PSI-3432 Processamento de Áudio e Vídeo Vítor H. Nascimento

Experiência 1

Nesta experiência vamos testar o funcionamento de uma arranjo de antenas em algumas situações simples.

Considere um arranjo com M antenas dispostas em um arranjo linear, espaçadas de d m entre si. Considere que a frequência de operação das antenas seja de 500MHz.

- 1. Desenhe a curva do ganho $B(\theta, \theta_d)$ para o arranjo, supondo que M = 12, $\theta_d = 30^\circ$, $d = \lambda/4$, $d = \lambda/2$ e $d = \lambda$, em que λ é o comprimento de onda (use $c = 3 \times 10^8$ m/s). O que ocorre quando $d > \lambda/2$?
 - 2. Repita o exercício anterior supondo M=5.
- 3. Considere que no caso de M=12, o sinal recebido na antena 0 seja $x_0(t)=\mathrm{e}^{j\Omega t}\big|_{\theta=30^{\circ}}+\mathrm{e}^{j\Omega t}\big|_{\theta=0^{\circ}}$, e determine, usando o resultado do item 1 para o caso $d=\lambda/2$, o sinal na saída do arranjo.
- 4. Supondo que o sinal vindo de 30° seja o sinal desejado, e o sinal vindo de 0° seja uma interferência, qual é a relação sinal/interferência na entrada do arranjo (isto é, em qualquer uma das antenas) e na saída do arranjo? Qual foi o ganho em relação sinal/interferência? Qual seria a relação sinal/interferência se a interferência estivesse a $\theta = 10^{\circ}$?
- 5. O arquivo arranjo.mat contém os sinais recebidos em 12 antenas, com $\Omega_0 = 2\pi \times 500 \text{Mrad/s}$ e $d = \lambda/2$. A frequência central dos sinais foi reduzida para uma frequência intermediária $\Omega_i = 2\pi \times 150 \text{krad/s}$ usando um misturador, após o que os sinais foram amostrados a uma taxa de $f_a = 1 \text{MHz}$. Use o esquema visto em aula (multiplicação por cosseno e seno e filtros) para gerar o sinal analítico em banda-base, e use o arranjo atrasa-e-soma para obter o sinal vindo da direção $\theta = 30^{\circ}$. Desenhe o gráfico do sinal de saída resultante (parte real e parte imaginária) chegando de $\theta = 30^{\circ}$.