In [1]: import pandas as pd
import numpy as np
df=pd.read_csv("C:/Users/omkar/Downloads/DatasetP2.csv")

In [2]: df

2]:	df								
		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count	
	0	23	73.0	85.0	59.0	80.0	2022	2	
	1	24	67.0	75.0	82.0	74.0	2021	2	
	2	23	71.0	72.0	78.0	71.0	2022	2	
	3	23	80.0	74.0	90.0	83.0	2022	2	
	4	23	74.0	76.0	83.0	85.0	2022	2	
	5	24	67.0	71.0	77.0	69.0	2021	2	
	6	23	75.0	70.0	76.0	78.0	2022	2	
	7	23	76.0	73.0	99.0	81.0	2022	2	
	8	25	73.0	88.0	78.0	90.0	2019	3	
	9	25	78.0	89.0	79.0	91.0	2018	3	
	10	23	79.0	75.0	NaN	70.0	2021	2	
	11	24	76.0	85.0	42.0	92.0	2019	3	
	12	25	68.0	78.0	76.0	85.0	2018	2	
	13	23	65.0	NaN	80.0	88.0	2021	3	
	14	22	76.0	80.0	59.0	83.0	2020	2	
	15	23	69.0	82.0	76.0	89.0	2019	3	
	16	23	76.0	79.0	77.0	86.0	2021	3	
	17	23	74.0	76.0	81.0	64.0	2018	2	
	18	23	75.0	83.0	75.0	87.0	2020	3	
	19	23	75.0	75.0	79.0	80.0	2018	2	
	20	23	NaN	80.0	58.0	82.0	2019	2	
	21	24	79.0	85.0	77.0	91.0	2018	3	
	22	23	74.0	88.0	76.0	55.0	2020	3	
	23	22	67.0	78.0	76.0	80.0	2018	2	
	24	25	77.0	82.0	78.0	85.0	2019	2	
	25	23	71.0	89.0	79.0	87.0	2018	3	
	26	22	80.0	90.0	80.0	94.0	2020	3	

In [3]: df.isnull()

75.0

77.0

76.0

82.0

89.0

NaN

2018

2021

2018

2

3

3

27

28

29

23

22

23

73.0

0.08

77.0

77.0

84.0

79.0

Out[3]:		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count
	0	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False
	5	False	False	False	False	False	False	False
	6	False	False	False	False	False	False	False
	7	False	False	False	False	False	False	False
	8	False	False	False	False	False	False	False
	9	False	False	False	False	False	False	False
	10	False	False	False	True	False	False	False
	11	False	False	False	False	False	False	False
	12	False	False	False	False	False	False	False
	13	False	False	True	False	False	False	False
	14	False	False	False	False	False	False	False
	15	False	False	False	False	False	False	False
	16	False	False	False	False	False	False	False
	17	False	False	False	False	False	False	False
	18	False	False	False	False	False	False	False
	19	False	False	False	False	False	False	False
	20	False	True	False	False	False	False	False
	21	False	False	False	False	False	False	False
	22	False	False	False	False	False	False	False
	23	False	False	False	False	False	False	False
	24	False	False	False	False	False	False	False
	25	False	False	False	False	False	False	False
	26	False	False	False	False	False	False	False
	27	False	False	False	False	False	False	False
	28	False	False	False	False	False	False	False
	29	False	False	False	False	True	False	False

In [4]: df.notnull()

Out[4]:		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count	
	0	True	True	True	True	True	True	True	
	1	True	True	True	True	True	True	True	
	2	True	True	True	True	True	True	True	
	3	True	True	True	True	True	True	True	
	4	True	True	True	True	True	True	True	
	5	True	True	True	True	True	True	True	
	6	True	True	True	True	True	True	True	
	7	True	True	True	True	True	True	True	
	8	True	True	True	True	True	True	True	
	9	True	True	True	True	True	True	True	
	10	True	True	True	False	True	True	True	
	11	True	True	True	True	True	True	True	
	12	True	True	True	True	True	True	True	
	13	True	True	False	True	True	True	True	
	14	True	True	True	True	True	True	True	
	15	True	True	True	True	True	True	True	
	16	True	True	True	True	True	True	True	
	17	True	True	True	True	True	True	True	
	18	True	True	True	True	True	True	True	
	19	True	True	True	True	True	True	True	
	20	True	False	True	True	True	True	True	
	21	True	True	True	True	True	True	True	
	22	True	True	True	True	True	True	True	
	23	True	True	True	True	True	True	True	
	24	True	True	True	True	True	True	True	
	25	True	True	True	True	True	True	True	
	26	True	True	True	True	True	True	True	
	27	True	True	True	True	True	True	True	
		True	True	True	True	True	True	True	
	29	True	True	True	True	False	True	True	
In [5]:	sei	ries	= pd.isnul	l(df["Math_Sc	ore"])				
	df	[seri	es]						
Out[5]:		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count	
	20	23	NaN	80.0	58.0	82.0	2019	2	
In [6]:	<pre>series1 = pd.notnull(df["Math_Score"]) df[series1]</pre>								

	0	23	73.0	85.0	59.0	80.0	2022	2		
	1	24	67.0	75.0	82.0	74.0	2021	2		
	2	23	71.0	72.0	78.0	71.0	2022	2		
	3	23	80.0	74.0	90.0	83.0	2022	2		
	4	23	74.0	76.0	83.0	85.0	2022	2		
	5	24	67.0	71.0	77.0	69.0	2021	2		
	6	23	75.0	70.0	76.0	78.0	2022	2		
	7	23	76.0	73.0	99.0	81.0	2022	2		
	8	25	73.0	88.0	78.0	90.0	2019	3		
	9	25	78.0	89.0	79.0	91.0	2018	3		
	10	23	79.0	75.0	NaN	70.0	2021	2		
	11	24	76.0	85.0	42.0	92.0	2019	3		
	12	25	68.0	78.0	76.0	85.0	2018	2		
	13	23	65.0	NaN	80.0	88.0	2021	3		
	14	22	76.0	80.0	59.0	83.0	2020	2		
	15	23	69.0	82.0	76.0	89.0	2019	3		
	16	23	76.0	79.0	77.0	86.0	2021	3		
	17	23	74.0	76.0	81.0	64.0	2018	2		
	18	23	75.0	83.0	75.0	87.0	2020	3		
	19	23	75.0	75.0	79.0	80.0	2018	2		
	21	24	79.0	85.0	77.0	91.0	2018	3		
	22	23	74.0	88.0	76.0	55.0	2020	3		
	23	22	67.0	78.0	76.0	80.0	2018	2		
	24	25	77.0	82.0	78.0	85.0	2019	2		
	25	23	71.0	89.0	79.0	87.0	2018	3		
	26	22	80.0	90.0	80.0	94.0	2020	3		
	27	23	73.0	77.0	75.0	82.0	2018	2		
	28	22	80.0	84.0	77.0	89.0	2021	3		
	29	23	77.0	79.0	76.0	NaN	2018	3		
In [7]:	[7]: #fill the missing values in Math_Score using avg									
In [8]:	<pre>average_Math_Score = df['Math_Score'].mean() df['Math_Score'] = df[Math_Score].replace(np.nan, average_Math_Score)</pre>									
	<pre>NameError</pre>									

