

Lecture #22

Cache Part I: Direct Mapped Cache

Lecture #22: Cache I: Direct Mapped Cache

- 1. Introduction
- 2. Cache
 - 2.1 Locality
 - 2.2 Memory Access Time
- 3. Memory to Cache Mapping
- 4. Direct Mapping
- 5. Reading Data (Memory Load)
- 6. Types of Cache Misses
- 7. Writing Data (Memory Store)
- 8. Write Policy

1. Data Transfer: The Big Picture

Registers are in the datapath of the processor. If operands are in memory we have to **load** them to processor (registers), operate on them, and **store** them back to memory.

1. Memory Technology: 1950s

1948: Maurice Wilkes examining EDSAC's delay line memory tubes 16-tubes each storing 32 17-bit words

Maurice Wilkes: 2005

1952: IBM 2361 16KB magnetic core memory

1. Memory Technology Today: **DRAM**

DDR SDRAM

- Double Data Rate
 - Synchronous Dynamic RAM

- Delivers memory on the positive and negative edge of a clock (double rate)
- Generations:
 - DDR (MemClkFreq x 2(double rate) x 8 words)
 - DDR2 (MemClkFreq x 2(multiplier) x 2 x 8 words)
 - DDR3 (MemClkFreq x 4(multiplier) x 2 x 8 words)
 - DDR4 (released in 2014)
 - DDR5 (in Q3 2021)

1. DRAM Capacity Growth

Growth of Capacity per DRAM Chip

DRAM capacity quadrupled almost every 3 years
 60% increase per year, for 20 years

DRAM Chip Capacity

Unprecedented growth in density, but we still have a problem

1. Processor-DRAM Performance Gap

Memory Wall:

1GHz Processor → 1 ns per clock cycle

50ns for DRAM access → 50 processor clock cycles per memory access!

1. Faster Memory Technology: SRAM

SRAM

6 transistors per memory cell

→ Low density

Fast access latency of 0.5 – 5 ns More costly Uses flip-flops

DRAM

1 transistor per memory cell

→ High density

Slow access latency of 50-70ns

Less costly

Used in main memory

1. Slow Memory Technology: Magnetic Disk

Typical high-end hard disk:

Average Latency: 4 - 10 ms

Capacity: 500-2000GB

1. Quality vs Quantity

Memory (DRAM)

	Capacity	Latency	Cost/GB
Register	100s Bytes	20 ps	\$\$\$\$
SRAM	100s KB	0.5-5 ns	\$\$\$
DRAM	100s MB	50-70 ns	\$
Hard Disk	100s GB	s GB 5-20 ms Ce	
Ideal	1 GB	1 ns	Cheap

1. Best of Both Worlds

- What we want:
 - A BIG and FAST memory
 - Memory system should perform like 1GB of SRAM (1ns access time) but cost like 1GB of slow memory

Key concept:

Use a hierarchy of memory technologies:

- Small but fast memory near CPU
- Large but slow memory farther away from CPU

1. Memory Hierarchy

2. Cache: The Library Analogy

Imagine you are forced to put back a book to its bookshelf before taking another book......

2. Solution: Book on the Desk!

What if you are allowed to take the books that are **likely to be needed soon** with you and place them nearby on the desk?

2. Cache: The Basic Idea

- Keep the frequently and recently used data in smaller but faster memory
- Refer to bigger and slower memory:
 - Only when you cannot find data/instruction in the faster memory
- Why does it work?

Principle of Locality

Program accesses only a small portion of the memory address space within a small time interval

2.1 Cache: Types of Locality

Temporal locality

If an item is referenced, it will tend to be referenced again soon

Spatial locality

If an item is referenced, nearby items will tentto be The data will be referenced soon accessed again and

array

Different locality for

- Instructions
- Data

2.1 Working Set: Definition

- Set of locations accessed during ∆t
- Different phases of execution may use different working sets

Our aim is to capture the working set and keep it in the memory closest to CPU

2.2 Two Aspects of Memory Access

- How to make SLOW main memory appear faster?
 - Cache a small but fast SRAM near CPU
 - Hardware managed: Transparent to programmer
- How to make SMALL main memory appear bigger than it is?
 - Virtual memory
 - OS managed: Transparent to programmer
 - Not in the scope of this module (covered in CS2106)

2.2 Memory Access Time: Terminology

- Hit: Data is in cache (e.g., X)
 - Hit rate: Fraction of memory accesses that hit
 - Hit time: Time to access cache
- Miss: Data is not in cache (e.g., Y)
 - Miss rate = 1 Hit rate
 - Miss penalty: Time to replace cache block + hit time
- Hit time < Miss penalty</p>

2.2 Memory Access Time: Formula

Average Access Time

= Hit rate x Hit Time + (1-Hit rate) x Miss penalty

Example:

Suppose our on-chip SRAM (cache) has 0.8 ns access time, but the fastest DRAM (main memory) we can get has an access time of 10ns. How high a hit rate do we need to sustain an average access time of 1ns?

