

Intel Corporation

Crescent Dunes (Rev D)

FCC 15.207:2015 FCC 15.247:2015

Report # INTE5628.1

NVLAP Lab Code: 200630-0

CERTIFICATE OF TEST

Last Date of Test: October 02, 2015 Intel Corporation Model: Crescent Dunes (Rev D)

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2015	ANSI C63.10:2013
FCC 15.247:2015	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
6.10.4	Band Edge Compliance	Yes	Pass	
11.6	Duty Cycle	Yes	N/A	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9	Output Power	Yes	Pass	
11.10	Power Spectral Density		Pass	
11.11	Spurious Conducted Emissions	No	N/A	Device had an integral antenna and all spurious emissions were measured using the radiated method.

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. INTE5628.1 3/43

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://www.nwemc.com/accreditations/ http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. INTE5628.1 4/43

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. INTE5628.1 5/43

FACILITIES

California	Min
Labs OC01-13	Labs MN
41 Tesla	9349 W B
Irvine, CA 92618	Brooklyn P
(949) 861-8918	(612)-

Minnesota Labs MN01-08, MN10 0349 W Broadway Ave. rooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 9801
(425)984-6600

(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600	
	NVLAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
		Industry	Canada			
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
	BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
	VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157	

Report No. INTE5628.1 6/43

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Intel Corporation
Address:	PO Box 1000
City, State, Zip:	Hillsboro, OR 97123-1000
Test Requested By:	Mark Briggs
Model:	Crescent Dunes (Rev D)
First Date of Test:	September 29, 2015
Last Date of Test:	October 02, 2015
Receipt Date of Samples:	September 24, 2015
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The system is a 20W resonant charging PTU (Power transmit Unit) that operates at 6.78MHz and follows the A4WP standard.

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247 requirements.

Report No. INTE5628.1 7/43

CONFIGURATIONS

Configuration INTE5628-1

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
20W resonant charging mat (PTU)	Intel Corporation	Crescent Dunes (Rev D)	Board 701192		
AC/DC Power Brick	Ktec	KSAS0651900342M3	None		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Cable	No	2.0 m	No	AC Mains	AC/DC Power Brick	
DC Cable	Yes	1.6 m	Yes	AC/DC Power Brick	20W resonant charging mat (PTU)	

Report No. INTE5628.1 8/43

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
	Spurious		Tested as	No EMI suppression	EUT remained at
1	9/29/2015	Radiated	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
		Powerline	Tested as	No EMI suppression	EUT remained at
2	10/2/2015	Conducted	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
		Band Edge	Tested as	No EMI suppression	EUT remained at
3	10/2/2015	Compliance	delivered to	devices were added or	Northwest EMC
	Compliance		Test Station.	modified during this test.	following the test.
			Tested as	No EMI suppression	EUT remained at
4	10/2/2015	Duty Cycle	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
5	10/2/2015	Bandwidth	delivered to	devices were added or	Northwest EMC
		Dariuwiutii	Test Station.	modified during this test.	following the test.
		Output	Tested as	No EMI suppression	EUT remained at
6	10/2/2015	Power	delivered to	devices were added or	Northwest EMC
		rowei	Test Station.	modified during this test.	following the test.
		Power	Tested as	No EMI suppression	Scheduled testing
7	10/2/2015	Spectral	delivered to	devices were added or	was completed.
		Density	Test Station.	modified during this test.	was completed.

Report No. INTE5628.1 9/43

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARH	3/11/2015	3/11/2016
Cable - Conducted Cable Assembly	Northwest EMC	EVG, HHD, TQQ	EVGA	5/12/2015	5/12/2016
LISN	Solar Electronics	9252-50-R-24-BNC	LIN	1/27/2015	1/27/2016

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

INTE5628-1

MODES INVESTIGATED

Continuous Tx BTLE, High channel, 2480MHz Continuous Tx BTLE, Low channel, 2402MHz Continuous Tx BTLE, Mid channel, 2440MHz

Report No. INTE5628.1 10/43

EUT:	Crescent Dunes (Rev D)	Work Order:	INTE5628
Serial Number:	Board 701192	Date:	10/02/2015
Customer:	Intel Corporation	Temperature:	23.1°C
Attendees:	Mark Briggs	Relative Humidity:	42.2%
Customer Project:	None	Bar. Pressure:	1022.7 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	INTE5628-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #:	1	Line:	High Line	Add. Ext. Attenuation (dB):	0
π .		LIIIC.	i ingli Lilic	Add. Ext. Attendation (db).	0

COMMENTS

None

EUT OPERATING MODES

Continuous Tx BTLE, Low channel, 2402MHz

DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

Report No. INTE5628.1 11/43

RESULTS - Run #1

Peak Data - vs - Quasi Peak Limit

Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Fi (M
0.154	31.7	20.3	52.0	65.8	-13.8	0.154
0.202	25.5	20.1	45.6	63.5	-17.9	0.202
0.519	17.3	20.0	37.3	56.0	-18.7	0.519
0.180	25.2	20.1	45.3	64.5	-19.2	0.180
0.221	22.7	20.1	42.8	62.8	-20.0	0.221
0.243	20.9	20.1	41.0	62.0	-21.0	0.243
0.273	17.9	20.0	37.9	61.0	-23.1	0.273
4.067	12.4	20.4	32.8	56.0	-23.2	4.067
1.247	12.5	20.1	32.6	56.0	-23.4	1.247
2.273	12.3	20.3	32.6	56.0	-23.4	2.273
1.620	12.3	20.2	32.5	56.0	-23.5	1.620
3.567	12.1	20.3	32.4	56.0	-23.6	3.567
2.347	12.1	20.3	32.4	56.0	-23.6	2.347
2.180	12.1	20.2	32.3	56.0	-23.7	2.180
2.933	12.0	20.3	32.3	56.0	-23.7	2.933
3.112	11.9	20.3	32.2	56.0	-23.8	3.112
3.489	11.9	20.3	32.2	56.0	-23.8	3.489
2.769	11.8	20.3	32.1	56.0	-23.9	2.769
1.687	11.9	20.2	32.1	56.0	-23.9	1.687
3.019	11.7	20.3	32.0	56.0	-24.0	3.019
1.318	11.9	20.1	32.0	56.0	-24.0	1.318
4.619	11.5	20.4	31.9	56.0	-24.1	4.619
4.996	11.5	20.4	31.9	56.0	-24.1	4.996
3.661	11.5	20.3	31.8	56.0	-24.2	3.661
0.609	11.8	20.0	31.8	56.0	-24.2	0.609
1.896	11.6	20.2	31.8	56.0	-24.2	1.896