 $\verb"Out" [6]: \\ \textbf{Age Math_Score Reading_Score Writing_Score Placement_Score Club_Join_Year Placement_offer_count} \\$

```
average_Math_Score = df['Math_Score'].mean()
 In [9]:
            df['Math_Score'] = df['Math_Score'].replace(np.nan, average_Math_Score)
            average_Math_Score
In [10]:
            73.96551724137932
Out[10]:
            df
In [11]:
Out[11]:
                Age
                      Math_Score Reading_Score Writing_Score Placement_Score Club_Join_Year Placement_offer_count
                        73.000000
                                                                                                  2022
                                                                                                                              2
             0
                  23
                                               85.0
                                                              59.0
                                                                                 80.0
             1
                  24
                        67.000000
                                               75.0
                                                              82.0
                                                                                 74.0
                                                                                                  2021
                                                                                                                              2
                                                                                                  2022
                                                                                                                              2
             2
                  23
                        71.000000
                                              72.0
                                                              78.0
                                                                                 71.0
             3
                  23
                        80.000000
                                               74.0
                                                              90.0
                                                                                 83.0
                                                                                                  2022
                                                                                                                              2
                                                                                                                              2
             4
                  23
                        74.000000
                                               76.0
                                                              83.0
                                                                                 85.0
                                                                                                  2022
                                                                                                                              2
             5
                  24
                        67.000000
                                                              77.0
                                                                                 69.0
                                                                                                  2021
                                               71.0
             6
                  23
                        75.000000
                                               70.0
                                                              76.0
                                                                                 78.0
                                                                                                  2022
                                                                                                                              2
                  23
                                                                                                  2022
             7
                        76.000000
                                               73.0
                                                              99.0
                                                                                 81.0
                                                                                                                              2
                                                                                                                              3
             8
                  25
                        73.000000
                                               88.0
                                                              78.0
                                                                                 90.0
                                                                                                  2019
             9
                  25
                        78.000000
                                               89.0
                                                              79.0
                                                                                 91.0
                                                                                                  2018
                                                                                                                              3
                                                                                                                              2
                                                                                                  2021
            10
                  23
                        79.000000
                                               75.0
                                                              NaN
                                                                                 70.0
                                                                                                                              3
            11
                  24
                        76.000000
                                               85.0
                                                              42.0
                                                                                 92.0
                                                                                                  2019
            12
                  25
                        68.000000
                                               78.0
                                                              76.0
                                                                                 85.0
                                                                                                  2018
                                                                                                                              2
                                                                                                                              3
            13
                  23
                        65.000000
                                              NaN
                                                              0.08
                                                                                 0.88
                                                                                                  2021
                                              80.0
                                                                                                  2020
                                                                                                                              2
            14
                  22
                        76.000000
                                                              59.0
                                                                                 83.0
            15
                  23
                                               82.0
                                                                                                  2019
                                                                                                                              3
                        69.000000
                                                              76.0
                                                                                 89.0
                                                                                                                              3
            16
                  23
                        76.000000
                                               79.0
                                                              77.0
                                                                                 86.0
                                                                                                  2021
            17
                  23
                        74.000000
                                               76.0
                                                              81.0
                                                                                 64.0
                                                                                                  2018
                                                                                                                              2
                  23
                        75.000000
                                               83.0
                                                              75.0
                                                                                 87.0
                                                                                                  2020
                                                                                                                              3
            18
                  23
                        75.000000
                                                              79.0
                                                                                 0.08
                                                                                                  2018
                                                                                                                              2
            19
                                               75.0
                                                                                                  2019
                                                                                                                              2
            20
                  23
                        73.965517
                                              80.0
                                                              58.0
                                                                                 82.0
                                                                                                                              3
            21
                  24
                        79.000000
                                               85.0
                                                              77.0
                                                                                 91.0
                                                                                                  2018
                                                                                                  2020
            22
                  23
                        74.000000
                                              88.0
                                                              76.0
                                                                                 55.0
                                                                                                                              3
            23
                  22
                        67.000000
                                               78.0
                                                              76.0
                                                                                 0.08
                                                                                                  2018
                                                                                                                              2
                                                                                                                              2
            24
                  25
                        77.000000
                                               82.0
                                                              78.0
                                                                                 85.0
                                                                                                  2019
                  23
                                                              79.0
                                                                                                  2018
                                                                                                                              3
            25
                        71.000000
                                               89.0
                                                                                 87.0
                  22
                                                                                                  2020
                                                                                                                              3
            26
                        80.000000
                                               90.0
                                                              80.0
                                                                                 94.0
                                                                                                                              2
            27
                  23
                        73.000000
                                               77.0
                                                              75.0
                                                                                 82.0
                                                                                                  2018
                  22
                        80.000000
                                                                                                  2021
            28
                                               84.0
                                                              77.0
                                                                                 89.0
                                                                                                                              3
            29
                  23
                        77.000000
                                               79.0
                                                              76.0
                                                                                 NaN
                                                                                                  2018
                                                                                                                              3
```

