9.19: Computational Psycholinguistics Fall 2021

Roger Levy

Massachusetts Institute of Technology

18 October 2021

Today's content

- ► Conditional Independence
- ▶ Bayes Nets (a.k.a. directed acyclic graphical models, DAGs)

(Conditional) Independence

Events A and B are said to be Conditionally Independent given information C if

$$P(A,B|C) = P(A|C)P(B|C)$$

Conditional independence of A and B given C is often expressed as

$$A \perp B \mid C$$

► A lot of the interesting joint probability distributions in the study of language involve *conditional independencies* among the variables

- ► A lot of the interesting joint probability distributions in the study of language involve *conditional independencies* among the variables
- So next we'll introduce you to a general framework for specifying conditional independencies among collections of random variables

- ► A lot of the interesting joint probability distributions in the study of language involve *conditional independencies* among the variables
- So next we'll introduce you to a general framework for specifying conditional independencies among collections of random variables
- ▶ It won't allow us to express all possible independencies that may hold, but it goes a long way

- ► A lot of the interesting joint probability distributions in the study of language involve *conditional independencies* among the variables
- So next we'll introduce you to a general framework for specifying conditional independencies among collections of random variables
- ▶ It won't allow us to express all possible independencies that may hold, but it goes a long way
- ▶ And I hope that you'll agree that the framework is intuitive too!

▶ Imagine a factory that produces three types of coins in equal volumes:

- ▶ Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;

- ▶ Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;
 - 2-headed coins;

- Imagine a factory that produces three types of coins in equal volumes:
 - ► Fair coins;
 - 2-headed coins;
 - ▶ 2-tailed coins.

- Imagine a factory that produces three types of coins in equal volumes:
 - ► Fair coins;
 - 2-headed coins;
 - 2-tailed coins.
- Generative process:

- Imagine a factory that produces three types of coins in equal volumes:
 - ► Fair coins;
 - 2-headed coins;
 - 2-tailed coins.
- Generative process:
 - ► The factory produces a coin of type *X* and sends it to you;

- Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;
 - 2-headed coins;
 - 2-tailed coins.
- Generative process:
 - ► The factory produces a coin of type *X* and sends it to you;
 - You receive the coin and flip it twice, with H(eads)/T(ails) outcomes Y_1 and Y_2

- Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;
 - 2-headed coins;
 - 2-tailed coins.
- ► Generative process:
 - ► The factory produces a coin of type *X* and sends it to you;
 - You receive the coin and flip it twice, with H(eads)/T(ails) outcomes Y_1 and Y_2
- Receiving a coin from the factory and flipping it twice is **sampling** (or **taking a sample**) from the joint distribution $P(X, Y_1, Y_2)$

The directed acyclic graphical model (DAG), or Bayes net:

Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable given only its parents

- Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable given only its parents
- ▶ In this DAG, $P(X, Y_1, Y_2) = P(X)P(Y_1|X)P(Y_2|X)$

- ➤ Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable **given only its parents**
- ▶ In this DAG, $P(X, Y_1, Y_2) = P(X)P(Y_1|X)P(Y_2|X)$

```
X P(X)
Fair \frac{1}{3}
2-H \frac{1}{3}
2-T \frac{1}{3}
```


- Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable given only its parents
- ▶ In this DAG, $P(X, Y_1, Y_2) = P(X)P(Y_1|X)P(Y_2|X)$

$X P(X) \mid X P(Y_1 = H X) P(Y_1 = T X)$
Fair $\frac{1}{3}$ Fair $\frac{1}{2}$
$2-H = \frac{1}{2}$ $2-H = 1$ 0
$2-T = \frac{3}{2}$ 2-T 0 1

- Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable given only its parents
- ▶ In this DAG, $P(X, Y_1, Y_2) = P(X)P(Y_1|X)P(Y_2|X)$

X	P(X)	X	$P(Y_1 = H X)$	$P(Y_1 = T X)$	X	$P(Y_2 = H X)$	$P(Y_2 = T X)$
Fair	1/3	Fair	$\frac{1}{2}$	$\frac{1}{2}$	Fair	$\frac{1}{2}$	$\frac{1}{2}$
2-H	1/2	2-H	1	Ó	2-H	1	Õ
Fair 2-H 2-T	1/2	2-T	0	1	2-T	0	1

