Problem 1. Use mathematical induction to prove that

$$3 + 3 \cdot 4 + 3 \cdot 4^2 + \dots + 3 \cdot 4^n = 4^{n+1} - 1$$

for all integers $n \geq 0$.

Proof. Using the steps of induction I show that this holds for the base case n=0

$$4^{0+1} - 1 = 4 - 3 = 3$$

Now, I assume this holds for $n = k, k \ge 0$, that is

$$3 + 3 \cdot 4 + 3 \cdot 4^2 + \dots + 3 \cdot 4^n = 4^{n+1} - 1$$

then I want to show this also holds for n = k + 1. Factoring the L.H.S of this equation

$$3 + 3 \cdot 4 + 3 \cdot 4^2 + \dots + 3 \cdot 4^n + 3 \cdot 4^{n+1} = 4^{n+2} - 1$$

I get

$$3 + 4(3 + 4 \cdot 3 + \dots + 4^{n-1} \cdot 3 + 4^n \cdot 3) = 4^{n+2} - 1$$

Doing algebraic manipulation I get

$$4 + 4(3 + 4 \cdot 3 + \dots + 4^{n-1} \cdot 3 + 4^n \cdot 3) = 4^{n+2}$$

it follows that

$$1 + 1(3 + 4 \cdot 3 + \dots + 4^{n-1} \cdot 3 + 4^n \cdot 3) = 4^{n+1}$$

and

$$3 + 3 \cdot 4 + \dots + 3 \cdot 4^{n-1} + 3 \cdot 4^n = 4^{n+1} - 1$$

This shows that the identity still holds when n = k + 1, and the induction is completed.

Problem 2. Solve the congruence

$$175x \equiv 234 \mod(603)$$

To find x, I can rewrite the problem as

$$175^{-1}175x \equiv 175^{-1}234 \pmod{603} \tag{1}$$

and to find 175^{-1} , I can use the extended euclidean algorithm to find s and t such that

$$175s + 603t \equiv 1 \pmod{603}$$

s_k	t_k	q_k		
0	1			
1	0	3	603	175
-3	1	2	525	156
7	-2	4	78	19
-31	9	9	76	18
286	-83	2	2	1
			2	
			0	

So, plugging s and t into the previous equation I get,

$$175(286) + 603(-83) \equiv 1 \pmod{603}$$

which means that

$$175^{-1} \equiv 286 \pmod{603}$$

Finally, substituting the inverse into (1) I get

$$x \equiv 286 \cdot 234 \equiv 594 \pmod{603}$$

Problem 3. Approximate, in 4 decimal places, all the 6th roots of -3 + 8i.

Using De Moivre's theorem, I will use the fact

$$z^{\frac{1}{n}} = r^{\frac{1}{n}} \cdot \operatorname{cis}\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)$$

to find the 6th roots of -3 + 8i by substituting r, n, and k with the corresponding values:

$$z = -3 + 8i$$

$$\theta = \pi - \tan^{-1}\left(\frac{8}{3}\right)$$

$$r = \sqrt{(-3)^2 + (-8)^2} = \sqrt{73}$$

$$n = 6$$

$$k = 0, 1, 2, ..., n - 1$$

Substituting these values, I get the roots to be

$$z^{\frac{1}{6}} = \sqrt[12]{73} \cdot \operatorname{cis}\left(\frac{\pi - \tan^{-1}\left(\frac{8}{3}\right)}{6} + \frac{2 \cdot 0 \cdot \pi}{6}\right) \approx 1.3565 + 0.4519i$$

$$z^{\frac{1}{6}} = \sqrt[12]{73} \cdot \operatorname{cis}\left(\frac{\pi - \tan^{-1}\left(\frac{8}{3}\right)}{6} + \frac{2 \cdot 1 \cdot \pi}{6}\right) \approx 0.2869 + 1.4007i$$

$$z^{\frac{1}{6}} = \sqrt[12]{73} \cdot \operatorname{cis}\left(\frac{\pi - \tan^{-1}\left(\frac{8}{3}\right)}{6} + \frac{2 \cdot 2 \cdot \pi}{6}\right) \approx -1.0696 + 0.9488i$$

$$z^{\frac{1}{6}} = \sqrt[12]{73} \cdot \operatorname{cis}\left(\frac{\pi - \tan^{-1}\left(\frac{8}{3}\right)}{6} + \frac{2 \cdot 3 \cdot \pi}{6}\right) \approx -1.3565 - 0.4519i$$

$$z^{\frac{1}{6}} = \sqrt[12]{73} \cdot \operatorname{cis}\left(\frac{\pi - \tan^{-1}\left(\frac{8}{3}\right)}{6} + \frac{2 \cdot 4 \cdot \pi}{6}\right) \approx -0.2869 - 1.4007i$$

$$z^{\frac{1}{6}} = \sqrt[12]{73} \cdot \operatorname{cis}\left(\frac{\pi - \tan^{-1}\left(\frac{8}{3}\right)}{6} + \frac{2 \cdot 5 \cdot \pi}{6}\right) \approx 1.0696 - 0.9488i$$

Problem 4. What are the primitive 15th roots of unity? Leave your answers in the form of ω^k for some appropriate complex number ω . Be sure to describe what ω represents.

