Best paper award

DENSELY CONNECTED CONVOLUTIONAL NETWORKS

Gao Huang*, Zhuang Liu*, Laurens van der Maaten, Kilian Q. Weinberger

Facebook Al Research

CVPR 2017

CONVOLUTIONAL NETWORKS

STANDARD CONNECTIVITY

RESNET CONNECTIVITY

Identity mappings promote gradient propagation.

: Element-wise addition

DENSE CONNECTIVITY

: Channel-wise concatenation

DENSE AND SLIM

k: Growth Rate

FORWARD PROPAGATION

COMPOSITE LAYER IN DENSENET

COMPOSITE LAYER IN DENSENET

WITH BOTTLENECK LAYER

Higher parameter and computational efficiency

DENSENET

ADVANTAGES OF DENSE CONNECTIVITY

ADVANTAGE I: STRONG GRADIENT FLOW

Implicit "deep supervision"

ADVANTAGE 2: PARAMETER & COMPUTATIONAL EFFICIENCY

ResNet connectivity:

DenseNet connectivity:

#parameters:

ADVANTAGE 3: MAINTAINS LOW COMPLEXITY FEATURES

Standard Connectivity:

Classifier uses most complex (high level) features

ADVANTAGE 3: MAINTAINS LOW COMPLEXITY FEATURES

RESULTS

RESULTS ON CIFAR-10

ResNet (110 Layers, 1.7 M)

ResNet (1001 Layers, 10.2 M)

DenseNet (100 Layers, 0.8 M)

DenseNet (250 Layers, 15.3 M)

RESULTS ON CIFAR-100

ResNet (110 Layers, 1.7 M)

ResNet (1001 Layers, 10.2 M)

DenseNet (100 Layers, 0.8 M)

DenseNet (250 Layers, 15.3 M)

RESULTS ON IMAGENET

MULTI-SCALE DENSENET (Preview)

Multi-Scale DenseNet: [Huang, Chen, Li, Wu, van der Maaten, Weinberger] (arXiv Preprint: 1703.09844)

MULTI-SCALE DENSENET (Preview)

Other implementations:

Our Caffe Implementation

Our memory-efficient Caffe Implementation.

Our memory-efficient PyTorch Implementation.

PyTorch Implementation by Andreas Veit.

PyTorch Implementation by Brandon Amos.

MXNet Implementation by Nicatio.

MXNet Implementation (supports ImageNet) by Xiong Lin.

Tensorflow Implementation by Yixuan Li.

Tensorflow Implementation by Laurent Mazare.

Tensorflow Implementation (with BC structure) by Illarion Khlestov.

Lasagne Implementation by Jan Schlüter.

Keras Implementation by tdeboissiere.

Keras Implementation by Roberto de Moura Estevão Filho.

Keras Implementation (with BC structure) by Somshubra

Majumdar.

Chainer Implementation by Toshinori Hanya.

Chainer Implementation by Yasunori Kudo.

REFERENCES

- Kaiming He, et al. "Deep residual learning for image recognition" CVPR 2016
- Chen-Yu Lee, et al. "Deeply-supervised nets" AISTATS 2015
- Gao Huang, et al. "Deep networks with stochastic depth" ECCV 2016
- Gao Huang, et al. "Multi-Scale Dense Convolutional Networks for Efficient Prediction" *arXiv* preprint arXiv:1703.09844 (2017)
- Geoff Pleiss, et al. "Memory-Efficient Implementation of DenseNets", arXiv preprint arXiv: 1707.06990 (2017)