DM6: Transformateur

Exercice 1: Transformateur torique (CCP TSI 2018)

On étudie un modèle simplifié du transformateur schématisé sur la figure 1 ci-dessous. Il est constitué d'un matériau magnétique torique d'axe (Oz) à section carrée de côté a et de rayon intérieur R. L'espace est rapporté à la base cylindrique $(\vec{e}_r, \vec{e}_\theta, \vec{e}_z)$ représentée pour un point M quelconque sur le schéma.

Figure 1 – Vue de dessus du transformateur

Le bobinage « primaire », noté C_1 , est un enroulement de N_1 spires autour de ce tore, il est parcouru par un courant d'intensité i_1 . Le bobinage « secondaire », noté C_2 , est un enroulement de N_2 spires autour de ce tore, il est parcouru par un courant d'intensité i_2 .

on admet que dans le tore, le champ magnétique est dirigé dans la direction de \vec{e}_{θ} .

1. Si les courants i_1 et i_2 sont positifs, le champ magnétique est-il suivant \vec{e}_{θ} ou $-\vec{e}_{\theta}$?

On peut montrer (TSI2) que le champ créé par le circuit C_1 en tout point à l'intérieur du tore est :

$$\vec{B}_1 = \pm \frac{\mu_0 N_1 i_1}{2\pi r} \vec{e}_\theta$$

Le signe + ou - est à choisir en fonction de la réponse à la question précédente. $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{S\,I}$ est la perméabilité magnétique du vide.

- 2. Donner l'unité de μ_0 .
- 3. Donner l'expression du flux magnétique φ du champ magnétique \vec{B}_1 à travers une spire du circuit C_1 sous forme d'une intégrale de surface. On montrera que l'intégrale porte sur les coordonnées r et z et dans ces conditions dS = dr dz
- 4. Calculer l'intégrale précédente et donner l'expression de φ .
- 5. En déduire le flux total ϕ de \vec{B}_1 à travers les N_1 spires du circuit C_1 .
- 6. Rappeler la définition de l'inductance propre L (ou coefficient d'auto-inductance).
- 7. En déduire que l'inductance propre L_1 du circuit C_1 est donnée par :

$$L_1 = N_1^2 \frac{a\mu_0}{2\pi} \ln\left(\frac{R+a}{R}\right)$$

- 8. Quelle est alors l'expression de l'inductance propre L_2 du circuit C_2 ?
- 9. Rappeler la définition du coefficient d'inductance mutuelle M.
- 10. Montrer que ce coefficient M est donné par :

$$M = N_1 N_2 \frac{a\mu_0}{2\pi} \ln\left(\frac{R+a}{R}\right)$$

- 11. La résistance des bobinages étant négligée, exprimer la tension u_1 aux bornes du primaire en fonction des dérivées par rapport au temps de i_1 et i_2 et des coefficients L_1 et M.
- 12. Faire de même pour la tension u_2 aux bornes du secondaire en fonction des dérivées par rapport au temps de i_1 et i_2 et des coefficients L_2 et M.
- 13. En déduire que l'on a la relation suivante :

$$u_1 = \frac{L_1}{M}u_2 + \frac{M^2 - L_1L_2}{M}\frac{\mathrm{d}\,i_2}{\mathrm{d}\,t}.$$

2019 – 2020

14. Prouver que cette relation se simplifie pour faire apparaître ce que l'on appelle le rapport de transformation défini comme le rapport des tensions du secondaire et du primaire :

$$\frac{u_2}{u_1} = \frac{N_2}{N_1}.$$

- 15. Expliquer alors comment les transformateurs constituent des éléments centraux de la chaîne de transport de l'électricité.
- 16. Que peut-on dire du rendement en puissance entre primaire et secondaire?
- 17. Le fonctionnement d'un transformateur est-il possible pour des signaux continus? Justifiez votre réponse.
- 18. Techniquement les matériaux magnétiques utilisés dans les transformateurs sont réalisés en accolant des feuillets en acier. Quels types de pertes cherche-t-on ainsi à éviter?

2019-2020 page 2/2