In [12]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

Loading [MathJax]/extensions/Safe.js

df['Gender'] = le.fit_transform(df['Gender']) newdf = dfdf In [13]: Out[13]: Math_Score Reading_Score Writing_Score Placement_Score Club_Join_Year Placement_offer_count Age 0 23 73.000000 85.0 59.0 80.0 2022 2 1 24 67.000000 75.0 82.0 74.0 2021 2 2 71.000000 72.0 78.0 2022 2 23 71.0 3 80.000000 2022 2 23 74.0 90.0 83.0 2 4 23 74.000000 83.0 85.0 2022 76.0 2 5 24 67.000000 71.0 77.0 69.0 2021 2 6 23 75.000000 70.0 76.0 78.0 2022 2 7 23 76.000000 73.0 99.0 81.0 2022 8 25 73.000000 88.0 78.0 90.0 2019 3 9 2018 3 25 78.000000 89.0 79.0 91.0 2 23 2021 10 79.000000 75.0 NaN 70.0 11 24 76.000000 85.0 42.0 92.0 2019 3 12 25 68.000000 78.0 76.0 85.0 2018 2 13 23 65.000000 NaN 0.08 0.88 2021 3 14 22 76.000000 80.0 59.0 83.0 2020 2 69.000000 82.0 89.0 2019 3 15 23 76.0 16 23 76.000000 79.0 77.0 86.0 2021 3 74.000000 2018 2 17 23 76.0 81.0 64.0 3 18 23 75.000000 83.0 75.0 87.0 2020 2 19 23 75.000000 75.0 79.0 80.0 2018 2 20 23 73.965517 80.0 58.0 82.0 2019 21 24 79.000000 85.0 77.0 91.0 2018 3 22 23 74.000000 0.88 76.0 55.0 2020 3 2 23 22 67.000000 78.0 76.0 0.08 2018 2 24 25 77.000000 82.0 78.0 85.0 2019 3 2018 25 23 71.000000 89.0 79.0 87.0 3 26 22 80.000000 90.0 0.08 94.0 2020 73.000000 2018 2 27 23 77.0 75.0 82.0 80.000000 89.0 2021 3 28 22 84.0 77.0 29 2018 3 23 77.000000 79.0 76.0 NaN #null values with NaN In []: In [14]: missing_values = ["Na", "na"]

df = pd.read_csv("C:/Users/omkar/Downloads/DatasetP2.csv", na_values = missing_values)

```
Loading [MathJax]/extensions/Safe.js
```

Out[14]:		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count
	0	23	73.0	85.0	59.0	80.0	2022	2
	1	24	67.0	75.0	82.0	74.0	2021	2
	2	23	71.0	72.0	78.0	71.0	2022	2
	3	23	80.0	74.0	90.0	83.0	2022	2
	4	23	74.0	76.0	83.0	85.0	2022	2
	5	24	67.0	71.0	77.0	69.0	2021	2
	6	23	75.0	70.0	76.0	78.0	2022	2
	7	23	76.0	73.0	99.0	81.0	2022	2
	8	25	73.0	88.0	78.0	90.0	2019	3
	9	25	78.0	89.0	79.0	91.0	2018	3
	10	23	79.0	75.0	NaN	70.0	2021	2
	11	24	76.0	85.0	42.0	92.0	2019	3
	12	25	68.0	78.0	76.0	85.0	2018	2
	13	23	65.0	NaN	80.0	88.0	2021	3
	14	22	76.0	80.0	59.0	83.0	2020	2
	15	23	69.0	82.0	76.0	89.0	2019	3
	16	23	76.0	79.0	77.0	86.0	2021	3
	17	23	74.0	76.0	81.0	64.0	2018	2
	18	23	75.0	83.0	75.0	87.0	2020	3
	19	23	75.0	75.0	79.0	80.0	2018	2
	20	23	NaN	80.0	58.0	82.0	2019	2
	21	24	79.0	85.0	77.0	91.0	2018	3
	22	23	74.0	88.0	76.0	55.0	2020	3
	23	22	67.0	78.0	76.0	80.0	2018	2
	24	25	77.0	82.0	78.0	85.0	2019	2
	25	23	71.0	89.0	79.0	87.0	2018	3
	26	22	80.0	90.0	80.0	94.0	2020	3
	27	23	73.0	77.0	75.0	82.0	2018	2
	28	22	80.0	84.0	77.0	89.0	2021	3
	29	23	77.0	79.0	76.0	NaN	2018	3

In []: #Filling null values with a single value
In [15]: ndf=df
ndf.fillna(0)

	Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count
0	23	73.0	85.0	59.0	80.0	2022	2
1	24	67.0	75.0	82.0	74.0	2021	2
2	23	71.0	72.0	78.0	71.0	2022	2
3	23	80.0	74.0	90.0	83.0	2022	2
4	23	74.0	76.0	83.0	85.0	2022	2
5	24	67.0	71.0	77.0	69.0	2021	2
6	23	75.0	70.0	76.0	78.0	2022	2
7	23	76.0	73.0	99.0	81.0	2022	2
8	25	73.0	88.0	78.0	90.0	2019	3
9	25	78.0	89.0	79.0	91.0	2018	3
10	23	79.0	75.0	0.0	70.0	2021	2
11	24	76.0	85.0	42.0	92.0	2019	3
12	25	68.0	78.0	76.0	85.0	2018	2
13	23	65.0	0.0	80.0	88.0	2021	3
14	22	76.0	80.0	59.0	83.0	2020	2
15	23	69.0	82.0	76.0	89.0	2019	3
16	23	76.0	79.0	77.0	86.0	2021	3
17	23	74.0	76.0	81.0	64.0	2018	2
18	23	75.0	83.0	75.0	87.0	2020	3
19	23	75.0	75.0	79.0	80.0	2018	2
20	23	0.0	80.0	58.0	82.0	2019	2
21	24	79.0	85.0	77.0	91.0	2018	3
22	23	74.0	88.0	76.0	55.0	2020	3
23	22	67.0	78.0	76.0	80.0	2018	2
24	25	77.0	82.0	78.0	85.0	2019	2
25	23	71.0	89.0	79.0	87.0	2018	3
26	22	80.0	90.0	80.0	94.0	2020	3
27	23	73.0	77.0	75.0	82.0	2018	2
28	22	80.0	84.0	77.0	89.0	2021	3
29	23	77.0	79.0	76.0	0.0	2018	3
dat	a['M	ath_Score'] = data['Mat	h_Score'].fi	llna(data[<mark>'Mat</mark>	h_Score'].mea	n())

Out[15]:

Loading [MathJax]/extensions/Safe.js

Out[18]:		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count
	0	23	73.000000	85.0	59.0	80.0	2022	2
	1	24	67.000000	75.0	82.0	74.0	2021	2
	2	23	71.000000	72.0	78.0	71.0	2022	2
	3	23	80.000000	74.0	90.0	83.0	2022	2
	4	23	74.000000	76.0	83.0	85.0	2022	2
	5	24	67.000000	71.0	77.0	69.0	2021	2
	6	23	75.000000	70.0	76.0	78.0	2022	2
	7	23	76.000000	73.0	99.0	81.0	2022	2
	8	25	73.000000	88.0	78.0	90.0	2019	3
	9	25	78.000000	89.0	79.0	91.0	2018	3
	10	23	79.000000	75.0	NaN	70.0	2021	2
	11	24	76.000000	85.0	42.0	92.0	2019	3
	12	25	68.000000	78.0	76.0	85.0	2018	2
	13	23	65.000000	NaN	80.0	88.0	2021	3
	14	22	76.000000	80.0	59.0	83.0	2020	2
	15	23	69.000000	82.0	76.0	89.0	2019	3
	16	23	76.000000	79.0	77.0	86.0	2021	3
	17	23	74.000000	76.0	81.0	64.0	2018	2
	18	23	75.000000	83.0	75.0	87.0	2020	3
	19	23	75.000000	75.0	79.0	80.0	2018	2
	20	23	73.965517	80.0	58.0	82.0	2019	2
	21	24	79.000000	85.0	77.0	91.0	2018	3
	22	23	74.000000	88.0	76.0	55.0	2020	3
	23	22	67.000000	78.0	76.0	80.0	2018	2
	24	25	77.000000	82.0	78.0	85.0	2019	2
	25	23	71.000000	89.0	79.0	87.0	2018	3
	26	22	80.000000	90.0	80.0	94.0	2020	3
	27	23	73.000000	77.0	75.0	82.0	2018	2
	28	22	80.000000	84.0	77.0	89.0	2021	3
	29	23	77.000000	79.0	76.0	NaN	2018	3

```
In []: #Filling a null values using replace() method
In [19]: ndf.replace(to_replace = np.nan, value = -99)
```

Out[19]:		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count
	0	23	73.000000	85.0	59.0	80.0	2022	2
	1	24	67.000000	75.0	82.0	74.0	2021	2
	2	23	71.000000	72.0	78.0	71.0	2022	2
	3	23	80.000000	74.0	90.0	83.0	2022	2
	4	23	74.000000	76.0	83.0	85.0	2022	2
	5	24	67.000000	71.0	77.0	69.0	2021	2
	6	23	75.000000	70.0	76.0	78.0	2022	2
	7	23	76.000000	73.0	99.0	81.0	2022	2
	8	25	73.000000	88.0	78.0	90.0	2019	3
	9	25	78.000000	89.0	79.0	91.0	2018	3
	10	23	79.000000	75.0	-99.0	70.0	2021	2
	11	24	76.000000	85.0	42.0	92.0	2019	3
	12	25	68.000000	78.0	76.0	85.0	2018	2
	13	23	65.000000	-99.0	80.0	88.0	2021	3
	14	22	76.000000	80.0	59.0	83.0	2020	2
	15	23	69.000000	82.0	76.0	89.0	2019	3
	16	23	76.000000	79.0	77.0	86.0	2021	3
	17	23	74.000000	76.0	81.0	64.0	2018	2
	18	23	75.000000	83.0	75.0	87.0	2020	3
	19	23	75.000000	75.0	79.0	80.0	2018	2
	20	23	73.965517	80.0	58.0	82.0	2019	2
	21	24	79.000000	85.0	77.0	91.0	2018	3
	22	23	74.000000	88.0	76.0	55.0	2020	3
	23	22	67.000000	78.0	76.0	80.0	2018	2
	24	25	77.000000	82.0	78.0	85.0	2019	2
	25	23	71.000000	89.0	79.0	87.0	2018	3
	26	22	80.000000	90.0	80.0	94.0	2020	3
	27	23	73.000000	77.0	75.0	82.0	2018	2
	28	22	80.000000	84.0	77.0	89.0	2021	3
	29	23	77.000000	79.0	76.0	-99.0	2018	3

In []: #Deleting null values using dropna() method

In [20]: ndf.dropna()

ut[20]:		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count
	0	23	73.000000	85.0	59.0	80.0	2022	2
	1	24	67.000000	75.0	82.0	74.0	2021	2
	2	23	71.000000	72.0	78.0	71.0	2022	2
	3	23	80.000000	74.0	90.0	83.0	2022	2
	4	23	74.000000	76.0	83.0	85.0	2022	2
	5	24	67.000000	71.0	77.0	69.0	2021	2
	6	23	75.000000	70.0	76.0	78.0	2022	2
	7	23	76.000000	73.0	99.0	81.0	2022	2
	8	25	73.000000	88.0	78.0	90.0	2019	3
	9	25	78.000000	89.0	79.0	91.0	2018	3
	11	24	76.000000	85.0	42.0	92.0	2019	3
	12	25	68.000000	78.0	76.0	85.0	2018	2
	14	22	76.000000	80.0	59.0	83.0	2020	2
	15	23	69.000000	82.0	76.0	89.0	2019	3
	16	23	76.000000	79.0	77.0	86.0	2021	3
	17	23	74.000000	76.0	81.0	64.0	2018	2
	18	23	75.000000	83.0	75.0	87.0	2020	3
	19	23	75.000000	75.0	79.0	80.0	2018	2
	20	23	73.965517	80.0	58.0	82.0	2019	2
	21	24	79.000000	85.0	77.0	91.0	2018	3
	23	22	67.000000	78.0	76.0	80.0	2018	2
	24	25	77.000000	82.0	78.0	85.0	2019	2
	25	23	71.000000	89.0	79.0	87.0	2018	3
	26	22	80.000000	90.0	80.0	94.0	2020	3
	27	23	73.000000	77.0	75.0	82.0	2018	2

In [21]: ndf.dropna(axis = 1)

22

80.000000

28

84.0

77.0

89.0

2021

Out[21]:		Age	Math_Score	Club_Join_Year	Placement_offer_count
	0	23	73.000000	2022	2
	1	24	67.000000	2021	2
	2	23	71.000000	2022	2
	3	23	80.000000	2022	2
	4	23	74.000000	2022	2
	5	24	67.000000	2021	2
	6	23	75.000000	2022	2
	7	23	76.000000	2022	2
	8	25	73.000000	2019	3
	9	25	78.000000	2018	3
	10	23	79.000000	2021	2
	11	24	76.000000	2019	3
	12	25	68.000000	2018	2
	13	23	65.000000	2021	3
	14	22	76.000000	2020	2
	15	23	69.000000	2019	3
	16	23	76.000000	2021	3
	17	23	74.000000	2018	2
	18	23	75.000000	2020	3
	19	23	75.000000	2018	2
	20	23	73.965517	2019	2
	21	24	79.000000	2018	3
	22	23	74.000000	2020	3
	23	22	67.000000	2018	2
	24	25	77.000000	2019	2
	25	23	71.000000	2018	3
	26	22	80.000000	2020	3
	27	23	73.000000	2018	2
	28	22	80.000000	2021	3
	29	23	77.000000	2018	3

```
In [22]: new_data = ndf.dropna(axis = 0, how ='any')
   new_data
```

	1	24	67.000000	75.0	82.0	74.0	2021	2	
	2	23	71.000000	72.0	78.0	71.0	2022	2	
	3	23	80.000000	74.0	90.0	83.0	2022	2	
	4	23	74.000000	76.0	83.0	85.0	2022	2	
	5	24	67.000000	71.0	77.0	69.0	2021	2	
	6	23	75.000000	70.0	76.0	78.0	2022	2	
	7	23	76.000000	73.0	99.0	81.0	2022	2	
	8	25	73.000000	88.0	78.0	90.0	2019	3	
	9	25	78.000000	89.0	79.0	91.0	2018	3	
	11	24	76.000000	85.0	42.0	92.0	2019	3	
	12	25	68.000000	78.0	76.0	85.0	2018	2	
	14	22	76.000000	80.0	59.0	83.0	2020	2	
	15	23	69.000000	82.0	76.0	89.0	2019	3	
	16	23	76.000000	79.0	77.0	86.0	2021	3	
	17	23	74.000000	76.0	81.0	64.0	2018	2	
	18	23	75.000000	83.0	75.0	87.0	2020	3	
	19	23	75.000000	75.0	79.0	80.0	2018	2	
	20	23	73.965517	80.0	58.0	82.0	2019	2	
	21	24	79.000000	85.0	77.0	91.0	2018	3	
	23	22	67.000000	78.0	76.0	80.0	2018	2	
	24	25	77.000000	82.0	78.0	85.0	2019	2	
	25	23	71.000000	89.0	79.0	87.0	2018	3	
	26	22	80.000000	90.0	80.0	94.0	2020	3	
	27	23	73.000000	77.0	75.0	82.0	2018	2	
	28	22	80.000000	84.0	77.0	89.0	2021	3	
In [23]:	#De	tecti	ng Outlier using	Box Plot					
In [24]:		_	Math_Score', 'Rea .boxplot()	ding_Score'	, 'Writing_Sco	re','Placemen	t_Score']		
	<pre>Cell In[24], line 2 df[cols].boxplot()</pre>								
	SyntaxError: invalid syntax								
In [25]:	<pre>cols = ['Math_Score', 'Reading_Score', 'Writing_Score', 'Placement_Score'] df[cols].boxplot()</pre>								
Out[25]:	<axe< th=""><th>es: ></th><th></th><th></th><th></th><th></th><th></th><th></th></axe<>	es: >							

Out [22]: Age Math_Score Reading_Score Writing_Score Placement_Score Club_Join_Year Placement_offer_count

59.0

85.0

2022

80.0

2

23

73.000000


```
In [26]:
          np.where(df['Math_Score'] > 100)
          (array([], dtype=int64),)
Out[26]:
In [27]:
           np.where(df['Math_Score'] < 80)</pre>
          (array([ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29], dtype=int64),)
Out[27]:
           #Detecting Outliers using Scatter Plot
In [28]:
           import matplotlib.pyplot as plt
In [29]:
          fig, ax = plt.subplots(figsize = (18, 10))
In [30]:
           ax.scatter(df['Placement_Score'], df['Placement_offer_count'])
           plt.show()
```


In [31]: print(np.where((df['placement score']<50) & (df['Placement_offer_count']>1)))

```
Traceback (most recent call last)
            KeyError
            File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3802, in Index.get_loc(se
            lf, key, method, tolerance)
               3801 try:
                       return self._engine.get_loc(casted_key)
            -> 3802
               3803 except KeyError as err:
            File ~\anaconda3\lib\site-packages\pandas\_libs\index.pyx:138, in pandas._libs.index.Ind
            exEngine.get_loc()
            File ~\anaconda3\lib\site-packages\pandas\_libs\index.pyx:165, in pandas._libs.index.Ind
            exEngine.get_loc()
            File pandas\_libs\hashtable_class_helper.pxi:5745, in pandas._libs.hashtable.PyObjectHas
            hTable.get_item()
            File pandas\_libs\hashtable_class_helper.pxi:5753, in pandas._libs.hashtable.PyObjectHas
            hTable.get_item()
            KeyError: 'placement score'
            The above exception was the direct cause of the following exception:
            KeyError
                                                      Traceback (most recent call last)
            Cell In[31], line 1
            ---> 1 print(np.where((df['placement score']<50) & (df['Placement_offer_count']>1)))
            File ~\anaconda3\lib\site-packages\pandas\core\frame.py:3807, in DataFrame.__getitem__(s
            elf, key)
               3805 if self.columns.nlevels > 1:
                        return self._getitem_multilevel(key)
            -> 3807 indexer = self.columns.get_loc(key)
               3808 if is_integer(indexer):
               3809
                        indexer = [indexer]
            File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3804, in Index.get_loc(se
            lf, key, method, tolerance)
               3802
                       return self._engine.get_loc(casted_key)
               3803 except KeyError as err:
            -> 3804 raise KeyError(key) from err
               3805 except TypeError:
               3806
                     # If we have a listlike key, _check_indexing_error will raise
                       # InvalidIndexError. Otherwise we fall through and re-raise
               3807
               3808
                      # the TypeError.
               3809
                      self._check_indexing_error(key)
            KeyError: 'placement score'
  In [33]: print(np.where((df['Placement_Score'] < 50) & (df['Placement_offer_count'] > 1)))
            (array([], dtype=int64),)
  In [32]: |print(np.where((df['Placement_Score'] > 80) & (df['Placement_offer_count'] < 3)))</pre>
            (array([ 3, 4, 7, 12, 14, 20, 24, 27], dtype=int64),)
   In [ ]: #Detecting outliers using Z-Score:
  In [34]: import numpy as np
            from scipy import stats
  In [35]: z = np.abs(stats.zscore(df['Math_Score']))
Loading [MathJax]/extensions/Safe.js
```

```
0
                0.231695
         1
                1.671512
         2
                0.711634
         3
                1.448092
         4
                0.008275
         5
                1.671512
         6
                0.248244
         7
                0.488214
         8
                0.231695
         9
                0.968153
         10
                1.208123
         11
                0.488214
         12
                1.431542
         13
                2.151451
         14
                0.488214
         15
                1.191573
                0.488214
         16
         17
                0.008275
         18
                0.248244
         19
                0.248244
         20
                0.000000
         21
                1.208123
         22
                0.008275
         23
                1.671512
         24
                0.728183
         25
                0.711634
         26
                1.448092
         27
                0.231695
         28
                1.448092
         29
                0.728183
         Name: Math_Score, dtype: float64
         #define an outlier threshold value is chosen.
In [36]:
          threshold = 0.19
          sample_outliers = np.where(z <threshold)</pre>
          sample_outliers
          (array([ 4, 17, 20, 22], dtype=int64),)
Out[36]:
In [37]:
          #Detecting outliers using Inter Quantile Range(IQR):
In [38]:
          import numpy as np
          sorted_rscore= sorted(df['Reading_Score'])
          print(sorted_rscore)
          [70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 75.0, 75.0, 76.0, 76.0, 77.0, 78.0, 78.0, 79.0, 79.
         0, 80.0, 80.0, 82.0, 82.0, 83.0, 84.0, 85.0, 85.0, 85.0, 88.0, 88.0, 89.0, nan, 89.0, 9
         0.0]
In [39]:
         #Calculate and print Quartile 1 and Quartile 3
In [40]: q1 = np.percentile(sorted_rscore, 25)
          q3 = np.percentile(sorted_rscore, 75)
          print(q1,q3)
         nan nan
In [41]:
          #Calculate value of IQR (Inter Quartile Range)
In [42]:
          IQR = q3-q1
          lwr_bound = q1-(1.5*IQR)
          upr\_bound = q3+(1.5*IQR)
```

```
In [43]: print(lwr_bound, upr_bound)
         nan nan
         r_outliers = [ i for i in sorted_rscore if (i< lwr_bound or i>upr_bound)]
In [44]:
         print(r_outliers)
         []
In [45]: #Handling of Outliers:
         #Trimming/removing the outlier:
         new_df=df
         for i in sample_outliers:
         new_df.drop(i,inplace=True)
         new_df
           Cell In[45], line 5
             new_df.drop(i,inplace=True)
         IndentationError: expected an indented block after 'for' statement on line 4
In [46]: new_df=df
         for i in sample_outliers:
             new_df.drop(i,inplace=True)
         new_df
```

