

Characterizing Running Times and Algorithm Analysis

ITX2010, CSX3003, IT2230

Data Structures and Algorithms,
Information Structures

Learning Objectives

Introduction

Students will be able to:

- Describe why algorithm analysis is important
- Explain what time complexity and growth rate is
- Identify "Big-O" to describe execution time
- Classify the pattern of running time
- Analyze the running time of an algorithm

Chapter Outline

Introduction

- 1. Algorithm Analysis
 - 1) Algorithm Analysis
 - 2) Algorithm Complexity
 - 3) Time Complexity
 - 4) Growth Rate
 - 5) Average Case Analysis
 - 6) Asymptotic Analysis
 - 7) Big-O Notation

2. Running Time Analysis

- 1) Rules
- 2) Patterns
- 3) Constant Running Time
- 4) Linear Running Time
- 5) Logarithmic Running Time
- 6) Linear Logarithmic Running Time
- 7) Quadratic Running Time

Algorithm Analysis

Section 1: Algorithm Analysis

- 1) Algorithm Analysis
- 2) Algorithm Complexity
- 3) Time Complexity
- 4) Growth Rate
- 5) Average Case Analysis
- 6) Asymptotic Analysis
- 7) Big-O Notation

Algorithm Analysis

- A task to evaluate an algorithm efficiency based upon the amount of computing resources - such as memory space or running time that algorithm uses.
- It concentrate to analyze an algorithm in a way that is independent of the hardware and software requirements.
- It can analyze at the high level of abstraction (algorithm) till to the program code.

Algorithm Analysis

- It often used in comparing two pieces of program or algorithm.
- Ex: Analyze an algorithm to
 - Calculate the sum of n integers
 - Search a key in a given list
- It can be classified in two main stages:
 - Posterior Analysis (Empirical Analysis):
 Actual statistic like running time space required are monitors.
 - 2. Prior Analysis (Theoretical Analysis):
 The efficiency is evaluated excluding hardware and software condition, by considering variable, operations, etc.

Algorithm Complexity

The complexity of an algorithm with its n inputs can be evaluated in term of two traditional factors as follows:

- 1. Space complexity: Memory space reserved from:
 - 1. Variable
 - 2. Data structures
 - 3. Line of Code (LOC)
- 2. **Time complexity**: Evaluating the execution or running time spent for an outcome

Time Complexity

- 1. The first benchmark technique of Evaluating the execution or running time depends on the actual execution time.
 - **Ex**: Consider two algorithms of computing a summation of n integer
 - It has been found that the algorithm sum_of_n1 use for loop in the computation which not been found in the algorithm sum_of_n2.
 - Both return the correct result but the second algorithm spent less time than the first algorithm.

```
def sum_of_n1(n):
    dblSum = 0
    for i in range(1, n+1):
        dblSum = dblSum+i
    return dblSum
```

```
def sum_of_n2(n):
    return (n*(n+1))/2
```

Fig 3-1 Sum of n Algorithms [2]

Tutorail 1: Sum of N Algorithm

```
1 #Algorithm Analysis: Sum of N
 2 import time
 4 def sum_of_n1(n):
     #Start timer
     start = time.time()
     dblSum = 0
     for i in range(1, n+1):
       dblSum = dblSum+i
     #Stop timer
10
     end = time.time()
11
     return dblSum, end-start
12
13
14 def sum_of_n2(n):
     #Start timer
15
     start = time.time()
16
     #Stop timer
17
     end = time.time()
18
19
     return (n*(n+1))/2, end-start
20
21 print("\nsum_of_n1(5):")
22 print("Sum of n is : %d spent: %10.7f seconds" % sum_of_n1(10))
23 print("\nsum_of_n2(5):")
24 print("Sum of n is: %d spent: %10.7f seconds" % sum of n2(10))
```

```
sum_of_n1(5):
Sum of n is : 55 spent: 0.0000031 seconds
sum_of_n2(5):
Sum of n is : 55 spent: 0.0000002 seconds
```

Time Complexity

- How do we justify if they will be run on the different language, OS, or computer?
 - The benchmark should be independent from the software and hardware specification in basis!
- How do we clarify the significant different?
 - The significant different time complexity should be clearly proof and easily justified.

