

Jaafar Ben Khaled

Overview

The Challenge: Credit card fraud results in significant financial losses globally. Traditional detection methods often fall short in identifying fraudulent transactions promptly and accurately.

The Solution: Implement machine learning models to analyze transaction patterns and detect anomalies indicative of fraud.

03 DataSet

- Number of Transactions : 284,807

- Fraud ratio: 492 / 284 807 ≈ 0.173%

Column	Туре	Description
Time	Float64	Seconds elapsed since the first transaction in the dataset.
V1-V28	Float64	Original features transformed for confidentiality and de-correlation.
Amount	Float64	Transaction amount in euros.
Class	int64	1 : Normal (non-Fraud) 0 : Fraud

<class 'pandas.core.frame.DataFrame'> Index: 283726 entries, 0 to 284806 Data columns (total 31 columns): Column Non-Null Count float64 283726 non-null float64 V10 283726 non-null float64 283726 non-null float64 V11 V12 283726 non-null float64 13 V13 283726 non-null float64 14 V14 283726 non-null float64 15 V15 283726 non-null float64 16 V16 283726 non-null float64 17 V17 283726 non-null float64 18 V18 283726 non-null float64 19 V19 283726 non-null float64 V20 283726 non-null float64 V21 283726 non-null float64 283726 non-null float64 22 V22 23 V23 283726 non-null float64 24 V24 283726 non-null float64 25 V25 283726 non-null float64 26 V26 283726 non-null float64 27 V27 283726 non-null float64 283726 non-null float64 283726 non-null float64 283726 non-null int64 dtypes: float64(30), int64(1) memory usage: 69.3 MB

Five Questions We Aim to Answer:

- 1. How can machine learning effectively detect fraudulent transactions in a large real world dataset?
- 2. How do the "Amount" distributions differ between fraud and normal?
- 3. What is the best way to handle imbalanced fraud data?
- 4. Why is accuracy misleading for imbalanced data, and what metrics better evaluate performance?
- 5. Which classification model performs best in terms of precision and recall for fraud detection?

Technical Approach

1. Import Libraries

- Pandas for Data Handling
- Seaborn & Matplotlib for Visualization
- Scikit-Learn for modeling

2. Data Preprocessing

- Removes Duplicates
- Checked for missing values
- Scaled the "Amount" feature
- Handling unbalanced dataset

3. Train-Test Split

- Followed a 70%-30% split
- We never touch the test set again until final evaluation, so it remains a realistic, imbalanced hold-out.

EDA & Visualization

How can we deal with highly unbalanced data?

- **OverSampling the Minority Class:** We want our model to pay equal attention to fraud cases without throwing away any normal data.
- Undersampling the Majority Class: Balance the classes by keeping all fraud but reducing normal data so training is faster and simpler.
- Smote: To create new fraud examples instead of just copying existing ones

ML Models & Evaluation

Model used:

- 1. Logistic Regression with
- 2. Random Forest with
- 3. XGBoost with

Logistic Regression:

- finds nearly 89% of the fraud cases (high recall)
- it only gets 7% of those
 fraud predictions right (very low precision)

XGBoost:

 it misses 29 frauds but makes slightly more false fraud predictions (25 instead of 10)

Random Forest:

It only misses 29 fraud cases and makes 10 false fraud predictions.

Main Takeaways & What's Next

- Imbalanced data was the biggest challenge in fraud detection. First, the results were too perfect because we used SMOTE wrong (before train/test split). Fixing it gave us a realistic results.
- trying other resampling methods such as Random Oversampling or Undersampling. Then, comparing their performance using the same models to see which method gives the best results in identifying fraud.

Thank you for your attention.