المدة: ساعة ونصف

الفرض المحروس للفصل الدراسي الثاني في مادة التكنولوجيا (هندسة كهربائية)

نظام آلى لفرز صناديق

الهدف: الهدف من هذا النظام هو فرز صناديق من البساط1 وتحويلهما إلى البساطين 2 و 3 كل على حسب الوزن. التشغيل: يصل الصندوق عبر البساط1 ، يتم الكشف عن الوزن ، فيوجه نحوالبساط2 إذا كان صغيرا ونحو البساط 3 إذا كان كبيرا .

ملاحظة: عند عودة كل من الرافعتين B و C يدور المحرك M_2 مدة 55 ثانية لتدوير البساطين 2 و B . كل مركز عمل يديره Dcy_3 ، Dcy_2 ، Dcy_1 : ضاغطات شاغطات عامل بواسطة ثلاث

W: طاقة

المستوى : 3 **ت** ر

E : تعليمات الاستغلال .

R :ضبط

ا : إعدادات

المناولة الهيكلية:

المنفذات: M_1 و M_2 محركان غير متزامنان ثلاثي الطور .

A و B و C رافعات ثنائيات المفعول .

المنفذات المتصدرة: (A+, A-) موزع 2/5 ثنائي الاستقرار كهروهوائي مغذى بـ ~24V

 $24V^{-}$ موزع 2/5 ثنائي الاستقرار كهروهوائي مغذى ب (B^{+}, B^{-})

 $24V^{-}$ موزع 2/5 ثنائي الاستقرار كهروهوائي مغذى بـ (C+, C-)

 $40V^{\sim}$ ملامسين كهربائيين بتغذية KM₂ و KM₁

الملتقطات: a₁ ، a₀ و ملتقطات نهاية الشوط للرافعة A

 ${\sf C}$ و ${\sf c}_0$ ملتقطى نهاية الشوط للرافعة ${\sf d}$ ، ${\sf d}$ و ${\sf c}_0$ ملتقطى نهاية الشوط للرافعة ${\sf d}$

h و g ماتقطين للكشف عن حجم الصندوق. Cp1 ماتقط للكشف عن الصندوق أمام البساط2

Cp2 ملتقط للكشف عن الصندوق أمام البساط3

المناولة الزمنية: يحتوى النظام على ثلاث أشغولات:

الأشغولة الأولى: الإتيان والفرز

الأشغولة الثانية: تحويل الصناديق الصغيرة.

الأشغولة الثالثة: تحويل الصناديق الكبيرة.

متمن أشغولة الإتيان والفرز (المركز الأول)

شبكة التغذية: 380 ; 50 Hz شبكة التغذية

محرك البساط 1:

• أردنا التحكم في المحرك M1 باستعمال الميكرومراقب PIC16F84A ومن أجل ذلك حققنا التركيب الموضح في الشكل الآتي : 5V

• ولتغذية وشيعة الملامس KM_1 استعملنا محول أحادي الطور

الذي أجريت عليه التجارب التالية:

محول أحادي الطور أجريت عليه التجارب التالية:

 U_1 = U_{1N} =220V , U_{20} =44V , P_{10} =80W : في الفراغ

 U_1 =5V ; I_1 =10A : في التيار المستمر

 $\mathsf{U}_{1\mathsf{CC}}\mathtt{=}40\mathsf{V}$, $\mathsf{P}_{1\mathsf{CC}}\mathtt{=}250\mathsf{W}$, $\mathsf{I}_{1\mathsf{CC}}\mathtt{=}20\mathsf{A}$: في حالة قصر دارة

الأسئلة:

 $\overline{}$ ارسم متمن أشغولة تحويل الصناديق الكبيرة (المركز الثالث) من وجهة نظر جزء التحكم $\overline{}$

س2: ماهي وظيفة التركيب الموضح بالدارة المندمجة NE555 ؟

س3: : أكتب العلاقة الحرفية لزمن التأجيل ثم احسب زمن التأجيل اللازم.

