COMP3670/6670: Introduction to Machine Learning

Release Date: 3 Aug 2022

Due Date: 23:59pm, 28 Aug 2022

Maximum credit: 100

Exercise 1

Solving Linear Systems

(4+4 credits)

Find the set S of all solutions \mathbf{x} of the following inhomogenous linear systems $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} and \mathbf{b} are defined as follows. Write the solution space S in parametric form.

(a)
$$\mathbf{A} = \begin{bmatrix} 2 & 7 & 1 \\ 1 & 4 & 3 \\ 0 & 2 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

(b)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

Exercise 2 Inverses (4 credits)

Find the inverse of the following matrix, if an inverse exists.

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 4 & 2 \end{bmatrix}$$

Exercise 3 Subspaces (3+3+3+4 credits)

Which of the following sets are also subspaces of \mathbb{R}^3 ? Prove your answer. (That is, if it is a subspace, you must demonstrate the subspace axioms are satisfied, and if it is not a subspace, you must show which axiom fails.)

- (a) $A = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, z \ge 0\}$
- (b) $B = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$
- (c) $C = \{(x, y, z) \in \mathbb{R}^3 : x = 0 \text{ or } y = 0 \text{ or } z = 0\}$
- (d) $D = \text{The set of all solutions to the matrix equation } \mathbf{A}\mathbf{x} = \mathbf{b}$, for some matrix $\mathbf{A} \in \mathbb{R}^{3\times 3}$ and some vector $\mathbf{b} \in \mathbb{R}^3$. (Hint: Your answer may depend on \mathbf{A} and \mathbf{b} .)

Exercise 4

Linear Independence

(5+10+15+5 credits)

Let V and W be vector spaces. Let $T: V \to W$ be a linear transformation.

(a) Prove that $T(\mathbf{0}) = \mathbf{0}$.

(b) For any integer $n \geq 1$, prove that given a set of vectors $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ in V and a set of coefficients $\{c_1, \dots, c_n\}$ in \mathbb{R} , that

$$T(c_1\mathbf{v}_1 + \ldots + c_n\mathbf{v}_n) = c_1T(\mathbf{v}_1) + \ldots + c_nT(\mathbf{v}_n)$$

- (c) Let $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ be a set of linearly **dependent** vectors in V. Define $\mathbf{w}_1 := T(\mathbf{v}_1), \dots, \mathbf{w}_n := T(\mathbf{v}_n)$. Prove that $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ is a set of linearly **dependent** vectors in W.
- (d) Let X be another vector space, and let $S:W\to X$ be a linear transformation. Define $L:V\to X$ as $L(\mathbf{v})=S(T(\mathbf{v}))$. Prove that L is also a linear transformation.

Exercise 5 Inner Products (5+10 credits)

- (a) Show that if an inner product $\langle \cdot, \cdot \rangle$ is symmetric and linear in the first argument, then it is bilinear.
- (b) Define $\langle \cdot, \cdot \rangle$ for all $\mathbf{x} = [x_1, x_2]^T \in \mathbb{R}^2$ and $\mathbf{y} = [y_1, y_2]^T \in \mathbb{R}^2$ as

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 - (x_1 + x_2 + y_1 + y_2)$$

Which of the three inner product axioms does $\langle \cdot, \cdot \rangle$ satisfy?

Exercise 6 Orthogonality (15+6+4 credits)

Let V denote a vector space together with an inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$. Let \mathbf{x}, \mathbf{y} be **non-zero** vectors in V.

- (a) Prove or disprove that if **x** and **y** are orthogonal, then they are linearly independent.
- (b) Prove or disprove that if \mathbf{x} and \mathbf{y} are linearly independent, then they are orthogonal.
- (c) How do the above statements change if we remove the restriction that \mathbf{x} and \mathbf{y} have to be non-zero?