Universidade do Minho - Dep. to Informática

Licenciatura em Engenharia Informática - 1º Semestre, 2022/2023

COMUNICAÇÕES POR COMPUTADOR

Teste Escrito – 11 janeiro 130 Minutos

PIN: 0344-5090-4000 PASSWORD: 98FBU57838AA

NÚMERO:

NOME:

Instruções

- Não serão discutidas quaisquer dúvidas sobre a matéria ou sobre a forma como deve responder às questões durante a realização do teste. Intervenções consideradas desnecessárias serão penalizadas com dedução de pontos à classificação do teste.
- Este documento é também um enunciado do teste e é também um formulário de *backup* onde deve indicar as suas respostas.
- A correção do teste será feita automaticamente tendo em conta as respostas assinaladas no formulário digital no computador.
- Deve preencher as suas respostas neste documento e também preencher digitalmente as suas respostas no formulário online disponível no computador à sua frente. Se for necessário para iniciar o preenchimento digital, introduza o PIN e a PASSWORD indicados no cabeçalho acima e depois a sua identificação (número de aluno e nome completo).
- O teste está dividido em quatro partes distintas, cada uma valendo 5 valores.
- Cada parte tem 2 questões com 5 afirmações cada. Pede-se, em todas as questões, para se assinalar quais as afirmações que considera verdadeiras e as que considera falsas.
- Pode ignorar as questões que não souber fazer ou as afirmações que não conseguir distinguir como verdadeiras ou falsas.
- As respostas incorretas terão uma cotação que será deduzida ao total da cotação do teste. O montante a deduzir depende da gravidade da incorreção e pode ir de 20% a 80% do valor da afirmação mal assinalada.
- O teste será corrigido de forma automática através das respostas ao formulário digital. Por segurança, deve também preencher este formulário impresso com as mesmas respostas.
- Inclua a sua identificação (número de aluno e nome completo) em todas as folhas.
- Pode usar as páginas em branco deste documento para rascunho. Não serão fornecidas folhas adicionais para rascunho.
- A duração máxima do teste é de 130 minutos. Não será concedido qualquer tempo adicional (exceto a alunos com estatuto NEE) nem será permitida a ida ao WC (exceto a alunos com atestado médico).
- Só poderá sair da sala após 90 minutos ou no final dos 130 minutos.
- Confirme que terminou e enviou a sua resolução digital antes de abandonar a sala.
- No final, deixe este enunciado/formulário na sua secretária/mesa.

NÚMERO:	
NOME:	

PARTE I – Protocolos de Transporte na Internet

1. Analise as seguintes afirmações genéricas sobre protocolos de transporte e indique (com **X**) se as considera verdadeiras (*true*) ou se as considera falsas (*false*). Se não souber não indique qualquer uma das hipóteses.

	V/T	F			
1.a)		X	Apenas os protocolos de transporte orientados à conexão (como o Transmission		
			Control Protocol – TCP) é que permitem a multiplexagem e desmultiplexagem de		
			aplicações distribuídas na Internet.		
1.b)	X		Num socket UDP (User Datagram Protocol) ativo num host é possível receber		
			datagramas de vários outros sockets UDP ativos noutros hosts porque os sockets UDP		
			não são orientados à conexão e são assíncronos.		
1.c)		X	Em aplicações distribuídas de tempo real (em que a informação tem de estar		
			disponível no destino quase ao mesmo tempo em que é gerada na origem) deve usar-		
			se sempre o protocolo TCP porque é fiável, ao contrário do UDP.		
1.d)	X		Uma aplicação Internet, mesmo usando o protocolo de transporte TCP, pode		
			implementar mecanismos adicionais de controlo de fluxo da informação aplicacional		
			e introduzir mecanismos de segurança não presentes no TCP.		
1.e)	X		Tanto no TCP como no UDP existe sempre um número limitado de sockets que podem		
			estar ativos num <i>host</i> .		

2. Considere o esquema da interação protocolar duma conexão TCP entre dois *hosts* (que estão em redes IP diferentes) da Figura 1. Este esquema foi deduzido através da análise dos segmentos TCP que foram observados a circular nas redes locais respetivas, ou seja, é possível garantir que os segmentos apresentados saíram dos respetivos *hosts* de origem, mas não é possível garantir que tenham chegado ao destino. Indique (com X) se as afirmações seguintes lhe parecem verdadeiras (*true*) ou falsas (*false*). Se não souber não indique qualquer uma das hipóteses.

