A TWO-COUNTRY NEW-KEYNESIAN MODEL WITH LIMITED ARBITRAGE IN CURRENCY AND BOND MARKETS

PIERRE-OLIVIER GOURINCHAS IMF, UC BERKELEY, NBER, CEPR pog@berkeley.edu WALKER RAY
CHICAGO FED, CEPR
walkerdray@gmail.com

DIMITRI VAYANOS LSE, CEPR, NBER d.vayanos@lse.ac.uk

CEBRA, August 2025

Motivation

Motivation: International Finance Puzzles

- Textbook international macro:
 - Uncovered Interest Parity (UIP) holds
 - The Expectation Hypothesis (EH) holds
- · Empirically:
 - Strong patterns in FX: currency carry trade is profitable ⇒ deviations from UIP
 [Fama 1984...]
 - 2. Strong patterns in FI: bond carry trade is profitable ⇒ deviations from the EH [Fama & Bliss 1987, Campbell & Shiller 1991...]
 - 3. Exchange rates disconnected from fundamentals; but important comovement in term premia and currency risk premia across countries
 [Obstfeld & Rogoff 2001, Itskhoki & Mukhin 2021, Lustig et al 2019, Lloyd & Marin 2019, Chernov & Creal 2020...]
 - Quantitative easing not only reduced domestic yields, but also had strong effects on exchange rates and foreign yields [Bhattarai & Neely 2018...]

Motivation: Macro Consequences

- Recent work has emphasizing the critical role of imperfect financial intermediation:
 - Market segmentation interacts with risk exposure of intermediaries to generate movements in risk premia
 [Gabaix & Maggiori 2015, Itskhoki & Mukhin 2019, Koijen & Yogo 2020, Greenwood et al 2023, Gourinchas, Ray, Vayanos 2025...]
- Key insight: portfolio flows crucial for generating correlated movements in FX and bond premia. Key questions in general equilibrium:
 - What is the role of endogenous portfolio flows induced by real economy (households, import/exports)?
 - · How do frictions change monetary policy transmission to the real economy?
- This paper: develops two-country New Keynesian model in which:
 - Asset markets are segmented for households
 - · Bond and currency markets are partly integrated by arbitrageurs with limited capital
 - Formally: two-country version of Ray, Droste, Gorodnichenko (2024); GE version of Gourinchas, Ray, Vayanos (2025)

Preview

- 1. Can reproduce general features regarding the joint behavior of bond and currency risk premia
- 2. Rich transmission of monetary policy via exchange rate and term premia, contrasting with standard models. Key mechanisms:
 - · Shifts in arbitrageurs' risk exposure lead to changes in required risk compensation
 - \cdot Hedging behavior of arbitrageurs \implies tight linkage between bond term premia and currency risk premia
 - In the presence of market segmentation, policy shocks lead to large shifts in risk exposure
- 3. Hedging properties of domestic and foreign bonds determined by general equilibrium forces:
 - Endogenous rebalancing within and across countries
 - Endogenous monetary reaction to shocks
- 4. Real effects of monetary policy (particularly unconventional) depend critically on these rebalancing mechanisms; may have unintended consequences

Model Setup

Model Setup

· Continuous time two-country New Keynesian model with imperfect arbitrage

· Agents:

- · Households: supply labor, consume, save via bond markets
- · Firms: monopolistic competitors face nominal frictions
- · Arbitrageurs: imperfect risk-bearing capacity, conduct carry trades

Policymakers:

- · Central bank: conducts short rate and balance sheet (QE) policy
- · Government: issue debt, otherwise passive

· Bond markets:

- Continuum of zero coupon bonds with maturity 0 $\leq \tau \leq \mathit{T} \leq \infty$
- · Local currency bond price $\mathcal{P}_{Ht}^{(\tau)}, \mathcal{P}_{Ft}^{(\tau)*}$
- Nominal exchange rate \mathcal{E}_t (H price of F currency)
- · Yield to maturity $y_{\mathit{Ht}}^{(au)} = -\log \mathcal{P}_{\mathit{Ht}}^{(au)}/ au, y_{\mathit{Ft}}^{(au)*} = -\log \mathcal{P}_{\mathit{Ft}}^{(au)*}/ au$
- · Nominal short rates: in equilibrium, $i_t = \lim_{\tau \to 0} y_{Ht}^{(\tau)}, i_t^* = \lim_{\tau \to 0} y_{Ft}^{(\tau)*}$

