Clustering Items through Bandit Feedback¹

Maximilian Graf* Victor Thuot † Nicolas Verzelen †

* Institut für Mathematik, Universität Potsdam, Potsdam, Germany

[†] INRAE, Mistea, Institut Agro, Univ Montpellier, Montpellier, France

June 3rd, MIPS week 2025, Montpellier

^{1.} Maximilian Graf, Victor Thuot, and Nicolas Verzelen. Clustering Items through Bandit Feedback: Finding the Right Feature out of Many. Accepted at the 42nd International Conference on Machine Learning. 2025. arXiv: 2503.11209 [stat.ML].

Motivating example

- a set of forest patches
- a set of automatic biodiversity sensors

Figure: DNA sensor (left), optical sensor (right)²

- Objective: partition the forest patches by their biodiversity
- Limitations: cost, lack of specialists, unknown sensors

^{2.} Christophe Bouget et al. "Bioc@pt: Capteurs automatiques de biodiversité en forêt". In:

- n: number of forest patches
- d: number of sensors

- n: number of forest patches
- d: number of sensors
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

- n: number of forest patches
- d: number of sensors
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} M_{1,1} & \cdots & M_{1,j} & \cdots & M_{1,d} \\ \vdots & & \vdots & & \vdots \\ M_{i,1} & \cdots & M_{i,j} & \cdots & M_{i,d} \\ \vdots & & \vdots & & \vdots \\ M_{n,1} & \cdots & M_{n,j} & \cdots & M_{n,d} \end{bmatrix} \leftarrow M_{i,\cdot}$$

- *n*: number of forest patches (items)
- d: number of sensors (features)
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} M_{1,1} & \cdots & M_{1,j} & \cdots & M_{1,d} \\ \vdots & & \vdots & & \vdots \\ M_{i,1} & \cdots & M_{i,j} & \cdots & M_{i,d} \\ \vdots & & \vdots & & \vdots \\ M_{n,1} & \cdots & M_{n,j} & \cdots & M_{n,d} \end{bmatrix} \leftarrow M_{i,.}$$

- n: number of forest patches (items)
- d: number of sensors (features)
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow M_{i,\cdot} \in \{0, \Delta\}$$

- n: number of forest patches (items)
- d: number of sensors (features)
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow M_{i,\cdot} \in \{0, \Delta\}$$

Main objective

Partition the patches into two groups of similar biodiversity

- n: number of forest patches (items)
- d: number of sensors (features)
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow M_{i,\cdot} \in \{0, \Delta\}$$

Main objective

Partition the patches into two groups of similar biodiversity

• Vanilla clustering problem: observe the entire matrix

- n: number of forest patches (items)
- d: number of sensors (features)
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow M_{i,\cdot} \in \{0, \Delta\}$$

Main objective

Partition the patches into two groups of similar biodiversity

- Vanilla clustering problem: observe the entire matrix
- Bandit clustering problem: construct the sampling protocol on the fly

Sampling protocol

Learning protocol

At each time step t,

- choose a patch I (based on the past)
- choose a sensor J (based on the past)
- observe $X_t = M_{I,J} + \text{noise}$,

Sampling protocol

Learning protocol

At each time step t,

- choose a patch I (based on the past)
- choose a sensor J (based on the past)
- observe $X_t = M_{I,J} + \text{noise}$,
- Objective 1: recover the partition of the patches
- Objective 2: sequentially build the sampling protocol focus the budget on the most informative sensor

Time t		1	2	3	4
(patch,sensor)		(1,1)			
$X_t =$	+ noise				

Time t		1	2	3	4
(patch,sensor)		(1,1)			
$X_t =$	+ noise	0.1			

Time t		1	2	3	4	
(patch,sensor)		(1,1)	(2,1)			
$X_t =$		+ noise	0.1			

Time t		1	2	3	4	
(patch,sensor)		(1,1)	(2,1)			
$X_t =$		+ noise	0.1	-0.05		

$$\begin{bmatrix} 0 & 0 & 0 & \boxed{0} & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow$$

Time t		1	2	3	4
(patch,sensor)		(1,1)	(2,1)	(1,4)	
$X_t =$	+ noise	0.1	-0.05		

$$\begin{bmatrix} 0 & 0 & 0 & \boxed{0} & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow$$

Time t	1	2	3	4
(patch,sensor)	(1,1)	(2,1)	(1,4)	
$X_t = + \text{noise}$	0.1	-0.05	0.1	

$$\left[\begin{array}{ccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right] \leftarrow$$

Т	ime t	1	2	3	4
(patch,sensor)		(1,1)	(2,1)	(1,4)	(4,4)
$X_t =$	+ noise	0.1	-0.05	0.1	

Т	ime t	1	2	3	4
(patch,sensor)		(1,1)	(2,1)	(1,4)	(4,4)
$X_t =$	+ noise	0.1	-0.05	0.1	0.4

$$\left[\begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right]$$

Time t	1	2	3	4	until T
(patch,sensor)	(1,1)	(2,1)	(1,4)	(4,4)	
$X_t = + \text{noise}$	0.1	-0.05	0.1	0.4	

 \rightarrow At time T, output a partition of the patches

Results

- Algorithmic solution: new online clustering algorithms
 - identification of the most discriminative sensor
 - classification of the patches

Results

- Algorithmic solution: new online clustering algorithms
 - identification of the most discriminative sensor
 - classification of the patches
- Optimality: provably optimal sampling complexity
 - bound on the budget of our algorithm
 - impossibility result for the lower bound

Results

- Algorithmic solution: new online clustering algorithms
 - identification of the most discriminative sensor
 - classification of the patches
- Optimality: provably optimal sampling complexity
 - bound on the budget of our algorithm
 - impossibility result for the lower bound
- Reference:

Maximilian Graf, Victor Thuot, and Nicolas Verzelen. Clustering Items through Bandit Feedback: Finding the Right Feature out of Many.

Accepted at the 42nd International Conference on Machine Learning. 2025. arXiv: 2503.11209 [stat.ML]