

- modèles : **PHENOFIT, CASTANEA**

- modèles : PHENOFIT, CASTANEA
- données climatiques : ERA5-Land
- données d'occurrence : **EU-Forest** (+GBIF, WOODIV)

- modèles : **PHENOFIT, CASTANEA**
- données climatiques : ERA5-Land
- données d'occurrence : **EU-Forest** (+GBIF, WOODIV)
- algorithme évolutionnaire : **CMA-ES**

- modèles : PHENOFIT, CASTANEA
- données climatiques : ERA5-Land
- données d'occurrence : **EU-Forest** (+GBIF, WOODIV)
- algorithme évolutionnaire : CMA-ES
- article méthodo publié dans **Methods in Ecology and Evolution**

Received: 30 November 2022 | Accepted: 20 April 2023

DOI: 10.1111/2041-210X.14119

RESEARCH ARTICLE

Methods in Ecology and Evolution English South

Estimating process-based model parameters from species distribution data using the evolutionary algorithm CMA-ES

- approche *presence-only* inspirée de Valavi et al. (2022)

Ecological Monographs, 92(1), 2022, e01486
© 2021 The Authors. Ecological Monographs published by Wiley Periodicals LLC on behalf of Ecological Society of America.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Predictive performance of presence-only species distribution models: a benchmark study with reproducible code

ROOZBEH VALAVI D, 1,3 GURUTZETA GUILLERA-ARROITA D, 2 JOSÉ J. LAHOZ-MONFORT D, 2 AND JANE ELITH D2

- approche *presence-only* inspirée de Valavi et al. (2022)

Ecological Monographs, 92(1), 2022, e01486
© 2021 The Authors. Ecological Monographs published by Wiley Periodicals LLC on behalf of Ecological Society of America.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Predictive performance of presence-only species distribution models: a benchmark study with reproducible code

ROOZBEH VALAVI D, 1,3 GURUTZETA GUILLERA-ARROITA D, 2 JOSÉ J. LAHOZ-MONFORT D, 2 AND JANE ELITH D2

- données d'occurrence : **EU-Forest** (+GBIF, WOODIV)
- **background points** : « *sampled irrespective of the location of species records* » 50.000 points

- approche *presence-only* inspirée de Valavi et al. (2022)

Ecological Monographs, 92(1), 2022, e01486
© 2021 The Authors. Ecological Monographs published by Wiley Periodicals LLC on behalf of Ecological Society of America.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Predictive performance of presence-only species distribution models: a benchmark study with reproducible code

ROOZBEH VALAVI D, 1,3 GURUTZETA GUILLERA-ARROITA D, 2 JOSÉ J. LAHOZ-MONFORT D, 2 AND JANE ELITH D2

- données d'occurrence : **EU-Forest** (+GBIF, WOODIV)
- **background points** : « *sampled irrespective of the location of species records* » 50.000 points
- modèles : GLM with lasso penalty, GAM, BRT, RandomForest (+ biomod et Maxent)

- *5-fold environmental block cross-validation* pour estimer les erreurs

- final model: « all the available training data can be used to fit a new model »
Favorise la qualité des prédictions (plutôt que l'exactitude des erreurs)

- **5-fold environmental block cross-validation** pour estimer les erreurs

- final model: « all the available training data can be used to fit a new model »
Favorise la qualité des prédictions (plutôt que l'exactitude des erreurs)

Over-estimated AUC

Exemple avec Fagus sylvatica

	Lasso GLM	GAM	Random Forest	BRT
« True » AUC	0.68	0.79	0.81	0.79
Over- estimated AUC	0.92	0.93	0.99	0.96

Temporal coverage per pollen site

Multiple samples within the same site

Temporal coverage per pollen site

Temporal coverage per pollen site

Weighted mean of pollen counts, taking into account both uncertainty and time distance

Spatial upscaling

Species pollen relative abundance

Spatial upscaling: relative abundance

e.g. 3kyr BP

Average species relative abundance

Spatial upscaling: presence/absence

Spatial upscaling: presence/absence

Spatial upscaling: presence/absence

« one is enough »

average presence

absence

presence

CLIMATE APPROACH: Climatic distance

PAST CLIMATE e.g. 9000 years BP N predictors

BASELINE CLIMATE 1970 - 2000

N predictors

CLIMATE APPROACH: Climatic distance

PAST CLIMATE

e.g. 9000 years BP

From each cell:

BASELINE CLIMATE

1970 - 2000

CLIMATE APPROACH: Climatic distance

CLIMATE APPROACH: Hypervolume similarity

PAST CLIMATE e.g. 9000 years BP

N-dimensional hypervolume

CLIMATE APPROACH: Hypervolume similarity

PAST CLIMATE

e.g. 9000 years BP

N-dimensional hypervolume

BASELINE CLIMATE

1970 - 2000

N-dimensional hypervolume

CLIMATE APPROACH: Hypervolume similarity

PAST CLIMATE

e.g. 9000 years BP

BASELINE CLIMATE

1970 - 2000

CLIMATE APPROACH: Hypervolume similarity

PAST CLIMATE

e.g. 9000 years BP

BASELINE CLIMATE

1970 - 2000

Hypervolume overlap

(Sørensen similarity)

N-dimensional hypervolume

CLIMATE APPROACH: Categorical differenciation and model response

N-dimensional hypervolume

N-dimensional hypervolume

N-dimensional hypervolume

