ALGORITMICA GRAFURILOR **Săptămâna 3**

C. Croitoru

croitoru@info.uaic.ro

FΙΙ

October 13, 2013

OUTLINE

Vocabular al teoriei grafurilor (ag 13-14 allinone.pdf pag. 53 → 67)

② Probleme de drum în (di)grafuri (ag 13-14 allinone.pdf pag. 68 → 72)

Problemele pentru seminarul 3

Vocabular

- Variații în definiția unui graf
- @ Grade
- Subgrafuri
- Operații cu grafuri
- 6 Clase de grafuri
- Orumuri şi circuite
- Conexiune
- Matrici asociate
- Structuri de date

Probleme de drum

- Parcurgeri sistematice
 - BFS

DFS

Componente conexe, tari conexe !!! (pentru examen; algoritmică ușoară !!!)

Acesta este un seminar special, cu probleme foarte ușoare, având ca singur scop fixarea unor noțiuni.

1

Fie G_1 , G_2 , G_3 trei grafuri. Se știe că $G_1 \not\cong G_2$ și că $G_2 \not\cong G_3$. Rezultă că $G_1 \not\cong G_3$? (justificare)

2

Sunt cele două grafuri desenate mai jos izomorfe ? (justificare)

3

Demonstrați că dacă un graf conex G are exact un circuit atunci |G| = |E(G)|.

4

Determinați numărul de stabilitate al grafului desenat mai jos.

(justificare)

5

Fie G un graf conex cu |G| > 1 si fără vîrfuri de grad 1. Demonstrați că $|E(G)| \ge n$.

6

Fie G = (V, E) un graf conex cu $|G| \ge 2$. Demonstrați că există un vârf $v_0 \in V$ astfel încât $G - v_0$ este conex.

7

Este posibil ca numărul arborilor parțiali ai unui graf să fie 1? Dar 2 ? (justificare)

8

Să se determine $L(L(\overline{G}))$, unde graful G este:

9

Dacă G este graful desenat mai jos, este L(G) –graful reprezentativ al muchiilor sale– hamiltonian? (justificare)

10

Precizați numărul cromatic (argumentare) al complementarului grafului de mai sus.

11

Precizați numărul de conexiune (argumentare) al grafului de la problema 9.

12

Este graful următor autocomplementar ? (argumentare)

13

Are graful de mai sus doi arbori parțiali fără muchii comune? (argumentare)

14

Stabiliți numărul arborilor parțiali ai complementarului grafului de la problema 12. (argumentare)

15

Stabiliți cardinalul maxim al unei multimi stabile din graful $K_2 \times G$, unde G este tot graful de la problema 12.

16

Dacă G este graful desenat mai jos, este L(G) –graful reprezentativ al muchiilor sale– hamiltonian? (justificare)

17

Pentru graful G desenat mai sus să se determine numărul cromatic $\chi(G)$ (argumentare).

18

Este graful de la problema 16 izomorf cu complementarul său ? (justificare)

19

Determinați numărul de conexiune al grafului de la problema 16. (justificare)

20

Determinați diametrul grafului de la problema 16. (justificare)

21

Determinați $\chi'(G)$, indicele cromatic al grafului de la problema 16. (justificare)

22

Să se arate că dacă G este graful reprezentativ al muchiilor unui graf H (G = L(H)), atunci G este un graf $K_{1,3}$ -free.

23

Desenați graful $P_4 \times K_2$ și determinați-i numărul cromatic (argumentare).

24

Este adevărată inegalitatea $\alpha(G) \leq k(G)$ pentru graful G desenat mai jos? (justificare; $\alpha(G)$ este numărul de stabilitate al lui G, iar k(G) este numărul său de conexiune)

25

Fie G un graf conex cu proprietatea că are un vârf din care dacă se execută cele două tipuri de parcurgere (dfs și bfs) arborii dfs și bfs construiți sunt aceeși. Poate avea G circuite? (justificare)

26

Demonstrați că dacă $\forall u, v \in V(G), u \neq v$ avem $N_G(u) \cup N_G(v) = V(G)$, atunci graful G este complet.

