THE R+-TREE: A DYNAMIC INDEX FOR MULTI-DIMENSIONAL OBJECTS

Timos Sellis (*University of Maryland - College Park*)
Nick Roussopoulos (*University of Maryland - College Park*)
Christos Faloutsos (*Carnegie Mellon University*)

Presenter: Xunfei Jiang

INTRODUCTION

- Data Categories
 - + One-dimensional data
 - × Integer
 - × Real numbers
 - × Strings
 - + Multi-dimensional data
 - × Boxes
 - × Polygons
 - × Points in multi-dimensional space

Multi-dimensional data in application areas

+ Cartography

+ CAD(Computer-Aided De

+ Computer Vision and rol

+ Rule indexing in expert

DBMS with multi-dimensional data

- + Addressed operations
 - × Point queries
 - * Given a point in the space, find all objects that contain it
 - × Region queries
 - * Given a region (query window), find all objects that intersect it
- + Un- addressed operations
 - × Insertion
 - × Deletion
 - × modification

Need support in dynamic environment

SURVEY

- Classification of multi-dimensional objects
 - + Points
 - + Rectangles
 - × Circles, polygons and other complex objects can be reduced to rectangles(MBRs)

POINTS

* Method

- + divide the whole space into disjoint sub-regions
 - × each sub-region contains no more than C points
 - x usually C = 1 /the capacity of a disk page(number of data records the page can hold)

Operations

- + Insertion
 - Split: further partition of a region
 - * introduce a hyper-plane and divided region into disjoint subregions

Attribute of Split

+ Pos	Method	Position	Dimensions	Locality
×F	point quad-tree	adaptable	k-d	brickwall
///////	k-d tree	adaptable	1-d	brickwall
×	grid file	fixed	1-d	grid
Din	K-D-B-tree	adaptable	1-d	brickwall

Table 2.1: Illustration of the classification.

× K hyper-plane

+ Locality

- × Grid method: split all regions in this direction
- Brickwall method: split only the region that need to be spitted

RECTANGLES

- Methods classification
 - + (1) transform the rectangles into points in a space of higher dimensionality
 - × Eg: 2-d rectangle be considered as 4-d point
 - + (2) use space filling curves to map a k-d space onto a 1-d space
 - Eg: transform k-dimensional objects to line segments, using the so-called *z-transform*.
 - × preserve the distance
 - * points that are close in the k-d space are likely to be close in the 1-d transformed space

+ (3) divide the original space into appropriate subregions

- Disjoint regions: any of the methods for points could be used for rectangles
 - * rectangle intersect a splitting hyper-plane
 - × Solution: cut the offending rectangle in two pieces and tag the pieces, to indicate that they belong to the same rectangle.
 - Splitting hyper-planes can be of arbitrary orientation(not necessarily parallel to the axes).

× Overlapping regions:

- ★ Guttman proposed R-Trees
 - extension of B-trees for multi-dimensional objects that are either points or regions.
 - Guarantee that the space utilization is at least 50%.
 - x if R-Trees are built using the dynamic insertion algorithms, the structure may provide excessive space overlap and "dead-space" in the nodes that result in bad performance. (R+-tree address this problem)

R TREE

- × R-tree
 - + Extension of B-tree in k-dimensions
 - + Height-balanced tree
 - + Components
 - Intermediate nodes: grouping rectangles
 - x leaf nodes: data objects

Each intermediate node encloses all rectangles that are correspond to lower level nodes

Figure 3.1: Some rectangles organized into an R-tree

Figure 3.2: R-tree for the rectangles of Figure 3.1

R-TREE

Coverage

+ The total area of all the rectangles associated with the nodes of that level.

Overlap

+ the total area contained within two or more nodes.

Figure 3.1: Some rectangles organized into an R-tree

× Efficient R-tree

- + Minimize coverage
 - x reduce dead space(i.e. empty space)
- + Minimize overlap
 - E.g: search window w result in search both nodes A and B
- Zero overlap & coverage?
 - + Achievable for data points that are known in advance
 - Zero overlap is not attainable for region objects

Figure 3.3: An example of a "bad" search window

R+ TREE

- Whenever a data rectangle at a lower level overlaps with another rectangle, decompose it into two nonoverlapping sub-rectangles
 - + Eg: Rectangle G is split into two sub-rectangles: one contained in node A; the other contained in node P.
- Pros and cons:
 - + time saving on searching
 - + increase space cost

R+ TREE

* Structure

R+ TREE

× Properties

- + (1) For each entry (p, RECT) in an intermediate node, the sub-tree rooted at the node pointed to by p contains a rectangle R if and only if R is covered by RECT.
 - Exception: R is a rectangle at a leaf node -> R must just overlap with RECT.
- + (2) For any two entries (p₁,RECT₁) and (p₂,RECT₂) of an intermediate node, the overlap between RECT₁ and RECT₂ is zero.
- + (3) The root has at least two children unless it is a leaf.
- + (4) All leaves are at the same level.

