MA 102 (Mathematics II)

Department of Mathematics, IIT Guwahati

Tutorial Sheet No. 2

(1) Examine if the limits as $(x,y) \to (0,0)$ exist?

Examine if the limits as
$$(x,y) \to (0,0)$$
 exist?

(a) $f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 - y^2} & x \neq \pm y \\ 0 & x = \pm y \end{cases}$ (b) $xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right)$ (c) $\frac{\sin(xy)}{x^2 + y^2}$ (d) $\frac{|x|}{y^2}e^{-|x|/y^2}$ (e) $\frac{1 - \cos(x^2 + y^2)}{(x^2 + y^2)^2}$.

(2) Examine the continuity of $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$,

Examine the continuity of
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 at $(0,0)$, where $(0,0):=\{xy\cos(1/x) \text{ if } x \neq 0, \\ 0 \text{ if } x = 0.\}$

(b) $f(x,y):=\{xy\cos(1/x) \text{ if } x \neq 0, \\ 0 \text{ if } x > 0.\}$

(c) $f(x,y):=\{xy\cos(1/x) \text{ if } x \neq 0, \\ 0 \text{ otherwise.} \}$

(d) $f(x,y):=\{xy\cos(1/x) \text{ if } (x,y) \neq (0,0), \\ 0 \text$

- (3) Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is a continuous function at $X_0 \in \mathbb{R}^2$ and that $|f(X_0)| > 2$. Show that there is a $\delta > 0$ such that |f(X)| > 2 whenever $||X - X_0|| < \delta$.
- (4) $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x,y) = 0 if $x \in \mathbb{Q}, y \in \mathbb{Q}$ and f(x,y) = xy otherwise. Find all the points in \mathbb{R}^2 where f is continuous.

**** End ****