

中国儿童保健杂志

Chinese Journal of Child Health Care
ISSN 1008-6579,CN 61-1346/R

《中国儿童保健杂志》网络首发论文

题目: Logistic 回归应用的常见问题及其注意事项

作者: 李晨,张杨,陈长生

网络首发日期: 2020-01-17

引用格式: 李晨,张杨,陈长生. Logistic 回归应用的常见问题及其注意事项[J/OL]. 中

国儿童保健杂志.

http://kns.cnki.net/kcms/detail/61.1346.R.20200116.1007.020.html

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出版广电总局批准的网络连续型出版物(ISSN 2096-4188, CN 11-6037/Z),所以签约期刊的网络版上网络首发论文视为正式出版。

网络首发时间:2020-01-17 09:29:33 网络首发地址:http://kns.cnki.net/kcms/detail/61.1346.R.20200116.1007.020.html

Logistic 回归应用的常见问题及其注意事项

李晨,张杨,陈长生

空军军医大学军事预防医学系卫生统计学教研室,陕西 西安 710032

关键词: Logistic 回归; 分类资料; 优势比 **文献标识码:** A doi:10.11852/zgetbjzz2019-0012

医学研究尤其是流行病学研究中,常见分析疾病(结局)与多种因素(暴露)之间的定量关系。当结局为分类(二分类、多分类)资料时,为研究多种因素共同作用及其交互作用对结局的定量影响,可以采用 logistic 回归(logistic regression)分析方法。Logistic 回归属于概率型非线性回归的一种多变量分析方法。随着计算机技术的发展,越来越多Logistic 回归被应用于医学研究,随之也常常出现误用及结果解释不当的问题。本文主要讨论 Logistic 回归应用中有关建模与结果解释方面的常见问题及其注意事项。

1 Logistic 回归模型的建立

在 Logistic 回归模型中,应变量可以是二分类(如发病/未发病、有效/无效、死亡/存活)或多分类(如评分等级 I 级/II 级/III 级、无效/有效/痊愈)。自变量可以有多种形式:连续型变量(如年龄、BMI)、有序分类变量(如教育程度、疾病严重程度)或分类变量(如性别、职业)。

以二分类应变量为例,设 m 个自变量(m 个暴露 因素)为 x_1 , x_2 …, x_m 时发生某研究结局的概率为 P, 在 Logistic 模型中,将发生概率 P 与未发生概率 1-P 之比称为优势(odds),其对数记为 logitP = $\ln\left(\frac{P}{1-P}\right)$,则对于有 m 个自变量的 logistic 回归模型,可表示为

$$\ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m \quad (1)$$

1.1 优势比的意义 对于某暴露因素的两个不同的暴露水平 $X_j = c_1$ 与 $X_j = c_0$ (假定其他因素的水平固定不动),公式(1)中回归系数 β_j ($j = 1, 2, \dots, m$) 表示自变量 x_i 改变一个单位时 logit P 的改变量,其指

作者简介: 李晨(1986-), 女, 讲师, 医学博士, 主要研究方向为医学研究设计与统计分析方法

通讯作者:陈长生 Email:chencs@fmmu.edu.cn

基金资助:国家自然科学基金(81803328,81573251)

数称为优势比 (odds ratio,
$$OR$$
),即 $\ln OR_j = \ln \left[\frac{P_1/(1-P_1)}{P_0/(1-P_0)} \right] = \beta_j (c_1 - c_0) = \log it P_1 - \log it P_0 OR_j = \exp \left[\beta_j (c_1 - c_0) \right]$ 。

注意,OR 的应用及解释存在以下误区:1)认为 $OR_i > 1$ 代表 x_i 为危险因素, $OR_i < 1$ 代表 x_i 为保 护因素。事实上,OR 代表应变量与自变量之间联系 的强度,需要根据研究结局进行专业意义的解释。 如果研究结局是正性事件,如疾病治愈、生存,则 $OR_i > 1$ 代表 x_i 为促进疾病治愈、促进生存的保护 因素,而 $OR_i < 1$ 代表 x_i 为不利于正性事件的危险 因素;当研究结局为负性事件,如疾病发生、进展、死 亡等,则 $OR_i > 1$ 代表 x_i 为危险因素, $OR_i < 1$ 代表 x_i 为保护因素。2)将 OR 与相对危险度(relative risk,RR)含义混淆。RR 是暴露组与未暴露组的研 究结局发生率之比,它是一个比值,代表暴露于某个 因素的研究结局发生率是未暴露组的多少倍。而 OR 是优势比,可以理解为 x_i 每改变一个单位时,研 究结局的发生风险改变量。只有发生率很低的研究 结局,即P很小时,OR才近似等于RR,即

$$OR = \frac{P_1/(1 - P_1)}{P_0/(1 - P_0)} \approx \frac{P_1}{P_0} = RR$$
 (2)

1.2 哑变量的设置 Logistic 回归中最常见的自变量类型为多分类变量,如分娩方式分为顺产、难产、剖腹产,婴儿喂养方式分为母乳喂养、混合喂养、人工喂养。有些研究者将多分类自变量误作为连续型变量引入 Logistic 模型进行分析,这意味着该变量各相邻分类水平间是等距的,显然不符合实际逻辑。例如,有研究对合肥市城区低出生体重儿影响因素的 Logistic 回归分析中,原作者将"父亲职业"这个分类变量分为"体力劳动"、"体力兼脑力劳动"、"脑力劳动三个分类水平,进行 Logistic 回归分析时却将该变量作为有序分类(等级)变量赋值为各分类水平的得分,按连续变量进行处理欠妥。

对这类变量的赋值应采用哑变量的方法,即设立一个参照水平,将有m个分类水平的多分类变量转换为m-1个哑变量(取值0或1)。如表1为4分

类自变量(可转换为 3 个哑变量)的各水平间的优势比,3 个哑变量的偏回归系数分别为 b_1 、 b_2 、 b_3 ,则表 1 中第 1 行是相对参照水平(第 1 水平)的优势比,第 2 行是相对第 2 水平的优势比,其余类似。

表 1 各水平间的优势比

Tab. 1 Odds ratio in different levels

变量分	类水平	第1水平 (参照)	第2水平	第3水平	第4水平
	水平照)	1	$\exp(-b_1)$	$\exp(-b_2)$	exp(-b ₃)
第 2	水平	$\exp(b_1)$	1	$\exp(b_1 - b_2)$	$\exp(b_1 - b_3)$
第 3	水平	$\exp(b_2)$	$\exp(b_2$ - $b_1)$	1	$\exp(b_2-b_2)$
第 4	水平	$\exp(b_3)$	$\exp(b_3-b_1)$	$\exp(b_3-b_2)$	1

对于各 OR 值是否有统计学意义,应通过相应的假设检验来判断,也可简单地通过其 95% CI 是否包含 1 来直观判断。

此外,如果研究者想观察分类变量的各暴露水平对研究结局的影响,也可以将有 m 个分类水平的变量转变为m 个哑变量(取值0或1),每个哑变量分别代表有无该水平的暴露(取值1代表有,取值0代表无)。例如,有研究对儿童慢性胃炎、消化性溃疡致病危险因素的 Logistic 回归分析中,对于膳食模式这个3分类变量(喜爱蔬菜/水果/肉食),可转变为3个哑变量(分别表示"是否喜爱蔬菜"、"是否喜爱水果"、"是否喜爱肉食")。

1.3 Logistic 回归模型的变量筛选 Logistic 回归模型建立时,如自变量较多,可采用逐步回归法进行变量筛选。不同的筛选方法有时会产生不同的模型。判断某个变量是否显著以及作用大小,与模型中所包含的变量有关。实际工作中衡量某些变量是否选入模型,需要考虑专业背景、研究目的、用以调整的某些重要混杂因素以及模型的可解释性、节约性等。

2 Logistic 回归结果的解释

对于 Logistic 回归模型结果的解释,与参照水平 以及哑变量的设置有关。

2.1 参照水平的设置 实际工作中,有些论文作者在 Logistic 回归模型的结果展示中只标注自变量中文名称和回归系数,未说明各变量的参照水平设置。在回归系数的解释上,也只说明自变量对研究结局是危险或保护因素,未考虑实际专业意义。表 2 研究儿童注意缺陷多动障碍的非生物学相关因素 logistic 回归分析结果。

表 2 ADHD 儿童相关因素的 logistic 回归分析

Tab. 2 Logistic regression analysis of related factors in children with ADHD

影响因素	β值	P 值	OR 值	95%CI
不良孕期史	1.025	0.040	2.788	1.049~7.412
儿童视屏年龄<3岁	1.275	0.003	3.577	$1.552 \sim 8.248$
父亲生育年龄 (26~35岁)	-1.694	015	0.184	0.047~0.723

未说明儿童视屏年龄<3年、父亲生育年龄(26~35岁)分别是与哪个变量水平(即参照水平)作对比,也没有对相应的 OR 值做任何解释,便直接给出结论:儿童视屏年龄<3岁是 ADHD 儿童的危险因素,父亲生于年龄(26~35岁)是保护因素。

通常,Logistic 回归分析以自变量中赋值较小的变量水平为参照水平,但为了更好地解释分析结果,在论文报告中还是需要说明哪个变量水平为参照水平,如表3对儿童超重和肥胖因素的 Logistic 回归分析研究中,作者列出了每个自变量的参照水平。

表 3 儿童超重和肥胖影响因素的 Logistic 回归分析 Tab. 3 Ordinary Logistic regression analysis of influence factors of overweight and obesity in children

自变量项	项目	B 值	S. E. 值	Wald 值	P 值	OR 值
性别	男	0.709	0.142	24.908	0.000	2.032
父亲 BMI	肥胖(以正常为参照)	0.681	0.162	17. 616	0.000	1.976
母亲 BMI	肥胖(以正常为参照)	0.672	0.241	7.814	0.005	1. 958
母亲学历	大专及以上 (以初中及 以下为参 照)	0.598	0. 276	4.706	0.030	1.819
银屏活动	每周≥7次 (以每周≤2 次为参照)	0.582	0.261	4.988	0.026	1.79
是否 独生	(以非独生 为参照) 2 500 ~ 4	0.32	0.154	4.331	0.037	1.377
出生体重	000g(以≥ 4000g 为参 照)	-0. 54	0.188	8. 264	0.004	0. 583

由表 3 可知,父亲肥胖的儿童更容易发生超重和肥胖,其风险是父亲体重正常者的 1.976 倍;而相较于出生体重≥4 000g 的儿童,出生体重在 2 500-4 000g 是儿童超重肥胖的保护因素。

2.2 因素的作用大小 在 Logistic 回归分析结果的解释中,有些论文作者会直接比较 OR 绝对值的大小来说明不同因素对应变量的作用大小,例如,有研究对儿童哮喘相关因素进行 Logistic 回归分析,作者根据 OR 值的大小,将发生哮喘的相关因素人为地分为

高危因素、危险因素、低危因素和保护因素;对儿童慢性胃炎、消化性溃疡致病危险因素的 Logistic 回归分析中,作者也按照 OR 值的大小,将危险因素进行了排序。通常情况下,各个自变量的度量衡单位不一致,在对各个自变量进行标准化前,Logistic 回归模型的各个自变量所对应的 OR 值并不适合直接比较。例如,疾病严重程度每增加 1 级(如 I 级到 II 级)所对应的 OR 值与年龄每增加 1 级(如 I 公到 II 级)所对应的 OR 值与年龄每增加 1 级(如 I 公 岁增至 II 少分,所对应的 II 公 II

3 logistic 回归应用的注意事项

3.1 变量的取值形式 对同一资料的分析,变量采用不同的取值形式,参数的含义、量值及符号都可能发生变化。在做影响因素分析时,若自变量是一个定量指标,最好将其按变量值的大小分成几组(如分4组),按顺序取值为1,2,…,k,否则参数的实际意义不够明确。例如对于年龄变量,expb表示每增加一岁时的优势比,实际意义不大;如果是白细胞数就显得有些荒谬了。这种情况如果将年龄或白细胞数分成几个不同的水平,更容易解释,在赋值处理上也比较灵活,分析时既可以按赋值得分处理,也可以将其化作 k-1 个哑变量,并在分析中对差别不大的水平做一些必要的合并。

3.2 Logistic 回归的样本含量 Logistic 回归的所有统计推断都是建立在大样本基础上的,因此要求有足够的样本含量。一般来说,样本含量至少是自变量个数的 15~20 倍。关于样本含量的具体确定,已经有一些工具表可供医学科研工作者参考。经验上病例和对照的人数应至少各有 30~50 例,方程中变量的个数愈多需要的例数相应也愈大。对于配对资料,样本的匹配组数应为纳入方程中的自变量个

数 p 的 20 倍以上,即 $n \ge 20p$ 。

多分类应变量的 Logistic 回归模型 为有序多分类变量时,如流行病学中一些慢性病的 危险因素研究,观察结果为"无、轻、中、重";临床试 验的疗效评价,结果为"治愈、显效、好转、无效";临 床影像诊断按"一, ±, +, ++"不同等级进行分类 的资料,均可以采用有序 Logistic 回归模型进行分 析,假设应变量有 g 个等级水平,则有序 logistic 回 归模型包括 g-1 个方程,且自变量在 g-1 个模型中对 累计概率的优势比影响相同,即 g-1 个方程中各自 变量的回归系数相同(即平行性假设),不同类别累 计概率的差别体现在常数项上。因此在拟合有序 Logistic 回归模型时,需要对 g-1 个方程对应的累计 概率曲线的平行性进行检验,即检验各自变量在不 同累计概率模型中的回归系数是否相同。如果检验 结果 P > 0.10,说明满足了平行性假设;否则,不满 足平行性假设,说明不适合进行有序 Logistic 回归分 析,而应该采用无序多分类 Logistic 回归模型进行 分析。

当应变量是无序多分类变量时,应采用无序多分类 Logistic 模型,该模型需要选取应变量多类别之一作为参照,拟合剩余各类别相对于此参照类别的 Logistic 模型,因此依然包括 g-1 个方程。与有序 Logistic 回归模型不同的是,各类别相对于参照类别的回归方程自变量的回归系数可以不同。

Logistic 回归模型的建模较为复杂,受到诸多因素的影响,如影响因素有:研究资料的数据质量、缺失值、离群值、样本含量的大小、自变量的暴露水平及其共线性等等。应用中需要注意不同资料类型的使用条件、对结果的专业解释也需慎重。

参考文献(略)