PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-050035

(43)Date of publication of application: 23.02.2001

(51)Int.Cl.

F01N 3/08

B01D 53/86 B01D 53/94

F01N 3/24

F01N 3/28

(21)Application number: 11-219936

(71)Applicant: TOYOTA MOTOR CORP

(22)Date of filing:

03.08.1999

(72)Inventor: IWASAKI EIJI

TANAKA TOSHIAKI

(54) EXHAUST EMISSION CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINE

(57) Abstract:

PROBLEM TO BE SOLVED: To increase a NOx purification ratio while reducing an amount of ammonia emitted to the atmosphere. SOLUTION: A NOx reduction catalyst 18 suitable for reducing NOx in exhaust gas by ammonia in oxygen-excessive condition is disposed in an exhaust passage of an internal combustion engine. An ammonia oxidation catalyst 21 suitable for oxidizing ammonia to nitrogen in oxygenexcessive condition is disposed in the exhaust passage downstream of the NOx reduction catalyst 18. Aqueous urea is supplied from supply means 24 in an exhaust passage 17 upstream of the NOx reduction catalyst 18. A supply quantity of the aqueous urea is controlled such that an equivalence ratio thereof with respect to a flow rate of the NOx flowing in the NOx reduction catalyst 18 is greater than 1.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-50035 (P2001-50035A)

最終頁に続く

(43)公開日 平成13年2月23日(2001.2.23)

(51) Int.Cl.7	識別記号	ΡI	テーマコード(参考)	
F01N 3	/08	F01N 3/08	B 3G091	
B01D 53	/86 ZAB	3/24	L 4D048	
53,	/94	3/28	3 0 1 D	
F01N 3/	/24	B 0 1 D 53/36	ZABE	
3/	/28 3 0 1		101B	
		審査請求 未請求	請求項の数5 OL (全 8 頁)	
(21)出顧番号	特顧平11-219936	(71)出願人 00000320	7	
	·	トヨタ自	動車株式会社	
(22)出顧日	平成11年8月3日(1999.8.3)	愛知県豊	愛知県豊田市トヨタ町1番地	
		(72)発明者 岩▲崎▼	▲英▼二	
		愛知県豊	田市トヨタ町1番地 トヨタ自動	
		車株式会		
		(72)発明者 田中 俊	明	
•		愛知県豊	田市トヨタ町1番地 トヨタ自動	
		車株式会		
		(74)代理人 10007751	7	
		弁理士	石田 敬 (外2名)	
	•		•	

(54) 【発明の名称】 内燃機関の排気浄化装置

(57) 【要約】

【課題】 大気中に排出されるアンモニア量を低減しつ ONO_X 浄化率を高める。

【解決手段】 内燃機関の排気通路内に酸素過剰のもとでアンモニアにより排気ガス中のNO $_{\rm X}$ を還元するのに適したNO $_{\rm X}$ 還元触媒 18を配置し、酸素過剰のもとでアンモニアを窒素に酸化するのに適したアンモニア酸化触媒 21をNO $_{\rm X}$ 還元触媒 18下流の排気通路内に配置する。NO $_{\rm X}$ 還元触媒 18上流の排気通路 17内に供給装置 24から尿素水溶液を供給する。NO $_{\rm X}$ 還元触媒 18へのNO $_{\rm X}$ 流入量に対する尿素水溶液の供給量の当量比が 1よりも大きくなるように尿素水溶液の供給量を制御する。

1 … 機関本体 21…アンモニア酸化! 14…排気マニホルド 24…供給装置 18…NO。 還元触媒 40、41…温度センサ

【特許請求の範囲】

【請求項1】 酸素過剰のもとでアンモニアにより排気ガス中のNOx を還元するのに適したNOx 還元触媒を機関排気通路内に配置し、該NOx 還元触媒にアンモニア発生化合物を含む液体を供給するようにした内燃機関の排気浄化装置において、酸素過剰のもとでアンモニアを窒素に酸化するのに適したアンモニア酸化触媒をNOx 還元触媒内又はNOx 還元触媒下流の排気通路内に配置し、NOx 還元触媒へのNOx 流入量に対する前記アンモニア発生化合物の供給量の当量比が1よりも大きくなるように前記液体の供給量を制御するようにした内燃機関の排気浄化装置。

【請求項2】 前記アンモニア酸化触媒の温度が最適温度範囲内にあるか否かを判断して該アンモニア酸化触媒の温度が最適温度範囲内にあると判断されたときには前記当量比が1よりも大きくなるように、アンモニア酸化触媒の温度が最適温度範囲内にないと判断されたときに前記当量比が1以下になるように前記液体の供給量を制御する請求項1に記載の内燃機関の排気浄化装置。

【請求項3】 前記当量比が1よりも大きくかつ5以下になるように前記液体の供給量を制御する請求項1に記載の内燃機関の排気浄化装置。

【請求項4】 前記アンモニア発生化合物が尿素であり、アンモニア発生化合物を含む液体が尿素水溶液である請求項1に記載の内燃機関の排気浄化装置。

【請求項5】 前記アンモニア酸化触媒がゼオライトを 具備した請求項1に記載の内燃機関の排気浄化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は内燃機関の排気浄化 装置に関する。

[0002]

【従来の技術】酸素過剰のもとでアンモニアにより排気ガス中の NO_X を還元するのに適した NO_X 還元触媒を機関排気通路内に配置し、 NO_X 還元触媒に尿素水溶液を供給し、 NO_X 還元触媒への NO_X 流入量を求めて NO_X 流入量に対する尿素の供給量の当量比が1となるように尿素水溶液の供給量を制御する内燃機関の排気浄化装置が公知である(実開平3-129712号公報参照)。

[0003]

【発明が解決しようとする課題】ところが、当量比を正確に1に一致させたとしても NO_X 還元触媒に流入する全ての NO_X を還元できるわけではなく、 NO_X 還元率を増大させる余地はある。一方、本願発明者によれば、当量比を1よりも大きくすると NO_X 還元率が増大し、このとき当量比を大きくするにつれて NO_X 還元率が増大することが判明している。言い換えると、 NO_X 還元触媒に流入する NO_X 量に対して過剰の尿素水溶液を供給すれば、極めて高 NNO_X 還元率を得ることができ

る。

【0004】しかしながら、尿素水溶液を過剰に供給すると NO_X 還元触媒から多量のアンモニアが排出され、従って NO_X 還元率を増大させるためには NO_X 還元触媒から排出されるアンモニアを処理する必要がある。従って、本発明の目的は大気中に排出されるアンモニア量を低減しつつ NO_X 浄化率を高めることができる内燃機関の排気浄化装置を提供することにある。

[0005]

【課題を解決するための手段】前記課題を解決するため に1番目の発明によれば、酸素過剰のもとでアンモニア により排気ガス中のNOx を還元するのに適したNOx 還元触媒を機関排気通路内に配置し、NOx 還元触媒に アンモニア発生化合物を含む液体を供給するようにした 内燃機関の排気浄化装置において、酸素過剰のもとでア ンモニアを窒素に酸化するのに適したアンモニア酸化触 媒をNOx 還元触媒内又はNOx 還元触媒下流の排気通 路内に配置し、NOx 還元触媒へのNOx 流入量に対す る前記アンモニア発生化合物の供給量の当量比が1より も大きくなるように前記液体の供給量を制御するように している。即ち1番目の発明では、NOx 還元触媒に過 剰のアンモニア発生化合物が供給されるのでNOx 還元 率が高く維持され、このときNOX還元触媒から排出さ れる過剰のアンモニアはアンモニア酸化触媒で酸化さ れ、従って大気中に排出されるのが阻止される。

【0006】また2番目の発明によれば1番目の発明において、前記アンモニア酸化触媒の温度が最適温度範囲内にあるか否かを判断してアンモニア酸化触媒の温度が最適温度範囲内にあると判断されたときには前記当量比が1よりも大きくなるように、アンモニア酸化触媒の温度が最適温度範囲内にないと判断されたときに前記当量比が1以下になるように前記液体の供給量を制御している。即ち2番目の発明では、アンモニア酸化触媒の温度が最適温度範囲内にあるときに過剰の液体が供給される。

【0007】また3番目の発明によれば1番目の発明において、前記当量比が1よりも大きくかつ5以下になるように前記液体の供給量を制御している。また4番目の発明によれば1番目の発明によれば1番目の発明において、前記アンモニア発生化合物が尿素であり、アンモニア発生化合物を含む液体が尿素水溶液である。また5番目の発明によれば1番目の発明において、前記アンモニア酸化触媒がゼオライトを具備している。

[0008]

【発明の実施の形態】図1は本発明を圧縮着火式内燃機 関に適用した場合を示している。なお、本発明は火花点 火式機関にも適用することができる。図1を参照する と、1は機関本体、2は燃焼室、3は燃焼室2内に燃料 を直接噴射する電気制御式燃料噴射弁、4は吸気弁、5 は吸気ポート、6は排気弁、7は排気ポートを夫々示 す。吸気ポート5は対応する吸気枝管8を介してサージタンク9に連結され、サージタンク9は吸気ダクト10を介してエアクリーナ11に連結される。吸気ダクト10内にはステップモータ12により駆動されるスロットル弁13が配置される。

【0009】一方、排気ポート7は排気マニホルド14を介して触媒15を収容したケーシング16の入口部に連結され、ケーシング16の出口部は排気管17を介して触媒18を内蔵したケーシング19に連結される。ケーシング19の出口部は排気管20を介して触媒21を内蔵したケーシング22の入口部に連結され、ケーシング22の出口部は排気管23に連結される。本実施例では触媒15は酸化機能を有する触媒、例えば酸化触媒又は三元触媒からなり、触媒18は酸素過剰のもとでアンモニアにより排気ガス中のNOxを還元するのに適したNOx還元触媒からなり、触媒21は酸素過剰のもとでアンモニアを窒素N2に酸化するのに適したアンモニアを窒素N2に酸化するのに適したアンモニアを窒素N2に酸化するのに適したアンモニア酸化触媒からなる。

【0010】図1に示す実施例では、NOx 還元触媒18としてチタニアを担体とし、この担体上に酸化パナジウムを担持した触媒V2O5/TiO2(以下、パナジウム・チタニア触媒という)、又はゼオライトを担体とし、この担体上に銅Cuを担持した触媒Cu/ZSM5(以下、銅ゼオライト触媒という)が用いられる。一方、アンモニア酸化触媒21として銅ゼオライト触媒、又はゼオライト担体上に白金Pt及び銅Cuを担持した触媒(以下、白金・銅ゼオライト触媒という)、もしくは銅ゼオライト触媒と白金・銅ゼオライト触媒との組み合わせが用いられる。

【0011】各燃料噴射弁3は燃料リザーバいわゆるコモンレール(図示しない)を介して電気制御式の吐出量可変な燃料ポンプ(図示しない)に接続される。コモンレールにはコモンレール内の燃料圧を検出するための燃料圧センサ(図示しない)が取付けられており、燃料圧センサの出力信号に基づいてコモンレール内の燃料圧が目標燃料圧となるように燃料ポンプの吐出量が制御される。

【0012】さらに、排気管17には供給装置24が接続されている。この供給装置24はアンモニアを発生するアンモニア発生化合物を含む液体を収容したタンク25と、供給導管26と、供給ポンプ27と、電磁制御式流量制御弁28とを具備する。タンク25内に貯えられているアンモニア発生化合物を含む液体はこれら供給導管26、供給ポンプ27、及び電磁制御式流量制御弁28を介して排気管17内に供給される。

【0013】電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、常時電源に接続されているB-RAM(バッ

クアップRAM)35、入力ポート36、及び出力ポー ト37を具備する。機関本体1には機関冷却水温を検出 するための水温センサ38が取付けられ、この水温セン サ38は機関冷却水温を表す出力電圧を発生する。スロ ットル弁13上流の吸気ダクト10内には吸入空気質量 流量を検出するための吸入空気量センサ39が配置さ れ、この吸入空気量センサ39は吸入空気質量流量を表 す出力電圧を発生する。排気管20内には排気管20内 を流れる排気ガスの温度を検出するための温度センサイ O が配置され、この温度センサ40はこの排気ガス温を 表す出力電圧を発生する。この排気ガス温はNO_X 還元 触媒18の温度を表しており、以下NOx 還元触媒温度 TNCと称する。また、排気管23内には排気管23内 を流れる排気ガスの温度を検出するための温度センサ4 1が配置され、この温度センサ41はこの排気ガス温を 表す出力電圧を発生する。この排気ガス温はアンモニア 酸化触媒21の温度を表しており、以下アンモニア酸化 触媒温度TACと称する。また、アクセルペダル(図示 しない)の踏み込み量を検出するための踏み込み量セン サ42が設けられ、この踏み込み量センサ42は踏み込 み量を表す出力電圧を発生する。これらセンサ3.8%3 9, 40, 41, 42の出力信号は夫々対応するAD変 換器43を介して入力ポート36に入力される。さら に、機関回転数を検出するための回転数センサ44が入 カポート36に接続される。この回転数センサ44は機 関回転数を表す出力パルスを発生する。一方、出力ポー ト37は対応する駆動回路45を介して燃料噴射弁3、 ステップモータ12、ポンプ27、及び流量制御弁28 に接続される。

【0014】さて、前述したように NO_X 還元触媒 18 上流の排気管 17内にはアンモニア発生化合物を含む液体が供給される。アンモニアを発生しうるアンモニア発生化合物については種々の化合物が存在し、従ってアンモニア発生化合物として種々の化合物を用いることができる。本発明による実施例ではアンモニア発生化合物として尿素($CO(NH_2)_2$)を用いており、アンモニア発生化合物を含む液体として尿素水溶液を用いている。従って以下、 NO_X 還元触媒 18 上流の排気管 17内に尿素水溶液を供給する場合を例にとって本発明を説明する。

【0015】過剰酸素を含んでいる排気ガス中に尿素水溶液を供給すると排気ガス中に含まれるNOはNO $_X$ 還元触媒18上において尿素CO(NH2) $_2$ から発生するアンモニアNH3 により還元される(例えば4NH3+4NO+O $_2$ →4N $_2$ +6H $_2$ O)。この場合のアンモニア発生メカニズムについては必ずしも明らかにされていない。しかしながら、少なくとも次の二つのメカニズムが存在しているものと考えられている。即ち、その一つ目は排気通路内又はNO $_X$ 還元触媒18内における尿素の熱分解によるものである。また、二つ目は尿素の

形態変化に伴うものである。詳しく説明すると、尿素はほぼ132℃においてビウレットに変化し、ビウレットはほぼ190℃においてシアヌル酸に変化し、シアヌル酸はほぼ360℃においてシアン酸又はイソシアン酸に変化する。このような温度上昇による形態変化の過程で少しずつアンモニアが発生するものと考えられている。【0016】いずれにしても NO_X 還元触媒18において流入する NO_X は尿素から発生するアンモニアNH3によって還元される。この場合、上述の反応式からわかるように NO_X とアンモニアとは理論上、等モルで反応する。従って、理論上は NO_X 還元触媒18への NO_X 流入量に対する尿素の供給量の当量比が1となるように尿素水溶液の供給量を制御すれば、 NO_X 還元触媒18に流入する全ての NO_X を窒素 N_2 まで還元できることになる。

【0017】しかしながら、冒頭で述べたように当量比を正確に1に一致させても実際には、必ずしも全ての NO_X を還元することはできない。一方、図2に示されるように、当量比を1よりも大きくすると NO_X 浄化率EFFが増大し、このとき当量比を大きくするにつれて NO_X 浄化率EFFが増大する。言い換えると、 NO_X 還元触媒 18への NO_X 流入量に対して過剰の尿素水溶液を供給すれば、極めて高い NO_X 浄化率を得ることができる。

【0018】しかしながら、図2に示されるように尿素 水溶液を過剰に供給するとNO_X 還元触媒18からアン モニアが排出され、このアンモニア排出量Q(NH3) は当量比を大きくするにつれて増大する。従ってNOX 浄化率を増大させるためにはNOx 還元触媒18から排 出されるアンモニアを処理する必要がある。そこで本発 明による実施例では、NOX還元触媒18下流の排気通 路内にアンモニア酸化触媒21を設け、このアンモニア 酸化触媒21において過剰のアンモニアを酸化除去する ようにしている。即ち、アンモニア酸化触媒21では酸 素過剰であると、まず流入するアンモニアの一部からN Oが生成される(4NH3+5O2→4NO+6H 2 0)。このようにして生成されたNOは次いで残りの アンモニアと反応する (4NH3 +4NO+O2 →4N 2 +6 H2 O)。このような逐次反応によりアンモニア が完全に除去され、大気中に放出されるのが阻止され

【0020】この場合、アンモニアの逐次反応を良好に生じせしめるためにはアンモニアをアンモニア酸化触媒21内に保持しておくのが好ましい。一方、ゼオライトは優れたアンモニア保持能力を有している。従って、アンモニア酸化触媒21としてゼオライトを具備した触媒が好ましい。ところが、アンモニア酸化触媒21のアンモニア除去能力にも限界があるので、当量比の上限も定めるべきである。この場合、好ましくは当量比が1よりも大きくかつ5以下となるように尿素水溶液の供給量が制御され、更に好ましくは当量比が2以上かつ5以下となるように尿素水溶液の供給量が制御される。

【0021】しかしながら、アンモニア酸化触媒21のアンモニア除去能力はアンモニア酸化触媒温度TACにも依存する。図3はアンモニアを含みかつNOxを含まないモデルガスを供給した場合のアンモニア酸化触媒21の浄化率EANを表している。ここで浄化率EANはアンモニア酸化触媒21へのアンモニア流入量と、アンモニア酸化触媒21からのアンモニア流出量及びNOx流出量とに基づいて算出される。図3に示されるように、アンモニア酸化触媒温度TACが低いときには浄化率EANは低くなっている。これはアンモニア酸化触媒21が活性状態にないためであると考えられる。アンモニア酸化触媒温度TACが高くなると浄化率EANは欠まに高くなり、アンモニア酸化触媒温度TACが下限しきい値TLよりも高くなる。

【0022】さらにアンモニア酸化触媒温度 TACが高くなると浄化率 EANはほぼ100%に維持される。さらにアンモニア酸化触媒温度 TACが高くなると浄化率 EANは次第に低下し、アンモニア酸化触媒温度 TAC が上限しきい値 TUよりも高くなると許容最低浄化率 L L よりも低くなる。これは上述の逐次反応のうち後段のアンモニア酸化反応に比べて前段のNO生成反応が活発になり、その結果多量のNOが排出されるためであると考えられている。

【0023】そこで、浄化率EANが許容最低浄化率LLよりも高くなるアンモニア酸化触媒温度TACの範囲を最適温度範囲と称すると、本発明による実施例では、アンモニア酸化触媒温度TACが最適温度範囲内にあるか否かを判断してアンモニア酸化触媒温度TACが最適温度範囲内にあると判断されたときには当量比が2以上5以下なるように尿素水溶液の供給量を制御し、アンモニア酸化触媒温度TACが最適温度範囲内にないと判断されたときには当量比が1になるように尿素水溶液の供給量を制御している。

【0024】アンモニア酸化触媒21の浄化率EANが高いということは当量比を大きくしてもアンモニア酸化触媒21で十分にアンモニアを浄化できることを示している。そこで本発明による実施例では、アンモニア酸化触媒温度TACが最適温度範囲内にあるときにおいて、

アンモニア酸化触媒温度 TACが高いときには低いときに比べて当量比が大きくなるように尿素水溶液の供給量を制御している。言い換えると、当量比がアンモニア酸化触媒21の浄化率EANに比例するように尿素水溶液の供給量が制御される。

【0025】次に、図4に示すルーチンを参照して供給装置24からの尿素水溶液の供給量QLの算出方法について詳細に説明する。このルーチンは予め定められた設定時間毎の割り込みによって実行される。図4を参照するとまず、ステップ100では図5のマップから、単位時間当たりのNOx 還元触媒18へのNOx 流入量に対する尿素の当量QEが算出される。単位時間当たりのNOx 流入量は機関負荷を表すNOx 還元触媒温度TNCが高くなるにつれて増大し、吸入空気量Gaが大きくなるにつれて増大し、吸入空気量Gaが大きくなるにつれて増大し、吸入空気量Gaが大きくなるにつれて増大し、吸入空気量Gaが大きくなるにつれて増大し、吸入空気量Gaが大きくなるにつれて増大する。この尿素の当量QEは予め実験により求められており、NOx 還元触媒温度TNC及び吸入空気量Gaの関数として図5に示されるマップの形で予めROM32内に記憶されている。

【0026】続くステップ101では、アンモニア酸化 触媒温度TACが最適温度範囲(図3)内にあるか否か が判別される。アンモニア酸化触媒温度TACが最適温 度範囲内にないときには次いでステップ102に進み、 目標となる当量比を表す増量係数KIが1. Oとされ る。次いでステップ104に進む。これに対しアンモニ ア酸化触媒温度TACが最適温度範囲内にあるときには 次いでステップ103に進み、図6のマップから増量係 数KIが算出される。この場合の増量係数KIは上述し たようにかつ図6に示されるように、アンモニア酸化触 媒温度TACに依存しかつ浄化率EAN(図3)に比例 する。この増量係数KIはアンモニア酸化触媒温度TA Cの関数として図6に示されるマップの形で予めROM 32内に記憶されている。次いでステップ104に進 む。ステップ104では当量QEに増量係数KIを乗算 することにより尿素の基本供給量QBが算出される(Q B=QE・KI)。この基本供給量QBは実際の当量比

