Nature d'une intégrale généralisée

 \mathbb{Q} L'objectif de ces exercices est de vous faire étudier la nature d'intégrales impropres. On apportera une attention particulière à la rédaction : mention du domaine de continuité, du théorème de comparaison des intégrales de fonctions positives, de la convergence absolue si ce n'est pas positif, etc.

Exercice 1. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

 \rightarrow page 12

$$x \mapsto -\frac{1}{2} x \sinh\left(\frac{2}{x}\right) - \frac{13}{4 x} + \frac{13}{4} \arctan\left(\frac{1}{x}\right) + \cos\left(\frac{2}{x}\right).$$

Exercice 2. Étudier la nature de l'intégrale:

 \rightarrow page 12

$$\int_0^1 -\frac{1}{(x-1)\ln(x)^{128}} dx.$$

Exercice 3. Étudier la nature de l'intégrale:

 \rightarrow page 12

$$\int_0^2 \frac{\ln\left(x\right)^3}{x^{\frac{1}{9}}} \mathrm{d}x.$$

Exercice 4. Étudier la nature de l'intégrale:

 \rightarrow page 13

$$\int_0^{+\infty} -\frac{x - (x^4 + 1)^{\frac{1}{4}}}{x^{\frac{1}{4}}} dx.$$

Exercice 5. Étudier l'intégrabilité au voisinage de 0 de la fonction :

 \rightarrow page 13

$$x \mapsto \frac{1}{\cos\left(\frac{4}{5}\arctan\left(x\right)\right) - 1} + \frac{25}{8x^2}.$$

Exercice 6. Étudier la nature de l'intégrale:

 \rightarrow page 14

$$\int_0^1 \frac{x^{\frac{1}{25}}}{\sqrt{-x+1}|\ln(x)|^{\frac{1}{26}}} dx.$$

Exercice 7. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

 \rightarrow page 14

$$x \mapsto -\frac{1}{3}x \arctan\left(\frac{2}{x}\right) + \frac{1}{3}x \ln\left(\frac{2}{x} + 1\right) + \frac{6}{x} - \frac{8}{3}\ln\left(\frac{2}{x} + 1\right).$$

Exercice 8. Étudier l'intégrabilité au voisinage de 0 de la fonction :

$$x \mapsto \frac{1}{\cos\left(\frac{5}{3}\arctan(4x)\right) - 1} + \frac{9}{200x^2}.$$

 \rightarrow page 15

 \rightarrow page 16

 \rightarrow page 16

 \rightarrow page 16

 \rightarrow page 16

 \rightarrow page 17

 \rightarrow page 17

 \rightarrow page 17

 \rightarrow page 18

Exercice 9. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} \frac{\sin(x)}{x^{\frac{3}{2}}} \mathrm{d}x.$$

Exercice 10. Étudier la nature de l'intégrale:

$$\int_0^1 e^{\left(-\frac{1}{|\ln(x)|}\right)} \mathrm{d}x.$$

Exercice 11. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} \frac{1}{x\left(\frac{1}{x^{48}} + 1\right)} \mathrm{d}x.$$

Exercice 12. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} \frac{1}{(x+1)x^{\frac{33}{2}}} \mathrm{d}x.$$

Exercice 13. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} e^{\left(-\ln(x)^{2}\right)} \mathrm{d}x.$$

Exercice 14. Étudier la nature de l'intégrale:

$$\int_0^{+\infty} \frac{\sin\left(15\,x^{\frac{1}{4}}\right) - \sin\left(x^{\frac{1}{4}}\right)}{x^6} \mathrm{d}x.$$

Exercice 15. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

$$x \mapsto \frac{7}{x} + \frac{17}{6} \, \cos\left(\frac{3}{x}\right) - \frac{1}{2} \, \cosh\left(\frac{1}{x}\right) - \frac{7}{3} \, e^{\frac{3}{x}}.$$

Exercice 16. Étudier la nature de l'intégrale:

$$\int_0^1 e^{\left(-\frac{1}{|\ln(x)|}\right)} \mathrm{d}x.$$

Exercice 17. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} \frac{1}{x\left(\frac{1}{x}+1\right)} \mathrm{d}x.$$

Exercice 18. Étudier la nature de l'intégrale:

$$\int_0^1 -\frac{(x-1)x^{\frac{1}{35}}}{\ln(x)} dx.$$

Exercice 19. Étudier la nature de l'intégrale:

 \rightarrow page 18

$$\int_{1}^{+\infty} \frac{\cos(9x^6) - \cos(x^6)}{\sqrt{x}} dx.$$

Exercice 20. Étudier la nature de l'intégrale:

 \rightarrow page 19

$$\int_{1}^{+\infty} x^2 \cos(2x) e^{\left(-8x^2\right)} \mathrm{d}x.$$

Exercice 21. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

 \rightarrow page 19

$$x \mapsto -\frac{1}{9} \, x \sinh \left(\frac{3}{x} \right) - \frac{1}{x} + \arctan \left(\frac{1}{x} \right) + \frac{1}{3} \, \cosh \left(\frac{2}{x} \right).$$

Exercice 22. Étudier la nature de l'intégrale:

 \rightarrow page 20

$$\int_0^1 \frac{1}{(x+1)\sqrt{x}} \mathrm{d}x.$$

Exercice 23. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

 \rightarrow page 20

$$x \mapsto \frac{3}{5} x \ln\left(\frac{1}{x} + 1\right) - \frac{1}{2x} - \frac{3}{5} \cos\left(\frac{1}{x}\right) + \frac{2}{5} \sin\left(\frac{2}{x}\right).$$

Exercice 24. Étudier la nature de l'intégrale:

 \rightarrow page 20

$$\int_{1}^{+\infty} x e^{\left(-\frac{1}{2x^2}\right)} \sin\left(\frac{1}{2}x\right) dx.$$

Exercice 25. Étudier la nature de l'intégrale:

 \rightarrow page 20

$$\int_0^1 \frac{(x+1)^{\frac{5}{494}} - x^{\frac{5}{494}}}{x^7} \mathrm{d}x.$$

Exercice 26. Étudier la nature de l'intégrale:

 \rightarrow page 21

$$\int_0^{+\infty} \frac{\cos(2x) - \cos(x)}{x^2} \mathrm{d}x.$$

Exercice 27. Étudier l'intégrabilité au voisinage de 0 de la fonction :

$$x \mapsto -\frac{9}{16x} + \frac{1}{e^{(\frac{4}{3}\sinh(\frac{4}{3}x))} - 1}.$$

Exercice 28. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{\sqrt{x}}{\sqrt{-x+1}} \mathrm{d}x.$$

Exercice 29. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} \frac{1}{(x+1)x^{\frac{1}{3}}} \mathrm{d}x.$$

Exercice 30. Étudier la nature de l'intégrale:

$$\int_0^{+\infty} \frac{1}{x^2 \left(\frac{1}{x^{\frac{1}{3}}} + 1\right)} \mathrm{d}x.$$

Exercice 31. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{(x+1)^{\frac{1}{3}} - x^{\frac{1}{3}}}{\sqrt{x}} \mathrm{d}x.$$

Exercice 32. Étudier la nature de l'intégrale:

$$\int_0^{+\infty} \frac{\sinh\left(3\,x^{\frac{1}{24}}\right) - \sinh\left(x^{\frac{1}{24}}\right)}{x^{\frac{1}{4}}} \mathrm{d}x.$$

Exercice 33. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} \frac{\sinh\left(10\,x^{\frac{10}{3}}\right) - \sinh\left(x^{\frac{10}{3}}\right)}{x^{\frac{17}{21}}} \mathrm{d}x.$$

Exercice 34. Étudier la nature de l'intégrale:

$$\int_0^1 x^{\frac{1}{6}} (-x+1)^{\frac{31}{2}} |\ln(x)|^{\frac{1}{19}} dx.$$

Exercice 35. Étudier la nature de l'intégrale:

$$\int_0^1 -\frac{x^6 - (x^9 + 1)^{\frac{2}{3}}}{x^{\frac{1}{6}}} \mathrm{d}x.$$

Exercice 36. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} \cos\left(x\right)^{426} e^{\left(-\frac{1}{\sqrt{x}}\right)} \mathrm{d}x.$$

 \rightarrow page 22

 \rightarrow page 22

 \rightarrow page 22

 \rightarrow page 23

 \rightarrow page 23

 \rightarrow page 23

 \rightarrow page 23

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 25

 \rightarrow page 25

 \rightarrow page 25

 \rightarrow page 26

 \rightarrow page 26

 \rightarrow page 26

 \rightarrow page 26

 \rightarrow page 27

Exercice 37. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{\ln\left(2\,x^{\frac{1}{7}} + 1\right) - \ln\left(x^{\frac{1}{7}} + 1\right)}{\sqrt{x}} \mathrm{d}x.$$

Exercice 38. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{\cos(x) - 1}{\sqrt{x}} \mathrm{d}x.$$

Exercice 39. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} \frac{\cos\left(\sqrt{x}\right) - 1}{x^2} \mathrm{d}x.$$

Exercice 40. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} \frac{\ln\left(x\right)^{\frac{1}{6}}}{x^{7}} \mathrm{d}x.$$

Exercice 41. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

$$x \mapsto -\frac{3}{8} x \ln \left(\frac{2}{x} + 1 \right) + \frac{1}{3} x \sin \left(\frac{3}{x} \right) - \frac{1}{2 x} - \frac{1}{4} e^{\frac{1}{x}}.$$

Exercice 42. Étudier la nature de l'intégrale:

$$\int_{\frac{1}{2}}^{1} \frac{1}{\sqrt{x} \ln(x)} \mathrm{d}x.$$

Exercice 43. Étudier la nature de l'intégrale:

$$\int_0^1 e^{\left(-\ln(x)^2\right)} \mathrm{d}x.$$

Exercice 44. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

$$x \mapsto -\frac{1}{7} x \sinh\left(\frac{1}{x}\right) + \frac{1}{x} - \frac{1}{3} \arctan\left(\frac{3}{x}\right) + \frac{1}{7} \cosh\left(\frac{2}{x}\right).$$

Exercice 45. Étudier la nature de l'intégrale:

$$\int_0^{+\infty} \frac{\sin\left(9\,x^{\frac{1}{3}}\right) - \sin\left(x^{\frac{1}{3}}\right)}{x} \mathrm{d}x.$$

Exercice 46. Étudier la nature de l'intégrale:

$$\int_0^{+\infty} -\frac{x^4 - \sqrt{x^8 + 1}}{x^{\frac{3}{11}}} \mathrm{d}x.$$

Exercice 47. Étudier la nature de l'intégrale:

 \rightarrow page 28

$$\int_{1}^{+\infty} \frac{1}{x^{\frac{1}{3}} \left(\frac{1}{x^{\frac{9}{7}}} + 1\right)} \mathrm{d}x.$$

Exercice 48. Étudier la nature de l'intégrale:

 \rightarrow page 28

$$\int_0^1 -\frac{x - \sqrt{x^2 + 1}}{\sqrt{x}} \mathrm{d}x.$$

Exercice 49. Étudier la nature de l'intégrale:

 \rightarrow page 29

$$\int_0^1 \frac{(x-1)^6}{x^{\frac{7}{6}} \ln(x)^4} \mathrm{d}x.$$

Exercice 50. Étudier l'intégrabilité au voisinage de 0 de la fonction :

 \rightarrow page 29

$$x \mapsto \frac{1}{\cos\left(\sin\left(\frac{5}{2}x\right)\right) - 1} + \frac{8}{25x^2}.$$

Exercice 51. Étudier la nature de l'intégrale:

 \rightarrow page 30

$$\int_0^{+\infty} -\frac{x^{\frac{5}{8}} - (x^5 + 1)^{\frac{1}{8}}}{x^{\frac{5}{3}}} \mathrm{d}x.$$

Exercice 52. Étudier la nature de l'intégrale:

 \rightarrow page 30

$$\int_0^{+\infty} e^{\left(-\sqrt{|\ln(x)|}\right)} \mathrm{d}x.$$

Exercice 53. Étudier la nature de l'intégrale:

 \rightarrow page 30

$$\int_0^{+\infty} \frac{\arctan\left(7\,x^2\right)}{x^{\frac{3}{7}}} \mathrm{d}x.$$

Exercice 54. Étudier la nature de l'intégrale:

 \rightarrow page 31

$$\int_0^1 \frac{\sin(x)}{x^{\frac{1}{3}}} \mathrm{d}x.$$

Exercice 55. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{1}{(x+1)x} \mathrm{d}x.$$

Exercice 56. Étudier la nature de l'intégrale:

 \rightarrow page 31

$$\int_{1}^{+\infty} \frac{\ln\left(x\right)^{\frac{3}{2}}}{x^{8}} \mathrm{d}x.$$

Exercice 57. Étudier l'intégrabilité au voisinage de 0 de la fonction :

 \rightarrow page 31

$$x \mapsto \frac{10}{x} + \frac{1}{\ln\left(-\frac{1}{4}\sinh\left(\frac{2}{5}x\right) + 1\right)}.$$

Exercice 58. Étudier la nature de l'intégrale:

 \rightarrow page 32

$$\int_0^1 -\frac{x^{\frac{1}{5}}}{(x-1)|\ln(x)|^{\frac{1}{22}}} \mathrm{d}x.$$

Exercice 59. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

 \rightarrow page 32

$$x \mapsto -\frac{24}{65} x \sinh\left(\frac{3}{x}\right) - \frac{4}{13 x} + \frac{72}{65} e^{\frac{1}{x}} - \frac{2}{5} \ln\left(\frac{2}{x} + 1\right).$$

Exercice 60. Étudier la nature de l'intégrale:

 \rightarrow page 33

$$\int_0^1 \frac{\sinh(6x^2)}{x^{\frac{15}{16}}} dx.$$

Exercice 61. Étudier la nature de l'intégrale:

 \rightarrow page 33

$$\int_0^1 \frac{\ln(x)^2}{x\sqrt{-x+1}} \mathrm{d}x.$$

Exercice 62. Étudier la nature de l'intégrale:

 \rightarrow page 33

$$\int_0^1 \frac{(x+1)^{\frac{1}{10}} - x^{\frac{1}{10}}}{x} \mathrm{d}x.$$

Exercice 63. Étudier l'intégrabilité au voisinage de 0 de la fonction :

 \rightarrow page 34

$$x \mapsto -\frac{8}{9x} + \frac{1}{\tan\left(\frac{3}{2}\ln\left(\frac{3}{4}x + 1\right)\right)}.$$

Exercice 64. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

$$x\mapsto -\frac{2}{x}+\frac{1}{3}\cos\left(\frac{3}{x}\right)-\frac{1}{3}e^{\frac{3}{x}}+\sin\left(\frac{3}{x}\right).$$

Exercice 65. Étudier la nature de l'intégrale:

 \rightarrow page 35

$$\int_{1}^{+\infty} \frac{1}{x\left(\frac{1}{x^{\frac{1}{5}}} + 1\right)} \mathrm{d}x.$$

Exercice 66. Étudier la nature de l'intégrale:

 \rightarrow page 35

$$\int_0^{+\infty} x^2 \cos(x)^4 e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)} dx.$$

Exercice 67. Étudier la nature de l'intégrale:

 \rightarrow page 35

$$\int_{2}^{+\infty} \frac{1}{x^{\frac{3}{2}} \ln\left(x\right)^{2}} \mathrm{d}x.$$

Exercice 68. Étudier la nature de l'intégrale:

 \rightarrow page 36

$$\int_0^1 e^{\left(-|\ln(x)|^{\frac{1}{5}}\right)} \mathrm{d}x.$$

Exercice 69. Étudier la nature de l'intégrale:

 \rightarrow page 36

$$\int_0^{+\infty} \frac{1}{x^{\frac{3}{28}} \left(\frac{1}{x} + 1\right)} \mathrm{d}x.$$

Exercice 70. Étudier la nature de l'intégrale:

 \rightarrow page 36

$$\int_{1}^{+\infty} x \cos(2x) e^{\left(\frac{1}{3x}\right)} dx.$$

Exercice 71. Étudier la nature de l'intégrale:

 \rightarrow page 36

$$\int_0^{+\infty} x^2 e^{(-3x^2)} \sin(x)^{12} dx.$$

Exercice 72. Étudier la nature de l'intégrale:

 \rightarrow page 37

$$\int_0^1 -\frac{|\ln(x)|^{\frac{1}{4}}}{(x-1)^3 x^{10}} dx.$$

Exercice 73. Étudier l'intégrabilité au voisinage de 0 de la fonction :

$$x \mapsto \frac{1}{\cos\left(\frac{5}{2}\sinh\left(\frac{3}{2}x\right)\right) - 1} + \frac{32}{225x^2}.$$

Exercice 74. Étudier la nature de l'intégrale:

 \rightarrow page 38

$$\int_0^{+\infty} e^{(-x)} \sin(x)^3 \, \mathrm{d}x.$$

Exercice 75. Étudier la nature de l'intégrale:

 \rightarrow page 38

$$\int_{\frac{1}{2}}^{1} \frac{1}{x^3 |\ln(x)|^{\frac{1}{6}}} \mathrm{d}x.$$

Exercice 76. Étudier la nature de l'intégrale:

 \rightarrow page 38

$$\int_0^1 e^{\left(-|\ln(x)|^9\right)} \mathrm{d}x.$$

Exercice 77. Étudier la nature de l'intégrale:

 \rightarrow page 38

$$\int_0^{+\infty} e^{\left(-\ln(x)^2\right)} \mathrm{d}x.$$

Exercice 78. Étudier la nature de l'intégrale:

 \rightarrow page 39

$$\int_{1}^{+\infty} \frac{1}{x\left(\frac{1}{x}+1\right)} \mathrm{d}x.$$

Exercice 79. Étudier la nature de l'intégrale:

 \rightarrow page 39

$$\int_{\frac{1}{2}}^{1} \frac{\sqrt{x}}{\ln\left(x\right)^{2}} \mathrm{d}x.$$

Exercice 80. Étudier la nature de l'intégrale:

 \rightarrow page 39

$$\int_{0}^{1} \sqrt{-x+1} |\ln(x)|^{\frac{7}{5}} \mathrm{d}x.$$

Exercice 81. Étudier la nature de l'intégrale:

 \rightarrow page 40

$$\int_{1}^{+\infty} \frac{1}{\sqrt{x} \left(\frac{1}{\sqrt{x}} + 1\right)} \mathrm{d}x.$$

Exercice 82. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{\sinh\left(x^{\frac{1}{9}}\right)}{x^5} \mathrm{d}x.$$

Exercice 83. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{x^2}{\left(x-1\right)^2} \mathrm{d}x.$$

Exercice 84. Étudier la nature de l'intégrale:

$$\int_{1}^{+\infty} e^{\left(-\ln(x)^{3}\right)} \mathrm{d}x.$$

Exercice 85. Étudier la nature de l'intégrale:

$$\int_{\frac{1}{2}}^{1} \frac{\sqrt{x}}{\sqrt{|\ln(x)|}} \mathrm{d}x.$$

Exercice 86. Étudier la nature de l'intégrale:

$$\int_0^{+\infty} \frac{\ln(x)^4}{\sqrt{x}} \mathrm{d}x.$$

Exercice 87. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{x^{\frac{350}{13}} (-x+1)^{\frac{4}{9}}}{\left|\ln(x)\right|^{\frac{5}{19}}} \mathrm{d}x.$$

