

KAGGLE CARDIAC DATA DSC 530 DATA EXPLORATION AND ANALYSIS

SAM LOYD NOVEMBER 2019

KAGGLE CARDIAC DATA CODE BOOK

PROVIDED BY SVETLANA UNLIANOVA AT RYERSON UNIVERSITY

HTTPS://WWW.KAGGLE.COM/SULIANOVA/EDA-CARDIOVASCULAR-DATA/NOTEBOOK#EDA-OF-CADIOVASCULAR-DISEASES-DATA

NUMERICAL DATA

CATEGORICAL DATA

AGE - days

GENDER

CHOLESTEROL

HEIGHT - cm

SMOKING

GLUCOSE

WEIGHT - kg

ALCOHOL

SYSTOLIC BLOOD PRESSURE

PHYSICAL ACTIVITY

BINARY DATA

DIASTOLIC BLOOD PRESSURE

CARDIOVASCULAR DISEASE

HYPOTHESIS

DOES BEING OVERWEIGHT AS MEASURED BY THE STANDARD BMI FORMULA USING WEIGHT AND HEIGHT, TEND TO INCREASE THE LIKELIHOOD OF HAVING A CARDIOVASCULAR DISEASE?

7,

How does gender impact the answer to the question above if at all?

EXAMPLES FROM DISTRIBUTION ANALYSIS

AGE

Statistics indicate symmetry and platykurtic (light tailed).

WEIGHT

Statistics show positive skew and leptokurtic (heavy tailed).

HEIGHT

Statistics indicate negative skew and leptokurtic.

EXAMPLES FROM OUTLIER ANALYSIS

AGE

Age 29 was reasonable so not removed.

WEIGHT

Removed cases over 181 kg and less than 36 kg.

HEIGHT

Removed top outlier to the right and all less than 121 cm or 4 ft.

CALCULATED BMI

The formula for **BMI** is weight in kilograms divided by height in meters squared. Using this data set, that is weight divided by the square of the height after it is divided by 100.

INITIAL HISTOGRAM

Positive skew and leptokurtotic.

BOX PLOT - OUTLIERS

Removed extreme cases based on domain knowledge.

FINAL HISTOGRAM

Slight kurtosis improvement which was hard to detect visually.

FOLLOW UP ANALYSIS POST OUTLIER REMOVAL

AGE

No changes to outlier or analysis.

WEIGHT

Lessened kurtosis.

HEIGHT

Most improved example with relatively normal statistics.

CONTINUED ANALYSIS POST OUTLIER REMOVAL

SYSTOLIC

Slight positive skew and leptokurtic.

DIASTOLIC

Relatively normal skew and leptokurtic.

BMI

Positive skew and leptokurtic.

FURTHER EVIDENCE OF NON GAUSSIAN DISTRIBUTION FOR BMI

CDF

Plot indicates skew.

PROBABILITY PLOT

Note the deviations from the line.

KDE

Non-symmetrical indicating skew.

CARDIO VISUALIZATIONS USING BOXEN PLOTS

Due to the binary nature of having a cardio disease used in this analysis, enhanced box plots from the python based seaborn package were utilized for visualizations.

BMI - CARDIO

Correlation appears slightly noticeable.

DIASTOLIC - CARDIO

Indicates some positive correlation.

SYSTOLIC - CARDIO

Strongest visual of positive correlation.

Correlation Heatmap Using Spearman's Method

ROC Curve from Sklearn's LogisticRegression Function

CONCLUSION

CORRELATION BETWEEN BMI AND CARDIOVASCULAR DISEASE, WHILE STATISTICALLY SIGNIFICANT, WAS WEAK. SYSTOLIC BLOOD PRESSURE HAD A STRONGER CORRELATION AND WAS MORE USEFUL IN CONSTRUCTING PREDICTIVE MODELS.

Gender as confirmed by multiple tests did not prove to have a correlation with heart disease in this population. Given the unknown amount of sampling and other bias in this population set, I would discourage projecting this conclusion onto a larger population set such as the general public.