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.154	31.7	20.3	52.0	55.8	-3.8
0.202	25.5	20.1	45.6	53.5	-7.9
0.519	17.3	20.0	37.3	46.0	-8.7
0.180	25.2	20.1	45.3	54.5	-9.2
0.221	22.7	20.1	42.8	52.8	-10.0
0.243	20.9	20.1	41.0	52.0	-11.0
0.273	17.9	20.0	37.9	51.0	-13.1
4.067	12.4	20.4	32.8	46.0	-13.2
1.247	12.5	20.1	32.6	46.0	-13.4
2.273	12.3	20.3	32.6	46.0	-13.4
1.620	12.3	20.2	32.5	46.0	-13.5
3.567	12.1	20.3	32.4	46.0	-13.6
2.347	12.1	20.3	32.4	46.0	-13.6
2.180	12.1	20.2	32.3	46.0	-13.7
2.933	12.0	20.3	32.3	46.0	-13.7
3.112	11.9	20.3	32.2	46.0	-13.8
3.489	11.9	20.3	32.2	46.0	-13.8
2.769	11.8	20.3	32.1	46.0	-13.9
1.687	11.9	20.2	32.1	46.0	-13.9
3.019	11.7	20.3	32.0	46.0	-14.0
1.318	11.9	20.1	32.0	46.0	-14.0
4.619	11.5	20.4	31.9	46.0	-14.1
4.996	11.5	20.4	31.9	46.0	-14.1
3.661	11.5	20.3	31.8	46.0	-14.2
0.609	11.8	20.0	31.8	46.0	-14.2
1.896	11.6	20.2	31.8	46.0	-14.2

CONCLUSION

Pass

Tested By

Report No. INTE5628.1 12/43

EUT:	Crescent Dunes (Rev D)	Work Order:	INTE5628
Serial Number:	Board 701192	Date:	10/02/2015
Customer:	Intel Corporation	Temperature:	23.1°C
Attendees:	Mark Briggs	Relative Humidity:	42.2%
Customer Project:	None	Bar. Pressure:	1022.7 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	INTE5628-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #:	2	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None

EUT OPERATING MODES

Continuous Tx BTLE, Low channel, 2402MHz

DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

Report No. INTE5628.1 13/43

RESULTS - Run #2

Peak Data - vs - Quasi Peak Limit

	I Cak Da	ia - vs - G	tuasi i Cai		
Freq	Amp.	Factor	Adjusted	Spec. Limit	Margin
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)
0.157	31.0	20.3	51.3	65.6	-14.3
0.180	26.4	20.1	46.5	64.5	-18.0
0.199	25.4	20.1	45.5	63.7	-18.2
0.221	23.0	20.1	43.1	62.8	-19.7
0.542	15.3	20.0	35.3	56.0	-20.7
0.583	13.9	20.0	33.9	56.0	-22.1
2.750	13.6	20.3	33.9	56.0	-22.1
0.266	19.0	20.0	39.0	61.3	-22.2
0.243	19.3	20.1	39.4	62.0	-22.6
1.739	13.2	20.2	33.4	56.0	-22.6
0.501	13.3	20.0	33.3	56.0	-22.7
0.825	12.6	20.0	32.6	56.0	-23.4
0.628	12.6	20.0	32.6	56.0	-23.4
2.911	12.3	20.3	32.6	56.0	-23.4
3.590	12.3	20.3	32.6	56.0	-23.4
1.292	12.3	20.1	32.4	56.0	-23.6
1.780	12.2	20.2	32.4	56.0	-23.6
2.083	12.1	20.2	32.3	56.0	-23.7
3.414	11.8	20.3	32.1	56.0	-23.9
1.728	11.9	20.2	32.1	56.0	-23.9
4.981	11.6	20.4	32.0	56.0	-24.0
3.724	11.6	20.3	31.9	56.0	-24.1
4.384	11.5	20.4	31.9	56.0	-24.1
1.911	11.6	20.2	31.8	56.0	-24.2
0.851	11.7	20.0	31.7	56.0	-24.3
0.601	11.7	20.0	31.7	56.0	-24.3

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.157	31.0	20.3	51.3	55.6	-4.3
0.180	26.4	20.1	46.5	54.5	-8.0
0.199	25.4	20.1	45.5	53.7	-8.2
0.221	23.0	20.1	43.1	52.8	-9.7
0.542	15.3	20.0	35.3	46.0	-10.7
0.583	13.9	20.0	33.9	46.0	-12.1
2.750	13.6	20.3	33.9	46.0	-12.1
0.266	19.0	20.0	39.0	51.3	-12.2
0.243	19.3	20.1	39.4	52.0	-12.6
1.739	13.2	20.2	33.4	46.0	-12.6
0.501	13.3	20.0	33.3	46.0	-12.7
0.825	12.6	20.0	32.6	46.0	-13.4
0.628	12.6	20.0	32.6	46.0	-13.4
2.911	12.3	20.3	32.6	46.0	-13.4
3.590	12.3	20.3	32.6	46.0	-13.4
1.292	12.3	20.1	32.4	46.0	-13.6
1.780	12.2	20.2	32.4	46.0	-13.6
2.083	12.1	20.2	32.3	46.0	-13.7
3.414	11.8	20.3	32.1	46.0	-13.9
1.728	11.9	20.2	32.1	46.0	-13.9
4.981	11.6	20.4	32.0	46.0	-14.0
3.724	11.6	20.3	31.9	46.0	-14.1
4.384	11.5	20.4	31.9	46.0	-14.1
1.911	11.6	20.2	31.8	46.0	-14.2
0.851	11.7	20.0	31.7	46.0	-14.3
0.601	11.7	20.0	31.7	46.0	-14.3

CONCLUSION

Pass

Tested By

EUT:	Crescent Dunes (Rev D)	Work Order:	INTE5628
Serial Number:	Board 701192	Date:	10/02/2015
Customer:	Intel Corporation	Temperature:	23.1°C
Attendees:	Mark Briggs	Relative Humidity:	42.2%
Customer Project:	None	Bar. Pressure:	1022.7 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	INTE5628-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #:	3	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None

EUT OPERATING MODES

Continuous Tx BTLE, Mid channel, 2440MHz

DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

Report No. INTE5628.1 15/43

RESULTS - Run #3

Peak Data - vs - Quasi Peak Limit

	Реак Da	ta - vs - C	Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.157	31.2	20.3	51.5	65.6	-14.1				
0.180	26.9	20.1	47.0	64.5	-17.5				
0.202	25.3	20.1	45.4	63.5	-18.1				
0.493	16.3	20.0	36.3	56.1	-19.8				
0.512	15.6	20.0	35.6	56.0	-20.4				
0.221	21.6	20.1	41.7	62.8	-21.1				
0.542	14.4	20.0	34.4	56.0	-21.6				
0.243	20.1	20.1	40.2	62.0	-21.8				
0.471	13.8	20.0	33.8	56.5	-22.7				
1.545	12.8	20.2	33.0	56.0	-23.0				
2.310	12.6	20.3	32.9	56.0	-23.1				
1.232	12.6	20.1	32.7	56.0	-23.3				
3.746	12.3	20.3	32.6	56.0	-23.4				
2.851	12.3	20.3	32.6	56.0	-23.4				
2.519	12.2	20.3	32.5	56.0	-23.5				
2.262	12.2	20.3	32.5	56.0	-23.5				
1.676	12.1	20.2	32.3	56.0	-23.7				
3.661	11.9	20.3	32.2	56.0	-23.8				
1.351	12.1	20.1	32.2	56.0	-23.8				
0.568	12.1	20.0	32.1	56.0	-23.9				
2.941	11.5	20.3	31.8	56.0	-24.2				
1.090	11.7	20.1	31.8	56.0	-24.2				
0.885	11.7	20.1	31.8	56.0	-24.2				
1.709	11.5	20.2	31.7	56.0	-24.3				
1.922	11.5	20.2	31.7	56.0	-24.3				
3.452	11.4	20.3	31.7	56.0	-24.3				

