

Recap

```
Sentence
                                     AtomicSentence | ComplexSentence
AtomicSentence
                                     LogicalConstant | PropositionalSymbol
ComplexSentence
                                     (Sentence)
                                      Sentence LogicalConnective Sentence
                                      | ¬Sentence
LogicalConstant
                                     TRUE | FALSE
Propositional Symbol
                                     P | Q | R | ...
LogicalConnective
                                     \Lambda \mid \vee \mid \Leftrightarrow \mid \Rightarrow \mid \neg
```

Precedence (from <u>highest</u> to <u>lowest</u>): \neg , Λ , \vee , \Rightarrow , \Leftrightarrow e.g.: $\neg P \land Q \lor R \Rightarrow S$ (not ambiguous), equal to: $(((\neg P) \land Q) \lor R) \Rightarrow S$

Recap

A	В	С	ΑΛВ	$B \Rightarrow C$	$(A \land B) \Rightarrow C$	$ A \Lambda (B \Rightarrow C) $
Т	Т	Т				
Т	T	F				
Т	F	Т				
Т	F	F				
F	Т	Т				
F	T	F				
F	F	Т				
F	F	F				

Recap

Α	В	C	ΑΛВ	$B \Rightarrow C$	(A ∧ B) ⇒ C	$A \Lambda (B \Rightarrow C)$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	F	Т	Т	Т
Т	F	F	F	Т	Т	Т
F	Т	Т	F	Т	Т	F
F	T	F	F	F	Т	F
F	F	Т	F	Т	Т	F
F	F	F	F	Т	Т	F

Literal and Clause

- Literal: A single proposition or its negation:
 - Example: P, ¬P

- A clause: A propositional formula formed from a finite collection of literals and logical connectives:
 - Example: $P \vee Q \vee \neg R$

Sound inference rules

- Pattern of inference, that occur again and again
- Soundness proven once and for all (truth-table)

Classic rules of inference

- Implication-Elimination, or Modus Ponens (MP)

$$\begin{array}{ccc}
 & \alpha \Rightarrow \beta, & \alpha \\
\hline
\beta
\end{array}$$

e.g., Cloudy
$$\Lambda$$
 Humid \Rightarrow Rain \mid = Rain Cloudy Λ Humid

 α

β

Classic rules of inference

- And-Elimination
 - $\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$

e.g. Cloudy Λ Humid \mid = Cloudy Cloudy \Rightarrow NoSunTan

- And-Introduction
 - $\begin{array}{c} \bullet & \alpha_1, \alpha_2, \dots, \alpha_n \\ \hline \alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n \end{array}$

e.g. Cloudy, Humid \Rightarrow Rain

Or-Introduction

$$\begin{array}{c} \bullet \\ \hline \alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n \end{array}$$

- Double-Negation-Elimination
 - $\frac{\neg \neg \alpha}{\alpha}$

Resolution

- A technique of inference
- Suppose x is a literal and S1 and S2 are two propositional sentences represented in the clausal form

- If $(x \lor S1) \land (\neg x \lor S2)$. Then, we get $(S1 \lor S2)$
 - Here, (S1 \vee S2) is the resolvent,
 - x is resolved upon

The resolution rule of inference

- Unit Resolution
- The resolvent is one in which at least one of the parent clauses is a unit clause (i.e., a single literal)

•
$$\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$$

e.g., Monday ∨ Tuesday, ¬ Monday |= Tuesday

same as MP:
$$\frac{P\Rightarrow Q, P}{Q}$$
 i.e. $\frac{\neg\beta\Rightarrow\alpha, \neg\beta}{\alpha}$

The resolution rule of inference

- Full Resolution
 - $\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$

Truth-table for the resolution

α	β	γ	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	$\alpha \vee \gamma$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
False	True	True	<u>True</u>	<u>True</u>	<u>True</u>
True	False	False	<u>True</u>	<u>True</u>	<u>True</u>
True	False	True	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
True	True	True	<u>True</u>	<u>True</u>	<u>True</u>

