# Scheduling Single AGV in Blocking Flow-Shop with Identical Jobs : a dynamic programming approach

#### Alessandro Minoli

University of Milan

06/02/2025



# UNIVERSITÀ DEGLI STUDI DI MILANO

## Outline

- Introduction
  - Problem description
  - Sample instance
  - State of the art
  - Trivial feasible solution
- DP Algorithm 1
  - States, label extension, dominance
  - Implementation details
  - Sample instance solution
- OP Algorithm 2
  - States, label extension, dominance
  - Implementation details
  - Sample instance solution
- Instances generation
- Computational results

# Problem description

#### Data:

- *J* identical jobs (products)
- a loading station s<sub>0</sub> (pick-up)
- M workstations  $\in \{s_1, s_2, ..., s_M\}$
- an unloading station  $s_{M+1}$  (delivery)
- $\forall i \in \{1, 2, ..., M\}, p_i \in \mathbb{N}^+$ : processing time on workstation  $s_i$
- ullet  $\forall i,j \in \{0,1,...,M+1\}, t_{ij} \in \mathbb{N}: \mathsf{AGV} \mathsf{ moving time from } s_i \mathsf{ to } s_j$ 
  - moving times are symmetrical
  - moving times respect the triangle inequality
  - moving times are the same regardless of whether the AGV is carrying a product or not

#### Constraints:

- ullet initially, all the products are in the loading station  $s_0$
- the manufacturing process of each product requires it to pass through all the workstations sequentially from  $s_1$  to  $s_M$
- ullet the products will eventually end up in the unloading station  $s_{M+1}$ 
  - $s_0$  and  $s_{M+1}$  have unlimited capacity
  - all workstations can hold a maximum of one product at a time and have no buffer
- when a product arrives at workstation s<sub>i</sub> it must be processed for p<sub>i</sub> time units; it cannot be moved to the next station until its processing is completed
- an AVG can take a product from  $s_i$  and move it to  $s_{i+1}$  ( $i \leq M$ ) only if  $s_{i+1}$  is an empty workstation or the unloading station
  - the AGV can hold a maximum of one product at a time
  - we assume that loading products onto the AGV and unloading products from it takes no time

## Objective :

 find the scheduling of AGV operations that minimizes the time to complete the manufacturing process of all products i.e. the time to get all products to the unloading station

#### Remarks:

- since all the jobs are identical, the order in which they are picked up from  $s_0$  has no influence on the completion time
- since we are dealing with a flow-shop (all products have the same sequence of workstations) and there are no buffers, no product can overtake another product on its way through the workstations
- only the order in which the products are moved between the stations influences the completion time

# Sample instance

• J = 4 , M = 3

|   | $p_1$ | <i>p</i> <sub>2</sub> | <i>p</i> <sub>3</sub> |  |  |
|---|-------|-----------------------|-----------------------|--|--|
| • | 11    | 54                    | 4                     |  |  |

|   | t <sub>ij</sub> | 0  | 1  | 2  | 3  | 4  |
|---|-----------------|----|----|----|----|----|
|   | 0               | 0  | 25 | 16 | 15 | 19 |
|   | 1               | 25 | 0  | 18 | 18 | 17 |
| • | 2               | 16 | 18 | 0  | 16 | 25 |
|   | 3               | 15 | 18 | 16 | 0  | 23 |
|   | 4               | 19 | 17 | 25 | 23 | 0  |



### Figure:

Graphical representation of the instance. Arrows indicate the path that each product must take through the workstations

## State of the art

- The reference article for this problem is:
   Scheduling Single AGV in Blocking Flow-Shop with Identical Jobs.
   E. Boom, M. Mihalák, F. Thuijsman, M.H.M. Winands (February 2024)
- The authors proposed for this problem :
  - an exact ILP-based algorithm
  - an ILP-based heuristic
  - two greedy heuristics
- The use of a dynamic programming technique seems promising for tackling the problem and it is exactly what I am experimenting with in this project

## Trivial feasible solution

- Every instance of the problem has a trivial feasible solution, the cost of which is an upper bound on its optimal completion time
- This solution consists of moving one product at a time to the unloading station, thus waiting for its processing time on each workstation
- It has the following cost :

$$UB = J \cdot \left( \sum_{i=0}^{M} t_{i,i+1} + \sum_{i=1}^{M} p_i \right) + (J-1) \cdot t_{M+1,0}$$

