(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-251997

(43)公開日 平成9年(1997)9月22日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FΙ			技術表示箇所
H01L	21/316			H01L	21/316	X	
	21/31				21/31	С	

審査請求 未請求 請求項の数5 OL (全 14 頁)

		著 登韶	未請求 請求項の数5 〇L (全 14 負)
(21)出願番号	特願平8-60972	(71)出願人	000003078 株式会社東芝
(22)出顯日	平成8年(1996)3月18日		神奈川県川崎市幸区堀川町72番地
		(72)発明者	奈良 明子 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内
		(72)発明者	伊藤 仁 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内
		(74)代理人	弁理士 鈴江 武彦

(54)【発明の名称】 シリコン酸化膜の形成方法

(57)【要約】

【課題】有機系シランを用いた凝縮CVD法により高品質のシリコン酸化膜を形成すること。

【解決手段】原料として、シリコン源のTMSおよび酸素源の O_2 の他に、膜質劣化の原因となるアルキル基等の有機官能基の残存量を効果的に少なくできるトルエンを用いる。

【特許請求の範囲】

【請求項1】原料ガスとして酸素源ガスおよび有機系シ ランガスを用いたCVD法によりシリコン酸化膜を基板 上に形成するシリコン酸化膜の形成方法であって、

前記原料ガスに、前記シリコン酸化膜中に含まれる有機 官能基と選択的に反応する物質を添加することを特徴と するシリコン酸化膜の形成方法。

【請求項2】原料ガスとして酸素源ガスおよび有機系シ ランガスを用いたCVD法によりシリコン酸化膜を基板 上に形成するシリコン酸化膜の形成方法であって、

前記原料ガスに、前記シリコン酸化膜中に含まれる有機 官能基と選択的に反応する物質を添加し、

前記基板の温度を、前記酸素源ガスと前記有機系シラン ガスとの反応生成物の融点以上沸点以下の温度、かつ前 記物質の分圧が該物質の飽和蒸気圧以下になる温度に設 定することを特徴とするシリコン酸化膜の形成方法。

【請求項3】原料ガスとして酸素源ガスおよび有機系シ ランガスを用いたCVD法によりシリコン酸化膜を基板 上に形成するシリコン酸化膜の形成方法であって、

前記原料ガスに、前記シリコン酸化膜中に含まれる有機 20 官能基と選択的に反応する物質を添加し、

前記基板の温度を、前記有機系シランの分圧が該有機系 シランの飽和蒸気圧以上になる温度、かつ前記酸素源ガ. スと前記有機系シランガスとの反応生成物の分圧が該反 応生成物の飽和蒸気圧以下になる温度、かつ前記物質の 分圧が該物質の飽和蒸気圧以下になる温度に設定するこ とを特徴とするシリコン酸化膜の形成方法。

【請求項4】前記シリコン酸化膜をCVD法により形成 する成膜室内の領域のうち、基板以外の領域の少なくと スとが反応する温度および前記物質と前記反応生成物と が反応する温度の少なくとも一方の温度以上に設定する ことを特徴とする請求項2または請求項3に記載のシリ コン酸化膜の形成方法。

【請求項5】前記物質は、フェニル基またはシリコンを 含む物質であることを特徴とする請求項1~請求項4の いずれかに記載のシリコン酸化膜の形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、CVD法によりシ 40 リコン酸化膜を形成するシリコン酸化膜の形成方法に関 する。

[0002]

【従来の技術】LSIの集積度が増し、索子の微細化が 進んだ半導体装置においては、細く、高アスペクト比の トレンチ溝を絶縁膜で埋め込んだ素子分離構造や、多層 配線技術を駆使した微細化された配線構造が要求されて いる。

【0003】このため、下層配線と上層配線とを絶縁分 離する層間絶縁膜においては、半導体基板上に形成され 50 望まれている。

た微細かつ高アスペクト比を有する配線間を均一に埋め 込む技術に対する要求はますます厳しくなっている。

【0004】近年、この課題に対する有力な解決策とし てテトラエトキシシラン(以下、TEOSと略記する) とオゾン(O3)との反応を用いるCVD法が盛んに研 究され実用化されている。

【0005】これはTEOSを気化し、これをオゾンと 一緒にCVD反応室に導入して、化学反応でシリコン酸 化膜を基板上に形成するものである。 TEOS/O3 を 10 用いたCVD法で形成したシリコン酸化膜は段差被覆 性、埋め込み平坦化等に優れている。しかも、TEOS は自己発火性もなく、半導体装置の製造工程上極めて安 全な材料である。

【0006】 しかし、TEOS/O3 を用いたCVD法 で形成したシリコン酸化膜は、その緻密性、クラック耐 性、絶縁性等の膜質の点で問題を残しており、この問題 を軽減するためには、成膜時には600~700℃程度 の温度で基板を加熱する必要がある。したがって、アル ミ配線上にTEOS/O3 を用いたCVD法でシリコン 酸化膜を形成する場合、アルミ配線を著しく劣化させる 欠点がある。

【0007】そのため、TEOSとO2をプラズマ中で 反応させシリコン酸化膜をアルミ配線上に薄く形成した 後、その上にTEOS/O3を用いたCVD法で段差被 **覆性の優れたシリコン酸化膜を形成し、さらに再びプラ** ズマCVD法でシリコン酸化膜を形成して、多層構造の シリコン酸化膜を形成することが行なわれている。

【0008】また、TEOS/O3 を用いたCVD法で 形成されたシリコン酸化膜には、下地の配線パターンの も一部の領域の温度を、前記物質と前記有機系シランガ 30 粗密に依存した膜厚依存性がある。例えば、パターンが 疎な場合は、パターンが密な場合に比較して膜厚が薄く なる。この場合、パターンが疎である領域が厚くなるま で成膜を行なうと、パターンが密である領域の膜厚は必 要以上に厚くなる。

> 【0009】このような不都合を解決し、一定の膜厚に するためには、パターンが疎である領域の膜厚を十分に 厚くしたうえで化学機械的研磨法(以下、CMP法と略 記する)によって研磨する工程が必要である。

【0010】しかし、このCMP法を用いて膜を平坦化 させる工程に先立って、ストッパーとなる多結晶シリコ ン膜をパターンが疎である領域に形成するためのパター ンニング工程が必要になるなどの工程の複雑化を伴う。

【0011】さらに、TEOS/O3を用いたCVD法 で成長させたシリコン酸化膜は流動性を膜厚 0. 1 μ m 以上で示す。このことから、開口部幅が 0. 2μm以下 の狭い構の埋め込みの際には、シリコン酸化原は流動性 を示さず、膜中にボイドが発生する。このため、0.2 μm以下の狭い溝を埋め込む際に、低温でより良好な流 動性を有し、しかも平坦なシリコン酸化膜の形成方法が 【0012】この一つとして、有機系シランガスと、オ ゾンまたは酸素ラジカルとを気相CVD炉内で反応さ せ、この反応生成物が基板上で液化する温度に基板温度 を保ち、凝縮させる堆積方法がある(以下、凝縮CVD という)。

【0013】 凝縮CVD法によれば、微細で高アスペクト比のトレンチ構の底部に液体が流れ込むような堆積形状を示すシリコン酸化膜を形成できる。さらに、凝縮CVD法によれば、0.2 μ m以下の狭い電極間や素子分離領域に、ボイドを形成することなく、かつ表面が極めて平坦になるようにシリコン酸化膜を埋め込むことが可能となる。

【0014】しかし、上述した有機系シランと、酸素ラジカルまたはオゾンとの反応を用いた疑縮CVD法により形成されたシリコン酸化膜は、膜密度が低く、クラックが発生しやすいなどの欠点がある。

