Topologie sur les espaces vectoriels normés

Aperçu

- 1. Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

Topologie sur les espaces vectoriels normés

- 1. Normes et espaces vectoriels normés
- 1.1 Normes
- 1.2 Des normes sur \mathbb{K}^n
- 1.3 Des normes sur $\mathscr{C}([a,b],\mathbb{K})$
- 1.4 Des normes sur $\mathbb{K}[X]$
- 1.5 Normes euclidiennes
- 1.6 Distance associée à une norme
- 1.7 Comparaison des normes
- 2. Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

1.1 Normes

- 1.2 Des normes sur \mathbb{K}^n
- 1.3 Des normes sur $\mathscr{C}([a,b],\mathbb{K})$
- 1.4 Des normes sur $\mathbb{K}[X]$
- 1.5 Normes euclidiennes
- 1.6 Distance associée à une norme
- 1.7 Comparaison des normes
- 2. Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

- D 1 Soit E un \mathbb{K} -espace vectoriel (où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Une **norme** sur E est une application $N: E \to \mathbb{R}_+, x \mapsto ||x||$ telle que
 - Pour tout $x \in E$, on a l'implication $||x|| = 0 \implies x = 0$.
 - Pour tout $\lambda \in \mathbb{K}$, pour tout $x \in E$, $||\lambda x|| = |\lambda| \cdot ||x||$.
 - Pour tout $(x, y) \in E^2$, $||x + y|| \le ||x|| + ||y||$ (inégalité triangulaire).

Muni d'une norme, E est appelé un \mathbb{K} -espace vectoriel normé.

On a immédiatement les résultats suivants

- P 2 $\|0\| = 0$ et 0 est le seul élément de norme nulle.
 - Pour tout $(x, y) \in E^2$, $|||x|| ||y||| \le ||x y||$.
 - Pour tout $(x, y) \in E^2$, l'application de \mathbb{R} dans \mathbb{R} , $t \mapsto ||x + ty||$ est convexe.

Soit N une norme sur E. Un vecteur est dit **unitaire** lorsqu'il est de norme 1.

Tout vecteur non nul s'écrit de façon unique x = ku où k est un réel > 0 et u est un vecteur unitaire:

$$k = N(x)$$
 et $u = \frac{x}{N(x)}$.

- 1.1 Normes
- 1.2 Des normes sur \mathbb{K}^n
- 1.3 Des normes sur $\mathscr{C}([a,b],\mathbb{K})$
- 1.4 Des normes sur $\mathbb{K}[X]$
- 1.5 Normes euclidiennes
- 1.6 Distance associée à une norme
- 1.7 Comparaison des normes
- 2. Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n$$
, on distingue trois normes dites *normes usuelles*:

$$\begin{split} N_{\infty}(X) &= \|X\|_{\infty} = \sup_{1 \leq k \leq n} \left| x_k \right| \\ N_1(X) &= \|X\|_1 = \sum_{1 \leq k \leq n} \left| x_k \right| \\ N_2(X) &= \|X\|_2 = \sqrt{\sum_{1 \leq k \leq n} \left| x_k \right|^2}. \end{split}$$

La dernière est la norme euclidienne (ou hermitienne) associée au produit scalaire canonique sur \mathbb{K}^n .

Plus généralement, si $p \ge 1$, on peut définir la norme

$$N_p(X) = ||X||_p = \left(\sum_{1 \le k \le n} |x_k|^p\right)^{1/p}.$$

- 1.1 Normes
- 1.2 Des normes sur \mathbb{K}^n
- 1.3 Des normes sur $\mathscr{C}([a,b],\mathbb{K})$
- 1.4 Des normes sur $\mathbb{K}[X]$
- 1.5 Normes euclidiennes
- 1.6 Distance associée à une norme
- 1.7 Comparaison des normes
- 2. Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

Soit [a,b] un segment réel ; on note $E=\mathcal{B}([a,b],\mathbb{K})$ l'espace vectoriel des fonctions bornées sur [a,b] à valeurs dans \mathbb{K} dans \mathbb{K} . Pour tout $f\in E$, posons

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|.$$

On définit ainsi la norme de la convergence uniforme uniforme sur [a, b].

On note $\mathscr{C}([a,b],\mathbb{K})$ l'espace vectoriel des fonctions continues de [a,b] dans \mathbb{K} . C'est un sous-espace vectoriel de $\mathcal{B}([a,b],\mathbb{K})$. On pose

$$||f||_1 = \int_a^b |f(t)| dt.$$

On définit ainsi la norme de la convergence en moyenne.

T 4 Montrer que l'on a bien défini une norme sur $\mathscr{C}([a,b],\mathbb{R})$.

Sur le même \mathbb{K} -espace vectoriel $\mathscr{C}([a,b],\mathbb{K})$, on définit la **norme de la convergence** en moyenne quadratique:

$$||f||_2 = \sqrt{\int_a^b |f(t)|^2 dt}.$$

- 1.1 Normes
- 1.2 Des normes sur \mathbb{K}^n
- 1.3 Des normes sur $\mathscr{C}([a,b],\mathbb{K})$
- 1.4 Des normes sur $\mathbb{K}[X]$
- 1.5 Normes euclidiennes
- 1.6 Distance associée à une norme
- 1.7 Comparaison des normes
- 2. Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

Sur l'espace des polynômes $\mathbb{K}[X]$, ou, ce qui revient au même , sur l'espace des suites de support fini $\mathbb{K}^{(\mathbb{N})}$, on peut aussi définir trois normes usuelle, profitant du fait qu'il n'y a qu'un nombre fini de coefficients en jeu. Soit $P = \sum_{n \geq 0} a_n X^n$, un polynôme, on prend

$$\begin{split} N_{\infty}(P) &= \|P\|_{\infty} = \sup_{n \geq 0} \left| a_n \right| \\ N_1(P) &= \|P\|_1 = \sum_{n \geq 0} \left| a_n \right| \\ N_2(P) &= \|P\|_2 = \sqrt{\sum_{n \geq 0} \left| a_n \right|^2}. \end{split}$$

Γ 5 Vérifier qu'il s'agit de normes.

Soit $E = \mathbb{K}[X]$ et I = [a, b] un segment véritable. L'application qui à un polynôme P associe la fonction polynomiale $\tilde{P}: [a, b] \to \mathbb{K}, x \mapsto P(x)$, est linéaire injective à valeurs dans $\mathscr{C}([a, b], \mathbb{K})$. Une norme quelconque sur ce dernier espace fournit donc une norme sur E. Ainsi

$$N_{\infty,[a,b]}(P) = \sup_{x \in [a,b]} |P(x)|$$

$$N_{1,[a,b]}(P) = \int_{a}^{b} |P(t)| dt$$

$$N_{2,[a,b]}(P) = \sqrt{\int_{a}^{b} P(t)^{2} dt}$$

sont des normes sur $\mathbb{K}[X]$.

- 1.1 Normes
- 1.2 Des normes sur \mathbb{K}^n
- 1.3 Des normes sur $\mathscr{C}([a,b],\mathbb{K})$
- 1.4 Des normes sur $\mathbb{K}[X]$

1.5 Normes euclidiennes

- 1.6 Distance associée à une norme
- 1.7 Comparaison des normes
- 2. Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

D 6 Une norme est dite **euclidienne** s'il existe un produit scalaire $\langle \cdot, \cdot \rangle$ tel que $||x||^2 = \langle x, x \rangle$.

Pour une telle norme, on obtient l'égalité du parallélogramme

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

- **T 7** 1. Montrer que la norme N_1 n'est pas euclidienne sur \mathbb{R}^2 .
 - 2. Même question pour la norme de la moyenne sur $\mathscr{C}([0,1],\mathbb{R})$.
 - 3. Même question pour la norme de la convergence uniforme $\mathscr{C}([0,1],\mathbb{R})$.

- 1.1 Normes
- 1.2 Des normes sur \mathbb{K}^n
- 1.3 Des normes sur $\mathscr{C}([a,b],\mathbb{K})$
- 1.4 Des normes sur $\mathbb{K}[X]$
- 1.5 Normes euclidienne

1.6 Distance associée à une norme

- 1.7 Comparaison des normes
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

D 8 Soit E un \mathbb{K} -espace vectoriel et N une norme sur E. La distance associée à la norme est l'application

$$d: E \times E \to \mathbb{R}$$
$$(x, y) \mapsto N(x - y)$$

Le réel d(x, y) est appelé **distance entre** x et y.

- **P 9** Pour tout triplet $(x, y, z) \in E^3$,
 - 1. d(x, y) = 0 si x = y et d(x, y) > 0 si $x \neq y$;
 - 2. d(y, x) = d(x, y);
 - $3. d(x,z) \le d(x,y) + d(y,z).$

- 1.1 Normes
- 1.2 Des normes sur \mathbb{K}^n
- 1.3 Des normes sur $\mathscr{C}([a,b],\mathbb{K})$
- 1.4 Des normes sur $\mathbb{K}[X]$
- 1.5 Normes euclidiennes
- 1.6 Distance associée à une norme
- 1.7 Comparaison des normes
- Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

D 10 Soit E un \mathbb{K} -espace vectoriel et N_1 et N_2 deux normes sur E. Les normes N_1 et N_2 sont dites **équivalentes** s'il existe deux réels strictement positifs α et β tels que

$$\forall x \in E, \alpha N_1(x) \leq N_2(x) \leq \beta N_1(x).$$

E 11 Dans \mathbb{K}^n , les normes N_1 , N_2 et N_∞ sont équivalentes. Pour tout $x \in \mathbb{K}^n$,

$$\begin{split} N_{\infty}(x) &\leq N_1(x) \leq n N_{\infty}(x), \\ N_{\infty}(x) &\leq N_2(x) \leq \sqrt{n} N_{\infty}(x), \\ \frac{1}{n} N_1(x) &\leq N_2(x) \leq \sqrt{n} N_1(x). \end{split}$$

E 12 Dans $\mathscr{C}([0,1],\mathbb{R})$, il existe des normes qui ne sont pas équivalentes.

$$\forall f \in \mathcal{C}([0,1], \mathbb{R}), \|f\|_1 = \int_0^1 |f(t)| \, \mathrm{d}t \le \sup_{[0,1]} |f| = \|f\|_{\infty}.$$

Cependant, pour $f_n(t) = t^n$,

$$||f_n||_1 = \frac{1}{n+1}$$
 et $||f_n||_{\infty} = 1$.

Le quotient $\frac{\|f_n\|_{\infty}}{\|f_n\|_{\infty}}$ n'est donc pas majoré : les deux normes ne sont pas équivalentes.

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 2.1 Suites convergentes
- 2.2 Première propriétés
- 2.3 Suites dans un espace de dimension finie
- 2.4 Rappels et compléments sur les suites de fonctions
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 2.1 Suites convergentes
- 2.2 Première propriétés
- 2.3 Suites dans un espace de dimension finie
- 2.4 Rappels et compléments sur les suites de fonctions
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

D 13 On dit que la suite $u=(u_n)_{n\in\mathbb{N}}$ d'éléments de E converge vers $L\in E$ pour la norme $\|*\|$ si, et seulement si

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \|u_n - L\| \leq \varepsilon,$$

ou encore

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \mathrm{d}(u_n, L) \leq \varepsilon,$$

ce qui équivalent à l'énoncé

$$\lim_{n \to +\infty} \left\| u_n - L \right\| = 0.$$

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 2.1 Suites convergentes
- 2.2 Première propriétés
- 2.3 Suites dans un espace de dimension finie
- 2.4 Rappels et compléments sur les suites de fonctions
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

T 14 Si une suite converge pour la norme N, c'est vers un unique L.

On peut alors noter $L = \lim_{n \to +\infty} u_n$.

