Section 8

t-test, χ^2 -test, two-sample z/F-test

Normal samples and statistics

$$X_1, \ldots, X_n \sim \mathsf{iid} \; \mathsf{Normal}(\mu, \sigma^2)$$

- Sample mean $\overline{X} = \frac{1}{n}(X_1 + \dots + X_n)$, $E[\overline{X}] = \mu$ Sample variance $S^2 = \frac{1}{n-1}((X_1 \overline{X})^2 + \dots + (X_n \overline{X})^2)$, $E[S^2] = \sigma^2$

t-test for mean (variance unknown)

$$X_1, \dots, X_n \sim \mathsf{iid} \; \mathsf{Normal}(\mu, \sigma^2), \sigma^2 \mathsf{unknown}$$

- Null H_0 : $\mu = \mu_0$, Alternative H_A : $\mu > \mu_0$
- $T = \overline{X}$, Test: Reject H_0 if T > c

t-test for mean (variance unknown)

$$X_1, \dots, X_n \sim \mathsf{iid} \; \mathsf{Normal}(\mu, \sigma^2), \sigma^2 \mathsf{unknown}$$

- Null H_0 : $\mu=\mu_0$, Alternative H_A : $\mu>\mu_0$
- $T = \overline{X}$, Test: Reject H_0 if T > c

How to compute significance level?

- Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$
- Given H_0 , $\frac{T-\mu_0}{S/\sqrt{n}} \sim t_{n-1}$
- For a given sampling, let $S^2 = s^2$

en sampling, let
$$S^2 = S^2$$

$$\alpha = P(T > c | \mu = \mu_0) = P(t_{n-1} > \frac{c - \mu_0}{s / \sqrt{n}})$$

$$= I - F_{t_{n-1}} \begin{pmatrix} c - \mu_0 \\ s / \kappa \end{pmatrix}$$

Contrast with z-test

T-po ~ Normal(0,1)

8/15 21

χ^2 -test for variance

$$X_1, \ldots, X_n \sim \text{iid Normal}(\mu, \sigma^2)$$

- Null H_0 : $\sigma = \sigma_0$, Alternative H_A : $\sigma > \sigma_0$
- $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$, Test: Reject H_0 if S > c

χ^2 -test for variance

$$X_1, \ldots, X_n \sim \text{iid Normal}(\mu, \sigma^2)$$

- Null H_0 : $\sigma = \sigma_0$, Alternative H_A : $\sigma > \sigma_0$
- $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$, Test: Reject H_0 if S > c

How to compute significance level?

• Given H_0 , $\frac{(n-1)}{\sigma_0^2}S^2 \sim \chi_{n-1}^2$

$$\alpha = P(S > c | H_0) = P(\frac{(n-1)}{\sigma_0^2} S^2 > \frac{(n-1)}{\sigma_0^2} c^2) = P(\chi_{n-1}^2 > \frac{(n-1)}{\sigma_0^2} c^2)$$

$$S > c = I - \left(\frac{m}{\sigma_0^2} S^2 + \frac{m}{\sigma_0^2} S^2 +$$

Two samples from normal distribution

$$X_1, \ldots, X_{n_1} \sim \text{iid Normal}(\mu_1, \sigma_1^2)$$

 $Y_1, \ldots, Y_{n_2} \sim \text{iid Normal}(\mu_2, \sigma_2^2)$

Two samples from normal distribution

$$X_1, \ldots, X_{n_1} \sim \text{iid Normal}(\mu_1, \sigma_1^2)$$

 $Y_1, \ldots, Y_{n_2} \sim \text{iid Normal}(\mu_2, \sigma_2^2)$

- $\overline{X} \sim \mathsf{Normal}(\mu_1, \sigma_1^2/n_1)$, $\overline{Y} \sim \mathsf{Normal}(\mu_2, \sigma_2^2/n_2)$
- $\bullet \ \frac{(n_1-1)}{\sigma_1^2} S_X^2 \sim \chi_{n_1-1}^2, \ \frac{(n_2-1)}{\sigma_2^2} S_Y^2 \sim \chi_{n_2-1}^2$

