What is claimed is:

10

1. A compound of formula Ia:

$$N \longrightarrow R_3$$

(Ia)

5 or a pharmaceutically acceptable salt or hydrate thereof, wherein:

 R_1 is CO_2R_4 ;

each R_2 is independently -halo, -NO₂, -CN, -OH, -N(R_5)(R_5), -OR₅, -C(O)R₅, -OC(O)R₅, -C(O)NHC(O)R₅, -(C₁-C₁₀)alkyl, -(C₂-C₁₀)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₃-C₁₀)heterocycle, -phenyl, -naphthyl, -benzyl, -CO₂R₅, -C(O)OCH(R_5)(R_5), -NHC(O)R₅, -NHC(O)NHR₅, -C(O)NHR₅, -OC(O)R₅, -SR₅, -S(O)R₅, or -S(O)₂R₅;

 $R_3 \text{ is -H, -halo, -NO}_2, \text{-CN, -OH, -N}(R_5)(R_5), \text{-O}(CH_2)_m R_5, \text{-C}(O)R_5, \\ -C(O)NR_5R_5, \text{-C}(O)NH(CH_2)_m(R_5), \text{-OCF}_3, \text{-benzyl, -CO}_2CH(R_5)(R_5), \text{-(C}_1-C_{10})\text{alkyl, -(C}_2-C_{10})\text{alkenyl, -(C}_3-C_{10})\text{cycloalkyl, -(C}_8-C_{14})\text{bicycloalkyl, -(C}_8-C_{14})\text{bicycloal$

15 -(C₅.C₁₀)cycloalkenyl, -naphthyl, -(C₃-C₁₀)heterocycle, -CO₂(CH₂)_mR₅, -NHC(O)R₅, -N(R₅)C(O)R₅, -NHC(O)NHR₅, -OC(O)(CH₂)_mCHR₅R₅, -CO₂(CH₂)_mCHR₅R₅,-OC(O)OR₅, -SR₅, -S(O)₂R₅, -S(O)₂NHR₅, or

$$(R_6)_p$$

R₄ is -(C₅)heteroaryl, -(C₆)heteroaryl, phenyl, naphthyl, or benzyl;

20 each R₅ is independently -H, -CF₃, -(C₁-C₁₀)alkyl, -benzyl, -adamantyl,

-morpholinyl, -pyrrolidyl, -pyrridyloxide, -pyrrolidinyldione, -piperdidyl, -(C₂-C₁₀)alkenyl,

-(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₃-C₁₀)heterocycle, or

$$- (R_6)_p$$

each R₆ is independently -H, -halo, -NO₂, -CN, -OH, -CO₂H,

-N((C₁-C₁₀)alkyl(C₁-C₁₀)alkyl), -O(C₁-C₁₀)alkyl, -C(O)(C₁-C₁₀)alkyl, -C(O)NH(CH₂)_m(C₁-C₁₀)alkyl, -OCF₃, -benzyl, -CO₂(CH₂)_mCH((C₁-C₁₀)alkyl(C₁-C₁₀)alkyl), -C(O)H,

-CO₂(C₁-C₁₀)alkyl, -(C₁-C₁₀)alkyl, -(C₂-C₁₀)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -phenyl, naphthyl, -(C₃-C₁₀)heterocycle, -CO₂(CH₂)_m(C₁-C₁₀)alkyl, -CO₂(CH₂)_mH, -NHC(O)(C₁-C₁₀)alkyl, -NHC(O)NH(C₁-C₁₀)alkyl, -OC(O)(C₁-C₁₀)alkyl, -OC(O)O(C₁-C₁₀)alkyl, -SO₂NHR₅, or -SO₂NH₂;

n is an integer ranging from 0 to 4; each m is independently an integer ranging from 0 to 8; and each p is independently an integer ranging from 0 to 5.

10

5

2. A pharmaceutical composition comprising an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt or hydrate thereof and a pharmaceutically acceptable carrier or excipient.