:		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count
	0	23	73.0	85.0	59.0	80.0	2022	2
	1	24	67.0	75.0	82.0	74.0	2021	2
	2	23	71.0	72.0	78.0	71.0	2022	2
	3	23	80.0	74.0	90.0	83.0	2022	2
	5	24	67.0	71.0	77.0	69.0	2021	2
	6	23	75.0	70.0	76.0	78.0	2022	2
	7	23	76.0	73.0	99.0	81.0	2022	2
	8	25	73.0	88.0	78.0	90.0	2019	3
	9	25	78.0	89.0	79.0	91.0	2018	3
	10	23	79.0	75.0	NaN	70.0	2021	2
	11	24	76.0	85.0	42.0	92.0	2019	3
	12	25	68.0	78.0	76.0	85.0	2018	2
	13	23	65.0	NaN	80.0	88.0	2021	3
	14	22	76.0	80.0	59.0	83.0	2020	2
	15	23	69.0	82.0	76.0	89.0	2019	3
	16	23	76.0	79.0	77.0	86.0	2021	3
	18	23	75.0	83.0	75.0	87.0	2020	3
	19	23	75.0	75.0	79.0	80.0	2018	2
	21	24	79.0	85.0	77.0	91.0	2018	3
	23	22	67.0	78.0	76.0	80.0	2018	2
	24	25	77.0	82.0	78.0	85.0	2019	2
	25	23	71.0	89.0	79.0	87.0	2018	3
	26	22	80.0	90.0	80.0	94.0	2020	3
	27	23	73.0	77.0	75.0	82.0	2018	2
	28	22	80.0	84.0	77.0	89.0	2021	3
	29	23	77.0	79.0	76.0	NaN	2018	3

```
In [47]: import pandas as pd
import numpy as np

#read the csv file
df = pd.read_csv("C:/Users/omkar/Downloads/DatasetP2.csv")
df_stud=df

#calculate the 90th percentilevalue
ninetieth_percentile = np.percentile(df_stud['Math_Score'], 90)

#cap values above the 90th percentile and floor values below the 10th percentile
b = np.where(df_stud['Math_Score'] > ninetieth_percentile, ninetieth_percentile, df_stud[
print("New array:",b)
```

New array: [73. 67. 71. 80. 74. 67. 75. 76. 73. 78. 79. 76. 68. 65. 76. 69. 76. 74. 75. 75. nan 79. 74. 67. 77. 71. 80. 73. 80. 77.]

In [48]: df_stud.insert(1,"m score",b,True)
Loading [MathJax]/extensions/Safe.js

Out[46]:

Out[48]:		Age	m score	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_
	0	23	73.0	73.0	85.0	59.0	80.0	2022	
	1	24	67.0	67.0	75.0	82.0	74.0	2021	
	2	23	71.0	71.0	72.0	78.0	71.0	2022	
	3	23	80.0	80.0	74.0	90.0	83.0	2022	
	4	23	74.0	74.0	76.0	83.0	85.0	2022	
	5	24	67.0	67.0	71.0	77.0	69.0	2021	
	6	23	75.0	75.0	70.0	76.0	78.0	2022	
	7	23	76.0	76.0	73.0	99.0	81.0	2022	
	8	25	73.0	73.0	88.0	78.0	90.0	2019	
	9	25	78.0	78.0	89.0	79.0	91.0	2018	
	10	23	79.0	79.0	75.0	NaN	70.0	2021	
	11	24	76.0	76.0	85.0	42.0	92.0	2019	
	12	25	68.0	68.0	78.0	76.0	85.0	2018	
	13	23	65.0	65.0	NaN	80.0	88.0	2021	
	14	22	76.0	76.0	80.0	59.0	83.0	2020	
	15	23	69.0	69.0	82.0	76.0	89.0	2019	
	16	23	76.0	76.0	79.0	77.0	86.0	2021	
	17	23	74.0	74.0	76.0	81.0	64.0	2018	
	18	23	75.0	75.0	83.0	75.0	87.0	2020	
	19	23	75.0	75.0	75.0	79.0	80.0	2018	
	20	23	NaN	NaN	80.0	58.0	82.0	2019	
	21	24	79.0	79.0	85.0	77.0	91.0	2018	
	22	23	74.0	74.0	88.0	76.0	55.0	2020	
	23	22	67.0	67.0	78.0	76.0	80.0	2018	
	24	25	77.0	77.0	82.0	78.0	85.0	2019	
	25	23	71.0	71.0	89.0	79.0	87.0	2018	
	26	22	80.0	80.0	90.0	80.0	94.0	2020	
	27	23	73.0	73.0	77.0	75.0	82.0	2018	
	28	22	80.0	80.0	84.0	77.0	89.0	2021	
	29	23	77.0	77.0	79.0	76.0	NaN	2018	

```
#Mean/Median imputation:
  In [49]:
            import pandas as pd
  In [50]:
             import numpy as np
             import matplotlib.pyplot as plt
            df = pd.read_csv("C:/Users/omkar/Downloads/DatasetP2.csv")
            #Plot the box plot for reading score
            col = ['reading score']
Loading [MathJax]/extensions/Safe.js
```

