Problem Statement

A Chinese automobile company Geely Auto aspires to enter the US market by setting up their manufacturing unit there and producing cars locally to give competition to their US and European counterparts.

They have contracted an automobile consulting company to understand the factors on which the pricing of cars depends. Specifically, they want to understand the factors affecting the pricing of cars in the American market, since those may be very different from the Chinese market. The company wants to know:

```
-Which variables are significant in predicting the price of a car
-How well those variables describe the price of a car
```

Based on various market surveys, the consulting firm has gathered a large dataset of different types of cars across the Americal market.

Business Goal

You are required to model the price of cars with the available independent variables. It will be used by the management to understand how exactly the prices vary with the independent variables. They can accordingly manipulate the design of the cars, the business strategy etc. to meet certain price levels. Further, the model will be a good way for management to understand the pricing dynamics of a new market.

Reading data

```
In [88]:
```

```
import warnings
warnings.filterwarnings('ignore')
```

```
In [114]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sn
```

In [90]:

```
cars=pd.read_csv("C:\CarPrice_Assignment.csv")
cars.head()
```

Out[90]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	en
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	
4	5	2	audi 100ls	gas	std	four	sedan	4wd	

5 rows × 26 columns

In [91]:

cars.shape

Out[91]:

(205, 26)

In [92]:

```
cars.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

Jucu	COTAMINS (COCAT 20	coramiis).	
#	Column	Non-Null Count	Dtype
0	car_ID	205 non-null	int64
1	symboling	205 non-null	int64
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object
8	enginelocation	205 non-null	object
9	wheelbase	205 non-null	float64
10	carlength	205 non-null	float64
11	carwidth	205 non-null	float64
12	carheight	205 non-null	float64
13	curbweight	205 non-null	int64
14	enginetype	205 non-null	object
15	cylindernumber	205 non-null	object
16	enginesize	205 non-null	int64
17	fuelsystem	205 non-null	object
18	boreratio	205 non-null	float64
19	stroke	205 non-null	float64
20	compressionratio	205 non-null	float64
21	horsepower	205 non-null	int64
22	peakrpm	205 non-null	int64
23	citympg	205 non-null	int64
24	highwaympg	205 non-null	int64
25	price	205 non-null	float64
dtype	es: float64(8), int	t64(8), object(1	0)

dtypes: float64(8), int64(8), object(10)

memory usage: 41.8+ KB

In [93]:

cars.describe()

Out[93]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	е
coun	t 205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	2
mear	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	1
sto	I 59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	
mir	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	
25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	
50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	1
75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	1
max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	3
4								•

In [94]:

```
cars.columns
```

Out[94]:

In [95]:

```
cars.isnull()
```

Out[95]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	engi
(False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	
2	. False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	
200	False	False	False	False	False	False	False	False	
201	False	False	False	False	False	False	False	False	
202	. False	False	False	False	False	False	False	False	
203	False	False	False	False	False	False	False	False	
204	False	False	False	False	False	False	False	False	

205 rows × 26 columns

```
In [96]:
cars.duplicated(subset = 'car_ID')== 0
Out[96]:
0
       True
1
       True
2
       True
3
       True
4
       True
       . . .
200
       True
201
       True
202
       True
       True
203
204
       True
Length: 205, dtype: bool
In [97]:
cars.price.describe()
```

Out[97]:

```
count
           205.000000
mean
         13276.710571
std
         7988.852332
          5118.000000
min
25%
          7788.000000
50%
         10295.000000
75%
         16503.000000
         45400.000000
Name: price, dtype: float64
```

visualizing the data

In [98]:

```
plt.figure(figsize=(10,6))
plt.subplot(1,2,1)
plt.title('Car Price distribution')
sn.distplot(cars.price)
plt.subplot(1,2,2)
plt.title('Car Price')
sn.boxplot(y=cars.price)
plt.show()
```


In [99]:

```
sn.countplot(cars['symboling'])
```

Out[99]:

<matplotlib.axes._subplots.AxesSubplot at 0x294c162e1c0>

In [100]:

```
cars[['symboling','price']].groupby("symboling").mean().plot(kind='bar')
plt.xlabel("Symbol")
plt.ylabel("Avg Price")
plt.show()
```


In [101]:

sn.pairplot(cars, x_vars=['car_ID', 'symboling'], y_vars='price',size=4, aspect=1, kind='sc
plt.show()

In [102]:

```
plt = sn.scatterplot(x = 'horsepower', y = 'price', hue = 'CarName', data = cars)
   45000
                                        CarName
                                        alfa-romero giulia
   40000
                                        alfa-romero stelvio
                                        alfa-romero Quadrifoglio
   35000
                                        audi 100 Is
   30000
                                        audi 100ls
                                        audi fox
   25000
                                        audi 5000
    20000
                                        audi 4000
                                        audi 5000s (diesel)
   15000
                                        bmw 320i
                                        bmw x1
   10000
                                        bmw x3
     5000
                                        bmw z4
                                        bmw x4
            50
                       100
                                                                    loo
                                        bmw.x5
                                        chevrolet impala
                                        chevrolet monte carlo
                                        chevrolet vega 2300
                                        dodge rampage
                                        dodge challenger se
```

In [103]:

```
sn.heatmap(cars.corr(), cmap="YlGnBu", annot = True)
```

Out[103]:

<matplotlib.axes._subplots.AxesSubplot at 0x294bfe81880>


```
In [104]:
```

Data preparation

```
In [105]:
```

```
cars.CarName.values[0:5]
```

Out[105]:

In [106]:

```
CompanyName = cars['CarName'].apply(lambda x : x.split(' ')[0])
cars.insert(3,"CompanyName",CompanyName)
cars.drop(['CarName'],axis=1,inplace=True)
cars.head()
```

Out[106]:

	car_ID	symboling	CompanyName	fueltype	aspiration	doornumber	carbody	drivewheel
0	1	3	alfa-romero	gas	std	two	convertible	rwd
1	2	3	alfa-romero	gas	std	two	convertible	rwd
2	3	1	alfa-romero	gas	std	two	hatchback	rwd
3	4	2	audi	gas	std	four	sedan	fwd
4	5	2	audi	gas	std	four	sedan	4wd

5 rows × 26 columns

```
4
```

In [107]:

```
cars.CompanyName.unique()
```

Out[107]:

In [108]:

```
plt.plot(figsize=(10,8))
sn.countplot(cars['CompanyName'], order=pd.value_counts(cars['CompanyName']).index,)
plt.xlabel = 'company name'
plt.ylabel= 'Count of Cars'
```


In [109]:

```
cars.CompanyName.describe()
```

Out[109]:

count 205 unique 28 top toyota freq 31

Name: CompanyName, dtype: object

In [110]:

```
cars.price.describe()
```

Out[110]:

205.000000 count mean 13276.710571 7988.852332 std 5118.000000 min 7788.000000 25% 50% 10295.000000 75% 16503.000000 45400.000000 max

Name: price, dtype: float64

In [111]:

```
cars_comp_avg_price = cars[['CompanyName','price']].groupby("CompanyName", as_index = False
plt = cars_comp_avg_price.plot(x = 'CompanyName', kind='bar',legend = False, sort_columns =
plt.set_xlabel("CompanyName")
plt.set_ylabel("Avg Price (Dollars)")
```

Out[111]:

Text(0, 0.5, 'Avg Price (Dollars)')

In [115]:

```
plt.figure(figsize=(20,8))

plt.subplot(1,2,1)
plt.title('Car Price Distribution Plot')
sn.distplot(cars.price)

plt.subplot(1,2,2)
plt.title('Car Price Spread')
sn.boxplot(y=cars.price)

plt.show()
```


In [116]:

```
plt.figure(figsize=(20, 12))
plt.subplot(2,2,1)
sn.boxplot(x = 'CompanyName', y = 'price', data = cars)
plt.subplot(2,2,2)
sn.boxplot(x = 'fueltype', y = 'price', data = cars)
plt.subplot(2,2,3)
sn.boxplot(x = 'carbody', y = 'price', data = cars)
plt.subplot(2,2,4)
sn.boxplot(x = 'aspiration', y = 'price', data = cars)
```

Out[116]:

<matplotlib.axes._subplots.AxesSubplot at 0x294b836fb20>

In [117]:

```
plt.figure(figsize=(25, 6))
plt.subplot(1,3,1)
plt1 = cars.CompanyName.value_counts().plot(kind='bar')
plt.title('Companies Histogram')
plt1.set(xlabel = 'Car company', ylabel='Frequency of company')
plt.subplot(1,3,2)
plt1 = cars.fueltype.value_counts().plot(kind='bar')
plt.title('Fuel Type Histogram')
plt1.set(xlabel = 'Fuel Type', ylabel='Frequency of fuel type')
plt.subplot(1,3,3)
plt1 = cars.carbody.value_counts().plot(kind='bar')
plt.title('Car Type Histogram')
plt1.set(xlabel = 'Car Type', ylabel='Frequency of Car type')
plt.show()
```


In [35]:

sn.pairplot(cars)
plt.show()

In [118]:

```
def scatter(x,fig):
    plt.subplot(5,2,fig)
    plt.scatter(cars[x],cars['price'])
    plt.title(x+' vs Price')
    plt.ylabel('Price')
    plt.xlabel(x)
plt.figure(figsize=(10,20))
scatter('carlength', 1)
scatter('carwidth', 2)
scatter('carheight', 3)
scatter('curbweight', 4)
```


In [119]:

Out[119]:

	price	fueltype	aspiration	carbody	drivewheel	wheelbase	curbweight	enginetype	cy
0	13495.0	gas	std	convertible	rwd	88.6	2548	dohc	
1	16500.0	gas	std	convertible	rwd	88.6	2548	dohc	
2	16500.0	gas	std	hatchback	rwd	94.5	2823	ohcv	
3	13950.0	gas	std	sedan	fwd	99.8	2337	ohc	
4	17450.0	gas	std	sedan	4wd	99.4	2824	ohc	
4									•

Dummy variables

In [120]:

```
status = pd.get_dummies(cars['cylindernumber'])
status.head()
```

Out[120]:

	eight	five	four	six	three	twelve	two
0	0	0	1	0	0	0	0
1	0	0	1	0	0	0	0
2	0	0	0	1	0	0	0
3	0	0	1	0	0	0	0
4	0	1	0	0	0	0	0

In [121]:

```
status = pd.get_dummies(cars['cylindernumber'], drop_first = True)
cars= pd.concat([cars, status], axis = 1)
cars.head()
```

Out[121]:

	car_ID	symboling	CompanyName	fueltype	aspiration	doornumber	carbody	drivewheel		
0	1	3	alfa-romero	gas	std	two	convertible	rwd		
1	2	3	alfa-romero	gas	std	two	convertible	rwd		
2	3	1	alfa-romero	gas	std	two	hatchback	rwd		
3	4	2	audi	gas	std	four	sedan	fwd		
4	5	2	audi	gas	std	four	sedan	4wd		
5 rows × 32 columns										

Train_Test spliting and feature selection

In [149]:

```
from sklearn.model_selection import train_test_split
np.random.seed(0)
df_train, df_test = train_test_split(cars_lr, train_size = 0.7, test_size = 0.3, random_sta
```

In [150]:

```
df_train.head()
```

Out[150]:

	price	fueltype	aspiration	carbody	drivewheel	wheelbase	curbweight	enginetype
122	7609.0	gas	std	sedan	fwd	93.7	2191	ohc
125	22018.0	gas	std	hatchback	rwd	94.5	2778	ohc
166	9538.0	gas	std	hatchback	rwd	94.5	2300	dohc
1	16500.0	gas	std	convertible	rwd	88.6	2548	dohc
199	18950.0	gas	turbo	wagon	rwd	104.3	3157	ohc
4								>

In [151]:

```
plt.figure.Figsize =(30, 10)
sn.heatmap(df_train.corr(), annot = True, cmap="YlGnBu")
```

Out[151]:

<matplotlib.axes._subplots.AxesSubplot at 0x294c0fb6550>

In [152]:

```
plt.figure.figsize=[6,6]
plt.scatter(df_train.carbody, df_train.price)
plt.show()
```


In [153]:

```
y_train = df_train.pop('price')
X_train = df_train
```

Model building

In [154]:

```
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train[['horsepower']])
lr = sm.OLS(y_train, X_train_lm).fit()
```

In [155]:

```
lr.params
```

Out[155]:

const -3192.650565 horsepower 158.445735

dtype: float64

In [156]:

```
plt.scatter(X_train_lm.iloc[:, 1], y_train)
plt.plot(X_train_lm.iloc[:, 1], 0.127 + 0.462*X_train_lm.iloc[:, 1], 'r')
plt.show()
```


In [157]:

```
print(lr.summary())
```

	OLS Regression Results									
=======================================	=========		=====	========	=======	=======				
== Dep. Variable:		price	R-squ	ared:		0.6				
50 Model:		OLS	∆di. ∣	R-squared:		0.6				
47			_	-		0.0				
Method: 1.8	Least So	luares	F-sta	tistic:		26				
Date:	Sat, 25 Apr	2020	Prob	(F-statistio	c):	6.04e-				
34 Time:	14:	29:50	Log-L:	ikelihood:		-140				
9.0										
No. Observations: 2.		143	AIC:			282				
Df Residuals:		141	BIC:			282				
8.		4								
Df Model:	200	1 obust								
Covariance Type:										
==										
	ef std err	,	t	P> t	[0.025	0.97				
5]				. , , , ,	[0.0=0	0,12,				
const -3192.65	06 1076.508	3 -2	.966	0.004	-5320.833	-1064.4				
horsepower 158.44	57 9.793	3 16	.180	0.000	139.086	177.8				
06										
=======================================	========		=====	========		=======				
==										
Omnibus: 32	3	33.630	Durbi	n-Watson:		1.8				
Prob(Omnibus):		0.000	Jarqu	e-Bera (JB):	•	53.5				
78										
Skew: 12		1.166	Prob(JB):		2.32e-				
Kurtosis:		4.886	Cond.	No		30				
5.		4.000	cona.	NO.		50				
===========	=========	:======	=====	========	========	=======				
==										
Warnings:										
[1] Standard Errors	assume that	the cov	arianc	e matrix of	the errors	is corre				
ctly specified.										
1										

In the above R-squared value obtained is 0.659. Since we have so many variables, we can clearly do better than this.

```
In [158]:
```

```
X_train_lm = X_train[['horsepower', 'boreratio']]
```

In [159]:

```
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train_lm)
lr = sm.OLS(y_train, X_train_lm).fit()
lr.params
```

Out[159]:

const -17195.969523 horsepower 142.324775 boreratio 4733.779792

dtype: float64

In [160]:

print(lr.summary())

OLS Regression Results							
=======================================		=====	=====			=======	
== Dep. Variable:	р	rice	R-squ	ared:		0.6	
68	·						
Model: 64		OLS	Adj.	R-squared:		0.6	
Method:	Least Squ	ares	F-sta	tistic:		14	
1.0 Date:	Sat, 25 Apr	2020	Dnoh	/E c+>+ic+ic		2.86e-	
34	3ac, 23 Api	2020	F1 00	(F-Statistic	.)•	2.806-	
Time:	14:2	9:53	Log-L	ikelihood:		-140	
5.2 No. Observations:		143	AIC:			281	
6.		143	AIC.			201	
Df Residuals:		140	BIC:			282	
5. Df Model:		2					
Covariance Type:	nonro	_					
=======================================	========	=====		========		======	
==	f std err		+	P> +	[0.025	0.97	
5]	. 300 0			.,,,,,,	[0.023	0.127	
 const -1.72e+04	4 5145.399	-3	. 342	0.001	-2.74e+04	-7023.2	
40							
horsepower 142.3248	3 11.187	12	.722	0.000	120.207	164.4	
boreratio 4733.7798	3 1702.665	2	.780	0.006	1367.520	8100.0	
=======================================	========	=====		========	:=======	=======	
==	22	-46				4 -	
Omnibus: 73	33	.546	Durbi	n-Watson:		1.7	
Prob(Omnibus):	0	.000	Jarqu	e-Bera (JB):		53.8	
88 Skew:	1	156	Dnoh/	י ו סד		1 000	
12	1	.156	Prob(, (טנ)		1.99e-	
Kurtosis: 03	4	.923	Cond.	No.		1.57e+	
=======================================	========	=====:		========	=======	=======	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.57e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

In [161]:

```
X_train_lm = X_train[['horsepower', 'boreratio','wheelbase']]
```

In [162]:

```
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train_lm)
lr = sm.OLS(y_train, X_train_lm).fit()
lr.params
```

Out[162]:

dtype: float64

In [163]:

print(lr.summary())

		OLS F	Regres	ssion Re	esults		
========	=======	========	=====	:=====	========	:=======	=======
== Dep. Variab 66	ole:	ŗ	orice	R-squ	uared:		0.7
Model:			OLS	Adj.	R-squared:		0.7
Method:		Least Squ	ıares	F-sta	atistic:		15
Date:		Sat, 25 Apr	2020	Prob	(F-statisti	.c):	1.33e-
Time: 0.3		14:2	29:56	Log-l	_ikelihood:		-138
No. Observa	ations:		143	AIC:			276
Df Residual 1.	ls:		139	BIC:			278
Df Model: Covariance	Tyne:	nonro	3				
========	-ypc.		:=====	:=====	========	:=======	=======
==							
5]	coe	f std err		t	P> t	[0.025	0.97
const 04	-4.867e+0	4 5998.451	-	8.114	0.000	-6.05e+04	-3.68e+
horsepower	129.410	9 9.588	1	13.497	0.000	110.454	148.3
	528.484	2 1539.016		0.343	0.732	-2514.424	3571.3
	474.092	6 62.368		7.602	0.000	350.780	597.4
========	=======	========		======			=======
== Omnibus:		42	2.724	Durb	in-Watson:		1.8
44 Prob(Omnibu 54	us):	6	.000	Jarqı	ue-Bera (JB)	:	104.4
Skew:		1	.214	Prob	(JB):		2.08e-
23 Kurtosis: 03			5.411	Cond			2.75e+
=======================================	=======	========		.=====	=======		=======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.75e+03. This might indicate that there are
- strong multicollinearity or other numerical problems.

Checking VIF

Variance Inflation Factor or VIF, gives a basic quantitative idea about how much the feature variables are correlated with each other. It is an extremely important parameter to test our linear model. The formula for calculating VIF is:

VIFi=1/1-Ri2

In [164]:

from statsmodels.stats.outliers_influence import variance_inflation_factor

In [166]:

```
def build_model(X,y):
    X = sm.add_constant(X) #Adding the constant
    lm = sm.OLS(y,X).fit() # fitting the model
    print(lm.summary()) # model summary
    return X

def checkVIF(X):
    vif = pd.DataFrame()
    vif['Features'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return(vif)
```

In [168]:

X_train_new = build_model(X_train_lm,y_train)

OLS Regression Results							
========		=======:	=====				=======
Dep. Varia	ole:	1	orice	R-squ	uared:		0.7
Model:			OLS	Adj.	R-squared:		0.7
Method:		Least Sq	uares	F-sta	atistic:		15
1.4 Date:		Sat, 25 Apr	2020	Prob	(F-statisti	lc):	1.33e-
43 Time:		14:	35:59	Log-l	_ikelihood:		-138
0.3 No. Observa	ations:		143	AIC:			276
9. Df Residual	ls:		139	BIC:			278
1. Df Model:	_		3				
Covariance	Type:	nonre	bust				
=======================================	=======	=======	=====	:=====:		=======	=======
	COB	f std err		t	D> +	[0.025	0.97
5]		, 3ca ci i			17[0]	[0.023	0.57
const 04	-4.867e+0	4 5998.451	-	8.114	0.000	-6.05e+04	-3.68e+
horsepower 68	129.410	9 9.588	1	L3.497	0.000	110.454	148.3
	528.484	2 1539.016		0.343	0.732	-2514.424	3571.3
	474.092	6 62.368		7.602	0.000	350.780	597.4
========	=======	========	=====	======		:=======	=======
== Omnibus:		42	2.724	Durbi	in-Watson:		1.8
44 Prob(Omnibu	ıs):	(0.000	Jarqı	ue-Bera (JB)):	104.4
54 Skew:		:	1.214	Prob	(JB):		2.08e-
23 Kurtosis: 03		(5.411	Cond	. No.		2.75e+
=======================================	=======	========	=====			=======	=======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.75e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

In [169]:

X_train_new = build_model(X_train_new,y_train)

OLS Regression Results							
==							
Dep. Variat	ole:	ţ	orice	R-squ	uared:		0.7
Model:			OLS	Adj.	R-squared:		0.7
61 Method:		Least Squ	ıares	F-sta	atistic:		15
1.4		6 1 25 4	2020	ъ	/=		4 22
Date: 43		Sat, 25 Apr			•	c):	1.33e-
Time: 0.3		14:3	36:35	Log-l	ikelihood:		-138
No. Observa	ations:		143	AIC:			276
Df Residual	ls:		139	BIC:			278
I. Df Model:			3				
Covariance	Type:	nonro	_				
		========	=====	======		=======	=======
==	COB	f std err		t	P> t	[0.025	0.97
5]	202	i sea cii			17[0]	[0.023	0.37
const 04	-4.867e+0	4 5998.451	-	8.114	0.000	-6.05e+04	-3.68e+
horsepower	129.410	9 9.588	1	13.497	0.000	110.454	148.3
68 boreratio	528.484	2 1539.016		0.343	0.732	-2514.424	3571.3
92 wheelbase 05	474.092	6 62.368		7.602	0.000	350.780	597.4
========		========				=======	=======
==		-					
Omnibus: 44		42	2.724	Durbi	in-Watson:		1.8
Prob(Omnibu	us):	6	0.000	Jarqu	ue-Bera (JB)	:	104.4
Skew:		1	L.214	Prob((JB):		2.08e-
23 Kurtosis:		ϵ	5.411	Cond.	No.		2.75e+
03							
	=======	=======	=====		========	=======	=======
==							

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.75e+03. This might indicate that there are
- strong multicollinearity or other numerical problems.

In [171]:

```
checkVIF(X_train_new)
```

Out[171]:

	Features	VIF
0	const	352.64
2	boreratio	1.57
1	horsepower	1.41
3	wheelbase	1.35

In [172]:

```
X_train_new = X_train_new.drop(["wheelbase"], axis = 1)
```

In [173]:

X_train_new = build_model(X_train_new,y_train)

OLS Regression Results							
==							
Dep. Variab 68	le:		price	R-sq	uared:		0.6
Model:			OLS	Adj.	R-squared:		0.6
64 Method:		Least So	luares	F-st	atistic:		14
1.0							
Date: 34		Sat, 25 Apr	2020	Prob	(F-statistic	:):	2.86e-
Time:		14:	38:54	Log-	Likelihood:		-140
5.2 No. Observa	tions:		143	AIC:			281
6.			140	DTC.			202
Df Residual 5.	S:		140	BIC:			282
Df Model:			2				
Covariance	Type:	nonr	obust				
========	=======	=======	:=====		========	=======	======
==	coe	f std err	•	t	P> t	[0.025	0.97
5]							
const 40	-1.72e+04	1 5145.399	-3	3.342	0.001	-2.74e+04	-7023.2
horsepower	142.3248	3 11.187	12	2.722	0.000	120.207	164.4
43 boreratio	4733.7798	3 1702.665	5 2	2.780	0.006	1367.520	8100.0
40							
========	=======						=======
==							
Omnibus:		3	3.546	Durb	in-Watson:		1.7
73							
Prob(Omnibu 88	s):		0.000	Jarq	ue-Bera (JB):		53.8
Skew:			1.156	Prob	(JB):		1.99e-
12							
Kurtosis: 03			4.923	Cond	. No.		1.57e+
	=======	========	======	=====	=========	:=======	=======
==							

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.57e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

In [174]:

```
checkVIF(X_train_new)
```

Out[174]:

	Features	VIF
0	const	184.60
1	horsepower	1.37
2	boreratio	1.37

Residual analysis of a model

In [175]:

```
lm = sm.OLS(y_train,X_train_new).fit()
y_train_price = lm.predict(X_train_new)
```

In [177]:

```
fig = plt.figure()
sn.distplot((y_train - y_train_price), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)
plt.xlabel('Errors', fontsize = 18)
```

Out[177]:

Text(0.5, 0, 'Errors')

Model evaluation

```
In [185]:
```

```
num_vars = ['wheelbase', 'curbweight', 'enginesize', 'boreratio', 'horsepower','fueleconomy
df_test[num_vars] = scaler.transform(df_test[num_vars])
```

In [186]:

```
y_test = df_test.pop('price')
X_test = df_test
```

In [187]:

```
X_train_new = X_train_new.drop('const',axis=1)
X_test_new = X_test[X_train_new.columns]
X_test_new = sm.add_constant(X_test_new)
```

In [188]:

```
y_pred = lm.predict(X_test_new)
```

In [189]:

```
from sklearn.metrics import r2_score
r2_score(y_test, y_pred)
```

Out[189]:

0.6544700407307734

In [190]:

```
fig = plt.figure()
plt.scatter(y_test,y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20)
plt.xlabel('y_test', fontsize=18)
plt.ylabel('y_pred', fontsize=16)
```

Out[190]:

Text(0, 0.5, 'y_pred')

In [191]:

print(lm.summary())

OLS Regression Results						
======================================	:======== q	 rice	 R-sqı	======== uared:	=======	0.6
68 Model:	·		·	R-squared:		0.6
64			J	•		
Method: 1.0	Least Squ	ares	F-sta	atistic:		14
Date: 34	Sat, 25 Apr	2020	Prob	(F-statisti	c):	2.86e-
Time: 5.2	15:0	2:11	Log-l	ikelihood:		-140
No. Observations:		143	AIC:			281
Df Residuals: 5.		140	BIC:			282
Df Model: Covariance Type:	nonrol	2 oust				
=======================================	========		=====	-=======	=======	=======
coe 5]	f std err		t	P> t	[0.025	0.97
	4 5145.399		3.342	0.001	-2.74e+04	-7023.2
40 horsepower 142.324	8 11.187	12	2.722	0.000	120.207	164.4
43 boreratio 4733.779	8 1702.665	2	2.780	0.006	1367.520	8100.0
40	========	=====		-======		======
== Omnibus: 73	33	.546	Durbi	in-Watson:		1.7
Prob(Omnibus):	0	.000	Jarqu	ue-Bera (JB)	:	53.8
Skew:	1	.156	Prob((JB):		1.99e-
12 Kurtosis: 03	4	.923	Cond.	. No.		1.57e+
==	========	=====	=====	========		======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.57e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

In []: