battle 2

August 20, 2020

1 Targeting Prime Location for Chinese Restaurant with K-Means Clustering

1.1 Introduction

This project will use various sources of data to group specific Toronto neighbourhoods into categories identifying their potential for establishing a successful chinese restaurant. The categories will be defined by aspects of the neighbourhood such as the number of chinese restaurants, household income, and amount of chinese residents.

1.2 Business Problem

A client wishes to open an authentic Chinese restaurant in the city of Toronto, which will evidently target a customer base majoritively made up of Chinese residents. The choice of which neighbourhood to establish the restaurant should consider competion, income, and number of Chinese residents.

1.2.1 Importing Libraries

```
[92]: import pandas as pd import numpy as np
```

1.2.2 Importing Social Demographic Data and Converting Into Dataframes

The social demographic of Toronto neighbourhoods is obtained from City of Toronto open data source: 'https://www.toronto.ca/city-government/data-research-maps/open-data/'

```
[93]: # importing after-tax household income
income = pd.read_csv('toronto_income.csv')
df_income = pd.DataFrame(income)
df_income.drop(['Neighbourhood Id'], axis=1, inplace=True)

# importing the total population of Toronto neighbourhoods
pop = pd.read_csv('toronto_pop.csv')
df_pop = pd.DataFrame(pop)
df_pop.drop(['Neighbourhood Id'], axis=1, inplace=True)

# importing the population of chinese residents in Toronto neighbourhoods
```

4, 2, 2

1.2.3 Merging the Dataframes

[94]:	Neighbourhood	Household Income	Total Pop \
0	West Humber-Clairville	59703.0	33312.0
1	Mount Olive-Silverstone-Jamestown	46986.0	32954.0
2	Thistletown-Beaumond Heights	57522.0	10360.0
3	Rexdale-Kipling	51194.0	10529.0
4	Elms-Old Rexdale	49425.0	9456.0
		•••	•••
135	West Hill	46803.0	27392.0
136	Woburn	47908.0	53485.0
137	Eglinton East	42790.0	22776.0
138	Scarborough Village	40181.0	16724.0
139	Guildwood	67678.0	9917.0

```
Chinese Pop
           470.0
0
1
           285.0
2
           110.0
3
           165.0
4
           105.0
135
           685.0
136
          3715.0
137
           895.0
138
           390.0
```

```
139 275.0
```

[140 rows x 4 columns]

1.2.4 Importing Geographical Coordinates

The geographical coordinates can be imported from: https://cocl.us/Geospatial_data

```
[95]: df_geo = pd.read_csv("https://cocl.us/Geospatial_data")
df_geo
```

```
[95]:
          Postal Code
                       Latitude Longitude
      0
                 M1B 43.806686 -79.194353
      1
                 M1C 43.784535 -79.160497
      2
                 M1E 43.763573 -79.188711
      3
                 M1G 43.770992 -79.216917
      4
                 M1H 43.773136 -79.239476
      . .
                 M9N 43.706876 -79.518188
      98
      99
                 M9P 43.696319 -79.532242
      100
                 M9R 43.688905 -79.554724
      101
                 M9V 43.739416 -79.588437
      102
                 M9W 43.706748 -79.594054
```

[103 rows x 3 columns]

1.2.5 Scraping Wikipedia for Postal Codes

The list of postal codes for each neighbourhood can be scraped from wikipedia: https://en.wikipedia.org/w/index.php?title=List_of_postal_codes_of_Canada:_M&oldid=945633050

```
[96]:
                                                                   Total Pop \
           Neighbourhood
                           Latitude Longitude Household Income
        Victoria Village
                          43.725882 -79.315572
                                                          43743.0
                                                                     17510.0
      1
                    Rouge
                          43.806686 -79.194353
                                                          72784.0
                                                                     46496.0
      2
                 Malvern 43.806686 -79.194353
                                                          53425.0
                                                                     43794.0
      3
          Highland Creek 43.784535 -79.160497
                                                          87321.0
                                                                     12494.0
         Flemingdon Park 43.725900 -79.340923
                                                          43511.0
                                                                     21933.0
```

```
Chinese Pop
0 730.0
1 2100.0
2 3275.0
3 955.0
4 1015.0
```

