

Kongeriget Danmark

Patent application No.:

PA 2003 00435

Date of filing:

21 March 2003

Applicant:

Novozymes A/S

(Name and address)

Krogshøjvej 36

DK-2880 Bagsværd

Denmark

Title: Subtilases.

IPC: -

This is to certify that the attached documents are exact copies of the above mentioned patent application as originally filed.

Patent- og Varemærkestyrelsen

Økonomi- og Erhvervsministeriet

15 March 2004

Petersen

PATENT- OG VAREMÆRKESTYRELSEN

Modtaget PVS 2 1 MRS. 2003

SUBTILASES

5

10

15

20

25

30

35

FIELD OF THE INVENTION

The present invention relates to JP170 and BPN' like subtilases and to methods of construction such variants with altered properties, such as stability (e.g. thermostability or storage stability), Ca²⁺ dependency, pH dependent activity, improved performance in washing and cleaning applications.

BACKGROUND OF THE INVENTION

Enzymes have been used within the detergent industry as part of washing formulations for more than 30 years. Proteases are from a commercial perspective the most relevant enzyme in such formulations, but other enzymes including lipases, amylases, cellulases or mixtures of enzymes are also often used.

To improve the cost and/or the performance of proteases there is an ongoing search for proteases with altered properties, such as increased activity at low temperatures, increased thermostability, increased specific activity at a given pH, altered Ca²⁺ dependency, increased stability in the presence of other detergent ingredients (e.g. bleach, surfactants etc.) etc.

The search for proteases with altered properties include both discovery of naturally occurring proteases, i.e. so called wild-type proteases but also alteration of well-known proteases by e.g. genetic manipulation of the nucleic acid sequence encoding said proteases. Knowledge of the relationship between the three-dimensional structure and the function of a protein has improved the ability to evaluate which areas of a protein to alter to affect a specific characteristic of the protein.

One family of proteases, which are often used in detergents, are the subtilases. This family has previously been further grouped into 6 different sub-groups by Siezen RJ and Leunissen JAM, 1997, Protein Science, 6, 501-523. One of these sub-groups is the Subtilisin family which includes subtilases such as BPN', subtilisin 309 (SAVINASE®, NOVOZYMES A/S), subtilisin Carlsberg (ALCALASE®, NOVOZYMES A/S), subtilisin S41 (a subtilase from the psychrophilic Antarctic *Bacillus* TA41, Davail S et al. 1994, The Journal of Biological Chemistry, 269(26), 99. 17448-17453), subtilisin S39 (a subtilase from the psychrophilic Antarctic *Bacillus* TA39, Narinx E et al. 1997, Protein Engineering, 10 (11), pp. 1271-1279) and TY145 (a subtilase from Bacillus sp. TY145, NCIMB 40339 described in WO 92/17577).

However, despite the sequence homology between the subtilases belonging to the Subtilisin subgroup of subtilases, modelling of the three-dimensional structure of one subtilase

15

20

25

30

35

on the basis of the three-dimensional structure of another subtilase may result in an incorrect three-dimensional model structure because of structural differences.

Recently the three-dimensional structure of subtilase TY145 have been elucidated and it was found that there are several differences between this and the three-dimensional structure of BPN' also belonging to the Subtilisin subgroup of subtilases (Danish application PA 2003 00119).

The differences between the three-dimensional structures of TY145 and BPN' are confirmed by the three-dimensional structure of the subtilase "sphericase" from *Bacillus sphaericus* (PDB NO:1EA7, Protein Data Bank). The overall structure and many details of this subtilase are very homologous with the TY145 subtilase structure.

Now the inventors of the present invention disclose the three-dimensional structure of the subtilase JP170. This subtilase also has great structural differences compared to BPN' and TY145.

The subtilase JP170 and subtilases similar to JP170 are already known in the art, but the three-dimensional structure of the present invention has not been disclosed for such subtilases.

The JP170 subtilase was first described as protease A in WO 88/01293 to Novo Nordisk. Later the patent application WO 98/56927 to Novo Nordisk Biotech disclosed the amino acid (polypeptide) sequence of JP170 and the DNA sequence encoding JP170. The patents JP7-62152 and JP 4197182 to Lion Corp. disclosed the alkaline app. 46 kD protease Y produced by *Bacillus sp.* Y that is homologous to JP170 and the DNA sequence encoding protease Y. And in addition US 6,376,227 to Kao Corp. discloses physical characteristics as well as DNA and polypeptide sequences of alkaline proteases KP43, KP1790 and KP9860 which are also homologous to JP170. Recently variants of the KP43, KP9860, SD-521 and Y proteases among others were disclosed in EP 1209233. These variants have the accession numbers aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080. These proteases are highly homologous, and an alignment of KP43, KP9860, SD-521, Y and JP170 revealed at least 90% homology. Therefore JP170, Y (aay44619) and SD-521 (aam50084) represent these proteases in the alignments of the present application.

