Departamento de Matemática da Universidade de Aveiro

ANÁLISE MATEMÁTICA II - 2º sem. 2010/11

EXERCÍCIOS 1

- 1. Estude as sucessões de funções com os seguintes termos gerais f_n quanto à convergência pontual e à convergência uniforme:
 - (a) $f_n(x) = \sqrt[n]{x}, \quad x \in [0, 1]$
- (b) $f_n(x) = \frac{x^{2n}}{1+x^{2n}}, \quad x \in \mathbb{R}.$
- (c) $f_n(x) = n \sin \frac{x}{n}$ (i) $x \in \mathbb{R}$; (d) $f_n(x) = \frac{e^x}{x^n}$, x > 1.
- 2. Mostre que se $(f_n)_n$ converge pontualmente em $D \subset \mathbb{R}$ e D é um conjunto finito, então $(f_n)_n$ converge uniformemente em D.
- 3. Considere, para cada $n \in \mathbb{N}$, $f_n(x) = \frac{x^n}{1+x^n}$, $x \in [0,1]$. Mostre que
 - (a) $(f_n)_{n\in\mathbb{N}}$ converge pontualmente em [0,1].
 - (b) $(f_n)_{n\in\mathbb{N}}$ não converge uniformemente em [0,1].
 - (c) $(f_n)_{n\in\mathbb{N}}$ converge uniformemente em $[0,\frac{1}{2}]$ e diga o que pode concluir acerca de $\lim_{n \to \infty} \int_0^x f_n(t) dt$, $x \in [0, \frac{1}{2}]$.
- 4. Considere $f_n(x) = \frac{nx}{1+n^2x^2}, x \in \mathbb{R}, \forall n \in \mathbb{N} \in f(x) = \lim_{n \to \infty} f_n(x).$
 - (a) Mostre que $(f_n)_{n\in\mathbb{N}}$ converge uniformemente em [a,b] desde que $0\notin[a,b]$.
 - (b) Determine $\int_0^1 f(x) dx$ e $\lim_{x \to \infty} \int_0^1 f_n(x) dx$.
 - (c) $(f_n)_{n\in\mathbb{N}}$ converge uniformemente em [0,1]? Justifique.
- 5. Seja $f_n(x) = \frac{1}{n}\sin(nx), n \in \mathbb{N}$. Verifique que a sucessão $(f_n)_{n \in \mathbb{N}}$ converge uniformemente em \mathbb{R} . Designando por f o seu limite, verifique que, no entanto, $(f'_n)_{n\in\mathbb{N}}$ não converge para f'. Por que motivo não está esta conclusão em contradição com resultados dados nas aulas?
- 6. Considere a sucessão de funções $(f_n)_{n\in\mathbb{N}}$ cujo termo geral é dado por

$$f_n(x) = \begin{cases} n^2 e^{-1} x, & x \in [0, \frac{1}{n}[\\ n e^{-nx}, & x \in [\frac{1}{n}, 1] \end{cases}$$

- (a) Mostre que $\forall x \in]0,1]$, $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} n e^{-nx}$.
- (b) Mostre que

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx \neq \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) dx.$$

(c) Que conclusão pode tirar sobre a eventual convergência uniforme de $(f_n)_{n\in\mathbb{N}}$? Justifique a sua resposta.

- 7. Mostre que a série $s(x) := \sum_{k=1}^{\infty} \frac{\sin(kx)}{x^4 + k^4}$ é uniformemente convergente e que a função s é contínua em \mathbb{R} .
- 8. Considere a série $s(x) := \sum_{k=1}^{\infty} \frac{1}{x^2 + k^2}$.
 - (a) Mostre que se trata de uma série uniformemente convergente.
 - (b) Justifique a igualdade $\int_0^1 s(x) dx = \sum_{k=1}^\infty \frac{1}{k} \arctan \frac{1}{k}$.
 - (c) Caso seja possível, calcule s'(x).
 - (d) Indique o conjunto das primitivas da função s.
- 9. Considere a série $s(x) := \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2 \sqrt{n+1}}, x \in \mathbb{R}.$
 - (a) Mostre que se trata de uma série uniformemente convergente.
 - (b) Justifique que s é uma função contínua em \mathbb{R} .
 - (c) Determine $\int_0^{\frac{\pi}{2}} s(x) dx$.
 - (d) Caso seja possível, calcule s'(x).