Lecture 15: Uniformly Most Powerful Tests, the Neyman-Pearson Lemma, and the Karlin-Rubin Theorem

MATH 667-01 Statistical Inference University of Louisville

November 2, 2017

Introduction

- We give the definition of a uniformly most powerful test in Section 8.3.2 of Casella and Berger (2002)¹.
- Then the proof for the Neyman-Pearson Lemma is given.
- In Section 8.3.2, pdfs/pmfs with a monotone likelihood ratio (MLR) are also discussed and the Karlin-Rubin Theorem is proven.

¹Casella, G. and Berger, R. (2002). *Statistical Inference, Second Edition*. Duxbury Press, Belmont, CA.

Uniformly Most Powerful (UMP) Tests

- Definition L15.1 (p.389): Let $\mathcal C$ be a class of tests for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$. A test in class $\mathcal C$, with power function $\beta(\theta)$, is a uniformly most powerful (UMP) class $\mathcal C$ test if $\beta(\theta) \geq \beta'(\theta)$ for every $\theta \in \Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class $\mathcal C$.
- ullet Often, ${\mathcal C}$ will be the class of all level ${\alpha}$ tests.
- Definition L15.2 (Def 8.3.11 on p.388): A test function, $\phi(x)$, for a hypothesis testing procedure is a function on the sample space whose value is one if x is in the rejection region and zero if x is in the acceptance region. That is, $\phi(x)$ is the indicator function of the rejection region.

- Theorem L15.1 (Thm 8.3.12 on p.388): Consider testing $H_0: \theta=\theta_0$ versus $H_1: \theta=\theta_1$, where the pdf or pmf corresponding to θ_i is $f(\boldsymbol{x}|\theta_i), i=0,1$, using a test with rejection region R that satisfies
- $(*) \quad \pmb{x} \in R \text{ if } f(\pmb{x}|\theta_1) > kf(\pmb{x}|\theta_0) \text{ and } \pmb{x} \in R^c \text{ if } f(\pmb{x}|\theta_1) < kf(\pmb{x}|\theta_0),$ for some $k \geq 0$, and

$$(**) \qquad \qquad \alpha = P_{\theta_0}(\boldsymbol{X} \in R).$$

Then

- a. (Sufficiency) Any test that satisfies (*) and (**) is a UMP level α test.
- b. (Necessity) If there exists a test satisfying (*) and (**) with k>0, then every UMP level α test is a size α test and every UMP level α test satisfies (*) except perhaps on a set A satisfying $P_{\theta_0}(\boldsymbol{X} \in A) = P_{\theta_1}(\boldsymbol{X} \in A) = 0$.

• Proof of Theorem L15.1: Let $\phi(x) = \begin{cases} 1 & \text{if } x \in R \\ 0 & \text{if } x \in R^c \end{cases}$ and let $\phi'(x)$ be a test function of any other level α test. Since $0 \le \phi'(x) \le 1$, we have $1 - \phi'(x) \ge 0$ and $f(x|\theta_1) - kf(x|\theta_0) > 0$ if $x \in R$. If $x \in R^c$, we have $0 - \phi'(x) \le 0$ and $f(x|\theta_1) - kf(x|\theta_0) < 0$. So, for all x, we have

$$0 \le \left(\phi(\boldsymbol{x}) - \phi'(\boldsymbol{x})\right) \left(f(\boldsymbol{x}|\theta_1) - kf(\boldsymbol{x}|\theta_0)\right). \tag{1}$$

The test functions are related to the power functions as follows:

$$\beta(\theta) = P_{\theta}(X \in R) = \mathsf{E}[\phi(X)] = \int \phi(x) f(x|\theta) \ dx$$

and

$$\beta'(\theta) = \int \phi'(\mathbf{x}) f(\mathbf{x}|\theta) d\mathbf{x}.$$

• Proof of Theorem L15.1 continued: Since (1) holds for all x,

$$0 \leq \int \left(\phi(\boldsymbol{x}) - \phi'(\boldsymbol{x})\right) \left(f(\boldsymbol{x}|\theta_{1}) - kf(\boldsymbol{x}|\theta_{0})\right) d\boldsymbol{x}$$
(2)

$$= \int \phi(\boldsymbol{x})f(\boldsymbol{x}|\theta_{1})d\boldsymbol{x} - \int \phi'(\boldsymbol{x})f(\boldsymbol{x}|\theta_{1})d\boldsymbol{x} - k \int \phi(\boldsymbol{x})f(\boldsymbol{x}|\theta_{0})d\boldsymbol{x} + k \int \phi'(\boldsymbol{x})f(\boldsymbol{x}|\theta_{0})d\boldsymbol{x}$$

$$= \beta(\theta_{1}) - \beta'(\theta_{1}) - k\beta(\theta_{0}) + k\beta'(\theta_{0})$$

$$= \beta(\theta_{1}) - \beta'(\theta_{1}) - k\left(\beta(\theta_{0}) - \beta'(\theta_{0})\right).$$

