```
In [1]:
```

```
#bibliotecas para cálculos e estruturas
import numpy as np
import pandas as pd
#bibliotecas para visualização dos dados
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
#bibliotecas para tratamento dos dados
from sklearn import preprocessing
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
#modelos testado e utilizado
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
#biblioteca para ignorar os possíveis alertas
import warnings
warnings.filterwarnings('ignore')
```

Carregando e analisando os dados do DF

```
In [2]:

df = pd.read_csv("desafio_manutencao_preditiva_treino.csv")
df.head()
```

Out[2]:

	udi	product_id	type	air_temperature_k	process_temperature_k	rotational_speed_rpm	torque_nm	tool_wear_min	failure_type
0	1	M14860	М	298.1	308.6	1551	42.8	0	No Failure
1	2	L47181	L	298.2	308.7	1408	46.3	3	No Failure
2	5	L47184	L	298.2	308.7	1408	40.0	9	No Failure
3	6	M14865	М	298.1	308.6	1425	41.9	11	No Failure
4	7	I 47186	- 1	298 1	308.6	1558	42.4	14	No Failure

In [3]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6667 entries, 0 to 6666
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype						
0	udi	6667 non-null	int64						
1	product_id	6667 non-null	object						
2	type	6667 non-null	object						
3	air_temperature_k	6667 non-null	float64						
4	process_temperature_k	6667 non-null	float64						
5	rotational_speed_rpm	6667 non-null	int64						
6	torque_nm	6667 non-null	float64						
7	tool_wear_min	6667 non-null	int64						
8	failure_type	6667 non-null	object						
dtype	dtypes: float64(3), int64(3), object(3)								
memo	nemory usage: 468.9+ KB								

Podemos observar que o DF possui 6667 linhas, divididos em 9 colunas.

In [4]:

```
df.isnull().sum()
```

Out[4]: udi product_id type air_temperature_k process_temperature_k rotational_speed_rpm torque_nm tool_wear_min failure_type dtype: int64

Não existem NaN no df

```
In [5]:
df['udi'].nunique()
df['product_id'].nunique()
Out[5]:
6667
In [6]:
plt.figure(figsize=(8,8))
sns.heatmap(df.corr(), annot=True, linewidths=0.5, linecolor='black', cmap='Blues')
plt.xticks(rotation=90)
plt.show()
                udi
                                                 0.0043
                                                          -0.0034
                                                                   -0.0025
                                                                                  0.75
                                                          -0.023
                                                                   0.021
     air temperature k
                                                                                 0.50
                                                                                  0.25
                                                          -0.024
                                                                    0.02
 process temperature k
                                                                                 0.00
                                                                   -0.0013
  rotational speed rpm
                                                                                  -0.25
                      -0.0034
                               -0.023
                                        -0.024
                                                                   -0.0043
          torque_nm
                                         0.02
                                                          -0.0043
        tool_wear_min
                                                                                 - -0.75
                       ē
                                                                     tool wear min
```

Através do mapa de calor, podemos perceber uma pequena correlação dos dados entre air_temperature e process_temperature, mas não é algo que necessite de atenção. Porém como temos duas informações idênticas, que parecem ser índices, vou remover estas colunas para ficarmos apenas com os dados de cada equipamento.

```
In [7]:

df.drop(['udi','product_id'],axis=1, inplace=True)

In [8]:

df.describe()
Out[8]:
```

	air_temperature_k	process_temperature_k	rotational_speed_rpm	torque_nm	tool_wear_min
count	6667.000000	6667.000000	6667.000000	6667.000000	6667.000000
mean	299.992515	309.992620	1537.419529	40.058512	108.098095
std	1.994710	1.488101	177.182908	9.950804	63.359915
min	295.300000	305.700000	1168.000000	3.800000	0.000000
25%	298.300000	308.800000	1422.500000	33.200000	54.000000
50%	300.000000	310.000000	1503.000000	40.200000	108.000000
75%	301.500000	311.100000	1612.000000	46.800000	162.000000
max	304.500000	313.800000	2886.000000	76.600000	251.000000

Como podemos ver no describe acima, as colunas foram removidas com sucesso.

