

Chapter 10

Other Public-Key Cryptosystems

Diffie-Hellman Key Exchange

- First published public-key algorithm
- A number of commercial products employ this key exchange technique
- Purpose is to enable two users to securely exchange a key that can then be used for subsequent symmetric encryption of messages
- The algorithm itself is limited to the exchange of secret values
- Its effectiveness depends on the difficulty of computing discrete logarithms

Diffie-Hellman Key Exchange

- a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a common key
 - known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Diffie-Hellman Setup

- all users agree on global parameters:
 - large prime integer or polynomial q
 - a being a primitive root mod q
- each user (eg. A) generates their key
 - chooses a secret key (number): $x_A < q$
 - compute their public key: $y_A = a^{x_A} \mod q$
- each user makes public that key y_A

Diffie-Hellman Key Exchange

• shared session key for users A & B is K_{AB}:

```
K_{AB} = a^{x_A \cdot x_B} \mod q
= y_A^{x_B} \mod q (which B can compute)
= y_B^{x_A} \mod q (which A can compute)
```

- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

Diffie-Hellman Example

- users Alice & Bob who wish to swap keys:
- agree on prime q=353 and a=3
- select random secret keys:
 - A chooses $x_A = 97$, B chooses $x_B = 233$
- compute respective public keys:
 - $y_A = 3^{97}$ mod 353 = 40 (Alice) $y_B = 3^{233}$ mod 353 = 248 (Bob)
- compute shared session key as:
 - $K_{AB} = y_{B}^{x_{A}} \mod 353 = 248^{97} = 160$ $K_{AB} = y_{A}^{x_{B}} \mod 353 = 40^{233} = 160$ (Alice)
 - (Bob)

Key Exchange Protocols

- users could create random private/public D-H keys each time they communicate
- users could create a known private/public D-H key and publish in a directory, then consulted and used to securely communicate with them
- both of these are vulnerable to a meet-in-the-Middle Attack
- authentication of the keys is needed

Figure 10.1 Diffie-Hellman Key Exchange

Man-in-the-Middle Attack

- 1. Darth prepares by creating two private / public keys
- 2. Alice transmits her public key to Bob
- 3. Darth intercepts this and transmits his first public key to Bob. Darth also calculates a shared key with Alice
- 4. Bob receives the public key and calculates the shared key (with Darth instead of Alice)
- 5. Bob transmits his public key to Alice
- 6. Darth intercepts this and transmits his second public key to Alice. Darth calculates a shared key with Bob
- 7. Alice receives the key and calculates the shared key (with Darth instead of Bob)
- Darth can then intercept, decrypt, re-encrypt, forward all messages between Alice
 & Bob

Figure 10.2 Man-in-the-Middle Attack

ElGamal Cryptography

Announced in 1984 by T. Elgamal

Public-key scheme based on discrete logarithms closely related to the Diffie-Hellman technique

Used in the digital signature standard (DSS) and the S/MIME e-mail standard

Global elements are a prime number q and a which is a primitive root of q

Security is based on the difficulty of computing discrete logarithms

Global Public Elements

q prime number

 α α < q and α a primitive root of q

Key Generation by Alice

Select private $X_A < q - 1$

Calculate $Y_A = \alpha^{X_A} \mod q$

Public key $\{q, \alpha, Y_A\}$

Private key X_A

Encryption by Bob with Alice's Public Key

Plaintext: M < q

Select random integer k < q

Calculate $K = (Y_A)^k \mod q$

Calculate C_1 $C_1 = \alpha^k \mod q$

Calculate C_2 $C_2 = KM \mod q$

Ciphertext: (C_1, C_2)

Decryption by Alice with Alice's Private Key

Ciphertext: (C_1, C_2)

Calculate K $K = (C_1)^{X_A} \mod q$

Plaintext: $M = (C_2K^{-1}) \mod q$

Figure 10.3 The ElGamal Cryptosystem

ElGamal Cryptography

- public-key cryptosystem related to D-H
- so uses exponentiation in a finite (Galois)
- with security based difficulty of computing discrete logarithms, as in D-H
- each user (eg. A) generates their key
 - chooses a secret key (number): $1 < x_A < q-1$
 - compute their public key: $y_A = a^{x_A} \mod q$

