l'acido tiofenilacetico.

Ugualmente, sottoponendo all'azione dell'idrogeno solforato una soluzione di benzoilformamide, si ha un precipitato cristallino insolubile in acqua che ha la formola grezza

La reazione è la seguente:

Tale prodotto può chiamarsi: tritiodifenilacetamide.

Essa, trattata con potassa o soda, svolge NH³, poichè l'alcali saponifica il gruppo amidico e poi per aggiunta di HCl dà luogo agli stessi acidi tiofenilacetico e ditiofenilacetico.

Acido Tritiodifenilacetico.

Sottoponendo una soluzione al 10 % di acido benzoilformico, preparato secondo il metodo di Claisen (1), ad una corrente di idrogeno solforato, la soluzione dapprima si intorbida e dopo sei o sette minuti comincia a comparire al fondo del palloncino un olio giallo pesante, che cresce mano mano, dando un ottimo rendimento.

Si sono impiegati in ciascuna preparazione circa grammi otto di acido benzoilformico, lasciando che l'acido solfridrico vi agisca almeno per 24 ore.

Quest'olio, scaldato anche leggermente, assume una colorazione rosea, che diventa sempre più intensa per maggior riscaldamento. Lasciato a sè stesso, dopo alquanti giorni comincia a cristallizzare lentamente in piccoli cristallini, che possono liberarsi dall'olio, che li avvolge succhiandoli alla pompa o ponendoli su una mattonella porosa. Essendo questo prodotto solubilissimo in molti solventi come l'etere, l'alcool, l'acido acetico, l'acetone, l'etere acetico, il cloroformio ecc. ed affatto insolubile in altri, come l'acqua, la benzina, la ligroina ecc. è difficile ricristallizzarlo, poichè non si trova un solvente adatto. Dopo ripetute prove si è trovato che il miglior modo di cristallizzazione consiste nello sciogliere in poco alcool l'olio, e poi gettare la soluzione in molta acqua. L'acqua diviene così lattiginosa, e dopo qualche giorno cominciano a comparire sulle pareti e al fondo del recipiente dei cristallini bianchissimi e non più untuosi che possono, a cristallizzazione completa, raccogliersi su un filtro e seccarsi.

La loro forma al microscopio è caratteristica: appariscono sotto forma di prismi a sezione triangolare terminati da ambedue le parti da piramidi, con angoli solidi un po' arrotondati; essi sono isolati o più spesso compenetrati insieme a formare delle stelle di tre o più cristalli.

Fonde a 145°-148°.

Dall'analisi risulta la seguente formola:

C16 H14 O4 S3

gr. 0,2645 hanno dato gr. 0,5063 di CO² e gr. 0,0972 di H²O gr. 0,6520 hanno dato gr. 1,2560 di Ba SO⁴.

	Trov	ato º/o	Calcolato o per C16H14O4S3		
	I	II			
C	52,21		52,45		
H	4,08	W -	3,82		
S		26,45	26,22		

⁽¹⁾ Ber. 10, pag. 430.

Circa la formula di struttura d'attribuire a questo composto seguiamo l'opinione di Löven. Egli propone pel suo acido tritiodilattico queste due formole: CH³ CH³ CH³

Nella prima lo zolfo apparisce sottoforma di solfuro e solfidrato, nella seconda come trisolfuro. Ma Löven avendo osservato nell'acido tiolattico:

che lo zolfo, il quale lega i due atomi di carbonio, non si riduce con l'idrogeno nascente, mentre nel tritiodilattico si riduce a preferenza degli altri due, e che i gruppi solfidrilici — SH dovrebbero facilmente ossidarsi, come di fatto avviene nel tiolattico, mentre nello stesso tritiodilattico non si ossidano affatto, nè col cloruro ferrico, nè coll'aria, nè col sodio e neppure con l'acido nitroso, esclude la prima di queste due formole e giudica la seconda come corrispondente alla proprietà dei suoi composti.

Attenendoci a queste conclusioni, applicabili anche ai tio-acidi della serie aromatica, attribuiamo al composto la formola

chiamandolo acido tritiodifenilacetico e considerandolo come acido fenilacetico, in cui un idrogeno del metilene è sostituito con uno zolfo, il quale essendo bivalente s'attacca a un terzo zolfo, che così lega due molecole.

Nella formazione di esso 3 molecole di H²S agiscono sul gruppo chetonico di due molecole di acido benzoilformico secondo la reazione:

Löven per l'azione ossidante del bromo sull'acido tritiodilattico ottiene l'acido a-sulfopropionico, e con idrogeno nascente sullo stesso acido ottiene l'acido tiolattico.

Il tritiodifenilacetico invece si comporta diversamente sottoposto a queste due azioni. Infatti col bromo si trasforma in acido benzoico e con idrogeno nascente in acido fenilacetico.

Azione dell'idrogeno nascente sull'acido tritiodifenilacetico.

Trattando il tritiodifenilacetico con zinco ed HCL si ha uno svolgimento d'idrogeno solforato, e si forma una sostanza bianca cristallina che fonde a 76° e che si è identificata per acido fenilacetico. Reazione:

Azione del bromo sul tritiodifenilacetico.

Ad una soluzione della sostanza con alcool molto diluito si è aggiunta goccia a goccia una soluzione acquosa di bromo fino a completa scolorazione: si è ottenuto un liquido perfettamente limpido, che, analizzato, risulta contenere una quantità rilevante di acido solforico e di acido benzoico. Adunque il bromo agendo sul tritiodifenilacetico invece di dare un sulfone, come avviene pel tritiodilattico di Löven, si comporta soltanto come un energico ossidante.

Sali dell'acido tritiodifenilacetico.

Coi metalli alcalini ed alcalino terrosi in soluzione diluita ed a freddo l'acido tritio-di-fenilacetico dà sali solubili, mentre a caldo essi agiscono in un modo speciale che ora vedremo: coi metalli pesanti dà un precipitato fioccoso, bianco col piombo, argento e composti mercurosi; giallo col ferro, verde col rame, e precipitati oleosi coi composti mercurici, di stagno, di cobalto, oro, ecc.

Azione della potassa sull'acido tritiodifenilacetico.

Acido tiofenilacetico. — A grammi due di acido tritiodifenilacetico sospeso in acqua si sono aggiunti cm.³ 22 di KOH normale, la quale quantità è calcolata in modo che una molecola di acido tritiodifenilacetico corrisponda a quattro di potassa. L'acido si scioglie per formazione del sale potassico solubile, ed il liquido, tenuto a caldo a bagno maria, assume una colorazione gialla, che si fa sempre più scura. Dopo una ventina di minuti abbiamo aggiunto alla soluzione HCl un po' in eccesso, e subito si è avuto uno svolgimento di H₂ S riconoscibile all'odore ed alla cartina all'acetato di piombo. Il liquido intanto è divenuto lattiginoso, ed è comparso un olio che si è estratto con etere. Esso ha un colore giallo, d'odore speciale che ricorda quello del tiolattico di Löven, e come questo ha la caratteristica di ridurre a fer-

roso il clururo ferrico colorandone una soluzione in bleu. Per eccesso di cloruro ferrico su questo olio si ha un precipitato giallo fioccoso.

In acqua non è molto solubile; è solubilissimo invece in alcool ed etere. Portato fino a peso costante e quindi analizzato, corrisponde alla formola grezza:

C8 H8 O2 S

gr. 0.2818 hanno dato = gr. 0.5929 ed H²O = gr. 0.1290 gr. 0.5580 hanno dato = gr. 0.7880.

	Trovato º/o	Calcolato º/o per CºHºOºS
C	57,38	57,14
Н	5,08	4,76
S	19,35	19,04

Nella reazione la potassa, come abbiamo detto, è stata calcolata per quattro molecole di KOH su una molecola di acido, dunque la potassa in queste proporzioni attacca lo S, che tiene uniti gli altri due atomi di S nell'acido tritiodifenilacetico e forma il sale potassico del tiofenilacetico, che con HCL ci ha dato l'acido secondo:

Questo acido dà dei sali molto simili a quelli del tritiodifenilacetico.

Azione del cloruro ferrico sull'acido tiofenilacetico.

Acido ditiofenilacetico.

Sottoponendo una soluzione acquosa di acido tiofenilacetico all'azione del cloruro ferrico in soluzione diluita, che facciamo scendere a goccia a goccia da una buretta, nel punto, ove cade la goccia, si osserva una colorazione bleu, che subito scompare agitando il liquido. Si giunge però ad un certo punto in cui la colorazione diviene persistente; allora, estraendo con etere, si ha una sostanza dapprima oleosa, ma che dopo poco tempo si rapprende in cristallini, i quali al microscopio appariscono in forma di grani d'orzo, allungati con spigoli ricurvi, abbastanza rifrangenti, variamente compenetrati fra loro; sono solubili in etere, in alcool, meno solubili in acqua.

Onde purificare questa nuova sostanza ne abbiamo fatto un sale di piombo, che, dopo aver lavato più volte su un filtro, abbiamo demolito con H₂ S. Svaporato il liquido filtrato fino a cacciare l'eccesso di H₂ S, e tornando a concentrare, abbiamo ottenuto il prodotto cristallizzato, però con un rendimento piuttosto piccolo.

Esso fonde a 198°-200°.

Si può seguire anche un altro metodo per preparare questo composto, ossia, aggiungendo cloruro ferrico in eccesso alla soluzione del tiofenilacetico fino a completa precipitazione. Naturalmente la prima porzione di cloruro ferrico serve per ossidare il composto e l'altra da il sale ferrico del composto ossidato.

gr. 0,2505 hanno dato gr. 0,5256 di CO² e gr. 0,1021 di H20.

L'azione del cloruro ferrico sul tiofenilacetico ha per effetto la formazione di una molecola di acqua con l'idrogeno del gruppo SH di due molecole di tiofenilacetico, ed allora i due atomi di zolfo che rimangono, si attaccano insieme con la loro valenza libera dando luogo a un prodotto di condensazione:

ossia ad un acido che chiamiamo per la sua struttura acido ditiodifenilacetico. Esso può paragonarsi nei suoi caratteri al ditiodilattico di Löven.

Azione dell'idrogeno nascente sull'acido ditiodifenilacetico.

Aggiungendo zinco ed acido cloridrico ad una soluzione di acido ditiodifenilacetico si ha la reazione inversa a quella descritta pel cloruro ferrico, ossia si spezza il legame fra i due atomi di zolfo, tornando l'H nascente a formare il gruppo — SH, ossia si torna ad avere il tiofenilacetico, riconoscibile sempre per la reazione del cloruro ferrico. Questa reazione inversa, il potere ottenere, in modo netto, l'un composto dall'altro e viceversa, non lascia alcun dubbio sulla costituzione molecolare di questi composti.

Tritiodifenilacetamide. — Sottoponendo la benzoilformamide preparata secondo il metodo di Cloisen (¹) all'azione dell'idrogeno solforato, si ha un composto che risulta essere l'amide dell'acido tritiodifenilacetico. Adoperiamo qui soluzioni al 5 º/o di amide benzoilformica, ma non occorre che essa sia completamente sciolta in acqua, poichè man mano che essa reagisce con H2 S la rimanente si va lentamente sciogliendo. Dopo un quarto d'ora circa comincia a depositarsi una sostanza bianca polverulenta che va lentamente aumentando. La reazione dell'H2 S sull'amide si compie più lentamente che sull'acido; adoperando gr. 10 d'amide occorrono almeno tre giorni

⁽¹⁾ Ber. 10, pag. 1663.

prima che tutta passi allo stato di tritiodifenilacetamide. Raccolta questa su un imbuto alla pompa, è bene sottoporre di nuovo il filtrato all'azione di H₂S, poichè in esso si trova spesso ancora disciolta dell'amide benzolformica.

Il rendimento in questo caso è quasi teorico, ed il prodotto grezzo è già abbastanza puro. È insolubile affatto in acqua, insolubile anche in etere, un po' solubile in acetone, etere acetico, molto meno in ligroina, cloroformio e solfuro di carbonio; abbastanza solubile a caldo in alcool, poco a freddo. L'alcool, dunque, è un solvente adattatissimo per ricristallizzare questa sostanza. In un palloncino a ricadere si mette alcool e man mano l'amide finchè non ve ne se disciolga più; si filtra ed il filtrato si abbandona a sè stesso senza agitarlo, in un cristallizzatore. Molto lentamente cominciano a depositarsi dei cristallini; dopo 12 ore la cristallizzazione è completa, con una perdita minima di sostanza.

I cristalli, esaminati al microscopio, appariscono sotto una forma proprio caratteristica; ciascuno risulta dalla riunione di tre cristallini prismatici a sezione rombica, terminati da piramidi, dei quali due compenetrati fra loro ad x ed uno più piccolo che traversa nel mezzo questa x in senzo orizzontale; tutti in uno stesso piano.

Spesso si osservano questi cristallini riuniti a loro volta fra loro in modo da dare delle configurazioni svariatissime. Questi cristalli si frammentano molto facilmente.

Fonde a 217°.

Anche questo prodotto, come il tritiodifenilacetico, scaldato diviene rosso.

Dalle analisi e dalle proprietà di questa amide risulta ammissibile la formola:

gr. 0,3020 hanno dato gr. 0,5578 di CO² e gr. 0,1300 di H₂0 gr. 0,2060 hanno dato gr. 0,3786 di CO² e gr. 0,9135 di H²0 gr. 0,2856 hanno dato gr. 0,5250 di CO² e gr. 0,1252 di H²0 gr. 0,3142 hanno dato cm. 3 20,5 di azoto alla pressione di 754,7

gr. 0, 3292 hanno dato cm. 3 21,2 di azoto alla pressione di 756,7 e temperatura di 16°

e alla temperatura di 16°

gr. 0,5318 hanno dato gr. 0,9840 di Ba SO4.

		Trovato º/o				:	Calcolato per C16H16O2N2S3 + H2O
	I	II	III · ·	IV	V	VI	ber C. H. O. W. P L. H. O.
C	50,36	50,09	50,14	. —		-	50,26
\mathbf{H}	4,76	4,92	4,87	_			4,71
N		_		7,54	7,47		7,33
S		-			-	25,40	25,13

L'acqua di cristallizzazione viene dimostrata scaldando la sostanza secca prima pesata, a 150° e facendo varie pesate fino ad ottenere un peso sensibilmente costante.

che ci rappresenta l'acqua di cristallizzazione.

Trovato °/0 Calcolato °/0 H²O 5,15 4,71

Azione della potassa sull'amide tritiodifenilacetica. — A grammi 2,55 di tritiodifenilacetamide spappolata in acqua si sono aggiunti cm.³ 26,8 di KOH N in modo che ad una molecola d'amide ne corrispondano quattro di KOH: scaldando a bagno maria l'amide si scioglie con sviluppo d'ammoniaca ed il liquido si colora in giallo.

Aggiungendo quindi HCL si ha sviluppo di H²S., il liquido diviene lattiginoso; comparisce un olio che estratto con etere si è identificato per acido tiofenilacetico, dal quale si arriva ugualmente al ditiodifenilacetico per mezzo del cloruro ferrico.

L'alcali caustico agisce sullo zolfo di questa amide non meno facilmente che sul gruppo amidico; infatti aggiungendo metà della potassa calcolata, si ha sempre l'azione contemporanea sul gruppo amidico e sullo zolfo, onde rimane una parte d'amide indisciolta e perfettamente inalterata.

Il fatto di ottenere nella stessa maniera anche dalla tritiodifenilacetamide acido tiofenilacetico, dimostra che la struttura molecolare di essa è perfettamente simile a quelle del tritiodifenilacetico, e bisogna quindi escludere che nella reazione di questa amide chetonica con l'idrogeno solforato, si possa avere un aggruppamento del tipo delle comuni tioamidi: CSNH².

Geologia. — Il Flysch del Montenegro sud-orientale. Nota II (1) del dott. Alessandro Martelli, presentata dal Socio C. De Stefani.

Le alture che delimitano la zona scistosa del Montenegro orientale da quella carsica più ad occidente, sono costituite da strati mesozoici la cui direzione è da nord-nord-ovest a sud-sud-est. La carta geologica del Hassert, la quale per ciò che riguarda il territorio intorno a Rikavac completa quella del Tietze secondo le vedute di questo geologo, mette in diretto contatto le formazioni scistose segnate come strati di Werfen e come paleozoiche con quelle del calcare triassico. Vedremo più avanti che ciò non si verifica sempre, tant'è vero che in alcuni punti, come pure per esempio presso Jablan dove tutti i visitatori sono passati osservando il distacco fra la zona carsica dei Bratonožići e quella

scistosa ricca di praterie e di foreste, gli scisti arenacei segnati come strati di Werfen sono in immediata sovrapposizione a calcari ippuritici e non sottostanti a calcari triassici. Intanto, senza indugi dirò che i risultati delle mie osservazioni non mi consentono di condividere l'opinione dei geologi i quali prima di me hanno visitato questa regione, giacchè mentre per essi, in base più che altro ai criteri litologici, le estese formazioni scistose del Montenegro sud-orientale rappresentano tutte per la più piccola parte gli strati di Werfen e per la maggiore il Paleozoico, io credo invece, per quanto brevemente verrò esponendo, che nel territorio fra l'inizio del versante pontico e le pendici occidentali inferiori del rilievo del Kom, esse debbano riferirsi al flysch dell' Eocene superiore. Il complesso ricco di forme litologiche si estende, com'è noto, anche più ad est, ma qui intendo solo di parlare della zona segnata come paleozoica, e compresa fra la linea di confine sud est del principato, il Velo polje, il Kurlaj, e il torrente Opašanica. Non escludo quindi che terreni paleozoici possano effettivamente trovarsi più ad oriente dove ancora non vennero estese le mie ricerche.

Sarebbe superfluo riportare qui ciò che riguardo alla presenza del Paleozoico e alla sua estensione in questo lembo del paese dei Kuči hanno pubblicato Baldacci, Hassert e Vinassa seguendo l'erroneo riferimento del Tietze. Ricorderò solo che i predetti geologi hanno visitato rapidamente questa località, e che all'infuori di talune analogie litologiche con il Paleozoico di altre regioni, essi non hanno trovato nessun dato paleontologico che avvalorasse un tale riferimento.

Una permanenza maggiore ed un più attento esame delle condizioni stratigrafiche fra la zona carsica e quella scistosa, come pure dei rapporti fra gli scisti ed i calcari che affiorano sulle cime delle alture, mi hanno impedito di scambiare per paleozoiche formazioni di quel tipico flysch che è pure tanto esteso nella regione balcanica.

Veniamo senz'altro all' esposizione dei fatti.

Il Tietze dice che l'estensione del Paleozoico sembra limitato a nordest del principato e che sembra continuare fin verso la vicina Albania nei dintorni di Plava e di Gusinje. Senonchè in una escursione sui monti della Maja Linersit in tribù di Klementi (Albania settentrionale) discesi verso oriente nel versante albanese del Zem Seléit, ed osservai che gli strati cretacei ricoprenti i fianchi della triassica Maja Linersit sono nella parte inferiore della serie identici a quelli che si ritrovano ad occidente dell'ellissoide dello Žijovo e nella superiore rappresentano una continuazione del Turoniano di Greča; e constatai inoltre che tali assise cretacee servono di base alla zona degli scisti, la quale, ricca di praterie e di foreste, si estende nella valle della Vermoša e quindi necessariamente ai dintorni di Gusinje, dove, com'è noto, nessun naturalista è ancora potuto giungere.

Le formazioni scistose della Vermoša si sovrappongono dunque al calcare cretaceo e senza interruzione continuano nella Skrobotuša e più oltre ancora, sempre in continuazione diretta come io stesso ho constatato, fra il Maglić, il Planinica, il Kurlaj e i dintorni occidentali del Kom.

Le alture che coronano a sud la cavità profondamente erosa in fondo alla quale trovasi il lago di Rikavac, risultano essenzialmente di calcare triassico i cui strati, in continuazione di quelli di Vila, sono inclinati fortemente a nord-est, mentre quelle sopra al lago a settentrione sarebbero riferibili alla Creta, giacchè il calcare di Sboriste e del Suhi vrh con i quali sono in diretto collegamento, non possono, come vedremo, lasciare dubbi sulla loro età.

Le argille scistose rosse, gialle, turchiniccie e verdastre, e gli strati di arenaria micacea che fortemente disturbati sporgono a metà del lago, sono ritenuti dall'Hassert e dal Vinassa come strati di Werfen. Il loro carattere anche litologico non ci sembra però tale e se in altre località del Montenegro gli strati di Werfen segnano un orizzonte bene distinguibile, questi invece ci si presentano pure con gli stessi caratteri nei terreni che gli autori hanno ascritto al Paleozoico. Anche la posizione di queste arenarie non è tale da giustificare un riferimento al Trias inferiore perchè sebbene ricolmino il fondo e si stipino nella parte più bassa della conca di Ricavac, pure si riconosce senza difficoltà che la gamba dell'anticlinale osservato pure dal Vinassa e che fa parte dell'affioramento triassico più sopra circoscritto, fortemente s'immerge a nord-est rimanendo sottostante ad ogni altra formazione di questa località.

Del resto, salendo dal lago a Širokar si vede, e anche Vinassa lo ha osservato, che sotto a questi strati arenacei creduti di Werfen e sottoposti altimetricamente ma non tectonicamente ai calcari che fra di essi affiorano sulle alture, si trovano subito altri scisti che, paleozoici per gli altri, sono invece formazioni che fanno parte di quello stesso flysch al quale queste arenarie piuttosto calcarifere e con frequenti impronte vermiformi pure appartengono. A sud di Širokar, sopra al bacino del lago di Rikavac, si vede chiaramente che il calcare delle alture non si sovrappone agli scisti ma affiora in mezzo ad essi. Le arenarie che a Rikavac sono abbastanza sviluppate e che altrove, come anche a sud-est di Širokar, si alternano col complesso degli scisti e con strati di calcare ricco di venature di calcite ma privo di fossili macroscopici, sono simili in tutto a quelle del flysch appenninico e, a parer mio, differiscono invece da quelle di altre località del Montenegro e dai veri caratteristici strati di Werfen che, per esempio, nelle Alpi orientali distinguono nettamente il Trias inferiore.

Una ricca varietà litologica si osserva invece a Širokar e nei dintorni, ma la roccia che le serve di base è un calcare cretaceo in molti punti fossilifero e interposto fra la massa principale del Trias e la zona scistosa, in mezzo alla quale le già ricordate carte geologiche del Tietze e del Hassert non segnano nemmeno un affioramento cretaceo, mentre Vinassa (loc. cit. pag. 496) per il primo ha constatato che « sulla vetta del Cebeza è un calcare, nel quale sono traccie assai nette di fossili e che quasi certamente è ippuritico ». Calcare cretaceo ricco di fossili venne da me ritrovato ancora più ad est e a nord, come più avanti vedremo, sul Maglié, sulla Crna Planina e in un potok del Kurlaj sotto agli scisti.

A nord di Rikavac fin presso i catuni di Širokar si segue il confine fra calcare e scisti e si osserva sempre che questi ultimi ricoprono i calcari.

A sud-est di Širokar, come ho già accennato, il terreno risulta di scisti argillosi rossi, gialli, turchinicci e verdastri, di calcari marnosi e scistosi scuri e di arenarie micacee. Tutto questo complesso di roccie diverse è associato a roccie serpentinose, ofiolitiche: interstratificate si trovano pure belle oficalci superficialmente e in parte steatitose.

Nel calcare scuro scistoso di Širokar non ho osservato in sezione alcun fossile importante, ma solo qualche raro frammento di Globigerina sp. È vero che non si può dare importanza alle analogie petrografiche ma di calcari scuri identici a quelli di Širokar ne ho trovati pure nell'Eocene dell'Appennino toscano. Sul Maglić invece fra i soliti scisti ho raccolto calcari marnosi con esemplari abbastanza ben conservati di Chondrites Targionii Brogn. e di Chondrites intricatus Brogn. forme tipiche del flysch dell'Europa del sud e specialmente della Svizzera e della Francia; nelle sezioni sottili ho notato soltanto Orbulina universa e Globigerina bulloides d'Orb. Insieme con questi trovansi pure calcari grigio scuro lucenti, ancor più marnosi, venati di calcite, che paragonerei agli scisti filladici dei terreni molto più antichi se non presentassero una meno evidente sfaldatura laminare e non dessero viva effervescenza con l'acido cloridrico. Le arenarie calcareo-micacee di Širokar e Rikavac in sezione sottile si sono presentate risultanti di quarzo, calcite, mica e traccie di roccie serpentinose.

Presso al Suhi vrh di Širokar, inizio meridionale delle alture del Maglić, la formazione è allo scoperto e grossi banchi fortemente contorti di calcare cretaceo compatto talora selcioso e ricco di venature spatiche, vengono ricoperti dalla massa scistosa. Questo calcare costituisce il nucleo della piega stretta ed allungata del Maglić la quale, al pari degli altri corrugamenti che in modo abbastanza regolare si estendono fino al Kom, è diretta da nord-ovest a sud-est. Detti banchi di calcare sono talvolta scoperti lungo le pendici del Maglić, che, elevandosi a nord-est di Širokar, presenta i fianchi occidentali quasi per intero ricoperti dagli scisti e la cresta costituita da calcari. Tra il Maglić e il prospiciente rilievo verso ovest, sotto ad una coltre poco potente di depositi glaciali e di detriti affiorano pure calcari compatti e calcari brecciati i quali si continuano variamente ondulati fino all'altura del Torač sulla cui cima bruscamente rimangono interrotti; pure lembi

scistosi trovansi nella vallecola dei laghetti di Mokro fra il Torač e il Monojevo, vallecola interessante per le formazioni glaciali a cui i laghetti di questa località debbono quasi senza dubbio la loro origine.

I banchi di calcare con grosse e abbastanza ben conservate *Caprinidi* che si ritrovano sulla cima del Maglić, emergono dal complesso degli scisti a cui servono di base e appaiono inclinati di 50°-55° a nord-est, rimanendo talvolta allo scoperto nella parte orientale finchè non s'immergono sotto la copertura scistosa che un nuovo sviluppo assume nella valle della Veruša e del Kurlaj.

Discendendo il Maglić fino ai catuni Kuči presso Mokro, la stessa formazione calcarea si mostra in tutta la sua potenza e dove rimane denudata l'alta serie di questi calcari, si può osservare una successione corrispondente a quella dell'opposto versante dello Žijovo. Gli strati infatti immersi a nord-est presentano nella parte più profonda abbondanti turricolate con prevalenza di nerinee e in quella superiore una ricca massa di calcare a rudiste; essi costituiscono pure il Groblje a settentrione del Maglić e si distendono pure sulla riva orientale della Veruša, ricoperti al solito dall' insieme degli scisti. Calcare a rudiste si trova pure al principio della Veruša dove la valle e più stretta e dove più attiva è stata l'incisione del torrente.

La sovrapposizione degli scisti al calcare cretaceo nei dintorni di Širokar e nella valle della Veruša è sempre molto evidente. Se anche dalla Veruša volgiamo ad occidente per la strada di Brskut, si possono osservare ancora per un buon tratto gli scisti sopra alla Creta.

Prendendo a salire dalla Veruša il Crna Planina, si segue per lungo tratto il torrente che solca a settentrione questo monte scorrendo fra gli scisti varicolori, le arenarie calcarifere e i calcari scistosi rosso e grigio scuri. I ripidi fianchi del monte sono da ogni parte ricoperti dal flysch di cui ho potuto qui osservare la varietà litologica, giacchè lungo il torrente si presentano tutte quelle diverse roccie arenacee, argillose, calcarifere e serpentinose notate a sud di Širokar ed inoltre masse considerevoli di serpentine, per lo più alterate, e frequenti quarziti. Nelle trincee di questo torrente e in quelle dell'Opašanica e del Kurlaj ho pure osservato e raccolto delle brecciole ad elementi calcarei, quarzosi e serpentinosi, insieme con roccie più compatte, puddingoidi a grana minutissima degli stessi elementi in prevalenza quarzosi, calcarei e serpentinosi. Simili brecciole e conglomerati a prima vista presentano una certa assomiglianza col tipo del verrucano, ma esse non sono talcose e nelle sezioni microscopiche ci hanno fatto riconoscere anche dei residui organici appartenenti a nulliporidee del genere Lithothamnium. Di frequente si associano pure a queste breccie scisti scuri, lucenti, con vene di calcite.

Invece sulla cresta del Crna Planina presso il termine della fittissima selva di faggi che a settentrione ed a oriente riveste i fianchi del monte,

affiora fortemente inclinato a nord-est un complesso di strati calcarei con piccoli gasteropodi a cui successivamente sovrastanno calcari con traccie abbastanza bene riconoscibili di ippuritidee; quindi alternanze di calcari e di conglomerati a piccoli elementi come quelli ad occidente del Maglić, e infine altri calcari con grossi gasteropodi i quali servono alla loro volta di base ad un vero e proprio calcare a Rudiste. Più sotto a nord, nella parte superiore del letto del torrente, in taluni punti dove più forte è stata l'erosione, si trovano allo scoperto gli stessi calcari cretacei della cima. A nordovest e dopo il primo rilievo ad occidente della Crna Planina si dispiega nuovamente il paesaggio carsico del Montenegro; a nord e nord-ovest invece si ha senza interruzione la zona scistosa verdeggiante di praterie del Vardar Kurlaj, identica per aspetto e costituzione geologica al flysch del Crna Planina e del Maglić.

Durante le escursioni fra la Crna Planina e la base il Kom, ascendendo le cime delle principali alture interposte e risalendo per lo più le incisioni dei torrenti, mi sono convinto che questo flysch non ha effettivamente una potenza verticale molto considerevole giacchè il nucleo di tutti questi rilievi è costituito da strette pieghe cretacee le cui sommità affiorano per lo più fratturate sulle cime più alte, mentre rimangono rivestite sui fianchi dal complesso del flysch.

Anche l'imponente massa mesozoica del Kom emerge come un colosso fra i terreni del flysch i quali, per ciò che riguarda la parte da me studiata, si trovano quindi con la sottostante formazione cretacea, compresi nella sinclinale che disgiunge l'ellissoide triassico dello Žijovo dalla massa in gran parte pure triassica del Kom.

Riepilogando debbo ripetere che le creste calcaree che coronano le alture della zona scistosa dei Kuči fino al Kom non sono affatto sovrapposte agli scisti, ma emergono in mezzo al complesso di essi e non di rado anche in taluni punti dei fianchi a guisa di spuntoni.

I precedenti osservatori hanno fatto in questa località una rapida escursione ed i geologi che più diffusamente hanno illustrato questa regione, non ebbero il tempo di salire quelle cime sulle quali anche in lontananza si osserva il grigio calcare; e ciò si arguisce con facilità confrontando i loro itinerarî con il tempo impiegato nell'escursione, e poi anche dal fatto semplicissimo che se vi fossero saliti avrebbero ancora meglio di me notata la posizione degli strati cretacei ed i loro rapporti con la formazione scistosa. Infine, se si fossero osservati gli affioramenti di calcare cretaceo sulle alture citate, il Tietze pel primo (loc. cit. p. 18) a sostegno di un ipotetico Paleozoico in questa località, non avrebbe addotto il concetto che in mezzo ad una successione di pieghe cretacee ricoperte dal flysch, le più alte cime rocciose della regione farebbero fede di una copertura triassica in passato molto

più estesa e continua e nella quale, come altri ha aggiunto, l'erosione ha così lavorato da rendere visibili gli scisti sottostanti.

Escludo per parte mia che l'attuale configurazione della zona scistosa, almeno ad occidente del Kom, possa avvalorare tale ipotesi, e non credo che possa bastare il criterio litologico per affermare l'esistenza del Paleozoico nella regione da me presa in esame, specialmente ora che l'ho dimostrato più che mai fallace una volta che si presta a scambi così facili tra Paleozoico e flysch eocenico. La posizione stratigrafica, almeno per questa parte, parla chiaramente per l'esclusione del Paleozoico e per convincersene basta percorrere, a parte la regione albanese dei Klementi inospite e pericolosa, il tratto fra Ricavac e l'inizio della valle della Tara lungo il confine fra la zona carsica e quella scistosa. Del resto anche il Tietze ha osservato il calcare sotto agli scisti nei restringimenti della valle della Veruša e della Tara, ma per la convinzione di trovarsi in terreni carboniferi li aveva riferiti al Paleozoico, mentre a me hanno mostrato delle rudiste e turricolate se non determinabili data l'intima loro compenetrazione nella roccia, certo però sempre riconoscibili.

Se fosse concesso anche a me di avvalorare i miei asserti con le analogie litologiche, si dovrebbe riconoscere che il flysch che a Premići alterna con le nummuliti presenta formazioni argillose corrispondenti a quelle qui osservate e che le arenarie della regione scistosa dei Kuči e dei Vasojeviči, le quali, secondo pure le asserzioni del Tietze, si ritrovano spesso alternate con gli scisti, corrispondono pienamente a quelle di Premići e di Listac e perfino a quelle del flysch appenninico, nel quale abbiamo pure avuto occasione di notare roccie serpentinose, calcaree, scistose e arenacee simili a quelle del Montenegro.

Non si può fare a meno di richiamare l'attenzione specialmente sulle roccie serpentinose che in questa località non vennero, secondo quanto ci risulta, ancora avvertite mentre simili roccie sono frequenti nel flysch albanese della valle del Drin dove Cvijić (¹) ha pure trovato delle nummuliti. Notevoli pure sono gli scisti calcarei a Chondrites Targionii e Ch. intricatus, a proposito dei quali torna opportuno ricordare una pubblicazione di Mayer-Eymar sul Flysch (²). L'autore accennando alle assomiglianze del Ch. Targionii col più antico Ch. aequalis del Cenomaniano, afferma che il primo viene a riconoscersi con facilità e ad assumere un valore stratigrafico importante allorchè viene, negli strati in posto, accompagnato da un'altra specie che si presta meno alle confusioni, e cioè dal piccolo e sottile Ch. in-

⁽¹⁾ Cvijić J., Die dinarisch-albanesische Scharung. Aus den Sitzungsber. der k. Akad. der Wissensch. in Wien, Bd. CX, Abt. 1. December 1901.

⁽²⁾ Mayer Eymar Ch., Sur le flysch et en particulier sur le flysch de Biarritz. Boll. de la Soc. géol. de France, 4° serie, tome II, Fasc. 4, (1902).

tricatus e non di rado anche dalla singolare Helminthoidea labyrinthica. Queste tre specie, delle quali le due prime sono comuni negli scisti marnosi del Montenegro sud orientale, abbondano in tutto l'Appennino dove le roccie della stessa natura marno-calcarea scistosa che si associano al macigno appartengono, secondo il Mayer, al flysch tipico a cui lo stesso Mayer Eymar dà il nome di piano Liguriano.

La comunanza di queste specie con quelle ritrovate pure nel flysch della Svizzera e della Francia — concordemente riferite al Bartoniano superiore che nell'Europa meridionale corrisponde all'Eocene superiore (piano di Priabona) m'indurrebbe infine a ritenere le formazioni scistose della parte occidentale del paese dei Kuči come tracce sporadiche di quel flysch molto più sviluppato, che, ricco di varietà litologiche, si estende nella regione ad occidente del Kom e che probabilmente comprende pure parte dei terreni dei Vasojeviči ritenuti fino ad oggi come paleozoici. Le rocce eruttive peridotiche, diabasiche, ed affini che appunto nei Vasojeviči si trovano qua e là associate ai depositi scistosi, avvalorerebbero più che mai le analogie fra il flysch del Montenegro orientale e il flysch bene sviluppato e conosciuto nella Bosnia e nell' Erzegorina. Inoltre Cvijić (1) nel Durmitor (Montenegro settentrionale) ha riconosciuto che sono da riferirsi al flysch eocenico quei depositi marnosi, arenacei ed argillosi che il Tietze aveva ritenuti come strati di Wengen e che Hassert ha raggruppato in mezzo ai terreni del Giura sotto la vaga denominazione di Durmitorschiefer.

A questa stessa formazione dell'Eocene superiore Cvijić (²) attribuisce in Albania le basse colline adiacenti a Scutari e le pendici sud ed est delle Procletje, dove pure sono comuni le serpentine e in genere le roccie diallagiche e quelle dioritiche, che Boué (³) cita nella valle del Drin fino al distretto di Ipek, e che Cvijić, sempre in Albania, ha osservato pure presso il lago di Okrida, nel distretto di Korica, nel bacino del Devol e della Vojuta.

Si può infine affermare che il flysch eocenico non solo è rappresentato lungo l'estrema costa dalmata e il litorale montenegrino fra Antivari e Dulcigno, ma in corrispondenza con quello albanese già noto a sad e quello bosno-erzegovese a nord, si estende pure, assumendo uno sviluppo considerevole, nella parte sud orientale del Montenegro.

⁽¹⁾ Cvijié J., Morphologische und glaciale Studien aus Bosnien, der Hercegovina und Montenegro. Abhandl. der k. k. Geograph. Gesellsch. Bd. II, N. 6. Wien 1900.

⁽²⁾ Cvijić J., Die dinar. alb. Scharung, loc. cit.

⁽³⁾ Boué A., Esquisse géologique de la Turquie d'Europe. Paris 1840.

Batteriologia agraria. — Sul batterio dell'acido urico (¹). Nota di C. Ulpiani, presentata dal Socio E. Paternò.

Dai lavori di F. e L. Sestini (2) e di Gerard (3) era stato posto fuor di dubbio che le soluzioni di acido urico in certe condizioni possono subire una fermentazione speciale, ma non avendo isolato il microrganismo che produce questa fermentazione, gli autori non erano rimasti d'accordo sui prodotti terminali di essa.

Essendomi appunto riuscito l'isolamento di questo microrganismo, ne descriverò i caratteri morfologici e culturali.

Premetto, intanto, che, servendosi di questo batterio in cultura pura, il dott. Cingolani, dietro mio invito, ha eseguito in questo laboratorio una lunga serie di determinazioni, che fra breve verranno pubblicate, per stabilire la equazione chimica della fermentazione che questo batterio produce sull'acido urico. L'acido urico viene quantitativamente demolito secondo questa equazione:

$$C^5H^4N^4O^3 + 2H^2O + 30 = 2CO \sqrt{\frac{NH^2}{NH^2}} + 3CO^2$$

Isolamento del batterio dell'acido urico.

Il metodo seguito per isolare questo batterio è stato il seguente: escrementi freschi di pollo sono stati stemperati in acqua in un pallone, e dopo alcuni giorni, quando si è notato un manifesto movimento fermentativo nel pallone, si è fatta una serie successiva di passaggi prima in palloni contenenti il medesimo materiale sterilizzato, e poi in tubicini contenenti una soluzione di acido urico e traccie di sali (fosfato sodico, cloruro sodico e solfato potassico). Ventiquattro ore dopo l'innesto il contenuto dei tubicini incominciava ad intorbidarsi: se in fondo al tubicino vi era un po' d'acido urico indisciolto, questo deposito mano mano si veniva sciogliendo e dopo pochi giorni il liquido non dava più la reazione della murosside, sicchè l'acido urico era completamente fermentato.

Facendo ora le piastre in agar si è così potuto isolare un batterio, che, in cultura pura, innestato in una soluzione d'acido urico alla temperatura di 35", lo fermenta completamente in tre o quattro giorni.

- (1) Lavoro eseguito nell'Istituto chimico della R. Università di Roma.
- (2) Gazz. Chim. Ital. Vol. 20, pag. 133 e vol. 26, pag. 92.
- (3) Comptes Rend. Vol. 122, peg. 1019 e vol. 123, pag. 185.

Si noti che la reazione della murosside è così sensibile, da svelare una parte di acido urico su 100000, e che i tubicini non innestati di controllo mantengono sempre la proprietà di dare la reazione della muresside: almeno tubicini sterilizzati nel novembre 1902 danno ancora dopo 10 mesi una reazione evidentissima.

Caratteri morfologici.

Il batterio all'osservazione microscopica dimostra una forma tipica di cocco-batterio fornito di capsula ben evidente. Dopo successivi passaggi ha tendenza ad assumere un aspetto coccico piccolo. Si osservano però, specie nei mezzi liquidi di cultura (escluso il liquido dell'acido urico in cui le forme sono prevalentemente piccole e rotonde), forme filamentose corte e grosse che indubbiamente risultano dall'unione di forme bacillari grosse e tozze che poi si staccano e rimangono libere. Oltre a queste si osservano anche forme filamentose sottili le quali farebbero pensare a prima vista a un inquinamento, ma il loro numero è troppo scarso e l'attenta osservazione fa vedere che anche esse tendono a suddividersi in forme bacillari, benchè non regolarmente, dando luogo a forme che non possono interpretarsi che come involutive. Infatti si osservano anche forme bacillari sottili leggermente elevate, che indubbiamente sono involutive.

Mano mano che la cultura invecchia, le forme cocco-batteriche si fanno sempre più piccole. Questo fenomeno è ancora più manifesto nelle culture in acido urico, in cui il microrganismo dopo aver assunto sempre più l'aspetto coccico piccolo, manifesta una netta bacteriolisi (piccolissimi granellini rotondi ben colorati).

Il microrganismo è mobile e resiste alla decolorazione col metodo del Gram: si colora bene con la fucsina (liquido di Zielh) e con il violetto di genziana assumendo una colorazione uniforme: bastano 20"-40" per colorirlo a caldo.

Caratteri culturali.

Piastre in agar. — Su agar all'acido urico in cultura a piatto dà dopo tre giorni colonie rotonde del diametro di 1-1 ½ mm. di colorito giallo chiaro quasi bianco, sporgenti sulla superficie dell'agar, senza alcun alone periferico. Dopo 10 giorni le colonie misurano 1 ½ 2 ½ mm. di diametro e si presentano ancor più rilevate con la parte centrale nettamente a punta e con un leggiero alone periferico più chiaro e trasparente. Osservate al microscopio le colonie si presentano con contorno nettissimo, col bordo più chiaro e trasparente, e con la parte centrale più scura e spessa, a massa omogenea, granulosa giallastra. Non si ha sviluppo, o limitatissimo, nell'interno dell'agar.

Strisciamento in agar. — Nell'agar all'acido urico solidificato a becco di flauto presenta, specie ai margini della linea di strisciamento uno sviluppo a colonie piccole, rotonde, staccate, sporgenti umide. Dopo 2 o 3 giorni le colonie confluiscono assumendo l'espetto di una patina sottile, umida bianco-giallognola omogenea. Nell'agar comune si sviluppa egualmente, solo lo sviluppo è più lento.

Colonie in gelatina. — In gelatina a piatto si sviluppa come nell'agar, ma le colonie sono di molto più piccole, quasi puntiformi. Non fluidifica la gelatina.

Infissione in gelatina. — Sviluppo caratteristico a chiodo: in superficie si ha disco rotondo che nella parte mediana è sporgente, gialliccio, spesso, opaco e alla periferia pianeggiante trasparente, bianco-azzurrognolo, con contorno netto; il tramite d'infissione è appena visibile, a forma di piccolo nastrino terminante in punta.

Culture liquide. — Nel brodo comune, come nel brodo all'acido urico, si sviluppa bene intorbidandolo uniformemente dopo un giorno, e facendo alla superficie una leggiera pellicola mobile, sottilissima, azzurrognola che non cade al fondo, con un piccolo deposito granuloso e polverulento e qualche raro fiocchetto sospeso.

Si sviluppa più lentamente e con minore intensità nel peptone puro e nel peptone all'acido urico, ma senza formare pellicola alla superficie e deposito al fondo.

Tubicini contenenti una soluzione di acido urico in acqua distillata (soluzione satura a freddo) con aggiunta di una piccolissima quantità di sali innestati, presentano i seguenti fenomeni: la soluzione limpida prima dell'innesto già dopo un giorno si fa opalescente e dopo tre giorni si presenta bianchiccia; al quarto giorno il contenuto dei tubicini non dà più il minimo accenno della reazione della muresside e al 7°8° giorno, al massimo al 10° i passaggi fatti da queste culture riescono sterili. Non si sviluppa nè in soluzioni di carbonato di guanidina, nè in quelle di caffeina, di allossano, di acido parabanico, di glucosio, di saccarosio, di amido ecc. Sembra invece che si sviluppi in una soluzione di asparagina, facendo assumere al liquido dopo 7-8 giorni un colorito gialliccio, che aumenta sempre più d'intensità sino a divenire giallo verdastro dopo 20-25 giorni.

Resistenza alla temperatura.

Lo sviluppo avviene bene ad una temperatura di 29°-42°, optimum 39°: le culture mantenute per un ora alla temperatura di 45° si sviluppano ancora; a 48° lo sviluppo è scarsissimo; tenute per un'ora a 50 non si sviluppano più.

L'isolamento del batterio dell'acido urico porta un contributo alle nostre conoscenze sul ciclo biologico dell'azoto. Le sostanze proteiche elaborate dai vegetali o attraversano l'organismo animale come alimento, o subiscono la putrefazione batterica: in questo ultimo caso l'azoto delle proteine vegetali attraverso una lunga serie di azioni microbiche, i cui agenti sono quasi affatto ignoti, viene ridotto a carbonato d'ammonio e poi nitrificato; giunto allo stato di nitrato l'azoto o per opera dei denitrificanti ritorna allo stato elementare nell'atmosfera, o assorbito dalle piante torna ad integrarsi per opera della cellula vegetale nella molecola proteica. Invece l'azoto proteico ingerito dagli animali viene escreto sotto forma di combinazione azotate organiche, e si sa dai lavori di Winograsdki e Omelianski che tali combinazioni per essere nitrificate hanno bisogno di essere mineralizzate. Per l'urea si ha il bacterium urene, che la fermenta idrolizzandola a carbonato d'ammonio. Ma l'urea non è il solo prodotto azotato del metabolismo animale. Per quanto le nostre conoscenze sulla chimica comparata della secrezione renale siano molto incerte, pure sembra assodato che in tutti gli invertebrati l'azoto non è eliminato sotto forma di urea: negli stessi vertebrati solo i mammiferi, gli anfibi e i pesci eliminano urea; mentre i rettili e gli uccelli emettono acido urico. Anche nelle forme più basse del regno animale si riscontra l'acido urico come prodotto di escrezione: fino nel protoplasma dei protozoi si troverebbero, secondo Entz, formazioni cristalline escrementizie di urato di sodio; negli echinodermi poi Griffiths (1) ha posto fuor di dubbio la eliminazione dell'acido urico. Nei celenterati (2) invece e nei vermi (3) sembra che l'azoto proteico venga escreto sotto forma di guanina. I molluschi invece eliminano acido urico; solo nei cefalopodi (4) comparisce l'ipocantina come prodotto d'escrezione dell'azoto. Nei crostacei (5) prevale la guanina; negli atropodi (6) si riscontra tanto l'acido urico che la guanina, così negli insetti e nei miriapodi si ritrova acido urico, mentre ad es. gli scorpioni eliminano guanina.

L'acido urico è adunque uno dei più importanti prodotti del metabolismo animale: ora il batterio dell'acido urico inizia la mineralizzazione di questo complesso chimicamente così stabile demolendolo in anidride carbonica ed urea, rendendo così possibile l'azione associata del bacterium ureae che poi lo conduce alla sua mineralizzazione completa.

Infatti, io ho dimostrato che il bacterium ureae non attacca menomamente l'acido urico, mentre una soluzione di acido urico sterilizzata e

- (1) Phys. of the Invertebrata, 1892, pag. 254.
- (2) Caruf, System der tierischem Morphologie, 1843, pag. 148.
- (3) Schaeppi, Senaische Zeitschr. 1894, pag. 248-293.
- (4) Von Fürth, Zeitschr. f. phys. Chemie, 1900, pag. 353.
- (5) Gorup-Besanes e Will, Ann. Lieb., 69, pag. 120.
- (6) Marchal, Mėm. Soc. zool. de France, 3, pag. 55.

innestata contemporaneamente con culture pure del batterio dell'acido urico e del bacterium ureae, viene rapidamente e quantitativamente trasformato in carbonato d'ammonio; non solo: tubicini contenenti una soluzione d'acido urico, dopo essere stati completamente fermentati dal batterio dell'acido urico, presentano reazione neutra alla carta di tornasole: se a questo punto s' innestano col bacterium ureae, dopo poche ore la reazione diventa alcalina e si può facilmente dimostrare la formazione del carbonato d'ammonio.

Attualmente ho in corso esperienze sulla fermentazione della guanina e della ipoxantina.

V. C.

RENDICONTI

DELLE SEDUTE

DELLA REALE ACCADEMIA DEI LINCEI

Classe di scienze fisiche, matematiche e naturali.

MEMORIE E NOTE DI SOCI O PRESENTATE DA SOCI

pervenute all'Accademia sino al 4 ottobre 1903.

Matematica. — La estensione dei problemi di riduzione di Pfaff-Grassmann e Jacobi. Nota VI del Corrispondente Ernesto Pascal.

Le considerazioni svolte nelle precedenti cinque Note (1) ci pongono in grado di proporci e risolvere i problemi di riduzione che sono da considerarsi estensione, per le forme differenziali di ordine r, di quei problemi che per le forme di primo ordine vanno sotto il nome di Pfaff-Grassmann e Jacobi.

Il primo di questi è:

I. Trovare le condizioni perchè esistano trasformazioni di variabili per cui la forma $X^{(r)}$ si riduca a $\mu T^{(r)}$ dove μ sia un fattore finito con tutte le variabili e $T^{(r)}$ sia una forma differenziale contenente una variabile di meno; e indi trovare tutte le trasformazioni di tale natura.

Per enunciare il secondo premettiamo le seguenti considerazioni: Sieno $\mathbf{Z}^{(1)}$, $\mathbf{Z}^{(2)}$, ... le forme di una successione canonica (v. Nota IV) e costruiamo la forma differenziale:

(1)
$$-\frac{1}{2} \sum_{\rho=1}^{r-1} (-1)^{\rho} \begin{pmatrix} r \\ \varrho \end{pmatrix} d^{r-\rho} \mathbf{Z}^{(\rho)}$$

i cui termini sono tutti differenziali di varî ordini; una siffatta espressione noi l'abbiamo varie volte incontrata nelle precedenti ricerche nelle quali ha

(1) Tutte contenute nel volume del 1903 (1° e 2° sem.) di questi Rendiconti. Rendiconti. 1903, Vol. XII, 2° Sem.

compiuto un ufficio importante. Essa evidentemente è un differenziale esatto almeno di primo ordine di una espressione di ordine inferiore ad r, perchè può scriversi

$$- \frac{1}{2} d \left[\sum_{\rho=1}^{r-1} (-1)^{\rho} \binom{r}{\varrho} d^{r-1-\rho} \mathbf{Z}^{(\rho)} \right],$$

dove però è da notare che la espressione sotto il segno d non è in generale una forma del tipo solito considerato in tutte queste ricerche, cioè del tipo delle $X^{(r)}$, mentre abbiamo dimostrato nella Nota IV che tutta la (1) è invece di tal tipo.

Se $Z^{(r-1)}$ è il differenziale $(r-1)^{mo}$ di una funzione f e quindi tutte le precedenti $Z^{(1)}$, $Z^{(2)}$, ... sono i differenziali 1° , 2° ... di f, la (1) diventa il differenziale r^{mo} di f se r è pari, e diventa invece zero se r è dispari.

Se r è pari diremo, per brevità, che (1) è un differenziale canonico. Se poi r è dispari assumeremo come differenziale canonico la espressione:

(2)
$$\frac{1}{2} \sum_{\rho=1}^{r-1} (-1)^{\rho} \binom{r}{\varrho} d^{r-\rho} \mathbf{Z}^{(\rho)} - \frac{1}{2} d \cdot \sum_{\rho=1}^{r-2} (-1)^{\rho} \binom{r-1}{\varrho} d^{r-1-\rho} \mathbf{Z}^{(\rho)}$$

ammesso che le Z soddisfacciano a tali relazioni che la (2) sia una forma differenziale del solito tipo fondamentale, il che, se è sempre verificato per il primo termine e per la quantità sottoposta al d nel secondo termine, non sarà tuttavia verificato in generale per tutta la (2). Troveremo più tardi le condizioni a ciò. È da osservare che la (2) diventa anch' essa il differenziale r^{mo} esatto di f quando le $Z^{(p)}$ diventano i differenziali dei diversi ordini della medesima f.

Di questi differenziali canonici dimostreremo in seguito alcune proprietà comuni, a proposito specialmente delle matrici a caratteristica invariante ad essi relative, e dei loro covarianti evidenti.

Ciò premesso enuncieremo il secondo problema nel seguente modo:

II. Trovare le condizioni perchè esistano trasformazioni di variabili per cui la forma $X^{(r)}$ si riduca a $T^{(r)} + Z^{(r)}$ dove $T^{(r)}$ contenga una variabile di meno, e $Z^{(r)}$ sia un differenziale canonico contenente tutte le variabili; indi trovare tutte le trasformazioni di tale natura.

Se la $Z^{(r)}$ diventa un differenziale r^{mo} , si ha come caso particolare il problema di ridurre $X^{(r)}$ a $T^{(r)} + d^r f$, in cui $T^{(r)}$ contenga una variabile di meno.

La risoluzione di questi problemi (che per r=2 già trattammo in una Nota pubblicata in questi medesimi Rendiconti (1)) può farsi con due me-

^{(1) 1903, 1°} sem., pp. 31-41.

todi, di cui uno è fondato sulla teoria delle trasformazioni infinitesime e sui risultati ottenuti nelle Note IV e V, mentre l'altro è più diretto, ed è fondato sulle formole di trasformazione dei simboli a carattere invariantivo da noi trovate nella Nota II.

Del secondo metodo tratteremo in una delle Note seguenti.

1. Soluzione del problema I col metodo delle trasformazioni infinitesime. — Sia Ξ una trasformazione infinitesima di quelle considerate nel \S 3 della Nota V, cioè di quelle che lasciano invariata la $X^{(r)} = 0$, e per cui sieno zero A e $C^{(r-1)}$. Formando la equazione a derivate parziali lineare omogenea di primo ordine

$$\Xi f = 0$$
,

sieno

(3)
$$y_1 = q_1(x), \dots, y_{n-1} = q_{n-1}(x)$$

i suoi n-1 integrali indipendenti, e alle (3) aggreghiamo una nuova arbitraria funzione delle x

$$(3') y_n = \varphi_n(x) ,$$

colla sola condizione che le (3) (3') sieno indipendenti.

Dico che la trasformazione rappresentata dalle formole (3) (3') risolve il problema, e ogni trasformazione che risolve il problema deve essere di questo tipo.

Per modo che si ha anche:

Il problema I è solubile o no secondochè esistono o no trasformazioni infinitesime per le quali il covariante $L^{(r)}$ sia eguale ad $X^{(r)}$ stessa moltiplicata per un fattore finito, e per le quali sieno zero l'invariante A e il covariante $C^{(r-1)}$. Perciò la condizione per l'esistenza di tale Ξ (condizione già trovata nella Nota V) è la condizione per la risolubilità del problema I, e tutte le trasformazioni che risolvono il problema si trovano col metodo suindicato.

La dimostrazione di questo elegante teorema è delle più semplici. Trasformando la Ξ nelle variabili y, essa si riduce a

$$Y = \eta_n \frac{\partial}{\partial y_n}$$

e se devono essere zero l'invariante \mathcal{A} e il covariante $C^{(r-1)}$ trasformati, si hanno le equazioni:

(5)
$$\begin{cases} Y_n = 0 \\ ((n, j_1))_{Y} = 0 \\ ((n, j_1 j_2))_{Y} = 0 \\ \dots \\ ((n, j_1 ... j_{r-1}))_{Y} = 0 \end{cases}$$

se con Y si rappresentano i coefficienti della forma trasformata di $X^{(r)}$ che si indichi con $Y^{(r)}$.

Dalle (5) si deducono le

(6)
$$Y_n = 0$$
, $Y_{nj_1} = 0$, $Y_{nj_1j_2} = 0$ $Y_{nj_1...j_{r-1}} = 0$

cioè la $Y^{(r)}$ non contiene mai la variabile y_n sotto forma differenziale. Dico che inoltre negli altri coefficienti si pnò sempre separare un fattore comune contenente y_n , mentre l'altro fattore ne resta indipendente. Giacchè dovendo il risultato della (4) sulla $Y^{(r)}$ essere eguale ad un fattore finito σ moltiplicato per $Y^{(r)}$ stessa (proprietà che naturalmente deve conservarsi colla trasformazione), deve aversi

(7)
$$\eta_n \frac{\partial Y_{j_1 \dots j_m}}{\partial y_n} = \sigma Y_{j_1 \dots j_m}$$

perchè, per effetto delle (6), la variabile y_n non figura in $\mathbf{Y}^{(r)}$ che solo nei coefficienti; ora da (7) si ha

$$\mathbf{Y}_{i_1\cdots i_\rho} \frac{\partial \mathbf{Y}_{j_1\cdots j_m}}{\partial y_n} - \mathbf{Y}_{j_1\dots j_m} \frac{\partial \mathbf{Y}_{i_1\cdots i_\rho}}{\partial y_n} = 0$$

cioè

$$\frac{\Im}{\Im y_n} \frac{\mathbf{Y}_{i_1 \cdots i_m}}{\mathbf{Y}_{j_1 \cdots j_p}} = 0$$

il che prova che il rapporto di due coefficienti qualunque di $Y^{(r)}$ è indipendente da y_n . Dunque si ha:

$$\mathbf{Y}^{(r)} = \mu \, \mathbf{T}^{(r)}$$

in cui $T^{(r)}$ non contiene y_n .

D'altra parte supponiamo che esista una trasformazione delle x nelle y per cui la $Y^{(r)}$ acquisti la forma (9). Se noi formiamo la trasformazione infinitesima (4), si vede che sussistendo le (6) sussisteranno le (5), e quindi per essa la $C^{(r-1)}$ e $\mathcal A$ sono zero. Inoltre sussistendo (8) sussiste (7) e quindi la detta trasformazione infinitesima lascia invariata l'equazione $Y^{(r)} = 0$. Essendo invariantive tutte queste proprietà, ne risulta che la trasformata nelle x della (4) avrà, in rapporto a $X^{(r)}$, le medesime proprietà, e quindi resta dimostrato che ogni trasformazione che risolve il problema corrisponde ad una z avente le proprietà indicate.

Operando (4) sul secondo membro di (9) si ha

$$\eta_n \frac{\partial \mu}{\partial y_n} \cdot \mathbf{T}^{(r)}$$
,

e questo risultato, per la (7), deve essere eguale a $\sigma Y^{(r)}$ cioè $\sigma \mu T^{(r)}$, onde

$$\eta_n \frac{\partial \log \mu}{\partial y_n} = \sigma \qquad \mu = e^{\int \frac{\sigma}{\eta_n} dy_n}.$$

Per $\sigma = 0$ si ha $\mu = 1$; cioè:

La condizione necessaria e sufficiente perchè si possa trasformare $X^{(r)}$, senza fattore, in una forma con una variabile di meno, è che esista una trasformazione infinitesima, per cui sia $A = C^{(r-1)} = 0$, e che applicata a $X^{(r)}$ dia per risultato zero. La condizione a ciò è poi che la matrice:

$$\mathbf{M}' + \sum_{\rho=1}^{r-1} \left[(\mathbf{M}')_{\rho} + \langle \mathbf{M}' \rangle_{\rho} \right] + (\mathbf{M}')_{r}$$

sia zero.