15

3. A method for treating an inflammation disease in an animal, comprising administering to an animal in need thereof an effective amount of a compound of formula (Ic):

$$R_1$$
 R_2
 R_3

20

25

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

 R_1 is -H, -CO₂R₄; -C(O)R₅, or -C(O)N(R₅)(R₅);

each R_2 is independently -halo, -NO₂, -CN, -OH, -N(R_5)(R_5), -OR₅, -C(O) R_5 ,

-C(O)NHC(O)(R_5), -OC(O) R_5 , -(C_1 - C_{10})alkyl, -(C_2 - C_{10})alkenyl, -(C_2 - C_{10})alkynyl, -(C_3 - C_{10})cycloalkyl, -(C_3 - C_{10})cycloalkyl, -(C_3 - C_1)heterocycle,

-(C_5)heteroaryl, -(C_6)heteroaryl, phenyl, -naphthyl, -benzyl, - C_2R_5 , - $C(O)OCH(R_5)(R_5)$,

-NHC(O)R₅, -NHC(O)NHR₅, -C(O)NHR₅, -OC(O)R₅, -OC(O)OR₅, -SR₅, -S(O)R₅, or -S(O)₂R₅;

 R_3 is -H, -halo, -NO₂, -CN, -OH, -N(R_5)(R_5), -O(CH₂)_m R_5 , -C(O)R₅,

-C(O)NR₅R₅, -C(O)NH(CH₂)_m(R₅), -OCF₃, -benzyl, -CO₂CH(R₅)(R₅), -(C₁-C₁₀)alkyl,

 $-(C_2-C_{10}) alkenyl, -(C_2-C_{10}) alkynyl, -(C_3-C_{10}) cycloalkyl, -(C_8-C_{14}) bicycloalkyl,\\$

 $\hbox{-}(C_5\hbox{-}C_{10}) cycloal kenyl, \hbox{-}(C_5) heteroaryl, \hbox{-}(C_6) heteroaryl, \hbox{-}naphthyl, \hbox{-}(C_3\hbox{-}C_{10}) heterocycle,$

 $-CO_2(CH_2)_mR_5$, $-NHC(O)R_5$, $-NHC(O)R_5$, $-NHC(O)NHR_5$, $-OC(O)(CH_2)_mCHR_5R_5$,

 $-CO_{2}(CH_{2})_{m}CHR_{5}R_{5}, -OC(O)OR_{5}, -SR_{5}, -S(O)R_{5}, -S(O)_{2}R_{5}, -S(O)_{2}NHR_{5}, or \\$

35

30

$$(R_6)_p$$
 ;

 R_4 is -CF₃, -(C₁-C₁₀)alkyl, -benzyl, -adamantyl, -morpholinyl, -pyrrolidyl, -pyrridyloxide, -pyrrolidinyldione, -piperdidyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -(C₂-C₁₀)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₃-C₁₀)heterocycle, or

$$(R_6)_p$$
;

each R₅ is independently H or R₄;

each R_6 is independently -halo, -NO₂, -CN, -OH, -CO₂H, -N(C₁-C₁₀)alkyl(C₁-C₁₀)alkyl, -O(C₁-C₁₀)alkyl, -C(O)(C₁-C₁₀)alkyl, -C(O)NH(CH₂)_m(C₁-C₁₀)alkyl, -OCF₃,-benzyl, -CO₂(CH₂)_mCH((C₁-C₁₀)alkyl(C₁-C₁₀)alkyl), -C(O)H, -CO₂(C₁-C₁₀)alkyl, -(C₁-C₁₀)alkyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl,

-(C₈-C₁₄)bicycloalkyl,-(C₅-C₁₀)cycloalkenyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -phenyl, naphthyl, -(C₃-C₁₀)heterocycle, -CO₂(CH₂)_m(C₁-C₁₀)alkyl, -CO₂(CH₂)_mH,
 -NHC(O)(C₁-C₁₀)alkyl, -NHC(O)NH(C₁-C₁₀)alkyl, -OC(O)(C₁-C₁₀)alkyl, -OC(O)O(C₁-C₁₀)alkyl, or -SO₂NH₂;

n is an integer ranging from 0 to 4; each m is independently an integer ranging from 0 to 8; and each p is independently an integer ranging from 0 to 5.

