

Neuro-Symbolic Representations for IR Part 2.3 Infusion of Symbolic Knowledge into Text Representation

Jian-Yun Nie

University of Montreal

Outline

- 1. Part 1: Knowledge Graphs and Entities
 - 1. Welcome & Motivation (Dietz)
 - 2. Knowledge Graphs and GPT (Bast)
 - 3. Entity Linking (Bast)
- 2. Part 2: Neuro-Symbolic Foundations
 - 1. Ranking Wikipedia Entities / Aspects (Chatterjee)
 - 2. Neural Text Representations and Semantic Annotations (Dietz)
 - 3. Infusion of Symbolic Knowledge into Text Representation (Nie)
- 3. Part 3: Reasoning, Robustness, and Relevance
 - 1. Denoising Dense Representations with Symbols (Nogueira)
 - 2. Reasoning about Relevance (Dalton)
 - 3. From PRF to Retrieval Enhanced Generation (Dietz)
- 4. Part 4: Emerging Topics
 - 1. Conclusion and Outlook
 - 2. Panel Discussion

We are here

Motivation to infuse knowledge into LM

- Texts contain much world knowledge useful for applications
- But can be limited
 - A piece of knowledge may be infrequent in text
 - Much of our common knowledge is not stated in texts
 - E.g. A father is a male person
- Much of the knowledge implicitly captured by LM may be noise
 - True knowledge vs spurious knowledge is hard to distinguish
- Knowledge graph: Another form of structured knowledge often crafted by experts
 - From expert's domain knowledge
 - Synthetic knowledge
- Goal: Build better representations of texts for end tasks
 - Enhance true knowledge (conformity)
 - Extend the representation by what the knowledge implies

A taxonomy of knowledge-enhanced LM

Credit: Wei et al. Knowledge Enhanced Pretrained Language Models: A Compreshensive Survey, 2021

Text and knowledge graph: How to integrate?

- Naive approaches
 - Text → representation
 - Knowledge graph → representation
 - E.g. Jeong et al. A Context-Aware Citation Recommendation Model with BERT and Graph Convolutional Networks. arXiv:1903.06464 (2019)
- More sophisticated approaches
 - 1. Interactions between text and knowledge graph representations
 - 2. Joint objective: LM + knowledge graph objectives
 - 3. Enriching raw text with knowledge

Fusion (concatenation) of representations

1. Interactions between text and graph representations

- Early work based on word embedding
 - Knowledge (relations/triples) as constraint to build word embeddings
 - Retrofitting (Faruqui et al. 2015): modify word embeddings to make embeddings of related words closer
 - Relation as part of the loss (Yu and Dredze, 2015)
 - Application to medical IR (Liu, Nie and Sordoni, 2016)
- More recent work
 - BERT representation of text
 - Graph representation

Interact to create richer representations

VGCN-BERT: Combining GCN and BERT (Lu et al. ECIR 2020)

- BERT encodes local information from a text
- Knowledge graph: global information encoded by GCN on vocabulary graph
- Attention mechanism on joint representations

Visualization for sentiment classification

- *"Although it's a bit smug and repetitive, this documentary engages your brain a way few current films do. " (movie review SST-2)
 - Negative by BERT
- *"a way few current films do" in general language -> "innovation" positive

Importing entity embedding into text

- Knowledge graph embedding:
 - Incorporating information of neighbor nodes
- Text embedding:
 - Incorporate information from context words
- Inject entity embedding of graph into text
- ERNIE (Zhang et al. 2019)
 - Linking entities in text to entity nodes in graph
 - Aggregate entity embedding with token embedding

ERNIE

- Text embedding
- Entity embedding
 - TransE (minimize K-Encoder Mx $|e_{h} + e_{r} - e_{t}|$

Aggregation:

$$egin{aligned} oldsymbol{h}_j &= \sigma(ilde{oldsymbol{W}}_t^{(i)} ilde{oldsymbol{w}}_j^{(i)} + ilde{oldsymbol{W}}_e^{(i)} ilde{oldsymbol{e}}_k^{(i)} + ilde{oldsymbol{b}}^{(i)}), \ oldsymbol{w}_j^{(i)} &= \sigma(oldsymbol{W}_t^{(i)} oldsymbol{h}_j + oldsymbol{b}_t^{(i)}), \ oldsymbol{e}_k^{(i)} &= \sigma(oldsymbol{W}_e^{(i)} oldsymbol{h}_j + oldsymbol{b}_e^{(i)}). \end{aligned}$$

2. Knowledge infusion by multi-task learning

- Language modeling objective
 - Masked Language Modeling: predict the masked token
 - Auto regressive: predict the next token
- Knowledge objective
 - Related entity: head + relation → tail (e.g. TransE)
 - Relation between entities (Relation classification)
 - Linguistic knowledge: dependency
 - Sense: predict the super sense of a token (SenseBERT)
- Combine multiple objectives in multi-task learning

KEPLER: joint training of MLM and TransE

(Wang et al., KEPLER, Trans. ACL, 2021)

