[CSM51A FALL 2014] HOMEWORK 2

Due: 10/31/14

TA: Yang Lu (yangluphil@gmail.com)

Homework Problems (45 points total)

Problem 1 (5 points)

Draw the CMOS circuit implementations for the function given by the gate network shown in the figure below,

using:

- 1. (2 points) Separate AND and NOR gate implementations.
- 2. (3 points) A single complex gate.

Problem 2 (10 points)

We would like to implement the logic a' + bc using a CMOS circuit. We will try to save circuit area by reducing the number of transistors. To do this, we first consider the gate implementations.

- 1. (1 points) Draw the gate implementation of the circuit using NOT, AND and OR gates. How many transistors do we need for this implementation?
- 2. (2 points) Find an alternative implementation that uses only NAND gates. Show the switching expression. (*Hint: Use Involution and DeMorgan's Law*)
- 3. (2 point) Draw the gate implementation from 2. How many transistors do we need for this implementation?
- 4. (5 points) Of the above two cases, which implementation uses fewer transistors? Draw the CMOS implementation circuit.

Problem 3 (5 points)

We would like to design a function S with four input bits a, b, c, and d. The output z is 1 when exactly three inputs are 1, and 0 otherwise.

1. (2 points) Fill in the table below that shows the switching function S(a, b, c, d).

a	b	c	d	S(a,b,c,d)
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

2. (3 points) Is the function S(a, b, c, d) universal? If it is, provide proof. You are allowed to set any input to a constant value.

Problem 4 (10 points)

We are given the above network and the following load values.

$$L_A = 2.0$$

 $L_G = 6.0$
 $L_{c_4} = 4.0$

Using this information and Table 4.1 from the textbook, we would like to determine:

- 1. (5 points) The total load of each input signal. Calculate the total load of a_0 , a_1 , a_2 , a_3 , g_0 , g_1 , g_2 , g_3 , and c_0 .
- 2. (5 points) Of the possible paths, which ones likely have the worst case delay to the output signal c_4 ? Find the worst case value of $t_{pHL}(c_4)$.

Problem 5 (6 points)

For $f(x, y, z, w) = \prod M(1, 8, 9, 12)$

- 1. Using K-maps, find all the prime implicants.
- 2. Which of these prime implicants are essential?
- 3. Write the minimal sum of products for f.
- 4. Find all the prime implicates.
- 5. Which of these prime implicates are essential?
- 6. Write the minimal product of sums for f.

Problem 6 (9 points)

We are given a module with four input bits, x_1, x_0, y_1, y_0 and three output bits, z_2, z_1, z_0 , which are:

$$z_2 = \sum m(7, 10, 11, 13, 14, 15)$$

$$z_1 = \sum m(2, 3, 5, 6, 8, 9, 12, 15)$$

$$z_0 = \sum m(1, 3, 4, 6, 9, 11, 12, 14)$$

1. (1 point) Fill in the table.

x_1	x_0	y_1	y_0	$ z_2 $	z_1	z_0
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

- 2. (3 points) Draw K-maps for each output bit. Find the prime implicants.
- 3. (3 points) Write the minimal sum of products expression for each z bit.
- 4. (2 points) Looking back at the table, can you identify the high-level function of the module?