

Middleware and Communication Protocols for Dependable Systems TI-MICO

Time Triggered Protocol (TTP) & Time Triggered Architecture (TTA)

Version: 18-11-2014

Time-Triggered Architecture (TTA) and Protocol (TTP)

Article:

"The Time-Triggered Architecture" by

Hermann Kopetz and Günther Bauer, Proceedings of the IEEE, January 2001.

Introduction article:

"Time Triggered Protocol: TTP/C" by Ross Bannatyne, Motorola,

Embedded Systems Programming, March 1999

Time-Triggered Protocol - 1 (TTP)

- TTP: Family of TDMA based, fault tolerant protocols
- TTP/C was originally intended to meet the requirements of SAE class C for automotive applications
- The development of TTP and TTP/C has been led by Prof. Hermann Kopetz, Technical University of Vienna
- TTP is based on more than 20 years development work in research and prototype applications
- TTP integrated circuits have been available since 1998
- Second generation silicon, supporting communication speeds of up to 25 Mbit/s, is available today
- The commercial development of TTP/C tools and products is led by TTTech (<u>www.tttech.com</u>)
- Existing protocols J1850 and CAN meet the bandwidth specification for an SAE Class C protocol, but not the fault tolerant requirements

Time-Triggered Protocol – 2 (TTP)

- Time-Triggered Protocol (TTP) is a real-time communication protocol for the interconnection of electronic modules of distributed fault-tolerant real-time systems
- The current protocol specification is targeted at distributed real-time systems with strong requirements for safety, availability, and composability in the fields of automotive and aerospace electronics as well as industrial control
- TTP standard (SAE) has been released by SAE as the SAE AS6003 standard in February 2011.

Two TTP Protocols

- TTP/A (SAE Class A = Soft Real-Time)
 - A scaled-down version of TTP
 - A cheaper master/slave variant
- TTP/C (SAE Class C = Hard Real-Time)
 - A full version of TTP
 - A fault-tolerant distributed variant
- This presentations focus on TTP/C

TTP Protocol Objectives

- Message transport with low latency and minimal jitter
- Support of composability
- Provision of a fault-tolerant membership service
- Fault-tolerant clock synchronization
- Distributed redundancy management
- Minimal overhead
- Scalability to high data rates
 - efficient operation both on twisted wires and on optical fibers

Composability

- A composable architecture has a two level design strategy:
 - 1. the architecture level and
 - 2. the node level
- For an architecture to be composable in the temporal domain it must adhere to 4 principles:
 - 1) Independent development of nodes
 - 2) Stability of prior services
 - 3) Constructive integration of nodes (a linear process)
 - 4) Replica determinism
 - all members have same externally visible state

TDMA: Time Division Multiple Access

- A distributed static medium access strategy
 - The right to transmit a frame is controlled by the progression of real time
 - Requires that a fault-tolerant global time-base is available to all nodes
- The channel capacity is statically divided into a number of slots
- The sequence of sending slots within an ensemble of nodes is called a TDMA round
- A unique sending slot is assigned to every node
 - A node can only send one frame in every TDMA round
 - If there are no data to send, an empty frame is transmitted
- The sequence of all different TDMA rounds is called a Cluster Cycle

TTP/C Bus Access Scheme

FTU: Fault Tolerant Unit

Time-Triggered Architecture (TTA)

- The Time-Triggered Architecture (TTA) a framework for the domain of distributed embedded real-time systems in highdependability environments
- A central characteristic of the Time-Triggered Architecture is the treatment of (physical) real time as a first-order quantity
- The TTA decomposes a large embedded application into clusters and nodes and provides a fault-tolerant global time base of known precision at every node

TTA Cluster and Nodes

CNI: Communication Network Interface

The Host programming interface to the Time-triggered network

Communication Abstraction

TTA Layers

TTA Toplogies (Bus/Star + Bus Guardians)

TTA/TTP Node Configuration

Communication Network Interface - CNI

The Basic CNI Structure

Dual Port Ram

Updated by TTP Controller **Status Registers**

Control Registers

Global Internal Times

SRU-Time (part of C state)

