مواد ، در زندنی ما، نفسی سخرف و موتر دارند. صنایع عدا، پوسات، حمل و نفل، ساختمان، ارتباطات و عیره، دم
و پیش تحت تاثیر هستند. رشد و گسترش تمدن بشری در گرو کشف و شناخت مواد است. برای
رفع نیازها، باید مواد تولید شوند، یا با مواد، خواص آنها تغییر کند. شیمیدانها با پی بردن به رابطه
مواد با سازنده، دریافتند که « دادن» به مواد و « مواد به یکدیگر»، سبب «»،
و گاهی «» خواص آنها میشود. اکنون، میتوان موادی نو ، با ویژگیهای منحصر به فرد و دلخواه طراحی کرد.
خود را بیازمایید صفحه ۳: الف) مواد () ← فلز مواد () ← لاستیک نتیجه: منشاء اجزای این فرآورده، از است.
این فرآیند، شامل به دست آوردن مواد دلخواه از منابع مختلف، برای تولید مشخص است؛ یعنی:
اولیه تهیه دوچرخه، به طور قابل استفاده نیستند و باید شوند.
ب)، کنارههای ورق برشخورده و کنارههای بریده شده، دور ریخته پ) قسمتهای، ممکن است در تماس با هوا و رطوبت، زنگ بزنند.
قسمتهای و، فرسوده و کهنه میشوند.
رو و بیر دید. (مستقیما از کره زمین به دست می آیند؛ مانند فلزها، نفت، الماس و طلا
مستقیما از کره زمین به دست میآیند؛ مانند فلزها، نفت، الماس و طلا مواد <u>غیرمستقیم</u> از زمین به دست میآیند؛ (از مواد تهیه میشوند) مانند لاستیک و پلاستیک
ر <u>و</u>
پ) به تقریب، کل مواد در کره زمین، <u>ثابت</u> میماند. هر چیزی که از زمین استخراج شده، در نهایت به صورت
پسماند و زباله، به زمین باز م <i>یگردد.</i>
ت) هر چه میزان بهرهبرداری از منابع، بیشتر باشد، آن کشور توسعه یافتهتر است. (ندرست)
دلیل: «» ثروت ملی هستند. بهرهبرداری باید با مدیریت برداشت اصولی از همراه باشد:
میزان بهرهبرداری مدیریت شده از منابع، $^{\circlearrowleft}$ به داشتن برداشت منابع، داشتن «» های پیشرفته و $^{\circlearrowright}$
[©] آموزش درست «» بستگی دارد.
در نظر داشتن ۳ مورد بالا، به پیشرفت پایدار میانجامد.
خود را بیازمایید ۳ صفحه ۴: الف) حدود میلیارد تن ب) بیش از ۷۰ میلیارد تن برای هر سه (حدود ۱۲
میلیارد تن برای فلزها)
ميزان مصرف سه منبع: >
شیب مصرف سه منبع: > > (پس از سال ۲۰۰۵)
 پ) زمین، منبع عظیمی از هدایای ارزشمند و ضروری برای زندگی است. سالانه، مقادیر بسیار زیادی از منابع،
و برای مصارف گوناگون، استخراج و مورد استفاده قرار میگیرند. با پیشرفت «» و ساخت
<u>دستگاهها</u> و <u>ابزار</u> بهتر (بهتر و مدرن)، وابستگی (نیاز) به منابع، بیشتر
 دانشمندان بزرگ، میتوانند با برسی دقیق اطلاعات و یافتههای موجود درباره مواد و پدیده های گوناگون، ها،
ها و بین آنها را درک کنند. (مانند، که جدول دوره ای را طراحی نمود.)
شیمیدانها با مواد و انجام (استفاده از هر ۵) آنها را دقیق برسی میکنند. (آزمایش:
کنترل شده)
· · · · · · · · · · · · · · · · · · ·

هدف این برسیها، یافتن اطلاعات بیشتر و <u>دقیقتر</u> درباره های مواد است. برقراری بین این دادهها
(و اطلاعات) و نیز، یافتن ها و ها، گامی مهمتر و موثرتر در پیشرفت علم است.
علم شیمی: مطالعه مطالعه مطالعه و و فتار عنصرها و مواد علم شیمی: و رای یافتن ها و های رفتار و آنها است.
جدول دورهای، مانند یک نقشه راه، به <u>سازماندهی</u> ، و تجزیه و تحلیل دادهها در مورد، کمک میکند تا
های پنهان در رفتار عنصرها، آشکار شود.
در جدول دورهای، عنصرها بر اساس بنیادی ترین ویژگی آنها، یعنی چیده شده است تذکر: جدول دورهای جدید بر مبنای اتمی و جدول دورهای مندلیف بر اساس اتمی مرتب شدهاند.
جدول دورهای، شامل دوره، و گروه است.
عنصرهای جدول، بر اساس شان در سه دسته، و قرار میگیرند.
تعیین موقیت عنصر در جدول، (تعیین و در جدول)، به پیشبینی خواص و رفتار عنصر، کمک
زیادی میکند. با برسی رفتارهای عناصر، میتوان:
<u>۱</u> آنها را دستهبندی کرد. ۲ به ها و های موجود در خواص، پی برد.
داوری کنید: «هرگاه تعداد الکترونهای لایه ظرفیت برای اتمهای دو عنصر، یکسان باشد، در یک گروه قرار میگیرند.»
پاسخ:
در عناصر همگروه، اتمها مشابه است. در عناصر همدوره، يكسان است. (عدد كوانتومي)
ر در عناصر همدوره، يكسان است. (عدد كوانتومي)
الگوهای رفتاری فلزها
١. رسانايي و
۲. داشتن فلزی (سطح صیقلی و درخشان)
۳. قابلیت تبدیل به (برگه) و (رشته)
 ۴. خرد در اثر ضربه (خواری) → فلزها در اثر ضربه، میپذیرند.
 ۵. استحکام و مقاومت کششی بالا
۶ الکترون در واکنشهای شیمیایی
زنجير: شكل ٣ صفحه ٧:
وسايل آشپزخانه (و سيم)؛
با هم بیندیشیم صفحه ۷ تا ۹: (برسی شکل الف صفحه ۷): ۱ ۲- با و با شبیهتر
نام و نماد عنصر سطح رسانای الکتریکی رسانای گرمایی واکنش با دیگر اتم ها در اثر ضربه چکشخواری C:
:Si

```
:Ge
                                                                                    :Sn
                                                                                    :Pb
                ٣- (برسي شكل ب صفحه ٨): ____ فلزها: و و ____ نافلزها:
                                                  _____ شبهفلزها: رسانای گرمایی و الکتریکی
                                                                     در واکنش با دیگر اتم ها
                                                                           در اثر ضربه .....
                                                                             سطح .....
 ۴- جدول بالاي صفحه ۹: خواص فيزيكي يا شيميايي Ge Pb P Mg Cl Sn Al Na S Si C فلز/ نافلز/ شبهفلز
                                                                          رسانايي الكتريكي
                                                                           رسانایی گرمایی
                                                                            سطح صيقلي
                                                                             چکشخواری
                                                         تمایل به دادن، گرفتن یا اشتراک الکترون
    نکته: در گروه های جدول، خواص مهمتر است اما داریم. در دوره های جدول
خواص مهمتر است اما خواص نیز داریم. ۵- در گروه ۱۴، از بالا به پایین، خصلت فلزی یافته است. ۶-
در دوره سوم، از چپ به راست، خصلت فلزی و خصلت نافلزی می یابد. قانون دوره ای عنصرها؛ خصلت
فلزی عنصرها در یک دوره از چپ به راست و در هر گروه از بالا به پایین مییابد. ۷- بیشترین خصلت
فلزی در هر گروه، در (بالای/ پایین) گروه است. (در گروه اول، عنصر ) ۸- در هر دوره از جدول دورهای ، از چپ
     به راست از خاصیت کاسته و به خاصیت افزوده می شود. در گروههای ۱۵، ۱۶ و ۱۷، عنصرهای
                                خاصیت نافلزی بیشتری دارند زیرا از بالا به پایین، خاصیت زیاد میشود.
بیشتر عنصرهای جدول را (فلزها/ نافلزها) تشکیل می دهند که به طور عمده در سمت و مرکز جدول جای دارند.
ها در سمت و بالای جدول چیده شدهاند. شبه فلزها، همانند مرزی بین فلزها و نافلزها قرار دارند. برخی
رفتارهای شبه فلزها (به قول کتاب: خواص فیزیکی) به شبیهتر برخی رفتارهای شبه فلزها ( به قول کتاب: خواص
                           شیمیایی) به شبیهتر است. رفتارها و خواص شبه فلزها: به فلزها شبیهتر:
                                      و . ____ به نافلزها شبیهتر:
«نکاتی درباره فلزها» ۱ - همه فلزها در دمای اتاق، حالت فیزیکی دارند. (به جز و ) ۲ - فلزها در
   هر ۴ دسته ، ، و وجود دارند. تمام عناصر دستههای و فلز هستند. عناصر دسته
همگی فلز هستند به جز و فلزهایSn ، Al _____ و Pb در دسته قرار دارند. ۳- اکسیدهای فلزی
                                           اغلب، در واکنش با آب، (اسید/ باز) تولید میکنند. (اکسیدهای
                    تذکر: فلزهای گروه ۱و۲ (به جز ) نیز در آب، (اسید/ باز) و گاز تولید میکنند:
۴- فلزها در واکنشهای شیمیایی، به صورت نوشته میشوند. «نکاتی در باره نافلزها» ۱- در دمای
اتاق، حالت فیزیکی مایع دارد. (۵ عنصر) ، ، و ، جامد هستند. سایر نافلزها شامل
، ، ، و نیز همه عناصر گروه ، در دمای اتاق، حالت فیزیکی گازی دارند. ۲- نافلزها
عمدتا در دسته جای دارند. H) و He جز دسته ۳ - اکسیدهای نافلزی، اغلب، در واکنش با آب، تولید
```

