BÀI 32. CÁC QUY TẮC TÍNH ĐẠO HÀM

- CHƯƠNG 9. ĐẠO HÀM
- | FanPage: Nguyễn Bảo Vương

PHẦN A. LÝ THUYẾT VÀ VÍ DỤ MINH HỌA

- 1. ĐAO HÀM CỦA MỘT SỐ HÀM SỐ THƯỜNG GĂP
- a) Đạo hàm của hàm số $y = x^n (n \in \mathbb{N}^*)$

Hàm số $y = x^n (n \in \mathbb{N}^*)$ có đạo hàm trên \mathbb{R} và $(x^n)' = nx^{n-1}$.

b) Đạo hàm của hàm số $y = \sqrt{x}$

Hàm số $y = \sqrt{x}$ có đạo hàm trên khoảng $(0; +\infty)$ và $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$.

Ví dụ 1. Tính đạo hàm của hàm số $y = \sqrt{x}$ tại các điểm x = 4 và $x = \frac{1}{4}$.

Giải

Với mọi $x \in (0; +\infty)$, ta có $y' = \frac{1}{2\sqrt{x}}$. Do đó $y'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$ và $y'\left(\frac{1}{4}\right) = \frac{1}{2\sqrt{\frac{1}{4}}} = 1$.

2. ĐAO HÀM CỦA TỔNG, HIÊU, TÍCH, THƯƠNG

Giả sử các hàm số u = u(x), v = v(x) có đạo hàm trên khoảng (a;b). Khi đó

$$(u+v)'=u'+v'; (u-v)'=u'-v';$$

$$(uv)' = u'v + uv'; \quad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}(v = v(x) \neq 0).$$

Chú ý

- Quy tắc đạo hàm của tổng, hiệu có thể áp dụng cho tổng, hiệu của hai hay nhiều hàm số.
- Với k là một hằng số, ta có: (ku)' = ku'.
- Đạo hàm của hàm số nghịch đảo: $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}(v = v(x) \neq 0)$.

Ví dụ 2. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{1}{3}x^3 - x^2 + 2x + 1$$

b)
$$y = \frac{2x+1}{x-1}$$

Giải

a) Ta có:
$$y' = \frac{1}{3}(x^3)' - (x^2)' + 2(x)' + 1'$$

$$= \frac{1}{3} \cdot 3x^2 - 2x + 2$$

$$= x^2 - 2x + 2$$

b) Với mọi $x \ne 1$, ta có:

$$y' = \frac{(2x+1)'(x-1) - (2x+1)(x-1)'}{(x-1)^2}$$
$$= \frac{2(x-1) - (2x+1)}{(x-1)^2} = -\frac{3}{(x-1)^2}$$

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

Ví dụ 3. Giải bài toán trong tình huống mở đầu.

Giải

Phương trình chuyển động của vật là $h = v_0 t - \frac{1}{2} g t^2$.

Vận tốc của vật tại thời điểm t được cho bởi $v(t) = h' = v_0 - gt$.

Vật đạt độ cao cực đại tại thời điểm $t_1 = \frac{v_0}{g}$, tại đó vận tốc bằng $v(t_1) = v_0 - gt_1 = 0$.

Vật chạm đất tại thời điểm t_2 mà $h(t_2) = 0$ nên ta có:

$$v_0 t_2 - \frac{1}{2} g t_2^2 = 0 \iff t_2 = 0 \text{ (loai)}; t_2 = \frac{2v_0}{g}.$$

Khi chạm đất, vận tốc của vật là $v(t_2) = v_0 - gt_2 = -v_0 = -20(m/s)$.

Dấu âm của $v(t_2)$ thể hiện độ cao của vật giảm với vận tốc $20\,m/s$ (tức là chiều chuyển động của vật ngược với chiều dương đã chọn).

3. ĐẠO HÀM CỦA HÀM SỐ HỢP

a) Khái niệm hàm số hợp

Giả sử u = g(x) là hàm số xác định trên khoảng (a;b), có tập giá trị chứa trong khoảng (c;d) và y = f(u) là hàm số xác định trên khoảng (c;d). Hàm số y = f(g(x)) được gọi là hàm số hợp của hàm số y = f(u) với u = g(x).

Ví dụ 4. Biểu diễn hàm số $y = (2x+1)^{10}$ dưới dạng hàm số hợp.

Giải

Hàm số $y = (2x+1)^{10}$ là hàm số hợp của hàm số $y = u^{10}$ với u = 2x+1.

b) Đạo hàm của hàm số hợp

Nếu hàm số u = g(x) có đạo hàm u'_x tại x và hàm số y = f(u) có đạo hàm y'_u tại u thì hàm số hợp y = f(g(x)) có đạo hàm y'_x tại x là $y'_x = y'_u \cdot u'_x$.

Ví dụ 5. Tính đạo hàm của hàm số $y = \sqrt{x^2 + 1}$.

Giải

Đặt
$$u = x^2 + 1$$
 thì $y = \sqrt{u}$ và $y'_u = \frac{1}{2\sqrt{u}}, u'_x = 2x$.

Theo công thức đạo hàm của hàm số hợp, ta có: $y'_x = y'_u \cdot u'_x = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}$.

Vậy đạo hàm của hàm số đã cho là $y' = \frac{x}{\sqrt{x^2 + 1}}$.

Trong thực hành, ta thường trình bày ngắn gọn như sau:

$$y' = (\sqrt{x^2 + 1})' = \frac{(x^2 + 1)'}{2\sqrt{x^2 + 1}} = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}$$

4. ĐAO HÀM CỦA HÀM SỐ LƯƠNG GIÁC

a) Đạo hàm của hàm số $y = \sin x$

- Hàm số $y = \sin x$ có đạo hàm trên \mathbb{R} và $(\sin x)' = \cos x$.
- Đối với hàm số hợp $y = \sin u$, với u = u(x), ta có: $(\sin u)' = u' \cdot \cos u$.

Ví dụ 6. Tính đạo hàm của hàm số $y = \sin\left(2x + \frac{\pi}{8}\right)$.

Giải

Ta có:
$$y' = \left(2x + \frac{\pi}{8}\right)' \cdot \cos\left(2x + \frac{\pi}{8}\right) = 2\cos\left(2x + \frac{\pi}{8}\right).$$

b) Đạo hàm của hàm số $y = \cos x$

- Hàm số $y = \cos x$ có đạo hàm trên \mathbb{R} và $(\cos x)' = -\sin x$.
- Đối với hàm số hợp $y = \cos u$, với u = u(x), ta có: $(\cos u)' = -u' \cdot \sin u$.

Ví dụ 7. Tính đạo hàm của hàm số $y = \cos\left(4x - \frac{\pi}{3}\right)$.

Giải

Ta có:
$$y' = -\left(4x - \frac{\pi}{3}\right)' \cdot \sin\left(4x - \frac{\pi}{3}\right) = -4\sin\left(4x - \frac{\pi}{3}\right).$$

c) Đạo hàm của các hàm số $y = \tan x$ và $y = \cot x$

- Hàm số $y = \tan x$ có đạo hàm tại mọi $x \neq \frac{\pi}{2} + k\pi (k \in \mathbb{Z})$ và $(\tan x)' = \frac{1}{\cos^2 x}$.
- Hàm số $y = \cot x$ có đạo hàm tại mọi $x \neq k\pi (k \in \mathbb{Z})$ và $(\cot x)' = -\frac{1}{\sin^2 x}$.
- Đối với các hàm số hợp $y = \tan u$ và $y = \cot u$, với u = u(x), ta có

$$(\tan u)' = \frac{u'}{\cos^2 u}; (\cot u)' = -\frac{u'}{\sin^2 u}$$
 (giả thiết $\tan u$ và $\cot u$ có nghĩa)

Ví dụ 8. Tính đạo hàm của hàm số $y = \tan\left(2x + \frac{\pi}{4}\right)$.

Giải

Ta có:
$$y' = \frac{\left(2x + \frac{\pi}{4}\right)'}{\cos^2\left(2x + \frac{\pi}{4}\right)} = \frac{2}{\cos^2\left(2x + \frac{\pi}{4}\right)}.$$

5. ĐAO HÀM CỦA HÀM SỐ MŨ VÃ HÀM SỐ LÔGART

a) Giới hạn liên quan đến hàm số mũ và hàm số lôgarit

Chú ý: -
$$\lim_{t \to +\infty} \left(1 + \frac{1}{t} \right)^t = e$$
 - $\lim_{t \to -\infty} \left(1 + \frac{1}{t} \right)^t = e$.

Nhận xét. Ta có các giới hạn sau: $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e; \lim_{x\to 0} \frac{\ln(1+x)}{x} = 1;$ $\lim_{x\to 0} \frac{e^x - 1}{x} = 1.$

b) Đạo hàm của hàm số mũ

- Hàm số $y = e^x$ có đạo hàm trên \mathbb{R} và $(e^x)' = e^x$.

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

Đối với hàm số hợp $y = e^u$, với u = u(x), ta có: $(e^u) = e^u \cdot u'$.

- Hàm số $y = a^x (0 < a \ne 1)$ có đạo hàm trên \mathbb{R} và $(a^x) = a^x \ln a$.

Đối với hàm số hợp $y = a^u$, với u = u(x), ta có: $(a^u) = a^u \cdot u \cdot \ln a$.

Ví dụ 9. Tính đạo hàm của hàm số $y = 2^{x^2 - x}$.

Giải

Ta có: $y' = 2^{x^2-x} \cdot (x^2-x)' \cdot \ln 2 = 2^{x^2-x} (2x-1) \ln 2$.

c) Đạo hàm của hàm số lôgarit

- Hàm số $y = \ln x$ có đạo hàm trên khoảng $(0; +\infty)$ và $(\ln x)' = \frac{1}{x}$. Đối với hàm số hợp $y = \ln u$, với u = u(x), ta có: $(\ln u)' = \frac{u'}{1}$.

- Hàm số $y = \log_a x$ có đạo hàm trên khoảng $(0; +\infty)$ và $(\log_a x)' = \frac{1}{r \ln a}$. Đối với hàm số hợp $y = \log_a u$, với u = u(x), ta có: $(\log_a u)' = \frac{u}{u \ln a}$.

