Chapter 16 Translation

The translation of genetic information into amino acid sequences takes place on ribosomes and is mediated by special adaptor molecules known as tRNAs.

These tRNAs recognize groups of three consecutive nucleotides known as codons.

1 The Code Is Degenerate

2 How the code is cracked?

3 Three Rules Govern the Genetic Code

4 The Code Is Nearly Universal

5 Codon Usage Bias

1 The Code Is Degenerate

64 codons - 20 aa

Degeneracy (简并性): many amino acids are specified by more than one codon

1 codon: Met Trp

2 codons: Phe Tyr His Gln Asn Lys Asp Glu Cys

3 codons: lle Stop

18

4 codons: Val Pro Thr Ala Gly

6 codons: Leu Ser Arg

Synonymous codons (同义密码子):

Codons specifying the same amino acid

Codon in codon

Mutations in 1st position: similar (same) amino acid

Mutations in 2nd position: different amino acid

NUN: Hydrophobic aa NAN: Hydrophilic aa NC/GN: Neutral aa

Mutations in 3rd position: mostly same amino acid

Codon in codn: Nts in 2nd position play the most important role in determining the nature of aa.

Minimize the deleterious effects of mutations.

The genetic codon table

One tRNA for one codon?

Only 20 tRNAs!

The wobble hypothesis 摇摆假说

Francis Crick

The wobble hypothesis

Inosine (I) 次黄嘌呤

The first 2 bases of a codon must form Watson-Crick base pairs;

The last base of the codon can form wobble base pair. (Wobble position)

Normal A-U pair

I-C wobble pair

I-U wobble pair

I-A wobble pair

One tRNA recognize more than 1 codon.

The base at the 5'end of the anticodon is easier to wobble than the fully stacked base at the 3'end of the anticodon

3.1 Codons are read in a 5' to 3' direction

5' to 3' √

Met Val Arg Arg Val Asp Trp Arg Arg Lys Leu Val Arg Glu Tyr

AUG GUG CGU AGG GUC GAU UGG CGC AGA AAG UUA GUU AGA GAG UAC

Val Val Cys Gly Leu Stop Gly Arg Arg Glu Ile Leu Arg Glu His

3' to 5'

3.2 Codons are read with neither overlapping nor gaps

3. 3 Codons are read in a fixed reading frame

Start codon determines the RIGHT reading frame!

4 THE CODE IS NEARLY UNIVERSAL

Evolution

Genetic engineering

Exceptions: organelle prokaryote eukaryote

second position U С G UUU UCU UGU UAU Cys Phe Tyr UUC (GAA)† (GCA) (GUA) UAC UGC UCC Ser (UGA) UUA UCA UGA stop Trp Leu (UCA) (UAA) UAG UGG UUG UCG stop CCU CGU CUU CAU His (GUG) CAC CUC CGC CCC Arg Leu Pro first position (5' end) CGA (UCG) (UAG) CCA (UGG) CUA CAA Gln (UUG) CAG CUG CCG CGG AUU ACU AGU AAU Asn Ser lle (GAU) (GUU) (GCU) AUC AAC AGC ACC Thr (UGU) ACA AUA AAA AGA stop Met Lys (CAU)# (UUU) AUG ACG AAG AGG stop GCU GGU GUU GAU Asp (GUC) GAC GUC GCC GGC Ala Gly Val (UCC) (UAC) (UGC) GUA GCA GGA GAA Glu GAG (UUC) GUG GCG GGG

third position (3' end)