۴ ۷ عنصر نافلزی، در حالت عنصری، مولکول اتمی دارند: ، ، ، ، ، ، ۵ _
معروفترین الوتروپ گوگرد فرمول، دارد که جامدی رنگ است. (شکل بالای صفحه ۸ کتاب درسی) ۶-
فسفر، سه الوتروپ مهم دارد: فسفر ، و (دوتای آنها در شکل بالای صفحه ۸ کتاب درسی) «نکاتی
درباره شبه فلزها» از بین شبه فلزهای جدول، در کتاب درسی فقط و معرفی شدهاند. شبه فلزها: ۱ - همانند
الکترون به اشتراک میگذارند. (در واکنشهای شیمیایی) (الکترون نمیگیرند و از دست نمیدهند) ۲- همانند
شکنندهاند. (در اثر ضربه میشوند.) ۳_همانند رسانایی گرمایی و الکتریکی دارند. (تاحدی) ا
رسانایی الکتریکی: Ge Si (دلیل: افزایش خصلت عناصر از بالا به پایین در هر گروه) ۴- همانند
سطح صیقلی و درخشان دارند. همه عنصر جدول دورهای، شناسایی و توسط آیوپاک۱ تایید شدهاند.
هیچ خانهای در جدول خالی نیست، و جستوجو برای کشف عناصر جدید، عملا به پایان رسیده است. اکنون دانشمندان
به دنبال تهیه و تولید عناصر جدید به صورت هستند. در صورت کشف (تولید) این عنصرها،
باید آنها را بر مبنای عدد ، ، و غیره، در خانههای جدید قرار داد. برای عنصرهای
جدید (عدد اتمی بیش از)، در جدول دورهای، جایی وجود ندارد. یکی از پیشنهادها، جایگزینی جدول فعلی
با جدول ژانت است. جدول ژانت Charles) (Charles) جدول پیشنهادی ژانت، با مدل کوانتمی، همخوانی دارد.
در هر دوره جدول ژانت، عناصری با (+) یکسان قرار دارند. (در جدول فعلی، عناصر در هر
دوره، یکسان دارد.) عناصر دسته S، در جدول ژانت در سمت و در جدول
فعلی، در سمت قرار دارند. نتیجه: چینش زیرلایهها در جدول ژانت از به
و در جدول فعلی، از به به و در جدول فعلی، از به
فعلى: ، ، ، ، وقعلى: جهت پر شدن در
جدول ژانت: ، ، ، ، ،
تمرین_ مقدار n+۱ را در مورد هر زیرلایه محاسبه کنید و تعیین کنید که تا پر شدن کدام لایه، ۱۱۸ عنصر کامل
می شود؟ تعداد عنصر در دوره n+۱ در جدول ژانت برای عنصر، و جدول فعلی
براى عنصر، جايگاه تعريف شده منصر، جايگاه تعريف
ادامه بررسی جدول دورهای فعلی دارای عنصر، دوره (تناوب، و گروه، دارای ۴ دسته
، عنصر، دسته، عداد عناصر: دسته، عنصر، دسته،
عنصر، دسته ، عنصر و دسته ، عنصر روندهای تناوبی روندهایی هستند که در
کمیتهای وابسته به اتم در جدول دیده میشود. یعنی: تغییرات مشخصی که این کمیتها در یک (
) دارند، که در تناوبهای دیگر، (عیناً / کمابیش) تکرار میشوند. روندهای تناوبی مطرح شده در کتاب درسی:
۱- شعاع اتمی ۲- واکنشپذیری: آ) خاصیت فلزی ب) خاصیت نافلزی برای یافتن نحوه تغییرات
روندهای تناوبی، کافی است اثر هسته را بر لایه الکترونی بیرونی بررسی کنیم. الف) در هر تناوب از چپ به راست، اثر
هسته بر لایه الکترونی بیرونی، میشود. دلیل: تعداد لایه الکترونی در عنصرهای یک تناوب
است و قدرت هسته از چپ به راست، مییابد. ب) در هر گروه از بالا به پایین، اثر
هسته بر لایه الکترونی بیرونی، میشود. دلیل: تعداد لایههای الکترونی در عنصرهای یک گروه، از بالا

میکنند.)اکسیدهای

از اثر	مىيابد.(اثر	صله هسته تا لايه بيروني	ه پایین، می شود اما فا
			همتر است. (طبق قانون كولن
هرو مشخص نمایید: ۱)	ه در کتاب در طرحهای روب		تمرین: روند تغییرات را در
-			(*(
	_		
مون هسته و در الکتروني،	گیرند که در الکترونها پیرا	نتومی»، اتم را مانند ردر نظر می	شعاع اتمي مطابق مدل «كوا
ئتر باشد، اندازه آن بزرگتر است.			
(جدولهای صفحه ۱۲			
			۱۳) در هر گروه از بالا به پاییر
به تنهایی باید شعاع را			
یابد؛ نتیجه: اثر «تعداد لایه» از اثر			
نیروی جاذبه هسته بر			
ارد.) در تناوب: از چپ به راست			
، از چپ به			
نیز به همان اندازه افزایش مییابد،			
است و هر الکترونی که در			
، دریافت که			
سیم نمی شود.) نتیجه: هر هر دوره			
دریافت میکند. بررسی نمودار ۱			
مىيابد. نكته ٢: بيشترين تفاوت			
) نكته ٣: تفاوت شعاع			
(اوایل/ اواخر) تناوب			_
و ۱۷ شعاع اتمی تعداد			
			ایه ها نماد لایه ظرفیت آرایش ا
کلسیم :(پیکومتر)pm تمرین لوس			
سيم صفحه ۱۲:۱۲)			
ٔ (بله / خیر)، چون شدت واکنش			
رون میدهد.) در واکنش لیتیم و			
(انرژی			
رد (رنگ نور ایجاد شده، با رنگ			
ع اتمی فلز بزرگتر باشد،			
	_		
واكنشپذيرى:>			
کنش پذیری:>			
داد لایه اما			

هسته عنصرهای خروه فوی تر تمرین. واکنس پدیری عنصرهای دارای اعداد اتمی ۱۱،۱۱ و ۱۱ را مفایسه کنید.
< ح زنظام گفته شده، پیروی نمیکند.
نکته مهمتر: در گروههای اصلی، استحکام فلز با واکنشپذیری آن، رابطه دارد واکنشپذیری: فلزهای
اصلی فلزهای واسطه استحکام: فلزهای اصلی فلزهای واسطه روند واکنشپذیری نافلزهای گروه ۱۷
(هالوژنها) در گروه ۱، از بالا به پایین، «خاصیت فلزی آ واکنشپذیری» میشود در
گروه ۱۷، از بالا به پایین، «خاصیت ؟ واکنش پذیری» میشود.
ب) واکنش پذیری:< دلیل: در گروه نافلزی؛ شعاع کمتر 🗈 فاصله هسته تا لایه بیرونی
اً گرفتن الکترون،
در تولید لامپ چراغهای جلو خودرو از استفاده میشود.
پ) بالای جدول صفحه ۱۴
ت) با افزایش شعاع، خاصیت نافلزی میشود. پرسش مهم: کدام هالوژن، در دمای ۴۰۰ درجه سانتیگراد با
واکنش میدهد؟ نکاتی درباره هالوژنها: ۱)هالوژنها در حالت آزاد، (سمی / غیرسمی) و (رنگی / بیرنگ)،
و در حالت ترکیب، و ، هستند. ۲) واژه «هالوژن» به معنی . این نافلزها میتوانند با اغلب
فلزها (به ویژه گروه) واکنشدهند و تولید کنند. مثال: ۳) حالت فیزیکی هالوژنها (در دمای اتاق): (
:) (:) (:) () نقطه جوش هالوژنها: ح
< دلیل: در مولکولهای (قطبی/ ناقطبی)، با افزایش جرم و حجم مولکول، نیروی بین مولکولی
می شود. ۵) برای تشکیل ترکیب یونی، هالوژنها با یک الکترون به یون تبدیلی می شوند. ۶ Br Cl، F، (۶
و I (فلز / نافلز) هستند. ۷) آنیونهای تشکیل شده توسط هالوژنها، یون نامیده می شوند. مثال: ۸) هالوژنها در
حالت آزاد (مولکول – اتمی) (بیرنگ / رنگ) هستند و در حالت آنیون یا ترکیب اند. ۹) رنگ هالوژنها:)(
(s)()(1)()(g)()
ای (غیررسمی: (تذکر: در حالت بخار و محلول رنگ مایل به دارد.) رابطهی
نمکها و ترکیبهای یونی همه جزء هستند اما برخی ، محسوب نمیشوند
مانند . (مانند که است و نمک نیست) (برسی تمرین دورهای صفحه ۴۸)
مجموعه
مجموعه
رفتارهای ویژه فلزها رفتارهای «کلی» فلزها مشابه است اما تفاوتهای قابل توجهی نیز دارند به طوری که: هر فلز،
رفتارهای « » خود را دارد. نمونه: (شکلهای حاشیه صفحه ۱۴) سدیم: (نرم / سخت) است. با چاقو بریده
و جلای نقرهای آن در مجاورت اکسیژن به (کندی / سرعت) از بین میرود و میشود. آهن: محکم
(برای ساخت در و پنجره) و در هوای (خشک / مرطوب) با هوا به واکنش میدهد و به
آهن تبدیل میشود. طلا: در گذر زمان، جلای فلزی خود را و خوش رنگ و میماند. برخی گنبدها و
گلدستهها با نازکی از طلا میشود. دنیایی رنگی با عنصرهای دسته d رفتاری شبیه فلزهای دسته
و دارند: (مانند همه فلزها رسانای و هستند، خوارند و قابلیت تبدیل
به و را دارند) اما هر یک، رفتارهای ویژهای نیز دارند. فلزهای دسته d به فلزهای (واسطه / اصلی)
معروفاند در حالی که فلزهای دسته s و p به فلزهای شهرت دارند. اغلب فلزهای واسطه در طبیعت به شکل
ترکیبهای (یونی / مولکولی) (مانند ، و غیره) یافت می شوند. برای نمونه، آهن، دو اکسید طبیعی

