Chapter Nine

Searching and Hashing

Revision - Searching

- Searching is a process of checking and finding an element from a list of elements.
- Let A be a collection of data elements, i.e., A is a linear array of say n elements. If we want to find the presence of an element "data" in A, then we have to search for it.
- The search is successful if data does appear in A and unsuccessful if otherwise.
- There are several types of searching techniques; one has some advantage(s) over other.
- Following are the four important searching techniques:
 - » Linear or Sequential Searching
 - » Binary Searching
 - » Interpolation Searching
 - » Fibonacci Searching

Interpolation Search

- This method is even more efficient than binary search, if the elements are uniformly distributed (or sorted) in an array A.
- Its average case complexity is O(log log N) where N is the number of keys.
- Consider an array A of n elements and the elements are uniformly distributed (sorted).
- Initially, as in binary search, low is set to 0 and high is set to n-1.
- Now we are searching an element key in an array between A[low] and A[high].
- The key would be expected to be at *mid*, which is an approximately position.
 - » $mid = low + (high low) \times ((key A[low])/(A[high] A[low]))$

- If key is lower than A[mid], reset high to mid-1; else reset low to mid+1.
- Repeat the process until the key has found or low > high.
- Example: 2, 25, 35, 39, 40, 47, 50
 - » CASE 1: Say we are searching 50 from the array.
 - Here n = 7
 - Key = 50
 - -low = 0
 - high = n 1 = 6
 - $\text{ mid} = 0+(6-0) \times ((50-2)/(50-2))$
 - $= 6 \times (48/48) = 6$
 - if (key == A[mid])
 - $\Rightarrow \text{key} == A[6]$
 - ⇒ 50 == 50
 - \rightarrow key is found.

- CASE 2: Say we are searching 34 from the array
 - Here n = 7 Key = 34
 - low = 0
 - n + 1 = 6
 - » $mid = 0 + (6 0) \times ((34 2)/(34 2))$
 - $= 6 \times (32/48)$
 - **»** = 4
 - » if(key < A[mid])</pre>
 - \Rightarrow key < A[4]
 - » ⇒ 34 < 40
 - » so reset high = mid-1
 - $\Rightarrow 3$
 - \sim low = 0
 - \rightarrow high = 3

```
» Since(low < high)</pre>
\rightarrow mid = 0+(3-0) × ((34-2)/(39-2))
= 3 \times (32/37)
» = 2.59 Here we consider only the integer part of the mid
    - i.e., mid = 2
» if (key < A[mid])</pre>
\Rightarrow key < A[2]
» ⇒ 34 < 35
» so reset high = mid-1
\Rightarrow 1
\rightarrow low = 0
\rightarrow high = 1
```

```
» Since (low < high)</p>
\rightarrow mid = 0+(1-0) × ((34-2)/(25-2))
= 3 \times (32/23)
» = 1
» here (key > A[mid])
\Rightarrow key \Rightarrow A[1]
» ⇒ 34 > 25
» so reset low = mid+1
\Rightarrow 2
\rightarrow low = 2
high = 1
» Since (low > high)
```

STOP

DISPLAY "The key is not in the array"

Algorithm

- 1. Input a sorted array of n elements and the key to be searched
- \square 2. Initialize low = 0 and high = n 1
- 3. Repeat the steps 4 through 7 until if(low < high)
- □ 4. Mid = low + (high low) × ((key A[low]) / (A[high] A[low]))
- 5. If(key < A[mid])</p>
 - (a) high = mid-1
- 6. Elseif (key > A[mid])
 - (a) low = mid + 1
- 7. Else
 - (a) DISPLAY "The key is not in the array"
 - (b) STOP
- 8. STOP

