$\underline{\mathbf{Maths}}$: Espaces vectoriels

Contents

0	Familles				
	0.1	Définition (famille)	3		
	0.2	Définition (famille à support fini)	3		
	0.3	Définition (sous-famille, sur-famille)	3		
1	Définitions				
	1.1	Définition (Espace vectoriel)	3		
	1.2	Propriétés	4		
	1.3	Définition (sous-espace vectoriel)	4		
	1.4	Propriétés	4		
	1.5	Caractérisation d'un sous-espace vectoriel	4		
2	Con	nbinaisons linéaires	5		
	2.1	Définition (combinaisons linéaires)	5		
	2.2	Définition (sous-espace vectoriel engendré par une partie)	5		
	2.3	Propriétés	5		
3	Familles libres, génératrices, bases				
	3.1	Familles génératrices	6		
		3.1.1 Définition (famille génératrice)	6		
		3.1.2 Propriétés	6		
	3.2	Familles libres, liées	6		
		3.2.1 Définition (famille libre, liée)	6		
		3.2.2 Propriétés	7		
	3.3	Bases	7		
		3.3.1 Définition ($Base$)	7		
		3.3.2 Propriétés	7		
4	Somme de sous-espaces vectoriels				
	4.1	Définition (somme finie de sous-espaces vectoriels)	8		
	4.2	Propriétés	8		
	4.3	Définition (somme directe)	9		
	4.4	Caractérisation d'une somme directe	9		
		4.4.1 Cas de deux vecteurs	9		
		4.4.2 Cas d'un nombre fini de vecteurs	9		
	4.5	Définition (sous-espaces $supplémentaires$)	10		
	4.6	Propriétés	10		

5	Esp	eaces vectoriels de dimension finie	10
	5.1	Définition (espace vectoriel de dimension finie)	10
	5.2	Lemme	11
	5.3	Théorème	11
	5.4	Définition (dimension d'un espace vectoriel)	11
	5.5	Propriétés	11
	5.6	Théorème de la base extraite	11
	5.7	Théorème de la base incomplète	11
	5.8	Corrolaire	12
	5.9	Propriété	12
6	Din	nension d'un sous-espace vectoriel en dimension finie	12
	6.1	Propriété	12
	6.2	Définition $(hyperplan)$	12
	6.3	Propriétés	12
	6.4	Définition (système d'équation dans une base)	13
7	Rar	ng d'une famille de vecteurs	13
	7.1	Définition $(rang)$	13
	7.2	Propriétés	13
8	Son	nme et produit de sous-espaces vectoriels en dimension finie	14
	8.1	Somme de deux sous-espaces vectoriels	14
		8.1.1 Propriétés	14
		8.1.2 Formule de Grassmann	15
		8.1.3 Caractérisation des sous-espaces vectoriels supplémentaires	15
		8.1.4 Cas d'un hyperplan	15
	8.2	Dimension des sommes et produits d'espaces vectoriels	15
		8.2.1 Dimension d'un produit	15
		8.2.2 Propriétés	15
		8.2.3 Dimension d'une somme directe	16
		8.2.4 Dimension d'une somme	16

Dans tout ce qui suit, K désigne un corps (par exemple \mathbb{R} ou \mathbb{C}), I, J des ensembles d'indexation (par exemple \mathbb{N}), et E désigne un K-espace vectoriel.

0 Familles

0.1 Définition (famille)

Soit X un ensemble.

Une famille d'éléments de X indexée par I est une application $x: I \longrightarrow X$, notée $(x_k)_{k \in I}$, où $\forall k \in I, x_k = x(k)$.

Cas particulier : si I = [1 ; n], avec $n \in \mathbb{N}$, la famille $(x_k)_{k \in [1 ; n]} \subset X$ est une suite, et est souvent confondue avec le n-uplet $(x_1, \ldots, x_n) \in X^n$.

