

UGF - Universidade Gama Filho

Campus Piedade – T.303/2012.1 – Período da Noite Prof. Waldemar Monteiro FIS339 – Física para Computação

LAB 2 - CAPACITOR

Alunos: Leonardo Jorge Pita Ferreira Mat. 2005111467-4

Rennan Heeren Camões Mat. 2010109181-2 Sérgio da Silva Pereira Mat. 2010160941-8

Data da Realização: 29/03/2012 Data da Entrega: 12/04/20012

1 - OBJETIVO:

Verificar a distribuição de cargas em capacitores.

2 – INTRODUÇÃO

Os capacitores são dispositivos elétricos capazes de armazenar cargas e energia elétrica. A capacitância é a grandeza física característica dos capacitores que indica a capacidade de armazenamento. São constituídos de um dielétrico entre duas placas metálicas. Os formatos usuais são placas planas paralelas e cilíndricas coaxiais.

Fórmula da capacitância de formato plano:

$$C = \frac{\varepsilon_0 A}{d} \quad \varepsilon_0 = 8.9 \times 10^{-12} \frac{C^2}{N * m^2} \quad \text{se L>>d}$$

Fórmula da capacitância de formato coaxial:

$$C = \frac{2\pi * \varepsilon_0 * L}{\ln\left(\frac{a}{b}\right)} onde: L >> a, b$$

Definição:

$$C = \frac{q}{V}$$

Onde: C = Capacitância

q = Carga na placa

V = Tensão elétrica entre as placas

$$Unidade(C) = \frac{Coulomb}{Volt} = Farad(F)$$

Fórmula de armazenamento:

1) Carga
$$q = C *V$$

2) Potencial elétrico

$$U = \frac{1}{2}C * V^{2} \Leftrightarrow U = \frac{1}{2}q * V \Leftrightarrow U = \frac{q^{2}}{2C}$$

3 – DESCRIÇÕES DO MATERIAL UTILIZADO E MONTAGEM

2.1 - MATERIAL UTILIZADO:

<u> </u>	Z.I WATERIAL OTILIZADO.							
ITEM	QTD.	DESCRIÇÃO	ESPECIFICAÇÃO					
1	1	Multímetro	Marca Minipa, modelo ET-3050A					
2	1	Fonte de alimentação	Marca Minipa, modelo PS-1500					
3	1	CH1	Chave 1 pólo 3 posições					
4	2	C1 e C2	Capacitor eletrolítico 47uF x 450V					
5	40 cm	Fio condutor						
6	4	Bornes	2 Prfetos e 2 Vermelhos					

2.2. - MONTAGEM:

FOTOGRAFIA I – Experimento realizado

DESENHO I – Esquema do experimento (n=ltem)

4 - PROCEDIMENTOS

- a) Anotar os valores de C1 e C2
- b) Colocar a posição da CH1 em 0
- c) Zerar os níveis de tensão e corrente elétrica da fonte de alimentação
- d) Ligar a fonte de alimentação
- e) Elevar o nível de corrente elétrica da fonte ao máximo
- f) Ajustar o nível de tensão elétrica em 10Vdc
- g) Descarregar C1 e C2 com um cabo, fechado curto circuito nos terminais de cada um
- h) Conectar a fonte de alimentação ao experimento
- i) Passar a posição de CH1 da posição 0 para posição1, para carregar C1
- j) Após 2 minutos de carga em C1, passar a chave da posição 1 para 0
- k) Desligar e desconectar a fonte de alimentação do experimento
- 1) Aferir com o multímetro V1a em C1 rapidamente e anotar as leituras
- m) Passar a posição de CH1 de 0 para 2, para carregar C2
- n) Após 1 minuto passar a posição de CH1 de 2 para O
- o) Aferir com o multímetro rapidamente V2d em C2 e V1d em C1 e anotar as leituras

5 - TABELA DE DADOS

Tabela I – Carga antes e depois

Carga	Antes	Carga Depois		
V1a	V2a	V1d	V2d	
9,88	0,00	4,94	4,92	

6 - ANÁLISE DOS DADOS

C	arga Elétrica	Potencial Elétrico	
Fórmula	Cálculo	Fórmula	Cálculo
q1a = C1xV1a	0,00046436=47uF*9,88V	$U1a = \frac{1}{2}C1xV_{1a}^2$	$22,9 \text{mV} = 0,5*47 \text{uF}*9,88 \text{V}^2$
q1d = C1xV1d	0,00023218= 47uF*4,94V	$U1d = \frac{1}{2}C1xV_{1d}^2$	$57,3\text{mV} = 0,5*47\text{uF}*4,94\text{V}^2$
q2d = C2xV2d	0,00023124= 47uF*4,92V	$U2d = \frac{1}{2}C2xV_{2d}^2$	$0,57 \text{mV} = 0,5*47 \text{uF}*4,92 \text{V}^2$

$$q1a \approx q1d + q2d \Leftrightarrow 0.00046342C = 0.00023218C + 0.00023124C$$

$$V1a \approx V1d + V2d \Leftrightarrow 9{,}86V = 4{,}94V + 4{,}92V$$

<u>Observações</u>: Percebeu-se que houve perdas de energia da fonte de alimentação para C1 de 0,18V e de C1 para C2 em 0,02V, com isso, constatou-se que essa perda se deu pelo efeito joule sob os condutores entre os componentes. Foi possível então concluir que houve sim o equilíbrio eletrostático entre C1 e C2 após a transferência (distribuição) de carga.

7 – REFERÊNCIAS

Anotações do caderno feitas em aulas de Física ministradas pelo prof. Waldemar Monteiro na Universidade Gama Filho.

TIPLER, Paul Allen **Física para cientistas e engenheiros**, volume 2, Rio de Janeiro, editora LTC, 2010.