- Optimize a joint objective of text encoding (MLM) and graph encoding (TransE): $\mathcal{L} = \mathcal{L}_{\text{KE}} + \mathcal{L}_{\text{MLM}}$,
- Architecture of KEPLER

KEPLER

 Use description of entities and relations to create better embedding for entities and relations

SenseBERT: LM + sense

- Sense = higher synset in WordNet
- LM objective + Sense prediction objective

- 1. "This **bass** is delicious" (supersenses: noun.food, noun.artifact, *etc.*)
- 2. "This **chocolate** is delicious" (supersenses: noun.food, noun.attribute, *etc.*)
- 3. "This **pickle** is delicious" (supersenses: noun.food, noun.state, *etc.*)

Credit: Levine et al. SenseBERT, ACL 2020

Effect of SenseBERT

 The model has a better capability to project tokens of the same super-sense closer

15

K-ADAPTER: adding an adapter aside

- Idea:
 - Injecting knowledge into a language model may lead to catastrophic forgetting
 - Using adapter instead
- Adapter: a small model that complements a large LM
- Concatenate the outputs of transformer and adapter

Credit: Wang et al. K-ADAPTER, ACL-IJCNLP 2021

K-ADAPTER

- Adapter Architecture
 - Several layers of transformer
 - + projections

K-ADAPTER: Some results

Model	OpenEntity			FIGER		
	P	R	$Mi-F_1$	Acc	$Ma-F_1$	Mi-F ₁
NFGEC (Shimaoka et al., 2016)	68.80	53.30	60.10	55.60	75.15	71.73
BERT-base (Zhang et al., 2019)	76.37	70.96	73.56	52.04	75.16	71.63
ERNIE (Zhang et al., 2019)	78.42	72.90	75.56	57.19	75.61	73.39
KnowBERT (Peters et al., 2019)	78.60	73.70	76.10	_	-	-
KEPLER (Wang et al., 2021)	77.20	74.20	75.70	-	-	-
WKLM (Xiong et al., 2020)	-	-	-	60.21	81.99	77.00
RoBERTa	77.55	74.95	76.23	56.31	82.43	77.83
RoBERTa + multitask	77.96	76.00	76.97	59.86	84.45	78.84
K-ADAPTER (w/o knowledge)	74.47	74.91	76.17	56.93	82.56	77.90
K-ADAPTER (F)	79.30	75.84	77.53	59.50	84.52	80.42
K-ADAPTER (L)	80.01	74.00	76.89	61.10	83.61	79.18
K-Adapter (F+L)	78.99	76.27	77.61	61.81	84.87	80.54

Table 2: Results on two entity typing datasets OpenEntity and FIGER.

Model	Searc	SearchQA		sar-T	CosmosQA
	EM	\mathbf{F}_1	EM	\mathbf{F}_1	Accuracy
BiDAF (Seo et al., 2017)	28.60	34.60	25.90	28.50	_
AQA (Buck et al., 2018)	40.50	47.40	_	-	-
R ³ (Wang et al., 2018a)	49.00	55.30	35.30	41.70	_
DSQA (Lin et al., 2018)	49.00	55.30	42.30	49.30	-
Evidence Agg. (Wang et al., 2018b)	57.00	63.20	42.30	49.60	-
BERT (Xiong et al., 2020)	57.10	61.90	40.40	46.10	-
WKLM (Xiong et al., 2020)	58.70	63.30	43.70	49.90	-
WKLM + Ranking (Xiong et al., 2020)	61.70	66.70	45.80	52.20	-
BERT-FT _{RACE+SWAG} (Huang et al., 2019)	-	-	-	-	68.70
RoBERTa	59.01	65.62	40.83	48.84	80.59
RoBERTa + multitask	59.92	66.67	44.62	51.17	81.19
K-ADAPTER (F)	61.85	67.17	46.20	52.86	80.93
K-ADAPTER (L)	61.15	66.82	45.66	52.39	80.76
K-Adapter (F+L)	61.96	67.31	46.32	53.00	81.83

Table 3: Results on question answering datasets including: CosmosQA, SearchQA and Quasar-T.

3. Enriching raw text by knowledge (K-BERT)

- Input text → mapping to entities of KG
- Infusion: Add links to these tokens
- Visible matrix: what tokens can be seen –
 a way to define paths
- Embedding training: masking as in BERT
- → a way to exploit BERT training

Credit: Liu et al. K-BERT: Enabling Language Representation with Knowledge Graph, AAAI 2020

K-BERT: Infusing triples into text

Relevance of knowledge: What pieces of knowledge to use?

- Usually rely on entity linking: entities in text → related triples/1-hop subgraph
- Knowledge selection is key
 - A wrong piece of knowledge will lead to wrong inference direction
 - A useless (irrelevant) piece of knowledge will add noise
- E.g. Obama visited Japan and met with the Primary minister.

Obama – function \rightarrow president of US $\sqrt{}$

Obama – spouse → Michele

Knowledge selection by attention/relevance

Coke-BERT: Selecting sub-graph with context (Su et al. 2020)

- Text encoding: Using BERT to encode input text
- Knowledge selection: Attention of text context to neighbors of entity
 - Neighbor entities are aggregated according to their attention weights
- Fusion: concatenate text embedding and knowledge embedding as in ERNIE

 Steph Curry and Klay Thompson led the Warriors to the 2015 NBA Championship.

Selecting knowledge according to usefulness (Zhu, Nie et al. SIGIR 2021)

- Given a context (in dialogue), should a piece of knowledge (triple) be used?
- Attention ~ similarity (implicit in end-to-end training)
- → More explicit learning of usefulness/relevance of a piece of knowledge
- → Use a piece of knowledge only when it fits the context useful for the task
- Problem: No annotated data about usefulness/relevance of knowledge
- Pseudo labeling:
 - Raw training data = (context, response)
 - Testing if a triple is useful to connect context to response? → usefulness label
 - Extended training data = (context, response, knowledge)
- Train an explicit knowledge selection network using extended training data
 - Better than implicit selection by attention

Application in medical domain: a special case

- Medical domain is rich of expert knowledge
- Much of such knowledge cannot be extracted from texts

Applications in medical domain

- Rich medical domain knowledge
 - The International Classification of Diseases (ICD)
 - Medical Subject Headings (MeSH)
 - The Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT)
 - The Unified Medical Language System (UMLS)
 - ...
- Tasks
 - Semantic Annotation of Medical Texts
 - Entities/concepts in the document
 - Relationships (implicit or explicit) between entities
 - Relationship between an entity and a document
 - Medical IR

Applications to medical IR

- Main approaches: query expansion using knowledge graph
 - Add related terms/concepts into query
- Neural representations
 - Specifically trained medical LM: BioBERT, ClinicalBERT
 - Doc2vec: creating an embedding for a medical text
 - Extending word embedding by medical knowledge
 - Liu et al. 2016: Adjusting word embedding to fit medical knowledge, improced medical IR
- Some limited approaches to infuse medical knowledge

BERT-MK: Applying medical knowledge graph

- Extract subgraph from entities in a text (1-hop)
- Converting the subgraph to sequence (special position index)
- BERT encoding

Credit: He et al. BERT-MK: Integrating Graph Contextualized Knowledge into Pre-trained Language Models, EMNLP 2020

BERT-MK: training process

Train knowledge subgraph encoding to restore the relations

$$\mathcal{L} = \sum_{\mathbf{t} \in \mathbf{T}} \max \{ d(\mathbf{t}) - d(f(\mathbf{t})) + \gamma, 0 \}$$

• Maximize the distance between d(t) – TransE distance of a valid triple and f(t) – TransE distance of an invalid triple (tail entity replaced)

 Integration with LM: Similar to ERNIE – concatenating text embedding and graph embedding of entities

BERT-MK: experiments

Knowledge graph: subset of UMLS

Table 1: Statistics of UMLS.

# Entities	# Relations	# Triples
2,842,735	874	13,555,037
In-degree	Out-degree	Median degree

• Results on entity typing and relation classification

Task	Dataset	Metrics	E-SVM	CNN-M	BERT-Base	BioBERT	SCIBERT	BERT-MK
Entity	2010 i2b2/VA	Acc	-	-	96.76	97.43	97.74	97.70
Typing	JNLPBA	Acc	-	-	94.12	94.37	94.60	94.55
	BC5CDR	Acc	-	-	98.78	99.27	99.38	99.54
Relation	2010 i2b2/VA	P	-	73.1	72.6	76.1	74.8	77.6
Classification		R	-	<u>66.7</u>	65.7	71.3	71.6	72.0
		F	-	<u>69.7</u>	69.2	73.6	73.1	74.7
	GAD	P	79.21	_	74.28	76.43	77.47	81.67
		R	89.25	-	<u>85.11</u>	<u>87.65</u>	85.94	92.79
		F	83.93	-	79.33	<u>81.66</u>	81.45	86.87
	EU-ADR	P	-	-	<u>75.4</u> 5	81.05	78.42	84.43
		R	-	-	96.55	93.90	90.09	91.17
		F	-	-	84.71	87.00	85.51	87.49

KERM (Dong et al. SIGIR 2022)

 Selecting meta-graph that connects query entities to document entities

KERM

Knowledge aggregation

Figure 4: The architecture of KERM.

KERM on medical IR

Subset of MS MARCO and OHSUMED

	MARCO	Dev Queries	Ohsumed Queries		
	General	Bio-Medical	Offsuffice	a Querres	
MRR@1		MRR@10	MRR@10 MAP@10		
BM25	19.2	16.4	69.6	9.5	
ERNIE	38.5	30.5	79.7	10.1	
KERM	39.7	32.1	81.2	11.0	

Remaining questions

- Improvements mainly on entity and relation classification, also on IR
- More experimental evidence of knowledge infusion for IR to be made
- Main observations:
 - Knowledge infusion can improve text representation for tasks requiring knowledge
 - No standard way yet for knowledge infusion
- Key question: What knowledge to use
 - Relying on entity linking
 - Related entities/triples/subgraph?
 - Relatedness by Attention / usefulness?

Slides available at

https://github.com/laura-dietz/neurosymbolic-representations-for-IR/