0.2 Définition (famille à support fini)

Une famille $(x_k)_{k\in I}\subset X$ est dite à support fini si

$$\operatorname{card}\left\{x_k \in X \mid k \in I, \ x_k \neq 0\right\} < +\infty$$

i.e si au plus un nombre fini de \boldsymbol{x}_k sont non nuls.

0.3 Définition (sous-famille, sur-famille)

Soit $\mathcal{F} = (x_k)_{k \in I} \subset X$ une famille.

Une sous-famille de \mathcal{F} est une famille $(x_k)_{k\in J}\subset X$, avec $J\subset I$.

Une sur-famille de \mathcal{F} est une famille $(x_k)_{k\in J}\subset X$, avec $I\subset J$.

1 Définitions

1.1 Définition (Espace vectoriel)

Soit K un corps, (E, +) un groupe commutatif, et $\cdot : K \times E \longrightarrow E$ une application.

Un K-espace vectoriel est un triplet $(E, +, \cdot)$, avec $\forall (x, y) \in E^2, \ \forall (\lambda, \mu) \in K^2$:

- (1) $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$
- (2) $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$
- (3) $\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$
- $(4) \ 1 \cdot x = x$

Les éléments de K sont appelés les scalaires, et ceux de E les vecteurs.

1.2 Propriétés

Soit $(E, +, \cdot)$ un K-espace vectoriel.

Alors
$$\forall (\lambda, x) \in K \times E, \begin{vmatrix} 0 \cdot x = 0 \\ \lambda \cdot 0 = 0 \end{vmatrix}$$

$$\forall x \in E, \ (-1) \cdot x = -x$$

1.3 Définition (sous-espace vectoriel)

Soit $(E, +, \cdot)$ un K-espace vectoriel.

L'ensemble F est un sous-espace vectoriel de E si :

- (1) $F \in \mathcal{P}(E) \setminus \{\emptyset\}$
- (2) $\forall (\lambda, x) \in K \times F, \ \lambda x \in F$
- $(3) \ \forall (x,y) \in F^2, \ x+y \in F$

1.4 Propriétés

Soit $(E, +, \cdot)$ un K-espace vectoriel.

- Si F est un sous-espace vectoriel de E, alors $0 \in F$, et F est un K-espace vectoriel pour les lois induites.
- Soit $F \in \mathcal{P}(E) \setminus \{\emptyset\}$.

Alors F est un sous-espace vectoriel de $E \Leftrightarrow F$ est un sous-groupe de (E, +) tel que $\forall (\lambda, x) \in K \times F$, $\lambda \cdot x \in F$ (stable par multiplication par les scalaires).

• Soit $(F_k)_{k\in I}$ une famille de sous-espaces vectoriels de E. Alors

$$\bigcap_{k\in I} F_k$$

est un sous-espace vectoriel de E.

1.5 Caractérisation d'un sous-espace vectoriel

Soit $(E, +, \cdot)$ un K-espace vectoriel, et $F \in \mathcal{P}(E) \setminus \{\emptyset\}$.

Alors F est un sous-espace vectoriel de $E \Leftrightarrow$

$$\forall ((\lambda, \mu), (x, y)) \in K^2 \times F^2, \ \lambda x + \mu y \in F$$

2 Combinaisons linéaires

2.1 Définition (combinaisons linéaires)

Soit $(E, +, \cdot)$ un K-espace vectoriel, et $\mathcal{F} = (x_k)_{k \in I} \subset E$ une famille de E.

Les combinaisons linéaires de la famille \mathcal{F} sont les vecteurs de la forme :

$$\sum_{k \in I} \lambda_k x_k$$

où $(\lambda_k)_{k\in I}\subset K$ est une famille de scalaires à support fini.

On note l'ensemble des combinaisons linéaires :

$$\operatorname{vect}(x_k)_{k \in I} = \left\{ \sum_{k \in I} \lambda_k x_k \mid (\lambda_k)_{k \in I} \subset K \right\}$$

2.2 Définition (sous-espace vectoriel engendré par une partie)

Soit E un K-espace vectoriel, et $X \subset E$.