	V/T	F			
2.a)		X	O host B não aceitou os valores dos parâmetros de funcionamento da conexão		
			(tamanho de janela e tamanho máximo de segmento) e propôs, em alternativa, novos		
			valores para esses parâmetros que foram aceites pelo host A.		
2.b)	X		No segmento TCP(9), enviado pelo host A para o host B, o valor do número de		
			sequência (sequence number) XXX deve ser igual a 401 e o valor do número de		
			confirmação (acknowledgment number) YYY deve ser igual a 51.		
2.c)		X	Analisando a interação protocolar podemos concluir que o valor de timeout (tempo		
			em que o <i>host</i> emissor espera pela confirmação de receção do <i>host</i> destinatário) usado		
			pelo host A é superior a 60 ms.		
2.d)	X		A quantidade total de dados aplicacionais enviados pelo host A foi de 1600 bytes,		
			mas a quantidade útil recebida pelo host B foi de 1400 bytes.		
2.e)	X		Pela análise da interação protocolar podemos concluir que, pelo menos na direção da		
			comunicação do host A para o host B, é utilizado o mecanismo de controlo de		
			congestão do TCP denominado de slow start.		

Notas:

WIN=tamanho de janela, MSS=tamanho máximo de segmento.

Só são apresentados os campos/flags relevantes ou que não se alteram de segmento para segmento enviado pelo mesmo host.

Figura 1: Interação protocolar TCP no exercício 2.

NÚMERO:	
NOME:	

PARTE II – Serviço DNS na Internet

3. Analise as seguintes afirmações genéricas sobre o serviço de resolução de nomes da Internet (*Domain Name Resolution* – DNS) e indique (com **X**) se as considera verdadeiras (*true*) ou se as considera falsas (*false*). Se não souber não indique qualquer uma das hipóteses.

	V/T	F			
3.a)	X		O serviço DNS da Internet é distribuído e assíncrono, sendo possível a implementação		
			de servidores resolver (SR) com sistemas de cache em qualquer elemento duma rede		
			IP, em módulos aplicacionais (<i>browsers</i> , por exemplo) ou sistemas operativos.		
3.b)		X	A organização hierárquica dos domínios de DNS está intimamente relacionada com		
			a organização das redes de endereçamento IP, mesmo quando é usado endereçamento		
			IP sem classes (classless IP addressing).		
3.c)	X		Os dois modos de funcionamento da pesquisa/procura de informação no DNS, i.e.,		
			modo interativo e modo recursivo, garantem o mesmo resultado a uma determinada		
			query DNS, ainda que os tempos de resposta possam ser diferentes.		
3.d)	X		Uma resposta a uma query DNS pode ser válida mesmo não contendo nenhum valor		
			no campo RESPONSE VALUES.		
3.e)		X	Um servidor secundário dum domínio de DNS deixa de ser um servidor autoritativo		
			para esse domínio se a cópia da base de dados de DNS do primário respetivo tiver		
			expirado completamente e não puder ser atualizada.		

4. Uma aplicação envia a query "small-net.medium-net.big-net. NS" a um servidor resolver (SR). Parta do princípio que todos os domínios existem e que os servidores primários são identificados/registados no DNS com o nome "sp.nome_do_domínio" (por exemplo, sp.big-net é o nome do servidor primário (SP) do domínio de topo big-net) e que os servidores secundários (SS) são identificados/registados como "ssN.nome_do_domínio" (por exemplo, ssl.big-net é o nome dum servidor secundário do domínio de topo big-net). Admita que o único servidor de topo (ST) registado no SR é identificado pelo endereço 10.10.10.10, todos os servidores funcionam no modo interativo e nenhum tem, inicialmente, entradas úteis em cache. Tendo em consideração as primeiras ações relevantes do serviço DNS, assinale como verdadeiras (true) ou falsas (false) as afirmações: (Nota: RV="RESPONSE VALUES", AV="AUTHORITIES VALUES", EV="EXTRA VALUES".)

	V/T	F			
4.a)	X		i) No início, o SR reenvia a <i>query</i> para o ST 10.10.10 que responde com campo		
			RV nulo, no campo AV inclui os nomes dos servidores autoritativos para big-net e		
			no campo EV inclui os endereços IP desses servidores.		
4.b)	X		ii) Depois do SR receber a resposta do ST referida em i), guarda as entradas dos		
			campos AV e EV em <i>cache</i> e reenvia a <i>query</i> inicial para o endereço do servidor		
			sp.big-net ou dos endereços dos SS do domínio big-net.		
4.c)	X		iii) O SP ou SS contactado em ii) responde ao SR com campo RV nulo, no campo AV		
			inclui os nomes dos servidores autoritativos para medium-net.big-net e no campo		
			EV inclui os endereços IP desses servidores.		
4.d)	X		iv) O SR reenvia a query para um SP ou SS de medium-net.big-net que responde		
			com os nomes do SP e dos vários SS do subdomínio small-net no campo RV, com		
			os respetivos endereços IP no campo EV.		
4.e)	X		Por razões de segurança e eficiência é natural e desejável que os domínios de topo		
			(como big-net do exemplo) tenham registados mais servidores secundários do que		
			os domínios em níveis hierárquicos mais baixos (como small-net do exemplo).		

