RFID (англ. Radio Frequency IDentification, радиочастотная идентификация) — метод автоматической идентификации объектов, в котором посредством радиосигналов считываются или записываются данные, хранящиеся в так называемых транспондерах, или RFID-метках.

РАСШИРЕННЫЙ ПРОФИЛЬ

1. ОПИСАНИЕ

Любая RFID-система состоит из считывающего устройства (считыватель, ридер или интеррогатор) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег). Пример архитектуры приведен на рисунке 1.

Рис. 1 – Общая архитектура RFID-системы

Считыватель излучает в окружающее пространство электромагнитную энергию. Идентификатор принимает сигнал от считывателя и формирует ответный сигнал, который принимается антенной считывателя, обрабатывается его электронным блоком и по интерфейсу направляется в компьютер (рис. 1).

Рис. 2 – Принцип работы RFID-системы

Ридер имеет: приемо-передающее устройство и антенну, которые посылают сигнал к тегу и принимают ответный; микропроцессор, который проверяет и декодирует данные; память, которая сохраняет данные для последующей передачи, если это необходимо.

Большинство RFID-меток (см. рисунок 3) состоит из двух частей. Первая — интегральная схема (ИС) для хранения и обработки информации, модулирования и демодулирования радиочастотного (RF) сигнала и некоторых других функций. Вторая — антенна для приёма и передачи сигнала.

Рис. 3 - RFID-метка

По замыслу разработчиков технологии, на объект для его контроля или учета крепится RFID-метка с уникальной информацией и позволяет идентифицировать объект, к которому прикреплена. Данная метка по

беспроводной связи передает информацию о «своем» объекте в компьютерную базу данных, что дает возможность в режиме реального времени отслеживать его состояние.

Ограничением для использования RFID является металлическая упаковка и жидкости, которые не позволяют гарантировать качество считывания данных с метки.

Уже известные приложения RFID (бесконтактные смарт-карты в системах контроля управления доступом и в платёжных системах) получают дополнительную популярность с развитием интернет-услуг.

Основными достоинствами технологии RFID являются:

- Возможность уникальной идентификации объекта;
- Считывание метки без прямой видимости;
- Возможность мгновенного считывания большого количества меток;
- Объем хранимых на метке данных может достигать нескольких мегабайт и обновляться в реальном времени.

Классификация RFID-меток приведена на рисунке 3.

Рис. 4 – Классификация RFID-меток

По дальности считывания RFID-системы можно подразделить на системы:

- ближней идентификации (считывание производится на расстоянии до 20 см);
- идентификации средней дальности (от 20 см до 5 м);

• дальней идентификации (от 5 м до 300 м)

Международным органом по стандартизации в области RFID является Рабочая группа N4 (WG 4), образованная в августе 1997 года в составе Подкомитета по автоматической идентификации (SC 31) Объединенного технического комитета N1 OTC1) Международной организации по стандартизации ISO. Анализ характеристик выпускаемого оборудования RFID и опрос международных экспертов выявил основные диапазоны рабочих частот: менее 135 кГц, 13,56 МГц, 2,45 ГГц, 5,5 ГГц. Для этих диапазонов рабочих частот и ведутся работы по стандартизации (см. рис. 1, 2).

Таблица 1 – Общие характеристики RFID- технологии

Стандарт	Частота	Приложения	Примечания
ISO 14223	125 (134)	для идентификации	используется широко
ISO	кГц	животных	(например, в автомобильных
11784/11785		(в том числе, домашнего	иммобилайзерах)
		скота)	
ISO 14443	13,56 МГц	смарт-карты	
ISO 15693		метки	
ISO 10373		методы тестирования	
		карт	
ISO 18000	800 2,45	метки с увеличенной	
	ГГц	дальностью	

Таблица 2 – Стандарт RFID серии ISO 18000

	1	
Стандарт RFID	Наименование	Основное содержание
	Part 1: Definition of parameters to be standardized.	Определение параметров, которые должны быть стандартизованы
	Part 2: Parameters for air interface communications below 135 kHz	Параметры для бесконтактного интерфейса связи ниже 135 КГц
	Part 3: Parameters for air interface communications at 13.56 MHz	Параметры для бесконтактного интерфейса связи на 13,56 МГц
	Part 4: Parameters for air interface communications at 2.45 GHz	Параметры для бесконтактного интерфейса связи на 2,45 ГГц
	Part 6: Parameters for air interface communications at 860-930 MHz	Параметры для бесконтактного интерфейса связи на 860 – 930 МГц
ISO 18000- 7	Part 7: Parameters for Active Air Interface Communications at 433 MHz	Параметры для бесконтактного интерфейса связи на 433 МГц

Преимущества RFID-технологии:

- RFID-метки читаются быстро и точно (приближаясь к 100% идентификации);
- RFID может использоваться даже в агрессивных средах, а RFID-метки могут читаться через грязь, краску, пар, воду, пластмассу, древесину;
- пассивные RFID-метки имеют фактически неограниченный срок эксплуатации;

- RFID-метки несут большое количество информации и могут быть интеллектуальны;
- RFID-метки практически невозможно подделать;
- RFID-метки могут быть не только для чтения, но и для записи информации.

Результаты проведенного сравнительного анализа этих двух методов бесконтактной идентификации приведены в табл. 3.

