Announcements:

· Midterm 2 Wed.

Wed. 10/18 7:00 pm - 8:30 pm in 217 Nayes Lab. See email for policies (covering Ch. 1-3 + circuit)

- · Tues. problem session will be study session
- · Wed. class will be review

Chapter 4: Connectivity & Paths

Idea of connectivity:

How many vertices/edges do we need to delete to form a disconnected graph?

Def 4.1.1: Let G be a graph

- a) A vertex cut is a set $S \leq V(G)$ s.t. G:S is disconn.
- b) The (vertex) connectivity K(G) is the min. size of a vertex cut (OR n-1 if \$\ \text{vertex cut}\)

C) G is k-connected if K(G) 3k

Class activity: Find K(G) for the following graphs

Def 4.1.7:

a) A <u>disconnecting set</u> is a set $F \subseteq E(G)$ s.t. $G \setminus F$ is disconn.

b') The edge connectivity K'(G) is the min. site of a disconn. set (or IE(G)) if \$\frac{1}{4}\$ disconn. set)

c') G is k-edge-connected if K(G) 3k

Class activity: Find K'(6) for the following graphs

d') An edge cut is a disconn. Set F s.t 35 \(V(G) \)
where each edge in F has exactly one endpoint in S.
(every min'l disconn-set is an edge cut)

e') Every edge cut has the form $[S,T] := \{e \in E(G) | e \text{ has one endpoint in } S$ $\overline{S} := V(G) \setminus S$ and the other in $T\}$

Thm 4.1.9: Let G be a simple graph. Then, $K(G) \leq K'(G) \leq S(G) \leftarrow \min_{deg.}$

Pf: If $v \in V(G)$ $w \mid d(v) = \delta(G)$, then edges incident to v form an edge cut, so $K'(G) \leq \delta(G)$. Now let [S,S] be a min'l edge cut. If \exists nonadj. Vertices $x \in S$, $y \in S$,

Every x,y-path passes from S to S, and must pass thru. T as it does so, so T is a vertex cut.

Now, every vertex in T_1 has ≥ 1 edge to $x \in S$ while every vertex in T_2 has ≥ 1 edge to \overline{S} , so

On the other hand if G contains the complete S, 5-bigraph,

Thm 4.1.11: If G is 3-regular, then K(G) = K(G)

Pf: Let S be a minimum vertex cut.

Let H1. Hz be components in G>S.

Since S is minimum, each VES has a neighbor in H, and a neighbor in Hz, but since d(v) = 3, it can't have ≥ 2 neighbors in both. Thus, if v has only I edge to H₁, delete that edge; otherwise delete the edge to H₂. The result is an edge-cut of size ISI, so we're done

