Abstract Algebra

Homework 3: 3.15, 3.16, 1, 4.20, 4.21

Kenny Roffo

Due February 13 (Late)

3.15: Let G be a nonempty set and let * be an associative binary operation on G. Assume that both the left and right cancellation laws hold in (G,*). Assume moreover that G is finite. Show that (G,*) is a group.

Proof: To show (G, *) is a group, we must show that (G, *) has an identity, and inverses. We will first show the existence of the identity element:

Since G is finite, G has some number of elements, n, each denoted x_i . Consider an element, x_1 , and the corresponding list of elements of G, $x_1, x_1 * x_1, x_1 * x_2, ..., x_1 * x_n$, which has n+1 elements. Since every member of this list is an element of G, and there are more elements in the list than elements in G, it follows that there must exist some x_j such that $x_1 * x_j = x_1$. Now assume $\exists x_t$ such that $x_j * x_t \neq x_t$. This is true if and only if $x_1 * x_j * x_t \neq x_1 * x_t \iff x_1 * x_t \neq x_1 * x_t$, which is obviously false. Therefore it must be the case that $\forall x_i \in G$, $x_j * x_i = x_i$. Likewise, assume $\exists x_t$ such that $x_t * x_j \neq x_t$. This is true if and only if $x_t * x_j * x_1 \neq x_t * x_1 \iff x_t * x_1 = x_t * x_1$, which is false. Thus it must be the case that $\forall x_i \in G$, $x_i * x_j = x_i$. Therefore, there exists an element, x_j , such that $x_i * x_j = x_j * x_i = x_i$, $\forall x_i \in G$. Thus (G, *) has an identity element.

We must now show that G has inverses. Let x_i be an arbitrary element of G. Then the list $x_i, x_i * x_i, ..., x_i^n$ contains n+1 elements. Since G has only n elements, two elements of the list must be equal, $x_i^s = x_i^t = x_i^t * e$, where sit. Using the cancellation laws, this expression simplifies to $x_i * x_i^{s-t-1} = x_i^{s-t} = x_i = e$, which implies by definition that $x_i^{s-t-1} = x_i^{-1}$. Therefore, for every $x_i \in G$, $\exists x_i^1$.

Therefore, all of the group axioms are satisfied by (G,*), so (G,*) is a group.

3.16: Consider the nonegative integers under multiplication. multiplication is an associative binary operator on the set, and the cancellation laws hold, but though 1 is the identity, inverses do not exist for all elements. Consider 2, which has inverse 1/2. 1/2 is not a nonnegative integer, so the inverse for 2 is not in the set. Therefore the nonegative integers under multiplication do not form a group.

1: Find a group, G, with $(x * y)^{-1} \neq x^{-1} * y^{-1} \forall x, y \in G$:

Consider the group $GL(2,\mathbb{R})$ under matrix multiplication. Let $x=\begin{pmatrix}1&1\\1&2\end{pmatrix}$ and $y=\begin{pmatrix}1&2\\1&1\end{pmatrix}$. Then $x^{-1}=\begin{pmatrix}-1&1\\2&-1\end{pmatrix}$ and $y^{-1}=\begin{pmatrix}-1&2\\1&-1\end{pmatrix}$. We see $x*y=\begin{pmatrix}1&1\\1&2\end{pmatrix}\cdot\begin{pmatrix}1&2\\1&1\end{pmatrix}=\begin{pmatrix}2&3\\3&5\end{pmatrix}$. Taking the inverse we have $(x*y)^{-1}=\begin{pmatrix}5&-3\\-3&2\end{pmatrix}$. Also $x^{-1}*y^{-1}=\begin{pmatrix}-1&1\\2&-1\end{pmatrix}\cdot\begin{pmatrix}-1&2\\1&-1\end{pmatrix}=\begin{pmatrix}2&-3\\-3&5\end{pmatrix}$. Notice that $(x*y)^{-1}\neq x^{-1}*y^{-1}$, so we have found a group such that it is not the case for all elements x,y in the group that $(x*y)^{-1}=x^{-1}*y^{-1}$.

