Cálculo Numérico (521230) - Laboratorio 5 MÍNIMOS CUADRADOS

Ajuste Polinomial

Ejercicio 1. La Tabla 1 relaciona la cantidad de cierto aditivo a un barniz con el tiempo de secado del mismo.

Aditivo	Tiempo de secado
(en gramos)	(en horas)
0.0	12.0
1.0	10.5
2.0	10.0
3.0	8.0
4.0	7.0
5.0	8.0
6.0	7.5
7.0	8.5
8.0	9.0

Tabla 1: Aditivo y tiempo de secado

- 1.1 Escriba el sistema de ecuaciones lineales asociado al problema de encontrar el polinomio de grado menor o igual que 2 que mejor ajusta por cuadrados mínimos los datos en la tabla.
- **1.2** Escriba un rutero Octave en el que haga lo siguiente:
 - \blacksquare Construya la matriz A y parte derecha y del sistema escrito por usted en 1.1.
 - Resuelva el sistema Ac = y en el sentido de los mínimos cuadrados. (Indicación: esto puede hacerse usando el comando \setminus de Octave. Utilice help para ver cómo se usa).
 - Grafique en un mismo gráfico los pares en la Tabla y el polinomio obtenido (evaluado en 100 puntos entre 0 y 8 con ayuda de polyval).
 - Basados en el polinomio resultante, ¿qué cantidad de aditivo resulta en tiempo mínimo de secado? ¿Cuál es el tiempo mínimo de secado?

Observación: Si x denota al vector que contiene la cantidad de aditivo en el barniz y y contiene los tiempos de secado asociados, según aparecen en la tabla anterior, el llamado p = polyfit(x,y,2) retorna en p los coeficientes del polinomio de grado menor o igual que 2 que mejor ajusta, en el sentido de los mínimos cuadrados, los pares de datos en x y y. Este polinomio puede evaluarse usando polyval.

Ajuste para otro tipo de funciones

Ejercicio 2. En las aguas de un lago hay tres clases de microorganismos provocadores de enfermedades. Se sabe que, en respuesta a un tratamiento aplicado a las aguas, los microorganismos están disminuyendo en forma exponencial de acuerdo al modelo:

$$p(t) = c_1 e^{-1.5t} + c_2 e^{-0.3t} + c_3 e^{-0.05t}, t \ge 0,$$

donde p(t) da el número (en miles) de microorganismos. De una muestra de las aguas, en un laboratorio se obtuvieron los datos que se muestran en la Tabla 2:

Tabla 2: Número de microorganismos de la muestra (en miles)

- **2.1** Escriba el sistema de ecuaciones lineales asociado al problema de encontrar la función exponencial p(t) que mejor ajusta por cuadrados mínimos los datos en la Tabla.
- **2.2** Escriba un rutero en Octave que haga lo siguiente:
 - \blacksquare Construya la matriz A y parte derecha y del sistema escrito por usted en 2.1.
 - Resuelva el sistema Ac = y en el sentido de los mínimos cuadrados (seguir la indicación dada en 1.2).
 - Grafique en un mismo gráfico los pares en la Tabla y la función p(t) obtenida.
 - En base a la función obtenida, ¿cuál es el número de microorganismos que había en la muestra inicialmente? ¿y después de una hora y media? ¿y después de 5 horas y media?

Ajuste no lineal

Ejercicio 3. Las cifras de la Tabla 3 son datos sobre el porcentaje de llantas radiales producidas por cierto fabricante que aún pueden usarse después de recorrer cierto número de millas.

Miles de Millas recorridas
$$(x)$$
1
2
5
15
25
30
35
40

Porcentaje útil (y)
99
95
85
55
30
24
20
15

Tabla 3: Porcentaje de llantas útiles de acuerdo a las millas recorridas.

Se desea ajustar los datos de dicha tabla a los siguientes modelos en el sentido de los mínimos cuadrados:

$$y_a(x) = \alpha \beta^x$$
 e $y_b(x) = \alpha (100 - x) 10^{\beta x}$

Escriba un rutero en Octave que ejecute las siguientes tareas:

- **3.1** Determine los parámetros α y β que ajustan ambos modelos a los datos de la tabla en el sentido de los mínimos cuadrados. Su programa debe mostrar estos parámetros.
- **3.2** Para ambos modelos, muestre $||b Ax||_2$ del sistema Ax = b que su programa resuelve.
- **3.3** Dibuje en un mismo gráfico los datos de la tabla y ambos modelos ajustados. Decida qué modelo ajusta mejor los datos.
- **3.4** Con el mejor modelo, estime qué porcentaje de las llantas radiales del fabricante durarán 45000 millas y 50000 millas. Su programa debe mostrar estas estimaciones.

Ejercicio 4. Para estimar la cantidad de vitamina A requerida para mantener el peso se dio a ratas de laboratorio una dieta básica exenta de vitamina A y se les administró raciones controladas de vitamina A en forma de tabletas. La Tabla 4 muestra la relación entre la cantidad de vitamina A administrada y el aumento de peso de las ratas. Escriba un rutero Octave, que,

Dosis de vitamina A (mg)	Aumento de peso (g)
0.25	-10.8
1.0	13.5
1.5	16.4
2.5	28.7
7.5	51.3

Tabla 4: Aumento de peso de las ratas al administrar vitamina A

• Encuentre la función de la forma

Aumento de peso = $a + b \log_{10}(dosis de vitamina A), a, b \in \mathbb{R}$

que mejor ajusta por cuadrados mínimos los datos dados.

- Grafique en un mismo gráfico los pares en la Tabla y la función obtenida (evaluada en 100 puntos entre 0.25 y 7.5).
- Basado en la función obtenida, ¿qué cantidad de vitamina A es requerida para no aumentar de peso?

Ejercicio 5. La Tabla 5 muestra la concentración de iones n como una función del tiempo transcurrido después de haber apagado a un agente de ionización.

Tiempo (seg)	$n(imes 10^{-4})$
0	5.03
1	4.71
2	4.40
3	3.97
4	3.88
5	3.62
6	3.30
7	3.15
8	3.08
9	2.92
10	2.70

Tabla 5: Concentración de iones a través del tiempo

Se sabe que se cumple la siguiente relación entre la concentración de iones y el tiempo

$$n = \frac{n_0}{1 + n_0 \alpha t},\tag{1}$$

donde n_0 es la concentración inicial de iones y α , el coeficiente de recombinación.

- **5.1** Muestre que existe una relación lineal entre n^{-1} y t.
- **5.2** Encuentre la función (1) que mejor ajusta por cuadrados mínimos a los datos en la tabla. Escriba las aproximaciones a n_0 y α obtenidas.
- **5.3** Grafique los pares ordenados en la tabla y la función n obtenida (evaluada en 110 puntos entre 0 y 10).

MSS/MSP/FVM Semestre 2019–2