Multivariable Analysis: Problem Set I

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set I of Multivariable Analysis 2016 at Courant Institute of Mathematical Sciences.

Question 1.

- 11. Show that K is a convex set by directly applying the definition. Sketch K in the cases n = 1, 2, 3.
 - (a) $K = \{x : |x^1| + \cdots + |x^n| \le 1\}.$
 - (b) $K = \{\mathbf{x} = c^1\mathbf{v}_1 + \dots + c^n\mathbf{v}_n, \ 0 \le c^i \le 1 \ \text{for } i = 1, \dots, n\}, \text{ where } \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for E^n . This is the *n*-parallelepiped spanned by $\mathbf{v}_1, \dots, \mathbf{v}_n$ with $\mathbf{0}$ as a vertex.

Solution. (a) Let $K = \{x: \sum_{i=1}^n |x_i| \le 1\}$, $a,b \in K$, and $t \in [0,1]$. Consider l = ta + (1-t)b and its l_1 quantity, $\sum_{i=1}^n |ta_i + (1-t)b_i|$. By the triangle inequality, it follows that

$$\sum_{i=1}^{n} |ta_i + (1-t)b_i| \leq \sum_{i=1}^{n} |ta_i| + |(1-t)b_i|$$

$$= |t| \sum_{i=1}^{n} |a_i| + |1-t| \sum_{i=1}^{n} |b_i|$$

$$\leq |t| + |1-t| = 1.$$

Hence, $l \in K$. Since x, y, t were arbitrary, we have shown that K is convex.

(b) Let $K = \{x = \sum_{i=1}^n c_i v_i | 0 \le c_i \le 1 \text{ for } i = 1, 2, ..., n\}, a = \sum_{i=1}^n a_i v_i, b = \sum_{i=1}^n b_i v_i \in K,$ and $t \in [0, 1]$. Consider l = ta + (1 - t)b. It follows that

$$ta + (1 - t)b = t \sum_{i=1}^{n} a_i v_i + (1 - t) \sum_{i=1}^{n} v_i$$
$$= \sum_{i=1}^{n} (ta_i + (1 - t)b_i)v_i.$$

As $t, a_i, b_i, 1-t$ are all non-negative, we have $0 \le ta_i + (1-t)b_i$. As $0 \le a_i, b_i \le 1$, we obtain $ta_i + (1-t)b_i \le t+1-t=1$, which combined with the previous inequality gives $0 \le ta_i + (1-t)b_i \le 1$. Hence, $l \in K$. Since x, y, t were arbitrary, we have shown that K is convex.

Question 2.

- 10. Show that:
 - (a) $int(A \cup B) \supset (int A) \cup (int B)$.
 - (b) $\operatorname{cl}(A \cap B) \subset (\operatorname{cl} A) \cap (\operatorname{cl} B)$.

Give examples in which = does not hold.

Solution. (a) Let $x \in \operatorname{Int} A \cup \operatorname{Int} B$. It follows that there exists a neighborhood of x contained in A or exists a neighborhood of x contained in B, respectively denoted as U_A and U_B . If we have the existence of U_A , it follows that $x \in U_A \subset A \subset A \cup B$. Likewise, if we have the existence of U_B , it follows that $x \in U_B \subset B \subset A \cup B$. Therefore, we have x is an interior point of $A \cup B$. Since x was arbitrary, we have shown that $\operatorname{Int} A \cup \operatorname{Int} B \subset \operatorname{Int}(A \cup B)$. We now show that the equality does not hold, by providing a counter example. Let $A = \mathbb{Q}$, $B = \mathbb{R} \setminus \mathbb{Q}$. Then, $\operatorname{int} \mathbb{R} = \mathbb{R}$ and $\operatorname{int} \mathbb{Q} = \emptyset$ and $\operatorname{int} \mathbb{R} \setminus \mathbb{Q} = \emptyset$. Since $\mathbb{R} \not\subset \emptyset$, we have shown that the equality does not hold.

(b) Firstly, taking complements on both sides shows that the given inclusion is equivalent to

$$(\operatorname{cl} A \cap \operatorname{cl} B)^c \subset (\operatorname{cl} (A \cap B))^c$$
.

By DeMorgan's laws, we have that the above inclusion is equivalent to

$$(\operatorname{cl} A)^c \cup (\operatorname{cl} B)^c \subset (\operatorname{cl} (A \cap B))^c.$$

Using the fact that $(clA)^c = int(A^c)$, for any arbitrary set $A \subset E^n$, the above inclusion is equivalent to

$$\operatorname{int} A^c \cup \operatorname{int} B^c \subset \operatorname{int} ((A \cap B)^c).$$

Again, by DeMorgan's laws, the above inclusion is equivalent to

$$\operatorname{int} A^c \cup \operatorname{int} B^c \subset \operatorname{int} (A^c \cup B^c).$$

As we have shown the part (a) to be true, we are done. We now show that the equality does not hold, by providing a counter example. Let $A=\mathbb{Q},\,B=\mathbb{R}\setminus\mathbb{Q}$. Then, $\mathrm{cl}(A\cap B)=\emptyset$ and $\mathrm{cl}(A)\cap\mathrm{cl}(B)=\mathbb{R}$. Since $\mathbb{R}\not\subset\emptyset$, we have shown that the equality does not hold.

Question 3.

. .

12. Let A and B be convex subsets of E^n . The *join* of A and B is the set of all x such that x lies on a line segment with one endpoint in A and the other in B. Show that the join of A and B is a convex set.

Solution. Let join(A, B) be the join of A and B, $\lambda \in [0, 1]$, and $x_1, x_2 \in join(A, B)$. Consider $\lambda x_1 + (1 - \lambda)x_2$. It follows that

$$\lambda x_1 + (1 - \lambda)x_2 = \lambda(t_1 a_1 + (1 - t_1)b_1) + (1 - \lambda)(t_2 a_2 + (1 - t_2)b_2),$$

for some $a_1, a_2 \in A$, $b_1, b_2 \in B$, and $t_1, t_2 \in [0, 1]$.

Question 4.

4. Let f be a function from S into T. Show that, for any subsets A and B of S:

- (a) $f(A \cup B) = f(A) \cup f(B)$.
- (b) $f(A \cap B) \subset f(A) \cap f(B)$.
- (c) If f is univalent, then $f(A \cap B) = f(A) \cap f(B)$.

Solution. We first establish a trivial, yet central lemma: if $A \subset B$, then $f(A) \subset f(B)$. We proceed with a short proof of it for sake of completeness. Let $y \in f(A)$. Then, there exists $x \in A$ such that f(x) = y. As $A \subset B$, we have $x \in B$, and $f(x) = y \in f(B)$. hence, the lemma is true.

(a) Firstly, by the lemma, we have that $f(A) \subset f(A \cup B)$ and $f(B) \subset f(A \cup B)$. It follows that $f(A) \cup f(B) \subset f(A \cup B)$. Conversely, let $y \in f(A \cup B)$. Then, there exists $x \in A \cup B$ such that f(x) = y. If $x \in A$, then $f(x) = y \in f(A)$. Likewise if $x \in B$, then $f(x) = y \in f(B)$. Hence, $y \in f(A) \cup f(B)$. Since y was arbitrary, it follows that $f(A \cup B) \subset f(A) \cup f(B)$. This completes the proof of $f(A \cup B) = f(A) \cup f(B)$.

(b) By the lemma, we have

$$f(A \cap B) \subset f(A)$$
 and $f(A \cap B) \subset f(B)$.

It follows that $f(A \cap B) \subset f(A) \cap f(B)$.

(c) With the additional assumption of injectivity, we wish to establish $f(A) \cap f(B) \subset f(A \cap B)$. This will suffice, as we have established the reverse inclusion for a general function in part (b). Let $y \in f(A) \cap f(B)$. Then, by the injectivity of f, there exists a unique $x \in S$ such that f(x) = y. As $y \in f(A)$ and $y \in f(B)$, it follows that $x \in A \cap B$. Hence, $f(x) = y \in f(A \cap B)$. We have shown that if f is injective, we have $f(A \cap B) = f(A) \cap f(B)$.

Question 5.

3. Show that if $y_0 = \lim_{x \to x_0} f(x)$, then $|y_0| = \lim_{x \to x_0} |f(x)|$. Prove that the converse holds if $y_0 = 0$.

Solution. Before proceeding to the main part of the proof, we prove the following lemma, which is a mere consequence of the triangle inequality: Let $x,y\in E^n$. Then, ||x|-|y||<|x-y|. The proof is as follows: Let $x,y\in E^n$. Then, by the triangle inequality, we obtain

$$|x| = |x - y + y|$$

$$\leq |x - y| + |y|.$$

By subtracting both sides with |y|, we have $|x|-|y| \le |x-y|$. By symmetry, we further obtain $|y|-|x| \le |x-y|$, thereby showing that ||x|-|y|| < |x-y| as required.

We now proceed with the main part of the proof. Assume that $y_0 = \lim_{x \to x_0} f(x)$. Then, by definition, for every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - y_0| < \epsilon$ whenever $0 < |x - x_0| < \delta$. Fix $\epsilon > 0$. Let $\delta > 0$ be chosen such that $|f(x) - y_0| < \epsilon$ whenever $0 < |x - x_0| < \delta$, which exists by the assumption. But, by the lemma, whenever $0 < |x - x_0| < \delta$, we have

$$||f(x)| - |y_0|| \le |f(x) - y_0| < \epsilon.$$

Since $\epsilon > 0$ was arbitrary, we have shown that $|y_0| = \lim_{x \to x_0} |f(x)|$.

Now assume that $0=\lim_{x\to x_0}|f(x)|$. Then, by definition, for every $\epsilon>0$, there exists $\delta>0$ such that $||f(x)|-0|<\epsilon$ whenever $0<|x-x_0|<\delta$. The above implies that for every $\epsilon>0$, there exists $\delta>0$ such that $|f(x)|<\epsilon$ whenever $0<|x-x_0|<\delta$. This is precisely, $y_0=0=\lim_{x\to x_0}f(x)$. Hence, we are done.