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.157	31.2	20.3	51.5	55.6	-4.1
0.180	26.9	20.1	47.0	54.5	-7.5
0.202	25.3	20.1	45.4	53.5	-8.1
0.493	16.3	20.0	36.3	46.1	-9.8
0.512	15.6	20.0	35.6	46.0	-10.4
0.221	21.6	20.1	41.7	52.8	-11.1
0.542	14.4	20.0	34.4	46.0	-11.6
0.243	20.1	20.1	40.2	52.0	-11.8
0.471	13.8	20.0	33.8	46.5	-12.7
1.545	12.8	20.2	33.0	46.0	-13.0
2.310	12.6	20.3	32.9	46.0	-13.1
1.232	12.6	20.1	32.7	46.0	-13.3
3.746	12.3	20.3	32.6	46.0	-13.4
2.851	12.3	20.3	32.6	46.0	-13.4
2.519	12.2	20.3	32.5	46.0	-13.5
2.262	12.2	20.3	32.5	46.0	-13.5
1.676	12.1	20.2	32.3	46.0	-13.7
3.661	11.9	20.3	32.2	46.0	-13.8
1.351	12.1	20.1	32.2	46.0	-13.8
0.568	12.1	20.0	32.1	46.0	-13.9
2.941	11.5	20.3	31.8	46.0	-14.2
1.090	11.7	20.1	31.8	46.0	-14.2
0.885	11.7	20.1	31.8	46.0	-14.2
1.709	11.5	20.2	31.7	46.0	-14.3
1.922	11.5	20.2	31.7	46.0	-14.3
3.452	11.4	20.3	31.7	46.0	-14.3

CONCLUSION

Pass

Tested By

Report No. INTE5628.1

EUT:	Crescent Dunes (Rev D)	Work Order:	INTE5628
Serial Number:	Board 701192	Date:	10/02/2015
Customer:	Intel Corporation	Temperature:	23.1°C
Attendees:	Mark Briggs	Relative Humidity:	42.2%
Customer Project:	None	Bar. Pressure:	1022.7 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	INTE5628-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #:	4	Line:	High Line	Add. Ext. Attenuation (dB):	n
i taii // .		LII 10.	I light Enio	riad. Ext. ritteriadion (db).	•

COMMENTS

None

EUT OPERATING MODES

Continuous Tx BTLE, Mid channel, 2440MHz

DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

Report No. INTE5628.1 17/43

RESULTS - Run #4

Peak Data - vs - Quasi Peak Limit

	Реак ра	ta - vs - G	luasi Peai	K LIMIT	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.154	31.6	20.3	51.9	65.8	-13.9
0.176	28.2	20.1	48.3	64.7	-16.3
0.202	25.9	20.1	46.0	63.5	-17.5
0.527	17.0	20.0	37.0	56.0	-19.0
0.534	16.3	20.0	36.3	56.0	-19.7
0.221	22.2	20.1	42.3	62.8	-20.5
0.243	21.3	20.1	41.4	62.0	-20.6
0.557	13.0	20.0	33.0	56.0	-23.0
0.754	13.0	20.0	33.0	56.0	-23.0
1.762	12.5	20.2	32.7	56.0	-23.3
2.948	12.3	20.3	32.6	56.0	-23.4
0.922	12.4	20.1	32.5	56.0	-23.5
1.862	12.3	20.2	32.5	56.0	-23.5
4.728	12.1	20.4	32.5	56.0	-23.5
0.269	17.4	20.0	37.4	61.1	-23.7
2.646	11.9	20.3	32.2	56.0	-23.8
2.754	11.9	20.3	32.2	56.0	-23.8
4.157	11.7	20.4	32.1	56.0	-23.9
4.899	11.7	20.4	32.1	56.0	-23.9
3.511	11.7	20.3	32.0	56.0	-24.0
2.217	11.7	20.2	31.9	56.0	-24.1
3.724	11.6	20.3	31.9	56.0	-24.1
3.959	11.5	20.4	31.9	56.0	-24.1
1.564	11.6	20.2	31.8	56.0	-24.2
4.679	11.4	20.4	31.8	56.0	-24.2
2.273	11.5	20.3	31.8	56.0	-24.2

	Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.154	31.6	20.3	51.9	55.8	-3.9	
0.176	28.2	20.1	48.3	54.7	-6.3	
0.202	25.9	20.1	46.0	53.5	-7.5	
0.527	17.0	20.0	37.0	46.0	-9.0	
0.534	16.3	20.0	36.3	46.0	-9.7	
0.221	22.2	20.1	42.3	52.8	-10.5	
0.243	21.3	20.1	41.4	52.0	-10.6	
0.557	13.0	20.0	33.0	46.0	-13.0	
0.754	13.0	20.0	33.0	46.0	-13.0	
1.762	12.5	20.2	32.7	46.0	-13.3	
2.948	12.3	20.3	32.6	46.0	-13.4	
0.922	12.4	20.1	32.5	46.0	-13.5	
1.862	12.3	20.2	32.5	46.0	-13.5	
4.728	12.1	20.4	32.5	46.0	-13.5	
0.269	17.4	20.0	37.4	51.1	-13.7	
2.646	11.9	20.3	32.2	46.0	-13.8	
2.754	11.9	20.3	32.2	46.0	-13.8	
4.157	11.7	20.4	32.1	46.0	-13.9	
4.899	11.7	20.4	32.1	46.0	-13.9	
3.511	11.7	20.3	32.0	46.0	-14.0	
2.217	11.7	20.2	31.9	46.0	-14.1	
3.724	11.6	20.3	31.9	46.0	-14.1	
3.959	11.5	20.4	31.9	46.0	-14.1	
1.564	11.6	20.2	31.8	46.0	-14.2	
4.679	11.4	20.4	31.8	46.0	-14.2	
2.273	11.5	20.3	31.8	46.0	-14.2	

CONCLUSION

Pass

Tested By

Report No. INTE5628.1

EUT:	Crescent Dunes (Rev D)	Work Order:	INTE5628
Serial Number:	Board 701192	Date:	10/02/2015
Customer:	Intel Corporation	Temperature:	23.1°C
Attendees:	Mark Briggs	Relative Humidity:	42.2%
Customer Project:	None	Bar. Pressure:	1022.7 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	INTE5628-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #:	6	Line:	High Line	Add. Ext. Attenuation (dB):	n
π .	U	LIIIC.	I High Eine	riad. Ext. ritteridation (db).	

