Sample Solution for Exercise: 1 Total Score: 15

Subtask	Th	Points
1.1	A – pump	2.5
	B – pressure relief valve	
	C – (return) filter	
	D – $4/3$ -port valve	
	E-cylinder (0,5 Point each)	
1.2	suction filter (cf. sketch)	1.0
1.3	$\rho g \pi \frac{d^2}{4} \cdot x + \rho l \pi \frac{d^2}{4} \cdot \ddot{x} = 0 \Rightarrow \frac{g}{l} \cdot x + \ddot{x} = 0 \qquad (\Rightarrow \omega^2 = \frac{g}{l})$	3.0
1.4	$L = \frac{l_S \cdot \rho \cdot 4}{\pi \cdot d_S^2} = \frac{25m \cdot 1000kg/m^3 \cdot 4}{\pi \cdot 10^{-4}m^2} = 0.318 \cdot 10^9 kg/m^4$	1.0
	$L = 0.318 \cdot 10^9 \frac{Pa}{m^3 / s^2} = 3.18 \frac{bar}{l / s^2}$	
1.5	$C = \frac{\pi \cdot d_G^2 \cdot x}{4\rho \cdot g \cdot x} = \frac{\pi \cdot 10^{-4} m^2}{4 \cdot 10^3 kg / m^3 \cdot 9.81 m / s^2} C = 0.801 \cdot 10^{-8} m^3 / Pa = 0.801 l / bar$	2.0
1.6	solution a: $f = \frac{1}{2\pi \cdot \sqrt{L \cdot C}} = \frac{1}{2\pi \cdot \sqrt{3.18 \cdot 0.801}} s^{-1} = 0.0997 Hz$	1.5
	solution b: $f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \cdot \sqrt{\frac{g}{l}} = \frac{\sqrt{9.81/25}}{2\pi} s^{-1} = 0.0997 Hz$	
1.7	Bernoulli: (kin. energy can here be neglected exeptionally)	
	$p_{P} = \frac{\rho \cdot \lambda}{2} \cdot \left(\frac{L_{P}}{D_{P}} \cdot v_{P}^{2} + \frac{L_{1}}{D_{1}} \cdot v_{1}^{2}\right) = \frac{\rho \cdot \lambda \cdot v_{1}^{2}}{2} \cdot \left(0.1526 \cdot \frac{L_{P}}{D_{P}} + \frac{L_{1}}{D_{1}}\right) 1.5$	
	$v_1 = 2.083 m/s \Rightarrow Q_1 = 0.164 \cdot 10^{-3} m^3/s = 9.82 l/\min$ 1.0	2.5
1.8	Q _P increases	0.5
1.9	Attachment of a flow resistor in front of or behind H1; or alternatively: minimise	1.0
	D1 and maximise D2;	
	WRONG: flow divider, flow control valve => unrealistic because temperature	
	regulation is not possible anymore => no point!	
	Summation:	15

Sample Solution for Exercise: 2 Total Score: 10

Subtask	Ro	Points
2.1	twin check valve or piloted double check valve (check valve)	2.0
	flow devider (flow control valve)	
	spring return, electrically actuated 3/2-port seated valve (directional	
	control valve)	
	adjustable pressure relif valve (pressure control valve)	
2.2	i) asymmetrical incoming flow: symmetrical design of entrance and exit	1.0
	bore or peripheral grooves	
	ii) Form error of the valve spool: chose smaller tolerance class for the	
	cylindricity	
	iii) dirt particles in the oil: increase level of purity or attach protection	
	filter	
2.3	1 Regelkolben 2 Druckfeder 3 Regelblende 4 Verstellblende 5 Spindel 6 Drehknopf 7 Gehäuse 8 Klemmschraube 9 Rückschlagventil 1 9 2 Source: Hydac GmbH Denomination: 2-port flow control valve with preceding pressure	1.0
	compensator (and bypass check valve)	
2.4	$\Delta p_{\text{DW}} = p_{\text{A}} - (p_{\text{B}} + \Delta p_{\text{MB}}) = 65 \text{ bar}$ $x_{\text{DW}} = \frac{Q}{\alpha_{\text{DW}}} \frac{Q}{d_{\text{DW}}} \sqrt{\frac{\rho}{2 \Delta p_{\text{DW}}}} = \frac{180 \frac{1}{\text{min}}}{0.7 \cdot 0.018 \cdot \pi \text{ m}} \sqrt{\frac{890 \frac{\text{kg}}{\text{m}^3}}{2 \cdot 65 \text{ bar}}}$ $x_{\text{DW}} = 0.627 \text{ mm}$	1.5
2.5	$\Sigma F = 0 = F_{F} + (\rho_{B} - \rho_{I}) \cdot A$ $F_{F} = (p_{I} - p_{B}) \cdot A = p_{MB} \cdot A = 5 \text{ bar } \cdot \frac{\pi}{4} \text{ 0.018}^{2} \text{ m}^{2} = 127.235 \text{ N}$	1,0
	Summation:	6,5

