STA 522, Spring 2022 Introduction to Theoretical Statistics II

Lecture 3

Department of Biostatistics University at Buffalo

AGENDA

- Sufficient Statistics
- ► Joint Sufficient Statistics
- ► Minimal Sufficient Statistics

Review: Sufficiency

- A statistic $T(\underline{x})$ is a **sufficient statistic** for a parameter θ if the conditional distribution of the sample \underline{X} given that $T(\underline{x}) = t$ does not depend on θ .
- ▶ Checking sufficiency: $T(\underline{x})$ is a sufficient statistic for θ if, for every \underline{x} in the sample space, the ratio $\frac{p(\underline{x} \mid \theta)}{q(T(\underline{x}) \mid \theta)}$ is constant as a function of θ . Here $p(\underline{x} \mid \theta) = \text{joint pdf/pmf of } \underline{X} \text{ and } q(t \mid \theta) = \text{pdf/pmf of } T(\underline{x})$.
- **Example:** Let X_1, X_2, \ldots, X_n be iid Bernoulli random variables with parameter θ , $0 < \theta < 1$. Then $T(\underline{x}) = \sum_{i=1}^{n} X_i$ is sufficient for θ .

Example (sufficient order statistics). Let $X_1, X_2, ..., X_n$ be iid from a distribution with pdf f(x), where we are unable to specify any more information about the pdf (as is the case in nonparametric estimation). Then the order statistics are a sufficient statistic.

To verify this, first let θ be the vector of all parameters in the density f and define $T(\underline{x}) = (X_{(1)}, \dots, X_{(n)})$ where $X_{(i)}$ are the order statistics.

Then
$$p(\underline{x} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta) = \prod_{i=1}^{n} f(x_{(i)} \mid \theta)$$
 and $q(T(\underline{x}) \mid \theta) = n! \prod_{i=1}^{n} f(x_{(i)} \mid \theta)$, which means $\frac{p(\underline{x} \mid \theta)}{q(T(\underline{x}) \mid \theta)} = \frac{1}{n!}$.

Notes

- ► this is not much of a reduction, but we shouldn't expect more with so little information about the density
- for specific specific parametric densities substantial reduction is possible.

How to find sufficient statistics?

- ► The previous theorem allows one to check if a statistic is sufficient, but doesn't say how to find a sufficient statistic (requires guesswork).
- ▶ The following theorem provides *one way* to find a sufficient statistic. The following form is due to Halmos and Savage (1949), but the original idea can be traced back to Neyman and Fisher (1930-39).

Theorem 6.2.6 (Factorization Theorem)

Let $f(\underline{x} \mid \theta)$ denote the joint pdf or pmf of a sample \underline{X} . A statistic $T(\underline{x})$ is a sufficient statistic for θ if and only if there exist functions $g(t \mid \theta)$ and $h(\underline{x})$ such that, for all sample points \underline{x} and all parameter points θ ,

$$f(\underline{x} \mid \theta) = g(T(\underline{x}) \mid \theta) \cdot h(\underline{x}).$$

Notes

- 1. Thus the Factorization Theorem says that to find a sufficient statistic we first factor f into g.h, where (i) h is free of θ , and (ii) g depends on θ and on \underline{x} only through some function $T(\underline{x})$. This function is a sufficient statistic for θ .
- 2. $h(\underline{x})$ can be 1 in some situations.

Example: Let X_1, X_2, \ldots, X_n be iid Bernoulli random variables with parameter θ , $0 < \theta < 1$. We know that $T(\underline{X}) = \sum_{i=1}^{n} X_i$ is sufficient for θ .

To obtain this through the Factorization Theorem, note that for $x_i \in \{0,1\}, i = 1, \dots, n$,

$$f(\underline{x} \mid \theta) = \prod_{i=1}^{n} \left\{ \theta^{x_i} \left(1 - \theta \right)^{1 - x_i} \right\}$$
$$= \theta^{\sum_{i=1}^{n} x_i} \left(1 - \theta \right)^{n - \sum_{i=1}^{n} x_i} = g(T(\underline{x}) \mid \theta) \ h(\underline{x})$$

where $h(\underline{x}) = 1$, $T(\underline{x}) = \sum_{i=1}^{n} x_i$, and $g(t \mid \theta) = \theta^t (1 - \theta)^{n-t}$.

Example: Let X_1, X_2, \ldots, X_n be iid Weibull (γ, β) with common pdf $f(x \mid \beta) = \frac{\gamma}{\beta} x^{\gamma-1} e^{-x^{\gamma}/\beta}$ for x > 0 where $\gamma > 0$ is known and $\beta > 0$ is unknown.

To find a sufficient statistic for β , write for \underline{x} with $x_i > 0$, all i,

$$f(\underline{x} \mid \beta) = \prod_{i=1}^{n} \left\{ \frac{\gamma}{\beta} x_{i}^{\gamma-1} e^{-x_{i}^{\gamma}/\beta} \right\}$$
$$= \left(\frac{1}{\beta^{n}} e^{-\frac{1}{\beta} \sum_{i=1}^{n} x_{i}^{\gamma}} \right) \left(\prod_{i=1}^{n} \gamma x_{i}^{\gamma-1} \right) = g(T(\underline{x}) \mid \beta) h(\underline{x})$$

where
$$h(\underline{x}) = \prod_{i=1}^{n} \gamma \ x_i^{\gamma-1}$$
, $T(\underline{x}) = \sum_{i=1}^{n} x_i^{\gamma}$, and $g(t \mid \beta) = \frac{1}{\beta^n} \ e^{-t/\beta}$.

Therefore, from the Factorization Theorem it follows that $T(\underline{X}) = \sum_{i=1}^{n} X_i^{\gamma}$ is sufficient for β .

Note

If the support of f involves θ , then we must appropriately define h and g to ensure that the product is 0 where f is 0.

Example: Let X_1, X_2, \ldots, X_n be iid Discrete-Uniform $(1, \ldots, \theta)$, where θ is a positive integer. To find a sufficient statistic for θ , write

$$f(\underline{x} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

$$= \prod_{i=1}^{n} \left\{ \frac{1}{\theta} I(x_i \in \{1, \dots, \theta\}) \right\}$$

$$= \frac{1}{\theta^n} I\left(\max_{1 \le i \le n} x_i \le \theta \right)$$

$$= g(T(\underline{x}) \mid \theta) h(\underline{x})$$

where $h(\underline{x}) = 1$, $T(\underline{x}) = \max_{1 \le i \le n} x_i$, and $g(t \mid \theta) = \frac{1}{\theta^n} I(t \le \theta)$.

Example: Let X_1, X_2, \ldots, X_n be iid $N(\mu, \sigma^2)$ random variables, where σ^2 is known. We want a sufficient statistic for μ .

The joint pdf of X is given by:

$$f(\underline{x} \mid \mu) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{1}{2\sigma^2} \left\{\sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2\right\}\right)$$

$$= \underbrace{\exp\left(-\frac{n}{2\sigma^2}(\overline{x} - \mu)^2\right)}_{=g(T(\underline{x})|\mu)} \underbrace{\left[\left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2\right)\right]}_{=h(x)}$$

This means that $T(\underline{X}) = \overline{X}$ is sufficient for μ .

Proof of Theorem 6.2.6 (Factorization Theorem)

We'll prove this only for discrete cases.

Only if Part: Let $T(\underline{x})$ be a sufficient statistic for θ . Choose

$$g(t \mid \theta) = P_{\theta} \left(T(\underline{X}) = t \right) \text{ and } h(\underline{x}) = P \left(\underline{X} = \underline{x} \mid T(\underline{X}) = T(\underline{x}) \right).$$

Since $T(\underline{X})$ is sufficient, the conditional probability $P(\underline{X} = \underline{x} \mid T(\underline{X}) = T(\underline{x}))$ doesn't depend on θ (definition), and so this choice of h is legitimate.

Therefore

$$f(\underline{x} \mid \theta) = P_{\theta}(\underline{X} = \underline{x})$$

$$= P_{\theta}(\underline{X} = \underline{x} \text{ and } T(\underline{X}) = T(\underline{x}))$$

$$= P_{\theta}(T(\underline{X}) = T(\underline{x})) P(\underline{X} = \underline{x} \mid T(\underline{X}) = T(\underline{x}))$$

$$= g(T(\underline{x}) \mid \theta) h(\underline{x})$$

i.e., factorization holds.

If part: Suppose factorization holds.

Let $q(t \mid \theta)$ be the pmf of $T(\underline{X})$. Define $A_{T(\underline{x})} = \{\underline{y} : T(\underline{y}) = T(\underline{x})\}.$

Then

$$\frac{f(\underline{x} \mid \theta)}{q(T(\underline{X}) \mid \theta)} = \frac{g(T(\underline{x}) \mid \theta) \ h(\underline{x})}{q(T(\underline{X}) \mid \theta)}$$

$$= \frac{g(T(\underline{x}) \mid \theta) \ h(\underline{x})}{\sum_{\underline{y} \in A_T} g(T(\underline{y}) \mid \theta) \ h(\underline{y})}$$

$$= \frac{g(T(\underline{x}) \mid \theta) \ h(\underline{x})}{g(T(\underline{x}) \mid \theta) \ \sum_{\underline{y} \in A_T} h(\underline{y})}$$

$$= \frac{h(\underline{x})}{\sum_{\underline{y} \in A_T} h(\underline{y})}$$

is free of θ .

Therefore, $T(\underline{X})$ is sufficient for θ .

Joint Sufficiency

Definition: Let X_1, X_2, \ldots, X_n be a random sample from the density $f(x \mid \theta)$. The statistics $T_1(\underline{X}), \ldots, T_r(\underline{X})$ are **jointly sufficient for** θ if and only if the conditional distribution of X_1, X_2, \ldots, X_n given $T_1(\underline{X}) = t_1, \ldots, T_r(\underline{X}) = t_r$ does not depend on θ .

Notes

- A set of jointly sufficient statistics may also be referred to as a vector-valued sufficient statistic.
- The sample itself, X_1, X_2, \ldots, X_n , is always jointly sufficient since the conditional distribution of the sample given the sample does not depend on θ . Also, as seen in a previous example, the order statistics are jointly sufficient as well.
- The Factorization Theorem can still be used to find jointly sufficient statistics.

Example: Let X_1, X_2, \ldots, X_n be iid Uniform $(\theta - \frac{1}{2}, \theta + \frac{1}{2})$. We want a sufficient statistic for θ .

$$f(\underline{x} \mid \theta) = \prod_{i=1}^{n} \left\{ I\left(\theta - \frac{1}{2} < x_i < \theta + \frac{1}{2}\right) \right\}$$
$$= I\left(\theta - \frac{1}{2} < x_{(1)} < x_{(n)} < \theta + \frac{1}{2}\right)$$
$$= g(T_1(\underline{x}), T_2(\underline{x}) \mid \theta) \ h(\underline{x})$$

where $T_1(\underline{x}) = x_{(1)}$, $T_2(\underline{x}) = x_{(n)}$, and $h(\underline{x}) = 1$. This shows that $(T_1, T_2) = (X_{(1)}, X_{(n)})$ are jointly sufficient for θ .

Notes

- It is likely that a set of jointly sufficient statistics $(T_1(\underline{X}), \dots, T_r(\underline{X}))$ is needed when the parameter is also a vector, say $\theta = (\theta_1, \dots, \theta_s)$.
- ▶ Usually the sufficient statistic and the parameter vectors are of equal lengths (r = s), but different combinations of lengths are possible.

Example (Contd.): Suppose that $X_1, X_2, ..., X_n$ are iid $N(\mu, \sigma^2)$ with both μ and σ^2 unknown. Then

both
$$\mu$$
 and σ^2 unknown. Then
$$f(\underline{x} \mid \mu, \sigma^2) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$
$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\frac{1}{\sigma^2}\right)^{n/2} \exp\left(-\frac{1}{2\sigma^2} \left\{\sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2\right\}\right)$$

$$=\underbrace{\left(\frac{1}{\sigma^2}\right)^{n/2}\exp\left(-\frac{1}{2\sigma^2}\left\{(n-1)s^2+n(\overline{x}-\mu)^2\right\}\right)}_{=g(T_1(\underline{x}),T_2(\underline{x})|\mu,\sigma^2)}\underbrace{\left(\frac{1}{\sqrt{2\pi}}\right)^n}_{=h(\underline{x})}$$

where $T_1(\underline{x}) = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ and $T_2(\underline{x}) = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$. This shows that (\overline{X}, S^2) are jointly sufficient for (μ, σ^2) .

Example (Sufficient Statistic for Exponential Family): Let

 X_1, X_2, \dots, X_n be iid observations from a pdf/pmf $f(x \mid \theta)$ that belongs to an exponential family given by

$$f(x \mid \boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right),$$

where $\theta = (\theta_1, \dots, \theta_d)$ and $d \leq k$.

