A Python framework for rapid prototyping in inverse problems

Jevgenija Rudzusika¹ Jonas Adler² Holger Kohr³ Ozan Öktem¹

¹Department of Mathematics KTH - Royal Institute of Technology, Stockholm

²Google DeepMind, London

³Thermo Fisher Scientific, Eindhoven

► Multiple modalities: CT, CBCT, PET, SPECT, spectral CT, phase contrast CT, electron tomography, MRI, HADAF-STEM ...

- ► Multiple modalities: CT, CBCT, PET, SPECT, spectral CT, phase contrast CT, electron tomography, MRI, HADAF-STEM ...
- ► Collaborative research: Need to share implementations of common concepts

- ► Multiple modalities: CT, CBCT, PET, SPECT, spectral CT, phase contrast CT, electron tomography, MRI, HADAF-STEM ...
- ► Collaborative research: Need to share implementations of common concepts
- ► Reproducible research: Not enough to share theory and pseudocode, also need to share data and concrete implementations
 - → Software components need to be usable by others.

- ► Multiple modalities: CT, CBCT, PET, SPECT, spectral CT, phase contrast CT, electron tomography, MRI, HADAF-STEM ...
- ► Collaborative research: Need to share implementations of common concepts
- Reproducible research: Not enough to share theory and pseudocode, also need to share data and concrete implementations
 Software components need to be usable by others.
- ► Flexibility: Mathematical structures/notions *re-usable across modalities*→ Make it easy to "play around" with new ideas and combine concepts.

Jevgenija Budzusika (jevaks@kth.se)

- ► Multiple modalities: CT, CBCT, PET, SPECT, spectral CT, phase contrast CT, electron tomography, MRI, HADAF-STEM ...
- ► Collaborative research: Need to share implementations of common concepts
- ▶ Reproducible research: Not enough to share theory and pseudocode, also need to share data and concrete implementations
 → Software components need to be usable by others.
- ► Flexibility: Mathematical structures/notions *re-usable across modalities*~ Make it easy to "play around" with new ideas and combine concepts.

Conclusion: Need a *common software framework* to exchange implementations of concepts and methods.

Requirements on a software framework:

▶ Allow formulation and solution of inverse problems in a *common language*.

Requirements on a software framework:

- ▶ Allow formulation and solution of inverse problems in a *common language*.
- ► Make implementations *re-usable* and *extendable*.

Requirements on a software framework:

- ▶ Allow formulation and solution of inverse problems in a *common language*.
- ▶ Make implementations *re-usable* and *extendable*.
- Enable fast prototyping on clinically relevant data.

Requirements on a software framework:

- ▶ Allow formulation and solution of inverse problems in a *common language*.
- ▶ Make implementations *re-usable* and *extendable*.
- Enable fast prototyping on clinically relevant data.
- ► Leverage the power of *existing libraries*.

Requirements on a software framework:

- ▶ Allow formulation and solution of inverse problems in a *common language*.
- ▶ Make implementations *re-usable* and *extendable*.
- ► Enable fast prototyping on clinically relevant data.
- Leverage the power of existing libraries.

Initial situation: No existing framework fit our purpose.

Main components:

► Functional analysis module

Handling of *vector spaces*, *operators*, *discretizations* – generally with a *continuous* point of view

- Functional analysis module
 Handling of vector spaces, operators, discretizations generally with a continuous point of view
- Optimization methods module
 General-purpose optimization methods suitable for solving inverse problems.

- Functional analysis module
 Handling of vector spaces, operators, discretizations generally with a continuous point of view
- Optimization methods module General-purpose optimization methods suitable for solving inverse problems.
- ► Tomography module
 Acquisition *geometries* and *forward operators* for tomographic applications.

- Library of atomic mathematical components
 - Deformation operators
 - Function transforms: wavelet, Fourier, shearlet, ...
 - Differential operators: partial derivative, gradient, Laplacian, ...
 - Discretization-related: (re-)sampling, interpolation, domain extension, ...

Main components:

- Library of atomic mathematical components
 - Deformation operators
 - Function transforms: wavelet, Fourier, shearlet, ...
 - Differential operators: partial derivative, gradient, Laplacian, ...
 - Discretization-related: (re-)sampling, interpolation, domain extension, ...

