

学术志

学术志使命——帮助学术群体成长

以学术为志业矢志不渝

fsQCA从入门到精通

主讲人: Dr. Chen

课程全览

- 1. fsQCA方法基础
- 1.1 认识定性比较分析 (QCA)
- 1.2 认识模糊集 (fuzzy set)
- 1.3 初识模糊集定性比较分析 (fsQCA)
- 1.4 模糊集定性比较分析 (fsQCA) 的特点
- 2. fsQCA操作准备
- 2.1下载和安装fsQCA软件
- 2.2 熟悉fsQCA软件的操作
- 2.3 fsQCA分析数据的预处理
- 2.4 fsQCA分析数据的模糊化

- 3. fsQCA操作基础
- 3.1 构建fsQCA真值表
- 3.2 分析fsQCA真值表
- 3.3 逻辑化简与求解
- 3.4 判断核心/边缘条件
- 4. fsQCA操作进阶
- 4.1 fsQCA的敏感度分析
- 4.2 fsQCA的预测效度分析
- 4.3 fsQCA的事后分析
- 4.4 fsQCA分析难点和疑点复盘

5. fsQCA研究开展

- 5.1 适合fsQCA的研究选题
- 5.2 适合fsQCA的模型构建
- 5.3 适合fsQCA的结果呈现
- 5.4 适合fsQCA的引申讨论

6. fsQCA论文赏析

- 6.1 fsQCA论文的特色风格
- 6.2 中文fsQCA论文解析
- 6.3 英文fsQCA论文解析
- 6.4 fsQCA论文的发展趋势

7. fsQCA论文写作和投稿

- 7.1 fsQCA论文的引言书写技巧
- 7.2 fsQCA论文的方法/结果描述技巧
- 7.3 fsQCA论文的局限性表述技巧
- 7.4 fsQCA论文的投稿和修改技巧

相关学习资料

方法论书籍

-Ragin, C. C. (2008). Redesigning social inquiry: Fuzzy sets and beyond. Chicago: University of Chicago Press.

方法论论文

- -Fiss, P. C. (2007). A set-theoretic approach to organizational configurations. Academy of management review, 32(4), 1180-1198.
- -Fiss, P. C., Sharapov, D., & Cronqvist, L. (2013). Opposites attract? Opportunities and challenges for integrating large-N QCA and econometric analysis. Political Research Quarterly, 191-198.
- -Fiss, P. C. (2011). Building better causal theories: A fuzzy set approach to typologies in organization research. Academy of management journal, 54(2), 393-420.

建议搜索下列学者的论文和书籍

Ragin, C. C (this guy has founded the QCA method in social science domain) Fiss, P. C (this guy focuses on applying QCA in management science)

学术志

软件下载地址

-http://www.socsci.uci.edu/~cragin/fsQCA/software.shtml

(There is a publicly available software provided by Ragin, with Windows version and Mac version, also available in Chinese!)

软件操作手册

- -Ragin, C. C. 2017. User's guide to Fuzzy-Set / Qualitative Comparative Analysis. Irvine, California: Department of Sociology, University of California.
- -模糊集/定性对比分析用户操作手册. Ragin (2017)的中文翻译版.

课件和课程资料

- -Wagemann, C. 2013. Courseware for: Qualitative Comparative Analysis (QCA) and Fuzzy Sets.
- -Berg-Schlosser, D., De Meur, G., Rihoux, B., & Ragin, C. C. (2009). Qualitative comparative analysis (QCA) as an approach. Configurational comparative methods: Qualitative comparative analysis (QCA) and related techniques, 1, 18.

第三讲

fsQCA操作基础

景

- 1 构建fsQCA真值表
- 2)分析fsQCA真值表
- 3 逻辑化简与求解
- 4 判断核心/边缘条件

构建fsQCA真值表

构建真值表

■ fsc	ıca				7/5			
File	Variables S	Cases	Analyze	Graphs				
	D		Trut	h Table Algo	rithm Ctrl+T	FB	FC	FD
88		75		essary Condi Coincidence	tions	0.93	0.95	0.87
95		88	Subs	set/Superset	Analysis	0.90	0.97	0.95
45		85	Stati	istics	b	0.90	0.43	0.93
40		AГ		4	0.02	0.00	0.25	0.40

理解真值表

dit	1112111			~	7///		2011 11111	1919.9	
FA 1	FB 1	FC 1	FD 1	number 2 (12%)	Z	raw consist. 0.485452	PRI consist. 0.485452	SYM consist 0.485452	
0	0	0	0	1 (18%)		0.238095	0.238095	0.238095	
1	0	0	0	1 (25%)		0.440945	0.440945	0.440945	
0	1	0	0	1 (31%)		0.245536	0.245536	0.245536	
1	1	0	- 0	1 (37%)		0.518272	0.518272	0.518272	
0	0	1	0	1 (43%)		0.19573	0.19573	0.19573	
1	0	1	0	1 (50%)		0.303406	0.303406	0.303406	
0	1	1	0	1 (56%)		0.173502	0.173502	0.173502	
0	0	0	1	1 (62%)		0.26087	0.26087	0.26087	
1	0	0	1	1 (68%)		0.467066	0.467066	0.467066	
0	1	0	1	1 (75%)		0.36218	0.36218	0.36218	
1		0	1	1 (81%)		0.576112	0.576112	0.576112	
0	0	1	1	1 (87%)		0.24	0.24	0.24	
-17	0	1	1	1 (93%)		0.352941	0.352941	0.352941	
0	1	1	1	1 (100%)	-5/2/	0.361257	0.361257	0.361257	
1	1	1	0	0 (100%)					
			7-			100			_

真值表有 2^k 行 (k代表条件的个数), 反映了所有可能的条件组合情况。

1和0表示由模糊集因果条件 定义的向量空间的不同角。

至此我们又通过模糊代数运 算将模糊隶属度转化成了二 元的值。

分析fsQCA真值表

理解真值表的各项属性

FA FB		FC	FD	num	ber	Z	raw consist.	PRI consist.	SYM consist	LA T	
1	1	1	1	Z	(12%)		0.485452	0.485452	0.485452		
0	0	0	0	1	(18%)		0.238095	0.238095	0.238095		
1	0	0	0	1	(25%)		0.440945	0.440945	0.440945		
0	1	0	0	1.	(31%)		0.245536	0.245536	0.245536		
1	1	0	0	1	(37%)		0.518272	0.518272	0.518272		
0	0	1	0	1	(43%)		0.19573	0.19573	0.19573		
1	0	1,10	0	1	(50%)		0.303406	0.303406	0.303406		
0	1	7	0	1	(56%)		0.173502	0.173502	0.173502		
0	0	0	1	1	(62%)		0.26087	0.26087	0.26087		
1	0	0	1	1	(68%)		0.467066	0.467066	0.467066		
0	1	0	1	1	(75%)		0.36218	0.36218	0.36218		
1	1	0	1	1	(81%)		0.576112	0.576112	0.576112		
0	0	1	1	1	(87%)		0.24	0.24	0.24		
1	0	1	1	1	(93%)		0.352941	0.352941	0.352941		
- 0	1	1	1	1	(100%)		0.361257	0.361257	0.361257		
1	1	1	0	0	(100%)						

Number: 向量空间的角上隶属度大于0.5的情况的数目。括号中显示的是案例的累积百分比,从向量空间中最密集的扇区开始。

可以理解为: "有多少案 例模糊近似为这个条件 组合?"

Raw consist: 向量空间的 那个角上的隶属度是结果 中隶属度的一致子集的程 度。

可以理解为: "在这种条件组合下有多少比例的案例产生了我需要的结果?"

