Analyse de survie, analyse de regroupements

Analyse multidimensionnelle appliquée

Léo Belzile

HEC Montréal

automne 2022

Modèle à risques proportionnels de Cox

Le **modèle à risques proportionnels de Cox** pour ${\bf X}$ au temps t est

$$h(t;\mathbf{X}) = h_0(t) \exp(\beta_1 \mathbf{X}_1 + \dots + \beta_p \mathbf{X}_p),$$

où $h_0(t)$ est la fonction de risque de base qui remplace l'ordonnée à l'origine.

lacktriangleright Postulat de risques proportionnels: le rapport de risque pour deux observations ne varie pas en fonction du temps t.

Postulat de risques proportionnels

Figure 1: Courbes de risques proportionnelles (panneau supérieur) et non proportionnelles (panneau inférieur).

Absence de proportionnalité et stratification

On peut modéliser la non-proportionnalité par la **stratification** pour une variable catégorielle $Z=1,\dots,K$.

Supposons que l'effet de Z sur le risque varie dans le temps.

On écrit alors

$$h(t; \mathbf{X}, Z = k) = h_k(t) \exp(\beta_1 \mathbf{X}_1 + \dots + \beta_p \mathbf{X}_p),$$

où h_k est la fonction de risque pour Z=k.

Dans ce modèle

- On suppose que l'effet des variables explicatives ${\bf x}$ est le même peut importe la valeur de Z.
- L'effet de Z=k vs Z=j pour un même ensemble de variables explicatives ${\bf X}$ est $h_k(t)/h_j(t)$, qui dépend du temps.

Stratification

- Avantage: on peut modéliser n'importe quel changement du risque en fonction de Z.
- **Désavantage**: on perd la variable explicative Z, donc on ne peut tester son effet (pas de coefficient)... on peut résumer l'information pour la variable Z en calculant par exemple les différences de survie à des temps donnés.
- **Désavantage**: la fonction de risque est estimée pour chaque sous-groupe de Z (plus faible taille d'échantillon).

Idéalement, utiliser la stratification avec des variables secondaires ou de contrôles.

Modèle de Cox avec stratification dans R

```
library(survival)
data(survie1, package = "hecmulti")
# Stratification par service
cox_strat <- coxph(</pre>
  Surv(temps, 1-censure) ~ age + sexe + strata(service),
  data = survie1)
# Décompte par service
with(survie1, table(service))
# Coefficients
summary(cox_strat)
```

Sorties

Table 1: Décompte du nombre d'observations par service.

	0	1	2	3
0	197	179	78	46

Table 2: Rapport de risques pour un modèle de Cox stratifié par service.

terme	exp(coef)	borne inf.	borne sup.
age	0.96	0.94	0.97
sexe	0.61	0.44	0.85

Courbes de survie du modèle stratifié

Extensions du modèle de Cox

- 1. Inclusion de variables explicatives dont la valeur change dans le temps.
- 2. Modèle à risques compétitifs.

Évolution temporelle de variables explicatives

On considère une extension du modèle de Cox qui permet d'inclure des variables explicatives dont la valeur change dans le temps.