Grupos finitos

Notas de clase de Eugenio Miranda Palacios para el curso 2010/2011 Adaptadas por Manuel Bullejos para el curso 2020/2021

${\bf \acute{I}ndice}$

1.	Definición de grupo					
	1.1.	Primeros ejemplos	4			
	1.2.	Propiedades elementales	7			
	1.3.	Grupos simétricos	11			
	1.4.	Grupos diédricos	20			
	1.5.		23			
	1.6.		24			
	1.7.	El grupo cuaternio	25			
2.	Homomorfismos y subgrupos 26					
	2.1.	Homomorfismos	26			
	2.2.	Subgrupos	28			
		2.2.1. El retículo de subgrupos	28			
		2.2.2. Grupos cíclicos y sus retículos de subgrupos	31			
		2.2.3. El retículo de subgrupos de un producto directo	33			
	2.3.	El teorema de Lagrange	35			
3.	Subgrupos normales y Cocientes 40					
	3.1.	Los teoremas de isomorfía	42			
		3.1.1. La propiedad universal de la proyección al cociente. El				
			42			
		primer teorema de isomorfía	42 43			
		primer teorema de isomorfía				
		primer teorema de isomorfía	43			
		primer teorema de isomorfía	43			
	3.2.	primer teorema de isomorfía	43 44			
	3.2.	primer teorema de isomorfía	43 44 45			
	3.2.	primer teorema de isomorfía	43 44 45 47			
	3.2 .	primer teorema de isomorfía	43 44 45 47 47			

4.	Series de composición. Grupos resolubles					
	4.1. El programa de Hölder	. 60				
	4.2. Grupos resolubles					
5 .	G-conjuntos y p -grupos.					
	5.1. Acciones de un grupo sobre un conjunto	. 65				
	5.2. Fórmula de clases	. 68				
	5.3. Aplicaciones: <i>p</i> -grupos					
	5.4. Teoremas de Sylow					
	5.4.1. Ejemplos					
6.	Clasificación de grupos abelianos					
7.	Clasificación de grupos no abelianos de orden pequeño	89				
	7.0.1. Producto semidirecto de grupos	. 89				
	7.0.2. Grupos de orden pq , p y q primos con $p < q$					
	7.0.3. Grupos de orden 12					
	7.0.4. Grupos de orden 8					
	7.0.5. Tabla de grupos de orden ≤ 15					

7. Clasificación de grupos no abelianos de orden pequeño

7.0.1. Producto semidirecto de grupos

Definición 7.1. Una acción de grupos de un grupo H en un grupo K es una acción de H sobre K que además cumple:

- 1. $\forall h \in H, \ ^h 1 = 1.$
- 2. $\forall h \in H, \ x, y \in K, \ {}^{h}(xy) = {}^{h}x^{h}y.$

Observación 7.1. Es fácil comprobar que dar una acción de H sobre K es equivalente a dar un morfismo de grupos de $\theta: H \to Aut(K)$.

Ejemplo 7.1. Si $K \subseteq G$ y $H \subseteq G$ entonces la acción por conjugación de H sobre K es acción de grupos.

Dados grupos H y K y una acción de grupos $\theta: H \to Aut(K)$, consideramos el conjunto producto cartesiano

$$G = K \times H = \{(k, h) \mid k \in K, h \in H\}.$$

Utilizando la acción de H sobre K definimos un producto:

$$(k_1, h_1)(k_2, h_2) := (k_1^{h_1} k_2, h_1 h_2)$$
(7.1)

Teorema 7.2. G con el producto (7.1) es un grupo.

Demostración.

1. Asociatividad:

$$((k_{1},h_{1})(k_{2},h_{2}))(k_{3},h_{3}) = (k_{1}^{h_{1}}k_{2},h_{1}h_{2})(k_{3},h_{3}) =$$

$$(k_{1}^{h_{1}}k_{2})(^{(h_{1}h_{2})}k_{3}),h_{1}h_{2}h_{3}) = (k_{1}^{h_{1}}k_{2})(^{h_{1}}(^{h_{2}}k_{3})),h_{1}h_{2}h_{3}) =$$

$$(k_{1}^{h_{1}}(k_{2}^{h_{2}}k_{3})),h_{1}h_{2}h_{3}) = (k_{1},h_{1})(k_{2}^{h_{2}}k_{3}),h_{2}h_{3}) =$$

$$(k_{1},h_{1})((k_{2},h_{2})(k_{3},h_{3})).$$

2. Existencia de elemento neutro:

$$(k,h)(1,1) = (k({}^{h}1), g \cdot 1) = (k,h).$$

3. Existencia de elemento inverso:

$$(k,h)(h^{-1}k^{-1},h^{-1}) = (k(h^{-1}k^{-1})),hh^{-1}) = (k^{-1}k^{-1}),hh^{-1}) = (k^{-1}k^{-1},h^{-1}) = (1,1).$$

Definición 7.3. G con la operación (7.1) se llama producto semidirecto de K por H relativo a θ y lo designamos por $K \rtimes_{\theta} H$.

