

Rapport de l'Alimentation stabilisée

Groupe 2 Département Geii Année 2021-2022 M. Béllier - M. Sohier Université D'Orléans IUT de Chartres

Remerciement

Je remercie Monsieur BELLIER et Monsieur SOHIER pour m'avoir accompagné tout au long de ce projet jusqu'à l'aboutissement. Je remercie aussi L'IUT de Chartres qui nous a fourni le matériel ainsi que l'accord pour garder la carte.

Remerciement	50	mmaire	
Introduction	Rer	merciement	2
1. Cahier des charges de l'alimentation stabilisée	Sor	nmaire	2
2. Analyse fonctionnelle 3 3. Schéma électrique de l'alimentation stabilisée 4 4. Schéma d'implantation à l'échelle 1 5 5. Fiche des composants/Nomenclature 5 6. Complément d'informations personnelles 5 7. Mesures en 15V 6 7.1 Mesures 6 7.2 Relevés à l'oscillogramme 6 Conclusion 6	Intr	oduction	3
3. Schéma électrique de l'alimentation stabilisée	1.	Cahier des charges de l'alimentation stabilisée	3
4. Schéma d'implantation à l'échelle 1	2.	Analyse fonctionnelle	3
5. Fiche des composants/Nomenclature	3.	Schéma électrique de l'alimentation stabilisée	4
6. Complément d'informations personnelles 5 7. Mesures en 15V 6 7.1 Mesures 7.2 Relevés à l'oscillogramme 6 Conclusion 7	4.	Schéma d'implantation à l'échelle 1	4
7. Mesures en 15V	5.	Fiche des composants/Nomenclature	5
7.1 Mesures	6.	Complément d'informations personnelles	5
7.2 Relevés à l'oscillogramme	7.	Mesures en 15V	e
Conclusion	7	7.1 Mesures	6
	7	7.2 Relevés à l'oscillogramme	6
Annexe	Cor	nclusion	7
	Anr	nexe	7

Introduction

L'objectif de cette SAE est de concevoir un prototype à partir d'un cahier des charges. Vous devrez mener ce développement en intégrant une démarche de projet. En plus du prototype, vous devrez fournir les documents nécessaires et communiquer de façons adaptées.

1. Cahier des charges de l'alimentation stabilisée

On demande de réaliser un prototypage en monôme d'un montage électronique. Celui-ci devra répondre au cahier des charges suivant :

- Energie d'entrée : source secteur 240V 50Hz sur une prise au standard Européen 16A
- Sortie attendue : tension continue double (positive et négative) symétrique réglable sur connecteur 3 broches.
- La partie soumise à une tension 240V sera protégée en boîtier isolé, et relié au reste du montage par un câble
- Le montage se fera par un unique réglage pour les deux sorties symétriques

Ce projet permettra par la suite à alimenter un projet annexe, la partie amplification audio.

2. Analyse fonctionnelle

Figure 1 - Schéma de l'analyse fonctionnel de l'alimentation stabilisée

L'alimentation transforme les caractéristiques de l'énergie du réseau EDF (230V/50Hz) pour l'adapter à notre besoin, une alimentation continue de 1,24V à 30V

En premier lieu, on protège et on abaisse la tension, cette fonction est assurée par le transformateur qui a été inséré dans un bloc alimentation en PVC avec fusible pour sécuriser le 230V.

Après, nous devons redresser la tension avec des diodes en utilisant le transformateur à point milieu.

Ensuite, nous devons filtrer la tension avec des condensateurs qui vont créer un effet de charge capacitive cela va augmenter la valeur de la charge moyenne.

Et pour obtenir une tension lisse nous régulons la sortie avec des régulateurs qui permettent de maintenir la tension de sortie constante en régissant de façon à compenser les variations de sa tension d'entrée.

3. Schéma électrique de l'alimentation stabilisée

Figure 2 - Schéma électrique de l'alimentation stabilisée -

4. Schéma d'implantation à l'échelle 1

Figure 3- Schéma d'implantation à l'échelle 1

5. Fiche des composants/Nomenclature

Repère	Qté	Désignation	Fabriquant	Référence fabriquant	Distrib.	Code Commande	UDV	PrixUnit.	Total /modul	■ TotalAchat
C1,C2	2	2200uF 35V Electrolytic Capacitor	Cornell-Dubilier	SEK222M035ST	RS	2550081094	10	2.3400 €	4.6800 €	23.4000 €
C3,C4,C5,C7	4	1uF 35V Electrolytic Capacitor	MULTICOMP PRO	MCNP35V105M5X11	Farnell	1236666	5	0.0512 €	0.2048 €	0.2560 €
C6,C8	2	100uF 35V Electrolytic Capacitor	Panasonic	EEE1VA101XP	RS	176-6383	25	0.3520 €	0.7040 €	8.8000 €
R1,R4	1	5K pot (double)	PIHER	PC16DH-10IP06-503A2020-TA	sos electronique	135547	1	3.27 €	3.2700 €	3.2700 €
R2,R3	2	240 Ohm 1/4 W resistor	MULTICOMP PRO	MF25 240R	Farnell	9341587	10	0.0571 €	0.1142 €	0.5710 €
BR1	1	2A 30V Bridge Rectifier	Vishay	VS-2KBP01	RS	700-5342	2	2.1850 €	2.1850 €	4.3700 €
U1	1	LM317 Adjustable Positive Regulator	STMicroelectronics	LM317T	RS	714-0792	10	0.4730 €	0.4730 €	4.7300 €
U2	1	LM337 Adjustable Negative Regulator	STMicroelectronics	LM337SP	RS	168-7735	50	0.8200 €	0.8200 €	41.0000 €
T1	1	30V Center Tapped 2 Amp Transformer	BLOCK	VC 16/2/18	Conrad	710812	1	11.9900 €	11.9900 €	11.9900 €
PCB	1	Carte de prototypage	CIF	AGB9	Farnell	1201469	1	12.3300 €	12.3300 €	12.3300 €
PADS	4	Pieds anti-vibrations	3M	S] 5027 BLACK	RS	192-2670	40	0.2708 €	0.2708 €	10.8300 €
Bornier sortie	1	Bornier standard, Fil à carte, 3 Contact(s)	CAMDENBOSS	CTB0700/3	Farnell	1717085	1	2.5900 €	2.5900 €	2.5900 €
Bornier entrée	1	Bornier, Embase, 4 Voies, Traversant vertice	WURTH ELEKTRONIK	691311500104	Farnell	1641982	10	0.4330 €	0.4330 €	4.3300 €
RLED	1	6200 Ohm 1/2 W resistor	TE Connectivity	ROX05S]6K2	RS	187-0875	20	0.0820 €	0.0820 €	1.6400 €
LED	1	LED Verte	Kingbright	L-53GD	RS	228-6004	5	0.4420 €	0.4420 €	2.2100 €
	Tota								40.5888 €	132.3170 €

Figure 4 - Tableau de la nomenclature de l'alimentation stabilisée

Le coût total de mon alimentation seule est de à peu près 40,58€

6. Complément d'informations personnelles

Pour ce projet j'ai essayé de rendre le plus compacte possible la carte, c'est-à-dire prendre le moins de place possible, tout en conservant l'espace règlementaire entre les composants ainsi la place pour insérer des radiateurs passifs pour refroidir les régulateurs.

7. Mesures en 15V

7.1 Mesures

	10Ω	100Ω	1kΩ
Tension	12,31 V	15,03 V	15V
Intensité	1.2 A	150 mA	14,9 mA
Puissance absorbé	35,26 W	6,45 W	2,35 W
Puissance charge (Pu)	14,77 W	2,25 W	0,224 W
Pabs/Pcharge	2,39 W	2,87 W	10,49 W
Rendement η	0,42	0,35	0,1

Figure 5 - Tableau des mesure de l'alimentation stabilisée reglée en 15V

7.2 Relevés à l'oscillogramme

Figure 6 - Oscillogramme du relevé de la tension en entrée et en sortie du régulateur LM317 (positif) avec une tension de sortie 15V sur charge de $1k\Omega$

Conclusion

Maintenant l'alimentation stabilisé réalisée, nous allons pouvoir l'exploiter dans nos futurs projets, comme prochainement en SAE, Le Voltmètre nous allons pouvoir effectuer les divers montages de test mais aussi mesurer notre alimentation. Cela m'a aussi appris à dépanner ma carte et d'apprendre davantage sur le fonctionnement de l'alimentation stabilisée.

Les améliorations envisageables sont l'ajout de radiateurs passif aux régulateurs pour les refroidir ainsi que l'ajout d'une LED en sortie de l'alimentation pour avoir un ordre d'idée de la tension de sortie. Il serait aussi envisageable de rajouter des diodes en sortie de l'alimentation pour éviter les retours de tension, une amélioration qui serait à venir serait d'intégrer notre circuit d'alimentation dans une boite tout comme le bloc du transformateur.

Tout cela avec une meilleure qualité de soudure.

En essayant de rendre la carte le plus compacte possible, j'ai omis la place du potentiomètre qui était assez conséquent et ainsi que la carte plus petite que l'alimentation de l'année précédente ce qui a causé un manque de place en fin de la carte et donc une déportation de la sortie de l'alimentation sur le coter de l'entrée ce qui pourrait déplaire, puisque nous sommes amenés à penser que la sortie et l'entrée d'une alimentation se fait d'un coté à l'autre.

Un autre problème rencontré, est l'inversion des régulateurs positif (LM317) et négatif (LM337), il m'a juste fallu inverser tout simplement les régulateurs entre eux. Cette erreur aurait pu être évitée tout simplement en vérifiant les numéros des régulateurs.

A la fin, ce projet m'a apporté des connaissances sur l'appréhension des métiers de l'électronique.

Annexe

Site internet:

- -http://fr.farnell.com/
- -https://fr.rs-online.com/web/
- https://www.conrad.fr
- www.soselectronic.com
- https://www.block.eu

Documents fournis:

- « Situation d'Apprentissage et d'Evaluation 1.02 Alimentation Stabilisée »
- « Documentation des régulateurs positif (LM317) et négatif (LM337) »

Les Notes des cours

Infographie

