









# Computer Vision

Vorlesung 5: Morphologische Operation

Dr. Xiao Zhao



# Morphologische Bildbearbeitung

### Morphologische Filter: Motivation

- Betrachten zuerst den Medianfilter (keine morphologische Filter):
  - Kleinere Strukturen (Punkte, dünne Linien) vollständig verschwinden
  - Größere Strukturen abrunden, z.b. Ecken
  - Das könnte nützlich sein, um Strukturen unterhalb einer bestimmten Größe aus dem Bild zu eliminieren

#### Medianfilter



### Morphologische Filter: Motivation

- **Ziel**: kleine Strukturen in einem Binärbild entfernen, ohne die größeren Strukturen dabei wesentlich zu verändern
- Median Filter ist anwendbar.
- Andere Idee? -> Schrumpfen und dann wachsen



### Schrumpfen und dann wachsen

- Zunächst werden alle Strukturen im Bild schrittweise "geschrumpft".
- Durch das Schrumpfen verschwinden kleinere Strukturen nach und nach, und nur die größeren Strukturen bleiben übrig.
- 3. Schließlich lassen wir die verbliebenen Strukturen wieder im selben Umfang wachsen.
- 4. Am Ende haben die größeren Regionen wieder annähernd ihre ursprüngliche Form, während die kleineren Regionen des Ausgangsbilds verschwunden sind.

Wir brauchen zwei neue Operationen: Schrumpfen und Wachsen!

### Schrumpfen Operation

- Schrumpfen: lässt sich eine Vordergrundstruktur, indem eine Schicht außen liegender Pixel, die direkt an den Hintergrund angrenzen, entfernt wird.
- Schrumpfen wird als "Erosion" bezeichnet.



### Wachsen Operation

- Wachsen einer Region bedeutet, dass eine Schicht über die direkt angrenzenden Hintergrundpixel angefügt wird.
- Wachsen wird als "Dilatation" bezeichnet.



### Morphologische Filter

- Schrumpfen und Wachsen sind die beiden grundlegenden Operationen morphologischer Filter
- Morphologische Filter sind allerdings allgemeiner als Schrumpfen und Wachsen

#### Morphologische Filter:

- die Struktur von Bildern gezielt zu beeinflussen
- Sie wurden zunächst für Binärbilder (0-1 Bilder) entwickelt. Später auf Grau- und Farbbilder erweitert.
- Nicht-lineare Filter

### Strukturelement

- Zur morphologischen Bearbeitung kommen Masken sog. Strukturelemente zum Einsatz
- Diese werden mit H oder S bezeichnet und sind ebenfalls binär

$$H(u,v) \in \{0,1\}$$

$$H = \begin{array}{|c|c|} \hline \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \end{array}$$

$$= 0$$

Koordinatenursprung des Strukturelements

$$lacksquare$$
 = 1

### Binärbilder und Strukturelemente als Punktmengen

 Binärbilder und Strukturelemente können auch als Menge von Elementen mit den Werten 1 oder 0 interpretiert werden

$$Q_I = \{(u, v) \mid I(u, v) = 1\}$$

$$Q_H = \{(u, v) | H(u, v) = 1\}$$

#### Binärbild I(u, v)



I

$$Q_I = \{(1,1), (2,1), (2,2)\}$$

#### Strukturelement H(u, v)



H

$$Q_H = \{(0,0),(1,0)\}$$

### Punktmengen

 Das Komplement I<sup>c</sup> einer Menge I bezeichnet die Menge der Elemente, die nicht in I liegen

$$Q_{I^c} = \bar{Q}_I = \{(u,v) \in \mathbb{Z}^2 \mid (u,v) \notin Q_I\}$$

- Dies entspricht der Invertierung des Binärbildes  $I(u,v) \rightarrow \neg I(u,v)$ 

Die Reflexion der Menge I bewirkt eine Spiegelung am Ursprung von I

$$I^* = \{(-u, -v) \mid (u,v) \in I\}$$



### Dilatation - Morpholgisches Wachsen

Dilatation entspricht dem "Wachsen" von Bildregionen

$$I \oplus H = \{(u+i, v+j) \mid (u, v) \in Q_I, (i, j) \in Q_H\}$$



$$I \oplus H = \{ (1,1) + (\mathbf{0},\mathbf{0}), (1,1) + (\mathbf{1},\mathbf{0}), (2,1) + (\mathbf{0},\mathbf{0}), (2,1) + (\mathbf{1},\mathbf{0}), (2,2) + (\mathbf{0},\mathbf{0}), (2,2) + (\mathbf{1},\mathbf{0}) \}$$