Possiamo facilmente completare il teorema principale. Ricordiamo intanto che: La condizione per l'esistenza della Z è che la matrice indicata con E nella Nota precedente, cioè

$$E = M + \sum_{\rho=1}^{r-1} \left[(M)_{\rho} + \{M\}_{\rho} \right] + (M)_{r}$$

abbia caratteristica v < n+1.

Se ora è anche v < n, possiamo riapplicare il medesimo teorema sulla forma $\mathbf{T}^{(r)}$ che ha solo n-1 variabili. Giacchè si può far facilmente vedere nello stesso modo con cui abbiamo proceduto nel caso del secondo ordine (1), che la caratteristica della E relativa alla $\mathbf{Y}^{(r)}$ è la stessa di quella della E relativa alla $\mathbf{T}^{(r)}$ che differisce per un fattore dalla $\mathbf{Y}^{(r)}$, e questa è quindi la stessa di quella della E costruita per la $\mathbf{X}^{(r)}$, perchè la E è a caratteristica invariante. Ora la E costruita per la $\mathbf{T}^{(r)}$ ha solo n colonne perchè manca di quella colonna che corrisponde all'indice n, come manca di quelle linee che dipendono dal medesimo indice. Di qui ne viene che è zero anche la E relativa a $\mathbf{T}^{(r)}$, e che quindi si può similmente trasformare $\mathbf{T}^{(r)}$ in μ' $\mathbf{U}^{(r)}$ dove $\mathbf{U}^{(r)}$ contenga solo n-2 variabili. Così seguitando si vede che:

Se è v la caratteristica di E relativa ad $X^{(r)}$, si può sempre trasformare la equazione $X^{(r)} = 0$ in una contenente al più v - 1 variabili.

2. Alcuni lemmi per la soluzione del problema II. — Per ragioni di chiarezza sarà bene premettere alcuni lemmi che ci serviranno per la trattazione del problema II, di cui tratteremo nelle Note seguenti.

In primo luogo, supponiamo che le variabili siano indicate con $y_1 \dots y_n$ e che si ponga:

$$\mathbf{Y}_{j_1\dots j_p} = \mathbf{T}_{j_1\dots j_p} + \mathbf{Z}_{j_1\dots j_p}$$

dove le T non contengano la variabile y_n e quelle fra esse per cui uno degli indici è n siano zero.

(1) Vedi la mia Nota: Estensione di alcuni teoremi di Frobenius. Rend. Ist. Lomb. (2), t. 35, 1902, pp. 875-882.

Supponiamo inoltre che le Y soddisfacciano le

(11)
$$\begin{cases} (j_1 \dots j_r n)_{y} = 0 \\ (j_1 \dots j_{r-1} n)_{y} = 0 \\ \dots \dots \dots \\ (j_1 n)_{y} = 0 \end{cases}$$

se r è pari, ovvero

(11')
$$\begin{cases} (j_1 \dots j_r n)_{\mathbf{y}} = 0 \\ (j_1 \dots j_{r-1} n)_{\mathbf{y}} = 0 \\ \dots \dots \dots \\ (j_1 n)_{\mathbf{y}} = 0 \end{cases}$$

se r è dispari.

Ciò posto passiamo a trovare una formola cui soddisfa ogni simbolo principale.

Sia questo per es.
$$((j_1 \dots j_s, i)) + ((i, j_1 \dots j_s))$$

che è $(j_1 ... j_s i)$ se s è pari, e $\{j_1 ... j_s i\}$ se s è dispari.

Sviluppando ciascuno dei due termini di (12) colle formole del § 1 della Nota II, e sommando, possiamo scrivere:

$$(13) \begin{array}{c} (j_{1} \dots j_{s} i) \\ \{j_{1} \dots j_{s} i\} \end{array} = \frac{\Im^{s-1}}{\Im y_{j_{1}} \dots \Im y_{j_{s-1}}} \{i j_{s} \{-S_{j_{1}} \frac{\Im^{s-2}}{\Im y_{j_{1}} \dots \Im y_{j_{s-1}}} (i j_{1} j_{s}) + \\ + S_{j_{1} j_{2}} \frac{\Im^{s-3}}{\Im y_{j_{3}} \dots \Im y_{j_{s-1}}} \{i j_{1} j_{2} j_{s} \{-\cdots \cdots + \{-(i j_{1} \dots j_{s}) \text{ per } s \text{ pari } \\ + \{i j_{1} \dots j_{s}) \text{ per } s \text{ dispari }. \end{array}$$

Se invece di (12) consideriamo

(12')
$$((j_1 \dots j_s, i)) - ((i, j_1 \dots j_s))$$
 si ha:

$$(13') \quad \begin{cases} (j_{1} \dots j_{s} i) \\ \{j_{1} \dots j_{s} i\} \end{cases} = -\frac{\Im^{s-1}}{\Im y_{j_{1}} \dots \Im y_{j_{s-1}}} (i j_{s}) + Sj_{1} \frac{\Im^{s-2}}{\Im y_{j_{2}} \dots \Im y_{j_{s-1}}} \{i j_{1} j_{s}\} - Sj_{1} \frac{\Im^{s-3}}{\Im y_{j_{3}} \dots \Im y_{j_{s-1}}} (i j_{1} j_{2} j_{s}) - \cdots + \begin{cases} -(i j_{1} \dots j_{s}) \text{ per } s \text{ dispari} \\ +\{i j_{1} \dots j_{s}\} \text{ per } s \text{ pari} \end{cases}$$

dove le S hanno lo stesso significato che nella succitata Nota II.

Da queste formole apparisce intanto immediatamente, facendo $i_s = n$, che: dalla sussistenza di tutte le relazioni (11) o (11') risulta quella delle altre dello stesso tipo, ma in cui l'indice n invece di occupare l'ultimo posto, occupa un altro posto qualunque; cioè le Y soddisfanno anche a tutte le

(14)
$$\begin{cases} (nj_1 \dots j_r)_{\mathbf{x}} = 0 \\ \langle nj_1 \dots j_{r-1} \rangle_{\mathbf{x}} = 0 \\ \vdots \\ \langle nj_1 \rangle_{\mathbf{x}} = 0 \end{cases}$$

se r è pari; ovvero:

(14')
$$\begin{cases} (nj_1 \dots j_r)_{\mathbf{x}} = 0 \\ \{nj_1 \dots j_{r-1}\}_{\mathbf{x}} = 0 \\ \dots \dots \\ (nj_1)_{\mathbf{x}} = 0 \end{cases}$$

se r è dispari.

Inoltre immaginando in (13) s pari e in (13') s dispari e trasportando al primo membro l'ultimo termine della formola (13) o (13'), risulta:

La somma di due simboli principali di prima specie del tipo

$$(j_1 \dots j_s i) + (i j_1 \dots j_s)$$

(di cui cioè il secondo termine si ottiene dal primo scambiando solo l'ultimo indice con uno dei precedenti) è sempre esprimibile mediante derivate di simboli di prima e seconda specie ma contenenti un numero minore di indici.

Immaginiamo ora nella formola (13) che s sia pari (= $2\varrho + 2$); inoltre scambiate $j_{2\varrho+2}$ con $j_{2\varrho+1}$, sommate le due formole così ottenute, indi posto $j_{2\varrho+1} \equiv h$, $j_{2\varrho+2} \equiv k$, e infine sostituito alla somma

$$(i h j_1 ... j_{2\rho} k) + (i k j_1 ... j_{2\rho} h),$$

che è del tipo di quelle considerate nel teorema precedente (perchè il secondo termine si ottiene dal primo scambiando h con k), il suo valore dato dal medesimo teorema precedente. Similmente immaginiamo in (13') che s sia dispari $= 2\varrho + 3$, posto $j_{2\varrho+2} \equiv h$, $j_{2\varrho+3} \equiv k$, scambiato h con k, sommate le due formole così ottenute, e infine sostituito alla somma

$$(ihj_1...j_{2\rho+1}k)$$
 — $(ikj_1...j_{2\rho+1}h)$

il suo valore dato dal teorema precedente.

Osservando che, cogli scambi fatti, il primo membro di (13) o (13') resta inalterato, si ha una formola colla quale

$$(h k j_1 \dots j_{2\rho} i)$$
 ovvero $(h k j_1 \dots j_{2\rho+1} i)$

si esprime mediante derivate di simboli principali ad un numero minore di indici.

Conviene scrivere questa formola per poterne poi fare delle applicazioni; e per ciò indichiamo con D^{\mu}, applicata ad un simbolo principale contenente $2\varrho - \mu + 3$ degli indici $ihkj_1...j_{2\varrho}$, l'operazione del derivare rispetto alle y i cui indici sieno esattamente i μ mancanti nel simbolo. Si ha allora:

(16)
$$(h \, k \, j_1 \, \dots \, j_{2\rho} \, i) = \frac{1}{2} \, D^{2\rho+1} \, \{ i \, h \} + \frac{1}{2} \, D^{2\rho+1} \, \{ i \, k \} - \frac{1}{2} \, D^{2\rho+1} \, \{ h \, k \} - \frac{1}{2} \, S_{kj} \, D^{2\rho} \, (i \, j_1 \, h) - \frac{1}{2} \, S_{hj} \, D^{2\rho} \, (i \, j_1 \, k) + \frac{1}{2} \, S_{ij} \, D^{2\rho} \, (h \, j_1 \, k) + \cdots + \frac{1}{2} \, S_{kj} \, D \, \{ i \, j_1 \, \dots \, j_{2\rho} \, h \} + \frac{1}{2} \, S_{hj} \, D \, \{ i \, j_1 \, \dots \, j_{2\rho} \, k \} - \frac{1}{2} \, S_{ij} \, D \, \{ h \, j_1 \, \dots \, j_{2\rho} \, k \}$$

dove con S_{kj} si intende l'operazione del sommare tutti i risultati che si ottengono permutando fra loro gli indici $kj_1...j_{2\rho}$, e propriamente considerando tutte le loro combinazioni a 1 a 1 se si tratti dei termini della 2^a riga, le loro combinazioni a 2 a 2 se si tratti della 3^a riga, e così di seguito; e analogo significato hanno S_{kj} , S_{ij} .

In modo simile da (13') si ha la formola:

(16')
$$(hkj_{1}...j_{2\rho+1}i) = -\frac{4}{2}D^{2\rho+2}(ih) - \frac{4}{2}D^{2\rho+2}(ik) + \frac{4}{2}D^{2\rho+2}(hk) + \frac{4}{2}S_{hj}D^{2\rho+1}\langle ij_{1}h\langle +\frac{4}{2}S_{hj}D^{2\rho+1}\langle ij_{1}k\langle -\frac{4}{2}S_{ij}D^{2\rho+1}\rangle hj_{1}k\langle -\frac{4}{2}S_{hj}D^{2\rho+1}\langle ij_{1}h\langle +\frac{4}{2}S_{hj}D^{2\rho+1}\langle ij_{1}k\langle -\frac{4}{2}S_{hj}D^{2\rho+1}\langle ij_{1}k\langle -\frac{4}{2}S_{hj}D^{2\rho+1}\langle ij_{1}k\langle -\frac{4}{2}S_{hj}D^{2\rho+1}\langle ij_{1}...j_{2\rho+1}k\langle -\frac{4}{2}S_{hj}D^{2\rho+1}\langle ij_{1}...j_{2\rho+1}k\langle$$

Da queste formole ne ricaviamo altre.

Facciamo $i \equiv n$, intendiamo calcolata la (16) o (16') per le Y, e osserviamo che sussistendo tutte le (14), o (14'), tutti i termini delle due prime colonne di (16) o (16') sono zero, mentre dei termini della terza colonna sono diversi da zero solo quelli nei quali l'indice $i \equiv n$ non comparisce come interno al simbolo, e cioè quei termini nei quali comparisce la derivata rispetto ad y_n . Ora ammettiamo che sussistano le relazioni

(17)
$$\langle hk \rangle_z = 0 \quad (hj_1k)_z = 0 \quad \dots \quad (hj_1 m j_{2\rho-1}k)_z = 0$$

ovvero
(17') $\langle hk \rangle_z = 0 \quad \langle hj_1k \rangle_z = 0 \quad \dots \quad (hj_1 m j_{2\rho}k)_z = 0$

per qualunque sistema di indici hkj₁j₂.....

Osservando che differendo le Z dalle Y (formola (10)) solamente per termini indipendenti da y_n , la derivata rispetto ad y_n di un simbolo formato colle Y è eguale a quella del medesimo simbolo ma formato colle Z, e che perciò i termini restanti dell'ultima colonna di (16) o di (16') si possono intendere calcolati per le Z, si ha che, ammesse le (17) o (17'), il secondo membro della formola (16) o (16') si riduce ad un termine solo, e cioè all'ultimo

$$-\frac{1}{2}\frac{\partial}{\partial y_n}\{hj_1\dots j_{2\rho}k\}_{\mathsf{Y}}\quad \text{ovvero}\quad -\frac{1}{2}\frac{\partial}{\partial y_n}\{hj_1\dots j_{2\rho+1}k\}_{\mathsf{Y}}.$$

Onde possiamo conchiudere:

Supposto che le Z verifichino le (17) o (17') e le Y le (11) o (11'), si otterrà in generale per qualunque s pari o dispari (= 2ϱ ovvero = $2\varrho + 1$):

$$(18) \qquad (hkj_1 \dots j_s n)_{\mathbf{Y}} = -\frac{1}{2} \frac{\partial}{\partial y_n} \{hj_1 \dots j_s k\}_{\mathbf{Y}}$$

dove al secondo membro può naturalmente porsi per indice Y o Z a piacere, e ciò per effetto della derivazione rispetto a y_n .

Se poi si ammette che è anche, oltre (17) o (17'),

(19)
$$|hj_1...j_sk|_z = 0$$
 $(s = 2\varrho \text{ ovvero} = 2\varrho + 1)$

ne risulta l'annullarsi di ogni simbolo principale di prima specie a s+3 indici, calcolato per le Z; giacchè basta applicare di nuovo la (16) o (16'), intendendovi i termini calcolati per le Z, e allora, osservando che al secondo membro vi sono sempre simboli a meno indici che nel primo, resta provato l'assunto.

Da (17) o (17') e da (19) risulta così l'annullarsi del termine immediatamente seguente nella successione costruita colla medesima legge.

Dimostriamo infine che se le Z soddisfanno a

(20)
$$\{j_1, j_2\}_z = 0$$
, $(j_1, j_2, j_3)_z = 0$, $(j_1, ..., j_{r+1})_z = 0$

se r è pari, ovvero

(20')
$$(j_1 j_2)_z = 0$$
, $\{j_1 j_2 j_3\}_z = 0$, $(j_1 ... j_{r+1})_z = 0$

se r è dispari, soddisferanno anche più generalmente a

(21)
$$((i_1 \dots i_{\nu}, j_1 \dots j_{\mu})) + ((j_1 \dots j_{\mu}, i_1 \dots i_{\nu})) = 0$$

ovvero rispettivamente a

(21')
$$((i_1 \dots i_{\vee}, j_1 \dots j_{\mu})) - ((j_1 \dots j_{\mu}, i_1 \dots i_{\vee})) = 0.$$

Infatti applicando le solite identità dimostrate nella Nota II, il primo membro di (21) o (21') può scriversi:

e ciascuna delle somme o differenza del secondo membro è del tipo (20) o rispettivamente (20'), e quindi è zero.

Matematica. — Sulla deficienza della serie caratteristica di un sistema lineare di curve appartenente ad una superficie algebrica. Nota di F. Severi, presentata dal Socio C. Segre.

Nella Memoria: Alcune proprietà fondamentali dei sistemi lineari di curve tracciati sopra una superficie algebrica (1) il prof. Castelnuovo dimostrò che sopra una superficie di generi P_g , P_a , la deficienza della serie caratteristica di un sistema lineare completo non supera $P_g - P_a$, e come conseguenza immediata di questa proporzione stabilì in modo esauriente il teorema di Riemann-Roch per le superficie.

Lo scopo di questa mia Nota è di dare una nuova dimostrazione molto semplice del teorema di Castelnuovo e conseguentemente del teorema di Riemann-Roch.

Dirò subito che tra le proposizioni di geometria sopra una superficie, sulle quali si fonda la mia dimostrazione, quelle che hanno carattere più elevato, si riferiscono alla proprietà fondamentale dell'aggiunzione e alla dimensione del sistema lineare segato sopra una superficie F dello spazio ordinario dalle aggiunte di un ordine abbastanza alto; la qual dimensione, com' è noto, può calcolarsi direttamente con le formole di postulazione nel caso delle singolarità ordinarie, oppure, prescindendo dalla natura delle singolarità di F, nel modo indicato dal prof. Enriques al n. 40 della sua Introduzione alla geometria sopra le superficie algebriche (2).

Esporrò qui le linee generali della dimostrazione sviluppata in questa Nota.

Assunto come modello proiettivo dell'ente ∞^2 una superficie d'ordine n, priva di punti multipli in uno spazio S_r , dopo averla proiettata genericamente sullo spazio ordinario in una superficie F, con linea doppia e punti tripli, della quale sia $|C_1|$ il sistema delle sezioni piane, deduco anzitutto dalla dimensione effettiva del sistema di curve segato su F dalle superficie aggiunte di un ordine k abbastanza alto, un limite inferiore per la dimensione del sistema completo |kC|. Dimostro poi che sopra la curva D, sezione di F con una superficie K d'ordine k, le superficie di un ordine qualunque passanti pei punti doppi della D segano, fuori di questi, una serie lineare completa.

Da ciò si rileva immediatamente che se k è abbastanza grande, le superficie d'ordine n-4 aggiunte ad F (supposte esistenti), segano sopra

⁽¹⁾ Annali di Matematica (2), t. 25 (1897).

⁽²⁾ Memorie dei XL (3), t. 10 (1896).

una curva k C una serie completa: basta infatti scegliere k > n - 4, perchè accada che ogni superficie d'ordine n - 4 passante pei punti doppî di D, contenga in conseguenza la linea doppia, e quindi sia aggiunta ad F. Così trovasi che la dimensione della serie completa residua della serie caratteristica g_{n_k} rispetto alla serie canonica di k C, è uguale a $P_g - 1$.

D'altronde questa dimensione si può anche calcolare in funzione dei caratteri della serie g_{n_k} profittando del teorema di Riemann-Roch, relativo alle serie lineari sopra una curva. Confrontando l'uguaglianza che in tal modo si ottiene, con la disuguaglianza a cui soddisfa la dimensione di |kC|, si trova che la deficienza di g_{n_k} non supera $P_g - P_a$.

Stabilito ciò, si scelga k così grande che |kC| seghi su C una serie completa e che al sistema residuo, |(k-1)C|, si possano applicare tutte le considerazioni precedenti. Allora con un semplice ragionamento che trovasi al n. 30 della citata Memoria di Castelnuovo (1), si dimostra che la deficienza δ della serie caratteristica di C, non supera quella della serie caratteristica di (k-1)C, e quindi che $\delta \leq P_g - P_a$.

Una volta dimostrata questa proprietà pel sistema |C|, facilmente si estende ad ogni altro sistema.

In questo riassunto, per semplificare, mi son limitato al caso $P_g > 0$. Nel caso $P_g = 0$ la dimostrazione non è sostanzialmente differente.

1. Data una superficie d'ordine n, priva di punti multipli, indichiamo con F una sua proiezione generica sullo spazio ordinario, la quale sarà dotata soltanto di una linea doppia e di punti tripli, che lo sono anche per questa linea.