• The formula applied to the sample instance gives :

$$UB = 4 \cdot (69 + 82) + 3 \cdot 19 = 661$$

# DP Algorithm 1 (definitions)

### States :

```
\bullet \langle t, x, I, w_1, ..., w_M, u \rangle
                                            where:
     t \in \{0 ... UB\}
                                  elapsed time
     x \in \{0 \dots M + 1\} AGV position (station)
     I \in \{0 ... J\}
                                  # products in loading station
    w_i \in \{\bot\} \cup \{0 ... p_i\} \quad \forall i \in \{1 ... M\}
         if s_i is empty:
                               equal to \perp
         if s_i is non-empty:
                                  equal to the residual processing time
                                  of the product in workstation s;
     u \in \{0 ... J\}
                                  # products in unloading station
```

• Given  $P = \max_{i \in \{1 \dots M\}} p_i$  , number of states is  $O\left( \ UB \cdot M \cdot J^2 \cdot P^M \ \right)$ 

**Initialization**:  $\langle 0, 0, J, \bot, ..., \bot, 0 \rangle$ 

## Label extension (idea):

- From each state we can make moves composed of these actions :
  - from the current station  $s_x$  we move the AGV to a station  $s_y$ , which can be :
    - a) the loading station  $s_0$  if it is non-empty and  $s_1$  is empty
       b) a workstation  $s_{i \in \{1...M-1\}}$  if it is non-empty and  $s_{i+1}$  is empty
       c) the workstation  $s_M$  if it is non-empty
      (null-movement is possible)
  - ullet if  $s_y 
    eq s_0$  , we wait the residual processing time of the product on  $s_y$
  - we transport the product from  $s_y$  to  $s_{y+1}$  by AGV (or, if  $s_y = s_0$ , any of the products in  $s_0$ )
- For each state : 0 < # possible extensions  $\leq \lfloor M/2 \rfloor + 1$
- The cost of the optimal solution is :

$$z^* = \min \{ t \mid \langle t, M+1, 0, \bot, ..., \bot, J \rangle \text{ is reached } \}$$

## Label extension (formalized):

notation :

$$w_i'(e) = \begin{cases} \bot & \text{if } w_i = \bot \\ \max \{ 0, w_i - e \} & \text{otherwise} \end{cases}$$
 (1)

ullet case a) movement towards the loading station  $s_0$ 

$$S = \langle t, x, I > 0, w_1 = \bot, w_2, ..., w_M, u \rangle$$

- t<sub>x,0</sub> passes
- at s<sub>0</sub> no processing time passes
- t<sub>0,1</sub> passes
- $e := t_{x,0} + t_{0,1}$

$$S_{next} = \langle t + e, 1, I - 1, w_1 = p_1, w_2'(e), ..., w_M'(e), u \rangle$$

ullet case b) movement towards a workstation  $s_{i \in \{1...M-1\}}$ 

$$S = \langle t, x, I, w_1, ..., w_i \neq \bot, w_{i+1} = \bot, ..., w_M, u \rangle$$

- t<sub>x, i</sub> passes
- at  $s_i$  passes  $t_p = \max \{ 0, w_i t_{x,i} \}$
- $t_{i, i+1}$  passes
- $e := t_{x,i} + t_p + t_{i,i+1}$

$$S_{next} = \langle t + e, i + 1, I, w'_1(e), ..., w_i = \bot, w_{i+1} = p_{i+1}, ..., w'_M(e), u \rangle$$

case c) movement towards the workstation s<sub>M</sub>

$$S = \langle \ t \,, \ x \,, \ I \,, \ w_1 \,, \ ... \,, \ w_{M-1} \,, \ w_M \neq \bot \,, \ u \ \rangle$$

- t<sub>x, M</sub> passes
- at  $s_M$  passes  $t_p = \max \{ 0, w_M t_{x,M} \}$
- t<sub>M,M+1</sub> passes
- $e := t_{X,M} + t_D + t_{M,M+1}$

$$S_{next} = \langle t + e, M + 1, I, w_1'(e), ..., w_{M-1}'(e), w_M = \bot, u + 1 \rangle$$

#### Dominance:

Given two states

$$S' = \langle t', x', l', w'_1, ..., w'_M, u' \rangle$$
  
 $S'' = \langle t'', x'', l'', w''_1, ..., w''_M, u'' \rangle$ 

$$S' \prec S'' \Leftrightarrow t' < t''$$

$$x' = x''$$

$$l' = l''$$

$$w'_i = w''_i \quad \forall i \in \{1 \dots M\}$$

$$u' = u''$$

# DP Algorithm 1 (implementation details)

- label correcting
- for each state we keep track of the predecessor, so we can reconstruct the optimal AGV route at the end of the algorithm
- states with lower t are extended first
  - popping a state with minimum t from the pool is O(1)
  - adding a state to the pool is O(1)