4.20: Let G be a group and let $a \in G$. An element $b \in G$ is called a *conjugate* of a if there exists an element $x \in G$ such that $b = xax^{-1}$. Show that any conjugate of a has the same order as a.

Let $a, b, y \in G$ such that $a = wbw^{-1}$. Then b is a conjugate of a. Let r = o(a). We must show $o(wbw^{-1}) = r$. First we will show that for some x, y in any group, $(yxy^{-1})^m = yx^my^{-1} = e$ for all m > 0 by mathematical induction.

Let P(n) be the statement $(yxy^{-1})^m = yx^my^{-1}$. P(1) is true since $(yxy^{-1})^1 = yxy^{-1}$ and $yx^1y^{-1} = yxy^{-1}$, and $yxy^{-1} = yxy^{-1}$. Let $k \ge 1$, and assume P(k) is true. That is, assume $(yxy^{-1})^k = yx^ky^{-1}$. We see $(yxy^{-1})^{k+1} = (yxy^{-1})^k(yxy^{-1}) = (yx^ky^{-1})(yxy^{-1}) = yx^ky^{-1}yxy^{-1} = yx^kxy^{-1} = yx^{k+1}y^{-1}$. That is, $(yxy^{-1})^{k+1} = yx^{k+1}y^{-1}$, thus P(k) implies P(k+1). Therefore P(n) is true for all $n \ge 1$. Thus for all integers m > 0, $(yxy^{-1})^m = yx^my^{-1} = e$.

Now that the above equality has been proven, we have that $(wbw^{-1})^r = wb^rw^{-1} = wew^{-1} = e$. Thus, $o(wbw^{-1}) \le r$. Now let $z = wbw^{-1}$. Then $b = w^{-1}zw$, and letting $t = w^{-1}$, $b = tzt^{-1}$, thus b is a conjugate of z. Therefore, $o(b) \le o(z) = o(wbw^{-1}) = o(a) = r \le o(b)$. Thus $o(wbw^{-1} = r)$, so a conjugate of a has the same order as a.

4.21: Show that for any two elements x, y of any group G, o(xy) = o(yx):

Proof: For this proof we will consider two cases:

Case 1: Assume $o(xy) = \infty$. Assume for the sake of contradiction $o(yx) \neq \inf$. Then $\exists n \in \mathbb{Z}$ such that o(yx) = n. Then (yx)(yx)(yx)...(n times)...(yx) = e. Multiplying both sides by x on the left, we have x(yx)(yx)(yx)...(n times)...(yx) = x * e = x, and by associativity (xy)(xy)(xy)...(n times)...(xy)x = x. Applying the right cancellation law, this implies (xy)(xy)(xy)...(n times)...(xy) = e. But this implies o(xy) = n, which contradicts our assumption that $o(xy) = \infty$. Therefore if $o(xy) = \infty$ then it must be the case that

Case 2: Assume o(xy) = n for some $n \in \mathbb{Z}$. Then (xy)(xy)(xy)...(n times)...(xy) = e. Multiplying by y on the left to both sides syields y(xy)(xy)(xy)...(n times)...(xy) = y,

and by associativity, (yx)(yx)(yx)...(n times)...(yx)y = y. By the right cancellation law, we have (yx)(yx)(yx)...(n times)...(yx) = e Thus it follows that $(yx)^n = e$. If we can show no integer k < n exists such that $(yx)^k = e$, then we will have o(yx) = n. For the sake of contradiction, assume such a k exists. Then (yx)(yx)(yx)...(k times)...(yx) = e. Multiplying both sides by x on the left, we have x(yx)(yx)(yx)...(k times)...(yx) = x * e = x, and by associativity (xy)(xy)(xy)...(k times)...(xy)x = x. Applying the right cancellation law, this implies (xy)(xy)(xy)...(k times)...(xy) = e. But this implies o(xy) = k, which contradicts our assumption that o(xy) = n. Therefore no such k < n exists, so o(yx) = n.

We have shown that given $x, y \in G$, o(xy) = o(yx).