2,3,5,7,11,13,17,19,23, Mumber new Theory projection picker p(n)=n(1-1-)...(1-px) . { X = a, (mud n) 中國剩餘定理 · Lx iak (mod nk) ⇒ ∃!x (mod n...hk) acd(ni, nj)=1 9 x + 6 y = C P (9) = (-1) 2-19-1 smallest Yes

Fright [[mod n] MIPKIZPKZ KEN

Зміст

1	Ось	нови теорії чисел			
	1.1	Подільність			
	1.2	Найбільший спільний дільник			
	1.3	Алгоритм Евкліда			
	1.4	Лінійні діофантові рівняння			
	1.5	Найменше спільне кратне			
	1.6	Прості числа			
	1.7	Решето Ератосфена			
	1.8	Твердження, пов'язані з простими числами			
2	Модульна арифметика				
	2.1	Основи конгруенцій			
	2.2	Правила ділення			
	2.3	Лінійні конгруенції			
	2.4	Китайська теорема про остачі			
	2.5	Теорема Вільсона			
	2.6	Лема Гензеля			
3	Арифметичні функції				
	3.1	Функції τ, σ			
	3.2	Функція φ (функція Ойлера)			
	3.3	Функція μ (функція Мьобіуса)			
	3.4	Ціла частина числа			
4	Первісні корені 41				
_	4.1	-			
		Первісні корені			
		Дискретний логарифм			
5	Квадратичний закон взаємності 52				
	5.1	Квадратичні лишки			
	5.2	Символ Лежандра			
	5.3	Квадратичний закон взаємності			
	5.4	Квадрати конгруенції			
6	Роп	резентація чисел як сума квадратів 63			
U	6.1	Сума двох квадратів			
		Сума більше двох квадратів			
	\cup . \triangle	- Сумасылын дыл кыйдраны			

7	Досконалі числа				
	7.1	Вступ	72		
	7.2	Трошки про числа Мерсенна	73		
	7.3	Трошки про числа Ферма	75		
8	Ланцюгові дроби				
	8.1	Числа Фібоначчі та властивості	77		
	8.2	Скінченні ланцюгові дроби	79		
	8.3	Нескінченні ланцюгові дроби	84		
	8.4	Рівняння Пелля	89		

1 Основи теорії чисел

1.1 Подільність

Definition 1.1.1 Задані числа $a, b \in \mathbb{Z}$, де $a \neq 0$.

Кажуть, що число a ділить число b, якщо

$$\exists c \in \mathbb{Z} : b = ac$$

Позначення: $a \mid b$.

Інколи кажуть, що b **ділиться націло на** a, позначають за b : a.

Example 1.1.2 Зокрема $2 \mid 6$, тому що $6 = 2 \cdot 3$.

Remark 1.1.3 $a \mid 0$, де a – будь-яке ненульове число. Справді, $0 = 0 \cdot a$.

Remark 1.1.4 Кожне число $b \neq 0$ має скінченну кількість дільників. Дійсно, візьмімо якийсь дільник a числа b, тобто $a \mid b$, то звідси b = ac, а тому $|b| = |a||c| \implies |b| \geq |a|$. Остання нерівність і підтверджує слова.

Proposition 1.1.5 Задані числа $a, b, c \in \mathbb{N}$. Тоді:

- 1) $a \mid a$;
- 2) $a \mid b, b \mid a \implies a = b;$
- 3) $b \mid a, c \mid b \implies c \mid a$.

Тобто ділення формує відношення нестрогого порядку.

Proof.

Маємо таке доведення:

- 1) $a = 1 \cdot a \implies a \mid a$.
- 2) Маємо $a \mid b, b \mid a$. За означенням, існують такі числа $x, y \in \mathbb{N}$, для яких b = ax, a = by. Тоді $a = axy \implies xy = 1$. Єдиний варіант це одночасно x = y = 1. Підставляючи отримані значення, маємо a = b.
- 3) $b \mid a \implies a = bx$. $c \mid b \implies b = yc \implies a = bx = xy \cdot c \implies c \mid a$.

Відношення порядку доведено.

Example 1.1.6 Довести, що різниця послідовних кубів ніколи не ділиться на 2.

Різниця сусідніх кубів $(a+1)^3 - a^3 = 3a^2 + 3a + 1 = 3a(a+1) + 1$. Зауважимо, що $2 \mid a(a+1)$, і дійсно:

якщо $a = 2k, k \in \mathbb{Z}$, то отримаємо $2 \mid 2k(2k+1)$;

якщо $a = 2k + 1, k \in \mathbb{Z}$, то отримаємо $2 \mid (2k + 1)(2k + 2)$.

Отже, a(a+1)=2x, тоді звідси $3a(a+1)=2\cdot(3x)=2u$. Тобто $(a+1)^3-a^3=2u+1$, а значить $2 \nmid (a+1)^3-a^3$.

Lemma 1.1.7 Ділення з остачею

Для довільних $a, b \in \mathbb{Z}$, де число a > 0, існують єдині $q, r \in \mathbb{Z}$, для яких b = qa + r, де r задовольняє нерівності $0 \le r < a$.

Число r називають **остачею** від ділення b числом a.

Proof.

I. *Існування*.

Розглянемо множину $S = \{b - qa : q \in \mathbb{Z}\} \cap \mathbb{Z}_{\geq 0}$. Ясно, що вона непорожня, оскільки там лежить число в залежності від числа b:

або
$$b = b - 0 \cdot a$$
, якщо $b \ge 0$;

або
$$b - b \cdot a = b(1 - a)$$
, якщо $b < 0$.

Також ця множина обмежена знизу, оскільки кожне число – невід'ємне.

Значить, існує $\min S$. Цей мінімум позначимо за число r, яке шукали.

Отже, $r \geq 0$, а також $\exists q \in \mathbb{Z} : r = b - qa$. Залшилося показати, що r < a.

!Якщо припустити, що $r \ge a$, то тоді $r - a \ge 0$, а число

$$r-a = b - qa - a = b - (q+1)a \stackrel{q+1=q^*}{=} b - q^*a.$$

Таким чином, $r - a \in S$. Але ми знаємо, що r – мінімальне число цієї множини та при цьому r - a < r. Суперечність!

II. \mathcal{C} диність.

!Припустімо, що окрім q, r, для яких b = qa + r, існує ще одна інша пара q', r', для яких b = q'a + r'. Ми тут вважаємо, що r' < r, для іншого випадку аналогічно. Тоді

$$qa + r = q'a + r' \implies a(q' - q) = r - r'.$$

Із цієї рівності випливає, що $a \mid (r - r')$. Але ми водночає маємо, що 0 < r - r' < r < a, тоді єдиний варіант під час ділення — це випадок $r - r' = 0 \implies r = r'$. Тоді вже звідси q' = q. Суперечність!

Example 1.1.8 От уже $4 \nmid 14$, але за попередньою лемою, $4 = 3 \cdot 4 + 2$, де число 2 – остача.

Corollary 1.1.9 Для довільних $a, b \in \mathbb{Z}$, де число $a \neq 0$, існують єдині $q, r \in \mathbb{Z}$, для яких b = qa + r, де число $0 \leq r < |a|$.

Bказівка: розглянути випадок $a>0,\ a\ npu\ a<0$ звести до першого випадку.

Оскільки тут ще буде теорія чисел з абстрактної точки зору, я вимушений залишити таку лему.

Lemma 1.1.10 Для довільних $a,b\in\mathbb{Z}$, де число $a\neq 0$, існують єдині $q,r\in\mathbb{Z}$, для яких b=qa+r, де число $-\frac{1}{2}|a|< r\leq \frac{1}{2}|a|.$

Proof.

Маємо b = q'a + r', де $0 \le r' < |a|$.

Якщо
$$0 \le r' < \frac{|a|}{2}$$
, то тоді $r = r'$ та $q = q'$.

Якщо
$$\frac{|a|}{2} \le r' < |a|$$
, то тоді $r = r' - |a|$ та $q = q' + \operatorname{sgn} a$.

У обох випадках ми знайшли r, q єдиним чином, для яких b = qa + r.

Причому в цьому випадку
$$\frac{-|a|}{2} < r \le \frac{|a|}{2}$$
.

1.2 Найбільший спільний дільник

Definition 1.2.1 Задані числа $a, b \in \mathbb{Z} \setminus \{0\}$.

Найбільшим спільним дільником чисел a, b назвемо таке число:

$$\gcd(a, b) = \max\{c \in \mathbb{N} : c \mid a, c \mid b\}$$

Альтернативні позначення: HCД(a, b) або (a, b).

Останнє позначення частіше можна зустріти в сучасних книгах.

Example 1.2.2 Зокрема gcd(6, 20) = 2.

Definition 1.2.3 Задані числа $a, b \in \mathbb{Z} \setminus \{0\}$.

Числа a, b називаються **взаємно простими**, якщо

$$\gcd(a,b) = 1$$

Example 1.2.4 Маємо gcd(3,5) = 1, тобто 3, 5 — взаємно прості.

Remark 1.2.5 Можна визначити НСД для чисел $a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}$ аналогічним чином:

$$\gcd(a_1,\ldots,a_n) = \max\{c \in \mathbb{Z} : c \mid a_i, i = \overline{1,n}\}\$$

Також аналогічно визначається взаємна простота цих чисел:

$$\gcd(a_1,\ldots,a_n)=1$$

Example 1.2.6 До прикладу, gcd(49, 35, 28, 2023) = 7.

Також gcd(11, 13, 21) = 1, тобто вони взаємно прості.

Proposition 1.2.7 Задані числа $a,b \in \mathbb{Z} \setminus \{0\}$. Тоді існують $x,y \in \mathbb{Z}$, для яких $\gcd(a,b) = x \cdot a + y \cdot b$.

Тобто НСД a, b можна розкласти як лінійну комбінацію чисел a та b.

Proof.

Розглянемо множину $S = \{xa + yb : x, y \in \mathbb{Z}\} \cap \mathbb{N}$. Вона непорожня, бо:

при a > 0, b > 0 можна взяти x = a, y = b;

при a < 0, b > 0 можна взяти x = -a, y = b;

при a < 0, b < 0 можна взяти x = -a, y = -b;

при a > 0, b < 0 можна взяти x = a, y = -b.

Також обмежена знизу, оскільки всі числа – додатні. Тому існує $\min S$, цей мінімум позначимо за c. Тоді $\exists x_0, y_0 \in \mathbb{Z} : c = ax_0 + by_0$.

A тепер покажемо, що $c = \gcd(a, b)$.

Поділимо a, c з остачею. Маємо a = cq + r, де число $0 \le r < c$. Водночас $c = x_0 a + y_0 b$. Тоді

$$r = a - cq = a - (x_0a + y_0b)q = (1 - x_0q) \cdot a - qy_0 \cdot b.$$

! Якщо припустити $r \neq 0$, то маємо $r \in S$, але тоді звідси $r \geq c$. Тобто варіант $r \neq 0$ не канає!

Значить, r = 0, а тому звідси $a = cq \implies a \mid c$.

Поділимо b, c з остачею. Абсолютно аналогічно доводиться, що $b \mid c$.

Таким чином, c буде вже спільним дільником. Покажемо, що цей дільник – справді найбільший.

Візьмемо інший спільний дільник d чисел a,b, тобто $d\mid a$ та $d\mid b.$ Тому $a=ud,\,b=vd.$ А нам вже відомо, що $c=ax_0+by_0,$ тоді

 $c = udx_0 + vdy_0 = (ux_0 + vy_0)d,$

а ця рівність каже про те, що $d \mid c$, а звідси $d \leq c$. Тобто кожний інший спільний дільник a,b менший за c.

A тому
$$c$$
 – HCД, тобто $c = \gcd(a, b)$.

Corollary 1.2.8 Задані числа $a, b \in \mathbb{Z} \setminus \{0\}$. Припустімо, що d - якийсь спільний дільник чисел a, b. Тоді $d \mid \gcd(a, b)$.

Proof.

За щойно доведеним твердженням, $\gcd(a,b)=xa+yb$ для $x,y\in\mathbb{Z}$. Маємо $d\mid a,d\mid b\implies d\mid xa+yb=\gcd(a,b)$.

Corollary 1.2.9 Задані числа $a, b \in \mathbb{Z} \setminus \{0\}$ та число $d = \gcd(a, b)$. Тоді $\gcd(a_1, b_1) = 1$, де числа a_1, b_1 взялись від того факту, що $a = da_1$ та $b = db_1$ — означення подільності.

Простіше кажучи,
$$gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1.$$

Proof.

За **Prp. 1.2.7**, $gcd(a_1, b_1) = a_1x + b_1y$. Помножимо на d – отримаємо: $d gcd(a_1, b_1) = d(a_1x + b_1y) = (da_1) \cdot x + (db_1) \cdot y = ax + by = gcd(a, b) = d$. Отже, $gcd(a_1, b_1) = 1$.

Example 1.2.10 Маємо gcd(a,b) = 1 та gcd(a,c) = 1. Довести, що gcd(a,bc) = 1 (доволі важливий приклад).

!Припустімо, що $\gcd(a,bc)=d$, причому $d\neq 1$. За означенням, $d\mid a$ та $d\mid bc$. Але за **Prp. 1.2.7**, ми маємо:

$$gcd(a,b) = 1 = ax + by \implies c = cax + cby.$$

Із цієї рівності випливає, що $d \mid c$, але тоді звідси d – спільний дільник чисел a,c. Тож отримаємо $d \mid \gcd(a,c)=1 \implies d=1$. Суперечність! Аналогічними міркуваннями, розписавши $\gcd(a,c)=1$, ми можемо отримати $d \mid b$, що так само дає суперечність d=1.

1.3 Алгоритм Евкліда

Задані числа $a, b \in \mathbb{Z} \setminus \{0\}$, де число a > 0. Мета: знайти $\gcd(a, b)$.

Lemma 1.3.1 gcd(a, b) = gcd(b, b - a).

Proof.

Зробимо позначення: $d_1 = \gcd(a, b)$ та $d_2 = \gcd(b, b - a)$.

Маємо $d_1 \mid a, d_1 \mid b$. Тоді звідси $d_1 \mid b - a$. Отже, d_1 – спільний дільник чисел b, b - a. Тоді $d_1 \mid d_2$.

Маємо $d_2 \mid b, d_2 \mid b-a$. Тоді звідси $d_2 \mid a=b-(b-a)$. Отже, d_2 – спільний дільник чисел a,b. Тоді $d_2 \mid d_1$.

Остаточно, за антисиметричністю, $d_1 = d_2$.

Corollary 1.3.2 gcd(a, b) = gcd(b, b - xa), де $x \in \mathbb{Z}$.

Theorem 1.3.3 Алгоритм Евкліда

Задані числа $a,b\in\mathbb{N}$ та припустімо b>a. Ми послідовно використаємо ділення за остачею таким чином:

$$b = aq_1 + r_1 \qquad 0 < r_1 < a$$

$$a = r_1q_2 + r_2 \qquad 0 < r_2 < r_1$$

$$r_1 = r_2q_3 + r_3 \qquad 0 < r_3 < r_2$$

$$\vdots$$

$$r_{k-2} = r_{k-1}q_k + r_k \quad 0 < r_k < r_{k-1}$$

$$r_{k-1} = r_kq_k.$$
 Тоді $\gcd(a,b) = r_k$ – остання ненульова остача.

Proof.

Спочатку з'ясуємо, чому кількість разів ділення за остачею – скінченна. Маємо остачу r_1 . Якщо $r_1=0$, то стоп. Інакше $0< r_1< a$.

Далі маємо остачу r_2 . Якщо $r_2 = 0$, то стоп. Інакше $0 < r_2 < r_1$.

В силу строгої нерівності, рано чи пізно буде $r_k = 0$.

Маємо $\gcd(b,a) \stackrel{\mathbf{Crl. 1.3.2}}{=} \gcd(a,b-aq_1) = \gcd(a,r_1)$. Позначимо ще $a=r_0$. Тоді отримаємо $\gcd(b,a) = \gcd(r_0,r_1)$.

Далі припустимо, що $\gcd(a,b)=\gcd(r_n,r_{n+1})$. Доведемо звідси, що $\gcd(a,b)=\gcd(r_{n+1},r_{n+2})$.

Дійсно, $\gcd(r_n, r_{n+1}) \stackrel{\mathbf{Crl. 1.3.2}}{=} \gcd(r_{n+1}, r_n - r_{n+1}q_n) = \gcd(r_{n+1}, r_{n+2}).$ Тобто за MI, $\gcd(b, a) = \gcd(r_n, r_{n+1})$. А тому звідси випливає, що $\gcd(b, a) = \gcd(r_k, r_{k-1}) = r_k.$

Example 1.3.4 Знайти gcd(392, 693).

 $693 = 392 \cdot 1 + 301$

 $392 = 301 \cdot 1 + 91$

 $301 = 91 \cdot 3 + 28$

 $91 = 28 \cdot 3 + 7$

 $28 = 7 \cdot 4$.

А число 7 — остання ненульова остача. Тоді за алгоритмом Евкліда, $\gcd(392,693)=7.$

Example 1.3.5 Маючи той факт, що gcd(392,693) = 7 та рівняння з алгоритму Евкліда, ми можемо записати gcd(392,693) як лінійну комбінацію цих двох чисел. Це ще називають розширеним алгоритмом Евкліда. Починаючи з першого рівняння, ми будемо виражати остачі. Кожна з остач буде в подальшому записана як лінійна комбінація 392,693 ось так:

 $301 = 693 \cdot 1 - 392 \cdot 1$

 $91 = 392 \cdot 1 - 301 \cdot 1 = 392 \cdot 1 - (693 \cdot 1 - 392 \cdot 1) \cdot 1 = 2 \cdot 392 - 1 \cdot 693.$

 $28 = 301 \cdot 1 - 91 \cdot 3 = (639 \cdot 1 - 392 \cdot 1) \cdot 1 - (2 \cdot 392 - 1 \cdot 693) \cdot 3 = 4 \cdot 693 - 7 \cdot 392.$

 $7 = 91 \cdot 1 - 28 \cdot 3 = (2 \cdot 392 - 1 \cdot 693) \cdot 1 - (4 \cdot 693 - 7 \cdot 392) \cdot 3 = 23 \cdot 392 - 13 \cdot 693.$

Таким чином, $7 = \gcd(392, 693) = 23 \cdot 392 - 13 \cdot 693$.

1.4 Лінійні діофантові рівняння

Розглянемо рівняння такого вигляду:

$$ax + by = c$$

де $x,y\in\mathbb{Z}$ – невідомі; $a,b,c\in\mathbb{Z}$, причому $a,b\neq 0$. Мета: знайти роз'язок в цілих числах.

Для цього розглянемо два випадки:

I. $gcd(a, b) \nmid c$. Тоді розв'язків нема.

!Припустімо, що $x_0, y_0 \in \mathbb{Z}$ - деякий розв'язок рівняння $ax_0 + by_0 = c$. Відомо, що $gcd(a,b) \mid a$ та $gcd(a,b) \mid b$, а тому звідси $gcd(a,b) \mid ax_0 + by_0 =$ c. Суперечність!

II. $gcd(a,b) \mid c$.

Оскільки всі числа a, b, c діляться націло на gcd(a, b), то можна обидві частини поділити на це число – отримаємо:

$$a_1x + b_1y = c_1,$$

причому тут $gcd(a_1, b_1) = 1$. Але $gcd(a_1, b_1) = a_1x + b_1y = 1$ для деяких $x, y \in \mathbb{Z}$. Помножимо на число c_1 - отримаємо:

$$a_1(c_1x) + b_1(c_1y) = c_1$$

A потім ще на gcd(a, b) – отримаємо:

$$a_1x_0 + b_1y_0 = c.$$

Тобто знайшли деякий розв'язок (x_0, y_0) , для яких спрацьовує рівняння.

Припустимо, що (x_1, y_1) – якийсь інший розв'язок рівняння. Тоді $a(x_1 - x_0) + b(y_1 - y_0) = 0.$

Поділимо на $\gcd(a,b)$, буде

$$a_1(x_1 - x_0) + b_1(y_1 - y_0) = 0 \implies a_1(x_1 - x_0) = b_1(y_0 - y_1).$$

Числа a_1,b_1 - взаємно прості. Тому для рівності треба вимагати, щоб $b_1 \mid (x_1 - x_0)$. Звідси $x_1 - x_0 = mb_1$ для $m \in \mathbb{Z}$. Тоді звідси $y_0 - y_1 = ma_1$. Тобто

$$\begin{cases} x_1 = x_0 + mb_1 \\ y_1 = y_0 - ma_1 \end{cases}$$
, де $m \in \mathbb{Z}$ – ще один розв'язок.

Підсумуємо

Theorem 1.4.1 Рівняння ax + by = c, де $a, b, c \in \mathbb{Z}$, має розв'язок \iff

Theorem 1.4.1 Рівняння
$$ax + by = c$$
, де $a, b, c \in \mathbb{Z}$, має розв'язок \iff $\gcd(a,b) \mid c$. Причому якщо (x_0,y_0) – деякий розв'язок, то
$$\begin{cases} x_1 = x_0 + mb_1 \\ y_1 = y_0 - ma_1 \end{cases}, m \in \mathbb{Z} \text{- інші розв'язки. } b_1 = \frac{b}{\gcd(a,b)}, a_1 = \frac{a}{\gcd(a,b)}.$$

Едине питання полягає в тому, а як на практичному рівні знайти (x_0, y_0) , щоб врешті-решт знайти інші розв'язки. Для цього треба використовувати алгоритм Евкліда.

Example 1.4.2 Posb'язати рівняння 392x + 693y = 14.

За прикладом **Ex. 1.3.4**, $gcd(392, 693) = 7 \mid 14$. Тобто рівняння розв'язок точно має. Але з прикладу $\mathbf{Ex.~1.3.5}$, ми отримали розклад $\gcd(392,693)$ на лінійну комбінацію таким чином:

$$392 \cdot 23 + 693 \cdot (-13) = 7.$$

Залишилось помножити на число 2 - отримаємо:

$$392 \cdot 46 + 693 \cdot (-26) = 14.$$

Таким чином, маємо $(x_0, y_0) = (46, -26)$. А тому загальний розв'язок такий:

$$\begin{cases} x = 46 + 99m \\ y = -26 - 56m \end{cases}$$

де числа 56,99 взялись після того, як кожне з чисел 392,693 поділили на їхній $\gcd(392,693)$.

1.5 Найменше спільне кратне

Definition 1.5.1 Задані числа $a, b \in \mathbb{Z} \setminus \{0\}$.

Найменшим спільним кратним чисел а, в назвемо таке число:

$$lcm(a, b) = min\{c \in \mathbb{N} : a \mid c, b \mid c\}$$

Альтернативні позначення: HCK(a, b) або [a, b].

Remark 1.5.2 Можна визначити НСК для чисел $a_1, ..., a_n \in \mathbb{Z} \setminus \{0\}$ аналогічним чином:

$$lcm(a_1, \ldots, a_n) = \min\{c \in \mathbb{Z} : a_i \mid c, i = \overline{1, n}\}\$$

Theorem 1.5.3 Задані $a, b \in \mathbb{N}$. Тоді $gcd(a, b) \cdot lcm(a, b) = ab$.

Proof.

Позначимо $d=\gcd(a,b)$. Звідси a=dr та b=ds для деяких $r,s\in\mathbb{N}$.

Позначимо $m = \frac{ab}{d}$, ми хочемо показати, що m = lcm(a, b).

$$m = \frac{ab}{d} = \frac{drb}{d} = rb \implies b \mid m$$

$$m = \frac{ab}{d} = \frac{ads}{d} = sa \implies a \mid m.$$

Отже, $m - \ddot{c}$ пільне кратне чисел a, b. Покажемо, що найменше.

Нехай c – інше спільне кратне чисел a,b. Тобто c=au,c=bv для деяких $u,v\in\mathbb{N}$. Ми знаємо, що d=ax+by для деяких $x,y\in\mathbb{Z}$. Звідси випливає, що

$$\frac{c}{m} = \frac{cd}{ab} = \frac{c}{ab}(ax + by) = \frac{cx}{b} + \frac{cy}{a} = vx + uy.$$

$$\implies c = m(vx + uy) \implies m \mid c.$$

I так для кожного іншого спільного кратного. Тобто фактично ми довели, що m = lcm(a, b). Повертаючи все на місце, маємо

$$\operatorname{lcm}(a,b) = \frac{a\dot{b}}{\gcd(a,b)}.$$

Example 1.5.4 Зокрема, із **Ex. 1.3.4**, маємо, що
$$lcm(392,693) = \frac{392 \cdot 693}{\gcd(392,693)} = \frac{392 \cdot 693}{7} = 38808.$$

Proposition 1.5.5 Задані числа $a, b \in \mathbb{Z} \setminus \{0\}$. Припустімо, що l – якесь спільне кратне чисел a, b. Тоді $lcm(a, b) \mid k$.

Proof.

Маємо $k = q \operatorname{lcm}(a, b) + r$, де остача $0 \le r < \operatorname{lcm}(a, b)$. Виразимо остачу: $r = k - q \operatorname{lcm}(a, b).$

Із цієї рівності зауважимо, що $a \mid r, b \mid r$, тобто r – спільне кратне чисел a, b, а значить, $r \ge \text{lcm}(a, b)$. Тому необхідно вимагати r = 0. Отримаємо $k = q \operatorname{lcm}(a, b) \implies \operatorname{lcm}(a, b) \mid k$.

1.6 Прості числа

Definition 1.6.1 Число p > 1 називається **простим**, якщо

лише 1, p — дільники числа p.

В інашкому випадку таке число називають складеним.

Example 1.6.2 Числа 2, 3, 5, 7 - прості.

Число 8 – складене, бо окрім дільників 1,8 ще має дільник 2.

Proposition 1.6.3 Задано p – просте. Відомо, що $p \mid ab$. Тоді або $p \mid a$, або $p \mid b$.

Proof.

Якщо $p \mid a$, то автоматично закінчили доведення.

Якщо $p \nmid a$, тоді маємо $\gcd(a,p) = 1$, але ми знаємо, що $\gcd(a,p) =$ ax + py = 1 для якихось $x, y \in \mathbb{Z}$. Помножимо на b – отримаємо abx + pby = b.

Оскільки $p \mid ab$, то звідси ab = kp при $k \in \mathbb{Z}$. Звідси

 $kpx + pby = p(kx + py) = b \implies p \mid b.$

Отже, принаймні одне з чисел a, b зобов'язано ділитись націло на p.

Corollary 1.6.4 Задано p – просте. Відомо, що $p \mid a_1 \dots a_m$. Тоді $p \mid a_i$ для деякого 1 < j < m.

Доведення можна провести за MI за кількістю чисел $a_i.$

Theorem 1.6.5 Основна теорема арифметики

Будь-яке число n>1 має єдиний розклад на добуток простих чисел з точністю до їхніх перестановок.

Proof.

Доведення проведемо за MI за числом $n \in \mathbb{N}$.

База індукції (їх буде аж три для розуміння теореми):

n = 2 – нічого цікавого, розклад уже є.

n = 3 – нічого цікавого, розклад уже є.

 $n = 6 = 3 \cdot 2 = 2 \cdot 3$ – інших пар нема (це можна ручками перебрати).

Припущення індукції: для чисел 1 < k < n ця теорема виконується.

 $Крок\ indykuii$: доведемо теорему для числа n. Спочатку покажемо, що взагалі-то можна розкласти.

I. *Існування*.

Випадок n – просте число – закінчили доведення.

Випадок n – складене число, тоді має знайтись інший дільник 1 < a < n, для якого n = ab. За припущенням MI, оскільки 1 < a < n, 1 < b < n, ми можемо їх розкласти на добуток простих чисел. Тобто

$$a = s_1 \dots s_m$$

$$b=t_1\ldots t_l$$
.

Тому $n = s_1 \dots s_m t_1 \dots t_l$ – всі ці числа прості.

II. \mathcal{E} диність.

!Припустімо, що n розкладається двома різними способами:

$$n=p_1\ldots p_r;$$

$$n=q_1\ldots q_s$$
.

Зауважимо, що $p_r \mid n \implies p_r \mid q_1 \dots q_s \implies \exists 1 \leq j \leq s : p_r \mid q_j$. Оскільки вони обидва прості, то звідси $p_r = q_i$.

Розглянемо інше число $n' = p_1 \dots p_{r-1} = q_1 \dots q_{j-1} q_{j+1} \dots q_s$.

Маємо n' < n, а тому можна використати припущення MI. А воно каже, що ці два вирази рівні з точністю до перестановки. Помножимо обидві частини на p_r , а справа $p_r = q_i$ (відмічено червоним) – тоді

$$p_1 \dots p_{r-1} p_r = q_1 \dots q_j \dots q_s = n$$

Отримали єдиний розклад з точністю до перестановок. Суперечність! Висновок: фіксоване число n можна розкласти на добуток простих чисел, причому єдиним чином з точністю до перестановки. MI доведено.

Remark 1.6.6 Із цього випливає канонічний розклад числа
$$n$$
: $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$,

де p_1, p_2, \ldots, p_k – різні прості числа та $r_1, r_2, \ldots, r_k > 0$.

Corollary 1.6.7 Припустімо, що два числа a, b розклалися на прості числа таким чином:

$$a = p_1^{r_1} \dots p_k^{r_k}$$

 $b = p_1^{s_1} \dots p_k^{s_k}$

$$b = p_1^{s_1} \dots p_k^{s_k}$$

Тоді
$$\gcd(a,b) = p_1^{\min\{r_1,s_1\}} \dots p_k^{\min\{r_k,s_k\}}.$$

Тоді $\operatorname{lcm}(a,b) = p_1^{\max\{r_1,s_1\}} \dots p_k^{\max\{r_k,s_k\}}.$

Example 1.6.8 Маємо два числа:

 $3444 = 2^2 \cdot 3 \cdot 7 \cdot 41$

 $244496 = 2^4 \cdot 7 \cdot 37 \cdot 59.$

Тоді $gcd(3444, 244496) = 2^2 \cdot 7 = 28.$

Тоді $lcm(3444, 244496) = 2^4 \cdot 3 \cdot 7 \cdot 37 \cdot 41 \cdot 59 = 30073008.$

Theorem 1.6.9 Задано число $n = p_1^{k_1} \dots p_k^{k_r}$. Тоді $d \mid n \iff d = p_1^{a_1} \dots p_r^{a_r}$, причому $0 \leq d_i \leq k_i$.

Proof.

При d=1 маємо $a_i=0, i=\overline{1,r}$, а при d=n маємо $a_i=k_i, i=\overline{1,r}$.

Тому розглянемо випадок d>1, тож тоді n=dd'. За основною теоремою арифметики, $d = q_1 \dots q_s$, а також $d' = t_1 \dots t_u$. Всі ці числа прості.

Отже, $p_1^{k_1} \dots p_k^{k_r} = q_1 \dots q_s t_1 \dots t_u$.

Оскільки розклад єдиний, то тоді кожний q_i має один з p_i . А тому звідси ми й отримаємо, що

$$d = p_1^{a_1} \dots p_r^{a_r}.$$

I навпаки, якщо
$$d=p_1^{a_1}\dots p_r^{a_r}$$
, то тоді маємо: $n=p_1^{k_1}\dots p_k^{k_r}=(p_1^{a_1}\dots p_r^{a_r})p_1^{k_1-a_1}\dots p_r^{k_r-a_r}.$ Отже, $d\mid n.$

Решето Ератосфена

Proposition 1.7.1 Задано $n \in \mathbb{N}$ - складене число. Тоді існує просте число $p \leq \sqrt{n}$, для якого $p \mid n$.

Proof.

Оскільки n - складене, то тоді n = bc при 1 < b < n, 1 < c < n. Не втрачаючи загальності, ми скажемо, що $b \le c$. Звідси отримаємо $b^2 \le bc = n$, a tomy $b \le \sqrt{n}$.

Оскільки b > 1, то за основною теоремою арифметики, існує просте число $p \mid b$, де $p \leq b \leq \sqrt{n}$. Але водночас $b \mid n$, а тому звідси $p \mid n$.

Remark 1.7.2 Завдяки цього твердження, можна трохи ефективніше з'ясувати, чи буде якесь число простим.

