

x: 7 6.66 5.86

n: 15 16 17 18 19 20 21 ...
x: 3 5 4 5 4 5 3 Supp[X]={3,...}

5.05 ≈ 4.5 balance point

x: 2 3 1 2 2 1 5 Supp[X]={1,...}

3.05 ≈ 3 balance point

	out is 1:1 (bet \$1 win \$1) 8 r.v. model of the payout of this b	Roulette i total of 38 po 18 to 18 to 2 gr	ckets: black		
meaning if you p	ion? = \$1·p(\$1) + (-\$1)·p(-\$1) = \$1·18/ ₃₈ + (-\$1)·20/ ₃₈ = - \$0.053 Play many times on average ≈5.3 cents (per play)	the more you play to you loose in a long loose everything - you	the more run you'll X you can't	$_{1}$, X_{2} ,, $X_{n} \stackrel{\text{iid}}{\sim} \begin{cases} s \\ -s \end{cases}$ $\underset{n \to \infty}{\text{Lim}} T_{n} = s$	
·	7. Payout is 35:1 (bet \$1 win \$	total of 38 po	ockets: black	Expectation is	a 'long run' property and it m n you have only few random
$E[X] = \sum_{x \in Supp[X]} x p(x)$	= $\$35 \cdot p(\$35) + (-\$1) \cdot p(-\$1)$ = $\$35 \cdot \frac{1}{38} + (-\$1) \cdot \frac{37}{38}$ = $-\$0.053$			' '	eo draw poker duces wild ack you loose 0.5% on average
Bet on 'dozen' #		total of 38 pc		' '	'
$X \sim \begin{cases} $2 \text{ w.p.} \ ^{12}/_{38} \\ -$1 \text{ w.p.} \ ^{26}/_{3} \end{cases}$	r.v. model of the payout of this b	et 18 2 g	red reen 0 , 00		
what is the expectat $E[X] = \sum_{x \in Supp[X]} x p(x)$	ion ? = $$2 \cdot p($2) + (-$1) \cdot p(-$1)$ = $$2 \cdot {}^{12}/{}_{38} + (-$1) \cdot {}^{26}/{}_{38}$ = $-$0.053$				
	112 Payout is 2:1 (bet \$1 wir	total of 37 po	•		
$\times \sim \frac{\$2 \text{ w.p.} \ ^{12}/_{37}}{\$1 \dots \ ^{25}/_{37}}$	r.v. model of the payout of this b	et 18	red reen O		
-\$1 w.p7 ₃	· 				

if X models a payout of a game, "Fair Game" is if E[X] = 0

= - \$0.027

= 8.5

Basic r.v. transportation - Uber example P(traffic) = 0.3 $W \sim \begin{cases} 7\text{min w.p. } 0.7 \\ 12\text{min w.p. } 0.3 \end{cases}$ not a Bernoulli $E[W] = \sum_{x \in \text{Supp}[X]} x \ p(x) = 7\text{min} \cdot p(7\text{min}) + 12\text{min} \cdot p(12\text{min})$ $= 7\text{min} \cdot 0.7 + 12\text{min} \cdot 0.3$

on average in all my trips the time spend in the taxi is ≈8.5 min