

SC 19 - Machine Vision

Cameras and Interfaces

Julien VILLEMEJANE

Basler Sensor / Mouser

At the end of this training, the learners will be able to:

Characterize a camera

Resolution, bit depth

Exposure Time, Black level

Digital Image, data transfer

Camera Camera Camera Comera Co

SC19 – Cameras and Interfaces

Camera in a machine vision chain

Camera

Device that transforms a **light** flux into a measurable electrical signal

Dong, Jing-Tao & lu, rs & Shi, Yan-Qiong & Xia, Rui-Xue & Li, Qi & Xu, Yan. (2011). Optical design of color light-emitting diode ring light for machine vision inspection. Optical Engineering - OPT ENG. 50. 10.1117/1.3567053.

Anatomy of an IDS sensor

IDS UI-1240SE-C-HQ

Resolution Sensibility **Noise Performance** Size / Form factor Lens compatibility Shutter Type

Interface

e2v sensor EV76C560ACT

	Capteur	
	Type de capteur	CMOS Couleur
	Mode d'obturateur	Global / Rolling / Global Start
	Caractéristique du capteur	Linéaire
	Méthode de lecture du capteur	Progressive scan
	Classe de pixels	1.3 MP
	Résolution	1,31 Mpx
	Résolution (h x v)	1280 x 1024 Pixel
	Rapport hauteur/largeur	5:4
	CAN	10 bit
	Profondeur des couleurs (caméra)	8 bit
	Classe de capteur optique	1/1,8""
	Surface optique	6,784 mm x 5,427 mm)
	Diagonale du capteur optique	8,69 mm (1/1,84")
	Taille de pixel	5,3 µm
	Fabricant	e2v
	Désignation du capteur	EV76C560ACT
	Amplification (complet/RVB)	Capteur EV76C560 Typical electro-optical performance (

Capteur EV76C560 Typical electro-optical performance @ 25°C and 65°C, nominal pixel clock

Parameter		Unit	Typical value	
Sensor	Resolution	pixels	1280 (H)	× 1024 (V)
characteristics	Image size	mm inches	6.9 (H) × 5.5 (V) - 8.7 (diagonal) ≈ 1/1.8	
	Pixel size (square)	μm	5.3 × 5.3	
	Aspect ratio		5/4	
	Max frame rate	fps	60 @ full format	
	Pixel rate	Mpixels / s	90 -> 120	
	Bit depth	bits	10	
Pixel	ixel		@ 25°C	@ 65°C
performance	Dynamic range	dB	>62	>57
	Qsat	ke-	1	2
	SNR Max	dB	41	39
	MTF at Nyquist, λ=550 nm	%	50	
	Dark signal (1)	LSB ₁₀ /s	24	420
	DSNU ⁽¹⁾	LSB ₁₀ /s	6	116
	PRNU (2) (RMS)		<1	
	Responsivity (3)	LSB ₁₀ /(Lux.s)	6600	
El-st-le-l	Power supplies	٧	3.3 & 1.8	
Electrical interface	Power consumption: Functional (4) Standby	mW μW	< 200 mW 180	

e2v sensor EV76C560ACT

Main charateristics of the sensor

Capteur EV76C560 Typical electro-optical performance @ 25°C and 65°C, nominal pixel clock

Parameter		Unit	Typical value	
Sensor	Resolution	pixels	1280 (H) × 1024 (V)	
characteristics	Image size	mm inches	6.9 (H) × 5.5 (V) - 8.7 (diagona ≈ 1/1.8	
	Pixel size (square)	μm	5.3 × 5.3	
	Aspect ratio		5/4	
	Max frame rate	fps	60 @ full format	
	Pixel rate	Mpixels / s	90 -> 120	
	Bit depth	bits	10	
Pixel	·		@ 25°C	@ 65°C
performance	Dynamic range	dB	>62	>57
	Qsat	ke-	12	
	SNR Max	dB	41	39
	MTF at Nyquist, λ=550 nm	%	50	
	Dark signal (1)	LSB ₁₀ /s	24	420
	DSNU ⁽¹⁾	LSB ₁₀ /s	6	116
	PRNU (2) (RMS)	%	<1	
	Responsivity (3)	LSB ₁₀ /(Lux.s)	6600	
	Power supplies	V	3.3 & 1.8	
Electrical interface	Power consumption: Functional (4) Standby	mW μW	< 200 mW 180	

- Min gain, 10 bits.
- Measured @ Vsat/2, min gain.
- 3200K, window with AR coating, IR cutoff filter BG38 2 mm.
- @ 60 fps, full format, with 10 pF on each output.

Camera / Array of small sensors

Camera

Device that transforms a **light** flux into a measurable electrical signal

Columns

https://imaging.teledyne-e2v.com/products/2d-cmos-image-sensors/onyxmax/

Camera / Bayer filter for color sensors

e2v sensor EV76C560ACT

Camera / Bayer filter for color sensors

e2v sensor EV76C560ACT

Columns

SC19 – Cameras and Interfaces

Camera / Inside a pixel

Camera

Device that transforms a **light** flux into a measurable electrical signal

Camera / From analog to digital signal

Digital Camera

Device that transforms an array of **light flux sensors** into **digital data** called pixels

How an Analog to Digital Converter works?

Quantization

Each bit can have one of two values: 0 or 1.

The **number of different values** that can be represented by **n bits** is **2**ⁿ.

Sampling and quantization of an image

Each bit can have one of two values: 0 or 1.

The **number of different values** that can be represented by **n bits** is **2**ⁿ.

1-bit Quantization

Sampling theorem

Nyquist-Shannon sampling theorem

The sampling frequency must be equal to or greater than twice the frequency associated with the finest detail in the image (edges).

