5/28/2019

Modelling Transportation Systems

Stochastic Process

Dr Zhiyuan Liu

Email: zhiyuanl@seu.edu.cn

Learning Objectives

At the completion of this topic, you should be able to

- understand the concepts of random process;
- become familiar with one discrete random process, Bernoulli process.

Outline

- 1. Definition of Bernoulli process
- 2. Random processes
- 3. Basic properties of Bernoulli process
- 4. Distribution of inter arrival times
- 5. The time of the kth success
- 6. Merging and splitting

The Bernoulli process

- □ A sequence of independent Bernoulli trials
- ■At each trial, i:
- P(success)= $P(X_i=1)=p$
- P(failure)= $P(X_i=0)=1-p$
- ■Examples
- Sequence of lottery wins/losses
- Arrivals (each second) to a bank

Random processes

- \square First view: sequence of random variables $X_1, X_2, ...$
- $\Box E[X_t] = p$
- $\square Var[X_t] = p(1-p)$
- ■Second view: What is the right sample space?
- $\square P[X_t = 1 \text{ for all } t] =$
- □Random processes we will study:
- ✓-Bernoulli process (memoryless, discrete time)
- ✓-Poisson process (memoryless, continuous time)
- ✓-Markov chains (with memory/dependence across time)

Bernoulli process

- □1) for a given amount of time, how many jobs have arrived
- \square Number of successes X in n time slots

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}, \qquad k = 0,1,2,...,n$$

- $\Box E[X] = np$
- $\square Var(X) = np(1-p)$
- □2) For a given number of jobs, how much time did it take to arrive

Bernoulli process

- □2) For a given number of jobs, how much time did it take to arrive
- $\square T_1$: number of trials until first success

-
$$P(T_1 = t) = (1 - p)^{t-1}p$$
 $t=1,2,...$

$$- E(T_1) = 1/p$$

-
$$E(T_1) = (1-p)/p^2$$

- Memoryless property
- □ If you buy a lottery ticket every day, what is the distribution of the length of the first string of losing days

Bernoulli process

- □2) For a given number of jobs, how much time did it take to arrive
- $\square T_k$: number of trials between the k-1 th to the kth success
- Y_k : number of trials until the kth success

$$-Y_k = T_1 + T_2 + T_3 + \cdots T_k$$

- $P_{Y_k} = P(Y_k = t) = P(k-1 \text{ arrivals in } [1, t-1] \text{ and } 1 \text{ arrrival at } t$

$$= {t-1 \choose k-1} p^{k-1} (1-p)^{t-k} p, \qquad for \ t \ge k$$

- $E(Y_k) = k/p$
- $Var(Y_k) = ?$

Splitting of a Bernoulli process

□Using independent coin flips

☐ Yields Bernoulli processes

Merging of Independent Bernoulli processes

□Using independent coin flips

☐ Yields Bernoulli processes (collisions are counted as one arrival)

Poisson process

Outline

- 1. Definition of Poisson process
- 2. Distribution of number of arrivals
- 4. Distribution of inter arrival times
- 5. Other properties of the Poisson process

Bernoulli process review

- □Discrete time; success probability p
- ■Number of arrivals in n time slots: binomial pmf
- □Inter arrival times: geometric pmf
- ☐ Time to k arrivals: Pascal pmf
- Memorylessness

Definition of Poisson process

- ☐Time homogeneity:
- $\square P(k, \tau) = \text{Prob. of } k \text{ arrivals in interval of duration } \tau$
- ■Numbers of arrivals in disjoint time intervals are **independent**
- □Small interval probabilities:
- \square For very small δ

$$P(k, \delta) \approx \begin{cases} 1 - \lambda \delta, & \text{if } k = 0 \\ \lambda \delta, & \text{if } k = 1 \\ 0, & \text{if } k > 1 \end{cases}$$

