091M4041H - Assignment 4 Algorithm Design and Analysis

Song Qige 2017E8018661044

2017年12月21日

1 飞机降落问题(2)

根据题意得到的线性规划表示:

max z

s.t.

$$s_{i} \leq x_{i} \leq t_{i} \quad i = 1, 2, 3, ..., n$$

$$x_{i} - x_{i-1} \geq z \quad i = 2, 3, ..., n$$

$$x_{i} \geq 0 \quad i = 1, 2, 3, ..., n$$

$$z \geq 0$$

$$(1)$$

转化为标准形式:

min - z

s.t.

$$-x_{i} \leq -s_{i} \quad i = 1, 2, 3, ..., n$$

$$x_{i} \leq t_{i} \quad i = 1, 2, 3, ..., n$$

$$-x_{i} + x_{i-1} \leq -z \quad i = 2, 3, ..., n$$

$$x_{i} \geq 0 \quad i = 1, 2, 3, ..., n$$

$$z \geq 0$$

$$(2)$$

尝试用glpk求解这个线性规划:

设定n=5,即5架飞机, 其降落时间为0-23整数时间, 时间窗口如下: [1,2] [3,6] [7,9] [13,15] [18,22]。则可写以下线性规划描述文件:

```
var x2 >= 0;
  var x3 >= 0;
  var x4 >= 0;
  var x5 >= 0;
  var x6 >= 0;
  var d >= 0;
  minimize z :d;
  s.t. con1: x1 <= 15;
  s.t. con2: x1 >= 8;
  s.t. con3: x2 >= 23;
3 s.t. con4: x2 >= 21;
4 s.t. con5: x3 <= 53;
  s.t. con6: x3 >= 28;
  s.t. con7: x4 <= 66;
  s.t. con8: x4 >= 59;
  s.t. con9: x5 <= 99;
9 s.t. con10: x5 >= 72;
0 s.t. con11: x6 >= 105;
  s.t. con12: d >= 13;
  s.t. con13: d >= 7;
  s.t. con14: d >= 31;
  s.t. con15: d >= 13;
5 s.t. con16: d >= 33;
8 end;
```

glpk计算结果如下图:

	ros: 23						
	: OPTIMAL						
bject:	ive: $z = 4$ (MAXI	mum)				
No.	Row name	St	Activity	Lower bound	Upper bound	Marginal	
1	Z	В	4				
2	con1	NL	1	1		-0.5	
3	con2	В	1		2		
4	con3	В	5	3			
5	con4	В	5		6		
6	con5	В	9	7			
7	con6	NU	9		9	0.5	
8	con7	NL	13	13		< eps	
9	con8	В	13		15		
10	con9	NL	18	18		< eps	
11	con10	В	18		22		
12	con11	NL	0	-0		-0.5	
13	con12	NL	0	-0		-0.5	
		В	0	-0			
15	con14	В	1	-0			
					Upper bound		
	x1		1	0			
	x2		5	0			
		В	9	0			
4	x4	В	13	0			
5	x5	В	18	0			
6	d	В	4	0			

由图可知各飞机降落时间结果为x1=1, x2=5, x3=9, x4=13, x5=18。最近的时间间隔为z=4。

3

2 安置加油站(4)

根据题意得到的线性规划表示:

 $\min\,z$

s.t.

$$d_{i} - r \leq x_{i} \leq d_{i} + r$$

$$x_{i+1} - x_{i} \leq z$$

$$x_{i} \geq 0$$

$$i = 1, 2, 3, ..., n$$

$$z \geq 0$$

$$(3)$$

转化为标准形式:

min z

s.t.

$$x_{i} \leq d_{i} + r$$

$$-x_{i} \leq -d_{i} + r$$

$$x_{i+1} - x_{i} \leq z$$

$$x_{i} \geq 0$$

$$i = 1, 2, 3, ..., n$$

$$z \geq 0$$

$$(4)$$

尝试用glpk求解这个线性规划:

设n = 6,r = 3。d1 = 5,d2 = 18,d3 = 25,d4 = 56,d5 = 69,d6 = 102。 则可写以下线性规划描述文件:

```
var x1 >= 0:
     var x2 >= 0;
     var x3 >= 0;
     var x4 >= 0;
     var x5 >= 0;
     var x6 >= 0;
     var d >= 0;
     minimize z :d;
     s.t. con1: x1 <= 8;
10
     s.t. con2: x1 >= 2;
s.t. con3: x2 <= 21;
s.t. con4: x2 >= 15;
13
     s.t. con5: x3 <= 28;
14
     s.t. con6: x3 >= 22;
     s.t. con7: x4 <= 59;
16
     s.t. con8: x4 >= 53;
18
19
     s.t. con9: x5 <= 72;
     s.t. con10: x5 >= 66;
     s.t. conl1: x6 <= 105;
20
21
     s.t. con12: x6 >= 99;
     s.t. con13: d \ge x2-x1;
     s.t. con14: d >= x3-x2;
     s.t. con15: d >= x4-x3;
     s.t. con16: d >= x5-x4;
     s.t. con17: d >= x6-x5;
28
29 e
     end;
```

glpk计算结果如下图:

Proble						
Rows:	18					
Column	s: 7					
Non-ze	ros: 28					
Status	: OPTIMA	L				
Object	ive: $z = 27$	(MIN)	imum)			
No.	Row name	St	Activity	Lower bound	Upper bound	Marginal
1	z	В	27			
2	conl	В	2		8	
3	con2	NL	2	2		< eps
4	con3	В	15		21	
5	con4	NL	15	15		< eps
6	con5	В	26		28	
7	con6	В	26	22		
8	con7	В	53		59	
9	con8	NL	53	53		< eps
10	con9	NU	72		72	-1
11	con10	В	72	66		
12	conll	В	99		105	
13	con12	NL	99	99		1
14	con13	В	14	-0		
15	con14	В	16	-0		
16	con15	NL	0	-0		< eps
17	con16	В	8	-0		
18	con17	NL	0	-0		1
			Activity		Upper bound	Marginal
	xl	В	2	0		
	x2	В	15	0		
	x3	В	26	0		
	x4	В	53	0		
	x5	В	72	0		
	x6	В	99	0		
	d	В	27	0		

由图可知6个安置加油站位置的结果为: x1 = 2, x2 = 15, x3 = 26, x4 = 53, x5 = 72, x6 = 99。此时目标z=27,为第五个和第六个加油站之间的距离。

5

3 Dual Simplex算法(7)

3.1 result analysis

使用glpk工具求解该线性规划,线性规划描述文件如下:

```
var x1 >= 0;
    var x2 >= 0;
3
    var x3 >= 0;
    var x4 >= 0;
5
    var x5 >= 0;
    var x6 >= 0;
    minimize z: -7*x1 + 7*x2 - 2*x3 - x4 -6*x5;
8
9
    s.t. con1: 3*x1 - x2 + x3 - 2*x4 = -3;
    s.t. con2: 2*x1 + x2 + x4 + x5 = 4;
12
    s.t. con3: -x1 + 3*x2 - 3*x4 + x6 = 12;
13
求解结果如下:
Problem:
Rows:
         test_hw7
Columns:
Non-zeros: 17
Status: OPT
Non-zeros: 1/
Status: OPTIMAL
Objective: z = -16.5 (MINimum)
                            Lower bound Upper bound Marginal
  No. Row name St Activity
   -2.5
                                                           < eps
  No. Column name St Activity Lower bound Upper bound Marginal
   1 x1
   2 x2
3 x3
4 x4
                                                            10.5
                NL
                        1.5
```

由上图可知结果为x1=0,x2=0,x3=0,x4=1.5,x5=2.5,x6=16.5。目标函数z的最小值为-16.5。Dual Simplex算法求解问题的结果如如下:

6

```
□ result.txt - 记事本
    文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)

Cost: -16.50
solution:
x1 = 0.00
x2 = 0.00
x3 = 0.00
x4 = 1.50
x5 = 2.50
x6 = 16.50
```

由图可知Dual Simplex算法求解结果和glpk工具一致。