SEARCH

Search(R,W) \longrightarrow Search(P,W) \longrightarrow Search(H,W) \longrightarrow H

Algorithm Search (R, W)

Input:

An R^+ -tree rooted at node R and a search window (rectangle) W

Output:

All data objects overlapping W

Method:

Decompose search space and recursively search tree

S1. [Search Intermediate Nodes]

If R is not a leaf, then for each entry (p, RECT) of R check if RECT overlaps W. If so, **Search**($CHILD, W \cap RECT$), where CHILD is the node pointed to by p.

S2. [Search Leaf Nodes]

If R is a leaf, check all objects RECT in R and return those that overlap with W.

Figure 3.4: The rectangles of Figure 3.1

INSERT

Algorithm Insert (R,IR)

Input:

An R^+ -tree rooted at node R and an input rectangle IR

Output:

The new R⁺-tree that results after the insertion of IR

Method:

SplitNode

Find where IR should go and add it to the corresponding leaf nodes

II. [Search Intermediate Nodes] If *R* is not a leaf, then for each entry (*p*, *RECT*) of *R* check if *RECT* overlaps *IR*. If so, Insert(*CHILD*, *IR*), where *CHILD* is the node pointed to by *p*.

I2. [Insert into Leaf Nodes] If R is a leaf, add IR in R. If after the new rectangle is inserted R has more than M entries, SplitNode(R) to re-organize the tree (see section 3.5).

Figure 3.7: Insertion algorithm

Figure 3.4: The rectangles of Figure 3.1

DELETION

Algorithm Delete (R,IR)

Input:

An R^+ -tree rooted at node R and an input rectangle IR

Output:

The new R+-tree that results after the deletion of IR

Method:

Find where IR is and remove it from the corresponding leaf nodes.

- D1. [Search Intermediate Nodes]
 If R is not a leaf, then for each entry (p, RECT) of R check if RECT overlaps IR. If so, Delete(CHILD, IR), where CHILD is the node pointed to by p.
- D2. [Delete from Leaf Nodes]

 If R is a leaf, remove IR from R and adjust the parent rectangle that encloses the empiring children rectangles.

Figure 3.8: Deletion algorithm

NODE SPLITTING

Input: A node *R* (leaf or intermediate)

Output: The new R+-tree

Method: [SN1]Find a partition for the node to be split, [SN2]create two new nodes and, if needed, [SN3]propagate the split upward and downward

+ SN1. [Find a Partition]

- Partition R using the Partition routine of the Pack algorithm (see next section).
- × Partition node R (p, RECT), let S1 and S2 denote the two subregions resulting after the partition. Create two nodes:

NODE SPLITTING

- + SN2. [Populate New Nodes]
 - \times Put all the sub-nodes of R into n_i (i = 1,2)
 - × For those nodes(pk, RECTk) that overlap with the subregions
 - * a) R is a leaf node, put RECTk in both new nodes
 - * b) Otherwise, use **SplitNode** to recursively split the children nodes along the partition.
 - × Let $(pk_1,RECTk_1)$ and $(pk_2,RECTk_2)$ be the two nodes after splitting (pk,RECTk), where RECTki lies completely in RECTi, i=1,2.
 - × Add those two nodes to the corresponding node ni.

NODE SPLITTING

- + SN3. [Propagate Node Split Upward]
 - \times If R is the root, create a new root with only two children, n1 and n2.
 - × Otherwise, let PR be R's parent node. Replace R in PR with n1 and n2. If PR has now more than M entries, invoke **SplitNode**(PR).

PACKING ALGORITHM

× Partition

- + divides the total space occupied by N 2-dimensional rectangles by a line parallel to the x-axis(x_cut) or the y-axis (y_cut).
 - The selection of the x_cut or y_cut is based on one or more of the following criterias:
 - * (1) nearest neighbors
 - \star (2) minimal total x and y-displacement
 - * (3) minimal total space coverage accrued by the two sub-regions
 - * (4) minimal number of rectangle splits.

(1)(2)(3) reduce search by reducing the coverage of "dead-space".

(4) confines the height expansion of the R+-tree

PARTITION

Algorithm Partition (S,ff)

Input:

A set of S rectangles and the fill-factor $f\!\!f$ of the first sub-region

Output:

A node R containing the rectangles of the first subregion and the set S' of the remaining rectangles

Method:

Decompose the total space into a locally optimal (in terms of search performance) first sub-region and the remaining sub-region

PA1. [No Partition Required]

If total space to be partitioned contains less than or equal to ff rectangles, no further decomposition is done; a node R storing the entries is created and

the algorithm returns (R, empty).

