数学分析习题课讲义

2024.8.26

目录

1	数列极限		
	1.1	实数理论	1
	1.2	极限的定义	1
	1.3	$arepsilon - \delta$ 语言	3
	1.4	极限运算	4
	1.5	极限	6
	1.6	Cauchy 列	7
	1.7	闭区间套定理与列紧性	7
	1.8	子列	9
	1.9	总结	9
	1.10	经典错误	10
	1.11	数列极限习题	11
2	函数	函数极限 1	
	2.1	反三角函数与双曲函数	14
	2.2	复合函数的极限	15
	2.3	等价代换	17
	2.4	数列与函数极限习题	18
	2.5	0.0	1 Q

1 数列极限

1.1 实数理论

课本上写到, 实数公理化表述为如下的定理:

定理 1.1. 任何两个实数之间一定存在一个有理数。

这句话暗示了两个信息,一实数 (集合) 有序, 即实数 (元素) 可比较, 而虚数不是有序的; 二实数是稠密的, 即实数之间没有间隙, 而正整数不是稠密的。大家以后看到这种"显然"的命题定理, 可以试一试这样反向拆解.

1.2 极限的定义

定义 1.2. 设 a_n 是给定的数列. 如果有一个实数 a 具有下列性质: 对任意给定的一个正数 ε , 总存在正整数 $N=N(\varepsilon)$, 使得当 n>N 时, 不等式

$$|a_n - a| < \varepsilon$$

成立, 那么称实数 a 是数列 a_n 的极限, 记为

$$\lim_{n \to \infty} a_n = a.$$

此处的定义给出的不等式 $|a_n-a|<\varepsilon$ 是核心, 这个定义可以拆分成这几句来理解:

- 1. 极限是对于数列而言的, 我们用的说法是设数列 $\{a_n\}$ 有极限 a. 极限是一个具体的数.
- 2. 极限定义为满足某一性质的数,这个性质与给定的数列有关. 可以类比实数除法:"如果一个实数 r 满足: 对给定的两个实数 p 和 $q(q \neq 0)$, 若存在一个实数,使得 p = qr, 那么称实数 r 是 p 除以 q 的商,记为 $r = \frac{p}{q}$."商由等式定义,极限由不等式定义.
- 3. 不严谨的说,∀ ε > 0 暗示了: 随着 ε 的减小, 要取的 N 也会变大;
- 4. 证明 a 为数列 $\{a_n\}$ 的极限时, 意在构造 N, 说的定义法求极限, 本质都是

构造 $N=N(\varepsilon).N(\varepsilon)$ 是 ε 的函数,但其实不一定显含 ε ,证明 $\frac{1}{n}$ 收敛时可以将 N 写成 $N=N(\varepsilon)=\frac{1}{\varepsilon}$;证明极限的线性性质的时候不是显含的.

- 5. 找到 N 之后, 怎么判断 N 是否满足要求呢, 就是看不等式 $|a_n-a|<\varepsilon$ 是 否成立, 这里右侧不要求一定是 ε , 只要当 ε 趋近 0 的时候也趋近 0 即可.
- 6. 已知收敛的话,则可以将定义作为条件.

例 1.3. 证明极限的线性性.

上面的解释的第 6,4,5条, 可以辅助理解下面的证明.

但下面这么写也可以, 看你觉得哪个好理解写哪个.

解.
$$\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N_1 s.t. \forall n > N_1, |a_n - a| < \varepsilon;$$
 $\lim_{n\to\infty} b_n = b \Rightarrow \forall \varepsilon > 0, \exists N_2 s.t. \forall n > N_2, |b_n - b| < \varepsilon;$

设
$$N = max\{N_1, N_2\}$$
, 则 $\forall n > N$, 有 $n > N_1, n > N_2$, 则有 $|c_1 a_n + c_2 b_n - (c_1 a + c_2 b)| \le |c_1||a_n - a| + |c_2||b_n - b| < |c_1||\varepsilon + |c_2||\varepsilon$

之后的所有"对于任意的..., 存在..., 使得..." 句式中存在... 的参数 (在这里是 N) 都依赖前面的参数 (在这里是 E), 并且基本都会将 E0, 简写为 E1.

若干个相邻的任意可以合并成一个任意,若干个相邻的存在可以合并成一个存在. 当... 也表示任意.

例 1.4. 请考虑以下语句的含义

- 1. 对于任意的 ε , 存在 b, 使得 $|a-b| < \varepsilon$.
- 2. 存在 b, 对于任意的 ε , 使得 $|a-b| < \varepsilon$.

例 1.5. 请考虑以下对极限的定义,分别表示什么含义,是否有良定性 (即是否有唯一性)

- 1. 对于任意的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得当 n > N 时, 有 $|a_n a| < \varepsilon$.
- 2. 对于任意的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 存在 n > N, 有 $|a_n a| < \varepsilon$ 成立.
- 3. 存在 $N \in \mathbb{N}$, 对于任意的 $\varepsilon > 0$, 使得当 n > N 时, 有 $|a_n a| < \varepsilon$.
- 4. 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon > 0$, 当 n > N 时, 有 $|a_n a| < \varepsilon$.
- 5. 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon > 0$, 存在 n > N, 有 $|a_n a| < \varepsilon$.
- 6. 对于任意的 $N \in \mathbb{N}$, 任意 $\varepsilon > 0$, 存在 n > N, 有 $|a_n a| < \varepsilon$.
- 1. 定义
- 2. 建议先化简两个存在语句, 数列取 1,2,3,4,…, 则收敛到任意正数
- 3. 数列从某一项开始之后都为常数, 无意义
- 4. 数列有界, 收敛到任意数
- 5. 任意数列都存在极限, 极限可以为任意数, 取 $n = N + 1, \epsilon = |a a_n| + 1$
- 6. 常数列

