MT5824: Topics in Groups

Alex Levine

December 8, 2017

Chapter 1

Free Groups

1.1 Constructing Free Groups

Definition 1.1.1 Let X be a set and X^{-1} be another set, such that there exists a bijection called *invert*, denoted \wedge^{-1} from X to X^{-1} and $X \cap X^{-1} = \emptyset$.

A word or string over X is a sequence of elements of $X \cup X^{-1}$. The set of all finite length words over X is denoted W(X).

Remark 1.1.2 We have assumed, given X, that such an X^{-1} exists. This can be proved using set theory, but it is beyond the scope of the course.

Example 1.1.3 Let $X = \{a, b\}$, and $X^{-1} = \{a^{-1}, b^{-1}\}$. Define

$$\wedge^{-1}: X \to X^{-1}$$
$$c \mapsto c^{-1}.$$

Note that \wedge^{-1} is a bijection, and $X \cap X^{-1} = \emptyset$. We have

$$aba^{-1}aab^{-1}a \in W(X).$$

Observe $(a^{-1})^{-1} = a$.

Remark 1.1.4 Note that given a set X, there may be multiple possibilities for X^{-1} . To keep X^{-1} the same (at least notationally), we will use every symbol of X, superscripted with -1.

Definition 1.1.5 Let X be a set. Define the binary operation \bullet by

• :
$$W(X) \times W(X) \to W(X)$$

 $(v, w) \mapsto vw$ (concatentation).

Lemma 1.1.6 Let X be a set. The pair

$$(W(X), \bullet)$$

forms a monoid.

Proof The operation \bullet clearly maps to elements of W(X); the result of concatenating two finite lengths words over X is a finite length word over X.

Let $w_1, w_2, w_3 \in W(X)$ be

$$w_1 = x_1 x_2 \cdots x_k,$$

$$w_2 = y_1 y_2 \cdots y_l,$$

$$w_3 = z_1 z_2 \cdots z_m,$$

where $k, l, m \in \mathbb{N}_0$ and $x_i, y_i, z_i \in X \cup X^{-1}$ for all valid indices i. Then

$$w_1(w_2w_3) = x_1 \cdots x_k(y_1 \cdots y_l z_1 \cdots z_m)$$

= $x_1 \cdots x_k y_1 \cdots y_l z_1 \cdots z_m$
= $(x_1 \cdots x_k y_1 \cdots y_l) z_1 \cdots z_m$
= $(w_1w_2)w_3$,

so \bullet is associative.

Note that concatenating any word with the empty word does not change the word, so the empty word is the identity.

Definition 1.1.7 The monoid $(W(X), \bullet)$ is denoted $(X \sqcup X^{-1})^*$.

Definition 1.1.8 Let X be a set. A word

$$w_1 = x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_m^{\varepsilon_m} \in W(X),$$

for some $m \in \mathbb{N}_0$, is a simple expansion of

$$w_2 = x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_i^{\varepsilon_i} x_{i+3}^{\varepsilon_{i+3}} \cdots x_m^{\varepsilon_m},$$

where $\varepsilon_i \in \{-1,1\}$, $x_{i+2} = x_{i+1}$, $\varepsilon_{i+1} = -\varepsilon_{i+2}$. In addition we say w_1 is a *simple contraction* of w_2 . We write $w_1 \searrow w_2$ and $w_2 \nearrow w_1$.

Example 1.1.9 Let $X = \{a, b\}$. The word $aba^{-1}abb^{-1}a^{-1}b^{-1}$ is a simple expansion of $abb^{-1}a^{-1}b^{-1}$ and also of $aba^{-1}aa^{-1}b^{-1}$.

Definition 1.1.10 Let X be a set. If there exists a finite chain of simple expansions and simple contractions taking a word $z_1 \in W(X)$ to $z_2 \in W(x)$, we say $z_1 \sim z_2$.

Lemma 1.1.11 Let X be a set. The relation \sim is an equivalence relation on W(X).

Proof Let X be a set. Let $z_1, z_2, z_3 \in W(X), a \in X$. We have

$$z_1 \sim z_1 a a^{-1} \sim z_1,$$

so \sim is reflexive. Suppose $z_1 \sim z_2$. Consider the sequence of simple expansions and contractions that takes z_1 to z_2 . If every simple expansion in this sequence is replaced with a simple contraction and vice versa, this will take z_2 to z_1 , so $z_2 \sim z_1$ and \sim is symmetric. Suppose, in addition, that $z_2 \sim z_3$. Concatenate the sequences of simple expansions and contractions that take z_1 to z_2 and vice versa. This will take z_1 to z_3 , so $z_1 \sim z_3$ and \sim is transitive.

Definition 1.1.12 Let X be a set. Define \bullet_{\sim} on $W(X)/_{\sim}$ by

$$\bullet_{\sim}: W(X)/_{\sim} \times W(X)/_{\sim} \to W(X)/_{\sim}$$
$$(([z_1], [z_2]) \mapsto [z_1 \bullet z_2]$$

Lemma 1.1.13 The binary operation \bullet_{\sim} is well-defined.

Proof Let X be a set. Let $z_1, z_2 \in W(X)$. Let $w_1 \in [z_1], w_2 \in [z_2]$. We have

$$[w_1] \bullet_{\sim} [w_2] = [w_1 \bullet w_2].$$

We have $w_1 \sim z_1$, $w_2 \sim z_2$. Therefore

$$w_1 \bullet w_2 \sim z_1 \bullet w_2 \sim z_1 \bullet z_2$$

and hence $[w_1 \bullet w_2] = [z_1 \bullet z_2]$ and \bullet_{\sim} is well-defined.

Theorem 1.1.14 The pair $(W(X)/_{\sim}, \bullet_{\sim})$ forms a group.

Proof By Lemma 1.1.6, we have that it is a monoid. Let

$$z = x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k},$$

for some $k \in \mathbb{N}_0, \ x_i \in X \cup X^{-1}, \ \varepsilon_i \in \{1, -1\}$ for valid indices i. Define

$$w = x_k^{-\varepsilon_k} \cdots x_1^{-\varepsilon_1}.$$

We have

$$\begin{split} wz &= x_k^{-\varepsilon_k} \cdots x_2^{-\varepsilon_2} x_1^{-\varepsilon_1} x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k} \\ &= x_k^{-\varepsilon_k} \cdots x_2^{-\varepsilon_2} x_2^{\varepsilon_2} \cdots x_k^{\varepsilon_k} \\ &= \cdots \\ &= x_k^{-\varepsilon_k} x_k^{\varepsilon_k} \\ &= \epsilon, \end{split}$$

and

$$zw = x_1^{\varepsilon_1} \cdots x_{k-1}^{\varepsilon_{k-1}} x_k^{\varepsilon_k} x_k^{-\varepsilon_k} x_{k-1}^{-\varepsilon_{k-1}} \cdots x_1^{-\varepsilon_1}$$

$$= x_1^{\varepsilon_1} \cdots x_{k-1}^{\varepsilon_{k-1}} x_{k-1}^{-\varepsilon_{k-1}} \cdots x_1^{-\varepsilon_1}$$

$$= \cdots$$

$$= x_1^{\varepsilon_1} x_1^{-\varepsilon_1}$$

$$= \epsilon$$

So w is the inverse of z and we have a group.

Definition 1.1.15 Let X be a set. The group $(W(X)/_{\sim}, \bullet_{\sim})$ is called the *free group on X* and is denoted F_X .

Definition 1.1.16 Let G be a group. An element $g \in G$ is a *torsion* element, if $g^n = 1_G$, for some $n \in \mathbb{N}$. A group is *torsion-free* if the only torsion element of the group is the identity.

Example 1.1.17 Let X be a non-empty set. Let $w \in W(X)$ such that $w \not\sim \varepsilon$. Let $n \in \mathbb{N}$. Then

$$[w^n]_{\sim} = ([w]_{\sim})^n \neq 1_{F_X}.$$

Hence $X \neq \emptyset \implies F_X$ is torsion free.

1.2 Free Bases

Definition 1.2.1 A subset X of a group F is called a *free basis* for F, if there is a function $\varphi: X \to G$, for some group G, such that φ can be extended uniquely to a group homomorphism $\tilde{\varphi}: F \to G$.

Lemma 1.2.2 Let X be a set. The group F_X has free basis

$$[X]_{\sim} := \{ [x]_{\sim} | x \in X \}.$$

Proof Let G be a group. Let $\varphi: [X]_{\sim} \to G$. Note $F_X = \langle [X]_{\sim} \rangle$. Let $\tilde{\varphi}: F \to G$. Set $([x]_{\sim})\tilde{\varphi} = ([x]_{\sim})\varphi$ for all $x \in X$. Suppose $\tilde{\varphi}$ is a homomorphism. For $\tilde{\varphi}$ to be a homomorphism, we must have

$$(([x]_{\sim})^{-1})\,\tilde{\varphi} = (([x]_{\sim})\varphi)^{-1},$$

for every $x \in X$. In addition,

$$\left(\left[x_1^{\varepsilon_1}x_2^{\varepsilon_2}\cdots x_n^{\varepsilon_n}\right]_{\sim}\right)\tilde{\varphi} = \left(\left[x_1\right]_{\sim}^{\varepsilon_1}\right)\varphi\left(\left[x_2\right]_{\sim}^{\varepsilon_2}\right)\varphi\cdots\left(\left[x_n\right]_{\sim}^{\varepsilon_n}\right)\varphi.$$

Since every the image of every element of F_X under $\tilde{\varphi}$ had only one possibility, we have a unique extension of φ to a homomorphism.

Theorem 1.2.3 (Universal Property) Suppose F is a group with a free basis X. Then

$$F \cong F_X$$
.

Proof Since F is a group with free basis X, then the map

$$\phi: X \to F_X$$
$$x \mapsto [x]_{\sim},$$

then there is a unique homomorphism $\tilde{\phi}$ that is an extension of ϕ . Consider also the map

$$\theta: F_X \to F$$
$$[x]_{\sim} \mapsto x$$

Note that θ is well-defined as under *theta*, all pairs of an element of X and its inverse will cancel; that is theta returns the unique irreducible element of $[x]_{\sim}$. Moreover, θ extends to a homomorphism by

$$\left([x_1^{\varepsilon_1}x_2^{\varepsilon_2}\cdots x_n^{\varepsilon_n}]_{\sim}\right)\tilde{\theta}=(([x_1]_{\sim})\theta)^{\varepsilon_1}(([x_2]_{\sim})\theta)^{\varepsilon_2}\cdots(([x_n]_{\sim})\theta)^{\varepsilon_n}.$$

Note that as $\tilde{\theta}$ and $\tilde{\phi}$ are onto the generators of F and F_X respectively, they are surjective. Direct computation shows that

$$x\tilde{\phi}\tilde{\theta}=x, \qquad [x]_{\sim}\tilde{\theta}\tilde{\phi}=[x]_{\sim},$$

for every $x \in X$. Therefore $\tilde{\phi}$ and $\tilde{\theta}$ are left inverses and hence injective.

1.3 Rank

Definition 1.3.1 Let G be a group. The rank of G, denoted d(G), is defined by

$$d(G) = \min\{|S| | G = \langle S \rangle\}.$$

Theorem 1.3.2 Let X and Y be sets. We have

$$F_X \cong F_Y \iff |X| = |Y|.$$

Proof (\Rightarrow) : For any group F with free basis T, there exists a map

$$d_T: T \to \bigoplus_T \mathbb{Z}_2,$$

mapping $t \in T$ to the element of $\bigoplus_T \mathbb{Z}_2$ with a 1 in position t and 0s elsewhere. By the universal property, d_T extends to a homomorphism

$$\tilde{d_T}: T \to \bigoplus_T \mathbb{Z}_2.$$

Observe that \tilde{d}_T is surjective, as it is onto the set of generators of $\bigoplus_T \mathbb{Z}_2$. Moreover,

$$\ker(\tilde{d_T}) = \langle w^2 | w \in F \rangle.$$

Note that the group $\langle w^2|w\in F\rangle$ is independent of the basis, and is called the *square subgroup*. Furthermore, observe that

$$\left| \bigoplus_{T} \mathbb{Z}_2 \right| = \left\{ \begin{array}{cc} |\mathcal{P}(T) & T \text{ finite} \\ |T| & T \text{ infinite} \end{array} \right. \tag{1.1}$$

By the First Isomorphism Theorem,

$$F_{\ker(\tilde{d_T})} \cong \bigoplus_T \mathbb{Z}_2.$$

In particular, for two sets X and Y such that $F_X \cong F_Y$, we have that

$$F_{X/\ker(\tilde{d_X})} \cong F_{Y/\ker(\tilde{d_Y})}$$
.

