Examen Parcial Introducción a los Algoritmos - 18 de Abril de 2016 Comisiones Turno Tarde

nota	1	2	3	4	5

Apellido y Nombre:

Cantidad de hojas entregadas: ___ (Numerar cada hoja.)

- 1. [10 pto(s)] Definir la función $dos Iguales : (A, A, A) \rightarrow Bool$ que dada una tripla de elementos (de un tipo con igualdad) devuelve True si al menos dos de ellos son iguales y False si no. Ejemplos:
 - (I) dosIguales.([],[],[]) = True
 - (II) dosIguales.(1,2,3) = False
- 2. (a) [15 pto(s)] Definir la función recursiva $sumaPares : [(Num, Num)] \rightarrow Num$, que dada una lista de pares de números retorna la lista resultante de haberlos sumado. Ejemplos:
 - (I) sumaPares.[(3,4),(1,13),(2,2)] = [7,14,4]
 - (b) [5 pto(s)] Evaluar manualmente la función utilizando el ejemplo (I). Justificar cada paso.
- 3. (a) [15 pto(s)] Definir la función recursiva cuantos : $Num \to [Num] \to Num$ que dado un número n y una lista de números l retorna cuantas veces aparece n en l. Ejemplos:
 - (I) cuantos.1.[2,3,4] = 0
 - (II) cuantos.1.[1,1,2,1] = 3
 - (b) [5 pto(s)] Usar la función anterior para definir la función $mas0que1: [Num] \rightarrow Bool$ que retorna True si hay más 0s que 1s en la lista, y False si no. Ejemplos:
 - (I) mas0que1.[0] = True
 - (II) mas0que1.[1, 1, 0] = False
- 4. [20 pto(s)] Dadas las siguientes funciones

reverse.[] = [] #.[] = 0
reverse.(
$$x \triangleright xs$$
) = (reverse. xs) $\triangleleft x$ #.[] = 0
[] $\triangleleft x = x \triangleright$ []
($x \triangleright xs$) $\triangleleft y = x \triangleright (xs \triangleleft y)$

demuestre por inducción la siguiente propiedad

$$\#(reverse.xs) = \#.xs$$

5. [30 pto(s)] Dadas las siguientes funciones

demuestre por inducción la siguiente propiedad

$$prod.saca1.xs = prod.xs$$