ALCOHOLIMETRO

Isabella Caldas e Isabela Acevedo

Profesor: Maribell Sacanamboy y José Oliden Sanchéz

Pontificia Universidad Javeriana Cali
Arquitectura de computadores
Santiago de Cali
2019-1

Contenido

1.	Alco	holímetro	. 1
		Especificación:	
	1.2	Multiciclo	. 1
2.	Diag	rama de flujo y máquina de estados	. 2
	2.1 Dia	grama de flujo	. 2
	2.2 Má	iquina de estados detallada hecha a mano	. 3
3.	Diag	rama estructural	. 9
	3.1 Est	ándar (Modificado según nuestra multiciclo)	. 9
4.	Desc	cripción y formato de instrucciones y registros	. 9

1. Alcoholímetro

1.1 Especificación:

El sistema de alcoholímetro es un sistema en el cuál se puede medir la cantidad de alcohol en la sangre, el alcoholímetro indica si una persona es apta de conducir o no. El alcoholímetro determina esto dependiendo de la cantidad de etanol que tiene en el cuerpo, si este supera un nivel establecido de alcohol que debe tener en la sangre para no poder conducir, se le anuncia que no es apto para conducir. El alcoholímetro mide de manera distinta dependiendo el género de la persona, si es mujer la fórmula para medir es la siguiente: gramosAlcohol/(pesoPersona*0.6) y si es hombre, la fórmula es: gramosAlcohol/(pesoPersona*0.7) si el resultado al aplicar la fórmula es mayor a 0.4, se le recomendará a la persona no conducir por seguridad.

1.2 Multiciclo

Personalmente, preferimos mantener la estructura de la multiciclo debido a que, al cambiarla, nos podría generar muchos problemas. Además, que nos recomendaron manejarla con 32 bits.

2. Diagrama de flujo y máquina de estados

2.1 Diagrama de flujo

2.2 Máquina de estados detallada hecha a mano.

	aluSrcA = 0
	aluSrcB = 11
	regWrite = 0
	regDst = 0
MemAdd:	pcWrite = 0
	branch = 0
	IorD = 0
	memRead = 0
	memWrite = 0
	memToReg = ∅
	IRwrite = 0
	PCsrc = 00
	aluOP = 000
	aluSrcA = 1
	aluSrcB = 10
	regWrite = 0
	regDst = 0
memAddrSW:	<pre>pcWrite = 0</pre>
	branch = 0
	IorD = 0
	memRead = 0
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 00
	aluOP = 000
	aluSrcA = 1
	aluSrcB = 10
	regWrite = 0
	regDst = 0
MemRead:	<pre>pcWrite = 0</pre>
	branch = 0
	IorD = 1
	memRead = 1
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 00
	aluOP = 000
	aluSrcA = 0
	aluSrcB = 00

	regWrite = 0
	regDst = 0
MemWrBack:	pcWrite = 0
	branch = 0
	IorD = 0
	memRead = 0
	memWrite = 0
	memToReg = 1
	IRwrite = 0
	PCsrc = 00
	aluOP = 000
	aluSrcA = 0
	aluSrcB = 00
	regWrite = 1
	regDst = 0
MemWrite:	<pre>pcWrite = 0</pre>
	branch = 0
	IorD = 1
	memRead = 0
	memWrite = 1
	memToReg = 0
	IRwrite = 0
	PCsrc = 00
	aluOP = 000
	aluSrcA = 0
	aluSrcB = 00
	regWrite = 0
	regDst = 0
Add:	pcWrite = 0
	branch = 0
	IorD = 0
	memRead = 0
	memWrite = 0
	memToReg = 0
	<pre>IRwrite = 0</pre>
	PCsrc = 00
	aluOP = 000
	aluSrcA = 1
	aluSrcB = 00
	regWrite = 0

Branch:	regDst = 0
Didilcii.	pcWrite = 0
	branch = 1
	IorD = 0
	memRead = ∅
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 01
	aluOP = 001
	aluSrcA = 1
	aluSrcB = 00
	regWrite = 0
	regDst = 0
Jump:	pcWrite = 1
	branch = 0
	IorD = 0
	memRead = 0
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 10
	aluOP = 000
	aluSrcA = 0
	aluSrcB = 00
	regWrite = 0
	regDst = '0';
Addi:	pcWrite = 0
	branch = 0
	IorD = 0
	memRead = 0
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 00
	aluOP = 000
	aluSrcA = 1
	aluSrcB = 10
	regWrite = 0
	regDst = 0
Div:	pcWrite = 0
□1 v .	hcmi ice = A

	branch = 0
	IorD = 0
	memRead = 0
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 00
	aluOP = 011
	aluSrcA = 1
	aluSrcB = 00
	regWrite = 0
	regDst = 0
Mult:	pcWrite = 0
	branch = 0
	IorD = ∅
	memRead = 0
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 00
	aluOP = 010
	aluSrcA = 1
	aluSrcB = 10
	regWrite = 0
	regDst = 0
Slt:	pcWrite = 0
	branch = 0
	IorD = 0
	memRead = 0
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 00
	aluOP = 110
	aluSrcA = 1
	aluSrcB = 00
	regWrite = 0
	regDst = 0
Paso:	pcWrite = 0
	branch = 0
	IorD = ∅

	memRead = 0
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 00
	aluOP = 111
	aluSrcA = 1
	aluSrcB = 00
	regWrite = 0
	regDst = 0
DspAddi:	pcWrite = 0
	branch = 0
	IorD = 0
	memRead = 0
	memWrite = 0
	memToReg = 0
	IRwrite = 0
	PCsrc = 00
	aluOP = 000
	aluSrcA = 0
	aluSrcB = 00
	regWrite = 1
	regDst = 0

3. Diagrama estructural

3.1 Estándar (Modificado según nuestra multiciclo)

4. Descripción y formato de instrucciones y registros

A continuación, se expresarán las instrucciones y registros usados en MIPS para resolver el alcoholímetro.

NAME	MNEMONIC	FORMAT	OPERATION
Add	add	R	R[rd]=R[rs]+R[rt]
Add Inmediate	addi	1	R[rd]=R[rs]+SignExtImm
Branch On Equal	beq	I	if (R[rs]=R[rt]) PC=PC+4+BranchAddr
Set Less Than	slt	R	R[rd] = R[rs] < R[rt]
Load Word	lw	I	R[rt]=M[R[rs]+SignExtImm]
Store Word	SW		M[R[rs]+SignExtImm]=R[rt]
Jump	j	J	PC=JumpAddr
Move From Lo	mflo	R	R[rd] = Lo

NAME	NUMBER	USE	PRESERVED
			ACROSS A
			CALL?
\$zero	0	The constant value 0	N.A
\$v0-\$v1	2-3	Values for Function Results and	No
		Expression Evalution	
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$t8-\$t9	24-25	Temporaries	No
\$\$0- \$\$7	16-23	Saved Temporaries	Yes