

Adaptation of inertial navigation for position and orientation measurements in robotic systems

inż. Wojciech Gajda

Promotor: dr hab. inż. Marek Wojtyra, prof. uczelni

Politechnika Warszawska

Agenda

- 1. Wstęp
- 2. Przebieg pracy
- 3. Podsumowanie

Motywacja

Motywacja

"Kontroler" lotu

Motywacja

"Kontroler" lotu

Układ wieloczłonowy

Rozszerzony filtr Kalmana z korektą więzów

Rozszerzony filtr Kalmana z korektą więzów

► Zaadaptowanie nawigacji inercjalnej w systemach określania pozycji i orientacji robotów.

- ► Zaadaptowanie nawigacji inercjalnej w systemach określania pozycji i orientacji robotów.
- $\blacktriangleright\,$ Wykorzystanie wiedzy o konstrukcji i istniejących więzach.

- ► Zaadaptowanie nawigacji inercjalnej w systemach określania pozycji i orientacji robotów.
- ▶ Wykorzystanie wiedzy o konstrukcji i istniejących więzach.
- ▶ Opracowanie prototypu i systemu określania pozycji.

Symulacja komputerowa

Symulacja komputerowa

Model stanowiska w ADAMS

Symulacja komputerowa

Model stanowiska w ADAMS

System określania pozycji w MATLAB Simulink

Symulacja komputerowa – wyniki

Symulacja komputerowa – wyniki

Symulacja – brak korekty

Symulacja komputerowa – wyniki

Symulacja – z korektą

▶ modele matematyczne czujników, modelowanie błędu pomiarowego

- ▶ modele matematyczne czujników, modelowanie błędu pomiarowego
- metody filtracji danych i kalibracji czujników

- ▶ modele matematyczne czujników, modelowanie błędu pomiarowego
- metody filtracji danych i kalibracji czujników
- ► metody fuzji danych

- ▶ modele matematyczne czujników, modelowanie błędu pomiarowego
- metody filtracji danych i kalibracji czujników
- ► metody fuzji danych
- ▶ problem synchronizacji czasu, problem przesyłu danych pomiarowych

- ▶ modele matematyczne czujników, modelowanie błędu pomiarowego
- metody filtracji danych i kalibracji czujników
- ► metody fuzji danych
- ▶ problem synchronizacji czasu, problem przesyłu danych pomiarowych
- ▶ więzy w układach wieloczłonowych

Budowa prototypu zintegrowanego czujnika

Politechnika Warszawska

Prototyp zintegrowanego czujnika inercyjnego

Architektura systemu

Politechnika Warszawska

Interfejs użytkownika I

Politechnika Warszawska

Zakładka Info

Interfejs użytkownika II

Zakładka Sensors

Interfejs użytkownika III

Politechnika Warszawska

Zakładka Forces

Interfejs użytkownika IV

Politechnika Warszawska

Zakładka Console

Pomiary

Politechnika Warszawska

Czujnik zamontowany na robocie FANUC

Pomiary – określenie orientacji robota

Pomiary – określenie orientacji robota

Kąt przechylenia Politechnika Warszawska

Pomiary – określenie orientacji robota

Kąt przechylenia Politechnika Warszawska

Kąt odchylenia

Pomiary – określenie pozycji robota

Pomiary – określenie pozycji robota

Przemieszczenie x Politechnika Warszawska

Pomiary – określenie pozycji robota

Przemieszczenie x Politechnika Warszawska

Przemieszczenie z

W ramach pracy udało się:

▶ dokonać rozległego przeglądu stanu wiedzy,

- ▶ dokonać rozległego przeglądu stanu wiedzy,
- ▶ opracować model filtru Kalmana uwzględniający więzy,

- ▶ dokonać rozległego przeglądu stanu wiedzy,
- ▶ opracować model filtru Kalmana uwzględniający więzy,
- zbudować prototyp zintegrowanego czujnika,

- ▶ dokonać rozległego przeglądu stanu wiedzy,
- ▶ opracować model filtru Kalmana uwzględniający więzy,
- zbudować prototyp zintegrowanego czujnika,
- ▶ opracować system umożliwiający określenie pozycji i orientacji robota.

Bibliografia (wybrane pozycje)

- [2002] Kalman filtering with state equality constraints Simon, D. and Tien Li Chia
- [2009] Direction Cosine Matrix IMU: Theory Premerlani, William and Bizard, Paul
- № [2012] Joint reactions in rigid or flexible body mechanisms with redundant constraints Wojtyra, Marek and Frączek, Janusz
- № ... i 33 inne publikacje zawarte w pracy.

Pytania?

Politechnika Warszawska

Dziękuje za uwagę!