Utility functions

- Visualization: Slice viewer, real time plotting, ...
- Phantoms: Shepp-Logan, FORBILD, Defrise, ...
- Data I/O: MRC2014, Mayo Clinic, …

- User-contributed modules
 - "Fast track" for experimental or slightly exotic code
 - Figures of Merit (FOMs) for image quality assessment
 - Handlers for specific data formats or geometries
 - Functionality to download and import public datasets
 - Wrappers for Deep Learning frameworks: Tensorflow, Theano, Pytorch, ...

Consider a TV minimization problem

$$\min_{f \in X} \left[\|\mathcal{T}(f) - g\|_{Y}^{2} + \lambda \operatorname{TV}(f) \right]$$

Components:

► Reconstruction space *X*

Consider a TV minimization problem

$$\min_{f \in X} \left[\|\mathcal{T}(f) - g\|_{Y}^{2} + \lambda \operatorname{TV}(f) \right]$$

- ► Reconstruction space *X*
- Data space Y

Consider a TV minimization problem

$$\min_{f \in X} \left[\| \mathcal{T}(f) - g \|_{Y}^{2} + \lambda \operatorname{TV}(f) \right]$$

- ► Reconstruction space *X*
- ► Data space Y
- ► Forward operator $\mathcal{T}: X \to Y$

Consider a TV minimization problem

$$\min_{f \in X} \left[\| \mathcal{T}(f) - g \|_{Y}^{2} + \lambda \operatorname{TV}(f) \right]$$

- ► Reconstruction space *X*
- ► Data space Y
- ► Forward operator $\mathcal{T}: X \to Y$
- ▶ Data *g* ∈ *Y*

Consider a TV minimization problem

$$\min_{f \in X} \left[\| \mathcal{T}(f) - g \|_{Y}^{2} + \lambda \operatorname{TV}(f) \right]$$

Components:

- ► Reconstruction space *X*
- ► Data space Y
- ▶ Forward operator $\mathcal{T}: X \to Y$
- ▶ Data $g \in Y$

▶ Data discrepancy functional $\|\cdot - g\|_Y^2$

Consider a TV minimization problem

$$\min_{f \in X} \left[\| \mathcal{T}(f) - g \|_{Y}^{2} + \lambda \operatorname{TV}(f) \right]$$

- ► Reconstruction space *X*
- ► Data space Y
- ► Forward operator $\mathcal{T}: X \to Y$
- ▶ Data $g \in Y$

- ▶ Data discrepancy functional $\|\cdot g\|_Y^2$
- ightharpoonup Regularization parameter $\lambda>0$

Consider a TV minimization problem

$$\min_{f \in X} \left[\| \mathcal{T}(f) - g \|_{Y}^{2} + \lambda \operatorname{TV}(f) \right]$$

- ► Reconstruction space *X*
- ► Data space Y
- ► Forward operator $\mathcal{T}: X \to Y$
- ▶ Data $g \in Y$

- ▶ Data discrepancy functional $\|\cdot g\|_Y^2$
- ▶ Regularization parameter $\lambda > 0$
- ► Regularization functional TV(·)

Consider a TV minimization problem

$$\min_{f \in X} \left[\| \mathcal{T}(f) - g \|_{Y}^{2} + \lambda \operatorname{TV}(f) \right]$$

Components:

- ► Reconstruction space *X*
- ► Data space Y
- ► Forward operator $\mathcal{T}: X \to Y$
- ▶ Data $g \in Y$

- ▶ Data discrepancy functional $\|\cdot g\|_Y^2$
- ▶ Regularization parameter $\lambda > 0$
- ightharpoonup Regularization functional $TV(\cdot)$

Consider a TV minimization problem

$$\min_{f \in X} \left[\| \mathcal{T}(f) - g \|_{Y}^{2} + \lambda \operatorname{TV}(f) \right]$$

- ► Reconstruction space *X*
- ► Data space Y
- ► Forward operator $\mathcal{T}: X \to Y$
- ▶ Data $g \in Y$

- ▶ Data discrepancy functional $\|\cdot g\|_Y^2$
- ▶ Regularization parameter $\lambda > 0$
- ightharpoonup Regularization functional $\mathrm{TV}(\,\cdot\,)$

- (almost) freely exchangeable "modules" in the mathematical formulation
- → ODL maps them to software objects as closely as possible

Landweber's method: Determine f from given data $g = \mathcal{T}(f)$ and initial guess f_0 by

$$f_{k+1} = f_k + \omega [\partial \mathcal{T}(f_k)]^* (g - \mathcal{T}(f_k)), \quad k = 0, 1, \dots, K - 1$$

