

In many applications, either the input xlt) or the system Hlf) is bond-limited; that is the function has a maximum allowable frequency.

XII) is an alternative representation to the time-domain representation. The canonical basis for time domain representation can be written as Basis function.

$$\chi(t) = \int \chi(t_0) \delta(t_0 - t_0) dt_0.$$

Note: In discrete time, the same relation is

$$x(n) = \sum_{n_0 = -\infty}^{\infty} \frac{x(n_0) \cdot \sin(n_0)}{\sin(n_0)} = \sum_{n_0 = -\infty}^$$

 $X(t) = \int \chi(t_0) \, \delta(t-t_0) \, dt_0 = \int X(t_0) \, e^{ts \, 2a \, ft} \, df.$ Bosis functions & expansion wet's If X(f) is band-limited by them. | X(f)=0 for \$> 5 outside the box If XIA) or HIA) is band-limited -> YIA) is also band. Since Y(4)=X(4)+(4)/ The fundamental relation making Discrete time Signal processing a viable processing technique is The sampling relation.

If

X17) is bandlimited to 6,

3

Then.

$$\chi(t) = \sum_{N=-\infty}^{\infty} \chi(nT) \operatorname{sinc}\left(\frac{t-nT}{T}\right)$$

where $sinc(x) = \frac{sin(\pi x)}{\pi x}$

17. In sampling limilation

Assume that both Alth and Neth are expressed in terms of their samples and sinc function.

 $x(t) = \sum_{n=1}^{\infty} x(nT) \sin(\frac{t}{T} - n)$) $\frac{1}{2}h(t) = \sum_{m} h(mT) \sin(\frac{t}{T} - m)$

Then

 $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} h(t-z) x(z) dz.$

$$= \sum_{n,m} x(nT) h(mT) \int_{-\infty}^{\infty} sinc(\frac{1-z}{T}) sinc(\frac{1}{z}-u) dz$$

 $= \sum_{N,m} \chi(nT) h(mT) \cdot \left(\operatorname{Sinc}(\frac{1-z-mT}{T}), \operatorname{Sinc}(\frac{z-nT}{T}) \right)$

2 Sinc (z-(++mT)) F{sinc(z-nT)}

$$\frac{3}{2} \leq x (nT) \ln(mT) \left(\frac{rect}{rect} \ln \frac{1}{r} e^{\frac{2\pi f(1-mT)}{r}}, \frac{rect}{fT} e^{\frac{3}{2\pi f(nT)}} \right) \frac{1}{f}$$

$$= \frac{1}{2} \leq x (nT) \ln(mT) \int_{-\infty}^{\infty} \frac{1}{f} e^{\frac{3\pi f(1-mT)}{r}}, \frac{rect}{fT} \ln(mT) \frac{1}{f} e^{\frac{3\pi f(1-mT)}{r}} \frac{1}{f} e^{\frac{3\pi$$

$$= \sum_{k=-n}^{\infty} \left(\sum_{n=-n}^{\infty} \lambda(k-n)T \right) \sin(\frac{1}{2}-k)$$

$$= \sum_{k=-n}^{\infty} \left(\sum_{n=-n}^{\infty} \lambda(k-n)T \right) \sin(\frac{1}{2}-k)$$

$$= \sum_{k=-n}^{\infty} \left(\sum_{n=-n}^{\infty} \lambda(k-n)T \right) \sin(\frac{1}{2}-k)$$

$$\frac{3}{2} \leq \left(\times [n] \star \mathcal{H}[n] \right) \operatorname{sinc} \left(\frac{+}{1} - k \right)$$

