Probability

Uncertainty

- Let action A_t = leave for airport t minutes before flight
 - Will A_t get me there on time?
- Problems:
 - Partial observability (road state, other drivers' plans, etc.)
 - Noisy sensors (traffic reports)
 - Uncertainty in action outcomes (flat tire, etc.)
 - Complexity of modeling and predicting traffic
- Hence a purely logical approach either
 - Risks falsehood: "A₂₅ will get me there on time," or
 - Leads to conclusions that are too weak for decision making:
 - A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact, etc., etc.
 - A₁₄₄₀ might reasonably be said to get me there on time but I'd have to stay overnight in the airport

Probability

Probabilistic assertions summarize effects of

- Laziness: failure to enumerate exceptions, qualifications, etc.
- Ignorance: lack of explicit theories, relevant facts, initial conditions, etc.
- Intrinsically random behavior

Making decisions under uncertainty

Suppose the agent believes the following:

```
P(A<sub>25</sub> gets me there on time) = 0.04
P(A<sub>90</sub> gets me there on time) = 0.70
P(A<sub>120</sub> gets me there on time) = 0.95
P(A<sub>1440</sub> gets me there on time) = 0.9999
```

- Which action should the agent choose?
 - Depends on preferences for missing flight vs. time spent waiting
 - Encapsulated by a utility function
- The agent should choose the action that maximizes the expected utility:

```
P(A_t \text{ succeeds}) * U(A_t \text{ succeeds}) + P(A_t \text{ fails}) * U(A_t \text{ fails})
```

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Where do probabilities come from?

Frequentism

- Probabilities are relative frequencies
- For example, if we toss a coin many times, P(heads) is the proportion of the time the coin will come up heads
- But what if we're dealing with events that only happen once?
 - E.g., what is the probability that Republicans will take over Congress in 2010?
- "Reference class" problem

Subjectivism

- Probabilities are degrees of belief
- But then, how do we assign belief values to statements?
- What would constrain agents to hold consistent beliefs?

Random variables

- We describe the (uncertain) state of the world using random variables
 - Denoted by capital letters
 - R: Is it raining?
 - W: What's the weather?
 - D: What is the outcome of rolling two dice?
 - S: What is the speed of my car (in MPH)?
- Just like variables in CSP's, random variables take on values in a domain
 - Domain values must be mutually exclusive and exhaustive
 - R in {True, False}
 - W in {Sunny, Cloudy, Rainy, Snow}
 - **D** in {(1,1), (1,2), ... (6,6)}
 - **S** in [0, 200]

Events

- Probabilistic statements are defined over *events*, or sets of world states
 - "It is raining"
 - "The weather is either cloudy or snowy"
 - "The sum of the two dice rolls is 11"
 - "My car is going between 30 and 50 miles per hour"
- Events are described using propositions:
 - R = True
 - W = "Cloudy" ∨ W = "Snowy"
 - $D \in \{(5,6), (6,5)\}$
 - 30 ≤ S ≤ 50
- Notation: P(A) is the probability of the set of world states in which proposition A holds
 - P(X = x), or P(x) for short, is the probability that random variable X has taken on the value x

Kolmogorov's axioms of probability

- For any propositions (events) A, B
 - $0 \le P(A) \le 1$
 - P(True) = 1 and P(False) = 0
 - $P(A \lor B) = P(A) + P(B) P(A \land B)$
 - Subtraction accounts for double-counting
- Based on these axioms, what is $P(\neg A)$?
- These axioms are sufficient to completely specify probability theory for discrete random variables
 - For continuous variables, need density functions

Probabilities and rationality

- Why should a rational agent hold beliefs that are consistent with axioms of probability?
- De Finetti (1931): If an agent has some degree of belief in proposition A, he/she should be able to decide whether or not to accept a bet for/against A
 - E.g., if the agent believes that P(A) = 0.4, should he/she agree to bet \$6 that A will occur against \$4 that A will not occur?
- Theorem: An agent who holds beliefs inconsistent with axioms of probability can be tricked into accepting a combination of bets that are guaranteed to lose them money

Atomic events

- Atomic event: a complete specification of the state of the world, or a complete assignment of domain values to all random variables
 - Atomic events are mutually exclusive and exhaustive
- E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

```
Cavity = false \land Toothache = false
Cavity = false \land Toothache = true
Cavity = true \land Toothache = false
Cavity = true \land Toothache = true
```

Joint probability distributions

 A joint distribution is an assignment of probabilities to every possible atomic event

Atomic event	Р
$Cavity = false \land Toothache = false$	0.8
Cavity = false ∧ Toothache = true	0.1
$Cavity = true \land Toothache = false$	0.05
$Cavity = true \land Toothache = true$	0.05

– Why does it follow from the axioms of probability that the probabilities of all possible atomic events must sum to 1?

Joint probability distributions

- Suppose we have a joint distribution $P(X_1, X_2, ..., X_n)$ of n random variables with domain sizes d
 - What is the size of the probability table?
 - Impossible to write out completely for all but the smallest distributions

Notation:

- P(X = x) is the probability that random variable X takes on value x
- P(X) is the distribution of probabilities for all possible values of X

Marginal probability distributions

 Suppose we have the joint distribution P(X,Y) and we want to find the marginal distribution P(Y)

P(Cavity, Toothache)	
$Cavity = false \land Toothache = false$	0.8
$Cavity = false \land Toothache = true$	0.1
$Cavity = true \land Toothache = false$	0.05
$Cavity = true \land Toothache = true$	0.05

P(Cavity)	
Cavity = false	?
Cavity = true	?

P(Toothache)	
Toothache = false	?
Toochache = true	?

Marginal probability distributions

 Suppose we have the joint distribution P(X,Y) and we want to find the marginal distribution P(Y)

$$P(X = x) = P((X = x \land Y = y_1) \lor \dots \lor (X = x \land Y = y_n))$$

= $P((x, y_1) \lor \dots \lor (x, y_n)) = \sum_{i=1}^{n} P(x, y_i)$

 General rule: to find P(X = x), sum the probabilities of all atomic events where X = x.

Conditional probability

Probability of cavity given toothache:

P(Cavity = true | Toothache = true)

• For any two events A and B, $P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(A, B)}{P(B)}$

Conditional probability

P(Cavity, Toothache)	
$Cavity = false \land Toothache = false$	8.0
$Cavity = false \land Toothache = true$	0.1
$Cavity = true \land Toothache = false$	0.05
Cavity = true ∧ Toothache = true	0.05

P(Cavity)	
Cavity = false	0.9
Cavity = true	0.1

P(Toothache)	
Toothache = false	0.85
Toothache = true	0.15

- What is P(Cavity = true | Toothache = false)?
 0.05 / 0.85 = 0.059
- What is P(Cavity = false | Toothache = true)?
 0.1 / 0.15 = 0.667

Conditional distributions

 A conditional distribution is a distribution over the values of one variable given fixed values of other variables

P(Cavity, Toothache)	
$Cavity = false \land Toothache = false$	0.8
Cavity = false ∧ Toothache = true	0.1
$Cavity = true \land Toothache = false$	0.05
$Cavity = true \land Toothache = true$	0.05

P(Cavity Toothache = true)	
Cavity = false	0.667
Cavity = true	0.333

P(Cavity Toothache = false)	
Cavity = false	0.941
Cavity = true	0.059

P(Toothache Cavity = true)	
Toothache= false	0.5
Toothache = true	0.5

P(Toothache Cavity = false)	
Toothache= false	0.889
Toothache = true	0.111

Normalization trick

To get the whole conditional distribution P(X | y) at once, select all entries in the joint distribution matching Y = y and renormalize them to sum to one

P(Cavity, Toothache)	
Cavity = false ∧ Toothache = false	0.8
Cavity = false ∧ Toothache = true	0.1
Cavity = true ∧ Toothache = false	0.05
$Cavity = true \land Toothache = true$	0.05

Toothache, Cavity = false	
Toothache= false	0.8
Toothache = true	0.1

Renormalize

P(Toothache Cavity = false)	
Toothache= false	0.889
Toothache = true	0.111

Normalization trick

- To get the whole conditional distribution P(X | y) at once, select all entries in the joint distribution matching Y = y and renormalize them to sum to one
- Why does it work?

$$\frac{P(x,y)}{\sum_{a'} P(x',y)} = \frac{P(x,y)}{P(y)}$$
 by marginalization

Product rule

- Definition of conditional probability: $P(A \mid B) = \frac{P(A, B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

Product rule

- Definition of conditional probability: $P(A \mid B) = \frac{P(A, B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

The chain rule:

$$P(A_1, ..., A_n) = P(A_1)P(A_2 | A_1)P(A_3 | A_1, A_2)...P(A_n | A_1, ..., A_{n-1})$$

$$= \prod_{i=1}^n P(A_i | A_1, ..., A_{i-1})$$

Bayes Rule

Rev. Thomas Bayes (1702-1761)

 The product rule gives us two ways to factor a joint distribution:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

• Therefore,
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- Why is this useful?
 - Can get diagnostic probability P(cavity | toothache) from causal probability P(toothache | cavity)
 - Can update our beliefs based on evidence
 - Important tool for probabilistic inference

Independence

- Two events A and B are independent if and only if
 P(A \wedge B) = P(A) P(B)
 - In other words, $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$
 - This is an important simplifying assumption for modeling, e.g., *Toothache* and *Weather* can be assumed to be independent
- Are two *mutually exclusive* events independent?
 - No, but for mutually exclusive events we have $P(A \lor B) = P(A) + P(B)$
- Conditional independence: A and B are conditionally independent given C iff P(A \ B | C) = P(A | C) P(B | C)

Conditional independence: Example

- Toothache: boolean variable indicating whether the patient has a toothache
- Cavity: boolean variable indicating whether the patient has a cavity
- Catch: whether the dentist's probe catches in the cavity
- If the patient has a cavity, the probability that the probe catches in it doesn't depend on whether he/she has a toothache
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Therefore, Catch is conditionally independent of Toothache given Cavity
- Likewise, Toothache is conditionally independent of Catch given Cavity
 P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
- Equivalent statement:
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

Conditional independence: Example

 How many numbers do we need to represent the joint probability table P(Toothache, Cavity, Catch)?

```
2^3 - 1 = 7 independent entries
```

Write out the joint distribution using chain rule:

```
P(Toothache, Catch, Cavity)
```

- = P(Cavity) P(Catch | Cavity) P(Toothache | Catch, Cavity)
- = P(Cavity) P(Catch | Cavity) P(Toothache | Cavity)
- How many numbers do we need to represent these distributions?

```
1 + 2 + 2 = 5 independent numbers
```

• In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in *n* to linear in *n*

Naïve Bayes model

- Suppose we have many different types of observations (symptoms, features) that we want to use to diagnose the underlying cause
- It is usually impractical to directly estimate or store the joint distribution $P(Cause, Effect_1, ..., Effect_n)$.
- To simplify things, we can assume that the different effects are conditionally independent given the underlying cause

Naïve Bayes model

- Suppose we have many different types of observations (symptoms, features) that we want to use to diagnose the underlying cause
- It is usually impractical to directly estimate or store the joint distribution $P(Cause, Effect_1, ..., Effect_n)$.
- To simplify things, we can assume that the different effects are conditionally independent given the underlying cause
- Then we can estimate the joint distribution as

$$P(Cause, Effect_1, ..., Effect_n) = P(Cause) \prod_i P(Effect_i \mid Cause)$$

· This is usually not accurate, but very useful in practice

Example: Naïve Bayes Spam Filter

 Bayesian decision theory: to minimize the probability of error, we should classify a message as spam if

P(spam | message) > P(¬spam | message)

- Maximum a posteriori (MAP) decision
- We have

$$P(spam \mid message) = \frac{P(message \mid spam)P(spam)}{P(message)}$$
 and

$$P(\neg spam \mid message) = \frac{P(message \mid \neg spam)P(\neg spam)}{P(message)}$$

- Notice that P(message) is just a constant normalizing factor and doesn't affect the decision
- Therefore, all we need is to find P(message | spam) P(spam)
 and P(message | ¬spam) P(¬spam)

Example: Naïve Bayes Spam Filter

- We need to find P(message | spam) P(spam) and P(message | ¬spam) P(¬spam)
- The message is a sequence of words (w₁, ..., w_n)
- Bag of words representation
 - The order of the words in the message is not important
 - Each word is conditionally independent of the others given message class (spam or not spam)

$$P(message \mid spam) = P(w_1, ..., w_n \mid spam) = \prod_{i=1}^n P(w_i \mid spam)$$

Our filter will classify the message as spam if

$$P(spam)\prod_{i=1}^{n}P(w_{i}\mid spam) > P(\neg spam)\prod_{i=1}^{n}P(w_{i}\mid \neg spam)$$

Example: Naïve Bayes Spam Filter

$$P(spam \mid w_1, ..., w_n) = P(spam) \prod_{i=1}^n P(w_i \mid spam)$$
posterior
prior
likelihood

Probabilistic inference

- In general, the agent observes the values of some random variables X₁, X₂, ..., X_n and needs to reason about the values of some other unobserved random variables Y₁, Y₂, ..., Y_m
 - Figuring out a diagnosis based on symptoms and test results
 - Classifying the content type of an image or a document based on some features
- This will be the subject of the next few lectures