RÉSUMÉ DE COURS DU CHAPITRE 4

Schémas des composants électriques

— <u>G</u> —	Générateur de tension continue	——	Pile
+	Générateur idéal de tension continue		Interrupteur ouvert Interrupteur fermé
	Conducteur ohmique (résistance)		Lampe
M	Moteur	— COM	Ohmmètre
COM	Voltmètre	COM	Ampèremètre
	Diode		Diode électroluminescente (DEL)

Circuits en série - circuits en dérivation - Mesures de tension et d'intensité

Dipôles branchés en série

Dipôles branchés en dérivation

- La tension électrique (en volt V) entre deux bornes se mesure à l'aide d'un voltmètre branché en dérivation au niveau des points où l'on veut faire la mesure.
- L'intensité électrique (en ampère A) dans une branche se mesure à l'aide d'un ampèremètre branché en série dans la branche où l'on veut mesurer l'intensité.

Parties de circuit électrique :

- Branche : C'est une portion de circuit dont les éléments sont parcourus par la même Intensité.
- Nœud: C'est un point du circuit intersection d'au moins 3 fils.
- Maille : C'est une portion de circuit fermée sur elle-même (une boucle).

Les lois de l'électricité en courant continu

• Convention dans un circuit électrique :

CONVENTION GÉNÉRATEUR

CONVENTION RÉCEPTEUR

ASTUCE : Pour orienter la tension U_{AB} , on pense au vecteur \overrightarrow{AB} et on met la flèche dans le sens opposé, ou bien on retient que U_{AB} est dirigé vers la première lettre : A.

Loi des mailles

Dans une maille, la somme algébrique des tensions est nulle.

$$\sum \pm U_{composants} = 0$$

Exemple du schéma : $U_{AB} + U_{BC} + U_{CD} - U_{AD} = 0$

Remarque: $U_{AD} = -U_{DA}$

Relation de Chasles : $U_{AC} = U_{AB} + U_{BC}$

Loi des nœuds

A un nœud, la somme des intensités des courants entrants est égale à la somme des intensités des courants sortants.

$$\sum i_{entrants} = \sum i_{sortants}$$

Exemple:

$$i_1 + i_2 = i_3 + i_4$$

Loi d'ohm

Aux bornes d'une résistance, la tension est reliée à la valeur de la résistance et de l'intensité par la relation

$$U = R I$$

U : tension aux bornes de la résistance (V : volt)

R : Résistance $(\Omega : Ohm)$

I : intensité traversant la résistance (A : Ampère)

Puissance électrique P (en Watt W) :

$$P = UI$$

Énergie électrique E (en Joule J) :

$$E = P \times t = U.I.\Delta t$$

Dans le cas d'une résistance :

$$P = U.I = R.I^2 = \frac{U^2}{R}$$

$$E = P \times t = U.I.\Delta t = R.I^2.\Delta t = \frac{U^2}{R}.\Delta t.$$