> Let h be the desired hit rate. $1 = 0.8h + (1 - h) \times (10 + 0.8)$ = 0.8h + 10.8 - 10.8h $10h = 9.8 \rightarrow h = 0.98$ Hence we need a hit rate of **98%**.

3. Memory to Cache Mapping (1/2)

- Cache Block/Line:
 - Unit of transfer between memory and cache
- Block size is typically one or more words
 - e.g.: 16-byte block

 4-word block
 - 32-byte block

 8-word block
- Why is the block size bigger than word size?

So that can store more words/information at one time to take advantage of principle of locality

3. Memory to Cache Mapping (2/2)

4. Direct Mapping Analogy

Imagine there are 26 "locations" on the desk to store books. A book's location is determined by the first letter of its title.

→ Each book has exactly one location.

4. Direct Mapped Cache: Cache Index

..01111

4. Direct Mapped Cache: Cache Tag

4. Direct Mapped Cache: Mapping

Cache Block size = 2^N bytes

Cache Block size = 2^N bytes

Number of cache blocks = 2^{M}

Offset = N bits

Index = M bits

Tag = 32 - (N + M) bits

4. Direct Mapped Cache: Cache Structure

Along with a data block (line), cache also contains the following administrative information (overheads):

- 1. Tag of the memory block
- 2. Valid bit indicating whether the cache line contains valid data

When is there a cache hit?

```
( Valid[index] = TRUE ) AND ( Tag[ index ] = Tag[ memory address ] )
```

4. Cache Mapping: Example

1 Block = 16 bytes

Cache 16KB 1 Block = 16 bytes

Memory Address

Offset, N = 4 bits

Block Number = 32 - 4 = 28 **bits**

Check: Number of Blocks = 2^{28}

Number of Cache Blocks

 $= 16KB / 16bytes = 1024 = 2^{10}$

Cache Index, M = 10bits

Cache Tag = 32 - 10 - 4 = 18 bits

4. Cache Circuitry: Example

16-KB cache:4-word (16-byte) blocks

5. Reading Data: **Setup**

- Given a direct mapped 16KB cache:
 - 16-byte blocks x 1024 cache blocks
- Trace the following memory accesses:

Tag	Index	Offset
31 14	13 4	3 0
000000000000000000000000000000000000000	000000001	0100
000000000000000000000000000000000000000	000000001	1100
000000000000000000000000000000000000000	000000011	0100
000000000000000000000000000000000000000	000000001	1000
000000000000000000000000000000000000000	0000000001	0000

5. Reading Data: Initial State

- Intially cache is empty
 - → All *valid* bits are zeroes (false)

	◆ Data →						
	Word0	Word1	Word2	Word3			
Index Valid Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15			
0							
1 0							
2 0							
3 0							
4 0							
5 0							
	· · · · · · · · · · · · · · · · · · ·						
1022 0							
1023 0							
V	-	-	•				

 Tag
 Index
 Offset

 000000000000000000
 0000000001
 0100

Load from

Step 1. Check Cache Block at index 1

Tag Index Offset

Load from

00000000000000000 000000001 0100

Step 2. Data in block 1 is invalid [Cold/Compulsory Miss]

			◆ Data →				
			Word0	Word1	Word2	Word3	
Index	<u>Valid</u>	Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15	
0	0						
1	0						
2	0						
3	0						
4	0						
5	0						
1022	0						
1023	0						

Step 4. Return **Word1** (byte offset = 4) to Register

Tag Index Offset

Load from

0000000000000000 000000001 1100

Step 1. Check Cache Block at index 1

			▼ Word0	Data Word1	Word2	Word3	
Index \	Valid	Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15	
0	0						
(1)	1	0	Α	В	С	D	
2	0						
3	0						
4	0						
5	0						
1022	0						
1023	0						

Tag Index Offset

Load from

0000000000000000 | 000000001 | 1100

Step 2. [Cache Block is Valid] AND [Tags match] → Cache hit!