X Fair 2-H 2-T	$P(X) \begin{vmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{2} \end{vmatrix}$	<i>X</i> Fair 2-H 2-T	$\frac{1}{2}$	$P(Y_1 = T X)$ $\begin{bmatrix} \frac{1}{2} \\ 0 \\ 1 \end{bmatrix}$	<i>X</i> Fair 2-H 2-T	$\frac{1}{2}$	$P(Y_2 = T X)$ $\frac{1}{2}$ 0 1
2-T	$\frac{1}{3}$	2-T	0	1	2-T	0	1

Question:

Conditioned on not having any further information, are the two coin flips Y_1 and Y_2 in this generative process independent?

	P(X)	X	$P(Y_1 = H X)$	$P(Y_1 = T X)$	X	$P(Y_2 = H X)$	$P(Y_2 = T X)$
Fair	$\frac{1}{3}$	Fair	$\frac{1}{2}$	$\frac{1}{2}$	Fair	$\frac{1}{2}$	$\frac{1}{2}$
2-H	1/2	2-H	ĺ	Ó	2-H	1	Õ
2-H 2-T	$\frac{1}{3}$	2-T	0	1	2-T	0	1
	,						

- Conditioned on not having any further information, are the two coin flips Y_1 and Y_2 in this generative process independent?
- ▶ That is, is it the case that $Y_1 \perp Y_2 |\{\}\}$?

- Conditioned on not having any further information, are the two coin flips Y_1 and Y_2 in this generative process independent?
- ▶ That is, is it the case that $Y_1 \perp Y_2 |\{\}\}$?
- ► No!

- Conditioned on not having any further information, are the two coin flips Y_1 and Y_2 in this generative process independent?
- ▶ That is, is it the case that $Y_1 \perp Y_2 |\{\}\}$?
- ► No!
 - $P(Y_2 = H) = \frac{1}{2}$ (you can see this by symmetry)

- Conditioned on not having any further information, are the two coin flips Y_1 and Y_2 in this generative process independent?
- ▶ That is, is it the case that $Y_1 \perp Y_2 |\{\}\}$?
- ► No!
 - $P(Y_2 = H) = \frac{1}{2} \text{ (you can see this by symmetry)}$ Coin was fair Coin was 2-H

▶ But
$$P(Y_2 = H | Y_1 = H) = \frac{1}{3} \times \frac{1}{2} + \frac{2}{3} \times 1 = \frac{5}{6}$$

► The comprehensive criterion for assessing conditional independence is known as D-separation.

- ► The comprehensive criterion for assessing conditional independence is known as D-separation.
- ► A path between two disjoint node sets *A* and *B* is a sequence of edges connecting some node in *A* with some node in *B*

- ► The comprehensive criterion for assessing conditional independence is known as D-separation.
- ▶ A path between two disjoint node sets *A* and *B* is a sequence of edges connecting some node in *A* with some node in *B*
- Any node on a given path has converging arrows if two edges on the path connect to it and point to it.

- ► The comprehensive criterion for assessing conditional independence is known as D-separation.
- ▶ A path between two disjoint node sets *A* and *B* is a sequence of edges connecting some node in *A* with some node in *B*
- Any node on a given path has converging arrows if two edges on the path connect to it and point to it.
- ► A node on the path has non-converging arrows if two edges on the path connect to it, but at least one does not point to it.

- ► The comprehensive criterion for assessing conditional independence is known as D-separation.
- ► A path between two disjoint node sets *A* and *B* is a sequence of edges connecting some node in *A* with some node in *B*
- Any node on a given path has converging arrows if two edges on the path connect to it and point to it.
- ▶ A node on the path has non-converging arrows if two edges on the path connect to it, but at least one does not point to it.
- ▶ A third disjoint node set *C* d-separates *A* and *B* if for every path between *A* and *B*, either:
 - 1. there is some node *N* on the path whose arrows do not converge and which *is* in *C*; or
 - 2. there is some node N on the path with converging arrows, and neither N nor any of its descendants is in C.

Major types of d-separation

A node set C d-separates A and B if for every path between A and B, either:

- 1. there is some node N on the path whose arrows do not converge and which is in C; or
- 2. there is some node N on the path with converging arrows, and neither N nor any of its descendants is in C.

 $\begin{array}{ccc} {\sf Common-} \\ {\sf cause} & {\sf d-} \\ {\sf separation} \\ {\sf (from \ knowing} \\ {\it Z)} \end{array}$

Intervening d-separation (from knowing Y)

Explaining away: knowing Z prevents d-separation

D-separation in the absence of knowledge of \boldsymbol{Z}

(Shaded node=in C)

D-separation and conditional independence

A node set C d-separates A and B if for every path between A and B, either:

- 1. there is some node N on the path whose arrows do not converge and which is in C; or
- 2. there is some node N on the path with converging arrows, and neither N nor any of its descendants is in C.
- ▶ If C d-separates A and B, then

 $A\perp B|C$

D-separation and conditional independence

A node set C d-separates A and B if for every path between A and B, either:

- 1. there is some node N on the path whose arrows do not converge and which is in C; or
- 2. there is some node N on the path with converging arrows, and neither N nor any of its descendants is in C.
- ▶ If C d-separates A and B, then

$A \perp B \mid C$

▶ **Caution:** the converse is *not* the case: $A \perp B \mid C$ does not necessarily imply that the joint distribution on all the random variables in $A \cup B \cup C$ can be represented with a Bayes Net in which C d-separates A and B.

D-separation and conditional independence

A node set C d-separates A and B if for every path between A and B, either:

- 1. there is some node N on the path whose arrows do not converge and which is in C; or
- 2. there is some node N on the path with converging arrows, and neither N nor any of its descendants is in C.
- ▶ If C d-separates A and B, then

$A\perp B|C$

- ▶ **Caution:** the converse is *not* the case: $A \perp B \mid C$ does not necessarily imply that the joint distribution on all the random variables in $A \cup B \cup C$ can be represented with a Bayes Net in which C d-separates A and B.
 - **Example:** let X_1, X_2, Y_1, Y_2 each be 0/1 random variable, and let the joint distribution reflect the constraint that $Y_1 = (X_1 == X_2)$ and $Y_2 = \text{xor}(X_1, X_2)$. This gives us $Y_1 \perp Y_2 | \{X_1, X_2\}$, but you won't be able to write a Bayes net involving these four variables such that $\{X_1, X_2\}$ d-separates Y_1 and Y_2 .

Conditional independencies not expressable in a Bayes net

Example: let X_1, X_2, Y_1, Y_2 each be binary 0/1 random variables, in the following arrangement on an **undirected** graph:

Conditional independencies not expressable in a Bayes net

Example: let X_1, X_2, Y_1, Y_2 each be binary 0/1 random variables, in the following arrangement on an **undirected** graph:

$$\begin{array}{ll} f_1(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq X_2) \\ f_2(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq Y_1) \\ f_3(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_2 \neq Y_2) \\ f_4(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(Y_1 \neq Y_2) \end{array}$$

➤ Suppose the joint distribution is determined entirely by adjacent nodes "liking" to have the same value. Formally, for example:

$$P(X_1, X_2, Y_1, Y_2) \propto \prod_{i=1}^{4} \left(\frac{1}{2}\right)^{f_i(X_1, X_2, Y_1, Y_2)}$$

(Most probable outcomes, each with prob. 0.195: either all 0s, or all 1s)

Example: let X_1, X_2, Y_1, Y_2 each be binary 0/1 random variables, in the following arrangement on an **undirected** graph:

$$\begin{array}{ll} f_1(X_1, X_2, Y_1, Y_2) &= I(X_1 \neq X_2) \\ f_2(X_1, X_2, Y_1, Y_2) &= I(X_1 \neq Y_1) \\ f_3(X_1, X_2, Y_1, Y_2) &= I(X_2 \neq Y_2) \\ f_4(X_1, X_2, Y_1, Y_2) &= I(Y_1 \neq Y_2) \end{array}$$

