TD Logique Feuille 2 / MAM3 – SI3

Sémantique: Interprétation et validité

1 Validité

- 1. $p(a,b) \land \neg p(f(a),b)$
- 2. $\exists y p(y,b)$
- 3. $\exists y p(y,x)$
- 4. $\forall x \exists y p(x,y)$
- 5. $\forall x p(x,y)$
- 6. $\exists y \forall x p(x,y)$
- 7. $\exists y ((p(y,a) \lor p(f(y),b))$

Soit l'interprétation I1 telle que:

- le domaine est les entiers naturels
- a est le chiffre 0
- b est le chiffre 1
- f est la fonction successeur
- p est la relation <

Les propositions précédentes sont elles valides dans l'interprétation I1?

Même question pour l'interprétation I2 :

- domaine : les listes de longueur quelconque contenant des 0 et des 1
- a est la liste vide
- b est la liste $\{1, 1, 1, 1, 1, 1\}$
- f est la fonction $cons_1$ qui ajoute un 1 en tête d'une liste
- p est la relation length(x) < length(y)
 - 1. Dans I_1 , on se place dans N, les formules s'interprètent alors comme
 - (a) $(0 < 1) \land \neg (1 < 1)$). Cette formule close est valide
 - (b) $\exists y \ (y < 1)$ Cette formule close est valide : y peut prendre la valeur 0.

- (c) $\exists y \ y < x$. Cette formule, n'est pas close. Elle n'est pas valide mais elle est satisfiable: pour une valuation qui affecte à x la valeur 0, cette formule est fausse; Pour une valuation qui affecte à x une valeur supérieure à 0, cette formule est vraie.
- (d) \forall x \exists y < x. Cette formule est valide car y peut prendre pour valeur le successeur de x.
- (e) $\forall x \ (x < y)$. Cette formule est fausse car < est un ordre strict dans N
- (f) $\exists y \ \forall x \ (x < y)$. Cette formule est fausse pour le même raison que la précédente.
- (g) $\exists y \ (y < 0 \lor y + 1 < 1)$. Cette formule close est fausse, car il n'existe aucun entier naturel négatif.

Dans la seconde interprétation I_2 , on se place dans l'ensemble des listes de longueur quelconque contenant des 0 et des 1, les formules s'interprètent alors comme

- (a) $0 < 5 \land \neg (1 < 5)$. Cette formule est fausse.
- (b) $\exists y \ (length(y) < 5)$. Cette formule est valide: y peut prendre pour valeur la liste vide.
- (c) $\exists y \ length(y) < length(x)$ est satisfiable pour toute valuation qui n'affecte pas à x la liste vide mais non-valide dans I_2 car fausse si x est égal à la liste vide.
- (d) $\forall x \exists y \ length(x) < length(y)$ cette formule est valide dans I_2 car y peut prendre pour valeur la liste $cons_1(x)$.
- (e) $\forall x \ length(x) < length(y)$ cette formule est fausse car x prendra nécessairement la valeur de y.
- (f) $\exists y \forall x \ length(x) < length(y)$ cette formule est fausse car quelque soit la valeur de y, x pourra prendre la valeur $length(cons_1(y))$
- (g) $\exists y \ ((length(y) < 0 \lor length(cons_1(y)) < 5))$. Cette formule est valide, car y peut prendre pour valeur une liste de moins de 5 éléments.

2 Interprétations

- 1. Trouver (si possible) une interprétation I_1 qui prouve que la formule Φ_1 ($(\exists x \ p(x)) \land (\exists x \ q(x))$) \Leftrightarrow $(\exists x(p(x) \land q(x)))$ n'est pas universellement valide et une interprétation I_2 où la formule Φ_1 est valide.
- 2. Même question en remplaçant dans Φ_1 tous les \wedge par des \vee , c'est à dire : Trouver (si possible) une interprétation I_3 qui prouve que la formule Φ_2 ($(\exists x \ p(x)) \vee (\exists x \ q(x))$) $\Leftrightarrow (\exists x (p(x) \vee q(x)))$ n'est pas universellement valide et une interprétation I_4 où la formule Φ_2 est valide.
- 3. Même question en remplaçant dans Φ_2 tous les \exists par des \forall , c'est à dire : Trouver (si possible) une interprétation I_5 qui prouve que la formule Φ_3 ($(\forall x \ p(x)) \lor (\forall x \ q(x))$) $\Leftrightarrow (\forall x (p(x) \lor q(x)))$ n'est pas universellement valide et une interprétation I_4 où la formule Φ_2 est valide.
- 4. Même question en remplaçant dans Φ_3 tous les \vee par des \wedge , c'est à dire : Trouver (si possible) une interprétation I_7 qui prouve que la formule Φ_4 ($(\forall x \ p(x)) \wedge (\forall x \ q(x))$) $\Leftrightarrow (\forall x (p(x) \wedge q(x)))$ n'est pas universellement valide et une interprétation I_8 où la formule Φ_4 est valide.
- 5. Trouver une interprétation I dans laquelle la formule : $(\forall x \exists y \ p(x,y)) \land (\forall x \neg p(x,x))$ est valide. Cette formule peut-elle être valide pour une interprétation dont le domaine a un seul élément ?
- 6. Trouver une interprétation I dans laquelle la formule :

```
(\forall x \exists y \ p(x,y)) \land (\forall x \neg p(x,x)) est valide.
```

Cette formule peut-elle être valide pour une interprétation dont le domaine a un seul élément ?