Alors le sous-espace vectoriel engendré par X est l'ensemble des combinaisons linéaires des vecteurs de X, noté $\operatorname{vect}(X)$.

2.3 Propriétés

Soit E un K-espace vectoriel, et $x \subset E$

 \bullet Soit F un sous-espace vectoriel de E.

Alors
$$F = \text{vect}(X) \Leftrightarrow \begin{cases} X \subset F \\ \forall G \supset X \text{ sous-espace vectoriel de } E, \ F \subset G \end{cases}$$

- $\forall (x_k)_{k \in I}, (y_k)_{k \in J} \subset E, (x_k)_{k \in I} \subset \text{vect}(y_k)_{k \in J} \Rightarrow \text{vect}(x_k)_{k \in I} \subset \text{vect}(y_k)_{k \in J}$
- Soit $(x_k)_{k\in I} \subset E$, et $i \in I$.

Alors $\forall (\lambda_k)_{k \in I} \subset K \mid \forall k \in I, \ \lambda_k \neq 0$:

$$\operatorname{vect}(x_k)_{k \in I} = \operatorname{vect}\left(x_i + \sum_{j \in I \setminus \{i\}} \lambda_j x_j, \ x_k\right)_{k \in I \setminus \{i\}}$$

 $i.e \operatorname{vect}(x_k)_{k \in I}$ ne change pas si à l'un des vecteurs on rajoute une combinaison linéaire des autres, et :

$$\operatorname{vect}(x_k)_{k \in I} = \operatorname{vect}(\lambda_k x_k)_{k \in I}$$

3 Familles libres, génératrices, bases

3.1 Familles génératrices

3.1.1 Définition (famille génératrice)

Soit E un K-espace vectoriel.

Un sous-espace vectoriel A de E est engendré par une famille $(x_k)_{k\in I}\subset A$ si

$$A = \text{vect}(x_k)_{k \in I}$$

ou encore si

$$\forall x \in A, \ \exists (\lambda_k)_{k \in I} \subset K \mid x = \sum_{k \in I} \lambda_k x_k$$

La famille $(x_k)_{k\in I}$ est alors une famille génératrice de A.

3.1.2 Propriétés

Soit E un K-espace vectoriel.

- Une sur-famille d'une famille génératrice de E est une famille génératrice de E.
- Soit $(x_k)_{k\in I}\subset E$ une famille génératrice de E. Alors une famille $(y_k)_{k\in J}\subset E$ est génératrice de E si, et seulement si :

$$\forall k \in I, x_k \in \text{vect}(y_k)_{k \in J}$$

Autrement dit, si \mathcal{F} est une famille génératrice de E, alors une famille \mathcal{G} est génératrice de E si, et seulement si :

$$\mathcal{F} \subset \text{vect}(\mathcal{G})$$

• Soit $\mathcal{F} = (x_k)_{k \in I} \subset E$ une famille génératrice de E, et $(x_k)_{k \in J} \subset E$ une sous-famille de \mathcal{F} , telle que

$$\forall k \in J, \ x_k \in \text{vect}(x_k)_{k \in I \setminus J}$$

Alors $(x_k)_{k \in I \setminus J}$ est une famille génératrice de E

3.2 Familles libres, liées

3.2.1 Définition (famille libre, liée)

Une famille finie $(x_k)_{k\in I}\subset E$ est libre, ou indépendante linéairement si

$$\forall (\lambda_k)_{k \in I} \subset K, \ \sum_{k \in I} \lambda_k x_k = 0 \ \Rightarrow \ \forall k \in I, \ \lambda_k = 0$$

Dans le cas contraire, i.e si

$$\exists (\lambda_k)_{k \in I} \subset K \left| \begin{array}{c} \exists i \in I \mid \lambda_i \neq 0 \\ \sum_{k \in I} \lambda_k x_k = 0 \end{array} \right|$$

alors elle est liée.

Une famille infinie de E est libre si toute ses sous-familles finies sont libres. Elle est liée si elle admet une sous-famille finie liée.

3.2.2 Propriétés

- Une famille $(P_k)_{k\in I}\subset K[X]\mid \forall (i,j)\in I^2,\ i\neq j\Rightarrow \deg P_i\neq \deg P_j$ est libre.
- Une famille $(x_k)_{k \in I} \subset E$ est liée $\iff \exists i \in I \mid x_i \in \text{vect}(x_k)_{k \in I \setminus \{i\}}$
- Toute sous-famille d'une famille libre est libre, toute sur-famille d'une famille liée est liée.
- Soit une famille $\mathcal{F} = (x_k)_{k \in I} \subset E$. Alors \mathcal{F} est libre si, et seulement si

$$\forall (\lambda_k)_{k \in I}, (\mu_k)_{k \in I} \subset K, \ \sum_{k \in I} \lambda_k x_k = \sum_{k \in I} \mu_k x_k \Rightarrow \forall k \in I, \ \lambda_k = \mu_k$$

(les familles de scalaires doivent être à support fini) ou encore si, et seulement si

$$\forall x \in \text{vect}(x_k)_{k \in I}, \ \exists ! (\lambda_k)_{k \in I} \subset K \mid x = \sum_{k \in I} \lambda_k x_k$$

3.3 Bases

3.3.1 Définition (Base)

Soit E un K-espace vectoriel.

Une base de E est une famille libre et génératrice de E.

3.3.2 Propriétés

• Soit $\mathcal{F} = (e_k)_{k \in I} \subset E$. Alors \mathcal{F} est une base de E si, et seulement si

$$\forall x \in E, \ \exists ! (x_k)_{k \in I} \subset K \mid x = \sum_{k \in I} x_k e_k$$

où la famille de scalaires est à support fini. Dans ce cas, si $I = [1; p], (x_1, \ldots, x_p)$ sont les composantes de x dans la base \mathcal{F} , souvent noté verticalement : $\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$

• Soit $(v_k)_{k\in [1]}$ une base de E, et $x\in E$ tel que

$$\exists (\lambda_k)_{k \in [2 ; p]} \subset K \mid x = v_1 + \sum_{k=2}^p \lambda_k v_k$$

Alors (x, v_2, \ldots, v_p) est une base de E.

• Soient $(e_k)_{k\in I}\subset E$, $(f_k)_{k\in J}\subset F$ des bases respectives de E et F. Alors la famille

$$\left((e_k, 0_F)_{k \in I}, (f_k, 0_E)_{k \in J} \right)$$

est une base de $E \times F$.

4 Somme de sous-espaces vectoriels

4.1 Définition (somme finie de sous-espaces vectoriels)

Soient E un K-espace vectoriel, $n \in \mathbb{N}^*$, et $(E_k)_{k \in [\![1]\!]}$ des sous-espaces vectoriels de E. La somme de ces sous-espaces vectoriels est le sous espace vectoriel :

$$\sum_{k=1}^{n} E_k = \left\{ \sum_{k=1}^{n} x_k \mid \forall k \in [1; n], x_k \in E_k \right\}$$

Par exemple pour n=2:

$$E_1 + E_2 = \{x + y \mid (x, y) \in E_1 \times E_2\}$$

4.2 Propriétés

• Soit $n \in \mathbb{N}^*$, et $(E_k)_{k \in [1]}$; n des sous-espaces vectoriels de E. Alors

$$\operatorname{vect}\left(\bigcup_{k=1}^{n} E_{k}\right) = \sum_{k=1}^{n} E_{k}$$

4.3 Définition (somme directe)

 \bullet Soient A, B deux sous-espaces vectoriels de E.

A et B sont en somme directe, noté $A + B = A \oplus B$, si :

$$A + B = A \oplus B \iff \forall x \in A + B, \exists ! (a, b) \in A \times B \mid x = a + b$$

• Soient $n \in \mathbb{N}^*$, et $(E_k)_{k \in [1]}$; n des sous-espaces vectoriels de E.