Chú ý. Với x < 0, ta có: $\ln |x| = \ln(-x)$ và $[\ln(-x)]' = \frac{(-x)'}{-x} = \frac{1}{x}$. Từ đó ta có: $(\ln |x|)' = \frac{1}{x}$, $\forall x \neq 0$

Ví dụ 10. Tính đạo hàm của hàm số $y = \ln(x^2 + 1)$.

Giải

Vì $x^2+1>0$ với mọi x nên hàm số xác định trên \mathbb{R} . Ta có: $y' = \frac{\left(x^2+1\right)'}{r^2+1} = \frac{2x}{r^2+1}$.

BÁNG ĐẠO HÀM $(x^n)' = nx^{n-1}$ $(\sin x)' = \cos x$ $(e^x)' = e^x$ $\left(\frac{1}{x}\right)' = -\frac{1}{x^2} \qquad (\cos x)' = -\sin x \qquad \left(a^x\right)' = a^x \ln a$ $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$ $(\tan x)' = \frac{1}{\cos^2 x}$ $(\ln x)' = \frac{1}{x}$ $(u^n)' = nu^{n-1}.u' \quad (\cot x)' = -\frac{1}{\sin^2 x} \quad (\log_a x)' = \frac{1}{x \ln a}$ $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$ $(\sin u)' = u' \cdot \cos u$ $(e^u)' = e^u \cdot u'$ $(\sqrt{u})' = \frac{u'}{2\sqrt{u}} \qquad (\cos u)' = -u' \cdot \sin u \quad (a^u)' = a^u \cdot u' \cdot \ln a$ $(\tan u)' = \frac{u'}{\cos^2 u}$ $(\ln' u)' = \frac{u'}{u}$ $(\cot u)' = -\frac{u}{\sin^2 u} \quad (\log_a u)' = \frac{u}{u \ln a}$

PHẦN B. BÀI TẬP TỰ LUẬN (PHÂN DẠNG)

Dang 1. Tính đạo hàm

(SGK - KNTT 11 - Tập 2) Tính đạo hàm của các hàm số sau:

Điện thoại: 0946798489

$$a) y = \frac{\sqrt{x}}{x+1}$$

b)
$$y = (\sqrt{x} + 1)(x^2 + 2)$$

Câu 2. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = (2x-3)^{10}$$

b)
$$y = \sqrt{1 - x^2}$$
.

Câu 3. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của hàm số $y = \sin\left(\frac{\pi}{3} - 3x\right)$.

Câu 4. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của hàm số $y = 2\cos\left(\frac{\pi}{4} - 2x\right)$.

Câu 5. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của hàm số $y = 2 \tan^2 x + 3 \cot \left(\frac{\pi}{3} - 2x \right)$.

Câu 6. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = e^{x^2 - x}$$
;

b)
$$y = 3^{\sin x}$$
.

Câu 7. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của hàm số $y = \log_2(2x-1)$.

Câu 8. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = x^3 - 3x^2 + 2x + 1$$
;

b)
$$y = x^2 - 4\sqrt{x} + 3$$
.

Câu 9. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{2x-1}{x+2}$$

b)
$$y = \frac{2x}{x^2 + 1}$$

Câu 10. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = x \sin^2 x$$
;

b)
$$y = \cos^2 x + \sin 2x$$
;

c)
$$y = \sin 3x - 3\sin x$$
;

d)
$$y = \tan x + \cot x$$
.

Câu 11. (SGK - KNTT 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$v = 2^{3x-x^2}$$

b)
$$y = \log_3(4x+1)$$
.

Câu 12. (SGK - KNTT 11 - Tập 2) Cho hàm số $f(x) = 2\sin^2\left(3x - \frac{\pi}{4}\right)$. Chứng minh rằng

$$|f'(x)| \le 6$$
 với mọi x .

Câu 13. Tính đao hàm của các hàm số sau:

a)
$$y = (\sqrt{x} + 2)(x^2 + 1)$$

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

b)
$$y = \frac{x-1}{x^2+1}$$

Câu 14. Tính đạo hàm của hàm số $y = \sin^2\left(x + \frac{\pi}{4}\right)$.

Câu 15. Tính đạo hàm của hàm số $y = x^2 e^{-2x}$ và tìm x để y' = 0.

Câu 16. Cho hàm số $f(x) = x + \tan\left(x + \frac{\pi}{4}\right)$ và $g(x) = x \ln|2 - x|$. Tính $\frac{f'(0)}{g'(0)}$.

Câu 17. Tính đạo hàm của các hàm số sau:

a)
$$y = (x+1)^2 (x^2-1)$$

b)
$$y = \left(x^2 - \frac{2}{\sqrt{x}}\right)^3$$

Câu 18. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{x^2 - x + 1}{x + 2}$$

b)
$$y = \frac{1-x^2}{x^2+1}$$

Câu 19. Cho hàm số $f(x) = \frac{x}{\sqrt{4-x^2}}$ và $g(x) = \frac{1}{x} + \frac{1}{\sqrt{x}} + x^2$. Tính f'(0) - g'(1).

Câu 20. Tính đạo hàm của hàm số $y = 3 \tan \left(x + \frac{\pi}{4}\right) - 2 \cot \left(\frac{\pi}{4} - x\right)$.

Câu 21. Cho hàm số $f(x) = \cos^2 x + \cos^2 \left(\frac{2\pi}{3} + x\right) + \cos^2 \left(\frac{2\pi}{3} - x\right)$. Tính đạo hàm f'(x) và chứng tỏ f'(x) = 0 với mọi $x \in \mathbb{R}$.

Câu 22. Cho hàm số $f(x) = 4\sin^2\left(2x - \frac{\pi}{3}\right)$. Chứng minh rằng $|f'(x)| \le 8$ với mọi $x \in \mathbb{R}$. Tìm x để f'(x) = 8.

Câu 23. Biết y là hàm số của x thoả mãn phương trình $xy = 1 + \ln y$. Tính y'(0).

Câu 24. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{1 - \sqrt[3]{x}}{1 + \sqrt[3]{x}} \text{ v\'oi } x > 0;$$

b)
$$y = (1+x-2x^2)(2-x^2+\frac{x^3}{3})$$

Câu 25. Tính đạo hàm của các hàm số sau:

a)
$$y = (\sin x + 2\cos x)(\sin x - 2\cos x + 1)$$
;

b)
$$y = \frac{\tan x - 1}{\cot x + 2}$$
.

Câu 26. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{2^x + 1}{2^x - 1}$$

b)
$$y = (3 \ln x + 2) (2 \log_3 x - 5)$$
.

Câu 27. Tính đạo hàm của các hàm số sau:

a)
$$y = \sqrt{2 + \sin 3x}$$
;

b)
$$y = \ln^2(3x+2)$$
;

c)
$$y = \frac{1}{e^{3x} - 1}$$

d)
$$y = \tan(\cot x)$$
.

Câu 28. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{-3x^2}{2} + \frac{2}{x} + \frac{x^3}{3}$$

b)
$$y = (x^2 - 1)(x^2 - 4)(x^2 + 9);$$

c)
$$y = \frac{x^2 - 2x}{x^2 + x + 1}$$

d)
$$y = \frac{1 - 2x}{x + 1}$$

e)
$$v = xe^{2x+1}$$
;

g)
$$y = (2x+3)3^{2x+1}$$
;

h)
$$y = x \ln^2 x$$
;

i)
$$y = \log_2(x^2 + 1)$$
.

Câu 29. Cho hàm số

$$f(x) = 3x^3 - 4\sqrt{x}$$

Tính f(4); f'(4); $f(a^2)$; $f'(a^2)$ (a là hằng số khác 0).

Câu 30. Tính đạo hàm của các hàm số sau:

a)
$$y = (1+x^2)^{20}$$
;

b)
$$y = \frac{2+x}{\sqrt{1-x}}$$

Câu 31. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{x}{\sin x - \cos x}$$
;

b)
$$y = \frac{\sin x}{x}$$
;

c)
$$y = \sin x - \frac{1}{3} \sin^3 x$$

d)
$$y = \cos(2\sin x)$$
.

Câu 32. Tính đạo hàm của mỗi hàm số sau tại điểm $x_0 = 1$:

a)
$$f(x) = x^6$$

b)
$$g(x) = (2x-1)(x+1)$$
;

$$c) h(x) = \frac{1-x}{3x+5}$$

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

d)
$$k(x) = \frac{1}{\sqrt{x}}$$

e)
$$m(x) = 2^{3x+1}$$

g)
$$n(x) = \log_3(2x+1)$$
.

Câu 33. Tính đạo hàm của mỗi hàm số sau tại điểm $x_0 = \frac{\pi}{4}$.

a)
$$f(x) = 2\sin x$$

b)
$$g(x) = \cot\left(x + \frac{\pi}{4}\right)$$
.

Câu 34. Cho hàm số $f(x) = x^3 - 3x$. Giải bất phương trình f'(x) < 0.

Câu 35. Cho hàm số f(x) có đạo hàm tại mọi điểm thuộc tập xác định, hàm số g(x) được xác định bởi g(x) = -3 - 2f(x). Biết f'(5) = 1. Tính g'(5).

Câu 36. Cho hàm số f(x) có đạo hàm tại mọi điểm thuộc tập xác định và f'(5) = 1. Tính đạo hàm của hàm số g(x) = f(1+2x) tại x = 2.

Câu 37. Tính đạo hàm của mỗi hàm số sau tại điểm $x_0 = 2$:

a)
$$f(x) = e^{x^2 + 2x}$$

b)
$$g(x) = \frac{3^x}{2^x}$$

c)
$$h(x) = 2^x \cdot 3^{x+2}$$

d)
$$k(x) = \log_3(x^2 - x)$$
.

Câu 38. Tìm đạo hàm của mỗi hàm số sau:

a)
$$f(x) = 2\cos(\sqrt{x})$$
;

b)
$$g(x) = \tan(x^2)$$
;

c)
$$h(x) = \cos^2(3x) - \sin^2(3x)$$

d)
$$k(x) = \sin^2 x + e^x \cdot \sqrt{x}$$
.

Câu 39. Cho hàm số $f(x) = 2^{3x-6}$. Giải phương trình $f'(x) = 3 \ln 2$.

Câu 40. Giải bất phương trình f'(x) < 0, biết:

a)
$$f(x) = x^3 - 9x^2 + 24x$$
;

b)
$$f(x) = -\log_5(x+1)$$
.

