CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Section(s)
Mathematics	209/1	All
Examination	Date	Pages
Final	December 2013	3
Instructors		Course Examiner
E. Duma, E. Lee, M. Padamadan		R. Raphael
R. Raphael, R. Rodriguez,	F. Romanelli, C. Santana	
Special Instructions		
Ruled booklets to be used.		
 Only approved calc 	ulators allowed.	

MARKS

(a)
$$\lim_{x \to -2} \frac{2x^2 + 9x + 10}{x + 2}$$

(b)
$$\lim_{x \to 0} \frac{\sqrt{49 + x} - 7}{x}$$

1. Find the following limits:
(a)
$$\lim_{x \to -2} \frac{2x^2 + 9x + 10}{x + 2}$$
 (b) $\lim_{x \to 0} \frac{\sqrt{49 + x} - 7}{x}$ (c) $\lim_{x \to \infty} \frac{2x^3 + 3x^2 - 9}{-\frac{1}{3}x^3 + 5x + 7}$

2. Find the derivative for each of the following (do not simplify):

(a)
$$y = 8x^3 + 7x^6 + 12$$

(b)
$$y = \frac{2}{3}x^{-5} - 5\sqrt{x} + 5$$

(c)
$$y = (2x^2 + 3)(x^3 + x - 2)^3$$

(d)
$$y = \frac{-2x^3 + x^2}{x^2 + x + 1}$$

(e)
$$y = e^{\ln(7x)}$$

(f)
$$y = (\ln(7x^3 - 4x))(e^{3x^2 + 15x})$$

(g)
$$y = \ln(x^3 + 6)^2 \cdot e^{3x^2}$$

(h) Find
$$y'$$
 and evaluate at $(1,1)$: $2y + x \ln(y) = 2x^3$

[10] 3. A company manufactures automatic transmissions for automobiles. The total weekly cost (in dollars) of producing x transmissions is given by

$$C(x) = 50000 + 600x - 0.75x^2,$$

- (a) Find the marginal cost function.
- (b) Find the marginal cost at a production level of 200 transmissions per week and interpret the results.
- (c) Find the exact cost at producing the 201st transmission.
- [18] 4. For the function $f(x) = x^4 + 4x^3$ find:

[Please list the following neatly]

- (a) the intervals where f(x) is increasing;
- (b) the intervals where f(x) is decreasing;
- (c) the intervals where f(x) is concave up;
- (d) the intervals where f(x) is concave down;
- (e) the local maximum;
- (f) the local minimum;
- (g) the inflection point(s);
- (h) $\lim_{x \to +\infty} f(x)$;
- (i) $\lim_{x \to -\infty} f(x)$;
- (j) Using the above results, sketch the graph of f(x).
- [6] 5. Find the absolute extrema of $f(x) = x^4 4x^3 + 5$ on the interval [0, 4].
- [6] 6. Find the equation of the line tangent to the $y = -3e^{x^2} + 5$ where x = 0.

[6] 7. Evaluate the following; answers must be accurate to 3 decimals:

(a)
$$\int_0^3 4x^2 dx$$

(b)
$$\int_{1}^{2} (2x + 3e^{x} - \frac{4}{x}) dx$$

(c)
$$\int_0^1 xe^{-x^2} dx$$

[10] 8. Compute the antiderivatives:

(a)
$$\int (4t^4 - t^3 + 5t) dt$$

(b)
$$\int \left(-\frac{3}{x} - x^{-12}\right) dx$$

(c)
$$\int xe^{-x^2} dx$$

(d)
$$\int (x^3 + x) e^{(x^4 + 2x^2)} dx$$

(e)
$$\int (x^2-2)(x+3) dx$$

- [10] 9. Find the area bounded by $y = x^3$ and y = 4x.
- [10] 10. The Gini index of a country is $\frac{1}{6}$. Its Lorenz curve has the form $f(x) = ax + \frac{1}{2}x^2$. Find a.

Mock Exam - Math 2019

December 2013

(i) (a)
$$\lim_{x\to -2} \frac{2x^2 + 9x + 10}{x + 2} = \underbrace{2(-2)^2 + 9(-2) + 10}_{-2 + 2} = \underbrace{2(-2)^2 + 9(-2)}_{-2 +$$

$$2x^{2}+9x+10$$

$$X = -b + \sqrt{b^{2}-4ac} = -9 + \sqrt{9^{2}-4(2)(10)}$$

$$2a$$

$$2(2)$$

$$-9 + 1 = -2$$

$$4 = -5$$

$$(x+5=0)$$
 $(x+5)=0$

$$\lim_{\lambda \to -2} \frac{(x+2)(2x+5)}{(x+2)} = 2x+5 = 2(-2)+5 = 0$$

$$\lim_{x\to 0} \frac{\sqrt{49+x}-3}{x} \cdot \sqrt{49+x} = \frac{(49+x-49)}{x(\sqrt{49+x}+3)} = \frac{x}{x(\sqrt{49+x}+3)}$$

