

DLenna: If ge', gr' exist for g, then ge'= gr'

Pf. (ge'* g* gr')

gr'= e*gr' = gr'* e = ge'

>>> 03) g has an inverse g for any g E G.

Def. A group (G, *) is commutative on Abelian
iff g, * Jz = Jz * g, Y & g, gz & C G

«Def. Let α∈α.

ma: G → G left multiplication by g

ma(g) = ag

ma(g) = ga right multiplication by g

Dlemma: ma, ma are bijections. (+ 5)

Pf. $m_{\alpha}(g_1) = m_{\alpha}(g_2)$ left cancellation $ag_1 = ag_2$ $a'(ag_1) = a'(ag_2)$

If gea, solve ma(x)=g (x)=f ax=g (x)=f

$$\frac{Pf.(g.gz)(gz'gz')=g.(gzgz')g.'}{=g.(gz'gz')g.'}$$
= g.g.'
= g.g.'

ght=gkgl = gl+k = glgk (all powers commutative)

Example: If S is a set then Sym(S) is a group under composition.

Non-commutative Sn, n > ?

$$\otimes$$
 $)$ $(Z,+)$ $(Z_n,+)$

2) (F, +) Field

3) (V, +) Vector space

u) (Fxxx,+), M, (F) if men

 (F^{\times}, \times) , $F^{\times} \setminus \{0\}$ (Z_n^{\times}, x)

$$R^{+}=(0,\infty) \text{ is group under } x.$$

$$R^{+}=[0,\infty)$$

8) GL(n,F) = invertible elements A of Mn(F). = {A: LA| = d \in +0}

S, C C = {Z: |z|= [x2+y2=1], Z=x+iy.

(S,x) is group = { ei0 : 0 (0 (27)} = { cos 0 + i sin 0, x}