_ () دارد. اعلب عناصر واسطه، دو ویژگی دارند: ترکیبات	() و	
یمتی فیروزه ()، یاقوت () و زمرد () به علت	یتهای رنگ سنگهای ف	و ظرف
« آرایش الکترونی فلزهای واسطه » زیر لایه در آنها در حال پر شدن		
		است:
رُودتر/ دیرتر) پر میشود: چون سطح انرژی دارد، و خالی	کته مهم: زیرلایه s۴ نسبت به d:۳ (: 2
تست – آرایش الکترونی [Ar] متعلق به چند مورد از موارد زیر میتواند باشد؟		
٢) فقط آنيون ٣) اتم و آنيون ۴) فقط كاتيون ۵)		
'	ون	
، تمرين آرايش الكتروني چند عنصر واسطه ديگر) آرايش الكتروني نماد آرايش		
	ني نماد آرايش الكتروني نماد	
		_
» ۱) همه، ترکیبات دارند، به جز و ۲) همه،	نکاتی درباره عناصر واسطه تناوب ۴	((ز
_ (ظرفیت =) و (ظرفیت =) ۳) مجموع		
) مثال: (شماره = +) ۴)		
نیب برابر با شمار الکترونهای و است (به جز ،		
) ظرفیت اصلی (کمترین ظرفیت) و بیشترین ظرفیت عناصر واسطه تناوب ۴:		
های دیگری بین این دو ظرفیت داشته باشند) Cr Mn Fe Co Ni Cu Zn	ئن است برخی از این عناصر، ظرفیت	(ممک
	Sc نماد عنصر	Ti V
	رفیت اصلی	ظ
	بشترين ظرفيت	بي
ظرفیت (ظرفیت اصلی) و « ظرفیت » خود، به آرایش الکترونی) فقط مىتواند با كمترين	9
یت اصلی (کمترین ظرفیت) برابر با است. (به جز و	جیب برسد. V) در این عناصر، ظرف	گاز نـ
ف) اسکاندیم ()، نخستین فلز جدول دورهای است. در) خود را بیازمایید صفحه ۱۷: ا	
خی وجود دارد. طلا () طلا افزون بر ویژگیهای	، خانه، مانند و بر	وسايل
، فردی نیز دارد. بسیار و است.) طلا به اندازهای	^ی با سایر فلزها، ویژگیهای منحصر ب	مشترك
گرم از آن را با چکشکاری، به با مساحت چند متر مربع تبدیل کرد.(و است که میتوان چند	
ک (طلا) تبدیل می شود. رسانایی الکتریکی آن، است و	<i>نتی</i> به و بسیار ناز	به راح
با های موجود در هواکره و ،	ِایط گوناگون دمایی، این رسانایی _	در شر
کی شکل صفحه ۱۷) پرتوهای خورشیدی، از روی ورقه طلا، زیادی		
() یافت می شود و مقدارش در معادن، بسیار است. برای	طلا در طبیعت به صورت	دارند.
معدن استفاده شود. «استخراج طلا»، آثار بر محیط		
ل راههای جدید برای فلزها هستند که ضمن بهرهبرداری از		
د زیستی شود و با هماهنگ باشد. «عنصرها به چه شکلی در طبیعت		
,, e,,, e,,,,,,,,,,,	میشوند؟» شکل ۹ صفحه ۱۸:	يافت
، هستند. اغلب عناصر در طبیعت، به شکل (آزاد / ترکیب) یافت می شوند،	مایی از «کانیهای» موجود در طبیعت	نمونهه

هرچند، برخی نافلزها مانند ، و برخی فلزها مانند ، و به شکل
آزاد در طبیعت وجود دارند. (البته نافلزهای مذکور، و نیز فلز به شکل نیز در طبیعت یافت میشوند.
) در میان فلزها، تنها «طلا» به شکل ها یا های «زرد»، لابهلای خاک یافت می شود. (حاشیه صفحه
۱۸) «حالت آزاد» در یک عنصر یعنی، اتمهای آن با اتمی ۱) از عنصر دیگر پیوند نداده باشد. ۲) دیگر پیوند
نداده باشد. پرسش پرسش – چند مورد، حالت آزاد هیدروژن است؟ ۱) H-H (۳) H-Cl۲ H (۳ وش شناسایی
${ m Fe}^{r+}$ کاتیونهای آهن (واکنشها، موازنه شوند.) (کاوش کنید ۱ صفحه ۱۹) ج) آزمایش ۱ صفحه ۱۹ (شناسایی
) به کمک یون:)aq()aq(
رنگ چ) یون ، شناساگر یون است. پ) آزمایش ۲ صفحه ۱۹ (شناسایی ${ m Fe}^{+}$) به کمک یون
) عر(ب) رسوب)aq(ب) مور)aq(ب) عر(ب) عرا الله عنه على الله عنه عنه عنه الله عنه عنه الله
یون، شناساگر یون نیز هست. تذکر: روش شناسایی یک ذره، باید «ویژه» و مشخص، ایجاد
کند، به شکلی که؛ (یون مورد نظر/ یون شناساگر)، فقط با (یون مورد نظر/ یون شناساگر)، آن را ایجاد کند.
نکته ۱: دو ترکیب یونی، در محلول ()، فقط به شرطی واکنش میدهند که یا یا
تولید شود. نکته ۲: در واکنش جابهجایی دوگانه، ظرفیت هر ذره، در دو طرف واکنش یکسان آزمایش
۳ صفحه ۱۹: (واکنشها موازنه شوند.) ابتدا، میخ زنگزده را در محلول Hcl وارد میکنیم:
(ب سپس، به این سامانه، محلول آبی «سود» می افزاییم: پ) aq(NaOH +)aq()
)s(+) aq(ت) رسوب ث) این دو واکنش نشانگر وجود یون در زنگ آهن ()
است یادداشت (در حد کتاب درسی شیمی ۳): اغلب عناصر فلزی میتوانند با (Hcl(aq یک مولار، واکنش دهند به جز
فلزهای APAC (، ،) کاوش کنید ۲ صفحه ۲۰:
در واكنش ،(I) فلز سمت چپ () واكنش را انجام است. (مىتواند به الكترون
دهد.) در واکنش ،(II) فلز سمت چپ () واکنش را انجام است. (نمیتواند به
الکترون دهد.) نتیجه: از واکنش پذیرتر است. نکته ۳: در واکنش جابه جایی یگانه، حتماً در واکنش،
بار ذره تغییر میکند. نکته ۴: اگر واکنش «فلزی» با محلول آبی کاتیون «فلز» دیگر، خود به خود انجامپذیر باشد،
واکنش عکس (برگشت)، حتماً خود به خودی است. خود را بیازمایید:
واکنش پذیری واکنشپذیری هر فلز (و به طور کلی هر عنصر) تمایل آن را برای انجام نشان
میدهد. اصطلاح «مس فلزی» به عنصر مس در حالت (اتم / کاتیون ـ ترکیب) اشاره دارد. عنصر می در حالت یا
خاصیت فلزی. هرچه عنصری واکنش پذیرتر باشد، تمایل آن را برای انجام واکنش (تبدیل به
) بیشتر است. برای مقایسه، تعدادی فلز، از لحاظ واکنش پذیری در سه دسته قرار گرفتهاند: با هم بیندیشیم صفحه ۲۰: (با
توجه به جدول پایین صفحه ۲۰ به پرسشها پاسخ دهید) واکنشپذیری: (زیاد: ،) (کم: ،
) (ناچیز:, و) الف) در «شرایط یکسان»، فلزها با واکنش پذیری, تمایل
به تشکیل نشان می دهند. ب) در «شرایط یکسان»، سرعت واکنش دادن در هوای مرطوب:
< > بنامین شرایط نگهداری فلزها با واکنشپذیری ، دشوارتر است. (چون با کمترین
مقدار مواد، از جمله هوا، واكنش مىدهند و فعاليت شيميايي آنها است.) ت) به طور كلى، در
هر واکنش شیمیایی که به طور طبیعی (خود به خود) انجام می شود؛ واکنش پذیری: واکنش دهنده ها فرآورده ها پایداری:
واکنش دهندهها ؟ فرآوردهها * این مقایسه، در مورد واکنش پذیری عناصر در دو طرف واکنش است. با هم بیندیشیم صفحه
۲۱: ت) واکنش پذیری:

					ت) واكس پديري.
	واكنش پذيري	نافلز	واکنش پذیری	واکنش پذیری فلز	به طور کلی:
					نافلز واكنشپذيري:
					واكنش پذيري:
					واكنش پذيري:
					واكنش پذيري:
	ت. روش استخراج _	اکنشپذیرتر اس	، از و	پذیر است؟ چون	آیا این واکنش انجام
) در معدن	
واكنش				فلزي از (
				مم بیندیشیم صفحه۲۱) رو	_
		_	=	، سالانه را بين فلزها در جها	
ىشوند؛	يافت مح	، به شکل	ز فلزها در طبیعت، اغلب	ِد را بیازمایید صفحه ۲۴ (» استفاده می شود:) خو
				ِ باشد، استخراج آن	
	ه کمترین _	N نماینده گرو	صفحه ۴۸: نتیجه e :۱	کمتر است. تمرین دورهای	آن برای الکترون گیری ک
وه ۱۴)	(نماینده گر	ٔ تا ۱۷، <i>عنصر</i>	جه ۲: بین عنصر گروه ۱	ی دوره دارد. نتب	را بين عنصرها
کربن،	رم آهن (III) اکسید با	از واکنش ۴۰ گ	ا بیازمایید صفحه ۲۲)	را دارد. مسئله (خود ر	كمترين
		۲۷Al= ،	۵۶Fe= ۱۱H= ۱۱۶O=	من به دست آید ؟ =۲C،	انتظار میرود چند گرم آه
ىروند.	ه انتظار میرود پیش نم	يايي، مطابق آنچ	ده گاهی واکنشهای شیم	ها ۱ - درصد خلوص ۲ - باز	دنیای واقعی واکنش
ختلف)	ود (به دلیل شرایط م	ر كامل انجام نش	. خلوص)، واكنش به طو	هها ناخالص باشند (درصد	ممكن است واكنش دهند
ل انجام	لور کامل در مسیر اصلح	ِقتی واکنش به ط	(بازده) بازده درصدی و	اخواسته دیگری انجام شود.	یا همزمان، واکنشهای ن
مقدار (کاغذ به دست آمده (ر تئوری و روی	ار) از آنچه د	کیل شده در آزمایش (مقد	نوشد مقدار فرآورده تشك
) (۲۲	ى: ٢- الف (صفحه ') پیوند با ریاضی	< مقدار	خواهد بود. (مقدار) تر
				- ب:	۱۰۰ بازده) ۲
/.A·)) تولید میشود'	سوخت سبز (باندهای گیاهی، چند تن س	۵. تن گلوكز موجود در پسم	مسئله ۱: از تخمير ۱
					Ra) =
ن ماده،	رود. ۱۰ کیلوگرم از ایر	قاشی به کار می	د به عنوان در ن	ِرهای ۶): آهن (III) اکسی	مسئله ۲ (تمرین دو
، دست	ه درصدی واکنش را با	کرده است. بازد	،۵۲۰۰ گرم آهن توليد ک	ش با کار کربن مونواکسید	طبق واکنش زیر در واکن
				۲ صفحه ۲۵)	آورید: (خود را بیازمایید
	اده معدنی (کانه)، _	گرم از این م	۲۳): یعنی در هر	با ریاضی (۱- الف صفحه	درصد خلوص پيوند
له ۳ —	_ درصد خلوص مسئ	ىلوص يا	- ب درصد خ	_ گرم مواد دیگر هست. ۱	گرم و
STP.	٤) در شرايط	3)اندازیم. حجم	ِل هیدروکلریک اسید می	۹۰٪ را در مقدار کافی محلو	۱۰ گرم آهن با خلوص ۵
					چند لیتر است؟
_ قرار	. بخودی سمت	در واكنش خود	فعالتر است، چون	. ۱ صفحه ۲۴: الف)	مهم خود را بیازماییا
		، ۳ و ۷:	سی تمرین دورهای ۱،۲	رکیبش خارج م <i>یکند.</i>) برر	دارد (و را از ن
كارند،	است. ابتدا گیاه را می	تفاده از گیاهان	فلز از لابهلای خاک، اس	ز روشهای بیرون کشیدن	«گیاه پالایی» یکی ا

کیاه، را جد <i>ب می صدد.</i> سپس کیاه را برداست می صدد، و ار ان، را جداساری می صد.
خود را بیازمایید ۳ صفحه ۲۵ الف:
ب: درصد نیکل در خاکستر پ: مقرون به صرفه (گیاهپالایی) درصد فلز در سنگ معدن درصد فلز در گیاه فلز
Au
Cu
Ni
Zn با مقایسه درصد «نیکل» و «روی» در سنگ معدن آنها، و با توجه به حجم گیاه و آب مصرفی، و نیز سطح زیادی
از زمین به که زیر کشت میرود، روش گیاه پالایی برای این دو فلز مقرون به صرفه پیوند با صنعت: گنجینههای
اعماق دریا اعماق دریا، در برخی مناطق محتوی چندین فلز واسطه (سولفیدی) (شکل ۱۱ پ صفحه
۲۶) و در برخی مناطق دیگر، به صورت ها و هایی غنی از فلزهایی مانند ، ،
، و است. (شکل ۱۱ ب صفحه ۲۶) غلظت گونه های فلزی «کف اقیانوس»، نسبت به
«ذخاير زيرزميني»، است.
جریان فلز بین «محیط زیست» و «جامعه» استخراج فلز از سنگ معدن، در نهایت به تولید و گوناگون
مى انجامد. بر اساس توسعه پايدار، در توليد يک « » يا عرضه « »، بايد همه هزينه ها و ملاحظه هاى
، و را در نظر گرفت. اگر مجموع هزینههای بهرهبرداری از یک معدن، با در نظر
گرفتن این ملاحظهها، مقدار ممکن باشد، در مسیر پیشرفت پایدار حرکت میکنیم، رفتارهای ما آسیب کمتری به
جامعه وارد میکند و زیست محیطی ما را کاهش میدهد. «فرآیند استخراج فلز از طبیعت و بازگشت آن
به طبیعت»
با هم بیندیشیم صفحه ۲۷: الف) یکسان (آهنگ مصرف آهنگ بازگست به طبیعت) ب) فلزها، منابعی
با هم بیندیشیم صفحه ۲۷: الف) یکسان (آهنگ مصرف آهنگ بازگست به طبیعت) ب) فلزها، منابعی تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از
تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از
تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش میدهد. (د / ن) سبب کاهش سرعت گرمای جهانی می شود. (د / ن) گونههای
تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش میدهد. (د / ن) سبب کاهش سرعت گرمای جهانی می شود. (د / ن) گونههای زیستی بیشتری را از بین میبرد. (د / ن) به توسعه پایدار کشور کمک میکند. (د / ن) پسماند سرانه فولاد
تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (c / c) سبب کاهش سرعت گرمای جهانی می شود. (c / c) گونه های زیستی بیشتری را از بین می برد. (c / c) به توسعه پایدار کشور کمک می کند. (c / c) پسماند سرانه فولاد کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن
تجدید ، با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (c / c) سبب کاهش سرعت گرمای جهانی می شود. (c / c) گونه های زیستی بیشتری را از بین می برد. (c / c) به توسعه پایدار کشور کمک می کند. (c / c) پسماند سرانه فولاد کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی
تجدید ، با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (c / c) سبب کاهش سرعت گرمای جهانی می شود. (c / c) گونه های زیستی بیشتری را از بین می برد. (c / c) به توسعه پایدار کشور کمک می کند. (c / c) پسماند سرانه فولاد کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی دیگر مصرف می شود. در استخراج فلز، درصد)کمی / زیادی (از سنگ معدن به فلز تبدیل می شود.
تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (c / c) سبب کاهش سرعت گرمای جهانی می شود. (c / c) گونه های زیستی بیشتری را از بین می برد. (c / c) به توسعه پایدار کشور کمک می کند. (c / c) پسماند سرانه فولاد کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ c واتی را حدود c ساعت روشن نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی دیگر مصرف می شود. در استخراج فلز، درصد)کمی / زیادی (از سنگ معدن به فلز تبدیل می شود. ارزیابی چرخه ارزیابی چرخه عمر چرخه عمر: میزان تأثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه
تجدید ، با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (c / c) سبب کاهش سرعت گرمای جهانی می شود. (c / c) گونههای زیستی بیشتری را از بین می برد. (c / c) به توسعه پایدار کشور کمک می کند. (c / c) پسماند سرانه فولاد کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی دیگر مصرف می شود. در استخراج فلز، درصد) کمی / زیادی (از سنگ معدن به فلز تبدیل می شود. ارزیابی چرخه عمر چرخه عمر: میزان تأثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه عمر: تاثیرهای هر فرآورده را در ۴ مرحله، بررسی می کند: ۱: و مواد خام برای تولید فراورده ۲: و و مواد خام برای تولید فراورده ۲: و
تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (د / ن) سبب کاهش سرعت گرمای جهانی می شود. (د / ن) گونههای زیستی بیشتری را از بین می برد. (د / ن) به توسعه پایدار کشور کمک می کند. (د / ن) پسماند سرانه فولاد کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی دیگر مصرف می شود. در استخراج فلز، درصد)کمی / زیادی (از سنگ معدن به فلز تبدیل می شود. ارزیابی چرخه عمر جرخه عمر: میزان تأثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه عمر: تاثیرهای هر فرآورده را در ۴ مرحله، بررسی می کند: ۱: و مواد خام برای تولید فراورده ۲: و مواد خام برای تولید فراورده ۲: و میزان (آب مصرفی)، (انرژی)(پایدار بودن "" "" : ارزیابی چرخه عمر، شامل برسی و ارزیابی میزان (آب مصرفی)، (انرژی)(پایدار بودن
تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (د / ن) سبب کاهش سرعت گرمای جهانی می شود. (د / ن) گونه های زیستی بیشتری را از بین می برد. (د / ن) به توسعه پایدار کشور کمک می کند. (د / ن) پسماند سرانه فولاد کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی دیگر مصرف می شود. در استخراج فلز، درصد)کمی / زیادی (از سنگ معدن به فلز تبدیل می شود. ارزیابی چرخه عمر: میزان تأثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه عمر: تاثیرهای هر فرآورده را در ۴ مرحله، بررسی می کند: ۱: و مواد خام برای تولید فراورده ۲: و مواد خام برای تولید فران زباله و پسماند ایجاد شده) و سهم حمل و نقل در همه مراحل) است. ارزیابی چرخه عمر، شامل برسی و ارزیابی میزان (آب مصرفی)، (انرژی) (پایدار بودن فرآیند تامین مواد خام)، (میزان زباله و پسماند ایجاد شده) و سهم حمل و نقل در همه مراحل) است. ارزیابی چرخه عمر،
تجدید ، با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (د / ن) سبب کاهش سرعت گرمای جهانی می شود. (د / ن) گونه های زیستی بیشتری را از بین می برد. (د / ن) به توسعه پایدار کشور کمک می کند. (د / ن) پسماند سرانه فولاد کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی دیگر مصرف می شود. در استخراج فلز، درصد) کمی / زیادی (از سنگ معدن به فلز تبدیل می شود. از ارزیابی چرخه دیگر مصرف می شود. میزان تأثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه عمر: تاثیرهای هر فرآورده را در ۴ مرحله، بررسی می کند: ۱: و مواد خام برای تولید فراورده ۲: و مواد خام برای تولید فراورده ۲: فرآیند تامین مواد خام)، (میزان زباله و پسماند ایجاد شده) و سهم حمل و نقل در همه مراحل) است. ارزیابی چرخه عمر، می کنند صنایع در مسیر بهره گیری از دانش فنی و تخصصی سازگارتر حاصل تلاش برای یافتن شاخص هایی است که کمک می کنند صنایع در مسیر بهره گیری از دانش فنی و تخصصی سازگارتر
تجدید ، با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (د / ن) سبب کاهش سرعت گرمای جهانی می شود. (د / ن) گونههای زیستی بیشتری را از بین می برد. (د / ن) به توسعه پایدار کشور کمک می کند. (د / ن) پسماند سرانه فولاد کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی دیگر مصرف می شود. در استخراج فلز، درصد) کمی / زیادی (از سنگ معدن به فلز تبدیل می شود. از ارزیابی چرخه دیر تاثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه عمر: میزان تأثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه عمر: ارزیابی چرخه عمر، شامل برسی و ارزیابی میزان (آب مصرفی)، (انرژی)(پایدار بودن فرآیند تامین مواد خام)، (میزان زباله و پسماند ایجاد شده) و سهم حمل و نقل در همه مراحل) است. ارزیابی چرخه عمر، حاصل تلاش برای یافتن شاخصهایی است که کمک می کنند صنایع در مسیر بهره گیری از دانش فنی و تخصصی سازگارتر حاصل تلاش برای یافتن شاخصهایی است که کمک می کنند صنایع در مسیر بهره گیری از دانش فنی و تخصصی سازگارتر با محیط زیست حرکت کنند، و رفتار و عمل کرد خود را در مسیر رسیدن به توسعه پایدار «اصلاح» کنند. برسی چرخه عمر
تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از جمله آهن؛ ردپای را کاهش می دهد. (د / ن) سبب کاهش سرعت گرمای جهانی می شود. (د / ن) گونههای زیستی بیشتری را از بین می برد. (د / ن) به توسعه پایدار کشور کمک می کند. (د / ن) پسماند سرانه فولاد کلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، می توان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی دیگر مصرف می شود. در استخراج فلز، درصد) کمی / زیادی (از سنگ معدن به فلز تبدیل می شود. ارزیابی چرخه عمر چرخه عمر: میزان تأثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه عمر: تاثیرهای هر فرآورده را در ۴ مرحله، بررسی می کند: ۱: و مواد خام برای تولید فراورده ۲: فرآیند تامین مواد خام)، (انرژی)(پایدار بودن فرآیند تامین مواد خام)، (میزان زباله و پسماند ایجاد شده) و سهم حمل و نقل در همه مراحل) است. ارزیابی چرخه عمر، حاصل تلاش برای یافتن شاخصهایی است که کمک می کنند صنایع در مسیر بهره گیری از دانش فنی و تخصصی سازگارتر با محیط زیست حرکت کنند، و رفتار و عمل کرد خود را در مسیر رسیدن به توسعه پایدار «اصلاح» کنند. برسی چرخه عمر برای کیسه پلاستیکی و پاکت کاغذی (صفحه ۲۹)

اولیه برای تهیه مواد و کالاها» مصرف روزانه نفت حام (۰۸،۰،۰،۰، بشکه) است که: نیمی از آن در سوحت
(حدود ٪) و نیمی دیگر در تأمین و انرژی (حدود ٪) و تولید
و ، ها، مواد و ، ، مواد و (حدود
٪) نفت خام، مخلوطی از هزاران ترکیب شیمیایی است که بخش عمده آن را های (شامل
و) گوناگون تشکیل میدهند. عنصر اصلی سازنده نفت خام، است. کربن، اساس استخوانبندی
ها است. کربن در خانه شماره جدون دورهای جای دارد. (سرگروه گروه) و اتم
آن، در لایه ظرفیت خود الکترون دارد. خود را بیازمایید صفحه ۳۰: الف) آرایش الکترونی فشرده: ب) آرایش
الکترون نقطهای اتم کربن: پ) انواع پیوند اشتراکی (برای رسیدن به آرایش هشتایی): ، و
مثال) تشكيل متان ():
=C= 9
تمرین: آرایش الکترون نقطهای اتمهای زیر را رسم کنید: الف) بیشترین تعداد الکترون لایه ظرفیت، مربوط به کدام
گروه است؟ گروه (الكترون ظرفيتي) ب) بيشترين تعداد الكترون منفرد (تكي) مربوط به كدام گروه
است؟ گروه (تک الکترون) پ) ظرفیت عناصر کدام گروه، بیشتر است؟ چرا؟ گروه (ظرفیت
) ؟ ظرفیت اصلی گروه مشاهده: الف) اتم و میتوانند بیش از سایر فلزها پیوند اشتراکی ایجاد
كنند. (با ظرفيت اصلى خود) ب) اتم (و البته ، و) مىتوانند پيوندهاى دوگانه
و اتمهای ، و میتوانند پیوند سهگانه ایجاد کنند. نتیجه: بیشترین و متنوعترین ترکیبات، باید
مربوط به گروه باشد: شازنده اصلی مولکولهای زیستی و سازنده اصلی جهان غیرزنده است.
ترکیبات کربن از سیلیسیم بسیار است چون: ۱- پیوندهای تشکیل میدهد (دلیل: طول پیوند
) ۲ - توانایی تشکیل پیوند و را نیز دارد. (شکل ۱۵ و ۱۶ صفحه ۳۱) گفتیم که نفت خام،
مخلوطی از است. هیدروکربنها، دارای و گوناگونی هستند. البته کربن میتواند
علاوه بر H به و نیز به شیوههای گوناگون متصل شود؛ و ، ، ،
، ، و غیره را بسازد. همچین، کربنها میتوانند به روشهای گوناگون به هم متصل شوند و
دگرشکل (آلوتروپ) های مختلفی مانند ، و غیره را ایجاد کنند. یادآوری:تعریف و مقایسه «آلوتروپ،
ایزوتوپ، ایزومر» آلکانها () دستهای از هیدروکربنها هستند که در آنها، هر اتم کربن با پیوند یگانه به
اتمهای دیگر متصل شده است (یعنی حتماً با اتم دیگر پیوند دارد.) (C) سادهترین و نخستین عضو
خانواده آلکان است. سایر اعضای خانواده، تعداد های بیشتری دارند، که البته اتمهای آنها نیز بیشتر
می شود. آلکان ها به دو دسته تقسیم می شوند: ۱ - آلکن های : اتم های همانند یک به
دنبال هم قرار دارند. (هر اتم کربن به یا اتم کربن در زنجیر کربنی متصل است.) (شکل ۱۸ الف) ۲ -
: برخی اتمهای کربن به شکل شاخه () به زنجیر اصلی متصل است. (برخی اتمهای کربن
به یا اتم کربن در زنجیر متصل هستند.) (شکل ۱۸ ب) پرسش – کوچکترین آلکانی که همه انواع
کربن را دارد، چند اتم هیدروژن دارد؟ (حلقوی نباشد) مدل پیوند — خط در این روش، اتمهای کربن با نقطه و پیوند بین
آنها با خطتیره (پاره خط) نشان داده میشوند. اتمهای هیدروژن، و نیز پیوندهای C-H نشان داده (H متصل
به اتمهای دیگر، نشان داده) همچنین C-C-C با زاویه واقعی ۱۰۹/۵ نشان داده میشود. پیوندهای دوگانه یا

ب)
پ)
ت) ت)
تمرين: با مدل پيوند – خط نمايش دهيد:
شمار اتمهای کربن نقش مهمی در تعیین هیدروکربنها دارد. با تغییر تعداد ،C، مولکول نیز
مولکولی تغییر مییابد ؟ تغییر نیروی مولکولی، نقطه و غیره
با هم بیندیشیم ۱ صفحه ۳۴: (جمع بندی مهم) بزرگ شدن اندازه مولکول: ۱ نقطه جوش ۲
فرار بودن (تمایل برای تبدیل به گاز) ۳ گران روی (مقاوت در برابر جاری شدن) الف) با افزایش
شمار کربن ؟ نقطه جوش آلکان در فشار ۱ اتمسفر ؟ تعداد مولکولهایی که تبخیر میگردند (
فشار بخار) ب) نقطه جوش: پ) گرانروی: فرار بودن: ت) گشتاور دو قطبی آلکانها صفر یا حدود است. (
یعنی هستند.) ث) نیروی بین مولکولی در آلکانها از نوع است. افزایش شمار
اتمهای کربن، باعث قدرت نیروی بین مولکولی، (و جرم و حجم مولکول) و باعث نقطه
جوش میشود. ج) با بزرگتر شدن زنجیر کربنی، گرانروی مییابد چون مقاومت مولکولهای بزرگتر ددر برابر
جاری شدن است. چسبن <i>دگی: (نیروی بین مولکولی (واندروالسی) در قویتر است.) (</i>
) تا تا کربنه در دمای ۲۲
درجه سانتی گراد به حالت گاز هستند. ب) با افزایش جرم مولی آلکان، نقطه جوش مییابد !!! (این، ۴۰ بار!)
آلکانها به دلیل بودن، در آب و میتوان از آنها برای حفاظت استفاده کرد. قرار دادن فلز در
آلکانهای یا کردن سطح فلزها و وسایل فلزی با آنها، مانع از رسیدن به سطح فلز میشود
و از فلز جلوگیری میکند. آلکانها، ترکیباتی سیر هستند، (هر اتم کربن به اتم دیگر متصل
است). پیوندهای آنها فقط اشتراکی است. (دوگانه و سهگانه). آلکانها تمایل زیادی برای واکنش
شیمیایی اگر آلکانها را استنشاق کنیم، میزان سمی بودن آنها است و استنشاق آنها بر ششها و بدن،
تأثیر چندانی ندارد (فقط سبب کاهش در هوای دم میشوند) البته، ورود بخار به ششها از
گازهای تنفسی جلوگیری میکند و حتی ممکن است سبب مرگ شود.
خود را بیازمایید صفحه ۳۷: گشتاور دو قطبی مولکولهای سازنده چربیها، حدود است. (چربیها،
هستند.) الف) افرادی که با گریس کار میکنند، دستشان را با بنزین یا نفت (یا مخلوطی از هیدروکربنها)
میشویند چون شبیه، را حل میکند (هر دو دسته مواد، هستند) پس بنزین یا نفت سفید به عنوان
، گریس را حل میکند. ب) پس از شستن دست با بنزین، پوست نیز در بنزین و
شسته می شود و در نتیجه پوست می گردد. پ) شستن پوست یا تماس با آلکان های مایع در دراز مدت به ساختار
پوست آسیب میرساند زیرا قشر برداشته شده و پوست (خشک / مرطوب) و و مستعد ابتلا به عفونت،
ترکخوردن، اگزما یا آلرژی می شود. «نامگذاری آلکانها» (پیوند با ریاضی صفحه ۳۵) واژه «آلکان» از دو جزء ساخته
شده است. به جای لفظ «آلک» همواره کلمهای قرار می گیرد که اتم کربن را مشخص می کند. اعداد یونانی ا تا ۴ به
ترتیب،، و هستند که برای نامگذاری انتخاب نشده و به جای آنها واژههای دیگری
به کار میرود. اما پیشوندهای برای کربن به بالا، استفاده میشوند. «نامگذاری آلکانهای شاخهدار»

سه گانه نیز با دو یا سه خط نشان داده می شوند. سایر اتمها مانند O یا N نیز نمایش داده _____. خود را بیازمایید

صفحه ۳۳: فرمول «ساختاری» یا «پیوند - خط» به همراه فرمول مولکولی را برای هر ترکیب نمایش دهید: الف)

برای نامگذاری آلکانهای شاخهدار، باید: ۱) نام شاخههای جانبی (فرعی) را بدانیم:
آلکان () (نجیری که
بیشترین تعداد را دارد. (به شرطی که از هر کربن فقط ۱ بار عبور کنیم.) در هر مورد، دور زنجیر اصلی، کادر
بکشید:
نکته ۱: اگر بتوان برای هیدروکربنی، دو زنجیر اصلی با کربنهای برابر اما شاخههای فرعی متفاوت انتخاب کرد،
انتخابی درست است که تعداد شاخه فرعی دارد: نکته ۲: گروه آلکیل (مانند متیل یا اتیل) در کربن ابتدایی یا
پایانی زنجیر اصلی، درواقع، ادامه است و شاخه فرعی محسوب تمرین ۱: نامگذاری کنید: ۳) سپس،
زنجیر اصلی انتخاب شده ار از طرفی که به نزدیک تر است، شماره گذاری میکنیم. (شماره اتصال شاخه
فرقی باید باشد.) (سه ترکیب قسمت ۲ را شماره گذاری نمایید.) ۴) نامگذاری: »> اگر تعداد شاخه یکی باشد:
شماره اتصال و نام شاخه و سپس نام نام ذکر می شود:
با هم بیندیشیم ۱ صفحه ۳۸: الف) اعداد، نشانگر شماره در اصلی است که فرعی به آن
متصل شده است و واژه بعد از آن، شاخه فرعی را نشان میدهد. واژه بعدی، نام است. ب
شباهت این دو ترکیب، در تعداد کل در ترکیب، و نیز تعداد کربن و نیز، تعداد کربن و نوع
است. تفاوت این دو ترکیب، در اتصال شاخه فرعی است. ۳- متیل هگزان ۴-
متیل هپتان با هم بیندیشیم ۳:
زنجير اصلي كربنه
زنجير اصلي كربنه
زنجير اصلي كربنه با هم بينديشيم ۴:
انتخاب زنجير نام نادرست:
جهت شماره گذاری انتخاب زنجیر نام نادرست:
جهت شمارهگذاری انتخاب زنجیر نام درست: نکته مهم: متیل در کربن اول، اتیل در کربن اول و دوم، پروپیل در
کربنهای اول، دوم و سوم زنجیر، شاخه فرعی و ادامه زنجیر محسوب خود را بیازمایید ۱
الف صفحه ۳۹:
تمرین دورهای ۵ قسمت (پ):
خود را بیازمایید ۲ صفحه ۴۰: نکته: هالوژنها نیز میتوانند به عنوان شاخه فرعی در ترکیبهای آلی محسوب شوند.
در نامگذاری، پسوند «و» به نام هالوژن افزوده می شود. تذکر مهم: هالوژنها (برخلاف گروههای آلکیل) در کربن اول
زنجير نيز شاخه فرعي ميتوانند باشند.
نکته: هنگامی که شاخه فرعی، فقط یک کربن اتصال در زنجیر اصلی دارد، شماره اتصال شاخه فرعی نباید ذکر شود.
(برخی کتابها میگویند که بهتر است گفته نشود.) تذکر مهم: اگر تا رسیدن به وسط زنجیر بیش از یک موققیت برای
شاخه فرعی وجود داست حتما شماره اتصال شاخه فرعه ذکر شود. تمرین: ترکیبی با فرمول مولکولی چند ایزومر
ساختاری دارد؟
نکته: هالوژن (میتواند / نمیتواند) در کربن اول زنجیر نیز شاخه فرعی باشد. نتیجه: عدد ۱ برای هالوژنها (به
عنوان شاخه) ذکر (در صورت لزوم) معرفی دو شاخه فرعی دیگر: و ادامه نامگذاری (قوانین):
»> تعداد شاخه فرعی بیش از یک دو حالت دارد: ۱- دو یا چند شاخه فرعی اما از یک نوع ۲- دو یا چند شاخه فرعی از

