Projeto e Análise de Algoritmos I

Aula 11 - Coloração de Grafos

Lucas Nunes Alegre

Inalegre@inf.ufrgs.br

Instituto de Informática
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brasil
2025/1

Última Aula: Planaridade

Grafos Planares

• Fórmula de Euler

$$v + f = e + 2$$

• Teorema (Kuratowski): Um grafo simples é não-planar sss tem como subgrafo uma extensão do grafo $K_{3,3}$ ou K_5

Roteiro: Coloração de Grafos

- 1. Motivação e Aplicações
- 2. Definição
- 3. Número Cromático
- 4. Limites para o Número Cromático
- 5. Teorema das 5 Cores
- 6. Teorema das 4 Cores
- 7. Algoritmo Guloso

Vamos colorir os países da América do Sul de modo que países vizinhos tenham cores diferentes.

Foram necessárias 4 cores para colorir a América do Sul.

Nesta Aula:

Todo grafo planar (e.g., mapas) pode ser colorido com no máximo 4 cores!

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

Scheduling Problem:

- Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
- Professores querem agendar as datas das provas
- Restrição: nenhum aluno com mais de uma prova no mesmo dia
- Qual o menor número de dias de provas necessário?

	Bob	Alice	João	Maria
Grafos	X		х	
E.D.	X	X		x
Cálculo II				X
ARQ I			X	
Lógica		х		

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

	Bob	Alice	João	Maria	Grafos	E.D
Grafos	х		X			
E.D.	X	X		X		
Cálculo II				X	ARQ I	Lógica
ARQ I			x		Cála	.1_
Lógica		X			Cálculo	

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

Bob	Alice	João	Maria	Grafos —	E.D
x		X			
Х	Х		x		
			X	ARQ I	Lógic
		X		Cálculo	
	X			Calc	cuio
	X	X X X	X X X X	x x x x x x x x x x x x	X X X ARQ I

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

	Bob	Alice	João	Maria
Grafos	х		х	
E.D.	X	X		X
Cálculo II				X
ARQ I			х	
Lógica		X		

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

	Bob	Alice	João	Maria
Grafos	х		х	
E.D.	х	x		x
Cálculo II				х
ARQ I			X	
Lógica		x		

Sudoku

- Nodos: células do jogo
- Arestas: restrições
- Cores: valores de 1 a 4

1			
			2
		4	
	3		

1	2	3	4
3	4	1	2
2	1	4	3
4	3	2	1

- Alocação de Registradores
 - Considere o seguinte programa (com variáveis a, b, c, d, e) e 3 registradores (R1, R2, R3)
 - Como alocar as variáveis em registradores de modo a evitar conflitos temporais?
- Nodos: variáveis
- Arestas: restrição temporal entre variáveis
- Cores: registradores

- Alocação de Registradores
 - Considere o seguinte programa (com variáveis a, b, c, d, e) e 2 registradores (R1, R2)
 - Como alocar as variáveis em registradores de modo a evitar conflitos temporais?
- Nodos: variáveis
- Arestas: restrição temporal entre variáveis
- Cores: registradores

- Alocação de Registradores
 - Considere o seguinte programa (com variáveis a, b, c, d, e) e 2 registradores (R1, R2)
 - Como alocar as variáveis em registradores de modo a evitar conflitos temporais?
- Nodos: variáveis
- Arestas: restrição temporal entre variáveis
- Cores: registradores

- Alocação de Registradores
 - Considere o seguinte programa (com variáveis a, b, c, d, e) e 2 registradores (R1, R2)
 - Como alocar as variáveis em registradores de modo a evitar conflitos temporais?
- Nodos: variáveis
- Arestas: restrição temporal entre variáveis
- Cores: registradores

- Frequências de Torres de Rádio
 - Problema: Alocar frequências para torres de rádio.
 - Restrição: Evitar interferência de sinal entre torres próximas.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V \rightarrow C$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V\to C$ tal que, para todo $u,v\in V$,

$$\{u,v\} \in E \Rightarrow f(u) \neq f(v)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V\to C$ tal que, para todo $u,v\in V$,

$$\{u,v\} \in E \Rightarrow f(u) \neq f(v)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

Exemplo:

|img(f)| é o **número de cores** da coloração f.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V\to C$ tal que, para todo $u,v\in V$,

$$\{u,v\} \in E \Rightarrow f(u) \neq f(v)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição. Um grafo G é k-colorível se, e somente se, existe uma coloração de G com no máximo k cores.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V\to C$ tal que, para todo $u,v\in V$,

$$\{u,v\} \in E \Rightarrow f(u) \neq f(v)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição. Um grafo G é k-colorível se, e somente se, existe uma coloração de G com no máximo K cores.

