BSc, MSc and MSci EXAMINATIONS (MATHEMATICS) May/June 2018

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

Probability and Statistics

Date: Friday, 25 May 2018

Time: 14:00 - 16:00

Time Allowed: 2 Hours

This paper has 4 Questions.

Candidates should use ONE main answer book.

Supplementary books may only be used after the relevant main book(s) are full.

Statistical tables are provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- Credit will be given for all questions attempted.
- Each question carries equal weight.
- Calculators may not be used.

- 1. (a) (i) State the three axioms of probability for events defined on a sample space Ω .
 - (ii) For events E and F, prove from the axioms that if E and F^C are disjoint then $P(F) \geq P(E)$.
 - (iii) Consider the sequence of events G_1, G_2, G_3, \ldots with the following properties:

$$G_1 \cap G_j = \phi \ \forall \ j > 2;$$

$$G_i \cap G_j = \phi \ \forall \ i > 1; \ j > i+1 \text{ and } j < i-1,$$

i.e. the events intersect as follows:

You are given that, for $i \ge 1$:

$$P(G_i \cap G_{i+1}) = \left(\frac{1}{5}\right)^i; \quad P(G_{i-1}^C \cap G_i \cap G_{i+1}^{C_i}) = \left(\frac{3}{7}\right)^i,$$

where $G_0 = \phi$.

Determine $P(G_i \mid G_j)$, for all values of i and j with i > j, and show that $\bigcup_{i=1}^{\infty} G_i$ is exhaustive for Ω .

- (b) At the end of each week during the autumn term a particular student either has status "upto-date" with the problem sheets for M1S or has status "behind" with the problem sheets for M1S. Their status at the end of a week depends on their status at the end of the previous week, but does not depend on their status prior to the previous week. If they are up-to-date at the end of a given week, the probability that they will be up-to-date at the end of the next week is 0.9 otherwise they will be behind. If they are behind at the end of a given week, the probability that they will be up-to-date at the end of the next week is 0.4 otherwise they will be behind. They are up-to-date at the end of the week before the start of term.
 - (i) What is the probability that the student is up-to-date at the end of week two?
 - (ii) Given the student is up-to-date at the end of week two, what is the probability they were up-to-date at the end of week one?
 - (iii) What is the probability that the student is up-to-date for the whole of a ten week term?

2. The number of mistakes, X_i , on pages i, i = 1, ..., n, of a particular textbook with n pages, are independently distributed with the following probability mass functions (pmf):

$$f_{X_i}(x) = \left\{ egin{array}{ll} rac{\mathrm{e}^{-\lambda_i}\lambda_i^x}{x!} & x=0,1,2,\ldots; \ 0 & ext{otherwise,} \end{array}
ight.$$

with $\lambda_i > 0$, $i = 1, \ldots, n$.

- (a) (i) Verify that each $f_{X_i}(x)$ is a valid pmf.
 - (ii) Determine, p, the probability that there is at least one mistake on the first page.
 - (iii) What is the maximum value of λ_1 which ensures that the value of p calculated in part (a)(ii) does not exceed 0.5.
- (b) (i) Define the probability generating function (pgf), $G_X(t)$, of a discrete random variable X with range $\{x_1, x_2, x_3, \ldots\}$.
 - (ii) Show that $G_X(1) = 1$.
 - (iii) Prove that the pgf of X_i is,

$$G_{X_i}(t) = \mathsf{e}^{\lambda_i(t-1)},$$

- (iv) Determine the pgf of $T = \sum_{i=1}^{n} X_i$, the total number of mistakes. Hence name the distribution of T and identify its parameter(s).
- (v) Determine the pmf of Z=T/n, the average number of mistakes per page.
- (vi) If $\lambda_i = \beta$, $\forall i$ where $\beta > 0$, find an expression for the probability that the average number of mistakes per page is not more than one.

3. The continuous random variables X and Y are independent with probability density functions (pdfs) given by,

$$f_X(x) = \left\{ \begin{array}{ll} \lambda \mathrm{e}^{-\lambda x}, & x > 0; \\ 0, & \text{otherwise,} \end{array} \right. \qquad f_Y(y) = \left\{ \begin{array}{ll} \lambda^2 y \mathrm{e}^{-\lambda y}, & y > 0; \\ 0, & \text{otherwise,} \end{array} \right.$$

with $\lambda > 0$. i.e. $X \sim Exponential(\lambda)$ and $Y \sim Gamma(2, \lambda)$.

