Uncertainty: (how to) deal with it Peter Ralph 1 October 2020 - Advanced Biological Statistics	
Course overview	
image: Frank Klausz, woodandshop.com	

Prerequisites We'll be assuming that you have some familiarity with • programming, and • statistics	
Prerequisites We'll be assuming that you have some familiarity with • programming, and • statistics For instance, you should be able to figure out what this means: \[\begin{align*} x = c(2, 4, 3, 6) \\ y = c(5, 12, 4, 10, 2) \\ t.test(x, y) \end{align*} ## Welch Two Sample t-test ## ## data: x and y ## t = 1.3761, df = 5.4988, p-value = 0.2222 ## alternative hypothesis: true difference in means is not equal to 0 ## 95 percent confidence interval: ## -8.081728 2.331728 ## sample estimates: ## mean of x mean of y ## 3.75 6.60	
Overview and mechanics See the course website.	

Break	
Please take 10 minutes to 1. answer the "Welcome Survey" on Canvas, 2. get the course repository from github, 3. install Rstudio and/or 4. move around.	
Questions?	

Some core statistical concepts	
Statistics or parameters? A statistic is a numerical description of a dataset.	
Statistics or parameters? A statistic is a numerical description of a dataset. A parameter is a numerical attribute of a model of reality.	
4	2

Statistics or parameters? A statistic is a numerical description of a dataset. A parameter is a numerical attribute of a model of reality. Often, statistics are used to estimate parameters.	
The two heads of classical statistics estimating parameters, with uncertainty (confidence intervals) evaluating (in-)consistency with a particular situation (p-values)	
The two heads of classical statistics estimating parameters, with uncertainty (confidence intervals) evaluating (in-)consistency with a particular situation (p-values) 1. What do these data tell us about the world? 2. How strongly do we believe it?	

The two heads of classical statistics		
estimating parameters, with uncertainty (confidence intervals)		
evaluating (in-)consistency with a particular situation (p-values)		
 What do these data tell us about the world? How strongly do we believe it? 		
This week: digging in, with simple examples.		
This freek digging in, then simple examples.		
	4 . 3	
Lurking, behind everything:		
is uncertainty		
is uncortainty		
	4 . 4	
Lurking, behind everything:		
is uncertainty		
thanks to randomness.		
	4.4	
	9.4	

Lurking, behind everything:		
is uncertainty		
thanks to randomness.		
How do we understand randomness, concretely and quantitatively?		
	4.4	
Lurking, behind everything:		
is uncertainty		
thanks to randomness.		
How do we understand randomness, concretely and quantitatively?		
With models.		
	4.4	
	4.4	
A quick look at some data		
	5 . 1	

Don't forget Steps 1 and 5!	
1. Care, or at least think, about the data.	
2. Communicate.	
	5 . 14
B	EDECAT
Don't found Olive 1 and Fl	
Don't forget Steps 1 and 5!	
1. Care, or at least think, about the data.	
2. Communicate.	
How big is the difference? How sure are we?	
E	5.14
Don't forget Steps 1 and 5!	
1. Care, or at least think, about the data.	
2. Communicate.	
How big is the difference? How sure are we?	
Statistical significance does not imply real-world significance.	
E	5 14

Revised conclusion (in class) Instant bookable hosts cost on average \$10 more than not instant bookable, with a 95% confidence interval of \$4.50 to \$15. The distribution of prices in the two groups were very similar: for instance, the first and third quantiles of instant bookable hosts are \$70 and \$145, and those of not instant bookable hosts are \$68 and \$130, respectively. The average instant bookable cost was about \$125, with a 95% confidence interval of +/- about \$4; non-instant bookable hosts cost on average \$115 per night, with a 95% CI of about +/- \$3. Note that the difference of \$10 is smallish compared to the price of a room, but the difference is highly significant (p=.0003, t-test with 5039 degrees of freedom) because of the large sample sizes.	
So: what did we just do?	
Hypothesis testing and p -values	

A p -value is	
A p-value is the probability of seeing a result at least as surprising as what was observed in the data, if the null hypothesis is true.	
A <i>p</i> -value is the probability of seeing a result at least as surprising as what was observed in the data, if the null hypothesis is true. Usually, this means • a result - numerical value of a statistic • surprising - big • null hypothesis - the model we use to calculate the <i>p</i> -value which can all be defined to suit the situation.	

What does a small p -value mean? If the null hypothesis were true, then you'd be really unlikely to see something like what you actually did .	6. 3
What does a small p -value mean? If the null hypothesis were true, then you'd be really unlikely to see something like what you actually did . So, either the "null hypothesis" is not a good description of reality or something surprising happened.	
What does a small p -value mean? If the null hypothesis were true, then you'd be really unlikely to see something like what you actually did . So, either the "null hypothesis" is not a good description of reality or something surprising happened. How useful this is depends on the null hypothesis.	
	6 3

For instance ## ## Welch Two Sample t-test ## ## data: instant and not instant ## t = 3.6482, df = 5639.8, p-value = 0.0002667 ## alternative hypothesis: true difference in means is not equal to 0 ## 95 percent confidence interval: ## 4.475555 14.872518 ## sample estimates: ## mean of x mean of y ## 124.6409 114.9668

Also for instance

```
t.test(airbnbSprice)

##

## One Sample t-test

##

## data: airbnbSprice

## t = 91.32, df = 5601, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 116.9734 122.1058

## sample estimates:

## mean of x

## 119.5396
```

6 . 5

6 . 5

Also for instance

```
t.test(airbnbSprice)

## One Sample t-test
##

## data: airbnbSprice
## t = 91.32, df = 5601, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 116.9734 122.1058
## sample estimates:
## mean of x
## 119.5396
```

Is that p-value useful?

Exercise: My hypothesis: People tend to have longer index fingers on the hand they write with because writing stretches the ligaments. (class survey) How many people have a longer index finger on the hand they write with? 6 . 6 Exercise: My hypothesis: People tend to have longer index fingers on the hand they write with because writing stretches the ligaments. (class survey) How many people have a longer index finger on the hand they write with? (class survey) Everyone flip a coin: ifelse(runif(1) < 0.5, "H", "T") and put the result in this google doc. 6 . 6 Exercise: My hypothesis: People tend to have longer index fingers on the hand they write with because writing stretches the ligaments. (class survey) How many people have a longer index finger on the hand they write with? (class survey) Everyone flip a coin: ifelse(runif(1) < 0.5, "H", "T") and put the result in this google doc. We want to estimate the parameter $\theta = \mathbb{P}(\text{random person has writing finger longer}),$ and now we have a fake dataset with $\theta=1/2$. 6 . 6

Let's get some more data: n <- 37 # class size sum(ifelse(runif(1) < 1/2, "H", "T") == "H") and put the result in the same google doc.	6.7	
Let's get some more data:	6 . 7	
A faster method: replicate(1000, sum(rbinom(n, 1, 1/2) > 0))	6 . 8	

So, where do p-values come from? Either math:

Percentage Points of the t Distribution; $t_{v,\alpha}$ $P(T > t_{v,\alpha}) = \alpha$

6 . 10

6 . 11

6 . 11

								7100					5.50	
3														
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42,434	63,657	127.322	636.594
2	0.289	0.617	1:061	1:386	1.886	2.920	4,303	4.849	5.643	6.965	8.073	9.925	14.089	31.598
3	0.277	0.584	0.978	1.250	1,538	2.353	3.182	3,482	3.895	4.541	5.047	5.841	7.453	12.924
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598	8,610
5	0.267	0.559	0.920	1.156	1,476	2.015	2,571	2.757	3.003	3.365	3,634	4.032	4,773	6,869
6	0.265	0.553	0.906	1.134	1,440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	0.263	0.549	0.896	1.119	1,415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029	5.468
8	0.262	0.546	0.889	1.108	1,397	1.860	2.306	2,449	2.634	2.896	3.085	3.355	3.833	5.041
9	0.261	0.543	0.883	1.100	1.383	1.833	2,262	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2,527	2.764	2.932	3.169	3.581	4.587
11	0.260	0.540	0.876	1.088	1,363	1.796	2.261	2.328	2.491	2.718	2.879	3.106	3,497	4.437
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	0.258	0.537	0.868	1.076	1.345	1.761	2,145	2.264	2.415	2.624	2.771	2.977	3.326	4.140

Or, computers. (maybe math, maybe simulation, maybe both)

So, where did this p-value come from?

```
##
## Welch Two Sample t-test
##
## data: instant and not_instant
## t = 3.6482, df = 5039.8, p-value = 0.0002667
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.475555 14.872518
## sample estimates:
## mean of x mean of y
## 124.6409 114.9668
```

So, where did this p-value come from?

```
##
## Welch Two Sample t-test
##
## data: instant and not_instant
## t = 3.6482, df = 5039.8, p-value = 0.0002667
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.475555 14.872518
## sample estimates:
## mean of x mean of y
## 124.6409 114.9668
```

The t distribution! (see separate slides)

// reveal.js plugins	
,	
<u> </u>	