**Exercice 1.** Soient  $f: I \to \mathbb{R}$  une fonction définie sur un intervalle I et  $a \in I$ . On considère la propriété suivante, notée  $\mathcal{P}$ :

$$(\mathcal{P}) \quad \exists \, \ell \in \mathbb{R}; \, \exists \, \omega: \, \forall h \in I; a+h \in I \implies f(a+h) = f(a) + \ell h + \omega(h) \quad \text{et} \quad \lim_{h \to 0} \frac{\omega(h)}{h} = 0.$$

1. Montrer que f est dérivable en  $a \iff f$  vérifié la propriété  $\mathcal{P}$ .

**Exercice 2.** Soit f une fonction numérique définie sur  $\mathbb{R}$  telle que :

- f est dérivable en 0
- Pour tout  $(x,y) \in \mathbb{R}^2$ , on a :

$$f(x+y) = f(x) + f(y) + xy$$

1. Soient x un élément de  $\mathbb{R}$  et h un élément de  $\mathbb{R}^*$ . Montrer que :

$$\frac{f(x+h) - f(x)}{h} = \frac{f(h) - f(0)}{h} + x$$

2. En déduire que f est dérivable sur  $\mathbb R$  et que :

$$\forall x \in \mathbb{R}, \quad f'(x) = x + f'(0)$$



*Exercice 3.* Soit f une fonction définie sur un intervalle ouvert I centré en a et dérivable en a.

1. Calculer:

$$\lim_{x \to a} \frac{a f(x) - x f(a)}{x - a}$$

2. Application : Calculer :

$$\lim_{x \to \pi} \frac{\pi \cos x + x}{x - \pi}$$



*Exercice* 4. On considère la fonction numérique f définie par :

$$f(x) = \frac{1}{x}(x+\alpha)^3$$

où  $\alpha$  est un réel strictement positif.

- 1. (a) Étudier les variations de la fonction f.
  - (b) En déduire que pour tout  $\alpha > 0$ :

$$\forall x \in \mathbb{R}_+^*; \quad \frac{27}{4}\alpha^3 \le f(x)$$

- 2. Soient a, b et c des réels strictement positifs.
  - (a) Montrer que:

$$\frac{1}{4}a(b+c)^2 \le \left(\frac{a+b+c}{3}\right)^3$$

(b) Dans quel cas a-t-on égalité?



**Exercice 5.** Soit  $f:[0,1] \to \mathbb{R}$  définie par  $f(x) = \frac{x}{1 + x \sin(1/x)}$ .

- 1. Montrer que f est dérivable sur [0,1].
- 2. Montrer que f' a une infinité de zéros dans [0,1] et que f est croissante.



**Exercice 6.** 1. Soit f la fonction définie sur  $\mathbb{R} \setminus \{-2\}$  par :  $f: x \mapsto \frac{1-x^2}{2+x}$ . Calculer f'.

- 2. Soit  $\varphi$  la fonction définie sur  $\mathbb{R}$  par :  $\varphi : t \mapsto \frac{1-\sin^2 t}{2+\sin t}$ . Calculer  $\varphi'$ .
- 3. Vérifier que pour tout réel t,  $\varphi(t) = f(\sin t)$  et  $\varphi'(t) = f'(\sin t) \times \cos t$ .
- 4. Montrer que  $\varphi$  est  $2\pi$ -périodique.
- 5. Montrer que f est strictement décroissante. En déduire les variations de  $\varphi$  sur l'intervalle  $[0,2\pi]$

**Exercice** 7. Soit n un entier naturel non nul, on considère la fonction définie sur  $\mathbb{R}$  par :  $f(x) = (1+x)^n$ .

- 1. Calculer f'(x); donner le résultat sous deux formes différentes dont l'une utilisera le développement de f(x).

  Donner de même deux expressions de f''(x).
- 2. En déduire, en fonction de n, la valeur des expressions A et B suivantes :  $A = \sum_{p=1}^{n} pC_n^p$ ;  $B = \sum_{p=2}^{n} p(p-1)C_n^p$ .