Two samples from normal distribution

$$X_1, \ldots, X_{n_1} \sim \mathsf{iid} \; \mathsf{Normal}(\mu_1, \sigma_1^2)$$
 $Y_1, \ldots, Y_{n_2} \sim \mathsf{iid} \; \mathsf{Normal}(\mu_2, \sigma_2^2)$ independent \mathcal{S}

- $\overline{X} \sim \mathsf{Normal}(\mu_1, \sigma_1^2/n_1)$, $\overline{Y} \sim \mathsf{Normal}(\mu_2, \sigma_2^2/n_2)$
- $\frac{(n_1-1)}{\sigma_1^2}S_X^2 \sim \chi^2_{n_1-1}$, $\frac{(n_2-1)}{\sigma_2^2}S_Y^2 \sim \chi^2_{n_2-1}$

Two sample z-test (known variances)

$$X_1,\ldots,X_{n_1}\sim \mathsf{iid}\;\mathsf{Normal}(\mu_1,\sigma_1^2)$$
) independent $Y_1,\ldots,Y_{n_2}\sim \mathsf{iid}\;\mathsf{Normal}(\mu_2,\sigma_2^2)$

- Null $H_0: \mu_1 = \mu_2$, Alternative $H_A: \mu_1 \neq \mu_2$
- $T = \overline{Y} \overline{X}$, Test: Reject H_0 if |T| > c

Two sample z-test (known variances)

$$X_1, \dots, X_{n_1} \sim \mathsf{iid} \; \mathsf{Normal}(\mu_1, \sigma_1^2)$$

 $Y_1, \dots, Y_{n_2} \sim \mathsf{iid} \; \mathsf{Normal}(\mu_2, \sigma_2^2)$

- Null H_0 : $\mu_1 = \mu_2$, Alternative H_A : $\mu_1 \neq \mu_2$
- $T = \overline{Y} \overline{X}$, Test: Reject H_0 if |T| > c

How to compute significance level?

• Given H_0 , $T \sim \text{Normal}(0, \sigma_T^2)$, where $\sigma_T^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$ $\alpha = P(|T| > c|H_0) = P(|\text{Normal}(0, 1)| > \frac{c}{\sigma_T}) = 1 - F_2(\frac{c}{\sigma_T})$

Two sample *F*-test

$$X_1, \dots, X_{n_1} \sim \mathsf{iid} \; \mathsf{Normal}(\mu_1, \sigma_1^2)$$

 $Y_1, \dots, Y_{n_2} \sim \mathsf{iid} \; \mathsf{Normal}(\mu_2, \sigma_2^2)$

- Null H_0 : $\sigma_1 = \sigma_2$, Alternative H_A : $\sigma_1 \neq \sigma_2$

Two sample *F*-test

$$X_1, \dots, X_{n_1} \sim \mathsf{iid} \; \mathsf{Normal}(\mu_1, \sigma_1^2)$$

 $Y_1, \dots, Y_{n_2} \sim \mathsf{iid} \; \mathsf{Normal}(\mu_2, \sigma_2^2)$

- Null H_0 : $\sigma_1 = \sigma_2$, Alternative H_A : $\sigma_1 \neq \sigma_2$
- $T = \frac{S_X^2}{S_V^2}$, Test: Reject H_0 if $T > 1 + c_R$ or $T < 1 c_L$

How to compute significance level?

• Given H_0 , $T \sim F(n_1 - 1, n_2 - 1)$

Section 9

Problems on *t*-test, χ^2 -test and two-sample z/F-test

Suppose $X \sim \text{Normal}(\mu, \sigma^2)$ with unknown σ . For n=16 iid samples of X, the observed sample mean is 10.2 and the sample standard deviation is 3. What conclusion would a t-test reach if the null hypothesis assumes $\mu=9.5$ (against an alternative hypothesis $\mu>9.5$) at a significance level of $\alpha=0.05$?

