Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 13 Martie 2010

CLASA A VII-A SOLUŢII ŞI BAREME ORIENTATIVE

Problema 1.

(n

(i) Descompuneți în factori expresia xy - x - y + 1.

(ii) Demonstrați că dacă numerele întregi a și b verifică |a+b| > |1+ab|, atunci ab = 0. Solutie. (i) Se verifică prin calcul că xy - x - y + 1 = (x - 1)(y - 1). 1 punct (ii) Ambii membri ai inegalității sunt pozitivi, deci prin ridicare la pătrat se obține inegalitatea echivalentă $a^2 + b^2 + 2ab > 1 + 2ab + a^2b^2$ De aici rezultă $(a^2 - 1)(b^2 - 1) < 0$. Presupunând prin absurd că $ab \neq 0$, rezultă $a \neq 0$ și $b \neq 0$. Cum a și bsunt numere întregi, rezultă că $a^2 - 1 \ge 0$ şi $b^2 - 1 \ge 0$1 punct Atunci $(a^2 - 1)(b^2 - 1) \ge 0$, contradicție. **Problema 2.** Fie n un număr natural, $n \geq 2$. Determinați restul împărțirii numărului n(n+1)(n+2) la n-1. Gazeta Matematică

Soluţie. Avem $n(n+1)(n+2) = (n-1+1)(n-1+2)(n-1+3) = -1)^3 + 6(n-1)^2 + 11(n-1) + 6$.
3 puncte
Dacă $n-1>6$, restul este 6.
1 punct
Dacă $n = 2, 3, 4, 7$, restul este 0.
Dacă $n = 5$, restul este 2.
1 punct
Dacă $n = 6$, restul este 1.
1 punct

Problema 3. Se consideră triunghiul ABC cu AB = AC și $\angle BAC =$ 40° . Punctele S şi T se află pe laturile AB, respectiv BC, astfel încât

 $\angle BAT = \angle BCS = 10^{\circ}$. Dreptele AT și CS se intersectează în punctul P. Demonstrați că BT = 2PT. **Soluţie.** Triunghiul ABC este isoscel, deci $\angle ABC = \angle ACB = 70^{\circ}$. Avem $\angle TAC = 40^{\circ} - 10^{\circ} = 30^{\circ}$ şi $\angle ACS = 70^{\circ} - 10^{\circ} = 60^{\circ}$, deci $\angle APC = 10^{\circ}$ 90° . Triunghiurile ABT şi BSC sunt asemenea (UU), de unde $\frac{BS}{BC} = \frac{BT}{AB}$. Având unghiul B comun, triunghiurile BST şi BCA sunt asemenea (LUL), deci TB = TS şi $\angle TSB = 70^{\circ}$. Deoarece $\angle CSA = \angle SBC + \angle SCB = 70^{\circ} + 10^{\circ} = 80^{\circ}$, rezultă că $\angle PST = 180^{\circ} - 80^{\circ} - 70^{\circ} = 30^{\circ}.$1 punct Triunghiul STP este dreptunghic în P și $\angle PST = 30^{\circ}$, deci BT = 2PT.1 punct **Problema 4.** Considerăm patrulaterul ABCD cu AD = DC = CBşi $AB \parallel CD$. Punctele E şi F aparțin segmentelor CD şi BC astfel încât $\angle ADE = \angle AEF$. Demonstrați că (i) $4CF \leq CB$. (ii) Dacă 4CF = CB, atunci AE este bisectoarea unghiului $\angle DAF$. Solutie. (i) Avem $\angle FEC = 180^{\circ} - \angle AEF - \angle DEA = 180^{\circ} - \angle ADE - \angle DEA =$ Din AD = DC = CB și $AB \parallel CD$ rezultă $\angle ADC = \angle DCB$, deci triunghiurile ADE și ECF sunt asemenea (UU). Obținem $\frac{AD}{EC} = \frac{AE}{EF} = \frac{DE}{CF}$ (1)De aici $AD \cdot CF = EC \cdot DE \le \frac{1}{4}(EC + DE)^2 = \frac{1}{4}CD^2$, deci $4CF \le CB$, în baza egalităților AD = DC = CB. (ii) Dacă 4CF = CB, atunci în inegalitatea $EC \cdot DE \leq \frac{1}{4}(EC + DE)^2$ avem egalitate, adică CE = ED.1 punct Relaţia (1) devine $\frac{AD}{DE} = \frac{AE}{EF}$. Cum $\angle ADE = \angle AEF$, rezultă că triunghiurile ADE şi AEF sunt asemenea (LUL).1 punct Atunci $\angle DAE = \angle EAF$, adică AE este bisectoarea unghiului $\angle DAF$.