#### Dominance checks:

- dominance checks done with a map H (hash-table implementation)
  - when a state  $S = \langle t, x, I, w_1, ..., w_M, u \rangle$  is visited, we consider all its components except t as key k and t as value
  - if *k* is not in *H* 
    - then we set H[k] = t
  - if k is in H and H[k] = t',
    - if t < t', then we set H[k] = t
    - otherwise, S is dominated by a previously visited state and must not be extended

# DP Algorithm 1 (sample instance solution)

 DP algorithm 1 applied to the sample instance finds an optimal AGV route represented by this sequence of states :

| t   | x | l | $w_1$ | $w_2$ | $w_3$ | $\mid u \mid$ |
|-----|---|---|-------|-------|-------|---------------|
| 0   | 0 | 4 | Т     | 1     | 1     | 0             |
| 25  | 1 | 3 | 11    | 1     | T     | 0             |
| 54  | 2 | 3 | 1     | 54    | 1     | 0             |
| 95  | 1 | 2 | 11    | 13    | T     | 0             |
| 129 | 3 | 2 | 0     | 1     | 4     | 0             |
| 156 | 4 | 2 | 0     | 1     | T     | 1             |
| 191 | 2 | 2 | T     | 54    | T     | 1             |
| 232 | 1 | 1 | 11    | 13    | T     | 1             |
| 266 | 3 | 1 | 0     | 1     | 4     | 1             |
| 293 | 4 | 1 | 0     |       | 1     | 2             |
| 328 | 2 | 1 | T     | 54    | T     | 2             |
| 369 | 1 | 0 | 11    | 13    | T     | 2             |
| 403 | 3 | 0 | 0     | 1     | 4     | 2             |
| 439 | 2 | 0 | Т     | 54    | 0     | 2             |
| 478 | 4 | 0 | 1     | 15    | T     | 3             |
| 519 | 3 | 0 | Τ     | 1     | 4     | 3             |
| 546 | 4 | 0 | Т     | Т     | T     | 4             |

•  $z^* = 546$  (17.4 % improvement wrt UB = 661)

# DP Algorithm 2 (definitions)

#### States:

• Given  $C_k :=$  completion time of product k on its current station , we define the earliest service time of k as  $E_k := \max \{ C_k, t + t_{x,x_k} \}$  i.e. the first instant at which k can be moved to  $x_k + 1$ 

• 
$$\langle \ t \ , \ x, \ x_1 \ , \ \dots, \ x_J \ , \ e_1 \ , \ \dots, \ e_J \ \rangle$$
 where : 
$$t \in \{0 \dots UB\} \qquad \text{elapsed time}$$
 
$$x \in \{0 \dots M+1\} \qquad \text{AGV position}$$
 
$$x_k \in \{0 \dots M+1\} \qquad \forall k \in \{1 \dots J\} \ , \text{ product position}$$
 
$$\forall k \in \{1 \dots J-1\} \ , \ x_k \leq x_{k+1}$$
 
$$e_k \in \{\bot\} \cup \{0 \dots UB\} \qquad \forall k \in \{1 \dots J\}$$
 if  $x_k < M+1$  : equal to  $E_k$  if  $x_k = M+1$  : equal to  $\bot$ 

ullet The number of states is  $O\left(\ (\textit{UB}\cdot\textit{M})^{\textit{J}+1}\ 
ight)$ 

## Initialization : $\langle 0, 0, 0, ..., 0, 0, ..., 0 \rangle$

## Label extension (idea):

- ullet From each state the possible moves and the # possible extensions are the same as in the previous algorithm
- The cost of the optimal solution is :

$$z^* = \min \{ t \mid \langle t, M+1, M+1, ..., M+1, \bot, ..., \bot \rangle \text{ is reached } \}$$

