

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2019 - 2020

C4 : MODÉLISATION CINÉMATIQUE DES SYSTÈMES COMPOSÉS DE CHAINES DE SOLIDES

C4-4 - Cinématique du solide

7 Janvier 2020

Table des matières

I	Cha	mp cinématique des solides	l
	1	Torseur cinématique	L
	2	Propriétés	3
		a) Equiprojectivité	3
		b) Axe central	1
	3	Composition des champs cinématiques	1
	4	Champ de vecteur accélération des points d'un solide	1
II	Μοι	vements particuliers des solides 5	5
	1	Mouvement de translation	5
		a) Définition	5
		b) Mouvement de translation rectiligne	5
		c) Mouvement de translation circulaire	5
	2	Mouvement de rotation	3
	3	Mouvement de translation/rotation hélicoïdale	3
	4	Mouvements plan	ŝ
	-	a) Définition	
		b) Centre instantané de rotation (C.I.R.)	-
		c) Cas dos mouvements de translation	

Compétences

- Analyser; Caractériser des écarts : Grandeurs utilisées : unités du système international; homogénéité des grandeurs
- Modéliser; Proposer un modèle de connaissance et de comportement : Modélisation plane

I. Champ cinématique des solides

1 Torseur cinématique

Dans cette partie nous considérons que les solides sont indéformables. Le repère R_1 est attaché au solide S_1 (corps du drone ici), ainsi on note :

Considérons deux points **A et B appartenant au solide** S_1 attachés au repère $R_1(O_1, \vec{x_1}, \vec{y_1}, \vec{z_1})$. D'après la définition des solides indéformables vue dans le premier chapitre :

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_1} = \overrightarrow{0}.$$

En écrivant la dérivée temporelle du vecteur \overrightarrow{AB} par rapport au repère R_0 avec la formule de dérivation vectorielle, on obtient :

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_0} = \left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_1} + \overrightarrow{\Omega}(S_1/R_0) \wedge \overrightarrow{AB}.$$

On peut également écrire :

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_0} = \left[\frac{d\overrightarrow{OB}}{dt}\right]_{R_0} - \left[\frac{d\overrightarrow{OA}}{dt}\right]_{R_0} = \overrightarrow{V}(B/R_0) - \overrightarrow{V}(A/R_0)$$

Définition 1 : Changement de point

• On obtient alors **la relation fondamentale de changement de point pour le champ cinématique** pour deux points *A* et *B* appartenant à un solide quelconque *S* :

$$\overrightarrow{V}(B/R_0) = \overrightarrow{V}(A/R_0) + \overrightarrow{\Omega}(S/R_0) \wedge \overrightarrow{AB} = \overrightarrow{V}(A/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).$$

• On peut étendre cette formule à **deux points quelconques** *A* **et** *B* (n'appartenant pas forcément à *S*) avec l'utilisation des vitesses d'entrainement :

$$\overrightarrow{V}(B \in S/R_0) = \overrightarrow{V}(A \in S/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).$$
 (1)

• On peut parfois appeler cette relation, la formule de Varignon.

8

Propriété 1 :

On remarque alors que les vecteurs vitesses des points d'un solide indéformable vérifient la relation de changement de point du moment d'un torseur. Nous pouvons alors définir le **torseur cinématiques**.

Définition 2: Torseur cinématique

On définit le torseur cinématique du mouvement d'un solide indéformable S par rapport à un repère R_0 , le torseur qui a pour résultante, le vecteur de rotation instantané $\Omega(S/R_0)$ et pour moment la vitesse en un point donné A, dans le mouvement de S par rapport à R_0 , $\overline{V_{(A \in S/R_0)}}$. On le note alors :

$$\left\{ \mathcal{V}_{(S/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{(S/R_0)}} \\ \overrightarrow{V_{(A \in S/R_0)}} = \overrightarrow{V}_A(S/R_0) \end{array} \right\}$$
 (2)

Définition 3: Torseur

Un torseur est un outil mathématique qui présente deux composantes vectorielles :

- Une résultante qui est **indépendante** du point où on l'exprime et que l'on note $\overline{R} = \overline{\Omega_{(S/R_0)}}$.
- Un moment qui dépend du point où on l'exprime par la formule fondamental de changement de point et que l'on note $\overrightarrow{M}_A(\overrightarrow{R}) = \overrightarrow{V}_{(A \in S/R_0)} = \overrightarrow{V}_A(S/R_0)$.

🦰 Remarque 1 :

Le point A est lié au solide S. Deux cas peuvent se présenter.

- Lorsque le point appartient physiquement au solide (S), il est lié à tout instant à ce solide. On peut alors calculer sa vitesse avec le vecteur vitesse ou par dérivation vectorielle. On parlera alors de point matériel.
- Lorsque le point considéré est lié uniquement au solide à l'instant t où on calcule son vecteur vitesse, on ne peut calculer sa vitesse qu'en utilisant la loi de composition des vitesses. On parlera alors de point géométrique.

