42

- Q.1 Verify the commutative properties of union and intersection for the following pair of sets.
- (i) $A = \{1, 2, 3, 4, 5\}, B = \{4, 6, 8, 10\}$
- (ii) N, Z
- (iii) $A = \{x \mid x \in R \land x \ge 0\}$ B = R

Solution:

(i)
$$A = \{1, 2, 3, 4, 5\}$$
 $B = \{4, 6, 8, 10\}$
 $A \cup B = \{2, 3, 4, 5\} \cup \{4, 6, 8, 10\}$
 $A \cup B = \{1, 2, 3, 4, 5, 6, 8, 10\}$

$$B \cup A = \{4, 6, 8, 10\} \cup \{1, 2, 3, 4, 5\}$$
$$= \{1, 2, 3, 4, 5, 6, 8, 10\}$$

$$\therefore$$
 A \cup B = B \cup A

$$A \cap B = \{1, 2, 3, 4, 5\} \cap \{4, 6, 8, 10\}$$

= \{4\}

$$B \cap A = \{4, 6, 8, 10\} \cap \{1, 2, 3, 4, 5\}$$

= \{4\}

$$\therefore$$
 $A \cap B = B \cap A$

Commutative properties of union and intersection are verified.

$$(ii)$$
 N, Z

$$N \cup Z = Z$$

and
$$Z \cup N = Z$$

$$\Rightarrow$$
 N \cup Z = Z \cup N

Now

$$N \cap Z = N$$
 and $Z \cap N = N$

$$\Rightarrow$$
 $N \cap Z = Z \cap N$

Commutative properties of union and intersection are verified.

(iii)
$$A = \{x \mid x \in R \land x \ge 0\} \quad B = R$$

Commutative property of union

$$A \cup B$$
 = $\{x \mid x \in R \land x \ge 0\} \cup R$
= R

$$(B \cup A) = R \cup \{x \mid x \in R \land x \ge 0\}$$
$$= R$$

$$A \cap B = \{x \mid x \in R \land x \ge 0\} \cap R$$
$$= \{x \mid x \in R \land x \ge 0\}$$

$$B \cap A = R \cap \{x \mid x \in R \land x \ge 0\}$$
$$= \{x \mid x \in R \land x \ge 0\}$$

- ⇒ Commutative properties of union and intersection are verified.
- Q.2 Verify the properties for the sets A, B, C given below:
- (i) Associativity of Union $A \cup (B \cup C) = (A \cup B) \cup C$
- (a) $A = \{1, 2, 3, 4\}$ $B = \{3, 4, 5, 6, 7, 8\}$ $C = \{5, 6, 7, 9, 10\}$
- (b) $A = \emptyset$, $B = \{0\}$, $C = \{0, 1, 2\}$
- (c) N, Z, Q
- (ii) Associativity of intersection $A \cap (B \cap C) = (A \cap B) \cap C$
- (a) $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7, 8\}$, $C = \{5, 6, 7, 9, 10\}$
- (b) $A = \phi$, $B = \{0\}$, $C = \{0, 1, 2\}$
- (c) N, Z, Q
- (iii) Distributivity of union over intersection (Lahore Board 2005) $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$

43

- (a) $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7, 8\}$, $C = \{5, 6, 7, 9, 10\}$
- (b) $A = \phi$, $B = \{0\}$, $C = \{0, 1, 2\}$
- (c) N, Z, Q
- (iv) Distributivity of intersection over union $A \cup C$ $(B \cap C) = (A \cup B) \cap (A \cup C)$
- (a) $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6, 7, 8\}, C = \{5, 6, 7, 9, 10\}$
- (b) $A = \phi$ $B = \{0\}$ $C = \{0, 1, 2\}$, (c) N, Z, Q

Solution:

- (i) Associativity of union
- (a) $A = \{1, 2, 3, 4\}$ $B = \{3, 4, 5, 6, 7, 8\}$ $C = \{5, 6, 7, 9, 10\}$
- i.e. $(A \cup B) \cup C = A \cup (B \cup C)$

L.H.S.

$$(A \cup B) \cup C = (\{1, 2, 3, 4\} \cup \{3, 4, 5, 6, 7, 8\}) \cup \{5, 6, 7, 9, 10\}$$

$$= \{1, 2, 3, 4, 5, 6, 7, 8\} \cup \{5, 6, 7, 9, 10\}$$

$$= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$R.H.S = A \cup (B \cup C)$$

$$= \{1, 2, 3, 4\} \cup (\{3, 4, 5, 6, 7, 8\} \cup \{5, 6, 7, 9, 10\})$$

$$= \{1, 2, 3, 4\} \cup \{3, 4, 5, 6, 7, 8, 9, 10\}$$

$$= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

 \Rightarrow $(A \cup B) \cup C = (A \cup B) \cup C$

(b)
$$A = \phi$$
, $B = \{0\}$, $C = \{0, 1, 2\}$
To show $(A \cup B) \cup C = A \cup (B \cup C)$

L.H.S.

$$(A \cup B) \cup C = (\phi \cup \{0\}) \cup \{0, 1, 2\}$$

= $\{0\} \cup \{0, 1, 2\}$
= $\{0, 1, 2\}$

R.H.S.

$$A \cup (B \cup C) = \phi \cup (\{0\} \cup \{0, 1, 2\})$$

= \phi \cup \{0, 1, 2\}
= \{0, 1, 2\}

$$\Rightarrow$$
 $(A \cup B) \cup C = A \cup (B \cup C)$

(c) N, Z, Q

To show
$$(N \cup Z) \cup Q = N \cup (Z \cup Q)$$

 $(N \cup Z) \cup Q = Z \cup Q = Q$

$$N \cup (Z \cup Q) = N \cup Q = Q$$

- (ii) Associativity of intersection
- (a) $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7, 8\}$, $C = \{5, 6, 7, 9, 10\}$

Associativity of intersection is

$$(A \cap B) \cap C = A \cap (B \cap C)$$

L.H.S.

$$(A \cap B) \cap C = (\{1, 2, 3, 4\} \cap \{3, 4, 5, 6, 7, 8\}) \cap \{5, 6, 7, 9, 10\}$$
$$= \{3, 4\} \cap \{5, 6, 7, 9, 10\}$$
$$= \{\}$$

$$A \cap (B \cap C) = \{1, 2, 3, 4\} \cap \{5, 6, 7\} = \{\}$$

R.H.S.

$$A \cap (B \cap C) = \{1, 2, 3, 4\} \cap (\{3, 4, 5, 6, 7, 8\} \cap \{5, 6, 7, 9, 10\})$$

$$= \{1, 2, 3, 4\} \cap \{5, 6, 7\}$$

$$= \{\}$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Visit for other book notes, past papers, tests papers and guess papers

(b)
$$A = \phi$$
, $B = \{0\}$, $C = \{0, 1, 2\}$

To show $(A \cap B) \cap C = A \cap (B \cap C)$

L.H.S.

$$(A \cap B) \cap C = (\phi \cap \{0\}) \cap \{0, 1, 2\}$$

= $\{ \} \cap \{0, 1, 2\}$
= $\{ \}$

R.H.S.

$$A \cap (B \cap C) = \{ \} \cap (\{0\} \cap \{0, 1, 2\})$$

= \{ \} \cap \{0\}
= \{ \}

$$\Rightarrow$$
 $(A \cap B) \cap C = A \cap (B \cap C)$

(c) N, Z, Q

To show $(N \cap Z) \cap Q = N \cap (Z \cap Q)$

L.H.S.

$$(N \cap Z) \cap Q = N \cap Q = N$$

R.H.S.

$$N \cap (Z \cap Q) = N \cap Z = N$$

$$\Rightarrow$$
 $(N \cap Z) \cap Q = N \cap (Z \cap Q)$

- (iii) Distributivity of Union over intersection
- (a) $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7, 8\}$, $C = \{5, 6, 7, 9, 10\}$

Distributivity of Union over intersection

i.e.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

L.H.S.

$$A \cup (B \cap C) = \{1, 2, 3, 4\} \cup (\{3, 4, 5, 6, 7, 8\} \cap \{5, 6, 7, 9, 10\})$$
$$= \{1, 2, 3, 4\} \cup \{5, 6, 7\}$$
$$= \{1, 2, 3, 4, 5, 6, 7\}$$

R.H.S.

$$(A \cup B) \cap (A \cup C) = (\{1, 2, 3, 4\} \cup \{3, 4, 5, 6, 7, 8\}) \cap (\{1, 2, 3, 4\} \cup \{5, 6, 7, 9, 10\})$$
$$= \{1, 2, 3, 4, 5, 6, 7, 8\} \cap \{1, 2, 3, 4, 5, 6, 7, 9, 10\})$$
$$= \{1, 2, 3, 4, 5, 6, 7\}$$

$$\Rightarrow$$
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

(b)
$$A = \emptyset$$
, $B = \{0\}$, $C = \{0, 1, 2\}$

To show $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

L.H.S.

$$A \cup (B \cap C) = \{ \} \cup (\{0\} \cap \{0, 1, 2\})$$
$$= \{ \} \cup \{0\} = \{0\}$$