- (a) Derive $\mathsf{E}_{f_X}(X)$ and $\mathsf{E}_{f_Y}(Y)$ directly from the definition of expectation. Hence show that $\mathsf{E}_{f_Y}(Y) = 2\mathsf{E}_{f_X}(X)$.
- (b) The reliability, $R_{f_Z}(z)$, of a random variable Z is defined as $R_{f_Z}(z) = P(Z > z)$. Determine $R_{f_Z}(x)$ and $R_{f_Y}(y)$.
- (c) Determine $P(X>x_1+x_2\mid X>x_1)$ and $P(Y>y_1+y_2\mid Y>y_1)$ with $x_1,x_2,y_1,y_2>0$.
- (d) If the continuous random variable Z is "memoryless" i.e. has the property that $P(Z>z_1+z_2\mid Z>z_1)=P(Z>z_2)$, for all z_1 and z_2 , then it can be shown that $R_{f_Z}(t)=[R_{f_Z}(1)]^t,\ t\geq 0$. Use this result to show that Z must have the same named distribution as X_i and identify its parameter.
- (e) Let $V = \exp(-X)$, determine $f_V(v)$, the pdf of V.
- (f) Let $Z=\min(X,Y)$, by considering the reliability of Z, determine $f_Z(z)$, the pdf of Z.

- 4. (a) I have 12 alternative routes that I can take for my cycle ride into work, the routes are classified into three different type: 3 are dangerous (but short), 4 are safe (but longer) and 5 are scenic. To determine my daily routes, I choose 2 different routes at random (unordered) from the 12 possibilities. Out of the 2 routes chosen, let X denote the number of dangerous routes and Y denote the number of safe routes.
 - (i) Complete a two-way table with entries given by $f_{X,Y}(x,y)$, the joint pmf of X and Y.
 - (ii) Are X and Y independent?
 - (iii) Find $E_{f_X}(X)$.
 - (b) Prove that, for continuous random variables X and Y,

$$E_{f_X}(X) = E_{f_Y} \left[\mathsf{E}_{f_{X\mid Y}}(X\mid Y=y) \right].$$

[You may assume that $E_{f_X}(X)$ is finite].

(c) The continuous random variables X and Y have joint pdf given by

$$f_{X,Y}(x,y) = \begin{cases} 2y(3-y)(1+x)^{-(y+1)}, & 2 < y < 3, \ x > 0; \\ 0, & \text{otherwise.} \end{cases}$$

(i) Prove that, $f_Y(y)$, the marginal distribution of Y is,

$$f_Y(y) = 2(3-y), \quad 2 < y < 3.$$

- (ii) Find $\mathsf{E}_{f_Y}(Y)$.
- (iii) Find $f_{X|Y}(x|y)$ the conditional pdf of X given Y.
- (iv) Determine the conditional mean, $\mathsf{E}_{f_{X|Y}}(X|Y=y)$, of X given Y=y, and hence determine the marginal mean, $\mathsf{E}_{f_X}(X)$ of X.

		SIO	DISCRETE DISTRIBUTIONS	SI	1		
	RANGE	PARAMETERS	MASS FUNCTION fx	CDF	E _{fx} [X]	$Var_{f_{\mathcal{X}}}\left[X ight]$	MGF
Bernoulli(heta)	{0,1}	$\theta \in (0,1)$	$\theta^x(1-\theta)^{1-x}$		θ	$\theta(1-\theta)$	$1-\theta+\theta e^t$
$Binomial(n, \theta)$	$\{0,1,,n\}$	$n \in \mathbb{Z}^+, \hat{\theta} \in (0,1)$	$\binom{n}{x} \theta^x (1-\theta)^{n-x}$		$n\theta$	$n\theta(1- heta)$	$(1-\theta+\theta e^t)^n$
$Poisson(\lambda)$	{0, 1, 2,}	λ∈ℝ+	$\frac{e^{-\lambda}\lambda^{x}}{x!}$		~	~	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(heta)	{1, 2,}	$\theta \in (0,1)$	$(1-\theta)^{x-1}\theta$	$1-(1-\theta)^x$	T-10	$\frac{(1-\theta)}{\theta^2}$	$\frac{\theta e^{t}}{1-e^{t}(1-\theta)}$
$NegBinomial(n, \theta)$	$\{n,n+1,\ldots\} n\in\mathbb{Z}^+,\theta$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{x-1}{n-1}\theta^n(1-\theta)^{x-n}$		2 0	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta e^t}{1-e^t(1-\theta)}\right)^n$
.o	{0,1,2,}	$n\in\mathbb{Z}^+, heta\in(0,1)$	$\binom{n+x-1}{x}\theta^n(1-\theta)^x$		$\frac{n(1-\theta)}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta}{1-e^t(1-\theta)}\right)^n$

