Métodos Numéricos I

Tema 3:Interpolación

Parte 1: Interpolación polinomial

Miguel A. Piñar
Departamento de Matemática Aplicada
Facultad de Ciencias
Universidad de Granada

Contenidos

Interpolación lineal finita

Interpolación polinomial

Fórmulas para la obtención del polinomio de interpolación Interpolación de Hermite

Introducción

Problema general de interpolación

Sean n+1 datos experimentales $\{(x_0,y_0),(x_1,y_1),\dots,(x_n,y_n)\}$ (con $x_i\neq x_j$ si $i\neq j$).

El problema general de interpolación consiste en encontrar una función g(x) tal que $g(x_i) = y_i$ para i = 0, 1, ..., n.

Introducción

Problema general de interpolación

Sean n+1 datos experimentales $\{(x_0,y_0),(x_1,y_1),\dots,(x_n,y_n)\}$ (con $x_i\neq x_j$ si $i\neq j$).

El problema general de interpolación consiste en encontrar una función g(x) tal que $g(x_i) = y_i$ para i = 0, 1, ..., n.

Gráficamente, esta condición significa que la curva que representa a g(x) pasa por los puntos $\{(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)\}$

Problema general de interpolación

La función interpoladora

Buscamos funciones g(x) que posean ciertas propiedades, esto es, que g(x) sea

- ► fácil de evaluar,
- simple de calcular,
- suficientemente regular,
- **▶** ...

Interpolación de una función

Definición

Supongamos que se conocen los n+1 valores que toma una función f(x), en los puntos del conjunto $\{x_0,x_1,\ldots,x_n\}$, se dice que g(x) interpola a f(x) en $\{x_0,x_1,\ldots,x_n\}$. si

$$g(x_i) = f(x_i), \quad i = 0, 1, \dots, n.$$

Interpolación de una función

Definición

Supongamos que se conocen los n+1 valores que toma una función f(x), en los puntos del conjunto $\{x_0,x_1,\ldots,x_n\}$, se dice que g(x) interpola a f(x) en $\{x_0,x_1,\ldots,x_n\}$. si

$$g(x_i) = f(x_i), \quad i = 0, 1, \dots, n.$$

Gráficamente, esta condición significa que las curvas que representan a f(x) y g(x) se cortan en los puntos $\{x_0,x_1,\ldots,x_n\}$

Interpolación de una función

Utilidad de la interpolación

La finalidad de encontrar una función g(x) que interpola a otra f(x) en los puntos x_0, x_1, \ldots, x_n es la de aproximar la función f(x) en cualquier punto $x \in [a,b]$.

Aplicaciones de la interpolación

- ► Trazado de curvas suaves que pasan por una serie de puntos.
- ► Evaluación de una función complicada *f*.
- Construcción de librerias de funciones matemáticas.
- Aproximación de la derivada (o la integral) de f(x) mediante la derivada (o la integral) de g(x).
- **▶** ...

Tipos de interpolación

Dependiendo del tipo de función g(x):

- ► Interpolación polinomial: $g(x) \in \mathbb{P}_n$.
- ▶ Interpolación por funciones spline: $g(x) \in S_n(x_0, x_1, \dots, x_n)$
- Interpolación trigonométrica: $g(x) \in V = \langle \operatorname{sen}(jx), \cos(jx); j = 0, 1, \ldots \rangle$.
- ► Interpolación racional:

$$g(x) \in \mathcal{R}_{m,n} = \{\frac{p(x)}{q(x)} : p(x) \in \mathbb{P}_m, q(x) \in \mathbb{P}_n\}.$$

Interpolación polinomial

Problema básico de interpolación polinómica

Dados n+1 puntos $(x_i,y_i), i=0,\ldots,n$, hallar un polinomio p(x), que interpola a estos datos, o sea, que verifique:

$$p(x_i) = y_i, \quad i = 0, \dots, n.$$

Interpolación polinomial

Problema básico de interpolación polinómica

Dados n+1 puntos (x_i,y_i) , $i=0,\ldots,n$, hallar un polinomio p(x), que interpola a estos datos, o sea, que verifique:

$$p(x_i) = y_i, \quad i = 0, \dots, n.$$

Teorema

Dados n+1 puntos $(x_i,y_i),\,i=0,\ldots,n,$ existe un único polinomio de grado menor o igual que $n,\,p_n(x),$ que interpola a estos datos, es decir,

$$p_n(x_i) = y_i, \quad i = 0, \dots, n.$$

Método de los coeficientes indeterminados

Tomamos $p_n(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ Sustituyendo las condiciones de interpolación $p_n(x_i) = y_i, \quad i = 0, \ldots, n$, se obtiene el sistema de ecuaciones lineales:

Se trata de resolver este sistema.

El determinante de la matriz de coeficientes de este sistema de ecuaciones es el determinante de Vandermonde

$$V(x_0, x_1, \dots, x_n) = \begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix}$$

El determinante de la matriz de coeficientes de este sistema de ecuaciones es el determinante de Vandermonde

$$V(x_0, x_1, \dots, x_n) = \begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix}$$

que verifica

$$V(x_0, x_1, \dots, x_n) = \prod_{i \in I} (x_i - x_j) \neq 0$$
 si y sólo si $x_i \neq x_j$, $\forall i \neq j$

Polinomios básicos de Lagrange

Para $0 \le k \le n$, se define

$$\ell_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x - x_i}{x_k - x_i}$$

Polinomios básicos de Lagrange

Para $0 \le k \le n$, se define

$$\ell_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x - x_i}{x_k - x_i}$$

Son polinomios de grado exacto n, y verifican

$$\ell_k(x_j) = \delta_{k,j} = \begin{cases} 1, & k = j, \\ 0, & k \neq j \end{cases}$$

Además, $\{\ell_k(x); k=0,1,\ldots,n\}$ constituyen una base de \mathbb{P}_n .

El polinomio $p_n(x)$ que interpola los datos $(x_0, y_0), \ldots, (x_n, y_n)$, se escribe como

$$p_n(x) = \sum_{k=0}^n y_k \ell_k(x),$$

y se denomina fórmula de Lagrange

Ventajas

- ► No hemos de resolver sistemas de ecuaciones
- ► Los *polinomios básicos de Lagrange* no dependen nada más que de las abcisas

Ventajas

- ► No hemos de resolver sistemas de ecuaciones
- ► Los *polinomios básicos de Lagrange* no dependen nada más que de las abcisas

Desventajas

- No es recursiva: si añadimos un nuevo punto hemos de rehacer los cálculos
- ► Es inestable numéricamente

Expresión recursiva del polinomio de interpolación

Teorema

Sea $p_{n-1}(x)$ el polinomio que interpola los datos (x_i,y_i) , $i=0,\ldots,n-1$, y sea $p_n(x)$ el polinomio que interpola a los mismos datos y además (x_n,y_n) . Entonces

$$p_n(x) = p_{n-1}(x) + D_n(x - x_0) \cdots (x - x_{n-1}),$$

donde

$$D_n = \frac{y_n - p_{n-1}(x_n)}{(x_n - x_0) \cdots (x_n - x_{n-1})}.$$

Como consecuencia se tiene

$$p_n(x) = D_0 + D_1(x - x_0) + \ldots + D_n(x - x_0) \cdots (x - x_{n-1})$$

Como consecuencia se tiene

$$p_n(x) = D_0 + D_1(x - x_0) + \ldots + D_n(x - x_0) \cdots (x - x_{n-1})$$

Cada D_k sólo depende de los puntos $(x_0, y_0), \ldots, (x_k, y_k)$

Como consecuencia se tiene

$$p_n(x) = D_0 + D_1(x - x_0) + \dots + D_n(x - x_0) \cdots (x - x_{n-1})$$

Cada D_k sólo depende de los puntos $(x_0, y_0), \ldots, (x_k, y_k)$

Definición

Al coeficiente $D_k = f[x_0, \dots, x_k]$ se le llama la diferencia dividida de orden k

El polinomio $p_n(x)$ que interpola los datos $(x_0, y_0), \dots, (x_n, y_n)$, se escribe como

$$\begin{array}{rcl} p_n(x) & = & f[x_0] + f[x_0, x_1](x - x_0) + \\ & & + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \ldots + \\ & & + f[x_0, x_1, \ldots, x_n](x - x_0)(x - x_1) \ldots (x - x_{n-1}) = \\ & = & f[x_0] + \sum_{k=1}^n f[x_0, \ldots, x_k] \prod_{i=0}^{k-1} (x - x_i) \end{array}$$

Propiedades de las diferencias divididas

▶ Simetría Si notamos $\pi(x) = (x - x_0) \cdots (x - x_n)$, se tiene que

$$f[x_0, \dots, x_n] = \sum_{i=0}^n \frac{f(x_i)}{\pi'(x_i)}.$$

► Ley de recurrencia

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}; \quad x_0 \neq x_n,$$

$$f[x_i] = y_i, i = 0, 1, \dots, n.$$

Tabla de diferencias divididas

PROP. IV.

Si recta aliqua in partes quotcunque inaquales AA2, A2A3, A3A4, A4A5, &c. dividatur, & ad puncta divifionum erigantur parallelae AB, A2B2, A3B3, &c. Invenire Curvam Geometricam generis Parabolici quae per
omnium erectarum terminos B, B2, B3, &c. transibit.

Sunto puncta data B, B2, B3, B4, B5, B6, B7, &c. et ad Abscissam quamvis AA7 demitte Ordinatas perpendiculariter BA, B2A2, &c.

Et fac
$$\frac{AB - A2B2}{AA2} = b$$
, $\frac{A2B2 - A3B3}{A2A3} = b2$, $\frac{A}{A2}$, $\frac{AB3 - A4B4}{A3A4} = b3$, $\frac{A4B4 - A5B5}{A1A5} = b4$, $\frac{A5B5 - A6B6}{A5A6} = b5$, $\frac{A6B6 - A7B7}{A6A7} = b6$, $\frac{A}{A5}$, $\frac{A5B5 - A6B6}{A5A6} = b7$, $\frac{A6B6 - A7B7}{A6A7} = b6$, $\frac{A}{A5}$,

Lema de Aitken

Lema de Aitken

Sean los datos $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$. Denotemos por $p_{\{x_0, x_1, \ldots, x_{n-1}\}}(x)$ el polinomio que interpola los n primeros, y sea $p_{\{x_1, x_2, \ldots, x_n\}}(x)$ el polinomio que interpola los n últimos. Entonces el polinomio que interpola todos los datos, $p_n(x)$ se puede escribir en la forma

$$p_n(x) = \frac{(x - x_0) p_{\{x_1, x_2, \dots, x_n\}}(x) - (x - x_n) p_{\{x_0, x_1, \dots, x_{n-1}\}}(x)}{x_n - x_0}.$$

Ventajas de la Fórmula de Newton

Ventajas

► Los coeficientes de la fórmula, las diferencias divididas, se pueden calcular recurrentemente a partir de la tabla anterior.

Ventajas de la Fórmula de Newton

Ventajas

- ► Los coeficientes de la fórmula, las diferencias divididas, se pueden calcular recurrentemente a partir de la tabla anterior.
- ► La fórmula es recurrente, si añadimos un punto sólo hay que calcular una nueva diagonal en la tabla de diferencias divididas.

Ventajas de la Fórmula de Newton

Ventajas

- ► Los coeficientes de la fórmula, las diferencias divididas, se pueden calcular recurrentemente a partir de la tabla anterior.
- ► La fórmula es recurrente, si añadimos un punto sólo hay que calcular una nueva diagonal en la tabla de diferencias divididas.
- ► La fórmula se puede evaluar mediante una algoritmo análogo al esquema de Horner.

Interpolación de Hermite

En ciertos casos, se proporcionan datos valor de la función y derivadas sucesivas en los nodos.

Se impondrá la condición de que si se da como dato $f^{(j)}(x_i)$, entonces se proporcionarán en el nodo x_i , las derivadas sucesivas de orden inferior a j.

Supongamos que los datos dados son de la forma

$$(x_i, f^{(j)}(x_i)), \quad 0 \le i \le n, \quad 0 \le j \le k_i - 1,$$

esto es:

Interpolación de Hermite


```
 (x_0, f(x_0)) \qquad (x_1, f(x_1)) \qquad \dots \qquad (x_n, f(x_n)) 
 (x_0, f'(x_0)) \qquad (x_1, f'(x_1)) \qquad \dots \qquad (x_n, f'(x_n)) 
 \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots 
 (x_0, f^{(k_0-1)}(x_0)) \qquad (x_1, f^{(k_1-1)}(x_1)) \qquad \dots \qquad (x_n, f^{(k_n-1)}(x_n))
```

En realidad hay $m = k_0 + k_1 + \cdots + k_n$ datos de interpolación.

Interpolación de Hermite


```
 (x_0, f(x_0)) \qquad (x_1, f(x_1)) \qquad \dots \qquad (x_n, f(x_n)) 
 (x_0, f'(x_0)) \qquad (x_1, f'(x_1)) \qquad \dots \qquad (x_n, f'(x_n)) 
 \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ (x_0, f^{(k_0-1)}(x_0)) \qquad (x_1, f^{(k_1-1)}(x_1)) \qquad \dots \qquad (x_n, f^{(k_n-1)}(x_n))
```

En realidad hay $m = k_0 + k_1 + \cdots + k_n$ datos de interpolación.

Proposición

Existe un único polinomio p(x) de grado menor o igual que m-1 que interpola los datos de interpolación de Hermite.

Diferencias divididas para datos tipo Hermite

Definición

Sea $f \in \mathcal{C}^{k+1}[a,b]$, y $x_0 \in [a,b]$. Entonces

$$f[\overbrace{x_0, x_0, \dots, x_0}^{(k+1)}] = \frac{f^{(k)}(x_0)}{k!}$$

Ejemplo

Calcule el polinomio que interpola los datos de la tabla

x_i	-1	0	2
$f(x_i)$	2	1	59
$f'(x_i)$	1	-1	
$f''(x_i)$	-12		

Ejemplo

Calcule el polinomio que interpola los datos de la tabla

x_i	-1	0	2
$f(x_i)$	2	1	59
$f'(x_i)$	1	-1	
$f''(x_i)$	-12		

Tenemos en total 6 datos, luego existe un único polinomio de grado menor o igual que 5 que los interpola.

Tabla de diferencias divididas

Luego el polinomio de interpolación en forma de Newton sería

$$p(x) = 2 + (x+1) - 6(x+1)^{2} + 4(x+1)^{3} - 3(x+1)^{3}x + (x+1)^{3}x^{2}.$$