Example 1.7.3 Розглянемо число n = 509. Зауважимо: $22 < \sqrt{n} < 23$, тож ми запишемо прості числа, що не більші за 22. Тобто $p \in \{2, 3, 5, 7, 11, 13, 17, 19\}$. Можна пересвідчитись, що жодне з цих простих чисел $p \nmid n$. Таким чином, за твердженням вище, n = 509 - просте.

Решето Ератосфена

Маємо $n \in \mathbb{N}$ — деяке число. Мета: знайти всі прості числа від 1 до n. Запишемо всі числа від 1 до n в природному порядку. Закреслимо 1, бо це явно не просте число.

Беремо число 2, а далі закреслюємо всі числа, що кратні 2.

Беремо число 3 (наступне просте число, бо не був закресленим на попередній ітерації). Далі закреслюємо всі числа, що кратні 3.

Беремо число 5. Далі закреслюємо всі числа, що кратні 5.

:

Можна цей алгоритм продовжувати до кінця, але можна зупинити заздалегідь. Зауважимо, що коли $p > \sqrt{n}$, то нема що закреслювати.

Дійсно, маємо число $p>\sqrt{n}$. Зараз розглядатимемо числа формату pa,a>1 – це ті самі числа, що кратні p. Зауважимо, що $n\neq pa$ для всіх a>1, тобто або pa< n, або pa>n. Другий випадок ми ігноруємо, бо таких чисел просто нема в таблиці. У першому випадку я стверджую, що число pa вже було закреслено в решето.

Нехай a – просте, тоді зауважимо, що $a < \sqrt{n}$ (в силу нерівності $\sqrt{n}a < pa < n$). Число a уже брало участь вище, тобто ми вже закреслювали числа, що кратні a. Тому число pa уже закреслено в цьому випадку.

Нехай a — складене, то за твердженням вище, там знайдеться просте число $\tilde{p}<\sqrt{a}<\sqrt{pa}<\sqrt{n}$, для якого $\tilde{p}\mid a$. Тобто звідси $pa=\tilde{p}\cdot pq$. Оскільки $\tilde{p}<\sqrt{n}$, то за алгоритмом вище, ми вже закреслили всі числа, що кратні \tilde{p} .

Отже, всі числа, що не закреслилися, – прості.

Example 1.7.4 Знайдемо всі прості числа від 1 до 50. Запишемо всі числа від 1 до 50. Число 1 можна закреслити.

Наступне незакреслене число – це 2, просте, його залишаємо. Закреслимо всі числа, що кратні 2.

```
1
    2
        3
             4
                 5
                     \emptyset
                         7
                              8
                                  9
                                      10
11
       13
           1/4 15
   1/2
                     16 17
                             1/8
                                 19 20
21
    2/2
        23
           2/4 25
                     26 27
                             2/8
                                 29
                                      30
    3/2
        33 34
               35
                     36 37
                             38
31
                                 39
                                      40
41
    4/2
        43
            4/4
                45
                     46
                         47
                             48
                                 49
                                      50
```

Наступне незакреслене число – це 3, просте, його залишаємо. Закреслимо всі числа, що кратні 3.

Наступне незакреслене число – це 5, просте, його залишаємо. Закреслимо всі числа, що кратні 5.

Наступне незакреслене число – це 7, просте, його залишаємо. Закреслимо всі числа, що кратні 7.

Далі закінчуємо, бо наступне число $11 \not \leq \sqrt{n}$. Всі решта незакреслені числа будуть простими.

1.8 Твердження, пов'язані з простими числами

Theorem 1.8.1 Кількість простих чисел – нескінченна.

Proof.

!Припустімо, що всього k простих чисел, тобто маємо набір p_1, p_2, \ldots, p_k .

Побудуємо число $n = p_1 \dots p_k + 1$. Розглянемо два сценарії:

- 1) n просте автоматична суперечність нашому припущенню.
- 2) n складене, тому $p_j \mid n$, бо ми можемо n розкласти як добуток простих чисел. Тоді звідси $p_j \mid n (p_1 \dots p_k) = 1$. Тоді $p_j = 1$, але то вже непросте число. Суперечність!

Proposition 1.8.2 Для кожного $n \in \mathbb{N}$ можна знайти набір n послідовних складених чисел.

Proof.

Для фіксованого $n \in \mathbb{N}$ будуються такі числа:

$$(n+1)! + 2$$

$$(n+1)! + 3$$

:

$$(n+1)! + (n+1).$$

Всього n штук, послідовні та складені.

Proposition 1.8.3 He існує неконстантного многочлена $f \in \mathbb{Z}[x]$, для якого $\forall n \in \mathbb{N} : f(n)$ - просте.

Proof.

!Припустимо, що такий многочлен $f \in \mathbb{Z}[x]$ існує. Маємо $f(x) = \sum_{k=1}^N a_k x^k$

- неконстантний многочлен.

$$f(1) \stackrel{\text{позн.}}{=} p$$
 - просте.

Розглянемо ось таку різницю:

$$f(1+mp) - f(1) = \sum_{k=1}^{N} a_k (1+mp)^k - \sum_{k=1}^{N} a_k = \sum_{k=1}^{N} a_k \left[(1+mp)^k - 1 \right] =$$

$$= \sum_{k=1}^{N} a_k \left[\sum_{l=1}^{k} C_k^l m^l p^l \right] = \sum_{k=1}^{N} \sum_{l=1}^{k} C_k^l a_k m^l p^l.$$

Винесемо з-під суми число p за дужки а суму позначимо за якесь число M. Тоді

 $f(1+mp)-f(1)=pM \implies f(1+mp)=f(1)+pM=p+pM=p(M+1)$ Оскільки f(1+mp) - просте число, то нам треба вимагати, щоб M=0. В результаті $\forall m \in \mathbb{N}: f(1+mp)=p$.

А далі розглянемо многочлен g(x) = f(x) - p, де $g \in \mathbb{Z}[x]$. Отримаємо, що $g(1+mp) = 0, \forall m \in \mathbb{N}$. Многочлен степені k може мати до k коренів рівняння, а тому єдиний можливий варіант - це $g(x) \equiv 0$, звідси $f(x) \equiv p$ - константний многочлен. Суперечність!

Theorem 1.8.4 Нехай число 2^n+1 – просте. Тоді або n=0, або $n=2^k$. Можна сказати ще так: якщо 2^n+1 - просте, то єдиний простий множник числа n - це 2.

Remark 1.8.5 Число $F_k = 2^{2^k} + 1$ ще називають **числами Ферма**. Спочатку вважалось, що всі ці числа прості, але, виявилось, $F_5 = 2^{2^5} + 1$ ділиться націло на 641.

Proof.

Доведемо еквівалентну теорему: якщо n має не лише множник 2, то тоді $2^n + 1 -$ складене.

Нехай $p\mid n$ та p - непарне просте (взяли з розкладу числа n). Тоді n=mp, а звідси $2^n+1=(2^m)^p+1$. Для непарних степеней маємо формулу:

$$x^p + 1 = (x+1)(x^{p-1} - x^{p-2} + x^{p-3} - \dots + 1)$$
 $\implies (2^m)^p + 1 = (2^m + 1)(2^{m(p-1)} - 2^{m(p-2)} + \dots + 1).$
Таким чином, число $2^n + 1$ - складене.

Theorem 1.8.6 Нехай число $2^{n}-1$ – просте. Тоді n – також просте.

Remark 1.8.7 Число $M_n = 2^n - 1$ ще називають **числами Мерсенна**.

Proof.

Припустимо, що n – складене, тобто n=ab. Тоді $2^n-1=(2^a)^b-1$. Схожий крок доведення, але тут застосуємо формулу:

$$x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + 1)$$

 $\implies 2^n - 1 = (2^a - 1)(2^{a(b-1)} + 2^{a(b-2)} + \dots + 1).$
Отже, звідси $2^n - 1$ – також складене.

Remark 1.8.8 Якщо n – просте, то не обов'язково 2^n-1 – просте число. Зокрема 11 - просте число, але $2^{11}-1=2047=23\cdot 89$ - тобто складене.

2 Модульна арифметика

2.1 Основи конгруенцій

Definition 2.1.1 Задані числа $a, b \in \mathbb{Z}$ та число $n \in \mathbb{N}$. Числа a, b називаються **рівними за модулем** n, якщо

під час ділення a та b на n отримаємо однакові остачі.

Позначення: $a \equiv b \pmod{n}$ або часто в інших книгах $a \equiv b \pmod{n}$. Часто ще кажуть **конгруентні за модулем** n.

Example 2.1.2 Зокрема $14 \equiv 5 \pmod{3}$, тому що 14 ділимо на 3 – дає остачу 2. 5 ділимо на 3 – дає остачу 2.

Proposition 2.1.3 $a \equiv b \pmod{n} \iff n \mid a - b$.

Proof.

 \implies Дано: $a \equiv b \pmod{n}$, тоді звідси $a = nq_1 + r$ та $b = nq_2 + r$. За означенням, у них однакові остачі. Отже, $n \mid a - b = nq_1 + r - nq_2 - r = n(q_1 - q_2)$.

 \sqsubseteq Дано: $n \mid a-b$. Припустимо, що $a=nq_1+r_1$ та $b=nq_2+r_2$, тобто в них дві різні остачі, тоді:

$$a-b=n(q_1-q_2)+(r_1-r_2) \implies r_1-r_2=(a-b)-n(q_1-q_2).$$

Із цієї рівності та умови $n \mid a-b$ випливає, що $r_1-r_2 \mid n$, але оскільки $0 \le r_1 < n, 0 \le r_2 < n$, то звідси $-n < r_1 - r_2 < n$. Єдиний варіант, який нас влаштовує, – це $r_1 - r_2 = 0 \implies r_1 = r_2$.

Отримали, що a, b зобов'язані мати однакову остачу при діленні на n, а тому звідси $a \equiv b \pmod{n}$.

Corollary 2.1.4 Операція $\equiv \pmod{n}$ утворює відношення еквівалентності на множині \mathbb{Z} .

Вправа: довести.

Тоді ми можемо знайти неперетинні класи еквівалентності, а потім профакторизувати множину \mathbb{Z} .

Example 2.1.5 Розглянемо n = 4, як число, на яке будемо ділити. Отримаємо такі класи еквівалентності:

$$\overline{0} = \{\dots, -8, -4, 0, 4, 8, \dots\}
\overline{1} = \{\dots, -7, -3, 1, 5, 9, \dots\}
\overline{2} = \{\dots, -6, -2, 2, 6, 10, \dots\}
\overline{3} = \{\dots, -5, -1, 3, 7, 11, \dots\}.$$

Hy а оскільки вони неперетинні, то звідси $\overline{0} \cup \overline{1} \cup \overline{2} \cup \overline{3} = \mathbb{Z}$.

Definition 2.1.6 Множина $\{a_1, \ldots, a_n\}$ називається **повною системою лишків** (mod n), якщо

$$\overline{a_1} \cup \cdots \cup \overline{a_n} = \mathbb{Z}$$

Example 2.1.7 Зокрема з попереденього прикладу, $\{0, 1, 2, 3\}$ утворюють повну систему лишків за (mod 4). Але можна взяти інші: $\{4, 6, 7, 9\}$ або $\{-2, -1, 0, 1\}$.

Proposition 2.1.8 Задані $a \equiv b \pmod{n}$ та $c \equiv d \pmod{n}$. Тоді $a+c \equiv b+d \pmod{n}$; $ac \equiv bc \pmod{n}$.

Вправа: довести.

Proposition 2.1.9 Нехай $a \equiv b \pmod{n}$, а також $d \mid n$. Тоді $a \equiv b \pmod{d}$.

Вправа: довести.

Example 2.1.10 Зокрема $3 \equiv 7 \pmod{4}$, але також $2 \mid 4$, а тому звідси $3 \equiv 7 \pmod{2}$.

Proposition 2.1.11 Нехай $a \equiv b \pmod{n}$, а також $c \in \mathbb{N}$. Тоді $ac \equiv bc \pmod{nc}$.

Вправа: довести.

Corollary 2.1.12 Нехай $a \equiv b \pmod{n}$. Тоді $a^m \equiv b^m \pmod{n}, m \in \mathbb{N}$.

Corollary 2.1.13 Задано многочлен $f \in \mathbb{Z}[x]$, а також $a \equiv b \pmod n$. Тоді $f(a) \equiv f(b) \pmod n$.

Proposition 2.1.14 Нехай $ad \equiv bd \pmod n$ та $\gcd(d,n) = 1$. Тоді $a \equiv b \pmod n$.

Proof.

Маємо dx + ny = 1, а також $n \mid d(a - b) \Longrightarrow n \mid dx(a - b)$. $n \mid (1 - ny)(a - b) = (a - b) - ny(a - b) \Longrightarrow n \mid a - b \Longrightarrow a \equiv b \pmod{n}$.

Remark 2.1.15 Для ділення обох частин умова gcd(d, n) = 1 є важливою. Зокрема $2 \cdot 3 \equiv 2 \cdot 18 \pmod{10}$, але в жодному разі з цього НЕ випливає, що $3 \equiv 18 \pmod{10}$.

Proposition 2.1.16 Нехай $a \equiv b \pmod{c}$ та $a \equiv b \pmod{d}$. Тоді $a \equiv b \pmod{\operatorname{lcm}(c,d)}$.

Зворотний бік також виконується. Вправа: довести.

Proof.

Із умови маємо $c \mid a - b$ та $d \mid a - b$, тобто маємо a - b – спільне кратне чисел c, d. Тоді звідси $lcm(c, d) \mid a - b$, тож $a \equiv b \pmod{lcm(c, d)}$.

Example 2.1.17 Довести, що числа вигляду 11, 111, 1111, . . . не можуть бути представлені як квадрат натурального числа.

Спочатку зауважимо, що рівняння $4k+3=x^2$ не має цілих розв'язків. Тому що якби були розв'язки, то $x^2\equiv 3\pmod 4$. Достатньо перевірити рівність при $x\in\{0,1,2,3\}$. Перебравши всі, отримаємо, що жодний не задовольняє.

Тобто це означає, що жодне число виду 4k+3 не можна представити як повний квадрат. Перефразувавши, якщо $a\equiv 3\pmod 4$, то тоді a – не повний квадрат. Зокрема

```
11 \equiv 3 \pmod{4}

111 = 100 + 11 \equiv 0 + 3 = 3 \pmod{4}

1111 = 1000 + 111 \equiv 0 + 3 = 3 \pmod{4}

:
```

2.2 Правила ділення

Маємо деяке натуральне число $n = \overline{a_m \dots a_1 a_0}$ у вигляді цифр $a_j \in \{0, 1, \dots, 9\}$, тобто це число записується так: $n = a_0 + 10a_1 + \dots + 10^m a_m$.

Theorem 2.2.1 Маємо правила ділення на 2, 5, 4, 25, 3, 9, 11, 37, 7, 13.

```
2 \mid n \iff a_0 \in \{0, 2, 4, 6, 8\} 

5 \mid n \iff a_0 \in \{0, 5\} 

4 \mid n \iff 4 \mid \overline{a_1 a_0} 

25 \mid n \iff \overline{a_1 a_0} \in \{0, 25, 50, 75\} 

3 \mid n \iff 3 \mid (a_0 + a_1 + \dots + a_m) 

9 \mid n \iff 9 \mid (a_0 + a_1 + \dots + a_m) 

11 \mid n \iff 11 \mid (a_0 - a_1 + \dots + (-1)^m a_m) 

37 \mid n \iff 37 \mid (\overline{a_2 a_1 a_0} + \overline{a_5 a_4 a_3} + \dots) 

7 \mid n \iff 7 \mid (\overline{a_2 a_1 a_0} - \overline{a_5 a_4 a_3} + \dots) 

13 \mid n \iff 13 \mid (\overline{a_2 a_1 a_0} - \overline{a_5 a_4 a_3} + \dots)
```

Proof.

Покажу доведення одного з правил. Решта можна самостійно.

 \implies Дано: $3 \mid n$, тобто $n \equiv 0 \pmod{3}$. Зауважимо, що оскільки $10 \equiv 1 \pmod{3}$, то звідси $10^k \equiv 1^k = 1 \pmod{3}$ при $k \in \mathbb{N}$. Отже, $n = a_0 + 10a_1 + \dots + 10^m a_m \equiv a_0 + a_1 + \dots + a_m \equiv 0 \pmod{3}$ $\implies 3 \mid a_0 + a_1 + \dots + a_m$.

$$\sqsubseteq$$
 Дано: $3 \mid (a_0 + a_1 + \cdots + a_m)$, звідси

$$n = a_0 + 10a_1 + \dots + 10^m a_m \stackrel{10^k \equiv 1 \pmod{3}}{\equiv} a_0 + a_1 + \dots + a_m \stackrel{\text{дано}}{\equiv} 0 \pmod{3}.$$
 Звідси випливає, що $3 \mid n$.

Вказівка для правила ділення на 37 націло: $10^3 \equiv 1 \pmod{37}$.

Example 2.2.2 Розкласти число n = 35256375 на добуток простих.

У кінці n стоїть 75, тому стовпчиком ділимо на 25 — отримаємо: $n=5^2\cdot 1410255$.

Остання цифра другого числа – 5, тому стовпчиком ділимо на 5: $n = 5^3 \cdot 282051$.

Маємо $2+8+2+0+5+1=18\,\dot{:}\,9,$ а тому $282051\,\dot{:}\,9$ – отримаємо $n=5^3\cdot 3^2\cdot 31339.$

Маємо 3-1+3-3+9=11 і 11, а тому 31339 і 11 – отримаємо: $n=5^3\cdot 3^2\cdot 11\cdot 2849$.

Знову 2-8+4-9=-11 : 11 — тож звідси $n=5^3\cdot 3^2\cdot 11^2\cdot 259.$

Нарешті, отримаємо такий розклад: $n = 3^2 \cdot 5^3 \cdot 7 \cdot 11^2 \cdot 37$.

2.3 Лінійні конгруенції

Мета: знайти розв'язки цього рівняння:

$$ax \equiv b \pmod{n}$$

Нехай x_0 - розв'язок, тобто $ax_0 \equiv b \pmod n$, тоді $n \mid ax_0 - b \implies ax_0 - kn = b$. Тоді звідси випливає, що $\gcd(a,n) \mid b$.

Нехай $d = \gcd(a, n) \mid b$ тоді рівняння ax + ny = b має розв'язок відносно змінних $y_0, x_0 \in \mathbb{Z}$. І тому звідси $ax_0 = b + y_0 n \equiv b \pmod{n}$. Але це не єдиний такий розв'язок.

Із теорії діофантових рівнянь ми можемо отримати розв'язки вигляду:

$$x = x_0 + m\frac{n}{d}, m \in \mathbb{Z}$$

$$k = y_0 - m\frac{n}{d}, m \in \mathbb{Z}.$$

Зауважимо, що можна брати $0 \le m \le d-1$.

Якщо $m \geq d$, то можна число записати як $m = d + r, r \geq 0$. Тоді $x = x_0 + (d+r)\frac{n}{d} = x_0 + n + r\frac{n}{d} \equiv x_0 + r\frac{n}{d}$.

Якщо $m \le 0$, то можна зробити заміну $m = -r, r \ge 0$. Тоді буде попередній сценарій, $0 \le -r \le d-1$. Але можна довести, що $x_0 + m \frac{n}{d} \equiv x_0 - r \frac{n}{d}$ (mod n).

Тепер треба переконатись, що ці розв'язки при решти $0 \leq m \leq d-1$

різні за модулем. Припустімо, що $x_i \equiv x_j \pmod n$, тоді звідси $i\frac{n}{d} \equiv j\frac{n}{d} \pmod n$, тобто $(i-j)\frac{n}{d} = nl \implies d \nmid i-j \implies i \equiv j \pmod d$. Єдиний такий варіант - це бути i=j.

Підсумовуючи:

Theorem 2.3.1 $ax \equiv b \pmod{n}$ має розв'язок $\iff d = \gcd(a, n) \mid b$. Причому всього d різних за модулем розв'язків вигляду $x_p = x_0 + p \cdot \frac{n}{d}, 0 \le p \le d - 1$, де x_0 – один з розв'язків.

Example 2.3.2 Розв'язати рівняння $12x \equiv 8 \pmod{20}$.

Оскільки $gcd(12, 20) = 4 \mid 8$, то розв'язок існує.

$$12x_0 + 20y_0 = 4 \implies x_0 = 2$$
 та $y_0 = -1$ – неважко вгадати.

$$12 \cdot 2 + 20 \cdot (-1) = 4,$$

$$12 \cdot 4 + 20 \cdot (-2) = 8$$

а тому звідси $x_0 = 4$ – перший розв'язок. Решта розв'язків генерується такою формулою:

$$x_m = 4 + m \frac{20}{\gcd(12, 20)} = 4 + 5m.$$

Отже, маємо такі розв'язкі, що різні за модулем: {4, 9, 14, 19}.

2.4 Китайська теорема про остачі

Theorem 2.4.1 Задані числа $n_1, \ldots, n_k \in \mathbb{N}$ - попарно взаємно прості; числа $a_1, \ldots, a_k \in \mathbb{Z}$. Тоді система рівнянь

$$\begin{cases} x \equiv a_1 \pmod{n_1} \\ \vdots \\ x \equiv a_k \pmod{n_k} \end{cases}$$

має єдиний розв'язок, що рівний за \pmod{N} , де $N = n_1 \dots n_k$.

Proof.

I. *Існування*.

Позначимо числа N_i - добуток чисел n_1, \ldots, n_k , але без n_i . Маємо $\gcd(N_i, n_i) = 1$, в силу попарно взаємної простоти. Тож $N_i x_i + n_i y_i = 1$ для деяких $x_i, y_i \in \mathbb{Z}$. Звідси $N_i x_i = 1 - n_i y_i \equiv 1 \pmod{n_i}$.

Помножимо обидві частини на a_i – отримаємо

$$(N_i a_i) x_i \equiv a_i \pmod{n_i}$$
.

Встановимо $x=N_1a_1x_1+\cdots+N_ka_kx_k$ – наш майбутній розв'язок. Зауважимо, що $N_i\equiv 0\pmod{n_j}$ при $i\neq j$. Тоді для кожного j маємо $x\equiv N_ja_jx_j\equiv a_j\pmod{n_j}$.

II. *Єдиність*.

!Припустимо, що маємо два різні розв'язки x,y за \pmod{N} . Тоді для кожного $j=\overline{1,k}$ маємо:

$$x - y \equiv 0 \pmod{n_j} \implies n_j \mid x - y.$$

Оскільки n_j попарно взаємно прості, то звідси $n_1 \dots n_k = N \mid x - y$, а тому $x \equiv y \pmod{N}$. Суперечність!

Кроки розв'язку таких систем описується на цьому прикладі:

Example 2.4.2 Розв'язати систему рівнянь
$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{7} \\ x \equiv 9 \pmod{10} \end{cases}$$

Спочатку зауважимо (!), що числа 3,7,10 – попарно взаємно прості між собою. Далі позначимо $N=3\cdot 7\cdot 10=210$. Маємо такі числа:

$$N_1 = 7 \cdot 10 = 70$$

$$N_2 = 3 \cdot 10 = 30$$

$$N_3 = 3 \cdot 7 = 21.$$

Тепер нам треба знайти x_1, x_2, x_3 із таких рівнянь:

$$70x_1 \equiv 1 \pmod{3}$$

$$30x_2 \equiv 1 \pmod{7}$$

$$21x_3 \equiv 1 \pmod{10}$$

Розв'яжемо кожне окремо:

$$70x_1 \equiv 1x_1 \equiv 1 \pmod{3} \iff x_1 = 1.$$

$$30x_2 \equiv 2x_2 \equiv 1 \pmod{7} \iff x_2 = 4.$$

$$21x_3 \equiv 1x_3 \equiv 1 \pmod{10} \iff x_3 = 1.$$

Конструююємо розв'язок таким чином:

$$x = 2N_1x_1 + 3N_2x_2 + 9N_3x_3 = 689.$$

Можна залишити таку відповідь, але ми знаємо, що за модулем 210 розв'язок однаковий, тому краща відповідь: x=59.

Example 2.4.3 Розв'язати систему рівнянь $\begin{cases} 2x \equiv 6 \pmod{14} \\ 3x \equiv 9 \pmod{15} \\ 5x \equiv 20 \pmod{60} \end{cases}$

Ось тут не можна використовувати китайську теорему про остачі, оскільки маємо $\gcd(15,60) \neq 1$. Тоді треба інший варіант.

Зауважимо, що
$$2x \equiv 6 \pmod{14} \iff \begin{cases} 2x \equiv 6 \pmod{2} \\ 2x \equiv 6 \pmod{7} \end{cases}$$
, просто тому

що lcm(2,7)=14. Перша рівність ніякої інформації не дає, бо завжди виконана.

Аналогічно
$$3x \equiv 9 \pmod{15} \iff \begin{cases} 3x \equiv 9 \pmod{5} \\ 3x \equiv 9 \pmod{3} \end{cases}$$
, а друга рівність

інформації не дає.

Аналогічно $5x \equiv 20 \pmod{60} \iff \begin{cases} 5x \equiv 20 \pmod{12} \\ 5x \equiv 20 \pmod{5} \end{cases}$, а друга рівність інформації не дає.

Отримаємо еквівалентну систему
$$\begin{cases} 2x \equiv 6 \pmod{7} \\ 3x \equiv 9 \pmod{5} \\ 5x \equiv 20 \pmod{12} \end{cases}.$$

Тим не менш, ми досі не можемо використати китайську теорему. Нам необхідно розв'язати кожне лінійне конгруентне рівняння окремо. Я це розписувати не буду та запишу вже еквівалентну систему:

$$\begin{cases} x \equiv 3 \pmod{7} \\ x \equiv 3 \pmod{5} \\ x \equiv 4 \pmod{12} \end{cases}$$

Тепер вже можна китайську теорему про остачі.

Позначимо $N=7\cdot 5\cdot 12=420,$ а також числа $N_1=5\cdot 12=60,$ $N_2=7\cdot 12=84,$ $N_3=7\cdot 5=35.$ Знайдемо x_1,x_2,x_3 із таких рівнянь:

$$\begin{cases} 60x_1 \equiv 1 \pmod{7} \\ 84x_2 \equiv 1 \pmod{5} \\ 35x_3 \equiv 1 \pmod{12} \end{cases} \iff \begin{cases} x_1 = 2 \\ x_2 = 4 \\ x_3 = 11 \end{cases}$$
Magmo $x = 3N_1x_1 + 3N_2x_2 + 4N_3x_3 = 2908 \equiv 388 \pmod{420}.$

2.5 Теорема Вільсона

Lemma 2.5.1 Нехай p - просте число. Відомо, що $x^2 \equiv 1 \pmod{p}$. Тоді $x \equiv \pm 1 \pmod{p}$.

Proof.

Нехай $x^2\equiv 1\pmod p$. Тоді звідси $p\mid x^2-1\implies p\mid (x-1)(x+1)\implies p\mid x-1$ або $p\mid x+1$.

Якщо $p \mid x - 1$, то звідси $x \equiv 1 \pmod{p}$.

Якщо $p \mid x+1$, то звідси $x \equiv -1 \pmod{p}$.

 \mathbf{Remark} 2.5.2 Тут важливо, що p має бути простим.

Зокрема $5^2 \equiv 1 \pmod{12}$, але з цього не випливає, що $5 \equiv \pm 1 \pmod{12}$.

Theorem 2.5.3 Теорема Вільсона

p – просте число $\iff (p-1)! \equiv -1 \pmod{p}$.

Proof.

 \Longrightarrow Дано: p – просте число.

 $\overline{\text{Спочатку розглядається частинні випадки: } p = 2, p = 3$ — неважко.

Нехай $p \geq 5$ та просте. Розглянемо множину $\{2,3,\ldots,p-2\}$. Зауважимо, що при $a \in \{2,3,\ldots,p-2\}$ маємо $a^2 \not\equiv 1 \pmod p$, згідно з попередньої леми. Також зауважимо, що $\exists!b \in \{2,3,\ldots,p-2\}$, для яких $ab \equiv 1 \pmod p$, в разі якщо $b \neq a$. Тому що підставте будь-яке число $a \neq b$ - і отримаєте лінійне рівняння, яке має єдиний розв'язок. І наостанок: $\{2,3,\ldots,p-2\}$ має парну кількість елементів. Тому кожному числу завжди знайдеться єдине "обернене". Отже,

$$(p-1)! = 1 \cdot 2 \cdot 3 \cdots (p-2) \cdot (p-1) = 1 \cdot (p-1) \cdot [2 \cdot 3 \cdots (p-2)] \equiv 1 \cdot p - 1 \equiv -1 \pmod{p}.$$

 \sqsubseteq Дано: $(p-1)! \equiv -1 \pmod{p}$.

!Припустімо, що p - не просте число, тобто $n \mid p$, але $p \neq n$. Звідси випливає, що $n \in \{1, 2, 3, \dots, p-1\}$. Але з цього випливає, що $n \mid (p-1)!$. Ми маємо $n \mid p$ та $p \mid ((p-1)!+1)$ зверху, тобто $n \mid ((p-1)!+1)$. Отже, $n \mid ((p-1)!+1-(p-1)!)=1$. Тобто n=1. Суперечність!

Theorem 2.5.4 Задано p – непарне просте число. $x^2 \equiv -1 \pmod{p}$ має розв'язок $\iff p \equiv 1 \pmod{4}$.

Proof.

 \implies Дано: $x^2 \equiv -1 \pmod{p}$ має розв'язок.

Припустімо, що $p\not\equiv 1\pmod 4$. Маючи той факт, що p – непарне просте, маємо $p\equiv 3\pmod 4$. Тоді $\frac{p-1}{2}=\frac{p-3}{2}+1$ - непарне число.

За малою теоремою Ферма, $x^{p-1} \equiv 1 \pmod{p}$, неважко показати, що $p \nmid x$ в силу того, що $x^2 \equiv -1 \pmod{p}$. Таким чином,

$$x^{p-1} = (x^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \stackrel{\frac{p-1}{2}-\text{Heпарне}}{\equiv} -1 \pmod{p}.$$

Отже, $-1 \equiv 1 \pmod{p} \implies p \mid 2$. Суперечність! Бо ми маємо справу з непарними простими числами.

 \sqsubseteq Дано: $p \equiv 1 \pmod{4}$. Тоді звідси $4 \mid p-1$, а значить, число $\frac{p-1}{2}$ - парне число. Використовуючи теорему Вільсона, отримаємо:

$$-1 \equiv (p-1)! = \left(1 \cdot 2 \cdots \frac{p-1}{2}\right) \left(\left(\frac{p-1}{2}+1\right) \cdots (p-2) \cdot (p-1)\right) \equiv \left(1 \cdot 2 \cdots \frac{p-1}{2}\right) \left(-\frac{p-1}{2} \cdots (-2) \cdot (-1)\right) = \left(1 \cdot 2 \cdots \frac{p-1}{2}\right)^2.$$

Рівність вище \pmod{p} . Отже, $x = 1 \cdot 2 \cdots \frac{p-1}{2}$ задовольняє рівнянню $x^2 \equiv -1 \pmod{p}$.

Corollary 2.5.5 Існує нескінченна кількість простих чисел p, для яких $p \equiv 1 \pmod{4}$.

Proof.

!Припустімо, що лише скінченна кількість простих чисел задовольняє умові. Тобто p_1, \ldots, p_k – такі прості, що $\equiv 1 \pmod 4$.

Побудуймо число $N=4(p_1\dots p_n)^2+1$. Зауважимо, що $N\equiv 1\pmod 4$. Якщо N – просте, то автоматом суперечність. Тому кажемо, що N – складене. Тобто $p\mid N\implies N\equiv 0\pmod p\implies (2p_1\dots p_k)^2\equiv -1\pmod p$. А тому за попередньою теоремою, $p\equiv 1\pmod 4\implies p=p_i, i=\overline 1, k$. Але $p_i\mid N, p_i\mid 4(p_1\dots p_k)^2\implies p_i\mid N-4(p_1\dots p_k)^2=1$. Суперечність!

2.6 Лема Гензеля

Theorem 2.6.1 Теорема Лагранжа

Задано функцію $f \in \mathbb{Z}[x]$ та p просте число, причому старший коефіцієнт не ділиться на p. Тоді $f(x) \equiv 0 \pmod{p}$ має до $\deg f(x)$ розв'язків.