باشد.) سپس	نوشته میشود (حتی اگر	به	نوع باشند)؛ ابتدا، «همه» شمارههای اتصال، از
		، ذکر میشود.	تعداد آن شاخه (با لفظ یونانی) و نام آن شاخه فرعی
	جیر اصلی، مستقیم باشد.)	ىتە شوند كە زن	(بهتر است که کربنهای بیشتر، در یک خط نوش
			خود را بیازمایید ۱ (ج) صفحه۴۰:
كه بتوان با ارقام آنها	اصلی، «باید» از طرفی انجام شود	ه گذاري زنجير	تذكر: وقتى بيش از يك شاخه فرعى داريم، شمار
			عدد ساخت.
			خود را بیازمایید ۱ ت صفحه ۳۹
باشد اما از گونههای	تعداد شاخه فرعی، بیش از یکی ب	، متفاوت اگر	حالت دوم: دو یا چند شاخه فرعی از گونههای
لد انجام میشود. اما	رفی که ارقام کوچکتر انتخاب شون	ئىاخەھا) از ط	متفاوت باشند، شمارهگذاری (بدون توجه به انواع ش
حالت، شماره اتصال	، (در انگلیسی) است. 🗈 در این -	رف اول نام آن	در نامگذاری: تقدم ذکر نام شاخه فرعی، بر اساس ح
			و نام هر شاخه فرعي، جداگانه ذكر ميشود.
) چه شماره اتصالش	ست، (به دليل تقدم حرف اول نام)	مقدم ال	یعنی: در نامگذاری، شاخه فرعی بر
	:٣٩	۱ ب صفحه	بیشتر باشد، چه کمتر و چه مساوی! خود را بیازمایید
طرف آن شاخه فرعي	کسانی بدهد، شمارهگذاری باید از ۰	و طرف ارقام يُـ	نکته: اگر شمارهگذاری دو نوع شاخه فرعی، از دو
لدد و عدد:	در نامگذاری ترکیبهای آلی، بین ع	_ داشته باشد:	انجام شود که شاخه مقدم در نامگذاری شماره
	! نامگذاری کنید:	، و كلمه:	، بین عدد و کلمه: قرار میگیرد و بین کلمه
نمایید:	، و خط پیوند) و سپس نامگذاری ا	رمول ساختاري	تمرین ۱: ایزومرهای را رسم کنید (فر
و نامگذاری کنید.	کربن در زنجیر اصلی داشته باشند ر	ىر دارىم كە ۴	تمرین ۲: در بین ایزومرهای چند ایزوه
نر است) الف) ٢ –	بتدا زنجیر اصلی را بکشید، راحت:	بایش دهید (ا	تمرین ۳: مثالهای زیر را با مدل نقطه – خط نم
	۲۰ — دی متیل پنتان	۲ – ایتل – ۳	کلرو – ۳ – فلوئورو – ۳،۴ – دی متیل هپتان ب) ۳
ِ خط بزن که تکراری	ام هر شاخه را که نوشتی، در زنجیر	كيب شلوغه، ن	تمرین ۴: ترکیب زیر را نامگذاری کنید: (وقتی تر
			ننویسی)
دروژن در آلکانها (n): تعداد پیوندهای کربن — هید	نا (برحسب	نکته: تعداد پیوندهای کربن – کربن در آلکانه
			برحسب n): تعداد پیوند اشتراکی در آلکانها (برحم
			x و y): تعداد پیوند اشتراکی در آلکن (برحسب n)
			در سیکلوآلکان (برحسب n): تعداد پیوند C-C در
ند. برای نامگذاری،	گانه () دار	، یک پیوند دو	«آلکنها ()» این هیدروکربنها در ساختار خود.
یا	بن دارد 🤋 (فرمول)	، کر،	پسوند «بِن» را به لفظ آلک می افزاییم. ساده ترین آلکن
			فرمول ساختاری کوتاه شده) یا (فرمول _
_			بیشتر گیاهان وجود دارد. اتن آزاد شده در گیاهانی نظ
و فرمول ساختاري و	تمرین ۱: نام، فرمول مولکولی ب	ستفاده میشود	نارس میشود و از آن به عنوان اس
			مدل خط پیوند را برای آلکنی با ۳ کربن، نشان دهید.
جیر ممکن را انتخاب	حتى اگر مجبور باشيم، بلندترين زنـ	لمي قرار گيرد،	نكته بسيار مهم: پيوند دوگانه، بايد جزء زنجير اص
			نكنيم!
ightarrow نام: رنام:	يد. (نام: (→	ر نامگذاری کن	تمرین ۲: ، سه ایزومر آلکنی دارد. آنها را رسم و

) (نام: \longrightarrow) نکته: در الکنهای چهارگربنه به بالا ، باید پیش از دکر لفظ «الک»، شمارهای را دکر کرد که جایگاه
پیوند دوگانه را نشان دهد از بین دو کربنی که پیوند دوگانه دارند، باید شماره را ذکر کرد. تمرین ۳ : ایزومرهای
آلکنی را رسم و نامگذاری کنید.
تمرین ۴ — نسبت تعداد H در «سومین آلکان» به «سومین آلکن» چند است؟
تمرین ۵ – بین آلکان و آلکن هم کربن، ایزومرهای کدام، بیشتر است؟
واكنشهاي آلكنها (سير شدن 🗈 فصل دوم — پليمر شدن 🗈 فصل سوم) سير شدن: آلكنها از آلكانها، واكنشپذيري
دارند، و به خاطر وجود پیوند دوگانه، سیر هستند. در (C = C) یکی از دو پیوند، از دیگر ضعیفتر
است آسان تر شکسته می شود و دو ذره ظرفیتی را به دو کربن، متصل میکند: بررسی تمرین دورهای ۸:
در واکنش سیرشدن، هر اتم کربن، از تمام امکان خود برای تشکیل پیوندهای استفاده میکند، (به جای اینکه
پیوند دوگانه و پیوند یگانه داشته باشد، پیوند یگانه خواهد داشت.) معمولا هر اتم کربن، ۴
پیوند اشتراکی دارد به جز:
* تذکر: واکنش آلکنها با Cl−Cl نیاز به کاتالیزگر دارد. تمرین دورهای ۵ فصل ۳ 🗈 !! تمرین — تفاوت
تعداد اتمهای H بین واکنش دهنده و فرآورده در واکنش «۲ و۳ – دیمتیل – ۲ – بوتن» با برم مایع چندتا است؟ نام فرآورده
چیست؟
وارد کردن آلکن در بخار برم مایع (قرمز) یا آب برم (قرمز)، ترکیبی رنگ ایجاد میکند که نشانگر انجام
واکنش، و مهمترین روش شناسایی ترکیبهای سیر نشده از سیر شده است. سایر هالوژنها نیز میتواندد چنین واکنشی
را انجام دهند و در مقابل ترکیب سیرنشده، رنگ شوند. تذکر: هالوژنها در حالت عنصری (آزاد)، (رنگی /
بیرنگ) و در حالت ترکیب هستند.
اسیدهای هیدرولیک نیز میتوانند در واکنش با آلکنها شرکت کنند. گاز اتن، سنگبنای صنایع پتروشیمی است. با
استفاده از اتن، حجم انبوهی از مواد گوناگونی تهیه میشود. از واکنش اتن با آب در حضور به عنوان کاتالیزگر،
تولید می شود. که الکلی کربنه، رنگ، و فرّار (نقطه جوش تر از آب) است. به هر
نسبتی در حل میشود. از مهمترین های صنعتی است و در تهیه مواد دارویی، آرایشی و بهداشتی و به
عنوان «ضد عفونی کننده» به کار میرود. * خود را بیازمایید ۱ صفحه ۴۲: گوشت رنگ بخار برم را از بین برده پس چربی آن
تركيبات سير (نيز) دارد. (كه با برم واكنش مىدهد.) در صنعت پتروشيمى، تركيبها، مواد و وسايل گوناگون
از یا طبیعی به دست میآید. (فرآورده های پتروشیمیایی) در صنایع پتروشیمی کشورها، موادی نظیر
، و تولید می شوند. آلکینها () (سیر نشده تر از آلکنها!) آلکینها
در ساختتار خود، یک پیوند سه گانه کربن_کربن (-CºC) دارند. برای نامگذاری، پسوند «بین» را به لفظ آلک اضافه
میکنیم. سادهترین الکین کربن دارد: (گاز:) CH یا -CاC- نام قدیمی گاز اتین، است
که (از شعله آن) در کاری و کاری فلزها استفاده میشود و به آن، جوش نیز گفته میشود:
$+ \leftarrow +$ در این روش، کلسیم () در یک مخزن نگهداری و با افزودن آب، به تبدیل می شود.
تمرین ۱ — فرمول ساختاری و مولکولی، مدل پیوند — خط، و نام آلکین سه کربنه چیست؟ (فرمول پیوند — خط)
تمرین ۲ — ایزومرهای آلکنی را رسم و ناگذاری کنید: (چرا کلمه آلکنی گفته شده؟ *)
تمرین ۳ – واکنش ۱ مول پروپین با ۱ مول برم مایع را بنویسید:
تمرین ۴ – واکنش ۱ مول اتین را با ۲ مول گاز کلر بنویسید:
تمرین ۵ — هر مول اتین برای سیرشدن کامل، به چند مول گاز هیدروژن نیاز دارد؟

