PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-044168

(43)Date of publication of application: 08.02.2002

(51)Int.Cl.

H04L 27/00 H04B 7/26 H04L 1/00 H04L 27/34 H04L 27/18

(21)Application number: 2000-225171

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

26.07.2000

(72)Inventor:

MIYOSHI KENICHI

HIRAMATSU KATSUHIKO

(54) COMMUNICATION TERMINAL, BASE STATION UNIT AND COMMUNICATION METHOD

PROBLEM TO BE SOLVED: To provide a communication terminal that can excellently maintain reception quality even under a fading environment.

SOLUTION: A PL demodulation section 203 demodulates a pilot signal in a received signal. An SIR detection section 205 detects the reception quality of the demodulated pilot signal. An fd detection section 206 uses the demodulated pilot signal to detect a Doppler frequency. A request modulation system decision section 207 uses the reception quality of the pilot signal and the detected Doppler frequency to decide the modulation system requested to the base station unit. A command generating section 208 generates a command corresponding to the decided modulation system. An adaptive demodulation section 204 uses a demodulation system corresponding to the modulation system decided by the request modulation system decision section 207 to apply demodulation processing to the received signal.

LEGAL STATUS

[Date of request for examination]

01.08.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision

of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3588040

[Date of registration]

20.08.2004

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-44168 (P2002-44168A)

(43)公開日 平成14年2月8日(2002.2.8)

(51) Int.Cl.'	徽別記号	FΙ	テーマコート*(参考)
H04L 27/	'00	H04L 1/00	E 5K004
H04B 7/	26	27/18	Z 5K014
H04L 1/	'00	27/00	A 5K067
27/	'34	H 0 4 B 7/26	· C
27/	'18	H04L 27/00	E
		審査請求 有 請求項	[の数7 OL (全 14 頁)
(21)出願番号	特願2000-225171(P2000-225171)	(71) 出願人 000005821	
		松下電器産業材	式会社
(22)出顧日	平成12年7月26日(2000.7.26)	大阪府門真市大字門真1006番地	
		(72)発明者 三好 憲一	
		神奈川県横浜市	港北区網島東四丁目3番1
	•	号 松下通信工	業株式会社内
		(72)発明者 平松 勝彦	
		神奈川県横浜市	港北区網島東四丁目3番1
	•	号 松下通信工	業株式会社内
		(74)代理人 100105050	
		弁理士 鷲田	公 ─
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			最終頁に続く

(54) 【発明の名称】 通信端末装置、基地局装置および通信方法

(57)【要約】

【課題】 フェージング環境下においても受信品質を良好に保つこと。

【解決手段】 PL復調部203は、受信信号におけるパイロット信号を復調する。SIR検出部205は、復調されたパイロット信号の受信品質を検出する。fd検出部206は、復調されたパイロット信号を用いてドップラ周波数を検出する。要求変調方式決定部207は、パイロット信号の受信品質と検出されたドップラ周波数とを用いて、基地局装置に要求する変調方式を決定する。コマンド生成部208は、決定された変調方式に対応するコマンドを生成する。適応復調部204は、要求変調方式決定部207により決定された変調方式に対応する復調方式を用いて、受信信号に対する復調処理を行う。

【特許請求の範囲】

【請求項 1 】 基地局装置により情報信号に時間多重されて送信された既知参照信号を用いて、受信品質を検出する受信品質検出手段と、ドップラ周波数および検出された受信品質を用いて決定した変調方式が、前記基地局装置により適用された情報信号を受信する受信手段と、を具備することを特徴とする通信端末装置。

【請求項2】 基地局装置により送信された既知参照信号を用いてドップラ周波数を検出するドップラ周波数検出手段と、検出されたドップラ周波数および検出された 10受信品質を用いて、情報信号に適用する変調方式を決定する決定手段と、を具備し、受信手段は、前記決定手段により決定された変調方式が前記基地局装置により適用された情報信号を受信することを特徴とする請求項1に記載の通信端末装置。

【請求項3】 検出された受信品質に基づいて情報信号 に適用する変調方式の候補を決定する候補決定手段を具 備し、ドップラ周波数は、基地局装置における受信信号 を用いて前記基地局装置により検出され、受信手段は、 前記変調方式の候補および前記ドップラ周波数に基づい 20 て前記基地局装置により決定された変調方式が、前記基 地局装置により適用された情報信号を受信することを特 徴とする請求項1に記載の通信端末装置。

【請求項4】 ドップラ周波数と通信端末装置における 既知参照信号の受信品質とに基づいて、情報信号に適用 する変調方式を決定する決定手段と、既知参照信号と決 定された変調方式を適用した情報信号とを時間多重した 信号を、前記通信端末装置に対して送信する送信手段 と、を具備することを特徴とする基地局装置。

【請求項5 】 決定手段は、通信端末装置により既知参照信号を用いて検出されたドップラ周波数と前記通信端末装置における既知参照信号の受信品質とに基づいて前記通信端末装置により決定された変調方式を、情報信号に適用する変調方式として決定することを特徴とする請求項4に記載の基地局装置。

【請求項6】 通信端末装置により送信された信号を用いてドップラ周波数を検出するドップラ周波数検出手段を具備し、決定手段は、前記ドップラ周波数と、前記通信端末装置における既知参照信号の受信品質に基づいてに、164QAMを選択する。さらに、パイロットでのSIRが関値2より高い場合には、通信端末装置における既知参照信号の受信品質に基づいてに、64QAMが適用されたデータを受信しても、一夕部の受信品質が所望のBERを満たすことができる。よって、通信端末装置は、基地局装置に対して要特徴とする請求項4に記載の基地局装置。

【請求項7】 通信相手により情報信号に時間多重されて送信された既知参照信号を用いて、受信品質を検出する受信品質検出工程と、ドップラ周波数および検出された受信品質を用いて決定した変調方式が、前記通信相手により適用された情報信号を受信する受信工程と、を具備することを特徴とする通信方法。

【請求項8】 ドップラ周波数と通信相手における既知 対して、この通信端末装置から参照信号の受信品質とに基づいて、情報信号に適用する 50 用したデータを送信していく。

