Problemas de estudio de derivabilidad de funciones

- 1. Usando la definición, calcular la derivada de la función $\frac{1}{\sqrt{x}}$ para x>0 en un valor $x_0>0$.
- 2. Demostrar que la función $f(x) = \sqrt[5]{x}$ no es derivable en x = 0.
- 3. Sea la función siguiente:

$$f(x) = \begin{cases} x^2, & \text{si } x \text{ es racional,} \\ 0, & \text{si } x \text{ es irracional.} \end{cases}$$

Demostrar que f(x) es derivable en x = 0.

- 4. Hallar los valores de x en donde la siguiente función es derivable: f(x) = |x| + |x+1| y hallar la derivada correspondiente.
- 5. Sea f(x) una función derivable en un punto x_0 . Demostrar que:

$$f'(x_0) = \lim_{n \to \infty} \left(n \cdot \left(f(x_0 + \frac{1}{n}) - f(x_0) \right) \right).$$

Demostrar que el recíproco es falso, es decir, dar un ejemplo de una función y un valor x_0 tal que exista el límite anterior pero la función no sea derivable en x_0 .

Indicación: considerar la función $f(x) = x \cdot \sin\left(\frac{\pi}{x}\right)$ si $x \neq 0$ y f(0) = 0. Ver que el límite anterior para $x_0 = 0$ existe pero f(x) no es derivable en $x_0 = 0$.

- 6. Calcular la derivada de las funciones siguientes:
 - a) $f(x) = \frac{x+1}{x^2+1}$.
 - b) $f(x) = \tan(x^3 + x^2 + x 1)$.
 - c) $f(x) = x^x$, para x > 0. Indicación: considerar $g(x) = \ln f(x)$. Derivar la función g(x) y a partir de la derivada de g(x), hallar la derivada de la función f(x).
- 7. Consideremos la función $f(x) = \frac{a}{a+x}$, donde a es un valor real. Hallar la derivada n-ésima de f en un valor $x_0 \neq -a$.
- 8. Consideremos la función $f(x) = \frac{x^2-1}{x^2+1}$. Hallar la recta tangente de la curva y = f(x) en el punto $(x_0 = 0, y_0 = f(x_0) = -1)$.
- 9. Diremos que una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ es par si para todo valor de $x \in \mathbb{R}$, f(x) = f(-x) y diremos que es impar si para todo valor $x \in \mathbb{R}$, f(x) = -f(-x). Demostrar que la función derivada de toda función par es impar y viceversa, que la función derivada de toda función impar es par.
- 10. Sea h(x) la función de Heaviside: h(x) = 1, para $x \ge 0$ y h(x) = 0, para x < 0. Demostrar que no existe ninguna función $f : \mathbb{R} \longrightarrow \mathbb{R}$ tal que f'(x) = h(x), para todo $x \in \mathbb{R}$.