Mathematics 227 Linear independence

1. Consider the matrices

$$A = \begin{bmatrix} 3 & 0 & -1 & 1 \\ 1 & -1 & 3 & 7 \\ 3 & -2 & 1 & 5 \\ -1 & 2 & 2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 0 & -1 & 4 \\ 1 & -1 & 3 & -1 \\ 3 & -2 & 1 & 3 \\ -1 & 2 & 2 & 1 \end{bmatrix}.$$

(a) Are the columns of A linearly independent? Are the columns of B linearly independent? Explain your thinking.

(b) For the matrix above whose columns are linearly dependent, express one of the vectors as a linear combination of the others.

2. Suppose that v_1 , v_2 , v_3 , and v_4 are vectors in \mathbb{R}^8 and that $v_2 = 0$. What can you say about the linear dependence/independence of this set of four vectors in \mathbb{R}^8 ?

If the vectors are linearly dependent, express one of them as a linear combination of the others.

