LUCRARE DE VERIFICARE ALGEBRA Varianta A

- 1. a) Să se definească urmatoarele noțiuni și să se dea câte un exemplu pentru fiecare: partiție, infimum, grup necomutativ.
- b) Fie $f:G\to H$ un homomorfism de grupuri. Să se arate că mulțimea $\{x\in G\mid f(x)=1\}$ este un subgrup al lui G.
- c) Fie $f:A\to B$ o funcție. Să se arate că dacă pentru orice mulțime C și orice două funcții $h_1,h_2:C\to A$ funcționează implicația $h_1\circ f=h_2\circ f\Rightarrow h_1=h_2$ atunci f este surjectivă.
 - 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$ și $g: \mathbb{R} \to (0, \infty)$ unde

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=\begin{cases} 3x-1\ \text{pentru}\ x\in(-\infty,2]\\ x+4\ \text{pentru}\ x\in(2,\infty) \end{cases} \quad \text{ si } g(x)=x^2+1.$$

- a) Să se verifice dacă funcție f este injectivă şi/sau surjectivă.
- b) Dacă există să se determine funcția inversă f^{-1} .
- c) Să se determine compunerile $f \circ g$ și/sau $g \circ f$ (dacă ele există).
- d) Să se găsescă un exemplu de submulțime $X \subseteq \mathbb{R}$ așa încât $g^{-1}(g(X)) \neq X$.
- 3. a) Să se arate că relația $(\mathbb{R}, \mathbb{R}, \equiv)$ dată prin

$$\forall x,y \in \mathbb{R}: x \equiv y$$
ddacă $[x] \equiv [y]$

este o relație de echivalență. (Aici [x] notează partea întreagă a lui $x \in \mathbb{R}$.)

- b) Să se determine mulțimea factor $R/_{\equiv}$, în raport cu relația de echivalență definită la a).
- c) Să se arate că relația $(\mathbb{C}, \mathbb{C}, \preceq)$ unde

$$\forall x, y \in \mathbb{C} : x \lesssim y \text{ ddacă } |x| \leq |y| \text{ în } \mathbb{R}$$

este o relație de reflexivă și tranzitivă, dar nu este o relație de ordine.

- 4. Fie $U = \{x \in \mathbb{C}^* \mid \exists n \in \mathbb{N}^* \text{ astfel încât } x^n = 1\}.$
- a) Să se arate că U este un subgrup al grupului \mathbb{C}^* .
- b) Să se arate că $f: \mathbb{Q} \to U$, $f(x) = \cos(2\pi x) + i\sin(2\pi x)$ este bine definită (în sensul că ia valori în U) și este un homomorfism de grupuri.
- c) Să se găsească un izomorfism de grupuri între $(\mathbb{R}, +)$ şi $((0, \infty), \cdot)$.

LUCRARE DE VERIFICARE ALGEBRA Varianta B

- 1. a) Să se definească urmatoarele noțiuni și să se dea câte un exemplu pentru fiecare: functie surjectivă, relație de ordine, morfism de grupuri.
- b) Fie G un grup și $H, K \leq G$ două subgrupuri ale sale. Să este un subgrup al lui G.
- c) Fie $g: B \to A$ o funcție. Să se arate că dacă pentru orice mulțime C și orice două funcții $k_1, k_2: C \to B$ funcționează implicația $g \circ k_1 = g \circ k_2 \Rightarrow k_1 = k_2$ atunci g este injectivă.
 - 2. Se consideră funcțiile $f:\mathbb{R}\to\mathbb{R}$ și $g:(0,\infty)\to\mathbb{R}$ unde

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=\begin{cases} x+1\ \text{pentru}\ x\in(-\infty,4]\\ x^2+x-2\ \text{pentru}\ x\in(4,\infty) \end{cases} \quad \text{ si } g(x)=x^2-4x+3.$$

- a) Să se verifice dacă funcția f este injectivă și/sau surjectivă.
- b) Dacă există să se determine funcția inversă f^{-1} .
- c) Să se determine compunerile $f \circ g$ și/sau $g \circ f$ (dacă ele există).
- d) Să se găsescă un exemplu de submulțime $X \subseteq \mathbb{R}$ așa încât $g(g^{-1}(X)) \neq X$.
- 3. a) a) Să se arate că relația $(\mathbb{R}, \mathbb{R}, \equiv)$ dată prin

$$\forall x, y \in \mathbb{R} : x \equiv y \text{ ddacă } \{x\} = \{y\}$$

este o relație de echivalență. (Aici $\{x\}$ notează partea fracționara a lui $x \in \mathbb{R}$.)

- b) Să se determine mulțimea factor $\mathbb{R}/_{\equiv}$, modulo relația de echivalență definită la a).
- c) Să se arate că relația $(M_2(\mathbb{R}), M_2(\mathbb{R}), \preceq)$ unde

$$\forall X, Y \in M_2(\mathbb{R}) : X \lesssim Y \text{ ddacă } \det X \leq \det Y \text{ (în } \mathbb{R})$$

este reflexivă și tranzitivă, dar nu este o relație de ordine.

- 4. Fie $U_7 = \{x \in \mathbb{C}^* \mid x^7 = 1\}.$
- a) Să se arate că U_7 este un subgrup al grupului \mathbb{C}^* .
- b) Să se găsească toate elementele grupului U_7 .
- c) Să se găsescă un isomorfism între \mathbb{Z}_7 și U_7 .