Remark 2.6.2 Суттєво, щоб p був простим.

Зокрема $x^2-1\equiv 0\pmod{12}$ має аж $4\neq \deg(x^2-1)$ розв'язки з точністю до конгруенції: $x\in\{1,5,7,11\}.$

Proof.

Доведення за MI за $\deg f(x) = n$.

База індукції: n=1. Маємо многочлен f(x)=ax+b, де $p\nmid a$. Маємо рівняння $ax+b\equiv 0\pmod p$, але таке ми навчились розв'язати. Маємо $\gcd(a,p)=1\mid b$, а тому мається розв'язок. Причому буде єдиний розв'язок.

Припущення індукції: твердження виконується для $\deg f(x) = k$. Крок індукції: доведемо для $\deg f(x) = k + 1$.

Маємо f — многочлен, $\deg f(x) = k+1$, старший коефіцієнт не ділиться на p. Якщо $\nexists a: f(a) \equiv 0 \pmod p$, то доведено. Тому нехай $\exists a: f(a) \equiv 0 \pmod p$. За теоремою Безу, f(x) = (x-a)g(x) + f(a), причому $\deg g(x) = k$. Також важливо зауважити, що старший коефіцієнт при g не ділиться на p. Бо, припустивши зворотне, отримаємо, що старший коеф при f ділииться на p.

За припущенням MI, $g(x) \equiv 0 \pmod{p}$ має до k розв'язків. Тоді $f(x) = (x-a)g(x) + f(a) \equiv (x-a)g(x) \equiv 0 \pmod{p}$ має до k+1 розв'язків. MI доведено.

Lemma 2.6.3 Лема Гензеля

Задано функцію $f \in \mathbb{Z}[x]$, також p — просте число та $m \in \mathbb{N}$. Нехай є число $a \in \mathbb{Z}$, для якого виконуються умови: $f(a) \equiv 0 \pmod{p^m}$;

 $f'(a) \not\equiv 0 \pmod{p}$. Тоді $\exists ! t \in \{0, 1, \dots, p-1\}$, для якого $f(a + tp^m) \equiv 0 \pmod{p^{m+1}}$.

Proof.

Позначимо $\deg f(x) = n$. В точці x = a розкладемо за рядом Тейлора:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(x)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

$$f(a+tp^m) = f(a) + \frac{f'(a)}{1!}tp^m + \dots + \frac{f^{(n)}(a)}{n!}t^np^{mn}.$$

Покажемо, що $\frac{f^{(k)}(a)}{k!} \in \mathbb{Z}$.

Справді, якщо взяти якусь конкретну функцію $g(x) = x^r$, то для неї $\frac{g^{(k)}(a)}{k!} = C_r^k \in \mathbb{Z}$ (чому C_r^k ціле, буде зазначено в **Th. 3.4.6**). А довільна функція f - це лінійна комбінація x^r .

Отже, в силу $\frac{f^{(k)}(a)}{\iota} \in \mathbb{Z}$, а значить, $f(a+tp^m) \equiv f(a) + f'(a)tp^m$ $\pmod{p^{m+1}}$.

Тепер ми хочемо знайти таке t, щоб $f(a+tp^m)\equiv 0\pmod{p^{m+1}}$. Маємо $f(a)+f'(a)tp^m\equiv 0\pmod{p^{m+1}}$. Оскільки $f(a)\equiv 0\pmod{p^m}$, то звідси $p^m \mid f(a)$, а значить, $\frac{f(a)}{p^m} \in \mathbb{Z}$. Тож $\frac{f(a)}{p^m} + f'(a)t \equiv 0 \pmod{p}$.

Зауважимо, що це - лінійне конгруентне рівняння. Ще зауважимо, що $\gcd(f'(a),p)=1$, оскільки $f'(a)\not\equiv 0\pmod{p}$. Отже, дане рівняння має єдиний розв'язок t. Оскільки рівняння відносно \pmod{p} , то $t \in$ $\{0, 1, \ldots, p-1\}.$

Proposition 2.6.4 Задано p – просте число та $m \in \mathbb{N}$. Тоді рівняння $x^{p-1} \equiv 1 \pmod{p^m}$ має рівно p-1 розв'язків.

Proof.

База індукції: m = 1, тоді маємо $x^{p-1} \equiv 1 \pmod{p}$. А це чисто мала теорема Ферма: там справді є p-1 розв'язків.

Припущення індкції: для деякого k твердження виконано.

 $Kpo\kappa ihdy\kappa uii$: доведемо це для k+1.

Розглянемо функцію $f(x) = x^{p-1} - 1$. За МІ $f(x) \equiv 0 \pmod{p^k}$ існують рівно p-1 розв'язків, я їх назву x_1, \ldots, x_{p-1} . Отже, $f(x_i) \equiv 0 \pmod{p^k}$, а також $f'(x_i) = (p-1)x_i^{p-2} \not\equiv 0 \pmod{p^k}$ Зокрема $f'(x_i) \not\equiv 0 \pmod{p}$. Отже, за лемою Гензеля, $\exists! t_i \in \{0, 1, \dots, p-1\} : f(x_i + t_i p^k) \equiv 0$ $\pmod{p^{k+1}}$.

Звідси, в нас p-1 розв'язків типу $x_i + t_i p^k$ для рівняння $f(x) \equiv 0$ $\pmod{p^{k+1}}$.

Нехай y — ще один розв'язок, тобто

 $f(y) \equiv 0 \pmod{p^{k+1}} \implies f(y) \equiv 0 \pmod{p^k}$.

За MI, $y \equiv x_i \pmod{p^k}$. Повторюючи лему Гензеля, маємо $\exists! t : f(y + y)$ $tp^k)\equiv 0\pmod{p^{k+1}}$. Але $y+tp^k=x_i+tp^k$, а для числа x_i в нас існував єдиний t_i . Таким чином, $t=t_i$. І отримали: $y+tp^k=x_i+t_ip^k$ – розв'язок співпав з цими, що були вище.

MI доведено.

Example 2.6.5 Розв'язати рівняння $x^2 + 15x + 31 \equiv 0 \pmod{125}$. Позначимо $f(x) = x^2 + 15x + 31$. Звідси f'(x) = 2x + 15.

I. $\pmod{5}$

 $f(x) \equiv 0 \pmod{5} \iff x^2 + 1 \equiv 0 \pmod{5}$. Маємо звідси $x \in \{2, 3\}$.

 $f'(2) = 19 \not\equiv 0 \pmod{5}$ Ta $f'(3) = 21 \not\equiv 0 \pmod{5}$.

За лемою Гензеля, $\exists !t_1, t_2 :$

 $f(2+5t_1) \equiv 0 \pmod{25}$

 $f(3+5t_2) \equiv 0 \pmod{25}$

Для x = 2 маємо $t_1 f'(2) \equiv -\frac{f(2)}{5} \pmod{5} \iff t_1 = 3.$

Для x = 3 маємо $t_2 f'(3) \equiv -\frac{f(3)}{5} \pmod{5} \iff t_2 = 3.$

II. $\pmod{25}$.

 $f(x) \equiv 0 \pmod{25} \iff x^2 + 15x + 6 \equiv 0 \pmod{25}$. Маємо з минулого $x \in \{17, 18\}. \ f'(17) \not\equiv 0 \pmod{5} \text{ Ta } f'(18) \not\equiv 0 \pmod{5}.$

За лемою Гензеля, $\exists !t_1, t_2 :$

 $f(17 + 25t_1) \equiv 0 \pmod{125}$

 $f(18 + 25t_2) \equiv 0 \pmod{125}$.

Для x = 17 маємо $t_1 f'(17) \equiv -\frac{f(17)}{25} \pmod{5} \iff t_1 = 3.$ Для x = 18 маємо $t_2 f'(18) \equiv -\frac{f(18)}{25} \pmod{5} \iff t_2 = 0.$

III. $\pmod{125}$.

 $f(x) \equiv 0 \pmod{125}$ має розв'язки $x \in \{18, 92\}.$

Інших розв'язків нема, бо під час доведення леми Гензеля ми розв'язували лінійне конгруентне рівняння, що гарантувало єдиний розв'язок.

3 Арифметичні функції

Надалі ми будемо розглядати **арифметичні функції** $f: \mathbb{N} \to \mathbb{C}$ (хоча тут розглядатимуться частіше $\mathbb{N} \to \mathbb{N}$). Тобто це такі функції, область визначення яких — натуральні числа.

Definition 3.0.1 Арифметична функція $f: \mathbb{N} \to \mathbb{C}$ називається **мультиплікативною**, якщо

$$f(1) = 1$$

$$f(mn) = f(m)f(n) \ \text{при} \ \gcd(m,n) = 1$$

Lemma 3.0.2 Задано число $n \in \mathbb{N}$, а також $f: \mathbb{N} \to \mathbb{N}$. Тоді $\sum_{d|n} f(d) = \sum_{d|n} f\left(\frac{n}{d}\right).$

Proof.

Маємо $d\mid n$, тоді звідси $\exists x\in\mathbb{Z}:n=xd$, а це означає, що $x\mid n$, але $x=\frac{n}{d}$. Якщо діяти навпаки, тобто $\frac{n}{d}\mid n$, то тоді миттєво $d\mid n$.

Тобто d_1,\ldots,d_r – всі дільники числа $n\iff \frac{n}{d_1},\ldots,\frac{n}{d_r}$ – всі дільники числа n.

Отже,
$$d_1 = \frac{n}{d_{j_1}}, \dots, d_r = \frac{n}{d_{j_r}}.$$

$$\sum_{d|n} f(d) = f(d_1) + \dots + f(d_r) = f\left(\frac{n}{d_{j_1}}\right) + \dots + f\left(\frac{n}{d_{j_r}}\right)$$
 переставимо в природному порядку \equiv

$$= f\left(\frac{n}{d_1}\right) + \dots + f\left(\frac{n}{d_r}\right) = \sum_{d|n} f\left(\frac{n}{d}\right).$$

3.1 Функції τ, σ

Definition 3.1.1 Арифметична функція $\tau \colon \mathbb{N} \to \mathbb{N}$ визначає **кількість дільників** числа n, тобто інакше кажучи:

$$\tau(n) = \sum_{d|n} 1$$

Definition 3.1.2 Арифметична функція $\sigma \colon \mathbb{N} \to \mathbb{N}$ визначає **суму дільників** числа n, тобто інакше кажучи:

$$\tau(n) = \sum_{d|n} d$$

Example 3.1.3 Зокрема для числа 10 ми маємо дільники 1, 2, 5, 10, а тому $\tau(10) = 4$ $\sigma(10) = 18$.

Theorem 3.1.4 Задано число $n=p_1^{k_1}\dots p_r^{r_k}$. Тоді $\tau(n)=(k_1+1)\dots(k_r+1)$ $\sigma(n)=\frac{p_1^{k+1}-1}{p_1-1}\dots\frac{p_r^{k_r+1}-1}{p_r-1}$

Proof.

Маємо, що кожний дільник $d \mid n$ має форму $d = p_1^{a_1} \dots p_r^{a_r}$, причому $0 \le a_i \le k_i$. Із точки зору комбінаторики, у нас є $k_1 + 1$ варіантів обрати степінь $a_1, \dots,$ у нас є $k_r + 1$ варіантів обрати степінь a_r . А тому всього $(k_1 + 1) \dots (k_r + 1)$ варіантів сконструювати число $p_1^{a_1} \dots p_r^{a_r}$, що є дільником. Отже, $\tau(n) = (k_1 + 1) \dots (k_r + 1)$.

А далі розглянемо ось такий вираз: $(1+p_1+\cdots+p_1^{k_1})\dots(1+p_r+\cdots+p_r^{k_r})$. Якщо перемножити, то ми отримаємо суму всіх можливих дільників формату $p_1^{a_1}\dots p_r^{a_r}$, тобто суму всіх дільників числа n. Знаючи, що в кожній дужці - геометрична прогресія, отримаємо:

жни дужці - геометрична прогресія, отримаємо.
$$\sigma(n) = (1 + p_1 + \dots + p_1^{k_1}) \dots (1 + p_r + \dots + p_r^{k_r}) = \frac{p_1^{k+1} - 1}{p_1 - 1} \dots \frac{p_r^{k_r + 1} - 1}{p_r - 1}.$$

Remark 3.1.5 n – просте число $\iff \begin{cases} \tau(n) = 2\\ \sigma(n) = n+1 \end{cases}$

Example 3.1.6 Число $180 = 2^2 \cdot 3^2 \cdot 5$, а тому звідси $\tau(180) = (2+1)(2+1)(1+1) = 18$ $\sigma(180) = \frac{2^3-1}{2-1} \frac{3^3-1}{3-1} \frac{5^2-1}{5-1} = 546$

Theorem 3.1.7 $\prod_{d|n} d = n^{\frac{\tau(n)}{2}}$.

Proof.

 $d\mid n\iff \frac{n}{d}=d'\mid n$, причому маємо n=dd'. Всього дільників d рівно $\tau(n)$ штук. Перемножимо ці $\tau(n)$ рівнянь:

$$n^{ au(n)} = \prod_{d \mid n} d \prod_{d' \mid n} d' = \left(\prod_{d \mid n} d\right)^2.$$
 Таким чином, $n^{rac{ au(n)}{2}} = \prod_{d \mid n} d.$

Єдине треба заспокоїтись та переконатись, що зліва завжди буде ціле число, навіть попри квадратного кореня. Маємо два випадки:

- 1) $\tau(n)$ парне, тоді можна не перейматись.
- 2) $\tau(n)$ непарне, тоді число n буде квадратом якогось числа. І дійсно, $\tau(n)=(k_1+1)\dots(k_r+1)$ цей вираз може бути парним тоді й тільки тоді, коли кожна дужка парна, тобто $k_i=2s_i$. А тому $n=p_1^{k_1}\dots p_r^{r_k}=(p_1^{s_1}\dots p_1^{s_r})^2$. Отже, можна взяти квадратний корінь ліворуч.

Theorem 3.1.8 Функції τ, σ – мультиплікативні.

Proof.

Маємо $n=p_1^{k_1}\dots p_r^{k_r}$ та $m=q_1^{m_1}\dots q_s^{m_s}$, причому беремо так, щоб $\gcd(m,n)=1$. Але в такому разі маємо $\gcd\left(p_i^{k_i},q_j^{m_j}\right)=1$. Отже, у нас буде $mn=q_1^{m_1}\dots q_s^{m_s}p_1^{k_1}\dots p_r^{k_r}$. І вони вже ніяк не перемножаться між собою. Разом отримаємо:

$$\tau(mn) = (m_1 + 1) \dots (m_s + 1)(k_1 + 1) \dots (k_r + 1) = \tau(m)\tau(n)$$

$$\sigma(mn) = \frac{q_1^{m_1+1} - 1}{q_1 - 1} \dots \frac{q_s^{m_s+1} - 1}{q_s - 1} \frac{p_1^{k+1} - 1}{p_1 - 1} \dots \frac{p_r^{k_r+1} - 1}{p_r - 1} = \sigma(m)\sigma(n)$$

Також ледве не забув $\tau(1) = 1$, $\sigma(1) = 1$ – тут з цим ясно.

Існує ще один варіант, як довести мультиплікативність цих двох функцій. Спочатку почну з леми.

Lemma 3.1.9 Задані числа m, n такі, що $\gcd(m, n) = 1$. Тоді множина дільників $d \mid mn$ складається з елементів формату d_1d_2 , де $d_1 \mid m, d_2 \mid n$, $\gcd(d_1, d_2) = 1$, а також всі d_1d_2 – різні.

Proof.

Маємо $n=p_1^{k_1}\dots p_r^{k_r}$ та $m=q_1^{m_1}\dots q_s^{m_s}$, причому беремо так, щоб $\gcd(m,n)=1$. Але в такому разі маємо $\gcd\left(p_i^{k_i},q_j^{m_j}\right)=1$. Отже, у нас буде $mn=q_1^{m_1}\dots q_s^{m_s}p_1^{k_1}\dots p_r^{k_r}$. І вони вже ніяк не перемножаться між собою. Знаю, що слово в слово повторюю, але хай буде.

$$d \mid mn \iff d = (q_1^{a_1} \dots q_s^{a_s}) \cdot (p_1^{b_1} \dots p_r^{b_r}) = d_1 d_2$$
, де $\gcd(d_1, d_2) = 1$.

Theorem 3.1.10 Задано функцію f — мультиплікативна. Тоді функція $F(n) = \sum_{d|n} f(n)$ — також мультиплікативна.

Proof.

$$F(mn) = \sum_{d|mn} f(d) \stackrel{\text{Lm. 3.1.9}}{=} \sum_{\substack{d_1|m\\d_2|n}} f(d_1d_2) \stackrel{\gcd(d_1,d_2)=1}{=} \sum_{\substack{d_1|m\\d_2|n}} f(d_1)f(d_2) =$$

$$= \sum_{d_1|m} f(d_1) \cdot \sum_{d_2|n} f(d_2) = F(m)F(n).$$

Далі ми знаємо, що $f_1(n) = 1$, $f_2(n) = n$ – зрозумілим чином мультиплікативні. А тому за означенням τ, σ та отриманою теоремою, у нас будуть σ, τ мультиплікативні.

3.2 Функція φ (функція Ойлера)

Definition 3.2.1 Функцією Ойлера називають арифметичну функцію $\varphi \colon \mathbb{N} \to \mathbb{N}$, що задана таким чином:

$$\varphi(n) = \#\{m \mid 1 \le m \le n, \gcd(m, n) = 1\}$$

Часто ще позначають саме $\phi(n)$. Використовуватиму позначення вище.

Example 3.2.2 Наприклад, $\varphi(12) = 4$, бо взаємно прості числа з ним: 1, 5, 7, 11 — всього 4 взаємно простих числа, що менші за 12.

Definition 3.2.3 Скороченою системою лишкків \pmod{n} називають множину

$$\{b_1, b_2, \ldots, b_{\varphi(n)}\} \subset \mathbb{Z},$$

для яких $\gcd(b_r, n) = 1$, а також вони всі різні \pmod{n} . Причому їхня кількість обов'язково має бути $\varphi(n)$.

Example 3.2.4 Зокерма при $\varphi(12) = 4$ ми маємо такі скорочені системи лишків: $\{1, 5, 7, 11\}$, $\{1, -7, 7, -1\}$. Можна ще напридумати таких систем безліч.

Lemma 3.2.5 Задано $\{b_1,\ldots,b_{\varphi(n)}\}$ – скорочена система лишків. Оберемо число $a\in\mathbb{Z}$, для якого $\gcd(a,n)=1$. Тоді $\{ab_1,\ldots,ab_{\varphi(n)}\}$ – також скорочена система лишків.

Proof.

Із того, що $\gcd(a,n)=1,\gcd(b_i,n)=1$ випливає $\gcd(ab_i,n)=1$. Зишилось показати, що $ab_i\not\equiv ab_j\pmod n$ при $i\not=j$. !Якщо припустити, що $ab_i\equiv ab_j\pmod n$, то тоді оскільки $\gcd(a,n)=1$, то звідси $b_i\equiv b_j\pmod n$. Суперечність!

Theorem 3.2.6 Теорема Ойлера

Задані числа a, n так, що $\gcd(a, n) = 1$. Тоді $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof.

Нехай $\{b_1,\ldots,b_{\varphi(n)}\}$ — скорочена система лишків (mod n). За попередньою лемою, $\{ab_1,\ldots,ab_{\varphi(n)}\}$ — скорочена система лишків (mod n).

Звідси випливає таке рівняння:

$$(ab_1)\dots(ab_{\varphi(n)})\equiv b_1\dots b_{\varphi(n)}\pmod{n}.$$

$$a^{\varphi(n)}x \equiv x \pmod{n}$$
, де число $x = b_1 \dots b_{\varphi(n)}$.

Із того, що $\gcd(b_i,n)=1, i=\overline{1,\varphi(n)}$ випливає $\gcd(x,n)=1$. Тому звідси $a^{\varphi(n)}\equiv 1\pmod{n}$.

Corollary 3.2.7 мала теорема Ферма

Задано p – просте число та $a \in \mathbb{Z}$, причому $p \nmid a$. Тоді $a^{p-1} \equiv 1 \pmod{p}$.

Remark 3.2.8 Насправді, також існує метод доведення теореми Ойлера через інструменти з теорії груп. Можна подивитися в іншому пдфнику безпосередньо.

Example 3.2.9 Визначити останні 2 цифри числа 7^{950} . Еквівалетно кажучи, скоротити $7^{950} \pmod{100}$.

Досить трюковна задача, але зробимо ось що. Спочатку скоротимо це число двома шляхами: (mod 4) та (mod 25).

Маємо
$$7^{950} = 7^{2 \cdot 475} = 7^{\varphi(4) \cdot 475} = (7^{\varphi(4)})^{475} \stackrel{\text{fo } gcd(7,4)=1}{\equiv} 1^{475} = 1 \pmod{4}.$$

Маємо
$$7^{950} = 7^{47 \cdot 20 + 10} = 7^{10} \cdot (7^{\varphi(25)})^{47} \stackrel{\text{бо gcd}(7,25) = 1}{\equiv} 7^{10} 1^{47} = 7^{10} = (7^2)^5 \equiv (-1)^5 = -1 \equiv 24 \pmod{25}.$$

Тож ми маємо ось це:

$$\begin{cases} 7^{950} \equiv 1 \pmod{4} \\ 7^{950} \equiv 24 \pmod{25} \end{cases}$$
. Тимчасово запишемо як
$$\begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 24 \pmod{25} \end{cases}$$

отримали задачу на китайську теорему про остачі. Якщо її розв'язати, отримаємо $x \equiv 49 \pmod{100}$.

Отже, $7^{950} \equiv 49 \pmod{100}$. Тобто 4, 9 – це останні 2 цифри.

Example 3.2.10 Задано p – просте число, причому $p \nmid a$. Нехай $1 \leq m \leq p-1$ - найменше число, для якого $a^m \equiv 1 \pmod p$. Довести, що $m \mid p-1$.

!Припустимо, що p-1=mq+r та остача r < m. Тоді звідси $1 \stackrel{\text{мала Ферма}}{\equiv} a^{p-1} = a^{mq+r} = (a^m)^q a^r \equiv 1^q a^r = a^r.$

Тобто $a^r \equiv 1 \pmod{p}$, але m – найменше таке число. Суперечність!

Theorem 3.2.11 Функція Ойлера φ – мультиплікативна.

Proof.

Hy ясно, що $\varphi(1) = 1$.

Нехай m, n — такі числа, що $\gcd(m, n) = 1$. Візьмемо якісь дві скорочені системи лишків \pmod{m} та \pmod{n} :

$$\{a_1,\ldots,a_{\varphi(m)}\}$$

 $\{b_1,\ldots,b_{\varphi(n)}\}$

Доведемо, що $\{a_j n + b_k m \mid j = \overline{1, \varphi(m)}, k = \overline{1, \varphi(n)}\}$ – також буде скороченою системою лишків, але \pmod{mn} .

Зауважимо, що $\gcd(a_jn+b_km,m)=\gcd(a_jn,m)=1$. Остання рівність виконана, бо $\gcd(a_j,m)=1,\gcd(n,m)=1$.

Зауважимо, що $\gcd(a_i n + b_k m, n) = \gcd(b_k m, n) = 1$ – аналогічно.

Із двох рівностей маємо $gcd(a_in + b_km, mn) = 1$ – одна умова є.

!Тепер припустимо, що маємо $a_j n + b_k m \equiv a_r n + b_s m \pmod{mn}$ при $(j,k) \neq (r,s)$. Тоді $(a_j - a_r) n \equiv (b_s - b_k) m \pmod{mn}$.

Звідси випливає, що $a_j - a_r \equiv 0 \pmod{m}$ та $b_s - b_k \equiv 0 \pmod{n}$ в силу $\gcd(m,n) = 1$. В обох випадках суперечність!

Отже, $a_j n + b_k m \not\equiv a_r n + b_s m \pmod{mn}$ - друга умова є. І тільки зараз можна казати, що кількість елементів в множині $\varphi(m)\varphi(n)$ штук.

Тобто принаймні для $\varphi(mn)$ ми вже маємо $\varphi(m)\varphi(n)$ елементів множини. А чи може бути більше? Хотілось б довести, що інших елементів даної множини не буде. Тобто припустивши, що є деяке число c, для якого $\gcd(c,mn)=1$, ми хочемо показати, що $c\equiv a_in+b_km$.

За умовою, mx + ny = 1 для деяких $x, y \in \mathbb{Z}$. Із цієї рівності маємо $\gcd(m, y) = 1, \gcd(n, x) = 1$ (можна від супротивного показати).

A тепер доведемо, що gcd(cy, m) = 1, gcd(cx, n) = 1.

!Припустимо, що є просте число p, для якого $p \mid cy, p \mid m$. Тоді $p \mid c, p \mid m \implies p \mid c, p \mid mn$ (суперечність), або $p \mid y, p \mid m$ (суперечність)! Аналогічним чином доводиться друге.

Із $\gcd(cy, m) = 1$ випливає $cy \equiv a_j \pmod{m}$ (дивись систему лишків).

Із $\gcd(cx,n)=1$ випливає $cx\equiv b_k\pmod n$ (дивись систему лишків).

Тож $c = c(mx + ny) \equiv c(ny) \equiv a_j n \equiv a_j n + b_k m \pmod{m}$.

Аналогічно показується $c \equiv a_j n + b_k m \pmod{n}$.

Тоже $c \equiv a_j n + b_k m \pmod{mn}$. Тобто c співпав з одним серед $\varphi(m)\varphi(n)$ елементів систем лишків. Тобто кількість елементів $\varphi(m)\varphi(n) + 1$ штук бути не може.

Отже,
$$\varphi(nm) = \varphi(m)\varphi(n)$$
.

Lemma 3.2.12 Задано p – просте. Тоді $\varphi(p^r) = p^r - p^{r-1}$.

Proof.

 $\varphi(p^r) = \#\{\{1,2,3,\ldots,p^r\} \setminus \{\text{всі числа кратні } p\}\}$ [\equiv] $\{\text{всі числа кратні } p\} = \{p,2p,3p,\ldots,p^{r-1}p\}.$ \equiv] $p^r - p^{r-1}.$

Corollary 3.2.13 Маємо число $n = p_1^{r_1} \dots p_k^{r_k}$. Тоді

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\dots\left(1 - \frac{1}{p_k}\right).$$

Вправа: довести

Example 3.2.14 Зокрема обчислимо $\varphi(100)$.

Маємо
$$100 = 5^2 \cdot 2$$
, тоді звідси $\varphi(100) = 100 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 40.$

Example 3.2.15 Визначити всі числа $n \in \mathbb{N}$, для яких $\varphi(n) = 8$.

Маємо
$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_k}\right)$$
, або запишемо так: $p_1 \dots p_k \varphi(n) = n(p_1 - 1) \dots (p_k - 1)$.

Зауважимо, що права частина ділиться на $p_1 - 1$, але тоді ліва частина теж. p_1, \ldots, p_k не можуть ділитись на $p_1 - 1$ (зауваж, що це вже парне число при $p_1 > 2$), тому що непарне не може ділитись на парне. Для рівності треба вимагати, щоб $\varphi(n)$ ділилось на $p_1 - 1$, тобто $p_1 - 1 \mid \varphi(n)$. У нашому випадку, $p_1 - 1 \mid 8$. Це може бути при $p_1 \in \{2, 3, 5\}$.

Із рештою p_j-1 міркування аналогічні. Звідси випливає, що $p_1,\ldots,p_k\in\{2,3,5\}$. Отже, число $n=2^a3^b5^c$ при $a,b,c\geq 0$.

Тобто $\varphi(n) = 8 \implies n = 2^a 3^b 5^c$. В зворотному не завжди вірно. $\varphi(n) = \varphi(2^a)\varphi(3^b)\varphi(5^c)$. Думаю, тут неважко показати, що $\gcd(a^2 3^b, 5^c) = 1$, а згодом $\gcd(3^b, 5^c) = 1$.

Тобто маємо $8 = \varphi(2^a)\varphi(3^b)\varphi(5^c)$. І насправді, тут небагато варіантів: (0,1,1); (1,1,1); (2,0,1); (3,1,0); (4,0,0). І отримаємо: $n \in \{15,16,20,24,30\}$.

Remark 3.2.16 На основі цього прикладу (точніше його розв'язку) можна довести, що $\varphi(n)$ приймає завжди парне значення при n>2.

Proposition 3.2.17
$$\sum_{d|n} \varphi(d) = n$$
.

Proof.

Спочатку зафіксуємо $d \mid n$.

Розглянемо множину $S_d = \{m \in \mathbb{Z} : 1 \le m \le n, \gcd(m,n) = d\}$. А також тимчасово розглянемо $S_{\frac{m}{d}} = \{x = \frac{m}{d} \in \mathbb{Z} : 1 \le x \le \frac{n}{d}, \gcd\left(\frac{m}{d}, \frac{n}{d}\right) = 1\}$.

Зауважимо, що $\#S_{\frac{m}{d}} = \varphi\left(\frac{n}{d}\right)$, а також $\#S_{\frac{m}{d}} = \#S_d$.

Також важливо показати, що $\{1,2,\ldots,n\}=\bigsqcup_{d\mid n}S_d$. І дійсно,

$$m \in \{1, 2, \dots, n\} \implies m \in S_{\gcd(m,n)} \stackrel{\gcd(m,n)|n}{\Longrightarrow} m \in \bigsqcup_{d|n} S_d.$$

$$m \in \bigsqcup_{d \mid n} S_d \implies \exists d \mid n : m \in S_d \implies m \in \{1, 2, \dots, n\}.$$

Ще $S_{d_1} \cap S_{d_2} = \emptyset$ при $d_1 \neq d_2$, тому що якби $x \in S_{d_1} \cap S_{d_2}$, було б $\gcd(x,n) = d_1 \neq d_2 = \gcd(x,n)$. Отже,

$$\#\{1,2,\ldots,n\} = n = \#\left(\bigsqcup_{d|n} S_d\right) = \sum_{d|n} \#S_d = \sum_{d|n} \varphi\left(\frac{d}{n}\right) = \sum_{d|n} \varphi(d).$$
 Остаточно $\sum_{d|n} \varphi(d) = n.$

3.3 Функція μ (функція Мьобіуса)

Definition 3.3.1 Арифметична функція $\mu \colon \mathbb{N} \to \mathbb{N}$, яка визначається як

$$\mu(n) = egin{cases} 1, & n = 1 \ 0, & n ext{ не вільне від квадартів} \ (-1)^l, & l = p_1 \dots p_l, ext{ тут різні прості числа} \end{cases},$$

називається функцією Мьобіуса.

Останній випадок означає, що n — вільне від квадратів число та залежить від l — кількості різних простих чисел. Що таке число, що вільне від квадратів, дивись **Def. 6.1.8**.

Example 3.3.2 Зокрема $\mu(45) = 0$, бо не є вільним від квадратів. Також $\mu(42) = -1$, бо $42 = 2 \cdot 3 \cdot 7$ — вільне від квадратів та має 3 — непарну кількість - простих чисел.

Remark 3.3.3 Якщо p – просте, то $\mu(p) = -1$ та $\mu(p^k) = 0$ при k > 1.

Theorem 3.3.4 Функція μ – мультиплікативна.

Proof.

Маємо m,n такі, що $\gcd(m,n)=1$. Розглянемо кілька випадків: І. m або n — не вільне від квадратів. Тобто існує просте число p, для якого $p^2 \mid m$ або $p^2 \mid n$. В обох випадках отримаємо $p^2 \mid mn$, а тому також mn не буде вільним від квадратів. Отже, $\mu(mn)=0=\mu(m)\mu(n)$. ІІ. m та n — вільні від квадратів, нехай $m=p_1\dots p_r$ та $n=q_1\dots q_s$, причому p_i,q_j всі різні в силу $\gcd(m,n)=1$. Отже, $mn=p_1\dots p_rq_1\dots q_s$, а тому $\mu(mn)=(-1)^{r+s}=(-1)^r(-1)^s=\mu(m)\mu(n)$.

Theorem 3.3.5
$$\sum_{d|n} \mu(d) = 0$$
, якщо $n > 1$.

