4/10/21 Regression. y = a + bx . - 0 ata+a---normal egus *om 2 / 2y = 2a + 2bx -2 zy = na + boxx. × my Eny = Eax + Ebx2 = a 2x + b 2x y= a+ bxc. Ey=nathex any: ahx + bhr Jos . 29+ 2by Ey = an + bsy -

• Construct the simple linear regression equation of Y on X if

$$n = 7, \sum_{i=1}^{n} x_i = 113, \sum_{i=1}^{n} x_i^2 = 1983,$$

$$\sum_{i=1}^{n} y_i = 182$$
 and $\sum_{i=1}^{n} x_i y_i = 3186$.

onn

- Number of man-hours and the corresponding productivity (in units) are furnished below. Fit a simple linear regression
 - equation $\hat{Y} = a + bx$ applying the method of least squares.

Man-hours	3.6	4.8	7.2	6.9	10.7	6.1	7.9	9.5	5.4
Productivity (in units)	9.3	10.2	11.5	12	18.6	13.2	10.8	22.7	12.7

h = ? / n= q

 $\leq \chi$, $\leq \chi$, $\leq \chi^2$ $= \leq \chi$

$$N=9$$
, $\xi x = 62.1$, $\xi y = 121$
 $\xi x y = 897.13$ $\xi x^2 = 468.97$

Solving

6/10/2021

Leall:

- Regression Equation of Y on X
- Y=a+bX where Y is the dependent variable to be estimated and X is the independent variable.
- a and b are two unknown constants which determine the position of the line.

$$\sum Y = aN + b\sum X$$

$$\sum XY = a\sum X + b\sum X^2$$

- Regression Equation of X on Y
- The regression equation of X on Y is X=a+bY.

$$\sum X = a'N + b'\sum Y$$

$$\sum XY = a' \sum Y + b' \sum Y^2$$

$$y - \overline{y} = \left(r \frac{\sigma_{y}}{\sigma}\right)(x - \overline{x})$$

$$x - \overline{x} = r \frac{\sigma_x}{\sigma} (y - \overline{y})$$

Regression coefficients measures the average change in the values of one variable for a unit change in the value of another variable. These represent the slope of regression lines

$$r\frac{\sigma_x}{\sigma_y} = b_{xy} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (y - \overline{y})^2}$$

$$r\frac{\sigma_y}{\sigma_x} = b_{yx} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

$$r=\pm\sqrt{b_{yx}.b_{xy}}$$

Peoblems

• The following data gives the experience of machine operators and their performance ratings

Operators	1	2	3	4	5	6	7	8
Experience (X)	8	11	7	10	12	5	4	6
Ratings (Y)	11	30	25	44	38	25	20	27

• Obtain the regression equations and estimate the ratings corresponding to the experience x=15.

	,	N.		×2	y2	
	1	Y	Λ Y .	•	/	
	8	71	. 88			
	17.	30	330			
/	ブ	25				
	10	44			•	
	12	38				
-	5	25				
•	4	20				
	6	27				2
2x:	b3	±y=22	n Exyel	856 57	2 = 355	Ly: 6780

reg, egn y on x

$$y-y=b_{yx}(x-x)$$

Reg. lines
$$x$$
 on y .

$$i' - x = bxy (y-y)$$

$$bxy = n \leq xy - \leq x \leq y$$

$$n \leq y^2 - (\leq y)^2$$

$$876780 - (220)^2$$

reg. egh. 20 on y.

· 2) two regression lines $y = -1.5 \pi + 7$ — x = 0.6 y + 9 — O -> y on x. (2) -> nony 25 there any mistake in the date. (1) => reg touth. = byx = -1.5 x (2) => reg wh. = bxy = 0.6 both sig web are of diporent sign So The given egn. cannot be segresson lime.

The mistake in data. 3) The seg. coyp- are byx = 5 bxy = 9 What is the value of my ?

Correction = + V bry hyr -= + 1 = + 193 - 0.567 = + \ 3/8 Since are positive, the correlation couplined between x and y is positive AW 12 dat Hours, x Test score, y XY χ^2 7225 | 6724 | 5476 | 9025 12 diffent sondents watchi, IV duing. weekends and suiones of a test conducted

•

on monday

(a) find the eight of regression line-(h) use the egn. to find the expected test sware for a student watches 9 hours of 7v rext dass