Predikcia kvality vína

V tejto úlohe sa snažíme predikovať kvalitu vína, inšpirovaní prístupom Orleya Ashenfeltera k predikcii cien vína z Bordeaux.

Využívame dáta zo súboru ${\tt A04wine.csv}$ a aplikujeme modely L^1 a L^∞ z úlohy A. Budeme využívať podobný postup ako v úlohe B. Na implementáciu formulovaných LP úloh využívame:

- pandas načítanie dát z csv súboru
- numpy tvorenie matíc a vektorov
- scipy.optimize implementovaný LP solver

Vyberieme z dát dané nezávislé premenné x a závislú premennú y:

```
y = data['Price']
x = data[['WinterRain', 'AGST', 'HarvestRain', 'Age', 'FrancePop']]
# Calculate the number of variables (features)
k = x.shape[1]
```

Vytvoríme potrebné štruktúry pre zostavenie modelu normy L^1 :

Naformulujeme problém a vyriešime pomocou scipy.optimize.linprog

```
A_ub = np.block([[-A, -I], [A, -I]])
b_ub = np.concatenate([-y, y])

solve = linprog(c, A_ub, b_ub, bounds = [(None, None)]*(k + 1) + [(0, None)] * len(x.values))
```

Po vyriešení vyberieme z riešenia koeficienty, čo nám dá:

```
\beta_0^{(1)} \approx -8.8801 \cdot 10^{-1}, \ \beta_1^{(1)} \approx 1.5793 \cdot 10^{-3}, \ \beta_2^{(1)} \approx 5.2130 \cdot 10^{-1}
\beta_3^{(1)} \approx -4.5137 \cdot 10^{-3}, \ \beta_4^{(1)} \approx 1.1300 \cdot 10^{-2}, \ \beta_5^{(1)} \approx -2.2111 \cdot 10^{-5}
```

Z týchto výsledkov môžeme usúdiť, že najviac pozitívne vplýva na cenu vína metrika AGST - Average growing season temperature a najsignifikantnejší negatívny vplyv má dážď počas zberu.

Ďalej zostrojíme relevantné štruktúry a naformulujeme LP pre L^{∞} normu:

Vyriešime aj tento problém pomocou scipy.optimize.linprog() pre L^∞ normu a vyberieme β koeficienty:

$$\beta_0^{(\infty)} \approx 3.4841, \ \beta_1^{(\infty)} \approx 8.3399 \cdot 10^{-4}, \ \beta_2^{(\infty)} \approx 6.0027 \cdot 10^{-1}$$

$$\beta_3^{(\infty)} \approx -3.3416 \cdot 10^{-3}, \ \beta_4^{(\infty)} \approx -2.3036 \cdot 10^{-2}, \ \beta_5^{(\infty)} \approx -1.1958 \cdot 10^{-4}$$

Vidíme, že aj lineárna regresia pomocou L^{∞} normy odhaduje najväčší pozitívny vplyv metriky AGST a najväčší negatívny vplyv dažďu počas zberu. Zmenil sa však vplyv premennej vek (oproti prechádzajúcemu modelu) z pozitívneho na negatívny.