Suppose the joint distribution is determined entirely by adjacent nodes "liking" to have the same value. Formally, for example:

$$P(X_1, X_2, Y_1, Y_2) \propto \prod_{i=1}^{4} \left(\frac{1}{2}\right)^{f_i(X_1, X_2, Y_1, Y_2)}$$

(Most probable outcomes, each with prob. 0.195: either all 0s, or all 1s)

▶ In this model, both the following conditional independencies hold:

$$X_1 \perp Y_2 | \{X_2, Y_1\}$$
 $X_2 \perp Y_1 | \{X_1, Y_2\}$

Example: let X_1, X_2, Y_1, Y_2 each be binary 0/1 random variables, in the following arrangement on an **undirected** graph:

$$\begin{array}{ll} f_1(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq X_2) \\ f_2(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq Y_1) \\ f_3(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_2 \neq Y_2) \\ f_4(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(Y_1 \neq Y_2) \end{array}$$

Suppose the joint distribution is determined entirely by adjacent nodes "liking" to have the same value. Formally, for example:

$$P(X_1, X_2, Y_1, Y_2) \propto \prod_{i=1}^4 \left(\frac{1}{2}\right)^{f_i(X_1, X_2, Y_1, Y_2)}$$

(Most probable outcomes, each with prob. 0.195: either all 0s, or all 1s)

▶ In this model, both the following conditional independencies hold:

$$X_1 \perp Y_2 | \{X_2, Y_1\}$$
 $X_2 \perp Y_1 | \{X_1, Y_2\}$

But this set of conditional independencies cannot be expressed in a Bayes Net.

$$\begin{array}{lll} f_1(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq X_2) \\ f_2(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq Y_1) \\ f_3(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_2 \neq Y_2) \\ f_4(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(Y_1 \neq Y_2) \end{array}$$

$$\begin{array}{lll} f_1(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq X_2) \\ f_2(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq Y_1) \\ f_3(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_2 \neq Y_2) \\ f_4(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(Y_1 \neq Y_2) \end{array}$$

► This example is an instance of an Ising model, the prototypical case of a Markov random field, a model class that can be represented as undirected graphs

$$\begin{array}{lll} f_1(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq X_2) \\ f_2(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_1 \neq Y_1) \\ f_3(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(X_2 \neq Y_2) \\ f_4(X_1, X_2, Y_1, Y_2) &= \mathbf{I}(Y_1 \neq Y_2) \end{array}$$

- ► This example is an instance of an Ising model, the prototypical case of a Markov random field, a model class that can be represented as undirected graphs
- ▶ We won't look at these further, but you can read about them in books and papers about graphical models (e.g., (Bishop, 2006, Section 8.3)

Back to our example

Back to our example

Without looking at the coin before flipping it, the outcome Y_1 of the first flip gives me information about the type of coin, and affects my beliefs about the outcome of Y_2

Back to our example

▶ Without looking at the coin before flipping it, the outcome Y_1 of the first flip gives me information about the type of coin, and affects my beliefs about the outcome of Y_2

▶ But if I *look* at the coin before flipping it, Y_1 and Y_2 are rendered independent

I saw an exhibition about the, uh...

I saw an exhibition about the, uh...

There are several causes of disfluency, including:

I saw an exhibition about the, uh...

There are several causes of disfluency, including:

► An upcoming word is difficult to produce (e.g., low frequency, astrolabe)

I saw an exhibition about the, uh...

There are several causes of disfluency, including:

- ► An upcoming word is difficult to produce (e.g., low frequency, *astrolabe*)
- ► The speaker's attention was distracted by something in the non-linguistic environment

I saw an exhibition about the, uh...

There are several causes of disfluency, including:

- ▶ An upcoming word is difficult to produce (e.g., low frequency, astrolabe)
- ► The speaker's attention was distracted by something in the non-linguistic environment

I saw an exhibition about the, uh...