【0015】これは有機系シランに含まれる有機官能基または有機物がシリコン酸化膜の堆積時に該膜中に取り込まれ、後の熟工程によって有機物または有機官能基の一部が離脱することにより、シリコン酸化膜に収縮が起こり、同時に応力がかかるなどの問題が発生しているためである。

【0016】また、シリコン酸化膜中に取り込まれた有機官能基等の一部が該膜中で凝縮し、この有機官能基等が後工程の熱処理によってシリコン酸化膜から脱出して、シリコン酸化膜がポーラス化するという欠点もある。

【0017】これらの欠点は、以下に説明するように、 シリコン源である有機系シランに含まれている有機官能 基等がシリコン酸化膜中に取り込みやすい特性を有して いるためである。

【0018】 シリコン酸化膜は、有機系シランと酸素ラジカルとは次のような反応を経て形成されると考えられる。まず、反応室中に導入された有機系シラン(例えば TEOS)は、酸素ラジカルによってその(Si-O) $-(C_2H_5)$ のボンドが分断され、(OC_2H_5)3 Si-OHが形成される。さらに、このSi-OHとHO-Si の間で脱水反応によりSi-O-Si を含む重合体(OC_2H_5)3 $-Si-O-Si-(OC_2H_5)$ 3 が形成される。

【OO19】この反応を繰り返し、 $(OC_2H_5)_3-Si-O-((Si-(OC_2H_5)_2)-O)_n-Si-(OC_2H_5)_3$ が形成される。このような反応を気相中で連続的に起こすことによって、Si-O-Si結合を複数個含む大きな分子量の重合体が気相中間体として生成される。

【OO20】この重合体はSi-O-Siのネットワークだけでなく、アルコキシ基を多量に含んだ分子であり、これは原料のTEOSより低い蒸気圧を有する。このため基板温度を、TEOS分圧がTEOS飽和蒸気圧 50

Ŧ

以下になる温度、かつ重合体の分圧が重合体の飽和蒸気 圧以上になる温度に設定することによって、基板上では TEOSが凝縮することなく、選択的に重合体のみが凝 縮し堆積が起こる。

【0021】このとき、重合体は、アルコキシ基を含んだまま基板上をマイグレートし、基板上にシリコン酸化膜として堆積し、その際にアルコキシ基も膜中に取り込まれる。

【0022】しかし、気相中で酸素ラジカルによって $(Si-O)-(C_2H_5)$ の分断が進み、重合体のほとんどがSi-O-Siのネットワークで占められ、アルニキシ基を含まないような場合、この重合体はSiO2 の細かいダスト状となって堆積し、基板上では凝縮することはない。

【0023】すなわち、凝縮CVD法において流動性を 発現するためには、重合体を基板上で凝縮させ、さらに 表面反応によって狭い溝部に流れ込んだ形状を有し、表 面が平坦な酸化膜を堆積する際に、Si-O-Siの結 合の周囲にアルコキシ基を含んでいることが必須とな 20 る。

【0024】しかし、膜中にアルコキシ基を含むことにより、膜の緻密性が下がり、またこれらのアルコキシ基が後の熱処理時に離脱することによる膜べり、応力によるクラックの発生、さらに膜中の炭素による絶縁性の劣化等の問題が生じる。

【0025】このような問題を解決するには、有機官能 基等が熱分解により膜中から取り除かれる温度、つま り、600℃程度の温度で基板を加熱すれ良い。しか し、これでは、アルミ配線上にTEOSを用いる凝縮C VD法によりシリコン酸化膜(SiO2 膜)を成額する 場合、アルミ配線を著しく劣化させる問題が生じる。

【0026】一方、凝縮CVD法によってシリコン酸化 膜を形成し、このシリコン酸化膜を酸素ラジカルまたは オゾンにさらすことによって、膜を十分に酸化し膜中の 有幾官能基等を低減する方法がある。

【0027】しかし、この方法による酸化は表面から数百オングストロームまでの深さまでしか酸素ラジカルやオゾンの影響が及ばず、膜中深さ方向に均一に酸化することはできず、表面の有機官能基等しか効果的に除去で40 きないという問題がある。

[0028]

【発明が解決しようとする課題】上述の如く、従来のシリコン源として有機系シランガスを用いた凝縮CVD法では、シリコン酸化膜内にアルコキシ基が残存し、シリコン酸化膜の膜質が劣化するという問題があった。

【0029】シリコン酸化膜内に残存したアルコキシ基は例えば600℃程度の基板加熱により除去することはできるが、この場合、下地(例えばA1配線)に悪影響が生じるという問題があった。

【0030】また、下地に悪影響を与えない低温でのア

ルコキシ基の除去方法としては、シリコン酸化膜に酸素 ラジカルやオゾンなどの活性種を照射する方法がある が、この場合、シリコン酸化膜の表面のアルコキシ基し か効果的に除去できないという問題があった。

【0031】本発明は、上記事情を考慮してなされたも ので、その目的とするところは、下地に悪影響を与えず に膜質の劣化原因となる有機官能基の残存量を十分に少 なくできる有機系シランガスを用いたCVD法によるシ リコン酸化膜の形成方法を提供することにある。

[0032]

【課題を解決するための手段】

「概要」上記目的を達成するために、本発明に係るシリ コン酸化膜の形成方法(請求項1)は、原料ガスとして 酸素源ガスおよび有機系シランガスを用いたCVD法に よりシリコン酸化膜を基板上に形成するシリコン酸化膜 の形成方法であって、前記原料ガスに、前記シリコン酸 化膜中に含まれる有機官能基と選択的に反応する物質を 添加することを特徴とする。

【0033】また、本発明に係る他のシリコン酸化膜の 形成方法 (請求項2) は、原料ガスとして酸素源ガスお 20 よび有機系シランガスを用いたCVD法によりシリコン 酸化膜を基板上に形成するシリコン酸化膜の形成方法で あって、前記原料ガスに、前記シリコン酸化膜中に含ま れる有機官能基と選択的に反応する物質を添加し、前記 基板の温度を、前記酸素源ガスと前記有機系シランガス との反応生成物の融点以上沸点以下の温度、かつ前記物 質の分圧が該物質の飽和蒸気圧以下になる温度に設定す ることを特徴とする。

【0034】また、本発明に係る他のシリコン酸化膜の 形成方法 (請求項3) は、原料ガスとして酸素源ガスお よび有機系シランガスを用いたCVD法によりシリコン 酸化膜を基板上に形成するシリコン酸化膜の形成方法で あって、前記原料ガスに、前記シリコン酸化膜中に含ま れる有機官能基と選択的に反応する物質を添加し、前記 基板の温度を、前記有機系シランの分圧が該有機系シラ ンの飽和蒸気圧以上になる温度、かつ前記酸素源ガスと 前記有機系シランガスとの反応生成物の分圧が該反応生 成物の飽和蒸気圧以下になる温度、かつ前記物質の分圧 が該物質の飽和蒸気圧以下になる温度に設定することを 特徴とする。

【0035】また、本発明に係る他のシリコン酸化膜の 形成方法(請求項4)は、上記シリコン酸化膜の形成方 法(請求項2、請求項3)において、前記シリコン酸化 膜をCVD法により形成する成膜室内の領域のうち、基 板以外の領域の少なくとも一部の領域の温度を、前記物 質と前記有機系シランガスとが反応する温度および前記 物質と前記反応生成物とが反応する温度の少なくとも一 方の温度以上に設定することを特徴とする。

【0036】ここで、前記領域は、前記酸素源ガスの供

6

供給口より下流側(前記酸素源ガス、前記有機系シラン ガスおよび前記物質を混合して供給する場合はこれらの 混合物を供給するための供給口より下流側)、かつシリ コン基板より上流側の領域であることが好ましい。

【0037】また、前記領域の温度は、300℃以上6 50℃以下であることが好ましい。また、本発明に係る 他のシリコン酸化膜の形成方法 (請求項5) は、上記シ リコン酸化膜の形成方法(請求項1~請求項4)におい て、前記物質が、フェニル基またはシリコンを含む物質 10 であることを特徴とする。

【0038】本発明(請求項1~請求項5)において、 前記酸素源ガスは、O2, O3, CO, CO2, NO, N₂ O, NO₂ , H₂ O, H₂ O₂ 等の酸素を含むガス からなるガス群から選ばれる少なくとも一種類以上のガ ス、または前記ガス群から選ばれる少なくとも一種類以 上のガスをマイクロ波放電で励起してできるガスである ことが好ましい。

【0039】[作用]本発明(請求項1~請求項5)で は、原料ガスに、シリコン酸化膜中に含まれる有機官能 基と選択的に反応する物質を添加している。この結果、 この物質と有機官能基との反応生成物(以下、第1の反 応生成物という)が基板上で生成される。

【0040】また、基板上では、O2 等の酸素源ガスと 有機系シランガスとが反応して別の反応生成物(以下、 第2の反応生成物という)が生成される。この第2の反 応生成物の蒸気圧は一般には低い。具体的には、通常の 有機系シランガスの蒸気圧よりも低い。

【0041】この結果、第1の反応生成物は、第2の反 応生成物よりも一般には蒸気圧が高くなるので、シリコ 30 ン酸化膜中の有機官能基は、第1の反応生成物の形で除

【0042】このため、シリコン酸化膜中の有機官能基 を除去するために、基板を高温に加熱する必要はない。 また、除去方法を評価したところ、基板加熱 (熱処理) による除去方法や、酸素ラジカル等の照射による除去方 法よりも、効率良くシリコン酸化膜内の有機官能基を除 去できることが明らかになった。

【0043】したがって、本発明(請求項1~請求項 5) によれば、有機官能基を除去するための特別の基板 加熱が不要なので下地に悪影響を与えずに、膜質の劣化 原因となる有機官能基の残存量が十分に少ないシリコン 酸化膜を有機系シランガスを用いたCVD法により形成 できるようになる。

【0044】また、有機官能基と上記物質との反応は、 シリコン酸化膜の成膜中に起こるので、成膜後に熱処理 したり、酸素ラジカル等を照射する除去方法に比べて、 能率良く、有機官能基を除去できる。

【0045】また、本発明(請求項2、請求項3)によ れば、上記作用効果の他に、凝縮CVD法の作用効果が 紿口、前記有機系シランガスの供給口および前記物質の 50 得られるようになる。また、本発明(請求項3)によれ

ば、有機系シラン自身は凝縮せず、気体の状態を保つの で、有機系シラン中の有機官能基となる構成原子が不要 にシリコン酸化膜に取り込まれるのを防止できるように なる。

[0046]

【発明の実施の形態】以下、図面を参照しながら本発明 の実施の形態(実施形態)を説明する。

(第1の実施形態)図1は、本実施形態で用いる成膜装 置の概略構成を示す模式図である。

【0047】図中、101は真空槽を示しており、この 10 台冷却・保温用の銅管135に接続されている。 真空槽101は図示しない排気装置により排気口102 を介して高真空に排気できるようになっており、その到 達真空度は1×10⁻⁷Torr以上である。

【0048】真空槽101内にはシリコン基板等の基板 104を支持するための基板支持台103が設けられて いる。其空槽101には、ガスを供給するための種々の 配管が接続されている。すなわち、真空層101には、 酸素源ガスを供給する配管105、有機系シランとして のテトラ・メチル・シラン (Si (CH₃) 4、以下、 TMSと略記する)を流すための配管115、膜質を改 20 素温度まで冷却される。 善するための添加物質としてのトルエン (C7Hg)を 流すための配管125、および窒素ガスを流すための配 管130が接続されている。

【0049】酸素を供給するステンレス配管105(酸 素供給装置は図示せず)は、ストップ・バルブ106、 質量流量計107、ストップ・バルブ108、アタッチ メント109を介してAl2O3管111に接続されて おり、Al2 O3 管111はアタッテメント112を介 して真空槽101に接続されている。

【0050】さらにAl2O3管111の途中には、マ 30 イクロ波放電用のキャビティ110が設置されている (マイクロ波電源およびマイクロ波供給系は図示せ ず)。TMSを供給するための配管115 (TMS供給

装置は図示せず)は、ストップ・バルブ116、質量流 量計117、ストップ・バルブ118、ステンレス配管 119を介して真空槽101に接続されている。

【0051】トルエンを供給するための配管125(ト ルエン供給装置は図示せず)は、ストップ・バルブ12 6、質量流量計127、ストップ・バルブ128、配管 129を介して真空槽101に接続されている。

【0052】配管130を介して流す窒素ガス(窒素ガ スの供給装置は図示せず)は、基板104の出し入れの ために真空槽101内を大気圧に戻したり、冷却された 基板104の温度を室温まで戻す時間を短縮することを 目的として真空槽101内の圧力を調整するためのもの である。なお、シリコン酸化膜の堆積時に圧力調整のた めに流しても良い。

【0053】配管130は、ストップ・パルブ131、 質量流量計132、ストップ・バルブ133、配管13 4を介して真空槽101に接続されている。ステンレス 50 ン基板104を冷却する。基板支持台103の温度は概

製の基板支持台103の内部には、基板支持台冷却・保 理用の銅管135、135´(135はガス供給側の銅 管、135′はガス出口側の銅管を示している)が埋込 まれており、銅管135は、図2に示す冷却された窒素 および室温の窒素ガスの供給装置に接続されている。

【0054】図2を簡単に説明すると、配管201は、 窒素ガス供給装置(不図示)に接続されており、ストッ プ・バルプ202を介して、質量流量計203、ストッ プ・バルブ204、205を介して図2に示す基板支持

【0055】ストップ・バルブ205を挟んで枝管20 6、209が分岐しており、枝管206はストップ・バ ルブ207を介してスパイラル管208に接続されてお り、このスパイラル管 208はストップ・バルブ210 を介して配管209に接続されており、この配管209 は配管135につながっている。

【0056】また、スパイラル管208は、液体窒素溜 め211に溜められた液体窒素212中に浸されてお り、スパイラル管208を流れる窒素ガスは概ね液体窒

【0057】基板104を冷却する場合にはスパイラル 管208側を通し、一方、シリコン酸化膜の成膜を終え て冷却した基板104を室温に戻する場合にはストップ ・バルブ205を開いて室温の窒素ガスを配管135に 供給する。

【0058】これにより、質量流量計203で制御した 窒素ガスを液体窒素冷却して銅管135から銅管13 5′に流すことにより、基板支持台103、基板104 を所望の温度に冷却できる。

【0059】図1に戻り、基板支持台103には加熱用 の熱源であるシース・ヒーター136が設置されており (電源は図示せず)、このシース・ヒーター136でシ リコン基板104を所望の温度に加熱できるようになっ ている。

【0060】真空槽101の壁面は二重構造になってお り、壁面を加熱するための熱源および保温材142が備 え付けられている (熱源およびその電源は図示せず)。 本実施形態では真空槽101の壁温を80℃に設定す ð.