1.3 $\varepsilon - \delta$ 语言

N 的存在性一般由构造来得出

例 1.6. 证明
$$\lim_{n\to\infty} \sqrt[n]{n+1} = 1$$

 $\forall \varepsilon > 0$, 欲求 N, 使得 $|\sqrt[n]{n+1} - 1| < \varepsilon$, 记 $a_n = \sqrt[n]{n+1} - 1$, 则

$$1 + n = (1 + \alpha)^n = 1 + n\alpha + \frac{n(n-1)}{2}\alpha^2 + \dots + \alpha^n \ge \frac{n(n-1)}{2}\alpha^2$$

因此

$$0<\alpha<\sqrt{\frac{2(n+1)}{n(n-1)}}\leq \sqrt{\frac{2}{n-1}}<\varepsilon$$

对每一个不等号组成的不等式组求解, 就可以得到 n 的范围了, 即得 $N=\max\{2,\frac{4}{\varepsilon^2}+1\}+1$

1.4 极限运算

我们常用的加减乘除是一个二元运算,运算结果是一个数。而数列极限是一种新的运算,处理对象为数列,处理结果为一个新的数.

加法有一条很显然的性质:两个正数相加仍为一个正数,这一条性质可以叫做加法对正数封闭,也可以说 \mathbb{R} (某个集合)是保持对加法封闭的.大家可以自行验证: \mathbb{Z} . \mathbb{R} 对极限不封闭.

很多运算的性质在无穷的情况下是不成立的,

例 1.7. 请给出例子或计算

- 1. 无穷数列极限不为无穷大
- 2. 举一例有理数列的极限为无理数
- 2. 正项级数极限不为正数
- 3. 无理数对有限幂次运算不封闭 $(考虑 \sqrt{2}^{\sqrt{2}})$
- 4. 求和

$$1-1+1-1+1-1+\cdots$$

 $1+(-1+1)+(-1+1)+\cdots$

- 5.~a 为正实数,数列 a,a^a,\cdots,a^{a^a} 可以收敛也可以不收敛
- 6. 证明整数对极限运算封闭
- 解. 3. 这里为了展示构造性证明, 实际上有更简单的例子.
- 4. 前者不能求和,后者可以求和.要想清楚,这是两个数列 (把前 n 项的和看成数列),你可以由数列极限的唯一性轻松反证.

这个例子说明了结合律在无穷的情况下不成立,你可以自己找一个使得交换律在无穷情况下不成立的例子.

5. 可以自行求一下 a 取什么值的时候, 这个数列恰好收敛. 这一问还说明了一个问题: 有限的幂次和无限的幂次是两种不一样的运算. 事实上, 有限和无限次的基本算数运算大都是不一样的.(取集合运算也不一样)

有一个与对极限封闭很相似的说法, 称呼为保极限. 但对极限封闭与否是一个集合的性质, 而保极限与否是一个运算的性质, 准确的说是映射的性质.

如果一个映射 f 与一个极限运算可以任意交换顺序, 那么说这个映射 f 是保极限的. 课本定理 1.5 的意义便是在于证明了极限是保 (有限的) 四则运算的.

定理 1.8. 课本定理 1.5

设 $\{a_n\}$ 和 $\{b_n\}$ 是两个收敛数列, 则通过四则运算形成的新的数列 $\{a_n\pm b_n\}$, $\{a_nb_n\}$, $\left\{\frac{a_n}{b_n}\right\}$ (当 $\lim_{n\to\infty}b_n\neq 0$ 时) 都收敛, 且有

$$1^{\circ} \lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n.$$

 $2^{\circ} \lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$, 特别, 有 $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$, 其中 c 是一个常数.

$$3^{\circ} \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n},$$
其中 $\lim_{n \to \infty} b_n \neq 0.$

但是极限与极限,极限与函数,极限与运算大都是不可交换的,如课本例 1.2.6,如下的做法是完全错误的:

例 1.9. 请说明错误在哪里

$$\lim_{n\to\infty} \frac{1+2+\cdots+n}{n^2} = \lim_{n\to\infty} \frac{1}{n^2} + \lim_{n\to\infty} \frac{2}{n^2} + \cdots + \lim_{n\to\infty} \frac{n}{n^2} = 0$$

解. 第一步将分子拆开是错误的,对内有限,对外无限,无限加法不可交换.

请注意 $0 \cdot \infty$ 的意义, 在我们目前学的空间内 ∞ 并不是一个数, 这个表达式实际上没有意义. 在一些特定场合, 他实际上是 $0 + 0 + \cdots + 0$ 的简写 (当然也可能有其他的形式), 也就是 0. 这个简写不够严谨, 实际上也交换了极限与加法.

例 1.10. 请说明错误在哪里
$$\lim_{n\to\infty} a_n^{1/n} = \left(\lim_{n\to\infty} a_n\right)^{1/n}$$

解. 我们对整一个数列做极限运算, 而不是对数列中的每一个数做极限运算. 这个式子的意义是 $\lim_{n\to\infty}a_n^{1/n}$ 是一个数, 而 $\left(\lim_{n\to\infty}a_n\right)^{1/n}$ 是一个数列. 前者与 n 无关, 后者与 n 有关.

1.5 极限

例 1.11. 判断正误:

- 1. 若 $\{a_n\}$ 收敛,则有 $\lim_{n\to\infty}(a_{n+1}-a_n)=0$, $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$
- 2. 正无穷大数列是否一定单调增加? 无界数列是否一定是无穷大量?
- 3. 收敛数列是否一定是单调数列? 无穷小量是否一定是单调数列?

解.
$$1. (\frac{1}{2})^n$$

2. 无穷大和无穷小都不是一个具体的数, 拿他当具体的数进行谈论没有意义 (不符合常规的运算 $1+\infty=\infty, 2\cdot\infty=\infty$), 只是一个趋势.

