Edge Computing

Lecture 02: Edge Computing & Applications

Agenda

- Edge computing evolution
- Virtualization & containers
- Application case study
- Edge Al App: design to deployment

Edge Computing

• Is a paradigm (model, standard, pattern), subset of distributed computing, that pushes computational logic towards wherever data is generated.

The Evolution (Push & Pull)

- Gigantic computer (Central)
 - o E.g. IBM mainframe (1964), \$5B
- Terminal
 - Rendering letters
- PCs (Dist.)
 - Standalone computation
 - o Apple I (1976)
 - Steve Wozniak & Steve Jobs

Situnayake, D., & Plunkett, J. (2023). Al at the Edge. O'Reilly

The Evolution (Push & Pull)

- Cloud computing (2000, Central)
 - Growth of Internet (since 1983)
 - Web applications, remote servers
 - Data Centers, Content Distribution Network (CDN)
 - Everything tethered to the cloud
 - Network is indispensable
- Edge computing (Dist.)
 - Cloudlet (CMU, 2009), for CDN
 - Fog computing (Cisco, 2012)
 - Mobile Edge Computing (ETSI, 2014)
 - loT, 12.2 B connected devices as of 2021
- What's next? (Cent.?)

Cloud View

- Cloud Provider
 - Data (YouTube, NetFlix)
 - Web App (Amazon, Gmail)
 - Communication (FaceTime, Twitter, Facebook)

Customized Cloudlet: Virtualization

Virtualization

- Same physical machines
- Dynamically provision the resources (CPU, RAM, etc.) upon usage
- Hardware transparent to users

Virtual machines

- A software system to emulate one independent physical machine
- o e.g. VirtualBox

Customized Cloudlet: Virtualization

Virtualization

- Same physical machines
- Dynamically provision the resources (CPU, RAM, etc.) upon usage
- Hardware transparent to users

Virtual machines

- A software system to emulate one independent physical machine
- e.g. VirtualBox, Microsoft Azure

Container

- A software package of an application and its dependencies
- o e.g. Docker, Kubernetes

Containerized Applications

Business Model: Getting closer to users

- Cloud Providers
 - Microsoft, Azure IoT Edge
 - Amazon, CloudFront
 - Google

- Internet Service Providers (ISPs)
 - o AT&T
 - Verizon
 - T-Mobile

- Growing local computation
 - o Provided with enough compute, local is the fastest
- Apple Neural Engine

- **Nvidia Jetson**
 - Custom boards vs Dev boards

- Google Tensor Processing Unit (TPU)
 - o Equipped since Pixel 6

- Efficient ML / Tiny ML
 - Quantization
 - Pruning
 - Network architecture search
 - Explainable AI (XAI) for feature selection
- Offloading / Slicing
 - Lazy execution (on / off switch on edge)
 - Model / network / compute slicing

Cent. vs Dist.: Drivers

- 1st Gen Computer -> PC
- PC -> Cloud computing
- Cloud computing -> Edge computing

Cent. vs Dist.: Drivers

- 1st Gen Computer -> PC
- PC -> Cloud computing
- Cloud computing -> Edge computing (BLERP)
 - Bandwidth
 - Latency
 - Economics
 - Reliability
 - Privacy

Responsible Design & Al Ethics

- Tesla, May 2016, March 2018
- Uber, Mar 2018

Edge Computing Applications

- Video Streaming
 - Where is the content?
 - How to speed up the streaming?

Edge Computing Applications

- AR/VR
 - How is content delivered?
 - Where does 3D rendering happen?

Edge Computing Applications

- Transportation
 - How can edge computing help?

