parth.pandey13103447@gmail.com_15

October 8, 2020

1 SGD Algorithm to predict movie ratings

2 Task 1 Solutions

2.1 Imports

```
[1]: import pandas as pd
from scipy.sparse import csr_matrix
from sklearn.utils.extmath import randomized_svd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score

%matplotlib inline
```

2.2 Reading the csv file

```
[2]: data=pd.read_csv('ratings_train.csv')
  data.head()
```

```
[2]:
        user_id item_id rating
     0
            772
                       36
                                 3
     1
            471
                      228
                                 5
             641
                      401
                                 4
     3
            312
                       98
                                 4
             58
                      504
                                 5
```

```
[3]: data.shape
```

[3]: (89992, 3)

2.3 Create your adjacency matrix

Grader function - 1

```
[5]: def grader_matrix(matrix):
    assert(matrix.shape==(943,1681))
    return True
    grader_matrix(adjacency_matrix)
```

[5]: True

2.4 SVD decomposition

Sample code for SVD decompostion

(20, 5) (5,) (10, 5)

2.5 Write your code for SVD decompostion

(943, 100) (100,) (1681, 100)

2.6 Compute mean of ratings

```
[8]: def m_u(ratings):
    '''In this function, we will compute mean for all the ratings'''
    # you can use mean() function to do this
    # check this (https://pandas.pydata.org/pandas-docs/stable/reference/api/
    →pandas.DataFrame.mean.html) link for more details.
    return np.mean(ratings)
```

```
[9]: mu=m_u(data['rating'])
print(mu)
```

3.529480398257623

Grader function -2

```
[10]: def grader_mean(mu):
    assert(np.round(mu,3)==3.529)
    return True
    mu=m_u(data['rating'])
    grader_mean(mu)
```

[10]: True

2.7 Initialize

Initialize ${ B_{i} }$ and ${ C_{j} }$

Hint: Number of rows of adjacent matrix corresponds to user dimensions (B_i) , number of columns of adjacent matrix corresponds to movie dimensions (C_i)

```
[11]: def initialize(dim):
    '''In this function, we will initialize bias value 'B' and 'C'.'''
    # initalize the value to zeros
    # return output as a list of zeros
    return np.zeros(shape=dim)
```

```
[12]: dim= (943,1) # give the number of dimensions for b_i (Here b_i corresponds to⊔

users)

b_i=initialize(dim)
```

```
[13]: dim= (1681,1)
# give the number of dimensions for c_j (Here c_j corresponds to movies)
c_j=initialize(dim)
```

Grader function -3

```
[14]: def grader_dim(b_i,c_j):
    assert(len(b_i)==943 and np.sum(b_i)==0)
```

```
assert(len(c_j)==1681 and np.sum(c_j)==0)
return True
grader_dim(b_i,c_j)
```

[14]: True

2.8 Compute dL/db i

```
[15]: def derivative_db(user_id,item_id,rating,U,V,mu,alpha):

'''In this function, we will compute dL/db_i'''

return -2 * (rating - mu - b_i[user_id] - c_j[item_id] - np.dot(U[user_id], U_i → V[:, item_id])) + 2 * alpha * (b_i[user_id])
```

Grader function -4

```
[16]: def grader_db(value):
    assert(np.round(value,3)==-0.931)
    return True
U1, Sigma, V1 = randomized_svd(adjacency_matrix, n_components=2,n_iter=5,_\_\text{arandom_state}=24)
    # Please don't change random state
# Here we are considering n_componets = 2 for our convinence
alpha=0.01
    value=derivative_db(312,98,4,U1,V1,mu,alpha)
    grader_db(value)
```

[16]: True

2.9 Compute dL/dc_j

```
[17]: def derivative_dc(user_id,item_id,rating,U,V,mu, alpha):

'''In this function, we will compute dL/dc_j'''

return -2 * (rating - mu - b_i[user_id] - c_j[item_id] - np.dot(U[user_id],

→V[:, item_id])) + 2 * alpha * (c_j[item_id])
```

Grader function - 5

```
grader_dc(value)
```

[18]: True

2.10 Compute MSE (mean squared error) for predicted ratings

for each epoch, print the MSE value

```
[19]: epochs = range(1,100)
      alpha=0.9
      learning_rate = 0.09
      loss = []
      n = data.shape[0]
      for epoch in epochs:
          temp_loss = 0
          if len(loss) >= 2 and (loss[-2] - loss[-1]) <= 10**-5:
              print(loss[-1], loss[-2], loss[-1] - loss[-2])
          for user, movie, ratings in data.values:
              b_i[user] = b_i[user] - learning_rate * derivative_db(user, movie,_
       →ratings, U , VT, mu, alpha)
              c_j[movie] = c_j[movie] - learning_rate * derivative_dc(user, movie,_learning_rate)
       →ratings, U , VT, mu, alpha)
              y_pred = mu + b_i[user] + c_j[movie] + np.dot(U[user], VT[:, movie])
              temp_loss += (ratings - y_pred)**2
          print(temp_loss/n)
          loss.append(temp_loss/n)
```

```
[0.48112105]

[0.47509623]

[0.4746602]

[0.47439018]

[0.47433664]

[0.47430369]

[0.47428264]

[0.47426885]

[0.47425968]

[0.47425968] [0.47426885] [-9.17611467e-06]
```

2.11 Plot epoch number vs MSE

- epoch number on X-axis
- MSE on Y-axis

```
[20]: _, ax = plt.subplots(1, 1, figsize=(20,10))
ax.plot(loss)
```


3 Task 2

```
[21]: df = pd.read_csv("user_info.csv.txt")
      df.shape
[21]: (943, 4)
[22]: df.head()
[22]:
         user_id age is_male orig_user_id
      0
               0
                   24
                              1
                                            1
      1
               1
                   53
                              0
                                            2
      2
               2
                   23
                              1
                                            3
      3
               3
                   24
                              1
                                            4
                   33
                              0
[23]: x_train = []
      y_train = []
      for ele,lab in zip(df['user_id'].values, df['is_male'].values):
          x_train.append(U[ele])
          y_train.append(lab)
[24]: x_train = np.array(x_train)
      y_train = np.array(y_train)
[25]: x_train.shape
```

[32]: 0.7104984093319194

• Conclusion : By Scaling the feature vector of U does not affect the prediction of is_male as a target feature