Si la somme de ces sous-espaces vectoriels est directe, on note

$$\sum_{k=1}^{n} E_k = \bigoplus_{k=1}^{n} E_k$$

et on a:

i.e si tout vecteur de la somme se décompose de façon unique comme somme de vecteurs de chaque sous-espace vectoriel.

4.4 Caractérisation d'une somme directe

4.4.1 Cas de deux vecteurs

Soient A, B deux sous-espaces vectoriel de E. Alors:

$$A + B = A \oplus B \Leftrightarrow A \cap B = \{0\}$$

4.4.2 Cas d'un nombre fini de vecteurs

Soit $n \in \mathbb{N}^*$, et $(E_k)_{k \in [1]}$; n des sous-espaces vectoriels de E. Alors :

$$\sum_{k=1}^{n} E_{k} = \bigoplus_{k=1}^{n} E_{k} \iff \forall (x_{k})_{k \in [1 ; n]} \mid \forall k \in [1 ; n], \ x_{k} \in E_{k},$$

$$\sum_{k=0}^{n} x_{k} = 0 \implies \forall k \in [1 ; n], \ x_{k} = 0$$

Remarque : la condition $\bigcap_{k=1}^{n} E_k = \{0\}$ ne suffit pas (exemple : trois droites dans le plan).

4.5 Définition (sous-espaces supplémentaires)

Soient A, B deux sous-espaces vectoriels de E.

1. Les sous-espaces vectoriels A et B sont supplémentaires si

$$E = A \oplus B$$

i.e si

$$\begin{cases} E = A + B \\ A + B = A \oplus B \end{cases}$$

2. Un supplémentaire de A dans E est un sous-espace vectoriel G de E tel que $E = A \oplus G$.

4.6 Propriétés

• Soient $n \in \mathbb{N}^*$, $(E_k)_{k \in \llbracket 1 \ ; \ n \rrbracket}$ des sous-espaces vectoriels de E, et $(\mathcal{F}_k)_{k \in \llbracket 1 \ ; \ n \rrbracket}$ des familles génératrices respectives de E_1, \ldots, E_n .

Alors:

$$\sum_{k=1}^{n} E_k = \text{vect}\left(\bigcup_{k=1}^{n} \mathcal{F}_k\right)$$

 $i.e \bigcup_{k=1}^{n} \mathcal{F}_k$ est une famille génératrice de $\sum_{k=1}^{n} E_k$.

De plus, si $\sum_{k=1}^{n} E_k = \bigoplus_{k=1}^{n} E_k$, alors la famille $\bigcup_{k=1}^{n} \mathcal{F}_k$ est libre (et génératrice de la somme).

• Soient $n \in \mathbb{N}^*$, $(E_k)_{k \in \llbracket 1 \ ; \ n \rrbracket}$ des sous-espaces vectoriels de E tels que $\sum_{k=1}^n E_k = \bigoplus_{k=1}^n E_k$, et $(\mathcal{F}_k)_{k \in \llbracket 1 \ ; \ n \rrbracket}$ des bases respectives de E_1, \ldots, E_n .

Alors
$$\bigcup_{k=1}^{n} \mathcal{F}_k$$
 est une base de $\bigoplus_{k=1}^{n} E_k$.

5 Espaces vectoriels de dimension finie

5.1 Définition (espace vectoriel de dimension finie)

Un espace vectoriel est de dimension finie si il admet une famille génératrice finie. Sinon, il est de dimension infinie.

5.2 Lemme

Soient \mathcal{F} une famille finie libre de E, et \mathcal{G} une famille finie génératrice de E. Alors

$$\operatorname{card}(\mathcal{F}) \leqslant \operatorname{card}(\mathcal{G})$$

5.3 Théorème

Soit E un espace vectoriel de dimension finie.

Alors:

- (1) E admet une base finie;
- (2) Toutes les bases de E sont finies, et ont le même nombre d'éléments.

5.4 Définition (dimension d'un espace vectoriel)

Soit E un K-espace vectoriel de dimension finie.

