Introduction à la mécanique Systèmes de coordonnées A.E. Badel

Contenus thématiques: Thème 2: mouvements et interactions (1)

Notions et contenus	Capacités exigibles
2.1. Description et paramétrage du mouvement	
d'un point	
Repérage dans l'espace et dans le temps	
Espace et temps classiques.	Citer une situation où la description classique de l'es-
	pace ou du temps est prise en défaut.
Caractère absolu des distances et des intervalles de	
temps.	
Systèmes de coordonnées cartésiennes, cylindriques	Exprimer à partir d'un schéma le déplacement
et sphériques.	élémentaire dans les différents systèmes de coor-
	données, construire le trièdre local associé.
	Établir les expressions des composantes des vecteurs
	position, déplacement élémentaire dans les seuls cas
	des coordonnées cartésiennes et cylindriques.

Bref historique

Epoque	Phénomène	Noms
Antiquité	centre de gravité, équilibre du levier	Archimède (-287/-212)
	hydrostatique	
	théorie aristotélicienne	Aristote (-384/-322)
XVI ^e siècle	moments statiques	Léonard de Vinci (1452-1519)
Renaissance	réfutation du modèle de l'Univers de Ptolémée	Nicolas Copernic (1473-1543)
	description cinématique du système solaire	
	lois relatives au mouvement des planètes	Johannes Kepler (1571-1630)
	notion d'accélération, pendule, plan incliné, chute	Galilée (1564-1642)
	libre	
1632	principe de relativité galiléenne et principe d'iner-	
	tie	
$XVII^e$ siècle	hydrostatique	Blaise Pascal (1623-1662)
	mouvements de rotation, oscillations du pendule,	Christiaan Huygens (1629-1695)
	énergie cinétique et force centrifuge	
	les trois lois de Newton, théorie de la gravitation	Isaac Newton (1642-1727)
	universelle	
$XVIII^e$ siècle	mécanique analytique	Louis-Joseph Lagrange (1736-
		1813)
		Jean Le Rond d'Alembert (1717-
		1783)
		Leonhard Euler (1707-1783)

	équations de la mécanique des fluides	Leonhard Euler (1707-1783)
	méthode des perturbations appliquée au mouve-	Pierre-Simon Laplace (1749-
	ment des planètes	1827)
XIX ^e siècle	prédiction de l'existence de Neptune, avance du périhélie de Mercure et limite de la mécanique classique	Urbain Le Verrier (1811-1877)
	mécanique mathématique	William Rowan Hamilton (1805-1865)
	extensions aux milieux continus	Henri Poincaré (1854-1912)
XX^e siècle	mécanique relativiste, mécanique quantique	
années 1970	systèmes chaotiques	
	recherche sur les vibrations et les oscillations	
	couplés	

2

Objet de la mécanique

2.1 Quelques définitions

cinématique: étude du mouvement sans chercher les causes dynamique: étude du mouvement avec lien avec les causes

statique: étude des équilibres

2.2 Cadre de la mécanique newtonienne

mètre: distance parcourue dans le vide par la lumière pendant une durée de $\frac{1}{299792458}$ seconde seconde: durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre deux raies hyperfines de l'état fondamental de l'isotope 133 du césium

hypothèses du cadre newtonien:

- précision illimité de la position et de la vitesse
- universalité du temps
- espace euclidien
- continuité du temps et de l'espace

3

Systèmes de coordonnées

3.1 Une base fixe : les coordonnées cartésiennes

3.1.1. Définition

$$\overrightarrow{OM} = x\overrightarrow{u_x} + y\overrightarrow{u_y} + z\overrightarrow{u_z}$$

3.1.2. Déplacement élémentaire

$$d\overrightarrow{OM} = dx\overrightarrow{u_x} + dy\overrightarrow{u_y} + dz\overrightarrow{u_z}$$

3.1.3. Volume élémentaire

 $d\tau = dxdydz$

3.1.4. Surfaces élémentaires

- \bullet dxdy.
- $\mathrm{d}x\mathrm{d}z$,
- $\mathrm{d}y\mathrm{d}z$.