- **T 15** Soit (E, N) un espace vectoriel normé. Soient (u_n) et (v_n) deux suites de points de E et $\lambda \in \mathbb{K}$.
 - 1. $Si \lim_{n \to +\infty} u_n = a$ et $\lim_{n \to +\infty} v_n = b$, alors

$$\lim_{n \to +\infty} u_n + v_n = a + b.$$

2. $Si \lim_{n \to +\infty} u_n = a$, alors

$$\lim_{n\to+\infty}\lambda u_n=\lambda a.$$

T 16 Soit E un espace préhilbertien et N la norme associée.

$$Si \lim_{n \to +\infty} u_n = a \text{ et } \lim v_n = b, \text{ alors}$$

$$\lim_{n \to +\infty} \langle u_n, v_n \rangle = \langle a, b \rangle \qquad \text{et} \qquad \lim_{n \to +\infty} \|u_n\| = \|a\|.$$

T 17 Soient N_1 et N_2 deux normes sur un espace vectoriel E. Si N_1 et N_2 sont équivalentes, la notion de convergence et la valeur de la limite sont les mêmes pour les deux normes.

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 2.1 Suites convergentes
- 2.2 Première propriétés
- 2.3 Suites dans un espace de dimension finie
- 2.4 Rappels et compléments sur les suites de fonctions
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

- **T** 18 Soit *E* un espace vectoriel de dimension finie, toutes les normes sur *E* sont équivalentes.
- **T 19** Soit E un espace vectoriel de dimension finie p et $\mathcal{B} = (e_1, \dots, e_p)$ une base de E. Soit $(u_n) \in E^{\mathbb{N}}$ et $L \in E$. On note

$$\forall n \in \mathbb{N}, u_n = \sum_{j=1}^p u_n^{(j)} e_j \quad \text{et} \quad L = \sum_{j=1}^p L_j e_j.$$

Alors

$$\lim_{n \to +\infty} u_n = L \iff \forall j \in [\![1,p]\!], \lim_{n \to +\infty} u_n^{(j)} = L_j.$$

Autrement dit, la suite (u_n) converge vers L si, et seulement si la limite de la suite des j-ème coordonnées est la j-ème coordonnée de la limite de la suite.

E 20 On retrouve le cas d'une suite complexe. Si $z_n = x_n + iy_n$ $(x_n, y_n \in \mathbb{R})$, on a

 $(z_n) \rightarrow a + ib \iff (x_n) \rightarrow a \text{ et } (y_n) \rightarrow b.$

E 21 Pour une suite de *p*-uplets, la convergence équivaut à celle des composantes du *p*-upllet.

E 22 Pour une suite de matrices, la convergence équivaut à celle de toutes les suites des coefficients.

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 2.1 Suites convergentes
- 2.2 Première propriétés
- 2.3 Suites dans un espace de dimension finie
- 2.4 Rappels et compléments sur les suites de fonctions
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

D 23 Soit $(f_n: X \to \mathbb{R})_{n \in \mathbb{N}}$ une suite d'applications. La suite d'application $(f_n: X \to \mathbb{R})$ converge simplement vers une application $f: X \to E$ si, pour tout $x \in X$,

$$f(x) = \lim_{n \to +\infty} f_n(x).$$

On dit que f est limite simple de la suite (f_n) , ou que la suite (f_n) converge simplement vers f.

D 24 Soit $(f_n: X \to \mathbb{R})_{n \in \mathbb{N}}$ une suite d'applications bornées sur X. On dit que la suite d'application $(f_n: X \to \mathbb{K})_{n \in \mathbb{N}}$ converge uniformément vers une application $f: X \to E$ si

$$\lim_{n \to +\infty} \|f_n - f\|_{\infty} = 0.$$

ce qui équivalent à l'énoncé

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \implies \forall x \in X, |f_n(x) - f(x)| \leq \varepsilon.$$

On dit alors aussi que f est **limite uniforme** de la suite (f_n) .

R L'énoncé avec quantificateurs est la définition du chaptire ??. Elle s'étend aux suites de fonctions qui ne sont pas nécessairement bornées.

T 25 $Si(f_n)$ converge uniformément, si f est la limite, alors la suite (f_n) converge simplement vers f.