X₁,..., X₁₆~ N(r,
$$\sigma^{2}$$
) $\overline{X} = 10\cdot 2$, $S^{2} = 3^{2} = 9$

H₀: $p = 9\cdot 5$, H_{R} : $p > 9\cdot 5$

Test: Reject H₀ if $\overline{X} > c$

$$d = p(\overline{X} > c | H_{0}) = p(\overline{X} - 9\cdot 5) = \frac{c - 9\cdot 5}{3/(6)} \approx 1 - F_{15} \cdot \frac{(c - 9\cdot 5)}{(3/4)}$$

$$c = 9\cdot 5 + \frac{1}{2} \cdot F_{15}^{-1} \cdot (1 - d) = 10\cdot 81$$
Since $\overline{X} < 10\cdot 81$, Accept H₀.

Suppose X is normally distributed with unknown standard deviation σ . For n=16 iid samples of X, the sample standard deviation is 3.5. What conclusion would a χ^2 -test reach if the null hypothesis assumes $\sigma=3$, with an alternative hypothesis that $\sigma>3$, and a signifiance level of $\alpha=0.05$?

$$X_1, ..., X_{1k} \sim N(r, \sigma^2), S^2 = 3.5^2$$
 $H_0: \sigma^2 = 3^2, H_0: \sigma^2 > 3^2$
 $C = 3^2 +$

Suppose $X \sim \text{Normal}(\mu_1,3)$ and $Y \sim \text{Normal}(\mu_2,4)$. For $n_1=16$ iid samples of X and $n_2=8$ samples of Y, the observed sample means are 10.2 and 8.2, respectively. What conclusion would a two-sample z-test reach if the null hypothesis assumes $\mu_1=\mu_2$ (against an alternative hypothesis $\mu_1\neq\mu_2$) at a significance level of $\alpha=0.05$?

$$X_{1},...,X_{16}-N(r_{1/3})$$
 $X_{1},...,X_{8}\sim N(r_{1/3})$
 $X_{1},...,X_{8}\sim N(r_{1/3})$
 $X_{1},...,X_{8}\sim N(r_{1/3})$
 $Y_{1},...,X_{8}\sim N(r_{1/3})$
 $Y_{1},...,Y_{8}\sim N(r_{1/3})$
 $Y_{1},...,Y_{1}$
 Y_{1

Suppose X_1, X_2, \ldots, X_{30} is an i.i.d. sample from a distribution $X \sim \text{Normal}(\mu_1, \sigma_1^2)$ and suppose Y_1, Y_2, \ldots, Y_{25} is an i.i.d. sample from a distribution $Y \sim \text{Normal}(\mu_2, \sigma_2^2)$ independent of the X_j variables. If $S_X^2 = 11.4$ and $S_Y^2 = 5.1$, what conclusion would an F-test reach for null hypothesis suggesting $\sigma_1 \neq \sigma_2$, and a signifiance level of $\alpha = 0.05$?

Test: Reject Ho if
$$\frac{S_{k}}{S_{k}^{2}} > 1+c_{k}^{(q)}$$
 $d_{k} = F_{(1^{q}, 24)} \Rightarrow c_{k} = 1-F_{(1^{q}, 14)}^{1} = ?$
 $d_{k} = I - F_{(1^{q}, 14)}^{1} \Rightarrow 1+c_{k} = F_{(1^{q}, 14)}^{1} = ?$
 $1+c_{k} = 2 \cdot 2 \cdot 1 \Rightarrow 1+c_{k} = 2 \cdot 2 \cdot 2 \cdot 3 \Rightarrow 1+c_{k} =$

(2) = 2)

Since St = 11.9 = 2.235 > 2.217, Regect Ho.

