1. AirBNB:

Q1.1 Boxplot

From the boxplot, we can usually infer Min, Max, Q1, Median, Q3, and Outliers information. From below boxplot I can see the Min vale is close to Zero, Max value is Close to 4000, Q1 is close to 1000, Median is close to 1500, Q3 is close to 2100, and there is an Outlier above 4000

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt

listing_host_start_df = pd.read_csv("C:/Users/satya/OneDrive - Texas State University/S
hareKnowledge/Courses/QMST5336-ANA/Assignment/1/listing_host_start.csv",header = 0, del
imiter = ",")
listing_host_start_df_null_dropped = listing_host_start_df.dropna(subset=['host_duratio n'])
plt.boxplot(listing_host_start_df_null_dropped['host_duration'])
plt.show()
```


Q1.2

Yes, there is an outlier based on TUKEY Method.

Step i: The Q1 value is 954.0 and Q3 value is 2156.0

Step ii: using step i calculate IQR(Q3-Q1) value 1202.0

Step iii: using step ii calculate upper boundary(Q3 + 1.5/QR) and lower boundary(Q1 - 1.5/QR)

Step iv: using step iii outliers are detected

In [2]:

```
from scipy import stats
import numpy as np

iqr_value = stats.iqr(listing_host_start_df_null_dropped['host_duration'], axis = 0)
Q1 = np.percentile(listing_host_start_df_null_dropped['host_duration'], 25, axis = 0)
Q3 = np.percentile(listing_host_start_df_null_dropped['host_duration'], 75, axis = 0)
upper_boundary_value = Q3 + 1.5 * iqr_value
lower_boundary_value = Q1 - (1.5 * iqr_value)
print(F"iqr_value value is: {iqr_value} \nQ1 value is: {Q1} \nQ3 val is {Q3} \nupper_boundary_value}
undary value is:{upper_boundary_value} \nlower_boundary value is:{lower_boundary_value}
")
outliers = listing_host_start_df_null_dropped[(listing_host_start_df_null_dropped['host_duratio n'] < lower_boundary_value)]
print("\n\nbelow are the outliers")
display(outliers)</pre>
```

iqr_value value is: 1202.0
Q1 value is: 954.0
Q3 val is 2156.0
upper_boundary value is:3959.0
lower_boundary value is:-849.0

below are the outliers

	host_id	host_since	host_is_superhost	update	start_month	host_duration
7720	23	2008-03-03	f	2019-05-31	3.0	4106.0
10827	23	2008-03-03	f	2019-05-31	3.0	4106.0

Q1.3

Mean and Standard deviation after removal of outlier.

In [3]:

```
import numpy as np

listing_host_start_df_null_dropped_without_outliers = listing_host_start_df_null_dropped
d[(listing_host_start_df_null_dropped['host_duration'] < upper_boundary_value) | (listing_host_start_df_null_dropped['host_duration'] > lower_boundary_value)]

listing_host_start_df_null_dropped_without_outliers_mean = np.mean(listing_host_start_df_null_dropped_without_outliers['host_duration'])
print(F"The mean of hosting days :{listing_host_start_df_null_dropped_without_outliers_mean}")

listing_host_start_df_null_dropped_without_outliers_std = np.std(listing_host_start_df_null_dropped_without_outliers['host_duration'])
print(F"The standard deviation of hosting days :{listing_host_start_df_null_dropped_without_outliers_std}")
```

The mean of hosting days :1562.3848502841631
The standard deviation of hosting days :794.317815382655

Q1.4

From the Histogram we can see a rightly skeweness (the values are spread to right)

In [4]:

```
import matplotlib.pyplot as plt
plt.hist(listing_host_start_df_null_dropped_without_outliers['host_duration'])
Out[4]:
```


Q1.5 Scatterplot

From the Scatterplot we cannot see any association(linear or non-linear) and strength of relationship(positive or negative)

In [5]:

```
import matplotlib.pyplot as plt
plt.scatter(listing_host_start_df_null_dropped_without_outliers['host_duration'], listi
ng_host_start_df_null_dropped_without_outliers['start_month'])
plt.show()
```


2 Game of Thorns

Q2.1 Top 8 killers

In [6]:

```
import pandas as pd
game_of_thorns_df = pd.read_csv("C:/Users/satya/OneDrive - Texas State University/Share
Knowledge/Courses/QMST5336-ANA/Assignment/1/game-of-thrones-deaths-data.csv",header = 0
, delimiter = ",",encoding = "latin1")
top_8_killers_df = game_of_thorns_df.groupby('killer',as_index=False).count()[['killer','character_killed']].sort_values(by='character_killed', axis=0, ascending=False)
top_8_killers_df = top_8_killers_df[top_8_killers_df['killer'] !='None']
print(top_8_killers_df.head(8))
```

	killer	character_killed
138	Wight	1602
29	Drogon	1426
5	Arya Stark	1278
103	Rhaegal	273
20	Cersei Lannister	199
57	Jon Snow	112
118	Stark soldier	96
14	Bolton soldier	91

Q2.2 word cloud of locations regarding the frequencies characters die

In [7]:

```
import os
from os import path
from wordcloud import WordCloud
import matplotlib.pyplot as plt

wordcloud_location = WordCloud().generate(game_of_thorns_df['location'].str.strip(to_st
rip=None).to_string( header=False, index=False))
plt.imshow(wordcloud_location, interpolation='bilinear')
plt.axis("off")
```

Out[7]:

(-0.5, 399.5, 199.5, -0.5)

In []: