

НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ

Рады приветствовать Вас на страницах каталога Научно-исследовательского института точных приборов, в котором представлены основные системные разработки института.

Сегодня аббревиатура «НИИ ТП» характеризует умение наших учёных, инженеров и рабочих создавать разнообразную радиоэлектронную аппаратуру и программные комплексы, отвечающие высоким требованиям космической отрасли России.

Мы умеем изготавливать разные радиоэлектронные приборы: антенны, передатчики, приёмники, вычислительные устройства. С помощью этих приборов мы создаём сложные аппаратно-программные комплексы.

Мы научились обрабатывать высокоскоростные информационные потоки, циркулирующие в создаваемых приборах и комплексах, используя современные методы защиты информационных сред.

Занимаясь техникой наблюдения Земли из космоса, мы освоили технологию обработки изображений и методы построения геоинформационных систем для решения задач картографии.

Обладая собственной конструкторско-технологической и производственной базами, мы внедряем наши научно-технические разработки с участием ведущих приборных заводов России в современные космические и авиационные комплексы. Со многими из подобных систем, созданных в НИИ ТП, Вы познакомитесь на страницах каталога.

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТОЧНЫХ ПРИБОРОВ СПЕЦИАЛИЗИРУЕТСЯ НА РАЗРАБОТКЕ, ИЗГОТОВЛЕНИИ И ВВОДЕ В ЭКСПЛУАТАЦИЮ:

- комплексов автоматизированного управления космическими аппаратами (КА);
- радиотехнических систем взаимных измерений для поиска, сближения и стыковки КА;
- комплексов приёма, обработки, распределения и доведения до потребителей информации дистанционного зондирования Земли;
- комплексов планирования работы КА дистанционного зондирования Земли;
- радиолокационных систем наблюдения Земли самолётного и космического базирования;
- радиотехнических комплексов для низкоорбитальных космических систем связи, обеспечивающих глобальность передачи данных;
- систем сбора, хранения и высокоскоростной передачи информации.

НАИБОЛЕЕ ИЗВЕСТНЫМИ В КОСМИЧЕСКОЙ ОТРАСЛИ ИЗ УКАЗАННЫХ РАЗРАБОТОК ЯВЛЯЮТСЯ СОЗДАННЫЕ В НИИ ТОЧНЫХ ПРИБОРОВ СИСТЕМЫ:

- «КОМПАРУС» автоматизированная радиотехническая система управления искусственными спутниками Земли;
- «КУРС» радиотехническая система взаимных измерений параметров движения для поиска, сближения и стыковки космических аппаратов:
- «ГОНЕЦ» радиотехнический комплекс низкоорбитальной космической системы связи;
- ВРЛ высокоскоростная радиолиния сброса целевой информации.

ЗА ПОСЛЕДНИЕ ГОДЫ К РАНЕЕ СОЗДАННЫМ СИСТЕМАМ ДОБАВИЛИСЬ НОВЫЕ:

- семейство малогабаритных радиолокаторов с синтезированной апертурой типа «КОМПАКТ» авиационного базирования, предназначенных для проведения радиолокационной съёмки земной и водной поверхностей с авиационных носителей различных типов;
- высокоскоростная радиолиния (ВРЛ) для КА «РЕСУРС-П», представляющая собой комплект бортовой и наземной аппаратуры для передачи с борта КА и приёма на Земле целевой информации, поступающей со скоростью 300 Мбит/с;
- радиолокационный комплекс космического базирования «СЕВЕРЯНИН-М», предназначенный для формирования обзорных изображений поверхности Земли в СВЧ-диапазоне длин волн;
- мобильные комплексы приёма информации дистанционного зондирования Земли, предназначенные для приёма, регистрации, структурного восстановления и формирования изображений земной поверхности;
- программно-технические комплексы обработки информации и серийное изготовление геопространственной продукции.

ИСТОРИЯ ПРЕДПРИЯТИЯ

Научно-исследовательский институт точных приборов (НИИ ТП) был организован по Постановлению Совета Министров СССР от 4 апреля 1952 г. № 1662–606 на базе завода № 499 в городе Бабушкин Московской области.

С 1956 г. в НИИ ТП начинается создание аппаратуры для космической отрасли России. Образуются новые тематические направления по созданию командных радиолиний (КРЛ) и радиосистем для стыковки космических аппаратов (КА).

Разработанная учёными института радиоаппаратура КРЛ активно эксплуатируется, начиная с запуска первого искусственного спутника Земли, до настоящего времени. Последняя модификация КРЛ — система «КОМПАРУС» применяется, начиная с полёта первого российского модуля «ЗАРЯ» Международной космической станции.

Стольже известна создателям космической техники и система взаимных измерений «КУРС», с помощью которой было осуществлено более 150 автоматических стыковок различных космических аппаратов. Создание такой системы явилось результатом решения учёными НИИ ТП сложнейшей навигационно-баллистической задачи взаимного поиска, сближения и стыковки КА.

НИИ ТП не остался в стороне от развития постоянно прогрессирующих технологий передачи и обработки информации. С 1962 г. на предприятии создаются и изготавливаются станции приёма, обработки и доведения до потребителей информации дистанционного зондирования Земли (ДЗЗ), комплексы планирования и управления, обеспечивающие эффективное и оперативное использование ресурсов КА.

