Оглавление

1	25.04.2018, математический анализ
	1.0.1 Линейные дифференциальные уравнения с постоянными коэффициентами
2	16.05.2018, математический анализ
	2.0.1 Линейные дифференциальные уравнения с постоянными коэффициентами
	2.0.2 Системы линейных дифференциальных уравнений с постоянными коэффициентами
3	23.05.2018, математический анализ
	3.0.1 Неоднородные системы
	3.1 Приближённое решение дифференциальных уравнений
	3.1.1 Решение с помощью степенного ряда
	3.1.2 Метод Эйлера
	3.1.3 Графический метод

Глава 1

25.04.2018, математический анализ

Рассмотрим F(y,y',y'')=0. Пусть y'(x)=z(y), тогда $y''(x)=\frac{dy'}{dx}=\frac{dy'}{dy}\cdot\frac{dy}{dx}=z'\cdot z$ и $F(y,y',y'')=0\Leftrightarrow F(y,z,z'\cdot z)=0$.

1.0.1 Линейные дифференциальные уравнения с постоянными коэффициентами

Линейным дифференциальным уравнением n-го порядка называется уравнение вида $y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = f(x)$.

Введём функции $y_0 = y, y_1 = y', \dots, y_{n-1} = y^{(n-1)}$, тогда

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = f(x) \Leftrightarrow \begin{cases} y'_0 = y_1 \\ y'_1 = y_2 \\ \ldots \\ y'_{n-1} = f(x) - a_0y_0 - a_1y_1 - \ldots - a_{n-1}y_{n-1} \end{cases}$$

$$\begin{vmatrix} 0 \\ 0 \\ \dots \\ f(x) \end{vmatrix}$$

Уравнение можно решить методом итераций: $Y_k(x) = Y_0 + \int\limits_{x_0}^x (AY_{k-1}(t) + F(t)) dt$.

Определителем Вронского, или вронскианом, называется определитель

$$\begin{vmatrix} \tilde{y}_0(x_0) & \tilde{y}_1(x_0) & \dots & \tilde{y}_{n-1}(x_0) \\ \tilde{y}'_0(x_0) & \tilde{y}'_1(x_0) & \dots & \tilde{y}'_{n-1}(x_0) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \tilde{y}_0^{(n-1)}(x_0) & \tilde{y}_1^{(n-1)}(x_0) & \dots & \tilde{y}_{n-1}^{(n-1)}(x_0) \end{vmatrix}$$

где $\tilde{y}_1,\ldots,\tilde{y}_n$ — частные решения уравнения.

Утверждение 1.0.1. *Если решения* $\tilde{y}_0, \dots, \tilde{y}_{n-1}$

Глава 2

16.05.2018, математический анализ

Пусть дифференциальному уравнению $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = 0$ соответствует характеристическое уравнение $k^n + a_{n-1}k^{n-1} + \ldots + a_1k + a_0 = 0$.

Доказательство. $y'' + a_1 y' + a_0 y = 0$

Пусть $k_1=k_2$, тогда $k_1^2+a_1k_1+a_0=0$ & $2k_1+a_1=0$. Подставим $y=C_1e^{k_1x}+C_2xe^{k_1x}$:

$$e^{k_1x}(C_1k_1^2 + 2C_2k_1 + C_2xk_1^2 + C_1a_1k_1 + C_2a_1 + C_2a_1k_1x + C_1a_0 + C_2a_0x) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2x(k_1^2 + a_1k_1 + a_0) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2x(k_1^2 + a_0) + C_2x(k_1^2$$

Пусть $k_1=\alpha+i\beta,\,k_2=\alpha-i\beta,\,$ тогда, используя $e^{it}=\cos t+i\sin t,\,$ получим

$$y(x) = C_{10}e^{(\alpha+i\beta)x} + C_{20}e^{(\alpha-i\beta)x} = e^{\alpha x}(C_{10}e^{i\beta x} + C_{20}e^{-i\beta x}) = e^{\alpha x}((C_{10} + C_{20})\cos\beta x + i(C_{10} - C_{20})\sin\beta x) = e^{\alpha x}(C_{1}\cos\beta x + C_{2}\sin\beta x) = e^{\alpha x}(C_{10}e^{i\beta x} + C_{20}e^{-i\beta x}) = e^{\alpha x}(C_{10}$$

2.0.1 Линейные дифференциальные уравнения с постоянными коэффициентами

Рассмотрим следующие методы решения уравнений вида $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = f(x)$.