Time Complexity

- If every line of code found in algorithm can affect to the running time, it is reasonably be a base line of evaluating time complexity rather than the actual time computation.
 - The line of code should be considered to evaluate the execution time!
- As the input is not only a single value but a data collection.

Growth Rates

• As the algorithm's input is a data list feed to the algorithm, the growth rate can be monitored in term of how sensitivity of the execution time requires

when the list size is increased.

n		$2n^2$	$n^2 + n$
	10	200	110
1	.00	20,000	10,100
10	000	2,000,000	1,001,000
100	000	200,000,000	100,010,000
1000	000	20,000,000,000	10,000,100,000

Fig 3-2 comparison of the growth rates for different list sizes [1]

Average Case Analysis

1. Best case

- The best situation that returns the fastest execution time.
- It seems unrealistic.

2. Worst case

- A situation that consumes the execution time.
- It gives the absolute guarantee or extreme case.

3. Average case

- It is computed from an average between the Best case and the Worst case.
- It is estimated to be a distribution.

- 3.1 O-notation, Ω -notation and Θ -notation
- 1. Big-O (O-notation), "bounded above by \rightarrow asymptotic upper bound": O(f(n))
 - For some c and N, $T(n) \le c \cdot f(n)$ whenever n > N. [2] [7]
 - It describes the upper bound of an algorithm's growth rate.
- 2. Big-Omega (Ω -notation), "bounded below by \rightarrow asymptotic lower bound": $\Omega(T(n))$
 - For some c>0 and N, $T(n) \ge c \cdot f(n)$ whenever n > N. [2] [7]
 - It describes the lower bound of an algorithm's growth rate.
- 3. Big-Theta (Θ -notation), "bounded above and below \rightarrow asymptotic tight bound": $\Theta(f(n))$
 - T(n) = O(f(n)) and also T(n) = W(f(n)) [2] [7]
 - It describes both upper and lower bound of an algorithm's growth rate.

3.1 O-notation, Ω -notation and Θ -notation

Figure 3.2 Graphic examples of the O, Ω , and Θ notations. In each part, the value of n_0 shown is the minimum possible value, but any greater value also works. (a) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that at and to the right of n_0 , the value of f(n) always lies on or below cg(n). (b) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that at and to the right of n_0 , the value of f(n) always lies on or above cg(n). (c) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that at and to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive.

- 3.1 O-notation, Ω -notation and Θ -notation
- 1. Big-O (O-notation), "bounded above by \rightarrow asymptotic upper bound": O(f(n))
 - A function grows no faster than (or <u>at most as slow as</u>) a certain rate, based on the highest-order term.

Ex: Given
$$f(n) = 7n^3 + 100n^2 - 20n + 6$$

- Its highest-order term is 7n³
- This function's rate of growth is $n^3 \rightarrow$ it is $O(n^3) \#$
- Generally, $O(n^c)$ for any $c \ge 3$ #

- 3.1 O-notation, Ω -notation and Θ -notation
- 2. Big-Omega (Ω -notation), "bounded below by \rightarrow asymptotic lower bound": $\Omega(f(n))$
 - A function grows at least as fast as a certain rate.

Ex: Given
$$f(n) = 7n^3 + 100n^2 - 20n + 6$$

- Its highest-order term is 7n³
- It grows at least as fast as $n^3 \rightarrow$ it is $\Omega(n^3)$ #
- Generally, $\Omega(n^c)$ for any $c \leq 3 \#$

