Unit 2: Logic and Proofs

Propositional Logic

What is a proposition?

- ▶ It is raining
- 1+1=2
- every odd number is a prime
- ▶ $2^{67} 1$ is a prime
- $(n+1)(n-1) = (n^2-1)$ for any integer n

What is a proposition?

- ▶ It is raining
- 1+1=2
- every odd number is a prime
- \triangleright 2⁶⁷ 1 is a prime
- $(n+1)(n-1) = (n^2-1)$ for any integer n

What is common between these statements?

What is a proposition?

- ▶ It is raining
- 1+1=2
- every odd number is a prime
- \triangleright 2⁶⁷ 1 is a prime
- $(n+1)(n-1) = (n^2-1)$ for any integer n

A proposition is a statement that is either true or false (but not both).

Definition: A *proposition* (denoted p, q, r, ...) is simply:

- a statement (i.e., a declarative sentence)
 - with some definite meaning, (not vague or ambiguous)
- having a truth value that's either true (T) or false (F)
 - it is never both, neither, or somewhere "in between!"
 - However, you might not know the actual truth value,
 - and, the truth value might depend on the situation or context.
- Later, we will study probability theory, in which we assign degrees of certainty ("between" T and F) to propositions.
 - But for now: think True/False only! (or in terms of 1 and 0)

Examples of Propositions

- It is raining. (In a given situation)
- Beijing is the capital of China. (T)
- 2 + 2 = 5. (F)
- 1 + 2 = 3. (T)
- A fact-based declaration is a proposition, even if no one knows whether it is true
 - 11213 is prime.
 - There exists an odd perfect number.

• Give an example of a statement that is not a proposition.

• Give an example of a statement that is not a proposition.

•
$$x + 1 = 8$$

Give an example of a statement that is not a proposition.

•
$$x + 1 = 8$$

- propositions are statements that are either true or false.
- Just as we use variables x; y; : : for numbers, we will use variables p; q; : : for propositions.

"if it is raining, it will be wet": $p \to q$

Examples of Non-Propositions

The following are **NOT** propositions:

- Who's there? (interrogative, question)
- Just do it! (imperative, command)
- La la la la la. (meaningless interjection)
- Yeah, I sorta dunno, whatever... (vague)
- 1 + 2 (expression with a non-true/false value)
- x + 2 = 5 (declaration about semantic tokens of non-constant value)

Truth Tables

- An operator or connective combines one or more operand expressions into a larger expression. (e.g., "+" in numeric expressions.)
 - Unary operators take one operand (e.g., -3);
 Binary operators take two operands (e.g. 3 × 4).
 - Propositional or Boolean operators operate on propositions (or their truth values) instead of on numbers.
 - The Boolean domain is the set {T, F}. Either of its elements is called a Boolean value.
 An n-tuple (p₁,...,p_n) of Boolean values is called a Boolean n-tuple.
 - An n-operand truth table is a table that assigns a Boolean value to the set of all Boolean n-tuples.

Some Popular Boolean Operators

Formal Name	Nickname	Arity	Symbol
Negation operator	NOT	Unary	7
Conjunction operator	AND	Binary	^
Disjunction operator	OR	Binary	V
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	\rightarrow
Biconditional operator	IFF	Binary	\leftrightarrow

The Negation Operator

- The unary negation operator "¬" (NOT) transforms a proposition into its logical negation.
- E.g. If p = "I have brown hair." then $\neg p$ = "It is not the case that I have brown hair" or "I do **not** have brown hair."
- The truth table for NOT:

Operand column

Result column

The Conjunction Operator

- The binary conjunction operator "∧" (AND) combines two propositions to form their logical conjunction.
- E.g. If p = "I will have salad for lunch." and q = "I will have steak for dinner."

then, $p \wedge q$ = "I will have salad for lunch **and** I will have steak for dinner."

