

Glosario: Gestión de las Comunicaciones de Red

1. Protocolo de Enrutamiento

Conjunto de reglas que permiten a los dispositivos de red (como routers) determinar la mejor ruta para enviar paquetes de datos desde el origen hasta su destino.

2. Métrica

Parámetro utilizado por los protocolos de enrutamiento para evaluar la calidad de una ruta. Puede basarse en número de saltos, ancho de banda, retardo, congestión, entre otros.

3. Algoritmo de Convergencia

Capacidad del protocolo para adaptarse rápidamente a cambios en la topología de red, como caídas de enlaces o cambios en las rutas disponibles.

4. Escalabilidad

Propiedad de una red o protocolo para seguir funcionando correctamente a medida que aumenta el número de dispositivos o el tamaño de la red.

5. Algoritmo de Actualización

Mecanismo mediante el cual los routers comparten información de rutas entre sí de forma periódica o ante eventos específicos.

6. Tolerancia a Fallos

Capacidad de una red para mantener su funcionamiento o recuperarse ante una interrupción parcial, redirigiendo el tráfico a través de rutas alternativas.

7. IGP (Interior Gateway Protocol)

Protocolos de enrutamiento utilizados **dentro** de una misma organización o sistema autónomo (AS). Ejemplos: RIP, OSPF.

8. RIP (Routing Information Protocol)

Protocolo IGP que utiliza el algoritmo de **vector distancia**, basado en el número de saltos como métrica. Simple, pero con convergencia lenta y baja escalabilidad.

9. OSPF (Open Shortest Path First)

Protocolo IGP que utiliza el algoritmo de **estado de enlace (Dijkstra - SPF)**. Escalable, rápido y adecuado para redes grandes y jerárquicas.

10. EGP (Exterior Gateway Protocol)

Protocolos diseñados para el enrutamiento entre **sistemas autónomos diferentes**. Se usan a nivel interorganizacional o en Internet.

11. BGP (Border Gateway Protocol)

Protocolo EGP basado en **vector de ruta (Path Vector)**. Utiliza políticas y atributos para decidir rutas y es el estándar de enrutamiento en Internet.

12. Sistema Autónomo (AS)

Conjunto de redes IP y routers bajo una única política administrativa que comparten una misma tabla de enrutamiento. Identificado por un número único (ASN).

13. DNS (Domain Name System)

Servicio que traduce nombres de dominio (como <u>www.ejemplo.com</u>) en direcciones IP y viceversa. Organizado jerárquicamente y distribuido.

14. DHCP (Dynamic Host Configuration Protocol)

Protocolo que asigna automáticamente direcciones IP y otros parámetros de configuración (gateway, máscara, DNS) a dispositivos cliente en una red.

15. IP (Internet Protocol)

Protocolo de red que proporciona direccionamiento lógico a los dispositivos y define cómo se enrutan los paquetes de datos en la red.

16. Servidor DNS

Dispositivo o servicio que gestiona la resolución de nombres de dominio a direcciones IP.

17. Servidor DHCP

Dispositivo que administra y asigna dinámicamente direcciones IP a dispositivos clientes en una red.

18. Simulador de Redes

Herramienta de software que permite diseñar, probar y visualizar redes informáticas sin necesidad de hardware físico real.

19. Cisco Packet Tracer

Simulador de red educativo desarrollado por Cisco. Permite simular routers, switches y protocolos como RIP, OSPF, DHCP y DNS.

20. GNS3 (Graphical Network Simulator 3)

Simulador de red avanzado que puede ejecutar imágenes reales de dispositivos Cisco, Juniper y otros, para prácticas profesionales de alto nivel.

21. Mininet

Simulador para redes definidas por software (SDN). Permite crear entornos virtuales realistas sobre Linux para investigación y desarrollo.

22. Convergencia de Red

Estado en el que todos los routers dentro de un sistema autónomo tienen una visión coherente de la topología de red, tras un cambio o actualización.

23. Vector Distancia

Tipo de algoritmo de enrutamiento que calcula la mejor ruta basándose en la cantidad de saltos hasta el destino.

24. Estado de Enlace (Link-State)

Algoritmo que permite a los routers construir una visión completa de la topología de red, calculando rutas óptimas a través del algoritmo de Dijkstra.

25. Path Vector

Algoritmo utilizado por BGP, donde cada ruta lleva información del camino completo que ha seguido, permitiendo decisiones basadas en políticas.