

在像 MS-DOS 这种没有使用 GUI 的操作系统中,应用的处理流程 由程序员决定,用户按照定好的流程来进行操作即可。与此相反,采 用 GUI 的操作系统中运行的应用,则是由用户决定处理流程的。因此, 程序员就必须要制作出在任何操作顺序下都能运行的应用。这就要求 以前的程序员要改变观念。这就是 GUI 的难点。如果程序员最初接触 的操作系统就是 Windows 的话,那他或许会认为 GUI 是理所当然的。

## (4)通过 WYSIWYG 实现打印输出

WYSIWYG 指的是显示器上显示的内容可以直接通过打印机打印输出。在 Windows 中,显示器和打印机是被作为同等的图形输出设备处理的,而该功能也就为 WYSIWYG 的实现提供了条件。

借助 WYSIWYG 功能,程序员可以轻松不少。最初,为了实现在

显示器中显示和在打印机中打印,就必须分别编写各自的程序。而在 Windows 中,借助 WYSIWYG 功能,基本上在同一个程序中就可以实 现显示和打印这两方面的操作了(当然,也可以将显示和打印的内容放 在不同的程序中处理)。

#### (5)提供多任务功能

**多任务**指的是同时运行多个程序的功能。Windows 是通过**时钟分** 割技术来实现多任务功能的。

时钟分割指的是在短时间间隔内,多个程序切换运行的方式。在用户看来,就是多个程序在同时运行。也就是说,Windows 会自动切换多个程序的运行(图 9-9)。此外,Windows 中还具有以程序中的函数为单位来进行时钟分割的**多线程**<sup>①</sup>功能。



## (6)提供网络功能及数据库功能

Windows 中,网络功能是作为标准功能提供的。数据库(数据库服务器)功能有时也会在之后进行追加。网络功能和数据库功能,虽并不是操作系统本身不可欠缺的功能,但因为它们和操作系统很接近,所

① 关于多线程, 我们会在第10章进行说明。

以被统称为**中间件**而不是应用。意思是处于操作系统和应用的中间 (middle)。操作系统和中间件合在一起,也称为**系统软件**。应用不仅可以利用操作系统,也可以利用中间件的功能(图 9-10)。



相对于操作系统一旦安装就不能轻易替换,中间件则可以根据需要进行任意的替换。不过,大多数情况下,中间件变更后应用往往也需要变更,因此中间件的变更也不是那么容易。

## (7)通过即插即用实现设备驱动的自动设定

即插即用(Plug-and-Play)指的是新的设备连接(Plug)后立刻就可以使用(Play)的机制。新的设备连接到计算机后,系统就会自动安装和设定用来控制该设备的设备驱动程序。

设备驱动是操作系统的一部分,提供了同硬件进行基本的输入输出的功能。键盘、鼠标、显示器、磁盘装置等,这些计算机中必备的硬件的设备驱动,一般都是随操作系统一起安装的。如果之后再追加新的网卡(NIC<sup>®</sup>)等硬件的话,就需要向操作系统追加该硬件专用的设

① NIC (Network Interface Card)是计算机连接网络(LAN)时使用的设备。 也称为网卡或者 LAN 卡。

备驱动。大家购买的新的硬件设备中,通常都会附带着软盘或 CD-ROM,里面通常都收录着该硬件的设备驱动。

有时 DLL 文件也会同设备驱动文件一起安装。这些 DLL 文件中存储着用来利用该新追加硬件的 API(函数集)。通过 API,可以制作出运用该新硬件的应用。

可以任意追加设备驱动和 API 的机制使 Windows 操作系统变得非常灵活。这里所说的灵活,是指可以事后再对新追加的硬件进行处理。

本章中,为了明确区分应用和操作系统,在解说的过程中,当遇到想用"这个程序……"来表达的地方时,我们特意使用了"这个应用……"。这是因为,程序是操作系统、中间件、应用等所有软件的统称。因此,通常程序员制作的应该都是应用,而不是操作系统。不过,既然是应用,那么就肯定会通过某种形式来利用操作系统的功能。程序员一定要注意到这一点。例如,如果应用没有正常运行的话,那么很有可能就不是硬件的问题,而是操作系统的使用方法出现了偏差。而中间件和设备驱动,大家也可以把它们看作是操作系统的一部分。

在本书的解说中,到目前为止,"本地代码"这个术语已经出现过很多次。假如能用本地代码直接编写程序的话,那么程序的运行机制想必也就一目了然了。不过,能够直接用本地代码编写程序的人,实际上并不多见。大家的普遍做法都是使用汇编语言来代替本地代码。在接下来的下一章,我们将通过用汇编语言编写程序,来看一下程序的实际运行机制。

# COLUMN

# 如果是你, 你会怎样介绍?

# 向超喜欢手机的女高中生讲解 操作系统的作用

**笔者:** 你有手机吗?

女高中生: 有啊。

**笙者**: 什么机型啊?

女高中生: Docomo 的最新版。

笔者: 是吗, 真不错啊! 那么, 你 都用手机做什么呢?

女高中生: 当然是跟好朋友通电话

了啊。有时候也会发邮件、查查

音乐会信息等。 **堂者**· 这样啊。不过,手机也是由

话对吧。为什么这个电话能发邮 件、查看音乐会信息呢? 你知道 原因吗? 也就是说电话是如何连

接互联网的呢? 女高中生: 因为是电话, 所以能连

接互联网啊!

笔者: 这么说也没错, 但最近的手 机并不是单纯的电话, 更像是具 有电话功能的计算机。因此,可

以把手机看作是便携式计算机。 女高中生: 感觉话题要转到大叔您

擅长的领域了。 笔者:呵呵, 这不是挺好的吗。计

算机是运行程序的设备, 这个你

是知道的吧?