□λ: arrival rate

Definition of Poisson process

- □ Finely discretize [0,t]: approximately Bernoulli
- $\square N_t$ (of discrete approximation): binomial
- □Taking δ → 0 (or n → ∞) gives:

$$P(k, t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}, k = 0, 1, ...$$

- $E(N_t) = \lambda t$
- $Var(N_t) = \lambda t$

Interarrival Times

- Y_k : time of the kth arrival
- Erlang distribution

-
$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, k = 0,1,...$$

- Time of first arrival (k=1)

exponential:
$$f_{Y_1}(y) = \lambda e^{-\lambda y}$$

- Memoryless property: the time to the next arrival is independent of the past

Bernoulli/Poisson Relation

	Poisson	Bernoulli
Time of Arrival	Continuous	Discrete
Arrival rate	λ / unit time	p/ per trial
PMF of # of Arrivals	Poisson	Binomial
Inter arrival Time Distribution	Exponential	Geometric
Time to the kth arrival	Erlang	Passcal

Merging

- □Sum of independent Poisson random variables is Poisson
- Merging of independent Poisson processes is Poisson

Example

- \square Assume Poisson fishing, $\lambda = 0.6/h$
 - fish for two hours
- if no catch, continue until first catch
 - a) P (fish for more than two hours)= $P(0,2)=e_{-0.6*2}$
 - b) P(fish for more than 2 and less than 5 hours) 0 in first 2, 1 in [2, 5]
 - c) P (catch at least two fish) catch 2+ in first 2 hours
 - d) E[number of fish]
 - e) E[future fishing time| fished for four hours]=
 - f) E[fishing time]Sum of independent Poisson random variables is Poisson

Example

- □Light bulb example
- \square Each light bulb has independent exponential (λ) lifetime
- □Install three light bulbs.
- □Find expected time until last light bulb dies out
- \square E [max{ X, Y,Z}]

Splitting of Poisson processes

- □ Assume that traffic through an intersection is a Poisson process
- □ Destinations of different vehicles are independent

□Each output stream is Poisson

Random incidence for Poisson

- □Poisson process that has been running forever
- □Show up at some "random time"/ "arbitrary time"

■ What is the distribution of the length of the chosen interarrival interval?

Random incidence in "renewal processes"

- □ Series of successive arrivals
 - i.i.d. interarrival times (but not necessarily exponential)

■Example:

Bus interarrival times are equally likely to be 5 or 10 minutes

- □If you arrive at a "random time"
 - -What is the probability that you selected a 5 minute interarrival interval
 - What is the expected time to next arrival?

Markov Processes

Outline

- 1. Checkout counter example
- 2. Markov process definition
- 3. n-step transition probabilities
- 4. Classification of states

Checkout counter model

- \square Discrete time n=0,1,...
- □Customer arrivals: Bernoulli (p)
- Geometric interarrival times
- □Customer service times: geometric (q)
- \square " State" X_n : number of customers at time n

Finite state Markov chains

- $\square X_n$: state after n transitions
- belongs to a finite set, e.g., {1,...,m}
- X_0 is either given or random
- Markov property/assumption:

(given current state, the past does not matter)

$$p_{ij} = P(X_{n+1} = j | X_n = i) = P(X_{n+1} = j | X_n = i, X_{n-1}, ..., X_0)$$

- Model specification:
- Identify the possible states
- Identify the possible transitions
- Identify the transition probabilities

n-step transition probabilities

□State occupancy probabilities, given initial state i:

$$r_{ij}(\mathbf{n}) = P(X_n = j | X_0 = i)$$

- □ Key recursion: $r_{ij}(\mathbf{n}) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$
- With random initial state: $P(X_n = j) = \sum_{i=1}^m P(X_0 = i) r_{ij}(n)$

Example

	n = 0	n = 1	n = 2	n = 100	n = 101
$r_{11}(n)$	1	0.5	0.35	2/7	2/7
$r_{12}(n)$	0	0.5	0.65	5/7	5/7
$r_{21}(n)$	0	0.2			
$r_{22}(n)$	1	0.8			

Steady state

Generic convergence questions

 \square Does $r_{ij}(n)$ converge to something?

