Miejsce na identyfikację szkoły	
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY	LISTOPAD 2012
Czas pracy: 170 minut	
Instrukcja dla zdającego	
 Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania 1.–32.). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym. W zadaniach zamkniętych (1.–23.) zaznacz poprawną odpowiedź. W rozwiązaniach zadań otwartych (24.–32.) przedstaw tok rozumowania prowadzący do ostatecznego wyniku. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. Zapisy w brudnopisie nie będą oceniane. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Życzymy powodzenia! 	Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów .
Wpisuje zdający przed rozpoczęciem pracy	KOD
PESEL ZDAJĄCEGO	ZDAJĄCEGO

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 23. wybierz i zaznacz jedna poprawna odpowiedź.

Zadanie 1. (*1 pkt*)

Wartość liczby $a = 16\sqrt[3]{4}$ jest równa wartości liczby:

A.
$$2^{\frac{4}{3}}$$

B.
$$2^{\frac{7}{3}}$$

C.
$$2^{\frac{5}{3}}$$

D.
$$2^{\frac{14}{3}}$$

Zadanie 2. (*1 pkt*)

Miejscem zerowym funkcji f określonej wzorem $f(x) = \begin{cases} x^2 - 1 & \text{dla } x \in (-\infty, -4) \\ 5x + 10 & \text{dla } x \in (-4, 2) \\ x + 4 & \text{dla } x \in \langle 2, +\infty \rangle \end{cases}$

$$A. -4$$

B.
$$-2$$

Zadanie 3. (*1 pkt*)

Funkcja f, określona wzorem $f(x) = x^2 - 3x - 4$, przyjmuje wartości ujemne jedynie w przedziale:

$$\mathbf{A} \cdot \left(-\infty, \frac{3}{2}\right)$$

$$\mathbf{B}.(-\infty,-1)\cup(4,+\infty)$$
 $\mathbf{C}.(-1,4)$ $\mathbf{D}.(-4,1)$

$$C.(-1,4)$$

D.
$$(-4, 1)$$

Zadanie 4. (1 pkt)

Wartość liczby 25^{log₅2} jest równa:

D.
$$2^5$$

Zadanie 5. (*1 pkt*)

Dany jest ciąg (a_n) o wyrazie ogólnym $a_n=-n^2+16$ dla $n\geq 1$. Liczba dodatnich wyrazów tego ciagu jest równa:

Zadanie 6. (*1 pkt*)

Kwote 10000 zł wpłacamy do banku na 4 lata. Kapitalizacja odsetek jest dokonywana w tym banku co kwartał, a roczna stopa procentowa wynosi 3%. Po 4 latach kwotę na rachunku będzie można opisać wzorem:

A.
$$10000 \cdot (1,0075)^4$$
 B. $10000 \cdot (1,03)^4$ **C.** $10000 \cdot (1,03)^{16}$ **D.** $10000 \cdot (1,0075)^{16}$

B.
$$10000 \cdot (1,03)^4$$

C.
$$10000 \cdot (1,03)^{16}$$

D.
$$10000 \cdot (1,0075)^{16}$$

Zadanie 7. (*1 pkt*)

Dane liczby: $x = \frac{3}{\sqrt{5}-2}$, $y = \frac{12}{\sqrt{5}-1} + 1$, $z = 3\sqrt{5} + 2$ tworzą rosnący ciąg arytmetyczny w koleiności. lejności:

$$\mathbf{A}.z,y,x$$

B.
$$y, x, z$$
 C. x, y, z **D.** z, x, y

$$\mathbf{C}.x,y,z$$

$$\mathbf{D}.\ z, x, y$$

Zadanie 8. (1 pkt)

Suma 2n początkowych liczb naturalnych dodatnich parzystych jest równa:

A.
$$S_{2n} = 8n^2 + 4n^2$$

A.
$$S_{2n} = 8n^2 + 4n$$
 B. $S_{2n} = 4n^2 + 2n$ **C.** $S_{2n} = 4n^2 + n$ **D.** $S_{2n} = 2n^2 + 2n$

$$\mathbf{C.}\,S_{2n}=4n^2+n$$

D.
$$S_{2n} = 2n^2 + 2n$$

Zadanie 9. (1 pkt)

W trójkacie równoramiennym wysokość jest dwa razy dłuższa od podstawy. Wynika stad, że sinus kata przy podstawie wynosi:

A.
$$\frac{\sqrt{17}}{17}$$

B.
$$\frac{\sqrt{5}}{5}$$

B.
$$\frac{\sqrt{5}}{5}$$
 C. $\frac{4\sqrt{17}}{17}$

D.
$$\frac{1}{17}$$

Zadanie 10. (*1 pkt*)

Dziedziną funkcji f, określonej wzorem $f(x) = \frac{x-5}{x^2+4}$, jest zbiór:

A.
$$R \setminus \{-4, 4\}$$

B.
$$R \setminus \{-4\}$$

D.
$$R \setminus \{5\}$$

Zadanie 11. (1 pkt)

Liczba przeciwna do liczby $a = 5^{\frac{2}{3}}$ jest:

A.
$$5^{\frac{3}{2}}$$

B.
$$-5^{\frac{3}{2}}$$
 C. $5^{-\frac{2}{3}}$

C.
$$5^{-\frac{2}{3}}$$

D.
$$-5^{\frac{2}{3}}$$

Zadanie 12. (*1 pkt*)

Wzór funkcji, której wykres powstaje przez przesunięcie wykresu funkcji f o 10 jednostek w dół, to:

A.
$$y = f(x+10)$$

B.
$$y = f(x) + 10$$
 C. $y = f(x - 10)$ **D.** $y = f(x) - 10$

$$\mathbf{C.} \ y = f(x - 10)$$

D.
$$y = f(x) - 10$$

Zadanie 13. (*1 pkt*)

Rzucono sześcienną kostką do gry. Prawdopodobieństwo, że wyrzucona liczba oczek jest liczbą pierwszą, wynosi:

A.
$$\frac{4}{6}$$

B.
$$\frac{3}{6}$$

C.
$$\frac{2}{6}$$

D.
$$\frac{1}{6}$$

Zadanie 14. (*1 pkt*)

Kąt α jest ostry i $\operatorname{tg}\alpha = \frac{12}{5}$. Wówczas $\cos \alpha$ jest równy:

A.
$$\frac{5}{12}$$

B.
$$\frac{5}{13}$$

B.
$$\frac{5}{13}$$
 C. $\frac{10}{13}$

D.
$$\frac{12}{13}$$

Zadanie 15. (*1 pkt*)

Wielomian $W = x^3 - 2x^2 - 4x + 8$ po rozłożeniu na czynniki ma postać wyrażenia:

A.
$$x^2(x-2)$$

B.
$$x^2(x-4)$$

A.
$$x^2(x-2)$$
 B. $x^2(x-4)$ **C.** $(x+2)(x-2)^2$ **D.** $(x-2)(x+2)^2$

D.
$$(x-2)(x+2)^2$$

Zadanie 16. (*1 pkt*)

Zbiór $(-\infty, -8) \cup (-4, +\infty)$ jest rozwiązaniem nierówności:

A.
$$|x-6| \le 2$$

B.
$$|x-6| \ge 2$$

B.
$$|x-6| \ge 2$$
 C. $|x+6| \le 2$

D.
$$|x+6| \ge 2$$

Zadanie 17. (*1 pkt*)

Funkcja $f(x) = 2x^2 - 4x + 5$ jest malejąca w przedziale:

$$\mathbf{A}.(2,+\infty)$$

$$\mathbf{B}.(-\infty,2)$$

$$\mathbf{B.}(-\infty,2) \qquad \qquad \mathbf{C.}(-\infty,1)$$

D.
$$(1, +\infty)$$

Zadanie 18. (*1 pkt*)

Proste l i k są prostopadłe i l: 2x - 9y + 6 = 0, k: y = ax + b. Wówczas:

A.
$$a = -\frac{2}{9}$$

B.
$$a = \frac{2}{9}$$

B.
$$a = \frac{2}{9}$$
 C. $a = -\frac{9}{2}$ **D.** $a = \frac{9}{2}$

D.
$$a = \frac{9}{2}$$

Zadanie 19. (*1 pkt*)

Iloraz ciągu geometrycznego o wyrazie ogólnym $a_n = 2 \cdot 7^n$ jest równy:

A.
$$q = 2$$

B.
$$q = 7$$

$$\mathbf{C} \cdot q = 9$$

C.
$$q = 9$$
 D. $q = 28$

Zadanie 20. (1 pkt)

Równanie $(x+6)^2 + y^2 = 4$ opisuje okrag o środku w punkcie S i promieniu r. Wówczas:

A.
$$S = (-6, 0), r = 4$$

B.
$$S = (6,0), r = 4$$

C.
$$S = (6,0), r = 2$$

A.
$$S = (-6, 0), r = 4$$
 B. $S = (6, 0), r = 4$ **C.** $S = (6, 0), r = 2$ **D.** $S = (-6, 0), r = 2$

Zadanie 21. (*1 pkt*)

Długość promienia r okręgu opisanego na kwadracie jest równa $2\sqrt{3}$. Długość boku tego kwadratu ma wartość:

A.
$$4\sqrt{3}$$

B.
$$2\sqrt{6}$$

C.
$$4\sqrt{6}$$

D.
$$2\sqrt{5}$$

Zadanie 22. (*1 pkt*)

W turnieju szachowym, rozgrywanym systemem każdy z każdym, bez rewanżu, miało brać udział 8 zawodników. Jeden z nich zrezygnował. Liczba zaplanowanych rozgrywek zmniejszyła się o:

A. 1

B. 14

C. 7

D. 8

Zadanie 23. (*1 pkt*)

Proste l i k są równoległe oraz |OA| = 6, |AB| = 10, |OC| = 48. Odcinek OD ma długość:

A. 12

B. 18

C. $\frac{18}{5}$ D. $\frac{144}{5}$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 24. do 32. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 24. (2 pkt)

W ciągu arytmetycznym (a_n) drugi wyraz jest równy 7, a szósty 17. Wyznacz pierwszy wyraz i różnicę tego ciągu.

Odpowiedź:

Zadanie 25. (2 *pkt*)

Średni wzrost sportowców w drużynie siatkarskiej, liczącej 6 chłopców, wynosił 174 cm. Po przyjęciu do zespołu dwóch braci o tej samej wysokości średnia wzrostu zwiększyła się o 0,5 cm. Oblicz, jak wysocy są bracia.

Zadanie 26. (2 pkt)

Rozwiąż równanie $2x^3 + 8x^2 - 3x - 12 = 0$.

Odpowiedź:

Zadanie 27. (2 *pkt*)

Rozwiąż nierówność $x^2 - 9 > 0$.

Zadanie 28. (2 pkt)

Dana jest liczba $a = \sqrt{\left(2 - 2\sqrt{5}\right)^2} - 2\sqrt{5}$. Wykaż, że liczba a jest całkowita.

Odpowiedź:

Zadanie 29. (2 pkt)

Długość krawędzi sześcianu zwiększono o 20%. Oblicz, o ile procent wzrosła objętość tego sześcianu.

Zadanie 30. (*5 pkt*)

Prosta y = x + 4 przecina okrąg o równaniu $(x + 1)^2 + (y - 2)^2 = 25$ w punktach A i B. Oblicz współrzędne punktów A i B, a następnie oblicz obwód trójkąta ABS, gdzie S jest środkiem danego okręgu.

Zadanie 31. (*5 pkt*)

Dany jest ostrosłup prawidłowy trójkątny. Pole powierzchni bocznej tego ostrosłupa jest równe 24, a kąt płaski ściany bocznej przy podstawie ma miarę α i tg $\alpha=2$. Wyznacz cosinus kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy.

Zadanie 32. (5 pkt)

Turysta pokonał pieszo trasę długości 30 km z miejscowości *A* do miejscowości *B* ze stałą prędkością. Rowerem poruszałby się z prędkością o 9 km/h większą i przybyłby do celu o 3 godziny wcześniej. Wyznacz prędkość marszu turysty i czas przejścia tej drogi.

