Derivate

Definizione

$$f:(a,b) o \mathbb{R},\ x_0\in (a,b)$$

f è derivabile in x_0 se esiste finito

$$f'(x_0) := \lim_{x o x_0} rac{f(x) - f(x_0)}{x - x_0} = \lim_{h o 0} rac{f(x_0 + h) - f(x_0)}{h}$$

Derivata destra:

$$f'(x_0^+) = \lim_{x o x_0^+} rac{f(x) - f(x_0)}{x - x_0}$$

Derivata sinistra:

$$f'(x_0^-) = \lim_{x o x_0^-} rac{f(x) - f(x_0)}{x - x_0}$$

f derivabile in $x_0 \implies$ ammette retta tangente con equazione $y = f(x_0) + f'(x_0)(x - x_0)$

Derivabilità implica continuità

Teorema

f derivabile in $x_0 \implies f$ continua in x_0

Punti di non derivabilità

Definizione

Un punto di non derivabilità x_0 (in cui f è continua) si dice

- Punto angoloso se esistono finiti $f'(x_0^+)
 eq f'(x_0^-)$
- Cuspide se $f'(x_0^+)=\pm\infty,\; f'(x_0^-)=\mp\infty$
- Punto a tangente verticale se $f'(x_0)=\pm\infty$

Derivate di funzioni elementari

F Formule

$$egin{aligned} &\mathrm{D}[x^n] = n \cdot x^{n-1} \ &\mathrm{D}[e^x] = e^x \ &\mathrm{D}[\ln(x)] = rac{1}{x} \ &\mathrm{D}[\sin(x)] = \cos(x) \ &\mathrm{D}[\cos(x)] = -\sin(x) \end{aligned}$$

Linearità della derivata

Teorema

```
f(x),g(x) derivabili in x_0 orall a,b\in\mathbb{R} la combinazione lineare af(x)+bg(x) è derivabile in x_o e (af+bg)'(x_0)=af'(x_0)+bg'(x_0)
```

Regola di Leibnitz

Teorema

```
f(x),g(x) derivabili in x_0
La funzione prodotto f(x)\cdot g(x) è derivabile in x_0 e (f\cdot g)'(x_0)=f'(x_0)\cdot g(x_0)+f(x_0)\cdot g'(x_0)
```

Regola della catena

Teorema

```
g(x) derivabile in x_0, f(y) derivabile in y_0=g(x_0)
La composizione h:=f\circ g è derivabile in x_0 e h'(x_0)=f'(y_0)\cdot g'(x_0)
```

Derivata della funzione inversa

Teorema

$$f(x)$$
 invertibile su (a,b) e derivabile in $x_0\in(a,b)$ con $f'(x_0)
eq 0$ $(f^{-1}\circ f)(x)=f^{-1}(f(x))=x\;\;orall x\in(a,b)$ $(f^{-1}\circ f)'(x_0)=1$ f^{-1} è derivabile in $y_0=f(x_0)$ e $(f^{-1})(y_0)=rac{1}{f'(x_0)}$

Derivata del quoziente

Teorema

f(x),g(x) derivabili in x_0 con $g(x_0) \neq 0$ La funzione quoziente $rac{f(x)}{g(x)}$ è derivabile in x_0 e

$$\left(rac{f}{g}
ight)'(x_0) = rac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}$$

Derivate notevoli

Formule

• $D[a^x] = a^x \ln(a)$

$$\mathrm{D}[\log_a(x)] = \frac{1}{x \ln(a)}$$

Massimo e minimo relativo

Definizione

 $f:D\subset \mathbb{R} o \mathbb{R}$ x_0 è un punto di

- minimo relativo per f se $orall x \in D \ \exists \delta > 0 : |x-x_0| \leq \delta \ \ f(x) \geq f(x_0)$
- ullet massimo relativo per f se $orall x \in D \ \exists \delta > 0: |x-x_0| \leq \delta \ \ f(x) \leq f(x_0)$

Teorema

 $f:(a,b) o \mathbb{R},\, x_0\in (a,b)$ punto di massimo o minimo relativo per f f derivabile in $x_0\implies f'(x_0)=0$