Exercice 88. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

$$x\mapsto 8\,x\ln\left(\frac{1}{x}+1\right)+\frac{3}{x}+\arctan\left(\frac{1}{x}\right)-8\,\cosh\left(\frac{3}{x}\right).$$

Exercice 89. Étudier la nature de l'intégrale:

$$\int_0^{+\infty} \frac{x^{\frac{1}{3}}}{x^{\frac{10}{3}} + 1} \mathrm{d}x.$$

Exercice 90. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{e^{\left(x^{\frac{2}{3}}\right)} - 1}{x^{\frac{1}{3}}} \mathrm{d}x.$$

Exercice 91. Étudier la nature de l'intégrale:

$$\int_0^1 \frac{x}{(x-1)^{16} |\ln(x)|^{\frac{2}{3}}} dx.$$

$$\rightarrow$$
 page 40

$$\rightarrow$$
 page 40

$$\rightarrow$$
 page 41

$$\rightarrow$$
 page 41

$$\rightarrow$$
 page 42

$$\rightarrow$$
 page 42

$$\rightarrow$$
 page 42

Exercice 92. Étudier l'intégrabilité au voisinage de $+\infty$ de la fonction :

$$\rightarrow$$
 page 43

$$x \mapsto 2x \sin\left(\frac{1}{x}\right) + \frac{1}{x} - \frac{1}{3}\arctan\left(\frac{3}{x}\right) - 2\cos\left(\frac{1}{x}\right).$$

Exercice 93. Étudier la nature de l'intégrale:

$$\rightarrow$$
 page 43

$$\int_0^1 \frac{\sinh\left(3\,x^{\frac{1}{3}}\right)}{x^3} \mathrm{d}x.$$

Exercice 94. Étudier la nature de l'intégrale:

$$\rightarrow$$
 page 43

$$\int_0^{+\infty} \frac{x^2}{x^{\frac{404}{9}} + 1} \mathrm{d}x.$$

Exercice 95. Étudier la nature de l'intégrale:

$$\rightarrow$$
 page 44

$$\int_0^2 x \ln\left(x\right) \mathrm{d}x.$$

Exercice 96. Étudier la nature de l'intégrale:

$$\rightarrow$$
 page 44

$$\int_0^1 \frac{\cosh\left(51\,x^{\frac{1}{68}}\right) - \cosh\left(5\,x^{\frac{1}{68}}\right)}{x} \mathrm{d}x.$$

Exercice 97. Étudier la nature de l'intégrale:

$$\rightarrow$$
 page 44

$$\int_{2}^{+\infty} \frac{\ln(x)^{2}}{x} \mathrm{d}x.$$

Exercice 98. Étudier la nature de l'intégrale:

$$\rightarrow$$
 page 45

$$\int_{1}^{+\infty} \frac{1}{x \ln(x)} \mathrm{d}x.$$

Exercice 99. Étudier la nature de l'intégrale:

$$\rightarrow$$
 page 45

$$\int_0^1 -(x-1)\ln(x)\,\mathrm{d}x.$$

Exercice 100. Étudier l'intégrabilité au voisinage de 0 de la fonction :

$$\rightarrow$$
 page 45

$$x \mapsto \frac{1}{\cosh\left(-\frac{3}{2}\sin\left(\frac{1}{4}x\right)\right) - 1} - \frac{128}{9x^2}.$$

Corrigé 1. L'application $x \mapsto -\frac{1}{2}x \sinh\left(\frac{2}{x}\right) - \frac{13}{4x} + \frac{13}{4}\arctan\left(\frac{1}{x}\right) + \cos\left(\frac{2}{x}\right)$ est continue sur $]0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

← page 1

On a:

$$\begin{split} &-\frac{13}{4\,x}-\frac{1}{2}\,x\sinh\left(\frac{2}{x}\right)+\frac{13}{4}\,\arctan\left(\frac{1}{x}\right)+\cos\left(\frac{2}{x}\right)\\ &=-\frac{13}{4\,x}-\left(1+\frac{2}{3\,x^2}+\mathop{o}\limits_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)+\frac{13}{4}\left(\frac{1}{x}+\mathop{o}\limits_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)+\left(1-\frac{2}{x^2}+\mathop{o}\limits_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)\\ &=-\frac{8}{3\,x^2}+\mathop{o}\limits_{x\to+\infty}\left(\frac{1}{x^2}\right)\mathop{\sim}\limits_{x\to0}-\frac{8}{3\,x^2}. \end{split}$$

Or la fonction de Riemann $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives (qu'on peut utiliser ici à condition de se ramener à la fonction opposée), la fonction $x \mapsto -\frac{1}{2} x \sinh\left(\frac{2}{x}\right) - \frac{13}{4x} + \frac{13}{4} \arctan\left(\frac{1}{x}\right) + \cos\left(\frac{2}{x}\right)$ est intégrable au voisinage de $+\infty$: d'où le résultat.

Corrigé 2. L'application $x \mapsto -\frac{1}{(x-1)\ln(x)^{128}}$ est continue sur]0,1[. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et 1.

 \leftarrow page 1

 $\begin{array}{l} \textit{Au voisinage de 1. On a:} -\frac{1}{(x-1)\ln{(x)^{128}}} \underset{x \to 1}{\sim} -\frac{1}{(x-1)^{129}} > 0. \text{ Or l'intégrale de Riemann} \\ \int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{-(x-1)^{129}} \text{ est d'exposant } 129 \geqslant 1, \text{ donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale} \int_{\frac{1}{2}}^{1} -\frac{1}{(x-1)\ln{(x)^{128}}} \mathrm{d}x \text{ diverge également.} \\ \text{Par conséquent l'intégrale} \int_{0}^{1} \frac{1}{\ln{(x)^{128}}} \mathrm{d}x \text{ diverge aussi, et } \int_{0}^{1} -\frac{1}{(x-1)\ln{(x)^{128}}} \mathrm{d}x \text{ également.} \end{array}$

Corrigé 3. L'application $x\mapsto \frac{\ln{(x)^3}}{x^{\frac{1}{9}}}$ est continue sur]0,2]. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0. Notez que pour $t\leqslant 1$, il peut être préférable d'étudier l'intégrabilité de l'application opposée $x\mapsto -\frac{\ln{(x)^3}}{x^{\frac{1}{9}}}$, afin de se ramener à une intégrale de fonction positive et raisonner par comparaison (en effet le logarithme est négatif au voisinage de 0, donc son opposé est positif).

 \leftarrow page 1

Au voisinage de 0. Utilisons la méthode « $x^{\alpha}f(x)$ » : soit $\alpha \in \mathbb{R}$. On a, au voisinage de 0:

$$x^{\alpha} \cdot \left(-\frac{\ln\left(x\right)^{3}}{x^{\frac{1}{9}}}\right) = -x^{\alpha - \frac{1}{9}} \cdot \ln\left(x\right)^{3} \xrightarrow[x \to 0]{} \left\{ \begin{array}{cc} +\infty & \text{si } \alpha - \frac{1}{9} \leqslant 0, \\ 0 & \text{si } \alpha - \frac{1}{9} > 0, \end{array} \right.$$

d'après le théorème des croissances comparées (pour le cas $\alpha - \frac{1}{9} > 0$). Par conséquent, pour tout $\alpha \in \mathbb{R}$ tel que $\alpha > \frac{1}{9}$, on a:

$$-\frac{\ln\left(x\right)^{3}}{x^{\frac{1}{9}}} = \mathop{o}_{x\to 0}\left(\frac{1}{x^{\alpha}}\right).$$

Choisissons $\alpha \in \mathbb{R}$ de sorte que $\alpha > \frac{1}{9}$ et $\alpha < 1$, par exemple: $\alpha = \frac{5}{9}$ (la moyenne de 1 et de $\frac{1}{9}$). Alors d'après ce qui précède, on a: $-\frac{\ln(x)^3}{x^{\frac{1}{9}}} = o_{x\to 0}\left(\frac{1}{x^{\frac{5}{9}}}\right)$ parce que $\frac{5}{9} > \frac{1}{9}$, or l'intégrale de

Riemann $\int_0^2 \frac{dx}{x^{\frac{5}{2}}}$ est d'exposant $\frac{5}{9} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^2 -\frac{\ln(x)^3}{x^{\frac{1}{6}}} dx$ converge également.

En conclusion, l'intégrale $\int_0^2 \frac{\ln(x)^3}{x^{\frac{1}{2}}} dx$ converge.

Corrigé 4. L'application $x \mapsto -\frac{x - (x^4 + 1)^{\frac{1}{4}}}{x^{\frac{1}{4}}}$ est continue sur $]0, +\infty[$. Étudions les problèmes \leftarrow page 1 éventuels d'intégrabilité au voisinage de 0 et +c

Au voisinage de 0. On a:

$$-\frac{x - (x^4 + 1)^{\frac{1}{4}}}{x^{\frac{1}{4}}} \underset{x \to 0}{\sim} \frac{1}{x^{\frac{1}{4}}} > 0.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{r^{\frac{1}{4}}}$ est d'exposant $\frac{1}{4} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 -\frac{x-(x^4+1)^{\frac{1}{4}}}{x^{\frac{1}{4}}} dx$ converge également.

Au voisinage de $+\infty$. Soit x au voisinage de $+\infty$. On a:

$$-x + \left(x^4 + 1\right)^{\frac{1}{4}} = x\left(\left(\frac{1}{x^4} + 1\right)^{\frac{1}{4}} - 1\right) \underset{x \to +\infty}{\sim} x \cdot \frac{1}{4x^4} = \frac{1}{4x^3},$$

donc:

$$-\frac{x - (x^4 + 1)^{\frac{1}{4}}}{x^{\frac{1}{4}}} \underset{x \to +\infty}{\sim} \frac{1}{4 x^{\frac{13}{4}}} > 0.$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{r^{\frac{13}{4}}}$ est d'exposant $\frac{13}{4} > 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} -\frac{x-(x^4+1)^{\frac{1}{4}}}{x^{\frac{1}{4}}} dx$ converge également.

En conclusion, l'intégrale $\int_0^{+\infty} -\frac{x-(x^4+1)^{\frac{1}{4}}}{x^{\frac{1}{4}}} dx$ converge.

Corrigé 5. L'application $x \mapsto \frac{1}{\cos\left(\frac{4}{5}\arctan\left(x\right)\right) - 1} + \frac{25}{8x^2}$ est continue au voisinage de 0. Déterminons un équivalent de cette fonction en 0, avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\arctan(x) = x - \frac{1}{3}x^3 + \frac{1}{x \to 0}(x^4)$. On compose ce développement limité (où l'on remplace x par -x) avec celui de $x \mapsto \cos(x)$, ce qui est licite puisque $-\frac{4}{5} \arctan(x) \xrightarrow[x \to 0]{} 0$, et on obtient :

$$\cos\left(\frac{4}{5}\arctan(x)\right)$$

$$= 1 - \frac{1}{2}\left(\frac{1}{3}x^3 - x + \underset{x \to 0}{o}\left(x^3\right)\right)^2 + \frac{1}{24}\left(-x + \underset{x \to 0}{o}(x)\right)^4 + \underset{x \to 0}{o}\left(x^4\right)$$

$$= 1 - \frac{8}{25}x^2 + \frac{144}{625}x^4 + \underset{x \to 0}{o}\left(x^4\right).$$

On en tire d'une part : $\cos\left(\frac{4}{5}\arctan\left(x\right)\right) - 1 \sim -\frac{8}{x \to 0^+} - \frac{8}{25}x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$\frac{1}{\cos\left(\frac{4}{5}\arctan(x)\right) - 1} + \frac{25}{8x^2} = \frac{8x^2 + 25\left(-\frac{8}{25}x^2 + \frac{144}{625}x^4 + o_0(x^4)\right)}{8x^2\left(\cos\left(\frac{4}{5}\arctan(x)\right) - 1\right)}$$

$$= \frac{\frac{144}{25}x^4 + o_0(x^4)}{8x^2\left(\cos\left(\frac{4}{5}\arctan(x)\right) - 1\right)}$$

$$\sim \frac{\frac{144}{625}x^4}{-\frac{64}{25}x^4} = -\frac{9}{4}.$$

On en déduit :

$$\lim_{x \to 0^+} \left(\frac{1}{\cos\left(\frac{4}{5}\arctan(x)\right) - 1} + \frac{25}{8x^2} \right) = -\frac{9}{4}.$$

L'application $x \mapsto \frac{1}{\cos\left(\frac{4}{5}\arctan\left(x\right)\right)-1} + \frac{25}{8x^2}$ se prolonge donc par continuité en 0: elle est intégrable à son voisinage. D'où le résultat.

Corrigé 6. L'application $x \mapsto \frac{x^{\frac{1}{25}}}{\sqrt{-x+1}|\ln(x)|^{\frac{1}{26}}}$ est continue sur]0,1[. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et 1. Notez que pour tout $x \le 1$, on a : $|\ln(x)| = -\ln(x)$. Cela peut vous éviter de raisonner avec des valeurs absolues (et explique les éventuels signes moins dans le raisonnement ci-dessous, si raisonnement pour $t \le 1$ il y a).

Au voisinage de 0. On a: $\frac{x^{\frac{1}{25}}}{\sqrt{-x+1}|\ln(x)|^{\frac{1}{26}}} \sim \frac{x^{\frac{1}{25}}}{(-\ln(x))^{\frac{1}{26}}} > 0$. On a: $\lim_{x\to 0} \frac{x^{\frac{1}{25}}}{\ln(x)^{\frac{1}{26}}} = 0$. On

peut donc prolonger l'application $x\mapsto \frac{x^{\frac{1}{25}}}{\ln{(x)^{\frac{1}{26}}}}$ par continuité en 0 (en posant que sa valeur y est nulle). Elle se prolonge donc en une application continue sur le SEGMENT $[0,\frac{1}{2}]$: on en déduit que l'intégrale $\int_0^{\frac{1}{2}} \frac{x^{\frac{1}{25}}}{\ln{(x)^{\frac{1}{26}}}} \mathrm{d}x$ converge. Par comparaison, l'intégrale $\int_0^{\frac{1}{2}} \frac{x^{\frac{1}{25}}}{\sqrt{-x+1}|\ln{(x)}|^{\frac{1}{26}}} \mathrm{d}x$ converge également.

Au voisinage de 1. On a: $\frac{x^{\frac{1}{25}}}{\sqrt{-x+1}|\ln(x)|^{\frac{1}{26}}} \sim \frac{1}{(-x+1)^{\frac{7}{13}}} > 0$. Or l'intégrale de Riemann $\int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{(-x+1)^{\frac{7}{13}}}$ est d'exposant $\frac{7}{13} < 1$, donc elle converge. D'après le théorème de comparaison

des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{x^{\frac{1}{25}}}{\sqrt{-x+1}|\ln{(x)}|^{\frac{1}{26}}} dx$ converge également. Par

comparaison, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{x^{\frac{1}{25}}}{\sqrt{-x+1}|\ln{(x)}|^{\frac{1}{26}}} dx$ converge également.

En conclusion, l'intégrale $\int_0^1 \frac{x^{\frac{1}{25}}}{\sqrt{-x+1}|\ln{(x)}|^{\frac{1}{26}}} dx$ converge.

Corrigé 7. L'application $x \mapsto -\frac{1}{3}x \arctan\left(\frac{2}{x}\right) + \frac{1}{3}x \ln\left(\frac{2}{x} + 1\right) + \frac{6}{x} - \frac{8}{3}\ln\left(\frac{2}{x} + 1\right)$ est continue sur $]0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

On a:

$$\begin{split} &\frac{6}{x} - \frac{1}{3} x \arctan\left(\frac{2}{x}\right) + \frac{1}{3} x \ln\left(\frac{2}{x} + 1\right) - \frac{8}{3} \ln\left(\frac{2}{x} + 1\right) \\ &= \frac{6}{x} - \frac{2}{3} \left(1 - \frac{4}{3 x^2} + \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right)\right) + \frac{2}{3} \left(1 - \frac{1}{x} + \frac{4}{3 x^2} + \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right)\right) - \frac{8}{3} \left(\frac{2}{x} - \frac{2}{x^2} + \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right)\right) \\ &= \frac{64}{9 x^2} + \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right) \mathop{\sim}_{x \to 0} \frac{64}{9 x^2}. \end{split}$$

Or la fonction de Riemann $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives, la fonction $x \mapsto -\frac{1}{3}x \arctan\left(\frac{2}{x}\right) +$ $\frac{1}{3}x\ln\left(\frac{2}{x}+1\right)+\frac{6}{x}-\frac{8}{3}\ln\left(\frac{2}{x}+1\right)$ est intégrable au voisinage de $+\infty$: d'où le résultat.

Corrigé 8. L'application $x\mapsto \frac{1}{\cos\left(\frac{5}{3}\arctan\left(4\,x\right)\right)-1}+\frac{9}{200\,x^2}$ est continue au voisinage de 0. \leftarrow page 1 Déterminons un équivalent de cette fonction en 0, avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\arctan\left(x\right)=x-\frac{1}{3}\,x^3+\mathop{o}\limits_{x\to 0}\left(x^4\right)$. On compose ce développement limité (où l'on remplace x par $4\,x$) avec celui de $x\mapsto\cos\left(x\right)$, ce qui est licite puisque $-\frac{5}{3}\arctan\left(4\,x\right)\underset{x\to 0}{\longrightarrow}0$, et on obtient:

$$\begin{aligned} &\cos\left(\frac{5}{3}\arctan\left(4\,x\right)\right) \\ &= 1 - \frac{1}{2}\left(-\frac{64}{3}\,x^3 + 4\,x + \mathop{o}_{x\to 0}\left(x^3\right)\right)^2 + \frac{1}{24}\left(4\,x + \mathop{o}_{x\to 0}\left(x\right)\right)^4 + \mathop{o}_{x\to 0}\left(x^4\right) \\ &= 1 - \frac{200}{9}\,x^2 + \frac{77600}{243}\,x^4 + \mathop{o}_{x\to 0}\left(x^4\right). \end{aligned}$$

On en tire d'une part : $\cos\left(\frac{5}{3}\arctan\left(4\,x\right)\right) - 1 \underset{x\to 0^+}{\sim} -\frac{200}{9}\,x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part:

$$\frac{1}{\cos\left(\frac{5}{3}\arctan\left(4\,x\right)\right) - 1} + \frac{9}{200\,x^{2}} = \frac{200\,x^{2} + 9\left(-\frac{200}{9}\,x^{2} + \frac{77600}{243}\,x^{4} + \frac{o}{x \to 0}\left(x^{4}\right)\right)}{200\,x^{2}\left(\cos\left(\frac{5}{3}\arctan\left(4\,x\right)\right) - 1\right)}$$

$$= \frac{\frac{77600}{27}\,x^{4} + \frac{o}{x \to 0}\left(x^{4}\right)}{200\,x^{2}\left(\cos\left(\frac{5}{3}\arctan\left(4\,x\right)\right) - 1\right)}$$

$$\underset{x \to 0^{+}}{\sim} \frac{\frac{77600}{243}\,x^{4}}{-\frac{40000}{9}\,x^{4}} = -\frac{97}{150}.$$

On en déduit:

$$\lim_{x \to 0^+} \left(\frac{1}{\cos\left(\frac{5}{3}\arctan(4x)\right) - 1} + \frac{9}{200x^2} \right) = -\frac{97}{150}.$$

L'application $x \mapsto \frac{1}{\cos\left(\frac{5}{3}\arctan\left(4\,x\right)\right)-1} + \frac{9}{200\,x^2}$ se prolonge donc par continuité en 0 : elle est intégrable à son voisinage. D'où le résultat.

