Machine Learning Self-Study Worksheet

Worksheet: 2025001

Level: Easy

Topics Covered: Supervised Learning

Part 1: Conceptual Questions

Q. No.	Question	Points
1.	 Supervised learning: a) Briefly describe the main goal of supervised learning. (2 points) b) Provide key characteristics of supervised learning. (3 points) 	5(2+3)
2.	 Label vs. Feature a) Define what a "label" is in supervised learning. (2 points) b) What is meant by "feature" in this context? (3 points) 	5(2+3)

Part 2: Numerical Questions

Q. No.	Question	Points
3.	You are given a linear regression model: Y=2X+4 Calculate the predicted value of Y for: X = 1 X = 5 X = -2	5
4.	Two classes of data points are given: • Class 0: (2, 3), (3, 3), (3, 4) • Class 1: (7, 6), (8, 5), (9, 6) Use Euclidean distance to determine the 1-nearest neighbor class of the point (5, 5).	5

Disclaimer: This worksheet is for self-study & educational purposes only.

Part 3: Coding Exercise

Q. No.	Complete & Run the Code (Use your own Python IDE or Google Colab.)	Points
	Complete the KNN classification code for $k = 3$ and predict the class of a new	
	point:	
5.	from sklearn.neighbors import	5
	import matplotlib.pyplot as plt	
	# Data	
	X = [[1, 2], [2, 3], [3, 3], [6, 5], [7, 7]] y = [0, 0, 0, 1, 1]	
	y = [0, 0, 0, 1, 1]	
	# New point to classify	
	$new_point = [[4, 4]]$	
	# KNN model	
	knn = KNeighborsClassifier(n_neighbors=)	
	knn.fit(X, y)	
	# Prediction	
	predicted = knn.predict(new point)	
	print("Predicted class:", predicted[0])	

Disclaimer: This worksheet is for **self-study** & **educational purposes only**.

Notes & Disclaimer

• For quick notes or queries, visit: https://www.youtube.com/channel/UCGuhk1P10A0X_7Ar2-xadEw.

• Related Resources:

- Google Colab to run Python code online without installing anything
- o StatQuest: https://www.youtube.com/@statquest/playlists
- o 3Blue1Brown: https://www.youtube.com/@3blue1brown/playlists
- Numerical: https://www.youtube.com/@MaheshHuddar/playlists

• Want more worksheets like this?

Try using **AI prompt** like:

"Create a beginner-level machine learning worksheet with 2 conceptual questions(with sub-questions), 2 numerical, and 1 code-completion exercise on [topic(s)]"

• How to Use This Worksheet:

- o These worksheets are designed for self-study and concept reinforcement.
- o Try to solve without looking up the answers first.
- o Use a notebook or Python IDE to experiment code is the best teacher!
- Feel free to modify or extend questions as your understanding grows.

• Disclaimer:

This worksheet is for self study & **educational purposes only**. Accuracy of content may vary depending on updates to libraries or definitions. Always refer to official documentation or textbooks for exam-level prep.