Script 18

The Euclidean Space \mathbb{R}^n

7/7: **Definition 18.1.** The **Euclidean** *n***-space** \mathbb{R}^n is the *n*-fold Cartesian product of \mathbb{R} . Symbolically,

$$\mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}\$$

is the set of n-tuples of real numbers. We often write

$$\mathbf{x} = (x_1, \dots, x_n)$$

to denote an element, which is also referred to as a **vector**, in \mathbb{R}^n and

$$\mathbf{0} = (0, \dots, 0)$$

Definition 18.2. Let $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. We define the following operations.

- (a) (Addition) $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n).$
- (b) (Scalar Multiplication) $\lambda \mathbf{x} = (\lambda x_1, \dots, \lambda x_n)$.

Exercise 18.3. Prove that the addition on \mathbb{R}^n satisfies FA1-FA4 (see Definition 7.8). Moreover, prove that

- VS1. (Associativity of Scalar Multiplication) If $\lambda, \mu \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$, then $(\lambda \mu)\mathbf{x} = \lambda(\mu \mathbf{x})$.
- VS2. (Distributivity of Scalars) If $\lambda, \mu \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$, then $(\lambda + \mu)\mathbf{x} = \lambda \mathbf{x} + \mu \mathbf{x}$.
- VS3. (Distributivity of Vectors) If $\lambda \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then $\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$.
- VS4. (Scalar Multiplicative Identity) If $\mathbf{x} \in \mathbb{R}^n$, then $1\mathbf{x} = \mathbf{x}$.

These eight properties together are called the vector space axioms.

Proof. To prove that \mathbb{R}^n obeys FA1 from Definition 7.8, it will suffice to show that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$. Let \mathbf{x}, \mathbf{y} be arbitrary elements of \mathbb{R}^n . Then by Definition 18.2,

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$$
$$= (y_1 + x_1, \dots, y_n + x_n)$$
$$= \mathbf{y} + \mathbf{x}$$

as desired.

To prove that \mathbb{R}^n obeys FA2 from Definition 7.8, it will suffice to show that for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$, $(\mathbf{x}+\mathbf{y})+\mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ be arbitrary elements of \mathbb{R}^n . Then by Definition 18.2,

$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = (x_1 + y_1, \dots, x_n + y_n) + \mathbf{z}$$

$$= ((x_1 + y_1) + z_1, \dots, (x_n + y_n) + z_n)$$

$$= (x_1 + (y_1 + z_1), \dots, x_n + (y_n + z_n))$$

$$= \mathbf{x} + (y_1 + z_1, \dots, y_n + z_n)$$

$$= \mathbf{x} + (\mathbf{y} + \mathbf{z})$$

Script 18 MATH 16210

as desired.

To prove that \mathbb{R}^n obeys FA3 from Definition 7.8, it will suffice to find an element $0 \in \mathbb{R}^n$ such that $\mathbf{x} + 0 = 0 + \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Choose **0** to be our 0. Let \mathbf{x} be an arbitrary element of \mathbb{R}^n . Then by Definition 18.2,

$$\mathbf{x} + \mathbf{0} = (x_1 + 0, \dots, x_n + 0)$$

$$= (x_1, \dots, x_n)$$

$$= \mathbf{x}$$

$$= (0 + x_1, \dots, 0 + x_n)$$

$$= \mathbf{0} + \mathbf{x}$$

as desired.

To prove that \mathbb{R}^n obeys FA4 from Definition 7.8, it will suffice to show that for all $\mathbf{x} \in \mathbb{R}^n$, there exists $\mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x} = 0$. Let \mathbf{x} be an arbitrary element of \mathbb{R}^n . Choose $\mathbf{y} = (-x_1, \dots, -x_n)$. Then by Definition 18.2,

$$\mathbf{x} + \mathbf{y} = (x_1 + (-x_1), \dots, x_n + (-x_n))$$
= $(0, \dots, 0)$
= $\mathbf{0}$
= $((-x_1) + x_1, \dots, (-x_n) + x_n)$
= $\mathbf{y} + \mathbf{x}$

as desired.

To prove that \mathbb{R}^n obeys VS1, it will suffice to show that for all $\lambda, \mu \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$, we have $(\lambda \mu)\mathbf{x} = \lambda(\mu \mathbf{x})$. Let λ, μ be arbitrary elements of \mathbb{R} , and let \mathbf{x} be an arbitrary element of \mathbb{R}^n . Then by Definition 18.2,

$$(\lambda \mu)\mathbf{x} = ((\lambda \mu)x_1, \dots, (\lambda \mu)x_n)$$
$$= (\lambda(\mu x_1), \dots, \lambda(\mu x_n))$$
$$= \lambda(\mu \mathbf{x})$$

as desired.

To prove that \mathbb{R}^n obeys VS2, it will suffice to show that for all $\lambda, \mu \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$, we have $(\lambda + \mu)\mathbf{x} = \lambda \mathbf{x} + \mu \mathbf{x}$. Let λ, μ be arbitrary elements of \mathbb{R} , and let \mathbf{x} be an arbitrary element of \mathbb{R}^n . Then by Definition 18.2,

$$(\lambda + \mu)\mathbf{x} = ((\lambda + \mu)x_1, \dots, (\lambda + \mu)x_n)$$

$$= (\lambda x_1 + \mu x_1, \dots, \lambda x_n + \mu x_n)$$

$$= (\lambda x_1, \dots, \lambda x_n) + (\mu x_1, \dots, \mu x_n)$$

$$= \lambda \mathbf{x} + \mu \mathbf{x}$$

as desired.

To prove that \mathbb{R}^n obeys VS3, it will suffice to show that for all $\lambda \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have $\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$. Let λ be an arbitrary element of \mathbb{R} , and let \mathbf{x}, \mathbf{y} be arbitrary elements of \mathbb{R}^n . Then by Definition 18.2,

$$\lambda(\mathbf{x} + \mathbf{y}) = \lambda(x_1 + y_1, \dots, x_n + y_n)$$

$$= (\lambda(x_1 + y_1), \dots, \lambda(x_n + y_n))$$

$$= (\lambda x_1 + \lambda y_1, \dots, \lambda x_n + \lambda y_n)$$

$$= (\lambda x_1, \dots, \lambda x_n) + (\lambda y_1, \dots, \lambda y_2)$$

$$= \lambda \mathbf{x} + \lambda \mathbf{y}$$

Script 18 MATH 16210

as desired.

To prove that \mathbb{R}^n obeys VS4, it will suffice to show that for all $\mathbf{x} \in \mathbb{R}^n$, we have $1\mathbf{x} = \mathbf{x}$. Let \mathbf{x} be an arbitrary element of \mathbb{R}^n . Then by Definition 18.2,

$$1\mathbf{x} = (1x_1, \dots, 1x_n)$$
$$= (x_1, \dots, x_n)$$
$$= \mathbf{x}$$

as desired. \Box

Remark 18.4. Since \mathbb{R}^n with the two operations defined as above satisfies these eight axioms, we call \mathbb{R}^n a vector space.

Exercise 18.5. Prove that if $\mathbf{x} \in \mathbb{R}^n$, then $0\mathbf{x} = \mathbf{0}$.

Proof. By Definition 18.2, we have that

$$0\mathbf{x} = (0x_1, \dots, 0x_n)$$
$$= (0, \dots, 0)$$
$$= \mathbf{0}$$

as desired. \Box