R.H.S.

$$(A \cup B) \cap (A \cup C) = (\{ \} \cup \{0\}) \cap (\{ \} \cup \{0, 1, 2\})$$

= $\{0\} \cap \{0, 1, 2\} = \{0\}$

$$\Rightarrow$$
 A \cup (B \cap C) = (A \cup B) \cap (A \cup C)

(c) N, Z, Q

To show $N \cup (Z \cap Q) = (N \cup Z) \cap (N \cup Q)$

L.H.S.

$$N \cup (Z \cap Q) = N \cup Z = Z$$

R.H.S.

$$(N \cup Z) \cap (N \cup Q) = Z \cap Q = Z$$

$$\Rightarrow$$
 $N \cup (Z \cap Q) = (N \cup Z) \cap (N \cup Q)$

- (iv) Distributivity of intersection over union.
- (a) $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7, 8\}$, $C = \{5, 6, 7, 9, 10\}$ Distributivity of intersection over union

i.e.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

To show

L.H.S.

$$A \cap (B \cup C) = \{1, 2, 3, 4\} \cap (\{3, 4, 5, 6, 7, 8\} \cup \{5, 6, 7, 9, 10\})$$
$$= \{1, 2, 3, 4\} \cap \{3, 4, 5, 6, 7, 8, 9, 10\}$$
$$= \{3, 4\}$$

R.H.S.

$$(A \cap B) \cup (A \cap C) = (\{1, 2, 3, 4\} \cap \{3, 4, 5, 6, 7, 8\}) \cup (\{1, 2, 3, 4\} \cap \{5, 6, 7, 9, 10\})$$
$$= \{3, 4\} \cup \{\}$$
$$= \{3, 4\}$$

$$\Rightarrow$$
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(b)
$$A = \phi$$
, $B = \{0\}$, $C = \{0, 1, 2\}$

To show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

L.H.S.

$$A \cap (B \cup C) = \{ \} \cap (\{0\} \cup \{0, 1, 2\})$$
$$= \{ \} \cap \{0, 1, 2\} = \{ \}$$

R.H.S.

$$(A \cap B) \cup (A \cap C) = (\{ \} \cap \{0\}) \cup (\{ \} \cup \{0, 1, 2\})$$

= $\{ \} \cup \{ \}$
= $\{ \}$

$$\Rightarrow$$
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(c) N, Z, Q

To show $N \cap (Z \cup Q) = (N \cap Z) \cup (N \cap Q)$

L.H.S.

$$N \cap (Z \cup Q) = N \cap Z = N$$

R.H.S.

$$(N \cap Z) \cup (N \cap Q) = N \cup N = N$$

$$\Rightarrow$$
 $N \cap (Z \cup Q) = (N \cap Z) \cup (N \cap Q)$

Q.3 Verify De-Morgan's Laws for the following sets

$$U = \{1, 2, 3, \dots, 20\}, A = \{2, 4, 6, \dots, 20\}, B = \{1, 3, 5, \dots, 19\}.$$

.....(1)

Solution:

De Morgan's Laws are

= { }

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

$$A \cup B = \{2, 4, 6, \dots, 20\} \cup \{1, 3, 5, \dots, 19\}$$

$$= \{1, 2, 3, \dots, 20\}$$

$$(A \cup B)' = U - (A \cup B)$$

$$= U - \{1, 2, 3, \dots, 20\}$$

$$= \{1, 2, 3, \dots, 20\} - \{1, 2, 3, \dots, 20\}$$

Now,
$$A' = U - A$$

= $\{1, 2, 3, \dots, 20\} - \{2, 4, 6, \dots, 20\}$
= $\{1, 3, 5, \dots, 19\}$
 $B' = U - B$
= $\{1, 2, 3, \dots, 20\} - \{1, 3, 5, \dots, 19\}$
= $\{2, 4, 6, \dots, 20\}$
 $A' \cap B' = \{1, 3, 5, \dots, 19\} \cap \{2, 4, 6, \dots, 20\}$
= $\{3, 3, 5, \dots, 19\} \cap \{2, 4, 6, \dots, 20\}$

From equations (1) and (2) it is clear that

Now
$$A \cap B = \{2, 4, 6, \dots, 20\} \cap \{1, 3, 5, \dots, 19\}$$

 $= \{\}$
 $(A \cap B)' = U - (A \cap B)$
 $= \{1, 2, 3, \dots, 20\} - \{\}$
 $= \{1, 2, 3, \dots, 20\} - \{\}$
 $= \{1, 2, 3, \dots, 20\} - \{2, 4, 6, \dots, 20\}$
 $= \{1, 3, 5, \dots, 19\}$
 $B' = U - B$
 $= \{1, 2, 3, \dots, 20\} - \{1, 3, 5, \dots, 19\}$
 $= \{2, 4, 6, \dots, 20\}$
 $A' \cup B' = \{1, 3, 5, \dots, 19\} \cup \{2, 4, 6, \dots, 20\}$
 $= \{1, 2, 3, 4, \dots, 20\} - \{1, 3, 5, \dots, 19\} \cup \{2, 4, 6, \dots, 20\}$

From equations (3) and (4) it is clear that $(A \cup B)' = A' \cup B'$.

Q.4 Let U = the set of all the English alphabet.

 $A = \{x \mid x \text{ is a vowel}\}, B = \{y \mid y \text{ is a consonant}\}\$

Verify De-Morgan's Laws for these sets.

Solution:

De-Morgan's Law are

$$(A \cup B)' = A' \cap B'$$
 and
 $(A \cap B)' = A' \cup B'$

Visit for other book notes, past papers, tests papers and guess papers

$$A \cup B = \{x \mid x \text{ is a vowel}\} \cup \{y \mid y \text{ is a consonant}\}$$

$$= \text{The set of the English alphabet}.$$
 $(A \cup B)' = U - A \cup B$

$$= \text{The set of English alphabet} - \text{The set of English alphabet}$$

$$= \{\} \qquad \dots \dots (1)$$
 $A' = U - A$

$$= \text{The set of English alphabet} - \{x \mid x \text{ is a vowel}\}$$

$$= \{y \mid y \text{ is a consonant}\}$$
 $B' = U - B$

$$= \text{The set of English alphabet} - \{y \mid y \text{ is a consonant}\}$$

$$= \{x \mid x \text{ is a vowel}\}$$
 $A' \cap B' = \{y \mid y \text{ is a consonant}\} \cap \{x \mid x \text{ is a vowel}\}$

$$= \{\} \qquad \dots \dots (2)$$

49

From equations (1) and (2) $(A \cup B)' = A' \cap B'$.

Now
$$A \cap B = \{x \mid x \text{ is a vowel}\} \cap \{y \mid y \text{ is a consonant}\}\$$

= $\{\}$
 $(A \cap B)' = U - A \cap B$

$$A' = U - A$$

= The set of English alphabet – $\{x \mid x \text{ is a vowel}\}\$
= $\{y \mid y \text{ is a consonant}\}\$

$$B' = U - B$$

= The set of English alphabet – {y | y is a consonant}
= {x | x is a vowel}

$$A' \cup B' = \{y \mid y \text{ is a consonant}\} \cup \{x \mid x \text{ is a vowel}\}\$$

= The set of English alphabet(2)

From equations (1) and (2).

It is clear that
$$(A \cap B)' = A' \cap B'$$
.

- Q.5 With help of Venn Diagram, verify the two distributive laws in the following sets w.r.t. union and intersection.
- (i) $A \subseteq B$, $A \cap C = \emptyset$ and B and C are overlapping.
- (ii) A and B are overlapping, B and C are overlapping but A and C are disjoint.

Solution:

(i) $A \subseteq B$, $A \cap C = \phi$ and B and C are overlapping

Distributivity of union over intersection

i.e. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Distributivity of intersection over union i.e.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cup C)$$

(ii) A and B are overlapping, B and C are overlapping, but A and C are disjoint.

Distributivity of union over intersection

i.e.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Distributivity of intersection over union.

i.e. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- **Q.6** Taking any set, say $A = \{1, 2, 3, 4, 5\}$ verify the following
- (i) $A \cup \phi = A$ (ii) $A \cup A = A$ (iii) $A \cap A = A$

Solution:

- (i) $A \cup \phi = A$ $A = \{1, 2, 3, 4, 5\}$ $A \cup \phi = \{1, 2, 3, 4, 5\} \cup \{\}$ $= \{1, 2, 3, 4, 5\}$ = A
- $A \cup \phi = A$ \Rightarrow
- $A \cup A = A$ (ii) A {1, 2, 3, 4, 5} $A \cup A = \{1, 2, 3, 4, 5\} \cup \{1, 2, 3, 4, 5\}$ $= \{1, 2, 3, 4, 5\} = A$
- $A \cup A = A$ \Rightarrow
- $A \cap A = A$ (iii) $A = \{1, 2, 3, 4, 5\}$ $A \cap A = \{1, 2, 3, 4, 5\} \cap \{1, 2, 3, 4, 5\}$ $= \{12, 3, 4, 5\} = A$
- $A \cap A = A$ \Rightarrow
- If $U = \{1, 2, 3, 4, 5, \dots, 20\}$, $A = \{1, 3, 5, \dots, 19\}$ verify the following **Q.7**
 - (i) $A \cup A' = U$ (ii) $A \cap U = A$ (iii) $A \cap A' = \phi$

Solution:

- $A \cup A' = U$ **(i)** $A' = U - A = \{1, 2, 3, 4, 5, \dots, 20\} - \{1, 3, 5, \dots, 19\}$ $= \{2, 4, 6, 8, \dots, 20\}$
- $A \cup A' = \{1, 3, 5, \dots, 19\} \cup \{2, 4, 6, \dots, 20\}$ $= \{1, 2, 3, 4, 5, \dots, 20\} = U$
- $A \cup A' = U$

(ii)
$$A \cap U = A$$

$$A \cap U = \{1, 3, 5, \dots, 19\} \cap \{1, 2, 3, 4, 5, \dots, 20\}$$

= $\{1, 3, 5, \dots, 19\} = A$

$$\Rightarrow$$
 A \cap U = A

(iii)
$$A \cap A' = \phi$$

$$A' = U - A$$

$$= \{1, 2, 3, 4, 5, \dots 20\} - \{1, 3, 5, \dots 19\}$$

$$= \{2, 4, 6, \dots 20\}$$

$$A \cap A' = \{1, 3, 5, \dots 19\} \cap \{2, 4, 6, \dots 20\}$$

$$= \{\} = \emptyset$$

$$\Rightarrow$$
 $A \cap A' = \phi$

- Q.8 From suitable properties of union and intersection deduce the following results:
- (i) $A \cap (A \cup B) = A \cup (A \cap B)$

(Lahore Board 2007, 2010)

(ii) $A \cup (A \cap B) = A \cap (A \cup B)$

(Gujranwala Board 2003)

Solution:

(i)
$$A \cap (A \cup B) = A \cup (A \cap B)$$

L.H.S. =
$$A \cap (A \cup B)$$

= $(A \cap A) \cup (A \cap B)$ Using distributive law
= $A \cup (A \cap B)$ $\bowtie A \cap A = A$
= R.H.S.

(ii) $A \cup (A \cap B) = A \cap (A \cup B)$

L.H.S. =
$$A \cup (A \cap B)$$

= $(A \cup A) \cap (A \cup B)$ by distributive law
= $A \cap (A \cup B)$ $\not \exists A \cup A = A$
= R.H.S.

- Q.9 Using Venn Diagram, verify the following results.
- (i) $A \cap B' = A \text{ iff } A \cap B = \phi$
- (ii) $(A-B) \cup B = A \cup B$
- (iii) $(A-B) \cap B = \phi$
- (iv) $A \cup B = A \cup (A' \cap B')$

Solution:

(i)
$$A \cap B' = A \text{ iff } A \cap B = \phi$$

i.e. by Venn diagram

on contrary;

Suppose
$$A \cap B = \phi$$

i.e.

$$\Rightarrow$$
 $A \cap B' = A \text{ if } A \cap B = \phi$

(ii)
$$(A-B) \cup B = A \cup B$$

From above figures it is clear that

$$(A - B) \cup B = A \cup B$$

(iii)
$$(A - B) \cap B = \phi$$

It is clear from above figure that $(A - B) \cap B = \phi$

Visit for other book notes, past papers, tests papers and guess papers

(iv)
$$A \cup B = A \cup (A' \cap B)$$

In above two figures the shaded portion is same.

$$\Rightarrow$$
 $A \cup B = A \cup (A' \cap B)$

INDUCTIVE AND DEDUCTIVE LOGIC

Induction

The way of drawing conclusions on the basis of a few basic experiments or observations is called induction.

Deduction

The way of drawing conclusions by accepting some well known facts is called deduction.

Proposition

A declarative statement which may be true or false but not both is called proposition.

Aristotelian and non-Aristotelian Logics:

Deductive logic in which every statement is regarded as true or false and there is no other possibility, is called Aristotelian logic.

Logic in which there is scope for a third or fourth possibility is called non-Aristotelian logic.

Symbolic Logic

Symbol	How to be read	Symbolic expression	How to be read
~ (Negation)	not	≡ p	Not p
∧ (Conjunction)	and	$p \wedge q$	p and q
v (Disjunction)	or	$p \lor q$	p or q
→ (Conditional)	if then implies	$p \rightarrow q$	p implies q
↔ (Biconditional)	if and only if	$p \leftrightarrow q$	p if and only if q
			or
			p is equivalent to q