Специалистами института создана система низкоорбитальной спутниковой связи «ГОНЕЦ», нашедшая своё применение там, где требуется сбор и передача информации при использовании малогабаритных приёмо-передающих абонентских терминалов. Система эксплуатируется с 1996 г. и постоянно совершенствуется.

В последние годы в НИИ ТП созданы радиолокационные системы для наблюдения Земли авиационного и космического базирования, внедряются новые технологии информационного обеспечения, разработана уникальная система передачи высокоскоростной информации с космических аппаратов.

Достижения НИИ ТП немыслимы без тесного сотрудничества с головными предприятиями-разработчиками космических систем, такими как:

- ПАО «РКК «Энергия» имени С. П. Королёва»;
- AO «РКЦ «Прогресс»;
- AO «ИСС» имени академика М. Ф. Решетнёва»;
- АО «ГКНПЦ имени М. В. Хруничева»;
- АО «НПО Лавочкина».

За успехи в создании образцов радиотехнических систем институт награждён двумя орденами Трудового Красного Знамени и тремя медалями Академии наук России, Почётной грамотой Правительства РФ.

Научно-исследовательский институт точных приборов

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТОЧНЫХ ПРИБОРОВ СЕГОДНЯ

За десятилетия ведения разработок бортовой и наземной аппаратуры и информационного обеспечения в НИИ ТП сложились научно-технические школы по их созданию. Они охватывают, прежде всего, такие направления современной радиоэлектроники и информатики, как: радиолокация точечных объектов и протяжённых сред, теория радиолиний передачи информации, обработка изображений.

В НИИ ТП накоплена обширная библиотека знаний по направлениям деятельности предприятия в виде трудов его ведущих специалистов.

Внедрение результатов исследований в практические разработки привело к освоению конструкторско-технологических решений, позволяющих создавать разнообразные приборы с различными условиями эксплуатации. Единство базовых конструкторско-технологических решений при производстве аппаратуры определило возможность кооперирования НИИ ТП с рядом других производителей.

Обязательным условием разработки, производства и эксплуатации качественных и надёжных бортовых и наземных систем является метрологическое обеспечение. Метрологическая служба предприятия оснащена современными измерительными приборами, обеспечивающими радиотехнические, электротехнические, линейно-угловые, температурные и другие измерения.

НИИ ТП имеет уникальную многофункциональную испытательную базу, на которой проводятся различные виды испытаний создаваемой аппаратуры на воздействие внешних факторов.

В результате многолетнего труда сложилась структура предприятия и схема управления им, эффективность которых подтверждается динамикой роста объёмов производства НИИ ТП.

СТРУКТУРА ПРЕДПРИЯТИЯ

АДМИНИСТРАЦИЯ

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЕ ПОДРАЗДЕЛЕНИЯ

КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКИЕ ПОДРАЗДЕЛЕНИЯ

ОПЫТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ПРОИЗВОДСТВО

Участок поверхностного монтажа

Участок сборки и монтажа радиоаппаратуры

Участок механической обработки

Участок низкотемпературной совместно обжигаемой керамики (LTCC-технология)

АВТОМАТИЗИРОВАННАЯ РАДИОТЕХНИЧЕСКАЯ СИСТЕМА УПРАВЛЕНИЯ ИСКУССТВЕННЫМИ СПУТНИКАМИ ЗЕМЛИ «КОМПАРУС»

НАЗНАЧЕНИЕ И СОСТАВ СИСТЕМЫ

Система предназначена для управления космическими аппаратами (КА) и обеспечивает автоматизированное управление группировкой находящихся на орбитах КА, с пропускной способностью 120 объектосеансов управления в сутки.

Состав системы:

- различные модификации бортовой аппаратуры со сроком активного существования 5–15 лет и вероятностью безотказной работы более 0,99. Имеются 3 группы модификаций, различающихся:
 - объёмом;
 - весом 25, 45 кг;
 - выполняемыми функциями;
- перевозимая контрольно-проверочная аппаратура, обеспечивающая автономные проверки бортовой аппаратуры «КОМПАРУС-А», а также комплексные проверки и предпусковую подготовку искуственного спутника Земли (ИСЗ) на предприятии-изготовителе ИСЗ и на полигоне запуска;
- наземные станции радиоуправления в мобильном и стационарном исполнении.

Бортовая аппаратура и наземные станции образуют командно-измерительную систему.

ВИДЫ ПРЕДЛАГАЕМЫХ УСЛУГ

- Изготовление и продажа комплектов бортовой аппаратуры.
- Изготовление, продажа или сдача в аренду комплектов контрольно-проверочной аппаратуры.
- Установка на борт КА одной из трёх модификаций бортовой аппаратуры.
- Изготовление элементов наземной станции, ЦУП и контрольно-проверочной аппаратуры в мобильном исполнении, допускающем развёртывание и приведение их в состояние готовности к работе в течение 24 часов.
- Обеспечение управления КА.

