

30/05/2012

Hydrological model structure evaluation

S. Van Hoey, J. Van der Kwast, I. Nopens, P. Seuntjens

A priori: Integrated <> Hydrological Modelling

A priori: Integrated <> Hydrological Modelling

- » No spatial component
- » Set of ODE's
- » Short computation time
- » Describing Dominant Processes on catchment level
- » Rainfall-runoff models

- » Spatially explicit
- » ODE/PDE options
- » Long computation time
- Water balance on pixel-level + inter-pixel routing component
- » Spatial data-inputs

- » No spatial component
- » Set of ODE's
- » Short computation time
- Describing Dominant Processes on catchment level
- » Rainfall-runoff models

- Spatially explicit
- » ODE/PDE options
- » Long computation time
- Water balance on pixel-level + inter-pixel routing component
- » Spatial data-inputs

WHICH processes to include? HOW to describe these processes?

Today: Lumped Hydrological Modelling

LUMPED

- » No spatial component
- » Set of ODE's
- » Short computation time
- » Describing Dominant Processes on catchment level
- » Rainfall-runoff models

- » Spatially explicit
- » ODE/PDE options
- » Long computation time
- » Water balance on pixel-level + inter-pixel routing component
- » Spatial data-inputs

WHICH processes to include? HOW to describe these processes?

Lumped representations of the catchment

Lumped representations of the catchment

There is no 'one model fits all' -> need for flexibility!

Wishfull thinking...

No one model fits all, but different models fit well => We want the right answer for the right reasons

Wishfull thinking...

Can we identify the most suitable model structure?

Is this suitable structure conditioned by the performance criteria?

Methodology

C R E A T

D I A G N O S E

Application

- » Nete catchment
 - » Belgium, 362km²
- » Data
 - » Rainfall (2002-2008, hourly timestep)
 - » Flow at outlet (2002-2008, hourly timestep)
- » Objectives: Understanding in dominant hydrological processes:
 - » Flood risk in winter: peak discharges
 - » Water availability in summer: baseflow reproduction

 \rangle

LUMPED MODEL

Model structure variations based on VHM model (Willems, P.)

HYPOTHESES

- » Presence of Interflow?
- » Unsaturated zone: Linear or non-linear?
- Which combination of linear reservoirs to represent routing?
- » Infiltration excess overland flow dominant?

(Clark M., 2008; Willems P., submitted)

HYPOTHESES

- » Presence of Interflow?
- » Unsaturated zone: Linear or non-linear?
- Which combination of linear reservoirs to represent routing?
- » Infiltration excess overland flow dominant?

(Clark M.,2008; Willems P.,submitted)

HYPOTHESES

- » Presence of Interflow?
- » Unsaturated zone: Linear or non-linear?
- Which combination of linear reservoirs to represent routing?
- » Infiltration excess overland flow dominant?

(Clark M.,2008; Willems P.,submitted)

HYPOTHESES

- » Presence of Interflow?
- » Unsaturated zone: Linear or non-linear?
- Which combination of linear reservoirs to represent routing?
- » Infiltration excess overland flow dominant?

(Clark M.,2008; Willems P.,submitted)

HYPOTHESES

- » Presence of Interflow?
- » Unsaturated zone: Linear or non-linear?
- Which combination of linear reservoirs to represent routing?
- » Infiltration excess overland flow dominant?

(Clark M., 2008; Willems P., submitted)

Performance criteria selection

FLOW DURATION CURVE BASED

SELECT MODEL STRUCTURES
LUMPED DISTRIBUTED

FLOW

- » High flow and Low flow
- In combination with Nash Sutcliffe (NS) criterium: : W1*NS + W2* FDCerr

$$NS = 1 - \frac{\sum_{i}^{N} (\hat{x}_i - x_i)^2}{\sum_{i}^{N} (x_i - \overline{x})^2}$$

Performance criteria selection

FLOW DURATION CURVE BASED

SELECT MODEL STRUCTURES

UMPED DISTRIBUTED

FLOW

- » High flow and Low flow
- In combination with Nash-Sutcliffe (NS) criterium: W1*NS + W2* FDCerr

Methodology

C R E A T

D I A G N O S E

Optimization results: 1 structure

	Calibration period					Validation Period				
	NS	lowflow	highflow	NS – FDClow	NS – FDChigh	NS	lowflow	highflow	NS – FDClow	NS – FDChigh
NS	0.85	0.57	0.75	0.85	0.84	0.7	0.51	0.61	0.69	0.67

FDCerr_{low}

Optimization results: ensemble

	Mean of ensemble				
	performance				
	on calibration period				
NSE	0.86				
R ²	0.93				
MAE	0.56				
RMSE	0.77				

Manual calibration by Vansteenkiste T. Based on 'general calibration methodology' used at Hydraulics Laboratorium

Optimization: structures are doing well...

... with very different parameter sets.

Structures able to 'fit' the model -> overparameterization?, equifinality?

Optimal parameter set is dependent from the objective used. Enough degrees of freedom to 'fit' – overparameterization?

Objective criteria not conditioning the structure

- » CDF of 24 structures
- » Spread of performance score is measure of discriminating power
- » TWO POSSIBILITIES:
 - 1. Objective measures not well selected
 - 2. High similarity of model structures

Sensitivity Analysis (qualitive)

Based on distribution of Elementary Effects (EE)

Sensitivity method used: *Morris screening method*

INFLUENCE ON OUTPUT:

- » Blue: mean of the absolute values of EE
- » Black: mean of the EE

» PARAMETER INTERDEPENDENCE:

- Yellow: standard deviation of EE
- » High interactions is inherent to the VHM structure used!

Different parameters sensitive to different objective criteria

Sensitivity Analysis (qualitive)

Comparison for **HIGH FLOW** criterium

- Parameters present in the overland component and the unsaturated soil always most sensitive
- When going from linear to nonlinear soil component the variation in the output is mainly described by the unsaturated zone parameters instead of overland flow parameters -> both sensitive
- » Interflow and excess infiltration -> limited effect
- More complex routing decreases sensitivity + no benefit in performance -> exclude

Model structures not diverse enough!

Parameter identifiability can be applied as model selection criterion

OBJECTIVES CONDITIONS

Uncertainty Analysis (not in detail)

- Ensemble of accepted parameter sets based on limits of acceptance
- » Ensemble of accepted structures used based on limits of acceptance
- » Every accepted run weighted by objective criteria

Model structures not diverse enough!

OBJECTIVES

SELECT MODEL STRUCTURES

PROPOSAL OF 'NEW' COMPONENTS

CONDITIONS

OPTIMIZATION

Methodology

C R E A T

D I A G N O S

E

What have we learned? -> next steps

More diversity needed in model structures

» NEW STRUCTURES: PDM and NAM model with completely different configurations compared to VHM-alternatives

More diversity needed in objective measures

» CHECK SPECIFIC PROPERTIES OF THE HYDROGRAPH: check how the structure behaves in rising limb versus falling limb of flow after rain event

» INCORPORATE FLOW DATA UNCERTAINTY

Flow data uncertainty

- » Flow measured by weir
- » Need control measurements to find relation between measured height (h) and discharge (Q)
- » Power-law: $Q = a(h+b)^c$
- Uncertainty enveloppe derived based on subset of measurements

Q-h uncertainty to Q timeserie uncertainty

Q timeserie uncertainty as objective criterion

Data uncertainty bounds to evaluate model outputs and weight simulations

NAM, PDM and VHM similar failures

VHM alternatives

cfr. PDM, NAM en VHM

Failure in rising and falling limb very similar

To be continued...

Conclusions

- Shift from on the shelf fixed model structure towards case-specific ensemble of behavioural model structures
- Shift from classic (observed-simulated)² evaluation towards more rigorous analysis of model outcome
 - » Improvement needed in discriminating criteria
- » Model identification a combined effort of parameterization and structure identification in uncertainty assessment
- » NOT Push the button for success > tools to interpret model structures!
 - » Learning by modelling!
- Difficult to discriminate structures as optimal model structure based on single streamflow output signal
- » Implementation in Python (open source) => open and extendable!