Sample Solution for Exercise: 2 Total Score: 10

Subtask	Ro	Points
	carry:	6.5
2.6	$F_{\text{Str}} = \frac{\rho Q^2}{d \pi x} \frac{\cos \varepsilon_1}{\sin \varepsilon_1} = \frac{890 \text{ kg} \left(120 \frac{1}{\text{min}}\right)^2}{0.01 \text{ m} \pi \ 0.002 \text{ m} \text{ m}^3} \frac{\cos 30^\circ}{\sin 30^\circ} = 98.137 \text{ N}$	1.0
2.7	$\Delta p = \left(\frac{Q}{\alpha_D A}\right)^2 \frac{\rho}{2} = \left(\frac{1201}{0.6 \pi 0.01 \text{ m} \cdot 0.002 \text{ m min}}\right)^2 \frac{890 \text{ kg}}{2 \text{ m}^3} = 12.524 \text{ bar}$	0.5
2.8	$v_2 = \frac{Q}{A_2 \sin(180^\circ - \varepsilon_2)} = \frac{Q}{A_2 \cos(\varepsilon_2 - 90^\circ)}$	2.0
	$F_{\text{Str}} = \frac{\rho Q^2}{A_2} \frac{\cos \varepsilon_2}{\sin (180^\circ - \varepsilon_2)} = \frac{890 \text{ kg} \left(120 \frac{1}{\text{min}}\right)^2}{300 \text{ m m}^2} \frac{\cos 120^\circ}{\sin 60^\circ} = -6.85 \text{ N}$	
	Summation:	10

Sample Solution for Exercise: 3 Total Score: 10

Subtask	Sk	Points
3.1	adjustable vane pump (single-stroke, pre-controlled)	0.5
3.2	1. housing, 2. rotor, 3. vane, 4. stator, 5. adjusting screw	2.5
3.3	In-line piston pump	0.5
3.4	$V_{\kappa} = A_{k} \cdot D_{k} \cdot \tan \alpha = 10.72 \text{cm}^{3}$	2.5
	$E_{Fl} = V_0 \frac{\Delta p}{\Delta V_K}$ $V_0 = (V_K + V_{tot}) = 15.72 \text{cm}^3$	
	$\Delta V_{\kappa} = V_0 \frac{\Delta p}{E_{H}} = 0.39 \text{cm}^3$	
	$h = \frac{\Delta V_K}{A_K} = 0,098cm$	
3.5	$W_{K} = \frac{V_{0} \cdot \Delta p^{2}}{2 \cdot E_{H}} = 68.78 \text{cm}^{3} \text{bar} = 6.88 J$	1
3.6	$\frac{W_{K}}{W_{A}} = \frac{\Delta p}{2 \cdot E_{FI} \cdot \left(\frac{V_{K}}{V_{UT}} - \frac{\Delta p}{E_{FI}}\right)} = \frac{350bar}{2 \cdot 14000bar \cdot \left(\frac{10.72cm^{3}}{15.72cm^{3}} - \frac{350bar}{14000bar}\right)}$	1
	$\frac{W_{\kappa}}{W_{A}} = 1.9\%$	
3.7	$h(\varphi) = \frac{h_{\text{max}}}{2} (1 - \cos(\varphi)) = 0.098cm$	2
	$h_{\text{max}} = \frac{V_{\kappa}}{A_{\kappa}} = D_{\kappa} \cdot \tan \alpha = 2.68cm$	
	$cos(\varphi_{NF}) = 1 - \frac{2 \cdot h(\varphi)}{h_{max}} \Rightarrow \varphi_{NF} = 22.08^{\circ}$	
	Summation:	10

Sample Solution for Exercise: 4 Total Score: 10

Subtask	Va			Points
4.1		Control Mode	Supply Mode	1.5
	Option 1	Resistive Control	Pressure supply	
	Option 2	Displacement Control	Volume flow supply	
4.2	ICE P		Wheel1 Wheel2	2.5
	o	VKM - TE	nter- ad 1 rad 2	
4.3	can occur in the sy Through two flow	estem. The other wheel there control valves in front of or	t this wheel so "no" pressure fore stops. ne motor each the maximum pressure rises in the system	
	and the second wh	eel thereby gets a new drive s connection of the motors)		0.5

Sample Solution for Exercise: 4 Total Score: 10

Subtask	Va	Points
4.4	$\begin{split} M_{req} &= m_{G} \cdot g \cdot \sin \alpha_{St} \cdot \frac{d_{wheel}}{2} \cdot 200\% = 100 kg \cdot 9.811 \frac{m}{s^{2}} \cdot \sin 30^{\circ} \cdot \frac{200 mm}{2} \cdot M_{req} = 98.11 Nm \\ M_{eff,einMotor} &= \frac{\Delta p \cdot V \cdot \eta_{hm}}{2 \cdot \pi} \Rightarrow V = \frac{M_{eff} \cdot 2 \cdot \pi}{\Delta p \cdot \eta_{hm}} = \frac{49.055 Nm \cdot 2 \cdot \pi}{35 MPa \cdot 0.98} = 8.986 ccr \end{split}$	
4.5	$v = U \cdot n \Rightarrow n = \frac{v}{U} = \frac{2\frac{m}{s}}{\pi \cdot 0.23 m} = 2.768 \frac{1}{s} = 166.074 rpm$	0.5
	$Q_{req} = \frac{V \cdot n}{\eta_{vol}} \cdot 2 = \frac{6 ccm \cdot 166,074 \frac{U}{min}}{0,94} \cdot 2 = 2.12 \frac{I}{min}$	1.0
4.6	$\eta_{vol} = 0.95$ (in Diagram mab geleser)	0.5
	$Q_{eff} = \alpha \cdot V_{\text{max}} \cdot n \cdot \eta_{vol} \Rightarrow V_{\text{max}} = \frac{Q_{req}}{\alpha \cdot n \cdot \eta_{vol}} = \frac{3 \frac{I}{\text{min}}}{0.8 \cdot 1200 r pm \cdot 0.95} = 3.289 c c m$	1+0,5
	Summation:	10

Sample Solution for Exercise: 5 Total Score: 15

Subtask	vG			Points	
5.1	lubricator, pressure control valve, filter of compressed air			1,5	
5.2	At the smallest point of th	ne resistor sonic velocity	occurs.	0,5	
5.3	- cushioning by elastic ma	aterial		1,5	
	- cylinder-integrated pneu	matic damping			
	- external damping e.g. th	•	absorbers		
5 1	- counter ventilation throu	_	iston mod	0.5	
5.4	smaller constructional len			0,5	
5.5	a: slotted cylinder	b: magnet cy		2	
5.6	c: rope cylinder Rotary Drive	d: belt cylind	Semi-rotary Drive	2	
5.0	Rotary Drive	Rotary Drive	Senii-Iotaly Dilve	2	
	Axial Piston Motor	X			
	Toothed Belt Drive		X		
	Geared Motor	X			
	Vane Motor	x			
5.7	isentropic change in state (closed system)				
	$E_{kin} = \frac{p_{accumulator} \cdot V_{accumulator}}{n-1}$,			
	$\Leftrightarrow V_{accumulat\sigma} = \frac{\left(p\right)}{p_{accumulat\sigma}}$	$\frac{(n-1) \cdot E_{kin}}{\left(\frac{p_{pipe,muzzle}}{p_{accumulato}}\right)^{\frac{n-1}{n}} - 1}$			
	$\Leftrightarrow V_{accumulator} = \frac{(1,4-1)\cdot(-250J)}{10bar\left(\left(\frac{2bar}{10bar}\right)^{\frac{1,4-1}{1,4}} - 1\right)} = 0,2713l$				
			Summation:	10	

Sample Solution for Exercise: 5 Total Score: 15

Subtask	vG	Points
	add carry:	10
5.8	Isentropic change of state	2
	$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^n$	
	$\Leftrightarrow \frac{p_{accumulator}}{p_{pipe,muzzle}} = \left(\frac{V_{pipe} + V_{accumulator}}{V_{accumulator}}\right)^{n}$	
	$\Leftrightarrow V_{pipe} + V_{accumulator} = \left(\frac{p_{accumulator}}{p_{pipe,muzzle}}\right)^{\frac{1}{n}} \cdot V_{accumulator} = 0,947l$	
	$V_{pipe} = 0.947l - V_{acumulator} = 0.647l$	
	$l = \frac{V_{pipe}}{\pi \frac{d^2}{4}} = \frac{0,647l}{\pi \frac{(40mm)^2}{4}} = 51,49cm$	
5.9	$Q_{N,compressor} = 4.6 \frac{l}{\min}$	3
	$\dot{m}_{compressor} = Q_{N,compressor} \cdot \rho_N = 0.0991 \frac{g}{s}$	
	calculation of the air mass in the filled accumulator	
	$m_{accumulator,full} = \frac{p_{accumulator,full} \cdot V_{accumulator}}{R \cdot T_{accumulator}} = \frac{10bar \cdot 0,3l}{287 \frac{Nm}{KgK} \cdot 303,15K} = 3,448g$	
	calculation of the air mass in the exhausted accumulator	
	$T_{accumulator,empty} = T_{accumulator,full} \cdot \left(\frac{p_{accumulator,empty}}{p_{accumulator,full}}\right)^{\frac{n-1}{n}} = 303,15K \cdot \left(\frac{2bar}{10bar}\right)^{\frac{1,4-1}{1,4}} = 19$	91,404 <i>K</i>
	$m_{accumulat\sigma,empty} = \frac{p_{accumulat\sigma,empty} \cdot V_{accumulat\sigma}}{RT_{accumulat\sigma,empty}} = \frac{2bar \cdot 0.3l}{287 \frac{Nm}{KgK} \cdot 191,404K} = 1,092g$	
	$\Delta m = m_{accumulator, full} - m_{accumulator, empty} = 2,356g$	
	length of time between the shots	
	$T = \frac{\Delta m}{\dot{m}_{compressor}} = 23,78s$	
	Summe:	15

Sample Solution for Exercise: 6 Total Score: 10

Subtask	vG	Points
6.1	Clamping device Valve 2 Valve 1	2
6.2	pressure dependent sequence control	1
6.3	balance of forces, piston rod side deaerated to environmental pressure	
	$F = p_{PRV} \cdot A_{AC} - p_U \cdot A_{PR} - p_{PR} \cdot (A_{AC} - A_{PR})$	0,5
	$F = A_{AC} \cdot (p_{PRV} - p_U)$	
	$p_{PRV} = \frac{F}{A_{AC}} + p_U$	0,5
	$p_{PRV} = \frac{1500N}{\frac{\pi}{4} (0.06m)^2} + 100000 \frac{N}{m^2}$	0,5
	$p_{PRV} = 6.31bar$	0,5
	Summation:	5

Sample Solution for Exercise: 6 Total Score: 10

Subtask	Ev	Points
	transfer:	5
6.4	swallowing capacity vane motor with two connections	
	$V = \pi \cdot b \cdot h \left(r + \frac{h}{4} \right)$	0,5
	$V = \pi \cdot 0.1m \cdot 0.003m \cdot \left(0.013m + \frac{0.003m}{4}\right) =$	
	$V = 1,296 \cdot 10^{-5} m^3$	0,5
	$Q_{ad} = n \cdot V = 1,728 \cdot 10^{-3} \frac{m^3}{s}$	0,5
	$\dot{m} = Q \cdot \rho = Q \frac{p}{R \cdot T}$	
	$\dot{m} = 1,728 \cdot 10^{-3} \frac{m^3}{s} \cdot \frac{200000 \frac{N}{m^2}}{287 \frac{J}{kg \cdot K} \cdot 293K}$	
	$\dot{m} = 4.11 \cdot 10^{-3} \frac{kg}{s}$	0,5
	$b = \frac{2bar}{6bar} = 0.33 \Rightarrow b < b_{crit} \Rightarrow \sup ercritical$	0,5
	$C = \frac{\dot{m}}{p_{before} \cdot \rho_0} \cdot \sqrt{\frac{T_{before}}{T_0}}$	0,5
	$= \frac{4,11 \cdot 10^{-3} \frac{kg}{s}}{100} \cdot 1$	0,5
	$6bar \cdot 1{,}1845 \frac{\kappa g}{m^3}$	
	$= \frac{4,11\cdot 10^{-3}}{6bar\cdot 1,1845 \frac{kg}{m^3}} \cdot 1$ $= 5,783\cdot 10^{-4} \frac{m^3}{bar\cdot s} = 34,7 \frac{Nl}{bar\cdot min}$	0,5
6.5	No because no expansion work is taken from the air.	1
	Summation:	10