State Space Loglikelihood Gradient Calculation

Using the preferred (Harvey 1989) timing for the state space model,

$$y_t = Z_t \alpha_t + d_t + \epsilon_t \qquad \epsilon_t \sim N(0, H_t)$$

$$\alpha_t = T_t \alpha_{t-1} + c_t + R_t \eta_t \qquad \eta_t \sim N(0, Q_t)$$

the likelihood of of data \mathbf{Y}_t is given by $L_n \equiv \sum_{t=1}^n \ell_t$ where

$$\ell_t = -\frac{p}{2}\log(2\pi) - \frac{1}{2}\log|F_t| + v_t'F_t^{-1}v_t$$

$$a_t = T_t a_{t-1} + c_t + K_t v_t \qquad P_t = T_t P_{t-1} L_{t-1} + R_t Q_t R_t'$$

$$v_t = y_t - d_t - Z_t a_t \qquad F_t = Z_t P_t Z_t' + H_t$$

$$M_t = P_t Z_t' F_t^{-1} \qquad K_t = T_{t+1} M_t$$

$$L_t = T_{t+1} - K_t Z_t \qquad w_t = F_t^{-1} v_t$$

From Nagakura (working paper), we can get the gradient:

$$G_{\theta}(\ell_{t}) = G_{\theta}(a_{t})Z'_{t}w_{t}$$

$$+ \frac{1}{2}G_{\theta}(P_{t})\operatorname{vec}(Z'_{t}w_{t}w'_{t}Z_{t} - Z'_{t}F_{t}^{-1}Z_{t})$$

$$+ G_{\theta}(d_{t})w_{t}$$

$$+ G_{\theta}(Z_{t})\operatorname{vec}(w_{t}a'_{t} + w_{t}v'_{t}M'_{t} - M'_{t})$$

$$+ \frac{1}{2}G_{\theta}(H_{t})\operatorname{vec}(w_{t}w'_{t} - F_{t}^{-1})$$

where

$$G_{\theta}(a_{t+1}) = G_{\theta}(a_{t})L'_{t} + G_{\theta}(P_{t})(Z'_{t}w_{t} \otimes L'_{t}) + G_{\theta}(c_{t+1}) - G_{\theta}(d_{t})K'_{t} + G_{\theta}(Z_{t})[P_{t}L'_{t} \otimes w_{t} - (a_{t} + M_{t}v_{t}) \otimes K'_{t}] - G_{\theta}(H_{t})(w_{t} \otimes K'_{t}) + G_{\theta}(T_{t+1})[(a_{t} + M_{t}v_{t}) \otimes I_{m}]$$

$$G_{\theta}(P_{t+1}) = G_{\theta}(P_{t})(L'_{t} \otimes L'_{t}) + G_{\theta}(H_{t})(K'_{t} \otimes K'_{t}) + G_{\theta}(Q_{t+1})(R'_{t+1} \otimes R'_{t+1}) + [G_{\theta}(T_{t+1})(P_{t}L'_{t} \otimes I_{m}) - G_{\theta}(Z_{t})(P_{t}L'_{t} \otimes K'_{t}) + G_{\theta}(R_{t+1})(Q_{t+1}R'_{t+1} \otimes I_{m})]N_{m}$$

The initial conditions for the recursion are given by a simplification of the expressions above (which can also be easily derived from the explicit expressions for a_1 and P_1):

$$G_{\theta}(a_1) = G_{\theta}(a_0)T_1'$$

$$+ G_{\theta}(c_1)$$

$$+ G_{\theta}(T_1)[a_0 \otimes I_m]$$

$$G_{\theta}(P_1) = G_{\theta}(P_0)(T'_t \otimes T'_t)$$

$$+ G_{\theta}(Q_1)(R'_1 \otimes R'_1)$$

$$+ [G_{\theta}(T_1)(P_0T'_1 \otimes I_m)$$

$$+ G_{\theta}(R_1)(Q_1R'_1 \otimes I_m)]N_m$$

To determine $G_{\theta}(a_0)$ and $G_{\theta}(P_0)$ when a_0 and P_0 are set as the unconditional mean and variance of the state (i.e., when they are not explicitly provided and the system is stationary) use the definitions of the unconditional state:

$$a_{0} = (I_{m} - T)^{-1}c$$

$$G_{\theta}(a_{0}) = G_{\theta}([I_{m} - T]^{-1}c)$$

$$= G_{\theta}([I_{m} - T]^{-1})(c \otimes I_{m}) + G_{\theta}(c)(I_{1} \otimes [(I_{m} - T)^{-1})]'$$

$$= -G_{\theta}(I_{m} - T)[(I_{m} - T)^{-1} \otimes (I_{m} - T)^{-1}](c \otimes I_{m}) + G_{\theta}(c)(I_{m} - T)'^{-1}$$

$$= G_{\theta}(T)[(I_{m} - T)^{-1} \otimes (I_{m} - T)^{-1}](c \otimes I_{m}) + G_{\theta}(c)(I_{m} - T)'^{-1}$$

$$\text{vec}(P_{0}) = (I_{m^{2}} - T \otimes T)^{-1}\text{vec}(RQR')$$

$$G_{\theta}(P_{0}) = G_{\theta}(\text{vec}(P_{0}))$$

$$= G_{\theta}(S \text{ vec}(RQR'))$$

$$= G_{\theta}(S)[\text{vec}(RQR') \otimes I_{m^{2}}] + G_{\theta}(\text{vec}(RQR'))(I_{1} \otimes S')$$

$$= -G_{\theta}(I_{m^{2}} - T \otimes T)(S \otimes S')[\text{vec}(RQR') \otimes I_{m^{2}}]$$

$$+ [G_{\theta}(R)(QR' \otimes I_{m})N_{m} + G_{\theta}(Q)(R' \otimes R')]S'$$

$$= G_{\theta}(T \otimes T)(S \otimes S')[\text{vec}(RQR') \otimes I_{m^{2}}]$$

$$+ [G_{\theta}(R)(QR' \otimes I_{m})N_{m} + G_{\theta}(Q)(R' \otimes R')]S'$$

where $S = (I_{m^2} - T \otimes T)^{-1}$. Note that $G_{\theta}(T \otimes T)$ must be computed separately.