5 codon usage bias - 密码子使用偏好性

Neurospora crassa

Synonymous codons are not used randomly or equally in almost all the genome

Neurospora crassa

C>G>A>U

Optimal codon

Non-optimal codon

Phe	UUU 11.8	Ser	UCU 11.9	Tyr	UAU 8.5	Cys	UGU 3.4
	UUC 22.1		UCC 20.0		UAC 17.5		UGC 7.7
	UUA 2.7		UCA 9.2	Stop codon	UAA 0.6	Stop	UGA 0.8
						codon	
	UUG 14.9		UCG 14.5		UAG 0.5	Trp	UGG 13.1
Leu	CUU 14.2		CCU 15.1	His	CAU 9.5	Arg	CGU 8.9
Loa	CUC 26.8		CCC 22.4		CAC 14.8		CGC 17.6
		Pro					
	CUA 6.0		CCA 12.4	Gln	CAA 17.0		CGA 7.1
	CUG 18.3		CCG 14.6		CAG 26.0		CGG 8.5
lle	AUU 14.0		ACU 11.2	Asn	AAU10.3	Ser	AGU 8.7
	AUC 26.5		ACC 24.7		AAC 27.0		AGC 17.4
		Thr			_	1	
	AUA 4.1	1111	ACA 10.7	Lys	AAA11.7	Arg	AGA 7.9
Met	AUG 21.8		ACG 13.5		AAG 40.4		AGG
							11.8
Val	GUU13.8	Ala	GCU 21.1	Asp	GAU 24.0	Gly	GGU
							18.3
	GUC 24.8		GCC 36.0		GAC 32.5		GGC
							29.0
	GUA 5.4		GCA 12.6	Glu	GAA 22.4		GGA
							13.6
	GUG 15.5		GCG 17.3		GAG 42.7		GGG
							10.9

http://www.kazusa.or.jp/codon/

Codon usage patterns across species

CG bias

AU bias

How do we know the Codon Usage Bias of the organism of interest?

Oryza sativa— 水稻

Codon Usage Database

https://www.kazusa.or.jp/codon/

Codon Usage Database

Data source

NCBI-GenBank Flat File Release 160.0 [June 15 2007].

Data amount

35,799 organisms 3,027,973 complete protein coding genes (CDS's)

Announcement

QUERY Box for search with Latin name of organism

Oryza sat	tiva	
Case:	sensitiv	re ○insensitive
Submit	Clear	

The study of codon usage from Dr. Yi Liu's Lab

Yi Liu, Ph.D.

Education

Undergraduate: Wuhan University (1989), Biology

Graduate School: Vanderbilt University (1995), Biology

Research Interest

- New genetic codes, Mechanisms of circadian clocks, non-coding RNA
- Role of codon usage biases in regulating gene expression and protein structure
- Small non-coding RNAs and long non-coding RNAs

UT Southwestern Profile

Link to Yi Liu Lab: Liu (Yi) Lab | UT Southwestern, Dallas, Texas

The effect of codon usage on the expression and function of genes

Published: 17 February 2013

Non-optimal codon usage affects expression, structure and function of clock protein FRQ

Mian Zhou, Jinhu Guo, Joonseok Cha, Michael Chae, She Chen, Jose M. Barral, Matthew S. Sachs & Yi

<u>Liu</u> ≌

Nature **495**, 111–115 (2013) Cite this article

Neurospora crassa

The effect of codon usage in the fungus Neurospora crassa

Q: How about animals?

Codon usage affects the expression of *Per* gene in *Drosophila*

Q: How about human?

Codon usage affects the structure and function of the *Drosophila* circadian clock protein PERIOD

Jingjing Fu¹, Katherine A. Murphy², Mian Zhou^{1,3}, Ying H. Li², Vu H. Lam², Christine A. Tabuloc², Joanna C. Chiu² and Yi Liu¹

Codon usage affects the expression of KRAS gene in Human

More than 100-fold increment of the protein level of KRAS!

Q: What are the underlying mechanisms?

How does codon usage regulate gene expression?

Accepted theory

Does codon usage affect translation elongation speed?

Jonathan S Weissman

> Cell. 2011 Nov 11;147(4):789-802. doi: 10.1016/j.cell.2011.10.002. Epub 2011 Nov 3.

Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes

Nicholas T Ingolia 1, Liana F Lareau, Jonathan S Weissman

Translation speed is independent of codon usage.

Codon optimization enhances translation rate in N. crassa

Full length luciferase protein

Q: Other mechanisms?

Codon usage affects the cleavage and polyadenylation of mRNA

What if we de-optimize the codon usage?

Codon usage affects the cleavage and polyadenylation of mRNA

Codon usage affects the cleavage and polyadenylation of mRNA

What can you learn?

➤ Codon Usage Bias

Synonymous

but

NOT Always Silent!

Q: What else?