## Label extension (formalized):

- $S = \langle t, x, x_k \ \forall k \in \{1 \dots J\} \ , e_k \ \forall k \in \{1 \dots J\} \ \rangle$
- ullet we move towards  $x_{lpha}$  i.e. the current station of product  $lpha \in \{1 \dots J\}$ 
  - if  $x_{\alpha}=0$  we can move  $\alpha$  forward only if no other product  $\alpha'>\alpha$  has  $x_{\alpha'}=0$
  - if  $x_{\alpha} = M + 1$  we cannot move  $\alpha$  forward
  - if  $x_{\alpha+1} > x_{\alpha} + 1 \ \lor \ x_{\alpha} + 1 = M + 1$  we can move  $\alpha$  forward
- $\bullet \ \ S_{\textit{next}} = S' = \langle \ t' \,, \ x' \,, \ x'_k \ \ \forall k \in \{1 \ldots J\} \ \ , \ e'_k \ \ \forall k \in \{1 \ldots J\} \ \ \rangle$ 
  - $t' = \max \{ t + t_{x, x_{\alpha}}, e_{\alpha} \} + t_{x_{\alpha}, x_{\alpha}+1}$
  - $x' = x_{\alpha} + 1$
  - $\bullet \ x'_k = \begin{cases} x_k + 1 & \text{if } k = \alpha \\ x_k & \text{otherwise} \end{cases}$

• 
$$\mathbf{e}_k' = \begin{cases} \bot & \text{if } \mathbf{e}_k = \bot \lor (k = \alpha \land x_\alpha' = M + 1) \\ t' + p_{x_\alpha'} & \text{if } k = \alpha \land x_\alpha' \neq M + 1 \\ \max \left\{ \mathbf{e}_k, t' + t_{x', x_k'} \right\} & \text{otherwise} \end{cases}$$

#### **Dominance**:

Given two states

$$\begin{array}{l} S' = \langle \ t' \ , \ x' \ , \ x'_k \ \ \forall k \in \{1 \dots J\} \ \ , \ \ e'_k \ \ \forall k \in \{1 \dots J\} \ \ \rangle \\ S'' = \langle \ t'' \ , \ x'' \ , \ x''_k \ \ \forall k \in \{1 \dots J\} \ \ , \ \ e''_k \ \ \forall k \in \{1 \dots J\} \ \ \rangle \end{array}$$

$$S' \prec S'' \quad \Leftrightarrow \quad \forall k \in \{1 \dots J\} \mid x'_k < M + 1$$

$$\left( x'_k > x'''_k \wedge t' \le t'' \right) \vee \left( x'_k = x''_k \wedge e'_k \le e''_k \right)$$

As a consequence :

$$\exists k \in \{1 \dots J\} \mid x_k'' > x_k' \Rightarrow S' \not\prec S''$$

# DP Algorithm 2 (implementation details)

- Like in the previous algorithm :
  - label correcting
  - we keep track of each state's predecessors
  - states with lower t are extended first

#### Dominance checks:

- States that are ready to be extended are kept in a pool Q
- ullet A state S can be added to Q only if  $\sharp S' \in Q \mid S' \prec S$
- When S is added to Q then we set  $Q = Q \{ X \in Q \mid S \prec X \}$
- Computing all the required dominance checks every time we have to add a new state to the pool is too computationally expensive
- $\forall$  product  $k \in \{1 ... J\}$ ,  $\forall$  station  $i \in \{0 ... M + 1\}$  we keep:
  - a set ON[k][i] of states currently  $\in Q$  in which k is in i
  - a set GEQ[k][i] of states currently  $\in Q$  in which k is in a station  $\geq i$
  - a set LEQ[k][i] of states currently  $\in Q$  in which k is in a station  $\leq i$

• We are trying to add to Q a state

$$S = \left\langle \ t \,,\; x \,,\; x_k \ \forall k \in \left\{1 \dots J\right\} \right. \;,\; e_k \;\; \forall k \in \left\{1 \dots J\right\} \;\; \right\rangle$$

- ullet if  $\exists S' \in igcap_{k=1}^J \mathit{ON}\,[k][x_k] \mid S' \prec S$  , then S cannot be added to Q
- ullet if  $\exists S' \in igcap_{k=1}^J \mathit{GEQ}\,[k][x_k] \mid S' \prec S$  , then S cannot be added to Q
- ullet otherwise S is added to Q
- $\forall S' \in \bigcap_{k=1}^{J} ON[k][x_k] \mid S \prec S'$  must be removed from Q
- $\forall S' \in \bigcap_{k=1}^{J} LEQ[k][x_k] \mid S \prec S'$  must be removed from Q
- the vast majority of state non-pushes and removals are consequent to checks involving ON
- IDs associated to states  $\in Q$  and use of bitsets : advantages and drawbacks

