

Über die Menge der differenzierbaren Funktionen.

Von

Stefan Mazurkiewicz (Warszawa).

Sei R, die Menge der reellen Zahlen, I das abgeschlossene Intervall <0,1>. Den Raum der reellen in I stetigen Funktionen bezeichnen wir 1) mit R_{1}^{I} . Sei Γ die Menge der in I differenzierbaren $f \in R_1^I$. Man kann leicht zeigen, dass Γ in R_1^I eine CA-Menge (analytisches Komplement) bildet; dies folgt z. B. aus der Formel 2):

$$(1) \qquad f \in \Gamma = \prod_{x} \prod_{p} \sum_{q} \prod_{y_1} \prod_{y_2} \left\{ \left[0 < |y_1 - x| < \frac{1}{q} > |y_2 - x| > 0 \right] \rightarrow \left[\left| \frac{f(y_1) - f(x)}{y_1 - x} - \frac{f(y_2) - f(x)}{y_2 - x} \right| < \frac{1}{p} \right] \right\},$$

wo $x \in I$, p, q natürliche Zahlen und y_1 , y_2 rationale Zahlen aus Ibedeuten.

Nun hat Banach die Frage gestellt, ob die durch die Formel (1) gegebene Abschätzung der projektiven Klasse von Γ exakt ist (und nicht etwa T eine analytische Menge, und somit auch eine Borelsche Menge ist). Ich werde zeigen, dass dies tatsächlich der Fall ist.

Satz. Die Menge Γ der in I differenzierbaren Funktionen ist im Raume R₁ aller in I stetiger Funktionen ein analytisches Komplement, aber keine analytische Menge.

Wir beweisen folgenden:

Hilfssatz: Sei MCI eine perfekte nulldimensionnale Menge, NCM eine analytische Menge. Es existiert eine Funktion F(x, t) mit folgenden Eigenschaften:

- F(x, t) ist stetig für $x \in I$, $t \in M$.
- (a_0) $[t_1 \neq t_2] \rightarrow [F(0, t_1) \neq F(0, t_2)].$
- (a) wenn $t \in M N$, so ist F(x, t) in jedem Punkte von I nach x differenzierbar,
- (a) wenn $t \in N$, so ist F(x,t) in mindestens einem Punkte von I nach x nicht differenzierbar.

Beweis: Sei $J=\langle \alpha,\beta \rangle$ ein abgeschlossenes Teilintervall von I. Wir setzen:

(2)
$$\varphi(x,J) = \frac{16(x-\alpha)^2(\beta-x)^2}{(\beta-\alpha)^3} \quad \text{für } x \in J,$$

(3)
$$\varphi(x,J)=0$$
 für $x \in I-J$

Die Funktion $\varphi(x, J)$ ist in I stetig differenzierbar und es gilt:

(4)
$$\operatorname{Max} |\varphi(x,J)| = \operatorname{Max} \varphi(x,J) = \varphi\left(\frac{\alpha+\beta}{2},J\right) = \beta - \alpha = \delta(J),$$

$$\varphi(0,J)=0.$$

Die Formel

(6)
$$q = 2^{n_1-1} + 2^{n_1+n_2-1} + \dots + 2^{n_1+n_2+\dots+n_k-1}$$

bestimmt eine eineindeutige Zuordnung zwischen der Menge der natürlichen Zahlen und der Menge der endlichen Folgen natürlicher Zahlen. Auf Grund dieser Zuordnung werden wir, insbesondere bei der Betrachtung determinierender Systeme, die Indizesfolge n_1, n_2, \ldots, n_k durch [q] bezeichnen.

Der analytischen Menge N ordnen wir ein determinierendes System $\{N_{n_1n_2...n_k}\} = \{N_{[q]}\}$ derart zu, dass $N_{[q]} \subset M$ und dass $N_{[q]}$ in M zugleich offen und abgeschlossenen ist.

Bezeichnen wir mit $\lambda_{n_1,n_2,...n_k}(t) = \lambda_{[q]}(t)$ die charakteristische Funktion von $N_{[q]}$, d. h. die durch die Gleichungen

(7)
$$\lambda_{[q]}(t) = 1 \qquad \text{für} \quad t \in N_{[q]}$$

$$\lambda_{[q]}(t) = 0 \qquad \text{für} \quad t \in M - N_{[q]}$$

gegebene Funktion, so ist dieselbe stetig in M.

¹⁾ vgl. C. Kuratowski: Topologie I, Monografje Matematyczne (1933), p. 199.

²⁾ Kuratowski-Tarski: Fund. Math. XVII, p. 240-248; Kuratowski, ibid. p. 149-272.

