## Matematika I

## Séria úloh 5

| 1. (7b) Daná je všeobecná rovnica kužeľosečky $y^2 - 4x^2 + 8x - 8y - 4 = 0$ . Doplňte |
|----------------------------------------------------------------------------------------|
| a) (2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je                 |
| b) (1b) Typ kužeľosečky je                                                             |
| c) (3b) Napíšte súradnice                                                              |
| $c_1$ ) stredu kužeľosečky: $c_2$ ) ohnísk kužeľosečky: $c_3$ ) vrcholov kužeľosečky:  |
| d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.          |

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.



a) 
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b) 
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c) 
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d) 
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je trojuholník s vrcholmi  $A=[1,1],\,B=[1,2]$  a C=[2,2].

- 4. (4b) Bod M má v pravouhlej súradnicovej sústave súradnice:  $M = [3, \sqrt{3}, 3]$ .
  - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v cylindrickej súradnicovej sústave sú:

a) 
$$M = \left[2\sqrt{3}, \frac{11\pi}{6}, 3\right]$$

c) 
$$M = \left[2\sqrt{3}, \frac{\pi}{3}, 3\right]$$

b) 
$$M = \left[2\sqrt{3}, \frac{5\pi}{3}, 3\right]$$

d) 
$$M = \left[2\sqrt{3}, \frac{\pi}{6}, 3\right]$$

b) (2b) Znázornite tento bod M v cylindrickej súradnicovej sústave.

Náčrt:

| 5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y'(x) + y(x) = x + 1$ .                       |
|---------------------------------------------------------------------------------------------------------------|
| a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.                                      |
| Charakteristická rovnica je:                                                                                  |
| b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.                 |
| Fundamentálny systém riešení je                                                                               |
| b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.                                          |
| Partikulárne riešene je                                                                                       |
| c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.                                    |
| Všeobecné riešenie danej LODR je                                                                              |
| 6. (4b) Vypočítajte                                                                                           |
| $\lim_{[x,y]\to[0,1]} \frac{x^2y^2}{x+y+1}.$                                                                  |
| Výsledok:                                                                                                     |
| 7. (6b) Nájdite rovnicu dotykovej roviny $\tau$ ku grafu funkcie $f(x,y)=e^{x\cos y}$ v bode $T=[1,\pi,z_0].$ |
| (2b) Nájdite $z_0$ a <b>uveďte súradnice dotykového bodu</b> :                                                |
| (4b) Všeobecná <b>rovnica</b> dotykovej roviny $\tau$ je:                                                     |
| 8. (6b) Daná je funkcia $f(x,y)=\frac{x}{y^2}$ , bod $A=[1,2]$ a vektor $\vec{l}=(-1,2)$ .                    |
| a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode $A$ .                                                        |
| <b>Gradient</b> funkcie $f(x,y)$ v bode $A$ je                                                                |
| b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode $A$ v smere vektora $\vec{l}.$                          |
| <b>Derivácia</b> funkcie $f(x,y)$ v bode $A$ v smere vektora $\vec{l}$ je                                     |

9. (9b) Toto je príklad typu B

text text text