International Rectifier

IRFP064N

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

 $V_{DSS} = 55V$ $R_{DS(on)} = 0.008\Omega$ $I_{D} = 110A$

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	110®	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	80©	Α
I _{DM}	Pulsed Drain Current ①⑤	390	
P _D @T _C = 25°C	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy@\$	480	mJ
I _{AR}	Avalanche Current®	59	Α
E _{AR}	Repetitive Avalanche Energy®	20	mJ
dv/dt	Peak Diode Recovery dv/dt 35	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		℃
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	
R _θ CS	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D = 1mA ^⑤
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.008	Ω	V _{GS} = 10V, I _D = 59A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	42			S	V _{DS} = 25V, I _D = 59A ⑤
I	Drain-to-Source Leakage Current			25	μΑ	$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μΑ	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
Qg	Total Gate Charge			170		I _D = 59A
Q _{gs}	Gate-to-Source Charge			32	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			74		V _{GS} = 10V, See Fig. 6 and 13 ④⑤
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 28V$
t _r	Rise Time		100		ns	$I_D = 59A$
t _{d(off)}	Turn-Off Delay Time		43		115	$R_G = 2.5\Omega$
t _f	FallTime		70			$R_D = 0.39\Omega$, See Fig. 104 \$
	Internal Drain Inductance		5.0			Between lead,
L _D	internal Drain Inductance	5.0 -			6mm (0.25in.)	
L _S	Internal Source Inductance		13		nH	from package
						and center of die contact
Ciss	Input Capacitance		4000			V _{GS} = 0V
Coss	Output Capacitance		1300		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		480			f = 1.0MHz, See Fig. 5®

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			110@		MOSFET symbol
	(Body Diode)		110⑥	ן ן	showing the	
I _{SM}	Pulsed Source Current			200		integral reverse
	(Body Diode) ①	390		p-n junction diode.		
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 59A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		110	170	ns	$T_J = 25^{\circ}C, I_F = 59A$
Q _{rr}	Reverse Recovery Charge		450	680	nC	di/dt = 100A/µs ⊕⑤

Notes:

- $\$ V_{DD} = 25V, starting T_J = 25°C, L = 190μH R_G = 25Ω, I_{AS} = 59A. (See Figure 12)
- $\begin{tabular}{l} @ I_{SD} \le 59A, \ di/dt \le 290A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ T_{.I} \le 175^{\circ}C \end{tabular}$
- ⓐ Pulse width ≤ 300 μ s; duty cycle ≤ 2%.
- ⑤ Uses IRF3205 data and test conditions
- © Caculated continuous current based on maximum allowable junction temperature; for recommended current-handling of the package refer to Design Tip # 93-4

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

 $V_{DS} \longrightarrow V_{DS}$ $V_{GS} \longrightarrow V_{DD}$ $R_{G} \longrightarrow V_{DD}$ $10V \longrightarrow V_{DD}$ $Pulse \ Width \le 1 \ \mu s$ $Duty \ Factor \le 0.1 \ \%$

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

Package Outline

TO-247AC Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-247AC

International

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 8/97 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/