Метод вариации произвольных постоянных

- 1. Найдём решение $y_0 = C_1 \tilde{y}_1 + C_2 \tilde{y}_2 + \ldots + C_n \tilde{y}_n$ уравнения $y_0^{(n)} + a_{n-1} y_0^{(n-1)} + \ldots + a_1 y_0' + a_0 y_0 = 0$.
- 2. Решением исходного уравнения будет $y(x) = C_1(x)\tilde{y}_1 + \ldots + C_n(x)\tilde{y}_n$.
- 3. Найдём $C_1(x), \ldots, C_n(x)$, решая систему

$$\begin{cases} C'_1(x)\tilde{y}_1 + \dots + C'_n(x)\tilde{y}_n = 0 \\ C'_1(x)\tilde{y}'_1 + \dots + C'_n(x)\tilde{y}'_n = 0 \\ C'_1(x)\tilde{y}''_1 + \dots + C'_n(x)\tilde{y}''_n = 0 \\ \dots \\ C'_1(x)\tilde{y}_1^{(n-1)} + \dots + C'_n(x)\tilde{y}_n^{(n-1)} = f(x) \end{cases}$$

и интегрируя $C'_1(x), \ldots, C'_n(x)$.

Доказательство. Пусть дано уравнение $y'' + a_1 y' + a_0 = f(x)$ и $y_0(x) = C_1 \tilde{y}_1 + C_2 \tilde{y}_2$, тогда

$$y(x) = C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2$$
$$y'(x) = C'_1(x)\tilde{y}_1 + C_1(x)\tilde{y}'_1 + C'_2(x)\tilde{y}_2 + C_2(x)\tilde{y}'_2$$
$$y''(x) = C''_1(x)\tilde{y}_1 + 2C'_1\tilde{y}'_1 + C_1(x)\tilde{y}''_1 + C''_2(x)\tilde{y}_2 + 2C'_2\tilde{y}'_2 + C_2(x)\tilde{y}''_2$$

Подставим в уравнение:

$$C_1''(x)\tilde{y}_1 + 2C_1'\tilde{y}_1' + C_1(x)\tilde{y}_1'' + C_2''(x)\tilde{y}_2 + 2C_2'\tilde{y}_2' + C_2(x)\tilde{y}_2'' + a(C_1'(x)\tilde{y}_1 + C_1(x)\tilde{y}_1' + C_2'(x)\tilde{y}_2 + C_2(x)\tilde{y}_2') + b(C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2) = f(x) \Leftrightarrow C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2 + C_2(x)\tilde{y}_2' + C$$

Решим систему

$$\begin{cases} C_1'(x)\tilde{y}_1 + C_2'(x)\tilde{y}_2 = 0\\ C_1'(x)\tilde{y}_1' + C_2'(x)\tilde{y}_2' = f(x) \end{cases}$$

тогда

$$C_1''(x)\tilde{y}_1 + C_1'\tilde{y}_1' + C_2''(x)\tilde{y}_2 + C_2'\tilde{y}_2' = 0$$

Подставляя в уравнение, получим f(x) = f(x).

Метод неопределённых коэффициентов

Уравнение $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = f(x)$ можно решить методом неопределённых коэффициентов, если

$$f(x) = \sum_{j} e^{\alpha_j x} (P_j(x) \cos \beta_j x + Q_j(x) \sin \beta_j x)$$

Тогда решение имеет вид

$$\sum_{j} e^{\alpha_j x} (T_j(x) \cos \beta_j x + R_j(x) \sin \beta_j x) x^{s_j}$$

где s_j — кратность корня.

2.0.2 Системы линейных дифференциальных уравнений с постоянными коэффициентами

Решим систему

$$\begin{cases} y_1' = ay_1 + by_2 \\ y_2' = cy_1 + dy_2 \end{cases}$$

$$y_1'' = ay_1' + by_2' \Rightarrow y_1'' = ay_1' + b(cy_1 + dy_2) \Rightarrow y_1'' = ay_1' + bcy_1 + d(y_1' - ay_1) \Rightarrow y_1'' = (a+d)y_1' + (bc - ad)y = 0$$

Т. о., система свелась к уравнению.

Глава 3

23.05.2018, математический анализ

$$\begin{cases} y_1' = ay_1 + by_2 \\ y_0' = cy_1 + dy_2 \end{cases}$$

Известно, что $y_1 = Le^{kx}$, $y_2 = Me^{kx}$, тогда

$$\begin{cases} Lk = aL + bM \\ Mk = cL + dM \end{cases} \Leftrightarrow \begin{cases} L(a-k) + Mb = 0 \\ Lc + M(d-k) = 0 \end{cases}$$

Если $\begin{vmatrix} a-k & b \\ c & d-k \end{vmatrix} \neq 0$, то получим единственное решение — нулевое. Тогда

$$(a-k)(d-k) - bc = 0 \Leftrightarrow k^2 - k(a+d) + ad - bc = 0$$

Получили характеристическое уравнение.

