Exit from Hell? – Reducing the Impact of Amplification DDoS Attacks

Marc Kührer¹
Thomas Hupperich¹ **Christian Rossow²**Thorsten Holz¹

Ruhr-University Bochum
 Saarland University

Technical Details Behind a 400Gbps NTP Amplification DDoS Attack

Published on February 13, 2014 01:00AM by Matthew Prince.

On Monday we mitigated a large DDoS that targeted one of our customers. The attack peaked just shy of 400Gbps. We've seen a handful of other attacks at this scale, but this is the largest attack we've seen that uses NTP amplification. This style of attacks has grown dramatically over the last six months and poses a significant new threat to the web.

Amplification DDoS Attacks

Contents

Can we mitigate the UDP-based amplifications?

Are there other amplifiers than UDP?

Can we identify spoofing-enabled networks?

Number of Amplifiers per Protocol

Amplifier Classification

Operating System (in %)

Protocol	Unix	Linux	Cbuntu	F_{PeeBSD}	Windows	Sowie -	Cisco lOS	J_{unos}	N_{erO_S}	Others	Unknown
DNS	3.6	3.4	0.0	0.0	0.8	7.5	0.1	0.0	0.0	1.1	83.5
NetBIOS	0.4	0.1	0.0	0.0	87.3	0.3	0.0	0.0	0.0	0.7	11.2
NTP	18.2	26.8	0.0	4.7	0.2	0.0	40.8	2.9	0.0	1.7	4.7
SNMP	1.5	11.4	0.1	0.1	0.8	17.8	2.2	0.0	0.0	8.7	57.4
SSDP	1.8	36.0	5.5	0.0	1.3	0.7	0.0	0.0	19.3	1.8	33.6

NTP Amplification Case Study

- NTP: Network Time Protocol
 - Optional monlist debug feature
 - ▶ 8B request and 44kB response → >1000x amplification
 - ▶ In Dec '13: **1.6 million amplifiers**
- Timeline of vulnerability discovery
 - Aug '13: Notified vendors, reserved CVE
 - ▶ Jan '14: Released CVE + coop with CERTs/ISPs
 - Feb '14: Presented vulnerabilities at NDSS

Number of NTP monlist Amplifiers

Contents

Can we mitigate the UDP-based amplifications?

Are there other amplifiers than UDP?

Can we identify spoofing-enabled networks?

TCP and Reflection

TCP 3-Way Handshake

- Reflection
- No amplification

TCP and Reflection

SYN/ACK Amplifiers

- Keep repeating
 SYN/ACK until ACK
- Default, e.g., in *nix
- Reason: packet loss

TCP and Reflection (also see WOOT '14 paper)

Contents

Can we mitigate the UDP-based amplifications?

Are there other amplifiers than UDP?

Can we identify spoofing-enabled networks?

Remote Spoofer Test via DNS

Remote Spoofer Test Results

Filter	#P	$\#AS_P$
Top 4 Resolver	42,691	301
Top 10 Resolver	45,072	352
Distinct AS	170,451	2,692

Conclusion

▶ Mitigation of NTP amplifiers (largely) successful

▶ TCP amplification may cause issues in the future

Remote test finds at least 300 spoofing ASes

Exit from Hell? – Reducing the Impact of Amplification DDoS Attacks

Marc Kührer¹
Thomas Hupperich¹ **Christian Rossow²**Thorsten Holz¹

Ruhr-University Bochum
 Saarland University