ENTERPOLASYON

Basit alarak enterpalasyon islemis tablo halinak akterleri verilen bir aktiskenin, tabloola almayan bir aktirini bulma olarak tanımlanabilir. Genel anlamob ise enterpolacyon; bilinmeyen bir f(x) tonksiyonunun xoixi....xn gibi ayrık noktalarda verilen to for the degerlerini Kullanarak. bu fonksiyonun abha basit ve bilinen bir F(x) tontsiyonu ile itade edilmesidir. Bulunan F(x) tontsiyonuna "Enterpolasyon Fontsiyonu denir. Bu tonbigoni polinom issi bir itade trigonomet rik fonksiyon veya özel bir fonksiyon plabilir. Genelale enterpolaryon fontrigonu clarak polinomlar kullanılır. Periyodik değerlerde ise trigonometrik fonksiyonlar tercih edilir.

Enterpolasyon fontsiyonu seciminde iki teorem kullanılır.
to Eğer flx) fontsiyonu [aib] aralığında sürekli ise anterpolasyon fontsiyonu olarak polinom kullanıla bilir. Bu areilik ta | | l(x) - F(x) | & E esitligi saglanin 2. Perigodu 1st olan sürekli bir fonksiyon igin $F(x) = \sum_{k=0}^{n} \alpha_k \operatorname{Cos} kx + \sum_{k=1}^{n} b_k \operatorname{Sin} kx$ gibi sonlu bir tirigonometrik acılım enterpolasyon tonkiyonu olarak kullanılaloilir. Belli bir n değeri 11/121 _ F(x) 1 (& soğlana bilir.

Doğrusal Enterpolasyon darak 1. derece den bir polinom (doğru) kullanılıyorsa bu sekildeki onterpolasyon denir.

yona doğrusal (lineer) enterpolasyon denir.

Eğer x degiskeni [a,b] aralığında bir f(x) e aikse enterpolasyon fonksiyonu olarak:

F(x) = A X+B secilirse.

[a) = F(a) + (b) = F(b)

bağıntılarının sağlan ması gerekir. Buradan;

Aa + B = f(a) Ab + B = f(b) $A = \frac{f(a) - f(b)}{a - b}$ $A = \frac{b f(a) - af(b)}{b - a}$ $A = \frac{b - a}{b - a}$

 $F(x) = \frac{f(a) - f(b)}{a - b} \times + \frac{bf(a) - af(b)}{b - a}$ olun

GREGORY NEWTON ENTERPOLASYONU

$$F(x) = f_0 + \sum_{i=1}^{n} {\binom{1}{k}} \Delta^i f_0 \quad \text{olarak verilir. Bu formul acul-}$$

$$\Delta \log \log i = f_0 + {\binom{1}{k}} \Delta f_0 + {\binom{1}{k}} \Delta^2 f_0 + \ldots + {\binom{1}{n}} \Delta^n f_0$$

$$f_1 = \frac{x_i - x_0}{h} \quad \text{olarak enterpolasyon degisteni}$$

$$adını \quad alır.$$

$${\binom{1}{k}} = \frac{k(k-1)(k-2)\ldots(k-i+1)}{k!}$$

$$F(x) = f_0 + \frac{k}{4!} \Delta f_0 + \frac{k(k-1)}{2!} \Delta^2 f_0 + \frac{k(k-1)(k-2)}{3!} \Delta^3 f_{0+1} \frac{k(k-1)\cdots(k-n+1)}{n!} \Delta^2 f_0 + \frac{k(k-1)(k-2)}{3!} \Delta^3 f_0 + \frac{k(k-1)\cdots(k-n+1)}{n!} \Delta^2 f_0 + \frac{k(k-1)(k-2)}{n!} \Delta^3 f_0 + \frac{k(k-1)\cdots(k-n+1)}{n!} \Delta^3 f_0 + \frac{k(k-1)\cdots($$

$$F(x) = f_0 + \frac{1}{4!} \Delta f_0 + \frac{1}{4!}$$

$$F(x) = f_0 + \frac{x_1 - x_0}{h} \Delta f_0 + \frac{(x_1 - x_0)(x_1 - x_1)}{h^2} \Delta^2 f_0 + \frac{(x_1 - x_0)(x_1 - x_1)(x_1 - x_2)}{h^3} \Delta^3 f_0 + \cdots$$

$$h=1$$
 be $x_0=0$ alimined formal su settle donusiar.
 $F(x)=f_0+x_1\Delta f_0+\frac{x_1(x_1-1)}{21}\Delta^2 f_0+\frac{x_1(x_1-1)(x_1-2)}{3!}\Delta^3 f_0+\dots$

h=1 be $x_0=0$ almost formul su sette donusius. $F(x)=f_0+x_1\Delta f_0+\frac{x_1(x_1-1)}{21}\Delta^2 f_0+\frac{x_1(x_1-1)(x_1-2)}{31}\Delta^3 f_0+\dots$

$$Xi \longrightarrow X \quad aliminsa$$

$$F(x) = fo + x \triangle fo + \frac{x(x-1)}{2!} \triangle^2 fo + \frac{x(x-1)(x-2)}{3!} \triangle^3 for...$$

$$F(x) = -4 + x.2 + \frac{x(x-1)}{2}.14 + \frac{x(x-1)(x-2)}{6}.18$$

$$F(x) = f_0 + \frac{x - x_0}{h} \Delta f_0 + \frac{(x - x_0)(x - x_0)}{h^2} \Delta^2 f_0$$

$$F(x) = 10 + \frac{x-2}{2}$$
 40 + $\frac{(x-2)(x-4)}{4}$ 32 8

$$F(x) = 4x^2 - 4x + 2 \Rightarrow F(8) = 226$$

Değişken dönüşümü yapılarak ayrık noktaların eşit aralıklı yapılması:

