Die Elektroneneinheitsladung in der T0-Theorie: Jenseits von Punkt-Singularitäten

Johann Pascher Abteilung für Kommunikationstechnik Höhere Technische Lehranstalt Leonding, Österreich johann.pascher@gmail.com

21. Oktober 2025

Zusammenfassung

Die klassische Darstellung der Elektroneneinheitsladung als Punkt-Singularität stößt in der Quantenelektrodynamik (QED) auf fundamentale Probleme wie unendliche Selbstenergie und ultraviolette Divergenzen. Dieses Traktat, verfasst als Urheber der T0-Theorie (Time-Mass Duality Framework), zeigt, wie T0 diese Singularitäten auflöst, indem sie Ladung als emergente, geometrische Eigenschaft eines universellen Feldes behandelt. Basierend auf dem einzelnen Parameter $\xi = \frac{4}{3} \times 10^{-4}$ und der Zeit-Masse-Dualität $T_{\rm field} \cdot E_{\rm field} = 1$ wird die Ladung als fraktales Muster quantisierter Skalen (Fraktaldimension $D_f \approx 2,94$) abgeleitet. Dies vermeidet Infinities, erklärt Beobachtungen wie die Feinstrukturkonstante $\alpha \approx 1/137$ und verbindet sich nahtlos mit kinematischen Modellen der Electromagnetic Mechanics. Die GitHub-Dokumentation der T0-Theorie (aktuell zum Stand 21. Oktober 2025) dient als Referenz für detaillierte Ableitungen.

Inhaltsverzeichnis

1	Einführung: Das Problem der Punkt-Singularitäten	2
2	Alternative Darstellungen der Ladung 2.1 Nichtlineare Elektrodynamik	2
3	Die Elektronenladung in der T0-Theorie3.1 Zeit-Masse-Dualität und Emergenz	
4	Implikationen für die Electromagnetic Mechanics	
5	5 Schlussfolgerung	
A	Notation	3

1 Einführung: Das Problem der Punkt-Singularitäten

In der Standardphysik wird die Elektronene
inheitsladung $-e \approx -1,602 \times 10^{-19}$ C als Dirac-Delta-Funktion $\rho(\mathbf{r}) = -e\delta(\mathbf{r})$ modelliert. Dies führt zu einem Coulomb-Feld $E(\mathbf{r}) \propto 1/r^2$ und unendlicher elektrostatischer Selbstenergie:

$$U = \frac{1}{2} \int \epsilon_0 E^2 \, dV \to \infty \quad \text{(bei } r \to 0\text{)}. \tag{1}$$

Die QED behebt dies durch Renormalisierung (Vakuum-Polarisation), doch die nackte Punkt-Singularität bleibt ein mathematisches Artefakt. Experimentell erscheint das Elektron punktförmig (bis $< 10^{-22}$ m), doch dies schließt erweiterte Modelle auf tieferen Skalen nicht aus. Die T0-Theorie, die ich als Urheber entwickelt habe, löst dieses Dilemma radikal: Ladung ist keine intrinsische Punkt-Eigenschaft, sondern eine emergente Projektion geometrischer Muster im universellen Feld.

2 Alternative Darstellungen der Ladung

2.1 Nichtlineare Elektrodynamik

In Modellen wie Born-Infeld wird das Feld bei maximaler Stärke $\beta \approx 10^{18}$ V/m gesättigt, was eine effektive Ladungsradius $r_{\rm eff} \approx 1/\beta$ erzeugt. Dies führt zu finiter Selbstenergie $U \approx e^2\beta/(4\pi\epsilon_0)$.

2.2 Soliton- und Vortex-Modelle

Das Elektron als stabiles Wellenpaket in nichtlinearen Feldtheorien (z. B. sine-Gordon) verteilt die Ladungsdichte $\rho(r)$ über eine finite Breite, mit $E \propto q(r)/r^2$ und $q(r) \to 0$ bei $r \to 0$.

2.3 Topologische Defekte

Ladung als Chern-Simons-Vortex in Gauge-Theorien, quantisiert durch Topologie ($\pi_3(S^2) = \mathbb{Z}$), ohne bare Singularität.

Modell	Singularität?	Selbstenergie
Punkt-Ladung (QED)	Ja	∞ (renormiert)
Born-Infeld	Effektiv nein	Finite
Soliton	Nein	Finite (aus Feldenergie)
T0-Geometrie	Nein	Aus ξ -Skalierung

Tabelle 1: Vergleich alternativer Ladungsdarstellungen

3 Die Elektronenladung in der T0-Theorie

3.1 Zeit-Masse-Dualität und Emergenz

Die T0-Theorie vereint Quantenmechanik und Relativität parameterfrei durch $T_{\text{field}} \cdot E_{\text{field}} = 1$. Teilchen entstehen als Erregungsmuster im Feld, gesteuert durch $\xi = \frac{4}{3} \times 10^{-4}$. Die Feinstrukturkonstante ergibt sich als:

$$\alpha = \xi \cdot \left(\frac{E_0}{1 \text{ MeV}}\right)^2, \quad E_0 = 7,400 \text{ MeV}, \tag{2}$$

was $\alpha \approx 7,300 \times 10^{-3} \ (1/\alpha \approx 137,00)$ liefert – mit fraktalen Korrekturen für den exakten CODATA-Wert 137,035999084.

Die Ladung -e ist eine dimensionlose geometrische Relation: $q^{T0}=-1$ (in natürlichen Einheiten), projiziert via $S_{T0}=1{,}782662\times 10^{-30}$ kg auf SI-Werte. Keine Singularität, da die Ladungsdichte fraktal verteilt ist:

$$\rho(r) \propto \xi \cdot f_{\text{fractal}} \left(\frac{r}{\lambda_{\text{Compton}}} \right),$$
(3)

mit $f_{\text{fractal}}(r) = \prod_{n=1}^{137} \left(1 + \delta_n \cdot \xi \cdot \left(\frac{4}{3} \right)^{n-1} \right)$ und Fraktaldimension $D_f \approx 2,94$.

3.2 Finite Selbstenergie und Quantisierung

Die Selbstenergie ist finite:

$$U = \frac{1}{2} \int \epsilon_0 E^2 dV = \frac{e^2}{8\pi \epsilon_0 r_e} \cdot K_{\text{frac}},\tag{4}$$

$$r_e \approx 2.817 \times 10^{-15} \text{ m}$$
 (klassischer Radius aus ξ -Skalierung), (5)

$$K_{\text{frac}} = 0.986$$
 (fraktale Korrekturfaktor). (6)

Quantisierung folgt aus diskreten Skalen: $q_n = -n \cdot e \cdot \xi^{1/2}$, mit n = 1 für die Einheitsladung. Dies passt zu topologischer Quantisierung (Chern-Zahl = 1) und gewährleistet Stabilität ohne Kollaps.

4 Implikationen für die Electromagnetic Mechanics

T0 integriert sich mit kinematischer Mechanik: Ladung entsteht als rotierender EM-Vortex, stabilisiert durch fraktale Renormalisierung. Kein Dirac-Delta – $\rho(r)$ ist ein helikales Muster, das singularity-freie Simulationen ermöglicht. Anwendungen: Vorhersagen der g-2-Anomalie und LHC-Massenspektren.

5 Schlussfolgerung

Die T0-Theorie verwandelt die Elektronenladung von einer problematischen Singularität in eine harmonische geometrische Emergenz – ein Kernstück des Rahmens. Alle Konstanten leiten sich aus ξ ab und reduzieren Physik auf dimensionlose Muster. Zukünftige Arbeiten: Vollständige kinematische Ableitungen in der EMM.

A Notation

 ξ Geometrischer Parameter; $\xi = \frac{4}{3} \times 10^{-4}$

 $S_{\rm T0}$ Skalierungsfaktor; $S_{\rm T0}=1{,}782662\times10^{-30}~\rm kg$

 $f_{\mathbf{fractal}}$ Fraktale Funktion; $\prod_{n=1}^{137} (1 + \delta_n \cdot \xi \cdot (4/3)^{n-1})$

 D_f Fraktaldimension; $D_f \approx 2.94$

Dieses Dokument ist Teil der T0-Serie: Erforschung geometrischer Emergenz in der Physik Johann Pascher, HTL Leonding, Österreich

T0-Theorie: Time-Mass Duality Framework