Бортовая аппаратура

Стационарная станция радиоуправления

ПАРАМЕТРЫ	ЗНАЧЕНИЕ
Управление КА с высотами орбит, км	170-56000
Передача на борт КА разовых команд управления с темпом выдачи 1 с	до 750
Передача на борт КА массивов рабочих и временных программ в бортовой комплекс управления со скоростью, бит/с	до 4000
Передача на Землю квитанционной информации и цифровых информационных массивов от систем КА со скоростью, бит/с	до 6000
Сверка бортовой и наземной шкал времени, коррекция и фазировка бортовой шкалы времени с точностью, мкс	25
Измерение дальности движения КА с точностями, м	≤10
Измерение радиальной скорости движения КА с точностями, м/с	0,03
Запоминание на борту КА временных программ объёмом, бит	до 32000
Выдача временных программ в системы КА с точностью, с	до 1
Сбор, запоминание со сжатием и передача на Землю информации телесигнализации: – от функциональных датчиков, шт.; – от релейных (сигнальных) датчиков, шт.	64 448
Выдача в системы КА синхрочастот и кода бортового времени	обеспечивается

РАДИОТЕХНИЧЕСКАЯ СИСТЕМА ВЗАИМНЫХ ИЗМЕРЕНИЙ ПАРАМЕТРОВ ДВИЖЕНИЯ ДЛЯ ПОИСКА, СБЛИЖЕНИЯ И СТЫКОВКИ КА «КУРС»

НАЗНАЧЕНИЕ И СОСТАВ СИСТЕМЫ

Система предназначена для измерения параметров взаимного движения КА, необходимых для обеспечения их автоматической стыковки, и осуществляет:

- взаимный поиск и обнаружение кооперируемого КА;
- измерение параметров взаимного движения КА:
 - дальности;
 - радиальной скорости;
 - углов ориентации;
 - углов пеленга по двум линиям связи;
 - базовых углов для определения взаимного угла крена;
 - угловых координат «активного» КА в координатах «пассивного» КА;
- выдачу измерительной информации в систему управления КА. Аппаратура системы «КУРС» состоит из запросчика («КУРС-А»), размещаемого на космическом аппарате, совершающем основные манёвры встречи, и ответчика («КУРС-П»), размещаемого на другом КА или орбитальной станции.

	Состав аппаратуры «КУРС-А» космического аппарата	a:
•	Электронный контейнер	1 шт.
•	Ненаправленная антенна	3 шт.
•	Сканирующая антенна ориентации	1 шт.
•	Остронаправленная пеленгующая антенна	2 шт.
•	Выносной малошумящий усилитель	5 шт.
•	Преобразователь напряжения антенны ориентации	1 шт.
•	Регулятор температуры антенны ориентации	1 шт.
	Состав аппаратуры «КУРС-П» орбитальной станции:	
•	Электронный контейнер	1 шт.
•	Ненаправленная антенна	2 шт.
•	Слабонаправленная антенна стыковочного узла	1 шт.
•	Креномерная (базовая) антенна стыковочного узла	1 шт.
•	Сканирующая антенна стыковочного узла	1 шт.
•	Выносной малошумящий усилитель	2 шт.
•	Преобразователь напряжения сканирующей антенны	1 шт.
•	Регулятор температуры сканирующей антенны	1 шт.

Антенны системы «КУРС-НА» на КА

Имитатор угловых перемещений в безэховой камере

ПАРАМЕТРЫ	«КУРС»	«КУРС-Н»	«КУРС-МК»
Диапазон частот, ГГц	3,2	3,2	3,2
Дальность действия, км, не менее	100*	100**	200*
Погрешность измерения относительной дальности, м	10	10	7,5
Диапазон измерения радиальной скорости, м/с	±400	±1000	±150
Погрешность измерения радиальной скорости, см/с	1,5	1,5	1,0
Диапазон начальных угловых положений, град	±180	±30	±30
Потребление запросчика, Вт	240	60	от 30 до 120
Потребление ответчика, Вт	170	65	от 30 до 120
Погрешность измерения взаимного углового положения, угл. мин	15	15	15
Масса резервированного запросчика, кг	93	43	от 40 до 60
Масса резервированного ответчика, кг	85	25	от 40 до 60

^{*} В полной сфере пространства. ** В секторе ±30°.

ВИДЫ ПРЕДЛАГАЕМЫХ УСЛУГ

- Изготовление и поставка контейнеров с электронными блоками.
- Изготовление и поставка комплектов антенн с малошумящими СВЧ-усилителями.
- Поставка и ввод в эксплуатацию контрольно-испытательной аппаратуры и проведение регламентных работ в процессе эксплуатации.
- Размещение на всех типах пилотируемых и грузовых КА, сегментах и модулях долговременных орбитальных станций.
- Проведение эффективных тестовых проверок, в том числе непосредственно на орбите.

Электронный контейнер системы «КУРС-ATV» для европейского космического агентства

МОДИФИКАЦИИ СИСТЕМЫ

Развитие системы взаимных измерений обуславливается развитием новых возможностей систем управления КА. Постоянная работа по совершенствованию действующих систем позволяет уменьшить массогабаритные характеристики аппаратуры, сохраняя высокий уровень её функциональной надёжности.

В таблице (стр. 6) приведены технические характеристики трёх модификаций системы «КУРС»:

- «КУРС» и «КУРС-Н», выпускаемых в настоящее время;
- «КУРС-МК», находящейся в стадии разработки.

ПЕРСПЕКТИВНАЯ СИСТЕМА ВЗАИМНЫХ ИЗМЕРЕНИЙ ДЛЯ ПОИСКА, СБЛИЖЕНИЯ И СТЫКОВКИ КА (СВИ ПСС)

НАЗНАЧЕНИЕ СИСТЕМЫ

Позволяет осуществлять поиск, сближение и стыковку пилотируемых и автоматических КА с кооперируемыми и некооперируемыми элементами перспективной космической инфраструктуры.

РЕШАЕМЫЕ ЗАДАЧИ СВИ ПСС

- Экстренная эвакуация экипажа аварийного космического аппарата.
- Сервисное обслуживание космических аппаратов, комплексов и станций (проверка состояния, ремонт неисправного оборудования и т. п.).
- Стыковка с крупногабаритными космическими станциями типа МКС (доставка грузов, смена экипажей и т. п.).
- стыковка с некооперируемыми космическими объектами (астероиды, метеориты и т. п.).

принципы построения сви псс

- Использование блочно-модульного построения с максимальной унификацией узлов и блоков.
- Использование широкополосной активной фазированной антенной решетки (АФАР) с электронным управлением диаграммами направленности для обеспечения основы унификации и возможности исполнения СВИ ПСС в виде двух функциональных блоков: цифровой АФАР, на входе и выходе которой существуют только цифровые сигналы, и вычислительного устройства, осуществляющего обработку сигналов и управление режимами работы.
- Использование широкополосных сигналов с длительной когерентной обработкой, реализация режимов работы как с ответчиком на «пассивном» КА, так и по отражённым от КА сигналам.
- Создание новых алгоритмов обработки сигналов и аппаратно-программных функциональных блоков.
- Оптимизация комплексирования радиотехнических и оптических измерителей для оценки параметров взаимного движения на малых расстояниях.

Антенна ориентации с электронным сканированием системы «КУРС-НА»

Остронаправленная антенна систем «КУРС» и «КУРС-НА»

НИЗКООРБИТАЛЬНАЯ КОСМИЧЕСКАЯ СИСТЕМА СВЯЗИ «ГОНЕЦ»

НАЗНАЧЕНИЕ И СОСТАВ СИСТЕМЫ

Низкоорбитальная система связи «ГОНЕЦ» обеспечивает персональной связью пользователей, которые могут находиться в любой точке земного шара. Система состоит из космического и наземного сегментов и ориентирована как на предоставление услуг связи индивидуальным пользователям, так и на создание корпоративных систем.

Основные области применения и возможности системы связи «ГОНЕЦ»:

- создание выделенных ведомственных (банковских, медицинских, административных) сетей связи;
- обеспечение связи с удалёнными территориями России со слаборазвитой инфраструктурой (Крайний Север, Сибирь, Дальний Восток и др.);
- контроль состояния и местоположения транспортных средств, определение координат с помощью систем GPS/ГЛОНАСС с точностью до 10 м:
- контроль грузоперевозок с передачей трассы движения в диспетчерский центр, дистанционный мониторинг;
- экологический и промышленный мониторинг, сбор научной информации (геодезической, гидрологической, от сейсмодатчиков и др.);
- передача/приём текстовых или файловых сообщений произвольного формата;
- передача информации от датчиков, расположенных на удалённых объектах, в автономном режиме или по групповым опросам диспетчерского центра;
- сопряжение с почтовыми службами корпоративной сети или сети Internet;
- обмен электронной почтой с пользователями сети Internet.

В состав системы «ГОНЕЦ» входят:

- Низкоорбитальная группировка КА связи, осуществляющая:
 - приём и передачу сообщений;
 - сбор данных с необслуживаемых стационарных датчиков;
 - глобальный мониторинг грузоперевозок со сквозным контролем их прохождения от места загрузки до пункта назначения.
- Центры управления системой, обеспечивающие:
 - контроль состояния бортовых систем в течение всего срока активного существования КА;
 - планирование и координацию работ по развёртыванию и восполнению орбитальной группировки;
 - определение параметров орбит спутников, расчёт зон радиовидимости:
 - контроль за использованием связных ресурсов и распределение частот с учётом структуры орбитальной группировки, а также окружающей электромагнитной обстановки.
- Региональные или ведомственные станции, обеспечивающие:
 - коммутацию и маршрутизацию абонентских потоков;
 - сбор данных и управление работой выделенных сетей пользователей в отдельных регионах;
 - подключение абонентов системы к сетям общего пользования.
- Пользовательский сегмент, включающий абонентские терминалы, создаваемые в различных модификациях:
 - **Стационарный терминал**. Устанавливается непосредственно у персонального или коллективного пользователя. Тип антенны турникетная или плоская. В комплект входит антенный кабель с элементами крепления для установки снаружи помещения. Электропитание от сети 220 В, 50 Гц.

Автономный абонентский терминал

Бортовой радиотехнический комплекс

Плата бортового радиотехнического комплекса

Региональная станция

 Мобильный терминал. Терминал с устройством определения местоположения, предназначенный для установки на автомобили и другие подвижные объекты. Электропитание — от аккумуляторной батареи напряжением 12 В.

ВИДЫ ПРЕДЛАГАЕМЫХ УСЛУГ

- Передача данных между пользователями системы.
- Обмен информацией с сетями общего пользования (Internet).
- Определение местоположения (GPS/ГЛОНАСС).
 Услуги предоставляются предприятием АО «СС «Гонец».

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ

Центр управления системой

ПАРАМЕТРЫ		2008 Г.	2013 Г.	2019 Г.
Орбитальная группировка	Число спутников	9 (2 плоскости по 3 и 6 КА)	6 (2 плоскости по 3 КА) корректируемая	12 (4 плоскости по 3 КА) корректируемая
Максимальное/среднее врег	мя ожидания сеанса связи, ч	2,5/1,5	1,5/1,0	0,5/0,2
Скорость передачи информа	эции, Кбит/с	2,4	2,4; 4,8; 9,6	2,4; 4,8; 9,6; 38,4; 76,8
Диапазон частот, МГц		200/300	200/300, 300/400	200/300, 300/400
Вероятность ошибки на символ		<10 ⁻⁴	<10-6	<10-6
Кодирование		блочное	каскадное (к = 7, r = 3/4)	каскадное (к = 7, r = 3/4)
Протокол доступа		МДВР	S-ALOHA	S-ALOHA
Пропускная способность системы, Мбит/сут		135	1620	3240
Точность определения местоположения, м, не хуже		10 (GPS)	10 (GPS/ГЛОНАСС)	10 (GPS/ГЛОНАСС) 1000 (автономный режим)

С 2020 г. по 2025 г. предполагается изготовление КА нового поколения «ГОНЕЦ-М1» и развёртывание орбитальной группировки из 24-х КА.

МАЛОГАБАРИТНЫЙ РАДИОЛОКАТОР С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АВИАЦИОННОГО БАЗИРОВАНИЯ РСА ТИПА «КОМПАКТ»

НАЗНАЧЕНИЕ СИСТЕМЫ

Радиолокатор с синтезированной апертурой (PCA) типа «КОМПАКТ» предназначен для проведения радиолокационной съёмки земной и водной поверхностей с авиационных носителей различных типов с пространственным разрешением от 0,5 до 3,5 метров. По сравнению с другими видами авиационной съёмки использование PCA имеет следующие преимущества:

- круглосуточная и всепогодная съёмка;
- возможность работы сквозь дым и пыль;
- отсутствие необходимости пролёта непосредственно над объектом съёмки;
- широкая полоса съёмки (15 км).

Малогабаритные РСА типа «КОМПАКТ» могут применяться в различных областях. Базовое программное обеспечение позволяет проводить тематическую обработку в интересах различных Заказчиков:

• Лесное хозяйство

- Подсчёт площади лесных угодий.
- Выделение структуры просек и дорог в лесных массивах.
- Подсчёт площади (формы и местоположения) вырубок.
- Определение высоты деревьев по радиолокационным теням.

• Чрезвычайные ситуации

- Обнаружение разыскиваемых объектов, их фрагментов или вторичных следов при поисково-спасательных работах.
- Оперативное определение координат, площади и формы затопления при естественных и техногенных катастрофах.
- Определение формы и характеристик ледовых образований при оперативной проводке судов в сложных условиях.

• Нефтегазодобыча

- Оперативное уточнение состояния поверхности (затопление, искажения рельефа и пр.) в районе проектируемых, строящихся и эксплуатируемых трасс трубопроводов.
- Регулярное и специальное оперативное обследование трубопроводов для обнаружения места, формы и особенностей возможных аномалий: анализируются регулярная структура радиолокационного изображения (РЛИ) обваловки трубопровода, наличие «ярких» отражений от металла обнажённой трубы в однородной структуре окружающей трубопровод поверхности.

• Береговая охрана

- Оперативное обнаружение, определение координат и класса надводных объектов при патрулировании акватории.

• Территориальное администрирование и картографирование

- Оперативное уточнение и нанесение на карту (привязка к координатам) схемы коммуникаций (дорог, линий электропередач, осветительных столбов), объектов землепользования, водоёмов, застройки.

• Экологическая полиция

 Оперативное обнаружение загрязнений на водной поверхности и возможность идентификации виновника загрязнения.

• Океанология и рыбный промысел

- Оперативное обнаружение, определение координат и формы зон водной поверхности с отрицательным радиометрическим контрастом:
 - гидрологических фронтов, вихрей и пр.,
 - возмущений морской поверхности, создаваемых косяками рыб.

Четырёхдиапазонный радиолокатор X-, L-, P- и VHF-диапазонов

Антенна Х-диапазона в салоне вертолёта Ми-8

Антенна L-диапазона в салоне самолёта Ан-30

Антенна Р-диапазона за иллюминатором вертолёта Ми-8

ВЫСОКИЕ ЭРГОНОМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Программное обеспечение предоставляет дружественный интерфейс при формировании полётного задания съёмки по исходным данным Заказчика.

