矢量简介

矢量是线性空间中的元素。矢量有零元,支持加法和数乘。在物理学的常见语境下,我们会给相应的空间定义度规,使矢量具有"长度",如此,矢量真正成为"既有方向,又有大小"的数学对象。

为了直观地表示一个矢量,通常需要选取一套基矢组,并将被表示矢量在这套基矢组上展开。对于给定的空间 V,如果我们选取基矢组 $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n\}$,则矢量 \mathbf{x} 的展开具有唯一形式

$$\mathbf{x} = x^1 \,\hat{\mathbf{e}}_1 + x^2 \,\hat{\mathbf{e}}_2 + \dots + x^n \,\hat{\mathbf{e}}_n = x^i \,\hat{\mathbf{e}}_i$$

上式中的系数 x^1, x^2, \ldots, x^n 被称为矢量 **x** 在基矢组 $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \ldots, \hat{\mathbf{e}}_n\}$ 表示下的分量。

我们注意到基矢组是这样一个概念: 当我们声称 $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n\}$ 是空间 V 的基矢组时, 意味着 $\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n$ 本身都是 V 中的元素, 它们相互之间是线性独立的,而它们的线性组合可以穷尽 V 中所有其它的元素。基矢组选取原则上具有很大的自由度,但是在条件允许的情况下通常会选取正交归一的基矢组 1 。

矢量 x 的分量展开也常写作矩阵乘法的形式

$$\mathbf{x} = (\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n) \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^n \end{pmatrix}$$

很多文献中为了表达简洁会略去左边的行矢量,仅用右边的列矢量代表 \mathbf{x} 。无论是否这样做,使用者和读者都应当意识到这个列矢量 $(x^1,x^2,\ldots,x^n)^{\mathrm{T}}$ 与 \mathbf{x} 本身之间存在本质区别——如果我们重新选取 V 空间中的基矢组,那么 $(x^1,x^2,\ldots,x^n)^{\mathrm{T}}$ 必须也随之改变,而 \mathbf{x} 则是不依赖基矢组选取的。准确来讲,"列矢量"这个概念指的是"只有一列的矩阵"。无论我们是否额外赋予其矢量性, $(x^1,x^2,\ldots,x^n)^{\mathrm{T}}$ 都至少不会是 V 空间中的元素。

注:

1. 这个"正交归一"是以度规正定为前提存在的,但是读者可以想象在度规非正定的空间,例如闵氏空间中,"正交归一"的称法并不合适,此时我们选取基矢组的习惯应当是使度规矩阵对角化(对应正交),并且使每一个非零对角元的绝对值为1(对应归一)。

度规

度规是计算空间中元素"间隔"的依据。物理学涉及的度规 g 通常是一个二阶张量,或曰双线性型,由它给出两个矢量的内积

$$\mathbf{x} \cdot \mathbf{y} = g(\mathbf{x}, \mathbf{y})$$

度规具有对称性

$$g(\mathbf{x}, \mathbf{y}) = g(\mathbf{y}, \mathbf{x})$$

如果我们选定了基矢组 $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n\}$, 则度规具有分量

$$g_{ij} = g(\hat{\mathbf{e}}_i, \hat{\mathbf{e}}_j)$$

如此、利用度规的双线性、内积可以进一步表达为

$$\mathbf{x} \cdot \mathbf{y} = g(x^i \hat{\mathbf{e}}_i, y^j \hat{\mathbf{e}}_j) = x^i g_{ij} y^j$$

对偶

定义 V 空间中的另一套基矢组 $\{\hat{\mathbf{e}}^1, \hat{\mathbf{e}}^2, \dots, \hat{\mathbf{e}}^n\}$,它们与先前的 $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n\}$ 的关系为 $g^{i}_{i} = g(\hat{\mathbf{e}}^{i}, \hat{\mathbf{e}}_{i}) = \delta^{i}_{i}$

有时称 $\hat{\mathbf{e}}^i$ 是 $\hat{\mathbf{e}}_i$ 的对偶基矢¹。可以想象,只有当度规正定且原基矢组正交归一时²,对偶基矢组才与原 基矢组完全重合。

我们现在有了两套展开矢量 x 的方案

$$\mathbf{x} = x^{i} \hat{\mathbf{e}}_{i} = x_{i} \hat{\mathbf{e}}^{i}$$
$$= g(\hat{\mathbf{e}}^{i}, \mathbf{x}), \quad x_{i} = g(\hat{\mathbf{e}}_{i}, \mathbf{x})$$

