$$\begin{cases} \dot{x} = -x + 2y - y^3 \\ \dot{y} = x - 2y \end{cases}.$$
 Возьмём функцию Ляпунова $v(x;y) = \frac{1}{2}x^2 + y^2.$ $\frac{dv}{dt} \Big| = -x^2 + 2xy - xy^3 + 2xy - 4y^2 = -x^2 + 4xy - 4y^2 - xy^3 = -(x + 2y)^2 - xy^3.$

Рассматривать точки (x;y) будем только в окрестности $|X| = \sqrt{x^2 + y^2} < \varepsilon_0 = 2$. В области $xy \geqslant 0$ имеем $xy^3 = xy \cdot y^2 \geqslant 0$, и тогда $\frac{dv}{dt} \Big| \leqslant 0$, причём $\frac{dv}{dt} \Big| = 0$ тогда и только тогда, когда одновременно x + 2y = 0 и $xy^3 = 0$. Последнее возможно только в начале координат. Итак, в этой области можно утверждать $\frac{dv}{dt}$ < 0.

С другой стороны, в области xy < 0 получаем $\frac{dv}{dt} = -x^2 - 4y^2 + xy(4 - y^2)$. В описанной выше окрестности $|y| \leqslant \sqrt{x^2 + y^2} < \epsilon_0 = 2$, то есть $y^2 < 4$ и $4 - y^2 > 0$. Следовательно, $xy\left(4-y^2\right)<0$ и $\left.\frac{dv}{dt}\right|<0$, причём равенство нулю невозможно.

Итак, при всех возможных (x; y) внутри окрестности радиуса ε_0 получаем $\frac{dv}{dt}$ < 0. Поскольку $\frac{dv}{dt}$ непрерывна, можно взять $w(x; y) = -\frac{dv}{dt}$. Теорема Ляпунова гарантирует асимптотическую устойчивость нулевого решения.