In the literature, modelling based on three-dimensional structures of proteins has been used to transfer advantageous properties from one protein to another. Miyazaki K et al.

2000, J Mol Biol, 297, pp.1015-1026 discloses enhancement of the thermostability and activity of the psychrophilic protease subtilisin S41 by methods of directed evolution.

Wintrode TL et al. 2000, Journal of Biological Chemistry, 275 (41), pp. 31635-31640 discloses conversion of a mesophilic subtilisin-like protease from *Bacillus sphaericus* SSII into its psychrophilic counterpart by methods of directed evolution. Wintrode et al. constructed the three-dimensional structural model of the SSII subtilase on basis of its homology with subtilisins Carlsberg, Savinase, BPN' and Thermitase, but according to the disclosure of the three-dimensional structure of the TY145 subtilase, the SSII subtilase pertain to the new group of TY145 like subtilases.

10

15

·20 ·

25

35

5

BRIEF DESCRIPTION OF THE INVENTION

The inventors have modified the amino acid sequence of a subtilase to obtain variants with improved properties, based on the three-dimensional structure of the subtilases JP170 and BPN'. The variants have altered properties, such as increased activity at low temperatures, increased thermostability, increased specific activity at a given pH, altered Ca²⁺ dependency, increased stability in the presence of other detergent ingredients (e.g. bleach, surfactants etc.) etc.

Accordingly, the object of the present invention is to provide a method for constructing subtilases having altered properties, in particular to provide a method for constructing subtilases having altered properties as described above.

Thus, in its broadest aspect, the present invention relates to a method for constructing a variant of a parent subtilase, wherein the variant has at least one altered property as compared to said parent subtilase, which method comprises:

- i) analyzing the three-dimensional structure of the subtilase to identify, on the basis of an evaluation of structural considerations, at least one amino acid residue or at least one structural region of the subtilase, which is of relevance for altering said property;
- ii) constructing a variant of the subtilase, which as compared to the parent subtilase, has been modified in the amino acid residue or structural part identified in i) so as to alter said property; and
- 30 iii) testing the resulting subtilase variant for said property.

Although it has been described in the following that modification of the parent subtilase in certain regions and/or positions is expected to confer a particular effect to the thus produced subtilase variant, it should be noted that modification of the parent subtilase in any of such regions may also give rise to any other of the above-mentioned effects. For example,

any of the regions and/or positions mentioned as being of particular interest with respect to, e.g., improved thermostability, may also give rise to, e.g., higher activity at a lower pH, an altered pH optimum, or increased specific activity, such as increased peptidase activity.

Further aspects of the present invention relates to variants of a subtilase, the DNA encoding such variants and methods of preparing the variants. Still further aspects of the present invention relates to the use of the variants for various industrial purposes, in particular as an additive in detergent compositions. Other aspects of the present invention will be apparent from the below description as well as from the appended claims.

10 BRIEF DESCRIPTION OF FIGURES AND APPENDIX

Figure 1, Alignment of 3D sequences of protease JP170 (mature sequence from Appendix 1), SD-521 (aam50084 from EP 1209233) and protease Y (aay44619 from WO99/67370). By 3D sequences is meant that the position of homologous residues are chosen by superposition of the 3D structures and subsequently the amino acid sequences are aligned based on these homologous positions.

Figure 2, Superposition of JP170 and Savinase 3D structures, with indication of calcium binding sites. JP170: light structure and three ion-binding sites. Savinase: dark structure and two ion-binding sites.

20

15

5

Figure 3, Matrix of homology between subtilases pertaining to the JP170 and BPN' subgroups. The sequences are identified by sequence database accession numbers.

APPENDIX 1 shows the structural coordinates for the solved crystal structure of JP170.

25

, 30

DEFINITIONS

Prior to discussing this invention in further detail, the following terms and conventions will first be defined.

For a detailed description of the nomenclature of amino acids and nucleic acids, we refer to WO 00/71691 page 5, hereby incorporated by reference. A description of the nomenclature of modifications introduced in a polypeptide by genetic manipulation can be found in WO 00/71691 page 7-12, hereby incorporated by reference.

The term "subtilases" refer to a sub-group of serine protease according to Siezen et al.,

Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501-523. Ser-

ine proteases or serine peptidases is a subgroup of proteases characterised by having a serine in the active site, which forms a covalent adduct with the substrate. Further the subtilases (and the serine proteases) are characterised by having two active site amino acid residues apart from the serine, namely a histidine and an aspartic acid residue.

Subtilases are defined by homology analysis of more than 170 amino acid sequences of serine proteases previously referred to as subtilisin-like proteases. The subtilases may be divided into 6 sub-divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.

