Grafos planares

J. A. Rodríguez-Velázquez & A. Estrada-Moreno

URV

Definición

Un grafo es **planar** si se puede representar en el plano sin que se crucen las aristas. Así mismo, se denomina **grafo plano** a una representación de un grafo en el plano de modo que no se crucen las aristas.

Definición

Un grafo es **planar** si se puede representar en el plano sin que se crucen las aristas. Así mismo, se denomina **grafo plano** a una representación de un grafo en el plano de modo que no se crucen las aristas.

Ejemplo

El cubo es un grafo planar. Aquí tenemos dos representaciones, una es plana y la otra no.

Fullerenos

Los siguientes grafos planares pertenecen a la familia de los denominados Fullerenos. Dichos grafos son el modelo matemático de la familia de compuestos químicos que lleva ese nombre.

Ejemplo de fullerenos

El nombre fullereno viene del arquitecto Richard Buckminster Fuller, por la similitud de estos grafos con una de sus construcciones.

Arquitecto: Richard Buckminster Fuller, Montreal, 1967

Definición

Se denomina cara a cada una de las regiones del plano determinadas por un grafo plano, así mismo, se denomina cara exterior a la región no acotada.

Definición

Se denomina **cara** a cada una de las regiones del plano determinadas por un grafo plano, así mismo, se denomina **cara exterior** a la región no acotada.

Ejemplo

El 3-cubo $Q_3 = K_2 \square K_2 \square K_2$ es un grafo planar de 6 caras.

m=número de aristas n= número de vértices C=número de caras ¿Qué relación hay entre m, n y c?

m=6, m=4 C= 4

M=5, N=5 C=Z

m=8, n=7

Para toda representación plana de un grafo planar conexo de c caras, n vértices y m aristas se cumple n+c=m+2.

Para toda representación plana de un grafo planar conexo de c caras, n vértices y m aristas se cumple n+c=m+2.

Demostración

Inducción respecto a m. Si m=1, entonces el grafo ess isomorfo a K_2 . En este caso n=2 y c=1, por lo tanto n+c=m+2.

Para toda representación plana de un grafo planar conexo de c caras, n vértices y m aristas se cumple n+c=m+2.

Demostración

Inducción respecto a m. Si m=1, entonces el grafo ess isomorfo a K_2 . En este caso n=2 y c=1, por lo tanto n+c=m+2.

Vamos a asumir que el resultado se cumple para todo grafo G planar conexo de medida m > 2. Esto es, para G se cumple n + c = m + 2.

Sea G' un grafo planar conexo de orden n', medida m' = m + 1 y c caras.

Para toda representación plana de un grafo planar conexo de c caras, n vértices y m aristas se cumple n+c=m+2.

Demostración

Inducción respecto a m. Si m=1, entonces el grafo ess isomorfo a K_2 . En este caso n=2 y c=1, por lo tanto n+c=m+2.

Vamos a asumir que el resultado se cumple para todo grafo G planar conexo de medida m > 2. Esto es, para G se cumple n + c = m + 2.

Sea G' un grafo planar conexo de orden n', medida m'=m+1 y c caras.

Caso 1. Si G' tiene un vértice v de grado 1, entonces G = G' - v es planar y conexo. Como G tiene orden n = n' - 1, medida m = m' - 1 y c = c' caras, por hipótesis

(n+c = m+2) obtenemos n' + c' = m' + 2.

Para toda representación plana de un grafo planar conexo de c caras, n vértices y m aristas se cumple n+c=m+2.

Demostración

Inducción respecto a m. Si m=1, entonces el grafo ess isomorfo a K_2 . En este caso n=2 y c=1, por lo tanto n+c=m+2.

— Vamos a asumir que el resultado se cumple para todo grafo G planar conexo de medida

 $m \ge 2$. Esto es, para G se cumple n+c=m+2. Sea G' un grafo planar conexo de orden n', medida m'=m+1 y c caras.

Caso 1. Si G' tiene un vértice v de grado 1, entonces G = G' - v es planar y conexo.

Como G tiene orden n = n' - 1, medida m = m' - 1 y c = c' caras, por hipótesis (n + c = m + 2) obtenemos n' + c' = m' + 2.

Caso 2. Si G' no tiene vértices de grado 1, entonces contiene algún ciclo, y para cualquier arista $e \in E(G')$ perteneciente a un ciclo, el grafo G = G' - e es planar y conexo, de orden n = n', medida m = m' - 1 y c = c' - 1 caras. Por hipótesis (n + c = m + 2) obtenemos n' + c' = m' + 2.

Corolario

Para toda representación plana de un grafo planar de c caras, n vértices, m aristas y k componentes conexas se cumple n+c=m+k+1.

Corolario

Para toda representación plana de un grafo planar de c caras, n vértices, m aristas y k componentes conexas se cumple n+c=m+k+1.

Calcula el número de aristas de un grafo G planar, conexo, de orden 12, sabiendo que ocho de sus caras son triángulos y las demás son cuadrados.

Calcula el número de aristas de un grafo G planar, conexo, de orden 12, sabiendo que ocho de sus caras son triángulos y las demás son cuadrados.

Solución

Sea x el número de cuadrados del grafo. Según la fórmula de Euler (m+2=n+c) se deduce que m-x=18. Como cada arista está en dos caras, tenemos 24+4x=2m. De ahí que al resolver el sistema

$$m - x = 18$$
$$m - 2x = 12.$$

se obtiene x = 6 y m = 24. Por lo tanto, el número de aristas de G es 24.