On rappelle que  $(1+x)^n = \sum_{p=0}^n C_n^p x^p$ 



**Exercice 8.** On considère la fonction numérique f définie par :

$$\forall x \in ]0, \pi[, \quad f(x) = |\cos(x)|\sqrt{1 - \cos x}$$

- 1. Étudier la dérivabilité de la fonction f en  $\frac{\pi}{2}$  et sur  $]0,\pi[\setminus\{\frac{\pi}{2}\}.$
- 2. (a) Montrer que pour tout  $x \in ]0,\pi[$ :

$$2f(x)f'(x) = \sin 2x \left(\frac{3}{2}\cos x - 1\right)$$

(b) Montrer que pour tout  $x \in ]0, \frac{\pi}{2}[$ :

$$f(x) \le \frac{2\sqrt{3}}{9}$$



**Exercice 9.** Soit f une fonction numérique définie sur un intervalle ouvert I centré en a et dérivable en a.

1. On considère la fonction numérique q définie par :

$$q(x) = f(a + x^2)$$

- (a) Montrer que g est dérivable en 0 et déterminer g'(0).
- (b) Calculer la limite:

$$\lim_{x \to 0} \frac{f(a+x^2) - f(a+x)}{x}$$



**Exercice 10.** On considère les fonctions numériques f et g définies par :

$$f(x) = \sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1}$$
$$g(x) = x - \sqrt{x^2 - x + 1}$$

- 1. Montrer que pour tout  $x \in \mathbb{R}$ :  $x > 0 \iff f(x) > 0$
- 2. Montrer que pour tout  $x \in \mathbb{R}$ :

$$|f(x)| = \sqrt{2g(x^2+1)}$$

3. Montrer que pour tout  $x \in \mathbb{R}$ :

$$g(x) < \frac{1}{2}$$

- 4. En déduire que q'(x) > 0 pour tout  $x \in \mathbb{R}$ .
- 5. En déduire que les variations de f.



**Exercice 11.** On considère la fonction numérique f définie par :

$$f(x) = \arctan\left(\frac{x-1}{x+1}\right)$$

- 1. Déterminer la fonction dérivée f' de la fonction f.
- 2. En déduire que :

$$\forall x \in ]-1, +\infty[ \quad f(x) = \arctan x - \frac{\pi}{4}$$
$$\forall x \in ]-\infty, -1[ \quad f(x) = \arctan x + \frac{3\pi}{4}$$

**Exercice 12.** À tout réel non nul a, on associe la fonction numérique  $f_a$  définie par :

$$f_a(x) = \arctan\left(\frac{x+a}{1-ax}\right)$$

- 1. Soit  $a \in \mathbb{R}^*$ .
  - (a) Déterminer la fonction dérivée  $f'_a$  de la fonction  $f_a$ .
  - (b) Montrer que pour tout  $x \in \mathbb{R} \setminus \left\{ \frac{1}{a} \right\}$ :

$$f_{-a}(x) = -f_a(-x)$$

- 2. Soit  $a \in \mathbb{R}^*$ .
  - (a) Montrer que pour tout  $x \in \left] \frac{1}{a}, +\infty \right[$ :

$$f_a(x) = \arctan x + \arctan a$$

(b) Montrer que:

$$\arctan a + \arctan\left(\frac{1}{a}\right) = \frac{\pi}{2}$$

(c) En déduire que pour tout  $x \in \left] -\infty, \frac{1}{a} \right[$ :

$$f_a(x) = \arctan x + \arctan a + \pi$$

3. En déduire que pour tous  $x, y \in \mathbb{R}$  avec  $xy \neq 1$ :

$$\arctan\left(\frac{x+y}{1-xy}\right) = \arctan x + \arctan y + \epsilon \pi$$

où  $\epsilon \in \{-1, 0, 1\}$ 

4. Application : Montrer que :

$$\forall k \in \mathbb{N}; \ \arctan(\frac{1}{1+k+k^2}) = \arctan(k+1) - \arctan(k)$$

En déduire la limite de :

$$S_n = \sum_{k=0}^n \arctan(\frac{1}{1+k+k^2})$$

Exercice 13. On considère la fonction numérique f définie par :

$$f(x) = x^6 + 3x^4 + 3x^2 + 3$$

1. Déterminer la fonction numérique u telle que :

$$\forall x \in \mathbb{R}, \quad f'(x) = 3u'(x) \cdot u^2(x)$$

- 2. (a) Montrer que f est une bijection de  $\mathbb{R}$  vers  $]-\infty, +\infty[$ .
  - (b) Soit  $f^{-1}$  la bijection réciproque de f.
  - (c) Déterminer la fonction dérivée de  $f^{-1}$ .