例 **1.12.**
$$\lim_{n\to\infty}\frac{n!}{n^n}=0$$

解.
$$\lim_{n\to\infty} \frac{n!}{n^n} = \lim_{n\to\infty} \frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n}{n}$$

例 1.13. 请证明:

1. 谈
$$b>0$$
, $\lim_{n\to\infty}=a$, 则 $\lim_{n\to\infty}b^{a_n}=b^a$

$$2.$$
 设 $\lim_{n\to\infty}=a$, 则 $\sin a_n=\sin a$

例 1.14. 请计算:

1.
$$\lim_{n \to \infty} \frac{a^n}{n!} = 0 \quad (a > 0)$$

2.
$$\lim_{n \to \infty} \frac{1! + 2! + \dots + n!}{n!}$$

3. 设
$$a_1, a_2, \dots, a_k > 0$$
, 求 $\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_k^n}$

4. 设
$$\{a_n\}$$
 收敛于 $a>0$, 求 $\lim_{n\to\infty} \sqrt[n]{a_n}$

5. 设
$$0 < x_0 < \frac{\pi}{2}, x_n = \sin x_{n-1}$$
, 证明收敛并求极限

注记 1.15. 1,2,3,4. 夹逼,stolz, 都很常见

5. 迭代生成的数列很多都是单调性有界证明收敛, 可能有一种题型借着体会收敛速度让你放缩证明不等式.

提醒不能使用洛必达,因为这是数列,其次洛必达没有证明,我们学过的方法现在只有夹逼之类的.这提醒了两个事情,一包括考试上证明题自己使用的非课本上的定理都要给出证明,二注意定理的使用条件,定理越强条件限制越大,只背结论不背条件不是好习惯.

例 1.16. 证明单调数列收敛的充要条件是存在收敛子列

1.6 Cauchy 列

注记 1.17. Cauchy 列, 即基本列, 和收敛列等价, 是有条件的. 在有限维空间中, 基本列和收敛列等价, 但在无限维空间中, 基本列和收敛列不等价. (我在初次学习的时候很疑惑为什么要单独取一个名字, 直接介绍 Cauchy 收敛定理不好吗? 后来才知道他在无限维空间不是等价的)

Cauchy 收敛定理的优点在于不需要事先知道收敛值就可以判断是否收敛; 使用 Cauchy 收敛定理的否命题判定不收敛也可能比定义判定方便.

定理 1.18. Cauchy 收敛定理的否命题判定不收敛:

对任意正整数 n, 存在 p>n, 使得 $|a_p-a_n|>\varepsilon_0$, 其中 ε_0 为给定的常数,则数列 $\{a_n\}$ 不收敛.

例 1.19. 证明 $\lim_{n\to\infty} \sin n$ 不存在

证明. 对于任意 n, 存在 $p_1=[\frac{n}{\pi}]\pi+\frac{3}{2}\pi, p_2=[\frac{n}{\pi}]\pi+\frac{5}{2}\pi>[\frac{n}{\pi}+1]\pi>n,$ 使得 $|a_{p_1}-a_n|, |a_{p_2}-a_n|>\frac{1}{2}$ 二者至少有其一成立。

注记 1.20. 其实我们不满足于这个结果,在深入的学习中会发现这个数列的极限点几乎可以取遍 [-1,1],或者对于任 [-1,1] 中的点,都可以找到一个子列收敛到这个点,这个问题的构造从知识结构上现在就可以解决.

1.7 闭区间套定理与列紧性

定理 1.21. 闭区间套定理:

若 $\{[a_n,b_n]\}$ 是一列闭区间, 且满足 $a_{n+1} \leq a_n \leq b_n \leq b_{n+1}$, 则存在唯一的 实数 ξ , 使得 $\xi \in [a_n,b_n], n=1,2,\cdots$

分析中有两个比较重要的概念,一个是极限,另一个是拓扑空间.给出一些他们的形象化理解 (比如高维空间).闭区间套定理的意义在于他的拓展已经脱离了实数数列的范畴,而是在拓扑空间中的一个定理.闭区间套定理常用于证明相对抽象的问题,不太直接用于求数列的极限.

(补充 wflx 中的九宫格)

例 1.22. 证明: 实数集 ℝ 不可列.

可列定义为可以一一对应到自然数集 $\mathbb N$ 的集合,或者等价的说,可以写成一个数列.

证明. 反证法: 仅考虑 [0,1] 区间, 假设 [0,1] 可列, 将 [0,1] 三等分为 [0,1/3], [1/2,2/3], [2/3,1], 则存在至少一个区间不包含 x_1 , 记为 $[a_1,b_1]$, 再将 $[a_1,b_1]$ 三等分, 重复上述操作, 得到一个闭区间套, 由闭区间套定理知存在唯一的实数 ξ , 使得 $\xi \in [a_n,b_n]$, $n=1,2,\cdots$, 而 ξ 不为任意 x_n , 矛盾.

例 1.23. "开区间套定理"的反例

 $\{(0,\frac{1}{n})\}.$

例 1.24. 函数 f 在 [a,b] 上局部有界,则 f 在 [a,b] 上有界. 局部有界是指对于任意 $x \in [a,b]$, 存在 $\delta > 0$, 使得 f 在 $(x - \delta, x + \delta)$ 上有界.

证明. 反证法: 假设 f 在 [a,b] 上无界, 将 [a,b] 三等分, 则至少存在一个区间无界, 记为 $[a_1,b_1]$, 再将 $[a_1,b_1]$ 三等分, 重复上述操作, 得到一个闭区间套, 由闭区间套定理知存在唯一的实数 ξ , 使得 $\xi \in [a_n,b_n]$, $n=1,2,\cdots$.

由局部有界性知存在 $\delta > 0$, 使得 f 在 $(\xi - \delta, \xi + \delta)$ 上有界. 而由闭区间的 长度趋于 0 知, 存在 N, 使得 $[a_N, b_N] \subset (\xi - \delta, \xi + \delta)$, 矛盾.

定义 1.25. 有界数列必有收敛子列.

这也是一个拓扑空间的概念,我们在这里注意到六个命题彼此等价,为什么我要将他们命名成同一个性质.这不仅是由于他们表述的不同,更是因为他们在一些拓扑结构下不一定成立.有趣的一点是,我们可以将这些性质成立的空间依次命名,比如列紧空间(列紧性存在的空间),完备空间(Cauchy 定理成立的空间).

我们在前面提到我们认为 \mathbb{R} 是 \mathbb{Q} 经过取极限运算得到的. 因此一个典型的 列进性不存在的空间是 \mathbb{Q} , 其中有界数列不一定有收敛子列.

列紧性也不适合用于求极限,因为列紧性只保证了有收敛子列,但不保证极限存在.不过我们可以用以下性质来刻画数列.

命题 **1.26.** 数列 $\{a_n\}$ 的某个子列收敛于 a 的充要条件在 a 的任意小邻域内有无穷多项.

用两个实数连续性的等价命题作为工具, 能证明许多命题.

命题 1.27. 函数 f 对区间 (a,b) 中的任一点 ξ , 存在 $\delta > 0$, 使得 $\forall x \in (\xi - \delta, \xi + \delta), x > \xi$ 有 $f(x) > f(\xi), x < \xi$ 有 $f(x) < f(\xi), 则 f$ 在 (a,b) 上严格增.

1.8 子列

例 1.28. 证明: $\lim_{n\to\infty} a_n = a \Leftrightarrow \lim_{k\to\infty} a_{2k} = a$, $\lim_{k\to\infty} a_{2k+1} = a$

证明. 只证明充分性。

按已知条件 $\forall \epsilon > 0, \exists N_1 > 0,$ 当 $n > N_1$ 时 $|x_{2n} - a| < \epsilon$ 。

又 $\exists N_2 > 0$, 当 $n > N_2$ 时 $|x_{2n+1} - a| < \epsilon$ 。于是令 $N = \max\{2N_1, 2N_2 + 1\}$,

则 n > N 时恒有 $|x_n - a| < \epsilon$ 。故 $\lim_{n \to \infty} x_n = a$ 。

请读者将此结果推广到 k 个子列的情况。

命题 1.29. 数列有界的充要条件为他的每个子列有收敛子列.

命题 1.30. 数列收敛的充分必要条件是存在一个数 a, 使数列的每个子列有收敛于 a 的子列.

1.9 总结

- 1. 理解数列极限的 $\epsilon-N$ 定义: 会用定义求证数列极限. 基本方法是解 $|a_n-a|<\varepsilon$.
- 2. 掌握数列极限的性质: 有界性, 保号性, 不等式性, 数列极限与子列极限的关系.
- 3. 掌握求数列极限的方法: 定义, 夹逼, 四则运算; 单调有界判断收敛, 再递推两边取极限; 用函数极限求数列极限, 若干重要极限, Stolz.

1.10 经典错误

例 1.31. 概念判断, 充分和必要分别判断对错.

1. 若
$$a_n > 0$$
, 则 $\lim_{n \to \infty} a_n = 0 \iff \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$.

2.
$$\lim_{n \to \infty} a_n = a \iff \lim_{n \to \infty} (a_{n+1} - a_n) = 0.$$

3.
$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a \iff \lim_{n \to \infty} a_n = a$$
.

- 4. a_n 中任意两个子列 $\left\{a_{k_n}\right\}$ 和 $\left\{a_{l_n}\right\}$ 均有 $\lim_{n\to\infty}(a_{k_n}-a_{l_n})=0$ \iff $\lim_{n\to\infty}a_n=a,a\in\mathbb{R}.$
- 5. $a_n > 0$, $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = l > 1 \implies \lim_{n \to \infty} a_n = 0$.
- 6. $\nexists a_n \neq 0$, $\bowtie \lim_{n \to \infty} a_n = a \neq 0 \iff \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$.
- 7. 无界数列一定是无穷大量。
- 8. 非负数列极限是非负数, 正项数列极限是正数。
- 9. 若数列 $\{a_n\}$ 是单调数列,则 $\{a_n\}$ 收敛 \iff $\{a_n\}$ 有收敛子列。
- 10. 若对任意 $n, p \in \mathbb{N}^*$, 均有 $|a_{n+p} a_n| < \frac{p}{n^2}$, 则数列 $\{a_n\}$ 收敛。
- 11. 若数列 $\{a_n\}$, $\{b_n\}$ 满足 $\lim_{n\to\infty}a_nb_n=0$, 则必有 $\lim_{n\to\infty}a_n=0$ 或 $\lim_{n\to\infty}b_n=0$ 。
- 12. 判断数列 $\{a_n + b_n\}, \{a_n \cdot b_n\}$ 的发散性:
 - (a) 若数列 $\{a_n\}$ 收敛,数列 $\{b_n\}$ 发散;
 - (b) 若数列 $\{a_n\}$ 与 $\{b_n\}$ 皆发散。
- 13. $\lim_{x \to x_0} f(x) = l$, $\lim_{y \to y_0} g(y) = x_0 \implies \lim_{y \to y_0} f(g(y)) = l$.
- $1. \Rightarrow$, 反例: $a_n = \frac{1}{2^n}$; \Leftrightarrow , 反例: $a_n = 1$.
- $2. \Rightarrow$,定义法证明即可; \Leftrightarrow ,反例: $a_n = \sum_{k=1}^n \frac{1}{k}$.
- $3. \Rightarrow$,反例: $a_n = (-1)^n$ 。 \Leftarrow ,截成两段再用定义证明即可,或者运用 Stolz 定理。

4. ⇒。利用反证法,并把 $\{a_n\}$ 发散转化成 Cauchy 列形式; ⇔。利用第 2 条的结论即可。

$$5. \Rightarrow \exists q$$
 满足 $l^{-1} < q < 1$ 及 $\exists n \in \mathbb{N}^*$,当 $n > N$ 时,有

$$\frac{a_{n+1}}{a_n} < q \quad \Rightarrow \quad a_n < a_N \cdot q^{n-N} \quad \Rightarrow \lim_{n \to \infty} a_n = 0.$$

- $6. \Rightarrow$ 定义法证明即可; \Leftrightarrow , 反例: $a_n = n$.
- 7. 错误。反例: $a_n = n(1 (-1)^n)$.
- 8. 正确, 错误。反例: $a_n = \frac{1}{n}$.
- 9. ⇔。用定义证明即可。

$$10$$
. 正确。 $\forall \varepsilon>0, \exists N=\left\lceil \frac{1}{\varepsilon} \right\rceil+1,\$ 当 $n>N$ 时,对 $\forall p>0$,有

$$|a_{n+p}-a_n| \leq \sum_{k=n+1}^{n+p} |a_k-a_{k-1}| < \sum_{k=n+1}^{n+p} \frac{1}{k^2} \leq \sum_{k=n+1}^{n+p} \frac{1}{k(k-1)} < \sum_{k=n+1}^{n+p} \left(\frac{1}{k-1} - \frac{1}{k}\right) < \frac{1}{n} < \frac{1}{N} < \varepsilon,$$

由 Cauchy 收敛准则知 $\{a_n\}$ 收敛。

11. 不成立。构造数列:
$$a_n = \frac{1}{2} + (-1)^n \cdot \frac{1}{2} = 0, 1, 0, 1, \dots, b_n = 1, 0, 1, 0, \dots$$

- 12. (a) 发散, 未知;(b) 未知; 未知
- 13. $\Re f(x) = I_{x=0}(x), g(y) = 0.$

例 1.32. 请指出以下做法的错误.

己知
$$\lim_{n\to\infty} \frac{a_n}{a_{n-1}} = a.$$

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\sqrt[n]{\frac{a_n}{a_{n-1}}\frac{a_{n-1}}{a_{n-2}}\cdots\frac{a_2}{a_1}a_1}=\lim_{n\to\infty}\sqrt[n]{a\cdot a\cdot \cdot \cdot \cdot a\cdot a_1}=a$$

解. 只有当 n" 极大"的时候, 才有比值 $\frac{a_n}{a_{n-1}}$ 与 a 相隔的很近, 因此无论是直接把所有比值换成 a 还是说无穷大的时候换成 a, 都是错误的.

1.11 数列极限习题

这部分自己随便挑着算一算.

习题 1.1. 综合计算

1. 己知
$$\lim_{n \to \infty} (x_n - x_{n-2}) = 0$$
, 证明: $\lim_{n \to \infty} \frac{x_n - x_{n-1}}{n} = 0$

2.
$$\lim_{n\to\infty}a_n=a, \lim_{n\to\infty}b_n=b, \ \mathrm{i} \mathbb{E} \ \mathrm{H} \colon \lim_{n\to\infty}\frac{a_1b_n+a_2b_{n-1}+\cdots+a_nb_1}{n}=ab$$

3.
$$\forall k \in N_+, p_k > 0$$
; $\lim_{n \to \infty} \frac{p_n}{\sum_{i=1}^n p_i} = 0$, $\lim_{n \to \infty} a_n = a$, 证明:
$$\lim_{n \to \infty} \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{\sum_{i=1}^n p_i} = a$$

4.
$$x_1 = 1, x_n = 1 + \frac{1}{1 + x_{n-1}}$$
; 证明 $\{x_n\}$ 收敛并求极限.

5.
$$x_1 > 0, a > 0, x_{n+1} = \frac{1}{4} (3x_n + \frac{a}{x_n^3})$$
; 证明 x_n 收敛并求极限.

6.
$$a_n = \frac{b_{n-1} + c_{n-1}}{2}, b_n = \frac{a_{n-1} + c_{n-1}}{2}, c_n = \frac{a_{n-1} + b_{n-1}}{2};$$
 证明: $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n$

7. 证明:
$$e(\frac{n}{e})^n < n! < en(\frac{n}{e})^n$$
.

例 1.33. 阶的渐进估计.

读
$$a=1, a_n=a_{n-1}+\frac{1}{a_{n-1}},$$
 求 $\lim_{n\to\infty}\frac{a_n}{\sqrt{2n}}, \lim_{n\to\infty}\frac{\sqrt{2n}(a_n-\sqrt{2n})}{\ln n}.$

$$\lim_{n \to \infty} \frac{\sqrt{2n}(a_n - \sqrt{2n})}{\ln n}$$

$$= \lim_{n \to \infty} \left(\frac{1}{\frac{a_n}{\sqrt{2n}} + 1} \cdot \frac{a_n^2 - 2n}{\ln n} \right)$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{a_n^2 - 2n}{\ln n}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{a_n^2 - 2n}{\sum_{k=1}^n \frac{1}{k}}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{(a_n^2 - 2n) - (a_{n-1}^2 - 2(n-1))}{\sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^{n-1} \frac{1}{k}}$$

$$= \frac{1}{2} \lim_{n \to \infty} n \left(a_n^2 - a_{n-1}^2 - 2 \right)$$

$$= \frac{1}{2} \lim_{n \to \infty} n \left[\left(a_{n-1} + \frac{1}{a_{n-1}} \right)^2 - a_{n-1}^2 - 2 \right]$$

$$= \frac{1}{2} \lim_{n \to \infty} \left[\frac{2(n-1)}{a_{n-1}^2} \cdot \frac{n}{2(n-1)} \right]$$

$$= \frac{1}{2} \left(1 \cdot \frac{1}{2} \right) = \frac{1}{4}$$

再给出一题以作为练习.

