P. Maurer ENS Rennes

Leçon 190. Méthodes combinatoires, problèmes de dénombrement

Devs:

- Formule du crible par les involutions alternantes
- Récurrence et transience de la marche aléatoire sur \mathbb{Z} , \mathbb{Z}^2 et \mathbb{Z}^3

Références:

- 1. Biaisi, Mathématiques pour le CAPES et l'Agrégation Interne
- 2. Ulmer, Théorie des groupes
- 3. Perrin, Cours d'algèbre
- 4. Ouvrard, Probabilités
- 5. Garet, Probabilités et processus stochastiques
- 6. Norris, Markov chains
- 7. Un DM posé à LLG (bibliographie hélas introuvable)

On se donne E un ensemble.

1 Analyse combinatoire et méthodes de dénombrement

1.1 Ensembles finis

Définition 1. On appelle cardinal de E, et on note |E| la classe des ensembles en bijection avec E. On dit que E est fini s'il est en bijection avec $[\![1,n]\!]$ pour $n\in\mathbb{N}$, et dans ce cas, on note n son cardinal.

Remarque 2. \varnothing est fini, de cardinal 0 avec la convention $[1,0] = \varnothing$.

Proposition 3. Soit E et F deux sous-ensembles finis d'un ensemble S. Alors $E \cap F$ et $E \cup F$ sont finis et on a $|E \cap F| = |E| + |F| - |E \cup F|$.

Proposition 4. Si $(E_i)_{i \in [\![1,n]\!]}$ est une famille de sous-ensembles finis disjoints d'un ensemble S, alors on a $|\bigcup_{i=1}^n E_i| = \sum_{i=1}^n |E_i|$.

Proposition 5. Si $(E_i)_{i \in [1,n]}$ est une famille de sous-ensembles finis d'un ensemble S, alors on a $|\bigcup_{i=1}^n E_i| \leq \sum_{i=1}^n |E_i|$.

Remarque 6. L'application $|\cdot|$ qui à un ensemble de $\mathcal{P}(\mathbb{N})$ associe son cardinal est une mesure sur l'espace $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

Théorème 7. Si A_1, \ldots, A_p sont des ensembles finis, leur produit cartésient $\prod_{i=1}^p A_i$ est fini, et vérifie $|\prod_{i=1}^p A_i| = \prod_{i=1}^p |A_i|$.

Proposition 8. Si E et F sont deux ensembles finis, l'ensemble des fonctions de E vers F est un ensemble fini de cardinal $|F|^{|E|}$.

Corollaire 9. On a $|\mathcal{P}(E)| = 2^{|E|}$.

Exemple 10. Il y a $2^6 = 64$ signes possibles dans l'alphabet braille.

1.2 Arrangements, permutations, et combinaisons

On considère un ensemble fini E de cardinal $n \in \mathbb{N}^*$.

Définition 11. Soit $p \le n$. On appelle arrangement de E une injection $[1, p] \to E$.

Proposition 12. Le nombre d'arrangements de E est $A_n^p = \frac{n!}{(n-p)!}$.

Définition 13. On appelle permutation de E une bijection $[\![1,n]\!] \to E$ (remarquons que c'est un cas particulier d'arrangement). On note S(E) l'ensemble des permutations de E.

Proposition 14. Le nombre de permutations de E est $|S(E)| = A_n^n = n!$.

Définition 15. On appelle combinaison de E à p éléments tout sous ensemble de E à p éléments. On note $\binom{n}{p}$ le nombre de combinaisons de E à p éléments.

Proposition 16. On $a\binom{n}{p} = \frac{n!}{p!(n-p)!}$.

Proposition 17. Pour n > 1 et 1 , on a :

- $\bullet \quad \left(\begin{array}{c} n \\ p \end{array}\right) = \left(\begin{array}{c} p \\ n-p \end{array}\right),$
- $\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$ (formule du triangle de Pascal),
- $\bullet \qquad \left(\begin{array}{c} n \\ p \end{array}\right) = \frac{n}{p} \left(\begin{array}{c} n-1 \\ p-1 \end{array}\right) = \frac{n}{n-p} \left(\begin{array}{c} n-1 \\ p \end{array}\right) = \frac{n-p+1}{p} \left(\begin{array}{c} n \\ p-1 \end{array}\right).$

Exemple 18. Il y a $\binom{n}{p}$ applications strictement croissantes de $[\![1,p]\!]$ vers $[\![1,n]\!]$.

