Functional Analysis

Lectured by Pierre Germain Scribed by Yu Coughlin

Autumn 2025

Contents

0.1	Banach Spaces	1
0.2	Lebesgue spaces of functions	2
0.3	Convolutions and mollifiers	4

0.1 Banach Spaces

I'll write these notes mostly over \mathbb{R} , everything works similarly over \mathbb{C} or any complete normed field. So when I say "vector space", I mean a real one.

Definition 0.1.1. A norm on a vector space E is a map $\|-\|: E \to \mathbb{R}_{>0}$ such that for all $x, y \in E, \lambda \in \mathbb{R}$:

$$\|x\| = 0 \iff x = 0 \qquad \|\lambda x\| = |\lambda| \|x\| \qquad \|x + y\| \le \|x\| + \|y\|$$

called definiteness, homogenaity, and the triangle inequality respectively.

Common examples are $\|-\|_1$, $\|-\|_2$, and $\|-\|_{\infty}$ on \mathbb{R}^n .

Definition 0.1.2. For a compact $K \subseteq \mathbb{R}^n$ the **uniform norm** on the set of continuous functions $\mathcal{C}(K,\mathbb{R})$ is given by:

$$\|f\|_{\infty}:=\sup_{x\in K}|f(x)|=\max_{x\in K}|f(x)|.$$

Letting K be n discrete points recovers $\|-\|_{\infty}$ on \mathbb{R}^n , how can we recover the other defintions like this?

Definition 0.1.3. A **Banach space** is a complete normed vector space.

We will show in the finite case that all normed vector spaces are complete. Note that the on the space $\mathcal{C}([0,1],\mathbb{R})$ the norm:

$$||f|| := \int_0^1 f(x)dx$$

is not complete, many progressive continuous approximations to non-conintuous shapes are an example. The change is normally increasingly localised and extreme, the uniform norm will properly detect this.

Definition 0.1.4. Two norms, $\|-\|$, $\|-\|'$ on a vector space E are **equivalent** if there exists $C_1, C_2 \ge 0$ such that for all $x \in E$:

$$C_1 \|x\|' \le \|x\| \le C_2 \|x\|'$$

This is obviously an equivalence relation. Equivalent norms induce homeomorphic topologies by id, as:

$$B'_{r/C_2}(x) \subseteq B_r(x) \subseteq B'_{r/C_1}(x).$$

Proposition 0.1.5. All finite dimensional normed vector spaces are equivalent.

Proof. Choose any norm on a d dimensional vector space E, and let $\{e_1, \ldots, e_d\}$ be a basis for E:

$$\left\|x\right\| = \left\|\sum x_i e_i\right\| \leq \sum \left\|x_i e_i\right\| = \sum \left|x_i\right| \left\|e_i\right\| \leq \max_{1 \leq i \leq d} \left\|e_i\right\| \sum \left|x_i\right| = \max_{1 \leq i \leq d} \left\|e_i\right\| \left\|x\right\|_1.$$

Now, let K be the unit sphere for $\|-\|_1$. This is closed and bounded so, by the Heine-Borel theorem, compact. The previous step shows $x \mapsto \|x\|$ is continuous wrt $\|-\|_1$, so it will attain its infinum on K. By definiteness, this minimum, m, will be positive. And for all $x \in E$: $\|x\| = \|x\|_1 \|x/\|x\|_1 \| \ge m \|x\|_1$. \square

From now onwards, let Ω be an open subset of \mathbb{R}^d such that $\overline{\Omega}$ is compact and $\partial\Omega$ is smooth. The particulars of these restrictions isn't important.

Definition 0.1.6. The uniform norm for $f \in \mathcal{B}(\Omega, \mathbb{R})$ is given by $||f||_{\infty} := \sup_{x \in \Omega} |f(x)|$.

Think of $C_b^0(\Omega, \mathbb{R})$ as a subspace of $\mathcal{B}(\Omega, \mathbb{R})$.

Proposition 0.1.7. $C_h^0(\Omega,\mathbb{R})$ is closed (contains all limit points) w.r.t. the uniform norm.