 $x^i = g(\hat{\mathbf{e}}^i, \mathbf{x}), \quad x_i = g(\hat{\mathbf{e}}_i, \mathbf{x})$ 照这个规则,如果我们对 $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n\}$ 与 $\{\hat{\mathbf{e}}^1, \hat{\mathbf{e}}^2, \dots, \hat{\mathbf{e}}^n\}$ 相互展开,就会得到 $\hat{\mathbf{e}}^i = g^{ij}\hat{\mathbf{e}}_i, \quad \hat{\mathbf{e}}_i = g_{ii}\hat{\mathbf{e}}^j$

由此可以导出的一个重要性质是:度规在基矢组与对偶基矢组上的分量表示互逆。我们不难给出其证 眀

$$g^{ij}g_{jk} = g(g^{ij}\hat{\mathbf{e}}_j, \hat{\mathbf{e}}_k) = g(\hat{\mathbf{e}}^i, \hat{\mathbf{e}}_k) = \delta^i_k$$

注:

- 1. 准确地讲, $\hat{\mathbf{e}}_i$ 的对偶基矢应当为 V 上的线性型 $g(\hat{\mathbf{e}}^i,\cdot)$ 。
- 2. 在闵氏空间中,如果我们规定度规的时间分量为负,则三个空间基矢的对偶基矢与之重合,而时 间基矢的对偶基矢与之反向。

协变与逆变

线性空间中的基矢组变换总是可逆线性变换。当我们将变换 M 施加于基矢组 $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_n\}$ 上时, 任意矢量 \mathbf{x} 的分量 x^1, x^2, \dots, x^n 也将一起经历变换 M^{-1} ,如此才能保证 \mathbf{x} 本身不随基矢组改变。用 分量表示的话,这个变换形如

$$\hat{\mathbf{e}}_i \to \hat{\mathbf{e}}_j M_i^j, \quad x^i \to (M^{-1})_j^i x^j$$

某个量在基矢组变换下如何相应变换的问题,构成了我们讨论"协变"与"逆变"的语境。其规则是,所有 变换与基矢组相同的,都称为"协变",所有变换与基矢组相逆的,都称为"逆变"。如此,基矢组自身 $\hat{\mathbf{e}}_i$ 是协变的,任意矢量 **x** 按基矢组展开的分量 x^i 是逆变的。反过来,对偶基矢组 $\hat{\mathbf{e}}^i$ 是逆变的,任意矢 量 \mathbf{x} 按对偶基矢组展开的分量 x_i 是协变的。协变的另一个重要例子出现在梯度算符中

$$\nabla = \hat{\mathbf{e}}_i g^{ij} \frac{\partial}{\partial x^j}$$

这里 $\frac{\partial}{\partial x_i}$ 项是协变的,通常也写作 ∂_i 。

需要指出的是,当我们说某方程 Lorentz 协变时,该"协变"指的是方程等号两边在 Lorentz 变换下行为 一致,而方程本身的形式是"不变"的。

再谈指标的位置

之前我们提到,对于矩阵而言,上指标为行标,下指标为列标。现在我们重新声明,当指标被用于矢量或张量的表达时,上指标指示逆变,下指标指示协变——上文中对指标的使用全部遵守了这一约定。

值得一提的是,度规分量 g^{ij} 和 g_{ij} 可以分别用于升、降与之缩并的指标,我们上面已经见识过度规分量能使基矢组(下指标)和对偶基矢组(上指标)之间转换,而这一性质可以进一步传递到任意矢量 \mathbf{x} 在两套基矢组上的展开分量

$$g^{ij}x_j = g(g^{ij}\hat{\mathbf{e}}_j, \mathbf{x}) = g(\hat{\mathbf{e}}^i, \mathbf{x}) = x^i$$

$$g_{ij}x^j = g(g_{ij}\hat{\mathbf{e}}^j, \mathbf{x}) = g(\hat{\mathbf{e}}_i, \mathbf{x}) = x_i$$

指标升降对度规自身也是有效的,利用我们之前的结论和规定,不难写出

$$g^{ij}g_{jk} = \delta^i_{\ k} = g^i_{\ k}$$

利用度规分量,我们可以很方便地切换任意张量分量的变换属性。

附: 术语的中英文对照表

中文	英文
矢量	vector
基矢组	basis
对偶基矢组	dual basis
线性空间	linear space
线性独立	linearly independent
正交归一	orthonormal
度规	metric
内积	inner product
线性型	linear form
双线性型	bilinear form
协变	covariant
逆变	contravariant
不变	invariant
闵氏空间	minkowski space