2 Propriétés

Equiprojectivité

Définition 4: Equiprojectivité

Un champ de vitesse est équiprojectif, c'est à dire qu'il vérifie pour tout couple de point (A, B) dans le mouvement d'un solide S_1 par rapport à R_0 la relation suivante :

$$\overrightarrow{V_{(A \in S_1/R_0)}} \cdot \overrightarrow{AB} = \overrightarrow{V_{(B \in S_1/R_0)}} \cdot \overrightarrow{AB}$$
 (3)

b) Axe central

Définition 5: Axe central

- Un point central d'un torseur est un point où le moment résultant a même direction que la résultante générale.
- L'axe central d'un torseur est la droite constituée par l'ensemble des points centraux. Il a même direction que la résultante du torseur. L'axe central n'existe que si la résultante du torseur n'est pas

Supposons un torseur défini en un point A du mouvement de S_1/R_0 :

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{(S_1/R_0)}} \\ \overrightarrow{V_{(A \in S_1/R_0)}} \end{array} \right\}$$

La position de la projection du point A sur l'axe central (que l'on notera H) est obtenu par la relation suivante :

$$\overrightarrow{AH} = \frac{\overrightarrow{\Omega_{(S_1/R_0)}} \wedge \overrightarrow{V_{(A \in S_1/R_0)}}}{\overrightarrow{\Omega_{(S_1/R_0)}}^2}$$
(4)

Composition des champs cinématiques

Propriété 2 : Composition des champs cinématiques

On peut décomposer un champ cinématique à l'aide des torseurs en effectuant une relation de Chasles par des solides successifs. Soit S_1 , S_2 , \cdots S_n un ensemble de solides indéformables :

$$\left\{ \mathcal{V}_{(S_n/S_0)} \right\} = \left\{ \mathcal{V}_{(S_n/S_{n-1})} \right\} + \left\{ \mathcal{V}_{(S_{n-1}/S_{n-2})} \right\} + \dots \left\{ \mathcal{V}_{(S_1/S_0)} \right\}$$
 (5)

Il en découle une décomposition en :

· Vecteur rotation instantané:

$$\overrightarrow{\Omega}(S_n/S_0) = \overrightarrow{\Omega}(S_n/S_{n-1}) + \overrightarrow{\Omega}(S_{n-1}/S_{n-2}) + \cdots \overrightarrow{\Omega}(S_1/S_0)$$
(6)

Vecteur vitesse en un même point quelconque A:

$$\overrightarrow{V}(A \in S_n/S_0) = \overrightarrow{V}(A \in S_n/S_{n-1}) + \overrightarrow{V}(A \in S_{n-1}/S_{n-2}) + \cdots \overrightarrow{V}(A \in S_1/S_0)$$
(7)

Champ de vecteur accélération des points d'un solide

Définition 6: Champ d'accélération

Le relation de changement de point entre A et B pour un champ d'accélération d'un solide S₁ par rapport à un repère R_0 est donnée par :

$$\overrightarrow{a}\left(B/R_{0}\right) = \overrightarrow{a}\left(A/R_{0}\right) + \left[\frac{d}{dt}\overrightarrow{\Omega}(S_{1}/R_{0})\right]_{R_{0}} \wedge \overrightarrow{AB} + \overrightarrow{\Omega}(S_{1}/R_{0}) \wedge \left(\overrightarrow{\Omega}(S_{1}/R_{0}) \wedge \overrightarrow{AB}\right).$$

Attention :

Un champ d'accélération n'est pas un champ de moment, c'est à dire qu'il ne vérifie pas les propriétés d'équiprojectivité et il ne peut pas être décrit par un torseur.

II. Mouvements particuliers des solides

1 Mouvement de translation

a) Définition

Définition 7 : Mouvement de translation

Un solide S_1 est en mouvement de **translation** par rapport à R_0 si l'ensemble des points de S_1 ont la même vitesse à l'instant t par rapport à R_0 .

Le vecteur de rotation instantané associé à ce torseur est nul : $\overline{\Omega(S_1/R_0)} = \overrightarrow{0}$. Il s'agit donc d'un **torseur couple** qui est indépendant du point où on l'exprime :

$$\left\{ \mathcal{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \overrightarrow{V_{(A \in S_1/R_0)}} \end{array} \right\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \overrightarrow{V_{(B \in S_1/R_0)}} \end{array} \right\}$$
(8)

Parmi les mouvements de translation, on peut en retenir deux particuliers :

b) Mouvement de translation rectiligne

Définition 8: translation rectiligne

Un mouvement de translation de S_1 par rapport à R_0 est dit de **translation rectiligne** si la trajectoire de tous les points de S_1 par rapport à R_0 est une **droite**. Dans ce cas $\overrightarrow{V_{(A \in S_1/R_0)}}$ a pour direction la trajectoire du point A.

c) Mouvement de translation circulaire

Définition 9: Mouvement de translation circulaire

Un mouvement de S_1 par rapport à R_0 est dit de **translation circulaire** si la trajectoire de tous les points de S_1 sont des **cercles**.

