

GHANA COMMUNICATION TECHNOLOGY UNIVERSITY

INSTITUTE OF CONTINUING AND DISTANCE EDUCATION (ICDE)

COURSE CODE	CIIS 154
COURSE TITLE	Digital Electronics
NAME	Agbenyo Delator Rogers
STUDENT ID	2425140023
DATE	10 th August 2025

QUESTION:

- a) Truth tables for all seven gates
- b) Logic symbols for each gate

OR, NOT, NAND, NOR, XOR, and XNOR.

c) A short paragraph (3–4 sentences) explaining a practical application for each gate

SOLUTION

A logic gate (or electronic gate) is a circuit designed to process one or more binary signals to perform a specific logical operation. It acts as a device that controls the flow of information, typically in the form of pulses. Logic gates are categorized into seven main types: AND,

AND Gate

Outputs 1 only if **all** inputs are 1. A door with two locks — both locks must be unlocked for the door to open.

A (Input)	B (Input)	A AND B (Output)
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

Outputs 1 if **at least one** input is 1. An office door that opens if you use either a keycard or enter the correct passcode.

A (Input)	B (Input)	A OR B (Output)
0	0	0
0	1	1
1	0	1

NOT Gate

Produces the **opposite** of the input (inverts it). A fridge light — it turns ON when the door is open and OFF when the door is closed.

A (Input)	B (Output)
1	0
0	1

NAND Gate

Outputs 0 only when **all** inputs are 1 (inverse of AND). A washing machine that stops only if both the lid is closed AND the timer is done. If not, it keeps running.

A (Input)	B (Input)	A NAND B (Output)
0	0	1
0	1	1

1	0	1
1	1	0

NOR Gate

Outputs 1 only when **all** inputs are 0 (inverse of OR). Security alarm that stays silent unless all motion sensors are OFF — if any detect movement, it sounds the alarm.

A (Input)	B (Input)	A NOR B (Output)
0	0	1
0	1	0
1	0	0
1	1	0

XOR Gate

Outputs 1 only if **exactly one** input is 1. A two-way lamp switch where the light changes state only when one switch is flipped — not both at the same time.

A (Input)	B (Input)	A XOR B (Output)
0	0	0
0	1	1
1	0	1

1	1	0

XNOR Gate

Outputs 1 when inputs are **the same** (inverse of XOR). A password checker — door unlocks only if the entered code matches the stored code

A (Input)	B (Input)	A XNOR B (Output)
0	0	1
0	1	0
1	0	0
1	1	1