$$\times [n] = k \ln 1$$

$$\lim_{k \leq n} \frac{3}{n} = k \ln 1$$

In 1) the integral is expressed as a inner product.
In 2) Fourier transform is applied to the argument
A inner products Both inner products are the same since Fourier transform is orthonormal.
the same since Fourier transform is of thonormal.
In 3) Fourier transforms of rine functions an written
In 4) The inner product is written
Note that (XIE), YIE) = [XIE] YIE) II. when XIE), YIE) (XIE), YIE) = [XIE] YIE) II. when XIE, YIE) (an take complex by interpretting the integral as a FEE relation In 6) Shift Doosetty
In 5) The integral in 4) is evaluated walves
day interpretting the integral as a FEZ relation
In 6) Shift groperty
In 3 Shift groperty In 7 Re-ariangement of summation. In 8 The output is written in terms of samples
In 3) The output is written in terms of samples
of x(t) and h(t).
The relation 8) shows that the exact value of channel output can be calculated
is the delated
value of mannel output
by the discrete convolution of samples.
So there is no loss of information by
So there is no loss of information by discrete time processing (convolution) of samples.

The samples of x/n) can be expressed ulternatively

(the coefficient of z" stores x(n))

Tor example: if $x[n] = \#(\frac{1}{2})^n v(n)$ then $\chi(\frac{1}{2}) = \sum_{n=0}^{\infty} (\frac{1}{2})^n = \sum_{n=0}^{\infty} (\frac{1}{2z})^n = \frac{1}{1-2z}$ $|\frac{1}{2z}| \leq 1$

As a result, the coefficients of $\frac{1}{1-22}$ are

the x[n] values.

Review your 2-transform notes on ronvergence and threstate of left-right sidedness of the sequences.

Z-transform is useful to determine the Properties of sequences. The sequence can be

the impulse response of a system. Then the properties of the ystem is determined by the

2-transform expression. (Stability of the system)

3

Processing of Samples:

H(z): A calculator implementing relations like $y[n] = \sum_{k=0}^{2} b_k y[n-k] + \sum_{k=0}^{2} b_k x[n-k]$ for $H(z) = \frac{\sum_{k=0}^{2} b_k z^k}{1 - \sum_{k=0}^{2} q_k z^k}$

Tiltering: Suppress some frequencies)

Enhance some others

A MAN

enhanced

enhanced $\frac{\pi}{6} = \frac{\pi}{3} = \frac{2\pi}{2} = \frac{5\pi}{6} = \pi$ supressed.

That is if xln) has the following definition.

 $\Re(\mathbf{n}) = e^{+j\pi n} + e^{j\pi n} + e^{j\pi n} \longrightarrow y[n] = h[n] + x[n]$

yln)= 10. etch + etzn + 0

enhanced as it is supressed

Details of ylul calculation:

$$y(n) = x \ln |x| h \ln n$$

$$= \sum h(k) \left[x(n-k) \right]$$

$$= \sum h(k) \left[e^{3\frac{\pi}{6}(n-k)} + e^{3\frac{\pi}{2}(n-k)} e^{3\frac{\pi}{6}(n-k)} \right]$$

$$= \left[\sum h(k) e^{3\frac{\pi}{6}k} \right] e^{3\frac{\pi}{6}n} + \left[\sum h(k) e^{3\frac{\pi}{6}k} \right] e^{3\frac{\pi}{6}n}$$

$$= \frac{1}{10} \left[e^{3\frac{\pi}{6}k} \right] e^{3\frac{\pi}{6}n} + \frac{1}{10} e^{3\frac{\pi}{6}n} e^{3\frac{\pi}{6}n} e^{3\frac{\pi}{6}n} + \frac{1}{10} e^{3\frac{\pi}{6}n} e^{3\frac{$$

Filtering: (Matrices interpretation)

AND MANA

AMANA MARINA

+(n) H(z) y(n);

det X(n)=XoSln) + XoSln-1) + _____+XoSln-N)

Nln) = hoSln) + hoSln-1) + ____+hpsln-p)

P is the number of taps of the filher).

$$g(n) = x(n) + x(n)$$

 $g(n) = x_0 h(n) + x_1 h(n-1) + x_0 h(n-N)$

(0)

Topplitais the constant cliagonal matrix. in It is also called convolution matrix.

Shift Matrix: A special Topplitz matrix that shifts the input sequence at the output.

$$\sum_{i=1}^{n} \sum_{x=1}^{n} \sum_{x$$

Any Brother Convolution matrix can be written as in terms
of shift matrices.

