Dispositivo de axuda ao peregrinaxe

Sesión 1: Introducción y estandarizado de herramientas a utilizar

¿Quiénes somos?

Oscar Blanco Novoa

Ingeniero en Informática

Investigador en el departamento de Ingeniería de Computadores y doctor en Informática en la Universidad de A Coruña.

Alejandro Taracido Cano

Ing. Tec. Industrial Electrónico

Ingeniero desarrollo I+D+i en ELINSA (Grupo Amper)

Sobre todo makers inquietos

Introducción a las sesiones

- El proyecto
- En qué podemos ayudaros
- Metodología de trabajo
- Sistema de hitos

Sesión 1: Intro y estandarizado de herramientas a utilizar

- Platformio
- Visual studio code
- Git básico
- Colaboración en repositorio único
- Organización del código fuente
- Metodología de integración software

- Prototipo módulos con cables y breadboard
 - Hello world con cada módulo
 - Integración de todos los módulos
 - Pruebas funcionales preliminares

Sesión 2: Montaje prototipo perfboard pruebas y MVP

- Revisión integración SW
- MVP
- Orientación prototipado en perfboard
- Creación de esquema en papel
- Creación de software para validación

- Prototipo en perfboard
 - o Prototipo, validación y esquema
 - Prueba MVP

Sesión 3: Esquema y elección de componentes

- Captura esquema eléctrico KiCad
- Orientación selección de componentes finales

- Diseño eléctrico PCB
 - Diseño eléctrico
 - Sustitución de módulos por componentes definitivos
 - Cierre diseño esquema eléctrico definitivo

Sesión 4: Diseño PCB

- DFM y reglas de diseño
- Creación y comprobación footprints KiCad
- Dimensionado PCB y colocación de componentes
- Capas
- Ruteo pistas y planos de masa
- Silkscreen
- DRC

- Diseño PCB
 - Creación y comprobación footprints
 - o Dimensionado placa y colocación de componentes
 - Ruteo
 - o DRC
 - Cierre diseño PCB

Sesión 5: Pedido PCB

- Revisión diseño PCB
- Configuración generación de gerbers
- Como efectuar pedido PCB
- Estrategias de acopio de componentes

- Pedido PCB
 - Cierre diseño PCB
 - Generación de gerbers
 - Pedido PCB
 - Acopio componentes faltantes

Sesión 6: Mejora software

- Mejora del software
- Adición de funcionalidades
- Infraestructura cloud
- Aplicación básica

- Versión SW para PCB
 - Pulido del firmware y adición de funcionalidades (red mesh tipo disaster radio, sistema de alerta de caídas, sistema de petición de SOS, conexión por bluetooth con el móvil....)
 - Diseño infraestructura de comunicaciones (cloud)
 - Diseño software básico de aplicación
 - Preparación software test PCB
 - Recepción PCBs

Sesión 7: Montaje PCB y pruebas

- Soldadura SMD
- PCB bring up
- Pruebas eléctricas
- Pruebas software
- Debugging
- Problem solving
- Evaluación necesidad de nueva iteración

- Montaje PCBs
 - Soldadura prototipos
 - Pruebas eléctricas
 - Pruebas software
 - Pruebas de campo
 - Recopilación datos y análisis

Sesión 8: Diseño del dispositivo final

- Impresión 3D
- Encapsulado final
- Licenciamiento Open Source
- Documentación y publicación del proyecto
- Creación de comunidad

- Diseño del dispositivo final
 - Carcasa 3D, medidas, etc.

Visual Studio Code

Visual Studio Code: Características

- Ligero
- Multiplataforma
- Muy personalizable
- Soporta casi todos los lenguajes de programación
- Posee cientos de extensiones para completar su funcionalidad

Visual Studio Code

Visual Studio Code

Instalación:

https://code.visualstudio.com/download

Documentación:

https://code.visualstudio.com/docs

PlatformIO

Platformio vs Arduino IDE

- Compatible con editores profesionales como VSC
- Mejor gestor de proyectos
- Gestión de librerías y dependencias
- Compatibilidad con distintos controladores y plataformas
- Mayor eficiencia y velocidad de compilado
- Herramientas avanzadas y automatización
- Desarrollo colaborativo
- Soporte para pruebas unitarias

PlatformIO

Instalación:

Mediante menú extensiones en VSC

Documentación:

https://docs.platformio.org

PlatformIO: Instalación

PlatformIO: Instalación

GIT

¿Qué es un sistema de control de versiones?

- Tener backups
- Mantener un historial
- Ver cambios pasados
- Hacer experimentos
- Colaborar
- Tipos:
 - Centralizados
 - Descentralizados

¿Por qué Git?

- Distribuido
- Es rápido
- Integridad de datos
- Área de preparación (staging area)
- Open source y gratuito

GIT

Instalación:

Mediante menú source control en VSC o https://git-scm.com/downloads

Documentación:

https://git-scm.com/doc

GIT: Instalación

GIT: Configuración nombre y correo

Antes de empezar a utilizar Git, es recomendable configurar nombre y dirección de correo electrónico.

```
git config --global user.name "Tu nombre"
git config --global user.email "Tu correo electrónico"
```

GIT: Varios proyectos platformIO en un mismo repo

Organización código fuente

Organización del código fuente

Repositorio de ejemplo:

https://github.com/open-workshops/dispositivo axuda peregrinaxe

Organización del código fuente

- Separar cada módulo en archivos distintos (.h y .cpp)
- Cada módulo expone sus variables y funciones en el .h
- Las variables siempre lo más local posible
- Programar una función setup y loop en cada módulo
- El main incluye los .h de todos los módulos
- El main debe llamar a todos los setups y loops de los módulos
- Adicionalmente el main hace de coordinador
 - Solicita información a cada módulo
 - Desencadena acciones en los módulos
 - Gestiona temporizadores

Repositorio de ejemplo:

https://github.com/open-workshops/dispositivo_axuda_peregrinaxe

Metodología integración software (integration hell)

Metodología integración software

- Antes de comenzar el desarrollo crear archivo compartido de pinado
- Crear proyecto hello world por cada periférico manteniendo estructura
- Crear todas las funciones que estimemos sean necesarias
- Tener en cuenta los conflictos de uso de periféricos del micro
 - Varios módulos usando el mismo puerto de comunicación (SPI, I2C, Serie...)
- Una vez listos todos los proyectos independientes se comienza integración
 - Empezar con el proyecto más complejo como base
 - Añadir solo un proyecto/módulo cada vez y comprobar funcionamiento de todas las partes
 - Si la integración de un proyecto genera un conflicto, intentar resolverlo en el proyecto más sencillo (cambio librería, puerto, pin, comunicación...)

Desarrollo proyecto hello world

- Buscar información del periférico (datasheet)
- Buscar pinado con clave "arduino pinout"
- Buscar ejemplos con con la palabra clave "arduino" o "ESP32"
- Buscar librerías que faciliten el trabajo
 - https://registry.platformio.org/search
- Abstraer el uso de librería con estructura de módulos (.cpp .h)
- Otros recursos:
 - StackExchange
 - chatGPT
 - Colaboración de compañeros, amigos, familiares y mascotas

Hitos próxima sesión

Prototipo módulos con cables y breadboard

- Hello world con cada módulo
- Integración de todos los módulos
- Pruebas funcionales preliminares

¡Muchas gracias!