Jetzt bestimmen wir Systeme von abgeschlossenen Intervallen $\{J_{n_1...n_k}\}=\{J_{[q]}\}, \quad \{K_{n_1...n_k}\}=\{K_{[q]}\} \quad \text{und} \quad \{K_{n_1...n_k}^{(l)}\}=\{K_{[q]}^{(l)}\} \quad (i=1,2)$ in folgender Weise:

(8)
$$J_{n_1} \subset I$$
, $J_{n_1...n_k} \cap_{k+1} \subset K_{n_1...n_k}^{(1)}$,

(9)
$$J_{n_1...n_k} \cdot J_{n_1...n_k'} = 0 \quad \text{für } n_k \neq n_k',$$

(10) $K_{[q]}^{(1)}$ bezeichnet die linke, $K_{[q]}^{(2)}$ die rechte Hälfte von $K_{[q]}$

(11)
$$K_{[q]}$$
 ist konzentrisch mit $J_{[q]}$,

(12)
$$\delta(K_{[q]}) = \frac{1}{2^q} \delta(J_{[q]}).$$

Sei:

$$\varphi_{n_1...n_k}(x) = \varphi_{[q]}(x) = \varphi(x, K_{[q]}^{(2)}) \quad \text{für } x \in I,$$

(14)
$$F(x,t) = t + \sum_{q=1}^{\infty} \lambda_{[q]}(t) \varphi_{[q]}(x) \quad \text{für } x \in I \text{ und } t \in M.$$

Wegen (8), (4) und (12) wird die Reihe (14) durch $t + \sum_{q=1}^{\infty} \left(\frac{1}{2}\right)^q$ majoriert, ist also gleichmässig konvergent. Da $\lambda_{[q]}(t)$ für $t \in M$ und $\varphi_{[q]}(x)$ für $x \in I$ stetig sind, so ist (a_1) bewiesen. Wegen (5) ist F(0,t) = t, woraus (a_2) unmittelbar folgt.

Sei $t \in M - N$, $x_0 \in I$; wir setzen:

(15)
$$F_p(x, t) = t + \sum_{q=1}^p \lambda_{[q]}(t) \varphi_{[q]}(x).$$

Wegen (9) existiert für jedes k höchstens ein einziges $J_{n_1...,n_k}$, welches x_0 enthält. Zwei Fälle sind somit möglich. Entweder existiert ein q' derart, dass x_0 non $\epsilon J_{[q]}$ für $q \ge q'$, oder es gibt eine unendliche Folge $m_1, m_2, ...,$ derart, dass $x_0 \epsilon J_{m_1 m_2 ... m_k}$, dagegen x_0 non $\epsilon J_{n_1 n_2 ... n_k}$, wenn das System $n_1, n_2, ..., n_k$ von $m_1, m_2, ..., m_k$ verschieden ist.

Wegen $t \in M$ —N ist aber $t non \in \prod_{k=1}^{\infty} N_{m_1 \dots m_k}$, also existiert ein k' derart, dass $t non \in N_{m_1 \dots m_k}$ für $k \ge k'$ und somit $\lambda_{m_1 \dots m_k}(t) = 0$ gilt. In beiden Fällen existiert also ein q'' derart, dass aus

$$(16) q \geqq q''$$

mindestens eine der beiden Relationen:

$$(17) x_0 non \in \mathcal{J}_{[q]},$$

$$\lambda_{[q]}(t) = 0$$

folgt. Sei jetzt

$$(19) h \neq 0 \text{und} x_0 + h \in I.$$

Aus (17) folgt $\varphi_{[q]}(x_0) = 0$. Nun sind zwei Fälle möglich: $x_0 + h \epsilon K_{[q]}^{(2)}$ oder $x_0 + h non \epsilon K_{[q]}^{(2)}$. Wenn $x_0 + h \epsilon K_{[q]}^{(2)}$, so ist wegen (4), (11), (12), (17):

(20)
$$|h| \ge \frac{1}{2} \delta(J_{[q]}) - \delta(K_{[q]}^{(2)}) = (2^q - 1) \delta(K_{[q]}^{(2)}) \ge 2^{q-1} \varphi_{[q]}(x_0 + h),$$
 also

(21)
$$\left| \frac{\varphi_{[q]}(x_0 + h) - \varphi_{[q]}(x_0)}{h} \right| \leq \frac{1}{2^{q-1}}.$$

Wenn aber $x_0 + h \operatorname{non} \epsilon K_{[q]}^{(2)}$, so ist $\varphi_{[q]}(x_0 + h) = 0$ und folglich erst recht (21) erfüllt. Aus (17) folgt also (21) und somit auch

$$\left|\frac{\lambda_{[q]}(t) \; \varphi_{[q]}(x_0 + h) - \lambda_{[q]}(t) \; \varphi_{[q]}(x_0)}{h}\right| \leqq \frac{1}{2^{q-1}}.$$