Now, $\beta'(\theta_0) \leq \alpha$ (ϕ' is a level α test) and $\beta(\theta_0) = \alpha$ (ϕ is a size α test) so it follows that

$$\beta(\theta_0) - \beta'(\theta_0) \ge 0$$

which implies that $\beta(\theta_1) - \beta'(\theta_1) \ge 0$. Hence, $\beta(\theta) \ge \beta'(\theta)$ for every θ in $\Theta_0^c = \{\theta_1\}$ which shows that ϕ is a UMP level α test.

• Proof of Theorem L15.1 continued: Suppose ϕ' is the test function for a UMP level α test. Since ϕ is also a UMP level α test, $\beta(\theta_1) = \beta'(\theta_1)$. Thus, it follows that $0 \leq -k \Big(\beta(\theta_0) - \beta'(\theta_0)\Big)$ so that

$$\beta(\theta_0) - \beta'(\theta_0) \le 0 \Rightarrow \alpha - \beta'(\theta_0) \le 0 \Rightarrow \alpha \le \beta'(\theta_0).$$

But since ϕ' is a level α test, $\beta'(\theta_0) \leq \alpha$ so we know $\beta'(\theta_0) = \alpha$; that is, ϕ' is a size α test. This also implies that the integral in (2) equals 0, and consequently, ϕ' must satisfy (*) except possibly on a set of measure 0.

• Example L15.1: Suppose the pmf of X under H_0 and H_1 are given in the following table.

			x		
	1	2	3	4	5
$f(x H_0)$.01	.02	.02	.03	.92
$f(x H_0)$ $f(x H_1)$.02	.02	.10	.63	.23

- (a) Find a UMP test with size .05 for testing H_0 versus H_1 .
- (b) Find the probability of a Type II error of the test in part(a).
- Answer to Example L15.1: By the Neyman-Pearson Lemma, we look at rejection regions satisfying

$$x \in R$$
 if $f(x|H_1) > kf(x|H_0)$ and $x \in R^c$ if $f(x|H_1) < kf(x|H_0)$ for some k .

• Answer to Example L15.1 continued: The following table computes the ratios $\frac{f(x|H_1)}{f(x|H_0)}$.

			x		
	1	2	3	4	5
$f(x H_0)$.01	.02	.02	.03	.92
$f(x H_1)$.02	.02	.10	.63	.23
$f(x H_1)/f(x H_0)$	2	1	5	21	.25

If
$$k \in (21, \infty)$$
, $R = \emptyset$ and $P(X \in R|H_0) = 0$.
If $k \in (5, 21)$, $R = \{4\}$ and $P(X \in R|H_0) = .03$.

If $k \in (2,5)$, $R = \{3,4\}$ and $P(X \in R|H_0) = .05$.

So rejecting H_0 if and only if $X \in \{3,4\}$ is the UMP test with size .05.

The probability of a Type II error is

$$P(X \notin R|H_1) = P(X \in \{1, 2, 5\} | H_1)$$

= $f(1|H_1) + f(2|H_1) + f(5|H_1) = .27.$

• Example L15.2: Let X_1, \ldots, X_n be iid Normal $(\mu, 1)$ random variables. Show that there is no UMP test for testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$.

• Answer to Example L15.2: For a specified value of α , a level

 α test in this problem is a test which satisfies

 $P_{\theta_0}(\text{reject } H_0) \leq \alpha.$ Let μ_1 be a value less than μ_0 and consider testing $H'_0: \mu = \mu_0 \text{ versus } H'_1: \mu = \mu_1.$ Let $z_{\alpha} = \Phi^{-1}(1-\alpha)$ with Φ being the cdf of a standard normal random variable. It can be shown that the test that rejects H_0' if and only if $\bar{X} < \mu_0 - z_\alpha \sigma / \sqrt{n}$ is the UMP test of H_0' versus H_1' by Theorem L15.1(a); name the test "Test 1". By Theorem L15.1(b), any other test that has as high a power as Test 1 must have the same rejection region except possibly on a set of measure 0. That is, if there is a UMP test for H_0 versus H_1 , it must be Test 1 because no other test has as high a power at μ_1 .

• Answer to Example L15.2 continued: Now consider a test which rejects H_0 if $\bar{X}>\mu_0+z_\alpha\sigma/\sqrt{n}$, which is a level α test; call this "Test 2".

Let $\beta_i(\mu)$ be the power function for Test i. For any $\mu_2 > \mu_0$,

$$\beta_{2}(\mu_{2}) = P_{\mu_{2}}\left(\bar{X} > \mu_{0} + \frac{\sigma z_{\alpha}}{\sqrt{n}}\right)$$

$$= P_{\mu_{2}}\left(\frac{\bar{X} - \mu_{2}}{\sigma/\sqrt{n}} > \frac{\mu_{0} - \mu_{2}}{\sigma/\sqrt{n}} + z_{\alpha}\right)$$

$$> P(Z > z_{\alpha})$$

$$= P(Z < -z_{\alpha})$$

$$= P_{\mu_{2}}\left(\frac{\bar{X} - \mu_{2}}{\sigma/\sqrt{n}} < \frac{\mu_{0} - \mu_{2}}{\sigma/\sqrt{n}} - z_{\alpha}\right)$$

$$= P_{\mu_{2}}\left(\bar{X} < \mu_{0} - \frac{\sigma z_{\alpha}}{\sqrt{n}}\right) = \beta_{1}(\mu_{2}).$$

Thus, Test 1 is not a UMP test since Test 2 as higher power than Test 1 at θ_2 . Thus, no UMP level α exists for testing H_0 versus H_1 .

• Theorem L15.2 (Cor 8.3.13 on p.389): Consider the hypothesis testing problem posed in the Neyman-Pearson Lemma. Suppose $T(\boldsymbol{X})$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T corresponding to $\theta_i, i=0,1$. Then any test based on T with rejection region S (a subset of the sample space of T) is a UMP level α test if it satisfies

$$t \in S \text{ if } g(t|\theta_1) > kg(t|\theta_0)$$

and

$$t \in S^c$$
 if $g(t|\theta_1) < kg(t|\theta_0)$,

for some $k \geq 0$ where $\alpha = P_{\theta_0}(T \in S)$.

• Proof of Theorem L15.2: The result follows immediately from part (a) of the Neyman-Pearson Lemma since

$$\boldsymbol{x} \in R \text{ if } f(\boldsymbol{x}|\theta_1) \stackrel{10.7}{=} g(T(\boldsymbol{x})|\theta_1)h(\boldsymbol{x}) > kg(T(\boldsymbol{x})|\theta_0)h(\boldsymbol{x}) \stackrel{10.7}{=} kf(\boldsymbol{x}|\theta_0)$$
 and

$$\boldsymbol{x} \in R^c \text{ if } f(\boldsymbol{x}|\theta_1) \stackrel{10.7}{=} g(T(\boldsymbol{x})|\theta_1)h(\boldsymbol{x}) < kg(T(\boldsymbol{x})|\theta_0)h(\boldsymbol{x}) \stackrel{10.7}{=} kf(\boldsymbol{x}|\theta_0).$$

- Definition L15.3 (Def 8.3.16 on p.391): A family of pdfs or pmfs $\{g(t|\theta):\theta\in\Theta\}$ for a univariate random variable T with real-valued parameter θ has a monotone likelihood ratio (MLR) if, for every $\theta_2>\theta_1$, $g(t|\theta_2)/g(t|\theta_1)$ is a monotone (nonincreasing or nondecreasing) function of t on $\{t:g(t|\theta_1)>0 \text{ or } g(t|\theta_2)>0\}$. Note that c/0 is defined as ∞ if 0< c.
- The following result is referred to as the Karlin-Rubin Theorem.
- Theorem L15.3 (Thm 8.3.17 on p.391): Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Suppose that T is a sufficient statistic for θ and the family of pdfs of pmfs $\{g(t|\theta): \theta \in \Theta\}$ of T has a nondecreasing MLR. Then for any t_0 , the test that rejects H_0 if and only if $T > t_0$ is a UMP level α test where $\alpha = P_{\theta_0}(T > t_0)$.

Proof of Theorem L15.3: Let θ' be any value in Θ greater than θ_0 . First, we consider the test $H_0': \theta = \theta_0$ versus $H_1': \theta = \theta'$. For $\mathcal{T}' = \{t: t > t_0, \text{ and } g(t|\theta') > 0 \text{ or } g(t|\theta_0) > 0\}$, define $k' = \inf_{t \in \mathcal{T}'} \frac{g(t|\theta')}{g(t|\theta_0)}$. Since T has a nondecreasing MLR, $\frac{g(t|\theta')}{g(t|\theta_0)} > k'$ if and only if $t > t_0$. By Theorem L15.2, this test is UMP for testing H_0' versus H_1' .

Now, we show that $\beta(\theta)$ is a nondecreasing function of θ . Let $\theta_1 < \theta_2$. If $t_1 < t_2$, then

$$\frac{g(t_2|\theta_2)}{g(t_2|\theta_1)} \ge \frac{g(t_1|\theta_2)}{g(t_1|\theta_1)} \Leftrightarrow g(t_1|\theta_1)g(t_2|\theta_2) \ge g(t_1|\theta_2)g(t_2|\theta_1).$$

• Proof of Theorem L15.3 continued: Summing/integrating t_1 on $(-\infty, t_2)$, we see that

$$P_{\theta_1}(T \leq t_2)g(t_2|\theta_2) \geq P_{\theta_2}(T \leq t_2)g(t_2|\theta_1) \Rightarrow \frac{g(t_2|\theta_2)}{g(t_2|\theta_1)} \geq \frac{P_{\theta_2}(T \leq t_2)}{P_{\theta_1}(T \leq t_2)}.$$

Summing/integrating t_2 on $[t_1, \infty)$, we see that

$$g(t_1|\theta_1)P_{\theta_2}(T>t_1) \ge g(t_1|\theta_2)P_{\theta_1}(T>t_1) \Rightarrow \frac{P_{\theta_2}(T>t_1)}{P_{\theta_1}(T>t_1)} \ge \frac{g(t_1|\theta_2)}{g(t_1|\theta_1)}.$$

Thus, for any t, we have

$$\frac{P_{\theta_2}(T > t)}{P_{\theta_1}(T > t)} \ge \frac{P_{\theta_2}(T \le t)}{P_{\theta_1}(T \le t)} \Rightarrow \frac{1 - P_{\theta_2}(T \le t)}{1 - P_{\theta_1}(T \le t)} \ge \frac{P_{\theta_2}(T \le t)}{P_{\theta_1}(T \le t)}$$

$$\Rightarrow \frac{P_{\theta_1}(T \le t)}{1 - P_{\theta_1}(T \le t)} \ge \frac{P_{\theta_2}(T \le t)}{1 - P_{\theta_2}(T \le t)}.$$

• Proof of Theorem L15.3 continued: Since $\frac{x}{1-x}$ is a nondecreasing function for $x \in (0,1)$, this implies that $P_{\theta_2}(T>t) \geq P_{\theta_1}(T>t)$. Now, for testing H_0 , the size of the test is

$$\sup_{\theta \in (-\infty, \theta_0]} \beta(\theta) = \beta(\theta_0) = \alpha$$

since $\beta(\theta)$ is nondecreasing. Let β^* be the power function for any other level α test for H_0 . This is also a level α test for H_0' so $\beta(\theta) \geq \beta^*(\theta')$ for any $\theta' > \theta_0$. So the test for H_0 versus H_1 is a UMP level α test.

• Example L15.3: Suppose X_1, \ldots, X_n is a random sample from a distribution with pdf

$$f(x|\theta) = e^{-(x-\theta)}I_{[\theta,\infty)}(x)$$

and let θ_0 be a fixed number in $\Theta=(-\infty,\infty)$. Consider the one-sided test $H_0:\theta\leq 0$ versus $H_1:\theta>0$. Show that the likelihood ratio test which rejects H_0 if $X_{(1)}\geq K$ is a UMP level α test where $\alpha=P_{\theta=0}(X_{(1)}\geq K)$.

• Answer to Example L15.3: Note that $X_{(1)}$ is sufficient for θ (see slide 14.11). It can be shown that $X_{(1)} - \theta$ is exponentially distributed with mean $\frac{1}{n}$ so $X_{(1)}$ has pdf $g(t|\theta) = ne^{-n(t-\theta)}I_{[\theta,\infty)}(t)$ (similar to work on slide 14.12). This family of pdfs has a MLR since, for $\theta_1 < \theta_2$, $\frac{g(t|\theta_2)}{g(t|\theta_1)} = \left\{ \begin{array}{cc} 0 & \text{if } \theta_1 \leq t < \theta_2 \\ e^{n(\theta_1-\theta_2)} & \text{if } \theta_2 \leq t \end{array} \right.$ is a nondecreasing function of t. So, by the Karlin-Rubin Theorem, the LRT is a UMP level α test.