stsm-usthb.blogspot.com

INTÉGRALES ET PRIMITIVES

I. Primitives:

1°) Définition :

Définition:

Soit f une fonction continue sur un intervalle I. On appelle primitive de f sur I, toute fonction F dérivable sur I, dont la dérivée est f.

On note F' = f ou F'(x) = f(x)

Exemple:

La fonction f définie sur \mathbb{R} par f(x) = 2x a pour primitive F définie sur \mathbb{R} par $F(x) = x^2$.

En effet *F* est dérivable sur \mathbb{R} et on a F'(x) = 2x = f(x).

On aurait pu choisir F définie sur \mathbb{R} par $F(x) = x^2 + 5$ ou $F(x) = x^2 - \frac{1}{3}$ ou plus généralement, si k est une constante réelle, $F(x) = x^2 + k$. Une fonction n'a pas une seule primitive.

2°) Propriétés :

Théorème:

Si f est une fonction continue sur un intervalle I et si a appartient à I, alors la fonction $\varphi: x \mapsto \int_a^x f(t) dt$ est une primitive de f sur I. (pour tout x de I, $\varphi'(x) = f(x)$)

Preuve : (**ROC** : on démontre le théorème précédent dans le cas où f est continue et croissante sur I.)

Soit x_0 un réel de I et h un réel tel que $x_0 + h$ est dans I.

$$\varphi(x_0 + h) - \varphi(x_0) = \int_a^{x_0 + h} f(t) dt - \int_a^{x_0} f(t) dt = \int_{x_0}^a f(t) dt + \int_a^{x_0 + h} f(t) dt = \int_{x_0}^{x_0 + h} f(t) dt$$

• si h > 0; $f(x_0) \le f(t) \le f(x_0 + h)$ car f est croissante)

donc, d'après l'inégalité de la moyenne $f(x_0) \times h \leqslant \int_{x_0}^{x_0+h} f(t) dt \leqslant f(x_0+h) \times h$

• Si h < 0; $f(x_0 + h) \le f(t) \le f(x_0)$ car f est croissante)

donc, d'après l'inégalité de la moyenne
$$f(x_0 + h) \times h \leq \int_{x_0}^{x_0 + h} f(t) dt \leq f(x_0) \times h$$

or, comme f est continue en x_0 , $\lim_{h\to 0} f(x_0+h) = f(x_0)$,

$$\operatorname{donc} f(x_0) \leqslant \frac{\varphi(x_0 + h) - \varphi(x_0)}{h} \leqslant f(x_0 + h) \text{ ou } f(x_0 + h) \leqslant \frac{\varphi(x_0 + h) - \varphi(x_0)}{h} \leqslant f(x_0) \text{ suivant le signe de } h.$$

D'après le théorème des gendarmes on arrive à $\lim_{h\to 0} \frac{\varphi(x_0+h)-\varphi(x_0)}{h} = f(x_0)$

On en déduit alors que φ est dérivable en x_0 et que $\varphi'(x_0) = f(x_0)$.

Théorème :

- Toute fonction continue sur *I* admet une infinité de primitives sur *I*.
- Si F est l'une d'elles, alors l'ensemble des primitives de f sur I est l'ensemble des fonctions G telles que G = F + k(où k est une constante).

Démonstration:

Soit F est une primitive de f, on peut vérifier que (F + k)' = F' + k' = F' + 0 = F' = f donc F + k est une primitive de f.

Soit G est une autre primitive de f. On définit H = G - F; on a sans problème H' = G' - F' = f - f = 0. H' est nulle sur I donc H est constante, c'est à dire G - F = k, ou encore G = F + k.

Théorème

Si f est une fonction continue sur un intervalle I, et si $a \in I$, la fonction F définie sur I par : $F(x) = \int_{-\infty}^{\infty} f(t) dt$ est l'unique primitive de f s'annulant en a.

Preuve

Existence: Le théorème précèdent prouve bien que $F(x) = \int_{a}^{x} f(t) dt$ est une primitive de f.