を目標となる当量比にするのに必要な尿素の供給量を表している。

【0027】続くステップ105からステップ109までは NO_X 還元触媒 180貯蔵・放出機能のために必要となる尿素の基本供給量QBの補正部分である。即ち、上述のように構成される NO_X 還元触媒 18は尿素又はアンモニアの貯蔵・放出機能を有することが判明している。この貯蔵・放出メカニズムについては明らかにされていないが、尿素の形で吸着され、アンモニアの形で吸着され、或いは尿素の形で放出された後にアンモニアに転換されるという考え方もある。

【0028】このように NO_X 還元触媒 18 が貯蔵・放出機能を有する場合、尿素を基本供給量QBだけ供給すると、 NO_X 還元触媒 18 内に尿素が貯蔵されるときには NO_X 還元のために必要なアンモニアが不足し、 NO_X 還元触媒 18 から尿素がアンモニアの形で放出されるときにはアンモニアが過度に過剰になる。そこで本発明による実施例では、 NO_X 還元触媒 18 への尿素貯蔵量及び NO_X 還元触媒 18 からの尿素放出量を推定し、これら尿素貯蔵量及び尿素放出量に基づいて基本供給量QBを補正するようにしている。

【0029】さらに詳細に説明する。 NO_X 還元触媒 18 内に貯蔵されている全尿素量を積算尿素貯蔵量 SQ、積算尿素貯蔵量 SQに対する単位時間当たりに NO_X 還元触媒 18 から放出される尿素量の割合を放出係数 KR (<1.0)、単位時間当たりの尿素の供給量に対する単位時間当たりに NO_X 還元触媒 18 に貯蔵される尿素量の割合を貯蔵係数 KS (<1.0)で表すとすると、単位時間当たりに NO_X 還元触媒 18 から放出される尿素量は概略的には SQ ・ KR で表される。即ち、SQ ・ KR だけ過剰となるので単位時間当たりの尿素の供給量 Q は QB - SQ ・ KR とすべきである。この場合、単位時間当たりに NO_X 還元触媒 18 に貯蔵される尿素量は 概略的には QB - SQ ・ KR)・ KS で表され、従って QB - SQ ・ KR)・ KS で表され、

【0030】従って、単位時間当たりに供給すべき尿素 量Qは次式で表される。

 $Q = (QB - SQ \cdot KR) + (QB - SQ \cdot KR) \cdot KS$

 $= (QB-SQ\cdot KR) \cdot (1+KS)$

次に、積算尿素貯蔵量SQの算出方法について説明する。前回の処理サイクルにおける積算尿素貯蔵量SQ及び単位時間当たりの尿素の供給量QをそれぞれSQOLD、QOLDで表すとすると、前回の処理サイクルから今回の処理サイクルまでにNOχ還元触媒18に貯蔵された尿素量は概略的にはQOLD・KSで表される。また、前回の処理サイクルから今回の処理サイクルまでにNOχ還元触媒18から放出された尿素量は概略的にはSQOLD・KRで表される。従って、今回の処理サイクルにおける積算尿素貯蔵量SQは次式で表されること

になる。

[0031]

SQ=SQOLD+QOLD・KS-SQOLD・KR 再び図4を参照すると、ステップ105では図7のマップから貯蔵係数KSが算出される。貯蔵係数KSはNO $_X$ 還元触媒18の可能な最大の尿素貯蔵量MAXに対する積算尿素貯蔵量SQの比SQ $_Z$ MAXが大きくなるにつれて小さくなり、NO $_X$ 還元触媒温度TNCが高くなるにつれて小さくなる。この貯蔵係数KSは予め実験により求められており、比SQ $_Z$ MAX及びNO $_X$ 還元触 媒温度TNCの関数として図フに示されるマップの形で 予めROM32内に記憶されている。

