我的绮丽宇宙行记

Alice-Celia

2023年8月29日

which is the core, valutions or the topology

2023.8.28

Supposed that $|\cdot|$ is a non-arch discreate valution. Donate the integral elements ring as $\mathfrak o$, the maximal ideal as $\mathfrak p$. Specially, we require the residue field $\mathfrak o \setminus \mathfrak p$ is finite with P elements (then its multiplication group is a cyclic group with order P-1. By Hensel's Lemma, we can assume the generator is in the field k, as a (none 1) root of $f(X) = X^{P-1} - 1$)

in this case, we have an important topological thm:

Thm 1. in addition, we require $k = \bar{k}$, then \mathfrak{o} is compact in k

we can easily write down the Haar measure of k^+ and k^\times

the most interesting fact is that, as long as the k is complete, the normed spaces is unique !!!