Разработана система автоматического управления съёмкой в соответствии с полётным заданием. Управление осуществляется на основе данных спутниковых навигационных систем (GPS/ГЛОНАСС). В процессе полёта производятся автоматическое определение момента начала съёмки и расчёт её оптимальных параметров в соответствии с фактическими параметрами движения носителя.

Применение подобной системы существенно снижает нагрузку оператора и повышает надёжность выполнения задания.

мобильность

РСА типа «КОМПАКТ» имеют малые габариты и выполнены по модульному принципу, что обеспечивает возможность их применения на любом пассажирском или транспортном самолёте или вертолёте. Время установки не более 1 часа. Малогабаритные антенны РСА типа «КОМПАКТ» X- и L-диапазонов могут работать сквозь штатный иллюминатор авиационного носителя.

РСА типа «КОМПАКТ» прошли успешные испытания на самолётах: Ил-18, Ил-76, Ту-154, Ан-30, Ан-26, Сп-235, Ил-103, Ил-20 и вертолётах: Ми-8, Ка-32, Bell 214, EC 130 B4.

ВИДЫ ПРЕДЛАГАЕМЫХ УСЛУГ

- Изготовление и поставка РСА типа «КОМПАКТ».
- Проведение съёмок по заданию Заказчика бригадой исполнителей НИИ ТП с использованием комплекта аппаратуры РСА типа «КОМПАКТ». (Предоставление носителя и оформление директивных документов на проведение съёмки выполняется Заказчиком).

Фрагменты РЛИ L-диапазона

Фрагменты РЛИ Р-диапазона

ПАРАМЕТРЫ	РСА «КОМПАКТ-Х»	РСА «КОМПАКТ-L»	РСА «КОМПАКТ-Р»	РСА «КОМПАКТ-VHF»
Диапазон частот, см	X (3)	L (23)	P (68)	VHF (214)
Ширина полосы радиотракта, МГц	300	200	60	40
Пространственное разрешение, м	0,5x0,5	0,8x0,8	2,5x2,5	3,5x3,5
Ширина полосы съёмки, км	до 5	до 15	до 5	до 3
Высота полёта при съёмке, м	100-10000		100-3000	100-1000
Вид антенны	иллюминаторная антенна		наружная антенна	
Размеры антенны, мм	235x235x50	диаметр 350	диаметр 500	1300x650
Предельная дальность, км	15			5
Потребление по сети = 27 В, Вт	150			
Время установки на носитель, ч	1			
Габариты, мм	270x430x430			
Масса, кг	15			
Количество операторов	1			
Обработка	на борту и на Земле			
Навигационная система	ГЛОНАСС + GPS			

МОБИЛЬНЫЙ ПРИЁМО-ПЕРЕДАЮЩИЙ КОМПЛЕКС (МППК)

НАЗНАЧЕНИЕ СИСТЕМЫ

- Приём информации ДЗЗ, получаемой по каналам высокоскоростной радиолинии от КА («РЕСУРС-П», «КАНОПУС-В», «МЕТЕОР-М», «TERRA», «AQUA», «SPOT», «RADARSAT», «NOAA», «NPP»):
 - в X-диапазоне частот (7,7–8,4 ГГц) по двум каналам с максимальной скоростью потока информации до 600 Мбит/с (до 300 Мбит/с по каждому каналу);
 - в L-диапазоне частот (1,69–1,71 ГГц) со скоростью до 1,33 Мбит/с.
- Обмен данными через МКСР «ЛУЧ», в Ки-диапазоне частот со скоростью до 70 Мбит/с.
- Демодуляция, декодирование, восстановление кадровой структуры и регистрация принимаемой целевой и служебной информации.
- Автоматизированное формирование заявок на проведение съёмки с КА ДЗЗ.
- Автоматизированная обработка принятой с КА информации ДЗЗ.
- Выходные форматы: TIFF, IMG, SHAPE, PDS, KDF, H5, RAW.
- Каталогизация, архивирование и хранение информации.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

- Температура воздуха от -40 °C до +50 °C.
- Относительная влажность воздуха 98 % при температуре воздуха +25 °С.
- Атмосферное давление от 630 до 800 мм рт. ст.
- Скорость ветра до 25 м/с.
 - Мощность потребления не более 15 кВт.
 - Непрерывная работа в течение 24 ч в сутки.
 - Возможность работы в автоматическом режиме.

КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ

- Контейнеры выполнены в габаритах стандартного 20-футового контейнера морского исполнения.
- Развёртывание контейнеров из транспортного положения в рабочее осуществляется расчётом не более 4 человек.
- МОИ-МППК предусматривает 2 рабочих места для операторов приёма и обработки информации.

