La charge électrique dans le champ électromagnétique.

Rappels.

Landau/Lifchitz « Théorie des Champs » pages 66 - 90 .

Doran/Lasenby « Geometric Algebra for Physicists » .

J.M Raimond « Electromagnétisme et Relativité » ENS .

Georges Ringeisen « Méthodes mathématiques comparées en électromagnétisme » .

Champ magnétique constant (premier calcul).

Nous admettons l'équation tensorielle :

- (1) $m \dot{v} = qFv$ $v = \frac{dx}{d\tau}$ $\dot{v} = \frac{dv}{d\tau}$ $\tau = \text{temps propre de la particule}$
- qui en GA s'écrit :
- (2) $m \dot{v} = qF.v$ avec
- (3) F = IB

v est un « quadrivecteur » de l'espace-temps.

(4)
$$v = v^0 \gamma_0 + v^1 \gamma_1 + v^2 \gamma_2 + v^3 \gamma_3 = v^0 \gamma_0 + v^i \gamma_i$$
 $c = 1$ $v^0 = \frac{dx^0}{d\tau} = \frac{dt}{d\tau}$

(5)
$$(\gamma_0)^2 = 1$$
 $(\gamma_i)^2 = -1$ $\gamma_0 \cdot \gamma_1 = 0$ $\gamma_i \cdot \gamma_j = 0 \text{ avec } i \neq j$

les γ_{μ} sont les vecteurs de base du repère de l'observateur.

Par définition de τ on a :

$$(6) \qquad (v)^2 = v^2 = 1 = (v^0)^2 - [(v^1)^2 + (v^2)^2 + (v^3)^2]$$

On pose:

(7)
$$\gamma = v \cdot \gamma_0 = v^0 = \frac{dt}{d\tau}$$

(8)
$$\bar{v} = \gamma^{-1} \left(v^1 \gamma_1 \gamma_0 + v^2 \gamma_2 \gamma_0 + v^3 \gamma_3 \gamma_0 \right)$$

où \bar{v} représente la vitesse spatiale rapportée à t.

On obtient:

(9)
$$\gamma^2 = (1 - \bar{v}^2)^{-1}$$

Le tenseur électromagnétique complet s'écrit :

(10)
$$F = E + IB$$
 $E = E^{i}\gamma_{i}\gamma_{0}$ $B = B^{i}\gamma_{i}\gamma_{0}$ $I = \gamma_{0}\gamma_{1}\gamma_{2}\gamma_{3}$

Avec B seul on obtient :

$$(11) \quad (IB).v = I(B \wedge v) = I[0 + (B^i \gamma_i \gamma_0) \wedge (v^j \gamma_j)] = -B^i v^j \varepsilon_{ij}^{...k} \gamma_k$$

(12)
$$m \dot{v} = m \left(\frac{dv^0}{d\tau} \gamma_0 + \frac{dv^i}{d\tau} \gamma_i \right) = -q B^i v^j \varepsilon_i \ddot{j}^{k} \gamma_k$$

Cette équation vectorielle se décompose en deux termes :

$$(13 \frac{dv^0}{d\tau}\gamma_0 = 0 m\frac{dv^i}{d\tau}\gamma_i = -qB^i v^j \varepsilon_i \ddot{j}^k \gamma_k$$

Le premier donne :

(14)
$$\frac{d}{d\tau}(v.\gamma_0) = 0 \implies v.\gamma_0 = \frac{dt}{d\tau} = \text{Cte} \implies (\bar{v})^2 = \text{Cte}$$

le second , en posant $\sigma_k = \gamma_k \gamma_0$:

(15)
$$m \frac{dv^i}{dt} \sigma_i = -\frac{d\tau}{dt} q B^i v^j \varepsilon_i \dot{y}^k \sigma_k = q \bar{v} \times B = m\gamma \frac{d\bar{v}}{dt}$$

Il reste encore un peu de travail à faire, mais on dejà reconnu les équations d'une hélice.

Attention:
$$m \frac{dv^i}{dt} \sigma_i = m\gamma \frac{d\bar{v}}{dt} \neq m \frac{d\bar{v}}{dt}$$
 car $\frac{dv^i}{dt} = \frac{d}{dt} \left(\frac{dx^i}{d\tau} \right) \neq \frac{d}{dt} \left(\frac{dx^i}{dt} \right)$

Ceci veut dire que pour réaliser une trajectoire donnée il faut utiliser un champ beaucoup plus fort avec des électrons relativistes.

La solution par les rotors (deuxième calcul).

L'idée est de poser a priori :

(16)
$$v = R\gamma_0\tilde{R}$$
 $R\tilde{R} = 1$ $w_0 = R_0\gamma_0\tilde{R}_0$ vitesse initiale

où R est un rotor paramétré par τ .

Nous savons que \dot{v} s'écrit alors :

(17)
$$\dot{v} = 2(\dot{R}\tilde{R}).v = \Omega.v$$
 Ω bivecteur d'espace-temps

Or d'après (2) et (3) :

(18)
$$\dot{v} = \frac{q}{m}(IB).v$$

On voit aisément que l'on peut choisir :

(19)
$$\dot{R} = \frac{q}{2m}IBR$$
 car alors $\dot{R}\tilde{R} = \frac{q}{2m}IB$

L'équation (19) s'intègre en τ (avec $\hat{B}^2 = 1$) :

(20)
$$R = \exp\left(\frac{q}{2m}IB\tau\right)R_0 = \exp\left(\frac{q}{2m}[B]I\hat{B}\tau\right)R_0 = \left[\cos\left(\frac{q}{2m}[B]T\right) + I\hat{B}\sin\left(\frac{q}{2m}[B]T\right)\right]R_0$$

On en déduit d'après (16) :

(21)
$$v = \exp\left(\frac{q}{2m}IB\tau\right)w_0\exp\left(-\frac{q}{2m}IB\tau\right)$$

Nous décomposons w_0 en vitesse $w_{0||}$ parallèle au plan IB, et $w_{0\perp}$ perpendiculaire à ce plan.