1. Pour I_1 on peut choisir comme domaine les entiers naturels, pour p(x) le prédicat "x est pair" et pour q(x) " x est impair". La formule $((\exists x \ p(x)) \land (\exists x \ q(x)))$ est trivialement valide alors que la formule $(\exists x \ (p(x) \land q(x)))$ est fausse, aucun entier n'étant à la fois pair et impair.

 Φ_1 n'est donc pas valide pour l'interprétation I_1 et Φ_1 n'est donc pas universellement valide.

Dans une interprétaion I' avec un domaine dans lequel il n'y a qu'un seul élément (et p et q deux prédicats quelconques), ou on peut choisir n'importe quel domaine et p=q. On aura alors $I' \models \Phi_1$

2. Ce n'est pas possible car Φ_2 est universellement valide. C'est à dire que pour toute interprétation I, on a $I \models \Phi_2$.

En effet dans toute interprétation

- Si $((\exists x \ p(x)) \lor (\exists x \ q(x)))$ alors
 - soit $((\exists x \ p(x)))$ et alors soit x_1 tel que $p(x_1)$. On a aussi $p(x_1) \lor q(x_1)$ donc $(\exists x(p(x) \lor q(x)))$
 - soit $((\exists x \ q(x)))$ et alors soit x_2 tel que $q(x_2)$. On a aussi $p(x_2) \lor q(x_2)$ donc $(\exists x(p(x) \lor q(x)))$

Dans les deux cas, on a bien $(\exists x (p(x) \lor q(x)))$.

Réciproquement,

```
si (\exists x (p(x) \lor q(x))), soit x_1 tel que (p(x_1) \lor q(x_1)) alors
```

- soit $p(x_1)$ et donc $((\exists x \ p(x))$ et donc $((\exists x \ p(x)) \lor (\exists x \ q(x)))$
- soit $q(x_1)$ et donc $((\exists x \ q(x))$ et donc $((\exists x \ p(x)) \lor (\exists x \ q(x)))$

Dans les deux cas, on a bien $((\exists x \ p(x)) \lor (\exists x \ q(x))).$

- 3. Pour I_3 on peut choisir comme domaine les entiers naturels, pour p(x) le prédicat "x est pair" et pour q(x) " x est impair". La formule $((\forall x \ p(x)) \lor (\forall x \ q(x)))$ s'interprète alors comme tous les entiers sont pairs ou tous les entiers sont impairs, ce qui est faux
 - La formule $(\forall x \ (p(x) \lor q(x)))$ s'interprète comme chaque entier est soit pair soit impair ce qui est vrai Φ_3 n'est donc pas valide pour l'interprétation I_3 Dans une interprétation I' avec un domaine dans lequel il n'y a qu'un seul élément (et p et q deux prédicats quelconques), ou on peut choisir n'importe quel domaine et p=q. On aura alors $I' \models \Phi_3$
- 4. Ce n'est pas possible car Φ_4 est universellement valide. C'est à dire que pour toute interprétation I, on a $I \models \Phi_4$
- 5. Pour I, on peut choisir comme domaine les entiers naturels pour p la relation <
- 6. Cette formule n'est jamais valide si le domaine contient un unique élément a, car on devrait alors avoir $p(a,a) \land \neg (p(a,a), ce qui est impossible$

3 Interprétation et Validité

Soit le langage :

- variable : x , y
- symboles fonctionnels : f (arité 2), a (arité 0)
- symboles de prédicat : p (arité 2)

Soit l'interprétation I :

- domaine : les entiers positifs
- f est la fonction somme, a la constante 0

- p est l'égalité

Caractériser la validité des propositions suivantes (cf cours 3.20) :

```
1. \forall x p(f(x,y),x)
```

2.
$$(\forall x p(f(x,y),x)) \Rightarrow (\exists x p(f(x,y),x))$$

3.
$$\forall x \exists y p(f(x,y),a)$$

4.
$$\forall x \forall y p(f(x,y),f(y,x))$$

Sur le domaine des entiers naturels et dans l'interprétation donnée les formules peuvent se réécrire.

- Φ_1 : $\forall x \ x + y = x$. Cette formule est satisfiable : Pour toute valuation σ où $y \to 0$; $I \models_{\sigma} \Phi_1$. Mais elle n'est pas valide car $I \not\models_{\sigma_1} \Phi_1$ pour une valuation σ_1 qui affecte à y la valeur 1.
- Φ_2 : $(\forall x \ x + y = x))) \Rightarrow (\exists x \ x + y = x))$. Non seulement $I \models \Phi_2$, mais Φ_2 est universellement valide, on dit aussi que c'est un théorème, ce que l'on note $\models \Phi_2$. En fait Φ_2 se réécrit en $\Phi: \exists (\Psi neg\Psi)$ avec $\Psi: x + y = x$ ce qui est une tautologie en logique classique.
- Φ_3 : $\forall x \exists y \ x + y = 0$ est faux pour les entiers naturels. On a $I \not\models \Phi_3$ [Remarque C'est une formule close]. En revanche l'interprétation I' ou l'on changerait simplement le domaine de \mathbf{N} en \mathbf{Z} serait un modèle de Φ_3)
- Φ_4 : $\forall x \ \forall y \ (x+y=y+x)$. I est un modèle pour Φ_4 , Φ_4 est valide dans I, $I \models \Phi_4$. Dans ce modèle, Φ_4 exprime la commutativité de l'addition dans \mathbf{N} . Mais Φ_4 n'est pas universellement valide : dans une interprétation où f n'est pas une fonction commutative Φ_4 est faux (par exemple, si on interprète f par la soustraction dans I.)