Second Order Linear Egynations
Roots
Distinct real nots $y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
Equal real mots $y(x) = c_1 e^{r_1 x} + c_2 x e^{r_1 x}$
Complex conjugate nots $y(x) = e^{ax}(C_1 \cos \beta x) + C_2 \sin (\beta x)$
Where r= x + Bi
QV Find the general solution to 2nd OE
y"+5y+4=D
r²+5r+4
(2+r++r++=D
r(r+1)+4(r+1)=0
(r+i)(r+4)=0
r=-1,r=-4
$y(x) = C_1 e^{c_1 x} + C_2 e^{c_2 x}$ $y(x) = C_1 e^{c_1 x} + C_2 e^{c_2 x}$
$y(x) = C_1 e^{(-1)x} + C_2 e^{(-4)x}$
$y(x) = C_1 e^{-x} + C_2 e^{-4x}$

Reduction of Orders
y"-2y'+y=0 if y=ex
Assuming that 1/2=uy
12= ve
$\frac{1}{2} = \sqrt{e^x + ve^x}$ $\frac{1}{2} = \sqrt{e^x + ve^x} + \sqrt{e^x + ve^x}$
12 = 111ex + 211ex + 11ex
Plugging this into the equation
$v''e^{x} + 2v'e^{x} + ve^{x} - 2[v'e^{x} + ve^{x}] + ve^{x} = 0$ $v''e^{x} + 2v'e^{x} + ve^{x} - 2v'e^{x} + 2ve^{x} + 2ve^{x} = 0$
V11 6x = D
Substituting w=v'/: w'=v"
$we^{x}=0$
OIN = U
W = C

If w= C, recall that w=v
Integrating w should give v
Swdx = Scdx = CX+ K
Assuming constants (W) C= 1 \$ K=0
(1) x + D = x
V = X $V = VY$
$y_2 = xy_1 y_2 = xe^x$
$\int_{-\infty}^{\infty} y_2 = C_1 e^{2x} + C_2 x e^{2x}$
Undefermined coefficients for homogenous equation
Find the general solution to the equation
$y'' + 3y' = 2x - 6e^{-3x}$
Firstly solving the LHS
$r^2 + 3r = 0$
r(r+3)=0
r=0,r=-3

As the values are unequal
As the values are unequal $Y_c = C_1e^{r_1x} + C_2e^{r_2x}$
$y_{c} = c_{1}e^{0x} + c_{2}e^{-3x}$
1 - C, C1) + C2 e-3t
Yc= C1+ C2e -32
Marie ha Dil Challance and had a
Matching the RHS to deduce a particular guess from 25c-6e-35c becomes
from 22 - Ge becomes
$Y_p = Ax + B + Ce^{-3x}$
\ \
1p= (Ax+B)x+ce-3x(x)
V - A-C2 1 D-C 1 (-10-30)
Yp= Ax2 +Bxf Cxe-3x
Yp!= 2Ax +B + Ce-3x -3Cxe-3x
$Vp'' = 2A + 0 - (0) - (+3Ce^{-3x}) - [(-3)[-3Cxe^{-3x}][-3Ce^{-3x}]$
4p = 2A - 6Ce-3x + 9Cxe-3x
2A-6Ce-3x+9Cxe-3x+3[2Ax+B+Ce-3x-3cxe-3x]
, ,
= 2A-6Ce ^{-3x} +9Cxe ^{-3x} +6Ax+3B+3Ce ^{-3t} -9cxe ^{-3x}
$=2A+3B+6AX-3Ce^{-3C}$

$$2A + 3B + 6Ax - 3Ce^{-3x} = 2x - 6e^{-3x}$$

$$2A + 8B = 0 \qquad 0$$

$$6A = 2 \qquad -6$$

$$-3C = -6 \qquad -6$$

$$4 = \frac{1}{3} \qquad 1 = \frac{1}{3} + 3B = 0$$

$$\frac{1}{3} + 3B =$$

Variation of parameters for non homogenous egn
Find the solution of the differential egn
$y'''-2y'+y=3e^{2x}$
Rewrite the LHS
r ² -2r+1 r ² -r-r+1
$r^{2}-2r+1$ $r^{2}-r-r+1$ $r(r-1)-1(r-1)$ $(r-1)(r-1)$ = 1(twice)
Since the roots are equal
$\frac{Y_{c}(x) = C_{1}e^{c_{1}x} + C_{2}e^{c_{2}x}X}{T_{c}}$
$\frac{1}{100} = C_1 e^x + C_2 x e^x$
Recall that $u_{1}Y_{1}+u_{2}Y_{2}=0 \not= u_{1}Y_{1}+u_{2}Y_{2}=g(x)$
From Yc(x)
$[y_1,y_2] = [e^x, xe^x]$
$[y_1, y_2] = [e^x, e^x + xe^x]$
$\therefore \text{ M, ex + U, xex = 0} \qquad -0$
$- u_1 e^x + u_2 (e^x + xe^x) = 3e^x - (2)$

Taking 2 from (1)

$$u_{2}e^{x} + u_{3}xe^{x} - y_{2}xe^{x} = 3e^{x}$$
 $u_{2}^{\dagger}e^{x} = 3e^{x}$
 $u_{2}^{\dagger} = 3e^{x}$
 $u_{2}^{\dagger} = 3e^{x}$
 $u_{1}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{1}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{1}^{\dagger}e^{x} - 3(xe^{x}) = 0$
 $u_{2}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{3}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{4}^{\dagger}e^{x} - 3(xe^{x}) = 0$
 $u_{5}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{1}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{2}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{3}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{4}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{5}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{7}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{1}^{\dagger}e^{x} + 3(xe^{x}) = 0$
 $u_{2}^{\dagger}e^{x} + 3(xe^{x}) = 0$

 $y = y_c(x) + y_p(x)$ $y = c_1 e^x + c_2 x e^x - 3x e^x + 3x e^x \ln |x|$