- <u>Importante</u>:
 - Pseudografos não são coloríveis, pois possuem laços.

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \in k$$
-cromático $\Leftrightarrow \chi(G) = k$

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores K tal que G é K-colorível.

$$G \in k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

(Grafo de Petersen)

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \in k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

10-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores K tal que G é K-colorível.

$$G \in k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

10-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \in k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

- 10-colorível
- 9-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \in k$$
-cromático $\Leftrightarrow \chi(G) = k$

• Exemplo:

- 10-colorível
- 9-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \in k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

- 10-colorível
- 9-colorível
- •
- 3-colorível
- não é 2-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \in k$$
-cromático $\Leftrightarrow \chi(G) = k$

• Exemplo:

- 10-colorível
- 9-colorível

- 3-cromático
 - $\chi(G) = 3$

- 3-colorível
- não é 2-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \in k$$
-cromático $\Leftrightarrow \chi(G) = k$

• Exercício: Defina o número cromático dos grafos abaixo:

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se |V| = 0, então $\chi(G) = 0$.

• Se |E| = 0 e |V| > 0, então $\chi(G) = 1$.

• $\chi(G) \leq |V|$.

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se *G* é bipartido, então

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se G é bipartido, então $\chi(G) = 2$

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se G é k-partido, então $\chi(G) = k$

• Seja $\omega(G)$ o tamanho do maior clique de G,

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se G é k-partido, então $\chi(G) = k$

- Seja $\omega(G)$ o tamanho do maior clique de G, então $\omega(G) \leq \chi(G)$
 - Em um clique cada nodo deve obrigatoriamente ter uma cor diferente.

$$\chi(K_5) = 5$$

Teorema: Seja G = (V, E) um grafo simples, onde $\Delta(G)$ é o maior grau de algum vértice em V. Então:

$$\chi(G) \leq \Delta(G) + 1.$$

Ideia: Se algum vértice u possui n vizinhos, então podemos colorir cada vizinho com uma cor diferente, e u com uma cor adicional (n + 1).

Demonstração.

- Seja v_1, v_2, \ldots, v_n uma permutação arbitrária dos vértices em V.
- Seja $C = \{c_1, \dots, c_k\}$ um conjunto de $k = \Delta(G) + 1$ cores.

$$\Delta(G) = 3$$

Demonstração.

- Seja v_1, v_2, \ldots, v_n uma permutação arbitrária dos vértices em V.
- Seja $C = \{c_1, \dots, c_k\}$ um conjunto de $k = \Delta(G) + 1$ cores.
- Colorindo v_i : Atribua a primeira cor não usada em nenhum vizinho já colorido.

$$\Delta(G) = 3$$

Demonstração.

- Seja v_1, v_2, \ldots, v_n uma permutação arbitrária dos vértices em V.
- Seja $C = \{c_1, \dots, c_k\}$ um conjunto de $k = \Delta(G) + 1$ cores.
- Colorindo v_i : Atribua a primeira cor não usada em nenhum vizinho já colorido.
- Pior caso: Há $\Delta(G)$ vizinhos adjacentes de v_i com cores diferentes.

Portanto precisamos de uma cor adicional $\Delta(G) + 1$.

$$\Delta(G) = 3$$

$$K = \Delta(G) + 1 = 4$$

$$\operatorname{Cor} \Delta(G) + 1$$

Coloração e Grafos Planares

• Restringindo nossa atenção a grafos planares, obtemos resultados mais precisos.

- Conjectura das 4 Cores
 - É sempre possível colorir um mapa usando no máximo 4 cores.
- Postulado em 1852 por Francis Guthrie,
 ao colorir o mapa dos condados da Inglaterra.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Lema. Seja G = (V, E) um grafo simples e planar. Então existe pelo menos um vértice v com no máximo 5 vizinhos.

Prova por contradição. Assuma que todo vértice v tem pelo menos 6 vizinhos.

• Pela fórmula de Euler (aula passada), temos:

$$|E| \le 3|V| - 6$$

• Porém, se todo vértice tem pelo menos 6 vizinhos, então:

$$|E| \ge \frac{6}{2} |V| = 3|V|$$

Contradição.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$. Prova por indução.

Caso base: $P(n \le 5)$. G possui $n \le 5$ vértices.

Trivial: Cada vértice pode receber uma cor diferente.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$. Prova por indução.