Households

• H HHs choose consumption and labor C_t , N_t in order to solve (analogous for F HHs)

$$V_0 \equiv \max E_0 \int_0^\infty e^{-\varrho t} \Psi_t u(C_t, N_t) \, \mathrm{d}t$$
 subject to:
$$\mathrm{d}\mathcal{B}_t = [\mathcal{W}_t N_t - \mathcal{P}_t C_t] \, \mathrm{d}t + \mathcal{B}_t \, \mathrm{d}\tilde{\mathcal{R}}_t + \mathrm{d}\mathcal{F}_t$$

- · Discount factor shock Ψ_t
- Takes as given CPI \mathcal{P}_t , nominal wage \mathcal{W}_t , flow transfers $d\mathcal{F}_t$ (from firms, fiscal authorities, and intermediaries)
- Faces "effective" portfolio returns

$$\mathrm{d}\tilde{\mathcal{R}}_{t} = \eta_{Ht}(0)i_{t}\,\mathrm{d}t + \int_{0}^{\tau} \eta_{Ht}(\tau) \frac{\mathrm{d}\mathcal{P}_{Ht}^{(\tau)}}{\mathcal{P}_{Ht}^{(\tau)}}\,\mathrm{d}\tau + \eta_{Ft}(0)\left[i_{t}^{*}\,\mathrm{d}t + \frac{\mathrm{d}\mathcal{E}_{t}}{\mathcal{E}_{t}}\right] + \int_{0}^{\tau} \eta_{Ft}(\tau) \frac{\mathrm{d}(\mathcal{E}_{t}\mathcal{P}_{Ft}^{(\tau)*})}{(\mathcal{E}_{t}\mathcal{P}_{Ft}^{(\tau)*})}\,\mathrm{d}\tau$$

- · Portfolio weights $\eta_{kt}(au)$ subject to frictions
- · Benchmark: fixed. Time-variation can capture rebalancing shocks

Key takeaway: asset prices not pinned down by HHs; consumption/savings choices function of "effective" rates

Firms

- Continuum of intermediate goods $j \in [0,1]$ in H (analogous $j' \in [0,1]$ in F)
- CES demand: elasticities ϵ (domestic), μ (cross-border); home-bias terms α, α^*

$$C_{kt}(j) = \left(\frac{\mathcal{P}_{kt}(j)}{\mathcal{P}_{kt}}\right)^{-\epsilon} C_{kt} \ (k = H, F), \ C_{Ht} = (1 - \alpha) \left(\frac{\mathcal{P}_{Ht}}{\mathcal{P}_{t}}\right)^{-\mu} C_{t}, \ C_{Ft} = \alpha \left(\frac{\mathcal{P}_{Ft}}{\mathcal{P}_{t}}\right)^{-\mu} C_{t}$$

• Produce using labor, technology $Y_t(j) = Z_t L_t(j)$. Nominal price $\mathcal{P}_{Ht}(j)$ chosen:

$$U_0^j \equiv \max E_0 \int_0^\infty e^{-arrho t} V_{B,t} rac{\mathrm{d}\Pi_t(j)}{\mathcal{P}_{Ht} Y}$$

where:
$$d\Pi_t(j) \equiv [\mathcal{P}_{Ht}(j)Y_t(j) - \mathcal{W}_tL_t(j)] dt - d\Theta_t(j)$$

• Costs of production: wage bill $W_t L_t(j)$ and flow deadweight costs:

$$d\Theta_{t}(j) = \frac{\vartheta}{2} (\pi_{Ht}(j) - \varpi_{t})^{2} \mathcal{P}_{Ht} Y_{t} dt$$

• Rotemberg rigidity parameter ϑ and "target" inflation rate ϖ_t (aggregate cost-push shock)