### Dilatation - Beispiel



# Originalbild mit unterbrochenen Buchstaben

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

#### Dilatation mit 3x3 "Kreuz"

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

### Erosion – Morphologisches Schrumpfen

Erosion entspricht dem "Schrumpfen" von Bildregionen

$$I \ominus H = \{(u', v') \mid (u' + i, v' + j) \in Q_I, \forall (i, j) \in Q_H\}$$



$$I\ominus H\equiv\{\,(1,1)\,\}\ {\rm weil}$$
 
$$(1,1)+(\mathbf{0},\mathbf{0})=(1,1)\in I\quad {\bf und}\quad (1,1)+(\mathbf{1},\mathbf{0})=(2,1)\in I$$

### Erosion – Morphologisches Schrumpfen

- Der Bildpunkt wird nur behalten, wenn das Strukturelement vollständig in den Vordergrund eingebettet werden kann
- Wird eingesetzt, um z.B. isolierte Pixel (Flecken) zu entfernen

$$H = \begin{array}{|c|c|c|} \hline \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array}$$





## Erosion - Beispiel

Originalbild



Erosion mit mittelgroßer "Box"



Erosion mit Kleiner "Box"

Erosion mit großer "Box"

### Typische binäre Strukturelemente

- Morphologische Filter werden spezifiziert durch
  - o den Typ der Filteroperation, z.B. Erosion, Dilatation
  - o das entsprechende Strukturelement.

#### Typische Strukturelemente







#### Originalbild











Ergebnisse der binären Dilation und Erosion mit scheibenförmigen Strukturelementen

r: Der Radius des Strukturelements

### Dilation und Erosion mit frei gestalteten Strukturelementen



### Morphologische Operatoren – Eigenschaften

- Dilatation ist kommutativ  $I \oplus H = H \oplus I$
- Dilatation ist assoziativ  $(I_1 \oplus I_2) \oplus I_3 = I_1 \oplus (I_2 \oplus I_3)$

- Erosion ist *nicht kommutativ*  $I \ominus H \neq H \ominus I$
- Erosion ist nicht assoziativ

- Erosion und Dilatation sind nicht invers
- Dilatation und Erosion sind dual
  - Eine Dilatation des Vordergrunds ( $I^c$ ) kann durch Erosion des Hintergrunds (I) und eine nachfolgende Inversion durchgeführt werden

$$I \oplus H = \overline{(I^c \ominus H^*)}$$

\*: Reflexion

### Dualität von Erosion und Dilatation



### Anwendungsbeispiel: Randextraktion

 Randextraktion kann man erhalten, wenn man zuerst die Erosion und dann die Differenzmenge zwischen und seiner Erosion durchführt.



### Anwendungsbeispiel: Randextraktion











### Anwendungsbeispiel: Randextraktion

- Entfernung der äußeren Pixel mit H als 4er oder 8er Nachbarschaft (Erosion)
- Bilden der Differenzmenge von Originalbild und erodiertem Bild







# Öffnen und Schließen

# Öffnung (Opening)

- Dilatation und Erosion werden oftmals kombiniert und in zusammengesetzten
   Operationen verwendet, um einzelne Flecken zu entfernen (Öffnung) oder
   Lücken zu füllen (Schliesen)
- Die Verkettung von Erosion mit anschließender Dilatation heißt Öffnung (Opening):

$$I \circ H = (I \ominus H) \oplus H$$

# Öffnung (Opening)

- Beim Öffnen werden kleine Objekte aus dem Vordergrund (normalerweise als helle Pixel betrachtet) eines Bildes entfernt
  - Durch die Erosion werden alle Strukturen gelöscht, die kleiner sind als das strukturierende Element.
  - Die anschließende Dilatation macht die Erosion für den verbleibenden Rest wieder rückgängig.