df.boxplot(col)
plt.show()

```
KeyError
                                           Traceback (most recent call last)
Cell In[50], line 9
      7 #Plot the box plot for reading score
      8 col = ['reading score']
----> 9 df.boxplot(col)
     10 plt.show()
File ~\anaconda3\lib\site-packages\pandas\plotting\_core.py:516, in boxplot_frame(self,
column, by, ax, fontsize, rot, grid, figsize, layout, return_type, backend, **kwargs)
    499 @Substitution(backend=_backend_doc)
    500 @Appender(_boxplot_doc)
    501 def boxplot_frame(
   (\ldots)
    513
            **kwargs,
    514 ):
    515
            plot_backend = _get_plot_backend(backend)
--> 516
            return plot_backend.boxplot_frame(
    517
                self,
    518
                column=column,
    519
                by=by,
    520
                ax=ax,
    521
                fontsize=fontsize,
    522
                rot=rot,
    523
               grid=grid,
    524
               figsize=figsize,
    525
                layout=layout,
    526
                return_type=return_type,
                **kwargs,
    527
    528
            )
File ~\anaconda3\lib\site-packages\pandas\plotting\_matplotlib\boxplot.py:458, in boxplo
t_frame(self, column, by, ax, fontsize, rot, grid, figsize, layout, return_type, **kwds)
    443 def boxplot_frame(
    444
            self,
    445
            column=None,
   (\ldots)
    454
            **kwds,
    455 ):
    456
            import matplotlib.pyplot as plt
--> 458
            ax = boxplot(
    459
               self,
    460
                column=column,
                by=by,
    461
    462
               ax=ax,
    463
               fontsize=fontsize,
    464
                grid=grid,
    465
                rot=rot,
    466
                figsize=figsize,
    467
                layout=layout,
    468
                return_type=return_type,
    469
                **kwds,
    470
    471
            plt.draw_if_interactive()
    472
            return ax
File ~\anaconda3\lib\site-packages\pandas\plotting\_matplotlib\boxplot.py:435, in boxplo
t(data, column, by, ax, fontsize, rot, grid, figsize, layout, return_type, **kwds)
    433
            columns = data.columns
    434 else:
--> 435
            data = data[columns]
    437 result = plot_group(columns, data.values.T, ax, **kwds)
    438 ax.grid(grid)
```

```
File ~\anaconda3\lib\site-packages\pandas\core\frame.py:3813, in DataFrame.__getitem__(s
         elf, key)
            3811
                     if is_iterator(key):
            3812
                          key = list(key)
                     indexer = self.columns._get_indexer_strict(key, "columns")[1]
         -> 3813
            3815 # take() does not accept boolean indexers
            3816 if getattr(indexer, "dtype", None) == bool:
         File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:6070, in Index._get_index
         er_strict(self, key, axis_name)
            6067 else:
            6068
                     keyarr, indexer, new_indexer = self._reindex_non_unique(keyarr)
         -> 6070 self._raise_if_missing(keyarr, indexer, axis_name)
            6072 \text{ keyarr} = \text{self.take(indexer)}
            6073 if isinstance(key, Index):
                     # GH 42790 - Preserve name from an Index
            6074
         File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:6130, in Index._raise_if_
         missing(self, key, indexer, axis_name)
                     if use_interval_msg:
            6128
                          key = list(key)
            6129
         -> 6130
                      raise KeyError(f"None of [{key}] are in the [{axis_name}]")
            6132 not_found = list(ensure_index(key)[missing_mask.nonzero()[0]].unique())
            6133 raise KeyError(f"{not_found} not in index")
         KeyError: "None of [Index(['reading score'], dtype='object')] are in the [columns]"
In [51]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         df = pd.read_csv("C:/Users/omkar/Downloads/DatasetP2.csv")
         #Plot the box plot for reading score
         col = ['Reading_Score']
         df.boxplot(col)
         plt.show()
          90.0
          87.5
          85.0
          82.5
          80.0
          77.5
          75.0
          72.5
          70.0
                                         Reading Score
```

```
In [53]:
             median
            nan
Out[53]:
             refined_df = df
In [54]:
             refined_df['Reading_Score'] = np.where(refined_df['Reading_Score'] >upr_bound, median,re
In [55]:
             refined_df
Out[55]:
                      Math_Score Reading_Score Writing_Score Placement_Score Club_Join_Year Placement_offer_count
                 Age
              0
                  23
                              73.0
                                               85.0
                                                               59.0
                                                                                  80.0
                                                                                                   2022
                                                                                                                               2
              1
                  24
                              67.0
                                               75.0
                                                               82.0
                                                                                   74.0
                                                                                                   2021
                                                                                                                                2
              2
                  23
                              71.0
                                               72.0
                                                               78.0
                                                                                   71.0
                                                                                                   2022
                                                                                                                                2
                                                                                                   2022
                                                                                                                                2
              3
                  23
                              80.0
                                               74.0
                                                               90.0
                                                                                  83.0
                  23
                                                                                                                                2
                                                                                  85.0
                                                                                                   2022
              4
                              74.0
                                               76.0
                                                               83.0
                                                               77.0
                                                                                                   2021
                                                                                                                                2
              5
                  24
                              67.0
                                               71.0
                                                                                   69.0
                                                                                                   2022
                                                                                                                                2
              6
                  23
                              75.0
                                               70.0
                                                               76.0
                                                                                  78.0
              7
                  23
                              76.0
                                               73.0
                                                               99.0
                                                                                  81.0
                                                                                                   2022
                                                                                                                                2
              8
                  25
                              73.0
                                               88.0
                                                               78.0
                                                                                  90.0
                                                                                                   2019
                                                                                                                                3
              9
                  25
                              78.0
                                               89.0
                                                               79.0
                                                                                                   2018
                                                                                                                                3
                                                                                   91.0
                              79.0
                                               75.0
                                                                                   70.0
                                                                                                   2021
                                                                                                                                2
            10
                  23
                                                               NaN
            11
                  24
                              76.0
                                               85.0
                                                               42.0
                                                                                   92.0
                                                                                                   2019
                                                                                                                                3
             12
                  25
                              68.0
                                               78.0
                                                               76.0
                                                                                  85.0
                                                                                                   2018
                                                                                                                                2
                  23
                              65.0
                                                               0.08
                                                                                  88.0
                                                                                                   2021
                                                                                                                                3
            13
                                               NaN
                                                                                                                                2
                  22
                              76.0
                                               0.08
                                                               59.0
                                                                                  83.0
                                                                                                   2020
             14
                  23
                              69.0
                                               82.0
                                                               76.0
                                                                                   89.0
                                                                                                   2019
                                                                                                                                3
            15
                  23
                                               79.0
                                                                                  86.0
                                                                                                   2021
            16
                              76.0
                                                               77.0
                                                                                                                                3
                                                                                                                                2
            17
                  23
                              74.0
                                               76.0
                                                               81.0
                                                                                   64.0
                                                                                                   2018
                                               83.0
                                                               75.0
                                                                                                   2020
                                                                                                                                3
            18
                  23
                              75.0
                                                                                  87.0
                                                                                                                                2
            19
                  23
                              75.0
                                               75.0
                                                               79.0
                                                                                  80.0
                                                                                                   2018
            20
                  23
                              NaN
                                               80.0
                                                               58.0
                                                                                  82.0
                                                                                                   2019
                                                                                                                                2
                              79.0
                                               85.0
                                                               77.0
                                                                                   91.0
                                                                                                   2018
                                                                                                                                3
            21
                  24
            22
                  23
                                               88.0
                                                               76.0
                                                                                  55.0
                                                                                                   2020
                                                                                                                                3
                              74.0
                                                                                                   2018
                                                                                                                                2
            23
                  22
                              67.0
                                               78.0
                                                               76.0
                                                                                   0.08
                                                                                                                                2
                  25
                                               82.0
                                                               78.0
                                                                                  85.0
                                                                                                   2019
            24
                              77.0
                                                                                                                                3
            25
                  23
                              71.0
                                               89.0
                                                               79.0
                                                                                  87.0
                                                                                                   2018
            26
                  22
                              80.0
                                               90.0
                                                               0.08
                                                                                  94.0
                                                                                                   2020
                                                                                                                               3
                              73.0
                                                               75.0
                                                                                  82.0
                                                                                                   2018
                                                                                                                                2
            27
                  23
                                               77.0
                              0.08
                                               84.0
                                                               77.0
                                                                                   89.0
                                                                                                   2021
                                                                                                                                3
            28
                  22
                                                                                                   2018
            29
                  23
                              77.0
                                               79.0
                                                               76.0
                                                                                  NaN
```