1.2.6 Calculate Percentage of Chinese Residents for Each Neighbourhood

```
[97]: df_pc['Pop Percent of Chinese'] = df_pc['Chinese Pop'] / df_pc['Total Pop'] *__
      →100
      df_pc.drop(['Total Pop', 'Chinese Pop'], axis=1, inplace=True)
      df pc.head()
[97]:
           Neighbourhood Latitude Longitude Household Income \
      O Victoria Village 43.725882 -79.315572
                                                          43743.0
      1
                   Rouge 43.806686 -79.194353
                                                         72784.0
                 Malvern 43.806686 -79.194353
                                                         53425.0
      3
          Highland Creek 43.784535 -79.160497
                                                         87321.0
         Flemingdon Park 43.725900 -79.340923
                                                         43511.0
        Pop Percent of Chinese
      0
                      4.169046
      1
                      4.516518
      2
                      7.478193
      3
                      7.643669
      4
                      4.627730
```

1.2.7 Folium Map

```
Requirement already satisfied: geopy in ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (2.0.0)
Requirement already satisfied: geographiclib<2,>=1.49 in ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from geopy) (1.50)
The geographical coordinates of Toronto are 43.6534817, -79.3839347
```

```
[100]: !python -m pip install folium
       import folium
       map_Toronto = folium.Map(location=[latitude, longitude], zoom_start=11)
       # add markers to map
       for lat, lng, neighbourhood in zip(df_pc['Latitude'], df_pc['Longitude'], u

→df_pc['Neighbourhood']):
         label = '{}'.format(neighbourhood)
         label = folium.Popup(label)
         folium.CircleMarker(
             [lat,lng],
             radius=8,
             color='blue',
             popup=label,
             fill_color='#3186cc',
             fill_opacity=0.7,
             fill=True
         ).add_to(map_Toronto)
       map_Toronto
      Requirement already satisfied: folium in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (0.11.0)
      Requirement already satisfied: requests in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from folium) (2.24.0)
      Requirement already satisfied: jinja2>=2.9 in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from folium) (2.11.2)
      Requirement already satisfied: numpy in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from folium) (1.18.5)
      Requirement already satisfied: branca>=0.3.0 in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from folium) (0.4.1)
      Requirement already satisfied: chardet<4,>=3.0.2 in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from requests->folium)
      Requirement already satisfied: certifi>=2017.4.17 in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from requests->folium)
      Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from requests->folium)
      Requirement already satisfied: idna<3,>=2.5 in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from requests->folium)
      Requirement already satisfied: MarkupSafe>=0.23 in
      ./anaconda2/envs/p36workshop/lib/python3.6/site-packages (from
      jinja2>=2.9->folium) (1.1.1)
```

```
[100]: <folium.folium.Map at 0x7f3e19d96630>
```

1.2.8 Obtain Venue Categories with FourSquare

Foursquare API is used to obtain venue categories for each neighbourhood.

```
[101]: # define Foursquare API credentials and version

CLIENT_ID = 'ET3KHGBHTXDBZVWUM3UT5UX05SGGIUW4LP2GADYNGF3D1L4W' # your

→Foursquare ID

CLIENT_SECRET = 'CLY1WZIGAIWLN42TZ1ZDFZYCJMCOGDV1JJNZCTOTMSYEXBNH' # your

→Foursquare Secret

VERSION = '20200801' # Foursquare API version
```