真值表的精炼

Edit Truth Table

File Edit

	SYM consist	PRI consist.	raw consist.	number Z	FD	FC	FB	F <mark>A</mark>
2	0.576112	0.576112	0.576112	1	1	0	1	1
2	0.518272	0.518272	0.518272	1	0	0	1	1
2	0.485452	0.485452	0.485452	2	1	1	1	1
(0.467066	0.467066	0.467066	1	11	0	0	1
	0.44094	0.440945	0.440945	1	0	0	0	1
8	0.36218	0.36218	0.36218	1	1	0	1	0
1	0.36125	0.361257	0.361257	1	1	- 1	1	0
1	0.35294	0.352941	0.352941	1	1	1	0	1
16	0.30340	0.303406	0.303406	1	0	1	0	1
1	0.26087	? ×		■ Dialog	1	0	0	0
(0.245536	OK	1	Relete rows width number	0	0	/1	0
1	0.24	Cancel	th consist 4	and set Z to 1 for rows wi	1	1	0	0
5	0.23809	0.230093	0.250095		0	0	0	0
(1)	0.19573	0.19573	0.19573	1	0	1	0	0
12	0.173502	0.173502	0.173502	1	0	1	1	0
				0	0	1	1	1

案例数截断值

为什么要截断包含案例较少的配型?

研究人员必须根据现有案例的情况,制定一个规则,将一些条件组合分类为对产生结论有价值的,一些条件组合分类为产生结论的"噪音"。

尽管这个条件组合能产生我想要的结果, 但这一条件组合下的案例太少,"极有 可能是偶然,不是我要寻找的组态"。

根据案例数量来确定,小样本选择1-3,大样本的案例截断值可以更大。

真值表的精炼

Edit Truth Table

File Edit

	SYM consist	PRI consist.	raw consist.	number Z	FD	FC	FB	F <mark>A</mark>
2	0.576112	0.576112	0.576112	1	1	0	1	1
2	0.518272	0.518272	0.518272	1	0	0	1	1
2	0.485452	0.485452	0.485452	2	1	1	1	1
(0.467066	0.467066	0.467066	1	11	0	0	1
	0.44094	0.440945	0.440945	1	0	0	0	1
8	0.36218	0.36218	0.36218	1	1	0	1	0
1	0.36125	0.361257	0.361257	1	1	- 1	1	0
1	0.35294	0.352941	0.352941	1	1	1	0	1
16	0.30340	0.303406	0.303406	1	0	1	0	1
1	0.26087	? ×		■ Dialog	1	0	0	0
(0.245536	OK	1	Relete rows width number	0	0	/1	0
1	0.24	Cancel	th consist 4	and set Z to 1 for rows wi	1	1	0	0
5	0.23809	0.230093	0.250095		0	0	0	0
(1)	0.19573	0.19573	0.19573	1	0	1	0	0
12	0.173502	0.173502	0.173502	1	0	1	1	0
				0	0	1	1	1

一致性截断值

为什么要根据一致性来设置结果为"1" (期望的结果出现)的临界值?

尽管这个条件组合下的案例很多,但 既能产生我想要的结果,又能产生我 不想要的结果,"这个条件组合不稳定, 不是我要寻找的组态"。

截断一致性太低的条件组合,大样本下一般设置在0.7-0.8,小样本可能设置在更低的值上。

休息一下。请回顾刚才所讲的内容。

思考: 为什么要进行案例数量和一致性的截断? 如何

进行这些截断?

逻辑化简与求解

Cancel

真值表求解

Specify Analysis

<u>标准分析</u> 为什么标准分析中要判断条件的充分 必要性?

利用研究者的外部知识,使得逻辑求解的过程效度更高,即**找到更"真实正确"的组态。**

利用理论基础和实践经验判断(优先)利用数据情况判断(其次)

Standard Analyses

② 学术書

判断条件的充分必要性

利用理论基础和实践经验判断 (优先)

现有多数期刊在审稿系统中指明:语言不应作为拒稿的理由。但是,如果一篇论文的语言水平高,仍能得到审稿人的认可。

判断条件的充分必要性

利用数据情况判断(其次)

既存在相当数量的X<=Y,又存在相当数量的Y<=X——充分必要(对称性)影响:present or absent

只存在相当数量的X<=Y——充分影响: present

只存在相当数量的Y<=X——必要影响: absent

ID	FĂ	FB	FC	FD	Z		
1	0.96	0.93	0.95	0.87		1	
8	0.95	0.49	0.35	0.43		1	
2	0.93	0.9	XY Plo	0.05	_	0	3
4	0.93	0.89	-	200.0	_		: #
3	0.9	0.9	Y Axis Z		negate negate		
5	0.9	0.35		Column ID	negate •		
7	0.88	0.47		Plot			
6	0.75	0.35				-/	
15	0.47	0.47					
14	0.43	0.43					
11	0.38	0.79					
9	0.35	0.75					
12	0.35	0.68					
13	0.29	0.35					
10	0.23	0.82		1/,			

理解解的结果

TRUTH TABLE ANALYSIS

File: C:/Users/Lynn/OneDrive/桌面/fsQCA操作数据集/data-paper

Model: Z = f(FA, FB, FC, FD) Algorithm: Quine-McCluskey

--- COMPLEX SOLUTION ---

frequency cutoff: 1

FA*~FC

consistency cutoff: 0.440945

raw unique coverage coverage consistency -----0.422857 0.0771428 0.620545 0.541429 0.195714 0.530812

solution coverage: 0.618571 solution consistence: 0.563802

Consistency 一致性度量的是每个解项中的成员是结果子集的程度。

Raw coverage **原始一致性**度量了每个解项所解释的结果中的成员比例。

Unique coverage 特殊一致性度量了每个单独的解项(其他解项不包括的成员资格)单独解释的结果所占的比例。

Solution Consistency 解项一致性度量解项中的成员(解项集)是结果中成员的子集的程度。

Solution coverage 解项覆盖率度量由完整解项解释的结果中的成员比例。

三种解

复杂解 (Complex solution)

路径和路径中的条件最多的解

简约解 (Parsimonious solution)

路径和路径中的条件最少的解

中间解 (Intermediate solution)

路径和路径中的条件居中的解

如果此前条件被判断为结果的充分必要条件(对称性影 响),那么此时复杂解应和中间解一致。

File: C:/Users/Lynn/OneDrive/桌面/fsQCA操作数据集/data-paper

Model: Z = f(FA, FB, FC, FD)Algorithm: Ouine-McCluskey

consistency cutoff: 0.440945

	raw	unique	
	coverage	coverage	consistency
A*~FC	0.422857	0.0771428	0.620545
A*FB*FD	0.541429	0.195714	0.530812
olution	coverage: 0.618	571	
and the second of the second of the		F 60000	

solution consistency: 0.563802

--- PARSIMONIOUS SOLUTION

frequency cutoff:

consistency cutoff: 0.440945

	Law	unique	
	coverage	coverage	consistency
FA*~FC	0.422857	0.0314285	0.620545
FA*FB	0.63	0.238571	0.550562
solution	coverage: 0	661429	

solution consistency: 0.562576

-- INTERMEDIATE SOLUTION

frequency cutoff:

consistency cutoff: 0.440945

Assumptions: FC (present)

	raw	unique		
	coverage	coverage	consistency	
FA*~FC	0.422857	0.0771428	0.620545	
FA*FB*FD	0.541429	0.195714	0.530812	
solution	coverage: 0.618	571		
12 A 12 E1				

solution consistency: 0.563802

休息一下。请回顾刚才所讲的内容。

思考:如何探索条件对结果的充分必要性?怎么理解

解的各项数据?

反事实

反事实

条件组合中可能存在的,但是现实中没收集到的案例。

是因为它们不可能存在, 还是因为它们存在而我们没有收集 到?

我们没有收集到如下条件的案例:研究话题新颖、设计科学、语言水平高、分析不严密

三种反事实假设

如何处理反事实?

严格的做法:

没有收集到反事实案例,我们认为反事实本就不存在。

宽松的做法:

不包含反事实假设——复杂解

尽管没有收集到反事实案例,但我们可以假设反事实案例存在,只是我们没有收集到而已,把假设带入 推理来化简逻辑。

但是反事实案例在联合其他事实案例进行分析时,如何假设反事实中条件与结果的关系呢? 笼统地假设条件与结果之间是充分必要关系,推断反事实的结果。

只包含简单反事实假设——中间解

根据事实案例的规律,细致地区分假设条件与结果之间充分、必要、充分必要关系,推断反事实的结果

包含所有简单和复杂的反事实假设——简约解

解的结果

三个解的不同,来源于反事实假设是否存在,及其假设的"尺度"。 **不进行反事实假设,即得到复杂解。**

进行简单反事实分析,即认为某条件对结果的影响是"存在或缺失" (Present or absent) ,即得到中间解。

进行复杂的反事实分析,即认为某条件对结果的影响是复杂的,或 "存在(Present)",或"缺失(absent)",或存在或缺失" (Present or absent) ,即得到简单解。

只利用案例的纸面信息,得到复杂解。进行了越多的反事实假设, 解就能化简得更彻底,解就更简约! (但解不真实的风险也越高。

复杂解思考得最简单,简约解思考得最复杂!复杂解包含的条件最多(化简最不完全,但最依据案例事实),简约解包含的条件最少(化简最充分,但利用了最多的反事实分析)

File: C:/Users/Lynn/OneDrive/桌面/fsQCA操作数据集/data-paper

Model: Z = f(FA, FB, FC, FD)
Algorithm: Ouine-McCluskey

--- COMPLEX SOLUTION ---

frequency sutoff: 1

consistency cutoff: 0.440945

-/	raw	unique	
	coverage	coverage	consistency
FA*~FC	0.422857	0.0771428	0.620545
FA*FB*FD	0.541429	0.195714	0.530812
solution	coverage: 0.618	571	
solution	consistency: 0.	563802	

--- PARSIMONIOUS SOLUTION ---

frequency cutoff: 1

consistency cutoff: 0.440945

	raw	unique	
	coverage	coverage	consistency
FA*~FC	0.422857	0.0314285	0.620545
FA*FB	0.63	0.238571	0.550562
solution	coverage: 0.	661429	

solution coverage: 0.661429 solution consistency: 0.562576

-- INTERMEDIATE SOLUTION -

frequency cutoff: 1

consistency cutoff: 0.440945

Assumptions: FC (present)

	raw	unique	
	coverage	coverage	consistency
FA*~FC	0.422857	0.0771428	0.620545
FA*FB*FD	0.541429	0.195714	0.530812
solution	coverage: 0.618	571	

|solution coverage: 0.618571 |solution consistency: 0.563802

Edit Truth Table

File Edit

FA	FB	FC	FD	number	Z	raw consist.	PRI consist.	SY	
1	1	0	1	1		0.572104	0.572104		FA*~FC
1	1	0	0	1		0.521452	0.521452		FA*FB*FD
11	1	1	1	2		0.489198	0.489198		solution
1	0	0	1	1		0.463855	0.463855		0.463855
1	0	0	0	1		0.440945	0.440945		0.440945
0	1	7/1/1	1	1		0.369973	0.369973		0.369973
0	1	0	1	1		0.363344	0.363344		0.363344
1	0	1	1	1		0.358621	0.358621		0.358621
1 X	0	1	0	1		0.301538	0.301538		0.301538
0	0	0	1	1	77/5	0.262774	0.262774		0.262774
0	0	1	1	1		0.244898	0.244898		0.244898
-//0	1	0	0	1		0.244444	0.244444		0.244444
0	0	0	0	7///1		0.238095	0.238095		0.238095
0	0	1	0	1		0.19573	0.19573		0.19573
0	1	1	0	1		0.17134	0.17134		0.17134
1	1	1	0	0					

File: C:/Users/Lynn/OneDrive/桌面/fsQCA操作数据集/data-paper

Model: Z = f(FA, FB, FC, FD)
Algorithm: Quine-McCluskey

--- COMPLEX SOLUTION ---

frequency cutoff: 1

consistency cutoff: 0.440945

raw unique
coverage coverage consistency
0.422857 0.0771428 0.620545
FD 0.541429 0.195714 0.530812
on coverage: 0.618571

n consistency: 0.563802

Edit Truth Table

File Edit

FA F	В	FC	FD nu	mber	Z raw consist.	PRI consist.	FA*~FC
1	1	0	1	1	0.572104	0.572104	FA*FB
1	1	0	0	1	0.521452	0.521452	solutio
1	1	1	1	2	0.489198	0.489198	solutio
1	0	0	1	1	0.463855	0.463855	0.463855
1	0	0	0	1	0.440945	0.440945	0.44094
0	1	-12 1	1	1	0.369973	0.369973	0.36997
0	1	0	1	1	0.363344	0.363344	0.36334
1	0	1	1	1	0.358621	0.358621	0.35862
1	0	1	0	1	0.301538	0.301538	0.30153
0	0	0	1	1	0.262774	0.262774	0.26277
0	0	1	1	1	0.244898	0.244898	0.24489
0	1	0	0	1	0.244444	0.244444	0.24444
0	0	0	0	1 1	0.238095	0.238095	0.23809
0	0	1	0	1	0.19573	0.19573	0.1957
0	1	1	0	1	0.17134	0.17134	0.1713
1	1	1	0	0			

--- PARSIMONIOUS SOLUTION ---

frequency cutoff: 1

consistency cutoff: 0.440945

raw

coverage coverage consistency

*~FC 0.422857 0.0314285 0.620545

*FB 0.63 0.238571 0.550562

unique

solution coverage: 0.661429 solution consistency: 0.562576

无论怎样进行反事实假设,A和B都是产生结果的条件——核心条件 (Core condition)

放宽了反事实假设后,D由条件变为了非条件——边缘条件(Peripheral condition)

核心条件 (Core condition): 同一路径中,同时出现在简约解、中间解和复杂解的条件。

边缘条件(Peripheral condition):同一路径中,仅出现在复杂解中,而没有出现在中间解和简约解中的条件。

如果在条件选择中选择了"存在或缺失",则中间解和复杂解是相同的。利用简约解和复杂解就可以判断。同时出现在复杂解和简约解中的是核心条件,仅出现在复杂解中的是边缘条件。

当解的路径和条件非常复杂时,中间解提供了化简的过渡路径,可以辅助判断。

File: C:/Users/Lynn/OneDrive/桌面/fsQCA操作数据集/data-paper Model: Z = f(FA, FB, FC, FD)Algorithm: Quine-McCluskey --- COMPLEX SOLUTION --frequency cutoff: 1 consistency cutoff: 0.440945 unique coverage 0.620545 FA*~FC 0.0771428 FA*FB*F 0.541429 0.195714 0.530812 solution coverage: 0.618571 solution consistency: 0.563802 --- PARSIMONIOUS SOLUTION --frequency cutoff: 1 consistency cutoff: 0.440945 unique raw coverage consistency 0.620545 FA*~FC 0.422857 0.0314285 0.238571 0.550562 FA*FB 0.63 solution coverage: 0.661429 solution consistency: 0.562576 --- INTERMEDIATE SOLUTION --frequency cutoff: 1 consistency cutoff: 0.440945 Assumptions: FC (present) unique raw consistency 0.422857 0.0771428 0.620545 FA*~FC FA*FB*FD 0.541429 0.195714 0.530812 solution coverage: 0.618571 solution consistency: 0.563802

休息一下。请回顾刚才所讲的内容。

思考: 为什么会有三种不同的解? 怎么根据三种解的

不同来判断核心条件和边缘条件?

学术志使命——帮助学术群体成长

感谢您的观看

THANKS FOR WATCHING

