黎曼几何

孙天阳

2023年8月13日

目录

	目录		2
1	黎曼	度量	3
	1	Riemannian metric	3
		1.1 Existence of Riemannian metric	4
		1.2 黎曼度量张量 → 度量	5
		1.3 度量 → 黎曼度量张量	5
	2	黎曼体积形式	6
	3	商流形的黎曼度量	7
2	寻找	最短线	8
	1	例子	8
	2	弧长泛函与能量泛函	10
	3	能量泛函的变分 I	11
	4	指数映射	14
	5	一致邻域	16
		5.1 totally normal neighborhood 的存在性	16
	6	Cut locus 1	17
	7	Hopf-Rinow Theorem	19
	8	Cut locus 2	21
	9	黎曼覆盖映射	22
	10	Existence of shortest curves in given homotopy class	23
	11	title	23
		11.1 前情回顾	23
	12	能量泛函的变分 II	26
		12.1 Gauss 引理	26
			26
3	联络	和曲率	27
	1	仿射联络	27
	2	拉回丛及诱导联络	28
			28
		9.9 沃巳联级	20

目录	2

	3	平行移动	29				
	4	张量场的协变导数	30				
	5	Levi-Civita 联络	32				
	6	能量泛函的第二变分公式与曲率张量	34				
	7	协变微分与 Ricci 恒等式	35				
		7.1 局部坐标下的协变微分	35				
	8	音乐同构	36				
	9	算符	37				
		9.1 Hessian	37				
		9.2 散度	37				
		9.3 梯度	37				
		9.4 拉普拉斯	37				
	10	Bianchi 恒等式	38				
	11	Riemann 曲率张量	39				
	12	截面曲率	40				
	13	高斯绝妙定理	40				
		同期地炉足埕					
	14		42				
	15	数量曲率	43				
	16	Bochner 公式	44				
	17	测地曲率	45				
	18	Gauss-Bonnet 公式	46				
4	Jacobi 场						
	1	Jacobi 场	47				
	2	Morse 指标定理	48				
	3	Cartan-Hadamard 定理	49				
	4	空间形式	50				
	5	单连通空间形式的等距群	51				
	0	$5.1 \mathbb{R}^n \dots \dots$	51				
		$5.2 \mathbb{S}^n$	51				
		$5.3 \mathbb{H}^n \dots \dots$	51				
	6	Killing-Hopf 定理	52				
	7	E B B B 数	53				
	1	此 为 凶奴	99				
5	比较定理 54						
	1	Sturm 比较定理	54				
	2	Rauch 比较定理	55				
	3	Hessian 比较定理	56				
	4	Laplacian 比较定理	57				
	5	体积比较定理	58				
			30				
6	规范	理论	59				

Chapter 1

黎曼度量

1 定义和例子

2 Riemannian metric

$$\gamma: (a,b) \to M$$

$$\int_{a}^{b} |\gamma'(t)| dt = length(\gamma)$$
Hilbert space \longrightarrow Rieman

Hilbert space → Riemannian geometry

Banach space → Finsler geometry

Just for the purpose of

$$\gamma'(t), (v, x)$$

$$\|\gamma'(t)\|^2 = g_{ij}v^iv^j = (v^1, \dots, v^d)\left(g_{ij}\right)\begin{pmatrix} v^1 \\ \vdots \\ v^d \end{pmatrix}$$
 bilinear form, (g_{ij}) positive definite, symmetric

matrix

$$(U,y) w^{i} \frac{\partial}{\partial y^{i}} = w^{i} \frac{\partial x^{j}}{\partial y^{i}} \frac{\partial}{\partial x^{j}}$$

$$h_{ij}(y(p)) = g_{kl}(x(p)) \frac{\partial x^{k}}{\partial y^{i}} \frac{\partial x^{l}}{\partial y^{j}}$$

 (g_{ij}) (0, 2) tensor! And we assume its coefficients are smooth on x(U)

定义 2.1. A Riemannian metric g on a smooth manifold M is a smooth (0,2)-tensor satisfying

$$g(X,Y) = g(Y,X), \quad g(X,X) \geqslant 0 \& g_p(X,X) = 0 \iff X(p) = 0$$

for any smooth tangent vector field X, Y.

A Riemannian manifold is a smooth manifold with a Riemannian metric.

例子 2.2. \mathbb{R}^n

- $(g_{ij}) = (\delta_{ij})$
- 球面几何 $(g_{ij}) = \frac{4}{(1 + \sum_{i=1}^{n} (x^i)^2)^2} (\delta_{ij})$
- 双曲几何 $(g_{ij}) = \frac{4}{(1 \sum_{i=1}^{n} (x^i)^2)^2} (\delta_{ij})$

2.1 Existence of Riemannian metric

定理 2.3. A smooth manifold has a Riemannian metric.

Extrinsic proof. Whitney embedding

 $f: M^n \to N^{n+k}$ smooth immersion (d f_p is injective)

Let (N, g_N) be a Riemannian metric

Pull-back metric f^*g_N on M

$$(f^*g_N)_p(X_p, Y_p) = g_N(\mathrm{d}f_p(X_p), \mathrm{d}f_p(Y_p))$$

Intrinsic proof. U_p coordinate neighborhood. $\{U_p, p \in M\}$ open cover.

paracompact \Longrightarrow WLOG,let $\{U_{\alpha}\}$ be a locally finite covering of M by coordinate neighborhood. Partition of unity $\{\varphi_{\alpha}\}$ subordinate to $\{U_{\alpha}\}$.

$$x: U_{\alpha} \to x(U_{\alpha}) \subset \mathbb{R}^{n}$$

$$g_{p}(X,Y) = \sum_{\alpha} \varphi_{\alpha}(p)(g_{\alpha})_{p}(X,Y).$$

定义 2.4. Let $(M, g_M), (N, g_N)$ be two Riemannian manifolds. $\varphi \colon M \to N$ is called an **isometry** if φ is a diffeomorphism and $\varphi^*g_N = g_M$.

2.2 黎曼度量张量 → 度量

定义 2.5. A function $d: M \times M \to \mathbb{R}$ is called a metric if

- (i) $d(p,q) \ge 0$, and $d(p,q) = 0 \iff p = q$.
- (ii) d(p,q) = d(q,p).
- (iii) $d(p,q) \leq d(p,r) + d(r,q), \forall r \in M.$

Let (M, g) be a Riemannian manifold, for any $p, q \in M$, consider

 $C_{p,q} = \{ \gamma : [a,b] \to M \mid \gamma \text{ piecewise smooth regular curve with } \gamma(a) = p, \gamma(b) = q \}.$

Define $d(p,q) = \inf \{ Length(\gamma) \mid \gamma \in C_{p,q} \}.$

The following questions are immediate

- (1) Is $C_{p,q}$ empty?
- (2) Is $d(p,q) < +\infty$?
- (3) Is d a metric?
- (4) Can the infimum be attained?

Let $E_p = \{q \in M : p, q \text{ can be connected by a curve } \in C_{p,q}\}$. It is easy to show by connectedness argument that $E_p = M$. So $C_{p,q}$ could not be empty.

Take $\gamma \in C_{p,q}$, we can cover it by finite coordinate charts. So we just need to show any piecewise smooth curve contained in a coordinate chart has finite length.

$$Length(\gamma) = \int_{a}^{b} \sqrt{g_{ij} \frac{\partial x^{i} \circ \gamma}{\partial t}} \frac{\partial x^{j} \circ \gamma}{\partial t} dt$$

引理 2.6.

Next we show d(p,q) is a metric. It is obvious from definition that $d(p,q) \ge \text{and } d(p,q) = d(q,p)$. Because we consider piesewise smooth curve, triangle inequality is also easy. If $p \ne q$, we can find a coordinate chart U of p such that $q \notin U$.

2.3 度量 → 黎曼度量张量

https://mathoverflow.net/questions/45154/riemannian-metric-induced-by-a-metric

3 黎曼体积形式

4 商流形的黎曼度量

1

Chapter 2

寻找最短线

定义 0.1. 设 $c: [a, b] \to M$ 是一条光滑曲线. c 的一个(单参数)变分是指一个光滑映射

$$F: [a, b] \times (-\varepsilon, \varepsilon) \to M, \quad (t, s) \mapsto F(t, s)$$

满足 F(t,0)=c(t). 记 $\frac{\partial F}{\partial t}=\mathrm{d}F\left(\frac{\partial}{\partial t}\right), \frac{\partial F}{\partial s}=\mathrm{d}F\left(\frac{\partial}{\partial s}\right)$ (注意该记法与将 $\mathrm{d}c\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)$ 记作 c'(t) 的习惯相同). 称沿 c 的向量场 $V(t):=\frac{\partial F}{\partial s}(t,0)$ 为变分场.

1 例子

Euclidean geometry

$$(r,\theta)$$

$$g = dr \otimes dr + r^{2}d\theta \otimes d\theta$$

$$\gamma : [a,b] \to M, \gamma(a) = p, \gamma(b) = q$$

$$Length(\gamma) = \int_{a}^{b} \sqrt{g(\gamma'(t), \gamma'(t))} dt$$

$$(r(t), \theta(t)), r'(t) \frac{\partial}{\partial t} + \theta'(t) \frac{\partial}{\partial \theta}$$

$$Length(\gamma) = \int_{a}^{b} \sqrt{g(\gamma'(t), \gamma'(t))} dt$$

$$= \int_{a}^{b} \sqrt{r'(t)^{2} + r(t)^{2} \theta'(t)^{2}} dt$$

$$\geqslant \int_{a}^{b} |r'(t)| dt$$

$$\geqslant \left| \int_{a}^{b} r'(t) dt \right|$$

$$= |r(b) - r(a)|$$

= holds iff $\theta'(t) \equiv 0, \gamma(t)$ monotonic.

$$S^2\subset\mathbb{R}^3$$

$$\varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \theta \in (0, 2\pi)$$

$$\left\{ (\varphi, \theta) \mid \varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \theta \in (0, 2\pi) \right\}$$

$$g = d\varphi \otimes d\varphi + \cos^2 \varphi d\theta \otimes d\theta$$

2 弧长泛函与能量泛函

设 (M,g) 是一个黎曼流形.

定义 2.1. 称光滑曲线 $\gamma: [a,b] \to M$ 是正则的如果 $\|\gamma'(t)\| \neq 0, \forall t \in I$.

分段光滑(正则)曲线

定义 2.2. If $\gamma \colon I \to M$ is a smooth regular curve and if $p \colon I' \to I$ is a smooth map with non-zero derivative, then we say that $\gamma \circ p \colon I' \to M$ is a reparametrization of $\gamma \colon I \to M$.

It is easy to check that any reparametrization of a smooth regular curve is still a smooth regular curve and this defines an equivalent relationship on the space of all smooth regular curves to M.

We will use **parametrized curve** to refer to a smooth regular curve and **curve without parametrization** to refer to an equivalent class of smooth regular curves under reparametrization.

Let $\gamma \colon [a,b] \to M$ be a parametrized curve, we can define its length

$$L(\gamma) = \int_a^b \|\gamma'(t)\| dt := \int_a^b \sqrt{g(\gamma'(t), \gamma'(t))} dt.$$

It is easy to check that

引理 **2.3.** If $\gamma \circ p \colon I' \to M$ is a reparametrization of $\gamma \colon I \to M$, then $L(\gamma \circ p) = L(\gamma)$.

So we can actually define length for curves without parametrization.

弧长参数化

There is always a canonical representative element for any equivalent class of smooth regular curves under reparametrization.

命题 **2.4.** Suppose $\gamma: I \to M$ is a parametrized curve.

- (1) $p: I \to [0, L(\gamma)], t \mapsto \int_a^t \|\gamma'(s)\| ds$ is a smooth map with non-zero derivative.
- (2) Suppose $\gamma \sim \gamma'$, then $\gamma \circ p^{-1} = \gamma' \circ p'^{-1}$ as maps from $[0, L(\gamma)]$ to M.

We call $\gamma \circ p^{-1}$ the arclength reparametrization of γ .

命题 **2.5.** $\gamma: I \to M$ is parametrized with arclength iff $\|\gamma'(t)\| \equiv 1$.

能量泛函

定义 2.6. 设 $\gamma: [a,b] \to M$ 是分段光滑正则曲线, 定义

$$E(\gamma) = \frac{1}{2} \int_{a}^{b} \langle \gamma'(t), \gamma'(t) \rangle dt$$

3 能量泛函的变分 I

设 (M,g) 是一个黎曼流形. 设 $\gamma:[a,b]\to M$ 是一条光滑曲线, F 是 γ 的一个变分. 任给 y(t) 满足 y(a)=y(b)=0,

$$\begin{aligned} 2E(\gamma_{\varepsilon}) &= \int_{a}^{b} g_{ij}(x(t) + \varepsilon y(t)) \frac{\mathrm{d}}{\mathrm{d}t}(x^{i}(t) + \varepsilon y^{i}(t)) \frac{\mathrm{d}}{\mathrm{d}t}(x^{j}(t) + \varepsilon y^{j}(t)) \mathrm{d}t \\ 0 &= \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \bigg|_{\varepsilon=0} 2E(\gamma_{\varepsilon}) = \int_{a}^{b} g_{ij,k}(x) y^{k} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \mathrm{d}t + \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}y^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \mathrm{d}t + \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}y^{j}}{\mathrm{d}t} \mathrm{d}t \\ \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}y^{j}}{\mathrm{d}t} \mathrm{d}t = -\int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t} \left(g_{ij}(x) \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \right) y^{j} \mathrm{d}t = -\int_{a}^{b} g_{ij,k}(x) \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} y^{j} \mathrm{d}t - \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}^{2}x^{i}}{\mathrm{d}t^{2}} y^{j} \mathrm{d}t \\ \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}y^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \mathrm{d}t = -\int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t} \left(g_{ij}(x) \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \right) y^{i} \mathrm{d}t = -\int_{a}^{b} g_{ij,k}(x) \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} y^{i} \mathrm{d}t - \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}^{2}x^{j}}{\mathrm{d}t^{2}} y^{i} \mathrm{d}t \\ 0 &= \int_{a}^{b} \left(g_{ij,k}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} - g_{ik,j}(x) \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} - g_{kj,i}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} - 2g_{ik}(x) \frac{\mathrm{d}^{2}x^{i}}{\mathrm{d}t^{2}} \right) y^{k} \mathrm{d}t \\ g_{ij,k}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} - g_{ik,j}(x) \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} - g_{kj,i}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} - 2g_{ik}(x) \frac{\mathrm{d}^{2}x^{i}}{\mathrm{d}t^{2}} \right) y^{k} \mathrm{d}t \\ 2g_{ik}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t^{2}} + (g_{ik,j} + g_{kj,i} - g_{ij,k}) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} = 0 \end{aligned}$$

定义 3.1. 设 (M,g) 是黎曼流形,(U,x) 是一个坐标卡,g 在 (U,x) 下的分量表示为 (g_{ij}) ,定义 U 上的一族函数 $\Gamma_{ij}^k = \frac{1}{2} g^{kl} (g_{jl,i} + g_{il,j} - g_{ij,l})$,称作第二类 Christoffel 符号.

命题 3.2.

$$(1) \ \Gamma_{ij}^k = \Gamma_{ji}^k$$

$$(2) g_{ij,l} = g_{kj} \Gamma_{il}^k + g_{ik} \Gamma_{jl}^k$$

命题 3.3.
$$\widetilde{\Gamma}_{ij}^k = \Gamma_{\alpha\eta}^{\gamma} \frac{\partial x^{\alpha}}{\partial \widetilde{x}^i} \frac{\partial x^{\eta}}{\partial \widetilde{x}^j} \frac{\partial \widetilde{x}^k}{\partial x^{\gamma}} + \frac{\partial \widetilde{x}^k}{\partial x^{\gamma}} \frac{\partial^2 x^{\gamma}}{\partial \widetilde{x}^i \partial \widetilde{x}^j}$$

命题 3.4.
$$\frac{\mathrm{d}^2 x^k}{\mathrm{d}t^2} + \Gamma^k_{ij} \frac{\mathrm{d}x^i}{\mathrm{d}t} \frac{\mathrm{d}x^j}{\mathrm{d}t} = 0$$
 是定义在流形上的方程.

定义 3.5. A parametrized curve $\gamma: [a,b] \to M$ satisfies the equation above is called a geodesic.