Таблица 3 — Сравнительные характеристики двух методов бесконтактной идентификации

Характеристики	RFID	Barcode
Идентификация объекта без прямого контакта	да	нет
Идентификация вне поля обозрения, скрытых объектов	да	нет
Хранение данных более 8Kb	да	нет
Возможность повторного записывания данных и многократного использования хранителя информации	да	нет
Дальность идентификации более 1м	да	нет
Одновременная идентификация нескольких объектов	да	нет
Противостояние механическому воздействию	да	нет
Противостояние температурному воздействию	да	нет
Противостояние химическому воздействию	да	нет
Влагостойкость	да	нет
Безопасность	да	нет
Идентификация движущихся объектов	да	нет
Долговечность	да	нет
Подверженность помехам в виде электромагнитных полей	да	нет
Идентификация металлических объектов	да	нет
Использование ручных терминалов для идентификации	да	нет
Использование стационарных терминалов для идентификации	да	нет
Автоматическая запись информации в режиме Non-Stop	да	нет
Примерная стоимость 1 этикетки, \$	1	0,01
Примерная стоимость стационарного считывателя для карт, \$	64	40
Информационная емкость	8 Кбайт	100 байт
Чувствительность к загрязнению	отсутствует	высокая
Возможность подделки метки	невозможна	легкая
Множественное одновременное чтение	возможно	невозможно
Скорость чтения	низкая	высокая
Максимальная дистанция чтения	0,5 м	8 м

2. БИЗНЕС-ПОТЕНЦИАЛ

Технология RFID может дополнить интернет вещей (Internet of Things, IoT). С каждым годом все больше и больше предметов выпускаются с RFID — идентификатором, работающим на радиочастоте. Идея совмещения этих технологий проста: оснастить все предметы, изготовляемые человеком, RFID-чипом и отслеживать их при помощи сканеров, подключенных к

Интернету. Если эта идея будет полностью воплощена, она откроет за собой бездну удобств и возможностей контроля.

Еще один вариант применения RFID-чипов— оплата проезда по дорогам. Если установить чип на лобовое стекло автомобиля, номер которого определяет сумму на счету. Специальные сканеры считывают информацию с чипа на ходу, и машине не требуется останавливаться для оплаты проезда. Обратная сторона этого — передвижение машин с такими чипами легко полностью отслеживать.

Согласно отчету компании IDTechEx за 2014 год, общий объем рынка RFID составит \$8,89 млрд по сравнению с \$7,7 млрд в 2013 году и \$6,96 млрд в 2012 году. Данный показатель включает в себя показатели по рынкам меток, считывателей и программного обеспечения, а также другого дополнительного оборудования. По прогнозам в 2024 году рынок вырастет до \$27,3 млрд.

Анализируя распределение объема потребления рынка в стоимостном выражении, видно - наибольшее количество средств в данную технологию в настоящее время (август 2014 года - прим. TAdviser) вкладывают в сфере финансов и безопасности, где используются в основном НГ-чипы. (см. рис. 4).

Рис. 4 — Распределение объема потребления RFID систем в стоимостном выражении (2014 г.)

Согласно прогнозам, в 2024 году ситуация несколько изменится и наиболее перспективным для продаж направлением будет ритейл, что, скорее всего повлечет за собой рост потребления UHF-меток. (см. рис. 5).

Рис. 2 — Распределение объема потребления RFID систем в стоимостном выражении (2024 г.)

3. БАРЬЕРЫ

- 1) Относительно высокая стоимость RFID-меток. Цена пассивной RFID-метки начинается с 0,15 доллара (при приобретении свыше 1 000 000 шт.) до 3 долларов (при приобретении 1 шт.). В случае с метками защищенного исполнения (или на металл) эта цена достигает 7 долларов и выше. Таким образом, стоимость RFID-меток превышает стоимость этикеток со штриховым кодом. Исходя из этого, использование радиочастотных меток целесообразно для защиты дорогих товаров от краж или для сохранности изделий, переданных на гарантийное обслуживание. В логистике и транспортировке грузов стоимость радиочастотной метки незначительна по сравнению со стоимостью содержимого контейнера, поэтому использование радиочастотных меток оправдано на упаковочных ящиках, паллетах и контейнерах.
- 2) Возможное экранирование при размещении на металлических поверхностях. RFID-метки подвержены влиянию металла (это касается упаковок определенного вида металлических контейнеров, иногда даже некоторых типов упаковки жидких пищевых продуктов, запечатанных фольгой). Это не исключает применение RFID, но приводит или к необходимости использования меток, разработанных специально для

установки на металлические поверхности, или к нестандартным способам закрепления меток на объекте.

3) Подверженность систем радиочастотной идентификации помехам в виде электромагнитных полей от включенного оборудования, излучающего радиопомехи в диапазоне частот, используемом для работы RFID-системой. Надо тщательно проанализировать условия, в которых система RFID планируется к эксплуатации. Для систем UHF диапазона 868-869 МГц это не актуально (в этом диапазоне никакие другие приборы не работают), но низкочастотные метки, работающие на частоте 125 КГц подобному влиянию подвержены.

4. ЗНАЧИМОСТЬ ДЛЯ РАЗВИТИЯ БИЗНЕСА

Технология RFID позволяет быстрее производить инвентаризацию оборудования. А значит сокращает время, потраченное работником на эту операцию, поэтому сотрудник компании может потрать его на более сложные задачи. Возможность записывать и удалять информацию с RFID метки расширяет круг использования этой технологии. Например, для сотового оператора можно закрепить метки на активном оборудовании и считать с неё информацию о том, когда происходило его последнее обслуживание. Внедрение снижает риск аварий, связанных с износом оборудования.

Дополнительные возможности применения этой технологии нашлись и в интернете вещей (идентификация предметов).

5. ИСТОЧНИКИ

- 1. http://www.tadviser.ru/
- 2. http://www.apr-technology.ru/
- 3. http://www.bnti.ru/