Week 4: Polynomial rings II

Let R be a commutative ring with identity. Let K be a field.

Practice Problems

- 1. Show that $f(x) = x^3 + x + t$ is irreducible in $\mathbb{C}(t)[x]$. Hint: Gauss' Lemma.
- 2. Find all irreducible polynomials in $\mathbb{Z}/2\mathbb{Z}[x]$ of degree ≤ 4 .
- 3. What are the maps from $\mathbb{Q}[t]/(t^3-2)$ into \mathbb{R} ? What about into \mathbb{C} ?

Presentation Problems

- 1. Define $\varphi \colon K[x,y,z] \to K[t]$ by $\varphi(x) = t$, $\varphi(y) = t^2$, and $\varphi(z) = t^3$. Find polynomials f_1, \ldots, f_n in K[x,y,z] such that $\ker \varphi = (f_1,\ldots,f_n)$. The curve given parametrically by $p(t) = (t,t^2,t^3)$ is called the "twisted cubic curve".
- 2. Let p be an odd prime of \mathbb{Z} . Prove $x^n p$ is irreducible over $\mathbb{Q}(i)$ for all n.
- 3. (a) Show that the polynomial $(x-1)\cdots(x-n)-1$ is irreducible in $\mathbb{Q}[x]$ for all $n\geq 1$.
 - (b) Show that the polynomial $(x-1)\cdots(x-n)+1$ is irreducible in $\mathbb{Q}[x]$ for all $n\geq 1$ except n=4.
- 4. Prove that $x^a + y^b + c^z$ irreducible in $\mathbb{C}[x, y, z]$. Hint: Use Eisenstein's Criterion.

Module Theory Problem

Given a chain complex \mathcal{C} of R-modules,

$$\cdots \longrightarrow C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \longrightarrow \cdots$$

we define the R-modules $Z_n(\mathcal{C}) = \ker d_n$ (the n-cycles) and $B_n(\mathcal{C}) = \operatorname{im} d_{n+1}$ (the n-boundaries). Note that $Z_n(\mathcal{C})$ and $B_n(\mathcal{C})$ are both submodules of C_n . Furthermore, since \mathcal{C} is a chain complex, $B_n(\mathcal{C})$ is a submodule of $Z_n(\mathcal{C})$. Then we can form the quotient $H_n(\mathcal{C}) = Z_n(\mathcal{C})/B_n(\mathcal{C})$, which is called the nth homology group. Despite the name, $H_n(\mathcal{C})$ is actually an R-module, rather than just an abelian group. Note that \mathcal{C} is exact if and only if every $B_n(\mathcal{C}) = Z_n(\mathcal{C})$ if and only if every $H_n(\mathcal{C}) = 0$. Thus, there is a sense in which the homology of a chain complex measures its failure to be exact. Problem 1 below gives an example of this.

1. Given open subsets U, V of $\mathbb{R}^n, \mathbb{R}^m$, let $C^{\infty}(U, V)$ denote the \mathbb{R} -vector space of infinitely differentiable functions from U to V. For $U \subseteq \mathbb{R}^2$, define the linear operator $D: C^{\infty}(U, \mathbb{R}^2) \to C^{\infty}(U, \mathbb{R})$ by $D(F) = \partial_u F_1 - \partial_x F_2$, where $F(x, y) = (F_1(x, y), F_2(x, y))$. Verify that

$$0 \longrightarrow \mathbb{R} \xrightarrow{\operatorname{const}} C^{\infty}(U, \mathbb{R}) \xrightarrow{\operatorname{grad}} C^{\infty}(U, \mathbb{R}^2) \xrightarrow{D} C^{\infty}(U, \mathbb{R}) \longrightarrow 0$$

is a chain complex of \mathbb{R} -modules, where $\operatorname{const}(c)$ is the constant function with value c. Determine the third homology group ($\ker D/\operatorname{im}\operatorname{grad}$) of this complex when $U = \mathbb{R}^2 \setminus \{0\}$.

Hint: Problem 5.8.4 in Advanced Calculus, by Folland.

2. A homomorphism of chain complexes $\alpha \colon \mathcal{A} \to \mathcal{B}$ is a commutative diagram of R-modules

$$\cdots \longrightarrow A_2 \xrightarrow{d_2} A_1 \xrightarrow{d_1} A_0 \xrightarrow{d_0} A_{-1} \xrightarrow{d_{-1}} A_{-2} \longrightarrow \cdots$$

$$\downarrow^{\alpha_2} \qquad \downarrow^{\alpha_1} \qquad \downarrow^{\alpha_0} \qquad \downarrow^{\alpha_{-1}} \qquad \downarrow^{\alpha_{-2}}$$

$$\cdots \longrightarrow B_2 \xrightarrow{d_2} B_1 \xrightarrow{d_1} B_0 \xrightarrow{d_0} B_{-1} \xrightarrow{d_{-1}} B_{-2} \longrightarrow \cdots$$

We call α a "chain map".

(a) Show that a chain map $\alpha: \mathcal{A} \to \mathcal{B}$ induces R-module homomorphisms $(\alpha_*)_n: H_n(\mathcal{A}) \to H_n(\mathcal{B})$ for each n.

