Ch. 23 – Comparing Counts

Notation: k = # of categories of a qualitative variable

$$p_i$$
 = true proportion of category i ; $i = 1,..., k$ (Note: $\sum_{i=1}^{k} p_i = 1$)

A random sample of size n will provide sample statistics of "observed counts". These values can compare against "expected counts" of np_i for each category. Consequently, an H_0 can collectively test the validity of each p_i . How?

Def'n: The "goodness-of-fit" test uses the <u>chi-square statistic</u>, χ^2 , is computed by

$$\chi^2 = \sum_{cells} \frac{\overline{(Obs - Exp)^2}}{Exp}$$

where Obs = "observed count", Exp = "expected count", and you sum over all categories. Sizeable differences between Obs and Exp of specific categories lead to large values of χ^2 and subsequent rejection of H_0 . For formal rejection/non-rejection, we need a formal test.

Aside: The <u>chi-squared distribution</u> has the following properties:

- like the *t*-distribution, it has only one parameter, *df*, that can take on any positive integer value.
- skewed to the right for small df but becomes more symmetric as df increases.
- curve where all areas correspond to nonnegative values.
- values denoted by χ^2

When H₀ is correct and *n* sufficiently large, χ^2 approx. follows a χ^2 -dist'n with df = k - 1. Using this dist'n, the corresponding *P*-value is the area to the right of χ^2 under the χ^2_{k-1} curve (all curves found in Appendix Table X). For test validity, the following must hold:

- 1) Observed cell counts are based on a random sample.
- 2) The sample size is large (every expected count ≥ 5).

Ex23.1) Are film ratings evenly distributed for U.S. movies made in 2016? Use $\alpha = 0.05$.

Table 23X0 – Number of Films in 2016 by Film Rating

Film Rating	Frequency (Obs)	Expected count (Exp)
G		
PG		
PG-13		
R		

Assumptions:

H₀:

H_A:

$$\chi^2 =$$

$$df =$$

Testing for Homogeneity

Def'n: A <u>two-way frequency table</u> (or a *contingency table*) summarizes categorical data. Each cell in the table is a particular combination of categorical values.

<u>Marginal totals</u> occur by extending the table to include the sums of each row and column. In addition, the <u>grand total</u> occurs.

Table 23X1 - 2-way table of responses

	Like Hockey (A)	Indifferent (B)	Dislike Hockey (C)	Row Marginal Total
Male (M)	15	11	6	32
Female (F)	22	13	6	41
Column Marginal Total	37	24	12	73

The <u>test for homogeneity</u> determines if the category proportions are the same for all the populations. The <u>expected cell counts</u> under homogeneity are:

(row marginal total)(column marginal total) grand total

Thus, the table with expected values would look like:

Table 23X2 - 2-way table of expected counts

	Like Hockey	Indifferent	Dislike Hockey	Row Marginal
	(A)	(B)	(C)	Total
Male (M)				32
Female (F)				41
Column Marginal Total	37	24	12	73

Accordingly, we can calculate a value for χ^2 for the entire table under an H_0 that assumes homogeneity. When H_0 is correct, χ^2 approximately follows a χ^2 -distribution such that df = (R-1)(C-1). For test validity, the following must hold:

- 1) The data consist of independently chosen random samples.
- 2) The sample size is large (every expected count \geq 5). If not, combine rows or columns, if appropriate, to achieve satisfactory expected counts.

Ex23.2) Is there homogeneity of the proport and females? Use $\alpha = 0.05$.	ions of "hockey appreciation" between male
Assumptions:	
II .	и.
H_0 :	H_A :
$\chi^2 =$	
df =	

Testing for Independence

Def'n: The test for independence determines whether an association exists between two categorical variables. Comparing to the homogeneity test, the main change is in H₀ (and H_A), which now states that the 2 variables are independent. Also, the 1st assumption is now that the observed counts are from a single random sample. The other assumption and calculations remain the same.

NOTE that **NOT** rejecting H_0 is the preferred choice here.

Ex23.3) Are the two varia	ables (Gender and Hockey Appreciation) dependent?
H_0 :	H_A :

Ch. 23 – Summary

- tests for homogeneity are used when the subjects in each of 2 or more independent samples are classified according to a single categorical variable.
- tests for independence are used when the subjects in a *single* sample are classified according to two categorical variables.
- in our case, a test for independence seems more appropriate.