

CLAIMS

1. A method of forming an ion of formula (I):

comprising the steps of:

- 5 (i) reacting a compound of the formula (IIa):

with a biopolymer, B_P , having at least one group capable of reacting with M to form a covalent linkage, to provide a biopolymer derivative of the formula (IIIa):

- 10 (ii) cleaving the $C-X$ bond between X and the α -carbon atom of the derivative of formula (IIIa) to form the ion of formula (I);

where:

$C\star$ is a carbon atom bearing a single positive charge or a single negative charge;

X is a group capable of being cleaved from the α -carbon atom to form an ion of formula (I);

- 15 M is independently a group capable of reacting with B_P to form the covalent linkage;

B_P' is independently the biopolymer residue of B_P produced on formation of the covalent linkage;

20 M' is independently the residue of M produced on formation of the covalent linkage;

Ar^1 is independently an aromatic group or an aromatic group substituted with one or more A ;

- Ar^2 is independently an aromatic group or an aromatic group substituted with one or more A ;

optionally wherein (a) two or three of the groups Ar^1 and Ar^2 are linked together by one or more L^5 , where L^5 is independently a single bond or a linker atom or group; and/or (b) two or three of the groups Ar^1 and Ar^2 together form an aromatic group or an aromatic group substituted with one or more A ;

- 25 A is independently a substituent;

L_M is independently a single bond or a linker atom or group;

$n = 0, 1$ or 2 and $m = 1, 2$, or 3 , provided the sum of $n+m = 3$;

p independently = 1 or more; and

q independently = 1 or more.

2. A method of forming an ion of formula (I), comprising the steps of:

(i) reacting a compound of the formula (IIb):

X★ (IIb);

5

with a biopolymer, B_p , having at least one group capable of reacting with M to form a covalent linkage, to provide a biopolymer derivative of the formula (IIIb):

X★ (IIIb); and

dissociating X★ from the derivative of formula (IIIb), to form the ion of formula (I);

10 where:

X★ is a counter-ion to C★;

and C★, M, $B_{p'}$, M' , Ar^1 , Ar^2 , L_M , n, m, p and q are as defined in claim 1.

15 3. A biopolymer derivative of the formula (IIIa).

4. A biopolymer derivative of the formula (IIIb).

5. An ion of formula (I).

20 6. A compound of the formula (IIa).

7. A compound of the formula (IIb).

8. A method of forming an ion of formula (I) comprising the steps of:

25 (i) reacting a solid support of formula (IVai), (IVaii), or (IVaiii):

with a biopolymer, B_p , having at least one group capable of reacting with M to form a covalent linkage, to provide a modified solid support of the formula (Vai), (Vaii), or (Vaiii), respectively:

and either:

- 10 (iia) for modified solid supports of formula (Vai) cleaving the C-S_s bond between the α -carbon atom of the modified solid support of formula (Vai) and the solid support S_s to form the ion of formula (I);

(iib) for modified solid supports of formula (Vaii), either simultaneously or sequentially, cleaving the C-X bond between X and the α -carbon atom and cleaving the SS- - -Ar1 bond between the solid support and the Ar1 group to form the ion of formula (I); or

5 (iic) for modified solid supports of formula (Vaiii), either simultaneously or sequentially, cleaving the C-X bond between X and the α -carbon atom and cleaving the SS- - -Ar2 bond between the solid support and the Ar2 group to form the ion of formula (I);

where:

X, Ar¹, Ar², B_{P'}, L_M, M', n, m, p and q are as defined in claim 1;

S_S is a solid support;

10 C---S_S comprises a cleavable bond between C and S_S;

S_S---Ar¹ comprises a cleavable bond between Ar¹ and S_S; and

S_S---Ar² comprises a cleavable bond between Ar² and S_S.