Diciamo |C| il sistema delle sezioni piane di F, che sieno di genere π , ed r'_k la dimensione del sistema completo |(kC)'| aggiunto al sistema |kC|, di grado n_k , genere π_k , multiplo secondo k del sistema |C|.

Poichè, allorquando k è abbastanza grande, |(kC)'| sega su kC una serie canonica avente la deficienza $P_g - P_a$ (2), sarà:

$$r'_{k}$$
 — $(\pi_{k} - 1 - P_{g} + P_{a}) - 1$

la dimensione del sistema residuo |(kC)' - kC|. Ma questa dimensione è uguale a $P_g - 1$, perchè il sistema residuo suddetto differisce al più dal sistema canonico per componenti fisse, dunque avremo:

$$r'_k = \pi_k - 1 + P_a.$$

⁽¹⁾ Questo ragionamento, come avverte il prof. Castelnuovo, gli fu suggerito da un paragrafo (IV, 1) delle Ricerche di geometria..., del prof. Enriques (Memorie di Torino, 1893).

⁽²⁾ Enriques, Introduzione, n. 40.

Ciò posto dimostriamo che, quando k è abbastanza grande, il sistema completo |kC| ha la dimensione:

$$r_k \geq n_k - \pi_k + P_a + 1.$$

Si consideri perciò il sistema |C'| aggiunto a |C| (o il sistema aggiunto ad un multiplo di |C|, quando non esistesse |C'|) e si scelga k così grande che la dimensione del sistema |C' + kC|, aggiunto a |(k + 1)C|, sia espressa dalla formola:

$$r'_{k+1} = \pi_{k+1} - 1 + P_a$$

e che inoltre esso seghi sopra una C' una serie non speciale. Indicando con n', π' il grado e il genere di |C'|, avremo che una C' imporrà al più $k(2\pi-2)+n'-\pi'+1$ condizioni alle C'+kC obbligate a contenerla, e quindi il sistema residuo |C'+kC-C'|=|kC|, avrà almeno la dimensione:

(1)
$$r'_{k+1} - k(2\pi - 2) - n' + \pi' - 1 = \pi_{k+1} - k(2\pi - 2) - n' + \pi' + P_a - 2$$
.
Ora si osservi che:

$$\pi_{k+1} = \pi_k + \pi + nk - 1$$
, $\pi_k = n \binom{k}{2} + k (\pi - 1) + 1$, e che: $n' - \pi' = \pi - 2$.

come si rileva calcolando il numero delle intersezioni di una curva del sistema |C + C'| con una curva del sistema aggiunto |2C'| (1). Sostituendo nella espressione (1) avremo appunto:

$$(2) r_k \ge n_k - \pi_k + P_a + 1.$$

2. Passiamo ora a dimostrare che sulla curva D, sezione di F con una superficie generica K, d'ordine k, le superficie di un dato ordine passanti pei punti doppi della D (che cadono nelle intersezioni di K con la linea doppia di F) segano, fuori di quei punti doppi, una serie lineare completa.

Per brevità nel seguito le superficie passanti pei punti doppî di D, si diranno aggiunte a questa curva, e quelle d'ordine l, s'indicheranno con Φ^l .

Il teorema che si tratta di stabilire è vero per le Φ di un ordine abbastanza alto (2); e quindi sarà dimostrata la sua validità in ogni caso, allorquando dal fatto che le Φ di un certo ordine ℓ segano su D una serie completa, avremo dedotto che anche le $\Phi^{\ell-1}$ segano una serie completa.

⁽¹⁾ Enriques, Introduzione, n. 41.

⁽²⁾ Cfr. Castelnuovo, Sui multipli di una serie lineare... (Rendiconti di Palermo, t. VII).

Le superficie Φ^i sieno ∞^x e ve ne sieno ∞^y passanti per D, per modo che la dimensione della serie completa g^{ρ_y} , segata da esse sulla D, sia espressa da

$$\varrho = x - y - 1.$$

Se con $kn - \varepsilon_l(z_l \ge 0)$ s'indica il numero delle condizioni imposte alle Φ^l (o ciò che è lo stesso ai gruppi di $g^{\varrho_{\gamma}}$) dalla sezione G di D con un piano α , avremo che la dimensione della serie completa residua di G rispetto a $g^{\varrho_{\gamma}}$, sarà data da:

$$e - kn + z_1$$
.

Sia $\binom{l+2}{2} - 1 - \theta_l (\theta_l \ge 0)$ la dimensione del sistema lineare segato sul piano α dalle Φ^l , e sia $kn - \zeta_l (\zeta_l \ge 0)$ il numero delle condizioni che presentano i punti del gruppo G alle curve d'ordine l, del piano α , obbligate a contenerli.

Le superficie Φ^l spezzate in superficie Φ^{l-1} e nel piano α , saranno $\alpha = \binom{l+2}{2} + \theta_l$, e le superficie Φ^{l-1} passanti per D costituiranno un sistema $y = \binom{l+2}{2} + kn - \zeta_l$ volte esteso, perchè le Φ^l contenenti D segano su α il sistema Σ di tutte le curve d'ordine l passanti pel gruppo G (1), ossia un sistema di dimensione $\binom{l+2}{2} - 1 - kn + \zeta_l$.

Sicchè la dimensione della serie segata su D dalle $\boldsymbol{\Phi}^{l-1}$ sarà:

$$\left\{x-\binom{l+2}{2}+\theta_l\right\}-\left\{y-\binom{l+2}{2}+kn-\zeta_l\right\}-1=\varrho-kn+\theta_l+\zeta_l.$$

(1) Ved. l'osservazione al n. 14 della mia Nota: Su alcune questioni di postulazione (Rendiconti di Palermo, t. XVII, 1903). Per comodità del lettore riporterò qui l'osservazione di cui si tratta. Assunto il piano α come piano $x_0 = 0$ di un sistema di coordinate proiettive, sieno $F(x_0 x_1 x_2 x_3) = 0$, $K(x_0 x_1 x_2 x_3) = 0$ le equazioni di F, K, e $\varphi(x_1 x_2 x_3) = 0$ l'equazione di una curva d'ordine l passante per G. Indichiamo con $Q(x_0 x_1 x_2 x_3) = 0$ l'equazione di una superficie d'ordine l, non contenente il piano α , e passante per φ , cosicchè sarà $Q(0 x_1 x_2 x_3) \equiv \varphi(x_1 x_2 x_3)$. Allora pel Fundamentalsatz di Nöther avremo:

$$Q(0 x_1 x_2 x_3) \equiv A(x_1 x_2 x_3) F(0 x_1 x_2 x_3) + B(x_1 x_2 x_3) K(0 x_1 x_2 x_3),$$

donde si trae:

 $Q(x_0 \ x_1 \ x_2 \ x_3) \equiv A(x_1 \ x_2 \ x_3) \ F(x_0 \ x_1 \ x_2 \ x_3) + B(x_1 \ x_2 \ x_3) \ K(x_0 \ x_1 \ x_2 \ x_3) + x_0 H$, ove H è una forma di ordine l-1. La superficie $Q-x_0 H=0$ passa per D, per φ , e non contiene α . Dunque è vero che una qualunque φ^l per G è segnata su α da una Φ^l per D.

Proviamo ora che:

$$\theta_l + \zeta_l = z_l$$

e quindi che le Φ^{l-1} segano su D, fuori dei punti doppî, la serie completa g^{ρ}_{N} — G.

Poichè di Φ^l per G ve ne sono $\infty^{\alpha-kn+z_l}$ e di Φ^l contenenti α ve ne

sono
$$\infty$$
 , le Φ^l per G segheranno su α un sistema Σ' di dimensione

$$\left\{x-kn+z_{l}\right\}-\left\{x-\binom{l+2}{2}+\theta_{l}\right\}-1=\binom{l+2}{2}-1-kn+z_{l}-\theta_{l}.$$

Ora questo sistema deve contenere quello segato sul piano α dalle $\boldsymbol{\Phi}^l$ passanti per D; ma siccome queste $\boldsymbol{\Phi}^l$, come abbiamo osservato, tagliano su α il sistema di tutte le curve d'ordine l per G, $\boldsymbol{\Sigma}'$ coinciderà con $\boldsymbol{\Sigma}$ e quindi sarà $z_l - \theta_l = \zeta_l$.

Osservazione. Si noti che dal ragionamento precedente segue pure che se esiste la serie g^{ρ} , — G, esistono certo superficie Φ^{l-1} non contenenti D (quelle che segnano la serie stessa).

- 3. Dalle proposizioni stabilite al n. 2, si traggono le due seguenti:
- a) Quando $P_g > 0$ e k è abbastanza grande, le superficie di ordine n-4 aggiunte ad F segano sopra una curva kC una serie completa.
- b) Quando $P_g = 0$ e k è abbastanza grande, la serie caratteristica del sistema |kC| è non speciale.

Per dimostrare la a) si osservi che le superficie di ordine n-4 aggiunte alla sezione D di F con una superficie d'ordine k > n-4 (le quali segano su D una serie completa), passano in conseguenza per la linea doppia di F, ossia sono aggiunte ad F.

Per dimostrare la b) si rammenti che le superficie d'ordine n-4 aggiunte a D, supposte esistenti, segano sulla curva stessa, fuori dei punti doppî, gruppi della serie $g_{2\pi_k-2-n_k}$ residua della serie caratteristica g_{n_k} rispetto alla serie canonica di D ('), e che viceversa, in forza dell'*Osservazione* con la quale si chiude il n. precedente, allorquando esiste la serie residua suddetta, esistono superficie d'ordine n-4 aggiunte alla D. Da ciò segue che se k>n-4 non può esistere la serie $g_{2\pi_k-2-n_k}$, ossia la serie g_{n_k} non può essere speciale, perchè altrimenti esisterebbero superficie d'ordine n-4 aggiunte a D, le quali sarebbero di conseguenza aggiunte ad F: il che contraddice all'ipotesi $P_q=0$.

- 4. Dimostriamo ora che la deficienza della serie caratteristica del sistema completo |C|, contenente totalmente le sezioni piane di F, non supera $P_g P_a$.
 - (1) Enriques, Introduzione, n. 38.

Supponiamo dapprima $P_g > 0$. Sia k così grande che la dimensione di |kC| soddisfaccia alla (2) e che inoltre le aggiunte ad F di ordine n-4, seghino su kC una serie completa. Siccome questa serie è residua della serie caratteristica $g_{n_k}^{r_k-1}$ rispetto alla serie canonica di kC, in base al teorema di Riemann-Roch ne possiamo calcolare la dimensione ϱ , in funzione dell'ordine n_k e della dimensione $r_k + \delta_k - 1$ della serie completa che contiene $g_{n_k}^{r_k-1}$. Così trovasi:

$$\varrho = \pi_k - n_k + r_k + \delta_k - 2.$$

D'altra parte è anche:

$$\varrho = P_g - 1$$
,

perchè se k è abbastanza grande, la curva kC non è contenuta in nessuna aggiunta ad F, di ordine n-4, onde avremo:

$$\pi_k - n_k + r_k + \delta_k - 2 = P_g - 1$$
,

che confrontata con la (2) porge:

$$\delta_k \leq P_y - P_a.$$

Supponiamo ora $P_g = 0$ e scegliamo k così grande che la dimensione di |kC| soddisfaccia alla (2), e che inoltre la sua serie caratteristica sia non speciale. Dicendo δ_k la deficienza di questa serie, avremo:

$$r_k = n_k - \pi_k - \delta_k + 1,$$

la quale, confrontata con la (2), dà:

$$\delta_k \leq -P_a$$
.

Dunque in ogni caso la deficienza della serie caratteristica di |kC| non supera $P_a - P_a$.

Ora si ricordi che la nostra superficie F è projezione generica di una superficie F_1 , priva di punti multipli e normale in uno spazio S_r . Poichè sopra una sezione iperpiana generica di F_1 le forme di un ordine k abbastanza alto $(\geq n-2)$ segano una serie lineare completa (non speciale) $(^1)$, il sistema completo |kC| taglierà sopra una sezione piana generica C di F una serie completa. Fissiamo una curva del sistema |(k-1)C| e per brevità indichiamola con D. Sarà anche completa la serie segata su C dalle kC che passano pei punti comuni a C, D, e se questi punti presentano $\varepsilon \leq (k-1)n$ condizioni alle kC obbligate a contenerli, la serie suddetta sarà una $g_n^{r_k-r_{k-1}-\varepsilon-1}$, la quale conterrà la serie caratteristica g_n^{r-1} del sistema completo |C|. Dunque

⁽¹⁾ Castelnuovo, Sui multipli di una serie lineare ecc.

la deficienza d di quest'ultima serie sarà espressa da:

$$\delta = r_k - r_{k-1} - r - \varepsilon.$$

Similmente la serie segata su D dalle kC che passano pei punti comuni a C, D, è una $g_{(k-1)^{-2}n}^{r_k-r_{-k-1}}$, e siccome questa serie contiene la serie caratteristica di D, dicendo δ_{k-1} la deficienza di quest'ultima, avremo:

$$\delta_{k-1} \geq r_k - r_{k-1} - r - \varepsilon,$$

ossia:

$$\delta_{k-1} \geq \delta.$$

Se k fu scelto abbastanza grande, sarà:

$$\delta_{k-1} \leq P_g - P_a,$$

e quindi avremo:

$$\delta \leq P_g - P_a$$
 c.d.d.

5. Passiamo ad estendere la proposizione dimostrata ad un sistema qualsiasi (irriducibile e almeno ∞^1).

Prendiamo perciò come modello projettivo dell'ente ∞^2 la superficie F_1 priva di punti multipli, normale nello spazio S_r , e sia $|C_1|$ un sistema completo irriducibile, almeno ∞ , privo di punti base su F_1 . Le forme (varietà ad r-1 dimensioni) di ordine k, passanti per una C_1 , segano su F_1 , fuori di questa curva, un sistema $|C_2|$ che, se k è abbastanza grande, si può supporre privo di gruppi neutri di un numero finito o infinito di punti (cioè di gruppi che impongono una condizione alle C_2 obbligate a contenerli); e quindi si può riguardare come il sistema rappresentativo di una superficie F_2 , priva di punti multipli, riferita birazionalmente ad F_1 . Elevando, se occorre, il valore di k, si può esigere che le sezioni D di F_1 con le forme di ordine k, seghino sulla curva C_1 (che è priva di punti multipli) una serie completa. Applicando ancora il ragionamento (di Castelnuovo) con cui al n. precedente si pervenne alla (4), avremo:

 $\delta_1 \leq \delta_2$,

ove δ_1 è la deficienza della serie caratteristica di $|C_1|$ e δ_2 quella della serie caratteristica di $|C_2|$, reso completo, ove non lo sia. Ma in virtù della proposizione dimostrata al n. 4, si ha:

 $\delta_2 \leq P_g - P_a;$

dunque sarà:

$$\delta_1 \leq P_g - P_a$$
.

Se il sistema $|C_1|$ ha punti base su F_1 , assegnati con molteplicità virtuale uguale all'effettiva, la cosa potrà stabilirsi considerando invece delle curve D, di cui sopra, le sezioni di F_1 con forme di ordine k assoggettate a

convenienti condizioni nei punti base di $|C_1|$; e invece delle C_2 , le sezioni di F_1 con quelle tra le forme suddette, che passano per C_1 ; oppure si trarrà profitto del fatto che la F_1 si può mutare birazionalmente in una superficie F_1^* , priva di punti multipli, in guisa che a $|C_1|$ risponda un sistema $|C_1^*|$, senza punti base.

Per estendere la proposizione ad un sistema dotato di punti base accidentali, occorre adottare opportune convenzioni, ma su ciò non crediamo d'insistere.

Concludendo, potremo enunciare:

La deficienza della serie caratteristica di ogni sistema lineare irreducibile, almeno ∞^1 , appartenente ad una superficie di generi P_g , P_a , non supera $P_g - P_a$.

Da questa proposizione segue subito il teorema di Riemann-Roch per le superficie, come può vedersi al n. 34 della Memoria di Castelnuovo.

Matematica. — Sulle serie di funzioni analitiche. Nota del dott. Carlo Severini, presentata dal Socio L. Bianchi.

In questa breve Nota io do una dimostrazione elementare, semplicissima del seguente teorema (1):

Se la serie:

$$\sum_{0}^{\infty} q_{n}(x),$$

i cui termini sono funzioni ad un valore, analitiche, regolari in un'area Γ finita, connessa del piano della variabile complessa x, converge nei punti di un insieme uniformemente denso in Γ (che può in particolare essere numerabile), e se, per i punti di questo insieme (e quindi di Γ), si ha, qualunque sia n:

$$\left|\sum_{n=0}^{n}\varphi_{n}(x)\right| \leq G,$$

ove G indica una costante positiva, finita, la serie converge in egual grado in tutti i punti di ogni area interna a Γ , e però ivi rap-

(1) Cfr. la Note on the functions defined by infinite series whose terms are analytic functions of a complex variable, ecc. del sig. Osgood (Annals of Mathematics, Second Series, vol. 3°, n. 1, October 1901) e la mia Memoria: Sulle serie di funzioni analitiche (Foggia, Stab. Tipo-Litogr. De Nido Franc. Paolo, 1903). — Per altre citazioni cfr. la mia Nota: Sulle serie di funzioni analitiche in questi Rendiconti, vol. XII, 2° sem., serie 5°, fasc 3°.

presenta una funzione ad un valore, analitica, regolare, e derivabile termine a termine e via dicendo.

Indichiamo con Γ' un'area qualsivoglia interna a Γ , e con δ la minima distanza, che può intercedere fra un punto del contorno di Γ ed un punto del contorno di Γ' .

Poniamo ancora per semplicità di scrittura:

$$\Phi_{p,r}(x) = \sum_{p=n}^{p+r} \varphi_n(x),$$

ove p ed r rappresentano due numéri interi, positivi, qualunque.

Detto x_0 un punto di Γ' , noi possiamo certamente scrivere, per ogni x interno ad un cerchio di centro x_0 e raggio non minore di δ :

$$\Phi_{p,r}(x) - \Phi_{p,r}(x_0) = \sum_{1}^{\infty} \frac{(x - x_0)^n}{n!} \Phi_{p,r}^{(n)}(x_0);$$

e quindi, se δ_1 è una quantità positiva minore di δ , abbiamo dalla (1):

$$\left| \frac{1}{n!} \Phi_{p,r}^{(n)}(x_0) \right| \leq \frac{2G}{\delta_1^n} \quad (n = 0, 1, 2, \dots, \infty),$$

donde, per $|x-x_0| < \delta_1$:

(2)
$$|\boldsymbol{\Phi}_{p,r}(x) - \boldsymbol{\Phi}_{p,r}(x_0)| \leq 2G \sum_{1}^{\infty} \frac{|x - x_0|^n}{\delta_1^n}.$$

Chiamiamo ora con δ_2 una quantità positiva, minore di δ_1 , e con n' un valore dell'indice n, soddisfacente alla condizione:

$$\sum_{n'}^{\infty} \left(\frac{\delta_2}{\delta_1} \right)^n \leq \frac{\sigma}{8G} ,$$

ove o indica un numero positivo, scelto piccolo a piacere.

Sarà a maggior ragione, per tutti gli x, che appartengono al cerchio (x_0, δ_2) , di centro x_0 e raggio δ_2 :

$$\sum_{n'}^{\infty} \frac{|x-x_0|^n}{\delta_1^n} \leq \frac{\sigma}{8G}.$$

Determiniamo poi un'altra quantità positiva δ_3 , minore di δ_2 , tale da avere:

$$\sum_{1}^{n'} \left(\frac{\delta_3}{\delta_1}\right)^n \leq \frac{\sigma}{8G},$$

e quindi, tutte le volte che è $|x-x_0| \leq \delta_3$:

$$\sum_{1}^{n'} \frac{|x - x_0|^n}{\delta_1^n} \leq \frac{\sigma}{8G}.$$

Risulterà così in ultimo, nei punti del cerchio (x_0, δ_3) :

$$\sum_{1}^{\infty} \frac{|x-x_0|^n}{\delta_1^n} \leq \frac{\sigma}{4G},$$

e per la (2):

$$|\boldsymbol{\Phi}_{p,r}(x) - \boldsymbol{\Phi}_{p,r}(x_0)| \leq \frac{\sigma}{2}.$$

Importa notare che i valori δ_1 e δ_2 , e quindi anche n' e δ_3 , non dipendono affatto dalla scelta del punto x_0 .