Corrigé 9. L'application $x \mapsto \frac{\sin(x)}{x^{\frac{3}{2}}}$ est continue sur $[1, +\infty[$. Étudions les problèmes éventuels \leftarrow page 2 d'intégrabilité au voisinage de $+\infty$

Au voisinage de $+\infty$. Pour tout x au voisinage de $+\infty$, on a:

$$\left| \frac{\sin(x)}{x^{\frac{3}{2}}} \right| \leqslant \frac{1}{x^{\frac{3}{2}}},$$

or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^{\frac{3}{2}}}$ est d'exposant $\frac{3}{2} > 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} \frac{\sin{(x)}}{x^{\frac{3}{2}}} \mathrm{d}x$ converge absolument, donc converge.

En conclusion, l'intégrale $\int_1^{+\infty} \frac{\sin(x)}{x^{\frac{3}{2}}} dx$ converge.

Corrigé 10. L'application $x \mapsto e^{\left(-\frac{1}{|\ln(x)|}\right)}$ est continue sur]0,1[. Étudions les problèmes éventuels \leftarrow page 2 d'intégrabilité au voisinage de 0 et 1.

Au voisinage de 1. Par composition de limites, on a : $\lim_{x\to 1} e^{\left(-\frac{1}{|\ln(x)|}\right)} = 0$, donc $x\mapsto e^{\left(-\frac{1}{|\ln(x)|}\right)}$ se prolonge par continuité en 1 et il n'y a pas de problème d'intégrabilité au voisinage de ce point.

Au voisinage de 0. Par composition de limites, on a : $\lim_{x\to 0} e^{\left(-\frac{1}{|\ln(x)|}\right)} = 1$, donc $x\mapsto e^{\left(-\frac{1}{|\ln(x)|}\right)}$ se prolonge par continuité en 0 et il n'y a pas de problème d'intégrabilité au voisinage de ce point.

En conclusion, l'intégrale $\int_0^1 e^{\left(-\frac{1}{|\ln(x)|}\right)} dx$ converge.

Corrigé 11. L'application $x\mapsto \frac{1}{x\left(\frac{1}{x^{48}}+1\right)}$ est continue sur $[1,+\infty[$. Étudions les problèmes \leftarrow paréventuels d'intégrabilité au voisinage de $+\infty$.

 $\begin{array}{l} \textit{Au voisinage de} \ +\infty. \ \text{On a:} \ \frac{1}{x\left(\frac{1}{x^{48}}+1\right)} \underset{x \to +\infty}{\sim} \frac{1}{x} > 0, \ \text{or l'intégrale de Riemann} \ \int_{1}^{+\infty} \frac{\mathrm{d}x}{x} \\ \text{est d'exposant } 1 \leqslant 1, \ \text{donc elle diverge. On en déduit que l'intégrale} \ \int_{1}^{+\infty} \frac{1}{x\left(\frac{1}{x^{48}}+1\right)} \mathrm{d}x \ \text{diverge} \\ \text{également.} \end{array}$

Corrigé 12. L'application $x \mapsto \frac{1}{(x+1)x^{\frac{33}{2}}}$ est continue sur $[1, +\infty[$. Étudions les problèmes \leftarrow page 2 éventuels d'intégrabilité au voisinage de $+\infty$.

 $\begin{array}{l} \textit{Au voisinage de} + \infty. \text{ On a: } \frac{1}{(x+1)x^{\frac{33}{2}}} \underset{x \to +\infty}{\sim} \frac{1}{x^{\frac{35}{2}}} > 0, \text{ or l'intégrale de Riemann } \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{35}{2}}} \text{ est} \\ \text{d'exposant } \frac{35}{2} > 1, \text{ donc elle converge. Par comparaison, l'intégrale } \int_{1}^{+\infty} \frac{1}{(x+1)x^{\frac{33}{2}}} \mathrm{d}x \text{ converge} \\ \text{également.} \end{array}$

En conclusion, l'intégrale $\int_1^{+\infty} \frac{1}{(x+1)x^{\frac{33}{2}}} dx$ converge.

Corrigé 13. L'application $x \mapsto e^{\left(-\ln(x)^2\right)}$ est continue sur $[1, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$.

Au voisinage de $+\infty$. Soit x au voisinage de $+\infty$. On a:

$$x^{2}e^{\left(-\ln(x)^{2}\right)} = e^{-\ln(x)^{2} + 2\ln(x)} = e^{-\ln(x)^{2}\left(-\frac{2}{\ln(x)} + 1\right)} \xrightarrow[x \to +\infty]{} 0,$$

donc: $e^{\left(-\ln(x)^2\right)} = \sum_{x \to +\infty}^{\infty} \left(\frac{1}{x^2}\right)$. Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ converge, donc par le théorème de comparaison des intégrales de fonctions positives il en est de même de l'intégrale $\int_1^{+\infty} e^{\left(-\ln(x)^2\right)} \mathrm{d}x$.

En conclusion, l'intégrale $\int_1^{+\infty} e^{\left(-\ln(x)^2\right)} dx$ converge.

Corrigé 14. L'application $x \mapsto \frac{\sin\left(15\,x^{\frac{1}{4}}\right) - \sin\left(x^{\frac{1}{4}}\right)}{x^6}$ est continue sur $]0, +\infty[$. Étudions les \leftarrow page 2 problèmes éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage de 0. Un développement limité au voisinage de 0 nous permet d'obtenir :

$$\frac{\sin\left(15\,x^{\frac{1}{4}}\right) - \sin\left(x^{\frac{1}{4}}\right)}{x^{6}} = \frac{\left(15\,x^{\frac{1}{4}} + \underset{x \to 0}{O}\left(x^{\frac{3}{4}}\right)\right) - \left(x^{\frac{1}{4}} + \underset{x \to 0}{O}\left(x^{\frac{3}{4}}\right)\right)}{x^{6}}$$

$$= \frac{14\,x^{\frac{1}{4}} + \underset{x \to 0}{O}\left(x^{\frac{3}{4}}\right)}{x^{6}}$$

$$\stackrel{\sim}{\underset{x \to 0}{\sim}} \frac{14}{x^{\frac{23}{4}}}.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x^{\frac{23}{4}}}$ est d'exposant $\frac{23}{4} \geqslant 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{\sin\left(15\,x^{\frac{1}{4}}\right) - \sin\left(x^{\frac{1}{4}}\right)}{x^6} \mathrm{d}x$ diverge également.

Par conséquent l'intégrale $\int_0^{+\infty} \frac{\sin\left(15 \, x^{\frac{1}{4}}\right) - \sin\left(x^{\frac{1}{4}}\right)}{x^6} \mathrm{d}x$ diverge également.

Corrigé 15. L'application $x \mapsto \frac{7}{x} + \frac{17}{6} \cos\left(\frac{3}{x}\right) - \frac{1}{2} \cosh\left(\frac{1}{x}\right) - \frac{7}{3} e^{\frac{3}{x}}$ est continue sur $]0, +\infty[$. \leftarrow page 2 Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

On a:

$$\begin{split} &\frac{7}{x} - \frac{1}{2}\cosh\left(\frac{1}{x}\right) - \frac{7}{3}\,e^{\frac{3}{x}} + \frac{17}{6}\cos\left(\frac{3}{x}\right) \\ &= \frac{7}{x} - \frac{1}{2}\left(1 + \frac{1}{2\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) - \frac{7}{3}\left(1 + \frac{3}{x} + \frac{9}{2\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) + \frac{17}{6}\left(1 - \frac{9}{2\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) \\ &= -\frac{47}{2\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right) \mathop{\sim}_{x \to 0} - \frac{47}{2\,x^2}. \end{split}$$

Or la fonction de Riemann $x\mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2>1. Par le théorème de comparaison des intégrales de fonctions positives (qu'on peut utiliser ici à condition de se ramener à la fonction opposée), la fonction $x\mapsto \frac{7}{x}+\frac{17}{6}\cos\left(\frac{3}{x}\right)-\frac{1}{2}\cosh\left(\frac{1}{x}\right)-\frac{7}{3}e^{\frac{3}{x}}$ est intégrable au voisinage de $+\infty$: d'où le résultat.

Corrigé 16. L'application $x \mapsto e^{\left(-\frac{1}{|\ln(x)|}\right)}$ est continue sur]0,1[. Étudions les problèmes éventuels \leftarrow page 2 d'intégrabilité au voisinage de 0 et 1.

Au voisinage de 1. Par composition de limites, on a : $\lim_{x\to 1} e^{\left(-\frac{1}{|\ln(x)|}\right)} = 0$, donc $x\mapsto e^{\left(-\frac{1}{|\ln(x)|}\right)}$ se prolonge par continuité en 1 et il n'y a pas de problème d'intégrabilité au voisinage de ce point.

Au voisinage de 0. Par composition de limites, on a : $\lim_{x\to 0} e^{\left(-\frac{1}{|\ln(x)|}\right)} = 1$, donc $x\mapsto e^{\left(-\frac{1}{|\ln(x)|}\right)}$ se prolonge par continuité en 0 et il n'y a pas de problème d'intégrabilité au voisinage de ce point.

En conclusion, l'intégrale $\int_0^1 e^{\left(-\frac{1}{|\ln(x)|}\right)} dx$ converge.

Corrigé 17. L'application $x \mapsto \frac{1}{x\left(\frac{1}{x}+1\right)}$ est continue sur $[1,+\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$

Au voisinage de $+\infty$. On a: $\frac{1}{x\left(\frac{1}{x}+1\right)} \sim \frac{1}{x} > 0$, or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x}$ est d'exposant $1 \le 1$, donc elle diverge. On en déduit que l'intégrale $\int_1^{+\infty} \frac{1}{x\left(\frac{1}{x}+1\right)} \mathrm{d}x$ diverge également.

Corrigé 18. L'application $x \mapsto -\frac{(x-1)x^{\frac{1}{35}}}{\ln(x)}$ est continue sur]0,1[. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et 1. Notez que pour $t \leq 1$, il peut être préférable d'étudier l'intégrabilité de l'application opposée $x \mapsto -\frac{x^{\frac{1}{35}}}{\ln{(x)}}$, afin de se ramener à une intégrale de fonction positive et raisonner par comparaison (en effet le logarithme est négatif au voisinage de 0, donc son opposé est positif).

Au voisinage de 0. On a: $\frac{(x-1)x^{\frac{1}{35}}}{\ln(x)} \sim -\frac{x^{\frac{1}{35}}}{\ln(x)} > 0$. On a: $\lim_{x\to 0} \frac{x^{\frac{1}{35}}}{\ln(x)} = 0$. On peut donc prolonger l'application $x \mapsto \frac{x^{\frac{1}{35}}}{\ln(x)}$ par continuité en 0 (en posant que sa valeur y est nulle). Elle se prolonge donc en une application continue sur le SEGMENT $[0,\frac{1}{2}]$: on en déduit que l'intégrale $\int_0^{\frac{1}{2}} \frac{x^{\frac{1}{35}}}{\ln(x)} \mathrm{d}x \text{ converge. Par comparaison, l'intégrale } \int_0^{\frac{1}{2}} \frac{(x-1)x^{\frac{1}{35}}}{\ln(x)} \mathrm{d}x \text{ converge également.}$

Au voisinage de 1. On a : $\frac{(x-1)x^{\frac{1}{35}}}{\ln{(x)}} \sim 1 > 0$. Or l'intégrale $\int_{\frac{1}{2}}^{1} dx$ converge en tant qu'intégrale de fonction continue sur un segment. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}}^{1} -\frac{(x-1)x^{\frac{1}{35}}}{\ln(x)} dx$ converge également. Par comparaison, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{(x-1)x^{\frac{3}{35}}}{\ln(x)} dx \text{ converge également.}$

En conclusion, l'intégrale $\int_0^1 -\frac{(x-1)x^{\frac{2}{35}}}{\ln(x)} dx$ converge.

Corrigé 19. L'application $x \mapsto \frac{\cos(9x^6) - \cos(x^6)}{\sqrt{x}}$ est continue sur $[1, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de +c

Au voisinage de $+\infty$. Nous allons intégrer par parties l'intégrale suivante:

$$\int_{1}^{+\infty} \frac{\cos(9x^{6}) - \cos(x^{6})}{\sqrt{x}} dx = \frac{1}{6} \int_{1}^{+\infty} \frac{6x^{5}\cos(9x^{6}) - 6x^{5}\cos(x^{6})}{x^{\frac{11}{2}}} dx,$$

en dérivant $x \mapsto \frac{1}{x^{\frac{11}{2}}}$ et en intégrant $x \mapsto 6x^5 \cos(9x^6) - 6x^5 \cos(x^6)$. On vérifie l'existence du

terme entre crochets:

$$\frac{\sin\left(9\,x^6\right) - 9\,\sin\left(x^6\right)}{9\,x^{\frac{11}{2}}} = O\left(\frac{1}{x^{\frac{11}{2}}}\right) \xrightarrow[x \to +\infty]{} 0,$$

donc la formule de l'intégration par parties nous assure que les intégrales $\int_{1}^{+\infty} \frac{\cos\left(9\,x^{6}\right) - \cos\left(x^{6}\right)}{\sqrt{x}} \mathrm{d}x \text{ et } \int_{1}^{+\infty} \frac{\sin\left(9\,x^{6}\right) - 9\,\sin\left(x^{6}\right)}{9\,x^{\frac{13}{2}}} \mathrm{d}x \text{ sont de même nature. Or :}$

$$\forall x \geqslant 1, \quad \left| \frac{\sin(9x^6) - 9\sin(x^6)}{9x^{\frac{13}{2}}} \right| \leqslant \frac{10}{9} \frac{1}{x^{\frac{13}{2}}},$$

et l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{13}{2}}}$ est d'exposant $\frac{13}{2} > 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} \frac{\sin{(9\,x^6)} - 9\,\sin{(x^6)}}{9\,x^{\frac{13}{2}}} \mathrm{d}x$ converge absolument, donc converge, et donc $\int_{1}^{+\infty} \frac{\cos{(9\,x^6)} - \cos{(x^6)}}{\sqrt{x}} \mathrm{d}x$ converge également.

En conclusion, l'intégrale $\int_1^{+\infty} \frac{\cos{(9\,x^6)} - \cos{(x^6)}}{\sqrt{x}} dx$ converge.

Corrigé 20. L'application $x \mapsto x^2 \cos(2x) e^{\left(-8x^2\right)}$ est continue sur $[1, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [1, +\infty[$, on a:

$$\left| x^2 \cos(2x) e^{\left(-8x^2\right)} \right| \leqslant x^2 e^{\left(-8x^2\right)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparées. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{\left(-8\,x^2\right)} = x^4 e^{\left(-8\,x^2\right)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$x^{2}e^{\left(-8x^{2}\right)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^{2}}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{\left(-8x^2\right)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 \cos\left(2\,x\right) e^{\left(-8\,x^2\right)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

Corrigé 21. L'application $x \mapsto -\frac{1}{9}x \sinh\left(\frac{3}{x}\right) - \frac{1}{x} + \arctan\left(\frac{1}{x}\right) + \frac{1}{3}\cosh\left(\frac{2}{x}\right)$ est continue sur $]0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

On a:

$$\begin{split} &-\frac{1}{x}-\frac{1}{9}x\sinh\left(\frac{3}{x}\right)+\arctan\left(\frac{1}{x}\right)+\frac{1}{3}\cosh\left(\frac{2}{x}\right)\\ &=-\frac{1}{x}-\frac{1}{3}\left(1+\frac{3}{2\,x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)+\left(\frac{1}{x}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)+\frac{1}{3}\left(1+\frac{2}{x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)\\ &=\frac{1}{6\,x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\mathop{\sim}_{x\to0}\frac{1}{6\,x^2}. \end{split}$$

Or la fonction de Riemann $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives, la fonction $x \mapsto -\frac{1}{9}x \sinh\left(\frac{3}{r}\right) - \frac{1}{r} +$ $\arctan\left(\frac{1}{r}\right) + \frac{1}{3}\cosh\left(\frac{2}{r}\right)$ est intégrable au voisinage de $+\infty$: d'où le résultat.

Corrigé 22. L'application $x \mapsto \frac{1}{(x+1)\sqrt{x}}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 3 d'intégrabilité au voisinage de 0

Au voisinage de 0. On a: $\frac{1}{(x+1)\sqrt{x}} \sim \frac{1}{\sqrt{x}} > 0$, or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$ est d'exposant $\frac{1}{2} < 1$, donc elle converge. Par comparaison, l'intégrale $\int_0^1 \frac{1}{(x+1)\sqrt{x}} dx$ converge également.

En conclusion, l'intégrale $\int_0^1 \frac{1}{(x+1)\sqrt{x}} dx$ converge.

Corrigé 23. L'application $x \mapsto \frac{3}{5}x\ln\left(\frac{1}{x}+1\right) - \frac{1}{2x} - \frac{3}{5}\cos\left(\frac{1}{x}\right) + \frac{2}{5}\sin\left(\frac{2}{x}\right)$ est continue sur $]0,+\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

$$\begin{split} &-\frac{1}{2\,x} + \frac{2}{5}\,\sin\left(\frac{2}{x}\right) + \frac{3}{5}\,x\ln\left(\frac{1}{x} + 1\right) - \frac{3}{5}\,\cos\left(\frac{1}{x}\right) \\ &= -\frac{1}{2\,x} + \frac{2}{5}\left(\frac{2}{x} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) + \frac{3}{5}\left(1 - \frac{1}{2\,x} + \frac{1}{3\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) - \frac{3}{5}\left(1 - \frac{1}{2\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) \\ &= \frac{1}{2\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right) \mathop{\sim}_{x \to 0} \frac{1}{2\,x^2}. \end{split}$$

Or la fonction de Riemann $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives, la fonction $x \mapsto \frac{3}{5}x\ln\left(\frac{1}{x}+1\right) - \frac{1}{2x}$ $\frac{3}{5}\cos\left(\frac{1}{r}\right) + \frac{2}{5}\sin\left(\frac{2}{r}\right)$ est intégrable au voisinage de $+\infty$: d'où le résultat.

Corrigé 24. L'application $x \mapsto xe^{\left(-\frac{1}{2}x^2\right)}\sin\left(\frac{1}{2}x\right)$ est continue sur $]1,+\infty[$. Nous allons montrer que son intégrale diverge en notant que si le contraire était vrai, alors la suite $\left(\int_{\frac{2}{3}\pi+4\pi n}^{\frac{4}{3}\pi+4\pi n} x e^{\left(-\frac{1}{2x^2}\right)} \sin\left(\frac{1}{2}x\right) dx\right)_{n>1} \text{ convergerait vers 0. Or pour tout } n \in \mathbb{N} \setminus \{0\} \text{ on a:}$

 \leftarrow page 3

$$\int_{\frac{2}{9}\pi+4\pi n}^{\frac{4}{3}\pi+4\pi n} x e^{\left(-\frac{1}{2x^2}\right)} \sin\left(\frac{1}{2}x\right) dx \geqslant \frac{2}{9}\sqrt{3}\pi(\pi+6\pi n) e^{\left(-\frac{9}{8(\pi+6\pi n)^2}\right)},$$

et ce minorant tend vers $+\infty > 0$ quand $n \to +\infty$: c'est absurde. Donc l'intégrale $\int_{1}^{+\infty} x e^{\left(-\frac{1}{2x^2}\right)} \sin\left(\frac{1}{2}x\right) dx \text{ diverge.}$

Corrigé 25. L'application $x \mapsto \frac{(x+1)^{\frac{5}{494}} - x^{\frac{5}{494}}}{x^7}$ est continue sur]0,1]. Étudions les problèmes \leftarrow page 3 éventuels d'intégrabilité au voisinage de 0.

Au voisinage de 0. On a:

$$\frac{(x+1)^{\frac{5}{494}} - x^{\frac{5}{494}}}{x^7} \sim \frac{1}{x^7} > 0.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x^7}$ est d'exposant $7 \ge 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{(x+1)^{\frac{5}{494}} - x^{\frac{5}{494}}}{x^7} \mathrm{d}x$ diverge également.

Corrigé 26. L'application $x \mapsto \frac{\cos(2x) - \cos(x)}{x^2}$ est continue sur $]0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage de 0. Un développement limité au voisinage de 0 nous permet d'obtenir :

$$\frac{\cos(2x) - \cos(x)}{x^2} = \frac{\left(1 + -2x^2 + O(x^4)\right) - \left(1 + -\frac{1}{2}x^2 + O(x^4)\right)}{x^2}$$
$$= \frac{-\frac{3}{2}x^2 + O(x^4)}{x^2}$$
$$= \frac{-\frac{3}{2}x^2 + O(x^4)}{x^2}$$
$$\approx \frac{-\frac{3}{2}}{x^2}.$$

On en déduit : $\lim_{x\to 0} \frac{\cos{(2\,x)} - \cos{(x)}}{x^2} = -\frac{3}{2}$, donc $x\mapsto \frac{\cos{(2\,x)} - \cos{(x)}}{x^2}$ se prolonge par continuité en 0. Il n'y a pas de problème d'intégrabilité au voisinage de ce point.

Au voisinage de $+\infty$. Pour tout x au voisinage de $+\infty$, on a:

$$\left| \frac{\cos(2x) - \cos(x)}{x^2} \right| \leqslant \frac{\left| \cos(2x) \right| + \left| \cos(x) \right|}{x^2} \leqslant \frac{2}{x^2},$$

or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} \frac{\cos{(2\,x)} - \cos{(x)}}{x^2} \mathrm{d}x$ converge absolument, donc converge.

En conclusion, l'intégrale $\int_0^{+\infty} \frac{\cos(2x) - \cos(x)}{x^2} dx$ converge.

Corrigé 27. L'application $x \mapsto -\frac{9}{16\,x} + \frac{1}{e^{\left(\frac{4}{3}\,\sinh\left(\frac{4}{3}\,x\right)\right)} - 1}$ est continue au voisinage de 0. Déterminons un équivalent de cette fonction en 0, avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sinh\left(x\right) = x + \mathop{o}\limits_{x \to 0}(x^2)$. On compose ce développement limité (où l'on remplace x par $\frac{4}{3}\,x$) avec celui de $x \mapsto e^x$, ce qui est licite puisque $\frac{4}{3}\,\sinh\left(\frac{4}{3}\,x\right) \xrightarrow[x \to 0]{} 0$, et on obtient:

$$\begin{split} & e^{\left(\frac{4}{3}\sinh\left(\frac{4}{3}x\right)\right)} \\ &= 1 + \left(\frac{4}{3}x + \mathop{o}_{x \to 0}\left(x^2\right)\right) + \frac{1}{2}\left(\frac{4}{3}x + \mathop{o}_{x \to 0}\left(x\right)\right)^2 + \mathop{o}_{x \to 0}\left(x^2\right) \\ &= 1 + \frac{16}{9}x + \frac{128}{81}x^2 + \mathop{o}_{x \to 0}\left(x^2\right). \end{split}$$

On en tire d'une part : $e^{\left(\frac{4}{3}\sinh\left(\frac{4}{3}x\right)\right)} - 1 \sim \frac{16}{9} x$ (utile pour la suite, mais insuffisant pour conclure

puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part:

$$-\frac{9}{16x} + \frac{1}{e^{\left(\frac{4}{3}\sinh\left(\frac{4}{3}x\right)\right)} - 1} = \frac{16x - 9\left(\frac{16}{9}x + \frac{128}{81}x^2 + o(x^2)\right)}{16x\left(e^{\left(\frac{4}{3}\sinh\left(\frac{4}{3}x\right)\right)} - 1\right)}$$

$$= \frac{-\frac{128}{9}x^2 + o(x^2)}{16x\left(e^{\left(\frac{4}{3}\sinh\left(\frac{4}{3}x\right)\right)} - 1\right)}$$

$$\sim \frac{-\frac{128}{81}x^2}{\frac{256}{9}x^2} = -\frac{1}{2}.$$

On en déduit:

$$\lim_{x \to 0^+} \left(-\frac{9}{16 x} + \frac{1}{e^{\left(\frac{4}{3} \sinh\left(\frac{4}{3} x\right)\right)} - 1} \right) = -\frac{1}{2}.$$

L'application $x \mapsto -\frac{9}{16x} + \frac{1}{e^{\left(\frac{4}{3}\sinh\left(\frac{4}{3}x\right)\right)} - 1}$ se prolonge donc par continuité en 0: elle est intégrable à son voisinage. D'où le résultat

Corrigé 28. L'application $x \mapsto \frac{\sqrt{x}}{\sqrt{-x+1}}$ est continue sur [0,1[. Étudions les problèmes éventuels \leftarrow page 4 d'intégrabilité au voisinage de 1

Au voisinage de 1. On a : $\frac{\sqrt{x}}{\sqrt{-x+1}} \sim \frac{1}{\sqrt{-x+1}} > 0$. Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{\sqrt{-x+1}}$ est d'exposant $\frac{1}{2} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{\sqrt{x}}{\sqrt{-x+1}} dx$ converge également. Par comparaison, l'intégrale $\int_0^1 \frac{\sqrt{x}}{\sqrt{-x+1}} dx \text{ converge également.}$

En conclusion, l'intégrale $\int_0^1 \frac{\sqrt{x}}{\sqrt{-x+1}} dx$ converge.

Corrigé 29. L'application $x \mapsto \frac{1}{(x+1)x^{\frac{1}{3}}}$ est continue sur $[1,+\infty[$. Étudions les problèmes \leftarrow page 4 éventuels d'intégrabilité au voisinage de $+\infty$.

Au voisinage de $+\infty$. On a: $\frac{1}{(x+1)x^{\frac{1}{3}}} \sim \frac{1}{x^{\frac{4}{3}}} > 0$, or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{4}{3}}}$ est d'exposant $\frac{4}{3} > 1$, donc elle converge. Par comparaison, l'intégrale $\int_{1}^{+\infty} \frac{1}{(x+1)x^{\frac{1}{3}}} dx$ converge également.

En conclusion, l'intégrale $\int_1^{+\infty} \frac{1}{(x+1)x^{\frac{1}{3}}} dx$ converge.

Corrigé 30. L'application $x \mapsto \frac{1}{x^2\left(\frac{1}{\frac{1}{k}}+1\right)}$ est continue sur $]0,+\infty[$. Étudions les problèmes \leftarrow page 4

éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage de 0. On a: $\frac{1}{x^2\left(\frac{1}{x^{\frac{1}{2}}}+1\right)} \sim \frac{1}{x^{\frac{5}{3}}} > 0$, or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x^{\frac{5}{3}}}$ est d'exposant $\frac{5}{3} \geqslant 1$, donc elle diverge

 \leftarrow page 4

Par conséquent l'intégrale $\int_0^1 \frac{1}{x^2 \left(\frac{1}{x^{\frac{1}{3}}} + 1\right)} dx$ diverge aussi, et $\int_0^{+\infty} \frac{1}{x^2 \left(\frac{1}{x^{\frac{1}{3}}} + 1\right)} dx$ également.

Corrigé 31. L'application $x \mapsto \frac{(x+1)^{\frac{1}{3}} - x^{\frac{1}{3}}}{\sqrt{x}}$ est continue sur]0,1]. Étudions les problèmes \leftarrow page 4

Au voisinage de 0. On a:

$$\frac{(x+1)^{\frac{1}{3}} - x^{\frac{1}{3}}}{\sqrt{x}} \sim \frac{1}{\sqrt{x}} > 0.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$ est d'exposant $\frac{1}{2} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{(x+1)^{\frac{1}{3}} - x^{\frac{1}{3}}}{\sqrt{x}} \mathrm{d}x$ converge éga-

lement.

En conclusion, l'intégrale $\int_0^1 \frac{(x+1)^{\frac{1}{3}} - x^{\frac{1}{3}}}{\sqrt{x}} dx$ converge.

Corrigé 32. L'application $x \mapsto \frac{\sinh\left(3x^{\frac{1}{24}}\right) - \sinh\left(x^{\frac{1}{24}}\right)}{x^{\frac{1}{4}}}$ est continue sur $]0, +\infty[$. Étudions les \leftarrow page 4 problèmes éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage $de + \infty$. On montre facilement que l'on a:

$$\frac{\sinh\left(3\,x^{\frac{1}{24}}\right)-\sinh\left(x^{\frac{1}{24}}\right)}{x^{\frac{1}{4}}} \underset{x \to +\infty}{\sim} \frac{e^{\left(3\,x^{\frac{1}{24}}\right)}}{2\,x^{\frac{1}{4}}} \underset{x \to +\infty}{\longrightarrow} +\infty,$$

et il est classique de démontrer qu'il ne peut pas y avoir intégrabilité au voisinage de $+\infty$ en cas de limite infinie.

Par conséquent l'intégrale $\int_0^{+\infty} \frac{\sinh\left(3\,x^{\frac{1}{24}}\right) - \sinh\left(x^{\frac{1}{24}}\right)}{r^{\frac{1}{4}}} \mathrm{d}x \text{ diverge également.}$

Corrigé 33. L'application $x \mapsto \frac{\sinh\left(10\,x^{\frac{10}{3}}\right) - \sinh\left(x^{\frac{10}{3}}\right)}{x^{\frac{17}{21}}}$ est continue sur $[1, +\infty[$. Étudions les \leftarrow page 4 problèmes éventuels d'intégrabilité au voisinage de $+\infty$.

Au voisinage $de +\infty$. On montre facilement que l'on a:

$$\frac{\sinh\left(10\,x^{\frac{10}{3}}\right) - \sinh\left(x^{\frac{10}{3}}\right)}{x^{\frac{17}{21}}} \underset{x \to +\infty}{\sim} \frac{e^{\left(10\,x^{\frac{10}{3}}\right)}}{2\,x^{\frac{17}{21}}} \underset{x \to +\infty}{\longrightarrow} +\infty,$$

et il est classique de démontrer qu'il ne peut pas y avoir intégrabilité au voisinage de $+\infty$ en cas de limite infinie.

Corrigé 34. L'application $x \mapsto x^{\frac{1}{6}}(-x+1)^{\frac{31}{2}}|\ln(x)|^{\frac{1}{19}}$ est continue sur]0,1]. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0. Notez que pour tout $x \le 1$, on a: $|\ln(x)| = -\ln(x)$. Cela peut vous éviter de raisonner avec des valeurs absolues (et explique les éventuels signes moins dans le raisonnement ci-dessous, si raisonnement pour $t \le 1$ il y a).

Au voisinage de 0. On a : $x^{\frac{1}{6}}(-x+1)^{\frac{31}{2}}|\ln(x)|^{\frac{1}{19}} \sim x^{\frac{1}{6}}(-\ln(x))^{\frac{1}{19}} > 0$. On a : $\lim_{x\to 0} x^{\frac{1}{6}}\ln(x)^{\frac{1}{19}} = 0$ d'après le théorème des croissances comparées. On peut donc prolonger l'application $x\mapsto x^{\frac{1}{6}}\ln(x)^{\frac{1}{19}}$ par continuité en 0 (en posant que sa valeur y est nulle). Elle se prolonge donc en

une application continue sur le SEGMENT [0,1]: on en déduit que l'intégrale $\int_0^1 x^{\frac{1}{6}} \ln(x)^{\frac{1}{19}} dx$ converge. Par comparaison, l'intégrale $\int_0^1 x^{\frac{1}{6}} (-x+1)^{\frac{31}{2}} |\ln(x)|^{\frac{1}{19}} dx$ converge également.

En conclusion, l'intégrale $\int_0^1 x^{\frac{1}{6}} (-x+1)^{\frac{31}{2}} |\ln(x)|^{\frac{1}{19}} dx$ converge.

Corrigé 35. L'application $x \mapsto -\frac{x^6 - (x^9 + 1)^{\frac{2}{3}}}{x^{\frac{1}{6}}}$ est continue sur]0,1]. Étudions les problèmes \leftarrow page 4 éventuels d'intégrabilité au voisinage de 0.

Au voisinage de 0. On a:

$$-\frac{x^6 - (x^9 + 1)^{\frac{2}{3}}}{x^{\frac{1}{6}}} \sim \frac{1}{x^{\frac{1}{6}}} > 0.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x^{\frac{1}{6}}}$ est d'exposant $\frac{1}{6} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 -\frac{x^6-(x^9+1)^{\frac{2}{3}}}{x^{\frac{1}{6}}} \mathrm{d}x$ converge également.

En conclusion, l'intégrale $\int_0^1 -\frac{x^6-(x^9+1)^{\frac{2}{3}}}{x^{\frac{1}{6}}} dx$ converge.

Corrigé 36. L'application $x \mapsto \cos(x)^{426} e^{\left(-\frac{1}{\sqrt{x}}\right)}$ est continue et positive sur $[1, +\infty[$, et on a: \leftarrow page 4

$$\int_{\pi}^{+\infty} \cos(x)^{426} e^{\left(-\frac{1}{\sqrt{x}}\right)} dx = \sum_{n=1}^{+\infty} \int_{\pi n}^{\pi(n+1)} \cos(x)^{426} e^{\left(-\frac{1}{\sqrt{x}}\right)} dx$$

$$\geqslant \sum_{n=1}^{+\infty} \int_{\frac{1}{3}\pi + \pi n}^{\frac{2}{3}\pi + \pi n} \cos(x)^{426} e^{\left(-\frac{1}{\sqrt{x}}\right)} dx$$

$$\geqslant \sum_{n=1}^{+\infty} \frac{1}{51987556764765278617095265952682819439433195163296560784446492136524148}$$

puisqu'il s'agit d'une série grossièrement divergente. Donc l'intégrale $\int_1^{+\infty} \cos(x)^{426} e^{\left(-\frac{1}{\sqrt{x}}\right)} dx$ diverge.

Corrigé 37. L'application $x \mapsto \frac{\ln\left(2\,x^{\frac{1}{7}}+1\right) - \ln\left(x^{\frac{1}{7}}+1\right)}{\sqrt{x}}$ est continue sur]0,1]. Étudions les $[\leftarrow \text{page 5}]$ problèmes éventuels d'intégrabilité au voisinage de [0,1].

Au voisinage de 0. Un développement limité au voisinage de 0 nous permet d'obtenir :

$$\frac{\ln\left(2\,x^{\frac{1}{7}}+1\right) - \ln\left(x^{\frac{1}{7}}+1\right)}{\sqrt{x}} = \frac{\left(2\,x^{\frac{1}{7}} + O\left(x^{\frac{2}{7}}\right)\right) - \left(x^{\frac{1}{7}} + O\left(x^{\frac{2}{7}}\right)\right)}{\sqrt{x}}$$

$$= \frac{x^{\frac{1}{7}} + O\left(x^{\frac{2}{7}}\right)}{\sqrt{x}}$$

$$\stackrel{\sim}{=} \frac{1}{x^{\frac{5}{14}}}.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x^{\frac{5}{14}}}$ est d'exposant $\frac{5}{14} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{\ln\left(2\,x^{\frac{1}{7}}+1\right) - \ln\left(x^{\frac{1}{7}}+1\right)}{\sqrt{x}} \mathrm{d}x$ converge également.

En conclusion, l'intégrale $\int_0^1 \frac{\ln\left(2x^{\frac{1}{7}}+1\right) - \ln\left(x^{\frac{1}{7}}+1\right)}{\sqrt{x}} dx$ converge.

Corrigé 38. L'application $x \mapsto \frac{\cos(x) - 1}{\sqrt{x}}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 5 d'intégrabilité au voisinage de 0.

Au voisinage de 0. Un équivalent usuel permet d'obtenir :

$$\frac{\cos(x) - 1}{\sqrt{x}} \underset{x \to 0}{\sim} -\frac{1}{2} x^{\frac{3}{2}}.$$

On en déduit : $\lim_{x\to 0}\frac{\cos{(x)}-1}{\sqrt{x}}=0$, donc $x\mapsto\frac{\cos{(x)}-1}{\sqrt{x}}$ se prolonge par continuité en 0. Il n'y a pas de problème d'intégrabilité au voisinage de ce point.

En conclusion, l'intégrale $\int_0^1 \frac{\cos(x) - 1}{\sqrt{x}} dx$ converge.

Corrigé 39. L'application $x \mapsto \frac{\cos(\sqrt{x}) - 1}{x^2}$ est continue sur $[1, +\infty[$. Étudions les problèmes \leftarrow page 5 éventuels d'intégrabilité au voisinage de $+\infty$.

Au voisinage de $+\infty$. Pour tout x au voisinage de $+\infty$, on a:

$$\left| \frac{\cos(\sqrt{x}) - 1}{x^2} \right| \leqslant \frac{2}{x^2},$$

or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} \frac{\cos{(\sqrt{x})} - 1}{x^2} \mathrm{d}x$ converge absolument, donc converge.

En conclusion, l'intégrale $\int_1^{+\infty} \frac{\cos(\sqrt{x}) - 1}{x^2} dx$ converge.

Corrigé 40. L'application $x \mapsto \frac{\ln(x)^{\frac{1}{6}}}{x^7}$ est continue sur $[1, +\infty[$. Étudions les problèmes éventuels \leftarrow page 5 d'intégrabilité au voisinage de $+\infty$.

Au voisinage $de +\infty$. Nous pourrions utiliser la méthode « $x^{\alpha}f(x)$ », mais nous pouvons tout simplement remarquer que pour tout $x \ge 1$, on a: $\ln(x) \le x - 1 \le x$ (pour une justification de cette inégalité, voir plus bas), de sorte que:

$$\forall x \geqslant 1, \quad 0 \leqslant \frac{\ln(x)^{\frac{1}{6}}}{x^7} \leqslant \frac{x^{\frac{1}{6}}}{x^7} = \frac{1}{x^{\frac{41}{6}}}.$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^{\frac{41}{6}}}$ est d'exposant $\frac{41}{6} > 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} \frac{\ln(x)^{\frac{1}{6}}}{x^7} \mathrm{d}x$ converge

également.