X	P(x)_	Af(x)	$\Delta^2 f(x)$	$\Delta^{3}f(x)$	049(x)	ASS	
-1 0 3 8 15	2 1 10 65 226 577	- 1 9 55 161 351	106 190	26 60 84	24		
		0 1 2	-1	$\Lambda^2 \times \Lambda^2 \times \Lambda^$			

$$F(x) = fo + x \Delta fo + \frac{x(x-1)}{2!} \Delta^{2} fo$$

$$X = F(\frac{1}{2}) = Xo + \frac{1}{2!} \Delta X + \frac{1}{2!} \Delta^{2} X = \frac{1}{2!} + \frac{1}{2!} \frac{1}{2!} \Delta^{2} X = \frac{1}{2!} + \frac{1}{2!} \frac{1}{2!} \Delta^{2} X = \frac{1}{2!} + \frac{1}{2!} \frac{1}{2!} \Delta^{2} X = \frac$$

$$f_{(2)} = f_0 + 2. \Delta f_0 + \frac{2(2-1)}{2} \Delta^2 f_0 + \frac{2(2-1)(2-2)}{6} \Delta^3 f_0 + \frac{2(2-1)(2-2)(2-3)}{24} \Delta^2 f_0$$

$$X = Z^2 - 1 \Rightarrow Z = \mp \sqrt{X+1}$$

$$f(z) = 2 - z + 10 \frac{z(z-1)}{2} + 26 \frac{z(z-1)(z-2)}{6} + 24 \frac{z(z-1)(z-2)(z-3)}{24}$$

$$f(z) = 2^{4} - 2z^{2} + 2 \quad \text{Ara Enterpolaryon Formula}$$

$$f(x) = (\pm \sqrt{x+1})^{4} - 2 (\pm \sqrt{x+1})^{2} + 2$$

$$F(x) = x^{2} + 1$$

$$f(2) = f_0 + 2. \Delta f_0 + \frac{2(2-1)}{2} \quad \triangle^2 f_0$$

$$= 3 + 42 + 8 + \frac{2(2-1)}{2} \quad \triangle f(2) = 42^2 + 3$$

$$F(2) = 42^2 + 3$$

$$= 4 \left(\frac{x-2}{2}\right)^2 + 3 \quad \triangle F(2) = (x-2)^2 + 3$$

$$F(2) = x^2 - 4x + 7$$

LAGRANGE ENTERPOLASYONU

Bir f(x) fonksiyonunun, xo,xı, x2,...,xn gibi ayrı
noktalardaki bilinen yo, yı, yz,..., yn degerleri warsa

(bu noktaların aralıkları esit alsun olmasın) ve f(x)fonksiyonunun enterpolasyon fonksiyonuna g(x) alersek; $g(x) = \sum_{i=0}^{n} Li(x)yi$ Seklindedir.

Lilx) katsayıları
$$n$$

$$Lilx) = TT \frac{(x-xi)}{(xi-xj)}$$
 seklinde hesap lanır.
$$J \neq i$$

Ornek:

Bir y = f(x) fonksiyonunun Xi'ler için yi değerleri

söyle olsun. $\frac{\hat{c}}{v} = \frac{x\hat{c}}{v} = \frac{y\hat{c}}{v}$ 0 0 -5

1 1 1 n=22 3 25

$$L_{O(x)} = \frac{1}{77} \frac{(x-x_0)}{(x_1-x_0)} = \frac{x-x_0}{x_0-x_0} \cdot \frac{x-x_1}{x_0-x_1} \cdot \frac{x-x_2}{x_0-x_1} = \frac{x-x_1}{x_0-x_2} \cdot \frac{x-x_1}{x_0-x_2}$$

$$= \frac{x-1}{0-1} \cdot \frac{x-3}{0-3} \Rightarrow L_{O}(x) = \frac{1}{3} \cdot (x-1)(x-3)$$

$$L_{1}(x) = \frac{77}{77} \frac{(x-x_{3})}{(x_{i}-x_{3})} = \frac{x-x_{0}}{x_{1}-x_{0}} \frac{x-x_{1}}{x_{1}-x_{2}} = \frac{x-x_{0}}{x_{1}-x_{2}} = \frac{x-x_{0}}{x_{1}-x_{2}}$$

$$= \frac{x-o}{1-o} \frac{x-3}{1-3} \Rightarrow L_{1}(x) = -\frac{1}{2} (x^{2}-3x)$$

$$L_{2}(x) = \frac{1}{\sqrt{1 - x_{2}}} = \frac{x - x_{0}}{\sqrt{x_{1} - x_{2}}} = \frac{x - x_{0}}{\sqrt{x_{2} - x_{1}}} = \frac{x - 0}{3 - 0} = \frac{x - 1}{3 - 0} = \frac{1}{6}(x^{2} - x)$$

$$J \neq 2$$

$$g(x) = \frac{1}{3} (x_{-1})(x_{-3})(-5) + \left(-\frac{1}{2}\right)(x^{2}_{-3}x)(1) + \frac{1}{6}(x^{2}_{-x})(25)$$

$$g(x) = 2x^{2} + 4x_{-5} \quad \text{bulunur.} \quad \Rightarrow g(1) = 1 \quad g(2) = 11$$

$$\frac{1}{1} \frac{x}{1} \frac{x}{1} \frac{y}{1} = \frac{y}{1}$$

$$0 \frac{3}{1} \frac{1}{7} - 8 \frac{y}{1} = \frac{y}{1}$$

