2021 年普通高等学校招生全国统一考试 上海 数学试卷

(考试时间 120 分钟, 满分 150 分)

2021 . 6

_	填空题(本大题共有12题	第1.6颗每颗4分	第7~12颗無颗5分	满分54分
	梅工版 (华八版六日 14 版	20 1 0 KO W KO 4 73	1 20 Late NO 19 NO 1 11	10477 17

- 1、日知 $z_1 = 1 + i$, $z_2 = 2 + 3i$, 求 $z_1 + z_2 =$ _____.
- 2、巳知 A = {x|2x≤1}, B = {-1,0,1}, 求 A ∩ B = _____
- 4、如图正方形 ABCD ,求 AB·AC =

- 7、已知 $\begin{cases} x \le 3 \\ 2x y 2 \ge 0 \end{cases}$, z = x y , 则 z 的 z = x y .
- 9、在圆柱中 底面圈半径为1,高为2,上顶面圆的直径为 AB, C 是底面圆弧上的一个动点,绕着底面圆周转,则 ABC 的面积的范围
- 10、有四个不同的馆,甲乙2个人每人选2个去参观,求恰有一个馆相同的概率为_____.
- 11、已知抛物线: $y^2=2px(p>0)$,若第一象限的 A,B 在抛物线上,焦点为 F , $|AF|=2,|BF|=4,\;|AB|=3$,求直线 AB 的斜率为
- 12、已知 $a_i \in N^*$ (i=1,2,...9) 对 $a_k = a_{k-1} + 1$ 或 $a_k = a_{k+1} 1(2 \le k \le 8)$ 中有且仅有一个成立, $a_i = 6, a_o = 9$,求 $a_i + \cdots + a_o$ 的最小值

二、选择题(本大题共有4题,每题5分,满分20分)

13、以下哪个函数既是奇函数,又是减函数()

A.
$$-3x$$
 B. x^3 C. $y = \log_3^x$ D. 3^x

14、已知参数方程
$$\begin{cases} x=3t-4t^3\\ y=2t+\sqrt{1-t^2} \end{cases}, t\in \left[-1,1\right]$$
,以下哪个图符合该方程()

15、已知
$$f(x) = 3\sin x + 2$$
 ,存在任意的 $x_1 \in \left[0, \frac{\pi}{2}\right]$,都存在 $x \in \left[0, \frac{\pi}{2}\right]$,都存在 $x \in \left[0, \frac{\pi}{2}\right]$

$$f(x) = 2f(x+\theta) + 2$$
成立,则下列选项可行 θ 的是()

A.
$$\frac{3\pi}{5}$$
 B. $\frac{4\pi}{5}$ C. $\frac{6\pi}{5}$ D. $\frac{7\pi}{5}$

 $16, \ \ \square \ \ x_1, y_1, x_2, y_2, x_3, y_3 \ \ , \ \ x_1 < y_1, x_2 < y_3, x_3 < y_1 < x_1 + y_2 = x_2 + y_2 = x_3 + y_3,$

$$x_1y_1 + x_1 + y_1 = 2x_2y_2$$
,以下哪个选项恒成订义

A.
$$2x_2 < x_1 + x_3$$
 B. $2x_2 > x_1 + x_3$ C. $x_2 < x_1 x_3$ D. $x_2^2 > x_1 x_3$

三、解答题

- 17、如图, 在长方体 ABCD A,B,C,D,中,
- (1) 若P是 AD_1 的动点,求三棱锥 V_{P-ADC}
- (2) 求 AB₁与平面 ACC₁A₁的夹角大小

- 18、在 $\triangle ABC$ 中,已知a=3,b=2c
- (1) 若 $A = \frac{2\pi}{3}$,求 $S_{_{AABC}}$
- (2) 若 $2\sin B \sin C = 1$,求 C_{sABC}

- 19、已知一企业一年营业额1.1亿元,每年增加0.05亿元,利润0.16亿元,毋年增长4%
- (1) 求营业额前 20 季度的和
- (2)请问哪年哪季度营业额是利润的18%?

- 20、已知 Γ : $\frac{x^2}{2}+y^2=1$, F_1,F_2 是其左右交点 , $P(m,0)(m<-\sqrt{2})$, 直线 l 过点 P 交 Γ 于 A,B 两点 , 且 A 在线段 BP 上 ,
- (1)若B是上顶点, $|\overline{BF_1}| = |\overline{PF_1}|$,求m;
- (2) 若 $\overrightarrow{F_1A} \cdot \overrightarrow{F_2A} = \frac{1}{3}$,且原点O到直线I的距离为,求直线I;
- (3)证明:对于任意 $m < -\sqrt{2}$,使得 $\overline{F_1A} \parallel \overline{F_2B} = \frac{1}{3}$ 的直线有且仅有一条.

- 21、已知 $x_1, x_2 \in R$,若对任意的 $x_2 x_1 \in S$,则有定义: f(x) 是在 S 关联的.
- (1)判断和证明 f(x) = 2x 1是否在 $[0,+\infty)$ 关联?是否有[0,1]关联?
- (2) 若 f(x) 是在 f(x) 美联婚, f(x) 在 $x \in [0,3)$ 时, $f(x) = x^2 2x$,求解不等式: $2 \le f(x) \le 3$
- (3)证明: (x)是《关联的,且是在 $[0,+\infty)$ 关联的,当且仅当" f(x)在[1,2]是关联的"

- 21. 如果对任意 $x_1, x_2 \in \mathbb{R}$ 使得 $x_1 x_2 \in S$ 都有 $f(x_1) f(x_2) \in S$, 则称 f(x) 是 S 关联的.
- (1) 判断和证明 f(x) = 2x 1 是 \mathbb{Z}^+ 关联的吗? 是 [0,1] 关联的吗?
- (2) f(x) 是 $\{3\}$ 关联的,在 [0,3) 上有 $f(x) = x^2 2x$,解不等式 $2 \le f(x) \le 3$.
- (3)" f(x) 是 $\{1\}$ 关联的, 且是 $[0, +\infty)$ 关联"当且仅 当" f(x) 是 [1, 2] 关联的".