Mixture Designs

BIOE 498/598 PJ

Mixtures

Some materials or reagents are **mixtures**, or combinations of different proportions of a fixed number of ingredients.

Examples of mixtures include:

- Polymers
- Metal alloys
- Fabric blends
- Cell culture media

Studying mixtures requires special designs and models.

Defining Mixtures

A mixture has k components, each with proportion x_i , where

$$0.0 \le x_i \le 1.0$$

and

$$\sum_{i=1}^K x_i = 1.0$$

Defining Mixtures

A mixture has k components, each with proportion x_i , where

$$0.0 \le x_i \le 1.0$$

and

$$\sum_{i=1}^k x_i = 1.0$$

For example, a three-ingredient mixture (k = 3) is defined by

$$0.0 \le x_1 \le 1.0$$

$$0.0 \le x_2 \le 1.0$$

$$0.0 \le x_3 \le 1.0$$

$$x_1 + x_2 + x_3 = 1.0$$

Why not factorial designs?

The summation constraint $\sum_i x_i = 1$ prevents us from using factorial designs. Let's imagine a factorial design for a three-ingredient mixture with levels - = 0.0 and + = 1.0. The runs are

1	2	3	<i>x</i> ₁	<i>x</i> ₂	Хз	$\sum_i x_i$
_	_	_	0.0	0.0	0.0	0.0
+	_	_	1.0	0.0	0.0	1.0
_	+	_	0.0	1.0	0.0	1.0
_	_	+	0.0	0.0	1.0	1.0
+	+	_	1.0	1.0	0.0	2.0
+	_	+	1.0	0.0	1.0	2.0
_	+	+	0.0	1.0	1.0	2.0
+	+	+	1.0	1.0	1.0	3.0

Only three of the eight runs satisfy the summation constraint!

Models for Mixture Experiments

The standard first-order model for a factorial experiment with three factors is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

This model is not appropriate for mixture experiments because of the summation constraint.

Instead, we can use two alternative models:

- 1. The slack variable model
- 2. The Scheffé model

The slack variable model

Let's start with the standard FO model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

By the summation constraint, $x_3 = 1 - x_1 - x_2$. Substituting, we see that

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (1 - x_1 - x_2) + \epsilon$$

= $(\beta_0 + \beta_3) + (\beta_1 - \beta_3) x_1 + (\beta_2 - \beta_3) x_2 + \epsilon$
= $\beta'_0 + \beta'_1 x_1 + \beta'_2 x_2 + \epsilon$

The slack variable model

Let's start with the standard FO model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

By the summation constraint, $x_3 = 1 - x_1 - x_2$. Substituting, we see that

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (1 - x_1 - x_2) + \epsilon$$

= $(\beta_0 + \beta_3) + (\beta_1 - \beta_3) x_1 + (\beta_2 - \beta_3) x_2 + \epsilon$
= $\beta'_0 + \beta'_1 x_1 + \beta'_2 x_2 + \epsilon$

The effect of factor x_3 is folded into the intercept and the other effects. When using a slack variable model we choose x_3 to be the least important factor, but the effects remain confounded.

The Scheffé model

The Scheffé model takes a different approach. Rather than substitute for x_3 , we substitute for the intercept (the 1 multiplied by β_0) using the constraint $x_1 + x_2 + x_3 = 1$:

$$y = \beta_0(1) + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

$$= \beta_0(x_1 + x_2 + x_3) + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

$$= (\beta_0 + \beta_1) x_1 + (\beta_0 + \beta_2) x_2 + (\beta_0 + \beta_3) x_3 + \epsilon$$

$$= \beta_1^* x_1 + \beta_2^* x_2 + \beta_3^* x_3 + \epsilon$$

The Scheffé model

The Scheffé model takes a different approach. Rather than substitute for x_3 , we substitute for the intercept (the 1 multiplied by β_0) using the constraint $x_1 + x_2 + x_3 = 1$:

$$y = \beta_0(1) + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

$$= \beta_0(x_1 + x_2 + x_3) + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

$$= (\beta_0 + \beta_1) x_1 + (\beta_0 + \beta_2) x_2 + (\beta_0 + \beta_3) x_3 + \epsilon$$

$$= \beta_1^* x_1 + \beta_2^* x_2 + \beta_3^* x_3 + \epsilon$$

The effects in a Scheffé model are clean, but they have a special interpretation. The coefficient β_i^* is the expected response for a pure mixture with $x_i = 1.0$ and all other ingredients set to zero.

A Simplex-Lattice Design $SLD\{k, m\}$ studies mixtures with k ingredients set at m+1 equally-spaced levels. The design uses all combinations of the ingredient levels.

