Terms	Explanation
Cluster	It can be thought of as a group of physical or virtual servers where Kubernetes is installed.
Nodes	There are two types of Nodes,
	 Master node is a physical or virtual server that is used to control the Kubernetes cluster. Worker node is the physical or virtual server where workload runs in given container technology.
Pods	The group of containers that shares the same network namespaces.
Labels	These are the key-value pairs defined by the user and associated with Pods.
Master	It controls plane components to provide access points for admins to manage the cluster workloads.
Service	It can be viewed as an abstraction that serves as a proxy for a group of Pods performing a "service".

1. Nodes: A Node is a worker machine in Kubernetes and may be either a virtual or a physical machine, depending on the cluster. Each Node is managed by the control plane. A Node can have multiple pods, and the Kubernetes control plane automatically handles scheduling the pods across the Nodes in the cluster.

Commands	Description
kubectl get node	To list down all worker nodes.
kubectl delete node <node_name></node_name>	Delete the given node in cluster.
kubectl top node	Show metrics for a given node.
kubectl describe nodes grep ALLOCATED -A 5	Describe all the nodes in verbose.
kubectl get pods -o wide grep <node_name></node_name>	List all pods in the current namespace, with more details.
kubectl get no -o wide	List all the nodes with mode details.
kubectl describe no	Describe the given node in verbose.
kubectl annotate node <node_name></node_name>	Add an annotation for the given node.
kubectl uncordon node <node_name></node_name>	Mark my-node as schedulable.
kubectl label node	Add a label to given node

2. Pods: Pods are the smallest deployable units of computing that you can create and manage in Kubernetes.

Commands	Description
kubectl get po	To list the available pods in the default namespace.
kubectl describe pod <pod_name></pod_name>	To list the detailed description of pod.
kubectl delete pod <pod_name></pod_name>	To delete a pod with the name.
kubectl create pod <pod_name></pod_name>	To create a pod with the name.
Kubectl get pod -n <name_space></name_space>	To list all the pods in a namespace.
Kubectl create pod <pod_name> -n <name_space></name_space></pod_name>	To create a pod with the name in a namespace.

3. Namespaces: In Kubernetes, namespaces provide a mechanism for isolating groups of resources within a single cluster. Names of resources need to be unique within a namespace, but not across namespaces.

Commands	Description
kubectl create namespace <namespace_name></namespace_name>	To create a namespace by the given name.
kubectl get namespace	To list the current namespace in a cluster.
kubectl describe namespace	To display the detailed state of one or more
<namespace_name></namespace_name>	namespaces.
kubectl delete namespace <namespace_name></namespace_name>	To delete a namespace.
kubectl edit namespace <namespace_name></namespace_name>	To edit and update the definition of a namespace.

4. Services: In Kubernetes, a Service is an abstraction which defines a logical set of Pods and a policy by which to access them (sometimes this pattern is called a micro-service).

Commands	Description
kubectl get services	To list one or more services.
kubectl describe services <services_name></services_name>	To list the detailed display of services.
kubectl delete services -o wide	To delete all the services.
kubectl delete service < service_name>	To delete a particular service.

5. Deployments: A Deployment provides declarative updates for Pods and ReplicaSets. The typical use case of deployments are to create a deployment to rollout a ReplicaSet, declare the new state of the pods and rolling back to an earlier deployment revision.

Commands	Description	
kubectl create deployment <deployment_name></deployment_name>	To create a new deployment.	
kubectl get deployment	To list one or more deployments.	
kubectl describe deployment <deployment_name> To list a detailed state of one or more deployments.</deployment_name>		
kubectl delete deployment <deployment_name></deployment_name>	To delete a deployment.	

6. DaemonSets: A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are added to the cluster, Pods are added to them. As nodes are removed from the cluster, those Pods are garbage collected. Deleting a DaemonSet will clean up the Pods it created

Command	Description
kubectl get ds	To list out all the daemon sets.
kubectl get ds -all-namespaces	To list out the daemon sets in a namespace.
kubectl describe ds	To list out the detailed information for a daemon set
[daemonset_name][namespace_name]	inside a namespace.

7. Events: Kubernetes events allow us to paint a performative picture of the clusters.

Commands	Description
kubectl get events	To list down the recent events for all the resources in the system.
kubectl get eventsfield-selector	
involvedObject.kind != Pod	To list down all the events except the pod events.
kubectl get eventsfield-selector type != Normal	To filter out normal events from a list of events.

8. Logs: Logs are useful when debugging problems and monitoring cluster activity. They help to understand what is happening inside the application.

Commands	Description
kubectl logs <pod_name></pod_name>	To display the logs for a Pod with the given name.
kubectl logssince=1h <pod_name></pod_name>	To display the logs of last 1 hour for the pod with the given name.
kubectl logstail-20 <pod_name></pod_name>	To display the most recent 20 lines of logs.
kubectl logs -c <container_name> <pod_name></pod_name></container_name>	To display the logs for a container in a pod with the given names.
kubectl logs <pod_name> pod.log</pod_name>	To save the logs into a file named as pod.log.

9. ReplicaSets: A ReplicaSet's purpose is to maintain a stable set of replica Pods running at any given time. As such, it is often used to guarantee the availability of a specified number of identical Pods.

Commands	Description
kubectl get replicasets	To List down the ReplicaSets.
kubectl describe replicasets < replicaset_name >	To list down the detailed state of one or more ReplicaSets.
kubectl scalereplace=[x]	To scale a replica set.

10. Service Accounts: A service account provides an identity for processes that run in a Pod.

Commands	Description
kubectl get serviceaccounts	To List Service Accounts.
kubectl describe serviceaccounts	To list the detailed state of one or more service accounts.
kubectl replace serviceaccounts	To replace a service account.
kubectl delete serviceaccounts <name></name>	To delete a service account.

11. Changing Resource Attributes

Taints: They ensure that pods are not placed on inappropriate nodes.

Command	Description
kubectl taint <node_name><taint_name></taint_name></node_name>	This is used to update the taints on one or more nodes.

12. Labels: They are used to identify pods.

Command	Description
kubectl label pod <pod name=""></pod>	Add or update the label of a pod