9. A method of forming an ion of formula (I) comprising the steps of:

15 (i) reacting a solid support of formula (IVbii) or (IVbiii):

with a biopolymer, B_{P'}, having at least one group capable of reacting with M to form a covalent linkage, to provide a modified solid support of the formula (Vbii) or (Vbiii), respectively:

and either:

(iia) for modified solid supports of formula (Vbii), either simultaneously or sequentially, dissociating $\text{X} \star$ from the derivative of formula (Vbii) and cleaving the $\text{S}_\text{S} \cdots \text{Ar}^1$ bond between the solid support and the Ar^1 group to form an ion of formula (I); or

(iib) for modified solid supports of formula (Vbiii), either simultaneously or sequentially, dissociating $\text{X} \star$ from the derivative of formula (Vbiii) and cleaving the $\text{S}_\text{S} \cdots \text{Ar}^2$ bond between the solid support and the Ar^2 group to form an ion of formula (I);

where: $\text{X} \star$, Ar^1 , Ar^2 , B_P' , L_M , M , M' , n , m , p , q , S_S , $\text{C} \cdots \text{S}_\text{S}$, $\text{S}_\text{S} \cdots \text{Ar}^1$ and $\text{S}_\text{S} \cdots \text{Ar}^2$ are as defined in claim 8.

10. A method of forming an ion of formula (I) comprising the steps of:

(i) reacting a solid support of formula (IVaiv) or (IVbiv):

15

with a biopolymer, B_P , having at least one group capable of reacting with M to form a covalent linkage, to provide a modified solid support of the formula (Vaiv) or (Vbiv), respectively:

and either:

- (iia) for modified solid supports of formula (Vaiv), cleaving the C-X bond
 5 between X and the α -carbon atom to form the ion of formula (I); or
- (iib) for modified solid supports of formula (Vbiv), dissociating $X\star$ from the derivative of formula (Vbiv) to form the ion of formula (I);

where:

X, $X\star$, Ar^1 , Ar^2 , B_p' , L_M , M, M' , p, q, n, m, and S_S are as defined in claims 8 and 9;

10 $M'' - S_S$ comprises a bond between M'' and S_S ; and
 M'' is the same as M except that S_S is bound to a portion of M which does not form part of
 M'.

11. A solid support of the formula (IVai), (IVaii), (IVaiii), (IVaiv), (IVbii), (IVbiii) or (IVbiv).

15 12. A modified solid support of the formula (Vai), (Vaii), (Vaiii), (Vaiv), (Vbii), (Vbiii) or
 (Vbiv).

20 13. A method of any of claims 8-10 or a product of claim 11 or 12 wherein the biopolymer is a
 synthetic biopolymer.

14. A method or product of claim 13 wherein the synthetic biopolymer is an oligonucleotide, a
 peptide or a carbohydrate.

15. A method for analysing a biopolymer, B_P , comprising the steps of:

(i) reacting the biopolymer B_P with a compound of formula (IIa) or (IIb) or a solid support of formula (IVai), (IVaii), (IVaiii), (IVaiv), (IVbii), (IVbiii) or (IVbiv);

5 (ii) providing an ion of formula (I); and

(iii) analysing the ion of formula (I) by mass spectrometry.

16. In a method for analysing a biopolymer, B_P , the improvement consisting of: (i) reacting a biopolymer, B_P with a compound of formula (IIa) or (IIb) or a solid support of formula (IVai), (IVaii), (IVaiii), (IVaiv), (IVbii), (IVbiii) or (IVbiv); (ii) providing an ion of formula (I); and (iii)

10 analysing the ion by mass spectrometry.

17. A method of claim 15 or claim 16 wherein the analysis by mass spectrometry is carried out in a spectrometer which is suitable for MALDI-TOF spectrometry.

15 18. A method of any of claims 1, 2, 8-10 or 13-17 or a product of any of claims 3-7, 11 or 12, wherein C★ bears a single positive charge, such that the ions of formulae (I), (IIb) and (IIIb) have the structures:

Formula (I)	$(Ar^2)_n - \underset{\oplus}{C} - [Ar^1 - (L_M - \{M' - B_{P'}\}_p)_q]_m$
Formula (IIb)	$(Ar^2)_n - \underset{\oplus}{C} - [Ar^1 - (L_M - \{M\}_p)_q]_m$ $X\Theta$
Formula (IIIb)	$(Ar^2)_n - \underset{\oplus}{C} - [Ar^1 - (L_M - \{M' - B_{P'}\}_p)_q]_m$ $X\Theta$

19. A method of any of claims 1, 2, 8-10 or 13-18 or a product of any of claims 3-7, 11, 12 or 18
20 wherein n = 2 and m = 1.

20. A method of any of claims 1, 2, 8-10 or 13-19 or a product of any of claims 3-7, 11, 12, 18 or 19 wherein p = 1, 2 or 3.

