

MODELOS EPIDEMIOLÓGICOS

ANA BUENDÍA RUIZ-AZUAGA

Trabajo Fin de Grado Doble Grado en Ingeniería Informática y Matemáticas

Tutores

Teresa E. Pérez Manuel Pegalajar Cuéllar

FACULTAD DE CIENCIAS
E.T.S. INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, a 4 de julio de 2021

ÍNDICE GENERAL

1.	HERRAMIENTAS BÁSICAS																				
	1.1.	Tipos de modelos																			
		-	Modelo SI .																		
		1.1.2.	Modelo SIS																 		
		1.1.3.	Modelo SIR																 		
Bib	oliogra	-																			

HERRAMIENTAS BÁSICAS

1.1 TIPOS DE MODELOS

Los modelos discretos (por ejemplo SI, SIR y SIS) usan las etiquetas Susceptible, Infectious y Recovered. Los nombres suelen hacer referencias al flujo que se sigue para pasar entre las etiquetas. Así, por ejemplo un modelo SI pasa de susceptible a infectado, uno SIR de susceptible, infectado y recuperado y SIS alterna entre susceptible e infectado.

En estos modelos se hacen dos suposiciones:

- 1. La población se mezcla de manera homogénea, es decir, todos los individuos tienen la misma probabilidad de contraer la enfermedad.
- 2. El total de la población es constante.

1.1.1 Modelo SI

Es el modelo más simple de todos, los individuos nacen siendo susceptibles a una enfermedad, y una vez infectados no hay tratamiento y permanecen infectados el resto de su vida. Un ejemplo de una enfermedad que pueda modelarse usando SI es el herpes.

$$S_{n+1} = S_n \left(1 - \frac{\alpha \Delta t}{N} I_n \right) \tag{1}$$

$$I_{n+1} = I_n \left(1 + \frac{\alpha \Delta t}{N} S_n \right) \tag{2}$$

Con condiciones iniciales $S_0 > 0$, $I_0 > 0$ y $S_0 + I_0 = N$.

En estas ecuaciones α es la tasa de contacto, esto es, el número medio de individuos con los que un infectado tiene suficiente contacto para contagiarlo en un intervalo de tiempo. Por tanto, S_n representa el número de individuos susceptibles en el tiempo $n\Delta t$.

Ahora, imponemos las suposiciones descritas anteriormente para estos modelos. Empezamos por la segunda: La población total se mantiene constante, que es trivial que se cumpla siempre, ya que sumando el sistema de ecuaciones el resultado es N y asumimos que las soluciones son siempre positivas (las soluciones negativas no tienen sentido). Para imponer que las ecuaciones tienen soluciones positivas: En el caso de la S_n una condición necesaria y suficiente es $\alpha \Delta t \leq 1$.

Buscamos ahora ver cuál es el comportamiento del sistema, si calculamos los puntos de equilibrio del sistema, para lo que resolvemos:

$$\begin{cases} S^* = S^* \left(1 - \frac{\alpha \Delta t}{N} I^* \right) \\ I^* = I^* \left(1 + \frac{\alpha \Delta t}{N} S^* \right) \\ S^* + I^* = N \end{cases}$$

Los únicos puntos de equilibrio posibles son: $S^* = 0$, $I^* = N$ y $S^* = N$, $I^* = 0$, y como sabemos que tenemos condiciones iniciales positivas y S_n es monótonamente decreciente e I_n es monótonamente creciente, entonces debe converger a $S^* = 0$, $I^* = N$.

Aquí en el artículo (Allen, página 3) [1] lo hace de otra manera, sin sustituir el S+I=N en el sistema y eso lo hace luego en forma alternativa, pero dice que eso añade restricciones por obtenerse la ecuación logística y no lo entiendo bien. ¿Qué hace al prinicpio si no sustituye del sistema? ¿De dónde salen las restricciones extra de la ecuación logística?

Expresando α como una tasa podemos obtener las ecuaciones diferenciales análogas de la sigueinte manera:

$$\frac{S_{n+1} - S_n}{\Lambda t} \approx \frac{dS}{dt}$$

luegosu análoga continua es:

$$\frac{dS}{dt} = -\frac{\alpha}{N}SI\tag{3}$$

$$\frac{dI}{dt} = \frac{\alpha}{N}SI\tag{4}$$

con condiciones iniciales S(0) + I(0) = N.

De manera análoga al caso discreto, podemos comprobar que este sistema converge a $S^* = 0$, $I^* = N$ y, por tanto, tiene el mismo comportamiento que el caso discreto.

Aquí llega al final de la página 3 del pdf del artículo de Allen[1], pero no entiendo bien como calcula el punto de equilibrio al que converge el sistema continuo

La página 4 del artículo sigue haciendo cosas que no entiendo y me pierdo bastante

1.1.2 Modelo SIS

Es similar al SI, pero tras infectarse los individuos vuelven a ser susceptibles. Por ejemplo, los resfriados pueden modelarse usando SIS.

1.1.3 Modelo SIR

Comienza como el SI, pero tras infectarse los individuos pasan a un estado Recuperado, en el cuál no pueden infectarse ni infectar a otros. Por ejemplo, la varicela.

BIBLIOGRAFÍA

[1] Linda JS Allen. Some discrete-time SI, SIR, and SIS epidemic models. *Mathematical biosciences*, 124(1):83–105, 1994.