- 3.1 O-notation, Ω -notation and Θ -notation
- 3. Big-Theta (Θ -notation), "bounded above and below \rightarrow asymptotic tight bound": $\Theta(f(n))$
 - A function grows <u>precisely</u> at a certain rate.
 - If you can show that a function is both O(f(n)) and $\Omega(f(n))$ for the function f(n), \rightarrow then you have shown that the function is $\Theta(f(n))$.
 - **Ex:** Given $f(n) = 7n^3 + 100n^2 20n + 6$
 - Its highest-order term is 7n³
 - Since this function's rate of growth is $n^3 \rightarrow$ it is $O(n^3)$ and grows at least as fast as $n^3 \rightarrow$ it is $\Omega(n^3)$,
 - \rightarrow it is also $\Theta(f(n))$ #

```
INSERTION-SORT(A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

```
INSERTION-SORT(A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

- Big-O (O-notation), "bounded above by → asymptotic upper bound": O(f(n))
 - The running time is dominated by the inner loop.
 - Each iteration of the inner loop takes a constant time → 1 (line 6-7).
 - The total time spent in the inner loop is at most a constant times n^2 , or $O(n^2)$

A[1:n/3]	A[n/3+1:2n/3]	A[2n/3+1:n]
each of the	through each	to somewhere
n/3 largest	of these	in these
values moves	n/3 positions	n/3 positions

- Big-Omega (Ω -notation), "bounded below by \rightarrow asymptotic lower bound": $\Omega(f(n))$
- The total time spent if the first n/3 position contain the n/3 largest values $\rightarrow \Omega(n^2)$

Figure 3.1 The $\Omega(n^2)$ lower bound for insertion sort. If the first n/3 positions contain the n/3 largest values, each of these values must move through each of the middle n/3 positions, one position at a time, to end up somewhere in the last n/3 positions. Since each of n/3 values moves through at least each of n/3 positions, the time taken in this case is at least proportional to (n/3) $(n/3) = n^2/9$, or $\Omega(n^2)$.

```
INSERTION-SORT(A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

- 3. Big-Theta (⊕-notation), "bounded above and below → asymptotic tight bound": ⊕(f(n))
 - Since the insertion sort runs in O(n2)time in all cases
 - And there is an input that makes it take $\Omega(n^2)$,
 - So, we can conclude that it is also $\Theta(n^2)$.

```
INSERTION-SORT(A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

- 3. Big-Theta (⊕-notation), "bounded above and below → asymptotic tight bound": ⊕(f(n))
 - Actually, we cannot say that it is Θ(n²) because it does not run for all case.
 - But we should say its running time to be $O(n^2)$ or $\Omega(n^2)$ #

3.1 O-notation, Ω -notation and Θ -notation

FAQ 1: Don't conflate O-notation with Θ-notation!

- "An O(n lg n)-time algorithm runs faster than an O(n²)-time algorithm"
 - May be yes or no:
 - Since $O(n^2)$ algorithm might actually run in $\Theta(n)$!
- You should be careful to choose the appropriate asymptotic notation.
- If you want to indicate an asymptotically tight bound, use Θ -notation.

3.1 O-notation, Ω -notation and Θ -notation

FAQ 2: Use asymptotic notation to provide the simplest and most precise bounds possible!

- Ex: $f(n) = 3n^2 + 20n$
- Its running time is $\Theta(n^2)$ or $\Theta(3n^2+20n)$, $\Theta(n^2)$ or $O(n^3)$ #
- However, $O(n^3)$ is less precise than $\Theta(n^2)$

3.1 O-notation, Ω -notation and Θ -notation

FAQ 3: Asymptotic notation in equations and inequalities

- Ex1: $4n^2 + 100n + 500 = O(n^2) \rightarrow$ How do I interpret this formula?
- \rightarrow 4n² + 100n + 500 \in O(n²) #
- Ex2: $T(n) = 2 T(n/2) + \Theta(n) \rightarrow What is its running time?$
- $\rightarrow \Theta(n) #$

3.1 O-notation, Ω -notation and Θ -notation

Ex3:
$$\sum_{i=1}^{n} O(i) ,$$

there is only a single anonymous function (a function of *i*). This expression is thus <u>not</u> the same as $O(1) + O(2) + \cdots + O(n)$, which doesn't really have a clean interpretation.

