

ICEOrientation

Chris Blanton, Ph.D.

PACE

Fall 2020

What is PACE

Definition

Partnership for an Advanced Computing Environment.

PACE's mission is to

- provide faculty and researchers vital tools to accomplish the Institute's vision to define the technological research university of the 21st century.
- create a strong HPC and HTC environment via a tight partnership with our world-class students, researches, and innovators to help them make the greatest impact with their work.

ICE Accounts

- ICE accounts are created by a hook to the registrar for most students.
- Instructors and TAs are added manually.
- The CRS handles this for most classes, but we communicate it to the CSR.

Tiered Help Structure

Support Structure

Due to the large number of users in the classes, we must use a tiered support structure.

Students reach out to Instructors/TAs (no direct tickets to PACE)

Instructors/TAs can contact their departmental contacts
Instructors, TAs and department contacts can open tickets:

pace-support@oit.gatech.edu

Tiered Help Structure

Support Structure

Due to the large number of users in the classes, we must use a tiered support structure.

Students reach out to Instructors/TAs (no direct tickets to PACE)

Instructors/TAs can contact their departmental contacts

COC David Mercer

ECE Keith May

Chbe Kevin Guger

COS Mack Jenkins

Instructors, TAs and department contacts can open tickets: pace-support@oit.gatech.edu

Tiered Help Structure

Support Structure

Due to the large number of users in the classes, we must use a tiered support structure.

Students reach out to Instructors/TAs (no direct tickets to PACE)

Instructors/TAs can contact their departmental contacts
Instructors, TAs and department contacts can open tickets:

pace-support@oit.gatech.edu

Note

Please make sure to include ICE in the subject line as well as the course, department, and number in the body.

Accessing Clusters

- The cluster are accessed using the SSH protocol.
- The login-nodes for the each cluster is
 - ightharpoonup pace-ice.pace.gatech.edu
 - ightharpoonup coc-ice.pace.gatech.edu
- There are multiple SSH clients which may be used, according to the user's OS.

Structure of a Computational Cluster

A computational cluster is composed of

- Head nodes
- Computational nodes
- Storage Servers
- Scheduler

Head Nodes

A head node is the part of the cluster that users

- Connect to submit jobs.
- Can code and compile small-scale programs.
- Access their files and storage.

Computational Nodes

Computational nodes are the nodes which the heavy work is performed. Computational nodes

- are accessed using the scheduler only.
- have access to the storage server.
- may vary in their computational capability.

Storage Servers

- The storage for the system is handled via a centralized NetApp storage.
- Each user has a quota of 10 GB.
- Professors and others can request larger quotas.

Accessing Software

- Computational clusters often have many software packages, which may have conflicting names and versions.
- A module system can be used to handle this.
- The module system handles setting up the environment.
- The module system has been prepared to handle dependencies so only loadable software is shown.

module commands

Command	Meaning	
module avail	Show the currently available modules	
module spider name	Search for a module	
module load name	Load the module	
module list	See the currently loaded modules	
module remove name	Remove the named module	
module purge	Remove all loaded modules	

Scheduler

The scheduler/resource manager handles

- placing jobs on computational resources
- ensuring that all users have appropriate access what they need
- abstracts knowing which computational node has what is needed

Accessing Computational Resources

- Since the system has multiple resources, queues are used to determine access.
- Depending on the systems, there are different queues to control how the resources are used.

PACE-ICE Queues

Name	Max. Proc.	Walltime	Avail.	Notes
pace-ice		12:00:00	AII	
pace-ice-gpu		16:00:00	AII	GPU available

COC-ICE Queues

Name	Max. Proc.	Walltime	Avail.	Notes
coc-ice	28	2:00:00	All	
coc-ice-gpu	28	2:00:00	All	GPUs
coc-ice-multi	128	00:30:00	All	MPI
coc-ice-long	28	08:00:00	All	//
coc-ice-devel	128	08:00:00	All	
coc-ice-grade	128	12:00:00	Fac,TA	

Methods for accessing Computational Resources

- Scheduler directives
- pace-vnc-job wrapper
- pace-jupyter-notebook wrapper
- batch jobs

Scheduler directives

Directive	Meaning	Example	
-q <name></name>	Use queue named	-q pace-ice	
-1 nodes= <nodes>:ppn=<ppn></ppn></nodes>	Number of processors and processors per node	-1 nodes=2:ppn=4	
-1 walltime=HH:DD:SS	Requested walltime	-1 walltime=12:00:00	
-1 nodes=1:ppn=1:gpus= <ngpus></ngpus>	Request ngpus GPU	-1 nodes=1:ppn=1:gpus=1	
-N	job name	-N myjob	
-0	ouput	-o myjob.out	
-j oe	join the output and error	-j oe	

Interactive CLI Sessions

An interactive session on the command line can be created using

```
$ qsub -1 nodes=1:ppn=4 -1 walltime=04:00:00 \
-q pace-ice -I
```

This will create a BASH session on one or more compute nodes.

Interactive CLI Sessions

An interactive session on the command line can be created using

```
$ qsub -1 nodes=1:ppn=4 -1 walltime=04:00:00 \
-q pace-ice -I
```

This will create a BASH session on one or more compute nodes.

Note

The user must wait for the job to start in real-time.

VNC

A graphical session on a compute node can be created using the command

\$ pace-vnc-job

This does require that the vncpasswd have been run before. Full details are found at http:

 $//docs.pace.gatech.edu/interactiveJobs/setupVNC_Session/$

Jupyter Notebooks

- Jupyter notebooks provide a useful interface for interactive computing in various programming languages, especially Python.
- There is a wrapper that hanldes submitting and creating a tunnel to allow users to use Jupyter notebook web interface on their local computer.
- Full instructions are found at http://docs.pace.gatech.edu/interactiveJobs/jupyterInt/

Batch Script

- For longer jobs, the time it takes the system to find resources
- This is the most traditional way to perform calculations on HPC cluster.

```
#!/bin/bash
#PBS -N myjob
#PBS -1 nodes=2:ppn=4
#PBS -1 walltime=04:00:00
#PBS -q pace-ice
```

module load gcc mvapich2 cd \$PBS_OW_WORKDIR mpirun ./a.out #End of script.

Full documentation

Fuller documentation of how to use ICE and similar clusters is found at https://docs.pace.gatech.edu

