Date

Directions: Complete as many problems as you can in the 30 minutes allotted to you. No calculators!

1. $4^{\sqrt{2}} \times 4^{\sqrt{2}} =$

(A) 8

- **(B)** 16
- (**C**) 16^2
- **(D)** $16^{2\sqrt{2}}$
- **(E)** $4^{2\sqrt{2}}$

2. Simplify $q^{-2}r^3p^4r^{-3}p^{-6}q^{-6}$

- (A) $q^{-8}p^{-2}r$ (B) $q^{12}p^{-24}r^{-9}$
- (C) $q^4 p^{-2}$
- **(D)** $q^{-8}p^{-2}$
- **(E)** $q^{-4}p^{-2}$

3. Solve -7 - 3x = -7

- **(A)** $-\frac{14}{3}$
- **(B)** 0
- **(D)** 3
- (E) undefined

4. Expand -5t(-4v+3w)

- **(A)** 20tv + 3w
- **(B)** 20tv + 15tw
- (C) -20tv 15tw
- **(D)** 20tv 15tw
- **(E)** -20tv + 15tw

5. Solve 40% x = 24

- (A) 9.6
- **(B)** 40
- **(C)** 60
- **(D)** 80
- **(E)** 96

6. Which of the following is equivalent to $\frac{a^2}{8} + \frac{a}{6}$?

- (A) $\frac{a^3}{14}$ (B) $\frac{7a}{24}$
- (C) $\frac{7a^2}{24}$
- **(D)** $\frac{7a^3}{24}$
- **(E)** $\frac{3a^2 + 4a}{24}$

7. Solve $2\frac{1}{2}\left(3\frac{1}{2}-2\right)+2x=-2\frac{1}{2}\left(2-3\frac{1}{2}\right)+3x+4$

- (C) 4
- **(D)** 6
- (E) undefined

8. If $\frac{a}{\frac{1}{3}} = 4$, then $\frac{a}{\frac{2}{3}} =$

- (A) $\frac{1}{2}$
- **(C)** 2
- **(D)** 8
- **(E)** 18

9. Simplify $\frac{2.7^2}{-2.7^2+2.7^2}$

(A) 0

- (C) $\frac{10}{27}$
- **(D)** 2
- (E) undefined

10. 8 less than twice the sum of a number and 10 is twice the opposite of the number. Find the number.

- (A) $-\frac{10}{3}$
- **(B)** $-\frac{1}{2}$
- (C) -3
- (**D**) 0
- (E) undefined

11. 8b-4 quarts equals how many gallons?

- **(A)** 2b-4
- **(B)** 2b-1
- (C) 4b-2
- **(D)** 8b-1
- **(E)** 32b-16

12. If an old computer can solve 100 math problems in s hours and a new computer can solve the same problems in h seconds, how much time, in hours, will you save if you use the new computer instead of the old computer?

- (A) s 3600h
- **(B)** s 60h
- (C) 3600s h
- **(D)** 60s h
- **(E)** $s \frac{h}{3600}$

This test is property of Mathfax. Permission is granted to use only during the 2016-2017 school year. Algebra 2 Test 1 Page 1

13. $\sqrt{\frac{1}{9} + \frac{1}{16}} =$				
(A) $\frac{1}{3} + \frac{1}{8}$	(B) $\frac{1}{3} + \frac{1}{4}$	(C) $\frac{1}{3} \times \frac{1}{4}$	(D) $\frac{5}{12}$	(E) $\frac{5}{144}$
14. Find the average of the	e following three algebraic	expressions: $4l^3 + 3l^2$,	$-7l^3 - l$, and $-9l^2 - 11l$	
(A) $-l^3 - 2l^2 - 4l$	(B) $-l^3 + 2l^2 - 4l$	(C) $-l^3 - 2l^2 + 4l$	(D) $l^3 - 2l^2 - 4l$ (I	$\frac{11l^3 + 12l^2 + 10l}{3}$
15. If a school contains t st	tudents of which s are girl	s, which of the following	would be equivalent to the	ratio of boys to girls?
$(\mathbf{A}) \ \frac{-3st}{-3t^2 + 3st}$	(B)	(C) $\frac{-3st - 3s^2}{-3s^2}$	$(\mathbf{D}) \ \frac{-3st + 3t^2}{3st}$	$\mathbf{(E)} \ \frac{-3t + 3st}{-3s}$
16. Simplify $(6a-3b-5a)$	$(a+4b)$ ÷ $\frac{(8a-b-7a+b)}{(-4a-2b+b+b)}$	$\frac{2b}{+5a}$.		
$(\mathbf{A}) \ a-b$	(B) <i>a</i> + <i>b</i>	(C) $b-a$	(D) $\frac{a}{b}$	(E) $\frac{b}{a}$
17. If one square has a length	, ,	another square has a leng	th of $(k-9)$ inches, what	is the difference between
the two areas in square inch (A) 25	nes? (B) $10k - 10$	(C) $10k - 65$	(D) $10k + 97$	(E) $18k - 65$
18. If $8(14\pi - \sqrt{3y}) = \frac{16}{3}$	$\frac{5}{2}$, what is the value of $\frac{14}{2}$	$\frac{-\pi-\sqrt{3y}}{4}$?		
$(\mathbf{A}) \ \frac{1}{6}$	(B) $\frac{4}{3}$	(C) $\frac{8}{3}$	(D) $\frac{32}{3}$	(E) $\frac{512}{3}$
19. Solve $\frac{x}{2\frac{1}{4}} = 36$				
(A) $\frac{1}{81}$	(B) $\frac{1}{16}$	(C) 16	(D) 78	(E) 81
20. Solve $2(4x-3) = 14 +$	8 <i>x</i>			
(A) 0	(B) 8	(C) 20	(D) any real number	(E) no real number
21. The area of a rectangle	e is $xy-4zx+2y-8z$ and	If the length is $x+2$. Find	the ratio of the length to the	he width.
$(\mathbf{A}) \ \frac{x}{y+2z}$	$\mathbf{(B)} \frac{x+2}{y+4z}$	$(\mathbf{C}) \ \frac{x+2}{-y-4z}$	$\mathbf{(D)} \ \frac{x+2}{4z-y}$	$(\mathbf{E}) \ \frac{x+2}{y-4z}$
22. If $\frac{6r-4k}{3} = 4$ and $3r$	+4k = 8, find the value	of $\frac{9}{5}r$.		
(A) 4	(B) 6	(C) 9	(D) 18	(E) 27
23. 7.12 is what type of no (A) natural	umber? (B) whole	(C) integer	(D) irrational	(E) rational
24. Simplify $\frac{2a+2b-2c}{5c+a+b-6}$	<u>;</u>			
(A) 2	(B) 6	(C) $a+b-c$	$(\mathbf{D}) \ 2(a+b-c)$	(E) $2a + 2b - \frac{2}{5}c$
25. The volume of a sphere	e is equal to $\frac{4}{3}\pi r^3$ where	r is the radius. How many	times greater is the volum	ne if the diameter of the
sphere is doubled?	3			
(A) 2	(B) 4	(C) 6	(D) 8	(E) 10