The primitive 15th roots of unity are the roots of unity where n = 15, ω is a number such that $\omega^n = 1$ and k = 1, 2, ..., n - 1. When GCD(n,k) = 1, in other words, when k and n are relatively prime, ω^k is a root of unity. So, the 15th roots of unity are

$$\omega^2, \omega^4, \omega^7, \omega^8, \omega^{11}, \omega^{13}, \omega^{14}$$

Problem 5. How many fourth roots of the matrix

$$D = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

are there? What are they? Leave the answers in the exact form.

There are 4 fourth roots to this matrix. Using De Moivre's theorem I can use the fact that

$$z^{\frac{1}{n}} = r^{\frac{1}{n}} \cdot \operatorname{cis}\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right) \tag{2}$$

to find the 4th roots of the complex number $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ which is isomorphic to the matrix D. I can find the roots by substituting r, n and k into (1) where

$$\theta = \pi - \tan^{-1}(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}) = \pi - \tan^{-1}(\sqrt{3}) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

$$r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1$$

$$n = 4$$

$$k = 0, 1, 2, 3$$

Substituting these values I get the roots to be

$$\begin{split} z^{\frac{1}{4}} &= 1 \cdot \operatorname{cis}\left(\frac{2\pi}{12} + \frac{2 \cdot 0 \cdot \pi}{4}\right) \\ z^{\frac{1}{4}} &= 1 \cdot \operatorname{cis}\left(\frac{2\pi}{12} + \frac{2 \cdot 1 \cdot \pi}{4}\right) \\ z^{\frac{1}{4}} &= 1 \cdot \operatorname{cis}\left(\frac{2\pi}{12} + \frac{2 \cdot 2 \cdot \pi}{4}\right) \\ z^{\frac{1}{4}} &= 1 \cdot \operatorname{cis}\left(\frac{2\pi}{12} + \frac{2 \cdot 3 \cdot \pi}{4}\right) \end{split}$$

Problem 6. Define \odot on \mathbb{C}^* according to

$$(a+bi) \odot (c+di) = ac+bdi.$$

- (a) Is \odot well-defined? In other words, is \mathbb{C}^* closed under \odot ?
- (b) Is ⊙ associative? If you think it is, prove it. If you do not thing so, explain, or provide a counterexample.
- (c) Find, if possible, an element e such that $e \odot z = z$ for any $z \in \mathbb{C}^*$. Or, explain why such an element does not exist.
- (d) Based on the identity element you found in (c), find the inverse of a typical element z in \mathbb{C}^* . Does the inverse always exist?
- (e) Is $\langle \mathbb{C}^*, \odot \rangle$ a group? Explain.
- (a) \mathbb{C}^* is not closed under \odot because there are two elements in \mathbb{C}^* I can use with the \odot operator to get an element which is not in \mathbb{C}^* . For example, $0+1i\odot 1+0i=0+0i$ and $0+0i\notin\mathbb{C}^*$. Therefore \odot is not well-defined

(b) \odot is associative. To show that \odot is associative, I let A=a+bi, B=c+di, C=e+fi where $A,B,C\in\mathbb{C}^*$ and will show that

$$(A \odot B) \odot C = A \odot (B \odot C)$$

Since,

$$(A \odot B) \odot C = ac + bdi \odot C = ace + bdfi$$

and

$$A \odot (B \odot C) = A \odot (ce + dfi) = cea + dfbi$$

because real numbers under multiplication are known to be commutative it follows that $(A \odot B) \odot C = A \odot (B \odot C)$. Therefore \odot is associative.

(c) The element $e \in \mathbb{C}^*$ such that $e \odot z = z$ exists. This can be shown by rewriting $e \odot z = z$ as

$$e_1 + e_2 i \odot z_1 + z_2 i = e_1 z_1 + e_2 z_2 = z_1 + z_2 i$$

it is clear that $e_1 + e_2i$ must equal 1 + 1i which is in \mathbb{C}^* . Therefore e = 1 + 1i.

(d) The inverse is the element A^{-1} such that $A \odot A^{-1} = e$. In this case, an inverse does not always exist. I can show this by rewriting $A \odot A^{-1} = e$ to be

$$a + bi \odot a' + b'i = aa' + bb'i = 1 + 1i = e$$

It would follow that a' would be the multiplicative inverse of a and b' would be the multiplicative inverse of b leaving the inverse to be $A^{-1} = \frac{1}{a} + \frac{1}{b}i$. But this is not always the case because either a or b could be equal to zero which there is no multiplicative inverse of. Therefore the inverse does not always exist.

(e) $\langle \mathbb{C}^*, \odot \rangle$ is not a group because it is not closed under \odot and every element in $\langle \mathbb{C}^*, \odot \rangle$ does not necessarily have an inverse.

Problem 7. Let $S = \mathbb{R} - \{-1\}$. In other words, S is the set of all real numbers except -1. Define a binary operation * on S by

$$a * b = a + b + ab.$$

Show that $\langle S, * \rangle$ is a group, as follows:

- (a) Establish closure using a proof by contradiction.
- (b) Show that * is associative
- (c) Find the identity element
- (d) Find the inverse of a. Be sure to show that it is an element of S.
- (e) What is your conclusion about $\langle S, * \rangle$?
- (a) Suppose that S was not closed under *. Then there is an a*b=-1 because a*b=a+b+ab is closed under $\mathbb R$ because multiplication and addition is closed. So the only element that would make S not closed is -1 because $-1 \in \mathbb R$ and $-1 \notin \mathbb R \{-1\}$. Furthermore, if

$$a * b = a + b + ab = -1$$

Then when I solve for a I get,

$$a + ab = -1 - b$$

$$a(1+b) = -1 - b$$

$$a = \frac{-1-b}{1+b} = \frac{-(1+b)}{(1+b)} = -1$$

Since a must be equal to -1, and $-1 \notin \mathbb{R} - \{-1\}$, this forms a contradiction with the assumption that $a \in \mathbb{R} - \{-1\}$. Therefore S must be closed.

(b) To show that * is associative, I will show that (a*b)*c = a*(b*c), where $a,b,c \in S$

$$(a*b)*c = (a+b+ab)*c = (a+b+ab)+c+(a+b+ab)c = a+b+c+ab+ac+bc+abc$$

and

a*(b*c) = a*(b+c+bc) = a+(b+c+bc)+a(b+c+bc) = (a+b+c+bc)+(ab+ac+abc) = a+b+c+ab+ac+bc+abc

This shows that (a * b) * c = a * (b * c).

(c) The identity element $e \in S$ is the element such that e * a = a. That is,

$$e * a = e + a + ea$$

If I let e = 0 it becomes clear that

$$0 * a = 0 + a + 0a = a$$

this shows that e = 0 is the identity.

(d) The inverse of an element a, denoted a^{-1} is an element in S such that $a*a^{-1}=e$. To find the inverse, I rewrite $a*a^{-1}=e$ as

$$a * a^{-1} = a + a^{-1} + aa^{-1} = 0$$

Now, subtracting a on both sides I get

$$a^{-1} + aa^{-1} = -a$$

Simplifiving, I get

$$a^{-1}(1+a) = -a$$

and dividing by (1+a) on both sides I get

$$a^{-1} = \frac{-a}{(1+a)}$$

Now to show that $a^{-1} \neq -1$, I will show $a^{-1} = -1$ cannot be true. If $a^{-1} = -1$, then

$$a^{-1} = \frac{-a}{(1+a)} = -1$$

it follows that

$$-a = -1(1+a) = (-1-a)$$

and

$$0 = -1$$

Which is false. This shows that $a^{-1} \neq -1$. Since every element in $\mathbb{R} - \{-1\}$ has an inverse not equal to -1, this shows that every element in $\mathbb{R} - \{-1\}$ has an inverse.

(e) $\mathbb{R} - \{-1\}$ is a group under * because it satisfies the properties of, closure, associativity, every element having and inverse and * has an identity.

Problem 8. Conisder the binary operation * on the set of matrices

$$T = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mid a \in \mathbb{R}, \ b \in \mathbb{Z} \right\}$$

defined as

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} * \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} ac & 0 \\ 0 & b+d \end{bmatrix}.$$

Show that $\langle T, * \rangle$ is a group.

To show that $\langle T, * \rangle$ is associative I will show that (A * B) * C = A * (B * C) where $A, B, C \in T$. Since,

$$(A*B)*C = \begin{bmatrix} ac & 0 \\ 0 & b+d \end{bmatrix}* \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix} = \begin{bmatrix} ace & 0 \\ 0 & b+d+f \end{bmatrix}$$

and

$$A*(B*C) = A*\begin{bmatrix} ce & 0\\ 0 & d+f \end{bmatrix} = \begin{bmatrix} cea & 0\\ 0 & d+f+b \end{bmatrix}$$

Since addition is associative in $\mathbb Z$ and multiplication is associative in $\mathbb R$ it is clear that

$$\begin{bmatrix} ace & 0 \\ 0 & b+d+f \end{bmatrix} = \begin{bmatrix} cea & 0 \\ 0 & d+f+b \end{bmatrix}$$

Therefore (A * B) * C = A * (B * C). This shows that * is associative.

