Problem1.

$$E(W, V|X) = -\frac{2}{5} \left(\frac{r^{2} \log_{3} y_{1} + (1-r^{2}) \log_{3} (1-y^{2})}{r^{2}} \right) + \frac{2}{n} \left[\frac{1}{16} \ln \left(\frac{1}{n^{2}} V_{h} z_{h}^{2} - \frac{1}{16} V_{h} \right) \right]$$

$$V^{t} = tonh \left(\frac{1}{n^{2}} V_{h} z_{h}^{2} - \frac{1}{16} V_{h} \right)$$

$$Z^{t}_{h} = Lleu (w_{h}^{t} X^{t})$$

$$2W_{hj}$$

$$2W_{hj} = -9 \frac{2}{3} \frac{2$$

Zhiyue Qiu

Problem2

a. The code runs pretty slow, the data derived is attached.

This is the result of three

When m = 15 and m = 18, I get the best result regarding training, validation and test error rates. But the training error of m = 18 setting is 0, fearing overfitting and m = 15 setting does not significantly worse than m = 18, so I choose m = 15 in the end.

	M = 3	M = 6	M = 9	M = 12	M = 15	M = 18
Training	0.757074212	0.524826481	0.430859583	0.395621996	0.029364655	0
Error	493326	580352	555793	796583	6326749	
Validation	0.783769353	0.529097704	0.451147891	0.392952482	0.059263214	0.045381740
Error	977576	217832	083823	648158	0950347	5232248
Test Error	0.788687299	0.534151547	0.470651013	0.417289220	0.056563500	0.051227321
	893277	491996	874066	917823	5336179	2379936

Problem2b

comparing with 2d and 3d plot, I find it is easier to sperate when we separate them in 3d. That is just visulization, but revealed the data is well separated in high dimension space.

Zhiyue Qiu

Problem2c

I used the projection vector form previous obtained from training and validation model, and works fine one test data. Data of different tag are separated similar as in training validation data.

