XUXIAO LI

https://www.linkedin.com/in/xuxiaoli1993 https://xuxiaoli-1993.github.io xuxiao.li@utah.edu 8012096239

Ph.D. with five years' experience in physics-based modeling and computation

- Expertise in computational fluid dynamics, heat transfer, and material science.
- Experienced with maintaining, developing, and optimizing large scientific code.
- Collaborated with experimentalists and modelers, coauthored multiple journal articles.

EDUCATION

University of Utah

Salt Lake City, Utah, USA

Ph.D., Mechanical Engineering

Jan. 2021 May 2019

M.S., Mechanical Engineering May 20. Area of Focus: thermal-fluid science in metal additive manufacturing and laser keyhole welding. Relevant Coursework: Numerical Solution of PDE, Thermodynamics, Machine Learning.

Tongji University

Shanghai, China

B.S., Aircraft Manufacturing Engineering

June 2015

TECHNICAL SKILLS

Linux Git Latex Fortran c/c++ Python MATLAB Comsol Abaqus MPI OpenMP Profiling

RESEARCH EXPERIENCE

GEMS Maintenance

2016 - Present

- Maintaining a legacy code (in Fortran, over 25000 lines), General Equation Mesh Solver (GEMS), initially developed for turbulent reacting flow computation with unstructured mesh and MPI parallelization.
- Developed and integrated new modules (Level-Set and Ghost Fluid Method, over 10000 lines) into GEMS to enable multi-phase, free-surface flow and fluid-solid interaction computations.
- Designed and conducted simulations of over 15 benchmark fluid dynamics problems for systematic verification of GEMS and the new modules.

Keyhole Dynamics in Laser Welding

2018 - Present

- Developed a multi-physics model (based on GEMS) that simulates the laser absorption, molten
 pool flow, evaporation/condensation kinetics, thermal-capillary forces, and keyhole evolution
 in laser welding processes.
- Synthesized results from simulations and X-ray imaging experiments (from collaborators) to make estimations on the driving forces and thermal field on the keyhole.
- Provided mechanism explanations on the relationship between process parameters, keyhole oscillation, and defect formation.

Powder-gas Interaction in Laser Powder Bed Fusion

2019 - Present

• Implemented a Lagrangian-point forcing scheme and the Discrete Element Method into the laser welding model to simulate the powder motion in laser powder bed fusion processes.

- Identified characteristic modes of powder-gas interaction based on the quantification of the surrounding gas flow and gas-induced forces on powders.
- Conducted simulations to identify the effects of ambient pressure on the gas flow and statistics of spattered powder, e.g., ejecting angle, temperature, and velocity.

Machine Learning for Laser Absorption in Keyhole

Jan. - April 2020

- Extracted laser absorption distribution on keyhole's surface from the laser welding model as the training and validation data sets.
- Applied convolutional neural network algorithms using Tensorflow to predict laser absorption for random keyhole shapes.

Cellular Automata Simulation for Grain Nucleation and Growth

2016 - 2018

- Developed a thermal model (based on GEMS) that simulates the heat transfer and temperature field in direct energy deposition (DED) processes.
- Implemented the Cellular Automata (CA) algorithm to simulate the grain nucleation and growth given the temperature field from the thermal model. Parallelized the CA algorithm with hybrid OpenMP and MPI.
- Conducted simulations to identify nucleation conditions for tailoring distinct grain morphology in DED processes.

Laser Absorption by Powder Bed

2015 - 2016

- Implemented a rain-dropping algorithm to generate randomly packed beds of powders as in typical laser powder bed fusion processes.
- Implemented the ray-tracing algorithm to model the multiple reflections of a laser beam on the surfaces of powders.
- Conducted parametric studies on the effects of powder size, powder bed thickness, and powder material on the laser absorption distribution within the powder bed.

SELECTED PUBLICATIONS (full list: https://xuxiaoli-1993.github.io/publications.html)

- 1. Herriott, C.F., **Li, X.**, Kouraytem, N., Tari, V., Tan, W., Anglin, B.S., Rollett, A.D., Spear, A.D., 2018. A multi-scale, multi-physics modeling framework to predict spatial variation of properties in additive-manufactured metals. Modelling and Simulation in Materials Science and Engineering, 27, p. 025009.
- 2. Li, X., Tan, W., 2018. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing. Computational Material Science, 153, pp. 159-169.
- 3. Kouraytem, N., **Li, X.**, Cunningham, R., Zhao, C., Parab, N., Sun, T., Rollett, A.D., Spear, A.D., Tan, W., 2019. Effect of laser-matter interaction on molten pool flow and keyhole dynamics. Physical Review Applied, 11(6), p.064054.
- 4. Zhao, C., Guo, Q., Li, X., Parab, N., Fezzaa, K., Tan, W., Chen, L., Sun, T., 2019. Bulk-explosion-induced metal spattering during laser processing. Physical Review X, 9(2), p.021052.
- 5. **Li, X.**, Zhao, C., Sun, T., Tan, W., 2020. Revealing transient powder-gas interaction in laser powder bed fusion process through multi-physics modeling and high-speed synchrotron x-ray imaging. Additive Manufacturing, 35, p.101362.
- 6. Zhao C., Parab, N.D., Li, X., Fezzaa, K., Tan, W., Rollett, A.D., Sun. T., 2020. Critical instability at moving keyhole tip generates porosity in laser melting. Science, accepted.