COMMENTS

None

EUT OPERATING MODES

Continuous Tx BTLE, High channel, 2480MHz

DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

Report No. INTE5628.1 19/43

RESULTS - Run #6

Peak Data - vs - Quasi Peak Limit

Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
31.1	20.3	51.4	65.6	-14.2
28.3	20.1	48.4	64.7	-16.2
24.4	20.1	44.5	63.5	-19.0
23.0	20.1	43.1	62.8	-19.7
15.9	20.0	35.9	56.0	-20.1
14.9	20.0	34.9	56.0	-21.1
18.8	20.0	38.8	61.1	-22.3
13.2	20.3	33.5	56.0	-22.5
13.9	20.0	33.9	56.8	-22.9
12.4	20.3	32.7	56.0	-23.3
12.6	20.1	32.7	56.0	-23.3
12.4	20.3	32.7	56.0	-23.3
12.6	20.0	32.6	56.0	-23.4
12.3	20.3	32.6	56.0	-23.4
12.3	20.2	32.5	56.0	-23.5
18.3	20.1	38.4	62.0	-23.6
11.9	20.4	32.3	56.0	-23.7
11.9	20.3	32.2	56.0	-23.8
12.0	20.0	32.0	56.0	-24.0
11.8	20.1	31.9	56.0	-24.1
11.5	20.4	31.9	56.0	-24.1
11.8	20.1	31.9	56.0	-24.1
11.5	20.3	31.8	56.0	-24.2
11.5	20.3	31.8	56.0	-24.2
11.4	20.4	31.8	56.0	-24.2
11.4	20.4	31.8	56.0	-24.2
	(dBuV) 31.1 28.3 24.4 23.0 15.9 14.9 18.8 13.2 13.9 12.4 12.6 12.3 12.3 11.9 11.9 11.0 11.8 11.5 11.5 11.4	(dBuV) (dB) 31.1 20.3 28.3 20.1 24.4 20.1 23.0 20.1 15.9 20.0 14.9 20.0 18.8 20.0 13.2 20.3 13.9 20.0 12.4 20.3 12.6 20.1 12.4 20.3 12.6 20.0 12.3 20.3 12.3 20.2 18.3 20.1 11.9 20.4 11.9 20.3 12.0 20.0 11.8 20.1 11.5 20.3 11.5 20.3 11.4 20.4	(dBuV) (dB) (dBuV) 31.1 20.3 51.4 28.3 20.1 48.4 24.4 20.1 44.5 23.0 20.1 43.1 15.9 20.0 35.9 14.9 20.0 34.9 18.8 20.0 38.8 13.2 20.3 33.5 13.9 20.0 33.9 12.4 20.3 32.7 12.6 20.1 32.7 12.6 20.0 32.6 12.3 20.3 32.6 12.3 20.3 32.5 18.3 20.1 38.4 11.9 20.4 32.3 11.9 20.3 32.2 12.0 20.0 32.0 11.8 20.1 31.9 11.5 20.4 31.9 11.5 20.3 31.8 11.4 20.4 31.8	Amp. (dBuV) Factor (dB) Adjusted (dBuV) Limit (dBuV) 31.1 20.3 51.4 65.6 28.3 20.1 48.4 64.7 24.4 20.1 44.5 63.5 23.0 20.1 43.1 62.8 15.9 20.0 35.9 56.0 14.9 20.0 34.9 56.0 18.8 20.0 38.8 61.1 13.2 20.3 33.5 56.0 13.9 20.0 33.9 56.8 12.4 20.3 32.7 56.0 12.6 20.1 32.7 56.0 12.4 20.3 32.7 56.0 12.4 20.3 32.7 56.0 12.3 20.2 32.6 56.0 12.3 20.2 32.5 56.0 12.3 20.2 32.5 56.0 11.9 20.4 32.3 56.0 11.9 20.3 32.2 <t< td=""></t<>

Peak Data - vs - Average Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
0.157	31.1	20.3	51.4	55.6	-4.2					
0.176	28.3	20.1	48.4	54.7	-6.2					
0.202	24.4	20.1	44.5	53.5	-9.0					
0.221	23.0	20.1	43.1	52.8	-9.7					
0.523	15.9	20.0	35.9	46.0	-10.1					
0.542	14.9	20.0	34.9	46.0	-11.1					
0.269	18.8	20.0	38.8	51.1	-12.3					
2.273	13.2	20.3	33.5	46.0	-12.5					
0.452	13.9	20.0	33.9	46.8	-12.9					
3.661	12.4	20.3	32.7	46.0	-13.3					
1.247	12.6	20.1	32.7	46.0	-13.3					
3.590	12.4	20.3	32.7	46.0	-13.3					
0.657	12.6	20.0	32.6	46.0	-13.4					
2.612	12.3	20.3	32.6	46.0	-13.4					
1.512	12.3	20.2	32.5	46.0	-13.5					
0.243	18.3	20.1	38.4	52.0	-13.6					
3.963	11.9	20.4	32.3	46.0	-13.7					
2.467	11.9	20.3	32.2	46.0	-13.8					
0.628	12.0	20.0	32.0	46.0	-14.0					
1.467	11.8	20.1	31.9	46.0	-14.1					
4.030	11.5	20.4	31.9	46.0	-14.1					
0.863	11.8	20.1	31.9	46.0	-14.1					
2.747	11.5	20.3	31.8	46.0	-14.2					
3.034	11.5	20.3	31.8	46.0	-14.2					
4.108	11.4	20.4	31.8	46.0	-14.2					
4.564	11.4	20.4	31.8	46.0	-14.2					

CONCLUSION

Pass

Tested By

Report No. INTE5628.1 20/43

EUT:	Crescent Dunes (Rev D)	Work Order:	INTE5628
Serial Number:	Board 701192	Date:	10/02/2015
Customer:	Intel Corporation	Temperature:	23.1°C
Attendees:	Mark Briggs	Relative Humidity:	42.2%
Customer Project:	None	Bar. Pressure:	1022.7 mb
Tested By:	Brandon Hobbs	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	INTE5628-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #:	7	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None

