Signals and Systems Quick Reference Revision 0.3

Emmy Chow

Contents

1	Not	tation and Definitions	3
	1.1	Notation	3
		1.1.1 Logic	3
		1.1.2 Set Definitions	3
		1.1.3 Linear Algebra	4
		1.1.4 Calculus	5
		1.1.5 Complex Numbers	5
		1.1.6 Linear Systems Theory	6
			7
	1.2		8
2	Ide	ntities	9
	2.1		9
	2.2	Other Identities	
3	Lin	ear Systems Theory 1	1
	3.1	Continuous Time Fourier Transform	1
		3.1.1 CTFT Properties	1
		3.1.2 CTFT Table	2
	3.2	Laplace Transform	
	9	3.2.1 Laplace Transform Properties	
		3.2.2 Laplace Transform Table	
4	Dig	rital Signal Processing 1	5
	4.1	Discrete Time Fourier Transform	
		4.1.1 DTFT Properties	
		4.1.2 DTFT Symmetries	
		4.1.3 DTFT Table	
	4.2	Z Transform	
		4.2.1 Z Transform Properties	
		4.2.2 Z Transform Table	
	4.3	Sampling Compression and Expansion 2	

4.3.1	C/D Conversion	20
4.3.2	D/C Conversion	21
4.3.3	Compression and Decimation	22
4.3.4	Expansion and Interpolation	23
4.3.5	Change Sampling Rate by Noninteger Factor	24
4.3.6	Polyphase Decompositions	25

1 Notation and Definitions

1.1 Notation

1.1.1 Logic

:= means equal by definition

 $\Rightarrow \leftarrow$ means contradiction

1.1.2 Set Definitions

Topology and Basic Sets

 ∂U is the boundary of U

 \overline{U} is the closure of U. i.e. a set plus its boundary.

 \mathring{U} is the interior of U i.e. a set plus minus its boundary.

|U| is the size or cardinality of set U

$$\mathbb{N} := \bigcup_{k=1}^{\infty} \{k\}$$
 is the set of natural numbers

 $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$ is the set of whole numbers

$$\mathbb{R}_+ := \{ x \in \mathbb{R} : x > 0 \}$$

 $|\mathbb{N}| = \aleph_0$

Subsets of \mathbb{Z} and \mathbb{N}_0

Given
$$k, a \in \mathbb{Z}$$
, $k\mathbb{Z} + a := \{kn + a : n \in \mathbb{Z}\} = \{a, -k + a, k + a, 2k + a, -2k + a, \ldots\}$

Given
$$k, a \in \mathbb{N}_0, k\mathbb{N}_0 + a := \{kn + a : n \in \mathbb{N}_0\} = \{a, k + a, 2k + a, 3k + a, \ldots\}$$

I extend interval notation to the integers. Instead of a comma, two dots are used between the upper and lower bound when it's set of integers. For example: $[a .. b) := [a, b) \cap \mathbb{Z}$.

Other Set definitions

 \mathbb{F} is a general field. It can be either \mathbb{R} or \mathbb{C}

 $\overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ is the Riemann Sphere

 $\{a_i\}_{i=k}^n := \{a_i\}_{i \in [k ... n]}$ is an indexed set. Informally, for indexed sets $\{a_1, a_2\} \neq \{a_2, a_1\}$.

Algebraic Structure

 (V, \mathbb{F}) is a vector space

 $(V, \mathbb{F}, \|\cdot\|)$ is a metric space

 $(V, \mathbb{F}, \langle \cdot, \cdot \rangle)$ is an inner product space

 $U \leq W$ means U is a vector subspace of W

U < W means U is a proper vector subspace of W

1.1.3 Linear Algebra

[0] is the matrix with all entries equal to 0

 $A \sim B$ means A is row equivalent to B

$$\operatorname{diag}\{a_i\}_{i=1}^n := \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix} \boldsymbol{I}$$

$$\bigoplus_{i=1}^{n} \boldsymbol{A}_{k} = \boldsymbol{A}_{1} \oplus \cdots \oplus \boldsymbol{A}_{n} := \operatorname{diag} \{\boldsymbol{A}_{1}, \cdots, \boldsymbol{A}_{n}\}$$