To show that $\langle T, * \rangle$ has an identity element, I will show that there is an element, $e \in T$, such that A * e = A. It follows that

$$A*e = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} *e = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} * \begin{bmatrix} e_1 & 0 \\ 0 & e_2 \end{bmatrix} = \begin{bmatrix} ae_1 & 0 \\ 0 & b + e_2 \end{bmatrix} = A.$$

Since,

$$\begin{bmatrix} ae_1 & 0 \\ 0 & b + e_2 \end{bmatrix} = A$$

If I let $e_1 = 1$ and $e_2 = 0$, then

$$\begin{bmatrix} 1a & 0 \\ 0 & b+0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = A$$

Since $e_1 \in \mathbb{R}$ and $e_2 \in \mathbb{Z}$, the identity element is

$$e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

To show that $\langle T, * \rangle$ has an inverse for all elements in T, I show that for all $A \in T$ that there is an $A^{-1} \in T$ such that $A * A^{-1} = e$. This can be rewritten as

$$A*A^{-1} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} * \begin{bmatrix} a_1^{-1} & 0 \\ 0 & a_2^{-1} \end{bmatrix} = \begin{bmatrix} aa_1^{-1} & 0 \\ 0 & b+a_2^{-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

So, I need to find a_1^{-1} and a_2^{-1} such that $aa_1^{-1}=1$ and $b+a_2^{-1}=0$. Solving for a_1^{-1} , I get $a_1^{-1}=\frac{1}{a}$ and solving for a_2^{-1} , I get $a_2^{-1}=-b$. Since $\frac{1}{a}\in\mathbb{R}^*$ because $a\in\mathbb{R}^*$ and $-b\in\mathbb{Z}$ because $b\in\mathbb{Z}$, the inverse must exist for all elements in T as

$$A^{-1} = \begin{bmatrix} \frac{1}{a} & 0\\ 0 & -b \end{bmatrix}.$$

Since $\langle T, * \rangle$ satisfies all properties of a group, $\langle T, * \rangle$ is a group.

Problem 9. Let $\langle G, * \rangle$ be a group, and $a, b, c \in G$. Solve the equation a * x * b = c for x.

Since $a, b, c \in G$, G is closed, and a and b have left and right inverses, by left multiplying the L.H.S by a^{-1} and right multiplying by b^{-1} I get

$$a^{-1}a * x * bb^{-1} = a^{-1}cb^{-1}$$

Therefore $x = a^{-1}cb^{-1}$

Problem 10. Let $\langle G, * \rangle$ be a group. Use induction to show that, for any integer $n \geq 2$, and for any n elements $a_1, a_2, ..., a_n$ from G,

$$(a_1 * a_2 * \dots * a_n)' = a'_n * a'_{n-1} * \dots * a'_1$$

Proof. Using the steps of mathematical induction, I show that this holds for the base case n = 2. That is I need to show that

$$(a_1 * a_2)' = a_2' * a_1'$$

Since $\langle G, * \rangle$ is a group, it is closed, * is associative, and each element has an inverse. If I multiply both sides by $(a_1 * a_2)$, I get

$$e = a_2' * a_1' * (a_1 * a_2)$$

Using the associative property, I get

$$e = a_2' * (a_1' * a_2 * a_1) = a_2' * (e * a_2) = a_2' * a_2 = e$$

This shows that $(a_1 * a_2)' = a_2' * a_1'$.

Now, I assume this holds for n, that is I want to show that

$$(a_1 * a_2 * ... * a_n)' = a'_n * a'_{n-1} ... * a'_1$$

and I want to show that this holds for n + 1. That is,

$$(a_1 * a_2 * \dots * a_n * a_{n+1})' = a'_{n+1} * a'_n * \dots * a'_1.$$

It follows from the IHOP, associativity, and inverse multiplication that

$$e = (a_1 * a_2 * \dots * a_{n+1}) * a'_{n+1} * a'_n * \dots * a'_1$$

it then follows that

$$e = (a_1 * a_2 * \dots * a_n * a_{n+1} * a'_{n+1}) * a'_n * \dots * a'_1 = (a_1 * a_2 * \dots * a_n) * a'_n * \dots * a'_1$$

Finally, when multiplying by the inverse of $(a_1 * a_2 * ... * a_n)$ on both sides I get

$$(a_1 * a_2 * \dots * a_n)' = a_1' * a_2' * \dots a_n'.$$

This shows that the identity still holds whith n+1, and the induction is completed.