命题 3.6. Geodesics are parametrited proportionally by arclength

证明.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(g_{ij}(x(t)) \frac{\mathrm{d}x^{i}(t)}{\mathrm{d}t} \frac{\mathrm{d}x^{j}(t)}{\mathrm{d}t} \right) &= g_{ij,l} \frac{\mathrm{d}x^{l}}{\mathrm{d}t} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} + 2g_{ij} \frac{\mathrm{d}^{2}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \\ &= g_{ij,l} \frac{\mathrm{d}x^{l}}{\mathrm{d}t} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} + 2g_{ij} \left(-\Gamma^{i}_{kl} \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \frac{\mathrm{d}x^{l}}{\mathrm{d}t} \right) \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \\ &= \left(g_{ij,l} - 2g_{kj} \Gamma^{k}_{il} \right) \frac{\mathrm{d}x^{l}}{\mathrm{d}t} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \end{split}$$

Claim $g_{ij,l} = g_{kj}\Gamma_{il}^k + g_{ik}\Gamma_{jl}^k$

$$RHS = \frac{1}{2}g_{kj}g^{kp}(g_{pl,i} + g_{ip,l} - g_{il,p}) + \frac{1}{2}g_{ik}g^{kp}(g_{pl,j} + g_{jp,l} - g_{jl,p})$$

$$= \frac{1}{2}(g_{il,i} + g_{ij,l} - g_{il,j}) + \frac{1}{2}(g_{il,j} + g_{ji,l} - g_{jl,i}) = g_{ij,l}$$

定理 3.7. $\forall p \in M, \exists \mathcal{U}_{V,\delta} = \{(q,v) \mid p,q \in V \subset M \ openv \in T_qM, \|v\| < \delta, \delta > 0\}$

and a $\varepsilon > 0$ and C^{∞} map $\gamma : (-\varepsilon, \varepsilon) \times \mathcal{U}_{V,\delta} \to M$ s.t. $\forall (q, v) \in \mathcal{U}_{V,\delta}$, the curve $t \mapsto \gamma(t, q, v)$ is the unique geodesic satisfying $r(0, q, v) = q, r'(0, q, v) = v \in T_qM$

3月4日22分27秒

引理 3.8 (Homogeneity of geodesic). If the geodesic $\gamma(t,q,v)$ is defined on $t\in(-\varepsilon,\varepsilon)$, then the geodesic $\gamma(t,q,\lambda v),\lambda\in\mathbb{R}^+$ is defined on the interval $t\in(-\frac{\varepsilon}{\lambda},\frac{\varepsilon}{\lambda})$ and

$$\gamma(t, q, \lambda v) = \gamma(\lambda t, q, v).$$

废稿

Consider the length functional $L: C_{p,q} \to \mathbb{R}$.

我要找 L 的最小值点. 一个简单但关键的观察是: 如果 γ 是连接 p 和 q 的最短线,那么它也是连接其上 p,q 之间任意两点的最短线. 因此我们可以将问题局部化!

下一个观察是,作为 L 的我要找 L 的最小值点,首先找 L 的极小值点.

假设 $\gamma_0 \in C_{p,q}$ 是 L 的极小值点,那么对于任意一族曲线 $\gamma_{\varepsilon}: (-\delta, \delta) \to C(p,q)$,都应有

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\Big|_{\varepsilon=0}L(\gamma_{\varepsilon})=0,\quad \frac{\mathrm{d}^2}{\mathrm{d}\varepsilon^2}\Big|_{\varepsilon=0}L(\gamma_{\varepsilon})\geqslant 0.$$

注记. γ_{ε} 上得附加可微性吧? 不然 $L(\gamma_{\varepsilon})$ 怎么可导?

Localizable

Suppose γ is the shortest curve connecting p and q, then it is also the shortest curve connecting any two points on γ between p and q. WLOG, we can suppose p, q are in one coordinate chart.

注记. 但这里是不是还需要说明我们不需要考虑那些跑出 p,q 落在的坐标卡的那些曲线,只考虑包含在坐标卡里的那些曲线.

Energy functional

$$L(\gamma_{\varepsilon}) = \int_{a}^{b} \sqrt{g_{ij}(x \circ \gamma_{\varepsilon}(t)) \frac{\mathrm{d}x^{i} \circ \gamma_{\varepsilon}(t)}{\mathrm{d}t} \frac{\mathrm{d}x^{j} \circ \gamma_{\varepsilon}(t)}{\mathrm{d}t}} \mathrm{d}t$$

要对它求导太麻烦,为此我们考虑能量泛函 $E(\gamma) = \frac{1}{2} \int_a^b g(\gamma'(t), \gamma'(t)) dt$.

引理 3.9. $\forall \gamma \in C_{p,q}, \gamma : [a,b] \to M, we have$

$$L(\gamma)^2 \leqslant 2(b-a)E(\gamma).$$

and " = " holds iff $\|\gamma'(t)\| \equiv \text{const.}$

证明.

$$L(\gamma) = \int_a^b \|\gamma'(t)\| dt \leqslant \left(\int_a^b 1^2 dt\right)^{\frac{1}{2}} \left(\int_a^b \|\gamma'(t)\|^2 dt\right)^{\frac{1}{2}} = \sqrt{b - a} \sqrt{2E(\gamma)}.$$

容易验证 $E(\gamma)$ 只能对于参数化曲线 $\gamma: [a,b] \to M$ 定义,这与长度泛函是不同的. If γ is arclength parametrized, then $L(\gamma)^2 = 2L(\gamma) \cdot E(\gamma) \Longrightarrow L(\gamma) = 2E(\gamma)$. Let us fix some notations. Suppose

$$\gamma: [a,b] \longrightarrow U \subset M^n \stackrel{x}{\longrightarrow} x(U) \subset \mathbb{R}^n$$
$$t \longmapsto \gamma(t) \in U \longmapsto x(\gamma(t)) =: x(t)$$

where $\gamma:[a,b]\to M$ is a parametrized curve and (U,x) is a chart.

Given $y: [a, b] \to \mathbb{R}^n$ a parametrized curve such that y(a) = y(b) = 0, define $\gamma_{\varepsilon}(t) = x(t) + \varepsilon y(t)$. You can belive that for sufficient small δ , γ_{ε} is contained in x(U), $\forall \varepsilon \in (-\delta, \delta)$.

注记. 一个问题是这样构造出来的 γ_{ε} 是否把所有的这种扰动找全了.

注记. 流形上没有线性结构, 搬到 \mathbb{R}^n 上去加!

命题 3.10 (光滑 + 最短线 + 平行弧长参数 \Longrightarrow 能量泛函临界点). If γ is a C^{∞} shortest curve from p to q. (前一句话与参数化无关,但后一句话给定了一个参数化) Then γ with a parametrization $\gamma: [a,b] \to U \subset M$ s.t. $\|\gamma'(t)\| \equiv \text{const}$ is a critical point of $E,i.e., \frac{\mathrm{d}}{\mathrm{d}\varepsilon}\big|_{\varepsilon=0} E(\gamma_{\varepsilon}) = 0$.

注记.

- 原则上来说最短线是在所有分段光滑的曲线中找的,以后会说明最短线一定是光滑的.
- 在不担心这个额外的光滑性假定的条件下,上面的命题告诉我们,最短线赋予平行于弧长的参数一定是能量泛函的临界点.

因此如果我们去找能量泛函的临界点,是不会漏掉最短线的.

证明. γ shortest $\Longrightarrow L(\gamma) \leqslant L(\gamma_{\varepsilon})$ $L(\gamma) = \sqrt{2(b-a)E(\gamma)}$ $L(\gamma_{\varepsilon}) \leqslant \sqrt{2(b-a)E(\gamma_{\varepsilon})}$ $\Longrightarrow E(\gamma) \leqslant E(\gamma_{\varepsilon})$ $\Longrightarrow \frac{\mathrm{d}}{\mathrm{d}\varepsilon}|_{\varepsilon=0}E(\gamma_{\varepsilon})=0.$

最短线加弧长参数是临界点,临界点如果都不是弧长参数就完了,没听懂.

4 指数映射

要根据一点附近的测地线的性质,来确定一个坐标系,使得测地线在这个坐标映射下投到欧氏区域后是直线.

其实拿切空间来做坐标区域应该是个挺自然的想法,毕竟切空间是该处的一阶线性近似

$$\exp_p: T_pM \longrightarrow M$$

$$v \longmapsto \gamma(1, p, v)$$

• 选取 1 能够使测地线走的长度等于 $||v||_q$.

指数映射的定义域

3月4日52分30秒

 $V_p := \{v \in T_pM \mid \text{the geodesic } \gamma(t, p, v) \text{ is defined on } [0, 1]\}.$

为了 \exp_n 成为坐标映射, 我们希望 V_p 至少包含以 O 为心的一个开球!

3月4日55分45秒

命题 4.1.

- (1) V_p is star-shaped aroud $O \in T_pM$, i.e. $\forall v \in V_p, \forall \lambda \in [0,1]$, then $\lambda v \in V_p$.
- (2) $\forall p, \exists \varepsilon = \varepsilon(p), \text{ s.t. } \gamma(t, p, v) \text{ is defined on } [0, 1] \text{ once } ||v|| < \varepsilon.$
 - 3月4日1小时1分0秒,反函数定理
 - 3月4日1小时5分2秒

命题 **4.2.** $\operatorname{d}\exp_p = \operatorname{Id}_{T_pM}$.

