Programación No Lineal y Computación Científica

Influencia a través de modelos de opinión

Esteban Agenjo, Raúl Ramírez Puertas, Pablo

Índice

- 1 Introducción
- 2 Desarrollo del Modelo
- 3 Formulación del Problema
- 4 Programación

Modelo de Opinión

¿Qué es un modelo de opinión?

Modelo matemático que busca describir la evolución de la opinión de un conjunto de individuos sobre un tema en particular.

Modelo de Opinión

¿Qué es un modelo de opinión?

Modelo matemático que busca describir la evolución de la opinión de un conjunto de individuos sobre un tema en particular.

Objetivo

Añadir la repercusión que tiene la publicidad a la opinión, y buscar minimizar dicha publicidad de tal forma que sea lo más eficiente posible, es decir, con la menor cantidad de publicidad obtener una opinión social favorable.

DESARROLLO DEL MODELO

Desarrollo del Modelo I

Hemos asumido varias partes claves del Modelo de opinión:

• Las opiniones cambian con respecto al tiempo.

4 E.A. Raúl; R.P. Pablo

Desarrollo del Modelo I

Hemos asumido varias partes claves del Modelo de opinión:

- Las opiniones cambian con respecto al tiempo.
- El desplazamiento entre opiniones es constante.

Desarrollo del Modelo I

Hemos asumido varias partes claves del Modelo de opinión:

- Las opiniones cambian con respecto al tiempo.
- El desplazamiento entre opiniones es constante.
- Intervalo [0,1]

Desarrollo del Modelo II

Interacción entre opiniones:

Desarrollo del Modelo II

Interacción entre opiniones:

Ganancias y pérdidas de opiniones entre intervalos:

Formulación del Modelo de Opinión

Definimos:

- Número de individuos en la población: N.
- Opinión del individuo j en el instante t.
- Subintervalos de opinión: I_1, I_2, \ldots, I_n
- Densidad de población en el intervalo i en el instante t: $s(i,t) = \frac{\#I_i}{N}$

Formulación del Modelo de Opinión

Definimos:

- Número de individuos en la población: N.
- Opinión del individuo j en el instante t.
- Subintervalos de opinión: I_1, I_2, \dots, I_n
- Densidad de población en el intervalo i en el instante t: $s(i,t) = \frac{\#I_i}{N}$

$$\frac{ds(j,t)}{dt} = (s(j+1,t) - s(j,t)) \sum_{i \le j} s(i,t) + s(j-1,t)$$
$$-s(j,t) \sum_{i \ge j} s(i,t) + 2s(i,t)$$

FORMULACIÓN DEL PROBLEMA

Objetivo

¿Qué buscamos?

Nos interesa concentrar en una serie de intervalos I_{J_1}, \ldots, I_{J_k} una densidad de población superior a un cierto valor l.

Objetivo

¿Qué buscamos?

Nos interesa concentrar en una serie de intervalos I_{J_1}, \dots, I_{J_k} una densidad de población superior a un cierto valor l.

¿Cómo conseguirlo?

Introducimos una cierta cantidad de individuos en la población con una opinión conocida.

Función Objetivo

- Individuos introducidos con opinión en I_i : P(j), $1 \le j \le n$.
- Coste de introducir un individuo en el intervalo I_j : c_j .

Función Objetivo

- Individuos introducidos con opinión en I_i : P(j), $1 \le j \le n$.
- Coste de introducir un individuo en el intervalo I_i : c_i .

$$\min \sum_{j=1}^{n} c_j P(j) \tag{1}$$

Restricciones

1 Cota de publicidad: $P(i) \le \#I_i, 1 \le i \le n$.

Restricciones

- **1** Cota de publicidad: $P(i) \le \#I_i, 1 \le i \le n$.
- **2** Sección de interés: $\sum_{q=1}^{k} S(J_q, T) \ge l$

Restricciones

- **1** Cota de publicidad: $P(i) \le \#I_i, 1 \le i \le n$.
- 2 Sección de interés: $\sum_{q=1}^{k} S(J_q, T) \ge l$
- **3** Condiciones iniciales: $S(i,0) = \frac{P(i) + \#I_i}{N + \sum_{j=1}^{n} P(j)}$

Reconstrucción del modelo

¡Cuidado!

