Foundations of Cryptography - Exercise 4

Alexander Maryanovsky

December 19, 2011

1. (5 points) Let $\{X_n\}_{n\in\mathbb{N}}$ be a Boolean distribution ensemble (i.e. Supp $(X_n)=\{0,1\}$ for every n), let $\varepsilon:\mathbb{N}\mapsto [0,1]$ and let A be a PPT such that

$$\Pr_{x \leftarrow X_n} \left[A \left(1^n \right) = x \right] \ge \frac{1}{2} + \varepsilon \left(n \right)$$

for every $n \in \mathbb{N}$. Prove that there exists a PPT B such that

$$\Pr_{x \leftarrow X_n} [B(1^n, x) = 1] - \Pr_{x \leftarrow \{0,1\}} [B(1^n, x) = 1] \ge \varepsilon(n)$$

for every $n \in \mathbb{N}$.

2. (5 points) Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a one-way function. Prove that for any PPT it holds that

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} \left[A(f(x), i) = x[i] \right] \le 1 - \frac{1}{2n^2}$$

for large enough $n \in \mathbb{N}$, where x[i] is the *i*th bit of x.

Solution

1. Let B be the following algorithm:

```
Input: 1^n, x p \leftarrow A(1^n) if (p=x) return 1 else return 0
```

Clearly B is a PPT and $\Pr[B(1^n, x) = 1] = \Pr[A(1^n) = x]$ for all $n \in \mathbb{N}$ and $x \in \{0, 1\}$. It follows that

$$\Pr_{x \leftarrow X_n} \left[B\left(1^n, x \right) = 1 \right] - \Pr_{x \leftarrow \{0,1\}} \left[B\left(1^n, x \right) = 1 \right] =$$

$$\Pr_{x \leftarrow X_n} \left[A\left(1^n \right) = x \right] - \Pr_{x \leftarrow \{0,1\}} \left[A\left(1^n \right) = x \right] \geq$$

$$\frac{1}{2} + \varepsilon \left(n \right) - \frac{1}{2} = \varepsilon \left(n \right)$$

(the probability that a random coin flip is equal to anything is always $\frac{1}{2}$). B is therefore a PPT as required.

2. Let us show an even stronger bound on the probability of a PPT to guess a random bit correctly. Specifically, we will show that for any PPT A it holds that

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} \left[A\left(f\left(x\right), i \right) = x\left[i\right] \right] \leq 1 - \frac{c}{n}$$

for any c < 1.

Let us, therefore, assume, by contradiction, that for some PPT A

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [A(f(x), i) \neq x[i]] < \frac{c}{n}$$

and let B be the following algorithm:

Input:
$$y \in \{0,1\}^n$$
 for each i from 1 to n $x[i] \leftarrow A(y,i)$ return x

Clearly B is a PPT.

Now, let $W_n(x)$ be the number of bits that B gets wrong on f(x), i.e.

$$W_n(x) = \sum_{i=1}^n \mathbb{I}[B(f(x))[i] \neq x[i]]$$

where \mathbb{I} is the indicator (characteristic) function. Clearly B(f(x))[i] = A(f(x), i), and therefore

$$W_n(x) = \sum_{i=1}^n \mathbb{I}[A(f(x), i) \neq x[i]]$$

We shall now attempt to calculate $E[W_n(x)]$ and then use that to get a lower bound on $\Pr_{x \leftarrow \{0,1\}^n}[W_n(x) < 1]$ via Markov's inequality.

$$E[W_n(x)] = E\left[\sum_{i=1}^n \mathbb{I}[A(f(x), i) \neq x[i]]\right]$$

$$= \sum_{i=1}^n E[\mathbb{I}[A(f(x), i) \neq x[i]]]$$

$$= \sum_{i=1}^n \Pr_{x \leftarrow \{0,1\}^n} [A(f(x), i) \neq x[i]]$$

$$= n \cdot \Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [A(f(x), i) \neq x[i]]$$

$$< n \cdot \frac{c}{n}$$

$$= c$$

and finally, by Markov's inequality $\Pr_{x \leftarrow \{0,1\}^n} [W_n(x) < 1] \ge 1 - \operatorname{E}[W_n(x)] > 1 - c > 0$. In other words, the probability that B gets all of the bits of x correctly is non-negligible, in contradiction to f being a one-way function. We conclude, then, that such an algorithm A does not exist.