- The method of claim 3, wherein the inflammation disease is arthritis, psoriasis, gingivitis, colitis, uveitis, diabetes, adult respiratory distress syndrome,
 autoimmune disease, lupus erythematosus, ileitis, ulcerative colitis, Crohn's disease, asthma, periodontitis, ophthalmitis, endophthalmitis, nephrosis, AIDS-related eurodegeneration, stroke, neurotrauma, Alzheimer's disease, encephalomyelitis, cardiomyopathy, or transplant rejection.
- 5. A method for treating a reperfusion disease in an animal, comprising administering to an animal in need thereof an effective amount of a compound of formula (Ic):

35

20

5

$$R_1$$
 R_2
 R_3

(Ic)

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

 R_1 is -H, -CO₂R₄; -C(O)R₅, or -C(O)N(R₅);

each R₂ is independently -halo, -NO₂, -CN, -OH, -N(R₅)(R₅), -OR₅, -C(O)R₅,

 $-OC(O)R_5$, $-C(O)NHC(O)R_5$, $-(C_1-C_{10})alkyl$, $-(C_2-C_{10})alkenyl$, $-(C_2-C_{10})alkynyl$,

-(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₃-C₇)heterocycle,

-(C_5)heteroaryl, -(C_6)heteroaryl, phenyl, -naphthyl, -benzyl, - CO_2R_5 , - $C(O)OCH(R_5)(R_5)$,

 $-NHC(O)R_5, \ -NHC(O)NHR_5, \ -C(O)NHR_5, \ -OC(O)R_5, \ -OC(O)OR_5, \ -SR_5, \ -S(O)R_5, \ or$

10 $-S(O)_2R_5$;

5

15

20

35

 R_3 is -H, -halo, -NO₂, -CN, -OH, -N(R_5)(R_5), -O(CH₂)_m R_5 , -C(O) R_5 , -C(O)NR₅R₅, -C(O)NH(CH₂)_m(R₅), -OCF₃, -benzyl, -CO₂CH(R₅)(R₅), -(C₁-C₁₀)alkyl, -(C₂-C₁₀)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -naphthyl, -(C₃-C₁₀)heterocycle,

 $-\mathrm{CO}_2(\mathrm{CH}_2)_m\mathrm{R}_5,\quad -\mathrm{NHC}(\mathrm{O})\mathrm{R}_5,\quad -\mathrm{NHC}(\mathrm{O})\mathrm{R}_5,\quad -\mathrm{NHC}(\mathrm{O})\mathrm{NHR}_5,\quad -\mathrm{OC}(\mathrm{O})(\mathrm{CH}_2)_m\mathrm{CHR}_5\mathrm{R}_5,$

 $-CO_2(CH_2)_mCHR_5R_5$, $-OC(O)OR_5$, $-SR_5$, $-S(O)R_5$, $-S(O)_2R_5$, $-S(O)_2NHR_5$, or

$$(R_6)_p$$

 R_4 is -CF₃, -(C₁-C₁₀)alkyl, -benzyl, -adamantyl, -morpholinyl, -pyrrolidyl, -pyrridyloxide, -pyrrolidinyldione, -piperdidyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -(C₂-C₁₀)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₃-C₁₀)heterocycle, or

$$(R_6)_p$$

each R₅ is independently H or R₄;

each R₆ is independently -halo, -NO₂, -CN, -OH, -CO₂H, -N(C₁-

 $C_{10})alkyl(C_1-C_{10})alkyl, -O(C_1-C_{10})alkyl, -C(O)(C_1-C_{10})alkyl, -C(O)NH(CH_2)_m(C_1-C_{10})alkyl, -OCF_3, -benzyl, -CO_2(CH_2)_mCH((C_1-C_{10})alkyl(C_1-C_{10})alkyl), -C(O)H, -CO_2(C_1-C_{10})alkyl, -C(O)H, -CO_2(C_1-C_1)Alkyl, -C(O)H, -CO_2(C_1-C_1)Alk$

 $-(C_1-C_{10})$ alkyl, $-(C_2-C_{10})$ alkenyl, $-(C_2-C_{10})$ alkynyl, $-(C_3-C_{10})$ cycloalkyl,