La réciproque est fausse. Par exemple, avec I = [0, 1] et $f_n(x) = x^n$, on a

$$\forall n \in \mathbb{N}, ||f_n - f||_{\infty} = \sup\{ |x|^n \mid x \in [0, 1[\} = 1,]$$

ce n'est pas là le terme d'une suite qui tend vers 0.

T 26 Soit $(f_n: X \to \mathbb{K})_{n \in \mathbb{N}}$ une suite d'applications convergeant uniformément vers $f: X \to \mathbb{K}$.

- Si chaque f_n est continue en un point $a \in X$, alors f est continue en a.
- Si chaque f_n est continue sur X, alors f est continue sur X.

D 27 Soit $(f_n : [a, b] \to \mathbb{R})_{n \in \mathbb{N}}$ une suite d'applications continues sur [a, b]. On dit que la suite d'application $(f_n:[a,b]\to\mathbb{K})_{n\in\mathbb{N}}$ converge en moyenne vers une application $f:[a,b] \to E$ si

$$\lim_{n \to +\infty} ||f_n - f||_1 = 0.$$

ce qui équivalent à l'énoncé

$$\lim_{n \to +\infty} \int_a^b \left| f_n(t) - f(t) \right| dt = 0.$$

T 28 Soit $(f_n : [a,b] \to \mathbb{K})_{n \in \mathbb{N}}$ une suite d'applications continues sur [a,b]. On suppose que la suite (f_n) converge uniformément vers f sur [a,b]. Alors

- 1. La suite (f_n) converge vers f dans $(\mathscr{C}([a,b]), \|\cdot\|_1)$.
- 2. La suite de terme général $\int_a^b f_n$ a une limite, c'est $\int_a^b f$. Autrement dit,

$$\lim_{n \to +\infty} \int_{a}^{b} f_n = \int_{a}^{b} \lim_{n \to +\infty} f_n.$$

D 29 Soit $(f_n : [a, b] \to \mathbb{R})_{n \in \mathbb{N}}$ une suite d'applications continues sur [a, b].

On dit que la suite d'application $(f_n:[a,b]\to\mathbb{K})_{n\in\mathbb{N}}$ converge en moyenne quadratique vers une application $f:[a,b]\to E$ si

$$\lim_{n \to +\infty} ||f_n - f||_2 = 0.$$

ce qui équivalent à l'énoncé

$$\lim_{n \to +\infty} \int_a^b \left| f_n(t) - f(t) \right|^2 dt = 0.$$

- **T** 30 Soit $(f_n : [a, b] \to \mathbb{K})_{n \in \mathbb{N}}$ une suite d'applications continues sur [a, b].
 - 1. $Si(f_n)$ converge uniformément vers f sur [a,b], alors f est continue et (f_n) tend vers f en moyenne quadratique.
 - 2. $Si(f_n)$ converge vers f en moyenne quadratique et si f est continue, alors (f_n) tend vers f en moyenne.

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 3.1 Boules
- 3.2 Parties ouvertes, voisinages
- 3.3 Parties fermées
- 3.4 Point intérieur et point adhérent
- 3.5 Sous-ensembles remarquables
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 3.1 Boules
- 3.2 Parties ouvertes, voisinages
- 3.3 Parties fermées
- 3.4 Point intérieur et point adhérent
- 3.5 Sous-ensembles remarquables
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

D 31 Soit $a \in E$ et r > 0.

 \blacktriangleright La boule ouverte de centre a et de rayon r est l'ensemble

$$B(a,r) = B_o(a,r) = \{ x \in E \mid d(a,x) < r \}.$$

 \blacktriangleright La **boule fermé** de centre a et de rayon r est l'ensemble

$$B_f(a,r) = \{ x \in E \mid d(a,x) \le r \}.$$

 \blacktriangleright La **sphère** de centre a et de rayon r est l'ensemble

$$S(a,r) = \{ x \in E \mid d(a,x) = r \}$$

On constate facilement

$$\{a\} \subset B_o(a,r) \subset B_f(a,r).$$

- **E 32** Dans \mathbb{R} ,
 - les boules ouvertes sont les intervalles]u, v[avec u < v.
 - les boules fermées sont les intervalles [u, v] avec u < v.
- **T 33** Représenter par une figure les boules de centre O associées aux distances usuelles dans \mathbb{R}^2 , c'est-à-dire aux distances associées aux normes $\|\cdot\|_{\infty}$, $\|\cdot\|_{1}$ et $\|\cdot\|_{2}$.