変調方式を決定する決定工程と、既知参照信号と決定された変調方式を適用した情報信号とを時間多重した信号を、前記通信相手に対して送信する送信工程と、を具備することを特徴とする通信方法。

【発明の詳細な説明】

[0001]

[発明の属する技術分野]本発明は、ディジタル移動体 通信システムにおいて用いられる適応変調システムに関 する。

[0002]

【従来の技術】近年、ディジタル移動体通信システムにおいて、HDR(High Data Rate)等の適応変調システムが提案されている。以下、従来のHDRを用いた通信について、図8を参照して説明する。図8は、HDRを用いた通信に用いられる下り回線のスロットフォーマットを示す模式図である。

【0003】まず、通信端末装置は、受信信号におけるバイロット(PL1およびPL2)部を復調してSIRを検出する。さらに、通信端末装置は、検出したSIRに基づいて、データ部の受信品質が所望品質を満たすことのできる変調方式が何であるのかを判断し、基地局装置に対して要求する変調方式を決定する。

【0004】変調方式の決定方法の具体例について、図9を参照して説明する。図9は、従来のHDRを用いた通信における変調方式の決定方法を示す模式図である。図9において、バイロット部のSIRが閾値1よりも低い場合には、通信端末装置において、16QAMや64QAMが適用されたデータを受信しても、データ部の受信品質が所望のBER(10⁻¹)を満たさない。よって、通信端末装置は、基地局装置に対して要求する変調方式として、QPSKを選択する。

[0005] また、パイロット部のSIRが関値1と関値2の間にある場合には、通信端末装置において、16QAMが適用されたデータを受信しても、データ部の受信品質が所望のBERを満たすことができる。よって、通信端末装置は、基地局装置に対して要求する変調方式として、16QAMを選択する。さらに、パイロット部のSIRが関値2より高い場合には、通信端末装置において、64QAMが適用されたデータを受信しても、データ部の受信品質が所望のBERを満たすことができる。よって、通信端末装置は、基地局装置に対して要求する変調方式として、64QAMを選択する。以上が変調方式の決定方法の具体例である。この後、通信端末装置は、決定した変調方式を基地局装置に対して通知する。

【0006】一方、基地局装置は、各通信端末装置から 通知された変調方式に基づいてスケジューリングを行い、スケジューリングにより決定された通信端末装置に 対して、この通信端末装置から通知された変調方式を適 用したデータを送信していく。 3

[0007]

【発明が解決しようとする課題】しかしながら、移動体 通信システムにおいては、通信端末装置が移動すること により、フェージングが発生する。フェージング環境下 においては、パイロット部 (パイロット信号) の受信品 質に変化がなくとも、フェージングのドップラ周波数 (fd)によって、データ部(受信データ)の受信品質 が劣化する現象が発生する。よって、パイロット部の受 信品質とデータ部の受信品質とが大きく異なる。

【0008】具体的には、図8から明らかなように、パ 10 イロット部がスロット中において占める時間は短いの で、フェージング環境下であっても、通信端末装置にお けるパイロット部の受信品質は良好なものとなる。とこ ろが、データ部がスロット中において占める時間は長い ので、フェージング環境下では、通信端末装置により受 信されたデータ部にフェージングによる位相回転が生ず る。このため、通信端末装置におけるデータ部の受信品 質が劣化する。よって、フェージング環境下において は、通信端末装置におけるバイロット部の受信品質とデ 部の受信品質は、パイロット部の受信品質を下回る)。 【0009】 この結果、通信端末装置が、パイロット部 で測定した受信品質に基づいて、基地局装置に対して要 求する変調方式を決定すると、通信端末装置におけるデ ータ部の受信品質が所望品質を満たせなくなる。

【0010】以上のように、従来の適応変調システムに おいては、フェージング環境下では、通信端末装置にお ける受信データの品質が所望品質を下回り、高効率かつ 髙品質なデータ通信を行うことが困難となる問題があ る。本発明は、かかる点に鑑みてなされたものであり、 フェージング環境下においても受信品質を良好に保つ通 信端末装置を提供することを目的とする。

[0011]

【課題を解決するための手段】本発明の通信端末装置 は、基地局装置により情報信号に時間多重されて送信さ れた既知参照信号を用いて、受信品質を検出する受信品 質検出手段と、ドップラ周波数および検出された受信品 質を用いて決定した変調方式が、前記基地局装置により 適用された情報信号を受信する受信手段と、を具備する 構成を採る。

【0012】この構成によれば、既知参照信号の受信品 質とドップラ周波数とに基づいて、情報信号に適用する 変調方式を決定するするので、フェージング環境下にお いても受信品質を良好に保つ通信端末装置を提供するこ とができる。

【0013】本発明の通信端末装置は、基地局装置によ り送信された既知参照信号を用いてドップラ周波数を検 出するドップラ周波数検出手段と、検出されたドップラ 周波数および検出された受信品質を用いて、情報信号に

信手段が、前記決定手段により決定された変調方式が前 記基地局装置により適用された情報信号を受信する構成

【0014】この構成によれば、既知参照信号を用いて ドップラ周波数を検出し、検出したドップラ周波数およ び既知参照信号の受信品質を用いて、フェージング環境 下における情報信号の受信品質を推定し、さらに、推定 した情報信号の受信品質に基づいて、基地局装置に要求 する変調方式を決定している。これにより、フェージン グ環境下においても、最も髙速な変調方式であり、か つ、通信端末装置における情報信号の品質が所望品質を 満たす変調方式を確実に決定することができるので、高 品質かつ高効率なデータ通信を行うことができる。

【0015】本発明の通信端末装置は、検出された受信 品質に基づいて情報信号に適用する変調方式の候補を決 定する候補決定手段を具備し、ドップラ周波数が、基地 局装置における受信信号を用いて前記基地局装置により 検出され、受信手段が、前記変調方式の候補および前記 ドップラ周波数に基づいて前記基地局装置により決定さ ータ部の受信品質とが大きく異なる(すなわち、データ 20 れた変調方式が、前記基地局装置により適用された情報 信号を受信する構成を採る。

