云峰朋辈辅学微甲提升 2 组 — 第 1 讲

主讲人: Famiglisti @CC98 Place: 碧 2 党员之家

1 知识概要

1. 常数项级数的定义、收敛定义、常数项级数的基本性质

2. 两个重要的常数项级数 (p 级数、几何级数)

1.p 级数: $\sum_{n=1}^{\infty} \frac{1}{n^p}$;

当 p>1 时, 级数收敛; 当 $p \le 1$ 时, 级数发散

2. 几何级数: $\sum_{n=0}^{\infty} aq^n$;

当 $|q| \ge 1$ 时,级数发散;

当 |q| <1 时,级数收敛

3. 正项级数审敛法 比较审敛法、比值审敛法、根值审敛法、积分审敛法

4. 交错级数及其审敛法 莱布尼茨判别法

5. 绝对收敛与条件收敛

2 习题解析

Problem 1 设常数 k>0, 且正向级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n+k}$

- [A] 绝对收敛
- [B] 条件收敛
- [C] 发散
- [D] 敛散性与 k 有关

Problem 2 设正数列 $\{a_n\}$ 单调增加且有界,判断 $\sum_{n=1}^{\infty} (1 - \frac{a_n}{a_{n+1}})$ 的敛散性。

Problem 4 判断级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$ 的敛散性,若收敛,是绝对收敛还是条件收敛?

Problem 5 判断 $\sum_{n=1}^{\infty} \sin \sqrt{n^2 + 1}\pi$ 的敛散性,当级数收敛时,判断是绝对收敛还是条件收敛。

Problem 6 设 f(x) 在 x=0 的邻域内二阶连续可导,且 $\lim_{x\to\infty} \frac{f(x)-1}{x^2}=2$. 证明:级数 $\sum_{n=1}^{\infty} \left[f(\frac{1}{n})-1\right]$ 绝对收敛。

Problem 7 设级数 $\sum_{n=1}^{\infty} u_n(u_n > 0)$ 发散, $S_n = u_1 + u_2 + \dots + u_n$, 证明: $\sum_{n=1}^{\infty} \frac{u_n}{S_n^2}$ 收敛。

Problem 8 设 $u_n > 0$, $\lim_{x \to \infty} \frac{\ln \frac{1}{u_n}}{\ln n} = q$ 存在, 证明: 当 q > 1 时, $\sum_{n=1}^{\infty} u_n$; q < 1 , $\sum_{n=1}^{\infty} u_n$ 发散。

Problem 9 设 $f_0(x)$ 在 [0,a] 上连续,又 $f_n(x) = \int_0^x f_{n-1}(t) dt$,证明:级数 $\sum_{n=1}^\infty f_n(x)$ 在 [0,a] 上绝对收敛.