MOCK TEST ONE - 14/9

Notation:

 $\mathbb N$ - natural numbers

 $\mathbb Z$ - integers

 \mathbb{Q} - rational numbers

 \mathbb{R} - real numbers

$$\begin{split} S^1(\mathbb{R}) &:= \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \right\} \\ S^1(\mathbb{Q}) &:= \left\{ (x,y) \in \mathbb{Q}^2 \mid x^2 + y^2 = 1 \right\} \end{split}$$

Q1.

Let \mathbb{X} be the set of all functions $f:[0,1] \to \mathbb{R}$

Define a relation \sim on $\mathbb X$ as $f \sim g$ if and only if $(f-g)(\alpha)=0$ for some $\alpha \in [0,1]$

Note: (f - g)(x) := f(x) - g(x)

Is this an equivalence relation?

Q2.

Let \mathbb{Y} be the set of all continuous functions $f:[0,1]\to\mathbb{R}$

Define a relation \sim on the set \mathbb{Y} as $f \sim g$ if and only if f(0.5) = g(0.5)

Consider the map $\phi: (\mathbb{Y}/\sim) \to \mathbb{R}$ that sends [f] to f(0.5).

Is ϕ well defined? If so, is it injective? Is it surjective?

Q3.

Let $R = [0, 15] \times [0, 1]$, let \sim be an equivalence relation on R

$$(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow \begin{cases} x_1 = x_2 & y_1 = y_2 \\ x_1 = 0; x_2 = 15 & y_1 + y_2 = 1 \\ x_1 = 15; x_2 = 0 & y_1 + y_2 = 1 \end{cases}$$

It is clear R is a rectangle, what does (R/\sim) look like?

Q4.

Define the binary operation $\circ : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as $a \circ b = \frac{ab}{gcd(a,b)^2}$

What group properties does the tuple $(\mathbb{N}, \circ, 1)$ satisfy?

You don't have to consider commutativity.

Q5.

Define the binary operation $\star: S^1(\mathbb{R}) \times S^1(\mathbb{R}) \to S^1(\mathbb{R})$ as $(x_1,y_1)\star (x_2,y_2)=(x_3,y_3)$

A person stands at the location (x_1, y_1) and shines a laser pointer at (x_2, y_2) where the tangent acts as a mirror and reflects the laser to the point (x_3, y_3)

Green Point \star Blue Point = Red Point

What group properties does the tuple $(S^1, \star, (1,0))$ satisy? You don't have to consider commutativity.

Q6.

Define the binary operation $\cdot: S^1(\mathbb{Q}) \times S^1(\mathbb{Q}) \to S^1(\mathbb{Q})$ as $(x_1, y_1) \cdot (x_2, y_2) = ((x_1x_2 - y_1y_2), (x_1y_2 + x_2y_1))$

- (a) Verify the closure this operation.
- (b) Verify the associative property of this operation.
- (c) Is there an element (x, y) that is an identity element of this operation.
- (d) If so, do all elements have inverses?
- (e) Compute $\left(\left(\frac{3}{5},\frac{4}{5}\right)\cdot\left(\frac{-12}{13},\frac{5}{13}\right)\right)\cdot\left(\frac{8}{17},\frac{-15}{17}\right)$