(c)
$$\lim_{x \to \infty} \frac{2x^3 + 3x^2 - 9}{-\frac{1}{3}x^3 + 5x + 7} = \frac{2x^3 + \frac{3x^2}{x^3} + \frac{9}{x^3}}{-\frac{1}{3}x^3 + \frac{5x}{x^3} + \frac{7}{x^3}}$$

$$= \frac{2 + \frac{3}{x} - \frac{9}{x^{3}}}{-\frac{1}{3} + \frac{5}{x^{2}} + \frac{7}{x^{3}}} = \frac{2 + \frac{3}{20} - \frac{9}{20}}{-\frac{1}{3} + \frac{5}{20} + \frac{7}{20}}$$

$$= \frac{2 + 0 - 0}{-\frac{1}{10} + 0 + 0} = \frac{-6}{6}$$

(a)
$$y = 3x^{2} + 3x^{6} + 12$$

 $y' = 24x^{2} + 42x^{5}$
(b) $y = \frac{2}{3}x^{5} - 5\sqrt{x} + 5 = \frac{2}{3}x^{-5} - 5x^{1/2} + 5$
 $y = -\frac{10}{3}x^{-6} - \frac{5}{2}x^{-1/2}$
(c) $y = (2x^{2} + 3)(x^{3} + x - 2)^{3}$
 $y = (2x^{2} + 3)(x^{3} + x - 2)^{3}$
 $y' = 3(x^{3} + x - 2)^{3}$
 $y' = 4x(x^{5} + x - 2)^{2} + 3(x^{3} + x - 2)^{2}(3x^{2} + 1)(2x^{2} + 3)$
(d) $y = -\frac{2x^{3} + x^{2}}{x^{2} + x + 1}$
 $y' = -6x^{2} + 2x$
 $y' = 2x^{4} + x + 1$
 $y' = (-6x^{2} + 2x)(x^{2} + x + 1) - (2x + 1)(-2x^{3} + x^{2})$
 $y' = (-6x^{2} + 2x)(x^{2} + x + 1) - (2x + 1)(-2x^{3} + x^{2})$
(e) $y = e^{1x^{3}}$
 $y' = e^{1x^{3}}$
 $y' = e^{1x^{3}}$
 $y' = (-6x^{2} + 2x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 2x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 2x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 2x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 2x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 2x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 2x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 15x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 15x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 15x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 15x)(x^{2} + x + 1)$
 $y' = (-6x^{2} + 15x)(x^{2} + 15x)(x^{2$

THE STREET OF STREET STREET, S

The state of the state of the

(e3x2+15x)

(g)
$$g = (e^{3x^2} \ln (x^3+6)^2)$$

 $u = e^{3x^2}$ $v = \ln(x^3+6)^2$
 $u' = 6xe^{3x^2}$ $v' = \frac{1}{(x^3+6)^2} \cdot 2(x^3+6)(3x^3)$
 $v' = \frac{6x^2}{(x^3+6)}$

$$y' = 6xe^{3x^2}\ln(x^3+6)^2 + \frac{6x^2}{(x^3+6)}e^{3x^2}$$

(h) (1,1)
$$2y + x \ln y = 2x^{5}$$

 $u = x \quad v = \ln y$
 $u' = 1 \quad v' = \frac{1}{2} \cdot y'$
 $u' = 1 \quad v' = \frac{1}{2} \cdot y'$
 $u' = 1 \quad v' = \frac{1}{2} \cdot y'$
 $u' = 1 \quad v' = \frac{1}{2} \cdot y'$
 $u' = 1 \quad v' = \frac{1}{2} \cdot y'$
 $u' = 1 \quad v' = \frac{1}{2} \cdot y' = \frac{1}{2} \cdot y'$
 $u' = 1 \quad v' = \frac{1}{2} \cdot y' = \frac{1}{2} \cdot y'$
 $u' = 1 \quad v' = \frac{1}{2} \cdot y' = \frac{1}{2} \cdot y'$
 $u' = 1 \quad v' = 1 \quad v' = \frac{1}{2} \cdot y' = \frac{1}{2} \cdot y'$
 $u' = 1 \quad v' = 1 \quad v' = 1 \quad y' = 1$

At a poduction level of 200 transmissions per week, cost increases by 300/week.