Implementation

```
class interpolation
int Key;
int Low, High, Mid;
public:
void InterSearch(int*,int);
};
//This function will search the element using interpolation search
void interpolation::InterSearch(int *Arr, int No)
int Key;
//Assigning the pointer low and high
Low=0; High=No-1;
//Inputting the element to be searched
cout<<"\n\nEnter the Number to be searched = ";</pre>
cin>>Key;
```

```
while (Low < High)
{
//Finding the Mid position of the array to be searched
Mid=Low+(High-Low) * ((Key-Arr[Low]) / (Arr[High]-Arr[Low]));
if (Key < Arr[Mid])</pre>
//Re-initializing the high pointer if the
//key is greater than the mid value
High=Mid-1;
else if (Key > Arr[Mid])
//Re initializing the low pointer if the
//key is less than the mid value
Low=Mid+1;
else
//if the key value is equal to the mid value
```

```
//of the array, the key is found
  cout<<"\nThe key "<<Key<<" is found at the location "<<Mid;
  return;
 };
 cout<<"\n\nThe Key "<<Key<<" is NOT found";
 void main()
  int *a,n,*b;
  interpolation Ob;
clrscr();
 cout<<"\n\nEnter the number of elements : ";</pre>
  cin>>n;
  a=new int[n];
```

□ h---•

```
//Input the elements in the array
  for (int i=0; i < n; i++)
cout<<"\nEnter the "<<i<" element : ";
  cin>>*a;
 a++;
//calling the InterSearch function using objects
  Ob. InterSearch (b, n);
  cout << "\n\nPress any key to continue...";
  getch();
```

Fibonacci Search

□ Fibonacci Search – Reading Assignment

Hashing

- Hashing is a technique where we can compute the location of the desired record in order to retrieve it in a single access (or comparison).
- Suppose we were to come up with a "magic function" that, given a value to search for, would tell us exactly where in the array to look.
 - If it's in that location, it's in the array.
 - If it's not in that location, it's not in the array.
- This function would have no other purpose.
- If we look at the function's inputs and outputs, they probably won't "make sense".
- This function is called a *hash function* because it "*makes* hash" of its inputs.

- Key-value pairs are stored in a fixed size table called a hash table (symbol table).
 - » A hash table is partitioned into many buckets.
 - » Each bucket has many slots.
 - » Each slot holds one record.
 - » A hash function h(x) transforms the identifier (key) into an address in the hash table
- The process of implementing this hash table (symbol table) is called hashing which is both conceptually simple and very efficient.
- Search tree methods: key comparisons
 - » Time complexity: O(size) or O(log n)
- Hashing methods: hash functions
 - » Expected time: O(1)

- Following are the most popular Distribution Independent hash functions:
 - » Division method

$$-H(k) = k \pmod{m}$$

- » Mid Square method
 - $-H(k)=k^2$ and the middle digits will be selected as a key.
- » Folding method.

$$- H(k) = k1 + k2 + \dots + kr$$

s slots

		0	1		s-1
	0			. .	
b bı	1				
buckets		•	•		•
9 2		•	•		•
		•	•		•
	b-1				

- Observation: We can store a set very easily if we can use its keys as array indices:
- A:

- e.g. SEARCH(A,k)
- return A[k]

- Problem: usually, the number of possible keys is far larger than the number of keys actually stored, or even than available memory. (E.g., strings.)
- Idea of hashing: use a function h to map keys into a smaller set of indices, say the integers 0...m. This function is called a hash function.
- □ E.g. h(k) = position of k's **first letter** in the alphabet.

$$h("Andy") = 1$$
 $T:1$ \longrightarrow Andy
$$h("Cindy") = 3 \qquad 2 \qquad \longrightarrow$$
 Cindy
$$h("Tony") = 20 \qquad 20 \qquad \longrightarrow$$
 Tony
$$h("Thomas") = 20 \qquad \dots$$

Problem: Collisions. They are inevitable if there are more possible key values than table slots.

- Uses an array table[0:b-1].
 - » Each position of this array is a bucket.
 - » A bucket can normally hold only one dictionary pair.
- Uses a hash function h that converts each key k into an index in the range [0, b-1].
- Every dictionary pair (key, element) is stored in its home bucket table[h[key]].