3.2 Une base mobile : les coordonnées cylindriques

3.2.1. Définition

$$\overrightarrow{OM} = r\overrightarrow{u_r} + z\overrightarrow{u_z}$$
 avec $\theta \in [0; 2\pi]$ et $r > 0$

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \operatorname{Arctan} \frac{y}{x} \\ z = z \end{cases}$$

base mobile: $\overrightarrow{u_r}$ unitaire suivant $\overrightarrow{OM_P}$ et $\overrightarrow{u_\theta}$ unitaire issu de rotation de $\frac{\pi}{2}$ de $\overrightarrow{u_r}$ $\left\{ \begin{array}{l} \overrightarrow{u_r} = \cos\theta\overrightarrow{u_x} + \sin\theta\overrightarrow{u_y} \\ \overrightarrow{u_\theta} = -\sin\theta\overrightarrow{u_x} + \cos\theta\overrightarrow{u_y} \end{array} \right.$

$$\begin{cases} \overrightarrow{u_r} = \cos\theta \overrightarrow{u_x} + \sin\theta \overrightarrow{u_y} \\ \overrightarrow{u_\theta} = -\sin\theta \overrightarrow{u_x} + \cos\theta \overrightarrow{u_y} \end{cases}$$

3.2.2. Déplacement élémentaire

$$d\overrightarrow{OM} = dr\overrightarrow{u_r} + rd\theta\overrightarrow{u_\theta} + dz\overrightarrow{u_z}$$

3.2.3. Volume élémentaire

 $d\tau = r dr d\theta dz$

3.2.4. Surfaces élémentaires

- $r dr d\theta$,
- $\mathrm{d}r\mathrm{d}z$,
- $rd\theta dz$.

Pour tout vecteur $\overrightarrow{w}: \overrightarrow{w} = w_r \overrightarrow{u_r} + w_\theta \overrightarrow{u_\theta} + w_z \overrightarrow{u_z}$ w_r : composante radiale, w_θ : composante orthoradiale

et w_z : composante axiale.

3.3 Une autre base mobile : les coordonnées sphériques

3.3.1. Définition

$$\overrightarrow{OM} = r\overrightarrow{u_r}$$
 avec $\theta \in [0; \pi]$, $\varphi \in [0; 2\pi]$ et $r > 0$

parallèle: cercle de centre H passant par M parallèle à (xOy)

méridien: cercle de centre O passant par M perpendiculaire à (xOy)

plan méridien: plan contenant méridien

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \\ z = r \cos \theta \end{cases}$$

projection dans le plan méridien

Pour tout vecteur \overrightarrow{w} : $\overrightarrow{w} = w_r \overrightarrow{u_r} + w_\theta \overrightarrow{u_\theta} + w_\varphi \overrightarrow{u_\varphi}$

3.3.2. Déplacement élémentaire

$$d\overrightarrow{OM} = dr\overrightarrow{u_r} + rd\theta\overrightarrow{u_\theta} + r\sin\theta d\varphi\overrightarrow{u_\varphi}$$

3.3.3. Volume élémentaire

 $d\tau = r^2 \sin\theta dr d\theta d\varphi$

3.3.4. Surfaces élémentaires

- $r dr d\theta$.
- $r dr \sin \theta d\varphi$,
- $r^2 \sin \theta d\theta d\varphi$.

3.4 Base liée au mouvement : la base de Frenet

Cf. paragraphe suivant

Dérivée d'un vecteur unitaire tournant par rapport à l'angle de rotation

4.1 Cas des coordonnées polaires

$$\begin{cases} d\overrightarrow{u_r} = d\theta \overrightarrow{u_\theta} \\ d\overrightarrow{u_\theta} = -d\theta \overrightarrow{u_r} \end{cases}$$

projection dans le plan xOy

 $\overrightarrow{u_r}$ unitaire suivant \overrightarrow{OM}

 $\overrightarrow{u_{\theta}}$ unitaire dans méridien par rotation de $\frac{\pi}{2}$

 $\overrightarrow{u_{\varphi}}$ unitaire pour $(\overrightarrow{u_r}, \overrightarrow{u_{\theta}}, \overrightarrow{u_{\varphi}})$ directe donc perpendiculaire au plan méridien et tangent au parallèle passant par M

 w_r : composante radiale

4.2 Cas général

 \overrightarrow{u} tel que $\overrightarrow{u}^2 = 1$ (unitaire)

$$\overrightarrow{u}.\frac{\mathrm{d}\overrightarrow{u}}{\mathrm{d}\alpha}=0 \text{ soit } \frac{\mathrm{d}\overrightarrow{u}}{\mathrm{d}\alpha} \text{ perpendiculaire à } \overrightarrow{u}$$

4.3 Base liée au mouvement : la base de Frenet

abscisse curviligne s(t) soit $\mathrm{d}s = \lim_{M' \to M} MM'$ rayon de courbure $R = \frac{\mathrm{d}s}{\mathrm{d}\alpha}$

$$\frac{\mathrm{d}\overrightarrow{u_t}}{\mathrm{d}\alpha} = \overrightarrow{u_n} \text{ et } \frac{\mathrm{d}\overrightarrow{u_t}}{\mathrm{d}s} = \frac{\overrightarrow{u_n}}{R}$$