# DP Algorithm 2 (sample instance solution)

 DP algorithm 2 applied to the sample instance finds an optimal AGV route represented by this sequence of states :

| t   | x | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $e_1$ | $e_2$ | $e_3$ | $e_4$ |
|-----|---|-------|-------|-------|-------|-------|-------|-------|-------|
| 0   | 0 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 25  | 1 | 0     | 0     | 0     | 1     | 50    | 50    | 50    | 36    |
| 54  | 2 | 0     | 0     | 0     | 2     | 70    | 70    | 70    | 108   |
| 95  | 1 | 0     | 0     | 1     | 2     | 120   | 120   | 106   | 113   |
| 129 | 3 | 0     | 0     | 1     | 3     | 144   | 144   | 147   | 133   |
| 156 | 4 | 0     | 0     | 1     | 4     | 175   | 175   | 173   |       |
| 191 | 2 | 0     | 0     | 2     | 4     | 207   | 207   | 245   | 上     |
| 232 | 1 | 0     | 1     | 2     | 4     | 257   | 243   | 250   |       |
| 266 | 3 | 0     | 1     | 3     | 4     | 281   | 284   | 270   |       |
| 293 | 4 | 0     | 1     | 4     | 4     | 312   | 310   | 1     |       |
| 328 | 2 | 0     | 2     | 4     | 4     | 344   | 382   | T     |       |
| 369 | 1 | 1     | 2     | 4     | 4     | 380   | 387   | 1     |       |
| 403 | 3 | 1     | 3     | 4     | 4     | 421   | 407   | 1     |       |
| 439 | 2 | 2     | 3     | 4     | 4     | 493   | 455   | 1     | T     |
| 478 | 4 | 2     | 4     | 4     | 4     | 503   | 1     | 1     |       |
| 519 | 3 | 3     | 4     | 4     | 4     | 523   | 1     | 1     | T     |
| 546 | 4 | 4     | 4     | 4     | 4     |       |       |       |       |

## Instances generation

- very similar to what is explained in the reference article
- we vary J and M
- ullet moving times  $t_{ij}$  are uniformly generated in an interval  $[t_{MIN}\,,\,t_{MAX}\,]$
- we set  $t_{MIN} = 15$  and  $t_{MAX} = 25$ 
  - the triangular inequality automatically holds because  $2 \cdot t_{MIN} \geq t_{MAX}$
  - average moving time is therefore 20
- we vary a parameter  $r \in \{0.1, 0.4, 0.8, 1.1, 1.4, 1.8, 2.1, 2.5, 3.0, 3.5, 4.0\}$
- ullet processing times  $p_i$  are uniformly generated in an interval  $[\,1\,,\,r\cdot 40\,]$ 
  - average processing time is therefore  $r \cdot 20$
- 5 instances for each combination of *J*, *M*, *r*

# Computational results

- AVG and MAX number of extended states
  - DP1 vs. DP2 for each r
  - DP2 percentual improvement wrt DP1
- AVG and MAX execution time
  - DP1 vs. DP2 for each r
  - DP2 percentual improvement wrt DP1
- AVG and MAX execution time
  - fixing M = 10 and varying  $J \in \{4 \dots 16\}$
  - fixing J = 10 and varying  $M \in \{4 \dots 16\}$
- the statistics for a given combination of J, M, r are only visible in the barplot if all 5 instances had an execution time < 15 minutes