由逆映射定理,存在 p 点的一个邻域 U 使得 $\exp_p^{-1}: U \to T_pM$ 是微分同胚. 距离 \exp_p^{-1} 成为坐标映射只差 T_pM 到 \mathbb{R}^n 的一个同构,任取 T_pM 的一组基即可.

命题 **4.3.** $\Gamma_{ii}^{k}(p) = 0$.

命题 4.4. 选取 T_pM 的一组基 $\{v_1, \dots, v_n\}$. 断言 g 在坐标映射 $\exp_p^{-1}: U \to T_pM \cong \mathbb{R}^n$ 下的分量 在 O 处的取值 $g_{ij}(O) = g(v_i, v_j)$.

定义 4.5. 选取 T_pM 的一组标准正交基,此时的 (\exp_p^{-1}, U) 称为 p 的一个法坐标.

3月4日1小时17分45秒

证明.
$$0 = \frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} + \Gamma^i_{jk}(x(t)) \frac{\mathrm{d}x^j}{\mathrm{d}t} \frac{\mathrm{d}x^k}{\mathrm{d}t}$$

极坐标

A curve
$$c(t) = (r(t), \varphi^1(t), \dots, \varphi^{n-1}(t))$$

$$c'(t) = (\frac{\mathrm{d}r}{\mathrm{d}t}, \frac{\mathrm{d}\varphi^1}{\mathrm{d}t}, \dots, \frac{\mathrm{d}\varphi^{n-1}}{\mathrm{d}t}) =: (v^1, v^2, \dots, v^n)$$

$$\|c'(t)\| = g_{ij}(c(t))v^iv^j = \left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^2 + \sum_{i,j=1}^{n-1} g_{\varphi^i\varphi^j} \frac{\mathrm{d}\varphi^i}{\mathrm{d}t} \frac{\mathrm{d}\varphi^j}{\mathrm{d}t}$$

3月8日第二段11分20秒

推论 4.6. For any $p \in M, \exists \rho > 0$ s.t. $\forall q$ with $d(p,q) = \rho$, there exists a unique shortest curve $\in C_{p,q}$.

证明. $\exists \ \rho > 0$ s.t. $B(p, 2\rho)$ lies in a Riemannian polar coordinate neighborhood.

For any curve $c \in C_{p,q}$

$$c:[0,T]\to M, c(0)=p, c(T)=q$$

推论 4.7. 最短线是光滑的.

5 一致邻域

- 3月8日25分20秒
- 3月8日28分56秒

定义 5.1. totally normal neighborhood.

 $\forall p \in M$, if $W \ni p$, W is a normal neighborhood of every point $q \in W$, then W is cassled a **totally normal neighborhood**.

5.1 totally normal neighborhood 的存在性

3月8日第二段35分4秒

引理 5.2.

$$d \exp(p, 0_p) : T_{p,0_p}(TM) \longrightarrow T_{p,p}(M \times M)$$

is non sigular.

3月8日第二段1小时3分54秒

定理 5.3. For any $p \in M$, \exists a neighborhood W of p, and a $\delta > 0$ such that $\forall q \in W$, \exp_q is a diffeomorphism on $B(0_q, \delta) \subset T_qM$ and

3月8日第二段1小时14分7秒

推论 5.4.

6 Cut locus 1

3月8日第二段1小时25分32秒,总结

测地线的最大存在区间的端点是开的

3月8日第二段1小时28分5秒

给定 $p \in M, v \in T_pM$,有测地线 $\gamma(t, p, v) = \exp_p tv$.

假设 [0,b] 是 γ 的最大存在区间. 记 $q=\gamma(b,p,v), w=\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=b}\gamma(t,p,v).$

存在经过 q, 以 w 为初始切向量的测地线 $\tilde{\gamma}$, $\tilde{\gamma}$ 在某区间 $(-\varepsilon,\varepsilon)$ 上有定义.

断言 $\gamma|_{(b-\varepsilon,b]}$ 的反转与 $\tilde{\gamma}|_{(-\varepsilon,0]}$ 的反转都是以 q 为起点,以 -w 为初始切向量的测地线.

这是由链式法则与测地线方程的特点保证的.

由存在唯一性知 γ 与 $\tilde{\gamma}$ 在公共定义域上重合. 这与 [0,b] 是 γ 的最大存在区间矛盾.

测地线是最短线的最大区间相对测地线的最大存在区间是闭的

3月8日第二段1小时31分7秒

由最短线也是连接其上任意两点的最短线,知测地线是最短线的点是个区间。

$$A = \{t > 0 \mid d(p, \gamma(t)) = t ||v||_q \}$$
 是闭的.

Either A = (0, b) or A = (0, a] for some 0 < a < b.

定义 6.1.

- 如果 A = (0, a], 则称 $\gamma(a)$ 是 p 沿测地线 γ 的割点.
- 如果 A=(0,b), 则称 p 沿测地线 γ 没有割点.
- 称割点的全体为 p 的割迹,记作 C(p).
- $\not \in \not X$ τ : $\{v \in T_pM \mid \|v\|_g = 1\} \to \mathbb{R}, \tau(v) = \begin{cases} a & \text{if } \exp_p(av) \text{ is a cut point of } p \\ b & \text{if } p \text{ has no cut point along } t \mapsto \exp_p(tv) \end{cases}$

定义 6.2.

• Define a map $\tau: S_p \to \mathbb{R} \cup \{\infty\}$

$$\forall v \in S_p, \tau(v) = \begin{cases} a & \text{if } \exp_p(av) \text{is a cut point ofp} \\ \infty & \text{ifphas no cut point alongt} \mapsto \exp_p(tv) \end{cases}$$

$$E(p) = \{ tv \mid v \in S_p, 0 \le t < \tau(v) \}$$

$$\tilde{C}(p) = \{ tv \mid v \in S_p, t = \tau(v) \}$$

$$C(p) = \{ cut \ points \ ofp \} = \exp_p(\tilde{C}(p))$$

[0,b) is the maximal interval on which $t\mapsto \exp_n tv$ is defined.

命题 **6.3.** $\forall p, q \in M, \exists$ two shortest curve connecting p and q,

推论 6.4. $\exp_p: E(p) \to \exp_p(E(P)) \subset M$ is injective.

证明. Suppose
$$\exists V, W \in E(p)$$
 s.t. $\exp_p(V) = \exp_p(W) = q$.

$$t \mapsto \exp_p\left(t\frac{v}{\|v\|}\right)$$
$$t \mapsto \exp_p\left(t\frac{w}{\|w\|}\right)$$
Contradiction.

推论 6.5. $\exp_p(E(P)) \cap C(p) = \varnothing$.

证明. Suppose $\exists \ v \in \tilde{C}(p), W \in E(p)$ s.t. $\exp_p V = \exp_p W = q$ Contradiction.

Question:
$$\exp_p(E(p)) \cup C(p) = M$$
? $\mathbb{R}^2 \setminus \{0\}$

$$\forall q \in \exp_p(E_p) \cup C(p) = M?$$

7 Hopf-Rinow Theorem

3月11日27分14秒

任给 $p_0, q \in M, d(p_0, q) = r_0$. 我们想要找 p_0, q 之间的最短线.

我们知道局部上总是可以做的,问题是 p_0,q 可能离得很远.

思路是一步一步走.

选取以 p_0 为中心的一个 normal ball $B(p_0, \rho_0)$, 若 $q \in B(p_0, \rho_0)$, 结束.

若 $q \notin B(p_0, \rho_0)$, 假设 p_0, q 之间存在最短线 γ , 易知

- $\gamma \cap \partial B(p_0, \rho_0) = \{pt\} =: \{p_1\}.$
- $d(p_0,q) = \min_{p \in \partial B(p_0,\rho_0)} d(p,q).$

从 p_1 出发,我们可以找一个 normal ball $B(p_1, \rho_1)$, 并重复上述操作.

问题是: (1) p_0 到 p_2 的分段曲线是最短的吗? (2) 最终能达到 q 吗?

- $d(p_1,q) = r_0 \rho_0$
 - 假如 $d(p_1,q) < r_0 \rho_0$, 那么可以找到一条连接 p_0,q 的长度小于 r_0 的曲线,矛盾.
 - 假如 $d(p_1,q) > r_0 \rho_0$. 任选连接 p_0,q 的曲线 γ , $Length(\gamma) \ge \rho_0 + d(p_1,q)$. 取下确界,得 $r_0 \ge \rho_0 + d(p_1,q) > r_0$,矛盾.
- $d(p_0, p_2) = \rho_0 + \rho_1$
 - $-d(p_0, p_2) \leqslant d(p_0, p_1) + d(p_0, p_2) = \rho_0 + \rho_1.$
 - $-d(p_0, p_2) \geqslant d(p_0, q) d(p_2, q) = r (r \rho_0 \rho_1) = \rho_0 + \rho_1.$

因此,走了n步之后, p_0 和 p_n 之间的连线仍是最短的.

3月11日55分24秒名场面:方向决定道路,道路决定命运.

容易举出一些例子使得(2)不成立,为此我们附加一些额外的条件.

3月11日59分19秒

定义 7.1.

- injective radius at $p \in M$: $i(p) = \sup \{ \rho > 0 \mid \exp_p \mid_{B(O,\rho)} \text{ is a diffeomorphism} \}$.
- injective radius of $M: i(M) = \inf_{p \in M} i(p)$.

 $M \text{ compact} \Longrightarrow i(M) > 0.$

3月11日1小时4分52秒

Given $p \in M$,

- 1. Assumption I: $B_p(r)$ is compact \iff All closed bounded subsets of M is compact).
- 2. Assumption II: (M, g) is a complete metric space.
- 3. Assumption III: $\exp_p(p)$ is defined on the whole space T_pM .

这三个条件都可以保证 (2). 下面用 Assupttion III 推 (2).

3月21日1小时11分43秒

证明. $p, V \in T_pM$ $c(t) = \exp_p tV$

$$Aim:c(r) = \exp_n(rV) = q$$

Consider the set $I := \{t \in [0, r] \mid d(c(t), q) = r - t\}$

1 小时 24 分 33 秒

事实上,上面几种假定是等价的,这就是 Hopf-Rinow 定理.

3月15日2分31秒

定理 7.2 (Hopf-Rinow,1931). Let (M,g) be a Riemannian manifold, TFAE

- (1) (M, d_a) is a complete metric space.
- (2) All closed bounded subsets of M is compact.
- (3) $\exists p \in M$, \exp_p is defined on the whole T_pM .
- (4) $\forall p \in M$, \exp_p is defined on the whole T_pM .

Moreover, each of the statements (1) - (4) implies

(5) $\forall p, q \in M$ can be joined by a shortest curve.

注记. 原始论文: Ueber den Begriff der vollständigen differentialgeometrischen Fläche. 证明.

• $(3) \Longrightarrow (2)$

Claim: $\forall r > 0, \overline{B(p,r)}$ is compact.

For any bounded closed subset K, $\exists r_k$ such that $K \subset \overline{B(p, r_k)}$.

 $\text{FACT:}\overline{B(p,r)} = \exp_p(\overline{B(Op,r)})$

$$\begin{split} &-\exp_p(\overline{B(O_p,r)})\subset \overline{B(p,r)}\\ &\forall\; v\in \overline{B(O_p,r)}, d(p,\exp_pV)\leqslant r \Longrightarrow \exp_pV\in \overline{B(p,r)} \end{split}$$

- $\ \forall q \in \overline{B(p,r)},$
- $(2) \Longrightarrow (1)$
- $(1) \Longrightarrow (4)$

Suppose $\exists p \in M$ and $v \in T_pM$ such that the geodesic $t \mapsto \exp_p tv$ is defined on the maximal interval $[a, b), b < \infty$.

For any $\{t_n\} \subset [a,b)$ such that $t_n \to b$, $d(\exp_p t_n v, \exp_p t_m v) \leq ||v||_g |t_n - t_m|$ and then $\{\exp_p t_n v\}$ is a Cauchy sequence.

 $\exists \ p_0 \in M, \lim_{n \to +\infty} \exp_p t_n v = p_0, \text{i.e.} \ \forall \delta > 0, \exists N \text{ such that } \exp_p t_n v \in B(p_0, \delta), \forall n \geqslant N.$

引理 7.3. 内容...

8 Cut locus 2

3月15日39分24秒

定理 8.1. Let (M,g) be a complete Riemannian manifold, then

$$M = \exp_p(E(p)) \sqcup c(p).$$

定理 8.2. Let (M,g) be a complete Riemannian manifold.

Let $\gamma \colon [a,b] \to M$ be a normal geodesic with $p = \gamma(0), \, v$

证明. Choose a sequence of parameters

$$a_1 > a_2 > a_3 > \cdots$$
, $\lim_{i \to +\infty} a_i = a$.

By completeness, $\exists v_i \in T_pM, ||v_i|| = 1$ such that

$$\gamma_i(t) = \exp_p t v_i, t \in [0, b_i]$$

is a shortest curve form p to $\gamma(a_i)$, where $b_i = d(p, \gamma(a_i))$.

Notice that $v_i \neq v$.

$$\lim_{i \to +\infty} p_i =$$

9 黎曼覆盖映射

10 Existence of shortest curves in given homotopy class

• isometry: 微分同胚, 度量等于拉回

•

3月15日1小时26分15秒

定理 10.1. Let (M,g) be compact.

Then every homotopy class of closed curves in M contains a curve which is shortest in its homotopy class and a geodesic.

引理 10.2. Let (M,g) be compact, $\exists \rho_0 > 0$ such that for any $\gamma_0, \gamma_1 \colon S^1 \to M$ be closed curves with $d(\gamma_0(t), \gamma_1(t)) \leqslant \rho_0, \forall t \in S_1$ we have γ_0 and γ_1 are homotopic.

引理 10.3. A shortest curve in a homotopy class is geodesic.

证明. Let $(\gamma)n_{n\in\mathbb{N}}$ is a minimizing sequence for length in the homotopy class.

All are parametrized proportional to arc length.

We can find $0 = t_0 < t_1 < \cdots < t_n < t_{n+1} = 2\pi$ with the property that

$$Length(\gamma_n\mid_{t_i,t_{i+1}}) \leqslant \frac{\rho_0}{2}$$

11 title

11.1 前情回顾

Riemannian Covering map

 $\pi: (M, \pi^*g) \to (M, g)$ smooth map

locally Riemannian isometry

isometry $\varphi \colon (M, g_M) \to (N, g_N)$ is called an isometry if φ is diffeomorphism and $g_M = \varphi^* g_N$ locally isometry $\varphi \colon (M, g_M) \to (N, g_N)$ smooth map, $\forall p \in M \exists U \in p$ such that $\varphi\big|_U \colon U \to \varphi(U)$ is an isometry 问题: 对 $\varphi(U)$ 有没有要求

locally Riemannian isometry $\varphi\colon (M,g_M)\to (N,g_N)$ smooth map, $\forall\ p\in M, \mathrm{d}\varphi_p:T_pM\to T_{\varphi(p)}N$ is a linear isometry.

命题 11.1. Let $\varphi: (M, g_M) \to (N, g_N)$ be a locally Riemannian isometry.

- (1) φ maps geodesics to geodesics.
- (2) For any $\tilde{p}, \tilde{v} \in T_{\tilde{p}}M$, we have

$$\varphi \circ (\exp_{\tilde{p}} \tilde{v}) = \exp_{\varphi(\tilde{p})} (d\varphi_{(\tilde{p})}(\tilde{v})).$$

$$T_{\tilde{p}}M \xrightarrow{d\varphi(\tilde{p})} T_{\varphi(\tilde{p})N} \downarrow \qquad \downarrow$$

$$M \xrightarrow{\varphi} N$$

(3) φ is distance non-increasing.

$$\forall \ \tilde{p}, \tilde{q}, d_N(\varphi(\tilde{p}), \varphi(\tilde{q})) \leqslant d_M(\tilde{p}, \tilde{q})$$

(4) φ is bijective, then it is distance preserving.

定理 11.2. (M, g_M) complete Riemannian manifold, $p, q \in M$. Every homotopy class of paths from p to q contains a shortest curve.

证明. Assume that (M, g_M) complete $\Longrightarrow (\tilde{M}, \pi^*g)$ is complete.

命题 11.3. Let $\pi: (\tilde{M}, \tilde{g}) \to (M, g)$ is a Riemannian covering map, then (M, g) complete iff (\tilde{M}, \tilde{g}) complete.

证明.

ete
$$\Longrightarrow (\tilde{M}, \tilde{g})$$
complete $\forall \tilde{p} \in \tilde{M}, \tilde{v} \in T_{\tilde{p}\tilde{M}}, t \mapsto \exp_{\tilde{p}} t\tilde{v}$

$$p = \pi(\tilde{p}), v = d\pi(\tilde{p})(\tilde{v})$$

geodesic $t \mapsto \exp_{v} tv$ is defined on $[0, \infty)$

path liftying, $\exists \tilde{\gamma}$ a path in \tilde{M} such that $\tilde{\gamma}(0) = \tilde{p}, \pi \circ \tilde{\gamma} = \gamma$

$$\frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}t}\big|_{t=0} = \tilde{v}$$

ete $\Longrightarrow (M, g)$ complete $\forall p \in M, \forall v \in T_p M, t \mapsto \exp_p tv$

命题 11.4. Let $\pi: (\tilde{M}, \tilde{g}) \to (M, g)$ is a local Riemannian isometry. Suppose (\tilde{M}, \tilde{g}) complete. Then (M, g) is complete and π is a Riemannian covering map.

证明. (1) π is surjective.

$$\forall \tilde{p} \in \tilde{M}, p = \pi(\tilde{p}) \in M$$

 $\forall q \in M, \exists$ a shortest geodesic γ from p to q.

Let $\tilde{\gamma}$ be the lifting of γ starting at $\tilde{p} = \tilde{\gamma}(0)$

$$\pi \circ \tilde{\gamma} = \gamma, q = \gamma(t_0), \pi \circ \tilde{\gamma}(t_0) = \gamma(t_0) = q$$

(2) evenly covered

$$p \in U, \pi^{-1}(U) = \bigsqcup_{\alpha \in \Lambda} \tilde{U}_{\alpha}$$

 $\pi \colon \tilde{U}_{\alpha} \to U$ diffeomorphism

Normall ball $B(p, \varepsilon)$

$$\tilde{U}_{\alpha} = B(\tilde{p}_{\alpha}, \varepsilon)$$
 metric ball

(a)
$$\tilde{U}_{\alpha} \cap \tilde{U}_{\beta} = \varnothing, \forall \alpha \neq \beta$$

 $d(\tilde{p}_{\alpha}, \tilde{p}_{\beta}) \geqslant 2\varepsilon$

(b)
$$\pi^{-1}(U) = \bigcup_{\alpha \in \Lambda} \tilde{U}_{\alpha}$$

• $\forall \tilde{q} \in \tilde{U}_{\alpha}$ for some $\alpha \in \Lambda$ \exists a geodesic $\tilde{\gamma}$ of length $< \varepsilon$ from

$$\frac{\mathrm{d}^2 x^i(t)}{\mathrm{d}t^2} + \Gamma^i_{jk}(x(t)) \frac{\mathrm{d}x^j}{\mathrm{d}t} \frac{\mathrm{d}x^k}{\mathrm{d}t} = 0, i = 1, \dots, n$$

12 能量泛函的变分 II

$$\frac{\mathrm{d}E}{\mathrm{d}s} = \frac{1}{2} \int_{a}^{b} \frac{\partial}{\partial s} \left\langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t$$

$$= \int_{a}^{b} \left\langle \nabla_{\frac{\partial}{\partial s}} \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t$$

$$= \int_{a}^{b} \left\langle \nabla_{\frac{\partial}{\partial t}} \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t$$

$$= \int_{a}^{b} \frac{\partial}{\partial t} \left\langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t - \int_{a}^{b} \left\langle \frac{\partial F}{\partial s}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t$$

$$E'(0) = \langle V, T \rangle \Big|_{a}^{b} - \int_{a}^{b} \langle V, \nabla_{T} T \rangle \mathrm{d}t$$

3月29日1小时35分41秒

12.1 Gauss 引理

3月29日1小时36分33秒

12.2 第二变分公式

3月29日1小时51分30秒

 $\frac{\partial F}{\partial t}$ 视作沿曲线 $F(t,\cdot)$ 的向量场 $\frac{\partial F}{\partial t}$ 视作沿F的向量场

Chapter 3

联络和曲率

1 仿射联络

为什么要对向量场求导?因为欧氏空间中我们就已经在对向量场求导了.

比如浸入 $\gamma\colon I\to\mathbb{R}^3$ 的曲率,我们选择弧长参数, $\gamma'(s)$ 是一个沿 γ 的单位长的切向量场,我们继续对它求导,这就是对向量场的求导,得到 $\gamma''(s)$,我们把这玩意的模长叫做曲率,用来刻画曲线的弯曲程度.

2 拉回丛及诱导联络

定义 2.1. 拉回丛

例子 2.2. 沿曲线的向量场

定义 2.3. 设 $\varphi: N \to M$ 是光滑映射. 称 $V: N \to TM$ 是沿 φ 的向量场, 如果 $V(x) \in T_{\varphi(x)}M$.

命题 2.4. 两个概念是一致的.

定义 2.5. 诱导联络

命题 2.6. 诱导联络在基下的计算方式.

2.1 沿曲线的协变导数

定义 2.7. 给定 C^{∞} 曲线 $c: [a,b] \to M$,称 $V: [a,b] \to M$ 是沿 c 的向量场,如果 $V(t) \in T_{c(t)}M$. 我们称 V 是光滑的,如果对任意的 $f \in C^{\infty}(M)$,函数 V(t)f 是光滑的. 记沿 c 的光滑向量场全体为 $\Gamma(TM|_c)$,它显然是 $C^{\infty}([a,b])$ 模.

在一个坐标卡 (U,x) 中,V(t) 能够被表达为

$$V(t) = V^i(t) \frac{\partial}{\partial x^i} \bigg|_{c(t)}.$$

容易验证 V 是光滑的 $\iff V^i(t)$ 是光滑的, $1 \le i \le n$.

命题 2.8. 设 M 是光滑流形, ∇ 是其上的仿射联络. 存在唯一的 $\frac{D}{\mathrm{d}t}\colon \Gamma(TM|_c)\to \Gamma(TM|_c)$ 满足

$$(1) \frac{D(V+W)}{\mathrm{d}t} = \frac{DV}{\mathrm{d}t} + \frac{DW}{\mathrm{d}t}$$

(2)
$$\frac{D(fV)}{\mathrm{d}t} = \frac{\mathrm{d}f}{\mathrm{d}t}V + f\frac{DV}{\mathrm{d}t}, \forall f \in C^{\infty}([a,b])$$

(3) 如果存在
$$X \in \mathfrak{X}(M)$$
 使得 $V(t) = X(c(t))$,那么 $\frac{DV}{\mathrm{d}t} = \nabla_{c'(t)}X$.

2.2 诱导联络

$$(M, \nabla)$$

 $\frac{DV}{dt}$, vector field along a curve c

induced connection

$$c \colon (-\varepsilon, \varepsilon) \to M$$

Let $\varphi \colon N \to M$ C^{∞} map.

A C^{∞} vector field along φ .

$$x \in N \mapsto V(x) \in T_{\varphi(x)}M$$

 $\varphi(x) \in M$, frame field E_i in a neightborhood

$$V(x) = \sum V^i(x) E_i(\varphi(x))$$
 其中 V^i 看作 N 上的函数

Given
$$u \in T_x N$$
, $\tilde{\nabla}_u V = \sum u(V^i) E_i(\varphi(x)) + V^i(x) \nabla_{\mathrm{d}\varphi(x)(u)} E_i(\varphi(x))$

induced connection

更多内容可参考刘老师 18 年的某次作业

3 平行移动

上节的铺垫使得我们能够讨论平行性.

定义 3.1. 称沿曲线 $c: [a,b] \to M$ 的向量场 V 是平行的如果 $\frac{DV}{dt} \equiv 0$.

3月22日第二段8分8秒

给定一个切向量 $V_a \in T_{c(a)}M$,假使能够找到一个沿 c 的平行切向量场 V 满足 $V(a) = V_a$,我们便可认为 V_a 沿曲线 c 平行地移动到了 c(t) 处成为 V(t).

我们问 V 是否存在? 在多大的范围内存在? 这等价于去解方程 $\frac{DV}{\mathrm{d}t}=0$.

回忆测地线方程是一个非线性 ODE,因此我们只有解的局部存在性. 而这里 $\frac{DV}{\mathrm{d}t}=0$ 是一个线性方程,从而可保证解整体存在.

命题 **3.2.** 设 $c: [a,b] \to M$ 是光滑曲线. 设 $V_0 \in T_{c(t_0)}M$, $t_0 \in [a,b]$, 那么存在唯一的沿 c 平行的向量场 V 使得 $V(t_0) = V_0$.

证明.
$$c(I) \subset (U,x)$$

3月22日第二段14分35秒

命题 3.3. Let c be a C^{∞} curve with c(0) = p, c'(0) = X(p)

Let $Y \in \Gamma(TM)$

Then
$$\nabla_{X(p)}Y = \lim_{h \to 0} \frac{P_{c,0,h}^{(}Y(c(h))) - Y(c(0))}{h}$$

证明. Let V_1, \dots, V_n be parallel vector fields along c which is linearly independent.

$$Y(c(t)) = f^{i}(t)V_{i}(t)$$
, 这是一件非常方便的事情

$$RHS = \lim_{h \to 0} \frac{f_i(h)V_i(0) - f^i(0)V_i(0)}{h} = \frac{\mathrm{d}f^i}{\mathrm{d}h} \big|_{h=0} V_i(0)$$

$$= \frac{D}{\mathrm{d}t} (f^i(t)V_i(t)) \big|_{t=0}$$

$$= \frac{DY}{\mathrm{d}t} (0) = \nabla_{\frac{\mathrm{d}c}{\mathrm{d}t}(0)} Y = \nabla_{X(p)} Y$$

张量场的协变导数 4

本节我们从切丛上的一个联络出发, 定义张量丛上的一个联络.

定理 4.1. 设 M 是光滑流形, ∇ 是其上的仿射联络, 那么存在唯一的映射

$$\nabla \colon \Gamma(TM) \times \Gamma\left(\bigotimes^{r,s} TM\right) \to \Gamma\left(\bigotimes^{r,s} TM\right)$$

满足

(1)
$$\nabla_{fX+fY}A = f\nabla_X A + g\nabla_Y A$$

(2)
$$\nabla_X (A_1 + A_2) = \nabla_X A_1 + \nabla_X A_2$$

(3)
$$\nabla_X(fA) = (Xf)A + f\nabla_X A$$

- (4) 当 $A \in C^{\infty}(M)$ 或 $\Gamma(TM)$ 时, ∇ 与给定的仿射联络一致.
- (5) $\nabla_X (A_1 \otimes A_2) = (\nabla_X A_1) \otimes A_2 + A_1 \otimes \nabla_X A_2$

$$(6) \ C(\nabla_X A) = \nabla_X (CA), \ \not\exists \ \ C \colon \Gamma(\bigotimes^{r,s} TM) \to \Gamma(\bigotimes^{r-1,s-1} TM)$$

证明.
$$A \in \Gamma(\bigotimes_{r,s} TM)$$

$$A = A_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r} Y_{i_1} \otimes Y_{i_2} \otimes \cdots \otimes Y_{i_r} \otimes \omega^{j_1} \otimes \cdots \otimes \omega^{j_s}$$
$$\nabla_X A = \sum_i \nabla_X$$

$$\nabla_X A = \sum \nabla_X$$

$$= \sum X(A_{j_1\dots j_s}^{i_1\dots i_r})Y_{i_1}$$

唯一的问题是如何对微分1形式求导

$$\omega \in \Omega^1(M) = \Gamma(T^*M)$$

 $\nabla_X \omega$?

$$\forall Y \in \Gamma(TM), \omega(Y) \in C^{\infty}(TM)$$

$$X(\omega(Y)) = \nabla_X(\omega(Y)) = \nabla_X(C(\omega \otimes Y)) = C(\nabla_X(\omega \otimes Y))$$

$$C(\nabla_X \omega \otimes Y + \omega \otimes \nabla_X Y)$$

$$\nabla_X(\omega)Y + \omega(\nabla_XY)$$

$$(\nabla_X \omega) = X(\omega(Y)) - \omega(\nabla_X Y)$$

$$\implies$$
 uniqueness

注记. (1) is a consequence of the other assumptions.

不是那么令人惊讶。这是说在这里是多余的。而不是在仿射联络的最初定义中也是多余的 $\forall X, Y, Z \in \Gamma(TM)$

$$f, g \in C^{\infty}(TM), \omega \in \Gamma(T^*M)$$

证明.
$$(fX + gY)\omega(Z) = \nabla_{fX+gY}\omega(Z) + \omega(\nabla_{fX+gY})Z$$

= $fX(\omega(Z)) + gY(\omega(Z))$

推论 4.2.
$$\forall A \in \Gamma(\bigotimes^{r,s}TM), \omega_{\alpha} \in \Gamma(T^*M), \alpha = 1, 2, \cdots, r, Y_j \in \Gamma(TM), j = 1, \cdots, s$$

$$We \ have \ (\nabla_X A)(\omega_1, \cdots, \omega_s; Y_1, \cdots, Y_s)$$

$$= A(\omega_1, \cdots, \omega_r, Y_1, \cdots, Y_s)$$

$$\text{locality}$$

$$\nabla_X A(p) \ \text{only depends on } X \ \text{at } p \ \text{and } Y \ \text{in } U \ni p.$$

$$(M, \nabla)$$

$$\varphi \colon V \to W \ \text{isomorphism}$$

$$\varphi^* \colon W^* \to V^* \ \text{isomorphism }, \alpha \mapsto \varphi^*(\alpha)$$

$$\forall v \in V, \varphi^*(\alpha)(v) := \alpha(\varphi(v))$$

$$P_{c,0,t} \colon T_{c(0)}M \to T_{c(t)}M$$

$$\longrightarrow \tilde{P}_{c,0,t} \colon \bigotimes^{r,s} T_{c(0)}M \to \bigotimes^{r,s} T_{c(t)}M$$

$$v_1 \otimes \cdots \otimes v_r \otimes \omega^1 \otimes \cdots \otimes \omega^r \mapsto P_{c,0,t}(v_1) \otimes \cdots \otimes$$

定义 4.3. A tensor field is called prarllel if $\nabla_X A = 0$, $\forall X \in \Gamma(TM)$.

$$c(t) = (c^{1}(t), \dots, c^{n}(t))$$

$$\frac{Dc'(t)}{dt} = \frac{D}{dt} \left(\frac{dc^{i}(t)}{dt} \frac{\partial}{\partial x^{i}} \right)$$

$$= \frac{d^{2}c^{i}(t)}{dt^{2}} \frac{\partial}{\partial i} + \frac{dc^{i}(t)}{dt} \nabla_{\frac{dc^{j}}{dt}} \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{i}}$$

$$= \left(\frac{d^{2}c^{k}(t)}{\partial x^{k}} \right) \frac{\partial}{\partial x^{k}}$$

Define $\nabla_{X(p)}A := \lim_{h \to 0} \frac{\tilde{P}}{-}$

5 Levi-Civita 联络

定义 5.1. 称仿射联络 ∇ 是 (M,g) 上的 Levi-Civita 联络如果 $\nabla_X Y - \nabla_Y X = [X,Y]$ 且 $\nabla g = 0$. 命题 5.2. ∇ 是无挠的 \iff $\Gamma_{ij}^k = \Gamma_{ii}^k$.

证明. 容易看出 $\Gamma_{ij}^k = \Gamma_{ii}^k \iff \nabla_{\partial_i}\partial_j = \nabla_{\partial_j}\partial_i$. 那么

$$\nabla_X Y = \nabla_{X^i \partial_i} (Y^j \partial_j)$$

$$= X^i \frac{\partial Y_j}{\partial x^i} \frac{\partial}{\partial x^j} + X^i Y^j \nabla_{\partial_i} \partial_j$$

$$= \nabla_Y X + [X, Y].$$

$$\begin{split} \frac{\partial}{\partial t}R_{ijkl} = & \Delta R_{ijkl} + 2(B_{ijkl} - B_{ijlk} - B_{iljk} + B_{ikjl}) \\ & - g^{pq}R_{pjkl}R_{qi} + R_{ipkl}R_{qj} + R_{ijpl}R_{qk} + R_{ijkp}R_{ql} \end{split}$$

命题 **5.3.** ∇ 是度量相容的 \iff $g_{ij,l} = g_{ik}\Gamma^k_{il} + g_{kj}\Gamma^k_{il}$.

证明,

定理 5.4 (黎曼几何基本定理). 任意黎曼流形 (M,g) 上存在唯一的 Levi-Civita 联络.

局部坐标下的证明. 假定存在性. 轮换一下就能说明
$$\Gamma_{ij}^k = \frac{1}{2} g^{kl} (g_{il,j} + g_{jl,i} - g_{ij,l})$$
.

不用坐标的证明. Suppose existence.