Then

$$T(\underline{X}) = \left(\sum_{j=1}^n t_1(X_j), \dots, \sum_{j=1}^n t_k(X_j)\right)$$

is a sufficient statistic for θ .

Proof: Homework (Exercise 6.4).

Sufficient Statistics are NOT unique

Theorem (Invariance of Sufficient Statistic)

Suppose $T(\underline{X})$ is sufficient for a parameter θ , and let u be a one-to-one function. Then $T^*(\underline{X}) = u(T(\underline{X}))$ is also sufficient for θ .

Remarks:

- Based on the Invariance Principle, we see that one-to-one functions of sufficient statistics are also sufficient.
- Note that the sample itself, i.e., $T(\underline{X}) = \underline{X}$, is a sufficient statistic. So are the order statistics $T'(\underline{X}) = (X_{(1)}, \dots, X_{(n)})$.
- Question: Is one sufficient statistic better than another?
- Recall that the purpose of sufficient statistics is to achieve data reduction without loss of information about the parameter θ .
- A statistic that achieves the most data reduction while still retaining all the information about θ might be preferable.

Minimal Sufficient Statistic

Definition: A sufficient statistic $T(\underline{X})$ is called a **minimal sufficient statistic** if, for any other sufficient statistic $T'(\underline{X})$, $T(\underline{x})$ is a function of $T'(\underline{x})$, i.e., whenever $T'(\underline{x}) = T'(\underline{y})$, then $T(\underline{x}) = T(\underline{y})$.

Among all sufficient statistics, a minimal sufficient statistic achieves the greatest possible data reduction.

Example: Suppose that X_1, X_2, \dots, X_n are iid $N(\mu, \sigma^2)$, with σ known.

We have seen that $T(\underline{X}) = \overline{X}$ is sufficient for μ .

We can also show that the statistic $T'(\underline{X}) = (\overline{X}, S^2)$ is sufficient for μ .

Since both $T(\underline{X})$ and $T'(\underline{X})$ are sufficient for μ , they each contain the same information about μ . But clearly $T(\underline{X})$ achieves greater data reduction than $T'(\underline{X})$.

If σ were unknown, however, things would be different.

Results on Minimal Sufficiency

Theorem 6.2.13 (Checking for Minimal Sufficiency)

Let $f(\underline{x} \mid \theta)$ be the pdf/pmf of a sample \underline{X} . Suppose there exists a function $T(\underline{X})$ such that, for every \underline{x} and y, the ratio

$$\frac{f(\underline{x} \mid \theta)}{f(\underline{y} \mid \theta)}$$

is constant as a function of θ if and only if $T(\underline{x}) = T(\underline{y})$. Then $T(\underline{X})$ is a minimal sufficient statistic for θ .

Invariance Theorem (Establishes non uniqueness)

Suppose $T(\mathbf{X})$ is a minimal sufficient statistic for a parameter θ , and let u be a one-to-one function. Then $T^*(\mathbf{X}) = u(T(\mathbf{X}))$ is also a minimal sufficient statistic for θ .

Example:
$$\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$$
 is a minimal sufficient statistic for (μ, σ^{2}) .

Example (Contd.): Let $X_1, X_2, ..., X_n$ be iid $\mathbb{N}(\mu, \sigma^2)$, with both μ and σ^2 unknown. Given a sample \underline{X} we saw that (\overline{X}, S^2) is sufficient for (μ, σ^2) .

To show that (\overline{X}, S^2) is minimal sufficient, consider two sample points \underline{x} and \underline{y} with sample mean and variances (\overline{x}, s_x^2) and (\overline{x}, s_x^2) respectively. Then

$$\begin{split} \frac{f(\underline{x} \mid \mu, \sigma^2)}{f(\underline{y} \mid \mu, \sigma^2)} &= \frac{(2\pi\sigma^2)^{-n/2} \exp\left(-[n(\overline{x} - \mu)^2 + (n-1)s_x^2]/(2\sigma^2)\right)}{(2\pi\sigma^2)^{-n/2} \exp\left(-[n(\overline{y} - \mu)^2 + (n-1)s_y^2]/(2\sigma^2)\right)} \\ &= \exp\left([-n(\overline{x}^2 - \overline{y}^2) + 2n\mu(\overline{x} - \overline{y}) - (n-1)(s_x^2 - s_y^2)]/(2\sigma^2)\right) \end{split}$$

is constant as a function of (μ, σ^2) if and only if $\overline{x} = \overline{y}$ and $s_x^2 = s_y^2$.