r = 1.1, AVG and MAX number of extended states











r = 2.1, AVG and MAX number of extended states



r = 2.5, AVG and MAX number of extended states















## DP2 percentual improvement wrt DP1 in terms of MAX number of extended states

| J = M   | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| r = 0.1 | 0.28 | 0.28 | 0.28 | 0.35 | 0.29 | 0.33 | 0.35 | 0.34 | 0.31 | 0.32 | 0.34 | 0.36 | 0.33 |
| r = 0.4 | 0.24 | 0.22 | 0.25 | 0.24 | 0.20 | 0.30 | 0.28 | 0.30 | 0.27 | 0.30 | 0.29 | 0.30 | 0.27 |
| r = 0.8 | 0.20 | 0.30 | 0.29 | 0.21 | 0.20 | 0.21 | 0.24 | 0.22 | 0.25 | 0.18 | 0.23 | 0.28 | 0.27 |
| r = 1.1 | 0.25 | 0.38 | 0.43 | 0.31 | 0.39 | 0.39 | 0.47 | 0.42 | 0.45 | 0.42 | 0.40 | 0.52 | 0.54 |
| r = 1.4 | 0.37 | 0.50 | 0.55 | 0.54 | 0.62 | 0.55 | 0.59 | 0.60 | 0.61 | 0.62 | 0.70 | 0.68 | 0.73 |
| r = 1.8 | 0.42 | 0.50 | 0.54 | 0.61 | 0.65 | 0.60 | 0.68 | 0.66 | 0.65 | 0.71 | 0.73 | 0.68 | 0.63 |
| r = 2.1 | 0.47 | 0.55 | 0.59 | 0.61 | 0.65 | 0.64 | 0.71 | 0.71 | 0.76 | 0.70 | 0.74 | 0.74 | 0.81 |
| r = 2.5 | 0.59 | 0.55 | 0.65 | 0.65 | 0.74 | 0.78 | 0.76 | 0.84 | 0.77 | 0.79 | 0.83 | 0.82 |      |
| r = 3.0 | 0.59 | 0.64 | 0.81 | 0.74 | 0.78 | 0.82 | 0.82 | 0.84 | 0.85 | 0.86 | 0.94 | 0.88 |      |
| r = 3.5 | 0.76 | 0.67 | 0.77 | 0.83 | 0.91 | 0.89 | 0.95 | 0.90 | 0.91 | 0.95 |      |      |      |
| r = 4.0 | 0.79 | 0.67 | 0.84 | 0.93 | 0.96 | 0.97 | 0.97 | 0.95 | 0.98 | 0.00 |      |      |      |





## r = 0.4, AVG and MAX execution time



## r = 0.8, AVG and MAX execution time



## r = 1.1, AVG and MAX execution time



## r = 1.4, AVG and MAX execution time







## r = 2.1, AVG and MAX execution time



## r = 2.5, AVG and MAX execution time



## r = 3.0, AVG and MAX execution time



## r = 3.5, AVG and MAX execution time



## r = 4.0, AVG and MAX execution time



# DP2 percentual improvement wrt DP1 in terms of MAX execution time

| J = M   | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15    | 16    |
|---------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|
| r = 0.1 | 0.01 | 0.59 | 0.61 | 0.65 | 0.62 | 0.65 | 0.61 | 0.59 | 0.48 | 0.44 | 0.37 | 0.07  | -0.69 |
| r = 0.4 | 0.44 | 0.35 | 0.58 | 0.59 | 0.53 | 0.60 | 0.57 | 0.54 | 0.48 | 0.42 | 0.21 | -0.04 | -0.71 |
| r = 0.8 | 0.29 | 0.60 | 0.65 | 0.56 | 0.55 | 0.51 | 0.53 | 0.47 | 0.42 | 0.28 | 0.21 | -0.10 | -0.85 |
| r = 1.1 | 0.53 | 0.54 | 0.67 | 0.61 | 0.63 | 0.59 | 0.67 | 0.58 | 0.58 | 0.46 | 0.34 | 0.23  | -0.21 |
| r = 1.4 | 0.55 | 0.70 | 0.70 | 0.72 | 0.77 | 0.68 | 0.74 | 0.72 | 0.69 | 0.66 | 0.66 | 0.49  | 0.34  |
| r = 1.8 | 0.55 | 0.33 | 0.75 | 0.77 | 0.79 | 0.61 | 0.80 | 0.76 | 0.73 | 0.72 | 0.68 | 0.38  | 0.03  |
| r = 2.1 | 0.70 | 0.73 | 0.73 | 0.76 | 0.81 | 0.77 | 0.82 | 0.78 | 0.81 | 0.70 | 0.68 | 0.43  | 0.66  |
| r = 2.5 | 0.87 | 0.76 | 0.80 | 0.81 | 0.93 | 0.64 | 0.85 | 0.89 | 0.81 | 0.76 | 0.75 | 0.59  |       |
| r = 3.0 | 0.60 | 0.78 | 0.88 | 0.82 | 0.86 | 0.89 | 0.88 | 0.88 | 0.86 | 0.81 | 0.90 | 0.69  |       |
| r = 3.5 | 0.02 | 0.66 | 0.87 | 0.90 | 0.95 | 0.93 | 0.96 | 0.91 | 0.91 | 0.92 |      |       |       |
| r = 4.0 | 0.83 | 0.78 | 0.90 | 0.96 | 0.98 | 0.98 | 0.98 | 0.95 | 0.98 |      |      |       |       |







