Practice Questions

- What is the use of program counter?
- What is the use of control memory?
- Distinguish between computer architecture and computer organization.
- Distinguish between direct and indirect address instructions.
- Differentiate between hardwired control and microprogrammed control organizations.
- What is program interrupt?
- What is the importance of Accumulator Logic?

Practice Questions

- Differentiate between Hardwired and Microprogrammed Control Unit.
- Explain the circuit of Accumulator logic?
- Define Interrupt. Draw Flowchart for Interrupt Cycle and explain how to handle interrupt.
- Draw the block diagram of Control Unit and explain each component. Also discuss the control timing signals.

Numerical Questions

Q 1 The following control inputs are active in the bus system. For each case, specify the register transfer that-will be executed during the next clock transition.

	S_2	S_1	S_0	LD of register	Memory	Adder
a.	1	1	1	IR	Read	_
Ь.	1	1	0	PC	_	_
c.	1	0	0	DR	Write	
d.	0	0	0	AC	_	Add

Numerical Questions

Q 2 The following register transfers are to be executed in the system. For each transfer, specify:

- (I) the binary value that must be applied to bus select inputs S2, S1 and S0
- (2) the register whose LD control input must be active (if any)
- (3) a memory read or write operation (if needed); and
- (4) the operation in the adder and logic clreuit (if any).
- a. A.R <-- PC
- b. IR <-- M[AR]
- c. $M[AR] \leq --TR$
- d. AC<--DR, DR<--AC (done simultaneously)

Numerical Questions

Q3 Explain why each of the following microoperations cannot be executed during a single clock pulse in the system. Specify a sequence of microoperations that will perform the operation.

c. DR <-- DR + AC (AC does not change)

Numerical Solutions

Q1:

- (a) Memory read to bus and load to IR: IR \leftarrow M[AR]
- (b) TR to bus and load to PC: $PC \leftarrow TR$
- (c) AC to bus, write to memory, and load to DR:

$$DR \leftarrow AC, M[AR] \leftarrow AC$$

(d) Add DR (or INPR) to AC: $AC \leftarrow AC + DR$

_ - -

00		(1)	(2)	(3)	(4)
Q2:		$S_2S_1S_0$	Load(LD)	Memory	<u>Adder</u>
(a)	$AR \leftarrow PC$	010 (PC)	AR	_	_
(b)	$IR \leftarrow M[AR]$	111 (M)	IR	Read	_
(c)	$M[AR] \leftarrow TR$	110 (TR)	_	Write	_
(d)	DR ← AC	100 (AC)	DR and	_	Transfer
	AC ← DR	, ,	AC		DR to AC

Numerical Solutions

Q3:

(a) IR
$$\leftarrow$$
 M[PC]

PC cannot provide address to memory. Address must be transferred to AR first

$$AR \leftarrow PC$$

$$IR \leftarrow M[AR]$$

(b)
$$AC \leftarrow AC + TR$$

Add operation must be done with DR. Transfer TR to DR first.

$$DR \leftarrow TR$$

$$AC \leftarrow AC + DR$$

(c)
$$DR \leftarrow DR + AC$$

Result of addition is transferred to AC (not DR). To save value of AC its content must be stored temporary in DR (or TR).

$$AC \leftarrow DR, DR \leftarrow AC$$

$$AC \leftarrow AC + DR$$

$$AC \leftarrow DR, DR \leftarrow AC$$