With a grid spacing of d, a periodic component with a period 2.d than be higher can reconstructed.

SC19 – Cameras and Interfaces

Sampling and quantization of an image

Sampling

Barcode to decode

Area of sampling

https://barcodecoder.com/fr/specification-ean-13-102.html

Not so bad

Sampling and quantization of an image

Sampling

8x Sampling

4x Sampling

16x Sampling

Camera / From analog to digital signal

Digital Camera

Device that transforms an array of **light flux sensors** into **digital data** called pixels

e2v sensor EV76C560ACT

Inside a real sensor

Nb of pixels = $h \times v$

Nb of pixels = 1280 x 1024

Each pixel is converted into **n bits**.

Each image has a total amount of binary data:

Nb of data (bits) = Nb of pixels x n

Nb of data (bits) = 1280 x 1024 x 10 = 13 107 200 bits

SC19 – Cameras and Interfaces

Quantity of data per image

Capteur EV76C560 Typical electro-optical performance @ 25°C and 65°C, nominal pixel clock

Parameter		Unit	Typical value	
Sensor	Resolution	pixels	1280 (H) × 1024 (V)	
characteristics	Image size	mm inches	6.9 (H) × 5.5 (V) - 8.7 (diagonal) ≈ 1/1.8	
	Pixel size (square)	μm	5.3 × 5.3	
	Aspect ratio		5/4	
	Max frame rate	fps	60 @ full format	
	Pixel rate	Mpixels / s	90 -> 120	
	Bit depth	bits	10	
Pixel	Pixel		@ 25°C	@ 65°C
performance	Dynamic range	dB	>62	>57
	Qsat	ke-	12	
	SNR Max	dB	41	39
	MTF at Nyquist, λ=550 nm	%	50	
	Dark signal (1)	LSB ₁₀ /s	24	420
	DSNU ⁽¹⁾	LSB ₁₀ /s	6	116
	PRNU (2) (RMS)	%	<1	
	Responsivity (3)	LSB ₁₀ /(Lux.s)	6600	
El-add-al	Power supplies	V	3.3 & 1.8	
Electrical interface	Power consumption: Functional (4) Standby	mW μW	< 200 mW 180	

- Min gain, 10 bits.
- Measured @ Vsat/2, min gain
- 3. 3200K, window with AR coating, IR cutoff filter BG38 2 mm.
- @ 60 fps, full format, with 10 pF on each output.

Frame Rate

Each image has a total amount of binary data:

Nb of data (bits) = Nb of pixels x n

The amount of data per second:

Nb of data per s (bits/s) = Nb of data (bits) x FPS

Example for a 4k camera in 12 bits @ 30 fps:

Nb of data (bits) = $3840 \times 2160 \times 12 = 99532800$ bits

Nb of data per s (bits/s) = 99 532 800 \times 30 = 2,9 billions of bits / s = 2,78 Gbit/s

Frame rate

Number of individual frames captured per second by a device

Expressed in frames per second (fps)

Higher framerates result in smoother motion in video footage

Interface for data transfer

The data from a camera is transferred via **an interface**. There are several types of standard interfaces.

	USB 3.0	10 GigE	Cameralink	Coaxpress
Bandwith	5 to 20 Gbit/s	1.2 Gbits/s	Base: 2 Gbits/s Full: 5.4 Gbits/s (2 cables)	12.5 Gbits/s per cable
Cable length	3 m	100 m	7 to 15 m	20 to 40 m
Power	4.5 to 25 W	30 W *	Optional	13 W / cable
Frame Grabber	Not Required	Not Required	Required	Required
GeniCam	Required	Required	Optional	Required

Dark Current

Dark Current

Response of the sensor to complete darkness

Black level : an offset to compensate electronic defaults

Dark Current

Response of the sensor to complete darkness

Black Level

Change the **overall brightness** of an image.

Adjusting the camera's black level will result in **an offset to the pixel's gray values** output by the camera.

Due to *various physical and electronic factors*, the sensor's output is never zero, even in the complete absence of light

Exposure Time

Exposure Time

Duration for which the camera's sensor is exposed to light, when capturing an image.

This parameter determines the amount of light collected.

i.e. the amount of collected charges coming from the sensor stored in a capacitor

Exposure Time

Exposure Time

Duration for which the camera's sensor is exposed to light, when capturing an image.

This parameter determines the amount of light collected.

i.e. the amount of collected charges coming from the sensor stored in a capacitor

Exposure Time

Exposure Time

Duration for which the camera's sensor is exposed to light, when capturing an image.

This parameter determines the amount of light collected.

i.e. the amount of collected charges coming from the sensor stored in a capacitor

Spatial Resolution

Small object to detect

P = d

Security factor S

$$P = \frac{d}{S}$$

Spatial resolution / P

Distance observed by a single pixel in a given direction

This security factor is due to the Nyquist-Shanon theorem.

And
$$S >= 2$$

To verify is the spatial resolution is good enough, calibration target can be used. (Foucault)

Resolution of the sensor

Spatial resolution / P

Distance observed by a single pixel in a given direction

$$P = \frac{d}{S}$$

Sensor resolution (pixels)

$$R = \frac{H}{P} = \frac{S \times H}{d}$$

$$H (mm) \rightarrow R (px)$$

 $d (mm) \rightarrow S (px)$

 $P (mm) \rightarrow 1 (px)$

Motion, sharp image and maximum exposure time

V: motion speed (mm/s)

Spatial resolution / P

Distance observed by a single **pixel** in a given direction

$$P = \frac{d}{S}$$

Displacement

$$P \times \Delta P \text{ (mm)}$$

 Δt (s)

Motion blur perception threshold to obtain a sharp image is between

1/2 and 1/5 of a pixel

Time

$$\Delta t = \frac{P \times \Delta P}{V}$$