جرم دارد. تعداد هیدروژن آلکان همکربن	گاز هیدروژن، ۱۰٪ افزایش .	ِ اثر سير شدن كامل با ً	تمرین ۶ — یک آلکین در
			این آلکین چند تا است؟

تمرین ۷ — ترکیب برای سیر شدن کامل: اولاً) به چند مول نیاز دارد؟ دوم) چند مول فرآورده تشکیل میشود؟
سوم) این ترکیبا با ۱ ـ بوتین ایزومر است یا با ۱ ـ بوتن؟ واکنش سوختن کامل (پارامتری بر حسب n) آلکان، الکن و آلکین
با n اتم کربن) پرسش – آیا این گفته درست است؟ «کربن دارای پیوند سهگانه در آلکین، نمیتواند شاخه فرعی داشته
شد.»

ب ۱۱ احم کربن) پرمسن ۱۰ یا بین کنند کرست است. « کربن کارای پیوند شد کان کرر افلین کلی کواند شد کا کر کی کاشت
شـد.»
هیدروکربنهای حلقوی خود را بیازمایید الف و ب صفحه ۴۲ : الف) هیدروکربنهای حلقوی سیرشده (
كان ﴾ ؟ معروفترين آنها إست: حلقه در سيكو هگزان سطح (است / نيست) .
قلمرو پیوندی اطراف هر اتم کربن زاویه پیوندی: همه قلمرو ها در یک صفحه : (مدل خط –
ون <i>دى</i>)
فرمول مولكولي
ب) آروماتیک ؟ ممکن است دارای یک ، دو (یا بیشتر) باشند ؟ معروفترین ترکیب
وماتیک، با حلقه و پیوند دوگانه است. نفتالن نیز از ترکیبات آروماتیک
دو حلقهای) است. (و در پیوند دوگانه دارد) (H)
يا يا
نفتالن به عنوان برای نگهداری و به کار میرود. تمرین – هر مول بنزین، چند
ول اتم هیدروژن از هر مول هگزان کم دارد؟
ر است - یک آلکن، در صورت هم کربن بودن، با کدامیک هم پار است؟ ۱) آلکین ۲) سیکلوآلکان ۳) آلکان ۴)
وماتیک تمرین — جرم مولی آلکان، آلکن، آلکین و سیکلوآلکان را بر حسب n بنویسید. نفت، مادهای که اقتصاد جهان
دگرگون ساخت نفت خام به طور عمده مخلوطی از و به مقدار کم برخی ، ، ، و
یره است. مقدار نمک و اسید در نفت خام و در مناطق گوناگون، است. دلیل: شرایط و
حوه نفت خام آ بخش عمده هیدروکربنهای نفت خام را تشکیل میدهند که به دلیل واکنشپذیری
به عنوان به کار میروند. آ بیش از ۹۰٪ نفت خام صرف و تأمین میشود و مقدار
می از آن در صنایع کاربرد دارد. با هم بیندیشیم صفحه ۴۳: بنزین و خوراک پتروشیمی: >
الله على الله الله الله الله الله الله الله ال
عرويين > الف) اندازه مولكول: نفت كوره بنزين (
رارتو المعطفة بوس تراق برم و المدارة موقعون عمر السف ب در عنف سندين، بشترى هست. در نفت سبك، « و » ، « » و « » بيشترى هست. پ) ملاك
ستوبی هست. در نفت سبک و سنگین، و " ، " " و " " و و ملاک است) ت) گران ترین
سه بندی فقت خام به سبک و سنگین، سنگین دهنده آن است. رفقت خوره مار ک است) ک) کران ترین خش نفت خام، است و در نتیجه نفت و نفت ، به ترتیب، بیشتری و کمترین قیمت
·
دارند. «پالایش نفت خام» پس از جدا کردن ، و ، نفت خام را پالایش میکنند. با استفاده
به ، (تقطیر به ، هنگامی صورت میگیرد که نقطه جوش اجزاء مخلوط،
هم نزدیک باشند.) هیدروکربنهای آن، به صورت هایی با نزدیک به هم، جدا میشوند.
تدا، نفت خام را در محفظهای بزرگ میدهند و آن را به تقطیر هدایت میکنند. در برج تقطیر، دما از

میشود. مولکولهای	ه قسمت وارد ه	ت) نفت خام داغ ب	سردتر است	_ کم میشود (به	
	بیرون آمده و به سوی _					
هایی که در	_ تبدیل میشوند، و در _	ِ شده و به	ىروند،	مولكولها بالاتر م	ىند. بە تدرىج كە	میک
و مناسب در	يش نفت خام، سوخت _	مىشوند. پالار	ده و از برج	رج هستند، وارد ش	لەھاي گوناگون ب	فاصد
ت و کاربرد ب <i>ی</i> رویه،	میگردد. با افزایش اهمیه	ی ارزان	نجر به تولید انرژ;	ردهد و از سویی م	ار صنایع قرار م _ی	اختي
مر زخایر آن به ۵۰۰	های است که ع	ئی دیگر از سوخت.	، () یک	میرود. زغالسنگ	، خام رو به پایان	نفت
شتری از به	البته باعث ورود مقدار بي	ایگزین نفت شود،	وان ، ج	نگ، میتواند به عن	مىرسد. زغالس	سال
زغالسنگ:		_ بنزين:	میکند:	را تشدید	نیز میشود و اثر	هوا
زغالسنگ	به ازای ۱ گرم): بنزین	گرمای آزاد شده (<u>9</u>	· ·	·	
نمالسنگ برای حذف	و زغ	یی زغالسنگ: ۱)	اههای بهبود کارآ	بنزین زغالسنگ ر	ار C تولید شده:	مقدا
_ ها به كمك شرايط	₎ شده از دودکش	گاز خارج	انداختن گ	های دیگر ۲) به _	و ناخالصى	
یا	، بارها دچار	ِ معادل زغالسنگ	خطرناک است و	نیز بسیار دشوار و	زغالسنگ	
، متان گازی (سبک/	لسنگ است. میدانیم که	منگام استخراج زغا	آزاد شده ه	<u>ل</u> گاز	اند. انفجار به دلی	شده
وجود دارد.	_ درصد برسد، احتمال_	ن به بیش از	ست و اگر مقدار آر	_ و بى اس	ئين)، ب <i>ى</i>	سنگ
ترين حالت	عت» حمل و نقل هوايي_	د بود. «پیوند با صن	بز خواها	د، احتمال انفجار نب	ىه متان بيشتر باشا	هرچ
_ جاده – مسافرت	سازی و	_ – عدم نیاز به _	،. مزایا:	و به گسترش است	ل و نقل بوده و ر	حمل
در برج	هواپيما از پالايش	سوخت	معایب:	ی خوب در مواقع ـ	ن، رسان	آساز
با تا	ه است. (مخلوطی از	تشكيل شد	ر عمده از نفت	لید میشود و به طو	ير پالايشگاهها توا	تقط
ت. که حدود ۶۶٪ از	توزیع و استفاده از آن اسم	آن به مراكز	نأمين سوخت،	، از مسائل مهم در i	كربن) يكي	
نجام م <i>ی</i> شود. تمرین	ما و های نفتی ا	، جادەپيە	·	و تعبيه از طريق	نى خط	طرية
ل، بتواند دمای ۲.۸	سوزند. اگر گرمای حاص	₎ ، به طول کامل م _ح	سور اكسيژن كافي	متان و اتن، در حظ	۸۱.۴۴ مخلوط	<u> </u>
م است؟	خلوط به تقریب، چند گره	ند، جرم اتبلن در م	۱۰۰ درجه برسان	درجه سانتي گراد به	گرم آب را از ۲۰	كىلو