Câu 41. Cho hàm số f(x) có đạo hàm tại mọi điểm thuộc tập xác định, hàm số g(x) được xác định bởi $g(x) = [f(x)]^2 + 2xf(x)$. Biết f'(0) = f(0) = 1. Tính g'(0).

Dạng 2. Ứng dụng

Câu 42. (SGK - KNTT 11 - Tập 2) Một vật chuyển động có phương trình

 $s(t) = 4\cos\left(2\pi t - \frac{\pi}{8}\right)(m)$, với t là thời gian tính bằng giây. Tính vận tốc của vật khi t = 5 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).

Câu 43. (SGK - KNTT 11 - Tập 2) Ta đã biết, độ pH của một dung dịch được xác định bởi $pH = -\log[H^+]$, ở đó $[H^+]$ là nồng độ (mol/lít) của ion hydrogen. Tính tốc độ thay đổi của pH đối với nồng độ $[H^+]$.

Câu 44. (SGK - KNTT 11 - Tập 2) Một vật chuyển động rơi tự do có phương trình $h(t) = 100 - 4.9t^2$, ở đó độ cao h so với mặt đất tính bằng mét và thời gian t tính bằng giây. Tính vận tốc của vât:

- a) Tại thời điểm t = 5 giây;
- b) Khi vật chạm đất.

Câu 45. (SGK - KNTT 11 - Tập 2) Chuyển động của một hạt trên một dây rung được cho bởi $s(t) = 12 + 0.5 \sin(4\pi t)$, trong đó s tính bằng centimét và t tính bằng giây. Tính vận tốc của hạt sau t giây. Vận tốc cực đại của hạt là bao nhiêu?

Câu 46. Một vật được phóng thẳng đứng lên trên từ mặt đất với vận tốc ban đầu là $v_0(m/s)$ (bỏ qua sức cản của không khí) thì độ cao h của vật (tính bằng mét) sau t giây được cho bởi công thức $h = v_0 t - \frac{1}{2} g t^2$ (g là gia tốc trọng trường). Tìm vận tốc của vật khi chạm đất.

Câu 47. Chuyến động của một hạt trên một dây rung được cho bởi công thức $s(t) = 10 + \sqrt{2} \sin\left(4\pi t + \frac{\pi}{6}\right)$, trong đó s tính bằng centimét và t tính bằng giây. Tính vận tốc của hạt sau t giây. Vận tốc cực đại của hạt là bao nhiều? (Làm tròn kết quả đến chữ số thập phân thứ nhất).

Câu 48. Một chuyển động thẳng xác định bởi phương trình $s(t) = -2t^2 + 15t + 3$, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc và gia tốc của chuyển động tại thời điểm t = 2.

Câu 49. Nếu số lượng sản phẩm sản xuất được của một nhà máy là x (đơn vị: trăm sản phẩm) thì lợi nhuận sinh ra là $P(x) = -200x^2 + 12800x - 74000$ (nghìn đồng). Tính tốc độ thay đổi lợi nhuận của nhà máy đó khi sản xuất 1200 sản phẩm.

Câu 50. Nếu số lượng sản phẩm sản xuất được của một nhà máy là x (đơn vị: trăm sản phẩm) thì lợi nhuận sinh ra là P(x) = 200(x-2)(17-x) (nghìn đồng). Tính tốc độ thay đổi lợi nhuận của nhà máy đó khi sản xuất 3000 sản phẩm.

Câu 51. Cho hàm số $y = \frac{2x+1}{x-2}$ có đồ thị (C), viết phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến bằng -5.

Câu 52. Cho hàm số $y = x^3 + 2$ có đồ thị (*C*). Viết phương trình tiếp tuyến của (*C*) biết tiếp tuyến đó vuông góc với đường thẳng $y = -\frac{1}{3}x - 1$.

Câu 53. Một chất điểm chuyển động theo phương trình $s(t) = \frac{1}{3}t^3 - 2t^2 + 4t + 1$, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính vận tốc tức thời của chất điểm tại thời điểm t = 3(s).

Câu 54. Một chất điểm chuyển động theo phương trình $s(t) = 6 \sin\left(3t + \frac{\pi}{4}\right)$, trong đó t > 0, t tính

bằng giây, s(t) tính bằng centimét. Tính vận tốc tức thời của chất điểm tại thời điểm $t = \frac{\pi}{6}(s)$.

Câu 55. Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động $s(t) = 2 + 196t - 4,9t^2$, trong đó $t \ge 0,t$ (s) là thời gian chuyển động, s(m) là độ cao so với mặt đất.

- a) Sau bao lâu kể từ khi bắn thì viên đạn đạt được độ cao 1962 m?
- b) Tính vận tốc tức thời của viên đạn khi viên đạn đạt được độ cao 1962m.
- c) Tại thời điểm viên đạn đạt vận tốc tức thời bằng 98 m/s thì viên đạn đang ở độ cao bao nhiều mét so với mặt đất?

Câu 56. Năm 2001, dân số Việt Nam khoảng 78690000 người. Nếu tỉ lệ tăng dân số hàng năm luôn là 1,7% thì ước tính số dân Việt Nam sau *x* năm kể từ năm 2001 được tính theo hàm số sau:

 $f(x) = 7,869e^{0.017x}$ (chục triệu người). Tốc độ gia tăng dân số (chục triệu người/năm) sau x năm kể từ năm 2001 được xác định bởi hàm số f'(x).

- a) Tìm hàm số thể hiện tốc độ gia tăng dân số sau x năm kể từ năm 2001.
- b) Tính tốc độ gia tăng dân số Việt Nam theo đơn vị chục triệu người/năm vào năm 2023 (làm tròn kết quả đến hàng phần mười), nêu ý nghĩa của kết quả đó.

Câu 57. Trong thuyết động học phân tử chất khí, với một khối khí lí tưởng, các đại lượng áp suất p(Pa), thể tích $V(m^3)$, nhiệt độ T(K), số mol n(mol) liên hệ với nhau theo phương trình:

pV = nRT, trong đó R = 8.31(J/mol.K) là hằng số.

(Nguồn: James Stewart, Calculus)

Một bóng thám không chứa 8 mol khí hydrogen ở trạng thái lí tưởng có áp suất không đổi $p = 10^5 Pa$. Tính tốc độ thay đổi thể tích theo nhiệt độ của khối khí trong bóng thám không.

Câu 58. Cho hàm số $y = x^2 + 3x$ có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có:

- a) Hoành độ bằng -1;
- b) Tung độ bằng 4.

Câu 59. Cho hàm số $y = \frac{x-3}{x+2}$ có đồ thị (C). Viết phương trình tiếp tuyến d của đồ thị (C) trong mỗi trường hợp sau:

- a) d song song với đường thẳng y = 5x 2;
- b) d vuông góc với đường thẳng y = -20x + 1.

Câu 60. Một chất điểm chuyển động theo phương trình $s(t) = \frac{1}{3}t^3 - 3t^2 + 8t + 2$, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính vận tốc tức thời của chất điểm tại thời điểm t = 5(s).

Câu 61. Một mạch dao động điện từ LC có lượng điện tích dịch chuyển qua tiết diện thẳng của dây xác định bởi hàm số $Q(t) = 10^{-5} \sin\left(2000t + \frac{\pi}{3}\right)$, trong đó t > 0, t tính bằng giây, Q tính bằng

Coulomb. Tính cường độ dòng điện tức thời I(A) trong mạch tại thời điểm $t = \frac{\pi}{1500}(s)$, biết I(t) = Q'(t).

Câu 62. Năm 2010, dân số ở một tỉnh D là 1038229 người. Tính đến năm 2015, dân số của tỉnh đó là 1153600 người. Cho biết dân số của tỉnh D được ước tính theo công thức $S(N) = Ae^{Nr}$ (trong đó A là dân số của năm lấy làm mốc, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm được làm tròn đến hàng phần nghìn). Tốc độ gia tăng dân số (người/năm) vào thời điểm sau N năm kể từ năm 2010 được xác định bởi hàm số S'(N). Tính tốc độ gia tăng dân số của tỉnh D vào năm 2023 (làm tròn kết quả đến hàng đơn vi theo đơn vi người/năm), biết tỉ lê tăng dân số hàng năm không đối.

Câu 63. Một tài xế đang lái xe ô tô, ngay khi phát hiện có vật cản phía trước đã phanh gấp lại nhưng vẫn xảy ra va chạm, chiếc ô tô để lại vết trượt dài 20,4 m (được tính từ lúc bắt đầu đạp phanh đến khi xảy ra va chạm). Trong quá trình đạp phanh, ô tô chuyển động theo phương trình

 $s(t) = 20t - \frac{5}{2}t^2$, trong đó s(m) là độ dài quãng đường đi được sau khi phanh, t(s) là thời gian tính từ lúc bắt đầu phanh $(0 \le t \le 4)$.

- a) Tính vận tốc tức thời của ô tô ngay khi đạp phanh. Hãy cho biết xe ô tô trên có chạy quá tốc độ hay không, biết tốc đô giới han cho phép là $70 \, km / h$.
- b) Tính vận tốc tức thời của ô tô ngay khi xảy ra va chạm?

Câu 64. Trong kinh tế học, xét mô hình doanh thu y (đồng) được tính theo số sản phẩm sản xuất ra x (chiếc) theo công thức y = f(x).

Xét giá trị ban đầu $x = x_0$. Đặt $Mf(x_0) = f(x_0 + 1) - f(x_0)$ và gọi giá trị đó là giá trị y-cận biên của x tại $x = x_0$. Giá trị $Mf(x_0)$ phản ánh lượng doanh thụ tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm x_0 .

Xem hàm doanh thu y = f(x) như là hàm biến số thực x.

Khi đó $Mf(x_0) = f(x_0 + 1) - f(x_0) \approx f'(x_0)$. Như vậy, đạo hàm $f'(x_0)$ cho chúng ta biết (xấp xỉ) lượng doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm x_0 . Tính doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm nếu hàm doanh thu là $y = 10x - \frac{x^2}{100}$ tại mốc sản phẩm $x_0 = 10000$.

PHẨN C. BÀI TẬP TRẮC NGHIỆM (PHÂN MỨC ĐÔ)

1. Câu hỏi dành cho đối tượng học sinh trung bình – khá

Cho hàm số $y = \frac{4}{x-1}$. Khi đó y'(-1) bằng Câu 1.

A.
$$-1$$
.

$$B_{-2}$$

Tính đạo hàm của hàm số $f(x) = \frac{2x+7}{x+4}$ tại x = 2 ta được: Câu 2.

A.
$$f'(2) = \frac{1}{36}$$

B.
$$f'(2) = \frac{11}{6}$$

C.
$$f'(2) = \frac{3}{2}$$

A.
$$f'(2) = \frac{1}{36}$$
. **B.** $f'(2) = \frac{11}{6}$. **C.** $f'(2) = \frac{3}{2}$. **D.** $f'(2) = \frac{5}{12}$.

Tính đạo hàm của hàm số y = x(x+1)(x+2)(x+3) tại điểm $x_0 = 0$ là: Câu 3.

A.
$$y'(0) = 5$$
.

B.
$$y'(0) = 6$$

C.
$$y'(0) = 0$$

A.
$$y'(0) = 5$$
. **B.** $y'(0) = 6$. **C.** $y'(0) = 0$. **D.** $y'(0) = -6$.

Tính đạo hàm của hàm số $y = \sqrt{x} + x$ tại điểm $x_0 = 4$ là: Câu 4.

A.
$$y'(4) = \frac{9}{2}$$
.

B.
$$y'(4) = 6$$

C.
$$y'(4) = \frac{3}{2}$$

A.
$$y'(4) = \frac{9}{2}$$
. **B.** $y'(4) = 6$. **C.** $y'(4) = \frac{3}{2}$. **D.** $y'(4) = \frac{5}{4}$.

Đạo hàm của hàm số $y = 5\sin x - 3\cos x$ tại $x_0 = \frac{\pi}{2}$ là: Câu 5.

A.
$$y'(\frac{\pi}{2}) = 3$$

$$\mathbf{B.} \ \ y'\left(\frac{\pi}{2}\right) = 5$$

A.
$$y'\left(\frac{\pi}{2}\right) = 3$$
. **B.** $y'\left(\frac{\pi}{2}\right) = 5$. **C.** $y'\left(\frac{\pi}{2}\right) = -3$. **D.** $y'\left(\frac{\pi}{2}\right) = -5$.

D.
$$y'\left(\frac{\pi}{2}\right) = -5$$
.

- Cho hàm số $y = \frac{x+2}{x-1}$. Tính y'(3)
- **B.** $-\frac{3}{4}$. **C.** $-\frac{3}{2}$.
- **D.** $\frac{3}{4}$.
- Cho hàm số $f(x) = \frac{3x+1}{\sqrt{x^2+4}}$. Tính giá trị biểu thức f'(0). Câu 7.
 - **A.** -3.
- **B.** -2.
- C. $\frac{3}{2}$.
- **D.** 3.

Tính đạo hàm của hàm số $y = x^3 + 2x + 1$. Câu 8.

A.
$$y' = 3x^2 + 2x$$
. **B.** $y' = 3x^2 + 2$.

B.
$$v' = 3x^2 + 2$$
.

C.
$$y' = 3x^2 + 2x + 1$$
. D. $y' = x^2 + 2$.

Câu 9. Khẳng đinh nào sau đây sai

A.
$$v = x \Rightarrow v' = 1$$
.

A.
$$y = x \Rightarrow y' = 1$$
. **B.** $y = x^3 \Rightarrow y' = 3x^2$.

C.
$$y = x^5 \implies y' = 5x$$
.

C.
$$y = x^5 \Rightarrow y' = 5x$$
. **D.** $y = x^4 \Rightarrow y' = 4x^3$.

Câu 10. Hàm số $v = x^3 - 2x^2 - 4x + 2018$ có đạo hàm là

A.
$$y' = 3x^2 - 4x + 2018$$
. **B.** $y' = 3x^2 - 2x - 4$.

C.
$$y' = 3x^2 - 4x - 4$$
. **D.** $y' = x^2 - 4x - 4$.

D.
$$v' = x^2 - 4x - 4$$

Câu 11. Đạo hàm của hàm số $y = -x^3 + 3mx^2 + 3(1-m^2)x + m^3 - m^2$ (với *m* là tham số) bằng

A.
$$3x^2 - 6mx - 3 + 3m^2$$
. **B.** $-x^2 + 3mx - 1 - 3m$.

C.
$$-3x^2 + 6mx + 1 - m^2$$
. **D.** $-3x^2 + 6mx + 3 - 3m^2$.

Câu 12. Đao hàm của hàm số $v = x^4 - 4x^2 - 3$ là

A.
$$y' = -4x^3 + 8x$$
.

B.
$$y' = 4x^2 - 8x$$

C.
$$v' = 4x^3 - 8x$$
.

A.
$$y' = -4x^3 + 8x$$
. **B.** $y' = 4x^2 - 8x$. **C.** $y' = 4x^3 - 8x$. **D.** $y' = -4x^2 + 8x$

Câu 13. Đạo hàm của hàm số $y = \frac{x^4}{2} + \frac{5x^3}{3} - \sqrt{2x} + a^2$ (a là hằng số) bằng.

A.
$$2x^3 + 5x^2 - \frac{1}{\sqrt{2x}} + 2a$$
.

B.
$$2x^3 + 5x^2 + \frac{1}{2\sqrt{2x}}$$
.

C.
$$2x^3 + 5x^2 - \frac{1}{\sqrt{2x}}$$
. D. $2x^3 + 5x^2 - \sqrt{2}$.

D.
$$2x^3 + 5x^2 - \sqrt{2}$$
.

Câu 14. Hàm số nào sau đây có đạo hàm bằng $\frac{1}{\sqrt{2r}}$?

A.
$$f(x) = 2\sqrt{x}$$
.

B.
$$f(x) = \sqrt{x}$$

C.
$$f(x) = \sqrt{2x}$$

B.
$$f(x) = \sqrt{x}$$
. **C.** $f(x) = \sqrt{2x}$. **D.** $f(x) = -\frac{1}{\sqrt{2x}}$.

Câu 15. Cho các hàm số u = u(x), v = v(x) có đạo hàm trên khoảng J và $v(x) \neq 0$ với $\forall x \in J$. Mệnh đề nào sau đây sai?

A.
$$[u(x)+v(x)]'=u'(x)+v'(x)$$
.

$$\mathbf{B.} \left[\frac{1}{v(x)} \right]' = \frac{v'(x)}{v^2(x)}.$$

C.
$$[u(x).v(x)]' = u'(x).v(x) + v'(x).u(x)$$
.

$$\mathbf{D.} \left[\frac{u(x)}{v(x)} \right]' = \frac{u'(x).v(x) - v'(x).u(x)}{v^2(x)}.$$

Câu 16. Tính đạo hàm của hàm số $y = x^2 - \frac{1}{x}$.

A.
$$y' = 2x - \frac{1}{x^2}$$

B.
$$y' = x - \frac{1}{x^2}$$
.

C.
$$y' = x + \frac{1}{x^2}$$
.

A.
$$y' = 2x - \frac{1}{x^2}$$
. **B.** $y' = x - \frac{1}{x^2}$. **C.** $y' = x + \frac{1}{x^2}$. **D.** $y' = 2x + \frac{1}{x^2}$.

Câu 17. Tính đạo hàm của hàm số $y = \frac{2x}{x-1}$

A.
$$y' = \frac{2}{(x-1)^2}$$

B.
$$y' = \frac{2}{(x-1)}$$
.

A.
$$y' = \frac{2}{(x-1)^2}$$
. **B.** $y' = \frac{2}{(x-1)}$. **C.** $y' = \frac{-2}{(x-1)^2}$. **D.** $y' = \frac{-2}{(x-1)}$.

D.
$$y' = \frac{-2}{(x-1)}$$

Câu 18. Hàm số $y = \frac{1}{x^2 + 5}$ có đạo hàm bằng:

A.
$$y' = \frac{1}{(x^2 + 5)^2}$$

A.
$$y' = \frac{1}{(x^2 + 5)^2}$$
. **B.** $y' = \frac{2x}{(x^2 + 5)^2}$. **C.** $y' = \frac{-1}{(x^2 + 5)^2}$. **D.** $y' = \frac{-2x}{(x^2 + 5)^2}$.

C.
$$y' = \frac{-1}{(x^2 + 5)^2}$$

D.
$$y' = \frac{-2x}{(x^2 + 5)^2}$$

Câu 19. Cho hàm số $y = x^3 - 3x + 2017$. Bất phương trình y' < 0 có tập nghiệm là:

A.
$$S = (-1;1)$$
.

A.
$$S = (-1;1)$$
. **B.** $S = (-\infty;-1) \cup (1;+\infty)$.

C.
$$(1;+\infty)$$
.

D.
$$(-\infty; -1)$$
.

Câu 20. Cho hàm số $f(x) = x^4 + 2x^2 - 3$. Tìm x để f'(x) > 0? **A.** -1 < x < 0. **B.** x < 0. **C.** x > 0

A. -1 < x < 0.

D. x < -1.

Câu 21. Cho hàm số u(x) có đạo hàm tại x là u'. Khi đó đạo hàm của hàm số $y = \sin^2 u$ tại x là

$$\mathbf{A.} \ y' = \sin 2u \ .$$

B.
$$y' = u' \sin 2u$$

B.
$$y' = u' \sin 2u$$
. **C.** $y' = 2 \sin 2u$.

D. $y' = 2u' \sin 2u$.

Câu 22. Tính đạo hàm của hàm số $y = \sin 2x - \cos x$

A.
$$y' = 2\cos x + \sin x$$
. **B.** $y' = \cos 2x + \sin x$.

$$\mathbf{B.} \ \ y' = \cos 2x + \sin x$$

C.
$$y' = 2\cos 2x + \sin x$$
. **D.** $y' = 2\cos x - \sin x$.

Câu 23. Đạo hàm của hàm số $y = 4 \sin 2x + 7 \cos 3x + 9$ là

A. $8\cos 2x - 21\sin 3x + 9$.

B. $8\cos 2x - 21\sin 3x$.

C. $4\cos 2x - 7\sin 3x$. D. $4\cos 2x + 7\sin 3x$.

Câu 24. Tính đạo hàm của hàm số $f(x) = \sin x + \cos x + 3$ là:

A. $f'(x) = \sin x - \cos x$. **B.** $f'(x) = \cos x + \sin x + 3$.

C. $f'(x) = \cos x - \sin x$. D. $f'(x) = -\sin x - \cos x$.

Câu 25. Đao hàm của hàm số $y = \cos 2x + 1$ là

$$\mathbf{A.} \ \ y' = -\sin 2x \, .$$

B.
$$y' = 2\sin 2x$$
. **C.** $y' = -2\sin 2x + 1$. **D.** $y' = -2\sin 2x$.

Câu 26. Đạo hàm của hàm số y = cos(2x+1) là:

A.
$$y' = 2\sin(2x+1)$$

A.
$$y' = 2\sin(2x+1)$$
 B. $y' = -2\sin(2x+1)$ **C.** $y' = -\sin(2x+1)$ **D.** $y' = \sin(2x+1)$.

D.
$$v' = \sin(2x+1)$$
.

Câu 27. Đạo hàm của hàm số $f(x) = \sin^2 x$ là:

A.
$$f'(x) = 2\sin x$$

A.
$$f'(x) = 2\sin x$$
. **B.** $f'(x) = 2\cos x$.

C.
$$f'(x) = -\sin(2x)$$
. D. $f'(x) = \sin(2x)$.

D.
$$f'(x) = \sin(2x)$$
.

Câu 28. Tìm đạo hàm của hàm số $y = \tan x$.