There are several causes of disfluency, including:

- ▶ An upcoming word is difficult to produce (e.g., low frequency, astrolabe)
 - ► The speaker's attention was distracted by something in the non-linguistic environment

A reasonable graphical model:

▶ Without knowledge of *D*, there's no reason to expect that *W* and *A* are correlated

- ▶ Without knowledge of D, there's no reason to expect that W and A are correlated
- ▶ But hearing a disfluency *demands a cause*

- ▶ Without knowledge of D, there's no reason to expect that W and A are correlated
- But hearing a disfluency demands a cause
- Knowing that there was a distraction explains away the disfluency, reducing the probability that the speaker was planning to utter a hard word

► Let's suppose that both hard words and distractions are unusual, the latter more so

$$P(W = \mathsf{hard}) = 0.25$$

 $P(A = \mathsf{distracted}) = 0.15$

► Let's suppose that both hard words and distractions are unusual, the latter more so

$$P(W = \mathsf{hard}) = 0.25$$

 $P(A = \mathsf{distracted}) = 0.15$

 Hard words and distractions both induce disfluencies; having both makes a disfluency really likely

W	Α	D=no disfluency	D=disfluency
easy	undistracted	0.99	0.01
easy	distracted	0.7	0.3
hard	undistracted	0.85	0.15
hard	distracted	0.4	0.6

$$P(W = \text{hard}) = 0.25$$

 $P(A = \text{distracted}) = 0.15$

W	Α	D=no disfluency	D=disfluency
easy	undistracted	0.99	0.01
easy	distracted	0.7	0.3
hard	undistracted	0.85	0.15
hard	distracted	0.4	0.6

Suppose that we observe the speaker uttering a disfluency. What is P(W = hard|D = disfluent)?

$$P(W = hard) = 0.25$$

 $P(A = distracted) = 0.15$

W	Α	D=no disfluency	D=disfluency
easy	undistracted	0.99	0.01
easy	distracted	0.7	0.3
hard	undistracted	0.85	0.15
hard	distracted	0.4	0.6

- Suppose that we observe the speaker uttering a disfluency. What is P(W = hard|D = disfluent)?
- ▶ Now suppose we also learn that her attention is distracted. What does that do to our beliefs about *W*

$$P(W = \text{hard}) = 0.25$$

 $P(A = \text{distracted}) = 0.15$

W	Α	D=no disfluency	D=disfluency
easy	undistracted	0.99	0.01
easy	distracted	0.7	0.3
hard	undistracted	0.85	0.15
hard	distracted	0.4	0.6

- Suppose that we observe the speaker uttering a disfluency. What is P(W = hard|D = disfluent)?
- Now suppose we also learn that her attention is distracted. What does that do to our beliefs about *W*
- ▶ That is, what is P(W = hard|D = disfluent, A = distracted)?

$$P(W = hard) = 0.25$$

$$P(W = \text{hard}) = 0.25$$

 $P(W = \text{hard}|D = \text{disfluent}) = 0.57$

$$P(W=\mathsf{hard}) = 0.25$$

$$P(W=\mathsf{hard}|D=\mathsf{disfluent}) = 0.57$$

$$P(W=\mathsf{hard}|D=\mathsf{disfluent},A=\mathsf{distracted}) = 0.40$$

Fortunately, there is automated machinery to "turn the Bayesian crank":

$$P(W=\mathsf{hard}) = 0.25$$
 $P(W=\mathsf{hard}|D=\mathsf{disfluent}) = 0.57$ $P(W=\mathsf{hard}|D=\mathsf{disfluent},A=\mathsf{distracted}) = 0.40$

Knowing that the speaker was distracted (A) decreased the probability that the speaker was about to utter a hard word (W)—A explained D away.

$$P(W=\mathsf{hard}) = 0.25$$

$$P(W=\mathsf{hard}|D=\mathsf{disfluent}) = 0.57$$

$$P(W=\mathsf{hard}|D=\mathsf{disfluent},A=\mathsf{distracted}) = 0.40$$

- ► Knowing that the speaker was distracted (A) decreased the probability that the speaker was about to utter a hard word (W)—A explained D away.
- ▶ A caveat: the type of relationship among *A*, *W*, and *D* will depend on the values one finds in the probability table!

$$P(W)$$

 $P(A)$
 $P(D|W,A)$

Summary thus far

Key points:

- Bayes' Rule is a compelling framework for modeling inference under uncertainty
- DAGs/Bayes Nets are a broad class of models for specifying joint probability distributions with conditional independencies
- ► Classic Bayes Net references: Pearl (1988, 2000); Jordan (1998); Russell and Norvig (2003, Chapter 14); Bishop (2006, Chapter 8).

$$P(W = hard | D = disfluent, A = distracted)$$

hard W=hard easy W=easy disfl D=disfluent distr A=distracted undistr A=undistracted

$$P(\mathsf{hard}|\mathsf{disfl},\mathsf{distr}) = \frac{P(\mathsf{disfl}|\mathsf{hard},\mathsf{distr})P(\mathsf{hard}|\mathsf{distr})}{P(\mathsf{disfl}|\mathsf{distr})}$$

$$= \frac{P(\mathsf{disfl}|\mathsf{hard},\mathsf{distr})P(\mathsf{hard})}{P(\mathsf{disfl}|\mathsf{distr})}$$

$$P(\mathsf{disfl}|\mathsf{distr}) = \sum_{w'} P(\mathsf{disfl}|W = w')P(W = w')$$

$$= P(\mathsf{disfl}|\mathsf{hard})P(\mathsf{hard}) + P(\mathsf{disfl}|\mathsf{easy})P(\mathsf{easy})$$

$$= 0.6 \times 0.25 + 0.3 \times 0.75$$

$$= 0.375$$

$$P(\mathsf{hard}|\mathsf{disfl},\mathsf{distr}) = \frac{0.6 \times 0.25}{0.375}$$

$$= 0.4$$

(Bayes' Rule)

(Independence from the DAG)

(Marginalization)

$$P(W = hard | D = disfluent)$$

$$P(\mathsf{hard}|\mathsf{disfl}) = \frac{P(\mathsf{disfl}|\mathsf{hard})P(\mathsf{hard})}{P(\mathsf{disfl})}$$

$$P(\mathsf{disfl}|\mathsf{hard}) = \sum_{a'} P(\mathsf{disfl}|A = a', \mathsf{hard})P(A = a'|\mathsf{hard})$$

$$= P(\mathsf{disfl}|A = \mathsf{distr}, \mathsf{hard})P(A = \mathsf{distr}|\mathsf{hard}) + P(\mathsf{disfl}|\mathsf{undistr}, \mathsf{hard})P(\mathsf{undistr}|\mathsf{hard})$$

$$= 0.6 \times 0.15 + 0.15 \times 0.85$$

$$= 0.2175$$

$$P(\mathsf{disfl}) = \sum_{w'} P(\mathsf{disfl}|W = w')P(W = w')$$

$$= P(\mathsf{disfl}|\mathsf{hard})P(\mathsf{hard}) + P(\mathsf{disfl}|\mathsf{easy})P(\mathsf{easy})$$

$$P(\mathsf{disfl}|\mathsf{easy}) = \sum_{a'} P(\mathsf{disfl}|A = a', \mathsf{easy})P(A = a'|\mathsf{easy})$$

$$= P(\mathsf{disfl}|A = \mathsf{distr}, \mathsf{easy})P(A = \mathsf{distr}|\mathsf{easy}) + P(\mathsf{disfl}|\mathsf{undistr}, \mathsf{easy})P(\mathsf{undistr}|\mathsf{easy})$$

$$= 0.3 \times 0.15 + 0.01 \times 0.85$$

$$= 0.0535$$

$$P(\mathsf{disfl}) = 0.2175 \times 0.25 + 0.0535 \times 0.75$$

$$= 0.0945$$

$$P(\mathsf{hard}|\mathsf{disfl}) = \frac{0.2175 \times 0.25}{0.0945}$$

$$= 0.575396825396825$$

(Baves' Rule)

References I

- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- Jordan, M. I., editor (1998). *Learning in Graphical Models*. Cambridge, MA: MIT Press.
- Pearl, J. (1988). *Probabilistic Reasoning in Intelligent Systems*. Morgan Kaufmann, 2 edition.
- Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge.
- Russell, S. and Norvig, P. (2003). *Artificial Intelligence: a Modern Approach*. Prentice Hall, second edition.