High Probability Complexity Bounds for Trust-Region Methods with Noisy Oracles

Liyuan Cao 曹立元

Beijing International Center for Mathematical Research, Peking University 北京大学北京国际数学研究中心

April 8, 2023

Collaborators

Albert S. Berahas University of Michigan

Katya Scheinberg Cornell University

Liyuan Cao, Albert S. Berahas, and Katya Scheinberg. First-and second-order high probability complexity bounds for trust-region methods with noisy oracles. arXiv preprint arXiv:2205.03667, 2022.

$$\min_{x \in \mathbb{R}^n} \phi(x)$$

 ϕ follows common assumptions

$$\begin{split} \phi(x) &\geq \hat{\phi} \text{ for all } x \in \mathbb{R}^n, \\ \|\nabla \phi(x) - \nabla \phi(y)\| &\leq L_1 \|x - y\| \text{ for all } (x, y) \in \mathbb{R}^n \times \mathbb{R}^n, \end{split}$$

but we only have access to

$$\left\{ \begin{array}{ll} f_k & \\ g_k & \text{instead of} \\ H_k & \end{array} \right. \text{instead of} \left\{ \begin{array}{ll} \phi(x_k) \\ \nabla \phi(x_k) \\ \nabla^2 \phi(x_k). \end{array} \right.$$

$$\min_{x \in \mathbb{R}^n} \phi(x)$$

 ϕ follows common assumptions

$$\phi(x) \ge \hat{\phi}$$
 for all $x \in \mathbb{R}^n$,
 $\|\nabla \phi(x) - \nabla \phi(y)\| \le L_1 \|x - y\|$ for all $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$,

but we only have access to

$$\left\{ \begin{array}{ll} f_k & \\ g_k & \text{instead of} \\ H_k & \end{array} \right. \text{instead of} \left\{ \begin{array}{ll} \phi(x_k) \\ \nabla \phi(x_k) \\ \nabla^2 \phi(x_k). \end{array} \right.$$

A line of work:

algorithm TR method modified to handle noise.

noise Weaker assumptions in more recent work.

result Stronger results in more recent work.

Algorithm: Modified First-Order Trust-Region Method

Inputs: Starting point x_0 , initial trust region radius δ_0 , tolerance parameter r, and hyperparameters $\eta_1 > 0, \eta_2 > 0, \gamma \in (0, 1)$ for controlling the trust region radius.

for k = 0, 1, 2, ... do

Build a quadratic model $m_k(x_k + s) = \phi(x_k) + \langle g_k, s \rangle + 0.5 \langle H_k s, s \rangle$ Compute s_k by approximately minimizing m_k in $B(x_k, \delta_k)$ so that it satisfies the Cauchy decrease condition

$$m_k(x_k) - m_k(x_k + s_k) \ge \frac{1}{2} \|g_k\| \min \left\{ \frac{\|g_k\|}{\|H_k\|}, \delta_k \right\}.$$

Compute

3

$$\rho_k = \frac{f_k - f_k^+ + r}{m_k(x_k) - m_k(x_k + s_k)}$$

and update x and δ

$$(x_{k+1}, \delta_{k+1}) = \begin{cases} (x_k + s_k, \gamma^{-1} \delta_k) & \text{if } \rho_k \ge \eta_1 \text{ and } \left\| \frac{g_k}{g_k} \right\| \le \frac{\eta_2 \delta_k}{\eta_2 \delta_k} \\ (x_k + s_k, \gamma \delta_k) & \text{if } \rho_k \le \eta_1. \end{cases}$$

Livuan Cao 曹立元

Stochastic Oracle

Let $\varphi^{(j)}\left(x_k, \xi_k^{(j)}, \mathcal{S}_k^{(j)}\right)$ be the *j*th-order oracle that returns an estimate of $\nabla^j \phi(x_k)$ such that for all $(e, p) \in \mathcal{S}_k^{(j)} \subseteq [0, \infty) \times [0, 1]$,

$$\mathbb{P}_{\xi_k^{(j)}} \left\{ \| \varphi^{(j)} \left(x_k, \xi_k^{(j)}, \mathcal{S}^{(j)} \right) - \nabla^j \phi(x_k) \| \le e \middle| \mathcal{F}_k \right\} \ge p$$

(c) $\mathcal{S}_k^{(j)}=(0,+\infty)\times[0,\bar{p}]$ probabilistically sufficiently accurate

The Goal of the Analysis

© convergence

$$\liminf_{k \to \infty} \|\nabla \phi(x_k)\| \le \epsilon$$

expected complexity

$$\mathbb{E}\min\{k: \|\nabla\phi(X_k)\| \le \epsilon\} = \mathcal{O}(1/\epsilon^2)$$

h high probability convergence

$$\mathbb{P}\left\{\min\{\|\nabla\phi(X_k)\|:\ 0\leq k\leq T-1\}<\epsilon\right\}$$

 \geq a function of T the converges to 1 as T increase

for some sufficiently large ϵ .

On the Convergence of Stochastic TR

- $\mathcal{S}^{(0)} = [0, \infty) \times [0, 1]$ and $\mathcal{S}^{(1)} = (0, \infty) \times [0, \bar{p}_1]$ for sufficiently large \bar{p}_1 :
 - © Afonso S Bandeira, Katya Scheinberg, and Luis Nunes Vicente. Convergence of trust-region methods based on probabilistic models. SIAM Journal on Optimization, 24(3):1238–1264, 2014.
 - (h) Serge Gratton, Clement W Royer, Luis N Vicente, and Zaikun Zhang. Complexity and global rates of trust-region methods base on probabilistic models. IMA Journal of Numerical Analysis, 38(3):1579-1597, 2018.
- $\mathcal{S}^{(j)} = (0, \infty) \times [0, \bar{p}_j]$ for sufficiently large \bar{p}_j , j = 0, 1:
 - © Ruobing Chen, Matt Menickelly, and Katya Scheinberg. Stochastic optimization using a trust-region method and random models. *Mathematical Programming*, 169(2):447–487, 2018.
- $\mathcal{S}^{(j)} = (0, \infty) \times [0, \bar{p}_j]$ for sufficiently large \bar{p}_j , j = 0, 1, 2 and $\mathbb{E}_{\xi_0} |f_k \phi(x_k)| \leq C_0$:
 - @ Jose Blanchet, Coralia Cartis, Matt Menickelly, and Katya Scheinberg. Convergence rate analysis of a stochastic trust-region method via supermartingales. INFORMS Journal on Optimization, 1(2):92-119, 2019.
- $\mathcal{S}^{(0)} = [\epsilon_f, \infty) \times [0, 1] \text{ and } \mathcal{S}^{(1)} = [\epsilon_g, \infty) \times [0, 1]$:
 - Shigeng Sun and Jorge Nocedal. A trust region method for the optimization of noisy functions. arXiv preprint arXiv:2201.00973, 2022.

Oracle Assumptions

We assume for all k:

$$\mathbb{P}\left\{|f_k - \phi(x_k)| \le e\right\} \\ \mathbb{P}\left\{|f_k^+ - \phi(x_k + s_k)| \le e\right\} \right\} \ge \exp(a(\epsilon_f - e))$$
 unbounded noise,
$$\mathbb{P}\left\{\|g_k - \nabla \phi(x_k)\| \le \kappa_{\text{eg}} \delta_k + \epsilon_g\right\} \ge p_1$$
 irreducible noise,

 $||H_k|| \le \kappa_{\rm bhm}$ for some constant $\kappa_{\rm bhm}$ (bound on hessian of model).

Algorithm: Modified First-Order Trust-Region Method

Inputs: Starting point x_0 , initial trust region radius δ_0 , tolerance parameter r, and hyperparameters $\eta_1 > 0, \eta_2 > 0, \gamma \in (0, 1)$ for controlling the trust region radius.

for k = 0, 1, 2, ... do

Build a quadratic model $m_k(x_k + s) = \phi(x_k) + \langle g_k, s \rangle + 0.5 \langle H_k s, s \rangle$

Compute s_k by approximately minimizing m_k in $B(x_k, \delta_k)$ so that it satisfies the Cauchy decrease condition

$$m_k(x_k) - m_k(x_k + s_k) \ge \frac{1}{2} \|g_k\| \min \left\{ \frac{\|g_k\|}{\|H_k\|}, \delta_k \right\}.$$

