# New algorithms for approximating massive datasets

Naren Sarayu Manoj (https://nsmanoj.com)

TTIC

2024 Feb 21

# This talk – geometrically summarizing massive datasets

#### Introduction

### Streaming ellipsoidal approximations

Motivation and problem statement

Our results

Monotone algorithm for the symmetric case

Application – Coreset for convex hull

Conclusion

### Approximating matrix block norms

Block norm sparsification - introduction

Our results

Sparsification via importance sampling

Conclusion

Can we:

#### Can we:

quickly summarize a massive dataset in a geometrically meaningful way?



#### Can we:

- quickly summarize a massive dataset in a geometrically meaningful way?
- use our summaries as optimization primitives or preprocessing routines?



#### Can we:

- quickly summarize a massive dataset in a geometrically meaningful way?
- use our summaries as optimization primitives or preprocessing routines?
- gain a better understanding of high-dimensional convex geometry?





# Streaming algorithms for ellipsoidal approximation of convex polytopes – symmetric and asymmetric

 $https://arxiv.org/abs/2206.07250 \ (COLT\ 2022) \ and \\ https://arxiv.org/abs/2311.09460 \ (STOC\ 2024, \ to\ appear)$ 

Yury Makarychev, NSM, Max Ovsiankin

### Table of contents

#### Introduction

### Streaming ellipsoidal approximations

### Motivation and problem statement

Our results

Monotone algorithm for the symmetric case

Application - Coreset for convex hull

Conclusion

### Approximating matrix block norms

Block norm sparsification - introduction

Our results

Sparsification via importance sampling

Conclusion

# Ellipsoidal approximations

### Basic problem

Given a convex body  $X \subset \mathbb{R}^n$ , find an ellipsoid  $\mathcal{E}$  and a center  $\mathbf{c} \in \mathbb{R}^n$  such that  $\mathbf{c} + \varepsilon/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$ .

# Ellipsoidal approximations

### Basic problem

Given a convex body  $X \subset \mathbb{R}^n$ , find an ellipsoid  $\mathcal{E}$  and a center  $\mathbf{c} \in \mathbb{R}^n$  such that  $\mathbf{c} + \mathcal{E}/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$ .



Figure:  $\mathcal{E}/\sqrt{2} \subseteq X \subseteq \mathcal{E}$ 

# Ellipsoidal approximations

### Basic problem

Given a convex body  $X \subset \mathbb{R}^n$ , find an ellipsoid  $\mathcal{E}$  and a center  $\mathbf{c} \in \mathbb{R}^n$  such that  $\mathbf{c} + \mathcal{E}/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$ .



Figure:  $\mathcal{E}/\sqrt{2} \subseteq X \subseteq \mathcal{E}$ 

Such an  $\mathcal{E}$  allows us to succinctly represent a convex body ( $n^2$  floats).

#### Ellipsoidal approximation - offline

Given a convex body  $X \subseteq \mathbb{R}^n$ , compute a center  $c \in \mathbb{R}^n$  and an ellipsoid  $\mathcal{E}$  with  $c + \varepsilon/\alpha \subseteq X \subseteq c + \mathcal{E}$  that minimizes  $\alpha$ . Let  $\alpha$  be  $\mathcal{E}$ 's approximation factor.

### Ellipsoidal approximation - offline

Given a convex body  $X \subseteq \mathbb{R}^n$ , compute a center  $c \in \mathbb{R}^n$  and an ellipsoid  $\mathcal{E}$  with  $c + \mathcal{E}/\alpha \subseteq X \subseteq c + \mathcal{E}$  that minimizes  $\alpha$ . Let  $\alpha$  be  $\mathcal{E}$ 's approximation factor.



Figure: X

#### Ellipsoidal approximation – offline

Given a convex body  $X \subseteq \mathbb{R}^n$ , compute a center  $\mathbf{c} \in \mathbb{R}^n$  and an ellipsoid  $\mathcal{E}$  with  $\mathbf{c} + \mathcal{E}/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$  that minimizes  $\alpha$ . Let  $\alpha$  be  $\mathcal{E}$ 's approximation factor.



$$\mathcal{E}/\sqrt{2} \subseteq X \subseteq \mathcal{E}$$

#### Ellipsoidal approximation - offline

Given a convex body  $X \subseteq \mathbb{R}^n$ , compute a center  $c \in \mathbb{R}^n$  and an ellipsoid  $\mathcal{E}$  with  $c + \mathcal{E}/\alpha \subseteq X \subseteq c + \mathcal{E}$  that minimizes  $\alpha$ . Let  $\alpha$  be  $\mathcal{E}$ 's approximation factor.



$$\mathcal{E}/\sqrt{2} \subseteq X \subseteq \mathcal{E}$$

# Theorem (John [loh48])

If  $\mathcal E$  is the minimum volume ellipsoid covering X, then we can always achieve  $\alpha \leq n$ .

#### Ellipsoidal approximation - offline

Given a convex body  $X \subseteq \mathbb{R}^n$ , compute a center  $c \in \mathbb{R}^n$  and an ellipsoid  $\mathcal{E}$  with  $c + \mathcal{E}/\alpha \subseteq X \subseteq c + \mathcal{E}$  that minimizes  $\alpha$ . Let  $\alpha$  be  $\mathcal{E}$ 's approximation factor.



$$\mathcal{E}/\sqrt{2} \subseteq X \subseteq \mathcal{E}$$

# Theorem (John [ | ])

If  $\mathcal E$  is the minimum volume ellipsoid covering X, then we can always achieve  $\alpha \leq n$ . If X is origin-symmetric, then we can always achieve  $\alpha \leq \sqrt{n}$ .

There exists X for which *any* ellipsoidal approximation for X must achieve  $\alpha = n$  (e.g. simplex).

### Ellipsoidal approximation - offline

Given a convex body  $X \subseteq \mathbb{R}^n$ , compute a center  $c \in \mathbb{R}^n$  and an ellipsoid  $\mathcal{E}$  with  $c + \mathcal{E}/\alpha \subseteq X \subseteq c + \mathcal{E}$  that minimizes  $\alpha$ . Let  $\alpha$  be  $\mathcal{E}$ 's approximation factor.



$$\mathcal{E}/\sqrt{2} \subseteq X \subseteq \mathcal{E}$$

# Theorem (John [ | ])

If  $\mathcal E$  is the minimum volume ellipsoid covering X, then we can always achieve  $\alpha \leq n$ . If X is origin-symmetric, then we can always achieve  $\alpha \leq \sqrt{n}$ .

There exists X for which *any* ellipsoidal approximation for X must achieve  $\alpha = n$  (e.g. simplex). For symmetric polyhedrons with m linear constraints, John's Ellipsoid can be approximated in time  $\widetilde{O}(mn^2)$  [CCLY19].

#### Problem

Given a convex body  $X = \text{conv}(\mathbf{x}_1, \dots, \mathbf{x}_m)$  as a stream of points, find a center  $\mathbf{c} \in \mathbb{R}^n$  and ellipsoid  $\mathcal{E}$  with  $\mathbf{c} + \mathcal{E}/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$  that minimizes  $\alpha$ .

#### Problem

Given a convex body  $X = \operatorname{conv}(x_1, \ldots, x_m)$  as a stream of points, find a center  $c \in \mathbb{R}^n$  and ellipsoid  $\mathcal{E}$  with  $c + \mathcal{E}/\alpha \subseteq X \subseteq c + \mathcal{E}$  that minimizes  $\alpha$ .

