The pumping lemma

Arno Pauly

Swansea University

February 15, 2021

The pumping lemma

Lemma

If L is regular, then $\exists k \in \mathbb{N}$ such that $\forall p \in L, |p| \ge k$ there exists (\exists) a splitting p = uvw where $|uv| \le k$ and $v \ne \varepsilon$ such that $\forall i \in \mathbb{N}$ it holds that $uv^i w \in L$.

Pumping lemma, contraposition

- ▶ If for all $k \in \mathbb{N}$ you can pick a word $p \in L$ with $|p| \ge k$
- such that however p is written as p = uvw (subject to $|uv| \le k$ and $v \ne \varepsilon$)
- ▶ you can find some $i \in \mathbb{N}$ such that $uv^i w \notin L$,
- ▶ then L is not regular.

An application

Question

Is $L_{pal} = \{u \in \{a, b\}^* \mid u = u^R\}$ regular?

- ▶ We get some $k \in \mathbb{N}$.
- ▶ We pick $a^k ba^k \in L_{pal}$.
- ▶ If $uvw = a^kba^k$, $|uv| \le k$ and $v \ne \varepsilon$, then $v = a^l$ for some $1 \le l \le k$. So $uv^2w = a^{k+l}ba^k \notin L_{pal}$.

Proposition

L_{pal} is not regular.

Your turn

Task: Prove that $\{a^nb^n\mid n\in\mathbb{N}\}$ is not regular.