> 【0016】 この構成によれば、通信端末装置により送 信された信号を用いてドップラ周波数を検出し、検出し たドップラ周波数に応じて、既知参照信号の受信品質の みに基づいて通信端末装置により決定された変調方式を (伝送レートのより遅い変調方式に)変更し、変更した 変調方式を適用した情報信号を通信端末装置に送信す る。これにより、フェージング環境下においても、最も 高速な変調方式であり、かつ、通信端末装置における受 信データの品質が所望品質を満たす変調方式を確実に決 定することができるので、髙品質かつ髙効率なデータ通 信を行うことができる。さらに、通信端末装置において ドップラ周波数の算出を行う回路が不要となるので、通 信端末装置の回路構成が簡単になる。この結果、通信端 末装置における消費電力を少なくし、また、通信端末装 置を小型化することができる。

【0017】本発明の基地局装置は、ドップラ周波数と 通信端末装置における既知参照信号の受信品質とに基づ いて、情報信号に適用する変調方式を決定する決定手段 40 と、既知参照信号と決定された変調方式を適用した情報 信号とを時間多重した信号を、前記通信端末装置に対し て送信する送信手段と、を具備する構成を採る。

【0018】この構成によれば、既知参照信号の受信品 質とドップラ周波数とに基づいて、情報信号に適用する 変調方式を決定するするので、フェージング環境下にお いても通信端末装置における受信品質を良好に保つ基地 局装置を提供することができる。

【0019】本発明の基地局装置は、決定手段が、通信 端末装置により既知参照信号を用いて検出されたドップ 適用する変調方式を決定する決定手段と、を具備し、受 50 ラ周波数と前記通信端末装置における既知参照信号の受

信品質とに基づいて前記通信端末装置により決定された 変調方式を、情報信号に適用する変調方式として決定す る構成を採る。

【0020】この構成によれば、既知参照信号を用いて ドップラ周波数を検出し、検出したドップラ周波数およ び既知参照信号の受信品質を用いて、フェージング環境 下における情報信号の受信品質を推定し、さらに、推定 した情報信号の受信品質に基づいて、基地局装置に要求 する変調方式を決定している。これにより、フェージン グ環境下においても、最も高速な変調方式であり、か つ、通信端末装置における情報信号の品質が所望品質を 満たす変調方式を確実に決定することができるので、髙 品質かつ高効率なデータ通信を行うことができる。

【0021】本発明の基地局装置は、通信端末装置によ り送信された信号を用いてドップラ周波数を検出するド ップラ周波数検出手段を具備し、決定手段が、前記ドッ プラ周波数と、前記通信端末装置における既知参照信号 の受信品質に基づいて前記通信端末装置により決定され た変調方式の候補とを用いて、情報信号に適用する変調 方式を決定する構成を採る。

【0022】この構成によれば、通信端末装置により送 信された信号を用いてドップラ周波数を検出し、検出し たドップラ周波数に応じて、既知参照信号の受信品質の みに基づいて通信端末装置により決定された変調方式を (伝送レートのより遅い変調方式に)変更し、変更した 変調方式を適用した情報信号を通信端末装置に送信す る。これにより、フェージング環境下においても、最も 高速な変調方式であり、かつ、通信端末装置における受 信データの品質が所望品質を満たす変調方式を確実に決 定することができるので、高品質かつ高効率なデータ通 30 ンテナ101を介して送信する。 信を行うことができる。さらに、通信端末装置において ドップラ周波数の算出を行う回路が不要となるので、通 信端末装置の回路構成が簡単になる。この結果、通信端 末装置における消費電力を少なくし、また、通信端末装 置を小型化することができる。

【0023】本発明の通信方法は、通信相手により情報 信号に時間多重されて送信された既知参照信号を用い て、受信品質を検出する受信品質検出工程と、ドップラ 周波数および検出された受信品質を用いて決定した変調 方式が、前記通信相手により適用された情報信号を受信 する受信工程と、を具備する。

【0024】本発明の通信方法は、ドップラ周波数と通 信相手における既知参照信号の受信品質とに基づいて、 情報信号に適用する変調方式を決定する決定工程と、既 知参照信号と決定された変調方式を適用した情報信号と を時間多重した信号を、前記通信相手に対して送信する 送信工程と、を具備する。

【0025】これらの方法によれば、既知参照信号の受 信品質とドップラ周波数とに基づいて、情報信号に適用 においても受信品質を良好に保つ通信端末装置を提供す

ることができる。 [0026]

【発明の実施の形態】本発明の骨子は、既知参照信号の 受信品質とドップラ周波数とに基づいて、情報信号に適 用する変調方式を決定することである。

【0027】以下、本発明の実施の形態について、図面 を参照して詳細に説明する。

【0028】(実施の形態1)本実施の形態では、通信 10 端末装置が検出したドップラー周波数に基づいて変調方 式を決定する場合について説明する。図1は、本発明の 実施の形態 1 にかかる基地局装置の構成を示すブロック 図である。なお、図1に示す基地局装置は、例えば図8 に示したスロットフォーマットを用いて、 通信端末装置 に対して送信を行うものとする。

【0029】図1において、受信RF部102は、アン テナ101を介して受信された信号(受信信号)に対し て、周波数変換等の所定の無線受信処理を行う。コマン ド復調部103は、無線受信処理された受信信号に対し 20 て復調処理を行うことにより、通信端末装置により送信 されたコマンドを復調する。適応変調部104は、コマ ンド復調部103により復調されたコマンドに従って決 定された変調方式を用いて、送信データに対して適応変 調を行う。送信RF部105は、所定の変調がなされた パイロット信号(パイロット信号1「PL1」およびパ イロット信号2「PL2」)と、適応変調がなされた送 信データとを時間多重することにより送信信号を生成 し、生成された送信信号に対して周波数変換等の所定の 無線送信処理を行い、無線送信処理された送信信号をア

【0030】図2は、本発明の実施の形態1にかかる通 信端末装置の構成を示すブロック図である。図2におい て、受信RF部202は、アンテナ201を介して受信 された信号(受信信号)に対して、周波数変換等の所定 の無線受信処理を行う。