 $n \ odd: r_{22}(n) =$

 $n \ even: r_{22}(n) =$

□Does the limit depend on initial state

$$\Box r_{11}(n) = 1$$

$$r_{31}(n) = 0$$

$$\Box r_{11}(n) = 1$$
 $r_{31}(n) = 0$ $r_{21}(n) = 0.5$, large n

Recurrent and transient states

- \square State *i* is recurrent if:
- Starting from i, and from wherever you go,
- there is a way of returning to i
- ☐ If not recurrent, called transient
- *i* transient:
- $P(X_n = i) \rightarrow 0$. i visited finite number of times
- Recurrent

Lecture outline

- □Steady state behaviour
- steady state convergence theorem
- balance equations
- □Birth-death processes

Visit frequency interpretation

$$\pi_j = \sum_k \pi_k p_{kj}$$

- \square (long run) frequency of being in $j : \pi_j$
- □ Frequency of transitions $k \rightarrow j$: $\pi_k p_{kj}$
- \square Frequency of transitions into $j: \sum_{k} \pi_{k} p_{kj}$

Example

$$\pi_1 = \pi_1 * 0.5 + \pi_2 * 0.2$$

$$\pi_2 = \pi_1 * 0.5 + \pi_2 * 0.8$$

$$0.5\pi_1 = 0.2\pi_2$$

$$\pi_1 + \pi_2 = 1$$

Birth-death processes

$$\pi_i p_i = \pi_{i+1} q_{i+1}$$

□ Special case: $p_i = p$ and $q_i = q$ for all i, $\rho = \frac{p}{q} = load$ factor

$$\pi_{i+1} = \pi_i \frac{p}{q} = \pi_i \rho$$

$$\pi_i = \pi_0 \rho^i$$
, i=0, 1, ..., m

□Assume p < q and $m \approx \infty$

$$\square \pi_0 = 1 - \rho \quad E[X_n] = \frac{\rho}{1 - \rho} \text{ (in steady state)}$$

Example

$$\pi_1 = \frac{2}{7}, \pi_1 = \frac{5}{7}$$

- Assume process starts at state 1.
- □Calculate: $P(X_1 = 1, and X_{100} = 1)$

□Calculate: $P(X_{100} = 1, and X_{101} = 2)$

 \square Calculate: $P(X_{100} = 1, and X_{200} = 1)$

Example

□Slow time scale, n>>1000 to apply steady state approximate

Lecture outline

- □ Probability of blocked phone calls
- □ Calculating absorption probabilities
- □Calculating expected time to absorption

The phone company problem

- \square Calls originate as a Poisson process, rate λ
 - Each call duration is exponentially distributed (parameter μ)
 - **©** B Lines available
 - Discrete time intervals of (small) length δ

©Balance equations: $\lambda \pi_{i-1} = i\mu \pi_i$

$$\pi_i = \pi_0 \frac{\lambda^i}{\mu^i i!}$$
 $\pi_0 = 1/\sum_{i=0}^B \frac{\lambda^i}{\mu^i i!}$

$$\pi_B = P(busy) \approx 1\% \ get B = ?$$

Calculating absorption probabilities

■What is the probability a_i that: process eventually settles in state 4, given that the initial state is i?

For i = 4, $a_i =$ For i = 5, $a_i =$ $a_i = \sum_j p_{ij} a_j$, for all i--unique solution

Expected time to absorption

- \square Find expected number of transitions μ_i , until reaching the absorbing state, given that the initial state is i?
- $\square \mu_i = 0$ for i =
- \square For all other $i: \mu_i = 1 + \sum_j p_{ij} a_j$
- ■Unique solution

Mean first passage and recurrence times

- □Chain with one recurrent class; fix *s* recurrent
- \square Mean first passage time from i to s:

$$t_i = E[min\{n \ge 0 \text{ such that } X_n = s\} | X_0 = i]$$

 $\Box t_1, t_2, \dots, t_m$ are the unique solution to

$$\Box t_s = 0$$
, $t_i = 1 + \sum_j p_{ij} t_j$, for all $i \neq s$

 \square Mean recurrence time of s:

$$t_s^* = \mathbf{E}[\min\{n \ge 1 \text{ such that } X_n = s\} | X_0 = \mathbf{s}]$$

$$t_s^* = 1 + \sum_j p_{sj} t_j$$