

MODELLING THE DUFFING EQUATION WITH AN ANALOG CIRCUIT

SUMEDH SATHE

KARTIK LOYA

AMEYA SALVI

INTRODUCTION

- Aim: To produce a completely analog output for the duffing system.
- The Duffing Equation:

$$\ddot{x} = -\alpha \dot{x} + \delta x - \beta x^3 + F \sin(2\pi f t + \varphi)$$

Equivalent equation for Circuit Elements:

$$\ddot{x} = -\alpha 10^5 \dot{x} + 2.06 * 10^7 x - 2.136 * 10^8 x^3 + 10^{10} F \sin(2\pi f t + \varphi)$$

CIRCUIT DIAGRAM

Major Components:

- Op-Amps (UA741)
- Analog Multipliers(AD 633)
- Resistors
- Capacitors
- DC power supply
- Function Generator
- Oscilloscope

EXPERIMENT SETUP

Varying Parameters:

- Input Frequency
- Signal Amplitude
- Damping Coefficient (Resistor Value)

MATLAB SIMULATIONS

Amplitude: 0.2 V Frequency: 1 Hz Damping: 448.9 Amplitude: 0.2 V Frequency: 628 Hz Damping: 1000 Amplitude: 0.2 V Frequency: 1.5 kHz Damping: 448.9

PERIOD ONE

- Amplitude: 0.5 V
- Frequency: 168 Hz
- Damping: 448.9

PERIOD TWO AND PERIOD THREE

• Amplitude: 3.4 V

• Frequency: 5 kHz-35

kHz

• Damping: 448.9

CHAOS

• Amplitude: 0.2 V

• Frequency: 720 Hz

• Damping: 448.9

ROUTE TO CHAOS

Vrms	Frequency	Damping	Behavior
0.1 V	1 Hz		1
	492 Hz		2
	1.5 kHz		С
	3.4 Khz		2
0.2V	1 Hz		1
	300 Hz		2
	600 Hz		2
	720 Hz		С
	900 Hz		2
0.4 V	100 Hz	448.9	1
	200 Hz		2
	2 kHz		1
0.75 V	200 Hz		1
1 V	100 Hz		1
1.5 V	100 Hz		1
2 V	100 Hz		1
2.5 V			
3 V	5 Hz		2
3.5 V	5 Hz		2
0.5 v	26 Hz		5000 1

Behavior according to varying parameters:

• 1 : Period one

• 2 : Period two

• C: Chaos

PROS AND CONS

Pros	Cons
 Bypassing numerical errors occurring in numerical solvers Instant parameter variations to study the behavior changes Reduces solution times 	 Low performance amplifiers and multipliers can lead to inaccurate solutions Any noise in the circuit can get amplified due to presence of amplifiers Resetting of capacitors to avoid hysterirsis

CONCLUSION

- The duffing equation can be successfully simulated by analog electrical circuit.
- Bifurcations from period one to period two and from period two to three were observed with parameter variation
- Chaotic behavior was verified by observing strange attractor.

IMPROVEMENTS

- With high performance components like AD 534 and Op Amp 356 analog simulation can be better matched with numerical simulations
- With auxiliary circuit for Sample and Hold, bifurcation diagram can be plotted on an oscilloscope.
- With a phase shifter circuit, Poincare sections can also be plotted.

REFERENCES

- 'Modeling the Duffing Equation with an Analog Computer' by Matt
 Schmitthenner. Physics Department, The College of Wooster, Wooster, Ohio
 44691, USA
- 'The Duffing oscillator: A precise electronic analog chaos demonstrator for the undergraduate laboratory' by Brian Keith Jones and G. Trefan. April 2001 American Journal of Physics 69(4):464-469