La dimension de E, notée $\dim(E)$, est le nombre d'éléments de ses bases.

5.5 Propriétés

Soient E un K-espace vectoriel de dimension finie, et \mathcal{F} une famille de E.

Alors, si \mathcal{F} est libre :

$$\operatorname{card}(\mathcal{F}) \leqslant \dim(E)$$

et \mathcal{F} est une base si, et seulement si $\operatorname{card}(\mathcal{F}) = \dim(E)$.

Et si \mathcal{F} est génératrice, alors

$$\operatorname{card}(\mathcal{F}) \geqslant \dim(E)$$

et \mathcal{F} est une base si, et seulement si $\operatorname{card}(\mathcal{F}) = \dim(E)$.

5.6 Théorème de la base extraite

Soit E un espace vectoriel de dimension finie, et \mathcal{F} une famille génératrice de E.

Alors $\exists \mathcal{G} \subset \mathcal{F} \mid \mathcal{G}$ soit une base de E.

5.7 Théorème de la base incomplète

Soit E un espace vectoriel de dimension finie, $r \in \mathbb{N}^*$, $n = \dim(E)$, et $\mathcal{F} = (y_k)_{k \in [1; r]}$ une famille libre de E.

Alors $\exists (y_k)_{k \in \llbracket r+1 \ ; \ n \rrbracket} \subset E \mid (y_k)_{k \in \llbracket 1 \ ; \ n \rrbracket}$ soit une base de E.

5.8 Corrolaire

Soit E un espace vectoriel (pas nécessairement de dimension finie), $n, p \in \mathbb{N}^* \mid n < p$, et $(x_k)_{k \in [\![1\ ;\ n]\!]} \subset E$.

Alors

$$\forall (y_k)_{k \in \llbracket 1 \ ; \ p \rrbracket} \subset \operatorname{vect}(x_k)_{k \in \llbracket 1 \ ; \ n \rrbracket}, \ (y_k)_{k \in \llbracket 1 \ ; \ p \rrbracket} \text{ est liée}$$

5.9 Propriété

Soit E un espace vectoriel. Alors

$$\dim(E) = +\infty \iff \forall n \in \mathbb{N}^*, \ \exists (x_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \subset E \mid (x_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \text{ libre}$$

6 Dimension d'un sous-espace vectoriel en dimension finie

6.1 Propriété

Soit E un espace vectoriel de dimension finie, et F un sous-espace vectoriel de E. Alors

$$\dim(F) \leqslant \dim(E)$$

et

$$E = F \Leftrightarrow \dim(F) = \dim(E)$$

6.2 Définition (hyperplan)

Un hyperplan d'un espace vectoriel E de dimension finie est un sous-espace vectoriel F de E tel que

$$\dim(F) = \dim(E) - 1$$

6.3 Propriétés

Soit E un espace vectoriel de dimension finie, et F, G deux sous-espaces vectoriels de E. Alors

$$F = G \quad \Leftrightarrow \quad \begin{cases} \dim(F) = \dim(G) \\ F \subset G \end{cases}$$

$$\Leftrightarrow \quad \begin{cases} \dim(F) = \dim(G) \\ \exists (x_k)_{k \in I} \subset G \mid F = \text{vect}(x_k)_{k \in I} \end{cases}$$

6.4 Définition (système d'équation dans une base)

Soit E un espace vectoriel de dimension finie, $n = \dim(E)$, \mathcal{B} une base de E, et F un sous-espace vectoriel de E.

Un système d'équation de F dans la base \mathcal{B} est un système S de $p \in \mathbb{N}$ équations $(p \leq n)$ à n inconnues $(x_k)_{k \in [\![1]\!]}$ tel que $\forall v \in E, v \in F \Leftrightarrow$ ses composantes dans la base \mathcal{B} sont solutions de S.

7 Rang d'une famille de vecteurs

7.1 Définition (rang)

Soit E un K-espace vectoriel, et $\mathcal{F} = (x_k)_{k \in I} \subset E$.

