Mathematics for Economists Kapitel 9 – Kontrolteori: Grundlæggende metoder

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus Universitet

Disposition Kapitel 9

- Introduktion (9.1, 9.2)
- Regularitetsbetingelser (9.3)
- Standardproblemet (9.4)
- Skyggepriser og den adjungerede funktion (9.6)
- Tilstrækkelige betingelser (9.7)
- Problemer udtrykt i nutidsværdi (9.9)
- Ubegrænset periode (9.11)

Introduktion (Afsnit 9.1 og 9.2)

- Betragt et system hvis tilstand på tidspunkt t er beskrevet af et tal x(t) der kaldes for **tilstandsvariablen**.
- Processen der bestemmer x(t) kan påvirkes, i det mindste delvist, af en **kontrolfunktion** u(t).
- Udviklingen for x(t) beskrives ved en kontrolleret differentialligning

$$\dot{x}(t) = g(t, x(t), u(t)), \quad x(t_0) = x_0$$
 (1)

• Antag at det er muligt at måle nytten tilknyttet til hver funktion for x(t) for en givet kontrolfunktion u(t) ved integralet

$$J = \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$$
 (2)

med f en givet funktion. Integralet J kaldes for **objektfunktionen**.

• Den terminale tilstand $x(t_1)$ skal ofte opfylde bibetingelser. Tiden t_1 er ikke nødvendigvis fikseret men kan vælges i nogle tilfælde.

Vi betragter det fundamentale problem:

Blandt alle par (x(t), u(t)) der opfylder DL'en (1) med $x(t_0) = x_0$ og der opfylder bibetingelserne stillet for $x(t_1)$, find parret der maksimerer (2).

Eksempel 1: Økonomisk Vækst

Betragt kontrolproblemet

$$\begin{split} \max & \int_0^T (1-s(t))f(k(t))dt,\\ \dot{k}(t) &= s(t)f(k(t)),\\ k(0) &= k_0,\ k(T) \geq k_T,\\ 0 &\leq s(t) \leq 1. \end{split}$$

Tilstandsvariablen k(t) beskriver kapitalapparatet for et land og f(k) er produktionsfunktionen. Kontrolvariablen er opsparingsraten s(t),som skal forblive i **kontrolregionen** $s \in [0,1]$. Kvantiteten (1-s)f(k) er forbrugsstrømmen. Vi skal maksimere integralet (stock) over strømmen (flow) over planlægningsperioden [0,T]. Konstanten k_0 betegner kapitalen i begyndelsen og bibetingelsen $k(T) \geq k_T$ kræver, at vi står tilbage med mindst k_T enheder kapital ved enden af perioden.

Eksempel 2: Olieudvinding

Lad x(t) betegne mængden af olie i et reservoir på tidspunkt t. Antag at feltet rummer K tønder i t=0, så at x(0)=K. Hvis u(t) er udvindingsraten

$$\dot{x}(t) = -u(t), \quad x(0) = K \tag{*}$$

så giver integration på begge sider af (*)

$$x(t)-x(0)=-\int_0^t u(\tau)d\tau$$
, eller $x(t)=K-\int_0^t u(\tau)d\tau$ for hvert $t\geq 0$.

Eksempel 2: Olieudvinding

Antag at markedprisen for olie i t er givet ved q(t). Antag derudover at omkostninger C=C(t,x,u) afhænger af tiden t, den resterende mængde x(t) og udvindingsraten u(t). Så er den øjeblikkelige profit givet ved

$$\pi(t,x(t),u(t))=q(t)u(t)-C(t,x(t),u(t))$$

Hvis diskonteringssatsen er r, så er nutidsværdien for profitten på intervallet [0, T] givet som

$$\int_{0}^{T} [q(t)u(t) - C(t, x(t), u(t))] e^{-rt} dt$$
 (**)

Det er naturligt at antage, at $u(t) \ge 0$ og at $x(T) \ge 0$.

