WAIT 2018 Cyclic Superposition and Induction

Jannik Vierling

June 29, 2018

Joint work with Stefan Hetzl

Background

Induction in Computer Science and Mathematics

Computer Science:

- Automation of proof by induction
- Interest in various inductive datatypes
- Focus on algorithms and efficiency

Mathematics:

- Interest in theories of arithmetic of natural numbers
- Consistency proofs
- Unprovability results
- → Independent views of induction, little interaction

Motivation: Research Program

Automation of proof by induction

- Variety of approaches: Cyclic proofs, Rippling, . . .
- Heuristics
- Empirical analysis
- ► Few general, formal results

Central questions:

- 1. What can('t)/should(n't) a given method prove?
- 2. Why does(n't) a method work well?
- 3. How do methods relate to each other?
- → Rigorous analysis of calculi
- --- Apply techniques and results from mathematical logic
- → Developement of formal foundations

Goals: This Talk

Analysis of semantic clause cycles inspired by n-clause calculus ¹

- analysis tool
- abstracts concrete calculi
- refutational
- clausal
- induction cycles

Goals

- ▶ Describe the induction captured by the system
 - → Quantifier complexity of induction invariants
- Necessity
 Is the captured type of induction necessary?
- Completeness

¹Kersani and Peltier 2013

Outline

Semantic Clause Set Cycles

 Σ_1 -Necessity

 Σ_1 -Completeness

Case Study: n-Clause Calculus

Semantic Clause Set Cycles

 Θ . . . set of sorts,

 \mathcal{F} ... set of f.s. containing $0: \omega$, $s: \omega \to \omega$ over $\Theta \cup \{\omega\}$,

 \mathcal{P} ... set of p.s. over $\Theta \cup \{\omega\}$.

Consider clauses over n : $\omega, =/2, \mathcal{F}$ and \mathcal{P}

Definition

A semantic clause set cycle (SCSC) for S(n) is a triple $\langle S'(n), i, j \rangle$ with $i, j \in \mathbb{N}, j > 0$ s.t.

$$S(n) \models_{\text{FOL}} S'(n),$$
 (1)

$$S'(s^{j}n) \models_{FOL} S'(n),$$
 (2)

$$S'(\overline{i+k}) \models_{\text{FOL}}, \text{for } k = 0, \dots, j-1.$$
 (3)

Definition

S(n) is refutable with semantic clause set cycles if S(n) has an SCSC (S'(n), i, j) and $S(\overline{k}) \models_{FOL}$ for all $0 \le k < i$ (4).

Semantic Clause Set Cycles: Soundness

Std. Semantics . . . FOL Semantics restricted to $\mathcal M$ with $|\mathcal M|_\omega=\mathbb N$

Proposition (Soundness)

If S(n) is refutable with SCSCs, then S(n) is unsatisfiable in std. semantics.

Proof Sketch.

Proceed by infinite descent

$$(\mathsf{n}^{\mathcal{M}} < i) : \mathcal{M} \models_{\text{STD}} S(\overline{k}) \models_{\text{FOL}}, \qquad (\bot)$$
$$(i \le \mathsf{n}^{\mathcal{M}} < i + j) : \mathcal{M} \models_{\text{STD}} S(\mathsf{n}^{\mathcal{M}}) \models_{\text{FOL}} S'(\mathsf{n}^{\mathcal{M}}) \models_{\text{FOL}} \qquad (\bot)$$

$$(i+j \le n^{\mathcal{M}}) : \mathcal{M} \models_{\text{STD}} S(n) \models_{\text{FOL}} S'(n),$$
$$\rightsquigarrow \mathcal{M} \cup \{n \mapsto n^{\mathcal{M}} - j\} \models S'(s^{j}n) \models S'(n). \ (\circlearrowright)$$

Semantic Clause Set Cycles: Σ_1 -Bound

Theorem (Σ_1 -Bound)

If S(n) is refutable with SCSCs, then S(n) is refutable in **LK** + Σ_1 -induction.

Proof Sketch.

- ▶ Derive the formula $\forall x \exists y \ (x = 0 \lor x = s(y))$
- ▶ Generate subgoals $S(0), \ldots, S(\overline{i-1})$, and $S(s^i\alpha)$
- ▶ Subgoals $S(0), ..., S(\overline{i-1})$ are trivial (FOL-unsat)
- Reduce $S(s^i\alpha)$ to $S'(s^i\alpha)$
- ▶ Refute $S'(s^i\alpha)$ by induction on $\neg S'(s^i\alpha)$.

 \longrightarrow Restriction to Σ_1 -induction due to clause normal form.

