

Module 4 Lecture - Discrete Random Variables

Introduction to Statistical Methods

Quinton Quagliano, M.S., C.S.P

Department of Educational Psychology

T	Table of Contents				
1	Overview and Introduction 1.1 Textbook Learning Objectives	2 2 2 2			
2	Probability Distribution Function (PDF) for a Discrete Random Variable 2.1 Introduction	3 3 4			
3	Mean or Expected Value and Standard Deviation 3.1 Introduction 3.2 Mean Calculation Example 3.3 Standard Deviation Calculation Example 3.4 Section Conclusion	5 5 6 7			
4	Binomial Distribution 4.1 Introduction	7 7 8			
5	Conclusion 5.1 Recap 5.2 Lecture Check-in	8 8 8			

1 Overview and Introduction

1.1 Textbook Learning Objectives

- Recognize and understand discrete probability distribution functions, in general.
- Calculate and interpret expected values.
- Recognize the binomial probability distribution and apply it appropriately.
- Classify discrete word problems by their distributions.

1.2 Instructor Learning Objectives

The

scription of variable

- Refresh on understanding of behavior and characteristics of discrete variables
- Understand the how to write probability distribution function tables and use them in calculation
- · Be able to continue to write coherent and readable notation for probability problems

1.3	Introduction		
	We will be expanding on what we spoke lecture, but now explicitly applying those		in the last
	Discuss: Try describing discrete variable warrable warrable to the module 1	es in your own words, based on v	what you
	We previously described	data, or that which is n	umeric and
·	"count-able", that has no intervals betwe – Those will be the focus of this lectur	•	
	variables in the next lecture		
	In this lecture, we will introduce the cond vary in subsequent	cept of random variables , or tho (used in the sense as how it was	
	during the probability lecture)	-	, oaaooa

of random variables is as follows:

- Uppercase alphabetical character, e.g. X, Y, Z, etc. \rightarrow written/verbose de-

_	Lowercase alphabetical equivalen	t, e.g.	<i>x</i> , <i>y</i> ,	z, e	tc. \rightarrow	the possible	e values	X
	can take on							

- Example from book:
 - X = the number of heads you get when you toss three coins (concrete description of what the variable is)
 - x = 0, 1, 2, 3 (what values it could be)
 - This is a discrete, random variable, because x has _____ different values (random) and because those different values follow the discrete rules, i.e. "countable" in the sense that it is a number of times and no intervals between integers

?	Review:	What is a s	synonym	for 'fair'	when di	iscussing ı	orobability?
•	1 10 110 11.	vviiat io a c		101 1411	vviioii a	iooaconiig į	or obability

- A) Equally similar
- B) Similar
- C) Equivalent
- D) Equally likely

Explanation:

2 Probability Distribution Function (PDF) for a Discrete Random Variable

2.1 Introduction

•	A probability distribution function or PDF is a very scary way to say the list	of
	possible x values and their respective	

- The they follow are simple:
 - 1. All probabilities must sum up to 1, or $\sum P(x) = 1$
 - 2. Each probability is between 0 and 1, inclusive, or $0 \le P(x) \le 1$

Discuss: Review: try writing the mathematical notation for probability of event A equaling a 30% chance of occurring

• In a probability distribution function, we can think of each value of X, i.e., the xs, having some specified probability of occurring

2.2 PDF Tables

- Example:
 - A survey is being done on how many vehicles families own. Assume the following probability distribution function:
 - X = the number of vehicles owned by a family
 - x = 0, 1, 2, 3, 4

X	P(X = x)
0	0.10
1	0.20
2	0.30
3	0.25
4	0.15

or...

$$\begin{array}{ccc} x & P(x) \\ \hline 0 & P(x=0) = 10/100 \\ 1 & P(x=1) = 20/100 \\ 2 & P(x=2) = 30/100 \\ 3 & P(x=3) = 25/100 \\ 4 & P(x=4) = 15/100 \\ \end{array}$$

• In this example, If I were to randomly select a single family from this distribution, I would have a 30% chance of picking a family with 2 cars

📢 Discuss: On 30% of days I bring one umbrella with me, and on 70% of days I bring	J
no umbrella with me. Write out a PDF table as above to demonstrate this probability distribution function	/

- There are 4 types of distributions for discrete random variables:
 - Distributions
 - Distributions
 - Distributions
 - Distributions
 - Each of these has their place, but the last 3 come into play more on more statistical techniques - we'll focus just on the binomial distribution for this lecture

Important

Just because I leave these distribution out in this lecture, doesn't mean that they aren't important! It's mostly just that the others won't be as useful immediately to beginners in statistics.

3 Mean or Expected Value and Standard Deviation

3.1 Introduction

- With PDFs, we sometimes may wish to find the expected value, or the "long-term" average or mean. Thus, doing running this experiment over and over again, we'd expect to
 on this expected mean
- This is based in the Law of Large Numbers a topic alluded to several times in the previous modules
 - Somewhat review from the _____ module: this law states that relative observed frequency approaches the theoretical probability as the number of experiments or trials increases
- For a discrete probability function:

$$\mu = \sum \left(x \cdot P(x) \right)$$

$$\sigma = \sqrt{\sum \left[(x - \mu)^2 \cdot P(x) \right]}$$

• If outcomes for the experiment are equally likely then these formulas work to find the mean and standard deviation for each of the outcomes

Discuss: Why would we use the mu and sigma notation here, instead of x bar and lowercase s? Do they represent statistics or parameters?

3.2 Mean Calculation Example

Car example from earlier:

_		
X	P(x)	x * P(x)
0	0.10	0.00
1	0.20	0.20
2	0.30	0.60
3	0.25	0.75
4	0.15	0.60

$$\mu = \sum \left(x * P(x)\right) = 2.15$$

3.3 Standard Deviation Calculation Example

Car example from earlier:

X	P(x)	x * P(x)	(x - mu)^2 * P(x)
0	0.10	0.00	0.462250
1	0.20	0.20	0.264500

X	P(x)	x * P(x)	(x - mu)^2 * P(x)
2	0.30	0.60	0.006750
3	0.25	0.75	0.180625
4	0.15	0.60	0.513375

$$\sigma = \sqrt{\sum (x - \mu)^2 * P(x)} = 1.1948$$

3.4 Section Conclusion

•	Probability	distribution	functions	serve a	a purpose	e - that	is -	they	can	describe	e a
	particular		ir	n the pro	bability o	f outco	mes	in the	e dat	a.	

•	Once we understand wha	t pattern the variable fits, we can use t	his information
	for other	, as there are the 4 specialty distribut	ions mentioned
	earlier: geometric, hyperge	ometric, poisson, and binomial	

4 Binomial Distribution

4.1 Introduction

- \bullet The binomial distribution has a certain, _____ number of trials represented as n
 - Each trial is _____ and does not affect subsequent trials
- There are two possible _____ in the binomial distribution, "success" and "failure"
 - -P(success) = p
 - -P(failure) = q
 - p + q = 1
- The experiment described above fits the **binomial probability distribution**. Where the random discrete variable X represents the number of successes obtain in n trials
- For the binomial probability distribution:

$$\mu = n * p$$

$$\sigma^2 = n * p * q$$

$$\sigma = \sqrt{n * p * q}$$

4.2 Notation

$$X \sim B(n, p)$$

ullet This formula is read as "X is a random variable with a binomial distribution", where n and p represent the same things as before

5 Conclusion

5.1 Recap

- In this shorter lecture, we introduced the concept of discrete random variables, and how they can be represented with probability distribution functions
- We played around with calculating expected mean and standard deviations for outcomes from the probability distribution function table
- We introduced the binomial distribution as a special, specific pattern for a probability distribution represented via "successes" and "failures"

5.2 Lecture Check-in

Make sure to complete and submit the lecture check-in