MEDL (part of C state)

Membership

(part of C state)

Status Information

Watchdog

Timeout Register

Mode Change Request

Reconfiguration Request

External Rate Correction

by Host

Updated

Message Area

Node Membership

- The node membership vector
 - contains as many bits as there are nodes in a cluster
 - each node is assigned to a specific bit position
 - a "TRUE" indicates that the node was operating during the last sending slot
 - a "False" indicates that the node was not operating

The Message Descriptor List (MEDL)

automatically by a cluster compiler

TTP Frame

Application data length is variable for each node

Application data:

produced/consumed by the host

Frame:

Bit stream transmitted on the channel

TTP/C Frame Types: N-Frames

An efficient protocol

4 bit Header

TTP/C Frame types: I-Frames

CRC Calculation

Message on the network

CRC calculation at receiver

Head	lor	Data Field	C-State of	CPC
			Receiver	

Fault-tolerant Node

Conceptual Layers of TTA

Host Layer

Application Software in Host

FTU CNI

FTU Layer

FTU Membership

Basic CNI

RM Layer

Redundancy Management

SRU Membership

Clock Synchronization

SRU Layer

Data Link/Physical Layer

Media Access: TDMA

TTP/C Communication Properties

- Static Scheduling
 - Guaranteed delivery times with known variance (jitter)
- Clock Synchronization
 - All nodes synchronized to within one microsecond each TDMA round
- Composability
 - TTP/C nodes are temporally composable as well as functionally composable
- Fail Silent
 - The bus guardians ensure transmission only during the correct timeslot, in all cases
- Membership
 - Every node's membership is available during each TDMA round

Advantages/Disadvantages of TTP

Advantages

- Simple protocol to implement
- Deterministic response time
- No wasted time for Master polling message

Disadvantages

- Wasted bandwidth when some nodes are idle
- Static solution
- Fixed network size after installation
- Event communication is not directly supported (must be simulated on top of TTP)

TTA/TTP Software Tool Suite

TTP-OS: Time-Triggered OS

TTPOS – Time-Triggered Operating System with TTP Support

TTP-IP Module – The IndustryPack-Compatible TTP Node

TTP-IP Module is an IndustryPack® -compatible high-performance node for the Time-Triggered Protocol (TTP®). It is equipped with a Freescale MPC555 PowerPC® and the TTP controller AS8202NF and suitable for distributed hard real-time systems.

It supports the fault-tolerant real-time operating system TTP-OS which is based on OSEKtime and specifically designed for applications based on time-triggered technology.

TTA/TTP Summary

- TTP a Communication Standard for Advanced Control Systems (Standardized by SAE in 2011).
- TTP is the mature network solution that is low cost and can handle safety-critical applications.
 - It is used in commercial applications
 - TTP is based on more than 20 years development work in research and prototype applications
- Based on stable specifications
 - TTP integrated circuits have been available since 1998
 - Second generation silicon, supporting communication speeds of up to 25 Mbit/s, is available today
 - Coupling this high speed with efficiencies of up to 80% allows data transfer 25 to 50 times faster than currently implemented automotive networks

References (TTA/TTP)

[TTP2003]

"Time-Triggered Protocol TTP/C High-Level Specification Document", Protocol Version 1.1, 19-nov-2003, TTTech & TTA Group

[ViennaUnivesity]

Real-Time Systems Research Group at the Vienna University of Technology, http://www.vmars.tuwien.ac.at

[TTA Group]

TTA Group Forum (the open industry consortium for time-triggered systems today), http://www.ttagroup.org/

[TTTech]

TTTech Computertechnik AG, supplier of technology in the field of time-triggered systems and TTP® (Time-Triggered Protocol), http://www.tttech.com/

[Kopetz2011]

"Real-Time Systems – Design Principles for Distributed Embedded Applications", second edition Hermann Kopetz, Technische Universität Wien, Kluwer Academic Publishers, 2011.