Conjunction Truth Table

Operand columns

$$\begin{array}{c|cccc} p & q & p \wedge q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$

Note that a conjunction $p_1 \wedge p_2 \wedge ... \wedge p_n$ of n propositions will have 2^n rows in its truth table

The Disjunction Operator

- The binary disjunction operator "∨" (OR) combines two propositions to form their logical disjunction.
- E.g. If p = "My car has a bad engine." and q = "My car has a bad carburetor."

then, $p \lor q$ = "My car has a bad engine, **or** my car has a bad carburetor."

Meaning is like "and/or" in informal English.

Disjunction Truth Table

 $\begin{array}{c|cccc} p & q & p \lor q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ \hline F & F & F \\ \end{array} \begin{array}{c|cccc} \text{Note difference} \\ \text{from AND} \\ \hline \end{array}$

- Note that p∨q means that p is true, or q is true, or both are true!
- So, this operation is also called inclusive or, because it includes the possibility that both p and q are true.

The Exclusive-Or Operator

- The binary exclusive-or operator "⊕" (XOR) combines two propositions to form their logical "exclusive or"
- E.g. If p = "I will earn an A in this course." and q = "I will drop this course.", then
 - $p \oplus q$ = "I will **either** earn an A in this course, or I will drop it (**but not both**!)"

Exclusive-Or Truth Table

 $\begin{array}{c|cccc} p & q & p \oplus q \\ \hline T & T & \mathbf{F} \\ T & F & T \\ \hline F & T & T \\ F & F & F \\ \end{array}$ Note difference from OR.

- Note that p⊕q means that p is true, or q is true, but not both!
- This operation is called exclusive or, because it excludes the possibility that both p and q are true.

Natural Language is ambiguous

Note that the <u>English</u> "or" can be <u>ambiguous</u> regarding the "both" case!
n = 1 n "or"

■ "Pat is a singer or Pat is a writer." - ∨

■ "Pat is a man or Pat is a woman." - ⊕

<u>p</u>	q	<i>p</i> "or" <i>q</i>
T	T	?
T	F	T
F	T	T
F	F	F

- Need context to disambiguate the meaning!
- For this class, assume "or" means inclusive (∨).

The Implication Operator

- The conditional statement (aka *implication*)
 p → q states that p implies q.
- *l.e.*, If *p* is true, then *q* is true; but if *p* is not true, then *q* could be either true or false.
- E.g., let p = "You study hard."
 q = "You will get a good grade."
 p → q = "If you study hard, then you will get a good grade." (else, it could go either way)
 - p: hypothesis or antecedent or premise
 - q: conclusion or consequence

Implication Truth Table

$$\begin{array}{c|cccc} p & q & p \longrightarrow q \\ \hline T & T & T \\ T & F & F \end{array}$$

$$\begin{array}{c|cccc} The \ only \\ False \ case! \\ \hline F & F & T \\ \hline F & F & T \end{array}$$

- $p \rightarrow q$ is **false** only when p is true but q is **not** true.
- p → q does not require that p or q are ever true!
- E.g. "(1=0) \rightarrow pigs can fly" is TRUE!

Examples of Implications

- "If this lecture ever ends, then the sun will rise tomorrow." True or False? (T→T)
- "If 1+1=6, then Obama is president."
 True or False? (F → T)
- "If the moon is made of green cheese, then I am richer than Bill Gates." True or False? (F → F)
- "If Tuesday is a day of the week, then I am a penguin." True or False (T→F)

English Meaning Phrases of $p \rightarrow q$

```
"if p, then q"

"if p, q"

"p implies q"

"p only if q"

"p only if q"

"a sufficient con

"q if p"

"q when p"

"a necessary condition for p is q"

"q tollows from

"q unless \neg p"
```

```
"p implies q"

"p only if q"

"a sufficient condition for q is p"

"q whenever p"

"q is necessary for p"

"q follows from p"
```

Understanding the Implication Operation

- An obligation or an contract
- Example:
 - "If I am elected, then I will lower taxes."
 - "If you get 100% on the final, then you will get an A".
- Home exercise
 - Equivalence of "if p, then q" and "p, only if q".
 - Equivalence of "if p, then q" and "q unless $\neg p$ ".

