A collaborative LaTeX document

Class of ID2090, Third Trimester of 2021 batch $\label{eq:June 14} \text{June 14, 2022}$

Contents

1	Introduction	3
2	AE21B003	4
3	AE21B028	5
4	AE21B045	6
5	AE21B056	7
6	AE21B062	8
7	AE21B107	9
8	BE21B016	10
9	BE21B040	11
10	CE19B020	12
11	CE21B021	13
12	CE21B088	14
13	CE21B097	15
14	CE21B112	16
15	CE21B115 15.1 Maxwell's equation	17 17
16	CH21B067	18
17	CH21B079	19
18	CH21B101	20
19	ME21B050	21
20	ME21B060	22

21 ME21B065	23
22 ME21B079	24
23 ME21B088	25
24 ME21B091	26
25 ME21B186	27
26 ME21B190	28
27 ME21B196	29
28 ME21B204	30
29 ME21B217	31
$30~\mathrm{MM21B012}$	32
31 MM21B024	33
$32~\mathrm{MM21B032}$	34
33 MM21B044	35
34 MM21B046	36
35 MM21B059	37
36 MM21B063	38
37 NA21B002	39
38 NA21B005	40
39 NA21B006	41
40 NA21B007	42
41 NA21B020	43
42 NA21B048	44
43 NA21B052	45
44 Conclusions	46
45 References	46

List of Figures

List of Tables

1 Introduction

This file includes tex files from the folders of each student. The students are expected to update the file named after their roll number and place any images in the same folder. Students do not have to edit this master document. Once the student has sent a pull request which is accepted and processed successfully, his/her assignment submission is deemed to be complete.

You are also welcome to add references and cite them. Examples on how to do that are on the course repository [?].

8 BE21B016

9 BE21B040

10 CE19B020

Assignment 4 Sankar M, CE21B115 June 2022

15.1 Maxwell's equation

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \tag{1}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \tag{2}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{3}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 (\vec{J} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}) \tag{4}$$

Symbols	Explanation
μ_0	permeability of free space
ϵ_0	permittivity of free space
ρ	electric charge density, charge per unit volume
$ec{J}$	free current density, current per unit area
$ec{E}$	Electric Field
$ec{B}$	Magnetic Field

∇	denotes the gradient operator, del
$\nabla \cdot$	denotes the divergence operator
$\nabla \times$	denotes the curl operator

Ampere stated the relation between magnetic field and electric current. Maxwell added that magnetic field can also be related to changing electric field which he called as displacement current, $\vec{J}_d = \epsilon_0 \frac{\partial \vec{E}}{\partial t}$. As a result of Maxwell's addition, ampere's law was true even when it is not a static condition.

Maxwell's equation highlights the fact how the divergence and curl of electric and magnetic fields are related. They say that the electric fields can be produced by charges(ρ) or by changing magnetic fields($\frac{\partial \vec{B}}{\partial t}$). And magnetic fields can be produced either by currents(\vec{J}) or by changing electric fields($\frac{\partial \vec{E}}{\partial t}$)

16 CH21B067

17 CH21B079

18 CH21B101

$31\quad \mathrm{MM21B024}$

$35\quad \mathrm{MM21B059}$

44 Conclusions

If this master tex file could be compiled successfully, it means that the class has learnt the concepts of Git as well as LaTeX properly.

45 References

References

[1] Repository for id2090 course. https://github.com/gphanikumar/mm2090. Accessed: 2022-06-13.