Analisando e tratando as colunas failure_type e type para categóricas

```
In [9]:
```

df.type.value_counts()

Out[9]:

L 4022 M 1987 H 658

Name: type, dtype: int64

Na coluna Type constam dados dividos em 3 informações: L, M e H. Abaixo faço alguns procedimentos em relação a coluna das falhas para um melhor entendido destes dados.

In [10]:

In [11]:

```
df[df['type']=='M']['failure_type'].value_counts()
```

Out[11]:

No Failure 1933
Heat Dissipation Failure 22
Power Failure 20
Tool Wear Failure 10
Random Failures 1
Overstrain Failure 1
Name: failure_type, dtype: int64

In [12]:

```
df[df['type']=='H']['failure_type'].value_counts()
```

Out[12]:

No Failure 641
Heat Dissipation Failure 7
Power Failure 4
Random Failures 4
Overstrain Failure 1
Tool Wear Failure 1
Name: failure_type, dtype: int64

Para converter os dados que estão como string para categóricos, utilizarei o LabelEncoder:

In [13]:

```
le = preprocessing.LabelEncoder()
df['type']=le.fit_transform(df['type'])
df
```

Out[13]:

	type	air_temperature_k	process_temperature_k	rotational_speed_rpm	torque_nm	tool_wear_min	failure_type
0	2	298.1	308.6	1551	42.8	0	No Failure
1	1	298.2	308.7	1408	46.3	3	No Failure
2	1	298.2	308.7	1408	40.0	9	No Failure
3	2	298.1	308.6	1425	41.9	11	No Failure
4	1	298.1	308.6	1558	42.4	14	No Failure
6662	1	298.8	308.3	1634	27.9	12	No Failure
6663	2	298.8	308.4	1604	29.5	14	No Failure
6664	0	298.9	308.4	1632	31.8	17	No Failure
6665	0	299.0	308.7	1408	48.5	25	No Failure
6666	2	299.0	308.7	1500	40.2	30	No Failure

 $6667 \; rows \times 7 \; columns$

```
In [14]:
df.type.value counts()
Out[14]:
1
     4022
2
     1987
0
      658
Name: type, dtype: int64
df['failure_type'].value_counts().sum()
Out[15]:
6667
Feito o tratamento desta coluna e certificado q todos os dados constam no DF, sigo agora para o mesmo processo porém na coluna failure_type
In [16]:
# Categóricos
le = preprocessing.LabelEncoder()
df['failure_type']=le.fit_transform(df['failure_type'])
df
Out[16]:
      type air_temperature_k process_temperature_k rotational_speed_rpm torque_nm tool_wear_min failure_type
        2
                     298.1
                                          308.6
                                                                                       0
                     298.2
                                          308.7
                                                             1408
                                                                        46.3
                                                                                       3
                                                                                                   1
   2
        1
                     298.2
                                          308.7
                                                             1408
                                                                        40.0
                                                                                       9
                                                                                                   1
        2
   3
                     298.1
                                          308.6
                                                                        41.9
                                                                                       11
                                                             1425
                                                                                                   1
   4
        1
                     298.1
                                          308.6
                                                             1558
                                                                        42.4
                                                                                       14
6662
                     298.8
                                          308.3
                                                             1634
                                                                        27.9
                                                                                       12
6663
        2
                     298.8
                                          308.4
                                                             1604
                                                                        29.5
                                                                                       14
        0
                     298.9
                                          308.4
                                                             1632
                                                                        31.8
                                                                                       17
6664
        0
                     299.0
                                          308.7
                                                             1408
                                                                        48.5
                                                                                       25
6665
                     299.0
                                          308.7
                                                                        40.2
                                                                                       30
6666
                                                             1500
6667 rows × 7 columns
In [17]:
df.failure_type.value_counts()
Out[17]:
3
        63
        12
Name: failure_type, dtype: int64
In [18]:
```

df.failure_type.value_counts().sum()
Out[18]:

6667

Agora todos os dados do dataframe são númericos.

