1

Discrete 10.5.3 Q-3

EE23BTECH11207 -KAILASH.C*

QUESTION:

In an AP:

- 1) given a = 5, d = 3, $a_n = 5$, find n and S_n .
- 2) given a = 7, $a_{13}=35$, find d and S_{13} .
- 3) given $a_{12} = 37$, d = 3, find a and S_{12} .
- 4) given $a_3 = 15$, $S_{10} = 125$, find d and a_{10} .
- 5) given d = 5, $S_9 = 75$, find a and a_9 .
- 6) given a = 2, d = 8, $S_n = 90$, find n and a_n .
- 7) given a = 8, $a_n = 62$, $S_n = 210$, find n and d.
- 8) given an= 4, d = 2, $S_n = -14$, find n and a.
- 9) given a = 3, n = 8, $S_n = 192$, find d.
- 10) given 1 = 28, S = 144, and there are total 9 terms. Find a.

Solution: In the 9th subpart: By using sum of n

Symbols	Definition
x_0	First term
d	Difference
x (n)	General term
y (n)	Sum of terms till n_{th} term
X(z)	Z-Transformation Of $x(n)$

TABLE 10
DEFINITION TABLE

Using These properties in x(n), we get:

$$X(z) = \frac{6z^{-1}}{(1 - z^{-1})^2} + \frac{3}{(1 - z^{-1})}$$
(9)

Fig. 10. Graph of x(n) vs n

terms of A.P:

$$y(n) = \frac{(n+1)}{2}(2x_0 + nd) \tag{1}$$

$$192 = \frac{8}{2}(2(3) + 7d) \tag{2}$$

$$48 = 6 + 7d \tag{3}$$

$$d = \frac{42}{7} \tag{4}$$

$$d = 6 \tag{5}$$

We have:

$$x(n) = (3 + 6n) u(n)$$
 (6)

By Z-Transformation properties:

$$u(n) \stackrel{Z}{\longleftrightarrow} \frac{1}{(1-z^{-1})} \tag{7}$$

$$nu(n) \stackrel{Z}{\longleftrightarrow} \frac{z^{-1}}{\left(1 - z^{-1}\right)^2} \tag{8}$$