Le rang de la famille de vecteurs \mathcal{F} , noté rang $(x_k)_{k\in I}$, est la dimension du sous-espace vectoriel engendré par les vecteurs de \mathcal{F} , *i.e*:

$$\operatorname{rang}(x_k)_{k \in I} = \dim(\operatorname{vect}(x_k)_{k \in I})$$

7.2 Propriétés

• Soit E un K-espace vectoriel, et $(x_k)_{k \in I} \subset E$. Alors :

$$\operatorname{rang}(x_k)_{k \in I} = 0 \iff \forall k \in I, \ x_k = 0$$

$$\operatorname{rang}(x_k)_{k \in I} = 1 \iff \exists i \in I \mid x_i \neq 0 \\ \forall k \in I, \ x_k \propto x_i$$

$$(x_k \propto x_i \iff \exists \lambda \in K^* \mid x_k = \lambda x_i \text{ ou } x_i = 0)$$

• Soient $(x_k)_{k\in I}\subset E$, et $i\in I$. Alors:

$$x_i \in \text{vect}(x_k)_{k \in I \setminus \{i\}} \iff \text{rang}(x_k)_{k \in I} = \text{rang}(x_k)_{k \in I \setminus \{i\}}$$

• Soient $(x_k)_{k\in I}, (y_k)_{k\in J}\subset E$. Alors:

$$\operatorname{vect}(x_k)_{k \in I} = \operatorname{vect}(y_k)_{k \in J} \implies \operatorname{rang}(x_k)_{k \in I} = \operatorname{rang}(y_k)_{k \in J}$$

• Soient $p \in \mathbb{N}^*$, et $(x_k)_{k \in [1]}$; $p \in E$. Alors:

$$\operatorname{rang}(x_k)_{k \in [1:p]} \leqslant p$$

et

$$\operatorname{rang}(x_k)_{k \in [1 ; p]} = p \iff (x_k)_{k \in [1 ; p]} \text{ libre}$$

De plus, si $\exists r \in \llbracket 1 \; ; \; p \rrbracket \; | \; (x_k)_{k \in \llbracket 1 \; ; \; r \rrbracket}$ libre, alors :

$$\operatorname{rang}(x_k)_{k \in [1:p]} \geqslant r$$

• Soient $(x_k)_{k\in I} \subset E, i \in I, x \in \text{vect}(x_k)_{k\in I\setminus\{i\}}$. Alors :

$$\operatorname{rang}(x_k)_{k \in I} = \operatorname{rang}(x_i + x, x_k)_{k \in I \setminus \{i\}}$$

et

$$\forall (\lambda_k)_{k \in I} \subset K$$
, rang $(x_k)_{k \in I} = \text{rang}(\lambda_k x_k)_{k \in I}$

cf 2.3, troisième point.

8 Somme et produit de sous-espaces vectoriels en dimension finie

8.1 Somme de deux sous-espaces vectoriels

8.1.1 Propriétés

Soit E un espace vectoriel de dimension finie n.

$$\bullet \text{ Soient} \begin{vmatrix} n \in \mathbb{N}^*, p \in \llbracket 1 \ ; \ n \rrbracket \\ (e_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \subset E \text{ une base de } E \\ A = \text{vect}(e_k)_{k \in \llbracket 1 \ ; \ p \rrbracket} \\ B = \text{vect}(e_k)_{k \in \llbracket p+1 \ ; \ n \rrbracket} \end{vmatrix}. \text{ Alors } A \oplus B = E.$$

De plus, $(e_k)_{k \in \llbracket 1 \ ; \ p \rrbracket}$ est une base de A, et $(e_k)_{k \in \llbracket p+1 \ ; \ n \rrbracket}$ est une base de B.

$$\bullet \text{ Soient} \begin{array}{|l|} A,B \subset E \mid E = A \oplus B \\ p = \dim(A), q = \dim(B) \\ (e_k)_{k \in \llbracket 1 \ ; \ p \rrbracket} \subset A \text{ une base de } A \\ (e_k)_{k \in \llbracket p+1 \ ; \ p+q \rrbracket} \subset B \text{ une base de } B \end{array}$$

Alors $(e_k)_{k \in [1]}$; p+q est une base de E.