Ciò posto teniamo conto dell'altra ipotesi, che la serie converga nei punti di un insieme uniformemente denso nell'area Γ .

Per tale ipotesi noi possiamo, con un numero finito m di cerchi, che abbiano per raggio δ_3 , e di cui i centri siano punti $x_0^{(i)}$ appartenenti a Γ' , e nei quali la serie è convergente, ricoprire tutta quest'area; ed allora, se p' è un numero intero, positivo, tale che, per $p \ge p'$, siano soddisfatte le m disuguaglianze:

$$|\Phi_{p,r}(x_0^{(i)})| \leq \frac{\sigma}{2} \quad (i = 1, 2, ..., m),$$

in base alla (3) sarà, per $p \ge p'$, in ogni punto di Γ' :

$$|\Phi_{p,r}(x)| \leq \sigma.$$

Ciò prova la convergenza uniforme della serie data in Γ' , che è quanto noi volevamo stabilire.

Fisica. — Spettri ultravioletti di assorbimento degli isomeri orto, meta e para (1). Nota II del dott. R. Magini, presentata dal Corrispondente A. Battelli.

Dopo i fenoli bivalenti e gli acidi ossibenzoici già considerati vennero studiati gli acidi amidobenzoici e, parzialmente, gli acidi ftalici.

III. Acidi amidobenzoici.

Esaminai i prodotti di Kalbaum e di Merck. I risultati sono riportati nella seguente tabella.

TAB. I.

Num. di litri H ² O per 1 gr. molec.	Ac. o- amidobenzoico $C_6 H_4 (NH_2)(CO_2H) = 1:2$	Ac. m- amidobenzoico ${ m C_6~H_4~(NH_2)~(CO_9H)}=1:3$	Ac. p- amidobenzoico $C_6 H_4 (NH_2) (CO_2H) = 1:4$
250	tras. $\lambda = 3581 (d)$ B. $3581 (d) - 2778 (d)$ tras. $2778 (d) - 2714$ da $\lambda = 2714$: ass. cont.	tras. $\lambda = 3240 (d)$ — — — — — — — — — — — — — — — — — — —	tras. $\lambda = 3265$
350	tras. $\lambda = 3529$ B. $3529 - 2823$ tras. $2823 - 2750$ da $\lambda = 2750$; ass. cont.	tras. $\lambda = 3199 (d)$ B. $3199 (d) - 2750$ tras. $2750 - 2631 (d)$ da $\lambda = 2631 (d)$: ass. cont.	tras. λ = 3100

(1) Lavoro eseguito nell'Istituto di Fisica della R. Università di Pisa.

Num. di litri H²O per 1 gr. molec.	Ac. o-amidobenzoico ${ m C_6H_4(NH_2)(CO_2H)}=1\!:\!2$	Ac. m-amidobenzoico $C_{0} H_{4} \left(\mathrm{NH_{2}} \right) \left(\mathrm{CO_{2}H} \right) = 1:3$	Ac. p-amidobenzoico $C_6 H_4 (NH_2) CO_2 H) = 1:4$
500	tras. $\lambda = 3490$ B. $3490 - 2859$ tras. $2859 - 2611 (dd)$ da $\lambda = 2611$; ass. cont.	tras. $\lambda = 3180$ B. $3180 - 2800$ (in questa banda sono visibili alcuni raggi più intensi) tras. $2800 - 2598$ da $\lambda = 2598$: ass. cont.	tras. $\lambda = 3067 \ (d)$ da $\lambda = 3067 \ (d)$: ass. cont.
1000	tras. $\lambda = 3392$ B. $3392 - 3020$ (sono però visibili alcuni raggi intensi nell'interno di questa banda)	tras. $\lambda = 2574$ lo spettro è leggermente debole in corrispondenza della prima banda.	tras. $\lambda = 3021 \ (dd)$
	tras. $3020-2588$ (lo spettro trasmesso è debole fra 3020 e 2900) da $\lambda = 2588$: ass. cont.	da $\lambda = 2574$: ass. cont.	da $\lambda = 3021$: ass. cont.
1500	tras. $\lambda = 2574$ lo spettro è sempre un poco debole fra 3300 e 3020, ma la banda può dirsi scomparsa. da $\lambda = 2574$ ass. cont.	tras. $\lambda = 2501 (dd)$ lo spettro è debole assai da 2550 a 2501. da $\lambda = 2501$: ass. cont.	tras. $\lambda = 2994$ (d) da $\lambda = 2994$ (d): ass. cont.
2000	tras. $\lambda = 2539$ in corrispondenza della banda d'assorbimento lo spettro è sempre un poco debole.	tras. $\lambda = 2501 (s)$ da $\lambda = 2501 (s)$: ass. cont.	tras. $\lambda = 2976 (d)$ - - da $\lambda = 2976 (d)$: ass. cont.
3000	tras. $\lambda = 2388$ da $\lambda = 2388$: ass. cont.	tras. λ = 2382 	tras. $\lambda = 2937$ (d) B. 2937 - 2420 (dd) tras. 2420 (dd) - 2381 (dd) da $\lambda = 2381$: ass. cont.
4000	tras. $\lambda = 2300$ lo spettro è trasmesso integralmente.	tras. $\lambda = 2300$ lo spettro è trasmesso integralmente.	tras. $\lambda = 2920 (d)$ B. $2920 - 2430$ tras. $2430 (dd) - 2352$ da $\lambda = 2352$: ass. cont.

Num. di litri H³O per 1 gr. molec.	Ac. o-amidobenzoico $C_6 H_6 (NH)_2 (CO_2H) = 1:2^3$	Ac. m-amidobenzoico $C_6 H_4 (N_2H) (CO_2H) == 1:3$	Ac. p-amidobenzoico ${ m C_6H_4(NH_2)(CO_2H)}=1:4$
5000			tras. $\lambda = 2912 (d)$ B. $2912 - 2432$ tras. $2432 - 2344 (d)$ da $\lambda = 2344$: ass. cont.
7500			tras. $\lambda = 2723 (d)$ (è debole sino da $\lambda = 2950$) B. $2723 - 2501$ tras. $2501 (s) - 2300$
10.000		2 m + - 1	lo spettro è trasmesso assai debolmente fra $\lambda = 2950$ e $\lambda = 2700$ circa; è quasi impercettibile fra $\lambda = 2700$ e $\lambda = 2500$ circa; è trasmesso senza variazione nell'estremo u. v.

I tre acidi amidobenzoici sono energicamente assorbenti e presentano delle bande molto estese. Confrontando la posizione di queste con quelle presentate dagli acidi ossibenzoici, si scorge subito che le prime sono spostate, rispetto alle seconde, verso lo spettro luminoso. L'introduzione di un gruppo amido nella catena benzenica fa dunque spostare le bande verso il rosso, conformemente alla osservazione di Pauer.

Il comportamento dell'acido para-amidobenzoico è assai strano. Esso manifesta le bande di assorbimento alla diluizione 1/3000 n, quando quelle degli isomeri sono già scomparse. Non solo, ma le presenta energicamente a grandi diluizioni. Le soluzioni di questo acido, anche se diluite, sotto l'azione della luce dell'arco e del calore tendono a prendere una rilevante colorazione gialla, che forse turba il fenomeno. Ciò avviene in parte anche per l'acido meta-amidobenzoico.

Le soluzioni inferiori a 1/3000 n dell' isomero para presentano una larga banda che comprende quasi la metà dello spettro.

Per ordine di trasparenza decrescente i tre isomeri possono essere messi in quest'ordine: meta, orto, para.

Però il para distanzia moltissimo l'orto.

ACIDI AMIDOBENZOICI.

I. — Ac. orto-am.
II. — Ac. meta-am.

III. - ____ Ac. para-am.

Lunghezze d'onda. Fig. 1.

IV. Acidi ftalici:

Furono esaminati i prodotti di Kalbaum e di Merk. Gli acidi isoftalico e tereftalico vennero studiati solo parzialmente a causa della loro debolissima solubilità.

TAB. II.

Num. di litri H ² O per	ACIDO FTALICO	Acido isoftalico	ACIDO TEREFTALICO
1 gr.	$C_6 H_4 (CO_2 H)_2 = 1:2$	$C_6 H_4 (CO_8 H)_2 = 1:3$	$C_6 H_4 (CO_2 H)_8 = 1:4$
molec.			
250	tras. $\lambda = 2890$ da $\lambda = 2890$: ass. cont.		_ ' _
350	tras. $\lambda = 2844$ B. $2844 - 2630$ (d) tras. 2630 (d) $- 2600$ (dd) dv $\lambda = 2600$ circa: ass. cont.		
500	tras. $\lambda = 2590$ lo spettro è però debolissimo fra $\lambda = 2800$ e $\lambda = 2630$ circa. da $\lambda = 2590$: ass. cont.	Section Assisted	
1000	tras. $\lambda = 2540$ lo spettro è debole fra $\lambda = 2800$ e $\lambda = 2778$ circa. da $\lambda = 2540$: ass. cont.	tras. $\lambda = 2483 \ (d)$ — da $\lambda = 2483$: ass. cont.	. – –
1500	tras. $\lambda = 2482$ da $\lambda = 2482$: ass. cont.	tras. $\lambda = 2457 (d)$ da $\lambda = 2457$: ass. cont.	
	4 0 0 (11 (77)	1 2 2000 (7)	1 0500
0000	tras. $\lambda = 2411 (dd)$	$tras. \lambda = 2399 (d)$	tras. $\lambda = 2598$
2000	(l'estremo u. v. è debole) da = 2411: ass. cont.	da $\lambda = 2399$; ass. cont.	da $\lambda = 2598$: ass. cont.
	tras. $\lambda = 2344 (dd)$	tras. $\lambda = 2300 (d)$	tras. $\lambda = 2571$
3000	(l'estremo u. v. è debole) da $\lambda = 2344$: ass. cont.	lo spettro può dirsi tras- messo.	da $\lambda = 2571$: ass. cont.
4000	tras. $\lambda = 2300$,	tras. $\lambda = 2539$ da $\lambda = 2539$: ass. cont.
6000			tras. $\lambda = 2479$ da $\lambda = 2479$: ass. cont.
8000	_	a	tras. $\lambda = 2380$ da $\lambda = 2380$: ass. cont.
10000			lo spettro è completamente trasmesso.

Anche questi tre isomeri, per quanto non completamente studiati, si sono dimostrati energicamente assorbenti ed in un grado quasi eguale a quello dei precedenti composti.

Dopo l'osservazione fatta per gli acidi ossibenzoici relativamente alla introduzione di un carbossile nella catena benzenica ed al conseguente spo-

ACIDI FTALICI.

- Ac. ftalico I. II. -- ----- Ac. isoftalico - Ac. tereftalico

Lunghezze d'onda.

Fig. 2.

stamento delle bande verso lo spettro luminoso, in confronto di quelle presentate dai fenoli bivalenti, sarebbe stato da attendersi per l'acido ftalico, per esempio, un nuovo spostamento delle bande, dipendentemente dal secondo carbossile della catena. Invece, se si confronta (fig. 2) lo spettro dell'acido ftalico con quello della pirocatechina, è facile accorgersi che la posizione della banda di assorbimento è rimasta immutata e che, contrariamente al prevedibile, essa si è fortemente ristretta per l'acido ftalico.

L'aggiunta di un altro carbossile altera quindi, e quasi annulla, le modificazioni portate da un primo carbossile.

Per grado di assorbimento crescente i tre isomeri seguono la medesima regola che i precedenti composti, potendo infatti essere posti in quest'ordine: meta, orto, para.

Dalle precedenti esperienze risulta che i biderivati benzenici hanno tutti un assorbimento tale da ricordare l'ordine di grandezza degli assorbimenti metallici. Rammentando lo studio fatto dal Pauer per il benzene e per alcuni derivati, mi sembra che tale assorbimento, non riscontrato mai in altri composti di natura diversa, costituisca una vera e propria caratteristica della catena benzenica. Mi propongo sin d'ora di studiare in altra Nota da quali elementi della catena possa probabilmente scaturire questa singolare proprietà.

È poi naturale che i composti orto, meta, para, dal momento che non sono legati da una isomeria troppo sottile, presentino degli spettri di assorbimento assai differenti fra loro. Infatti essi, oltre ad avere delle proprietà chimiche diverse, hanno differenti i punti di fusione e differiscono anche per i pesi specifici (¹), per i calorici specifici tanto a parità di peso quanto a parità di volume (²), per le conducibilità molecolari e per le costanti di dissociazione (³).

Rispetto a questi ultimi dati caratteristici gli isomeri orto, meta e para non presentano però alcun parallelismo fra loro, nè è possibile quindi ordinarli in nessuna maniera, all'infuori del confronto dei punti di fusione, per i quali sono ordinati — secondo le temperature crescenti — nel modo che segue: orto, meta, para.

Di fronte invece all'assorbimento nella regione ultravioletta dello spettro, i singoli isomeri, qualsiansi i gruppi sostituenti, presentano un andamento perfettamente costante. Il composto meta è sempre il meno assorbente ed è seguito dall'orto, ma assai dappresso, per modo che essi hanno a comune il massimo ed il minimo d'assorbimento e le loro curve di assorbimento procedono quasi accanto o si intrecciano in tutto l'estremo ultravioletto; viene ultimo il composto para che presenta sempre un assorbimento molto più forte ed un andamento completamente indipendente da quello degli altri due, specialmente nelle regioni estreme.

Concludendo, si può dire che:

- 1º tutti i composti studiati presentano un fortissimo assorbimento;
- 2º essi mostrano quasi sempre delle spiccate bande, le quali risul-

⁽¹⁾ Kraft, Ber. 13; Schröder, Ibid. 12; Id. Jahresb. der Chemie, 1879.

⁽³⁾ Stohman e Langbein, J. f. prakt. Ch. 45, pag. 305, 1892; Stohman, Kleber e Langbein, ibid. 40, pag. 78, 1889.

⁽³⁾ Oswald, Abh. d. kgl. Sächs. Ges. d. W. 15; Zeitschr. phys. Ch. 3, pag. 170, 241, 369, 1889.

tano spostate verso lo spettro luminoso quando ad un idrossile si sostituisce un carbossile o un gruppo ammido;

3º l'introduzione di un secondo carbossile nella catena sembra annullare completamente l'aumento dell'assorbimento e lo spostamento delle bande prodotte dall'introduzione di un primo gruppo;

4º gli isomeri esaminati possono, per grado di assorbimento crescente, specialmente per quello che essi manifestano a grandissime diluizioni nell'estremo ultravioletto, essere costantemente disposti in quest'ordine: meta, orto, para;

5° gli isomeri meta ed orto hanno, per quanto diversi, assorbimenti analoghi, cogli stessi massimi e minimi; al contrario gli isomeri para presentano degli assorbimenti estremamente intensi ed indipendenti da quelli degli altri isomeri.

Quest'ultime conclusioni provano che la posizione dei gruppi costituenti una molecola ha una influenza decisiva e caratteristica sull'assorbimento dei raggi ultravioletti. Quest' influenza, che si manifesta in modo particolare sui raggi d'onda più corta, dice anche che l'assorbimento di un composto non può essere una proprietà additiva, contrariamente ai resultati ottenuti dallo Spring (1) per la parte visibile dello spettro.

Il fenomeno dell'assorbimento, connesso colla rifrazione e colla risonanza destata nelle particelle dei corpi dalle oscillazioni dell'etere, sarebbe quindi in determinati rapporti colla *posizione* dei gruppi molecolari, ossia colla forma delle molecole.

Nel caso degli isomeri *orto*, *meta*, *para* il massimo effetto si ha quando i gruppi sostituenti sono attaccati ad *opposti* atomi di carbonio della catena benzenica.

Chimica. — Ricerche sulla Parasantonide e sull'acido Parasantonico (2). Nota II di L. Francesconi, presentata dal Socio S. Cannizzaro.

Azione dell'idrossilammina a freddo sulla parasantonide.

La Parasantonide reagisce con l'idrossilammina alla temperatura ordinaria e dà un composto di addizione l'acido parasantonin-idrossammico (?) C¹⁵ H²¹ O⁴ N—, il quale a 100° perdendo gli elementi dell'acqua dà la parasantonin-ossimide (?) C¹⁵ H¹⁹ O³ N.

Si disciolgono a caldo gr. 33 di Parasantonide e gr. 18,5 di cloridrato di idrossilammina in 400 cc. di alcool al 90 %; si lascia quindi raffreddare

- (1) Bulet. de l'Ac. Roy. des Sc. ecc. de Belgique, s. 3a, t. 33, 1897.
- (2) Lavoro eseguito nell'Istituto chimico della R. Università di Roma.

la soluzione sino a tepore, si aggiunge una soluzione acquosa concentrata di 14 gr. di carbonato sodico secco, e quindi a poco a poco dell'acqua sino a disciogliere completamente il carbonato che a tutta prima si separa.

La soluzione si lascia a sè per quattro o cinque giorni, poi vi si aggiunge dell'acqua (metà circa del suo volume) e si versa su larga capsula. Dopo due o tre giorni, per il lento svaporamento dell'alcool, si separa la maggior parte del prodotto di addizione cristallizzato in aghi lucenti. Si raccoglie su filtro e si lava ripetutamente con acqua. Dalle acque madri per svaporamento a temperatura ordinaria si ottiene ancora dell'altro prodotto, la di cui quantità totale è uguale alla Parasantonide impiegata.

L'acido parasantonin- idrossammico cristallizza facilmente in aghi da una soluzione acquosa-alcoolica bollente.

Seccato prima all'aria, poi a 100°, incomincia a rammollire a 165° ingiallendo, fonde completamente a 180°.

È facilmente solubile nell'alcool e nell'etere acetico, poco solubile nell'etere e da tutti questi solventi cristallizza colorandone leggermente la soluzione in violetto. Seccato sull'acido solforico raggiunge (alla temperatura invernale) il peso costante dopo tre giorni; seccato poi a 100° perde il 6,50°/0 di peso, corrispondente ad una molecola di acqua.

Sostanza seccata sull'acido solforico:

Analisi:

I. sost. gr. $0.2433 : CO^2 = 0.5710 : H^2O = 0.1681$

II. * * 0,3152: N = cc. 16,4: $T = 15^{\circ} : H = 756$

III. * * 0,3387: N = cc. 16,2: T = 18,5: H = 736

da cui:

	Calcolato	
	per C15H18O3 + H2NOH	Trovato
Cº/o	64,51	64,00
H "	7,52	7,67
N 7	5.02	6,06. 5,33

Sostanza seccata a 100°:

I. sost. gr. $0.2495 : CO^2 = 0.6265 : H^2O = 0.1744$

II. * 0,3113: $N = cc. 15,1: T = 16^{\circ},5: H = 754$

da cui:

	Calcolato per C15H19O3N	Trovato
Cº/o	68,96	68,48
Н "	7,27	7,76
N 7	5,36	5,59

Potere rotatorio: gr. 0,6225 di sostanza seccata a 100° disciolti in 25 cc. di alcool, nel solito tubo di 220 mm., deviarono a destra di 54°,73; da cui:

È stabile all'azione dell'acido cloridrico diluito e bollente, ne cristallizza inalterato e la soluzione cloridrica non dà affatto indizio della presenza di idrossilammina. Si scioglie a freddo negli idrati e nei carbonati alcalini e dalle soluzioni anche se riscaldate lungamente si riottiene inalterato per mezzo degli acidi diluidi. Si comporta come un acido debolissimo; dalla soluzione nell'idrato baritico si separa quasi completamente con l'anidride carbonica. Dalla sua soluzione nell'ammoniaca per svaporamento a bagno maria rimane come residuo. Il sale di argento preparato sciogliendolo nella quantità calcolata di ammoniaca e precipitando con nitrato di argento è bianco, ma annerisce rapidamente anche all'oscurità depositando argento.