The Subtilisin family (EC 3.4.21.62) may be further divided into 3 sub-groups, i.e. I-S1 ("true" subtilisins), I-S2 (highly alkaline proteases) and intracellular subtilisins. Definitions or grouping of enzymes may vary or change, however, in the context of the present invention the above division of subtilases into sub-division or sub-groups shall be understood as those described by Siezen et al., *Protein Engng.* 4 (1991) 719-737 and Siezen et al. *Protein Science* 6 (1997) 501-523.

15

20

10

5

The term "parent" is in the context of the present invention to be understood as a protein, which is modified to create a protein variant. The parent protein may be a naturally occurring (wild-type) polypeptide or it may be a variant thereof prepared by any suitable means. For instance, the parent protein may be a variant of a naturally occurring protein which has been modified by substitution, chemical modification, deletion or truncation of one or more amino acid residues, or by addition or insertion of one or more amino acid residues to the amino acid sequence, of a naturally-occurring polypeptide. Thus the term "parent subtilase" refers to a subtilase which is modified to create a subtilase variant.

25 The whi

The term "variant" is in the context of the present invention to be understood as a protein which has been modified as compared to a parent protein at one or more amino acid residues.

The term "modification(s)" or "modified" is in the context of the present invention to be understood as to include chemical modification of a protein as well as genetic manipulation of the DNA encoding a protein. The modification(s) may be replacement(s) of the amino acid side chain(s), substitution(s), deletion(s) and/or insertions in or at the amino acid(s) of interest. Thus the term "modified protein", e.g. "modified subtilase", is to be understood as a protein which contains modification(s) compared to a parent protein, e.g. subtilase.

30

The term "JP170 subtilase" or "JP170 like subtilase" should in the context of the present invention be understood as a subtilase belonging to the Subtilisin group according to Siezen et al. *Protein Science* 6 (1997) 501-523 and which has at least 58% homology to JP170 SEQ ID NO:1. Thus, among others the alkaline proteases KP43, KP1790, KP9860, Y and SD-521 are subtilases belonging to the JP170 subgroup of subtilases. In the context of the present invention a JP170 subtilase has three ion-binding sites. However, the number of ion-binding sites may vary in similar structures depending on the medium used for crystallisation. It appears e.g. that two of five ion-binding sites of *Bacillus sphaericus* "sphericase" (PDB NO:1EA7, Protein Data Bank) were due to a calcium containing crystallisation medium.

The term "(a) BPN' subtilase" or "(a) BPN' like subtilase" should in the context of the present invention be understood as a subtilase belonging to the Subtilisin group according Siezen et al. Siezen et al. *Protein Science* 6 (1997) 501-523 and which has at least 61% homology to BPN' SEQ ID NO:5. Such a BPN' like subtilase is for example Savinase. In the context of the present invention a BPN' subtilase has two ion-binding sites. A BPN' like subtilase may, in the context of the present invention, belong to branch I-S of the subtilisins i.e. to branch I-S1, the "true" subtilisins or I-S2, the highly alkaline proteases (Siezen et al., *Protein Engng.* 4 (1991) 719-737).

··· 20 ··

25

30

35

5

10

15

"Homology" or "homologous to" is in the context of the present invention to be understood in its conventional meaning and the "homology" between two amino acid sequences should be determined by use of the "Similarity" defined by the GAP program from the University of Wisconsin Genetics Computer Group (UWGCG) package using default settings for alignment parameters, comparison matrix, gap and gap extension penalties. Default values for GAP penalties, i.e. GAP creation penalty of 3.0 and GAP extension penalty of 0.1 (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711). The method is also described in S.B. Needleman and C.D. Wunsch, Journal of Molecular Biology, 48, 443-445 (1970). Identities can be extracted from the same calculation. The homology between two amino acid sequences can also be determined by "identity" or "similarity" using the GAP routine of the UWGCG package version 9.1 with default setting for alignment parameters, comparison matrix, gap and gap extension penalties can also be applied using the following parameters: gap creation penalty = 8 and gap extension penalty = 8 and all other parameters kept at their default values. The output from the routine is besides the amino acid alignment the

30

calculation of the "Percent Identity" and the "Similarity" between the two sequences. The numbers calculated using UWGCG package version 9.1 is slightly different from the version 8.

The term "position" is in the context of the present invention to be understood as the number of an amino acid in a peptide or polypeptide when counting from the N-terminal end of said peptide/polypeptide. The position numbers used in the present invention refer to different subtilases depending on which subgroup the subtilase belongs to.

As mentioned above the alkaline subtilases KP43, KP1790, KP9860, Y, SD-521 and variants aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080 of EP 1209233 belong to the JP170 subgroup, based on sequence homology. Due to the extensive homology only subtilase Y and SD-521 are aligned with JP170. The Y subtilase and SD-521 subtilase are numbered according to SEQ ID NO:2 and 3 respectively.

