## Database Theory and Applications for Biomedical Research and Practice

BMIN 502 / EPID 635 Week 11: Introduction to graph database

John H. Holmes, PhD



#### Agenda

- · Introduction to graph models
- · Modeling a toy problem as a graph
- · Modeling ABIC as a graph
- · Graph databases
- Graph modelsGraph query languages
- Introduction to neo4j

#### Two types of graph models

- Resource Description Framework (RDF)
  - Generic "metadata model" originating in the semantic web
  - Uses a triple construct (subject-predicate-object): "The patient takes Tylenol"
  - Strongly indexed
  - Nodes and edges have no internal structure
- · Labeled Property Graph
  - Used in Neo4j
  - Index-free
  - Nodes and edges have internal structure

| <br> |  |  |
|------|--|--|
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |

## The Labeled Property Graph Model

 A graphical representation of concepts and the relationships between them, with the properties associated with each



#### Thus...

- Nodes
  - Equivalent to entities
  - Contain properties
    - Attribute-value pairs
  - Labels indicate identity
- Relationships
  - Express the semantics between nodes
    - Always connected between two nodes, never broken or "orphaned"
  - Directional
  - Properties
    - Indicate possession, quantitative measures, strength, state, etc.

#### Compare RDF and LPG models

#### Resource Description Framework

- Not possible to uniquely identify instances of a relationship
  - Impossible to have connections of the same type between the same pair of nodes, because that would duplicate the triple
- You can't provide attributes for relationships

#### **Labeled Property Graph**

- You can uniquely identify all instances of a relationship
  - Can lead to huge graphs!
- Relationships can and do have attributes
  - Much more versatility in querying

# An RDF graph The RDF Graph \*\*The RDF G



## How to create a graph model: Step 1: Identify the domain

- This will be the tableau of the graph, characterized as nodes ("nouns") and relationships ("verbs")
- Example: John, Mary, Bill, and Ellen are patients at UPHS practices. John and Mary go to 3701 Market Internal Medicine, Ellen goes to 8<sup>th</sup> and Spruce, and Bill goes to Family Medicine at 39<sup>th</sup> and Chestnut.

### How to create a graph model: Step 2: Identify the nodes



#### How to create a graph model: Step 2: Identify the nodes

John, Mary, Bill, and Ellen are patients at UPHS practices. John and Mary go to 3701 Market Internal Medicine, Ellen goes to 8<sup>th</sup> and Spruce, and Bill goes to Family Medicine at 39<sup>th</sup> and Chestnut.

#### How to create a graph model: Step 3: Specify the node labels

- · Labels define sets
- Equivalent to the name of an entity, which is an abstraction ("a patient", not "the patient")
- Important to the functioning of the graph database



## How to create a graph model: Step 3: Specify the node labels

John, Mary, Bill, and Ellen are patients at UPHS practices. John and Mary go to 3701 Market Internal Medicine, Ellen goes to 8<sup>th</sup> and Spruce, and Bill goes to Family Medicine at 39<sup>th</sup> and Chestnut.



#### How to create a graph model: Step 4: Apply the labels as roles









:practice Internal medicine



Colors aren't absolutely necessary, but they help to indicate the distinction between labels and roles

#### How to create a graph model: Step 5: List the relationships

John, Mary, Bill, and Ellen are patients at UPHS practices. John and Mary go to 3701 Market Internal Medicine, Ellen goes to 8<sup>th</sup> and Spruce, and Bill goes to Family Medicine at 39<sup>th</sup> and Chestnut.

| How to create a graph model:<br>Step 6: Draw the graph and<br>generate the code<br>We will return to this! |   |
|------------------------------------------------------------------------------------------------------------|---|
|                                                                                                            | _ |
| Now, how about ABIC as a graph?  Let's model it                                                            |   |
|                                                                                                            | 1 |
| Graph Databases                                                                                            |   |

# What is a graph database? Wikipedia says it well...

- Uses graph structures (rather than tables)
- · Allows semantic queries
  - Rretrieval of both explicitly and implicitly derived information based on syntactic, semantic and structural information contained in data
- · The graph explicitly relates data items
- Nodes instantiate items
- Relationships link data in nodes directly, without need for joins

https://en.wikipedia.org/wiki/Graph\_database

## Comparison of relational and graph databases

#### Relational

- Storing and manipulating relationships are difficult
- Performance degrades with increasing number and complexity of relationships
- Queries get complex real fast, when you rely on a lot of joins
- Adding new relationships, tables, and types of data requires schema redesign

#### Graph

- Can handle large volumes of heterogeneous data
- Graph models are intuitive
- Model and data stored as a graph
- Data relationships can be queried quickly (real-time)
- Can be updated without requiring schema redesign

## Another view: Look at the relationship flexibility...





And think about the complexity of the joins required for the relational model!

# Graph query languages

# Query languages in graph databases: SPARQL

SQL-like language for querying RDF graphs

# Query languages in graph databases: Gremlin

 Graph traversal language for querying in a variety of platforms and within other languages (Python, Java, JavaScript, etc.)

```
def gt=graph.traversal();
gt.V()
loss_del("band")
loss_del("band")
loss_del("band", "HipHop", "Techno/EDM"))
loss_del("performing_at")
loss_del("performing_at")
loss_del("performing_at")
```

### Query languages in graph databases: Cypher

· Declarative query language for Neo4J

MATCH (n1:Label1)-[rel:TYPE]->(n2:Label2) WHERE rel.property > {value} RETURN rel.property, type(rel)

- MATCH (n:Person)-[:FRIEND]-(f)
- WITH count(f) as c, n
  MATCH (n)-[:FRIEND]-()-[:FRIEND]-(fof)
- RETURN n, c, fof

## A simple Cypher query CREATE (:Person { name: "Dan"} ) -[:LOVES]-> (:Person { name: "Ann"} ) Predicate Label Property Property Relationship Label

#### Running neo4j: A first run

This query inserts two nodes into the database, each with an instantiated property (name) and an instantiated relationship (:LOVES)

- · Open the application
- Click on New
- Click on create New Graph and then Create a Local Graph
- Enter a name and password for the database and click on Create
- Click Start
- Click on the name of the DB in the lower left and click on Open Browser
- Click on Write Code button (in center)
- Click on Create a graph (Movie Graph) Let's walk through the tutorial together

## How to create a graph model: Step 6: Draw the graph and generate the code

- Start the Arrow Tool: www.apcjones.com/arrows/#
   Instantiate your graph from Step 5 using the Arrow Tool
   Export the Cypher code and open in the Console
   Copy and paste the code into the Browser
   Visualize your graph there

| _ |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
| - |  |  |  |  |
| _ |  |  |  |  |
|   |  |  |  |  |
| - |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
| _ |  |  |  |  |