A.
$$y' = -\frac{1}{\cos^2 x}$$
. **B.** $y' = \frac{1}{\cos^2 x}$. **C.** $y' = \cot x$. **D.** $y' = -\cot x$.

B.
$$y' = \frac{1}{\cos^2 x}$$
.

$$\mathbf{C.} \ \ y' = \cot x$$

$$\mathbf{D.} \ \ y' = -\cot x \, .$$

Câu 29. Tính đạo hàm của hàm số $v = x \sin x$

A.
$$y = \sin x - x \cos x$$
.

B.
$$v = x \sin x - \cos x$$
.

A.
$$y = \sin x - x \cos x$$
. **B.** $y = x \sin x - \cos x$. **C.** $y = \sin x + x \cos x$. **D.** $y = x \sin x + \cos x$.

D.
$$v = x \sin x + \cos x$$

Câu 30. Tập xác định của hàm số $y = 8^x$ là

A.
$$\mathbb{R} \setminus \{0\}$$
.

$$\mathbf{B.} \ \mathbb{R}$$
 .

$$\mathbf{C}$$
. $[0;+\infty)$.

D.
$$(0; +\infty)$$
.

Câu 31. Tập xác định của hàm số $y = 6^x$ là

A.
$$[0;+\infty)$$
.

B.
$$\mathbb{R} \setminus \{0\}$$
.

C.
$$(0;+\infty)$$
.

D.
$$\mathbb{R}$$
 .

Câu 32. Tập xác định của hàm số $y = 7^x$ là

A.
$$\mathbb{R} \setminus \{0\}$$
.

B.
$$[0;+\infty)$$
.

C.
$$(0;+\infty)$$
.

$$\mathbf{D}. \mathbb{R}$$
 .

Câu 33. Tìm đạo hàm của hàm số $y = \log x$.

A.
$$y' = \frac{\ln 10}{x}$$

B.
$$y' = \frac{1}{x \ln 10}$$

A.
$$y' = \frac{\ln 10}{x}$$
 B. $y' = \frac{1}{x \ln 10}$ **C.** $y' = \frac{1}{10 \ln x}$ **D.** $y' = \frac{1}{x}$

D.
$$y' = \frac{1}{x}$$

Câu 34. Hàm số $y = 2^{x^2 - x}$ có đạo hàm là

A.
$$2^{x^2-x}$$
. ln 2

A.
$$2^{x^2-x} \cdot \ln 2$$
.
B. $(2x-1) \cdot 2^{x^2-x} \cdot \ln 2$.
C. $(x^2-x) \cdot 2^{x^2-x-1}$.
D. $(2x-1) \cdot 2^{x^2-x}$.

C.
$$(x^2-x).2^{x^2-x-1}$$

D.
$$(2x-1).2^{x^2-x}$$
.

Câu 35. Hàm số $y = 3^{x^2-x}$ có đạo hàm là

A.
$$(2x-1).3^{x^2-x}$$
.

B.
$$(x^2-x).3^{x^2-x-1}$$

B.
$$(x^2-x).3^{x^2-x-1}$$
. **C.** $(2x-1).3^{x^2-x}.\ln 3$. **D.** $3^{x^2-x}.\ln 3$.

D.
$$3^{x^2-x} \cdot \ln 3$$
.

Câu 36. Tính đao hàm của hàm số $y = 13^x$

A.
$$y' = \frac{13^x}{\ln 13}$$

B.
$$y' = x.13^{x-1}$$
 C. $y' = 13^x \ln 13$ **D.** $y' = 13^x \ln 13$

C.
$$y' = 13^x \ln 13$$

D.
$$y' = 13^x$$

Câu 37. Tính đạo hàm của hàm số $y = \log_2(2x+1)$.

A.
$$y' = \frac{2}{(2x+1)\ln 2}$$

A.
$$y' = \frac{2}{(2x+1)\ln 2}$$
 B. $y' = \frac{1}{(2x+1)\ln 2}$ **C.** $y' = \frac{2}{2x+1}$ **D.** $y' = \frac{1}{2x+1}$

C.
$$y' = \frac{2}{2x+1}$$

D.
$$y' = \frac{1}{2x+1}$$

Câu 38. Tính đạo hàm của hàm số $y = \frac{x+1}{A^x}$

A.
$$y' = \frac{1 - 2(x+1)\ln 2}{2^{2x}}$$
 B. $y' = \frac{1 + 2(x+1)\ln 2}{2^{2x}}$

B.
$$y' = \frac{1 + 2(x+1)\ln 2}{2^{2x}}$$

C.
$$y' = \frac{1 - 2(x+1)\ln 2}{2^{x^2}}$$

C.
$$y' = \frac{1 - 2(x+1)\ln 2}{2^{x^2}}$$
 D. $y' = \frac{1 + 2(x+1)\ln 2}{2^{x^2}}$

Câu 39. Hàm số $f(x) = \log_2(x^2 - 2x)$ có đạo hàm

A.
$$f'(x) = \frac{\ln 2}{x^2 - 2x}$$

A.
$$f'(x) = \frac{\ln 2}{x^2 - 2x}$$
 B. $f'(x) = \frac{1}{(x^2 - 2x)\ln 2}$

C.
$$f'(x) = \frac{(2x-2)\ln 2}{x^2-2x}$$
 D. $f'(x) = \frac{2x-2}{(x^2-2x)\ln 2}$

Câu 40. Hàm số $y = 2^{x^2-3x}$ có đao hàm là

A.
$$(2x-3)2^{x^2-3x} \ln 2$$
. **B.** $2^{x^2-3x} \ln 2$.

B.
$$2^{x} \ln 2$$
.

C.
$$(2x-3)2^{x^2-3x}$$

C.
$$(2x-3)2^{x^2-3x}$$
. D. $(x^2-3x)2^{x^2-3x+1}$.

Câu 41. Hàm số $y = 3^{x^2-3x}$ có đạo hàm là

A.
$$(2x-3).3^{x^2-3x}$$
. **B.** $3^{x^2-3x}.\ln 3$.

B.
$$3^{x^2-3x}$$
. ln 3.

C.
$$(x^2-3x).3^{x^2-3x-1}$$

C.
$$(x^2-3x).3^{x^2-3x-1}$$
. D. $(2x-3).3^{x^2-3x}. \ln 3$.

Câu 42. Tính đạo hàm của hàm số $y = \ln(1 + \sqrt{x+1})$.

A.
$$y' = \frac{1}{\sqrt{x+1}(1+\sqrt{x+1})}$$

B.
$$y' = \frac{2}{\sqrt{x+1}(1+\sqrt{x+1})}$$

C.
$$y' = \frac{1}{2\sqrt{x+1}(1+\sqrt{x+1})}$$

D.
$$y' = \frac{1}{1 + \sqrt{x+1}}$$

Câu 43. Đạo hàm của hàm số $y = e^{1-2x}$ là

A.
$$y' = 2e^{1-2x}$$

B.
$$y' = -2e^{1-2x}$$

A.
$$y' = 2e^{1-2x}$$
 B. $y' = -2e^{1-2x}$ **C.** $y' = -\frac{e^{1-2x}}{2}$

D.
$$y' = e^{1-2}$$

Câu 44. Đạo hàm của hàm số $y = \log_3(x^2 + x + 1)$ là:

A.
$$y' = \frac{(2x+1)\ln 3}{x^2 + x + 1}$$

A.
$$y' = \frac{(2x+1)\ln 3}{x^2 + x + 1}$$
 B. $y' = \frac{2x+1}{(x^2 + x + 1)\ln 3}$ **C.** $y' = \frac{2x+1}{x^2 + x + 1}$ **D.** $y' = \frac{1}{(x^2 + x + 1)\ln 3}$

D.
$$y' = \frac{1}{(x^2 + x + 1) \ln 3}$$

Câu 45. Tính đạo hàm của hàm số $y = e^{x^2 + x}$

A.
$$(2x+1)e^{x}$$

A.
$$(2x+1)e^x$$
 B. $(2x+1)e^{x^2+x}$

C.
$$(2x+1)e^{2x+1}$$

C.
$$(2x+1)e^{2x+1}$$
 D. $(x^2+x)e^{2x+1}$

Câu 46. Cho hàm số $f(x) = \log_2(x^2 + 1)$, tính f'(1)

$$A f'(1) = 1.$$

B.
$$f'(1) = \frac{1}{2 \ln 2}$$
. **C.** $f'(1) = \frac{1}{2}$. **D.** $f'(1) = \frac{1}{\ln 2}$.

C.
$$f'(1) = \frac{1}{2}$$
.

D.
$$f'(1) = \frac{1}{\ln 2}$$

Câu 47. Tìm đạo hàm của hàm số $y = \ln(1 + e^{2x})$.

A.
$$y' = \frac{-2e^{2x}}{\left(e^{2x}+1\right)^2}$$
. **B.** $y' = \frac{e^{2x}}{e^{2x}+1}$. **C.** $y' = \frac{1}{e^{2x}+1}$. **D.** $y' = \frac{2e^{2x}}{e^{2x}+1}$.