	←	◆ Data —					
	_	Word0	Word1	Word2	Word3		
Index Valid T	ag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15		
0 0							
1 1 0		Α	В	С	D		
2 0							
3 0							
4 0							
5 0							
	_						
1022 0							
1023 0							

Tag Index Offset

Load from

Step 3. Return **Word3** (byte offset = 12) to Register [Spatial Locality]

	\	T	Word0	Word1	Word2	Word3
Index	valid	Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15
0	0					
1	1	0	Α	В	С	D
2	0					
3	0					
4	0					
5	0					
1022	0					
1023	0					

Load from

5. Reading Data: Load #3-1

Step 1. Check Cache Block at index 3

			← Word0	——— Data — Word1	Word2	Word3
Index '	Valid	Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15
0	0					
1	1	0	Α	В	С	D
2	0					
3	0					
4	0					
5	0					
1022	0					
1023	0					

Tag Index Offset

Load from

00000000000000000 000000011 0100

Step 2. Data in block 3 is invalid [Cold/Compulsory Miss]

			◆ Data —					
		_	Word0	Word1	Word2	Word3		
Index '	<u>Valid</u>	Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15		
0	0							
1	1	0	Α	В	С	D		
2	0							
3	0							
4	0							
5	0							
	*** *** *** *** ***							
1022	0							
1023	0							

Step 4. Return Word1 (byte offset = 4) to Register

Tag Index Offset

Load from

0000000000000001 | 1000

Step 1. Check Cache Block at index 1

			▼ Word0	Data Word1	Word2	Word3
Index \	Valid	Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15
0	0					
(1)	1	0	Α	В	С	D
2	0					
3	1	0	I	J	K	L
4	0					
5	0					
1022	0					
1023	0					

Tag Index Offset

Load from

0000000000000001 000000001 1000

Step 2. Cache block is Valid but Tags mismatch [Cold miss]

		◆ Data —					
		Word0	Word1	Word2	Word3		
Index Val	id Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15		
0 0							
1 1	0	Α	В	С	D		
2 0							
3 1	0	I	J	K	L		
4 0							
5 0							
1022 0							
1023 0							

Load from

5. Reading Data: Load #4-4

 Tag
 Index
 Offset

 00000000000000001
 0000000001
 1000

Step 4. Return Word2 (byte offset = 8) to Register

Index	Valid	Tag	Word0 Bytes 0-3	Data Word1 Bytes 4-7	Word2 Bytes 8-11	Word3 Bytes 12-15
0	0	Tug	<i>Dy</i> 100 0 0	Dytoo 17	<i>Dytes</i> 6 11	Byt00 12 10
1	1	2	E	F	G	Н
2	0					
3	1	0		J	K	L
4	0					
5	0					
1022	0					
1023	0					

Tag Index Offset

Load from

00000000000000000 000000001 0000

Step 1. Check Cache Block at index 1

			▼ Word0	——— Data —— Word1	Word2	Word3
Index \	Valid	Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15
0	0					
1	1	2	E	F	G	Н
2	0					
3	1	0	I	J	K	L
4	0					
5	0					
1022	0					
1023	0					

Tag Index Offset

Load from

0000000000000000 | 000000001 | 0000

Step 2. Cache block is Valid but Tags mismatch [Cold miss]

		Word0	——— Data —— Word1	Word2	Word3
Index Va	alid Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15
0					
1 1	2	E	F	G	Н
2 (
3 1	0	I	J	K	L
4					
5					
1022					
1023					

Step 4. Return **Word0** (byte offset = 0) to Register

			Word0	Data Word1	Word2	Word3
Index '	Valid	Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15
0	0					
1	1	0	A	В	С	D
2	0					
3	1	0	I	J	K	L
4	0					
5	0					
1022	0					
1023	0					

5. Reading Data: Summary

6. Types of Cache Misses

Compulsory misses

- On the first access to a block; the block must be brought into the cache
- Also called cold start misses or first reference misses

Conflict misses

- Occur in the case of direct mapped cache or set associative cache, when several blocks are mapped to the same block/set
- Also called collision misses or interference misses

Capacity misses

 Occur when blocks are discarded from cache as cache cannot contain all blocks needed

Exercise #1: Setup Information

1 Block = 8 bytes

Cache 32Bytes

1 Block = 8 bytes

Exercise #2: Tracing Memory Accesses

- Using the given setup in exercise #1, trace the following memory loads:
 - Load from addresses:

4, 0, 8, 12, 36, 0, 4

- Note that "A", "B".... "J" represent word-size data
 - Assume 1 word = 4 bytes

Memory Content

Addr	Data
0	Α
4 8	В
8	С
12	D
	•••
32	I
36	J
	•••

55

Exercise #2: Load #1

Addresses: 4,0,8,12,36,0,4

 Addr.
 Data

 0
 A

 4
 B

 8
 C

 12
 D

 ...
 ...

