Conspiracy Detection by Real Time Email Analysis

Md. Ikramul Hoque
ID: 1304115

October, 2018

Conspiracy Detection by Real Time Email Analysis

This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Computer Science and Engineering.

Md. Ikramul Hoque ID: 1304115

Supervised by

Abu Hasnat Mohammad Ashfak Habib

Associate Professor,

Department of Computer Science and Engineering (CSE)

Chittagong University of Engineering and Technology (CUET)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHITTAGONG UNIVERSITY OF ENGINEERING AND TECHNOLOGY (CUET)
CHITTAGONG – 4349, BANGLADESH.

The thesis titled "Conspiracy Detection by Real Time Email Analysis" submitted by ID 1304115, Session 2016-2017 has been accepted as satisfactory in fulfillment of the requirement for the degree of Bachelor of Science in Computer Science and Engineering(CSE) as B.Sc. Engineering to be awarded by Chittagong University of Engineering and Technology (CUET).

Board of Examiners

1	Chairman
Abu Hasnat Mohammad Ashfak Habib	
Associate Professor	
Department of Computer Science and Engineering (CSE)	
Chittagong University of Engineering and Technology (CUET)	
2	Member
	(Ex-officio)
Dr. Mohammad Shamsul Arefin	
Professor and Head	
Department of Computer Science and Engineering (CSE)	
Chittagong University of Engineering and Technology (CUET)	
3	Member
	(External)
Dr. Asaduzzaman	
Professor	
Department of Computer Science and Engineering (CSE)	
Chittagong University of Engineering and Technology (CUET)	

Statement of Originality

It is hereby declared that the contents of this project is orig	ginal and any part of it has not been				
submitted elsewhere for the award if any degree or diploma.					
Signature of the Supervisor	Signature of the Candidate				
Date:	Date:				

Acknowledgement

Prima facie, I am grateful to the Almighty for giving me the strength for successful completion of this project. Then I would like to express my sincere gratitude to my honorable project supervisor Abu Hasnat Mohammad Ashfak Habib, Assistant Professor, Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, for his valuable advices, constructive suggestions and sincere guidance with all the necessary facilities for assimilation, research and preparation for the project. I place on record, my sincere gratitude to Dr. Asaduzzaman, Professor, Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, for his kind encouragement and cooperation. I would like to thank my family for their constant love and support. Finally, I would like to take this opportunity to express my gratitude to one and all, who directly or indirectly, have lent their hand in this venture.

Abstract

Supervised vector-based methods to sentiment can design rich lexical meanings. This method for machine learning is largely used in present days. Sentiment analysis for text documents has been a growing field of text mining among researchers for the past few decades. Nevertheless, Email data sentiment analysis, a general means of social networking and communication, has been studied strongly.

Email has become the most popular communication tools for official purpose. Almost every private company uses their own mail server for exchanging their official mail. So, it has a great significance in terms of business and communication.

In the other hand conspiracy is a social concept that has also a great importance and impact over the working place. It is a pure psychological concept. It influences in the progress of any working place.

In this thesis, we have proposed a method to turn this psychological concept into a machine that can automatically detect the conspiracy among the employee by analyzing their email data in real time. Here we have proposed the design using vector based classification method for analyzing the text data. We have used TFIDF method to vectorization and prioritize the frequency of conspiracy related word and concept. And also we used Logistic Regression, a prediction based classifier to classify the text sentiment.

