Exploratory Data Analysis on Iris Dataset

```
In [2]: import pandas as pd
import numpy as py
import seaborn as sn
import os
from matplotlib import pyplot as plt
```

Import our Dataset "Iris"

```
In [4]: iris=pd.read_csv("C:/Users/Sanayak/Desktop/Iris.csv")
```

In [5]: iris.describe()

Out[5]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	75.500000	5.843333	3.054000	3.758667	1.198667
	std	43.445368	0.828066	0.433594	1.764420	0.763161
	min	1.000000	4.300000	2.000000	1.000000	0.100000
	25%	38.250000	5.100000	2.800000	1.600000	0.300000
	50%	75.500000	5.800000	3.000000	4.350000	1.300000
	75%	112.750000	6.400000	3.300000	5.100000	1.800000
	max	150.000000	7.900000	4.400000	6.900000	2.500000

The Dataset does not contain missing values

```
In [7]: iris.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype		
0	Id	150 non-null	int64		
1	SepalLengthCm	150 non-null	float64		
2	SepalWidthCm	150 non-null	float64		
3	PetalLengthCm	150 non-null	float64		
4	PetalWidthCm	150 non-null	float64		
5	Species	150 non-null	object		
dtynes: float64(4)		int64(1) object(1)			

dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

```
In [8]: iris.head()
```

Out[8]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [11]: del iris["Id"]

In [18]: iris.head()

Out[18]: SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species 0 5.1 3.5 1.4 0.2 Iris-setosa 1 4.9 3.0 1.4 0.2 Iris-setosa 2 3.2 4.7 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa 4 5.0 3.6 1.4 0.2 Iris-setosa

Visualization of Iris Dataset

Visualization of Iris Data set


```
In [29]: plt.plot(iris.Species, iris.SepalWidthCm, label="SepalWidth(cm)",color="red",linest
    plt.plot(iris.Species, iris.PetalWidthCm, label="PetalWidth(cm)",color="seagreen",l
    plt.xlabel("Species")
    plt.ylabel("Width (cm)")
    plt.title("Visualization of Iris Data set")
    plt.style.use("fivethirtyeight")
    plt.legend()
    plt.show()
```

Visualization of Iris Data set

In []: