Groups, Rings and Modules

IB Lent

1 Group Theory

- Automorphism: Isomorphism from a group to itself
- A group G is a permutation group of degree n if $G \leq \operatorname{Sym}(X)$ for some set X with |X| = n

Isomorphism Theorems

• First Isomorphism Theorem: If H and G are groups and $\phi: H \to G$ a homomorphism, then

$$H/\operatorname{Ker} \phi \cong \operatorname{Im} \phi$$

• Second Isomorphism Theorem: If $H \leq G, K \triangleleft G$, then $HK \leq G$, and $H \cap K \triangleleft H$, and

$$\frac{H}{H \cap K} \cong \frac{HK}{K}$$

(Use homomorphism $H \to HK/K$ by $h \mapsto hK$)

• Correspondence Theorem: If $K \triangleleft G$, then there exists bijection between

{subgroups of
$$G$$
 containing K } \leftrightarrow {subgroups of G/K } via $H \mapsto H/K$ $\{g \in G : gK \in S\} \leftarrow S$

This restricts to normal subgroups

• Third Isomorphism Theorem: If $K \leq H \leq G$ and $K \triangleleft G, H \triangleleft G$, then

$$\frac{G/K}{H/K} \cong G/H$$

(Use homomorphism $G/K \to G/H$ by $gK \mapsto gL$)

Simple Groups

A group G is simple iff its only normal subgroups are $\{e\}$ and G

- An abelian group is simple iff it is isomorphic to C_p , some prime p (Only if: any non-trivial g generates the whole group, so cyclic; not prime order \implies have proper subgroup)
- If G is a finite group, then it has a composition series:

$$1 \triangleleft G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G,$$

with each quotient group G_n/G_{n-1} simple.

(Use correspondence theorem and induction)

Group Action

- An action of G on set X gives a permutation representation $\phi: G \to \operatorname{Sym}(X)$
- Examples:
 - -G acts on itself/collection of cosets G/H by multiplication
 - Acts on itself/any normal subgroup by conjugation
 - -G act on Sub(G), the set of its subgroups by conjugation

$$g * H = gHg^{-1}$$

Stabiliser = $N_G(H) = \{g \in G : gHg^{-1} = H\}$, the normaliser of H in G

 $N_G(H)$ is the largest subgroup of G containing H as a normal subgroup

• If G is a non-abelian simple group, and $H \leq G$ of index n > 1. Then $n \geq 5$ and G is isomorphic to a subgroup of A_n

(G acts on G/H by left mult, get injective hom $\Longrightarrow G \leq S_n$; $G \cap A_n \triangleleft G$, but $G \cap A_n = \{e\} \Longrightarrow |G| = 2$, abelian)

Alternating Groups

Conjugacy class of g splits from S_n to A_n iff \exists odd permutation that commutes with g

- A_n is simple for $n \ge 5$
 - A_n is generated by 3-cycles (3-cycles generate double transpositions, which generate A_n)
 - All 3-cycles are conjugate in A_n
 - Any non-trivial $N \triangleleft A_n$ contains a 3-cycle (consider cases)

p-groups

For a prime p, a finite group G is a p-group if $|G| = p^n$, some $n \in \mathbb{N}$

- p-groups have $Z \neq \{e\}$ (proof by counting)
- only simple p-group is C_p
- If G is a p-group of order p^n , then G has a subgroup of order p^r for $r = 0, 1, \ldots n$ (composition series)
- If G/Z(G) is cyclic, then G is abelian (all elements have the form $g^{i}z$)

Sylow Theorems

Let G be a finite group of order $p^a m$, where p is a prime and $p \nmid m$. Then

- 1. $\mathrm{Syl}_p(G)=\{P\leq G:|P|=p^a\}$ is non-empty, i.e. there exists a Sylow p-subgroup
- 2. All elements of $Syl_p(G)$ are conjugate
- 3. The number of Sylow p-subgroups $n_p = |Syl_p(G)|$ satisfies

$$n_p \equiv 1 \pmod{p}$$
, and $n_p \mid |G| \implies n_p \mid m$

Matrix Groups

Over a field F, e.g. $\mathbb{C}, \mathbb{Z}/p\mathbb{Z}$, can have $GL_n(F)$, $SL_n(F)$, $PSL_n(F) = SL_n(F)/Z \cap SL_n(F)$, where Z = center of $GL_n(F) =$ scalar matrices

