

Department of Software Engineering

Object Oriented Programming Spring 2023

Instructor Name: Arooj Khalil

Email address: arooj.khalil@nu.edu.pk

Office Hours: Monday, Wednesday and Friday -1:00pm-2:30 p.m.

Course Information

Program: BS (SE)

Credit Hours: 3 + 1 for Lab

Type: Core

Pre-requisites: Programming Fundamentals

Course Description/Objectives/Goals:

The core objectives of this course are to introduce,

- Object oriented programming with data abstraction and encapsulation.
- The classes, objects and relationship among different objects and classes in C++?
- Generic programming using templates, and template specializations.

Course Learning Outcomes (CLOs):

At the end of the course students will be able to:

Demonstrate the basic concepts of OOP

Apply OOP concepts (Encapsulation, Inheritance, Polymorphism, Abstraction) to computing problems for the related program

Model an algorithmic solution for a given problem using OOP

Apply good programming practices

Course Textbooks:

- 1. Object Oriented Programming by Robert Lafore
- 2. C++ Programming: Program Design Including Data Structures, by D. S. Malik (8th Edition)
- 3. C++: How to Program? by Deitle & Deitle (9th Edition)

Additional references and books related to the course:

- 4. Problem Solving with C++, by Walter Savitch
- 5. https://www.learncpp.com

Week	Topic	Lecture-1	Lecture-2
1		Pointers Introduction, Pointer variables	Use of Constant with Pointers.
		and Initialization, Address of Operator,	Difference between a Pointer and a
		Dereferencing Operator. Pointer	Reference.
	Pointers	Operations (Relational, Arithmetic)	Passing pointers to functions by value and
			by reference.
2		Dynamic memory allocation using pointers	Dynamic 1- dimensional arrays, Create,
		and accessing dynamic memory. Dynamic	Delete, Grow and Shrink.
		Variables new and delete operators.	Example of programs using 1D dynamic
			allocation: e.g., mathematical sets union
			and intersection.
3		Memory Leak and Dangling Pointers,	Pointers Indirection. Dynamic 2D,
		Dynamic 1- dimensional char arrays for	allocation, matrices, CStrings etc.
		strings, string operations like search,	
		concatenation etc.	
4		Structured Programming vs Object-	Objects vs Class, state vs behavior, access
		oriented Programming, Principles of	specifiers (Public, Private), Member
		modularization, abstraction and	functions (accessors, utilities, mutators etc)
	Object-oriented basics	encapsulation.	
5	Dasics	Constructors (default, overloaded),	Dynamic memory allocation and Object
		Function overloading.	assignment, Parameter passing, Shallow vs
			Deep copy,
6	Mid Term 1		
7		Convenentinator Destructors this	Cascaded function calls, static members,
	Object-oriented	Copy constructor, Destructors, this	inline functions and other miscellaneous
	basics	pointer,	issues
8	0	Unary operators using member functions	Binary operators using member functions
9	Operator	Binary operators using non-member	Unary operators, Pre and post increment,
	overloading	functions, concept of friendship,	subscript operator.
10		Part-whole relationships,	Composition
	Object and Class	Association/Aggregation	Implementation issues (constructor call
	relationships		sequence, initializer list, etc)
11		Inheritance basics, Type of Inheritance,	Function Overriding and sub-typing details
		public, protected, private.	
12	Mid Term 2		
13		Polymorphism introduction Static vs	Polymorphism vs down casting, run-time
		dynamic binding details, virtual tables and	type identification, dynamic cast
		virtual pointers,	
14	Object and Class	Pure-virtual functions, Abstract classes,	Multiple Inheritance and Diamond Problem
	relationships	Interfaces (optional)	Multiplicity, Memory Management
			Bi-directional relationships, Forward-class
			declarations issues
15	Generic	Template functions	Template classes
	Programming		Template classes Template Specializations,
16	& &	Exception Handling.	Template Specializations,
	Exception	Laception nanuling.	
	Handling.		

(Tentative) Grading Criteria:

1. Assignments + Home works (10 %)

2.	Quizzes	(10 %)
3.	Midterms	(30 %)
4.	Final Exam	(40 %)
5.	Project	(10 %)

- Final exam weight can change up to 45%.
- Grading scheme for this course is **Absolute** under application of CS department's grading policies.
- Minimum requirement to pass this course is to obtain at least 50% absolute marks

Course Policies:

- o All assignments and homework must be done individually.
- Late Submissions of assignments will not be accepted.
- o No retake of announced quizzes
- o **Plagiarism** in any work (Quiz, Assignment, Midterms, Project and Final Exam) from any source, Internet or a Student will result in **deduction of absolute marks or F** grade.
- o Minimum **80%** attendance is required for appearing in the Final exams.