Class Partipation - No redit.

Hurmann Encoding - Why we study it.

Formal defⁿ

Greedy Signithm

Encoding: Representing symbols (in message) using binary codes 0/1.

Eg. msg = CABDC

SYMBOL CODES				
	A	00-	-1	
	B	01-	- (2 bit string
	C	10		2 bit stilling
	D	71 -		

"Variable length Coding" - All codes need not be of same length.

length $\in [1,3]$

De useful.

Eg. frag:
$$A = 45$$
, $B = 9$, $C = 11$, $D = 35$
in a mag of 100 chas.
 $100 = 45 + 9 + 11 + 35$

Length of encoded msg. = 45(1) + 9(3) + 11(3) + 35(2)= 175 = 12% imposes

The were using 00, 01, 10, 11 as encoding, then length = 200

Is there ambiguity?

 $\left(\begin{array}{cc} \sum_{i=1}^{n} (f_i) \left(\begin{array}{cc} d_i & f_i \end{array} \right) \right) \quad \text{be } m$

Property 1: Each internal node should have a children

Proof: By contradiction

Take a tree T which is not complete & let internal node of degree 1.

Ques: Is it necessary that one child of each no

Property 2: If $f_1 \ge f_2 \ge \dots \ge f_n$. Then in of

(i) depth $(a_1) \leq depth(a_2) \leq --- \leq depth(a_n)$

(ii) depth (an) = depth (an-1)

Peopl of (i): Both children of parent (an)

MAK _

H.W. - Correctness of this algo.

Theorem: If and, an home least frequency, then feoblem

 $F = (F \cup \{+n++m+J\}) \setminus \{+n\} + n$ $Opt(F) = Opt(F^*) + (f_{n-1} + f_n).$

H.W. - Find on O(n logn) time implementation.