- Pairs are: (22,a), (33,c), (3,d), (73,e), (85,f).
- Hash table is table[0:7], b = 8.
- Hash function is key (mod 11).

(3,d)		(22,a)	(33,c)			(73,e)	(85,f)
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

- Where does (26,g) go?
- Keys that have the same home bucket are synonyms.
 - 22 and 26 are synonyms with respect to the hash function that is in use.
- The bucket for (26,g) is already occupied.

Collisions

When two values hash to the same array location, this is called a collision.

Collisions are normally treated as "first come, first served" - the first value that hashes to the location gets it.

We have to find something to do with the second and subsequent values that hash to this same location.

Resolving Collisions

- Let's assume for now that our hash function is OK, and deal with the collision resolution problem.
- Two groups of solutions:
 - Store the colliding key in the hash-table array. ("Closed hashing")
 - Store it somewhere else. ("Open hashing")

Closed Hashing

Store colliders in the hash table array itself:

("Closed hashing" or "Open addressing")

Example: Insertion I

- Suppose you want to add seagull to this hash table
- Also suppose:
 - » hashCode(seagull) = 143
 - » table[143] is not empty
 - » table[143] != seagull
 - » table[144] is not empty
 - » table[144] != seagull
 - » table[145] is empty
- Therefore, put seagull at location145

141	
142	robin
143	sparrow
144	hawk
145	seagull
146	
147	bluejay
148	owl

Searching I

- Suppose you want to look up seagull in this hash table
- Also suppose:
 - » hashCode(seagull) = 143
 - » table[143] is not empty
 - » table[143] != seagull
 - » table[144] is not empty
 - » table[144] != seagull
 - » table[145] is not empty
 - » table[145] == seagull !
- We found seagull at location 145

141	
142	robin
143	sparrow
144	hawk
145	seagull
146	
147	bluejay
148	owl

Searching II

- Suppose you want to look up cow in this hash table
- Also suppose:
 - » hashCode(cow) = 144
 - » table[144] is not empty
 - » table[144] != cow
 - » table[145] is not empty
 - » table[145] != cow
 - » table[146] is empty
- If cow were in the table, we should have found it by now
- Therefore, it isn't here

141	
142	robin
143	sparrow
144	hawk
145	seagull
146	
147	bluejay
148	owl

Insertion II

- Suppose you want to add hawk to this hash table
- Also suppose
 - » hashCode(hawk) = 143
 - » table[143] is not empty
 - » table[143] != hawk
 - » table[144] is not empty
 - » table[144] == hawk
- hawk is already in the table, so do nothing

141	
142	robin
143	sparrow
144	hawk
145	seagull
146	
147	bluejay
148	owl

Insertion III

Suppose:

- You want to add cardinal to this hash table
- » hashCode(cardinal) = 147
- The last location is 148
- » 147 and 148 are occupied

Solution:

- Treat the table as circular; after 148 comes 0
- Hence, cardinal goes in location0 (or 1, or 2, or ...)

141	
142	robin
143	sparrow
144	hawk
145	seagull
146	
147	bluejay
148	owl

Closed Hashing...

- Advantage:
 - No extra storage for lists
- Disadvantages:
 - Harder to program
 - Harder to analyze
 - Table can overflow
 - Performance is worse

Open Hashing

Put all the keys that hash to the same index onto a linked list. Each T[i] called a bucket or slot.

Example: Insertion

- The previous solutions used closed hashing: all entries went into a "flat" (unstructured) array.
- Another solution is to make each array location the header of a *linked list* of values that hash to that location.

Application of Hashing

Hashing is vastly more prevalent than trees for in-memory storage.

Examples:

- UNIX shell command cache
- "arrays" in Icon, Awk, Tcl, Perl, etc.
- Compiler symbol tables
- Filenames on CD-ROM
- And more...