ElGamal Message Exchange

- Bob encrypt a message to send to A computing
 - represent message M in range $0 \le M \le q-1$
 - longer messages must be sent as blocks
 - chose random integer k with $1 \le k \le q-1$
 - compute one-time key K = $y_A^k \mod q$
 - encrypt M as a pair of integers (C_1, C_2) where
 - $C_1 = a^k \mod q$; $C_2 = KM \mod q$
- A then recovers message by
 - recovering key K as $K = C_1^{x_A} \mod q$
 - computing M as M = C_2 K⁻¹ mod q
- a unique k must be used each time
 - otherwise result is insecure

ElGamal Example

- use field GF(19) q=19 and a=10
- Alice computes her key:
 - A chooses $x_A=5$ & computes $y_A=10^5 \mod 19 = 3$
- Bob send message m=17 as (11, 5) by
 - chosing random k=6
 - computing $K = y_A^k \mod q = 3^6 \mod 19 = 7$
 - computing $C_1 = a^k \mod q = 10^6 \mod 19 = 11$; $C_2 = KM \mod q = 7.17 \mod 19 = 5$
- Alice recovers original message by computing:
 - recover $K = C_1^{x_A} \mod q = 11^5 \mod 19 = 7$
 - compute inverse $K^{-1} = 7^{-1} = 11$
 - recover $M = C_2 K^{-1} \mod q = 5.11 \mod 19 = 17$

Elliptic Curve Arithmetic

- Most of the products and standards that use public-key cryptography for encryption and digital signatures use RSA
 - The key length for secure RSA use has increased over recent years and this has put a heavier processing load on applications using RSA
- Elliptic curve cryptography (ECC) is showing up in standardization efforts including the IEEE P1363 Standard for Public-Key Cryptography
- Principal attraction of ECC is that it appears to offer equal security for a far smaller key size

Figure 5.1 Groups, Rings, and Fields

Abelian Group

• A set of elements with a binary operation, denoted by •, that associates to each ordered pair (a, b) of elements in G an element (a • b) in G, such that the following axioms are obeyed:

- (A1) Closure: If a and b belong to G, then $a \cdot b$ is also in G
- (A2) Associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all a, b, c in G
- (A3) Identity element: There is an element e in G such that $a \cdot e = e \cdot a = a$ for all a in G
- (A4) Inverse element: For each a in G there is an element a' in G such that $a \circ a' = a' \circ a = e$
- (A5) Commutative: $a \cdot b = b \cdot a$ for all a, b in G

Real Elliptic Curves

- an elliptic curve is defined by an equation in two variables x & y, with coefficients
- consider a cubic elliptic curve of form
 - $y^2 = x^3 + ax + b$
 - where x,y,a,b are all real numbers
 - also define zero point O
- consider set of points E(a,b) that satisfy
- have addition operation for elliptic curve
 - geometrically sum of P+Q is reflection of the intersection R

Geometric Description of Addition

- Additive identity O (zero point): P + O = P
- Negative of point P: P + (-P) = P P = Othe point with the same x coordinate but negative of the y coordinate.
- Addition of two points P and Q with different x coordinates: draw a straight line between them and find the third point of intersection R. We define to be the mirror image, with respect to the x axis, of the third point of intersection R. P + Q = -R
- To double a point P, draw the tangent line and find the other point of intersection S.

$$P + P = 2P = -S$$

Figure 10.4 Example of Elliptic Curves

Figure 5.2 Properties of Groups, Rings, and Fields

Figure 5.3 Types of Fields

Elliptic Curves Over Z_p

- Elliptic curve cryptography uses curves whose variables and coefficients are finite
- Two families of elliptic curves are used in cryptographic applications:

- Variables and coefficients all take on values in GF(2^m) and in calculations are performed over GF(2^m)
- Best for hardware applications

