

T5 - Band Pass Filter using OPAMP

Integrated Master in Physics Engineering

João Lehodey (96538), Jorge Silva (96545), Pedro Monteiro (93156)

June 6th, 2021

Contents

1	Introduction	1
2	Presential Lab	2
3	Theoretical Analysis 3.1 Input and output impedances	5
4	Simulation Analysis 4.1 Input and output impedances	7 10 10
5	Conclusion	10

1 Introduction

In this laboratory assignment we seek to build a bandpass filter using an OP-AMP. Particularly we seek to maximize our **merit figure**, M, given by:

$$M = \frac{1}{Cost(VoltageGainDeviation + CentralFreqDeviation + 10^{-6})}$$

where the voltage gain deviation is the absolute value of the difference between the gain at 1000 Hz and 40 dB; and the central frequency deviation is the absolute value of the difference between the central frequency and 1000 Hz. The central frequency, f_c , is given by the geometric mean of the low cut-off frequency and the high cut-off frequency:

$$f_c = \sqrt{f_H f_L}$$

The circuit used was the following:

Figure 1: Circuito utilizado

2 Presential Lab

In this lab assignment we were also able to implement this circuit in real life, where we able to measured the gain and the cut-off frequencies. For the circuit configuration, we chose the following components:

R1	R2	R3	R4	C3	C4
1000K $Ω$	500 Ω	1000K Ω	500 Ω	220nF	220nF

With these components we were able to get a voltage gain of approximately Gain=40 dbs, and cut-off frequencies of $330\,Hz$ and $2.23\,KHz$, corresponding f_L and f_H , respectively. Using ngpsice, we simulated the same circuit, where we obtained the following results:

Cost	13426.472038661
Central frequency, f_0	847.6288757705225
Central frequency deviation $(diff_{F_0})$	152.3711242294775
gain at $1000Hz$, G (db)	42.42502
Gain deviation, $Diff_G$	2.425020000000004
Merit	1.649708859507576e-07
Low Cut off	3.95392e+02
High Cut off	1.81712e+03
	•

3 Theoretical Analysis

3.1 Input and output impedances.

To determine the input and output impedances, we first replace the Op-Amp with its equivalent circuit, as shown in figure (2).

Figure 2: Pass-band circuit, with the amp-pop replaced with its equivalent circuit.

Considering the amp-op configuration is a non-inverting amplifier(and the ideal amp-op model), we get that the output and input impedances, Z_O and Z_I , are 0 and ∞ , respectively, and that the gain A is equal to : $(1+\frac{R_3}{R_4})$. Therefore we get the following circuit, in figure (3)

Figure 3: Pass-band circuit, with the amp-pop replaced with its equivalent circuit, using the ideal model aproximation.

Finally, we can deduce the expressions for the input and output impedances for the circuit, Z_I and Z_{0ut} , (as seen by V_{in} and V_{out} , respectively). From the circuit in figure (3), we get that (there is no effect on the first part of the circuit, by V_{out2} , therefore it is not required to short-circuit the output):

$$Z_I(\omega) = Z_{C_4} + R_4 = \frac{1}{j\omega C_4} + R_4 \tag{1}$$

As for the output impedance, we need to short-circuit the input, hence we get the circuit in figure (4), from the V_{out_2} terminals:

Figure 4: Equivalent circuit seen by the terminals of V_{out_2} , when $V_I=0$.

Therefore we get that:

$$Z_O(\omega) = R_2 || C_3 = \frac{R_2}{j\omega C_3 R_2 + 1}$$
 (2)

,

3.2 Transfer function

The transfer function is defined as the ration between the output and the input. In our case, the output is v_{out} and the input v_{In} :

$$T(s) = \frac{v_{Out}}{V_I n}$$

after a little algebra, we get to the following expression:

$$T(s) = \frac{R_1 C_1 s}{1 + R_1 C_1 s} (1 + \frac{R_3}{R_4}) (\frac{1}{1 + R_2 C_2 s})$$
(3)

where, as usual

$$s = j\omega$$

3.3 Cut-off frequencies

The theoretical cut-off frequencies, f_L and f_H , can be calculated by the Short Circuit Time Constants Method. They are given by 1:

$$f_L = \frac{1}{R_1 C_1} \tag{4}$$

$$f_H = \frac{1}{R_2 C_2} \tag{5}$$

where f_H is the hight cut-off frequency and f_L is the low cut-off frequency. Experimentally, the cut off frequencies will be calculated through the following expression:

$$f = \frac{V_{max}}{\sqrt{2}}$$

where f can be either f_H or f_L .

The Results obtained using octave were the following:

Total Cost	13458.69203866100
Central Freq	714.25510087083
Central Frequency diference	285.74489912917
Gain	39.72291000000
Gain Theoric	98.42407740711
Cut off low	222.9410000000
Cut off high	2288.3200000000
Gain Diference	0.2770900000
ZO	474.82104761502 -109.34119328636 i
ZI	1000.00000000000 -530.51647697298 i
Merit	0.0000097900

Table 1: Values used as parameters for the circuit studied.

Figure 5: Theoretical Gain, as a function of frequency.

Figure 6: Theoretical phase, as a function of frequency.

4 Simulation Analysis

The Operating point analysis is the following: The graphs are the following:

Figure 7: Experimental gain, as a function of frequency.

Figure 8: Voltage amplitudes, as a function of frequency.

Figure 9: Phase, as a function of frequency

4.1 Input and output impedances

The input impedance measured in ngspice is the following:

Name	Value
zi	3.332899e+00,-5.31643e-01

Table 2: Input Impedance, from ngpsice.

4.2 Gain

As we can see by the figures (5 and 7), the theoretical gain and experimental gain match quite well.

5 Conclusion

We can see that in our theoretical models the approximations we took did not provide erroneous results, instead we were able to obtain quite accurate results, hence we can conclude that the ideal model for the amp-op is an realible model for this circuit.