

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 07-250116
 (43)Date of publication of application : 26.09.1995

(51)Int.Cl.

H04L 27/34

(21)Application number : 06-065657
 (22)Date of filing : 09.03.1994

(71)Applicant : YUSEISHO TSUSHIN SOGO KENKYUSHO
 (72)Inventor : KAMIO YUKIHIDE

(54) DATA TRANSMITTING METHOD

(57)Abstract:

PURPOSE: To provide a communication line applicable to a system that has a constant transmission speed, which is small in power consumption and high in efficiency by adding a function for adjusting a transmission speed to an adaptive modulation system.

CONSTITUTION: A transmission line estimation part 11 estimates the state of a transmission line, e.g. distortion, etc., due to a reception level delay wave and determines a modulation system for transmission by a transmission modulation system determination part 12 on the basis of the estimated value and the use state showing whether a transmission-side temporary storage part 14 is empty or full of data. A transmission part 13 modulates and transmits data from the transmission-side temporary storage part 14 as the transmission modulation system determination part 12 determines. A reception part 15 decodes the sent data by using received data and the estimated value of the transmission line. The decoded data are stored in a reception-side temporary storage part 16 and outputted at timing corresponding to the transmission speed of a connected system. When, however, a communication is started, the communication is made by a predetermined system and then the system is switched to this method.

LEGAL STATUS

[Date of request for examination] 09.03.1994

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 2852408

[Date of registration] 20.11.1998

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C) 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平7-250116

(43) 公開日 平成7年(1995)9月26日

(51) Int.Cl.⁸
H 04 L 27/34

識別記号
9297-5K

序内整理番号
H 04 L 27/ 00

技術表示箇所
E

審査請求 有 請求項の数1 FD (全5頁)

(21) 出願番号 特願平6-65657

(71) 出願人 391027413

郵政省通信総合研究所長

東京都小金井市貢井北町4丁目2番1号

(72) 発明者 神尾 亨秀

東京都小金井市貢井北町4丁目2番1号

郵政省通信総合研究所内

) (22) 出願日 平成6年(1994)3月9日

(54) 【発明の名称】 データ伝送方法

(57) 【要約】

) 【目的】 陸上移動通信において、伝送速度を一定にし、高能率で性能のよい無線通信システムを実現することである。

【構成】 伝送路を推定し、その変動に応じて最適な送信の帯域幅、変調方式を決定し、送信する適応変調方式において、推定した伝送路の情報及び、送信用データが蓄積されている送信側一時記憶部の記憶容量の使用状況の情報に基づいて送信帯域幅、変調方式を決定し、送信側一時記憶部のデータを決定された帯域幅、変調方式に基づき送信し、受信側では、受信側一時記憶部で受信データを蓄積し、一定速度で出力することを特徴とするデータ伝送方法。

【特許請求の範囲】

【請求項 1】伝送路を推定し、その変動に応じて最適な送信の帯域幅、変調方式を決定し、送信する適応変調方式において、推定した伝送路の情報及び、送信用データが蓄積されている送信側一時記憶部の記憶容量の使用状況の情報に基づいて送信帯域幅、変調方式を決定し、送信側一時記憶部のデータを決定された帯域幅、変調方式に基づき送信し、受信側では、受信側一時記憶部で受信データを蓄積し、一定速度で出力することを特徴とするデータ伝送方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、通信システム、特に高能率ディジタル変調を用いた通信システムに利用される。

【0002】

【従来の技術】従来の通信システムでは、伝送路の平均的な特性によりひとつの変調方式を決め、この変調方式と伝送路特性により、あらかじめ回線設計を行なう。あるいは、文献（小牧省三：「可変容量マイクロ波方式に関する検討」、電子情報通信学会論文誌、B-I-I、J73-B-I-I、No. 10、1990年10月）によるように、伝送路特性の状態に応じて、最適な送信帯域幅、最適な変調方式を選択して通信を行い、伝送容量の増大を図る適応変調方式がある。

【0003】

【発明が解決しようとする課題】変調方式を固定した場合には、伝送路状態が良好な場合にも、同じ変調方式で伝送するため、伝送路が良好な場合に多くの情報が送れる変調方式とくらべて、無駄があった。また、適応変調方式においては、伝送路の状態に応じて、伝送速度が可変となるため、データ伝送、パケット伝送などへの適用は、考えられるが、ディジタル符号化した音声の伝送などの一定伝送速度で通信を行なう場合には、適用が難しかった。

【0004】

【課題を解決するための手段】そこで、本発明においては、伝送路を推定し、その変動に応じて最適な送信用帯域幅、変調方式を決定し、送信する適応変調方式において、推定した伝送路の情報及び、送信用データが蓄積されている送信側一時記憶部の記憶容量の使用状況の情報に基づいて送信帯域幅、変調方式を決定し、送信側一時記憶部のデータを決定された帯域幅、変調方式に基づき送信し、受信側では、受信側一時記憶部で受信データを蓄積し、一定速度で出力する。ここで、「推定」とは、入力した信号から、あらかじめ作成した予測のためのアルゴリズムに従った計算を行い、予測することとする。

【0005】

【実施例】次に、本発明にかかるデータ伝送方法の基本原理を図1に基づいて説明する。伝送路推定部11にお

いて、伝搬路の状態、例えば、受信レベル、遅延波によるひずみ等を推定し、この推定値及び、送信側一時記憶部14のデータが空になる、または、満杯になるかの使用状況をもとにして、送信変調方式決定部12で送信する変調方式を決定し、送信部13では、送信側一時記憶部14よりのデータを送信変調方式決定部12で決定された通りに変調し、送信する。

【0006】適応変調受信部15では、受信データ及び、伝搬路の推定値を用いて、送信データを復号する。復号されたデータは、受信側一時記憶部16において記憶され、接続されるシステムの伝送速度に応じたタイミングでデータを出力する。

【0007】ただし、通信を始めるときには、あらかじめ決めておいた変調方式で通信を行い、その後に上記の方法に切り換える。

【0008】また、変調方式を多値直交変調とし、送信と受信を同一搬送波周波数で時間を分けて交互に伝送を行なう時分割多重伝送に、本発明を適用した場合について説明する。同一搬送波周波数を用いることにより、受信信号と送信信号が、ほぼ同様な伝搬路状態になるため、送信信号の伝搬路状態を推定することができる。また、以下では、多値直交変調の多値数を変調レベルと呼ぶ。

【0008】図2に実施例の構成図を示す。アンテナ21aで受信された信号は帯域通過フィルタ部22aによって帯域外の雑音が除去された後、自動利得調整部23により、受信レベル変動を補償する。直交復調部24では、信号処理を行なうため、同相成分及び直交成分に分離され、各成分ごとに、アナログ・ディジタル変換部25b及び、25cによりディジタルデータに変換される。変換されたディジタルデータは、それぞれ、適応受信処理部26に送られる。適応受信処理部26では、ディジタル信号処理プロセッサにより、伝搬路状態の推定、受信信号の歪補償、判定、受信データの出力が行なわれる。送信制御部27では、適応受信処理部26からの推定された伝搬路の状態及びアナログ・ディジタル変換部25aにより変換された自動利得調整部23よりの受信強度信号のディジタルデータより、送信変調レベルを決定し、入力された送信データを変調部に出力する。変調部28では、送信制御部27で決定された変調レベルにより、送信制御部27に一時記憶された送信データを変調する。その後、帯域通過フィルタ部22bで帯域制限が行なわれ、アンテナ21bより送信される。

【0009】図3に伝送のフレームフォーマットを示す。パイロットシンボル32は、フェージングひずみを補償するための既知信号である。変調レベル情報33は、送信した変調レベル示す情報で、常に、4値直交振幅変調で変調される。情報データ34は、送られる情報である。立ち上がり用シンボル31及び、立ち下がり用シンボル35は、それぞれ、フレームの初め及終わりで

の過渡現象による、周波数スペクトルの広がりを防ぐためのものである。

【0010】図4に適応受信処理部26の詳細を示す。フェージング歪推定・補償部41では、受信信号の同相成分のデジタル値A及び、直交成分のデジタル値Bを入力し、既知のパイロットシンボル32の位置のデータを用いて、フェージングのひずみを補償し、同時に得られるフェージング変動の情報信号Cを出力する。上記の手段は、例えば、送信側において伝送すべき信号の系列中に定期的に既知のシンボル（パイロットシンボルまたは、フレームシンボルと呼ばれる）を挿入し、受信側では、受信されたパイロットシンボルから伝送路のひずみを検出し、受信信号にその逆の特性の操作をすることにより補償する方法で、文献（三瓶政一：「陸上移動通信用16QAMのフェージングひずみ補償方式」、電子情報通信学会論文誌、B-I'I、J72-B-I'I、N〇.1、1989年1月）に示されている。変調方式推定部42では、補償後のデータを用いて、4値直交振幅変調に固定し、図3のフォーマットの場合は、3箇所に同じデータを用いて信頼性を向上させた変調レベル情報33のデータを復号し、変調レベルを決定する。変調レベル情報33の数は任意であるが、多く用いることにより、誤った変調レベルに決定する確率を小さくすることが出来る。判定部43では、決定された変調レベルで、情報データ34を復号する。受信側一時記憶部44では、復号されたデータを記憶し、音声信号をデジタル伝送する、データ伝送装置などの接続される伝送速度一定のシステムのクロック信号Dのタイミングで受信側一時記憶部44に蓄積されているデータを一定量で出力する。

【0011】図5に、送信制御部27の詳細を示す。送信変調方式決定部51では、自動利得調整部23の受信強度情報F、適応信号処理部26からのフェージング変動情報C及び、送信側一時記憶部52の使用状況をもとにして、送信変調レベルを決定する。この送信レベルの決定は、送信側一時記憶部52の使用状況に余裕がある場合は、受信状態が良好なときには、変調レベルを大きくし、受信状態がわるいときには変調レベルを小さくするように制御される。また、送信側一時記憶の容量が満杯になりそうな場合には、一定とする伝送速度と同程度の伝送容量となる変調レベル以下に決定し、空になりそうな場合には、一定とする伝送速度と同程度の伝送容量必要な変調レベル以上に固定する。

【0012】図6に、伝送速度16sympol/s、パイロットシンボル長1シンボル、データ長15シンボルとし、自動利得調整部が理想的に動作し、伝搬路の推定は、送信時の変調レベルが理想的に推定できたと仮定した場合に、従来方式で16値直交振幅変調（16QAM、変調シンボル当たり4ビット伝送ができる）伝送を行なった場合と、本発明を適用して、送信停止及び、4値

直交振幅変調（変調シンボル当たり2ビット伝送ができる）から64値直交振幅変調（変調シンボル当たり5ビット伝送ができる）を切り替え、バッファが満杯の場合は、16QAMで伝送する方式の場合の平均E_s/N₀（シンボル当たりの電力対雑音電力密度比）に対する平均ビット誤り率特性の計算機シミュレーションによる結果を示す。

【0013】従来の変調方式を16QAMに固定した方式を適用した場合を○印、本発明を適用した場合を●印で示す。また、伝搬路モデルとしては、レイリー分布をする一様フェージングを用い、フェージングの最大ドップラ周波数は40Hzとした。

【0014】図6より、本発明を適用すると平均E_s/N₀が20dB付近、すなわち、平均誤り率が大きいときの誤り率が大幅に改善されることがわかる。これは、誤り訂正符号化による改善方式、空間ダイバーシチ、周波数ダイバーシチ及び、時間ダイバーシチなどにはない特徴である。伝搬路状態の推定方式を変更することにより、異なった平均E_s/N₀での特性も改善できる。

【0015】なお、上記では、無線伝送の場合について説明しているが、有線伝送においても、伝送路の特性が変化する場合には、本発明の適用が可能である。

【0016】

【発明の効果】本発明により、適応変調方式に伝送速度の調節機能を付加することにより、伝送速度が一定のシステムへの適用が可能になった。従って、従来の適応変調方式では困難だった音声伝送などの通信が行えるようになった。また、変調方式を固定とする方式との比較においては、誤り率の改善ができる。このため、少ない電力で、高能率な通信回線を実現できる。

【図面の簡単な説明】

【図1】 本発明の構成図である。

【図2】 本発明の実施例の構成図である。

【図3】 伝送フレームフォーマットである。

【図4】 本発明の適応受信処理部の詳細な構成図である。

【図5】 本発明の送信制御部の詳細な構成図である。

【図6】 本発明を適用した場合のフェージング条件下におけるビット誤り率特性である。

【符号の説明】

11	… 伝送路推定部	12	… 送
信変調方式決定部			
13	… 送信部	14	… 送
信側一時記憶部			
15	… 適応変調受信部	16	… 受
信側一時記憶部			
21a	… 受信アンテナ	21b	… 送
信アンテナ			
22a	… 帯域通過フィルタ部	22b	… 帯
			域通過フィルタ部

23	… 自動利得調整部 交復調部	24	… 直	33	… パイロットシンボル データシンボル	34	… 情報
25a	… アナログ・デジタル変換部			35	… 立ち上がり用シンボル		
25b	… アナログ・デジタル変換部			41	… フェージング歪推定・補償部		
25c	… アナログ・デジタル変換部			42	… 変調方式推定部	43	… 判定部
26	… 適応受信処理部	27	… 送				
	信制御部			44	… 受信側一時記憶部		
28	… 変調部			51	… 送信変調方式決定部	52	… 送
31	… 立ち上がり用シンボル 調レベル情報シンボル	32	… 変		信側一時記憶部		

【図1】

【図3】

【図2】

【図4】

【図5】

【図6】

THIS PAGE BLANK (USPTO)