【0031】適応復調部204は、無線受信処理された 受信信号を用いてデータ部の復調を行う。 PL復調部2 03は、無線受信処理された受信信号を用いてパイロッ ト信号の復調を行う。SIR検出部205は、PL復調 40 部203により復調されたパイロット信号を用いて受信 品質(例えばSIR等)を検出する。fd検出部206 は、PL復調部203により復調されたパイロット信号 を用いてfd(ドップラ周波数)を検出する。

> 【0032】要求変調方式決定部207は、SIR検出 部205により検出されたパイロット信号の受信品質 と、fd検出部206により検出されたfdとを用い て、基地局装置に対して要求する変調方式(例えば、Q PSK、16QAM、64QAM等)を決定する。な お、変調方式の決定方法については後述する。

する変調方式を決定するするので、フェージング環境下 50 【0033】コマンド生成部208は、要求変調方式決

(5)

定部207により決定された変調方式に対応するコマン ドを生成する。変調部209は、コマンド生成部208 により生成されたコマンドを変調する。送信RF部21 0は、変調部209により変調されたコマンドに対して 周波数変換等の所定の無線送信処理を行い、無線送信処 理されたコマンドをアンテナ201を介して送信する。 【0034】図3は、本発明の実施の形態1にかかる通

信端末装置におけるfd検出部206の構成を示すブロ ック図である。図3において、図2におけるPL復調部 203により復調されたパイロット信号のうち、「PL 10 1」がPL1チャネル推定部301に出力され、「PL 2」がPL2チャネル推定部302に出力される。

【0035】PL1チャネル推定部301は、復調され た「PLI」のチャネル推定を行う。PL2チャネル推 定部302は、復調された「PL2」のチャネル推定を 行う。

【0036】角度差検出部303は、Pし1チャネル推 定部301からのチャネル推定結果と、PL2チャネル 推定部302からのチャネル推定結果とを用いて、両チ ャネル推定結果の間の角度差θを算出する。

【0037】fd算出部304には、図8に示すスロッ トフレームにおける「PL1」と「PL2」との時間差 を示す情報(以下「時間差情報」という。)が入力され ている。このfd算出部304は、時間差情報と、角度 差検出部303からの角度差θとを用いて、ドップラ周 波数を検出する。

【0038】次いで、上記構成を有する通信端末装置お よび基地局装置の動作を説明する。まず、図1に示す基 地局装置において、送信RF部105では、所定の変調 がなされたパイロット信号(「PL1」および「PL 2」)と、適応変調がなされた送信データとが、図8に 示すように、時間多重されることにより、送信信号が生 成される。なお、適応変調がなされた送信データの詳細 については後述する。生成された送信信号は、所定の無 線送信処理がなされた後、アンテナ101を介して送信 される。

【0039】基地局装置により送信された信号は、アン テナ201を介して図2に示す通信端末装置に受信され る。図2において、アンテナ201を介して受信された 信号(受信信号)は、受信RF部202により、所定の 40 な決定方法について、さらに図5を参照して説明する。 無線受信処理がなされる。無線受信処理された受信信号 のうちデータ部 (図8参照) に対応する信号は、適応復 調部204に出力され、また、無線受信処理された受信 信号のうちパイロット信号に対応する信号は、PL復調 部203に出力される。

【0040】PL復調部203では、受信RF部202 からの受信信号に対する復調処理が行われる。これによ り、パイロット信号1「PL1」およびパイロット信号 2「PL2」が復調される。復調された「PL1」およ び「PL2」は、SIR検出部205およびfd検出部 50 【0049】図5から明かなように、fdが低い場合と

206に出力される。

【0041】SIR検出部205では、PL復調部20 3により復調された「PL1」および「PL2」を用い て、受信品質が検出される。検出された受信品質は、要 求変調方式決定部207に出力される。

【0042】fd検出部206では、PL復調部203 により復調された「PL1」および「PL2」を用い て、fd(ドップラ周波数)が検出される。fd検出の 具体例について、図3に加えて図4を参照して説明す る。図4は、本発明の実施の形態1にかかる通信端末装 置におけるfd検出部206によるfd検出方法の様子 を示す模式図である。

【0043】図3を参照するに、PL復調部203によ り復調された「PL1」は、PL1チャネル推定部30 1に入力され、また、Pし復調部203により復調され た「PL2」は、PL2チャネル推定部302に入力さ れる。

【0044】PL1チャネル推定部301では、復調さ れた「PL1」のチャネル推定がなされる。PL2チャ 20 ネル推定部302では、復調された「PL2」のチャネ ル推定がなされる。PL1チャネル推定部301および PL2チャネル推定部302によるチャネル推定の結果 は、角度差検出部303に出力される。

【0045】角度差検出部303では、図4に示すよう に、「PL1」のチャネル推定結果と「PL2」のチャ ネル推定結果との間の角度差 6 が算出される。算出され た角度差θはfd算出部304に出力される。

【0046】fd算出部304では、角度差検出部30 3により算出された角度差θと、時間差情報とを用い 30 て、フェージング変動が検出され、ドップラ周波数 (f d) が算出される。算出されたfdは要求変調方式決定 部207に出力される。

【0047】要求変調方式決定部207では、SIR検 出部205により検出されたパイロット信号の受信品質 と、fd検出部206により検出されたfdとを用い て、基地局装置に対して要求する変調方式が決定され

る。変調方式としては、本通信端末装置におけるデータ 部の受信品質が所望品質を満たし、かつ、最も髙速な変 調方式が決定される。以下、要求する変調方式の具体的

【0048】図5は、本発明の実施の形態1にかかる通 信端末装置における要求変調方式決定部207における 変調方式の決定方法の一例を示す模式図である。図5に おいては、基地局装置が送信データに例えばQPSK方 式、16QAM方式および64QAM方式のそれぞれを 適用したときに、例えばfdが高い場合とfdが低い場 台のそれぞれについて、通信端末装置におけるパイロッ ト信号の受信品質(SIR)に対する受信データの品質 (誤り率特性: BER)の関係が示されている。

f d が高い場合とでは、通信端末装置がパイロット信号 を同じ品質で受信しても、受信データの特性に差がみら れる。すなわち、fdが高い場合の受信データの特性 は、fdが低い場合の受信データの特性よりも劣化す る。このように、fdが変化すると、パイロット信号の 受信品質が同じであっても、受信データの特性が大きく 変化する。

