

(a) As we can see from the graphs f(-u) = -2 and g(3) = 4

(b) The graphs of f and g intersect et (2,2) and (-2,1) $\Rightarrow x$ values for which f(x) = g(x) are x = 2 and x = -2

(c) $f(x) = -1 \Rightarrow we draw y = -1 \text{ (horizontal) line and }$ see its points of intersection with graph of f.

 (-3_9-1) and (4_9-1) \Rightarrow $\chi = -3_9 4$ are solutions of f(x) = -1

(d) f is decreasing on (0,4).

 \bigcirc Domain of f = [-4,4] g Range of f = [-2,3]

 (\underline{f}) Domain of $g = [-u, 3]_g$ Range of $g = [\frac{1}{2}, u]$

8 Yes, it is graph of a function. Domain = [-2,2]Range = [-1,2]

Not a function as we can see For input x=1 (or any other integer) there are multiple outputs.

35)
$$h(x) = \frac{1}{\sqrt{x^2 - 5x}}$$
 $\Rightarrow x^2 - 5x \ge 0$ and $\sqrt{x^2 - 5x} \ne 0$
 $\Rightarrow x^2 - 5x \ge 0$ and $x^2 - 5x \ne 0$

$$\Rightarrow$$
 $\chi^2 - 5\chi \ge 0$ and $\sqrt{\chi^2 - 5\chi} \neq 0$

$$\Rightarrow$$
 $x^2 - 5x \ge 0$ and $x^2 - 5x \ne 0$

$$\Rightarrow \chi^2 - 5\chi > 0$$

$$\Rightarrow$$
 $\chi \in (-\alpha, 0) \cup (5, \infty)$

$$\Rightarrow$$
 Domain = $(-0,0) \cup (5,0)$

$$(12) \quad f(x) = \begin{cases} 3 - \frac{1}{2}x & \text{if } x < 2 \\ 2x - 5 & \text{if } x \ge 2 \end{cases}$$

$$f(-3)$$
: $-3 < 2$ so we apply first definition.

$$\Rightarrow f(-3) = 3 - \frac{1}{2}(-3) = 3 + \frac{3}{2} = \frac{9}{2}$$

$$f(\delta)$$
: 0 < 2 so we apply first definition.

$$\Rightarrow f(\delta) = 3 - \frac{1}{2}(\delta) = 3$$

$$f(a)$$
: $a>a$ so we apply second definition.
 $\Rightarrow f(a) = a(a) - 5 = 4 - 5 = -1$

Section 1.2 (b) $g(x) = \frac{1}{1 - Tanx}$ Tan $\frac{3\pi}{2} - \frac{\pi}{2} = \frac{\pi}{2}$ Domain of $\frac{\pi}{2} = \frac{\pi}{2}$ Tan $\frac{\pi}{2} = \frac{\pi}{2}$ Set minus Tan $\frac{\pi}{2} = \frac{\pi}{2}$ integers

 \Rightarrow Domain of $g = \mathbb{R} \setminus \{n\pi + \frac{\pi}{2}, n\pi + \frac{\pi}{2}, n\pi \in \mathbb{Z}\}$