Cancer bioinformatics: identification of diagnostic and prognostic biomarkers from gene expression data

Garrett Dancik
University of Colorado Denver
December 17, 2012

Leading causes of death in the U.S. (2010)

Lifetime probability of developing cancer

Males: 50%

Females: 33%

Leading cause of death in the U.S. (2020)

- Coronavirus?
 - https://public.flourish.studio/visualisation/1727839/
 - For about a week, there have been more deaths per day from coronavirus in the U.S. than the average number of daily deaths from any other condition

2010 Estimated US Cancer Cases*

^{*}Excludes basal and squamous cell skin cancers and in situ carcinomas except urinary bladder.

What is cancer?

Hallmarks of cancer

Hanahan and Weinberg. Cell 2011; 144(5):646–674.

Cancer is a genetic disease

Central dogma of molecular biology

Cancer is a genetic disease

Central dogma of molecular biology

Gene expression profiling by microarray

Central dogma of molecular biology

Biomarkers and personalized medicine

Gene expression profiles

Class comparison

- A,B: clinical variable or outcome
 - Tumor type
 - High risk vs. low risk (survival)
 - Responders vs. non-responders
- Classification of new samples:
 - Gene signature
 - Classification method:
 - KNN, SVM, PCA, NCC, etc.
- Diagnostic biomarker: a gene or gene signature that is predictive of a clinical variable (e.g., tumor grade)
- **Prognostic biomarker:** a gene or gene signature that is predictive of disease outcome (e.g., survival)

A framework to select clinically relevant cell lines by establishing their molecular similarity with patient tumors

Background and motivation

- Cell lines as model systems in cancer
 - Characterization of molecular mechanisms of disease
 - Characterization of activity of therapeutic agents
 - High throughput drug discovery programs
- But....cell lines do not always represent patient tumors
 - Adaptation in culture
 - Cross-contamination
- In vitro (cell line) drug sensitivity often does not correlate with drug efficacy in patients

Motivation and approach

- Objective: identify and select clinically relevant cell lines based on their gene expression profiles
 - Classify a panel of 36 bladder (BLA-36) cell lines
- Classification objectives
 - Tissue of origin (from 10 epithelial tumors)
 - Stage (NMI vs. MI)
 - Grade (high grade vs. low grade)
 - Disease specific survival (high vs. low risk)

Spearman rank correlation classification method (SRCCM)

Tissue of origin classification

- Clinical relevance of tissue of origin
 - Chemotherapy and radiation therapy efficacy depends on tumor type (Kemp CJ, et al. *Cancer Res* 2001;61(1):327-332)
 - Metastatic site preference is tissue specific
- Do cell lines resemble their derived tissues
 - Previous studies: Only 57% of NCI-60 cell lines resemble
 presumed tissue of origin (Sandberg R, Ernberg I. PNAS 2005;102(6):2052-2057).
 - Survey of 500 leukemia-lymphoma cell lines finds 15%
 mislabeled (Drexler HG et al. *Leukemia*. 2003;17(2):416-426)

Tissue of origin classification

Grade classification

Low gradeWell differentiated

High grade poorly differentiated

Dataset	SRCCM accuracy
Lindgren (LOOCV)	0.875
SC	0.813

VS.

VS.

Grade classification

Low gradeWell differentiated

vs. High gradevs. poorly differentiated

Dataset	SRCCM accuracy
Lindgren (LOOCV)	0.875
SC	0.813
BLA-36	.571

Original tumor grades no longer correlate with survival; correlation is restored through cell line selection via SRCCM

Selection of the most clinically relevant cell lines by survival risk, grade, and tissue type

Summary

- SRCCM algorithm for classification and cell line model selection
- BLA-36
 - Grade: accuracy < 60%, suggesting that many cell lines no longer resemble original tumors with respect to grade
 - Original tumor grade no longer correlates with survival; correlation is restored through SRCCM selection
- Software: Correlation classification method (CCM) http://cran.r-project.org/web/packages/CCM/index.html

Acknowledgements

- Theodorescu Lab
 - Dan Theodorescu, MD, PhD (PI)
 - Yuanbin Ru, PhD
 - Chuck Owens (lab technician)
- Funding: NIH CA075115.

Thank You!

Cancer grade and staging

- Tumor grade
 - Normal vs. abnormal
 - Low vs. high grade
- Tumor stage
 - How far has the cancer spread
- Bladder cancer stages
 - Non-muscle invasive (NMI):Ta, T1
 - 5 year survival rate of ~ 90%
 - Progression rate of ~ 20%
 - Muscle invasive (MI): T2-T4
 - 5 year survival rate ~ 50%

Bladder cancer grade classification

Presentation Tips

- You are presenting your paper:
 - background, significance, objective, methods, results
- Almost every slide is a picture (or table)
 - —From the internet (with reference)
 - From another publication (with reference)
 - —From original research

Presentation Tips

- Presentation is written out and practiced ahead of time
- You do NOT read off of the page
- Additional slides are included at the end
 - For results or background not presented do to time
 - To answer possible questions