$$\sum_{k=1}^{n} \Theta(f(k)) = \Theta\left(\sum_{k=1}^{n} f(k)\right).$$

$$\underline{\mathsf{Ex3.1}} \colon \sum_{k=1}^n \Theta(f(k)) = \Theta\left(\sum_{k=1}^n f(k)\right) \, .$$

Series Type	f(k) =	$\Theta(f(n)) \rightarrow \Theta(n)=$
Arithmetic series	$\sum_{k=1}^{n} k = 1 + 2 + \dots + n ,$	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ $= \Theta(n^2).$
	$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1)$	$= \frac{n(n+1)}{2} + (n+1)$ $= \frac{n^2 + n + 2n + 2}{2}$ $= \frac{(n+1)(n+2)}{2} \cdot = \Theta(n^2).$
General - Arithmetic series	$\sum_{k=1}^{n} (a + bk)$	$\sum_{k=1}^{n} (a + bk) = \Theta(n^2)$

$$\underline{\mathsf{Ex3.1}} \colon \sum_{k=1}^{n} \Theta(f(k)) = \Theta\left(\sum_{k=1}^{n} f(k)\right) \, .$$

Series Type	f(k) =	$\Theta(f(n)) \rightarrow \Theta(n)=$
Sum of squares	$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$	$\Theta(n^2)$
Sum of cube	$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}$	$\Theta(n^3)$

3.1 O-notation, Ω -notation and Θ -notation

Ex3.3: **Products**

The finite product $a_1a_2 \dots a_n$ can be expressed as

$$\prod_{k=1}^{n} a_k.$$

If n = 0, the value of the product is defined to be 1. You can convert a formula with a product to a formula with a summation by using the identity

$$\lg\left(\prod_{k=1}^n a_k\right) = \sum_{k=1}^n \lg a_k$$

3.1 O-notation, Ω -notation and Θ -notation

In some cases, asymptotic notation appears on the left-hand side of Ex4: an equation, as in

$$2n^2 + \Theta(n) = \Theta(n^2).$$

Interpret such equations using the following rule: No matter how the anonymous functions are chosen on the left of the equal sign, there is a way to choose the anonymous functions on the right of the equal sign to make the equation valid. Thus, our example means that for any function $f(n) \in \Theta(n)$, there is some function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$ for all n. In other words, the right-hand side of an equation provides a coarser level of detail than the left-hand side.

We can chain together a number of such relationships, as in

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

= $\Theta(n^2)$.

3.1 O-notation, Ω -notation and Θ -notation

FAQ 4: Proper abuses of asymptotic notation

For example, when we say O(g(n)), we can assume that we're interested in the growth of g(n) as n grows, and if we say O(g(m)) we're talking about the growth of g(m) as m grows. The free variable in the expression indicates what variable is going to ∞ .

The most common situation requiring contextual knowledge of which variable tends to ∞ occurs when the function inside the asymptotic notation is a constant, as in the expression O(1).

O-Notation

We use Θ -notation for *asymptotically tight bounds*. For a given function g(n), we denote by $\Theta(g(n))$ ("theta of g of n") the set of functions

```
\Theta(g(n)): there exist positive constants c_1, c_2, and n_0 = \{f(n) \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0\}.
```

Ω -Notation

Just as O-notation provides an asymptotic *upper* bound on a function, Ω -notation provides an *asymptotic lower bound*. For a given function g(n), we denote by $\Omega(g(n))$ (pronounced "big-omega of g of n" or sometimes just "omega of g of n") the set of functions

 $\Omega(g(n))$: there exist positive constants c and n_0 such

$$= \{f(n) \quad \text{that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}.$$

Big-O Notation

Here is the formal definition of O-notation. For a given function g(n), we denote by O(g(n)) (pronounced "big-oh of g of n" or sometimes just "oh of g of n") the set of functions

O(g(n)): there exist positive constants c and n_0 such = $\{f(n)\}$ that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$.

