Engineering Optics

Lecture 41

20/06/2023

by

Debolina Misra

Department of Physics IIITDM Kancheepuram, Chennai, India

Problem-7

If the power of a 5 mW laser beam decreases to 1 mW after traversing through 60 km of an optical fiber, what is the attenuation of the fiber per km?

(example 27.4 Ghatak's book → typo)

Answer

Attenuation (loss) =
$$\alpha = 10 \log \left(\frac{P_{\text{input}}}{P_{\text{output}}} \right)$$

- Here P_{in} = 5 mW
- $P_{out} = 1 \text{ mW}$
- Attenuation (total) = α = 10 log (5) = 6.989 dB
- Attenuation/km = α /60 ~ 0.1164 dB/km

The coherent bundle

- If a large number of fibers are put together, it forms what is known as a bundle.
- However, if the fibers are aligned properly, i.e., if the relative positions of the fibers in the input and output ends are the same, the bundle is said to form a coherent bundle.
- ► Usage: endoscope → inserted through throat for detecting illnesses inside their stomach.
- At the top end →eyepiece and a lamp. The lamp shines its light down one part of the cable into the patient's stomach. When the light reaches the stomach, it reflects off the stomach walls into a lens at the bottom of the cable. Then it travels back up to the doctor's eyepiece.

A bundle of aligned fibers. A bright (or dark) spot at the input end of the fiber produces a bright (or dark) spot at the output end. Thus an image will be transmitted (in the form of bright and dark spots) through a bundle of aligned fibers.

Incoherent bundle

- If the fibers are not aligned, i.e., they are all jumbled up, the bundle is said to form an *incoherent bundle*.
- In an incoherent bundle the output image will be scrambled. Because of this property, an incoherent bundle can be used as a coder; the transmitted image can be decoded by using a similar bundle at the output end.
- In a bundle, since there can be hundreds of thousands of fibers, decoding without the original bundle configuration should be extremely difficult.

Numerical aperture

if light is incident on one end of the fiber, it will be guided through it provided i <i $_m$.

The quantity $\sin i_m$ is known as the numerical aperture (NA) of the fiber and is a measure of the light-gathering power of the fiber.

In almost all practical situations, $n_1^2 < n_2^2 + 1$

$$NA = \sqrt{n_1^2 - n_2^2}$$

Calculation of N.A.

Now, in a short length of an optical fiber, if all rays between i = 0 and i_m are launched, then, the light coming out of the fiber will also appear as a cone of semiangle i_m emanating from the fiber end. If we now allow this beam to fall normally on a white paper (see Fig. 27.11) and measure its diameter, we can easily calculate the NA of the fiber. This allows us to estimate the NA of the optical fiber by a very simple experiment.

Measurement of the diameter *D* of the spot on a screen placed at a far-field distance *z* from the output end of a multimode fiber can be used to measure the NA of the fiber.

Calculation of N.A.

Now, in a short length of an optical fiber, if all rays between i = 0 and i_m are launched, then, the light coming out of the fiber will also appear as a cone of semiangle i_m emanating from the fiber end. If we now allow this beam to fall normally on a white paper (see Fig. 27.11) and measure its diameter, we can easily calculate the NA of the fiber. This allows us to estimate the NA of the optical fiber by a very simple experiment.

$$NA = \sin i_m = \sin \left[\tan^{-1} \left(\frac{D}{2z} \right) \right]^{\frac{1}{2}}$$

Measurement of the diameter *D* of the spot on a screen placed at a far-field distance *z* from the output end of a multimode fiber can be used to measure the NA of the fiber.

8

Fermat's principle

- \rightarrow Fermat's principle \rightarrow determines the path of the rays
- According to this principle the ray will correspond to that path for which the time taken is an extremum in comparison to nearby paths, i.e., it is either a minimum or a maximum or stationary.
- Can you prove law of reflection from Fermat's principle?

Thank You