Linear Algebra Review

- · Basic Concept:
 - co represent / operate the linear system.
 - (2) Notations:

$$\begin{bmatrix}
\alpha_{11} \times 1 + \cdots & \alpha_{1n} \times n = b_1 \\
\alpha_{21} \times 1 + \cdots & \alpha_{2n} \times n = b_2
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
\alpha_{21} \cdots \alpha_{2n} \\
\vdots \\
\alpha_{m_1} \cdots \alpha_{m_n}
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_1 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{21} \cdots \alpha_{2n} \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{11} \cdots \alpha_{1n} \\
\vdots \\
\alpha_{n1} \cdots \alpha_{nn}
\end{bmatrix}$$

- · Matrix Multiplication:
 - CDAEMman BEMnap

C= AB & Mmxp

(2) Vector - Vector Product:

$$Cij = Q_i^T b_j$$

$$= \sum_{k=1}^{n} A_{ik} B_{kj}$$

(3) Matrix-Vector Product: (left-row; right-column)

$$C:,j = Abj$$

X: linear combination of column vector.

$$C_{i:j} = Q_i^T B$$

$$C = \begin{bmatrix} \alpha^7 \beta \\ \vdots \\ \alpha^7 \beta \end{bmatrix}$$

$$B = \begin{bmatrix} b_1^T \\ b_2^T \\ \vdots \\ b_n^T \end{bmatrix}$$

$$c = \sum_{i=1}^{n} a_i b_i^T$$
 (a; b; \overrightarrow{j} matrix)

(5) Property:

$$(AB)C = A(BC)$$

$$A(B+c) = AB+Ac$$

· Operations and Properties.

(1) Identity matrix:

$$Iij = \begin{cases} 1 & i = 3 \\ 0 & i \neq i \end{cases}$$

Diagonal matrix:

(2) Transponse:

$$(A+B)^T = A^T + B^T$$

$$(AB)^T = B^TA^T$$

(3) Symmetric:

$$A = A^{T}$$
 $A = -A^{T}$ (anti-symmetric)

C4) Trace:

$$A \in M nxn.$$
 $tr(A) = \sum_{i=1}^{n} Aii$

- $O + \Gamma(A) = + \Gamma(A^T)$
- 9 tr (A+B) = tr(A) + tr(B)
- 3 tr(AB) = tr(BA)

X: \$A,B, AB-BA=I

(5) Norms:

$$||\chi||_{b} = \left(\sum_{k=1}^{k=1} |\chi_{k}|_{b}\right)_{\frac{b}{1}}$$

Frobenius norm:

$$||A||_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}} = \sqrt{\text{tr}(A^{T}A)}$$

- · Linear Independence and Rank:
 - (1) linearly independent:

a1X1+G2X2+ ... anXn=0

$$\Leftrightarrow$$
 $\alpha_1 = \alpha_2 = \cdots \quad \alpha_n = 0.$

(2) Column rank= tow rank = rank (A)

X: elimination = don't change rank.

- (3) Proporties:
 - 0 $fank(A) \leq min(m,n)$
 - e rank (A)= rank (AT)
 - 3 rank (AB) & min (rank(A), tank(B))
 - ⊕ rank (A+B) ≤ rank(A) + rank(B)

· Inverse:
(1) $AA^{-1}=I=A^{-1}A$
A: invertible (=) non-singular.
(2) $\exists A^{-1} \Leftrightarrow rank(A) = n$
(3) $(AB)^{-1} = B^{-1}A^{-1}$
$(4) (A^{-1})^{\top} = (A^{\top})^{-1}$
· Orthogonal Matrix:
Cis orthogonal: $x^Ty=0$
(2) Orthogonal matrix:
A E Mnxn. A=[d1.d2 ·· dn]
$2i^{T}\lambda_{j} = \begin{cases} 1 & j=j \\ 0 & j\neq j \end{cases}$
$A^T A = I = A A^T$
$\Rightarrow A^T = A^{-1}$
(3) property:
$ (\mathcal{N} \times 1) = \times 1 $
Proof: $X^T U^T U X = X^T X = X ^2$
· Range and Nullspace:
(1) Span: <x1.x2. xn=""></x1.x2.>

· Determinant:

Ch intuitively: $f: \mathbb{R}^{n \times n} \to \mathbb{R}$.

propeties (instead of big formula)

$$\begin{bmatrix} t \lambda_{1}^{T} \\ \lambda_{1}^{T} \end{bmatrix} = t + (A)$$

(2) Properties:

$$0 |A| = |A| 0$$

(3) Cofactor:

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} |A_{ij}| |A_{ij}|$$

Aij: delete i-tow, j-column

recursively: |AI has n! terms.

