Linear Stability Analysis of Plane Channel Flow

Part of the course Computational Fluid Mechanics II

B.Sc. Jousef Murad - July 17th, 2018

Institute for Hydrodynamics - Prof. Dr. Markus Uhlmann

Outline

- Motivation
- History & Theoretical Background
- Assignment
- 4 Implementation
- 5 Difficulties
- Results & Outlook

Motivation

- OS Equations govern the stability of shear and related flows
- Climate Modelling:
 - Mid-latitude cyclone → high and low pressure regions
- Shear Flows in electrohydrodynamic (EHD)
 - Clutch development or high voltage generators
- Flow over an airfoil covered in de-icer

Motivation

"Linear growth mechanisms are the only responsible for disturbance growth in shear flows, where nonlinear terms redistribute energy and give zero net contribution when integrated over the whole control domain" – T. Ellingsen, E.Palm

History & Theoretical Background

Reynolds (1883)

■ G.I. Taylor vs. Prandtl-Tollmien-Schlichting → Schubauer & Skramstad experiment HTS waves

<u>Assignment</u>

Laminar Flow Solution (
$$\frac{dp}{dx} = const$$
): $U(y) = 1 - y^2$

$$U(i) = U_0 * (1 - (y(i))^2)$$

Boundary Conditions:

- No-slip \rightarrow f(-1) = f(1) = 0
- No-Penetration \rightarrow f'(-1) = f'(1) = 0

Squire's theorem

To obtain the minimum critical Reynolds number it is sufficient to consider only two-dimensional disturbances!

<u>Assignment</u>

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p = \frac{1}{Re} \nabla^2 \boldsymbol{u}$$

<u>To – Do</u>:

- Introduce mode ansatz
- Discretize
- Matrix-Vector Form $\overline{\overline{A}}f = c\overline{\overline{B}}f$

Orr-Sommerfeld Equation

$$k^{4}f - 2k^{2}\frac{d^{2}f}{dy^{2}} + \frac{d^{4}f}{dy^{4}} = i\nu k \left((U(y) - c) \left(\frac{d^{2}f}{dy^{2}} - k^{2}f \right) - \frac{d^{2}U}{dy^{2}}f \right)$$

$$i\nu k \left(-2\frac{d^2 f}{dy^2} + k^2 f \right) + \frac{i\nu}{k} \frac{d^4 f}{dy^4} + U(y) \left(\frac{d^2 f}{dy^2} - k^2 f \right) - \frac{d^2 U}{dy^2} f = c \left(\frac{d^2 f}{dy^2} - k^2 f \right)$$

Finite-Difference Schemes

$$\left. \frac{\partial^2 f}{\partial y^2} \right|_{y_i} = \left. \frac{f_{i-1} - 2f_i - f_{i+1}}{\Delta y^2} - \frac{\Delta y^2}{12} \frac{\partial^4 f}{\partial y^4} \right|_{f_i} + \dots$$

$$\frac{\partial^4 f}{\partial y^4}\Big|_{y_i} = \frac{f_{i-2} - 4f_{i-1} + 6f_i - 4f_{i+1} + f_{i+2}}{\Delta y^4} - \frac{\Delta y^2}{6} \frac{\partial^4 f}{\partial y^6}\Big|_{y_i} + \dots$$

Implementation (Flow Chart)

<u>Implementation</u>

$$i\nu k \left(-2\frac{d^2f}{dy^2} \right) + k^2 f + \frac{i\nu d^4f}{k dy^4} + U(y) \left(\frac{d^2f}{dy^2} \right) - k^2 f - \frac{d^2U}{dy^2} f = c \left(\frac{d^2f}{dy^2} \right) - k^2 f$$

$$\overline{\overline{A}}f = c\overline{\overline{B}}f$$

Difficulties

- Debugging tricky
- Convergence Study & Plots

Results

- Time to solve Eigenvalue problem
- Accuracy of imaginary Part
- Convergence Study
- Eigenvalue Spectrum
- Stability

Time to solve Eigenvalue Spectrum

Accuracy of imaginary part

Convergence Study

Eigenvalue Spectrum N = 50

Eigenvalue Spectrum N = 200

Stability Contour Plot ($Re_c = 5850$)

<u>Outlook</u>

- Include spanwise wave number β
- 2D → 3D
- Optimal initial conditions
- Non-Uniform Grid & Optimal stretching factor (Asai & Nakasuji)
- Transient Growth

References

NASA Video: https://www.voutube.com/watch?v=-D5N OnZ

Source Code

Code and Documentation available at GitHub: https://github.com/jousefm/

Questions?