**Exercice 14.** oit f une fonction numérique dérivable sur  $\mathbb{R}_+$  telle que :

$$\begin{cases} f(0) = f'(0) = 0 \\ \exists a \in \mathbb{R}_+^* \text{ tel que } f(a) = 0 \end{cases}$$

- 1. Montrer qu'il existe  $b \in ]0, a[$  tel que f'(b) = 0.
- 2. On considère la fonction numérique g définie par :

$$g(x) = \begin{cases} \frac{f(x)}{x}, & x > 0\\ 0, & x = 0 \end{cases}$$

- (a) Montrer que g est dérivable sur  $\mathbb{R}_+^*$ .
- (b) Montrer que g est continue à droite en 0.
- (c) En déduire qu'il existe  $c \in ]0, b[$  tel que f(c) = cf'(c).

**Exercice 15.** Soit f une fonction numérique dérivable sur  $\mathbb R$  telle que :

$$\forall x \in \mathbb{R}, \quad f'(x) \neq 0$$

1. Montrer que f est injective.

2. On suppose qu'il existe un réel  $\alpha$  tel que  $f'(\alpha) > 0$  et que f' est continue sur  $\mathbb{R}$ . Montrer que f est strictement croissante sur  $\mathbb{R}$ .



**Exercice 16.** Soit f définie sur ]0,1] par  $f(x)=x^3(1-x)\sin\left(\frac{1}{x^2}\right)$ , et prolongée par continuité en 0.

- 1. Montrer que f est dérivable à dérivée bornée.
- 2. Montrer que f'([0,1]) n'est pas un intervalle fermé.



**Exercice 17.** Déterminer les réels a, b et c de sorte que la fonction définie sur  $\mathbb{R}$  par

$$f(x) = \begin{cases} \frac{x - ax^2}{x - 1} & \text{si } x < 0\\ x^2 + bx + c & \text{si } x \ge 0 \end{cases}$$

soit de classe  $C^2$ . Est-elle alors de classe  $C^3$ ?



1. Soit f et q deux fonctions continues sur [a,b] et dérivables sur Exercice 18. [a, b[. Montrer qu'il existe  $c \in ]a, b[$  tel que

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

2. Soit f et g deux fonctions dérivables sur un intervalle ouvert I, et soit  $x_0 \in I$ tel que  $q'(x_0) \neq 0$ . Montrer que :

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(x_0)}{g'(x_0)}.$$

(C'est la règle de L'Hospital)

pour le cas où g(x) = x, on peut le considérer au programme et l'utiliser. si fest continue sur I et dérivable sur  $I \setminus x_o$  alors

f continue en  $x_0$  et  $\lim_{x\to x_0} f'(x) \in \mathbb{R} \implies f$  est dérivable en  $x_0$ 

3. Calculer les limites suivantes :

(a) 
$$\lim_{\substack{x \to 1 \\ x \neq 1}} \frac{\sqrt{x} - 1}{\ln x}$$

(d) 
$$\lim_{x\to 0} \frac{a^x - b^x}{c^x - d^x} \ (c \neq d)$$

(b) 
$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{e^x - 1}{\sin x - 1}$$

(a) 
$$\lim_{\substack{x \to 1 \ x \neq 1}} \frac{\sqrt{x} - 1}{\ln x}$$
   
(b)  $\lim_{\substack{x \to 0 \ x \neq 0}} \frac{e^x - 1}{\sin x - 1}$    
(c)  $\lim_{x \to e} \frac{\sqrt{x} - \sqrt{e}}{\ln x - 1}$    
(d)  $\lim_{x \to 0} \frac{a^x - b^x}{c^x - d^x}$   $(c \neq d)$ ,   
(e)  $\lim_{x \to 1} \frac{\sin x - \sin \frac{1}{x}}{e^x - e^{1/x}}$    
(f)  $\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2}\right)$ 

