

AnomalyDAE: Dual Autoencoder for Anomaly Detection on Attributed Networks

Haoyi Fan ¹, Fengbin Zhang ¹, Zuoyong Li ²

Harbin University of Science and Technology ¹
Minjiang University ²
isfanhy@hrbust.edu.cn

Anomaly Detection on the Attributed Network

Different types of anomalies

Structure-inconsistent Attribute-consistent

Structure-consistent Attribute-inconsistent

Structure-inconsistent Attribute-inconsistent

Different neighbors contribute differently for anomaly detection

Challenges:

- The cross-modality interactions between the network structure and node attribute
- Neighbor-attention aware anomaly measuring

Numerous attributed network based anomaly detection methods have been proposed...

LOF Breunig et al. 2000

SCAN Xu et al. 2007

FocusCO Perozzi et al. 2014

AMEN Perozzi et al. 2016

Radar Li et al. 2017

ANOMALOUS Peng et al. 2018

Dominant Ding et al. 2019

•••

- Deep representation learning framework on graph?
- The cross-modality interactions between the network structure and node attribute?

Problem Statement

Problem

Given $G = \{V, \mathcal{E}, X\}$, learn a score function $f: \mathcal{V}_i \mapsto y_i \in \mathbb{R}$, to classify sample x_i based on the threshold λ :

$$y_i = \{ \begin{matrix} 1, & if \ f(\mathbf{V}_i) \ge \lambda, \\ 0, & otherwise. \end{matrix}$$

where y_i denotes the label of sample x_i , with 0 being the normal class and 1 the anomalous class.

Notations

G : Attributed network

 ν : Set of nodes in network.

E : Set of edges in network.

M : Number of nodes.

N: Dimension of attribute.

 $\mathbf{A} \in \mathbb{R}^{M \times M}$: Adjacency matrix

of a network.

 $\mathbf{X} \in \mathbb{R}^{M \times N}$: Attribute matrix of all nodes.

Anomaly DAE

Structure-level and attribute-level anomaly score

Neighbor-attention Mechanism in Structure

Autoencoder

$$\mathbf{Z}^{\boldsymbol{\mathcal{V}}} = \sigma(\mathbf{X}\mathbf{W}^{\boldsymbol{\mathcal{V}}_{(1)}} + \mathbf{b}^{\boldsymbol{\mathcal{V}}_{(1)}})$$

X, A

Importance weights:

$$e_{i,j} = attn\left(\mathbf{Z}_{i}^{\nu}, \mathbf{Z}_{j}^{\nu}\right)$$
$$= \sigma(\mathbf{a}^{\mathrm{T}} \cdot [\mathbf{W}^{\nu_{(2)}} \widetilde{\mathbf{Z}}_{i}^{\nu} || \mathbf{W}^{\nu_{(2)}} \widetilde{\mathbf{Z}}_{j}^{\nu}])$$

Normalization:

$$\gamma_{i,j} = \frac{\exp(e_{i,j})}{\sum_{k \in \mathcal{N}_i} \exp(e_{i,k})}$$

Neighbor-attention aware feature aggregation:

$$\mathbf{Z}_{i}^{\boldsymbol{\mathcal{V}}} = \sum_{k \in \mathcal{N}_{i}} \ \gamma_{i,k} \cdot \widetilde{\mathbf{Z}}_{k}^{\boldsymbol{\mathcal{V}}}$$

Cross-modality Interactions Capturing in Attribute Autoencoder

Loss and Anomaly Score

Loss Function:

$$\mathcal{L}_{rec} = \alpha ||(\mathbf{A} - \mathbf{A}) \odot \boldsymbol{\theta}||_F^2 + (1 - \alpha)||(\mathbf{X} - \mathbf{X}) \odot \boldsymbol{\eta}||_F^2$$

$$\boldsymbol{\theta}_{i,j} = \{ egin{array}{ll} & if \ \mathbf{A}_{i,j} = 0, \\ \boldsymbol{\theta} & otherwise. \end{array}, \boldsymbol{\eta}_{i,j} = \{ egin{array}{ll} & if \ \mathbf{X}_{i,j} = 0, \\ \boldsymbol{\eta} & otherwise. \end{array} \}$$

Anomaly Score:

Score =
$$\alpha ||(\mathbf{A} - \hat{\mathbf{A}}) \odot \boldsymbol{\theta}||_F^2 + (1 - \alpha)||(\mathbf{X} - \hat{\mathbf{X}}) \odot \boldsymbol{\eta}||_F^2$$

Structure-level
Anomaly Measure

Attribute-level Anomaly Measure

Loss and Anomaly Score

Loss Function:

$$\mathcal{L}_{rec} = \alpha ||(\mathbf{A} - \mathbf{A}) \odot \boldsymbol{\theta}||_F^2 + (1 - \alpha)||(\mathbf{X} - \mathbf{X}) \odot \boldsymbol{\eta}||_F^2$$

$$\boldsymbol{\theta}_{i,j} = \{ egin{array}{ll} & if \ \mathbf{A}_{i,j} = 0, \\ \boldsymbol{\theta} & otherwise. \end{array}, \boldsymbol{\eta}_{i,j} = \{ egin{array}{ll} & if \ \mathbf{X}_{i,j} = 0, \\ \boldsymbol{\eta} & otherwise. \end{array} \}$$

Anomaly Score:

$$Score = \alpha ||(\mathbf{A} - \mathbf{A}) \odot \boldsymbol{\theta}||_F^2 + (1 - \alpha)||(\mathbf{X} - \mathbf{X}) \odot \boldsymbol{\eta}||_F^2$$

Solution for Problem:

$$y_i = \begin{cases} 1, & \text{if } f(\mathcal{V}_i) \ge \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

 $\lambda = Distribution(Score)$

Experiment

Datasets

Table 2. Statistics of the used Real-World datasets.

Database	# V	# E	# A	# Anomalies
BlogCatalog	5,196	171,743	8,189	300
Flickr	7,575	239,738	12,047	450
ACM	16,484	71,980	8,337	600

Baselines

LOF Breunig et al. 2000

SCAN <u>Xu et al. 2007</u>

AMEN Perozzi et al. 2016

Radar <u>Li et al. 2017</u>

ANOMALOUS Peng et al. 2018

Dominant Ding et al. 2019

•••

Evaluation Metric

AUC (Area Under a receiver operating characteristic Curve)

Experiment

Results

Table 3. AUC scores of all methods on three datasets.

Method	BlogCatalog	Flickr	ACM
LOF [18]	49.15	48.81	47.38
SCAN [19]	27.27	26.86	35.99
AMEN [8]	53.37	60.47	72.62
Radar [12]	71.04	72.86	69.36
Anomalous [13]	719.68%	22.32%	/ 715.119
Dominant [14]	78.13	74.9	74.94
AnomalyDAE	97.81	97.22	90.05

At least 15.11% ~ 22.32% AUC improvement!

Experiment

Results

(b) Parameter α

Robust and Effective!

Conclusion

- Traditional machine learning based methods perform poor for feature learning on large graph.
- Traditional deep graph model cannot effectively capture the cross-modality interactions between the network structure and node attribute.
- We propose a deep joint representation learning framework via a dual autoencoder to capture the complex cross-modality interactions between the network structure and node attribute.

Reference

- **[LOF]** Breunig, Markus M., et al. "LOF: identifying density-based local outliers." **KDD. 2000**.
- [SCAN] Xu, Xiaowei, et al. "Scan: a structural clustering algorithm for networks." KDD. 2007.
- **[FocusCO]** Perozzi, Bryan, et al. "Focused clustering and outlier detection in large attributed graphs." **KDD. 2014**.
- [AMEN] Perozzi, Bryan, and Leman Akoglu. "Scalable anomaly ranking of attributed neighborhoods." SIAM, 2016.
- [Radar] Li, Jundong, et al. "Radar: Residual Analysis for Anomaly Detection in Attributed Networks." IJCAI. 2017.
- [GAT] Veličković, Petar, et al. "Graph attention networks." ICLR. 2018.
- [ANOMALOUS] Peng, Zhen, et al. "ANOMALOUS: A Joint Modeling Approach for Anomaly Detection on Attributed Networks." IJCAI. 2018.
- [Dominant] Ding, Kaize, et al. "Deep anomaly detection on attributed networks." SIAM, 2019.

Thanks

Thanks for listening!

Contact: <u>isfanhy@hrbust.edu.cn</u>

Home Page: https://haoyfan.github.io/