Proof. Let $(f_n) \to f$, and fix some $\varepsilon > 0$. By assumption, there exists some $N \ge 0$ such that $||f_N - f||_{\infty} < \varepsilon$. As f_N is continuous, there will exist some $B_{\delta}(x) \subseteq \Omega$ such that for all $y \in B_{\delta}(x)$ we have $|f_N(x) - f_N(y)| < \varepsilon$. So we can write:

$$|f(x) - f(y)| = |(f(x) - f_N(x)) - (f(y) - f_N(y)) + (f_N(x) - f_N(y))|$$

$$\leq |(f(x) - f_N(x))| + |(f(y) - f_N(y))| + |(f_N(x) - f_N(y))| < 3\varepsilon.$$

Proposition 0.1.8. $C_h^0(\Omega, \mathbb{R})$ is complete w.r.t. the uniform norm.

Proof. Let (f_n) be Cauchy w.r.t $\|-\|_{\infty}$, for any $x \in \Omega$, $(f_n(x))$ will be a Cauchy sequence in \mathbb{R} so converges to a limit we will call f(x). It now suffices to show $(f_n) \to f$ w.r.t. $\|-\|_{\infty}$ and appeal to the previous proposition. Fix $\varepsilon > 0$, by assumption there exists N such that $\forall n, m \geq N$, $\|f_n - f_m\|_{\infty} < \varepsilon$. Consider for all $x \in \Omega$:

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le \varepsilon.$$

As each $|f_n(x) - f(x)| \le is \varepsilon$, so will $||f_n - f||_{\infty}$, the supremum.

Definition 0.1.9. Let $C^k(\Omega, \mathbb{R})$ be the set of k-times bounded continuously differentiably functions, equipped with the norm:

$$||f||_{\mathcal{C}^k} := \sum_{|\alpha| \le k} ||\partial^{\alpha} f||_{\infty} \qquad \alpha \in \mathbb{N}^d$$

The simplest example is with d = k = 1 where $||f||_{\mathcal{C}^1} = ||f||_{\infty} + ||f'||_{\infty}$.

Proposition 0.1.10. For $\Omega \subset \mathbb{R}$, $C^1(\Omega, \mathbb{R})$ with the $\|-\|_{C^1}$ norm is complete.

Proof. Let (f_n) be Cauchy w.r.t. $\|-\|_{\mathcal{C}^1}$, then both (f_n) and (f'_n) must be Cauchy w.r.t. $\|-\|_{\infty}$. So, by the previous proposition, there exists continuous, uniform limits $(f_n) \to f$, $(f'_n) \to g$. Thus:

$$||f_n - f||_{\mathcal{C}^1} = ||f_n - f||_{\infty} + ||f'_n - g||_{\infty} \to 0.$$

How do we know f' = g or even $f \in \mathcal{C}^1$? By FTC and the exchange of uniform limits with Riemann integrals, we have:

$$f(x) - f(y) = \lim_{n \to \infty} f_n(x) - f_n(y) = \lim_{n \to \infty} \int_x^y f'_n = \int_x^y g(x) dx$$

for all $x, y \in \Omega$, and all n.

TODO: Hölder.

0.2 Lebesgue spaces of functions

We will keep the same fixed Ω , and continue to be interested in functions $f:\Omega\to\mathbb{R}$; and, unless stated otherwise, by:

$$\int_{\Omega} f(x)dx$$

I mean the integral w.r.t. the Lebesgue measure. We can generalise to functions from Ω to some arbitrary measure space, but won't in this course.

Definition 0.2.1. For some real $p \geq 1$, the L^p -norm on the set of measurable functions $f: \Omega \to \mathbb{R}$ is:

$$||f||_{L^p} := \left| \int_{\Omega} |f|^p \, dx \right|^{\frac{1}{p}}$$

and for $p=\infty$:

$$||f||_{L^{\infty}} := \operatorname{essup}_{\Omega} f = \inf\{M \in \mathbb{R}, |f| \leq M \text{ a.e.}\}$$

Unfortunately, if f = g a.e. but $f \neq g$ our norm fails to be definite. For this we consider $L^p(\Omega, \mathbb{R})$ the set of such measurable functions with finite L^p modulo equality a.e., making our norm definite.

Most of the discussion around L^p spaces has a counterpart in l^p spaces, either by adapting the proof directly, or consider the collection of sequences as a discrete measure space. Such discussions probably won't be included.

To show the L^p norm is in fact a norm, we know just have to show homogenaity, which is obvious, and the triangle inequality, which will involve some work.

Lemma 0.2.2 (Young's inequality). Let $p, q, r \in \mathbb{R}$ be such that

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$$

then for all x, y > 0 we have

$$(xy)^r \le \frac{r}{p}q^p + \frac{r}{q}y^q$$

Proof. On problem sheet 2.

Proposition 0.2.3 (Hölder's inequality). Given $p, q, r \in [1, \infty]$ such that

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$$

if $f, g \in L^p, L^q$ respectively, then $fg \in L^r$ and $||fg||_{L^r} \leq ||f||_{L^p} ||g||_{L^q}$.

Proof. If p or $q = \infty$ this is easy, so assume $p, q < \infty$. By homogenaity we may assume

$$||f||_{L^p} = ||g||_{L^q} = 1$$

and by Young's inequality we see

$$||fg||_{L^r}^r = \int |f|^r |g|^r dx \le \int \frac{r}{p} |f|^p + \frac{r}{q} |g|^q dx = \frac{r}{p} \int |f|^p dx + \frac{r}{q} \int |g|^q dx = \frac{r}{p} + \frac{r}{q} = 1.$$

Proposition 0.2.4 (Minkowski's inequality). If $f, g \in L^p$, then $||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$.

Proof. If $p = \infty$ this is easy, so assume $p = \infty$. Pointiwse, we know:

$$|f + g|^p \le |f + g|^{p-1} (|f| + |g|)$$

now integrate to get:

$$||f+g||_{L^{p}}^{p} = \int |f+g|^{p} dx \le \int |f+g|^{p-1} (|f|+|g|) dx = \int |f+g|^{p-1} |f| dx + \int |f+g|^{p-1} |g| dx$$

applying Hölder's inequality on $\frac{p-1}{p} + \frac{1}{p} = 1$ gives this

$$\leq \left| \int |f+g|^p dx \right|^{1-\frac{1}{p}} (\|f\|_{L^p} + \|g\|_{L^p}) = \frac{\|f+g\|_{L^p}^p}{\|f+g\|_{L^p}} (\|f\|_{L^p} + \|g\|_{L^p})$$

multiplying out now completes the proof.

Theorem 0.2.5. $L^p(\Omega, \mathbb{R})$ is complete w.r.t. the L^p norm.

Proof. Let (f_n) be a Cauchy sequence in L^p , as subsequences of Cauchy sequences are also Cauchy sequences, wlog we can have $||f_{n+1} - f_n||_{L^p} < 2^{-n}$. We want to define:

$$f(x) = f_0(x) + \sum_{n=0}^{\infty} (f_{n+1}(x) - f(x))$$

but we don't yet know if the sum is well defined, so instead consider

$$g(x) = |f_0(x)| + \sum_{n=0}^{\infty} |f_{n+1}(x) - f(x)|$$

which does exist, and call the Nth trucation g_N . By Minkowski's inequality:

$$||g_N||_{L^p} \le ||f||_{L^p} + \sum_{n=0}^N ||f_{n+1} - f_n||_{L^p} \le C + \sum_{n=0}^N 2^{-n} \le C + 2.$$

 (g_N) is a monotone increasing sequence converging to g all ≥ 0 , the same holds for (g_N^p) and g^p , so by the monotone convergence theorem:

$$||g||_{L^p}^p = \int \lim_{N \to \infty} |g_N|^p dx = \lim_{N \to \infty} ||g_N||_{L^p}^p \le (C+2)^p$$

so g is finite a.e. and thus f is defined a.e.

f is certainly in L^p as $|f| \leq g \in L^p$.

Now fix an $\varepsilon > 0$ and consider

$$|f - f_n| = \left| f - f_0 - \sum_{k=0}^{\infty} |f_{k+1} - f_k| \right| \le |f| + |f_0| + \sum_{k=0}^{\infty} |f_k| \le |f| + |f| + \sum_{k=0}^{\infty} |f_k| \le |f| + |f| + \sum_{k=0}^{\infty} |f_k| +$$

so

$$|f - f_n|^p \le 3^p (|f|^p + |f_0|^0 + |g|^p)$$

the RHS is finite and doesn't depend on n so by the dominated convergence theorem $(f - f_n) \to 0$ a.e. thus $||f - f_n||_{L^p} \to 0$.

Proposition 0.2.6. Continuous functions are dense in L^p .

Idea. We can reduce the situation to only deal with characterisit functions of measurable sets $\mathbbm{1}_A$, by the regularity of the Lebesgue measure we can always find a closed F and open U such that $\mu(U \setminus F) < \varepsilon$ and $F \subset A \subset U$. Now we can observe:

$$f(t) = \frac{\operatorname{dist}(t, \Omega \setminus U)}{\operatorname{dist}(t, \Omega \setminus U) + \operatorname{dist}(t, F)}$$

has suppose on U, and is 1 on F, and thus $||f - \mathbb{1}_A||_{L^p} < \varepsilon$.

TODO: i have no idea what the fuck this is saying, i should learn what it means.

0.3 Convolutions and mollifiers

Definition 0.3.1. If $f \in L^1(\mathbb{R}^d)$ and $\phi \in \mathcal{C}_c^0(\mathbb{R}^d)$, then $f * \phi : \mathbb{R}^d \to \mathbb{R}$ is given by

$$(f * \phi)(x) = \int_{\mathbb{R}^d} f(x - y)\phi(y)dy$$

Some obvious first properties of the convolution are that $\operatorname{Supp}(f * \phi) \subset \operatorname{Supp}(f) + \operatorname{Supp}(\phi)$, and $f * \phi = \phi * f$ if both are in \mathcal{C}_c^0 . To go further we need this following result we will not prove.

Proposition 0.3.2 (Generalised Minkowski inequality). For *suitable* F,

$$\left\| \int F(x,y)dy \right\|_{L^{p}(x)} \le \int \left\| F(x,y) \right\|_{L^{p}(x)} dy$$

Instead of interchanging L^p -norms with sums, we interchange L^p -norms with integrals.

Lemma 0.3.3. If $f \in L^p$ and $\phi \in \mathcal{C}_c^0$

$$\|\phi * f\|_{L^p} \le \|\phi\|_{L^1} \|f\|_{L^p}$$

Proof. Applying the generalised Minkowsky inequality diretly to the definition of the convolution

$$\left\| \int f(x-y)\phi(y)dy \right\|_{L^{p}(x)} \le \int \|f(x-y)\phi(y)\|_{L^{p}(x)} dy = \int |\phi(y)| \|f(x-y)\|_{L^{p}(x)} dy$$

TODO: there is something missing here, idfk what

Proposition 0.3.4. If $f \in L^p$ and $\phi \in \mathcal{C}_c^k$, then $f * \phi \in \mathcal{C}^k$ and for all $\alpha \in \mathbb{N}^d$, we have $\partial^{\alpha}(f * \phi) = f * \partial^{\alpha}\phi$.

Proof. Once again, only consider the case k=d=1, so $\partial^{\alpha}=\partial_{x}$. Furthermore, it suffices to deal with $f\in L^{1}$ as convolution is a local process and L^{p} functions are locally L^{1} .

$$\frac{(f*\phi)(x+h) - (f*\phi)(x)}{h} = \int f(y) \frac{\phi(x+h-y) - \phi(x-y)}{h} dy$$

and the assosiation of y to the RHS of the integrand, for fixed x, is uniformly bounded and converges pointwise to $\phi'(x-y)$, the claim now follows from the dominated convergence theorem.

The mollifiers φ_n are defined as $\varphi_n(x) = n^d \varphi(nx)$ where $\varphi \in \mathcal{C}_c^{\infty}$ and $\int \varphi = 1$. These looks like bumb functions with increasing height and decreasing width as $n \to \infty$.

Theorem 0.3.5. Given a sequence of mollifiers (φ_n)

- 1. If $f \in \mathcal{C}_c^0$, then $f * \varphi_n \to f$ uniformly.
- 2. If $f \in L^p$, then $f * \varphi_n \to f$ in L^p .

Proof.