例 1.34. $x_1=1, x_{n+1}=\sin x_n$,求下列极限 (1) . $\lim_{n\to\infty}\sqrt{n}x_n(2)$. $\lim_{n\to\infty}\frac{n(nx_n^2-3)}{\ln n}$

例 1.35.
$$p_k > 0$$
, $\lim_{n \to \infty} \frac{p_n}{\sum_{i=1}^n p_i} = 0$, $\lim_{n \to \infty} a_n = a$, 证明:

$$\lim_{n\to\infty}\frac{p_1a_n+p_2a_{n-1}+\cdots+p_na_1}{\sum_{i=1}^np_i}=a$$

证明. $\forall \varepsilon, \exists N$, 使得 $\forall n > N, |a_n - a| < \varepsilon, \frac{p_n}{\sum_{i=1}^n p_i} < \varepsilon, \frac{p_{n-k}}{\sum_{i=1}^n p_i} < \frac{p_{n-k}}{\sum_{i=1}^{n-k} p_i} < \varepsilon, \forall k < n-N$. 由有界性, 故 $\exists M$, 使得 $|a_n - a| < M$

$$\left| \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{\sum_{i=1}^n p_i} - a \right|
= \left| \frac{p_n (a_1 - a) + \dots + p_1 (a_n - a)}{\sum_{i=1}^n p_i} \right|
\le \left| \frac{p_n (a_1 - a) + \dots + p_{n-N+1} (a_{N+1} - a)}{\sum_{i=1}^n p_i} \right| + \left| \frac{p_{n-N} (a_{N+1} - a) + \dots + p_1 (a_n - a)}{\sum_{i=1}^n p_i} \right|$$

例 1.36. 对任意自然数 n, 方程 $x + x^n = 1$ 恰好有一个正根 x_n , 进一步证明数 列收敛, 并求出极限.

14

2 函数极限

2.1 反三角函数与双曲函数

 $y=\sin x$ 在 R 上不单调,不存在反函数.我们取 $y=\sin x$ 在 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ 上的反函数,记为 $y=\arcsin x$.因此 $f(x)=\sin(\arcsin x),g(x)=\arcsin(\sin x)$,都不一定等于 x.

反三角函数有如下相互关系:

- 1. $\arcsin x + \arccos x = \frac{\pi}{2}$
- 2. $\arcsin(-x) = -\arcsin x$
- 3. $arccos(-x) = \pi arccos x$

正割函数 $\sec x = \frac{1}{\cos x}$, 余割函数 $\csc x = \frac{1}{\sin x}$, 余切函数 $\cot x = \frac{1}{\tan x}$. 六个三角函数之间有如下关系:

- 1. $\sin x = \tan x \cdot \cos x$
- $2. \cos x = \sin x \cdot \cot x$
- 3. $\tan x = \sin x \cdot \sec x$
- 4. $1 + \tan^2 x = \sec^2 x$
- 5. $1 + \cot^2 x = \csc^2 x$
- $6. \sec^2 x + \csc^2 x = \sec^2 x \cdot \csc^2 x$
- 7. $\sec 2x = \frac{1 + \tan^2 x}{1 \tan^2 x}$
- 8. $\csc 2x = \frac{1 + \tan^2 x}{2 \tan x}$

双曲正弦函数 $\sinh x = \frac{e^x - e^{-x}}{2}$,双曲余弦函数 $\cosh x = \frac{e^x + e^{-x}}{2}$,双曲 正切函数 $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.双曲函数有如下性质:

1.
$$\sinh(-x) = -\sinh x$$

- $2. \cosh(-x) = \cosh x$
- 3. $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$
- 4. $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$
- $5. \cosh^2 x \sinh^2 x = 1$
- 6. $\sinh 2x = 2\sinh x \cosh x$
- 7. $\cosh 2x = 2 \cosh^2 x 1 = 1 + 2 \sinh^2 x$
- 8. $\sinh' x = \cosh x$
- 9. $\cosh' x = \sinh x$

反双曲正弦函数 $\arcsin x = \ln(x + \sqrt{x^2 + 1}),$

反双曲余弦函数 $\operatorname{arccosh} x = \ln(x + \sqrt{x^2 - 1}).$

2.2 复合函数的极限

定理 2.1. 复合函数的极限:

设 f 在 x_0 附近,g 在 t_0 附近有定义, 且当 $t \neq t_0$ 时, $g(t) \neq x_0$, 若 $\lim_{x \to x_0} f(x) = l, \lim_{t \to t_0} g(t) = x_0, \, \text{则} \, \lim_{t \to t_0} f(g(t)) = l.$

定理 2.2. 推广:

- 1. 设函数 g 在 t_0 附近有定义. 若 $\lim_{x\to +\infty}f(x)=l,\lim_{t\to t_0}g(t)=+\infty,$ 则 $\lim_{t\to t_0}f(g(t))=l.$
- 2. 设函数 f 在 x_0 附近有定义,且 $\forall t, g(t) \neq x_0$. 若 $\lim_{t \to +\infty} g(t) = x_0$, $\lim_{x \to x_0} = l$, 则 $\lim_{t \to +\infty} f(g(t)) = l$.

我们深入理解一下这些推广, 以及那个当 $t \neq t_0$ 时, $g(t) \neq x_0$ 条件是怎么来的.

