Exercice 1:

Soit
$$L = \begin{pmatrix} 2 & 1 & -3 \end{pmatrix} \in \mathcal{M}_{1,3}(\mathbb{R})$$
 et $C = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}).$

- 1. Calculer $L \times C$ et $C \times L$.
- 2. On note $A = C \times L$. Exprimer A^2 en fonction de A.
- 3. En déduire une expression de A^n pour tout entier $n \ge 1$. Dans la suite, on pose $B = I_3 + A$ où I_3 est la matrice unité de taille 3.
- 4. Calculer B^n pour tout entier naturel n.
- 5. (a) Montrer qu'il existe un unique réel λ tel que $B \times (I_3 + \lambda A) = I_3$ et le déterminer.
 - (b) Que cela signifie-t-il sur B?

Exercice 2

Soit
$$A = \begin{pmatrix} 2 & -1 & -1 & -1 \\ -1 & 2 & -1 & -1 \\ -1 & -1 & 2 & -1 \\ -1 & -1 & -1 & 2 \end{pmatrix}$$
 et I la matrice unité de taille 4.

- 1. (a) Montrer qu'il existe deux réels α et β tels que $A^2 = \alpha A + \beta I$.
 - (b) Prouver que A est inversible et exprimer son inverse en fonction de A et I.
- 2. Etablir par récurrence que, pour tout entier naturel n, il existe des réels α_n et β_n tels que $A^n = \alpha_n A + \beta_n I$. On exprimera α_{n+1} et β_{n+1} en fonction de α_n et β_n .
- 3. (a) Exprimer α_{n+2} en fonction de α_{n+1} et α_n pour tout entier naturel n. De quel type de suite s'agit-il? Déterminer l'expression de α_n en fonction de n.
 - (b) En déduire l'expression de β_n en fonction de n, pour tout entier naturel n puis conclure sur une expression de A^n en fonction de n.

Exercice 3:

On note
$$M = \begin{pmatrix} 3 & -2 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 3 \end{pmatrix}$ et I la matrice unité de taille 3 .

1. Soit $\lambda \in \mathbb{R}$. Montrer que $rg(M - \lambda I) < 3$ pour exactement deux valeurs de λ_1 , λ_2 que l'on déterminera (où $\lambda_1 < \lambda_2$).

Dans la suite, on pose
$$D = \begin{pmatrix} \lambda_2 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}$$
.

- 2. Montrer que P est inversible, et calculer P^{-1} . Le détail des calculs doit apparaître.
- 3. Comparer PD et MP.
- 4. (a) Exprimer M en fonction de D, P et P^{-1} . Faire de même avec M^2 et M^3 .
 - (b) Donner, en justifiant, une expression de M^n comme produit de trois matrices (on explicitera ces trois matrices mais on ne calculera pas le produit).