Alumno:

Duración: tres horas. Una condición suficiente de aprobación es la resolución completa y justificada de tres ejercicios cualesquiera.

- 1. Sea el campo vectorial $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^3$ dado por $\vec{f}(x,y,z) = (x^2 + e^y, y \sin(xz^2 + x), z + x^2\cos(y))$, y sea \mathcal{M} el sólido macizo dado por $\mathcal{M} = \{(x,y,z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le 2\}$ cuya frontera es $S = \partial \mathcal{M}$. Graficar \mathcal{M} , calcular su volumen, y calcular $\iint_S \vec{f} \cdot \check{n} \, \mathrm{d}S$, indicando en el gráfico la orientación adoptada para la superficie frontera S.
- 2. Sea la región $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 2x\}$, con $\mathcal{C} = \partial \mathcal{R}$ su frontera, y sea el campo $\vec{f} : D_f \subset \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\vec{f}(x,y) = (x^2y^3 y, y^4 + x^3y^2 + y^5)$. Calcular $\oint_{\mathcal{C}} \vec{f} \cdot \overrightarrow{dl}$, indicando en un gráfico la orientación adoptada para la curva \mathcal{C} , frontera de la región \mathcal{R} .
- 3. Sea $\mathcal{F}(p) = \mathcal{L}(f(t))$ la transformada de Laplace de la función f, y sea u la función de Heaviside. (a)Obtener $\mathcal{F}(p)$, siendo $f: \mathbb{R} \to \mathbb{R}$ tal que $f(t) = e^{3t}t^2u(t-1)$; indicar para qué valores de p está definida \mathcal{F} . (b) Definir una función f cuya transformada de Laplace $\mathcal{F}: \mathbb{R} \to \mathbb{R}$ sea

$$\mathcal{F}(p) = \frac{e^p}{p^2 - 4p + 5}$$

- 4. En los siguientes problemas de valor inicial la incógnita es la función escalar y de la variable independiente x, definida en un intervalo real I, esto es $y:I\subset\mathbb{R}\to\mathbb{R}$. En todos los casos se pide hallar esa función, indicando el intervalo I en que está definida.
 - (a) Hallar la (única) solución de $y' y \ln(x) = y$, y(1) = 1.
 - (b) Hallar y graficar la (única) solución de $y' = \frac{2x-y}{x}$, y(2) = 1.
- 5. Sean las superficies $S_1 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + 9z^2 = 9, 0 \le x, 0 \le y, 0 \le z\}$, $S_2 = \{(x,y,z) \in \mathbb{R}^3 : y^2 + 4z^2 = 4, 0 \le x, 0 \le y, 0 \le z\}$, sea $\mathcal{C} = S_1 \cap S_2$ la curva intersección entre ambas superficies, y sea el campo $\vec{f} : \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\vec{f}(x,y,z) = (\pi \sin(\pi x) + 3x^2y^2z^4, 2y(1+x^3z^4), 4z^3(1+x^3y^2) + z)$. Graficar e identificar los tres objetos geométricos (esto es, $\mathcal{C}, \mathcal{S}_1, \mathcal{S}_2$) en un mismo sistema de coordenadas. Calcular $\int_{\mathcal{C}} \vec{f} \cdot \overrightarrow{dl}$, indicando en el gráfico la orientación adoptada para la curva \mathcal{C} .