Lemme 19. Si $f: [\![1,p]\!] \to [\![1,n]\!]$ est une application croissante, alors $g: x \mapsto f(x) + x - 1$ est une application strictement croissante de $[\![1,p]\!]$ vers $[\![1,n-p+1]\!]$.

2 Section 2

Corollaire 20. Il y a $\binom{n-p+1}{p}$ applications croissantes de [1,p] vers [1,n].

Proposition 21. (Binôme de Newton).

Soit A un anneau, $a, b \in A$ qui commutent et $n \in \mathbb{N}$. On a

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Exemple 22. La formule $(X+1)^n = \sum_{k=0}^n \binom{n}{k} X^k$ permet de retrouver les formules :

- $\bullet \quad \sum_{k=1}^{n} k = \frac{n(n+1)}{2},$
- $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Exemple 23. Le nombre σ_p^n de surjections de $[\![1,n]\!]$ dans $[\![1,p]\!]$ est $\sigma_p^n = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} k^n$.

1.3 Dénombrement par involutions alternantes

Notation 24. Pour $f: E \to E$ une application et $A \subset E$, on notera $F_f(A)$ l'ensemble des points fixes de f sur $A: F_f(A) = \{x \in A: f(x) = x\}$.

Définition 25. Soit E un ensemble fini, partitionné en $A_+ \sqcup A_-$.

On appelle involution alternante sur E une application $f: E \to E$ vérifiant :

- $f \circ f = \mathrm{Id}_E$,
- $\forall x \in A_+ \setminus F_f(A_+)$ $f(x) \in A_-$,
- $\forall x \in A_- \setminus F_f(A_-)$ $f(x) \in A_+$.

Développement 1 :

Théorème 26. (Principe du dénombrement par involutions alternantes). On a $|F_f(A_+)| + |F_f(A_-)| = |A_+| + |A_-|$.

Application 27. (Formule du crible via les involutions alternantes). Soit E un ensemble fini et $A_1, \ldots, A_n \subset E$. Alors

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{\substack{I \subset \mathcal{P}([1,n])\\I \neq \varnothing}} (-1)^{|I|-1} \left|\bigcap_{i \in I} A_i\right|.$$

Application 28. (Chemins de Catalan).

Soit $n \in \mathbb{N}^*$. On étudie les chemins du plan à n+1 sommets M_0, \ldots, M_n , qu'on note (M_0, \ldots, M_n) , tels que pour tout $k \in [\![1, n]\!]$, $\overline{M_{k-1} M_k} = (1, 0)$ ou $\overline{M_{k-1} M_k} = (0, 1)$.

Alors le nombre C_n de tels chemins joignant (0, 0) à (n, n) tels que tous les sommets

aient une abscisse supérieure ou égale à leur ordonnée vaut $C_n = \frac{1}{n+1} \binom{2n}{n}$.

Le nombre C_n est appelé nombre de Catalan.

Théorème 29. (Bijection de Garsia-Milne).

Soit A et B des ensembles finis, partitionnés en $A = A_+ \sqcup A_-$ et $B_+ \sqcup B_-$, f une involution alternante de A et g une involution alternante de B. On suppose que $F_f(A_-) = F_g(B_-) = \varnothing$, et qu'il existe une bijection $\varphi \colon A \to B$ telle que $\varphi(A_+) \subset B_+$ et $\varphi(A_-) \subset B_-$. Alors il existe une bijection entre $F_f(A_+)$ et $F_g(B_+)$.

2 Dénombrement en algèbre

2.1 Dénombrement sur les corps finis

Définition 30. On note, pour p premier et $n \in \mathbb{N}$, $U_n(\mathbb{F}_p)$ le sous-groupe de $\mathrm{GL}_n(\mathbb{F}_p)$ constitué des matrices triangulaires supérieures inversibles.

Proposition 31. Soit p un nombre premier et $n \in \mathbb{N}$. Alors on a :

- $|GL_n(\mathbb{F}_p)| = (p^n 1) \cdots (p^n p^{n-1}) = mp^{\frac{n(n-1)}{2}},$
- $|\operatorname{SL}_n(\mathbb{F}_p)| = (p^n 1) \cdots (p^n p^{n-2}) \cdot p^{n-1}$,
- $\bullet \quad |U_n(\mathbb{F}_p)| = p^{\frac{n(n-1)}{2}}.$

 $O\grave{u} m = (p-1)\cdots(p^n-1)$ est premier avec p.

