

Corrina Cortes & Daryl Pregibon

Stefan Steger

Überblick

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

Einleitung

Features

Scalars & Continuous Distribution

Categorical Distribution & Item Sets

Inferred (Statistical) Features

Main Effect vs Interactions

Initializing & Updating Signatures

Initializing

Updating

Applications

Customized Fraud Detection

Ausblick

Quellenangabe

Begriffserklärungen

Transaction Data Stream (TDS):

- Kontinuierlicher Datenfluss mit Aufzeichnungen von Transaktionen
 - Großes Volumen von einfachen Daten
 - Beispiel: Börsenhandel, Kredit Karten

Data Stream ⇔ Data Set

kontinuierlich ⇔ statisch

Was ist eine Signatur?

erfasst das typische Verhalten von Benutzern

Wieso der Begriff Signatur?

spiegelt den personifizierten Charakter der Daten wieder

Signature Processing

event driven ⇔ time driven

Einleitung

Features

Initializing & Updating Signatures

Application

Fraud and Intrusion Detection

Wieso Signaturen?

Real-time characterization of users

Fraud Detection Methods

- Profil-based
 - Library mit Attack Profilen
 - Signaturen werden mit diesen Profilen verglichen
- Anomaly Detection Methods
 - Signatur ist selber Basis für Vergleich
 - Abweichung zeigt evt. Betrugsversuch an

Andere Anwendungsgebiete

- Marketing Analysen
 - Usage-based profiling
 - Signatur ist Grundlage f
 ür behavioral clustering

Einleitung

Features

Initializing & Updating Signatures

Application

Beispiel

Domäne: Telekommunikation (AT&T)

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

- (International) Telecommunication Data Stream
- Call Detail Records (CDR)
- (International) Calling Signatur

Größenordnung

- Ende 1990 (international):
 - 5 Millionen Aufzeichnungen pro Tag
 - 12 Millionen Anschlüsse
- 2001 (wireless):
 - 80 Millionen Aufzeichnungen pro Tag
 - 15 Millionen Anschlüsse
- In Zukunft
 - 300 Millionen Aufzeichnungen pro Tag
 - 100 Millionen Anschlüsse

Einführung Features

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

Welche Felder der Records (Transactions) werden verwendet?

- TDS enthält viele "Rohdaten", aber nur einige sind relevant
 - Datum, Zeit, Dauer, Ursprung und Ziel des Anrufs, Bezahler des Anrufs

Wozu brauchen wir die Informationen aus den Records?

- Wollen wissen wie Kunden den Service nutzen wann, wo und warum
- geändertes Verhalten erkennen → evt. Fraud?
- geringe Nutzung → anderer Anbieter?
- neue auf den Kunden abgestimmte Services entwickeln

Scalars & Continuous Distribution

Scalars

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

Beispiel: Anzahl Anrufe zu einem bestimmten Anschluß Signature Processing

- period-by-period (time-driven)
 - Anzahl Anrufe pro Zeitperiode
- call-by-call (event-driven)
 - zusätzliches feld mit datum + zeit des letzten anrufs
 - daraus kann call rate abgeleitet werden

Continuous Distributions

Skalar nicht immer günstig

- Wenn sehr verzerrt
 - Wertebereich des Features in nichtüberlappende Behälter (bins) aufteilen
 - Danach den Wert quantisieren, in den jeweiligen Behälter tun und zählen
- Beispiel: Anrufdauer (call duration)
 - 0-100s-200s-8m-16m-32m-64m-128m-∞

Categorical Distributions & Item Sets

Categorical Distributions

- Behälter sind schon Teil der Definition der Variabeln
 - z.B.: Wochentag, Region der welt

Item Sets

- Categorical Variables mit vielen Werten
 - z.B.: Liste Internationale Rufnummern → ca. 100 Millionen Behälter
- Wollen Ziel von Anrufen zurückverfolgen
 - Liste ist zu groß um sie bei jedem account mitzuführen,
 - nur ein kleines Subset wird überhaupt angerufen
 - die besten k-Länder verwendet und eine Kategorie Rest.
- Behälter können sich mit der Zeit ändern

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

5

Inferred (Statistical) Features

Inferred (Statistical) Features

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

Beispiel: Bizocity - geschäftlicher oder privater Anschluß

- im CDR gibt es kein Feld dafür. Was also machen?
- man nimmt jeweils 1 Million bekannte geschäftliche und private Anschlüsse
- vergleicht date, time, duration and type of destination
- konstruieren jeweils einen Predictor Vector der Anrufe sortiert
- alle Vektoren werden mit Label (geschäftlich / privat) versehen
- Benutzen Regression Model um die Parameter der Scoring Funktion vorherzusagen (coefficients)

Coeffients of a logistic regresion model business-like behavior (dark) or residence-like behavior (light).

5

Main Effects versus Interactions

Main Effects versus Interactions

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

- Signaturen können sehr groß werden
 - Signaturgröße: 100 Million Accounts * 500-600 bytes → 46-56 GB

Main Effect (voneiander möglichst unabhängige Features)

Interactions (Verknüpfungen zwischen Features)

- Nachteil: explosionsartige Anstieg der Signaturgröße
- Beispiel: International Calling Signature
 - Time of day ⇔ weekend / weekday
 - Time of day ⇔ day of week ist schon zu groß, 120 integer werte mehr → Signaturgröße steigt um 180 GB an
- ist die statistische Sicherheit der extra Zellen gewährleistet?
- enthalten die neuen Zellen tatsächlich auch neue Informationen?
 - Gibt es wirklich mehr Betrugsfälle am Mittwochnachmittag?
- tradeOff zwischen zu erwartenden Zugewinn durch Interaktionen und Speicherplatz

Initializing Signatures

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

Wieso müssen Signaturen Initialisiert werden?

