A Note on Data Filtering

- High pass Filter

Infinite Impulse Response (IIR) vs., Finite Impulse Response (FIR)

- Notch Filter

Spur Removal

27 September 2022

HEPCAT Data – 4GHz (Aaronia SA)

Butterworth, N=8, Fps=48

Auto Correlation of Filtered Data

Mean of the norm of Auto Correlation 2.6E-11

Auto Correlation of Filtered Data Zoomed in

HF-filter-data.py

Butterworth (of IIR Type)

1.0 order = 3 order = 6 order = 9 sqrt(0.5) 0.4 0.2 0.0 0.0 1500 2000 2500

Phase Response (BW)

Frequency (Hz)

FIR (Blackman Window)

"The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window."

HEPCAT Data – 4GHz (Aaronia SA) Unfiltered

Filtered data using FIR (Blackman Window)

Mean of the norm of Auto Correlation 5.6E-13

200 Times smaller than A.C. of Butterworth

Histogram of Unfiltered Normalised Data

psd4, psd41,psd42.py

Notch Filter for Spurs Removal

Data after single-bin removal

References [Further Work]:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirnotch.html https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellip.html