Examen de Teoría de Percepción - Segundo Parcial

ETSINF, Universitat Politècnica de València, Junio de 2013

Apellidos:	Nombre:	

Profesor: \square Carlos Martínez - Jorge Civera \square Roberto Paredes

Cuestiones (3 puntos, 30 minutos, sin apuntes)

A Dada una representación vectorial de los objetos, ¿Cuál de las siguientes distancias no es una métrica?

- A) $d(x,y) = \sum_{i=1}^{d} (x_i y_i)$. B) $d(x,y) = \sum_{i=1}^{d} |x_i y_i|$. C) $d(x,y) = \sum_{i=1}^{d} (x_i y_i)^2$. D) $d(x,y) = (\sum_{i=1}^{d} |x_i y_i|^3)^{1/3}$.

D | Dado un conjunto de datos de tamaño n, al calcular los K-vecinos más cercanos de \mathbf{x} se obtienen k_c vecinos de la clase c, y esto permite:

- A) una estimación directa de $p(\mathbf{x}|c)$, con $p(\mathbf{x}|c) = \frac{k_c}{n}$.
- C) una estimación directa de $p(\mathbf{z}|c)$, con $p(\mathbf{z}|c) = \frac{k_c}{K}$.

 D) una estimación directa de $p(c|\mathbf{x})$, con $p(c|\mathbf{x}) = \frac{k_c}{n}$.

D La figura de la derecha muestra prototipos bidimensionales de 2 clases: ○ y •. Estima el error del clasificador por el vecino más próximo (en distancia Euclídea) considerando como conjunto de entrenamiento $\{(2,6),(3,4),(4,2)\}$ y conjunto de test $\{(4,4),(5,1),(5,5)\}$.

- A) 0
- B) 1/3
- C) 1/2
- D) 2/3

D | Considérese la probabilidad de error asintótica del clasificador por los k vecinos más próximos; esto es, su probabilidad de error cuando el número n de prototipos sobre los que se basa tiende a infinito. ¿Cuál de las siguientes condiciones sobre k es suficiente para garantizar la convergencia de esta probabilidad de error a la del clasificador de Bayes?

- A) k > 2
- B) $k = \frac{N}{10}$ C) k = 2N
- D) Ninguna de las anteriores.

Dado el siguiente conjunto de vectores binarios bidimensionales:

n	1	2	3	4	5	6	7	8	9	10	11	12
$\overline{x_{n1}}$	1	0	0	1	1	1	1	1	0	0	0	1
x_{n2}	0	0	1	0	0	0	1	0	0	0	0	1
c_n	1	1	1	1	1	1	2	2	2	2	2	2

¿Cuál es la estimación de los parámetros del clasificador Bernoulli más probable?

- A) $\hat{p}(1) = \hat{p}(2) = \frac{1}{4}$, $\hat{\mathbf{p}}_1 = \left(\frac{1}{4}, \frac{1}{12}\right)^t$ y $\hat{\mathbf{p}}_2 = \left(\frac{1}{4}, \frac{1}{6}\right)^t$ B) $\hat{p}(1) = \hat{p}(2) = \frac{1}{2}$, $\hat{\mathbf{p}}_1 = \left(\frac{2}{3}, \frac{1}{6}\right)^t$ y $\hat{\mathbf{p}}_2 = \left(\frac{1}{2}, \frac{1}{3}\right)^t$
- C) $\hat{p}(1) = \hat{p}(2) = \frac{1}{4}, \ \hat{\mathbf{p}}_1 = \left(\frac{2}{3}, \frac{1}{6}\right)^t \ y \ \hat{\mathbf{p}}_2 = \left(\frac{1}{2}, \frac{1}{3}\right)^t$
- D) $\hat{p}(1) = \hat{p}(2) = \frac{1}{2}, \ \hat{\mathbf{p}}_1 = \left(\frac{1}{4}, \frac{1}{12}\right)^t \ y \ \hat{\mathbf{p}}_2 = \left(\frac{1}{4}, \frac{1}{6}\right)^t$

