Baze podataka Katedra za računarstvo Elektronski fakultet u Nišu

Uvod u Baze podataka

Prof.dr Leonid Stoimenov

Uvod u baze podataka - Pregled

- Osnovni pojmovi
 - Šta je Podatak, informacija?
 - Šta je Baza podataka?
 - Šta je Sistem za upravljanje bazama podataka?
 - Šta je Aplikacija nad bazom podataka?
 - Šta je Sistem baza podataka?
- Konvencionalna obrada i obrada zasnovana na bazama podataka
- Sistem baza podataka
- Kategorizacija korisnika baza podataka
- Istorijat baza podataka
- Prednosti i nedostaci

Podatak i informacija

- Podatak (lat. datum deo informacije, eng. Data)
 - Jednostavna neobrađena izolovana činjenica koja ima neko značenje i koja se obrađuje i čuva na računaru
 - Podaci su znakovni prikaz činjenica i pojmova koji opisuju svojstva objekata
- Obrada podataka proces prevođenja podataka u informacije
- Informacija (lat. Informare, eng. Information) rezultat analize i organizacije podataka na način da daje/generiše novo znanje
- Znanje ...
 - (kurs Veštačka inteligencija, VII semestar)
- Mudrost ...

Konvencionalni sistemi

- Tradicionalni pristup (sistem zasnovan na datotekama engl. File-based system)
 - Ad hoc pristup: datoteka ili skup datoteka podataka potrebnih za definisanu aplikaciju
 - Razvijaju se programi koji obrađuju podatke iz datoteka
 - Svaki program definiše sopstvene podatke i upravlja tim podacima
- Obrada podataka (engl. Data Processing)
- Često se koristi pojam Automatska obrada podataka (AOP)
 - pojedine aplikacije jednog informacionog sistema (IS) međusobno nezavisne i kod koje se za svaku aplikaciju kreiraju i održavaju posebne datoteke sa svim potrebnim podacima

Obrada zasnovana na datotekama

Aplikacioni program prodaje

Aplikacioni program nabavke

Osnovne karakteristike sistema zasnovanog na datotekama

- Definicija podataka je ugrađena u aplikacioni program
 - poželjno je da bude odvojena i nezavisna
- Ne postoji kontrola pristupa podacima, osim one koju vrše aplikacioni programi
 - poželjna potpuna kontrola pristupa podacima i to nezavisno od konkretnog aplikacionog programa

Prednosti i nedostaci konvencionalne obrade

Prednosti

 Jednostavnost projektovanja i realizacije

Nedostaci

- Nepovezanost aplikacija
- Ponavljanje podataka
- Neusaglašenost (nekonzistentnost) podataka
- Čvrsta povezanost programa i podataka
 - Programi za obradu podataka zavise od načina struktuiranja podataka
 - Promena strukture podataka zahteva promenu programa
- Ograničena mogućnost zajedničkog korišćenja podataka
- Ograničena raspoloživost podataka
- Neadekvatna realizacija oporavka od pada sistema

Posledice:

Obrada podataka je skupa

Rešenje problema: baza podataka

- Baza podataka treba da obezbedi:
 - Nezavisnost struktura podataka od programa koji ih obrađuju,
 - Nezavisnost programa od struktura podataka;
 - Minimalnost ponavljanja podataka;
 - Da obrada podataka nije vezana za programski jezik opšte namene, već za viši "upitni" jezik;
 - Korišćenje baze podataka od strane većeg broja korisnika.

Šta je baza podataka?

- **Baza podataka** (engl. Data Base, **Database**):
 - Integrisana kolekcija podataka o nekoj organizaciji
 - Primer organizacija: kompanija, banka, fakultet, grad, biblioteka, supermarket
- Primer: Fakultetska baza podataka
 - Obuhvata podatke o:
 - ▶ Entitetima objekti realnog sveta
 - studijski programi,
 - studenti,
 - predmeti,
 - učionice
 - **Vezama** među ovim entitetima,
 - student sluša predmet,
 - predmet se izodi u učionici,
 - predmet pripada studijskom programu

Baza podataka kao kolekcija podataka

- Baza podataka predstavlja kolekciju povezanih podataka organizovanih u logičke celine predstavljene tabelama.
- Skup podataka pripremljen tako da se mogu jednostavno koristiti, tj. pregledati, pretraživati, sortirati, upoređivati, itd., ali i menjati.
- Podaci u bazama podataka su organizovani u dvodimenzionalne tabele ili relacije
- ▶ Relacione baze podataka
 - Skup relacija/tabela
 - Tabela može da ima više **kolona**, gde svaka kolona predstavlja neku **osobinu** ili **atribut**.
 - Vrste tabele čine konkretni podaci, odnosno konkrente vrednosti osobina/atributa nekog objekta.

