$$A(1,4) = A(0, A(1,3))$$

$$A(1,3) = A(0,A(1,2))$$

$$A(1,2) = A(0,A(1,1))$$

$$A(1,1) = A(0, A(1,0))$$

$$A(1,0) = A(0,1)$$

$$A(0,1) = 1+1=2$$

(3)

I say one dosk may in more on it o it

out the top car in the got all plans

$$A(1,1) = A(0,2)$$

$$A(0,2) = 2+1=3$$

$$A(1,2) = A(0,3)$$

$$A(1,3) = A(0,4)$$

$$A(0,4) = 44+1=5$$

$$A(1,4) = A(0,5)$$

$$A(0,5) = 5+1=6$$

novert to any other pay.

Machementicolly:

1-1-1201 = Jun 14

(b)

Overflow condition:

The circular queue is considered full when the next position of the rear index is equal to the bront index.

0,1)A (0) A = (1,1)A

(10)A=(01)A

Mathematically:

front = real +1

Example:

Suppose the queue has size n=5, and the Indices are as follows:

* faint = 1

* lear = 3

After inserting two more elements!

* lear moves to 4, then O

* Now, if front=rear+1, the queue is full

(c)

Tower of Hanoi

Jules:

a) Only one disk may be moved at a time. Specifically, only the top disk on any peg may be moved to any other peg.

b) At no time can a larger disk be placed on a smaller disk.

Complexity of Tower of Hanoi Resursive Egnation

T(n)=2T(n-1)+1 - eq 1

solving it by Backslubstitution:

T(n-1) = 2T(n-2)+1 - 0

T(n-2) = 2T(n-3)+1

putting the value of T(n-2) in egn 2

T(n-1) = 2(2T(n-3)+1)+1

= 47(n-3)+1

putting the value of T(n-1) in eqn(1)

T(n) = 2(2(2T(n-3)+1)+1)+1

 $T(n) = 2^3 T(n-3) + 2^2 + 2^1 + 1$

 $=2^{k}T(h-1)+2^{k-1}+2^{k-2}+\dots+2^{2}+2^{l}+1$

1. T(n) = 2^-1 [: FET(1)=1]

Time complexity: 0(2")

Space complexity: O(n).

	AUY	S	Ŋ	S	S	S	S	S	S	(S)	-	⊢	\bigcirc	כ	ב	
	JADJ	M	Ш	Ш	Ш		S	S	9	כ	>	2	מ	9	٦	
	J A[J 2]	W	⋖	×	ď	ø	@	-	۰	-	۲	Θ	(⊢	J —	
	I ACII]	2	ב	2	2	2	ח	ב	2	2	2	9	-	Ļ	-	
	A[10]	-	-	-	-	H	+	-	Н	\vdash	Θ	—	\vdash	_	⊢	
	AE9J	· U	Ü	0	-	H	-	⊢	Η.	\oplus	S	S	S	S	N	
(a)	A[8]	2	2	2	ے	כ	2	2	9	N	ហ	S	Ŋ	a	S	
10.3	A[7]	ď	œ	≪	α	⋖	ď	⊗	α	4	ď	ď	ď	ď	α,	
the question No.	ALGJ	-	—	-	-	-	\bigcirc	ď	ď	<∠	<	ď	⋖	≪ .	ď	
ques	A[5]	S	S	S	S	9	ſΉ	417	Ш	tП	Ш	Ш	ш	Ħ	H	
the	ACYJ	*	(4)	Δ		△	<u>۵</u>	Δ	4	۵	<i>△</i>	4	۵	Δ	۵	
4	A[3]	-	-	Θ	U	U	J	U	U	J	J	U	U	U	U	
Answer to	A[2]	€		4	A	4	K	æ	A	4	æ	A	4	A	A	
	A[i]		Ä	A	4	4	4	4	∢	K	4	4	A	8 A	4	
	Pass	K=1, LOC=2	K=2, Loc=4	K=3, LOC=9	K=4, Loc=4	K=5, Loc=13	K=6, LOC=12	K=7, LDC=7	K=8, LOC=13	K=9, LOC=14	K=10, LDC=10	K=11, LOC=12	K=12, LOC=14	K=13, LOC=13	Sorted	
		1 ×	X	Ÿ	X	X	X	X	X	\mathbf{Z}	A	×	×	\mathcal{X}	(1

INSERTION (A,N)

This algorithm sorts the array A with N elements

- 1. Set A[O]:=-00 [Initializes sentinel element]
- 3. Set TEMP:= ALK] and PTR:= K-1
- 4. Repeat while TEMP < A[PTR]:
 - (a) Set A[PTR+1]:=A[PTR] [Moves element forward]
 - (b) Set PTR:= PTR-1

[End oh loop]

- 5, Set A[PTR+1]:=TEMP. [Inserts element in proper place.]
 [End of step 2 loop.]
- 6. Return

Complexity of Insertion sort

(d)

35, 58, 102, 79, 131, 46, 112, 177, 240 (ID=C233040)

Table Size=11

H(K) = K% Table size

H(35)=35%11=2

H(58)=58%11=3

H(102)=102%11=3

using linear probing

H(102)= 3+1=4

H(79) = 79% 11 = 2

H(79) = 2 + 1 = 3 + 1 = 4 + 1 = 5

H(131)= 131%11=10

H(46)=46%11=2

H(46) = 2+1 = 3+1 = 4+1 = 5+1=6

H(112) = 112%11=2

H(112) = 2+1 = 3+1 = 4+1 = 5+1 = 6+1 = 7

H(117)=117%11=7

H(117)=7+1=8

H(240) = 240 % 11 = 9

#6

+	-+
1.	1
35]2
58	3
102	4
79	5
46	6
112	7
117	8
240	9
131	10
1	11

33, 49, 29, 49, 21, 57, 62, 73,54

ITEM=33.

LTEM=29

ITEM=21

ITEM=57

ITEM=62

ITEM=73

Preorder: (G) B, Q, A, C, K, F, P, D, E, R, H Inorder: Q, B, K, C, F, A, G, P, E, D, H, R

$$C_1 = \{ Y, T \}$$
 $R_1 = \{ Y \}$
 $C_1 \times R_1 = \{ (Y, Y), (T, Y) \}$
 $X = \{ (Y, Y), (T, Y) \}$

$$S = \{x, y, T\}$$
 $R_2 = \{x, y, S\}$

$$C_2 \times R_2 = \{(x,x), (x,y), (x,s), (y,x), (y,x), (y,s), (T,x)\}$$

$$P_2 = \begin{cases} x & y & s & T \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{cases}$$

$$C_3 = \{x, y, T\}$$
 $R_3 = \{T\}$
 $C_3 \times R_3 = \{(x, T), (y, T), (T, T)\}$

$$1 \longrightarrow 2 \longrightarrow 6 \times$$

$$2 \rightarrow 3 \rightarrow 4 \rightarrow 6 \times$$