Outline

Semantic Clause Set Cycles

 Σ_1 -Necessity

 Σ_1 -Completeness

Case Study: n-Clause Calculus

Σ_1 -Necessity

Theorem

There exists a clause set S(n) which is refutable with SCSCs, and is not refutable in **LK** + quantifier-free induction.

Definition

Let opt_{Σ_1} consist of the following clauses

$$\Gamma := \begin{cases} 0 \neq \mathsf{s}(x), \\ \mathsf{s}(x) = \mathsf{s}(y) \to x = y, \\ x + 0 = x, \\ x + \mathsf{s}(y) = \mathsf{s}(x + y), \\ \mathsf{p}(0, \overline{1}), \\ \mathsf{p}(x, y) \to \mathsf{p}(\mathsf{s}(x), y + y), \\ \neg \mathsf{p}(\mathsf{n}, y). \end{cases}$$

Lemma

The clause set opt_{Σ_1} is refutable with SCSCs.

Proof Sketch.

(1)

$$\mathsf{opt}_{\Sigma_1}(\mathsf{n}) \models_{\mathrm{FOL}} \mathsf{opt}_{\Sigma_1}(\mathsf{n})$$

(2)

$$\begin{split} \mathsf{p}(x,y) &\to \mathsf{p}(\mathsf{s} x, y{+}y) \models_{\mathrm{FOL}} \neg \mathsf{p}(\mathsf{s} x, y{+}y) \to \neg \mathsf{p}(x,y) \\ &\neg \mathsf{p}(\mathsf{s}(\mathsf{n}),y) \models_{\mathrm{FOL}} \neg \mathsf{p}(\mathsf{s}(\mathsf{n}),y{+}y) \\ &\mathsf{opt}_{\Sigma_1}(\mathsf{s}(\mathsf{n})) \models_{\mathrm{FOL}} \neg \mathsf{p}(\mathsf{n},y) \models_{\mathrm{FOL}} \mathsf{opt}_{\Sigma_1}(\mathsf{n}) \end{split}$$

$$\mathsf{opt}_{\Sigma_1}(0) \models_{\mathrm{FOL}} \neg \mathsf{p}(0,y), \mathsf{p}(0,\overline{1}) \models_{\mathrm{FOL}}$$

Lemma

The sequent $\Gamma \Rightarrow \forall x \exists y p(x, y)$ is not provable in **LK** + quantifier-free induction.

Proof Sketch.

Proceed indirectly and assume that there exists a proof π of $\Gamma\Rightarrow \forall x\exists y p(x,y)$ in **LK** + quantifier-free induction. Since the induction in π is quantifier-free we can transform π into a proof of the form

$$\frac{(\pi_1(\alpha))}{\Gamma \Rightarrow \exists y p(\alpha, y)} \forall_r$$

$$\frac{\Gamma \Rightarrow \forall x \exists y p(x, y),}{\Gamma \Rightarrow \forall x \exists y p(x, y),} \forall_r$$

where π_1 is an **LK** + quantifier-free induction proof and contains no strong quantifier inferences, by eliminating free-cuts and permuting strong quantifier inferences downwards.

Lemma

The sequent $\Gamma \Rightarrow \forall x \exists y p(x, y)$ is not provable in **LK** + quantifier-free induction.

Proof Sketch.

Since π_1 contains only quantifier-free induction, no free-cuts and no strong quantifiers we can transform π_1 into a proof of the form

$$\frac{(\pi_2(\alpha))}{\Gamma \Rightarrow \mathsf{p}(\alpha, t_1(\alpha)), \dots, \mathsf{p}(\alpha, t_k(\alpha))}{\Gamma \Rightarrow \exists y \mathsf{p}(\alpha, y),} \exists_r$$

by shifting weak quantifier inferences downwards.

Lemma

The sequent $\Gamma \Rightarrow \forall x \exists y p(x,y)$ is not provable in **LK** + quantifier-free induction.

Proof Sketch.

Let $m \in \mathbb{N}$. By unfolding induction in $\pi_2(\overline{m})$, we obtain a proof ρ_m of the sequent

$$\Gamma \Rightarrow p(\overline{m}, t_1(\overline{m})), \ldots, p(\overline{m}, t_k(\overline{m})).$$

Let $\mathcal{M} = (\mathbb{N}, I)$ where $p^I = \{(n, n^2) : n \in \mathbb{N}\}$, and I interprets s, 0, + naturally. Observe that $\mathcal{M} \models \Gamma$ and

$$\llbracket t_i(\overline{m}) \rrbracket^{\mathcal{M}} = |t_i|_{\alpha} m + |t_i|_{s}.$$

There is $j \in \mathbb{N}$ s.t. $j^2 > [t_i(j)]^{\mathcal{M}}$, i.e. $\mathcal{M} \not\models p(\bar{j}, t_i(\bar{j})), 1 \le i \le k$.