Basis Representation

 $\mathcal{E}_U := {\{\hat{\mathbf{u}}_i\}}_{i=1}^n$ is the standard basis for U

 $\mathcal{B}_U := \{ \overrightarrow{\boldsymbol{u}}_i \}_{i=1}^n$ is a basis for U

 $[\mathcal{B}_U]$ is the matrix with columns corresponding to elements of the basis \mathcal{B}_U

 $\mathcal{E}_n := \{ \overrightarrow{e}_i \}_{i=1}^n$ is the standard basis for \mathbb{R}^n

 $\vec{x}_{\mathcal{B}_U}$ is the vector $\vec{x} \in U$ wrt basis \mathcal{B}_U

 $P_{\mathcal{B}_U \to \mathcal{B}_W} := [\mathcal{B}_U]^{-1}[\mathcal{B}_W]$ is the change of basis matrix from basis \mathcal{B}_U to basis \mathcal{B}_W

 $\mathfrak{L}(U,W)$ is the set of linear operators that maps (U,\mathbb{F}) to (W,\mathbb{F})

 $[\mathcal{T}]_{(\mathcal{B}_U,\mathcal{B}_W)}$ is the matrix representation of linear operator \mathcal{T} with vectors in the domain wrt \mathcal{B}_U and vectors in the codomain wrt \mathcal{B}_W

4

Eigenvalues and Eigenvectors

 $\chi_{\boldsymbol{A}}(\lambda) := \det(\boldsymbol{A} - \lambda \boldsymbol{I})$

 $\Lambda(A)$ is the spectrum (set of all eigenvalues) of A.

 $\mu_{\pmb{A}}(\lambda)$ is the minimal polynomial for the matrix \pmb{A}

 $\alpha_{\pmb{A}}(\lambda)$ is the algebraic multiplicity of eigenvalue λ for the matrix \pmb{A}

 $\gamma_{\pmb{A}}(\lambda)$ is the geometric multiplicity of eigenvalue λ for the matrix \pmb{A}

Definiteness

 $\mathbf{A} \succ 0 \iff \mathbf{A}$ is positive definite,

 $\mathbf{A} \succeq 0 \iff \mathbf{A}$ is positive semidefinite

 $A \prec 0 \iff A$ is negative definite,

 $\mathbf{A} \preceq 0 \iff \mathbf{A}$ is negative semidefinite

1.1.4 Calculus

Nth Derivative/Antiderivative

$$\mathcal{D}^n f(t) := f^{(n)}(t)$$

$$\mathcal{D}^{-n}f(t) := \underbrace{\int \cdots \int}_{\text{n times}} f(t) dt \dots dt$$

Accumulation

$$\mathcal{A}^k f(t) := \underbrace{\int\limits_{-\infty}^t \cdots \int\limits_{-\infty}^t f(\tau) \, d\tau \cdots d\tau}_{\text{k times}}$$

$$\mathcal{A}^k f[n] := \underbrace{\sum_{n=-\infty}^n \cdots \sum_{k \text{ times}}^n}_{k \text{ times}} f[k]$$

Jacobian and Parital Derivatives:

$$\partial_{x_1}^n f(x_1, \dots, x_n) := \frac{\partial^n f}{\partial x^n}$$

$$\partial_{x_1}^{-n} f := \underbrace{\int \cdots \int}_{\text{n times}} f(x_1, \dots, x_n) dx_1 \cdots dx_1$$

If mixed partials commute we can write:

$$\partial_{x_1,\dots,x_k}^{(k_1,\dots,k_n)} f(x_1,\dots,x_n) := \frac{\partial^K f}{\partial x_1^{k_1} \cdots \partial x_n^{k_n}}, \text{ where } K = k_1 + \dots + k_n$$

$$\left[\mathcal{D}\vec{\boldsymbol{f}}(x_1,\ldots,x_n)\right] = \left[\partial_{x_1}\vec{\boldsymbol{f}} \quad \ldots \quad \partial_{x_n}\vec{\boldsymbol{f}}\right] := \begin{bmatrix} \partial_{x_1}f_1 & \ldots & \partial_{x_n}f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1}f_n & \ldots & \partial_{x_n}f_n \end{bmatrix}$$

