

Инструменты Python для обработки данных. Pandas

План занятия (лекция + семинар)

- ★ Series и DataFrame
- ★ Загрузка данных из файла
- ★ Исследовательский анализ данных (EDA) с библиотекой pandas:
 - о Загрузка данных
 - Информация о таблице
 - Пропуски и заполнение пропусков
 - Квантиль, квартиль, персентиль
 - Понятие выбросов
 - о Типы столбцов: категориальные, интервальные
 - о Фильтрация данных в pandas
 - о Примеры исследования на тестовых данных

Библиотека pandas

ĦΤ

Pandas - высокоуровневая Python библиотека для анализа данных

Построена над более низкоуровневой библиотеки *NumPy* (написана на Си)

Главные структуры данных библиотеки: DataFrame и Series

Область применения

- сбор данных
- очистка данных
- анализ
- моделирование

Series

Series

0	1.0
1	3.0
2	5.0
3	NaN
4	6.0
5	8.0
dt	ype: float64

Series — объект библиотеки pandas, спроектированный для представления одномерных структур данных, похожих на массивы

Data

Index

Series u DataFrame

202326

8.2

202326

Index

16.3

Series — объект библиотеки pandas, спроектированный для представления одномерных структур данных, похожих на массивы, но с дополнительными возможностями («одномерный ndarray») **Dataframe** состоит из колонок и строк. У колонок есть имена, а у строк — индексы. Табличная структура данных, напоминает таблицы из Microsoft Excel.

16.3

202326

8.2

После загрузки файл .csv оказывается в сессионном хранилище в папке под названием /content/.

После загрузки файл .csv оказывается на диске Google. Перед подключением к диску необходимо согласовать работу с персональными данными (вход в Google аккаунт обязателен).

Данные остаются на диске после завершении сессии блокнота Colab.

Что такое файлы CSV?

Файл CSV – это особый вид файла, который позволяет структурировать большие объемы данных. Пример CSV файла, где в качестве разделителя используется

запятая:

Функция pandas.read_csv

Используется для чтения данных из файла CSV и преобразования их в DataFrame.

<u>O</u>	сновные параметры этой функции:
	encoding: позволяет указать кодировку файла, которую необходимо использовать при
	чтении данных (по умолчанию utf-8).
	filepath_or_buffer: путь к файлу с данными.
	sep: разделитель столбцов в файле (по умолчанию запятая ',').
	header: указывает, какая строка считается заголовком (по умолчанию header=0, но
	можно поменять на header=None, если заголовка в файле нет).
	names: измененный список названий столбцов.
	index_col: столбец-индекс DataFrame. Тип данных: число (индексация по столбцу), строка
	(имя столбца), дата.
	dtype: Типы данных для каждого столбца, при изменении указать словарь (key - имена
	столбцов, value - типы данных).
	on_bad_numbers: чтение строк с недопустимыми числами. Возможные значения: 'raise',
	'skip', 'warn'.

Функция pandas.read_csv (2)

Используется для чтения данных из файла CSV и преобразования их в DataFrame.

Основные параметры этой функции: na_values: значения, которые должны интерпретироваться как отсутствующие значения (NaN). keep_default_na: если установлено значение False, то не будет использоваться набор стандартных значений для отсутствующих значений. decimal: символ, используемый в качестве десятичного разделителя (по умолчанию точка). skip_blank_lines: если установлено значение True, то пустые строки будут пропущены. max_rows: максимальное количество строк для чтения. Если достигнут этот лимит, чтение прекращается. max_cols: Максимальное количество столбцов для чтения. Если достигнут этот лимит, чтение прекращается.

dayfirst: чтение дат, где день должен идти перед месяцем. Вместе с параметром

date_format (позволяет указать формат даты для столбцов).

10

Пропущенные значения

Пропущенные значения – незаполненные, «пустые» ячейки в данных.

Виды пропусков:

- → Полностью случайные пропуски (missing completely at random, MCAR) предполагают, что вероятность появления пропуска никак не связана с данными.
- → Случайные пропуски (missing at random, MAR) вероятность появления пропуска зависит от некоторой известной нам переменной.
- → **Неслучайные пропуски (missing not at random, MNAR)** вероятность появления пропуска зависит, в том числе, от фактора, о котором мы ничего не знаем.

Пропущенные значения

Источник данных	Причины	Вероятность возникновения	Как восстановить данные?
Социальные сети / Веб- страницы	Заполняемость людьми	Высокая	Автоматическая/сбор/отсу тствие возможности восстановления
СМИ и журналистика	Разные годы издания/отличные способы оформления	Низкая, обычно стандартное наполнение	Дополнительный сбор / недоступность
Статистика/опросы	Заполняемость людьми	Высокая	Через автоматическую обработку
Государственные данные	Заполненность/отсутств ие информации о чем-либо	Средняя	Дополнительный сбор / Удаление
Административные данные	Заполненность/отсутств ие информации о чем- либо	Средняя	Дополнительный сбор / Удаление
Известные компании: Google, Яндекс и т. д	Нарушение структуры	Низкая	Через автоматическую обработку / Удаление

- 1. определить количество пропущенных значений в каждом столбце;
- 2. понять, случайны они или нет;
- 3. оценить возможность их восстановления через дополнительный сбор данных;
- 4. применить один из методов обработки пропущенных значений.

Метод	Когда используем?		
Удаление наблюдений	много наблюдений и мало пропусков или делаем предварительный анализ		
Присвоение пропускам специальной категории	необходимо отметить пропуски, но значения NaN, null, 0 для исследования не подходят		
Замена на основании распределения заполненных значений в столбце	много наблюдений и мало пропусков, плохо подходит для значений со строковыми переменными		
Заполнение на основании других столбцов	когда можем прогнозировать пропущенные значения на основе доступных значений в столбце		

Решение:

заполнить средним значением из распределения или другие статистики из распределения экстраполировать/интерполировать значения удалить наблюдения с пропусками (делать ОСТОРОЖНО)

например, мы можем рассчитать среднее = 1198 и пропуски заменить на 1198

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8		2	1	300000
9		2	0	500000
10	700	1	0	600000

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8	1198	2	1	300000
9	1198	2	0	500000
10	700	1	0	600000

Решение:

построить модель/формулу, которая восстанавливает значение на основании других характеристик

То есть строим регрессию на наблюдениях с 1 по 7 и 10. Целевая переменная у=площадь магазина, независимые признаки: x1 = "количество этажей" и x2="в ТЦ" у = 700 + 300*x1+100*x2

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8		2	1	300000
9		2	0	500000
10	700	1	0	600000

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8	1400	2	1	300000
9	1300	2	0	500000
10	700	1	0	600000

На практике:

Сначала необходимо обнаружить пропуски:

либо методы describe, либо isna().sum()

смотрим комплексно

import missingno as msno msno.matrix(df_miss, figsize=(10, 6))

Далее заменяем:

просто методы Pandas fillna()

методы sklearn.impute

https://scikit-learn.org/stable/modules/impute.html#univariate-vs-multivariate-imputation

Datawig, Fancyimpute и MissForest и так далее

Квантиль, квартиль, перцентиль, межквартильный размах (IQR)

Что такое квантиль? Квантиль задает значение, ниже которого находится определенная доля данных в распределении.

отсортируем ряд

разделим ряд на две части. Точка, которой мы делим - это и есть медиана. То есть ниже медианы 50% данных Если мы ряд разделим на 3 равные части - то получим квартили. Ниже 1 квартиля 25% всех данных, ниже 2 квартиля - 50%, ниже 3 квартиля 75%

Получается, Квантиль задает значение, ниже которого находится определенная доля данных в распределении. Медиана = 0.5 квантиль = 50% персентиль = 2 квартиль - это значение,

Понятие выбросов в данных

Выбросы — это данные, которые сильно отличаются от общего распределения.

Понятие выбросов в данных

Выбросы — это данные, которые сильно отличаются от общего распределения.

• ошибочно возникающие выбросы:

- о человеческий фактор, ошибка ввода данных
- о погрешности измерения
- ошибка эксперимента (например, шум при записи голоса)
- о ошибка обработки
- о ошибки получения выборки (sampling error)

• естественные выбросы:

- о высокий человек, разовая большая покупка
- аномально низкая цена на отдельный объект недвижимости

Типы столбцов: категориальные, интервальные

Фильтрация данных в pandas

Фильтр по одному условию

```
In [6]: cars[cars.notnull()]

Out[6]: BMW 230.0

Mercedes 250.0

Ferarri 350.0

Lamborghini 380.0

Bugatti 460.0

dtype: float64
```

Фильтрация данных в pandas

Фильтр по нескольким условиям

Фильтрация данных в pandas

Фильтрация Series в Pandas при помощи цикла

```
In [10]: for index, value in cars.items():
         if value<300:
             print(index)</pre>
BMW
Mercedes
```

Какие методы доступны в Pandas для работы с данными?

Метод	Когда используем?		
read_csv(), read_excel()	Чтение данных		
write_csv(), to_csv(), to_excel()	Запись данных		
fillna(), replace()	для замены пропущенных значений, удаления строк или столбцов		
drop(), dropna()	для удаления строк или столбцов		
rename(), reindex()	для переименования столбцов, изменения индекса		
sort_values(), groupby()	сортировки данных и группировки по одному или нескольким столбцам		
sum(), mean(), min(), max(), count()	для подсчета суммы, среднего значения, минимального/максимального значения и количества элементов в группе (агрегация данных)		
query(), loc[], iloc[], filter()	для фильтрации данных по условию, выборки по индексу или позиции и применения условий к столбцам		

Какие методы доступны в Pandas для работы с данными?

Метод	Когда используем?		
corr(), cov()	для расчета корреляций между переменными, оценки ковариации		
describe()	для получения описательной статистики		
plot(), hist(), boxplot(), scatter()	для создания графиков, гистограмм, боксовых диаграмм и рассеяния данных		
apply(), map(), merge(), join()	для применения пользовательских функций к данным, сопоставления значений и объединения данных		

Pandas также поддерживает множество других функций для работы с временными рядами, категориальными данными, географическими данными и др.

ДЕМОНСТРАЦИЯ

Примеры исследования на тестовых данных

Краткий словарь программиста

Pandas — высокоуровневая Python библиотека для анализа данных.

Series — объект библиотеки pandas, одномерные структуры данных с дополнительными возможностями («одномерный ndarray»).

DataFrame в Pandas — двумерная структура данных, таблица с возможностью хранения разных типов (числа, строки, boolean и др.). DataFrame позволяет манипулировать данными, выполнять агрегирующие операции, фильтрацию, сортировку, визуализацию данных.

Файл CSV – это особый вид файла, который позволяет структурировать большие объемы данных.

Пропущенные значения – незаполненные, «пустые» ячейки в данных.

Выбросы — это данные, которые сильно отличаются от общего распределения.

Полезные ссылки

- 1. Шпаргалка по pandas. URL: https://habr.com/ru/companies/ruvds/articles/494720/
- 2. Панды Упражнения, Практика, Решение. URL: http://kodesource.top/python-exercises/pandas/index.php
- 3. Наборы данных для анализа. URL: https://www.kaggle.com/datasets
- 4. Пропущенные значения. URL: https://www.dmitrymakarov.ru/data-analysis/nan-06/?ysclid=lx2eh242lk94041346#12 -udalenie-strok
- 5. Кодирование категориальных переменных. URL: https://www.dmitrymakarov.ru/data-analysis/encoding-10/
- 6. Выбросы в данных. URL: https://www.dmitrymakarov.ru/data-analysis/outliers-09/
- 7. Обработка пропущенных значений. URL: https://education.yandex.ru/handbook/data-analysis/article/obrabotka-propushennyh-znachenij