Remarque. Pour justifier l'inégalité $\ln(x) \leq x - 1$, le plus direct est de démontrer que le logarithme est une fonction concave. Son graphe est alors en-dessous de toutes ses tangentes, et en particulier en-dessous de sa tangente en 1, qui a pour équation: y = x - 1.

En conclusion, l'intégrale $\int_1^{+\infty} \frac{\ln(x)^{\frac{1}{6}}}{x^7} dx$ converge.

Corrigé 41. L'application $x \mapsto -\frac{3}{8}x\ln\left(\frac{2}{x}+1\right) + \frac{1}{3}x\sin\left(\frac{3}{x}\right) - \frac{1}{2x} - \frac{1}{4}e^{\frac{1}{x}}$ est continue sur \leftarrow page $]0,+\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

On a:

$$\begin{split} &-\frac{1}{2\,x} + \frac{1}{3}\,x\sin\left(\frac{3}{x}\right) - \frac{1}{4}\,e^{\frac{1}{x}} - \frac{3}{8}\,x\ln\left(\frac{2}{x} + 1\right) \\ &= -\frac{1}{2\,x} + \left(1 - \frac{3}{2\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) - \frac{1}{4}\left(1 + \frac{1}{x} + \frac{1}{2\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) - \frac{3}{4}\left(1 - \frac{1}{x} + \frac{4}{3\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) \\ &= -\frac{21}{8\,x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right) \mathop{\sim}_{x \to 0} - \frac{21}{8\,x^2}. \end{split}$$

Or la fonction de Riemann $x\mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2>1. Par le théorème de comparaison des intégrales de fonctions positives (qu'on peut utiliser ici à condition de se ramener à la fonction opposée), la fonction $x\mapsto -\frac{3}{8}x\ln\left(\frac{2}{x}+1\right)+\frac{1}{3}x\sin\left(\frac{3}{x}\right)-\frac{1}{2x}-\frac{1}{4}e^{\frac{1}{x}}$ est intégrable au voisinage de $+\infty$: d'où le résultat.

Corrigé 42. L'application $x \mapsto \frac{1}{\sqrt{x} \ln{(x)}}$ est continue sur $\left[\frac{1}{2}, 1\right]$. Étudions les problèmes éventuels d'intégrabilité au voisinage de 1. Notez que pour $t \leqslant 1$, il peut être préférable d'étudier l'intégrabilité de l'application opposée $x \mapsto -\frac{1}{\sqrt{x} \ln{(x)}}$, afin de se ramener à une intégrale de fonction positive et raisonner par comparaison (en effet le logarithme est négatif au voisinage de 0, donc son opposé est positif).

Au voisinage de 1. Pour tout x au voisinage de 1, on a:

$$-\frac{1}{\sqrt{x}\ln(x)} \sim \frac{1}{-x+1} > 0.$$

Or l'intégrale de Riemann $\int_{\frac{1}{2}}^{1} \frac{dx}{-x+1}$ est d'exposant $1 \ge 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}}^{1} -\frac{1}{\sqrt{x} \ln{(x)}} dx$ diverge également.

Corrigé 43. L'application $x \mapsto e^{\left(-\ln(x)^2\right)}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 5 d'intégrabilité au voisinage de 0.

Au voisinage de 0. Par composition de limites, on a : $\lim_{x\to 0} e^{\left(-\ln(x)^2\right)} = 0$, donc $x\mapsto e^{\left(-\ln(x)^2\right)}$ se prolonge par continuité en 0 et il n'y a pas de problème d'intégrabilité au voisinage de ce point.

En conclusion, l'intégrale $\int_0^1 e^{\left(-\ln(x)^2\right)} dx$ converge.

Corrigé 44. L'application $x \mapsto -\frac{1}{7}x \sinh\left(\frac{1}{x}\right) + \frac{1}{x} - \frac{1}{3}\arctan\left(\frac{3}{x}\right) + \frac{1}{7}\cosh\left(\frac{2}{x}\right)$ est continue \leftarrow page 5

sur $]0,+\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

On a:

$$\begin{split} &\frac{1}{x} - \frac{1}{7} x \sinh\left(\frac{1}{x}\right) - \frac{1}{3} \arctan\left(\frac{3}{x}\right) + \frac{1}{7} \cosh\left(\frac{2}{x}\right) \\ &= \frac{1}{x} - \frac{1}{7} \left(1 + \frac{1}{6 x^2} + \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right)\right) - \frac{1}{3} \left(\frac{3}{x} + \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right)\right) + \frac{1}{7} \left(1 + \frac{2}{x^2} + \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right)\right) \\ &= \frac{11}{42 x^2} + \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right) \mathop{\sim}_{x \to 0} \frac{11}{42 x^2}. \end{split}$$

Or la fonction de Riemann $x\mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2>1. Par le théorème de comparaison des intégrales de fonctions positives, la fonction $x \mapsto -\frac{1}{7}x \sinh\left(\frac{1}{x}\right) + \frac{1}{x}$ $\frac{1}{3}\arctan\left(\frac{3}{x}\right) + \frac{1}{7}\cosh\left(\frac{2}{x}\right)$ est intégrable au voisinage de $+\infty$: d'où le résultat.

Corrigé 45. L'application $x \mapsto \frac{\sin\left(9\,x^{\frac{1}{3}}\right) - \sin\left(x^{\frac{1}{3}}\right)}{x}$ est continue sur $]0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage de 0. Un développement limité au voisinage de 0 nous permet d'obtenir:

$$\frac{\sin\left(9\,x^{\frac{1}{3}}\right) - \sin\left(x^{\frac{1}{3}}\right)}{x} = \frac{\left(9\,x^{\frac{1}{3}} + O\left(x^{\frac{1}{3}}\right)\right) - \left(x^{\frac{1}{3}} + O\left(x^{\frac{1}{3}}\right)\right)}{x}$$

$$= \frac{8\,x^{\frac{1}{3}} + O\left(x^{\frac{1}{3}}\right)}{x}$$

$$= \frac{8\,x^{\frac{1}{3}} + O\left(x^{\frac{1}{3}}\right)}{x}$$

$$\stackrel{\sim}{=} \frac{8}{x \to 0} \frac{8}{x^{\frac{2}{3}}}.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x_3^2}$ est d'exposant $\frac{2}{3} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{\sin\left(9\,x^{\frac{1}{3}}\right) - \sin\left(x^{\frac{1}{3}}\right)}{x} dx$ converge également.

Au voisinage $de +\infty$. Nous allons intégrer par parties l'intégrale suivante :

$$\int_{1}^{+\infty} \frac{\sin\left(9\,x^{\frac{1}{3}}\right) - \sin\left(x^{\frac{1}{3}}\right)}{x} \mathrm{d}x = 3 \int_{1}^{+\infty} \frac{\frac{\sin\left(9\,x^{\frac{1}{3}}\right)}{3\,x^{\frac{2}{3}}} - \frac{\sin\left(x^{\frac{1}{3}}\right)}{3\,x^{\frac{2}{3}}}}{x^{\frac{1}{3}}} \mathrm{d}x,$$

en dérivant $x \mapsto \frac{1}{x_3^{\frac{1}{3}}}$ et en intégrant $x \mapsto \frac{\sin\left(9\,x^{\frac{1}{3}}\right)}{3\,x_3^{\frac{2}{3}}} - \frac{\sin\left(x^{\frac{1}{3}}\right)}{3\,x_3^{\frac{2}{3}}}$. On vérifie l'existence du terme

$$-\frac{\cos\left(9\,x^{\frac{1}{3}}\right) - 9\,\cos\left(x^{\frac{1}{3}}\right)}{9\,x^{\frac{1}{3}}} = O\left(\frac{1}{x^{\frac{1}{3}}}\right) \underset{x \to +\infty}{\longrightarrow} 0,$$

la formule de l'intégration par parties nous assure $\int_{1}^{+\infty} \frac{\sin\left(9\,x^{\frac{1}{3}}\right) - \sin\left(x^{\frac{1}{3}}\right)}{x} dx \quad \text{et} \quad \int_{1}^{+\infty} -\frac{\cos\left(9\,x^{\frac{1}{3}}\right) - 9\,\cos\left(x^{\frac{1}{3}}\right)}{9\,x^{\frac{4}{3}}} dx \quad \text{sont} \quad \text{de} \quad \text{même} \quad \text{nature}.$ Or:

$$\forall x \geqslant 1, \quad \left| -\frac{\cos\left(9\,x^{\frac{1}{3}}\right) - 9\,\cos\left(x^{\frac{1}{3}}\right)}{9\,x^{\frac{4}{3}}} \right| \leqslant \frac{10}{9} \frac{1}{x^{\frac{4}{3}}},$$

et l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{4}{3}}}$ est d'exposant $\frac{4}{3} > 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} -\frac{\cos\left(9\,x^{\frac{1}{3}}\right) - 9\,\cos\left(x^{\frac{1}{3}}\right)}{9\,x^{\frac{4}{3}}} dx$ converge absolument, donc converge, et donc $\int_{1}^{+\infty} \frac{\sin\left(9\,x^{\frac{1}{3}}\right) - \sin\left(x^{\frac{1}{3}}\right)}{x} dx$ converge également.

En conclusion, l'intégrale $\int_0^{+\infty} \frac{\sin\left(9\,x^{\frac{1}{3}}\right) - \sin\left(x^{\frac{1}{3}}\right)}{x} \mathrm{d}x \text{ converge}.$

Corrigé 46. L'application $x \mapsto -\frac{x^4 - \sqrt{x^8 + 1}}{x^{\frac{3}{11}}}$ est continue sur $]0, +\infty[$. Étudions les problèmes \leftarrow page 5 éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage de 0. On a:

$$-\frac{x^4 - \sqrt{x^8 + 1}}{\frac{x^{\frac{3}{11}}}{1}} \underset{x \to 0}{\sim} \frac{1}{\frac{x^{\frac{3}{11}}}} > 0.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x^{\frac{3}{11}}}$ est d'exposant $\frac{3}{11} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 -\frac{x^4 - \sqrt{x^8 + 1}}{x^{\frac{3}{11}}} dx$ converge également.

Au voisinage de $+\infty$. Soit x au voisinage de $+\infty$. On a:

$$-x^4 + \sqrt{x^8 + 1} = x^4 \left(\sqrt{\frac{1}{x^8} + 1} - 1 \right) \underset{x \to +\infty}{\sim} x^4 \cdot \frac{1}{2x^8} = \frac{1}{2x^4},$$

donc:

$$-\frac{x^4 - \sqrt{x^8 + 1}}{x^{\frac{3}{11}}} \underset{x \to +\infty}{\sim} \frac{1}{2 x^{\frac{47}{11}}} > 0.$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{r^{\frac{47}{11}}}$ est d'exposant $\frac{47}{11} > 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} -\frac{x^4 - \sqrt{x^8 + 1}}{x^{\frac{3}{11}}} dx$ converge également.

En conclusion, l'intégrale $\int_0^{+\infty} -\frac{x^4 - \sqrt{x^8 + 1}}{x^{\frac{3}{11}}} dx$ converge.

Corrigé 47. L'application $x \mapsto \frac{1}{x^{\frac{1}{3}}\left(\frac{1}{x^{\frac{9}{2}}}+1\right)}$ est continue sur $[1,+\infty[$. Étudions les problèmes \leftarrow page 6 éventuels d'intégrabilité au voisinage de +c

Au voisinage de $+\infty$. On a: $\frac{1}{x^{\frac{1}{3}\left(\frac{1}{9}+1\right)}} \sim \frac{1}{x^{\frac{1}{3}}} > 0$, or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{1}{3}}}$

est d'exposant $\frac{1}{3} \leqslant 1$, donc elle diverge. On en déduit que l'intégrale $\int_{1}^{+\infty} \frac{1}{x^{\frac{1}{3}\left(\frac{1}{2}+1\right)}} dx$ diverge également.

Corrigé 48. L'application $x \mapsto -\frac{x - \sqrt{x^2 + 1}}{\sqrt{x}}$ est continue sur]0,1]. Étudions les problèmes \leftarrow page 6 éventuels d'intégrabilité au voisinage de

Au voisinage de 0. On a:

$$-\frac{x - \sqrt{x^2 + 1}}{\sqrt{x}} \underset{x \to 0}{\sim} \frac{1}{\sqrt{x}} > 0.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$ est d'exposant $\frac{1}{2} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 -\frac{x-\sqrt{x^2+1}}{\sqrt{x}} dx$ converge également.

En conclusion, l'intégrale $\int_0^1 -\frac{x-\sqrt{x^2+1}}{\sqrt{x}} dx$ converge.

Corrigé 49. L'application $x \mapsto \frac{(x-1)^6}{x^{\frac{7}{6}} \ln{(x)}^4}$ est continue sur]0,1[. Étudions les problèmes éventuels \leftarrow page 6 d'intégrabilité au voisinage de 0 et

Au voisinage de 0. On a: $\frac{(x-1)^6}{x_0^{\frac{7}{6}} \ln(x)^4} \sim \frac{1}{x_0^{\frac{7}{6}} \ln(x)^4} > 0$. Utilisons la méthode « $x^{\alpha} f(x)$ » : soit $\alpha \in \mathbb{R}$. On a, au voisinage de 0

$$x^{\alpha} \cdot \frac{1}{x^{\frac{7}{6}} \ln(x)^{4}} = \frac{x^{\alpha - \frac{7}{6}}}{\ln(x)^{4}} \xrightarrow[x \to 0]{} \left\{ \begin{array}{cc} +\infty & \text{si } \alpha - \frac{7}{6} \leqslant 0, \\ 0 & \text{si } \alpha - \frac{7}{6} > 0, \end{array} \right.$$

d'après le théorème des croissances comparées (pour le cas $\alpha - \frac{7}{6} \leqslant 0$). Par conséquent, si $\alpha \leqslant \frac{7}{6}$, alors pour tout x au voisinage de 0 on a:

$$x^{\alpha} \cdot \frac{1}{x^{\frac{7}{6}} \ln(x)^4} \geqslant 1$$
, donc: $\frac{1}{x^{\frac{7}{6}} \ln(x)^4} \geqslant \frac{1}{x^{\alpha}}$.

Choisissons $\alpha \in \mathbb{R}$ de sorte que $\alpha \leqslant \frac{7}{6}$ et $\alpha \geqslant 1$, par exemple : $\alpha = 1$. Alors d'après ce qui précède, on a $\frac{1}{x^{\frac{7}{6}} \ln(x)^4} \geqslant \frac{1}{x}$ pour tout x au voisinage de 0, or l'intégrale de Riemann $\int_0^{\frac{1}{2}} \frac{\mathrm{d}x}{x}$ est d'exposant $1 \geqslant 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{\frac{1}{2}} \frac{1}{x^{\frac{7}{6}} \ln(x)^4} dx$ diverge également.

Par conséquent l'intégrale $\int_0^1 \frac{1}{x^{\frac{7}{6} \ln(x)^4}} dx$ diverge aussi, et $\int_0^1 \frac{(x-1)^6}{x^{\frac{7}{6} \ln(x)^4}} dx$ également.

Corrigé 50. L'application $x \mapsto \frac{1}{\cos\left(\sin\left(\frac{5}{2}x\right)\right) - 1} + \frac{8}{25x^2}$ est continue au voisinage de 0. Déterminons un équivalent de cette fonction en 0, avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sin(x) = x - \frac{1}{6}x^3 + o_{x\to 0}(x^4)$. On compose ce dévelop-

pement limité (où l'on remplace x par $\frac{5}{2}x$) avec celui de $x\mapsto \cos(x)$, ce qui est licite puisque $\sin\left(\frac{5}{2}x\right) \xrightarrow[x\to 0]{} 0$, et on obtient:

$$\cos\left(\sin\left(\frac{5}{2}x\right)\right)$$

$$= 1 - \frac{1}{2}\left(-\frac{125}{48}x^3 + \frac{5}{2}x + o_{x\to 0}\left(x^3\right)\right)^2 + \frac{1}{24}\left(\frac{5}{2}x + o_{x\to 0}\left(x\right)\right)^4 + o_{x\to 0}\left(x^4\right)$$

$$= 1 - \frac{25}{8}x^2 + \frac{3125}{384}x^4 + o_{x\to 0}\left(x^4\right).$$

On en tire d'une part : $\cos\left(\sin\left(\frac{5}{2}x\right)\right) - 1 \sim \frac{-25}{8}x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$\frac{1}{\cos\left(\sin\left(\frac{5}{2}x\right)\right) - 1} + \frac{8}{25x^2} = \frac{25x^2 + 8\left(-\frac{25}{8}x^2 + \frac{3125}{384}x^4 + o(x^4)\right)}{25x^2\left(\cos\left(\sin\left(\frac{5}{2}x\right)\right) - 1\right)}$$

$$= \frac{\frac{3125}{48}x^4 + o(x^4)}{25x^2\left(\cos\left(\sin\left(\frac{5}{2}x\right)\right) - 1\right)}$$

$$\sim \frac{\frac{3125}{384}x^4}{-\frac{625}{8}x^4} = -\frac{5}{6}.$$

On en déduit :

$$\lim_{x \to 0^+} \left(\frac{1}{\cos\left(\sin\left(\frac{5}{2}x\right)\right) - 1} + \frac{8}{25x^2} \right) = -\frac{5}{6}.$$

L'application $x \mapsto \frac{1}{\cos\left(\sin\left(\frac{5}{2}x\right)\right) - 1} + \frac{8}{25x^2}$ se prolonge donc par continuité en 0: elle est intégrable à son voisinage. D'où le résultat.

Corrigé 51. L'application $x \mapsto -\frac{x^{\frac{5}{8}} - (x^5 + 1)^{\frac{1}{8}}}{x^{\frac{5}{3}}}$ est continue sur $]0, +\infty[$. Étudions les problèmes \leftarrow page 6 éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage de 0. On a:

$$-\frac{x^{\frac{5}{8}} - (x^5 + 1)^{\frac{1}{8}}}{x^{\frac{5}{3}}} \sim \frac{1}{x^{\frac{5}{3}}} > 0.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x^{\frac{5}{3}}}$ est d'exposant $\frac{5}{3} \geqslant 1$, donc elle diverge. D'après le théorème

de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 -\frac{x^{\frac{5}{8}}-(x^5+1)^{\frac{1}{8}}}{x^{\frac{5}{3}}}\mathrm{d}x \ \mathrm{diverge}$ également.

Par conséquent l'intégrale $\int_0^{+\infty} -\frac{x^{\frac{5}{8}}-(x^5+1)^{\frac{1}{8}}}{x^{\frac{5}{3}}} dx$ diverge également.

Corrigé 52. L'application $x \mapsto e^{\left(-\sqrt{|\ln(x)|}\right)}$ est continue sur $]0, +\infty[$. Étudions les problèmes \leftarrow page 6 éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage $de + \infty$. Pour tout $x \ge e$ on a: $\ln(x) \ge 1$, donc: $\ln(x) \ge \sqrt{\ln(x)}$. On a alors:

$$\int_{e}^{+\infty} e^{\left(-\sqrt{|\ln(x)|}\right)} dx \geqslant \int_{e}^{+\infty} e^{-\ln(x)} dx = \int_{e}^{+\infty} \frac{dx}{x} = +\infty.$$

En conclusion, l'intégrale $\int_0^{+\infty} e^{\left(-\sqrt{|\ln(x)|}\right)} dx$ diverge.

Corrigé 53. L'application $x\mapsto \frac{\arctan{(7\,x^2)}}{x^{\frac{3}{7}}}$ est continue sur $]0,+\infty[$. Étudions les problèmes \leftarrow page 6 éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage de $+\infty$. On a:

$$\frac{\arctan{(7\,x^2)}}{x^{\frac{3}{7}}} \underset{x \to +\infty}{\sim} \frac{\pi}{2\,x^{\frac{3}{7}}} > 0.$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{3}{7}}}$ est d'exposant $\frac{3}{7} \leqslant 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} \frac{\arctan{(7\,x^2)}}{x^{\frac{3}{7}}} dx$ diverge égalament

Par conséquent l'intégrale $\int_0^{+\infty} \frac{\arctan(7x^2)}{x^{\frac{3}{2}}} dx$ diverge également.

Corrigé 54. L'application $x \mapsto \frac{\sin(x)}{r^{\frac{1}{3}}}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 6 d'intégrabilité au voisinage de 0.

Au voisinage de 0. Un équivalent usuel permet d'obtenir:

$$\frac{\sin(x)}{x^{\frac{1}{3}}} \underset{x\to 0}{\sim} x^{\frac{2}{3}}.$$

On en déduit : $\lim_{x\to 0} \frac{\sin(x)}{x^{\frac{1}{3}}} = 0$, donc $x\mapsto \frac{\sin(x)}{x^{\frac{1}{3}}}$ se prolonge par continuité en 0. Il n'y a pas de problème d'intégrabilité au voisinage de ce point

En conclusion, l'intégrale $\int_0^1 \frac{\sin(x)}{x^{\frac{1}{2}}} dx$ converge.

Corrigé 55. L'application $x \mapsto \frac{1}{(x+1)x}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 6 d'intégrabilité au voisinage de 0.

Au voisinage de 0. On a : $\frac{1}{(x+1)x} \underset{x\to 0}{\sim} \frac{1}{x} > 0$, or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x}$ est d'exposant $1\geqslant 1,$ donc elle diverge. On en déduit que l'intégrale $\int_0^1\frac{1}{(x+1)x}\mathrm{d}x$ diverge également.

Corrigé 56. L'application $x \mapsto \frac{\ln(x)^{\frac{2}{2}}}{x^8}$ est continue sur $[1, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$.

Au voisinage $de + \infty$. Nous pourrions utiliser la méthode « $x^{\alpha} f(x)$ », mais nous pouvons tout simplement remarquer que pour tout $x \ge 1$, on a: $\ln(x) \le x - 1 \le x$ (pour une justification de cette inégalité, voir plus bas), de sorte que:

$$\forall x \geqslant 1, \quad 0 \leqslant \frac{\ln(x)^{\frac{3}{2}}}{x^8} \leqslant \frac{x^{\frac{3}{2}}}{x^8} = \frac{1}{x^{\frac{13}{2}}}.$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{13}{2}}}$ est d'exposant $\frac{13}{2} > 1$, donc elle converge. D'après le théo-

rème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} \frac{\ln(x)^{\frac{7}{2}}}{x^8} dx$ converge

Remarque. Pour justifier l'inégalité $\ln(x) \leq x - 1$, le plus direct est de démontrer que le logarithme est une fonction concave. Son graphe est alors en-dessous de toutes ses tangentes, et en particulier en-dessous de sa tangente en 1, qui a pour équation: y = x - 1.

En conclusion, l'intégrale $\int_{1}^{+\infty} \frac{\ln(x)^{\frac{3}{2}}}{x^8} dx$ converge.

Corrigé 57. L'application $x \mapsto \frac{10}{x} + \frac{1}{\ln\left(-\frac{1}{4}\sinh\left(\frac{2}{5}x\right) + 1\right)}$ est continue au voisinage de 0. \leftarrow page 7

Déterminons un équivalent de cette fonction en 0, avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sinh(x) = x + \underset{x \to 0}{o}(x^2)$. On compose ce développement limité (où l'on remplace x par $-\frac{2}{5}x$) avec celui de $x \mapsto \ln(x+1)$, ce qui est licite puisque $-\frac{1}{4}\sinh\left(\frac{2}{5}x\right) \xrightarrow[x\to 0]{} 0$, et on obtient:

$$\begin{split} & \ln \left({ - \frac{1}{4}\sinh \left({\frac{2}{5}\,x} \right) + 1} \right) \\ &= + \left({ - \frac{2}{5}\,x + \mathop{o}\limits_{x \to 0} \left({{x^2}} \right)} \right) - \frac{1}{2}\left({ - \frac{2}{5}\,x + \mathop{o}\limits_{x \to 0} \left({x} \right)} \right)^2 + \mathop{o}\limits_{x \to 0} \left({{x^2}} \right) \\ &= - \frac{1}{{10}}\,x - \frac{1}{{200}}\,{x^2} + \mathop{o}\limits_{x \to 0} \left({{x^2}} \right). \end{split}$$

On en tire d'une part : $\ln\left(-\frac{1}{4}\sinh\left(\frac{2}{5}x\right)+1\right) \underset{x\to 0^+}{\sim} -\frac{1}{10}x$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$\frac{10}{x} + \frac{1}{\ln\left(-\frac{1}{4}\sinh\left(\frac{2}{5}x\right) + 1\right)} = \frac{x + 10\left(-\frac{1}{10}x - \frac{1}{200}x^2 + o(x^2)\right)}{x\ln\left(-\frac{1}{4}\sinh\left(\frac{2}{5}x\right) + 1\right)}$$
$$= \frac{-\frac{1}{20}x^2 + o(x^2)}{x\ln\left(-\frac{1}{4}\sinh\left(\frac{2}{5}x\right) + 1\right)}$$
$$\sim \frac{-\frac{1}{200}x^2}{x + o(x^2)} = \frac{1}{2}.$$

On en déduit :

$$\lim_{x \to 0^+} \left(\frac{10}{x} + \frac{1}{\ln\left(-\frac{1}{4}\sinh\left(\frac{2}{5}x\right) + 1\right)} \right) = \frac{1}{2}.$$

L'application $x\mapsto \frac{10}{x}+\frac{1}{\ln\left(-\frac{1}{4}\sinh\left(\frac{2}{5}x\right)+1\right)}$ se prolonge donc par continuité en 0: elle est intégrable à son voisinage. D'où le résultat.

Corrigé 58. L'application $x \mapsto -\frac{x^{\frac{1}{5}}}{(x-1)|\ln(x)|^{\frac{1}{22}}}$ est continue sur]0,1[. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et 1. Notez que pour tout $x \leqslant 1$, on a : $|\ln(x)| = -\ln(x)$. Cela peut vous éviter de raisonner avec des valeurs absolues (et explique les éventuels signes moins dans le raisonnement ci-dessous, si raisonnement pour $t \leqslant 1$ il y a).

Au voisinage de 1. On a: $-\frac{x^{\frac{1}{5}}}{(x-1)|\ln(x)|^{\frac{1}{22}}} \sim \frac{1}{(-x+1)^{\frac{23}{22}}} > 0$. Or l'intégrale de Riemann $\int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{(-x+1)^{\frac{23}{22}}}$ est d'exposant $\frac{23}{22} \geqslant 1$, donc elle diverge. D'après le théorème de comparaison des

intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}}^{1} -\frac{x^{\frac{1}{5}}}{(x-1)|\ln{(x)}|^{\frac{1}{22}}} dx$ diverge également.

Par conséquent l'intégrale $\int_0^1 \frac{x^{\frac{1}{5}}}{|\ln(x)|^{\frac{1}{22}}} dx$ diverge aussi, et $\int_0^1 -\frac{x^{\frac{1}{5}}}{(x-1)|\ln(x)|^{\frac{1}{22}}} dx$ également.

Corrigé 59. L'application $x \mapsto -\frac{24}{65}x \sinh\left(\frac{3}{x}\right) - \frac{4}{13x} + \frac{72}{65}e^{\frac{1}{x}} - \frac{2}{5}\ln\left(\frac{2}{x} + 1\right)$ est continue sur $]0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

$$\begin{split} &-\frac{4}{13\,x}-\frac{2}{5}\,\ln\left(\frac{2}{x}+1\right)+\frac{72}{65}\,e^{\frac{1}{x}}-\frac{24}{65}\,x\sinh\left(\frac{3}{x}\right)\\ &=-\frac{4}{13\,x}-\frac{2}{5}\left(\frac{2}{x}-\frac{2}{x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)+\frac{72}{65}\left(1+\frac{1}{x}+\frac{1}{2\,x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)-\frac{72}{65}\left(1+\frac{3}{2\,x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)\\ &=-\frac{4}{13\,x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\mathop{\sim}_{x\to0}-\frac{4}{13\,x^2}. \end{split}$$

Or la fonction de Riemann $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives (qu'on peut utiliser ici à condition de se ramener à la fonction opposée), la fonction $x \mapsto -\frac{24}{65}x \sinh\left(\frac{3}{x}\right) - \frac{4}{13x} + \frac{72}{65}e^{\frac{1}{x}} - \frac{2}{5}\ln\left(\frac{2}{x} + 1\right)$ est intégrable au voisinage de $+\infty$: d'où le résultat

Corrigé 60. L'application $x \mapsto \frac{\sinh(6x^2)}{x^{\frac{15}{16}}}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 7 d'intégrabilité au voisinage de 0

Au voisinage de 0. Un équivalent usuel permet d'obtenir :

$$\frac{\sinh(6x^2)}{x^{\frac{15}{16}}} \underset{x \to 0}{\sim} 6x^{\frac{17}{16}}.$$

On en déduit : $\lim_{x\to 0} \frac{\sinh\left(6\,x^2\right)}{x^{\frac{15}{16}}} = 0$, donc $x\mapsto \frac{\sinh\left(6\,x^2\right)}{x^{\frac{15}{16}}}$ se prolonge par continuité en 0. Il n'y a pas de problème d'intégrabilité au voisinage de ce point.

En conclusion, l'intégrale $\int_0^1 \frac{\sinh(6x^2)}{x^{\frac{15}{16}}} dx$ converge.

Corrigé 61. L'application $x \mapsto \frac{\ln(x)^2}{x\sqrt{-x+1}}$ est continue sur]0,1[. Étudions les problèmes éventuels \leftarrow page 7 d'intégrabilité au voisinage de 0 et 1

Au voisinage de 0. On a: $\frac{\ln(x)^2}{x\sqrt{-x+1}} \sim \frac{\ln(x)^2}{x} > 0$. Pour tout $x \leqslant \frac{1}{2}$, on a: $\ln(x) \leqslant \ln\left(\frac{1}{2}\right) \leqslant 0$, donc:

$$\frac{\ln(x)^2}{x} \geqslant \frac{\ln\left(\frac{1}{2}\right)^2}{x} \geqslant 0.$$

Or l'intégrale de Riemann $\int_0^{\frac{1}{2}} \frac{\mathrm{d}x}{x}$ est d'exposant $1 \ge 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{\frac{1}{2}} \frac{\ln(x)^2}{r} dx$ diverge également. Par conséquent l'intégrale $\int_0^1 \frac{\ln(x)^2}{x} dx$ diverge aussi, et $\int_0^1 \frac{\ln(x)^2}{x\sqrt{-x+1}} dx$ également.

Corrigé 62. L'application $x \mapsto \frac{(x+1)^{\frac{1}{10}} - x^{\frac{1}{10}}}{x}$ est continue sur]0,1]. Étudions les problèmes \leftarrow page 7 éventuels d'intégrabilité au voisinage de 0.

Au voisinage de 0. On a:

$$\frac{(x+1)^{\frac{1}{10}} - x^{\frac{1}{10}}}{x} \sim \frac{1}{x} > 0.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x}$ est d'exposant $1 \ge 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{(x+1)^{\frac{1}{10}} - x^{\frac{1}{10}}}{x} \mathrm{d}x$ diverge également.

Corrigé 63. L'application $x \mapsto -\frac{8}{9x} + \frac{1}{\tan\left(\frac{3}{2}\ln\left(\frac{3}{4}x+1\right)\right)}$ est continue au voisinage de 0.

← page 7

 \leftarrow page 7

Déterminons un équivalent de cette fonction en 0, avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\ln(x+1) = x - \frac{1}{2}x^2 + \underset{x\to 0}{o}(x^2)$. On compose ce développement limité (où l'on remplace x par $\frac{3}{4}x$) avec celui de $x\mapsto \tan(x)$, ce qui est licite puisque $\frac{3}{2}\ln\left(\frac{3}{4}x+1\right) \xrightarrow[x\to 0]{} 0$, et on obtient:

$$\tan\left(\frac{3}{2}\ln\left(\frac{3}{4}x+1\right)\right)$$

$$= +\left(\frac{3}{4}x - \frac{9}{32}x^2 + \underset{x\to 0}{o}\left(x^2\right)\right) + \underset{x\to 0}{o}\left(x^2\right)$$

$$= \frac{9}{8}x - \frac{27}{64}x^2 + \underset{x\to 0}{o}\left(x^2\right).$$

On en tire d'une part : $\tan\left(\frac{3}{2}\ln\left(\frac{3}{4}x+1\right)\right) \sim \frac{9}{8}x$ (utile pour la suite, mais insuffisant pour conclure puisqu'ON NE SOMME PAS LES ÉQUIVALENTS!), et d'autre part :

$$-\frac{8}{9x} + \frac{1}{\tan\left(\frac{3}{2}\ln\left(\frac{3}{4}x + 1\right)\right)} = \frac{9x - 8\left(\frac{9}{8}x - \frac{27}{64}x^2 + o(x^2)\right)}{9x\tan\left(\frac{3}{2}\ln\left(\frac{3}{4}x + 1\right)\right)}$$
$$= \frac{\frac{27}{8}x^2 + o(x^2)}{9x\tan\left(\frac{3}{2}\ln\left(\frac{3}{4}x + 1\right)\right)}$$
$$\sim \frac{\frac{27}{64}x^2}{x + o(x^2)} = \frac{1}{3}.$$

On en déduit:

$$\lim_{x \to 0^+} \left(-\frac{8}{9x} + \frac{1}{\tan\left(\frac{3}{2}\ln\left(\frac{3}{4}x + 1\right)\right)} \right) = \frac{1}{3}.$$

L'application $x\mapsto -\frac{8}{9\,x}+\frac{1}{\tan\left(\frac{3}{2}\ln\left(\frac{3}{4}\,x+1\right)\right)}$ se prolonge donc par continuité en 0 : elle est intégrable à son voisinage. D'où le résultat.

Corrigé 64. L'application $x \mapsto -\frac{2}{x} + \frac{1}{3}\cos\left(\frac{3}{x}\right) - \frac{1}{3}e^{\frac{3}{x}} + \sin\left(\frac{3}{x}\right)$ est continue sur $]0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

On a:

$$\begin{split} &-\frac{2}{x}+\sin\left(\frac{3}{x}\right)-\frac{1}{3}\,e^{\frac{3}{x}}+\frac{1}{3}\,\cos\left(\frac{3}{x}\right)\\ &=-\frac{2}{x}+\left(\frac{3}{x}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)-\frac{1}{3}\left(1+\frac{3}{x}+\frac{9}{2\,x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)+\frac{1}{3}\left(1-\frac{9}{2\,x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\right)\\ &=-\frac{3}{x^2}+\mathop{o}_{x\to+\infty}\left(\frac{1}{x^2}\right)\mathop{\sim}_{x\to0}-\frac{3}{x^2}. \end{split}$$

Or la fonction de Riemann $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives (qu'on peut utiliser ici à condition de se ramener à la fonction opposée), la fonction $x \mapsto -\frac{2}{x} + \frac{1}{3} \cos\left(\frac{3}{x}\right) - \frac{1}{3} e^{\frac{3}{x}} + \sin\left(\frac{3}{x}\right)$ est intégrable au voisinage de $+\infty$: d'où le résultat

Corrigé 65. L'application $x \mapsto \frac{1}{x\left(\frac{1}{x^{\frac{1}{5}}}+1\right)}$ est continue sur $[1,+\infty[$. Étudions les problèmes \leftarrow page 8

éventuels d'intégrabilité au voisinage de $+\infty$

Au voisinage de $+\infty$. On a: $\frac{1}{x\left(\frac{1}{x^{\frac{1}{2}}}+1\right)} \sim \frac{1}{x} > 0$, or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x}$

est d'exposant $1 \le 1$, donc elle diverge. On en déduit que l'intégrale $\int_1^{+\infty} \frac{1}{x\left(\frac{1}{1}+1\right)} dx$ diverge également.

Corrigé 66. L'application $x \mapsto x^2 \cos(x)^4 e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)}$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$0 \leqslant x^2 \cos(x)^4 e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)} \leqslant x^2 e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)}$$

et on va montrer l'intégrabilité de ce majorant par croissances comparées. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)} = x^4 e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)} \xrightarrow[x \to +\infty]{} 0$, donc:

$$x^2 e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} x^{2} e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)} dx$ converge, et donc $\int_0^{+\infty} x^2 e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)} dx$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{0}^{+\infty} x^{2} \cos(x)^{4} e^{\left(-\frac{1}{7}x^{\frac{1}{3}}\right)} dx$ converge: d'où le résultat.

Corrigé 67. L'application $x \mapsto \frac{1}{x^{\frac{3}{2}} \ln(x)^2}$ est continue sur $[2, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$.

Au voisinage de $+\infty$. Pour tout $x \ge 2$, on a $\ln(x) \ge \ln(2)$, donc:

$$0 \leqslant \frac{1}{x^{\frac{3}{2}} \ln(x)^2} \leqslant \frac{1}{x^{\frac{3}{2}} \ln(2)^2}.$$

Or l'intégrale de Riemann $\int_2^{+\infty} \frac{\mathrm{d}x}{x^{\frac{3}{2}}}$ est d'exposant $\frac{3}{2} > 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{2}^{+\infty} \frac{1}{x^{\frac{3}{2}} \ln{(x)^{2}}} dx$ converge également.

En conclusion, l'intégrale $\int_2^{+\infty} \frac{1}{r^{\frac{3}{2}} \ln(r)^2} dx$ converge.

Corrigé 68. L'application $x \mapsto e^{\left(-|\ln(x)|^{\frac{1}{5}}\right)}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 8 d'intégrabilité au voisinage de 0.

Au voisinage de 0. Par composition de limites, on a : $\lim_{x\to 0} e^{\left(-|\ln(x)|^{\frac{1}{5}}\right)} = 0$, donc $x\mapsto e^{\left(-|\ln(x)|^{\frac{1}{5}}\right)}$ se prolonge par continuité en 0 et il n'y a pas de problème d'intégrabilité au voisinage de ce point.

En conclusion, l'intégrale $\int_0^1 e^{\left(-|\ln(x)|^{\frac{1}{5}}\right)} dx$ converge.

Corrigé 69. L'application $x \mapsto \frac{1}{x^{\frac{3}{28}}(\frac{1}{x}+1)}$ est continue sur $]0,+\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage de $+\infty$. On a: $\frac{1}{x^{\frac{3}{28}}(\frac{1}{x}+1)} \sim \frac{1}{x^{\frac{3}{28}}} > 0$, or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{3}{28}}}$

est d'exposant $\frac{3}{28} \leqslant 1$, donc elle diverge

Par conséquent l'intégrale $\int_1^{+\infty} \frac{1}{x^{\frac{3}{28}}(\frac{1}{x}+1)} dx$ diverge aussi, et $\int_0^{+\infty} \frac{1}{x^{\frac{3}{28}}(\frac{1}{x}+1)} dx$ également.

Corrigé 70. L'application $x \mapsto x\cos(2x)e^{\left(\frac{1}{3x}\right)}$ est continue sur $]1,+\infty[$. Nous allons montrer que son intégrale diverge en notant que si le contraire était vrai, alors la suite $\left(\int_{\frac{1}{s}\pi+\pi n}^{\frac{1}{3}\pi+\pi n}x\cos\left(2\,x\right)e^{\left(\frac{1}{3\,x}\right)}\mathrm{d}x\right)_{n\geq 1}\text{ convergerait vers 0. Or pour tout }n\in\mathbb{N}\setminus\{0\}\text{ on a:}$

$$\int_{\frac{1}{\pi}\pi+\pi n}^{\frac{1}{3}\pi+\pi n} x \cos(2x) e^{\left(\frac{1}{3x}\right)} dx \geqslant \frac{1}{72} \pi(\pi+6\pi n) e^{\left(\frac{1}{\pi+3\pi n}\right)},$$

et ce minorant tend vers $+\infty > 0$ quand $n \to +\infty$: c'est absurde. Donc l'intégrale $\int_{1}^{+\infty} x \cos(2x) e^{\left(\frac{1}{3x}\right)} dx \text{ diverge.}$

Corrigé 71. L'application $x \mapsto x^2 e^{\left(-3x^2\right)} \sin\left(x\right)^{12}$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$0 \leqslant x^2 e^{(-3x^2)} \sin(x)^{12} \leqslant x^2 e^{(-3x^2)}$$

et on va montrer l'intégrabilité de ce majorant par croissances comparées. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{\left(-3x^2\right)} = x^4 e^{\left(-3x^2\right)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^{2}e^{\left(-3x^{2}\right)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^{2}}\right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{\left(-3x^2\right)} dx$ converge, et donc $\int_0^{+\infty} x^2 e^{\left(-3x^2\right)} dx$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} x^2 e^{(-3x^2)} \sin(x)^{12} dx$ converge: d'où le résultat.

 \leftarrow page 8

Corrigé 72. L'application $x \mapsto -\frac{|\ln(x)|^{\frac{1}{4}}}{(x-1)^3x^{10}}$ est continue sur]0,1[. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et 1. Notez que pour tout $x \le 1$, on a: $|\ln(x)| = -\ln(x)$. Cela peut vous éviter de raisonner avec des valeurs absolues (et explique les éventuels signes moins dans le raisonnement ci-dessous, si raisonnement pour $t \le 1$ il y a).

Au voisinage de 0. On a: $-\frac{|\ln(x)|^{\frac{1}{4}}}{(x-1)^3 x^{10}} \underset{x\to 0}{\sim} \frac{(-\ln(x))^{\frac{1}{4}}}{x^{10}} > 0$. Pour tout $x \leqslant \frac{1}{2}$, on a: $\ln(x) \leqslant \ln\left(\frac{1}{2}\right) \leqslant 0$, donc:

$$\frac{(-\ln(x))^{\frac{1}{4}}}{x^{10}} \geqslant \frac{(-\ln(\frac{1}{2}))^{\frac{1}{4}}}{x^{10}} \geqslant 0.$$

Or l'intégrale de Riemann $\int_0^{\frac{1}{2}} \frac{\mathrm{d}x}{x^{10}}$ est d'exposant $10 \ge 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{\frac{1}{2}} \frac{(-\ln(x))^{\frac{1}{4}}}{x^{10}} \mathrm{d}x$ diverge également. Par conséquent l'intégrale $\int_0^1 \frac{|\ln(x)|^{\frac{1}{4}}}{x^{10}} \mathrm{d}x$ diverge aussi, et $\int_0^1 -\frac{|\ln(x)|^{\frac{1}{4}}}{(x-1)^3 x^{10}} \mathrm{d}x$ également.

Corrigé 73. L'application $x\mapsto \frac{1}{\cos\left(\frac{5}{2}\sinh\left(\frac{3}{2}x\right)\right)-1}+\frac{32}{225\,x^2}$ est continue au voisinage de 0. Déterminons un équivalent de cette fonction en 0, avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sinh\left(x\right)=x+\frac{1}{6}\,x^3+\frac{o}{x\to 0}\,(x^4)$. On compose ce développement limité (où l'on remplace x par $-\frac{3}{2}\,x$) avec celui de $x\mapsto\cos\left(x\right)$, ce qui est licite puisque $-\frac{5}{2}\,\sinh\left(\frac{3}{2}\,x\right)\xrightarrow[r\to 0]{}$ 0, et on obtient:

$$\begin{split} &\cos\left(\frac{5}{2}\,\sinh\left(\frac{3}{2}\,x\right)\right) \\ &= 1 - \frac{1}{2}\left(-\frac{9}{16}\,x^3 - \frac{3}{2}\,x + \mathop{o}_{x\to 0}\left(x^3\right)\right)^2 + \frac{1}{24}\left(-\frac{3}{2}\,x + \mathop{o}_{x\to 0}\left(x\right)\right)^4 + \mathop{o}_{x\to 0}\left(x^4\right) \\ &= 1 - \frac{225}{32}\,x^2 + \frac{6075}{2048}\,x^4 + \mathop{o}_{x\to 0}\left(x^4\right). \end{split}$$

On en tire d'une part : $\cos\left(\frac{5}{2}\sinh\left(\frac{3}{2}x\right)\right) - 1 \sim \frac{-\frac{225}{32}}{x^2} x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'on ne somme pas les équivalents!), et d'autre part :

$$\frac{1}{\cos\left(\frac{5}{2}\sinh\left(\frac{3}{2}x\right)\right) - 1} + \frac{32}{225x^2} = \frac{225x^2 + 32\left(-\frac{225}{32}x^2 + \frac{6075}{2048}x^4 + \frac{o}{x \to 0}(x^4)\right)}{225x^2\left(\cos\left(\frac{5}{2}\sinh\left(\frac{3}{2}x\right)\right) - 1\right)}$$

$$= \frac{\frac{6075}{64}x^4 + \frac{o}{x \to 0}(x^4)}{225x^2\left(\cos\left(\frac{5}{2}\sinh\left(\frac{3}{2}x\right)\right) - 1\right)}$$

$$\underset{x \to 0^+}{\sim} \frac{\frac{6075}{2048}x^4}{-\frac{50625}{32}x^4} = -\frac{3}{50}.$$

On en déduit :

$$\lim_{x \to 0^+} \left(\frac{1}{\cos\left(\frac{5}{2}\sinh\left(\frac{3}{2}x\right)\right) - 1} + \frac{32}{225x^2} \right) = -\frac{3}{50}.$$

L'application $x \mapsto \frac{1}{\cos\left(\frac{5}{2}\sinh\left(\frac{3}{2}x\right)\right)-1} + \frac{32}{225\,x^2}$ se prolonge donc par continuité en 0 : elle est intégrable à son voisinage. D'où le résultat.

Corrigé 74. L'application $x \mapsto e^{(-x)} \sin(x)^3$ est continue sur $[0, +\infty[$. Étudions son intégrabilité \leftarrow page 9 au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$\left| e^{(-x)} \sin\left(x\right)^3 \right| \leqslant e^{(-x)},$$

et on sait que l'intégrale $\int_0^{+\infty} e^{(-x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} e^{(-x)} \sin(x)^3 dx$ converge absolument donc converge: d'où le résultat.

Corrigé 75. L'application $x \mapsto \frac{1}{x^3 |\ln(x)|^{\frac{1}{6}}}$ est continue sur $\left[\frac{1}{2}, 1\right]$. Étudions les problèmes éventuels d'intégrabilité au voisinage de 1. Notez que pour tout $x \leq 1$, on a: $|\ln(x)| = -\ln(x)$. Cela peut vous éviter de raisonner avec des valeurs absolues (et explique les éventuels signes moins dans le raisonnement ci-dessous, si raisonnement pour $t \leq 1$ il y a).

Au voisinage de 1. Pour tout x au voisinage de 1, on a:

$$\frac{1}{x^3|\ln(x)|^{\frac{1}{6}}} \sim \frac{1}{(-x+1)^{\frac{1}{6}}} > 0.$$

Or l'intégrale de Riemann $\int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{(-x+1)^{\frac{1}{6}}}$ est d'exposant $\frac{1}{6} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{1}{r^{3} |\ln(r)|^{\frac{1}{6}}} dx$ converge également.

En conclusion, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{1}{r^{3} |\ln(r)|^{\frac{1}{6}}} dx$ converge.

Corrigé 76. L'application $x \mapsto e^{\left(-|\ln(x)|^9\right)}$ est continue sur [0,1]. Étudions les problèmes éventuels \leftarrow page 9 d'intégrabilité au voisinage de 0.

Au voisinage de 0. Par composition de limites, on a: $\lim_{x\to 0} e^{\left(-|\ln(x)|^9\right)} = 0$, donc $x\mapsto e^{\left(-|\ln(x)|^9\right)}$ se prolonge par continuité en 0 et il n'y a pas de problème d'intégrabilité au voisinage de ce point.

En conclusion, l'intégrale $\int_0^1 e^{\left(-|\ln(x)|^9\right)} dx$ converge.

Corrigé 77. L'application $x \mapsto e^{\left(-\ln(x)^2\right)}$ est continue sur $]0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage de 0. Par composition de limites, on a : $\lim_{x\to 0} e^{\left(-\ln(x)^2\right)} = 0$, donc $x\mapsto e^{\left(-\ln(x)^2\right)}$ se prolonge par continuité en 0 et il n'y a pas de problème d'intégrabilité au voisinage de ce point.

Au voisinage de $+\infty$. Soit x au voisinage de $+\infty$. On a:

$$x^{2}e^{\left(-\ln(x)^{2}\right)} = e^{-\ln(x)^{2} + 2\ln(x)} = e^{-\ln(x)^{2}\left(-\frac{2}{\ln(x)} + 1\right)} \xrightarrow[x \to +\infty]{} 0,$$

donc: $e^{\left(-\ln(x)^2\right)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right)$. Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ converge, donc par le théorème de comparaison des intégrales de fonctions positives il en est de même de l'intégrale $\int_{1}^{+\infty} e^{\left(-\ln(x)^{2}\right)} \mathrm{d}x.$

En conclusion, l'intégrale $\int_0^{+\infty} e^{\left(-\ln(x)^2\right)} dx$ converge.

Corrigé 78. L'application $x \mapsto \frac{1}{x\left(\frac{1}{x}+1\right)}$ est continue sur $[1,+\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$.

 \leftarrow page 9

Au voisinage de $+\infty$. On a: $\frac{1}{x\left(\frac{1}{x}+1\right)} \sim \frac{1}{x} > 0$, or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x}$ est

d'exposant $1 \le 1$, donc elle diverge. On en déduit que l'intégrale $\int_1^{+\infty} \frac{1}{x\left(\frac{1}{x}+1\right)} \mathrm{d}x$ diverge également.

Corrigé 79. L'application $x \mapsto \frac{\sqrt{x}}{\ln(x)^2}$ est continue sur $\left[\frac{1}{2},1\right]$. Étudions les problèmes éventuels \leftarrow page 9 d'intégrabilité au voisinage de 1.

Au voisinage de 1. Pour tout x au voisinage de 1, on a:

$$\frac{\sqrt{x}}{\ln(x)^2} \underset{x \to 1}{\sim} \frac{1}{(x-1)^2} > 0.$$

Or l'intégrale de Riemann $\int_{\frac{1}{2}}^{1} \frac{dx}{(x-1)^2}$ est d'exposant $2 \ge 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{\sqrt{x}}{\ln(x)^2} dx$ diverge également.

Corrigé 80. L'application $x \mapsto \sqrt{-x+1}|\ln(x)|^{\frac{7}{5}}$ est continue sur]0,1]. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0. Notez que pour tout $x \le 1$, on a: $|\ln(x)| = -\ln(x)$. Cela peut vous éviter de raisonner avec des valeurs absolues (et explique les éventuels signes moins dans le raisonnement ci-dessous, si raisonnement pour $t \le 1$ il y a).

 \leftarrow page 9

Au voisinage de 0. On a : $\sqrt{-x+1} |\ln(x)|^{\frac{7}{5}} \sim_{x\to 0} (-\ln(x))^{\frac{7}{5}} > 0$. Utilisons la méthode « $x^{\alpha}f(x)$ » : soit $\alpha \in \mathbb{R}$. On a, au voisinage de 0 :

$$x^{\alpha} \cdot (-\ln(x))^{\frac{7}{5}} = x^{\alpha} \cdot (-\ln(x))^{\frac{7}{5}} \underset{x \to 0}{\longrightarrow} \begin{cases} +\infty & \text{si } \alpha \leq 0, \\ 0 & \text{si } \alpha > 0, \end{cases}$$

d'après le théorème des croissances comparées (pour le cas $\alpha > 0$). Par conséquent, pour tout $\alpha \in \mathbb{R}$ tel que $\alpha > 0$, on a:

$$\left(-\ln\left(x\right)\right)^{\frac{7}{5}} = \mathop{o}_{x\to 0}\left(\frac{1}{x^{\alpha}}\right).$$

Choisissons $\alpha \in \mathbb{R}$ de sorte que $\alpha > 0$ et $\alpha < 1$, par exemple: $\alpha = \frac{1}{2}$ (la moyenne de 1 et de 0). Alors d'après ce qui précède, on a: $(-\ln(x))^{\frac{7}{5}} = \mathop{o}_{x \to 0} \left(\frac{1}{x^{\frac{1}{2}}}\right)$ parce que $\frac{1}{2} > 0$, or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$ est d'exposant $\frac{1}{2} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 (-\ln(x))^{\frac{7}{5}} \, \mathrm{d}x$ converge également. Par comparaison, l'intégrale $\int_0^1 \sqrt{-x+1} |\ln(x)|^{\frac{7}{5}} \, \mathrm{d}x$ converge également.

En conclusion, l'intégrale $\int_0^1 \sqrt{-x+1} |\ln(x)|^{\frac{7}{5}} dx$ converge.

Corrigé 81. L'application $x\mapsto \frac{1}{\sqrt{x}\left(\frac{1}{\sqrt{x}}+1\right)}$ est continue sur $[1,+\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$.

Au voisinage de $+\infty$. On a: $\frac{1}{\sqrt{x}\left(\frac{1}{\sqrt{x}}+1\right)} \sim \frac{1}{\sqrt{x}} > 0$, or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{\sqrt{x}}$ est d'exposant $\frac{1}{2} \leqslant 1$, donc elle diverge. On en déduit que l'intégrale $\int_{1}^{+\infty} \frac{1}{\sqrt{x}(\frac{1}{x}+1)} dx$ diverge également.

Corrigé 82. L'application $x \mapsto \frac{\sinh\left(x^{\frac{1}{9}}\right)}{x^5}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 9 d'intégrabilité au voisinage de 0

Au voisinage de 0. Un équivalent usuel permet d'obtenir:

$$\frac{\sinh\left(x^{\frac{1}{9}}\right)}{x^5} \underset{x\to 0}{\sim} \frac{1}{x^{\frac{44}{9}}}.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{r^{\frac{44}{9}}}$ est d'exposant $\frac{44}{9} \geqslant 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{\sinh\left(x^{\frac{1}{9}}\right)}{x^5} dx$ diverge également.

Corrigé 83. L'application $x \mapsto \frac{x^2}{(x-1)^2}$ est continue sur [0,1[. Étudions les problèmes éventuels d'intégrabilité au voisinage de 1

Au voisinage de 1. On a : $\frac{x^2}{(x-1)^2} \sim \frac{1}{(x-1)^2} > 0$. Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{(x-1)^2}$ est d'exposant $2 \ge 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{x^2}{(x-1)^2} dx$ diverge également.On en déduit que l'intégrale $\int_0^1 \frac{x^2}{(x-1)^2} dx$ diverge également.

Corrigé 84. L'application $x \mapsto e^{\left(-\ln(x)^3\right)}$ est continue sur $[1, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$.

Au voisinage de $+\infty$. Soit x au voisinage de $+\infty$. On a:

$$x^{2}e^{\left(-\ln(x)^{3}\right)} = e^{-\ln(x)^{3} + 2\ln(x)} = e^{-\ln(x)^{3}\left(-\frac{2}{\ln(x)^{2}} + 1\right)} \underset{x \to +\infty}{\longrightarrow} 0,$$

donc: $e^{\left(-\ln(x)^3\right)} = \sum_{x \to +\infty}^{o} \left(\frac{1}{x^2}\right)$. Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ converge, donc par le théorème de comparaison des intégrales de fonctions positives il en est de même de l'intégrale $\int_{1}^{+\infty} e^{\left(-\ln(x)^3\right)} \mathrm{d}x.$

En conclusion, l'intégrale $\int_{1}^{+\infty} e^{\left(-\ln(x)^3\right)} dx$ converge.

raisonnement ci-dessous, si raisonnement pour $t \leq 1$ il y a).

Corrigé 85. L'application $x \mapsto \frac{\sqrt{x}}{\sqrt{|\ln{(x)}|}}$ est continue sur $\left[\frac{1}{2},1\right[$. Étudions les problèmes éventuels \leftarrow page 10 d'intégrabilité au voisinage de 1. Notez que pour tout $x \leq 1$, on a: $|\ln(x)| = -\ln(x)$. Cela peut vous éviter de raisonner avec des valeurs absolues (et explique les éventuels signes moins dans le

Au voisinage de 1. Pour tout x au voisinage de 1, on a:

$$\frac{\sqrt{x}}{\sqrt{|\ln(x)|}} \sim \frac{1}{(-x+1)^{\frac{1}{2}}} > 0.$$

Or l'intégrale de Riemann $\int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{\sqrt{-x+1}}$ est d'exposant $\frac{1}{2} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{\sqrt{x}}{\sqrt{|\ln(x)|}} dx$ converge également.

En conclusion, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{\sqrt{x}}{\sqrt{|\ln(x)|}} dx$ converge.

Corrigé 86. L'application $x \mapsto \frac{\ln(x)^4}{\sqrt{x}}$ est continue sur $]0, +\infty[$. Étudions les problèmes éventuels $]0, +\infty[$. d'intégrabilité au voisinage de 0 et $+\infty$.

Au voisinage $de + \infty$. Pour tout $x \ge 2$, on a:

$$\frac{\ln\left(x\right)^4}{\sqrt{x}} \geqslant \frac{\ln\left(2\right)^4}{\sqrt{x}} \geqslant 0.$$

Or l'intégrale de Riemann $\int_2^{+\infty} \frac{\mathrm{d}x}{\sqrt{x}}$ est d'exposant $\frac{1}{2} \leqslant 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_2^{+\infty} \frac{\ln(x)^4}{\sqrt{x}} dx$ diverge également, et donc $\int_{1}^{+\infty} \frac{\ln(x)^4}{\sqrt{x}} dx$ aussi.

Par conséquent l'intégrale $\int_0^{+\infty} \frac{\ln(x)^4}{\sqrt{x}} dx$ diverge aussi.

également.

Corrigé 87. L'application $x \mapsto \frac{x^{\frac{350}{13}}(-x+1)^{\frac{4}{9}}}{|\ln(x)|^{\frac{5}{19}}}$ est continue sur]0,1[. Étudions les problèmes \leftarrow page 10 éventuels d'intégrabilité au voisinage de 0 et 1. Notez que pour tout $x \leq 1$, on a : $|\ln(x)| = -\ln(x)$. Cela peut vous éviter de raisonner avec des valeurs absolues (et explique les éventuels signes moins dans le raisonnement ci-dessous, si raisonnement pour $t \leq 1$ il y a).

Au voisinage de 0. On a: $\frac{x^{\frac{350}{13}}(-x+1)^{\frac{4}{9}}}{|\ln(x)|^{\frac{5}{19}}} \sim \frac{x^{\frac{350}{13}}}{(-\ln(x))^{\frac{5}{19}}} > 0$. On a: $\lim_{x\to 0} \frac{x^{\frac{350}{13}}}{\ln(x)^{\frac{5}{19}}} = 0$. On peut donc prolonger l'application $x\mapsto \frac{x^{\frac{350}{13}}}{\ln(x)^{\frac{5}{19}}}$ par continuité en 0 (en posant que sa valeur y est nulle). Elle se prolonge donc en une application continue sur le SEGMENT $[0,\frac{1}{2}]$: on en déduit que l'intégrale $\int_0^{\frac{1}{2}} \frac{x^{\frac{350}{13}}}{\ln(x)^{\frac{5}{19}}} \mathrm{d}x$ converge. Par comparaison, l'intégrale $\int_0^{\frac{1}{2}} \frac{x^{\frac{350}{13}}(-x+1)^{\frac{4}{9}}}{|\ln(x)|^{\frac{5}{19}}} \mathrm{d}x$ converge

Au voisinage de 1. On a: $\frac{x^{\frac{350}{13}}(-x+1)^{\frac{4}{9}}}{|\ln(x)|^{\frac{5}{19}}} \sim_{x\to 1} (-x+1)^{\frac{31}{171}} > 0$. Or l'intégrale de Riemann $\int_{1}^{1} (-x+1)^{\frac{31}{171}} dx$ converge en tant qu'intégrale de fonction continue sur un segment. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{x^{\frac{\omega\omega}{13}}(-x+1)^{\frac{5}{9}}}{|\ln(x)|^{\frac{5}{19}}} dx$ converge également. Par comparaison, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{x^{\frac{350}{13}}(-x+1)^{\frac{4}{9}}}{|\ln(x)|^{\frac{5}{19}}} dx$ converge également.

En conclusion, l'intégrale $\int_0^1 \frac{x^{\frac{350}{13}}(-x+1)^{\frac{2}{9}}}{|\ln(x)|^{\frac{5}{19}}} dx \text{ converge.}$

Corrigé 88. L'application $x \mapsto 8x \ln\left(\frac{1}{x} + 1\right) + \frac{3}{x} + \arctan\left(\frac{1}{x}\right) - 8\cosh\left(\frac{3}{x}\right)$ est continue sur $]0,+\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

On a:

$$\begin{split} &\frac{3}{x} + \arctan\left(\frac{1}{x}\right) + 8x\ln\left(\frac{1}{x} + 1\right) - 8\cosh\left(\frac{3}{x}\right) \\ &= \frac{3}{x} + \left(\frac{1}{x} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) + 8\left(1 - \frac{1}{2x} + \frac{1}{3x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) - 8\left(1 + \frac{9}{2x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) \\ &= -\frac{100}{3x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right) \mathop{\sim}_{x \to 0} - \frac{100}{3x^2}. \end{split}$$

Or la fonction de Riemann $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives (qu'on peut utiliser ici à condition de se ramener à la fonction opposée), la fonction $x \mapsto 8x \ln\left(\frac{1}{x}+1\right) + \frac{3}{x} + \arctan\left(\frac{1}{x}\right) - 8\cosh\left(\frac{3}{x}\right)$ est intégrable au voisinage de $+\infty$: d'où le résultat.

Corrigé 89. L'application $x \mapsto \frac{x^{\frac{1}{3}}}{x^{\frac{10}{3}} + 1}$ est continue sur $[0, +\infty[$. Étudions les problèmes éventuels \leftarrow page 10 d'intégrabilité au voisinage de $+\infty$

Au voisinage de $+\infty$. On a: $\frac{x^{\frac{1}{3}}}{x^{\frac{10}{3}}+1} \sim \frac{1}{x^3} > 0$, or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^3}$ est d'exposant 3>1, donc elle converge. Par comparaison, l'intégrale $\int_1^{+\infty} \frac{x^{\frac{1}{3}}}{r^{\frac{10}{3}} + 1} dx$ converge également.

En conclusion, l'intégrale $\int_0^{+\infty} \frac{x^{\frac{1}{3}}}{x^{\frac{10}{2}}+1} dx$ converge.

Corrigé 90. L'application $x \mapsto \frac{e^{\left(x^{\frac{2}{3}}\right)} - 1}{x^{\frac{1}{4}}}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 10 d'intégrabilité au voisinage de 0.

Au voisinage de 0. Un équivalent usuel permet d'obtenir :

$$\frac{e^{\left(x^{\frac{2}{3}}\right)} - 1}{x^{\frac{1}{3}}} \sim x^{\frac{1}{3}}.$$

On en déduit : $\lim_{x\to 0} \frac{e^{\left(x^{\frac{2}{3}}\right)}-1}{x^{\frac{1}{3}}} = 0$, donc $x\mapsto \frac{e^{\left(x^{\frac{2}{3}}\right)}-1}{x^{\frac{1}{3}}}$ se prolonge par continuité en 0. Il n'y a pas de problème d'intégrabilité au voisinage de ce point.

En conclusion, l'intégrale $\int_0^1 \frac{e^{\left(x^{\frac{3}{3}}\right)}-1}{x^{\frac{1}{3}}} dx$ converge.

Corrigé 91. L'application $x \mapsto \frac{x}{(x-1)^{16}|\ln(x)|^{\frac{2}{3}}}$ est continue sur]0,1[. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0 et 1. Notez que pour tout $x \leqslant 1$, on a : $|\ln(x)| = -\ln(x)$.

 \leftarrow page 10

Cela peut vous éviter de raisonner avec des valeurs absolues (et explique les éventuels signes moins dans le raisonnement ci-dessous, si raisonnement pour $t \leq 1$ il y a).

Au voisinage de 1. On a: $\frac{x}{(x-1)^{16}|\ln(x)|^{\frac{2}{3}}} \sim \frac{1}{(-x+1)^{\frac{50}{3}}} > 0$. Or l'intégrale de Riemann

 $\int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{(-x+1)^{\frac{50}{3}}}$ est d'exposant $\frac{50}{3} \geqslant 1$, donc elle diverge. D'après le théorème de comparaison des

intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}}^{1} \frac{x}{(x-1)^{16}|\ln(x)|^{\frac{2}{3}}} dx$ diverge également.

Par conséquent l'intégrale $\int_0^1 \frac{x}{|\ln(x)|^{\frac{2}{3}}} dx$ diverge aussi, et $\int_0^1 \frac{x}{(x-1)^{16} |\ln(x)|^{\frac{2}{3}}} dx$ également.

Corrigé 92. L'application $x \mapsto 2x \sin\left(\frac{1}{x}\right) + \frac{1}{x} - \frac{1}{3}\arctan\left(\frac{3}{x}\right) - 2\cos\left(\frac{1}{x}\right)$ est continue sur $[0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de $+\infty$, en faisant un développement asymptotique de cette fonction.

On a:

$$\begin{split} &\frac{1}{x} - \frac{1}{3}\arctan\left(\frac{3}{x}\right) + 2x\sin\left(\frac{1}{x}\right) - 2\cos\left(\frac{1}{x}\right) \\ &= \frac{1}{x} - \frac{1}{3}\left(\frac{3}{x} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) + 2\left(1 - \frac{1}{6x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) - 2\left(1 - \frac{1}{2x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right)\right) \\ &= \frac{2}{3x^2} + \mathop{o}_{x \to +\infty}\left(\frac{1}{x^2}\right) \underset{x \to 0}{\sim} \frac{2}{3x^2}. \end{split}$$

Or la fonction de Riemann $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty$ car 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives, la fonction $x \mapsto 2x \sin\left(\frac{1}{x}\right) + \frac{1}{x} - \frac{1}{3} \arctan\left(\frac{3}{x}\right) - \frac{1}{3} \arctan\left(\frac{3}{x}\right)$ $2\cos\left(\frac{1}{r}\right)$ est intégrable au voisinage de $+\infty$: d'où le résultat.

Corrigé 93. L'application $x \mapsto \frac{\sinh\left(3x^{\frac{1}{3}}\right)}{x^3}$ est continue sur]0,1]. Étudions les problèmes éventuels \leftarrow page 11 d'intégrabilité au voisinage de 0

Au voisinage de 0. Un équivalent usuel permet d'obtenir:

$$\frac{\sinh\left(3\,x^{\frac{1}{3}}\right)}{x^3} \underset{x\to 0}{\sim} \frac{3}{x^{\frac{8}{3}}}.$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x_3^{\frac{8}{3}}}$ est d'exposant $\frac{8}{3} \ge 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{\sinh\left(3\,x^{\frac{1}{3}}\right)}{x^3} \mathrm{d}x$ diverge également.

Corrigé 94. L'application $x \mapsto \frac{x^2}{x^{\frac{404}{9}} + 1}$ est continue sur $[0, +\infty[$. Étudions les problèmes éventuels d'intégrabilité au voisinage de +

Au voisinage de $+\infty$. On a: $\frac{x^2}{x^{\frac{404}{9}}+1} \sim \frac{1}{x^{\frac{386}{9}}} > 0$, or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^{\frac{386}{9}}}$ est d'exposant $\frac{386}{9} > 1$, donc elle converge. Par comparaison, l'intégrale $\int_{1}^{+\infty} \frac{x^2}{x^{\frac{404}{9}} + 1} dx$ converge également.

En conclusion, l'intégrale $\int_0^{+\infty} \frac{x^2}{x^{\frac{404}{9}} + 1} dx$ converge.

Corrigé 95. L'application $x \mapsto x \ln(x)$ est continue sur [0,2]. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0. Notez que pour $t \leq 1$, il peut être préférable d'étudier l'intégrabilité de l'application opposée $x \mapsto -x \ln(x)$, afin de se ramener à une intégrale de fonction positive et raisonner par comparaison (en effet le logarithme est négatif au voisinage de 0, donc son opposé est positif).

 \leftarrow page 11

Au voisinage de 0. On a: $\lim_{x\to 0} x \ln(x) = 0$ d'après le théorème des croissances comparées. On peut donc prolonger l'application $x \mapsto x \ln(x)$ par continuité en 0 (en posant que sa valeur y est nulle). Elle se prolonge donc en une application continue sur le SEGMENT [0,2]: on en déduit que l'intégrale $\int_0^2 x \ln(x) dx$ converge.

En conclusion, l'intégrale $\int_{0}^{2} x \ln(x) dx$ converge.

Corrigé 96. L'application $x \mapsto \frac{\cosh\left(51\,x^{\frac{1}{68}}\right) - \cosh\left(5\,x^{\frac{1}{68}}\right)}{x}$ est continue sur]0,1]. Étudions les \leftarrow page 11 problèmes éventuels d'intégrabilité au voisinage de 0

Au voisinage de 0. Un développement limité au voisinage de 0 nous permet d'obtenir :

$$\begin{split} \frac{\cosh\left(51\,x^{\frac{1}{68}}\right) - \cosh\left(5\,x^{\frac{1}{68}}\right)}{x} &= \frac{\left(1 + \frac{2601}{2}\,x^{\frac{1}{34}} + \mathop{O}_{x \to 0}\left(x^{\frac{1}{17}}\right)\right) - \left(1 + \frac{25}{2}\,x^{\frac{1}{34}} + \mathop{O}_{x \to 0}\left(x^{\frac{1}{17}}\right)\right)}{x} \\ &= \frac{1288\,x^{\frac{1}{34}} + \mathop{O}_{x \to 0}\left(x^{\frac{1}{17}}\right)}{x} \\ &\stackrel{\sim}{=} \frac{1288}{x^{\frac{33}{34}}}. \end{split}$$

Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{x^{\frac{33}{34}}}$ est d'exposant $\frac{33}{34} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 \frac{\cosh\left(51\,x^{\frac{1}{68}}\right) - \cosh\left(5\,x^{\frac{1}{68}}\right)}{r} \mathrm{d}x$ converge également.

En conclusion, l'intégrale $\int_0^1 \frac{\cosh\left(51\,x^{\frac{1}{68}}\right) - \cosh\left(5\,x^{\frac{1}{68}}\right)}{r} \mathrm{d}x$ converge.

Corrigé 97. L'application $x \mapsto \frac{\ln(x)^2}{x}$ est continue sur $[2, +\infty[$. Étudions les problèmes éventuels \leftarrow page 11 d'intégrabilité au voisinage de $+\infty$.

Au voisinage $de +\infty$. Pour tout $x \ge 2$, on a:

$$\frac{\ln\left(x\right)^{2}}{x} \geqslant \frac{\ln\left(2\right)^{2}}{x} \geqslant 0.$$

Or l'intégrale de Riemann $\int_{2}^{+\infty} \frac{\mathrm{d}x}{x}$ est d'exposant $1 \leq 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{2}^{+\infty} \frac{\ln(x)^{2}}{r} dx$ diverge également.

Corrigé 98. L'application $x \mapsto \frac{1}{x \ln(x)}$ est continue sur $]1, +\infty[$. Étudions les problèmes éventuels $]+\infty[$ d'intégrabilité au voisinage de 1 et $+\infty$.

Au voisinage de 1. Pour tout x au voisinage de 1, on a:

$$\frac{1}{x\ln(x)} \underset{x \to 1}{\sim} \frac{1}{x-1} > 0.$$

Or l'intégrale de Riemann $\int_{1}^{2} \frac{dx}{x-1}$ est d'exposant $1 \ge 1$, donc elle diverge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^2 \frac{1}{x \ln{(x)}} dx$ diverge également. Par conséquent l'intégrale $\int_{1}^{+\infty} \frac{1}{x \ln{(x)}} dx$ diverge aussi.

Corrigé 99. L'application $x \mapsto -(x-1)\ln(x)$ est continue sur [0,1]. Étudions les problèmes éventuels d'intégrabilité au voisinage de 0. Notez que pour $t \leq 1$, il peut être préférable d'étudier l'intégrabilité de l'application opposée $x \mapsto -\ln(x)$, afin de se ramener à une intégrale de fonction positive et raisonner par comparaison (en effet le logarithme est négatif au voisinage de 0, donc son opposé est positif).

 \leftarrow page 11

Au voisinage de 0. On a: $(x-1)\ln(x) \sim -\ln(x) > 0$. Utilisons la méthode « $x^{\alpha}f(x)$ » : soit $\alpha \in \mathbb{R}$. On a, au voisinage de 0:

$$x^{\alpha} \cdot (-\ln(x)) = -x^{\alpha} \cdot \ln(x) \xrightarrow[x \to 0]{} \begin{cases} +\infty & \text{si } \alpha \leq 0, \\ 0 & \text{si } \alpha > 0, \end{cases}$$

d'après le théorème des croissances comparées (pour le cas $\alpha > 0$). Par conséquent, pour tout $\alpha \in \mathbb{R}$ tel que $\alpha > 0$, on a:

$$-\ln(x) = \mathop{o}_{x \to 0} \left(\frac{1}{x^{\alpha}}\right).$$

Choisissons $\alpha \in \mathbb{R}$ de sorte que $\alpha > 0$ et $\alpha < 1$, par exemple: $\alpha = \frac{1}{2}$ (la moyenne de 1 et de 0). Alors d'après ce qui précède, on a: $-\ln(x) = o \choose x \to 0$ parce que $\frac{1}{2} > 0$, or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$ est d'exposant $\frac{1}{2} < 1$, donc elle converge. D'après le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 -\ln(x) dx$ converge également. Par comparaison, l'intégrale $\int_0^1 (x-1) \ln(x) dx$ converge également.

En conclusion, l'intégrale $\int_0^1 -(x-1) \ln(x) dx$ converge.

Corrigé 100. L'application $x \mapsto \frac{1}{\cosh\left(-\frac{3}{2}\sin\left(\frac{1}{4}x\right)\right)-1} - \frac{128}{9x^2}$ est continue au voisinage de 0. Déterminons un équivalent de cette fonction en 0, avec un développement limité. Deux termes sont nécessaires (pourquoi?). Tout d'abord: $\sin(x) = x - \frac{1}{6}x^3 + o(x^4)$. On compose ce développement limité (où l'on remplace x par $\frac{1}{4}x$) avec celui de $x \mapsto \cosh(x)$, ce qui est licite puisque

 $-\frac{3}{2}\sin\left(\frac{1}{4}x\right) \xrightarrow[x\to 0]{} 0$, et on obtient:

$$\cosh\left(-\frac{3}{2}\sin\left(\frac{1}{4}x\right)\right)
= 1 + \frac{1}{2}\left(-\frac{1}{384}x^3 + \frac{1}{4}x + o_{x\to 0}\left(x^3\right)\right)^2 + \frac{1}{24}\left(\frac{1}{4}x + o_{x\to 0}\left(x\right)\right)^4 + o_{x\to 0}\left(x^4\right)
= 1 + \frac{9}{128}x^2 - \frac{21}{32768}x^4 + o_{x\to 0}\left(x^4\right).$$

On en tire d'une part : $\cosh\left(-\frac{3}{2}\sin\left(\frac{1}{4}x\right)\right) - 1 \sim \frac{9}{128}x^2$ (utile pour la suite, mais insuffisant pour conclure puisqu'on ne somme pas les équivalents!), et d'autre part :

$$\frac{1}{\cosh\left(-\frac{3}{2}\sin\left(\frac{1}{4}x\right)\right) - 1} - \frac{128}{9x^2} = \frac{9x^2 - 128\left(\frac{9}{128}x^2 - \frac{21}{32768}x^4 + o(x^4)\right)}{9x^2\left(\cosh\left(-\frac{3}{2}\sin\left(\frac{1}{4}x\right)\right) - 1\right)}$$

$$= \frac{\frac{21}{256}x^4 + o(x^4)}{9x^2\left(\cosh\left(-\frac{3}{2}\sin\left(\frac{1}{4}x\right)\right) - 1\right)}$$

$$\sim \frac{\frac{21}{32768}x^4}{x^3 + o(x^4)}$$

$$\sim \frac{\frac{21}{32768}x^4}{\frac{81}{128}x^4} = \frac{7}{54}.$$

On en déduit:

$$\lim_{x \to 0^+} \left(\frac{1}{\cosh\left(-\frac{3}{2}\sin\left(\frac{1}{4}x\right)\right) - 1} - \frac{128}{9x^2} \right) = \frac{7}{54}.$$

L'application $x\mapsto \frac{1}{\cosh\left(-\frac{3}{2}\sin\left(\frac{1}{4}x\right)\right)-1}-\frac{128}{9\,x^2}$ se prolonge donc par continuité en 0 : elle est intégrable à son voisinage. D'où le résultat.