25 21. A method of any of claims 1, 2, 8-10 or 13-20 or a product of any of claims 3-7, 11, 12 or 18-20 wherein p = 1.

22. A method of any of claims 1, 2, 8-10 or 13-21 or a product of any of claims 3-7, 11, 12 or 18-21 wherein q = 1, 2 or 3.

5 23. A method of any of claims 1, 2, 8-10 or 13-22 or a product of any of claims 3-7, 11, 12 or 18-22 wherein q = 1.

24. A method of any of claims 1, 2, 8-10 or 13-23 or a product of any of claims 3-7, 11, 12 or 18-23 wherein n = 2, m = 1, p = 1 and q = 1, such that the ion of formula (I) has the structure:

Formula (I)	$\begin{array}{c} \text{Ar}^2 \\ \\ \text{Ar}^2-\text{C}-\text{Ar}^1-\text{L}_M\text{M}'-\text{B}_P' \\ \star \end{array}$
-------------	--

10

25. A method of any of claims 1, 2, 8-10 or 13-24 or a product of any of claims 3-7, 11, 12 or 18-24 wherein the biopolymer is a polymer found in biological samples.

26. A method or product of claim 25 wherein the biopolymer is a polypeptide, polysaccharide, or 15 polynucleotide.

27. A method or product of claim 26 wherein the biopolymer is a polypeptide.

28. A method or product of any of claims 25-27 wherein the biopolymer does not readily form a 20 molecular ion on illumination of laser light at 340 nm.

29. A method of any of claims 1, 2, 8-10 or 13-28 or a product of any of claims 3-7, 11, 12 or 18-28 wherein the ratio $m(\text{B}_P') / m(\text{IX})$ is more than 2, where m(IX) is the mass of the fragment (IX)

25 of the cation of formula (I) and m(B_P') is the mass of the biopolymer residue B_P'.

30. A method of any of claims 1, 2, 8-10 or 13-29 or a product of any of claims 3-7, 11, 12 or 18-29 wherein M is: -NR₂; -SR; -OR; -B(R)Y; -BY₂; -C(R)₂Y; -C(R)Y₂; -CY₃; -C(=Z)Y;

-Z-C(=Z)Y; -C(=Z)R; -C(R)(OH)OR; -C(R)(OR)₂; -S(=O)Y; -Z-S(=O)Y; -S(=O)₂Y; -Z-S(=O)₂Y;
 -S(=O)₃Y; -Z-S(=O)₃Y; -P(=Z)(ZR)Y; -P(=Z)Y₂; -Z-P(=Z)(ZR)Y; -Z-P(=Z)Y₂; -P(=Z)(R)Y;
 -Z-P(=Z)(R)Y; or -N=C(=Z), where Y is independently a leaving group, Z is independently O, S or
 N(R) and R is independently H, C₁₋₈hydrocarbyl or C₁₋₈hydrocarbyl substituted with one or more A.

- 5 31. A method of any of claims 1, 2, 8-10 or 13-29 or a product of any of claims 3-7, 11, 12 or
 18-29 wherein M is: -N(R)-; -S-; -O-; -B(Y)-; -C(R)(Y)-; -CY₂-; -C(=O)-; -C(OH)(OR)-; or
 -C(OR)₂-, where Y is independently a leaving group and R is independently H, C₁₋₈hydrocarbyl or
 C₁₋₈hydrocarbyl substituted with one or more A.

- 10 32. A method of any of claims 1, 2, 8-10 or 13-29 or a product of any of claims 3-7, 11, 12 or
 18-29 wherein M is: —C(Y)—, where Y is a leaving group.

- 15 33. A method of any of claims 1, 2, 8-10 or 13-29 or a product of any of claims 3-7, 11, 12 or
 18-29 wherein the covalent linkage is selected from those produced through the reaction of one the

following groups: -CO-NH-; biotin-(strept)avidin; ; or -NH-CS-NH-.

- 20 34. A method of any of claims 1, 2, 8-10 or 13-33 or a product of any of claims 3-7, 11, 12 or
 18-33 wherein L_M is O or S.

- 25 35. A method of any of claims 1, 2, 8-10 or 13-33 or a product of any of claims 3-7, 11, 12 or
 18-33 wherein L_M is -E^M-, -(D^M)_t-, -(E^M-D^M)_t-, -(D^M-E^M)_t-, -E^M-(D^M-E^M)_t- or -D^M-(E^M-D^M)_t- (in the
 orientation Ar¹-(L_M{M})_p)_q or Ar¹-(L_M{M'})_p)_q, as appropriate),

where:

- 25 a sufficient number of linking covalent bonds, in addition to the covalent bonds at the chain
 termini shown, are provided on groups E^M and D^M for linking the p instances of M (or M') groups;

D^M is independently C₁₋₈hydrocarbylene or C₁₋₈hydrocarbylene substituted with one or more A;

E^M (in the orientation Ar¹-(L_M{M})_p)_q or Ar¹-(L_M{M'})_p)_q, as appropriate) is independently -Z^M-,
 -C(=Z^M)-, -Z^MC(=Z^M)-, -C(=Z^M)Z^M-, -Z^MC(=Z^M)Z^M-, -S(=O)-, -Z^MS(=O)-, -S(=O)Z^M-,

$-Z^M S(=O) Z^M$, $-S(=O)_2$, $-Z^M S(=O)_2$, $-S(=O)_2 Z^M$, $-Z^M S(=O)_2 Z^M$, where Z^M is independently O, S or $N(R^M)$ and where R^M is independently H, C_{1-8} hydrocarbyl (e.g. C_{1-8} alkyl) or C_{1-8} hydrocarbyl substituted with one or more A; and

t = 1 or more.

5

36. A method of any of claims 1, 8, 10 or 13-35 or a product of any of claims 3, 6, 11, 12 or 18-35 wherein the group X is halogen, hydroxy, C_{1-8} hydrocarbyloxy, C_{1-8} hydrocarbyloxy substituted with one or more A, C_{1-8} heterohydrocarbyloxy, C_{1-8} heterohydrocarbyloxy substituted with one or more A, mesyl, tosyl, pentafluorophenyl, -O-succinimidyl -S-succinimidyl, or phenoxy substituted with one or more A.

10

37. A method of any of claims 1, 2, 8-10 or 13-36 or a product of any of claims 3-7, 11, 12 or 18-36 wherein Ar^2 is independently cyclopropyl, cyclopropyl substituted with one or more A, aryl, aryl substituted with one or more A, heteroaryl, or heteroaryl substituted with one or more A.

15

38. A method of any of claims 1, 2, 8-10 or 13-37 or a product of any of claims 3-7, 11, 12 or 18-37 wherein Ar^2 is

20

39. A method of any of claims 1, 2, 8-10 or 13-38 or a product of any of claims 3-7, 11, 12 or 18-38 wherein Ar¹ is independently cyclopropylene, cyclopropylene substituted with one or more A, arylene, arylene substituted with one or more A, heteroarylene, or heteroarylene substituted with one or more A.

5

40. A method of any of claims 1, 2, 8-10 or 13-39 or a product of any of claims 3-7, 11, 12 or

18-39 wherein Ar¹ is

41. A method of any of claims 1, 2, 8-10 or 13-40 or a product of any of claims 3-7, 11, 12 or
10 18-40 wherein L⁵ is O or S.

42. A method of any of claims 1, 2, 8-10 or 13-40 or a product of any of claims 3-7, 11, 12 or 18-40 wherein L⁵ is -E⁵-, -(D⁵)_{t'}-, -(E⁵-D⁵)_{t'}-, -(D⁵-E⁵)_{t'}-, -E⁵-(D⁵-E⁵)_{t'}-, or -D⁵-(E⁵-D⁵)_{t'}-,

where:

15 D⁵ is independently C₁₋₈hydrocarbylene or C₁₋₈hydrocarbylene substituted with one or more A;

E⁵ is independently -Z⁵-, -C(=Z⁵)-, -Z⁵C(=Z⁵)-, -C(=Z⁵)Z⁵-, -Z⁵C(=Z⁵)Z⁵-, -S(=O)-, -Z⁵S(=O)-, -S(=O)Z⁵-, -Z⁵S(=O)Z⁵-, -S(=O)₂-, -Z⁵S(=O)₂-, -S(=O)₂Z⁵-, -Z⁵S(=O)₂Z⁵-, where Z⁵ is independently O, S or N(R⁵) and where R⁵ is independently H, C₁₋₈hydrocarbyl or C₁₋₈hydrocarbyl
20 substituted with one or more A; and

t' = 1 or more.