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$

and the LOCATION/SCALE transformation
$$Y=\mu+\sigma X$$
 gives $f_Y(y)=f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma}$
$$F_Y(y)=F_X\left(\frac{y-\mu}{\sigma}\right)$$

$$M_Y(t) = e^{\mu t} M_X(\sigma t)$$

$$\mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right]$$

$$\operatorname{Var}_{f_X}[Y] = \sigma^2 \operatorname{Var}_{f_X}[X]$$

			CONTINUOUS DISTRIBUTIONS	TRIBUTIONS			
		PARAMS.	PDF	CDF	$E_{f_X}[X]$	$Var_{f_X}\left[X ight]$	MGF
	×		f_{X}	F_X			M_X
Uniform(lpha,eta) (stand. model $lpha=0,eta=1)$	(a, B)	$\alpha < \beta \in \mathbb{R}$	$\frac{1}{\beta - \alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(eta-lpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$
$Exponential(\lambda)$ (stand. model $\lambda=1)$	± +	入 G Re +	$\lambda e^{-\lambda x}$	1 — e — λæ	-1<	<u>1</u> <u> </u>	$\left(\frac{\lambda}{\lambda-t}\right)$
Gamma(lpha,eta) (stand. model $eta=1$)	±:⊞	$\alpha, \beta \in \mathbb{R}^+$	$rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$		שוב	$\frac{\alpha}{eta^2}$	$\left(\frac{\beta}{\beta-t}\right)^a$
Weibull(lpha,eta) (stand, model $eta=1$)	+ 11	$\alpha, \beta \in \mathbb{R}^+$	$lphaeta x^{lpha - 1}e^{-eta x^{lpha}}$	1 – e – fas	$\frac{\Gamma(1+1/\alpha)}{\beta^{1/\alpha}}$	$\frac{\Gamma\left(1+\frac{2}{lpha}\right)-\Gamma\left(1+\frac{1}{lpha}\right)^2}{eta^{2/lpha}}$	
Normal (μ,σ^2) (stand, model $\mu=0,\sigma=1)$	出	μ∈R σ∈R ⁺	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		ф	Ø2.	$e^{\{\mu t + \sigma^2 t^2/2\}}$
Student(u)	æ	v ∈ ℝ+	$\frac{(\pi\nu)^{-\frac{1}{2}}\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\left\{1+\frac{x^2}{\nu}\right\}^{(\nu+1)/2}}$		9 (if $\nu > 1$)	$\frac{\nu}{\nu-2} (\text{if } \nu > 2)$	
Pareto(θ, α)	+. E	θ,α∈R+	$\frac{\alpha \theta^{\alpha}}{(\theta + x)^{\alpha + 1}}$	$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	$\dfrac{ heta}{lpha-1}$ (if $lpha>1$)	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha>2$)	
Beta(lpha,eta)	(0,1)	α,β∈ℝ+	$\frac{\Gamma(\alpha+eta)}{\Gamma(lpha)\Gamma(eta)}x^{lpha-1}(1-x)^{eta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	

BSc, MSc and MSci EXAMINATIONS (MATHEMATICS) May/June 2018

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

Probability and Statistics (SOLUTIONS)

Date: Friday, 25 May 2018.

Time: 14:00 - 16:00

Time Allowed: 2 Hours

This paper has 4 Questions.

Candidates should use ONE main answer book.

Supplementary books may only be used after the relevant main book(s) are full.