**x**<sub>1</sub>

#### Problem

Given a convex body  $X = \operatorname{conv}(\mathbf{x}_1, \dots, \mathbf{x}_m)$  as a stream of points, find a center  $\mathbf{c} \in \mathbb{R}^n$  and ellipsoid  $\mathcal{E}$  with  $\mathbf{c} + \mathcal{E}/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$  that minimizes  $\alpha$ .

$$|x_1| \rightarrow |x_2|$$

#### Problem

Given a convex body  $X = \operatorname{conv}(x_1, \ldots, x_m)$  as a stream of points, find a center  $c \in \mathbb{R}^n$  and ellipsoid  $\mathcal{E}$  with  $c + \mathcal{E}/\alpha \subseteq X \subseteq c + \mathcal{E}$  that minimizes  $\alpha$ .

$$|x_1| \rightarrow |x_2| \rightarrow \cdots \rightarrow |x_m|$$

#### **Problem**

Given a convex body  $X = \text{conv}(\mathbf{x}_1, \dots, \mathbf{x}_m)$  as a stream of points, find a center  $\mathbf{c} \in \mathbb{R}^n$  and ellipsoid  $\mathcal{E}$  with  $\mathbf{c} + \mathcal{E}/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$  that minimizes  $\alpha$ .

$$\begin{bmatrix} \mathbf{x}_1 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{x}_2 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} \mathbf{x}_m \end{bmatrix}$$

Motivation – Suppose we want to summarize a dataset in a resource-constrained environment.

#### **Problem**

Given a convex body  $X = \operatorname{conv}(\mathbf{x}_1, \dots, \mathbf{x}_m)$  as a stream of points, find a center  $\mathbf{c} \in \mathbb{R}^n$  and ellipsoid  $\mathcal{E}$  with  $\mathbf{c} + \mathcal{E}/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$  that minimizes  $\alpha$ .

$$oxed{x_1} 
ightarrow oxed{x_2} 
ightarrow \cdots 
ightarrow oxed{x_m}$$

Motivation – Suppose we want to summarize a dataset in a resource-constrained environment.

We want our algorithms to be efficient:

#### **Problem**

Given a convex body  $X = \operatorname{conv}(\mathbf{x}_1, \dots, \mathbf{x}_m)$  as a stream of points, find a center  $\mathbf{c} \in \mathbb{R}^n$  and ellipsoid  $\mathcal{E}$  with  $\mathbf{c} + \mathcal{E}/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$  that minimizes  $\alpha$ .

$$oxed{x_1} 
ightarrow oxed{x_2} 
ightarrow \cdots 
ightarrow oxed{x_m}$$

Motivation – Suppose we want to summarize a dataset in a resource-constrained environment.

We want our algorithms to be efficient:

Cannot store too many points at once;

#### Problem

Given a convex body  $X = \operatorname{conv}(\mathbf{x}_1, \dots, \mathbf{x}_m)$  as a stream of points, find a center  $\mathbf{c} \in \mathbb{R}^n$  and ellipsoid  $\mathcal{E}$  with  $\mathbf{c} + \mathcal{E}/\alpha \subseteq X \subseteq \mathbf{c} + \mathcal{E}$  that minimizes  $\alpha$ .

$$oxed{x_1} 
ightarrow oxed{x_2} 
ightarrow \cdots 
ightarrow oxed{x_m}$$

Motivation – Suppose we want to summarize a dataset in a resource-constrained environment.

We want our algorithms to be efficient:

- Cannot store too many points at once;
- ▶ Update time in each iteration must be fast.

### Table of contents

#### Introduction

### Streaming ellipsoidal approximations

Motivation and problem statement

#### Our results

Monotone algorithm for the symmetric case

Application – Coreset for convex hull

Conclusion

### Approximating matrix block norms

Block norm sparsification - introduction

Our results

Sparsification via importance sampling

Conclusion

## Aspect ratio of convex body

Let R be the smallest value and r be the largest value such that:

$$r\cdot B_2^n\subseteq X\subseteq R\cdot B_2^n$$

The aspect ratio of X is  $\kappa(X) := R/r$ .

### Aspect ratio of convex body

Let R be the smallest value and r be the largest value such that:

$$r\cdot B_2^n\subseteq X\subseteq R\cdot B_2^n$$

The aspect ratio of X is  $\kappa(X) := R/r$ .



Figure:  $1 \cdot B_2^n \subseteq \mathcal{E} \subseteq 2 \cdot B_2^n \Rightarrow \kappa(\mathcal{E}) = \frac{2}{1}$ 

#### Aspect ratio of convex body

Let R be the smallest value and r be the largest value such that:

$$r \cdot B_2^n \subseteq X \subseteq R \cdot B_2^n$$

The aspect ratio of X is  $\kappa(X) := R/r$ .



Figure:  $1 \cdot B_2^n \subseteq \mathcal{E} \subseteq 2 \cdot B_2^n \Rightarrow \kappa(\mathcal{E}) = \frac{2}{1}$ 

# Example

For an ellipsoid  $\mathcal{E}$  with major axis  $\lambda_{\max}$  and minor axis  $\lambda_{\min}$ , we have  $\kappa(\mathcal{E}) = \lambda_{\max}/\lambda_{\min}$ ;

#### Aspect ratio of convex body

Let R be the smallest value and r be the largest value such that:

$$r \cdot B_2^n \subseteq X \subseteq R \cdot B_2^n$$

The aspect ratio of X is  $\kappa(X) := R/r$ .



Figure:  $1 \cdot B_2^n \subseteq \mathcal{E} \subseteq 2 \cdot B_2^n \Rightarrow \kappa(\mathcal{E}) = \frac{2}{1}$ 

# Example

- ► For an ellipsoid  $\mathcal E$  with major axis  $\lambda_{\max}$  and minor axis  $\lambda_{\min}$ , we have  $\kappa(\mathcal E) = \lambda_{\max}/\lambda_{\min}$ ;
- $\qquad \qquad \kappa(B_1^n) = \sqrt{n};$

#### Aspect ratio of convex body

Let R be the smallest value and r be the largest value such that:

$$r \cdot B_2^n \subseteq X \subseteq R \cdot B_2^n$$

The aspect ratio of X is  $\kappa(X) := R/r$ .



Figure:  $1 \cdot B_2^n \subseteq \mathcal{E} \subseteq 2 \cdot B_2^n \Rightarrow \kappa(\mathcal{E}) = \frac{2}{1}$ 

### Example

- For an ellipsoid  $\mathcal{E}$  with major axis  $\lambda_{\max}$  and minor axis  $\lambda_{\min}$ , we have  $\kappa(\mathcal{E}) = \lambda_{\max}/\lambda_{\min}$ ;
- $\qquad \qquad \kappa(B_1^n) = \sqrt{n};$



#### Approximation result

**Assumption:** given  $c_0 \in \mathbb{R}^n$  and  $r_0 > 0$  such that  $c_0 + r_0 \cdot B_2^n \subseteq X = \text{conv}(x_1, \dots, x_m)$ .

#### Approximation result

**Assumption:** given  $c_0 \in \mathbb{R}^n$  and  $r_0 > 0$  such that  $c_0 + r_0 \cdot B_2^n \subseteq X = \text{conv}(x_1, \ldots, x_m)$ .

Let R(X) be such that there exists  $c_R$  such that  $X \subseteq c_R + R(X) \cdot B_2^n$ .

### Approximation result

**Assumption:** given  $c_0 \in \mathbb{R}^n$  and  $r_0 > 0$  such that  $c_0 + r_0 \cdot B_2^n \subseteq X = \operatorname{conv}(x_1, \ldots, x_m)$ .

Let R(X) be such that there exists  $c_R$  such that  $X \subseteq c_R + R(X) \cdot B_2^n$ .

There exist algorithms that output a center  $c_m$  and ellipsoid  $\mathcal{E}_m \supseteq X$  such that:

#### Approximation result

**Assumption:** given  $c_0 \in \mathbb{R}^n$  and  $r_0 > 0$  such that  $c_0 + r_0 \cdot B_2^n \subseteq X = |conv(x_1, ..., x_m)$ .

Let R(X) be such that there exists  $c_R$  such that  $X \subseteq c_R + R(X) \cdot B_2^n$ .

There exist algorithms that output a center  $c_m$  and ellipsoid  $\mathcal{E}_m\supseteq X$  such that:

$$c_m + \frac{\mathcal{E}_m}{Cn\log(R(X)/r_0 + 1)} \subseteq X \subseteq c_m + \mathcal{E}_m \qquad \text{(asymmetric)}$$

$$\frac{\mathcal{E}_m}{C\sqrt{n\log(R(X)/r_0 + 1)}} \subseteq X \subseteq \mathcal{E}_m \qquad \text{(symmetric)}$$

#### Approximation result

**Assumption:** given  $c_0 \in \mathbb{R}^n$  and  $r_0 > 0$  such that  $c_0 + r_0 \cdot B_2^n \subseteq X = |\cos(x_1, \ldots, x_m)|$ .

