

ELECTRONICA MICROCONTROLADA

Trabajo practico N.º 3

"Introducción al diseño de circuitos lógicos combinacionales y al álgebra de Boole".

Desarrollo del Trabajo Práctico:

1- Implementación de una función lógica: Diseñar un circuito combinacional que implemente la función lógica F(A, B, C) = A'B + AC.

2- Simplificación de una expresión lógica: Simplificar la expresión lógica F(A, B, C, D) = ABC + AB'D + ACD' utilizando álgebra de Boole y mapas de Karnaugh.

AB	00	01	11	10
CD				
00	0	0	0	0
01	0	0	0	<mark>1</mark>
11	0	0	0	0
10	0	0	<mark>1</mark>	<mark>1</mark>

- AB'C'D = (A+A)(B'+B')(C'+C')(D+D)

- AB'C'D= A + B' + C' + D
- AB'C'D= AB'C'D
- ACD'= (A+A)(B+B')(C+C)(D'+D')
- ACD'= A 1 C D'
- ACD'= ACD'
- 3- Multiplexor: Diseñar un circuito combinacional que implemente un multiplexor 4:1 utilizando compuertas lógicas.

- 4- Comparador de números de 2 bits: Diseñar un circuito combinacional que compare dos números de 2 bits A y B, y produzca una salida de 1 si A > B, 0 si A = B, y -1 si A < B.
- 5- Codificador: Diseñar un circuito combinacional que implemente un codificador 4:2 utilizando compuertas lógicas.

Tabla de verdad:

	ENTR.	SALIDAS			
А3	A2	A1	A0	S1	S0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1