Statistical tables are provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- Credit will be given for all questions attempted.
- Each question carries equal weight.
- · Calculators may not be used.

seen \Downarrow

1. (a) (i) Axioms of Probability

Given a σ -field, \mathcal{F} (a set of subsets of the sample space Ω .) For events $E, E_1, E_2, \ldots \in \mathcal{F}$, then the probability function, $P(\cdot)$, must satisfy:

- (I) $P(E) \geq 0$.
- (II) $P(\Omega) = 1$.
- (III) If E_1, E_2, \ldots are pairwise disjoint then
- $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$ (Countable additivity).

(Do not need to specify σ -field, could instead say: for events $E, E_1, \ldots \subseteq \Omega$. Lose 1 mark if finite rather than countable additivity specified, but they do need to specify the meaning of finite/countable additivity).

(ii) We are given that $E \cap F^C = \phi \Rightarrow P(E \cap F^C) = 0$. From Axiom III we have,

$$\begin{split} \mathsf{P}(F) &= \mathsf{P}(F \cap E^C) + \mathsf{P}(F \cap E) \ \text{ as } (F \cap E^C) \ \text{and } (F \cap E) \ \text{are disjoint} \\ \mathsf{P}(E) &= \mathsf{P}(E \cap F^C) + \mathsf{P}(E \cap F) \ \text{ as } (E \cap F^C) \ \text{and } (E \cap F) \ \text{are disjoint} \\ \Rightarrow \mathsf{P}(E) &= \mathsf{P}(E \cap F) \Rightarrow \mathsf{P}(F) = \mathsf{P}(F \cap E^C) + \mathsf{P}(E) \\ \Rightarrow \mathsf{P}(F) &\geq \mathsf{P}(E) \ \text{ as } \mathsf{P}(F \cap E^C) \geq 0 \ \text{ from Axiom 1.} \end{split}$$

3

(iii) We have,

 $P(G_{i+1} \mid G_i) = \frac{P(G_i \cap G_{i+1})}{P(G_i)} = \frac{(1/5)^i}{P(G_i)}$

unseen ↓

Now, for i > 1,

$$\begin{split} \mathsf{P}(G_{i}) &= \mathsf{P}(G_{i-1} \cap G_{i} \cap G_{i+1}^{C}) + \mathsf{P}(G_{i-1}^{C} \cap G_{i} \cap G_{i+1}) + \mathsf{P}(G_{i-1}^{C} \cap G_{i} \cap G_{i+1}^{C}) \\ &= \mathsf{P}(G_{i-1} \cap G_{i}) + \mathsf{P}(G_{i} \cap G_{i+1}) + \mathsf{P}(G_{i-1}^{C} \cap G_{i} \cap G_{i+1}^{C}). \\ &= \left(\frac{1}{5}\right)^{i-1} + \left(\frac{1}{5}\right)^{i} + \left(\frac{3}{7}\right)^{i} \\ &= 6\left(\frac{1}{5}\right)^{i} + \left(\frac{3}{7}\right)^{i}, \end{split}$$

and for i=1,

$$P(G_1) = P(G_1 \cap G_2) + P(G_1 \cap G_2^C) = \frac{1}{5} + \frac{3}{7} = \frac{22}{35}.$$

Giving,

$$\mathsf{P}(G_i \mid G_j) = \frac{\mathsf{P}(G_i \cap G_j)}{\mathsf{P}(G_j)} = \left\{ \begin{array}{ll} 0, & i > j+1; \\ \\ \frac{7}{22}, & i = 2, j = 1; \\ \\ \frac{\left(\frac{1}{8}\right)^j}{6\left(\frac{1}{8}\right)^j + \left(\frac{3}{7}\right)^j}, & j > 1, i = j+1. \end{array} \right.$$

5

M1S Probability and Statistics (SOLUTIONS) (2018)