However, we know that the above quotients groups have the same cardinality, therefore using 1.1 we conclude that

$$|X| = |Y|$$
.

(\Leftarrow): Let X and Y be sets such that |X| = |Y|. There is a bijection, say ϕ from X to Y. This induces a bijection from $[X]_{\sim}$ to $[Y]_{\sim}$. Since we have a function defined on the generators, this extends to a homomorphism from F_X to F_Y , and back, since it is a bijection. Hence $F_X \cong F_Y$.

Corollary 1.3.3 All free bases for a free group have the same cardinality.

Definition 1.3.4 The free group with free basis of cardinality $n \in \mathbb{N}_0$ will be denoted F_n .

Theorem 1.3.5 Let $m, n \in \mathbb{N}$ such that $m \ge n > 1$. Then

$$F_n \hookrightarrow F_m \text{ and } F_m \hookrightarrow F_n.$$

Proof We have that $F_n \leq F_m$ so clearly $F_n \hookrightarrow F_m$.

Consider a map to a subset of a free basis of F_m of cardinality n to show $F_m \hookrightarrow F_n$. Suppose now that F_n and F_m have free bases

$$X_n = \{x_1, x_2, \dots, x_n\}, X_m = \{y_1, y_2, \dots, y_m\},\$$

respectively. Let

$$\phi: X_n \to F_m$$
$$x_i \mapsto y_1^{y_2^i}$$

Let

$$u = y_1^{\varepsilon_1} \cdots y_n^{\varepsilon_n}, \quad v = y_1^{\delta_1} \cdots y_n^{\delta_n},$$

with $\epsilon_i, \ \delta_i \in \{-1, \ 0, \ 1\}$ for all valid indices i. We have

$$u\tilde{\phi} = v\tilde{\phi} \implies (y_1^{\varepsilon_1} \cdots y_n^{\varepsilon_m}) \,\tilde{\phi} = (y_1^{\delta_1} \cdots y_n^{\delta_m}) \,\tilde{\phi}$$

$$\implies (y_1\phi)^{\varepsilon_1}\cdots(y_n\phi)^{\varepsilon_n}=(y_1\phi)^{\delta_1}\cdots(y_n\phi)^{\delta_n}.$$

Hence u=v and $\tilde{\phi}$ is injective, and therefore a monomorphism.

Theorem 1.3.6 (Nielsen-Schreier Theorem) Every subgroup of a free group F is a free group. If a subgroup G has finite index m in F, then

$$m(\operatorname{rank} F - 1) = \operatorname{rank} G - 1.$$

Chapter 2

Presentations

2.1 Normal Closure

Definition 2.1.1 Let G be a group and $S \subseteq G$. The *normal closure* of S inside G is the smallest normal subgroup of G containing S. That is

$$\bigcap_{S\subseteq N\trianglelefteq G}N.$$

Notation 2.1.2 Let G be a group and $S \subseteq G$. Define

$$\langle\langle S \rangle\rangle = \langle S^G \rangle.$$

Lemma 2.1.3 Let G be a group and $S \subseteq G$. Then

$$\langle\langle S\rangle\rangle = \bigcap_{S\subseteq N\unlhd G} N.$$

2.2 Group Presentations

Definition 2.2.1 Let X be a set $R \subseteq W(X)$. Define the *(group) presentation* on X, with relations R, denoted $\langle X|R\rangle$, by

$$\langle X|R\rangle = F_{X/\langle\langle[R]_{\sim}\rangle\rangle}.$$

Example 2.2.2 Consider

$$G = \langle a, b | a^{-1}b^{-1}ab \rangle.$$

We have

$$1_G =_G a^{-1}b^{-1}ab \implies ab =_G ba,$$

so G is abelian.

Example 2.2.3 We have

$$\mathbb{Z} \cong F_1 \cong \langle a | \rangle$$

$$F_2 \cong \langle a, b | \rangle$$

$$C_6 \cong \mathbb{Z}_6 \cong \langle a, b | a^2, b^3, [a, b] \rangle$$

Example 2.2.4 We have

$$Q_8 \cong \langle a, b, c | a^2b^{-2}, a^2c^{-2}, a^4, abc^{-1}, bca^{-1}, cab^{-1} \rangle$$

= $F_{\{a, b, c\}} / \langle \langle a^2b^{-2}, a^2c^{-2}, a^4, abc^{-1}, bca^{-1}, cab^{-1} \rangle \rangle$

2.3 Cayley Graphs

Definition 2.3.1 A (multi)digraph or a (multiple) directed graph G is a tuple (V, E, s, t), where V is a set called the vertices of G and denoted V(G) or G^0 , E is a set called the edges of G and denoted E(G) or G^1 , and S and S and S and S are functions

$$s: E \to V, \qquad t: E \to V.$$

Here s is used to represent the start vertex of an edge and t the terminal vertex.

Definition 2.3.2 Let G be a group, generated by a set X. The *(right) Cayley graph*, with respect to X, denoted $\Gamma(G, X)$, is defined by

$$\begin{split} V(\Gamma(G,\ X)) &= G \quad \text{(as a set)} \\ E(\Gamma(G,\ X)) &= \{(g,\ gx) \mid g \in G,\ x \in X\} \end{split}$$

Example 2.3.3 Let $G = \langle a, b \mid [a, b] \rangle$. Note that every element of G has a unique coset representative of the form $a^m b^n$ for some $m, n \in \mathbb{Z}$. So we will write (m, n) to represent $[a^m b^n] \in G$. Part of the Cayley graph of G is given below.

Any non-identity element can be represented as a path on this graph. Since repeating the same path will never return to the start vertex, we can conclude that G is torsion-free.

2.4 Rewriting Systems

Definition 2.4.1 Let X be a set and $R \subseteq W(X)$. A rewriting system or a set of rewrite rules for $\langle X|R\rangle$ is a set of ordered pairs of elements of W(X).

Remark 2.4.2 A rewriting system S can be used to alter words in a set, by replacing a subword equal to the first part of an element of S, with the second part.

Definition 2.4.3 A rewriting system where finitely many substitutions are applied before an irreducible word is reached is called *terminating* or *Noetherian*.

Let X be a set and $R \subseteq W(X)$. A rewriting system S of $\langle X|R\rangle$ is confluent if for all $w \in W(X)$ and for all $f, g \in \langle S \rangle$ there exists $f', g' \in \langle S \rangle$ such that wgg' = wff'.

A rewriting system is *complete*, if it is terminating and confluent.

Definition 2.4.4 Let X be a set, and S be a set of rewrite rules for X. We call S locally confluent, if for all $w \in W(X)$, with two rewrite rules e_1 , e_2 that can alter w to obtain w_1 and w_2 , there is a word $z \in W(X)$, that can be obtained from w_1 and w_2 by applying a sequence of substitutions

Lemma 2.4.5 (Newman's Lemma) A terminating and locally confluent rewriting system is complete.

Definition 2.4.6 Let X be a set and $R \subseteq W(X)$. A normal form for a presentation is a unique representative vertex in W(X) for each equivalence class in $\langle X|R\rangle$.

Theorem 2.4.7 Let X be a set and $R \subseteq W(X)$. If S is a terminating and confluent rewriting system for $\langle X|R\rangle$, then there is a normal form for $\langle X|R\rangle$.

Example 2.4.8 Let $G = \langle a, b \mid a^2, b^3, abab \rangle$. Define

$$R=\{a^2\mapsto \varepsilon,\ b^3\mapsto \varepsilon,\ a^{-1}\mapsto a,\ b^{-1}\mapsto b^2,\ ba\mapsto ab^2\}.$$

TODO finish

2.5 Von Dyck's Theorem

Definition 2.5.1 Let F and G be groups and X be a basis for F. Let $\theta: X \to G$ be any function. The *linear extension* of θ , denoted $\tilde{\theta}$ is defined by

$$\tilde{\theta}: F \to G$$

$$x = x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_n^{\varepsilon_n} \mapsto (x_1 \theta)^{\varepsilon_1} (x_2 \theta)^{\varepsilon_2} \cdots (x_n \theta)^{\varepsilon_n},$$

noting that any element of F can be written as $x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_n^{\varepsilon_n}$, for some $n \in \mathbb{N}_0$, $x_i \in X$, $\varepsilon_i \in \{-1, 1\}$, for all valid indices i.

Theorem 2.5.2 (Von Dyck's Theorem) Let X be a set and $R \subseteq W(X)$. Let $H = \langle X|R \rangle$ and G be a group. The linear extension of a function $\theta: X \to G$ is a group homomorphism if and only if $r\tilde{\theta} = 1_G$ for all $r \in R$.

Example 2.5.3 Let $G = \langle a, b \mid a^2, b^3, abab \rangle$. Let

$$\theta: \{a, b\} \to S_3$$

$$a \mapsto (1 \ 2)$$

$$b \mapsto (1 \ 2 \ 3)$$

Note

$$a^2\tilde{\theta} = (1\ 2)^2 = ()$$

 $b^3\tilde{\theta} = (1\ 2\ 3)^3 = ()$
 $abab\tilde{\theta} = ((1\ 2)(1\ 2\ 3))^2 = (1\ 3)^2 = ()$

Hence by Von Dyck's Theorem (Theorem 2.5.2), we have that $\tilde{\theta}$ is a group homomorphism. Since θ is onto the generators of S_3 we have that $\tilde{\theta}$ is surjective. Noting also that $|S_3| = 6 = |G|$, we have that $\tilde{\theta}$ is a bijection, and hence $G \cong S_3$.

Theorem 2.5.4 Let G be a group. A set $X \subseteq G$ is a basis for G if and only if for all groups H and functions $\theta: X \to H$, we have that if there is a group homomorphism $\phi: G \to H$ extending θ , it is unique.

2.6 Tietze Transformations

Definition 2.6.1 Let X be a set and $R \subseteq W(X)$. A set $S \subseteq R$ comprises extraneous relators if $S \subseteq \langle \langle R \backslash S \rangle \rangle$. A set $Y \subseteq X$ comprises extraneous generators if $Y \subseteq \langle X \backslash Y \rangle$.

Definition 2.6.2 The *Tietze transformations* for a group presentation are defined as

- T1 Add a set of extraneous relators,
- T2 Remove a set of extraneous relators,
- T3 Add a set of extraneous generators (name group elements),
- T4 Remove a set of extraneous generators.

Remark 2.6.3 When removing generators, their appearance in any relations must also be altered to ensure the generator appears nowhere in the presentation.

Example 2.6.4

Example 2.6.5 Is $\langle a, b \mid a^2, b^3, abab \rangle \cong \langle a, b \mid a^2, (ab)^3, b^2 \rangle$?