# Öffnung – Beispiel



# Öffnung – Beispiel





### Schließung

 Die Verkettung von Dilatation mit anschließender Erosion heißt Schließung (closing)

$$I \bullet H = (I \oplus H) \ominus H$$

 Durch eine Schließung werden Löcher in Vordergrundstrukturen und Zwischenräume, die kleiner als das Strukturelement H sind, gefüllt

# Schließung – Beispiel



# Öffnung und Schließung – Vergleich



# Öffnung und Schließung – Eigenschaften

 Öffnung und Schließung sind idempotent, d.h. jede weitere Anwendung ändert das Bild nicht mehr

$$I \circ H = (I \circ H) \circ H = ((I \circ H) \circ H) \circ H = \dots,$$
  
 $I \bullet H = (I \bullet H) \bullet H = ((I \bullet H) \bullet H) \bullet H = \dots$ 

 Die beiden Operationen sind zueinander "dual" in dem Sinn, dass ein Opening auf den Vordergrund äquivalent ist zu einem Closing des Hintergrunds und umgekehrt

$$I \circ H = \overline{(\overline{I} \bullet H)}$$
$$I \bullet H = \overline{(\overline{I} \circ H)}$$

# Anwendungsbeispiel



#### Originalbild



#### Öffnung & Schliesung



# Öffnung und Schließung – Beispiel

#### Originalbild





# Opening & Closing mit unterschiedlichen Hochschule Offenburg University of Applied Sciences Strukturelementen



# Opening & Closing mit unterschiedlichen Hochschule Offenburg University of Applied Sciences Strukturelementen





- Eine häufig verwendete morphologische Operation ist dis sog. Hit-Or-Miss-Operatoren
- Seien  $H_1$  und  $H_2$  zwei befriedigende Strukturelemente mit

$$H_1 \cap H_2 = \emptyset$$

Hit-Or-Miss-Operatoren:

$$I \star (H_1, H_2) = (I \ominus H_1) \cap (I^C \ominus H_2)$$

- H<sub>1</sub> muss mit dem Vordergrund I übereinstimmen
- $-H_2$  muss mit dem Bildhintergrund  $I^{\mathbb{C}}$  übereinstimmen
- Das Ergebnis ist die Menge der Positionen, an denen das erste Strukturelement in den Vordergrund des Eingabebildes passt ("hit") und das zweite Strukturelement diesen komplett verfehlt ("miss").

 Anwendung: zur Erkennung einer bestimmten Form (oder eines Musters) in einem Binärbild











 $I^{C}$ 



 $I^{\mathcal{C}} \ominus H_2$ 



 $I \star (H_1, H_2)$ 



 $\triangleright$  Aus  $H_1, H_2$ , eigentlich suchen wir nach diesem Muster:

| ? | 0 | ? |
|---|---|---|
| ? | 1 | ? |
| ? | ? | ? |

0: Hintergrund

1: Vordergrund

?: egal (do not care)

#### Hit-Or-Miss Operatoren – Beispiel



 Eigentlich suchen wir nach diesem Muster in I:

| ? | 1 | ?: |
|---|---|----|
| 0 | 1 | 1  |
| 0 | 0 | ?  |

0: Hintergrund

1: Vordergrund

?: egal (don't care)

■ Erkennung von 4 Ecken:  $(I \star B_1) \cup \cdots \cup (I \star B_4)$ 



|   | 1 |   |
|---|---|---|
| 0 | 1 | 1 |
| 0 | 0 |   |

 $B_2$ 



 $B_3$ 

|   | 0 | 0 |
|---|---|---|
| 1 | 1 | 0 |
|   | 1 |   |

 $B_4$ 



0: Hintergrund

1: Vordergrund

leer: egal (don't care)





#### Beispiel: Hit-or-Miss Kantenverdünnung



#### Beispiel: Hit-or-Miss Kantenverdünnung











 $e_3$ 













 $e_8$ 

 $\boxtimes$ : don't care

# Anwendungsbeispiel: Kombinieren verschiedener Operatoren



#### Zusammenfassung

- Morphologische Operatoren
  - o Erosion, Dilatation
  - Öffnen und Schließen
  - Hit-or-Miss Transformation

#### Zusammenfassung

- Wo kann man mehr erfahren?
  - Burger, Kapitel 10
  - Gonzalez, Kapitel 9



#### Referenz

- [1] Burger, Burge, Digitale Bildverarbeitung: Eine algorithmische Einführung, 3rd ed., 2015
- [2] Gonzalez, Woods, Digital Image Processing, 4th ed., 2017
- [3] Szeliski, Computer Vision: Algorithms and Applications, 2011