Veamos ahora algunas propiedades de esta construcción.

Definimos tres aplicaciones:

- \bullet $\lambda_1: K \to K \rtimes H, \lambda_1(k) = (k,1)$
- $\lambda_2: H \to K \rtimes H, \ \lambda_2(h) = (1, h)$
- $\quad \blacksquare \ \pi: K \rtimes H \to H, \, \pi(k,h) = h$

Lema 7.4.

- 1. $\lambda_1, \lambda_2, \pi$ son homomorfismos de grupos.
- 2. $\pi \lambda_1$ es trivial.
- 3. $\pi \lambda_2 = 1_K$.

Demostración. Todas las comprobaciones son pura rutina.

Teorema 7.5. Sean $K, H \leq G$ subgrupos tales que:

- 1. $K \leq G$
- 2. KH = G
- 3. $K \cap H = 1$

y sea $\theta: H \to Aut(K)$ definida por $\theta(h)(k) = hkh^{-1}$ (operando dentro de G). Entonces

$$K \rtimes_{\theta} H \cong G$$

Demostración. Definimos una aplicación $f: K \rtimes_{\theta} H \to G$ como f(k,h) = kh.

- f es sobre porque KH = G
- f es inyectiva: Sea $f(k_1, h_1) = f(k_2, h_2)$, es decir, $k_1 h_1 = k_2 h_2$. Entonces $k_2^{-1} k_1 = h_2 h_1^{-1} \in K \cap H = 1$. Luego $k_1 = k_2$ y $h_1 = h_2$.
- f es un homomorfismo:

$$f((k_1, h_1)(k_2, h_2)) = f(k_1^{h_1}k_2, h_1h_2) = k_1(h_1k_2h_1^{-1})h_1h_2 =$$

= $k_1h_1k_2h_2 = f(k_1, h_1)f(k_2, h_2).$

Definición 7.6. Un grupo G con dos subgrupos K, H que verifiquen las condiciones del Teorema 7.5 se llama producto semidirecto interno de K y H.

Definición 7.7. Sea $K \leq G$. Un subgrupo H de G se llama un complemento para K en G si G = KH y $K \cap H = 1$.

Con esta terminología, el criterio (7.5) dice sencillamente que G es un producto semidirecto interno de dos subgrupos propios si y sólo si existe un complemento para un subgrupo normal propio de G.

Observación 7.2. No todo grupo es el producto semidirecto de dos subgrupos propios, por ejemplo:

- Si G es simple no tiene subgrupos normales propios y por tanto no es un producto semidirecto. Así, A_n no es producto semidirecto para $n \ge 5$.
- El grupo de los cuaternios \mathbb{Q}_2 tampoco es un producto semidirecto.

Pero la construcción de producto semidirecto incrementa grandemente la lista de grupos conocidos.

Ejemplo 7.2.

Si $\theta=1$ (el homomorfismo trivial). Entonces, $\forall k\in K, \forall h\in H,\ ^hk=\theta(h)(k)=k$ y

$$(k_1, h_1)(k_2, h_2) = (k_1 h_1 k_2, h_1 h_2) = (k_1 k_2, h_1 h_2).$$

Luego $K \times_{\theta} H$ es sencillamente el producto directo.

Ejemplo 7.3.

Para cualquier K, sea H = Aut(K) y $\theta = 1_{Aut(K)}$. En este caso $K \rtimes_{\theta} H$ se llama $Holomorfo\ de\ K,\ Hol(K)$.

Por ejemplo:

$$Hol(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong S_4.$$

Ejemplo 7.4.

Sean $G=S_n,\ K=A_n,\ H=<(1\,2)>\cong \mathbb{Z}_2.$ Sabemos que $A_n \leq S_n,\ A_nH=S_n$ y $A_n\cap H=1,$ luego $S_n\cong A_n\rtimes \mathbb{Z}_2.$

Ejemplo 7.5.

