Rešitev 2. projektne naloge MM

Aljaž Verlič, Lina Lumborovska, Blažka Blatnik, Luka Tavčer Mentor: Damir Franctič

5. junij, 2017

1 Presek dveh implicitno danih ploskev

V \mathbb{R}^3 imamo podani dve poljubni implicitno podani ploskvi, opisanimi z enačbama $f_1(x) = C_1$ in

 $f_2(x) = C_2$, presek pa je množica rešitev tega nelinearnega sistema enačb. Naša naloga je poiskati krivuljo K, ki predstavlja presek teh dveh ploskev.

Nalogo bomo rešili na 4 načine z uporabo metod za numerično reševanje diferencialnih enačb. Uporabili bomo:

- Eulerjevo/Runge-Kutta s fiksno dolžino koraka
- Eulerjevo/Runge-Kutta z adaptivno dolžino koraka

1.1 Delovanje metode

1.2 Potrebni pogoj in Jacobijeva matrika

Potreben pogoj za delovanje metod je, da sta funkciji f_1 in f_2 parcialno odvedljivi in da ima Jacobijeva matrika parcialnih odvodov poln rang 2. Za uspešno delovanje Newtonove metode moramo poiskati Jacobijevo matriko leve strani sistema nelinearnih enačb.

$$\mathsf{JG} = \begin{bmatrix} \mathit{grad}(f_1) \\ \mathit{grad}(f_2) \\ \mathit{grad}(\vec{v} \cdot \vec{x}) \end{bmatrix} \text{ oziroma } \mathsf{JG} = \begin{bmatrix} \mathit{grad}(f_1) \\ \mathit{grad}(f_2) \\ \mathit{grad}(\vec{v}^\intercal) \end{bmatrix}$$

```
x0 = x;
endfor
% Izpis opozorila, ce zadnji priblizek ni znotraj tolerance.
if(k == maxit)
    disp("Warning: _The_method_did_not_converge_after_maxit_iterations.")
end
endfunction
```

1.3 Implementacija, testiranje in ugotovitve

Delovanje našega programa lahko preverimo s programom, ki smo ga napisali v Octave-u. Kot vhodne parametre mu podamo obe implicitno podani funkciji f_1 , f_2 , C1, C2, $grad(f_1)$, $grad(f_2)$. Določimo tudi začetni približek x_0 , začetno dolžino koraka in pa parameter, ki določa metodo delovanja (Euler/Runge-Kutta).

Program poženemo na različnih primerih in štejemo povprečno dolžino koraka ter število porabljenih korakov.

Primer 1:

•
$$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$$

•
$$f_2(x, y, z) = 3x + 2y + z = 1$$

EULER

3.0303

RK4

1.0505

Primer 2:

•
$$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$$

MERITEV

povprečje število korakov

•
$$f_2(x, y, z) = x^2 + y^2 = 1$$

MERITEV	EULER	RK4
povprečje število korakov	3.0202	1.0404

Primer 3:

•
$$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$$

•
$$f_2(x, y, z) = y^4 + \log(x^2 + 1)z^2 - 4 = 1$$

MERITEV	EULER	RK4
povprečje število korakov	3.0303	1.7273

Primer 4:

•
$$f_1(x, y, z) = x^2 + \cos(y)z^2 - 12 = 4$$

•
$$f_2(x, y, z) = y^4 + \log(x^2 + 1)z^2 - 4 = 1$$

MERITEV	EULER	RK4
povprečje število korakov	75.856	16.843

Primer 5:

•
$$f_1(x, y, z) = e^{(-x^2+1)} + y^2 + z^2 = 3$$

•
$$f_2(x, y, z) = e^{(xyz)} + y^2 + z^2 = 10$$

MERITEV	EULER	RK4
povprečje število korakov	1.2323	2.6566

Primer 6:

•
$$f_1(x, y, z) = e^{(-x^2+1)} + y^2 + z^2 = 3$$

•
$$f_2(x, y, z) = x^2 + y^2 + z^2 = 4$$

MERITEV	EULER	RK4
povprečje število korakov	1.0404	3.0202

Primer 7:

•
$$f_1(x, y, z) = e^{(-x^2+1)} + y^2 + z^2 = 3$$

•
$$f_2(x, y, z) = x^2 + y^2 = 1$$

MERITEV	EULER	RK4
povprečje število korakov	1.9495	3.0202

Primer 8:

•
$$f_2(x, y, z) = e^{(xyz)} + y^2 + z^2 = 10$$

•
$$f_2(x, y, z) = x^2 + y^2 = 1$$

MERITEV	EULER	RK4
povprečje število korakov	2.111	3.1212