Equivalence Rules

Equivalent notations

– e.g., MP:

$$\begin{array}{c}
\alpha \Rightarrow \beta, \alpha \\
\beta \\
\end{array}$$

$$\begin{array}{c}
1) \alpha \Rightarrow \beta, \alpha \mid -\beta \\
2) \alpha \Rightarrow \beta, \alpha \mid = \beta \\
\\
\alpha \Rightarrow \beta \\
3) \frac{\alpha}{\beta} \\
\end{array}$$

$$\begin{array}{c}
4) ((\alpha \Rightarrow \beta) \land \alpha) \Rightarrow \beta
\end{array}$$

Equivalence Rules

Equivalence rules

– Associativity:

$$\alpha \Lambda (\beta \Lambda \gamma) \Leftrightarrow (\alpha \Lambda \beta) \Lambda \gamma$$
$$\alpha \vee (\beta \vee \gamma) \Leftrightarrow (\alpha \vee \beta) \vee \gamma$$

– Distributivity:

$$\alpha \Lambda (\beta \vee \gamma) \Leftrightarrow (\alpha \Lambda \beta) \vee (\alpha \Lambda \gamma)$$
$$\alpha \vee (\beta \Lambda \gamma) \Leftrightarrow (\alpha \vee \beta) \Lambda (\alpha \vee \gamma)$$

– De Morgan's Law:

$$\neg(\alpha \lor \beta) \Leftrightarrow \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \Leftrightarrow \neg\alpha \lor \neg\beta$$

Complexity of Inference

Proof by truth-table

- Complete
 - The truth-table can always be written.
- Exponential time complexity
 - A proof involving N proposition symbols requires 2^N rows.
 - In practice, a proof may refer only to a small subset of the KB.

Monotonicity

- Knowledge always increases if $KB_1 = \alpha$ then $(KB_1 \cup KB_2) = \alpha$

• Allows for <u>local</u> rules, e.g., Modus Ponens $\alpha \Rightarrow \beta, \alpha \mid -\beta$

Relooking at the Wumpus World

A reasoning agent

- Propositional logic as the "programming language"
- Knowledge base (KB) as problem representation
 - Percepts
 - Knowledge sentences
 - Actions
- Rule of inference (e.g., Modus Ponens) as the algorithm that will find a solution

The Knowledge Base

TELLing the KB: percepts

- Syntax and semantics
 - Symbol **S11**, meaning "there is stench at [1,1]"
 - Symbol B12, meaning "there is breeze at [1,2]"

. . .

Percept sentences

– Partial list:

[Stench , nil, nil, nil, nil]

The Knowledge Base

4

TELLing the KB: knowledge

- Rules about the environment
 - "All squares adjacent to the wumpus have stench."

$$S12 \Rightarrow W11 \lor W12 \lor W22 \lor W13$$

 "A square with no stench has no wumpus and adjacent squares have no wumpus either."

$$\neg S11 \Rightarrow \neg W11 \land \neg W21 \land \neg W12$$
$$\neg S21 \Rightarrow \neg W11 \land \neg W21 \land \neg W22$$
$$\land \neg W31$$

$$\neg S12 \Rightarrow \neg W11 \land \neg W12 \land \neg W22 \\ \land \neg W13$$

[Stench , nil, nil, nil, nil]

Г				
	W!			
	A S OK	OK		
	V OK	B V OK	P!	
	1	2	3	4

Finding the Wumpus

Checking the truth-table

 Exhaustive check: every row for which KB is true also has W13 true

- 12 propositional symbols, i.e. S11, S21, S12, W11, W21, W12, W22, W13, W31, B11, B21, B12
- $2^{12} = 4,096$ rows
- > possible, but lengthy

Reasoning by inference

- Application of a sequence of inference rules (proof)
 - Modus Ponens, And-Elimination, and Unit-Resolution

Proof for "KB \Rightarrow W13"