Key takeaway: pricing frictions; marginal costs function of domestic wage

Arbitrageurs

Mean-variance optimization

$$\begin{aligned} &\max \ E_t \, \mathrm{d}\mathcal{X}_t - \frac{a_t}{2} \mathit{Var}_t \, \mathrm{d}\mathcal{X}_t \\ &\text{subject to:} \ \ \mathrm{d}\mathcal{X}_t = \mathcal{X}_t i_t \, \mathrm{d}t + \mathcal{X}_t^{\mathsf{FX}} \left[\frac{\mathrm{d}\mathcal{E}_t}{\mathcal{E}_t} + (i_t^* - i_t) \, \mathrm{d}t \right] \\ &+ \int_0^T \mathcal{X}_{\mathsf{H}t}(\tau) \left[\frac{\mathrm{d}\mathcal{P}_{\mathsf{H}t}^{(\tau)}}{\mathcal{P}_{\mathsf{H}t}^{(\tau)}} - i_t \, \mathrm{d}t \right] \mathrm{d}\tau + \int_0^T \mathcal{X}_{\mathsf{F}t}(\tau) \left[\frac{\mathrm{d}(\mathcal{E}_t \mathcal{P}_{\mathsf{F}t}^{(\tau)*})}{(\mathcal{E}_t \mathcal{P}_{\mathsf{F}t}^{(\tau)*})} - \left(i_t^* \, \mathrm{d}t + \frac{\mathrm{d}\mathcal{E}_t}{\mathcal{E}_t} \right) \right] \mathrm{d}\tau \end{aligned}$$

- \cdot $\mathcal{X}_{t}^{\mathit{FX}}$: CCT. $\mathcal{X}_{\mathit{kt}}(\tau)$: $\tau, k = \mathit{H}, \mathit{F}$ BCT (H currency positions)
- Risk-return trade-off governed by a_t
 - · Risk aversion coefficient (captures all limits to risk-bearing capacity)
 - · All gains/losses transferred to HHs
 - Note: ⇒ CIP holds

Key takeaway: risk averse arbitrageurs' holdings increase with expected return

Asset Returns

- In equilibrium: N_B sources of aggregate risk, vector of Brownian terms B_t
 - · Shocks: technology, discount factor, cost-push, rebalancing, supply/QE, ...
- Write bond returns and FX appreciation/depreciation

$$\frac{\mathrm{d}\mathcal{P}_{Ht}^{(\tau)}}{\mathcal{P}_{Ht}^{(\tau)}} = \mu_{Ht}^{(\tau)} \, \mathrm{d}t + \boldsymbol{\sigma}_{Ht}^{(\tau)} \, \mathrm{d}\boldsymbol{B}_t \,, \quad \frac{\mathrm{d}\mathcal{P}_{Ft}^{(\tau)*}}{\mathcal{P}_{Ft}^{(\tau)*}} = \mu_{Ft}^{(\tau)*} \, \mathrm{d}t + \boldsymbol{\sigma}_{Ft}^{(\tau)*} \, \mathrm{d}\boldsymbol{B}_t \,, \quad \frac{\mathrm{d}\mathcal{E}_t}{\mathcal{E}_t} = \mu_t^{\mathcal{E}} \, \mathrm{d}t + \boldsymbol{\sigma}_t^{\mathcal{E}} \, \mathrm{d}\boldsymbol{B}_t$$

Arbitrageur optimality conditions:

$$\mu_{t}^{\mathcal{E}} + i_{t}^{*} - i_{t} \equiv \lambda_{t}^{\mathcal{E}} = a_{t} \boldsymbol{\sigma}_{t}^{\mathcal{E}} \boldsymbol{\Lambda}_{t}$$

$$\mu_{Ht}^{(\tau)} - i_{t} \equiv \lambda_{Ht}^{(\tau)} = a_{t} \boldsymbol{\sigma}_{Ht}^{(\tau)} \boldsymbol{\Lambda}_{t}$$

$$\mu_{Ft}^{(\tau)*} + \boldsymbol{\sigma}_{Ft}^{(\tau)*} \left[\boldsymbol{\sigma}_{t}^{\mathcal{E}}\right]^{\top} - i_{t}^{*} \equiv \lambda_{Ft}^{(\tau)*} = a_{t} \boldsymbol{\sigma}_{Ft}^{(\tau)*} \boldsymbol{\Lambda}_{t}$$