Problem: Find udvindingsraten $u(t) \ge 0$ der maksimerer (**) under betingelserne (*) og $x(T) \ge 0$ over udvindingsperioden [0, T].

Betragt et kontrolproblem uden bibetingelser for kontrolvariablen u(t) og uden bibetingelser for sluttilstanden $x(t_1)$. Givet faste tidspunkter t_0 og t_1 , er problemet givet ved

$$\operatorname{maksim\'er} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt, \quad u(t) \in (-\infty, \infty), \tag{1}$$

således, at

$$\dot{x}(t) = g(t, x(t), u(t)), \quad x(t_0) = x_0, \quad x_0 \text{ fast,} \quad x(t_1) \text{ fri.}$$
 (2)

- Givet en vilkårlig kontrolfunktion u(t) defineret på $[t_0, t_1]$, er den tilhørende løsning på differentialligningen (2) med $x(t_0) = x_0$ som regel entydig bestemt på hele intervallet $[t_0, t_1]$.
- Et par (x(t), u(t)) der opfylder (2) kaldes for et **tilladt par**.
- Vi søger et optimalt par blandt alle tilladte par, dvs. et par der maksimerer integralet i (1).

I kapitel 3 behandlede vi bibetingelser givet ved ligheder i en Lagrange-funktion med en Lagrange-koefficient for hver betingelse.

- I analogi tilknytter vi nu et tal p(t), der kaldes for **costate variabel**, til betingelsen (2) for hvert t i $[t_0, t_1]$.
- Den resulterende funktion p = p(t) kaldes for den adjungerede funktion tilhørende til differentialligningen.
- I analogi til Lagrange-funktionen danner vi **Hamilton-funktionen** H. For hvert t i $[t_0, t_1]$ og hvert tre-tupel (x, u, p) af tilstandsfunktion, kontrolfunktion, og adjungerede funktion, er Hamilton-funktionen givet ved

$$H(t, x, u, p) = f(t, x, u) + pg(t, x, u)$$
 (3)

Teorem (9.2.1, Maksimumsprincippet)

Antag at $(x^*(t), u^*(t))$ er et optimalt par for problemet (1)–(2). Så findes en kontinuert funktion p(t) således, at for hvert t i $[t_0, t_1]$,

$$u = u^*(t)$$
 maksimerer $H(t, x^*(t), u, p(t))$ for $u i (-\infty, \infty)$, (4)

$$\dot{p}(t) = -H_X'(t, x^*(t), u^*(t), p(t)), \quad p(t_1) = 0.$$
 (5)

Fordi kontrolregionen er $(-\infty, \infty)$, har vi den nødvendige betingelse for (4) at

$$H'_{u}(t, x^{*}(t), u^{*}(t), p(t)) = 0.$$
 (6)

Hvis H(t, x(t), u, p(t)) er konkav i u, så er betingelsen (6) også tilstrækkelig for (4). (Vi husker, at et indre kritisk punkt af en konkav funktion er et globalt maksimum.)

Teorem (9.2.2, Mangasarian)

Hvis kravet

$$H(t, x, u, p)$$
 er konkav i (x, u) for hvert t i $[t_0, t_1]$ (7)

tilføjes til antagelserne i Teorem 9.2.1, så får vi *tilstrækkelige* betingelser. Dvs. hvis vi finder en tre-tupel $(x^*(t), u^*(t), p(t))$ der opfylder (2), (4), (5), og (7), så er $(x^*(t), u^*(t), p(t))$ optimal.

Bemærkning

Hvis problemet er at minimere objektfunktionen i (1), så omskrives problemet til at maksimere den negative objektfunktion. Man kan også omformulere problemet: en optimal kontrolfunktion minimerer Hamilton-funktionen, og konveksitet af H(t,x,u,p(t)) ift. (x,u) er den tilstrækkelige betingelse.