Solution

$$\langle a, \ b \ | \ a^2, \ (ab)^3, \ b^2 \rangle \underset{\text{T3}}{\longmapsto} \langle a, \ b, \ c \ | \ a^2, \ (ab)^3, \ b^2, \ c^{-1}(ab) \rangle \\ \underset{\text{T1}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ (ab)^3, \ b^2, \ c^{-1}(ab), \ c^3 \rangle,$$
 since $c^{-1}ab = 1 \implies c = ab, \ (ab)^3 = 1 \implies c^3 = 1$
$$\underset{\text{T2}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ b^2, \ c^{-1}(ab), \ c^3 \rangle$$
 since $c^{-1}ab = 1 \implies c = ab, \ c^3 = 1 \implies (ab)^3 = 1$
$$\underset{\text{T1}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ b^2, \ c^{-1}(ab), \ c^3, \ b^{-1}a^{-1}c \rangle$$

$$\underset{\text{T2}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ b^2, \ c^{-1}(ab), \ c^3, \ b^{-1}a^{-1}c \rangle$$

$$\underset{\text{T2}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ b^2, \ c^3, \ b^{-1}a^{-1}c \rangle$$
 since $c^{-1}ab = 1 \implies b^{-1}a^{-1}c = 1$
$$\underset{\text{T2}}{\mapsto} \langle a, \ c \ | \ a^2, \ (a^{-1}c)^2, \ c^3, \ (a^{-1}c)^{-1}a^{-1}c \rangle$$
 since $(a^{-1}c)^{-1}a^{-1}c = c^{-1}aa^{-1}c = 1, \ \text{by free cancellations}$
$$\underset{\text{T1}}{\mapsto} \langle a, \ c \ | \ a^2, \ (a^{-1}c)^2, \ c^3, \ acac \rangle$$
 since $a^2 = 1 \implies a^{-1} = a \implies acac = a^{-1}ca^{-1}c = 1$
$$\underset{\text{T2}}{\mapsto} \langle a, \ c \ | \ a^2, \ c^3, \ acac, \ b^{-1}c \rangle$$

$$\underset{\text{T3}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ c^3, \ acac, \ b^{-1}c \rangle$$

$$\underset{\text{T1}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ c^3, \ acac, \ b^{-1}c \rangle$$

$$\underset{\text{T1}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ a^2, \ acac, \ b^{-1}c \rangle$$
 since $b^{-1}c = 1 \implies b = c \implies b^3 = c^3 = 1$
$$\underset{\text{T2}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ acac, \ b^{-1}c, \ b^3 \rangle$$
 since $b^{-1}c = 1 \implies b = c \implies c^3 = b^3 = 1$
$$\underset{\text{T2}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ acac, \ b^{-1}c, \ b^3, \ abab \rangle$$
 since $b^{-1}c = 1 \implies b = c \implies abab = acac = 1$
$$\underset{\text{T2}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ b^{-1}c, \ b^3, \ abab \rangle$$
 since $b^{-1}c = 1 \implies b = c \implies acac = abab = 1$
$$\underset{\text{T2}}{\mapsto} \langle a, \ b, \ c \ | \ a^2, \ b^{-1}c, \ b^3, \ abab, \ c^{-1}b \rangle$$
 since $b^{-1}c = 1 \implies b^{-1}c = 1 \implies b^{-1}c = 1 \implies (a, \ b, \ c \ | \ a^2, \ b^{-1}b, \ b^3, \ abab \rangle$
$$\underset{\text{T2}}{\mapsto} \langle a, \ b \ | \ a^2, \ b^{-1}b, \ b^3, \ abab \rangle$$

$$\underset{\text{T2}}{\mapsto} \langle a, \ b \ | \ a^2, \ b^{-1}b, \ b^3, \ abab \rangle$$
 since $b^{-1}c = 1, \ b \ b^{-1}c = 1, \ b^{-1}c = 1, \ b^{-1}c = 1, \ b^{-1}c = 1, \ b^{-1}c$

Theorem 2.6.6 (Tietze's Theorem) If two presentations are isomorphic, then there is a chain of Tietze transformations from one to the other.

If, in addition, the presentations are finite, then there is a finite chain.

2.7 Markov Properties

Definition 2.7.1 A statement about a group is a *property*, if it is preserved under isomorphism.

Definition 2.7.2 A property \mathcal{P} is a *Markov property* if

- 0. (It is preserved under isomorphism),
- 1. There exists a finitely presented group with \mathcal{P} ,
- 2. There exists a finitely presented group K which cannot embed into any finitely presented group with \mathcal{P} .

Example 2.7.3 By definition, triviality is preserved under isomorphism. A finite presentation $\langle a \mid a \rangle$ exists for a trivial group. The finitely presented group $\langle b \mid \rangle$ cannot embed into any trivial group, since it has infinite order, and trivial groups have finite order. Hence triviality is a Markov property.

Cardinality is preserved under bijection, hence finiteness is preserved under isomorphism. Therefore, using the same arguments as above, finiteness is a Markov property.

Let G and H be isomorphic groups. Suppose G is abelian. Let $\phi: G \to H$ be an isomorphism. Let $a, b \in H$ and $c, d \in G$ such that $c = a\phi^{-1}$, $d = b\phi^{-1}$. We have

$$ab = (c\phi)(d\phi) = (cd)\phi = (dc)\phi = (d\phi)(c\phi) = ba$$
.

and hence abelianness is preserved under isomorphism. A finite presentation $\langle a \mid a \rangle$ exists for an abelian group. The group $\langle a, b | \rangle$ is finitely presented and non-abelian. Since abelianness is preserved under subgroups, this cannot embed into any abelian group. Hence abelianness is a Markov property.

Theorem 2.7.4 (Markov) If \mathcal{P} is a Markov property, then there does not exist an algorithm which can take as input any finite presentation and decide in finite time whether or not the presentation presents a group with property \mathcal{P} .

Chapter 3

Graphs, Actions and Categories

3.1 Graphs

Example 3.1.1 Let $L_{(\infty,\infty)} = (\mathbb{Z}, E, s, t)$, where

$$E = \{ (j, j+1) \mid j \in \mathbb{Z} \},\$$

$$s: E \to \mathbb{Z},$$
 $t: E \to \mathbb{Z}$ $(j, j+1) \mapsto j$ $(j, j+1) \mapsto j+1$

This graph is called the *bi-infinite path*, and can be represented visually by

Definition 3.1.2 Let D be a digraph and $W \subseteq D^0$. The *induced subgraph* of D with vertex set W is the subgraph of D with vertex set W, edge set

$$\{e \in D^1 \mid s(e), \ t(e) \in W\},\$$

and s and t functions defined by restricting the s and t functions of D to the new edge set.

Example 3.1.3 Let

$$V_{[0,n]} = \{ z \in \mathbb{Z} \mid z \in [0,n] \subseteq \mathbb{R} \}$$

$$V_{[0,\infty)} = \{ z \in \mathbb{Z} \mid z \in [0,\infty) \subseteq \mathbb{R} \}$$

$$V_{(-\infty,0)} = \{ z \in \mathbb{Z} \mid z \in (-\infty,0] \subseteq \mathbb{R} \}$$

Define $L_{[0,n]}$ to be the induced subgraph of $L_{(-\infty,\infty)}$, with vertex set $V_{[0,n]}$, $L_{[0,\infty)}$, called the *right-infinite path*, to be the induced subgraph of $L_{(-\infty,\infty)}$, with vertex set $V_{[0,\infty)}$, and $L_{(-\infty,0]}$, called the *left-infinite path*, to be the induced subgraph of $L_{(-\infty,\infty)}$, with vertex set $V_{(-\infty,0]}$.

Definition 3.1.4 Let G and H be digraphs. A graph homomorphsim from G to H is a function

$$\phi: G^0 \sqcup G^1 \to H^0 \sqcup H^1,$$

such that for all $v \in G^0$, $v\phi \in H^0$, and for all $e \in G^1$, $e\phi \in H^1$, $es\phi = e\phi s$, and $et\phi = e\phi t$.

Definition 3.1.5 Let G be a digraph and $k \in \mathbb{N}_0$. A path in G of length k is a graph homomorphism from $L_{[0,k]}$ to G

Definition 3.1.6 A simple graph or undirected graph G is a tuple (V, E, ends), where V is a set called the vertices of G, E is a set called the edges of G and ends is a function

ends:
$$E \to \mathcal{P}(V)$$

 $e \mapsto \{v_1, v_2\}$

Note in the above definition v_1 and v_2 need not be distinct. If e is an edge in G such that $ends(e) = \{v\}$ for some $v \in V$, then e is called a *loop*.

3.2 Categories

Definition 3.2.1 A category C is a tuple (O, M, \circ) , where O is a class called the *objects* of the category, denoted ob(C). In addition, for each pair of objects in O, there is a collection of elements of M called morphisms. The set of morphisms is denoted hom(C). Finally \circ is defined as an associative binary operation on M, such that for each object a there is a morphism I_a from a to a, such that for any object b and morphism a to b and any morphism b to a we have a0 and a1 and a2 and a3.

A functor is a map from one category to another that preserves 'structure'.

Example 3.2.2 The class of groups forms a category with group homomorphisms as the morphisms. The class of digraphs forms a category with graph homomorphisms as the morphisms. The class of sets forms a category with functions as the morphisms. The class of topological spaces forms a category with continuous functions as the morphisms. The class of vector spaces over a field K is a category, with linear maps as the morphisms.

Example 3.2.3 There exists a functor \mathscr{F} from the category of digraphs to the category of undirected graphs, which takes a digraph (V, E, s, t) and maps it to an undirected graph G, with

$$G^{0} = V$$

$$G^{1} = E$$
ends: $G^{1} \to \mathcal{P}(G^{1})$

$$e \mapsto \{es, et\}$$

This functor is called the *forgetful functor*.

3.3 Group Actions

Definition 3.3.1 The *action* of a group G on a object O of a category is a group homomorphism $\varphi: G \to \operatorname{Aut}(O)$. Action is often realised by elements of G appearing as functions of elements of G, whose images are the images of the automorphism the element of G maps to. If these functions are written to the right of elements of G, then G is said to have *right action* on G, denoted $G \hookrightarrow G$.

Example 3.3.2 Consider the undirected graph O:

Define a homomorphism from \mathbb{Z} to $\operatorname{Aut}(O)$ as the linear extension of the homomorphism defined by $1 \mapsto (v_1 \ v_4)(v_2 \ v_3)$. This is the action of \mathbb{Z} on O. Then

$$v_1 1 = v_4$$

$$v_3 1 = v_2$$

$$v_34 = v_3$$

Definition 3.3.3 Let G be a group and X be a set such that $X \curvearrowleft G$. Let $k \in \mathbb{N}$. The action of G on X is

- 1. faithful if the group homomorphism from G to S_X has trivial kernel. That is, every non-trivial element of G moves some point in X,
- 2. free if every point in X is moved by every non-trivial element of G,
- 3. transitive if given $x, y \in X$, there exists $g \in G$ such that xg = y,
- 4. k-transitive if given any two k-tuples $(x_1, x_2, \ldots, x_k), (y_1, y_2, \ldots, y_k) \in X^k$, then there is an element g of G, such that for all valid indices i, we have $x_i g = y_i$,
- 5. regular if the action of G on X is free and transitive,
- 6. primitive if the action of G on X is transitive, and it fails to preserve any non-trivial partition of X. That is, given a partition \mathscr{P} of X, there is an element g of G and a set $U \in \mathscr{P}$, such that $Ug \notin \mathscr{P}$.

Theorem 3.3.4 A group G acts on a set X if and only if there exists an operation

$$\bullet: X \times G \to X$$
$$(x, g) \mapsto x \bullet g$$

such that

- 1. For all $x \in X$, $x \bullet 1_G = x$,
- 2. For all $x \in X$ and $g, h \in G$, $(x \bullet g) \bullet h = x \bullet (gh)$.

Definition 3.3.5 Let G be a group and $H \leq G$. The *core* of H in G, denoted $Core_G(H)$ is defined by

$$\operatorname{Core}_G(H) = \bigcap_{x \in G} x^{-1} H x.$$

Theorem 3.3.6 (Cayley's Theorem) Let $H \leq G$ for some group G. Let M be the set of right cosets of H in G. Define a mapping $\varphi : G \to S_M$ by the rule:

for any $g \in G$ the permutation $g\varphi$ maps Hx to Hxg, where $x \in G$.

Then φ is a group homomorphism and

$$\ker \varphi = \operatorname{Core}_G(H).$$

Proof Let G, H, M be defined as stated in the theorem. We will (1) show φ is a group homomorphism and (2) show $\ker \varphi = \operatorname{Core}_G(H)$.

1. Let $x, g, h \in G$. Note that $g\varphi$ is a well-defined function of M, since it maps cosets to cosets. We have

$$((Hx \cdot (g\varphi)) \cdot (g^{-1}\varphi) = (Hxg) \cdot (g^{-1}\varphi)$$
$$= Hxgg^{-1}$$
$$= Hx$$

$$((Hx \cdot (g^{-1}\varphi)) \cdot (g\varphi) = (Hxg^{-1}) \cdot (g\varphi)$$
$$= Hxg^{-1}g$$
$$= Hx,$$

so $g^{-1}\varphi$ is the inverse of $g\varphi$ and hence $g\varphi$ is a permutation. In addition

$$Hx(q\varphi)(h\varphi) = (Hxq)(h\varphi) = H(xq)h = Hx(qh) = (Hx)((qh)\varphi),$$

and it follows that φ is a group homomorphism.