Section 10

More problems on t-test, χ^2 -test and two-sample z/F-test

The average annual salary of an entry-level data scientist is reported to be Rs. 8 lakhs per annum. You suspect that this seems too high, and make enquiries with 10 such persons and find that their annual salaries are

6.9, 7.2, 8.7, 7.7, 8.5, 8.0, 8.0, 7.5, 8.7, 7.4

Based on the above, what conclusion can you reach about your suspicion?

The weight of a cooking gas cylinder is reported to have a standard deviation of 500 g, which you suspect is too low. A sample of 10 cylinders had weights (in Kgs) of 15.1, 14.0, 14.8, 14.8, 15.8, 14.8, 16.1, 14.3, 14.8, 14.8. Based on this data, what is your conclusion on the standard deviation?

Ho:
$$G = 0.5$$
, $H_{q}: O > 0.5$ Sample state $A_{N} = 0.614$

Test: Reject Ho if $S > C^{2}$.

 $d = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}})$
 $A = P(S > C | Ho) P(\frac{qS^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac{qC^{2}}{0.5^{2}}) = 1 - F_{\chi_{q}}^{2}(\frac$

Weights of a species of squirrels have a standard deviation $\sigma=10$ grams. Suppose a sample of 30 squirrels from two different locations results in respective sample averages of 122.4 grams and 127.6 grams. Do the squirrels have the same average weight in the two locations?

Text: Right Ho if
$$|T| > c$$
 $T = X - Y \sim N(M - N)$

$$d = P(|T| > c|H_0) = P(\frac{|T|}{|V_3|} > \frac{c}{|V_3|}) = P(|H| > \frac{c}{|V_3|}) = N(M - N), \frac{20}{30} = N(M - N), \frac{20}{30}$$

$$d = 2 F_2(\frac{c}{|V_3|}) \Rightarrow c = -\frac{c}{3} F_2(0.025) = 5.06$$
Since $|122.9 - 127.6| = 5.2 > 5.06$, Reject Ho.

Two instruments for measuring resistors provide the following measurements when measuring a $1000 \; \text{Ohm}$ and a $3000 \; \text{Ohm}$ resistor, repeatedly.

- Iı	nstrument 1	Instrument 2	2
د که عدم	1004	3005 53	T= 146.29
Sx=24.4	` 999	2995	1
	993	3019	d= (0.05/)
	1000	2993	d=0.05 1-c ₂ = F(0.05/2) F(7,7)
	1008	2992	=0.2
	1002	2991	_
	994	3015	Sime 2947 =0167<05
	999	2986	Since 24.41 = 0167<0.2 146.29 Pagreet Ho.
_			-

Do the two instruments have the same variance in their measurements?

Section 11

Likelihood ratio tests

An authentic coin is known to have P(H) = 0.5 when tossed, while a counterfeit coin has P(H) = 0.6. Suppose you have a coin that could be authentic or counterfeit. You may toss the coin multiple times and observe the results. How will you test whether the coin is authentic or counterfeit?

An authentic coin is known to have P(H)=0.5 when tossed, while a counterfeit coin has P(H)=0.6. Suppose you have a coin that could be authentic or counterfeit. You may toss the coin multiple times and observe the results. How will you test whether the coin is authentic or counterfeit?

Hypothesis testing

- Null H_0 : P(H) = 0.5, Alternative H_A : P(H) = 0.6
- Toss the coin n times: 2^n possible outcomes
 - ▶ A: acceptance set, i.e. if outcome is in A, accept H_0 ; otherwise, reject H_0
- Significance level: $\alpha = P(\text{not } A|H_0)$, Power: $1 \beta = P(\text{not } A|H_A)$

An authentic coin is known to have P(H)=0.5 when tossed, while a counterfeit coin has P(H)=0.6. Suppose you have a coin that could be authentic or counterfeit. You may toss the coin multiple times and observe the results. How will you test whether the coin is authentic or counterfeit?

Hypothesis testing

- Null H_0 : P(H) = 0.5, Alternative H_A : P(H) = 0.6
- Toss the coin n times: 2^n possible outcomes
 - ▶ A: acceptance set, i.e. if outcome is in A, accept H_0 ; otherwise, reject H_0
- Significance level: $\alpha = P(\text{not } A|H_0)$, Power: $1 \beta = P(\text{not } A|H_A)$

Question: How to decide acceptance subset A?

Size vs power: n = 3 tosses __ 8 outcomes __ 256 possible sets A

8: But & at - grand.

Size vs power: n = 3 tosses

Goal: For a given α , find A that minimizes β or maximizes $1 - \beta$. Is this possible for 100 tosses?

Simple hypotheses and likelihood ratio test

$$X_1,\ldots,X_n\sim P$$

Simple null and alternative

Simple hypotheses and likelihood ratio test

$$X_1,\ldots,X_n\sim P$$

Simple null and alternative

$$H_0$$
: $P = f_X$ and H_A : $P = g_X$

Likelihood ratio

Simple hypotheses and likelihood ratio test

$$X_1,\ldots,X_n\sim P$$

Simple null and alternative

$$H_0$$
: $P = f_X$ and H_A : $P = g_X$

Likelihood ratio

$$L(X_1,\ldots,X_n)=\frac{\prod_{i=1}^n g_X(X_i)}{\prod_{i=1}^n f_X(X_i)}$$

Likelihood ratio test

Reject
$$H_0$$
 if $T = L(X_1, \dots, X_n) > c$

where w is the number of H's in the samples

Null
$$H_0$$
: $= 0.5$, Alternative H_A : $= 0.6$

Likelihood ratio test

$$T = \underbrace{\begin{array}{c} 0.6^w \ 0.4^{n-w} \\ \hline{0.5^n} \end{array}} > c$$

where w is the number of H 's in the samples

$$X_1, \ldots, X_n \sim \mathsf{Bernoulli}(p)$$

• Null H_0 : P(H) = 0.5, Alternative H_A : P(H) = 0.6

Likelihood ratio test

$$T = \frac{0.6^{w} \ 0.4^{n-w}}{0.5^{n}} > c$$

$$U = \frac{0.6^{w} \ 0.4^{n-w}}{0.5^{n}} > c$$

$$U = \frac{3}{2} > \frac{1}{2} \left(\frac{5^{n}}{4^{n}}\right)$$

$$U = \frac{3}{2} > \frac{1}{2} \left(\frac{5^{n}}{4^{n}}\right)$$
is equivalent to $W > W$

where w is the number of H's in the samples

- Likelihood ratio test is equivalent to $w > w_c$
 - ▶ Eg, n = 100: Reject null if number of H > 55

Optimality of likelihood ratio test

Theorem

Suppose both null and alternative hypotheses are simple, and there is some test that achieves a power of $1-\beta$ at a significance level α . Then, there is a likelihood ratio test at significance level α achieving power at least as high as $1-\beta$.

 Good news: For simple null and alternative, likelihood ratio tests are enough.

Optimality of likelihood ratio test

Theorem

Suppose both null and alternative hypotheses are simple, and there is some test that achieves a power of $1-\beta$ at a significance level α . Then, there is a likelihood ratio test at significance level α achieving power at least as high as $1-\beta$.

- Good news: For simple null and alternative, likelihood ratio tests are enough.
- Bad news
 - If any of the hypotheses are composite, then the optimality result does not hold.
 - ▶ In most situations, we will not have simple null and alternative!

Fake coin: Size vs power for n = 100 tosses

Optimal test: Reject H_0 if number of heads > c, $c = 0, 1, \dots, 100$

Section 12

Goodness of fit tests

Example: Assessing goodness of fit

The expected distribution of grades of students in a class (0) and the actual frequencies of grades are shown below:

Fit $p/32$ $p/4$ $p/2$ $1-p$ $p/8$ $p/16$ $p/32$ Observed 15 97 203 397 55 33 10	Grade	S	Α	В	С	D	Е	U
							•	·

ML estimate:
$$L \propto (1-p)^{397} p^{413}$$
, $\hat{p}_{ML} = 413/(413+297) = 0.51$

Example: Assessing goodness of fit

The expected distribution of grades of students in a class (0) and the actual frequencies of grades are shown below:

Grade	S	Α	В	С	D	E	U
Fit	p/32	<i>p</i> /4	<i>p</i> /2	1 – p	<i>p</i> /8	p/16	p/32
Observed	15	97	203	397	55	33	10

ML estimate:
$$L \propto (1-p)^{397} p^{413}$$
, $\hat{p}_{ML} = 413/(413+297) = 0.51$

Expected counts of grades:

Grade	S	A	В	С	D	Е	U
Expected	(12.9)	(103.2)	206.6	396.9	51.6	25.8	12.9
	32 +816	0.51	810		-		32 110

Example: Assessing goodness of fit

The expected distribution of grades of students in a class (0) and the actual frequencies of grades are shown below:

Grade	S	Α	В	С	D	E	U
Fit Observed	p/32 15	p/4 97	p/2 203	1 – p 397	p/8 55	p/16 33	p/32
Observed	15	91	203	397	55	33	10

ML estimate:
$$L \propto (1-p)^{397} p^{413}$$
, $\hat{p}_{ML} = 413/(413+297) = 0.51$

Expected counts of grades:

Grade	S	Α	В	С	D	Е	U
Expected	12.9	103.2	206.6	396.9	51.6	25.8	12.9

Question: Is the above a good-enough fit?

$$X \in \{a_1, \ldots, a_k\}$$
 with $P(X = a_i) = p_i$

$$X \in \{a_1, \ldots, a_k\}$$
 with $P(X = a_i) = p_i$

Observed vs expected counts: n samples

 H_0 : Samples are iid X, H_A : Samples are not iid X

$$X \in \{a_1, \dots, a_k\}$$
 with $P(X = a_i) = p_i$

Observed vs expected counts: *n* samples

	a ₁	a ₂		a _k
Observed	<i>y</i> ₁	<i>y</i> ₂		Уk
Expected	np ₁	np ₂	• • • •	$\frac{np_k}{np_k}$

(y-nh) (y-nh) --.

 H_0 : Samples are iid X, H_A : Samples are not iid X

Test Statistic:
$$T = \sum_{i=1}^{k} \frac{(y_i - np_i)^2}{np_i}$$
 is approx χ^2_{k-1}

Test: Reject H_0 if T > c

$$X \in \{a_1, \dots, a_k\}$$
 with $P(X = a_i) = p_i$

Observed vs expected counts: *n* samples

	a_1	a ₂	 a _k
Observed	<i>y</i> ₁	<i>y</i> ₂	 Уk
Expected	np_1	np_2	 np_k

 H_0 : Samples are iid X, H_A : Samples are not iid X

Test Statistic:
$$T=\sum\limits_{i=1}^k \frac{(y_i-np_i)^2}{np_i}$$
 is approx χ^2_{k-1}

Test: Reject H_0 if $T>c$

Significance level: $\alpha=P(T>c|H_0)\approx 1-F_{\chi^2_{k-1}}(c)$

Test: Reject
$$H_0$$
 if $T > c$

Significance level:
$$\alpha = P(T > c | H_0) \approx 1 - F_{\chi^2_{k-1}}(c)$$

Problem: Grades data

n = 810 samples, k = 7

Grade	ς .	Λ	B		D	F	
Grade							
Observed	15	97	203	397	55	33	10
Expected	12.9	103.2	206.6	396.9	51.6	25.8	12.9

Problem: Grades data

$$n = 810$$
 samples, $k = 7$

Grade	S	Α	В	С	D	Е	U
Observed	15	97	203	397	55	33	10
Expected	12.9	103.2	206.6	396.9	51.6	25.8	12.9

$$\chi^2$$
 test: deg of freedom $k-1=6$, $\alpha=0.05$, $c=F_{\chi_6^2}^{-1}(1-0.05)=12.59$

$$T = \frac{(15 - 12.9)^2}{12.9} + \frac{(97 - 103.2)^2}{103.2} + \frac{(203 - 206.6)^2}{206.6} + \frac{(397 - 396.9)^2}{396.9} + \frac{(55 - 51.6)^2}{51.6} + \frac{(33 - 25.8)^2}{25.8} + \frac{(10 - 12.9)^2}{12.9} = 3.66$$
P-value: $I - F_{+}(3.6) > 0.05$

Conclusion: Since T < c, accept the fit.