Abelian Groups

- Decomposition: Every finite abelian group is isomorphic to product of cyclic groups (proof later in course)
- If m and n are coprime, then $C_n \times C_m \cong C_{mn}$
- If G is a finite abelian group, then $G \cong C_{p_1^{\alpha_1}} \times C_{p_2^{\alpha_2}} \times \dots C_{p_k^{\alpha_k}}$, where p_i are prime, not necessarily distinct OR $G \cong C_{d_1} \times C_{d_2} \times \dots C_{d_t}$, with $d_1 \mid d_2 \mid \dots \mid d_t$

2 Ring Theory

• Definition:

A ring is a triple $(R, +, \cdot)$, two binary operations (need to check closure), with axioms:

- -(R,+) is an abelian group with identity 0
- Multiplication is associative, and has identity 1
- Distributivity: $(x+y) \cdot z = x \cdot z + y \cdot z$, $x \cdot (y+z) = x \cdot y + x \cdot z$
- R is commutative if multiplication is commutative (addition automatically is)
 (All rings in GRM are commutative)
- Subring: $S \subseteq R$ is a subring (written $S \leq R$) if $(S, +, \cdot)$ is a ring, (thus must have same identity elements as R)
- An element $r \in R$ is a unit if it has a multiplicative inverse, units form a group under multiplication
- A field is a ring with $0 \neq 1$ and all non-zero elements are units

New rings from old

- Take product of rings, elementwise add/mult
- If R is a ring, X is a set, take the set of all functions $X \to R$ with pointwise operations:

$$(f+g)(x) = f(x) + g(x), \quad (f \cdot g)(x) = f(x) \cdot g(x)$$

• $R[X] = \{(a_0, a_1, \dots) \mid a_i \in R, \text{ finitely many non-zero}\}\$ (Ring of polynomials with coeffs in R)

Operations defined as polynomials: $(a_0, a_1, \dots, a_m, 0, \dots) = a_0 + a_1 X + \dots + a_m X^m$

- Polys are different from functions (esp. in rings like $\mathbb{Z}/p\mathbb{Z}$)
- Degree of polynomial (a_0, a_1, \dots) : largest m s.t. $a_m \neq 0$
- Monic polynomial: degree m and $a_m = 1$
- Division algorithm, induction

Examples:

- $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$
- Gaussian Integers = $\mathbb{Z}[i] = \{a + bi \mid a, b, \in \mathbb{Z}\}$
- $R[X_1,...X_n] = \{\text{polys in } X_1,...,X_n \text{ with coefficients in } R\}$
- Power series R[[X]] (convergence not an issue)
- Laurent polynomials $R[X, X^{-1}]$
- Zero ring: $\{0\}$, the only ring where 0=1

Ideals, Quotients

- Ring homomorphism: $\phi: R \to S$ is a ring homomorphism if $\forall x, y \in R$
 - $-\phi(x+y) = \phi(x) + \phi(y)$
 - $-\phi(xy) = \phi(x)\phi(y)$

$$- \phi(1_R) = 1_S$$

(preserves structure of both + and \cdot , need to specify image of 1 since elements need not have multiplicative inverse)

- Isomorphism = bijective homomorphism
- $\ker \phi = \{r \in R \mid \phi(r) = 0\}$
- $I \subseteq R$ is an ideal $(I \triangleleft R)$ if
 - (Additive closure) I is a (normal, as addition must be commutative) subgroup of (R, +)
 - (Strong closure) If $r \in R$ and $x \in I$, then $rx \in I$
- An ideal I is a proper ideal if $I \neq R$ (I must not contain any unit) (In particular does not contain 1, so proper ideals are not subrings)
- If $\phi: R \to S$ is a homomorphism, then $\ker \phi \triangleleft R$
- Ideal generated by $a_1, a_2, \dots a_n$:

$$(a_1, a_2, \dots, a_n) = \{a_1r_1 + a_2r_2 + \dots + a_nr_n \mid r_i \in R\}$$

In particular, $(a) = aR = \{ar \mid r \in R\}$

- An ideal I is principal if I = (a) for some a
- Quotient ring: If $I \triangleleft R$, then the set R/I of additive cosets of I form the quotient ring with operations:

$$(r_1 + I) + (r_2 + I) = r_1 + r_2 + I$$

 $(r_1 + I) \cdot (r_2 + I) = r_1 r_2 + I$

- I is an ideal \iff I is a kernel of some homomorphism/quotient map
- There exist unique ring homomorphism $\phi: \mathbb{Z} \to R$:

$$1 \mapsto 1_R, \quad \pm n \mapsto \pm (\underbrace{1_R + \dots + 1_R}_n)$$

 $\ker \phi = n\mathbb{Z}$ for some $n = \operatorname{char} R \geq 0$, the characteristic of R (If $\operatorname{char} R > 0$, it is the order of 1_R in (R, +); otherwise 1_R has infinite order)

Isomorphism Theorems

• First Isomorphism Theorem: If $\phi: R \to S$ is a ring homomorphism, then

$$R/\operatorname{Ker} \phi \cong \operatorname{Im} \phi \leq S$$

• Second Isomorphism Theorem: Let $R \leq S, J \triangleleft S$, then $R \cap J \triangleleft R$, and $R + J \leq S$, and

$$\frac{R}{R\cap J}\cong \frac{R+J}{J}$$

• Correspondence Theorem: If $I \triangleleft R$, then there exists bijection between

• Third Isomorphism Theorem: If $I \triangleleft R, J \triangleleft R$ and $I \subseteq J$, then $J/I \triangleleft R/I$ and

$$\frac{R/I}{J/I} \cong R/J$$

Integral domain, maximal, prime ideals

- R (non-zero) is an integral domain if $\forall a, b \in R : ab = 0 \implies a = 0$ or b = 0 i.e. no zero divisors ($a \neq 0$ is a zerodivisor if $\exists b \neq 0$ s.t. ab = 0)
- Finite integral domains are fields; all fields are integral domains
- R integral domain $\implies R[X]$ integral domain (polys with coeff in R)
- At most deg(f) many roots
- Any finite subgroup of the multiplicative group of a field is cyclic
- If R integral domain, there exists F field of fractions s.t.

1.
$$R \leq F$$

2. Every element of F may be written as ab^{-1} , for $a, b \in R$, $b \neq 0$ (b^{-1}) is multiplicative inverse in F)

(via equivalence classes)

Look at rings only through its ideals:

- R a field \iff only ideals are $\{0\}$ and R
- Maximal Ideal: $I \triangleleft R$ is maximal if for all ideal J with $I \leq J \leq R$, then J = I or J = R (no proper ideal strictly bigger R)
- $I \triangleleft R$ maximal $\iff R/I$ a field
- Prime Ideal: $I \triangleleft R$ is prime if $I \neq R$ and

$$\forall a, b, \in R : ab \in I \implies a \in I \text{ or } b \in I$$

- $I \triangleleft R$ prime $\iff R/I$ an integral domain
- \bullet Maximal ideal \implies prime
- R integral domain, then $\operatorname{char} R = 0$ or prime number

Factorisation in rings

- Unit, divides, associates, irreducible (factorisation must contain a unit), prime $(p \mid ab \implies p \mid a \text{ or } p \mid b)$ elements (also non-zero and not unit)
- (r) prime ideal \iff r prime or r = 0
- \bullet Prime \Longrightarrow irreducible, converse false
- Principal Ideal Domain: every ideal is principal
- (r) maximal $\implies r \in R$ is irreducible, converse holds if R is a PID
- Euclidean Domain (ED): there exists Euclidean function:

$$\phi: R \setminus \{0\} \to \mathbb{Z}_{>0}$$

s.t.

- (i) $a \mid b \implies \phi(a) < \phi(b)$
- (ii) If $a, b \in R$ and $b \neq 0$, then $\exists q, r \in R$ with a = qb + r and either r = 0 or $\phi(r) < \phi(b)$