| <ul> <li>Heap Sort</li> </ul>                   |  |
|-------------------------------------------------|--|
|                                                 |  |
| <ul> <li>Kth largest element</li> </ul>         |  |
|                                                 |  |
| <ul> <li>Sort nearly sorted array</li> </ul>    |  |
|                                                 |  |
| <ul> <li>Median of stream of integer</li> </ul> |  |
| _                                               |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |

| Over Heap Jon !-                       |  |
|----------------------------------------|--|
| lost an array                          |  |
| am [7-3 13, 14, 7, 6, 10, 2,5, 8, 3, 1 |  |
| 1 200+                                 |  |
| aver [7 ->                             |  |
|                                        |  |
| idea: - array - Build a Min heap, -som |  |
| get min I delete min - ofniegn)        |  |
| ono [] array,                          |  |
| onits array,                           |  |
| T.C -> O(n) + O(n)egn) -> O(n)egn)     |  |
|                                        |  |
| S.C. O(m) (Extra Space)                |  |
|                                        |  |
|                                        |  |
| idea 2:- Do it in Place.               |  |
| am [73 13, 14, 7, 6, 10, 2,5, 8, 3, 1  |  |
| I man treat.                           |  |
| mn(1 → 11,13, 7,8,10, 2,5,6,3,1        |  |
|                                        |  |
|                                        |  |
|                                        |  |



| given array - aux (7)                                                      |
|----------------------------------------------------------------------------|
| 1) Build mas hear -> 0m1                                                   |
| T                                                                          |
| $J = \infty - 1$ ,                                                         |
| (mpoim) = 3 (0 (2) sinder                                                  |
| Luap 10,5);                                                                |
|                                                                            |
| Z; Jast validida                                                           |
| theapity 10, arr, 5).                                                      |
|                                                                            |
|                                                                            |
|                                                                            |
| $T \cdot C \Rightarrow O(m) + O(m) \cdot Q(m) \rightarrow O(m) \cdot Q(m)$ |
| 7.C3 0(1)                                                                  |
|                                                                            |
| ( ) L.C. 3 ( ) ( )                                                         |
| Heap loot -> Inplace ~ 6.0000                                              |
| Stable -> 100                                                              |
| 18                                                                         |
| 10, 18, 15, 15                                                             |
| 15/                                                                        |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |

```
Dues: - arr [w], find kth largest element
       eg1),
               arr[] = [8, 5, 1, 2, 4, 9, 7]
              k = 3
        Ans: - 7
           • First largest element = 9
           • Second largest element = 8
           • Third largest element = 7
       6.927
      am () -> 1, 2, 8, 4, 5.
            к≈5, <del>-></del> <u>1</u>.
 ideal: - Sorting & return are [N-16]
e.g. k=3, a~r [] -> [8,5,1,2,4,9,7]
   idea 2 !- Heap Sort :-
                     Build a May heap.
                             T
                      do the temp lost step 10-1 times.
                         T.C-3 O(m)+ O(klogm)
                          J.C-3 0(1),
```

Min Leap :idea 3 k=8 8, 5, 1, 2, 4, 9, 7, 4 12 min heap 8.7, 9 I tore first Element in a minter up). (1) I terate on remaining doments, for every domens, check it (cure element > min dement in extract minus iment ( amount elect). ١3 ons = get min (). Ticz O(miogk) 8.C3 0 (K)





6 3 9 10 6

| 1) P9-3 trimbeap.                                                                                |
|--------------------------------------------------------------------------------------------------|
| 2) for i > 0 to m-1                                                                              |
| $\frac{2}{1} \qquad \text{tor} \qquad 1 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$ |
| P9. add (2014, 1, 2),                                                                            |
| 13 (Pa. Dizer) > K) &                                                                            |
|                                                                                                  |
| ment -> Pa. getmines;  smaller  cleut                                                            |
| Pa, remover;                                                                                     |
| 13                                                                                               |
| $\setminus_{\mathfrak{Z}}$                                                                       |
|                                                                                                  |
| when loop ends remove all rest elements one by one .                                             |
|                                                                                                  |
| T. Co o mieg k)                                                                                  |
| 8. c -> 0 ( 1c)                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |

Over a running stream of Integeus,
find median for all input.

 $\begin{cases} 5, 10, 2, 1, 43 \rightarrow \begin{cases} 1, 2, 4, 5, 103 \rightarrow \end{cases} & \end{cases}$   $\begin{cases} 5, 10, 2, 3, 1, 43 \rightarrow \end{cases} & \begin{cases} 2, 2, 3, 4, 5, 103 \rightarrow \end{cases} & \begin{cases} 3+4 \Rightarrow \end{cases} & \end{cases}$ 

 $\frac{T/\rho \to 9}{9} = \frac{17}{20} = \frac{20}{25} = \frac{5}{10} = \frac{5}{20}$   $9 = \frac{17}{20} = \frac{20}{25} = \frac{25}{10} = \frac{5}{20} = \frac{5}{20}$ 

3dea: - we insertion boot.

T.C > 0 cm²) 3.C > 0 cij

idea 2: 1,5,7, 4,8, 6.2,8

min

A more

D B

1,2,34

5,6,7,8

median: Man & At Min & B

| 8 elements                                        |
|---------------------------------------------------|
|                                                   |
| ч эм ч ем<br>———————————————————————————————————— |
| nim som                                           |
|                                                   |
| Case 2 rehan odd elements:-                       |
| 9 elements                                        |
|                                                   |
| B                                                 |
| 0<=0                                              |



Median = Mas ey A,

sm elens,

8120 8 (D) - Dire 8 (B) = 1

1) Even

27 odd

Dize CA) - Dize CB) = 0

3:20 UA) - dise UB) = 1

median - man (A) + minus)

median- march

7

 $\frac{\Gamma(P \to)}{\circ (P)} = \frac{9}{9} \frac{8}{8.5} = \frac{17}{9} \frac{20}{13} = \frac{25}{17} = \frac{10}{13.5} = \frac{5}{10} = \frac{3}{9.5}$ 



| void run     | nning_median (int arr(7) &                |
|--------------|-------------------------------------------|
| M <b>~</b> ∞ | heap <in+> monoh;</in+>                   |
| Mim          | heap <int> minh;</int>                    |
| ~~~          | phinsert (auto3);                         |
| fria         | 12 (aug (03)°,                            |
| for          | ~ (1=1; i <m; i++)="" td="" {<=""></m;>   |
|              | ele = amtij;                              |
|              | if (ele < maph. get Mesc)) {              |
|              | man h. insent (ele);                      |
| ·<br>        | erne s                                    |
| leg ~ ——     | minh. insent (ele),                       |
|              |                                           |
|              | if (mash. size():- minth. size ()>)) {    |
| lag~ ————    | Transfer I element from moss to to minto; |
|              | 3                                         |
|              | if (mosh. size() - minh.size() <0) {      |
| 10g ~ -      | Transfer I element from minh to mesh,     |
|              | 3                                         |
|              | int so mash size()+ minh size();          |
|              | 1/2 (8.1. 2 = =1) {                       |
|              | trint (morth, get Maro (1);               |
|              | 3                                         |
|              |                                           |

|         | else &         |                              |
|---------|----------------|------------------------------|
|         | Print (        | Ment getrone) + mintigetmine |
|         | 3              | 2                            |
|         |                |                              |
| 3       |                |                              |
| 1.C =   | $\Omega(m/mm)$ |                              |
| .l.( -\ | 0(m/gm)        |                              |
|         | <u> </u>       |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |
|         |                |                              |



