MTH1102D Calcul II

Chapitre 8, section 2 : Les dérivées et les intégrales des fonctions vectorielles

Le repère de Serret-Frenet

Introduction

• Repère mobile orthonormal associé à une courbe paramétrée.

Si C est une courbe définie par la fonction vectorielle $\vec{r}(t)$ (dont les composantes ont des dérivées partielles secondes qui sont continues) alors on définit

1 son vecteur tangent unitaire $\vec{T}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||}$

Si C est une courbe définie par la fonction vectorielle $\vec{r}(t)$ (dont les composantes ont des dérivées partielles secondes qui sont continues) alors on définit

- **1** son vecteur tangent unitaire $\vec{T}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||}$
- **2** son vecteur normal unitaire $\vec{N}(t) = \frac{\vec{T}'(t)}{||\vec{T}'(t)||}$

Si C est une courbe définie par la fonction vectorielle $\vec{r}(t)$ (dont les composantes ont des dérivées partielles secondes qui sont continues) alors on définit

- **1** son vecteur tangent unitaire $\vec{T}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||}$
- ② son vecteur normal unitaire $\vec{N}(t) = \frac{\vec{T}'(t)}{||\vec{T}'(t)||}$
- **3** et son vecteur binormal $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$.

Si C est une courbe définie par la fonction vectorielle $\vec{r}(t)$ (dont les composantes ont des dérivées partielles secondes qui sont continues) alors on définit

- son vecteur tangent unitaire $\vec{T}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||}$
- ② son vecteur normal unitaire $\vec{N}(t) = \frac{\vec{T}'(t)}{||\vec{T}'(t)||}$
- **3** et son vecteur binormal $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$.

On a déjà vu que les vecteurs \vec{T} et \vec{N} sont orthogonaux.

Si C est une courbe définie par la fonction vectorielle $\vec{r}(t)$ (dont les composantes ont des dérivées partielles secondes qui sont continues) alors on définit

- **1** son vecteur tangent unitaire $\vec{T}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||}$
- ② son vecteur normal unitaire $\vec{N}(t) = \frac{\vec{T}'(t)}{||\vec{T}'(t)||}$
- **3** et son vecteur binormal $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$.

On a déjà vu que les vecteurs \vec{T} et \vec{N} sont orthogonaux.

Selon les propriétés du produit vectoriel, \vec{B} est orthogonal à \vec{T} et à \vec{N} .

Le triplet $\{\vec{T}(t), \vec{N}(t), \vec{B}(t)\}$ forme une base orthonormale de l'espace pour chaque t, appelé repère de Serret-Frenet.

Le triplet $\{\vec{T}(t), \vec{N}(t), \vec{B}(t)\}$ forme une base orthonormale de l'espace pour chaque t, appelé repère de Serret-Frenet.

Puisqu'il dépend de t, ce repère est « mobile », c'est-à-dire qu'il varie de point en point le long de la courbe C.

Le triplet $\{\vec{T}(t), \vec{N}(t), \vec{B}(t)\}$ forme une base orthonormale de l'espace pour chaque t, appelé repère de Serret-Frenet.

Puisqu'il dépend de t, ce repère est « mobile », c'est-à-dire qu'il varie de point en point le long de la courbe C.

Notons que ce repère est orienté positivement (selon la règle de la main droite).

Résumé

• Vecteurs tangent, normal et binormal associés à une courbe paramétrée.

Résumé

- Vecteurs tangent, normal et binormal associés à une courbe paramétrée.
- Repère mobile de Serret-Frenet.

Résumé

- Vecteurs tangent, normal et binormal associés à une courbe paramétrée.
- Repère mobile de Serret-Frenet.