س $V_{\rm c}$: ارسم المخطط الزمني للتوترين $V_{\rm c}$ و $V_{\rm c}$ في المعلم الثاني بلونين مختلفين على ورقة الإجابة (صفحة $V_{\rm c}$

15: أكمل برنامج التحكم في الملامس 15 الموجود في وثيقة الإجابة (صفحة 4 من 5)

س6: على ورقة الإجابة (صفحة 4 من 5) أملاً محتوى السِّجل TRISB

\mathbf{KM}_1 دراسة محول تغذیة وشیعة الملامس : دراسة

-1عين نسبة التحويل في الفراغ وعدد لفات الثانوي إذا كان عدد لفات الأولى 520 لفة -1

2-عين عناصر التصميم المكافىء المرجعة لثانوي المحول.

• يُغذَّى المحول بتوتره الإسمي في الابتدائي ليصب تيارا شدته 100A في حمولة تحريضية عامل استطاعتها 0,9 في الثانوي .

3-أوجد توتر الثانوي ، ثم استنتج الاستطاعة الفعالة المقدمة للحمولة .

 P_1 عين الاستطاعة الممتصة في الأولي -4

\mathbf{M}_2 عير المتزامن ثلاثي الطور \mathbf{M}_2

تحمل لوحة بيانات المحرك المواصفات التالية:

220/380V; 50 Hz; $\cos\phi=0.8$; 2940 tr/mn; 550W

1ما هو الإقران المناسب للمحرك على شبكة التغذية ? علل ?

2-احسب قيمة الانزلاق g

 T_u العزم المفيد -3

انتهت أسئلة الموضوع

اللقب والاسم :

وثيقة إجابة ترد مع الورقة المزدوجة

ج5: إكمال البرنامج

LIST P= 16F84A

#include "p16f84A.inc"

_CONFIG H'3FF9'

ORG 0X000

goto init

init

ORG 5

الانتقال إلى الصفحة 1 ; الانتقال إلى الصفحة 1

MOVLW

MOVWF TRISA ; PORTA كمداخل ;

جميع منافذ PORTB كمخارج :

BCF ; 0 الانتقال إلى الصفحة

Start

وشيعة الملامس غير مغذاة ; وشيعة الملامس غير مغذاة

Test

BTFSC PORTA,0 ;

GOTO Allum

GOTO Start

Allum

وشيعة الملامس مغذاة ; BSF ; وشيعة الملامس مغذاة

GOTO Test

 V_s و V_c و و V_c

ج6 : محتوى السِّجل TRISB

المستوى : 3 ت ر المدة : ساعة ونصف

الحل النموذجي للفرض المحروس للفصل الدراسي الثاني في مادة التكنولوجيا

ج1: رسم متمن أشغولة تحويل الصناديق الكبيرة (المركز الثالث) من وجهة نظر جزء التحكم. (02 ن)

- ج2: وظيفة التركيب الموضح بالدارة المندمجة NE555 هو التأجيل .(0.5 ن)
 - ج3: العلاقة الحرفية لزمن التأجيل ثم حساب زمن التأجيل اللازم. (0.5 ن)

t = R.C.Ln3

زمن التأجيل اللازم. (01) ن

 $t = 10 \times 10^6 \times 5 \times 10^{-6} \times 1, 1 = 55s$: ξ

ج4 : ارسم المخطط الزمني للتوترين : $V_{
m C}$ و $V_{
m S}$ في المعلم

الثاني بلونين مختلفين. (02 ن)

جة : : إكمال برنامج التحكم في الملامس KM_1 الموجود في وثيقة الإجابة ($\mathbf{03}$)