40 【0061】次に上記成膜装置を用いたシリコン酸化膜 の形成方法について説明する。まず、 真空槽 101を大 気圧に戻して、基板104としてのシリコン基板を基板 支持台103に載せる。なお、真空にした予備室を設 け、ロボット・アームを用いて自動でシリコン基板を搬 送しても良い。

【0062】次に排気口102を介して到達真空度まで **真空槽101内を排気する。このときの到達真空度は、** 1×10⁻⁷Torrより高真空とする。次に銅管135 から銅管135′に冷却した窒素ガスを流して、シリコ

ね-100~25℃程度に設定する。この場合の基板温 度は-80~25℃程度となる。

【0063】次に基板温度が所望の温度に安定したのを 確認した後、TMSの質量流量計117を概ね1~10 Ocm3/min程度に設定するとともに、ストップ・ バルブ116, 118を開にしてTMSを真空槽101 に導入する。

【0064】次にトルエン用の質量流量計127を概ね 1~100 c m³ / m i n 程度に設定するとともに、ス トップ・バルブ126,128を開にしてトルエンも真 10 空槽101に導入する。

【0065】次に酸素用の質量流量計110を1~10 OOcm3/min程度に設定するとともに、ストップ ・バルブ106, 108を開にして酸素を真空槽101 内に導入する。

【0066】このとき、真空槽101内の圧力は、排気 ロ102のコンダクタンスを変えることにより概ね10 m~500Torr程度に設定することができる。その 内訳は、TMS分圧が2~200Torr程度、トルエ ン分圧が 0. 2~200 Torr程度、酸素分圧が 2~ 20 ドが発生しないことが分かる。 **400Torr程度である。**

【0067】次に酸素流量が安定した後マイクロ波電力 を概ね100~5kWatt程度印加し、酸素のマイク 口波放電をたてる。マイクロ波放電を起こした時間を成 膜開始時間として、成膜時間を変化させてシリコン酸化 膜をシリコン基板上に形成する。

【0068】堆積の終了は次のような手順で行なった。 まず、マイクロ波電力の出力を切り、マイクロ波放電を 停止する。この停止の時間を堆積終了時間とする。

【0069】次にストップ・バルブ128, 118を閉 30 積圧力0. 2Torrに設定した。 にして、トルエンとTMSの供給を停止し、しかる後に ストップ・バルブ108を閉にして酸素ガスの供給を停 止する。

【0070】次に図2の装置のストップ・バルブ205 を開き、ストップ・バルブ207,210を閉じて、銅 管135から銅管135′に流している冷却された窒素 ガスの供給を停止し、その代わりに室温の窒素ガスを供 給する。

【0071】そして、窒素用の質量流量計132を1~ ルブ131、133を開にして窒素ガスを配管134か ら真空槽101内に導入して、真空槽101内をほぼ大 気圧に近い圧力にしてシリコン基板を室温に戻する。

【0072】最後に、真空槽101内を大気圧に戻して シリコン基板を取り出し、必要に応じて次のシリコン基 板を基板支持台103上に設置する。これで1回のシリ コン酸化膜の成膜工程が終了する。

【0073】次に上記成膜装置を用いてトレンチ溝をシ リコン酸化膜で埋め込む方法について説明する。まず、 図3 (a) に示すように、表面にトレンチ溝302が形 50 ℃、10~180分程度の熟処理を施した後の形状およ

成されたシリコン基板301を用意する。トレンチ構3 02の開口径dは0.15~2μm、深さhは1μmで

【0074】次にシリコン基板301を図1の成膜装置 の基板支持台103に設置し、先に示した手順に従って シリコン酸化膜を形成する。シリコン酸化膜の成膜条件 は、例えば、TMS流量20cm3/min、トルエン 流量10cm³/min、酸素流量200cm³/mi n、堆積圧力O. 2Torr、マイクロ設電力200W a t t、基板温度-30℃である。

【0075】このようにしてシリコン酸化膜303を形 成した時の堆積時間が1分、4分、8分、10分のとき の断面がそれぞれ図3(b)、図3(c)、図3

(d)、図3 (e)である。これは走査形電子顕微鏡 (SEM) で観察したものである。シリコン酸化303 膜の堆積速度は、約0.5 μ m/minであった。

【0076】図3(b)~図3(e)に示すように、シ リコン酸化膜303は、トレンチ溝302の底からまる で液体が深いコップに溜まるような形状で堆積し、ボイ

【0077】次にこのシリコン酸化膜303(以下、酸 化膜Aと呼ぶ)とトルエンを添加しないこと以外は酸化 膜Aの成膜条件と同じにして形成したシリコン酸化膜 (以下、酸化膜Bと呼ぶ)との堆積形状および膜質を比 較した。

【0078】なお、酸化膜Bの成膜条件に関しては、ト ルエンを添加しない分だけ、堆積圧力が0.14Tor rと低くなるので、排気口102に設けてあるコンダク タンスバルブを調整することにより、酸化膜Aと同じ堆

【0079】堆積形状を比較した結果、酸化膜A, Bの 埋込み形状はともに先に図3に示したような良好な形状 を示した。一方、膜質を比較するために、酸化膜A, B をフーリエ変換赤外分光計を用いて、透過法で分析し た。

【OO80】その結果、酸化膜A、Bとも見える吸収ピ ークは、Si-O-Siのロッキング・ピーク、Si-CH3 の吸収ピークであった。このうち酸化膜BではS i-O-Siピークに対するSi-CH3のピークの比 101/min程度に設定するとともに、ストップ・バ 40 が10%であったのに対し、酸化膜Aでは同じピークの 比が O. 3%であり、酸化膜Bに比べてCH3基が除去 されていた。

> 【0081】なお、いずれの場合も真空槽101の到達 真空度が低い場合にはH2 Oのピークが見られた。この ため、真空槽101の到達真空度は、なるべく高真空に したほうが良い。

> 【0082】また、図3(e)に示した形状を持つ試料 で平坦部に1~3μm程度堆積した酸化膜Α, Βの熱処 理に対する耐性を調べるために、N2 雰囲気で950

びストレスを比較した。

【0083】その結果、酸化膜Aは、いずれの温度でも 体積収縮率が0.01%以下であり、またクラックが発 生することも見られなかった。熱処理前の応力は0.6

【0084】これに対して、酸化膜Bは、堆積収縮率が 20~50%程度であった。また、厚膜化した試料の場 合には著しいグラックが堆積直後に既に発生しているの が目視で観察された。 具体的には、厚さ1μmの試料の 場合には堆積直後にクラックは見られなかったが、30 10 分の熱処理でクラックが発生した。

【0085】クラックの発生した試料では応力を測定す ることはできないため、黙処理前の酸化膜Bが形成され た試料の応力と10分熱処理後の同試料の応力とをシリ コン基板301のそりから測定した。

【0086】その結果、熱処理前は2~5×10⁹ dy ne・cm⁻²、熱処理後は1~8×10¹⁰ dyne・c m⁻²であり、酸化膜Bは熱処理で膜質が変質し、応力が 増大していることが明らかになった。

(CH3) の含有率、熱処理に対する耐性、熱処理後の 応力の点で絶縁膜として優れた特性を示し、これは酸化 膜Aが素子分離用の細く高アスペクト比のトレンチ溝を 埋め込むための絶縁膜として極めて有効であることを意 味している。

(第2の実施形態) 次に上記成膜装置を用いた層間絶縁 膜の形成方法について説明する。

【0088】まず、図4(a)に示すように、表面にA 1配線403が形成されたシリコン基板401を用意す る。これは次のようにして作成する。

【0089】まず、シリコン基板401の表面を熟酸化 して厚さ0.2μmの熟酸化シリコン酸化膜402を形 成する。次に熱酸化シリコン酸化膜402上にマグネト ロン・スパッタリング法を用いてA1配線403となる 厚さ0. 9μmのAl-1%Si-0. 5%Cu合金膜 (Al合金膜)を形成する。

【0090】次にこのA1合金膜上に通常の光露光法を 用いてフォトレジストパターンを形成した後、上記フォ トレジストパターンをマスクとして上記Al合金を反応 性イオン・エッチング (RIE) 法でエッチングするこ とにより、配線幅 $0.2 \sim 2 \mu m$ 、配線間スペース 0.2~2μmでA1配線403を形成する。最後に、上記 フォトレジストパターンを酸素により灰化して除去す ۵.

