Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

Usando estructuras apropiadas y en ciertas circunstancias, el orden del tiempo de ejecución del algoritmo de Dijkstra en un grafo con N vértices y A aristas, puede ser mejorado de un orden de

### Seleccione una:

- a. A al cuadrado a un orden de N por logaritmo de A
- b. N al cubo a un orden de N al cuadrado
- o c. N al cuadrado a un orden de A por logaritmo de N

~

d. A al cubo a un orden de A al cuadrado

# Pregunta 2

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

Una **DESVENTAJA** de usar **listas de adyacencias** para representar un grafo dirigido con una cantidad N de vértices es que requiere

### Seleccione una:

- a. un espacio de memoria proporcional a N para representarlo.
- b. en el peor caso puede llevar un tiempo de ejecución proporcional a N determinar la existencia de una arista.

~

- c. un espacio de memoria proporcional a N al cuadrado para representarlo.
- d. un tiempo de ejecución constante para determinar la existencia de una arista

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

# Se dice que un grafo dirigido G

# Seleccione una:

 a. consiste en un conjunto de vértices V y un conjunto de arcos A, donde un arco es un par ordenado de vértices.

✓.

- b. consiste en un conjunto de vértices V y un conjunto de arcos A, donde un arco es un par no ordenado de vértices.
- c. consiste en un conjunto de vértices V y un conjunto de arcos A, donde un vértice es un par ordenado de arcos.
- d. consiste en un conjunto de vértices V y un conjunto de arcos A, donde un vértice es un par no ordenado de arcos.

# Pregunta 6

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

# En el grafo dirigido de la figura,



## Seleccione una:

- a. se puede encontrar un orden topológico válido
- b. el algoritmo de Dijkstra devuelve que el costo del camino de V1 a V5 es 11
- c. el centro es V5
- o d. el centro es V3

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

```
Cuál es la sentencia que le falta al algoritmo de Floyd procedure Floyd

Comienzo

for i = 1 to N do

for j = 1 to N do

A[i,j] = C[i,i];

end for

end for
```

```
for k = 1 to N do

for i = 1 to N do

for i = 1 to N do

<sentencia que falta>

end for

end for

end for

end for

Seleccione una:

a. A[i,j] = mínimo (A[i,j], A[i,k] + A[k,j])

b. A[i,j] = máximo (A[i,j], A[i,k] + A[k,j])

c. A[i,j] = máximo (A[i,j], A[k,i] + A[k,j])
```

d. A[i,j] = minimo(A[i,j], A[k,i] + A[j,k])

| Pregunta <b>8</b>                    | La excentricidad de un vértice es                                                                                                                                                                                                                                                                         |  |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Correcta                             | Seleccione una:  a. el mayor de los caminos de menor longitud que llegan a él desde los otros vértices.                                                                                                                                                                                                   |  |  |  |  |
| Puntúa 4,00 sobre 4,00               |                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Marcar pregunta                      | a el desde los otros vertices.  ✓                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                      | <ul> <li>b. el menor de los caminos de mayor longitud que llegan a él desde los otros vértices.</li> <li>c. el valor del camino mas largo desde la raíz hasta él</li> <li>d. el valor del camino mas corto desde la raíz hasta él</li> </ul>                                                              |  |  |  |  |
| Pregunta <b>9</b> Correcta           | El orden del tiempo de ejecución del algoritmo de búsqueda<br>en profundidad en un grafo con N vértices y A aristas, es                                                                                                                                                                                   |  |  |  |  |
| Puntúa 2,67 sobre 4,00               | Seleccione una:                                                                                                                                                                                                                                                                                           |  |  |  |  |
| <b>№</b> Marcar pregunta             | a. A al cuadrado                                                                                                                                                                                                                                                                                          |  |  |  |  |
| , , ,                                | b. N al cuadrado                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                      | <ul><li>○ c. A</li></ul>                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                      | ○ d. N                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Pregunta <b>10</b> Sin finalizar     | Una <b>VENTAJA</b> de usar <b>listas de adyacencias</b> para representar un grafo dirigido con una cantidad N de vértices es que requiere                                                                                                                                                                 |  |  |  |  |
|                                      | representar un grafo dirigido con una cantidad N de vértices                                                                                                                                                                                                                                              |  |  |  |  |
| Sin finalizar                        | representar un grafo dirigido con una cantidad N de vértices<br>es que requiere                                                                                                                                                                                                                           |  |  |  |  |
| Sin finalizar Puntúa 0,00 sobre 4,00 | representar un grafo dirigido con una cantidad N de vértices es que requiere  Seleccione una:  a. un tiempo de ejecución constante para determinar la                                                                                                                                                     |  |  |  |  |
| Sin finalizar Puntúa 0,00 sobre 4,00 | representar un grafo dirigido con una cantidad N de vértices es que requiere  Seleccione una:  a. un tiempo de ejecución constante para determinar la existencia de una arista  b. un espacio de memoria proporcional a N al cuadrado                                                                     |  |  |  |  |
| Sin finalizar Puntúa 0,00 sobre 4,00 | representar un grafo dirigido con una cantidad N de vértices es que requiere  Seleccione una:  a. un tiempo de ejecución constante para determinar la existencia de una arista  b. un espacio de memoria proporcional a N al cuadrado para representarlo.  c. un espacio de memoria proporcional a N para |  |  |  |  |

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

El siguiente es el algoritmo que implementa una búsqueda en profundidad a partir de un cierto vértice. La sentencia que le falta es:

procedure bpf(v : vértice)

Comienzo

marca[v] = visitado

para cada vertice w adyacente a v hacer

<sentencia que falta>

bpf (w)

fin para cada

Fin

### Seleccione una:

a. Si w diferente de nulo



b. Si marca[w] = no visitado



c. k = P[w]



d. writeln (w)

### Pregunta 12

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

El problema de determinar, en un grafo dirigido, el camino más corto a partir de un nodo origen,

### Seleccione una:

| a. puede ser resuelto por la técnica de programación dinámica conocida como |
|-----------------------------------------------------------------------------|
| el algoritmo de Dijkstra, que devuelve el camino de menor longitud desde un |
| nodo origen a un nodo destino.                                              |

b. puede ser resuelto por la técnica de programación dinámica conocida como el algoritmo de Dijkstra, que devuelve los caminos de menor longitud desde un nodo origen a todos los otros nodos del grafo.

c. puede ser resuelto por la técnica ávida conocida como el algoritmo de Dijkstra, que devuelve los caminos de menor longitud desde un nodo origen a un nodo destino.

o d. puede ser resuelto por la técnica ávida conocida como el algoritmo de Dijkstra, que devuelve los caminos de menor longitud desde un nodo origen a todos los otros nodos del grafo.

### Pregunta 13

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

Una **DESVENTAJA** de usar una **matriz de adyacencias** para representar un grafo dirigido con una cantidad N de vértices es que requiere

### Seleccione una:

| a lin oc | nacio de | memoria | proporciona | □ NI | nara | representarlo. |
|----------|----------|---------|-------------|------|------|----------------|
|          |          |         |             |      |      |                |

b. un tiempo de ejecución constante para determinar la existencia de una arista

c. un tiempo de ejecución proporcional a N para determinar la existencia de una

o d. un espacio de memoria proporcional a N al cuadrado para representarlo.

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

Para encontrar un ciclo en un grafo dirigido, basta con realizar un búsqueda en profundidad y

### Seleccione una:



a. si se encuentra un arco de retroceso, existe un ciclo



- b. si se encuentra un arco cruzado, existe un ciclo
- c. si se encuentra un arco que va a un vértice ya visitado, existe un ciclo.
- d. la búsqueda en profundidad no es una técnica adecuada para buscar ciclos.

### Pregunta 15

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

Un camino en un grafo dirigido,

### Seleccione una:

- a. representa la secuencia de visita de los vértices en una búsqueda en profundidad o en amplitud
- b. es una secuencia de vértices v(1), v(2), v(3), ...., v > tal que existe la arista (v(i), v(i+1))



- c. se dice que es simple si todos sus vértices están etiquetados con un tipo de dato primitivo.
- d. representa un recorrido de la raíz hasta una hoja.

### Pregunta 16

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

Cuál es la sentencia que le falta al algoritmo de Dijkstra

procedure Dijkstra

Comienzo

 $S = \{1\};$ 

for i = 2 to N do

D[i] = C[1,i];

end for

for i = 1 to N-1 do

elige un vértice w en V-S tal que D[w] sea mínimo;

agrega w a S;

for cada vertice v en V-S do

<sentencia que falta>

end for

end for

Fin

### Seleccione una:

- a. D[v] = mínimo (D[w], D[w] + C[w,v])
- b. D[v] = máximo (D[v], D[w] + C[w,v])
- c. D[v] = máximo (D[w], D[w] + C[w,v])
- d. D[v] = mínimo (D[v], D[w] + C[w,v])

# Pregunta **17**Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

El algoritmo de clasificación topológica implementa una búsqueda en profundidad imprimiendo el nodo

### Seleccione una:

- a. cada vez que termina cada una de las llamadas recursivas
- b. luego de finalizadas todas las llamadas recursivas
  - c. antes de realizar cada una de las llamadas recursivas
  - d. antes de realizar cualquier llamada recursiva

# Pregunta 18

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

El siguiente es el algoritmo que permite la recuperación del camino a partir de la matriz P en el algoritmo de Floyd. La sentencia que le falta es:

procedure camino (i, j : enteros)

Comienzo

k = P[i,j];

Si k = 0 entonces salir finsi;

camino (i,k);

escribir (k);

<sentencia que falta>;

Fin

Seleccione una:

- a.j=j+1
- b. i = i + 1
- c. camino (j,k)
- o d. camino (k,j)

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

En el grafo dirigido de la figura, una secuencia posible de visita de los vértices, recorriendo en profundidad a partir de V0, puede ser:



Seleccione una:

- a. V0, V3, V1, V2, V4, V5, V6
- o b. V0, V3, V2, V5, V4, V6, V1
  - c. V0, V2, V1, V3, V4, V5, V6
  - d. V0, V1, V2, V3, V4, V5, V6

# Pregunta 20

Correcta

Puntúa 4,00 sobre 4,00

Marcar pregunta

Una **VENTAJA** de usar una **matriz de adyacencias** para representar un grafo dirigido con una cantidad N de vértices es que requiere

Seleccione una:

- a. un espacio de memoria proporcional a N para representarlo.
- b. un espacio de memoria proporcional a N al cuadrado para representarlo.
- o c. un tiempo de ejecución constante para determinar la existencia de una arista

d. un tiempo de ejecución proporcional a N para determinar la existencia de una arista.