MA2102: PS (Assignment-2)

- Let $p_X(x)$ be the PMF of a random variable X. Find the CDF $F_X(x)$ of X and sketch its graph.
 - $p_X(x) = \frac{1}{3}, x = -1, 0, 1$
 - $p_X(x) = \frac{x}{15}$,, x = 1, 2, 3, 4, 5
- 2. Suppose F_1 , F_2 are two CDF's then verify whether the following are CDF's?
 - $G(x) = F_1(x) + F_2(x)$
 - $G(x) = \frac{1}{3}F_1(x) + \frac{2}{3}F_2(x)$
 - $G(x) = a_1F_1(x) + a_2F_2(x)$ where $a_1 \ge 0$, $a_2 \ge 0$ and $a_1 + a_2 = 1$
- 3. Which of the following are valid PMF's?
 - $p_X(x) = \frac{(x-2)}{2}, x = 1, 2, 3, 4$
 - $p_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}, x = 0, 1, 2, 3 \dots where \lambda > 0$
 - $p_X(x) = \frac{e^{-\lambda}\lambda^x}{x!}, x = 1, 2, 3 \dots \text{ where } \lambda > 0$ iii.
 - $p_X(x) = {x+r-1 \choose r-1} p^r (1-p)^x$, x = 0,1,2,3... where 0iv.
- Find the c value so that the following functions are valid PDF's?
 - $f_X(x) = \begin{cases} c \lambda^{\alpha} x^{\alpha 1} & e^{-\lambda x}, x \ge 0\\ 0, x < 0 \end{cases}$
 - $f_X(x) = c e^{-\frac{x^2}{2}} , -\infty < x < \infty$ $f_X(x) = \frac{c}{1+x^2} , -\infty < x < \infty$
- Find the value of constant c such that the following function is PDF, then find the CDF associated with PDF.

$$f(x) = \begin{cases} c(x+1)e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases} \text{ where } \lambda > 0$$

- 6. Let us select five cards at random and without replacement from an ordinary deck of playing cards.
 - i. Find the PMF of X, the number of hearts in the five cards
 - Determine $P(X \leq 1)$. ii.

7. For some constant c, the random variable X has P

$$f_X(x) = \begin{cases} c(1-x^2) - 1 < x < 1\\ 0 \quad otherwise \end{cases}$$

- i. What is the value of a
- What is CDF of X ii.
- 8. A battery cell is labelled as good if it works for at least 300 days in a clock, otherwise it is labelled as bad. Three manufacturers, A, B and C make cells with probability of making good cell as 0.95, 0.90 and 0.80 respectively. Three identical clocks are selected and ells made by A, B and C are used in clock-1, clock-2, clock-3 respectively. Let X be the number of clocks working

- after 300 days. Find the probability mass function of \boldsymbol{X} , then find and sketch the corresponding CDF.
- 9. Let X is a continuous random variable with PDF $f_X(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$, then find the PDF of $Y = \sqrt{X}$
- 10. Let X is a continuous random variable with PDF $f_X(x) = \begin{cases} k \frac{x^{p-1}}{(1+x)^{p+q}} & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$, p,q > 0 then find the PDF of $Y = \frac{1}{(1+X)}$
- 11. Let X is a continuous random variable with PDF $f_X(x) = \begin{cases} k \ x^{\beta-1} \ e^{-\alpha x^{\beta}} \ if \ x > 0 \\ 0, \ otherwise \end{cases}$ where $\alpha > 0, \beta > 0$,the find the PDF of $Y = X^{\beta}$
- 12. Let X is a continuous random variable with support $S_X = (a,b)$, PDF f_X , and CDF F_X , then find the PDF of $Y = -\log(F_X(X))$
- 13. Let X is a continuous random variable with PDF $f_X(x) = \frac{1}{2}e^{-|x|}$, $-\infty < x < \infty$. then find the PDF of Y = |X|

**** GOOD LUCK ****