【0091】次にシリコン基板401を図1の成膜装置 の基板支持台103に設置し、層間絶縁膜としての厚さ 2μmのシリコン酸化膜404を先に示した手順に従っ て図4(b)に示すように形成する。

【0092】シリコン酸化膜404の成膜条件は、例え

ガス流量が概ね20~400cm3 ·min⁻¹、トルエ ン流量が概ね2~40 c m³ · m i n -1 である。

12

【0093】このときのTMSの分圧は概ね0.01~ 200Torr、酸素分圧は概ね0. 1~400Tor r、トルエンの分圧は概ね0.01~200Torrで あった。また、堆積圧力は概ね0.1-600Tor r、基板温度は概ね-60~30℃であり、シリコン酸 化膜404の堆積速度は、約0.2~0.8 μm·mi n^{-1} であった。

【0094】試料の清浄化処理としては、純水洗浄を用 いた。A1合金膜上でのシリコン酸化膜404の堆積形 状をさらに高めるには、TMSとトルエンを添加する前 に酸素のマイクロ波放電で生じるガスのみの雰囲気にシ 「リコン基板401を晒して、酸化処理を行なうと、AL 合金膜上におけるシリコン酸化膜404の準積形状を効 果的に改善することができる。

【0095】図4(b)に示すように、シリコン酸化膜 404は、いずれの配線間にも巣無く埋込まれていた。 すなわち、配線間スペース 0. 2 μm、配線の厚さ 0. 【0087】以上の結果から、酸化膜Aは、有機官能基 20 $9 \, \mu$ mの隙間、つまり、アスペクト比4 . 5 の高アスペ クト比の隙間でも巣を生じる埋込むことができた。

> 【0096】また、このシリコン酸化膜404の絶縁膜 としての性質も先に示したシリコン酸化膜303(酸化 膜A)のそれとほぼ同様に優れていた。ただし、本実施 -形態では、シリコン酸化膜404の下にAI合金の配線 403膜があるため、熱処理は650℃までしか行なわ なかった。

【0097】この処理温度で、シリコン酸化菓404に ひび割れが生じたり、応力が増大したりすることは見ら 30 れなかった。特に、シリコン基板401を加熱しながら シリコン基板401からの放出ガスを質量分析器で分析 したが、500℃まで顕著な放出ガスは見られなかっ た。 500 ℃以上で Cx Hy のピークが見えてきた。 し かし、架橋反応が進行すれば現われてくるH2 〇のピー クは、650℃まで見られなかった。C、Hの含有量が 減っているのも第1の実施形態と同様であった。

(第3の実施形態) 図5は、本実施形態で用いる成膜装 置の概略構成を示す模式図である。

【0098】図中、501は真空槽を示しており、この 40 真空槽501は排気口502を介して高真空に排気で き、その到達真空度は 2×10⁻⁷Torr以上である。 なお、排気装置、圧力調整のためのコンダクタンスバル プなどの排気系は図が繁雑になるので示していない。

【0099】第1の実施形態の成膜装置の場合と同様 に、真空槽501の到達真空度は堆積するSiO2に取 り込まれるH2 Oの量に影響してくるので、なるべく高 **冥空の到達真空度にするほうが良い。**

【0100】真空槽501内にはシリコン基板等の基板 505を載置するための基板支持台503、基板支持台 ば、TMS流量が概ね 2~40 c m³ · m i n -1、酸素 50 50 3 に高周波電圧を印加するための電極 50 4 が設置

されている。なお、図中、537は電極504に高周波 電圧を印加するための高周波電源を示している。

【0101】真空槽501には、ガスを供給するための 種々の配管が接続されている。すなわち、真空槽501 には、酸素 (O2) を供給する配管506、TMSを供 給するための配管515、トルエンを供給するための配 管525、および窒素ガスを供給するための配管530 が接続されている。

【0102】酸素を供給する配管506 (酸素供給装置 は図示せず)は、ストップバルブ507、質量流量計5 08、ストップバルブ509、配管510を介して真空 槽501に接続されている。なお、配管506として は、例えば、ステンレス製のものを用いる。

【0103】 TMSを供給するための配管 515 (TM S供給装置は図示せず)は、ストップ・バルブ516、 質量流量計517、ストップ・バルブ518、ステンレ ス配管519を介して真空槽501に接続されている。

【0104】トルエンを供給するための配管525(ト ルエンの供給装置は図示せず)は、ストップ・バルブ5 26、 質量流量計 5 2 7、ストップ・バルブ 5 2 8、配 20 5 0 8 を開にして酸素ガスを真空槽 5 0 1 内に導入す 管529を介して真空槽501に接続されている。

【0105】配管530を介して流す窒素ガス(窒素ガ スの供給装置は図示せず)は、基板505を出し入れす るために真空槽501内を大気圧に戻したり、冷却され た基板505の温度を室温まで戻す時間を短縮すること を目的として真空槽501内の圧力を調整するために流 寸。

【0106】配管530は、ストップ・バルブ531、 質量流量計532、ストップ・バルブ533、配管53 4を介して真空槽501に接続されている。ステンレス 製の基板支持台503の内部には、銅管535(535 はガス供給側の銅管、535′はガス出口側を銅管を示 す)が埋込まれており、銅管535は、先に第1の実施 形態で示したように図2に示す冷却された窒素ガスおよ び室温の窒素ガスの供給装置に接続されている。

【0107】基板支持台503には加熱用の熱源である シース・ヒーター536が設置されており、このシース ・ヒーター536で基板505を所望の温度に加熱する ことができるようになっている (シース・ヒーターの電 源は図示せず)。

【0108】真空槽501の壁面は二重構造になってお り、壁面を加熱するための熱源および保温材542が備 え付けられている (熱源およびその電源は図示せず)。 本実施形態では真空槽501の壁温を80℃に設定す

【0109】次に上記成膜装置を用いたシリコン酸化膜 の形成方法について説明する。まず、真空槽501を大 気圧に戻して、基板505としてのシリコン基板を基板 支持台503上に載せる。次に排気口502を介して到 達英空度まで真空槽 5 0 1 内を排気する。このとき、到 50 【 0 1 1 9 】次にシリコン基板 3 0 1 を図 5 の成膜装置

達真空度が1×10⁻⁷Torrよりも高真空になるよう にする。

【0110】そして、真空槽501内が到達真空度に達 したのを確認した後、シリコン基板を冷却するための冷 却された窒素ガスを銅管535から銅管535′に流 し、シリコン基板を冷却する。基板支持台503の温度 は概ね-100~25℃程度に設定する。このときの基 板温度は-80~25℃程度となる。

【0111】次に基板温度が所望の温度に安定したのを 10 確認した後、TMS用の質量流量計517を概ね1~1 00cm³ /min程度に設定し、ストップ・バルブ 5 16, 518を開にしてTMSを真空槽501に導入す ۵.

