Réseaux de neurones Partie 2b Multi-layer perceptron (MLP)

Bruno Bouzy

bruno.bouzy@parisdescartes.fr

Avril 2022

UE IA L3

Diagrammes de Hinton

Soit un réseau à 3 neurones solution du XOR

- Un diagramme de Hinton visualise les poids des connexions du réseau
 - Carré noir : poids positif
 - Carré blanc : poids négatif
 - Taille du carré : valeur absolue du poids

Pourquoi ce réseau à 3 neurones ?

 Le tableau montre que ce réseau est solution du XOR

X	Υ	Α	f(A)	В	f(B)	С	f(C)
0	0	-0.5	0	-1.5	0	-0.5	0
0	1	+0.5	1	-0.5	0	+0.5	1
1	0	+0.5	1	-0.5	0	+0.5	1
1	1	+1.5	1	+0.5	1	-0.5	0

D'où viennent ces valeurs?

Hyperplans séparateurs et opérateurs logiques (1/2)

- 1ère couche : 2 hyperplans séparateurs (neurones A et B)
 - hp_A:
 - (0, 0) est négatif
 - (1, 0) (0, 1) (1, 1) sont positifs
 - x + y 0.5 > 0
 - hp_B:
 - (1, 1) est positif
 - (1, 0) (0, 1) (0, 0) sont négatifs
 - x + y 1.5 > 0

- 2ème couche : opérateurs logiques (neurone C)
 - Sur le résultat de A et NON B
 - -A-B-0.5>0

Hyperplans séparateurs et opérateurs logiques (2/2)

- Une autre solution
- 1ère couche : 2 hyperplans séparateurs (neurones A et B)
 - hp_A:
 - (0, 0) est négatif
 - (1, 0) (0, 1) (1, 1) sont positifs
 - x + y 0.5 > 0
 - hp_B:
 - (1, 1) est négatif
 - (1, 0) (0, 1) (0, 0) sont positifs
 - x + y 1.5 < 0

- 2ème couche : opérateurs logiques (neurone C)
 - Sur le résultat de A et B
 - -A+B-1.5>0
- Il y a d'autres solutions...

Vocabulaire

- Réseau Multi-Couches
- Multi-Layer Perceptron (MLP)
- Les entrées d'un neurone d'une couche N ne sont connectées qu'à des sorties de neurones de la couche N-1

Simuler un opérateur logique avec un neurone

OU logique

- Netz = Somme des entrées 0.5
 - Si une entrée au moins vaut 1, la somme sera > 0.5
 - < -0.5 sinon

ET logique

- Netz = Somme des entrées N + 0.5
 - N est le nombre d'entrées
 - Si toutes les entrées valent 1, somme N + 0.5 > 0.5
 - < -0.5 sinon

NON logique

Mettre le signe -1 pour cette entrée

Reconnaitre une zone convexe

- Les exemples + sont à l'intérieur de la zone
- Les exemples à l'extérieur

- On entoure la zone avec des hyperplans a, b, c
- On synthétise les résultats avec un ET logique

Avec un réseau à 2 couches

• 1ère couche : les hyperplans séparateurs

• 2 ème couche : l'opérateur logique

Reconnaître une union de zones convexes

• Les exemples + sont à l'intérieur d'une union de zones convexes

- On entoure chaque zone avec des hyperplans
- On synthétise avec des ET et des OU logiques

Avec un réseau à 3 couches

• 1ere couche : hyperplans séparateurs

- 2ème couche : des ET logiques
- 3ème couche : un OU logique

Pratique et théorie (1/2)

- « théorie »
 - Preuve que l'on peut classifier avec telle ou telle architecture en suivant telle ou telle méthode
 - Par exemple, la mini-théorie sur les 2 ou 3 couches nécessaires pour classifier n'importe quoi avec des hyperplans des ET et de OU
 - Pourvu qu'il n'y ait pas de limitation sur le nombre de neurones en couche cachée, il est théoriquement possible de classer « à peu près n'importe quel ensemble d'exemples » avec un réseau à 1 couche cachée (c'est-àdire 2 couches en tout).
 - Référence à retrouver...

Pratique et théorie (2/2)

«pratique»

- Faire converger un réseau avec telle ou telle architecture, avec Backprop (ou amélioration)
 - Le réseau n'a pas d'à priori (il ne connait pas les ET et le OU, il les retrouve si besoin)
- La première couche contient les hyperplans nécessaires à la distinction des caractéristiques du problème
- Les couches supérieures abstraient des concepts sur les concepts des couches inférieures
- Il est inhumain de comprendre comment un réseau fonctionne à partir de ses poids finaux
- Un réseau de neurones reste une « boîte noire » qui marche ou pas.
- Le concepteur essaie des architectures et des variantes de Backprop qui sont des descentes de gradients

Les actions et observations du concepteur

- Les observations sont celles d'une descente de gradient
 - Le réseau converge-t-il?
 - · Oui : recommencer avec un pas d'apprentissage plus grand pour aller plus vite
 - Non:
 - Le pas d'apprentissage est-il trop grand?
 - Cela vaut-il le coup de relancer sur d'autres poids de départ ?
- Les actions
 - Changer la représentation des entrées
 - Augmenter le nombre de neurones en couches basses
 - Augmenter le nombre de couches
 - Utiliser une autre fonction d'activation?
 - Sigmoïde, ReLU, identité, autre ?
 - Utiliser des connexions résiduelles (sautant des couches)
 - Utiliser des réseaux convolutionnels ?
- Méthode expérimentale par essais erreurs

Conclusion

- Aujourd'hui, les réseaux de neurones constituent un outil très puissant de l'intelligence artificielle
- Ils ont été valorisés :
 - ces dernières décennies, par l'augmentation de la puissance des machines,
 - ces dernières années par l'utilisation de GPU en parallèle pour les réseaux convolutionnels
 - par l'amélioration des algorithmes de convergence
- La théorie repose sur des concepts
 - Anciens (1960 à 1990)
 - · Perceptrons, MLP
 - Récents (depuis 2010)
 - Réseaux convolutionnels
 - · Réseaux résiduels
 - ReLU
- Nombreux succès en IA :
 - Approximation de fonctions complexes (compliquées)
 - Traitement d'images
 - Traitement du langage naturel
 - Programmation des jeux
 - · AlfaGo, alfaZero