/ 20

EXAMEN **PRACTICUM FYSICA II** (Prof. D. Lamoen)

04-05-2009

Naam:voornaam: rolnr:

Studierichting: 2^{de} Bach groepnr. van het practicum:.....

Practicumbegeleider: ·R. FRANS

Toegelaten hulpmiddelen: enkel rekenmachine en bijgevoegd formuleblad, geen eigen kladpapier,

geen cursus, geen Gsm. Niets doorgeven.

5			
Jij hoort tot groep	а	β	Y
14h00-14h30	Pract 1		
14h30-15h00		Pract 1	
15h00-15h30			Pract 1
15h30-16h00			

VRAAG 1 PRACTICUM: **De antwoord-tijd bepalen van een RC-keten**

fig 6

Over een weerstand R en een condensator wordt een blokspanning aangelegd afkomstig van een generator. Deze blokspanning wordt aangelegd over de punten A en B in de schakeling.

Hieronder zie je een oscilloscoop waarmee de, over de hele schakeling aangelegde, blokgolf wordt gemeten.

i. Meet op onderstaande afdruk van het oscilloscoopbeeld, de piek tot piek spanning V_{ptp}, de amplitude A en de periode T. Bereken de frequentie f van deze blokgolf. De vertikale versterking van de oscilloscoop staat op 0,5 V per vakje en de tijdbasis staat op 5 ms/vakje

/8

ii. Vul de resultaten met hun MF in (maatgetal en MF in de opgegeven eenheden) in volgende tabel:

ν _{ptp}	A	T	f
(ν)	(V)	(ms)	(Hz)

iii. Leg volledig uit hoe je de MF op f bepaalde. Gebruik zinvolle letters, vul pas op het einde getallen in.

/1,5

/2

iv. Het signaal over de condensator (punten D en A op het elektrische schema op de vorige blz.) kan je nu meten **op de oscilloscoop op je computer**. Op ingang 1 van je buffermodule, wordt immers de spanning over de condensator met een coax-kabel toegevoerd. De condensator zal nu op- en ontladen met een zekere vertraging. We meten nu 4 keer de RC-tijd of antwoordtijd van de condensator, twee keer op de stijgende flank, twee keer op de dalende. We noteren de 4 antwoordtijden resp als τ_1 , τ_2 , ..., τ_4 . Hieruit berekenen we de gemiddelde antwoordtijd $\langle \tau \rangle$.

Op de stijgende flank is de tijd die verstrijkt tussen de punten K en L gelijk aan τ_1 . Als ΔV_0 de piek tot piek spanning is, dan $V_{\text{in pt L}}=0.63~\Delta V_0$. De tijd die verstrijkt tussen L en M is terug RC, we noteren ze als τ_2 . Het punt M kunnen we vinden omdat $V_{\text{in pt M}}=0.86~\Delta V_0$

Op de dalende flank is de tijd die verstrijkt tussen de punten N en O gelijk aan τ_3 . $V_{\text{in pt O}}=0,37~\Delta V_0$. De tijd die verstrijkt tussen O en P is terug RC, we noteren ze als τ_4 . Het punt P kunnen we vinden omdat $V_{\text{in pt P}}=0,14~\Delta V_0$

m:
111:

Noteer je metingen en resultaten (maatgetal en bijhorende MF in de opgegeven eenheid) in onderstaande tabel.

ΔV_0	V _{in pt L}	i	Vi	$ au_i$	$\langle au angle$
(V)	(V)		(V)	(ms)	(ms)
		L			
		М			
		0			
		Р			

v. Leg volledig uit hoe je de MF op $\langle \tau \rangle$ bepaalde. Gebruik zinvolle letters, vul pas op het einde getallen in.

/8

VRAAG 2 PRACTICUMVRAAG Grootte bepalen van lineair rooster

De afmetingen van een lineair rooster van verticale lijnen wordt bepaald door diffractie en interferentie. Het gebruikte rooster heeft 2 kenmerkende afmetingen nl. de roosterafstand a en de spleetbreedte b. Men gebruikt laserlicht met een golflengte van (632 ± 1) nm.

De afstand L tussen het scherm en het rooster bedraagt $(1,00 \pm 0,01)$ m .

Als \mathbf{A}_{a} de afstand is tussen het centrale 0^{de} orde maximum en het m^{de} maximum, dan kan men de **roosterafstand a** berekenen als:

$$a = m \lambda L / A_a$$

De spleetbreedte kan nu gevonden worden uit het n^{de} orde diffractieminimum ("ontbrekende orde" in het regelmatig patroon van vlekken). Als $\mathbf{A_b}$ de afstand is tussen het centrale 0^{de} orde en het n^{de} orde **minimum**, dan kan men de **spleetbreedte b** berekenen als:

$$b = n \lambda L / A_b$$

Men meet volgend interferentiepatroon:

Op dit gedrukt patroon, meet je met een liniaal of tekendriehoek. De gevulde lijnen zijn van grote intensiteit. De niet opgevulde lijnen zijn **zwak**.

i. Noteer je metingen en resultaten in volgende tabellen (telkens genoteerd met hun bijhorende MF in de gevraagde eenheid).

orde m	L	A_a	а	<a>
	(m)	(cm)	(µm)	(µm)
1				
3	1,00 ±0,01			
4				
5				•

	orde n	L	A_b	b	
/2,5		(m)	(cm)	(μm)	(μm)
		1,00 ±0,01			

ii. Leg hieronder uit hoe je aan de MF op b komt (voor het minimum van de 2^{de} orde)? Gebruik zinvolle letters, vul pas op het einde getallen in.

iii. Hoe zou je de MF op *b* kunnen halveren? Leg heel precies uit.

/1,5

/ 4

VRAAG 3 THEORIEVRAAG Radioactiviteit

Met een Geiger-Müller teller meet men het aantal desintegraties (in een periode van 50 s) van een radioactieve bron. N stelt het aantal gemeten desintegraties (in 50s) voor met als absorber lood, met een equivalente dikte $s=(244,0\pm1,4)~kg/m^2$. N_0 stelt het aantal gemeten desintegraties in 50 s voor zonder absorber. N_a stelt het aantal gemeten desintegraties in 50 s voor in de achtergrondstraling.

Nu is de correcte verzwakking of attenuatie a van de absorber gelijk aan:

$$a = \frac{N - N_a}{N_0 - N_a}$$

i. Bereken de correcte verzwakking a en vul het resultaat met zijn MF in in de tabel hieronder.

N	No	N _a	а
(10 aantal/50 s)	(10 aantal/50 s)	(10 aantal/50 s)	
11,8 ±1,1	32,3± 1,8	2,8± 0,5	

/1

ii. Leg hieronder uit hoe je aan de MF op a komt. Gebruik zinvolle letters, vul pas op het einde getallen in.