Table of Contents

Chap	ter 1	
Intro	duction	1
1.1 In	troductiontroduction	1
1.2 Pr	evious Works	2
1.3 Pr	esent State and Contribution	3
1.4 M	otivation	3
1.5 Pr	ospects	.4
1.6 Oı	rganization of the Project	-4
Chap	ter 2	
Litera	ature Review	6
2.1 In	troduction	- 6
2.2 Co	onspiracy	- 6
2.3 Co	onspiracy Theory	- 7
2.4 Ps	sychology of Conspiracy Theories	9
2.5 Oı	rganizational Conspiracy Theories	. 9
2.5.1	Organizational Identification	10
2.5.2	Organizational Commitment	-11
2.5.3	Job Satisfaction	-11
2.5.4	Implications	-12
2.6	Machine Learning	12
2.6.1	Supervised Learning	-13
2.6.2	Unsupervised Learning	-13
2.7 Te	ext Classifier-The Basic Building Blocks	-13
2.8 Se	entiment Analysis	- 15
2.9 D	ataset	-16
2.10	Features	-17
2.11	Data Processing	-18

2.12

2.12.1	Advantages	19
2.12.2	Uses	20
2.12.3	Matplotlib	20
2.12.4	Numpy	20
2.12.5	Scikit-Learn	21
2.12.5	.1 History	21
2.12.6	Pandas	22
2.12.6	.1 Usages of Pandas	22
2.12.7	PyMySQL	22
2.12.8	wordCloud	23
2.12.9	BeautifulSoup	24
2.12.1	0 CountVectorzer and LagisticRegression	24
2.12.1	1 TF-IDF	24
2.13	Private Mail Server	25
Chapt	ter 3	
Consp	oiracy Detection Methodology	26
3.1 Sy	stem Architecture	26
3.1.1	Data Acquisition and Refining	28
3.1.1.1	Data Refining	30
3.1.2	Data Processing Module	32
3.1.2.1	Tokenization	32
3.1.2.2	2 Feature Vector	32
3.1.3	Training Module	34
3.1.4	Testing in Real-time	36
3.2 Ar	nalytical Representation of the Architecture	37
3.2.1	Labelling the Email Data	37
3.2.2	Clean the Data	37
3.2.3	Process the Data	38
3.2.4	Train the Model	39
3.2.5	Collecting the Mail Data in Real Time	40

3.2.6	Generating Output	-40
3.3 C	omplexity Analysis	42
Chap	ter 4	
Imple	ementation of Conspiracy Detection Framework	43
4.1 Ex	xperimental Setup	43
4.2 Eı	nail Exchanging System	43
4.3 D	etection System Implementation	48
4.4 C	onclusion	49
Chap	ter 5	
Expe	rimental Results	50
5.1 D	ata Collection	- 50
5.1.1	Green Data Collection	50
5.1.2	Red Data Collection	51
5.1.2.	1 Financial Conspiracy	52
5.1.2.	2 Organizational Conspiracy	52
5.1.2.	3 Reputational Conspiracy	52
5.2 Ev	volution of the System	-54
5.2.1	Evaluates from the Mail Dataset	54
5.2.2	Evaluates from the Real Time Mail	-55
Chap	ter 6	
Conc	lusion and Future Recommendation	57
6.1 C	onclusion	57
6.2 Li	mitations and Suggestions for Future	57
Dofor	oneog	50

List of Figures

Figure 3.1: Conspiracy Predictor Model Architecture	27
Figure 3.2: Green Mail Content	28
Figure 3.3: Red Mail Content	29
Figure 3.4: A Peek into the Dataset	29
Figure 4.1: Login Interface of CUET Mail	44
Figure 4.2: Inbox of the System	45
Figure 4.3: Send Box Interface	45
Figure 4.4: Compose Mail Interface	46
Figure 4.5: 'Email Data' Table Interface	47
Figure 4.6: Interfaced 'Result' Database Table	47
Figure 4.7: User Verification Table Interface	48
Figure 4.8: Email Sending System	48
Figure 4.9: Detection Illustration	49
Figure 5.1: Green Data CSV File	51
Figure 5.2: Red Dataset	53
Figure 5.3: Percentage of Error in Green Data	54
Figure 5.4: Percentage of Error in Red Data	55
List of Tables	
Table 3.1: Contracted Word and Long Form	31
Table 5.1: Real time Accuracy of Mail Data	