Linear Algebra Chapter 1: Vectors

University of Seoul School of Computer Science Minho Kim

Review on vectors

What you learned in high school? (Wikipedia korea, springnote.com)

- Definition
- Vector representation using coordinates
- Algebra of vectors
- ▶ Dot product (점곱) or scalar product (스칼라곱)
 * Dot(scalar) product *is a* inner product (내적), but *not vice*versa.
- ► Length of a vector
- → Watch "Vectors" video on YouTube

Table of contents

Introduction: The Racetrack Game

The Geometry and Algebra of Vectors

Length and Angle: The Dot Product

Lines and Planes

Outline

Introduction: The Racetrack Game

The Geometry and Algebra of Vectors

Length and Angle: The Dot Product

Lines and Planes

Outline

Introduction: The Racetrack Game

The Geometry and Algebra of Vectors

Length and Angle: The Dot Product

Lines and Planes

Vectors

- ▶ Direction + magnitude
- Displacement from initial point (tail) to terminal point (head)
- Notation: \overrightarrow{AB} or \boldsymbol{v}
- Position vectors: 1-to-1 correspondence between points on the plane and (2D) vectors
- ▶ Points ≠ vectors
- ▶ Representation → Why?
 - Coordinate system (e.g., Cartesian, polar)
 - Components
 - Ordered pair of real numbers
 - Notation:

Row vector
$$[x,y]$$
 or column vectors $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ cf) Notation for points: $P = (x,y)$

- Zero vector (0)
- ▶ (Real) vector space \mathbb{R}^2 : "the set of all vectors with two components"

Vector Algebra

Let $u := [u_1, u_2]$ and $v := [v_1, v_2]$. $(u, v \in \mathbb{R}^2 \text{ and } u_1, u_2, v_1, v_2 \in \mathbb{R})$

- ▶ Addition: $u + v = [u_1 + v_1, u_2 + v_2]$
 - ► 'Head-to-tail rule' or 'parallelogram rule'
- Scalar multiplication: $c\mathbf{u} = c[v_1, v_2] = [cv_1, cv_2]$
 - Scalar: constant
- ▶ Subtraction: $u v = u + (-v) = [u_1 v_1, u_2 v_2]$

Higher Dimensional Vectors

Vectors in \mathbb{R}^n

▶ Ordered *n*-tuples of real numbers

$$\mathbf{v} = [v_1, \cdots, v_n] = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$

- ► Geometric method doesn't work anymore
 - \rightarrow We need analytic method using n-tuples.

Algebraic properties of vectors in \mathbb{R}^n

Let $u, v \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$.

- a. u+v=v+u (commutativity)
- b. $(oldsymbol{u}+oldsymbol{v})+oldsymbol{w}=oldsymbol{u}+(oldsymbol{v}+oldsymbol{w})$ (associativity)
- c. u + 0 = u
- d. u + (-u) = 0
- e. $c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v}$ (distributivity)
- f. (c+d)u = cu + du (distributivity)
- $\mathbf{g}. \ c(d\mathbf{u}) = (cd)\mathbf{u}$
- h. 1u = u
- \rightarrow Try to prove them yourselves!

Linear Combination

Definition

A vector v is a **linear combination** of vectors v_1, v_2, \cdots, v_k if there are scalars c_1, c_2, \cdots, c_k such that

$$\mathbf{v} = \sum_{j=1}^k c_j \mathbf{v}_j = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k.$$

The scalars c_1, c_2, \dots, c_k are called the **coefficients** of the linear combination.

- ▶ Do such scalars c_1, c_2, \cdots, c_k always exist for any v and v_1, v_2, \cdots, v_k ?
- ▶ How many vectors do we need? I.e., how large should *k* be?
- Is it enough just to have sufficiently many vectors?
- ▶ How is the situation different between \mathbb{R} and \mathbb{R}^2 ?
- Coordinate axes and coordinate grid

Outline

Introduction: The Racetrack Game

The Geometry and Algebra of Vectors

Length and Angle: The Dot Product

Lines and Planes

Dot Product

Can we multiply a vector with another vector?