Hipótese: P(n-1). Se G é simples, planar e possui n-1 vértices, então $\chi(G) \leq 5$.

Vamos demonstrar que $P(k < n) \rightarrow P(n)$.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução. Considere G com n vértices, e v um vértice com grau máximo S.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução. Considere G com n vértices, e v um vértice com grau máximo 5. Caso 1: v tem no máximo 4 vizinhos.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Caso 1: v tem no máximo 4 vizinhos.

Ao remover v, G tem n-1 vertices.

P(n - 1).

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Caso 1: v tem no máximo 4 vizinhos.

Ao remover v, G tem n-1 vertices.

P(n - 1).

O grafo é

5-colorível.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Caso 1: v tem no máximo 4 vizinhos.

Ao remover v, G tem n-1 vertices. $P(n-1) \rightarrow P(n)$. Ao reintroduzir v, há uma cor restante.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Caso 1: v tem no máximo 4 vizinhos.

Ao remover v, G tem n-1 vertices. $P(n-1) \rightarrow P(n)$. Colorimos v com a cor restante!

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Caso 2: v tem exatamente 5 vizinhos. Cada um com uma cor diferente.

Fim da prova!

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 4$.

Conhecido como Four Color Theorem (Teorema das Quatro Cores)

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 4$.

- Conhecido como Four Color Theorem (Teorema das Quatro Cores)
- 1852: F. Guthrie propôs a conjectura para seu professor, De Morgan.
- 1879: Alfred B. Kempe anunciou que tinha uma demonstração da conjectura. Ele ganhou muito prestígio e foi nomeado membro da Royal Society.
- 1890: Percy Heawood mostra que estava incorreta a prova de Kempe, e provou o Teorema das Cinco Cores.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 4$.

- Somente em 1977, Appel & Haken provaram o teorema com ajuda de computadores
- Primeira vez que um teorema importante é provado dessa forma!
- Ideia: Criar reduções e testar 1482 configurações possíveis, usando ~1200 horas de computação!
- À mão, levariam 100 mil anos, dedicando-se 60h/semana.
- Simplificações foram feitas na prova deste então.
- Até hoje, não existe prova para o Teorema sem auxílio de computadores.

Algoritmos de Coloração

• Como computar $\chi(G)$ dado um grafo G?

• Como verificar se $\chi(G) = k$ dado um grafo G?

Algoritmos de Coloração

- Como computar $\chi(G)$ dado um grafo G?
 - Problema NP-Hard! -----

Disciplina de Teoria da Computação II Classes de complexidade computacional

- Como verificar se $\chi(G) = k$ dado um grafo G?
 - Problema NP-Completo! (entre os 21 problemas NP-Completos de Karp)

Algoritmos de Coloração

- Como computar $\chi(G)$ dado um grafo G?
 - Problema NP-Hard!

Disciplina de Teoria da Computação II Classes de complexidade computacional

- Como verificar se $\chi(G) = k$ dado um grafo G?
 - Problema NP-Completo! (entre os 21 problemas NP-Completos de Karp)

Intuitivamente:

O número de operações para resolver o problema ...
 cresce exponencialmente com o tamanho do grafo.

Algoritmo Guloso (não ótimo)

- Entrada: Grafo simples G = (V, E), cores $C = \{c_1, c_2, \dots, c_k\}$
- Saída: Coloração $f: V \rightarrow C$

- 1. Ordene os vértices v_1, v_2, \dots, v_n em ordem arbitrária
- 2. Para cada vértice v_i :
- 3. Para cada cor c_i :
- 4. Se algum vizinho de v_i possui cor c_i , vá para a próxima cor
- 5. Senão, atribua cor c_i para o vértice v_i : $f(v_i) = c_i$

Lista de Exercícios

(ver Plano de Aula)

Referências

- Paulo Oswaldo Boaventura Netto. Grafos: teoria, modelos, algoritmos. 2006.isbn: 8521203918.1
- Edson Prestes. Introdução a Teoria dos Grafos.
 2020.url:http://www.inf.ufrgs.br/~prestes/Courses/GraphTheory/Livro/LivroGrafos.pdf.
- Richard J. Trudeau. Introduction to graph theory. 2015.isbn:
 1684112311.url:http://www.worldcat.org/isbn/1684112311.
- Douglas B. West. Introduction to Graph Theory. 2nd ed. Prentice Hall, Sept. 2000.isbn: 0130144002
- Weisstein, Eric W. "Four-Color Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Four-ColorTheorem.html