1D Advection Equation

Anirudh C

Contents

Description				1
Disc	scretization			
2.1	Forwa	rd Difference		2
	2.1.1	Description		2
	2.1.2	Stability		3
2.2			4	
	2.2.1			4
	2.2.2			5
2.3	Centra	· ·		6
	2.3.1			6
	2.3.2			6
2.4	Lax W	_		7
	2.4.1			7
	2.4.2	-		8
Imp	lemen	tation		8
3.1	Forward Difference			8
3.2				9
3.3				9
3.4				10
	2.1 2.2 2.3 2.4 Imp 3.1 3.2 3.3	Discretizate 2.1 Forwar 2.1.1 2.1.2 2.2 Backw 2.2.1 2.2.2 2.3 Centra 2.3.1 2.3.2 2.4 Lax W 2.4.1 2.4.2 Implement 3.1 Forwar 3.2 Backw 3.3 Centra	Discretization 2.1 Forward Difference 2.1.1 Description 2.1.2 Stability 2.2 Backward Difference 2.2.1 Description 2.2.2 Stability 2.3 Central Difference 2.3.1 Description 2.3.2 Stability 2.4 Lax Wendroff Scheme 2.4.1 Description 2.4.2 Stability Implementation 3.1 Forward Difference 3.2 Backward Difference 3.3 Central Difference	Discretization 2.1 Forward Difference 2.1.1 Description 2.1.2 Stability 2.2 Backward Difference 2.2.1 Description 2.2.2 Stability 2.3 Central Difference 2.3.1 Description 2.3.2 Stability 2.4 Lax Wendroff Scheme 2.4.1 Description 2.4.2 Stability Implementation 3.1 Forward Difference 3.2 Backward Difference 3.3 Central Difference

1 Description

Consider the 1D advection equation,

$$u_t + au_x = 0$$

defined on the domain [a, b]

With periodic boundary conditions, that is,

$$u(x+1,t) = u(x,t)$$

2 Discretization

Partition the domain into N points, such that

$$x_i = i\Delta x$$

where, Δx is the partition size defined as,

$$\Delta x = \frac{b - a}{N - 1}$$

The time is partitioned so that,

$$t_n = n\Delta t$$

Where Δt is the time interval

Let U_i^n be the approximation to the function u, that is,

$$U_i^n \approx u(x_i, t_n)$$

By the finite difference method the time derivative is approximated using a forward difference scheme.

$$\left. \frac{\partial}{\partial t} u(x_i, t) \right|_{t=t_n} \Rightarrow \frac{U_i^{n+1} - U_i^n}{\Delta t}$$

The space derivative can be approximated in three different schemes:

2.1 Forward Difference

2.1.1 Description

$$\left. \frac{\partial}{\partial x} u(x, t_n) \right|_{x=x_i} \Rightarrow \frac{U_{i+1}^{n+1} - U_i^n}{\Delta x}$$

Thus we get,

$$\frac{U_{i}^{n+1} - U_{i}^{n}}{\Delta t} + a \frac{U_{i+1}^{n+1} - U_{i}^{n}}{\Delta x} = 0$$

Define,

$$\sigma = \frac{a\Delta t}{\Delta x}$$

Rearranging we get,

$$U_i^{n+1} = (1 + \sigma) U_i^n - \sigma U_{i+1}^n$$

where,

$$i = 0, 1, \dots, N - 2$$
 $n = 0, 1, 2, \dots$

With the periodic boundary condition we define,

$$U_{N-1}^{n+1} = (1+\sigma) U_{N-1}^{n} - \sigma U_{1}^{n}$$

2.1.2 Stability

Using Fourier Analysis we get, the solution

$$U_i^n = \beta^n e^{ilx_i}$$

Substituting in the scheme we get,

$$\beta^{n+1}e^{ilx_i} = (1+\sigma)\beta^n e^{ilx_i} - \sigma\beta^n e^{ilx_{i+1}}$$