Page 2

For $\bigcup_{i=1}^{\infty} G_i$ to be exhaustive for Ω , we need to show $\mathrm{P}(\cup G_i)=1$. Rewrite as the disjoint union:

$$\begin{split} \mathbb{P}\left(\bigcup_{i=1}^{\infty} G_{i} \right) &= \sum_{i=1}^{\infty} \mathbb{P}(G_{i} \cap G_{i+1}^{C}) \\ &= \sum_{i=1}^{\infty} \mathbb{P}(G_{i}) - \mathbb{P}(G_{i} \cap G_{i+1}) \\ &= \left(\frac{3}{7} \right) + \sum_{i=2}^{\infty} \left[6 \left(\frac{1}{5} \right)^{i} + \left(\frac{3}{7} \right)^{i} - \left(\frac{1}{5} \right)^{i} \right] \\ &= \left(\frac{3}{7} \right) + \sum_{i=2}^{\infty} \left[\left(\frac{1}{5} \right)^{i-1} + \left(\frac{3}{7} \right)^{i} \right] \\ &= \sum_{i=1}^{\infty} \left(\frac{1}{5} \right)^{i} + \sum_{i=1}^{\infty} \left(\frac{3}{7} \right)^{i} \\ &= \left(\frac{1}{1 - \frac{1}{5}} - 1 \right) + \left(\frac{1}{1 - \frac{3}{7}} - 1 \right) = \left(\frac{5}{4} - 1 \right) + \left(\frac{7}{4} - 1 \right) = 1, \end{split}$$

as required.

3

sim seen ↓

- (b) Let U_i = event up to date at the end of week i and B_i = event behind at the end of week i
 - (i) We have, for i > 1,

$$P(U_1) = 0.9, \ P(B_1) = 0.1$$

$$P(U_i \mid U_{i-1}) = 0.9, \ P(B_i \mid U_{i-1}) = 0.1$$

$$P(U_i \mid B_{i-1}) = 0.4, \ P(B_i \mid B_{i-1}) = 0.6.$$

So, from the theorem of total probability,

$$U_{2} = (U_{2} \cap B_{1}) \cup (U_{2} \cap U_{1})$$

$$\Rightarrow P(U_{2}) = P(U_{2} \mid B_{1})P(B_{1}) + P(U_{2} \mid U_{1})P(U_{1})$$

$$= 0.4 \cdot 0.1 + 0.9 \cdot 0.9 = 0.85.$$

(ii)
$$P(U_1 \mid U_2) = \frac{P(U_2 \mid U_1)P(U_1)}{P(U_2)} = \frac{0.9^2}{0.85} = \frac{81}{85}.$$

(iii)
$$P\left(\bigcap_{i=1}^{10} U_i\right) = P(U_1) \prod_{i=2}^{10} P(U_i \mid U_{i-1}) = 0.9^{10}.$$

2. (a) (i) For a valid pmf we must have

$$\begin{split} f_{X_i}(x) &\geq 0 \ \text{ and } \ \sum_x f_{X_i}(x) \, \mathrm{d}x = 1 \\ f_{X_i}(x) &\geq 0 \ \text{ as } \lambda_i > 0, x \geq 0 \ \text{ and } \mathrm{e}^{-\lambda_i} > 0 \\ \sum_x f_{X_i}(x) &= \sum_{x=0}^\infty \frac{\mathrm{e}^{-\lambda_i} \lambda_i^{\ x}}{x!} = \mathrm{e}^{-\lambda_i} \sum_{x=0}^\infty \frac{\lambda_i^{\ x}}{x!} = \mathrm{e}^{-\lambda_i} \mathrm{e}^{\lambda_i} = 1, \end{split}$$

as required.

 $p = P(X_1 \ge 1) = 1 - P(X_1 = 0) = 1 - e^{-\lambda_1}$

unseen ↓

2

(iii)

(ii)

 $p \le 0.5 \Rightarrow 1 - e^{-\lambda_1} \le 0.5 \Rightarrow e^{-\lambda_1} \ge 0.5 \Rightarrow \lambda_1 \le \log(2)$.

зееп ↓

2

2

2

(b) (i) The pgf is defined as

$$G_X(t) = \mathsf{E}(t^X) = \sum_{i=1}^\infty t^{x_i} f_X(x_i).$$

(ii)

$$G_X(1) = \sum_{i=1}^{\infty} 1^{x_i} f_X(x_i) = \sum_{i=1}^{\infty} f_X(x_i) = 1,$$

as f_X is a pmf.