Sean $G=S_4,\,K=V,\,H=S_3=Stab_{S_4}(4).$ Sabemos que $V\unlhd S_4$ y es fácil ver que $V\cap S_3=1$ y que $VS_3=G.$ Luego $S_4\cong V\rtimes S_3.$

Ejemplo 7.6. Sea $G = A_4$, $K = V \subseteq A_4$ y $H = \langle (123) \rangle$ entonces $K \cap H = 1$ y el orden de KH es 12 por tanto $KH = A_4$ y tenemos $A_4 = K \rtimes H$.

7.0.2. Grupos de orden pq, p y q primos con p < q

Sean |G| = pq, $P \in Syl_p(G)$ y $Q \in Syl_q(G)$.

Sabemos que $n_1|p \equiv p \mod q$ por tanto $n_q = 1$, así $Q \subseteq G$, además $PQ \cap P = 1$ por tener ordenes primos relativos y G = QP. De manera que $G = Q \rtimes P$ es un producto semidirecto interno de Q y P. Estos dos subgrupos son de orden primo,

luego son cíclicos, pongamos $Q=\langle x;\, x^q=1\rangle\cong C_q$ y $P=\langle y;\, y^p=1\rangle\cong C_p$. Para n_p hay dos posibilidades $n_p=1,q$.

Distinguimos los siguientes casos según el valor que tome n_p , el número de p-subgrupos de Sylow de G:

Caso $n_p = 1$: En este caso, P también sería un subgrupo normal de G y G es producto directo de P y Q, por lo que $G \cong C_p \times C_q \cong C_{pq}$.

Caso $n_p=q$: Se debe cumplir que $q\equiv 1 \bmod (p)$ o, equivalentemente, $p\big|(q-1)$. Recordemos primero que $Aut(C_q)$ es cíclico de orden q-1 y por tanto, como p|(q-1), $Aut(C_q)$ contiene un único subgrupo de orden p, sea este $<\alpha>\le Aut(C_q)$. Cualquier homomorfismo $\theta:C_p\to Aut(C_q)$ debe aplicar y a una potencia de α . Por tanto existen p homomorfismos $\theta_i:C_p\to Aut(C_q)$ dados por $\theta_i(y)=\alpha^i,0\le i< p$. Ya que θ_0 es el homomorfismo trivial, $C_q\rtimes_{\theta_0}C_p\cong C_q\times C_p$ y estaríamos en el caso 1.

Cada uno de los otros θ_i da lugar a un grupo G_i no abeliano de orden pq. Es inmediato comprobar que estos p-1 grupos son todos isomorfos ya que para cada θ_i existe un y_i generador de P tal que $\theta_i(y_i) = \alpha$. De modo que estos productos semidirectos son todos isomorfos salvo elección del generador arbitrario de P. Por tanto, salvo isomorfismo, hay sólo un grupo no abeliano de orden pq cuando p|(q-1) que tendría una presentación de la forma:

$$G \cong C_q \rtimes C_p \cong \langle x, y \mid x^q, y^p, yxy^{-1} = \alpha(x) \rangle$$
.

con α un automorfismo de orden p en $Aut(C_q)$.

Así tenemos clasificados todos los grupos de orden producto de dos primos. Por ejemplo 6, 10, 14, 15, 21... etc.

Un caso particular es cuando G es un grupo de orden 2q entonces debe ser isomorfo al grupo cíclico C_{2q} si es abeliano o al grupo que tiene una presentación

$$C_q \rtimes C_2 \cong \langle x, y ; x^q = 1, y^2 = 1, yxy^{-1} = x^{-1} \rangle = D_q.$$

El grupo diédrico D_q . Así los únicos grupos no abelianos de orden 6, 10 o 14 son D_3, D_5 y D_7 .

7.0.3. Grupos de orden 12

Sea G un grupo arbitrario de orden $12=2^23$. Entonces $n_2=1$ o 3 y $n_3=1$ o 4. Pero no puede ocurrir que $n_2=3$ y $n_3=4$, ya que si $n_3=4$ y llamamos $P_3^1, P_3^2, P_3^3, P_3^4$ a los cuatro 3-subgrupos de Sylow tenemos que $P_3^i \cap P_3^j=1$ si $i \neq j$ y cada uno tiene 2 elementos de orden 3 por lo que tendríamos $2 \cdot 4=8$ elementos en G de orden 3, de manera que quedarían sólo 4 elementos de otro orden (orden 1, 2 o 4) y todos ellos formarían el único subgrupo de orden 4, por tanto $n_2=1$.