This test is property of Mathfax. Permission is granted to use only during the 2016-2017 school year.

Algebra 2 Test 1 Page 2

Date Directions: Complete as many problems as you can in the 30 minutes allotted to you. No calculators! 1. Which is the largest number? **(D)** $-37\frac{17}{24}$ **(E)** $-37\frac{33}{48}$ **(A)** $-37\frac{2}{3}$ (C) -37.12 **(B)** -37.62. $16.7\overline{45}$ is an element of what set(s) of numbers? I. Irrational II. Rational III. Real (**A**) I **(B)** II (**C**) III (**D**) I and III (E) II and III 3. Simplify $\left(a^{y+4}\right)^2$ **(B)** $a^{y^2+8y+16}$ **(A)** a^{2y+8} **(D)** a^{y^2+8} **(E)** a^{y+6} 4. Which point does not satisfy the linear equation $y = -\frac{2}{3}x + 3$? **(D)** (-9, -6)(A) (-6,7)**(B)** (0,3)(C) (12,-5)**(E)** (3,1)5. Evaluate g - h(-g - h) if g = -5 and h = -2. (C) -19 **(D)** 1 **(E)** 9 6. In k more years, Sue will be h years old. How old was Sue j years ago? (A) h-k-j**(B)** k-h-j(C) h+k-j**(D)** h-k+j(E) h-k7. If $x^{\frac{3}{4}}y^{\frac{2}{3}} = 16$, find the value of $\frac{1}{\frac{3}{4}}$ when $y^{\frac{2}{3}}$ equals 2. (C) 8 **(D)** 14 **(E)** 32 8. $4a^2 - \frac{3}{a}$ is equivalent to which of the following? (C) $3\frac{2}{3}a$ **(E)** $\frac{4a^3-3}{a}$ **(D)** 4a-3**(B)** a^2 (**A**) *a* 9. Given $\frac{40\%}{r} + \frac{40\%}{r} = 80$. Find x. (A) 0.0025 **(B)** 0.005 **(C)** 0.01 **(D)** 0.1 **(E)** 1 10. If $m = -3k^4 - 2k^3 + 4k^2 + 1$ and $n = 6k^4 - 8k^3 - 10k^2 - 5$, find the value of m - n. (A) $-9k^4 + 6k^3 - 6k^2 + 6$ (B) $-9k^4 - 10k^3 - 6k^2 - 4$ (D) $-9k^4 + 6k^3 + 14k^2 + 6$ (E) $-9k^4 + 6k^3 + 14k^2 - 4$ (C) $-9k^4 - 10k^3 + 14k^2 + 6$ 11. If $\left[(x-y)^{0.25} \right]^4 - 7 = -28.12$, find the value of $3 + \left[(x-y)^{0.25} \right]^4$. (**C**) −24.12 (A) -38.12**(B)** −32.12 **(D)** -21.12 (\mathbf{E}) -18.1212. Find the value of $\left(\sqrt[3]{-x^2-4x}\right)^3$ if 2-x=4. $(\mathbf{A}) 0$ **(C)** 4 **(D)** 10 **(E)** 12 13. Solve $\frac{u_1 w_1}{v_1} = \frac{u_2 w_2}{v_2}$ for v_2 . $(\mathbf{B}) \ \frac{u_1 w_1}{u_2 v_1 w_2}$ **(D)** $\frac{u_2w_2}{u_1v_1w_1}$ $(\mathbf{C}) \ \frac{u_1 v_1 w_1}{u_2 w_2}$

14. If $v = -0.5$, then which	h of the following is true?				
$(\mathbf{A}) \frac{1}{v^8} < \frac{1}{v^9} < \frac{1}{v^{10}}$	(B) $\frac{1}{v^{10}} < \frac{1}{v^9} < \frac{1}{v^8}$	(C) $\frac{1}{v^{10}} < \frac{1}{v^8} < \frac{1}{v^9}$	$(\mathbf{D}) \ \frac{1}{v^9} < \frac{1}{v^8} < \frac{1}{v^{10}}$	$(\mathbf{E}) \ \frac{1}{v^9} < \frac{1}{v^{10}} < \frac{1}{v^8}$	
15. If $\frac{12}{4x^2 - 9} = 6$, then	$\frac{(2x-3)(2x+3)}{12} + 7 =$				
(A) $1\frac{1}{6}$	(B) $7\frac{1}{6}$	(C) 9	(D) 11	(E) 13	
16. If $(a^2 + c^2) + d = e + d$	f , then $\frac{(a^2 + c^2)^2}{5} =$				
$(\mathbf{A}) \ \frac{\left(e+f-d\right)^2}{5}$	$(B) \frac{\left(e+f-d\right)^2}{25}$	(C) $\frac{\left(e+f+d\right)^2}{5}$	$\mathbf{(D)} \ \frac{\left(e+f\right)^2}{5d}$	$(\mathbf{E}) \ \frac{\left(e+f\right)^2}{25d^2}$	
17. Given $\frac{-1}{x-3} = \frac{1}{y+2}$,	what is the value of $x-1$?			
(A) $-y + 4$	(B) $y + 4$	(C) $y-1$	$(\mathbf{D}) - y$	(E) <i>y</i>	
18. If $16 - 8 \sqrt[3]{\frac{g+h}{j+k}} = 4$	$\sqrt[3]{\frac{g+h}{j+k}} - 8$, then $\sqrt[3]{\frac{g+h}{j+k}}$	$\frac{1}{2} - 6 =$			
(A) $-5\frac{1}{3}$	(B) −4	(C) 0	(D) 2	(E) 6	
19. Find the value of x if $-$	$\left(\frac{x^2 - x - 6}{x - 3}\right)^4 = 6 \text{ when}$ $\left(\frac{x^2 - 3x - 10}{x - 5}\right)^3 = 6$	$x = x \neq -2, 3, 5.$			
(A) −3	(B) 1	(C) 0	(D) 4	(E) 5	
20. What fraction of $4x^6$ is $2x^2$?					
(A) $\frac{2}{x^{-4}}$	(B) $\frac{2}{x^4}$	(C) $\frac{1}{2x^4}$	(D) $\frac{1}{2x^{-4}}$	(E) $2x^4$	