La sua soluzione acquosa dà col cloruro ferrico una colorazione violetta fugace, quindi un precipitato bianco. Con l'anidride acetica tanto l'ossimide, quanto l'acido eliminando per ogni due molecole di composto, una o tre molecole di acqua danno una Anidride della composizione C³0H³6O⁵N². Questa anidride si ottiene nel modo seguente: si riscalda per pochi minuti all'ebollizione la soluzione dell'acido o della ossimide nell'anidride acetita; si distilla poi quest'ultima nel vuoto ed il residuo vischioso si riprende con etere ed acqua alcalina per carbonato sodico.

L'anidride, in parte ben cristallizzata, rimane sospesa nell'etere ed in parte disciolta e si separa per svaporamento del solvente. Disciogliendo nuovamente il prodotto nell'anidride acetica ed aggiungendo alla soluzione l'etere anidro, si riottiene cristallizzata in aghi lunghi setacei fus. a 258°.

È discretamente solubile nell'alcool bollente poco nell'etere acetico, insolubile nell'etere.

Analisi:

sost. gr. 0,1562 : CO² gr. 0,4064 : H²O gr. 0,1066 " 0,2278 : O cc. 128 : T = 20°,3 : H = 760

	Calcolato per C30H86O5N2	Trovato
C º/o	71,42	70,93
Н "	7,14	7,58
N n	5,55	6,41

È insolubile nei carbonati alcalini.

L'ossimide disciolta nell'acido acetico glaciale, per aggiunta di una soluzione acquosa di nitrito sodico dà una bella sostanza cristallizzata in aghi non lucenti, insolubile nei carbonati alcalini la quale per la sua composizione non corrisponde ad un composto nitroso, ma al derivato monoacetilico della ossimide.

Questa sostanza è insolubile nell'etere, solubile nell'alcool e nell'etere acetico: fonde a 176°.

Ossi-parasantonin-imide (?) C¹⁵H¹°O³N. — Riscaldando per qualche tempo la parasantonin- ossimide con l'acido cloridrico ceto se ne ottiene in seguito ad una trasposizione molecolare Beckmann un composto isomero, l'ossi-parasantonin-imide.

Le condizioni più convenienti per prepararlo sono le seguenti: Gr. 5 di ossimide si disciolgono a caldo in 40 cc. di acido cloridrico ceto; si prolunga il riscaldamento per 5 o 6 minuti a fiamma diretta all'ebullizione, poi per un'ora circa a bagno maria.

Si versa quindi il liquido su larga capsula e si svapora completamente. Il residuo, cristallizzato in gran parte, si riprende con acqua e carbonato sodico, e si estrae la materia cristallina che rimane indisciolta, agitando ripetutamente con etere acetico.

Dalle acque alcaline, con l'acido cloridrico si precipita l'ossimide non trasformata (la quale benchè alquanto resinosa può ancora servire per un'altra preparazione), mentre dall'etere acetico cristallizza facilmente il composto isomero (gr. 2 circa).

Questo è pochissimo solubile nell'etere, insolubile nella ligroina; discretamente nell'etere acetico e nell'alcool bollente, dai quali si ottiene in piccoli cristalli rombici brillanti. Fonde a 256°.

Analisi:

I. sost. gr.
$$0.2346: CO^2 = 0.5925: H^2O = 0.1677$$

II. * 0.2997: N = cc. 14.2 T = 16: H = 769
da cui;

	Calcolato per C15H19O2N	Trovato
C º/o	68,96	68,87
H.	7,27	7,46
N.	5,37	5,59

Potere rotatorio. — Gr. 0,5634 disciolti in 25 cc. di alcool deviarono di 10°,04 a destra, da cui:

$$(\alpha)_{D} = +200^{\circ}, 1.$$

È stabile all'azione dell'acqua bollente e cristallizza inalterato dalle soluzioni dei carbonati alcalini. Non si combina (trattato nelle condizioni più svariate) con l'anidride acetica, con l'idrossilammina, con la semicarbazide: non si riduce con zinco in soluzione acetica; non dà composto nitroso; con gli alcali caustici elimina ammoniaca e dà

Acido ossiparantonico C¹⁵H²°O⁵. — Questo acido si ha riscaldando per mezz'ora con una soluzione di idrato sodico l'ossiparasantonin-imide (gr. 4) che poco a poco si discioglie, mentre si svolge ammoniaca. La soluzione giallognola, raffreddata, si tratta con acido cloridrico e ne precipita l'acido ossiparasantonico dapprima vischioso, ma che poi indurisce e diviene cristallino. Questo

si raccoglie sul filtro (circa gr. 2.4) e le acque si agitano ripetutamente con etere acetico per estrarne la parte rimasta disciolta. L'acido ossiparasantonico è solubile facilmente nell'acqua bollente, nell'alcool e nell'etere acetico, poco solubile nell'etere, insolubile nel benzolo.

Cristallizza dall'acqua alcoolica in lunghi e grossi aghi. Fonde a 189-90°. Analisi:

sost. gr.
$$0.2519:C0^2 = 0.5917$$
 $H^20 = 0.1631$

da cui:

	Calcolato per C ¹⁵ H ²⁰ O ⁵	Trovato
C º/o	64,28	64,06
H.	7,14	7,19

Potere rotatorio. — Gr. 0,8174 disciolti in 25 cc. di alcool alla T. 27°,2 deviarono di 6°,48 a destra, da cui:

$$(\alpha)_{D} = +89^{\circ},80.$$

Sale di bario $(C^{15}H^{19}O^5)^2$ Ba. — Si discioglie l'acido nell'acqua bollente, si colora con tornasole le soluzione, e si aggiunge una soluzione titolata di barite $\frac{N}{10}$:

Gr. 0,4479 di acido consumarono cc. 15,35 di soluzione baritica (invece di 15,98 corrispondenti ad un acido monobasico). Si aggiunge quindi un eccesso di barite, si satura con anidride carbonica a caldo, si filtra il carbonato di barite e la soluzione si porta a secco. Il residuo seccato a 100° pesa gr. 0,5519 (calcolato per (C¹⁵H¹°O⁵)²Ba = 5588, mentre per C¹⁵H¹8O⁵Ba = 0,6638).

Il sale di bario è cristallino e facilmente solubile nell'acqua.

Etere metilico C¹⁴H¹⁰O³COOCH³. — Si ottiene facilmente sciogliendo l'acido in poco alcool metilico e saturandone la soluzione con acido cloridrico gassoso. La soluzione non si colora e l'eterificazione avviene in breve e completamente. Si concentra poi a bagno maria e versando quindi il residuo in acqua alcalina per carbonato sodico, si separa immediatamente la maggior parte dell'etere metilico cristallizzato. Dalle acque alcaline si estrae il resto con etere solforico.

È facilmente solubile nell'etere, nell'alcool e nell'etere acetico dal quale cristallizza in grossi e lunghi aghi. Fonde a 138-39°.

Analisi:

sost. gr. $0.1395: CO^2 = 0.3325$ $H^2O = 0.0946$

da cui:

	Calcolato per C16H22O5		Trovato
C º/o	65,30		65,00
H.	7,48		7,53

Potere rotatorio. — Gr. 0,3770 disciolti in 25 cc. di alcool alla $T = 25^{\circ}, 6$ deviarono di 1°,21 a destra, da cui:

$$(\alpha)_{D} = +36^{\circ},4.$$

Non si combina con l'idrossilammina (in presenza di carbonato di calcio o di sodio), nè con la semicarbazide.

Monoacetil-ossiparasantonico C¹⁵H¹⁹O⁴. O. COCH³. — Per ottenere questo composto, si sciolgono gr. 0,5 di acido in 5 cc. di anidride acetica, si fa bollire a ricadere per un'ora circa, si distilla poi nel vuoto a bagno maria ed al residuo si aggiunge acqua alcalina (per carbonato sodico) ed etere. Si separa una sostanza molle dapprima, poi cristallina e che si estrae totalmente agitando ripetutamente con molto etere. Cristallizzata due volte dall'etere, poi dall'etere acetico fonde a 207° (si ottennere gr. 0,46 di sostanza pura).

Questo derivato è discretamente solubile nell'alcool, nell'etere acetico, poco nell'etere. È alquanto solubile nell'acqua bollente e nei carbonati alcalini, dalle soluzioni dei quali cristallizza inalterato. Rassomiglia per queste due proprietà ai composti acetilici degli acidi santonico e metasantonico. Si saponifica con gli alcali caustici.

Analisi:

sost. gr. $0.1302:C0^2 = 0.3024$ $H^20 = 0.0861$.

da cui:

	Calcolato per C17H22O6	Trovato
C º/o	63,35	63,34
	6,85	7,34

Potere rotatorio. — Gr. 0,1538 disciolti in 25 cc. di alcool alla T = 25°,7 deviarono di 0°,87 a destra, da cui:

$$(\alpha)_{D} = +64^{\circ},3.$$

Azione dell'idrossilammina a caldo sulla Parasantonide. Composto C¹⁵H¹⁸O²N².

Questa sostanza si ottiene facendo reagire gr. 12,5 di parasantonide disciolta in 200 cc. di alcool al 95 % e gr. 14 di cloridrato di idrossilammina disciolti in 25 cc. di acqua per quattro o cinque ore a bagno maria. Si concentra la soluzione, si aggiunge acqua, si separa tosto una massa vischiosa la quale riscaldata in seno alla soluzione stessa diviene dura friabile. Disciolta a caldo in acqua acida per HCl se ne separa per raffreddamento cristallizzata in aghi. È una bella sostanza che facilmente cristallizza in forme prismatiche dai comuni solventi; è solubile discretamente in alcool, etere acetico; poco nell'etere. Fonde a 171-72°.

Analisi:

sost. gr.
$$0.2558 - C0^2 - 0.6575 H^3O - 0.1874$$

 $0.3160 - N cc. 31.8 - T 20^0.5 - H = 761$

da cui:

	Calcolato per C15H18O2N2		Trovato
C %	69,76		70,09
H.	6,97	25 7 7	7,88
N.	10,85		11,50

Potere rotatorio. Grammi 0,3178 disciolti in 100 cc. di alcool alla temperatura di 28° deviarono di 0°,79 a sinistra da cui

$$\alpha_{(D)} = -111^{\circ},9$$

È insolubile nei carbonati alcalini a freddo, si discioglie a caldo, ma ne cristallizza per raffreddamento inalterata. Cristallizza pure inalterata dall'anidride acetica. Si può ottenere facendo reagire l'idrossilammina a caldo nell'acido parasantoninidrossammico. La reazione per la quale si origina è la seguente: $C^{15}H^{18}O^3 + 2H^2NOH = C^{15}H^{18}O^2N^2 - 3H^2O$.

Chimica. — Azione dell'acido cloridrico sull'Artemisina (1). Nota di P. Bertolo, presentata dal Socio E. Paternò.

In una mia precedente comunicazione (2) ho fatto notare che l'artemisina si comporta in modo diverso dalla santonina, quando su di essa si fa reagire l'acido cloridrico concentrato.

Si sa che la santonina per azione di quest'acido si trasforma in desmotroposantonina (3), sostanza che conserva ancora il legame lattonico e solo differisce dal prodotto primitivo perchè l'ossigeno chetonico si è cambiato in ossidrile fenico.

L'artemisina invece, nel mentre per azione dell'acido cloridrico subisce nell'ossigeno chetonico uguale trasformazione della santonina, dà origine, per eliminazione di una molecola di acqua, ad una sostanza che non conserva più il legame lattonico, ma presenta i caratteri di un acido carbossilico.

Questa sostanza, che per le sue proprietà e per la composizione è ben diversa dagli acidi che si originano dalla santonina, ha richiamato la mia attenzione, ed ho creduto opportuno intraprenderne lo studio prima di procedere ad altre ricerche sull'artemisina.

Dirò intanto che questa nuova sostanza, nella sua composizione centesimale differisce dall'artemisina per avere una molecola di acqua in meno

- (1) Lavoro eseguito nell'Ist. di Chimica farmaceutica della R. Univ. di Catania.
- (2) Riduzione dell'Artemisina con cloruro stannoso. Rend. R. Acc. Lincei, 1902, vol. XI, 1º sem., pag. 491.
 - (3) A. Andreocci, Sui quattro acidi santonosi. Gazz. Chim. Ital., vol. I, pag. 468.

e per avere un gruppo carbossilico assai stabile, che non rigenera più il legame lattonico. Inoltre conserva il nucleo naftalinico fondamentale dell'artemisina e possiede, a differenza di questa, un ossidrile fenico invece dell'ossigeno cetonico.

Solo perchè questa sostanza deriva dall'artemisina, per comodità, credo opportuno chiamarla per ora acido artemisico, salvo a darle in seguito un nome che la metta in raffronto con i derivati della santonina, quando ne avrò completato lo studio e chiarita la sua costituzione.

Acido artemisico. — È stato ottenuto sciogliendo gr. 10 di artemisina in 50 cm.³ di acido cloridrico concentrato, e lasciando a sè la soluzione in un recipiente a tappo smerigliato.

L'artemisina si scioglie a freddo nell'acido cloridrico dando un liquido incoloro, il quale dopo pochi giorni va colorandosi gradatamente sino ad assumere una colorazione rosso-bruna, nel mentre si separa, depositandosi alle pareti del recipiente, una sostanza bruna di aspetto resinoso, alquanto indurita.

Dopo circa due mesi di riposo, visto che il deposito della sostanza resinosa non aumentava più, fu decantato l'acido, ed il residuo, aderente alle pareti del recipiente, fu lavato con acqua e poscia trattato con soluzione di carbonato sodico, nella quale in massima parte si disciolse lentamente con leggera effervescenza.

La soluzione alcalina filtrata, fu addizionata con acido solforico diluito sino a reazione acida, il quale produsse un precipitato fioccoso colorato in bruno. Questo fu disciolto in molta acqua bollente per separare la maggior parte delle resine di cui si trovava inquinato, e la soluzione filtrata lasciò separare per raffreddamento la sostanza sotto forma di sottilissimi aghi setacei, raggruppati a raggi.

Con tale metodo, come apparisce chiaramente, la preparazione di questo acido riesce assai lunga ed il prodotto si ottiene mescolato a resine. Onde io ho cercato di trovare le condizioni più vantaggiose per potere ottenere la stessa sostanza nel minor tempo possibile e con un rendimento più soddisfacente. Infatti, provando l'azione dell'acido cloridrico in diverse condizioni, ho trovato che si può ottenere la stessa sostanza riscaldando sopra un bagno maria la soluzione dell'artemisina nell'acido in un palloncino munito di refrigerante a ricadere. Dopo circa mezz'ora la soluzione s'intorbida, ed in seguito si va separando una sostanza resinosa rossastra a guisa di vernice. Dopo circa sei ore di riscaldamento, durante il quale si può aggiungere qualche poco di acido cloridrico, per sostituire quello che si è potuto eliminare, la reazione è completa. Allora si lascia raffreddare il tutto, si decanta il liquido acido, e la resina indurita si lava, si scioglie in carbonato sodico, e la soluzione si tratta con acido solforico diluito. Il precipitato ottenuto raccolto su di un filtro e lavato si cristallizza dall'acqua bollente. Si può depurare la sostanza dalle resine, agitandola con carbonato di bario precipitato di recente e sospeso nell'acqua. Allora si forma lentamente il sale di bario, il quale è solubile nell'acqua. Si filtra ed il liquido si addiziona con acido cloridrico diluito, il quale produce un intorbidamento bianco, che a poco a poco si trasforma in aghi setacei raggruppati a raggi.

La sostanza ottenuta è solubilissima in alcool, etere, etere di petrolio ed acido acetico diluito, dal quale cristallizza anche in bellissimi aghi lucenti. Fonde a 135°-136°. Disseccata a 160° e sottoposta all'analisi elementare diede risultati che corrispondono alla formola:

$C_{15} \, H_{16} \, O_3$.

I. Gr. 0,2470 di sostanza diedero gr. 0,6662 di CO₂ e gr. 0,1492 di H₂O. II. Gr. 0,2200 " 0,5952 di CO₂ " 0,1327 ".

Trovato in	100 p.	Calcolato per C ₁₅ H ₁₆ O ₃
I	II	
C = 73,56	73,78	73,77
H = 6,71	6,70	6,55

Il peso molecolare è stato determinato col metodo crioscopico in soluzione acetica;

Concentraziene della soluzione	ne per o	/0		1,65
Abbassamento del punto di	congela	zione		0°,28
Coefficiente d'abbassamento	• • •	fup #, •		0,16969
Costante per l'acido acetico	• • •		r - 2,1 •	39
Teoretico		* *		244
Peso molecolare		E 1. 1		229

L'acido artemisico, a differenza dell'artemisina devia a destra il piano della luce polarizzata con un potere rotatorio specifico di + 70°,4, come risulta dai seguenti dati:

Solvente alcool a 98°	
Concentrazione della soluzione per	°/ ₀ 2,516
Temperatura	18°,5
Lunghezza del tubo in mm.	# · · · · · · · · · · · · · · · ·
Deviazione osservata per $(\alpha)_{D}$	+3,90
Potere rotatorio specifico	+70,4

La funzione acida e la composizione dell'acido artemisico vennero anche confermati dall'analisi di alcuni sali ed eteri.

Artemisato di bario. — Il sale di bario fu preparato per digestione a caldo dell'acido con carbonato di bario precipitato di recente e sospeso nell'acqua. Per evaporazione nel vuoto del liquido filtrato si ottenne il sale di bario sotto forma di croste cristalline. Questo fu poscia disciolto in alcool assoluto e riprecipitato per aggiunta di etere.

L'analisi del sale di bario disseccato a 110°-115°, diede i seguenti risultati:

gr. 0,5090 di sostanza fornirono gr. 0,1886 di BaSO₄

Calcolato per $(C_{15}H_{15}O_3)_a$ Ba Trovato
Ba = 21,99 21,78

La soluzione acquosa del sale di bario trattata:

con Nitrato d'argento produce precipitato bianco, il quale si decompone lentamente a freddo e più rapidamente a caldo;

con Acetato di piombo dà precipitato bianco solubile parzialmente nell'acqua;

con Acetato di rame dà precipitato verde-chiaro solubile parzialmente a caldo;

con Cloruro mercurico dà precipitato bianco insolubile in eccesso di reattivo, solubile a caldo.

Artemisato metilico $C_{14}H_{15}O.COOCH_3.$ — L'etere metilico fu preparato sciogliendo gr. 2 di acido artemisico in $10~\rm cm.^3$ di alcool metilico e facendo passare nella soluzione una corrente di gas acido cloridrico secco, mantenendo il recipiente immerso in un miscuglio frigorifero. Poscia fu distillato l'eccesso di alcool a pressione ridotta ed il liquido addizionato con acqua e carbonato sodico sino a reazione leggermente alcalina. Il prodotto si separò sotto forma di olio denso. È solubilissimo negli ordinarì solventi; alcool, etere, cloroformio, benzolo, etere petrolico, ma per evaporazione anche lenta di questi non si è potuto ottenere cristallizzato. Si mostra sempre come una vernice rossastra trasparente e vischiosa. Per tali ragioni non ho potuto sottoporre all'analisi l'etere metilico.

Artemisato etilico C₁₄H₁₅O. COO. C₂H₅. — Questo etere fu preparato sciogliendo gr. 3 di acido in 20 cm.³ di alcool assoluto, e facendovi passare una corrente di gas di acido cloridrico con le stesse norme descritte per la preparazione dell'etere metilico.