女高中生:知道啊。我用过计算机。 **笔者**:虽然手机不是手提电脑,但

它里面也是有程序的。正是因为 有了这些程序, 手机才可以连网。

显示文字和图片等也都是通过程 序来实现的。 女高中生: 这个当然啊, 这个话题

笔者:(不妙……换个话题看看) 对了,用过iApp吗? 女高中生: 用过! 用过! 通过它就

真没意思。

笔者:(有戏有戏,那就从这里讲 入主题吧)iApp的i以及iMode

的 i, 都是 Internet 的 i, App 指的 是 Application, 就是应用。

女高中生: 应用是什么啊?

可以在手机中玩游戏了。

笔者:问得好。我们总是笼统地说 程序, 其实程序可以根据功能的 不同分为操作系统和应用。 女高中生: 操作系统和应用? **笔者**: iApp 中有各种游戏对吧。一 个游戏程序是不是需要具备制定游 戏规则的功能、使手机按键反应的 功能、显示文字和图片的功能呢? 女高中生: ??? 笔者:游戏种类不同的话,当然游 戏的规则也会不同,不过按键的响 应功能及显示文字和图片的功能在 任何游戏中都是相同的,没错吧? 女高中生: 我怎么感觉不太一样 呢..... 笔者:对编写程序的来人说,是一样 的! 明明是同样的功能, 可是如果 每开发一个游戏都要生成一遍, 就很 浪费时间对吧。因此我们就可以把 所有游戏共同的功能集合起来做成 一个独立的程序, 这个程序就称为 操作系统。而像游戏的规则这种各 游戏独有的程序,就是应用。 女高中生: 程序就这样分成了两种 类型了? **笔者**:对,正是如此! 手机中都会 提前安装上操作系统。想要玩游

戏的时候, 只用下载游戏程序也 就是应用并安装到手机上就可以

了。游戏结束后,应用就消失了。 不讨操作系统是不会消失的。 女高中生:额,有点明白,又有点

笔者:那么,以计算机为例再来说

明一下。在计算机中,程序同样

分为操作系统和应用。Windows

不明白……

知道吧。Windows 就是操作系统。 后面安装上的文字处理软件及游 戏等就是应用。 女高中生: Windows 中也自带纸牌 游戏啊。 **笔者**:那个是 Windows 的附件中自

带的应用,并不是操作系统本身。

笔者: 怎么样, 都明白了吗? 女高中生: 差不多吧。

女高中生: 嗯……

图灵社区会员 SMGliuhengting 专享 尊重版权



# 第一章

# 通过汇编语言了解 程序的实际构成

# □热身问答□

阅读正文前,让我们先回答下面的问题来热热身吧。



- 1. 本地代码的指令中,表示其功能的英语缩写称为什么?
- 2. 汇编语言的源代码转换成本地代码的方式称为什么?
- 3. 本地代码转换成汇编语言的源代码的方式称为什么?
- 4. 汇编语言的源文件的扩展名,通常是什么格式?
- 5. 汇编语言程序中的段定义指的是什么?
- 6. 汇编语言的跳转指令,是在何种情况下使用的?

怎么样?是不是发现有一些问题无法简单地解释清楚呢?下面 是笔者的答案和解析,供大家参考。



- 1. 助记符
- 2. 汇编
- 3. 反汇编
- 4. .asm
- 5. 构成程序的命令和数据的集合组
- 6. 将程序流程跳转到其他地址时需要用到该指令

#### 解析

- 1. 汇编语言是通过利用助记符来记述程序的。
- 2. 使用汇编器这个工具来进行汇编。
- 3. 通过反汇编,得到人们可以理解的代码。
- 4. .asm 是 assembler(汇编器)的略写。
- 5. 在高级编程语言的源代码中,即使指令和数据在编写时是分散的,编译后也会在段定义中集合汇总起来。大家看过汇编语言的源代码后,就会清楚了。
- 6. 在汇编语言中,通过跳转指令,可以实现循环和条件分支。

本章 重点

笔者在学生时代曾写过比较 C 语言源代码和汇编语言源代码的报告。这个报告的研究方法是,把 C 语

言的各种语法变换成汇编语言,然后对这些内容进行调查。通过研究, 笔者对程序的运行机制有了深刻的了解。

希望各位读者看完本章内容也能有同样的收获。在本章的前半部分,我们会对 CPU 解释运行的本地代码和汇编语言的一对一关系、汇编语言的源代码中包含的用来指示汇编器的伪命令、栈的 push/pop 以及调用函数的机制进行说明。

在本章的后半部分,会向大家介绍一下局部变量和全局变量的不同、循环等流程控制的实现方式等。在研究对象方面,我们选取了 Pentium 等 x86 系列 CPU 用的汇编语言,编程工具则依然使用前面章节中用到的 Borland C++。本章的内容相比其他章节多了不少,请大家耐心地阅读下去。

# **10.1** 汇编语言和本地代码是——对应的

接下来就让我们进入到本章的前半部分。在前面章节中已经多次 提到,计算机 CPU 能直接解释运行的只有本地代码(机器语言)程序。 用 C 语言等编写的源代码,需要通过各自的编译器编译后,转换成本 地代码。

通过调查本地代码的内容,可以了解程序最终是以何种形式来运行的。但是,如果直接打开本地代码来看的话,只能看到数值的罗列。如果直接使用这些数值来编写程序的话,还真是不太容易理解。因而就产生了这样一种想法,那就是在各本地代码中,附带上表示其功能