1

(iii)

$$G_{X_i}(t) = \sum_{x=0}^{\infty} t^x \frac{e^{-\lambda_t} \lambda_i^x}{x!}$$

$$= e^{-\lambda_i} \sum_{x=0}^{\infty} \frac{(t\lambda_i)^x}{x!} = e^{-\lambda_i} e^{t\lambda_i}$$

$$\Rightarrow G_{X_i}(t) = e^{\lambda_i(t-1)},$$

as required.

2

(iv) As the X_i are independent, we have

meth seen ↓

$$G_T(t) = \prod_{i=1}^n G_{X_i}(t) = \prod_{i=1}^n e^{\lambda_i(t-1)} = \exp\left(\sum_{i=1}^n \lambda_i(t-1)\right).$$

2

We recognise this as the pgf of a Poisson distribution with parameter $\sum_{i=1}^n \lambda_i$, i.e. $T \sim Poisson(\sum_{i=1}^n \lambda_i)$ and

$$f_T(x) = \frac{\mathrm{e}^{-\lambda} \lambda^x}{x!}, x = 0, 1, 2, \dots$$

where $\lambda = \sum_{i=1}^{n} \lambda_i$.

MIS Probability and Statistics (SOLUTIONS) (2018)

2

Page 4

unseen 4

The range of T is $\{0,1,2,\ldots\}_r$ hence the range of Z is $\{0,\frac{1}{n},\frac{2}{n},\ldots\}$.

$$f_Z(z) = \mathsf{P}(Z=z) = \mathsf{P}\left(rac{T}{n}=z
ight) = \mathsf{P}(T=zn) = f_T(zn)$$
 $= rac{\mathrm{e}^{-\lambda}\lambda^{zn}}{(zn)!}, z \in \left\{0, rac{1}{n}, rac{2}{n}, \ldots\right\},$

where $\lambda = \sum_{i=1}^{n} \lambda_i$.

3

For the probability that the average number of mistakes per page is not more than 1, we need to calculate $P(Z \le 1) = P(T \le n)$. Where $\lambda = \sum_{i=1}^{n} \lambda_i = n\beta$.

$$P(T \le n) = \sum_{i=0}^{n} f_{T}(i) = \sum_{i=0}^{n} \frac{e^{-\lambda} \lambda^{i}}{i!} = \sum_{i=0}^{n} \frac{e^{-n\beta} (n\beta)^{i}}{i!}.$$

 $\overline{\operatorname{seen}} \downarrow$

3. (a)

$$\begin{split} \mathsf{E}_{f_X}(X) &= \int_0^\infty x f_X(x) \, \mathrm{d}x = \int_0^\infty \lambda x \mathrm{e}^{-\lambda x} \, \mathrm{d}x \\ &= \left[-x \mathrm{e}^{-\lambda x} \right]_0^\infty + \int_0^\infty \mathrm{e}^{-\lambda x} \, \mathrm{d}x = \left[-\frac{\mathrm{e}^{-\lambda x}}{\lambda} \right]_0^\infty \\ \Rightarrow \mathsf{E}_{f_X}(X) &= \frac{1}{\lambda}. \end{split}$$

2

meth seen ↓

$$\begin{split} \mathsf{E}_{f_Y}(Y) &= \int_0^\infty y f_Y(y) \, \mathrm{d}y = \int_0^\infty \lambda^2 y^2 \mathrm{e}^{-\lambda y} \, \mathrm{d}y = \left[-\lambda y^2 \mathrm{e}^{-\lambda y}\right]_0^\infty + \int_0^\infty 2\lambda y \mathrm{e}^{-\lambda y} \, \mathrm{d}y \\ &= \left[-2y \mathrm{e}^{-\lambda y}\right]_0^\infty + \int_0^\infty 2\mathrm{e}^{-\lambda y} \, \mathrm{d}y = \left[-\frac{2\mathrm{e}^{-\lambda y}}{\lambda}\right]_0^\infty \\ \Rightarrow \mathsf{E}_{f_Y}(Y) &= \frac{2}{\lambda}, \end{split}$$

3

and hence $\mathsf{E}_{f_{Y}}(Y) = 2\mathsf{E}_{f_{X}}(X)$ as required.

