CS 390 HW 4 Q2

Aaryan Wadhwani

A polynomial time algorithm for (3) k-occurrence-SAT implies a polynomial time algorithm for (CNF-)SAT.

Reduction from CNF-SAT to 3-Occurrence-SAT

Transformation Steps

Replace Repeated Variables

For each variable x_i that appears t times in ϕ , create t new variables $x_{i,1}, x_{i,2}, \ldots, x_{i,t}$. Replace the j-th occurrence of x_i (or $\neg x_i$) in ϕ with the corresponding copy $x_{i,j}$. After this step:

- Each new variable $x_{i,j}$ appears in **exactly one clause** of the original formula ϕ .
- No variable appears more than once in the transformed formula (so far).

Add Consistency Clauses

To ensure all copies of x_i have the same truth value, add a cycle of implication clauses. For example, if x_i appears t = 3 times, add the following implications:

$$x_{i,1} \to x_{i,2}, \quad x_{i,2} \to x_{i,3}, \quad x_{i,3} \to x_{i,1}.$$

Each implication $A \to B$ is logically equivalent to the clause $\neg A \lor B$. Thus, the above implications become:

$$(\neg x_{i,1} \lor x_{i,2}), (\neg x_{i,2} \lor x_{i,3}), (\neg x_{i,3} \lor x_{i,1}).$$

For a general t, add the clauses:

$$(\neg x_{i,1} \lor x_{i,2}), (\neg x_{i,2} \lor x_{i,3}), \ldots, (\neg x_{i,t-1} \lor x_{i,t}), (\neg x_{i,t} \lor x_{i,1}).$$

These clauses enforce that all copies $x_{i,1},\ldots,x_{i,t}$ must be logically equivalent.

Count Variable Occurrences

After Step 2:

- Each $x_{i,j}$ appears in 1 original clause (from Step 1).
- Each $x_{i,j}$ appears in **2 implication clauses** (from Step 2: one as $\neg x_{i,j}$, one as $x_{i,j}$).

Thus, every variable in the new formula ϕ' has exactly 3 occurrences.

Proof of Correctness

Forward Direction (ϕ is satisfiable) $\Rightarrow \phi'$ is satisfiable)

Suppose ϕ has a satisfying assignment. For each variable x_i in ϕ , assign all its copies $x_{i,1}, x_{i,2}, \ldots, x_{i,t}$ the same value as x_i .

- Original Clauses: Satisfied because we replaced x_i with copies that match x_i 's value.
- Consistency Clauses: Satisfied because all copies of x_i are equal. For example:
 - If $x_{i,1}$ = True, then $x_{i,2}$ = True (from $x_{i,1} \rightarrow x_{i,2}$).
 - If $x_{i,1}$ = False, then $\neg x_{i,1}$ = True, so $(\neg x_{i,1} \lor x_{i,2})$ is satisfied regardless of $x_{i,2}$.

Reverse Direction (ϕ' is satisfiable $\Rightarrow \phi$ is satisfiable)

Suppose ϕ' has a satisfying assignment. The consistency clauses force all copies $x_{i,1}, \ldots, x_{i,t}$ to have the same value. To see why, consider the implications:

- $x_{i,1} \to x_{i,2}$ (i.e., $\neg x_{i,1} \lor x_{i,2}$): If $x_{i,1} = \text{True}$, then $x_{i,2} = \text{True}$.
- $x_{i,2} \to x_{i,3}$ (i.e., $\neg x_{i,2} \lor x_{i,3}$): If $x_{i,2} = \text{True}$, then $x_{i,3} = \text{True}$.
- . .
- $x_{i,t} \to x_{i,1}$ (i.e., $\neg x_{i,t} \lor x_{i,1}$): If $x_{i,t} = \text{True}$, then $x_{i,1} = \text{True}$.

This creates a cycle where all $x_{i,j}$ must be equal. Now, assign each original x_i the value of its copies. This assignment satisfies ϕ because every original clause in ϕ was satisfied by at least one copy in ϕ' .

Why the Cycle Ensures Equality

The cyclic implications ensure that all copies $x_{i,1}, x_{i,2}, \ldots, x_{i,t}$ are equal. Here's why:

- Suppose $x_{i,1} = \text{True}$. Then:
 - $-x_{i,1} \rightarrow x_{i,2}$ forces $x_{i,2} = \text{True}$.
 - $-x_{i,2} \rightarrow x_{i,3}$ forces $x_{i,3} = \text{True}$.
 - This continues until $x_{i,t} \to x_{i,1}$ forces $x_{i,1} = \text{True}$, which is consistent.
- Suppose $x_{i,1}$ = False. Then:
 - $-x_{i,1} \to x_{i,2}$ simplifies to $\neg x_{i,1} \lor x_{i,2}$. Since $\neg x_{i,1} =$ True, this clause is satisfied regardless of $x_{i,2}$.
 - However, $x_{i,2} \to x_{i,3}$ must also hold. If $x_{i,2} =$ True, then $x_{i,3} =$ True, and so on, until $x_{i,t} \to x_{i,1}$ forces $x_{i,1} =$ True, which contradicts $x_{i,1} =$ False.
 - Therefore, the only consistent assignment is $x_{i,2}$ = False, $x_{i,3}$ = False, and so on, until $x_{i,t}$ = False.

Thus, the cyclic implications force all copies $x_{i,j}$ to have the same value as $x_{i,1}$.

Polynomial-Time Argument

The transformation takes time proportional to the size of ϕ :

- Variables: If ϕ has m clauses, each variable x_i with t occurrences generates t new variables. Total new variables = O(m).
- Clauses: For each variable x_i with t occurrences, we add t new clauses. Total new clauses = O(m).

Thus, the reduction runs in linear time relative to the size of ϕ .

If 3-occurrence-SAT could be solved in polynomial time, this reduction would allow solving CNF-SAT in polynomial time.