

In the Claims:

Cancel claims 41-46, 53, 66, 67, 76, 79, 80, 81, 85, 86, 91, 102-104, 106-110 without prejudice or disclaimer of the subject matter thereof.

Amend claims 36, 57, 78, 90, 100 and 101 as follows:

1-35. (Cancelled).

36. (Currently Amended) A system for ablating an interior tissue region of an organ or duct within a body of a patient comprising:

an ablation tool including an elongated antenna device electrically coupled to a coaxial transmission line that is electrically coupled to a source of microwave energy, the coaxial transmission line delivering microwave energy to the antenna device so as to effect ablation of a tissue region within the interior of the organ or duct, the coaxial transmission line including an inner conductor, an outer conductor and a dielectric medium disposed between the inner and outer conductors, the antenna device including an antenna that is coupled to a distal end of the inner conductor of the coaxial transmission line and an enclosure that encapsulates the antenna with a dielectric material; and

an introducer configured to carry at least a portion of the ablation tool, the introducer having a proximal end, a sharpened distal end for penetrating through a wall of the organ or duct, and at least one lumen which is sized and dimensioned

for slidably receipt of at least the antenna device of the ablation tool therethrough, the antenna device being configured to be deployed into the interior of the organ or duct through the sharpened distal end of the introducer, wherein upon deployment the antenna device is substantially straight and assumes an angular orientation relative to a longitudinal axis of the introducer, the angular orientation placing the straight antenna device in a direction towards and substantially parallel to an interior portion of the penetrated wall ~~in order to allow for producing~~ a linear lesion ~~to be produced~~ at the tissue region of the penetrated wall which is targeted for ablation.

37. (Allowed) A system for ablating an interior tissue region of an organ or duct within a body of a patient comprising:

an ablation tool including an elongated antenna device electrically coupled to a coaxial transmission line that is electrically coupled to a source of microwave energy, the coaxial transmission line delivering microwave energy to the antenna device so as to effect ablation of a tissue region within the interior of the organ or duct, the coaxial transmission line including an inner conductor, an outer conductor and a dielectric medium disposed between the inner and outer conductors, the antenna device including an antenna that is coupled to a distal end of the inner conductor of the coaxial transmission line and an enclosure that encapsulates the antenna with a dielectric material; and

an introducer configured to carry at least a portion of the ablation tool, the introducer having a proximal end, a sharpened distal end for penetrating through a wall of the organ or duct, and at least one lumen which is sized and dimensioned for slidable receipt of at least the antenna device of the ablation tool therethrough, the antenna device being configured to be deployed into the interior of the organ or duct through the sharpened distal end of the introducer, wherein upon deployment the antenna device assumes a predetermined position in a direction towards the tissue region targeted for ablation and substantially parallel to the tissue region targeted for ablation, wherein said ablation tool comprises a steering mechanism associated with the proximal end of the tool which, upon manipulation, is configured to cause at least a portion of the antenna device to assume an angular orientation relative to a longitudinal axis of the tool.

38. (Allowed) The system of claim 37 wherein said angular orientation is between about 0 and 90 degrees relative to the longitudinal axis of the tool.

39. (Allowed) The system of claim 37 wherein said angular orientation is between about 45 and 135 degrees relative to the longitudinal axis of the tool.

40.-47. (Cancelled).

48. (Withdrawn) The system of claim 36 wherein said ablation device is a radiofrequency probe.
49. (Withdrawn) The system of claim 36 wherein said ablation device is a laser probe.
50. (Withdrawn) The system of claim 36 wherein said ablation device is a cryosurgical probe.
51. (Previously Amended) The system of claim 36 wherein an outer diameter of the introducer is less than about 3 mm.
52. (Withdrawn) The system of claim 47 wherein the ablation device further comprises a microwave antenna which is electrically coupled to a transmission line, and a ground plane electrically coupled to the transmission line and positioned proximally to the antenna, wherein said ground plane is configured to couple electromagnetic energy between the antenna and the transmission line.
53. (Cancelled).
54. (Withdrawn) The system of claim 36 wherein said distal end of the introducer is preshaped to extend at an angle relative to a longitudinal axis of the introducer.

