Exercise 4.2: Scatterplots, Bubble Charts, & Density Plots/Maps

Scott Breitbach

DSC640 - 01/27/2022

Plots Using **Python**

Load Data

```
In [1]:
         # Load lib raries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]:
         # Load data
         crimeDF = pd.read_csv("crimerates-by-state-2005.csv")
         birthDF = pd.read_csv("birth-rate.csv")
         # Remove Washington, DC due to outliers
         crimeDF = crimeDF[crimeDF.state != 'District of Columbia']
         # And remove United States due to averages
         crimeDF = crimeDF[crimeDF.state != 'United States']
         # Set color to Bellevue purple
         color = "#4f3674"
```

Scatterplot

Bubble Chart

```
In [4]:
         # Initialize the matplotlib figure
         f, ax = plt.subplots(figsize=(10, 6))
         # Make a bubble plot
         sc = plt.scatter('murder', 'burglary', s=crimeDF.population*.0001, data=crimeDF,
                          alpha=0.7, color=color, label='Population')
         # Add chart title and labels
         plt.title("Murders vs Burglaries in the United States", fontsize = 15, loc = 'left')
         plt.xlabel("Murders", fontsize = 12)
         plt.ylabel("Burglaries", fontsize = 12)
         # Set legend for population sizes
         handles, labels = sc.legend_elements(prop="sizes", alpha=0.4, num=3)
         labels = ["10 MM", "20 MM", "30 MM"]
         legend = ax.legend(handles, labels, loc="lower right", title="Population",
                            fontsize=11, title_fontsize=14)
         plt.show()
```


Density Plot

```
In [5]: # Initialize the matplotlib figure
    f, ax = plt.subplots(figsize=(10, 6))

# Make a density plot
    sns.kdeplot(birthDF['1980'], color=color, fill=color)

# Add chart title and labels
    plt.title("Global Distribution of Birth Rates in 1980", fontsize = 15, loc = 'left')
    plt.xlabel("Live Births per 1,000 Population", fontsize = 12)
    plt.ylabel("Density", fontsize = 12)
```

Out[5]: Text(0, 0.5, 'Density')

Global Distribution of Birth Rates in 1980

In []:

Exercise 4.2: Scatterplots, Bubble Charts, & Density Plots/Maps

Scott Breitbach

1/27/2022

Plots Using R

```
knitr::opts_chunk$set(echo = TRUE, warning = FALSE)

# Set Working Directory
setwd("C:/Users/micha/OneDrive/Documents/GitHub/DSC640/Weeks7-8/")

# Load libraries
library(ggplot2)
```

Load Data

```
# Set color to Bellevue purple
color = "#4f3674"

# Load the data
crimeDF <- read.csv("crimerates-by-state-2005.csv")
birthDF <- read.csv("birth-rate.csv")

# Remove Washington, DC due to outliers
crimeDF <- crimeDF[crimeDF$state != "District of Columbia",]
# And remove United States due to averages
crimeDF <- crimeDF[crimeDF$state != "United States",]</pre>
```

Scatter Plot

```
# Create a Scatterplot
ggplot(crimeDF, aes(x=murder, y=burglary)) +
  geom_point(col=color) +
  theme_gray() +
  labs(x="Murders", y="Burglaries") +
  ggtitle("Murders vs Burglaries in the United States")
```

Murders vs Burglaries in the United States

Bubble Chart

```
# Make a bubble plot
ggplot(crimeDF, aes(x=murder, y=burglary, size=population)) +
  geom_point(alpha=0.7, col=color) +
  scale_size(range=c(0.1,24), name="Population Size") +
  theme_gray() +
  labs(x="Murders", y="Burglaries") +
  ggtitle("Murders vs Burglaries in the United States")
```

Murders vs Burglaries in the United States

Density Plot

```
# Make a density plot
ggplot(birthDF, aes(x=X1980)) +
  geom_density(fill=color, color=color, alpha=0.8) +
  xlim(0,65) +
  theme_gray() +
  labs(x="Live Births per 1,000 Population", y="Density") +
  ggtitle("Global Distribution of Birth Rates in 1980")
```

Global Distribution of Birth Rates in 1980

Power BI

Scatter Plot

Murders vs Burglaries in the United States

Bubble Plot

Murders vs Burglaries in the United States

Density Map

US Population by State

Population represented by bubble sizes

