Chapitre 3 : Processus stochastiques, exemple des chaînes

de Markov 3.1 Processus stochastiques : définitions

Définition (3.1.1)

On appelle processus aléatoire (ou stochastique) une famille $X=(X_{\theta})_{\theta\in\Theta}$ de variables aléatoires X_{θ} à valeurs dans (E, \mathcal{E}) et définies sur un même espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$ (c'est à dire que $X_{\theta} : \Omega \to E$ est une application mesurable pour tout $\theta \in \Theta$), indexée par $\theta \in \Theta$ où Θ est un ensemble.

Si Θ est fini ou dénombrable (ex : $\Theta = \mathbb{N}, \mathbb{Z}, \ldots$) on parle de processus à temps discret.

Si Θ a la puissance du continu (ex : $\Theta = \mathbb{R}_+, \mathbb{R}, \mathbb{R}^2, \ldots$) on parle de processus à temps continu.

L'espace E est appelé l'espace d'état du processus X (on dit aussi que le processus X est à valeurs dans E).

Remarque 3.1.1: [au tableau]

Définition (3.1.2)

Un processus $X = (X_{\theta})_{\theta \in \Theta}$ est dit stationnaire si pour tout $n \in \mathbb{N}^*$, pour tous $\theta_1, \ldots, \theta_n \in \Theta$, et pour tout $h \in \Theta$ avec $\theta_i + h \in \Theta$, $\forall 1 \leq i \leq n$, les vecteurs $(X_{\theta_1+h}, \ldots, X_{\theta_n+h})'$ et $(X_{\theta_1}, \ldots, X_{\theta_n})'$ ont même loi.

Définition (3.1.3)

Un processus $X=(X_{\theta})_{\theta\in\Theta}$ est à accroissements stationnaires si la loi de $X_{t+\theta}-X_t$ ne dépend pas de t, pour tous $\theta,t\in\Theta$ t.q. $t+\theta\in\Theta$.

Dorénavant on suppose qu'il existe une relation d'ordre sur Θ : l'indice $\theta \in \Theta$ représente le temps (typiquement on a $\Theta = \mathbb{N}$ ou $\Theta = \mathbb{R}_+$).

Définition (3.1.4)

Un processus $X=(X_{\theta})_{\theta\in\Theta}$ est dit à accroissements indépendants si pour tous $\theta_1<\ldots<\theta_k$ dans Θ les v.a. $X_{\theta_2}-X_{\theta_1},\ldots,X_{\theta_k}-X_{\theta_{k-1}}$ sont mutuellement indépendantes.

Définition (3.1.5)

Une filtration $(\mathcal{F}_{\theta})_{\theta \in \Theta}$ sur un espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$ c'est un ensemble croissant de sous-tribus \mathcal{F}_{θ} de \mathcal{F} , i.e. pour tous $s \leq t$ dans Θ , on a $\mathcal{F}_{s} \subset \mathcal{F}_{t} \subset \mathcal{F}$.

Définition (3.1.6)

On dit qu'un processus $X=(X_{\theta})_{\theta\in\Theta}$ est adapté à une filtration $(\mathcal{F}_{\theta})_{\theta\in\Theta}$ si pour tout $\theta\in\Theta$ la v.a. X_{θ} est \mathcal{F}_{θ} -mesurable.

Exemple 3.1.1: (filtration naturelle). Soit $X=(X_{\theta})_{\theta\in\Theta}$ un processus aléatoire. Définissons pour tout $\theta\in\Theta$ la tribu \mathcal{F}_{θ}^{X} par $\mathcal{F}_{\theta}^{X}=\sigma(X_{s}:s\leq\theta)$, où $\sigma(X_{s}:s\leq\theta)$ est la plus petite tribu qui rend mesurable tous les X_{s} pour $s\leq\theta$ (cette tribu existe car on peut la définir comme étant la plus petite qui contient $\mathcal{C}_{\theta}=\{X_{s}^{-1}(A),\,A\in\mathcal{E},\,s\leq\theta\}$).

