COMP 6651: Solutions to Assignment 9

Fall 2020

Submission through Moodle is due by November 22nd at 23:55

- 1. (a) $Alex \mathcal{NP}$ is the class of all languages. Consider the verifier A(x,y) : return 1, i.e., it ignores its inputs and always returns 1 (yes). Consider an arbitrary language L. We claim that it satisfies the definition of Alex with d=1 and verifier A (independent of language L), since $\forall x \in L$ there exists $y = \epsilon$ (empty string) with $|y| = 0 \le |x|^1$ such that A(x,y) = 1.
 - (b) $Joana \mathcal{NP}$ is the class of all languages. Consider the verifier A(x,y): $return\ 0$, i.e., it ignores its inputs and always returns 0 (no). Consider an arbitrary language L. We claim that it satisfies the definition of Joana with d=1 and verifier A (independent of language L), since $\forall x \notin L$ no matter which y is used with $|y| \leq |x|^1$ we have A(x,y) = 0.
 - (c) Steve $-\mathcal{NP}$ is the class of all languages. Consider the verifier A(x,y): return y_1 , i.e., it always returns y_1 (first bit of certificate y) and ignores other parts of the input. Consider an arbitrary language L. We claim that it satisfies the definition of Alex with d=0 and verifier A (independent of language L), since $\forall x \in L$ define y=1 if $x \in L$ and define y if $x \notin L$. Observe that certificate $|y|=1 \le |x|^0$ and $x \in L$ if and only if $A(x,y)=y_1=y=1$.
- 2. (a) Optimization version:

Input: G = (V, E) – simple undirected graph

Output: $k \in \mathbb{Z}$ – the size of a minimum vertex cover in G

Decision version (= MVC - DEC):

Input: G = (V, E) – simple undirected graph; $k \in \mathbb{Z}$

Output: yes, if there exists a vertex cover in G of size $\leq k$; no, otherwise.

Search version:

Input: G = (V, E) – simple undirected graph; $k \in \mathbb{Z}$

Output: $S' \subseteq V$ – a vertex cover in G of size $\leq k$ if it exists; "impossible", otherwise.

(b) Claim: $CLIQUE \leq_p MVC - DEC$.

Proof: Given an instance (G, k) to CLIQUE, the reduction outputs $(G^c, n - k)$, where G^c is the complement graph and n = |V(G)| is the number of vertices. This can clearly be computed in polynomial time. To show correctness we need to prove:

G has a clique of size at least k if and only if G^c has a vertex cover of size at most n-k.

If S is a clique of size at least k in G then S is an independent set in G^c and therefore every edge in G^c has one endpoint in V-S. Thus, V-S is a vertex cover in G^c of size $|V|-|S| \le n-k$. If S is a vertex cover of size at most n-k in G^c then V-S is an independent set in G^c . Thus, V = S is a clique in G. The size of V = S is $|V| = |S| \ge n - (n-k) = k$.

3. Recall that a simple undirected graph G = (V, E) is k-colorable if there exists a coloring $c : V \to \{1, 2, ..., k\}$ such that for every edge $\{u, v\} \in E$ we have $c(u) \neq c(v)$. Define $k - COL = \{\langle G \rangle : \{v\} \in E\}$

G is k-colorable}. Prove that $3 - COL \le_p 4 - COL$. Give a reduction and prove its correctness and that it runs in polynomial time.

Claim: $3 - COL \leq_p 4 - COL$.

Proof: Let G = (V, E) be a simple undirected graph (an instance of 3 - COL problem). The reduction outputs a graph G' = (V', E') such that

- $V' = V \cup \{s\}$, where s is a new vertex not appearing in V,
- $E' = E \cup \{\{s, v\} : v \in V\}.$

In words, G' is G plus an extra vertex that is connected by an edge to all other vertices. Clearly, G' can be computed in polynomial time. To show correctness, we need to prove that

G is 3-colorable if and only if G' is 4-colorable.

If G is 3-colorable, let $c: V \to \{1, 2, 3\}$ be a valid 3-coloring for G. Then define $c': V' \to \{1, 2, 3, 4\}$ as follows: c'(v) = c(v) for $v \in V$ and c(v') = 4, i.e., assign the extra vertex s a new color. It is evident that c' is a valid 4-coloring of G'.

If G' is 4-colorable, let $c': V' \to \{1, 2, 3, 4\}$ be a valid 4-coloring for G'. If $c'(s) \neq 4$ we can permute the colors so that s becomes colored with 4. Thus, we assume without loss of generality that c'(s) = 4. Then c' restricted to set V provides a valid 3-coloring of G.