Al contemplar la posibilidad de introducir más población, algunos elementos de las ecuaciones que describen la evolución del sistema cambian.

$$S(i, t + dt) = S(i, t) + \frac{2}{N + \sum_{j=1}^{n} P(j)} \left(S(i+1, t) - S(i, t) \right) \sum_{k=1}^{i} S(k, t) + \left(S(i-1, t) - S(i, t) \right) \sum_{k=i}^{n} S(k, t) + 2S(i, t)^{2}$$

PROGRAMACIÓN

Muestra de Población

```
t <- 100 #Número de intervalos
   N <- 1000 #Número de participantes
 3 a <- 0 #Extremo inferior intervalo
  b <- 1 #Extremo superior intervalo
   l <- (b - a)/t #longitud del intervalo
   Sample <- runif(N, a, b)
  sortSample <- sort(Sample)
    SampleDensity <- c(1:t)
10
11 e <- 1
    counter <- 0
13 - for(j in sortSample){
14
        if(j<=l*e) {counter <- counter +1}</pre>
15 -
        else {
16
          SampleDensitv[e] <- counter
17
          e <- e+1
18
          counter <- 0
19 ^
20
21 ^ }
22
23 sum(SampleDensity)
24 SampleDensity
25 for(i in c(1:t)) print(cat(i,' ',SampleDensity[i]))
```

Figure: Código R

AMPL

```
param N; #Número de participantes
    param T; #Tiempo de evolución
    param I; #Número de intervalos
 4
   set TT := \{1 ... T\}:
 5 set TTnull := {0 .. T};
  set II := {1 .. I}:
    set II inner := {2 .. I-1};
    param Omega{II}; #Población dividida en intervalos
    param Costs{II}; #Costes de publicidad
   var P {II}, integer; #Publicistas por intervalo
11 var P total:
12 var S {II, TTnull}; #Densidad de intervalos
```

Figure: Código AMPL 1

AMPL

```
minimize advertisement: sum {i in II}(P[i]*Costs[i]);
#Definición de P total
subject to P total def: P total = sum{i in II}(P[i]):
#La publicidad debe ser, al menos, 0
subject to adv noneg {i in II}: P[i]>= 0;
#Condiciones iniciales
subject to initial sets {i in II}: S[i, 0] = (Omega[i] + P[i])/(N+P total);
#Evolución de los intervalos interiores
subject to evolution inner {j in II inner, t in TT}:
    S[j, t] = S[j, t-1] + (2/(N+P \text{ total}))*((S[j+1, t-1] - S[j, t-1])*sum{i in 1 ... j}(S[i, t-1])
              + (S[j-1, t-1] - S[j, t-1])*sum{k in j .. I }(S[k, t-1]) + 2*S[j, t-1]^2);
#Evolución del primer intervalo
subject to evolution ext1 {t in TT}: S[1, t] = S[1, t-1] + (2/(N+P total))*((S[2, t-1] - S[1, t-1])*sum{i in 1 ... 1}(S[i, t-1])*
          - (S[1, t-1])*sum{k in 1 .. I }(S[k, t-1]) + 2*S[1, t-1]^2);
```

Figure: Código AMPL 2

AMPL

```
34 #Evolución del primer intervalo
35 subject to evolution_extN (t in TT): S[I, t] = S[I, t-1] + (2/(N+P_total))*((- S[I, t-1])*sum{i in 1 .. I}(S[i, t-1])
37 + (S[I-1, t-1] - S[I, t-1])*sum{k in I .. I }(S[k, t-1]) + 2*S[I, t-1]^2);
38 #Condición de éxito
40 subject to success: sum{j in 35..I}(S[j, T]) >= 0.25;
41
42 #Limite de publicidad
43 subject to limit {i in II}: P[i] <= Omega[i];
44
```

Figure: Código AMPL 3

Evolución con Publicidad

Figure: Evolución con publicidad

Evolución Libre

Figure: Evolución libre del modelo

BIBLIOGRAFÍA

Bibliografía

- Pedraza, L. y Pinasco, J.P.(2018). Modelos de formación de opinión. Universidad de Buenos Aires.
- Grima, C. (2018). ¡Que las matemáticas te acompañen!.
 Ariel

FIN