Remark 3.3.6 Якщо n=1, то маємо лише дільник d=1, тому буде лише $\mu(1)=1$.

Proof.

Покладемо $F(n) = \sum_{d|n} \mu(d)$. Оскільки μ – мультиплікативна, то тоді F

також. Відповідно при $n=p_1^{k_1}\dots p_r^{k_r}$ маємо $F(n)=F(p_1^{k_1})\dots F(p_r^{k_r}).$ Далі треба з'ясувати, чому дорівнює $F(p^k)$. Маємо

$$F(p^k) = \sum_{d|p^k} \mu(d) = \mu(1) + \mu(p) + \mu(p^2) + \dots + \mu(p^k) = 1 - 1 + 0 + \dots + 0 = 0.$$

Разом отримали
$$F(n) = \sum_{d|n} \mu(d) = 0.$$

Theorem 3.3.7 Формула обернення Мьобіуса

Задані функції $F,f\colon \mathbb{N}\to \mathbb{N},$ що взаємно пов'язані такою формулою: $F(n)=\sum_{d|n}f(d).$

Тоді
$$f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) \stackrel{\text{aбo}}{=} \sum_{d|n} \mu\left(\frac{n}{d}\right) F(d).$$

Proof.

$$\sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) = \sum_{d|n} \left(\mu(d) \sum_{c|\frac{n}{d}} f(c)\right) = \sum_{d|n} \sum_{c|\frac{n}{d}} \mu(d) f(c) = \sum_{d|n} \left(\mu(d) \sum_{c|\frac{n}{d}} f(c)\right) = \sum_{d|n} \sum_{c|\frac{n}{d}} \mu(d) f(c) = \sum_{d|n} \left(\mu(d) \sum_{c|\frac{n}{d}} f(c)\right) = \sum_{d|n} \sum_{c|\frac{n}{d}} \mu(d) f(c) = \sum_{d|n} \sum_{d|n} \mu(d) f(c) = \sum_{d|n} \mu(d) f(c) = \sum_{d|n} \sum_{d|n} \mu(d) f(c) = \sum_{d|n} \mu(d)$$

Можна показати, що $\begin{cases} d \mid n \\ c \mid \frac{n}{d} \end{cases} \iff \begin{cases} c \mid n \\ d \mid \frac{n}{c} \end{cases}$. Тоді буде трошки інший вираз в сумі.

Якщо $\frac{n}{c} = 1$ (а це буде можливо при n = c в першій сумі), то тоді ця сума буде одиничкою. У всіх інших випадках онулюється.

Corollary 3.3.8 Для функцій $\tau, \sigma,$ на основі обернення Мьобіуса, маємо:

$$1 = \sum_{d|n} \mu\left(\frac{n}{d}\right) \tau(d)$$

$$n = \sum_{d|n} \mu\left(\frac{n}{d}\right) \sigma(d)$$

Theorem 3.3.9 Задано функцію F – мультиплікативна, $F(n) = \sum_{d|n} f(d)$.

Тоді функція f — мультиплікативна.

Proof.

Беремо m, n - такі числа, щоб $\gcd(m, n) = 1$. Тоді

$$f(mn) = \sum_{d|mn} \mu(d) F\left(\frac{mn}{d}\right)^{\text{Lm. 3.1.9}} \sum_{\substack{d_1|m\\d_2|n}} \mu(d_1d_2) F\left(\frac{mn}{d_1d_2}\right) =$$

$$= \sum_{\substack{d_1|m\\d_2|n}} \mu(d_1) \mu(d_2) F\left(\frac{m}{d_1}\right) F\left(\frac{n}{d_2}\right) = \sum_{\substack{d_1|m\\d_2|n}} \mu(d_1) F\left(\frac{m}{d_1}\right) \cdot \sum_{\substack{d_2|n\\d_2|n}} \mu(d_2) F\left(\frac{n}{d_2}\right) =$$

$$= f(m) f(n).$$

3.4 Ціла частина числа

Уже колись (можливо) використовувалось це, але хочеться показати деякі цікаві властивості. Залишу означення для нагадування.

Definition 3.4.1 Цілою частиною числа $x \in \mathbb{R}$ називають найбільше число t, для якого

$$x - 1 \le t \le x$$
.

Позначення: t = [x].

Зрозуміло, що виконується така рівність: $x = [x] + \theta$, де $\theta \in [0, 1)$. Також цілком ясно, що $[a + b] \ge [a] + [b]$.

Theorem 3.4.2 Задано $n \in \mathbb{N}$ та p – просте число. Тоді найбільший степінь простого числа p, що ділить n!, дорівнює $\sum_{k=1}^{\infty} \left[\frac{n}{p^k} \right]$.

Remark 3.4.3 Даний вираз не є рядом, оскільки при $p^k > n$ маємо $\left\lceil \frac{n}{p^k} \right\rceil = 0$. Тобто в цій сумі завжди скінченна кількість доданків.

Proof.

Маємо n. Серед перших n чисел, що діляться на p, є $p, 2p, \ldots, tp$. Тут t – найбільше ціле число, для якого $tp \leq n$. Тобто $t \leq \frac{n}{p}$ та t – таке

найбільше. Отже, $t = \left\lceil \frac{n}{p} \right\rceil$.

Тобто всього рівно $\left[\frac{n}{p}\right]$ чисел, що кратні p, що з'являються в n!, а саме: $p, 2p, \ldots, \left[\frac{n}{p}\right] p$ (1).

Проте серед цих чисел (1) можуть знайтися ті, що містять в розкладі більше, ніж одне просте число p. Тому ми серед перших n чисел оберемо ті, що діляться на p^2 - зокрема:

$$p^2, 2p^2, \dots, \left\lceil \frac{n}{p^2} \right\rceil p (2).$$

Але серед чисел (2) можуть знайтися ті, що містять окрім p^2 ще один p. Повторюємо все те саме.

Врешті-решт процес закінчиться, коли $p^{k_0} > n$ при деякому k_0 . А тому щоб отримати кількість простих чисел p, що з'явиться в розкладі n!(тобто найбільший степінь), треба просумувати:

$$\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots + \left[\frac{n}{p^{k_0 - 1}}\right].$$

Example 3.4.4 Для повного розуміння теореми, розглянемо 10!. З'ясуємо, скільки всього простих чисел p=3 в розкладі.

Маємо 3, 6, 9 - числа, що діляться на p. Маємо $3 = \left\lceil \frac{10}{p} \right\rceil$ простих чисел p в нашому розкладі. Але серед них є число, що має не одне p.

Маємо 9 - число, що ділиться на p^2 . Маємо ще $1 = \left| \frac{10}{p^2} \right|$ просте число pв нашому розкладі.

Отже, всього $\left\lceil \frac{10}{p} \right\rceil + \left\lceil \frac{10}{p^2} \right\rceil = 3 + 1 = 4$ разів буде просте число p = 3. Тобто 4 - найбільший степінь числа p=3.

Corollary 3.4.5 Формула Лежандра

$$n! = \prod_{p \le n} p^{\sum_{k=1}^{\infty} \left[\frac{n}{p^k} \right]}$$

Theorem 3.4.6 $C_n^r \in \mathbb{N} \cup \{0\}$.

Насправді, з точки зору комбінаторики зрозуміло, що це буде невід'ємне иіле число. Проте для різноманіття можна провести інше доведення.

Proof.

Для кожного простого числа
$$p$$
 в розкладі $r!(n-r)!$ маємо:
$$\begin{bmatrix} \frac{n}{p^k} \end{bmatrix} = \begin{bmatrix} \frac{r+(n-r)}{p^k} \end{bmatrix} \geq \begin{bmatrix} \frac{r}{p^k} \end{bmatrix} + \begin{bmatrix} \frac{n-r}{p^k} \end{bmatrix}.$$

Просумувавши по
$$k$$
, отримаємо:
$$\sum_{k>1} \left[\frac{n}{p^k} \right] \ge \sum_{k>1} \left[\frac{r}{p^k} \right] + \sum_{k>1} \left[\frac{n-r}{p^k} \right].$$

Ліва частина - це кількість простих чисел p, що з'явиться в n!. Права

частина — це кількість простих чисел p, що з'явиться в r!(n-r)!. Значить, в чисельнику кількість p або така сама, або більша за кількість в знаменнику.

Corollary 3.4.7 Добуток будь-яких послідовних $r \in \mathbb{N}$ натуральних чисел ділиться націло на r!.

Theorem 3.4.8 Задано f, F – арифметичні функції, де $F(n) = \sum_{d|n} f(d)$.

Тоді для кожного
$$N \in \mathbb{N}$$
 маємо $\sum_{n=1}^N F(n) = \sum_{k=1}^N f(k) \left[\frac{N}{k} \right].$

Proof.

Маємо
$$\sum_{n=1}^{N} F(n) = \sum_{n=1}^{N} \sum_{d|n} f(d) = \sum_{d|1} f(d) + \dots + \sum_{d|N} f(d).$$

Зафіксуємо деяке $1 \le k \le N$. У нашій сумі ми завжди зможемо знайти f(k) хоча б один раз в k-ій сумі при d=k. Але наша мета — знайти загальну кількість f(k).

f(k) знаходиться в сумі $\sum_{d|n} f(d)$ тоді й тільки тоді, коли $k \mid n, n = \overline{1, N}$.

А тому серед чисел $1, 2, \dots, N$ оберемо ті, що діляться на k – отримаємо такий список:

$$k,2k,\ldots,\left[rac{N}{k}
ight]k.$$
 Тобто всього $\left[rac{N}{k}
ight]$ дільників k , це теж саме, що $f(k)$ знаходиться в $\left[rac{N}{k}
ight]$ різних сумах формата $\sum_{d|n}f(d).$

Отже, можемо переписати вираз

$$\sum_{n=1}^{N} \sum_{d|n} f(d) = \sum_{k=1}^{N} f(k) \left[\frac{N}{k} \right].$$

Corollary 3.4.9 Для кожного $N \in \mathbb{N}$ маємо такі вирази:

$$\sum_{n=1}^{N} \tau(n) = \sum_{n=1}^{N} \left[\frac{N}{n} \right];$$

$$\sum_{n=1}^{N} \sigma(n) = \sum_{n=1}^{N} n \left[\frac{N}{n} \right].$$

4 Первісні корені

4.1 Порядок

Definition 4.1.1 Задано $n \in \mathbb{N}$ та $a \in \mathbb{Z}$ – взаємно прості. **Порядком** $a \pmod{n}$ називають найменше число $m \in \mathbb{N}$, для якого

$$a^m \equiv 1 \pmod{n}$$

Позначення: $m = \operatorname{ord}_n(a)$.

Example 4.1.2 Зокрема $\operatorname{ord}_{12}(5) = 2$, оскільки маємо наступне: $5 \not\equiv 1 \pmod{12}$; $5^2 = 25 \equiv 1 \pmod{12}$.

Proposition 4.1.3 Задано $m = \operatorname{ord}_n(a)$. Тоді маємо: $a^k \equiv 1 \pmod{n} \iff m \mid k$.

Proof.

 \implies Дано: $a^k \equiv 1 \pmod{n}$. Поділимо k на m – отримаємо k = mq + r. Вважаємо, що 0 < r < m. Тоді

$$a^r = 1 \cdot a^r \equiv a^m \cdot a^r \equiv (a^m)^q \cdot a^r = a^{mq+r} = a^k \equiv 1 \pmod{n}.$$

Тож звідси $r \ge m$, що неможливо для нашого припущення. Тож вимагаємо r=0. Отже, $m \mid k$.

 \sqsubseteq Дано: $m \mid k$, тобто $k = mx, x \in \mathbb{Z}$. Звідси $a^k = (a^m)^x \equiv 1^x = 1 \pmod{n}$.

Corollary 4.1.4 $\operatorname{ord}_n(a) \mid \varphi(n)$

Вказівка: **Th. 3.2.6**.

Proposition 4.1.5
$$\operatorname{ord}_n(a^k) = \frac{\operatorname{ord}_n(a)}{\gcd(k, \operatorname{ord}_n(a))}.$$

Нагадування, що коли n, a – взаємно прості, то тоді n, a^k – також взаємно прості, тож рівність має сенс.

Proof.

Позначимо $d = \gcd(k, \operatorname{ord}_n(a))$, тоді звідси $\frac{k}{d}$, $\frac{\operatorname{ord}_n a}{d} \in \mathbb{N}$. Таким чином, $(a^k)^{\frac{\operatorname{ord}_n(a)}{d}} = (a^{\operatorname{ord}_n(a)})^{\frac{k}{d}} \equiv 1^{\frac{k}{d}} = 1 \pmod{n}$.

Звідси маємо, що $\operatorname{ord}_n(a^k) \mid \frac{\operatorname{ord}_n(a)}{d}$ – це з одного боку.

Також $a^{k \operatorname{ord}_n(a^k)} = (a^k)^{\operatorname{ord}_n(a^k)} \equiv 1 \pmod{n}$.

Звідси маємо, що $\operatorname{ord}_n(a) \mid k \operatorname{ord}_n(a^k) \implies \frac{\operatorname{ord}_n(a)}{d} \mid \frac{k}{d} \operatorname{ord}_n(a^k)$. Але

оскільки $\frac{\operatorname{ord}_n(a)}{d}, \frac{k}{d}$ — взаємно прості, то тоді звідси $\frac{\operatorname{ord}_n(a)}{d} \mid \operatorname{ord}_n(a^k)$ — це з іншого боку.

Отже,
$$\frac{\operatorname{ord}_n(a)}{d} = \operatorname{ord}_n(a^k)$$
.

4.2 Первісні корені

Definition 4.2.1 Задано $n \in \mathbb{N}$ та $a \in \mathbb{Z}$ – взаємно прості. Число a називається **первісним коренем** (mod n), якщо

$$\operatorname{ord}_n(a) = \varphi(n)$$

Example 4.2.2 Зокрема 3 - первісний корінь (mod 10). Дійсно,

 $3^1 \equiv 3 \pmod{10}$

 $3^2 \equiv 9 \pmod{10}$

 $3^3 \equiv 7 \pmod{10}$

 $3^4 \equiv 1 \pmod{10}$

Тобто $\operatorname{ord}_{10}(3) = 4$, але водночас $\varphi(10) = 4$.

Example 4.2.3 Покажемо, що жодне число не буде первісним коренем (mod 12).

По-перше, $\varphi(12) = 4$, а по-друге, $\gcd(a,12) = 1 \iff a \in \{1,5,7,11\}$. Тож достатньо подивитись лише на них. А решта чисел a > 12 розглядати не треба в силу конгруентності.

А ми вже знаємо з попереднього прикладу, що $a^2 \equiv 1 \pmod{12} \iff a \in \{1, 5, 7, 11\}$. Тобто ми отримали, що $\operatorname{ord}_{12}(a) = 2 \neq \varphi(12)$.

Theorem 4.2.4 Нехай p – просте число. Тоді існує примітивний корінь (mod p).

Але, насправді, ми доведемо більш строгу теорему:

Theorem 4.2.5 Якщо $d \mid p-1$, то тоді всього $\varphi(d)$ неконгруентних чисел порядка d за модулем p.

Proof.

Розглянемо множину $S_d=\{1\leq m\leq p-1\mid {\rm ord}_p(m)=d\}$. Зауважимо, що $\bigsqcup_{d\mid p-1}S_d=\{1,2,\ldots,p-1\}$. В один напрямок – ясно, а в іншу треба

зауважити, що $\operatorname{ord}_p(x) \mid p-1$, де $1 \leq x \leq p-1$. Диз'юнктивне об'єднання неважко показати.

Розглянемо функцію $f(d) = \#S_d$. В силу зауважень вище, ми маємо

$$\sum_{d|p-1} f(d) = p-1$$
. Але ми знаємо, що $\sum_{d|p-1} \varphi(d) = p-1$, тобто маємо $\sum_{d|p-1} f(d) = \sum_{d \in \mathcal{D}} \varphi(d)$.

 $\sum_{d|p-1}^{\infty} f(d) = \sum_{d|p-1} \varphi(d).$

Ми покажемо, що $f(d) \le \varphi(d)$ для деякого дільника d, а це разом з рівнянням вище приведе потім до рівності.

Якщо f(d) = 0, то доведено. Інакше нехай f(d) > 0, тоді існує елемент a, для якого $\operatorname{ord}_n(a) = d$.

Розглянемо множину $\{a, a^2, \dots, a^{d-1}, a^d\}$. Всі ці елементи - неконгруентні розв'язки $x^d - 1 \equiv 0 \pmod{p}$. !Якщо якась пара $a^i \equiv a^j \pmod{p}$, де $1 \le j < i \le d$, то тоді $a^{i-j} \equiv 1 \pmod{p}$, але число $0 \le i - j < d - 1$, та водночас $i-j \geq d$. Суперечність!

Більше розв'язків даного рівняння нема, оскільки за попередніми результатами, тут всього d розв'язків.

За попередньою формулою, $\operatorname{ord}_n(a^k) = \frac{d}{\gcd(k,d)}$. Зауважимо, що

 $\operatorname{ord}_n(a^k) = d$ лише тоді, коли $\gcd(k,d) = 1$. Отже, кількість розв'язків рівно d, але лише $\varphi(d)$ з них будуть розв'язками порядку d.

Отже, звідси $f(d) = \varphi(d)$, але це для конкретного дільника d.

!Припустимо, що існує якийсь дільник d^* , для якого $f(d^*) < \varphi(d^*)$. Автоматично звідси $\sum_{d|p-1}^{} f(d) < \sum_{d|p-1}^{} \varphi(d)$. Суперечність! Таким чином, $f(d) = \varphi(d), \forall d \mid p-1$.

А тепер якщо взяти d = p - 1 з попередньої теореми, то тоді буде всього $\varphi(p-1)$ чисел порядка p-1 за модулем p. Отже, за модулем p знайдеться первісний корінь, як ми й хотіли з самого початку.

Theorem 4.2.6 Задано p – непарне просте число та r – первісний корінь \pmod{p} . (він існує за **Th. 4.2.4**). Тоді існує $m \in \mathbb{Z}$ такий, що g = r + mp- первісний корінь (mod p^k), для довільного $k \in \mathbb{N}$.

Proof.

Оскільки r – первісний корінь \pmod{p} , тоді $r^{p-1} \equiv 1 \pmod{p}$. Тобто $r^{p-1} = 1 + px, x \in \mathbb{Z}$.

Побудуємо g = r + mp, де $m \in \mathbb{Z}$, яке скоро надам.

Хочемо довести, що $\operatorname{ord}_{p^k}(g)=\varphi(p^k)$. Я позначу $d=\operatorname{ord}_{p^k}(g)$. Зауважимо, що $\varphi(p^k)=p^k-p^{k-1}=p^{k-1}(p-1)$. Відомо, що $d\mid p^{k-1}(p-1)$.

Водночає маємо $q \equiv r \pmod{p}$, а також $q^d \equiv 1 \pmod{p^k}$.

Тоді $q^d \equiv 1 \pmod{p}$, а отже,

$$r^d \equiv g^d \equiv 1 \pmod{p} \implies p-1 \mid d.$$

$$\begin{cases} d \mid p^{k-1}(p-1) \\ p-1 \mid d \end{cases} \implies d = (p-1)p^l, \text{ де число } l \leq k-1.$$
 Лишилось довести, що $l \geq k-1.$

a = r + mp

$$g^{p-1} = (r+mp)^{p-1} = r^{p-1} + \sum_{j=1}^{p-1} C_{p-1}^j m^j p^j r^{p-1-j} =$$

 $= 1 + px + p(p-1)mr^{p-2} + p^2S.$

Таку рівність я залишу на потім, а зараз запишу інакше:

$$g^{p-1} = 1 + pz_0$$

$$(g^{p-1})^p = (1 + pz_0)^p = 1 + p^2z_1$$

$$(g^{p-1})^{p^2} = (1 + p^2z_1)^p = 1 + p^3z_2$$

$$\vdots$$

 $(g^{p-1})^{p^l} = g^d = 1 + p^{l+1}z_l$

Тоді, згадавши, що $d = \operatorname{ord}_{p^k}(g)$, ми маємо:

 $1 + p^{l+1}z_l \equiv 1 \pmod{p^k} \implies p^{l+1}z_l \equiv 0 \pmod{p^k} \implies p^{l+1} \equiv 0 \pmod{p^k}.$

Таким чином, $p^k \mid p^{l+1}$, звідси $l+1 \ge k \implies l \ge k-1$.

А це означає, що l = k - 1, тоді d = p - 1) $p^{k-1} = \varphi(p^k)$.

Тобто остаточно $\operatorname{ord}_{p^k}(g) = \varphi(p^k)$, майже завершили доведення.

Для перехода \Longrightarrow необхідно довести, що $\gcd(z_l,p^k)=1$, але достатньо тут показати, що $\gcd(z_l,p)=1$. Щоб довести дану рівність ми будемо робити ось такий ланцюг доведення:

 $\gcd(z_0, p) = 1 \implies \gcd(z_1, p) = 1 \implies \cdots \implies \gcd(z_l, p) = 1.$

!Припустимо, що $\gcd(z_0,p) \neq 1$, тоді звідси $p \mid z_0$. Згадуємо, що

 $z_0 = x + (p-1)mr^{p-2} + pS$, звідси маємо $p \mid x + (p-1)mr^{p-2}$. Щоб була суперечність, нам треба підібрати m таким чином, щоб

 $\gcd(p, x + (p-1)mr^{p-2}) = 1$. I ми оберемо $m \in \{0, 1\}$.

Якщо gcd(x, p) = 1, то тоді беремо m = 0.

Якщо $\gcd(x,p)=p$, то тоді, взявши m=1, матимемо

 $\gcd(p, x + (p-1)r^{p-2}) = 1$. I рівність є правильною.

!Якби $\gcd(p, x + (p-1)r^{p-2}) = p$, то тоді звідси $p \mid r^{p-2} \implies r^{p-2} = pv \implies r^{p-1} = rpv = 1 + px \implies 0 \equiv 1 \pmod{p}$ Суперечність!

Резюмуючи, ми маємо m, щоб $\gcd(p, x + (p-1)mr^{p-2}) = 1$, завдяки якому ми прийшли до суперечності першого припущення! Тож $\gcd(z_0, p) = 1$.

!Припустимо, що $\gcd(z_1,p)=p$. У нашому випадку, якщо розписати, то $(g^{p-1})^p=1+p^2z_0+p^2S_1$, тобто $z_0+S_1=z_1$.

Варто також зазначити, що $p \mid S_1$, це треба теж розписати, щоб побачити.

Отже, $p \mid z_0 = z_1 - S_1$. Суперечність! Отже, $\gcd(z_1, p) = 1$.

!Припустимо, що $\gcd(z_2, p) = p$. Абсолютно аналогічним чином прийдемо до суперечності! Отримаємо $gcd(z_2, p) = 1$.

Ось такими кроками ми дійдемо до $gcd(z_l, p) = 1$.

Example 4.2.7 Знайти первісні корені (mod 9).

Ми знаємо, що за (mod 3) існує первісний корінь 2. Тоді має існувати первісний корінь (mod 9) за формулою q = 2 + 3m. Можливі варіанти: $q \in \{2, 5\}.$

Відомо, що $\varphi(9) = 6$, тож перевіримо:

 $2^6 = 64 \equiv 1 \pmod{9}$:

 $5^6 = (25)^3 \equiv 7^3 = 7 \cdot 49 \equiv 7 \cdot 4 = 28 \equiv 1 \pmod{9}.$

Lemma 4.2.8 Не існує первісного кореня (mod 2^m), де число $m \geq 3$.

Proof.

База індукції: m = 3. Нам треба розглянути числа $\{1, 3, 5, 7\}$.

Маємо $\operatorname{ord}_8(3) = 2, \operatorname{ord}_8(5) = 2, \operatorname{ord}_8(7) = 2$. Але $\varphi(8) = 4$, тому й не існує первісного кореня (mod 8).

Припущення індукції: для $k \geq 3$ не існує первісних поренів (mod 2^k). $Kpo\kappa\ indy\kappa uii$: доведемо для ситуації (mod 2^{k+1}). Для цього ми хочемо показати, що $\forall a \in \mathbb{Z} : \gcd(a, 2^{k+1}) = 1$ матимемо $a^{\varphi(2^k)} \equiv 1 \pmod{2^{k+1}}$.

Із припущення маємо, що $\forall a \in \mathbb{Z}, a$ - непарні : $a^{\frac{\varphi(2^k)}{2}} \equiv 1 \pmod{2^k}$.

Пояснення: за теоремою Ойлера, $a^{\varphi(2^k)} \equiv 1 \pmod{2^k}$, при a - непарне. Також a – не первісний, позначимо $d = \operatorname{ord}_{2^k}(a)$. Тоді $a^d \equiv 1 \pmod{2^k}$, а тому $d < \varphi(2^k)$ та $d \mid \varphi(2^k)$. Також $\varphi(2^k) = 2^{k-1}$, тому число $d = 2^l$, де $1 \le l \le 2^{k-2} = \frac{\varphi(2^{k-1})}{2}$. Звідси випливає, що $d \mid \frac{\varphi(2^{k-1})}{2}$, а тому й

отримується бажана рівність.

Коротше, ми маємо $a^{2^{k-2}} \equiv 1 \pmod{2^k}$, а тому

 $a^{2^{k-2}}=1+x\cdot 2^k$ для деякого $x\in\mathbb{Z}.$

Взведемо обидві частини в квадрат:

$$a^{2^{k-1}} = 1 + x \cdot 2^{k+1} + x^2 \cdot 2^{2k} \equiv 1 \pmod{2^{k+1}}.$$

У нас виникла степінь менша за $\varphi(2^{k+1})$, для якого виконується конгруенція 1 для будь-якого непарного числа. А тому первісних коренів $\pmod{2^{k+1}}$ не має.

MI доведено.

Lemma 4.2.9 Не існує первісного кореня (mod m_1m_2), де $m_1, m_2 > 2$ та $gcd(m_1, m_2) = 1.$

Proof.

Позначимо $n = m_1 m_2$. Справедлива така рівність:

$$\frac{1}{2}\varphi(n) = \left(\frac{\varphi(m_1)}{2}\right)\varphi(m_2) = \varphi(m_1)\left(\frac{\varphi(m_2)}{2}\right).$$

Тоді звідси маємо дві конгруенції за Ойлером:

$$a^{\frac{1}{2}\varphi(n)} = \left(a^{\frac{\varphi(m_2)}{2}}\right)^{\varphi(m_1)} \equiv 1 \pmod{m_1}.$$

$$a^{\frac{1}{2}\varphi(n)} = \left(a^{\frac{\varphi(m_1)}{2}}\right)^{\varphi(m_2)} \equiv 1 \pmod{m_2}.$$

$$a^{\frac{1}{2}\varphi(n)} = \left(a^{\frac{\varphi(m_1)}{2}}\right)^{\varphi(m_2)} \equiv 1 \pmod{m_2}.$$

Тоді оскільки $\gcd(m_1,m_2)=1$, маємо $a^{\frac{\varphi(n)}{2}}\equiv 1\pmod{n}$. І знову отримали степінь меншу за $\varphi(n)$, де конгруенція один.

Theorem 4.2.10 Задано p – непарне просте число. Тоді існує первісний корінь (mod $2p^k$), для довільного $k \in \mathbb{N}$.

Proof.

Припустимо, що r – первісний корінь (mod p^k). Він існує в силу того, що існує первісний корінь \pmod{p} , а згодом й $\pmod{p^k}$.

Побудуємо
$$g = \begin{cases} r & r - \text{непарне} \\ r + p^k & r - \text{парнe} \end{cases}$$
.

Це розгалуження робиться для того, щоб $\gcd(g,2p^k)=1.$

Позначимо $d = \operatorname{ord}_{2p^k}(g)$, хочемо показати, що $d = \varphi(2p^k)$. $g^d \equiv 1 \pmod{2p^k} \implies g^d \equiv r^d \equiv 1 \pmod{p^k}$.

$$g^d \equiv 1 \pmod{2p^k} \stackrel{\cdot}{\Longrightarrow} g^d \equiv r^d \equiv 1 \pmod{p^k}$$

Звідси випливає, що $\varphi(p^k) \mid d$. Але також відомо, що $d \mid \varphi(2p^k)$.

Але важливо зауважити, що $\varphi(p^k) = \varphi(2p^k)$, бо p – непарне. Тож остаточно $d = \varphi(2p^k)$.

Theorem 4.2.11 Існує первісний корінь $\pmod{n} \iff$ $\iff n \in \{1, 2, 4, p^k, 2p^k\},$ де p – непарні прості числа.

Proof.

 \Rightarrow Дано: існує первісний (mod n). Ми доведемо ось це: ми візьмемо $n \not\in \{1, 2, 4, p^k, 2p^k\}$ та покажемо, що вони не дають первісні корені. Але якщо $n \not\in \{1, 2, 4, p^k, 2p^k\}$, то тоді спрацьовує одна з двох лем вище. Тож первісних коренів дійсно не буде.

 \square Дано: $n \in \{1, 2, 4, p^k, 2p^k\}$, де p – непарні прості числа. Для 1, 2, 4перевірити існування первісного кореня неважко. Ми вже знаємо, що для р існує первісний корінь, а тому за попередніми теоремами, знайдуться якісь первісні корні за модулем p^k та за модулем $2p^k$.

Example 4.2.12 З'ясувати, хто має первісний корінь за такими модулями: $\{4, 8, 9, 10, 12, 16, 22, 27, 28, 31, 33\}$.

Ми знаємо, що число, яке потрапляє в $\{1,2,4,p^k,2p^k\mid p>2,k\geq 1\}$,

буде мати первісний. Тоді числа

$$9 = 3^2$$

$$10 = 2 \cdot 5 \quad 22 = 2 \cdot 11$$

$$27 = 3^3$$
 31

будуть мати первісні. Решта – не матимуть в силу неспівпадіння з бажаним розкладом.

Theorem 4.2.13 Тест на первісний корінь \pmod{p}

r – первісний корінь $\pmod{p} \iff \forall q$ – просте : $q \mid p-1 : r^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$.

Proof.

 \sqsubseteq Дано: $\forall q: q \mid p-1: r^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$.

Ми доведемо, що якщо r – не первісний корінь, то тоді $\exists q \mid p-1: r^{\frac{p-1}{q}} \equiv 1 \pmod{p}.$

 $r^d \equiv 1 \pmod{p}$ для деякого $d \mid p-1$ (тому як наслідок, d < p-1).

Маємо $p-1=dk, k\neq 1$. Оскільки k>1, то запишемо k=qx для деякого $x\in \mathbb{Z}$, де число q – просте.

Тоді
$$\frac{p-1}{q} = dx$$
, але $r^{\frac{p-1}{q}} = (r^d)^x \equiv 1 \pmod{p}$.

Example 4.2.14 Знайти первісний корінь (mod 29).

Ми використаємо для цього отриманий тест. Для числа 29-1=28 будуть два простих дільника: 2,7. Маємо:

$$2^{\frac{28}{7}} = 2^4 = 16 \not\equiv 1 \pmod{29}$$
.

$$2^{\frac{28}{2}} = 2^7 \equiv 12 \not\equiv 1 \pmod{29}$$
.

Отже, 2 – первісний корінь (mod 29).

Також можна перевірити, що всі ці корені будуть первісними $\pmod{29}$, як-от: $\{2,3,8,10,11,14,15,18,19,21,26,27\}$. Більше за 29 перевіряти не треба, достатньо від 1 до 29.

Proposition 4.2.15 Задано r – первісний корінь (mod n). r^m – первісний корінь (mod n) $\iff \gcd(m, \varphi(n)) = 1$.

Proof.

 \implies Нехай $\gcd(m,\varphi(n))=d>1$. Тоді ми знаємо, що

$$\operatorname{ord}_n(r^m) = \frac{\operatorname{ord}_n(r)}{\gcd(m, \operatorname{ord}_n(r))} = \frac{\varphi(n)}{\gcd(m, \varphi(n))} < \varphi(n).$$

Отже, r^m не може бути первісним коренем.

$$\sqsubseteq$$
 Дано: $\gcd(m, \varphi(n)) = 1$.
Тоді $\operatorname{ord}_n(r^m) = \frac{\operatorname{ord}_n(r)}{\gcd(m, \operatorname{ord}_n(r))} = \frac{\varphi(n)}{\gcd(m, \varphi(n))} = \varphi(n)$.
Отже, r^m - первісний корінь \pmod{n} .

