Section	Property	Signal	z-Transform	ROC	
		x[n]	X(z)	R	
		$x_1[n]$	$X_1(z)$	R_1	
		$x_2[n]$	$X_2(z)$	R_2	
10.5.1 Linea	rity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2	
10.5.2 Time	shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R, except for the possible addition or deletion of the origin	
10.5.3 Scalin	ng in the z-domain	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R	
		$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	z_0R	
		$a^n x[n]$	$X(a^{-1}z)$	Scaled version of R (i.e., $ a R$ = the set of points { $ a z$ } for z in R)	
10.5.4 Time	reversal	x[-n]	$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} , where z is in R)	
10.5.5 Time	expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for som	the integer r $X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, where z is in R)	
10.5.6 Conju	agation	$x^*[n]$	$X^*(z^*)$	R	
10.5.7 Conve	olution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R_2	
10.5.7 First o	difference	x[n]-x[n-1]	$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$	
10.5.7 Accur	mulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$	
10.5.8 Differ	rentiation	nx[n]	$-z\frac{dX(z)}{dz}$	R	
	the z-domain	()	dz		
10.5.9		Initial Value Theorem			
			= 0 for $n < 0$, then		
10.5.9		If $x[n]$			

Signal	Transform	ROC
1. δ[n]	1	All z
$2. \ u[n]$	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	Z ^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
6. $-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
8. $-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r