Knowledge Base

R1:
$$\neg$$
S11 $\Rightarrow \neg$ W11 $\land \neg$ W21

Λ ¬W12

R2:
$$\neg S21 \Rightarrow \neg W11 \land \neg W21$$

$$\Lambda$$
 ¬W22 Λ ¬W31

R3:
$$\neg S12 \Rightarrow \neg W11 \land \neg W12$$

$$\Lambda \neg W22 \Lambda \neg W13$$

R4:
$$S12 \Rightarrow W11 \lor W12 \lor W22$$

∨ W13

Inferences

- 1. Modus Ponens: ¬ S11, **R1**|- ¬W11 Λ ¬W21 Λ ¬W12
- 2. And-Elimination: •

3. Modus Ponens: - S21, R2

$$\neg$$
W11 \land \neg W21 \land \neg W22

Λ ¬W31

4. And-Elimination: •

Proof for "KB \Rightarrow W13"

Knowledge Base

R1:
$$\neg S11 \Rightarrow \neg W11 \land \neg W21$$

Λ ¬W12

R2:
$$\neg S21 \Rightarrow \neg W11 \land \neg W21$$

 Λ ¬W22 Λ ¬W31

R3: $\neg S12 \Rightarrow \neg W11 \land \neg W12$

 Λ ¬W22 Λ ¬W13

R4: $S12 \Rightarrow W11 \lor W12 \lor W22$

∨ W13

Inferences

5. Modus Ponens: S12, R4

$$|-$$
 (W13 \vee W12 \vee W22)

∨ W11

6. Unit-Resolution: ◆, ¬W11

$$|-$$
 (W13 \vee W12) \vee W22

Proof for "KB \Rightarrow W13"

Knowledge Base

R1:
$$\neg S11 \Rightarrow \neg W11 \land \neg W21$$

R2:
$$\neg S21 \Rightarrow \neg W11 \land \neg W21$$

$$\Lambda$$
 ¬W22 Λ ¬W31

R3:
$$\neg S12 \Rightarrow \neg W11 \land \neg W12$$

$$\Lambda$$
 ¬W22 Λ ¬W13

R4:
$$S12 \Rightarrow W11 \lor W12 \lor W22$$

Inferences

$$KB += \neg W11, \neg W21, \neg W12, \\ \neg W22, \neg W31, \\ (W13 \lor W12) \lor W22$$

- 7. Unit-Resolution: ♦, ¬W22
 |- W13 ∨ W12
- 8. Unit-Resolution: ◆, ¬W12 |- W13

KB ⇒ **W13**

From Knowledge to Actions

TELLing the KB: actions

- Additional rules
 - e.g. "if the wumpus is 1 square ahead then do not go forward"

A12 Λ East Λ W22 $\Rightarrow \neg$ Forward

A12 Λ North Λ W13 $\Rightarrow \neg$ Forward

. . .

ASKing the KB

Cannot ask "which action?"
 but "should I go forward?"

[Stench , nil, nil, nil, nil]

A Knowledge-Based Agent Using Propositional Logic

```
function Propositional-KB-Agent (percept) returns action
        static
                 KB,
                                  // a knowledge base
                                  // a time counter, initially 0
        Tell (KB, Make-Percept-Sentence (percept, t))
        foreach action in the list of possible actions
        do
           if Ask (KB, Make-Action-Query (t, action)) then
                 Tell (KB, Make-Action-Sentence (action, t))
                 t \leftarrow t + 1
                 return action
        end
```

Limits of Propositional Logic

A weak logic

- Too many propositions to TELL the KB
 - e.g., the rule "if the wumpus is 1 square ahead then do not go forward" needs 64 sentences (16 squares x 4 orientations)!
 - Result in increased time complexity of inference
- Handling change is difficult
 - Need time-dependent propositional symbols
 e.g., A11 means "the agent is in square [1,1]" when?
 at t = 0: A11-0; at t = 1: A21-1;
 at t = 2: A11-2
 - Need to rewrite rules as time-dependent e.g., A12-0 \wedge East-0 \wedge W22-0 $\Rightarrow \neg$ Forward-0 A12-2 \wedge East-2 \wedge W22-2 $\Rightarrow \neg$ Forward-2

Summary

Propositional logic ...

Commits only to the existence of facts.

 Has simple syntax and semantics and is therefore limited.

Thank you!