- Use a cubic equation in which the variables and coefficients all take on values in the set of integers from 0 through p-1 and in which calculations are performed modulo p
- Best for software applications

Table 10.1

Points (other than O) on the Elliptic Curve $E_{23}(1, 1)$

(0, 1)	(6, 4)	(12, 19)
(0, 22)	(6, 19)	(13, 7)
(1,7)	(7, 11)	(13, 16)
(1, 16)	(7, 12)	(17, 3)
(3, 10)	(9,7)	(17, 20)
(3, 13)	(9, 16)	(18, 3)
(4,0)	(11, 3)	(18, 20)
(5,4)	(11, 20)	(19, 5)
(5, 19)	(12, 4)	(19, 18)

Figure 10.5 The Elliptic Curve E₂₃(1,1)

Elliptic Curves Over $GF(2^m)$

- Use a cubic equation in which the variables and coefficients all take on values in $GF(2^m)$ for some number m
- Calculations are performed using the rules of arithmetic in $GF(2^m)$
- The form of cubic equation appropriate for cryptographic applications for elliptic curves is somewhat different for $GF(2^m)$ than for Z_p
 - It is understood that the variables x and y and the coefficients a and b are elements of $GF(2^m)$ and that calculations are performed in $GF(2^m)$

Table 10.2

Points (other than O) on the Elliptic Curve $E_2^4(g^4, 1)$

(0, 1)	(g^5, g^3)	(g^9, g^{13})
$(1, g^6)$	(g^5, g^{11})	(g^{10}, g)
$(1, g^{13})$	(g^6, g^8)	(g^{10}, g^8)
(g^3,g^8)	(g^6, g^{14})	$(g^{12},0)$
(g^3,g^{13})	(g^9, g^{10})	(g^{12}, g^{12})

Elliptic Curve Cryptography (ECC)

- Addition operation in ECC is the counterpart of modular multiplication in RSA
- Multiple addition is the counterpart of modular exponentiation

To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the product of two primes or taking the discrete logarithm

- Q=kP, where Q, P belong to a prime curve
- Is "easy" to compute Q given k and P
- But "hard" to find k given Q, and P
- Known as the elliptic curve logarithm problem

Global Public Elements

- $E_q(a, b)$ elliptic curve with parameters a, b, and q, where q is a prime or an integer of the form 2^m
- G point on elliptic curve whose order is large value n

User A Key Generation

- Select private n_A $n_A < n$
- Calculate public P_A $P_A = n_A \times G$

User B Key Generation

- Select private n_B $n_B < n$
- Calculate public $P_B = n_B \times G$

Calculation of Secret Key by User A

$$K = n_A \times P_B$$

Calculation of Secret Key by User B

$$K = n_B \times P_A$$

Figure 10.7 ECC Diffie-Hellman Key Exchange

ECC Diffie-Hellman

- can do key exchange analogous to D-H
- users select a suitable curve Eq (a,b)
- select base point $G = (x_1, y_1)$
 - with large order n s.t. nG=0
- A & B select private keys $n_A < n$, $n_B < n$
- compute public keys: $P_A = n_A G$, $P_B = n_B G$
- compute shared key: $K=n_AP_B$, $K=n_BP_A$
 - same since $K=n_An_BG$
- attacker would need to find K, hard

ECC Encryption/Decryption

- Several approaches using elliptic curves have been analyzed
- Must first encode any message m as a point on the elliptic curve P_m
- Select suitable curve and point G as in Diffie-Hellman
- Each user chooses a private key n_A and generates a public key $P_A = n_A * G$
- To encrypt and send message P_m to B, A chooses a random positive integer k and produces the ciphertext C_m consisting of the pair of points:

$$C_m = \{kG, P_m + kP_B\}$$

• To decrypt the ciphertext, B multiplies the first point in the pair by B's secret key and subtracts the result from the second point:

$$P_m+kP_B-n_B(kG)=P_m+k(n_BG)-n_B(kG)=P_m$$

Security of Elliptic Curve Cryptography

- Depends on the difficulty of the elliptic curve logarithm problem
- Fastest known technique is "Pollard rho method"
- Compared to factoring, can use much smaller key sizes than with RSA
- For equivalent key lengths computations are roughly equivalent
- Hence, for similar security ECC offers significant computational advantages

