

KEGGaNOG: A Streamlined Solution for KEGG Pathway Annotation

Ilia Popov¹, Igor Popov¹, Alexey Ermakov¹

¹ «Bioengineering and Veterinary Medicine» Faculty, Don State Technical University, Rostov-on-Don, Russia

Introduction & Purposes of use

eggNOG-mapper is a tool for fast functional annotation of novel sequences

- It uses **precomputed orthologous groups** and phylogenies from the eggNOG database
- Its annotations are well detailed
- However, its **hard to interpret** them
- For instance, it is **hard to understand** which KEGG Orthology (KO) terms are coded in 'KEGG_ko' column of eggNOG-mapper annotations!

??? KEGG_ko K00002 K13577 K01078 K22390 K19356 K22032

K08139 K08141 K20523 K08504

K01876 K22503

KEGGaNOG solves this problem:

- It takes eggNOG-mapper annotations
- Extracts 'KEGG_ko' column
- Decodes KO terms with KEGG-Decoder and creates .tsv file with pathways completeness
- Provides several visualization options

KEGGaNOG is perfect for

- Annotating bacterial metabolic profiles (e.g. probiotics)
- Annotating metagenomes metabolic profiles

Sample outputs

Complete metabolic profile of probiotic Lpb. plantarum IS-12506. KEGGaNOG's default visualization with single sample layout. Heatmap depicts pathways completeness (0 to 1).

Complete metabolic profiles of 10 metagenome samples. KEGGaNOG's default visualization with multi sample layout.

Acknowledgements

The work was carried out under the Russian Science Foundation grant № 23-14-00316

User APIs

User is also provided with several other options of visualization

Option 1: Correlation network

KEGGaNOG builds correlation matrix and plots it as the network. User is provided with options to adjust the plot (cmap, minimal correlation to plot etc.) This function allows to compare samples between each other and see the pattern – which sample differs from others

Option 2: Boxplots

KEGGaNOG uses the pathways completeness data and compares the completeness tendency among several samples This function allows to compare samples in terms of which sample has core complex metabolic profile and which - not.

Several other APIs are under development at the moment:

- Spider-plot API to compare the completeness of one specific pathway between samples
- 2. PCoA API to visualize metabolic profile similarity and divergence, highlighting clustering patterns and functional shifts

Maintenance updates are also under active development

Instructions

GitHub and README

Python Package Index