• $(\mathcal{F}_{\theta}^X)_{\theta \in \Theta}$ est une filtration et X est adapté à (\mathcal{F}_{θ}^X) [au tableau]

Définition (3.1.7)

Soit $(\mathcal{F}_{\theta})_{\theta \in \Theta}$ une filtration et $X = (X_{\theta})_{\theta \in \Theta}$ un processus qui lui est adapté. On dit que X est (\mathcal{F}_{θ}) -Markov si pour tous s < t dans Θ , et tout Γ dans \mathcal{E} on a

$$\mathbb{P}(X_t \in \Gamma \mid \mathcal{F}_s) = \mathbb{P}(X_t \in \Gamma \mid X_s).$$

Exercice 3.1.1: Montrer que si $X = (X_{\theta})_{\theta \in \Theta}$ est (\mathcal{F}_{θ}) -Markov pour une certaine filtration $(\mathcal{F}_{\theta})_{\theta \in \Theta}$, alors il est $(\mathcal{F}_{\theta}^{X})$ -Markov.

Compte tenu de l'exercice 3.1.1 un processus de Markov X vérifie, pour tous s < t dans Θ , et tout Γ dans \mathcal{E} ,

$$\mathbb{P}(X_t \in \Gamma \,|\, \mathcal{F}_s^X) = \mathbb{P}(X_t \in \Gamma \,|\, X_s).$$

Cela signifie que, pour un processus de Markov X et s < t, la loi de X_t connaissant le comportement du processus jusqu'à l'instant s compris, ne dépend que de sa position à l'instant s: on oublie tout ce qui s'est passé juste avant l'instant s.

Remarque 3.1.2: Dans le contexte où E est fini ou dénombrable le caractère (\mathcal{F}^X_{θ}) -Markov de X peut s'écrire de façon équivalente : pour tout $n \in \mathbb{N}$, tous $0 \le t_1 \le \ldots \le t_n \le t_{n+1}$, et tous $x_1, \ldots, x_n, x_{n+1} \in E$ on a

$$\mathbb{P}(X_{t_{n+1}} = x_{n+1} | X_{t_n} = x_n, \dots, X_{t_1} = x_1) = \mathbb{P}(X_{t_{n+1}} = x_{n+1} | X_{t_n} = x_n)$$
dès que $\mathbb{P}(X_{t_n} = x_n, \dots, X_{t_1} = x_1) > 0$.

Définition (3.1.8)

Un processus de Markov $X=(X_{\theta})_{\theta\in\Theta}$ est dit de Markov homogène si pour tous s< t dans Θ , et tout $\Gamma\in\mathcal{E}$ on a

$$\mathbb{P}(X_t \in \Gamma \,|\, X_s) = g_{\Gamma}(t-s,X_s)$$

où la fonction $g_{\Gamma}(t-s,\cdot)$ dépend de l'écart t-s mais pas de s. Dans ce cas on a pour tous s < t dans Θ et tout $x \in E$,

$$\mathbb{P}(X_t \in \Gamma \mid X_s = x) = g_{\Gamma}(t - s, x) = \mathbb{P}(X_{t-s} \in \Gamma \mid X_0 = x).$$

Remarque 3.1.4 : A nouveau dans le cas où E est discret la définition de Markov homogène admet une variante : pour tous s < t dans Θ et tous x, y dans E

$$\mathbb{P}(X_t = y | X_s = x) = p_{t-s}(x, y)$$

où $p_{t-s}(x,y)$ dépend de x, de y et de l'écart t-s mais pas de l'instant s.

... 🖝...

3.2 Chaînes de Markov

Une chaîne de Markov c'est un processus de Markov homogène à valeurs dans E au plus dénombrable et indexé par $n \in \mathbb{N}$ (i.e. $X = (X_n)_{n \in \mathbb{N}}$; on notera aussi souvent $X = (X_n)_{n \geq 0}$, le n indiquant la nature discrète du temps).

Proposition (3.2.1)

Pour une chaîne de Markov $X=(X_n)_{n\geq 0}$ la propriété de Markov homogène s'écrit de façon équivalente : pour tout $n\in \mathbb{N}^*$, et tous $x_0,x_1,\ldots,x_n,x_{n+1}\in E$

$$\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, \dots, X_1 = x_1, X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n)$$

= $\mathbb{P}(X_1 = x_{n+1} | X_0 = x_n)$

dès que $\mathbb{P}(X_n = x_n, \dots, X_1 = x_1, X_0 = x_0) > 0$.

Exemple 3.2.1: Soit $(\xi_i)_{i\geq 1}$ une suite i.i.d. de v.a. à valeurs dans \mathbb{Z} . Le processus $(S_n)_{n\geq 0}$ défini par

$$S_0 = 0$$
 et $S_n = \sum_{i=1}^n \xi_i \ \forall n \ge 1$

est une chaîne de Markov (cf Exercice 2 de la feuille de TD 4). C'est une marche aléatoire sur \mathbb{Z} .

3.2.1 Notion de matrice de transition

Ainsi le comportement d'une chaîne de Markov va être déterminé par la donnée

- de la loi de sa position initiale X_0
- de ses probabilités de transition, i.e. les quantités du type $\mathbb{P}(X_1 = y | X_0 = x)$.

Cela nous amène à la notion de matrice de transition (ou matrice stochastique) d'une chaîne de Markov : soit $X=(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans E, on pose pour tous $x,y\in E$

$$Q(x,y) = \mathbb{P}(X_1 = y | X_0 = x).$$

On appelle $Q = \{Q(x,y)\}_{(x,y) \in E^2}$ la matrice de transition de la chaîne X.

Notons qu'on a $\sum_{y \in E} Q(x, y) = 1$ pour tout $x \in E$ (les lignes d'une matrice de transition somment toujours à 1).

Proposition (3.2.2)

Soit $X = (X_n)_{n \ge 0}$ une chaîne de Markov de matrice de transition Q. Alors pour tous $n \ge 1$ et $x, y \in E$ on a

$$\mathbb{P}(X_n = y \mid X_0 = x) = Q^n(x, y)$$

(ici Q^n désigne simplement le produit matriciel constitué par Q multipliée n-1 fois par elle-même).

En particulier on a les équations de Chapman-Kolmogorov : pour tous $x,y\in E$ et tous $m,n\in \mathbb{N}$,

$$\mathbb{P}(X_{m+n} = y \mid X_0 = x) = \sum_{z \in E} \mathbb{P}(X_m = z \mid X_0 = x) \mathbb{P}(X_n = y \mid X_0 = z)$$

ou, écrit matriciellement,

$$\forall x, y \in E, \ \forall m, n \in \mathbb{N}, \ Q^{m+n}(x, y) = \sum_{z \in E} Q^m(x, z) Q^n(z, y).$$

3.2.2 Phénomène d'équilibre

Donc $Q^n(x, y)$: probabilité que la chaîne soit à l'état y à l'instant n, sachant qu'elle est partie de x.

On verra en TD (Exercice 1 de la Feuille 5) que, pour $|E|=k<\infty$ et sous certaines conditions supplémentaires, on a le phénomène de convergence

$$Q^n \xrightarrow[n\to\infty]{} \begin{pmatrix} p_1 & \dots & p_k \\ \vdots & & \vdots \\ p_1 & \dots & p_k \end{pmatrix}$$

où
$$\sum_{i=1}^k p_i = 1$$
.

Noter que les lignes de la matrice limite sont toutes les mêmes!

Cela signifie que, en temps long, le système est distribué selon μ définie par $\mu(i)=p_i,\ 1\leq i\leq k$, et ce, quelle que soit sa position de départ. Le mesure μ apparait comme la "mesure d'équilibre" ou "distribution à l'équilibre" de la chaîne (il s'agit de théorie des mesures invariantes et de théorie ergodique...).