D 34 On dit que A est une partie bornée si A est inclue dans une boule, ou de manière équivalente si il existe $r \in \mathbb{R}_+$ tel que

$$\forall x \in A, ||x|| \le r.$$

- 1. Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 3.1 Boules
- 3.2 Parties ouvertes, voisinages
- 3.3 Parties fermées
- 3.4 Point intérieur et point adhérent
- 3.5 Sous-ensembles remarquables
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

D 35 Une partie A de E est un **ouvert** ou est une partie **ouverte** lorsque

$$\forall x \in A, \exists r > 0, B(x, r) \subset A.$$

L'ensemble des parties ouvertes de E s'appelle topologie de E.

- P 36 1. \emptyset et E sont des parties ouvertes de E
 - 2. Une union quelconque d'ouverts est un ouvert.
 - 3. Une intersection finie d'ouverts est un ouvert.
- **E 37** Une boule ouverte est un ouvert.

$$\exists r > 0, B(x,r) \subset V.$$

L'ensemble des voisinage de x sera noté $\mathcal{V}(x)$.

Une partie A de E ouverte si, et seulement si elle est un voisinage de chacun de ses points.

P 39 Soit $x \in E$.

Ν

R

- 1. Une union quelconque de voisinages de x est un voisinage de x.
- 2. Une intersection finie de voisinages de x est un voisinage de x.

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 3.1 Boules
- 3.2 Parties ouvertes, voisinages
- 3.3 Parties fermées
- 3.4 Point intérieur et point adhérent
- 3.5 Sous-ensembles remarquables
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

- **D 40** Une partie A de E est un **fermé** ou est une partie **fermée** lorsque son complémentaire $E \setminus A$ est ouvert.
- P 41 1. \emptyset et E sont des parties fermées de E
 - 2. Une intersection quelconque de fermés est fermée.
 - 3. Une union finie de fermés est fermée.
- **E 42** Une boule fermée, une sphère, sont fermées.

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 3.1 Boules
- 3.2 Parties ouvertes, voisinages
- 3.3 Parties fermées
- 3.4 Point intérieur et point adhérent
- 3.5 Sous-ensembles remarquables
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

- **D 43** Soit A une partie de E et $x \in E$.
 - Nous dirons que x est un point intérieur à A lorsque

$$\exists r > 0, B(x,r) \subset A.$$

Ce qui revient à dire que A est un voisinage de x.

Nous dirons que x est un point **adhérent** à A lorsque

$$\forall r>0, B(x,r)\cap A\neq\emptyset$$

c'est-à-dire

$$\forall r > 0, \exists y \in A, ||x - y|| \le r.$$

- P 44 1. Une partie A de E est ouverte si, et seulement si tous ses points lui sont intérieur.
 - 2. Une partie A de E est fermée si, et seulement si tous ses points lui sont adhérents.

- Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 3.1 Boules
- 3.2 Parties ouvertes, voisinages
- 3.3 Parties fermées
- 3.4 Point intérieur et point adhérent
- 3.5 Sous-ensembles remarquables
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

- ightharpoonup L'adhérence de A, notée \overline{A} est l'ensemble des points adhérents à A
- ightharpoonup L'intérieur de A, noté A est l'ensemble des points intérieurs à A
- La frontière de A, notée ∂A ou Fr(A) est l'ensemble $\overline{A} \setminus A$.
- La partie A est dite dense dans E lorsque $\overline{A} = E$.

P 46 Soit A une partie de E.

