Job No.: Mark Chamberlian - 1

Address: 112 Waikakahi Valley Road, Waimate, New Zealand

Latitude: -44.811772

Longitude: 170.975002

Date: 30/01/2024

Elevation: 107 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N4	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.9 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	43.39 m/s
Wind Pressure	1.13 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp,i = 0.6588

For roof CP,e from 0 m To 4.45 m Cpe = -0.9 pe = -0.71 KPa pnet = -1.34 KPa

For roof CP,e from 4.45 m To 8.90 m Cpe = -0.5 pe = -0.40 KPa pnet = -1.03 KPa

For wall Windward Cp, i = 0.6588 side Wall Cp, i = -0.5735

For wall Windward and Leeward CP,e from 0 m To 19.2 m Cpe = 0.7 pe = 0.71 KPa pnet = 1.41 KPa

For side wall CP,e from 0 m To 4.45 m Cpe = pe = -0.65 KPa pnet = 0.04 KPa

Maximum Upward pressure used in roof member Design = 1.34 KPa

Maximum Downward pressure used in roof member Design = 0.90 KPa

Maximum Wall pressure used in Design = 1.41 KPa

Maximum Racking pressure used in Design = 1.22 KPa

Design Summary

Rafter Design Internal

Internal Rafter Load Width = 4800 mm Internal Rafter Span = 9250 mm Try Rafter 2x400x63 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.26 S1 Upward = 6.26

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	17.33 Kn-m	Capacity	73.78 Kn-m	Passing Percentage	425.74 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	61.60 Kn-m	Capacity	98.38 Kn-m	Passing Percentage	159.71 %
Mo.9D-WnUp	-57.24 Kn-m	Capacity	-122.98 Kn-m	Passing Percentage	214.85 %

First Page

V _{1.35D}	7.49 Kn	Capacity	85.9 Kn	Passing Percentage	1146.86 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	26.64 Kn	Capacity	114.54 Kn	Passing Percentage	429.95 %
V _{0.9D-WnUp}	-24.75 Kn	Capacity	-143.18 Kn	Passing Percentage	578.51 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 17.825 mm Deflection under Dead and Service Wind = 31.355 mm Limit by Woolcock et al, 1999 Span/240 = 39.17 mm Limit by Woolcock et al, 1999 Span/100 = 94.00 mm

Reactions

Maximum downward = 26.64 kn Maximum upward = -24.75 kn

Rafter to Pole Connection check

Bolt Size = M16 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 80 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 126 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 51.75 Kn > -24.75 Kn

Intermediate Design Sides

Intermediate Spacing = 2350 mm Intermediate Span = 4525 mm Try Intermediate 2x250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward = 1.00 S1 Downward = 12.68 S1 Upward = 0.90

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 4.24 Kn-m
 Capacity
 11.66 Kn-m
 Passing Percentage
 275.00 %

 V0.9D-WnUp
 3.75 Kn-m
 Capacity
 40.2 Kn-m
 Passing Percentage
 1072.00 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 42.145 mm

Limit by Woolcock et al, 1999 Span/100 = 45.25 mm

Second page

Reactions

Maximum = 3.75 kn

Girt Design Front and Back

Girt's Spacing = 0 mm

Girt's Span = 2400 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.00 S1 Downward =11.27 S1 Upward =Infinity

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 0.00 Kn-m

Capacity

0.00 Kn-m

Passing Percentage

NaN %

 $V_{0.9D\text{-W}n\text{Up}}$ 0.00 Kn-m Capacity 16.08 Kn-m Passing Percentage Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.00 mm

Limit by Woolcock et al, 1999 Span/100 = 24.00 mm

Sag during installation = 2.01 mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2350 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.76 S1 Downward =11.27 S1 Upward =18.21

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.27 Kn-m Capacity 2.83 Kn-m Passing Percentage 222.83 % $V_{0.9D-WnUp}$ 2.15 Kn-m Capacity 16.08 Kn-m Passing Percentage 747.91 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 4.72 mm

Limit by Woolcock et al. 1999 Span/100 = 23.50 mm

Sag during installation =1.85 mm

Reactions

Maximum = 2.15 kn

Middle Pole Design

Geometry

250 SED H5 (Minimum 275 dia. at Floor Level)	Dry Use	Height	4600 mm
Area	54091 mm2	As	40568.5546875 mm2
Ix	232952248 mm4	Zx	1774874 mm3
Iy	232952248 mm4	Zx	1774874 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 22.56 m^2

Dead	5.64 Kn	Live	5.64 Kn
Wind Down	20.30 Kn	Snow	14.21 Kn
Moment wind	26.30 Kn-m	Moment snow	5.28 Kn-m
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	778.92 Kn	PhiMnx Wind	51.54 Kn-m	PhiVnx Wind	96.07 Kn
PhiNcx Dead	467.35 Kn	PhiMnx Dead	30.93 Kn-m	PhiVnx Dead	57.64 Kn
PhiNcx Snow	623.13 Kn	PhiMnx Snow	41.23 Kn-m	PhiVnx Snow	76.85 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.55 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.30 < 1 OK$

Deflection at top under service lateral loads = 38.62 mm < 46.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30))/(1+\sin(30))$				
Kp =	$(1+\sin(30))/(1-\sin(30))$				

Geometry For Middle Bay Pole

Ds =	0.6 mm	Pile Diameter
L=	2000 mm	Pile embedment length
f1 =	3675 mm	Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 26.30 Kn-m Moment Snow = Kn-m Shear Wind = 7.16 Kn Shear Snow = 5.28 Kn

Pile Properties

Safety Factory 0.55

Hu = 12.56 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 27.74 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.95 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2000) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2000)

Skin Friction = 32.31 Kn

Weight of Pile + Pile Skin Friction = 36.32 Kn

Uplift on one Pile = 25.15 Kn

Uplift is ok