Решим системы

$$\begin{cases} L(a - k_i) + Mb = 0\\ Lc + M(d - k_i) = 0 \end{cases}$$

где $k_i - i$ -й корень характеристического уравнения, причём в каждой системе одно из уравнений можно убрать, т. к. главный определитель равен нулю. Возьмём частные решения $(L_1, M_1), (L_2, M_2)$, тогда

$$y_1 = C_1 L_1 e^{k_1 x} + C_2 L_2 e^{k_2 x}$$
$$y_0 = C_1 M_1 e^{k_1 x} + C_2 M_2 e^{k_2 x}$$

3.0.1 Неоднородные системы

$$\begin{cases} y_1' = ay_1 + by_2 + f_1 \\ y_2' = cy_1 + dy_2 + f_2 \end{cases}$$

Решая соответствующую однородную систему, получим

$$y_1 0 = C_1 \tilde{y}_1 + C_2 \tilde{y}_2$$

$$y_2 0 = D_1 \tilde{y}_1 + D_2 \tilde{y}_2$$

где D_1 и D_2 линейно связаны с C_1 и C_2 сооветственно. Тогда

$$y_1 = C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2$$

 $y_2 = D_1(x)\tilde{y}_1 + D_2(x)\tilde{y}_2$

Подставляя в систему, получим

$$\begin{cases} C_1'(x)\tilde{y}_1 + C_2'(x)\tilde{y}_2 + C_1(x)\tilde{y}_1' + C_2(x)\tilde{y}_2' = a(C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2) + b(D_1(x)\tilde{y}_1 + D_2(x)\tilde{y}_2) + f_1(x) \\ D_1'(x)\tilde{y}_1 + D_2'(x)\tilde{y}_2 + D_1(x)\tilde{y}_1' + D_2(x)\tilde{y}_2' = c(C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2) + d(D_1(x)\tilde{y}_1 + D_2(x)\tilde{y}_2) + f_2(x) \end{cases} \Leftrightarrow \begin{cases} C_1'(x)\tilde{y}_1 + C_2'(x)\tilde{y}_2 = f_1(x)\tilde{y}_1 + f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 - f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 - f_2$$

Решая, получим $C'_1(x)$ и $C'_2(x)$, откуда найдём $C_1(x)$ и $C_2(x)$.

3.1 Приближённое решение дифференциальных уравнений

3.1.1 Решение с помощью степенного ряда

Рассмотрим уравнение $y^{(n)} = F(x, y, y', \dots, y^{(n-1)})$ с начальными условиями $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$. Найдём его решение в окрестности точки x_0 :

$$y(x) = y_0 + y_1(x - x_0) + \frac{y_2}{2!}(x - x_0)^2 + \ldots + \frac{y^{(n-1)}}{(n-1)!}(x - x_0)^{n-1} + \frac{F(x_0, y_0, y_1, \ldots, y_{n-1})}{n!}(x - x_0)^n + c_{n+1}(x - x_0)^{n+1} + \ldots$$

Неизвестные коэффициенты можно определить подстановкой в исходное уравнение или его дифференцированием и подстановкой начальных условий.

3.1.2 Метод Эйлера

$$y_{k+1} = y_k + f(x_k, y_k)(x_{k+1} - x_k)$$

Можно улучшить точность: $y_{k+1} = y_k + f($

Метод приближённого решения дифференциального уравнения высшего порядка заключается в его сведении к системе линейных уравнений.

3.1.3 Графический метод

Приближённые решения уравнения вида y' = f(x,y) можно получить графическим методом, находя изоклины — линии, на которых производная функции не меняет значение. По ним можно получить представление о том, какую форму имеет кривая.

Рассмотрим динамическую систему

$$\begin{cases} \dot{x} = f(x, y, t) \\ \dot{y} = g(x, y, t) \end{cases}$$

Если $\begin{cases} f(a,b,t)=0 \\ g(a,b,t)=0 \end{cases}$, то (a,b) называется **точкой покоя**, или **положением равновесия**.

Исследуем систему

$$\begin{cases} \dot{x} = ax + by \\ \dot{y} = cx + dy \end{cases}$$

Для неё (0,0) — точка покоя.

Решая уравнение $\begin{vmatrix} a-k & b \\ c & d-k \end{vmatrix} = 0$, получим корни k_1 и k_2 .

Тогда

1. Если $k_1, k_2 \in \mathbb{R}$, то

$$x = C_1 e^{k_1 t} + C_2 e^{k_2 t} y = C_1 \frac{k_1 - a}{b} e^{k_1 t} + C_2 \frac{k_2 - a}{b} e^{k_2 t}$$

- ullet Если $k_1,k_2<0,$ то (0,0) устойчивый узел.
- Если $k_1, k_2 > 0$, то (0,0) неустойчивый узел.
- Если $k_1 < 0 < k_2$, то (0,0) седло.
- 2. Если $k_{1,2} = \alpha \pm i\beta$, то

$$\begin{cases} x = C_1 e^{\alpha t} \cos \beta t + C_2 e^{\alpha t} \sin \beta t \\ y = \left(\frac{\alpha - a}{b} C_1 + \frac{\beta}{b} C_2\right) e^{\alpha t} \cos \beta t + C_2 e^{\alpha t} \sin \beta t \end{cases}$$

- Если $\alpha < 0$, то (0,0) устойчивый фокус.
- Если $\alpha > 0$, то (0,0) неустойчивый фокус.
- Если $\alpha = 0$, то (0,0) центр.
- 3. Если $k_1 = k_2 = \alpha \in R$, то

x =