測度論的確率論

前川 大空 *

2025年9月7日

1 確率モデルを作るまで

1.1 事象や観測を表現するための数学的記述

■p.5 C([0,1]): [0,1] 上の連続関数全体. D([0,T]) は右連続で左極限を持つ、カドラグ関数全体を指す.

■p.5 実用上の標本空間: 多くの統計的問題 (確率過程を除いて) では $\Omega = \mathbb{R}^d$ と置けば問題ない.

■p.6 **語の区別**: ω は根元事象・標本、 Ω は標本空間、標本の集合で確率を測る対象となるのが事象.

■p.6 **事象の定義**: σ -加法族 F が確率を考えるために必要であり、この元が事象として定義される. 有限加法族 F が有限個の元 (要素) しか持たないとき、F は自動的に σ -加法族となる.

■p.7 **自明な** σ **-加法族**: $\mathcal{F}_0 = \{\emptyset, \Omega\}$ のこと.

■p.7 **可測空間**: **Def 1.1.11.** $o(\Omega, \mathcal{F})$ が確率モデルには必要. \mathcal{F} は確率を知りたい範囲を考慮して設定する必要があり、一方で 2^{Ω} は集合が大きすぎて不適切. ボレル集合体などが実用的な σ -加法族として知られる.

■p.8 ボレル集合体 まず、区間の集合 \mathcal{I} を以下のように定義する:

$$\mathcal{I} \equiv \{(a, b] \mid a, b \in \mathbb{R} \cup \{\pm \infty\}\}$$

$$\tag{1.1}$$

I を用いて区間塊 A は以下のように定義される:

$$\mathcal{A} \equiv \{ \bigcup_{k=1}^{m} I_k \mid m \in \mathbb{N}, I_i \cap I_j = \emptyset \ (1 \le i < j \le m), I_i, I_j \in \mathcal{I} \}$$

$$\tag{1.2}$$

これは有限加法族だが、無限個の元を持つため σ -加法族とは限らない.

Proof. 有限個の互いに素な (a,b] の和集合で A の元は定義される。まず $\emptyset \in A$ である $(I_k = \emptyset \forall k$ と すればよい)。また $A = \bigcup_{k=1}^m I_k \in A$ の補集合 A^c を考えると, $\Omega = \mathbb{R} \cup \{\pm \infty\}$ を I_k で分割した区間の有限個の和集合として表せ, $A^c \in A$ が従う。最後に $A = \bigcup_{i=1}^m I_i$, $B = \bigcup_{j=1}^n J_j \in A$ を考える。 I_i,J_j の端点全体を集めると有限集合 E が得られる。E で,実直線は有限個の互いに素な区間 $(\alpha,\beta]$ に分割される。各 $(\alpha,\beta]$ は A,B との包含関係で判別できるから, $A \cup B$ も有限個の互いに素な $(\alpha,\beta]$ の和集合として表せ, $A \cup B \in A$. したがって A は有限加法族である。

^{*} 一橋大学経済学部 4年, 五年一貫専修コース公共経済プログラム