-(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -phenyl, naphthyl,-(C₃-C₁₀)heterocycle, -CO₂(CH₂)_m(C₁-C₁₀)alkyl, -CO₂(CH₂)_mH, -NHC(O)(C₁-C₁₀)alkyl, -NHC(O)NH(C₁-C₁₀)alkyl, -OC(O)(C₁-C₁₀)alkyl, -OC(O)O(C₁-C₁₀)alkyl, or -SO₂NH₂;

n is an integer ranging from 0 to 4; each m is independently an integer ranging from 0 to 8; and

105

- 6. The method of claim 5, wherein the reperfusion disease is hemorrhagic shock, sepsis, septic shock, myocardial infarction, or stroke.
- 7. A method for inhibiting xanthine oxidase activity in an animal, comprising administering to an animal in need thereof an effective amount of a compound of formula (Ic):

$$\mathbb{N}$$
 \mathbb{N}
 \mathbb{N}

10

5

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

 R_1 is -H, -CO₂R₄; -C(O)R₅, or -C(O)N(R₅)(R₅);

each R₂ is indepedently -halo, -NO₂, -CN, -OH, -N(R₅)(R₅), -OR₅, -C(O)R₅,

 $-OC(O)R_5$, $-C(O)NHC(O)R_5$, $-(C_1-C_{10})$ alkyl, $-(C_2-C_{10})$ alkenyl, $-(C_2-C_{10})$ alkynyl,

- 15 -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₃-C₇)heterocycle,
 - -(C_5)heteroaryl, -(C_6)heteroaryl, phenyl, -naphthyl, -benzyl, - CO_2R_5 , - $C(O)OCH(R_5)(R_5)$,
 - -NHC(O)R₅, -NHC(O)NHR₅, -C(O)NHR₅, -OC(O)R₅, -OC(O)OR₅, -SR₅, -S(O)R₅, or -S(O)₂R₅;

 R_3 is -H, -halo, -NO₂, -CN, -OH, -N(R_5)(R_5), -O(CH₂)_m R_5 , -C(O) R_5 ,

- 20 -C(O)NR₅R₅, -C(O)NH(CH₂)_m(R₅), -OCF₃, -benzyl, -CO₂CH(R₅)(R₅), -(C₁-C₁₀)alkyl,
 - -(C_2 - C_{10})alkenyl, -(C_2 - C_{10})alkynyl, -(C_3 - C_{10})cycloalkyl, -(C_8 - C_{14})bicycloalkyl,
 - - (C_5-C_{10}) cycloalkenyl, - (C_5) heteroaryl, - (C_6) heteroaryl, -naphthyl, - (C_3-C_{10}) heterocycle,
 - $-CO_2(CH_2)_mR_5, \quad -NHC(O)R_5, \quad -NHC(O)R_5, \quad -NHC(O)NHR_5, \quad -OC(O)(CH_2)_mCHR_5R_5,$
 - -CO₂(CH₂)_mCHR₅R₅,-OC(O)OR₅, -SR₅, -S(O)R₅, -S(O)₂R₅, -S(O)₂NHR₅, or

25

 R_4 is -CF₃, -(C₁-C₁₀)alkyl, -benzyl, -adamantyl, -morpholinyl, -pyrrolidyl, -pyrridyloxide, -pyrrolidinyldione, -piperdidyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -(C₆)heteroaryl, -(C₂-C₁₀)alkenyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₃-C₁₀)heterocycle, or

$$(R_6)_p$$
;

each R₅ is independently H or R₄;

each R₆ is independently -halo, -NO₂, -CN, -OH, -CO₂H, -N(C₁-C₁₀)alkyl(C₁-C₁₀)alkyl, -O(C₁-C₁₀)alkyl, -C(O)(C₁-C₁₀)alkyl, -C(O)NH(CH₂)_m(C₁-C₁₀)alkyl, -OCF₃, -benzyl, -CO₂(CH₂)_mCH((C₁-C₁₀)alkyl(C₁-C₁₀)alkyl), -C(O)H, -CO₂(C₁-C₁₀)alkyl, -(C₁-C₁₀)alkyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -phenyl, naphthyl, -(C₃-C₁₀)heterocycle, -CO₂(CH₂)_m(C₁-C₁₀)alkyl, -CO₂(CH₂)_mH, -NHC(O)(C₁-C₁₀)alkyl, -NHC(O)NH(C₁-C₁₀)alkyl, -OC(O)(C₁-C₁₀)alkyl, -OC(O)O(C₁-C₁₀)alkyl, or -SO₂NH₂; n is an integer ranging from 0 to 4; each m is independently an integer ranging from 0 to 8; and each p is independently an integer ranging from 0 to 5.