(c)
$$C(201) = 50,000 + 600(201) - 0,75(201)^2$$

 $C(201) = 140,299.25$

4)
$$f(x) = x^4 + 4x^3$$

 $f'(x) = 4x^3 + 12x^2$
 $4x^2(x+3)$

$$4x^{2}(x+3)=0$$

 $4x^{2}=0$ $x+3=0$
 $x=0$ $x=3$

$$f(0) = 0^4 + 4(0)^3 = 0$$
 (0,0) critical part $f(-3) = (-3)^4 + 4(-3)^3 = -27$ (-3,-27) local min

$$\int_{-\infty}^{\infty} (x) = 12x^{2} + 24x$$

$$12x^{2} + 24x = 0$$

$$12x(x + 2) = 0$$

$$|x = 0|$$

$$|x = 0|$$

$$|x = 0|$$

$$f(0) = 0^4 + 4(0)^3 = 0$$

 $f(-2) = (-2)^4 + 4(-2) = -16$

(h)
$$\lim_{x \to +\infty} f(x) = (+\infty)^{4} + 4(+\infty)^{3} = +\infty$$

 $\lim_{x \to -\infty} f(x) = (-\infty)^{4} + 4(-\infty)^{3} = +\infty$

for x-int: y=0 y-in: x=0 x444x3=0 04+4(0)3=0 $X^{4} + 4x^{3} = 0$ X3(x+4)=0 (0,0) X+4=0 X=0 (0,0) . (-4,0) -3 -16 -27

$$f'(x) = 4x^{3} - 12x^{2}$$

$$4x^{2}(x-3)=0$$

$$x=0$$

$$x=3$$

$$f(0) = 0^{4} - 4(0)^{3} + 5 = 5 \rightarrow 10col max$$

$$f(3) = 3^{4} - 4(3)^{3} + 5 = -22 - 10col min$$

$$f(4) = 4^{4} - 4(4)^{3} + 5 = -363 - 10col min$$

$$y = -3e^{x^{2}} + 5$$

$$y = -3e^{x} + 5 = -3 + 5 = 2$$

$$y = -3e^{x} + 5 = -3 + 5 = 2$$

$$y = 0x + 10$$

$$2 = 0x + 10$$

$$3 = 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$(10) = 3 - 4(0)^{3}$$

$$= 360$$

$$(10) = 3 - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 360$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3}$$

$$= 4(3)^{3} - 4(0)^{3$$

= 23.39 - 1 = 22.39

(6)

(b)
$$\int \left(-\frac{3}{4} - x^{-12}\right) dx = -310x - \frac{x^{-11}}{-11} + C$$

(c)
$$\int xe^{-x^2} dx$$
 $\int xe^{-x^2}$
 $u = -x^2$
 $du = -2x dx$ $du = -2x dx$
 $du = x dx$ $du = -2x dx$
 $du = x dx$ $du = -2x dx$

$$\int (x^{3} + x) e^{(x^{4} + 2x^{2})} dx$$

$$u = x^{4} + 2x^{2}$$

$$du = (4x^{3} + 4x) dx$$

$$du = 4(x^{3} + x) dx$$

$$du = (x^{3} + x) dx$$

$$\int e^{u} \cdot \frac{du}{4} = \frac{1}{4} \int e^{u} = \frac{1}{4} e^{x^{4} + 2x^{2}} + C$$

$$(e) \int (x^{2} - 2)(x + 3) = x^{3} + 3x^{2} - 2x - 6$$

$$= \frac{x^{4}}{4} + \frac{3x^{3}}{3} - \frac{2x^{2}}{2} - 6x + C$$

$$= \frac{x^{4}}{4} + x^{3} - x^{2} - 6x + C$$

2 8 3 27 -1 -1 Stcp2: 27 8 x3 = 4x X3-4x=0

$$x(x^{2}-4)=0$$

 $x=0$ $(x-2)(x+2)$ $x=2$
 $x=-2$

$$\int_{-2}^{2} x^{3} - 4x = \frac{x^{4}}{4} - \frac{4x^{2}}{2} = \frac{x^{4}}{4} - 2x^{2}$$

$$= \frac{Q^{4}}{4} - 2(Q)^{2} - \left[\frac{-2^{4}}{4} - 2(-2)^{2} \right]$$

$$= -\left[4 - 8 \right] = 4 - A_{1}$$

$$\int_{0}^{2} 4x - x^{3} = 4\frac{x^{2}}{2} - \frac{x^{4}}{4}$$

$$= 4\frac{(2)^{2}}{4} - \left[4\frac{(2)^{2}}{4} - \frac{9^{4}}{4}\right]$$

$$= 8 - 4 = 4 - A_{2}$$

Total Area: A,+ A2= 4+4= (8)

$$G = 1 - 2 \int 0x + \frac{1}{2}x^{2} + \frac{$$

a= 1/2 (a= 1/2)