Model Question Paper-I with effect from 2021

USN					

Second Semester B.E Degree Examination

Advanced Calculus and Numerical Methods (21MAT21)

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

		Module -1	Marks
Q.01	a	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$	06
	b	Evaluate $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy$ by changing the order of integration	07
	c	Derive the relation between Gamma and Beta functions	07
		OR	
Q.02	a	Evaluate $\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates	06
	b	Using double integration find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$	07
	c	Using beta and gamma functions, evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta$	07
		Module-2	
Q. 03	a	Find the directional derivative of $\emptyset = x^2yz + 4xz^2$ at the point $(1, -2, 1)$ in the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$	06
	b	Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$, where $\vec{F} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$	07
	С	Define an irrotational vector. Find the constants a , b and c such that $\vec{F} = (axy - z^3)\hat{\imath} + (bx^2 + z)\hat{\jmath} + (bxz^2 + cy)\hat{k}$ is irrotational.	07
		OR	
Q.04	a	Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{\imath} + (2xz - y)\hat{\jmath} + z\hat{k}$ along the straight line from (0,0,0) to (2,1,3).	6
	b	Apply Green's theorem to evaluate $\int_C [(3x - 8y^2)dx + (4y - 6xy)dy]$, where C is the boundary of the region bounded by $x = 0, y = 0, x + y = 1$	07
	С	Apply Stoke's theorem to evaluate $\iint curl \vec{F} \cdot \hat{n}ds$, where $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$, taken around the rectangle bounded by the lines $x = \pm a, y = 0, y = b$	07
	1	Module-3	
Q. 05	a	Form the partial differential equation by eliminating the arbitrary function from the relation $ax + by + cz = f(x^2 + y^2 + z^2)$.	06
	b	Solve $\frac{\partial^2 z}{\partial x^2} = xy$ subject to the conditions $\frac{\partial z}{\partial x} = \log(1+y)$, when $x = 1$ and $z = 0$, when $x = 0$.	07
	c	With usual notations derive a one-dimensional heat equation	07
		OR	

Q. 06	a	Form the partial differential equation by eliminating the arbitrary constants from $(x-a)^2 + (y-b)^2 + z^2 = 4$	06			
	b	Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$	07			
	С	Solve $\frac{\partial^2 z}{\partial y^2} = z$, given that when $y = 0$, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$	07			
		Module-4				
Q. 07	a	Find the root of the equation $xe^x = cosx$ which lies in the interval (0, 1) by Regula-Falsi method correct to four decimal places				
	b	Using Newton's backward interpolation formula find the value of y when $x = 6$ from the given table $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07			
	С	Evaluate $\int_0^5 \frac{dx}{4x+5}$ by Simpson's $(1/3)^{rd}$ rule, dividing the interval into 10 equal parts	07			
	ı	OR				
Q. 08	a	By Newton's-Raphson method find the root of $x \sin x + \cos x = 0$ which is near to $x = \pi$	06			
	b	Using Lagrange's interpolation formula, fit a polynomial which passes through the points $(-1,0)$, $(1, 2)$, $(2, 9)$ and $(3, 8)$ and hence estimate the value of y when $x = 2.2$	07			
	c	x = 2.2 Evaluate $\int_4^{5.2} \log x dx$ using Simpson's $(3/8)^{\text{th}}$ rule by taking 7 ordinates.	07			
	ı	Module-5				
Q. 09	a	Using the Taylor series method find the approximate value of $y(0.1)$, from $\frac{dy}{dx} = 3x + y^2$, with $y(0) = 1$	06			
	b	Apply the Runge-Kutta method to find $y(0.1)$, if $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}, \text{ with } y(0) = 1$	07			
	С	Using Milne's Predictor-Corrector method, find $y(4.5)$, given $\frac{dy}{dx} = \frac{2-y^2}{5x}$ and $y(4.1) = 1.0049$, $y(4.2) = 1.0097$, $y(4.3) = 1.0143$, $y(4.4) = 1.0187$	07			
Q. 10	a	OR Using Modified Euler's method find y(0.1), taking h = 0.05, given that $\frac{dy}{dx} = x^2 + y, \text{ with } y(0) = 1.$				
	b	Using the Runge-Kutta method of order 4, find y(0.2), given that $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1	07			
	С	Given $\frac{dy}{dx} = \frac{(1+x^2)y^2}{2}$, $y(0) = 1$, $y(0.1) = 1.06$, $y(0.2) = 1.12$, $y(0.3) = 1.21$, evaluate $y(0.4)$ by using Milne's predictor-corrector method.	07			

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome							
Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome			
Q.1	(a)	L2	CO 01	PO 01			
	(b)	L3	CO 01	PO 02			
	(c)	L2	CO 01	PO 01			
Q.2	(a)	L2	CO 01	PO 01			
	(b)	L3	CO 01	PO 02			
	(c)	L2	CO 01	PO 01			
Q.3	(a)	L2	CO 02	PO 01			
	(b)	L2	CO 02	PO 01			
	(c)	L3	CO 02	PO 03			
Q.4	(a)	L2	CO 02	PO 01			
	(b)	L3	CO 02	PO 03			
	(c)	L3	CO 02	PO 03			
Q.5	(a)	L2	CO 03	PO 02			
	(b)	L2	CO 03	PO 02			
	(c)	L3	CO 03	PO 03			
Q.6	(a)	L2	CO 03	PO 02			
	(b)	L2	CO 03	PO 02			
	(c)	L2	CO 03	PO 02			
Q.7	(a)	L2	CO 04	PO 01			
	(b)	L2	CO 04	PO 01			
	(c)	L2	CO 04	PO 02			
Q.8	(a)	L2	CO 04	PO 01			

	(1.)	1.0		CO 04	DO 01		
	(b)	L2		CO 04	PO 01		
	(c)	L2		CO 04	PO 02		
Q.9	(a)	L2		CO 05	PO 01		
	(b)	L2		CO 05	PO 01		
	(c)	L2		CO 05	PO 02		
Q.10	(a)	L2		CO 05	PO 01		
	(b)	L2		CO 05	PO 02		
	(c)	L2		CO 05	PO 02		
			Lower o	order thinking ski	lls		
Bloom's Taxonomy		Remembering		derstanding	Applying		
		(knowledge): L ₁		rehension): L ₂	(Application): L_3		
Levels		Higher order thinking skills					
		Analyzing	I	/aluating	Creating		
		(Analysis): L ₄	(Eva	aluation): L ₅	(Synthesis): L ₆		
					· ·		