

Geometer: Graph Few-Shot Class-Incremental Learning via Prototype Representation

Bin Lu, Xiaoying Gan, Lina Yang, Weinan Zhang, Luoyi Fu, Xinbing Wang Shanghai Jiao Tong University Shanghai, China

Table of Contents

- Background & Motivation
- Methodology
 - Attention-based Prototype Representation
 - Geometric Metric Learning
 - Teacher-Student Knowledge Distillation
 - Episode Meta Learning
- Experiment
- Conclusion

Table of Contents

- Background & Motivation
- Methodology
 - Attention-based Prototype Representation
 - Geometric Metric Learning
 - Teacher-Student Knowledge Distillation
 - Episode Meta Learning
- Experiment
- Conclusion

Background

- Real-world networks evolve with the emergence of new nodes and edges, thereby generating novel classes.
 - Academic citation network: new papers, new interdisciplines
 - Social network: new users, new social groups
 - E-commerce network: new commodities, new types

Background

- Classes of nodes are expanding incrementally and usually accompanied by few labeling due to its newly emergence or lack of exploration.
- A Toy Example of <u>Graph Few-Shot Class-Incremental Learning</u>
 - A novel research field appears with few-shot labeling.

Prior Works

• #1 Classical GNN methods

- Abundant labeling
- Fixed classes
- #2 Graph few-shot learning[1,2,3]
 - A prior *N*-way *K*-shot assumption
 - Two separate models for *base* classes and *novel* classes
- #3 Class-incremental learning[4,5]
 - Little work focus on non-Euclidean data (e.g., graphs)
 - Network structure evolves dynamically
- [1] Zhou et al. "Meta-GNN: On few-shot node classification in graph meta-learning." CIKM, 2019.
- [2] Huang et al. "Graph meta learning via local subgraphs" NeurIPS, 2020.
- [3] Liu et al. "Relative and absolute location embedding for few-shot node classification on graph" AAAI, 2021.
- [4] Li et al. "Learning without forgetting" TPAMI, 2017
- [5] Hou et al. "Learning a unified classifier incrementally via rebalancing." CVPR, 2019.

Motivation

Q1: How to cope with the incremental categories for node classification?

• Instead of replacing and retraining the fully connected neural network classifier, we propose to predict the ever-expanding class of a node by finding the nearest *prototype representation*^[6].

Motivation

Q2: How to accurately learn the *prototype representation*?

- Two Challenges
 - Dynamic graph structure due to evolution attribute
 - Unbalanced labeling between base classes and novel classes
- Our Methods
 - Attention-based Prototype Representation
 - Node-level Graph Attention Network
 - Class-level Multi-head Attention
 - Biased Sampling Strategy
 - Episode Meta Learning
 - Mimic the circumstances encountered when novel classes pop up

Motivation

Q3: How to find a way out of "forgetting old" and "overfitting new"?

- We propose to adjust the *prototype representation* delicately.
 - Geometric relations in feature space
 - Inter-class
 - Intra-class
 - Inheritance between previous and revised *prototype representation*

Table of Contents

- Background & Motivation
- Methodology
 - Attention-based Prototype Representation
 - Geometric Metric Learning
 - Teacher-Student Knowledge Distillation
 - Episode Meta Learning
- Experiment
- Conclusion

Problem Definition

- Graph Few-Shot Class-Incremental Learning
 - Streaming Sessions
 - Base stage $\mathcal{G}^{\text{base}}$ and T snapshots of $\mathcal{G}^{\text{stream}} = \{\mathcal{G}^1, \dots, \mathcal{G}^T\}$
 - Sets of classes $\{C^{\text{base}}, C^1, \dots, C^T\}, C^t = C^{\text{base}} + \sum_i \Delta C^i$
 - ΔC^t -way *K*-shot GFSCIL problem
 - ΔC^t novel classes with K labeled nodes
 - GFSCIL problem is tested to classify unlabeled nodes into all encountered classes C^t

Overview of proposed model: Geometer

(a) Problem setting of GFSCIL, (b) and (c) show the episode meta learning process with biased sampling strategy at base stage and streaming sessions.

Attention-based Prototype Representation

Node-level Graph Attention Network

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}(\mathbf{a}^T [\mathbf{W} \mathbf{h}_i^l \parallel \mathbf{W} \mathbf{h}_j^l])\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}(\mathbf{a}^T [\mathbf{W} \mathbf{h}_i^l \parallel \mathbf{W} \mathbf{h}_k^l])\right)}$$

- Class-level Multi-head Attention
 - Degree-based weighted-sum of support node embedding \hat{p}_i

$$\hat{\boldsymbol{p}}_i = \sum_{j \in \mathcal{S}_i} \frac{\text{degree}(v_j)}{\sum_{j' \in \mathcal{S}_i} \text{degree}(v_{j'})} \cdot f_{\mathcal{G}}(\boldsymbol{x}_j)$$

Class-level attention score

$$p_i = \hat{p}_i + Attention(\hat{p}_i, h_i^{spt}, h_i^{spt})$$

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

k support nodes of class i

Geometric Metric Learning

- Intra-Class Proximity \mathcal{L}_P
 - Nodes of same classes should be closely clustered

$$\mathcal{L}_{P} = \sum_{k=1}^{\left\|C^{k}\right\|} \frac{\alpha_{k}}{n_{k}} \sum_{i=1}^{n_{k}} -\log \frac{\exp \left(-d\left(f_{\mathcal{G}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{p}_{k}\right)\right)}{\sum_{k' \in C^{k}} \exp \left(-d\left(f_{\mathcal{G}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{p}_{k'}\right)\right)},$$

- Inter-Class Uniformity \mathcal{L}_U
 - Uniformity of different prototypes in metric space

$$\mathcal{L}_{U} = \frac{1}{\|C^{k}\|} \sum_{i=1}^{\|C^{k}\|} \left\{ 1 + \max_{j \in \{C^{k}\} \setminus i} \left[\frac{(\boldsymbol{p}_{i} - \boldsymbol{p}_{c})}{\|\boldsymbol{p}_{i} - \boldsymbol{p}_{c}\|} \cdot \frac{(\boldsymbol{p}_{j} - \boldsymbol{p}_{c})}{\|\boldsymbol{p}_{j} - \boldsymbol{p}_{c}\|} \right] \right\}$$

- Inter-Class Separability \mathcal{L}_S
 - Prototypes of novel classes and old classes should keep a distance

$$\mathcal{L}_{S} = \frac{1}{\Delta C^{k}} \sum_{i \in \Delta C^{k}} \min_{j \in C^{k-1}} \exp\left(-d\left(\boldsymbol{p}_{i}, \boldsymbol{p}_{j}\right)\right)$$

- Teacher-Student Knowledge Distillation
 - Mitigate "forgetting old" problem in GFSCIL
 - Temperature-scaled softmax (τ is the temperature factor)

$$y^{\prime(i)} = \frac{\exp\left(d\left(f_{\mathcal{G}}\left(\boldsymbol{x}^{(i)}\right), \boldsymbol{p}_{i}\right)/\tau\right)}{\sum_{j} \exp\left(d\left(f_{\mathcal{G}}\left(\boldsymbol{x}^{(i)}\right), \boldsymbol{p}_{j}\right)/\tau\right)}$$

• KL-divergence of the softened logits to make the student model gain the experience of classifying old classes from teacher model

$$\mathcal{L}_{KD} = \frac{1}{\|C^{k-1}\|} \sum_{i=1}^{\|C^{k-1}\|} y_S^{\prime(i)} \cdot \log \left(\frac{y_S^{\prime(i)}}{y_T^{\prime(i)}}\right)$$

Episode Meta Learning

- Episode paradigm in learning process
 - Generate a set of tasks $\mathcal{T} = \{\mathcal{T}_1, \mathcal{T}_2, \cdots, \mathcal{T}_N\}$
 - Each task \mathcal{T}_i includes support set \mathcal{S}_i and query set \mathcal{Q}_i
- Biased sampling strategy
 - Pretraining stage
 - Generate class-imbalanced support sets, $||S_i|| \sim U[1, K_{max}]$
 - Finetuning stage
 - A higher proportion of old samples will be sampled

Table of Contents

- Background & Motivation
- Methodology
 - Attention-based Prototype Representation
 - Geometric Metric Learning
 - Teacher-Student Knowledge Distillation
 - Episode Meta Learning
- Experiment
- Conclusion

Dataset Description

Dataset	Field	Nodes Edges		Features	Class
Cora-ML	Academic	2,995	16,316	2,879	7
Flickr	Social Network	7,575	479,476	12,047	9
Amazon	E-commerce	13,752	491,722	767	10
Cora-Full	Academic	19,793	126,842	8,710	70

Experiment Setting

- <u>Cora-ML, Flickr, Amazon</u>: 1-way 5-shot GFSCIL setting, 6 streaming sessions
- <u>Cora-Full</u>: 5-way 5-shot GFSCIL setting, 10 streaming sessions

Baseline Methods

- GNN models
 - GAT (FT): fine-tune parameters of MLP predictor only
 - GAT+ (FT): fine-tune all parameters
- Graph Few-shot learning models
 - GPN: Graph Prototype Network [7]
 - GFL: Graph few-shot learning via knowledge transfer [8]
- Prototype network methods
 - PN*: Prototype Network for node classification
 - PN*(FT): Prototype Network with fine-tuning strategy
- iCaRL*: Class-incremental learning methods^[9]
- [7] Ding et al. "Graph prototypical networks for few-shot learning on attributed networks." CIKM, 2020.
- [8] Yao et al. "Graph few-shot learning via knowledge transfer." AAAI, 2020.
- [9] Rebuffi et al. "iCaRL: Incremental classifier and representation learning" CVPR, 2017.

• Performance Comparison

• Performance Comparison

	Cora-Full (5-way 5-shot GFSCIL setting)									
Session	GAT (FT)	GAT+ (FT)	GPN	GFL	PN*	PN* (FT)	iCaRL*	GEOMETER (Ours)	impr.	
Base	80.53±1.32%	81.11±0.79%	73.82±1.94%	76.02±0.94%	74.88±0.89%	74.18±0.72%	73.92±1.06%	79.88±0.96%	-1.52%	
Session 1	33.13±2.51%	37.10±1.51%	55.95±1.52%	60.50±0.74%	56.60±1.11%	58.07±0.92%	59.33±1.79%	69.48±1.66%	+14.84%	
Session 2	25.39±1.59%	26.34±0.98%	49.49±1.57%	52.85±1.88%	48.59±0.66%	53.97±0.97%	54.05±0.70%	61.34±0.92%	+13.49%	
Session 3	17.48±1.59%	17.41±1.43%	43.41±1.66%	43.88±2.84%	39.70±1.25%	43.76±0.92%	44.65±0.55%	53.61±0.81%	+20.07%	
Session 4	12.09±1.35%	12.12±0.78%	39.03±1.29%	38.22±1.81%	37.33±2.07%	41.83±0.91%	40.52±1.56%	48.24±1.46%	+15.30%	
Session 5	10.04±1.56%	8.54±0.39%	35.12±1.98%	38.69±2.50%	32.66±2.01%	37.35±0.73%	36.25±1.06%	44.97±1.03%	+16.23%	
Session 6	8.63±0.88%	7.01±0.80%	33.34±1.35%	33.94±3.53%	30.83±2.09%	36.56±0.84%	33.46±1.16%	42.93±0.88%	+17.42%	
Session 7	7.76±0.62%	5.79±0.42%	31.98±1.03%	32.60±1.65%	29.52±1.92%	34.70±0.20%	32.68±1.44%	42.82±1.14%	+23.40%	
Session 8	6.99±0.72%	5.38±0.49%	30.63±1.64%	28.32±1.78%	28.39±1.97%	33.97±1.24%	31.02±1.48%	41.01±0.96%	+20.72%	
Session 9	5.95±0.75%	4.49±0.40%	30.53±1.80%	21.95±1.71%	27.65±2.19%	33.71±0.75%	30.37±1.76%	40.49±0.97%	+20.11%	
Session 10	5.51±0.95%	3.92±0.61%	28.33±1.48%	21.77±1.50%	26.07±1.89%	31.67±0.55%	29.21±1.71%	39.32±0.78%	+24.15%	

	Flickr (1-way 5-shot GFSCIL setting)								
Session	GAT (FT)	GAT+ (FT)	GPN	GFL	PN*	PN* (FT)	iCaRL*	GEOMETER (Ours)	impr.
Base	62.16±1.30%	61.41±1.55%	72.80±1.13%	84.82±3.13%	59.86±1.81%	59.43±2.68%	60.81±1.87%	64.75±1.76%	-23.66%
Session 1	24.24±3.91%	26.13±7.62%	51.02±1.70%	61.09±1.41%	34.29±1.97%	40.96±2.38%	40.54±1.28%	57.57±2.80%	-5.76%
Session 2	17.54±4.98%	14.83±0.92%	37.77±4.29%	45.53±3.08%	28.30±4.16%	38.78±1.97%	37.03±5.06%	50.11±2.03%	+10.05%
Session 3	16.13±5.55%	8.55±0.71%	32.79±2.65%	33.73±1.49%	23.37±3.63%	35.43±5.63%	32.93±7.96%	45.21±1.04%	+27.60%
Session 4	8.41±2.11%	6.30±2.31%	24.39±2.54%	31.63±2.35%	23.77±5.02%	38.16±5.31%	31.27±6.79%	41.77±0.79%	+9.46%
Session 5	9.04±5.46%	4.94±2.48%	22.01±1.28%	28.15±1.17%	20.23±4.00%	32.74±4.57%	26.57±5.83%	36.26±2.79%	+10.75%

• Ablation Study: Loss functions

	Loss functions			Cora-ML (1-way 5-shot GFSCIL setting)					
\mathcal{L}_P	\mathcal{L}_U	$\mathcal{L}_{\mathcal{S}}$	\mathcal{L}_{KD}	Base Classes	Session 1	Session 3	Session 5		
✓			✓	96.21±0.67%	88.25±3.99%	64.89±2.53%	56.21±5.55%		
✓	\checkmark		✓	95.85±0.56%	90.41±3.86%	68.26±3.65%	58.72±4.66%		
✓		\checkmark	✓	95.71±0.55%	89.21±2.88%	69.57±2.71%	54.28±3.90%		
✓	✓	✓		95.74±0.61%	90.40±4.82%	68.16±1.45%	62.41±2.37%		
✓	✓	✓	✓	96.01±0.92%	89.89±3.97%	72.45±4.01%	64.25±3.60%		

Loss functions				Amazon (1-way 5-shot GFSCIL setting)					
\mathcal{L}_P	\mathcal{L}_U	$\mathcal{L}_{\mathcal{S}}$	\mathcal{L}_{KD}	Base Classes	Session 1	Session 3	Session 5		
✓			✓	96.72±0.28%	90.91±0.59%	74.74±2.33%	73.73±3.01%		
✓	\checkmark		✓	96.72±0.22%	91.39±0.56%	76.55±1.94%	73.97±1.90%		
✓		\checkmark	✓	96.83±0.32%	91.15±0.35%	75.08±2.61%	73.92±2.60%		
✓	✓	✓		96.86±0.35%	91.17±0.38%	75.36±1.28%	74.51±2.53%		
✓	✓	✓	✓	96.50±0.29%	91.44±0.46%	76.74±1.89%	77.66±1.58%		

• Ablation Study: Prototype representation method

Ablation Study: Biased sampling strategy

• Case Study: *t*-SNE visualization of the query node embeddings and prototypes

Table of Contents

- Background & Motivation
- Methodology
 - Attention-based Prototype Representation
 - Geometric Metric Learning
 - Teacher-Student Knowledge Distillation
 - Episode Meta Learning
- Experiment
- Conclusion

Conclusion

- We are the first to investigate this novel problem: graph few-shot class-incremental learning (GFSCIL).
- With the novel classes popping up, Geometer learns and adjusts the attention-based prototypes based on the geometric relationships of proximity, uniformity and separability of representations.
- Geometer proposes teacher-student knowledge distillation and biased sampling strategy to further mitigate the catastrophic forgetting and unbalanced labeling in GFSCIL.

Thanks

Bin Lu robinlu1209@sjtu.edu.cn