A short exact sequence of chain complexes $0 \to \mathcal{A} \xrightarrow{\alpha} \mathcal{B} \xrightarrow{\beta} \mathcal{C} \to 0$ is a commutative diagram of R-modules

where each column is a short exact sequence of R-modules.

Let $0 \to \mathcal{A} \xrightarrow{\alpha} \mathcal{B} \xrightarrow{\beta} \mathcal{C} \to 0$ be a short exact sequence of chain complexes.

(b) For each n, apply part (c) of the snake lemma problem to the commutative diagram of R-modules

$$0 \longrightarrow A_n \xrightarrow{\alpha_n} B_n \xrightarrow{\beta_n} C_n \longrightarrow 0$$

$$\downarrow^{d_n} \qquad \downarrow^{e_n} \qquad \downarrow^{f_n}$$

$$0 \longrightarrow A_{n-1} \xrightarrow{\alpha_{n-1}} B_{n-1} \xrightarrow{\beta_{n-1}} C_{n-1} \longrightarrow 0$$

To get exact sequences of R-modules

$$0 \longrightarrow Z_n(\mathcal{A}) \longrightarrow Z_n(\mathcal{B}) \longrightarrow Z_n(\mathcal{C})$$

and

$$A_{n-1}/B_{n-1}(A) \longrightarrow B_{n-1}/B_{n-1}(B) \longrightarrow C_{n-1}/B_{n-1}(C) \longrightarrow 0$$

(c) For each n, apply the snake lemma to the commutative diagram of R-modules

$$A_n/B_n(\mathcal{A}) \longrightarrow B_n/B_n(\mathcal{B}) \longrightarrow C_n/B_n(\mathcal{C}) \longrightarrow 0$$

$$\downarrow^{d_n} \qquad \downarrow^{e_n} \qquad \downarrow^{f_n}$$

$$0 \longrightarrow Z_{n-1}(\mathcal{A}) \xrightarrow{\alpha_{n-1}} Z_{n-1}(\mathcal{B}) \xrightarrow{\beta_{n-1}} Z_{n-1}(\mathcal{C})$$

to obtain the exact sequence of R-modules

$$H_n(\mathcal{A}) \xrightarrow{\alpha_n^*} H_n(\mathcal{B}) \xrightarrow{\beta_n} H_n(\mathcal{C}) \xrightarrow{\delta} H_{n-1}(\mathcal{A}) \xrightarrow{\alpha_{n-1}^*} H_{n-1}(\mathcal{B}) \xrightarrow{\beta_{n-1}^*} H_{n-1}(\mathcal{C})$$
.

(d) Combine these exact sequences to obtain a long exact sequence of R-modules

$$\cdots \longrightarrow H_n(\mathcal{A}) \longrightarrow H_n(\mathcal{B}) \longrightarrow H_n(\mathcal{C}) \longrightarrow H_{n-1}(\mathcal{A}) \longrightarrow H_{n-1}(\mathcal{B}) \longrightarrow H_{n-1}(\mathcal{C}) \longrightarrow \cdots$$

Tricky Problems

- 1. Let *I* be an ideal of *R*. Call *I* Noetherian if all ascending chains of ideals of *R* contained in *I* stabilize. Note that *R* is a Noetherian ring if and only if *R* is Noetherian as an ideal of itself.
 - (a) Let $I \subseteq J$ be ideals, and suppose I and J/I are Noetherian (as ideals of R and R/I). Prove that J is Noetherian

For the remainder of this problem, suppose R is an Artinian ring with exactly one maximal ideal \mathfrak{m} , which satisfies $\mathfrak{m}^k = 0$ for some k. For ease of notation, let $\mathfrak{m}^0 = R$.

- (b) For each j with $0 \le j < k$, give $\mathfrak{m}^j/\mathfrak{m}^{j+1}$ an R/\mathfrak{m} -vector space structure. Show that there is an inclusion preserving bijection between subspaces of $\mathfrak{m}^j/\mathfrak{m}^{j+1}$ and ideals I of R such that $\mathfrak{m}^{j+1} \le I \le \mathfrak{m}^j$.
- (c) Use the assumption that R is Artinian to show that $\mathfrak{m}^j/\mathfrak{m}^{j+1}$ is finite dimensional. Deduce that $\mathfrak{m}^j/\mathfrak{m}^{j+1}$ is Noetherian as an ideal of the quotient ring R/\mathfrak{m}^{j+1} .
- (d) Inductively apply parts (a) and (c) to the chain

$$0 = \mathfrak{m}^k \le \mathfrak{m}^{k-1} \le \ldots \le \mathfrak{m}^2 \le \mathfrak{m} \le R$$

to show that R is Noetherian.

- (e) Combining this with Tricky Problem 2 of Week 2, and Tricky Problem 2(b) of Week 3, prove that every (commutative) Artinian ring is Noetherian.
- 2. Let f(x,y) be an irreducible degree two polynomial in $\mathbb{C}[x,y]$. Prove that $\mathbb{C}[x,y]/(f(x,y))$ is isomorphic to $\mathbb{C}[x,y]/(y-x^2)$ or to $\mathbb{C}[x,y]/(xy-1)$, and that these two rings are not isomorphic. For bonus points, prove this with \mathbb{C} replaced by any field satisfying the fundamental theorem of algebra.