Podaci u bazi podataka

- Dvodimenzionalna tabela (slika: tabela Student)
 - ▶ Kolone osobine tj atributi objekta realnog sveta
 - Vrste predstavlja jedan slog podataka o nekom objektu

Ime	Prezime	Indeks	MBR	
Petar	Petrović	1111	123456	
Milan	Milanović	2222	654321	
Jovan	Jovanović	3333	345612	

- Redosled podataka u tabeli nije relevantan
- Nema duplikata ili je njihov broj minimalan

Relaciona baza podataka – primer veza između podataka

Podaci o **ADVISER**u su povezani sa **STUDENT**om preko **AdviserData**

Relacione baze podataka – primer rešavanja problema ažuriranja podataka

Baza podataka kao aspekt realnog sveta

- Slučajni skup podataka nije baza podataka!!
- Baza podataka se projektuje i gradi za specifičnu namenu
- Namenjena je konkretnim korisnicima za konkretne namene
- Baza podataka
- predstavlja neki aspekt realnog sveta organizacije
- tzv **minisvet** deo realnog sveta za koji je neophodno čuvati i obrađivati podatke
 - Baza podataka za Fakultet podaci o studentima, ispitima, nastavnicima
- Promene u minisvetu utiču na bazu podataka
 - Promena u nastavnim planovima utiče na bazu podataka
 - Promene u podacima
 - -----Promene u-tabelama

Baze podataka: više posla?

- Relacione baze podataka su na prvi pogled komplikovanije od konvencionalnog pristupa
- Ipak, prednosti su značajne
 - pre svega minimizacija redundanse podataka, kao i
 - očuvanje kompleksnih veza između podataka
- Relaciona baza podataka predstavlja osnovu za korisničke forme i izveštaje
- Više drugačijih poslova administracija, održavanje podataka...

Šta je sistem za upravljanje bazama podataka?

- Sistem za upravljanje bazama podataka (engl. Data Base Management System, DBMS)
- Softverski sistem koji omogućava definisanje, kreiranje i manipulisanje bazom podataka
 - Definisanje: Specificiranje tipova podataka, struktura i ograničenja za podatke koje treba memorisati u bazi podataka
 - Kreiranje: Proces memorisanja podataka na nekom medijumu koji kontroliše DBMS
 - Manipulisanje: Postavnjanje upita bazi podataka da bi se našli specifični podaci, ažuriranje baze podataka da bi se unele promene nastale u mini svetu i generisanje izveštaja na osnovu podataka memorisanih u bazi podataka

Šta je aplikacija baze podataka?

- Aplikacija baze podataka (engl. Database application, DB application)
 - Program koji interaguje sa bazom podataka u toku svog izvršenja
- Interakcija programa i baze podataka se obavlja preko DBMS-a
- Program šalje zahteve DBMS-u i DBMS vraća programu odgovor na ovaj zahtev

Šta je sistem baze podataka?

- Sistem baze podataka (engl. Database System)
 - Kolekcija aplikacionih programa koji interaguju sa bazom podataka, DBMS i baza podataka

Obrada zasnovana na bazama podataka

Uprošćena struktura sistema baze podataka

Prilaz zasnovan na bazama podataka

Baza podataka

 Deljiva kolekcija logički povezanih podataka i definicija tih podataka, projektovana sa ciljem da zadovolji informacione potrebe neke organizacije

Važne odrednice

- Podaci su deljivi
- Baza podataka sadrži i podatke i njihove definicije (opisi, šeme)
- Definicije podataka se nalaze u katalogu sistema (rečnik sistema) i nazivaju se meta podaci
- Definicije podataka su odvojene od aplikacionih programa
- Podaci su logički povezani (entiteti, atributi, veze)

Svojstva prilaza zasnovanog na BP

- Opisi podataka i ograničenja nad podacima (tzv. meta podaci) su sastavni deo sistema baze podataka
 - Opisi se nalaze u sistemskom **katalogu** koji je dostupan i DBMS-u i korisnicima kojima je potrebno poznavanje strukture baze podataka
- Nezavisnost programa i podataka
 - Opisi podataka su u DBMS katalogu i nezavisni su od programa za pristup podacima

Uloge u okruženju baza podataka (osoblje)

- Administrator podataka i administrator baze podataka
 - Data Administrator (DA)
 - Database Administrator (DBA)
- Projektant baze podataka (eng. Database Designer)
 - Projektant logičke baze podataka
 - Projektant fizičke baze podataka
- Inženjer razvoja aplikacija (eng. Application Developer)
 - aplikacioni programer
- Krajnji korisnici (eng. End-Users)
 - Slučajni korisnici
 - Naivni ili parametarski korisnici
 - Napredni ili Sofistični korisnici

Administrator podataka

- Odgovoran je za menadžment podataka kao resursa, uključujući:
 - Planiranje, razvoj i održavanje standarda, politike i procedura
 - Konceptualno i logičko projektovanje baze podataka
- Njegov zadatak je da obezbedi DB podršku za ostvarenje postavljenih ciljeva korporacije za koju radi

Administrator baze podataka

- Odgovoran je za fizičku realizaciju sistema baze podataka, uključujući:
 - Fizičko projektovanje i implementaciju baze podataka
 - Sigurnost i integritet
 - Održavanje sistema u radnom stanju
 - Obezbeđenje odgovarajućih performansi aplikacija za potrebe korisnika (monitoring i reorganizacija, po potrebi)

Glavni zadaci DB i DBA

DA

- Učestvuje u strateškom planiranju IS-a
- Utvrđuje dugoročne ciljeve
- Nameće standarde, politiku i procedure
- Utvrđuje zahteve za podacima
- Razvija konceptualni i ligički projekat baze podataka
- Razvija i održava zajednički model podataka
- Koordinira razvoj sistema
- Orijentisan je ka menadžmentu
- DBMS nezavistan

DBA

- Evaluira nove DBMS-e
- Izvršava planove radi ostvarenja ciljeva
- Nameće standarde, politiku i procedure
- Implementira zahteve za podacima
- Razvija logički i fizički projekat baze podataka
- Implementira fizički projekat baze podataka
- Nadzire i kontroliše bazu podataka
- Orijentisan je ka tehnici
- DBMS zavistan

Korisnici baze podataka

- Akteri na sceni
 - Administrator baze podataka
 - Projektanti baze podataka
 - Aplikacioni programeri
 - Sistem analitičari
 - Krajnji korisnici
 - Slučajni
 - Naivni
 - Napredni

- Akteri iza scene
 - Projektanti DBMS-a
 - Inženjeri razvoja DBMS-a
 - Operateri
 - Osoblje za održavanje sistema baze podataka

Krajnji korisnici

- Krajnji korisnici su lica čiji posao zahteva pristup bazi podataka radi pretraživanja, ažuriranja i generisanja izveštaja
- Vrste krajnjih korisnika
 - Slučajni korisnici povremeno pristupaju bazi podataka, njihovi zahtevi su vrlo promenjivi i nisu unapred definisani
 - Za njih se projektuju posebni upitni jezici i dodatna softverska pomagala
 - Naivni (parametarski) korisnici ažuriraju bazu podataka i koristeći standardne upite dobijaju potrebne podatke iz baze podataka
 - Primer ovih korisnika su službenici na šalterima
 - Ovi korisnici uvek obavljaju istu obradu nad bazom podataka i za njih se razvijaju posebne DB aplikacije
 - Napredni (sofistički) korisnici imaju znanje o DBMS-u tako da mogu formulisati vrlo složene zahteve
 - Primer takvih korisnika su inženjeri, naučnici, istraživači, analitičari

Tipovi sistema baza podataka

Single-user:

Podrška samo za jednog korisnika u isto vreme

Desktop:

Single-user baza podataka na personalnom računaru

Multi-user:

Podrška za više korisnika u isto vreme

Workgroup:

 Multi-user baza podataka za mali broj korisnika ili jedno odeljenje preduzeća

Enterprise:

 Multi-user baza podataka koja podržava veliki broj korisnika ili celo preduzeće/organizaciju

Tipovi sistema baza podataka

Klasifikacija po lokaciji:

- Centralizovane:
 - Podaci su na jednoj lokaciji
- Distribuirane:
 - Podaci mogu biti na više lokacija