1.1.5 Complex Numbers

 $(a+bj)^* := a-bj$ is the complex conjugate

$$\Re\{a+bj\} := a$$

$$\Im\{a+bj\} := b$$

$$A^{\mathsf{H}} := (A^*)^{\mathsf{T}} = (A^{\mathsf{T}})^*$$

1.1.6 Linear Systems Theory

1.1.7 Digital Signal Processing

Delta Operator

$$\begin{split} \Delta x[n] &:= x[n+1] - x[n] \\ \Delta^k x[n] &:= \Delta^{k-1} x[n+1] - \Delta^{k-1} x[n] \end{split}$$

Circular Convolution

$$f(t) \circledast g(t) := \int_{\theta_0}^{\theta_0 + 2\pi} f(\tau)g(t - \tau) d\tau, \, \theta_0 \in \mathbb{R}$$

Useful Functions/Equations:

$$sgn(x) := \begin{cases} 1 \text{ if } x > 0 \\ 0 \text{ if } x = 0 \\ -1 \text{ if } x < 0 \end{cases}$$

$$\operatorname{clamp}_{[a,b]}(x) := \min(\max(x,a),b)$$

$$\operatorname{Arg}(\theta) := \theta - 2\pi \left| \frac{\theta - \theta_0}{2\pi} \right| \text{ (i.e. } \theta \in \mathbb{R} \text{ maps to } \hat{\theta} \in [\theta_0, \, \theta_0 + 2\pi])$$

1.2 Function Definitions

Name	Definition
(Heaviside) unit step function	$u_H(t) := \begin{cases} 1 & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$
Discrete rectangular function	$rect[x] := u_H[x] - u_H[x-1]$
Discrete Triangular function	$tri[n] := (1 - x)rect\left[\frac{1}{2}(x+1)\right]$
Continuous rectangular function	$rect(x) := u_H(x + \frac{1}{2}) - u_H(x - \frac{1}{2})$
Triangular function	$\operatorname{tri}(x) := (1 - x)\operatorname{rect}\left(\frac{1}{2}x\right)$
ReLU/Ramp function	$relu(x) := u_H(x)x$
(Normalized) sinc	$\operatorname{sinc}(x) := \frac{\sin(\pi x)}{\pi x}$
Dirichlet kernel	$\operatorname{diric}_{N}(x) := \frac{\sin\left(\left(N + \frac{1}{2}\right)x\right)}{\sin\left(\frac{x}{2}\right)}$
(Dirac) comb function	$W_T(x) := \sum_{k=-\infty}^{\infty} \delta(t - kT)$

Note:

Discrete functions can only be scaled by integer factors.

2 Identities

2.1 Trig Identities

Co-Function Identities

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta)$$

Supplement Angle Identities

$$\sin(\pi - \theta) = \sin(\theta)$$

$$\sin(\pi + \theta) = -\sin(\theta)$$

$$\cos(\pi - \theta) = -\cos(\theta)$$

$$\cos(\pi + \theta) = -\cos(\theta)$$

$$\tan(\pi - \theta) = -\tan(\theta)$$

$$\tan(\pi + \theta) = \tan(\theta)$$

Negative Angle Identities

$$\sin(-\theta) = -\sin(\theta)$$

$$\cos(-\theta) = \cos(\theta)$$

$$tan(-\theta) = -tan(\theta)$$

Additional and Subtraction Identities

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

Product Identities

$$\sin(x)\cos(y) = \frac{1}{2}(\sin(x+y) + \sin(x-y))$$

$$\cos(x)\sin(y) = \frac{1}{2}(\sin(x+y) - \sin(x-y))$$

$$\cos(x)\cos(y) = \frac{1}{2}(\cos(x+y) - \cos(x-y))$$

$$\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) - \cos(x+y))$$

Superposition

$$A_1 \cos(\theta) + A_2 \sin(\theta) = A \cos(\theta - \phi)$$

$$A = \sqrt{A_1^2 + A_2^2}, \ \phi = \tan^{-1}\left(\frac{A_2}{A_1}\right)$$

Power Reduction Formula

$$\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta))$$

$$\cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta))$$

Double Angle Identities

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

$$cos(2\theta) = cos^{2}(\theta) - sin^{2}(\theta)$$
$$= 2 cos^{2}(\theta) - 1$$

$$= 1 - 2\sin^2(\theta)$$

$$\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}$$

Half Angle Identities

$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{2}}$$

$$\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos(\theta)}{2}}$$

Sum Identities

$$\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\sin(x) - \sin(y) = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