8. A method for treating hyperuricemia in an animal, comprising administering to an animal in need thereof an effective amount of a compound of formula (Ic):

$$R_1$$
 R_2
 R_3
(Ic)

15

20

25

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

 R_1 is -H, -CO₂ R_4 ; -C(O) R_5 , or -C(O) $N(R_5)(R_5)$;

each R₂ is independently -halo, -NO₂, -CN, -OH, -N(R₅)(R₅), -OR₅, -C(O)R₅,

 $-OC(O)R_5$, $-C(O)NHC(O)R_5$, $-(C_1-C_{10})$ alkyl, $-(C_2-C_{10})$ alkenyl, $-(C_2-C_{10})$ alkynyl,

-(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₃-C₇)heterocycle,

-(C_5)heteroaryl, -(C_6)heteroaryl, phenyl, -naphthyl, -benzyl, - CO_2R_5 , - $C(O)OCH(R_5)(R_5)$,

-NHC(O)R₅, -NHC(O)NHR₅, -C(O)NHR₅, -OC(O)R₅, -OC(O)OR₅, -SR₅, -S(O)R₅, or -S(O)₂R₅;

 R_3 is -H, -halo, -NO₂, -CN, -OH, -N(R_5)(R_5), -O(CH₂)_m R_5 , -C(O) R_5 ,

-(C_2 - C_{10})alkenyl, -(C_2 - C_{10})alkynyl, -(C_3 - C_{10})cycloalkyl, -(C_8 - C_{14})bicycloalkyl,

- (C_5-C_{10}) cycloalkenyl, - (C_5) heteroaryl, - (C_6) heteroaryl, -naphthyl, - (C_3-C_{10}) heterocycle,

 $-CO_2(CH_2)_mR_5, \quad -NHC(O)R_5, \quad -NHC(O)R_5, \quad -NHC(O)NHR_5, \quad -OC(O)(CH_2)_mCHR_5R_5, \quad -OC($

 $-CO_2(CH_2)_mCHR_5R_5$, $-OC(O)OR_5$, $-SR_5$, $-S(O)R_5$, $-S(O)_2R_5$, $-S(O)_2NHR_5$, or

R₄ is -CF₃, -(C₁-C₁₀)alkyl, -benzyl, -adamantyl, -morpholinyl, -pyrrolidyl, -pyrrolidyl, -(C₅)heteroaryl, -(C₆)heteroaryl,

- $(C_2$ - C_{10})alkenyl, - $(C_2$ - C_{10})alkynyl, - $(C_3$ - C_{10})cycloalkyl, - $(C_8$ - C_{14})bicycloalkyl, - $(C_3$ - C_{10})heterocycle, or

$$-(R_6)_p$$

5

10

15

30

each R₅ is independently H or R₄;

each R₆ is independently -halo, -NO₂, -CN, -OH, -CO₂H, -N(C₁-

 C_{10})alkyl(C_1 - C_{10})alkyl, -O(C_1 - C_{10})alkyl, -C(O)(C_1 - C_{10})alkyl, -C(O)NH(CH₂)_m(C_1 - C_{10})alkyl, -OCF₃, -benzyl, -CO₂(CH₂)_mCH((C_1 - C_{10})alkyl(C_1 - C_{10})alkyl), -C(O)H, -CO₂(C_1 - C_{10})alkyl,

-(C_1 - C_{10})alkyl, -(C_2 - C_{10})alkenyl, -(C_2 - C_{10})alkynyl, -(C_3 - C_{10})cycloalkyl, -(C_8 - C_{14})bicycloalkyl, -(C_5 - C_{10})cycloalkenyl, -(C_5)heteroaryl, -(C_6)heteroaryl, -phenyl, naphthyl, -(C_3 - C_{10})heterocycle, - C_2 (CH_2)_m(C_1 - C_{10})alkyl, - C_2 (CH_2)_mH, -NHC(O)(C_1 - C_{10})alkyl, -OC(O)(C_1 - C_{10})alkyl, -OC(O)(C_1 - C_{10})alkyl, or -SO₂NH₂;

n is an integer ranging from 0 to 4; each m is independently an integer ranging from 0 to 8; and each p is independently an integer ranging from 0 to 5.

- 9. The method of claim 8, wherein the hyperuricemia is gout.
- 20 10. A method for treating tumor-lysis syndrome in an animal, comprising administering to an animal in need thereof an effective amount of a compound of formula (Ic):

$$R_1$$
 R_2
 R_3

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

 R_1 is -H, -CO₂R₄; -C(O)R₅, or -C(O)N(R₅)(R₅);

each R₂ is independently -halo, -NO₂, -CN, -OH, -N(R₅)(R₅), -OR₅, -C(O)R₅,

 $-OC(O)R_5$, $-C(O)NHC(O)R_5$, $-(C_1-C_{10})$ alkyl, $-(C_2-C_{10})$ alkenyl, $-(C_2-C_{10})$ alkynyl,

- (C_3-C_{10}) cycloalkyl, - (C_8-C_{14}) bicycloalkyl, - (C_5-C_{10}) cycloalkenyl, - (C_3-C_7) heterocycle,

-(C₅)heteroaryl, -(C₆)heteroaryl, phenyl, -naphthyl, -benzyl, -CO₂R₅, -C(O)OCH(R₅)(R₅), -NHC(O)R₅, -NHC(O)NHR₅, -C(O)NHR₅, -OC(O)R₅, -OC(O)OR₅, -SR₅, -S(O)R₅, or -S(O)₂R₅;

 $R_3 \text{ is -H, -halo, -NO}_2, \text{-CN, -OH, -N}(R_5)(R_5), \text{-O}(CH_2)_m R_5, \text{-C}(O)R_5, \\ \text{-C}(O)NR_5R_5, \text{-C}(O)NH(CH_2)_m(R_5), \text{-OCF}_3, \text{-benzyl, -CO}_2CH(R_5)(R_5), \text{-(C}_1\text{-C}_{10})\text{alkyl,} \\ \text{-C}(O)NR_5R_5, \text{-C}(O)NH(CH_2)_m(R_5), \text{-OCF}_3, \text{-benzyl, -CO}_2CH(R_5)(R_5), \text{-(C}_1\text{-C}_{10})\text{alkyl,} \\ \text{-C}(O)NR_5R_5, \text{-C}(O)NH(CH_2)_m(R_5), \text{-OCF}_3, \text{-benzyl, -CO}_2CH(R_5)(R_5), \text{-C}(O)NR_5R_5, \text{-C}(O)$

35 - (C_2-C_{10}) alkenyl, - (C_2-C_{10}) alkynyl, - (C_3-C_{10}) cycloalkyl, - (C_8-C_{14}) bicycloalkyl, - (C_5-C_{10}) cycloalkenyl, - (C_5) heteroaryl, - (C_6) heteroaryl, -naphthyl, - (C_3-C_{10}) heterocycle,

-CO₂(CH₂)_mR₅, -NHC(O)R₅, -NHC(O)R₅, -NHC(O)NHR₅, -OC(O)(CH₂)_mCHR₅R₅, -CO₂(CH₂)_mCHR₅R₅, -S(O)₂R₅, -S(O)₂R₅, -S(O)₂NHR₅, or

5

 R_4 is -CF₃, -(C₁-C₁₀)alkyl, -benzyl, -adamantyl, -morpholinyl, -pyrrolidyl, -pyrrolidyloxide, -pyrrolidinyldione, -piperdidyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -(C₆)heteroaryl, -(C₂-C₁₀)alkenyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₃-C₁₀)heterocycle, or

10

each R₅ is independently H or R₄;

