Weather Forecasting

Time Series Analysis and Models Final Project – Fall 2023

Edison M. Murairi

The George Washington University and University of Maryland College Park

December 12, 2023

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- 6 Holt Winter Method
- 6 Feature Selection
- Base Models
- Multiple linear regression
- ARMA/ARIMA/SARIMA/Multiplicative model
- 10 Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Introduction

Problem Statement

Predict the temperature of a region based on physical indicators.

City: Jena in Germany

• Area: 44.31 sq mi (114.76 km²)

Population: 110,502

Introduction

Dataset

Weather information collected every 10 minutes between January 1st, 2009 and January 1st 2016

- 12 Numerical variables: Pressure, Temperature relative to humidity, relative humidity, saturation vapor pressure, vapor pressure, vapor pressure deficit, specific humidity, water vapor concentration, airtight, wind speed, maximum wind speed, wind direction
- Categorical variables: None
- Downsample data (every 12 hours): 5839 observations.

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- 6 Holt Winter Method
- 6 Feature Selection
- Base Models
- Multiple linear regression
- ARMA/ARIMA/SARIMA/Multiplicative model
- 10 Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Temperature Time Series Plot

Figure: Raw data

Temperature ACF Plot

Figure: ACF and PACF of Temperature

correlation Heatmap

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- 6 Holt Winter Method
- 6 Feature Selection
- Base Models
- Multiple linear regression
- 9 ARMA/ARIMA/SARIMA/Multiplicative model
- Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Rolling Mean and Variance

ADF and KPSS Test

Test	Test Stats.	P-Value	C. Val 1%	C. Val. 5%	C. Val. 10%
ADF	-3.210	0.019	-3.433	-2.863	-2.567
KPSS	0.446	0.057	0.739	0.574	0.347

Table: ADF and KPSS test results

Results: Stationary

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- 5 Holt Winter Method
- 6 Feature Selection
- Base Models
- Multiple linear regression
- ARMA/ARIMA/SARIMA/Multiplicative model
- 10 Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Trend-Seasonality Decomposition

Strengths of Trend and Seasonality

 F_T and F_s measure the strength of the trend and seasonality component respectively.

$$F_T = 0.0784$$

$$F_S = 0.8362$$

Differencing

ullet We will perform s=365 days later for SARIMA

Figure: Differenced data

ADF and KPSS Test

Test	Test Stats.	P-Value	C. Val 1%	C. Val. 5%	C. Val. 10%
ADF	-14.164	0.000	-3.433	-2.863	-2.567
KPSS	0.277	0.100	0.739	0.463	0.347

Table: ADF and KPSS test after seasonal differencing with $s=365\ \mathrm{days}$

Result: Stationary

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- **5** Holt Winter Method
- 6 Feature Selection
- Base Models
- Multiple linear regression
- ARMA/ARIMA/SARIMA/Multiplicative model
- 10 Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Holt Winter Method

Figure: Holt Winter Model

- 6 Feature Selection

Frame Title

We perform our feature selection using Principal Component Analysis.

• Condition number = 206021.99

Figure: Percentage of Variance Explained by each variable

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- 6 Holt Winter Method
- 6 Feature Selection
- Base Models
- Multiple linear regression
- ARMA/ARIMA/SARIMA/Multiplicative model
- 10 Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Naive and Average Method

Figure: Training data, testing data, one-step prediction and h-step prediction for the naive method and average method models.

Drift and Simple Exponential Smoothing (SES) Method

Figure: Training data, testing data, one-step prediction and h-step prediction for the drift method and SES models.

Base Models MSE

Model	One-Step MSE	One-Step Q	H-Step MSE	H-Step Q
Naive	30.851	11201	64.135	209.847
Average	62.775	87705.827	57.778	209.847
Drift	0.071	5871	91.607	226.600
SES	33.469	40104.049	63.622	209.847

Note, the fact that some h-step Q values are identical is odd although it is not obvious what may cause that, and perhaps it might be due to rounding.

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- 6 Holt Winter Method
- 6 Feature Selection
- Rase Models
- Multiple linear regression
- ARMA/ARIMA/SARIMA/Multiplicative model
- 10 Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Multiple Linear Regression Results

Dep. Variable:	T	R-squared (uncentered):	0.957
Model:	OLS	Adj. R-squared (uncentered):	0.957
Method:	Least Squares	F-statistic:	2.612e + 04
Date:	Mon, 11 Dec 2023	Prob (F-statistic):	0.00
Time:	20:38:12	Log-Likelihood:	-5449.0
No. Observations:	2336	AIC:	1.090e + 04
Df Residuals:	2334	BIC:	1.091e + 04
Df Model:	2		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
p Tdew	0.0039 1.1207	6.36e-05 0.008	61.845 145.375	0.000 0.000	0.004 1.106	0.004 1.136
Omnib	111201	150.23		oin-Wats		1.058
Prob(C)mnibus): 0.000	Jarq	ue-Bera	(JB):	178.641
Skew:		0.667	\mathbf{Prob}	o(JB):		1.62e-39
Kurtos	is:	3.235	Cone	d. No.		148.