Dopo evaporazione dell'eccesso di alcool e dopo aggiunta di acqua, si separò l'etere sotto forma di olio denso che tosto solidificò. La massa solida, lavata e disseccata, fu cristallizzata dall'etere di petrolio. Il prodotto puro è anche solubile in alcool, etere ed acido acetico; è insolubile nell'acqua.

L'etere etilico purificato per ripetute cristallizzazioni dall'etere di petrolio, si presenta sotto forma di prismi duri incolori trasparenti che fondono a 97°-98°.

Sottoposto all'analisi diede risultati che corrispondono alla formola: $C_{14}H_{15}O$. COO. $C_{2}H_{5}$

gr. 0,3084 di sostanza diedero gr. 0,8445 di CO₂ e gr. 0,2040 di H₂O

Trovato in 100 p. Calcolato per C₁₇H₂₀O₃

C 74,67 75,00 H 7,34 7,31 L'artemisato etilico è insolubile nei carbonati alcalini; si scioglie invece nell'idrato potassico a freddo e riprecipita per azione dell'anidride carbonica. Tale comportamento rendeva probabile l'esistenza di un ossidrile fenico nella molecola. Però siccome tale ossidrile poteva anche rendersi evidente per tautomeria di un gruppo carbolinico, come nel caso della fluoroglucina, ho voluto assicurarmi facendo agire sull'etere etilico tanto l'idrossilamina e la fenilidrazina quanto il cloruro di benzoile.

Per azione dell'idrossilamina e della fenilidrazina sull'etere etilico non mi fu possibile ottenere l'ossima, nè l'idrazone corrispondente. Data allora la solubilità dell'etere negl'idrati alcalini, per confermare la presenza dell'ossidrile fenico, ho tentato la preparazione del derivato benzoilico, facendo agire il cloruro di benzoile sopra l'etere etilico.

Il prodotto della reazione, stante l'esigua quantità di sostanza di cui disponevo, non potè essere ottenuto allo stato puro da sottoporlo all'analisi. Solo ho potuto stabilire la formazione del composto benzoilico, saponificandolo con potassa alcoolica e confermando la presenza dell'acido benzoico nei prodotti di saponificazione. Spero però di ritornare sulla preparazione di tale composto benzoilico, appena potrò disporre di nuovo materiale.

Infine per assicurarmi se nell'acido da me ottenuto fosse intatto il nucleo naftalinico fondamentale, ho provato l'azione della potassa fondente sopra l'acido artemisico per vedere se si formasse lo stesso p-dimetilnaftolo che si ottiene dagli acidi santonosi e dal prodotto di riduzione dell'artemisina con cloruro stannoso (1).

Azione della potassa fondente sull'acido artemisico. — La fusione con potassa venne operata sopra un grammo di sostanza, seguendo le stesse norme da me tenute nella fusione di alcuni derivati della santonina (2), Dirò solamente che l'acido artemisico è più resistente all'azione della potassa e per ottenere la completa decomposizione dell'acido, bisogna operare aggiungendo il doppio del suo peso di potassa ed elevare la temperatura sino a 380°.

Il prodotto della fusione sciolto in acqua e sottoposto ad una corrente di CO₂ lasciò separare un precipitato, il quale raccolto su di un filtro e distillato quindi in corrente di vapore d'acqua, fornì una sostanza bianca del tutto simile nei caratteri fisici e nel comportamento chimico al dimetilnaftolo proveniente dagli acidi santonosi e dal prodotto di riduzione dell'artemisina, solo ne differisce per piccole differenze nel punto di fusione (126°).

Sull'esatta identificazione di questo dimetilnaftolo, comunicherò i risultati appena ne avrò completato lo studio.

⁽¹⁾ Riduzione dell'artemisina con cloruro stannoso. Rend. R. Acc. Lincei 1902, vol. XI, 1º sem., pag. 490

⁽²⁾ Gazz. Chim. Ital., vol. XXXII (1902), pag. 371.

Il fatto che l'acido artemisico produce p-dimetilnaftolo per fusione con potassa, oltre a provare l'esistenza del nucleo naftalinico fondamentale, conferma anche indirettamente l'esistenza dell'ossidrile fenico, poichè, come ho dimostrato in un mio precedente lavoro (¹), sembra che tanto nei derivati della santonina quanto nei derivati dell'artemisina, per fusione con potassa, si ottenga il p-dimetilnaftolo solamente da quei composti che posseggono l'ossidrile fenico.

Petrografia. — La resistenza specifica elettrica delle rocce e dei terreni agrari. Nota preventiva di G. de Angelis d'Ossat, presentata dal Socio G. Struever.

Sono noti gli studî intorno al magnetismo terrestre in genere, al magnetismo di monte e di roccia. Appunto testè perdemmo uno strenuo campione di tal sorta di ricerche, il benamato Keller, il quale vi dedicò quasi tutta la sua serena vita.

Similmente sono conosciute le esperienze di elettrocultura, sia con la elettricità atmosferica, sia con l'elettricità voltaica. Una bibliografia quasi completa sopra questo argomento fu raccolta diligentemente dal Giglioli (2).

Non conosco invece nulla intorno alla resistenza ohmica che oppongono alle correnti continue le rocce ed i terreni autoctoni che ne originano. Non trovai neppure un accenno di ciò consultando parecchi degli ultimi trattati generali sia di Petrografia, come quello del Rosenbusch (3), sia di Geologia e Chimica agraria, come i testi scritti dal Parona C. F. (4) e dal Sestini (5); sia infine di Agraria in genere.

L'importanza dello studio che mi sono proposto scaturisce dalla nuova conoscenza che si acquista intorno alle rocce, — conoscenza che può celare anche gradite e feraci sorprese — e dall'apprezzamento della resistenza che offrono i terreni agrari alle correnti continue. L'influenza di tal sorta di elettricità alla produzione agraria ormai non solo è constatata, ma ancora ponderata con pratiche esperienze culturali.

⁽¹⁾ Sopra la fusione con potassa di alcuni derivati tipici della santonina. Gazz. Chim. Ital., v. XXXII (1902), p. II, pag. 371.

⁽²⁾ Giglioli I., Cultura del Frumento. Ann. R. Scuola sup. agric. Portici, serie II, vol. II, fasc. II. Portici 1900, pp. 59-62.

⁽³⁾ Rosenbusch H., Mikroskop. Physiographie Mineralien u. Gesteine. Stuttgart 1892.

⁽⁴⁾ Parona C. F., Il Terreno. Nuova Enciclopedia Agraria italiana, Parte III, Torino 1898.

⁽⁵⁾ Sestini F., Il terreno agrario, sua origine, costituzione e proprietà. Ibidem. Torino 1899.

Sono ben lontano dal potere presentare un lavoro completo; tuttavia posso offrire per ora un saggio che stimo di un qualche interesse per i risultati e per le applicazioni pratiche che si possono di già intravedere. Mi lusingo poi che le deboli mie fatiche servano ad invogliare altri studiosi ed Istituti tecnico-agrari ad intraprendere simili ricerche; non potendo ad esse, causa la totale mancanza di mezzi necessarî, portare troppo efficacemente il mio contributo.

L'esperienza ha dimostrato ai fisici che la resistenza dei conduttori, di determinate dimensioni ed attraversati da una corrente costante, è in ragione diretta della lunghezza ed inversa della sezione del conduttore, secondo la formola

(1)
$$R = \varrho \, \frac{l}{s}$$

dove R è la resistenza del conduttore, l la lunghezza del medesimo, s la sua sezione trasversale e ϱ un coefficiente numerico variabile da una sostanza all'altra.

È appunto questo ultimo coefficiente, esprimente la resistenza specifica elettrica, che mi propongo riconoscere nelle rocce scelte per il presente saggio, e cioè dalla (1):

$$\varrho = \frac{\mathrm{R}s}{l}.$$

Riportando il volume del conduttore all'unità di lunghezza e di sezione, ossia alla lunghezza di 1 cm. ed alla sezione di 1 cm.², otteniamo dalle precedenti (1) e (2):

$$\varrho = \mathbb{R},$$

cioè, per un cubo dalle dette dimensioni, la resistenza del conduttore è uguale alla resistenza specifica della sostanza.

Prima di esporre il metodo seguito ed i risultati ottenuti è bene ricordare che, non trattandosi di metalli chimicamente puri, le cifre che si ottengono sono approssimate e valgono come indicazioni; dacchè sono sufficienti piccolissime quantità di sostanze estranee per modificare, anche notevolmente, i risultati.

Perchè, come è risaputo, la resistenza varia, or aumentando ora diminuendo, colla temperatura, è necessario tenere conto di questa nell'esperienza e poi nel calcolo (coefficiente di temperatura): nel presente caso però essendosi mantenuta costante la temperatura durante le operazioni, mi contenterò di solo ricordarla; ripromettendomi di tenerne conto in seguito.

Poichè anche l'umidità può essere causa di variazione, ho procurato di

cimentare campioni che si trovassero nello stesso stato relativo di secchezza; infatti essi stanno insieme nello stesso ambiente dell'Istituto geologico della R. Università di Roma da oltre quaranta anni.

Per il primo saggio ho scelto tre soli campioni, della forma cubica e con il lato di cm. 10, i quali, per la composizione mineralogica e chimica e per la loro struttura, mi ripromettessero a priori un valore della resistenza non solo diverso, ma possibilmente tale che uno fosse il minimo, medio l'altro e massimo il terzo. Prescelsi quindi un travertino, un tufo vulcanico litoide ed una lava.

Essi fanno parte di una collezione di materiali da costruzione, che il Ponzi preparò per mandare all'Esposizione di Londra dell'anno 1862 (¹) e che sono descritti con le seguenti parole:

" Ha i caratteri del Travertino compatto come gli altri ed è adoperato " nella stessa maniera. Si cava presso Fiano a destra del Tevere ".

« Si cava sotto Monticelli ».

" Lava risultante da un aggregato di parti scorificate, con qualche cri" stallo di amtigene sparso qua e là nella massa. Sembra una lava alterata
" dai vapori idroclorici. La città ed i giardini di Frascati sono tutti costruiti
" con questa pietra. L'Acropoli del Tuscolo è fondata sopra una gran massa
" di questa lava".

I cubi, dalle facce ben levigate, furono successivamente stretti (vedasi figura, ¹/₄ dal naturale) con due perfetti piani (cm.² 10) di duro e spesso legno, dopo aver posto fra il campione ed il legno parecchi fogli di stagnola, cui acconciamente, con morsetti, ho unito i due capi del filo dell'apparecchio. Il campione durante l'esperienza posava, per essere isolato, sopra un grosso pane di paraffina.

Il metodo tenuto è stato quello di sostituzione, servendomi di un eccellente galvanometro Thomson (800 divisioni per micro-ampère di una scala lontana un metro). Per il confronto ha servito un Ω campione (2).

⁽¹⁾ Ponzi G., Catalogo ragionato di una collezione di materiali da costruzione e di marmi da decorazione dello Stato Pontificio. Roma 1862.

⁽²⁾ Ringrazio il dott. G. Di Pirro per avermi ottenuto l'uso degli apparecchi dell'Ufficio Tecnico del Ministero delle Poste e dei Telegrafi.

Aveva in precedenza sperimentato altri metodi e con svariati materiali, senza però ottenerne risultati attendibili.

Per R ho ottenuto i seguenti valori:

Numero d'ordine	Numero collezione Ponzi	Natura litologica e località dei campioni	Resistenza in Ohm	F. E. M. adoperata in Volt
I II	59 34 65	Travertino di Fiano	9,000,000 214,000 200,000	120 15 15

donde i valori di e secondo la (2)

Numero	Resistenza	Resistenza specifica
d'ordine	specifica	in Ohm
II	e' e'' e'''	90,000,000 2,140,000 2,000,000

Semplificando, si ha il rapporto:

$$\varrho' : \varrho'' : \varrho''' = 90:2,14:2.$$

Per apprezzare petrograficamente i risultati è necessario formarsi un concetto della composizione chimica dei campioni, essendo cognita la loro costituzione litologica (¹). Del primo esemplare possediamo un'analisi [I] di G. Del Torre (²); per il secondo può servire l'analisi [II] del tufo litoide del Sestini (³), finalmente per l'ultimo abbiamo un'analisi [III] del vom Rath (⁴) ed un'altra [IV] del Mauro (⁵):

	4		[1]	[11]	[III]	[IV]
Silice e silicati	insolubili .		0,384	187_	_	-
Si O ²			1,239	36,712	45,67	44,67
Al ² O ³			0,135	14,060	15,52	18,80
Fe ² O ³			0,095	18,148	_	10,04
Fe O			0,083	- 6	12,97	0,24
Mn O				-18	<u> </u>	Tr.
CaO			53,928	8,506	10,94	11,50
MgO			0,396	0,652	3,00	2,93
Ph ² O ³			0,004	0,609	_	0,57
SO ³			0,859	0,289	0,38	
K ² O			-	3,815	5,91	8,49
Na ² O			_	2,321	5,21	1,03
CO ⁸			42,400	3,792	- 1	1,50
Perdite			0,477	1,097	1,20	1302
Acqua di combinazione		ancher	3,652	_	_	
Acqua igroscopica		-	5,982	00 -000		
	TOTALE		100,000	99,735	100,80	99,77
Peso specifico	wewes in	0000	2,543		2,81	2,54

La resistenza specifica di 90 megohm presentata dal travertino lo fa considerare come un corpo isolante; segue da lungi il tufo litoide con minor

⁽¹⁾ Sabatini V., I vulcani dell'Italia centrale e i loro prodotti. P. P. Vulcano Laziale. Roma, 1900.

⁽²⁾ Del Torre G., Sopra alcuni travertini. Roma, 1883.

⁽³⁾ Sestini F., Studio sui tufi della Campagna romana. Staz. sperim. agr. di Roma, fasc. 2°, 1872.

⁽⁴⁾ Rath G. (vom), Mineralogisch-geognostische Fragmente aus Italien. Erster Theil. II. Das Albaner-Gebirge. Zeitschr. D. geol. Gesell., vol. 18, Berlino 1866.

⁽⁵⁾ Mauro F., Ricerche chimiche sulle lave di Montecompatri, del Tuscolo, di Villa Lancellotti e di Monte Pila. Trans. R. Acc. Lincei, Ser. 3^a, vol. IV, fasc. 7°, Roma, 1880.

resistenza e, con poca distanza, arriviamo alla lava. Se avessi potuto sottoporre all'esame una tipica lava avrei quasi certamente avuto una minore
resistenza, ma non era allora riuscito a possederne un cubo con facce perfettamente levigate. Il campione di lava sperone ha una natura sui generis,
dacchè trovasi fra la roccia clastica e la massiccia.

Rimane quindi provato che le rocce vulcaniche, sia massicce che clastiche e specialmente le più basiche, offrono una minore resistenza specifica elettrica, rispetto alle rocce calcaree e (come mi risulta da altre esperienze) a quelle che non contengono elementi chimici o minerali magnetici. A queste conclusioni ritornerò quando avrò accumulato un grande numero di dati; presentemente formulo solo congetture con qualche fondamento.

Per ora riconduco alla memoria le diverse teorie che sono state proposte per spiegare il magnetismo di monte e di roccia. Anzi a questo proposito mi propongo di studiare anche la resistenza specifica di quei minerali che, per frequenza ed abbondanza, prendono sostanzialmente parte nella costituzione delle rocce e che quindi concedono la maggior parte degli elementi ai terreni agrari. Ciò mi sarà facilitato dalla conoscenza di alcuni rapporti che intercedono fra i minerali ed il magnetismo e l'elettricità.

Contemporaneamente si dovrebbe ricercare, con le debite cautele, la resistenza specifica prima dei terreni autoctoni e poi di quelli di trasporto; ma ciò forma degno compito, come dissi, ad un Istituto tecnico-agrario e non ad un solo individuo sprovvisto dei mezzi necessari.

All'agraria tornerebbero utili tali ricerche, perchè oltre a farci conoscere i rapporti fra il terreno e la corrente elettrica continua, ci potrebbero portare altresì a valutare le distanze in cui si debbano razionalmente situare le due lastre (rame e zinco); fissandosi ora ad esse una distanza col più vago dei criterî.

Si rintraccerebbero i dati necessari e sufficienti per computare se l'elettrocultura, col metodo voltaico, riesce di economica utilità; cioè si valuterebbe il rapporto fra il prezzo della causa e dell'effetto.

Esagerando opportunamente (1) la causa e quindi il prodotto dell'effetto, si potrebbe forse arrivare a rintracciare con analisi chimiche minute e pazienti, sussidiate dallo studio petrografico, ciò che producono nel terreno le correnti continue in riguardo specialmente alla produzione agraria (2). Infatti

⁽¹) Ora si ritiene generalmente che l'elettricità voltaica agisca quale lenta elettrolisi, stimolando i processi di decomposizione sia delle sostanze organiche che minerali. Ne deriverebbero a disposizione delle piante specialmente i fosfati, i sali potassici e gli altri ingredienti minerali. Anche le radici pare ne risentano vantaggio. I numerosi microorganismi sono dalla corrente stimolati nelle molteplici attività di cui hanno mansione:

⁽²⁾ Dico opportunamente, perchè in certi casi una forte azione elettrica è contraria all'attività di certi microrganismi, mentre è dimostrato lo stimolo ad una lenta azione (M. Giunti, R. Accad. dei Lincei, 1883-84; E. Bonardi e G. Gerosa, R. Accad. Lincei, 1888).

le correnti elettriche attraversando il terreno vi devono produrre una certa quantità di calore. Il chimico ed il petrografo debbono appunto sorprendere i processi con cui si esplica l'energia termica, nata dalla resistenza, a vantaggio della vegetazione.

Finalmente, traendo partito dalle analogie che intercedono fra il metodo con corrente continua e quello coll'elettricità atmosferica, si potrebbe tentare di controllare il valore e la natura dell'ufficio di quest'ultima.

È tutto un largo e paziente còmpito da eseguirsi. Ora mi lusingo rimanga facilitata la via dall'esposizione del metodo da me seguito nel presente saggio. Il naturalista anela alla luce, badando solo subordinatamente a colui cui tocca la sorte di farla brillare.

nel terreno agrario. Non è qui il caso di ragionare dell'influenza dell'elettricità atmosferica sopra le piante; solo ricordo che le esperienze di Berthelot pare abbiano assodato che le piante, per mezzo della detta elettricità, fissino parte dell'azoto libero nell'atmosfera (Comptes Rendus Acad. Sc., vol. 131, 1900).

V. C.

na ciò forma degno compito, come diesi, ad me lattinto tecnico-agracio e non ad nu solo individuo sprarvisto dei mesari neccioni.

All'agracia tornerabbero utili tali ricendi, perebè oltre a facci concecto i rapporti fia il terreco e la corrente el tarica confluur, ci potrebbero pertare altrest a valutare la distanze in uni si debbano raviconfluccato situace e due lastres (rame a zince); fissandosi ora ad cese una distanza cel più rago dei estimi.

Si riatracrerabbero i dati necestati e aminadeni per computato ser l'elotroccitami, col menolo voltator, ricco di ocenazion utilità; ricè si ralute-lebbe il rapporto fra il prenzo della causa e galadi il prodotto dell'ellote di potrebbe fora utilizate a riatrocciera con artili i chimiche minuto e paralenti, sostiuta dario serio esperiaturatico, ciò cas producino e paralenti continue in rigiorido aperiaturato, ciò cas producino nel trocca le correnti continue in rigiorido aperiaturato alla froduzione agracia (1). Intertico

drei ingredicht minen il, beche le redici pare nerigentano caraccio. I numerat microagenierat sono dalla errorde stimulat nelle redeccità all'via di cui banco sancioner (2) luie sono arconastato, perchibita ceri cui difictede cione clettrica è contrata all'agricità di ceri redecorradichi, remire è dimenso per le contrata