Po načinu korišćenja:

- Transakcione (ili produkcione):
 - Podrška za day-to-day operacije preduzeća
- Data warehouse:
 - Čuva podatke koji se koriste za generisanje informacija potrebnih za strateške odluke.
 - Često sadrže istorijske podatke i imaju drugačiju strukturu

Prednosti DBMS-a

Nezavisnost podataka

- Aplikacioni programi su nezavisni od reprezentacije i načina memorisanja podataka
- ▶ DBMS nudi aplikaciji apstraktni pogled na podatke

▶ Efikasan pristup podacima

DBMS koristi posebne tehnike za efikasno memorisanje i pretraživanje podataka

Integritet i bezbednost podataka

- DBMS kontroliše integritet podataka koristeći ograničenja koja je definisao projektant baze podataka
- DBMS nadgleda pristupne privilegije korisnika, tako da svaki korisnik može videti samo podatke za koje poseduje pristupne privilegije

Administracija podataka

- Kada su podaci deljivi centralizovana administracija podataka donosi značajno poboljšanje
- Za to je zadužen administrator baze podataka

Konkurentni pristup i oporavak

- DBMS upravlja konkurentnim pristupom podacima od strane više korisnika
- DBMS ima ugražene mehanizme oporavka baze podataka od različitih neispravnosti

Kraće vreme razvoja aplikacija

- DBMS ima ugrađene različite funkcije za rad sa podacima što aplikacionim programerima značajno olakšava zadatak razvoja aplikacije
- DBMS nudi interfejs iz jezika visokog nivoa ka bazi podataka

Nedostaci DBMS-a

- Složenost
- Veličina
- Troškovi za DBMS
- Dodatni troškovi za HW
- Troškovi konverzije
- Performanse
- Veći uticaj neispravnosti

Istorijat DBMS-a - 1.deo

- ▶ 60-tih godina 20-tog veka
- projekat Apollo, na inicijativu predsednika Kenedija
- Rezultat ovog projekta je GUAM (Generalized Update Access Method)
- Sredinom 60-tih
- ▶ IBM je prihvatio GUAM ideju i razvio IMS (Information Management System) to je hijerarhijski DBMS
- Sredinom 60-tih godina
 - ▶ General Electric je razvio IDS (Integrated Data Store) to je mrežni DBMS
- Prvi DBMS opšte namene koga je projektovao Charles Bachman, prvi dobitnik Turing-ove nagrade koju dodeljuje ACM (ekvivalent Nobelove nagrade za Računarske nauke)
- Bachman je nagradu dobio za rad u oblasti baza podataka
- ▶ 1967. je formirana, u okviru CODASYL-a, Database Task Group (DBTG) koja je uradila standard za DBMS:
- ▶ 1969 draft report
- ▶ 1971 final report

Istorijat DBMS-a - 2.deo

- ▶ 1970. E.F.Codd iz IBM Research Lab je predložio relacioni model
- Prvi komercijalni relacioni DBMS su proizvedeni krajem 70-tih i početkom 80-tih godina 20-tog veka:
 - Projekat System R (IBM) krajem 70-tih (SQL)
 - DB2 i SQL/DS (IBM) 80-tih
 - Oracle (Oracle Corporation) 80-tih
- Danas postoji na hiljade relacionih DBMS-ova za mainframe i PC okruženja:
 - INGRES (Computer Associates)
 - ► INFORMIX, DB2 (IBM)
 - Office Access, Visual FoxPro (Microsoft)
 - InterBase, JDataStore (Borland)
 - R:Base (R:Base Technologies)

Istorijat DBMS-a - 3.deo

- ▶ 1976. Chen je predložio ER model
- ▶ 1979. Codd je predložio proširenu verziju relacionog modela RM/T i 1990. RM/V2 koji se ubraja u semantičke modele podataka
- 90-tih godina 20-tog veka Objektno-orijentisani DBMS (OODBMS) i Objektno-relacioni DBMS (ORDBMS)
- Početak ovog veka
 - Postrelacione BP
 - XML native BP
- ... Relacione baze podataka + nove tehnologije
 - NoSQL baze podataka
 - Trendovi vraćanja na stare, dobre vrednosti RDBMS

Baze podataka

Prof. dr Leonid Stoimenov

Katedra za računarstvo Elektronski fakultet u Nišu

Uvod u baze podataka

Kraj predavanja

Pitanja ???