Lab3 1

Design Specification

- ✓ For a 1/2²⁷ frequenc: Input: rst n, clk
 - Output: clk out
- ✓ Draw the block diagram of the design.

Design Implementation

✓ 輸入的頻率 F 為 100HZ,題目要求做出 $1/2^{27}$ 頻率的除頻器,因此設立一個 counter (cnt[25:0])。假設 clk 的頻率為 F,則 cnt[0]的頻率為 F/2、cnt[1]的頻率為 F/2²、cnt[2]的頻率 為 F/2³......cnt[25]的頻率為 F/2²6、clk_out 的頻率為 F/2²7,即符合題目要求。

clk_out	cnt[25]	cnt[n-1]	cnt[2]	cnt[1]	cnt[0]	clk
0	0		0	0	0	0
0	0	•••	0	0	0	1
0	0	•••	0	0	1	0
0	0	• • •	0	0	1	1
0	0	• • •	0	1	0	0
0	0	• • •	0	1	0	1
0	0	•••	0	1	1	0
0	0	•••	0	1	1	1
0	0	•••	1	0	0	0
0	•••	••••	•••	• • •	• • •	•••
1	0	0	0	0	0	0
$F/2^{27}$	$F/2^{26}$	F/2 ⁿ	F/8	F/4	F/2	F

✓ Logic function

當 rst_n 為下緣或 clk 為上緣時,判斷若 rst_n = 0,則{clk_out, cnt}歸零;否則{clk_out, cnt}加 1

✓ I/O pin

I/O	clk	rst_n	clk_out
VOC	W5	V17	U16

Lab3 2

Design Specification

✓ For a 1/2²⁶ frequenc: Input: rst_n, clk

Output: clk out

✓ Draw the block diagram of the design.

Design Implementation

✓ 輸入的頻率 F 為 100HZ,題目要求做出頻率為 1HZ 的除頻器,約等於 $1/2^{26}$ 的除頻器。因此設立一個 counter (cnt[24:0])。假設 clk 的頻率為 F,則 cnt[0]的頻率為 F/2、cnt[1]的頻率 為 $F/2^2$ 、cnt[2]的頻率為 $F/2^3$ ……cnt[24]的頻率為 $F/2^{25}$ 、clk_out 的頻率為 $F/2^{26}$,即符合題目要求。

clk_out	cnt[24]	cnt[n-1]	cnt[2]	cnt[1]	cnt[0]	clk
0	0		0	0	0	0
0	0	•••	0	0	0	1
0	0		0	0	1	0
0	0	•••	0	0	1	1
0	0	•••	0	1	0	0
0	0	•••	0	1	0	1
0	0	•••	0	1	1	0
0	0	•••	0	1	1	1
0	0		1	0	0	0
0	•••	••••		•••		
1	0	0	0	0	0	0
$F/2^{26}$	$F/2^{25}$	F/2 ⁿ	F/8	F/4	F/2	F

✓ Logic function

當 rst_n 為下緣或 clk 為上緣時,判斷若 rst_n = 0,則{clk_out, cnt}歸零;否則當 cnt 等於 26'd50000000 時,cnt 歸零,clk_out = clk_out';否則{clk_out, cnt}加 $1 \circ$

✓ I/O pin

r o pin			
I/O	clk	rst_n	clk_out
VOC	W5	V17	U16

Lab3 3

Design Specification

✓ I/P

Input: clk, rst_n
Output: t[7:0]
Block diagram

Design Implementation

✓ Truth table

clk	rst	t0	t1	t2	t3	t4	t5	t6	t7	t'0	t'1	t'2	t'3	t'4	t'5	t'6	t'7
X	0	X	X	X	X	X	X	X	X	0	1	0	1	0	1	0	1
1	1	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0
1	1	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

✓ Logic function

將 lab3-2 的 clk out 作為此處的 clk,當 rst n 為下緣或 clk 為上緣時,

$$\begin{split} \text{If rst_n} = 1, \, t[0] &<= t[1]; \\ t[1] &<= t[2]; \\ t[2] &<= t[3]; \\ t[3] &<= t[4]; \\ t[4] &<= t[5]; \\ t[5] &<= t[6]; \\ t[6] &<= t[7]; \\ t[7] &<= t[0]; \\ \text{If rst_n} = 0, \, t = 010101010 \end{split}$$

✓ I/O pin

I/O	t0	t1	t2	t3	t4	t5	t6	t7	clk	rst_n
VOC	U16	E19	U19	V19	W18	U15	U14	V14	W5	V17

Discussion

第一題與第二題基本上原理一樣,但第二題因為是要做 1hz 的除頻器,因此會多了一個判斷 tmp_cnt 等於 26'd50000000 的步驟。兩題皆是透過加法器計算除頻次數,觀察附表可看出其規律。第三題則是結合第二題與 prelab2,將第二題的 clk out 作為 prelab 的 clk。

Conclusion

這次實驗的原理主要著重於除頻器的部分,如果沒搞懂其原理與 flip flop 的用法,會很容易出錯。接上電路板的 clk,其頻率所引起的訊號是有週期的,只是因為過快導致肉眼無法辨識,因此經過除頻後則可以看出其頻率。藉由不同 counter 與條件的搭配,可以做出不同的除頻器。