Generalized Linear Models (GLM)

•••

PLSC 309 8 April 2019

Review: statistical modelling

Review: Ordinary Least Squares

- Find the line (i.e slope and intercept) that minimizes the squared differences $(\hat{Y}-Y)$
- Ŷ-Y are known as errors or residuals

Review: MLE

In order to do MLE, we have to follow the following steps

- 1. Determine the probability distribution we think f(x) follows
- 2. Write down the probability distribution as a likelihood
- 3. Find the values of your parameters that maximizes the likelihood
- 4. Using the function you just produced, calculate the parameters with your data

Preview

- Provide an overview of the GLM framework
- Discuss distributions of Y
- The GLM equation and its parts
- Linear, Binomial, and Poisson GLM

Preview

Monday: GLM overview

Wednesday: Logistic regression deep-dive

Friday: Diagnostics for GLMs

PS 13 due Monday (April 15)

30,000 ft. view

Generalized Linear Models (GLM) allow us to measure all type of conditional probabilities of the type P(Y|X), but with all the good properties of OLS

How GLMs work

- 1. Determine distribution of outcome
- 2. Select an appropriate probability distribution that looks like the distribution of your outcome
- 3. Transform that probability distribution into a linear model

How GLMs work

There are two parts to the term Generalized Linear Model:

- *Generalized*: this refers to the fact that we can measure any type of relationship, not just straight lines
- *Linear Model*: we can transform that non-linear relationship to one expressed with linear parameters (β , α)

What we like about OLS (interpretability)

- Additivity is a major assumption of OLS
- While it makes it difficult to apply our results to the real-world, it makes those results very easy to read
- Each variable has its own β parameter, allowing us to directly interpret the effect of each variable

What we like about OLS (interpretability)

	Public posting about politics		
	β	SE	
age	02	.01	
gender	.11	.03	
ethnicity	13*	.03	
political interest	.45**	.01	
political efficacy	.04	.01	
F , Adj. R^2	F(5,225) = 15.32, .24**		

OLS is interpretable due to additivity

- Additivity allows us to solve for each variable's coefficient separately
- This is a unique product of linear relationships
- Other types of relationships, e.g. Poisson or Exponential, cannot separate out the different effects of each X variable

MLE to the rescue!

MLE gave us a way to estimate P(Y|X) for any distribution. We got this added power with two additional assumptions:

- 1. That P(Y|X) follows a certain distribution
- 2. That Y, conditional on X, is independent

Distribution of Y

- MLE gives us a way to estimate P(Y|X)
- If Y is independent, conditional on X, to assume a distribution, we just need to look at Y
- Since we assume independence, we will just look at the distribution of Y to figure out the distribution we need to solve MLE for

Distribution of Y (email wait times)

Distribution of Y (count data)

Distribution of Y (income)

Distribution of Y (binary variable)

From general to linear model

- We have finished the first step of the GLM, detecting what type of probability distribution we want to estimate
- So how can we put this in a linear form?

How do we get a non-linear model in this form?

Anatomy of the GLM

GLM equation:

$$\eta = \alpha + \beta_1 X_1 \dots + \beta_k X_k$$

With two additional pieces:

- Link function: $g(\mu)$
- Variance function: $V(\mu)$

So how is this different from OLS?

- The main GLM equation is equivalent to OLS with identical parameters
- What's different is the link function and variance function
 - These transform non-linear models into linear ones
 - They take a non-linear conditional probability and adjust it so it can be estimate in an additive way
- Link function address E(Y|X)
 - Aka the mean
- Variance addresses V(Y|X)

Linear GLM

GLM equation:

$$\eta = \alpha + \beta_1 X_1 \dots + \beta_k X_k$$

With two additional pieces:

- Link function: $g(\mu) = \mu$
- Variance function: $V(\mu) = 1$
- For a linear GLM, the link function is the same as the mean, and the variance function is simply 1. Nothing needs to be changed!

Binomial GLM

GLM equation:

$$\eta = \alpha + \beta_1 X_1 \dots + \beta_k X_k$$

With two additional pieces:

- Link function: $g(\mu) = logit(\mu)$
- Variance function: $V(\mu) = \mu(1-\mu)$

Logit link

- The output of a binomial is limited from (0, 1), whereas linear regression is (-inf, inf)
- The link function transforms our conditional probability from a (0, 1) space to a (-inf, inf)

Logit link

Logit link

Binomial GLM

GLM equation:

$$\eta = \alpha + \beta_1 X_1 \dots + \beta_k X_k$$

With two additional pieces:

- Link function: $g(\mu) = \log(\mu/1-\mu)$
- Variance function: $V(\mu) = \mu(1-\mu)$

Binomial GLM (example)

	Model					
	[1] Ciel War	Three War	(S) Civil War	(Flue Empires)	Civil War (CON)	
Prior war	-0.954*	-0.849*	-6.816"	- D. BEST 1	0.881	
Per capita income**	(0.314) -0.364*** (0.872)	(0.308) -0.379** (0.100)	(0.312) -0.318** (0.271)	(0.264) -0.306 (0.263)	(0.274)	
ing/population/**	0.203	0.389	0.272	0.267	0.223*	
ing/% mountainous)	0.219**	0.199	E 1997 (0.095)	0.190° (0.092)	0.418**	
Nonconfiguous state	0.440 (0.274)	0.401	E.406 (0.272)	0.7997	-0.171 (0.328)	
Oil exporter	0.858**	0.509	0.751**	0.540	1.009	
New poste	90.2790 1.709** 90.3390	(0.352) 1.777~ (0.415)	(6.276) 1.550*** (6.342)	(0.262) 1.509 (0.302)	(0.297) 1.547** (0.412)	
material from	0.515**	0.385	1.515	0.546	0.564	
Demovacy ^m	(0.017)	(0.000)				
lithnic tractionalization	D.166 (D.373)	(0.586)	(0.368)	0.490	-0.119 (0.306)	
Religious fractionalization	D 285 (D 50%)	1,500F (0,7240	1.326 (1.306)	2000	1,178*	
Angoracy*		,0	(0.237)		D.5907 (D.2600)	
Democracy**			(0.364)		0.218	
Constant	-6.734*** (6.796)	(1.082)	(2.751)	(0.061)	(0.854)	
N	6007	5186	6027	6360	5379	

^{*}Lagged one year.
* in 1000's.

^{*}Pulls IV: varies from -10 to 10.

⁻ Processoon

Poisson GLM

GLM equation:

$$\eta = \alpha + \beta_1 X_1 \dots + \beta_k X_k$$

With two additional pieces:

- Link function: $g(\mu) = \log(\mu)$
- Variance function: $V(\mu) = \mu$

Log link function

Poisson GLM (example)

Variable	Parameter Estimate	Standard Error	t Ratio	Significance Level
Structured versus Fair Sentencing	.2413	.0326	7.40	<.0001
Prior jail and infractions versus no prior jail	.5501	.0403	13.65	<.0001
Prior jail and no infractions versus no prior jail	.0413	.0341	1.21	<.2259
Prisoner age	0831	.0022	-37.77	<.0001

GLM permutations

Distribution	Support of distribution	Typical uses	Link name	Link function, $\mathbf{X}oldsymbol{eta}=g(\mu)$	Mean function		
Normal	real: $(-\infty, +\infty)$	Linear-response data	Identity	$\mathbf{X}oldsymbol{eta}=\mu$	$\mu = \mathbf{X}oldsymbol{eta}$		
Exponential	real: $(0,+\infty)$	Exponential-response data, scale	Negative	$\mathbf{X}oldsymbol{eta} = -\mu^{-1}$	$\mu = -(\mathbf{X}oldsymbol{eta})^{-1}$		
Gamma	real. $(0, +\infty)$	parameters	inverse				
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X}oldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$		
Poisson	integer: $0,1,2,\ldots$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}oldsymbol{eta} = \ln(\mu)$	$\mu = \exp(\mathbf{X}oldsymbol{eta})$		
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence	Logit				
Binomial	integer: $0,1,\ldots,N$	count of # of "yes" occurrences out of N yes/no occurrences					
Categorical	integer: $[0,K)$	outcome of single K-way occurrence		$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$	$\exp(\mathbf{X}\boldsymbol{\beta})$ 1		
	$\label{eq:K-vector} \mbox{K-vector of integer: } [0,1], \mbox{ where} \\ \mbox{exactly one element in the vector} \\ \mbox{has the value 1}$				$\mu = rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})} = rac{1}{1+\exp(-\mathbf{X}oldsymbol{eta})}$		
Multinomial	K-vector of integer: $\left[0,N ight]$	count of occurrences of different types (1 <i>K</i>) out of <i>N</i> total <i>K</i> -way occurrences					

GLM parts

We have seen that a GLM allows us to use a linear framework for non-linear relationships. There are three additional components:

- 1. Assume a probability distribution (sometimes called the random family)
- 2. Adjust conditional means (link function) to linear
- Adjust variance to linear (variance function)

Review

- Generalized linear model allows us to use our convenient linear regression framework for non-linear relationships
- Use link functions and variance functions to alter our original distribution to one that behaves linearly
- Use MLE to estimate new parameters