This shows, from the previous theorem, that (\overline{X}, S^2) is minimal sufficient.

Example (Contd.): Let $X_1, X_2, ..., X_n$ be iid Uniform $(\theta - \frac{1}{2}, \theta + \frac{1}{2})$.

We saw that $(X_{(1)}, X_{(n)})$ are jointly sufficient for θ . To see if they are minimal sufficient, consider two sample points \underline{x} and \underline{y} , and obtain $(x_{(1)}, x_{(n)})$ and $(y_{(1)}, y_{(n)})$. Then

$$\frac{f(\underline{x} \mid \theta)}{f(\underline{y} \mid \theta)} = \frac{I(\theta - \frac{1}{2} < x_{(1)} < x_{(n)} < \theta + \frac{1}{2})}{I(\theta - \frac{1}{2} < y_{(1)} < y_{(n)} < \theta + \frac{1}{2})}$$
$$= \frac{I(x_{(n)} - \frac{1}{2} < \theta < x_{(1)} + \frac{1}{2})}{I(y_{(n)} - \frac{1}{2} < \theta < y_{(1)} + \frac{1}{2})}$$

The numerator and the denominator of this ratio are both one if and only if $x_{(1)} = y_{(1)}$ and $x_{(n)} = y_{(n)}$.

Therefore, $(X_{(1)}, X_{(n)})$ is minimal sufficient for θ .

Example: Let X_1, X_2, \ldots, X_n be iid beta (α, β) . Show that

$$\left(\sum_{i=1}^{n} \log X_{i}, \sum_{i=1}^{n} \log (1-X_{i})\right)$$
 is a minimal sufficient statistic for (α, β) .

$$f(\underline{x} \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \prod_{i=1}^{n} \left\{ x_i^{\alpha - 1} (1 - x_i)^{\beta - 1} \right\}$$

$$\Gamma(\alpha + \beta) \qquad \qquad \Gamma(\alpha + \beta) \qquad \qquad \Gamma(\alpha$$

 $= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \exp \left[(\alpha - 1) \sum_{i=1}^{n} \log x_{i} + (\beta - 1) \sum_{i=1}^{n} \log(1 - x_{i}) \right]$

$$f(\underline{x} \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)} \prod_{i=1} \left\{ x_i^{\alpha - 1} (1 - x_i)^{\beta - 1} \right\}$$

$$\Gamma(\alpha + \beta)$$

Now show minimal sufficiency:

$$\frac{f(\underline{x} \mid \alpha, \beta)}{f(\underline{y} \mid \alpha, \beta)} = \frac{\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \exp\left[(\alpha - 1) \sum_{i=1}^{n} \log x_i + (\beta - 1) \sum_{i=1}^{n} \log(1 - x_i)\right]}{\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \exp\left[(\alpha - 1) \sum_{i=1}^{n} \log y_i + (\beta - 1) \sum_{i=1}^{n} \log(1 - y_i)\right]}$$

$$= \exp \left[(\alpha - 1) \sum_{i=1}^{n} \log y_i + (\beta - 1) \sum_{i=1}^{n} \log y_i \right]$$

$$= \exp \left[(\alpha - 1) \left(\sum_{i=1}^{n} \log x_i - \sum_{i=1}^{n} \log y_i \right) \right]$$

$$= \exp\left[\left(\alpha - 1\right) \left(\sum_{i=1}^{n} \log x_i - \sum_{i=1}^{n} \log y_i\right) + (\beta - 1) \left(\sum_{i=1}^{n} \log(1 - x_i) - \sum_{i=1}^{n} \log(1 - y_i)\right)\right].$$

This is constant in
$$(\alpha, \beta)$$
 if and only if $\sum_{i=1}^{n} \log x_i = \sum_{i=1}^{n} \log y_i$ and $\sum_{i=1}^{n} \log(1-x_i) = \sum_{i=1}^{n} \log(1-y_i)$.

 $\sum_{i=1}^{n} \log(1-x_i) = \sum_{i=1}^{n} \log(1-y_i)$