Т.Д. Момджи, Г.П. Золотова, Н.В. Новик

РАБОЧАЯ ТЕТРАДЬ ПО ИНЖЕНЕРНОЙ ГРАФИКЕ

Рабочая тетрадь по инженерной графике / Сост.; Момджи Т.Д., Золотова Г.П, Новик Н.В.: -М.: Изд-во МГТУ им. Н.Э. Баумана, 2008, - с., ил.

Рабочая тетрадь содержит материалы для практических занятий по курсу "Инженерная графика", а также задания для самостоятельного решения.

В тетрадь входят как задачи по начертательной геометрии, так и по черчению, связанные с построением изображений по ГОСТ 2.305-68 (Изображения – виды, разрезы, сечения).

Графическое решение задач следует осуществлять непосредственно в рабочей тетради с помощью чертежных инструментов. При этом линии связи и вспомогательные построения проводятся сплошными тонкими линиями, а конечный результат обводится сплошными толстыми основными линиями по ГОСТ 2.303-68.

Буквенные и цифровые обозначения наносятся согласно принятой символике и выполняются чертёжным шрифтом по ГОСТ 2.304-81.

Задачи, отмеченные знаком *, в обязательном порядке должны быть решены в 3D-пространстве в системе Автокад на лабораторных работах.

Для студентов всех специальностей и преподавателей, работающих в области инженерной графики.

СПИСОК ЛИТЕРАТУРЫ

- 1. С.А. Фролов Начертательная геометрия. М.: Машиностроение, 1983.
- 2. С.А. Фролов. Сборник задач по начертательной геометрии: Учебное пособие для студентов втузов. М.: Машиностроение, 1980. –142 с. , ил.
- 3. Арустамов Х.А. Сборник задач по начертательной геометрии с решением типовых задач. Учебное пособие для студентов втузов. М.: Машиностроение, 1980.
- 2. ЕСКД. Сборник стандартов. М.: Изд-во стандартов, 1991.

ОГЛАВЛЕНИЕ

Обозначения и символы	4
1. Метод проекций. Центральные, параллельные и ортогональные проекции	6
2. Проекции точки	7
3. Проекции прямой линии. Положение прямой относительно плоскостей проекций.	
Точка на прямой. Определение действительной величины отрезка прямой и углов	
его наклона к плоскостям проекций. Взаимное положение прямых.	
Проецирование прямого угла	8
4. Плоскость. Точки и прямые линии, расположенные в плоскости	11
5. Взаимное положение двух плоскостей, прямой линии и плоскости (параллельность,	
пересечение, перпендикулярность)	13
6. Способы преобразования ортогональных проекций	18
7. Метрические задачи. Определение расстояний и величин углов	20
8. Поверхности. Точка и линия на поверхности	24
9. Пересечение поверхностей с плоскостью и прямой. Касательные плоскости	26
10. Взаимное пересечение поверхностей	30
11. Проецирование геометрических тел и моделей.	40
12. Построение изображений. Виды, разрезы, сечения	43

Обозначения и символы

1. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

2. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

3. Линии уровня обозначаются:

h — горизонталь,

v — фронталь,

w — профильная прямая.

4. Поверхности обозначаются строчными буквами греческого алфавита:

$$\alpha$$
, β , γ , δ , ..., λ , μ , ω ,...

5. Углы обозначаются строчными буквами греческого алфавита с добавлением индекса «градус»:

$$\alpha^{\circ},\,\beta^{\circ},\,\gamma^{\circ},\,...,\,\lambda^{\circ},\,\mu^{\circ},\,\omega^{\circ},...$$

6. Плоскости проекций обозначаются:

 $\pi_{\scriptscriptstyle 1}$ - горизонтальная;

 π_{2} - фронтальная;

 $\pi_{\mathbf{3}}$ - профильная;

 π_{4}, π_{5}, \dots - дополнительные плоскости проекций.

- 7. Оси проекций обозначаются строчными буквами латинского алфавита x, y, z ; начало координат прописной буквой O.
- 8. Последовательность точек, линий или поверхностей отмечается подстрочными индексами:

$$A_1, A_2, A_3,...,b_1, b_2, b_3,...,\alpha_1, \alpha_2, \alpha_3,...,$$

9. Проекции точек, линий, поверхностей, любой геометрической фигуры на плоскостях проекций обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса. Верхний индекс соответствует плоскости проекций, на которой они получены, например:

 π_1 (горизонтальные проекции) — A', B', 1', 2',... a', b',... a', β' ,...;

 π_2 (фронтальные проекции) — A", B", 1", 2",... а", b",... α ", β ",...;

 π_3 (профильные проекции) — А''', В''', 1''', 2''',... а''', b''',... α''' , β''' ,...;

 π_{4} (дополнительные проекции) — A''', B''', 1''', 2''',... a''', b''',... α'''' , β'''' ,...

10. Следы плоскостей обозначаются:

 h_{α} — горизонтальный след плоскости α ;

 $f_{\mathbf{Q}\alpha}$ — фронтальный след плоскости α ;

 p_{α} — профильный след плоскости α .

11. Расстояние между фигурами пространства обозначаются двумя вертикальными линиями | | .Например:

```
|AB| — расстояние между точками А и В (длина отрезка AB); \\ |Ab| — расстояние от точки А до линии b; \\ |A\beta| — расстояние от точки А до поверхности <math>\beta; 
 |bc| — расстояние между линиями b и c; 
 |\alpha\beta| — расстояние между поверхностями \alpha и \beta. 
12. Следующие символы обозначают: \equiv - \text{ совпадение (тождественность) двух геометрических элементов или их проекций, например, <math>\mathbf{A} \equiv \mathbf{B}, \ \mathbf{a'} \equiv \mathbf{b'}; \parallel - \text{ параллельность}; \frac{\bot}{-} - \text{ скрещиваются.}
```

1. Метод проекций.

Центральные, параллельные и ортогональные проекции.

- 1. По двум центральным проекциям точки A восстановить ее положение в пространстве, если известны соответствующие центры проецирования
- 2. По двум центральным проекциям геометрического объекта восстановить его положение в пространстве.

S 1

+

52

- 3. По двум параллельным проекциям отрезка AB восстановить его положение в пространстве, если известны соответствующие направления проецирования S1 и S2.
- 4*. По двум ортогональным проекциям геометрического объекта восстановить его положение в пространстве.

2. Проекции точки

5*. По заданным координатам точек показать их положение на пространственной модели координатных плоскостей проекций. Построить координатные ломаные этих точек. Построить проекции точек: A (30, 20, 25); B (20, -30, 10); C (50, 15, -20); D (40, -30, -30).

 6^* . Построить три проекции точек A, B, C, D, если известно, что A принадлежит плоскости $\pi 1$, B – плоскости $\pi 2$, D – плоскости $\pi 3$, C – оси OX.

3. Проекции прямой линии. Положение прямой относительно плоскостей проекций. Точка на прямой. Определение действительной величины отрезка прямой и углов наклона к плоскостям проекций. Взаимное положение прямых. Проецирование прямого угла.

7*. Построить проекции прямых, симметричных заданной прямой AB относительно: -плоскости проекций $\pi 1$ (прямая CD);

-плоскости проекций $\pi 2$ (прямая KL).

Назвать октанты, в которых располагаются прямые:

АВ - в.....октанте.

CD - в.....октанте.

KL - в..... октанте.

8*. Построить проекции треугольника ABC по координатам его вершин A(25,5,20), B(25,20,0), C(5,20,20). Определить длины и углы наклона сторон треугольника к плоскостям проекций.

10.* Построить недостающие проекции точки C, принадлежащей отрезку AB.

9*. Через точку В провести прямые:

h – параллельно $\pi 1$; f – параллельно $\pi 2$; w –

11*. Построить следы прямой, проходящей через точки A и B и указать, через какие четверти пространства она проходит. Определить, принадлежит ли точка M заданной прямой?

12*. Построить проекции прямой, если даны её фронтальный и профильный следы.

13*. Определить длину отрезка AB и углы его наклона к плоскостям проекций. Отложить на прямой от точки A вправо отрезок длиной 20мм.

14*. Пересечь прямые m и n прямой d, проходящей через точку К. Провести через точку пересечения прямой d c прямой n прямую s, параллельно прямой m.

15*. Пересечь прямые AB и CD третьей прямой, перпендикулярной к ним, т.е. найти расстояний от точки С до заданных прямых. кратчайшее расстояние между скрещивающимися прямыми AB и CD.

16*. Определить натуральную величину

17*. Построить прямоугольник ABCD со стороной ВС=1,5АВ на прямой т, которая от точки С на 35 мм. Какие возможны случаи? параллельна плоскости проекций π2. Определить углы наклона стороны АВ к плоскостям проекций.

18*. Найти на прямой т точку, удаленную

4. Плоскость. Точки и прямые линии, расположенные в плоскости.

19*. Провести через точку A плоскость $\alpha \| \pi 1$ на расстоянии 25мм., через точку B плоскость $\beta \| \pi 2$ на расстоянии 20мм., через точку C плоскость $\gamma \| \pi 3$ на расстоянии 15мм. Построить плоскость общего положения в виде треугольника ABC. Построить недостающие проекции точек.

21*. Построить следы плоскости, заданной параллельными прямыми AB и CD.

 20^* . Провести через прямую AB две плоскости: $\alpha \perp \pi 1$; $\beta \perp \pi 2$. Определить углы наклона этих плоскостей к плоскостям проекций $\pi 1$ и $\pi 2$. Плоскости задать следами.

22*. В плоскости, заданной точками A, B, C, провести: через точку A — горизонталь; через точку С — фронталь; через точку В — линии наибольшего наклона к плоскостям проекций $\pi 1$ и $\pi 2$.

23*. Построить недостающую проекцию отрезка AB, лежащего в плоскости α . Проверить, принадлежит ли отрезок CD заданной плоскости ?

24*. Определить углы наклона плоскости треугольника к плоскостям проекций $\pi 1$ и $\pi 2$.

5. Взаимное положение двух плоскостей, прямой линии и плоскости (параллельность, пересечение, перпендикулярность).

25*. Проверить, параллельны ли заданные плоскости? Через точку С провести плоскость параллельно плоскости α . Плоскость задать как следами, так и пересекающимися прямыми.

26*. Проверить, параллельна ли заданная прямая AB плоскости α? Через точку D провести любую прямую параллельно заданной плоскости.

27*. Найти линии пересечения плоскостей, заданных следами (рис. a, b, c).

28*. Построить линию пересечения двух плоскостей и определить их видимость

29*. Найти точки пересечения прямых с заданными плоскостями, соблюдая условия видимости (рис. a), b), c).

30*. Найти линию пересечения заданных плоскостей.

31*. Построить проекции линии пересечения пирамиды SABCD с плоскостью $\alpha(\alpha \perp \pi 2)$.

32*. Построить проекции точек пересечения прямых f, d и g c гранями пирамиды SABC, соблюдая условия видимости.

33*. Найти линию пересечения заданных плоскостей общего положения и определить их видимость.

34*. Определить кратчайшее расстояние от точки М до заданных плоскостей.

35*. Из точки А восставить перпендикуляр к плоскости α , заданной треугольником. На этом перпендикуляре найти точку, удаленную от плоскости α на расстояние 30 мм, и через нее провести плоскость $\beta \mid \mid \alpha$.

36*. Определить расстояние от точки А до прямой п.

37*. Построить недостающую проекцию прямой d, если известно, что она перпендикулярна прямой m.

38*. Найти расстояние между скрещивающимися прямыми s и m.

6. Способы преобразования ортогональных проекций

39*. Определить длину отрезка прямой общего положения способом вращения вокруг оси і $\pm \pi 2$.

40. Перевести отрезок AB в положение, перпендикулярное $\pi 1$ способом плоскопараллельного перемещения.

41*. Определить истинную величину геометрической фигуры: а) способом замены плоскостей проекций; b) вращением вокруг фронтали.

42*. Совместить плоскость α с плоскостью $\pi 2$ вращением вокруг фронтального следа плоскости.

43*. Построить проекции равностороннего треугольника ABC, расположенного в плоскости α , если известна горизонтальная проекция стороны AB. Решить совмещением с плоскостью $\pi 1$.

44. Построить проекции точки А в указанных системах плоскостей проекций.

45*. Определить системы плоскостей проекций, в которых отрезок AB займет проецирующее положение, и построить его проекции.

7. Метрические задачи. Определение расстояний и величин углов.

46. Определить расстояние от точки до прямой способом замены плоскостей проекций, начиная с замены плоскости π2.

47*. Определить расстояние между параллельными прямыми способом замены плоскости проекций, начиная замены плоскости π1.

48*. Определить расстояние между заданными параллельными плоскостями способом замены плоскостей проекций.

49*. Определить расстояние плоскостью в и параллельной ей прямой т способом замены плоскостей проекций.

50*. Определить расстояние между скрещивающимися прямыми способом замены плоскостей проекций.

51*. Построить проекции окружности, расположенной в плоскости α , если даны ее центр C и радиус R=15мм. Решить заменой плоскостей проекций.

52*. Определить углы наклона плоскости треугольника к плоскостям проекций. Решить заменой плоскостей проекций.

53*. Определить угол между плоскостями способом замены плоскостей проекций.

54. Определить расстояние от точки до прямой способом вращения вокруг горизонтали.

56*. Определить угол между плоскостями способом вращения вокруг фронтали.

8. Поверхности. Точка и линия на поверхности.

57*. Определить недостающие проекции точек и линий, принадлежащих заданным поверхностям: а)конической;

с) прямого цилиндроида;

е) косой плоскости; построить фронтальный очерк поверхности;

b)цилиндрической,

d) прямого коноида;

f) поверхности вращения

58*. Определить недостающие проекции точек и линий, принадлежащих поверхностям:

а) прямого геликоида;

b) косого геликоида. Построить очерк геликоида

59*. Определить недостающие проекции точек, принадлежащих поверхностям вращения. Построить очерки поверхностей: а) конической, b) однополостного гиперболоида.

25

9. Пересечение поверхностей с плоскостью и прямой. Касательные плоскости.

60*. Построить линии пересечения заданных плоскостей со следующими поверхностями: а) цилиндрической;

с) сферической;

61*. Через точку провести нормаль и плоскость, касательную к следующим поверхностям: а) цилиндрической; b) конической;

с) сферической;

d) косой плоскости.

е) торовой

62*. Построить точки пересечения прямых с : заданными поверхностями, (соблюдая условия видимости):

а) цилиндрической,

b) конической;

с) сферической (заменой плоскостей проекций),

d) торовой;

X C

е) косой плоскости;

10. Взаимное пересечение поверхностей

63*. Построить проекции линий пересечения заданных поверхностей с помощью способа вспомогательных проецирующих плоскостей (рис. a, b, c, d, e, f): а) двух цилиндров;

b) цилиндра и конуса;

64*. Построить проекции линий пересечения заданных поверхностей с помощью способа вспомогательных концентрических сфер (рис. a, b, c, d, e, f):

a)

65*. Построить проекции линий пересечения заданных поверхностей с помощью способа вспомогательных эксцентрических сфер (рис. a, b, c):

a)

66. Построить линии пересечения заданных поверхностей, описанных около одной и той же сферы (рис. a, b):

а) двух цилиндров;

b) конуса и цилиндра;

с) двух усечённых конусов

11. Проецирование геометрических тел и моделей

67*. Построить недостающие проекции точек и линий, расположенных на поверхностях заданных фигур:

а) призмы;

b) пирамиды;

с) цилиндра;

d) конуса;

е) сферы;.

f) тора.

12. Построение изображений. Виды, разрезы, сечения.

68*. По аксонометрической проекции модели построить в трёх проекциях её чертёж.

69*. По двум заданным проекциям построить третью проекцию геометрических фигур с отверстиями. Достроить недостающие проекции линий, выполнить разрезы по ГОСТ 2.305-68. Построить вынесенные наклонные сечения фигур плоскостью, указанной линией сечения В-В. а)

b)

c)

d)

70. Начертить местный вид по стрелке А.

71. Выполнить указанные сечения.

72. Выполнить местные разрезы.

73. Выполнить ломаный разрез.

74. По двум заданным проекциям предмета построить его третью проекцию. Выполнить необходимые разрезы по ГОСТ 2.305-68, проставить размеры.