【0112】次にトルエン用の質量流量計525を概ね 1~100 c m³ / m i n 程度に設定し、ストップ・バ ルプ526,528を開にしてトルエンも真空槽501 に導入する。

【0113】次に酸素用の質量流量計510を1~10 0 c m³ / m i n に設定し、ストップ・バルブ 5 0 6, る。このとき、真空槽501内の圧力は、排気口502 のコンダクタンスを変えることにより概ね10m~-5 OOTorr程度にすることができた。その内訳は、T MS分圧が2~200Torr程度、トルエン分圧が 0. 2~200Torr程度、酸素分圧が2~400T orr程度である。

【0114】そして、酸素流量が安定したら、13.5 6MHzの高周波電圧を高周波電源537により電極5 04に印加し、概ね100Watt~5kWattの電 30 力で高周波放電を起こした。高周波放電を起こした時間 を成膜開始時間として、成膜時間を変化させてシリコン 酸化膜をシリコン基板505上に堆積した。

【0115】堆積の終了は次のような手順で行なった。 まず、高周波電圧の印加を停止し、高周波放電を停止す る。この停止の時間を堆積終了時間とした。

【0116】次にストップ・バルブ528,518を閉 にして、トルエンとTMSの供給を停止し、ストップ・ バルブ508を閉にして酸素ガスの供給を停止する。次 に図2の装置のストップ・バルブ205を開き、ストッ 40 プ・バルブ207、210を閉じて、銅管535から銅 管535′に流している冷却用の窒素ガスの供給を停止 し、その代わりに室温の窒素ガスを供給する。

【0117】最後に、第1の実施形態と同様にシリコン・ 基板を取り出す。次に上記成膜装置を用いてトレンチ溝 をシリコン酸化膜で埋め込む方法について説明する。

【0118】まず、図3(a)に示すように、表面にト レンチ溝302が形成されたシリコン基板301を用意 する。トレンチ溝302の開口径 dは0.15~2μ m、深さhは4μmである。

の基板支持台503に設置し、先に示した手順に従って シリコン酸化膜を形成する。シリコン酸化膜の成膜条件 は、例えば、TMS流量20cm3/min、トルエン 流量10cm³/min、酸素流量200cm³/mi n、堆積圧力O. 2Torr、高周波電力200Wat t、基板温度-30℃である。

【0120】このようにしてシリコン酸化膜303を形 成した時の堆積時間が1分、4分、8分、10分のとき の断面がそれぞれ図3(b)、図3(c)、図3 (d)、図3 (e) である。

【0121】図3 (b) ~図3 (e) に示すように、シ リコン酸化膜303は、トレンチ溝302の底からまる で液体が深いコップに溜まるような形状で堆積し、ボイ ドが発生しないことが分かる。

【0122】次にこのシリコン酸化膜303(以下、酸 化膜Cと呼ぶ)とトルエンを添加しないこと以外は酸化 膜Cの成膜条件と同じにして形成したシリコン酸化原

(以下、酸化膜Dと呼ぶ)との堆積形状および膜質を比 較した。

エンを添加しない分だけ、堆積圧力が0.14Torr と低くなるので、排気口502に設けてあるコンダクタ ンスバルブを調整することにより、酸化膜Cと同じ圧力 O. 2Torrに設定した。

【O124】堆積形状を比較した結果、酸化膜C, Dの 埋込み形状はともに図3に示したような良好な形状を示 した。一方、膜質を比較するために、酸化膜C, Dをフ ーリエ変換赤外分光計を用いて、透過法で分析した。

【0125】その結果、酸化膜C、Dとも見える吸収ピ ークは、Si-O-Siのロッキング・ピーク、Si-CH3 の吸収ピークであった。このうち酸化膜DではS i-O-Siピークに対するSi-CH3のピークの比 が10%であったのに対し、酸化膜Cでは同じピークの 比が 0. 3%であり、酸化膜Dに比べてCH3基が除去 されていた。

【0126】また、図3(e)に示した形状を持つ試料 で平坦部に1~3μm程度堆積した酸化膜C, Dの熟処 理に対する耐性を調べるために、N2 雰囲気で950 ℃、10~180分程度の熱処理を施した後の形状およ びストレスを比較した。

【0127】その結果、酸化膜Cは、いずれの温度でも 体積収縮率が 0.01%以下であり、またクラックが発 生することも見られなかった。熱処理前の応力は0.6 $\sim 1.2 \times 10^9 \text{ dyne} \cdot \text{cm}^{-2}$ comoto

【0128】これに対して、酸化膜Dは、堆積収縮率が 20~50%程度であった。また、厚膜化した試料の場 合には著しいクラックが堆積直後に既に発生しているの が目視で観察された。 具体的には、厚さ1μmの試料の 場合には堆積直後にクラックは見られなかったが、30 分の熱処理でクラックが発生した。

【0129】クラックの発生した試料では応力を測定す ることはできないため、熱処理前の酸化膜Dが形成され た試料の応力と10分熟処理後の同試料の応力とをシリ コン基板301のそりから測定した。

【0130】その結果、熱処理前は2~5×10⁹ dy ne·cm⁻²、熱処理後は1~8×10¹⁰dyne·c m-2であり、酸化膜Dは熱処理で膜質が変質し、応力が 増大することが明らかになった。

【0131】以上の結果から、酸化膜Cは、有機官能基 (CH3) の含有率、熟処理に対する耐性、熟処理後の 10 応力の点で絶録膜として優れた特性を示し、これは酸化 膜Aが素子分離用の細く高アスペクト比のトレンチ溝を 埋め込むための絶縁膜として極めて有効であることを意 味している。

(第4の実施形態) 次に図5の成膜装置を用いた層間絶 **縁膜の形成方法について説明する。**

【0132】まず、図4(a)に示すように、表面にA 1配線403が形成されたシリコン基板401を用意す る。次にシリコン基板401を先に示した真空槽501 【0123】なお、酸化膜口の成膜条件に関して、トル 20 内の基板支持台503に設置し、先に示した手順に従っ て層間絶縁膜としての厚さ2μmのシリコン酸化膜40 4を図4(b)に示すように形成する。

> 【0133】シリコン酸化膜404の成膜条件は、例え ば、TMS流量が概ね2~40cm3 ·min-1、酸素 ガス流量が概ね20~400 cm3 ·min-1、トルエ ン流量が概ね2~40 c m³ · m i n⁻¹である。

【0134】このときのTMSの分圧は概ね0.01~ 200Torr、酸素分圧は概ね0.1~400Tor r、トルエンの分圧は概ね0.01~200Torrで 30 あった。また、堆積圧力は概ね0.1-600Tor r、基板温度は概ね-60~30℃であり、シリコン酸 化膜404の堆積速度は、約0.2~0.8 μm·m i n^{-1} であった。

【0135】試料の清浄化処理としては、純水洗浄を用 いた。A1合金膜上でのシリコン酸化膜404の堆積形 状をさらに高めるには、TMSとトルエンを添加する前 に酸素のマイクロ波放電で生じるガスのみの雰囲気にシ リコン基板401を晒して、酸化処理をするとAI合金 膜上におけるシリコン酸化膜404の堆積形状を効果的 40 に改善することができる。

【0136】本実施形態でも、図4(b)に示すよう に、シリコン酸化膜404は、いずれの配線間にも巣無 く埋込まれていた。すなわち、配線間スペース0.2μ m、配線の厚さ O. 9 μ m の隙間、つまり、アスペクト 比4. 5の高アスペクト比の隙間でも巣を生じる埋込む ことができた。

【0137】また、このシリコン酸化膜404の絶縁膜 としての性質も先に示したシリコン酸化膜303(酸化 膜C)のそれとほぼ同様に優れていた。ただし、シリコ 50 ン酸化膜 4 O 4 の下に A 1 合金の配線 4 O 3 膜があるた め、熱処理は650℃までしか行なわなかった。

【0138】この処理温度で、シリコン酸化膜404にひび割れが生じたり、応力が増大したりすることは見られなかった。特に、シリコン基板401を加熱しながらシリコン基板401からの放出ガスを質量分析器で分析したが、500℃まで顕著な放出ガスは見られなかった。500℃以上で C_x H_y のピークが見えてきた。しかし、架橋反応が進行すれば現われてくる H_2 Oのピークは、650℃まで見られなかった。C、Hの含有量が減っているのも第2の実施形態の場合と同様であった。(第5の実施形態)図6は、本実施形態で用いる成膜装置の概略構成を示す模式図である。

【0139】図中、801は石英製の反応炉を示しており、この反応炉801の外側には電気ヒーター802、802′が配置されている。一方、石英管801の内側にはグラファイト製の基板支持台803が設置されてあり、この基板支持台803上には基板804が載置されている。

【0140】グラファイト製の基板支持台804の内部には、図1、図5の成膜装置と同様に、冷却用の銅管(不図示)が埋め込まれており、液体窒素で冷却した窒素ガスを流すことにより基板支持台803およびシリコン基板804を冷却できるようになっている。なお、冷却窒素供給装置は図示していないが、それは図2のそれとほとんど同じである。

【0141】基板804の温度を制御するため、基板804をあらかじめ熱電対を取り付けた基板支持台803に載置し、冷却用液体窒素を流したときの流量と基板804に取り付けた熱電対が示す温度と基板支持台803に取り付けた熱電対との対応を取った。

【0142】その結果、冷却液体窒素流量を $100cm^3 \cdot min^{-1} \sim 301 \cdot min^{-1}$ の範囲で変化させたとき、基板支持台804に取り付けた熱電対の温度は-80 ~-30 ℃、基板804 に取り付けた熱電対の温度は-72 ~-25 ℃であった。このようにして冷却用窒素ガス流量と基板温度の較正曲線を作成した。

【0143】次に石英管801の外側に取り付けられているヒーター802,802′の温度を上げながら同様にして石英管801の内側に設けた熱電対の温度と、基板支持台803に取り付けた熱電対温度と、基板803に取り付けた熱電対温度との対応関係を調べた。

【0144】各々の石英管温度(これはヒーターに投入した電力の関数となる)のときの基板支持台温度(これは冷却管に流す冷却用窒素ガス流量の関数となる)と基板温度との対応関係を取り、基板温度の較正曲線を作った

 ℃であった。

【0146】以後、基板温度の制御には、ここで作った 較正曲線を用い、冷却用窒素ガス流量とヒーター80 2,802~にかけた電力から算出した。石英管801 の一端にはT字型のステンレス管805が取り付けてあ り、このステンレス管805の左右端は基板出し入れ用 の真空フランジ807,807~が取り付けられてい る。

18

【0147】また、ステンレス管805の下端は排気用 10 の配管806を介して高真空排気装置(不図示)にされており、この高真空排気装置により到達真空度で5×10-8Torr以上の高真空に反応管801内を排気することができるようになっている。また、ステンレス管805には、圧力を測定するための圧力計809が取り付けられている。

【0148】石英管805の他端には各種ガスを供給するための配管を取り付けた真空フランジ808が取り付けられている。すなわち、真空フランジ808には、TMS、酸素(O_2)、トルエンおよび窒素(N_2)のガ20スをそれぞれ供給する配管811,821,831,841が取り付けられている。これら真空フランジ807,807 $^{'}$,808で反応管801内の真空が保たれる

【0149】TMSを流すための配管811 (TMS供給装置は図示せず)は、ストップ・バルブ812、質量流量計813、ストップ・バルブ814、配管815を介して真空フランジ808に接続されている。

【0150】酸素を流すための配管821 (酸素供給装置は図示せず)は、ストップ・バルブ822、質量流量30 計823、ストップ・バルブ824、アタッチメント825を介してAl2 O3 管826に接続されている。

【0151】この $A1_2$ O_3 管 826 はアタッチメント 827を介して真空フランジ8 08 に接続されている。また、 $A1_2$ O_3 管 826 にはマイクロ波電力を供給するためのキャビティ8 28 (マイクロ波電源および配線は図示せず) が取り付けられている。

【0152】トルエンを流すための配管831 (トルエン供給装置は図示せず)は、ストップ・バルブ832、質量流量計833、ストップ・バルブ834、配管835を介して真空フランジ808に接続されている。

【0153】 窒素を流すための配管 841 (窒素供給装置は図示せず) は、ストップ・バルブ 842、質量流量計843、ストップ・バルブ 844、配管 845を介して真空フランジ808に接続されている。

【0154】次に上記成膜装置を用いたシリコン酸化膜の形成方法について説明する。まず、真空炉801をガス供給系、真空排気系と切り離した後、大気圧に戻して、真空フランジ807、807~を開けて基板804としてのシリコン基板を基板支持台803上に設置す

【0155】次に真空フランジ807を閉じて、排気口 806を介して高真空排気ポンプで真空炉801内を排 気する。このとき、真空炉801内の到達真空度は2× 10⁻⁸Torrである。

【0156】次に基板支持台803に冷却された窒素ガ スを概ね1~201min-1流して、基板支持台803 およびシリコン基板804を冷却する。このとき、基板 温度は概ね−80~30℃であった。

【0157】次にヒーター802,802′に電力を与っ えて、徐々に真空炉801を加熱する。真空炉801の 10 あった。 壁面に設けた熱電対が例えば400~600℃の値を示 したとき、基板支持台の温度は−60~-30℃であ り、構成曲線から推定した基板温度は−50~-10℃ となる。

【0158】基板温度が安定した後、質量流量計813 を概ね10~200cm3 ·min-1に設定し、ストッ プ・バルブ812、814を開にして、TMSを真空炉 801に導入する。

【0159】同様に、質量流量計833を概ね10~2 2、834を開にして、トルエンを真空炉801内に導 入する。

【0160】次に質量流量計823を概ね100~40 00cm³・min-1に設定し、ストップ・バルブ82 2、824を開にして、酸素ガスを真空炉801に導入 する。そして、酸素ガス流量が安定したら、マイクロ波 電源のスイッチをオンにしてマイクロ波電力をキャビテ ィ828に印加する。このときの印加マイクロ波電力 は、概ね100~2000Wattとする。このマイク ロ波電力印加とほぼ同時にマイクロ波放電が生じ、この 30 時刻を堆積開始時間とする。

【0161】堆積の終了は次のようにして行なう。ま ず、所望の堆積時間が経過したら、マイクロ波電力の供 給を停止しマイクロ波放電を停止する。しかる後、速や かにTMSの供給をストップ・バルブ814を閉にして 停止する。この時刻が堆積終了時間である。

【0162】次にトルエン、酸素の供給を停止し後、真 空炉801内を真空に排気しながら、ヒーター802, 802′に印加している電圧を徐々に下げていき真空炉 801の壁温を室温まで戻すとともに、基板支持台80 3を冷却している窒素ガスの供給を停止し、その代わり に室温の窒素ガスを流して基板支持台803およびシリ コン基板を室温まで戻す。

【0163】このとき、配管841を通じて窒素ガスを 流して真空炉801内をなるべく大気圧に近い圧力にす ると冷却効果が大きく、より短時間で真空炉801の管 壁、基板支持台803、基板804を室温に戻すことが できる。

【0164】そして、部位の温度が室温に戻ったら、配 管841を通して窒素ガスを流し、真空炉801内を大 50 【0173】なお、本実施形態ではシリコン基板上での

気圧に戻する。最後に、真空フランジ807,807 を開けて基板804を取り出す。これで1回のシリコン 酸化膜の形成工程が終了し、必要に応じてこのまま次の シリコン基板804を基板支持台803に設置して工程 を続ける。

