컴퓨터 네트워크

Introduction

- 5.1 신호
- 5.2 아날로그 신호
- 5.3 디지털 신호
- 5.4 채널 용량

정보를 신호로 변환

5.1 신호 (1/4)

전자기적인 신호

- ✓ 상대방에게 정보를 전송하기 위 해 필요
- ✓ 응용 프로그램에서 사용 가능한 정보의 종류
 - ▶ 문자, 음성, 그림 등의 형태

5.1 신호 (2/4)

신호의 종류

√

- > 연속적인 값
- 주파수에 따라 다양한 매체를 통해 전송되는 연속적으로 변 하는 전자기파

/

- > 이산적인 값
- 값이 싸고 잡음에 덜 민감, 감 쇠현상에 더 많은 피해 받음
- ▶ 도파 매체를 통해 전송되는 일련의 전압 펄스

✓ cf)

5.1 신호 (3/4)

신호의 형태

√

주기라고 불리는 패턴이 계속 반복되는 신호

 진동현상에서 진동 중심 주위로 왕복운동이 한 번 이루어지거나 물리적인 값의 요동이 한 번 일어날 때까지 걸리는 시간

■ T로 표시

5.1 신호 (4/4)

신호의 형태

✓

주기적 신호와는 반대로 시간이 지나는 동안 동일하게 반복되는 사이클이나 패턴 없이 불규칙하게 계속 변하는 신호

◆ 데이터 통신에서는

_____를 사용하거나

를 사용한다.

5.2 아날로그 신호 (1/10)

아날로그 신호의 특징

- **✓**
- ✓ ____
- \checkmark

- ✓ 파장(wavelength): 시간의 흐름이 정지된 상태에서 반복되는 모양을 주기적으로 보이는 파동을 관찰했을 때
 - , 혹은 골과 골 사이의 거리를 파동에서의 파장이라고 한다

- 叶인파(sine wave, _____正弦波)는 아날로그 주기 신호의 가장 기본적인 형태
- □ 단순 아날로그 신호(정현파)
- □ s는 순간 진폭, A는 최대 진폭, f는 주파수, Φ 는 위상이라 할때

- □ 정현파
 - ✓ sin 파형을 말하는 것
 - ✓ 시간에 따라 주기적으로 +(플러스) 마이너스(-) 변화는 것을 정현파 교류
 - ✓ 횡축과 종축에서 정현파는 sin= 0점에서 여현파는 cos=1인 지점에서 상태

5.2 아날로그 신호 (2/10)

振幅 (_____)

- ✓ _____나타냄
- ✓ 임의의 점에서의 신호가 지니는 값
- ✓ 진폭의 단위는 신호의 종류에 따라 볼트, 암페어, 와트로 측정

✓ 어떤 지점을 기준으로 하여 아래위 방향으로 주기적인 왕복 운동을 보이게 된다. 이러한 주기적인 운동에서 위치 변화가 최대로일어났을 때 진동 중심에서 이 위치까지의 거리

5.2 아날로그 신호 (3/10)

位相(_____)

- ✓ 진동이나 파동과 같이 주기적으로 반복 되는 현상에 대해 어떤 시 각 또는 어떤 지점에서의 변화의 상태
- ✓ 시각 0시에 대한 _____

5.2 아날로그 신호 (4/10)

周期(_____ Cycle 혹은 _____)와 周波數(_ ✓ 주기 ▶ 신호가 한 사이클을 이루는 데 걸린 시간을 의미 ▶ 주기 주기의 단위는 ✓ 주파수 초당 생성되는 사이클의 수를 의미 ▶ 시간에 대한 변화율로서 ▶ 주파수 주파수의 단위는 진동운동에서 물체가 일정한 왕복운동을 지속적으로 반복하여

