Orthonormalisation de Gram-Schmidt

Dans ce supplément, nous proposons d'exposer la méthode dite d'orthonormalisation de Gram-Schmidt en parallèle d'un exemple numérique traitée.

Il est possible de parler d'algorithme : la méthode suit une procédure qui se prête assez bien à la programmation sur un ordinateur. De plus, sur le plan théorique, elle permet, une fois sa correction justifiée, d'aboutir à l'existence de bases orthonormée dans les espaces euclidiens de dimension $n \in \mathbb{N}^*$.

La méthode mise en pratique

On se place dans E euclidien de dimension $n \ge 2$, le résultat pour n = 1 étant évident. On pose alors $(b_1 \dots b_n)$ une base de Equelconque.

On construit explicitement les deux premiers vecteurs u_1 et u_2 d'une base orthonormée à partir de $(b_1 \dots b_n)$.

La description du cas général des premières étapes se fera parallèlement avec $b_1 = (1;1;0), b_2 = (1;0;2)$ et $b_3 = (0;-1;1)$ pour exemple.

Construction de u_1 :

On décrit le cas général :

• On définit $v_1 = b_1$

• On calcule $\alpha_1 = ||v_1||$

• On pose alors $u_1 = \frac{1}{||v_1||} v_1$ qui est donc unitaire.

On décrit sur l'exemple :

• On définit $v_1 = (1; 1; 0)$

• On calcule $\alpha_1 = \sqrt{1+1} = \sqrt{2}$ • On pose alors $u_1 = \frac{1}{\sqrt{2}} \cdot (1;1;0)$

Construction de u_2 :

On décrit le cas général :

• On définit $v_2 = b_2 - \langle b_2 | u_1 \rangle u_1$. Ceci assurera que $v_2 \perp u_1$; en effet :

$$\langle v_2|u_1\rangle = \langle b_2|u_1\rangle - \langle b_2|u_1\rangle \langle u_1|u_1\rangle = \langle b_2|u_1\rangle - \langle b_2|u_1\rangle = 0$$

• On calcule $\alpha_2 = ||v_2||$ • On pose alors $u_2 = \frac{1}{||v_2||}v_2$

On décrit sur l'exemple :

• On définit $v_2 = (1; 0; 2) - \langle b_2 | u_1 \rangle u_1$; soit $v_2 = (1;0;2) - \frac{1}{2}(1;1;0) = (\frac{1}{2}; \frac{-1}{2};2)$

• On calcule $\alpha_2 = \sqrt{\frac{1}{4} + \frac{1}{4} + 4} = \sqrt{\frac{9}{2}} = \frac{3}{\sqrt{2}}$

• On pose alors $u_2 = \frac{\sqrt{2}}{3} \cdot \left(\frac{1}{2}; \frac{-1}{2}; 2\right) = \frac{\sqrt{2}}{6}(1; -1; 4).$

On peut vérifier que $\langle v_2|v_1\rangle=(1\ 1\ 0)\begin{pmatrix}1\\-1\\A\end{pmatrix}=0$ et

donc, par bilinéarité, $\langle u_1|u_2\rangle=0$.

Si l'espace E est de dimension n=2, alors la procédure se termine.

Construction de u_3 :

On considère donc ici que $n \geq 3$. On décrit maintenant la construction du vecteur u_3 :

On décrit le cas général :

- On définit $v_3 = b_3 (\langle b_3 | u_1 \rangle u_1 + \langle b_3 | u_2 \rangle u_2)$. Ceci assurera que $v_3 \perp u_1$ et $v_3 \perp u_2$; on vérifiera (exercice) en calculant $\langle v_3|u_1\rangle$ et $\langle v_3|u_2\rangle$:
- On calcule $\alpha_3 = ||v_3||$
- On pose alors $u_3 = \frac{1}{||v_2||} v_3$

On décrit sur l'exemple :

• On définit v_3 par :

1

- On pose alors $u_3=\frac{3}{9}\cdot(2;-2;-1)=\left(\frac{2}{3}\;;\;\frac{-2}{3}\;;\;\frac{-1}{3}\right)$. On peut vérifier que $\langle v_3|v_1\rangle=0$ et $\langle v_3|v_2\rangle=0$

Si l'espace E est de dimension n=3, alors la procédure se termine.

Construction itérative de u_{k+1}

On suppose ici que k < n et que u_1, u_2, \ldots et u_k ont été construits et forment déjà une famille orthonormée. Les sections précédentes assurent que le travail a déjà bien été fait pour $k \le 3$ si $n \ge 4$. Comme, pour n = 2 ou n = 3, nous avons déjà prouvé que la procédure produit une base orthonormée de E, nous considérons alors avoir à prouver le résultat pour $n \ge 4$. Nous définissons donc :

$$v_{k+1} = b_{k+1} - \sum_{i=1}^{k} \langle b_{k+1} | u_i \rangle u_i$$

Nous prouvons que $v_{k+1} \in vect(u_1 \dots u_k)^{\perp}$:

Pour chaque $j \leq k$, nous avons que :

$$\langle v_{k+1}|u_j\rangle = \langle b_{k+1}|u_j\rangle - \sum_{i=1}^k \langle b_{k+1}|u_i\rangle \langle u_i|u_j\rangle$$

$$= \langle b_{k+1}|u_j\rangle - \sum_{i\neq j} \langle b_{k+1}|u_i\rangle \langle u_i|u_j\rangle - \langle b_{k+1}|u_j\rangle \langle u_j|u_j\rangle$$

$$= \langle b_{k+1}|u_j\rangle - \langle b_{k+1}|u_j\rangle = 0$$

la famille $(u_1 \dots u_k)$ étant supposée orthonormée.

Par ailleurs, $v_{k+1} \neq 0_E$: en effet, k < n et donc $b_{k+1} \notin vect(u_1 \dots u_k) = vect(b_1 \dots b_k)$ comme chaque u_i s'écrit comme combinaison linéaire des b_j (où $j \leq i \leq k < n$).

Nous pouvons donc calculer $||v_{k+1}|| \neq 0$ et poser, pour finir : $u_{k+1} = \frac{1}{||v_{k+1}||} \cdot v_{k+1}$. Ce nouveau vecteur est colinéaire à v_{k+1} donc orthogonal à chaque u_i (pour $i \leq k$) et ainsi la famille augmentée $(u_1 \dots u_k \ u_{k+1})$ est orthonormée de cardinal k+1.

La répétition du procéssus conduit à produire une famille $(u_1 \dots u_n)$ libre maximale de E orthonormée donc une base de E.

La méthode en théorie :

Grâce à cette méthode, on obtient le résultat général et théorique suivant :

Théorème - existence de base orthonormée :

Dans tout espace E euclidien, il existe une base orthonormée.

De plus, à toute base $(e_1 \dots e_n)$ de E de dimension $n \ge 2$, on peut associer la base $(u_1 \dots u_n)$ définie par :

$$\begin{cases} v_1 = e_1 & u_1 = \frac{1}{||v_1||} \cdot v_1 \\ \forall k \le n \quad v_{k+1} = b_{k+1} - \sum_{i=1}^k \langle b_{k+1} | u_i \rangle u_i & u_{k+1} = \frac{1}{||v_{k+1}||} \cdot v_{k+1} \end{cases}$$

La démonstration étant faite par récurrence sur $n \in \mathbb{N}^*$ en considérant, pour l'hérédité, le sous espace vectoriel $vect(e_1 \dots e_n)$ de dimension n de l'epace $E = vect(e_1 \dots e_n \mid e_{n+1})$ de dimension n+1 pour lequel l'étude de la construction itérative de la méthode vue ci-dessus établit le résultat attendu.

Propriété - Supplémentaire orthogonal : Dans tout espace E euclidien, tout sous-espace vectoriel F vérifie $F \oplus F^{\perp} = E$. En particulier, $\dim(F^{\perp}) = n - \dim(F)$

Poser H un supplémentaire quelconque de F, définir une base $(f_1 \dots f_k)$ de F puis une base $(h_{k+1} \dots h_n)$ de H et considérer sa concaténation $\mathcal B$ que l'on orthonormalisera : au cours de l'éxécution de la méthode de Gram-Schmidt, on aura $h_j \notin F = vect(f_1 \dots f_k)$ par l'étude qui précède.

En notant $(u_1 \dots u_k \ u_{k+1} \dots u_n)$ la nouvelle base produite, on trouvera que chaque $vect(u_1 \dots u_k) = F$ et que chaque $u_j \in vect(u_1 \dots u_k)^{\perp} = F^{\perp}$ pour j > k. D'où le résultat.