RTQEM pipeline

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

- 1. consider a Variational Quantum Algorithm trained with gradient descent;
- 2. learn the noise map ℓ every time is needed over the procedure;
- 3. use ℓ to clean up both predictions and gradients.

1

We use the Importance Clifford Sampling (ICS) procedure to learn the noise map ℓ .

- 1. sample a training set of Clifford circuits S on top of a target C^0 ;
- 2. process them so that their expectation values on Pauli strings is +1 or -1;
- 3. extract mitigation parameter $\lambda_{\rm eff}$ comparing $\langle \hat{\mathcal{O}} \rangle_{\rm noisy}$ and $\langle \hat{\mathcal{O}} \rangle_{\rm roisy}$
- 4. build $\ell \equiv \ell(\cdot|\lambda_{\rm eff})$ following the Phenomenological-Error-Model Inspired (PEMI) protocol.

One dimensional HEP target: the u-quark PDF

Parameter	$N_{ m train}$	$N_{ m params}$	$N_{ m shots}$	MSE _{best}	MSE ^{unmit}	Noise
Value	30	16	10 ⁴	$1.1 \cdot 10^{-3}$	$6.1 \cdot 10^{-3}$	local Pauli

- 1. thanks to the RTQEM procedure, we reach a good minimum of the cost function;
- 2. the QEM is not effective is applied to a corrupted scenario (orange curve).

Multidimensional target

We tackle a multi-dimensional target computing predictions as expected value of a $Z^{\otimes N_{\text{dim}}}$ after executing an N_{dim} circuit.

Job ID	N_{train}	$N_{ m params}$	N _{shots}	MSE ^{rtqem}	MSE ^{unmit} _{best}	Noise
$N_{\rm dim} = 4$	30	48	10^{4}	$4.4 \cdot 10^{-4}$	$1.9 \cdot 10^{-2}$	local Pauli
$N_{ m dim}=6$	30	72	10 ⁴	$4.1 \cdot 10^{-4}$	$3.8 \cdot 10^{-2}$	local Pauli
$N_{ m dim}=8$	30	96	10 ⁴	$5.6 \cdot 10^{-4}$	$4.8 \cdot 10^{-2}$	local Pauli

4

RTQEM on a superconducting qubit

Parameter	$N_{ m train}$	$N_{ m params}$	$N_{ m shots}$	Noise
Value	15	16	500	real noise

Can RTQEM generalise?

We compare two runs with the same initial conditions and $N_{\rm epochs}=100$ but performed with two different devices:

- >_ iqm5q by IQM controlled using Zurich Instruments;
- >_ qw5q by QuantWare controlled using Qblox.

We train the two devices but perform the prediction on the same chip (qw5q).

The θ_{best} get on igm5g perform well on gw5g because RTQEM clean the noise!

6