(4) Adjoint:

$$A \cdot adj(A) = |A|$$
 $A = \frac{1}{|A|} \cdot adj(A)$

- De Quadratic Forms and Positive Semidefinite
 - (1) quadratic form: AERnxn

$$x^T A x = \sum_{i=1}^n A_{ij} x_i x_j \in \mathbb{R}$$

$$X (^{\mathsf{T}} A \overset{\mathsf{J}}{\leq} + A \overset{\mathsf{J}}{\leq})^{\mathsf{T}} X = X (^{\mathsf{T}} A \overset{\mathsf{J}}{\leq} + A \overset{\mathsf{J}}{\leq})^{\mathsf{T}} X = X (^{\mathsf{T}} A \overset{\mathsf{J}}{\leq} + A \overset{\mathsf{J}}{\leq})^{\mathsf{T}} X$$

* symmetric part.

- (2) definition:
 - O positive definite:

for non-zero vectors x. $x^TAx>0$

O positive semi-definite:

for all vectors $\chi: \chi^T A \chi > 0$

PD => PSD

(3) Positive definite =) invertible.

Proof: contradiction.

A: not invertible. A=[d,d2-dn].

 $\exists \chi_i: \sum_{i=1}^{h} \chi_i d_i = 0.$

Let
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 $X \neq 0$. $X^T A X = 0$. \square .

(4) Gram Matrix:

$$G = A^T A$$
. $\forall x \in \mathbb{R}^n$. $x^T A^T A x \ge 0$.

: G is always positive semi-definite.
· Eigenvalues & Eigenvectors:
CD Definition:
$A \propto = \lambda \propto .$
λ: eigenvalue χ: corresponding eigenvector
X : λ, α ∈ ℂ
$(A - \lambda I) x = 0 (x \neq 0)$
non-zero solution (=) non-empty nullspace.
(XI−A) is singular
\Leftrightarrow det $(\lambda I - A) = 0$
X: find the roots of polynomials.
$\Rightarrow \lambda_1, \lambda_2, \lambda_3 \cdots \lambda_n$
(2) Properties:
$0 + r(A) = \sum_{i=1}^{n} \lambda_i;$
$ext{det}(A) = \prod_{i=1}^{r-1} \lambda_i$
3 rank(A) ⇒ non-zero eigenvalues.
: 立 is the eigenvalue of AT
© eigenvalue of D=diag(di.dz dn)
(3) $A \times_{i} = \lambda_{i} \times_{i}$ $\begin{bmatrix} \lambda_{i} \\ \lambda_{i} \end{bmatrix}$ $\begin{bmatrix} \lambda_{i} \\ \lambda_{i} \end{bmatrix}$
(3) $A X_1 = \lambda_1 X_1$ $A X_2 = \lambda_2 X_2 \implies X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} $

 $AX_n = \lambda_n X_n$ $(\Rightarrow) AX = XA$ If the eigenvectors are linearly independent (\Rightarrow) $A = X \wedge X^{-1}$ (diagonalizable) · Eigenstaff of Symmetric Matrices: (1) 2 Amazing Properties: A & S" 1 All eigenvalues are real $Ax = \lambda x \Rightarrow A\overline{x} = \overline{\lambda}\overline{x}$ $\overline{\mathbf{x}}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} = \overline{\mathbf{x}}^{\mathsf{T}} \overline{\lambda}^{\mathsf{T}} = \overline{\mathbf{x}}^{\mathsf{T}} \overline{\lambda}$ (=) $\overline{X}^{T}A^{T}X = \overline{X}^{T}\overline{\lambda}X$ $(\exists X^T A X = \overline{X}^T \overline{X} X \quad (A = A^T)$ $X^T X = X^T X$ $\overline{\lambda} = \lambda \Rightarrow \text{real eigenvalues}$ @ Eigenvectors are orthonormal. $AX_1 = \lambda_1 X_1$. $AX_2 = \lambda_2 X_2$. if $\lambda_1 + \lambda_2$ then $X^T X_2 = D$ $\chi_{I}^{\mathsf{T}} A \chi_{z} = \lambda_{z} \chi_{I}^{\mathsf{T}} \chi_{z} \cdots 0$ O take transponse: $X_1^T A X_2 = \lambda_1 X_1^T X_2 = \lambda_2 X_1^T X_2$ () $(\lambda_1 - \lambda_2)$ $X_1^T X_2 = 0$

 $\therefore \lambda_1 \neq \lambda_2 \qquad \therefore \chi_1^{\mathsf{T}} \chi_2 = 0$

(2) Definiteness -> sign of eigenvalues.

$$\chi^{T}AX = \chi^{T}U\Lambda U^{T}X = y^{T}\Lambda y = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

(3) Applications:

maximizing function of a matrix.

e.g. Max xern XTAX.

Subject to:
$$||X||_2^2 = |$$

· Matrix Calculus:

(1) Gradient:

$$f: \mathbb{R}^{m \times n} \to \mathbb{R}$$

$$\frac{\partial f(A)}{\partial A_{11}} \frac{\partial f(A)}{\partial A_{12}} \cdots \frac{\partial f(A)}{\partial A_{1n}} = \frac{\partial f(A)}{\partial A_{1n}}$$

$$\nabla A f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{m_1}} & \frac{\partial f(A)}{\partial A_{m_2}} & \frac{\partial f(A)}{\partial A_{m_n}} & \frac{\partial f(A)}{\partial A_{m_n}} \end{bmatrix}$$

$$\frac{\partial \dot{f}(A)}{\partial A_{m_1}} \frac{\partial f(A)}{\partial A_{m_2}} \dots \frac{\partial f(A)}{\partial A_{m_n}}$$

X: gradient is well-defined

when the output is scalar value.

