Sprache erster Stufe

- V Menge der Variablen
- J Menge der Junktoren
- K Menge der Klammern
- Q Menge der Quantoren

- Signatur Σ bestehend aus
 - Konstantensymbole
 - Funktionssymbole
 - Relationssymbole

- Stelligkeit
 - Funktions- und Relationssysmbole besitze fixe Parameteranzahl
 - Stelligkeit = Parameteranzahl
- Menge der Terme über V und Σ
 - alle Variablen und Konstanten sind Terme
 - Funktionen, welche Terme als Input bekommen, sind auch Terme
- Menge aller Formeln über V und Σ $F_{V,\Sigma}$
 - Primformeln
 - * T und sind Formeln
 - $* \ \operatorname{Terme} \, t_1, t_2 \mathrel{\mathop{=}{=}{>}} t_1 = t_2 \text{ ist Formel}$
 - * Relationen, welche Terme als Input bekommen, sind auch Formeln

- für jede Formel P ist jede Junktoren/Quantorenverknüpfung auch eine Formel
 - * ¬P
 - * ...
- Menge der freien Variablen FV(P) für $P \in {\cal F}_{V,\Sigma}$
 - P ist Primformel ==> FV(P) = Menge aller Variablen in P
 - $-FV(P) = FV(\neg P)$
 - falls P und Q Formeln ==> $FV(P \land Q) = FV(P \lor Q) = FV(P) \cup FV(Q)$
 - Variablen aus Quantoren sind gebundene Variablen

- Beispiel: Vereinigung beider Mengen exklusive Quantoren

Σ -Struktur und Σ -Modell

- Σ -Struktur = (A, Σ) besteht aus Grundmengen A und Strukturmenge Σ für die gilt
 - für jede Konstante $C \in \Sigma$ existiert $C^A \in A$
 - für jede n-stellige Funktion $f \in \Sigma$ existiert $f^A:A^n \! \!\!\! > \!\!\! A$
 - für jede n-stellige Relation $R \in \Sigma$ existiert $R^A \subseteq A^n$

- Abbildung $\omega: V \rightarrow A$ heißt Belegung
- S-Modell $M=(,\omega)=M(A,\Sigma,\omega)$
 - Ä mit Belegung ω heißt Σ -Modell für $F_{V,\Sigma}$
 - $\forall P \in F_{V,\Sigma}$ wird Auswertung von P in M mithilfe von ω kanonisch definiert

* Auswertung P^M

[[Aussagenlogische Formeln]]