De plus
$$F(a) = \int_{a}^{a} f(t) dt = 0.$$

<u>Unicité</u>: Supposons qu'il existe une autre fonction G, primitive de f s'annulant en a. On a F' = f et G' = f donc (F-G)'=0 donc F-G=k donc F=G+k. Comme F(a)=G(a)=0, on trouve k=0 donc F=G d'où l'unicité.

Remarque:

En fait, on pourrait énoncer le théorème comme ceci :

Si f est une fonction **continue** sur un intervalle I, α un réel de I et β un réel, alors il existe une unique primitive F de f sur *I* telle que $F(\alpha) = \beta$.

Il suffit en effet de prendre $F(x) = \int_{\alpha}^{x} f(t) dt + \beta$.

Exemple:

Sur \mathbb{R} , l'ensemble des primitives de f telle que $f(x) = \sin(x)$ est l'ensemble des fonctions de la forme $F(x) = -\cos(x) + C$ où C est une constante réelle. Pour déterminer la primitive F de f telle que $F(\pi) = 2$ il suffit d'écrire $F(\pi) = -\cos(\pi) + C = 2$, ce qui nous permet de déduire que C = 1. L'unique primitive F de f telle que $F(\pi) = 2$ est donc $F(x) = -\cos(x) + 1.$

II. Intégrales et primitives :

Propriété

Si f est une fonction continue sur un intervalle I, alors pour tous réels a et b dans I, on a : $\int_{a}^{b} f(t) dt = F(b) - F(a)$ où F est une primitive de f sur I.

Preuve:

Nous avons vu que $\varphi: x \mapsto \int_a^x f(t) dt$ est une primitive de f. $\varphi(b) - \varphi(a) = \int_a^b f(t) dt - \int_a^a f(t) dt = \int_a^b f(t) dt$. De plus, nous avons vu que les primitives de f différent entre elles d'une constante, donc quelle que soit F une autre

primitive de f, $F = \varphi + k$ où k est un réel.

Donc
$$F(b) - F(a) = (\varphi(b) + k) - (\varphi(a) + k) = \varphi(b) - \varphi(a) = \int_{a}^{b} f(t) dt$$
.

Nous avons donc bien $\int_{a}^{b} f(t) dt = F(b) - F(a)$ quelle que soit F primitive de f.

Remarque:

On note aussi $F(b) - F(a) = [F(t)]_a^b$ qui se lit : « F(t) pris entre a et b ».

Exemples:

$$\int_{0}^{4} t + 4 \, dt = \left[\frac{t^{2}}{2} + 4t \right]_{0}^{4} = \frac{4^{2}}{2} + 4 \times 4 - \frac{0^{2}}{2} - 4 \times 0 = 24$$

$$\int_{2}^{1} 3x^{3} \, dx = \left[\frac{3}{4}x^{4} \right]_{2}^{-1} = \frac{3}{4}(-1)^{4} - \frac{3}{4}(2)^{4} = \frac{3}{4} - \frac{3}{4} \times 16 = -\frac{45}{4}$$

III. Formulaires :

1°) Tableau des primitives usuelles :

On déduit du tableau des dérivées usuelles le tableau suivant :

Fonction f	Une primitive F		
f(x) = k (constante)	F(x) = kx		
f(x) = x	$F(x) = \frac{1}{2}x^2$		
$f(x) = x^2$	$F(x) = \frac{1}{3}x^3$		
$f(x) = x^n \ (n \in \mathbb{N})$	$F(x) = \frac{1}{n+1}x^{n+1}$		
$f(x) = \frac{1}{x^n} (n \in \mathbb{N}, n > 1)$	$F(x) = -\frac{1}{(n-1)x^{n-1}}$		
$f(x) = \frac{1}{x}$	$F(x) = \ln x$		
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$		
$f(x) = e^x$	$F(x)=e^x$		
$f(x) = \cos(x)$	$F(x) = \sin(x)$		
$f(x) = \sin(x)$	$F(x) = -\cos(x)$		

Ces deux lignes peuvent se résumer en une seule :

Fonction f	Une primitive F	
$f(x) = x^n \ (n \in \mathbb{Z} \setminus \{-1\})$	$F(x) = \frac{1}{n+1}x^{n+1}$	

Attention toutefois au domaine de définition, si $n \le -2$, f et F ne sont définies que sur \mathbb{R}^* .