PARTE III – Protocolo de Transporte HTTP

5. Analise as seguintes afirmações genéricas sobre o protocolo de transporte aplicacional *Hypertext Transfer Protocol* (HTTP) e indique (com **X**) se as considera verdadeiras (*true*) ou falsas (*false*).

	V/T	F		
5.a)	X		O método PUT introduzido na versão 1.1 do HTTP introduz problemas de segurança pelo que os servidores HTTP devem ter cuidados acrescidos quando recebem pedidos PUT dos clientes.	
5.b)		X	Uma das características melhoradas na evolução do HTTP 1.0 para o HTTP 1.1 foi a codificação das mensagens passar a ser binária em vez de ser orientada às <i>strings</i> de carateres ASCII.	
5.c)	X		Apesar de ser um protocolo encapsulado no TCP, o HTTP é um protocolo assíncrono, sem estados (<i>stateless</i>), o que dificulta a implementação de aplicações distribuídas no paradigma clássico de cliente-servidor.	
5.d)		X	O modo não persistente do HTTP 1.*, quando comparado com o modo persistente, permite uma troca de informação mais rápida, mas também necessita de mais recursos do sistema que implementa o lado do cliente.	
5.e)	X		Os <i>proxy</i> HTTP diminuem a quantidade de dados obtida diretamente dos servidores remotos (fora da rede local servida pelos <i>proxy</i>) apenas nos casos em que existe um acesso repetido aos mesmos objetos por vários <i>hosts</i> (dentro dessa rede local).	

6. Considere uma interação HTTP 1.1 em que um cliente A tenta obter uma página web dum servidor B. O RTT (Round Trip Time) médio, usando TCP (sem conexões paralelas e sem perda de dados), entre A e B é de 20 ms e o tempo que um segmento TCP demora a ir de A para B é o mesmo que o tempo que demora a ir de B para A, i.e., RTT/2. Assuma que: i) o tempo de processamento dos pacotes e o tempo de execução de qualquer tarefa computacional associada ao serviço prestado pelo servidor é irrelevante; ii) o tempo de transmissão dos segmentos TCP para a rede é irrelevante, tanto em A como em B; iii) o tamanho de janela do TCP nos dois sentidos será igual a 10 Kbytes e o MSS (Maximum Segment Size) nos dois sentidos será igual a 1024 bytes; iv) é utilizado o mecanismo de slow start, nos dois sentidos, iniciando a janela de congestão com um MSS e com um threshold de 8*MSS; v) o cliente A não tem a capacidade de usar várias conexões TCP em paralelo; vi) os dados estão disponíveis para o cliente A assim que todos os bytes de todos os objetos da página chegam (i.e., para o tempo que o cliente A demora a obter os dados não se considera o tempo utilizado para fechar a última conexão TCP se depois disso já não há dados para receber); vi) a página web é constituída por um ficheiro HTML de 500 bytes e duas imagens que ocupam 2500 bytes cada uma. Indique (com X) se acha as afirmações verdadeiras (true) ou falsas (false).

		1		
	V/T	F		
6.a)	X		Se for usado o modo persistente sem método de <i>pipelining</i> , o tempo mínimo que se	
			pode esperar para o cliente A poder obter os três objetos da página referida é	
			de 100 ms.	
6.b)	X		Se não for usado o modo persistente nem o método de pipelining, o cliente A pode	
			obter os três objetos da página referida num tempo mínimo que é o dobro do tempo	
			preciso se for usado apenas o modo persistente.	
6.c)		X	Se for usado o modo persistente com método de <i>pipelining</i> , neste caso, não diminui o	
			tempo mínimo de acesso à referida página HTML, porque o cliente A não consegue	
			implementar várias conexões TCP em paralelo.	
6.d)	X		Neste caso, se fosse usado HTTP 2.0 poderíamos esperar uma clara diminuição do	
			tempo de acesso à página HTML por parte do cliente A quando comparado com o	
			acesso por HTTP 1.1 em modo persistente e com método de <i>pipelining</i> .	
6.e)		X	Se entre o cliente A e o servidor B introduzirmos um proxy C estaremos a diminuir o	
			tempo de acesso a essa página sempre que o cliente A aceder a essa página.	