Compute

3

$$\rho_k = \frac{f_k - f_k^+ + r}{m_k(x_k) - m_k(x_k + s_k)}$$

and update x and δ

$$(x_{k+1}, \delta_{k+1}) = \begin{cases} (x_k + s_k, \gamma^{-1} \delta_k) & \text{if } \rho_k \ge \eta_1 \text{ and } \left\| \frac{g_k}{g_k} \right\| \le \frac{\eta_2 \delta_k}{\eta_2 \delta_k} \\ (x_k + s_k, \gamma \delta_k) & \text{if } \rho_k \le \eta_1. \end{cases}$$

Livuan Cao 曹立元

Optimization as a Random Process

random variables:	X_k	X_k^+	\mathcal{E}_k	\mathcal{E}_k^+	
realizations:	x_k	$x_k + s_k$	$ f_k - \phi(x_k) $	$ f_k^+ - \phi(x_k + s_k) $	
random variables:	M_k	∇M_k	$\nabla^2 M_k$	Δ_k	ρ_k
realizations:	m_k	g_k	H_k	δ_k	ρ_k

Define

$$I_k = \mathbbm{1}\{\|\nabla M_k - \nabla \phi(X_k)\| \le \kappa_{\rm eg} \Delta_k + \epsilon_g\}$$
 gradient sufficiently accurate $J_k = \mathbbm{1}\{\mathcal{E}_k + \mathcal{E}_k^+ \le r\}$ zeroth-order noise compensated $\Lambda_k = \mathbbm{1}\{\Delta_k > \bar{\Delta}\}$ large TR radius $\Theta_k = \mathbbm{1}\{\rho_k \ge \eta_1 \text{ and } \|\nabla M_k\| \ge \eta_2 \Delta_k\}$ successful step $\Theta_k' = \mathbbm{1}\{\rho_k > \eta_1\}$

where $\bar{\Delta} = C_1 \min_{0 \le k \le T-1} \|\nabla \phi(X_k)\| - C_2 \epsilon_g$.

Classification of Iterations

	$I_k = 1, J_k = 1$			$I_k = 1, J_k = 0$			$I_k = 0, J_k = 1$			$I_k = 0, J_k = 0$		
	*	1	X	*	1	X	*	1	X	*	1	Х
$\Delta_k \in (\bar{\Delta}, \infty)$	1	4	5	6	9	11	13	16	18	20	23	25
$\Delta_k \in (\gamma \bar{\Delta}, \bar{\Delta}]$	2			7			14			21		
$\Delta_k \in (0, \gamma \bar{\Delta}]$	3			8	10	12	15	17	19	22	24	26

Lemma (sufficient condition for successful step)

If $I_k J_k = 1$ and $\Lambda_k = 0$ then $\Theta_k = 1$.

Lemma (progress made in each iteration)

Let $h(\delta) = C_3 \delta^2$. Then we have

$$\phi(X_k) - \phi(X_{k+1}) \ge \begin{cases} h(\Delta_k) - \mathcal{E}_k - \mathcal{E}_k^+ - r & \text{if } \Theta_k = 1 \text{ (successful)} \\ -\mathcal{E}_k - \mathcal{E}_k^+ - r & \text{if } \Theta_k' = 1 \text{ (accepted)} \\ 0 & \text{if } \Theta_k' = 0 \text{ (rejected)}. \end{cases}$$

Lemma (total progress)

$$h(\gamma \bar{\Delta}) \sum_{k=0}^{T-1} \Theta_k \Lambda_k \le \phi(x_0) - \hat{\phi} + \sum_{k=0}^{T-1} \Theta'_k \left(\mathcal{E}_k + \mathcal{E}_k^+ + r \right).$$

Lemma of Total Progress

Lemma (total loss)

For any $t \geq 0$,

$$\mathbb{P}\left\{\sum_{k=0}^{T-1} \left(\mathcal{E}_k + \mathcal{E}_k^+ + r\right) \ge T(4/a + 2\epsilon_f + r) + t\right\} \le \exp\left(-\frac{a}{4}t\right).$$

Let t = rT.

Lemma (total progress)

$$h(\gamma \bar{\Delta}) \sum_{k=0}^{T-1} \Theta_k \Lambda_k \le \phi(x_0) - \hat{\phi} + \sum_{k=0}^{T-1} \Theta'_k \left(\mathcal{E}_k + \mathcal{E}_k^+ + r \right)$$
$$< \phi(x_0) - \hat{\phi} + T(4/a + 2\epsilon_f + 2r)$$

with probability at least $1 - \exp\left(-\frac{ar}{4}T\right)$.

$$h(\gamma \bar{\Delta}) = \gamma^2 C_3 \left(C_1 \min_{0 \le k \le T-1} \|\nabla \phi(X_k)\| - C_2 \epsilon_g \right)^2$$

Liyuan Cao 曹主元 ORSC2022-2023 April 8, 2023 13 / 21

Classification of Iterations

	$I_k = 1, J_k = 1$			$I_k = 1, J_k = 0$			$I_k = 0, J_k = 1$			$I_k = 0, J_k = 0$			
	*	1	×	*	1	Х	*	1	Х	*	1	X	
$\Delta_k \in (\bar{\Delta}, \infty)$	1	4	5	6	9	11	13	16	18	20	23	25	
$\Delta_k \in (\gamma \bar{\Delta}, \bar{\Delta}]$	2			7			14			21			
$\Delta_k \in (0, \gamma \bar{\Delta}]$	3			8	10	12	15	17	19	22	24	26	

Lemma (total progress)

$$h(\gamma \bar{\Delta}) \sum_{k=0}^{T-1} \Theta_k \Lambda_k \le \phi(x_0) - \hat{\phi} + T(4/a + 2\epsilon_f + 2r).$$

Ups and Downs of the Radius

	$I_k = 1, J_k = 1$			$I_k = 1, J_k = 0$			$I_k = 0, J_k = 1$			$I_k = 0, J_k = 0$		
	*	1	X	*	1	×	*	✓	X	*	1	×
$\Delta_k \in (\bar{\Delta}, \infty)$	1	4	5	6	9	11	13	16	18	20	23	25
$\Delta_k \in (\gamma \bar{\Delta}, \bar{\Delta}]$	2			7			14			21		
$\Delta_k \in (0, \gamma \bar{\Delta}]$	3			8	10	12	15	17	19	22	24	26

Liyuan Cao 曹立元

Downs and Ups of the Radius

	$I_k = 1, J_k = 1$			$I_k = 1, J_k = 0$						$I_k = 0, J_k = 0$		
	*	✓	X	*	✓	Х	*	✓	X	*	✓	X
$\Delta_k \in (\bar{\Delta}, \infty)$	1	4	5	6	9	11	13	16	18	20	23	25
$\Delta_k \in (\gamma \bar{\Delta}, \bar{\Delta}]$	2			7			14			21		
$\Delta_k \in (0, \gamma \bar{\Delta}]$	3			8	10	12	15	17	19	22	24	26

$$\sum_{k=0}^{T-1} \Theta_k(1-\Lambda_k) < \sum_{k=0}^{T-1} (1-\Theta_k)(1-\Lambda_k) + \min\left\{\log_\gamma\left(\frac{\bar{\Delta}}{\delta_0}\right), 0\right\} + 1$$

Liyuan Cao 曹立元 ORSC2022-2023

16 / 21

Iterations with Sufficiently Accurate Gradient Estimate

	$I_k = 1, J_k = 1$									$I_k = 0, J_k = 0$		
	*	✓	×	*	✓	Х	*		Х	*		x
$\Delta_k \in (\bar{\Delta}, \infty)$	1	4	5	6	9	11	13	16	18	20	23	25
$\Delta_k \in (\gamma \bar{\Delta}, \bar{\Delta}]$	2			7			14			21		
$\Delta_k \in (0,\gamma\bar{\Delta}]$	3			8	10	12	15	17	19	22	24	26

Lemma

Assume $\mathbb{P}\{I_k = 1 \mid \mathcal{F}_k\} \ge p_1$ holds. By Azuma-Hoeffding inequality, for any positive integer T and any $\hat{p}_1 \in [0, p_1]$ we have

$$\mathbb{P}\left\{\sum_{k=0}^{T-1} I_k > \hat{p}_1 T\right\} \ge 1 - \exp\left(-\frac{(1-\hat{p}_1/p_1)^2}{2}T\right).$$

Liyuan Cao 曹立元 ORSC2022-2023

Iterations with Sufficiently Accurate Function Evaluation

				$I_k = 1, J_k = 0$ \star \checkmark \checkmark								
		·	,		·			·	,		ľ	,
$\Delta_k \in (\bar{\Delta}, \infty)$	1	4	5	6	9	11	13	16	18	20	23	25
$\Delta_k \in (\gamma \bar{\Delta}, \bar{\Delta}]$	2			7			14			21		
$\Delta_k \in (0,\gamma\bar{\Delta}]$	3			8	10	12	15	17	19	22	24	26