Landweber's method: Determine f from given data $g = \mathcal{T}(f)$ and initial guess f_0 by

$$f_{k+1} = f_k + \omega [\partial \mathcal{T}(f_k)]^* (g - \mathcal{T}(f_k)), \quad k = 0, 1, \dots, K - 1$$

```
def landweber(T, f, g, omega, K):
    for i in range(K):
        f += omega * T.derivative(f).adjoint(g - T(f))
```

Landweber's method: Determine f from given data $g = \mathcal{T}(f)$ and initial guess f_0 by

$$f_{k+1} = f_k + \omega [\partial \mathcal{T}(f_k)]^* (g - \mathcal{T}(f_k)), \quad k = 0, 1, \dots, K - 1$$

```
def landweber(T, f, g, omega, K):
    for i in range(K):
        f += omega * T.derivative(f).adjoint(g - T(f))
```

► Completely generic (expects operator, data, plus some parameters)

Landweber's method: Determine f from given data $g = \mathcal{T}(f)$ and initial guess f_0 by

$$f_{k+1} = f_k + \omega [\partial \mathcal{T}(f_k)]^* (g - \mathcal{T}(f_k)), \quad k = 0, 1, \dots, K - 1$$

```
def landweber(T, f, g, omega, K):
    for i in range(K):
        f += omega * T.derivative(f).adjoint(g - T(f))
```

- Completely generic (expects operator, data, plus some parameters)
- ► Uses abstract properties of operators in the iteration:

```
\rightsquigarrow T(f) \longleftrightarrow \mathcal{T}(f) (operator evaluation)
```

$$\rightsquigarrow$$
 T.derivative(f) $\longleftrightarrow \partial \mathcal{T}(f)$ (derivative operator at f)

 \rightarrow T.derivative(f).adjoint $\longleftrightarrow [\partial \mathcal{T}(f)]^*$ (adjoint of the derivative at f)

Landweber's method: Determine f from given data $g = \mathcal{T}(f)$ and initial guess f_0 by

$$f_{k+1} = f_k + \omega [\partial \mathcal{T}(f_k)]^* (g - \mathcal{T}(f_k)), \quad k = 0, 1, \dots, K - 1$$

```
def landweber(T, f, g, omega, K):
    for i in range(K):
        f += omega * T.derivative(f).adjoint(g - T(f))
```

► T is an Operator that implements a *generic, abstract* interface: domain, range, derivative, adjoint, operator *evaluation*

Landweber's method: Determine f from given data $g = \mathcal{T}(f)$ and initial guess f_0 by

$$f_{k+1} = f_k + \omega [\partial \mathcal{T}(f_k)]^* (g - \mathcal{T}(f_k)), \quad k = 0, 1, \dots, K - 1$$

```
def landweber(T, f, g, omega, K):
    for i in range(K):
        f += omega * T.derivative(f).adjoint(g - T(f))
```

- ► T is an Operator that implements a *generic, abstract* interface: domain, range, derivative, adjoint, operator *evaluation*
- ► Lots of tools to build complex operators from simple ones: operator arithmetic T + S, composition T * S, product space operators etc.

Landweber's method: Determine f from given data $g = \mathcal{T}(f)$ and initial guess f_0 by

$$f_{k+1} = f_k + \omega [\partial \mathcal{T}(f_k)]^* (g - \mathcal{T}(f_k)), \quad k = 0, 1, \dots, K - 1$$

```
def landweber(T, f, g, omega, K):
    for i in range(K):
        f += omega * T.derivative(f).adjoint(g - T(f))
```

- ► T is an Operator that implements a *generic, abstract* interface: domain, range, derivative, adjoint, operator *evaluation*
- ► Lots of tools to build complex operators from simple ones: operator arithmetic T + S, composition T * S, product space operators etc.
- ► There are *many* readily implement operators in ODL, all implementing the above interface

Design principle: compartmentalization

 Separates the "what" (abstract interface) of an object class from the "how" (concrete implementation)

Example: Fourier transform using NumPy FFT vs. pyFFTW vs. cuFFT

Design principle: compartmentalization

- Separates the "what" (abstract interface) of an object class from the "how" (concrete implementation)
 Example: Fourier transform using NumPy FFT vs. pyFFTW vs. cuFFT
- ► Allows building generic APIs with the possibility for a new implementation in the future (extensibility)
 - Example: L1Norm as a concrete realization of the abstract Functional