EUT OPERATING MODES

Continuous Tx BTLE, High channel, 2480MHz

DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

Report No. INTE5628.1 21/43

RESULTS - Run #7

Peak Data - vs - Quasi Peak Limit

	reak Da	ia - vs - C	luasi F Car		
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.157	29.4	20.3	49.7	65.6	-15.9
0.176	28.5	20.1	48.6	64.7	-16.0
0.199	25.5	20.1	45.6	63.7	-18.1
0.221	22.8	20.1	42.9	62.8	-19.9
0.512	15.8	20.0	35.8	56.0	-20.2
1.769	13.6	20.2	33.8	56.0	-22.2
1.721	13.3	20.2	33.5	56.0	-22.5
0.243	19.2	20.1	39.3	62.0	-22.7
2.974	12.9	20.3	33.2	56.0	-22.8
0.568	13.0	20.0	33.0	56.0	-23.0
3.582	12.6	20.3	32.9	56.0	-23.1
3.896	12.3	20.4	32.7	56.0	-23.3
2.176	12.4	20.2	32.6	56.0	-23.4
0.792	12.6	20.0	32.6	56.0	-23.4
0.840	12.3	20.0	32.3	56.0	-23.7
3.698	11.9	20.3	32.2	56.0	-23.8
1.191	12.1	20.1	32.2	56.0	-23.8
3.396	11.9	20.3	32.2	56.0	-23.8
0.728	12.1	20.0	32.1	56.0	-23.9
3.213	11.5	20.3	31.8	56.0	-24.2
4.459	11.4	20.4	31.8	56.0	-24.2
0.743	11.7	20.0	31.7	56.0	-24.3
1.321	11.6	20.1	31.7	56.0	-24.3
1.568	11.5	20.2	31.7	56.0	-24.3
3.157	11.4	20.3	31.7	56.0	-24.3
4.351	11.3	20.4	31.7	56.0	-24.3

	Peak Data - vs - Average Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)						
0.157	29.4	20.3	49.7	55.6	-5.9						
0.176	28.5	20.1	48.6	54.7	-6.0						
0.199	25.5	20.1	45.6	53.7	-8.1						
0.221	22.8	20.1	42.9	52.8	-9.9						
0.512	15.8	20.0	35.8	46.0	-10.2						
1.769	13.6	20.2	33.8	46.0	-12.2						
1.721	13.3	20.2	33.5	46.0	-12.5						
0.243	19.2	20.1	39.3	52.0	-12.7						
2.974	12.9	20.3	33.2	46.0	-12.8						
0.568	13.0	20.0	33.0	46.0	-13.0						
3.582	12.6	20.3	32.9	46.0	-13.1						
3.896	12.3	20.4	32.7	46.0	-13.3						
2.176	12.4	20.2	32.6	46.0	-13.4						
0.792	12.6	20.0	32.6	46.0	-13.4						
0.840	12.3	20.0	32.3	46.0	-13.7						
3.698	11.9	20.3	32.2	46.0	-13.8						
1.191	12.1	20.1	32.2	46.0	-13.8						
3.396	11.9	20.3	32.2	46.0	-13.8						
0.728	12.1	20.0	32.1	46.0	-13.9						
3.213	11.5	20.3	31.8	46.0	-14.2						
4.459	11.4	20.4	31.8	46.0	-14.2						
0.743	11.7	20.0	31.7	46.0	-14.3						
1.321	11.6	20.1	31.7	46.0	-14.3						
1.568	11.5	20.2	31.7	46.0	-14.3						
3.157	11.4	20.3	31.7	46.0	-14.3						
4.351	11.3	20.4	31.7	46.0	-14.3						

CONCLUSION

Pass

Tested By

Report No. INTE5628.1 22/43

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 91% duty cycle, BTLE

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

INTE5628 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 26500 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

I EST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - High Pass	Micro-Tronics	HPM50111	HFO	3/31/2015	12 mo
Attenuator	Coaxicom	3910-20	AXZ	5/24/2015	12 mo
Cable	ESM Cable Corp.	KMKM-72	EVY	11/9/2014	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	11/9/2014	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	4/16/2015	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AHV	NCR	0 mo
Cable	None	Standard Gain Horns Cable	EVF	4/20/2015	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	4/20/2015	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	0 mo
Cable	N/A	Double Ridge Horn Cables	EVB	4/16/2015	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	4/16/2015	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	1/27/2014	24 mo
Cable	N/A	Bilog Cables	EVA	2/10/2015	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	2/10/2015	12 mo
Antenna - Biconilog	EMCO	3141	AXE	8/29/2014	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2/10/2015	12 mo

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. Emissions falling within the restricted bands were compared to FCC 15.209 limits. Emissions outside of the restricted bands were compared to the out of band limit of FCC 15.247(d). Emissions from the EUT were maximized by rotating the EUT on a turntable and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

The measurement analzyer was configured for a 1 MHz resolution bandwidth and a 3 MHz video bandwidth. A peak detector was used to compare the measurements to the peak emissions limit. An RMS detector was used to compare the measurements to the average emissions limit. The EUT was operating with a 91% duty cycle. The RMS data was corrected with a duty cycle correction factor (DCCF) of 0.4 dB: DCCF (dB) = 10*log(duty cycle).

SPURIOUS RADIATED EMISSIONS

Work Order:	INTE5628	Date:	09/29/15								
Project:	None	Temperature:	21 °C	Just a							
Job Site:	EV01	Humidity:	37% RH								
Serial Number:	Board 701192	Barometric Pres.:	1012.7 mbar	Tested by: Cole Ghizzone, Brandon Hobbs							
EUT:	Crescent Dunes (Rev	D)									
Configuration:	1										
Customer:	Intel Corporation										
Attendees:	Mark Briggs										
EUT Power:	110VAC/60Hz	0VAC/60Hz									
Operating Mode:	Transmitting at 91% d	uty cycle BTLE, see data	comments for chan	nel and frequency							
Deviations:	None										
Comments:	EUT horizontal	·									
Test Specifications			Test Metho	od D							
FCC 15.247:2015	•		ANSI C63.	10:2013							