Market price of risk:

$$\mathbf{\Lambda}_t^{\top} = \mathcal{X}_t^{\mathsf{FX}} \boldsymbol{\sigma}_t^{\mathcal{E}} + \int_0^T \mathcal{X}_{\mathsf{H}t}(\tau) \boldsymbol{\sigma}_{\mathsf{H}t}^{(\tau)} \, \mathrm{d}\tau + \int_0^T \mathcal{X}_{\mathsf{F}t}(\tau) \boldsymbol{\sigma}_{\mathsf{F}t}^{(\tau)*} \, \mathrm{d}\tau$$

Government

• H debt supply and QE purchases (analogous in F):

$$\begin{split} \mathcal{G}_{t}\left(\theta_{Ht}(0)i_{t}\,\mathrm{d}t + \int_{0}^{T}\theta_{Ht}(\tau)\frac{\mathrm{d}\mathcal{P}_{Ht}^{(\tau)}}{\mathcal{P}_{Ht}^{(\tau)}}\,\mathrm{d}\tau\right) &\equiv \mathcal{G}_{t}\,\mathrm{d}\check{\mathcal{R}}_{t} \\ \mathcal{Q}\mathcal{E}_{t}\int_{0}^{T}\theta_{Ht}^{QE}(\tau)\left[\frac{\mathrm{d}\mathcal{P}_{Ht}^{(\tau)}}{\mathcal{P}_{Ht}^{(\tau)}} - i_{t}\,\mathrm{d}t\right]\mathrm{d}\tau &\equiv \mathcal{Q}\mathcal{E}_{t}\,\mathrm{d}\check{\mathcal{R}}_{t}^{QE} \end{split}$$

- All gains/losses transferred per-period to domestic HHs
- Market clearing:

$$\mathcal{B}_{t}\eta_{Ht}(\tau) + \mathcal{E}_{t}\mathcal{B}_{t}^{*}\eta_{Ht}^{*}(\tau) + \mathcal{X}_{Ht}(\tau) = \mathcal{G}_{t}\theta_{Ht}(\tau) - \mathcal{Q}\mathcal{E}_{t}\theta_{Ht}^{QE}(\tau)$$

$$\mathcal{B}_{t}\eta_{Ft}(\tau) + \mathcal{E}_{t}\mathcal{B}_{t}^{*}\eta_{Ft}^{*}(\tau) + \mathcal{X}_{Ft}(\tau) = \mathcal{E}_{t}\mathcal{G}_{t}^{*}\theta_{Ft}^{*}(\tau) - \mathcal{E}_{t}\mathcal{Q}\mathcal{E}_{t}^{*}\theta_{Ft}^{QE*}(\tau)$$

$$\Longrightarrow \mathcal{B}_{t}\eta_{Ht} + \mathcal{E}_{t}\mathcal{B}_{t}^{*}\eta_{Ht}^{*} - \mathcal{G}_{t} = \mathcal{X}_{t}^{FX}, \quad \mathcal{B}_{t} - \mathcal{G}_{t} = -\mathcal{E}_{t}\left[\mathcal{B}_{t}^{*} - \mathcal{G}_{t}^{*}\right]$$

Key takeaway: gov't/HH asset positions affect arbitrageurs risk exposure in equilibrium

Exchange Rate, LOP, Terms of Trade

· LOP (goods):

$$\mathcal{P}_{Ht}(j) = \mathcal{E}_t \mathcal{P}_{Ht}^*(j) \ j \in H \implies \mathcal{P}_{Ht} = \mathcal{E}_t \mathcal{P}_{Ht}^*$$
$$\mathcal{P}_{Ft}(j') = \mathcal{E}_t \mathcal{P}_{Ft}^*(j') \ j' \in F \implies \mathcal{P}_{Ft} = \mathcal{E}_t \mathcal{P}_{Ft}^*$$

· LOP (bonds):

$$\mathcal{P}_{ ext{Ht}}^{(au)} = \mathcal{E}_t \mathcal{P}_{ ext{Ht}}^{(au)*}, \;\; \mathcal{P}_{ ext{Ft}}^{(au)} = \mathcal{E}_t \mathcal{P}_{ ext{Ft}}^{(au)*}$$

Terms of trade and real exchange rate

$$S_t \equiv \frac{\mathcal{P}_{Ft}}{\mathcal{P}_{Ht}}, \ \ Q_t \equiv \frac{\mathcal{P}_t^*}{\mathcal{P}_t} \mathcal{E}_t = \left(\frac{\alpha^* + (1 - \alpha^*) S_t^{1 - \mu}}{(1 - \alpha) + \alpha S_t^{1 - \mu}}\right)^{\frac{1}{1 - \mu}}$$

Aggregation

- Symmetric equilibrium: $\mathcal{P}_{k,t}(j) = \mathcal{P}_{k,t}$ for k = H, F
 - · Simplification: (second-order) Rotemberg costs paid to HHs
- · Production, labor, and goods market clearing:

$$Y_t = Z_t L_t = Z_t N_t = C_{Ht} + C_{Ht}^*$$

 $Y_t^* = Z_t^* L_t^* = Z_t^* N_t^* = C_{Ft} + C_{Ft}^*$

· Aggregate wealth dynamics $B_t = \frac{\mathcal{B}_t}{Y \mathcal{P}_{Ht}}$ (relative to H GDP)

$$\mathrm{d}B_t = \frac{Y_t}{Y} N X_t \, \mathrm{d}t + B_t \left(\mathrm{d}\tilde{\mathcal{R}}_t - \pi_{Ht} \, \mathrm{d}t \right) + \nu \, \mathrm{d}X_t - G_t \, \mathrm{d}\check{\mathcal{R}}_t + Q E_t \, \mathrm{d}\check{\mathcal{R}}_t^{QE}$$

- · Net exports $NX_t \equiv 1 \frac{C_t}{P_{Ht}Y_t}$
- \cdot ν : share of arbitrageurs owned by H HHs

Equilibrium

Equilibrium Macro Dynamics

- "Low risk, low risk-bearing" approximation implies modified NK equations
- Phillips curves

$$E_t d\pi_{Ht} = \left[\varrho \pi_{Ht} - \left(\frac{\epsilon - 1}{\vartheta}\right) m_t + u_t\right] dt, \quad E_t d\pi_{Ft}^* = \left[\varrho \pi_{Ft}^* - \left(\frac{\epsilon - 1}{\vartheta^*}\right) m_t^* + u_t^*\right] dt$$

Consumption Euler equations

$$E_t dc_t = \varsigma^{-1} [\tilde{\mu}_{Ht} - \pi_t + v_t] dt, \quad E_t dc_t^* = \varsigma^{-1} [\tilde{\mu}_{Ft}^* - \pi_t + v_t^*] dt$$

- u_t, u_t^*, v_t, v_t^* from inflation target shocks, discount factor shocks
- · Marginal costs m_t, m_t^* depend on wages, technology, terms of trade
- Modified Euler equations depend on effective borrowing rates

$$\begin{split} \tilde{\mu}_{Ht} &= i_t + \tilde{\lambda}_t, \ \ \tilde{\mu}_{Ft}^* = i_t^* + \tilde{\lambda}_t^*, \ \ \mu_t^{\mathcal{E}} = i_t - i_t^* + \lambda_t^{\mathcal{E}} \\ \mu_t^{\mathcal{E}} &= \pi_{Ht} - \pi_{Ht}^* = \pi_{Ft} - \pi_{Ft}^*, \ \ \pi_t = (1 - \alpha)\pi_{Ht} + \alpha\pi_{Ft} \end{split}$$

Equilibrium Risk Prices

Aggregate wealth dynamics:

$$db_{t} = [NXy_{t} + nx_{t} + (b_{t} - g_{t})\varrho + B\tilde{\mu}_{t} - G\check{\mu}_{t}] dt + [B\tilde{\sigma} - G\check{\sigma}] dB_{t}$$

