

Prediction of sales and probability of adding a new fund

Capstone Project by Dmitry Amanov. Aug 6, 2020

- Objectives
- Methodology
- Analysis Results
- Recommendations

Agenda

Nuveen is a mutual fund company headquartered in Chicago, with major offices in New York City, Charlotte, San Francisco, London and secondary offices in Frankfurt, Los Angeles, Shanghai, Singapore, Rio de Janeiro, Vienna, Stockholm, Minneapolis, Montreal, Washington DC, Tokyo, Luxembourg, Madrid, Milan, Paris, and Miami.

Nuveen is tasked with marketing and selling mutual funds through investment professionals such as brokers, financial planners, and financial advisors.

Background

- Assist sales and marketing by improving their targeting.
- Predict sales for 2019 using the data for 2018.
- Estimate the probability of adding a new fund in 2019.

Objectives

Summary

- Analysis performed using Nuveen transactions data (2018 & 2019).
- Initial features selection is performed based on EDA and statistical hypothesis tests.
- Final features selection is performed using feature importance evaluation technics on pre-trained models.
- Models are trained on 70% of the initial dataset using cross validation.
- The final evaluation of models is performed on the rest 30% of the initial dataset.

Methodology

Selected features for regression model (sales prediction)

- Total sales in current month
- Total redemption in current month
- Number of sales in last 12 months that more than \$1
- Number of redemptions in last 12 months that more than \$1
- Number of sales in last 12 months that more than \$10K
- Number of redemptions in last 12 months that more than \$10K
- AUM (asset class EQUITY)
- AUM (asset class FIXED INCOME TAXABLE
- AUM (asset class TARGET)
- AUM (product type CEF)
- AUM (product type ETF)
- AUM (product type SMA)

Methodology

Selected features for classification model (probability of adding new fund)

- Total sales in current month
- Total redemption in current month
- Number of sales in last 12 months that more than \$1
- New funds added in the last 12 months excluding current month
- AUM (asset class FIXED INCOME TAXABLE
- AUM (asset class MULTIPLE)
- AUM (asset class REAL ESTATE)
- AUM (asset class TARGET)
- AUM (product type MF)
- AUM (product type UIT)

Methodology

Regression Model Performance

Classification Model Performance

Lift Charts (regression model)

Total population: 2726 Mean sales: \$217828.41

Decile	Number of advisors	Sales \$ (avg. per decile)	Lift over average	Cumulative number of advisors	Cumulative sales \$	Cumulative lift
1	272	1949312	795%	272	1949312	795%
2	272	174977	-20%	544	1062144	388%
3	272	46704	-79%	816	723664	232%
4	272	10830	-95%	1088	545456	150%
5	272	1267	-99%	1360	436618	100%
6	272	0	-100%	1632	363848	67%
7	272	0	-100%	1904	311870	43%
8	272	0	-100%	2176	272886	25%
9	272	0	-100%	2448	242565	11%
10	278	0	-100%	2726	217828	0%

Lift Charts (classification model)

Total population: 2710

Mean Probability of adding new fund: 45%

Decile	Number of advisors	Probability of adding new fund (avg. per decile)	Lift over	Cumulative number of advisors	Cumulative probability of adding new fund	Cumulative lift
1	271	76%	66%	271	76%	66%
2	271	64%	41%	542	70%	54%
3	271	57%	26%	813	66%	44%
4	271	53%	15%	1084	63%	37%
5	271	49%	7%	1355	60%	31%
6	271	41%	-10%	1626	57%	24%
7	271	33%	-29%	1897	53%	17%
8	271	30%	-34%	2168	50%	10%
9	271	29%	-37%	2439	48%	5%
10	271	25%	-44%	2710	46%	0%

Relational charts (regression model)

- Advisors that have higher sales in current month will likely have higher sales next year.
- Advisors that have higher net sales in current month will likely increase sales next year and vice-versa.

Relational charts (regression model)

Advisors that have positive net number of sales that are more than \$1 in the last 12 months will likely increase their sales next year. However, advisors with positive net number of sales that more than \$10K in the last 12 months will likely decrease their sales next year.

Relational charts (regression model)

Advisers with higher AUM will likely have higher sales next year.

