Light Transport Analysis

Introduction to Computational Photography EECS 395/495

Northwestern University

Today

- Light Transport: Overview
- Image Relighting & Dual Photography
- Direct & Global Illumination Analysis

object

4D incident light field

$$R_i(u_i, v_i, \theta_i, \phi_i)$$
 incident light field

4D exitant light field

$$R_r(u_r, v_r, \theta_r, \phi_r)$$
 exitant light field

• 8D reflectant field

Since it is linear, we can represent as a matrix

Reflectance Field Storage Requirements

$$R(u_i, v_i, \theta_i, \phi_i; u_r, v_r, \theta_r, \phi_r)$$

- 360 x 180 x 180 x 180 x 360 x 180 x 180 x 180
- = 4.4e18 measurements
- x 6 bytes/pixel (in RGB 16-bit)
- = 26 exabytes (billion GB)
- = 82 million 300GB hard drives
- (41 million if we exploit Helmholz Reciprocity)

Light transport matrix is very sparse

- Usually focus on subsets of the 8-D light transport
 - image relighting (4D)
 - dual photography (4D)

Today

- Light Transport: Overview
- Image Relighting & Dual Photography
- Direct & Global Illumination Analysis

Relighting – Linear Combination

Nimeroff et al 94 Hallinan 94 Dorsey 95

Lighting Intensities

Images lit by directional light sources

Relighting – Matrix Vector Multiply

Light Stage 1

Debevec, Hawkins, Tchou, Duiker, Sarokin, and Sagar. Acquiring the Reflectance Field of a Human Face. SIGGRAPH 2000.

Light Stage 4D Reflectance Field

Light Stage 4D Reflectance Field

Relighting Results

Dual Photography: The 4D transport matrix

applying Helmholtz reciprocity...

$$\begin{bmatrix} \mathbf{C}' & = & \mathbf{T}^{\mathsf{T}} & \mathbf{P}' \\ \mathbf{P}' & & & & \\ \mathbf{pq} \times \mathbf{1} & & & & \\ \mathbf{mn} \times \mathbf{1} \end{bmatrix}$$

Example

conventional photograph with light coming from right

dual photograph as seen from projector's position

Properties of the transport matrix

- little interreflection \rightarrow sparse matrix
- many interreflections \rightarrow dense matrix
- convex object \rightarrow diagonal matrix
- concave object → full matrix

Can we create a dual photograph entirely from diffuse reflections?

Dual photography from diffuse reflections

the camera's view

VIDEO

Today

- Light Transport: Overview
- Image Relighting & Dual Photography
- Direct & Global Illumination Analysis

Direct and Global Illumination

A: Direct

B: Interrelection

C: Subsurface

D: Volumetric

E: Diffusion

Direct and Global Components: Interreflections

$$L[c,i] = L_d[c,i] + L_g[c,i]$$
 radiance direct global

$$L_{g}[c,i] = \sum_{P} A[i,j] L[i,j]$$
BBDE and second re-

BRDF and geometry

High Frequency Illumination Pattern

$$L^{+}[c,i] = L_{d}[c,i] + \alpha L_{g}[c,i]$$

fraction of activated source elements

High Frequency Illumination Pattern

$$L^{\dagger}[c,i] = L_d[c,i] + \alpha L_g[c,i]$$

$$L[c,i] = (1-\alpha)L_g[c,i]$$

fraction of activated source elements

Separation from Two Images

$$lpha = rac{1}{2}$$
: $L_d = L_{\max} - L_{\min}$, $L_g = 2L_{\min}$ direct global

Other Global Effects: Subsurface Scattering

Other Global Effects: Volumetric Scattering

participating medium

Diffuse Interreflections

Diffusion

Volumetric Scattering

Specular

Interreflections

Subsurface Scattering

Scene

Scene

Global

Eggs: Diffuse Interreflections

Direct Global

Wooden Blocks: Specular Interreflections

Direct

Global

Novel Images

Mirror Ball: Failure Case

Direct Global

Photometric Stereo using Direct Images

Kitchen Sink: Volumetric Scattering

Volumetric Scattering: Chandrasekar 50, Ishimaru 78

Direct Global

Novel Image

Peppers: Subsurface Scattering

Direct Global

Novel Images

Hand

Skin: Hanrahan and Krueger 93, Uchida 96, Haro 01, Jensen et al. 01, Cula and Dana 02, Igarashi et al. 05, Weyrich et al. 05

Direct Global

Face: Without and With Makeup

Without Makeup Direct Global With Makeup Direct

Blonde Hair

Hair Scattering: Stamm et al. 77, Bustard and Smith 91, Lu et al. 00 Marschner et al. 03

Direct Global

Variants of Separation Method

• Coded Structured Light

• Shifted Sinusoids

• Shadow of Line Occluder

Shadow of Mesh Occluders

Building Corner

3D from Shadows: Bouguet and Perona 99

$$L_d = L_{
m max} - L_{
m min}$$
 , $L_g = L_{
m min}$ direct global

Building Corner

Direct Global

Shower Curtain: Diffuser

$$L_d = L_{
m max} - eta \ L_{
m min} \ , \ L_g = eta \ L_{
m min}$$
 direct global

Shower Curtain: Diffuser

Direct Global

Tea Rose Leaf

Leaf Anatomy: Purves et al. 03

Direct Global

Pebbles: 3D Texture

Direct Global

Pink Carnation

Spectral Bleeding: Funt et al. 91

Summary

- Fast and Simple Separation Method
- No Prior Knowledge of Material Properties
- Wide Variety of Global Effects
- Implications:
 - Generation of Novel Images
 - Enhance Computer Vision Methods
 - Insights into Properties of Materials

References

- [Debevec, 2000] Debevec, Hawkins, Tchou, Duiker, Sarokin, and Sagar. Acquiring the Reflectance Field of a Human Face. *SIGGRAPH* 2000
- [Sen, 2005] Sen, P.; Chen, B.; Garg, G.; Marschner, S. R.; Horowitz, M.; Levoy, M. & Lensch, H. P. A. Dual Photography. *ACM Transactions on Graphics* (SIGGRAPH), 2005, 24, 745-755
- [Seitz, 2005] Seitz, S. M.; Matsushita, Y. & Kutulakos, K. N. A Theory of Inverse Light Transport. *Proceedings of IEEE International Conference on Computer Vision (ICCV)*, 2005
- [Nayar, 2006] Nayar, S. K.; Krishnan, G.; Grossberg, M. D. & Raskar, R. Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination. *ACM Transactions on Graphics (SIGGRAPH)*, 2006, 25, 935-944