- für alle Anschlüsse müssen Signaturen vorhanden sein
- es entstehen ständig neue Anschlüsse bis zu 50 000 täglich
- es kann Wochen dauern bis eine verlässliche Signatur entstanden ist

Wie wird Initialisiert?

- es werden Äquivalenzklassen von Anschlüssen gebildet + Evolution der Signaturen werden verfolgt
- neuer Anschluß → identifizieren der Äquivalenzklasse und initialisieren des Anschlusses mit der Durchschnittsignatur
- Ist äquivalent zu einer nearest neighbor classification

Wie finde ich die Aquivalenzklasse?

- man untersucht die ersten Anrufe es reichen die ersten beiden
- timestamps → Vorhersage von calling rate & calling duration
- timestamps → Vorhersage von bizocity
- bizocity → Vorhersage von day of week und time of day
- destination → Vorhersage von region of world (top-k item list wird initialisiert)
- Ist alles nicht sehr präzise, reicht aber dennoch

Updating Signatures

Outliers

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

- falls neuer Record zu sehr von Signatur abweicht gibt es kein Update
 - könnte ein Betrugsversuch sein

Event-driven vs Time-driven

Ablauf des Updates

- Signatur von Disk / Memory lesen
- 2. Werte in der Signatur verändern
- 3. Signatur zurück auf Disk / Memory schreiben

Nachteile und Vorteile der beiden Ansätze:

- event-driven
 - sehr zeitnah
 - I/O Anforderungen können bei größeren Datenbanken beachtlich sein.
 - Variabeln wie weekly calling rate sind schwerer vorherzusagen
- time-driven
 - weniger I/O gebunden
 - temporärer Speicherbedarf kann sehr groß werden
 - meisten t\u00e4gliches time-driven updateing → brauchen disk-space f\u00fcr die Daten eines Tages
- Fraud-Detection-Systeme erfordern event-driven updating

Updating Signatures

Updating Algorithm

 S_{t} : Signature zum Zeitpunkt t

R : Record / Set of Records

 $\Delta = \Delta(R)$: transformiertes R

arepsilon : Grenzewert für Outliers

: Heuristic blending factor

$$S_{t+1} = \begin{cases} S_t & if |S_t - \Delta| > \varepsilon \\ \Theta S_t + (1 - \Theta)\Delta & otherwise \end{cases}$$

 $0 < \varepsilon < \infty$

 $0 \le \Theta \le 1$

Heuristic blending factor

time-driven

- ist Θ konstant
- Wert hängt vom gewünschten Zeitfenster ab
 - $0.85 \rightarrow 30$ Tage; $0.5 \rightarrow 7$ Tage

event-driven

- ist Θ Funktion der record interrarival time
 → Zeitfenster ist konstant
- ist $\Theta = \Theta(\text{calling rate})$
 - → Bedeutung eines neuen Records hängt vom Benutzerverhalten ab

Application
Ausblick

Einleitung

Features

Updating

Signatures

Initializing &

Updating Item Sets

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

Updating Item Sets

- Item Sets werden etwas anders aktualisiert
 - da die Item Liste sich mit der Zeit ändert

Item Set Updating Algorithm

- wenn der Record ein Item aus der Item Liste enthält wird diese einfach aktualisiert
- Ansonsten wird eine Zufallszahl generiert
- Die top-k-Liste enthält einen "Abschußkandidaten"
 - Hängt von der Häufigkeit und Neuheit ab
- Zufallszahl wird mit der Wahrscheinlichkeit des Abschußkandidaten verglichen
 - Wenn Zufallszahl größer wird neues Item in die Liste genommen, altes fliegt raus

Customized fraud detection

- Ziel: Betrugsversuche entdecken, möglichst wenige false negatives
- Kombination von beiden Ansätzen

Anomaly Detection Methods

- Ändert sich das Verhalten stark?
- Verdächtiges Verhalten kann für einen bestimmten Account normal sein
- Mißt wie ungewöhnlich ein Anruf ist

Profile Based

- Generic Fraudster Signatur
 - Daten dazu kommen von fraud investigatores
- Anruf wird sowohl mit der Generic Fraudster Signatur als auch der Account Signatur verglichen (fraudiness)

fraudiness(call) =
$$\frac{\text{prob(call} | \text{customer signature})}{\text{prob(call} | \text{fraudster signature})}$$

- Charakterisiert einen ungewöhnlichen Anruf
- System ist aber anfällig für schleichende Unterwanderung
 - Wird allerdings vom Kunden entdeckt

Einleitung

Features

Initializing & Updating Signatures

Application

Fazit & Ausblick

Fazit

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

- Die vorgestellten Methoden k\u00f6nnen auch woanders verwendet werden
 - Finanzwesen, Handel und Gesundheitswesen
- Sind aber nicht unumstritten
 - Datenschutz, Marketing Analysen
 - Einmal verdächtig immer verdächtig?
- Man könnte noch Graphenalgos verwenden
 - Erkennen "calling circles"

- Hauptaugenmerk liegt aber auf noch größeren Datenmengen
 - Hancock
 - Ermöglicht high level programming of signature methods
 - www.research.att.com/~kfisher/hangcock/

Quellen

Einleitung

Features

Initializing & Updating Signatures

Application

Ausblick

Quellen:

Cortes C.; Pregibon D. 2001 Signature-Based Methods for Data Streams

www.wikipedia.de

Fragen?