- \bullet Tout sous-espace vectoriel de E admet un supplémentaire.
- Soient A, B deux sous-espaces vectoriels de E tels que $A + B = A \oplus B$. Alors :

$$\dim(A \oplus B) = \dim(A) + \dim(B)$$

En particulier, si $E = A \oplus B$, on a

$$\dim(E) = \dim(A) + \dim(B)$$

8.1.2 Formule de Grassmann

Soient F, G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie. Alors:

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

8.1.3 Caractérisation des sous-espaces vectoriels supplémentaires

Soient F, G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie. Alors:

$$E = F \oplus G \quad \Leftrightarrow \quad \begin{cases} E = F + G \\ \dim(E) = \dim(F) + \dim(G) \end{cases}$$
$$\Leftrightarrow \quad \begin{cases} F \cap G = \{0\} \\ \dim(E) = \dim(F) + \dim(G) \end{cases}$$

Cas d'un hyperplan 8.1.4

Soit H un hyperplan de E, et $u \in E \setminus H$. Alors

$$E = H \oplus \text{vect}(u)$$

8.2 Dimension des sommes et produits d'espaces vectoriels

8.2.1 Dimension d'un produit

Soient $n \in \mathbb{N}^*$, et $(E_k)_{k \in [1]}$ des espaces vectoriels de dimension finie.

Alors dim
$$\left(\prod_{k=1}^n E_k\right) < +\infty$$
, et:

$$\dim\left(\prod_{k=1}^{n} E_k\right) = \sum_{k=1}^{n} \dim(E_k)$$

8.2.2 **Propriétés**

• Soient
$$\begin{vmatrix} n \in \mathbb{N}^*, m \in \mathbb{N} \\ (e_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \subset E \text{ une base de } E \\ (p_k)_{k \in \llbracket 0 \ ; \ m \rrbracket} \subset \mathbb{N} & \begin{vmatrix} p_0 = 0, p_m = n \\ \forall k \in \llbracket 0 \ ; \ m - 1 \rrbracket, \ p_k < p_{k+1} \\ \forall i \in \llbracket 1 \ ; \ m \rrbracket, \ A_i = \text{vect}(e_k)_{k \in \llbracket p_{i-1} + 1 \ ; \ p_i \rrbracket}$$

Alors:

$$E = \bigoplus_{i=1}^{m} A_i = \bigoplus_{i=1}^{m} \operatorname{vect}(e_k)_{k \in \llbracket p_{i-1} + 1 \ ; \ p_i \rrbracket}$$

Alors $(e_{ij})_{\substack{i \in \llbracket 1 \ ; \ p_j \rrbracket \ j \in \llbracket 1 \ ; \ m \rrbracket}}$ est une base de E.

8.2.3 Dimension d'une somme directe

Soient E un espace vectoriel de dimension finie, $m \in \mathbb{N}^*$, $(A_k)_{k \in [\![1]; m]\!]} \subset \mathcal{P}(E)$ des sous-espaces vectoriels de E, tels que

$$\sum_{k=1}^{m} A_k = \bigoplus_{k=1}^{m} A_k$$

Alors:

$$\dim\left(\bigoplus_{k=1}^{m} A_k\right) = \sum_{k=1}^{m} \dim(A_k)$$

8.2.4 Dimension d'une somme

Soient $n \in \mathbb{N}^*$, $(E_k)_{k \in [\![1]; n]\!]} \subset \mathcal{P}(E)$ des sous-espaces vectoriels de dimension finie d'un espace vectoriel E.

Alors dim
$$\left(\sum_{k=1}^{n} E_k\right) < +\infty$$
, et

$$\dim\left(\sum_{k=1}^{n} E_k\right) \leqslant \sum_{k=1}^{n} \dim(E_k)$$

avec égalité si et seulement si la somme est directe.