Exercise

- **22.** Write each of these statements in the form "if p, then q" in English. [Hint: Refer to the list of common ways to express conditional statements provided in this section.]
 - a) It is necessary to wash the boss's car to get promoted.
 - **b)** Winds from the south imply a spring thaw.
 - c) A sufficient condition for the warranty to be good is that you bought the computer less than a year ago.
 - **d)** Willy gets caught whenever he cheats.
 - e) You can access the website only if you pay a subscription fee.
 - f) Getting elected follows from knowing the right people.
 - **g)** Carol gets seasick whenever she is on a boat.

Converse, Inverse and Contrapositive

- Some terminology, for an implication $p \rightarrow q$:
 - Its converse is: $q \rightarrow p$.
 - Its *inverse* is: $\neg p \rightarrow \neg q$.
 - Its contrapositive: $\neg q \rightarrow \neg p$.

p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
T	T	T	T	T	T
T	F	F	T	T	\mathbf{F}
F	T	T	F	\mathbf{F}	T
F	F	T	T	T	T

One of these three has the same meaning (same truth table) as p → q. Can you figure out which?

Examples

- p: Today is Easterq: Tomorrow is Monday
- $p \rightarrow q$:
 If today is Easter then tomorrow is Monday.
- Converse: q → p
 If tomorrow is Monday then today is Easter.
- *Inverse*: $\neg p \rightarrow \neg q$ If today is not Easter then tomorrow is not Monday.
- Contrapositive: $\neg q \rightarrow \neg p$ If tomorrow is not Monday then today is not Easter.

The Biconditional Operator

The biconditional statement p ↔ q states that p if and only if (iff) q.

```
p = "It is below freezing."
  q = "It is snowing."
  p \leftrightarrow q = "It is below freezing if and only if it is
             snowing."
      or
          = "That it is below freezing is
             necessary and sufficient for it to be
             snowing"
```

Biconditional Truth Table

p	q	$p \leftrightarrow c$
T	T	T
T	F	F
F	T	F
F	F	T

- p is necessary and sufficient for q
- If p then q, and conversely
- p iff q
- $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$.
- p ↔ q means that p and q have the same truth value.
- $p \leftrightarrow q$ does **not** imply that p and q are true.
- Note this truth table is the exact **opposite** of \oplus 's! Thus, $p \leftrightarrow q$ means $\neg(p \oplus q)$.

Combining Propositions

- Conjunction: p ∧ q, (read p and q), "discrete math is a required course and I am a computer science major".
- Disjunction: , p ∨ q, (read p or q), "discrete math is a required course or I am a computer science major".
- Exclusive or: p ⊕ q, "discrete math is a required course or I am a computer science major but not both".
- Implication: p → q, "if discrete math is a required course then I am a computer science major".
- Biconditional: p o q, "discrete math is a required course if and only if I am a computer science major".

Boolean Operations Summary

We have seen 1 unary operator and 5 binary operators. What are they? Their truth tables are below.

p	q	$\neg p$	$p \land q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	F	T	T	F	T	T
T	F	F	F	T	T	F	F
F	T	T	F	T	T	T	F
F	F	T	F	F	F	T	T

- For an implication $p \rightarrow q$
- Its **converse** is: $q \rightarrow p$
- Its *inverse* is: $\neg p \rightarrow \neg q$
- Its contrapositive: ¬q → ¬p

Compound Propositions

- A propositional variable is a variable such as p, q, r (possibly subscripted, e.g. p_j) over the Boolean domain.
- An atomic proposition is either Boolean constant or a propositional variable: e.g. T, F, p
- A compound proposition is derived from atomic propositions by application of propositional operators:
 e.g. ¬p, p ∨ q, (p ∨ ¬q) → q
- Precedence of logical operators: ¬, ∧, ∨, →, ↔
- Precedence also can be indicated by parentheses.
 - e.g. $\neg p \land q$ means $(\neg p) \land q$, not $\neg (p \land q)$