Lemma

Assume both $\mathbb{P}\{\mathcal{E}_k > t\}$ and $\mathbb{P}\{\mathcal{E}_k^+ > t\}$ are $\leq \exp(a(\epsilon_f - t))$. Let $p_0 = 1 - 2\exp(a[\epsilon_f - r/2])$. For any positive integer T and any $\hat{p}_0 \in [0, p_0]$, we have

$$\mathbb{P}\left\{\sum_{k=0}^{T-1} J_k > \hat{p}_0 T\right\} \ge 1 - \exp\left(-\frac{(1-\hat{p}_0/p_0)^2}{2}T\right).$$

$$\begin{split} \sum_{k=0}^{T-1} (1-\Theta_k)\Lambda_k &< \sum_{k=0}^{T-1} \Theta_k \Lambda_k + \min\left\{\log_\gamma\left(\frac{\delta_0}{\bar{\Delta}}\right), 0\right\} + 1 \\ &\sum_{k=0}^{T-1} \Theta_k (1-\Lambda_k) < \sum_{k=0}^{T-1} (1-\Theta_k)(1-\Lambda_k) + \min\left\{\log_\gamma\left(\frac{\bar{\Delta}}{\delta_0}\right), 0\right\} + 1 \\ &\mathbb{P}\left\{\sum_{k=0}^{T-1} I_k > \hat{p}_1 T\right\} \geq 1 - \exp\left(-\frac{(1-\hat{p}_1/p_1)^2}{2}T\right) \\ &\mathbb{P}\left\{\sum_{k=0}^{T-1} J_k > \hat{p}_0 T\right\} \geq 1 - \exp\left(-\frac{(1-\hat{p}_0/p_0)^2}{2}T\right) \\ & \qquad \qquad \Downarrow \end{split}$$

$$\mathbb{P}\left\{ \sum_{k=0}^{T-1} \Theta_k \Lambda_k > \left(\hat{p}_0 + \hat{p}_1 - \frac{3}{2} \right) T - \frac{1}{2} \left| \log_{\gamma} \frac{\bar{\Delta}}{\delta_0} \right| - \frac{1}{2} \right\} \\
\geq 1 - \exp\left(-\frac{(1 - \hat{p}_1/p_1)^2}{2} T \right) - \exp\left(-\frac{(1 - \hat{p}_0/p_0)^2}{2} T \right)$$

Let t = rT.

Theorem

Let assumptions hold. Given any $\epsilon > \sqrt{\frac{4\epsilon_f + 8/a + 2r}{C_3\gamma^2C_1^2(2p_0 + 2p_1 - 3)} + \frac{C_2}{C_1}\epsilon_g}$, we have

$$\mathbb{P}\left\{\min\{\|\nabla\phi(X_k)\|:\ 0 \le k \le T - 1\} \le \epsilon\} \ge 1 - \exp\left(-\frac{(1 - \hat{p}_1/p_1)^2}{2}T\right) - \exp\left(-\frac{(1 - \hat{p}_0/p_0)^2}{2}T\right) - \exp\left(-\frac{ar}{4}T\right)$$

for any \hat{p}_0 and \hat{p}_1 such that $\hat{p}_0 + \hat{p}_1 \in \left(\frac{3}{2} + \frac{2\epsilon_f + 4/a + r}{C_3\gamma^2(C_1\epsilon - C_2\epsilon_g)^2}, p_0 + p_1\right]$, any $t \ge 0$, and any

$$T \ge \left(\hat{p}_0 + \hat{p}_1 - \frac{3}{2} - \frac{2\epsilon_f + 4/a + 2r}{C_3 \gamma^2 (C_1 \epsilon - C_2 \epsilon_g)^2}\right)^{-1} \\ \left[\frac{\phi(x_0) - \hat{\phi}}{C_3 \gamma^2 (C_1 \epsilon - C_2 \epsilon_g)^2} + \frac{1}{2} \left| \log_\gamma \frac{C_1 \epsilon - C_2 \epsilon_g}{\delta_0} \right| + \frac{1}{2} \right] = \bar{\mathcal{O}}(\epsilon^{-2}).$$

Other Results

- Analyses under bounded noise assumption.
- Second-order TR method and analysis.
- Numerically testing the strength of the theoretical results.
- Experimenting with different values for r.