A Simplex-Lattice Design $SLD\{k, m\}$ studies mixtures with k ingredients set at m+1 equally-spaced levels. The design uses all combinations of the ingredient levels.

SLD{3, 1}: Levels 0, 1

$$(1,0,0)$$
 $(0,1,0)$ $(0,0,1)$

A Simplex-Lattice Design $SLD\{k, m\}$ studies mixtures with k ingredients set at m+1 equally-spaced levels. The design uses all combinations of the ingredient levels.

SLD{3, 1}: Levels 0, 1

$$(1,0,0)$$
 $(0,1,0)$ $(0,0,1)$

SLD $\{3, 2\}$: Levels 0, $\frac{1}{2}$, 1

$$(\frac{1}{2}, \frac{1}{2}, 0)$$
 $(\frac{1}{2}, 0, \frac{1}{2})$ $(0, \frac{1}{2}, \frac{1}{2})$ + SLD{3, 1}

A Simplex-Lattice Design $SLD\{k, m\}$ studies mixtures with k ingredients set at m+1 equally-spaced levels. The design uses all combinations of the ingredient levels.

SLD{3, 1}: Levels 0, 1

$$(1,0,0)$$
 $(0,1,0)$ $(0,0,1)$

SLD $\{3, 2\}$: Levels 0, $\frac{1}{2}$, 1

$$(\frac{1}{2}, \frac{1}{2}, 0)$$
 $(\frac{1}{2}, 0, \frac{1}{2})$ $(0, \frac{1}{2}, \frac{1}{2})$ + SLD{3, 1}

SLD $\{3,3\}$: Levels $0, \frac{1}{3}, \frac{2}{3}, 1$

$$(\frac{1}{3}, \frac{2}{3}, 0)$$
 $(\frac{2}{3}, \frac{1}{3}, 0)$ $(\frac{1}{3}, 0, \frac{2}{3})$ $(\frac{2}{3}, 0, \frac{1}{3})$ $(0, \frac{1}{3}, \frac{2}{3})$ $(0, \frac{2}{3}, \frac{1}{3})$ $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ + SLD{3, 1}

A Simplex-Lattice Design $SLD\{k, m\}$ studies mixtures with k ingredients set at m+1 equally-spaced levels. The design uses all combinations of the ingredient levels.

SLD{3, 1}: Levels 0, 1

$$(1,0,0)$$
 $(0,1,0)$ $(0,0,1)$

SLD $\{3, 2\}$: Levels $0, \frac{1}{2}, 1$

$$(\frac{1}{2}, \frac{1}{2}, 0)$$
 $(\frac{1}{2}, 0, \frac{1}{2})$ $(0, \frac{1}{2}, \frac{1}{2})$ + SLD $\{3, 1\}$

SLD $\{3,3\}$: Levels $0, \frac{1}{3}, \frac{2}{3}, 1$

$$(\frac{1}{3}, \frac{2}{3}, 0)$$
 $(\frac{2}{3}, \frac{1}{3}, 0)$ $(\frac{1}{3}, 0, \frac{2}{3})$ $(\frac{2}{3}, 0, \frac{1}{3})$ $(0, \frac{1}{3}, \frac{2}{3})$ $(0, \frac{2}{3}, \frac{1}{3})$ $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ + SLD{3, 1}

The Simplex-Centroid Design (SCD)

A downside of the $SLD\{k, m\}$ design is there are no interior points until $m \ge 3$. An alternative is the $SCD\{k\}$ design which includes

- ► All k pure mixtures: (1,0,...,0)
- All binary combinations at $\frac{1}{2}$: $(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0)$
- All trinary combinations at $\frac{1}{3}$: $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, \dots, 0)$
- The single *k*-nary mixture: $(\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k})$

The Simplex-Centroid Design (SCD)

A downside of the $SLD\{k, m\}$ design is there are no interior points until $m \ge 3$. An alternative is the $SCD\{k\}$ design which includes

- ► All k pure mixtures: (1,0,...,0)
- All binary combinations at $\frac{1}{2}$: $(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0)$
- All trinary combinations at $\frac{1}{3}$: $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, \dots, 0)$
- The single k-nary mixture: $(\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k})$

Choosing the SLD or SCD

- ► The $SLD\{k, m\}$ model allows fitting an m^{th} order model (1 = first order, 2 = quadratic). The $SCD\{k\}$ can fit a k-order model with up to a k-way interaction term.
- ▶ In a SCD model, no single ingredient is run at a proportion $\geq \frac{1}{2}$.
- Given the same number of runs, the SLD has better coverage of the boundary of the simplex while the SCD has better coverage of the interior.