Forward Chaining Inference Algorithm

1 Query and Knowledge Base

Given the query Q, we aim to determine if the knowledge base KB entails the query Q, denoted by $KB \models Q$.

1.1 Knowledge Base (KB)

The knowledge base consists of the following clauses:

- 1. $P \Rightarrow Q$
- 2. $L \wedge M \Rightarrow P$
- 3. $B \wedge L \Rightarrow M$
- 4. $A \wedge P \Rightarrow L$
- 5. $A \wedge B \Rightarrow L$
- 6. *A* (fact)
- 7. B (fact)

1.2 Count Table

We create a count table that tracks the number of symbols in each clause's premise that need to be inferred before the conclusion can be inferred:

Clause	Premise	Count
1.	$P \Rightarrow Q$	1 (symbol: P)
2.	$L \wedge M \Rightarrow P$	2 (symbols: L, M)
3.	$B \wedge L \Rightarrow M$	2 (symbols: B, L)
4.	$A \wedge P \Rightarrow L$	2 (symbols: A, P)
5.	$A \wedge B \Rightarrow L$	2 (symbols: A, B)

2 Inferred Table

Initialize an inferred table where each symbol starts as false, except for the given facts:

Inferred[Q] = falseInferred[P] = falseInferred[L] = falseInferred[M] = falseInferred[A] = true(fact) Inferred[B] = true (fact)

3 Queue Initialization

Initialize the queue with symbols that are known to be true in the knowledge base:

$$\mathrm{queue} = [A,B]$$

Main Loop Execution 4

Iteration 1 4.1

Pop from the queue: p = A

Check if p = Q: No, so continue.

Since Inferred[A] = true, continue with the next symbol in the queue.

For each clause where A is a premise:

- Clause 4: $A \wedge P \Rightarrow L$ Count[4] remains 1 as P is not yet inferred.
- Clause 5: $A \wedge B \Rightarrow L$ Decrement Count[5] $\rightarrow 1$.

4.2 Iteration 2

Pop from the queue: p = B

Check if p = Q: No, so continue.

Since Inferred[B] = true, continue with the next symbol in the queue. For each clause where B is a premise:

- Clause 3: $B \wedge L \Rightarrow M$ Count[3] remains 1 as L is not yet inferred.
- Clause 5: $A \wedge B \Rightarrow L$ Decrement Count $[5] \to 0$.

Since Count[5] = 0, add conclusion L to the queue.

4.3 Iteration 3

Pop from the queue: p = LCheck if p = Q: No, so continue. Update Inferred[L] = true. For each clause where L is a premise:

- Clause 2: $L \wedge M \Rightarrow P$ Decrement Count[2] $\rightarrow 1$.
- Clause 3: $B \wedge L \Rightarrow M$ Decrement Count[3] $\rightarrow 0$.

Since Count[3] = 0, add conclusion M to the queue.

4.4 Iteration 4

Pop from the queue: p = MCheck if p = Q: No, so continue. Update Inferred[M] = true. For each clause where M is a premise:

• Clause 2: $L \wedge M \Rightarrow P$ Decrement Count[2] $\rightarrow 0$.

Since Count[2] = 0, add conclusion P to the queue.

4.5 Iteration 5

Pop from the queue: p = PCheck if p = Q: No, so continue. Update Inferred[P] = true. For each clause where P is a premise:

• Clause 1: $P \Rightarrow Q$ Decrement Count[1] $\rightarrow 0$.

Since Count[1] = 0, add conclusion Q to the queue.

4.6 Iteration 6

Pop from the queue: p = QCheck if p = Q: Yes, so return true. Hence, $KB \models Q$.