Degrees of Relatedness

A Unified Framework for Parametricity, Irrelevance, Ad Hoc Polymorphism, Intersections, Unions and Algebra in Dependent Type Theory

Andreas Nuyts, Dominique Devriese

KU Leuven & Vrije Universiteit Brussel, Belgium

PLNL '18 Utrecht, Netherlands November 22, 2018

Overview

- Parametricity
 - In System F
 - In System Fω
 - In dependent type theory
- Degrees of relatedness

Parametricity, intuitively

In System F, F ω , Haskell, ..., **type parameters** are parametric.

- Only used for type-checking,
- Not inspected (e.g. no pattern matching),
- Same algorithm on all types.

Enforced by the type system.

Example

 $g: \forall X. \text{Tree } X \rightarrow \text{List } X$ By parametricity:

A Tree
$$A \xrightarrow{g}$$
 List A
 $f \mid$ Tree $f \mid$ List $f \mid$

B Tree $B \xrightarrow{g}$ List B

irrespective of implementation

Parametricity, intuitively

In System F, F ω , Haskell, ..., **type parameters** are parametric.

- Only used for type-checking,
- Not inspected (e.g. no pattern matching),
- Same algorithm on all types.

Enforced by the type system.

Example

 $g: \forall X. \text{Tree } X \rightarrow \text{List } X$ By parametricity:

$$\begin{array}{ccc} A & & \text{Tree } A \stackrel{g}{\longrightarrow} \text{List } A \\ \downarrow^f & & \text{Tree } f \downarrow & & \downarrow \text{List } f \\ B & & \text{Tree } B \stackrel{g}{\longrightarrow} \text{List } B \end{array}$$

irrespective of implementation.

Parametricity in **System F** (Reynolds, 1983)

$$X:*, \qquad Y:* \qquad \vdash \qquad X \times Y:*$$

Object semantics

$$X \in \mathsf{Set}, \qquad Y \in \mathsf{Set} \qquad \Rightarrow \qquad X \times Y \in \mathsf{Set}$$

Relational semantics:

$$X_1 \in \mathsf{Set}, \qquad Y_1 \in \mathsf{Set} \qquad \Rightarrow \qquad X_1 \times Y_1 \in \mathsf{Set}$$

$$X_2 \in \mathsf{Set}, \qquad Y_2 \in \mathsf{Set} \qquad \Rightarrow \qquad X_2 \times Y_2 \in \mathsf{Se}$$

... such that
$$\operatorname{Eq}_X \times \operatorname{Eq}_Y \cong \operatorname{Eq}_{X \times Y}$$

$$X:*, \qquad Y:* \qquad \vdash \qquad X \times Y:*$$

Object semantics:

$$X \in \mathsf{Set}, \qquad Y \in \mathsf{Set} \qquad \Rightarrow \qquad X \times Y \in \mathsf{Set}$$

Relational semantics

$$X_1 \in \text{Set}, \qquad Y_1 \in \text{Set} \qquad \Rightarrow \qquad X_1 \times Y_1 \in \text{Set}$$

$$X_2 \in \mathsf{Set}, \qquad Y_2 \in \mathsf{Set} \qquad \Rightarrow \qquad X_2 \times Y_2 \in \mathsf{Set}$$

... such that
$$\operatorname{Eq}_X \times \operatorname{Eq}_Y \cong \operatorname{Eq}_{X \times Y}$$

$$\vdash$$

$$X \times Y$$
: *

Object semantics:

$$X \in Set$$
,

$$Y \in Set$$

$$\Rightarrow$$

$$X \times Y \in Set$$

Relational semantics:

$$X_1 \in Set$$
,

$$Y_1 \in \mathsf{Set}$$

$$\Rightarrow$$

$$\textit{X}_1 \times \textit{Y}_1 \in Set$$

$$X_2 \in Set$$
,

$$Y_2 \in Set$$

$$\Rightarrow$$

$$X_2 \times Y_2 \in \mathsf{Set}$$

$$\ldots$$
 such that $Eq_X \times Eq_Y \cong Eq_{X \times Y}$

$$X:*, Y:* \vdash X\times Y:*$$

Object semantics:

$$X \in \mathsf{Set}, \qquad Y \in \mathsf{Set} \qquad \Rightarrow \qquad X \times Y \in \mathsf{Set}$$

Relational semantics:

$$X_1 \in \text{Set},$$
 $Y_1 \in \text{Set}$ \Rightarrow $X_1 \times Y_1 \in \text{Set}$
 $\bar{X} \in \text{Rel}$ $\bar{Y} \in \text{Rel}$ \Rightarrow $\bar{X} \times \bar{Y} \in \text{Rel}$
 $X_2 \in \text{Set},$ $Y_2 \in \text{Set}$ \Rightarrow $X_2 \times Y_2 \in \text{Set}$

... such that
$$Eq_X \times Eq_Y \cong Eq_{X \times Y}$$

$$X:*, \qquad Y:* \qquad \vdash \qquad X\times Y:*$$

Object semantics:

$$X \in \mathsf{Set}, \qquad Y \in \mathsf{Set} \qquad \Rightarrow \qquad X \times Y \in \mathsf{Set}$$

Relational semantics:

$$X_1 \in \mathsf{Set}, \qquad Y_1 \in \mathsf{Set} \qquad \Rightarrow \qquad X_1 \times Y_1 \in \mathsf{Set}$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

... such that
$$Eq_X \times Eq_Y \cong Eq_{X \times Y}$$

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$ar{X}
ightarrow ar{Y}$$
 For all $x_1, x_2 \colon ar{X}(x_1, x_2)
ightarrow ar{Y}(extbf{\emph{f}}_1 \ x_1, extbf{\emph{f}}_2 \ x_2),$

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL

... always preserving Eq.

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$ar{X}
ightarrow ar{Y}$$
 For all $x_1, x_2 \colon ar{X}(x_1, x_2)
ightarrow ar{Y}(extit{f_1} \ x_1, extit{f_2} \ x_2)$

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL

... always preserving Eq

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$\bar{X}
ightarrow \bar{Y}$$
 For all x_1, x_2 : $\bar{X}(x_1, x_2)
ightarrow \bar{Y}(f_1 x_1, f_2 x_2)$,

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL)

... always preserving Eq

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$\bar{X}
ightarrow \bar{Y}$$
 For all x_1, x_2 : $\bar{X}(x_1, x_2)
ightarrow \bar{Y}(f_1 x_1, f_2 x_2)$,

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL)

... always preserving Eq.

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$\bar{X} \rightarrow \bar{Y}$$
 For all x_1, x_2 : $\bar{X}(x_1, x_2) \rightarrow \bar{Y}(f_1 x_1, f_2 x_2)$,

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL)

... always preserving Eq

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$\bar{X}
ightarrow \bar{Y}$$
 For all x_1, x_2 : $\bar{X}(x_1, x_2)
ightarrow \bar{Y}(f_1 \ x_1, f_2 \ x_2)$,

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL)

... always preserving Eq.

$$\vdash$$

$$t[X,p,q]:X$$

Object semantics

$$X \in \operatorname{Set}$$
,

$$p \in X$$
,

$$q \in X$$

$$\Rightarrow$$

$$t[X,p,q] \in X$$

Relational semantics:

$$X_1 \in \operatorname{Set}$$
,

$$p_1 \in X_1$$
,

$$q_1 \in X_1$$

$$\Rightarrow$$

$$t[X_1,p_1,q_1]\in X_1$$

$$X_2 \in \operatorname{Set}$$
,

$$p_2 \in X_2$$

$$q_2 \in X_2$$

$$\Rightarrow$$

$$t[X_2,p_2,q_2]\in X_2$$

Free Theorem (Church Booleans)

Either
$$t[X, p, q] = p$$
 or $t[X, p, q] = q$

i.e. Bool
$$\cong \forall X.X \rightarrow X \rightarrow X$$

$$\vdash$$

Object semantics:

$$X \in Set$$
,

$$p \in X$$
,

$$q \in X$$

$$\Rightarrow$$

$$t[X,p,q] \in X$$

Relational semantics:

$$X_1 \in \operatorname{Set}$$
,

$$p_1 \in X_1$$
,

$$q_1 \in X_1$$

$$\Rightarrow$$

$$t[X_1,p_1,q_1]\in X_1$$

$$X_2 \in \operatorname{Set}$$

$$p_2 \in X_2$$

$$q_2 \in X_2$$

$$\Rightarrow$$

$$t[X_2,p_2,q_2] \in X_2$$

Free Theorem (Church Booleans)

Either
$$t[X, p, q] = p$$
 or $t[X, p, q] = q$,

$$\vdash$$

Object semantics:

$$X \in Set$$
,

$$p \in X$$
,

$$q \in X$$

$$\Rightarrow$$

$$t[X,p,q] \in X$$

Relational semantics:

$$X_1 \in Set$$
,

$$p_1 \in X_1$$

$$q_1 \in X_1$$

$$\Rightarrow$$

$$t[X_1,p_1,q_1]\in X_1$$

$$\textit{X}_2 \in Set,$$

$$p_2\in X_2,$$

$$q_2 \in X_2$$

$$\Rightarrow$$

$$t[X_2,p_2,q_2]\in X_2$$

Free Theorem (Church Booleans

Either t[X, p, q] = p or t[X, p, q] = q, i.e. Bool $\cong \forall X.X \rightarrow X \rightarrow X$

p : X,

 \vdash

t[X,p,q]:X

Object semantics:

$$X \in \mathsf{Set}$$
,

$$p \in X$$
,

$$q \in X$$
 \Rightarrow

$$t[X,p,q]\in X$$

Relational semantics:

$$X_1 \in \text{Set},$$
 $X_1 \in \text{Rel}$
 $X_2 \in \text{Set},$

$$p_1 \in X_1,$$
 $\downarrow \\ \bar{p} \in \bar{X}$
 $p_2 \in X_2.$

$$egin{array}{ll} q_1 \in X_1 & \Rightarrow & & \Rightarrow & & \\ & & | & & & \Rightarrow & \\ & | & & & | & & \\ q_2 \in X_2 & \Rightarrow & \Rightarrow & & & \Rightarrow & \end{array}$$

$$t[X_1, p_1, q_1] \in X_1$$
 $t[\bar{X}, \bar{p}, \bar{q}] \in \bar{X}$
 $t[X_2, p_2, q_2] \in X_2$

Free Theorem (Church Booleans)

Either t[X, p, q] = p or t[X, p, q] = q, i.e. Bool $\cong \forall X.X \rightarrow X \rightarrow X$

$$X:* \mid p:X,$$

$$\vdash$$

Object semantics:

$$X \in Set$$
,

$$p \in X$$
,

$$q \in X$$

$$t[X,p,q] \in X$$

Relational semantics:

$$X_1 \in \text{Set},$$
 $\bar{X} \in \text{Rel}$
 $X_2 \in \text{Set},$

$$p_1 \in X_1,$$
 $\downarrow \\ \bar{p} \in \bar{X}$
 $\downarrow \\ p_2 \in X_2,$

$$egin{array}{ll} q_1 \in X_1 & \Rightarrow & & \Rightarrow & & \\ & & & & & \Rightarrow & & \\ \hline q_2 \in X_2 & & \Rightarrow & & \Rightarrow & & \end{array}$$

$$t[X_1, p_1, q_1] \in X_1$$
 $t[\bar{X}, \bar{p}, \bar{q}] \in \bar{X}$
 $t[X_2, p_2, q_2] \in X_2$

Free Theorem (Church Booleans)

Either
$$t[X, p, q] = p$$
 or $t[X, p, q] = q$,

i.e. Bool
$$\cong \forall X.X \rightarrow X \rightarrow X$$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is NOT:

To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$

 $Rel \neq Eo$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is NOT:

To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$

 $Rel \neq Eq$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$

 $Rel \neq Eq$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- $\sqrt{}$ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$ $\text{Rel} \neq \text{Eq}$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \operatorname{Rel}(X_1, X_2)$ $\operatorname{Rel} \neq \operatorname{Eq}$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \operatorname{Rel}(X_1, X_2)$ $\operatorname{Rel} \neq \operatorname{Eq}$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$ $\text{Rel} \neq \text{Eq}$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**:

To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$

 $Rel \neq Eq$

Parametricity Summarized

Open types map Rel-related types to Rel-related types:

$$X_1 \in \text{Set},$$
 $Y_1 \in \text{Set}$ \Rightarrow $X_1 \times Y_1 \in \text{Set}$
 $\bar{X} \in \text{Rel}$ $\bar{Y} \in \text{Rel}$ \Rightarrow $\bar{X} \times \bar{Y} \in \text{Rel}$
 $X_2 \in \text{Set},$ $Y_2 \in \text{Set}$ \Rightarrow $X_2 \times Y_2 \in \text{Set}$

Open terms map Rel-related types and het. equal values to het. equal values:

Parametricity Summarized

Open types map Rel-related types to Rel-related types:

$$X_1 \in \operatorname{Set}, \qquad Y_1 \in \operatorname{Set} \qquad \Rightarrow \qquad X_1 \times Y_1 \in \operatorname{Set}$$
 $\bar{X} \in \operatorname{Rel} \qquad \bar{Y} \in \operatorname{Rel} \qquad \Rightarrow \qquad \bar{X} \times \bar{Y} \in \operatorname{Rel}$
 $X_2 \in \operatorname{Set}, \qquad Y_2 \in \operatorname{Set} \qquad \Rightarrow \qquad X_2 \times Y_2 \in \operatorname{Set}$

Open terms map Rel-related types

and het. equal values to het. equal values:

Parametricity in **System F** ω (Atkey, 2012)

Kind	Obj. semantics	Rel. semantics
κ	κ	\sim_{κ}
*	Set	Rel
* × *	$Set \times Set$	$Rel \times Rel$
$* \rightarrow *$	$\begin{array}{c} \text{Set} \rightarrow \text{Set} \\ \text{Eq}_{\text{Set}} & \rightarrow \text{Eq}_{\text{Set}} \\ \text{Eq} & & \text{Eq} \\ \text{Rel} & \rightarrow \text{Rel} \end{array}$	$\operatorname{Rel} o \operatorname{Rel}$
$\kappa o \lambda$	$ \begin{array}{ccc} \operatorname{Set} \to \operatorname{Set} \\ \operatorname{Eq}_{\kappa} & \longrightarrow \operatorname{Eq}_{\lambda} \\ \downarrow & \downarrow \\ & & \downarrow \\ & & & & \downarrow \end{array} $	$\sim_{\kappa} \rightarrow \sim_{\lambda}$

Kind	Obj. semantics	Rel. semantics
κ	κ	\sim_{κ}
*	Set	Rel
* × *	$\operatorname{Set} \times \operatorname{Set}$	Rel × Rel
$* \rightarrow *$	$\begin{array}{c} \text{Set} \rightarrow \text{Set} \\ \text{Eq}_{\text{Set}} \longrightarrow \text{Eq}_{\text{Set}} \\ \text{Eq} & \text{Eq} \\ \text{Rel} \longrightarrow \text{Rel} \end{array}$	$\operatorname{Rel} o \operatorname{Rel}$
$\kappa o \lambda$	$ \begin{array}{ccc} \operatorname{Set} \to \operatorname{Set} \\ \operatorname{Eq}_{\kappa} & \longrightarrow \operatorname{Eq}_{\lambda} \\ \downarrow & \downarrow \\ & & \downarrow \\ & & & & \\ & & & & \\ & & & & \\ \end{array} $	$\sim_{\kappa} \rightarrow \sim_{\lambda}$

Kind	Obj. semantics	Rel. semantics
κ	κ	\frown_{κ}
*	Set	Rel
* × *	$Set \times Set$	Rel × Rel
$* \rightarrow *$	$\begin{array}{c} \text{Set} \rightarrow \text{Set} \\ \text{Eq}_{\text{Set}} \longrightarrow \text{Eq}_{\text{Set}} \\ \text{Eq} & \text{Eq} \\ \text{Rel} \longrightarrow \text{Rel} \end{array}$	$\operatorname{Rel} o \operatorname{Rel}$
$\kappa ightarrow \lambda$	$ \begin{array}{ccc} \operatorname{Set} \to \operatorname{Set} \\ \operatorname{Eq}_{\kappa} & \longrightarrow \operatorname{Eq}_{\lambda} \\ \downarrow & \downarrow \\ & \searrow & \downarrow \\ & & & \searrow \\ & & & & & & \\ & & & & & & \\ \end{array} $	$\sim_{\kappa}\rightarrow\sim_{\lambda}$

Kind	Obj. semantics	Rel. semantics
κ	κ	\sim_{κ}
*	Set	Rel
* × *	Set imes Set	$Rel \times Rel$
$* \rightarrow *$	$\begin{array}{c} \text{Set} \rightarrow \text{Set} \\ \text{Eq}_{\text{Set}} \longrightarrow \text{Eq}_{\text{Set}} \\ \text{Eq} & \text{Eq} \\ \text{Rel} \longrightarrow \text{Rel} \end{array}$	$\operatorname{Rel} o \operatorname{Rel}$
$\kappa o \lambda$	$ \begin{array}{ccc} \operatorname{Set} \to \operatorname{Set} \\ \operatorname{Eq}_{\kappa} & \longrightarrow \operatorname{Eq}_{\lambda} \\ \downarrow & \downarrow \\ & \searrow \\ & & & \searrow \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	$\sim_{\kappa}\rightarrow\sim_{\lambda}$

Higher Kinds

Kind	Obj. semantics	Rel. semantics
κ	κ	\sim_{κ}
*	Set	Rel
×	Set imes Set	$Rel \times Rel$
$* \rightarrow *$	$Set \to Set$	
	$Eq_{Set} \longrightarrow Eq_{Set}$	
	Eq IEL Eq	$\operatorname{Rel} o \operatorname{Rel}$
	Rel → Rel	
$\kappa o \lambda$	$Set \to Set$	
	$Eq_{\kappa} \longrightarrow Eq_{\lambda}$	
	$\bigvee_{\kappa} \longrightarrow \bigwedge_{\lambda}$	$\sim_{\kappa}\rightarrow\sim_{\lambda}$

Higher Kinds

Kind	Obj. semantics	Rel. semantics
κ	κ	\sim_{κ}
*	Set	Rel
×	Set imes Set	$Rel \times Rel$
$* \rightarrow *$	$Set \to Set$	
	$Eq_{Set} \longrightarrow Eq_{Set}$	
	Eq IEL Eq	$Rel \rightarrow Rel$
	Rel → Rel	
$\kappa o \lambda$	$Set \to Set$	
	$Eq_{\kappa} \longrightarrow Eq_{\lambda}$	
	$\bigvee_{\kappa} \longrightarrow \bigwedge_{\lambda}$	$\sim_{\kappa} \rightarrow \sim_{\lambda}$

Higher Kinds

Kind	Obj. semantics	Rel. semantics
κ	κ	\sim_{κ}
*	Set	Rel
×	$Set \times Set$	$Rel \times Rel$
$* \rightarrow *$	$\begin{array}{c} \text{Set} \to \text{Set} \\ \text{Eq}_{\text{Set}} \longrightarrow \text{Eq}_{\text{Set}} \\ \text{Eq} & \text{IEL} & \text{Eq} \\ \text{Rel} \longrightarrow \text{Rel} \end{array}$	$\operatorname{Rel} o \operatorname{Rel}$
$\kappa ightarrow \lambda$	$ \begin{array}{ccc} \operatorname{Set} \to \operatorname{Set} \\ \operatorname{Eq}_{\kappa} & \longrightarrow \operatorname{Eq}_{\lambda} \\ \downarrow & \downarrow \\ & \searrow \\ & & \searrow \\ & & & \searrow \\ & & & & \searrow \\ & & & & & & \searrow \\ \end{array} $	$\sim_{\kappa} \rightarrow \sim_{\lambda}$

DTT treats types and terms on equal footing, BUT

- Related terms are het. equal,
- Related types are NOT: Rel ≠ Eq.

Mainstream approach: Ignore this fact

Takeuti (2001), Krishnaswami & Dreyer (2013), Atkey, Ghani & Johann (2014) ⇒ Free theorems can break for large types.

Our approach:

- Modality on $(\mu \mid x : A) \rightarrow B x$ says how function acts on relations
- Free theorems hold for parametric functions

DTT treats types and terms on equal footing, BUT

- Related terms are het. equal,
- Related types are NOT: Rel \neq Eq.

Mainstream approach: Ignore this fact

Takeuti (2001), Krishnaswami & Dreyer (2013), Atkey, Ghani & Johann (2014) ⇒ Free theorems can break for large types.

Our approach:

- Modality on $(\mu \mid x : A) \rightarrow B x$ says how function acts on relations.
- Free theorems hold for parametric functions

DTT treats types and terms on equal footing, BUT

- Related terms are het. equal,
- Related types are NOT: Rel \neq Eq.

Mainstream approach: Ignore this fact

Takeuti (2001), Krishnaswami & Dreyer (2013), Atkey, Ghani & Johann (2014) ⇒ Free theorems can break for large types.

Our approach:

- Modality on $(\mu \mid x : A) \rightarrow B x$ says how function acts on relations
- Free theorems hold for parametric functions

DTT treats types and terms on equal footing, BUT

- Related terms are het. equal,
- Related types are NOT: Rel \neq Eq.

Mainstream approach: Ignore this fact

Takeuti (2001), Krishnaswami & Dreyer (2013), Atkey, Ghani & Johann (2014) ⇒ Free theorems can break for large types.

Our approach:

- Modality on $(\mu \mid x : A) \rightarrow B x$ says how function acts on relations,
- Free theorems hold for parametric functions.

DTT treats types and terms on equal footing, BUT

- Related terms are het. equal,
- Related types are NOT: Rel \neq Eq.

Mainstream approach: Ignore this fact

Takeuti (2001), Krishnaswami & Dreyer (2013), Atkey, Ghani & Johann (2014) ⇒ Free theorems can break for large types.

Our approach:

- Modality on $(\mu \mid x : A) \rightarrow B x$ says how function acts on relations,
- Free theorems hold for parametric functions.

DTT treats types and terms on equal footing, BUT

- Related terms are het. equal,
- Related types are NOT: Rel \neq Eq.

Mainstream approach: Ignore this fact

Takeuti (2001), Krishnaswami & Dreyer (2013), Atkey, Ghani & Johann (2014) ⇒ Free theorems can break for large types.

Our approach:

- Modality on $(\mu \mid x : A) \rightarrow B x$ says how function acts on relations,
- Free theorems hold for parametric functions.

Continuity List : $(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$

Continuity List : $(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$ $X = Y \longrightarrow \text{List } X = \text{List } Y$ Eq IEL Eq $X \frown Y \longrightarrow \text{List } X \frown \text{List } Y$

Continuity List : $(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$ $X = Y \longrightarrow \text{List } X = \text{List } Y$ Eq IEL Eq $X \frown Y \longrightarrow \text{List } X \frown \text{List } Y$

Continuity

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

$$X = Y \longrightarrow \text{List } X = \text{List } Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$$

Parametricity

$$[]:(\textbf{par} \mid X:\mathcal{U}_0) \to \mathsf{List}\; X$$

$$X = Y$$
 $[]_X =_{\text{List } R} []_Y$
 $R : X \frown Y$ $[]_X \frown_{\text{List } R} []_Y$

Continuity

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

$$X = Y \longrightarrow \text{List } X = \text{List } Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \frown Y \longrightarrow \text{List } X \frown \text{List } Y$$

In System F: \rightarrow

Parametricity

$$[]:(\textbf{par}\mid X:\mathcal{U}_0)\rightarrow\mathsf{List}\;X$$

$$X = Y$$
 $[]_X =_{\text{List } R} []_Y$

$$R: X \frown Y \qquad []_X \frown_{\text{List } R} []_Y$$
In System F: \forall

Continuity

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

 $X = Y \longrightarrow \text{List } X = \text{List } Y$

$$\begin{array}{c|cccc}
Eq & IEL & Eq \\
\hline
X & Y & \longrightarrow List X & List Y
\end{array}$$

In System F: \rightarrow

Parametricity

$$[]:(\textbf{par} \mid X:\mathcal{U}_0) \to \mathsf{List}\; X$$

$$X = Y$$
 $\begin{bmatrix} X = \text{List } R \end{bmatrix} Y$

Eq
$$R: X \frown Y$$
 $\begin{bmatrix} X \frown \text{List } R \end{bmatrix} Y$
In System F: \forall

- Level -1 types: ⊤ (propositions)
- Level 0 types: $= \rightarrow \top$
- Level 1 types: $= \rightarrow \frown \rightarrow \top$
- Level 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

We can decouple level (predicativity) and depth (number of relations).

- Level -1 types: ⊤ (propositions)
- Level 0 types: $= \rightarrow \top$
- Level 1 types: $= \rightarrow \frown \rightarrow \top$
- Level 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

We can decouple level (predicativity) and depth (number of relations).

- Level -1 types: ⊤ (propositions)
- Level 0 types: $= \rightarrow \top$
- Level 1 types: $= \rightarrow \frown \rightarrow \top$
- Level 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

We can decouple level (predicativity) and depth (number of relations).

- Level -1 types: ⊤ (propositions)
- Level 0 types: $= \rightarrow \top$
- Level 1 types: $= \rightarrow \frown \rightarrow \top$
- Level 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

We can decouple level (predicativity) and depth (number of relations).

- **Level -1 types:** ⊤ (propositions)
- Level 0 types: $= \rightarrow \top$
- Level 1 types: $= \rightarrow \frown \rightarrow \top$
- Level 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

We can decouple level (predicativity) and depth (number of relations).

- **Depth -1 types:** ⊤ (propositions)
- Depth 0 types: $= \rightarrow \top$
- Depth 1 types: $= \rightarrow \frown \rightarrow \top$
- Depth 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$

• ...

We can decouple **level** (predicativity) and **depth** (number of relations).

- **Depth -1 types:** ⊤ (propositions)
- Depth 0 types: $= \rightarrow \top$
- Depth 1 types: $= \rightarrow \frown \rightarrow \top$
- Depth 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

We can decouple **level** (predicativity) and **depth** (number of relations).

Continuity: $1 \rightarrow 1$

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

$$X = Y \longrightarrow \text{List } X = \text{List } Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \frown Y \longrightarrow \text{List } X \frown \text{List } Y$$

Parametricity: $1 \rightarrow 0$

$$[]: (\mathbf{par} \mid X : \mathcal{U}_0) \to \mathsf{List}\ X$$

$$X = Y \qquad []_X =_{\text{List } R} []_Y$$

$$Eq$$

$$R: X \frown Y$$

Ad hoc polymorphism

Law of excluded middle (wrong):

$$lem : (\mathbf{par} \mid X : \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$$

Free Theorem (contradiction!)

$$((\mathbf{par} \mid X : \mathcal{U}) \to X) \uplus ((\mathbf{par} \mid X : \mathcal{U}) \to X \to \mathsf{Empty})$$

Ad hoc: $1 \rightarrow 0$

$$lem: (\mathbf{hoc}: X: \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$$

$$X = Y \longrightarrow lem \ X = lem \ Y$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$X \frown Y$$

Ad hoc polymorphism

Law of excluded middle (wrong):

$$lem : (par \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow Empty)$$

Free Theorem (contradiction!)

$$((\textbf{par} \mid X : \mathcal{U}) \rightarrow X) \uplus ((\textbf{par} \mid X : \mathcal{U}) \rightarrow X \rightarrow \mathsf{Empty})$$

Ad hoc: $1 \rightarrow 0$

$$lem: (\mathbf{hoc}: X: \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$$

$$X = Y \longrightarrow lem \ X = lem \ Y$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$X \frown Y$$

Ad hoc polymorphism

Law of excluded middle (wrong):

lem :
$$(\mathbf{par} \mid X : \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$$

Free Theorem (contradiction!)

$$((\mathsf{par} : X : \mathcal{U}) \to X) \uplus ((\mathsf{par} : X : \mathcal{U}) \to X \to \mathsf{Empty})$$

Ad hoc: $1 \rightarrow 0$

$$lem: (\mathbf{hoc}: X: \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$$

$$X = Y \longrightarrow lem \ X = lem \ Y$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$X \frown Y$$

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to \mathsf{List}_n X$,
- $cons_X : (irr + m \ n : \mathbb{N}) \to (irr + m < n) \to X \to List_m \ X \to List_n \ X$

Irrelevance is a dependent generalization of constancy.

Codomain List, A must be shape-irrelevant.

Abel & Scherer (2012), example 2.8

Irrelevance

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to \mathsf{List}_n X$,
- $cons_X : (irr \mid m \mid n : \mathbb{N}) \rightarrow (irr \mid m < n) \rightarrow X \rightarrow List_m \mid X \rightarrow List_n \mid X$

Irrelevance is a dependent generalization of constancy.

Codomain List_ A must be shape-irrelevant.

Abel & Scherer (2012), example 2.8

Irrelevance

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to \mathsf{List}_n X$,
- $cons_X : (irr \mid m \mid n : \mathbb{N}) \rightarrow (irr \mid m < n) \rightarrow X \rightarrow List_m \mid X \rightarrow List_n \mid X$

Irrelevance is a **dependent** generalization of **constancy**.

Codomain List_ A must be shape-irrelevant.

Abel & Scherer (2012), example 2.8

Irrelevance

Irrelevance := ignored by definitional equality

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to \mathsf{List}_n X$,
- $cons_X : (irr \mid m \mid n : \mathbb{N}) \rightarrow (irr \mid m < n) \rightarrow X \rightarrow List_m \mid X \rightarrow List_n \mid X$

Irrelevance is a **dependent** generalization of **constancy**.

Codomain List... A must be **shape-irrelevant**.

Abel & Scherer (2012), example 2.8

Shape-irrelevance: $0 \rightarrow 1$

$$\mathsf{List}_{\sqcup} A : (\mathbf{shi} \mid \mathbb{N}) \to \mathcal{U}_0$$

Irrelevance: $0 \rightarrow 0$

$$[]: (\mathbf{irr} \mid n : \mathbb{N}) \to \mathsf{List}_n X$$

Shape-irrelevance: $0 \rightarrow 1$ $\mathsf{List}_{\sqcup} A : (\mathsf{shi} \mid \mathbb{N}) \to \mathcal{U}_0$ $List_m A = List_n A$ $List_m A \frown List_n A$ m = n

Shape-irrelevance: $0 \rightarrow 1$

List_
$$A: (\mathbf{shi} \mid \mathbb{N}) \to \mathcal{U}_0$$

Irrelevance: $0 \rightarrow 0$

$$[]: (\mathbf{irr} \mid n : \mathbb{N}) \to \mathsf{List}_n X$$

$$m = n$$
 $[]_m =_{\text{List}_{\bullet}} A []_n$ \downarrow \downarrow \uparrow

Take home message

Describe function behaviour as action on degree of relatedness. **con**, **par**, **hoc**, **shi**, **irr** are instances of this.

Thanks!

Further questions?

Breaking free theorems in DTT

System F_{ω} :

Free Theorem

$$\forall X.(X \rightarrow A) \rightarrow (X \rightarrow B) \cong A \rightarrow B$$

Dependent types:

$$leak: (X:\mathcal{U}) \to (X \to A) \to (X \to \mathcal{U})$$
$$leak \ X \ f \ x = X$$

Our solution:

$$(\mathbf{par} \mid X : \mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

Breaking free theorems in DTT

System F_{ω} :

Free Theorem

$$\forall X.(X \rightarrow A) \rightarrow (X \rightarrow B) \cong A \rightarrow B$$

Dependent types:

leak :
$$(X : \mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

leak X f x = X

Our solution:

$$(\mathbf{par} \mid X : \mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

Breaking free theorems in DTT

System F_{ω} :

Free Theorem

$$\forall X.(X \rightarrow A) \rightarrow (X \rightarrow B) \cong A \rightarrow B$$

Dependent types:

$$leak: (X: \mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

$$leak \ X \ f \ x = X$$

Our solution:

$$(\mathsf{par} \mid X : \mathcal{U}) \to (X \to A) \to (X \to \mathcal{U})$$

All modalities at lowest levels

$(\mu : A) o B$	$B:\mathcal{U}_0$	$B:\mathcal{U}_1$	$B:\mathcal{U}_n$
	values	types	
$A:\mathcal{U}_0$	hoc, irr	hoc, shi, irr	
values			
$A:\mathcal{U}_1$	hoc, par, irr	hoc, con, shi,	
types		par, shi∥, irr	
$A:\mathcal{U}_m$			
			$\frac{(m+n+2)!}{(m+1)!(n+1)!}$

Comparison with HoTT

Degrees of Relatedness	HoTT
functions act on \frown_i	functions preserve \simeq
equality as \frown_0	equality as \simeq
relational HITs ¹	groupoidal HITs
depth: \mathcal{U}_{ℓ}^d : $\mathcal{U}_{\ell+1}^{d+1}$	h -level: \mathcal{U}_{ℓ}^{h} : $\mathcal{U}_{\ell+1}^{h+1}$

¹future work

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R. \mathit{if}_X \curvearrowright_0^{Bool \to R \to R \to R} \mathit{if}_Y$	$ \begin{array}{c} ((\lambda X.X) \operatorname{Bool}: \mathcal{U}_0) & \overset{\mathcal{U}_0}{{{{{{{}{{}{}{}{}{}{}}}}}$	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$ $([]: List_4 \ \mathcal{A}) \curvearrowright_0^{List_6} \mathcal{A} ([]: List_6 \ \mathcal{A})$ \dots
1-related	n/a	$ \begin{split} \left((A : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_\bullet A : \operatorname{List}_4 A \frown_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ & R : (G : \operatorname{Grp}) \frown_1^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & R : (G : \operatorname{Grp}) \frown_1^V (M : \operatorname{Mon}) \end{split} $	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_{-1}^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \curvearrowright_{-1}^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_{\bullet} \ \kappa \curvearrowright_{-1}^{\mathcal{U}_1} \operatorname{List}_{\delta} \ \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright_{-1}^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a	$V: (Grp:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon:\mathcal{U}_1)$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.ii_X \curvearrowright_0^{Bool \to R \to R \to R} ii_Y$	$ \begin{array}{c} ((\lambda X.X) \ Bool : \mathcal{U}_0) \ \frown_0^{\mathcal{U}_0} \ (Bool : \mathcal{U}_0) \\ \\ ([] : List_4 \ \kappa) \ \frown_0^{List_6 \ \kappa} \ ([] : List_6 \ \kappa) \\ \\ \dots \end{array} $	$((\lambda \xi. \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \ \mathcal{A}) \curvearrowright_0^{List_0}^{\mathcal{List}_0} \mathcal{A} ([] : List_6 \ \mathcal{A})$ \dots
1-related	n/a	$\begin{split} \left((A : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : \left(\mathbb{N} : \mathcal{U}_0 \right) \curvearrowright_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A \curvearrowright_{1}^{\mathcal{U}_0} \operatorname{List}_{6} A \\ & A : \left(G : \operatorname{Grp} \right) \curvearrowright_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : \left(G : \operatorname{Grp} \right) \curvearrowright_{1}^{V} (M : \operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_{1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_{1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_{4} \ \kappa \curvearrowright^{\mathcal{U}_1}_{1} \operatorname{List}_{6} \ \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright^{\operatorname{Cat}}_{1} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a $(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ because $2+5\equiv 7$	$V: (Grp: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon: \mathcal{U}_1)$
	Andreas Nuyts, Dor	minique Devriese Degrees of Relatedne	ss 4/4

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.H_X \curvearrowright_0^{Bool \to R \to R \to R} H_Y$	$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \dots $	$ ((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1) $ $ ([]: List_4 \ \mathcal{A}) \curvearrowright_0^{List_6 \ \mathcal{A}} ([]: List_6 \ \mathcal{A}) $ $ \dots $
1-related	n/a	$ \begin{split} \left((A : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_\bullet A : \operatorname{List}_4 A \frown_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ & A : (G : \operatorname{Grp}) \frown_1^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : (G : \operatorname{Grp}) \frown_1^V (M : \operatorname{Mon}) \end{split} $	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{ \bullet - \}} \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_4 \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright_2^{\mathcal{U}_1} (Mon: \mathcal{U}_1)$
		$(\operatorname{ist}_4 A) \curvearrowright_0^{\operatorname{List}_6 A} ([] : \operatorname{List}_6 A)$ where $A \in \operatorname{Rel}(\operatorname{List}_4 A, \operatorname{List}_6 A)$	

Value-level objects

Kind-level objects

	Value-level objects	Type-level objects	Kind-level objects
	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related	$(2+5:\mathbb{N}) \cap_{0}^{\mathbb{N}} (7:\mathbb{N})$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$
(het. eq.)	$([]: List_4 A) \frown_0^{List_\bullet A} ([]: List_6 A)$	([]: List ₄ κ) $\frown_0^{\text{List}_{\bullet} \ \kappa}$ ([]: List ₆ κ)	$([]: List_4 \ \mathcal{A}) \frown_0^{List_{\bullet} \ \mathcal{A}} ([]: List_6 \ \mathcal{A})$
	$\exists R. (5 : \mathbb{N}) \curvearrowright_0^R \text{ (true : Bool)}$ $\forall R. \text{if}_X \curvearrowright_0^{\text{Bool} \to R \to R \to R} \text{ if}_Y$		
1-related	n/a	$\left((A: \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B: \mathcal{U}_0) \right) := \operatorname{Rel}(A, B)$	$\left((\kappa : \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_{1} (\lambda : \mathcal{U}_1) \right) := \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}}$
		$\mathbb{N} := Eq_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0)$	$\mathcal{U}_0: (\mathcal{U}_0:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_1 (\mathcal{U}_0:\mathcal{U}_1)$
		List _e A : List ₄ $A \sim_1^{\mathcal{U}_0}$ List ₆ A	List _e κ : List ₄ $\kappa \curvearrowright_1^{\mathcal{U}_1}$ List ₆ κ
		$R: (G: Grp) \curvearrowright^{Grp}_{1} (H: Grp)$	$ \rho: (\alpha: Cat) \frown^{Cat}_{1} (\beta: Cat) $
		$R: (G: Grp) \curvearrowright_1^V (M: Mon)$	
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon: \mathcal{U}_1)$
	($5: \mathbb{N}) \curvearrowright_0^R (true : Bool)$ for some $R \in Rel(\mathbb{N}, Bool)$	

0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: \text{List}_{4} A) \curvearrowright_{0}^{\text{List}_{6} A} ([]: \text{List}_{6} A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_{0}^{R} (\text{true}: \text{Bool})$ $\forall R.\textit{if}_{X} \curvearrowright_{0}^{\text{Bool} \rightarrow R \rightarrow R} \textit{if}_{Y}$	$((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) \overset{\mathcal{U}_0}{{{{{{{{{{\overset$	$ ((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \cap_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1) $ $ ([] : List_4 \ \mathcal{A}) \cap_0^{List_6} \mathcal{A} ([] : List_6 \ $
1-related	n/a	$ \begin{split} \left((A:\mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B:\mathcal{U}_0) \right) &:= \operatorname{Rel}(A,B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}:\mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N}:\mathcal{U}_0) \\ & \text{List}_\bullet A : \operatorname{List}_4 A \frown_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ & R : (G:\operatorname{Grp}) \frown_1^{\operatorname{Grp}} (H:\operatorname{Grp}) \\ & R : (G:\operatorname{Grp}) \frown_1^V (M:\operatorname{Mon}) \end{split} $	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_{1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda) \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_{1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_{\bullet} \kappa \curvearrowright^{\mathcal{U}_1}_{1} \operatorname{List}_{\bullet} \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright^{\operatorname{Cat}}_{1} (\beta : \operatorname{Cat}) \end{split}$
2-related	$(if_X: Bool \to X \to X \to X)$	n/a $(if_Y : B_0)$	$V: (Grp:\mathcal{U}_1) \sim_2^{\mathcal{U}_1} (Mon:\mathcal{U}_1)$ $OOI \to Y \to Y \to Y)$
		for all $R \in \operatorname{Rel}(X, Y)$	

 $A: \kappa: \mathcal{U}_1$ can be

Value-level objects

 $a:A:\mathcal{U}_0$ can be

Kind-level objects

 $\kappa: \mathcal{A}: \mathcal{U}_2$ can be

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa:\mathcal{A}:\mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R. \mathit{if}_X \curvearrowright_0^{Bool \to R \to R} \mathit{if}_Y$	$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \cdots $	
1-related	n/a	$\begin{split} \left((A: \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B: \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_{\bullet} A : \operatorname{List}_4 A \frown_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ & R : (G: \operatorname{Grp}) \frown_1^{\operatorname{Grp}} (H: \operatorname{Grp}) \\ & R : (G: \operatorname{Grp}) \frown_1^{V} (M: \operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_4 \ \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \ \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon: \mathcal{U}_1)$
	((λ <i>X</i> .)	X) Bool : \mathcal{U}_0) $\curvearrowright_0^{\mathcal{U}_0}$ (Bool : because $(\lambda X.X)$ Bool \equiv Bool	\mathcal{U}_0)

Value-level objects

Kind-level objects

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa : \mathcal{A} : \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$ $([]: List_4 \mathcal{A}) \curvearrowright_0^{List_6} \mathcal{A} ([]: List_6 \mathcal{A})$
1-related	n/a	$ \begin{split} \left((A : \mathcal{U}_0) & \curvearrowright_1^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) := \operatorname{Rel}(A, B) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : \left(\mathbb{N} : \mathcal{U}_0 \right) & \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_\bullet A : \operatorname{List}_4 A & \curvearrowright_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ R : \left(G : \operatorname{Grp} \right) & \curvearrowright_1^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ R : \left(G : \operatorname{Grp} \right) & \curvearrowright_1^{V} (M : \operatorname{Mon}) \end{split} $	$\begin{split} \left((\kappa : \mathcal{U}_1) \frown_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \frown_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_4 \ \kappa \frown_1^{\mathcal{U}_1} \ \operatorname{List}_6 \ \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \frown_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a	$V: (\operatorname{Grp}: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (\operatorname{Mon}: \mathcal{U}_1)$
	([] : L	$\operatorname{List}_4 \kappa) \frown_0^{\operatorname{List}_{\bullet} \kappa} ([] : \operatorname{List}_6)$	κ)

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa : \mathcal{A} : \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	$((\lambda \xi. \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \ \mathcal{A}) \curvearrowright_0^{List_0} \mathcal{A} ([] : List_6 \ \mathcal{A})$
1-related	n/a	$ \left((A : \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) := \text{Rel}(A, B) $ $ \mathbb{N} := \text{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) $ $ \text{List}_0 A : \text{List}_4 A \curvearrowright_1^{\mathcal{U}_0} \text{List}_6 A $ $ A : (G : \text{Grp}) \curvearrowright_1^{\text{Grp}} (H : \text{Grp}) $ $ A : (G : \text{Grp}) \curvearrowright_1^{V} (M : \text{Mon}) $	$\begin{split} \left(\left(\kappa : \mathcal{U}_{1} \right) \curvearrowright_{1}^{\mathcal{U}_{1}} \left(\lambda : \mathcal{U}_{1} \right) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\left\{ \bullet \to \bullet \right\}} \\ \mathcal{U}_{0} : \left(\mathcal{U}_{0} : \mathcal{U}_{1} \right) \curvearrowright_{1}^{\mathcal{U}_{1}} \left(\mathcal{U}_{0} : \mathcal{U}_{1} \right) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_{4} \ \kappa \curvearrowright_{1}^{\mathcal{U}_{1}} \operatorname{List}_{6} \ \kappa \\ \rho : \left(\alpha : \operatorname{Cat} \right) \curvearrowright_{1}^{\operatorname{Cat}} \left(\beta : \operatorname{Cat} \right) \end{split}$
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon: \mathcal{U}_1)$
$(a:A) \curvearrowright_i^{\mathbf{R}} (b:B)$ is always w.r.t. $\mathbf{R}: (A:\mathcal{U}_n) \curvearrowright_{i+1}^{\mathcal{U}_n} (B:\mathcal{U}_n)$ $\left((A:\mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B:\mathcal{U}_0) \right) := \operatorname{Rel}(A,B)$ Andreas Nuvts, Dominique Devriese Degrees of Relatedness 4/4			

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	$((\lambda \xi. \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \ \mathcal{A}) \curvearrowright_0^{List_0} \mathcal{A} ([] : List_6 \ \mathcal{A})$ \cdots
1-related	n/a	$ \begin{split} \left(\left(A : \mathcal{U}_0 \right) \curvearrowright_1^{\mathcal{U}_0} \left(B : \mathcal{U}_0 \right) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq_N} : \left(\mathbb{N} : \mathcal{U}_0 \right) \curvearrowright_1^{\mathcal{U}_0} \left(\mathbb{N} : \mathcal{U}_0 \right) \\ & \text{List}_a \ A : \operatorname{List}_4 \ A \curvearrowright_1^{\mathcal{U}_0} \ \operatorname{List}_6 \ A \\ & A : \left(G : \operatorname{Grp} \right) \curvearrowright_1^{\operatorname{Grp}} \left(H : \operatorname{Grp} \right) \\ & A : \left(G : \operatorname{Grp} \right) \curvearrowright_1^{V} \left(M : \operatorname{Mon} \right) \end{split} $	$ \begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_{1}^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_{1}^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \qquad \qquad \operatorname{List}_{\bullet} \kappa : \operatorname{List}_{4} \kappa \curvearrowright_{1}^{\mathcal{U}_1} \operatorname{List}_{6} \kappa \\ & \qquad \qquad \rho : (\alpha : \operatorname{Cat}) \curvearrowright_{1}^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split} $
2-related	n/a	n/a	$V: (Grp:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon:\mathcal{U}_1)$
	NI.	Es . (N. 11) U0 (N. 1	()

$$\mathbb{N} := \mathsf{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0)$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1 \text{ can be}$	Kind-level objects $\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R. \mathit{if}_X \curvearrowright_0^{Bool \to R \to R \to R} \mathit{if}_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	$((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_0} \mathcal{A} ([] : List_6 \mathcal{A})$ \cdots
1-related	n/a	$ \begin{split} \left((A : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A \curvearrowright_{1}^{\mathcal{U}_0} \operatorname{List}_{6} A \\ & A : (G : \operatorname{Grp}) \curvearrowright_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : (G : \operatorname{Grp}) \curvearrowright_{1}^{V} (M : \operatorname{Mon}) \end{split} $	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_{1} (\lambda : \mathcal{U}_1) \right) &:= \text{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_{1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \text{List}_{4} \ \kappa \curvearrowright^{\mathcal{U}_1}_{1} \text{List}_{6} \ \kappa \\ & \rho : (\alpha : \text{Cat}) \curvearrowright^{\text{Cat}}_{1} (\beta : \text{Cat}) \end{split}$
2-related	n/a	n/a	$V: (\operatorname{Grp}: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (\operatorname{Mon}: \mathcal{U}_1)$
	List _• A : ((List ₄ A : \mathcal{U}_0) $\sim_1^{\mathcal{U}_0}$ (List ₆ A	4 : <i>U</i> ₀)

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	$((\lambda \xi. \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \ \mathcal{A}) \curvearrowright_0^{List_0} \mathcal{A} ([] : List_6 \ \mathcal{A})$ \cdots
1-related	n/a	$ \begin{split} \left(\left(A : \mathcal{U}_0 \right) \frown_{1}^{\mathcal{U}_0} \left(B : \mathcal{U}_0 \right) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : \left(\mathbb{N} : \mathcal{U}_0 \right) \frown_{1}^{\mathcal{U}_0} \left(\mathbb{N} : \mathcal{U}_0 \right) \\ & \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A \frown_{1}^{\mathcal{U}_0} \operatorname{List}_{6} A \\ & A : \left(G : \operatorname{Grp} \right) \frown_{1}^{Grp} \left(H : \operatorname{Grp} \right) \\ & A : \left(G : \operatorname{Grp} \right) \frown_{1}^{V} \left(M : \operatorname{Mon} \right) \end{split} $	$ \begin{split} \left((\kappa : \mathcal{U}_1) & \smallfrown_{1}^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) := \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) & \smallfrown_{1}^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ \operatorname{List}_{\bullet} \kappa : \operatorname{List}_{4} \kappa & \smallfrown_{1}^{\mathcal{U}_1} \operatorname{List}_{6} \kappa \\ \rho : (\alpha : \operatorname{Cat}) & \smallfrown_{1}^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split} $
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon: \mathcal{U}_1)$
	`	$G: \operatorname{Grp}) \curvearrowright_{1}^{\operatorname{Grp}} (H: \operatorname{Grp})$ \cong $1 \times (e_{G} \curvearrowright_{0}^{R} e_{H}) \times (*_{G} \curvearrowright_{0}^{R} e_{H})$	$(\underline{R} \to \underline{R} \to \underline{R} *_H)$

Degrees of Relatedness

Andreas Nuyts, Dominique Devriese

	Value-level objects	Type-level objects	Kind-level objects
	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	κ : \mathcal{A} : \mathcal{U}_2 can be
0-related	$(2+5:\mathbb{N}) \cap_0^{\mathbb{N}} (7:\mathbb{N})$	$((\lambda X.X) \text{ Bool} : \mathcal{U}_0) \cap_0^{\mathcal{U}_0} (\text{Bool} : \mathcal{U}_0)$	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \smallfrown_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$
(het. eq.)	$([]: List_4 A) \frown_0^{List_\bullet A} ([]: List_6 A)$	$([]: List_4 \; \kappa) \frown_0^{List_{\bullet} \; \kappa} ([]: List_6 \; \kappa)$	$([]: List_4 \ \mathcal{A}) \frown_0^{List_{ullet} \ \mathcal{A}} ([]: List_6 \ \mathcal{A})$
	$\exists R. (5: \mathbb{N}) \curvearrowright_0^R \text{ (true : Bool)}$ $\forall R. \text{if}_X \curvearrowright_0^{\text{Bool} \to R \to R \to R} \text{if}_Y$		
1-related	n/a	$\left((A: \mathcal{U}_0) \smallfrown_1^{\mathcal{U}_0} (B: \mathcal{U}_0) \right) := \operatorname{Rel}(A, B)$	$\left((\kappa : \mathcal{U}_1) \smallfrown_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) := \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}}$
		$\mathbb{N} := Eq_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright^{\mathcal{U}_0}_{1} (\mathbb{N} : \mathcal{U}_0)$	$\mathcal{U}_0: (\mathcal{U}_0:\mathcal{U}_1) \overset{\mathcal{U}_1}{\sim_1} (\mathcal{U}_0:\mathcal{U}_1)$
		List• A : List ₄ $A \stackrel{\mathcal{U}_0}{\sim} 1$ List ₆ A	List _• κ : List ₄ $\kappa \sim 1$ List ₆ κ
		$R: (G: \operatorname{Grp}) \curvearrowright_{1}^{\operatorname{Grp}} (H: \operatorname{Grp})$	$\rho: (\alpha: Cat) \frown_{1}^{Cat} (\beta: Cat)$
		$R: (G: \operatorname{Grp}) \frown_1^V (M: \operatorname{Mon})$	
2-related	n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon: \mathcal{U}_1)$
	`	$G: \operatorname{Grp}) \curvearrowright_{1}^{V} (M : \operatorname{Mon})$ $:=$ $0 \times (e_{G} \curvearrowright_{0}^{R} e_{M}) \times (*_{G} \curvearrowright_{0}^{R} e_{M})$	$\frac{R \to R \to R}{0} *_M)$

$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	κ : \mathcal{A} : \mathcal{U}_2 can be			
$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R \to R} if_Y$	$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \dots $	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$ $([]: List_4 \mathcal{A}) \curvearrowright_0^{List_6} \mathcal{A} ([]: List_6 \mathcal{A})$			
n/a	$ \left((A : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) := \operatorname{Rel}(A, B) $ $ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) $ $ \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A \curvearrowright_{1}^{\mathcal{U}_0} \operatorname{List}_{6} A $ $ R : (G : \operatorname{Grp}) \curvearrowright_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) $ $ R : (G : \operatorname{Grp}) \curvearrowright_{1}^{V} (M : \operatorname{Mon}) $	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_{1}^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_{1}^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_{4} \kappa \curvearrowright_{1}^{\mathcal{U}_1} \operatorname{List}_{6} \kappa \\ \rho &: (\alpha : \operatorname{Cat}) \curvearrowright_{1}^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$			
n/a	n/a	$V: (Grp: \mathcal{U}_1) \curvearrowright_2^{\mathcal{U}_1} (Mon: \mathcal{U}_1)$			
$V: (Grp:\mathcal{U}_1) \curvearrowright_2^{\mathcal{U}_1} (Mon:\mathcal{U}_1)$					

Value-level objects

0-related

(het. eq.)

1-related

2-related

Kind-level objects