2°) Primitives de fonctions composées usuelles :

On déduit des dérivées des fonctions composées usuelles le tableau suivant :

Si f est de la forme	avec u dérivable sur I telle que alors une primitive F est de la forme		F est de la forme
$u^n u'(n \in \mathbb{Z} \setminus \{-1\})$	u ne s'annule pas sur I quand n ≤ -2	$\frac{1}{n+1}u^{n+1}$	
$\frac{u'}{u^2}$	u ne s'annule pas sur I	$-\frac{1}{u}$	
$\frac{u'}{\sqrt{u}}$	u > 0 sur I	$2\sqrt{u}$	
$\frac{u'}{u}$	(i) $u > 0$ sur I (ii) $u < 0$ sur I	(i) ln <i>u</i> (ii) ln (- <i>u</i>)	Dans tous les cas ln u
u'e"		e ^u	
u'sin (u)		-cos (u)	
u'cos (u)		sin (u)	

III. Intégration par parties :

Propriété:

Si u et v sont deux fonctions dérivables sur un intervalle I ($a \in I$, $b \in I$), telles que u' et v' soient continues sur I, alors :

$$\int_{a}^{b} u(t) \times v'(t) dt = \left[u(t) \times v(t) \right]_{a}^{b} - \int_{a}^{b} u'(t) \times v(t) dt$$

Preuve:

D'après la formule : (uv)' = u'v + uv' donc : uv' = (uv)' - u'v

En intégrant terme à terme :
$$\int_a^b u(t) \times v'(t) dt = \int_a^b (u(t) \times v(t))' dt - \int_a^b u'(t) \times v(t) dt$$

Remarque:

On n'utilise cette méthode de calcul que lorsque la primitive de u'v est plus facile à trouver que celle de uv'.

Exemple:

$$\int_{0}^{\pi} t \sin t \, dt = \int_{a}^{b} u(t) \times v'(t) \, dt \text{ avec } u(t) = t \text{ et } v'(t) = \sin t \text{ ; donc } u'(t) = I \text{ et } v(t) = -\cos t.$$
On a donc
$$\int_{0}^{\pi} t \sin t \, dt = \int_{0}^{\pi} u(t) \times v'(t) \, dt = \left[u(t) \times v(t) \right]_{0}^{\pi} - \int_{0}^{\pi} u'(t) \times v(t) \, dt$$

$$= \left[-t \times \cos t \right]_{0}^{\pi} - \int_{0}^{\pi} -\cos t \, dt$$

$$= \left[-t \times \cos t \right]_{0}^{\pi} + \int_{0}^{\pi} \cos t \, dt$$

$$= \left[-t \times \cos t \right]_{0}^{\pi} + \left[\sin t \right]_{0}^{\pi}$$

$$= -\pi \cos \pi + 0 \times \cos 0 + \sin \pi - \sin 0 = \pi$$

IV. Applications:

1°) Aire d'un domaine compris entre deux courbes :

Soient f et g deux fonctions continues telles que $f(x) \le g(x)$ sur l'intervalle [a; b].

L'aire algébrique du domaine délimité par les courbes C_f et C_g et les droites d'équations x = a et x = b est $A = \int_a^b |g(x) - f(x)| dx$.

2°) Calcul de volumes :

Dans l'espace muni du repère orthogonal $(O, \vec{i}, \vec{j}, \vec{k})$, l'unité de volume est le volume du pavé droit construit à partir des points O, I, J et K avec $\overrightarrow{OI} = \vec{i}$, $\overrightarrow{OJ} = \vec{j}$ et $\overrightarrow{OK} = \vec{k}$. Soit Σ un solide limité par les plans d'équations z = a et z = b avec a < b.

Si l'intersection de Σ avec un plan de côte z est une surface dont l'aire est donnée par S(z), alors le volume de Σ est $V = \int_{a}^{b} S(z) dz$.