Continued Fractions 2

1. Let c_1, c_2, \ldots, c_n be positive integers (except for maybe c_1). Define the sequences p_n, q_n by

$$p_{-1}=0$$

$$p_0 = 1$$

$$p_n = c_n p_{n-1} + p_{n-2}$$

$$q_{-1} = 1$$
 $q_0 = 0$

$$q_n = c_n q_{n-1} + q_{n-2}.$$

Prove that for any positive real number x,

$$[c_1; c_2, \dots, c_n, x] = \frac{xp_{n-1} + p_{n-2}}{xq_{n-1} + q_{n-2}}.$$

2. Recall that the *n*-th convergent of $[c_1; c_2, \ldots]$ is defined to be $\frac{p_n}{q_n}$. Using the previous exercise, show that $[c_1; c_2, \ldots, c_n] = \frac{p_n}{q_n}$.

3. Find the continued fraction expansions of $\sqrt{2}-1$ and $\frac{1}{\sqrt{3}}$. Compute the first three convergents.

4. Given that two irrational numbers have identical convergents $p_1/q_1, p_2/q_2, \ldots$, up to p_n/q_n , prove that their continued fraction expansions are identical up to c_n .

5. Evaluate the infinite continued fractions $[2; 1, 1, \ldots]$, $[2; 3, 1, 1, \ldots]$, and $[1; 3, 1, 2, 1, 2, \ldots]$. Assume for now that the notion of an infinite continued fraction makes sense.