1.2.9 Obtain Top 100 Venues within 1500 Metre Radius of Toronto

```
[102]: import requests
      LIMIT = 100
      radius = 1500
      url = 'https://api.foursquare.com/v2/venues/explore?
      →&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
             CLIENT_ID,
             CLIENT_SECRET,
             VERSION,
             lat,
             lng,
             radius,
             LIMIT
         )
      def getNearbyVenues(names, latitudes, longitudes, radius=1500):
        venues list = []
       for name, lat, lng in zip(names, latitudes, longitudes):
         print(name)
         #create the API request url
         url = 'https://api.foursquare.com/v2/venues/explore?
       CLIENT_ID,
             CLIENT SECRET,
             VERSION,
             lat,
             lng,
             radius,
             LIMIT
         )
          # make the GET request
```

```
results = requests.get(url).json()['response']['groups'][0]['items']
   # return only relevant information for each nearby venue
  venues_list.append([(
      name,
      lat,
      lng,
      v['venue']['name'],
       v['venue']['location']['lat'],
      v['venue']['location']['lng'],
       v['venue']['categories'][0]['name']) for v in results
      1)
nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in_
→venue list])
nearby_venues.columns = ['Neighbourhood',
                          'Neighbourhood Latitude',
                          'Neighbourhood Longitude',
                          'Venue',
                          'Venue Latitude',
                          'Venue Longitude',
                          'Venue Category']
return(nearby_venues)
```

Victoria Village
Rouge
Malvern
Highland Creek
Flemingdon Park
Humewood-Cedarvale
Markland Wood
Guildwood
Morningside
West Hill
The Beaches
Woburn
Hillcrest Village
Bathurst Manor
Thorncliffe Park

Scarborough Village Henry Farm Little Portugal Ionview Kennedy Park Bayview Village Oakridge Humber Summit Cliffcrest Mount Dennis Weston Dorset Park Forest Hill North Willowdale West Roncesvalles Agincourt North Milliken New Toronto Alderwood Long Branch (1818, 7)

[104]: toronto_venues.groupby('Neighbourhood').count()

[104]:	Neighbourhood Latitude	Neighbourhood Longitude	Venue \
Neighbourhood			
Agincourt North	77	77	77
Alderwood	45	45	45
Bathurst Manor	40	40	40
Bayview Village	15	15	15
Cliffcrest	40	40	40
Dorset Park	56	56	56
Flemingdon Park	85	85	85
Forest Hill North	100	100	100
Guildwood	32	32	32
Henry Farm	63	63	63
Highland Creek	10	10	10
Hillcrest Village	53	53	53
Humber Summit	18	18	18
Humewood-Cedarvale	91	91	91
Ionview	38	38	38
Kennedy Park	38	38	38
Little Portugal	100	100	100
Long Branch	45	45	45
Malvern	35	35	35
Markland Wood	39	39	39
Milliken	77	77	77

32	32	32
39	39	39
39	39	39
36	36	36
100	100	100
35	35	35
33	33	33
100	100	100
93	93	93
54	54	54
32	32	32
52	52	52
40	40	40
36	36	36
	39 39 36 100 35 33 100 93 54 32 52 40	39 39 39 39 36 36 100 100 35 35 33 33 100 100 93 93 54 54 32 32 52 52 40 40

	Venue Latitude	Venue Longitude	Venue Category
Neighbourhood			
Agincourt North	77	77	77
Alderwood	45	45	45
Bathurst Manor	40	40	40
Bayview Village	15	15	15
Cliffcrest	40	40	40
Dorset Park	56	56	56
Flemingdon Park	85	85	85
Forest Hill North	100	100	100
Guildwood	32	32	32
Henry Farm	63	63	63
Highland Creek	10	10	10
Hillcrest Village	53	53	53
Humber Summit	18	18	18
Humewood-Cedarvale	91	91	91
Ionview	38	38	38
Kennedy Park	38	38	38
Little Portugal	100	100	100
Long Branch	45	45	45
Malvern	35	35	35
Markland Wood	39	39	39
Milliken	77	77	77
Morningside	32	32	32
Mount Dennis	39	39	39
New Toronto	39	39	39
Oakridge	36	36	36
Roncesvalles	100	100	100
Rouge	35	35	35
Scarborough Village	33	33	33
The Beaches	100	100	100
Thorncliffe Park	93	93	93

Victoria Village	54	54	54
West Hill	32	32	32
Weston	52	52	52
Willowdale West	40	40	40
Woburn	36	36	36

