Powernet: Tech. for 'smart' grid

Project Final Presentation

Sponsor: SLAC(Stanford)

Point of contact: Sila Kiliccote

Faculty Advisor : Prof Osman Yagan

Team: Bixian, Yizhe, Cory, Praveen

INI Project Practicum, Fall 2015

Sponsors

"Bits And Watts" Group

@ Stanford SLAC center

Defining next generation "smart" electric grid system.

Motivation: The Future

Electric Generation and Distribution¹

Motivation: "Smart Grid"

#	Primary Motivation
1	Supply Side: Extensive use of renewable energy - Solar PV and Wind
2	Demand Side: Variable Load – Electric cars
3	Reduction in cost of Storage batteries
4	Emergence of Decarburization policy
5	Increase in natural calamity

Related Work

System Design - High Level

Ecosystem

System Design – Low Level

System Implementation

- Persistent layer MongoDB
 - homehubs Configuration for each homehub

```
> db.homehubs.find()
{ "_id" : ObjectId("56635b22c1f1e8080e1f394e"), "callback_url" : "www_homehub1_com/callback_url", "state" : { "device_3" : { "status" : "on", "type" : "Generator", "name" : "Gene
rator23", "power" : 22 }, "device_2" : { "status" : "on", "type" : "Consumer", "name" : "Light23", "power" : 100 }, "device_1" : { "status" : "on", "type" : "Consumer", "name" :
"Fan23", "power" : 1 } }, "total_power" : 296, "location" : "CMU-SV", "label" : "CMU-SV Building 23", "uuid" : "56635b22c1f1e8080e1f394e", "timestamp" : 1449361413245 }
```

hhstatus - Status history for homehub

```
> db.hhstatus.find()
{ "_id" : ObjectId("56635b22c1f1e8080e1f3951"), "total_power" : 299, "uuid" : "56635b22c1f1e8080e1f394f", "timestamp" : 1449351970060 }
{ "_id" : ObjectId("56635b24c1f1e8080e1f3952"), "total_power" : 278, "uuid" : "56635b22c1f1e8080e1f3950", "timestamp" : 1449351972077 }
{ "_id" : ObjectId("56635b26c1f1e8080e1f3953"), "total_power" : 293, "uuid" : "56635b22c1f1e8080e1f3950", "timestamp" : 1449351974082 }
{ "_id" : ObjectId("56635b28c1f1e8080e1f3954"), "total_power" : 373, "uuid" : "56635b22c1f1e8080e1f394f", "timestamp" : 1449351976091 }
```

System Implementation

#	REST APIs	Method	Usage
1	/api/homehubs/	POST	OpenBMS
2	/api/homehubs/ <uuid>/</uuid>	PATCH	OpenBMS
3	/api/price/	POST	OpenADR
4	/api/homehubs/aggregation/ <timestamp></timestamp>	GET	Dashboard
5	/api/homehubs/	GET	Dashboard

System Implementation

- View Layer
 - Reactjs -- view engine
 - Bootstrap
 - React-NVD3
 - Leafletjs

Project: Setup

- Setup : node.js
 - Install required package using "npm install"
- Deploy : MongoDB
 - Start daemon for MongoDB "mongod"
- Start : server using gulp script provided.
 - "gulp run"
 - customize script to switch from development to deployment.

Experiment & Analysis

WebApp framework choice:

express (node.js)
 Pros:
 designed for coordination with mongoDB
 powered with react for efficient frontend rendering and re-rendering. (Critical to a real time web app like Dashboard)
 Cons:
 learning curve for node.js, javascript and react.
 hard to debug

□ django (python)
□ Pros
□ mature framework
□ easy to use
□ Cons
□ not designed for coordination with MongoDB

Experiment & Analysis

Database choice:

Mongodb Pros: Scalability Json based (Simple) Widely used nosql solution ☐ Fit the data Allows atomicity of single writes and transactions to be added Cons: No support for bulk transactions

□ Relational DBS
 □ Pros
 □ Good support for transaction
 □ Cons:
 □ Not scalable

Demo

Known Issues, Bugs, Problems

- SSL communication is not supported yet
- No integration test with OpenBMS
- No integration of OpenADR

Next Step

#	Activity	Motivation
1	Integrate with OpenBMS	Integration
2	Integrate with OpenADR	Integration
3	Add SSL Communication	Security
4	Add Redis Cache Layer	Performance

References

- "MITSUBISHI ELECTRIC Environment Environmental Report Smart Grid Demonstration Project." MITSUBISHI
 ELECTRIC Environment Environmental Report Smart Grid Demonstration Project. Mitsubishi Electric, n.d. Web. 06 Dec.
 2015. http://www.mitsubishielectric.com/company/environment/report/products/randd/smartgrid.
- 2. "Control Your Energy Future." *Home*. N.p., n.d. Web. 06 Dec. 2015. http://www.openadr.org/>.
- 3. "Brand Guidelines." *SGIP*. N.p., n.d. Web. 06 Dec. 2015. http://sgip.org/Brand-Guidelines>.
- 4. "Node.js." *Node.js*. N.p., n.d. Web. 06 Dec. 2015. https://nodejs.org/en/>.
- 5. "Launch Your GIANT Idea." *MongoDB for GIANT Ideas*. N.p., n.d. Web. 06 Dec. 2015. https://www.mongodb.org/>.
- 6. "Amazon Web Services (AWS) Cloud Computing Services." *Amazon Web Services, Inc.* N.p., n.d. Web. 06 Dec. 2015. https://aws.amazon.com/>.
- 7. "*Documentation." *Redis.* N.p., n.d. Web. 06 Dec. 2015. http://redis.io/documentation.
- 8. Chatzivasileiadis, Spyros, et al. "Cyber physical modeling of distributed resources for distribution system operations." *arXiv* preprint arXiv:1505.00078 (2015).
- 9. Laval, Stuart; Godwin, Bill. "Distributed Intelligence Platform (DIP) Reference Architecture: Volume 1." Duke Energy Corporation. 2015.
- 10. McMillin, Bruce. "Use Case: Distributed Power Balancing in openFMB." Missouri University of Science and Technology, Department of Computer Science. 2015.
- 11. SGIP OpenFMB Working Group. "Open Field Message (OpenFMB) Bus Project." OpenFMB Priority Action Plan. 2015.

Questions?