B.
$$y' = \frac{e^{2x}}{e^{2x} + 1}$$

C.
$$y' = \frac{1}{e^{2x} + 1}$$
.

D.
$$y' = \frac{2e^{2x}}{e^{2x} + 1}$$

Câu 48. Tính đạo hàm của hàm số $y = \frac{1-x}{2^x}$

A.
$$y' = \frac{2-x}{2^x}$$
.

A.
$$y' = \frac{2-x}{2^x}$$
. **B.** $y' = \frac{\ln 2 \cdot (x-1) - 1}{(2^x)^2}$.

C.
$$y' = \frac{x-2}{2^x}$$

C.
$$y' = \frac{x-2}{2^x}$$
. D. $y' = \frac{\ln 2 \cdot (x-1) - 1}{2^x}$.

Câu 49. Tính đạo hàm của hàm số $y = \log_9(x^2 + 1)$.

A.
$$y' = \frac{1}{(x^2 + 1) \ln 9}$$

A.
$$y' = \frac{1}{(x^2 + 1)\ln 9}$$
. **B.** $y' = \frac{x}{(x^2 + 1)\ln 3}$. **C.** $y' = \frac{2x\ln 9}{x^2 + 1}$. **D.** $y' = \frac{2\ln 3}{x^2 + 1}$.

C.
$$y' = \frac{2x \ln 9}{x^2 + 1}$$
.

D.
$$y' = \frac{2 \ln 3}{x^2 + 1}$$

Câu 50. Tính đạo hàm hàm số $y = e^x \cdot \sin 2x$

A.
$$e^{x}(\sin 2x - \cos 2x)$$
. **B.** $e^{x}.\cos 2x$.

B.
$$e^x \cdot \cos 2x$$

C.
$$e^x (\sin 2x + \cos 2x)$$
.

C.
$$e^{x} (\sin 2x + \cos 2x)$$
. **D.** $e^{x} (\sin 2x + 2\cos 2x)$.

Câu 51. Đạo hàm của hàm số $y = \frac{x+1}{A^x}$ là

A.
$$\frac{1-2(x+1)\ln 2}{2^{2x}}$$

B.
$$\frac{1+2(x+1)\ln 2}{2^{2x}}$$

C.
$$\frac{1-2(x+1)\ln 2}{2^{x^2}}$$

A.
$$\frac{1-2(x+1)\ln 2}{2^{2x}}$$
 B. $\frac{1+2(x+1)\ln 2}{2^{2x}}$ **C.** $\frac{1-2(x+1)\ln 2}{2^{x^2}}$ **D.** $\frac{1+2(x+1)\ln 2}{2^{x^2}}$

Câu 52. Cho hàm số $y = \frac{1}{x+1+\ln x}$ với x > 0. Khi đó $-\frac{y'}{v^2}$ bằng

A.
$$\frac{x}{x+1}$$
.

B.
$$1 + \frac{1}{x}$$
.

C.
$$\frac{x}{1+x+\ln x}$$
. D. $\frac{x+1}{1+x+\ln x}$.

D.
$$\frac{x+1}{1+x+\ln x}$$
.

Câu 53. Tính đạo hàm của hàm số $y = 2^x \ln x - \frac{1}{2^x}$.

A.
$$y' = 2^x \left(\frac{1}{x} + (\ln 2)(\ln x) \right) + \frac{1}{e^x}$$
.

B.
$$y' = 2^x \ln 2 + \frac{1}{x} + e^{-x}$$
.

C.
$$y' = 2^x \frac{1}{x} \ln 2 + \frac{1}{e^x}$$
.

C.
$$y' = 2^x \frac{1}{x} \ln 2 + \frac{1}{e^x}$$
. D. $y' = 2^x \ln 2 + \frac{1}{x} - e^x$.

Câu 54. Đạo hàm của hàm số $f(x) = \log_2 |x^2 - 2x|$ là

$$\mathbf{A.} \ \frac{2x-2}{\left(x^2-2x\right)\ln 2}$$

A.
$$\frac{2x-2}{(x^2-2x)\ln 2}$$
 B. $\frac{1}{(x^2-2x)\ln 2}$ **C.** $\frac{(2x-2)\ln 2}{x^2-2x}$ **D.** $\frac{2x-2}{|x^2-2x|\ln 2}$

C.
$$\frac{(2x-2)\ln 2}{x^2-2x}$$

D.
$$\frac{2x-2}{|x^2-2x|\ln 2}$$

Câu 55. Đạo hàm của hàm số $f(x) = \sqrt{\ln(\ln x)}$ là:

$$\mathbf{A.} \ f'(x) = \frac{1}{x \ln x \sqrt{\ln(\ln x)}}.$$

$$\mathbf{B.} \ f'(x) = \frac{1}{2\sqrt{\ln(\ln x)}}$$

C.
$$f'(x) = \frac{1}{2 x \ln x \sqrt{\ln(\ln x)}}.$$

$$\mathbf{D.} \ f'(x) = \frac{1}{\ln x \sqrt{\ln(\ln x)}}.$$

Câu 56. Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = \log_2 x$ là:

A.
$$y' = \frac{1}{x \ln 2}$$
. **B.** $y' = \frac{\ln 2}{x}$. **C.** $y' = \frac{1}{x}$.

B.
$$y' = \frac{\ln 2}{x}$$
.

C.
$$y' = \frac{1}{x}$$
.

D.
$$y' = \frac{1}{2x}$$
.

Câu 57. Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = \log_3 x$ là

A.
$$y' = \frac{1}{x}$$
.

B.
$$y' = \frac{1}{x \ln 3}$$

C.
$$y' = \frac{\ln 3}{x}$$

B.
$$y' = \frac{1}{x \ln 3}$$
. **C.** $y' = \frac{\ln 3}{x}$. **D.** $y' = -\frac{1}{x \ln 3}$.

Câu 58. Đạo hàm của hàm số $y = \log_2(x-1)$ là:

A.
$$y' = \frac{x-1}{\ln 2}$$
.

B.
$$y' = \frac{1}{\ln 2}$$
.

A.
$$y' = \frac{x-1}{\ln 2}$$
. **B.** $y' = \frac{1}{\ln 2}$. **C.** $y' = \frac{1}{(x-1)\ln 2}$. **D.** $y' = \frac{1}{x-1}$.

D.
$$y' = \frac{1}{x-1}$$
.

Câu 59. Đạo hàm của hàm số $y = \log_3(x+1)$ là

A.
$$y' = -\frac{1}{\ln 3}$$
.

A.
$$y' = -\frac{1}{\ln 3}$$
. **B.** $y' = \frac{1}{(x+1)\ln 3}$. **C.** $y' = \frac{1}{(x+1)}$. **D.** $y' = \frac{x+1}{\ln 3}$.

C.
$$y' = \frac{1}{(x+1)}$$

D.
$$y' = \frac{x+1}{\ln 3}$$
.

2. Câu hỏi dành cho đối tượng học sinh khá-giỏi

Cho $f(x) = x^5 + x^3 - 2x - 3$. Tính f'(1) + f'(-1) + 4f'(0)? Mệnh đề nào dưới đây đúng?

C. 6.

D. 5.

Câu 61. Tính đạo hàm của hàm số $y = (x^3 - 5)\sqrt{x}$

A.
$$y' = \frac{7}{2} \sqrt[5]{x^2} - \frac{5}{2\sqrt{x}}$$
. **B.** $y' = \frac{7}{2} \sqrt{x^5} - \frac{5}{2\sqrt{x}}$.

B.
$$y' = \frac{7}{2}\sqrt{x^5} - \frac{5}{2\sqrt{x}}$$

C.
$$y' = 3x^2 - \frac{5}{2\sqrt{x}}$$
.

C.
$$y' = 3x^2 - \frac{5}{2\sqrt{x}}$$
. D. $y' = 3x^2 - \frac{1}{2\sqrt{x}}$.

Câu 62. Đạo hàm của hàm số $y = \frac{x+3}{\sqrt{x^2+1}}$ là:

$$\mathbf{A.} \ \frac{1-3x}{\left(x^2+1\right)\sqrt{x^2+1}}$$

A.
$$\frac{1-3x}{(x^2+1)\sqrt{x^2+1}}$$
. **B.** $\frac{1+3x}{(x^2+1)\sqrt{x^2+1}}$. **C.** $\frac{1-3x}{x^2+1}$. **D.** $\frac{2x^2-x-1}{(x^2+1)\sqrt{x^2+1}}$.

C.
$$\frac{1-3x}{x^2+1}$$

D.
$$\frac{2x^2 - x - 1}{\left(x^2 + 1\right)\sqrt{x^2 + 1}}$$

Câu 63. Cho hàm số $f(x) = \sqrt{x^2 + 3}$. Tính giá trị của biểu thức S = f(1) + 4f'(1).

A.
$$S = 4$$

B.
$$S = 2$$

C.
$$S = 6$$

D.
$$S = 8$$
.

Câu 64. Cho hàm số $y = \sqrt{2x^2 + 5x - 4}$. Đạo hàm y' của hàm số là

A.
$$y' = \frac{4x+5}{2\sqrt{2x^2+5x-4}}$$
. **B.** $y' = \frac{2x+5}{2\sqrt{2x^2+5x-4}}$.

C.
$$y' = \frac{2x+5}{\sqrt{2x^2+5x-4}}$$
. D. $y' = \frac{4x+5}{\sqrt{2x^2+5x-4}}$.

Câu 65. Tính đạo hàm của hàm số $y = \frac{2x^2 - 3x + 7}{x^2 + 2x + 3}$

A.
$$y' = \frac{-7x^2 + 2x + 23}{\left(x^2 + 2x + 3\right)^2}$$
. **B.** $y' = \frac{7x^2 - 2x - 23}{\left(x^2 + 2x + 3\right)^2}$

C.
$$y' = \frac{7x^2 - 2x - 23}{(x^2 + 2x + 3)}$$
 D. $y' = \frac{8x^3 + 3x^2 + 14x + 5}{(x^2 + 2x + 3)^2}$

Câu 66. Cho hàm số $f(x) = \frac{2x+a}{x-b}(a,b \in R;b \neq 1)$. Ta có f'(1) bằng:

A.
$$\frac{-a+2b}{(b-1)^2}$$
. **B.** $\frac{a-2b}{(b-1)^2}$. **C.** $\frac{a+2b}{(b-1)^2}$.

B.
$$\frac{a-2b}{(b-1)^2}$$

C.
$$\frac{a+2b}{(b-1)^2}$$
.

D.
$$\frac{-a-2b}{(b-1)^2}$$
.

Câu 67. Cho $f(x) = \sqrt{1-4x} + \frac{1-x}{x-3}$. Tính f'(x).