(c) 
$$\lim_{x\to e} \frac{\sqrt{x} - \sqrt{e}}{\ln x - 1}$$

(f) 
$$\lim_{x\to 0} \left( \frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$$

**Exercice 19.** Soit a un nombre réel. On définit la fonction f sur  $[0, \frac{\pi}{2}]$  par  $f(x) = \frac{\sin x - x}{1 - \cos x} \text{ si } x \neq 0 \text{ et } f(0) = a$ 

- 1. Montrer que :  $\forall x \in \mathbb{R}$ ;  $\sin x < x < \tan x$
- 2. Montrer qu'il existe une unique valeur  $a_0$  de a pour laquelle la fonction f est continue sur  $[0, \frac{\pi}{2}]$ .
- 3. Dans la suite de l'exercice, on supposera que  $a = a_0$ . Montrer que f est dérivable sur  $[0, \frac{\pi}{2}]$  et expliciter  $f'(x) \ \forall x \in [0, \frac{\pi}{2}]$ .
- 4. La fonction f' est-elle continue sur  $\left[0, \frac{\pi}{2}\right]$ ?

Exercice 20. Étudier la régularité de la fonction

$$f: x \mapsto \begin{cases} \ln(1+x) & \text{si } x \in [-1, 0[\\ x - \frac{x^2}{2} & \text{si } x \in [0, 1] \end{cases}$$

**Exercise 21.** Soit  $\lambda$  et  $f_{\lambda}: x \mapsto x^{2+\lambda} \sin \frac{1}{x} \text{ sur } \mathbb{R}_{+}^{*}$ , avec  $\lambda \in [0, 2[$ .

- 1. Montrer que  $f_{\lambda}$  peut être prolongée par continuité en 0. On note encore  $f_{\lambda}$  la fonction prolongée, sur  $\mathbb{R}_+$ , avec  $f_{\lambda}(0) = 0$ .
- 2. Montrer que :
  - (a) Si  $\lambda \in [0,1[$ ,  $f_{\lambda}$  est dérivable avec une dérivée continue sur  $\mathbb{R}_+$ , mais n'est pas deux fois dérivable en 0.
  - (b) Si  $\lambda \in [1, 2[$ ,  $f_{\lambda}$  est deux fois dérivable sur  $\mathbb{R}_{+}$ , et la dérivée seconde n'est pas bornée sur aucun voisinage de 0.
  - (c) Si  $\lambda = 2$ ,  $f_{\lambda}$  est deux fois dérivable mais sa dérivée seconde n'est pas continue sur  $\mathbb{R}_+$ , et la dérivée seconde est bornée au voisinage de 0.



**Exercice 22.** On considère la fonction  $f_{a,b}$  sur  $\mathbb{R}$ , définie par :

$$f_{a,b}(x) = a\sin x + b\sin^3 x.$$

- 1. Calculer  $f'_{a,b}(x)$  et  $f''_{a,b}(x)$ .
- 2. En déduire l'expression générale des primitives de la fonction  $f_{a,b}$ .
- 3. Quelle est, parmi ces fonctions données, celle dont la courbe représentative C passe par le point  $A\left(\frac{\pi}{2};0\right)$  et a une tangente au point d'abscisse zéro parallèle à la première bissectrice  $(\Delta):y=x$ ?



**Exercice 23.** Montrer que la fonction f définie par f(x) = x|x| est dérivable sur  $\mathbb{R}$  et que, pour tout  $x \in \mathbb{R}$ ,

$$f'(x) = 2|x|.$$

Montrer que f admet des primitives sur  $\mathbb{R}$ , déterminer celle qui vérifie F(1) = 0.

Exercice 24. On considère la fonction numérique f définie par :

$$\forall x \in \mathbb{R}, \quad f(x) = \sqrt{x^2 - x + 1}$$

Soit F la primitive de f telle que F(0) = 0.

