Master's thesis Predictive Identification of Android Malware through Hybrid Analysis

Author: Johannes Thon

Technische Universität Berlin, Fakultät IV Elektrotechnik und Informatik

Presented by: Dilver Huertas Guerrero
Master's student in systems and computer engineering
Universidad Nacional de Colombia

Thesis structure

- Introduction
- Background
- Problem Description
- Concept
- Data Retrieval
- Hybrid Analysis
- Machine Learning
- Evaluation
- Conclusion and Outlook

The Android Stack

Tools

Problem description

Central problem

Many scientific publications, as well as more recent ones, utilize outdated malware in supervised machine learning approaches, in order to predict the detection of untrained Android malware.

Goals

- Build up a collection of recent malicious and benign apps of 2017
- Implement a hybrid analysis prototype
- Realize two different dynamic analysis approaches

Central research question

How precise is the predictive identification of recent Android malware by comparing two different hybrid analysis approaches?

Concept overview

Static analysis

Android Application Package (APK)

Android Manifest

- App name
- Package name
- Version name and code
- Minimum SDK
- Target SDK
- Permissions
- Used features
- Intents
- Names of components

Bytecode

- Package names
- Class names
- Method names
- Invoked method names
- Contained URIs

Assets

- File names

Interactive analysis program flow

Environment overview

Previous to the analysis

- A set of 4054 malicious and 5151 benign apps were analyzed
- ▶ The static analysis for 9205 apps took 40 hours in total
- The component analysis took around two weeks
- ▶ The interactive analysis for 9205 apps took in total around 40 days

Average amounts of collected static data

Average API calls per category

Main clusters

Amount of apps	Keywords
163	skymobi, smspay
1754	trojan, pup, generic
106	smsreg, emagsoftware, dinehu
108	kuguo, dowgin, addisplay
397	smsreg, riskware, risktool
147	secapk, pup, pua
390	dropper, ztorg, blouns

Answer to the central research question

The predictive identification for detecting recent Android malware lies at around 90% detection accuracy. Both analysis approaches do not differ noteworthy for the inspected scenario.

Thank you! Questions?

Dilver Huertas Guerrero @dilverhuertas djhuertasg@unal.edu.co