CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 14 MARZO 2025

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola, gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Sia * l'operazione binaria definita in \mathbb{Z}_{21} ponendo, per ogni $a, b \in \mathbb{Z}_{21}$,

$$a * b = \overline{3}ab + \overline{10}(a - b) + \overline{2}.$$

- (i) * è associativa? È commutativa?
- (ii) Determinare l'eventuale elemento neutro di $(\mathbb{Z}_{21},*)$. Se questo esiste,
 - a.) decidere quali tra $[0]_{21}$, $[1]_{21}$, e $[-1]_{21}$ sono invertibili in $(\mathbb{Z}_{21}, *)$, e trovare, di questi, gli inversi;
 - b.) decidere se $(\mathbb{Z}_{21}, *)$ è un gruppo.
- (iii) $\{\bar{0}\}$ è una parte chiusa in $(\mathbb{Z}_{21}, *)$?

Esercizio 2. Sia $A = \{n \in \mathbb{N} \mid n < 10\}$ e sia E l'insieme delle relazioni di equivalenza σ in A tali che 1 σ 7 e $[1]_{\sigma} \cap [3]_{\sigma} \neq \emptyset$. Vero o falso (e perché)?

- (i) Per ogni $X \subseteq A$ tale che $\{1, 2, 3, 7, 8\} \subseteq X$ esiste $\sigma \in E$ tale che $X = [3]_{\sigma}$.
- (ii) Per ogni $X \subseteq A$ tale che $\{1, 2, 3, 7, 8\} \subseteq X$ esiste $\sigma \in E$ tale che $X = [2]_{\sigma}$.
- (iii) Per ogni $X \subseteq A$ tale che $\{1,2,3\} \subseteq X$ esiste $\sigma \in E$ tale che $X = [2]_{\sigma}$.
- (iv) Esiste $\sigma \in E$ tale che $[2]_{\sigma} = \{2, 9\};$
- $(v) |E| = \binom{10}{3}.$
- $(vi) |E| = 2^7.$

Esercizio 3. Siano $S = \{n \in \mathbb{N} \mid n < 100\}$ e $V = \mathcal{P}(S) \setminus \{\emptyset\}$. Dimostrare che esattamente una tra le relazioni binarie σ e ρ in V definite come segue è la relazione di adiacenza di un grafo semplice:

$$\forall x, y \in V \quad ((x \sigma y \iff x \cup y = S) \land (x \rho y \iff x \cap y = \varnothing)).$$

Quante sono le componenti connesse del grafo così descritto?

Esercizio 4. Sia $S = \{a, \{a\}, b\}$, dove assumiamo $a \neq b \neq \{a\}$. Siano $T = \mathcal{P}(S) \times \mathcal{P}(S)$ e f l'applicazione $(x, y) \in T \mapsto |x \triangle y| \in \{0, 1, 2, 3, 4, 5, 6\}$.

- $(i)\ f$ è iniettiva? È suriettiva?
- (ii) Determinare $\overleftarrow{f}(\{0\}), \overleftarrow{f}(\{3\}), \overrightarrow{f}(T)$.

Sia ρ la relazione d'ordine in T definita da: per ogni $x, y, z, t \in \mathcal{P}(S)$,

$$(x,y) \rho(z,t) \longleftrightarrow ((x,y) = (z,t) \lor f((x,y)) < f((z,t)).$$

- (iii) Determinare eventuali minimo, massimo, elementi minimali e massimali in (T, ρ) .
- (iv) Determinare in (T, ρ) un sottoinsieme totalmente ordinato del massimo ordine possibile.
- $\left(v\right)$ Disegnare un diagramma di Hasse di

$$L = \Big\{ \Big(\big\{a\big\}, \big\{a, \{a\}\big\} \Big), \, \Big(\big\{a, b\big\}, \big\{\{a\}, b\big\} \Big), \, \Big(\big\{a\big\}, \big\{a\big\} \Big), \, \Big(\big\{a, b\big\}, \big\{\{a\}\big\} \Big) \Big\},$$

ordinato dalla relazione indotta da ρ .

Esercizio 5. Decidere se $(p \to p) \to ((q \to (r \land s)) \leftrightarrow ((q \to r) \land (q \to s)))$ è una tautologia.

Esercizio 6. (i) Per definizione, cosa significa dire che due polinomi sono associati?

- (ii) In $\mathbb{Z}_5[x]$, determinare l'insieme A dei polinomi associati a $g := \bar{3}x^5 + \bar{2}x^3 + x^2 + \bar{4}$. Quale tra questi è monico?
- (iii) Verificare che $\bar{1}$ è radice di g. In A ci sono altri polinomi che ammettono $\bar{1}$ come radice?
- (iv) g o uno dei polinomi ad esso associato è irriducibile?