1. On considère la fonction numérique G définie par :

$$G(x) = F(x) - \frac{1}{2}x^2 + x$$

- (a) Étudier les variations de la fonction G.
- (b) En déduire que :

$$\forall x \in \mathbb{R}^+, \quad \frac{1}{2}x^2 - x \le F(x)$$

(c) Déterminer les limites suivantes :

$$\lim_{x \to +\infty} \frac{F(x)}{x} \quad \text{et} \quad \lim_{x \to +\infty} F(x)$$

2. (a) Montrer que:

$$\forall x \in \mathbb{R}_+, \quad F(x) < x$$

(b) En déduire la limite :

$$\lim_{x \to +\infty} F(x)$$

Exercice 25. Déterminer le domaine de définition des fonctions suivantes puis montrer qu'elles sont continues et dérivables sur leurs domaines de définition respectifs et calculer leurs dérivées.

- 1.  $b(x) = \ln(e^x + e^{-x})$
- 2.  $c(x) = \sqrt{x^2 2x 1}$
- 3.  $d(x) = 1 + xe^{\frac{1}{1-x}}$
- 4.  $e(x) = \ln(e^{2x} 3e^x + 2)$
- 5.  $f(x) = (x+1)^x$

**Exercice 26.** Parmi les fonctions suivantes, lesquelles sont continues en  $x_0$ ? Parmi celles qui sont continues en  $x_0$ , lesquelles sont dérivables en  $x_0$ ? Dans ce cas, calculer la dérivée en  $x_0$ .

1. 
$$x_0 = 1$$
 et  $a(x) = \begin{cases} \frac{\sin \pi x}{\cos \pi x} & \text{si } x \neq 1\\ 1 & \text{si } x = 1 \end{cases}$ 

2. 
$$x_0 = 0$$
 et  $b(x) = \begin{cases} x \ln x^2 & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ 

3. 
$$x_0 = 0$$
 et  $c(x) = \begin{cases} x^2 \ln x^2 & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ 

4. 
$$x_0 = 0$$
 et  $d(x) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$ 

5. 
$$x_0 = 0$$
 et  $e(x) = \begin{cases} \frac{\exp(-\frac{1}{x})}{x^2 + 1} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ 

6. 
$$x_0 = 1$$
 et  $f(x) = \begin{cases} -x & \text{si } x < 1\\ \cos \pi x & \text{si } x \geqslant 1 \end{cases}$ 

*Exercice* 27. Partie I: Encadrement de  $\sqrt{1+a}$ 

Soit les fonctions :

$$f: x \mapsto \sqrt{x+1}$$
 et  $q: x \mapsto (x+1)\sqrt{x+1}$ .

- 1. Étudier les variations de f sur [0; 1].
- 2. Étudier les variations de g sur [0; 1].
- 3. Soit  $a \in [0; 1]$ . Montrer que, quel que soit  $x \in [0; a]$ ,

$$g'(0) \le g'(x) \le g'(a).$$

4. En appliquant le théorème des inégalités des accroissements finis à la fonction g sur l'intervalle [0; a], montrer que :

$$\frac{3}{2}(a-0) \le (1+a)\sqrt{1+a} - 1 \le \frac{3}{2}\sqrt{1+a}(a-0).$$

5. En déduire que, pour tout  $a \in [0; 1]$ :

$$(1) \quad \frac{1 + \frac{a}{2}}{1 + a} \le \sqrt{1 + a},$$

(2) 
$$1 - \frac{a}{2} \le \frac{1}{\sqrt{1+a}}$$
,

(3) 
$$\frac{1}{1-\frac{a}{2}} \ge \sqrt{1+a}$$
.

Conclure.

Partie II: d'autres Encadrement de  $\sqrt{1+a}$ 

1. Étudier f sur  $\left[-\frac{1}{2};1\right]$ .

