Given (x_0, \dots, x_{2^N}) , we wish to find:

$$\tilde{x}_k = \sum_{j=0}^{2^N - 1} \exp\left(-i\frac{\tau k}{2^N}j\right) x_j$$

Notice that we can decompose:

$$\tilde{x}_k = \sum_{j=0}^{2^{N-1}-1} \exp\left(-i\frac{\tau \boxed{2}k}{\boxed{2^N}}j\right) \left(x_{2j} + \exp\left(-i\frac{\tau k}{2^N}\right)x_{2j+1}\right)$$
(1)

$$= \tilde{y}_k + \exp\left(-i\frac{\tau k}{2^N}\right)\tilde{z}_k \tag{2}$$

Here, $y_j = x_{2j}$ and $z_j = x_{2j+1}$ are alternating subsequences of our original inputs. The second equality follows when we notice the boxed 2's cancel. Also note that there are only 2^{N-1} total \tilde{y} 's; after that they wrap around. Same with \tilde{z} 's.