Thus,

$$\beta = 1 + \sigma - \sigma e^{il\Delta x}$$

$$\beta = 1 + \sigma - \sigma \left(\cos(l\Delta x) + i\sin(\Delta x)\right)$$

$$|\beta| = 1 + 2\sigma \left(\sigma + 1\right) \left(1 - \cos(l\Delta x)\right)$$

• If a < 0

$$\sigma < 0$$

For a stable solution we need $|\beta| < 1$

$$1 + 2\sigma \left(\sigma + 1\right)\left(1 - \cos(l\Delta x)\right) < 1$$

$$2\sigma (\sigma + 1) (1 - \cos(l\Delta x)) < 0$$

Since $\sigma < 0$ and $1 - cos(l\Delta x) > 0$

$$\sigma + 1 > 0 \Rightarrow \sigma > -1$$

Thus if a < 0 the forward scheme is stable iff $\sigma > -1$

• If a > 0

$$\sigma > 0$$

For a stable solution we need $|\beta| < 1$

$$1 + 2\sigma \left(\sigma + 1\right) \left(1 - \cos(l\Delta x)\right) < 1$$

$$2\sigma \left(\sigma + 1\right)\left(1 - \cos(l\Delta x)\right) < 0$$

Since $\sigma > 0$ and $1 - \cos(l\Delta x) > 0$

$$\sigma + 1 < 0 \Rightarrow \sigma < -1$$

This is not possible

Thus if a > 0 the forward scheme is unconditionally unstable.

2.2 Backward Difference

2.2.1 Description

$$\left. \frac{\partial}{\partial x} u(x, t_n) \right|_{x = x_i} \Rightarrow \frac{U_i^{n+1} - U_{i-1}^n}{\Delta x}$$

Thus we get,

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + a \frac{U_i^{n+1} - U_{i-1}^n}{\Delta x} = 0$$

Define,

$$\sigma = \frac{a\Delta t}{\Delta x}$$

Rearranging we get,

$$U_i^{n+1} = (1 - \sigma) U_i^n + \sigma U_{i-1}^n$$

where,

$$i = 1, 2, \dots, N - 1$$
 $n = 0, 1, 2, \dots$

With the periodic boundary condition we define,

$$U_0^{n+1} = (1 - \sigma) U_0^n + \sigma U_{N-2}^n$$

2.2.2 Stability

Using Fourier Analysis we get, the solution

$$U_i^n = \beta^n e^{ilx_i}$$

Substituting in the scheme we get,

$$\beta^{n+1}e^{ilx_i} = (1-\sigma)\beta^n e^{ilx_i} + \sigma\beta^n e^{ilx_{i-1}}$$

Thus,

$$\beta = 1 - \sigma + \sigma e^{-il\Delta x}$$

$$\beta = 1 - \sigma + \sigma \cos(l\Delta x) - i\sigma \sin(l\Delta x)$$

$$|\beta| = 1 + 2\sigma (\sigma - 1) (1 - \cos(l\Delta x))$$

• If a < 0

$$\sigma < 0$$

For a stable solution we need $|\beta| < 1$

$$1 + 2\sigma \left(\sigma - 1\right)\left(1 - \cos(l\Delta x)\right) < 1$$

$$2\sigma (\sigma - 1) (1 - \cos(l\Delta x)) < 0$$

Since $\sigma < 0$ and $1 - cos(l\Delta x) > 0$

$$\sigma - 1 > 0 \Rightarrow \sigma > 1$$

This is not possible

Thus if a < 0 the backward scheme is unconditionally unstable.

• If a > 0

$$\sigma > 0$$

For a stable solution we need $|\beta| < 1$

$$1 + 2\sigma \left(\sigma - 1\right)\left(1 - \cos(l\Delta x)\right) < 1$$

$$2\sigma \left(\sigma - 1\right)\left(1 - \cos(l\Delta x)\right) < 0$$

Since $\sigma > 0$ and $1 - \cos(l\Delta x) > 0$

$$\sigma - 1 < 0 \Rightarrow \sigma < 1$$

Thus if a > 0 the backward scheme is stable iff $\sigma < 1$.

