College of the Redwoods

Math 55: Ordinary Differential Equations

The Motion of Pumping On A Swing

Johnathon W. Jackson

Pumping On A Swing

2/29

Layout

- Kinetic energy
- Potential energy
- Lagrangian
- Euler's formula
- Approximation of the terms
- The harmonic system
- The parametric system
- Linear and exponential resonance

3/2

The System

4/2

奏季

Variable Dictionary

- ullet ϕ is the angle in which the system rotates about the origin.
- ullet θ is the angle in which the masses m_2 and m_3 rotates about the center mass (m_1) .
- θ_1 is equal to the angle ϕ .
- ullet θ_2 is equal to the sum of the angles $\phi + \theta$.

Energy

- $\bullet \ K = \mathsf{Total} \ \mathsf{kinetic} \ \mathsf{energy}$
- ullet U= Total potential energy
- $\bullet L = K U$

Position

Coordinates of mass m_1 .

$$x_1 = l_1 \sin(\theta_1)$$
$$y_1 = l_1 \cos(\theta_1)$$

Coordinates of mass m_2 .

$$x_2 = l_1 \sin(\theta_1) + l_2 \sin(\theta_2)$$

$$y_2 = l_1 \cos(\theta_1) + l_2 \cos(\theta_2)$$

Coordinates of mass m_3 .

$$x_3 = l_1 \sin(\theta_1) - l_3 \sin(\theta_2)$$

$$y_3 = l_1 \cos(\theta_1) - l_3 \cos(\theta_2)$$

$$(x_1, y_1) = (l_1 \sin(\theta_1), l_1 \cos(\theta_1))$$

$$(x_2, y_2) = (l_1 \sin(\theta_1) + l_2 \sin(\theta_2), l_1 \cos(\theta_1) + l_2 \cos(\theta_2))$$

$$(x_3, y_3) = (l_1 \sin(\theta_1) - l_3 \sin(\theta_2), l_1 \cos(\theta_1) - l_3 \cos(\theta_2))$$

Velocity

Velocity of mass m_1 .

$$\dot{x}_1 = l_1 \cos(\theta_1) \dot{\theta}_1$$
$$\dot{y}_1 = -l_1 \sin(\theta_1) \dot{\theta}_1$$

Velocity of mass m_2 .

$$\dot{x}_2 = l_1 \cos(\theta_1)\dot{\theta}_1 + l_2 \cos(\theta_2)\dot{\theta}_2$$
$$\dot{y}_2 = -l_1 \sin(\theta_1)\dot{\theta}_1 - l_2 \sin(\theta_2)\dot{\theta}_2$$

Velocity of mass m_3 .

$$\dot{x}_3 = l_1 \cos(\theta_1) \dot{\theta}_1 - l_3 \cos(\theta_2) \dot{\theta}_2 \dot{y}_3 = -l_1 \sin(\theta_1) \dot{\theta}_1 + l_3 \sin(\theta_2) \dot{\theta}_2.$$

Velocity Squared

$$\dot{v_1}^2 = (\dot{x_1}^2 + \dot{y_1}^2)$$
$$\dot{v_2}^2 = (\dot{x_2}^2 + \dot{y_2}^2)$$
$$\dot{v_3}^2 = (\dot{x_3}^2 + \dot{y_3}^2)$$

Substituting in the computed values of the $\dot{x_i}$ and $\dot{y_i}$ we have

$$\dot{v_1}^2 = l_1^2 \cos(\theta_1)^2 \dot{\theta_1}^2 + l_1^2 \sin(\theta_1)^2 \dot{\theta_1}^2$$

$$\dot{v_2}^2 = (l_1^2 \cos(\theta_1)^2 \dot{\theta}_1^2 + 2l_1 l_2 \cos(\theta_1) \cos(\theta_2) \dot{\theta}_1 \dot{\theta}_2 + l_2^2 \cos(\theta_2)^2 \dot{\theta}_2^2) + (l_1^2 \sin(\theta_1)^2 \dot{\theta}_1^2 + 2l_1 l_2 \sin(\theta_1) \sin(\theta_2) \dot{\theta}_1 \dot{\theta}_2 + l_2^2 \sin(\theta_2)^2 \dot{\theta}_2^2)$$

$$\dot{v_3}^2 = (l_1^2 \cos(\theta_1)^2 \dot{\theta_1}^2 - 2l_1 l_3 \cos(\theta_1) \cos(\theta_2) \dot{\theta_1} \dot{\theta_2} + l_3^2 \cos(\theta_2)^2 \dot{\theta_2}^2) + (l_1^2 \sin(\theta_1)^2 \dot{\theta_1}^2 - 2l_1 l_3 \sin(\theta_1) \sin(\theta_2) \dot{\theta_1} \dot{\theta_2} + l_3^2 \sin(\theta_2)^2 \dot{\theta_2}^2)$$

Kinetic Energy

The equation for the kinetic energy is given by the equation

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}m_3v_3^2$$

Substituting the equations from the previous page in for the squared velocities we get

$$K = \frac{1}{2}l_1^2\dot{\theta}_1^2[m_1 + m_2 + m_3] + \frac{1}{2}\dot{\theta}_2^2[m_2l_2^2 + m_3l_3^2] + l_1\dot{\theta}_1\dot{\theta}_2[\cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2)][m_2l_2 - m_3l_3].$$

Potential Energy

The equation for the potential energy is given by the equation

$$U = -m_1 g y_1 - m_2 g y_2 - m_1 g y_3$$

Substituting the equations for the y-coordinates in for y we get

$$U = -[gl_1\cos(\theta_1)(m_1 + m_2 + m_3)] - [g\cos(\theta_2)(m_2l_2 - m_3l_3)]$$

Substitutions

We eliminate a number of parameters for simplicity. We let

$$M = m_1 + m_2 + m_3$$

$$I_1 = Ml_1^2$$

$$I_2 = m_2l_2 + m_3l_3$$

$$N = m_3l_3 - m_2l_2$$

$$\theta_1 = \phi$$

$$\theta_2 = \phi + \theta$$

Our Energy Equations Become

Kinetic energy:

$$K = \frac{1}{2}I_1\dot{\phi}^2 + \frac{1}{2}I_2(\dot{\phi} + \dot{\theta})^2 - l_1N\dot{\phi}(\dot{\phi} + \dot{\theta})\cos(\theta).$$

Potential energy:

$$U = -Mgl_1\cos(\phi) + Ng\cos(\phi + \theta).$$

Lagrangian

The Lagrangian for the swing system is

$$L = K - U$$

Substituting the values for the kinetic and potential energies in for ${\cal K}$ and ${\cal U}$ we get

$$L = \frac{1}{2}I_1\dot{\phi}^2 + \frac{1}{2}I_2(\dot{\phi} + \dot{\theta})^2 - l_1N\dot{\phi}(\dot{\phi} + \dot{\theta})\cos(\theta) + Mgl_1\cos(\phi)(M) - Ng\cos(\phi + \theta)$$

Euler-Lagrange Equation

The Euler-Lagrange Equation is given by the equation

$$0 = \frac{d}{dt} \left(\frac{\delta L}{\delta \dot{\phi}} \right) - \left(\frac{\delta L}{\delta \phi} \right).$$

Finally, solving for $(d/dt)[(\delta L)/(\delta \phi)] - (\delta L)/(\delta \phi)$ we get

$$0 = I_1 \ddot{\phi} + I_2 \ddot{\phi} + I_2 \ddot{\theta} - 2l_1 N \cos(\theta) \ddot{\phi} - l_1 N \cos(\theta) \ddot{\theta} + 2l_1 N \sin(\theta) \dot{\phi} \dot{\theta} + l_1 N \sin(\theta) \dot{\theta}^2 + Mg l_1 \sin(\phi) - Ng(\sin(\phi)\cos(\theta) + \cos(\phi)\sin(\theta))$$

季季

Approximations

Some of the approximation we have made include the following:

- approximation of sin and cosine factors using Taylor series.
- approximation of sin and cosine factors where $\sin(\phi) \approx 0$ and $\cos(\phi) \approx 1$ for small angles of ϕ .
- ullet approximation of sin and cosine factors that are of some degree n to a sum of terms of degree 1 and eliminating terms with frequencies at some multiple of the natural frequency.

More Substitutions

We now make the following substitutions

$$\begin{split} I_0 &= \left[(I_1 + I_2) + 2l_1 N (1 - \frac{1}{4}\theta_0^2 + \frac{1}{64}\theta_0^4) \right] \\ K_0 &= \left[Mgl_1 + Ng (1 - \frac{1}{4}\theta_0^2 + \frac{1}{64}\theta_0^4) \right] \\ \omega_0 &= K_0/I_0 \\ F &= \theta_0 \left[(\omega^2 I_2 + N \left[(g - l_1 \omega^2) (1 - \frac{1}{8}\theta_0^2 + \frac{1}{192}\theta_0^4) \right]) / I_0 \right] \\ A &= -\frac{1}{4}Ng (\theta_0^2 - \frac{1}{12}\theta_0^4) / I_0 \\ B &= l_1 N\omega \left[\theta_0^2 - \frac{1}{12}\theta_0^4 / I_0 \right] \\ C &= -\frac{1}{2}l_1 N (\theta_0^2 - \frac{1}{12}\theta_0^4) / I_0. \end{split}$$

18/29

K

19/29

The Approximated Swing System

The swing system becomes

$$\ddot{\phi} + \omega \phi \cong F \cos(\omega t) + A \cos(2\omega t)\phi + B \sin(2\omega t)\dot{\phi} + C \cos(2\omega t)\ddot{\phi}. \tag{1}$$

Notice that the F term isn't dependant on ϕ whereas the other three terms on the right hand side are ϕ -dependant. The F term is driving force and the other three terms are parametric terms, in that they are functions of the angle ϕ (they have a time-dependant piece).

The Forced Harmonic System

We can approximate the motion of the system when ϕ is small by looking at just F-term. Thus our new system becomes

$$\ddot{\phi} + \omega \phi \cong F \cos(\omega t).$$

When solving the differential equation for ϕ , with initial conditions that the swing initially at rest at time t=0 ($\phi(0)=0$), we get

$$\phi \approx (Ft)/(2\omega_0)\sin(\omega_0 t),$$

which results in a linear growth per cycle

$$\Gamma_D = (F\pi)/(\omega_0^2).$$

Solving For The Parametric System

We can approximate the motion of the system when ϕ is large by looking at the ϕ -dependant terms. Thus our new system becomes

$$\ddot{\phi} + \omega \phi \cong A \cos(2\omega t)\phi + B \sin(2\omega t)\dot{\phi} + C \cos(2\omega t)\ddot{\phi}.$$

美军 20

The difference between the forced harmonic oscillator system and the ϕ -dependant system is that an initial condition at time t=0 results in no amplitude growth in the system. Thus, we have to assume that the swing is pulled back to some initial angle of ϕ for there to be some positive contribution to the growth of the amplitude of the system. When solving the differential equation for ϕ , we get

$$\phi \approx \pm \sqrt{2} |a| e^{-((A - \omega_0 B - \omega_0^2 C)t/(4\omega_0))} (\cos(\omega t) - \sin(\omega t))$$

which results in an exponential growth per cycle

$$\Gamma_P = (2\pi\lambda)/(\omega_0)\phi_0.$$

29/20

Conclusion

By looking at the two systems, we can see that the forced harmonic system

$$\ddot{\phi} + \omega \phi \approxeq F \cos(\omega t)$$

appears to be the dominating term early in the system when ϕ is small. However, as ϕ approaches some critical angle

$$\phi_{critical} \approx \frac{8I_2}{3\theta_0 l_1 N}$$

when the growth per cycle of the forced harmonic system equals the growth of the parametric system

$$\ddot{\phi} + \omega \phi \cong A\cos(2\omega t)\phi + B\sin(2\omega t)\dot{\phi} + C\cos(2\omega t)\ddot{\phi},$$

the parametric terms start to dominate in the contribution of growth to the system.

