Intelligent Systems Exercises Block 2 Chapter 4

Clustering. Unsupervised learning: C-means algorithm

Escuela Técnica Superior de Informática Dep. de Sistemas Informáticos y Computación Universitat Politècnica de València

11 de noviembre de 2022

1.	Questions
1	During the execution of the C -means algorithm, we obtain a partition which contains two clusters $X_1 = \{(0,0), (1,0), (2,1)\}$ and $X_2 = \{(0,1), (1,2), (2,2)\}$. Calculate the SSE (sum of squared errors) of this partition:
	A) 8/3 B) 4/3 C) 16/3 D) 5/3
2	Regarding the SSE (sum of squared errors), show which of the following statements is TRUE:
	A) The Duda&Hart version of the C-means guarantees a global minimum of SSE B) There is no polynomial cost algorithm that guarantees a global minimum of SSE C) The Duda&Hart version of the C-means guarantees a null SSE (zero) D) The "popular" version of the C-means guarantees a local minimum of SSE
3	The minimum value of SSE (sum of squared errors) to be able to group the data points of the figure on the right in two clusters is: A) Lower than 10 B) Between 10 and 15 C) Between 15 and 20 0 1 2 3 4 5 6 7 8 9 10
	D) Greater than 20

A) The new value of SSE will be lower than 6.

C) Greater than 10 and lower than 15.

D) Greater than 15.

- B) The new value of SSE will be between 6 and 10.
- C) The new value of SSE will be higher than 10.
- D) It is not suitable to move the point because then the clusters would have uneven (unbalanced) sizes

- The points in the figure on the right are grouped by using the C-means algorithm, and after some running, the algorithm obtains the following partition $\Pi = \{X_1 = \{(0,0), (0,3), (3,0)\}, X_2 = \{(3,1)\}\}$. Let J' be the SSE value (sum of squared errors) of this partition, and let J be the SSE value of the partition that results from moving the point (3,0) to another cluster. Therefore:
 - A) $J \geq J'$
 - B) $\frac{1}{2}J' \le J < J'$
 - C) $\frac{1}{4}J' \le J < \frac{1}{2}J'$
 - D) $J < \frac{1}{4}J'$
- 11 Regarding the unsupervised learning, which of the following statements is FALSE:
 - A) The goal of unsupervised learning is to group the data points in "natural" groupings
 - B) The SSE (Sum of Squared Errors) is a widely used measure to assess the quality of a partitional clustering
 - C) The C-means algorithm guarantees a global minimum of SSE
 - D) It is used, for instance, in Speech Recognition to represent an acoustic signal as a sequence of symbols associated to the "codewords"

- A) The new value of SSE will be lower than 5.
- B) The new value of SSE will be between 5 and 7.
- C) The new value of SSE will be higher than 7 but lower than 10
- D) This point cannot be moved because otherwise one of the clusters would leave with only one data point.

13	Let $X=\{1,3,4.5\}$ be a set of three one-dimensional data points that we want to group into a partitional clustering technique. In particular, we want to use the C -means algorithm and of (sum of squared errors) but we have not decided yet whether to use the "popular" version or the version. Let $\Pi^0=\{X_1=\{1,3\},X_2=4.5\}$ be an initial partition which contains two clusters and Indicate which of the following statements is TRUE:	timize the SSE value Duda and Hart (DH)
	 A) Both the "popular" and DH version will terminate without modifying the initial partition B) The "popular" version will end with a better partition and the DH version will terminate in the initial partition C) The DH version will end with a better partition and the "popular" version will terminate in the initial partition 	
	D) Both versions will terminate with better partitions.	
14	(Exam 18th January 2013) The criterion Sum of Square Errors (SSE) in partitional clustering is objects form:	appropriate when the
	 A) Hyper-spherical clusters of similar size. B) Hyper-spherical clusters of any size. C) Elongated clusters of similar size. D) Elongated clusters of any size. 	
15	(Exam 30th January 2013) We have three one-dimensional samples: $x_1 = 0$, $x_2 = 20$ y $x_3 = 35$ partition $\Pi = \{X_1 = \{x_1, x_2\}, X_2 = \{x_3\}\}$. The sum of squared errors (SEE) of this partition is	
	A) $J(\Pi) = 0$ B) $0 < J(\Pi) \le 150$ C) $150 < J(\Pi) \le 300$ D) $J(\Pi) > 300$	
16	(Exam 30th January 2013) The application of the correct version of the K-means algorithm ("D partition Π of the above question (question 15) yields the following resulting partition (Π^*):	uda and Hart") to the
	A) $\Pi^* = \Pi$. B) $\Pi^* = \{X_1 = \{x_1\}, X_2 = \{x_2, x_3\}\}$. C) $\Pi^* = \{X_1 = \{x_2\}, X_2 = \{x_1, x_3\}\}$. D) None of the above.	
17	(Exam 15th January 2014) Which of the following statements about <i>Clustering</i> is <i>true</i> ?:	
	 A) The Perceptron algorithm is often used for labeled training samples B) The Perceptron algorithm is often used for unlabeled training samples C) The K-means algorithm is often used for labeled training samples D) The K-means algorithm is often used for unlabeled training samples 	
18	(Exam 15th January 2014) The Sum of Square Errors (SSE) criterion is appropriate when the	clusters are:
<u> </u>	A) No elongated. B) Elongated and of any size. C) Elongated and of similar size. D) None of the above.	
19	(Exam 15th January 2014) The minimum value of the SSE (Sum of Square Errors) to group the samples on the right figure in two clusters is a value:	4 1
	A) Between 0 and 3.	2
	B) Between 3 and 6.C) Between 6 and 9.	1 +
	D) Greater than 9.	0 1 2 3 4
20	(Exam 15th January 2014) The figure on the right shows a partition of 5 bi-dimensional points in 3 clusters (represented with symbols \bullet , \circ and \times). Consider all possible transfers of each point that is not in an unitary cluster. In terms of SSE (J) :	4 1 3 1 * * * * 2 1 • • • • • • • • • • • • • • • • • • •
	A) No transfer improves J .	1 +
	B) J can only improve transferring $(1,1)^t$ from cluster \bullet to \circ . C) J can only improve transferring $(2,3)^t$ from cluster \times to \circ .	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

D) Both transfers in B) and C) improve J.

C) A single point will be transferred, obtaining a partition with a J value between 0 and $\frac{2}{3}$.

D) There will be two transfers, obtaining a partition with J=0.

- A) The K-means algorithm is commonly used with labeled training samples
- B) The K-means algorithm is commonly used with unlabeled training samples
- C) The Viterbi algorithm is commonly used with labeled training samples
- D) The Viterbi algorithm is commonly used with unlabeled training samples

- B) Between 3 and 6.
- C) Between 6 and 9.
- D) Greater than 9.

- A) $\Delta J > 0$
- B) $0 \ge \Delta J > -1$
- C) $-1 \ge \Delta J > -2$
- D) $-2 \ge \Delta J$

- A) $0 \le J \le 7$
- B) $7 < J \le 14$
- C) $14 < J \le 21$
- D) 21 < J

- A) $\Delta J > 0$
- $0 \ge \Delta J > -1$
- C) $-1 \ge \Delta J > -2$
- D) $-2 \ge \Delta J$

27 (January 2016) Two well-known versions of the K-means algorithm are the <i>Duda and Hart</i> (DH) "popular" version. Assuming both versions are applied in the same initial partition, indicate which assertions is TRUE:	
A) Both versions will get the same optimized partition	
B) The DH version will get a partition which cannot be further improved with the "popular" version	on
C) The "popular" version will get a partition which cannot be further improved with the DH versi	on
D) The final partition obtained with DH would could be further improved with the "popular" vers	ion and viceversa
(January 2016) Consider the partition $\Pi = \{X_1 = \{(0,0)^t, (0,2)^t\}, X_2 = \{(2,0)^t, (2,4)^t\}\}$ for the perfigure. The mean points of the clusters are $\mathbf{m}_1 = (0,1)^t$ and $\mathbf{m}_2 = (2,2)^t$. The Sum of Square Error the partition is 10. If the point $(0,2)^t$ is transferred to cluster X_2 , then:	rs (SSE) of 4
A) The new SSE value will be >10 .	2 • 1
B) The new SSE value will be >8 and <10	0 +
 C) The new SSE value will be >6 and <8 D) The new SSE value will be <6. 	0 1
(January 2017) We have learnt a classifier for a classification problem and we have empirically estim a given set of training samples, obtaining the 95 % confidence interval of the probability of error. Whallow us to reduce the size of this interval?	
A) Decrease significantly the size of the training set	
B) Keep the training set and re-train the classifier with the <i>correct</i> version of the K-means algorith algorithm)	ım (Duda & Hart
C) Keep the training set and re-train the classifier with the <i>popular</i> version of the K-means algori	$_{ m thm}$
D) Increase significantly the size of the training set	
(January 2017) Indicate which of the following assertions about Supervised Learning (SL) and Unsug (UL) is CORRECT :	pervised Learning
A) Both SL and UL require class unlabeled training data	
B) UL requires class unlabeled data and SL requires class labeled data	
C) UL requires class labeled data and SL requires class unlabeled data	
D) Both SL and UL require class labeled training data	
31 (January 2017) Consider the <i>correct</i> version of Duda & Hart (DH) and the <i>popular</i> version (PV) algorithm. Both optimize the sum of squared errors (SSE) but their result differ because:) of the K-means
A) DH minimizes SSE and PV maximizes SSE	
B) DH maximizes SSE and PV minimizes SSE	
C) Both maximize SSE but DH yields better solutions than PV	
D) None of the above	
(January 2017) We applied the K -means algorithm on a set of two-dimensional objects to obtain a clusters. After a number of iterations of the K -means algorithm, the following partition into two clust : $\{\{(0,1)^{\mathbf{t}},(0,2)^{\mathbf{t}}\},\{(0,3)^{\mathbf{t}},(0,5)^{\mathbf{t}},(0,6)^{\mathbf{t}},(0,7)^{\mathbf{t}},(1,6)^{\mathbf{t}},(-1,6)^{\mathbf{t}}\}\}$. Show the CORRECT statement	ers was obtained:
A) The Sum of Square Errors (SSE) is 15 and it can reach a value of 8	
B) The value of SSE is 15 and it will be 12 after convergence of the K-means algorithm	
C) The value of SSE is 12 and it will be 10 after convergence of the K -means algorithm	
D) The value of SSE is 12 and it will be 6 after convergence of the K -means algorithm	
(January 2018) The figure on the right shows 4 two-dimensional samples. The number of clusters that minimizes the Sum of Square Errors (SSE) for these samples is:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
A) 1	2 +
B) 2	$1 + \bullet$ x_1
C) 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
D) 4	0 1 2 0

- A) $\Delta J > 0$.
- B) $0 \ge \Delta J > -\frac{1}{2}$.
- C) $-\frac{1}{2} \ge \Delta J > -1$.
- D) $-1 \ge \Delta J$.

- A) generates an increment of SSE.
- B) generates a decrement of SSE.
- C) does not modify SSE.
- D) results in a negative SSE.
- (January 2018) Mark the **CORRECT** answer about the K-means algorithm of Duda & Hart (correct version).
 - A) Its good computational efficiency is due to the incremental updating of the error variation and of the mean points of the clusters.
 - B) It determines the number of clusters that minimizes the value of SSE.
 - C) It removes a cluster whenever the cluster becomes empty.
 - D) None of the above.

37	(January 2018) The table on the right shows $6 \mathrm{three}\text{-dimensional training samples}$. We believe
	that a natural partition of this set in 2 clusters would group together the first 4 samples in
	one cluster and the last 2 samples in the second cluster. The Sum of Square Errors (SSE) of
	this partition, J , is:

- J < 3A)
- B) 3 < J < 6
- C) $6 \le J < 12$
- D) $12 \le J$

38	(January 2019) The figure on the right shows 4 two-dimensional samples. The number of clusters
	that minimizes the Sum of Square Errors (SSE) for these samples is:

- B) 2
- C) 3
- D) 4

(January 2019) The figure on the right shows a partition in 2 clusters (represented by symbols • and \circ) of four two-dimensional data. Transferring the point $(2,3)^t$ from cluster \bullet to cluster \circ leads to a variation of SSE (ΔJ) , such that:

B)
$$0 \ge \Delta J > -\frac{1}{2}$$
.

C)
$$-\frac{1}{2} \ge \Delta J > -1$$
.

D)
$$-1 \ge \Delta J$$
.

(January 2019) The figure on the right shows a partition of 6 two-dimension points into 2 clusters, \circ and \bullet , obtained through the application of the K-means. Transferring the points $(1,2)^t$ and $(2,1)^t$

- A) generates an increment of SSE (Sum of Squared Errors).
- B) does not modify the SSE.
- C) generates a decrement of SSE.
- D) generates SSE=0.

(January 2019) The figure on the right shows a partition of 4 two-dimension points in 2 clusters (represented by the symbols \bullet and \circ). If we transfer the point $(2,3)^t$ from cluster \bullet to cluster \circ , we obtain a variation of SSE, ΔJ , such that:

- $0 \ge \Delta J > -1$. B)
- C) $-1 \ge \Delta J > -2$.
- D) $-2 \ge \Delta J$.

The figure on the right shows a partition of 4 two-dimension samples in two clusters cluster \circ :

- A) results in a negative SSE (Sum of Square Errors).
- B) does not modify the value of SSE.
- C) generates an increment of SSE.
- D) generates a decrement of SSE.

The figure on the right shows a partition of 5 two-dimensional points in 2 clusters (represented by the symbols \bullet and \circ). If the K-means algorithm transfers the point (3,0) from cluster • to cluster •, show the **CORRECT** statement:

- A) The mean points of the cluster do not change.
- B) The SSE (Sum of Square Errors) increases.
- C) The SSE decreases.
- D) Only the SSE of one of the cluster changes.
- The figure below shows a partition of 5 two-dimensional points in 2 clusters, and o:

The transfer of the point $(4,1)^t$ from cluster \bullet to cluster \circ leads to an increment of the Sum of Square Errors, ΔJ , such that:

- A) $\Delta J < 0$, that is, the transfer is beneficial
- B) $0 < \Delta J < 1$.
- C) $1 \le \Delta J < 2$.
- D) $\Delta J \geq 2$.
- We have a partition of a set of 3-dimensional data points into a given number of clusters, $C \geq 2$. Consider the transfer of the data point $\mathbf{x} = (7,7,1)^t$ from a cluster i to another one $j, j \neq i$. We know that cluster i contains 4 data points (including **x**) and cluster j 3. We also know that the centroid (mean) of cluster i is $\mathbf{m}_i = (3, 1, 7)^t$, while that of cluster j is $\mathbf{m}_i = (1,7,4)^t$. If the transfer is carried out, an increase of the sum of square errors, ΔJ , will be produced such that:
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \geq 0$
- We have a partition of a set of 3-dimensional data points into a given number of clusters, $C \geq 2$. Consider the transfer of the data point $\mathbf{x} = (9, 2, 9)^t$ from a cluster i to another one j, $j \neq i$. We know that cluster i contains 4 data points (including **x**) and cluster j 3. We also know that the centroid (mean) of cluster i is $\mathbf{m}_i = (2, 9, 2)^t$, while that of cluster j is $\mathbf{m}_i = (6,2,3)^t$. If the transfer is carried out, an increase of the sum of square errors, ΔJ , will be produced such that:
 - A) $\Delta J < -70$
 - B) $-70 < \Delta J < -30$

- C) $-30 \le \Delta J < 0$
- D) $\Delta J \geq 0$

47 ☐ The figure below shows a partition of 6 two-dimensional points in 2 clusters, • and ∘:

If points $(10,1)^t$ and $(7,1)^t$ are transferred from one cluster to the other, a variation of the Sum of Square Errors (SSE) is produced, $\Delta J = J - J'$ (SSE after the transfer minus SSE before the transfer), such that:

- A) $\Delta J < -7$.
- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.

48 ☐ The figure below shows a partition of 5 two-dimensional points in 2 clusters, • and ○:

If points $(1,0)^t$ and $(3,1)^t$ are transferred from one cluster to the other, a variation of the Sum of Square Errors (SSE) is produced, $\Delta J = J - J'$ (SSE after the transfer minus SSE before the transfer), such that:

- A) $\Delta J < -7$.
- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.

2. Problems

1. We have the following 5 two-dimensional vectors:

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 7 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 4 \\ 6 \end{pmatrix}, \quad \mathbf{x}_4 = \begin{pmatrix} 8 \\ 2 \end{pmatrix} \quad \text{y} \quad \mathbf{x}_5 = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

We want to group the 5 vectors into two clusters by using unsupervised learning. Assuming we have the following initial partition:

$$\Pi = \{X_1 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}, X_2 = \{\mathbf{x}_4, \mathbf{x}_5\}\}\$$

trace the C-means algorithm and show one iteration of the main loop.