Definición y Corolario

El cuello (girth) de un grafo G es el mínimo de las longitudes de los ciclos de G.

- ① Para todo grafo planar de cuello g, orden n y medida m se cumple $m \leq \frac{g}{g-2}(n-2)$.
- ② Para todo grafo planar G de orden $n \ge 3$ se cumple $m \le 3n 6$.
- 3 Además, si G es libre de triángulos y $n \ge 3$, entonces $m \le 2n 4$.

Demostración

Definición y Corolario

El cuello (girth) de un grafo G es el mínimo de las longitudes de los ciclos de G.

- ① Para todo grafo planar de cuello g, orden n y medida m se cumple $m \leq \frac{g}{g-2}(n-2)$.
- ② Para todo grafo planar G de orden $n \ge 3$ se cumple $m \le 3n 6$.
- 3 Además, si G es libre de triángulos y $n \ge 3$, entonces $m \le 2n 4$.

Demostración

f 0 Como cada cara tiene al menos g aristas y cada arista está a lo sumo en dos caras, tenemos que:

$$cg \leq 2m$$

$$g(m+k+1-n) \leq 2m \text{ (Sustituir } c \text{ en la fórmula de Euler)}$$

$$m \leq \frac{g}{g-2}(n-k-1)$$

$$m \leq \frac{g}{g-2}(n-2)$$

Definición y Corolario

El cuello (girth) de un grafo G es el mínimo de las longitudes de los ciclos de G.

- ① Para todo grafo planar de cuello g, orden n y medida m se cumple $m \leq \frac{g}{g-2}(n-2)$.
- 2 Para todo grafo planar G de orden $n \ge 3$ se cumple $m \le 3n 6$.
- 3 Además, si G es libre de triángulos y $n \ge 3$, entonces $m \le 2n 4$.

Demostración

② Si G es un bosque de k árboles y $n \ge 3$, entonces

$$m = n - k \le n - 1 \le 2(n - 2) \le 3(n - 2) = 3n - 6.$$

En cualquier otro caso $g\geq 3$. Sustituyendo g=3 en $m\leq \frac{g}{g-2}(n-2)$ (Note que la cota superior para n constante es decreciente, por lo que para g=3 alcanza su valor máximo), obtenemos que $m\leq 3n-6$.

③ Si G es libre de triángulos entonces $g \ge 4$, por lo que sustituyendo g = 4 en $m \le \frac{g}{g-2}(n-2)$, obtenemos que $m \le 2n-4$.

- Determina si K_5 es planar.
- Determina si $K_{3,3}$ es planar.

- Determina si K_5 es planar.
- Determina si $K_{3,3}$ es planar.

$$K_5 \rightarrow m=10 \pm 9=3n-6$$
, K_5 no es planar

 $K_{33} \rightarrow m=9 \pm 8=2n-4$, K_{33} no es planar

Sea G el grafo de la figura.

Determina si $G \square K_2$ es planar.

Sea G el grafo de la figura.

Determina si $G \square K_2$ es planar.

Solución

El grafo $G \square K_2$ es bipartito, por lo tanto, si fuera planar se cumpliría $m(G \square K_2) \le 2n(G \square K_2) - 4$.

Sea G el grafo de la figura.

Determina si $G \square K_2$ es planar.

Solución

El grafo $G \square K_2$ es bipartito, por lo tanto, si fuera planar se cumpliría $m(G \square K_2) \le 2n(G \square K_2) - 4$.

Como $m(G \square K_2) = 33 \nleq 32 = 2n(G \square K_2) - 4$, concluimos que $G \square K_2$ no es planar.

Se produce una **subdivisión elemental** de un grafo simple G cuando se elimina una arista $\{x,y\}$ de G y luego se añaden las aristas $\{x,v\}$ y $\{v,y\}$ al grafo $G-\{x,y\}$.

Se produce una **subdivisión elemental** de un grafo simple G cuando se elimina una arista $\{x,y\}$ de G y luego se añaden las aristas $\{x,v\}$ y $\{v,y\}$ al grafo $G-\{x,y\}$.

Dos grafos G_1 y G_2 son **homeomorfos** si se cumple alguna de las siguientes condiciones:

- Son isomorfos.
- Ambos pueden obtenerse mediante una serie de subdivisiones elementales de un mismo grafo.

Teorema de Kuratowski

Un grafo es planar si y sólo si no contiene subgrafos homeomorfos al grafo K_5 o al grafo $K_{3,3}$.

Teorema de Kuratowski

Un grafo es planar si y sólo si no contiene subgrafos homeomorfos al grafo K_5 o al grafo $K_{3,3}$.

Demostración: Capítulo 7 desde la página 316 a la 321 del siguiente libro:

Gross, J. L., Yellen, J., & Anderson, M. (2018). Graph theory and its applications.
 Taylor & Francis Group.

Ejercicio

Determina un subgrafo de $K_4 \square K_2$ homeomorfo a K_5 .

Ejercicio

Determina un subgrafo de $K_4 \square K_2$ homeomorfo a K_5 .

Solución

Determina un subgrafo de $Q_3 + K_1$ homeomorfo a K_5 .

Determina un subgrafo de $Q_3 + K_1$ homeomorfo a K_5 .

Solución

Las matemáticas son la creación más poderosa y bella del espíritu humano.

Stefan Banach

