

# X3-Class HiPerFET™ Power MOSFET

## IXFN220N20X3

N-Channel Enhancement Mode Avalanche Rated



| $V_{\scriptscriptstyle DSS}$ | = | 200V                   |
|------------------------------|---|------------------------|
| I <sub>D25</sub>             | = | 160A                   |
| R <sub>DS(on)</sub>          | ≤ | $6.2 \mathrm{m}\Omega$ |

miniBLOC, SOT-227 E153432



$$G = Gate$$
  $D = Drain$   
 $S = Source$ 

| Symbol                                                | <b>Test Conditions</b>                                                                                   | Maximum Ratings              |                             |                      |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|----------------------|
| V <sub>DSS</sub><br>V <sub>DGR</sub>                  | $T_J = 25^{\circ}\text{C to } 150^{\circ}$<br>$T_J = 25^{\circ}\text{C to } 150^{\circ}$                 |                              | 200<br>200                  | V                    |
| V <sub>GSS</sub><br>V <sub>GSM</sub>                  | Continuous<br>Transient                                                                                  |                              |                             | V<br>V               |
| I <sub>D25</sub>                                      | $T_{\rm c} = 25^{\circ}{\rm C}$<br>$T_{\rm c} = 25^{\circ}{\rm C}$ , Pulse Width Limited by $T_{\rm JM}$ |                              | 160<br>500                  | A<br>A               |
| I <sub>A</sub><br>E <sub>AS</sub>                     | T <sub>c</sub> = 25°C<br>T <sub>c</sub> = 25°C                                                           |                              | 110<br>2.5                  | A<br>J               |
| $\overline{\mathbf{P}_{D}}$                           | T <sub>C</sub> = 25°C                                                                                    |                              | 390                         | W                    |
| dv/dt                                                 | $I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$                                        |                              | 50                          | V/ns                 |
| T <sub>J</sub><br>T <sub>JM</sub><br>T <sub>stg</sub> |                                                                                                          |                              | -55 +150<br>150<br>-55 +150 | °C<br>°C<br>°C       |
| V <sub>ISOL</sub>                                     | 50/60 Hz, RMS<br>I <sub>ISOL</sub> ≤ 1mA                                                                 | t = 1 minute<br>t = 1 second | 2500<br>3000                | V~<br>V~             |
| $\mathbf{M}_{d}$                                      | Mounting Torque<br>Terminal Connect                                                                      |                              | 1.5/13<br>1.3/11.5          | Nm/lb.in<br>Nm/lb.in |
| Weight                                                |                                                                                                          |                              | 30                          | g                    |

## Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Isolation Voltage 2500 V~
- High Current Handling Capability
- Avalanche Rated
- Low R<sub>DS(on)</sub>

## **Advantages**

- High Power Density
- Easy to Mount
- Space Savings

#### **Applications**

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

|                     |                                              | cteristic Values<br>Typ.   Max. |     |         |          |
|---------------------|----------------------------------------------|---------------------------------|-----|---------|----------|
| BV <sub>DSS</sub>   | $V_{GS} = 0V, I_{D} = 1mA$                   | 200                             |     |         | V        |
| $V_{\rm GS(th)}$    | $V_{DS} = V_{GS}, I_{D} = 4mA$               | 2.5                             |     | 4.5     | V        |
| I <sub>GSS</sub>    | $V_{GS} = \pm 20V, V_{DS} = 0V$              |                                 |     | ± 100   | nA       |
| I <sub>DSS</sub>    | $V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 12$ | 25°C                            |     | 10<br>1 | μA<br>mA |
| R <sub>DS(on)</sub> | $V_{GS} = 10V, I_{D} = 110A, Note 1$         |                                 | 5.2 | 6.2     | mΩ       |



| <b>Symbol Test Conditions</b> (T <sub>J</sub> = 25°C, Unless Otherwise Specified) |                                                         | Characteristic Values |      |           |
|-----------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|------|-----------|
|                                                                                   |                                                         | Min.                  | Тур. | Max       |
| g <sub>fs</sub>                                                                   | $V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$             | 70                    | 120  | S         |
| $R_{Gi}$                                                                          | Gate Input Resistance                                   |                       | 1.6  | Ω         |
| C <sub>iss</sub>                                                                  |                                                         |                       | 13.6 | nF        |
| C <sub>oss</sub>                                                                  | $V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$                   |                       | 2.2  | nF        |
| C <sub>rss</sub>                                                                  |                                                         |                       | 9.0  | pF        |
|                                                                                   | Effective Output Capacitance                            |                       |      |           |
| $\mathbf{C}_{o(er)}$                                                              | Energy related $\int V_{GS} = 0V$                       |                       | 1000 | pF        |
| $C_{o(tr)}$                                                                       | Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$     |                       | 3250 | pF        |
| t <sub>d(on)</sub>                                                                | Resistive Switching Times                               |                       | 37   | ns        |
| t,                                                                                | _                                                       |                       | 27   | ns        |
| t <sub>d(off)</sub>                                                               | $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 85A$ |                       | 155  | ns        |
| $t_f$ $R_g = 5\Omega \text{ (External)}$                                          | H <sub>G</sub> = 552 (External)                         |                       | 17   | ns        |
| Q <sub>g(on)</sub>                                                                |                                                         |                       | 204  | nC        |
| Q <sub>gs</sub>                                                                   | $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 85A$ |                       | 65   | nC        |
| $\mathbf{Q}_{gd}$                                                                 |                                                         |                       | 47   | nC        |
| R <sub>thJC</sub>                                                                 |                                                         |                       |      | 0.32 °C/W |
| R <sub>thCS</sub>                                                                 |                                                         |                       | 0.05 | °C/W      |

### Source-Drain Diode

| Symbol                      | Test Conditions                                | Characteristic Values |      |      |    |
|-----------------------------|------------------------------------------------|-----------------------|------|------|----|
| $T_{\rm J} = 25^{\circ}$ C, | Unless Otherwise Specified)                    | Min.                  | Тур. | Max. |    |
| I <sub>s</sub>              | $V_{GS} = 0V$                                  |                       |      | 220  | Α  |
| I <sub>SM</sub>             | Repetitive, Pulse Width Limited by $T_{_{JM}}$ |                       |      | 880  | Α  |
| V <sub>SD</sub>             | $I_F = 100A, V_{GS} = 0V, Note 1$              |                       |      | 1.4  | V  |
| t <sub>rr</sub>             | I <sub>=</sub> = 110A, -di/dt = 100A/μs        |                       | 128  |      | ns |
| Q <sub>RM</sub>             | 1                                              |                       | 580  |      | пC |
| I <sub>RM</sub>             | $V_R = 100V$ , $V_{GS} = 0V$                   |                       | 9    |      | Α  |

Note 1. Pulse test,  $t \le 300\mu s$ , duty cycle,  $d \le 2\%$ .















© 2019 IXYS CORPORATION, All Rights Reserved

# **IXFN220N20X3**















 $\ensuremath{\mathsf{IXYS}}$  Reserves the Right to Change Limits, Test Conditions, and Dimensions.









Fig. 15. Maximum Transient Thermal Impedance















Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.