【0050】そこで、本実施の形態では、fdの大きさ

に応じて用意した閾値を用いて、変調性式を決定する。 すなわち、例えばfdが高い場合とfdが低い場合のそ 10 れぞれに対して、閾値1および閾値2を用意する。 【0051】fdが高い場合においては、パイロット信 号の受信品質が閾値1 (fd高)よりも低いときには、 QPSK変調方式を選択し、バイロット信号の受信品質 が閾値1 (fd高)と閾値2 (fd高)の間にあるとき には、16QAM変調方式を選択し、また、パイロット 信号の受信品質が閾値2(fd高)より高いときには、 64QAM変調方式を選択する。逆に、fdが低い場合 においては、パイロット信号の受信品質が閾値1(fd 低)よりも低いときには、QPSK変調方式を選択し、 パイロット信号の受信品質が閾値1 (fd低)と閾値2 (fd低)の間にあるときには、16QAM変調方式を 選択し、また、パイロット信号の受信品質が閾値2 (f d低)より高いときには、64QAM変調方式を選択す

【0052】とこで、上記閾値は、次のようにして設定 することが可能である。すなわち、まず、fdが高い場 合とfdが低い場合のそれぞれについて、パイロット信 号の受信品質に対する受信データ(QPSK、16QA を求める。さらに、fdが高い場合とfdが低い場合の それぞれにおいて、16QAM変調方式が適用された際 における受信データの特性が、所望品質を満たすのに最 低限必要なパイロット信号の受信品質を閾値1とし、6 4 Q A M 変調方式が適用された際における受信データの 特性が、所望品質を満たすのに最低限必要なパイロット 信号の受信品質を閾値2とする。

【0053】なお、本実施の形態では、fdが低い場合 とfdが高い場合のそれぞれに応じて、変調方式を決定 する場合について説明したが、本発明は、3種類以上の 40 変調方式に対応する復調方式による復調処理がなされ fdに応じて、変調方式を決定する場合についても適用 可能なものである。この場合においても、上述したよう な方法で閾値を設定することが可能である。

【0054】このように変調方式を選択することは、検 出したドップラ周波数を用いて、パイロット信号と受信 データとの間における特性差を推定し、この特性差を考 慮して変調方式を選択することに相当する。以上が、要 求変調方式決定部207による変調方式の具体的な決定 方法である。

【0055】以上のようにして決定された変調方式は、

コマンド生成部208に通知される。コマンド生成部2 08では、要求変調方式決定部207により決定された 変調方式に対応するコマンドが生成される。コマンド生 成部208により生成されたコマンドは、変調部209 により変調され、送信RF部210により所定の無線送 信処理がなされた後、アンテナ201を介して送信され る。なお、適応変調部204における動作については後 述する。

【0056】通信端末装置により送信された信号は、ア ンテナ101を介して図1に示す基地局装置により受信 される。図1において、アンテナ101を介して受信さ れた信号(受信信号)は、受信RF部102により、所 定の無線受信処理がなされる。無線受信処理された受信 信号は、コマンド復調部103により復調される。これ により、通信端末装置により送信されたコマンドが復調 される。復調されたコマンドは、適応変調部104に出 力される。

【0057】適応変調部104では、コマンド復調部1 03からのコマンドに従って決定された変調方式を用い 20 て、通信端末装置への送信データに対する適応変調がな される。 適応変調された送信データは、送信RF部10 5に出力される。以後、上述したように、 送信RF部1 05において、所定の変調がなされたパイロット信号と 適応変調された送信データとが時間多重されることによ り、送信信号が生成されて、生成された送信信号は、所 定の無線送信処理されてアンテナ101を介して送信さ れる。

【0058】基地局装置により送信された信号は、上述 したように、アンテナ201を介して図2に示す通信端 Mや64QAM等が適用された際の受信データ)の特性 30 末装置により受信される。上述したように、受信RF部 202により無線受信処理された受信信号のうちデータ 部 (図8参照) に対応する信号は、適応復調部204に 出力され、また、無線受信処理された受信信号のうちパ イロット信号に対応する信号は、PL復調部203に出 力される。PL復調部203における動作については、 上述した通りである。

> 【0059】適応復調部204では、受信RF部202 により無線受信処理された受信信号に対して、図1に示 した基地局装置における適応変調部104で用いられた る。これにより受信データが得られる。

> 【0060】とのように、本実施の形態においては、バ イロット信号を用いてドップラ周波数を検出し、検出し たドップラ周波数およびパイロット信号の受信品質を用 いて、フェージング環境下における受信データの受信品 質を推定し、さらに、推定した受信データの受信品質に 基づいて、基地局装置に要求する変調方式を決定してい る。すなわち、検出したドップラ周波数を用いて、バイ ロット信号と受信データとの間における特性差を推定

50 し、この特性差を考慮して、基地局装置に要求する変調

方式を決定している。

【0061】これにより、フェージング環境下において も、最も高速な変調方式であり、かつ、通信端末装置に おける受信データの品質が所望品質を満たす変調方式を 確実に決定することができるので、髙品質かつ髙効率な データ通信を行うことができる。

【0062】なお、本実施の形態では、説明の簡略化の ために、1つの通信端末装置が、ドップラ周波数に基づ いて変調方式を決定して、決定した変調方式を基地局装 置に報知し、また、基地局装置が、との通信端末装置に 10 送信されたいかなる信号を用いることが可能である。 報知された変調方式を適用した送信データを、この通信 端末装置に送信する場合を例にとり説明したが、本発明 は、複数の通信端末装置に対して送信データを送信する 場合においても適用可能なものである。

【0063】すなわち、本発明は、複数の通信端末装置 か同様に変調方式を決定し、決定した変調方式を基地局 装置に報知し、また、基地局装置が、各通信端末装置か ら報知された変調方式に基づいて、いずれの通信端末装 置から送信データを送信するかを決定(スケジューリン て送信データを送信する場合においても適用可能なもの である。この場合、基地局装置は、ある通信端末装置に 対して送信データを送信する際には、この通信端末装置 に報知された変調方式を送信データに適用することはい うまでもない。