Asset market clearing:

$$\begin{split} x_t^{FX} &= -\eta_F^* g_t + (1 - \eta_{Ft}^*) S(G^* s_t + g_t^*) \\ &\quad + (\eta_H - (1 - \eta_F^*)) b_t \\ &\quad - (G + SG^*) \eta_{Ft}^* + B(\eta_{Ht} + \eta_{Ft}^*) \\ x_{Ht}(\tau) &= (\theta_H(\tau) - (1 - \eta_F^*(\tau))) g_t - \theta_H^{QE}(\tau) q e_t - (1 - \eta_F^*(\tau)) S(G^* s_t + g_t^*) \\ &\quad - (\eta_H(\tau) - (1 - \eta_F^*(\tau))) b_t \\ &\quad + G(\theta_{Ht}(\tau) + \eta_{Ft}^*(\tau))) + SG^* \eta_{Ft}^*(\tau) - B(\eta_{Ht}(\tau) + \eta_{Ft}^*(\tau)) \\ x_{Ft}(\tau) &= (\theta_F^*(\tau) - \eta_F^*(\tau)) S(G^* s_t + g_t^*) - S\theta_F^{QE*}(\tau) q e_t^* - \eta_F^*(\tau) g_t \\ &\quad - ((1 - \eta_H(\tau)) - \eta_F^*(\tau)) b_t \\ &\quad + SG^*(\theta_{Ft}^*(\tau) - \eta_{Ft}^*(\tau)) - G\eta_{Ft}^*(\tau) + B(\eta_{Ht}(\tau)) + \eta_{Ft}^*(\tau)) \end{split}$$

Equilibrium Characterization I

• Conjecture that bonds prices and the terms of trade are linear functions of state variables (includes forcing variables, supply factors, HH wealth):

$$\mathbf{S}_t = -\mathbf{A}_s^{\mathsf{T}} \mathbf{X}_t, \ p_t^{(\tau)} = -\mathbf{A}(\tau)^{\mathsf{T}} \mathbf{X}_t, \ p_t^{(\tau)*} = -\mathbf{A}^*(\tau)^{\mathsf{T}} \mathbf{X}_t$$

• Dynamics as a function of state and jump variables \mathbf{Y}_t , risk price variables \mathbf{z}_t (includes terms of trade, effective rate/FX premia $\tilde{\lambda}_t, \tilde{\lambda}_t^*, \lambda_t^{\mathcal{E}}$

$$\begin{bmatrix} \mathrm{d} \mathbf{x}_t \\ E_t \, \mathrm{d} \mathbf{y}_t \end{bmatrix} = - \left(\mathbf{\Upsilon}_Y \mathbf{Y}_t + \mathbf{\Upsilon}_Z \mathbf{z}_t \right) \mathrm{d}t + \begin{bmatrix} \boldsymbol{\sigma} \\ \mathbf{0} \end{bmatrix} \mathrm{d} \mathbf{B}_t$$

- · Fixed point: solve for
 - Risk-adjusted dynamics **M** $(N_x \times N_x)$
 - Mapping from state to risk prices $A_Z (N_x \times N_z)$

Equilibrium Characterization II

Equilibrium dynamics:

$$\Upsilon = \Upsilon_Y + \begin{bmatrix} \Upsilon_Z A_Z & 0 \end{bmatrix} \implies \mathrm{d} x_t = -\Gamma x_t \, \mathrm{d} t + \sigma \, \mathrm{d} B_t \,, \ y_t = \Omega x_t$$

· Equilibrium coefficients:

$$A_{s} = M^{-1} \left(\mathbf{e}_{r_{H}} - \mathbf{e}_{r_{F}}^{*} \right), \ A_{H}(\tau) = \int_{0}^{\tau} e^{-Mu} \, \mathrm{d}u \, \mathbf{e}_{i}, \ A_{F}(\tau) = \int_{0}^{\tau} e^{-Mu} \, \mathrm{d}u \, \mathbf{e}_{i}^{*}$$