Антенный комплекс непосредственного приёма (АК-МППК)

Модуль обработки информации (МОИ-МППК)

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

FARAMETRI	ЗНАЧЕНИЕ			
ПАРАМЕТРЫ	х-диапазон	L-ДИАПАЗОН	Ки-ДИА	ЛПАЗОН
Рефлектор, D, м	3,7 offset			
Диапазон рабочих углов наведения, град: – по азимуту – по углу места	±270 от 0 до 180			
Максимальная ошибка наведения, угл. мин	6			
Режим работы	сопровождение КА ДЗЗ в режиме программного наведения			
Поляризация	левая и правая круговая			
Вид модуляции принимаемого сигнала	BPSK, QPSK, OQPSK, 8PSK, 16QAM, 16APSK			
Полоса принимаемых частот, ГГц	7,7-8,4 1,6-1,7 13,5-13,6/10,7-11,2			
Ретрансляция, режим, ГГц:	-	-	абонентный	магистральный
– приём	-	-	13,5–13,6	10,7-11,2
– передача	-	-	15,1–15,4	14,6-14,7
Коэффициент усиления, дБ	46 30 48		8	

НАЗЕМНЫЙ КОМПЛЕКС ПРИЁМА И ОБРАБОТКИ ИНФОРМАЦИИ

НАЗНАЧЕНИЕ СИСТЕМЫ

Планирование съёмки, получение, восстановление, формирование и распространение изображений земной поверхности высокого пространственного разрешения, поступающих с космического аппарата типа «РЕСУРС-П».

КОМПЛЕКС ОБЕСПЕЧИВАЕТ

- Взаимодействие с потребителями информации ДЗЗ по вопросам получения заявок на архивную информацию, выполнение новых съёмок, обработки информации ДЗЗ.
- Планирование съёмки земной поверхности с космического аппарата «РЕСУРС-П» по заявкам потребителей, формирование программ управления работой КА для проведения съёмки и передачи данных на наземные станции приёма информации.
- Приём и регистрацию данных наблюдения, поступающих с КА по высокоскоростной радиолинии.
- Распаковку информации с выделением массивов видеоинформации и служебной информации.
- Восстановление структуры видеоинформации, декодирование, радиометрическую коррекцию, фильтрацию, преобразование динамического диапазона, формирование обзорного изображения и выполнение других операций цифровой первичной обработки.
- Контроль качества полученных изображений.
- Каталогизацию и архивацию информации.
- Геометрическую коррекцию и геопривязку изображений с использованием данных о параметрах углового и линейного движения КА и/или опорных точек на местности.
- Формирование стандартных информационных продуктов:
 - структурно восстановленных и радиометрически откорректированных панхроматических или спектрозональных изображений;
 - изображений, приведённых к заданной картографической системе координат по орбитальным данным;
 - ортоизображений в заданной картографической системе координат, созданных по опорным точкам и цифровым матрицам рельефа.

Приёмный комплекс

Стационарный комплекс приёма и обработки информации

Австралия, г. Мельбурн

США, Мыс Канаверал (псевдоизображение)

БОРТОВАЯ И НАЗЕМНАЯ АППАРАТУРА ВЫСОКОСКОРОСТНОЙ РАДИОЛИНИИ СВЯЗИ ДЛЯ ПЕРЕДАЧИ ИНФОРМАЦИИ ИЗ КОСМОСА

НАЗНАЧЕНИЕ И СОСТАВ СИСТЕМЫ

Обеспечивает на борту космического аппарата сбор цифровой целевой информации (ЦИ) от независимо работающих высокоинформативных датчиков дистанционного зондирования Земли и научной аппаратуры исследования космического пространства, а также передачу данной информации в наземный комплекс приёма для дальнейшей обработки.

В состав системы входят:

- Бортовая аппаратура (БА), содержащая:
 - набор модулей бортового запоминающего устройства;
 - радиопередающее устройство;
 - программно-управляемое антенное устройство с усилителями мощности радиоканалов;
 - управляющее вычислительное устройство.
- Наземная аппаратура (НА) унифицированный комплекс, настраиваемый на работу с различными КА ДЗЗ, содержащий:
 - приёмо-демодулирующую подсистему;
 - подсистему дешифрирования, декодирования и регистрации цифровой информации;
 - подсистему управления и обработки служебной информации.

возможности

- Адаптация характеристик системы к требованиям Заказчика в части:
 - необходимого количества каналов приёма ЦИ в БА;
 - максимальной скорости передачи ЦИ по радиоканалам ВРЛ;
 - необходимого суммарного объёма запоминающего устройства;
 - защиты ЦИ от несанкционированного доступа.
- Доукомплектование системы бортовыми и наземными средствами передачи ЦИ по ретрансляционному тракту (через геостационарный космический аппарат-ретранслятор (ГКАР)) и доставки в БА командно-программной информации со скоростью до 2 Мбит/с.
- Обеспечение работы ВРЛ в составе КА, эксплуатируемых на высоких орбитах (высокая элептическая орбита (ВЭО), геостационарная орбита (ГСО)).

ВИДЫ ПРЕДЛАГАЕМЫХ УСЛУГ

- Изготовление и поставка комплектов бортовой и наземной аппаратуры, ввод её в эксплуатацию у Заказчика, обеспечение лётных испытаний.
- Обучение обслуживающего персонала.