21. Solve $2x = \frac{5+6x}{3}$ for *x*.

22. If
$$x = \frac{m^{-4}b^{5}}{c^{-2}}$$
 and $c = \frac{m^{-2}}{b^{4}}$, then $x =$

(A) $m^{-8}b^{-3}$ (B) b^{-3} (C) $m^{-8}b^{13}$ (D) b^{13} (E) $m^{-8}b^{-11}$

23. Given 6+2-d+b=2 and 8+d+2=5-g, find the value of $\frac{(g+b)^2}{2}$.

24. If the mixed fraction
$$a\frac{b}{c}$$
 is greater than the mixed fraction $x\frac{y}{c}$, find the value of $a\frac{b}{c} - x\frac{y}{c}$.

(A) $\frac{acb - xcy}{c}$ (B) $\frac{xc + y - ac + b}{c}$ (C) $\frac{xc + y - ac - b}{c}$ (D) $\frac{ac + b - xc + y}{c}$ (E) $\frac{ac + b - xc - y}{c}$

25. If golf balls cost y dollars each, how many can you buy if you have x cents?

(A)
$$\frac{100x}{y}$$
 (B) $\frac{x}{y}$ (C) $\frac{y}{x}$ (D) $\frac{y}{100x}$ (E) $\frac{x}{100y}$

	ALG	EDKA 21 KACIICE IES	1 3	
Name		Date		
Directions: Complete as ma			ed to you. No calculators	:!
1. If you bought c stamps wi		-		
(A) $\frac{d}{c}$	$(B) \frac{100d}{c}$	(C) $\frac{100c}{d}$	(D) $\frac{c}{d}$	(E) $\frac{c}{100d}$
2. You have <i>m</i> dollars made	up of nickels and dimes	. If there are y more nickels	s than dimes, which two ed	quations would best
represent this problem? Let	n represent the number of	of nickels and d represent the	ne number of dimes.	
$ \begin{cases} n = d + y \\ 5n + 10d = 100m \end{cases} $	$ \mathbf{(B)} \begin{cases} n = d + y \\ 5n + 10d = m \end{cases} $	$ \begin{cases} n+d=y\\ 5n+10d=100m \end{cases} $	$ \mathbf{(D)} \begin{cases} d = n + y \\ 5n + 10d = 100m \end{cases} $	$ \mathbf{(E)} \begin{cases} d = n + y \\ 5n + 10d = m \end{cases} $
$3. \ \frac{2}{a+b} - \frac{2}{b} =$				
(A) $\frac{2}{a}$	(B) $\frac{-a}{a+b}$	(C) $\frac{a}{a+b}$	$(\mathbf{D}) \ \frac{-2a}{ab+b^2}$	$\mathbf{(E)} \ \frac{4b-2a}{ab+b^2}$
4. If $x-4$ is a multiple of 1				
(A) $x + 13$	(B) $x-13$	(C) $x + 22$	(D) $x-26$	(E) $x + 8$
5. Which of the following is	$\sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}}$ equivalent t	o?		
(A) $\frac{1}{\sqrt{x}}$	(B) $\frac{2}{}$	(C) $\frac{1}{\sqrt{1-x^2}}$	(D) $\frac{1}{r}$	(E) $\frac{2}{x}$
V 30	4 24	2 4 %	\mathcal{A}	X
6. Which of the following po		solution set for the followin	ig system?	
$\begin{cases} -3y - 2x \\ x \le -2 \end{cases}$	c>-6			
(A) $(-3,4)$	(B) (-6,7)	(C) $(-9,8)$	(D) $(0,2)$	(E) $(-12,9)$
7. If the smallest of three con	nsecutive odd integers is	$\frac{g-3}{g}$, which of the follow	ving is equivalent to the la	rgest of the three
	C	5		
consecutive odd integers?	. 7	. 10	. 17	. 22
(A) $\frac{g+1}{5}$	$(\mathbf{B}) \ \frac{g+1}{5}$	(C) $\frac{g+12}{5}$	(D) $\frac{g+1}{5}$	(E) $\frac{g+22}{5}$
8. Which of the following is	3	3	3	3
_	2)} II. $x^2 =$	= y III. $x =$	0	
,		(C) III		(E) II and III
` '		` '		(E) II and III
9. Find the distance between				(T) 2: 10
(A) 0	$(\mathbf{B}) t$	(C) $t+10$	(D) 3 <i>t</i>	(E) $3t + 10$
10. Find the midpoint of $\left(-\frac{1}{2}\right)$	· ·	· ·		
$(\mathbf{A}) \ \left(-15c, -5d\right)$	(B) $(-8c, -5d)$	(C) $(-15c,13d)$ (D)	$\left(-8c,13d\right)$ (E) $\sqrt{\left(}$	$(-16c)^2 + (-26d)^2$
11. Simplify $\frac{6(\sqrt{5})^3 - 12(-1)}{6(\sqrt{5})^3}$	$\sqrt{5}$) 5			
(A) $-12(\sqrt{5})^5$	(B) $1-12\left(\sqrt{5}\right)^5$	(C) $1-6(\sqrt{5})^2$	(D) $-11(\sqrt{5})^5$	(E) −9
12. Which is the largest num	iber?			
(A) $3\sqrt{5}$	(B) $5\sqrt{2}$	(C) $4\sqrt{3}$	(D) $2\sqrt{11}$	(E) 7
13. When $2t^4 - 1$ is divided	by $t+2$, what is the re	mainder?		
(A) $\frac{-33}{t+2}$	(B) $\frac{-31}{t+2}$	(C) $\frac{-29}{t+2}$	(D) $\frac{29}{t+2}$	$\mathbf{(E)} \ \frac{31}{t+2}$

This test is property of Mathfax. Permission is granted to use only during the 2016-2017 school year.

Algebra 2 Test 3 Page 1

14. If $c + d + 1 = 0$ and $(a + 1)$	$-b(c+d)^3-9(c+d)+$	4 = 0, find the value of a	a+b?	
(A) -5	(B) 5	(C) -13	(D) 13	(E) $\frac{13}{3}$
15. If $h = g^{-2}j^3$ and $k = g^5$	$^{5}h^{4}j^{2}$, then $k =$			
(A) $g^{-3}j^{14}$	(B) $g^{-3}j^{15}$	(C) $g^{-1}j^{14}$	(D) $g^{21}j^{14}$	(E) $g^{21}j^{83}$
16. If $\frac{w^4v^5}{u^3} > 0$, which of the	he following does not have	e to be positive?		
$(\mathbf{A}) \ u^9 v^7 w^2$	$(\mathbf{B}) \ w^6 v^9 u^6$	(C) $v^6 w^8 u^{12}$	(D) $w^6 v^{11} u^{19}$	(E) $w^{10}v^2u^2$
17. If $p+q < r-t < w-v$,				
1. $zr - zi > zp + zc$	q II. $zp + zq < zw - $ (B) II	-zv III. $zr - zt > zw$ (C) III	- zv (D) I and II	(E) II and III
18. If $(w+z)(t+v) = x + y$		(0) 111	(2) 1 4.1.0 11	(2) 11 4110 111
$(\mathbf{A}) \ \frac{t+v}{x+y}$		(C) $\left(\frac{t+v}{x+y}\right)^2$	$(\mathbf{D}) \ \frac{\left(x+y\right)^2}{t+v}$	$(\mathbf{E}) \ \frac{x+y}{\left(t+v\right)^2}$
19. If $m+n=\frac{x^2-9}{x^3-x^2-12x^2}$	$\frac{1}{x}$ and $p-r = \frac{x-3}{x^3 + 4x^2}$,	find the value of $\frac{m+n}{p-r}$.		
$(\mathbf{A}) \ \frac{x(x+4)}{x-4}$	$\mathbf{(B)} \frac{x^2\left(x+4\right)}{x-4}$	(C) $\frac{x(x+4)(x+3)}{x-3}$	(D) $\frac{x(x+4)(x-3)}{x+3}$	(E) <i>x</i>
20. $(x^{y-3})^{y+3} =$				
(A) x^{2y} 21. Solving the following sys	(B) x^6 stem for x by substitution	(C) x^{y-9} would yield which equation	(D) x^{y^2-6y-9} on in the process?	(E) x^{y^2-9}
	$\begin{cases} 3x - 2y = 4 \\ 4x - y = 7 \end{cases}$		-	
(A) $3x + 8x + 14 = 4$	(-	(C) $3x - 8x - 9 = 4$	(D) $3x - 8x - 14 = 4$	(E) $3x - 8x + 14 = 4$
$22. \left(\sqrt{5\frac{3}{16}}\right)^6 \cdot \frac{1}{\left(\sqrt{6 - \frac{13}{16}}\right)^2} =$				
(A) 3	(B) $5\frac{3}{16}$	(C) $\left(\sqrt{5\frac{3}{16}}\right)^3$	(D) $\left(5\frac{3}{16}\right)^2$	$(E) \left(5\frac{3}{16}\right)^4$
23. Find the value of $\frac{b+c+}{2}$	$\frac{d}{d}$ for the following system	m: $\begin{cases} 2b - (c+d) = 10 \\ c+d = -2b-2 \end{cases}$		
(A) -4	(B) -3	(C) -2	(D) -1	(E) $-\frac{1}{2}$
24. If the sum of three conse	cutive odd integers is 3+	x, what is the largest of the	ne three integers?	2
(A) $3x + 9$	(B) $\frac{x-3}{3}$	(C) $\frac{x+1}{3}$	(D) $\frac{x+6}{3}$	(E) $\frac{x+9}{3}$
25. $-4\left(\frac{\sqrt[3]{y+z}}{w}\right)^2 + 4\left(\frac{\sqrt[3]{y+z}}{w}\right)^2$	$\left(\frac{7}{2}\right) + 48$ is equivalent to			
$(\mathbf{A}) -4 \left(\frac{\sqrt[3]{y+z}}{w} - 4 \right) \left(\frac{\sqrt[3]{y}}{v} \right)$	$\frac{\overline{+z}}{v} - 3 $ (B) $-4 \left(\frac{\sqrt[3]{y}}{v} \right)$	$\frac{1}{w}$ -4 $\left(\frac{\sqrt[3]{y+z}}{w}+3\right)$	$(\mathbf{C}) -4 \left(\frac{\sqrt[3]{y+z}}{w} + 4 \right) \left(\frac{\sqrt[3]{z}}{z} \right)$	$\left(\frac{y+z}{w}-3\right)$
$\mathbf{(D)} -4 \left(\frac{\sqrt[3]{y+z}}{w} + 4 \right) \left(\frac{\sqrt[3]{y}}{v} \right)$	$(\mathbf{E}) -4\left(\frac{\sqrt[3]{y}}{y}\right)$	$\frac{\overline{+z}}{w} - 6 \left(\frac{\sqrt[3]{y+z}}{w} + 2 \right)$		