Figure: Multiple Linear Regression Results

Multiple Linear Regression Tests

1. F Test

Test if each coefficient is significant and different from zero

F Test Stat.	P Value	$DF_{L}denom$	DF_num
17902.69	0.0	2.33×10^3	1

2. T tests

Test if the two values are significantly different

	coef.	std. err.	t	P > t	[0.025 0.975]
c_0	-1.1208	0.008	-132.708	0.000	-1.137 -1.104

- ARMA/ARIMA/SARIMA/Multiplicative model

GPAC Table

Figure: GPAC Table after differencing $\nabla^{30}\nabla_{365}$

Orders selection

We select

- ullet AR order $\hat{n}_a=1$ and MA order $\hat{n}_b=0$
- ullet AR order $\hat{n}_a=2$ and MA order $\hat{n}_b=3$

- Models Parameters

Parameters Determination

LM Algorithm: $a_1 \approx -0.46622$ and $-0.50609 < a_1 < -0.42636$

Dep. Variable:		\mathbf{T}	\mathbf{T}		No. Observations:		1971
Model:		ARIMA(1,	0, 0)	Lo	g Likelil	$\mathbf{100d}$	20880.626
Date:	N	Ion, 11 De	c 2023	\mathbf{AI}	\mathbf{C}		-41755.252
Time:		19:21:5	5	\mathbf{BI}	\mathbf{C}		-41738.493
Sample:		01-01-20	010	HC	ЯС		-41749.094
		- 05-25-2	015				
Covariance Type: o							
	coef	std err	\mathbf{z}		P> z	[0.025]	0.975]
const	2.933e-10	0.001	3.75e-	-07	1.000	-0.002	0.002
ar.L1	0.4650	2.72e-08	1.71e-	⊢07	0.000	0.465	0.465
sigma2	1e-10	4.46e-11	2.24	0.	0.025	$1.25\mathrm{e}\text{-}11$	1.87e-10
Ljung-	Box (L1)	(Q):	6.60 Jarque-Bera (JB):		253.16		
Prob(Q):		0.01 Prob(JB) :		0.00			
Heteroskedasticity (H):			0.97	Skev	w:		-0.16
Prob(H) (two-sided):		0.72	Kur	tosis:		4.73	

Figure: Order determination with $\hat{n}_a=1$ and $\hat{n}_b=0$

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- 6 Holt Winter Method
- 6 Feature Selection
- Base Models
- Multiple linear regression
- ARMA/ARIMA/SARIMA/Multiplicative model
- 10 Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Forecast Function

$$(1 + a_1 q^{-1}) (1 - q^{-s}) y_t = \varepsilon_t$$
 (1)

where $a_1 = -0.46622$ and s = 365 days. We can rewrite

$$(1 + a_1 q^{-1}) (y_t - y_{t-s}) = \varepsilon_t$$

$$y_t - y_{t-s} + a_1 (y_{t-1} - y_{t-s-1}) = \varepsilon_t$$

$$y_{t+h} = y_{t+h-s} - a_1 (y_{t+h-1} - y_{t+h-s-1}) + \varepsilon_{t+h}$$
(2)

Then, we have

$$\hat{y}_t(h) = E[y(t+h-s)] - a_1 E[y(t+h-1)] + a_1 E[y(t+h-s-1)]$$
(3)

Forecast Function

• For h = 1:

$$\hat{y}_t(1) = y(t+1-s) - a_1 y(t) + a_1 y(t-s) \tag{4}$$

• For $2 \le h \le s$

$$\hat{y}_t(h) = y(t+h-s) - a_1\hat{y}_t(h-1) + a_1y(t+h-s-1)$$
 (5)

• For h > s:

$$\hat{y}_t(h) = \hat{y}_t(h-s) - a_1\hat{y}_t(h-1) + a_1\hat{y}_t(h-s-1)$$
(6)

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- 6 Holt Winter Method
- 6 Feature Selection
- Base Models
- Multiple linear regression
- 9 ARMA/ARIMA/SARIMA/Multiplicative model
- 10 Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Residual Analysis

- With Q=7.4569 and Qc=33.9303, the data are uncorellated (white)
- Variance of Error 0.000
- Forecast Error MSE 0.000
- Variance of the Forecast Error 0.000
- Estimated variance of error: 28.96940
- The model is unbiased

Residual Analysis

Figure: ACF and PACF Plot of residuals

- Introduction
- Exploratory Data Analysis
- Stationarity
- Trend Seasonality Decomposition
- 6 Holt Winter Method
- 6 Feature Selection
- Base Models
- Multiple linear regression
- ARMA/ARIMA/SARIMA/Multiplicative model
- 10 Models Parameters
- Forecast Function
- Residual Analysis
- Model Selection

Model selection

We will use MSE as the metric

Model	MSE
Naive Method	30.851
Average Method	62.775
Drift Method	0.071
SES Method	33.469
Holt Winter	16.400
Linear Regression	6.217
SARIMA	$\sim 10^{-17}$

We select **SARIMA**

Final Model

Figure: Final Model