→ Dot (scalar) product and cross product

Definition

lf

$$oldsymbol{u} = \left[egin{array}{c} u_1 \ dots \ u_n \end{array}
ight] ext{ and } oldsymbol{v} = \left[egin{array}{c} v_1 \ dots \ v_n \end{array}
ight]$$

then the $\operatorname{ extbf{dot}}$ $\operatorname{ extbf{product}}$ $u \cdot v$ of u and v is defined by

$$\mathbf{u} \cdot \mathbf{v} = \sum_{j=1}^{n} u_j v_j = u_1 v_1 + \dots + u_n v_n \in \mathbb{R}.$$

► The dot product is one of the more general **inner product**. (Chap. 7)

Properties of Dot Product

Theorem 1.2

Let $u, v, w \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

- a. $oldsymbol{u} \cdot oldsymbol{v} = oldsymbol{v} \cdot oldsymbol{u}$ (commutativity)
- b. $oldsymbol{u}\cdot(oldsymbol{v}+oldsymbol{w})=oldsymbol{u}\cdotoldsymbol{v}+oldsymbol{u}\cdotoldsymbol{w}$ (distributivity)
- c. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$
- d. $u \cdot u \ge 0$ and $u \cdot u = 0$ iff (if and only if) u = 0.
- → Try to prove them yourselves!
 - $(u+v)\cdot (u+v) =?$

Length

Definition

The **length** (or **norm**) of a vector
$$m{v}=\left[egin{array}{c} v_1\\ dots\\ v_n \end{array}\right]\in\mathbb{R}^n$$
 is the nonneg-

ative scalar $\|oldsymbol{v}\|$ defined by

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}} = \sqrt{v_1^2 + \dots + v_n^2}$$

Theorem 1.3

Let $\boldsymbol{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then

- a. $\|v\| = 0$ iff v = 0
- **b**. ||cv|| = |c|||v||

Unit Vectors

- ▶ Vectors with length 1
- Normalization: to make the length of a vector 1 $v o (1/\|v\|)v$
- Standard unit vectors Examples:

$$oldsymbol{e}_1 = \left[egin{array}{c} 1 \ 0 \end{array}
ight], oldsymbol{e}_2 = \left[egin{array}{c} 0 \ 1 \end{array}
ight]$$

More on Length

Theorem 1.4: The Cauchy-Schwarz inequality

For all vectors $oldsymbol{u}, oldsymbol{v} \in \mathbb{R}^n$,

$$|\boldsymbol{u}\cdot\boldsymbol{v}| \leq \|\boldsymbol{u}\|\|\boldsymbol{v}\|$$

Theorem 1.5: The triangle inequality

For all vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$,

$$||u + v|| \le ||u|| + ||v||$$

Distance

Definition

The **distance** $d(\boldsymbol{u}, \boldsymbol{v})$ between (position) vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ is defined by

$$d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\|$$

Angles

Definition: Angle

For nonzero vectors $oldsymbol{u}, oldsymbol{v} \in \mathbb{R}^n$,

$$\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}$$

Definition: Orthogonality

Two vectors $m{u}, m{v} \in \mathbb{R}^n$ are **orthogonal** to each other $(m{u} oldsymbol{\perp} m{v})$ if $m{u} \cdot m{v} = 0$.

Zero vector

Theorem 1.6: Pythagoras' Theorem

For all vectors $oldsymbol{u}, oldsymbol{v} \in \mathbb{R}^n$,

$$\|\boldsymbol{u} + \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2$$

iff $u \perp v$.

Projections

Definition

If $u,v\in\mathbb{R}^n$ and $u\neq 0$, the the projection of v onto u is the vector $\mathrm{proj}_u(v)$ defined by

$$\operatorname{proj}_{oldsymbol{u}}(oldsymbol{v}) = \left(rac{oldsymbol{u}\cdotoldsymbol{v}}{oldsymbol{u}\cdotoldsymbol{u}}
ight)oldsymbol{u}$$

- ightharpoonup Parallel to u
- ▶ What if the angle if obtuse?
- ▶ What if *u* is a unit vector?

Cartesian Coordinate System

Standard unit vectors

$$e_1, \cdots, e_n \in \mathbb{R}^n$$

Any (point) vector $v \in \mathbb{R}^n$ can be represented as a **linear** combination of the standard unit vectors:

$$oldsymbol{v} = \sum_{j=1}^n (oldsymbol{v} \cdot oldsymbol{e}_j) oldsymbol{e}_j = (oldsymbol{v} \cdot oldsymbol{e}_1) oldsymbol{e}_1 + \dots + (oldsymbol{v} \cdot oldsymbol{e}_n) oldsymbol{e}_n.$$

Example:

$$\left[\begin{array}{c} x \\ y \end{array}\right] = x \left[\begin{array}{c} 1 \\ 0 \end{array}\right] + y \left[\begin{array}{c} 0 \\ 1 \end{array}\right]$$

ightharpoonup The Cartesian coordinate of a (point) vector v is

$$egin{aligned} oldsymbol{v} = egin{bmatrix} oldsymbol{v} \cdot oldsymbol{e}_1 \ oldsymbol{v} \cdot oldsymbol{e}_n \end{bmatrix}. \end{aligned}$$