보일 때 단위 시간당 이러한 반복 운동이 일어난 횟수

주파수와 주기 단위

Frequency		Period	
Unit	Equivalent	Unit	Equivalent
Hertz(Hz)	1 Hz	Second(s)	1 s
Kilohertz(KHz)	10 ³ Hz	Milisecond(ms)	10 ⁻³ s
Megahertz(MHz)	106 Hz	Microsecond(μs)	10 ⁻⁶ s
Gigahertz(GHz)	10 ⁹ Hz	Nanosecond(ns)	10 ⁻⁹ s
Terahertz(THz)	10 ¹² Hz	Picosecond(ps)	10 ⁻¹² s
Petahertz(PHz)	10 ¹⁵ Hz		
Exahertz(EHz)	10 ¹⁸ Hz		
Zettahertz(ZHz)	10 ²¹ Hz		
Yottahertz(Yhz)	10 ²⁴ Hz		

- □ 싸인파(sine wave, <mark>정현파</mark> 正弦波)는 아날로그 주기 신호의 가장 기본적인 형태
- □ 단순 아날로그 신호(정현파)
- □ s는 순간 진폭, A는 최대 진폭, f는 주파수, Φ 는 위상이라 할때

$$s(t) = A\sin(2\pi ft + \phi)$$

$$s(t) = A\sin(2\pi ft + \phi)$$

□ 정현파의 예

s는 순간 진폭, A는 최대 진폭, f는 주파수, Φ 는 위상

최대 진폭: 5, 주파수: 4, 위상: 0

최대 진폭: 10, 주파수: 8, 위상: 0

최대 진폭: 5, 주파수: 2, 위상: □ /2

Quiz

- 1. 정현파가 8KHz의 주파수를 가지면, 주기는 얼마인가?
- 2. 정현파의 한 사이클이 25 μs이라면, 주파수는?
 - ✓ 주기
 - 신호가 한 사이클을 이루는 데 걸린 시간을 의미
 - ▶ 주기 T = 1/f
 - 주기의 단위는 초
 - ✓ 주파수
 - > 초당 생성되는 사이클의 수를 의미
 - ▶ 시간에 대한 변화율로서 초당 반복 되는 패턴의 회수
 - ▶ 주파수 f = 1/T
 - ▶ 주파수의 단위는 Hertz(Hz)

5.2 아날로그 신호 (5/10)

아날로그 신호의 종류

____ ▶ 반복적인 정현파

- > 여러 개의 정현파가 합쳐진 복합적인 신호
- ▶ 푸리에 분석(Fourie Analysis) 을 이용하여 분해 가능
- ▶ 임의의 주기 신호는 아무리 복잡한 신호라도 정현파의 집합으로 분해 가능

단일 주파수의 정현파는 데이터 통신에는 유용하지 않다.

유용하게 하기 위해서는

단일 주파수 신호의 한 개 이상의 특성을 바꾸면 많은 주파수를 갖는 복합신호를 만들게 된다.

푸리에 해석에 따르면,

임의의 복합신호는 서로 다른

을 갖는

단순 정현파들의 조합으로 나타낼 수 있다.

5.2 아날로그 신호 (6/10)

주파수 스펙트럼

✓ 신호를 구성하는 모든

_(帶域幅, _____)

✓ 통신 선로 상에서 운반되는 전송 주파수의 범위

✓ 채널의 용량(비트율)과 직접적인 관계

Quiz

- 1. 주기 신호가 주파수 100, 300, 500, 700, 900 Hz인 5개의 정현 파로 구성되어 있다. 대역폭은 얼마인가?
- 2. 어떤 신호가 20 KHz의 대역폭을 가지며, 최고주파수는 60 KHz 이다. 가장 낮은 주파수는 얼마인가?

대역폭(帶域幅, bandwidth)

- ✓ 통신 선로 상에서 운반되는 전송 주파수의 범위
- ✓ 채널의 용량(비트율)과 직접적인 관계
- ✓ 최고 주파수에서 최저 주파수를 뺀 것

5.2 아날로그 신호 (7/10)

음성대역의 주파수 스펙트럼

- ✓ _____(cutoff frequency)
 의 상단과 하단의 신호 세기는
 너무 낮아 쓸모가 없는 부분
 - 통과대역과 차단 대역의 경 계
- ✓ 필터 대역을 나타내는 주파수는 차단 주파수이다. 예를 들어 18-57 필터는 저주파차단 주파 수가 18Hz이고 고주파차단 주 파수는 57Hz이다.
- ✓ 높은 주파수 영역에서 넓은 대 역폭이 얻어지므로 전송 용량이 큰 통신 시스템은 모두 높은 주 파수를 사용

5.2 아날로그 신호 (8/10)

5.2 아날로그 신호 (9/10)

무선통신영역

✔ 영역: VLF, LF, MF, HF, VHF, UHF, SHF, EHF

전파종류	주파수영역	특징
VLF	3KHz~30KHz	전송 중 많은 감쇠가 일어나지는 않음
		대기잡음(전기와 열)에 민감
LF	30KHz~300KHz	장애물에 의한 전파의 흡수로 낮에 감쇠현상 이 더 큼
MF	300KHz~3MHz	낮에 신호의 흡수가 증가하기 때문에 흡수 문제 방지
		전송 제어를 편하게 하기 위해 가시선 안테나에 의지
HF	3MHz~30MHz	밀도차 때문에 신호를 지상으로 반사하게 되는 전리층으로
		이동
VHF	30MHz~300MHz	안테나에서 안테나로 직선상으로 직접전송
		안테나는 지구곡률에 영향 받지 않을 정도로 충분히 높거나
		서로 가까워야 함
UHF	300MHz~3GHz	항상 가시거리 전파를 사용하여 통신
SHF	3GHz~30GHz	초고주파의 대부분은 가시거리 전파를 이용하고 일부는
		우주공간 전파 이용
EHF	30GHz~300GHz	주로 과학용으로 사용

5.2 아날로그 신호 (10/10)

무선통신영역

✔ 전파방식: 지표면,대류권,전리층,가시선,우주공간

전파방식	전파종류	특징
지표면 전파	VLF	가장 낮은 주파수들이 사용하는 방식으로 지표의 굴곡을
	LF	따라 퍼짐 전파거리는 신호의 전력량에 비례
대류권 전파	MF	안테나끼리 직접전파되거나, 지구표면으로 반사되어 오게 끔 대류권 상층을 향해 전송
전리층 전파	HF	대류권과 전리층의 밀도차를 이용하여 낮은 출력으로 원거리 리 전파와 무선파의 속도를 높이는 방식
가시거리 전파	VHF	무선전송이 완벽하게 한점으로 모아지지 않기 때문에 까다
	UHF	로운 방식 지표면이나 대기에 반사된 반사파는 직접 전송된 것보다 수신 안테나에 늦게 도착해서 수신된 신호 망침
우주공간 전파	SHF	대기의 굴절을 이용하지 않고 위성에 의한 중계이용
	EHF	네기ᅴ 글글글 이ઠ이지 않고 뒤성에 되면 경계이당

무선파의 전파

✓ 전파방식: 지표면,대류권,전리층,가시선,우주공간

무선 주파수(Radio Frequency)

VLF	Very low frequency	VHF	Very high frequency
LF	Low frequency	UHF	Ultra high frequency
MF	Middle frequency	SHF	Super high frequency
HF	High frequency	EHF	Extremely high frequency

5.3 디지털 신호 (1/3)

디지털 신호

✓ 도파 매체를 통해 전송되는 일련의

- ✓ 디지털 신호의 특징

 - ▶ 비트간격, 비트 주기(Bit Interval) : 하나의 단일 비트를 전송하는데 드는 시간
 - > ______: 1초 동안 전송된 비트의 수

비트 률(Bit rate)과 비트 주기(bit interval)

Quiz

1. 디지털 신호가 2,000bps 의 비트율을 가질 때 비트 간 격은 얼마인가?

5.3 디지털 신호 (2/3)

- ✓ 무한개의 단순 정현파로 분해되는 특성
- ✓ 조파(harmonic 調波) : 디지털 신호에서 분해 된 정현파

조파(harmonic wave, 調波)

- □ 임의의 주기성파는 하나의 기본파와 여기에 대해서 정수배또는 분수배의 주파수를 갖는 다수의 정현파로 분해
- □ 이 기본파 이외의 정현파를 총칭하여 조파

□ 3개의 조파

□ 합쳐진 3개의 조파

5.3 디지털 신호 (3/3)

디지털 신호는 항상 잡음에 의 해 왜곡

✓ 전 영역에 걸친 모든 주파수 구성 요소들을 온전하게 전 송할 수 있는 전송 매체가 없기 때문

주요 스펙트럼

✓ 무한 스펙트럼 중에서 어느 정도의 왜곡까지는 재생할 수 있는 부분

5.4 채널 용량

- ✓ 정보가 에러 없이 그 채널을 통해 보낼 수 있는 최대율
- ✓ 채널의 _____
- ✓ 샤논의 법칙
 - ▶ 채널용량 C = Wlog₂(1+S/N)

✓ 통신에서의 신호의 세기를 나타내는 단위

- ✓ 두 신호의 세기 비를 대수적으로 나타내는 상대적인 단위
- ✓ 데시벨 = 10log₁₀(P₁/P₂) (P1, P2 : 신호전력)
- ✓ 전송 과정에서 이득과 감쇠를 나타내는데 매우 유효
- ✓ 신호의 손실된 길이나 획득한 길이를 보이기 위해 사용
- ✓ 신호가 감쇠하면 음수, 증폭되면 양수

데이터 전송률의 세 요소

- ✓ 가역 대역폭
- ✓ 사용 가능한 신호 준위
- ✓ 채널의 품질(잡음의 정도)

데이터 전송률을 계산하는 두가지 이론적 수식

- ✓ 나이퀴스트 수식(Nyquist bit rate) : 잡음이 없는 채널에서 사용
- ✓ 새논 수식(Shannon capacity) : 잡음이 있는 채널에서 사용

나이퀴스트 전송률(Nyquist bit rate)

- ✓ 잡음이 없는 채널의 경우 사용
- ✓ 대역폭은 채널의 대역폭, L은 데이터를 나타내는 데 사용한 신호 준위의 개수, 전송률은 초당 비트수라고 할때

전송률 = $2 \times \text{대역폭} \times \log_2 L$

예1) 두 개의 신호 준위를 갖는 신호를 전송하는 3,000Hz 의 대역폭을 갖는 무잡음 채널이 있다. 최대 전송률은?

전송률 = $2 \times 3,000 \times \log_2 2 = 6,000$ bps

예2) 네 개의 신호 준위를 사용하는 신호를 위의 예제와 동일한 채널을 사용하여 보낸다고 하자. 최대 전송률은?

전송률 = $2 \times 3,000 \times \log_2 4 = 12,000$ bps

섀논 용량(Shannon capacity)

- ✓ 잡음이 있는 채널에서의 최대 전송률을 결정하는 수식
- ✓ 대역폭은 채널의 대역폭, SNR은 신호에 대한 잡음 비율, 용량은 bps 단위의 채널 용량이라고 하면

예)<mark>신호 대 잡음의 비율값이 거의 0인</mark>, 거의 잡음에 가까운 채널을 생각 해보자. 다시 말해, 잡음이 너무 강해서 신호가 약해진다. 이 채널에 대한 용량을 계산하면 다음과 같다.

$$C = B \log_2(1+SNR) = B \log_2(1+0) = B \log_2(1) = B \times 0 = 0$$

이것은 채널의 용량이 0이다. 대역폭은 고려되지 않았다. 다른 말로 하 자면 이 채널로는 어떤 데이터도 보낼 수 없다.

(attenuation)

- □ 에너지 손실을 의미
- □ 매체를 통해 이동할 때 매체의 저항을 이겨내기 위해 약간의 에너지가 손실
- □ 증폭기를 이용하여 신호를 다시 증폭

감쇄

$dB = 10 log_{10}(p_2/p_1)$

예1) 신호가 전송매체를 통해 이동하고 있고 전력이 반으로 줄었다고 상상하보자(이것은 $P_2 = 1/2$ P_1 을 의미). 이 경우 감쇠(전력 손실)는?

예2) 신호가 증폭기를 통해 이동하고 전력이 100배 늘었다고 상상해보자.(이것은 P2=100× P1을 의미). 이 경우 증폭(전력 증가)은?