	_	- CALLED LES	1 7	
Name Directions: Complete as m		Date in the 30 minutes allotte	ed to you. No calculators	s!
1. If $64r + 32$ is an even nu	· -		-	
greater than $64r + 32$?		8		
(A) $128r + 63$	(B) $128r + 64$	(C) $128r + 65$	(D) $64r + 64$	(E) $64r + 65$
2. Ten more than twice a number (A) $10 + 2n = 3n - 8$	_	ee times the same number (C) $10+2n=8-3n$		the following ways? (E) $10 \cdot 2n = 8 - 3n$
3. Solve $6x - 9x + 12x = 15$	5.			
(A) $-1\frac{2}{3}$	(B) 1	(C) $1\frac{2}{3}$	(D) 6	(E) 135
4. Solve $\frac{18}{11} = \frac{6}{x}$		_		
(A) $3\frac{2}{3}$	(B) $3\frac{3}{4}$	(C) $3\frac{7}{18}$	(D) $3\frac{11}{18}$	(E) $3\frac{13}{18}$
5. Evaluate $x - yx^2$ if $x = -$				
(A) -45	(B) −21	(C) −9	(D) 15	(E) 45
6. $\left[\left(x + y \right)^{\frac{2}{3}} \right]^2 =$				
(A) $(x+y)^{\frac{4}{9}}$	(B) $(x+y)^{2\frac{2}{3}}$	(C) $(x+y)^{\frac{4}{3}}$	(D) $x^{\frac{4}{3}} + y^{\frac{4}{3}}$	(E) $x^{\frac{4}{9}} + y^{\frac{4}{9}}$
7. How much greater is the s	slope of the line that goes	through $(2,3)$ and $(3,7)$	than the slope of the line	that goes through
(2,3) and $(5,4)$?				
(A) $-\frac{3}{2}$	(B) $-\frac{2}{3}$	(C) $\frac{2}{3}$	(D) $\frac{3}{2}$	(E) $3\frac{2}{3}$
8. Simplify $\sqrt{50}$				
(A) $2\sqrt{5}$	(B) $5\sqrt{2}$	(C) $5\sqrt{5}$	(D) $25\sqrt{2}$	(E) 25
9. If $\frac{1}{m} = \frac{1}{3} + \frac{1}{2}$, find m.				
$(\mathbf{A}) \frac{1}{5}$	(B) $\frac{5}{6}$	(C) $\frac{6}{5}$	(D) 5	(E) 6
5 10. What is the total number				
(A) $1760m + 3y + \frac{1}{12}f$	· ·		f (D) $5280m + 3y + \frac{1}{12}$	$\frac{1}{2}f$ (E) $m+y+f$
11. Which is equivalent to α	$a + b$ if $a = -3x^2 - 7x - 4$	4 and $b = 4x^2 + 12x + 10$)?	
$(\mathbf{A}) \ \left(x+2\right)\left(x+3\right)$	(B) $(x+6)(x+1)$	(C) $(x+3)(x+3)$	(D) $(x+2)(x+4)$ (1	
12. When the largest of the t smallest and largest.	hree consecutive integers	is tripled, it will be 18 less	s than the smallest integer.	Find the product of the
(A) 80	(B) 110	(C) 120	(D) 168	(E) does not exist
13. If a linear equation goes	through $(-2, -1687)$ an	d has a slope of $-\frac{3}{2}$, find	the <i>y</i> -intercept.	
(A) −1690	(B) −1689	(C) -1688.5	(D) −1685	(E) -1684
14. Solve the following syste $ \begin{cases} 7x - 8y = 0 \\ 11x + 13y = 0 \end{cases} $	em for y.			
`	(P) 1	(C) 2	(D) 3	(F) 1
(A) 0 This test is pro	(B) 1 operty of Mathfax. Permis	($f C$) 2 ssion is granted to use only	(D) 3 y during the 2016-2017 sc.	(E) 4 hool year.

15. If $4(x-2y)-2-7(x-2y)$	5. If $4(x-2y)-2-7(x-2y)=-4-2(x-2y)-6$, then $x-2y=$					
(A) −8	(B) 0	(C) 8	(D) $\frac{8}{5}$	(E) undefined		
16. What is $lr + lq - pr - p$ (A) $(l-p)(r+q)$		(C) $(l+p)(r-q)$	$(\mathbf{D}) \ (l-p)(r-q)$	(E) $(l-p)(q-r)$		
17. $-6\left(x^{\frac{2}{11}}y^{\frac{3}{13}}\right)^2 + 13\left(x^{\frac{2}{11}}y^{\frac{2}{13}}\right)^2$	$\left(\frac{3}{13}\right) - 6$ is equivalent to					
$(\mathbf{A}) \left(6x^{\frac{2}{11}}y^{\frac{3}{13}} + 6 \right) \left(-x^{\frac{2}{11}} \right)$	$\left(\frac{1}{3}y^{\frac{3}{13}}-1\right)$ (B) $\left(-3x^{\frac{3}{13}}-1\right)$	$x^{\frac{2}{11}}y^{\frac{3}{13}} - 2 \left(2x^{\frac{2}{11}}y^{\frac{3}{13}} + 2 \right)$	(C) $\left(-3x^{\frac{2}{11}}y^{\frac{3}{13}}\right)$	$-2\left(2x^{\frac{2}{11}}y^{\frac{3}{13}}-3\right)$		
$\mathbf{(D)} \left(-6x^{\frac{2}{11}}y^{\frac{3}{13}} + 3 \right) \left(x^{\frac{2}{11}} \right)$	$\left(\mathbf{E}\right)^{\frac{3}{13}} - 2$ (E) $\left(-3\right)$	$3x^{\frac{2}{11}}y^{\frac{3}{13}} + 2\left(2x^{\frac{2}{11}}y^{\frac{3}{13}} - 1\right)$	3			
18. The average of three exp is the third expression? (A) $x^3y^2 - 2x^2y^3$			$y^{2} - 6y^{3}x^{2}$ and the second (D) $x^{3}y^{2} - 4x^{2}y^{3}$			
19. If the area of a triangle is	s $x^2 - y^2$ and the base is	x + y, find the height.				
$(\mathbf{A}) x - y$	(B) 2(x-y)	$(C) \frac{x^2 - y^2}{x + y}$	$(\mathbf{D}) \ \frac{x+y}{x^2-y^2}$	$(\mathbf{E}) \ \frac{x-y}{2}$		
20. If $3x^2 + 4y^3 - 6 = 0$, th	$en \frac{1}{4} \sqrt[5]{3x^2 + 4y^3 + 26} =$:				
(A) 0	$(\mathbf{B}) \ \frac{1}{4}$	(C) $\frac{1}{2}$	(D) $\frac{3}{4}$	(E) 1		
21. Solve $\frac{pv}{nt} = r$ for n .						
$(\mathbf{A}) \ \frac{pvt}{r}$	$\mathbf{(B)} \ \frac{tr}{pv}$	(C) $\frac{pvr}{t}$	(D) $\frac{t}{pvr}$	(E) $\frac{pv}{tr}$		
22. Which ordered pair does (A) (-1,-6)	not satisfy $y = -x^2 + 2x$ (B) (1,0)	c-3 ? (C) (-2,-11)	(D) (2,-3)	(E) (0,-3)		
23. If $a = bc$, then $\frac{b}{c} =$						
(A) $\frac{a}{c}$	(B) $\frac{a^2}{c}$	(C) $\frac{c^2}{a^2}$	$(\mathbf{D}) \ \frac{a}{c^2}$	(E) $\frac{c}{a}$		
24. $\sqrt{16}$ is not an element of I. rational (A) I only	of what set(s) of numbers II. irratio (B) II only		III. integers (D) I and III	(E) II and III		
25. If $4(x+5)(x-5) = 60$,	Find the value of $\frac{2}{x^2}$	25).				
(A) 8	(B) 9	(C) 10	(D) 12	(E) 15		