Big-O Notation

1. Big-O is a factor that determines the magnitude => Don't need to determine the computer measure of efficiency.

2. O(n) is called as "on-the-order-of n"

Ex: $O[n^2] = > Its efficiency is on-the-order of n-squared.$

Big-O Notation derived from f(n)

Step of works:

- 1. Keep the largest term in the function and discard the others.
- 2. In each term, set or drop the coefficient of the term to one.

Ex1:
$$f(n) = 5n^4 + 7n^3 + 15n^2 + n$$

step 1 => $n^4 + n^3 + n^2 + n$,
step 2 => n^4 =>
Big-O notation = O[$f(n)$] = O(n^4)

Big-O Notation derived from f(n)

```
Ex2: f(n) = a_j n^k + a_{j-1} n^{k-1} + ... + a_2 n^2 + a_1 n + a_0

step 1 => n^k + n^{k-1} + ... + n^2 + n + 1

step 2 => n^k

Big-O notation = O[f(n)] = O(n^k)
```

Big-O Notation derived from T(n)

T(n)	keep one	drop coef
3n ² +4n+1	3 n ²	n ²
101 n ² +102	101 n ²	n ²
15 n ² +6n	15 n ²	n ²
a n ² +bn+c	a n ²	n ²

Fig 3-3 comparison of the growth rates for different list sizes [2]

Efficiency	Big-O	Iterations	Est. Time *
Logarithmic	O(log n)	14	microseconds
Linear	O(n)	10,000	0.1 seconds
Linear Logarithm	O(n log n)	140,000	2 seconds
Quadratic	O(n ²)	10,000 ²	15-20 min.
Polynomial	O(n ^c)	10,000 ^k	Hours
Exponential	O(c ⁿ)	210,000	intractable
Factorial	O(n!)	10,000!	intractable
*Assumes	instruction speed of one	microsecond and 10 ins	tructions in loop.

Table 3-1 Measure Efficiency [2]

Fig 3-5 comparison of the growth rates for different list sizes [2]

Algorithm Analysis

Section 2: Running Time Analysis

- 1) Rules
- 2) Patterns
- 3) Constant Running Time
- 4) Linear Running Time
- 5) Logarithmic Running Time
- 6) Linear Logarithmic Running Time
- 7) Quadratic Running Time

Running Time Analysis

Rules

Two important rules [2]

1. Rule of sums

If you do a number of operations in sequence, the runtime is dominated by the most expensive operation.

2. Rule of products

If you repeat an operation a number of times, the total runtime is the runtime of the operation multiplied by the iteration count.

A sequence of operations when call sequences are flattened

$$T(n) = \max(T_A(n), T_B(n), T_C(n))$$

Running Time Analysis

Traditional Patterns

- Constants: O(1)
 - Each statements takes an constant execution.
- IF-Then-Else Statement:
 - Considerer the maximum order between True condition (Then case) and False condition (Else case).
- Logarithmic Statement O(log n):
 - If each iteration the input size of decreases by a constant multiple factors.

Running Time Analysis

Traditional Patterns

- Loop: O(n)
 - The running time of a loop is a product of running time of the statement inside a loop and number of iterations in the loop. [3]
- Nested Loop: O(n^c)
 - The running time The running time of a loop is a product of running time of the statement inside loop multiplied by a product of the size of all the loops. [3]

Constant Running Time O(1), $\Theta(1)$

 An algorithm spent a constant running times as independent from the input size. [4]

• **Ex**:

- Directly access the nth element of an array
- Push and Pop the top element of stack
- Hash search of a home key

Constant Running Time O(1), $\Theta(1)$

```
#Algorithm Analysis: Constant running time
def sum_of_n2(n):
    return (n*(n+1))/2
```


Linear Running Time O(n), $\Theta(n)$

An algorithm spent a linear running times that depends on the input size.

• <u>Ex</u>:

- Search a key from an array or a list
- Find a minimum or maximum key from an array or a list
- Display all element in an array or a list

Linear Running Time O(n), $\Theta(n)$

```
#Algorithm Analysis: Linear running time
def sum_of_n1(n):
    dblSum = 0
    for i in range(1, n+1):
        dblSum = dblSum+i
        return dblSum, end-start
```

Logarithmic Running Time O(log_nn), ⊕(log_nn)

 An algorithm spent a linear running times that depends on the proportional to the logarithm of the input size.

