

Musterlösungen Übungsserie 1

Algorithmen & Datenstrukturen AD1 / FS 2019 AD1 Team

Aufgabe 1 (Konzepte)

Sehen Sie sich den Sourcecode in der Datei "TextAnalyse.java" an (im Verzeichnis uebung01/as/aufgabe01).

- (a) Wie wird die Vorgehensweise der Funktion doIt() genannt?
- (b) Was für eine Funktion hat dieses Programm und
- (c) was für einen Output generiert das Programm für den folgenden Input: "Das Studium an der HSR kann manchmal nerven, speziell beim Programmieren!"

Lösung:

- a) Rekursion
- b) Dies ist ein Java Programm, welches die Anzahl Vokale in einer Zeichenkette zählt.
- c) Output:

Output: a = 6 Output: o = 1 Output: i = 4 Output: e = 8 Output: u = 2

Aufgabe 2 (Konzepte)

Wie Sie sich vielleicht vorstellen können ist das Programm aus Aufgabe 1 für dessen Aufgabe nicht sehr performant.

- (a) Weshalb?
- (b) Was für eine Lösung schlagen Sie für das Problem vor?
- (c) Implementieren Sie diese. Hinweis: eine Vorlage befindet sich im Verzeichnis uebung01/as/aufgabe02

Lösung:

- (a) Das Programm aus Aufgabe 1 benötigt durch die rekursiven Aufrufe unnötig viele Ressourcen (auf dem Stack).
- (b) Ein rein iteratives Programm würde dem Problem besser gerecht werden.
- (c) Siehe "ml/TextAnalyse.java"

Aufgabe 3 (Arithmetische Folgen)

Bestimmen Sie das n-te Glied (a_n) der folgenden Folgen in *rekursiver*, *iterativer* und expliziter Form (jeweils als Polynom in der Form: $a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$).

Definition:

Rekursiv: $a_n = a_{n-1} + d; \ a_1 = c$

Iterativ: $a_n = a_1 + \sum_{i=2}^n d^i$

Explizit: $a_n = f(n)$

Die Folgen:

(a) 1, 2, 3, 4, ...

(b) 5, 13, 21, 29, ...

(c) Programmieren Sie die Aufgabe (b), sodass die Ergebnisse *rekursiv*, *iterativ* und *explizit* für die ersten 5 Glieder berechnet werden.

Lösung:

Rekursiv: Iterativ: Explizit:

(a)
$$a_1 = 1$$
, $a_n = a_{n-1} + 1 = a_1 + \sum_{i=2}^{n} 1 = 1 + \sum_{i=2}^{n} 1 = n$

(b)
$$a_1 = 5$$
, $a_n = a_{n-1} + 8 = a_1 + \sum_{i=2}^{n} 8 = 5 + \sum_{i=1}^{n-1} 8 = 5 + 8(n-1) = 8n - 3$

(c) Siehe "ml/Sequence.java"

Aufgabe 4 (Arithmetische Reihen)

Bestimmen Sie die Summenformeln ($s_n = \sum_{i=1}^n a_i$) der Folgen (a) und (b) aus Aufgabe 3 in

rekursiver, iterativer und expliziter Form (jeweils als Polynom in der Form: $a_n X^n + a_{n-1} X^{n-1} + \ldots + a_2 X^2 + a_1 X + a_0$).

Allgemeine Summenformel: $s_n = \frac{n(a_1 + a_n)}{2}$

Lösung:

Rekursiv: Iterativ: Explizit:

(a)
$$s_1 = 1$$
, $s_n = s_{n-1} + n$ = $\sum_{i=1}^{n} i$ = $\frac{n(n+1)}{2} = \frac{n^2 + n}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$

(b)
$$s_1 = 5$$
, $s_n = s_{n-1} + 8n - 3 = \sum_{i=1}^{n} (8i - 3) = \frac{n(5 + (8n - 3))}{2} = 4n^2 + n$