Exercise 2.3 Find the equivalent resistance between the indicated terminals (all resistances in ohms) in Figure 2.3.

Figure 2.3:

Solution:

a)
$$R_{EQ} = 5 + 10||10 = 10\Omega$$

b)
$$R_{EQ} = [2||3]||6 = 1\Omega$$

c)
$$R_{EQ} = (4+2)||(2+1) = 2\Omega$$

d) Apply test voltage: $R_{EQ} = \frac{v_{test}}{i_{test}}$

Figure 2.4:

$$\frac{(v_{test} - v_1)}{4} + \frac{(0 - v_1)}{2} + \frac{(v_2 - v_1)}{3} = 0$$

$$\frac{(v_{test} - v_2)}{2} + \frac{(v_1 - v_2)}{3} + \frac{(0 - v_2)}{1} = 0$$

$$v_1 = \frac{v_{test}}{3}, \qquad v_2 = \frac{v_{test}}{3}$$

Substitute these expressions into the equation below:

$$i_{test} + \frac{(v_1 - v_{test})}{4} + \frac{(v_2 - v_{test})}{2} = 0$$
$$\frac{v_{test}}{i_{test}} = R_{EQ} = 2\Omega$$

ANS:: (a) 10Ω (b) 1Ω (c) 2Ω (d) 2Ω

Exercise 2.8 Sketch the i-v characteristics for the networks in Figure 2.12. Label intercepts and slopes.

Figure 2.12:

Solution:

c) See Figure 2.15

$$v = 5i + 2$$

$$i=\frac{1}{5}v-\frac{2}{5}$$

Figure 2.15:

e)

$$v = 4i - 8$$
$$i = v/4 + 2$$

Problem 2.6 In each network in Figure 2.28, find the *numerical* values of the indicated variables (Units are Amperes, Volts and Ohms).

Figure 2.28:

Solution:

Top figure,
$$v_1 = 4V - 1V = 3V$$
, $v_2 = 3V + 2V = 5V$, $i_1 = -3A$

Bottom figure, since 5V is in parallel across the 1Ω resistor, all 5A of I_3 go through the resistor. $v=5V, i_1=0A$

Top:
$$v_1 = 3V, v_2 = 5V, i_1 = -3A$$
, Bottom: $v = 5V, i_1 = 0A$.

ANS:: Top:
$$v_1=3V, v_2=5V, i_1=-3A$$
, Bottom: $v=5V, i_1=0A$.

Problem 2.9 Calculate the power dissipated in the resistor R in Figure 2.31.

Figure 2.31:

Solution:

The equivalent resistance is 2Ω , so $\frac{3}{2}A$ of current is split between the 2Ω and 4Ω resistors. Therefore, 1A current goes through R.

Power = 2W

ANS:: Power = 2W

Problem 2.11 Consider the network in Figure 2.33 in which a non-ideal battery drives a load resistor R_L . The battery is modeled as a voltage source V_S in series with a resistor R_S . The following are some proofs about power transfer.

Figure 2.33:

- a) Prove that for R_S variable and R_L fixed, the power dissipated in R_L in maximum when $R_S = 0$.
- b) Prove that for R_S fixed and R_L variable, the power dissipated in R_L is maximum when $R_S = R_L$ ("matched resistances").
- a) Power dissipated in resistor R_L:

$$P = I_{circuit}^{2} R_{L}$$

$$P = \frac{V_{S}^{2}}{(R_{S} + R_{L})^{2}} R_{L}$$

$$P|_{R_{S}=0} = \frac{V_{S}^{2}}{(0 + R_{L})^{2}} R_{L} = \frac{V_{S}^{2}}{R_{L}}$$

$$lim_{R_{S}\to\infty} \frac{V_{S}^{2}}{(R_{S} + R_{L})^{2}} R_{L} = 0$$

So, power dissipated in R_L maximum when $R_S=0$. Otherwise power in R_L decreases as R_S increases.

$$P = I_{circuit}^2 R_L$$

$$P = \frac{V_S^2}{(R_S + R_L)^2} R_L$$

Maximize with respect to R_L :

$$\frac{dP}{dR_L} = \frac{(R_S + R_L)^2 (V_S^2) - (V_S^2 R_L) (2(R_S + R_L))}{(R_S + R_L)^4} = 0$$

$$\frac{V_S^2}{(R_S + R_L)^2} = \frac{2V_S^2 R_L}{(R_S + R_L)^3}$$

$$(R_S + R_L)V^2 = 2V^2 R_L$$

 $ightarrow R_S = R_L$ (when this holds power maximized in R_L)