Analisando e tratando as demais colunas

In [19]:

df.boxplot('air_temperature_k')

Out[19]:

<AxesSubplot:>

In [20]:

df.boxplot('rotational_speed_rpm')

Out[20]:

<AxesSubplot:>

In [21]:

df.boxplot('process_temperature_k')

Out[21]:

<AxesSubplot:>

In [22]:

df.boxplot('torque_nm')

Out[22]:

<AxesSubplot:>

Através dos gráficos acima, podemos perceber uma grande quantidade de outliers nas colunas rotational_speed_rpm e torque_nm

Utilizarei o MinMax Scaler para escalonar os dados e depois tratar os outliers dessas duas colunas.

```
In [23]:
```

```
scaler = MinMaxScaler()
df_scaled = scaler.fit_transform(df[col])
df_scaled = pd.DataFrame(df_scaled, columns=col)
df_scaled['failure_type'] = df['failure_type']
df_scaled
```

Out[24]:

	type	air_temperature_k	process_temperature_k	rotational_speed_rpm	torque_nm	tool_wear_min	failure_type
0	1.0	0.304348	0.358025	0.222934	0.535714	0.000000	1
1	0.5	0.315217	0.370370	0.139697	0.583791	0.011952	1
2	0.5	0.315217	0.370370	0.139697	0.497253	0.035857	1
3	1.0	0.304348	0.358025	0.149593	0.523352	0.043825	1
4	0.5	0.304348	0.358025	0.227008	0.530220	0.055777	1
6662	0.5	0.380435	0.320988	0.271246	0.331044	0.047809	1
6663	1.0	0.380435	0.333333	0.253783	0.353022	0.055777	1
6664	0.0	0.391304	0.333333	0.270081	0.384615	0.067729	1
6665	0.0	0.402174	0.370370	0.139697	0.614011	0.099602	1
6666	1.0	0.402174	0.370370	0.193248	0.500000	0.119522	1

6667 rows × 7 columns

```
In [25]:
```

```
plt.figure(figsize=(16,16))
df_scaled[col].boxplot()
```

Out[25]:

<AxesSubplot:>

Tratando dos outliers

```
In [26]:
```

```
#Coluna rotational_speed_rpm'
Q3 = np.quantile(df_scaled['rotational_speed_rpm'],0.75)
Q1 = np.quantile(df_scaled['rotational_speed_rpm'],0.25)
IQR = Q3-Q1
limite_sup = Q3+1.5*IQR
limite_inf = Q1-1.5*IQR
print('Limite_superior é ',limite_sup,'\nLimite_inferior é ',limite_inf)
Limite superior é 0.4238940628637953
Limite inferior é -0.01731664726426077
```

```
df scaled[df scaled['rotational speed rpm']>0.4234575087310828]
```

Out[27]:

	type	air_temperature_k	process_temperature_k	rotational_speed_rpm	torque_nm	tool_wear_min	failure_type
73	0.5	0.380435	0.382716	0.479045	0.232143	0.235060	1
108	0.0	0.336957	0.308642	0.476717	0.219780	0.788845	1
125	0.5	0.315217	0.308642	0.477299	0.241758	0.163347	1
183	0.5	0.282609	0.283951	0.457509	0.237637	0.167331	1
208	0.0	0.282609	0.345679	0.559371	0.204670	0.501992	1
6566	1.0	0.391304	0.506173	0.746217	0.138736	0.354582	1
6572	1.0	0.391304	0.506173	0.453434	0.245879	0.418327	1
6583	0.5	0.380435	0.481481	0.427823	0.254121	0.577689	1
6612	1.0	0.347826	0.358025	0.424331	0.225275	0.199203	1
6621	0.0	0.326087	0.296296	0.854482	0.123626	0.334661	1

270 rows × 7 columns

In [28]:

```
scaled[df_scaled['rotational_speed_rpm']<=0.4234575087310828]['rotational_speed_rpm'].mean()
ptational_speed_rpm']=np.where(df_scaled['rotational_speed_rpm']>0.4234575087310828,mean_rpm,df_scaled['rotational_speed_rpm'])
scribe()
```

Out[28]:

	type	air_temperature_k	process_temperature_k	rotational_speed_rpm	torque_nm	tool_wear_min	failure_type
count	6667.000000	6667.000000	6667.000000	6667.000000	6667.000000	6667.000000	6667.000000
mean	0.599670	0.510056	0.529953	0.201385	0.498056	0.430670	1.038848
std	0.298767	0.216816	0.183716	0.074683	0.136687	0.252430	0.378887
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.500000	0.326087	0.382716	0.148137	0.403846	0.215139	1.000000
50%	0.500000	0.510870	0.530864	0.194994	0.500000	0.430279	1.000000
75%	1.000000	0.673913	0.666667	0.244761	0.590659	0.645418	1.000000
max	1.000000	1.000000	1.000000	0.423166	1.000000	1.000000	5.000000

In [29]:

```
#Coluna torque_nm
Q3 = np.quantile(df_scaled['torque_nm'],0.75)
Q1 = np.quantile(df_scaled['torque_nm'],0.25)
IQR = Q3-Q1
limite_sup = Q3+1.5*IQR
limite_inf = Q1-1.5*IQR
print('Limite superior é',limite_sup,'\nLimite inferior é',limite_inf)
```

Limite superior é 0.8708791208791206 Limite inferior é 0.12362637362637391

In [30]:

```
mean_torque = df_scaled[df_scaled['torque_nm']<=0.8708791208791206]['torque_nm'].mean()

df_scaled['torque_nm']=np.where(df_scaled['torque_nm']>0.8708791208791206,mean_torque,df_scaled['torque_nm'])

df_scaled['torque_nm']=np.where(df_scaled['torque_nm']<0.12362637362637391,mean_torque,df_scaled['torque_nm'])</pre>
```

```
In [31]:
```

```
plt.figure(figsize=(16,16))
df_scaled[col].boxplot()
```

Out[31]:

<AxesSubplot:>

Visualização dos outliers após o tratamento utilizando variação interquartil e média.

Criando a coluna target

```
In [32]:
```

```
df_scaled['target'] = df_scaled['failure_type']
df_scaled['target'] = df_scaled['target'].replace(1, 11)
df_scaled['target'] = df_scaled['target'].replace(0, 1)
df_scaled['target'] = df_scaled['target'].replace(2, 1)
df_scaled['target'] = df_scaled['target'].replace(3, 1)
df_scaled['target'] = df_scaled['target'].replace(4, 1)
df_scaled['target'] = df_scaled['target'].replace(5, 1)
df_scaled['target'] = df_scaled['target'].replace(11, 0)
```

Como haviam 6 tipos de dados na coluna Failure Type, após a categorização, os dados aperecem de 0 a 5, porém eu quero apenas saber quais apresentaram algum tipo de falha e outros não, não a falha especificamente, para isso criei uma nova coluna com os dados divididos em 0 (Não falha) e 1 (Falha)

Dividindo o conjunto de dados em treinamento e testes e preparar as entradas e saídas

```
In [33]:
```

```
rotational_speed_rpm True
torque_nm True
tool_wear_min True
failure_type True
target True
dtype: bool
```

In [35]:

```
X = df_scaled.drop(['target', 'failure_type'], axis=1)
y = df_scaled['target']
```

```
In [36]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, shuffle=False)
```

Para este caso, separei 30% das informações totais para teste, e os restantes para treino.

Modelo

```
In [37]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [38]:
```

```
RF_model = RandomForestClassifier()
RF_model.fit(X_train,y_train)
y_pred_RF = RF_model.predict(X_test)
```

```
In [39]:
```

```
accuracy_rf = accuracy_score(y_test,y_pred_RF)
print('A acuracia do modelo Random Forest é: ',accuracy_rf*100)
```

A acurácia do modelo Random Forest é: 98.60069965017492

Alem deste modelo também testei outros, dentro eles o XGBClassifier que obteve a segunda melhor acurácia, 98,23%, pouco abaixo do modelo acima. Sendo assim, mantive apenas o melhor modelo para este desafio.

Serialização de objetos

```
In [40]:
```

```
import pickle
with open ('RF_model.pickle','wb') as model:
    pickle.dump(RF_model,model)
    model.close()
```

Utilizei o pickle para gerar o arquivo com o modelo final. Este arquivo será utilizado no arquivo de teste.