【0064】また、本実施の形態では、下り回線のスロ ットフォーマットとして図8に示したものを用いる場合 を例にとり説明したが、本発明は、これに限定されず、 図8に示したもの以外のスロットフォーマットを適用す ることが可能であることは、いうまでもない。具体的に 30 用いて復調処理を行う点を除いて、実施の形態 1 (図 は、適用可能なスロットフォーマットとは、データ部 (情報信号を送信するための部分)と、パイロット部 (既知参照信号を送信するための部分)と、が時間多重 されたスロットフォーマットに相当する。なお、fdを 検出することが可能である限り、各パイロット部間の時 間差、さらには1スロットにおけるパイロット部の数に ついては特別な限定はない。

【0065】(実施の形態2)本実施の形態では、基地 局装置が受信信号を用いてドップラ周波数を検出し、検 出したドップラ周波数、および、通信端末装置により報 40 知された変調方式に基づいて、通信端末装置に対する送 信データに適用する変調方式を決定する場合について説 明する。

【0066】上記実施の形態1では、通信端末装置がf dを検出している。しかし、fdというのは、通信端末 装置の移動速度によってのみ決まるものであるので、基 地局装置は、上り信号のfdを検出することにより、下 り信号の f dを検出することが可能である。そこで、本 実施の形態では、通信端末装置ではなく基地局装置がf dの検出を行う。

【0067】図6は、本発明の実施の形態2にかかる基 地局装置の構成を示すブロック図である。 なお、図6に おける実施の形態1(図1)と同様の構成については、 図1におけるものと同一の符号を付して、 詳しい説明を 省略する。

【0068】図6において、fd検出部601は、受信 RF部102により無線受信処理された受信信号を用い て、fdを検出する。なお、fd検出部601は、fd を検出するための受信信号として、通信端末装置により

【0069】補正部602は、コマンド復調部103に より復調されたコマンドを用いて、通信端末装置により 報知された変調方式を認識し、また、認識した変調方式 および f d 検出部601により検出された f dを用い て、通信端末装置に対する送信データに適用する変調方 式を決定する。適応変調部603は、補正部602によ り決定された変調方式を用いて、送信データに対して適 応変調を行う。

【0070】図7は、本発明の実施の形態2にかかる通 グ)し、スケジューリングに従って通信端末装置に対し 20 信端末装置の構成を示すブロック図である。なお、図7 における実施の形態1(図2)と同様の構成について は、図2におけるものと同様の符号を付して、詳しい説 明を省略する。

> 【0071】図7において、要求変調方式決定部701 は、SIR検出部205により検出されたパイロット信 号の受信品質を用いて、基地局装置に対して要求する変 調方式を決定する。

> 【0072】適応復調部702は、図6における適応変 調部603に用いられた変調方式に対応する復調方式を 2) における適応復調部204と同様の構成を有する。 【0073】次いで、上記構成を有する通信端末装置お よび基地局装置の動作を説明する。なお、本実施の形態 における実施の形態1と同様の動作については省略す る。まず、図7に示す通信端末装置において、要求変調 方式決定部701では、SIR検出部205により検出 されたパイロット信号の受信品質を用いて、基地局装置 に対して要求する変調方式が決定される。変調方式とし ては、本通信端末装置におけるデータ部の受信品質が所 望品質を満たし、かつ、最も高速な変調方式が決定され る。決定された変調方式は、上述したように、コマンド 生成部208に報知される。

> 【0074】次に、図6に示す基地局装置において、受 信RF部102により無線受信処理された受信信号は、 コマンド復調部103およびfd検出部601に出力さ れる。コマンド復調部103では、実施の形態1で説明 したような処理がなされて、通信端末装置により送信さ れたコマンドが復調される。

【0075】fd検出部601では、無線受信処理され 50 た受信信号を用いて、fdが検出される。具体的なfd J. C. 19

の検出方法としては、実施の形態1におけるfd検出部 206におけるものと同様のものを用いることが可能で ある。検出されたfdは、補正部602に通知される。 【0076】補正部602では、検出されたfdに基づ いて、コマンド復調部103により復調されたコマンド (すなわち、通信端末装置により報知された変調方式) に対する補正がなされる。具体的には、例えば、fdが 高い場合には、通信端末装置により報知された変調方式 が16QAMであったとしても、この通信端末装置に対 する送信データに適用する変調方式として、16QAM 10 よりも1段階伝送レートの遅い変調方式が設定される。 なお、fdの大きさに応じて、通信端末装置により報知 された変調方式よりも2段階以上遅い変調方式を設定す るようにしてもよい。補正部602により設定された変 調方式は、適応変調部603に通知される。

【0077】適応変調部603では、補正部602によ り設定された変調方式を用いて、通信端末装置への送信 データに対する適応変調がなされる。適応変調された送 信データは、実施の形態1で説明したように、送信RF 部105に出力される。

【0078】との後、図7に示す通信端末装置におい て、適応復調部702では、受信RF部202により無 線受信処理された受信信号に対して、図6に示した基地 局装置における適応変調部603で用いられた変調方式 に対応する復調方式による復調処理がなされる。これに より受信データが得られる。

【0079】このように、本実施の形態においては、基 地局装置は、通信端末装置により送信された信号を用い てドップラ周波数を検出し、検出したドップラ周波数に 応じて、パイロット信号の受信品質のみに基づいて通信 30 端末装置により決定された変調方式(の候補)を(伝送 レートのより遅い変調方式に)変更し、変更した変調方 式を適用した送信データを通信端末装置に送信する。す なわち、基地局装置は、検出したドップラ周波数を用い て、通信端末装置におけるパイロット信号と受信データ との間における特性差を推定し、この推定差を考慮し て、通信端末装置への送信データに適用する変調方式を 決定している。

【0080】これにより、フェージング環境下において も、最も高速な変調方式であり、かつ、通信端末装置に 40 決定方法を示す模式図 おける受信データの品質が所望品質を満たす変調方式を 確実に決定することができるので、髙品質かつ髙効率な データ通信を行うことができる。さらに、通信端末装置 においてドップラ周波数の算出を行う回路が不要となる ので、通信端末装置の回路構成が簡単になる。この結 果、通信端末装置における消費電力を少なくし、また、 通信端末装置を小型化することができる。