$$cos(x) + cos(y) = 2 cos\left(\frac{x+y}{2}\right) cos\left(\frac{x-y}{2}\right)$$

$$cos(x) - cos(y) = 2 cos\left(\frac{x+y}{2}\right) cos\left(\frac{x-y}{2}\right)$$

Complex Exponential Identities

$$\sin(z) = \frac{1}{2i} \left(e^{jz} - e^{-jz} \right)$$

$$\cos(z) = \frac{1}{2} \left(e^{jz} + e^{-jz} \right)$$

2.2 Other Identities

Convolutions

$$f(x) \star g(x) = f(x) * g(-x)$$

$$rect(x) * rect(x) = tri(x)$$

Dirichlet Kernel

$$\operatorname{diric}_{N}(x) := \frac{\sin((n + \frac{1}{2})x)}{\sin(\frac{x}{2})} = \sum_{k=-N}^{N} e^{jkx} = 1 + 2\sum_{k=1}^{N} \cos(kx)$$

$$\lim_{N \to \infty} \operatorname{diric}_N(Tx) = W_{\frac{1}{T}}(x)$$

Accumulation

$$\mathcal{A}\{\Delta x[t]\} = \Delta\{\mathcal{A}x[t]\} = x[t]$$

$$\mathcal{A}{\mathcal{D}x(t)} = \mathcal{D}{\mathcal{A}x(t)} = x(t)$$

3 Linear Systems Theory

3.1 Continuous Time Fourier Transform

$$X\left(e^{j\omega}\right) = \mathcal{F}\left\{x(t)\right\} := \int\limits_{-\infty}^{\infty} x(t)e^{-j\omega t}\,dt \qquad \qquad x(t) = \mathcal{F}^{-1}\left\{X\left(e^{j\omega}\right)\right\} := \frac{1}{2\pi}\int\limits_{-\infty}^{\infty} X\left(e^{j\omega}\right)e^{j\omega t}d\omega$$

3.1.1 CTFT Properties

Property	Time Domain	Frequency Domain
Linearity	$c_1 x_1(t) + c_2 x_2(t)$	$c_1 X_1(e^{j\omega}) + c_2 X_2(e^{j\omega})$
Time Shift	$x(t-t_0)$	$X(e^{j\omega})e^{-j\omega t_0}$
Time Reversal	x(-t)	$X(e^{-j\omega})$
Time Scale	x(at)	$\frac{1}{ a }X\left(e^{\frac{j\omega}{a}}\right)e^{-\frac{j\omega}{a}}$
Time Scale + Shift	$x(at-t_0)$	$\frac{1}{ a }X\left(e^{\frac{j\omega}{a}}\right)e^{-\frac{j\omega t_0}{a}}$
Complex Conjugation	$x^*(t)$	$X^*(e^{-j\omega})$
Frequency Shift	$x(t)e^{-j\omega_0}$	$X(e^{j(\omega-\omega_0)})$
Convolution	$x_1(t) * x_2(t)$	$X_1(e^{j\omega})X_2(e^{j\omega})$
Modulation	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(e^{j\omega}) * X_2(e^{j\omega})$
Time Differentiation	$\mathcal{D}_t^n\{x(t)\}$	$(j\omega)^n X(e^{j\omega})$
Causal Accumulation	$\mathcal{A}_t\{x(t)u_H(t)\}$	$\frac{1}{j\omega}X(e^{j\omega}) + \pi X(0)\delta(\omega)$
Frequency Differentiation	$t^n x(t)$	$j^n \mathcal{D}^n_{\omega} \{ X e^{j\omega} \}$
Parseval's Theorem	$\int_{-\infty}^{\infty} x_1(t) x_2^*(t) dt$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(e^{j\omega}) X_2^*(e^{j\omega}) d\omega$
Duality	$X(e^{j\omega t})$	$2\pi x(\omega)$

