

A inteligência artificial é inteligente? Hunger of Science

LOOP

Setembro de 2024

2

Sumário

Introdução

Inteligência versus aprendizado

Trazendo o aprendizado para um computador

Conceitos envolvidos

O Perceptron e as demais RNAs

Mãos à obra

Um exemplo prático

Bate-pape

Olhemos para a Terra através de outra perspectiva...

Tempo recente

E voltemos um pouco ao passado, no Ediacariano...

 \pm 575 Ma atrás

Registros da Fauna de Ediacara

Dickinsonia costata, é um dos registros fósseis mais comum desse tempo.

Registros da Fauna de Ediacara

Dickinsonia costata, é um dos registros fósseis mais comum desse tempo.

Deslocava-se entre o sedimento de fundo, geralmente areias finas. Este espécime tinha cerca de 6 centímetros de diâmtetro e fora encontrado, no sul da Austrália, e se alimentavam de tapetes microbialinos.

(Mary and Gronstal, 2024)

7

Avancemos um pouco mais, no tempo ...

 \pm 505 Ma atrás

Registros da Fauna de Cambriana

Pikaia gracilens, é o fóssil mais notável desse tempo, representante dos primeiros cordatas com vasto registro no folhelho Burgess, no escudo Canadense.

Registros da Fauna de Cambriana

desse tempo, representante dos primeiros cordatas com vasto registro no folhelho Burgess, no escudo Canadense.

O corpo é lateralmente achatado com Pikaia gracilens, é o fóssil mais notável evidência de uma nadadeira ventral. Uma estrutura dorsal estreita que percorre o comprimento do organismo pode representar uma notocorda. Não possuem evidência de olhos.

Agora vamos avançar bastante, no tempo ...

 \pm 1.2 Ma atrás

Australopithecus afarensis, fornece evidências sólidas do bipedismo a cerca de 3.9 Ma, na atual Etiópia.

Australopithecus afarensis, fornece evidências sólidas do bipedismo a cerca de 3.9 Ma, na atual Etiópia.

Apesar de possuir andar bípede, eles tiveram braços longos. A relação do osso de braço superior (úmero) para osso de perna superior (fêmur) e está virtualmente igual ao de um Chimpanzé (95%) do que um humano moderno (70%)

(Higham et al., 2011)

11

Homo erectus, possuía uma caixa craniana com cerca de 600 ml em média, a cerca de 1.8 Ma.

Homo erectus, possuía uma caixa craniana com cerca de 600 ml em média, a cerca de 1.8 Ma.

As espécies embarcam em uma marcha ascendente de crescimento cerebral, chegando a mais de 1.000 ml a cerca de 0.5 Ma. *Homo sapiens* tinham cérebros com média de 1.200 ml.

O cérebro humano

Composto pelo córtex cerebral (hemisférios e lobos cerebrais) e algumas estruturas profundas, como os gânglios basais, as amígdalas e o hipocampo. E as funções cerebrais supremas, como raciocinar, memorizar e prestar atenção, são controladas pelos hemisférios e os lobos que compõem o córtex.

Inteligência e aprendizado

Inteligência

Inteligência é a capacidade de adquirir e aplicar conhecimento e habilidades de maneira ordenada. Intellectus, que vem do verbo intelligere = faculdade humana de inteligir, entender, compreender, conhecer. Composto de dois radicais íntus = dentro e lègere = recolher, escolher.

Inteligência e aprendizado

Inteligência

Inteligência é a capacidade de adquirir e aplicar conhecimento e habilidades de maneira ordenada. Intellectus, que vem do verbo intelligere = faculdade humana de inteligir, entender, compreender, conhecer. Composto de dois radicais íntus = dentro e lègere = recolher, escolher.

Aprendizado

Aprendizado é o processo de retenção de conhecimento, habilidades, valores, atitudes e competências frutos de estímulos do meio e acessados através da memória. Provém do verbo apprehendere = reter, pegar, agarrar, capturar, apreender, aprender.

Referências I

- Abbott, A. (2015). Brain area found that may make humans unique. Nature, pages 1476–4687. Experiment compares the way monkey and human brains respond to abstract information.
- Briggs, D. E. G. (2015). Extraordinary fossils reveal the nature of cambrian life: a commentary on whittington (1975) 'the enigmatic animal opabinia regalis, middle cambrian, burgess shale, british columbia'. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(20140313).
- Higham, T., Compton, T., Stringer, C., et al. (2011). The earliest evidence for anatomically modern humans in northwestern europe. Nature, 479:521–524.
- Hofman, M. A. (2019). Chapter 10 on the nature and evolution of the human mind. In Hofman, M. A., editor, Evolution of the Human Brain: From Matter to Mind, volume 250 of Progress in Brain Research, pages 251–283. Elsevier.
- Lindhout, F., Krienen, F., Pollard, K., et al. (2024). A molecular and cellular perspective on human brain evolution and tempo. Nature, 630:596-608.
- Mary, D. and Gronstal, A. (2024). Ediacaran scavenging as a prelude to predation.

 https://astrobiology.nasa.gov/news/ediacaran-scavenging-as-a-prelude-to-predation/. Acessado em: 07/09/2024.
- Class C. A. Anderson J. Deser A. M. Disser, C. E. and Deser C. D. (2010). Consenting and accomplying the project of programming and accomplying the project of project of
- Sloan, S. A., Andersen, J., Paşca, A. M., Birey, F., and Paşca, S. P. (2018). Generation and assembly of human brain region–specific three-dimensional cultures. https://doi.org/10.100/j.com/nat/91/2018/. Generation and assembly of human brain region–specific three-dimensional cultures. https://doi.org/10.100/j.com/nat/91/2018/. See the second second