EPSY 5261: Introductory Statistical Methods

Day 18
Confidence Intervals for a Single Proportion

Learning Goals

- At the end of this lesson, you should be able to...
 - · Identify when to answer a research question with a confidence interval
 - Explain the need for creating a confidence interval to do statistical inference
 - Know how to calculate a confidence interval by hand and using R Studio for a mean
 - Interpret a confidence interval
 - Explain how the sample size we haves affects our interval

Confidence Intervals

- Sampling Variability = Samples vary
- We need something to quantify the uncertainty in our estimates

Confidence Intervals

Terminology

- 95% confidence interval:
 - Sample statistic +/- (2 x SE)
- Margin of error:
 - A specified number of standard errors that we add and subtract from the sample statistic to get a confidence interval.
 - Margin of error quantifies the amount of sampling error due to variation from sample to sample.

Assumptions needed to use z-distribution for single proportion

- Assumptions
 - $n\hat{p} \ge 10$
 - $n(1 \hat{p}) \ge 10$
- We use \hat{p} as a stand-in for p, which is unknown.

Formula

$$CI = \hat{p} \pm z * SE$$

Table 17.1 in text

studied in EPsy 5261.

Situation

SE

Single Mean

 $\frac{\mathrm{SD}}{\sqrt{n}}$

Single Proportion

$$\frac{\hat{p}(1-\hat{p})}{\sqrt{n}}$$

Difference in Means

$$\sqrt{rac{\mathrm{SD}_1^2}{n_1} + rac{\mathrm{SD}_2^2}{n_2}}$$

Difference in Proportions

$$\sqrt{rac{\hat{p}_1(1-\hat{p}_1)}{n_1}+rac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Formula

$$CI = \hat{p} \pm z * \frac{\hat{p}(1-\hat{p})}{\sqrt{n}}$$

What is z*?

- * Recall the z-distribution
- * Use this to find the z*

 value based on the

 desired confidence level

For example 95% confidence

- * The z-distribution us a standard normal bell curve with a mean of 0 and a standard deviation of 1
- * To get 95% confidence for our estimate we need to look at how many standard deviations away from the mean we need to be to obtain that level of confidence

T-distribution with sample size 100

Write your final confidence interval interpretation on the white board for your group.

Summary

- For a research question asking for an estimate, the best way to answer is with a confidence interval
- The confidence interval allows us to take into sampling account variability
- With a larger sample size we expect a smaller confidence interval.