Goodness of fit for continuous distributions

Basic idea: convert continuous to discrete by binning

Goodness of fit for continuous distributions

Basic idea: convert continuous to discrete by binning

 $X \sim f_X(x)$, continuous with PDF $f_X(x)$, n samples

Bins:
$$[a_0, a_1]$$
, $[a_1, a_2]$, ..., $[a_{k-1}, a_k]$

Bin probabilities: Let $p_i = P(a_{i-1} < X < a_i) = \int_{a_{i-1}}^{a_i} f_X(x) dx$ is known

Observed vs Expected counts:

	$[a_0, a_1]$	$[a_1, a_2]$	 $\overline{[a_{k-1},a_k]}$	~of santla
Observed	<i>y</i> ₁	<i>y</i> ₂	 (Yh)	► " (~ (chock)
Expected	np_1	np_2	 $\stackrel{\smile}{np_k}$	

• Pick bins such that each $y_i \ge 5$ and $\sum_i p_i = 1$

Goodness of fit for continuous distributions

Basic idea: convert continuous to discrete by binning

 $X \sim f_X(x)$, continuous with PDF $f_X(x)$, n samples

Bins: $[a_0, a_1], [a_1, a_2], \ldots, [a_{k-1}, a_k]$

Bin probabilities: Let $p_i = P(a_{i-1} < X < a_i) = \int_{a_{i-1}}^{a_i} f_X(x) dx$

Observed vs Expected counts:

	$[a_0, a_1]$	$[a_1, a_2]$	 $[a_{k-1},a_k]$
Observed	<i>y</i> ₁	<i>y</i> ₂	 Уk
Expected	np_1	np_2	 np_k

• Pick bins such that each $y_i \ge 5$ and $\sum_i p_i = 1$ **Test**: same as before $T = \sum_{i=1}^{n} \frac{(x_i - y_i)^2}{y_i}$

Example: Beta(3,3) goodness of fit

Bin counts of 100 samples from Beta(3,3) distribution are given below.

	[0.0, 0.2]	[0.2, 0.4]	[0.4, 0.6]	[0.6, 0.8]	[0.8, 1.0]		
Observed	7	23	40	28	6		
Expected	5.8	25.9	36.5	25.9	5.8		
	CDF & Bet (3,2)						

Eg: Expected count for
$$[0.2, 0.4] = 100(F_{B(3,3)}(0.4) - F_{B(3,3)}(0.2)) = 25.9$$

Example: Beta(3,3) goodness of fit

Bin counts of 100 samples from Beta(3,3) distribution are given below.

	[0.0, 0.2]	[0.2, 0.4]	[0.4, 0.6]	[0.6, 0.8]	[0.8, 1.0]
Observed	7	23	40	28	6
Expected	5.8	25.9	36.5	25.9	5.8

Eg: Expected count for $[0.2, 0.4] = 100(F_{B(3,3)}(0.4) - F_{B(3,3)}(0.2)) = 25.9$

$$T = \frac{(7-5.8)^2}{5.8} + \frac{(23-25.9)^2}{25.9} + \frac{(40-36.5)^2}{36.5} + \frac{(28-25.9)^2}{25.9} + \frac{(6-5.8)^2}{5.8} = 1.09$$

Example: Beta(3,3) goodness of fit

Bin counts of 100 samples from Beta(3,3) distribution are given below.