Así cualquier grupo de orden 12 tiene un único 2-subgrupo o un único 3-subgrupo de Sylow que sería normal y el grupo en cualquier caso sería un producto semidirecto.

Sean $K \in Syl_3(G)$, $H \in Syl_2(G)$. Puesto que K tiene orden 3, ha de ser cíclico de orden 3, pongamos $K = \langle x; x^3 = 1 \rangle \cong C_3$. Por otro lado |H| = 4 y tenemos dos posibilidades, $H = \langle y; y^4 = 1 \rangle$ o $H = \langle y, z; y^2 = z^2 = (yz)^2 = 1 \rangle \cong C_2 \times C_2$.

Claramente $K \cap H = 1$ y como uno de los dos es normal, el producto KH es un subgrupo de orden 12 por lo que G = KH = HK. Entonces $G = K \rtimes H$ si $K \subseteq G$ o $G = H \rtimes K$ si $H \subseteq G$.

Distinguimos entonces los siguientes casos:

1.
$$n_3 = n_2 = 1$$
.

En este caso el grupo sería el producto directo de sus subgrupos de Sylow que tendrían orden 4 y 3 respectivamente. El grupo sería por tanto abeliano y habría dos salvo isomorfismo, cuyas descomposiciones cíclica primaria y cíclica serían:

$$C_2 \times C_2 \times C_3 \cong C_2 \times C_6$$
 y $C_4 \times C_3 \cong C_{12}$.

2. $n_3 = 1, n_2 = 3.$

En este caso

$$G = K \rtimes H \cong \begin{cases} C_3 \rtimes C_4 \\ C_3 \rtimes (C_2 \times C_2). \end{cases}$$

Además hay sólo dos automorfismos de C_3 , el trivial y $\alpha: C_3 \to C_3$; $\alpha(x) = x^{-1}$.

2.1. $C_3 \rtimes C_4$.

Tenemos un único morfismo no trivial $\theta: H \to Aut(K); y \mapsto \alpha$ que nos determina la acción dada por $^xy = x^{-1}$ y por tanto un único producto semidirecto (no directo) que tendría una presentación

$$C_3 \rtimes_{\theta} C_4 = \langle x, y; x^3 = y^4 = 1, yxy^{-1} = x^{-1} \rangle = Q_3$$

2.2. $C_3 \rtimes (C_2 \times C_2)$.

En este caso hay sólo un morfismo no trivial significativo $C_2 \times C_2 \to Aut(C_3)$ que es aquel que lleva un generador en α y el otro en la identidad (cambiando los generadores de $C_2 \times C_2$ obtendríamos los distintos morfismos de $C_2 \times C_2$ en $Aut(C_3)$) de manera que salvo isomorfismo habría sólo un producto semidirecto (no directo) en este caso que sería:

$$C_3 \rtimes_{\theta} (C_2 \times C_2) = \langle x, y, z \mid x^3 = y^2 = z^2 = 1, yxy^{-1} = x^{-1},$$

$$zxz^{-1} = x, yzy^{-1} = z \geq D_3 \times C_2 \cong D_6$$

3. $n_3 = 4, n_2 = 1.$

En este caso

$$G = H \rtimes K \cong \begin{cases} C_4 \rtimes C_3 \\ (C_2 \times C_2) \rtimes C_3. \end{cases}$$

3.1. $C_4 \rtimes C_3$.

Hay sólo un autonmorfismo no trivial de C_4 que lleva el generador y en y^{-1} y que tiene orden 2. Por tanto el único morfismo de C_3 en $Aut(C_4)$ es el trivial y este producto semidirecto sería un producto directo y el grupo sería abeliano. Por tanto no existe ningún producto semidirecto (no directo) de C_4 por C_3 .

3.2. $(C_2 \times C_2) \rtimes C_3$..

Es fácil ver que $Aut(C_2 \times C_2) \cong S_3$ y por tanto hay sólo dos automorfismos de $C_2 \times C_2$ de orden 3:

$$\alpha: \begin{cases} y \mapsto z \\ z \mapsto zy \end{cases} \qquad \alpha^2: \begin{cases} y \mapsto zy \\ z \mapsto y \end{cases}$$

Así hay sólo dos morfismos no triviales de C_3 en $Aut(C_2 \times C_2) \cong S_3$:

$$\theta_1: x \mapsto \alpha$$
 y $\theta_2: x \mapsto \alpha^2$

Pero bastaría cambiar el generador de $C_3 = \langle x \rangle = \langle x^3 \rangle$ para ver que estos morfismos dan productos semidirectos isomorfos y por tanto, salvo isomorfismo, hay sólo un producto semidirecto

$$(C_2 \times C_2) \rtimes_{\theta_1} C_3 = \langle x, y, z; x^3 = y^2 = z^2 = 1,$$

 $xyx^{-1} = z, xzx^{-1} = zy, yz = zy > \cong A_4$

En resumen, salvo isomorfismo hay exactamente cinco grupos de orden 12:

- Dos abelianos: C_{12} y $C_2 \times C_6$.
- Tres no abelianos: Q_3 , D_6 y A_4 .