Бортовое программно-управляемое антенное устройство с приводом, усилителями мощности и системой терморегулирования

Контейнер с модулями бортового запоминающего устройства

Четырёхканальное радиопередающее устройство

ПАРАМЕТРЫ	ЗНАЧЕНИЕ
Высота рабочих круговых орбит КА, км	до 1200
Диапазон частот	X; K; K _a
Скорость передачи ЦИ, Мбит/с	1200; 900; 600; 450; 300; 225; 150
Максимальное количество каналов приёма ЦИ в БА	24
Скорость поступления ЦИ по одному каналу, Мбит/с	до 1200
Ёмкость бортового ЗУ для одноразового приёма ЦИ по одному каналу, Гбайт	не менее 500
Диаметр зеркала антенны НА, м	3,5; 5
Масса модуля бортового ЗУ, кг	2
Масса базовой БА (без ЗУ), кг	не более 60

РАДИОЛОКАЦИОННЫЙ КОМПЛЕКС КОСМИЧЕСКОГО БАЗИРОВАНИЯ «СЕВЕРЯНИН-М»

НАЗНАЧЕНИЕ СИСТЕМЫ

Всепогодное и круглосуточное (независимо от естественной освещённости) дистанционное зондирование Земли в сантиметровом диапазоне радиоволн, обеспечивающее решение задач:

- оперативной гидрометеорологии, включая мониторинг ледовой обстановки (классификация типов льдов, определение границ ледового покрова, обнаружение айсбергов и дрейфующих льдин);
- исследования природных ресурсов (обнаружение и исследование средне- и крупномасштабных геологических структур);
- мониторинга чрезвычайных ситуаций (обнаружение средне- и крупномасштабных зон экологического загрязнения, обнаружение крупных судов);
- мониторинга снежного покрова (контроль границ снежного покрова, оценка водного эквивалента);
- мониторинга растительного покрова (выявление участков леса, поражённых болезнями или вредителями, определение границ зон хозяйственной деятельности).

Бортовой радиолокационный комплекс «СЕВЕРЯНИН-М»

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ

ПАРАМЕТРЫ	ЗНАЧЕНИЕ
Диапазон частот	X (λ = 3,1 cm)
Полоса захвата, км	600–750
Поляризация сигнала	вертикальная
Пространственное разрешение, м	500–1000
Скорость потока данных, Мбит/с, не более	10
Размер раскрыва антенны, м	13,3x0,25
Энергопотребление, Вт, не более	1000
Масса приборов с антенной, кг, не более	150
Время эксплуатации на орбите, лет	5
Высота орбиты, км	830

Требуемые характеристики обеспечиваются:

- использованием метода синтеза искусственной апертуры антенны;
- созданием плоской антенной решетки с косеканс-квадратной диаграммой направленности;
- формированием составного зондирующего сигнала с фазокодовой манипуляцией;
- применением клистрона специальной разработки с высоким КПД;
- максимальным использованием цифровой техники;
- резервированием электронных устройств.

Фрагмент антенны бортового радиолокационного комплекса «СЕВЕРЯНИН-М»

РАЗРАБОТКА ТЕХНОЛОГИЙ, АППАРАТНО-ПРОГРАММНЫХ КОМПЛЕКСОВ И СЕРИЙНОЕ ИЗГОТОВЛЕНИЕ ГЕОПРОСТРАНСТВЕННОЙ ПРОДУКЦИИ

В 2009 г. в НИИ ТП был создан Научно-производственный комплекс (НПК), деятельность которого связана с разработкой новых видов геопространственной продукции, аппаратно-программных комплексов (АПК) обработки материалов космической съёмки и серийным изготовлением высокоточной геопространственной продукции.

Одним из главных направлений работы НПК является планомерная подготовка требуемых объёмов геоинформационных ресурсов в интересах решения задач информационного обеспечения геоинформационных систем различного назначения.

НПК укомплектован специалистами с многолетним опытом работы в данной области.

Проводится постоянная работа по модернизации АПК и внедрению современных решений в тесном взаимодействии с поставщиками и разработчиками вычислительных систем. НПК оснащён одной из крупнейших в России системой обработки и хранения геопространственных данных.

Вновь разработанные АПК НПК интегрированы в единую вычислительную сеть, объединяющую рабочие и серверные станции в единый кроссплатформенный кластер, состоящий из разнородных групп вычислительных узлов под управлением различных операционных систем, что позволило решить проблему импортозамещения. Компьютеры позволяют обрабатывать в параллельном режиме большие потоки входных данных.

Производственная база НПК позволяет осуществлять полный технологический цикл производства высокоточной геопространственной продукции любой сложности, разработку программного обеспечения, необходимого для её применения и решения с её помощью широкого круга расчётно-прикладных задач.

НПК ведутся поисковые, научно-исследовательские и опытноконструкторские работы по следующим направлениям:

- автоматизация процессов потоковой обработки данных дистанционного зондирования Земли из космоса;
- формирование и актуализация базового сплошного покрытия высокого разрешения по данным глобальных аэро- и космических съёмок;
- разработка новых видов геопространственной продукции повышенной детальности и координатной точности и средств применения геопространственных данных в системах поддержки принятия решений.

Высокопроизводительное серверное оборудование

Ортопланы высокого пространственного разрешения

Электронные топографические и тематические карты

Цифровые модели рельефа

Трёхмерные модели объектов и местности