ALGEBRA 2 TEST 1 ANSWERS

1. E	2. D	3. B	4. D	5. C
6. E	7. A	8. C	9. E	10. C
11. B	12. E	13. D	14. A	15. D
16. A	17. C	18. A	19. E	20. E
21. E	22. A	23. E	24. A	25. D

1.
$$4^{\sqrt{2}+\sqrt{2}} = 4^{2\sqrt{2}}$$

2.
$$q^{-8}p^{-2}$$

3.
$$x = \frac{0}{-3} = 0$$

4.
$$20tv - 15tw$$

5.
$$0.4x = 24 \rightarrow x = \frac{24}{0.4} = 60$$

6.
$$\frac{3a^2}{24} + \frac{4a}{24} = \frac{3a^2 + 4a}{24}$$

7.
$$2x = 3x + 4 \rightarrow x = -4$$

8.
$$4 \times \frac{1}{2} = 2$$

9.
$$\frac{2.7^2}{0}$$
 is undefined

10.
$$2(n+10)-8=-2n \rightarrow 4n=-12 \rightarrow n=-3$$

11.
$$\frac{8b-4}{4} = 2b-1$$
 12. $s - \frac{h}{3600}$ 13. $\sqrt{\frac{1}{9} + \frac{1}{16}} = \sqrt{\frac{16}{144} + \frac{9}{144}} = \sqrt{\frac{25}{144}} = \frac{5}{12}$

14.
$$\frac{4l^3 + 3l^2 - 7l^3 - l - 9l^2 - 11l}{3} = \frac{-3l^3 - 6l^2 - 12l}{3} = -l^3 - 2l^2 - 4l$$

15.
$$\frac{-3st + 3t^2}{3st} = \frac{-s + t}{s} = \frac{t - s}{s}$$

16.
$$\frac{6a - 3b - 5a + 4b}{8a - b - 7a + 2b} = \frac{a + b}{a + b} = \frac{a + b}{1} \cdot \frac{a - b}{a + b} = a - b$$

17.
$$(k-4)^2 - (k-9)^2 = k^2 - 8k + 16 - k^2 + 18k - 81 = 10k - 65$$

18.
$$\frac{8(14\pi - \sqrt{3y})}{32} = \frac{14\pi - \sqrt{3y}}{4} = \frac{16}{3} \cdot \frac{1}{32} = \frac{1}{6}$$
 19. $x = 2\frac{1}{4} \cdot 36 = \frac{9}{4} \cdot 36 = 81$

19.
$$x = 2\frac{1}{4} \cdot 36 = \frac{3}{4} \cdot 36 = 81$$

20.
$$8x - 6 = 14 + 8x \rightarrow 0x = 20 \rightarrow x = \frac{20}{0}$$
 which is undefined or no real number.

21.
$$xy-4zx+2y-8z=x(y-4z)+2(y-4z)=(x+2)(y-4z)$$
. \therefore the ratio of the length to the width is $\frac{x+2}{y-4z}$. If a student did

not know how to factor, they could multiply the numerator and denominator of each choice until they arrived at the beginning product.

22.
$$\frac{6r-4k}{3} = 4 \rightarrow 6r-4k = 12$$

$$\begin{cases} 3r+4k=8 \\ 6r-4k=12 \end{cases}$$
 Adding columns yields $9r = 20 \rightarrow r = \frac{20}{9}$. $\therefore \frac{9}{5}r = \frac{9}{5} \cdot \frac{20}{9} = 4$

24.
$$\frac{2a+2b-2c}{5c+a+b-6c} = \frac{2(a+b-c)}{a+b-c} = 2$$

25. When a diameter is doubled, the radius will become two times longer. Therefore $V = \frac{4}{3}\pi(2r)^3 = 8\left(\frac{4}{3}\pi r^3\right)$

ALGEBRA 2 TEST 2 ANSWERS

1. C	2. E	3. A	4. D	5. E
6. A	7. B	8. E	9. C	10. D
11. E	12. C	13. A	14. D	15. B
16. A	17. D	18. B	19. D	20. C
21. E	22. A	23. E	24. E	25. E

$$1. -37.12$$

3.
$$\left(a^{y+4}\right)^2 = a^{2y+8}$$

4.
$$(-9, -6)$$

5.
$$-5+2(5+2)=-5+14=9$$

5.
$$h-k-i$$

7.
$$x^{\frac{3}{4}} = \frac{16}{2} = \frac{16}{2} = 8$$
. Therefore $\frac{1}{x^{\frac{3}{4}}} = \frac{1}{8}$ 8. $4a^2 - \frac{3}{a} = \frac{4a^3 - 3}{a}$

$$8. \ 4a^2 - \frac{3}{a} = \frac{4a^3 - 3}{a}$$

9.
$$\frac{40\%}{x} + \frac{40\%}{x} = 80 \rightarrow \frac{80\%}{x} = 80 \rightarrow x = \frac{.80}{80} = 0.01$$

10.
$$-3k^4 - 2k^3 + 4k^2 + 1 - (6k^4 - 8k^3 - 10k^2 - 5) = -9k^4 + 6k^3 + 14k^2 + 14k$$

11.
$$\left[\left(x - y \right)^{0.25} \right]^4 = -28.12 + 7 = -21.12 \rightarrow \left[\left(x - y \right)^{0.25} \right]^4 + 3 = -18.12$$

12.
$$x = -2$$
. Therefore $\left(\sqrt[3]{-x^2 - 4x}\right)^3 = -\left(-2\right)^2 - 4\left(-2\right) = -4 + 8 = 4$

13.
$$u_1 w_1 v_2 = u_2 w_2 v_1 \rightarrow v_2 = \frac{u_2 v_1 w_2}{u_1 w_1}$$

14.
$$\frac{1}{v^9} < \frac{1}{v^8} < \frac{1}{v^{10}}$$
 15. $\frac{(2x-3)(2x+3)}{12} + 7 = \frac{1}{6} + 7 = 7\frac{1}{6}$ 16. $\frac{(a^2+c^2)^2}{5} = \frac{(e+f-d)^2}{5}$

16.
$$\frac{\left(a^2+c^2\right)^2}{5} = \frac{\left(e+f-d\right)^2}{5}$$

17.
$$\frac{-1}{x-3} = \frac{1}{y+2} \to x-3 = -y-2 \to x-1 = -y$$

18. Let
$$x = \sqrt[3]{\frac{g+h}{j+k}}$$
. Therefore $16 - 8x = 4x - 8 \rightarrow x = 2 \rightarrow \sqrt[3]{\frac{g+h}{j+k}} - 6 = 2 - 6 = -4$

19.
$$\frac{\left(\frac{x^2 - x - 6}{x - 3}\right)^4}{\left(\frac{x^2 - 3x - 10}{x - 5}\right)^3} = 5 \to \frac{\left(\frac{(x - 3)(x + 2)}{x - 3}\right)^4}{\left(\frac{(x - 5)(x + 2)}{x - 5}\right)^3} = 6 \to x + 2 = 6 \to x = 4$$

$$20. \ \frac{2x^2}{4x^6} = \frac{1}{2x^4}$$

21. $6x = 5 + 6x \rightarrow 0x = 5$ There is no number that can be multuplied by zero to get a 5.

22.
$$x = m^{-4}b^5c^2 = m^{-4}b^5(m^{-2}b^{-4})^2 = m^{-4}b^5m^{-4}b^{-8} = m^{-8}b^{-3}$$

23. Simplifying both equations yields $\begin{cases} -d+b=-6 \\ d+g=-5 \end{cases}$. Now adding columns yields g+b=-11. Substituting -11 in for g+b of

$$\frac{(g+b)^2}{2}$$
 yields $\frac{11^2}{2} = \frac{121}{2} = 60.5$.

24.
$$a\frac{b}{c} - x\frac{y}{c} = \frac{ac+b}{c} - \frac{xc+y}{c} = \frac{ac+b-xc-y}{c}$$
 25. $\frac{x}{100} \div y = \frac{x}{100} \cdot \frac{1}{y} = \frac{x}{100y}$

ALGEBRA 2 TEST 3 ANSWERS

1.
$$\frac{100d}{c}$$
 2. $\begin{cases} n = d + y \\ 5n + 10d = 100m \end{cases}$ 3. $\frac{2}{a+b} - \frac{2}{b} = \frac{2b}{b(a+b)} - \frac{2(a+b)}{b(a+b)} = \frac{-2a}{b(a+b)} = \frac{-2a}{ab+b^2}$

4. x + 22 is 26 greater than x - 4 and will also be a multiple of 13.

5.
$$\sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} = \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x}} = \frac{2}{\sqrt{x}}$$
 6. $(-12,9)$ 7. $\frac{g-3}{5} + 4 = \frac{g-3}{5} + \frac{20}{5} = \frac{g+17}{5}$

9. (2t+5)-(t-5)=t+10

10.
$$\left(\frac{-7c - 23c}{2}, \frac{8d - 18d}{2}\right) \rightarrow \left(-15c, -5d\right)$$
 11. $\frac{6\left(\sqrt{5}\right)^3 - 12\left(\sqrt{5}\right)^5}{6\left(\sqrt{5}\right)^3} = \frac{1 - 2\left(\sqrt{5}\right)^2}{1} = 1 - 10 = -9$

12.
$$3\sqrt{5} = \sqrt{45}$$
; $5\sqrt{2} = \sqrt{50}$; $4\sqrt{3} = \sqrt{48}$; $2\sqrt{11} = \sqrt{44}$; $7 = \sqrt{49}$ 13. $\frac{31}{t+2}$

14. Since
$$c+d=-1$$
, then $(a+b)(c+d)^3-9(c+d)+4=0 \rightarrow (a+b)(-1)-9(-1)+4=0 \rightarrow a+b=13$

15.
$$h = g^{-2}j^3$$
 and $k = g^5h^4j^2 = g^5(g^{-2}j^3)^4j^2 = g^{-3}j^{14}$

16. u and v must have the same sign. Therefore A, D, C, and E must be positive. B could be negative if u and v are negative.