Let R(X) be such that there exists  $c_R$  such that  $X \subseteq c_R + R(X) \cdot B_2^n$ .

There exist algorithms that output a center  $c_m$  and ellipsoid  $\mathcal{E}_m \supseteq X$  such that:

$$c_m + \frac{\mathcal{E}_m}{Cn\log(R(X)/r_0 + 1)} \subseteq X \subseteq c_m + \mathcal{E}_m \qquad \text{(asymmetric)}$$

$$\frac{\mathcal{E}_m}{C\sqrt{n\log(R(X)/r_0 + 1)}} \subseteq X \subseteq \mathcal{E}_m \qquad \text{(symmetric)}$$

**Runtime**:  $\widetilde{O}(mn^2)$ . **Space complexity**:  $O(n^2)$  floating point numbers.

#### Approximation result

There exist algorithms that output a center  $c_m$  and ellipsoid  $\mathcal{E}_m \supseteq X$  such that:

$$\begin{aligned} \boldsymbol{c}_m + \frac{\mathcal{E}_m}{Cn\log(R(X)/r_0 + 1)} &\subseteq X \subseteq \boldsymbol{c}_m + \mathcal{E}_m & \text{(asymmetric)} \\ \frac{\mathcal{E}_m}{C\sqrt{n\log(R(X)/r_0 + 1)}} &\subseteq X \subseteq \mathcal{E}_m & \text{(symmetric)} \end{aligned}$$

**Runtime**:  $\widetilde{O}(mn^2)$ . **Space complexity**:  $O(n^2)$  floating point numbers.

#### Approximation result

There exist algorithms that output a center  $c_m$  and ellipsoid  $\mathcal{E}_m \supseteq X$  such that:

$$oldsymbol{c}_m + rac{\mathcal{E}_m}{Cn\log(R(X)/r_0+1)} \subseteq X \subseteq oldsymbol{c}_m + \mathcal{E}_m \qquad ext{(asymmetric)}$$
 $rac{\mathcal{E}_m}{C\sqrt{n\log(R(X)/r_0+1)}} \subseteq X \subseteq \mathcal{E}_m \qquad ext{(symmetric)}$ 

**Runtime**:  $\widetilde{O}(mn^2)$ . **Space complexity**:  $O(n^2)$  floating point numbers.

▶ By John's Theorem, the dependence on dimension *n* is optimal.

#### Approximation result

There exist algorithms that output a center  $c_m$  and ellipsoid  $\mathcal{E}_m \supseteq X$  such that:

$$c_m + \frac{\mathcal{E}_m}{Cn\log(R(X)/r_0 + 1)} \subseteq X \subseteq c_m + \mathcal{E}_m \qquad \text{(asymmetric)}$$

$$\frac{\mathcal{E}_m}{C\sqrt{n\log(R(X)/r_0 + 1)}} \subseteq X \subseteq \mathcal{E}_m \qquad \text{(symmetric)}$$

**Runtime**:  $\widetilde{O}(mn^2)$ . **Space complexity**:  $O(n^2)$  floating point numbers.

- $\triangleright$  By John's Theorem, the dependence on dimension n is optimal.
- ▶ If *X* is asymmetric, then for all "monotone" algorithms, there exists an example stream for which

$$\alpha = \Omega\left(\frac{n\log(R(X)/r_0)}{\log n}\right)$$

### Approximation result

There exist algorithms that output a center  $c_m$  and ellipsoid  $\mathcal{E}_m \supseteq X$  such that:

$$c_m + \frac{\mathcal{E}_m}{Cn\log(R(X)/r_0 + 1)} \subseteq X \subseteq c_m + \mathcal{E}_m \qquad \text{(asymmetric)}$$

$$\frac{\mathcal{E}_m}{C\sqrt{n\log(R(X)/r_0 + 1)}} \subseteq X \subseteq \mathcal{E}_m \qquad \text{(symmetric)}$$

**Runtime**:  $\widetilde{O}(mn^2)$ . **Space complexity**:  $O(n^2)$  floating point numbers.

- $\triangleright$  By John's Theorem, the dependence on dimension n is optimal.
- ▶ If X is asymmetric, then for all "monotone" algorithms, there exists an example stream for which

$$\alpha = \Omega\left(\frac{n\log(R(X)/r_0)}{\log n}\right)$$

▶ If we assume the points  $x_i$  have integer coordinates in [-N, ..., N], then we can replace  $\log(R/r)$  with  $\log n + \log N$ .

## Table of contents

#### Introduction

## Streaming ellipsoidal approximations

Motivation and problem statement

Our results

## Monotone algorithm for the symmetric case

Application - Coreset for convex hull

Conclusion

## Approximating matrix block norms

Block norm sparsification - introduction

Our results

Sparsification via importance sampling

Conclusion

## Assumption

The algorithm is told a value of  $r_0$  such that  $r_0 \cdot B_2^n \subseteq X$ .

## Assumption

The algorithm is told a value of  $r_0$  such that  $r_0 \cdot B_2^n \subseteq X$ .

**Initialization** – Let  $\mathcal{E}_0 = r \cdot B_2^n$ .

## Assumption

The algorithm is told a value of  $r_0$  such that  $r_0 \cdot B_2^n \subseteq X$ .

**Initialization** – Let  $\mathcal{E}_0 = r \cdot B_2^n$ .

**Update rule** – given ellipsoid  $\mathcal{E}_{t-1}$  and new point  $\pm \mathbf{x}_t$ , let  $\mathcal{E}_t$  be the minimum volume origin-centered ellipsoid covering  $\mathcal{E}_{t-1}$  and  $\pm \mathbf{x}_t$ .



## Assumption

The algorithm is told a value of  $r_0$  such that  $r_0 \cdot B_2^n \subseteq X$ .

Initialization – Let  $\mathcal{E}_0 = r \cdot B_2^n$ .

**Update rule** – given ellipsoid  $\mathcal{E}_{t-1}$  and new point  $\pm x_t$ , let  $\mathcal{E}_t$  be the minimum volume origin-centered ellipsoid covering  $\mathcal{E}_{t-1}$  and  $\pm x_t$ .



## Assumption

The algorithm is told a value of  $r_0$  such that  $r_0 \cdot B_2^n \subseteq X$ .

Initialization – Let  $\mathcal{E}_0 = r \cdot B_2^n$ .

**Update rule** – given ellipsoid  $\mathcal{E}_{t-1}$  and new point  $\pm \mathbf{x}_t$ , let  $\mathcal{E}_t$  be the minimum volume origin-centered ellipsoid covering  $\mathcal{E}_{t-1}$  and  $\pm \mathbf{x}_t$ .



## Assumption

The algorithm is told a value of  $r_0$  such that  $r_0 \cdot B_2^n \subseteq X$ .

Initialization – Let  $\mathcal{E}_0 = r \cdot B_2^n$ .

**Update rule** – given ellipsoid  $\mathcal{E}_{t-1}$  and new point  $\pm \mathbf{x}_t$ , let  $\mathcal{E}_t$  be the minimum volume origin-centered ellipsoid covering  $\mathcal{E}_{t-1}$  and  $\pm \mathbf{x}_t$ .



## Assumption

The algorithm is told a value of  $r_0$  such that  $r_0 \cdot B_2^n \subseteq X$ .

Initialization – Let 
$$\mathcal{E}_0 = r \cdot B_2^n$$
.

**Update rule** – given ellipsoid  $\mathcal{E}_{t-1}$  and new point  $\pm \mathbf{x}_t$ , let  $\mathcal{E}_t$  be the minimum volume origin-centered ellipsoid covering  $\mathcal{E}_{t-1}$  and  $\pm \mathbf{x}_t$ .



Formally, if  $\mathcal{E}_t = \left\{ {m x} \ : \ \left\| {m A}_t {m x} \right\|_2 \le 1 
ight\}$  for invertible  ${m A}_t$ , then:

## Assumption

The algorithm is told a value of  $r_0$  such that  $r_0 \cdot B_2^n \subseteq X$ .

