

2. Pourquoi la moyenne a posteriori, non pas le maximum ou la médiane a posteriori?

Idée: développer un critère pour comparer ces estimateurs

D'abord, en analyse fréquentiste:

"worst-case" analysis

1. On suppose qu'il existe un vrai paramètre θ tel que les données $X \sim \mathbb{P}_{\theta}(X)$.

2. On détermine une fonction T (estimateur) appliquée aux données pour estimer θ par T(X).

3. On peut quantitifer sa qualité en calculant une fonction de perte (loss function) $\mathcal{L}(T(X), \theta)$.

4. Choix classiques de \mathcal{L} : la perte quadratique $\mathcal{L}(a,b) = (a-b)^2$ ou en valeur absolue: $\mathcal{L}(a,b) = |a-b|$.

5. $\mathcal{L}(T(X), \theta)$ dépend des données, on calcule une perte moyenne dite "Risque": $\mathcal{R}(T, \theta) \stackrel{\text{def}}{=} \mathbb{E}_X \left[\mathcal{L}(T(X), \theta) \right]$

6. Ce Risque dépend de θ , on veut un estimateur T qui soit bon pour tous les θ .

7. On quantifie sa **pire performance** par le plus grand risque $\mathcal{R}(T) \stackrel{\text{def}}{=} \max_{\mathbf{p}} \mathcal{R}(T, \theta)$.

8. Le meilleur estimateur T est celui qui minimise ce plus grand risque min $\max_{T} \mathcal{R}(T, \theta)$.

"critère mini-max"

Risque fréquentiste minimax

Risque fréquentiste minimax

2. Pourquoi la moyenne a posteriori, non pas le maximum ou la médiane a posteriori ?

Idée: développer un critère pour comparer ces estimateurs

D'abord, en analyse fréquentiste:

- 1. On suppose qu'il existe un vrai paramètre θ tel que les données $X \sim \mathbb{P}_{\theta}(X)$.
- 2. On détermine une fonction T (estimateur) appliquée aux données pour estimer θ par T(X).
- 3. On peut quantitifer sa qualité en calculant une fonction de perte (loss function) $\mathcal{L}(T(X), \theta)$.
- 4. Choix classiques de \mathcal{L} : la perte quadratique $\mathcal{L}(a,b) = (a-b)^2$ ou en valeur absolue: $\mathcal{L}(a,b) = |a-b|$.
- 5. $\mathcal{L}(T(X), \theta)$ dépend des données, on calcule une perte moyenne dite "Risque": $\mathcal{R}(T, \theta) \stackrel{\text{def}}{=} \mathbb{E}_X \left[\mathcal{L}(T(X), \theta) \right]$
- 6. Ce Risque dépend de θ , on veut un estimateur T qui soit bon pour tous les θ .
- 7. On quantifie sa **pire performance** par le plus grand risque $\mathcal{R}(T) \stackrel{\text{def}}{=} \max_{\theta} \mathcal{R}(T, \theta)$. "worst-case" analysis
- 8. Le meilleur estimateur T est celui qui minimise ce plus grand risque $\min_{T} \max_{\theta} \mathcal{R}(T, \theta)$.

"critère mini-max"

- 1. Introduction
- 2. Les Bayésiens vs Les fréquentistes
- 3. Rappels de probabilités (exemples)
- 4. Loi a posteriori et modèles conjugués
- 5. Estimateur de Bayes

Risque bayésien et risque a posteriori

Le fréquentiste cherche l'estimateur T qui minimise:

$$\max_{\boldsymbol{\theta}} \mathcal{R}(T, \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \mathbb{E}_X \left[\mathcal{L}(T(X), \boldsymbol{\theta}) \right]$$

