МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ по лабораторной работе №1 по дисциплине «Машинное обучение»

ТЕМА: Предобработка данных

Студент гр. 6307	Медведев Е. Р.		
Преподаватель	Жангиров Т. Р		

Санкт-Петербург

Цель работы

Ознакомиться с методами предобработки данных из библиотеки Scikit-Learn.

Ход работы

Данные загружены из csv файла, столбцы, содержащие бинарные признаки и признаки времени, исключены.

	200	anastinina nhaanbakinasa	conum enestinine	conum codium
	age	creatinine_phosphokinase	serom_creatinine	Selom_Soutom
0	75.0	582	1.9	130
1	55.0	7861	1.1	136
2	65.0	146	1.3	129
3	50.0	111	1.9	137
4	65.0	160	2.7	116
294	62.0	61	1.1	143
295	55.0	1820	1.2	139
296	45.0	2060	0.8	138
297	45.0	2413	1.4	140
298	50.0	196	1.6	136
[299	rows	x 6 columns]		

Рис. 1 – Загруженные данные

Построены гистограммы признаков:

Рис. 2 – Гистограммы исходных данных

Из гистограмм видны диапазоны значений признаков, а также где лежит наибольшее количество наблюдений:

Признак	Диапазон значений	Скопление наблюдений
age	[40; 95]	60
creatinine_phosphokinase	[0; 7800]	100
ejection_fraction	[15; 80]	40
platelets	[25000; 850000]	260000
serum_creatinine	[0.5; 9.5]	1
serum_sodium	[113; 148]	136

Стандартизация данных

С помощью StandardScaler настроена стандартизация данных на основе первых 150 наблюдений.

Рис. 3 – Стандартизация StandardScaler (150 наблюдений)

Сравнивая полученные гистограммы с исходными, можно увидеть, что диапазоны значений изменились, а значение, в котором наблюдений большинство, на всех гистограммах стремится к нулю.

При стандартизации на основе всех данных этот эффект далее усиливается.

Формула для стандартизации, используемая StandardScaler:

$$X_{scaled} = (X - M[X]) / \text{CKO}[X]$$

Стандартизированные данные (по всем наблюдениям)

Рис. 4 — Стандартизация StandardScaler (по всем наблюдениям)

Таблица 1 – сводная таблица мат. ожиданий и СКО в разных тестах

	mean non	mean	mean 150		mean	std non	std	std 150		
	scaled	150	scalar	mean	scalar	scaled	150	scalar	std	std scalar
age	60,834	-0,170	62,947	0,000	60,834	11,875	0,954	12,450	1,000	11,875
creatinine_phosphokinase	581,839	-0,021	607,153	0,000	581,839	968,664	0,814	1189,743	1,000	968,664
ejection_fraction	38,084	0,011	37,947	0,000	38,084	11,815	0,906	13,039	1,000	11,815
platelets	263358,029	-0,035	266746,749	0,000	263358,029	97640,548	1,015	96191,790	1,000	97640,548
serum_creatinine	1,394	-0,109	1,521	0,000	1,394	1,033	0,885	1,166	1,000	1,033
serum_sodium	136,625	0,038	136,453	0,000	136,625	4,405	0,970	4,540	1,000	4,405

Приведение к диапазону

С помощью MinMaxScaler данные приведены к диапазону [0; 1].

Стандартизированные данные (MinMaxScaler)

creatinine_phosphokinase

Рис. 5 – Приведение к диапазону MinMaxScaler

Для случая min=0, max=1 формула будет выглядеть так:

$$X_{scaled} = (X - min(X)) / (max(X) - min(X))$$

По полям объекта MinMaxScaler определили максимальные и минимальные значения для признаков.

Минимум: 40.0 23.0 14.0 25100.0 0.5 113.0

Максимум: 95.0 7861.0 80.0 850000.0 9.4 148.0

MaxAbsScaler работает похоже (рисунок 6), приводя данные к диапазону [-1; 1] на основании максимального модуля по формуле:

$$X_{scaled} = X / max(abs(X))$$

Максимальный модуль из поля объекта MaxAbsScaler:

95.0 7861.0 80.0 850000.0 9.4 148.0

Еще один похожий объект RobustScaler стандартизирует данные по межквартильному размаху (межквартильный размах – это разница между 3-м и 1-м квартилями. У данного показателя есть одно неоспоримое преимущество: он является робастным, т. е. не зависит от аномальных отклонений). Формула преобразования:

$$X_{scaled} = (X - Q_1(X)) / (Q_3(X) - Q_1(X))$$

Стандартизированные данные (MaxAbsScaler)

Рис. 6 – Приведение к диапазону MaxAbsScaler

Рис. 7 – Приведение к диапазону RobustScaler

На основе объекта MinMaxScaler была создана функция, приводящая данные к диапазону [-5; 10] по формуле

$$X_{scaled} = (X - min(X)) / (max(X) - min(X)) * (max - min) + min,$$
 где max=10, min=5.

```
def my_scale(data):
    scaler = preprocessing.MinMaxScaler(feature_range=(-5, 10))
    scaler.fit(data)
    return scaler.transform(data)
```


Рис. 8 – Приведение к диапазону [-5; 10]

Нелинейные преобразования

Данные приведены к равномерному распределению по 100 квантилям:

Рис. 9 – Равномерное распределение (100 квантилей)

Видно, что данные стали стремиться к равномерному распределению. Количество квантилей, используемых функцией, задает точность дискретизации функции распределения, что влияет на то, как хорошо данные

будут приближены к ней. С меньшим числом квантилей качество преобразования ухудшилось.

Рис. 10 – Равномерное распределение (10 квантилей)

Используя этот же объект можно привести данные к нормальному распределению:

Рис. 11 – Нормальное распределение

Другой вариант приведения к нормальному распределению – с помощью объекта PowerTransformer.

Рис. 12 – Нормальное распределение (PowerTransformer)

Дискретизация признаков

При помощи KBinsDiscretizer данные по всем признакам были дискретизированы на заданное количество диапазонов.

Рис. 13 – Дискретизация данных

Теперь диапазон значений на гистограммах представляет собой индексы дискретных значений. Заданный способ кодирования в данном случае — ordinal, поэтому диапазоны пронумерованы индексами.

Края диапазонов из поля объекта:

age: [40.0 55.0 65.0 95.0]

creatinine_phosphokinase: [23.0 116.5 250.0 582.0 7861.0]

ejection_fraction: [14.0 35.0 40.0 80.0]

platelets: [25100.0 153000.0 196000.0 221000.0 237000.0 262000.0

265000.0 285200.0 319800.0 374600.0 850000.0]

serum_creatinine: [0.5 1.1 9.4]

serum_sodium: [113.0 134.0 137.0 140.0 148.0]

Вывод

В результате выполнения лабораторной работы были изучены методы предобработки данных из библиотеки Scikit-learn.