Relational charts (classification model)

- Advisors who added more funds in the last 12 months are likely to add a new fund in next year. However, those advisors who have highest number of funds added in the last 12 months are less probable to add a new fund in next year.
- Advisors that have smaller number of sales that more than \$1 in the last 12 months are more likely to add a new fund in next year.

Relational charts (classification model)

 Advisors with higher total sales in current month have slightly higher probability of adding new fund in next 12 months.

Relational charts (classification model)

Advisors with higher total AUM in asset class MULTIPLE, FIXED INCOME TAXABLE, TARGET and REAL ESTATE have less probability of adding new fund in next 12 months. However, advisors with higher total AUM in product class UIT and MF have higher probability of adding new fund in next 12 months.

Inference

- Advisors that have higher sales in current month will likely have higher sales next year.
- Advisors that have higher net sales in current month will likely increase sales next year and vice-versa.
- Advisors with higher total sales in current month have slightly higher probability of adding new fund in next 12 months.
- Advisors that have positive net number of sales that are more than \$1 in the last 12 months will likely increase their sales next year. But advisors with positive net number of sales that more than \$10K in the last 12 months will likely decrease their sales next year.
- Advisors that have smaller number of sales that more than \$1 in the last 12 months are more likely to add a new fund in next year.
- Advisors who added more funds in the last 12 months are likely to add a new fund in next year.
 However, those advisors who have highest number of funds added in the last 12 months are less probable to add a new fund in next year.
- Advisers with higher AUM will likely have higher sales next year.
- Advisors with higher total AUM in asset class MULTIPLE, FIXED INCOME TAXABLE, TARGET
 and REAL ESTATE have less probability of adding new fund in next 12 months. However,
 advisors with higher total AUM in product class UIT and MF have higher probability of adding
 new fund in next 12 months.

Inference & Recommendations

Recommendations

Monitor advisor performance monthly. Retain advisors that continuously increase their net sales. Define a development strategy that will target advisors who show decrease (or no increase) in their net sales.

Retain advisors that have high net number of sales that are more than \$1 in the last 12 months. However, advisors with the highest net number of sales should be targeted for development of further sales increase and for adding a new funds.

Retain advisors that show higher number of funds added in the last 12 months but pay a special attention to advisors who added the highest number of funds as they likely to add less in next year.

Retain advisors with higher AUM but target those who have higher AUM in asset class MULTIPLE, FIXED INCOME TAXABLE, TARGET and REAL ESTATE to encourage them to continue add more funds.

Inference & Recommendations

Appendix

Technical Report

- Feature Engineering
- Feature Selection
- Model Selection
- Training & Evaluation

Contents

Overview and dealing with NaNs

Provided transactions data consist of 10005 samples and 38 columns.

All columns are numeric and represent either ordinal (number of something) or continuous (sales in dollars) data.

There is a big number of missing values (around 36%).

```
print('Percent of missing values: {0:.0%}'.format(data.isnull().sum().mean() / len(data)))
Percent of missing values: 36%
```

```
data.isnull().sum()
no of sales 12M 1
                                       5242
                                       4644
no of Redemption 12M 1
no of sales 12M 10K
                                       7293
no of Redemption 12M 10K
                                       7029
no of funds sold 12M 1
                                       5242
                                       4644
no of funds redeemed 12M 1
no of fund sales 12M 10K
                                       7293
no of funds Redemption 12M 10K
                                       7029
no of assetclass sold 12M 1
                                       5242
no of assetclass redeemed 12M 1
                                       4644
no_of_assetclass_sales_12M_10K
                                       7293
no_of_assetclass_Redemption_12M_10K
                                       7029
No of fund curr
                                       3822
No_of_asset_curr
                                       4426
                                        585
sales curr
                                       7574
sales 12M
                                       5237
redemption curr
                                       7429
redemption 12M
                                       4621
new Fund added 12M
                                       7310
```

aum_AC_EQUITY	585
aum_AC_FIXED_INCOME_MUNI	585
aum_AC_FIXED_INCOME_TAXABLE	585
aum_AC_MONEY	585
aum_AC_MULTIPLE	585
aum_AC_PHYSICAL_COMMODITY	585
aum_AC_REAL_ESTATE	585
aum_AC_TARGET	585
aum_P_529	585
aum_P_ALT	585
aum_P_CEF	585
aum_P_ETF	585
aum_P_MF	585
aum_P_SMA	585
aum_P_UCITS	585
aum_P_UIT	585
sales_12M_target	4931
new Fund added 12M target	7484
dtype: int64	

All missing values are set to 0.

EDA

Features distributions

- The data is highly biased toward zero. But also, there are a noticeable number of samples with abnormaly big values.
- The data is highly unbalanced in terms of classification target

Class priors: Class 0 (NO new funds added): 75% Class 1 (new funds added): 25%

EDA

- Drop all samples that have negative sales and positive redemption.
- Create "net" columns (sales redemption) then split them into "positive net" (values >= 0) and "negative net" (values < 0). Both positive_net and negative_net columns have positive values.
- Replace AUM columns with positive/negative pair.
- Apply log(x + 1) transform to the entire dataset (including target variable for regression model).
- Apply one-hot encoder for target variable for classification model.

Feature Engineering

Subsets

Models were tested on two subsets of features:

Subset_1 = $x_noof + x_aum + ['sales_curr', 'sales_12M',$

'redemption_curr', 'redemption_12M', 'new_Fund_added_12M']

Subset_2 = $x_net + x_aum + 'new Fund added 12M'$

Where:

x_noof: original sales / redemptions columns

x_net: all positive / negative net columns

x_aum: all positive / negative AUM columns

The models were found to perform better on the subset_1.

Feature Selection

Statistical tests

Initial features selection was performed using statistical tests.

Feature – target correlation tests

- Regression
 - Pearson's Correlation Coefficient
 - Spearman's Rank Correlation
 - Kendall's Rank Correlation
- Classification
 - Point biserial correlation
 - Kruskal-Wallis H-test

Features multicollinearity test

- Variance inflation factor (vif)
- Only features with p_value <= 0.05 for all tests were selected.
- Only features with vif < 5 were selected

Feature Selection

Regression model

Model and hyperparameters

Cross-validation strategy

- Train-test split: 70% train / 30% test
- Repeated Kfold cross-validation: 5 folds & 10 repeats
- Metrics: MAE, R2, explained variance

Classification model

Model and hyperparameters

Cross-validation strategy

- Train-test split: 70% train / 30% test
- Repeated stratified Kfold cross-validation: 5 folds & 10 repeats
- Metrics: accuracy, ROC-AUC

Model Selection

- Train model on the pre-selected features
- Run drop column feature importance and keep only features with positive score
- Retrain model on selected features
- Compare results before and after feature importance study

Training

Regression model

Important features

Features importance

CV results (all features)

2.207898	0.642501	0.641211
0.024959	0.005219	0.005276
2.362490	0.598390	0.596744
0.063948	0.022856	0.023132
	0.024959 2.362490 0.063948	2.362490 0.598390

CV results (important features)

CV Results			
	mae	explained_variance	r2
mean_train	2.253700	0.634185	0.632711
std_train	0.026154	0.005408	0.005467
mean_test	2.389155	0.595501	0.593682
std_test	0.064844	0.023310	0.023634
Validation	on the	test set	
explained_	variance	r: 2.4194457344; _score: 0.58198; 81454357539	

Training & Evaluation

Classification model

Important features

Features importance

CV results (all features)

	accuracy	roc_auc
nean_train	0.688677	0.789007
std_train	0.008173	0.003681
nean_test	0.638096	0.697467
std_test	0.014014	0.013697
	on on the	

CV results (important features)

NOTE: Data imbalance was compensated by using sample weights.

The weights of class 0 samples were set to be equal to class 1 prior and vice-versa.

Training & Evaluation

Classification model (continued)

Training & Evaluation

Attachments

- EDA-FINAL.ipynb EDA
- Sales_reg_x_noof_x_aum_GBR_FINAL.ipynb regression model
- Sales_reg_lift.xlsx lift chart for regression model
- NewFund_cls_x_noof_x_aum_GBC_FINAL.ipynb classification model
- NewFund_cls_lift.xlsx lift chart for classification model

Attachments

