Documentation for Developers

Harper Grimsley

September 9, 2019

Tensor Conventions

Both the gradient and trial vectors are considered in terms of dictionaries of "blocks" following spinintegration, with redundancy coming only from the antisymmetry condition. Each four-tensor and two-tensor "block" B will have

$$|\psi_{ij}^{ab}\rangle \to B_{ijab}$$

and

$$|\psi_i^a\rangle \to B_{ia}$$

respectively. The overall structure of a vector will look like:

$$\begin{pmatrix} S_{\alpha} \\ S_{\beta} \\ D_{\alpha\alpha} \\ D_{\alpha\beta} \\ D_{\beta\alpha} \\ D_{\beta\beta} \end{pmatrix}$$

where each S is a two-tensor of single excitations, and each D is a four-tensor of double excitations. To avoid ambiguity, double excitations will be mapped as:

$$|\psi_{\alpha\beta}^{\alpha\beta}\rangle \to D_{\alpha\beta}$$

The Hessian is composed of 36 blocks:

$$\hat{\eta} = \begin{pmatrix} S_{\alpha}/S_{\alpha} & S_{\alpha}/S_{\beta} & S_{\alpha}/D_{\alpha\alpha} & S_{\alpha}/D_{\alpha\beta} & S_{\alpha}/D_{\beta\alpha} & S_{\alpha}/D_{\beta\beta} \\ S_{\beta}/S_{\alpha} & S_{\beta}/S_{\beta} & S_{\beta}/D_{\alpha\alpha} & S_{\beta}/D_{\alpha\beta} & S_{\beta}/D_{\beta\alpha} & S_{\beta}/D_{\beta\beta} \\ D_{\alpha\alpha}/S_{\alpha} & D_{\alpha\alpha}/S_{\beta} & D_{\alpha\alpha}/D_{\alpha\alpha} & D_{\alpha\alpha}/D_{\alpha\beta} & D_{\alpha\alpha}/D_{\beta\alpha} & D_{\alpha\alpha}/D_{\beta\beta} \\ D_{\alpha\beta}/S_{\alpha} & D_{\alpha\beta}/S_{\beta} & D_{\alpha\beta}/D_{\alpha\alpha} & D_{\alpha\beta}/D_{\alpha\beta} & D_{\alpha\beta}/D_{\beta\alpha} & D_{\alpha\beta}/D_{\beta\beta} \\ D_{\beta\alpha}/S_{\alpha} & D_{\beta\alpha}/S_{\beta} & D_{\beta\alpha}/D_{\alpha\alpha} & D_{\beta\alpha}/D_{\alpha\beta} & D_{\beta\alpha}/D_{\beta\alpha} & D_{\beta\beta}/D_{\beta\beta} \\ D_{\beta\beta}/S_{\alpha} & D_{\beta\beta}/S_{\beta} & D_{\beta\beta}/D_{\alpha\alpha} & D_{\beta\beta}/D_{\alpha\beta} & D_{\beta\beta}/D_{\beta\alpha} & D_{\beta\beta}/D_{\beta\beta} \end{pmatrix}$$

As an example, consider the S_{α} block of the action, \vec{a} , of $\hat{\eta}$ on a trial vector $\hat{\theta}$.

$$S_{\alpha}^{\vec{a}} = \begin{pmatrix} S_{\alpha}/S_{\alpha} & S_{\alpha}/S_{\beta} & S_{\alpha}/D_{\alpha\alpha} & S_{\alpha}/D_{\alpha\beta} & S_{\alpha}/D_{\beta\alpha} & S_{\alpha}/D_{\beta\beta} \end{pmatrix}^{\hat{\eta}} \begin{pmatrix} S_{\alpha} \\ S_{\beta} \\ D_{\alpha\alpha} \\ D_{\alpha\beta} \\ D_{\beta\alpha} \\ D_{\beta\beta} \end{pmatrix}^{\vec{\theta}}$$

where the dot product operator is spin-integrated tensor contraction instead of multiplication. This arithmetic is easily generalized to vector multiplications. For the sake of explicitness, we consider the

$$D_{\alpha\beta}/S_{\alpha}^{\hat{\eta}} \to S_{\alpha}^{\vec{\theta}} \implies D_{\alpha\beta}^{\vec{a}}$$

contraction, specifically the following contraction:

Note that we place α q-particles on the left and β q-particles on the right to be consistent with the fact that we want to recover part of the $D_{\alpha\beta}$ action from this contraction. This is mostly pedagogical, as it makes it easier to keep track of things like permutations. In general, this contraction looks like would contribute

$$\vec{a}_{ijcb} = \sum_{c} \mathcal{P}_{ij} \left\langle ab || cj \right\rangle \vec{\theta}_{ic}$$

However, we wish to spin-integrate this. First, we note that the exchange contribution will be 0 because a and j are of opposite spins. (As are b and c). Additionally, we know that permuting i and j will lead to the requirement that a β hole line is entering T_1 . Therefore, this term reduces to:

$$\vec{a}_{ijcb} = \sum_{c} \left\langle ab|cj\right\rangle \vec{\theta}_{ic}$$

Note that for consistency, our vector elements are read from diagrams as in-in-out-out.