Ce rapport présente une étude comparative des performances de recherche dans des arbres binaires restructurés selon différentes stratégies de rotation.

N.B. Pour la construction de l'arbre de recherche binaire BST2, les mots commençant par des lettres qui sont supérieures à X, Y ou Z ont été placés en haut de l'arbre, et les mots commençant par X, Y ou Z ont été placés au milieu de l'arbre. Ces opérations utilisent le même principe de rotation que dans BST1 et BST3.

1 Recherche par intervalle de mots

Le diagramme en barres représente le nombre total de nœuds traversés \mathbf{T} par simulation de recherche par intervalle de mots dans $\mathbf{BST0}$ et le triplet ($\mathbf{BST1},\ \mathbf{BST2},\ \mathbf{BST3}$). L'intervalle [$Mot_1,\ Mot_2$] est choisi aléatoirement avec ($Mot_1,\ Mot_2$) $\in E \times E$, où E désigne l'ensemble des mots extraits d'un fichier F comportant $N \geq 10000$ mots générés aléatoirement. Sur un total de n=20 simulations, les arbres restructurés montrent un gain moyen d'efficacité de

$$\Delta = \frac{1}{n} \sum_{i=1}^{n} \frac{T_{BST0_i} - T_{trip_i}}{T_{BST0_i}} \times 100\% \approx \mathbf{18,01\%}.$$

1.1 Conclusion

Les résultats confirment que la structure de l'arbre a une influence déterminante sur l'efficacité des recherches par intervalle. Les arbres réorganisés (BST1, BST2, BST3) permettent une traversée plus optimisée par rapport à BST0.

2 Recherche d'un mot singulier

Simulation	BST0 Success	Trip Success	BST0 Fail	Trip Fail
1	202208	196661	213834	208672
2	176058	107182	185608	114835
3	344407	243260	361772	264494
4	176926	149447	188242	162744
5	257580	258002	270961	271621
6	342569	302064	359218	320142
7	239588	215981	252928	228388
8	237836	168530	250717	184298
9	175482	101420	185636	108164
10	195827	162168	207011	174822
11	192089	132641	203490	147335
12	334090	191057	348644	200564
13	186229	161419	195204	172670
14	234401	206047	247620	221451
15	221835	204598	234046	215939
16	219237	116837	228831	123187
17	188176	145488	198518	159420
18	206515	129790	218075	139301
19	240805	225531	253708	238425
20	309044	300473	325719	318011

Le tableau détaille, pour chaque simulation, le nombre de nœuds traversés en distinguant les cas de succès et d'échec pour les arbres **BST0** et (**BST1**, **BST2**, **BST3**). Le diagramme en barres, quant à lui, représente la somme totale des nœuds traversés \mathbf{T}' (Succès + Échec) pour chacun des deux types d'arbre, afin d'offrir une vision globale de leur performance. Les mots Mot sont choisis aléatoirement, avec $Mot \in E$. Pour n=20 simulations, on observe que le triplet d'arbres montre un gain moyen d'efficacité de $\Delta \approx \mathbf{20,32\%}$, en considérant l'ensemble des cas de succès et d'échec.

2.1 Conclusion

La simulation met en évidence l'impact de la structure des arbres sur les performances de recherche d'un mot singulier. Le triplet d'arbres réorganisé (BST1, BST2, BST3) permet une exploration plus efficace que l'arbre de référence BST0.

3 Conclusion globale

En résumé, les simulations confirment que la réorganisation des arbres améliore significativement l'efficacité des recherches, aussi bien pour des mots isolés que pour des intervalles, en réduisant le coût moyen de parcours des nœuds.