2.3 Central Difference

2.3.1 Description

$$\left. \frac{\partial}{\partial x} u(x, t_n) \right|_{x=x_i} \Rightarrow \frac{U_{i+1}^n - U_{i-1}^n}{\Delta x}$$

Thus we get,

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + a \frac{U_{i+1}^n - U_{i-1}^n}{\Delta x} = 0$$

Define,

$$\sigma = \frac{a\Delta t}{\Delta x}$$

Rearranging we get,

$$U_i^{n+1} = U_i^n - \frac{\sigma}{2}U_{i+1}^n + \frac{\sigma}{2}U_{i-1}^n$$

where,

$$i = 1, 2, \dots, N - 2$$
 $n = 0, 1, 2, \dots$

With the periodic boundary condition we define,

$$U_0^{n+1} = U_0^n - \frac{\sigma}{2}U_1^n + \frac{\sigma}{2}U_{N-2}^n$$

$$U_{N-1}^{n+1} = U_{N-1}^n - \frac{\sigma}{2}U_1^n + \frac{\sigma}{2}U_{N-2}^n$$

2.3.2 Stability

Using Fourier Analysis we get, the solution

$$U_i^n = \beta^n e^{ilx_i}$$

Substituting in the scheme we get,

$$\beta^{n+1}e^{ilx_i} = \beta^n e^{ilx_i} - \frac{\sigma}{2}\beta^n e^{ilx_{i+1}} + \frac{\sigma}{2}\beta^n e^{ilx_{i-1}}$$

Thus,

$$\beta = 1 - \sigma/2e^{il\Delta x} + \sigma/2e^{-il\Delta x}$$
$$|\beta| = 1 + \sigma^2 \sin^2(l\Delta x)$$

Clearly, $|\beta| > 1$. Hence, the central difference scheme is unconditionally unstable.

But β is close to one if $\sigma < 1$, meaning the solution slowly grows in amplitude for $\sigma < 1$

2.4 Lax Wendroff Scheme

2.4.1 Description

Consider the Taylor Series Expansion of $u(x_i, t_{n+1})$,

$$u(x_i, t_{n+1}) = u(x_i, t_n) + \Delta t \cdot u_t(x_i, t_n) + \frac{\Delta t^2}{2} \cdot u_{tt}(x_i, t_n) + O(\Delta t^2)$$

From the advection equation we have

$$u_t = -a \cdot u_x$$

Thus,

$$u_{tt} = -a \cdot u_{xt}$$

$$u_{tt} = a^2 \cdot u_{xx}$$

Substituting we have,

$$u(x_i, t_{n+1}) = u(x_i, t_n) - a\Delta t \cdot u_x(x_i, t_n) + a^2 \frac{\Delta t^2}{2} \cdot u_{xx}(x_i, t_n) + O(\Delta t^2)$$

Replacing with the approximation and using central difference for the derivatives the scheme becomes,

$$U_i^{n+1} = U_i^n - \frac{a\Delta t}{2\Delta x}(U_{i+1}^n - U_{i-1}^n) + \frac{a^2\Delta t^2}{2\Delta x^2}(U_{i-1}^n - 2U_i^n + U_{i+1}^n)$$