Initialization – Let 
$$\mathcal{E}_0 = r \cdot B_2^n$$
.

**Update rule** – given ellipsoid  $\mathcal{E}_{t-1}$  and new point  $\pm \mathbf{x}_t$ , let  $\mathcal{E}_t$  be the minimum volume origin-centered ellipsoid covering  $\mathcal{E}_{t-1}$  and  $\pm \mathbf{x}_t$ .



Formally, if  $\mathcal{E}_t = \{ \mathbf{x} : \|\mathbf{A}_t \mathbf{x}\|_2 \leq 1 \}$  for invertible  $\mathbf{A}_t$ , then:

$$\mathbf{A}_{t} = \mathbf{A}_{t-1} - \left(1 - \frac{1}{\|\mathbf{A}_{t-1}\mathbf{x}_{t}\|_{2}}\right) \left(\frac{\mathbf{A}_{t-1}\mathbf{x}_{t}}{\|\mathbf{A}_{t-1}\mathbf{x}_{t}\|_{2}}\right) \left(\frac{\mathbf{A}_{t-1}\mathbf{x}_{t}}{\|\mathbf{A}_{t-1}\mathbf{x}_{t}\|_{2}}\right)^{T} \mathbf{A}_{t-1}$$

## Assumption

The algorithm is told a value of  $r_0$  such that  $r_0 \cdot B_2^n \subseteq X$ .

Initialization – Let 
$$\mathcal{E}_0 = r \cdot B_2^n$$
.

**Update rule** – given ellipsoid  $\mathcal{E}_{t-1}$  and new point  $\pm \mathbf{x}_t$ , let  $\mathcal{E}_t$  be the minimum volume origin-centered ellipsoid covering  $\mathcal{E}_{t-1}$  and  $\pm \mathbf{x}_t$ .



Formally, if  $\mathcal{E}_t = \left\{ \mathbf{x} : \|\mathbf{A}_t \mathbf{x}\|_2 \leq 1 \right\}$  for invertible  $\mathbf{A}_t$ , then:

$$\mathbf{A}_{t} = \mathbf{A}_{t-1} - \underbrace{\left(1 - \frac{1}{\|\mathbf{A}_{t-1}\mathbf{x}_{t}\|_{2}}\right)}_{\text{scalar}} \underbrace{\left(\frac{\mathbf{A}_{t-1}\mathbf{x}_{t}}{\|\mathbf{A}_{t-1}\mathbf{x}_{t}\|_{2}}\right)}_{\text{vector}} \underbrace{\left(\frac{\mathbf{A}_{t-1}\mathbf{x}_{t}}{\|\mathbf{A}_{t-1}\mathbf{x}_{t}\|_{2}}\right)^{T}}_{\text{vector}} \mathbf{A}_{t-1}$$

## Table of contents

#### Introduction

## Streaming ellipsoidal approximations

Motivation and problem statement

Our results

Monotone algorithm for the symmetric case

Application – Coreset for convex hull

Conclusion

## Approximating matrix block norms

Block norm sparsification - introduction

Our results

Sparsification via importance sampling

Conclusion

#### Convex hull coresets

### Desired approximation guarantee

Find a subset S of  $x_1,\ldots,x_m$  such that there exists a center  $c_m \in \mathbb{R}^n$  for which

$$c_m + \operatorname{conv}(X_S)$$
  
 $\subseteq \operatorname{conv}(x_1, \dots, x_m)$   
 $\subseteq c_m + \alpha_m \cdot (\operatorname{conv}(X_S) - c_m)$ 

#### Convex hull coresets

#### Desired approximation guarantee

Find a subset S of  $\pmb{x}_1,\ldots,\pmb{x}_m$  such that there exists a center  $\pmb{c}_m \in \mathbb{R}^n$  for which

$$c_m + \operatorname{conv}(X_S)$$
  
 $\subseteq \operatorname{conv}(x_1, \dots, x_m)$   
 $\subseteq c_m + \alpha_m \cdot (\operatorname{conv}(X_S) - c_m)$ 



#### Convex hull coresets

#### Desired approximation guarantee

Find a subset S of  $\mathbf{x}_1,\ldots,\mathbf{x}_m$  such that there exists a center  $\mathbf{c}_m \in \mathbb{R}^n$  for which

$$c_m + \operatorname{conv}(X_S)$$
  
 $\subseteq \operatorname{conv}(x_1, \dots, x_m)$   
 $\subseteq c_m + \alpha_m \cdot (\operatorname{conv}(X_S) - c_m)$ 



## From ellipsoids to convex hull coresets (informal)

There exists an algorithm that calls the ellipsoidal approximation algorithm as a subroutine and chooses S in an online fashion such that:

$$\alpha_m \le C n \log \left( n \kappa^{\mathsf{OL}}(X) \right)$$
 (asymmetric)

$$\alpha_m \le C\sqrt{n\log(n\kappa^{\mathrm{OL}}(X))}$$
 (symmetric)

and  $|S| \leq Cn \log (n\kappa^{OL}(X))$ .

1. We gave simple, nearly-optimal streaming algorithms to calculate an ellipsoidal approximation for a convex polytope.

- 1. We gave simple, nearly-optimal streaming algorithms to calculate an ellipsoidal approximation for a convex polytope.
- Our algorithms' space complexities are independent of the length of the stream.

- 1. We gave simple, nearly-optimal streaming algorithms to calculate an ellipsoidal approximation for a convex polytope.
- Our algorithms' space complexities are independent of the length of the stream.
- We used ellipsoidal approximation algorithms to construct convex hull coresets in a stream.

- 1. We gave simple, nearly-optimal streaming algorithms to calculate an ellipsoidal approximation for a convex polytope.
- Our algorithms' space complexities are independent of the length of the stream.
- We used ellipsoidal approximation algorithms to construct convex hull coresets in a stream.
- 4. Papers https://arxiv.org/abs/2206.07250 (symmetric) and https://arxiv.org/abs/2311.09460 (asymmetric).

https://arxiv.org/abs/2311.10013 (in progress)

NSM, Max Ovsiankin

## Table of contents

#### Introduction

## Streaming ellipsoidal approximations

Motivation and problem statement

Our results

Monotone algorithm for the symmetric case

Application – Coreset for convex hull

Conclusion

## Approximating matrix block norms

Block norm sparsification - introduction

Our results

Sparsification via importance sampling

Conclusion

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p.$$

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p.$$



$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$$
.

$$egin{aligned} \mathbf{A} \ & \mathbf{A}_1 \in \mathbb{R}^{|S_1| imes n} \ & \mathbf{A}_2 \in \mathbb{R}^{|S_2| imes n} \ & \mathbf{A}_3 \in \mathbb{R}^{|S_3| imes n} \ & \dots \ & \mathbf{A}_m \in \mathbb{R}^{|S_m| imes n} \ \end{bmatrix}$$

$$\mathbf{x} \in \mathbb{R}^n$$

$$\|\boldsymbol{A}\boldsymbol{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\boldsymbol{A}_{\mathcal{S}_i}\boldsymbol{x}\|_{p_i}^p \,.$$

$$oxed{\mathbf{A}_1 \in \mathbb{R}^{|S_1| imes n}}$$
 $oxed{\mathbf{A}_2 \in \mathbb{R}^{|S_2| imes n}}$ 
 $oxed{\mathbf{A}_3 \in \mathbb{R}^{|S_3| imes n}}$ 
 $\dots$ 
 $oxed{\mathbf{A}_m \in \mathbb{R}^{|S_m| imes n}}$ 

$$\mathbf{x} \in \mathbb{R}^n \to \underbrace{\left[ \left\| \mathbf{A}_{S_1} \mathbf{x} \right\|_{\rho_1} \quad \left\| \mathbf{A}_{S_2} \mathbf{x} \right\|_{\rho_2} \quad \dots \quad \left\| \mathbf{A}_{S_m} \mathbf{x} \right\|_{\rho_m} \right]}_{\mathbf{y}(\mathbf{x})}$$

$$\|\boldsymbol{A}\boldsymbol{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\boldsymbol{A}_{\mathcal{S}_i}\boldsymbol{x}\|_{p_i}^p.$$

$$\begin{bmatrix} \mathbf{A}_1 \in \mathbb{R}^{|S_1| \times n} \\ \mathbf{A}_2 \in \mathbb{R}^{|S_2| \times n} \\ \mathbf{A}_3 \in \mathbb{R}^{|S_3| \times n} \\ & \cdots \\ \mathbf{A}_m \in \mathbb{R}^{|S_m| \times n} \end{bmatrix}$$

$$\mathbf{x} \in \mathbb{R}^{n} \to \underbrace{\left[ \left\| \mathbf{A}_{S_{1}} \mathbf{x} \right\|_{\rho_{1}} \quad \left\| \mathbf{A}_{S_{2}} \mathbf{x} \right\|_{\rho_{2}} \quad \dots \quad \left\| \mathbf{A}_{S_{m}} \mathbf{x} \right\|_{\rho_{m}} \right]}_{\mathbf{v}(\mathbf{x})} \to \left\| \mathbf{v}(\mathbf{x}) \right\|_{\rho}^{\rho}$$