15 each R_6 is independently -halo, -NO₂, -CN, -OH, -CO₂H, -N(C₁-C₁₀)alkyl(C₁-C₁₀)alkyl, -O(C₁-C₁₀)alkyl, -C(O)(C₁-C₁₀)alkyl, -C(O)NH(CH₂)_m(C₁-C₁₀)alkyl, -OCF₃, -benzyl, -CO₂(CH₂)_mCH((C₁-C₁₀)alkyl(C₁-C₁₀)alkyl), -C(O)H, -CO₂(C₁-C₁₀)alkyl, -(C₁-C₁₀)alkyl, -(C₂-C₁₀)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -phenyl, naphthyl, -(C₃-C₁₀)heterocycle, -CO₂(CH₂)_m(C₁-C₁₀)alkyl, -CO₂(CH₂)_mH, -NHC(O)(C₁-C₁₀)alkyl, -NHC(O)NH(C₁-C₁₀)alkyl, -OC(O)(C₁-C₁₀)alkyl, -OC(O)O(C₁-C₁₀)alkyl, or -SO₂NH₂;

n is an integer ranging from 0 to 4; each m is independently an integer ranging from 0 to 8; and each p is independently an integer ranging from 0 to 5.

25

11. A method for treating an inflammatory bowel disorder in an animal, comprising administering to an animal in need thereof an effective amount of a compound of formula (Ic):

$$N = \mathbb{R}^{1}$$

$$(R_{2})_{n}$$

30

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

 R_1 is -H, -CO₂ R_4 ; -C(O) R_5 , or -C(O)N(R_5)(R_5);

each R_2 is independently -halo, -NO₂, -CN, -OH, -N(R_5)(R_5), -OR₅, -C(O)R₅, -OC(O)R₅, -C(O)NHC(O)R₅, -(C₁-C₁₀)alkyl, -(C₂-C₁₀)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₃-C₇)heterocycle, -(C₅)heteroaryl, -(C₆)heteroaryl, phenyl, -naphthyl, -benzyl, -CO₂R₅, -C(O)OCH(R_5)(R₅), -NHC(O)R₅, -NHC(O)NHR₅, -C(O)NHR₅, -OC(O)R₅, -OC(O)OR₅, -SR₅, -S(O)R₅, or -S(O)₂R₅;

 R_3 is -H, -halo, -NO₂, -CN, -OH, -N(R_5)(R_5), -O(CH_2)_m R_5 , -C(O) R_5 , -C(O)NR₅R₅, -C(O)NH(CH₂)_m(R_5), -OCF₃, -benzyl, -CO₂CH(R_5)(R_5), -(C₁-C₁₀)alkyl, -(C₂-C₁₀)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₅-C₁₀)cycloalkenyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -naphthyl, -(C₃-C₁₀)heterocycle, -CO₂(CH₂)_m R_5 , -NHC(O)R₅, -NHC(O)NHR₅, -OC(O)(CH₂)_mCHR₅R₅, -CO₂(CH₂)_mCHR₅R₅, -OC(O)OR₅, -SR₅, -S(O)R₅, -S(O)₂R₅, -S(O)₂NHR₅, or

$$(R_6)_p$$

15

5

10

 R_4 is -CF₃, -(C₁-C₁₀)alkyl, -benzyl, -adamantyl, -morpholinyl, -pyrrolidyl, -pyrridyloxide, -pyrrolidinyldione, -piperdidyl, -(C₅)heteroaryl, -(C₆)heteroaryl, -(C₆-C₁₀)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, -(C₈-C₁₄)bicycloalkyl, -(C₃-C₁₀)heterocycle, or

20

each R_5 is independently H or R_4 ;

each R₆ is independently -halo, -NO₂, -CN, -OH, -CO₂H, -N(C₁-

25 C_{10})alkyl(C_1 - C_{10})alkyl, -O(C_1 - C_{10})alkyl, -C(O)(C_1 - C_{10})alkyl, -C(O)NH(CH_2)_m(C_1 - C_{10})alkyl, -OCF₃, -benzyl, -CO₂(CH_2)_mCH((C_1 - C_{10})alkyl(C_1 - C_{10})alkyl), -C(O)H, -CO₂(C_1 - C_{10})alkyl, -(C_1 - C_1 0)alkyl, -(C_2 - C_1 0)alkenyl, -(C_2 - C_1 0)alkynyl, -(C_3 - C_1 0)cycloalkyl, -(C_5 - C_1 0)cycloalkenyl, -(C_5)heteroaryl, -(C_6)heteroaryl, -phenyl, naphthyl, -(C_3 - C_1 0)heterocycle, -CO₂(CH_2)_m(C_1 - C_1 0)alkyl, -CO₂(CH_2)_mH, -NHC(O)(C_1 - C_1 0)alkyl, -NHC(O)NH(C_1 - C_1 0)alkyl, -OC(O)(C_1 - C_1 0)alkyl, -OC(O)O(C_1 - C_1 0)alkyl, or -SO₂NH₂;

n is an integer ranging from 0 to 4; each m is independently an integer ranging from 0 to 8; and each p is independently an integer ranging from 0 to 5.

35

- 12. The method of claim 11, wherein the inflammatory bowel disorder is regional ileitis, colitis, Crohn's disease, or pouchitis.
- 13. The method of claim 12, wherein the colitis is collagenous or microscopic colitis, ulcerative colitis, or enterocolitis.
 - 14. A compound of formula (Ib):

(Ib)

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

 R_1 is -H, -CO₂R₄, -C(O)R₅, or -C(O)N(R₅)(R₅);

 R_2 is $-(C_1-C_{10})$ alkyl or $-O(C_1-C_{10})$ alkyl;

 R_4 is -(C_5)heteroaryl, -(C_6)heteroaryl, phenyl, naphthyl, or benzyl; and each R_5 is independently -H, -CF₃, -(C_1 - C_{10})alkyl, -benzyl, -(C_2 - C_{10})alkenyl,

- - (C_2-C_{10}) alkynyl, - (C_3-C_{10}) cycloalkyl, - (C_8-C_{14}) bicycloalkyl, or - (C_3-C_{10}) heterocycle.
 - 15. The compound or pharmaceutically acceptable salt or hydrate of claim 13, wherein R_1 is -H.
- 20 16. A method for treating an inflammation disease in an animal, comprising administering to an animal in need thereof an effective amount of a compound or a pharmaceutically acceptable salt or hydrate of the compound of claim 13.
- 17. The method of claim 15, wherein the inflammation disease is arthritis, psoriasis, gingivitis, colitis, uveitis, diabetes, adult respiratory distress syndrome, autoimmune disease, lupus erythematosus, ileitis, ulcerative colitis, Crohn's disease, asthma, periodontitis, ophthalmitis, endophthalmitis, nephrosis, AIDS-related eurodegeneration, stroke, neurotrauma, Alzheimer's disease, encephalomyelitis, cardiomyopathy, or transplant rejection.

30

- 18. A method for treating a reperfusion disease in an animal, comprising administering to an animal in need thereof an effective amount of a compound or a pharmaceutically acceptable salt or hydrate of the compound of claim 13.
- 5 19. The method of claim 17, wherein the reperfusion disease is hemorrhagic shock, sepsis, septic shock, myocardial infarction, or stroke.
 - 20. The compound of claim 13, wherein the animal is human.
- 10 21. A method for inhibiting xanthine oxidase activity in an animal, comprising administering to an animal in need thereof an effective amount of a compound or a pharmaceutically acceptable salt or hydrate of the compound of claim 13.
- 22. A method for treating hyperuricemia in an animal, comprising administering to an animal in need thereof an effective amount of a compound or a pharmaceutically acceptable salt or hydrate of the compound of claim 13.
 - 23. The method of claim 22, wherein the hyperuricemia is gout.
- 24. A method for treating tumor-lysis syndrome in an animal, comprising administering to an animal in need thereof an effective amount of a compound or a pharmaceutically acceptable salt or hydrate of the compound of claim 13.
- 25. A method for treating an inflammatory bowel disorder in an animal,
 25 comprising administering to an animal in need thereof an effective amount of a compound.
 or a pharmaceutically acceptable salt or hydrate of the compound of claim 13.