- B Laplace es una técnica de suavizado de parámetros que aplicamos al:
 - A) Clasificador de Bernoulli.
 - B) Clasificador multinomial.
 - C) Clasificador Gaussiano.
 - D) Ninguno de los anteriores.
- A Con respecto a los modelos de mixturas de gaussianas (GMM)
 - A) La estimación de sus parámetros requiere de procesos iterativos como el basado en el algoritmo EM.
 - B) La estimación de sus parámetros se hace de forma directa sin proceso iterativo.
 - C) Son modelos que no reflejan una distribución de probabilidad correcta.
 - D) Sus parámetros estimables son las medias y las varianzas de cada gaussiana, pero no los pesos asociados
- B El uso de kernels es adecuado cuando:
 - A) Los objetos son linealmente separables en el espacio de representación escogido.
 - B) Los objetos no son linealmente separables en el espacio de representación escogido.
 - C) Queremos proyectar los datos a un espacio de menor dimensionalidad linealmente separable.
 - D) Queremos garantizar que los datos quedan linealmente separables para cualquier kernel.
- C | Esencialmente el algoritmo Kernel Perceptron lo que hace es:
 - A) Incrementar la importacia (peso) de las muestras correctamente clasificadas.
 - B) Decrementar la importacia (peso) de las muestras correctamente clasificadas.
 - C) Incrementar la importacia (peso) de las muestras incorrectamente clasificadas.
 - D) Decrementar la importacia (peso) de las muestras incorrectamente clasificadas.
- C | El protocolo de interacción izquierda-derecha
 - A) Es un protocolo exclusivamente activo
 - B) Es un protocolo sólo aplicable en sistemas adaptativos
 - C) Es el protocolo más apropiado ante entradas secuenciales
 - D) Es un protocolo que no requiere de entrada

Examen de Teoría de Percepción - Segundo Parcial

ETSINF, Universitat Politècnica de València, Junio de 2013

Apellidos:		Nombre:	
${f Profesor:}$	□ Carlos Martínez - Jorge Civera □	☐ Roberto P	aredes

Problemas (4 puntos, 90 minutos, con apuntes)

1. (1 punto) La figura de la derecha muestra prototipos bidimensionales de 2 clases: $x_1 = (1, 2, \circ), x_2 = (2, 1, \bullet), x_3 = (3, 2, \circ), x_4 = (2, 4, \bullet), x_5 = (5, 2, \circ), x_6 = (2, 5, \bullet).$ Aplica el algoritmo de edición de Wilson sobre el conjunto de prototipos por orden de índice utilizando vecino más próximo (k = 1) en distancia:

- a) Euclídea.
- b) Mahalanobis-diagonal por clase.

Nota: Si es necesario, asume que $\infty \cdot 0 = 0$.

Solución:

a) El algoritmo de Wilson se reduce a recorrer iterativamente los prototipos tomando uno de ellos como muestra de test y el resto como muestras de entrenamiento, eliminando los prototipos mal clasificados. En este caso es el clasificador de vécino más próximo (k=1) con distancia Euclídea convencional:

	Clase estimada	Conjunto resultante
$x_1 = (1, 2, \circ)$	•	$\{x_2, x_3, x_4, x_5, x_6\}$
$x_2 = (2, 1, \bullet)$	0	$\{x_3, x_4, x_5, x_6\}$
$x_3 = (3, 2, \circ)$	0	$\{x_3, x_4, x_5, x_6\}$
$x_4 = (2, 4, \bullet)$	•	$\{x_3, x_4, x_5, x_6\}$
$x_5 = (5, 2, \circ)$	0	$\{x_3, x_4, x_5, x_6\}$
$x_6 = (2, 5, \bullet)$	•	$\{x_3, x_4, x_5, x_6\}$

b) En este caso el algoritmo de Wilson utiliza el clasificador de vécino más próximo (k = 1) con distancia Mahalanobis-diagonal por clase:

$$d(\mathbf{y}, \mathbf{p}) = \sqrt{\sum_{i=1}^{D} \frac{1}{\sigma_{ic}^{2}} (y_{i} - p_{i})^{2}}$$

donde c es la clase de \mathbf{p} , y σ_{ic}^2 es la varianza de la componente i-ésima en la clase c.

Aplicamos una primera iteración del algoritmo de Wilson. Para calcular la distancia de Mahalanobis-diagonal por clase entre cada prototipo \mathbf{p} y un prototipo excluido \mathbf{y} , necesitamos calcular previamente las varianzas por clase y componente que en todos los casos son:

$$\begin{array}{c|ccc} \sigma_{ic}^2 & i = 1 & i = 2 \\ \hline c = \circ & \alpha > 0 & 0 \\ c = \bullet & 0 & \beta > 0 \end{array}$$

La distancia entre un prototipo \mathbf{p} de la clase \circ y un prototipo excluido \mathbf{y} de la clase \bullet resulta en:

$$d(\bullet,\circ) = \sqrt{\frac{1}{\sigma_{1\circ}^2}(y_1 - p_1)^2 + \frac{1}{\sigma_{2\circ}^2}(y_2 - p_2)^2} = \sqrt{\frac{1}{\alpha}(y_1 - p_1)^2 + \frac{1}{0}(y_2 - p_2)^2} = +\infty$$