	[0.0, 0.2]	[0.2, 0.4]	[0.4, 0.6]	[0.6, 0.8]	[0.8, 1.0]
Observed	7	23	40	28	6
Expected	5.8	25.9	36.5	25.9	5.8

Eg: Expected count for $[0.2, 0.4] = 100(F_{B(3,3)}(0.4) - F_{B(3,3)}(0.2)) = 25.9$

$$T = \frac{(7-5.8)^2}{5.8} + \frac{(23-25.9)^2}{25.9} + \frac{(40-36.5)^2}{36.5} + \frac{(28-25.9)^2}{25.9} + \frac{(6-5.8)^2}{5.8} = 1.09$$

P-value = $1 - F_{\chi^2_4}(1.09) = 0.895$ is quite high. So, accept fit to Beta(3,3).

Example: Test for independence

Consider the following cross-tabulation of grades across 3 different courses.

	S	A	В	С	D	E	U	Total
Math I	15	97	203	387	55	33	10	800 #st
Stats I	28	182	381	726	103	62	19	1500
CT			634					
Total	99	582	1218	2321	331	198	60	4800
	,53°	طعروم						
	~22.~	,•						

Are the grades independent of subjects?

Example: Test for independence

Consider the following cross-tabulation of grades across 3 different courses.

	_			С			_	
Math I	15	97	203	387	55	33	10	800 1500 2500 4800
Stats I	28	182	381	726	103	62	19	1500
CT	47	303	634	1209	172	103	31	2500
Total	90	582	1218	2321	331	198	60	4800
					_			_

Are the grades independent of subjects?

- Marginal PMF of grades: P(S) = 90/4800, P(A) = 582/4800 etc.
- Marginal PMF of subjects: P(Math I) = 800/4800, P(Stats I) = 1500/4800 etc.
- If independent, count of (Math I, S) = $\frac{800}{4800} \cdot \frac{90}{4800} = 15$
- If independent, count of (Stats I, A) = $\frac{1300}{4800} \cdot \frac{382}{4800} \cdot 4800 = 181.9$ etc.

Example: Observed vs Expected

Observed

	S	Α	В	С	D	Е	U	Total
Math I	15	97	203	387	55	33	10	800
Stats I	28	182	381	726	103	62	19	1500
CT	47	303	634	1209	172	103	31	2500
Total	90	582	1218	2321	331	198	60	4800
ed, if in	depe	ndent				x ~~~	مان وام	LX col

Expected, if independent

					/		
	S			C			_
Math I	15	97	203	386.8 725.3 1208.9	55.2	33	10
Stats I	28.1	181.9	380.6	(725.3)	103.4	61.9	18.8
CT	46.9	303.1	634.4	1208.9	172.4	103.1	31.2

Example: Chi-squared test for independence

Null H_0 : Joint PMF is product of marginals, H_A : It is not

- Test statistic: $T = \sum_{i,j} \frac{(y_{ij} np_{ij})^2}{np_{ij}} \sim \int_{0}^{\infty} \int_{0}^{\infty}$
 - We get T = 0.012
- Approximate distribution of T: Chi-squared with (3-1)(7-1)=12 degrees of freedom
 - ▶ dof = (no of rows -1)(no of cols -1)

Example: Chi-squared test for independence

Null H_0 : Joint PMF is product of marginals, H_A : It is not

- Test statistic: $T = \sum_{i,j} \frac{(y_{ij} np_{ij})^2}{np_{ij}}$
 - p_{ij} : product of marginals for (i,j)
 - ▶ *np_{ij}*: expected, if independent
 - We get T = 0.012
- Approximate distribution of T: Chi-squared with (3-1)(7-1)=12 degrees of freedom
 - ▶ dof = (no of rows -1)(no of cols -1)

Test: Reject
$$H_0$$
 if $T > c$

Significance level: $\alpha = 1 - F_{\chi^2_{10}}(c)$

P-value:
$$1 - F_{\chi_{12}^2}(0.012) = 0.999$$
, very good fit