2. Montrer en calculant f'' que la dérivée f' de f est strictement croissante sur  $\left[-\frac{1}{2};1\right]$ .

3. En appliquant le théorème des inégalités des accroissements finis à f sur l'intervalle [0;a], montrer que pour  $a\in[0;1]$ :

$$\frac{1}{2\sqrt{1+a}}a \le \sqrt{1+a} - 1 \le \frac{a}{2}.$$

4. Montrer de même que pour  $-\frac{1}{2} \le a \le 0$ :

$$-\frac{a}{2} \le 1 - \sqrt{1+a} \le -\frac{a}{2\sqrt{1+a}}.$$

5. En déduire que pour  $-\frac{1}{2} \le a \le 1$ :

$$1 + \frac{a}{2\sqrt{1+a}} \le \sqrt{1+a} \le 1 + \frac{a}{2}.$$

Conclure.



## Exercice 28. Partie I : Inégalités pour les fonctions trigonométriques

1. En utilisant les inégalités des accroissements finis, montrer que, pour tout réel  $x \geq 0$ , on a :

$$-x \le \sin x \le x$$
.

- 2. Soient f et g deux fonctions dérivables sur  $\mathbb{R}$ .
  - (a) Montrer que:

$$\forall x \ge 0, f'(x) \le g'(x) \implies f(x) - f(0) \le g(x) - g(0).$$

Remarque : Ce résultat fait partie du cours et peut être réutilisé sans démonstration.

### Méthode d'utilisation de résultat précédente :

Pour montrer  $f(x) \leq g(x)$  on commence à vérifier que f(0) = g(0) puis on montre  $f'(x) \leq g'(x)$ .

(b) En déduire que, pour tout réel  $x \ge 0$ , on a :

$$1 - \frac{x^2}{2} \le \cos x \le 1 + \frac{x^2}{2}.$$

- (c) Montrer que les inégalités de la question b) sont valides pour tout réel  $x \in \mathbb{R}$ .
- 3. On sait que  $\cos x \le 1$  pour tout  $x \in \mathbb{R}$ . On conserver donc les inégalités :

$$1 - \frac{x^2}{2} \le \cos x \le 1.$$

En appliquant itérativement le procédé précédent, montrer que :

• pour tout réel  $x \in \mathbb{R}$ ,

$$1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{4!},$$

• pour tout réel  $x \ge 0$ ,

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \le \sin x \le x - \frac{x^3}{3!} + \frac{x^5}{5!}.$$

# Partie II : Inégalités pour d'autres fonctions

Démontrer les inégalités suivantes :

- 1. Pour tout  $x \in \mathbb{R}_+$ ,  $\sqrt{1+x} \le 1 + \frac{x}{2}$ .
- 2. Pour tout  $x \in [0,1]$ ,  $x \frac{x^2}{2} \le \ln(1+x) \le x$ .
- 3. Pour tout  $x \in \mathbb{R}_+$ ,  $xe^x + 1 \ge e^x \ge 1 + x + \frac{x^2}{2}$ .
- 4. Pour tout  $x \in \mathbb{R}_{-}$ ,  $1 + x \le e^x \le 1 + x + \frac{x^2}{2}$ .
- 5. Pour tout  $x \ge 1$ ,  $\ln x \le 2\sqrt{x}$ .

À l'aide des résultats précédents, calculer les limites suivantes :

$$\lim_{x \to 0} \frac{\ln(1+x)}{x}, \quad \lim_{x \to +\infty} \frac{\ln x}{x}, \quad \lim_{x \to 0} \frac{\sin(x) - x}{x^3},$$

$$\lim_{x \to 0^+} \frac{e^x - 1}{x}, \quad \lim_{x \to 0^-} \frac{e^x - 1}{x}, \quad \lim_{x \to 0} \frac{e^x - 1}{x}.$$

*Exercice* 29. Partie I: Calculer les dérivées première, seconde et nième des fonctions suivantes :

- 1.  $f: x \mapsto 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$  (rappel:  $n! = 1 \times 2 \times 3 \times \dots \times n$ ),
- $2. \ g: x \mapsto x^n,$
- 3.  $h: x \mapsto \frac{1}{x+1}$ ,
- 4.  $l: x \mapsto \cos x$ ,
- 5.  $m: x \mapsto \sin x$ ,
- 6.  $n: x \mapsto e^x$ .

## Partie II: Une formule de Leibniz

Soit f et g deux fonctions n fois dérivables sur un intervalle I.

