Proof

- suppose T'=0ie given any $Y \in W'$ $T'(Y = Y \circ T = 0$
- > Suppose T≠0, ie Iv such that Tv = w≠0
- since W is finite dimensional,

where w, ,..., wm is the basis and C, ..., cm it some scalar

- > since w ≠0, at least one c: ≠0. Wick to such that

 y(w;) ≠0, which must exist by 3.98
- by definition

 by basis definition

 by basis definition

 c, \(\text{C}(\w), + \ldots \text{Cm}\wn)

 c, \(\text{C}(\w), + \ldots \text{Cm}\wn)

 by hypothesis

 by hypothesis

 hypothesis
- > b(wi) =0 => contradict. Thus T=0.