Soit p un nombre premier et $q = p^n$ avec $n \in \mathbb{N}^*$.

Proposition 32. On suppose p > 2 et on se donne $a \in \mathbb{F}_q^*$. Alors

$$a^{\frac{q-1}{2}} = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_q^* \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_q^* \end{cases}.$$

Définition 33. On définit le symbole de Legendre pour p > 2 et $a \in \mathbb{F}_p$ par

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_p^*, \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_p^*, \\ 0 & \text{si } a = 0. \end{cases}$$

Dénombrement en probabilités

Proposition 34. Pour $a \neq 0$ on a $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$. En particulier, le symbole de Legendre est multiplicatif, au sens où $\left(\frac{a}{p}\right) \times \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$.

Proposition 35. Soit p un nombre premier impair et a un élément de \mathbb{F}_p^* . On a

$$|\{x \in \mathbb{F}_p : ax^2 = 1\}| = 1 + \left(\frac{a}{p}\right).$$

Théorème 36. (Loi de réciprocité quadratique)

Soit p et q deux nombres premiers impairs distincts. Alors on a

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

Exemple 37. Calcul du symbol de Legendre :

$$\left(\frac{23}{59}\right) = (-1)^{11.29} \left(\frac{59}{23}\right) = -\left(\frac{13}{23}\right) = \dots = \left(\frac{2}{3}\right) = -1.$$

2.2 Dénombrement en théorie des groupes

Définition 38. Soit G un groupe d'ordre $p^{\alpha}m$ avec $p \nmid m$. On dit que H < G est un p-Sylow de G si c'est un sous-groupe d'ordre p^{α} .

Proposition 39. Le groupe $GL_n(\mathbb{F}_p)$ admet pour p-Sylow le sous-groupe $U_n(\mathbb{F}_p)$.

Théorème 40. (Sylow)

Soit G un groupe d'ordre $p^{\alpha}m$ avec $p \nmid m$. Alors :

- 1. G possède au moins un p-Sylow.
- 2. Les p-Sylow sont tous conjugués entre eux.
- 3. En notant k le nombre de p-Sylow, on a $k \equiv 1 \pmod{p}$ et k divise m.

Proposition 41. (Formule des classes)

Soit G un groupe fini qui agit sur un ensemble X fini. On note O(x) l'orbite d'un élément $x \in X$ et G_x le stabilisateur de x dans G. Alors :

- 1. Pour tout $x \in X$, on a $|O(x)| = [G: G_x]$.
- 2. Soit $O(x_1), \ldots, O(x_q)$ les orbites distinctes. On a

$$|X| = \sum_{i=1}^{q} |O(x_i)| = \sum_{i=1}^{q} \frac{|G|}{|G_{x_i}|}.$$

Définition 42. On appelle ensemble des points fixes de X sous G l'ensemble :

$$X^G = \{x \in X \ : \ \forall g \in G \quad g.x = x\}$$

3

Proposition 43. On suppose que G est un p-groupe et que X est fini. Alors on a :

$$|X| \equiv |X^G| \pmod{p}$$

Corollaire 44. Soit p un nombre premier. Alors tout groupe fini G de cardinal p^2 est abélien, et plus précisément isomorphe à $(\mathbb{Z}/p\mathbb{Z})^2$ ou bien à $\mathbb{Z}/p^2\mathbb{Z}$.

Proposition 45. (Formule de Burnside).

Soit G un groupe fini de cardinal n agissant sur X un ensemble fini de cardinal p. Alors

$$|O| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}_X(g)|,$$

où O désigne l'ensemble des orbites sous l'action de G.

Exemple 46. Avec 4 perles bleues, 3 blances et 2 vertes, on peut faire 76 colliers.

3 Dénombrement en probabilités

3.1 Probabilités sur un ensemble fini

On se donne Ω un ensemble fini.

Définition 47. La mesure $\mathbb P$ définie sur Ω par $\mathbb P(A)=\frac{|A|}{|\Omega|}$ est une probabilité sur $(\Omega,\mathcal P(\Omega))$, appelée probabilité uniforme. Elle attribue la même valeur à tout évènement élémentaire $\{\omega\}\subset\Omega$.

Exemple 48. On lance n fois un dé équilibré. La probabilité de l'évènement A_k : « On obtient k fois le chiffre 6 », où $k \in [0,6]$, vaut $\mathbb{P}(A_k) = \binom{n}{k} \frac{5^{n-k}}{6^n}$.

Définition 49. On dit qu'une variable aléatoire X à valeurs dans $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ suit une loi de Bernouilli $\mathcal{B}(p)$ de paramètre p si $\mathbb{P}(X=0)=p$ et $\mathbb{P}(X=1)=1-p$.

Proposition 50. Si $X_1,...,X_n \sim \mathcal{B}(p)$ sont indépendantes, alors la loi de $X = X_1 + \cdots + X_n$ est donnée par $\mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ pour $k \in [\![0,n]\!]$. On dit que X suit une loi binomiale de paramètre (n,p).

Section 3

3.2 Récurrence de la marche aléatoire simple

On commence par rappeler la formule du multinôme de Newton.

Définition 51. On note $\binom{n}{i_1,\ldots,i_k}$ le nombre de partitions ordonnées d'un ensemble de n éléments en k ensembles de cardinal respectif i_1,\ldots,i_k .

Proposition 52. On
$$a \binom{n}{i_1, \dots, i_k} = \frac{n!}{i_1! \cdots i_k!}$$

Théorème 53. (Formule du multinôme).

Soit $n, k \in \mathbb{N}$ et x_1, \ldots, x_k des éléments d'un anneau A commutatif. Alors

$$(x_1+\cdots+x_k)^n = \sum_{i_1+\cdots+i_k=n} \binom{n}{i_1,\ldots,i_k} x_1^{i_1}\cdots x_k^{i_k}.$$

Dans ce qui suit, on se donne un espace d'état E, un noyau de transition P et une chaîne de Markov $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, (\mathbb{P}_x)_{x \in E}, X = (X_n)_{n \geq 0})$. On se donne aussi un élément $x \in E$.

Définition 54. On définit le nombre N_x de visites en x et le premier temps T_x de retour en x par

$$N_x := \sum_{n \in \mathbb{N}} \mathbf{1}_{\{X_n = x\}} \quad et \quad T_x := \inf\{N \ge 1 : X_N = x\}.$$

Proposition 55. Une et une seule des deux situations suivantes a lieu :

• $\mathbb{P}_{r}(T_{r} < \infty) = 1$. Dans ce cas, $N_{r} = +\infty$ \mathbb{P}_{r} -p.s. On dit que l'état x est récurrent.

• $\mathbb{P}_x(T_x < \infty) < 1$. Dans ce cas, $N_x < \infty$ \mathbb{P}_x -p.s, et de plus, $\mathbb{E}_x[N_x] = \frac{1}{\mathbb{P}_x(T_x = +\infty)}$. On dit que l'état x est transient.

Exemple 56.

Dans la marche aléatoire simple sur Z, l'état zéro est récurrent.

Définition 57. Soit $x, y \in E$. On dit que x mène à y et on note $x \to y$ si $\mathbb{E}_x[N_x] > 0$. La relation \to est réflexive et transitive.

Proposition 58. Soit $x, y \in E$. On suppose que $x \to y$ et que x est récurrent. Alors y est récurrent, et $y \to x$.

Définition 59. On dit que la chaîne de Markov, ou le noyau de transition P est irréductible si

$$\forall x, y \in E \quad x \to y.$$

Théorème 60. (Classification des états d'une chaîne irréductible)

Supposons la chaîne irréductible. Alors une et une seule des deux situations suivantes a lieu:

- Tous les états sont récurrents, et $\forall x \in E \quad \mathbb{P}_x(\forall y \in E, N_y = +\infty) = 1$.
- Tous les états sont transients, et $\forall x \in E \quad \mathbb{P}_x(\forall y \in E, N_y < \infty) = 1$.

Si E est fini, alors on est toujours dans la première situation.

Développement 2 :

Théorème 61. (Récurrence de la marche aléatoire simple sur \mathbb{Z}^d)

La marche aléatoire simple sur $\mathbb Z$ et sur $\mathbb Z^2$ est récurrente. La marche aléatoire simple sur $\mathbb Z^3$ est transiente.