La première anticommute avec IB; la seconde commute avec IB. Donc nous obtenons:

(22)
$$v = \exp\left(\frac{q}{m}IB\tau\right)w_{0||} + w_{0\perp}$$

En intégrant :

$$(23) x - x_0 = \left(\frac{q}{m} \llbracket B \rrbracket\right)^{-1} \left[1 - \exp\left(\frac{q}{m} IB\tau\right)\right] w_{0||} + w_{0\perp}$$

On passe au vecteur relatif spatial par:

$$(24) \qquad (x - x_0) \wedge \gamma_0 = \left(\frac{q}{m} \llbracket B \rrbracket\right)^{-1} \left\{ \left[1 - \exp\left(\frac{q}{m} I B \tau\right)\right] w_{0||} \right\} \wedge \gamma_0 + w_{0\perp} \wedge \gamma_0$$

(à développer!) La composante temporelle est donnée par $w_{0\perp}.\gamma_0$.

La solution générale par la decomposition invariante (troisième calcul).

Cette méthode est spécifique à la GA. Elle fait appel à la notion de décomposition invariante du bivecteur ${\cal F}$.

(25)
$$F = \rho^{1/2} e^{I\phi/2} \hat{F}$$
 $\hat{F}^2 = 1$

(26)
$$\hat{F} = \rho^{-1/2} e^{-I\phi/2} F = \rho^{-1/2} e^{-I\phi/2} (E + IB)$$
 E et B constants

Attention , dans \hat{F} les vecteurs électriques et magnétiques , attachés à γ_0 , sont par construction mélangés.

F peut être décomposé en :

(27)
$$F = \alpha \,\hat{F} + \beta I \,\hat{F}$$

En repartant du rotor:

(28)
$$R = \exp\left(\frac{q}{2m}F\tau\right)R_0 = \exp\left(\frac{q}{2m}\alpha\hat{F}\tau\right)\exp\left(\frac{q}{2m}\beta I\hat{F}\tau\right)R_0$$

(car \hat{F} et $I\hat{F}$ commutent) on obtient :

(29)
$$v = \exp\left(\frac{q}{2m}\alpha\hat{F}\tau\right)w_{0||} + \exp\left(\frac{q}{2m}\beta I\hat{F}\tau\right)w_{0\perp}$$

où $w_{0||}$ et $w_{0\perp}$ sont les composantes de la vitesse initiale dans ou hors du plan \hat{F} .

En intégrant :

$$(30) x - x_0 = \left(\frac{q\alpha}{m}\right)^{-1} \left[\exp\left(\frac{q}{m}\alpha\hat{F}\tau\right) - 1\right]\hat{F}.w_0 - \left(\frac{q\beta}{m}\right)^{-1} \left[\exp\left(\frac{q}{m}\beta I\hat{F}\tau\right) - 1\right] (I\hat{F}).w_0$$

Le premier terme représente un « boost » , et le second une rotation.

Pour passer en E et B il faut expliciter les équations (25) et (26).

Il semble pas que le calcul tensoriel permette ce type d'analyse. On remarque d'ailleurs que Landau/Lifchitz ne donnent que des cas particuliers du problème général F = Cte.

G.Ringeisen

mars 2016

Annexe . Détails du calcul du problème général F = Cte .

On écrit :

(31)
$$\hat{F}^2 = 1 = \rho^{-1} e^{-I\phi/2} (E + IB) e^{-I\phi/2} (E + IB) = \rho^{-1} e^{-I\phi} (E + IB) (E + IB)$$
$$= \rho^{-1} (\cos \phi - I \sin \phi) (E^2 - B^2 + 2IE.B)$$
$$= \rho^{-1} [\cos \phi (E^2 - B^2) + 2 \sin \phi E.B] + \rho^{-1} I [-\sin \phi (E^2 - B^2) + 2 \cos \phi E.B]$$

Donc:

(32)
$$\operatorname{tg} \phi = \frac{2E.B}{E^2 - B^2}$$

(33)
$$\rho = \cos\phi(E^2 - B^2) + 2\sin\phi E.B$$

Puis:

(34)
$$\operatorname{tg}^2 \phi + 1 = \frac{1}{\cos^2 \phi} = \frac{(E^2 - B^2)^2 + 4(E.B)^2}{(E^2 - B^2)^2}$$

(35)
$$\cos^2 \phi = \frac{(E^2 - B^2)^2}{(E^2 - B^2)^2 + 4(E.B)^2} \qquad \sin^2 \phi = \frac{4(E.B)^2}{(E^2 - B^2)^2 + 4(E.B)^2}$$

avec
$$-\pi/2 \leqslant \phi \leqslant \pi/2$$

(36)
$$\cos \frac{\phi}{2} = [(1 + \cos \phi)/2]^{1/2}$$
 $\sin \frac{\phi}{2} = \pm [(1 - \cos \phi)/2]^{1/2}$

avec signe
$$\operatorname{tg} \phi = \operatorname{signe} \sin (\phi/2)$$

Finalement:

(37)
$$F = \rho^{1/2} \cos(\phi/2) \hat{F} + \rho^{1/2} \sin(\phi/2) I \hat{F} = \alpha \hat{F} + \beta I \hat{F}$$

Bien sûr il faut aussi décomposer la vitesse initiale w_0 en :

(38)
$$w_0 = \hat{F}\hat{F}.w_0 + \hat{F}\hat{F} \wedge w_0 = w_{0||} + w_{0\perp}$$