• Clone Github repository with exercises:

git clone https://github.com/michalhapka/trex_workshop2023.git

1 Exercise: H₂-H₂ (static correlation)

Perform SAPT(HF) and SAPT(CISD) calculations for the H₂-H₂ complex (Figure 1):

- a) near the equilibrium geometry (R = 1.44 a.u.),
- b) with a broken covalent bond in one of the monomers (R = 7.20 a.u.).

Figure 1: H₂-H₂ in T-shaped geometry.

The basis set is aug-cc-pVDZ. First, use Quantum Package to run Hartree-Fock/CISD calculations. Then, use GammCor to run SAPT. You will find the xyz files in:

- trex_workshop2023/SAPT/h2_h2/hartree-fock,
- trex_workshop2023/SAPT/h2_h2/cisd.

If you do not have access to Quantum Package, you will find the necessary HDF5 files in /results subfolders. For sample SAPT inputs, see:

- trex_workshop2023/SAPT/h2_h2/cisd/results ,
- https://qchem.gitlab.io/gammcor-manual/pages/calculation/sapt_methods/running_sapt_qpckg.html.

Answer the questions:

- 1. How accurate is SAPT based on Hartree-Fock description of the monomers near the equilibrium and in the case of a stretched bond?
- 2. Which interaction energy components dominate for R = 1.44 a.u. and R = 7.20 a.u.?
- 3. Table 1 shows also SAPT results obtained with CASSCF wave functions. What is the effect of increasing the active space?

Table 1: Results of SAPT calculations for H_2 - H_2 dimer. CAS(m, n) denotes CASSCF calculation with m electrons occupying n active orbitals (for each monomer). Energy unit is microhartree.

	$E_{\mathrm{elst}}^{(1)}$	$E_{\mathrm{exch}}^{(1)}$	$E_{\rm ind}^{(2)}$	$E_{\text{exch-ind}}^{(2)}$	$E_{\mathrm{disp}}^{(2)}$	$E_{\text{exch-disp}}^{(2)}$	$E_{ m int}^{ m SAPT}$
R = 1.44 a.u.							
HF							
CISD							
CAS(2,2)	-47.82	81.28	-4.030	1.637	-143.6	5.693	-106.8
CAS(2,8)	-52.61	88.43	-4.565	1.980	-151.7	6.094	-112.4
R = 7.20 a.u.							
$_{ m HF}$							
CISD							
CAS(2,2)	-44.87	201.1	-7.994	5.465	-161.1	10.15	2.748
CAS(2,8)	-47.17	209.4	-8.388	5.992	-165.9	10.43	4.335

2 Exercise: He-H₂* (excited states, ver 1)

Perform a SAPT(CISD)/aug-cc-pVDZ calculation for the He-H₂ complex (Figure 2):

- a) both monomers are in the ground state and R = 6.6 a.u.,
- b) He is in the ground state, H_2 is in the first singlet excited state $({}^{1}\Sigma_{n}^{+})$, and R=4.0 a.u.

Figure 2: He-H₂ in T-shaped geometry.

First, use Quantum Package to run Hartree-Fock/CISD calculations. Then, use GammCor to run SAPT. You will find the xyz files in trex_workshop2023/SAPT/he_h2 directory (see also Table 2).

Answer the questions:

- 1. What are the key interaction energy ingredients in the van der Waals minimum region in ground- and excited-state?
- 2. Which energy component dominates ground/exited-state interaction at R=4.4 a.u.?

If you do not have access to Quantum Package, you will find the necessary HDF5 files in /results subfolders. For sample SAPT jobs, see:

- https://qchem.gitlab.io/gammcor-manual/pages/calculation/sapt_methods/running_sapt_qpckg.html,
- https://quantum-package.readthedocs.io/en/dev/users_guide/excited_states.html

Table 2: Results of SAPT(CISD)/aug-cc-pVDZ calculations for He- $\rm H_2$ and He- $\rm H_2$ * dimers. Energy unit is millihartree.

isy unit is inimiatoree.										
	$E_{ m elst}^{(1)}$	$E_{\mathrm{exch}}^{(1)}$	$E_{\mathrm{ind}}^{(2)}$	$E_{\text{exch-ind}}^{(2)}$	$E_{\mathrm{disp}}^{(2)}$	$E_{\text{exch-disp}}^{(2)}$	$E_{\mathrm{int}}^{\mathrm{SAPT}}$			
ground state										
$R=4.0~\mathrm{a.u.}$	-1.103	5.740	-0.375	0.395	-0.956	0.114	3.816			
R = 6.6 a.u.										
excited state										
$R=4.0 \mathrm{~a.u.}$										
R = 6.6 a.u.	-0.026	-0.060	-0.036	-0.003	-0.204	-0.005	-0.334			

3 Computation of singlet-triplet gap of cyclobutadiene with ACn-CAS

- In trex_workshop2023/C4H4 directories you will find all files needed to run ACn calculations with GammCor for singlet (S) and triplet (T) states using CAS(2,2) and CAS(4,4) reference wavefunctions.
- Input files for GammCor with electron integrals and 1,2-reduced density matrices have been generated with Dalton and are provided.

If you want to learn how to use Dalton interfaced with GammCor see example in GammCor user manual:

https://qchem.gitlab.io/gammcor-manual/pages/calculation/correlation_methods/acn_dalton.html

• To run GammCor, prepare the job1 script for slurm (provide the correct path to gammcor in GAMMCOR_EXEC="....") .

```
#!/bin/bash
#SBATCH -n 1
#SBATCH -c 1
#SBATCH --nodelist=cn08
#SBATCH -t 0:10:00
#SBATCH --mem=1GB

$GAMMCOR_EXEC="...."
srun $GAMMCOR_EXEC > "gammcor.out"
```

• Copy the script to CAS22/S, CAS22/T, CAS44/S, CAS44/T directories. In each directory submit the job.

```
sbatch job1
```

- Collect the results from gammcor.out files. Look for the line: ECASSCF+ENuc, ACn-Corr, ACn-CASSCF at the end of outputs.
- Compute S-T energy gaps for CASSCF (ECASSCF+ENuc) and ACn-CASSCF (ACn-CASSCF) from CAS(2,2) and CAS(4,4) models. Compare the numbers with the reference value of 0.18 eV from Stoneburner et al., J. Chem. Phys. 2017, 147, 164120.