17. I and II

18.
$$\frac{(w+z)(t+v)}{(t+v)^2} = \frac{w+z}{t+v} = \frac{x+y}{(t+v)^2}$$
 19.
$$\frac{x^2-9}{x^3-x^2-12} \times \frac{x^3+4x^2}{x-3} = \frac{(x-3)(x+3)}{x(x-4)(x+3)} \times \frac{x^2(x+4)}{x-3} = \frac{x(x+4)}{x-4}$$

$$20.\left(x^{y-3}\right)^{y+3} = x^{y^2+3y-3y-9} = x^{y^2-9}$$

21. Solving 4x - y = 7 for y yields y = 4x - 7. Now substituting 4x - 7 in for y of the other equation and simplifying yields $3x - 2(4x - 7) = 4 \rightarrow 3x - 8x + 14 = 4$ which is E.

22.
$$\left(\sqrt{5\frac{3}{16}}\right)^6 \cdot \frac{1}{\left(\sqrt{6 - \frac{13}{16}}\right)^2} = \frac{\left(\sqrt{5\frac{3}{16}}\right)^6}{\left(\sqrt{5\frac{3}{16}}\right)^2} = \left(\sqrt{5\frac{3}{16}}\right)^4 = 5\frac{3}{16} \cdot 5\frac{3}{16}$$

23. Substituting -2b-2 in for c+d of the top equation results in $2b-(-2b-2)=10 \rightarrow b=2$. Also,

$$c+d=-2b-2=-2(2)-2=-6$$
. Therefore $\frac{b+c+d}{2}=\frac{2+(-6)}{2}=-2$

24. Let n, n+2, and n+4 be three consecutive odd integers. n+(n+2)+(n+4)=3+x. Therefore $n=\frac{x-3}{3}$ and

$$n+4 = \frac{x-3}{3} + 4 = \frac{x-3}{3} + \frac{12}{3} = \frac{x+9}{3}$$

25. Think of $-4\left(\frac{\sqrt[3]{y+z}}{w}\right)^2 + 4\left(\frac{\sqrt[3]{y+z}}{w}\right) + 48 \text{ as } -4x^2 + 4x + 48 \text{ which factors as } -4(x^2 - x - 12) = -4(x - 4)(x + 3)$. Now substituting back in

for x yields
$$-4\left(\frac{\sqrt[3]{y+z}}{w}-4\right)\left(\frac{\sqrt[3]{y+z}}{w}+3\right)$$

ALGEBRA 2 TEST 4 ANSWERS

1. A	2. A	3. C	4. A	5. B
6. C	7. E	8. B	9. C	10. D
11. A	12. C	13. A	14. A	15. C
16. A	17. E	18. D	19. B	20. C
21. E	22. B	23. D	24. B	25. C

1.
$$(64r+30)+(64r+33)=128r+63$$

2.
$$10 + 2n = 3n - 8$$

3.
$$9x = 15 \rightarrow x = 1\frac{2}{3}$$

4.
$$\frac{66}{18} = 3\frac{2}{3}$$

5.
$$x - yx^2 = -3 - (2)(-3)^2 = -3 - 18 = -21$$

6.
$$\left[(x+y)^{\frac{2}{3}} \right]^2 = (x+y)^{\frac{4}{3}}$$
 7. $\frac{7-3}{3-2} - \frac{4-3}{5-2} = 4 - \frac{1}{3} = 3\frac{2}{3}$

8.
$$\sqrt{50} = 5\sqrt{2}$$

9.
$$\frac{1}{m} = \frac{1}{3} + \frac{1}{2} \rightarrow \frac{1}{m} = \frac{5}{6} \rightarrow m = \frac{6}{5}$$

10.
$$5280m + 3y + \frac{1}{12}f$$

11.
$$-3x^2 - 7x - 4 + 4x^2 + 12x + 10 = x^2 + 5x + 6 = (x+2)(x+3)$$

12.
$$3(n+2)+18=n \rightarrow n=-12 \rightarrow (-12)(-10)=120$$

$$13. -1690$$

14. 0

15. Let
$$z = x - 2y$$
. $4z - 2 - 7z = -4 - 2z - 6 \rightarrow z = 8 = x - 2y$

16.
$$lr + lq - pr - pq = l(r+q) - p(r+q) = (l-p)(r+q)$$

17. Let
$$z = x^{\frac{2}{11}}y^{\frac{3}{13}}$$
. $-6z^2 + 13z - 6 = (-3z + 2)(2z - 3) = \left(-3x^{\frac{2}{11}}y^{\frac{3}{13}} + 2\right)\left(2x^{\frac{2}{11}}y^{\frac{3}{13}} - 3\right)$

18

$$\frac{\left(3x^3y^2 - 6y^3x^2\right) + \left(x^2y^3 - 4y^2x^3\right) + z}{3} = -3x^2y^3 \rightarrow \left(3x^3y^2 - 6y^3x^2\right) + \left(x^2y^3 - 4y^2x^3\right) + z = -9x^2y^3 \rightarrow z = x^3y^2 - 4x^2y^3$$

19.
$$A = \frac{bh}{2} \to h = \frac{2A}{b} = \frac{2(x^2 - y^2)}{x + y} = 2(x - y)$$

20.
$$\frac{1}{4}\sqrt[5]{3x^2+4y^3+26} = \frac{1}{4}\sqrt[5]{32} = \frac{1}{2}$$

21.
$$nt\left(\frac{pv}{nt}\right) = ntr \rightarrow pv = ntr \rightarrow \frac{pv}{tr} = \frac{ntr}{tr} \rightarrow \frac{pv}{tr} = n$$

22. (1,0) is the only point that does not satisfy the equation.
$$-(1)^2 + 2(1) - 3 = -1 + 2 - 3 = -2 \neq 0$$

23. Dividing both sides of the equation by c^2 and simplifying yields $\frac{a}{c^2}$

24.
$$\sqrt{16} = 4$$
 which is not irrational

25.
$$4(x^2 - 25) = 60 \rightarrow x^2 - 25 = 15 \rightarrow \frac{2}{3}(x^2 - 25) = \frac{2}{3} \cdot 15 = 10$$