【0032】続くステップ106では図8のマップから 放出係数KRが算出される。放出係数KRはNOx還元 触媒温度TNCが高くなるにつれて増大し、吸入空気量 Gaが大きくなるにつれて増大する。この放出係数KR は予め実験により求められており、NOx 還元触媒温度 TNC及び吸入空気量Gaの関数として図8に示される マップの形で予めROM32内に記憶されている。

【0033】続くステップ107では積算尿素貯蔵量S Qが算出される(SQ=SQOLD+QOLD・KS-SQOLD・KR)。続くステップ108では単位時間 当たりの尿素の供給量Qが算出される(Q=(QB-S Q・KR)・(1+KS))。続くステップ109では 積算尿素貯蔵量SQ及び単位時間当たりの尿素の供給量 QがそれぞれSQOLD、QOLDとして記憶される。

【0034】続くステップ110では単位時間当たりの 尿素の供給量Qに濃度補正係数KCを乗算することによ り単位時間当たりの尿素水溶液の供給量QLが算出され る(QL=Q・KC)。ここで濃度補正係数KCは供給 装置24から供給される尿素水溶液の濃度に応じて定め られるものである。例えば、尿素水溶液として30重量 パーセントの尿素水溶液を用いた場合にはこの濃度補正 係数KCの値は(100+30)/30=4.3とな る。流量制御弁28は実際の単位時間当たりの尿素水溶 液の供給量がQLとなるように制御される。

【0035】本発明による実施例では、このようにNO x 還元触媒18の尿素貯蔵・放出機能を考慮して尿素の 供給量を求めている。従って、アンモニア酸化触媒温度 TACが最適温度範囲内にあるときに、実際の当量比が 1以下になり或いは5よりも大きくなる可能性がある。 また、アンモニア酸化触媒温度TACが最適温度範囲内 にないときに、実際の当量比が1よりも大きくなる可能

【0036】上述の実施例では、NOx 還元触媒18と アンモニア酸化触媒21とは別体とし、アンモニア酸化

【図2】

触媒21をNOx 還元触媒18下流の排気通路内に配置 している。しかしながら、NOx 還元触媒18とアンモ ニア酸化触媒21とを共通の担体上に配置してアンモニ ア酸化触媒21をNOx 還元触媒18内に配置するよう にしてもよい。

【0037】また、これまで本発明についてアンモニア 発生化合物を含む液体として尿素水溶液を用いた場合を 例にとって説明してきた。この場合、前述したようにア ンモニア発生化合物として尿素以外のものを用いること もできるし、溶剤として水以外のものを用いることがで きる。更に、アンモニア発生化合物を含む液体と共にア ンモニア水或いはアンモニアを含むガスを排気通路内に 供給することもできる、この場合、アンモニアを含むガ スは固体尿素を用いて生成することができる。

[0038]

【発明の効果】大気中に排出されるアンモニア量を低減 しつつNOx 浄化率を高めることができる。

【図面の簡単な説明】

【図1】内燃機関の全体図である。

【図2】NOX 還元触媒のNOX 浄化率EFFと、アン モニア排出量Q(NH3)とを示す線図である。

【図3】アンモニア酸化触媒の浄化率EANを示す線図 である。

【図4】単位時間当たりに供給すべき尿素水溶液の量Q Lの算出ルーチンを示すフローチャートである。

【図5】尿素の当量をQEを示す線図である。

【図6】増量係数KIを示す線図である。

【図7】貯蔵係数KSを示す線図である。

【図8】放出係数KRを示す線図である。

【符号の説明】

1…機関本体

14…排気マニホルド

18…NOx 還元触媒

21…アンモニア酸化触媒

2 4…供給装置

図 3

40.41…温度センサ

【図3】

図 2 **EFF**

TAC

TL

フロントページの続き

Fターム(参考) 3G091 AA02 AA17 AA18 AB02 AB03

AB05 BA04 BA14 BA32 BA39

CA16 CA17 CB02 CB07 CB08

DA01 DA02 DB06 DB10 DB13

EA00 EA01 EA05 EA07 EA16

EA17 EA18 EA31 GA16 GB01W

GB01X GB06W GB09X GB10W

HA08 HA09 HA10 HA12 HA36

HA37 HA42

4D048 AA06 AA08 AB01 AB02 AB07

ACO4 BA07X BA11X BA23X

BA30X BA35X BA41X CC47

DA01 DA02 DA06 DA10 DA13