Diese Ungleichung folgt aber auch aus (18). Also folgt (22) aus (16). Somit ist für $p \ge q''$:

$$(23) \left| \frac{F(x_0+h,t) - F(x_0,t)}{h} - \frac{F_p(x_0+h,t) - F_p(x_0,t)}{h} \right| \leq \sum_{q=p+1}^{\infty} \frac{1}{2^{q-1}} = \frac{1}{2^{p-1}}$$

und daher, da $F_p(x, t)$ nach x differenzierbar ist,

$$(24) \qquad \limsup_{h \to 0} \frac{F(x_0 + h, t) - F(x_0, t)}{h} \leq \left[\frac{\partial}{\partial x} F(x, t) \right]_{x = x_0} + \frac{1}{2^{p-1}},$$

(25)
$$\limsup_{h\to 0} \frac{F(x_0+h,t)-F(x_0,t)}{h} \ge \left[\frac{\partial}{\partial x}F(x,t)\right]_{x=x_0} - \frac{1}{2^{p-1}},$$

(26)
$$\limsup_{h\to 0} \frac{F(x_0+h,t)-F(x_0,t)}{h} - \liminf_{h\to 0} \frac{F(x_0+h,t)-F(x_0,t)}{h} \leq \frac{1}{2^{p-2}}.$$

Demnach ist, da p beliebig gross, F(x,t) im Punkte $x=x_0$ nach x differenzierbar. Somit ist (a_3) bewiesen.

Sei jetzt $t \in N$. Es existiert mindestens eine Folge $l_1, l_2, ..., l_k, ...$ derart, dass $t \in \prod_{k=1}^{\infty} N_{l_1 l_2 ... l_k}$. Die Menge $\prod_{k=1}^{\infty} K_{l_1 ... l_k}^{(1)}$ besteht wegen (8), (10) und (12) aus einem Punkt, welchen wir mit x' bezeichnen. Sei ξ_k der Mittelpunkt, η_k die halbe Länge von $K_{l_1 ... l_k}^{(2)}$. Man hat:

(27)
$$\lim_{k \to \infty} \xi_k = \lim_{k \to \infty} (\xi_k + \eta_k) = x',$$

(28)
$$0 < \xi_k - x' < 3\eta_k.$$

 $\varphi_{l_1...l_k}(x)$ verschwindet in $K_{l_1...l_k}^{(1)}$, also ist

(29)
$$\varphi_{l,...l_k}(x') = 0$$
 für $k = 1, 2...$

Ist aber das System $n_1, n_2, ..., n_k$ von $l_1, l_2, ..., l_k$ verschieden, so liegt wegen (9), (10) und (11) das Intervall $K_{l_1...l_k}^{(1)}$ und somit x' ausserhalb von $K_{n_1...n_k}^{(2)}$. Also:

(30) $\varphi_{n,...n_k}(x')=0$ für k=1,2,..., wenn $n_1,...,n_k$ verschieden von $l_1,...,l_k$.

Man hat wegen (29) und (30)

$$(31) F(x',t) = t.$$

Wegen (8)—(11) liegen alle Intervalle $K_{[q]}^{(2)}$ ausserhalb einander. In $K_{l,\dots l_k}^{(2)}$ sind also alle $\varphi_{[q]}(x)$ bis auf $\varphi_{l_1\dots l_k}(x)$ gleich Null. Also (da wegen $t\in N_{l_1\dots l_k}$ auch $\lambda_{l_1\dots l_k}(t)=1$ ist):

(32)
$$F(\xi_k, t) = t + \varphi_{l_1 \dots l_k}(\xi_k) = t + 2\eta_k,$$

(33)
$$F(\xi_k + \eta_k, t) = t + \varphi_{l_1 \dots l_k}(\xi_k + \eta_k) = t,$$

$$\frac{F(\xi_k, t) - F(x', t)}{\xi_k - x'} \ge \frac{2}{3},$$

(35)
$$\frac{F(\xi_k + \eta_k, t) - F(x', t)}{\xi_k + \eta_k - x'} = 0.$$

Aus (27), (34) und (35) folgt, dass F(x,t) für x=x' nicht nach x differenzierbar sein kann. Somit ist (a_4) — und der Hilfssatz — bewiesen.

Der Beweis des Satzes erledigt sich jetzt in wenigen Worten.

Sei Φ_1 die Menge der Funktionen F(x,t) für $t=constans \epsilon M-N$, Φ_2 die Menge der Funktionen F(x,t) für $t=constans \epsilon N$, schliesslich $\Phi=\Phi_1+\Phi_2$. Dann ist Φ eine kompakte Teilmenge von R_1^I und wegen $(a_3),(a_4)$

Wäre nun Γ analytisch, so wäre auch Φ_1 stets analytisch. Andrerseits ist wegen $(a_1), (a_2)$ Φ mit M und Φ_1 mit M-N homöomorph. Wählt man als N eine nicht Borelsche Teilmenge von M, so ist M-N und daher auch Φ_1 nicht analytisch. Γ ist also keine analytische Menge, w. z. b. w.

Warszawa 18. VII. 1936.