LIST P= 16F84A #include "p16f84A.inc" _CONFIG H'3FF9' **ORG 0X000** goto init init ORG 5 BSF STATUS, RPO : 1 الانتقال إلى الصفحة MOVLW .0xFF **MOVWF TRISA** جميع منافذ PORTA كمداخل جميع منافذ PORTB كمخارج **CLRF TRISB** BCF STATUS,RP0 الانتقال إلى الصفحة 0: Start BCF PORTB,0 وشيعة الملامس غير مغذاة: Test اختبار القطب RA0 إذا كان RA0 =0. BTFSC PORTA,0

Allum

ة ; BSF ... PORTB,0 ; ة

وشيعة الملامس مغذاة :

GOTO Test

GOTO Allum GOTO Start

END

ج6 : إملاء محتوى السجل TRISB على وثيقة الإجابة (01) ن

0	0	0	0	0	0	0	0
bit7							bit0

ج7: دراسة محول تغذية وشيعة الملامس KM1:

$$m_0 = \frac{U_{20}}{U_1} = \frac{44}{220} = 0.2$$
: حساب نسبة التحويل في الفراغ و عدد لفات الثانوي -1

(
$$\dot{\mathbf{0}}\mathbf{1}$$
) $N_2 = m_0.N_1 = 0.2 \times 520 = 104 spires$

2- تعيين عناصر التصميم المكافىء المرجعة للثانوى:

$$m_0 = rac{I_{1CC}}{I_{2CC}} \Rightarrow I_{2CC} = rac{I_{1CC}}{m_0}$$
 : لدينا $P_{1CC} = R_S.(I_{2CC})^2$: لدينا

(ن 10)
$$\overline{\left[R_S = 0.025\Omega\right]}, \quad R_S = m_0^2 \cdot \frac{P_{1CC}}{\left(I_{1CC}\right)^2} = (0.2)^2 \times \frac{250}{\left(20\right)^2} = 0.025\Omega : \text{ وعليه}$$

(ن 01)
$$Z_S = 0.080\Omega$$
 , $Z_S = m_0^2 \cdot \frac{U_{1CC}}{I_{1CC}} = 0.080\Omega$: أي أن $Z_S = \frac{m_0 \cdot U_{1CC}}{I_{2CC}}$: الممانعة المرجعة للثانوي

(ن 01)
$$X_s = 0.076\Omega$$
 : عددي نجد $X_s = \sqrt{{Z_s}^2 - {R_s}^2}$: ولينا

3- إيجاد توتر الثانوي ثم استنتاج الاستطاعة الفعالة المقدمة للحمولة:

(
$$\dot{\mathbf{0}}\mathbf{1}$$
) $\Delta U_2 = (R_s.\cos\varphi_2 + X_s.\sin\varphi_2)I_2 = 5,50V$: $\Delta U_2 = U_{20} - \Delta U_2$

$$U_2 = 38,5V$$
 : ومنه

(ن 01)
$$P_2 = U_2.I_2.\cos\varphi_2 = 38.5 \times 100 \times 0.9 = 3465W$$
 , $P_2 = 3465W$: الاستطاعة الفعالة المقدمة للحمولة

(ن 01)
$$P_1 = P_2 + P_F + P_J = 3465 + 80 + 250 = 3795W$$
, $P_1 = 3795W$: الاستطاعة الممتصة في الأولى:

\mathbf{M}_2 ج $\mathbf{8}$: دراسة المحرك غير المتزامن ثلاثي الطور

2- حساب الانزلاق:

(ن
$$n_s=rac{f.60}{P}$$
 : حساب سرعة التزامن n_s حيث سرعة التزامن $g=rac{n_s-n}{n_s}$

P	1	2	3
n _s (tr/mn)	3000	1500	1000
n_s (u/IIIII)	3000	1300	1000

من أجل P=1 نجد n_s= 3000 tr/min وعليه

$$g = 2\%$$
 الانزلاق $g = \frac{3000 - 2940}{3000} = 0.02$

$$P_U = T_U \cdot \Omega = T_U(2\pi n) \Rightarrow T_U = \frac{P_U}{2\pi n}$$
: لدينا

 $T_{\rm U} = 1,78~{
m N.m}$: نجد