Lo mismo ocurre cuando calculamos la distancia Mahalanobis-diagonal por clase entre un prototipo \mathbf{p} de la clase \bullet y un prototipo excluido \mathbf{y} de la clase \circ . Sin embargo, no ocurre lo mismo cuando calculamos esta distancia entre prototipos de la misma clase. Por ejemplo, para dos prototipos de la clase \circ :

$$d(\circ,\circ) = \sqrt{\frac{1}{\sigma_{1\circ}^2}(y_1 - p_1)^2 + \frac{1}{\sigma_{2\circ}^2}(y_2 - p_2)^2} = \sqrt{\frac{1}{\alpha}(y_1 - p_1)^2 + \frac{1}{0}(0)^2} = \sqrt{\frac{1}{\alpha}(y_1 - p_1)^2}$$

Por tanto, todos los prototipos son correctamente clasificados y el algoritmo de Wilson no elimina ninguno.

- 2. (1 punto) Dados los parámetros de un clasificador multinomial $\hat{\mathbf{p}}_1 = (0.5\ 0.3\ 0.2\ 0.0\ 0.0)$ y $\hat{\mathbf{p}}_2 = (0.0\ 0.0\ 0.3\ 0.3\ 0.4)$ con priors idénticas, clasifica la muestra de test $y = (1\ 1\ 1\ 1\ 1)$ tras aplicar los siguientes suavizados:
 - a) Laplace con $\epsilon = 0.1$
 - b) Descuento absoluto con $\epsilon = 0.05$ y backing-off utilizando como distribución generalizada, la distribución uniforme.

Solución:

a)

$$\hat{\mathbf{p}}_{1} = \begin{pmatrix} 0.5 \\ 0.3 \\ 0.2 \\ 0.0 \\ 0.0 \end{pmatrix} \rightarrow \hat{\mathbf{p}}_{1} = \frac{1}{1.5} \begin{pmatrix} 0.5 + 0.1 \\ 0.3 + 0.1 \\ 0.2 + 0.1 \\ 0.0 + 0.1 \end{pmatrix} = \frac{1}{1.5} \begin{pmatrix} 0.6 \\ 0.4 \\ 0.3 \\ 0.1 \\ 0.1 \end{pmatrix}$$

$$\hat{\mathbf{p}}_{2} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.3 \\ 0.3 \\ 0.4 \end{pmatrix} \rightarrow \hat{\mathbf{p}}_{2} = \frac{1}{1.5} \begin{pmatrix} 0.0 + 0.1 \\ 0.0 + 0.1 \\ 0.0 + 0.1 \\ 0.3 + 0.1 \\ 0.3 + 0.1 \\ 0.4 + 0.1 \end{pmatrix} = \frac{1}{1.5} \begin{pmatrix} 0.1 \\ 0.1 \\ 0.4 \\ 0.4 \\ 0.5 \end{pmatrix}$$

En nuestro caso, dado que las priors son idénticas, la regla de clasificación se reduce a: $\hat{c}(y) = \arg\max p(y \mid c)$

$$p(y = (1\ 1\ 1\ 1\ 1) \mid c = 1) = \frac{0.6}{1.5} \cdot \frac{0.4}{1.5} \cdot \frac{0.3}{1.5} \cdot \frac{0.1}{1.5} \cdot \frac{0.1}{1.5} = 0.00009$$
$$p(y = (1\ 1\ 1\ 1\ 1) \mid c = 2) = \frac{0.1}{1.5} \cdot \frac{0.1}{1.5} \cdot \frac{0.4}{1.5} \cdot \frac{0.4}{1.5} \cdot \frac{0.5}{1.5} = 0.0001$$

La muestra y se clasifica en la clase 2.

b)

$$\hat{\mathbf{p}}_{1} = \begin{pmatrix} 0.5 \\ 0.3 \\ 0.2 \\ 0.0 \\ 0.0 \end{pmatrix} \rightarrow \hat{\mathbf{p}}_{1} = \begin{pmatrix} 0.5 - 0.05 \\ 0.3 - 0.05 \\ 0.2 - 0.05 \\ 0.0 \\ 0.0 \\ 0.15 \\ 0.0 \\ 0.15 \\ 0.075 \\ 0.075 \end{pmatrix} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.3 \\ 0.3 \\ 0.4 \end{pmatrix} \rightarrow \hat{\mathbf{p}}_{2} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.3 \\ 0.3 \\ 0.4 \end{pmatrix} \rightarrow \hat{\mathbf{p}}_{2} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.3 - 0.05 \\ 0.3 - 0.05 \\ 0.4 - 0.05 \end{pmatrix} = \begin{pmatrix} 0.45 \\ 0.25 \\ 0.15 \\ 0.075 \\ 0.075 \\ 0.075 \\ 0.25 \\ 0.25 \\ 0.35 \end{pmatrix}$$

$$p(y = (1\ 1\ 1\ 1\ 1) \mid c = 1) = 0.45 \cdot 0.25 \cdot 0.15 \cdot 0.075 \cdot 0.075 = 0.00009$$