Design principle: compartmentalization

- ➤ Separates the "what" (abstract interface) of an object class from the "how" (concrete implementation)

 Example: Fourier transform using NumPy FFT vs. pyFFTW vs. cuFFT
- ► Allows building generic APIs with the possibility for a new implementation in the future (*extensibility*)

 Example: L1Norm as a concrete realization of the abstract Functional
- ▶ Documentation is bundled with the object and immediately visible to the user

Inverse Problem: Determine attenuation coefficient $\mu \colon \Omega \to \mathbb{R}$ from its ray transform $\mathcal{P} \colon L^2(\Omega) \to Y$ defined as

$$\mathcal{P}(\mu)(\ell) \coloneqq \int_{\ell} \mu(\mathbf{x}) d\mathbf{x}$$

for all lines ℓ .

Inverse Problem: Determine attenuation coefficient $\mu \colon \Omega \to \mathbb{R}$ from its ray transform $\mathcal{P} \colon L^2(\Omega) \to Y$ defined as

$$\mathcal{P}(\mu)(\ell) \coloneqq \int_{\ell} \mu(\mathbf{x}) d\mathbf{x}$$

for all lines ℓ .

Given: Noisy data

$$g(\ell) \approx \mathcal{P}(\mu)(\ell)$$

Inverse Problem: Determine attenuation coefficient $\mu \colon \Omega \to \mathbb{R}$ from its ray transform $\mathcal{P} \colon L^2(\Omega) \to Y$ defined as

$$\mathcal{P}(\mu)(\ell) \coloneqq \int_{\ell} \mu(\mathbf{x}) d\mathbf{x}$$

for all lines ℓ .

Given: Noisy data

$$g(\ell) \approx \mathcal{P}(\mu)(\ell)$$

Regularization: Conjugate gradient (CGLS) with early termination

Implementation steps:

▶ Set up uniformly *discretized* image space $L^2(\Omega)$ with a rectangular domain Ω and $n_X \times n_V$ pixels

- ▶ Set up uniformly *discretized* image space $L^2(\Omega)$ with a rectangular domain Ω and $n_x \times n_y$ pixels
- ► Create parallel beam geometry with *P* angles and *K* detector pixels

- ▶ Set up uniformly *discretized* image space $L^2(\Omega)$ with a rectangular domain Ω and $n_x \times n_y$ pixels
- ► Create parallel beam geometry with *P* angles and *K* detector pixels
- ▶ Define ray transform \mathcal{P} : $L^2(\Omega) \to Y$ (the space Y is inferred from the geometry)

- ▶ Set up uniformly *discretized* image space $L^2(\Omega)$ with a rectangular domain Ω and $n_x \times n_y$ pixels
- ► Create parallel beam geometry with *P* angles and *K* detector pixels
- ▶ Define ray transform $\mathcal{P}: L^2(\Omega) \to Y$ (the space Y is inferred from the geometry)
- ► Solve inverse problem using CGLS

- ▶ Set up uniformly *discretized* image space $L^2(\Omega)$ with a rectangular domain Ω and $n_x \times n_y$ pixels
- ► Create parallel beam geometry with *P* angles and *K* detector pixels
- ▶ Define ray transform $\mathcal{P}: L^2(\Omega) \to Y$ (the space Y is inferred from the geometry)
- ► Solve inverse problem using CGLS
- Display the results

```
# Create reconstruction space and ray transform
space = odl.uniform_discr([-20, -20], [20, 20], shape=(256, 256))
geometry = odl.tomo.parallel beam geometry(space, num angles=1000)
ray transform = odl.tomo.RayTransform(space, geometry)
# Create artificial data with around 5 % noise (data max = 10)
phantom = odl.phantom.shepp logan(space, modified=True)
g = ray_transform(phantom)
g noisy = g + 0.5 * odl.phantom.white noise(ray transform.range)
# Solve inverse problem
x = space.zero()
odl.solvers.conjugate gradient normal(ray transform, x, g noisy, niter=20)
# Display results
phantom.show('Phantom')
g_noisy.show('Noisy data')
x.show('CGLS after 20 iterations')
```


Conclusions and Outlook

► Reproducible – scalable research requires rethinking scientific software

github.com/odlgroup/odl

Conclusions and Outlook

- ► Reproducible scalable research requires rethinking scientific software
- ► Anyone is welcome to use and/or contribute!

github.com/odlgroup/odl