It is clear that $\# S^k = S^k \#$, which implies the following:

This shows or illustrates the time invarioncy (11) of the system. Diagonalization of Convolution Matrices: (For infinite dimensiona) H=210) I+411) S+h(2) S2+--matrices) If we can find the eigenvectors of \leq , they are also the eigenvertors of H. x(n) is defined eigenvectors of S: SxIn) = xIn-1) = xxIn): いんやくろくの Take xln)=esun thon $\frac{1}{2} \sum_{n} \chi(n) = e^{2\pi i (n-1)} = \frac{-2\pi i}{\lambda} \sum_{n=1}^{\infty} \chi(n).$ So X(n) = e sun is an eigenvector of S with eigenvalue e Jw. riginvector with eigenvalue x is. eigenvector of H: H x[n] = } x[n] Tuke x(n)=e3un = HxIn)= Zh(k)eJwk)Jwh

(onclusion: Eigenvectors are complex exponentials.

and courresponding eigenvalues are the Fourier

transform of h[n] sequence.

Processing of Samples (contid)

2) Upsampling / Down sampling:

If we take more samples

Given the samples x [n]; we can reconstruct x (+) and sample it with hulf of the first sampling period to generate x open.

But note that

Define

$$\hat{X}[n] = \begin{cases} x[n/2] & n: even \\ 0 & n: odd. \end{cases}$$

$$\frac{\chi(n) = \chi_0 \delta(n) + \chi_1 \delta(n-1) + \dots}{\hat{\chi}(n) = \chi_0 \delta(n) + 0.8(n-1) + \chi_1 \delta(n-2) + 0.8(n-3) + \dots}$$

$$\frac{1}{\chi(z)} = \underbrace{\mathbb{E}}_{n} \underbrace{\chi(n)}_{z^{n}} = \underbrace{\mathbb{E}}_{n,\text{poin}} \underbrace{\chi(2\ell)}_{z^{-2\ell}} = \underbrace{\mathbb{E}}_{\chi(2\ell)} \underbrace{\mathbb{E}}_{z^{-2\ell}} = \underbrace{\mathbb{E}}_{\chi(2\ell)} = \underbrace{\mathbb{E}}_{\chi(2\ell)} \underbrace{\mathbb{E}}_{z^{-2\ell}} = \underbrace{\mathbb{E}}_{\chi(2\ell)} = \underbrace{\mathbb{E}}_{\chi(2\ell)}$$

So
$$\hat{\chi}(z) = \chi(z^2)$$
.

Matrices interpretations

U is the spa matrix for the up-sampling speration.

Note: Up-sampling by 2 discussion can be generalized, trivially.

```
Down - Sampling:
        x^{down}(n) = x(Mn) Mis an integer.
        x down(1) = x10)

> every Mth Sample is taken.

x down(2) = x (2011)

(also called decimation)
   X (2) = ? The z-domain definition for down-sampling
                         is a little tricky, Aliasing components
                        appear in Zelomain.
Take M=2, (down sample by 2)
                X (3WA (2) = X10) + X(2) = + X(4) = 2+ ....
            kulate

\chi(z) + \chi(-z) = \frac{\chi(z)}{\chi_0 + \chi_1 z^2 + \chi_2 z^2 + \dots}
= \frac{\chi_0 + (-\chi_1) z^1 + \chi_2 z^2 + \dots}{\chi_0 + (-\chi_1) z^1 + \chi_2 z^2 + \dots}
 dets (akulate
                                                                 = 21/0+21/2) =
                                                                    +27(4)=4+...
```

Then

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$$

Matrices Interpretation:

$$D = \begin{cases} D_{\text{out}} = \begin{cases} 100000 \\ 001000 \\ 00010 \end{cases}$$

$$\begin{array}{ccc}
D_2 & \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_{2N}
\end{bmatrix} = \begin{bmatrix}
x_0 \\
x_2 \\
\vdots \\
x_N
\end{bmatrix}$$

Note that Down sampling matrix is the transport
It Up sampling matrix.