median = np.median(sorted_rscore)

refined_df

Out[56]:		Age	Math_Score	Reading_Score	Writing_Score	Placement_Score	Club_Join_Year	Placement_offer_count
	0	23	73.0	85.0	59.0	80.0	2022	2
	1	24	67.0	75.0	82.0	74.0	2021	2
	2	23	71.0	72.0	78.0	71.0	2022	2
	3	23	80.0	74.0	90.0	83.0	2022	2
	4	23	74.0	76.0	83.0	85.0	2022	2
	5	24	67.0	71.0	77.0	69.0	2021	2
	6	23	75.0	70.0	76.0	78.0	2022	2
	7	23	76.0	73.0	99.0	81.0	2022	2
	8	25	73.0	88.0	78.0	90.0	2019	3
	9	25	78.0	89.0	79.0	91.0	2018	3
	10	23	79.0	75.0	NaN	70.0	2021	2
	11	24	76.0	85.0	42.0	92.0	2019	3
	12	25	68.0	78.0	76.0	85.0	2018	2
	13	23	65.0	NaN	80.0	88.0	2021	3
	14	22	76.0	80.0	59.0	83.0	2020	2
	15	23	69.0	82.0	76.0	89.0	2019	3
	16	23	76.0	79.0	77.0	86.0	2021	3
	17	23	74.0	76.0	81.0	64.0	2018	2
	18	23	75.0	83.0	75.0	87.0	2020	3
	19	23	75.0	75.0	79.0	80.0	2018	2
	20	23	NaN	80.0	58.0	82.0	2019	2
	21	24	79.0	85.0	77.0	91.0	2018	3
	22	23	74.0	88.0	76.0	55.0	2020	3
	23	22	67.0	78.0	76.0	80.0	2018	2
	24	25	77.0	82.0	78.0	85.0	2019	2
	25	23	71.0	89.0	79.0	87.0	2018	3
	26	22	80.0	90.0	80.0	94.0	2020	3
	27	23	73.0	77.0	75.0	82.0	2018	2
	28	22	80.0	84.0	77.0	89.0	2021	3
	29	23	77.0	79.0	76.0	NaN	2018	3

```
In [57]: #Draw the box plot for redefined_df
col = ['Reading_Score']
refined_df.boxplot(col)
plt.show()
```



```
In [58]: #To decrease the skewness and convert distribution into normal distribution
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_csv("C:/Users/omkar/Downloads/DatasetP2.csv")

z_score = np.abs(stats.zscore(df['Math_Score']))
threshold = 2

outliers = np.where(z_score > threshold)
df_no_outliers = df.drop(outliers[0])

In [60]: plt.figure(figsize=(14,7))
df['Math_Score'].plot(kind='hist')

plt.xlabel('Math Score')
plt.ylabel('Frequency')
plt.show()
```



```
In [61]: #Convert the variables to logarithm at the scale 10.
    df['log_math'] = np.log10(df['Math_Score'])
    df['log_math'].plot(kind = 'hist')
    plt.show()
```


In []: