1 Applications - gradient and sketching

1.1Maxima and minima

1. (i) $y = -3x^2 + 12x + 2$

 $\frac{dy}{dx} = -6x + 12$ then the stationary point will be the roots of the derivative function. $-6x + 12 = 0 \implies x = 2$, for x = 2 we have $y = -3 \times 2^2 + 12 \times 2 + 2 = 14$. Now the only stationary point is (2, 14).

For x < 2, e.g. x = 1 we get $\frac{dy}{dx}(1) = -6 \times 1 + 12 = 6 > 0$. For x > 2, e.g. x = 3 we get $\frac{dy}{dx}(3) = -6 \times 3 + 12 = -6 < 0$.

Then the stationary point (2, 14) is a local maximum.

(ii) $y = x^3 - 6x^2 + 12x + 9$

 $\frac{dy'}{dx} = 3x^2 - 12x + 12$ then the stationary point will be the roots of the derivative function. $3x^2 - 12x + 12 = 0 \implies 3(x-2)(x-2)$, for x = 2 we have $y = 2^3 - 6 \times 2^2 + 12 \times 2 + 9 = 17$.

Now the only stationary point is (2, 17).

For x < 2, e.g. x = 1 we get $\frac{dy}{dx}(1) = 3 - 12 + 12 = 3 > 0$. For x > 2, e.g. x = 3 we get $\frac{dy}{dx}(3) = 3 \times 3^2 - 12 \times 3 + 12 = 3 > 0$.

Then the stationary point (2,17) is a horizontal point of inflection.

(iii) $y = 3x^3 - 9x^2 + 1$

 $\frac{dy}{dx} = 9x^2 - 18x$ then the stationary point will be the roots of the derivative function. $9x^2 - 18x = 0 \implies 9x(x-2)$, for x = 2 we have $y = 3 \times 2^3 - 9 \times 2^2 + 1 = -11$ and for x = 0we have y = 1. Now the two stationary points are (2, -11) and (0, 1).

For x < 2, e.g. x = 1, because 1 is between 0 and 2, we get $\frac{dy}{dx}(1) = 9 - 18 = -9 < 0$.

For x > 2, e.g. x = 3 we get $\frac{dy}{dx}(3) = 9 \times 3^2 - 18 \times 3 = 27 > 0$.

Then the stationary point (2, -11) is a local minimum. Now for x < 0, e.g. x = -1, $\frac{dy}{dx}(1) = 9 + 18 = 27 > 0$ As in x = 1 > 0, $\frac{dy}{dx}(1) = 9 - 18 = -9 < 0$ we get (0,1) is a local maximum.

- 2. Following the detailed solutions of the previous question, we obtain:

(i) $y = 5x^2 - 20x + 9$ $\frac{dy}{dx} = 10x - 20 \implies x = 2$ is the only root. Then the only stationary point is (2, -11) which is

(ii) $y = 2x^3 - 9x^2 + 12x + 1$

 $\frac{dy}{dx} = 6x^2 - 18x + 12 = 6(x-1)(x-2) \implies x = 2$ and x = 1 are the roots. Then the stationary points are (2,5) which is a local minimum, and (1,6) which is a maximum.

(iii) $y = x^3 + 3x^2 + 3x + 1$

 $\frac{dy}{dx} = 3x^2 + 6x + 3 = 3(x+1)^2 \implies x = -1$, is the only root. Then the only stationary point is (-1,0) which is a horizontal point of inflection.

Graph sketching 1.2

1. For $y = 3x^3 - 9x^2$

(i) For x = 0 we have y = 0, then (0,0) is the x-intercept.

For y = 0 we have $0 = 3x^3 - 9x^2 = 3x^2(x - 3) \implies x = 0$ and x = 3 then (0,0) and (3,0) are the y-intercepts.

1

(ii) $\frac{dy}{dx} = 9x^2 - 18x = 9x(x-2)$ then x = 0 and x = 2 are the roots. Now, the stationary points are (0,0) and (2,-12). Analysing as we do in the Question 1, we obtain that (0,0) is a local maximum, and (2,-12) is a local minimum.

(iii)

- 2. For $y = (x-1)^3$
 - (i) For x = 0 we have y = -1, then (0, -1) is the x-intercept. For y = 0 we have x = 1, then (1, 0) is the y-intercept.
 - (ii) $\frac{dy}{dx} = 3(x-1)^2$ then x=1 is the root. Now, the stationary points are (1,0) which is a horizontal point of inflection.

(iii)

1.3 Second derivative

1. (i)
$$y = 2x^3 - 4x^2 - 5x + 9$$
, Here $\frac{dy}{dx} = 6x^2 - 8x - 5$, then $\frac{d^2y}{dx^2} = 12x - 8$.

(ii)
$$y = (x-2)e^{2x}$$
, Here
$$\frac{dy}{dx} = (x-2)'e^{2x} + (x-2)(e^{2x})' = e^{2x} + 2(x-2)e^{2x} = e^{2x}(1+2(x-2)) = e^{2x}(2x-1).$$
 And
$$\frac{d^2y}{dx^2} = 2(e^{2x})'(2x-1) + 2e^{2x}(2x-1)' = 4e^{2x}(2x-1) + 4e^{2x} = e^{2x}(4(2x-1)+4) = 8xe^{2x}$$

(iii)
$$y = x \ln x$$
, Here $\frac{dy}{dx} = x' \ln x + x(\ln x)' = \ln x + x\frac{1}{x} = \ln x + 1$. $\frac{d^2y}{dx^2} = \frac{1}{x}$.

(iv)
$$y = 8\sqrt{x} - \cos(3x)$$
, Here $\frac{dy}{dx} = 8\frac{1}{2\sqrt{x}} + 3\sin(3x) = \frac{4}{\sqrt{x}} + 3\sin(3x)$.
Now $\frac{d^2y}{dx^2} = 4(x^{-\frac{1}{2}})' + 3(\sin(3x))' = -\frac{4}{2}x^{-3/2} + 9\cos(3x) = -\frac{2}{\sqrt{x^3}} + 9\cos(3x)$.

2. (i) $y = 3x^3 - 9x^2 + 1$, here $\frac{dy}{dx} = 9x^2 - 18x = 9x(x-2)$ where x = 0 and x = 2 are the roots. Then the points (0,0) and (2,-11) are the stationary points. Now, $\frac{d^2y}{dx^2} = 18x - 18$, when evaluated on the stationary points we have:

 $\frac{d^2y}{dx^2}(0)=-18<0$ then (0,0) is a local maximum. $\frac{d^2y}{dx^2}(2)=18>0$ then (2,-11) is a local minimum.

(ii) $y = x^4 - 8x^2 + 10$, here $\frac{dy}{dx} = 4x^3 - 16x = 4x(x^2 - 4) = 4x(x - 2)(x + 2)$, where x = 0, x = 2 and x = -2 are the roots of the first derivative. Then, (0, 10), (2, -6) and (-2, -6) are the stationary points. The second derivative is $\frac{d^2y}{dx^2} = 12x^2 - 16 =$ when evaluated on the stationary points we have:

 $\frac{d^2y}{dx^2}(0) = -16 < 0$, then (0,10) is a local maximum. $\frac{d^2y}{dx^2}(2) = 32 > 0$, then (2,-11) is a local minimum.

 $\frac{d^2y}{dx^2}(-2) = 32 > 0$, then (-2, -11) is a local minimum.

- 3. (i) $y = x^4 4x^3 7x + 7$, here $\frac{dy}{dx} = 4x^3 12x^2 7$ and $\frac{d^2y}{dx^2} = 12x^2 24x$.
 - (ii) $y = (4x-3)e^x$, here $\frac{dy}{dx} = (4x-3)'e^x + (4x-3)(e^x)' = 4e^x + (4x-3)e^x$ and $\frac{d^2y}{dx^2} = 4(e^x)' + ((4x-3)e^x)e^x$ $(3)e^x$)' as calculated before, we have $\frac{d^2y}{dx^2} = 4e^x + 4e^x + (4x - 3)e^x = e^x(4 + 4 + 4x - 3) = (4x + 5)e^x$.
 - (iii) $y = x \sin x$, here $\frac{dy}{dx} = x' \sin x + x(\sin x)' = \sin x + x \cos x$. And $\frac{d^2y}{dx^2} = \cos x + x' \cos x + x(\cos x)' = \cos x + \cos x x \sin x = 2\cos x x \sin x$.

(iv)
$$y = 16x^{3/4} - 4\ln x$$
, here $\frac{dy}{dx} = 16 \times \frac{3}{4}x^{3/4-1} - 4\frac{1}{x} = 12x^{-\frac{1}{4}} - \frac{4}{x}$.

And
$$\frac{d^2y}{dx^2} = -\frac{12}{4}x^{-1/4-1} + \frac{4}{x^2} = -3x^{-\frac{5}{4}} + \frac{4}{x^2}$$
.

4. (i) $y = 2x^3 + 9x^2 - 24x$, here $\frac{dy}{dx} = 6x^2 + 18x - 24 = 6(x^2 + 3x - 4) = 6(x + 4)(x - 1)$. The stationary points are (-4,112) and (1,-13). Now $\frac{d^2y}{dx^2}=12x+18$, then $\frac{d^2y}{dx^2}(-4) = -30 < 0$, then (-4,112) is a local maximum. $\frac{d^2y}{dx^2}(1) = 30 > 0$, then (1,-13) is a local minimum.

(ii) $y = x^3 + 3x^2 - 4$, here $\frac{dy}{dx} = 3x^2 + 6x = 3x(x+2)$. The stationary point are (0, -4) and (-2,0). Now $\frac{d^2y}{dx^2} = 6x + 6$, then

 $\frac{d^2y}{dx^2}(0) = 6 > 0$, then (0, -4) is a local minimum.

 $\frac{d^2y}{dx^2}(-2) = -6 < 0$, then -2, 0 is a local maximum.