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Duty Cycle Correction Factor (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7440.470	29.8	15.4	1.2	276.0	3.0	0.0	Vert	AV	0.4	45.6	54.0	-8.4	High channel 2480MHz
7440.300	28.3	15.4	4.0	287.0	3.0	0.0	Horz	AV	0.4	44.1	54.0	-9.9	High channel 2480MHz
7326.525	27.6	15.2	1.0	52.0	3.0	0.0	Vert	AV	0.4	43.2	54.0	-10.8	Mid channel, 2440MHz
7324.710	27.6	15.2	1.0	288.0	3.0	0.0	Horz	AV	0.4	43.2	54.0	-10.8	Mid channel, 2440MHz
4803.892	34.0	7.4	1.0	22.0	3.0	0.0	Horz	AV	0.4	41.8	54.0	-12.2	Low channel, 2402MHz
4803.958	32.7	7.4	1.1	354.0	3.0	0.0	Vert	AV	0.4	40.5	54.0	-13.5	Low channel, 2402MHz
4959.875	31.2	7.5	1.0	91.0	3.0	0.0	Vert	AV	0.4	39.1	54.0	-14.9	High channel 2480MHz
4960.080	31.1	7.5	1.0	338.0	3.0	0.0	Horz	AV	0.4	39.0	54.0	-15.0	High channel 2480MHz
4879.860	30.6	7.4	1.1	352.0	3.0	0.0	Vert	AV	0.4	38.4	54.0	-15.6	Mid channel, 2440MHz
4880.050	29.9	7.4	1.0	82.0	3.0	0.0	Horz	AV	0.4	37.7	54.0	-16.3	Mid channel, 2440MHz
12400.040	28.5	8.8	1.0	144.0	3.0	0.0	Horz	AV	0.4	37.7	54.0	-16.3	High channel 2480MHz
12400.360	28.4	8.8	1.0	139.0	3.0	0.0	Vert	AV	0.4	37.6	54.0	-16.4	High channel 2480MHz
7439.315	40.4	15.4	1.2	276.0	3.0	0.0	Vert	PK	0.0	55.8	74.0	-18.2	High channel 2480MHz
7439.360	39.5	15.4	4.0	287.0	3.0	0.0	Horz	PK	0.0	54.9	74.0	-19.1	High channel 2480MHz
7325.550	39.4	15.2	1.0	52.0	3.0	0.0	Vert	PK	0.0	54.6	74.0	-19.4	Mid channel, 2440MHz
7324.895	39.0	15.2	1.0	288.0	3.0	0.0	Horz	PK	0.0	54.2	74.0	-19.8	Mid channel, 2440MHz
19216.200	34.4	-0.6	1.6	292.0	3.0	0.0	Vert	AV	0.4	34.2	54.0	-19.8	Low channel, 2402MHz
19214.710	34.3	-0.6	1.6	75.0	3.0	0.0	Horz	AV	0.4	34.1	54.0	-19.9	Low channel, 2402MHz
4803.450	44.1	7.4	1.0	22.0	3.0	0.0	Horz	PK	0.0	51.5	74.0	-22.5	Low channel, 2402MHz
4803.767	43.0	7.4	1.1	354.0	3.0	0.0	Vert	PK	0.0	50.4	74.0	-23.6	Low channel, 2402MHz
4959.775	42.3	7.5	1.0	338.0	3.0	0.0	Horz	PK	0.0	49.8	74.0	-24.2	High channel 2480MHz
4960.295	42.2	7.5	1.0	91.0	3.0	0.0	Vert	PK	0.0	49.7	74.0	-24.3	High channel 2480MHz
12199.950	28.3	1.1	1.0	199.0	3.0	0.0	Horz	AV	0.4	29.8	54.0	-24.2	Mid channel, 2440MHz
12200.110	28.2	1.1	1.0	271.0	3.0	0.0	Vert	AV	0.4	29.7	54.0	-24.3	Mid channel, 2440MHz
12009.220	29.1	0.1	1.0	256.0	3.0	0.0	Horz	AV	0.4	29.6	54.0	-24.4	Low channel, 2402MHz
12008.790	29.1	0.1	1.0	39.0	3.0	0.0	Vert	AV	0.4	29.6	54.0	-24.4	Low channel, 2402MHz
12400.730	40.3	8.8	1.0	144.0	3.0	0.0	Horz	PK	0.0	49.1	74.0	-24.9	High channel 2480MHz
4879.910	41.6	7.4	1.1	352.0	3.0	0.0	Vert	PK	0.0	49.0	74.0	-25.0	Mid channel, 2440MHz
4879.465	41.6	7.4	1.0	82.0	3.0	0.0	Horz	PK	0.0	49.0	74.0	-25.0	Mid channel, 2440MHz
12400.680	39.9	8.8	1.0	139.0	3.0	0.0	Vert	PK	0.0	48.7	74.0	-25.3	High channel 2480MHz
19215.100	46.3	-0.6	1.6	292.0	3.0	0.0	Vert	PK	0.0	45.7	74.0	-28.3	Low channel, 2402MHz
19216.010	45.6	-0.6	1.6	75.0	3.0	0.0	Horz	PK	0.0	45.0	74.0	-29.0	Low channel, 2402MHz
12199.520	39.8	1.1	1.0	271.0	3.0	0.0	Vert	PK	0.0	40.9	74.0	-33.1	Mid channel, 2440MHz
12009.250	40.8	0.1	1.0	39.0	3.0	0.0	Vert	PK	0.0	40.9	74.0	-33.1	Low channel, 2402MHz
12201.450	39.5	1.1	1.0	199.0	3.0	0.0	Horz	PK	0.0	40.6	74.0	-33.4	Mid channel, 2440MHz
12010.640	40.4	0.1	1.0	256.0	3.0	0.0	Horz	PK	0.0	40.5	74.0	-33.5	Low channel, 2402MHz

SPURIOUS RADIATED EMISSIONS

Work Order:	INTE5628	Date:	09/29/15	3 (1)							
Project:	None	Temperature:	21 °C	In the							
Job Site:	EV01	Humidity:	37% RH	, , , , ,							
Serial Number:	Board 701192	Barometric Pres.:	1012.7 mbar	Tested by: Cole Ghizzone, Brandon Hobbs							
EUT:	Crescent Dunes (Rev	D)									
Configuration:	1										
Customer:	Intel Corporation										
Attendees:	Mark Briggs	ark Briggs									
EUT Power:	110VAC/60Hz										
Operating Mode:	Transmitting at 91% d	uty cycle BTLE, see da	ta comments for chan	nel and frequency							
Deviations:	None										
Comments:	EUT horizontal										

Test Specifications FCC 15.247:2015

Test Method ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Duty Cycle Correction Factor (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2484.122	31.3	-3.0	1.0	18.0	3.0	20.0	Horz	AV	0.4	48.7	54.0	-5.3	High channel 2480MHz
2484.200	31.0	-3.0	1.0	336.0	3.0	20.0	Vert	AV	0.4	48.4	54.0	-5.6	High channel 2480MHz
2389.513	31.1	-3.3	1.0	23.0	3.0	20.0	Horz	AV	0.4	48.2	54.0	-5.8	Low channel, 2402MHz
2389.377	31.0	-3.3	2.4	333.0	3.0	20.0	Vert	AV	0.4	48.1	54.0	-5.9	Low channel, 2402MHz
2484.048	44.2	-3.0	1.0	18.0	3.0	20.0	Horz	PK	0.0	61.2	74.0	-12.8	High channel 2480MHz
2484.600	42.7	-3.0	1.0	336.0	3.0	20.0	Vert	PK	0.0	59.7	74.0	-14.3	High channel 2480MHz
2389.808	42.4	-3.3	1.0	23.0	3.0	20.0	Horz	PK	0.0	59.1	74.0	-14.9	Low channel, 2402MHz
2389.525	42.3	-3.3	2.4	333.0	3.0	20.0	Vert	PK	0.0	59.0	74.0	-15.0	Low channel, 2402MHz

Report No. INTE5628.1 25/43

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mos)
Cable	N/A	Double Ridge Horn Cables	EVB	4/16/2015	12
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	1/27/2014	24
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2/10/2015	12

TEST DESCRIPTION

The spurious RF emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The measurement was made in a radiated configuration in a semi-anechoic chamber with the fundamental of the carrier full maximized for its highest radiated power. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