 32
 I

 36
 J

Tag

Index Offset

Address 4 =

00

Index	Valid	Tag	Word0	Word1
0	0 1	0	Α	В
1	0			
2	0			
3	0			

Exercise #2: Load #2

Miss Hit

Addresses: 4,(0) 8, 12, 36, 0, 4

Addr. **Data** 0 Α 4 B 8 C 12 D 32 36 J

Tag

Index Offset

Address 0 =

Index	Valid	Tag	Word0	Word1
0	1	0	A	В
1	0			
2	0			
3	0			

57

Exercise #2: Load #3

Miss Hit Miss

Addresses: 4, 0,(8) 12, 36, 0, 4

Addr. Data 0 Α 4 B 8 C 12 D 32 36 J

Tag

Index Offset

Index	Valid	Tag	Word0	Word1
0	1	0	Α	В
1	0 1	0	C	D
2	0			
3	0			

Exercise #2: Load #4

Miss Hit Miss Hit

Addresses: 4, 0, 8, (12), 36, 0, 4

Addr. **Data** 0 Α 4 B 8 C 12 D 32 36 J

Tag

Index Offset

Index	Valid	Tag	Word0	Word1
0	1	0	Α	В
1	1	0	С	D
2	0			
3	0			

59

Data

Α

B

J

Exercise #2: Load #5

Miss Hit Miss Hit Miss

Addresses: 4, 0, 8, 12, 36, 0, 4

8 C 12 D 32 I

Addr.

0

4

36

Tag

Index Offset

Index	Valid	Tag	Word0	Word1
0	1	Ø ₁	×Ι	B (J)
1	1	0	С	D
2	0			
3	0			

Data

Α

B

C

D

J

Addr.

0

4

8

12

32

36

Exercise #2: Load #6

Miss Hit Miss Hit Miss Miss

Addresses: 4, 0, 8, 12, 36, 0,

Tag

Index Offset

Address 0 =

00

Index	Valid	Tag	Word0	Word1
0	1	8× 0	XXA	BIB
1	1	0	С	D
2	0			
3	0			

Data

Addr.

Exercise #2: Load #7

Miss Hit Miss Hit Miss Miss Hit

Addresses: 4, 0, 8, 12, 36, 0, 4

0 Α 4 B 8 C 12 D 32 36 J

Tag

Index Offset

Address 4 =

00

Index	Valid	Tag	Word0	Word1
0	1	810	AXA	B/B)
1	1	0	С	D
2	0			
3	0			

7. Writing Data: Store #1-1

Step 1. Check Cache Block 1

			◆ Data —						
			Word0	Word1	Word2	Word3			
Index '	<u>Valid</u>	Tag	Bytes 0-3	Bytes 4-7	Bytes 8-11	Bytes 12-15			
0	0								
(1)	1	0	Α	В	С	D			
2	0								
3	1	0		J	K	L			
4	0								
5	0								
1022	0								
1023	0								

7. Writing Data: Store #1-2

Step 2. [Cache Block is Valid] AND [Tags match] → Cache hit!

		•	Data — W 10						
Index V	/alid	Tag	Word0 Bytes 0-3	Word1 Bytes 4-7	Word2 Bytes 8-11	Word3 Bytes 12-15			
0	0		,	j	,				
1	1	0	Α	В	С	D			
2	0								
3	1	0	I	J	K	L			
4	0								
5	0								
1022	0								
1023	0								

7. Writing Data: Store #1-3

Step 2. Replace Word2 (offset = 8) with **X**

			•	See any problem here?				
Index	Valid	Tag	Word0 Bytes 0-3	Word1 Bytes 4-7	Word2 Bytes 8-11	Word3 Bytes 12-15		
0	0							
1	1	0	Α	В	X	D		
2	0							
3	1	0	I	J	K	L		
4	0							
5	0							
1022	0							
1023	0							

8. Changing Cache Content: Write Policy

- Cache and main memory are inconsistent
 - Modified data only in cache, not in memory!
- Solution 1: Write-through cache
 - Write data both to cache and to main memory
- Solution 2: Write-back cache
 - Only write to cache
 - Write to main memory only when cache block is replaced (evicted)

8. Write-Through Cache

Problem:

Write will operate at the speed of main memory!

Solution:

- Put a write buffer between cache and main memory
 - Processor: writes data to cache + write buffer
 - Memory controller: write contents of the buffer to memory

8. Write-Back Cache

Problem:

 Quite wasteful if we write back every evicted cache blocks

Solution:

- Add an additional bit (Dirty bit) to each cache block
- Write operation will change dirty bit to 1
 - Only cache block is updated, no write to memory
- When a cache block is replaced:
 - Only write back to memory if dirty bit is 1

8. Handling Cache Misses

- On a Read Miss:
 - Data loaded into cache and then load from there to register
- Write Miss option 1: Write allocate
 - Load the complete block into cache
 - Change only the required word in cache
 - Write to main memory depends on write policy
- Write Miss option 2: Write around
 - Do not load the block to cache
 - Write directly to main memory only

8. Writing Data: Summary

Summary

 Memory hierarchy gives the illusion of a fast and big memory

- Hardware-managed cache is an integral component of today's processors
- Next lecture: How to improve cache performance

Reading

- Large and Fast: Exploiting Memory Hierarchy
 - Chapter 7 sections 7.1 7.2 (3rd edition)
 - Chapter 5 sections 5.1 5.2 (4th edition)

End of File