We claim:

1	1.	An interconnect structure formed on a substate, the structure compressed.
2		a dielectric layer overlying the substrate, said dielectric layer being
3		formed of a carbon-containing dielectric material having a dielectric constant
4		of less than about 4;
5		a continuous hardmask layer on said dielectric layer, said hardmask
6		layer having a top surface;
7		at least one conductor embedded in said dielectric layer and having a
8		surface coplanar with the top surface of said hardmask layer; and
9		a cap layer on said at least one conductor and on said hardmask layer,
10		said cap layer having a bottom surface in strong adhesive contact with said
11		conductor, wherein said cap layer is formed of silicon nitride by a plasma-
12		enhanced chemical vapor deposition (PE CVD) process.
1	2.	The interconnect structure according to Claim 1, further comprising a pre-clean
2		layer disposed beneath said cap layer and on said at least one conductor and
3		said hardmask layer, said pre-clean layer being formed of a material
4		comprising copper, silicon and oxygen.
1	3.	The interconnect structure according to Claim 1, further comprising a
2		conductive liner disposed between said conductor and said dielectric layer.
1	4.	The interconnect structure according to Claim 1, further comprising an
2	٦.	adhesion promoter layer disposed between said dielectric layer and the
3		substrate.

The interconnect structure according to Claim 1, wherein said dielectric layer is 1 5. formed of an organic thermoset polymer having a dielectric constant of about 2 1.8 to about 3.5. 3 The interconnect structure according to Claim 5, wherein said dielectric layer is 6. 1 formed of a polyarylene ether polymer. 2 The interconnect structure according to Claim 1, wherein said hardmask layer 7. 1 is formed of silicon nitride. 2 The interconnect structure according to Claim1, wherein said hardmask layer is 8. 1 formed of silicon carbide. 2 The interconnect structure according to Claim 1, wherein said conductor is 9. 1 formed of copper. 2 The interconnect structure according to Claim 1, wherein said hardmask layer 1 10. has a thickness of at least about 500 angstroms. 2 The interconnect structure according to Claim 7, wherein said hardmask layer 11. 1 has a thickness of at least about 25 angstroms. 2 The interconnect structure according to Claim 8, wherein said hardmask layer 12. 1 has a thickness of at least about 100 angstroms. 2 The interconnect structure according to Claim 1, wherein said cap layer has a 13. 1 thickness of about 5 to about 120 nm. 2

1	14.	The interconnect structure according to Claim 1, wherein said cap layer has a
2		composition of about 30 to 45 atomic % silicon, about 30 to 55 atomic %
3		nitrogen, and about 10 to 25 atomic % hydrogen.
1	15.	A method for forming an interconnect structure on a substrate, the method
2		comprising the steps of:
3		depositing a dielectric layer, said dielectric layer being formed of a
4		carbon-containing dielectric material having a dielectric constant of less than
5		about 4;
6		depositing a hardmask layer on said dielectric layer, said hardmask
7		layer having a top surface;
8		forming an opening in said dielectric layer and said hardmask layer;
9	•	filling said opening with a conductive material, thereby forming a
10		conductor, said conductor having a surface coplanar with the top surface of
11		said hardmask layer;
12		exposing said conductor to a reducing plasma comprising at least one
13		gas selected from the group consisting of H ₂ , N ₂ , NH ₃ and noble gases; and
14		depositing silicon nitride on said conductor by a plasma-enhanced
15		chemical vapor deposition (PE CVD) process, thereby forming a silicon nitride
16		cap layer.
1	16.	The method according to Claim 15, wherein said hardmask layer is formed of
2		silicon nitride, and is deposited by a chemical vapor deposition (CVD) process
1	17.	The method according to Claim 15, wherein said hardmask layer is formed of
2		silicon carbide, and is deposited by a chemical vapor deposition (CVD)
3		process.

- 1 18. The method according to Claim 15, wherein said conductor is exposed to a reducing plasma comprising NH₃ at a flow rate of at least about 4000 sccm.
- The method according to Claim 15, wherein said conductor is exposed to a reducing plasma with a high frequency RF power of about 150 watts to about 450 watts and a low frequency RF power of about 100 watts to about 300 watts.
- The method according to Claim 15, wherein said conductor is exposed to a reducing plasma in a chemical vapor deposition (CVD) reactor at a pressure of less than about 20 torr, and said silicon nitride cap layer is deposited in the same CVD reactor at a pressure of less than about 10 torr.