Report No. INTE5628.1

BAND EDGE COMPLIANCE

	Crescent Dunes (Rev D)				Work Order:	INTE5628				
Serial Number:	Board 701192				Date:	10/02/15				
Customer:	Intel Corporation				Temperature:	22.7°C				
Attendees:	Mark Briggs				Humidity:	42%				
Project:	None				Barometric Pres.:	1024.5				
Tested by:	Brandon Hobbs		Power:	110VAC/60Hz	Job Site:	EV01				
TEST SPECIFICAT	IONS	NS Test Method								
FCC 15.247:2015										
COMMENTS										
The EUT is in the v	The EUT is in the worst case orientation while using the worst case antenna polarity. This was used to determine the highest output level. The reference level offest was used to normalize against the radiated									
		associated antenna and cable factors								
DEVIATIONS FROM	I TEST STANDARD									
None										
				1						
Configuration #	1		1	1						
		Signature	6)						
					Value	Limit				
					(dBc)	≤ (dBc)	Result			
BTLE										
	Low Channel, 2402 MHz				-24.87	-20	Pass			
	High Channel, 2480 MHz				-29.87	-20	Pass			

Report No. INTE5628.1 27/43

BAND EDGE COMPLIANCE

BTLE, High Channel, 2480 MHz								
					Value	Limit		
					(dBc)	≤ (dBc)	Result	
					-29.87	-20	Pass	

Report No. INTE5628.1 28/43

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mos)
Cable	N/A	Double Ridge Horn Cables	EVB	4/16/2015	12
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	1/27/2014	24
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2/10/2015	12

TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. The duty cycle was measured radiated in the RF chamber.

The test software provided for operation in a fixed, single channel mode allows the EUT to operate continuously at the values shown in the data.

Report No. INTE5628.1

	: Crescent Dunes (Rev D)					Work Order:				
Serial Number	: Board 701192						10/02/15			
Customer	: Intel Corporation					Temperature:	22.7°C			
Attendees	: Mark Briggs					Humidity:	42%			
Project	: None				E	Barometric Pres.:	1024.5			
Tested by	: Brandon Hobbs		Power: 110VAC/60Hz		Job Site: EV01					
TEST SPECIFICAT	TIONS		Test Method							
FCC 15.247:2015										
COMMENTS										
The FIIT is in the	he EUT is in the worst case orientation while using the worst case antenna polarity. This was used to determine the highest output level. The reference level offest was used to normalize against the radiated									
the EUT is in the worst case unientation within busing the worst case antenna poranty. This was used to determine the highest output level. The reference level offest was used to normalize against the radiated bower measurements by accounting for the associated antenna and cable factors.										
power measureme	ents by accounting for the	associated antenna and cable facto	rs.							
DEVIATIONS FRO	M TEST STANDARD									
	M TEST STANDARD									
DEVIATIONS FRO	M TEST STANDARD	_		_						
None	M TEST STANDARD		2=11	_						
	M TEST STANDARD	0	J. J.A	-						
None	M TEST STANDARD	Signature	J. J.		Number	Makes	Limit			
None	M TEST STANDARD	Signature	J. J. A.	Ported	Number of	Value	Limit	D		
None Configuration #	M TEST STANDARD	Signature	Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results		
None	1	Signature				(%)	(%)			
None Configuration #	1 Low Channel, 2402 MHz	Signature	911.775 us	1 ms		91.2	(%) N/A	N/A		
None Configuration #	1 Low Channel, 2402 MHz Low Channel, 2402 MHz	Signature	911.775 us N/A	1 ms N/A		91.2 N/A	(%) N/A N/A	N/A N/A		
None Configuration #	1 Low Channel, 2402 MHz	Signature	911.775 us	1 ms		91.2	(%) N/A	N/A		
None Configuration #	Low Channel, 2402 MHz Low Channel, 2402 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz	Signature	911.775 us N/A 904.643 us N/A	1 ms N/A		91.2 N/A	(%) N/A N/A	N/A N/A		
None Configuration #	Low Channel, 2402 MHz Low Channel, 2402 MHz Mid Channel, 2440 MHz	Signature	911.775 us N/A 904.643 us	1 ms N/A 998.043 us		91.2 N/A 90.6	(%) N/A N/A N/A	N/A N/A N/A		
None Configuration #	Low Channel, 2402 MHz Low Channel, 2402 MHz Mid Channel, 2440 MHz Mid Channel, 2440 MHz	Signature	911.775 us N/A 904.643 us N/A	1 ms N/A 998.043 us N/A		91.2 N/A 90.6 N/A	(%) N/A N/A N/A N/A	N/A N/A N/A N/A		

Report No. INTE5628.1 30/43

	BTLE, Low Channel, 2402 MHz						
N			Number of	Value	Limit		
_		Pulse Width	Period	Pulses	(%)	(%)	Results
,		N/A	N/A	5	N/A	N/A	N/A

Report No. INTE5628.1 31/43

BTLE, Mid Channel, 2440 MHz							
		Number of	Value	Limit			
Pulse Width	Period	Pulses	(%)	(%)	Results		
904.643 us	998.043 us	1	90.6	N/A	N/A		

	BTLE, Mid Channel, 2440 MHz						
N			Number of	Value	Limit		
		Pulse Width	Period	Pulses	(%)	(%)	Results
,		N/A	N/A	6	N/A	N/A	N/A

Report No. INTE5628.1 32/43

BTLE, High Channel, 2480 MHz						
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	6	N/A	N/A	N/A

Report No. INTE5628.1 33/43

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

	Description	Manufacturer	Model	ID	Last Cal.	Interval (mos)
_	Antenna - Double Ridge	ETS Lindgren	3115	AIZ	1/27/2014	24
	Cable	N/A	Double Ridge Horn Cables	EVB	4/16/2015	12
	Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2/10/2015	12

TEST DESCRIPTION

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth.

The EUT was set to low, medium and high transmit frequencies. The measurement was made in a radiated configuration in a semi-anechoic chamber with the fundamental of the carrier full maximized for its highest radiated power. The EUT was transmitting at the data rate(s) listed in the datasheet.

Report No. INTE5628.1

EUT:	Crescent Dunes (Rev D)				Work Order:	INTE5628	
Serial Number:	Board 701192				Date:	10/02/15	
Customer:	Intel Corporation				Temperature:	22.7°C	
Attendees:	Mark Briggs				Humidity:	42%	
Project:	None				Barometric Pres.:	1024.5	
	Brandon Hobbs		Power:	110VAC/60Hz	Job Site:	EV01	
TEST SPECIFICATI	IONS			Test Method			
FCC 15.247:2015				ANSI C63.10:2013			
COMMENTS							
The EUT is in the w	vorst case orientation whi	le using the worst case antenna polar	ity. This was used	to determine the highest output level.	The reference level offest was used	to normalize again	st the radiated
power measureme	nts by accounting for the	associated antenna and cable factors					
DEVIATIONS FROM	II TEST STANDARD						
None							
Configuration #	1	Signature	Jan y	Jal			
						Limit	
					Value	(≥)	Result
BTLE							
	Low Channel, 2402 MHz				677.665 kHz	500 kHz	Pass
	Mid Channel, 2440 MHz				677.018 kHz	500 kHz	Pass
	High Channel, 2480 MHz				710.088 kHz	500 kHz	Pass