Now define,

$$\sigma = \frac{a\Delta t}{\Delta x}$$

Thus,

$$U_i^{n+1} = U_i^n - \frac{\sigma}{2}(U_{i+1}^n - U_{i-1}^n) + \frac{\sigma^2}{2}(U_{i-1}^n - 2U_i^n + U_{i+1}^n)$$

$$U_{i}^{n+1} = \frac{\sigma(\sigma+1)}{2}U_{i-1}^{n} + (1-\sigma^{2})U_{i}^{n} + \frac{\sigma(\sigma-1)}{2}U_{i+1}^{n}$$

where,

$$i = 1, 2, \dots, N - 2$$
 $n = 0, 1, 2, \dots$

With the periodic boundary condition we define,

$$U_0^{n+1} = \frac{\sigma(\sigma+1)}{2}U_{N-2}^n + (1-\sigma^2)U_0^n + \frac{\sigma(\sigma-1)}{2}U_1^n$$

$$U_{N-1}^{n+1} = \frac{\sigma(\sigma+1)}{2}U_{N-2}^{n} + (1-\sigma^{2})U_{N-1}^{n} + \frac{\sigma(\sigma-1)}{2}U_{1}^{n}$$

2.4.2 Stability

Using Fourier Analysis we get, the solution

$$U_i^n = \beta^n e^{ilx_i}$$

Substituting in the scheme we get,

$$\beta^{n+1}e^{il\Delta x} = \frac{\sigma(\sigma+1)}{2}\beta^n e^{ilx_{i-1}} + (1-\sigma^2)\beta^n e^{ilx_i} + \frac{\sigma(\sigma-1)}{2}\beta^n e^{ilx_{i+1}}$$

Thus,

$$\beta = \frac{\sigma\left(\sigma+1\right)}{2}e^{-il\Delta x} + \left(1-\sigma^2\right) + \frac{\sigma\left(\sigma-1\right)}{2}e^{il\Delta x}$$

$$\beta = \frac{\sigma}{2}\left(\sigma(e^{il\Delta x} + e^{-il\Delta x}) - (e^{il\Delta x} - e^{-il\Delta x})\right) + 1 - \sigma^2$$

$$\beta = \sigma^2 cos(l\Delta x) - \sigma sin(l\Delta x) + 1 - \sigma^2$$

$$|\beta| = \sigma^2 cos(l\Delta x) - \sigma sin(l\Delta x) + 1 - \sigma^2$$

For $|\beta| < 1$,

$$|\sigma| < 1$$

Thus the scheme is stable for $|\sigma| < 1$.

3 Implementation

```
#include <iostream>
#include <vector>
```

3.1 Forward Difference

```
// This method returns the current state of the solution after n time steps
vector<double> nsol(const int n, const double sigma, const vector<double> &u)
{
   int size = u.size();
   vector<double> u_prev(size,0.0);
   u_prev = u;
   vector<double> u_next(size,0.0);
   for(unsigned int k=0;k<n;k++)
   {
      u_next[size-1] = (1+sigma)*u_prev[size-1] - sigma*u_prev[1];
      for(unsigned int i=0;i<size-1;i++)</pre>
```

```
{
            u_next[i] = (1+sigma)*u_prev[i] - sigma*u_prev[i+1];
        u_prev = u_next;
    }
    return u_next;
}
3.2
     Backward Difference
// This method returns the current state of the solution after n time steps
vector<double> nsol(const int n, const double sigma, const vector<double> &u)
{
    int size = u.size();
    vector<double> u_prev(size,0.0);
    u_prev = u;
    vector<double> u_next(size,0.0);
    for(unsigned int k=0;k<n;k++)</pre>
    {
        u_next[0] = (1-sigma)*u_prev[0] + sigma*u_prev[size-2];
        for(unsigned int i=1;i<size;i++)</pre>
        {
            u_next[i] = (1-sigma)*u_prev[i] + sigma*u_prev[i-1];
        u_prev = u_next;
    }
    return u_next;
}
     Central Difference
// This method returns the current state of the solution after n time steps
vector<double> nsol(const int n, const double sigma, const vector<double> &u)
{
    int size = u.size();
    vector<double> u_prev(size,0.0);
    u_prev = u;
    vector<double> u_next(size,0.0);
    for(unsigned int k=0;k<n;k++)</pre>
    {
```

3.4 Lax Wendroff Scheme