#### Matrix block norm sparsification

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \coloneqq \sum_{i=1}^m \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p.$$

Find weights  $\beta_1, \ldots, \beta_m$ , most of which are 0, such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1 \pm \varepsilon) \sum_{i=1}^m \beta_i \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p$$
.

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{A}_1 \in \mathbb{R}^{|S_1| \times n} \\ \mathbf{A}_2 \in \mathbb{R}^{|S_2| \times n} \\ \mathbf{A}_3 \in \mathbb{R}^{|S_3| \times n} \\ & \dots \\ \mathbf{A}_m \in \mathbb{R}^{|S_m| \times n} \end{bmatrix}$$

$$\mathbf{x} \in \mathbb{R}^n \to \underbrace{\left[ \left\| \mathbf{A}_{S_1} \mathbf{x} \right\|_{\rho_1} \quad \left\| \mathbf{A}_{S_2} \mathbf{x} \right\|_{\rho_2} \quad \dots \quad \left\| \mathbf{A}_{S_m} \mathbf{x} \right\|_{\rho_m} \right]}_{\mathbf{y} \in \mathbb{R}^n} \to \left\| \mathbf{v}(\mathbf{x}) \right\|_{\rho}^p$$

## Matrix block norm sparsification

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p.$$

Find weights  $\beta_1, \dots, \beta_m$ , most of which are 0, such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pm arepsilon) \sum_{i=1}^m eta_i \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p$$
.



$$\mathbf{x} \in \mathbb{R}^{n} \to \underbrace{\left[ \left\| \mathbf{A}_{S_{1}} \mathbf{x} \right\|_{\rho_{1}} \quad \left\| \mathbf{A}_{S_{2}} \mathbf{x} \right\|_{\rho_{2}} \quad \dots \quad \left\| \mathbf{A}_{S_{m}} \mathbf{x} \right\|_{\rho_{m}} \right]}_{\mathbf{y}(\mathbf{x})} \to \left\| \mathbf{v}(\mathbf{x}) \right\|_{\rho}^{p}$$

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p.$$

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\widetilde{m} \times n}$  such that  $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1 \pm \varepsilon) \cdot \|\mathbf{A}'\mathbf{x}\|_{\mathcal{G}_p}^p$ 

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \coloneqq \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p.$$

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{ ilde{m} imes n}$  such that

 $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1 \pm \varepsilon) \cdot \|\mathbf{A}'\mathbf{x}\|_{\mathcal{G}_p}^p$ 

▶  $p = p_1 = \cdots = p_m \rightarrow \text{higher-rank analog of row sampling for } p\text{-norms.}$ 

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \coloneqq \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p.$$

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\widetilde{m} imes n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pm arepsilon) \cdot \|\mathbf{A}'\mathbf{x}\|_{\mathcal{G}_p}^p$$

- ▶  $p = p_1 = \cdots = p_m \rightarrow \text{higher-rank analog of row sampling for } p\text{-norms.}$
- ▶ p = 2 and  $p_1 = \cdots = p_m = \infty$  → hypergraph Laplacian.

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \coloneqq \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p.$$

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\widetilde{m} \times n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pmarepsilon)\cdot ig\|\mathbf{A}'\mathbf{x}ig\|_{\mathcal{G}_p}^p$$

- ▶  $p = p_1 = \cdots = p_m \rightarrow \text{higher-rank analog of row sampling for } p\text{-norms.}$
- ▶ p = 2 and  $p_1 = \cdots = p_m = \infty$  → hypergraph Laplacian.
- ▶ p = 1 and  $p_1 = \cdots = p_m = 2 \rightarrow \ell_{1,2}$  norm (used for feature selection).

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \coloneqq \sum_{i=1}^m \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p.$$

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\widetilde{m} \times n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1 \pm \varepsilon) \cdot \left\|\mathbf{A}'\mathbf{x}\right\|_{\mathcal{G}_p}^p$$

- ▶  $p = p_1 = \cdots = p_m \rightarrow \text{higher-rank analog of row sampling for } p\text{-norms.}$
- ▶ p = 2 and  $p_1 = \cdots = p_m = \infty$  → hypergraph Laplacian.
- ▶ p = 1 and  $p_1 = \cdots = p_m = 2 \rightarrow \ell_{1,2}$  norm (used for feature selection).
- Recovers matrix p, q norm:

$$\|\mathbf{X}\|_{p,a}$$

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$$
.

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\widetilde{m} imes n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pmarepsilon)\cdot ig\|\mathbf{A}'\mathbf{x}ig\|_{\mathcal{G}_p}^p$$

- ▶  $p = p_1 = \cdots = p_m$  → higher-rank analog of row sampling for *p*-norms.
- ▶ p=2 and  $p_1=\cdots=p_m=\infty$  → hypergraph Laplacian.
- ▶ p = 1 and  $p_1 = \cdots = p_m = 2 \rightarrow \ell_{1,2}$  norm (used for feature selection).
- Recovers matrix p, q norm:

$$\left\| \mathbf{X} 
ight\|_{
ho,q} = \left\| egin{bmatrix} oldsymbol{x}_1 \in \mathbb{R}^r \ \hline oldsymbol{x}_2 \in \mathbb{R}^r \ \hline & \dots \ oldsymbol{x}_m \in \mathbb{R}^r \end{bmatrix} 
ight\|_{
ho,q}$$

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_{p}}^{p}\coloneqq\sum_{i=1}^{m}\|\mathbf{A}_{\mathcal{S}_{i}}\mathbf{x}\|_{p_{i}}^{p}$$
 .

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\tilde{m} imes n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pm\varepsilon) \cdot \left\|\mathbf{A}'\mathbf{x}\right\|_{\mathcal{G}_p}^p$$

- ▶  $p = p_1 = \cdots = p_m$  → higher-rank analog of row sampling for *p*-norms.
- ▶ p = 2 and  $p_1 = \cdots = p_m = \infty$  → hypergraph Laplacian.
- ▶ p = 1 and  $p_1 = \cdots = p_m = 2 \rightarrow \ell_{1,2}$  norm (used for feature selection).
- Recovers matrix p, q norm:

$$\left\|\mathbf{X}
ight\|_{p,q} = \left\|egin{bmatrix} \mathbf{x}_1 \in \mathbb{R}^r \ \mathbf{x}_2 \in \mathbb{R}^r \ \dots \ \mathbf{x}_m \in \mathbb{R}^r \end{bmatrix}
ight\|_{p,q} = \left\|egin{bmatrix} \|\mathbf{x}_1\|_q \ \|\mathbf{x}_2\|_q \ \dots \ \|\mathbf{x}_m\|_q \end{bmatrix}
ight\|_{p,q}$$

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \coloneqq \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p.$$

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\widetilde{m} \times n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pm arepsilon) \cdot \left\|\mathbf{A}'\mathbf{x}
ight\|_{\mathcal{G}_p}^p$$

- ▶  $p = p_1 = \cdots = p_m$  → higher-rank analog of row sampling for *p*-norms.
- ▶ p = 2 and  $p_1 = \cdots = p_m = \infty$  → hypergraph Laplacian.
- ▶ p = 1 and  $p_1 = \cdots = p_m = 2 \rightarrow \ell_{1,2}$  norm (used for feature selection).
- ► Recovers matrix p, q norm:

$$\left\|\mathbf{X}\right\|_{p,q} = \left\| \begin{bmatrix} \mathbf{x}_1 \in \mathbb{R}^r \\ \mathbf{x}_2 \in \mathbb{R}^r \\ \vdots \\ \mathbf{x}_m \in \mathbb{R}^r \end{bmatrix} \right\|_{p,q} = \left\| \begin{bmatrix} \left\|\mathbf{x}_1\right\|_q \\ \left\|\mathbf{x}_2\right\|_q \\ \vdots \\ \left\|\mathbf{x}_m\right\|_q \end{bmatrix} \right\|_{p} = \left(\sum_{i=1}^m \left\|\mathbf{x}_i\right\|_q^p\right)^{1/p}$$

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \coloneqq \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$$
.

Want a weighted subset of rows 
$$\mathbf{A}' \in \mathbb{R}^{\widetilde{m} imes n}$$
 such that 
$$\|\mathbf{A}\mathbf{x}\|_{G_n}^p \in (1 \pm \varepsilon) \cdot \|\mathbf{A}'\mathbf{x}\|_{G_n}^p$$

- ▶  $p = p_1 = \cdots = p_m \rightarrow \text{higher-rank analog of row sampling for } p\text{-norms.}$
- ▶ p = 2 and  $p_1 = \cdots = p_m = \infty$  → hypergraph Laplacian.
- ▶ p = 1 and  $p_1 = \cdots = p_m = 2 \rightarrow \ell_{1,2}$  norm (used for feature selection).
- Recovers matrix p, q norm:

$$\left\|\mathbf{X}\right\|_{p,q} = \left\| \begin{bmatrix} \mathbf{x}_1 \in \mathbb{R}^r \\ \mathbf{x}_2 \in \mathbb{R}^r \\ \vdots \\ \mathbf{x}_m \in \mathbb{R}^r \end{bmatrix} \right\|_{p,q} = \left\| \begin{bmatrix} \frac{\left\|\mathbf{x}_1\right\|_q}{\left\|\mathbf{x}_2\right\|_q} \\ \vdots \\ \left\|\mathbf{x}_m\right\|_q \end{bmatrix} \right\|_{p} = \left( \sum_{i=1}^m \left\|\mathbf{x}_i\right\|_q^p \right)^{1/p}$$

Applications – subroutine to speed up regression, dataset summarization, etc

## Table of contents

#### Introduction

## Streaming ellipsoidal approximations

Motivation and problem statement

Our results

Monotone algorithm for the symmetric case

Application - Coreset for convex hull

Conclusion

## Approximating matrix block norms

Block norm sparsification - introduction

#### Our results

Sparsification via importance sampling

Conclusion

Regimes of p and  $p_1, \ldots, p_m$ :

- ▶ p > 0 and  $p_1, ..., p_m = p$ ;
- ▶  $p \ge 1$  and  $p_1, \ldots, p_m \ge 2$ .

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\widetilde{m} \times n}$  such that  $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1 \pm \varepsilon) \cdot \|\mathbf{A}'\mathbf{x}\|_{\mathcal{G}_p}^p$ 

Regimes of p and  $p_1, \ldots, p_m$ :

- ▶ p > 0 and  $p_1, ..., p_m = p$ ;
- $ightharpoonup p \geq 1$  and  $p_1, \ldots, p_m \geq 2$ .

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\widetilde{m} \times n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pmarepsilon)\cdot ig\|\mathbf{A}'\mathbf{x}ig\|_{\mathcal{G}_p}^p$$

#### Theorem

1. (Existence) If p and  $p_i$  belong to at least one of the regimes above, then there exists a weight vector  $\beta \in \mathbb{R}^m_{\geq 0}$  such that

$$\widetilde{m} := \|\beta\|_0 = C(p, p_1, \dots, p_m) \cdot \frac{n^{\max(1, p/2)} \log(n/\varepsilon) (\log n)^2}{\varepsilon^2}$$

Regimes of p and  $p_1, \ldots, p_m$ :

- ▶ p > 0 and  $p_1, ..., p_m = p$ ;
- $ightharpoonup p \geq 1$  and  $p_1, \ldots, p_m \geq 2$ .

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\tilde{m} \times n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pmarepsilon)\cdot ig\|\mathbf{A}'\mathbf{x}ig\|_{\mathcal{G}_p}^p$$

#### Theorem

1. (Existence) If p and  $p_i$  belong to at least one of the regimes above, then there exists a weight vector  $\beta \in \mathbb{R}^m_{\geq 0}$  such that

$$\widetilde{\mathbf{m}} := \|\beta\|_{\mathbf{0}} = C(p, p_1, \dots, p_m) \cdot \frac{\mathbf{n}^{\max(1, p/2)} \log (n/\varepsilon) (\log n)^2}{\varepsilon^2}.$$

Regimes of p and  $p_1, \ldots, p_m$ :

- ▶ p > 0 and  $p_1, ..., p_m = p$ ;
- $ightharpoonup p \geq 1$  and  $p_1, \ldots, p_m \geq 2$ .

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\widetilde{m} \times n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pmarepsilon)\cdot ig\|\mathbf{A}'\mathbf{x}ig\|_{\mathcal{G}_p}^p$$

#### Theorem

1. (Existence) If p and  $p_i$  belong to at least one of the regimes above, then there exists a weight vector  $\beta \in \mathbb{R}^m_{\geq 0}$  such that

$$\widetilde{\mathbf{m}} := \|\beta\|_{\mathbf{0}} = C(p, p_1, \dots, p_m) \cdot \frac{\mathbf{n}^{\max(1, p/2)} \log (n/\varepsilon) (\log n)^2}{\varepsilon^2}.$$

2. (Computation) If  $p=p_1=\cdots=p_m$ , or  $p_1=\cdots=p_m=2$  and p>0, or p=2 and  $p_1,\ldots,p_m\geq 2$ , then  $\beta$  can be found in polylogarithmically many leverage score computations.

Regimes of p and  $p_1, \ldots, p_m$ :

- ▶ p > 0 and  $p_1, ..., p_m = p$ ;
- $ightharpoonup p \geq 1$  and  $p_1, \ldots, p_m \geq 2$ .

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\tilde{m} \times n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pmarepsilon)\cdot ig\|\mathbf{A}'\mathbf{x}ig\|_{\mathcal{G}_p}^p$$

#### Theorem

1. (Existence) If p and  $p_i$  belong to at least one of the regimes above, then there exists a weight vector  $\beta \in \mathbb{R}^m_{\geq 0}$  such that

$$\widetilde{\mathbf{m}} \coloneqq \|\boldsymbol{\beta}\|_{0} = C(p, p_{1}, \dots, p_{m}) \cdot \frac{\mathbf{n}^{\max(1, p/2)} \log (n/\varepsilon) (\log n)^{2}}{\varepsilon^{2}}.$$

2. (Computation) If  $p=p_1=\cdots=p_m$ , or  $p_1=\cdots=p_m=2$  and p>0, or p=2 and  $p_1,\ldots,p_m\geq 2$ , then  $\beta$  can be found in polylogarithmically many leverage score computations.

Approximate leverage scores  $(a_i^T (\mathbf{A}^T \mathbf{D} \mathbf{A})^{-1} a_i$  for nonnegative diagonal  $\mathbf{D})$  can be found in time  $O(\mathbf{nnz}(\mathbf{A}) + n^{\omega})$ .



Regimes of p and  $p_1, \ldots, p_m$ :

- ▶ p > 0 and  $p_1, ..., p_m = p$ ;
- $ightharpoonup p \geq 1$  and  $p_1, \ldots, p_m \geq 2$ .

Want a weighted subset of rows  $\mathbf{A}' \in \mathbb{R}^{\tilde{m} \times n}$  such that

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p \in (1\pmarepsilon)\cdot ig\|\mathbf{A}'\mathbf{x}ig\|_{\mathcal{G}_p}^p$$

#### Theorem

1. (Existence) If p and  $p_i$  belong to at least one of the regimes above, then there exists a weight vector  $\beta \in \mathbb{R}^m_{\geq 0}$  such that

$$\widetilde{\mathbf{m}} \coloneqq \|\boldsymbol{\beta}\|_{0} = C(p, p_{1}, \dots, p_{m}) \cdot \frac{\mathbf{n}^{\max(1, p/2)} \log (n/\varepsilon) (\log n)^{2}}{\varepsilon^{2}}.$$

2. (Computation) If  $p=p_1=\cdots=p_m$ , or  $p_1=\cdots=p_m=2$  and p>0, or p=2 and  $p_1,\ldots,p_m\geq 2$ , then  $\beta$  can be found in polylogarithmically many leverage score computations.

Approximate leverage scores  $(a_i^T (\mathbf{A}^T \mathbf{D} \mathbf{A})^{-1} a_i$  for nonnegative diagonal  $\mathbf{D})$  can be found in time  $O(\operatorname{nnz}(\mathbf{A}) + n^{\omega})$ .

Dependence on n is essentially optimal (we need  $\widetilde{m} \gtrsim n^{\max(1,p/2)}$  [LWW19]).



## Table of contents

#### Introduction

## Streaming ellipsoidal approximations

Motivation and problem statement

Our results

Monotone algorithm for the symmetric case

Application - Coreset for convex hull

Conclusion

## Approximating matrix block norms

Block norm sparsification - introduction

Our results

Sparsification via importance sampling

Conclusion

$$\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_{\mathcal{P}}}^{p} := \sum_{i=1}^{m} \|\mathbf{A}_{\mathcal{S}_{i}}\mathbf{x}\|_{p_{i}}^{p}$$





 $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$ 

## Meta algorithm

1. Let f(x) = 0.

 $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p$ 

## Meta algorithm

- 1. Let f(x) = 0.
- 2. Identify a probability distribution  $\mathcal{D} = (\rho_1, \dots, \rho_m)$ .

 $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$ 

## Meta algorithm

- 1. Let f(x) = 0.
- 2. Identify a probability distribution  $\mathcal{D} = (\boldsymbol{\rho}_1, \dots, \boldsymbol{\rho}_m).$ 3. Repeat  $\widetilde{m}$  times:

 $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$ 

#### Meta algorithm

- 1. Let f(x) = 0.
- 2. Identify a probability distribution  $\mathcal{D} = (\boldsymbol{\rho}_1, \dots, \boldsymbol{\rho}_m).$ 3. Repeat  $\widetilde{m}$  times:
- - 3.1 Update  $f(x) \leftarrow f(x) + \frac{1}{\rho_i} \cdot \|\mathbf{A}_{S_i} x\|_{\rho_i}^p$ with probability  $\rho_i$ .

# Meta algorithm

 $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$ 

- 1. Let f(x) = 0.
- 2. Identify a probability distribution  $\mathcal{D}=(oldsymbol{
  ho}_1,\ldots,oldsymbol{
  ho}_m).$  3. Repeat  $\widetilde{m}$  times:
- - 3.1 Update  $f(x) \leftarrow f(x) + \frac{1}{\rho_i} \cdot \left\| \mathbf{A}_{S_i} \mathbf{x} \right\|_{p_i}^p$ with probability  $\rho_i$ .
- 4. Return  $\frac{1}{m} \cdot f(x)$ .

 $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$ 

## Meta algorithm

- 1. Let f(x) = 0.
- 2. Identify a probability distribution  $\mathcal{D} = (\boldsymbol{\rho}_1, \dots, \boldsymbol{\rho}_m).$ 3. Repeat  $\widetilde{m}$  times:
- 3.1 Update  $f(x) \leftarrow f(x) + \frac{1}{\rho_i} \cdot \left\| \mathbf{A}_{S_i} \mathbf{x} \right\|_{p_i}^p$ with probability  $\rho_i$ .
- 4. Return  $\frac{1}{m} \cdot f(x)$ .

 $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$ 

## Meta algorithm

- 1. Let f(x) = 0.
- 2. Identify a probability distribution  $\mathcal{D} = (\rho_1, \dots, \rho_m).$ 3. Repeat  $\widetilde{m}$  times:

  - 3.1 Update  $f(x) \leftarrow f(x) + \frac{1}{\rho_i} \cdot \left\| \mathbf{A}_{S_i} \mathbf{x} \right\|_{p_i}^{\rho}$ with probability  $\rho_i$ . 4. Return  $\frac{1}{\tilde{m}} \cdot f(x)$ .

$$\mathbb{E}\left[\frac{1}{\widetilde{m}}\cdot \mathit{f}(\textit{x})\right] = \frac{1}{\widetilde{m}}\mathbb{E}\left[\sum_{h=1}^{\widetilde{m}}\frac{1}{\rho_{i_h}}\cdot \left\|\mathbf{A}_{S_{i_h}}\textit{x}\right\|_{\rho_{i_h}}^{\rho}\right]$$

 $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_p}^p := \sum_{i=1}^m \|\mathbf{A}_{\mathcal{S}_i}\mathbf{x}\|_{p_i}^p$   $\mathcal{D} = (\boldsymbol{\rho}_1, \dots, \boldsymbol{\rho}_m).$ 3. Repeat  $\widetilde{m}$  times:
3.1 Update  $f(\mathbf{x}) \leftarrow$ 

#### Meta algorithm

- 1. Let f(x) = 0.
- 2. Identify a probability distribution
- 3.1 Update  $f(x) \leftarrow f(x) + \frac{1}{\rho_i} \cdot \left\| \mathbf{A}_{S_i} x \right\|_{\rho_i}^p$ with probability  $\rho_i$ . 4. Return  $\frac{1}{m} \cdot f(x)$ .

$$\mathbb{E}\left[\frac{1}{\widetilde{m}}\cdot f(\mathbf{x})\right] = \frac{1}{\widetilde{m}}\mathbb{E}\left[\sum_{h=1}^{\widetilde{m}} \frac{1}{\rho_{i_h}} \cdot \left\|\mathbf{A}_{S_{i_h}}\mathbf{x}\right\|_{\rho_{i_h}}^{\rho}\right] = \frac{1}{\widetilde{m}} \cdot \left(\widetilde{m} \left\|\mathbf{A}\mathbf{x}\right\|_{\mathcal{G}_{\rho}}^{\rho}\right)$$

#### Meta algorithm

- 1. Let f(x) = 0.
- 2. Identify a probability distribution
- $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_{p}}^{p} := \sum_{i=1}^{m} \|\mathbf{A}_{S_{i}}\mathbf{x}\|_{p_{i}}^{p}$ 2. Identity a probability  $\mathcal{D} = (\rho_{1}, \dots, \rho_{m}).$ 3. Repeat  $\widetilde{m}$  times:
  3.1 Update  $f(\mathbf{x}) \leftarrow f(\mathbf{x}) + \frac{1}{\rho_{i}} \cdot \|\mathbf{A}_{S_{i}}\mathbf{x}\|_{p_{i}}^{p}$ with probability  $\rho_{i}$ .
  4. Return  $\frac{1}{\widetilde{m}} \cdot f(\mathbf{x})$ .

$$\mathbb{E}\left[\frac{1}{\widetilde{m}}\cdot f(\mathbf{x})\right] = \frac{1}{\widetilde{m}}\mathbb{E}\left[\sum_{h=1}^{\widetilde{m}} \frac{1}{\rho_{i_h}} \cdot \left\|\mathbf{A}_{S_{i_h}}\mathbf{x}\right\|_{\rho_{i_h}}^{\rho}\right] = \frac{1}{\widetilde{m}}\cdot \left(\widetilde{m}\left\|\mathbf{A}\mathbf{x}\right\|_{\mathcal{G}_{\rho}}^{\rho}\right) = \|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_{\rho}}^{\rho}.$$

#### Meta algorithm

- 1. Let f(x) = 0.
- 2. Identify a probability distribution
- $\|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_{p}}^{p} := \sum_{i=1}^{m} \|\mathbf{A}_{S_{i}}\mathbf{x}\|_{p_{i}}^{p}$ 2. Identity a probability  $\mathcal{D} = (\rho_{1}, \dots, \rho_{m}).$ 3. Repeat  $\widetilde{m}$  times:
  3.1 Update  $f(\mathbf{x}) \leftarrow f(\mathbf{x}) + \frac{1}{\rho_{i}} \cdot \|\mathbf{A}_{S_{i}}\mathbf{x}\|_{p_{i}}^{p}$ with probability  $\rho_{i}$ .
  4. Return  $\frac{1}{\widetilde{m}} \cdot f(\mathbf{x})$ .

This estimator is unbiased for all  $\mathbf{x} \in \mathbb{R}^n$ :

$$\mathbb{E}\left[\frac{1}{\widetilde{m}}\cdot f(\mathbf{x})\right] = \frac{1}{\widetilde{m}}\mathbb{E}\left[\sum_{h=1}^{\widetilde{m}} \frac{1}{\rho_{i_h}} \cdot \left\|\mathbf{A}_{S_{i_h}}\mathbf{x}\right\|_{\rho_{i_h}}^{\rho}\right] = \frac{1}{\widetilde{m}}\cdot \left(\widetilde{m}\left\|\mathbf{A}\mathbf{x}\right\|_{\mathcal{G}_{\rho}}^{\rho}\right) = \|\mathbf{A}\mathbf{x}\|_{\mathcal{G}_{\rho}}^{\rho}.$$

Our task: Find  $\mathcal{D}$  such that for a "small"  $\widetilde{m}$ , w.h.p, for all  $\mathbf{x} \in \mathbb{R}^n$ :

$$(1-arepsilon)\cdotrac{f({m x})}{\widetilde{m}}\leq \|{m A}{m x}\|_{\mathcal{G}_p}^p\leq (1+arepsilon)\cdotrac{f({m x})}{\widetilde{m}}.$$



1. We gave existence and algorithmic results for finding sparse approximations to matrix block norms.

- 1. We gave existence and algorithmic results for finding sparse approximations to matrix block norms.
- 2. Our existence results yield sparsities whose sizes are nearly optimal in the input dimension n.

- 1. We gave existence and algorithmic results for finding sparse approximations to matrix block norms.
- 2. Our existence results yield sparsities whose sizes are nearly optimal in the input dimension *n*.
- 3. The algorithmic results when  $p_1 = \cdots = p_m = p > 0$ , or when p > 0 and  $p_1 = \cdots = p_m = 2$ , or when p = 2 and  $p_1, \ldots, p_m \ge 2$ , run in time  $\widetilde{O}(\operatorname{nnz}(\mathbf{A}) + n^{\omega})$ .

- We gave existence and algorithmic results for finding sparse approximations to matrix block norms.
- 2. Our existence results yield sparsities whose sizes are nearly optimal in the input dimension *n*.
- 3. The algorithmic results when  $p_1 = \cdots = p_m = p > 0$ , or when p > 0 and  $p_1 = \cdots = p_m = 2$ , or when p = 2 and  $p_1, \ldots, p_m \ge 2$ , run in time  $\widetilde{O}(\operatorname{nnz}(\mathbf{A}) + n^{\omega})$ .
- 4. Paper https://arxiv.org/abs/2311.10013.

The input in a data science problem instance isn't always clean or accessible. Untrustworthy and unexpected data Unwieldy data

The input in a data science problem instance isn't always clean or accessible.

# Untrustworthy and unexpected data Robustness of ML to train time corruptions [MB21] Unwieldy data

The input in a data science problem instance isn't always clean or accessible.

## Untrustworthy and unexpected data

- Robustness of ML to train time corruptions [MB21]
- Preference based optimization with a monotone adversary [BGLMSY24]



The input in a data science problem instance isn't always clean or accessible.

## Untrustworthy and unexpected data

- ► Robustness of ML to train time corruptions [MB21]
- Preference based optimization with a monotone adversary [BGLMSY24]
- Generalization of short program interpolators [MS23]



The input in a data science problem instance isn't always clean or accessible.

## Untrustworthy and unexpected data

- ► Robustness of ML to train time corruptions [MB21]
- Preference based optimization with a monotone adversary [BGLMSY24]
- Generalization of short program interpolators [MS23]



## Unwieldy data

 Streaming ellipsoidal approximations of convex polytopes [MMO22; MMO24]



The input in a data science problem instance isn't always clean or accessible.

## Untrustworthy and unexpected data

- ► Robustness of ML to train time corruptions [MB21]
- Preference based optimization with a monotone adversary [BGLMSY24]
- Generalization of short program interpolators [MS23]



- Streaming ellipsoidal approximations of convex polytopes [MMO22; MMO24]
- Sparse approximations of matrix block norms [MO23]



The input in a data science problem instance isn't always clean or accessible.

## Untrustworthy and unexpected data

- ► Robustness of ML to train time corruptions [MB21]
- Preference based optimization with a monotone adversary [BGLMSY24]
- Generalization of short program interpolators [MS23]



- Streaming ellipsoidal approximations of convex polytopes [MMO22: MMO24]
- Sparse approximations of matrix block norms [MO23]
- Finding short certificates for monotone functions [GM22]



The input in a data science problem instance isn't always clean or accessible.

#### Untrustworthy and unexpected data

- ► Robustness of ML to train time corruptions [MB21]
- Preference based optimization with a monotone adversary [BGLMSY24]
- Generalization of short program interpolators [MS23]



- Streaming ellipsoidal approximations of convex polytopes [MMO22; MMO24]
- ► Sparse approximations of matrix block norms [MO23]
- Finding short certificates for monotone functions [GM22]



Questions?

Thank you!!

#### References I



Avrim Blum, Meghal Gupta, Gene Li, Naren Sarayu Manoj, Aadirupa Saha, and Yuanyuan Yang. Dueling optimization with a monotone adversary. In *Proceedings of Thirty Fifth Conference on Algorithmic Learning Theory (ALT)*, February 2024 (cited on pages 102–109).



Michael B. Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm for approximating the John ellipsoid. In *Proceedings of the Conference on Learning Theory*, volume 99, pages 849–873, 2019 (cited on pages 12–17).



Meghal Gupta and Naren Sarayu Manoj. An optimal algorithm for certifying monotone functions. *arXiv* preprint *arXiv*:2204.01224, 2022 (cited on pages 102–109).



Fritz John. Extremum problems with inequalities as subsidiary conditions. In *Studies and Essays Presented to R. Courant on his 60th Birthday*, pages 187–204. Interscience Publishers, Inc, 1948 (cited on pages 12–17).

#### References II



Yi Li, Ruosong Wang, and David P. Woodruff. Tight bounds for the subspace sketch problem with applications. 2019. DOI: 10.48550/arXiv.1904.05543. URL:

https://arxiv.org/abs/1904.05543 (cited on pages 79-84).



Yury Makarychev, Naren Sarayu Manoj, and Max Ovsiankin. Streaming algorithms for ellipsoidal approximation of convex polytopes. In *Proceedings of Thirty Fifth Conference on Learning Theory (COLT)*, pages 3070–3093, July 2022 (cited on pages 106–109).



Yury Makarychev, Naren Sarayu Manoj, and Max Ovsiankin. Near-optimal streaming ellipsoidal rounding for general convex polytopes. In *Proceedings of Fifty Sixth Annual ACM Symposium on Theory of Computing (STOC)*, June 2024 (cited on pages 106–109).



Naren Sarayu Manoj and Avrim Blum. Excess capacity and backdoor poisoning. *Advances in Neural Information Processing Systems (NeurIPS)*, 34, 2021 (cited on pages 102–109).

#### References III



Naren Sarayu Manoj and Max Ovsiankin. The change-of-measure method, block lewis weights, and approximating matrix block norms. 2023. arXiv: 2311.10013 [math.FA] (cited on pages 107–109).



Naren Sarayu Manoj and Nathan Srebro. Shortest program interpolation learning. In *Proceedings of Thirty Sixth Conference on Learning Theory (COLT)*, pages 4881–4901, July 2023 (cited on pages 102–109).