Outline

Introduction: The Racetrack Game

The Geometry and Algebra of Vectors

Length and Angle: The Dot Product

Lines and Planes

Line Equations

- y = mx + k (lines on the plane)
 - ▶ *m*: slope
 - ▶ *k*: *y*-intercept
- ightharpoonup ax + by = c (lines on the plane)
- $ightharpoonup n \cdot x = 0$ (normal form of lines passing through the origin)
 - x: position vectors on the line
 - ▶ n: normal vector
- x = td (vector form of lines passing through the origin)
 - ▶ d: direction vector

Line Equations (cont'd)

Definition

The normal form of the equation of a line ℓ in \mathbb{R}^2 is

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$$
 or $\mathbf{n} \cdot \mathbf{x} = \mathbf{n} \cdot \mathbf{p}$

where p is a specific point on ℓ and $n \neq 0$ is a normal vector for ℓ . The **general form of the equation of** ℓ is

$$\mathbf{n} \cdot \mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = ax + by = c$$

where n is a normal vector for ℓ .

▶ What is the geometric meaning of c in the equation $n \cdot x = c$ when ||n|| = 1?

Line Equations (cont'd)

Definition

The vector form of the equation of a line ℓ in \mathbb{R}^2 or \mathbb{R}^3 is

$$x = p + td$$

where p is a specific point on ℓ and $d \neq 0$ is a direction vector for ℓ .

The equation corresponding to the components of the vector form of the equation are called **parametric equations** of ℓ .

▶ What is the parametric equation of the line passing through two points P and Q? Let $p = \overrightarrow{OP}$ and $q = \overrightarrow{OQ}$.

Plane Equations

Definition

The normal form of the equation of a plane \mathcal{P} in \mathbb{R}^3 is

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$$
 or $\mathbf{n} \cdot \mathbf{x} = \mathbf{n} \cdot \mathbf{p}$

where p is a specific point on $\mathcal P$ and $n \neq 0$ is a normal vector for $\mathcal P$.

The general form of the equation of \mathcal{P} is

$$\mathbf{n} \cdot \mathbf{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = ax + by + cz = d$$

where n is a normal vector for \mathcal{P} .

Hyperplanes

Plane Equations (cont'd)

Definition

The vector form of the equation of a plane \mathcal{P} in \mathbb{R}^3 is

$$\boldsymbol{x} = \boldsymbol{p} + s\boldsymbol{u} + t\boldsymbol{v}$$

where p is a point on $\mathcal P$ and u and v are direction vectors for $\mathcal P$ (u and v are non-zero and parallel to $\mathcal P$, but not parallel to each other). The equations corresponding to the components of the vector form of the equation are called **parametric equations** of $\mathcal P$.

▶ What is the parametric equation of the plane passing through three points P, Q and R? Let $\mathbf{p} = \overrightarrow{OP}$, $\mathbf{q} = \overrightarrow{OQ}$ and $\mathbf{r} = \overrightarrow{OR}$.

Distance between a Point and a Hyperplane

Distance between a point and a line in 2D

- ▶ General form of line equation of ℓ : ax + by = c
- ▶ Point $B = (x_0, y_0)$

$$d(B, \ell) = \frac{|ax_0 + by_0 - c|}{\sqrt{a^2 + b^2}}$$

Distance between a point and a plane in 3D

- ▶ General form of plane equation of \mathcal{P} : ax + by + cz = d
- ▶ Point $B = (x_0, y_0, z_0)$

$$d(B, \mathcal{P}) = \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

Cross Product

Definition

The cross product of

$$oldsymbol{u} = \left[egin{array}{c} u_1 \ u_2 \ u_3 \end{array}
ight] ext{ and } oldsymbol{v} = \left[egin{array}{c} v_1 \ v_2 \ v_3 \end{array}
ight]$$

is the vector $oldsymbol{u} imesoldsymbol{v}$ defined by

$$m{u} imes m{v} = \left[egin{array}{l} u_2 v_3 - u_3 v_2 \ u_3 v_1 - u_1 v_3 \ u_1 v_2 - u_2 v_1 \end{array}
ight]$$

- ▶ $||u \times v|| = ?$
- lacktriangle What is the geometric meaning of $\|u imes v\|$?

Scalar Triple Product

Let $u, v, w \in \mathbb{R}^3$. Then the scalar triple product of the three vectors is defined as

$$\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})$$

- $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = -\mathbf{w} \cdot (\mathbf{v} \times \mathbf{u})$
- ▶ Geometric meaning: (signed) volume of the parallelepiped defined by u, v and w.

Outline

Introduction: The Racetrack Game

The Geometry and Algebra of Vectors

Length and Angle: The Dot Product

Lines and Planes