Report No. INTE5628.1 35/43

Report No. INTE5628.1 36/43

Report No. INTE5628.1 37/43

RADIATED OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuous Tx BTLE

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

INTE5628 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency | 2390 MHz | Stop Frequency | 2490 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Generator - Signal	Keysight	N5182B	TFX	4/16/2015	36 mo
Meter - Power	Gigatronics	8651A	SPM	5/25/2015	12 mo
Power Sensor	Gigatronics	80701A	SPL	5/25/2015	12 mo
Attenuator	S.M. Electronics	SA18N-06/SM4032	REE	10/20/2014	12 mo
Antenna - Double Ridge	EMCO	3115	AHC	6/13/2014	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2/10/2015	12 mo
Cable	N/A	Double Ridge Horn Cables	EVB	4/16/2015	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	1/27/2014	24 mo

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium and high transmit frequencies. A field strength measurement was made of the fundamental with the carrier fully maximized for its highest radiated power. The final data was converted from field strength to a radiated power value using equation 5 found in ANSI C63.10:2013

Report No. INTE5628.1

OUTPUT POWER

Work Order:	INTE5628	Date:	10/02/15								
Project:	None	Temperature:	21.9 °C	1111							
Job Site:	EV01	Humidity:	42% RH								
Serial Number:	Board 701192	Barometric Pres.:	1023 mbar	Tested by: Brandon Hobbs							
EUT:	Crescent Dunes (Rev	D)									
Configuration:											
Customer:	Intel Corporation	Corporation									
Attendees:	Mark Briggs	rk Briggs									
EUT Power:	110VAC/60Hz	10VAC/60Hz									
Operating Mode:	Continuous Tx BTLE	Continuous Tx BTLE									
Deviations:	None										
Comments:	Please Reference the data comments for EUT orientation, channel and frequency										

Test Method

Test Specifications
FCC 15.247:2015 ANSI C63.10:2013

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	EIRP Spec. Limit (dBm)	Antenna Gain (dBi)	Conducted Output Power (dBm)	Conducted Spec. Limit (dBm)	Comments
2402.120	1.8	203.0	Horz	PK	6.36E-04	-2.0	36.0	2.0	-4.0	30.0	Low CH. 2402 MHz, EUT On Side
2479.780	1.0	225.0	Horz	PK	5.84E-04	-2.3	36.0	2.0	-4.3	30.0	High CH. 2480 MHz, EUT On Side
2440.195	1.5	210.0	Horz	PK	5.62E-04	-2.5	36.0	2.0	-4.5	30.0	Mid CH. 2440 MHz, EUT On Side
2402.195	1.0	274.0	Horz	PK	5.29E-04	-2.8	36.0	2.0	-4.8	30.0	Low CH. 2402 MHz, EUT Horizontal
2402.250	1.0	195.0	Vert	PK	3.12E-04	-5.1	36.0	2.0	-7.1	30.0	Low CH. 2402 MHz, EUT Vertical
2401.765	1.0	94.0	Vert	PK	3.04E-04	-5.2	36.0	2.0	-7.2	30.0	Low CH. 2402 MHz, EUT On Side
2402.125	1.0	155.0	Horz	PK	1.60E-04	-8.0	36.0	2.0	-10.0	30.0	Low CH. 2402 MHz, EUT Vertical
2401.720	1.0	327.0	Vert	PK	1.13E-04	-9.5	36.0	2.0	-11.5	30.0	Low CH. 2402 MHz, EUT Horizontal

Report No. INTE5628.1 39/43

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2/10/2015	12
Cable	N/A	Double Ridge Horn Cables	EVB	4/16/2015	12
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	1/27/2014	24

TEST DESCRIPTION

The maximum power spectral density measurements were measured with the EUT set to the required transmit frequencies in each band. The EUT was transmitting at the lowest, middle, and maximum data rate for each modulation type available.

The final data was converted from a field strength to a radiated power value. The equations in section 9.5 of ANSI C63.10:2013, were used to derive this conversion formula:

dBm/m (field strength) + 11.77 = dBm EIRP

Per the procedure outlined in ANSI C63.10:2013 Section 11.10.2, the peak power spectral density was measured.

Report No. INTE5628.1

	: Crescent Dunes (Rev D)						Work Order:		
	: Board 701192							10/02/15	
	: Intel Corporation						Temperature:	22.7°C	
Attendees	: Mark Briggs						Humidity:	42%	
Project	:: None						Barometric Pres.:	1024.5	
Tested by	: Brandon Hobbs		Power:	110VAC/60Hz			Job Site:	EV01	
TEST SPECIFICAT	TIONS			Test Method					
FCC 15.247:2015				ANSI C63.10:2013					
		_			•		_		
COMMENTS									
The EUT is in the	worst case orientation whi	le using the worst case antenna pola	rity. This was used	to determine the highest outp	put level. T	he reference lev	el offest was used t	o normalize against	t the radiated
power measureme	ents by accounting for the	associated antenna and cable factors		= .				_	
			•						
DEVIATIONS FRO	M TEST STANDARD								
DEVIATIONS FRO	M TEST STANDARD								
None	M TEST STANDARD			1 1					
	M TEST STANDARD	Signature	Jan y	Jan					
None	M TEST STANDARD	Signature	Jan Y	J	Value	Convertion	Final Value	Limit	
None	M TEST STANDARD	Signature	Jany.	Intial V dBm/s		Convertion Factor	Final Value dBm/3kHz EIRP	Limit < dBm/3kHz	Results
None	M TEST STANDARD	Signature	J. Y						Results
None Configuration #	1 Low Channel, 2402 MHz	Signature	Jay		3kHz				Results Pass
None Configuration #	1 Low Channel, 2402 MHz	Signature	<i>J</i>	dBm/3	3kHz 288	Factor	dBm/3kHz EIRP	< dBm/3kHz	
None Configuration #	1	Signature	Jan Y	dBm/3	3kHz 288 318	Factor 11.77	-19.518	< dBm/3kHz	Pass

Report No. INTE5628.1 41/43

	BTLE, I	Low Channel, 24	02 MHz			
	Intial Value	Convertion	Final Value	Limit		
	dBm/3kHz	Factor	dBm/3kHz EIRP	< dBm/3kHz	Results	
	-31.288	11.77	-19.518	8	Pass	

BTLE, Mid Channel, 2440 MHz							
		Intial Value		Final Value	Limit		
		dBm/3kHz	Factor	dBm/3kHz EIRP	< dBm/3kHz	Results	
		-31.318	11.77	-19.548	8	Pass	

Report No. INTE5628.1 42/43

	DTI E I	High Channel, 24	00 M⊔→		
	DILE, I	ligit Charinet, 24	OU WILLS		
	Intial Value	Convertion	Final Value	Limit	
	dBm/3kHz	Factor	dBm/3kHz EIRP	< dBm/3kHz	Results
	-29.131	11.77	-17.361	8	Pass

Report No. INTE5628.1 43/43