An Exercise

- Any compound proposition can be evaluated by a truth table
- $(p \vee \neg q) \rightarrow q$

p	q	$\neg q$	$p \lor \neg q$	$(p \lor \neg q) \rightarrow q$
T	T	F	T	T
T	F	T	T	F
F	T	F	F	T
F	F	T	T	F

Translating English Statements

```
Let p = "It rained last night",
q = "The sprinklers came on last night,"
r = "The lawn was wet this morning."
```

Translate each of the following into English:

```
    ¬p = "It didn't rain last night."
    r ∧ ¬p = "The lawn was wet this morning, and it didn't rain last night."
    ¬r ∨ p ∨ q = "The lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night."
```

Exercise

• Find the converse of the following statement.

"Raining tomorrow is a sufficient condition for my not going to town.

Another Example

- Find the converse of the following statement.
 - "Raining tomorrow is a sufficient condition for my not going to town."
- Step 1: Assign propositional variables to component propositions.
 - p: It will rain tomorrow
 - q: I will not go to town
- Step 2: Symbolize the assertion: p → q
- **Step 3**: Symbolize the converse: $q \rightarrow p$
- Step 4: Convert the symbols back into words.
 - "If I don't go to town then it will rain tomorrow" or
 - "Raining tomorrow is a necessary condition for my not going to town."

Logic and Bit Operations

- A bit is a binary (base 2) digit: 0 or 1.
- Bits may be used to represent truth values.
 - By convention:
 - 0 represents "False"; 1 represents "True".
- A bit string of length n is an ordered sequence of n ≥ 0 bits.
- By convention, bit strings are (sometimes) written left to right:
 - e.g. the "first" bit of the bit string "1001101010" is 1.
 - What is the length of the above bit string?

Bitwise Operations

 Boolean operations can be extended to operate on bit strings as well as single bits.

Example:

```
01 1011 0110

11 0001 1101

11 1011 1111 Bit-wise OR

01 0001 0100 Bit-wise AND

10 1010 1011 Bit-wise XOR
```

Propositional Equivalences

- A tautology is a compound proposition that is true no matter what the truth values of its atomic propositions are!
 - e.g. $p \lor \neg p$ ("Today the sun will shine or today the sun will not shine.") [What is its truth table?]
- A contradiction is a compound proposition that is false no matter what!
 - e.g. p ∧ ¬p ("Today is Wednesday and today is not Wednesday.") [Truth table?]
- A contingency is a compound proposition that is neither a tautology nor a contradiction.
 - e.g. $(p \lor q) \rightarrow \neg r$

Logical Equivalence

- Compound proposition p is logically equivalent to compound proposition q, written p ≡ q or p ⇔ q, iff the compound proposition p ↔ q is a tautology.
- Compound propositions p and q are logically equivalent to each other iff p and q contain the same truth values as each other in all corresponding rows of their truth tables.

Proving Equivalence Via Truth Tables

■ Prove that $\neg(p \land q) \equiv \neg p \lor \neg q$. (De Morgan's law)

$p \mid q \mid p \land q \mid$	$\neg p$	$\neg q$	$\neg p \times \neg q$		$\neg (p \land q)$			
TTT	F	F		F			F	
TF F	F	T	,	T			T	
FT F	T	F	,	T			T	
FF F	T	T	,	Т			T	

- Show that Check out the solution in the textbook!
 - $\neg (p \lor q) \equiv \neg p \land \neg q$ (De Morgan's law)
 - $p \rightarrow q \equiv \neg p \lor q$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ (distributive law)

Equivalence Laws

These are similar to the arithmetic identities you may have learned in algebra, but for propositional equivalences instead.

They provide a pattern or template that can be used to match part of a much more complicated proposition and to find an equivalence for it and possibly simplify it.

Equivalence Laws

- Identity: $p \wedge T = p$ $p \vee F = p$
- Domination: $p \lor T \equiv T$ $p \land F \equiv F$
- Idempotent: $p \lor p \equiv p$ $p \land p \equiv p$
- Double negation: $\neg \neg p \equiv p$
- Commutative: $p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$
- Associative: $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$

More Equivalence Laws

- Distributive: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- De Morgan's:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Absorption

$$p \lor (p \land q) \equiv p$$
 $p \land (p \lor q) \equiv p$

Trivial tautology/contradiction:

$$p \vee \neg p \equiv \mathbf{T}$$
 $p \wedge \neg p \equiv \mathbf{F}$

Defining Operators via Equivalences

Using equivalences, we can *define* operators in terms of other operators.

■ Exclusive or:
$$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$$

 $p \oplus q \equiv (p \lor q) \land \neg (p \land q)$

- Implies: $p \rightarrow q \equiv \neg p \lor q$
- Biconditional: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg (p \oplus q)$

This way we can "normalize" propositions

An Example Problem

Show that ¬(p → q) and p ∧ ¬q are logically equivalent.

```
\neg(p \rightarrow q) [Expand definition of \rightarrow]
\equiv \neg(\neg p \lor q) [DeMorgan's Law]
\equiv \neg(\neg p) \land \neg q [Double Negation]
\equiv p \land \neg q
```

Another Example

Check using a symbolic derivation whether

$$(p \land \neg q) \to (p \oplus r) \equiv \neg p \lor q \lor \neg r$$

Solution ...

```
(p \land \neg q) \rightarrow (p \oplus r) [Expand definition of \rightarrow]
\equiv \neg (p \land \neg q) \lor (p \oplus r) [Expand definition of \oplus]
\equiv \neg (p \land \neg q) \lor ((p \lor r) \land \neg (p \land r))
[DeMorgan's Law]
\equiv (\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r))
cont.
```

```
(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) [\lor Commutative]
\equiv (q \vee \neg p) \vee ((p \vee r) \wedge \neg (p \wedge r)) [\vee Associative]
\equiv q \vee (\neg p \vee ((p \vee r) \wedge \neg (p \wedge r))) [Distribute \vee over \wedge]
\equiv q \vee (((\neg p \vee (p \vee r)) \wedge (\neg p \vee \neg (p \wedge r)))) [\vee Assoc.]
\equiv q \vee (((\neg p \vee p) \vee r) \wedge (\neg p \vee \neg (p \wedge r))) [Trivial taut.]
\equiv q \vee ((\mathbf{T} \vee r) \wedge (\neg p \vee \neg (p \wedge r))) [Domination]
\equiv q \vee (\mathsf{T} \wedge (\neg p \vee \neg (p \wedge r))) [Identity]
\equiv q \vee (\neg p \vee \neg (p \wedge r))
```

$$q \lor (\neg p \lor \neg (p \land r))$$
 [DeMorgan's Law]
 $\equiv q \lor (\neg p \lor (\neg p \lor \neg r))$ [\lor Associative]
 $\equiv q \lor ((\neg p \lor \neg p) \lor \neg r)$ [Idempotent]
 $\equiv q \lor (\neg p \lor \neg r)$ [Associative]
 $\equiv (q \lor \neg p) \lor \neg r$ [\lor Commutative]
 $\equiv \neg p \lor q \lor \neg r$

Review: Propositional Logic

- Atomic propositions: p, q, r, ...
- Boolean operators: ¬ ∧ ∨ ⊕ → ↔
- Compound propositions: $(p \land \neg q) \lor r$
- Equivalences: $p \land \neg q \Leftrightarrow \equiv \neg (p \to q)$
- Proving equivalences using:
 - Truth tables
 - Symbolic derivations (series of logical equivalences) p ≡ q ≡ r ≡ ···