What is a SNARK?

(no, it is not an imaginary animal)

Dan Boneh
Stanford University

What is a SNARK? (intuition)

SNARK: a <u>succinct</u> proof that a certain statement is true

Example statement: "I know an m such that SHA256(m) = 0"

• SNARK: the proof is "short" and "fast" to verify [if m is 1GB then the trivial proof (the message m) is neither]

zk-SNARK: the proof "reveals nothing" about m

zk-SNARK: many blockchain applications

Private Tx on a public blockchain:

- Tornado cash, Zcash, IronFish
- Private Dapps: Aleo

Compliance:

- Private proofs of solvency and compliance
- Zero-knowledge taxes

Scalability: Rollup systems with validity proofs

Cryptographic Background

(1) arithmetic circuits

- Fix a finite field $\mathbb{F} \coloneqq \{0, ..., p-1\}$ for some prime p>2.
- Arithmetic circuit: $C \colon \mathbb{F}^n \to \mathbb{F}$
 - directed acyclic graph (DAG) where internal nodes are labeled +, -, or × inputs are labeled 1, x₁, ..., x_n
 - defines an n-variate polynomial with an evaluation recipe

$$|C| = \#$$
 gates in C

Interesting arithmetic circuits

Examples:

• $C_{hash}(h, \mathbf{m})$: outputs 0 if SHA256(\mathbf{m}) = h , and $\neq 0$ otherwise $C_{hash}(h, \mathbf{m}) \coloneqq (h - SHA256(\mathbf{m}))$, $|C_{hash}| \approx 20 \text{K gates}$

• $C_{sig}(pk, m, \sigma)$: outputs 0 if σ is a valid ECDSA signature on m with respect to pk

(2) Argument systems (for NP)

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}$ public statement in \mathbb{F}^n secret witness in \mathbb{F}^m

(non-interactive) Preprocessing argument systems

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}$ public statement in \mathbb{F}^n secret witness in \mathbb{F}^m

Preprocessing (setup): $S(C) \rightarrow \text{public parameters } (S_p, S_v)$

Preprocessing argument System

A preprocessing argument system is a triple (S, P, V):

• $S(C) \rightarrow \text{public parameters } (S_p, S_v)$ for prover and verifier

• $P(S_p, x, w) \rightarrow \text{proof } \pi$

• $V(S_v, x, \pi) \rightarrow \text{accept or reject}$

Argument system: requirements (informal)

Prover
$$P(S_p, \mathbf{x}, \mathbf{w})$$
 $proof \pi$
 $accept or reject$

```
Complete: \forall x, w: C(x, w) = 0 \Rightarrow Pr[V(S_v, x, P(S_p, x, w)) = accept] = 1
```

Knowledge sound: V accepts \Rightarrow P "knows" \mathbf{w} s.t. $C(\mathbf{x}, \mathbf{w}) = 0$

P* does not "know" $\mathbf{w} \Rightarrow \Pr[V(S_v, x, \pi) = \text{accept}] < \text{negligible}$

Optional: **Zero knowledge**: (C, S_p, S_v, x, π) "reveal nothing" about **w**

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing argument system is a triple (S, P, V):

- $S(C) \rightarrow \text{public parameters } (S_p, S_p)$ for prover and verifier
- $P(S_p, \mathbf{x}, \mathbf{w}) \rightarrow \underline{\text{short}} \text{ proof } \pi$; $|\pi| = O(\log(|\mathbf{C}|), \lambda)$
- $V(S_v, x, \pi)$ fast to verify ; time(V) = $O(|x|, \log(|C|), \lambda)$ short "summary" of circuit

Why preprocess C??

SNARK: a **Succinct** ARgument of Knowledge

A succinct preprocessing argument system is a triple (S, P, V):

- $S(C) \rightarrow \text{public parameters } (S_p, S_v)$ for prover and verifier
- $P(S_p, \mathbf{x}, \mathbf{w}) \rightarrow \underline{\text{short}} \text{ proof } \pi$; $|\pi| = O(\log(|\mathbf{C}|), \lambda)$
- $V(S_v, x, \pi)$ fast to verify ; $time(V) = O(|x|, log(|C|), \lambda)$

SNARK: (S, P, V) is **complete**, **knowledge sound**, and **succinct**

zk-SNARK: (S, P, V) is a SNARK and is **zero knowledge**

The trivial argument system

- (a) Prover sends w to verifier,
- (b) Verifier checks if C(x, w) = 0 and accepts if so.

Problems with this:

- (1) w might be secret: prover does not want to reveal w to verifier
- (2) w might be long: we want a "short" proof
- (3) computing C(x, w) may be hard: we want a "fast" verifier

Back to our first example ...

Prover: I know $(w_1, ..., w_n)$ such that $H(w_1, ..., w_n) = x$

SNARK: $size(\pi)$ and $VerifyTime(\pi)$ is $O(\log n)$!!

Types of preprocessing Setup

Recall setup for circuit C: $S(C; r) \rightarrow \text{public parameters } (S_p, S_v)$ random bits

Types of setup:

trusted setup per circuit: S(C; r) random r must be kept secret from prover prover learns $r \Rightarrow$ can prove false statements

trusted but universal (updatable) setup: secret r is independent of C

$$S = (S_{init}, S_{index}):$$
 $S_{init}(\lambda; r) \rightarrow pp,$ $S_{index}(pp, C) \rightarrow (S_p, S_v)$ one-time no secret data from prover

transparent setup: S(C) does not use secret data (no trusted setup)

Significant progress in recent years (partial list)

	size of proof π	size of S_p (beyond C)	verifier time (for a common task)	trusted setup?
Groth'16	≈ 200 Bytes $O_{\lambda}(1)$	$O_{\lambda}(C)$	$\approx 3 \text{ ms}$ $O_{\lambda}(1)$	yes/ per circuit
Plonk/Marlin	$pprox 400$ Bytes $O_{\lambda}(1)$	$O_{\lambda}(C)$	\approx 6 ms $O_{\lambda}(1)$	yes/ universal

Significant progress in recent years (partial list)

	size of proof π	size of S_p (beyond C)	verifier time (for a common task)	trusted setup?
Groth'16	≈ 200 Bytes $O_{\lambda}(1)$	$O_{\lambda}(C)$	$\approx 3 \text{ ms}$ $O_{\lambda}(1)$	yes/ per circuit
Plonk/Marlin	≈ 400 Bytes $O_{\lambda}(1)$	$O_{\lambda}(C)$	\approx 6 ms $O_{\lambda}(1)$	yes/ universal
Bulletproofs	$\approx 1.5 \text{ KB}$ $O_{\lambda}(\log C)$	$O_{\lambda}(1)$	\approx 1.5 sec $O_{\lambda}(C)$	no
STARK	$\approx 80 \text{ KB}$ $O_{\lambda}(\log^2 \mathcal{C})$	$O_{\lambda}(1)$	$\approx 10 \text{ ms}$ $O_{\lambda}(\log C)$	no
DARK •	$\approx 10 \text{ KB}$ $O_{\lambda}(\log C)$	$O_{\lambda}(1)$	$O_{\lambda}(\log C)$	no

Significant progress in recent years (partial list)

A SNARK software system

How to define "knowledge soundness" and "zero knowledge"?

Definitions: (1) knowledge sound

Goal: if V accepts then P "knows" \mathbf{w} s.t. $C(\mathbf{x}, \mathbf{w}) = 0$

What does it mean to "know" \mathbf{w} ??

informal def: P knows w, if w can be "extracted" from P

Definitions: (1) knowledge sound

Formally: (S, P, V) is **knowledge sound** for a circuit C if

for every poly. time adversary $A = (A_0, A_1)$ such that

$$S(C) \rightarrow (S_p, S_v), \quad (x, \text{state}) \leftarrow A_0(S_p), \quad \pi \leftarrow A_1(S_p, x, \text{state}):$$

$$Pr[V(S_v, x, \pi) = accept] > 1/10^6 \quad (non-negligible)$$

there is an efficient extractor E (that uses A_1 as a black box) s.t.

$$S(C) \rightarrow (S_p, S_v), \quad (x, \text{state}) \leftarrow A_0(S_p), \quad w \leftarrow E^{A_1(S_p, x, \text{state})}(S_p, x):$$

$$Pr[C(x, w) = 0] > 1/10^6 - \epsilon \quad (\text{for a negligible } \epsilon)$$

Definitions: (2) Zero knowledge

Where is Waldo?

Definitions: (2) Zero knowledge (simplified)

(S, P, V) is **zero knowledge** if for every $x \in \mathbb{F}^n$ proof π "reveals nothing" about w, other than its existence

What does it mean to "reveal nothing"??

Informal def: π "reveals nothing" about w if the verifier can generate π by itself \implies it learned nothing new from π

(S, P, V) is **zero knowledge** if there is an efficient alg. **Sim** s.t. $(S_p, S_v, \pi) \leftarrow \textbf{Sim}(C, x)$ "look like" the real S_p, S_v and π .

Main point: Sim(C,x) simulates π without knowledge of w

Definitions: (2) Zero knowledge (simplified)

Formally: (S, P, V) is (honest verifier) **zero knowledge** for a circuit C if there is an efficient simulator **Sim** such that for all $x \in \mathbb{F}^n$ s.t. $\exists w : C(x, w) = 0$ the distribution:

$$(C, S_p, S_v, x, \pi)$$
: where $(S_p, S_v) \leftarrow S(C)$, $\pi \leftarrow P(S_p, x, w)$

is indistinguishable from the distribution:

$$(C, S_p, S_v, x, \pi)$$
: where $(S_p, S_v, \pi) \leftarrow Sim(C, x)$

Quick review

A zk-SNARK for a circuit C:

- For a public statement x, prover outputs a proof that "convinces" verifier that prover knows w s.t. C(x, w) = 0.
- Proof is <u>short</u> and <u>fast</u> to verify

What is it good for?

- Private payments and private Dapp logic (e.g., Aleo)
- Private compliance and L2 scalability

More to think about: private DAO? private governance?

How to build a zk-SNARK?

Next segment

END OF MODULE