Corollary 4.2.16 Якщо за \pmod{n} існує первісний корінь, то всього їх $\varphi(\varphi(n))$ неконгруентних первісних коренів.

Proposition 4.2.17 Задано a, причому $\operatorname{ord}_n(a) = k$. $a^i \equiv a^j \pmod n \iff i \equiv j \pmod k$.

Proof.

 \implies Дано: $a^i \equiv a^j \pmod{n}$. Нехай $i \geq j$, не втрачаючи загальності. Оскільки $\gcd(a,n)=1$, то тоді $\gcd(a^j,n)=1$, а тому $a^{i-j} \equiv 1 \pmod{n} \implies k \mid i-j \implies i \equiv j \pmod{k}$.

$$\sqsubseteq$$
 Дано: $i \equiv j \pmod k$. Тоді $i = j + kq$ при $q \in \mathbb{Z}$. Тоді $a^i = a^{j+kq} = a^j \cdot (a^k)^q \equiv a^j \pmod n$.

Corollary 4.2.18 Задано r - первісний корінь (mod n). $r^a \equiv r^b \pmod{n} \iff a \equiv b \pmod{\varphi(n)}$.

Example 4.2.19 Розв'язати $x^3 \equiv 5 \pmod{17}$.

Неважко показати, що 3 - буде первісним (mod 17).

Встановимо $x=3^y$ для деякого $y\in\mathbb{N}$. Тоді також зауважимо, що $5\equiv 3^5\pmod{17}$, тож

 $3^{3y} \equiv 3^5 \pmod{17} \iff 3y \equiv 5 \pmod{\varphi(17)} \iff 3y \equiv 5 \pmod{16}.$

Розв'язавши, отримаємо $y \equiv 7 \pmod{16}$, тобто $x = 3^7 \equiv 11 \pmod{17}$. Перевірка:

 $11^3 = 121 \cdot 11 \equiv 2 \cdot 11 = 22 \equiv 5 \pmod{17}$.

ФУУУУУУУХ... нарешті...

4.3 Дискретний логарифм

Definition 4.3.1 Задано a, n — взаємно прості та r — первісний корінь. **Індексом** числа a відносно числа r називають найменше невід'ємне число $k \in \mathbb{Z}$, для якого

$$r^k \equiv a \pmod{n}$$

Позначення: $\operatorname{ind}_r(a) = k$.

Remark 4.3.2 Зауважимо, що $\operatorname{ind}_r(a) \in \{0, 1, \dots, \varphi(n) - 1\}$. Фактично тому що після $\varphi(n)$ буде лише $r^k \equiv 1 \pmod{n}$.

Example 4.3.3 Відомо, що 2 – первісний корінь (mod 11). Запишемо таку табличку:

Зауважимо, що $\operatorname{ind}_2 5 = 4$, просто тому що $2^4 \equiv 5 \pmod{11}$.

Corollary 4.3.4 $r^{\operatorname{ind}_r(a)} \equiv a \pmod{n}$.

Proposition 4.3.5 Властивості індекса

Задано r — первісний корінь \pmod{n} . Також a,b — такі числа, що $\gcd(a,n)=1,\gcd(b,n)=1.$ Тоді:

- 1) $\operatorname{ind}_r(ab) \equiv \operatorname{ind}_r(a) + \operatorname{ind}_r(b) \pmod{\varphi(n)};$
- 2) $\operatorname{ind}_r(1) \equiv 0 \pmod{\varphi(n)}$;
- 3) $\operatorname{ind}_r(r) \equiv 1 \pmod{\varphi(n)};$
- 4) $\operatorname{ind}_r(a^m) \equiv m \operatorname{ind}(a) \pmod{\varphi(n)};$
- 5) $\operatorname{ind}_r(-1) = \frac{\varphi(n)}{2}$.

Remark 4.3.6 Саме завдяки означенню та наданим властивостям, індексом ще називають **дискретним логарифмом**.

Proof.

Доведемо (майже) всі властивості: Маємо $a \equiv r^k \pmod n$ та $b \equiv r^l \pmod n$. Запишемо інакше:

 $\stackrel{\cdot}{r^{\mathrm{ind}_r(a)}}\stackrel{\cdot}{\equiv} r^k\pmod n$ та $r^{\mathrm{ind}_r(b)}\equiv r^l\pmod n$. Тоді звідси випливає, що $\mathrm{ind}_r(a)\equiv k\pmod {\varphi(n)}$ та $\mathrm{ind}_r(b)\equiv l\pmod {\varphi(n)}$.

- 1) Водночає маємо $ab \equiv r^{\operatorname{ind}_r(ab)} \equiv r^k r^l = r^{k+l} \pmod{n}$, а тому $\operatorname{ind}_r(ab) \equiv k+l \pmod{\varphi(n)}$. Отже, $\operatorname{ind}_r(a) + \operatorname{ind}_r(b) \equiv k+l \equiv \operatorname{ind}_r(ab) \pmod{\varphi(n)}$.
- 2) Вправа: довести.
- 3) Вправа: довести.
- 4) Водночає маємо $a^m \equiv r^{\operatorname{ind}_r(a^m)} \equiv (r^k)^m = r^{km} \pmod{n}$, а тому $\operatorname{ind}_r(a^m) \equiv km \equiv m \operatorname{ind}_r(a) \pmod{\varphi(n)}$.
- 5) Позначимо $u=\operatorname{ind}_r(-1)$. Це означає, що $r^u\equiv -1\pmod n$ та u найменше таке число. Тоді $r^{2u}\equiv 1\pmod n\implies 2u\equiv 0\pmod \varphi(n)$.

Тобто $2u \in \{\varphi(n), 2\varphi(n), \dots\}$. Нема від'ємних чисел, бо індекс — невід'ємний. Також $2u \neq 0$, бо в інакшому випадку $(-1)^0 = -1$, що очевидно суперечить. Водночає ми знаємо, що $u \in \{0, 1, 2, \dots, \varphi(n) - 1\}$.

Із цих двох випливає, що єдина можливість - це $k = \frac{\varphi(n)}{2}$.

Всі (майже) властивості доведені.

Theorem 4.3.7 Множина $\{\pm 5, \pm 5^2, \dots, \pm 5^{2^{n-2}}\}$ буде скороченою системою лишків (mod 2^n) при $n \geq 3$.

Proof.

Зауважимо, що $\varphi(2^n)=2^n-2^{n-1}=2^{n-1}=2\cdot 2^{n-2}$, тож кількість елементів на множині вище збігається з $\varphi(2^n)$.

Доведемо, що всі вони — неконгруентні між собою $\pmod{2^n}$.

Розглянемо $5, 5^2, \ldots, 5^{2^{n-2}}$ та покажемо, що вони між собою не конгруентні. Яким чином? А ми доведемо, що $\operatorname{ord}_{2^n}(5) = 2^{n-2}$. І це якраз допоможе доведенню бажаного.

!Якщо за такими умовами припустити, що $5^i \equiv 5^j \pmod{2^n}$, то буде звідси випливати, що число $i-j < 2^{n-2}$ буде порядком, що суперечить! Довести $\operatorname{ord}_{2^n}(5) = 2^{n-2}$ – це теж саме, що довести, що $2^n \mid 5^{2^{n-2}} - 1$, але водночас $2^{n+1} \nmid 5^{2^{n-2}} - 1$, причому $\forall n \geq 3$. Доведення за індукцією.

База індукції: n=3, тобто $5^2-1=24$, тож $2^3 \mid 5^2-1$, але вже $2^4 \nmid 5^2-1$. для деякого k.

$$K$$
рок i н ∂y к u i i : покажемо це для $k+1$. $5^{2^{k-1}}-1=\left(5^{2^{k-2}}\right)^2-1=\left(5^{2^{k-2}}-1\right)\left(5^{2^{k-2}}+1\right)$.

За МІ, $5^{2^{k-2}}=2^k\cdot a$, де число a – непарне, тому що $2^{n+1}\nmid 5^{2^{n-2}}-1$.

Також $5^{2^{k-2}}+1\equiv 2\pmod 4$, в принципі легко зауважити. Тоді число $5^{2^{k-2}}+1=2\cdot b$, де число b – непарне, бо тоді конгруенція не виконається. Разом $5^{2^{k-1}}-1=2^{k+1}\cdot ab$, причому число ab залишається непарним, а тому $2^{k+1}\mid 5^{2^{k-1}}-1,$ але $2^{k+2}\nmid 5^{2^{k-1}}-1.$

МІ доведено. А це в свою чергу означає, що $\operatorname{ord}_{2^n}(5) = 2^{n-2}$.

Висновок: $\{5,5^2,\ldots,5^{2^{n-2}}\}$ між собою неконгруентні. Неважко додуматись, що $\{-5,-5^2,\ldots,-5^{2^{n-2}}\}$ – теж неконгруентні між собою. Лишилось тепер показати, що $5^x, -5^y$ не будуть конгруентні між собою.

!Припустимо $5^x \equiv -5^y \pmod{2^n}$. Тоді $5^x + 5^y \equiv 0 \pmod{2^n}$, але оскільки $n \ge 3$, то тоді $5^x + 5^y \equiv 0 \pmod{4}$.

Із іншого боку, $5^x + 5^y \equiv 1^x + 1^y = 2 \pmod{4}$. Тобто $0 \equiv 2 \pmod{4}$. Суперечність!

Висновок: $\{\pm 5, \pm 5^2, \dots, \pm 5^{2^{n-2}}\}$ має $\varphi(2^n)$ елементів, всі взаємно прості з 2^n , а також неконгруентні між собою. Тож це — скорочена система лишків.

Example 4.3.8 Розв'язати $7x^3 \equiv 3 \pmod{11}$.

Якщо тимчасово замінити $x^3 = t$, то отримаємо лінійне конгруентне

рівняння, яке розв'язується дуже просто. В результаті отримаємо еквівалентне рівняння:

$$x^3 \equiv 2 \pmod{11}$$
.

Важливо зауважити, що 2 – первісний корінь (mod 11), тому

 $x^3 \equiv 2 \pmod{11} \iff 2^{\operatorname{ind}_2(x^3)} \equiv 2^1 \pmod{11} \iff$

 $\operatorname{ind}_2(x^3) \equiv 1 \pmod{\varphi(11)}.$

 $3\operatorname{ind}_2(x) \equiv 1 \pmod{10}$.

Знову маємо лінійне конгруентне рівняння, маємо еквівалентне $\operatorname{ind}_2(x) \equiv 7 \pmod{10} \iff x \equiv 2^7 \equiv 7 \pmod{10}.$

Example 4.3.9 Знайти остачу при діленні 3^{3^3} на 17.

Математично кажучи, $3^{3^3} \equiv r \pmod{17}$, де r – остача, яку шукаємо. Можна перевірити, що 3 - первісний корінь (mod 17), а тому запишемо еквівалетне рівняння:

 $3^3 \equiv \operatorname{ind}_3(r) \pmod{16}.$

 $11 \equiv \text{ind}_3(r) \pmod{16} \iff r \equiv 3^{11} \equiv 7 \pmod{17}$. Отже, остача від ділення 3^{3^3} на 17 буде число 7.

Theorem 4.3.10 Задано n – число, де існує первісний корінь, та таке a, що gcd(a, n) = 1.

 $x^k \equiv a \pmod n$ має розв'язок $\iff a^{\frac{\varphi(n)}{\gcd(k,\varphi(n))}} \equiv 1 \pmod n$.

Corollary 4.3.11 Якщо $x^k \equiv a \pmod{n}$ має розв'язок, то їх всього $gcd(k, \varphi(n))$ штук.

Proof.

Нехай
$$r$$
 - первісний корінь \pmod{n} , тоді $a^{\frac{\varphi(n)}{\gcd(k,\varphi(n))}} \equiv 1 \pmod{n} \iff \frac{\varphi(n)}{\gcd(k,\varphi(n))} \operatorname{ind}_r(a) \equiv 0 \pmod{\varphi(n)}$

$$\iff \varphi(n) \mid \frac{\varphi(n)}{\gcd(k, \varphi(n))} \operatorname{ind}_r(a) \iff \gcd(k, \varphi(n)) \mid \operatorname{ind}_r(a) \iff$$

рівняння $kt \equiv \operatorname{ind}_r(a) \pmod{\varphi(n)}$ має розв'язок $t_0 \iff$ $\iff x^k \equiv a \pmod{n}$ має розв'язок $x_0 = r^{t_0}$.

Example 4.3.12 Розв'язати рівняння $3x^4 \equiv 8 \pmod{11}$.

Перепишемо еквівалетно ось так:

$$x^4 \equiv 10 \pmod{11}.$$

А далі зауважимо, що

$$10^{\frac{\varphi(11)}{\gcd(4,\varphi(11))}} = 10^{\frac{10}{\gcd(4,10)}} = 10^5 = (10^2)^2 \cdot 10 \equiv 10 \not\equiv 1 \pmod{11}.$$

Отже, розв'язків нема.

5 Квадратичний закон взаємності

5.1 Квадратичні лишки

Definition 5.1.1 Число $a \neq 0$ називається **квадратичним лишком** (mod n), якщо існує розв'язок рівняння

$$x^2 \equiv a \pmod{n}$$

Якщо ні, то тоді називають квадратичним нелишком.

По суті, тут описується щось на кшталт квадратного кореня з a.

Remark 5.1.2 Напевно, для зручності ми вимагаємо $a \neq 0$. Поки точної відповіді дати не можу, але цим буду користуватися. Хоча само число a=0 є квадратичним лишком.

Example 5.1.3 Нехай n=7. Маємо таку табличку:

k	k^2
1	1
2	4
3	2
4	2
5	4
6	1

Із цієї таблички видно, що:

1, 2, 4 – квадратичні лишки (mod 7)

3, 5, 6 – квадратичні нелишки (mod 7).

Remark 5.1.4 Деякі автори вимагають додаткову умову $\gcd(a,n)=1$ під час означення квадратичного лишка.

Example 5.1.5 Більш цікава задача

Знайти всі $m, n \in \mathbb{N}$, для яких виконується рівність: $1! + 2! + \cdots + n! = m^2$.

Запишемо ліву частину за модулем 5 - отримаємо при
$$n \ge 4$$
: $(1! + 2! + 3! + 4! + 5! + \cdots + n!) \equiv 1! + 2! + 3! + 4! \equiv 3 \pmod{5}$.

Фактично ми маємо рівність $m^2 \equiv 3 \pmod 5$. Але якщо перебрати всі m, то ми отримаємо або 1, або 4 за заданим модулем. Тому рівність неможлива.

Отже, при $n \geq 4$ нема розв'язків. Тому розглянемо $n \in \{1,2,3\}.$

n=1 маємо $1!=m^2 \implies m=1.$

n=2 маємо $3=m^2$, але розв'язків в натуральних не має.

n=3 маємо $9=m^2 \implies m=3$.

Отже, $(m,n) \in \{(1,1),(3,3)\}$ - єдина пара розв'язків.

Theorem 5.1.6 Задано p — непарне просте число. Тоді в кожній скороченій системі лишків всього $\frac{p-1}{2}$ квадратичних лишків \pmod{p} та $\frac{p-1}{2}$ квадратичних нелишків \pmod{p} .

Remark 5.1.7 При p = 2 ми взагалі маємо лише 1 квадратичний лишок та 0 квадратичних нелишків (mod 2).

Proof.

Візьмемо скорочену систему лишків \pmod{p} ось таку:

$$\left\{-\frac{p-1}{2}, -\frac{p-1}{2}+1, \dots, -1, 1, 2, \dots, \frac{p-1}{2}\right\}.$$

Якщо взяти в квадрат кожне число, то буде така множина:

$$\left\{1^2, 2^2, \dots, \left(\frac{p-1}{2}\right)^2\right\}.$$

 \hat{C} початку покажемо, що всі ці квадрати неконгруентні \pmod{p} .

!Припустимо, що $a^2 \equiv b^2 \pmod{p}$, якщо $1 \le a < b \le \frac{p-1}{2}$.

Але тоді $p \mid a^2 - b^2 = (a - b)(a + b)$, звідси $p \mid a - b$ або $p \mid a + b$.

$$p \mid a - b \implies a \equiv b \pmod{p}$$

$$p \mid a + b \implies a \equiv -b \pmod{p}$$
.

У обох випадках суперечність! Це в силу того, як ми обирали a, b.

Отже,
$$\left\{1^2, 2^2, \dots, \left(\frac{p-1}{2}\right)^2\right\}$$
 - всі неконгруентні (mod p), а також ці

числа належать (не скороченій, але все одно) системі лишків (mod p). А це означає, що для кожного квадрата можна знайти число a з першої скороченої системи лишків, щоб $x^2 \equiv a \pmod{p}$. Тож це — система всіх квадратичних лишків.

Тож дійсно всього $\frac{p-1}{2}$ квадратичних лишків, а решта $\frac{p-1}{2}$ – квадратичні нелишки.

5.2 Символ Лежандра

Definition 5.2.1 Задано p – непарне просте число.

Символом Лежандра називають такий вираз:

Власне, символ Лежандра просто дає відповідь, чи буде число a квадратичним лишком (mod p).

Example 5.2.2 Кілька прикладів:

$$\binom{2}{7} = 1$$
, бо 2 – квадратичний лишок (mod 7). $\binom{3}{7} = -1$, бо 3 – квадратичний нелишок (mod 7). $\binom{35}{7} = 0$, просто тому що $35 \equiv 0 \pmod{7}$.

Theorem 5.2.3 Критерій Ойлера

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Proof.

I. Випадок $a \equiv 0 \pmod{p}$.

Тоді ясно, що $a^{\frac{p-1}{2}} \equiv 0 \pmod{p}$, а також $\left(\frac{a}{p}\right) = 0$. Отже, конгруентна рівність виконана.

II. Випадок a – квадратичний лишок (mod p).

Тоді існує число b, для якого $a \equiv b^2 \pmod{p}$. Але тоді

$$a^{\frac{p-1}{2}} \equiv b^{p-1} \stackrel{\text{мала Th. } \Phiepma}{\equiv} 1 \pmod{p}$$
, а також відомо $\left(\frac{a}{p}\right) = 1$.

Малу теорему Ферма можна застосовувати, бо $\gcd(b,p)=1$. Отже, конгруентна рівність виконана.

III. Випадок a – квадратичний нелишок (mod p).

Розглянемо число $k_1 \in \{1, 2, \dots, p-1\}$. Ми можемо знайти $l_1 \neq k_1$ (причому єдине), для якого $k_1 l_1 \equiv a \pmod p$ як розв'язок лінійного конгруентного рівняння. Вимагаємо $l_1 \neq k_1$, бо тоді буде суперечність факту, що a - квадратичний нелишок.

Розглянемо число $k_2 \in \{1, 2, \dots, p-1\} \setminus \{k_1, l_1\}$. Аналогічно існує $l_2 \neq k_2$, для якого $k_2 l_2 \equiv a \pmod p$. Важливо зауважити, що $l_2 \not\in \{k_1, l_1\}$, бо інакше порушиться єдиність розв'язку двох конгруентних рівнянь.

:

У результаті рано чи пізно закінчимо процес, і тоді буде така картина: $\{1,2,\ldots,p-1\}=\{k_1,l_1\}\sqcup\{k_2,l_2\}\sqcup\cdots\sqcup\{k_{\frac{p-1}{2}},l_{\frac{p-1}{2}}\}$. Тоді

 $a^{\frac{p-1}{2}} = a \cdot a \cdots a \equiv (k_1 l_1) \cdot (k_2 l_2) \dots (k_{\frac{p-1}{2}} l_{\frac{p-1}{2}}) = (p-1)! \stackrel{\text{Th. Вільсона}}{\equiv} -1 \pmod{p}.$

Водночас ми маємо $\left(\frac{a}{p}\right)=-1.$ Отже, конгруентна рівність виконана. Всі випадки розглянуті.

Remark 5.2.4 Спрведливе питання: чому ця теорема називається критерієм? Фактично кажучи, ця теорема каже про це:

a – квадратичний лишок $\pmod{p} \iff a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

Якщо n>2 – таке число, що $\gcd(a,n)=1$, то тоді

a – квадратичний лишок $\pmod{n} \implies a^{\frac{\varphi(n)}{2}} \equiv 1 \pmod{n}$.

Проте в зворотний бік не працює. Для контрприкладу розгляньте n=8 та a=3 та переконайтеся, що a – не квадратичний лишок \pmod{n} .

Corollary 5.2.5 Задано a – квадратичний лишок (mod p), де p – непарне просте. Тоді a – не первісний корінь (mod p).

Corollary 5.2.6 Властивості

Задано p - непарне просте. Тоді:

1) Якщо
$$a \equiv b \pmod{p}$$
, то тоді $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$;

$$2) \ \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right);$$

3)
$$\left(\frac{a^2}{p}\right) = 1;$$

4)
$$\left(\frac{1}{p}\right) = 1;$$

5)
$$\left(\frac{-1}{p}\right) = \begin{cases} 1, & p \equiv 1 \pmod{4} \\ -1, & p \equiv 3 \pmod{4} \end{cases}$$
.

В принципі, довести неважко.

Example 5.2.7 З'ясувати, чи має розв'язок $x^2 \equiv 12 \pmod{23}$.

За критерієм Ойлера, ми маємо:

$$\left(\frac{12}{23}\right) = \left(\frac{4}{23}\right) \left(\frac{3}{23}\right) \boxed{\equiv}$$

Легко зауважити, що $4 \equiv 2^2 \pmod{23}$, тобто 4 - квадратичний лишок.

$$\boxed{} \boxed{} \left(\frac{3}{23}\right) = 3^{11} = 3^2(3^3)^3 \equiv 9 \cdot 4^3 = 9 \cdot 64 \equiv 9 \cdot 18 = 162 \equiv 1 \pmod{23}.$$

Отже, $\left(\frac{12}{23}\right)=1$, тобто 12 — квадратичний лишок, а тому рівняння $x^2\equiv 12\pmod{23}$ має розв'язок.

Example 5.2.8 Якщо a – квадратичний лишок \pmod{p} , де p – непарне просте, довести:

$$p-a$$
 — квадратичний лишок $\pmod{p} \iff p \equiv 1 \pmod{4}$. Дійсно, $\left(\frac{p-a}{p}\right)^{p-a \equiv -a} \left(\frac{-a}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{a}{p}\right)^{a-\frac{\text{лишок}}{2}} \left(\frac{-1}{p}\right)$. Тоді $\left(\frac{p-a}{p}\right) = 1 \iff p \equiv 1 \pmod{4}$.

Theorem 5.2.9 Задано p – непарне просте число. Тоді $\sum_{a=1}^{p-1} {a \choose p} = 0$.

Випливає з того факту, що кількість квадратичних лишків та нелишків однакова.

5.3 Квадратичний закон взаємності

Lemma 5.3.1 Лема Гауса

Задано p — непарне просте число та таке a, що $p \nmid a$. Позначимо n — кількість чисел зі списка $a, 2a, \ldots, \frac{p-1}{2}a$, чиї остачі при діленні на p більші за $\frac{p}{2}$. Тоді $\left(\frac{a}{p}\right) = (-1)^n$.

Proof.

Коли будемо брати остачі серед цих чисел, то ми отримаємо таку множину $\{r_1,\ldots,r_n,s_1,\ldots,s_m\}$. Тут я позначив r_1,\ldots,r_n – остачі, що більші за $\frac{p}{2}$, а також s_1,\ldots,s_m - остачі, що менші за $\frac{p}{2}$. Оскільки p – непарне, то це означає, що жодне число не може дати остачу рівно $\frac{p}{2}$.

Ясно, що $n+m=\frac{p-1}{2}$. Числа $p-r_1,\dots,p-r_n,s_1,\dots,s_m$ - такі, що менші за $\frac{p}{2}$. Покажемо, що вони всі різні.

Достатньо лише показати, що $s_j \neq p - r_i$. Бо той факт, що $s_j \neq s_i$ та $p - r_j \neq p - r_i$, цілком ясний.

!Припустимо, що $s_j = p - r_i$. Значить, $s_j + r_i \equiv 0 \pmod p$. Але ці остачі ми отримували в результаті ділення k_1a, k_2a на число p. Тож звідси $s_j + r_i \equiv k_1a + k_2a \equiv 0 \pmod p$. Але за умовою, $\gcd(a,p) = 1$, а тому $k_1 + k_2 \equiv 0 \pmod p$. Суперечність! А все тому, що $1 \leq k_1, k_2 \leq \frac{p-1}{2}$, а тому звідси $2 \leq k_1 + k_2 \leq p-1$, а конгруентних чисел $\pmod p$ нема звідти.

Отже, насправді, ці $\frac{p-1}{2}$ числа зі списку $p-r_1,\ldots,p-r_n,s_1,\ldots,s_m$ можна відсортувати та отримати список остач $1,2,\ldots,\frac{p-1}{2}$. Перемножуючи ці числа, отримаємо:

$$1 \cdot 2 \cdots \frac{p-1}{2} = (p-r_1) \dots (p-r_n) s_1 \dots s_m \equiv (-1)^n r_1 \dots r_n s_1 \dots s_m \equiv (-1)^n a \cdot 2a \cdots \frac{p-1}{2} a \pmod{p}.$$

Але всі числа $1, 2, \dots, \frac{p-1}{2}$ взаємно прості з p, а тому можна скоротити – отримаємо:

$$1 \equiv (-1)^n a^{\frac{p-1}{2}} \pmod{p} \implies a^{\frac{p-1}{2}} \equiv (-1)^n \pmod{p}.$$

За критерієм Ойлера, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \equiv (-1)^n \pmod{p}.$

Lemma 5.3.2 Задано p – непарне просте та таке a, що $\gcd(a, 2p) = 1$.

Тоді
$$\left(\frac{a}{p}\right) = (-1)^t$$
, де $t = \sum_{j=1}^{\frac{p-1}{2}} \left[\frac{ja}{p}\right]$.

Proof.

Ви використаємо ті самі позначення r_i, s_k , що з леми Гауса.

Маємо
$$ja=q_jp+t_j$$
, тоді $\frac{ja}{p}=q_j-\frac{t_j}{p}$. Звідси випливає, що $q_j=\left[\frac{ja}{p}\right]$.

Отже,
$$ja = \left\lceil \frac{ja}{p} \right\rceil + t_j$$
, де t_j - один з остач r_1, \ldots, r_n або s_1, \ldots, s_m .

Ці числа ja ми просумуємо до $\frac{p-1}{2}$ - отримаємо:

$$\sum_{j=1}^{\frac{p-1}{2}} ja = p \sum_{j=1}^{\frac{p-1}{2}} \left[\frac{ja}{p} \right] + \sum_{j=1}^{\frac{p-1}{2}} t_j = p \sum_{j=1}^{\frac{p-1}{2}} \left[\frac{ja}{p} \right] + \sum_{i=1}^n r_i + \sum_{k=1}^m s_k.$$

Їз леми Гауса ми пам'ятаємо, що остачі $p-r_1,\ldots,p-r_n,s_1,\ldots,s_m$ - це просто пересортовані числа $1,2,\ldots,\frac{p-1}{2}$. А тому

$$\sum_{j=1}^{\frac{p-1}{2}} j = \sum_{i=1}^{n} (p - r_i) + \sum_{k=1}^{m} s_k = pn + \sum_{k=1}^{m} s_k - \sum_{i=1}^{n} r_i.$$

Перше рівняння віднімемо від другого – матимемо:

$$(a-1)\sum_{j=1}^{\frac{p-1}{2}}j = p\left(\sum_{j=1}^{\frac{p-1}{2}}\left[\frac{ja}{p}\right] - n\right) + 2\sum_{i=1}^{n}r_i = p(t-n) + 2\sum_{i=1}^{n}r_i.$$

При p – непарному простому числу сказати, що $\gcd(a,2p)=1$ – це теж саме, що a – непарне з умовою $\gcd(a,p)=1$. А тому $a\equiv p\equiv 1\pmod 2$. Отже,

$$0 \equiv t - n \pmod{2} \implies t \equiv n \pmod{2} \implies (-1)^t = (-1)^n$$
.

За попередньою лемою,
$$\left(\frac{a}{p}\right) = (-1)^n = (-1)^t$$
.

Corollary 5.3.3
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1, & p \equiv \pm 1 \pmod{8} \\ -1, & p \equiv \pm 3 \pmod{8} \end{cases}$$

Remark 5.3.4 Число $\frac{p^2-1}{8} \in \mathbb{N}$, оскільки p – непарне просте.

Дійсно, p - непарне, а тому воно приймає один з виглядів $\{8k+1, 8k+3, 8k+5, 8k+7\}$. Якщо для кожного варіанта обчислити p^2-1 , а потім пошукати конгруенцію (mod 8), то отримаємо, що $p^2-1\equiv 0\pmod 8$.

Proof.

Скористаємось рівністю з попередньої леми, а саме:

$$(a-1)\sum_{j=1}^{\frac{p-1}{2}}j = p(t-n) + 2\sum_{i=1}^{n}r_i.$$

Зауважимо, що $\sum_{j=1}^{\frac{p-1}{2}} j = \frac{p^2-1}{8}$. Також підставимо сюди a=2. Звідси

випливає, що $t = \sum_{j=1}^{\frac{p-1}{2}} \left[\frac{2j}{p} \right] = 0$. Разом ми отримаємо:

$$\frac{p^2 - 1}{8} = (-p)n + 2\sum_{i=1}^{n} r_i \equiv n \pmod{2}.$$

$$n \equiv \frac{p^2 - 1}{8} \pmod{2}.$$

За лемою Гауса,
$$\left(\frac{2}{p}\right) = (-1)^n = (-1)^{\frac{p^2-1}{8}}$$
.

Theorem 5.3.5 Закон квадратичної взаємності

Задані p,q – різні непарні прості числа. Тоді $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$

Proof.

Ми розглянемо на площині OXY прямокутник з координатами (0,0), $\left(\frac{p}{2},0\right),\left(0,\frac{q}{2}\right),\left(\frac{p}{2},\frac{q}{2}\right)$. Позначимо R – регіон прямокутника, не включаючи її границі.

Оскільки p,q — непарні, то решітка регіона R складається з точок (m,n), де $1 \leq n \leq \frac{p-1}{2}$ та $1 \leq m \leq \frac{q-1}{2}$. Решітка — це точки з цілими коефами. Кількість таких точок $\frac{p-1}{2}\frac{q-1}{2}$.

Діагональ D даного прямокутника має рівняння $y = \frac{q}{p}x \iff py = qx$.

Але оскільки p,q - різні, тобто $\gcd(p,q)=1$, то жодна точка з решітки не потрапить в діагональ D.

!Бо якби була така точка (x_0,y_0) , що $py_0=qx_0$, то тоді $p\mid qx_0$, але в силу того, що $\gcd(p,q)=1$, маємо $p\mid x_0$. Проте $1\leq x_0\leq \frac{p-1}{2}$, а тому суперечність!

Зробимо ще кілька позначень:

 T_1 – частина R, що лежить під діагоналлю D;

 T_2 – частина R, що лежить над діагоналлю D.

Порахуємо кількість решіток в T_1 та T_2 .

Оберемо $1 \leq k \leq \frac{p-1}{2}$. Кількість цілих чисел з інтервала $0 < y < \frac{kq}{p}$ всього $\left[\frac{kq}{p}\right]$ штук. Тобто інакше кажучи, всього $\left[\frac{kq}{p}\right]$ точок решітки T_1 , що знаходяться над (k,0) та під діагоналлю D. Тоді загальна кількість точок решітки T_1 становить $\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{kq}{p}\right]^{\frac{103H}{2}} t_1$.

Аналогічними міркуваннями можна сказати, що загальна кількість точок решітки T_2 становить $\sum_{j=1}^{\frac{q-1}{2}} \left[\frac{jp}{q} \right] \stackrel{\text{позн.}}{=} t_2$.

Власне звідси отримаємо:

$$\frac{p-1}{2}\frac{q-1}{2} = \sum_{k=1}^{\frac{p-1}{2}} \left[\frac{kq}{p}\right] + \sum_{j=1}^{\frac{q-1}{2}} \left[\frac{jq}{p}\right] = t_1 + t_2.$$

Застосувавши лему Гауса, а також всі інші наслідки, отримаємо:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{t_1}(-1)^{t_2} = (-1)^{t_1+t_2} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

Corollary 5.3.6 Задано p, q — різні непарні прості числа. Тоді

$$\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = \begin{cases} 1, & p \equiv 1 \pmod{4} \text{ afo } q \equiv 1 \pmod{4} \\ -1, & p \equiv 3 \pmod{4} \text{ Ta } q \equiv 3 \pmod{4} \end{cases}$$

Example 5.3.7 Обчислити $\left(\frac{-79}{101}\right)$.

Зауважимо, що $-79 \equiv 22 \pmod{101}$, тож

$$\left(\frac{-79}{101}\right) = \left(\frac{22}{101}\right) = \left(\frac{2}{101}\right) \left(\frac{11}{101}\right) \boxed{\equiv}$$

Далі треба побачити, що $101 \equiv -3 \pmod 8$, а тому $\left(\frac{2}{101}\right) = -1$

$$= -\left(\frac{11}{101}\right) =$$

Я ще заздалегідь зауважу, що $11 \equiv 3 \pmod{4}$, але $101 \equiv 3 \pmod{1}$.

Значить, $\left(\frac{11}{101}\right)\left(\frac{101}{11}\right) = 1$. Це суттєво спростить обчислення ось так:

Example 5.3.8 З'ясувати, при яких простих числах p > 3 число 3 буде квадратичним лишком \pmod{p} .

Перефразую питання: при яких p вираз $\left(\frac{3}{p}\right) = 1$?

Застосувавши наслідок закона квадратичної взаємності, отримаємо

Далі окремо $\binom{p}{3}=\begin{cases} 1, & p\equiv 1\pmod 3\\ -1, & p\equiv 2\pmod 3 \end{cases}$ – легко перевірити окремо,

коли p буде квадратичним лишком (mod 3).

Тепер ми хочемо $\left(\frac{3}{p}\right) = 1$, а для цього є два сценарії:

1.
$$\left(\frac{3}{p}\right) = +\left(\frac{p}{3}\right) = +(+1) = 1$$
, це працює при
$$\begin{cases} p \equiv 1 \pmod{4} \\ p \equiv 1 \pmod{3} \end{cases}$$
.

Інакше кажучи, $p \equiv 1 \pmod{12}$, можна переконатись через китайську теорему про остачі.

2.
$$\left(\frac{3}{p}\right) = -\left(\frac{p}{3}\right) = -(-1) = 1$$
, це працює при $\begin{cases} p \equiv 3 \pmod{4} \\ p \equiv 1 \pmod{3} \end{cases}$.

Інакше кажучи, $p \equiv 11 \pmod{12}$.

Резюмуючи, $\left(\frac{3}{p}\right) = 1$ при $p \equiv \pm 1 \pmod{12}$.

Example 5.3.9 Довести, що 397 – просте число.

Нехай $p \mid 397$ — якийсь простий множник. Тоді маємо $397 \equiv 0 \pmod{p}$. Зауважимо, що $397 = 20^2 - 3$, а тому звідси $20^2 \equiv 3 \pmod{p}$, тобто

$$\left(\frac{3}{p}\right) = 1$$
. Але ця рівність можлива лише при $p \equiv 1, 11 \pmod{12}$.

Тоді звідси $p \in \{1, 11, 13\}$. Нам достатньо саме такі числа, більше не треба. Серед всіх простих чисел 11, 13 явні кандидати. Але якщо перевірити, то $11 \nmid 397, 13 \nmid 397$, тож єдиний можливий варіант — це p = 1. Тобто простих дільників числа 397 ми не маємо. Отже, 397 — просте.

Remark 5.3.10
$$\left(\frac{-2}{p}\right) = \begin{cases} 1, & p \equiv 1, 3 \pmod{8} \\ -1, & p \equiv 5, 7 \pmod{8} \end{cases}$$
.

Показати неважко, але мені це знадобиться зараз.

Theorem 5.3.11 Кількість простих чисел вигляду 8k + 3 - нескінченна. **Proof.**

!Припустимо, що p_1, \ldots, p_n – лише вони прості формату 8k+3. Позначу $x=p_1\ldots p_n$. Причому варто зауважити, що $x\equiv 1,3\pmod 8$.

 $P_1 \dots P_n$. При юму варто заувамити, що $x \equiv 1, 0 \pmod 6$. Побудуемо число $N = x^2 + 2$. Маємо $N \equiv 3 \pmod 8$, ще знадобиться. Нехай $p \mid N$, тоді $N \equiv 0 \pmod p \implies x^2 \equiv -2 \pmod p$. Тобто -2

- квадратичний лишок (mod p), а тому звідси $\left(\frac{-2}{p}\right) = 1$. Проте це

виконується при $p \equiv 1, 3 \pmod{8}$.

Отже, якщо $p \mid N$, то обов'язково $p \equiv 1, 3 \pmod 8$. Серед цих простих чисел існує просте q, для якого якраз $q \equiv 3 \pmod 8$. Бо якби абсолютно всі прості числа були $\equiv 1 \pmod 8$, то тоді число $N \equiv 1 \pmod 8$, якщо N розкласти в добуток простих чисел, що суперечить нашій умові.

Отже, принаймні якийсь $q \equiv 3 \pmod 8$, але тоді $q = p_j$. Отже, $p_j \mid N, p_j \mid (p_1 \dots p_n)^2 \implies p_j \mid 2 \implies p_j = 2$. Суперечність!

5.4 Квадратні конгруенції

Розглянемо таке конгруентне рівняння:

$$ax^2 + bx + c \equiv 0 \pmod{p},$$

де p – непарне просте число та $p \nmid a$. Мета: розв'язати його.

За умовою, $gcd(a,p)=1 \implies gcd(4a,p)=1$, тоді маємо еквівалентне рівняння:

$$4a(ax^2 + bx + c) \equiv 0 \pmod{p}$$

$$(2ax + b)^2 \equiv b^2 - 4ac \pmod{p}$$

Зробимо тимчасові заміни 2ax+b=y, а також $b^2-4ac=D$ – отримаємо ось таку еквівалетну задачу:

$$y^2 \equiv D \pmod{p}$$

Нехай x_0 – розв'язок початкового рівняння, тоді

$$(2ax_0 + b)^2 \equiv b^2 - 4ac \pmod{p}$$

$$y_0^2 \equiv D \pmod{p}$$

Тобто D – квадратичний лишок (mod p).

Нехай $y^2 \equiv D \pmod p$ та D – квадратичний лишок. Тобто y_0 – розв'язок даного рівняння, а також $p-y_0$ буде розв'язком, причому вони неконгруентні. Неважко це показати. Тоді $2ax+b \equiv y_0 \pmod p$ або $2ax+b \equiv p-y_0 \pmod p$. У двох рівняннях розв'язок існувати буде, оскільки $\gcd(a,p)=1 \implies \gcd(2a,p)=1$.

Висновок:

Theorem 5.4.1 Задано p – непарне просте число та $p \nmid a$. $ax^2 + bx + c \equiv 0 \pmod p$ має розв'язок $\iff D = b^2 - 4ac$ – квадратичний лишок $\pmod p$ або D = 0.

Example 5.4.2 Розв'язати рівняння $x^2 + 7x + 10 \equiv 0 \pmod{11}$.

Маємо 11 — непарне просте число та $\gcd(1,11)=1$, тож спрацьовує алгоритм розв'язку вище, отримаємо еквівалентне рівняння:

$$(2x+7)^2 \equiv 9 \pmod{11}$$
.

Заміна: 2x + 7 = y, тоді отримаємо

$$y^2 \equiv 9 \pmod{11}$$
.

Зауважимо, що $y \equiv 3 \pmod{11}$ та $y \equiv 8 \pmod{11}$ будуть розв'язками.

Тоді
$$\begin{bmatrix} 2x + 7 \equiv 3 \pmod{11} \\ 2x + 7 \equiv 8 \pmod{11} \end{bmatrix} \iff \begin{bmatrix} x \equiv 9 \pmod{11} \\ x \equiv 6 \pmod{11} \end{bmatrix}$$

6 Репрезентація чисел як сума квадратів

6.1 Сума двох квадратів

Наразі порушується питання, коли можна число $n \in \mathbb{N}$ записати як суму квадратів, тобто $n = a^2 + b^2$.

Lemma 6.1.1 Задано n, m — числа, які записуються як сума двох квадратів. Тоді mn теж записується як сума двох квадратів.

Proof.

Маємо ось такі репрезентації:

$$n = a^2 + b^2$$

$$m = c^2 + d^2$$

Тоді, використавши алгебраїчні перетворення, отримаємо:

$$mn = (a^2 + b^2)(c^2 + d^2) = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 = (ac)^2 + 2acbd + (bd)^2 + (ad)^2 - 2adbc + (bc)^2 = (ac + bd)^2 + (ad - bc)^2.$$

Lemma 6.1.2 Задано p — таке просте число, що $p \equiv 3 \pmod 4$). Відомо, що $p \mid x^2 + y^2$. Тоді $p \mid x$ та $p \mid y$.

Proof.

Маємо $p\mid x^2+y^2$, тобто $x^2+y^2\equiv 0\pmod p$, або $x^2\equiv -y^2\pmod p$. !Припустимо, що умова $p\mid x$ та $p\mid y$ не виконується. Є три випадки:

I. $p \mid x$, але $p \nmid y$. Тоді ми отримаємо $0 \equiv -y^2 \pmod{p}$ – неможливо.

II. $p \nmid x$, але $p \mid y$ – аналогічно.

III. $p \nmid x$ та $p \nmid y$. Тоді за малою теоремою Ферма,

$$1 \equiv x^{p-1} = (x^2)^{\frac{p-1}{2}} \equiv (-y^2)^{\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}} y^{p-1} \equiv (-1)^{\frac{p-1}{2}} \pmod{p}.$$

Причому оскільки $p \equiv 3 \pmod 4$, то тоді маємо $1 \equiv -1 \pmod p$, що можливо при p = 2, хоча $2 \not\equiv 3 \pmod 4$.

У всіх трьох випадках ми отримали суперечність!

Proposition 6.1.3 Задано p – таке просте число, що $p \equiv 3 \pmod 4$. Тоді p не розписується як сума двох квадратів.

Proof.

!Припустимо, що $p=a^2+b^2$, але тут же отримаємо, що $p\mid a^2+b^2\implies p\mid a,p\mid b$. Тобто звідси $a=k_1p,b=k_2p$. Отже,

$$p = p^2(k_1^2 + k_2^2) \implies 1 = p(k_1^2 + k_2^2).$$

Ясно, що така рівність неможлива, а тому суперечність!

Lemma 6.1.4 Лема Туе

Задано p – просте число та таке a, щоб $p \nmid a$. Тоді $ax \equiv y \pmod p$ має цілий розв'язок (x_0,y_0) , причому $0 < |x_0| < \sqrt{p}$ та $0 < |y_0| < \sqrt{p}$.

Proof.

Розглянемо множину
$$S = \left\{ ax - y \mid 0 \le x \le \left[\sqrt{p}\right] \right\}.$$

Зауважимо, що $\#S = (1 + \lceil \sqrt{p} \rceil)^2$, причому

$$\#S = (1 + \left[\sqrt{p}\right])^2 + 1 + 2\left[\sqrt{p}\right] + \left[\sqrt{p}\right]^2 > 1 + 2(\sqrt{p} - 1) + (\sqrt{p} - 1)^2 = p.$$
 Але за (mod p) різних чисел може бути лише p штук. Тоді за принципом Діріхле, на множині S знайдуться принаймні два елементи $ax_1 - y_1$ або $ax_2 - y_2$, що рівні за (mod p). Причому важливо, що не може виконуватися одночасно $x_1 = x_2, y_1 = y_2$.

Отже, $a(x_1 - y_1) \equiv y_1 - y_2 \pmod{p}$.

Позначимо $x_0=x_1-x_2$ та $y_0=y_1-y_2$, тоді звідси $ax_0\equiv y_0\pmod p$ розв'язок знайшли. Причому $|x_0|<[\sqrt p],|y_0|<[\sqrt p],$ тобто

 $|x_0|, |y_0| < \sqrt{p}$. Переконаємось, що неможливо мати $x_0 = 0$ або $y_0 = 0$.

!Припустимо, що $x_0=0$, тобто $x_1=x_2$. Тоді $y_0\equiv 0\pmod p$, тож звідси $y_0=0$ – і це єдиний варіант, бо $|y_0|<\sqrt p$. Але тоді $y_1=y_2$, що неможливо. Суперечність!

Аналогічно, припустивши, що $y_0 = 0$, прийдемо до суперечності, але тут ще в силу вступає умова $p \nmid a \implies \gcd(a, p) = 1$.

Theorem 6.1.5 Задано p – непарне просте число. p розписується як сума двох квадратів $\iff p \equiv 1 \pmod{4}$.

Proof.

⇒ Випливає з **Prp. 6.1.3**.

Дано: $p \equiv 1 \pmod{4}$. Тобто це означає, що $\left(\frac{-1}{p}\right) = 1$, тобто рівняння $a^2 \equiv -1 \pmod{p}$ має розв'язок, причому $\gcd(a,p) = 1$. За лемою Туе, $ax \equiv y \pmod{p}$ має розв'язок (x_0,y_0) , а тому звідси $-x_0^2 \equiv a^2x_0^2 = (ax_0)^2 \equiv y_0^2 \pmod{p} \implies x_0^2 + y_0^2 \equiv 0 \pmod{p}$. Отже, $x_0^2 + y_0^2 = kp$ при $k \geq 1$. Але ми знаємо ще за Лемою Туе, що $0 < x_0^2 + y_0^2 < 2p$, а значить, k = 1 — єдиний варіант. Отже, $p = x_0^2 + y_0^2$, тобто розписали як суму двох квадратів.

Corollary 6.1.6 Кожне просте число $p \equiv 1 \pmod 4$ розписується як сума двох квадратів єдиним чином з точністю до перестановки доданків. Ще припускається, що $a^2 = (-a)^2$ - це один випадок.

Proof.

Залишилось, власне, довести єдиність.

!Припустимо, що ϵ дві можливості записати число p:

$$p = a^2 + b^2$$

$$p = c^2 + d^2$$
.

Тоді зауважимо, що $a^2d^2 - c^2b^2 = p(d^2 - b^2) \equiv 0 \pmod{p}$.

Тобто $(ad-cb)(ad+cb)\equiv 0\pmod p$, а тому оскільки p – просте число,

то звідси $\begin{bmatrix} ad \equiv cb \pmod p \\ ad \equiv -cb \pmod p \end{bmatrix}$. Але із попередньої теореми, ми знаємо, що

$$a,b,c,d<\sqrt{p},$$
 тож звідси ми маємо $\begin{bmatrix} ad-cb=0\\ad+cb=p \end{bmatrix}$

Нехай ad=cb, тоді $a\mid cb$, а оскільки $\gcd(a,b)=1$, то звідси маємо $a\mid c$, тобто c=ka. Після цього отримаємо d=bk. Але тоді

 $p=c^2+d^2=k^2(a^2+b^2)$, а щоб була рівність, треба k=1. Разом отримаємо c=a,b=d.

Окремо поясню, чому $\gcd(a,b)=1$. Припустимо, що $q\mid a,q\mid b$, де q – деяке просте число. Тоді звідси $q\mid a^2+b^2=p$, тож або q=1, або q=p. При q=p маємо $p\mid a,p\mid b$, що не є можливим в силу того, що $p=a^2+b^2$. Тобто випадок $\gcd(a,b)>1$ неможливий.

Нехай виконується ad + cb = p, тоді звідси

 $p^2 = (a^2 + b^2)(c^2 + d^2) = (ad + bc)^2 + (ac - bd)^2 = p^2 + (ac - bd)^2 \implies ac = bd$. Випадок ac = bd аналогічний попередньому випадку. Теж отримаємо врешті-решт a = c, b = d.

У двох випадках отримали суперечність!

Example 6.1.7 Зокрема p = 13, має форму $13 = 3^2 + 2^2$.

Definition 6.1.8 Число $m \in \mathbb{Z}$ називається вільним від квадратів (або безквадратним), якщо

$$\forall n^2: n^2 \nmid m$$

Тобто жодний квадрат числа не ділить на m.

Remark 6.1.9 Інтуїтивно кажучи, число m називається вільним від квадратів, коли під час розкладу числа m жодне число не виноситься за квадратний корінь.

Example 6.1.10 Зокрема маємо такі приклади:

10 – вільний від квадратів. Можна перевірити ручками.

8 — не вільний від квадратів, тому що, інтуїтивно кажучи, $\sqrt{8} = \sqrt{2 \cdot 4} = 2\sqrt{2}$. Тобто ми знайшли число, що можна було винести за корінь.

Remark 6.1.11 Число m > 2, що вільний від квадратів, зобов'язаний мати хоча б один непарний простий множник в розкладі.

Бо якщо $m=2^k, k \geq 2$, тобто в розкладі нема непарного простого числа, то це вже не буде вільним від квадратів число, оскільки $2^2 \mid 2^k$.

Theorem 6.1.12 Задано n – таке число, що $n = N^2 m$, де m – вільне від квадратів число.

n розписується як сума двох квадратів $\iff m$ не містить простих множників $p \equiv 3 \pmod 4$.

Proof.

 \implies Дано: $n=a^2+b^2=N^2m$. Розглянемо випадок m>2.

Нехай $p \mid m$ — деяке непарне просте число. Якщо $\gcd(a,b) = d$, то тоді a = dr, b = ds, тобто звідси $d^2(r^2 + s^2) = N^2 m$, причому $\gcd(r,s) = 1$. Оскільки m — вільне від квадратів, то $d^2 \nmid m$, а тому вимагається $d^2 \mid N^2$. Власне, звідси

$$r^2 + s^2 = \frac{N^2}{d^2}m = tp \equiv 0 \pmod{p}.$$

Але оскільки $\gcd(r,s)=1$, то тоді звідси $\gcd(r,p)=1$ во в інакшому випадку ми отримаємо $\gcd(r,s)>1$. Ми розглянемо $\gcd(r,p)=1$, інший аналогічно.

Тоді має існувати число r', для якого $rr' \equiv 1 \pmod p$, як розв'язок лінійного рівняння. А тому

 $(rr')^2 + (sr')^2 \equiv 1 + (sr')^2 \equiv 0 \pmod{p} \implies (sr')^2 \equiv -1 \pmod{p} \implies \left(\frac{-1}{p}\right) = 1$, а цей випадок можливий лише при $p \equiv 1 \pmod{4}$. Отже, $p \mid m \implies p \not\equiv 3 \pmod{4}$.

 \sqsubseteq Дано: при m>1 маємо $m=p_1\dots p_r$, де кожне просте $p_i=2$ або $p_i\equiv 1\pmod 4$. Відомо, що в кожному варіанті p_i допускає розклад на суму двох квадратів, а тому добуток $p_1\dots p_r$ також допускає розклад на суму двох квадратів. Звідси $m=x^2+y^2$ при деяких x,y.

Отже, $n=N^2m=(Nx)^2+(Ny)^2$ розклали на суму двох квадратів. Випадок m=1: маємо $n=N^2=N^2+0^2$ – розклали.

Corollary 6.1.13 Число $n \in \mathbb{N}$ розписується як сума двох квадратів \iff кожний простий множник $p \equiv 3 \pmod 4$ має парний степінь.

Example 6.1.14 Зокрема маємо:

459 не розписується як сума двох квадратів, бо 459 = $3^3 \cdot 17$, і тут число 3 має непарний степінь.

 $153 = 3^2 \cdot 17$, тут 3 має парний степінь, а тому допускає розклад на суму двох квадратів. Зокрема $153 = 3^2(4^2 + 1^2) = 12^2 + 3^2$.

Remark 6.1.15 Довільне число (але не просте число $p \equiv 1 \pmod{4}$), що допускає розклад, не розкладається єдиним чином.

Зокрема $25 = 3^2 + 4^2 = 5^2 + 0^2$. Або ще $745 = 27^2 + 4^2 = 24^2 + 13^2$.

Останній приклад був побудований на основі факту, що коли $a\equiv b\pmod 2$, то маємо $ab=\left(\frac{a+b}{2}\right)^2-\left(\frac{a-b}{2}\right)^2$. Тож за бажанням можна ще погенерувати.

Theorem 6.1.16 Задано $n \in \mathbb{N}$.

n розписується як різниця двох квадратів $\iff n \not\equiv 2 \pmod{4}$.

Proof.

 \Rightarrow Дано: $n = a^2 - b^2$.

Зауважимо, що $a^2 \equiv 0, 1 \pmod{4}$, для всіх цілих чисел a, тоді звідси $a^2 - b^2 \equiv 0, 1, 3 \pmod{4}$. Тобто не існує таких a, b, для яких $a^2 - b^2 = n \equiv 2 \pmod{4}$.

 \sqsubseteq Дано: $n \not\equiv 2 \pmod{4}$.

Якщо $n \equiv 1, 3 \pmod 4$, то тоді n+1, n-1 — обидва парні числа, а значить, n розпишемо так:

$$n = \left(\frac{n+1}{2}\right)^2 - \left(\frac{n-1}{2}\right)^2.$$

Якщо $n \equiv 0 \pmod{4}$, то тоді n розпишемо так:

$$n = \left(\frac{n}{4} + 1\right)^2 - \left(\frac{n}{4} - 1\right)^2$$
.

Corollary 6.1.17 Непарне просте число розписується як різниця двох послідовних квадратів єдиним чином.

Proof.

Маємо $p=a^2-b^2=(a-b)(a+b).$ За попередньою теоремою, a-b=1, а оскільки p просте, то звідси a+b=p. Отже, $a=\frac{p+1}{2}, b=\frac{p-1}{2},$ власне

$$p = \left(\frac{p+1}{2}\right)^2 - \left(\frac{p-1}{2}\right)^2.$$

Тобто задається різниця квадратів однозначно числом p.

Remark 6.1.18 Для інших чисел не завжди єдиним чином відбувається розклад в різницю двох квадратів. Зокрема $24 = 7^5 - 5^2 = 5^2 - 1^2$. У загальному випадку це можна записати ось так:

$$n = dd' = \left(\frac{d+d'}{2}\right)^2 - \left(\frac{d-d'}{2}\right)^2$$
. Тут $d \mid n$, а також $d' = \frac{n}{d}$; припускається, що вони мають однакову парність.

Example 6.1.19 Довести, що якщо n – це сума двох трикутних чисел, то тоді 4n+1 розписується як сума двох квадартів.

Дійсно, маємо
$$n=\frac{m(m+1)}{2}+\frac{k(k+1)}{2}$$
, тоді
$$4n+1=2m^2+2m+2k^2+2k+1=\\=m^2+k^2+2km+2m+2k+1+m^2-2km+k^2=\\=(m+k+1)^2+(m-k)^2.$$

6.2 Сума більше двох квадратів

Theorem 6.2.1 Теорема Лежандра

Число k розписується як сума 3-х квадратів $\iff k \neq 4^n(8m+7)$, де $m,n \geq 0$.

Proof.

 \implies Дано: k — число формата $4^n(8m+7)$. Доведемо, що k не розпишеться як сума трьох квадратів.

Спочатку доведемо, що 8m+7 не записується як сума трьох квадратів. Дійсно, для довільного числа a маємо $a^2\equiv 0,1,4\pmod 8$, а значить, $a^2+b^2+c^2\equiv 0,1,2,3,4,5,6\pmod 8$, а водночас $8m+7\equiv 7\pmod 8$, а тому рівність $8m+7=a^2+b^2+c^2$ при всіх a,b,c неможлива.

!Повернімось до $4^n(8m+7)$ та припустимо, що $4^n(8m+7)=a^2+b^2+c^2$ для деяких a,b,c. Тоді a,b,c — всі зобов'язані бути парними в силу того, що ліва частина ділиться на 4. Тобто $a=2a_1,b=2b_1,c=2c_1$. $4^{n-1}(8m+7)=a_1^2+b_1^2+c_1^2$.

Якщо $n-1 \ge 1$, то повторити крок. А там ми дістанемось до рівності $8m+7=a_l^2+b_l^2+c_l^2$. Суперечність!

ј∉ в іншу сторону дуже важко, тому просто залишу це як факт. ■

Тобто, в принципі, ми вже знаємо, коли ми можемо записати число $n=a^2+b^2+c^2$. Підемо далі.

Lemma 6.2.2 Лема Ейлера

Задано n, m — числа, які записуються як сума чотирьох квадратів. Тоді mn теж записується як сума чотирьох квадратів.

Proof.

Доведення не дуже чесне. Можна подивитися в пдфнику абстрактної алгебри: буде чесне доведення з використанням кватерніонів. Маємо

$$n = a_1^2 + a_2^2 + a_3^2 + a_4^2$$

$$m = b_1^2 + b_2^2 + b_3^2 + b_4^2.$$

Тоді, скориставшись не дуже очевидними алгебраїнчними перетвореннями, ми отримаємо такий величезний вираз:

$$mn = (a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4)^2 + (a_1b_2 - a_2b_1 + a_3b_4 - a_4b_3)^2 + (a_1b_3 - a_2b_4 - a_3b_1 + a_4b_2)^2 + (a_1b_4 + a_2b_3 - a_3b_2 - a_4b_1)^2.$$

Lemma 6.2.3 Задано p – непарне просте. Тоді $x^2+y^2+1\equiv 0\pmod p$ має розв'язок (x_0,y_0) , причому $0\leq x_0\leq \frac{p-1}{2}$ та $0\leq y_0\leq \frac{p-1}{2}$.

Proof.

Розглянемо множину

$$S = \left\{ 1 + 0^2, 1 + 1^2, \dots, 1 + \left(\frac{p-1}{2}\right)^2, -0^2, -1^2, \dots, -\left(\frac{p-1}{2}\right)^2 \right\}.$$

Зауважимо, що $\#S = 2 \cdot \left(\frac{p-1}{2} + 1\right) = p+1 > p$. Але всього p різних

чисел за (mod p). А тому за принципом Діріхлє, мають існувати різні елементи $u,v\in S$, де $u\equiv v\pmod p$. Є три сценарії:

- 1) $u=x^2$ та $v=y^2$. У нас вже $x^2\equiv y^2\pmod p$, але звідси або $x\equiv y\pmod p$, або $x\equiv -y\pmod p$ жодний з двох варіантів неможливий, бо $0\leq x\leq \frac{p-1}{2},\ 0\leq y\leq \frac{p-1}{2}$
- 2) $u = -1 x^2$ та $v = -1 y^2$ аналогічно неможливо за 1)
- 3) $u = x^2$ та $v = -1 y^2$ (або навпаки). Тоді звідси $x^2 + y^2 + 1 \equiv 0$ при обмеженнях x, y.

Corollary 6.2.4 Задано p – непарне просте число. Тоді існує таке число k < p, що kp розписується як сума чотирьох квадратів.

Proof.

Дійсно, за попередньою лемою, $x^2+y^2+1\equiv 0\pmod p$ має розв'язок. Тобто $x_0^2+y_0^2+1^2+0^2=kp$ при деякому k. Але, знаючи обмеження на $x_0,y_0,$ отримаємо:

$$kp = x_0^2 + y_0^2 + 1 < \frac{p^2}{4} + \frac{p^2}{4} + 1 < p^2.$$
 Отже, якщо існує k , то обов'язково $k < p$.

Theorem 6.2.5 Будь-яке просте число p розписується як сума чотирьох квадратів.

Proof.

Для p = 2 маємо $2 = 1^2 + 1^2 + 0^2 + 0^2$.

Далі розглядаємо непарні прості числа. Тоді за наслідком,

 $kp = x^2 + y^2 + z^2 + w^2$, ми оберемо k < p, щоб k було найменшим додатним числом. Ми хочемо показати, що k = 1.

!Припустимо, що k – парне число, тоді w, x, y, z зобов'язані бути: або всі парні, або всі непарні, або два парних та два непарних. У такому випадку $x \equiv y \pmod 2$ та $z \equiv w \pmod 2$.

Отже, $\frac{1}{2}(x-y)$, $\frac{1}{2}(x+y)$, $\frac{1}{2}(z-w)$, $\frac{1}{2}(z+w)$ будуть цілими числами, тоді

$$\frac{1}{2}kp = \left(\frac{x-y}{2}\right)^2 + \left(\frac{x+y}{2}\right)^2 + \left(\frac{z-w}{2}\right)^2 + \left(\frac{z+w}{2}\right)^2.$$

Тобто $\frac{k}{2}p$ є сумою чотирьох квадратів. Але k – найменше число, де kp є

сумою чотирьох квадратів, а отримали $\frac{k}{2}$. Суперечність!

!Припустимо далі, що k – непарне, але $k \ge 3$. Звідси ми можемо обрати числа a,b,c,d, щоб

$$a \equiv x \pmod{k}, b \equiv y \pmod{k}, c \equiv z \pmod{k}, d \equiv w \pmod{k}$$
$$|a| < \frac{k}{2}, |b| < \frac{k}{2}, |c| < \frac{k}{2}, |d| < \frac{k}{2}.$$

На прикладі як знайшли a. Маємо x=qk+r. Якщо $r<\frac{k}{2}$, тоді покла-

демо a=r. Якщо $r>\frac{k}{2}$, тоді покладемо a=r-k. Ну й ясно, що $a\equiv x\pmod k$.

Із цього випливає, що

$$a^2 + b^2 + c^2 + d^2 \equiv x^2 + y^2 + z^2 + w^2 \equiv 0 \pmod{k}$$
, тобто $a^2 + b^2 + c^2 + d^2 = nk$ для деякого $n \ge 0$.

У силу обмежень a, b, c, d, ми отримаємо

$$0 \le nk = a^2 + b^2 + c^2 + d^2 < 4\left(\frac{k}{2}\right)^2 = k^2 \implies 0 \le nk < k^2.$$

Якщо n = 0, то тоді звідси a = b = c = d = 0. Як наслідок, $k \mid x, k \mid y, k \mid z, k \mid w$, тоді $k^2 \mid kp \implies k \mid p$, що неможливо, бо 1 < k < p.

Отже, ми маємо 0 < n < k. Зауважимо тепер, що

$$k^2 np = (kp)(kn) = r^2 + s^2 + t^2 + u^2.$$

За першою лемою, kp, kn – суми чотирьох квадратів, а тому k^2np - також сума чотирьох квадратів. Причому

$$r = xa + yb + zc + wd$$

$$s = xb - ya + zd - wc$$

$$t = xc - yd - za + wb$$

$$u = xd + yc - zb - wa.$$

Також треба зауважити, що $k \mid r, k \mid s, k \mid t, k \mid u$. На прикладі r пояснення.

$$r = xa + yb + zc + wd \equiv a^2 + b^2 + c^2 + d^2 \equiv 0 \pmod{k}.$$

Таким чином, маємо

$$np = \left(\frac{r}{k}\right)^2 + \left(\frac{s}{k}\right)^2 + \left(\frac{t}{k}\right)^2 + \left(\frac{u}{k}\right)^2.$$

Кожний дріб — ціле число, але при цьому оскільки 0 < n < k, то ми прийшли до суперечності! Знову ж таки, k - найменше число, де kp - сума чотирьох квадратів.

Із всіх варіантів лишається тільки k=1.

Theorem 6.2.6 Теорема Лагранжа

Будь-яке натуральне число представляється як сума чотирьох квадратів. Деякі можуть бути нулями. Зрозуміло, як доводиться.

Example 6.2.7 Розписати 459 як суму чотирьох квадратів.

Тут активно застосовується лема Ейлера.

Ту Гактивно застосовується лема Ейлера.
$$459 = 3^3 \cdot 17 = 3^2(1^2 + 1^2 + 1^2 + 0^2)(4^2 + 1^2 + 0^2 + 0^2) = 3^2[(4+1+0+0)^2 + (1-4+0-0)^2 + (0-0-4+0)^2 + (0+0-1-0)^2] = 3^2(5^2 + 3^2 + 4^2 + 1^2) = 15^2 + 9^2 + 12^2 + 3^2.$$

7 Досконалі числа

7.1 Вступ

Definition 7.1.1 Число n називається **досконалим**, якщо n дорівнює сумі всіх його дільників, не включаючи n.