2. Let $k \in G$. Then

$$k \in \ker \varphi \iff Hxkx^{-1} = H \quad \text{for all } x \in G$$

$$\iff xkx^{-1} \in H \quad \text{for all } x \in G$$

$$\iff k \in x^{-1}Hx \quad \text{for all } x \in G$$

$$\iff k \in \bigcap_{x \in G} x^{-1}Hx.$$

Hence

$$\ker \varphi = \bigcap_{x \in G} x^{-1} H x.$$

Corollary 3.3.7 Let G be a group. Then

1. There exists an embedding of G into S_G ,

2. Suppose |G| = n for some $n \in \mathbb{N}$. It is possible to embed G into $GL_n(R)$, where R is any ring.

Proof Part 1 follows easily. Consider that any permutation group of size n, where $n \in \mathbb{N}$, can be realised as a group of permutations of the canonical base vectors $(0, 0, \ldots, 0, 1, 0, \ldots, 0)$. The matrices for these permutations will have the property that each row and column have precisely one 1, and the remainder of the entries are zeros. Such a matrix will have determinant ± 1 .

Corollary 3.3.8 (Poincaré) Let G be a group. Every subgroup H of finite index $m \in \mathbb{N}$, contains a normal subgroup N of G which has finite index $k \in \mathbb{N}$ in G such that

$$m|k, \qquad k|m!.$$

Proof Let G be a group and $H \leq G$ such that [G:H] = m, where $m \in \mathbb{N}$. Let φ be defined as in Cayley's Theorem (Theorem 3.3.6). Let $Q = G/\ker \varphi$, where here we will use right cosets. We have have that $\ker \varphi \leq G$. Since there are m cosets of H in G, we have that Q embeds in S_m . Let k = |Q|. Note $k = [G:\ker \varphi]$. The cosets of $\ker \varphi$ are the elements of Q, so by Lagrange's Theorem k = |Q||m!. The image of H under φ is a subgroup of Q with index m, by the Correspondence Theorem, noting that $\ker \varphi \leq H$. Hence, by Lagrange's Theorem, $m \mid k$.

Corollary 3.3.9 Infinite simple groups have no proper finite index subgroups.

Proof Suppose G is an infinite simple group. Suppose G has a subgroup H of finite index m. Then, by Corollary 3.3.8, there is a normal subgroup N of G with finite index k, such that k|m and m|k. Since N is normal and k is finite, we have that k=1. It follows that m=1, and hence H=G.

3.4 Orbits and Stabilisers

Definition 3.4.1 Let G be a group and X be a set such that X
subseteq G. Let $x \in X$. The *orbit* of x under the action of G, denoted $\mathcal{O}_G(x)$ or xG, is defined by

$$\mathcal{O}_G(x) = \{xg \mid g \in G\}.$$

Lemma 3.4.2 Let G be a group and X be a set such that X
subseteq G. The orbits of X under G partition X.

Proof Let G, X by defined as in the statement of the Lemma. Let x, $y \in X$ such that $xG \cap yG \neq \emptyset$. Then there are elements g, $h \in G$ such that xg = yh. Let $k \in G$ be arbitrary. Then $xk = xgg^{-1}k = yhg^{-1}k \in yG$ and hence $yG \subseteq xG$. By symmetry $xG \subseteq yG$ and xG = yG. So orbits are disjoint or equal, and hence they partition X.

Definition 3.4.3 Let G be a group and X be a set such that X
subseteq G. Let $Y \subseteq X$. The *stabiliser* of Y under the action of G, denoted $Stab_G(Y)$ is defined by

$$\operatorname{Stab}_G(Y) = \{ g \in G \mid Yg = Y \}.$$

If $Y = \{y\}$ for some $y \in X$, then the stabiliser of Y is called the *point stabiliser* of y, and is denoted $\operatorname{Stab}_G(y)$ or G_y .

Lemma 3.4.4 Let G be a group and X be a set such that $X \curvearrowleft G$. Let $Y \subseteq X$. Then $\operatorname{Stab}_G(Y) \subseteq G$.

Proof Let G, X, Y be defined as in the statement of the theorem. Let g, $h \in \operatorname{Stab}_G(Y)$. We have Ygh = Yh = Y, hence $gh \in \operatorname{Stab}_G(Y)$. In addition, $Y = Y1_G = Ygg^{-1} = Yg^{-1}$, and hence $g^{-1} \in \operatorname{Stab}_G(Y)$. We can conclude that $\operatorname{Stab}_G(Y) \leq G$.

Theorem 3.4.5 (Orbit-Stabiliser Theorem) Let G be a group and X be a set such that X
subseteq G. If $x \in X$ then

$$|xG| = [G:G_x].$$

If, in addition, G is finite, then

$$|G| = |xG||G_x|.$$

In particular, the orders of the orbit and point stabiliser of x divides the order of the group.

Proof Let G, X, x be defined as stated in the theorem. Let M denote the set of right cosets of G_x in G. Define

$$\theta: xG \to M$$
$$xg \mapsto G_x g$$

Let $g, h \in G_x$. Then $xgh^{-1} \in G_x$ and hence

$$xg\theta = G_xg = G_xh = xh\theta,$$

and θ is well-defined. If $xg\theta = xh\theta$ then $G_xg = G_xh$, which implies $G_xgh^{-1} = G_x$. It follows that $xgh^{-1} = x$ and hence xg = xh, so θ is injective. Finally, if G_xk is a coset of G, then the point $xk \in xG$ is sent to G_xk by θ , and hence θ is surjective, and therefore a bijection. It follows that $|xG| = |M| = [G:G_x]$. The other statements of the theorem follow by Lagrange's Theorem.

3.5 Normalisers and Centralisers

Lemma 3.5.1 A groups acts on itself by conjugation.

Proof Let G be a group. For $g \in G$, define

$$\varphi_g: G \to G$$

$$h \mapsto h^g$$

$$\psi_g: G \to G$$

$$h \mapsto h^{g^{-1}}$$

Let $g, h \in G$. We have

$$h\psi_g\varphi_g = ghg^{-1}\varphi_gg^{-1}ghgg^{-1} = h,$$

$$h\varphi_g\psi_g = g^{-1}hg\psi_ggg^{-1}hg^{-1}g = h,$$

and hence ψ_g and φ_g are each others inverses, and it follows that φ_g is a bijection.

Let $g, h, k \in G$. We have

$$(hk)\varphi_g = g^{-1}hkg = g^{-1}hgg^{-1}kg = h\varphi_g k\varphi_g,$$

and hence φ_g is a group homomorphism. We can conclude that for all $g \in G$, φ_g is an automorphism of G.

Define

$$\phi: G \to \operatorname{Aut}(G)$$
$$g \mapsto \varphi_q$$

Let $g, h, k \in G$. We have

$$k((gh)\phi) = k\varphi_{gh} = (gh)^{-1}kgh = h^{-1}g^{-1}kgh = g^{-1}kg\varphi_h = k\varphi_g\varphi_h = k((g\phi)(h\phi)),$$

and hence ϕ is a group homomorphism, and G acts on itself by conjugation.

Definition 3.5.2 Let G be a group, acting on itself by conjugation. Let $S \subseteq G$. The normaliser of S in G, denoted $N_G(S)$, is defined by

$$N_G(S) = \{ g \in G \mid S^g = S \}.$$

The centraliser of S in G, denoted $C_S(G)$, is defined by

$$C_G(S) = \{ g \in G \mid s^g = s, \ \forall s \in S \}.$$

Lemma 3.5.3 Let G be a group and $S \subseteq G$. Then

$$Z(G) = C_G(G).$$

Proof Let $g \in G$. Then

$$g \in Z(G) \iff gh = hg, \ \forall h \in G$$

 $\iff h = g^{-1}hg, \forall h \in G$
 $\iff g \in C_G(G)$

Lemma 3.5.4 Let G be a group. If $S, T \subseteq G$ then

$$S \subseteq C_G(T) \iff T \subseteq C_G(S).$$

Proof Let G be a group and S, $T \subseteq G$.

 (\Rightarrow) : Suppose $S \subseteq C_G(T)$. Let $s \in S$ and $t \in T$. We have

$$s^{-1}ts = t \implies ts = st \implies t^{-1}tst = s \implies t \in C_G(S),$$

and hence $T \subseteq C_G(S)$.

 (\Leftarrow) : The converse follows by symmetry of S and T.

Lemma 3.5.5 The relation of elements of a group being conjugate is an equivalence relation

Proof Let G be a group and g, h, $k \in G$. Use the symbol \sim to denote the relation. Reflexivity: $g = 1_G^{-1}g1_G$, so $g \sim g$. Symmetry: if $g \sim h$ then there exists $a \in G$ such that $g = a^{-1}ha$. Hence $h = aga^{-1} = g^{a^{-1}}$ and $h \sim g$. Transitivity: if $g \sim h$ and $h \sim k$ then there exist a, $b \in G$ such that $g = a^{-1}ha$ and $h = b^{-1}kb$. Then $g = a^{-1}b^{-1}kba = (ba)^{-1}k(ba)$ and so $g \sim k$.

Definition 3.5.6 The equivalence classes of a group, under the equivalence relation of conjugacy, are called the *conjugacy classes* of the group.

Lemma 3.5.7 An element x of a group G is the only conjugate of itself if and only if $x \in Z(G)$.

Proof Let G be a group and $x \in G$. The only conjugate of x is x if and only if, for all $g \in G$ we have that $g^{-1}xg = x$. This is true if and only if xg = gx, which is the definition of x being in the centre.

Theorem 3.5.8 (The Class Equation) Let G be a group and Γ be the set of conjugacy classes of G, not including Z(G). For each $X \in \Gamma$, let $x_X \in X$ be arbitrary. Then

$$|G| = |Z(G)| + \sum_{X \in \Gamma} [G : C_G(x_X)].$$

Proof Let G and Γ be defined as in the theorem. Consider the conjugacy class of an element of G as the orbit under the action of G on itself by conjugation. We have from Lemma 3.5.7, that the orbits of elements of the centre have size 1. By the Orbit-Stabiliser Theorem (Theorem 3.4.5), we have that the size of the orbit of an arbitrary element x is equal to the index of the point stabiliser in G. We have that the point stabiliser of an element x is

$$\{g \in G \mid x^g = x\} = C_G(x).$$

Since the conjugacy classes partition G, summing them gives the class equation.

Chapter 4

Formal Language Theory

4.1 Recognisable and Rational Languages

Definition 4.1.1 Let Σ be a finite set. We will refer to Σ as an *alphabet*, and the elements of Σ as *letters* or *symbols*. A subset $L \subseteq \Sigma^*$ is a called a *language* over Σ .

Definition 4.1.2 Let M and N be monoids, where N is finite. A subset $L \subseteq M$ is called recognisable if there exists a monoid homomorphism $\tau: M \to N$ such that $(L\tau)\tau^{-1} = L$. Note that here, $\tau-1$ is used to denote the pre-image.

Definition 4.1.3 Let M and H be groups, where H is finite. A subset $L \subseteq G$ is called *recognisable* if there exists a group homomorphism $\tau: M \to N$ such that $(L\tau)\tau^{-1} = L$. Note that here, τ^{-1} is used to denote the pre-image.

Definition 4.1.4 Let M be a monoid. The set Rat(M) of rational subsets of M is defined inductively as follows:

- 1. Finite subsets of M are rational,
- 2. If $K, L \in \text{Rat}(M)$, then $K \cup L \in \text{Rat}(M)$,
- 3. If $K, L \in \text{Rat}(M)$, then $KL = \{kl \mid k \in K, l \in L\} \in \text{Rat}(M)$,
- 4. If $L \in \text{Rat}(M)$, then $L^* \in \text{Rat}(M)$.

Example 4.1.5 Let $\Sigma = \{0, 1, 2\}$. Let $w_1, w_2, w_3 \in \Sigma^*$. Observe that the expression

$$\{0\} \cup \{0112\} \cup \{w_1\}^* \{w_2\} \{0\} \cup \{w_2\} \{w_1\} \{w_3, 01\}^* \{w_1\},$$

is a rational subset of Σ^* . Note here Σ^* is a monoid under concatenation of words.

4.2 Regular Languages

Definition 4.2.1 A tuple $\mathcal{A} = (Q, \Sigma, \delta, I, F)$ is a *finite state automaton* if

- 1. The symbol Q denotes a finite set. Here Q is referred to as the states of A,
- 2. The symbol Σ denotes a finite set. Here Σ is referred to as the alphabet of \mathcal{A} ,

- 3. The symbol δ denotes a subset of $(Q \times \Sigma) \times Q$. This is called the transition relation of \mathcal{A} ,
- 4. The symbol I denotes a subset of Q. This is referred to as the set of *initial states* or *start* states of A,
- 5. The symbol F denotes a subset of Q. This is referred to as the set of terminal states or accept states of A.