3.1.2 CTFT Table

f(t)	$F(e^{j\omega})$
0	constant ω_0
1	$2\pi\delta(\omega)$
$\delta(t)$	1
u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$
$\mathrm{sgn}(t)$	$\frac{2}{i\omega}$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$
$\cos(\omega_0 t)$	$\pi(\delta(\omega-\omega_0)+\delta(\omega+\omega_0))$
$\sin(\omega_0 t)$	$-j\pi(\delta(\omega-\omega_0)-\delta(\omega+\omega_0))$
$\cos(\omega_0)u(t)$	$\frac{\pi}{2}(\delta(\omega-\omega_0)+\delta(\omega+\omega_0))+\frac{j\omega}{\omega_0^2-\omega^2}$
$\sin(\omega_0)u(t)$	$\frac{\pi}{2j}(\delta(\omega-\omega_0)+\delta(\omega+\omega_0))+\frac{\omega_0}{\omega_0^2-\omega^2}$
$e^{-at}\cos(\omega_0)u(t)$	$\frac{\omega_0}{(a+j\omega)^2 + \omega_0^2}$
$e^{-at}\sin(\omega_0)u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$
$\operatorname{rect}\left(\frac{t}{T}\right), T > 0$	$T\mathrm{sinc}\left(\frac{T}{2\pi}\omega\right)$
$\operatorname{tri}\!\left(rac{t}{T} ight), \ T>0$	$T\mathrm{sinc}^2\!\left(\frac{T}{2\pi}\omega\right)$
$A \operatorname{sinc}\left(\frac{1}{2\pi A}t\right)$	$\mathrm{rect}(A\omega)$
$A \mathrm{sinc}^2 \left(\frac{1}{2\pi A} t \right)$	$\mathrm{tri}(A\omega)$
x^n	$2\pi j^n \delta^{(n)}(\omega)$
$e^{-at}u(t), a>0$	$\frac{1}{a+j\omega}$
$t^n e^{-at} u(t), \ a > 0$	$\frac{1}{a+j\omega}$ $\frac{1}{(a+j\omega)^{n+1}}$
$e^{-a t }, a > 0$	$\frac{2a}{a^2 + \omega^2}$
$e^{-\frac{t^2}{2\sigma^2}}$	$\sqrt{2\pi\sigma^2}e^{-\frac{\sigma^2}{2}\omega^2}$

3.2 Laplace Transform

$$X(s) = \mathcal{Z}\{x(t)\} := \int_{-\infty}^{\infty} x(t)e^{-st}\,dt \qquad \qquad x(t) = \mathcal{Z}^{-1}\{X(s)\} := \int_{-\infty}^{\infty} x(t)e^{-st}\,dt$$

3.2.1 Laplace Transform Properties

Property	x[n]	X(z)
Linearity	$c_1x_1(t) + c_2x_2(t)$	$c_1 X_1(s) + c_2 X_2(s)$
Time Shifting	$x(t-t_0)u(t-t_0)$	$X(s)e^{-st_0}$
Time Scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$
Time Transformation	$x(at - t_0)u(t - t_0)$	$\frac{1}{ a }X\left(\frac{s}{a}\right)e^{-\frac{st_0}{a}}$
Frequency Shift	$e^{at}x(t)$	X(s-a)
1st Time Derivative	x'(t)	$sX(s) - x(0^-)$
2nd Time Derivative	x''(t)	$s^2X(s) - sx(0^-) - x'(0^-)$
General Time Derivative (One-Sided)	$\mathcal{D}_t^n\{x(t)u(t)\}$	$s^{n}X(s) - \sum_{k=1}^{n} s^{n-k} \mathcal{D}_{t}^{k-1}\{x\}(0^{-})$
General Time Derivative (Two-Sided)	$\mathcal{D}_t^n\{x(t)\}$	$s^nX(s)$
1st Frequency Derivative	tx(t)	-X'(s)
General Frequency Derivative	$t^n x(t)$	$(-1)^n \mathcal{D}_s^n \{ X(s) \}$
Accumulation	$\mathcal{A}_t^n\{x(t)\}$	$s^{-n}X(s)$
Frequency Integration	$\frac{1}{t^n}x(t)$	$\mathcal{I}_s^n\{X(s)\}$
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$
Modulation	$x_1(t)x_2(t)$	$\frac{1}{2\pi j} \lim_{\omega \to \infty} \int_{\sigma - j\omega}^{\sigma + j\omega} X_1(u) X_2(s - u) du$
Complex Conjugation	$x^*(t)$	$X^*(s^*)$

Initial Value Theorem:

$$x(t)$$
 is causal $\implies x(0^+) = \lim_{s \to \infty} sX(s)$

Final Value Theorem:

$$x(t)$$
 is causal and stable $\implies \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$

3.2.2 Laplace Transform Table

x(t)	X(s)	ROC
$\delta(t)$	1	\mathbb{C}
$\delta(t-t_0)$	e^{-st_0}	\mathbb{C}
$u_H(t)$	$\frac{1}{s}$	$\Re\{s\} > 0$
$u_H(t-t_0)$	$\frac{1}{s}e^{-st_0}$	$\Re\{s\} > 0$
$\operatorname{rect}\!\left(\frac{t}{T}\right)$	$\frac{1 - e^{-Ts}}{s}$	$\Re\{s\} > 0$
$\mathrm{relu}(t)$	$\frac{1}{s^2}$	$\Re\{s\} > 0$
$t^n u_H(t), n \in \mathbb{N}_0$	$\frac{n!}{s^{n+1}}$	$\Re\{s\} > 0$
$t^z u_H(t), \Re\{z\} > -1$	$\frac{\Gamma(z+1)}{s^{z+1}}$	$\Re\{s\} > 0$
$t^{\frac{1}{n}}u_H(t), n \in \mathbb{N}_0$	$\frac{\Gamma(\frac{1}{n}+1)}{s^{\frac{1}{n}+1}}$	$\Re\{s\} > 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$\Re\{s\} > -a$
$e^{-a t }$	$\frac{2a}{(a^2-s^2)}$	$-a < \Re\{s\} < a$
$(1 - e^{-at})u(t)$	$\frac{a}{s(s+a)}$	$\Re\{s\} > 0$
$\sin(\omega t)u(t)$	$\frac{\omega}{s^2 + \omega^2}$	$\Re\{s\} > 0$
$\cos(\omega t)u(t)$	$\frac{s}{s^2 + \omega^2}$	$\Re\{s\} > 0$
$e^{-at}\sin(\omega t)u(t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$	$\Re\{s\} > -a$
$e^{-at}\cos(\omega t)u(t)$	$\frac{s+a}{(s+a)^2 + \omega^2}$	$\Re\{s\} > -a$

4 Digital Signal Processing

4.1 Discrete Time Fourier Transform

$$X(e^{j\omega}) = \mathcal{F}\{x[n]\} := \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$x[n] = \mathcal{F}^{-1}\{X(e^{j\omega})\} := \frac{1}{2\pi} \int_{\theta_0}^{\theta_0 + 2\pi} X(e^{j\omega})e^{j\omega n}d\omega$$

4.1.1 DTFT Properties

Property	Time Domain	Frequency Domain
Linearity	$c_1x_1[n] + c_2x_2[n]$	$c_1 X_1 + c_2 X_2(e^{j\omega})$
Time Shift	x[n-k]	$X(\omega)e^{-j\omega k}$
Time Reversal	x[-n]	$X(e^{-j\omega})$
Time Scale	x[an]	$\frac{1}{ a }X\left(e^{\frac{j\omega}{a}}\right)$
Time Shift + Scale	x[an-k]	$\frac{1}{ a }X\left(e^{\frac{j\omega}{a}}\right)e^{-\frac{j\omega k}{a}}$
Complex Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
Frequency Shift	$x[n]e^{-j\omega_0}$	$X(e^{j(\omega-\omega_0)})$
Convolution	$x_1[n] * x_2[n]$	$X_1(e^{j\omega})X_2(e^{j\omega})$
Modulation	$x_1[n]x_2[n]$	$\frac{1}{2\pi}X_1(e^{j\omega})\circledast X_2(e^{j\omega})$
First Difference	$\Delta x[n-1]$	$(1 - e^{-j\omega})X(e^{j\omega})$
Accumlation	$\mathcal{A}_n\{x[n]\}$	$\frac{1}{1 - e^{-j\omega}} X(e^{j\omega})$
Frequency Differentiation	$(-jt)^k x[n]$	$\mathcal{D}^k_{\omega}\{F(e^{j\omega})\}$
Parseval's Theorem	$\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n]$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(e^{j\omega}) X_2^*(e^{j\omega}) d\omega$
Duality	$X(e^{2\pi n})$	$2\pi x(-\omega)$

4.1.2 DTFT Symmetries

x[n]	X(z)
$x^*[n]$	$X^*(e^{-j\omega})$
$x^*[-n]$	$X^*(e^{j\omega})$
$\Re\{x[n]\}$	$X_e(e^{j\omega})$
$j\Im\{x[n]\}$	$X_o(e^{j\omega})$
$x_e[n]$	$\Re\{X(e^{j\omega})\}$
$x_o[n]$	$j\Im\{X(e^{j\omega})\}$
Any real $x[n]$	$X(e^{j\omega}) = X^*(e^{-j\omega})$
Any real $x[n]$	$\Re\{X(e^{-j\omega})\} = \Re\{X(e^{j\omega})\}$
Any real $x[n]$	$\Im\{X(e^{-j\omega})\} = -\Im\{X(e^{j\omega})\}$
Any real $x[n]$	$ X(e^{-j\omega}) = X(e^{j\omega}) $
Any real $x[n]$	$\arg(X(e^{-j\omega})) = -\arg(X(e^{j\omega}))$

4.1.3 DTFT Table

x[n]	$X(e^{j\omega})$
0	constant ω_0
1	$2\pi W_{2\pi}(\omega)$
$\delta[n]$	1
$u_H[n]$	$\frac{1}{1 - e^{-j\omega}} + \pi W_{2\pi}(\omega)$
$a^n u[n], a < 1$	$rac{1}{1-ae^{-j\omega}}$
$(n+1)a^nu[n], a <1$	$\frac{1}{(1 - ae^{-j\omega})^2}$
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{\left(1 - ae^{-j\omega}\right)^r}$
$\operatorname{rect}\left[\frac{t}{N}\right], \ N \in \mathbb{Z} \setminus \{0\}$	$\operatorname{diric}_{rac{N}{2}}(\omega)$
$\operatorname{sinc}[\omega_c n], \omega_c \le \pi$	$\operatorname{rect}\left(\frac{1}{\omega_c}\omega\right)$
$e^{j\omega_0 n}$	$2\pi W_{2\pi}(\omega-\omega_0)$
$\cos[\omega_0 n + \phi]$	$\pi e^{j\phi} W_{2\pi}(\omega - \omega_0) + \pi e^{-j\phi} W_{2\pi}(\omega + \omega_0)$
$\sin[\omega_0 n + \phi]$	$\frac{\pi}{j}e^{j\phi}W_{2\pi}(\omega-\omega_0) - \frac{\pi}{j}e^{-j\phi}W_{2\pi}(\omega+\omega_0)$

4.2 Z Transform

$$X(z) = \mathcal{Z}\{x[n]\} := \sum_{n = -\infty}^{\infty} x[n]z^{-n} \qquad x[n] = \mathcal{Z}^{-1}\{X(z)\} := \frac{1}{2\pi j} \oint_C X(z)z^{n-1} dz$$