定理 2.3. 设 $\lim_{x\to a}g(x)=A,\ \lim_{y\to A}f(y)=B$ 成立。如果满足以下条件之一 (这三个条件都是充分条件,但不是必要条件):

1. 存在点 a 的一个去心邻域 $O_{\delta_0}(a) - \{a\}$, 在其中 $g(x) \neq A$,

2.
$$\lim_{y \to A} f(y) = f(A),$$

3.
$$A = \infty$$
, 且 $\lim_{y \to A} f(y)$ 有意义,

则成立
$$\lim_{x\to a} f(g(x)) = \lim_{y\to A} f(y) = B.$$

证明. (1) 对任意 $\epsilon > 0$,存在 $\delta_1 > 0$,使得当 $0 < |y - A| < \delta_1$ 时,成立 $|f(y) - B| < \epsilon$ 。不妨假定已有 $\delta_1 \le \delta_0$ 成立。又由条件 $\lim_{x \to a} g(x) = A$,对上述 δ_1 有 $\eta > 0$,使得 $0 < |x - a| < \eta$ 时,成立 $|g(x) - A| < \delta_1$ 。根据条件又有 0 < |g(x) - A| 成立。因此成立 $|f(g(x)) - B| < \epsilon$ 。这就是 $\lim_{x \to a} f(g(x)) = B$ 。

- (2) 设 $\lim_{y \to A} f(y) = f(A) = B$ 。 从而知道对每个 $\epsilon > 0$,存在 $\delta_1 > 0$,使得 $|y A| < \delta_1$ 时,成立 $|f(y) f(A)| < \epsilon$ 。 又由条件 $\lim_{x \to a} g(x) = A$,对上述 δ_1 有 $\eta > 0$,使得 $0 < |x a| < \eta$ 时,成立 $|g(x) A| < \delta$,从而就成立 $|f(g(x)) f(A)| < \epsilon$,因此得到 $\lim_{x \to a} f(g(x)) = f(A) = B$ 。
- (3) 只讨论 $\lim_{y\to\infty}f(y)=B$ 为有限数的情况。这时对每个 $\epsilon>0$,存在 M>0,使得 |y|>M 时,成立 $|f(y)-B|<\epsilon$ 。又由条件 $\lim_{x\to a}g(x)=\infty$,对上述 M>0 有 $\eta>0$,使得当 $0<|x-a|<\eta$ 时,成立 |g(x)|>M,从而成立 $|f(g(x))-B|<\epsilon$ 。

这样就得到
$$\lim_{x\to a} f(g(x)) = B$$
。

复合函数的极限可以带来很有用的推论.

推论 2.4. 若
$$\lim_{x \to a} f(x) = A > 0$$
, $\lim_{x \to a} g(x) = B$, 则 $\lim_{x \to a} f(x)^{g(x)} = A^B$.

证明. 设已知
$$\lim_{x\to a} \ln f(x) = \ln A \ (A>0)$$
 和 $\lim_{x\to a} e^x = e^b$,于是 $\lim_{x\to a} f(x)^{g(x)} = \lim_{x\to a} \exp[g(x)\ln f(x)] = \exp\left[\lim_{x\to a} g(x)\ln f(x)\right] = \exp\left[\lim_{x\to a} g(x)\right] \lim_{x\to a} \ln f(x) = A^B$.

上述结论成立的前提是 f,g 在对应的点都有极限. 事实上, 在以下三种情况下, 这个结论是不一定成立的.

(1)
$$A = 0$$
, $B = 0$; (2) $A = +\infty$, $B = 0$; (3) $A = 1$, $B = \infty$.

我们习惯把这三种情况称为 0^0 , ∞^0 和 1^∞ 型的不定式 (未定式). 除此之外的不定式还有 $\infty - \infty$, $0 \cdot \infty$, ∞^0 , 0/0, ∞/∞ . 数列都可以转为能应用 Stolz 定理的形式, 函数极限则可能涉及一些后续的工具.

17

例 2.5. 错误的写法

$$\lim_{x\to +\infty}\frac{x^p}{x^p-x}=1\Rightarrow \ \ \, \exists \ \ \, x\to +\infty \ \ \, \mathrm{th}, x^p\to x^p-x.$$

例 2.6. 证明:
$$\lim_{x \to +\infty} (1 + \frac{1}{x^p})^x = \begin{cases} 1, & p > 1, \\ e, & p = 1, \\ +\infty, & 0$$

2.3 等价代换

不是很难, 不用动笔, 看不出结果或者没思路再翻书.

习题 2.1. 求函数极限.

1.
$$\lim_{x \to 0} \frac{5x^3 + 2x - 1}{3x^2 - 2x + 1}$$

2.
$$\lim_{x \to +\infty} \frac{5x^3 + 2x - 1}{3x^2 - 2x + 1}$$

3.
$$\lim_{x\to 0} (x^2 - 1)(1 + \cos x)$$

4.
$$\lim_{x \to 0} \sqrt{\frac{4x^2 - 3}{x^2 + 1}}$$

习题 2.2. 等价代换

1.
$$\lim_{x \to 0} \frac{\sin 5x}{x}$$

$$2. \lim_{x \to 0} \frac{\sin \sqrt{x}}{\sqrt{x}}$$

3.
$$\lim_{x\to 0} (1+2x)^{\frac{1}{x}}$$

$$4. \lim_{x \to 0} \frac{\tan x}{x^2 \cdot \cot 3x}$$

5.
$$\lim_{x\to 0} \frac{1-\cos^a x}{x^2}$$
, $a \$ \$\frac{8}{2}\text{\$\frac{8}{2}\$}\$.

例 2.7. 指出下列做法的错误.

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = \lim_{x \to 0} x \cdot \frac{\sin \frac{1}{x}}{\frac{1}{x}} = 0 \cdot 1 = 0$$

解. 等价代换, 注意代换的部分是否满足条件, 如 $\sin x/x = 1$, 是 $x \to 0$ 时 才满足.

例 2.8. 指出下列做法的错误, 注意, 这与上面的错误原因不同.

$$\lim_{x \to 0} \frac{\sin(x^2 \sin \frac{1}{x})}{x} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

解. 等价代换 $(\sin x \sim x)$ 的成立依赖于 $\lim_{x\to 0} \frac{\sin(x^2 \sin \frac{1}{x})}{x^2 \sin \frac{1}{x}} = 1$,而这个表达式是不成立的,他不满足函数收敛的定义.或者说由 Henie 定理可以看出,x 轴上存在一列函数值无定义的点.这道题还是有做法的,用两边夹就好了.

定理 2.9. Henie 定理:

函数极限 $\lim_{x\to a} f(x) = A$ 的充要条件是: 对任意收敛于 a 的数列 $\{x_n\}$, 都有 $\lim_{n\to\infty} f(x_n) = A$.

定理 2.10. 推广:

设 A 有限, 存在极限 $\lim_{x\to +\infty}f(x)=A$ 的充要条件是: 对每个严格单调增至正无穷大的数列 $\{x_n\}$, 都有 $\lim_{n\to \infty}f(x_n)=A$.

这些推广保证了在更多的条件下, 我们可以进行变量代换, 以及用函数求数 列极限.

2.4 数列与函数极限习题

例 2.11. 求和
$$\sum_{k=1}^{n} \sin kx$$
.

证明. 考虑求和: $S = \sum_{k=1}^{n} \sin kx = \sin x + \sin 2x + \dots + \sin nx$.

当
$$x=2\pi k$$
 时, $S=0$ 。

当 $x \neq 2\pi k$ 时, $\sin\frac{x}{2} \neq 0$,我们可以两边同时乘以 $\sin\frac{x}{2}$: $\sin\frac{x}{2} \cdot S = \sin\frac{x}{2} \cdot (\sin x + \sin 2x + \dots + \sin nx)$.

右边展开,利用
$$\sin\frac{x}{2}\sin nx = \frac{1}{2}\left(\cos\left(n-\frac{1}{2}\right)x - \cos\left(n+\frac{1}{2}\right)x\right)$$
 进行化 简: $\sin\frac{x}{2}\cdot S = \frac{1}{2}\left(\cos\frac{x}{2} - \cos\frac{3}{2}x + \cos\frac{3}{2}x - \cos\frac{5}{2}x + \dots + \cos\left(n-\frac{1}{2}\right)x - \cos\left(n+\frac{1}{2}\right)x\right)$.

因此:
$$\sin\frac{x}{2}\cdot S=\frac{1}{2}\left(\cos\frac{x}{2}-\cos(n+\frac{1}{2})x\right).$$

 右边再利用 $\cos A-\cos B=-2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$, 化成关于 \sin 的乘积
 形式: $\sin\frac{x}{2}\cdot S=\frac{1}{2}\left(-2\sin\frac{(n+1)x}{2}\sin\frac{-nx}{2}\right).$
 于是: $\sin\frac{x}{2}\cdot S=\sin\frac{(n+1)x}{2}\sin\frac{nx}{2}.$ 最终得到: $S=\frac{\sin\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}.$ 证明完毕。
 类似的,我们也可以证明: $\sum_{k=1}^{n}\cos kx=\cos x+\cos 2x+\cdots+\cos nx=\frac{\cos\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}.$
 令 $S=\sum_{k=1}^{n}\cos kx$,等式两边还是乘以 $\sin\frac{x}{2}$,利用 $\sin\frac{x}{2}\cos nx=-\frac{1}{2}\left(\sin(n-\frac{1}{2})x-\sin(n+\frac{1}{2})x\right)$ 进行化简可得: $\sin\frac{x}{2}\cdot S=\frac{1}{2}\left(-\sin\frac{x}{2}+\sin(n+\frac{1}{2})x\right).$
 利用 $\sin A-\sin B=2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$,得到: $\sin\frac{x}{2}\cdot S=\cos\frac{(n+1)x}{2}\sin\frac{nx}{2}.$

习题 2.3. 求函数极限.

1.
$$\lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos 2x} \cdots \sqrt{\cos nx}}{x^2}$$

最后,得到: $S = \frac{\cos\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}$.

2.
$$\lim_{x \to 0^+} \sin^x x - x^x$$

3.
$$\lim_{x \to +\infty} x - \ln(x + e^x)$$

4.
$$\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{x - 1}{x + 2}}$$
.

5.
$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\sin x}$$
.

2.5 *o, O*

定义 2.12. 设
$$f(x)$$
 和 $g(x)$ 是定义在 x_0 的某个去心邻域上的函数。如果 $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 0$,则称 $f(x)$ 是 $g(x)$ 的 $o(g(x))$,记作 $f(x) = o(g(x))(x \to x_0)$ 。

设 f(x) 和 g(x) 是定义在 x_0 的某个去心邻域上的函数。如果 $\exists M, \frac{f(x)}{g(x)} \leq M$ 在 x_0 的去心邻域上成立,则称 f(x) 是 g(x) 的 O(g(x)),记作 $f(x) = O(g(x))(x \to x_0)$ 。

- o, O 仅表示相对的大小关系, 本身不额外表示高阶 (低阶) 无穷大 (Λ) , 老师上课只是给出具体的例子.
- o(f) 的含义实际是所有 f 的无穷小量组成的集合, 因此前面的等号实际含义是 \in , 如果两边都有 o , O (这种表述很少见), 则等号的含义实际是 \subset .

我们试图用阶定量的表示这种无穷小的比较关系, 但是不是所有无穷小都可以用阶来表示. 而且我们仅讲述了整数阶, 而分数阶, 无理数阶有一些争议, 不做讨论.