Example 4.2.2 Let
$$Q = \{u, v, w, x\}$$
, $\Sigma = \{0, 1\}$, $I = \{u, v\}$, $F = \{v, x\}$, and $\delta = \{((u, 1), u), ((u, 0), v), ((v, 1), v), ((v, 1), x), ((v, 0), w), ((v, 0), v), ((w, 1), x)\}$.

Then $\mathcal{A} = (Q, \Sigma, \delta, I, F)$ is a finite state automaton and can be represented graphically as:

Here the start states are coloured yellow, and the end states are squares.

Definition 4.2.3 For every finite state automaton \mathcal{A} , there is a language determined by \mathcal{A} , denoted $L(\mathcal{A})$, defined as the set of all words $w \in \Sigma^*$, such that there is a path starting at a start state, ending at a terminal state, and the labels of the path, when concatenated, equal w.

If L is a language and L = L(A) for some automaton A then L is accepted by A.

Example 4.2.4 Let \mathcal{A} be defined as in Example 4.2.2. Then

$$0, 111101111, 001 \in L(A).$$

Definition 4.2.5 A finite state automaton $\mathcal{A} = (Q, \Sigma, \delta, I, F)$ is deterministic if, given $v \in Q$ and $x \in \Sigma$, there is a unique $u \in Q$, such that $((v, x), u) \in \delta$. If \mathcal{A} is not deterministic, then \mathcal{A} is called non-deterministic.

Theorem 4.2.6 (Kleene's Theorem) Let Σ^* be a finitely generated free monoid, over a set Σ . Let $L \subseteq \Sigma^*$ be a language. Then the following are equivalent:

- 1. The language L is recognisable,
- 2. The language L is accepted by some deterministic finite state automaton,
- 3. The language L is accepted by some non-deterministic finite state automaton,

4. The language L is rational.

Proof (1) \Longrightarrow (2): Suppose L is recognisable. Then there is a finite monoid N, and a monoid homomorphism $\tau: \Sigma^* \to N$, such that $(L\tau)\tau^{-1} = L$. Let

$$\mathcal{A} = (L, \ \Sigma, \ \delta, \ \{1_N\}, \ L\tau),$$

where $\delta = \{((n, a), n(a\tau)) \mid n \in N, a \in \Sigma\}$. By the definition of δ , given $a \in \Sigma$ and $n \in N$, we have precisely one transition relation, so A is a deterministic finite state automaton.

Let $w = a_1 a_2 \cdots a_k \in \Sigma^*$, for some $k \in \mathbb{N}_0$, where $a_i \in \Sigma$, for all valid i. Let p be the state reached after reading w in \mathcal{A} . For each letter a_i in w that we read, we move from state n, to state $n(a_i\tau)$. Hence reading w, using the fact that τ is a monoid homomorphism, gives

$$(((1_N(a_1\tau))(a_2\tau))\cdots(a_k\tau))=(a_1a_2\cdots a_k)\tau.$$

We have that $(a_1a_2\cdots a_k)\tau\in L\tau$ if $w\in L$, so $L\subseteq \mathscr{L}(\mathcal{A})$. In addition, if w is accepted by \mathcal{A} , then $(a_1a_2\cdots a_k)\tau\in L\tau$, and hence $(w\in L\tau)$. Since $(L\tau)\tau^{-1}=L$, we have that $w\tau\tau^{-1}\in L$, and hence $\mathscr{L}(\mathcal{A})\subseteq L$.

(2) \Longrightarrow (3): Let \mathcal{A} be a deterministic finite state automaton accepting L. Let q be a terminal state of \mathcal{A} . Create a new automaton \mathcal{B} , with all states and relations as \mathcal{A} , and an additional terminal state q', and for each relation in \mathcal{A} that has q is its second part, there is a relation in \mathcal{B} with q' as its second part, and the same first part. We have that \mathcal{B} is non-deterministic, and accepts the same language as \mathcal{A} , which is L.

(3) \Longrightarrow (4): Let \mathcal{A} be a finite state automaton accepting L. Let n be the number of states in \mathcal{A} , and we will refer to these states as a_1, \ldots, a_k . For all $i, j, k \in \{1, \ldots, n\}$, define $J_{i,j}^k$ to be the language comprising all words that when read in \mathcal{A} , starting at a_i , terminate at a_j , without passing through a_m , for any $m \in \mathbb{N}$, m > k, excepting the start and finish of the path, even if i or j are greater than k. Note that $J_{i,j}^0$ comprises all letters a such that $((a_i, a), a_j)$ is a transition relation of \mathcal{A} , and if i = j, then $\varepsilon \in J_{i,j}^0$. Note that as $J_{i,j}^0$ is finite, since Σ is finite, for any valid i and j, we have that it is rational. Inductively suppose $J_{i,j}^k$ is rational, for some k. Then

$$J_{i,j}^{k} = J_{i,j}^{k-1} \cup J_{i,k}^{k-1} \cdot \left(\bigcup_{p \le k} J_{k,k}^{p}\right)^{*} \cdot J_{k,j}^{k-1}. \tag{4.1}$$

Hence $J_{i,j}^k$ is also rational, as it is constructed using rational sets and the rational definition. We can conclude that for all $i, j, k \in \{1, \ldots, n\}$, we have that $J_{i,j}^k$ is rational. Let I and F be the initial and terminal states of A, For $i, j, k \in \{1, \ldots, n\}$, define

$$L_{i,j}^k = \begin{cases} J_{i,j}^k & a_i \in I, \ a_j \in F \\ \emptyset & \text{otherwise} \end{cases}.$$

Since $J_{i,j}^k$ is rational for all valid i, j and k, and, as a finite set, the empty set is rational, we have that $L_{i,j}^k$ is rational. In addition

$$L = \mathscr{L}(\mathcal{A}) = \bigcup_{i,j,k} L_{i,j}^k.$$

As a finite union of rational sets, L is rational.

$$(4) \implies (1)$$
:

Definition 4.2.7 Any language satisfying any of the conditions of Kleene's Theorem (Theorem 4.2.6) is called *regular*.

Theorem 4.2.8 (Pumping Lemma for Regular Languages) Let L be a regular language over a finite alphabet Σ . Then there exists $N \in \mathbb{N}$, such that if $w \in L$ satisfies |w| > N, then there are words $x, y, z \in \Sigma^*$, such that |y| > 0, and for all $n \in \mathbb{N}_0$,

$$xy^nz \in L$$
.

Proof Let \mathcal{A} be a deterministic finite state automaton for L, and let $N \in \mathbb{N}$ be the number of states of \mathbb{A} . Suppose $w \in L$ has length greater than N. When w is read in \mathcal{A} , there exists a state q, that is visited at least twice. Let y be the subword of w that is read to get from the first visitation of q to the second, when reading w in \mathcal{A} . Let $x, z \in \Sigma^*$ be the prefix and suffix of w, such that w = xyz. Since y takes q to itself, the word $xz = xy^0z$ will take a start state to a terminal state. In addition, repeating y will also take q to itself. Hence xy^nz is accepted by \mathcal{A} , for all $n \in \mathbb{N}$, and hence is in L.

4.3 Anisimov's Theorem

Definition 4.3.1 Let G be a group, generated by a finite set X. We define the *word problem* in G with respect to X, denoted WP(G, X), by

Example 4.3.2 Let $G = \langle a, b \mid [a, b] \rangle$. Then

$$\begin{aligned} \operatorname{WP}(G,\ X) &= \{ w \in W(\{a,\ b\}) \mid w =_G 1_G \} \\ &= \{ x_1^{\varepsilon_1} \cdots x_n^{\varepsilon_n} \mid n \in \mathbb{N}_0,\ x_i \in \{a,\ b\},\ \varepsilon_i \in \{-1,\ 1\} \text{ for all valid } i, \text{ such that } \\ &\sum_{x_i = a} \varepsilon_i = \sum_{x_i = b} \varepsilon_i = 0 \} \end{aligned}$$

For example,

$$a^{-1}bba^{-1}b^{-1}ab^{-1}a \in WP(G, X).$$

Theorem 4.3.3 (Anisimov's Theorem) Let G be a group generated by a finite set X. Then G is finite if and only if WP(G, X) is a regular language over $X \cup X^{-1}$.

Proof (\Rightarrow): Suppose G is a finite group with generating set X. Consider the Cayley graph $\Gamma(G, X \cup X^{-1})$ as a deterministic automaton A, with initial and final states being $\{1_G\}$. If $w \in \mathrm{WP}(G, X)$, then the word traced by w in the automaton, starting at 1_G , will end at 1_G , so $w \in L(A)$ and $\mathrm{WP}(G, X) \subseteq L(A)$. Any word in L(A) will trace a path from 1_G to itself, and so will be in $\mathrm{WP}(G, X)$, and we can conclude $\mathrm{WP}(G, X)$ is a regular language.

(\Leftarrow): Suppose WP(G, X) is a regular language over $X \cup X^{-1}$. Suppose, for contradiction, that G is infinite. Then there exists an infinite family of words $(w_i)_{i\in\mathbb{N}}\subseteq W(X)$, where $|w_i|\to\infty$, and

given any $i \in \mathbb{N}$, no proper substring of w_i represents the trivial word. This is true, because if it fails, then there is a $n \in \mathbb{N}$, such that every word of length greater than n is equivalent in G to something shorter, which implies G is finite.

Let \mathcal{A} be the automaton accepting WP(G, X). We will use the powerset construction of \mathcal{A} , to assume \mathcal{A} is deterministic, has a unique start state and a has a unique accept state.

CLAIM: There exists some $m \in \mathbb{N}$, such that w_m has two distinct proper prefixes, u and uv, such that when reading u or uv from the start state of A to itself.

If the claim were false, then \mathcal{A} would be infinite, since $|w_m| \to \infty$, a contradiction. That is, if $q = |Q_A|$, then there exists some $m \in \mathbb{N}$, such that $|w_m| > |Q_A|$, and hence any subword of $|w_m|$ of length q + 1, must visit some state twice.

It follows from the claim that $uvu^{-1} \in WP(G, X)$, because $uu^{-1} =_G 1_G$, and reading uu^{-1} and uvu^{-1} , will take us to the same state. Hence $uvu^{-1} =_G 1_G$, and we can conclude $v =_G 1_G$. But no proper substring of w_i is trivial, a contradiction.

4.4 Context Free Languages

Definition 4.4.1 A context free grammar g is a four-tuple

$$g = (V, \Sigma, P, s),$$

where V is a finite set of non-terminal symbols, Σ is a finite set, disjoint from V, of terminal symbols (or letters), $P \subseteq V \times (V \cup \Sigma)^*$ is a finite relation, called the productions, and $s \in V$ is called the start symbol.

The language of g, denoted $\mathcal{L}(g)$, is defined as the set of elements of Σ^* that are the result of a sequence of productions starting from s.

Let Σ be any alphabet. A language $L \subseteq \Sigma^*$ is called *context free*, if there is a context free grammar g, such that $L = \mathcal{L}(g)$.

Remark 4.4.2 It is possible to view productions of a context free grammar, as a set of rewrite rules.

Example 4.4.3 Let

$$g = (\{s\}, \{a\}, P, s), \ \tilde{g} = (\{s\}, \{a\}, \tilde{P}, s),$$

where $P = \{(s, sa), (s, a)\}$ and $\tilde{P} = \{(s, sa), (s, \varepsilon)\}$. Then

$$\mathscr{L}(g) = \{ a^k \mid k \in \mathbb{N} \}, \quad \mathscr{L}(\tilde{g}) = \{ a^k \mid k \in \mathbb{N}_0 \}.$$

Definition 4.4.4 A seven-tuple $\mathcal{A} = (Q, \Sigma, \chi, \delta, q_0, \bot, F)$ is a pushdown automaton, if

- 1. Q is a finite set, called the set of states,
- 2. Σ is a finite set, called the *alphabet*,
- 3. χ is a finite set, called the *stack alphabet*,

- 4. $\delta \subseteq (Q \times (\Sigma \cup \{\varepsilon\}) \times \chi^*) \times (Q \times \chi^*)$ is called the transition relation,
- 5. $q_0 \in Q$ is called the start state,
- 6. $\perp \in \chi$ is called the bottom of stack symbol,
- 7. $F \subseteq Q$ is called the set of accept states.

