Math 136 - Linear Algebra

Winter 2016

Lecture 6: January 15, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

6.1 Dot Product Continued

Definition 6.1 - For any two vectors $\vec{x}\vec{y}$, we define the angle between $\vec{x}\vec{y}$ to be $\cos\theta = \frac{\vec{x}\cdot\vec{y}}{\|\vec{x}\|\|\vec{y}\|}$

- If $\vec{x} \cdot \vec{y} = 0$, we say \vec{x} and \vec{y} are orthogonal
- Any any two vectors of, $\{e_1, e_2 \dots e_n\}$ standard basis for \mathbb{R}^n , are orthogonal

6.2 Cross product

Given two vectors \vec{x} and \vec{y} in \mathbb{R}^3 , find a third vectors which is orthonoral to $\vec{x} + \vec{y}$

$$\begin{array}{ll} \textbf{Definition 6.2 - Given } \vec{x} \ and \ \vec{y} \ \in \mathbb{R}^3, \vec{x} \times \vec{y} = \begin{bmatrix} x_2y_3 - x_3y_2 \\ x_3y_1 - x_1y_3 \\ x_1y_1 - x_2y_1 \end{bmatrix} \\ \textbf{geometrically} : \ \vec{x} \times \vec{y} = \|\vec{x}\| \|\vec{y}\| \sin \theta \\ \end{array}$$

Proposition 6.3 Suppose that $\vec{v}, \vec{w}, \vec{x} \in \mathbb{R}^3$ and $c \in \mathbb{R}$

- 1. If $\vec{n} = \vec{v} \times \vec{w}$ then for any $\vec{y} \in Span\{\vec{v}, \vec{w}\}$ we have $\vec{y} \cdot \vec{n} = 0$
- $2. \ \vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$
- 3. $\vec{v} \times \vec{v} = 0$
- 4. $\vec{v} \times \vec{w} = \vec{0}$ iff either $\vec{v} = \vec{0}$ or \vec{w} is a scalar multiple of \vec{w}
- 5. $\vec{v} \times (\vec{x} + \vec{w}) = \vec{v} \times \vec{w} + \vec{v} \times \vec{x}$
- 6. $(c\vec{v}) \times \vec{w} = c(\vec{x} \times \vec{w})$

Example 6.4 Let
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \vec{z} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\vec{x} \times \vec{z} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3-2 \\ 1-3 \\ 2-1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \therefore \vec{x} \text{ is not orthogonal}$$

6.3 Scaler Equations

Recall: A plane in \mathbb{R}^3 is given by $\vec{x} = s\vec{v} + t\vec{w} + \vec{b}$ and $\{\vec{v}, \vec{w}\}$ is linear independent

Definition 6.5 - Given $\vec{n} = \vec{v} \times \vec{w}$, the scaler equation for a plan is $(\vec{x} - \vec{b}) \cdot \vec{n} = 0$

Example 6.6 - Finding a scaler equation

$$\vec{x} = s \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\vec{n} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$0 = (\vec{x} - \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}) \cdot \vec{n}$$

$$\vec{x} \cdot \vec{n} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \vec{n}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \implies (x_3 - x_1 = z)$$

End of Lecture Notes
Notes By: Harsh Mistry