Barrett Reduction

Barrett Reduction是一种在计算模运算(求余数)时使用的优化算法,可以避免昂贵的除法运算。它的基本思想相 当直接。

当要计算 $a \bmod N$ (a 模 N)的余数 r 时,常规做法是首先计算商 $q=a \div N$,然后计算余数 $r=a-q \times N$ 。

然而,计算 q 时需要一次除法,而除法对 CPU 的运算开销比较大。Barrett Reduction 通过引入一个预计算的常数来避免这个除法运算。

算法核心思想

- 1. 选择一个足够大的 $R=2^k$,使得 R>N。
- 2. 预计算 $\mu = |R/N|$ 。(||表示向下取整)
- 3. 当需要计算 $a \mod N$ 时,用以下步骤代替:
 - \circ 计算 $q = |(a \times \mu)/R|$
 - \circ 计算 $r = a q \times N$
 - 如果 $r \geq N$,则 r = r N

这里的关键优化是,由于 R 是 2 的幂, $(a \times \mu)/R$ 可以通过简单的位移操作实现: $q = (a \times \mu) \gg k$ 。

对于一个固定的有限域,N 通常是固定的,那么 μ 也是固定的,可以预先计算并存储。

误差分析

这种方法可能会导致 ${\bf q}$ 略小于实际的商,因为 μ 是 R/N 的下界(由于向下取整)。这就是为什么我们需要在计算 $r=a-q\times N$ 后,判断 ${\bf r}$ 是否小于 ${\bf N}$,如果大于或等于 ${\bf N}$ 则需要再减去 ${\bf N}$ 。

关于最差情况下需要减去 N 的次数:

- 误差的上界可以被证明是 2。也就是说,计算出的 r 最多比实际的余数大 2N。
- 因此,最多需要减去 N 两次就可以得到正确的余数。

算法优势

- 1. 避免了昂贵的除法运算, 替换为乘法和位移操作。
- 2. 对于固定的模数 N, μ 可以预计算, 进一步提高效率。
- 3. 即使在最坏情况下,也只需要进行有限次(最多两次)的额外减法。

计算µ的误差范围

我们设 q' 为实际的 a/N 值,q 为经过 Barrett Reduction 的值 $q'=\lfloor a/N \rfloor$, $q=\lfloor (a imes \mu)/R \rfloor$

- 1. $R=2^k$,其中 k 是一个整数,且 R>N。
- 2. $\mu = |R/N|$

3. 假设 a < R (这是一个重要的假设,在实际应用中通常成立)

上界: $q \leq q'$

我们知道 $\mu = |R/N|$,所以 $\mu \leq R/N$ 。

$$q = \lfloor (a \times \mu)/R \rfloor$$

$$\leq \lfloor (a \times (R/N))/R \rfloor \quad (因为\mu \leq R/N)$$

$$= \lfloor a/N \rfloor$$

$$= q'$$
(1)

所以 $q \leq q'$

下界: q > q' - 2

首先,我们知道 $R/N-1<\mu\leq R/N$ (因为 μ 是 R/N 的向下取整) 所以:

$$q = \lfloor (a \times \mu)/R \rfloor$$

> $\lfloor (a \times (R/N-1))/R \rfloor$ (因为 $\mu > R/N-1$)
= $|a/N - a/R|$ (2)

接下来,我们可以写出: q>a/N-a/R-1 (因为对任何 x, $\lfloor x \rfloor>x-1$)

现在,利用假设 a < R,我们有 a/R < 1,所以:

$$q > a/N - 1 - 1$$

= $a/N - 2$ (3)

但是 $q'=\lfloor a/N \rfloor$,所以 $a/N-1< q'\leq a/N$ 将这个不等式代入上面的式子: q>(q'-1)-2=q'-3 因为 q 是整数,所以 $q\geq q'-2$

结合之前得到的 $q \leq q'$, 我们可以得出 $q'-2 < q \leq q'$