20

【0165】このようにして形成したシリコン酸化膜の トレンチ溝の埋込み形状は、第1、第2の実施形態で示 したものとほとんど変わることがなかった。大きく違う のは、シリコン酸化膜に取り込まれているC、Hの量で

【0166】以下にこのC、Hの量の違いについて説明 する。第1、第2の実施形態のシリコン酸化膜は、上述 した通りに従来の凝縮CVDで得られたシリコン酸化膜 に比較して、CおよびHの取り込みの少ない膜である。 しかし、それでもフーリエ変換赤外分光光度計で分析す るとSi-〇-Siの吸収ピークに比較して0.3%の Si-CH3 の吸収ピークが観察された。

【0167】本実施形態で得られたシリコン酸化膜に は、フーリエ変換赤外分光光度計では、Si-CH3の $0.0~c~m^3~\cdot m~i~n^{-1}$ に設定し、ストップ・バルブ 8.3~20~ピークはもちろんのこと、CおよびHに関係するピーク は全く検出できなかった。

> 【0168】次に本実施形態で得られたシリコン酸化膜 を二次イオン質量分析計(SIMS)で分析したとこ ろ、シリコン酸化膜の表面10nm付近、およびシリコ ン酸化膜と下地シリコン基板との界面の部分にそれぞれ 10atom%、0.02atom%のCとそれに付随 して若干の水素原子が検出されたのみであった。

> 【0169】表面のCはシリコン基板を大気中に取り出 したときに大気中に浮遊しているハイドロ・カーボン (Cx Hy)が付着したのと、堆積の終了時にマイクロ 波放電を終了してからもなおいくばくかの時間TMS、 トルエンを流さざるをえなかったため生じたものと思わ

【0170】このため、シリコン基板を真空搬送にした り、堆積の終了のシーケンスを変えることにより、表面 のCおよびHはさらに減少できる。同様に、シリコン基 板との界面に存在するCおよびHも堆積開始のガスの供 給のシーケンスに依存するので、これも堆積開始の条件 を最適化することでさらに低減できる。

【0171】このようにシリコン酸化膜中の含有Cおよ びHの量を低減することにより、堆積直後の応力はO. 4~1. 2×10⁻⁸dyne·cm⁻²、窒素雰囲気1気 圧、950℃、60分の熱処理後の応力は0.6~1. 2×10⁻⁸dyne・cm⁻²であり、膜収縮は評価でき ないほどであった。

【0172】また、吸水性を調べたが、全く吸水性を示 さなかった。すなわち、本実施形態のシリコン酸化膜 は、熟酸化により形成したシリコン酸化膜の性能に匹敵 することが分かった。

堆積について示したが、温度等の堆積条件を考えれば、 層間絶縁膜としてA1合金上にも同様に堆積することが でき、事実実験してみると同様の性能を示した。ただ し、本実施形態で示したシリコン酸化膜の下地にAI合 金があるため、熱処理温度は600℃までしか上げてい ない。

21

【0174】なお、本発明は上述した実施例に限定され るものではない。例えば、上記実施例では、TMS、ト ルエン、酸素の組み合わせの場合について説明したが、 本発明は、有機シランとして、例えば、テトラエチルシ ラン (Si (C2 H5)4)、テトラメトキシシラン (Si(OCH3)4)、テトラエトキシシラン(Si (OCH₂ H₅)₄)、ヘキサメチルジシロキサン(S io O (CH3) 6)、テトライソプロポキシシラン (Si (i-C3 H7)4) などのアルコキシシランガ スを用いても同様の効果があった。

【0175】また、膜質改善の添加物質としては、トル エン以外でも、例えば、キシレン、フェニルトリメチル シラン、ジフェニルトリメチルシラン等の他のフェニル 基を含む物質若しくはこれら物質の混合物を用いても、 シリコン酸化膜中のアルキル基等の有機官能基を効果的 に除去できるようになる。

【0176】また、酸素源ガスとしては、O2 ガス以外 でも、例えば、O3 、CO、CO2、NO、N2 O、N O₂ 、H₂ O、H₂ O₂ など他の酸素原子を含む物質の ガスや、上記酸素源ガスをマイクロ波放電で励起してで きるガスを用いても同様の効果があった。その他、本発 明の要旨を逸脱しない範囲で、種々変形して実施でき る。

[0177]

【発明の効果】以上詳述したように本発明によれば、高 品質のシリコン酸化膜を下地に悪影響を与えずに有機系 シランガスを用いたCVD法により形成できるようにな స్ట

【図面の簡単な説明】

【図1】第1、第2の実施形態のシリコン酸化膜の形成 方法で用いる成膜装置の概略構成を示す模式図

【図2】図1の成膜装置に接続された窒素ガス供給装置 の概略構成を示す模式図

【図3】第1、第3の実施形態の方法により形成された シリコン酸化膜の形状を示す断面図

【図4】第2、第4の実施形態の方法により形成された シリコン酸化膜の形状を示す断面図

【図5】第3、第4の実施形態のシリコン酸化膜の形成 方法で用いる成膜装置の概略構成を示す模式図

【図6】第5の実施形態のシリコン酸化膜の形成方法で 用いる成膜装置の概略構成を示す模式図

【符号の説明】

101…真空槽、102…排気口、103…基板支持 台、104…基板、106…ストップ・バルブ、107 …質量流量計、108…ストップ・バルブ、109…ア タッチメント、110…キャビティ、111…Al2 O 3 管、112…アタッテメント、115…配管、116 …ストップ・パルブ、117…質量流量計、118…ス トップ・バルブ、119…ステンレス配管、125…配 管、126…ストップ・パルブ、127…質量流量計、 10 128…ストップ・バルブ、129…配管、130…配 管、131…ストップ・バルブ、132…質量流量計、 133…ストップ・パルブ、134…配管、135,1 35~…銅管、136…シース・ヒーター、141…保 201…配管、202…ストップ・バルブ、203…質 量流量計、204,205…ストップ・バルブ、205 …ストップ・バルブ、206, 208…枝管、207… ストップ・バルブ、208…スパイラル管、210…ス トップ・パルブ、211…液体窒素溜め、212…液体 20 窒素、301…シリコン基板、302…トレンチ溝、3 03…シリコン酸化膜、401…基板、402…熱酸化 シリコン酸化膜、403…配線、404…シリコン酸化 膜、501···真空槽、502···排気口、503···基板支 持台、504…高周波電圧を印加するための電極、50 5…シリコン基板、506…配管、507…ストップ・ バルブ、508…質量流量計、509…ストップ・バル ブ、510…配管、515…配管、516…ストップ・ パルプ、517質量流量計、518…ストップ・バル ブ、519…ステンレス配管、525…配管、526… 30 ストップ・バルブ、527…質量流量計、528…スト ップ・バルブ、529…配管、530…配管、531… ストップ・バルブ、532…質量流量計、533…スト ップ・バルブ、534…配管、535, 535~…銅 管、536…シース・ヒーター、541…熱源、601 …シリコン基板、602…トレンチ溝、603…シリコ ン酸化膜、701…反応炉、702,702′…電気ヒ ーター、703…基板支持台、704…基板、705… ステンレス管、706…排気用の配管、707、708 …真空フランジ、709…圧力計、711…配管、71 2…ストップ・バルブ、 713…質量流量計、 714… ストップ・バルブ、715…配管、721…配管、72 2…ストップ・バルブ、723…賃量流量計、724… ストップ・バルブ、725…アタッチメント、726… Al2 O3 管、121…アタッチメント、128…キャ ビティ、731…配管、732…ストップ・パルブ、7

33…質量流量計、734…ストップ・パルプ、735

…配管

【図1】

[図2]

【図5】

【図3】

(c)

【図4】

403

【図6】