Table 10.3

Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis (NIST SP-800-57)

Symmetric key	Diffie-Hellman,	RSA	ECC
algorithms	Digital Signature	(size of <i>n</i> in bits)	(modulus size in
	Algorithm		bits)
80	L = 1024	1024	160–223
	N = 160		
112	L = 2048	2048	224–255
	N = 224		
128	L = 3072	3072	256–383
	N = 256		
192	L = 7680	7680	384–511
	N = 384		
256	L = 15,360	15,360	512+
	<i>N</i> = 512		

Note: L = size of public key, N = size of private key

Pseudorandom Number Generation (PRNG) Based on Asymmetric Cipher

- An asymmetric encryption algorithm produces apparently ransom output and can be used to build a PRNG
- Much slower than symmetric algorithms so they're not used to generate open-ended PRNG bit streams
- Useful for creating a pseudorandom function (PRF) for generating a short pseudorandom bit sequence

Figure 10.8 Micali-Schnorr Pseudorandom Bit Generator

(ANSI X9.82 and ISO 18031)

Select p, q primes; $n = pq; \phi(n) = (p - 1)(q - 1)$. Select e such that $gcd(e, \phi(n)) = 1$. These are the standard RSA setup selections (see Figure 9.5). In addition, let $N = \lfloor \log_2 n \rfloor + 1$ (the bitlength of n). Select e, e such that e is e.

Seed Select a random seed x_0 of bitlength r.

Generate Generate a pseudorandom sequence of length $k \times m$ using the loop for i from 1 to m do

$$y_i = x_{i-1}^e \mod n$$

 $x_i = r \mod s$ significant bits of y_i
 $z_i = k$ least significant bits of y_i

Output The output sequence is $z_1 \parallel z_2 \parallel \ldots \parallel z_m$.

The parameters n, r, e, and k are selected to satisfy the following six requirements.

1. $n = pq$	n is chosen as the product of two primes to have
	the cryptographic strength required of RSA.

2.
$$1 < e < \phi(n)$$
; $\gcd(e, \phi(n)) = 1$ Ensures that the mapping $s \rightarrow s^e \mod n$ is 1 to 1.

3.
$$re \ge 2N$$
 Ensures that the exponentiation requires a full modular reduction.

4.
$$r \ge 2$$
 strength Protects against a cryptographic attacks.

5.
$$k, r$$
 are multiples of 8 An implementation convenience.

6.
$$k \ge 8$$
; $r + k = N$ All bits are used.

PRNG Based on Elliptic Curve Cryptography

- Developed by the U.S. National Security Agency (NSA)
- Known as dual elliptic curve PRNG (DEC PRNG)
- Recommended in NIST SP 800-90, the ANSI standard X9.82, and the ISO standard 18031
- Has been some controversy regarding both the security and efficiency of this algorithm compared to other alternatives
 - The only motivation for its use would be that it is used in a system that already implements ECC but does not implement any other symmetric, asymmetric, or hash cryptographic algorithm that could be used to build a PRNG

Summary

- Diffie-Hellman Key Exchange
 - The algorithm
 - Key exchange protocols
 - Man-in-the-middle attack
- Elgamal cryptographic system
- Elliptic curve cryptography
 - Analog of Diffie-Hellman key exchange
 - Elliptic curve encryption/decryption
 - Security of elliptic curve cryptography

- Elliptic curve arithmetic
 - Abelian groups
 - Elliptic curves over real numbers
 - Elliptic curves over Z_p
 - Elliptic curves over GF(2^m)
- Pseudorandom number generation based on an asymmetric cipher
 - PRNG based on RSA
 - PRNG based on elliptic curve cryptography