Predicting green consumer behavior of avoiding single-use plastic bags

Yeunun Choo

DATA 1030 Project Final Presentation

Brown University

December 8, 2021

GitHub Repository

Recap: Goal & Data

Predict Green Customer Behavior

avoid purchasing new single-use plastic bags

Public policy study Thomas et al.

- Observational data (N = 3764) with <u>CC-By-SA 4.0</u>
- Bag Usage → Target Variable
- 11 on Customer & Supermarket → Feature Variables

(Poortinga, 2016, "Bags for life")

Recap: Model

Classification Model

- Y = 1 for "Green"
- No new purchase of SUPB
- Re-using a SUPB from home
- One new SUPB, if reusable bags

Feature Variables

- Year, Country, Gender, etc.
- + Interaction Terms

Recap: EDA

GENDER

Recap: EDA

BUDGET

MID-CLASS

CITY

PREMIUM

Cross-Validation

Preprocessing

- Missing: np.nan
- OneHotEncoder
- StandardScaler
- Interaction Terms

I.I.D. & Target unbalanced

- Test: stratified split 10%
- CV: stratified K-Fold (K = 5)
- 10 random states

Balanced Accuracy

Accuracy score, modified

- Sensitivity = P(predict pos | actually pos), true positive rate
- Specificity = P(predict neg | actually neg), true negative rate

$$^{\circ} Acc_{balanced} = \frac{1}{2} (Sen + Spe) = \frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)$$

Baseline

- Always predict pos → 100% Sen, 0% Spe → 50% Balanced Accuracy
- Always predict neg → 0% Sen, 100% Spe → 50% Balanced Accuracy

https://scikit-learn.org/stable/modules/model evaluation.html#balanced-accuracy-score

Logistic Regression

Support Vector Machine

Linear Kernel

o C: np.logspace(-3, 2, 11)

Radial Basis Function Kernel

∘ C: np.logspace(-3, 2, 6)

o gamma: np.logspace(-2, 2, 17)

Random Forest

```
max_features:
• [0.3, 0.35, .., 0.65, None]
max depth:
• [3, 4, 5, 6, 8, None]
min samples split:
[2, 3, .., 7]
n estimators = 100
```


K Nearest Neighbors

Boost Methods

Boost Methods

XGBoost

```
learning_rate:
[0.25, 0.3, .., 0.55]
max_depth:
[2,3,..,6]
gamma:
[0.5, 0.6, ..,1.2]
n_estimators:
[10, 12, 16, 20, 24, 30, 35, 40]
```


Results

KNN Class Weight

Results

XGB best

All within

68% - 69.5%

Global Importance
Logistic Regression
L2 penalty

Global Importance

AdaBoost

Mean Decrease in Gini Impurity

Global Importance

AdaBoost

Permutation Score

Balanced Accuracy

Global Importance
Random Forest
Average SHAP score

SHAP Local Feature Importance

SHAP Local Feature Importance

Outlook

Feature Engineering

More Recent Data

Minimize the SUBP usage

References

- 1. Cho, Renee. "Plastic, Paper or Cotton: Which Shopping Bag is Best?" *Earth Institute, Columbia University*, 30 April 2020, URL: https://news.climate.columbia.edu/2020/04/30/plastic-paper-cotton-bags/. Accessed 9 October 2021.
- 2. Edgington, Tom. "Plastic or paper: Which bag is greener?" *BBC*, 28 January 2019. URL: https://www.bbc.com/news/business-47027792. Accessed 9
 October 2021.
- 3. Lavelle-Hill, R., Goulding, J., Smith, G., Clarke, D.D. and Bibby, P.A., 2020. "Psychological and demographic predictors of plastic bag consumption in transaction data". *Journal of Environmental Psychology*, 72, p.101473. doi: 10.1016/j.jenvp.2020.101473
- 4. Poortinga, Wouter, Sautkina, Elena, Thomas, Gregory O. and Wolstenholme, Emily 2016. "The English plastic bag charge: Changes in attitudes and behaviour". [Project Report]. Welsh School of Architecture, School of Psychology, Cardiff University. URL: https://orca.cardiff.ac.uk/94652/
- 5. Poortinga, Wouter and Whitmarsh, Lorraine (2018). "The English plastic bag charge and behavioural spillover". [Data Collection]. *Colchester, Essex: UK Data Archive*. 10.5255/UKDA-SN-852642
- 6. Thomas GO, Sautkina E, Poortinga W, Wolstenholme E and Whitmarsh L (2019) "The English Plastic Bag Charge Changed Behavior and Increased Support for Other Charges to Reduce Plastic Waste". Front. Psychol. 10:266. doi: 10.3389/fpsyg.2019.00266
- 7. Thompson, Claire, "Paper, Plastic or Reusable?" *Stanford Magazine*, September 2017. URL: https://stanfordmag.org/contents/paper-plastic-or-reusable.

 Accessed 9 October 2021.
- 8. UNEP (2018). SINGLE-USE PLASTICS: A Roadmap for Sustainability (Rev. ed., pp. vi; 6) ISBN: 978-92-807-3705-9. URL: https://www.unep.org/resources/report/single-use-plastics-roadmap-sustainability

Any questions?

Thank you very much!! More in the Repo!

Appendix

Logistic Regression

No Penalty

L1 Penalty

o C: np.logspace(-3, 2, 21)

L2 Penalty

o C: np.logspace(-3, 2, 21)

Elastic Net

o C: np.logspace(-3, 2, 21)

∘ l1_ratio: [0.1, 0.2, .., 0.9]

SHAP Matplotlib Color

Cannot change the colormap when matplotlib == True

https://github.com/slundberg/shap/issues/62

