$\omega(x) = -\int_{0}^{x} f(s) ds$, $\omega(x) = \int_{0}^{x} \frac{\omega(s)}{c(s)} ds$ $Df = 1-\infty$ C- const) In other words: (aulo) = w(1) = 0 (au) u(0) = u(1) = 0 and u(1)=0 $\omega(x) = -(1-s) + s = -(s-s^2/2) = \frac{x^2}{2} - x + C_1$ a) $\omega(1)=0 \rightarrow \frac{1}{2}-1+c_1=0$ $\omega(x)=\frac{1}{2}$ $\omega(x)=\frac{x^2}{2}-x+\frac{1}{2}$ $u(x) = \frac{1}{c} \int_{-\infty}^{\infty} \left(\frac{x^2}{2} - x + \frac{1}{2} \right) ds = \frac{1}{c} \left[\frac{s^3}{6} - \frac{s^2}{2} + \frac{1}{2} s \right]_{0}^{\infty} = \frac{1}{2c} \left(\frac{x^3}{3} - x^2 + \alpha \right) + C_2$ $u(0) = 0 \rightarrow \frac{1}{2c} \cdot 0 + C_2 = 0$ $u(x) = \frac{1}{2c} \left(\frac{x^3}{3} - x^2 + x \right)^7$ b) $u(x) = \frac{1}{c} \int_{0}^{\infty} (\frac{s^{2}}{2} - s + C_{1}) ds = \frac{1}{c} \left[\frac{s^{3}}{6} - \frac{s^{2}}{2} + C_{1} s \right]_{0}^{\infty} = \frac{1}{2c} \left(\frac{x^{3}}{3} + \frac{x^{2}}{2} + C_{1} x \right) + C_{2}$ $u(0) = 0 \rightarrow [c_2 = 0]$ and $u(1) = 0 \rightarrow \frac{1}{2k} (\frac{1}{3} + 1 + c_1) = 0$ $c_1 + \frac{1}{6} + \frac{1}{2} = 0$ $u(x) = \frac{1}{2c} (\frac{x^3}{2} - x^2 + \frac{x}{2})$ (2) f-const $w(x) = \int f ds = (1-x)f + C_1$ c(x)=(1-x)w(1)=0=0.f+G→G=0 w(i) = 0 + const at the free ent $\omega(x) = (1-x)f$ (4(x) = fast ds = fac + C2 $\omega(x) = C \frac{dx}{dx} = 0$ Tic = f = (coust speed) even where no force $-\frac{d\omega}{dx} = f, \quad \omega(i) = 0, \quad \omega(x) = -\int f ds = -f x + C_1$ $\omega(i) = 0 - f + C_1 = 0, \quad C_1 = f$ (3) f-coast $e(\mathfrak{D}) = \begin{cases} 1, & \infty \leq 1/2 \\ 2, & \infty > 1/2 \end{cases}$ $\left[\omega(x) = f - fx = \omega(1 - x)f\right]$ $u(x) = \int \frac{w(s)}{c(s)} ds \Rightarrow [u(x) = \int \frac{1}{2}w(s) ds, for x s 1/2 =]f(1-s) ds = f[s-\frac{s^2}{2}]_0^{1/2}$ $u(x) = \int_{0}^{\infty} u(s) ds = 2 \int_{0}^{\infty} (1-s) ds$ $u(x) = \int_{1/2}^{\infty} \frac{u(s)ds}{2}, \text{ for } (x), 1/2 = \int_{1/2}^{\infty} \frac{1}{2} \frac{1}{2} \left[s - \frac{x^2}{2} \right] + C_2, \quad u(0) = 0 = C_2$ for x7,112 = \frac{1}{2}f\(\frac{1}{3}(1-5)\ds+4\left(\frac{1}{2}\right)\frac{1}{3}=\frac{1}{2}f\(\frac{1}{8}-\frac{1}{2}(x-1)^2\right)=\frac{1}{16}f-\frac{1}{4}f(x-1)^2 = 16 f - 4 Hx-1) Answer: $u(x) = \left(f(x - \frac{x^2}{2})\right)$ for $0 \le x \le 1/2$ $2f\left(\frac{7}{16} - \frac{1}{4}(x - 1)^2\right)$, for $p \le x \le 1$