4.2.1 Z Transform Properties

Property	x[n]	X(z)
Linearity	$c_1x_1[n] + c_2x_2[n]$	$c_1 X_1(z) + c_2 X_2(z)$
Time Shifting	x[n-k]	$X(z)z^{-k}$
Time Reversal	x[-n]	$X(z^{-1})$
Z-Scaling	$z_0^n x[n]$	$X(z_0^{-1}z)$
Backward First Difference	$\Delta x[n-1]$	$(1-z^{-1})X(z)$
Forward First Difference	$\Delta x[n]$	(z-1)X(z) - zx[0]
Complex Conjugation	$x^*[n]$	$X^*(z^*)$
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$
Z Differentiation	$n^k x[n]$	$(-z)^k \mathcal{D}_z^k \{X(z)\}$
Parseval's Theorem	$\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n]$	$\frac{1}{2\pi j} \oint_C X_1(z) X_2^* ((z^*)^{-1}) z^{-1} dz$

Initial Value Theorem:

$$x[n]$$
 is causal $\implies x[0] = \lim_{z \to \infty} X(z)$

Final Value Theorem:

$$x[n]$$
 is causal $\implies \lim_{n \to \infty} x[n] = \lim_{z \to 1} (z-1)X(z)$

4.2.2 Z Transform Table

x[n]	X(z)	ROC
$\delta[n-k]$	z^{-k}	\mathbb{C}
$u_H[n]$	$\frac{1}{1-z^{-1}}$	z > 1
$-u_H[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
$nu_H[n]$	$\frac{z^{-1}}{(1-z^{-1})^2}$	z > 1
$n^2 u_H[n]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z > 1
$-nu_H[-n-1]$	$\frac{z^{-1}}{(1-z^{-1})^2}$	z < 1
$-n^2 u_H[-n-1]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z < 1
$a^n u_H[n]$	$\frac{1}{1 - az^{-1}}$	z > a
$na^nu_H[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$n^2 a^n u_H[n]$	$\frac{az^{-1}(1+az^{-1})}{(1-az^{-1})^3}$	z > a
$-na^nu_H[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$-n^2 a^n u_H[-n-1]$	$\frac{az^{-1}(1+az^{-1})}{(1-az^{-1})^3}$	z < a
$\binom{n+k-1}{k-1}a^nu[n]$	$\frac{1}{(1-az^{-1})^k}$	z > a
$(-1)^k {\binom{-n-1}{k-1}} a^n u[-n-k]$	$\frac{1}{(1-az^{-1})^k}$	z < a
$\cos(\omega_0 n) u_H[n]$	$\frac{1 - z^{-1}\cos(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
$\sin(\omega_0 n)u_H[n]$	$\frac{z^{-1}\sin(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
$a^n \cos(\omega_0 n) u_H[n]$	$\frac{1 - az^{-1}\cos(\omega_0)}{1 - 2az^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > a
$a^n \sin(\omega_0 n) u_H[n]$	$\frac{az^{-1}\sin(\omega_0)}{1 - 2az^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > a

4.3 Sampling, Compression, and Expansion

4.3.1 C/D Conversion

Shanon-Nyquist Sampling Theorem:

Suppose X is a bandlimited signal with bandwidth $2\Omega_n$

$$\forall \Omega : |\Omega| > \Omega_N, \ X(j\Omega) = 0.$$

Perfect reconstruction of the signal requires: $\Omega_s = \frac{2\pi}{T_s} > 2\Omega_N$.

4.3.2 D/C Conversion

Mismatch in Reconstruction and Sampling Period:

Assuming no aliasing effects, if $T_r \neq T_s$

$$y_r(t) = \frac{T_r}{T_s} x_c \left(\frac{T_s}{T_r} t\right)$$

4.3.3 Compression and Decimation

Figure 4.21 (a)–(c) Downsampling with aliasing. (d)–(f) Downsampling with prefiltering to avoid aliasing.

4.3.4 Expansion and Interpolation

Figure 4.24 Frequency-domain illustration of interpolation.

4.3.5 Change Sampling Rate by Noninteger Factor

Figure 4.30 Illustration of changing the sampling rate by a noninteger factor.

4.3.6 Polyphase Decompositions

Noble Identities:

Figure 4.31 Two equivalent systems based on downsampling identities.

Figure 4.32 Two equivalent systems based on upsampling identities.

Polyphase Decomposition for Compression:

In the below diagram $e_k[n] = h[nM + k]$

Figure 4.39 Implementation of decimation filter using polyphase decomposition.

Figure 4.40 Implementation of decimation filter after applying the downsampling identity to the polyphase decomposition.