The language of \mathcal{A} , denoted $\mathcal{L}(\mathcal{A})$, is defined as the set of words over Σ , that when applied into the transition relation, starting at q_0 , end at an accept state.

Remark 4.4.5 Pushdown automata have the following 'idea':

- 1. Read an input tape $w \in \Sigma^*$,
- 2. Read the next letter u from the input tape (or word). Read a 'small' word v on the top of the stack. Notice current state $x \in Q$ (start at the start state q_0 ,
- 3. Move to new state $y \in Q$, and change v to $\tilde{v} \in \chi^*$, where $((x, u, v), (y, \tilde{v}))$,
- 4. When finished reading the input tape, if the active state is in F, then w is accepted.

Note that with this 'accept rule', \perp is irrelevant, but there are 'accept rules', which require \perp .

Example 4.4.6 Let
$$Q = \{q_0\}, \ \Sigma = \{a, b\}, \ \chi = \{a, b, \bot\} \ \text{and} \ F = \{q_0\}.$$
 Let

$$\delta = \{((q_0, a, \bot), (q_0, a \bot)), ((q_0, a, a), (q_0, aa)), ((q_0, a, b), (q_0, \varepsilon)), ((q_0, b, \bot), (q_0, b \bot)), ((q_0, b, b), (q_0, bb)), ((q_0, b, a), (q_0, ba))\}$$

Let $\mathcal{A} = (Q, \Sigma, \chi, \delta, q_0, \perp, F)$. We have that $\mathcal{L}(\mathcal{A}) = \Sigma^*$. Note that \mathcal{A} can be represented graphically by

Theorem 4.4.7 Let Σ be a finite alphabet and $L \subseteq \Sigma^*$ be a language. Then the following are equivalent:

1. The language L is context-free,

- 2. The language L is accepted by a deterministic pushdown automaton,
- 3. The language L is accepted by a non-deterministic pushdown automaton.

Proof (2) \Longrightarrow (3): Adding redundant transitions to a deterministic pushdown automaton creates a non-deterministic one.

(3) \Longrightarrow (1): Let L be the language accepted by a pushdown automaton $\mathcal{A} = (Q_A, \Sigma, \chi, \delta_A, q_0, \bot, F)$. Let f be a symbol disjoint from Q_A . Let $Q = Q_A \cup \{f\}$ and

$$\delta = \{((q, \varepsilon, s), (f, \bot)) \mid q \in F, s \in \chi^*\} \cup \delta_A.$$

Suppose, in addition, that if $((q_1, w, s_1), (q_2, s_2)) \in \delta$, then $|s_2| = 1$. Let

$$\mathcal{B} = (Q, \Sigma, \chi, \delta, q_0, \bot, \{f\}).$$

If $w \in L$, then there is a path through \mathcal{A} , to a state in F, when reading w, so reading ε in addition, in B, takes us to f, so $w \in \mathcal{L}(\mathcal{B})$. If $w \in \mathcal{L}(\mathcal{B})$, then reading w can trace a path through b to f, which must go through a state in F, before reading the empty word. Hence $w \in L$. We can conclude that $\mathcal{L}(\mathcal{B}) = L$.

Let $V = Q \times \chi$ and

$$P = \{((q_2, s_2), (q_1, s_1)w) \mid ((q_1, w, s_1), (q_2, s_2)) \in \delta\} \cup \{((q_0, \bot), \varepsilon)\}.$$

Let $g = (V, \Sigma, P, (f, \bot))$. We have that g is a context free grammar. Let $w \in L$. Let $a_1a_2 \cdots a_k = w$, where $k \in \mathbb{N}_0$ and $a_i \in \Sigma$ for all valid i. Then there is a sequence of transitions in δ , that are used when w is read to trace the path through \mathcal{B} . Let the sequence be

$$((q_0, a_1, s_0), (q_1, s_1)), ((q_1, a_2, s_1), (q_2, s_2)), \ldots, ((q_{k-1}, a_k, s_{k-1}), (q_k, s_k)).$$

We have that the stack starts off with just \bot , so $s_0 = \bot$. By construction of \mathcal{B} , we also have that $s_k = \bot$ and $q_k = f$. By construction of P, for each transition above, there exists a corresponding production. If we start at (f, \bot) , and use this sequence of productions in reverse, we have

$$(f, \perp) = (q_k, s_k) \mapsto (q_{k-1}, s_{k-1})a_k \mapsto (q_{k-2}, s_{k-2})a_{k-1}a_k$$

 $\mapsto \cdots \mapsto (q_0, s_0)a_1 \cdots a_k = (q_0, \perp)a_1 \cdots a_k \mapsto a_1 \cdots a_k$

Hence $w \in \mathcal{L}(g)$.

Suppose now that $w \in \mathcal{L}(g)$. Let $a_1 a_2 \cdots a_k = w$, where $k \in \mathbb{N}_0$ and $a_i \in \Sigma$ for all valid i. We have that there is a sequence of productions in P that takes (f, \perp) to w. This sequence must end with $((q_0, \perp), \varepsilon)$, otherwise w would contain non-terminals. In addition, the start symbol contains precisely one non-terminal, and every production in P, other than $((q_0, \perp), \varepsilon)$, preserves the number of non-terminals, so $((q_0, \perp), \varepsilon)$ is only used once. Therefore, there the sequence of productions, without the last production, corresponds to a sequence of transitions in δ . Let the reverse of this sequence be

$$((q_0, a_1, s_0), (q_1, s_1)), ((q_1, a_2, s_1), (q_2, s_2)), \ldots, ((q_{k-1}, a_k, s_{k-1}), (q_k, s_k)),$$

where $k \in \mathbb{N}_0$ and $(q_k, s_k) = (f, \perp)$. This sequence of transitions can be used when reading w, and traces a path through \mathcal{B} , from q_0 to q. Hence $w \in L$. We can conclude that $L = \mathcal{L}(g)$.

Theorem 4.4.8 Let Σ be an alphabet and $L \subseteq \Sigma^*$. Then

1. If L is regular, then there exists $p \in \mathbb{N}_0$, such that for all $w \in L$, |w| > p, there exist words $r, s, t \in \Sigma^*$, such that

$$w = rst, \quad |s| > 0, \quad rs^n \in L,$$

for all $n \in \mathbb{N}_0$,

2. If L is context free, then there exists $p \in \mathbb{N}_0$, such that for all $w \in L$, |w| > p, there exist words r, s, t, u, $v \in \Sigma^*$, such that

$$su > 0$$
, $|stu| \le p + 1$, $rs^n tu^n v \in L$,

for all $n \in \mathbb{N}_0$.

Definition 4.4.9 Let Σ be an alphabet and $w \in \Sigma^*$. A contiguous substring of w is a word $v \in \Sigma^*$, such that there exist words $x, y \in \Sigma^* \cup \{\varepsilon\}$, such that w = xvy.

Definition 4.4.10 Let $g = (V, \Sigma, P, S)$ be a context free grammar. Let $(z_i)_i \subseteq P$ be a finite chain of productions. Let i be a valid index and w be a contiguous substring of z_i . Let j > i be a valid index. The *shadow* of w in z_j is the result of the string w, within z_j , after the sequence of productions have occurred.

The chain $(z_i)_i$ is called *efficient*, if whenever a non-terminal T appears in some word z_i for a valid index i, then T never appears in its own shadow.

Theorem 4.4.11 (Pumping Lemma for Context Free Languages) Let L be a context free language over a finite alphabet Σ . Then there exists $p \in \mathbb{N}_0$, such that for all $z \in L$ such that $|z| \geq p$, there exist words $u, v, w, x, y \in \Sigma^*$, where

$$z = uvwxy, |vx| > 0, |vwx| \le p,$$

such that for all $n \in \mathbb{N}_0$,

$$uv^nwx^ny \in L.$$

Proof Let $g = (V, \Sigma, \pi, S)$ be a context free grammar for L. Let $X \subseteq L$ be the set of words in L, which can be produced using efficient chains of productions. Note that X is finite, since the set of non-terminals is finite, and a non-terminal can never appear in its own shadow.

Let r be the length of the longest word in X, and p = r + 1. If L has no words of length greater than or equal to p, then L is finite, and the theorem is true.

We will now consider when L is infinite. If $z \in L$ and $|z| \geq p$, so that $z \notin X$, then the chain of productions cannot be efficient. If we let $(x_n)_n$ be the shortest chain of productions producing z (from S), then being inefficient means that there are indices i, j, with i < j, and a non-terminal M, such that M is a contiguous subword of z_i and z_j , and M appears in its own shadow in z_j . We will call the shadow w_j , and break it down to write $v_j M x_j$, where at least one of v_j and x_j have non-trivial shadow in z. We will call these shadows v and x, and name the shadow of the M in z_j , in z as w. If they were trivial, then we could 'shorten' our chain.

Write $z_i = u_i M y_i$, and let u and y be the shadows of u_i and y_i in z, respectively. We therefore have that z = uvwxy. In addition, by replacing derivations of M with later derivations, we can conclude that, for any $n \in \mathbb{N}_0$,

$$uv^n wx^n u = z$$
.

4.5 Context Free Languages and Groups

Definition 4.5.1 Let P be a property of groups. A group G is *virtually* P, if there is a finite index subgroup $H \leq G$, such that H has P.

We say G is residually P, if for all $g \in G \setminus \{1_G\}$, there is a group H_g and a homomorphism $\varphi_g : G \to H_g$, such that $\varphi_g(g) \neq 1_{H_g}$, and H_g has P.

Example 4.5.2 Every finite group is virtually trivial. A *virtually free group* is a group with a finite index free subgroup.

Theorem 4.5.3 Free groups are residually finite.

Example 4.5.4 Define \mathcal{T}_2 to be the infinite rooted binary tree. A subgroup $G \leq \operatorname{Aut}(\mathcal{T}_2) := H$ is residually finite.

Proof Let $\operatorname{Stab}_k(H)$ be the stabiliser of the kthe row of H, where $k \in \mathbb{N}$. Note that $\operatorname{Stab}_k(H) \subseteq H$, and

$$H_{\operatorname{Stab}_k(H)}$$
,

is finite. Hence if $g \in H$ is non-trivial, with its first 'flip' on row k, then g has non-trivial image in

$$H_{\operatorname{Stab}_k(H)}$$
.

Definition 4.5.5 Let X and Y be metric spaces. A set function f from X to Y is called a quasi-isometry, if there exists $A \ge 1$, B, $C \ge 0$, such that for all $x_1, x_2 \in X$

$$\frac{1}{A}d_X(x_1, x_2) - B \le d_Y(x_1 f, y_1 f) \le Ad_X(x_1, y_1) + B,$$

and for all $y \in Y$, there is an $x \in X$, such that

$$d_Y(y, xf) \leq C.$$

If such a function exists, then X and Y are called *quasi-isometric*.

Definition 4.5.6 Let G be a group, generated by a set X. Define a function

$$d: G \times G \to [0, \infty)$$
$$(g, h) \mapsto \min\{|w| \mid w \in W(X), gw = h\}$$

Lemma 4.5.7 The function defined in Definition 4.5.6, is a metric.

Example 4.5.8 The groups F_a and $\langle b, c \mid [b, c] \rangle$ are not quasi-isometric.

Proof Let $G = \langle b, c \mid [b, c] \rangle$. Let d_1 be the induced metric on G, and d_2 be the induced metric on F_a .

Suppose they are quasi-isometric, and let $\phi: G \to F_a$ be the quasi-isometry, with constants A, B, C, defined as in the definition. Let $l \in \mathbb{Z}$ such that $a^l = \varepsilon \phi$. Redefine ϕ , and A, B, C, by composing ϕ with the isometry of F_a : $a^k \mapsto a^{k-l}$, to assume $\varepsilon \phi = \varepsilon$.

CLAIM: If $g, h \in G$ such that $A^2d_1(g, \varepsilon) + 2AB \le d_1(h, \varepsilon)$, then $d_2(g\phi, \varepsilon) \le d_2(h\phi, \varepsilon)$.