1. On a toujours

$$\overset{\circ}{A} \subset A \subset \overline{A}.$$

- 2. L'ensemble A est un ouvert.
- 3. L'ensemble \overline{A} est un fermé.
- 4.

$$\overbrace{E \setminus A}^{\circ} = E \setminus \overline{A} \quad \text{et} \quad \overline{E \setminus A} = E \setminus A.$$

- 1. L'ensemble \overline{A} est le plus petit ensemble fermé contenant A.
- 2. Une partie A est fermée si, et seulement si $A = \overline{A}$.
- 3. L'ensemble A est le plus grand ensemble ouvert contenu dans A.
- 4. Une partie A est ouverte si, et seulement si A = A.

- 1. Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 4.1 Caractérisation des points adhérents, des fermés
- 4.2 Caractérisation séquentielle de la densité
- 4.3 Caractérisation des points intérieurs, des ouverts
- 5. Parties compactes d'un espace vectoriel normé

- 1. Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 4.1 Caractérisation des points adhérents, des fermés
- 4.2 Caractérisation séquentielle de la densité
- 4.3 Caractérisation des points intérieurs, des ouverts
- 5. Parties compactes d'un espace vectoriel normé

1. Un point $x \in E$ est adhérent à $A \subset E$ si, et seulement si il existe une suite $(a_n) \in A^{\mathbb{N}}$ de limite x:

$$\exists (a_n) \in A^{\mathbb{N}}, \lim_{n \to +\infty} a_n = x.$$

Autrement dit : les points adhérents à A sont les limites de suites de points de A.

2. Une partie A est un fermé de E si, et seulement si

$$\forall (a_n) \in A^{\mathbb{N}}, \lim_{n \to +\infty} a_n = x \implies x \in A.$$

- 1. Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 4.1 Caractérisation des points adhérents, des fermés
- 4.2 Caractérisation séquentielle de la densité
- 4.3 Caractérisation des points intérieurs, des ouverts
- 5. Parties compactes d'un espace vectoriel normé

T 49 Caractérisation séquentielle de la densité

Une partie A de E est dense dans E si, et seulement si pour tout $x \in E$, il existe une suite de points de A tendant vers x.

- **T 50** 1. L'ensemble \mathbb{D} des nombres décimaux est dense dans \mathbb{R} .
 - 2. L'ensemble \mathbb{Q} des nombres rationnels est dense dans \mathbb{R} .
 - 3. L'ensemble $\mathbb{R} \setminus \mathbb{Q}$ des nombres irrationnels est dense dans \mathbb{R} .
- **C 51** Les ensemble $(\mathbb{D})^p$, \mathbb{Q}^p ou $(\mathbb{R} \setminus \mathbb{Q})^p$ sont denses dans \mathbb{R}^p .
 - Une partie A de \mathbb{R} est dense dans \mathbb{R} si, et seulement si tout intervalle ouvert non vide de \mathbb{R} contient au moins un point de cette partie, ou encore si, et seulement si

$$\forall (u, v) \in \mathbb{R}^2, u < v \implies \exists z \in A, u < z < v.$$

- 1. Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- 3. Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 4.1 Caractérisation des points adhérents, des fermés
- 4.2 Caractérisation séquentielle de la densité
- 4.3 Caractérisation des points intérieurs, des ouverts
- 5. Parties compactes d'un espace vectoriel normé

T 52 Caractérisation séquentielle des ouverts

Soit A une partie de E.

- 1. Un point x de E est intérieur à A si, et seulement si pour toute suite (u_n) de limite x, il y a un rang à partir duquel tous les termes sont dans A.
- 2. Ainsi, A est ouvert si, et seulement si toute suite convergeant vers un de ses points y prend ses valeurs à partir d'un certain rang.

- 1. Normes et espaces vectoriels normés
- 2. Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace normé
- 4. Caractérisations séquentielles
- 5. Parties compactes d'un espace vectoriel normé

D 53 Soit A une partie de E. On dit de A qu'elle est **compacte** lorsque pour toute suite de points de A, on peut en extraire une sous-suite convergente dans A (propriété dite de Bolzano-Weierstraß).

P 54 Si A est une partie compacte de E, alors A est fermée et bornée.

T 55 Soit *E* un espace vectoriel normé de dimension finie. Un partie *A* de *E* est compacte si, et seulement si *A* est fermée et bornée.