7.0.4. Grupos de orden 8

Si G es un grupo de orden $8 = 2^3$, entonces es un 2-grupo y por tanto los teoremas de Sylow no proporcionan información.

Grupos abelianos de orden 8 hay tantos como particiones de 3 y por tanto hay tres, cuyas descomposiciones cíclicas (que coinciden con las cíclicas primarias) son:

$$C_2 \times C_2 \times C_2$$
, $C_2 \times C_4$ y C_8 .

Supongamos ahora que G es un grupo no abeliano de orden 8, su centro no puede ser trivial y tampoco tener orden 4 (ya que el cociente sería cíclico lo que es imposible). Además los órdenes de los elementos no triviales de G tienen que ser 2 o 4. Si todos los elementos tienen orden 2 el grupo sería abeliano. Así que un grupo no abeliano G de orden 8 siempre tiene un elemento x de orden 4 y el subgrupo $\langle x \rangle \leq G$ es normal (por tener índice 2) .

Sea $y \in G$ que no esté en $\langle x \rangle$, consideramos el subgrupo generado por x e y, $\langle x \rangle \subsetneq \langle x, y \rangle \leq G$. Por ser $\langle x \rangle$ un subgrupo de índice 2 y ser $\langle x \rangle \neq \langle x, y \rangle$ ha de ser $\langle x, y \rangle = G$. Además $\langle x \rangle \preceq G$ es normal y por tangto yxy^{-1} es un elemento de $\langle x \rangle$, del mismo orden que x, que no puede ser x ya que en ese caso x e y conmutarían y $\langle x, y \rangle = G$ sería abeliano. Por tanto $yxy^{-1} = x^{-1}$.

Distinguimos dos casos:

1. Todo elemento de G que no esté en $\langle x \rangle$ tiene orden 2.

En este caso y tiene orden 2 y $\langle x \rangle \cap \langle y \rangle = 1$, por tanto $G = \langle x \rangle \rtimes \langle y \rangle$ con $yxy^{-1} = x^{-1}$ y una presentación de G sería:

$$G = \langle x, y; x^4 = 1, y^2 = 1, yxy^{-1} = x^{-1} \rangle \cong D_4.$$

2. Existe un elemento $y \in G$ que no está en $\langle x \rangle$ de orden orden 4.

En este caso, $\langle x \rangle \cap \langle y \rangle \neq 1$ ya que si fuese trivial G sería un producto semidirecto de dos grupos de orden 4 y tendría orden 16. Así $\langle x \rangle \cap \langle y \rangle$ ha de ser un subgrupo de orden dos contenido en los dos y por tanto $\langle x \rangle \cap \langle y \rangle = \langle x^2 \rangle = \langle y^2 \rangle$ y ha de ser $x^2 = y^2$. Por tanto una presentación de G sería:

$$G = \langle x, y; x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1} \rangle \cong \mathbb{Q}_2.$$

En resumen, salvo isomorfismo hay exactamente cinco grupos de orden 8:

- Tres abelianos: C_8 y $C_2 \times C_4$ y $C_2 \times C_2 \times C_2$.
- Dos no abelianos: $D_4 \cong C_4 \rtimes C_2 \vee \mathbb{Q}_2$ que no es producto semidirecto.

7.0.5. Tabla de grupos de orden ≤ 15

Podemos ya completar la tabla de grupos hasta orden 15.

Orden	Abelianos	no Abelianos
1	1	
2	C_2	
3	C_3	
4	$C_2 \times C_2, C_4$	
5	C_5	
6	C_6	S_3
7	C_7	
8	$C_8, C_2 \times C_4, C_2 \times C_2 \times C_2.$	D_4, \mathbb{Q}_2
9	$C_9, C_3 \times C_3$	
10	C_{10}	D_5
11	C_{11}	
12	$C_{12}, C_2 \times C_6$	Q_3, D_6, A_4
13	C_{13}	
14	C_{14}	D_7
15	C_{15}	