DIC L12: Inverter (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

2.5. DC transfer (9)

- Input threshold, V_{inv} (or swithcing threshold)
 - When $V_{in} = V_{out} = V_{inv}$
- Beta ratio
 - Skewed
 - HI-skewed, $\frac{\beta_p}{\beta_n} > 1$
 - Stronger PMOS
 - LO-skewed, $\frac{\beta_p}{\beta_n}$ < 1
 - Weaker PMOS

2.5. DC transfer (10)

Quantitative analysis

$$I_{dn} = \frac{\beta_n}{2} (V_{inv} - V_{tn})^2$$

$$I_{dp} = -\frac{\beta_p}{2} (V_{inv} - V_{DD} - V_{tp})^2$$

After manipulation, we have

$$V_{inv} = \frac{V_{DD} + V_{tp} + V_{tn} \sqrt{\frac{1}{r}}}{1 + \sqrt{\frac{1}{r}}}$$

- For a special case with r=1, $V_{inv}=\frac{V_{DD}+V_{tn}+V_{tp}}{2}$

Eq. (2.55)

2.5. DC transfer (11)

Quantitative analysis with velocity saturation

$$\begin{split} I_{dn} &= W_n C_{ox} v_{sat-n} (V_{inv} - V_{tn}) \\ I_{dp} &= -W_p C_{ox} v_{sat-p} \big(V_{inv} - V_{DD} - V_{tp} \big) \end{split}$$

After manipulation, we have

$$V_{inv} = \frac{V_{DD} + V_{tp} + V_{tn} \frac{1}{r}}{1 + \frac{1}{r}}$$

- (Here,
$$r = \frac{W_p v_{sat-p}}{W_n v_{sat-n}}$$
)

- For a special case with
$$r=1$$
, $V_{inv}=\frac{V_{DD}+V_{tn}+V_{tp}}{2}$

Eq. (2.57)

2.5. DC transfer (12)

- Eq. (2.55) and Eq. (2.57)
 - Let's draw $\frac{V_{inv}}{V_{DD}}$ as a function of r. Assume that $V_t = V_{tn} = -V_{tp}$.

2.5. DC transfer (13)

Noise margin

Fig. 2.29

2.5. DC transfer (12)

2.5. DC transfer (13)

Pass transistor