Example 7.1.2 Зокрема 28 має дільники 1, 2, 4, 7, 14, не включаючи самого себе. Водночас 28 = 1 + 2 + 4 + 7 + 14. Отже, 28 - досконале число.

Proposition 7.1.3 Число n досконале $\iff \sigma(n) = 2n$.

Bказівка: n - досконале $\stackrel{\text{def.}}{\Longleftrightarrow}$ $n = \sigma(n) - n$

Theorem 7.1.4 Нехай число $2^k-1, k>1$ - просте. Тоді $n=2^{k-1}(2^k-1)$ буде досконалим числом. Кожне парне досконале число має форму числа n.

Proof.

Маємо $2^k-1=p$ - якесь парне, а також число $n=2^{k-1}p$. Оскільки $\gcd(2^{k-1},p)=1$, то звідси

$$\sigma(n) = \sigma(2^{k-1})\sigma(p) = (2^k - 1)(p+1) = (2^k - 1)2^k = 2n.$$

Отже, n - досконале число.

Нехай n - парне досконале число. Тоді запишемо його як $n=2^{k-1}m, k>1$, де m - непарне число. В силу того, що $\gcd(2^{k-1},m)=1$, маємо $\sigma(n)=\sigma(2^{k-1})\sigma(m)=(2^k-1)\sigma(m)$.

Оскіьки за умовою $\sigma(n) = 2n$, то звідси

$$2^k m = (2^k - 1)\sigma(m).$$

Із цього рівняння вимагається $2^k-1\mid m\implies m=(2^k-1)M.$ Отже, $\sigma(m)=2^kM.$

Оскільки m,M - обидва дільники числа m, маємо

$$2^k M = \sigma(m) \ge m + M = 2^k M.$$

Тобто
$$2^k M = \sigma(m) = m + M$$
.

Отже, m має всього лише два дільника: m, M. Значить, m зобов'язане бути простим, а число M=1. Звідси $m=(2^k-1)M=2^k-1$ - просте число. Остаточно, $n=(2^k-1)2^k$.

Таким чином, знаходження парних досконалих чисел зводиться до знаходження простих чисел формата $2^k - 1$.

Lemma 7.1.5 Задано $a^k - 1$ - парне число, a > 1, k > 1.

Тоді a=2, а також k - парне число.

Таке твердження вже було, але тут вона більш загальне.

Маємо $a^k - 1 = (a-1)(a^{k-1} + \dots + a + 1).$

Множник $a^{k-1}+\cdots+a+1\geq a+1>1$ та множник $a-1\geq 1$. Але оскільки a^k-1 - парне число, то звідси один з двох множників зобов'язаний бути рівним одиниці. Лише можливий $a-1=1\implies a=2$.

! Припустімо, що k - складене число, тобто k=rs, причому беремо r>1,s>1. Тому

$$a^{k} - 1 = (a^{r})^{s} - 1 = (a^{r} - 1)(a^{r(s-1)} + \dots + a^{r} + 1).$$

Кожний з множників явно більше одиниці, тобто $a^k - 1$ стане складеним числом. Суперечність!

Theorem 7.1.6 Задано n - парне досконале число.

Тоді n закінчується цифрою 6 або 8.

Proof.

Маємо $n=2^{k-1}(2^k-1),$ згідно з попередньою теоремою, де 2^k-1 - просте. А значить, k також просте.

При k=2 маємо n=6 - виконана теорема.

При $k \equiv 1 \pmod{4}$ маємо

$$n = 2^{4m}(2^{4m+1} - 1) = 2^{8m+1} - 2^{4m} = 2 \cdot 16^{2m} - 16^m.$$

Індуктивно можна довести, що $16^t \equiv 6 \pmod{10}, t \in \mathbb{N}$. Значить,

$$n \equiv 2 \cdot 6 - 6 = 6 \pmod{10}.$$

При $k \equiv 3 \pmod{4}$ маємо

$$n = 2^{2m+2}(2^{4m+3} - 1) = 2^{8m+5} - 2^{4m+2} = 2 \cdot 16^{2m+1} - 4 \cdot 16^{m}.$$

$$n \equiv 2 \cdot 6 - 4 \cdot 6 = 8 \pmod{10}.$$

Remark 7.1.7 Насправді, можна більш строгу теорему дати. Власне, кожне парне досконале число закінчується цифрами 6 або 28.

7.2 Трошки про числа Мерсенна

Theorem 7.2.1 Нехай p та q = 2p + 1 - прості числа.

Тоді або $q \mid M_p$, або виключно $q \mid M_p + 2$. Тут M_p - число Мерсенна.

Proof.

За малою теоремою Ферма, $2^{q-1} \equiv 1 \pmod{q}$ або

$$(2^{\frac{q-1}{2}}-1)(2^{\frac{q-1}{2}}+1)=(2^p-1)(2^p+1)\equiv 0\pmod{q}.$$

 $M_p(M_p+2) \equiv 0 \pmod{q}$.

Отже, $q \mid M_p(M_p+2)$, тоді в силу простоти q, маємо $q \mid M_p$ або $q \mid M_p+2$. Одночасно не можуть, бо тоді буде $q \mid 2$, що суперечить умові.

Example 7.2.2 Приклад застосування теореми полягає в наступному. Нехай p = 23 та q = 2p + 1 = 47 - вони обидва прості. Тоді або 47 | M_{23} , або 47 | $M_{23} + 2$ - лише один варіант з двох.

Можна показати, що справді $2^{23} \equiv 1 \pmod{47}$, а тому $47 \mid M_{23}$.

А це означає, що $M_{23}=2^{23}-1$ - складене число.

Theorem 7.2.3 Нехай q = 2n + 1 - просте число. Тоді

$$q \mid M_n \iff q \equiv 1 \text{ ado } 7 \pmod{8}$$

$$q \mid M_n + 2 \iff q \equiv 3 \text{ ado } 5 \pmod{8}$$

Proof.

Доведу лише перший випадок, бо другий аналогічний.

$$q \mid M_n \iff 2^n = 2^{\frac{q-1}{2}} \equiv 1 \pmod{q} \iff 2^{q-1} \equiv 1 \pmod{q} \iff \bigoplus \left(\frac{2}{q}\right) = 1 \iff q \equiv 1, 7 \pmod{8}.$$

Corollary 7.2.4 Нехай $p \equiv 3 \pmod 4$ та q = 2p+1 - прості числа. Тоді $q \mid M_p$.

Таким чином, для чисел $p \in \{11, 23, 83, 131, 179, 181, 239, 251\}$ число q = 2p + 1 буде також простим, а тому число M_p стане складеним.

Theorem 7.2.5 Задано p - непарне просте число.

Тоді будь-який дільник M_p є числом формата 2kp+1.

Proof.

Нехай q - просте число та $q \mid M_p$, тобто $2^p \equiv 1 \pmod{q}$.

Якщо позначити $\operatorname{ord}_q(2) = k$, то тоді $k \mid p$. Причому $k \neq 1$, бо в інакшому випадку було б $q \mid 1$.

 $k \mid p$ та k > 1, а оскільки p - просте, то тоді k = p.

Також маємо $k \mid q-1$, тобто $p \mid q-1 \implies q=1+pt$.

Число t зобов'язане бути парним, бо в інакшому випадку стало б число q парним, а це вже порушує умову простоти числа q.

Таким чином, q = 2kp + 1.

Theorem 7.2.6 Задано p - непарне просте число.

Тоді будь-який простий дільник q числа M_p буде $\equiv \pm 1 \pmod{8}$.

Proof.

Нехай q=2n+1 - простий дільник M_p . Позначимо число $a=2^{\frac{p+1}{2}},$ тоді отримаємо:

$$a^{2} - 2 = 2^{p+1} - 2 = 2M_p \equiv 0 \pmod{q}.$$

Піднесемо до *п*-ій степені - отримаємо:

$$a^{2n} = a^{q-1} \equiv 2^n \pmod{q}.$$

Оскільки q - непарне число, то тоді $\gcd(a,q) = 1$, а тому $a^{q-1} \equiv 1 \pmod{q}$ за Ферма. Тобто звідси $2^n \equiv 1 \pmod{q} \implies q \mid M_n \implies q \equiv \pm 1 \pmod{8}$.

Theorem 7.2.7 Теорема Ейлера

3адано n - непарне доскональне число.

Тоді $n=p_1^{k_1}p_2^{2j_2}$... $p_r^{2j_r}$, де p_i - різні непарні прості числа, а також $p_1\equiv k_1\equiv 1\pmod 4$.

Proof.

Маємо $n=p_1^{k_1}\dots p_r^{k_r}$ - досконале число. Тоді

$$2n = \sigma(n) = \sigma(p_1^{k_1}) \dots \sigma(p_r^{k_r}).$$

Раз n - непарне, то тоді $n \equiv 1, 3 \pmod{4} \implies 2n \equiv 2 \pmod{4}$.

Значить, $2 \mid \sigma(n)$, але $4 \nmid \sigma(n)$.

Це означає, що (не втрачаючи загальності) $\sigma(p_1^{k_1})$ має бути парним (але не ділитись на 4), а всі решта - непарні.

Всі p_i - непарні прості в силу непарності n.

Випадок $p_i \equiv 3 \equiv -1 \pmod{4}$.

$$\sigma(p_i^{k_i}) = 1 + p_i + \dots + p_i^{k_i} \equiv 1 + (-1) + \dots + (-1)^{k_i} \equiv \begin{cases} 0 \pmod{4}, & k_i \text{ непарне} \\ 1 \pmod{4}, & k_i \text{ парне} \end{cases}.$$

Оскільки $\sigma(p_1^{k_1})\equiv 2\pmod 4$, то тоді звідси $p_1\equiv 1\pmod 4$. Бо в інакшому випадку було б $\sigma(p_1^{k_1})\equiv 0$ або $1\pmod 4$, що неможливо.

Коли $\sigma(p_i^{k_i}) \equiv 0 \pmod 4$ при $i=2,\ldots,r$, то отримаємо: $\sigma(p_i^{k_i})$ - парне, що неможливо. Тому обов'язково $\sigma(p_i^{k_i}) \equiv 1 \pmod 4$, а значить, k_i - парні.

Випадок $p_i \equiv 1 \pmod{4}$.

$$\sigma(p_i^{k_i}) = 1 + p_i + \dots + p_i^{k_i} \equiv k_i + 1 \pmod{4}.$$

Оскільки $\sigma(p_1^{k_1}) \equiv 2 \pmod{4}$, то звідси вимагається $k_1 \equiv 1 \pmod{4}$. Для інших $\sigma(p_i^{k_i}) \equiv 1, 3 \pmod{4}$, а тому $\sigma(p_i^{k_i}) \equiv 0, 2 \pmod{4}$, тобто k_i все одно будуть парними.

Corollary 7.2.8 Задано n - непарне досконале число.

Тоді $n=p^km^2$, де $p\nmid m, p\equiv k\equiv 1\pmod 4$ - просте число. Також $n\equiv 1\pmod 4$.

Proof.

Дійсно, $n=p_1^{k_1}(p_2^{j_2}\dots p_r^{j_r})^2=p^km^2$.

Оскільки $p \equiv 1 \pmod{4}$, маємо $p^k \equiv 1 \pmod{4}$. Зауважимо, що m - непарне число, тобто $m \equiv 1, 3 \pmod{4}$, а значить, $m^2 \equiv 1 \pmod{4}$. Отже, $n = p^k m^2 \equiv 1 \cdot 1 = 1 \pmod{4}$.

7.3 Трошки про числа Ферма

Theorem 7.3.1 641 | F_5 . Тут F_n - число Ферма.

Позначимо $a=2^7$ та b=5, таким чином 1+ab=641.

Можна зауважити, що

$$1 + ab - b^4 = 1 + (a - b^3)b + 1 = 1 + 3b = 2^4$$
.

Тоді звідси випливає, що

$$F_5 = 2^{2^5} + 1 = 2^{32} + 1 = 2^4 a^4 + 1 = (a + ab - b^4)a^4 + 1 =$$

= $(a + ab)a^4 + (1 - a^4b^4) = (1 + ab)[a^4 + (1 - ab)(1 + a^4b^2)] = 641 \cdot n$. Отже, $641 \mid F_5$.

Theorem 7.3.2 $gcd(F_m, F_n) = 1$, $getain m > n \ge 0$.

Proof.

Позначимо $d=\gcd(F_m,F_n)$. Всі числа Ферма непарні, а тому d також є непарним. Позначимо $x=2^{2^n}$ та $k=2^{m-n}$. Тоді

$$\frac{F_m-2}{F_n}=\frac{(2^{2^n})^{2^{m-n}}-1}{2^{2^n}+1}=\frac{x^k-1}{x+1}=x^{k-1}-x^{k-2}+\cdots-1.$$
 Таким чином, $F_n\mid F_m-2$. Оскільки $d\mid F_n$, то тоді $d\mid F_m-2$. Також

Таким чином, $F_n \mid F_m - 2$. Оскільки $d \mid F_n$, то тоді $d \mid F_m - 2$. Також $d \mid F_m$, а тому звідси $d \mid 2$. В силу непарності d = 1 - єдиний можливий варіант.

8 Ланцюгові дроби

8.1 Числа Фібоначчі та властивості

Відомо, що числа Фібоначчі задаються такою послідовністю: $0, 1, 1, 2, 3, 5, 8, 13, \dots$

Тобто $u_0 = 0, u_1 = 1, u_n = u_{n-1} + u_{n-2}, n \ge 2.$

Theorem 8.1.1 $gcd(u_n, u_{n+1}) = 1$, причому для кожного $n \ge 1$.

Proof.

!Припустимо, що $d \mid u_n, d \mid u_{n+1}$, але при цьому d > 1. Тоді $d \mid u_{n+1} - u_n = u_{n-1}$. Далі $d \mid u_n - u_{n-1} = u_{n-2}$...

Продовжуючи, отримаємо $d \mid u_1 = 1$, а тому d = 1. Суперечність!

Remark 8.1.2 Можна зауважити, що $u_3 = 2, u_5 = 5, u_7 = 13, u_{11} = 89$. Тобто коли в нас простий індекс, то число Фібоначчі також просте. Але $u_{19} = 4181 = 37 \cdot 113$ - цей патерн не спрацьовує.

Lemma 8.1.3 $u_{m+n} = u_{m-1}u_n + u_m u_{n+1}$

Proof.

Число m зафіксуємо, доводимо за індукцією по n.

База: n = 1, матимемо $u_{m+1} = u_{m-1}u_1 + u_mu_2 = u_m + u_{m-1}$.

Крок: нехай для чисел до k даний вираз виконаний. Доведемо для k+1.

 $u_{m+k} = u_{m-1}u_k + u_m u_{k+1}$

 $u_{m+(k-1)} = u_{m-1}u_{k-1} + u_m u_k$

Додамо ці дві рівності:

 $u_{m+k} + u_{m+(k-1)} = u_{m-1}(u_k + u_{k-1}) + u_m(u_{k+1} + u_k).$

 $u_{m+(k+1)} = u_{m-1}u_{k+1} + u_m u_{k+2}.$

МІ доведено.

Theorem 8.1.4 $u_m \mid u_{mn}$, причому виконано для кожного $m, n \ge 1$.

Proof.

Знову за МІ по n, а число m фіксуємо.

База: n=1. Тоді $u_m \mid u_m$ - ну тут ясно.

Крок: нехай для чисел до k дана теорема виконана. Доведемо для k+1.

Маємо $u_{m(k+1)} = u_{mk+m} = u_{mk-1}u_m + u_{mk}u_{m+1}$.

За МІ, $u_m \mid u_{mk}$, а тому автоматично $u_m \mid u_{m(k+1)}$.

MI доведено.

Lemma 8.1.5 Задано m = qn + r. Тоді $gcd(u_m, u_n) = gcd(u_r, u_n)$.

 $\gcd(u_m, u_n) = \gcd(u_{qn+r}, u_n) = \gcd(u_{qn-1}u_r + u_{qn}u_{r+1}, u_n)$. Скористаємось фактом, що $\gcd(a+c, b) = \gcd(a, b)$ при $b \mid c$.

У нашому випадку $u_n \mid u_{qn}$.

 $\equiv \gcd(u_{qn-1}u_r, u_n).$

Покажемо тепер, що $\gcd(u_{qn-1},u_n)=1$. Позначимо тимчасово $\gcd(u_{qn-1},u_n)=d$. Зараз маємо $d\mid u_n$, а також $u_n\mid u_{qn}$. Миттєво звідси $d\mid u_{qn}$. Але також $d\mid u_{qn-1}$. Але оскільки u_{qn-1},u_{qn} є сусідніми членами, то звідси $\gcd(u_{qn-1},u_{qn})=d=1$.

Отже, $gcd(u_{qn-1}u_r, u_n) = gcd(u_r, u_n)$ в силу того, що $gcd(u_{qn-1}, u_n) = 1$.

Theorem 8.1.6 $gcd(u_m, u_n) = u_d$, причому d = gcd(m, n).

Proof.

Припустимо, що $m \ge n$. Застосуємо алгоритм Евкліда:

 $m = q_1 n + r_1$

 $n = q_2 r_1 + r_2$

 $r_1 = q_3 r_2 + r_3$

:

 $r_{n-2} = q_n r_{n-1} + r_n$

 $r_{n-1} = q_{n+1}r_n.$

Причому $0 < r_n < r_{n-1} < \dots < r_3 < r_2 < r_1 < n$. Тоді за лемою,

 $\gcd(u_m, u_n) = \gcd(u_{r_1}, u_n) = \gcd(u_{r_1}, u_{r_2}) = \dots = \gcd(u_{r_{n-1}}, u_{r_n}).$

Але оскільки $r_n \mid r_{n-1}$, то за попередньою теоремою, $u_{r_n} \mid u_{r_{n-1}}$, а тому $\gcd(u_{r_{n-1}},u_{r_n})=u_{r_n}$. Але водночас r_n - остання ненульова остача, тому $\gcd(m,n)=r_n$.

Pasom $gcd(u_m, u_n) = u_{gcd(m,n)}$.

Corollary 8.1.7 Якщо $u_m \mid u_n$, то тоді $m \mid n$.

Corollary 8.1.8 $u_m \mid u_n \iff m \mid n$ при $m \geq 2$.

Example 8.1.9 Обчислити $gcd(u_{16}, u_{12}) = gcd(987, 144)$.

Застосувавши алгоритм Евкліда, отримаємо $\gcd(897,144)=3$, а тому звідси

 $\gcd(u_{16}, u_{12}) = 3 = u_4 = u_{\gcd(16,12)}.$

Proposition 8.1.10 $u_1 + \cdots + u_n = u_{n+2} - 1$.

Вказівка: розписати від 1 до п рівняння $u_n = u_{n+2} - u_{n+1}$.

Proposition 8.1.11 $u_n^2 = u_{n+1}u_{n-1} + (-1)^{n-1}$ для чисел $n \ge 2$.

Маємо

$$u_n^2 - u_{n+1}u_{n-1} = u_n(u_{n-1} + u_{n-2}) - u_{n+1}u_{n-1} = (u_n - u_{n+1})u_{n-1} + u_nu_{n-2}.$$

Знаємо, що $u_{n+1} = u_n + u_{n-1}$, а тому отримаємо $u_n^2 - u_{n+1}u_{n-1} = (-1)(u_{n-1}^2 - u_nu_{n-2})$.

$$u_n^2 - u_{n+1}u_{n-1} = (-1)(u_{n-1}^2 - u_nu_{n-2}).$$

Отримали таке рекурентне співвідношення, що можна опустити до

$$u_n^2 - u_{n+1}u_{n-1} = (-1)(u_{n-1}^2 - u_nu_{n-2}) = (-1)^2(u_{n-2}^2 - u_{n-1}u_{n-3}) = \dots$$

= $(-1)^{n-2}(u_2^2 - u_3u_1) = (-1)^{n-1}$.

Theorem 8.1.12 Будь-яке натуральне число можна записати як скінченну суму різних чисел Фібоначчі.

Proof.

Достатньо показати за МІ по n > 2, що кожне число $1, 2, 3, \ldots, u_n - 1$ є сумою чисел із множини $\{u_1, u_2, \dots, u_{n-2}\}$ без повторень.

База: n=3. Маємо лише число 1 зі списку, але $1=u_2$.

Крок: нехай це твердження виконано для n=k. Тобто нехай числа $1, 2, \ldots, u_k - 1$ розписані як сума різних чисел зі $\{u_1, \ldots, u_{k-2}\}$.

Оберемо таке число N, щоб $u_k - 1 < N < u_{k+1}$. Це буде тіпа наступне число.

Оскільки $N-u_{k-1} < u_{k+1}-u_{k-1} = u_k$, то за індукцією, $N-u_{k-1}$ розписується як сума різних чисел зі $\{u_1,\ldots,u_{k-2}\}$. Тоді число N, а як наслідок, і кожне число $1, 2, 3, \ldots, u_{k+1} - 1$ розписується як сума різних чисел зі $\{u_1,\ldots,u_{k-1}\}.$

Скінченні ланцюгові дроби 8.2

Definition 8.2.1 Скінченним лацнюговим дробом назвемо дріб такого вигляду

$$a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{n-1} + \frac{1}{a_{n}}}}},$$

де $a_0 \in \mathbb{Z}$ та $a_1, \ldots, a_n \in \mathbb{N}$. Позначення: $[a_0; a_1, a_2, \ldots, a_{n-1}, a_n]$.

Remark 8.2.2 Хоча дозволяється a_i бути дійсним, навіть комплексним числом. Це зауваження буде суттєвим лише для майбутньої Тh. 8.2.11.

Example 8.2.3
$$[3; 4, 1, 4, 2] = 3 + \frac{1}{4 + \frac{1}{1 + \frac{1}{4 + \frac{1}{2}}}} = \frac{170}{53}$$
.

Remark 8.2.4 Будь-який скінченний ланцюговий дріб буде раціональним числом.

Вказівка: довести за MI за кількістю a_i .

Theorem 8.2.5 Будь-яке раціональне число можна записати як скінченний ланцюговий дріб.

Proof.

Маємо $\frac{a}{b} \in \mathbb{Q}, b > 0$. За алгоритмом Евкліда, маємо:

$$a = ba_0 + r_1$$

$$b = r_1 a_1 + r_2$$

$$r_1 = r_2 a_2 + r_3$$

$$r_{n-2} = r_{n-1}a_{n-1} + r_n$$

$$r_{n-1} = r_n a_n,$$

причому
$$0 < r_n < r_{n-1} < \dots < r_3 < r_2 < r_1 < b$$
.

Зауважимо, що a_1, \ldots, a_n є додатними числами, оскільки кожна остача r_k додатна. Перепишемо ці рівняння ось так:

$$\frac{a}{b} = a_0 + \frac{r_1}{b} = a_0 + \frac{1}{\frac{b}{r_1}}$$

$$\frac{b}{r_1} = a_1 + \frac{r_2}{r_1} = a_1 + \frac{r_1}{\frac{r_1}{r_1}}$$

$$\frac{r_1}{r_2} = a_2 + \frac{r_3}{r_2} = a_2 + \frac{\frac{r_2}{r_2}}{\frac{r_2}{r_3}}$$

$$\frac{\vdots}{r_{n-1}} = a_n.$$

Підставимо в перше рівняння другу рівність, а потім третю рівність тощо. В результаті отримаємо ланцюговий дріб $\frac{a}{b} = [a_0; a_1, \dots, a_n]$.

Example 8.2.6 Представимо $\frac{19}{51}$ як ланцюговий дріб. Застосовуючи алгоритм Евкліда кілька разів, отримаємо:

$$\frac{19}{51} = \frac{1}{\frac{51}{19}} = \frac{1}{2 + \frac{13}{19}} = \frac{1}{2 + \frac{1}{\frac{19}{13}}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{13}}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{13}}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{13}}}.$$
Отже, $\frac{19}{51} = [0; 2, 1, 2, 6].$

Remark 8.2.7 Репрезентація раціонального числа на ланцюговий дріб не єдина.

Для
$$a_n > 1$$
 маємо $a_n = (a_n - 1) + 1 = (a_n - 1) + \frac{1}{1}$
Отже, $[a_0; a_1, \dots, a_n] = [a_0; a_1, \dots, a_n - 1, 1].$
Для $a_n = 1$ маємо $a_{n-1} + \frac{1}{a_n} = a_{n-1} + 1.$
Отже, $[a_0; a_1, \dots, a_{n-1}, a_n] = [a_0; a_1, \dots, a_{n-1}, a_{n-1} + 1].$

Таким чином, кожне раціональне число має дві репрезентації: одна з парною кількістю, друга з непарною кількістю (причому інших вже нема).

Example 8.2.8 Зокрема
$$\frac{19}{51} = [0; 2, 1, 2, 6] \stackrel{\text{a6o}}{=} [0; 2, 1, 2, 5, 1].$$

Example 8.2.9 Більш важливий

Запишемо $\frac{u_{n+1}}{u}$ як ланцюговий дріб (тут числа Фібоначчі). Нам уже відомо, що $\gcd(u_{n+1},u_n)=1$ завжди, а тому буде n-1 рівнянь в алгоритмі Евкліда

$$u_{n+1} = 1 \cdot u_n + u_{n-1}$$

$$u_n = 1 \cdot u_{n-1} + u_{n-2}$$

$$\vdots$$

$$u_4 = 1 \cdot u_3 + u_2$$

$$u_3 = 2u_2.$$

$$u_{n+1}$$

Таким чином, $\frac{u_{n+1}}{u_n}=[1;1,1,\ldots,1,2],$ але згідно з зауваженням про роз-

клад, ми можемо це записати інакше:

$$\frac{u_{n+1}}{u_n} = [1; 1, 1, \dots, 1, 1, 1]$$
, причому тут $n+1$ одиничок.

Нехай задано $[a_0; a_1, \ldots, a_n]$. Зробимо певні позначення: $C_k = [a_0; a_1, \dots, a_k], 0 \le k \le n$ - ланцюговий дріб, який отримали, відрізаючи розклад після a_k .

Число C_k хтось називає k-им раціональним вкороченням або k-им підхідним дробом. Англійською це називають k-th convergent.

Example 8.2.10 Зокрема маємо
$$\frac{19}{51} = [0; 2, 1, 2, 6]$$
, тож звідси $C_0 = [0] = 0$

$$C_1 = [0; 2] = \frac{1}{2}$$

 $C_2 = [0; 2, 1] = \frac{1}{3}$

$$C_3 = [0; 2, 1, 2] = \frac{3}{8}$$

$$C_4 = [0; 2, 1, 2, 6] = \frac{19}{51}.$$

Theorem 8.2.11 Задано $[a_0; a_2, \ldots, a_n]$ - ланцюговий дріб. Тоді $C_k = \frac{p_k}{q_k}$, де числа p_k, q_k задаються так:

$$p_0 = a_0 \qquad q_0 = 1$$

$$p_1 = a_1 a_0 + 1 q_1 = a_1$$

$$p_1 = a_1 a_0 + 1$$
 $q_1 = a_1$
 $p_k = a_k p_{k-1} + p_{k-2}$ $q_k = a_k q_{k-1} + q_{k-2}$.

Proof.

База індукції при C_0, C_1 буде неважко.

Крок індукції: нехай для $2 \le m < n$ виконується

$$C_m = [a_0; a_1, \dots, a_{m-1}, a_m] = \frac{p_m}{q_m} = \frac{a_m p_{m-1} + p_{m-2}}{a_m q_{m-1} + q_{m-2}}$$
. Доведемо це твердження для C_{m+1} .

Зазначимо, що $p_{m-1}, q_{m-1}, p_{m-2}, q_{m-2}$ напряму залежать від $a_1, \ldots, a_{m-1},$ але жодним чином не залежать від a_m . Отже, в рівнянні вище ми a_m замінимо на $a_m + \frac{1}{a_{m+1}}$ - отримаємо:

$$\begin{bmatrix} a_0; a_1, \dots, a_{m-1}, a_m + \frac{1}{a_{m+1}} \end{bmatrix} = \frac{\left(a_m + \frac{1}{a_{m+1}}\right) p_{m-1} + p_{m-2}}{\left(a_m + \frac{1}{a_{m+1}}\right) q_{m-1} + q_{m-2}}.$$

$$\left[a_0; a_1, \dots, a_{m-1}, a_m + \frac{1}{a_{m+1}}\right] = \left[a_0; a_1, \dots, a_{m-1}, a_m, a_{m+1}\right] = C_{m+1}.$$

$$C_{m+1} = \frac{\left(a_m + \frac{1}{a_{m+1}}\right)p_{m-1} + p_{m-2}}{\left(a_m + \frac{1}{a_{m+1}}\right)q_{m-1} + q_{m-2}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + p_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + p_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + p_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + p_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m p_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}($$

$$= \frac{a_{m+1}p_m + p_{m-1}}{a_{m+1}}$$

$$a_{m+1}q_m + q_{m-1}.$$

MI доведено.

Theorem 8.2.12 Задано $[a_0; a_1, \ldots, a_n]$ - ланцюговий дріб та C_k . Тоді $p_k q_{k-1} - q_k p_{k-1} = (-1)^{k-1}$ при $1 \le k \le n$.

Proof.

База індукції: при k=1 теж зрозуміла.

Крок індукції: нехай ця формула виконана для $1 \leq m < n$, тоді $p_{m+1}q_m - q_{m+1}p_m = (a_{m+1}p_m + p_{m-1})q_m - (a_{m+1}q_m + q_{m-1})p_m = -(p_mq_{m-1} - q_mp_{m-1}) \stackrel{\text{MI}}{=} -(-1)^{m-1} = (-1)^m$. МІ доведено.

Corollary 8.2.13 $gcd(p_k, q_k) = 1$ при $1 \le k \le n$.

Example 8.2.14 Розв'яжемо рівняння 172x + 20y = 1000.

Оскільки gcd(172, 20) = 4, то розв'язок є, а також 43x + 5y = 250.

Але ми розв'яжемо таке рівняння:

43x + 5y = 1 (дане рівняння схоже на рівняння з **Th. 8.2.12**).

Запишемо число $\frac{43}{5}$ як ланцюговий дріб. Це буде $\frac{43}{5} = [8;1,1,2]$, тоді

звідси $C_0 = \frac{8}{1}, C_1 = \frac{9}{1}, C_2 = \frac{17}{2}, C_3 = \frac{43}{5}$, а тому отримаємо $p_2 = 17, q_2 = 2, p_3 = 43, q_3 = 5$. За попередньою теоремою,

$$p_3q_2 - q_3p_2 = (-1)^{3-1}$$

$$43 \cdot 2 - 5 \cdot 17 = 1$$

$$43 \cdot 500 + 5(-4250) = 250.$$

Знайшли розв'язок $x_0 = 500, y_0 = -4250,$ ну а далі легко записати загальинй розв'язок. Мені вже лінь.

Lemma 8.2.15 Задано $[a_0;a_1,\ldots,a_n]$ - ланцюговий дріб. Нехай q_k - знаменник C_k . Тоді $q_{k-1}\leq q_k$, причому нерівність строга при k>1.

Proof.

База індукції: k=1, маємо $q_0=1\leq a_1=q_1$.

Крок індукції: нехай для деякого $1 \leq m < n$ нерівність виконана. Тоді $q_{m+1} = a_{m+1}q_m + q_{m-1} > a_{m+1}q_m \geq 1 \cdot q_m = q_m$. МІ доведено.

Theorem 8.2.16 Послідовність $\{C_{2k}, k \geq 0\}$ - строго зростає. Послідовність $\{C_{2k+1}, k \geq 0\}$ - строго спадає.

Proof.

$$C_{n+2} - C_n = (C_{n+2} - C_{n+1}) + (C_{n+1} - C_n) = \left(\frac{p_{n+2}}{q_{n+2}} - \frac{p_{n+1}}{q_{n+1}}\right) + \left(\frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n}\right)$$

$$= \frac{(-1)^{n+1}}{q_{n+2}q_{n+1}} + \frac{(-1)^n}{q_{n+1}q_n} = \frac{(-1)^n(q_{n+2} - q_n)}{q_nq_{n+1}q_{n+2}}.$$

За щойно доведеною лемою, $q_{n+2} > q_{n+1} \ge q_n \implies q_{n+2} - q_n > 0$. Якщо n = 2k, то отримаємо $C_{2k+2} - C_{2k} > 0$. Якщо n = 2k + 1, то отримаємо $C_{2k+3} - C_{2k} < 0$.

Theorem 8.2.17 $C_{2k+1} \geq C_{2m}$, для кожного $k, m \geq 0$. Простіше кажучи, кожне непарне C_i більше за кожне парне C_i .

Proof.

$$C_n - C_{n-1} = \frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n-1}}{q_n q_{n-1}}.$$
 Підставивши $n=2j$, отримаємо $C_{2j} < C_{2j-1}$. Скориставшись попере-

дньою теоремою та щойно одержаною оцінкою, отримаємо, що

$$C_{2m} < C_{2m+2k+2} < C_{2m+2k+1} < C_{2k+1}.$$

8.3 Нескінченні ланцюгові дроби

Definition 8.3.1 Hecкінченним лацнюговим дробом назвемо дріб такого вигляду

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}},$$

де $a_0 \in \mathbb{Z}$ та $a_1, a_2, \dots \in \mathbb{N}$. Позначення: $[a_0; a_1, a_2, \dots]$

Значення ланцюгового дробу дорівнює

$$[a_0; a_1, a_2, \dots] = \lim_{n \to \infty} C_n,$$

де
$$C_n = [a_0; a_1, a_2, \dots, a_n].$$

Remark 8.3.2 Аналогічно див. Rm. 8.2.2

Proposition 8.3.3 Коректність означення

Якщо визначені $C_n = [a_0; a_1, a_2, \dots, a_n]$, то $\lim_{n \to \infty} C_n$ існує.

Proof.

Із попереднього підрозділу, маємо такі ланцюги нерівностей

$$C_0 < C_2 < C_4 < \dots < C_{2n} < C_{2n+1} < \dots < C_5 < C_3 < C_1.$$

Таким чином, послідовність $\{C_{2n}, n \geq 1\}$ не лише монотонно зростає, а ще й обмежена сверху числом C_1 ; послідовність $\{C_{2n+1}, n \geq 1\}$ не лише монотонно спадає, а ще й обмежена знизу числом C_0 . У такому разі обидва мають границю за Вейєрштрассом.

Позначимо $\alpha = \lim_{n \to \infty} C_{2n}$ та $\alpha' = \lim_{n \to \infty} C_{2n+1}$. Зауважимо, що $\alpha' \leq C_{2n+1}$ та $\alpha \geq C_{2n}$. Отже, маємо

$$\alpha' - \alpha \le C_{2n+1} - C_{2n} = \frac{p_{2n+1}}{q_{2n+1}} - \frac{p_{2n}}{q_{2n}} = \frac{1}{q_{2n}q_{2n+1}}.$$

А тому звідси випливає, що
$$0 \le |\alpha' - \alpha| \le \frac{1}{q_{2n}q_{2n+1}} < \frac{1}{q_{2n}^2}$$
.

Зрозуміло, що q_k строго зростає, а тому й q_{2n} . Таким чином, $\forall \varepsilon > 0$: $\exists N: 0 \leq |lpha' - lpha| < rac{1}{q_{2N}^2} < arepsilon.$ Таким чином, маємо lpha = lpha'. Звідси абсолютно всі часткові границі послідовності $\{C_n, n \geq 0\}$ дорівнюють α , а тому звідси $\lim_{n\to\infty} C_n = \alpha$.

Example 8.3.4 Зокрема уже доводили, що
$$C_n = \frac{u_{n+1}}{u_n} = [1; \underbrace{1, \dots, 1}_{n \text{ pasis}}].$$

Позначимо $x=\lim_{n\to\infty}C_n$, тоді звідси отримаємо

$$x = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{u_n + u_{n-1}}{u_n} = 1 + \frac{1}{\lim_{n \to \infty} \frac{u_n}{u_{n-1}}} = 1 + \frac{1}{x}.$$

Розв'язавши рівняння $x = 1 + \frac{1}{x}$, отримаємо додатний корінь $x = \frac{1 + \sqrt{5}}{2}$. Отже, $[1; 1, 1, 1, \dots] = \frac{1 + \sqrt{5}}{2}$.

Definition 8.3.5 Періодичним нескінченним ланцюговим дробом назвемо ось це:

$$[a_0; a_1, \ldots, a_m, b_1, \ldots, b_n, b_1, \ldots, b_n, b_1, \ldots, b_n, b_1, \ldots]$$

Позначення: $[a_0; a_1, \ldots, a_m, \overline{b_1, \ldots, b_n}]$.

 b_1, \dots, b_n називають тут **періодом**, а число n називають **довжиною** даного періода.

Theorem 8.3.6 $[a_0; a_1, ...] \notin \mathbb{Q}$.

Proof.

Позначимо $x = [a_0; a_1, \dots].$

!Припустимо, що $x \in \mathbb{Q}$, тобто $x = \frac{a}{h}$. Із попереднього твердження, $C_n \le x \le C_{n+1}$, a tomy

$$0 < |x - C_n| < |C_{n+1} - C_n| = \left| \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} \right| = \frac{1}{q_n q_{n+1}}.$$

$$0 < \left| \frac{a}{b} - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$$

$$0 < |aq_n - bp_n| < \frac{b}{q_{n+1}}.$$

Оскільки q_k строго зростає, то знайдеться номер N, щоб $\frac{b}{\tilde{a}} < 1$, а тому $0<|aq_n-bp_n|<1$. Проте при $a,b,q_n,p_n\in\mathbb{Z}$ отримали суперечність! Бо в середині модуля ціле число, яке не може мати таку оцінку.

Theorem 8.3.7 Задані $[a_0;a_1,\dots]=[b_0;b_1,\dots]$ - два нескінченні ланцюгові дроби. Тоді $a_n = b_n, n \ge 0$.

Remark 8.3.8 Перед цим слід зазначити, що виконується рівність:
$$[a_0;a_1,a_2,\dots]=a_0+\frac{1}{[a_1;a_2,a_3,\dots]}.$$

Proof.

Маємо $[a_0;a_1,a_2,\dots]=x=[b_0;b_1,b_2,\dots],$ або згідно з зауваженням, $a_0+\dfrac{1}{[a_1;a_2,\dots]}=x=b_0+\dfrac{1}{[b_1;b_2,\dots]}.$

Відомо, що $C_0(a) < x < C_1(a)$, тобто $a_0 < x < a_0 + \frac{1}{a_1}$. Зважаючи, що $a_1 \geq 1$, маємо $a_0 < x < a_0 + 1$, тобто звідси $[x] = a_0$. Аналогічно при $C_0(b) < x < C_1(b)$ отримаемо $[x] = b_0$.

Таким чином, $a_0 = [x] = b_0$, а також звідси $[a_1; a_2, \dots] = [b_1; b_2, \dots]$. А далі повторюються буквально ті самі кроки, що приводить до рівності

 $a_n = b_n, n \ge 0.$

Example 8.3.9 Знайдемо число, що є репрезентацією $x = [3; 6, \overline{1, 4}].$

Позначимо
$$x=[3;6,y],$$
 де $y=[\overline{1,4}]=[\overline{1,4},y].$ Тоді $y=1+\dfrac{1}{4+\dfrac{1}{y}}=\dfrac{5y+1}{4y+1}.$

Отримаємо квадратне рівняння $4y^2 - 4y - 1 = 0$, що має лише корінь

$$y=rac{1+\sqrt{2}}{2}$$
 в силу того, що $y>0$. Звідси маємо

$$x = 3 + \frac{1}{6 + \frac{1}{y}} = \dots = \frac{14 - \sqrt{2}}{4}.$$

Theorem 8.3.10 Будь-яке ірраціональне число можна розписати як нескінченний ланцюговий дріб єдиним чином.

Proof.

Маємо число $x_0 \notin \mathbb{Q}$. Ми хочемо, щоб $x_0 = [a_0; a_1, a_2, \dots]$. Визначимо числа a_0, a_1, \ldots таким чином:

$$a_k = [x_k],$$
 де $x_{k+1} = \frac{1}{x_k - a_k}$.

 $\operatorname{3a}$ MI можна довести, що кожний $x_k \not\in \mathbb{Q}$. A отже,

$$0 < x_k - a_k = x_k - [x_k] < 1.$$

$$0 < x_k - a_k = x_k - [x_k] < 1.$$
 Тобто $x_{k+1} = \frac{1}{x_k - a_k} > 1$, а звідси $a_{k+1} = [x_{k+1}] \geq 1.$

Тобто a_0, a_1, a_2, \ldots всі додатні, окрім, можливо, a_0 .

Із рівності $x_{k+1} = \frac{1}{x_k - a_k}$ випливає, що $x_k = a_k + \frac{1}{x_{k+1}}$, а тому

$$x_0 = a_0 + \frac{1}{x_1} = a_0 + \frac{1}{a_1 + \frac{1}{x_2}} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{x_3}}} = \dots = \frac{x_{k+1}}{a_1 + \frac{1}{x_2}}$$

$$= [a_0; a_1, a_2, \dots, a_n, x_{n+1}]$$

Це виконано $\forall n \geq 1$.

Зафіксуємо n. Перші n+1 числа C_k із ланцюгового дробу $[a_0;a_1,a_2,\dots]$

такі самі за значенням як з дробу
$$[a_0; a_1, a_2, \dots, a_n, x_{n+1}] \stackrel{\text{позн.}}{=} C'_{n+1}.$$

$$x_0 = C'_{n+1} = [a_0; a_1, a_2, \dots, a_n, x_{n+1}] = \frac{x_{n+1}p_n + p_{n-1}}{x_{n+1}q_n + q_{n-1}}.$$

Таким чином, отримаємо

$$x_0 - C_n = \frac{x_{n+1}p_n + p_{n-1}}{x_{n+1}q_n + q_{n-1}} - \frac{p_n}{q_n} = \frac{(-1)(p_nq_{n-1} - q_np_{n-1})}{(x_{n+1}q_n + q_{n-1})q_n} = \frac{(-1)^n}{(x_{n+1}q_n + q_{n-1})q_n}.$$
Враховуючи нерівність $x_{n+1} > a_{n+1}$, отримаємо:

Бражовую ім перівінеть
$$x_{n+1} > a_{n+1}$$
, отріміаемо. $|x_0 - C_n| = \frac{1}{(x_{n+1}q_n + q_{n-1})q_n} < \frac{1}{(a_{n+1}q_n + q_{n-1})q_n} = \frac{1}{q_{n+1}q_n}.$ Знову q_n строго зростає, а тому існує $\lim_{n \to \infty} C_n = [a_0; a_1, a_2, \dots] = x_0.$

Corollary 8.3.11
$$|x_0 - C_n| < \frac{1}{a_{n+1}a_n} < \frac{1}{a^2}$$
.

Example 8.3.12 Розпишемо число $x = \sqrt{23}$ як нескінченний ланцюговий дріб за алгоритмом вище.

$$x_0 = \sqrt{23} = 4 + (\sqrt{23} - 4)$$

$$a_0 = 4$$

$$x_1 = \frac{1}{x_0 - [x_0]} = \frac{1}{\sqrt{23} - 4} = 1 + \frac{\sqrt{23} - 3}{7}$$

$$a_1 = 1$$

$$x_2 = \frac{1}{x_1 - [x_1]} = \frac{7}{\sqrt{23} - 3} = 3 + \frac{\sqrt{23} - 3}{2}$$

$$a_2 = 3$$

$$x_3 = \frac{1}{x_2 - [x_2]} = \frac{2}{\sqrt{23} - 3} = 1 + \frac{\sqrt{23} - 4}{7}$$

$$a_3 = 1$$

$$x_4 = \frac{1}{x_3 - [x_3]} = \frac{7}{\sqrt{23} - 4} = 8 + (\sqrt{23} - 4)$$

$$a_4 = 8$$

А далі зазначимо, що $x_5=x_1, x_6=x_2$ тощо, тобто ланцюговий дріб буде періодичним, а тому

$$\sqrt{23} = [4; \overline{1, 3, 1, 8}].$$

Remark 8.3.13 Можна показати, що

 $x \notin \mathbb{Q}$ має періодичний ланцюговий дріб $\iff x$ має формат числа $r+s\sqrt{d}$, де $r,s\in \mathbb{Q}$ та $s\neq 0$, а також d - не квадрат числа.

Example 8.3.14 Ще кілька прикладів:

 $\pi=[3;7,15,1,292,\dots]$ - тут взагалі певного патерну нема; $e=[2;1,2,1,1,4,1,1,6,1,1,8,\dots]$ - нециклічний, але є патерн.

Lemma 8.3.15 Задано $C_n = \frac{p_n}{q_n}$, що взято від розкладу в ланцюговий дріб числа $x \notin \mathbb{Q}$. Задані також $a, b \in \mathbb{Z}$, де $1 \le b < q_{n+1}$. Тоді $|q_n x - p_n| \le |bx - a|$.

Proof.

Розглянемо таку систему рівнянь:

$$\begin{cases} p_n \alpha + p_{n+1} \beta = a \\ q_n \alpha + q_{n+1} \beta = b \end{cases}$$

Зауважимо, що $\Delta = p_n q_{n+1} - q_n p_{n+1} = (-1)^{n+1}$ - визначник коефіцієнтів. Тоді за методом Крамера, отримаємо цілий розв'язок

$$\alpha = (-1)^{n+1}(aq_{n+1} - bp_{n+1})$$
 $\beta = (-1)^{n+1}(bp_n - aq_n).$

Зауважимо, що $\alpha \neq 0$. Інакше було б $aq_{n+1} = bp_{n+1}$, але оскільки $\gcd(p_{n+1},q_{n+1})=1$, то звідси $q_{n+1}\mid b \implies b \geq q_{n+1}$, що суперечить.

При $\beta=0$ нерівність в лемі виконується. Дійсно, маємо із системи рівнянь $a=p_n\alpha,b=q_n\alpha$, тоді

$$|bx - a| = |\alpha||q_n x - p_n| \ge |q_n x - p_n|.$$

Далі припускаємо, що $\beta \neq 0$. Покажемо, що α, β мають різні знаки.

При $\beta < 0$ рівняння $q_n \alpha = b - q_{n+1} \beta$ показує, що $q_n \alpha > 0 \implies \alpha > 0$.

При $\beta > 0$ маємо $b < q_{n+1} < \beta q_{n+1} \implies q_n \alpha = b - q_{n+1} \beta < 0 \implies \alpha < 0$. Звідси випливає, що $q_n x - p_n$ та $q_{n+1} x - p_{n+1}$ матимуть протилежні знаки. Тому що число x зажато між C_n та C_{n+1} . Раз так, то тоді числа $\alpha(q_n x - p_n)$ та $\beta(q_{n+1} x - p_{n+1})$ матимуть один знак. Це буде суттєво в рівності $\stackrel{(*)}{=}$ Отже,

$$|bx - a| = |(q_n\alpha + q_{n+1}\beta)x - (p_n\alpha + p_{n+1}\beta)| =$$

$$= |\alpha(q_nx - p_n) + \beta(q_{n+1}x - p_{n+1})| \stackrel{(*)}{=} |\alpha||q_nx - p_n| + |\beta||q_{n+1}x - p_{n+1}| >$$

$$> |\alpha||q_nx - p_n| \ge |q_nx - p_n|.$$

Theorem 8.3.16 Нехай $1 \leq b \leq q_n$, де $b \in \mathbb{N}$. Тоді для $\frac{a}{b} \in \mathbb{Q}$ маємо

$$\left| x - \frac{p_n}{q_n} \right| \le \left| x - \frac{a}{b} \right|.$$

!Припустимо, що $\left|x - \frac{p_n}{q_n}\right| > \left|x - \frac{a}{b}\right|$. Тоді $|q_n x - p_n| = q_n \left|x - \frac{p_n}{q_n}\right| > b \left|x - \frac{a}{b}\right| = |bx - a|$.

Але ця нерівність виконується навпаки за лемою. Суперечність!

По суті кажучи, дана теорема дозволяє апроксимувати ірраціональне число x до деякої точності числами C_n . При цьому кожне інше раціональне число таким же чи меншим знаменником від C_n має меншу точність.

Example 8.3.17 Зокрема зауважимо, що $\left| \pi - \frac{22}{7} \right| \approx 0.0012645$, де дріб $\frac{22}{7}$ - це число C_1 для числа π . Саме тому число π раніше заміняли часто на $\frac{22}{7}$, просто тому що будь-яке інше раціональне число з меншим або тим самим знаменником дає меншу точність.

Theorem 8.3.18 Задано $x \notin \mathbb{Q}$ та нескоротимий дріб $\frac{a}{b} \in \mathbb{Q}$ такий, що задовольняє $\left| x - \frac{a}{b} \right| < \frac{1}{2b^2}$, тоді звідси $\frac{a}{b} = C_n$ для деякого $n \ge 0$.

Proof.

!Припустимо, що $\frac{a}{b} \neq C_n$ взагалі. Знаючи, що $\{q_k, k \geq 1\}$ зростає, існує єдиний $n \in \mathbb{N}$, для якого $q_n \leq b < q_{n+1}$. Тоді за лемою,

$$|q_n x - p_n| \le |bx - a| = b \left| x - \frac{a}{b} \right| < \frac{1}{2b} \implies \left| x - \frac{p_n}{q_n} \right| < \frac{1}{2bq_n}.$$

За припущенням, $bp_n - aq_n \neq 0$, тобто $1 \leq |bp_n - aq_n|$. Звідси випливає, що

$$\frac{1}{bq_n} \le \left| \frac{bp_n - aq_n}{bq_n} \right| = \left| \frac{p_n}{q_n} - \frac{a}{b} \right| \le \left| \frac{p_n}{q_n} - x \right| + \left| x - \frac{a}{b} \right| < \frac{1}{2bq_n} + \frac{1}{2b^2}.$$
 Тобто звідси маємо $b < q_n$, суперечність!

8.4 Рівняння Пелля

Розглянемо рівняння такого вигляду:

$$x^2 - dy^2 = 1,$$

де $x,y\in\mathbb{Z}$ - невідомі; d - додатне число, що не є точним квадратом. Мета: знайти розв'язок в цілих числах.

Обґрунтую для початку обмеження на d. Але спочатку, який б ми $d \in \mathbb{Z}$

не обрали, завжди існує розв'язок (1,0), (-1,0).

При d < -1 маємо $x^2 - dy^2 \ge 1$, окрім випадку (0,0). Інших нема.

При d=-1 маємо рівняння $x^2+y^2=1$, звідти будуть розв'язки (0,1),(0,-1).

При $d=n^2$ для деякого $n\in\mathbb{N}$ буде рівняння $x^2-n^2y^2=1\Longrightarrow (x-ny)(x+ny)=1.$ Рівність можлива тоді й тільки тоді, коли $x+ny=x-ny=\pm 1.$ Звідси випливає, що $x=\frac{(x+ny)+(x-ny)}{2}=\pm 1.$ Тобто інших нових розв'язків не буде.

Залишається випадок $d \neq n^2$ для кожного $n \in \mathbb{N}$.

Зауважимо, що якщо знайшли розв'язок (x,y) при x>0,y>0, то тоді розв'язками також будуть $(\pm x,\pm y)$. Тож надалі шукаємо лише додатні розв'язки.

Theorem 8.4.1 Нехай p,q є додатними розв'язками $x^2 - dy^2 = 1$. Тоді $\frac{p}{q} = C_n$, де C_n - частина нескінченного ланцюгового дробу, який має розклад числа \sqrt{d} .

Proof.

Ми маємо $p^2 - dq^2 = 1$, звідси випливає, що $p > q\sqrt{d}$. Також із першого рівняння отримаємо

$$(p - q\sqrt{d})(p + q\sqrt{d}) = 1 \implies \frac{p}{q} - \sqrt{d} = \frac{1}{q(p + q\sqrt{d})}.$$

Значить,

$$0 < \frac{p}{q} - \sqrt{d} = \frac{1}{q(p + q\sqrt{d})} < \frac{\sqrt{d}}{q(q\sqrt{d} + q\sqrt{d})} = \frac{\sqrt{d}}{2q^2\sqrt{d}} = \frac{1}{2q^2}.$$

Отже, за **Th. 8.3.18**, отримаємо, що $\frac{p}{q} = C_n$ для деякого $n \in \mathbb{N}$.

Remark 8.4.2 Зворотне твердження загалом невірне. Тобто не всі C_n від \sqrt{d} дають розв'язок рівняння Пелля.

Theorem 8.4.3 Нехай $\frac{p}{q} = C_n$, де C_n - частина нескінченного ланцюгового дробу, який має розклад числа \sqrt{d} . Тоді x=p,y=q будуть розв'язками $x^2-dy^2=k$, де $|k|<1+2\sqrt{d}$.

Proof.

Оскільки
$$\frac{p}{q}=C_n$$
 для числа \sqrt{d} , то звідси, за ${\bf Crl.~8.3.11}, \left|\sqrt{d}-\frac{p}{q}\right|<\frac{1}{q^2},$ тобто $|p-q\sqrt{d}|<\frac{1}{q}.$ Також

$$\left|p+q\sqrt{d}\right|=\left|(p-q\sqrt{d})+2q\sqrt{d}\right|<rac{1}{q}+2q\sqrt{d}<\left(1+2\sqrt{d}\right)q.$$
 Маючи це, отримаємо:

$$|k| = |p^2 - dq^2| = \left| p - q\sqrt{d} \right| \left| p + q\sqrt{d} \right| < \frac{1}{q} \left(1 + 2\sqrt{d} \right) q = 1 + 2\sqrt{d}.$$

Example 8.4.4 Випадок d=7. Можемо розкласти $\sqrt{7}=[2;\overline{1,1,1,4}],$ також маємо $C_0 = \frac{2}{1}, C_1 = \frac{3}{1}, C_2 = \frac{5}{2}, C_3 = \frac{8}{3}, \dots$

Обчислюючи $p_n^2 - 7q_n^2$, проходячи по C_n , отримаємо, що при C_3 маємо $8^2 - 7 \cdot 3^2 = 1$. Тобто x = 8, y = 3 дає додатний розв'ящок рівняння Пелля $x^2 = 7y^2 = 1$.

Theorem 8.4.5 Якщо d не є квадратом, то $\sqrt{d} = [a_0; \overline{a_1, a_2, \dots, a_n}]$, причому $a_0 = \left| \sqrt{d} \right|$ та $a_n = 2a_0$. Без доведення.

Example 8.4.6 Зокрема $\sqrt{94} = [9; \overline{1,2,3,1,1,5,1,8,1,5,1,1,3,2,1,18}].$ Цей корінь має найдовший період серед чисел \sqrt{d} при d < 100.

Період розкладу \sqrt{d} надає інформацію, яка потрібна для того, щоб знайти розв'язок $x^2 - dy^2 = 1$. Насправді, кількість розв'язків нескінченна, всі вони здобуваються через C_n для \sqrt{d} .

Lemma 8.4.7 Нехай $\frac{p_k}{q_k} = C_k$ від числа \sqrt{d} . Якщо n - це довжина періоду розкладу \sqrt{d} , тоді $p_{kn-1}^2 - dq_{kn-1}^2 = (-1)^{kn}, k \in \mathbb{N}.$

Proof.

Ланцюговий дріб \sqrt{d} можна записати в вигляді

 $\sqrt{d} = [a_0; a_1, a_2, \dots, a_{kn-1}, x_{kn}],$ де $x_{kn} = [2a_0; \overline{a_1, \dots, a_{n-1}, 2a_0}] = a_0 + \sqrt{d}.$ Можна отримати, як було в доведенні Тh. 8.2.11 (?) що

$$\sqrt{d} = rac{x_{kn}p_{kn-1} + p_{kn-2}}{x_{kn}q_{kn-1} + q_{kn-2}}.$$
 Підставимо x_{kn} та спростимо вираз - отримаємо:

$$\sqrt{d(a_0q_{kn-1} + q_{kn-2} - p_{kn-1})} = a_0p_{kn-1} + p_{kn-2} - dq_{kn-1}.$$

Права частина раціональне, а ліва ірраціональна, тоді для рівності вимагаємо $a_0q_{kn-1}+q_{kn-2}=p_{kn-1}$ та $a_0p_{kn-1}+p_{kn-2}=dq_{kn-1}$.

Перше рівняння помножимо на p_{kn-1} та друге на $-q_{kn-1}$, а потім їх додамо - отримаємо:

$$p_{kn-1}^2 - dq_{kn-1}^2 = p_{kn-1}q_{kn-2} - q_{kn-1}p_{kn-2} \stackrel{\mathbf{Th. 8.2.12}}{=} (-1)^{kn-2} = (-1)^{kn}. \quad \blacksquare$$

Theorem 8.4.8 Нехай $\frac{p_k}{c\iota}=C_k$ від числа \sqrt{d} та n - довжина періоду розкладу \sqrt{d} .

- 1. Якщо n парне, тоді всі додатні розв'язки рівняння $x^2 dy^2 = 1$ записуються як $x = p_{kn-1}, y = q_{kn-1}$.
- 2. Якщо n непарне, тоді всі додатні розв'язки рівняння $x^2-dy^2=1$ записуються як $x=p_{2kn-1},y=q_{2kn-1}.$

Всюди $k \in \mathbb{N}$.

Proof.

Отже, якщо (x_0, y_0) розв'язок $x^2 - dy^2 = 1$, тоді $x_0 = p_k, y_0 = q_k$ для деякого C_k . Маючи при собі лему, $x = p_{kn-1}, y = q_{kn-1}$ буде розв'язком $\iff (-1)^{kn} = 1$.

Example 8.4.9 Уже розв'язували рівняння $x^2 - 7y^2 = 1$, але тепер можна знайти кілька розв'язків. У силу того, що $\sqrt{7} = [2; \overline{1, 1, 1, 4}]$, маємо перші 12 шматочків ланцюгового дробу C_k , як-от:

 $\frac{2}{3}$ $\frac{3}{5}$ $\frac{5}{8}$ $\frac{8}{37}$ $\frac{45}{45}$ $\frac{82}{82}$ $\frac{127}{590}$ $\frac{590}{717}$ $\frac{717}{1307}$ $\frac{1307}{2024}$

 $\overline{1}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{14}$, $\overline{17}$, $\overline{31}$, $\overline{48}$, $\overline{223}$, $\overline{271}$, $\overline{494}$, $\overline{765}$

Число $\sqrt{7}$ має період довжини 4, тоді p_{4k-1}, q_{4k-1} мають формувати розв'язок рівняння Пелля. Наприклад, $\frac{p_3}{q_3} = \frac{8}{3}, \frac{p_7}{q_7} = \frac{127}{48}, \frac{p_{11}}{q_{11}} = \frac{2024}{765}$, а тому звідти отримаємо розв'язки (8,3), (127,48), (2024,765). Тощо.

Definition 8.4.10 Фундаментальним розв'язком рівняння Пелля $x^2 - dy^2 = 1$ називають найменший додатний розв'язок (x_0, y_0) .

Remark 8.4.11 За доведеною теоремою, отримаємо фундаментальні розв'язки:

 $x = p_{n-1}, y = q_{n-1}$ при n парне;

 $x = p_{2n-1}, y = q_{2n-1}$ при n непарне.

Значить, рівняння $x^2 - dy^2 = 1$ можна розв'язати за n або 2n кроків.

Remark 8.4.12 Шукати фундаментальні розв'язки не завжди легко. Зокрема рівняння $x^2 - 991y^2 = 1$ має відносно мале число d = 991, але фундаментальний розв'язок такий:

x = 379516400906811930638014896080

 $y = 12\,055\,735\,790\,331\,359\,447\,442\,538\,767.$

Remark 8.4.13 Може навіть таке статися, що, змінивши d на чуток, фундаментальний розв'язок може бути божевільним.

 $x^2 - 60y^2 = 1$ адекватне, x = 31, y = 4.

 $x^2 - 61y^2 = 1$ неадекватне, x = 17663319049, y = 226153980.

 $x^2 - 62y^2 = 1$ адекватне, x = 63, y = 8.

Хоча у числа \sqrt{d} , де $d \in \{60, 61, 62\}$, період не дуже великий, але таке теж буває.

Theorem 8.4.14 Нехай (x_1, y_1) - фундаментальний розв'язок $x^2 - dy^2 = 1$. Якщо $(x_n.y_n)$ задається за умовою $x_n + y_n \sqrt{d} = \left(x_1 + y_1 \sqrt{d}\right)^n$, то тоді (x_n, y_n) також додатний розв'язок.

Proof.

Зауважимо, що
$$x_n-y_n\sqrt{d}=\left(x_1-y_1\sqrt{d}\right)^n$$
. Тоді $x_n^2-dy_n^2=\left(x_n+y_n\sqrt{d}\right)\left(x_n-y_n\sqrt{d}\right)=\left(x_1+y_1\sqrt{d}\right)^n\left(x_1-y_1\sqrt{d}\right)^n=(x_1^2-dy_1^2)^n=1.$ Отже, (x_n,y_n) - розв'язок. Чому додатний, тут ясно.

Theorem 8.4.15 Нехай (x_1, y_1) - фундаментальний розв'язок $x^2 - dy^2 = 1$. Якщо $(x_n.y_n)$ додатний розв'язок, то вони визначаються за умовою $x_n + y_n \sqrt{d} = \left(x_1 + y_1 \sqrt{d}\right)^n$.

Proof.

!Припустимо, що (u,v) додатний розв'язок, що не задовольняє формулі. Оскільки $x_1+y_1\sqrt{d}>1$, тоді $\left(x_1+y_1\sqrt{d}\right)^n$ зростає постійно, тобто це означає (також в силу припущення), що

$$\left(x_1 + y_1\sqrt{d}\right)^n < u + v\sqrt{d} < \left(x_1 + y_1\sqrt{d}\right)^{n+1}.$$

$$x_n + y_n\sqrt{d} < u + v\sqrt{d} < \left(x_n + y_n\sqrt{d}\right)\left(x_1 + y_1\sqrt{d}\right).$$

Помножимо на $x_n - y_n \sqrt{d}$, що є додатним.

$$1 < \left(x_n - y_n\sqrt{d}\right)^n \left(u + v\sqrt{d}\right) < x_1 + y_1\sqrt{d}.$$

Визначимо числа r, s через рівняння $r + s\sqrt{d} = \left(x_n - y_n\sqrt{d}\right)\left(u + v\sqrt{d}\right)$.

Тобто це означає, що $r = x_n u - y_n v d$ та $s = x_n v - y_n u$. Як наслідок, $x^2 - ds^2 - (x^2 - ds^2)(u^2 - ds^2) - 1$

$$r^2 - ds^2 = (x_n^2 - dy_n^2)(u^2 - dv^2) = 1.$$
 Отже, (r,s) - розв'язок $x^2 - dy^2 = 1$, причому $1 < r + s\sqrt{d} < x_1 + y_1\sqrt{d}$.

Оскільки $1 < r + s\sqrt{d}$, тоді $0 < r - s\sqrt{d} < 1$, тому

$$2r = \left(r + s\sqrt{d}\right) + \left(r - s\sqrt{d}\right) > 1 + 0 > 0$$
$$s\sqrt{d} = \left(r + s\sqrt{d}\right) - \left(r - s\sqrt{d}\right) > 1 - 1 = 0.$$

Тобто (r,s) - додатний розв'язок. Але оскільки (x_1,y_1) фундаментальний розв'язок, то тоді $x_1 < r, y_1 < s \implies x_1 + y_1 \sqrt{d} < r + s \sqrt{d}$. Суперечність!

Відкриті задачі теорії чисел

Станом на 2 березня 2024 р.маємо такі відкриті задачі:

- 1. Гіпотеза Гольдбаха. Будь-яке парне число $n \ge 4$ записується як сума двох простих чисел.
- 2. Уже відомо, що якщо $\sigma(n) = 2n + 1$, то тоді n непарне та є квадратом деякого числа. Але невідомо, яке конкретне число n можна підібрати (бо рапотом їх нема).
- 3. Кількість чисел-близнюків нескінченна. Числа-близнюки пара простих чисел (p, p+2).
- 4. Існує арифметична прогресія простих чисел довільної довжини.
- 5. Чи кількість досконалих чисел нескінченна?
- 6. Чи кількість простих чисел Ферма нескінченна?