1.2.10 Apply One Hot Encoding for the Analysis of Venue Categories for Each Neighbourhood

[105]:	Neighbourhood	Afghan R	estaurant	American Restaura	nt Amphit	heater
0	Victoria Village		0		0	0
1	Victoria Village		0		0	0
2	Victoria Village		0		0	0
3	Victoria Village		0		0	0
4	Victoria Village		0		0	0
•••	•••		•••	•••	•••	
1813	Long Branch		0		0	0
1814	Long Branch		0		0	0
1815	Long Branch		0		0	0
1816	Long Branch		0		0	0
1817	Long Branch		0		0	0
	Antique Shop Art	Gallery	Art Museum	Arts & Crafts St	tore \	
0	0	0	C		0	

	morque bnop	mi o darrory	mi o maboam	midb w craidb boold	`
0	0	0	0	0	
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
•••	•••	•••	•••	•••	
1813	0	0	0	0	
1814	0	0	0	0	
1815	0	0	0	0	
1816	0	0	0	0	
1817	0	0	0	0	

	Asian Restaurar	nt Athletics	& Spor	ts .	Viet	name	se R	estaur	ant	\
0		0	_	^					0	
1		0		0.					0	
2		0		0.					0	
3		0		0.					0	
4		0		0.					0	
•••	•••							•••		
1813		0		0.					0	
1814		0		0.					0	
1815		0		0.	••				0	
1816		0		0.	••				0	
1817		0		0.	••				0	
	Volleyball Cour	rt Warehouse	Store	Whi	skv Bai	~ Wi	ทศร	Joint	\	
0	volloybull ooul	0	0	*****)		65	0	`	
1		0	0		(0		
2		0	0		(0		
3		0	0		(0		
4		0	0		(0		
-	•••		ŭ	•••	Ì			ŭ		
1813		0	0		()		0		
1814		0	0		(0		
1815		0	0		(0		
1816		0	0		(0		
1817		0	0		(0		
		Xinjiang Rest		Yo	ga Stud		Zoo	Zoo E	xhib:	
0	0		0			0	0			0
1	0		0			0	0			0
2	0		0			0	0			0
3	0		0			0	0			0
4	0		0			0	0			0
•••	•••		••				•••			
1813	0		0			0	0			0
1814	0		0			0	0			0
1815	0		0			0	0			0
1816	0		0			0	0			0
1817	0		0			0	0			0

[1818 rows x 216 columns]

1.2.11 Calculate the Mean Frequency of Chinese Restaurants for Each Neighbourhood and Produce Bar Graph

```
[106]: toronto_grouped = toronto_onehot.groupby('Neighbourhood').mean().reset_index()
       toronto_grouped = toronto_grouped[['Neighbourhood', 'Chinese Restaurant']]
       toronto_grouped.set_index('Neighbourhood', inplace=True)
       toronto_grouped
```

[106]:		Chinese Restaurant	
	Neighbourhood		
	Agincourt North	0.181818	
	Alderwood	0.000000	
	Bathurst Manor	0.000000	
	Bayview Village	0.066667	
	Cliffcrest	0.025000	
	Dorset Park	0.035714	
	Flemingdon Park	0.011765	
	Forest Hill North	0.000000	
	Guildwood	0.000000	
	Henry Farm	0.031746	
	Highland Creek	0.000000	
	Hillcrest Village	0.113208	
	Humber Summit	0.000000	
	Humewood-Cedarvale	0.000000	
	Ionview	0.078947	
	Kennedy Park	0.078947	
	Little Portugal	0.000000	
	Long Branch	0.000000	
	Malvern	0.028571	
	Markland Wood	0.000000	
	Milliken	0.181818	
	Morningside	0.000000	
	Mount Dennis	0.000000	
	New Toronto	0.000000	
	Oakridge	0.000000	
	Roncesvalles	0.000000	
	Rouge	0.028571	
	Scarborough Village	0.030303	
	The Beaches	0.000000	
	Thorncliffe Park	0.000000	
	Victoria Village	0.018519	
	West Hill	0.000000	
	Weston	0.000000	
	Willowdale West	0.025000	
	Woburn	0.027778	

1.2.12 Produce Bar Graph for the Percentage of Chinese Residents In Total Population for Each Neighbourhood

```
df_chi_pop.plot(kind='bar', figsize=(13,5))
plt.title('Distribution of Chinese in Each Neighbourhood')
plt.xlabel('Neighbourhood')
plt.ylabel('Percentage of Chinese Residents in Neighbourhood')
plt.show()
```


1.2.13 Produce Bar Graph for Median Income per Household for Each Neighbourhood

1.2.14 Merge Into a Final Database

```
[110]: # merge df with toronto_grouped
df_final = pd.merge(df_pc, toronto_grouped, on='Neighbourhood')
df_final.head()
```

[110]:		Neighbourhood	Latitude	Longitude	Household Income	\
	0	Victoria Village	43.725882	-79.315572	43743.0	
	1	Rouge	43.806686	-79.194353	72784.0	
	2	Malvern	43.806686	-79.194353	53425.0	
	3	Highland Creek	43.784535	-79.160497	87321.0	
	4	Flemingdon Park	43.725900	-79.340923	43511.0	

	Pop Percent	of Chinese	Chinese	Restaurant
0		4.169046		0.018519
1		4.516518		0.028571
2		7.478193		0.028571
3		7.643669		0.000000
4		4.627730		0.011765

1.2.15 Clustering of Neighbourhoods

Normalise Final Dataset

```
[111]: from sklearn.preprocessing import StandardScaler
    X = df_final.values[:,3:]
    X = np.nan_to_num(X)
    Cluster = StandardScaler().fit_transform(X)
```

```
Cluster
```

```
[111]: array([[-0.76318401, -0.38981414, -0.19312015],
              [1.89181483, -0.36812483, 0.02175792],
              [0.12196797, -0.18325575, 0.02175792],
              [3.22082273, -0.1729267, -0.58894816],
              [-0.78439402, -0.36118291, -0.33748095],
              [-0.25953784, -0.52186104, -0.58894816],
              [1.11591265, -0.49627376, -0.58894816],
              [1.4250119, -0.47695494, -0.58894816],
              [-0.18484571, -0.33535299, -0.58894816],
              [-0.48343137, -0.49395114, -0.58894816],
              [1.72478605, -0.47205102, -0.58894816],
              [-0.38240958, -0.21648344, 0.00479386],
              [ 0.51115327, 2.38177002, 1.83083063],
              [-0.09278332, -0.39246963, -0.58894816],
              [-1.22925557, -0.5214099, -0.58894816],
              [-1.08883072, -0.50448473, 0.05877041],
              [-0.40517377, 0.57271454, 0.08961415],
              [0.03913925, -0.07434681, -0.58894816],
              [-0.83376213, -0.37549125, 1.09852916],
              [-0.94301194, -0.27274741, 1.09852916],
              [0.54278543, 1.05954145, 0.83603269],
              [-1.82953526, -0.33219729, -0.58894816],
              [0.10798034, -0.58217764, -0.58894816],
              [0.75817668, -0.35038273, -0.05458034],
              [-0.75888716, -0.50769266, -0.58894816],
              [-0.98140936, -0.53382478, -0.58894816],
              [-0.40782502, 0.03524628, 0.17443444],
              [0.17252458, -0.52087855, -0.58894816],
              [0.19519734, 0.69706291, -0.05458034],
              [-0.47611758, -0.41660689, -0.58894816],
              [0.34759853, 2.87909816, 3.29736323],
              [0.30837831, 3.74630299, 3.29736323],
              [-1.02684631, -0.46490476, -0.58894816],
              [0.85124471, -0.5076418, -0.58894816],
              [-0.4032539, -0.52624686, -0.58894816]])
[112]: df_normalised= pd.DataFrame(Cluster)
      df_normalised.rename(columns={0:'Household_Income', 1:'% Chinese', 2:'Num_of_
       ⇔Chinese Restaurants'}, inplace=True)
      df normalised.head()
         Household Income % Chinese Num of Chinese Restaurants
[112]:
      0
                -0.763184 -0.389814
                                                       -0.193120
      1
                 1.891815
                           -0.368125
                                                        0.021758
      2
                 0.121968 -0.183256
                                                        0.021758
```

```
3 3.220823 -0.172927 -0.588948
4 -0.784394 -0.361183 -0.337481
```

1.2.16 Calculate Optimal Number of Clusters for K-Means Clustering Process Via Elbow Method

```
[114]: from sklearn.cluster import KMeans
       error_cost=[]
       for i in range(3, 11):
         KM = KMeans(n_clusters=i, max_iter=100)
         try:
           KM.fit(df_normalised)
         except ValueError:
           print('Error on line', i)
         # calculate squared error for the clustered points
         error_cost.append(KM.inertia_ / 100)
       # plot the K values against the squared error cost
       plt.figure(figsize=(13,7))
       plt.plot(range(3,11), error_cost, color='r', linewidth=3)
       plt.xlabel('Number of k clusters')
       plt.ylabel('Squared Error (Cost)')
       plt.grid(color='white', linestyle='-', linewidth=2)
       plt.show()
```



```
[115]: from yellowbrick.cluster import KElbowVisualizer

# Instantiate the clustering model and visualizer
model = KMeans()
visualizer = KElbowVisualizer(model, k=(3,11))

visualizer.fit(X)
visualizer
```

/home/green/anaconda2/envs/p36workshop/lib/python3.6/sitepackages/sklearn/base.py:213: FutureWarning: From version 0.24, get_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None. FutureWarning)

[115]: KElbowVisualizer(ax=<matplotlib.axes._subplots.AxesSubplot object at 0x7f3e199b7160>,

k=None, model=None)


```
[116]: # set number of clusters
kclusters = 5
# run k-means clustering
```

```
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(df_normalised)
# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

[116]: array([1, 0, 3, 0, 1, 3, 0, 0, 3, 3], dtype=int32)

1.2.17 Application of K-Means Clustering of Neighbourhoods

```
[117]: df_normalised.drop(['Household Income', '% Chinese'], axis=1, inplace=True)
    df_clustered = pd.merge(df_pc, df_normalised, left_index=True, right_index=True)
    df_clustered.insert(0, 'Cluster Label', kmeans.labels_)
```

1.2.18 Create Map of Clusters

```
[118]: # Matplotlib and associated plotting modules
       import matplotlib.cm as cm
       import matplotlib.colors as colors
       # create map
       map_clusters = folium.Map(location=[latitude,longitude], zoom_start=11)
       # set color schemes for the clusters
       x = np.arange(kclusters)
       ys = [i + x + (i*x)**2 \text{ for } i \text{ in } range(kclusters)]
       colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
       rainbow = [colors.rgb2hex(i) for i in colors_array]
       # add markers to the map
       markers_colors = []
       for lat, lon, poi, cluster in zip(df_clustered['Latitude'], __

→df_clustered['Longitude'], df_clustered['Neighbourhood'],

→df clustered['Cluster Label']):
           label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True)
           folium.CircleMarker(
               [lat, lon],
               radius=5,
               popup=label,
               color=rainbow[cluster-1],
               fill=True.
               fill_color=rainbow[cluster-1],
               fill_opacity=0.7).add_to(map_clusters)
       map_clusters
```

[118]: <folium.folium.Map at 0x7f3e19834940>

1.2.19 Database of Each Cluster

Each cluster can be summarised by taking the mean of each feature

[119]:	df_clustered.groupby('Cluster Label').mean()					
[119]:		Latitude	Longitude	Household Income	Pop Percent of Chinese	\
	Cluster Label					
	0	43.712847	-79.326213	70739.833333	3.754950	
	1	43.702079	-79.378180	40520.500000	3.173783	
	2	43.811422	-79.310869	56346.333333	58.513507	
	3	43.718483	-79.357954	51104.083333	4.254163	
	4	43.760245	-79.328692	48715.000000	14.996728	
		Num of Chi	nese Restau	rants		
	Cluster Label					
	0		-0.4	87164		
	1		-0.4	27071		
	2		2.8	08519		
	3		-0.4	44047		
	4		0.5	40427		