- Equilibrium mapping from state to real/nominal rates e_{r_b} , e_i
- Equilibrium mapping from state to quantities $\Theta_k(\tau)$
- Fixed point:

$$\mathbf{L} = \int \mathbf{\Theta}_{H}(\tau) \mathbf{A}_{H}(\tau)^{\top} d\tau + \int \mathbf{\Theta}_{F}(\tau) \mathbf{A}_{F}(\tau)^{\top} d\tau + \mathbf{\Theta}_{e} \mathbf{A}_{s}^{\top} \implies \check{\mathbf{M}} = \mathbf{\Gamma}^{\top} - a \cdot \mathbf{L}\mathbf{\Sigma}$$

$$\check{\mathbf{A}}_{Z} = \begin{bmatrix} -\mathbf{A}_{s} & a \cdot \mathbf{L}\mathbf{\Sigma} \mathbf{A}_{s} & a \cdot \mathbf{L}\mathbf{\Sigma} \int \eta(\tau) \mathbf{A}_{H}(\tau) d\tau & a \cdot \mathbf{L}\mathbf{\Sigma} \int \eta^{*}(\tau) \mathbf{A}_{F}(\tau) d\tau \end{bmatrix}$$

Key Mechanisms

Macro Dynamics:

- Macro dynamics are similar to textbook open-economy NK model conditional on:
 - · Dynamics of effective borrowing rates $\tilde{\mu}_t, \tilde{\mu}_t^*$ (textbook: $\tilde{\mu}_t = i_t, \tilde{\mu}_t^* = i_t^*$)
 - Dynamics of terms of trade s_t (textbook: from risk-sharing condition)
- · Fall in effective rates stimulates domestic consumption for usual NK reasons
- Domestic/foreign output and net export reaction depends on FX movements

Asset Returns:

- Deviations from EH/UIP depends on arbitrageur risk exposure
- · Asset position imbalances arise due to
 - · Endogenous dynamics of HH wealth
 - HH rebalancing following asset appreciation due to sticky portfolio weights
 - Exogenous changes in supply/QE
- Equilibrium risk pricing depends on endogenous hedging properties of bonds across maturities and countries

Results: Stylized Model

Bond and Currency Returns: Partial Equilibrium Intuition

Partial equilibrium assumptions: suppose

- Short rates $corr(i_t, i_t^*) \approx 0$ and no supply/QE/bond demand shocks
- HH rebalancing (local) $\frac{\partial b_{jt}(au)}{\partial \mathcal{P}_{it}^{(au)}} < 0$, (cross) $\frac{\partial b_{Ft}}{\partial \mathcal{E}_t} < 0$, wealth dynamics $\mathrm{d}b_t \approx 0$

Proposition (Carry Trades)

- Both CCT and BCT_H return decrease with i_{Ht}
- \bigwedge In addition, BCT_F increases with i_{Ht}

Intuition: Bond and FX Premia Cross-Linkages

- When $i_{Ht} \downarrow$ global arbitrageurs want to invest more in CCT and BCT_H
- \mathcal{E}_t and $X_t^{FX} \uparrow$: increased FX exposure (risk of $i_{Ft} \downarrow$)
- Hedge by investing more in BCT_F (since foreign bonds appreciate when i_{Ft} drops)
 - \implies BCT_F decreases

QE: Partial Equilibrium Intuition

Following unexpected QE_H (maintaining PE assumptions):

- Home yields decline: $\downarrow y_{Ht}^{(\tau)}$
- Also reduces yields in country $F \downarrow y_{Ft}^{(\tau)*}$, and depreciates the Home currency $\uparrow \mathcal{E}_t$

Intuition: Bond and FX Premia Cross-Linkages

- Arbitrageurs decrease H bond exposure (less exposed to risk of $i_{Ht} \uparrow$)
- More willing to hold assets exposed to this risk: increase holdings of F bonds and currency, pushing down F yields and depreciating the H currency

QE: Partial Equilibrium Intuition

Following unexpected QE_H (maintaining PE assumptions):

- Home yields decline: $\downarrow y_{Ht}^{(\tau)}$
- · \bigwedge Also reduces yields in country $F \downarrow y_{Ft}^{(\tau)*}$, and depreciates the Home currency $\uparrow \mathcal{E}_t$

Intuition: Bond and FX Premia Cross-Linkages

- Arbitrageurs decrease H bond exposure (less exposed to risk of $i_{Ht} \uparrow$)
- More willing to hold assets exposed to this risk: increase holdings of F bonds and currency, pushing down F yields and depreciating the H currency

Limits of partial equilibrium logic

- MP-induced spillovers to asset prices
- \cdot But asset price movements \implies changes in consumption, inflation, wealth across countries
- Thus, $corr(i_t, i_t^*) \neq 0$ and wealth dynamics $db_t \neq 0$ which complicates the partial equilibrium hedging logic

Bond and Currency Returns: General Equilibrium Intuition

Simplifying assumptions: suppose

- Fully rigid producer prices $(\vartheta \to \infty)$, single global discount risk factor $v_t = -v_t^*$
- Symmetric, zero wealth/supply steady state

Proposition (Macro Dynamics)

If arbitrageur risk aversion a > 0 large enough, then relative to a = 0:

- Aggregate wealth b_t is stationary; CCT and BCT_H increasing, BCT_F decreasing in b_t
- Terms of trade s_t under-react to discount factor shocks
- · Consumption c_t, c_t^* over-reacts iff effective duration $\tilde{\eta}(au)$ large enough

Intuition: Bond and FX Premia Cross-Linkages

- When $\uparrow b_t$, arbitrageurs are long CCT, BCT_F; short BCT_H
- Following discount factor shock $\implies \downarrow c_t, \uparrow c_t^*$
- $\cdot \implies$ F currency $\uparrow \mathcal{E}_t$ and expected depreciation
- But $\uparrow db_t$, thus F currency appreciates by less in order to accommodate higher expected return on *CCT*

QE: General Equilibrium Intuition

Following unexpected QE_H (maintaining GE assumptions):

- · Home yields decline and Home currency depreciates: $\downarrow y_{Ht}^{(au)}$ and $\uparrow \mathcal{E}_t$
- Also boosts output in country $H: \uparrow y_t$
 - · Ambiguous effects in country F
 - If ToT channel and home-bias is large enough, can reduce output in country $F \downarrow y_t^*$

Open Economy Macro Implications:

- Domestic monetary conditions (conventional or QE) affect both yield curves and the exchange rate
- Imperfect insulation even with floating rates

QE: General Equilibrium Intuition

Following unexpected QE_H (maintaining GE assumptions):

- · Home yields decline and Home currency depreciates: $\downarrow y_{Ht}^{(au)}$ and $\uparrow \mathcal{E}_t$
- \bigwedge Also boosts output in country $H: \uparrow y_t$
 - · Ambiguous effects in country F
 - If ToT channel and home-bias is large enough, can reduce output in country $F \downarrow y_t^*$

Open Economy Macro Implications:

- Domestic monetary conditions (conventional or QE) affect both yield curves and the exchange rate
- Imperfect insulation even with floating rates

Limits of stylized macro intuition:

- · Risk premia function of b_t only
- \implies counter-factual factor structure of asset prices

Asset Return Factor Structure

· Additional risk factors necessary to fit data (Gourinchas, Ray, Vayanos 2025)

Adding Additional Risk Factors

- Illustrative model to better understand qualitative features (work in progress):
 - H/F discount factor shocks v_t, v_t^*
 - H/F supply shocks g_t, g_t^*
 - · H/F rebalancing shocks: across maturities β_t, β_t^* ; across currencies γ_t
- · Compare discount factor shocks and QE shocks
 - · Also relative to risk-neutral benchmark

Discount Factor Shock IRFs

- · Under-reaction and then over-shooting mean-reversion of ToT
- $\cdot \implies$ longer-lasting H recession, eventual F expansion
 - · Actually changes sign of conditional $corr(i_t, i_t^*) \neq 0$ (albeit quantitatively small)

QE Shock IRFs

- QE leads to H expansion, F contraction; inflationary (through ToT movements)
- $\boldsymbol{\cdot}$ Over longer horizons, the pattern switches due to H wealth effects
 - · Also see Kamdar & Ray (2025) for unintended redistribution effects of QE

Concluding Remarks

 Present an integrated general equilibrium framework to understand macro consequences of term premia, currency risk premia

- Rich transmission of monetary policy domestically and abroad:
 - · To asset prices via FX and term premia
 - To real economy via asset market segmentation

Thank You!