CS 498ABD: Algorithms for Big Data, Spring 2019

Frequent Items

Lecture 09 February 12, 2019

Chandra (UIUC) CS498ABD 1 Spring 2019 1 / 11

Models

Richer model:

- Want to estimate a function of a vector $x \in \mathbb{R}^n$ which is initially assume to be the all $\mathbf{0}$'s vector.
- Each element e_j of a stream is a tuple (i_j, Δ_j) where $i_j \in [n]$ and $\Delta_i \in \mathbb{R}$ is a real-value: this updates x_{i_j} to $x_{i_j} + \Delta_j$. $(\Delta_j$ can be positive or negative)

Richer model:

- Want to estimate a function of a vector $x \in \mathbb{R}^n$ which is initially assume to be the all **0**'s vector.
- Each element e_j of a stream is a tuple (i_j, Δ_j) where $i_j \in [n]$ and $\Delta_i \in \mathbb{R}$ is a real-value: this updates x_{i_j} to $x_{i_j} + \Delta_j$. $(\Delta_j$ can be positive or negative)
- $\Delta_j > 0$: cash register model. Special case is $\Delta_j = 1$.
- Δ_j arbitrary: turnstile model
- ullet Δ_j arbitrary but $x \geq 0$ at all times: strict turnstile model
- Sliding window model: interested only in the last W items (window)

What is F_k when $k = \infty$?

What is F_k when $k = \infty$? Maximum frequency.

 Chandra (UIUC)
 CS498ABD
 3
 Spring 2019
 3 / 11

What is F_k when $k = \infty$? Maximum frequency.

 F_{∞} very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

Chandra (UIUC) CS498ABD 3 Spring 2019 3 / 13

What is F_k when $k = \infty$? Maximum frequency.

 F_{∞} very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.

What is F_k when $k = \infty$? Maximum frequency.

 F_{∞} very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.

Heavy Hitters Problem: Find all items i such that $f_i > m/k$ for some fixed k.

Heavy hitters are very frequent items.

Majority element problem:

- Offline: given an array/list A of m integers, is there an element that occurs more than m/2 times in A?
- Streaming: is there an i such that $f_i > m/2$?

```
Streaming-Majority:
     c = 0, s \leftarrow null
     While (stream is not empty) do
          If (e_i = s) do
              c \leftarrow c + 1
          ElseIf (c = 0)
               c = 1
               s = e_i
          Else
               c \leftarrow c - 1
     endWhile
     Output s, c
```

```
Streaming-Majority:
     c = 0, s \leftarrow null
     While (stream is not empty) do
          If (e_i = s) do
              c \leftarrow c + 1
         ElseIf (c=0)
               c = 1
               s = e_i
         Else
               c \leftarrow c - 1
     endWhile
     Output s, c
```

Claim: If there is a majority element *i* then algorithm outputs s = i and $c \ge f_i - m/2$.

Chandra (UIUC) CS498ABD 5 Spring 2019 5 / 11

```
Streaming-Majority:
     c = 0, s \leftarrow null
     While (stream is not empty) do
          If (e_i = s) do
               c \leftarrow c + 1
          ElseIf (c = 0)
               c = 1
               s = e_i
          Else
               c \leftarrow c - 1
     endWhile
     Output s, c
```

Claim: If there is a majority element *i* then algorithm outputs s = i and $c \ge f_i - m/2$.

Caveat: Algorithm may output incorrect element if no majority element. Can verify correctness in a second pass.

Heavy Hitters Problem: Find all items i such that $f_i > m/k$.

```
MisraGreis(k):
     D is an empty associative array
     While (stream is not empty) do
          e; is current item
          If (e_i \text{ is in } keys(D))
               D[e_i] \leftarrow D[e_i] + 1
          Else if (|keys(A)| < k-1) then
          D[e_i] \leftarrow 1
          Else
               for each \ell \in keys(D) do
                    D[\ell] \leftarrow D[\ell] - 1
          Remove elements from D whose counter values are 0
endWhile
For each i \in keys(D) set \hat{f}_i = D[i]
For each i \notin kevs(D) set \hat{f}_i = 0
```

Analysis

Space usage O(k).

Theorem

For each $i \in [n]$: $f_i - \frac{m}{k+1} \le \hat{f_i} \le f_i$.

Corollary

Any item with $f_i > m/k$ is in D at the end of the algorithm.

A second pass to verify can be used to verify correctness of elements in \boldsymbol{D} .

Theorem

For each $i \in [n]$: $f_i - \frac{m}{k+1} \le \hat{f_i} \le f_i$.

Theorem

For each
$$i \in [n]$$
: $f_i - \frac{m}{k+1} \le \hat{f_i} \le f_i$.

Easy to see: $\hat{f}_i \leq f_i$. Why?

Theorem

For each
$$i \in [n]$$
: $f_i - \frac{m}{k+1} \le \hat{f_i} \le f_i$.

Easy to see: $\hat{f}_i \leq f_i$. Why?

Alternative view of algorithm:

- Maintains counts C[i] for each i (initialized to 0). Only k are non-zero at any time.
- When new element e; comes
 - If $C[e_j] > 0$ then increment $C[e_j]$
 - Elself less then k positive counters then set $C[e_j] = 1$
 - Else decrement all positive counters (exactly k of them)

8

• Output $\hat{f}_i = C[i]$ for each i

Want to show: $f_i - \hat{f}_i \le m/(k+1)$:

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

• Suppose we have ℓ occurrences of k counters being decremented.

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq m/(k+1)$.
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially **0**. How big can it get?

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq m/(k+1)$.
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially **0**. How big can it get?
 - If $e_i = i$ and C[i] is incremented α stays same

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq m/(k+1)$.
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially **0**. How big can it get?
 - If $e_i = i$ and C[i] is incremented α stays same
 - If $e_j = i$ and C[i] is not incremented then α increases by one and k counters decremented charge to ℓ

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq m/(k+1)$.
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially **0**. How big can it get?
 - If $e_i = i$ and C[i] is incremented α stays same
 - If $e_j = i$ and C[i] is not incremented then α increases by one and k counters decremented charge to ℓ
 - If $e_j \neq i$ and α increases by 1 it is because C[i] is decremented charge to ℓ

Chandra (UIUC) CS498ABD 9 Spring 2019 9 / 13

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq m/(k+1)$.
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially **0**. How big can it get?
 - If $e_i = i$ and C[i] is incremented α stays same
 - If $e_j = i$ and C[i] is not incremented then α increases by one and k counters decremented charge to ℓ
 - If $e_j \neq i$ and α increases by 1 it is because C[i] is decremented charge to ℓ
- Hence total number of times α increases is at most ℓ .

Deterministic to Randomized Sketches

Cannot improve O(k) space if one wants additive error of at most m/k. Nice to have a deterministic algorithm that is near-optimal

Why look for randomized solution?

- Obtain a sketch that allows for deletions
- Additional applications of sketch based solutions
- Will see Count-Min and Count sketches

Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items i such that $f_i > m/k$.

- Let b_1, b_2, \ldots, b_k be the k heavy hitters
- Suppose we pick $h:[n] \to [ck]$ for some c>1
- h spreads b_1, \ldots, b_k among the buckets (k balls into ck bins)
- In ideal situation each bucket can be used to count a separate heavy hitter