九州大学大学院数理学府 平成 28 年度修士課程入学試験 専門科目

$[3](1)$ $orall q\in \mathbb{Q}(\sqrt{2})$ に対してある $a,b\in \mathbb{Q}$ が存在して $q=a+b\sqrt{2}$ とかける.	
$lpha^2-2=\sqrt{2}\in K$ であるから $a+b(lpha^2-2)=q\in K$ であるので $\mathbb{Q}(\sqrt{2})\subset K$ である.	
(2) $f(x)=(x^2-2)^2-2$ とすると $f(\alpha)=0$ である. Eisenstein の定理より $f(x)$ は $\mathbb Q$ 上既約である.	
$\mathbb{Q}\subset \mathbb{Q}(\sqrt{2})\subset K$ は体の拡大であり $,\mathbb{Q}(\sqrt{2}) eq K$ なので	
$[K:\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=[K:\mathbb{Q}]$ であるから, $lpha$ の \mathbb{Q} 上の最小多項式の次数は 4 以上である.	
以上により, $lpha$ の $\mathbb Q$ 上の最小多項式は x^4-4x^2+1 である.	
(3) $\beta=\sqrt{2-\sqrt{2}}$ とおくと $\sqrt{2}=lpha^2-2=lpha\beta$ より $lpha-rac{2}{lpha}=eta\in K$ である.	
また $,-lpha,-eta\in K$ であるから $K/\mathbb Q$ は正規拡大である.	
x^4-4x^2+1 は重根を持たないので K/\mathbb{Q} は分離拡大である.	
従って、 K/\mathbb{Q} はガロア拡大である.	

$$[5](1) \ H_n(S^1 \times S^1; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} \ (n = 0, 2) \\ \mathbb{Z} \oplus \mathbb{Z} \ (n = 1) \end{cases}$$
 である.
$$\{0\} \ (n \neq 0, 1, 2)$$
 (2) $H_n(S^1 \vee S^1; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} \ (n = 0) \\ \mathbb{Z} \oplus \mathbb{Z} \ (n = 1) \end{cases}$ である.
$$\{0\} \ (n \neq 0, 1)$$
 (3) $H_n(S^1 \times S^1, S^1 \vee S^1; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} \ (n = 2) \\ \{0\} \ (n \neq 2) \end{cases}$ である.

$$(2)$$
 $H_n(S^1\vee S^1;\mathbb{Z})\cong egin{cases} \mathbb{Z}\ (n=0) \ \mathbb{Z}\oplus\mathbb{Z}\ (n=1) \end{cases}$ である. $\{0\}\ (n
eq 0,1)$

$$(3)$$
 $H_n(S^1 \times S^1, S^1 \vee S^1; \mathbb{Z}) \cong egin{cases} \mathbb{Z} & (n=2) \ \{0\} & (n \neq 2) \end{cases}$ である.