Punto critico

Definizione

 x_0 è un punto critico per f se $f'(x_0)=0$

Teorema di Rolle

Teorema

 $f:[a,b] o \mathbb{R}$ continua su [a,b] e derivabile su (a,b)

$$f(a) = f(b) \implies \exists c \in (a,b) : f'(c) = 0$$

Teorema di Lagrange

Teorema del valore intermedio

 $f:[a,b] o\mathbb{R}$ continua su [a,b] e derivabile su (a,b)

$$\implies \exists c \in (a,b): f'(c) = rac{f(b) - f(a)}{b - a}$$

Dimostrazione →

$$g(x):=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$$

$$g(a) = f(a) - 0 = f(a)$$

$$g(b) = f(b) - f(b) + f(a) = f(a)$$

Soddisfa le ipotesi del Teorema di Rolle $\implies \exists c \in (a,b) : g'(c) = 0$

$$g'(x)=f'(x)-rac{f(b)-f(a)}{b-a}$$

Funzione monotona

Definizione

 $f:(a,b) o \mathbb{R}$ derivabile

- ullet f è monotona crescente su $(a,b) \iff f'(x) \geq 0$
- f è monotona decrescente su $(a,b) \iff f'(x) \leq 0$
- f è costante su $(a,b) \iff f'(x)=0$

Teorema di De L'Hospital

Teorema

 $f,g:(a,b)\subset (\mathbb{R}\cup\{\pm\infty\}) o\mathbb{R}$ derivabili in (a,b) tali che

•
$$g'(x) \neq 0 \ \ \forall x \in (a,b)$$

$$\lim_{x o a^+}f(x)=\lim_{x o a^+}g(x)=0,\pm\infty$$

$$ullet \lim_{x o a^+}rac{f'(x)}{g'(x)}=l\in\mathbb{R}\cup\{\pm\infty\}.$$

$$\implies \lim_{x o a^+} rac{f(x)}{g(x)} = l$$

Derivata seconda e successive

Definizione

 $f:(a,b) o\mathbb{R}$ derivabile in $(a,b)\implies f':(a,b) o\mathbb{R}$ f' derivabile in $x_0\implies$

$$f''(x_0) = \mathrm{D}^2[f(x_0)] := \lim_{x o x_0} rac{f'(x) - f'(x_0)}{x - x_0}$$

Concavità

Insiemi convessi

Definizione

 $E\subset \mathbb{R}^2$ si dice convesso se il segmento che connette $p_1,p_2\in E$ è tutto contenuto in E

Sopragrafico

Definizione

 $E=\{(x,y)\in\mathbb{R}^2:x\in(a,b),\;y\geq f(x)\}$ è detto sopragrafico o epigrafico di f

Funzione convessa

Definizione

Una funzione il cui sopragrafico è convesso è detta convessa Una funzione f si dice concava se -f è convessa

Teorema

f derivabile due volte:

- f è convessa $\iff f''(x) \geq 0 \ \ \forall x \in (a,b)$
- f è concava $\iff f''(x) \leq 0 \ \ \forall x \in (a,b)$

Punto di flesso

Definizione

f derivabile in x_0 x_0 si dice punto di flesso se $\exists \delta>0: f$ è convessa in $(x_0-\delta,x_0)$ e concava in $(x_0,x_0+\delta)$ o viceversa

Asintoto

Formule

Orizzontale

Se

$$\lim_{x o\pm\infty}f(x)=l\in\mathbb{R}$$

allora y=l è un asintoto orizzontale di f

Verticale

Se

$$\lim_{x o x_0^\pm}f(x)=\pm\infty$$

allora $x=x_0$ è un asintoto verticale di f

Obliquo

Se

$$\lim_{x o\pm\infty}f(x)=\pm\infty,\;\exists m
eq0,q:\lim_{x o\pm\infty}[f(x)-(mx+q)]=0$$

allora y=mx+q è un asintoto obliquo di f

$$m=\lim_{x o\pm\infty}rac{f(x)}{x},\;q=\lim_{x o\pm\infty}[f(x)-mx]$$