Note

$$A^{2}d_{1}(g, \varepsilon) + 2AB \le d_{1}(h, \varepsilon) \implies d_{1}(g, \varepsilon) \le \frac{d_{1}(h, \varepsilon)}{A^{2}} - \frac{2B}{A}. \tag{4.2}$$

We have

$$d_{2}(g\phi, \ \varepsilon) \leq Ad_{1}(g, \ \varepsilon) + B$$

$$\leq \frac{d_{1}(h, \ \varepsilon)}{A} - B$$

$$\leq \frac{Ad_{2}(h\phi, \ \varepsilon) + B}{A} - B$$

$$\leq \frac{Ad_{2}(h\phi, \ \varepsilon) + AB}{A} - B$$

$$= d_{2}(h\phi, \ \varepsilon),$$

and the claim is true.

Let $n \in \mathbb{N}_0$. Let $k_n = n(A^2 + 2AB)$. We have

$$d_1(b^{nk_n}, \ \varepsilon) = nk_n.$$

Therefore, if $i, j \in \mathbb{Z}$ such that $|i| + |j| \le n$, then

$$A^{2}d_{1}(b^{i}c^{j}, \varepsilon) + 2AB \le nA^{2} + 2AB = d_{1}(b^{nk_{n}}, \varepsilon).$$

We have 2N+1 choices for i. Given i, there are 2(n-|i|)+1 choices for j. Let K be the number of elements of G that are of the form $b^i c^j$, where $i, j \in \mathbb{Z}$, with $|i|+|j| \leq n$. Then

$$K = \sum_{i=-n}^{n} (2(n-|i|)+1)$$

$$= 2n+1+2\sum_{i=-n}^{n} (n-i)$$

$$= 2n+1+2(2n+1)n-2\sum_{i=-n}^{n} |i|$$

$$= 4n^2+4n+1-4\sum_{i=1}^{n} i+|0|$$

$$= 4n^2+4n+1-2n(n+1)$$

$$= 2n^2+2n+1$$

Hence, using claim, there are $2n^2 + 2n + 1$ elements g of G such that

$$d_2(g\phi, \ \varepsilon) \le d_2(b^{k_n}\phi, \ \varepsilon).$$

Let $l_n \in \mathbb{Z}$, such that $a^{l_n} = (b^{k_n})\phi$. We have that there are at least $2n^2 + 2n + 1$ elements in $B_2(\varepsilon, |l_n|)$. We subscript B by 2, to denote we are using d_2 . There are $2|l_n| + 1$ elements in $B_2(\varepsilon, |l_n|)$, which are

$${a^m \mid m \in \mathbb{Z}, \ |m| \le |l_n|}.$$

Let $g, h \in G$ such that $g\phi = h\phi$. Then

$$\frac{d_1(g, h)}{A} - B \le 0 \implies d_1(g, h) \le AB.$$

We can conclude that if $g, h \in G$ and $d_1(g, h) > AB$, then $g\phi \neq h\phi$. We will use this to find a lower bound for the number of distinct elements of $B_2(\varepsilon, |l_n|)$. Let $K = \lceil AB \rceil$. Then b^{nK} , c^{nK} , ε have distinct images from each other, for $n \in \mathbb{Z} \setminus \{0\}$. Hence $|l_n| \geq 2 \left| \frac{n^2 + n}{K} \right|$. We have that

$$\frac{2(n^2+n)}{K} - 1 \le |l_n| = d_2(a^{l_n}, \ \varepsilon) \le Ad_1(b^{k_n}, \ \varepsilon) + B = Ak_n + B = n(A^3 + 2A^2B) + B.$$

If $n \ge K(A^3 + 2A^2B + B + 1)$, then

$$K(A^3 + 2A^2B + B + 1)^2 + A^3 + 2A^2B + B + 1 \le (A^3 + 2A^2B + B)^2 + B$$

a contradiction. Hence ϕ does not exist, and the groups are not quasi-isometric.

Proof (\Rightarrow): Suppose G is finitely generated. Let X'_G be a finite generating set for G. Let $X_G = \{g \in G \mid \{g, g^{-1}\} \cap X'_G \neq \emptyset\}$, ie the X'_G union its inverses. Let $n = |X_G|$, and name the elements of X_G by

$$X_G = \{g_1, \ldots, g_n\}.$$

Let $T = \{t_1, t_2, \ldots, t_s\}$, where $s = [H : G] < \infty$, by a traversal of H by G

Let $h \in H$. We have that $h \in Gt_i$, for some valid index i, and hence

$$h = g_1 g_2 \cdots g_n t_i,$$

Since h was arbitrary, we have that $H = \langle T \cup X_G \rangle$.

(\Leftarrow): Suppose H is finitely generated. Let $X_H = \{h_1, h_2, \ldots, h_n\}$ be a finite generating set for H, closed under inverses. Let $T = \{t_1, t_2, \ldots, t_s\}$, where s = [H : G], be a traversal for G in H. For each valid index i, define $i\theta \in \mathbb{N}$ and $g_i \in G$ by $h_i = g_i t_{i\theta}$. Set $g_{i,j} \in G$, $t_{i,j} \in T$, such that

$$t_i g_i = g_{i,j} t_{i,j}$$

$$t_i t_j = \tilde{g}_{i,j} \tilde{t}_{i,j}$$

Let $h \in H$. Then, there exists $k \in \mathbb{N}$, and a function $\psi : \mathbb{N} \to \mathbb{N}$, such that

$$h = h_{1\psi}h_{2\psi} \cdots h_{k\psi}$$

$$= g_{1\psi}t_{1\psi\theta}g_{2\psi}t_{2\psi\theta} \cdots g_{k\psi}t_{k\psi\theta}$$

$$= g_{1\psi}g_{1\psi\theta,2\psi}t_{1\psi\theta,2\psi} \cdots g_{k\psi}t_{k\psi\theta}$$

$$= \cdots$$

$$= \hat{g_1}\hat{g_2}\cdots\hat{g_k}\hat{t},$$

and if $h \in G$, then $\hat{t} = 1_H$. Therefore G is finitely generated by $\{\hat{g_1} \cdots \hat{g_k}\}$.

Theorem 4.5.9 (Muller-Schupp (half)) Let H be a virtually free group, generated by a finite set X. Then WP(H, X) is a context free language.

Proof (Outline) There is a subgroup $\tilde{N} \leq H$, which is normal (Poincaré's Lemma) and free (subgroup of a free group), such that $[H:N] < \infty$. Let N be a maximal such subgroup. There are maps

 $N \rightarrowtail H \twoheadrightarrow Q := \frac{H}{N}.$

By Schreier's Lemma, N is finitely generated, and hence $N = F_{x_1, \dots, x_k}$. Let Y be the inverse closure of $\{x_1, \dots, x_k\}$. We will build a pushdown automaton with alphabet Y and states Q. The accept and start state will be 1_Q . The traversal for N in H will define the transition relation.

Definition 4.5.10 A group G is *context free* if WP(G, X) is a context free language, for any generating set X for G.

Lemma 4.5.11 Suppose G is a finitely generated group and $H \leq G$, with $[G:H] < \infty$. If H is context free, then G is context free.

Proof (Sketch) Let X be a finite generating set for H such that $\operatorname{WP}(H, X)$ is a context free language. Then there is an automaton A, such that A accepts $\operatorname{WP}(H, X)$. We also have that there is a transversal $T = \{1_G = t_1, t_2, \ldots, t_n\}$, for H in G. In addition, there is a finite generating set $X \cup \tilde{X} \cup T$ for G, where $\tilde{X} \subseteq H$ is defined in the proof of Schreier's Lemma. Note $X \cup \tilde{X}$ is a finite generating set for H. Build a new automaton \tilde{A} from A, to accept $\operatorname{WP}(H, X \cup \tilde{X})$. To do this read letters in X as in \tilde{A} , but instead of reading letters in \tilde{X} , read the correct word from X in A. Build a new automaton

$$B = (Q, Y, \chi_{\tilde{A}}, \tilde{\delta}, q_0, \perp, F),$$

where

$$Q = Q_{\tilde{A}} \times T$$
, $q_0 = (\operatorname{start}_{\tilde{A}}, 1_H)$, $F = \{(\operatorname{accept}_{\tilde{A}}, 1_H)\}$.

Define $\tilde{\delta}$, so that movement occurs in cosets space (2nd coordinate), and in $\tilde{\mathcal{A}}$ simultaneously.

Lemma 4.5.12 Let G be a context free group, generated by a finite set X, such that WP(G, X) is context free. Then if Y is a finite generating set for G, WP(G, Y) is context free.

Proof We have already shown that if WP(G, A) is context free, then $WP(G, A \cup B)$ is, for any finite $B \subseteq G$. Let A be a pushdown automaton accepting $WP(G, X \cup Y)$, built in the proof of the previous Lemma. Remove all transitions for reading letters from $X \setminus Y$, and the new automaton accepts WP(G, Y).

Lemma 4.5.13 Let G be a context free group, generated by a finite set X. Let $Y \subseteq G$ be finite. Then $\langle Y \rangle$ is a context free group.

Theorem 4.5.14 (Motz Isomorphism) Let $g = (V, \Sigma, P, \S)$ be a context free grammar. Let $L = \mathcal{L}(g)$, with $\varepsilon \in L$. Then the inclusion of Σ^* into $F_{V \cup \Sigma}$ induces a canonical isomorphism

$$\phi: F_{\Sigma/\langle\langle L\rangle\rangle} \to F_{V \cup \Sigma/\langle\langle P\rangle\rangle}.$$

Corollary 4.5.15 Context free groups are finitely presented.

Chapter 5

Bass Serre Theory

5.1 Free Products

Definition 5.1.1 Let A, B and C be (formally disjoint) groups such that there exist monomorphisms $\psi_A : C \to A$ and $\psi_B : C \to B$. Let X_A and X_B be generating sets for A and B, respectively. Define the *free product with amalgamation* of A and B by C, denoted $A *_C B$, by

$$A *_{C} B = \langle X_{A} \cup X_{B} \cup X_{C} \mid R_{A} \cup R_{B} \cup \{g^{-1}(g)\psi_{A} \mid g \in C \setminus \{1_{C}\}\} \cup \{g^{-1}(g)\psi_{B} \mid g \in C \setminus \{1_{C}\}\} \rangle.$$

Note that this is not always unique (given the notation), since the monomorphisms may be non-unique.

Let I be an index set, and $G_i = \langle X_i, R_i \rangle$ be groups, for all $i \in I$. Then the free product of the G_i s is defined as

$$\underset{i \in I}{*} G_i = \left\langle \bigcup_{i \in I} X_i \mid \bigcup_{i \in I} R_i \right\rangle.$$

Example 5.1.2 Consider

$$D_8 = \langle \sigma, \ \tau \mid \sigma^4, \ \tau^2, \ (\sigma\tau)^2 \rangle,$$

$$D_6 = \langle \rho, \ \mu \mid \rho^3, \ \mu^2, \ (\rho\mu)^2 \rangle,$$

$$C = \langle c \mid c^2 \rangle.$$

Note

$$\psi_{D_8}: C \to D_8$$

$$c \mapsto \tau$$

$$\psi_{D_6}: C \to D_6$$

$$c \mapsto \mu,$$

extend to homomorphisms, using Von Dyck's Theorem. Then

$$D_8 *_C D_6 = \langle \sigma, \tau, \rho, \mu, c \mid \sigma^4, \tau^2, (\sigma \tau)^2, \rho^3, \mu^2, (\rho \mu)^3, c^{-1} \tau, c^{-1} \mu \rangle$$

$$\mapsto_{T_4} \langle \sigma, \tau, \rho, \mu \mid \sigma^4, \tau^2, (\sigma \tau)^2, \rho^3, \mu^2, (\rho \mu)^3, \mu \tau, \mu \mu \rangle$$

$$\mapsto_{T_2} \langle \sigma, \tau, \rho, \mu \mid \sigma^4, \tau^2, (\sigma \tau)^2, \rho^3, \mu^2, (\rho \mu)^3, \mu \tau \rangle$$

Theorem 5.1.3 Let G_i be groups with normal forms, for all $i \in I$, where I is an index set. Consider an element of $H = *_{i \in I} G_i$ of the form

$$g = g_1 g_2 \cdots g_k,$$

for some $k \in \mathbb{N}$. Consider, for all $i \in I$, the following statements.

- 1. There is an index α_i , such that $g_i \in G_{\alpha_i}$,
- 2. $g_i \neq 1_{\alpha_i}$
- 3. q_i is in the normal form of G_{α_i} ,
- 4. $\alpha_i \neq \alpha_{i+1}$.