1							
Phe	UUU 11.8		UCU 11.9	Tyr	UAU 8.5	Cys	UGU 3.4
	UUC 22.1		UCC 20.0		UAC 17.5		UGC 7.7
	UUA 2.7	Ser	UCA 9.2	Stop	UAA 0.6	Stop	UGA 0.8
6		001		codon		codon	
	UUG 14.9		UCG 14.5		UAG 0.5	Trp	UGG
							13.1
Leu	CUU 14.2		CCU 15.1		CAU 9.5		CGU 8.9
	CUC 26.8		CCC 22.4	His	CAC 14.8	Arg	CGC 17.6
		Pro					
	CUA 6.0		CCA 12.4	Gln	CAA 17.0		CGA 7.1
	CUG 18.3		CCG 14.6		CAG 26.0		CGG 8.5
lle	AUU 14.0		ACU 11.2	Asn	AAU10.3	Ser	AGU 8.7
	AUC 26.5		ACC 24.7		AAC 27.0		AGC 17.4
		Tla					
	AUA 4.1	Thr	ACA 10.7		AAA11.7		AGA 7.9
Met	AUG 21.8		ACG 13.5	Lys	AAG 40.4	Arg	AGG
							11.8
	GUU13.8		GCU 21.1	Asp	GAU 24.0		GGU
							18.3
	GUC 24.8		GCC 36.0		GAC 32.5		GGC
Val		Ala				Gly	29.0
Vai	GUA 5.4	Ald	GCA 12.6	Glu	GAA 22.4	Gly	GGA
							13.6
	GUG 15.5		GCG 17.3		GAG 42.7		GGG
							10.9

The study of codon usage from Dr. Yi Liu's lab

The EMBO Workshop - Codon Usage

Decoding the codon usage codes in protein folding and gene expression

Yi Liu
University of Texas Southwestern Medical Center

EMBO workshop 9th April 2022 (Morning)

Polysome Profiling

P/M = Polysome/Monosome

How to do Polysome Profiling?

The translating ribosome affinity purification (TRAP) strategy

Cell type—specific?

Published: 08 May 2014

Cell type–specific mRNA purification by translating ribosome affinity purification (TRAP)

Myriam Heiman [™], Ruth Kulicke, Robert J Fenster, Paul Greengard & Nathaniel Heintz

Nature Protocols 9, 1282–1291(2014) | Cite this article

7025 Accesses | 167 Citations | 29 Altmetric | Metrics

Ribosome Profiling or Ribo-seq

Genome-wide analysis in vivo of translation with ...

https://pubmed.ncbi.nlm.nih.gov/19213877

Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.

Techniques for systematically monitoring protein translation have lagged far behind methods for...

Cited by: 2967 Author: Nicholas T. Ingolia, Sina Ghaemmaghami, J...

Publish Year: 2009

Overview of the ribosome profiling protocol

Ribosome protected fragments = RPFs

How evaluate the quality of a Ribo-seq?

DOI: 10.1126/science.1168978

How evaluate the quality of a Ribo-seq?

DOI: 10.1126/science.1168978

What can we learn from Ribo-seq?

- Yes or no?
- Where?
- Which?
- How?

DOI: 10.1126/science.1168978

Key Points of Chapter 15

> The major challenge of translaton compared with transcription.

The components of translational machinery.

Three steps of translation in prok and euk.

Translational regulation in prok and euk.

Published: 17 May 2017

Global translational reprogramming is a fundamental layer of immune regulation in plants

Guoyong Xu, George H. Greene, Heejin Yoo, Lijing Liu, Jorge Marqués, Jonathan Motley & Xinnian Dong □

```
        Nature
        545, 487–490 (2017)
        Cite this article

        23k
        Accesses
        115
        Citations
        101
        Altmetric
        Metrics
```

Article Published: 16 February 2023

Plant HEM1 specifies a condensation domain to control immune gene translation

Yulu Zhou, Ruixia Niu, Zhijuan Tang, Rui Mou, Zhao Wang, Sitao Zhu, Hongchun Yang, Pingtao Ding & Guoyong Xu ☑

```
Nature Plants 9, 289–301 (2023) | Cite this article

2913 Accesses | 2 Citations | 19 Altmetric | Metrics
```

Homework

What is the difference between prokaryotic and eukaryotic mRNAs, and how does it affect translation initiation?