FIGURE 1 – Exemple de translation rectiligne et circulaire.

2 Mouvement de rotation

Définition 10: Mouvement de rotation

Un solide S_1 est en **mouvement de rotation** par rapport à R_0 autour d'un axe (A, \overrightarrow{u}) si tous les points appartenant à l'axe (A, \overrightarrow{u}) ont une vitesse nulle par rapport à R_0 . Le vecteur de rotation instantané $(\overrightarrow{\Omega}(S_1/S_0))$ est alors colinéaire à la direction \overrightarrow{u} :

$$\overrightarrow{\Omega}(S_1/S_0) \wedge \overrightarrow{u} = \overrightarrow{0}$$

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S_1/S_0) \\ \overrightarrow{0} \end{array} \right\}$$
(9)

Ce torseur est alors "**un glisseur**" car il existe des points pour lesquels le moment du torseur cinématique est nul. Ces points appartiennent à l'axe de rotation qui est **l'axe central du torseur cinématique associé**.

3 Mouvement de translation/rotation hélicoïdale

Définition 11: Mouvement de translation/rotation hélicoïdale

- Un mouvement de **translation/rotation** hélicoïdale est la superposition entre un mouvement de rotation autour d'un axe (A, \overrightarrow{u}) et de translation suivant la direction \overrightarrow{u} .
- Ces deux mouvement sont liés par le paramètre p qui représente le **pas hélicoïdal** et s'exprime en $m.rad^{-1}$.
- Le torseur cinématique associé à ce mouvement pour un solide S_1 par rapport à R_0 est donné par :

$$\left\{ \mathcal{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S_1/S_0) = \Omega \cdot \overrightarrow{u} \\ \overrightarrow{V}_{(A \in S_1/R_0)} = p\Omega \cdot \overrightarrow{u} \end{array} \right\}$$
 (10)

4 Mouvements plan

a) Définition

Soit un solide S_1 , de repère lié R_1 , en mouvement dans un repère R_0 .

Définition 12: Mouvement plan

On dit que S_1 a **un mouvement plan** dans R_0 si chaque point $M \in S_1$ se déplace parallèlement à un plan P_0 lié à R_0 . Autrement dit, si \overrightarrow{n} est la normale à P_0 , alors :

$$\overrightarrow{V_{(M \in S_1/R_0)}} \cdot \overrightarrow{n} = 0 \qquad \forall M \in S_1$$

Remarque 2 :

Dans le cas d'un mouvement plan (par exemple dans le plan $(O, \vec{x_0}, \vec{y_0})$, le torseur cinématique de S_1 par rapport à R_0 se ramène à :

$$\left\{\mathcal{V}_{(S_1/R_0)}\right\} = \left\{ \begin{array}{ccc} 0 & V_x \\ 0 & V_y \\ \omega_z & 0 \end{array} \right\}_{R_0}$$

On remarquera ainsi que $\overrightarrow{\Omega_{(S_1/R_0)}} \perp \overrightarrow{V_{(M \in S_1/R_0)}}$, et donc que ce torseur est un glisseur.

Exemple 1: Forme des torseurs pour des mouvements plans

- cas d'un mouvement dans le plan $(O, \overrightarrow{x_0}, \overrightarrow{y_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :
- cas d'un mouvement dans le plan $(O, \vec{z_0}, \vec{x_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :
- cas d'un mouvement dans le plan $(O, \overrightarrow{y_0}, \overrightarrow{z_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :

b) Centre instantané de rotation (C.I.R.)

Définition 13 : Centre instantané de rotation (C.I.R.)

On appelle "centre instantané de rotation" (noté familièrement "C.I.R.") le point d'intersection entre l'axe central (Δ) et le plan du mouvement.

On désignera par " I_{10} " le CIR du mouvement de S_1 par rapport à R_0 .

Remarque 3 :

Pendant un instant Δt infiniment bref, le centre instantané de rotation représente le point autour duquel S_1 a un mouvement de rotation. Cependant, à l'instant suivant, il peut avoir changé de position.

Propriétés 3 :

• Soit S_1 , un solide en mouvement dans un repère R_0 , et ayant pour CIR " I_{10} ". Alors, pour tout $P \in S_1$, on a (fig.2):

$$\overrightarrow{V_{(P \in S_1/R_0)}} \cdot \overrightarrow{PI_{10}} = 0 \qquad \Leftrightarrow \qquad \overrightarrow{V_{(P \in S_1/R_0)}} \perp \overrightarrow{PI_{10}}$$
 (11)

- La norme des vecteurs vitesse est proportionnelle à la distance au CIR.
- On en déduit que la vitesse sur le CIR est nulle.

FIGURE 2 – Orthogonalité entre les vitesses et le "rayon au CIR".

c) Cas des mouvements de translation

Lorsque le mouvement relatif des deux solides est un translation, le CIR n'existe pas. Cependant, on peut considérer qu'il est comme rejeté à l'infini, perpendiculairement à la direction de la translation (fig.3).

FIGURE 3 – CIR en translation.