If 1, 2 and 4 are satisfied, then g is non-trivial. If, in addition, 3 is satisfied, then this is a normal form for non-trivial elements of H.

5.2 HNN Extensions

Definition 5.2.1 Let $A = \langle X_A | R_A \rangle$, where X_A is a set, and $R_A \subseteq W(X_A)$. Let $H, K \leq A$, such that there is an isomorphism $\psi : H \to K$. Let X_H be a generating set for H. Let t be a symbol not in W(X). The HNN extension of A with respect to ψ , denoted $A*_{\psi}$, is defined by

$$A*_{\psi} = \langle X_A \cup \{t\} \mid R_A \cup \{t^{-1}ht(h\psi)^{-1} \mid h \in X_H\} \rangle.$$

Lemma 5.2.2 (Britton's Lemma) Let A be a group, and H, $K \leq A$, such that there is an isomorphism $\psi: H \to K$. Let $G = A *_{\psi}$. Let $w \in G$ be of the form

$$w = g_0 t^{\varepsilon_1} g_1 t^{\varepsilon_2} \cdots t^{\varepsilon_n} g_n,$$

where $n \in \mathbb{N}_0$, $g_i \in G$, $\varepsilon_j \in \{-1, 1\}$, for valid indices i and j. If $w =_G 1_G$, then precisely one of the following holds:

- 1. n = 0 and $g_0 = 1_G$,
- 2. n > 0, and for some $i \in \{1, \ldots, n-1\}$, one of the following holds:
 - (a) $\varepsilon_i = -1$, $\varepsilon_{i+1} = 1$, $q_i \in H$,
 - (b) $\varepsilon_i = 1$, $\varepsilon_{i+1} = -1$, $q_i \in K$.

Remark 5.2.3 Britton's Lemma gives a pseudo-normal form.

Example 5.2.4 Let $G = \langle a, b \mid a^2, b^3, (ab)^2 \rangle \cong S_3$. A normal form for G is

$$\{\varepsilon, a, b, ab, b^2, ab^2\},\$$

under the rewrite rules

$$a^{-1} \mapsto a, \ b^{-1} \mapsto b^2, \ b^3 \mapsto \varepsilon, \ a^2 \mapsto \varepsilon, \ ba \mapsto ab^2.$$

We have $|a|=2=|ab^2|$. Note $a\neq ab^2$. So we have two different subgroups of G:

$$\langle a \rangle, \quad \langle ab^2 \rangle,$$

both isomorphic to C_2 . Note that

$$\psi : \langle a \rangle \to \langle ab^2 \rangle$$
$$a \mapsto ab^2$$
$$\varepsilon \mapsto \varepsilon,$$

is an isomorphism. Then

$$G*_{\psi} = \langle a, b, t \mid a^2, b^3, (ab)^2, t^{-1}atb^{-2}a^{-1} \rangle$$

 $\cong \langle a, b, t \mid a^2, b^3, (ab)^2, t^{-1}atab^2 \rangle$

Note that t has infinite order, so $|G*_{\psi}|$ is infinite. Consider

$$w = abtb^{-1}a^{-1}taat^{-1}bt^{-1}a^{-1}tt$$

$$=_{G} abtb^{-1}a^{-1}tt^{-1}bt^{-1}a^{-1}tt$$

$$=_{G} abtb^{-1}a^{-1}bt^{-1}a^{-1}tt$$

$$=_{G} abtab^{2}t^{-1}att$$

Note $tab^2t^{-1} =_G tt^{-1}att^{-1} =_G a$, so

$$w =_G abaatt$$
$$=_G abtt \neq 1_G,$$

by Britton's Lemma.

5.3 Graphs of Groups

Definition 5.3.1 A graph of groups is a pair $\mathscr{G} = (\mathbb{G}, \Gamma)$, where $\Gamma = (V, E, s, t)$ is a digraph with an involution function $\bar{E} \to E$, such that \bar{e} is defined to be an edge $f \in E$, such that ef = fs and ef = fs and where $ef = (\{G_x \mid x \in V \cup E\}, \{\alpha_e : G_e \to G_{es} \mid e \in E\})$. Here, all elements of the first set of ef = fs must be groups, and this set must be associated bijectively with ff = fs second set contains injective group homomorphisms from each edge group into the vertex group at the start of the edge. Finally, there is the condition that ff = fs for any edge ff = fs.

Definition 5.3.2 Let $\mathscr{G} = (\mathbb{G}, \Gamma)$ be a graph of groups, where $\Gamma = (V, E, s, t)$. Let T be a spanning tree for Γ . Let the groups G_x in the set of \mathbb{G} , have presentations $\langle X_x | R_x \rangle$. Define

$$\pi_1(\mathscr{G}) = \left\langle \bigcup_{v \in V} X_v \cup E \mid \{e\bar{e}, \ \bar{e}e \mid e \in E\} \cup \bigcup_{v \in V} R_v \cup \{\bar{e}(x\alpha_e)e(x\alpha_{\bar{e}})^{-1} \mid x \in X_{es}\} \cup \{e \mid e \in T\} \right\rangle.$$

Chapter 6

Linear Groups and the Ping-Pong Lemma

6.1 The Modular Group

Definition 6.1.1 Let $n \in \mathbb{N}$. Consider the general liner group $GL_n(\mathbb{Z})$, and the special linear group $SL_n(\mathbb{Z})$, over \mathbb{Z} . Note that elements of $GL_n(\mathbb{Z})$ have determinant ± 1 . Let \mathscr{D} denote the subgroup of $GL_n(\mathbb{Z})$, generated by the diagonal matrices. We have that

$$\mathcal{D} = Z(G)$$
.

In addition, we have that $\mathcal{D} \cap \mathrm{SL}_n(\mathbb{Z}) \subseteq \mathrm{SL}_n(\mathbb{Z})$. Define

$$\operatorname{PSL}_n(\mathbb{Z} = \frac{SL_n(\mathbb{Z})}{\mathscr{D} \cap \operatorname{SL}_n(\mathbb{Z})}$$

We will call $PSL_2(\mathbb{Z})$ the modular group.

Theorem 6.1.2 Let

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Then

$$PSL_2(\mathbb{Z}) = \langle s, t \rangle.$$

Proof (sketch) Note that $PSL_2(\mathbb{Z})$ can be viewed as $SL_2(\mathbb{Z})$, under the equivalence relation

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \sim \left(\begin{array}{cc} -a & -b \\ -c & -d \end{array}\right).$$

The proof requires applying 'the Euclidean algorithm'

Lemma 6.1.3 The group $GL_n(\mathbb{Z})$ is residually finite, for any $n \in \mathbb{N}$.

Proof Let $n \in \mathbb{N}$. Define, for any prime p,

$$\varphi_{p}: GL_{n}(\mathbb{Z}) \to GL_{n}(\mathbb{F}_{p})
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \mapsto \begin{pmatrix}
a_{11} & \text{mod } p & a_{12} & \text{mod } p & \cdots & a_{1n} & \text{mod } p \\
a_{21} & \text{mod } p & a_{22} & \text{mod } p & \cdots & a_{2n} & \text{mod } p \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & \text{mod } p & a_{n2} & \text{mod } p & \cdots & a_{nn} & \text{mod } p
\end{pmatrix}$$

Let $A, B \in GL_n(\mathbb{Z})$. For any valid i and j and any prime p, let the ijth entries of $A, B, AB, A\varphi_p, B\varphi_p$ and $(A\varphi_p)(B\varphi_p)$, be $a_{ij}, b_{ij}, c_{ij}, \alpha_{ij}, \beta_{ij}$ and γ_{ij} , respectively. We have, for any valid i and j,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Let p be prime. Given valid i and j, we also have

$$\gamma_{ij} = \sum_{k=1}^{n} \alpha_{ik} \beta_{kj}.$$

Noting that applying mod respects addition and multiplication, it follows that

$$\gamma_{ij} = \sum_{k=1}^{n} \alpha_{ik} \beta_{kj}$$

$$= \sum_{k=1}^{n} (a_{ik} \mod p)(b_{kj} \mod p)$$

$$= \sum_{k=1}^{n} a_{ik} b_{kj} \mod p$$

$$= \left(\sum_{k=1}^{n} a_{ik} b_{kj}\right) \mod p$$

$$= c_{ij} \mod p,$$

which is the ijth entry of $(AB)\varphi_p$. It follows that every entry of $(AB)\varphi_p$ and $(A\varphi_p)(B\varphi_p)$ are the same, and hence φ_p is a homomorphism.

Let $A \in GL_n(\mathbb{Z})$ have ijth entry a_{ij} , for any valid i and j. If $A \neq I_n$, then there exists $i, j \in \mathbb{N}$, $i, j \leq n$, such that $a_{ij} \neq 1$, if i = j, and $a_{ij} \neq 0$, if $i \neq j$. Let p be a prime number strictly greater than a_{ij} . Then the ijth entry of $A\varphi_p$, has the same name as a_{ij} , which is not that of 1 if i = j and 0, if $i \neq j$. We can conclude that $A\varphi_p \neq I_n$, as they differ in the ijth entry. Note also that $GL_n(\mathbb{F}_p)$ is finite for any prime p. We can conclude that $GL_n(\mathbb{Z})$ is residually finite.

6.2 The Ping-Pong Lemma

Theorem 6.2.1 (Ping-Pong Lemma) Let G be a group, acting on a set X. Let G_1 , $G_2 \leq G$, such that $|G_1| > 1$ and $|G_2| > 2$. Let X_1 , $X_2 \subseteq X$, such that $X_1 \not\subseteq X_2$. Define $H = \langle G_1, G_2 \rangle$. Suppose that

- 1. For all $x_1 \in X_1$, $g_2 \in G_2 \setminus \{1_G\}$, we have $x_1g_2 \in X_2$,
- 2. For all $x_2 \in X_2$, $g_1 \in G_1 \setminus \{1_G\}$, we have $x_2g_1 \in X_1$.

Then $H \cong G_1 * G_2$, and that exists an isomomorphism that maps an alternating product

$$g_{11}g_{21}g_{12}g_{22}\cdots g_{1n}g_{2n},$$

to the same named product in $G_1 * G_2$. Here, $g_{1i} \in G_j$, $g_{2i} \in G_{(j \mod 2)+1}$ for all valid i, and some $j \in \{1, 2\}$.

Proof Let

$$g = g_1 g_2 \cdots g_n \in H$$
,

for some $n \in \mathbb{N}$, and such that for any valid i, we have $g_i \in G_j$ and $G_{i+1} \notin G_j$, for some $j \in \{1, 2\}$. That is, this is an alternating product. We now need to show that if g_i is non-trivial for all valid i, then g is non-trivial. Suppose g_i is non-trivial for all valid i. Recall that conjugation by any element does not change whether or not an element is trivial. We will conjugate g, in order to assume $g_1, g_n \in G_2$.

If $g_1, g_n \in G_2$, then we do not need to conjugate. If $g_1, g_n \in G_1$, then conjugating by a non-trivial element $h \in G_2$ will yield an alternating product of length n + 2, whose first and last elements are non-trivial and in G_2 . If precisely one of g_1 and g_2 is in G_2 , then we can conjugate by a non-trivial element $h \in G_2$, that is not the inverse of whichever of g_1, g_2 is in G_2 . We will end up with an alternating product of length n + 1, with non-trivial elements of G_2 at each end.

We can now assume $g_1, g_n \in G_2$. Let $x \in X_1 \backslash X_2$, which exists by the assumptions in the theorem. Since the alternating product starts and ends with elements of G_2 , we must have that n is odd. We also have that for each odd $i, g_i \in G_2$ and for even, $g_i \in G_1$. Hence applying $g_1g_2 \cdots g_n$, will move x to X_2 , and back to X_1 n times, which will result in $xg \in X_2$, since n is odd. Since $x \notin X_2$, we have that $xg \neq x$, and hence g is non-trivial.

We now have that every non-trivial element of H can be written in the normal form for $G_1 * G_2$, as in Theorem 5.1.3. Let $\phi: G_1 * G_2 \to H$ map alternating products in $G_1 * G_2$ to products of the same name in H, and send the identity to the identity. This is a bijection, since the normal form covers all elements of H, and the kernel is the identity. In addition, for any $h_1, h_2 \in G_1 * G$, then h_1h_2 will already be in the normal form, subject to some cancellations at the end, which can be added back in, in H. It is therefore a homomorphism.