Outline

Semantic Clause Set Cycles

 Σ_1 -Necessity

 Σ_1 -Completeness

Case Study: n-Clause Calculus

Σ_1 -Completeness

Definition

Let the clause set S(n) consist of the clauses

$$x+0 = x$$

$$x+s(y) = s(x+y)$$

$$n+(n+n) \neq (n+n)+n.$$

Lemma

The set S(n) is refutable in **LK** + quantifier-free induction.

Sketch.

Use
$$x + (x + y) = (x + x) + y$$
 as induction invariant.

Conjecture

The clause set S(n) is not refutable with SCSCs.

Outline

Semantic Clause Set Cycles

 Σ_1 -Necessity

 Σ_1 -Completeness

Case Study: n-Clause Calculus

n-Clause Calculus

Introduced by Kersani and Peltier 2013 Superposition calculus + Cycle detection mechanism

- \blacktriangleright Sorts ω , ι_1 , ι_2 , ... ι_I
- ▶ Signature Σ containing 0: ω and s: $\omega \to \omega$
- ▶ Parameter n (\approx Skolem constant)
- Constraint clauses

$$\underbrace{[r_1\bowtie_1 s_1,\ldots,r_k\bowtie_k s_k}_{\text{Clause part}}\underbrace{|}_{\leftarrow}\underbrace{[n\simeq t_1,\ldots,n\simeq t_m]}_{\text{Constraint part}},$$

for i = 1, ..., n, r_i, s_i are ι_{j_i} -terms with $j_i \in \{1, ..., l\}$, $\bowtie_i \in \{\simeq, \not\simeq\}$, and $t_1, ..., t_m$ are ω -terms.

Cyclic Refutations

Definition

Let S be a set of clauses. An inductive cycle for S is a 3-tuple $\langle i,j,S_{\mathsf{init}}\rangle$ with $i,j\in\mathbb{N},\,j>0$, $S_{\mathsf{init}}\subseteq S$ s.t.

▶ Base cases:

$$S_{\text{init}} \vdash n \neq i + k$$
, for $k = 0, \dots, j - 1$.

Step case:

$$S_{\mathsf{init}} \vdash S_{\mathsf{init}}[\mathsf{n}/\mathsf{n}-j].$$

Proposition (Kersani and Peltier 2013)

If S contains an inductive cycle $\langle i, j, S_{init} \rangle$, then $S \models_{\mathrm{KP}} n \prec i$.

 $\leadsto S$ is refuted if $S \vdash n \not\approx 0, \ldots, n \not\approx i-1$ and $S \vdash_{\mathsf{cycle}} n \prec i$.

Reduction to Semantic Clause Set Cycles

Lemma (Reduction)

If S(n) is refutable in the n-clause calculus, then $S_{inj} \cup S(n)$ is refutable with SCSCs.

Proof Sketch.

- ▶ Represent n-clauses as clauses: $[C \mid n \simeq t] \leadsto C \lor n \neq t$
- Normalization requires injectivity $S_{inj} = \{0 \neq s(x), s(x) = s(y) \rightarrow x = y\}$
- ▶ Observe that $S_1 \vdash S_2$ implies $S_1 \models_{\text{FOL}}^{S_{\text{inj}}} S_2$.

Corollary (Σ_1 -Bound)

If S(n) is refutable in the n-clause calculus, then $S_{inj} \cup S(n)$ is refutable in **LK**+ Σ_1 -induction.

Σ_1 -Necessity and Σ_1 -Completeness

Theorem

There is a clause set S(n) which is refutable in the n-clause calculus such that $S_{inj} \cup S(n)$ is not refutable in **LK** + quantifier-free induction.

Proof Idea.

Let $c: \iota, f: \iota \to \iota, t: o, p: \omega \to \iota \to o$ be constants. An **LK** + quantifier-free induction proof of the clause set below implies an **LK** + quantifier-free induction proof of opt_{Σ_1} .

$$p(0,c) \simeq t, p(x,y) \not\simeq t \lor p(s(x),f(y)) \simeq t, [p(x,y) \not\simeq t \mid n \simeq x] \ \Box$$

Conjecture

There is a clause set S(n) which is refutable in the n-clause calculus but is not refutable in **LK** + quantifier-free induction.

Conclusion

- Two independent views of induction
 Computer science vs. mathematics, little interaction
- Analysis of approaches to autom. ind. theorem proving What kind of problems can a method solve? Improve general understanding of approaches
- Semantic Clause Set Cycles
 Abstract a family of clausal, refutational calculi
- \blacktriangleright Σ_1 -bound, Σ_1 -necessity, and Σ_1 -completeness Describe the provable sentences
- Case Study: n-clause calculus
 Extend results to concrete calculi