

Experimento 3 INTRODUÇÃO À LINGUAGEM VHDL

OBJETIVOS

- Implementar circuitos combinacionais simples utilizando atribuições condicionais e seletivas da linguagem VHDL.
- Desenvolver módulos básicos decodificador e multiplexador que podem ser usados futuramente para implementar circuitos mais complexos.
- Simulação no ModelSim.

ATIVIDADES

1. Utilizando atribuições condicionais ("when-else"), escreva em VHDL e simule no ModelSim uma entidade que descreve um multiplexador 8 para 1 (8x1). Essa entidade deve ter dois vetores de entrada (S com 3 bits e D com 8 bits) e um bit de saída (Y). A Tabela 1 mostra a tabela-verdade do multiplexador.

Tabela 1- Tabela-verdade do multiplexador 8x1. A entrada D é formada pela concatenação dos bits D_7 , D_6 , ..., D_0 .

S	Y
000	D_0
001	D_1
010	D_2
011	D_3
100	D_4
101	D_5
110	D_6
111	D_7

2. Utilizando atribuições seletivas ("with-select"), escreva em VHDL e simule no ModelSim uma entidade que descreva um decodificador de 4 para 16. Essa entidade deve ter, como entrada, um vetor A de 4 bits e, como saída, um vetor Y de 16 bits. A Tabela 2 mostra a tabela-verdade do decodificador.

Tabela 2 - Tabela-verdade do decodificador 4x16.

A	Y
0000	0000 0000 0000 0001
0001	0000 0000 0000 0010
0010	0000 0000 0000 0100
0011	0000 0000 0000 1000
0100	0000 0000 0001 0000
0101	0000 0000 0010 0000
0110	0000 0000 0100 0000
0111	0000 0000 1000 0000
1000	0000 0001 0000 0000
1001	0000 0010 0000 0000
1010	0000 0100 0000 0000
1011	0000 1000 0000 0000
1100	0001 0000 0000 0000
1101	0010 0000 0000 0000
1110	0100 0000 0000 0000
1111	1000 0000 0000 0000

RELATÓRIO

O relatório deve permitir ao leitor entender as atividades desenvolvidas no experimento mesmo sem acesso ao roteiro. O relatório é **individual** e deve ser entregue dentro do prazo indicado na Tabela 3 para cada turma usando o link adequado. **Relatórios atrasados e/ou entregues pelo link errado não serão aceitos. Para este experimento, também é necessário enviar os códigos VHDL desenvolvidos em um arquivo ZIP.**

Tabela 3 - Prazos e links para entrega do relatório e dos códigos

TURMA	PRAZO PARA ENTREGA	LINK PARA ENTREGA
Т08	20/11/2024 às 8h	https://forms.gle/oau1RuuDZVwHzDbR8
Т09	29/11/2024 às 16h	https://forms.gle/cBUpeePx4aP1xX1s5
T10	29/11/2024 às 14h	https://forms.gle/sgsjAPXtxoKhjeox7

Para a correção, serão valorizadas, também, a clareza, a formatação e a linguagem do relatório. Lembre-se de incluir legendas nas figuras e tabelas, explicar seu raciocínio para desenvolver as soluções de forma clara, passo a passo, e, quando necessário, referenciar figuras, tabelas e equações.

O relatório deve conter, minimamente:

- número do experimento e identificação do aluno (nome completo, matrícula e turma);
- explicações dos códigos desenvolvidos;
- as tabelas-verdade das funções lógicas implementadas;
- gráficos de simulações no ModelSim que confirmem que o código desenvolvido implementa a tabelaverdade desejada (estas simulações devem estar claramente comentadas, com descrições que permitam entender facilmente quais são os sinais mostrados, quais intervalos de tempo do gráfico ilustram quais linhas da tabela-verdade).