 $p(y = (1\ 1\ 1\ 1\ 1) \mid c = 2) = 0.075 \cdot 0.075 \cdot 0.25 \cdot 0.25 \cdot 0.35 = 0.0001$

La muestra y se clasifica en la clase 2.

3. (1 punto) Sea la mixtura de gaussianas dada por las siguientes dos distribuciones gaussianas y sus correspondientes pesos:

$$\mathcal{N}_1(w_1, \mu_1, \Sigma_1) \quad \mu_1 = (2 \ 4)^t \quad \Sigma_1 = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \quad w_1 = \frac{1}{3}$$

$$\mathcal{N}_2(w_2, \mu_2, \Sigma_2) \quad \mu_2 = (5 \ -1)^t \quad \Sigma_2 = \begin{pmatrix} \frac{9}{2} & 0 \\ 0 & 2 \end{pmatrix} \quad w_2 = \frac{2}{3}$$

Obtener la probabilidad de que la mixtura genere el dato $x = (3 \ 0)^t$.

Solución:

$$p(x|\mathcal{N}_1) = \frac{1}{|\Sigma_1|^{\frac{1}{2}}(2\pi)^{\frac{d}{2}}} e^{-\frac{1}{2}(x-\mu_1)^t \Sigma_1^{-1}(x-\mu_1)} = \frac{1}{2 \cdot (2\pi)} e^{-\frac{1}{2}(1-4) \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{pmatrix} (1-4)^t} = \frac{1}{4\pi} e^{-\frac{1}{2}(1-1)(1-4)^t} = \frac{1}{4\pi} e^{-\frac{5}{2}(1-1)(1-4)^t} = \frac{1}{6\pi} e^{-\frac{1}{2}(1-1)(1-4)^t} = \frac{1}{6\pi} e^{-\frac{1}{2}(1-4)^t} = \frac{1}{6\pi} e^{-\frac{1}{2}$$

4. (1 **punto**) Sea la siguiente función kernel, $K(x,y) = (x \cdot y + 1)^d$, con d = 2. Sea el siguiente conjunto de aprendizaje $X = \{(x_1, +1), (x_2, +1), (x_3, +1), (x_4, -1), (x_5, -1)\}$, con: $x_1 = (1, 1), x_2 = (1, 0), x_3 = (0, 1), x_4 = (2, 1), x_5 = (1, 2)$. Se tienen los siguientes pesos α_i : $\alpha_1 = \alpha_2 = \alpha_3 = 1$, $\alpha_4 = \alpha_5 = 0.5$. Clasifica la muestra de test y = (0, 2).

Solución:

$$g(y) = \sum_{i=1}^{n} \alpha_i c_i K(y, x_i) + \sum_{i=1}^{n} \alpha_i c_i = 1 \cdot (+1) \cdot K(y, x_1) + 1 \cdot (+1) \cdot K(y, x_2) + 1 \cdot (+1) \cdot K(y, x_3) + (0.5) \cdot (-1) \cdot K(y, x_4) + (0.5) \cdot (-1) \cdot K(y, x_5) + 1 \cdot (+1) + 1 \cdot (+1) + 1 \cdot (+1) + (0.5) \cdot (-1) + (0.5) \cdot (-1) = 1 \cdot (+1) \cdot 9 + (+1) \cdot 9 + (-0.5) \cdot 9 + (-0.5) \cdot 25 + (+1) + (+1) + (+1) + (-0.5) + (-0.5) = 19 - 17 + 2 = 4 \cdot (+1) \cdot 9 + (-0.5) \cdot 9 + (-0.5) \cdot 25 + (+1) + (+1) + (+1) + (-0.5) + (-0.5) = 19 - 17 + 2 = 4 \cdot (+1) \cdot 9 + (-0.5) \cdot (-1) + (-0.5) \cdot (-1)$$

Por tanto, al ser g(x) > 0, se clasifica en +1.