55. (Withdrawn) The system of claim 54 wherein said distal end of the introducer extends at an angle of between about 0 and 90 degrees relative to the longitudinal axis of the introducer.

56. (Withdrawn) The system of claim 54 wherein said distal end of the introducer extends at an angle of between about 45 and 135 degrees relative to the longitudinal axis of the introducer.

57. (Currently Amended) A microwave ablation device for ablating an interior portion of a wall of a beating heart, the microwave ablation device comprising:

a probe configured to penetrate the wall of the beating heart, the probe having a proximal end portion and a distal end portion having a sharpened distal end; and

a microwave energy delivery portion carried within the probe and located proximate to the distal end portion of the probe, said sharpened distal end of said probe being configured to penetrate the wall of the beating heart to facilitate placement of the microwave energy delivery portion within an interior cavity of the beating heart, the microwave energy portion being configured to be deployed from the probe ~~when placed~~ within the interior cavity of the beating heart, the microwave energy portion also being configured to match the shape of the interior

portion of the wall ~~and to~~ for linearly ablate ablating the interior portion of the wall of the beating heart ~~when deployed within the interior cavity of the beating heart.~~

58. (Withdrawn) The device of claim 57 wherein said energy delivery portion comprises a microwave antenna which is located within said distal end portion of the shaft.

59. (Withdrawn) The device of claim 57 wherein said energy delivery portion includes a needle microwave antenna.

60. (Withdrawn) The device of claim 59 wherein an outer diameter of the needle antenna is less than about 3 mm.

61. (Withdrawn) The device of claim 57 wherein said distal end portion of the device is preshaped to extend at an angle relative to a longitudinal axis of the shaft.

62. (Withdrawn) The device of claim 61 wherein said distal end portion extends at an angle of between about 0 and 90 degrees relative to the longitudinal axis of the shaft.

63. (Withdrawn) The device of claim 61 wherein said distal end portion extends at an angle of between about 45 and 135 degrees relative to the longitudinal axis of the shaft.

64. (Withdrawn) The device of claim 57 wherein said distal end portion comprises a dielectric material which substantially surrounds the distal end portion.
65. (Withdrawn) The device of claim 57 wherein a thickness of the dielectric material varies along a length of the distal end portion of the device.
66. (Canceled).
67. (Canceled).
68. (Withdrawn) The device of claim 57 further comprising a conductive element which is coupled to the shaft at a spaced apart location from the energy delivery portion and which is configured to be positioned in at least close proximity to an outer wall of the organ or duct when the energy delivery portion is positioned inside the organ or duct.
69. (Withdrawn) The device of claim 68 wherein the conductive element comprises a metallic strip.
70. (Withdrawn) The device of claim 69 wherein the metallic strip is spaced-apart from the energy delivery portion at a distance of between about 1 to 15 mm.

71. (Withdrawn) The device of claim 69 wherein the metallic strip is formed from a metallic foil.

72. (Withdrawn) The device of claim 68 wherein the conductive element comprises a metallic wire.

73. (Withdrawn) The device of claim 72 wherein the metallic wire is formed from silver.

74. (Withdrawn) The device of claim 68 wherein the conductive element extends at an angle relative to a longitudinal axis of the shaft of the device.

75. (Withdrawn) The device of claim 68 wherein the conductive element is arranged to attract an electric field generated by the energy delivery portion to provide a sufficiently high electric field proximate the energy delivery portion which is sufficient to effect ablation of tissue.

76. (Canceled).

77. (Withdrawn) The device of claim 76 wherein said microwave energy delivery means comprises a needle microwave antenna.

78. (Currently Amended) An ablation device for ablating heart tissue, the device comprising:

an elongated shaft having a proximal end portion, a distal end portion, and a pre-shaped elongated energy delivery portion located proximate to the distal end portion said energy delivery portion, said energy delivery portion including a shape memory material that facilitates bending when following deployment of the energy delivery portion is deployed and that facilitates straightening when in response to retraction of the energy delivery portion is undeployed relative to the elongated shaft, the shape of the elongated energy portion following the contour of an inner wall of a heart when in the deployed state so that the elongated energy portion that to substantially conforms conform the elongated energy portion to the inner wall of the heart when with the elongated shaft is positioned through a penetration in a the wall of the heart.

79.-81. (Canceled).

82. (Original) The device of claim 78 wherein said elongated energy delivery portion is pre-shaped to extend at an angle relative to a longitudinal axis of the shaft.

83. (Original) The device of claim 82 wherein said energy delivery portion extends at an angle of between about 0 and 90 degrees relative to the longitudinal axis of the shaft.

84. (Original) The device of claim 82 wherein energy delivery portion extends at an angle of between about 45 and 135 degrees relative to the longitudinal axis of the shaft.

85.-86. (Cancelled).

87. (Withdrawn) The device of claim 78 wherein the energy delivery portion has a sharpened distal end which is configured to penetrate through a wall of an organ or duct.

88. (Cancelled).

89. (Previously Presented) The device of claim 78 wherein the energy delivery portion is configured to substantially conform to a tissue region surrounding a pulmonary vein.

90. (Currently Amended) The device of claim 78 wherein the energy delivery portion is configured to substantially conform to at least a portion of a lateral wall of the right atrium ~~to treat typical or atypical atrial flutter~~.

91. (Cancelled).
92. (Withdrawn) The device of claim 78 further comprising a conductive element which is coupled to the shaft at a spaced apart location from the energy delivery portion and which is configured to be positioned in at least close proximity to an outer wall of the organ or duct when the energy delivery portion is positioned inside the organ or duct.
93. (Withdrawn) The device of claim 92 wherein the conductive element comprises a metallic strip.
94. (Withdrawn) The device of claim 93 wherein the metallic strip is spaced-apart from the energy delivery portion at a distance of between about 1 to 15 mm.
95. (Withdrawn) The device of claim 93 wherein the metallic strip is formed from a metallic foil.
96. (Withdrawn) The device of claim 92 wherein the conductive element comprises a metallic wire.
97. (Withdrawn) The device of claim 96 wherein the metallic wires is formed from silver.

98. (Withdrawn) The device of claim 92 wherein the conductive element extends at an angle relative to a longitudinal axis of the shaft of the device.

99. (Withdrawn) The device of claim 92 wherein the conductive element is arranged to attract an electric field generated by the energy delivery portion to provide a sufficiently high electric field proximate the energy delivery portion which is sufficient to effect ablation of tissue.

100. (Currently Amended) An ablation assembly, comprising:
a probe configured for percutaneously penetrating through a wall of an organ
for introducing a longitudinal energy delivery member into a cavity ~~of an~~ with the
organ, the longitudinal energy delivery member being deployed deployable from
the probe within the cavity of the organ, ~~via the probe when the probe has-~~
~~percutaneously penetrated through a wall of the organ,~~ the longitudinal energy
delivery member being configured to conform to an inner wall of the organ ~~when~~
~~deployed inside the cavity of the organ so as to produce~~ for producing a
substantially linear lesion on the inner wall of the organ ~~when~~ in response to
ablative energy ~~is delivered to the longitudinal energy delivery member.~~

101. (Currently Amended) The ablation assembly as recited in claim 100 ~~wherein~~
~~when in which the deployed~~ the longitudinal energy delivery member assumes an

angular position that places the longitudinal energy ~~deliver~~ delivery member substantially parallel to the inner wall of the organ such that each longitudinal portion of the longitudinal energy deliver member is substantially equidistant from the inner wall of the organ.

102.-104. (Canceled).

105. (Currently Amended) The ablation device as recited in claim 78 wherein the elongated shaft is arranged for slidably carrying the energy delivery portion from an un-deployed position, which places the energy delivery portion inside the elongated shaft, to a deployed position, which places the energy delivery portion past the distal end portion of the elongated shaft, and wherein the energy delivery portion is configured to produce a concentrated directional electromagnetic field to a side that is oriented proximate to ~~placed adjacent to or in contact with a tissue surface of~~ the inner wall of the heart in order to produce a linear lesion at the inner wall of the heart.

106.-110. (Canceled).