Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion, Logic, Invariants
- Probability & Combinatronics
 - Counting, Probability, Random Variables
- Graph Theory
 - Graphs (cycles, classes, parameters)
- Number Theory & Cryptography
 - Arithmetic in modular form
 - Intro to Cryptography

Mathematical Thinking – Invariants

THE 15-PUZZLE

- The game
- Permutations
- Proof: The Challenging Part
- Mission Impossible
- Classify a Permutation

Invariants – The 15-Puzzle

The 15-Puzzle

https://upload.wikimedia.org/wikipedia/commons/4/48/15-Puzzle.jpg

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration

Chonbuk National University

Global Frontier Colllege

move the pieces (into an empty neighbor square)

The Game

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration

The Game

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration

15	2	1	12
8	5	6	11
4	9	10	7
3	13	14	

https://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/15-puzzle_magical.svg/800px-15-puzzle_magical.svg.png

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration

/15-puzzle_magical.svg/800px-15-puzzle_magical.svg.png

Chonbuk National University
-

Global Frontier Colllege

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration
- Are you up to it?

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

- 12 -

\$100 Dare!

https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/15-puzzle-loyd.svg/600px-15-puzzle-loyd.svg.png

move the pieces (into an empty neighbor square)

goal → to obtain a particular configuration

go back to starting configuration

Are you up to it?

https://i.stack.imgur.com/0B14h.png

https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/15-puzzle-loyd.svg/600px-15-puzzle-loyd.svg.png

\$100 Dare!

Invariants – The 15-Puzzle

History

• invented in the 19th century

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!
- why take risk of giving prize (15-14 interchanged):

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!
- why take risk of giving prize (15-14 interchanged):
 - impossibility proof exists!

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!
- why take risk of giving prize (15-14 interchanged):
 - impossibility proof exists!
- Challenge: reinvent this proof!

History

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!
- why take risk of giving prize (15-14 interchanged):
 - impossibility proof exists!
- Challenge: reinvent this proof!

https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/15-puzzle-loyd.svg/600px-15-puzzle-loyd.svg.png

https://i.stack.imgur.com/0B14h.png

- The game
- Permutations
- Proof: The Challenging Part
- Mission Impossible
- Classify a Permutation

Invariants – The 15-Puzzle

Another point of view

Empty cell active

Invariants – The 15-Puzzle

- Empty cell active
 - move around, exchange places with neighbors

- Empty cell active
 - move around, exchange places with neighbors
- Generally:

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of n objects obtained through sequence of pair exchanges (transpositions)

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of n objects obtained through sequence of pair exchanges (transpositions)
 - STOP \rightarrow SPOT:

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of n objects obtained through sequence of pair exchanges (transpositions)
 - STOP \rightarrow SPOT:
 - one transposition enough

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of n objects obtained through sequence of pair exchanges (transpositions)
 - STOP → SPOT:

STOP - SPOT

STOP - POST

- one transposition enough
- STOP →POST: 5+4.

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of n objects obtained through sequence of pair exchanges (transpositions)
 - STOP \rightarrow SPOT:
 - one transposition enough
 - STOP \rightarrow POST:
 - how many transposition?

Even and Odd Permutations

- STOP \rightarrow SPOT: 1, 3, 5, 7, ...
- STOP \rightarrow POST: 3, 5, 7, ...
- STOP \rightarrow POTS: 2, 4, 6, ...
- n + n transposition: twice nothing
- Conjecture: permutations are two types
 - Even
 - Odd

Invariants – The 15-Puzzle

Invariants – The 15-Puzzle

Invariants – The 15-Puzzle

Invariants – The 15-Puzzle

A Counterexample

even and odd at the same time?

- even and odd at the same time?
- spoiler!

A Counterexample

- even and odd at the same time?
- spoiler!
 - two T's are mixed (we assumed all letters are different)

A Counterexample

- even and odd at the same time?
- spoiler!
 - two T's are mixed (we assumed all letters are different)

Introduction to Discrete Math

Invariants – The 15-Puzzle

Theorem

Introduction to Discrete Math

Invariants – The 15-Puzzle

Theorem

 each permutation can be obtained through transpositions

Theorem

- each permutation can be obtained through transpositions
- some permutations can be derived only through an even number of transpositions, while others can be derived only through odd number of transpositions

Introduction to Discrete Math

Invariants – The 15-Puzzle

Proof: The Easy Part

• claim: each permutation can be obtained by transpositions

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

Proof: The Easy Part

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

 $STOP \rightarrow POST$

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

 $\begin{array}{c} \mathrm{STOP} \to \mathrm{POST} \\ \mathrm{STOP} \end{array}$

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

$$\begin{array}{c} STOP \rightarrow POST \\ \hline STOP \end{array}$$

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \text{STOP} \rightarrow \text{POST} \\ \text{STOP} \\ \text{PTOS} \end{array}
```

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \text{STOP} \rightarrow \text{POST} \\ \text{STOP} \\ \text{PTOS} \end{array}
```

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \text{STOP} \rightarrow \text{POST} \\ \text{STOP} \\ \text{PTOS} \\ \text{POTS} \end{array}
```

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \text{STOP} \rightarrow \text{POST} \\ \text{STOP} \\ \text{PTOS} \\ \text{POTS} \end{array}
```

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \mathbf{STOP} \rightarrow \mathbf{POST} \\ \mathbf{STOP} \\ \mathbf{PTOS} \\ \mathbf{POTS} \\ \mathbf{POST} \end{array}
```

Thank you.