NÚMERO:	
NOME:	

PARTE IV - Encaminhamento IP

7. Estude as seguintes afirmações genéricas sobre algoritmos e protocolos de encaminhamento IP e indique (com **X**) se as considera verdadeiras (*true*) ou se as considera falsas (*false*). Se não souber não indique qualquer uma das hipóteses.

Nota: LS – algoritmos estado das ligações; DV – algoritmos vetores de distância.

	V/T	F		
7.a)	X		Os protocolos de encaminhamento dinâmico IP são usados para gerir a informação	
			do plano de controlo, mas, ainda assim, não têm uma ação passiva no plano de dados	
			porque eles próprios geram tráfego para a rede.	
7.b)		X	Um protocolo de encaminhamento dinâmico específico e normalizado pode usar	
			vários tipos de algoritmos de encaminhamento LS ou DV, dependendo da topologia	
			da rede que está a gerir.	
7.c)	X		Um dos principais fatores de complexidade da implementação dos algoritmos de	
			encaminhamento é a utilização de métricas dinâmicas que são usadas no cálculo dos	
			custos das ligações entre os nós da rede.	
7.d)		X	Um fator que simplifica a implementação dos protocolos de encaminhamento IP é o	
			facto dos destinos finais usados nas tabelas de encaminhamento serem redes (ou sub-	
			redes ou grupos de redes) e não <i>routers</i> individuais.	
7.e)		X	Um algoritmo LS não pode ser utilizado com topologias de rede em que o custo da	
			ligação entre dois routers é diferente nos dois sentidos da comunicação ou quando	
			existe mais do que uma ligação direta entre dois <i>routers</i> .	

8. Considere uma rede com a seguinte topologia: C(u,y)=5, C(u,z)=3, C(z,w)=2, C(z,y)=1 e C(w,y)=3; em que C(a,b) indica o custo de usar a ligação direta entre o *router a* e o *router b*. O custo é igual nos dois sentidos da comunicação e coincide com o tempo (em ms) que leva uma mensagem a ser transmitida entre os *routers*. Assuma que este tempo é independente da quantidade de dados em cada mensagem, quer sejam mensagens LSA (*Link-State Announcement/Advertisement*) ou mensagens de anúncios de tabelas DV. Assuma também que o tempo de processamento de mensagens e execução de tarefas associadas aos algoritmos de encaminhamento é irrelevante e nunca há perda de mensagens. Indique (com X) se acha as seguintes afirmações verdadeiras (*true*) ou falsas (*false*). Não responda se não sabe a resposta. Nota: LS – algoritmos estado das ligações; DV – algoritmos vetores de distância.

	V/T	F		
8.a)		X	Se for usado um algoritmo LS a topologia de rede tem de ser conhecida em todos os	
			routers antes do algoritmo LS ser executado. Usando difusão LSA, o tempo mínimo	
			para que todos os <i>routers</i> tenham a informação da topologia estabilizada é de 8 ms.	
8.b)	X		Se for usado o algoritmo Dijkstra, depois de conhecida a topologia de rede por todos	
			os <i>routers</i> , obtém-se uma tabela LS para o <i>router</i> u igual à Tabela 1 (em anexo).	
8.c)	X		Se for usado o algoritmo Bellman-Ford, na primeira iteração o router u recebe a	
			seguinte informação dos vizinhos: $V_z = \{(u,3),(y,1),(w,2)\}$ e $V_y = \{(u,5),(z,1),(w,3)\}$;	
			em que V_R são as melhores entradas (custo mais baixo) da tabela DV do router R .	
8.d)		X	A tabela de encaminhamento, resultante da execução dos algoritmos, tem de ser igual	
			em todos os <i>routers</i> , desde que a topologia de rede seja estável. Mas as tabelas para	
			um mesmo <i>router</i> podem variar dependendo de o tipo de algoritmo ser LS ou DV.	
8.e)		X	Em geral, as tabelas de encaminhamento convergem/estabilizam mais rapidamente	
			em algoritmos DV porque não é necessário que todos os routers saibam a topologia	
			completa da rede antes do algoritmo começar a calcular a tabela de encaminhamento.	

Tabela 1: Informação LS do router u do exercício 8.

Step	N'	D(z), last hop before z	D(y), last hop before y	D(w), last hop before w
0	u	3, z	5, y	∞, w
1	uz	-	4, z	5, z
2	uzy	-	-	5, z
3	uzyw	-	-	-

Nota*: no primeiro passo também se pode considerar o próprio router u como *last hop before R*.