【0081】なお、上記実施の形態1では、通信端末装 置が、一例として、基地局装置により送信データに時間 多重された送信された2つのパイロット信号を用いて、 50 207,701 要求変調方式決定部

f d を検出する場合について説明したが、 通信端末装置 は、基地局装置により送信されたいかなる信号(バイロ ット信号以外の信号でもよい)を用いても f d を検出す ることが可能である。例えば、通信端末装置は、基地局 装置により送信データに符号多重または時間多重されて 送信されたパイロット信号(1つであっても複数であっ てもよい)を用いても、fdを検出することが可能であ

【0082】同様に、上記実施の形態2では、基地局装 層が、通信端末装置により送信された信号を用いて、f dを検出する場合について説明したが、上記と同様に、 基地局装置は、通信端末装置により送信データ等に符号 多重または時間多重されて送信されたいかなる信号を用 いても、fdを検出することが可能である。

[0083]

【発明の効果】以上説明したように、本発明によれば、 既知参照信号の受信品質とドップラ周波数とに基づい て、情報信号に適用する変調方式を決定するするので、 フェージング環境下においても受信品質を良好に保つ通 20 信端末装置を提供することができる。

【図面の簡単な説明】

【図1】本発明の実施の形態1にかかる基地局装置の構 成を示すブロック図

【図2】上記実施の形態1にかかる通信端末装置の構成 を示すブロック図

【図3】上記実施の形態1にかかる通信端末装置におけ るfd検出部の構成を示すブロック図

【図4】上記実施の形態1にかかる通信端末装置におけ るfd検出部によるfd検出方法の様子を示す模式図

【図5】上記実施の形態1にかかる通信端末装置におけ る要求変調方式決定部における変調方式の決定方法の一 例を示す模式図

【図6】本発明の実施の形態2にかかる基地局装置の構 成を示すブロック図

【図7】上記実施の形態2にかかる通信端末装置の構成 を示すブロック図

【図8】HDRを用いた通信に用いられる下り回線のス ロットフォーマットを示す模式図

【図9】従来のHDRを用いた通信における変調方式の

【符号の説明】

103 コマンド復調部

104,603 適応変調部

105, 210 送信RF部

102, 202 受信RF部

203 PL復調部

204,702 適応復調部

205 SIR検出部

206,601 fd検出部

16

15

208 コマンド生成部

* *602 補正部

【図1】

【図2】

【図3】

[図6]

[図7]

[図8]

【図9】

【手続補正書】

【提出日】平成13年8月1日(2001.8.1) 【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項 1 】 基地局装置により送信された既知参照信号を用いて、受信品質を検出する受信品質検出手段と、前記既知参照信号を用いてドップラ周波数を検出するドップラ周波数検出手段と、検出された受信品質および検出されたドップラ周波数を用いて、情報信号に適用する変調方式を決定する変調方式決定手段と、前記変調方式決定手段により決定された変調方式を基地局装置に要求する送信手段と、を具備することを特徴とする通信端末装置。

【 請求項 2 】 基地局装置により送信された既知参照信号を用いて、受信品質を検出する受信品質検出手段と、

検出された受信品質に基づいて情報信号に適用する変調 方式の候補を決定する候補決定手段と、前記決定手段に より決定された変調方式の候補を基地局装置に要求する 送信手段と、を具備することを特徴とする通信端末装 置。

【請求項3 】 変調方式決定手段は、ドップラ周波数に応じて受信品質の判定基準となる関値を設定し、SIR値と前記関値との大小関係に基づいて変調方式を決定するとを特徴とする請求項1に記載の通信端末装置。 【請求項4 】 候補決定手段は、ドップラ周波数に応じて受信品質の判定基準となる関値を設定し、SIR値と前記関値との大小関係に基づいて変調方式の候補を決定することを特徴とする請求項2に記載の通信端末装置。 【請求項5 】 通信端末装置により送信された信号を用いて、ドップラ周波数を検出するドップラ周波数検出手段と、検出されたドップラ周波数と通信端末装置により要求された変調方式の候補とを用いて、情報信号に適用する変調方式を決定する決定手段と、決定された変調方 式を適用した情報信号を前記通信端末装置に対して送信 する送信手段と、を具備することを特徴とする基地局装 置。

【請求項6】 通信端末装置が、基地局装置により送信された既知参照信号を用いて、受信品質を検出し、前記 既知参照信号を用いてドップラ周波数を検出し、検出された受信品質および検出されたドップラ周波数を用いて、情報信号に適用する変調方式を決定し、決定された変調方式の候補を前記基地局装置に要求し、

前記基地局装置が、前記通信端末装置により要求された 変調方式を用いて、前記変調方式を適用した情報信号を 前記通信端末装置に対して送信することを特徴とする通 信方法。

【請求項7】 通信端末装置が、基地局装置により送信された既知参照信号を用いて、受信品質を検出し、検出された受信品質を用いて、情報信号に適用する変調方式の候補を決定し、決定された変調方式の候補を前記基地局装置に要求し、

前記基地局装置が、前記通信端末装置により送信された 信号を用いて、ドップラ周波数を検出し、検出されたドップラ周波数と前記通信端末装置により要求された変調 方式の候補とを用いて、情報信号に適用する変調方式を 決定し、決定された変調方式を適用した情報信号を前記 通信端末装置に対して送信することを特徴とする通信方 法。

【手続補正2】

28 0

【補正対象書類名】明細書

【補正対象項目名】0011

【補正方法】変更

【補正内容】

[0011]

【課題を解決するための手段】本発明の通信端末装置は、基地局装置により送信された既知参照信号を用いて、受信品質を検出する受信品質検出手段と、前記既知参照信号を用いてドップラ周波数を検出するドップラ周波数検出手段と、検出された受信品質および検出されたドップラ周波数を用いて、情報信号に適用する変調方式を決定する変調方式決定手段と、前記変調方式決定手段により決定された変調方式を基地局装置に要求する送信手段と、を具備する構成を採る。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0012

【補正方法】変更

【補正内容 】

[0012] この構成によれば、既知参照信号を用いて ドップラ周波数を検出し、検出したドップラ周波数およ び既知参照信号の受信品質を用いて、フェージング環境 下における情報信号の受信品質を推定し、さらに、推定 した情報信号の受信品質に基づいて、基地局装置に要求 する変調方式を決定している。これにより、フェージン グ環境下においても、最も高速な変調方式であり、か つ、通信端末装置における情報信号の品質が所望品質を 満たす変調方式を確実に決定することができるので、高 品質かつ高効率なデータ通信を行うことができる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0013

【補正方法】変更

【補正内容】

【0013】本発明の通信端末装置は、基地局装置により送信された既知参照信号を用いて、受信品質を検出する受信品質検出手段と、検出された受信品質に基づいて情報信号に適用する変調方式の候補を決定する候補決定手段と、前記決定手段により決定された変調方式の候補を基地局装置に要求する送信手段と、を具備する構成を採る。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0014

【補正方法】変更

【補正内容】

【0014】 この構成によれば、通信端末装置により送信された信号を用いてドップラ周波数を検出し、検出したドップラ周波数に応じて、既知参照信号の受信品質のみに基づいて通信端末装置により決定された変調方式を(伝送レートのより遅い変調方式に)変更し、変更した変調方式を適用した情報信号を通信端末装置に送信する。これにより、フェージング環境下においても、最も高速な変調方式であり、かつ、通信端末装置における情報信号の品質が所望品質を満たす変調方式を確実に決定することができる。さらに、通信端末装置においてドップラ周波数の算出を行う回路が不要となるので、通信端末装置の回路構成が簡単になる。この結果、通信端末装置における消費電力を少なくし、また、通信端末装置を小型化することができる。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0015

【補正方法】変更

[補正内容]

【0015】本発明の通信端末装置は、変調方式決定手 段が、ドップラ周波数に応じて受信品質の判定基準とな る関値を設定し、SIR値と前記関値との大小関係に基 づいて変調方式を決定する構成を採る。

【手続補正7】

(補正対象書類名) 明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

a 40 "5

【0016】本発明の通信端末装置は、候補決定手段 は、ドップラ周波数に応じて受信品質の判定基準となる 関値を設定し、SIR値と前記関値との大小関係に基づいて変調方式の候補を決定する構成を採る。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0017

【補正方法】変更

【補正内容】

【0017】 とれらの構成によれば、ドップラ周波数の大きさに応じて関値を設定し、との関値とSIR値との大小比較から変調方式を決定することは、検出したドップラ周波数を用いて、パイロット信号と受信データとの間における特性差を推定し、この特性差を考慮して変調方式を選択することに相当するため、フェージング環境下においても、最も高速な変調方式であり、かつ、通信端末装置における情報信号の品質が所望品質を満たす変調方式を確実に決定することができるので、高品質かつ高効率なデータ通信を行うことができる。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】0018

【補正方法】変更

【補正内容】

【0018】本発明の基地局装置は、通信端末装置により送信された信号を用いて、ドップラ周波数を検出するドップラ周波数検出手段と、検出されたドップラ周波数と通信端末装置により要求された変調方式の候補とを用いて、情報信号に適用する変調方式を決定する決定手段と、決定された変調方式を適用した情報信号を前記通信端末装置に対して送信する送信手段と、を具備する構成を採る。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0019

【補正方法】変更

【補正内容】

【0019】 との構成によれば、既知参照信号の受信品質とドップラ周波数とに基づいて、情報信号に適用する変調方式を決定するので、フェージング環境下においても通信端末装置における受信品質を良好に保つ基地局装置を提供するととができる。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0020

【補正方法】変更

【補正内容】

【0020】本発明の通信方法は、通信端末装置が、基地局装置により送信された既知参照信号を用いて、受信品質を検出し、前記既知参照信号を用いてドップラ周波数を検出し、検出された受信品質および検出されたドップラ周波数を用いて、情報信号に適用する変調方式を決定し、決定された変調方式の候補を前記基地局装置に要求し、前記基地局装置が、前記通信端末装置により要求された変調方式を用いて、前記変調方式を適用した情報信号を前記通信端末装置に対して送信する方法を採る。

【手続補正12】

(補正対象書類名) 明細書

【補正対象項目名】0021

【補正方法】変更

【補正内容】

【0021】本発明の通信方法は、通信端末装置が、基地局装置により送信された既知参照信号を用いて、受信品質を検出し、検出された受信品質を用いて、情報信号に適用する変調方式の候補を決定し、決定された変調方式の候補を前記基地局装置に要求し、前記基地局装置が、前記通信端末装置により送信された信号を用いて、ドップラ周波数を検出し、検出されたドップラ周波数と前記通信端末装置により要求された変調方式の候補とを用いて、情報信号に適用する変調方式を決定し、決定された変調方式を適用した情報信号を前記通信端末装置に対して送信する方法を採る。

【手続補正13】

【補正対象書類名】明細書

【補正対象項目名】0022

【補正方法】変更

【補正内容】

[0022] <u>とれらの方法によれば、既知参照信号の受信品質とドップラ周波数とに基づいて、情報信号に適用する変調方式を決定するので、フェージング環境下においても受信品質を良好に保つ通信端末装置を提供すると</u>とができる。

【手続補正14】

[補正対象書類名] 明細書

【補正対象項目名】0023

【補正方法】削除

【手続補正15】

[補正対象書類名] 明細書

【補正対象項目名】0024

【補正方法】削除

【手続補正16】

【補正対象書類名】明細書

【補正対象項目名】0025

【補正方法】削除

フロントページの続き

Fターム(参考) 5K004 AA01 AA05 AA08 BB02 BB04

BB06 FA05 FB00 FD04 FD06

FE00 FG00 JA02 JA03 JB00

JD02 JD04 JD06 JE00 JG00

5K014 AA03 FA11 GA01 GA03 HA05

HA06

5K067 AA23 BB02 CC01 DD25 DD45

EE02 EE10 FF16 GG01 GG11