Folha 3

(4) g)
$$\lim_{(y_1,y_1+1)\to(0,0,0)} \frac{2y+2}{x^2+y^2+z^2} = 0$$
 $f(x_1,y_1,z) = \frac{2yz}{x^2+y^2+z^2}$

· Calcube f(z, mz, nz), $m, n \in \mathbb{R}$ Veeifice que lim f(z, mz, nz) = 0Veeifice que lim $f(0, y, 0) = 0 = \lim_{z \to 0} f(0, 0, z)$ [Note que esgotamos as sectas que passem em (0, 0, 0)]

Recorder que 1215 \(\sigma^2 + y^2 + z^2 \), |y| \(\sigma^2 + y^2 + z^2 \), |z| \(\sigma^2 + y^2 + z^2 \)
Verifice que, usando as designaldades acime,

$$0 \le \frac{1 \times y^{2} 1}{x^{2} + y^{2} + z^{2}} \le \sqrt{x^{2} + y^{2} + z^{2}}$$
Concluir que lim $f(x, y, z) = 0$
 $(x, y, z) \to (0, 0, 0)$

h) Calculee line $f(x_1,0,0)$ e concluir que lim $f(x_1,y_1z)$ mai $(x_1,y_1z) \rightarrow (x_1,y_1z) \rightarrow ($