 $\Rightarrow R_{f_X}(x) = e^{-\lambda x}, x > 0.$

(b)
$$R_{f_X}(x)=1,\ x\leq 0$$
 and $R_{f_Y}(y)=1,\ y\leq 0.$
$$R_{f_X}(x)=\mathsf{P}(X>x)=\int_x^\infty f_X(y)\,\mathrm{d}y=\int_x^\infty \lambda \mathrm{e}^{-\lambda y}\,\mathrm{d}y=\left[-\mathrm{e}^{-\lambda y}\right]_x^\infty$$

2

$$\begin{split} R_{f_Y}(y) &= \mathsf{P}(Y > y) = \int_y^\infty f_Y(x) \, \mathrm{d}x = \int_y^\infty \lambda^2 x \mathrm{e}^{-\lambda x} \, \mathrm{d}x \\ &= \left[-\lambda x \mathrm{e}^{-\lambda x} \right]_y^\infty + \int_y^\infty \lambda \mathrm{e}^{-\lambda x} \, \mathrm{d}x = \lambda y \mathrm{e}^{-\lambda y} + \left[-\mathrm{e}^{-\lambda x} \right]_y^\infty \\ &\Rightarrow R_{f_Y}(y) = \mathrm{e}^{-\lambda y} (1 + \lambda y), \ \ y > 0. \end{split}$$

2

M1S Probability and Statistics (SOLUTIONS) (2018)

Page 5

(c)

$$P(X > x_1 + x_2 \mid X > x_1) = \frac{P((X > x_1 + x_2) \cap (X > x_1))}{P(X > x_1)} = \frac{P(X > x_1 + x_2)}{P(X > x_1)}$$
$$= \frac{e^{-\lambda(x_1 + x_2)}}{e^{-\lambda x_1}} = e^{-\lambda x_2}.$$

2

meth seen #

$$\begin{split} \mathsf{P}(Y > y_1 + y_2 \mid Y > y_1) &= \frac{\mathsf{P}((Y > y_1 + y_2) \cap (Y > y_1))}{\mathsf{P}(Y > y_1)} = \frac{\mathsf{P}(Y > y_1 + y_2)}{\mathsf{P}(Y > y_1)} \\ &= \frac{\mathsf{e}^{-\lambda(y_1 + y_2)}(1 + \lambda(y_1 + y_2))}{\mathsf{e}^{-\lambda y_1}(1 + \lambda y_1)} = \frac{\mathsf{e}^{-\lambda y_2}(1 + \lambda(y_1 + y_2))}{(1 + \lambda y_1)}. \end{split}$$

2

meth seen #

(d) Given
$$R_{f_Z}(t) = R_{f_Z}(1)^t$$
, $t \ge 0$, and $0 \le R_{f_Z}(t) \le 1$ is a non-increasing function,

$$\log(R_{f_Z}(t)) = t \log(R_{f_Z}(1)) \Rightarrow R_{f_Z}(t) = \exp(t \log(R_{f_Z}(1))).$$

Recognise this as the reliability of an exponential distribution with parameter $-\log(R_{f_Z}(1))$.

1

(e) Given $V = \exp(-X)$, the range of V = (0, 1).

$$F_V(v) = P(V \le v) = P(\exp(-X) \le v) = P(X \ge -\log(v))$$

$$= R_{f_X}(-\log(v)) = \exp(\lambda \log(v)) = v^{\lambda}.$$

$$\Rightarrow f_V(v) = \lambda v^{\lambda - 1}, \quad 0 < v < 1.$$

3

(f) If $Z = \min(X, Y)$,

$$\begin{split} \mathsf{P}(Z>z) &= \mathsf{P}(\min(X,Y)>z) = \mathsf{P}((X>z) \cap (Y>z)) = \mathsf{P}(X>z) \mathsf{P}(Y>z) \\ &= \mathsf{e}^{-\lambda z} \mathsf{e}^{-\lambda z} (1+\lambda z) \\ \Rightarrow F_Z(z) &= 1 - \mathsf{e}^{-2\lambda z} (1+\lambda z) \\ \Rightarrow f_Z(z) &= -\lambda \mathsf{e}^{-2\lambda z} + 2\lambda \mathsf{e}^{-2\lambda z} (1+\lambda z) \\ \Rightarrow f_Z(z) &= \lambda \mathsf{e}^{-2\lambda z} (1+2\lambda z), \quad z>0, \end{split}$$

3

sim seen ↓

4

1

4. (a) (i) Let event E be the event that I choose 2 routes with x dangerous, y safe and 2-(x+y) scenic. Then $f_{X,Y}(x,y)=\frac{n_E}{n_\Omega}$, where n_E is the number of routes which satisfy E (for $x+y\leq 2$), and n_Ω is the number of ways I can choose 2 routes with no restrictions.

$$f_{X,Y}(x,y) = \mathsf{P}(X=x,Y=x) = \frac{\binom{3}{x}\binom{4}{y}\binom{5}{2-(x+y)}}{\binom{12}{2}}, \ \ 0 \le x+y \le 2.$$

(ii) The marginal distributions are given by,

For independence, need $f_{X,Y}(x,y) = f_X(x)f_Y(y)$.

Consider $f_{X,Y}(2,2)=0 \neq f_X(x)f_Y(y)=\frac{3}{66}\times\frac{6}{66}$, so X and Y are not independent (as expected given the context!).

$$\mathsf{E}_{f_X}(X) = \sum_{x=0}^{2} x f_X(x) = 1 \cdot \frac{27}{66} + 2 \cdot \frac{3}{66} = \frac{33}{66} = \frac{1}{2}.$$

(b) Consider

(iii)

$$\begin{split} \mathsf{E}_{f_Y} \left[\mathsf{E}_{f_{X|Y}}(X|Y=y) \right] &= \int_y \mathsf{E}_{f_{X|Y}}(X|Y=y) \ f_Y(y) \, \mathrm{d}y \\ &\int_y \int_x x f_{X|Y}(x|y) f_Y(y) \, \mathrm{d}x \, \mathrm{d}y \\ &= \int_x x \int_y f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x \\ &= \int_x x f_X(x) \, \mathrm{d}x \\ &= \mathsf{E}_{f_X}(X), \end{split}$$

as required.

M1S Probability and Statistics (SOLUTIONS) (2018)

Page 7

2

meth seen ↓

(c) (i)

$$f_Y(y) = \int_0^\infty 2y(3-y)(1+x)^{-(y+1)} dx = 2(3-y) \left[-(1+x)^{-y} \right]_0^\infty$$
$$= 2(3-y), \quad y \in (2,3),$$

2

as required.

(ii)

$$\begin{split} \mathsf{E}_{f_Y}(Y) &= \int_2^3 y f_Y(y) \, \mathrm{d}y = \int_2^3 2y (3-y) \, \mathrm{d}y = \left[3y^2 - \frac{2y^3}{3} \right]_2^3 \\ &= 27 - 18 - \left(12 - \frac{16}{3} \right) = \frac{7}{3}. \end{split}$$

(iii)

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{2y(3-y)(1+x)^{-(y+1)}}{2(3-y)} = y(1+x)^{-(y+1)}, x > 0.$$

(iv)

$$\begin{split} \mathsf{E}_{f_{X|Y}}(X|Y) &= \int_0^\infty xy(1+x)^{-(y+1)}\,\mathrm{d}x = \left[-x(1+x)^{-y}\right]_0^\infty + \int_0^\infty (1+x)^{-y}\,\mathrm{d}y \\ &= \left[\frac{(1+x)^{-y+1}}{-y+1}\right]_0^\infty = \frac{1}{y-1}. \end{split}$$

Hence,

$$\begin{split} E_{f_X}(X) &= \mathsf{E}_{f_Y} \left[\mathsf{E}_{f_{X|Y}}(X|Y=y) \right] \\ \Rightarrow \mathsf{E}_{f_X}(X) &= \int_2^3 \mathsf{E}_{f_{X|Y}}(X|Y=y) f_Y(y) \, \mathrm{d}y = \int_2^3 \frac{1}{y-1} 2(3-y) \, \mathrm{d}y \\ &= 2 \int_2^3 \frac{-(y-3)}{y-1} \, \mathrm{d}y = 2 \int_2^3 -2 \int_2^3 \frac{-(y-1)+2}{y-1} \, \mathrm{d}y \\ &= 2 \int_2^3 -1 + \frac{2}{y-1} \, \mathrm{d}y = 2 \left[-y + 2 \log(|y-1|) \right]_2^3 \\ &= 2 (-3 + 2 \log(2) - (-2 + 2 \log(1))) = 4 \log(2) - 2. \end{split}$$

3