- PA2. [Compute Lowest x- and y- Values]
 Let Ox and Oy be the lowest x- and y-coordinates of the given rectangles.
- PA3. [Sweep Along the *x*-dimension] $(Cx,x_cut) = \mathbf{Sweep}("x",Ox,ff)$. Cx is the cost to split on the *x* direction.
- PA4. [Sweep Along the y-dimension] $(Cy, y_cut) =$ Sweep("y", Oy, ff). Cy is the cost to split on the y direction.
- PA5. [Choose a Partition Point]
 Select the cut that gives the smallest of Cx and Cy, divide the space, and distribute the rectangles and their splits. A node R that stores all the entries of the first sub-region is created. Let S' denote the set of the rectangles falling in the second sub-region. Return (R,S').

Figure 4.1: Partition algorithm

Algorithm Sweep (axis, Oxy, ff)

Input:

The axis on which sweeping is performed, the point Oxy on that axis where the sweep starts and the fillfactor ff

Output:

Computed properties of the first sub-region and the x or y cut

Method:

Sweep from Oxy and compute the property until the ff has been reached

SW1. [Find the First ff Rectangles]
Starting from Oxy, pick the next ff rectangles from the list of rectangles sorted on the input axis.

SW2. [Evaluate Partitions]

Compute the total value *Cost* of the measured property used to organize the rectangles (nearest neighbor, minimal coverage, minimal spilts, etc.). Return (*Cost*, largest x or y coordinate of the ff rectangles).

PACK

Algorithm Pack (S,ff)

Input:

A set S of rectangles to be organized and the fill-factor ff of the tree

Output:

A "good" R+-tree

Method:

Recursively pack the entries of each level of the tree

- P1. [No Packing Needed]

 If N = |S| is less than or equal to ff, then build the root R of the R^+ -tree and return it.
- P2. [Initialization]
 Set *AN=empty*. *AN* holds the set of next level rectangles to be packed later.
- P3. [Partition Space] $(R,S') = \mathbf{Partition}(S,ff)$

if we are partitioning non-leaf nodes and some of the rectangles have been split because of the chosen partition, recursively propagate the split downward and if necessary propagate the changes upward also. AN=append(AN,R).

Continue step P3 until S' = empty.

P4. [Recursively Pack Intermediate Nodes] Return **Pack**(AN, ff)

Figure 4.3: Pack algorithm

ANALYSIS

* Rectangle

- + 4 coordinates are enough to uniquely determine it (the x and y coordinates of the lower-left and upper-right corners).
- + examine segments on a line (1-d space) instead of rectangles in the plane (2-d space), and transform the segments into points in a 2-d space.
 - Each segment is uniquely determined by (xstart, xend), the coordinates of its start and end points.
 - × Density(D)
 - * the number of segments that contain a given point

SEARCH PERFORMANCE IN QUERY OF POINTS

100,000 segments total density: 40

- Figure 5.1a
- disk accesses=f(large segment density)
 - large segments account for 10% of the total number of segments
 - + N1=90,000
 - + N2=10,000
- Figure 5.1b
- disk accesses= f(small segments)
 - + small segment density (D1=5).

Figure 5.1

Disk Accesses for Two-Size Segments: Point Query

(a) As a function of D_2 ; N_2 =10,000

(b) As a function of N_1 ; D_1 =5

SEARCH PERFORMANCE IN QUERY OF SEGEMENTS

- N1 increase, few lengthy segments:
 - + R+-trees gain a performance improvements of up to 50%.
- N2 approaches the total number of segments, R+trees will lose
 - many lengthy segments cause a lot of splits to subsegments.

Figure 5.2

Disk Accesses for Two-Size Segments: Segment Query

(a) As a function of D_2 ; N_2 =10,000

(b) As a function of N_1 ; D_1 =5

CONCLUSION

- Advantage of R+-trees compared to R-trees
 - + improve search performance
 - x especially in point queries, more than 50% savings in disk accesses.
 - × R-trees suffer in the case of few, large data objects
 - * force a lot of "forking" during the search.
 - × R+-trees handle these cases easily
 - * they split these large data objects into smaller ones.
 - + behaves exactly as a K-DB-tree(efficient for indexing point data) in the case where the data is points instead of non-zero area objects (rectangles).

FUTURE WORK

- Experimentation through simulation to verify the analytical results.
- Extension of the analysis for rectangles on a plane (2-d), and eventually for spaces of arbitrary dimensionality.
- Design and experimentation with alternative methods for partitioning a node and compacting an R+-tree.
- Comparison of R- and R+-trees with other methods for handling multi-dimensional objects.

Thanks!

