COMPUTER GRAPHICS

ЗАСОБИ ПРОГРАМУВАННЯ КОМП'ЮТЕРНОЇ ГРАФІКИ

Лек. 17 2021 ІПЗ-19

Производительность ЭВМ Супер ЭВМ

СУПЕР

- Производительность ЭВМ
- Супер ЭВМ

Производительность

Производительность ← → вычислительная мощность ← → скорость выполнения команд (инструкций, операций) программы.

 → Среднее количество операций, которое выполняется при решении некоторой задачи (или совокупности задач).

Совокупность → смесь → бенчмарк (benchmark)

Производительность

Единица измерения производительности – количество операций с плавающей точкой в секунду FLOPS

Миллион	10 ⁶	мега	(1964)
Миллиард	10 ⁹	гига	(1987)
Триллион	10^{12}	тера	(1997)
Квадриллион	10^{15}	пета	(2008)
Квинтиллион	10^{18}	экза	(2021)
	10 ²¹	зета	(?)

Производительность Бенчмарки ←→ вычислительная мощность.

SPEC (Standard Performance Evaluation Corporation) - стандартизированный набор эталонов производительности для компьютеров.

SPEC широко используются для оценки производительности компьютерных систем; результаты тестов \rightarrow на сайте SPEC.

- Graphics and Workstation Performance Group (GWPG),
- High Performance Group (HPG),
- Open Systems Group (OSG)

Производительность

Для суперкомпьютеров:

Бэнчмарк LINPACK (LINear algebra PACKage) пакет на Fortran 66 для решение плотной СЛАУ методом LU-декомпозиции. Сложность

$$2/3 n^3 + O(n^2)$$

- •Linpack 100 $n = 100 \times 100$
- •Linpack 1000 $n = 1000 \times 1000$
- •HPLinpack (high-performance) произвольный размер (n максимально возможный)

Вся численная информация – 64-разрядные числа с плавающей запятой в стандарте IEEE

LAPACK

https://www.netlib.org/benchmark/hpl/https://www.netlib.org/lapack/

Definition

1965 «Любой компьютер, который создал Сеймур Крей»

University of Minnesota **Control Data** Corporation Cray Research

Суперкомпьютер - вычислители с «огромной» производительностью

Ориентированы на решение задач, требующих интенсивных вычислений

Архитектура:

- 1. Векторно-конвейерная организация
- 2. Массивно-параллельные системы
- 3. Кластеры

MPP (Massively parallel processor), **Maccubho- параллельные системы** Один компьютер с множеством процессоров, объединенных в единую сеть.

В МРР каждый процессор содержит свою собственную память и копию операционной системы и приложения.

Каждая подсистема взаимодействует с другими через высокоскоростное соединение.

Cluster computing - это набор компьютеров (узлов, nodes), которые работают вместе так, что их можно рассматривать как единую систему. Каждый узел настроен на выполнение одной и той же задачи, контролируемой и планируемой программным

обеспечением.

Узлы соединены друг с другом посредством быстрых локальных сетей, при этом каждый узел работает под управлением собственного экземпляра операционной системы.

Super Computers -Top 500 #58 2021 November

TOP500 NEWS

GREEN500: Trend of steady progress with no big step toward newer technologies.

June 28, 2021

Although there was a trend of steady progress in the Green500, nothing has indicated a big step toward newer technologies.

The system to snag the No. 1 spot for the

SPONSORED ARTICLE

PRACE Software Strategy for European Exascale Systems

Sept. 1, 2021

Building on the successful implementation of the Partnership for Advanced Computing in Europe (PRACE), the European Commission (EC) has increased its efforts to develop a world-class supercomputing ecosystem in Europe. The EC, EuroHPC Joint Undertaking (JU) and EU Member States have made significant investments in European petascale and pre-

Tweets by top500supercomp

- Supercomputer Fugaku -Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
- 2 Summit IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dualrail Mellanox EDR Infiniband, IBM
- 3 Sierra IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR

NOV	EMBER 2021		SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER MW
1	Fugaku	Fujitsu A64FX (48C, 2.2GHz), Tofu Interconnect D	RIKEN R-CCS	Japan	7,630,848	442.0	29.9
2	Summit	IBM POWER9 (22C, 3.07GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNL	USA	2,414,592	148.6	10.1
3	Sierra	IBM POWER9 (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LLNL	USA	1,572,480	94.6	7.44
4	Sunway TaihuLight	Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
5	Perlmutter	HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10 (274 GB)	LBNL	USA	761,856	70.9	2.58

N world	Позиция в рейтинге		
Manufacturer	Производитель		
Computer	Название (от производителя)		
Inst Site	Покупатель		
Location	Страна, локация		
Year	Год установки		
Field of Appl	Область применения		
#Proc	Кол-во процессоров, ядер		
Rmax	Максимальная производительность		
Rpeak	Пиковая производительность		
Nmax	Размер СЛАУ		

10P 300				
	1	2	3	
	FUGAKU (гора Фудзи)	SUMMIT	SIERRA	
	Fujitsu Arm A64FX48C 2.2GHz	IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100	IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100	
	Japan	USA	USA	
Cor	7 630 848	2 414 592/2211840	1 572 480/1382400	
Rm	442 010	148 600	94 640	
Rp	537 212	200 795	125 712	
N	21 288 960	16 473 600	11 902 464	
	MPP	Cluster	Cluster	

Fugaku (гора Фудзи)

ARM-чип Fujitsu A64FX. Имеет **48** основных вычислительных ядер + четыре для работы операционной системы.

159 тысяч вычислительных узлов. В каждом узле используется 32 гибибайта оперативной памяти, скорость обмена 1025 гигабита в секунду.

Работает на операционной системе Red Hat Enterprise Linux 8 с гибридным ядром, состоящим из одновременно работающих ядер Linux и McKernel.

Summit стал первым суперкомпьютером, достигшим эксафлопной (квинтиллион операций в секунду) скорости, достигнув 1,88 эксафлоп во время геномного анализа, и, как ожидается, достигнет 3,3 эксафлоп при использовании вычислений со смешанной точностью.

Sunway TaihuLight («Божественная сила света»)

Node: 4 Core = 260 PE

Access to 8GB of DDR3 memory

!!! Total 1,31 PB of memory

Sunway TaihuLight («Божественная сила света»)

Sunway TaihuLight («Божественная сила света»)

Sunway TaihuLight («Божественная сила света»)

Система

- = 40 cabinets
- = 160 SuperNodes
- = 40 960 nodes
- = 10 649 600 cores

Each CPE = 8 flop per cycle. Core peak 8*1,45 GHz = 11,6 Gflops

Each MPE = 16 flop per

cycle. Peak = 23,2

Gflops.

Sunway TaihuLight («Божественная сила света»)

Node peak = 256CPE+4MPE = 3,0624 Tflpos System peak = 40 960 * 3,0624 = 125,4 Pflops

ОЗУ 1,31 Пбайт Мощность 15,3 МВт Площадь 605 м²

Sunway TaihuLight («Божественная сила света»)

Countries System Share

«Зеленые» суперкомпьютеры

Ранжирование по PE (power efficiency)

→ Gflops/Watt

	1 (301)	2 (291)	3 (295)
	MN-3 - MN-CORE SERVER, XEON PLATINUM 8260M 24C 2.4GHZ, PREFERRED NETWORKS MN- CORE, MN-CORE DIRECTCONNECT	SSC-21 SCALABLE MODULE - APOLLO 6500 GEN10 PLUS, AMD EPYC 7543 32C 2.8GHZ, NVIDIA A100 80GB, INFINIBAND HDR200	TETHYS - NVIDIA DGX A100 LIQUID COOLED PROTOTYPE, AMD EPYC 7742 64C 2.25GHZ, NVIDIA A100 80GB, INFINIBAND HDR
	Japan	South Korea	USA
PE	39,4	33,9	31,5

The END

САЙТЫ:

Top 500

https://www.top500.org

LinPack

http://www.netlib.org/linpack/

Spec

https://www.spec.org/