Given $X, Y \in \Gamma(TM)$, we can determine $\nabla_X Y$ by determine $\langle \nabla_X Y, Z \rangle$ for any $Z \in \Gamma(TM)$.

$$\begin{split} \langle \nabla_X Y, Z \rangle &\stackrel{(2)}{=} X \, \langle Y, Z \rangle - \langle Y, \nabla_X Z \rangle \\ &\stackrel{(1)}{=} X \, \langle Y, Z \rangle - \langle Y, \nabla_Z X + [X, Z] \rangle \\ &= X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - \langle Y, \nabla_Z X \rangle \\ &\stackrel{(2)}{=} X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle \nabla_Z Y, X \rangle \\ &\stackrel{(1)}{=} X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle \nabla_Y Z + [Z, Y], X \rangle \\ &= X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle X, [Z, Y] \rangle + \langle \nabla_Y Z, X \rangle \\ &\stackrel{(2)}{=} X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle X, [Z, Y] \rangle + Y \, \langle Z, X \rangle - \langle Z, \nabla_Y X \rangle \\ &\stackrel{(1)}{=} X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle X, [Z, Y] \rangle + Y \, \langle Z, X \rangle - \langle Z, \nabla_X Y + [Y, X] \rangle \\ 2 \, \langle \nabla_X Y, Z \rangle = X \, \langle Y, Z \rangle + Y \, \langle Z, X \rangle - Z \, \langle X, Y \rangle - \langle X, [Y, Z] \rangle + \langle Y, [Z, X] \rangle + \langle Z, [X, Y] \rangle \end{split}$$

引理 **5.5.** 设 (M,g) 是黎曼流形, ∇ 是其上与 g 相容的联络. 设 $c:(a,b)\to M$ 是光滑曲线, $\frac{\mathrm{D}}{\mathrm{d}t}$ 是 ∇ 诱导的沿曲线的协变导数. 设 V(t),W(t) 是沿 c 的光滑曲线,那么

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle V(t), W(t) \right\rangle = \left\langle \frac{DV}{\mathrm{d}t}(t), W(t) \right\rangle + \left\langle V(t), \frac{DW}{\mathrm{d}t}(t) \right\rangle.$$

证明. 设在坐标邻域
$$(U,x)$$
 中 $V(t)=V^i(t)\frac{\partial}{\partial x^i}\Big|_{c(t)}, W(t)=W^j(t)\frac{\partial}{\partial x^j}\Big|_{c(t)},$ 那么

$$\begin{split} \mathrm{LHS} &= \frac{\mathrm{d}}{\mathrm{d}t} \left(V^{i}(t) W^{j}(t) \left\langle \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle \right) \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, W(t) \right\rangle + \left\langle V(t), \frac{\mathrm{d}W^{j}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle + V^{i}(t) W^{j}(t) \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, W(t) \right\rangle + \left\langle V(t), \frac{\mathrm{d}W^{j}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle + V^{i}(t) W^{j}(t) \frac{\mathrm{d}}{\mathrm{d}t} g \left(\frac{\partial}{\partial x^{i}} \Big|_{c(t)}, \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right) \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, W(t) \right\rangle + \left\langle V(t), \frac{\mathrm{d}W^{j}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle + V^{i}(t) W^{j}(t) c'(t) g \left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \right) \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, W(t) \right\rangle + \left\langle V(t), \frac{\mathrm{d}W^{j}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle + V^{i}(t) W^{j}(t) \nabla_{c'(t)} g \left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \right) \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}, W \right\rangle + \left\langle V, \frac{DW}{\mathrm{d}t} \right\rangle \end{split}$$

注记.

命题 5.6. 设 (M,g) 是黎曼流形,∇ 是其上的仿射联络. 那么 ∇ 与 g 相容当且仅当任意平行移动 是等距同构.

证明.
$$c : [a,b] \to M$$
 curve $\mathcal{P}_{c,a,t} : T_{c(a)}M \to T_{c(t)}M$

•

• 任意 $X, Y, Z \in \Gamma(TM), \forall p \in M$

命题 5.7. 设 ∇ 是 M 上的无挠联络. 设 $s: \mathbb{R}^2 \to M \in C^{\infty}$, V 是沿 s 的光滑向量场. 那么

$$\widetilde{\nabla}_{\frac{\partial}{\partial x}} s_* \frac{\partial}{\partial y} = \widetilde{\nabla}_{\frac{\partial}{\partial y}} s_* \frac{\partial}{\partial x}.$$

证明. 直接在局部坐标下计算.

6 能量泛函的第二变分公式与曲率张量

7 协变微分与 Ricci 恒等式

4月1日1小时23分16秒

7.1 局部坐标下的协变微分

8 音乐同构

$$b: T_pM \longrightarrow T_p^*M, \quad X \longmapsto bX, \quad bX(Y) = g(X,Y).$$

$$\sharp \colon T_p^*M \longrightarrow T_pM, \quad \omega \longmapsto \sharp \omega, \quad g(\sharp \omega, Y) = \omega(Y).$$

9 算符

- 9.1 Hessian
- 9.2 散度
- 9.3 梯度

•

9.4 拉普拉斯

10 Bianchi 恒等式

- 第一 Bianchi 恒等式的 global 版本、证明和局部版本
- 第二 Bianchi 恒等式的 global 版本、证明和局部版本

命题 10.1. 设 M 是光滑流形, ∇ 是其上无挠的仿射联络,R 是相应的的曲率张量. 那么对于任意 $X,Y,Z,W\in\Gamma(TM)$,我们有

- (1) (第一 Bianchi 恒等式) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0.
- (2) (第二 Bianchi 恒等式) $(\nabla_X R)(Y,Z)W$

11 Riemann 曲率张量

12 截面曲率

13 高斯绝妙定理

14 Ricci 曲率

15 数量曲率

16 Bochner 公式

17 测地曲率

18 Gauss-Bonnet 公式

定理 18.1. 设 M 是紧的二维黎曼流形, 其边界 ∂M 光滑, 则

$$\int_{M} K dA + \int_{\partial M} k_g ds = 2\pi \chi(M).$$

Chapter 4

Jacobi 场

1 Jacobi 场

定义 1.1. 设 γ : $[a,b] \to M$ 是一条测地线. 对于 $t_0,t_1 \in [a,b]$,如果存在沿 γ 的不恒为零的 Jacobi 场 U(t),满足 $U(t_0) = U(t_1) = 0$,则称 t_0,t_1 是沿 γ 的共轭值. 将所有这样的 Jacobi 场与恒为零的向量场所构成的线性空间的维数称作 t_0 和 t_1 作为共轭值的重数. 称 $\gamma(t_0)$ 和 $\gamma(t_1)$ 为沿 γ 的共轭点.

2 Morse 指标定理

3 Cartan-Hadamard 定理

4 空间形式

定义 4.1. 称常截面曲率的完备黎曼流形为空间型.

引理 4.2. 内容...

定理 4.3. 设 (M_i^n,g_i) 是单连通、截面曲率为 c 的空间型. 设 $p_i\in M_i$, $\left\{e_i^1,\cdots,e_i^n\right\}$ 是 $T_{p_i}M_i$ 的标准正交基,那么存在唯一的保距映射 $\varphi\colon M_1\to M_2$ 使得 $\varphi(p_1)=p_2, \varphi_{*,p}(e_1^j)=e_2^j$.

5 单连通空间形式的等距群

5.1 \mathbb{R}^n

命题 **5.1.** $Iso(\mathbb{R}^n) \cong T(n) \rtimes O(n)$.

证明. 假设 $f \in Iso(\mathbb{R}^n)$ 满足 f(0) = 0, 否则考虑 $\tilde{f} = f - f(0)$.

(1) f 保持内积. 因为 f 保持距离, 所以对任意 $x,y \in \mathbb{R}^n$, 有

$$||f(x) - f(y)||^2 = ||x - y||^2 \Longrightarrow \langle f(x), f(y) \rangle = \langle x, y \rangle.$$

- (2) f 是线性的.
 - $\bullet \ \, \|f(ax)-af(x)\|^2=\|f(ax)\|^2+\|af(x)\|^2-2\left\langle f(ax),af(x)\right\rangle=\|ax\|^2+\|ax\|^2-2\|ax\|^2=0.$
 - $||f(x+y) f(x) f(y)||^2 \xrightarrow{\mathbb{R}^{\frac{n}{2}}} \cdots \xrightarrow{\mathbb{R}^{\frac{n}{2}}} ||x+y-x-y||^2 = 0.$
- (3) $f \in O(n)$.

注记. 证明了稍稍强一点的事: 等距 ⇒ 双射.

5.2 \mathbb{S}^n

命题 **5.2.** $Iso(\mathbb{S}^n) \cong O(n+1)$.

证明. https://math.stackexchange.com/questions/130193/isometries-of-mathbbsn

5.3 \mathbb{H}^n

6 Killing-Hopf 定理

7 距离函数

Chapter 5

比较定理

1 Sturm 比较定理

2 Rauch 比较定理

3 Hessian 比较定理

4 Laplacian 比较定理

5 体积比较定理

Chapter 6

规范理论