Description

Given a single query of the form "p n" or "t k", where n and k both integers values (and p or t are actual characters) you must do the following.

• isPrime query

If the query takes the form of "p n" with $0 \le n \le 100,000$, call a function bool isPrime(int n); that returns true if n is prime.

A **prime** is any integer $p \geq 2$ that is divisible only by one and itself.

Your implementation of isPrime must have running time O(n) (or better) to be considered for full credit.

As an **optional challenge** try to write an implementation that runs in $O(\sqrt{n})$ time. A hint towards this faster version is the following: for any three positive integers a, b, n such that $n = a \cdot b$, it must be either $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.

• twinPrimes query

If the query takes the form of "t k" with $1 \le k \le 1,000$, call a function void twinPrimes(int k); that prints the first k twin prime pairs, in order, one per line (see the sample output below).

A **twin prime pair** is a pair of two **primes** of the form (p, p + 2). e.g. (79559, 79561) is the 1000th twin prime pair.

The function twinPrimes can call isPrime; a solution with a hard-coded array of twin prime pairs will not be accepted. Your implementation should work for larger k in principle. For fun, try to see how large you can make k while maintaining a reasonable running time. There is not target O() running time bound for this problem, it just has to finish running within a few seconds for all possible inputs $1 \le k \le 1,000$.

To get full credit, your function signatures must be exactly written as above (eg. isPrime returns a bool and accepts only a single parameter that is of type int). You can use additional functions if needed, but you must have at least isPrime and twinPrimes with the declaration and functionality described above.

Interesting Note: Determining if there are infinitely many twin primes is still an open problem.

Input

Input will consist of a **single** query either of the form "p n" or "t k" with $0 \le n \le 100,000$ and $1 \le k \le 1,000$.

Output

In response to a query "p n" you must output "prime" if n is prime and "not prime" oth-

erwise. In response to a query "t k" you must output the first k twin prime pairs, one per line.

Submission Instructions

Submit only a single source code file twin_primes.cpp containing your solution to this interview problem. Use exactly this file name and do not zip your solution.

Sample Input 1

р 3

Sample Output 1

prime

Sample Input 2

p 6

Sample Output 2

not prime

Sample Input 3

t 4

Sample Output 3

3 5

5 7

11 13

17 19

Grading Comments

Despite the fact this appears similar to a morning problem, it will be graded like a weekly exercise. In particular:

- Style matters. Use appropriate comments, proper indentation, etc. Consult the style guide on eClass.
- You must use the function signatures bool isPrime(int n) and void twinPrimes(int k). The variable names n and k are not important, but their type is as is the return type of these functions. Deviating from this will result in a deduction.
- You must adhere exactly to the output specification: for example, if you misspell prime or print extra whitespaces then you will receive a deduction. The test centre must accept the output without any presentation error.

- You were only give a few test cases in the test centre files on eClass. We will test your solution on additional test cases that adhere to the input specification.
- Partial credit may be obtained if your solution works on some inputs but not all inputs in the described range.
- Adhere closely to the submission instructions for the weekly exercise.