• **Ex**: Binary search

Logarithmic Running Time O(log_nn), ⊕(log_nn)

```
1 i = 1
2 sum = 1
3 while sum < 10:
4 print("Round : ", i, ", sum = ", sum)
5 sum = sum * 2
6 i+=1</pre>
```

```
Round: 1, sum = 1
Round: 2, sum = 2
Round: 3, sum = 4
Round: 4, sum = 8
```

Linear Logarithmic Running Time O(n log_nn), ⊕(nlog_nn)

 An algorithm spent a linear running times that depends on the proportional to n log n production of the input size.

• **Ex**: Heap sort, Quick sort (Average case)

Linear Logarithmic Running Time O(nlog_nn), Θ(nlog_nn)

```
1 i = 1
2 for i in range(3):
3    j=1
4    sum = 1
5    print("\nRound I : ", i, ", sum = ", sum)
6 while sum < 10:
7    print("Round J : ", j, ", sum = ", sum)
8    sum = sum * 2
9    j+=1</pre>
```

```
Round I: 0, sum = 1
Round J: 1, sum = 1
Round J: 2, sum = 2
Round J: 3, sum = 4
Round J: 4, sum = 8
Round I: 1, sum = 1
Round J: 1, sum = 1
Round J: 2, sum = 2
Round J: 3, sum = 4
Round J: 4, sum = 8
Round I: 2, sum = 1
Round J: 1, sum = 1
Round J: 2, sum = 2
Round J: 3, sum = 4
Round J: 4, sum = 8
```

Quadratic Running Time O(n²), ⊕(n)

 An algorithm spent a linear running times that depends on the square of the input size.

• **Ex**: Insertion sort, Selection sort Bubble sort

Quadratic Running Time $O(n^2)$, $\Theta(n)$

```
1 i = 1
2 for i in range(3):
3    j=1
4    sum = 1
5    print("\nRound I : ", i, ", sum = ", sum)
6    while sum < 10:
7    print("Round J : ", j, ", sum = ", sum)
8    sum = sum + 1
9    j+=1</pre>
```

```
Round I: 0, sum = 1
Round J: 1, sum = 1
Round J: 2, sum = 2
Round J: 3, sum = 3
Round J: 4, sum = 4
Round J: 5, sum = 5
Round J: 6, sum = 6
Round J: 7, sum = 7
Round J: 8, sum = 8
Round J: 9, sum = 9
Round I: 1, sum = 1
Round J: 1, sum = 1
Round J: 2, sum = 2
Round J: 3, sum = 3
Round J: 4, sum = 4
Round J: 5, sum = 5
Round J: 6, sum = 6
Round J: 7, sum = 7
Round J: 8, sum = 8
Round J: 9, sum = 9
Round I: 2, sum = 1
Round J: 1, sum = 1
Round J: 2, sum = 2
Round J: 3, sum = 3
Round J: 4, sum = 4
Round J: 5, sum = 5
Round J: 6, sum = 6
Round J: 7, sum = 7
Round J: 8, sum = 8
Round J: 9, sum = 9
```

References

Texts | Integrated Development Environment (IDE)

[1] Data Structures and Algorithms Using Python, Rance D. Necaise, John Wiley & Sons, Inc., 2011

[2] Data Structures: A Pseudocode Approach with C++, Richard F. Gilberg and Behrouz A. Forouzan, Brooks/Cole, 2001

[3] Problem Solving in Data Structures & Algorithms Using Python: Programming Interview Guide, 1st Edition, Hermant Jain, Thiftbooks, March 2017

[4] Problem Solving in Data Structures & Algorithms Using Python: Programming Interview Guide, 1st Edition, Hermant Jain, Thiftbooks, March 2017

[5] https://trinket.io/features/python3

[6] https://colab.research.google.com/

[7] Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,, Fourth Edition, The MIT Press, 2022.