(2) Hessian:

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$\frac{\partial \chi_{1}}{\partial \chi_{2}} \qquad \frac{\partial \chi_{1} \partial \chi_{2}}{\partial \chi_{1} \partial \chi_{2}} \qquad \frac{\partial \chi_{1} \partial \chi_{2}}{\partial \chi_{1} \partial \chi_{2}} \qquad \frac{\partial \chi_{1} \partial \chi_{2}}{\partial \chi_{1} \partial \chi_{2}}$$

$$\frac{9 \times 10^{1} \times 10^{1}}{9_{5} + (x)} \frac{9 \times 10^{1} \times 10^{1}}{9_{5} + (x)} \frac{9 \times 10^{1}}{9_{5} + (x)}$$

X: partial derivatives

$$\left[\nabla x^2 f(x)\right]_{i,j} = \frac{\partial f(x)}{\partial x_i \partial x_i}$$

 $\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} =$

(3) Analogue.

gradient - first derivative

Hessian - second derivative.

- · Hessian of Quadratic and Linear Function.
 - (1) $\chi \in \mathbb{R}^n$. $f(x) = b^T \chi \in \mathbb{R}$.

$$f(x) = \sum_{i=1}^{n} b_i \chi_i$$

$$\frac{4x!}{9t} = p!$$

$$\nabla_{X} b^{\mathsf{T}} X = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix} = b \quad \Rightarrow \quad \nabla_{X} b^{\mathsf{T}} X = b$$

(2) XER". AES".

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij} x_i x_j$$

$$\frac{\partial f}{\partial x_k} = \sum_{j=1}^n \alpha_{ik} \chi_j + \sum_{i=1}^n \alpha_{ki} \chi_i = 2 \sum_{j=1}^n \alpha_{ki} \chi_i$$

X: inner product of k-th row of A

 $\nabla_{\mathbf{x}} \mathbf{X}^{\mathsf{T}} \mathbf{A} \mathbf{X} = 2 \mathbf{A} \mathbf{X}.$

(3) Hessian of the quadratic function.

\[\frac{\partial f}{\partial \chi \chi} = 2 \frac{\hat{\chi}}{\partial \chi \chi} \chi \chi \chi \chi
\]

Therefore: $\nabla_x^2 (x^T Ax) = 2A$

(analogue: $(ax^2)'' = 2a$)

(4) Summary:

$$\nabla x b^7 \chi = b$$

$$\nabla x X^T A X = 2A X$$

 $\nabla x^2 (X^T A X) = 2A$

· Least Square:

(1) AERman (assuming full rank)

∃ b ∈ R^m. b ∉ Ran(A).

 $Ax=b \Rightarrow no solution.$

(2) find a vector x

 $\chi = argmin ||Ax-b||_2^2$

 $\|Ax - b\|_{L^{2}} = (Ax - b)^{T} (Ax - b)$

 $= (x^{\mathsf{T}} A^{\mathsf{T}} - b^{\mathsf{T}}) (A X - b) \qquad (X^{\mathsf{T}} A^{\mathsf{T}} b = b^{\mathsf{T}} A X)$

 $= x^T A^T A x + b^T b - x^T A^T b - b^T A x$

 $= \chi^T A^T A X - 2 b^T A X + b^T b$

(=) $\chi = (A^TA)^{-1}A^Tb$

- · Gradients of the Determinant (TBC)
 - (1) find graient with respect to a matrix.

1A = = (-1) i+i aij | Avi,vi

3/AKI |A|= (-1) K+1 AKI |AKI) = (adj(A)) 1K

 $\nabla_{A}|A| = (Adj(A))^{T} = |A|A^{-T}$

(2) function: $f(A) = \log |A|$.

domain: PD matrices. $\frac{\partial \log |A|}{\partial A} = \frac{\partial \log |A|}{\partial |A|} \cdot \frac{|A|}{\partial A} = \frac{1}{|A|} \cdot |A| \cdot A^{-T}$ $A = A^{T} = A^{-T} = A^{-T}$ Therefore: $\frac{\partial \log |A|}{\partial A} = A^{-T}$

- o Eigenvalues as Optimization:
 - (1) $\max_{x \in \mathbb{R}^n} x^T A x$ $\text{subject to } ||x||_{L^2}^2 = ||x||_{L^2}^2 =$
 - (2) Lagrangian Form:

 $L(X,\lambda) = x^T A X - \lambda X^T X$ (Lagrangian multiplier)

$$\nabla_{x} L(X_{1}\lambda) = 2AX - 2\lambda X = 0$$

- () $A x = \lambda \chi$
 - $x \rightarrow eigenvector.$