A.
$$\frac{2}{\sqrt{1-4x}} - \frac{2}{x-3}$$

A.
$$\frac{2}{\sqrt{1-4x}} - \frac{2}{x-3}$$
. **B.** $\frac{2}{\sqrt{1-4x}} - \frac{2}{(x-3)^2}$.

C.
$$\frac{1}{2\sqrt{1-4x}}$$
 +

C.
$$\frac{1}{2\sqrt{1-4x}} + 1$$
 D. $\frac{-2}{\sqrt{1-4x}} + \frac{2}{(x-3)^2}$.

Câu 68. Đạo hàm của hàm số $y = (2x-1)\sqrt{x^2+x}$ là

A.
$$y' = \frac{8x^2 + 4x - 1}{2\sqrt{x^2 + x}}$$

B.
$$y' = \frac{8x^2 + 4x + 1}{2\sqrt{x^2 + x}}$$

C.
$$y' = \frac{4x+1}{2\sqrt{x^2+x}}$$

A.
$$y' = \frac{8x^2 + 4x - 1}{2\sqrt{x^2 + x}}$$
. **B.** $y' = \frac{8x^2 + 4x + 1}{2\sqrt{x^2 + x}}$. **C.** $y' = \frac{4x + 1}{2\sqrt{x^2 + x}}$. **D.** $y' = \frac{6x^2 + 2x - 1}{2\sqrt{x^2 + x}}$.

Câu 69. Đạo hàm của hàm số $y = (-x^2 + 3x + 7)^7$ là

A.
$$y' = 7(-2x+3)(-x^2+3x+7)^6$$
.

B.
$$y' = 7(-x^2 + 3x + 7)^6$$
.

C.
$$y' = (-2x+3)(-x^2+3x+7)^6$$
.

D.
$$y' = 7(-2x+3)(-x^2+3x+7)^6$$
.

Câu 70. Đạo hàm của hàm số $y = \left(x^2 - \frac{2}{r}\right)^3$ bằng

A.
$$y' = 6\left(x + \frac{1}{x^2}\right)\left(x^2 - \frac{2}{x}\right)^2$$
.

B.
$$y' = 3\left(x^2 - \frac{2}{x}\right)^2$$
.

C.
$$y' = 6\left(x - \frac{1}{x^2}\right)\left(x^2 - \frac{2}{x}\right)^2$$
.

D.
$$y' = 6\left(x - \frac{1}{x}\right)\left(x^2 - \frac{2}{x}\right)^2$$

Câu 71. Đạo hàm của hàm số $y = (x^2 + x + 1)^{\frac{1}{3}}$ là

A.
$$y' = \frac{2x+1}{3\sqrt[3]{(x^2+x+1)^2}}$$
. **B.** $y' = \frac{1}{3}(x^2+x+1)^{\frac{2}{3}}$.

C.
$$y' = \frac{1}{3} (x^2 + x + 1)^{\frac{8}{3}}$$
. **D.** $y' = \frac{2x + 1}{2\sqrt[3]{x^2 + x + 1}}$

Câu 72. Đạo hàm của hàm số $y = (x^3 - 2x^2)^2$ bằng:

A.
$$6x^5 - 20x^4 - 16x^3$$

B.
$$6x^5 - 20x^4 + 4x^3$$

C.
$$6x^5 + 16x^3$$

A.
$$6x^5 - 20x^4 - 16x^3$$
. **B.** $6x^5 - 20x^4 + 4x^3$. **C.** $6x^5 + 16x^3$. **D.** $6x^5 - 20x^4 + 16x^3$.

Câu 73. Đạo hàm của hàm số $f(x) = \sqrt{2-3x^2}$ bằng biểu thức nào sau đây?

A.
$$\frac{-3x}{\sqrt{2-3x^2}}$$

B.
$$\frac{1}{2\sqrt{2-3x^2}}$$

A.
$$\frac{-3x}{\sqrt{2-3x^2}}$$
. B. $\frac{1}{2\sqrt{2-3x^2}}$. C. $\frac{-6x^2}{2\sqrt{2-3x^2}}$. D. $\frac{3x}{\sqrt{2-3x^2}}$.

D.
$$\frac{3x}{\sqrt{2-3x^2}}$$
.

Câu 74. Cho hàm số $y = \frac{1}{3}x^3 - 2x^2 - 5x$. Tập nghiệm của bất phương trình $y' \ge 0$ là

A.
$$[-1;5]$$
.

$$\mathbf{B.} \varnothing$$
.

C.
$$(-\infty;-1)\cup(5;+\infty)$$

C.
$$(-\infty;-1)\cup(5;+\infty)$$
. D. $(-\infty;-1]\cup[5;+\infty)$.

Câu 75. Cho hàm số $y = x^3 + mx^2 + 3x - 5$ với m là tham số. Tìm tập hợp M tất cả các giá trị của m để y' = 0 có hai nghiệm phân biệt:

A.
$$M = (-3;3)$$
.

B.
$$M = (-\infty; -3] \cup [3; +\infty)$$
.

C.
$$M = \mathbb{R}$$

C.
$$M = \mathbb{R}$$
. **D.** $M = (-\infty; -3) \cup (3; +\infty)$.

Câu 76. Cho hàm số $y = (m-1)x^3 - 3(m+2)x^2 - 6(m+2)x + 1$. Tập giá trị của m để $y' \ge 0, \forall x \in R$ là

A.
$$[3; +\infty)$$

C.
$$[4\sqrt{2}; +\infty)$$
.

D.
$$[1;+\infty)$$
.

Câu 77. Cho hàm số $y = (m+2)x^3 + \frac{3}{2}(m+2)x^2 + 3x - 1$, m là tham số. Số các giá trị nguyên m để $y' \ge 0, \ \forall x \in \mathbb{R}$ là

A. 5.

B. Có vô số giá trị nguyên m.

C. 3.

D. 4

Câu 78. Cho hàm số $f(x) = -x^3 + 3mx^2 - 12x + 3$ với m là tham số thực. Số giá trị nguyên của m để $f'(x) \le 0$ với $\forall x \in \mathbb{R}$ là

A. 1.

B. 5.

C. 4.

D. 3.

Câu 79. Cho hàm số $f(x) = \frac{mx^3}{3} - \frac{mx^2}{2} + (3-m)x - 2$. Tìm m để $f'(x) > 0 \ \forall x \in \mathbb{R}$.

A.
$$0 \le m \le \frac{12}{5}$$
. **B.** $0 < m < \frac{12}{5}$. **C.** $0 \le m < \frac{12}{5}$. **D.** $0 < m \le \frac{12}{5}$.

C.
$$0 \le m < \frac{12}{5}$$

D.
$$0 < m \le \frac{12}{5}$$

- Diện thoại: 0946798489

 TOÁN 11-KẾT NỔI TRI THỬC

 Câu 80. Cho hàm số $f(x) = \sqrt{-5x^2 + 14x 9}$ Tập hợp các giá trị của x để f'(x) < 0 là
 - $\mathbf{A.} \left(\frac{7}{5}; +\infty\right). \qquad \mathbf{B.} \left(-\infty; \frac{7}{5}\right). \qquad \mathbf{C.} \left(\frac{7}{5}; \frac{9}{5}\right).$

- **Câu 81.** Cho hàm số $f(x) = \sqrt{x^2 2x}$. Tìm tập nghiệm S của phương trình $f'(x) \ge f(x)$ có bao nhiều giá trị nguyên?
 - **A.** 1.

- **C.** 0.
- **D.** 3.

- **Câu 82.** Cho $\left(\frac{3-2x}{\sqrt{4x-1}}\right)^{2} = \frac{ax-b}{(4x-1)\sqrt{4x-1}}, \forall x > \frac{1}{4}$. Tính $\frac{a}{b}$.

- **D.** 4.
- **Câu 83.** Cho hàm số $y = \sqrt{x^2 1}$. Nghiệm của phương trình y'.y = 2x + 1 là:
- C. Vô nghiêm.
- **D.** x = -1.
- **Câu 84.** Cho $y = \sqrt{x^2 2x + 3}$, $y' = \frac{ax + b}{\sqrt{x^2 2x + 3}}$. Khi đó giá trị *a.b* là:

- **D.** 1.
- **Câu 85.** Cho hàm số $y = \frac{-2x^2 + x 7}{x^2 + 3}$. Tập nghiệm của phương trình y' = 0 là
- **B.** {1;3}.
- **C.** $\{-3;1\}$. **D.** $\{-3;-1\}$.
- **Câu 86.** Cho hàm số $f(x) = ax^3 + \frac{b}{x}$ có f'(1) = 1, f'(-2) = -2. Khi đó $f'(\sqrt{2})$ bằng:
 - **A.** $\frac{12}{5}$.
- **B.** $\frac{-2}{5}$. **C.** 2.

- **D.** $-\frac{12}{5}$.
- **Câu 87.** Có bao nhiều giá trị nguyên của m để hàm số $y = \frac{x+2}{x+5m}$ có đạo hàm dương trên khoảng $(-\infty;-10)$?
 - **A.** 1.

B. 2.

C. 3.

D. vô số.

Câu 88. Đạo hàm của hàm số $y = \cos \sqrt{x^2 + 1}$ là

A.
$$y' = -\frac{x}{\sqrt{x^2 + 1}} \sin \sqrt{x^2 + 1}$$
.

B.
$$y' = \frac{x}{\sqrt{x^2 + 1}} \sin \sqrt{x^2 + 1}$$
.

C.
$$y' = \frac{x}{2\sqrt{x^2 + 1}} \sin \sqrt{x^2 + 1}$$
.

D.
$$y' = -\frac{x}{2\sqrt{x^2 + 1}} \sin \sqrt{x^2 + 1}$$
.

- **Câu 89.** Đạo hàm của hàm số $y = \tan x \cot x$ là

 - **A.** $y' = \frac{1}{\cos^2 2x}$. **B.** $y' = \frac{4}{\sin^2 2x}$. **C.** $y' = \frac{4}{\cos^2 2x}$. **D.** $y' = \frac{1}{\sin^2 2x}$.

- **Câu 90.** Biết hàm số $y = 5\sin 2x 4\cos 5x$ có đạo hàm là $y' = a\sin 5x + b\cos 2x$. Giá trị của a b bằng
 - A. -30.
- **B.** 10.
- C. -1.

- **Câu 91.** Tính đạo hàm của hàm số $y = \sqrt{\cos 2x}$.
 - **A.** $y' = \frac{\sin 2x}{2\sqrt{\cos 2x}}$. **B.** $y' = \frac{-\sin 2x}{\sqrt{\cos 2x}}$. **C.** $y' = \frac{\sin 2x}{\sqrt{\cos 2x}}$. **D.** $y' = \frac{-\sin 2x}{2\sqrt{\cos 2x}}$

Câu 92. Với
$$x \in \left(0; \frac{\pi}{2}\right)$$
, hàm số $y = 2\sqrt{\sin x} - 2\sqrt{\cos x}$ có đạo hàm là?

$$\mathbf{A.} \ \ y' = \frac{\cos x}{\sqrt{\sin x}} + \frac{\sin x}{\sqrt{\cos x}}.$$

B.
$$y' = \frac{1}{\sqrt{\sin x}} + \frac{1}{\sqrt{\cos x}}$$
.

C.
$$y' = \frac{\cos x}{\sqrt{\sin x}} - \frac{\sin x}{\sqrt{\cos x}}$$
.

D.
$$y' = \frac{1}{\sqrt{\sin x}} - \frac{1}{\sqrt{\cos x}}$$
.

Câu 93. Đạo hàm của hàm số
$$y = \sin\left(\frac{3\pi}{2} - 4x\right)$$
 là:

$$\mathbf{A.} -4\cos 4x$$
.

B.
$$4\cos 4x$$
.

C.
$$4\sin 4x$$
.

D.
$$-4 \sin 4x$$

Câu 94. Tính đạo hàm của hàm số
$$y = \sin 2x - 2\cos x + 1$$

A.
$$y' = -2\cos 2x + 2\sin x$$
.

B.
$$y' = 2\cos 2x + 2\sin x$$
.

C.
$$y' = 2\cos 2x - 2\sin x$$
.D. $y' = -\cos 2x - 2\sin x$

Câu 95. Tính đạo hàm của hàm số
$$y = \sqrt{\cos 2x}$$
.

A.
$$y' = \frac{\sin 2x}{2\sqrt{\cos 2x}}$$
. **B.** $y' = \frac{-\sin 2x}{\sqrt{\cos 2x}}$. **C.** $y' = \frac{\sin 2x}{\sqrt{\cos 2x}}$. **D.** $y' = \frac{-\sin 2x}{2\sqrt{\cos 2x}}$.

$$\mathbf{B.} \ \ y' = \frac{-\sin 2x}{\sqrt{\cos 2x}} \, .$$

$$\mathbf{C.} \ \ y' = \frac{\sin 2x}{\sqrt{\cos 2x}}$$

$$\mathbf{D.} \ \ y' = \frac{-\sin 2x}{2\sqrt{\cos 2x}}$$

Câu 96. Biết hàm số
$$y = 5\sin 2x - 4\cos 5x$$
 có đạo hàm là $y' = a\sin 5x + b\cos 2x$. Giá trị của $a - b$ bằng:

Câu 97. Cho hàm số
$$f(x) = a\cos x + 2\sin x - 3x + 1$$
. Tìm a để phương trình $f'(x) = 0$ có nghiệm.

A.
$$|a| < \sqrt{5}$$
.

B.
$$|a| \ge \sqrt{5}$$
.

$$|a| > 5$$
.

D.
$$|a| < 5$$

Câu 98. Đạo hàm của hàm số
$$y = \cos 3x$$
 là

$$\mathbf{A.} \ \ y = \sin 3x$$

=
$$\cos 3x$$
 là
B. $y = -3\sin 3x$.

$$\mathbf{C.} \ \ y = 3\sin 3x$$

C.
$$y = 3\sin 3x$$
. **D.** $y = -\sin 3x$.

Câu 99. Cho
$$f(x) = \sin^3 ax$$
, $a > 0$. Tính $f'(\pi)$

A.
$$f'(\pi) = 3\sin^2(a\pi).\cos(a\pi)$$
.

B.
$$f'(\pi) = 0$$
.

C.
$$f'(\pi) = 3a \sin^2(a\pi)$$
. D. $f'(\pi) = 3a \cdot \sin^2(a\pi) \cdot \cos(a\pi)$.

Câu 100. Cho hàm số
$$f(x) = \sin 2x$$
. Tính $f'(x)$.

A.
$$f'(x) = 2\sin 2x$$

$$\mathbf{B.} \ f'(x) = \cos 2x.$$

$$\mathbf{C.} \ f'(x) = 2\cos 2x.$$

A.
$$f'(x) = 2\sin 2x$$
. **B.** $f'(x) = \cos 2x$. **C.** $f'(x) = 2\cos 2x$. **D.** $f'(x) = -\frac{1}{2}\cos 2x$.

Câu 101. Tính đạo hàm của hàm số
$$y = \frac{\cos 4x}{2} + 3\sin 4x$$
.

A.
$$y' = 12\cos 4x - 2\sin 4x$$
.

B.
$$y' = 12\cos 4x + 2\sin 4x$$
.

C.
$$y' = -12\cos 4x + 2\sin 4x$$
.

D.
$$y' = 3\cos 4x - \frac{1}{2}\sin 4x$$
.

Câu 102. Tính đạo hàm của hàm số
$$f(x) = \sin^2 2x - \cos 3x$$
.

A.
$$f'(x) = 2\sin 4x - 3\sin 3x$$
.

B.
$$f'(x) = 2\sin 4x + 3\sin 3x$$
.

C.
$$f'(x) = \sin 4x + 3\sin 3x$$
.

D.
$$f'(x) = 2\sin 2x + 3\sin 3x$$

Câu 103. Cho
$$f(x) = \sin^2 x - \cos^2 x - x$$
. Khi đó $f'(x)$ bằng

A.
$$1-\sin 2x$$
.

B.
$$-1 + 2\sin 2x$$
.

$$\mathbf{C} \cdot -1 + \sin x \cdot \cos x$$
.

D.
$$1+2\sin 2x$$
.

Câu 104. Tính
$$f'\left(\frac{\pi}{2}\right)$$
 biết $f(x) = \frac{\cos x}{1 + \sin x}$

B.
$$\frac{1}{2}$$

D.
$$-\frac{1}{2}$$
.

Câu 105. Cho hàm số $y = \cos 3x \cdot \sin 2x$. Tính $y'\left(\frac{\pi}{3}\right)$.

A.
$$\frac{1}{2}$$
.

B.
$$-\frac{1}{2}$$
.

D. 1.

Câu 106. Tính đạo hàm của hàm số $y = \sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$.

D. 3.

Câu 107. Với $x \in \left(0; \frac{\pi}{2}\right)$, hàm số $y = 2\sqrt{\sin x} - 2\sqrt{\cos x}$ có đạo hàm là?

$$\mathbf{A.} \ \ y' = \frac{\cos x}{\sqrt{\sin x}} + \frac{\sin x}{\sqrt{\cos x}} \ .$$

B.
$$y' = \frac{1}{\sqrt{\sin x}} + \frac{1}{\sqrt{\cos x}}$$
.

$$\mathbf{C.} \ \ y' = \frac{\cos x}{\sqrt{\sin x}} - \frac{\sin x}{\sqrt{\cos x}} \ .$$

D.
$$y' = \frac{1}{\sqrt{\sin x}} - \frac{1}{\sqrt{\cos x}}$$
.

Câu 108. Cho hàm số $f(x) = \ln 2018 + \ln \left(\frac{x}{x+1} \right)$. Tính $S = f'(1) + f'(2) + f'(3) + \dots + f'(2017)$.

A.
$$S = \frac{4035}{2018}$$

B.
$$S = \frac{2017}{2018}$$

B.
$$S = \frac{2017}{2018}$$
 C. $S = \frac{2016}{2017}$ **D.** $S = 2017$

D.
$$S = 2017$$

Câu 109. Cho hàm số $f(x) = \ln \frac{2018x}{x+1}$. Tính tổng S = f'(1) + f'(2) + ... + f'(2018).

D.
$$\frac{2018}{2019}$$

Câu 110. Tính đạo hàm của hàm số $y = \log_{2019} |x|, \forall x \neq 0$.

A.
$$y' = \frac{1}{|x| \ln 2019}$$
. **B.** $y' = \frac{1}{|x|}$. **C.** $y' = \frac{1}{x \ln 2019}$. **D.** $y' = x \ln 2019$.

B.
$$y' = \frac{1}{|x|}$$
.

C.
$$y' = \frac{1}{x \ln 2019}$$

D.
$$y' = x \ln 2019$$

Câu 111. Cho hàm số $f(x) = \ln\left(\frac{x}{x+2}\right)$. Tổng f'(1) + f'(3) + f'(5) + ... + f'(2021) bằng

A.
$$\frac{4035}{2021}$$
. **B.** $\frac{2021}{2022}$.

B.
$$\frac{2021}{2022}$$

D.
$$\frac{2022}{2023}$$
.

Câu 112. Phương trình f'(x) = 0 với $f(x) = \ln\left(x^4 - 4x^3 + 4x^2 - \frac{1}{2}\right)$ có bao nhiều nghiệm?

A. 0 nghiêm.

B. 1 nghiệm.

C. 2 nghiệm.

D. 3 nghiệm.

Câu 113. Cho hàm số $f(x) = \ln \frac{x+1}{x+4}$. Tính giá trị của biểu thức

P = f'(0) + f'(3) + f'(6) + ... + f'(2019)

A.
$$\frac{1}{4}$$
.

A.
$$\frac{1}{4}$$
. **B.** $\frac{2024}{2023}$. **C.** $\frac{2022}{2023}$. **D.** $\frac{2020}{2023}$.

C.
$$\frac{2022}{2023}$$

D.
$$\frac{2020}{2023}$$
.

Câu 114. Cho hàm số $y = f(x) = (2m-1)e^x + 3$. Giá trị của m để $f'(-\ln 3) = \frac{5}{3}$ là

A.
$$m = \frac{7}{9}$$
.

B.
$$m = \frac{2}{9}$$

C.
$$m = 3$$
.

A.
$$m = \frac{7}{9}$$
. **B.** $m = \frac{2}{9}$. **C.** $m = 3$. **D.** $m = -\frac{3}{2}$.

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

Agyligh Bio Vitable