IMEC 2001 – Herramientas Computacionales

Incertidumbres

Se realiza un experimento con el fin de determinar la aceleración gravitacional con ayuda de un péndulo. Para este propósito se mide la longitud (L) (ver tabla 1) y el periodo de oscilación (T) del péndulo (ver tabla 2). La longitud del péndulo fue medida con un metro con resolución de 1 mm y el periodo de oscilación con un cronómetro con resolución de 1 centésima de segundo.

Longitud [m]					
Mediciones	1 2		3		
1	1.200	1.200	1.200		
2	1.199	1.200	1.199		
3	1.201	1.202	1.202		
4	1.202	1.200	1.199		
5	1.200	1.199	1.200		

Tabla 1. Datos medición longitud

Longitud [m]					
Mediciones	1	2	3		
1	2.21	2.25	2.21		
2	2.25	2.25	2.25		
3	2.15 2.17	2.16	2.15 2.25		
4		2.20			
5	2.23	2.23	2.23		

Tabla 2. Datos medición oscilación

La expresión para g con base en la oscilación de un péndulo está dada por la ecuación 1:

$$g = \frac{4\pi^2 L}{T^2}$$

Consideraciones

Conjuntos	Índices
1. N : Mediciones	$i \in N ~~ o ~$ Recorro las filas
2. M : Repeticiones	$j \in M \ o \ Recorro$ las columnas

Encuentre:

1. El mejor estimativo de L y T.

$$\overline{L_i} = \frac{\sum_{j \in M} L_{ij}}{n_i} \qquad \forall i \in N \qquad \qquad \overline{T_i} = \frac{\sum_{j \in M} T_{ij}}{n_i} \qquad \forall i \in N$$

- 2. Incertidumbre de sesgo de L y T.
 - 2.1. ¿Se realizó una medición con un instrumentos análogo o digital?

Análogo	Digital
$\mu_{sesgo_x} = rac{resoluci\'on}{2}$ x siendo la variable de interés	$\mu_{sesgo_x} = resoluci\'on$

- 3. Incertidumbre aleatoria de L y T.
 - 3.1. ¿Tengo más de 1 dato en las mediciones tomadas?
 - 3.1.1. ¿Con cuántos datos cuento?
 - ¿Mayor a 30? Distribución normal
 - ¿Menor a 30? Distribución t-Student

$$S_i = \sqrt{\frac{\sum_{j \in M} (x_{ij} - \overline{x_{ij}})^2}{n_i - 1}} \ \forall \ i \in N \qquad \quad \mu_{aleatoria_i} = t_{\alpha, v} | z_{c, v} - \frac{S_i}{\overline{n_i}}$$

c	[%]	Confianza
α	[%]	Nivel de significancia
		$\alpha = 1 - c$
v	[-]	Grados de libertad
C	ГЛ	v = n - 1
S_x	[-]	Desviación estándar muestral de la variable de interés
	гэ	Número de datos de la variable de interés con la que se
n_x	[-]	Número de datos de la variable de interés con la que se cuenta por medición.

4. Incertidumbre total de L y T.

$$\mu_{total_{x_i}} = \sqrt{\left(\mu_{sesgo_{x_i}}\right)^2 + \left(\mu_{aleatoria_{x_i}}\right)^2}$$

5. Mejor estimativo de g.

Departamento de Ingeniería Mecánica

Engineering Technology Accreditation Commission

$$\overline{g_i} = \frac{\sum_{j \; \in \; M} L_{ij} T_{ij}}{n_i}$$

6. Derivada parcial de g respecto a L.

$$\frac{\partial g}{\partial L} = \frac{4\pi^2}{\bar{T}^2}$$

7. Derivada parcial de g respecto a T.

$$\frac{\partial g}{\partial T} = \frac{-8\pi^2 \overline{L}}{\overline{T}^3}$$

- 8. Incertidumbre de sesgo de g.
 - 8.1. ¿De cuántas variables dependo?

De 2, LyT

$$\mu_{sesgo_{g_i}} = \sqrt{\left(\frac{\partial g}{\partial L}\mu_{sesgo_{L_i}}\right)^2 + \left(\frac{\partial g}{\partial T}\mu_{sesgo_{T_i}}\right)^2}$$

- 9. Incertidumbre aleatoria de g.
 - 9.1. ¿De cuántas variables dependo?

De 2, LyT

$$\mu_{aleatoria_{g_i}} = \sqrt{\left(\frac{\partial g}{\partial L}\mu_{aleatoria_{L_i}}\right)^2 + \left(\frac{\partial g}{\partial T}\mu_{aleatoria_{T_i}}\right)^2}$$

10. Incertidumbre total de g.

$$\mu_{total_{g_i}} = \sqrt{\left(\mu_{sesgo_{g_i}}\right)^2 + \left(\mu_{aleatoria_{g_i}}\right)^2}$$