Edge Computing Applications (Project Ideas)

Type of Applications

- Keeping Track of Objects
- Understanding and Controlling Systems
- Understanding People and Living Things
- Transforming Signals

Keep Track of Things

Bandwidth	Υ
Latency	N
Economics	Υ
Reliability	Υ
Privacy	N

Use case	Key sensors
Monitoring shipments using smart packaging to detect damage during transit	Accelerometer, vibration, GPS, temperature, humidity
Counting products on store shelves using embedded cameras, so items can be restocked before they run out	Vision
Analyzing the movement of plastic waste in the ocean so it can be cleaned up	Vision
Identifying and tracking obstacles at sea to help ships avoid collisions	Radar
Locating buried natural resources using geophysical sensors	Electromagnetic, acoustic

Understanding & Controlling Systems

Bandwidth	Υ
Latency	Υ
Economics	Υ
Reliability	Υ
Privacy	N

Human-centered Apps

Bandwidth	Υ
Latency	Υ
Economics	Y
Reliability	Υ
Privacy	Υ

Use case	Key sensors
Alerting workers in a dangerous environment when	Vision
they are missing protective equipment	
Understanding human gestures to control a video	Vision, accelerometer, radar
game	
Identifying when an intensive care patient's health is	Biosignals, medical
deteriorating and notifying a medical attendant	equipment
Recognizing when a thief has broken into a home	Vision, audio, accelerometer,
and alerting the authorities	magnetic sensors
Categorizing physical activities using sensors in a	Accelerometer, GPS, heart
smart watch	rate
Recognizing a user's voice commands and control-	Audio
ling an appliance	
Counting the number of people who are waiting at a	Vision
bus stop	
Warning a driver when they are falling asleep at the	Vision
wheel of a car	

Apps Involving Living Things

Bandwidth	Υ
Latency	Υ
Economics	Υ
Reliability	Υ
Privacy	Υ

Use case	Key sensors
Informing researchers when wildlife of interest is spotted by a remote trail camera	Vision, audio
Diagnosing crop diseases in a remote rural location with no cellphone coverage	Vision, volatile organic compound
Recognizing sounds made by marine mammals to track their movements and understand their behavior	Acoustic
Warning villagers of an approaching elephant so they can avoid human-animal conflict	Thermal imaging, vision
Categorizing farm animal behavior using a smart collar to understand health	Accelerometer
Cooking food to perfection by monitoring and controlling a sensor-equipped kitchen appliance	Vision, temperature, volatile organic compound <mark>a</mark>

Transforming Signals

BLERP

Bandwidth	Y
Latency	Υ
Economics	Υ
Reliability	Υ
Privacy	Υ

Use Filter Remo came Gene Bluri meet Gene Tran came Upsa ear Comp via a Creat paire Tran takin Using one

case	Signal type
ering background noise to improve call quality on a cell phone	Audio
noving noise from photographs captured with a smartphone nera	Vision
erating music to accompany a musician during practice	Audio
rring the background of a video stream during a remote work	Vision
erating realistic human speech from text	Audio
nslating one written language into another using a smartphone nera	Vision, text
ampling low-resolution audio so that it sounds better to the human	Audio
npressing video using deep learning so that it can be transmitted a low bandwidth connection	Video
ating a spoken representation of a visual scene for visually im- red people	Audio
nscribing a spoken conversation into text for convenience of noteng	Audio
ng data from cheap sensors to simulate the output of an expensive	Time series

Edge Al App: Design to Deployment

- Finding the problem to solve (what is the pain point?)
- Building a dataset
- Design an application
- Iteration, iteration, iteration
- Testing, deployment, and monitoring

Edge Al Workflow: Intertwined

Deployment Example: Image Classifier on Android

Deployment Example: Azure VMs on AT&T

Monitoring and Support

Monitoring and Support

- Design a monitoring approach
- Mining the failure mode
- Resolve the failure online
 - Remote operation
- Continual learning

Summary

- Evolution of computing paradigm
- Cloud vs Edge View
- Virtualization
- Applications
- From design to deployment

Next Lecture

- Edge systems architectures
- Lab 1: performance profiling
- Design and optimization