NUME	 DATA	
PRENUME	 NR. 1	
CDUDA		

TEST SOC

R. C.	R.G.	R.A.

	A	В	C	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

- 1. Care este secventa de acces pentru registrele pe 16 biti ale perifericului Timer/Counter1?
 - a. Octetul mai puțin semnificativ este scris înaintea octetului mai semnificativ; octetul mai puțin semnificativ este citit înaintea octetului mai semnificativ
 - b. Octetul mai semnificativ este scris înaintea octetului mai puțin semnificativ; octetul mai puțin semnificativ este citit înaintea octetului mai semnificativ
 - c. Octetul mai puțin semnificativ este scris înaintea octetului mai semnificativ; octetul mai semnificativ este citit înaintea octetului mai puțin semnificativ
 - d. Octetul mai semnificativ este scris înaintea octetului mai puțin semnificativ; octetul mai semnificativ este citit înaintea octetului mai puțin semnificativ
- 2. De ce este recomandată dezactivarea întreruperilor la accesarea registrelor pe 16 biți ale perifericului Timer/Counter1?
 - a. Operațiile de acces pe 16 biți pot corupe stiva
 - b. Operațiile de acces pe 16 biți modifică prioritățile întreruperilor
 - c. Operațiile de acces nu sunt atomice, întreruperea lor poate duce la coruperea valorilor citite/scrise
 - d. Operațiile de acces nu sunt atomice, întreruperea lor duce la dublarea numărului de cicli de ceas necesari execuției unei instrucțiuni
- 3. În figura este prezentată diagrama de timp pentru perifericul Timer/Counter0 în următorul mod de lucru:
 - a. Clear Timer on Compare Match (CTC), prescaler /8
 - b. Normal, fara prescaler
 - c. Normal, prescaler /8
 - d. Clear Timer on Compare Match (CTC), fara prescaler

4.	Care este durata de timp măsurată de timerul 0 al microcontrolerului ATMega16 între valorile 123 și
	178 ale registrului TCNT0, dacă acesta funcționează în mod normal cu un prescaler de 8? Se
	consideră frecvența de lucru de 4MHz.
	a. 114 us
	b. 120 us

c. 105 us

d. 110 us

5. Câte întreruperi (de depășire) sunt generate de timerul 1 al microcontrolerului ATMega16 în 3 secunde, dacă acesta funcționează în mod normal cu un prescaler de 64? Se consideră frecvența de lucru de 4MHz.

0	194	
a.	194	
b.	168	Răspuns corect:
c.	177	2
А	183	

- 6. Care este durata impulsului pozitiv al unui semnal dreptunghiular generat cu ajutorul timerului 1 al microcontrolerului ATMega16 care functionează în modul 14 cu ICR1 = 799 si OCR1A = 200 ? Frecvența de lucru este de 4Mhz, timerul nu folosește prescaler iar la începutul ciclului de numărare, pinul pe care este generat semnalul este 1 logic.
 - a. 50 us
 - b. 25 us
 - c. 250 us
 - d. 500 us
- 7. Care dintre următoarele instrucțiuni va provoca reset de tip watchdog reset? Timer-ul watchdog duncționează cu WDP = 110 la frecvența de 1MHz, iar microcontrolerul funcționează la frecvența de 4MHz.

```
delay cycles (2000000L)
__delay_cycles(1500000L)
delay cycles (500000L)
```

- a. Doar prima
- b. Doar primele două
- c. Toate cele trei
- d. Nici una
- 8. Care este frecvența reală de lucru a microcontrolerului ATMega16 pentru care instrucțiunea delay cycles (500000L) se execută în 124.5 ms?
 - a. 4.008 MHz
 - b. 4.004 MHz
 - c. 4.040 MHz
 - d. 4.016 MHz
- 9. Care este valoarea registrului UBRR pentru a seta viteza de comunicație pe interfața serială la 9600 baud (biţi pe secundă) ? Microcontrolerul lucrează la 4 MHz cu U2X = 0.
 - a. 12
 - b. 51
 - c. 25
 - d. 16

10. Care este durata de timp necesară transferului pe interfața serială a unui octet de date la un baud rate
de 19200 ?
a. 1.04 ms
<mark>b. 520 us</mark>
c. 260 us
d. 2.08 ms
11. Ce cantitate de memorie de program are microcontrolerul ATMega16?
a. 32 K
b. 16 K
c. 8 K
d. 1 K
12. Care este frecvența de lucru maximă pentru microcontrolerul ATMega16?
a. 10 MHz
b. 4 MHz
c. 16 MHz
d. 1 MHz
13. Care este numărul registrelor interne de uz general al microcontrolerului ATMega16?
a. 32
b. 8
c. 16
d 64

PORTD = 0x40; PORTD |= (0xA3 << 2);

14. Câți pini ai portului D al microcontrolerului ATMega16 sunt configurați ca ieșiri în urma execuției

a. 4

b. 3

c. 2

d 5

Răspuns corect:

0

15. Care este valoarea de pe pinul PD5 după execuția următoarei secvențe de instrucțiuni la începutul unui program?

PORTD =
$$0 \times E0$$
;
DDRD = $0 \times B5$;

- a. 0 (0V)
- b. Nedefinit
- c. 1 (5V)
- d. Impedanță ridicată (Hi-Z)

următoarei secvențe de instrucțiuni?