1. Montrer que la fonction fg est n fois dérivable sur I et que

$$(fg)^{(n)} = f^{(n)}g + C_n^1 f^{(1)}g^{(n-1)} + \dots + C_n^p f^{(p)}g^{(n-p)} + \dots + f^{(n)}g.$$

(On pourra établir cette formule par récurrence.)

## 2. Application

(a) Calculer de deux façons la dérivée nième de :

$$x \mapsto x^{2n}$$
.

(Remarquer que  $x^{2n} = x^n \cdot x^n$ .)

(b) En déduire que :

$$\sum_{k=0}^{n} (C_n^k)^2 = \frac{(2n)!}{(n!)^2}.$$

(c) Trouver la dérivée n-ième de :

$$x \mapsto e^x cos(x)$$
.



**Exercice** 30. 1. Étudier les variations de la fonction f définie sur  $\mathbb{R}$  par

$$f(x) = x + \sqrt{1 + x^2}.$$

Tracer la courbe représentative de f dans un plan P rapporté à un repère orthonormal.

- 2. Montrer que f admet une application réciproque  $f^{-1}$ . Tracer la courbe représentative de  $f^{-1}$  dans le plan P. Calculer  $x \sqrt{1 + x^2}$  en fonction de f(x). En déduire l'expression de  $f^{-1}(x)$ .
- 3. Étudier les variations de l'application g de  $\mathbb{R}^*$  dans  $\mathbb{R}$  telle que :

$$g(u) = \frac{1}{2} \left( u + \frac{1}{u} \right).$$

(On ne demande pas de représentation graphique de g.)

4. Soit n un entier naturel. On pose :

$$P_n(x) = \frac{1}{2} \left[ \left( x + \sqrt{1 + x^2} \right)^n + \left( x - \sqrt{1 + x^2} \right)^n \right].$$

Montrer, sans le calculer explicitement, que  $P_n(x)$  est un polynôme dont on précisera le degré en fonction de n. (penser à la récurrence) Comparer  $P_n(x)$  et  $P_n(-x)$ .

5. En notant  $\varphi$  la fonction telle que  $\varphi(x)=x^n,$  montrer que, suivant la parité de n, on a :

$$P_n = g \circ \varphi \circ f$$
 ou  $P_n = f^{-1} \circ \varphi \circ f$ .

Déduire de ce qui précède le tableau de variation de  $P_n$ .

6. On suppose dans ce qui suit que n est un entier pair non nul. a étant un paramètre réel, étudier le nombre de racines réelles de l'équation :  $P_n(x) = a$ .



- 1. Étude de f. Points d'inflexion.
- 2. Montrer que la dérivée n-ième s'écrit :

$$\forall t \in \mathbb{R}, \quad f^{(n)}(t) = \frac{P_n(t)}{(1+t^2)^{\frac{2n+1}{2}}},$$

où  $P_n$  est un polynôme de degré n. Calculer  $a_n$ , le coefficient dominant de  $P_n$ .

3. Montrer que  $P'_n = -n^2 P_{n-1}$ .



- 1. Montrer que f est continue sur  $\mathbb R$  puis qu'elle est dérivable sur  $\mathbb R$  et calculer sa dérivée.
- 2. La fonction f' est-elle continue sur  $\mathbb{R}^{\times}$ ? Est-elle continue en 0?
- 3. Soit  $g(x) = xe^x e^x + 1$ . Étudier le signe de la fonction g. En déduire le tableau de variation de f.
- 4. Montrer que f réalise une bijection de  $\mathbb{R}_+$  (resp.  $\mathbb{R}_-$ ) sur un intervalle à déterminer.

**Exercice 33.** On définit une fonction f sur  $\mathbb{R}$  par  $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ .

1. Étudier la parité de f puis déterminer  $\lim_{x\to+\infty} f(x)$  et  $\lim_{x\to-\infty} f(x)$ .

- 2. Montrer que f est dérivable sur  $\mathbb R$  et calculer sa dérivée. En déduire son tableau de variation.
- 3. Montrer que f réalise une bijection de  $\mathbb R$  sur un intervalle à déterminer.