Likewise other subtilases belonging to the JP170 subgroup are numbered individually according to their own sequence. However in order to determine homologous positions in such other subtilases an alignment with the each of SEQ ID's NO:1, 2 and 3 is conducted according to the GAP procedure described above. Subsequently the homologous positions are determined with reference to the most homologous of SEQ ID's NO:1, 2 and 3.

Alternatively subtilases belonging to the JP170 subgroup can be numbered by reference to the positions of JP170 subtilase (SEQ ID NO:1).

Subtilases belonging to the BPN' subgroup refers to the positions of Subtilisin Novo (BPN') from B. amyloliquefaciens.

DETAILED DESCRIPTION OF THE INVENTION

Despite the great homology of the subtilases described above the inventors of the present invention have elucidated the three-dimensional structure of JP170, SEQ ID NO:1 by X-ray crystallography and found that there are several differences between this and the three-dimensional structure of BPN'. The inventors of the present invention have further compared the sequence homology of subtilases belonging to the Subtilisin subgroup. This is shown in Figure 3 of the present invention.

On the basis of this comparison the inventors of the present invention suggest to divide the Subtilisin subgroup so that the JP170 subtilases become a separate subgroup in addition to the subgroups of BPN' subtilases and TY145 subtilases (DKPTO, PA 2003 00119).

5 JP170 subtilases

10

15

20

25

30

As described above a JP170 like subtilase is in the context of the present invention to be understood as a subtilase which has at least 58% homology to SEQ ID NO:1. In particular said JP170 subtilase may have at least 60% homology to SEQ ID NO:1, such as at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to JP170, i.e. to SEQ ID NO:1.

In a first embodiment of the present invention a JP170 subtilase suitable for the purpose described herein may be a subtilase homologous to the three-dimensional structure of JP170, i.e. it may be homologous to the three-dimensional structure defined by the structure coordinates in Appendix 1.

As it is well-known to a person skilled in the art that a set of structure coordinates for a protein or a portion thereof is a relative set of points that define a shape in three dimensions, it is possible that an entirely different set of coordinates could define an identical or a similar shape. Moreover, slight variations in the individual coordinates may have little or no effect on the overall shape.

These variations in coordinates may be generated because of mathematical manipulations of the structure coordinates. For example, the structure coordinates of JP170 (Appendix 1) may be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above. Alternatively, said variations may be due to differences in the primary amino acid sequence.

If such variations are within an acceptable standard error as compared to the structure coordinates of Appendix 1 said three-dimensional structure is within the context of the present invention to be understood as being homologous to the structure of Appendix 1. The standard error may typically be measured as the root mean square deviation of e.g. conserved backbone residues, where the term "root mean square deviation" (RMS) means the square root of the arithmetic mean of the squares of the deviations from the mean.

10

15

25

30

35

As it is also well-known to a person skilled in the art that within a group of proteins which have a homologous structure there may be variations in the three-dimensional structure in certain areas or domains of the structure, e.g. loops, which are not or at least only of a small importance to the functional domains of the structure, but which may result in a big root mean square deviation of the conserved residue backbone atoms between said structures.

Thus it is well known that a set of structure coordinates is unique to the crystallised protein. No other three dimensional structure will have the exact same set of coordinates, be it a homologous structure or even the same protein crystallised in different manner. There are natural fluctuations in the coordinates. The overall structure and the inter-atomic relationship can be found to be similar. The similarity can be discussed in terms of root mean square deviation of each atom of a structure from each "homologous" atom of another structure. However, only identical proteins have the exact same number of atoms. Therefore, proteins having a similarity below 100% will normally have a different number of atoms, and thus the root mean square deviation can not be calculated on all atoms, but only the ones that are considered "homologous". A precise description of the similarity based on the coordinates is thus difficult to describe and difficult to compute for homologous proteins. Regarding the present invention, similarities in 3D structure of different subtilases can be described by the content of homologous structural elements, and/or the similarity in amino acid or DNA sequence. For sequences having no deletions or insertions a RMS for the calcium atoms can be calculated.

Examples of JP170 like subtilases include the alkaline proteases KP43, KP1790, KP9860, Y, SD-521 and variants aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080 of EP 1209233, however to the best of our knowledge the three-dimensional structure has not been solved for any of these subtilases.

Accordingly, a preferred embodiment of the present invention is a parent subtilase or a subtilase variant which is at least 58% homologous to the sequence of SEQ ID NO:1, preferably at least 60, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homologous to the sequence of SEQ ID NO:1, and optionally said subtilase further comprises the following structural characteristics:

10

15

25

30

35

- a) a twisted beta-sheet with 7 strands,
- b) six alpha helices,
- c) three ion-binding sites and

not comprising the Strong and Weak ion-binding site of the BPN' like subtilases, and with the exception of the subtilases JP170, KP1790, KP9860, KP43, Y, SD-521 and variants aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080 of EP 1209233.

The JP170 subtilase of the present invention is encoded by an isolated nucleic acid sequence, which nucleic acid sequence encodes a subtilase which has at least 58% homology to SEQ ID NO:1. In particular said nucleic acid sequence encodes a subtilase that has at least 60% homology to SEQ ID NO:1, such as at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to SEQ ID NO:1, i.e. to the amino acid sequence of JP170.

Further the isolated nucleic acid sequence encoding a JP170 subtilase of the invention hybridizes with a complementary strand of a nucleic acid sequence encoding the amino acid sequence of SEQ ID NO:1 preferably under low stringency conditions, at least under medium stringency conditions, at least under medium/high stringency conditions, at least under high stringency conditions.

Suitable experimental conditions for determining hybridization at low, medium, or high stringency conditions between a nucleotide probe and a homologous DNA or RNA sequence involves presoaking of the filter containing the DNA fragments or RNA to hybridize in 5 x SSC (Sodium chloride/Sodium citrate, Sambrook et al. 1989) for 10 min, and prehybridization of the filter in a solution of 5 x SSC, 5 x Denhardt's solution (Sambrook et al. 1989), 0.5 % SDS and 100 µg/ml of denatured sonicated salmon sperm DNA (Sambrook et al. 1989), followed by hybridization in the same solution containing a concentration of 10ng/ml of a random-primed (Feinberg, A. P. and Vogelstein, B. (1983) *Anal. Biochem.* 132:6-13), ³²P-dCTP-labeled (specific activity > 1 x 10⁹ cpm/µg) probe for 12 hours at ca. 45°C. The filter is then washed twice for 30 minutes in 2 x SSC, 0.5 % SDS at least * 55°C (low stringency), more preferably at least 60°C (medium stringency), still more preferably at least 65°C (medium/high stringency), even more preferably at least 70°C (high stringency), and even more preferably at least 75°C (very high stringency).

BPN' subtilases

As described above a BPN' subtilase is in the context of the present invention to be understood as a subtilase which has at least 61% homology to SEQ ID NO:4. In particular said BPN' subtilase may have at least 65%, such as at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to BPN', i.e. to SEQ ID NO:4.

In one embodiment of the present invention a BPN' subtilase suitable for the purpose described herein may be a subtilase homologous to the three-dimensional structure of BPN' as defined by the structure coordinates given in PDB Nos. 1SBT and 1GNS (Protein Data Bank), or one of the several other structures of BPN' that are accessible from the Protein Data Bank. Variations between homologous structures may occur for several reasons as described above. Thus a BPN' subtilase within the context of the present invention is to be understood as any subtilase having the structural characteristics pertaining to the BPN' subtilases as described above, and in addition such subtilases does preferably not have further structural characteristics which are not present in the BPN' subtilases as described herein. Further a BPN' subtilase of the present invention may have the necessary percentage of similarity with SEQ ID NO:4.

... 20 . .

25

30

35

5

10

15

Examples of BPN' like subtilases include the subtilisin 309 (PDB NO:1SVN, SAVINASE®, NOVOZYMES A/S) and subtilisin Carlsberg (ALCALASE®, NOVOZYMES A/S), among others.

In figure 1 of R.J. Siezen and J.A.M Leunissen (Protein science, Vol. 6 (3), pp. 501-523, 1997) page 502 a structure of subtilases is described. A subtilase consists of 6-8 helices, 11 strands of which 7 are central in a twisted beta-sheet. Two ion-binding sites are mentioned, the so called "Strong" and "Weak" calcium-binding sites. It was later discovered that for some structures (subtilisin DY PDB no. 1BH6, 1998), the Weak calcium-binding site was shown to be a Na (sodium) binding site when the calcium concentration in the crystal-lization medium was low. Thus, in the following we refer to ion-binding sites instead of calcium-binding sites.

The BPN' subtilase of the present invention is encoded by an isolated nucleic acid sequence, which nucleic acid sequence encodes a subtilase which has at least 61% homology to SEQ ID NO:4. In particular said BPN' subtilase may have at least 65%, such as at

least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology to BPN', i.e. to SEQ ID NO:4.

Further the isolated nucleic acid sequence encoding a BPN' subtilase of the invention hybridizes with a complementary strand of the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO:4 preferably under low stringency conditions, at least under medium stringency conditions, at least under medium/high stringency conditions, at least under high stringency conditions, at least under very high stringency conditions.

10

15

20

25

Three-dimensional structure of JP170 subtilases

The JP170 subtilase was used to elucidate the three-dimensional structure forming the basis for the present invention.

The structure of JP170 was solved in accordance with the principle for x-ray crystallographic methods, for example, as given in X-Ray Structure Determination, Stout, G.K. and Jensen, L.H., John Wiley & Sons, Inc. NY, 1989.

The structural coordinates for the solved crystal structure of JP170 are given in standard PDB format (Protein Data Bank, Brookhaven National Laboratory, Brookhaven, CT) as set forth in Appendix 1. It is to be understood that Appendix 1 forms part of the present application. In the context of Appendix 1, the following abbreviations are used: CA refers to calpha (carbon atoms) or to calcium ions, (however to avoid misunderstandings we use the full names "c-alpha atoms" and "calcium" or "ion" in the present specification). Amino acid residues are given in their standard three-letter code. The attached structural coordinates contain the protease structure, and an inhibitor structure C12 as well as water molecules. The protease coordinates has a chain identification called A, whereas the C12 inhibitor is called B, the calcium ions are called C, and the water is W. In the following the positions of the mentioned residues refer to the sequence of JP170 as disclosed in SEQ ID NO:1.

The JP170 structure consists of two domains, a catalytic domain and a C-terminal domain. The structure of the catalytic domain shows the same overall fold as found in the S8 family of subtilisins. The structure comprises a twisted beta-sheet with 7 strands arranged in the following sequential order S2, S3, S1, S4, S5, S6, S7.

25

35

There are six alpha helices in the catalytic domain structure of which number H1 contains residues 9-17, H2 contains residues 68-76, H3 contains residues 110-119, H4 contains residues 139-150, H5 contains residues 253-273 and H6 contains residues 281-291.

The C-terminal domain comprises a strand motif, a so called "beta sandwich" consisting of sheets a and b. The sheet in this domain is combined of strands in an anti-parallel fashion, whereas the strand in the catalytic domain is combined in parallel. The sequential order of the strands can be denoted as: S1a-S1b-S3a-S3b-S4b-S4a-S2b-S2a with the beta sandwich organised as to the two sheets S1a, S3a, S4a, S2a and S1b, S3b, S4b, S2b.

The JP170 subtilases are shown to lack the well-known Strong and Weak ion-binding sites of the BPN' subtilases. However, the JP170 subtilases have three ion-binding sites which are not present in the BPN' subtilisin structures. This can be seen in the structural alignment presented in Figure 2. These three ion-binding sites are hereinafter referred to as Site 1, which is placed in the catalytic domain, and Site 2 and 3 which are placed in the non-catalytic C-terminal domain.

Thus in relation to the atomic coordinates disclosed in Appendix 1, the ion-binding sites of JP170 are located at:

Site 1 - calcium atom named A601 CA

20 Site 2'- calcium atom named A603 CA, and

Site 3 - calcium atom named A602 CA in the PDB table (Appendix 1).

The position of an ion-binding site can be defined by the distance to four specific atoms in the core structure. The distance from the ion-binding site to the c-alpha atoms of the three active site residues has been chosen. Throughout the subtilases the residues Ser, His and Asp in the active site are highly conserved. In JP170 they are Asp30, His68 and Ser254. The fourth distance chosen is the distance to the c-alpha atom of the amino acid residue coming first after the active site serine residue in the sequence (herein after called "next to Ser"); in the 3D structure of JP170 it is Met255.

In a preferred embodiment of the present invention, the distance between:

- a) ion-binding site 1 and i) Asp c-alpha atom is 26.70-28.70Å, ii) His c-alpha atom is 22.10-24.10Å, iii) Ser c-alpha atom is 16.95-18.95Å, iv) next to Ser c-alpha atom is 15.30-17.30Å,
- b) ion-binding site 2 and i) Asp c-alpha atom is 33.50-35.50Å, ii) His c-alpha atom is 37-39Å, iii) Ser c-alpha atom is 29.40-31.40Å, iv) next to Ser c-alpha atom is 30.70-

32.70Å,

c) ion-binding site 3 and i) Asp c-alpha atom is 41.50-43.50Å, ii) His c-alpha atom is 42.90-44.90Å, iii) Ser c-alpha atom is 34.50-36.50Å, iv) next to Ser c-alpha atom is 35-37Å.

5

20

Below are the specific distances between the four chosen c-alpha atoms and the three ion binding sites of the JP170 subtilase given in Å:

		site 1	site 2	site 3
	Met255	16.34	31.68	36.02
10	His68	23.12	38.03	43.87
	Asp30	27.69	34.49	42.48
	Ser254	17.95	30.41	35.51
	site 1	0	35.29	32.92
	site 2	35.29	0	14.08
15	site 3	32.92	14.08	0

However these distances may vary from one subtilase to the other. The present distances are given with a calcium ion in the structure. If a sodium ion was bound instead the distances would be shifted a little bit. Generally the distances can vary ± 0.80 Å, preferably ± 0.70 Å, ± 0.60 Å, ± 0.50 Å, ± 0.40 Å, or most preferably ± 0.30 Å.

Further, in the JP170 like subtilases, the peptide structure circumventing ion-binding site 1 up to a distance of 10 Å is composed of the amino acid residues placed in positions 183-189, 191-204 and 224-225.

The peptide structure circumventing ion-binding site 2 up to a distance of 10 Å is composed of residues 378-393.

The peptide structure circumventing ion-binding site 3 up to a distance of 10 Å is composed of residues 348, 350, 352, 363-370, 380-383, 391-400 and 414-420.

In comparison with the BPN' like subtilase structures the structure of the JP170 like subtilases can be divided into a "core subtilase-like" region, an "intermediate" region and a "nonhomologous" region.

The active site can be found in the core subtilase-like region, which is structurally closely related to the BPN' structures. The core subtilase-like region is composed of residues 17-

35 34, 197-209 and 216-232, and contains the alpha-helix H3 and the central alpha-helix H5 in

which the active site serine residue is situated in the N-terminal part. The core subtilaselike region has an RMS lower than 1.2.

Outside the core subtilase-like region the structure of the JP170 like subtilase differs from the BPN' structures to a greater extent.

5

The intermediate region consists of residues 42-46, 150-186, 245-272 and 278-296. The intermediate region has an RMS bigger than 1.2 and less than 1.8. The relationships between the three-dimensional structure and functionality are potentially difficult to predict in this region of the JP170 like subtilases.

10

The nonhomologous region consists of residues 1-16, 35-41, 47-149, 187-196, 210-215, 233-244, 273-277 and 297-316. The nonhomologous region has a RMS higher than 1.8. The relationships between the three-dimensional structure and functionality are very difficult to predict in this region of the JP170 like subtilases.

15

Many loops in the 3D structure of the JP170 like subtilases differ significantly from the BPN' type structures, both in length and in content of amino acid residues. The following loops or protein sequence stretches of JP170 are compared to Savinase (in parenthesis):

G32-H43 (G34-H39)

20 E44-Y54 (P40-A48)

G57-G67 (V51-G63)

N79-N82 (175-V81)

196-P107 (V95-S105)

A108-S119 (106-N117)

25 A131-Y137 (S128-S132)

T138-D152 (A133-G146)

E162-1169 (S156-1165)

G173-T180 (A169-A176)

E185-N199 (D181-N184)

30 G208-D218 (G193-D197)

S232-K246 (G211-T213)

D294-N303 (S256-L262)

The loops N79-N82 (I75-V81) and G208-D218 (G193-D197) are in contact with a ionbinding site in Savinase, but not in JP170. Similarly the loop E185-N199 (D181-N184) is in contact with a ion-binding site in JP170, but not in Savinase. This knowledge opens for possibilities of adding or removing ion-binding sites to subtilases of the JP170 and BPN' like types.

A good example of the difference is the loop S232-K246 which has 15 residues compared to the corresponding BPN' type loop G211-T213 (in Savinase), which has only three residues. In the JP170 like subtilases, the loop folds back to the substrate binding site, especially the P' parts of the substrate binding site. The loop is situated close to the substrate as illustrated by the CI2 inhibitor bound in the 3D structure attached (Appendix 1).

10

The location of loop S232-K246 can be described in relation to the four specific residues as described above. The distance from the CA atom of residue W240 in the loop to the CA atoms of the active site residues are:

Residue H68 D30 S254 M255 Distance, Å 11.45 18.51 13.06 11.94

As mentioned above, distances like these can vary ±0.80Å, preferably ±0.70Å, ±0.60Å, ±0.50Å, ±0.40Å, or most preferably ±0.30Å.

Furthermore, distances from the residues of JP170 loop S232-K246 to atoms of the CI2 inhibitor can be calculated. These distances are:

from CA atom of W240 to CA atom of R62 in Cl2 is 7.49Å, from CA atom of F239 to CA atom of R62 in Cl2 is 8.39Å, from CA atom of S238 to CA atom of R62 in Cl2 is 8.42Å, from CA atom of S237 to CA atom of R62 in Cl2 is 9.44Å, from CA atom of S238 to CA atom of E60 in Cl2 is 9.42Å.

25

30

The distances from JP170 active site residue S254 to atoms of the Cl2 inhibitor, as placed in the 3D coordinates of Appendix 1, are:

from CA atom of S254 to CA atom of E60 in Cl2 is 5.25Å,

from CA atom of S254 to CA atom of R62 in Cl2 is 11.55Å,

from CA atom of S254 to CA atom of T58 in Cl2 is 7.06Å,

from CA atom of S254 to CA atom of M59 in Cl2 is 4.71Å.

The distances can vary ±0.80Å, preferably ±0.70Å, ±0.60Å, ±0.50Å, ±0.40Å, or most preferably ±0.30Å.

A preferred JP170 like subtilase variant has a deletion in the region S232-K246, and the subsequent insertion of one or more residues to partly or completely remove the loop. Preferred variants comprises the deletion of L233-S245 + insertion of Asn, deletion of L233-D244 + insertion of Gly or deletion of S232-D244 + insertion of Gly.

5

10

15

20

25

30

Homology building of JP170 and BPN' subtilases

A model structure of a JP170 like subtilase or a BPN' like subtilase can be built using the Homology program or a comparable program, e.g., Modeller (both from Molecular Simulations, Inc., San Diego, CA). The principle is to align the amino acid sequence of a protein for which the 3D structure is known with the amino acid sequence of a protein for which a model 3D structure has to be constructed. The structurally conserved regions can then be built on the basis of consensus sequences. In areas lacking homology, loop structures can be inserted, or sequences can be deleted with subsequent bonding of the necessary residues using, e.g., the program Homology. Subsequent relaxing and optimization of the structure should be done using either Homology or another molecular simulation program, e.g., CHARMm from Molecular Simulations.

Methods for designing JP170 and BPN' subtilase variants

Comparisons of the molecular dynamics of different proteins can give a hint as to which domains are important or connected to certain properties pertained by each protein.

The present invention comprises a method of producing a variant of a parent JP170 like subtilase, the variant having at least one altered property as compared to the parent JP170 like subtilase, the method comprising:

- a) modelling the parent JP170 subtilase on the three-dimensional structure of a JP170 subtilase to produce a three-dimensional structure of the parent JP170 subtilase;
- b) identifying on the basis of the comparison in step a) at least one structural part of the parent JP170 subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
- c) modifying the nucleic acid sequence encoding the parent JP170 subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
- d) expressing the modified nucleic acid sequence in a host cell to produce the variant JP170 subtilase;
- 35 e) isolating the produced subtilase;

- f) purifying the isolated subtilase and
- g) recovering the purified subtilase.

Further the present invention comprises a method of producing a variant of a parent Subtilisin family subtilase, such as a BPN' like subtilase, the variant having at least one altered property as compared to the parent Subtilisin family subtilase, the method comprising:

- a) modelling the parent Subtilisin family subtilase on the three-dimensional structure of a Subtilisin family subtilase to produce a three-dimensional structure of the parent Subtilisin family subtilase;
- b) comparing the three-dimensional structure obtained in step a) to the three-dimensional structure of a JP170 like subtilase;
 - c) identifying on the basis of the comparison in step b) at least one structural part of the parent Subtilisin family subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
- d) modifying the nucleic acid sequence encoding the parent Subtilisin family subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
 - e) expressing the modified nucleic acid sequence in a host cell to produce the variant Subtilisin family subtilase,
 - f) isolating the produced subtilase,

20

30

35

- g) purifying the isolated subtilase and
- h) recovering the purified subtilase.
- Further the present invention comprises a method of producing a variant of a parent JP170 like subtilase, the variant having at least one altered property as compared to the parent JP170 like subtilase, the method comprising:
 - a) modelling the parent JP170 like subtilase on the three-dimensional structure of a JP170 like subtilase to produce a three-dimensional structure of the parent JP170 like subtilase;
 - b) comparing the three-dimensional structure obtained in step a) to the three-dimensional structure of a Subtilisin family subtilase;
 - c) identifying on the basis of the comparison in step b) at least one structural part of the parent JP170 like subtilase, wherein an alteration in said structural part is predicted to result in an altered property;

- d) modifying the nucleic acid sequence encoding the parent JP170 like subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
- e) expressing the modified nucleic acid sequence in a host cell to produce the variant JP170 like subtilase;
 - f) isolating the produced subtilase;
 - g) purifying the isolated subtilase and
 - h) recovering the purified subtilase.

15

20

Stability - alteration of ion-binding sites

As described above the JP170 subtilases has three new ion-binding sites not present in the BPN' subtilisin structures but lacks the Strong and Weak ion-binding site of the BPN' subtilases. Stability of the ion-binding site is of crucial importance for the functionality of the enzyme. Therefore alterations of the ion-binding sites are likely to result in alterations of the stability of the enzyme.

Improved stability

Stabilisation of a JP170 subtilase may possibly be obtained by alterations in the positions close to the ion-binding sites. Thus a preferred variant of the present invention has a modification in one or more of the positions located at a distance of 10Å to the ion-binding sites of JP170 (SEQ ID NO:1). The positions are:

Site 1:	183-189	(i.e. positions 183, 184, 185, 186, 187, 188, 189),	
	191-204	(i.e. positions 191, 192, 193, 194, 195, 196, 197, 198, 199, 200,	
		201, 202, 203, 204),	
	224-225;		
Site 2:	378-393	(i.e. positions 378, 379, 380, 381, 382, 383, 384, 385, 386, 387,	
		388, 389, 390, 391, 392, 393);	
Site 3:	348, 350, 352,		
	363-370	(i.e. positions 363, 364, 365, 366, 367, 368, 369, 370),	
	380-383	(i.e. positions 380, 381, 382, 383),	
	391-400	(i.e. positions 391, 392, 393, 394, 395, 396, 397, 398, 399, 400),	
	Site 2:	191-204 224-225; Site 2: 378-393 Site 3: 348, 350, 35 363-370 380-383	

10

15

25

30

35

414-420 (i.e. positions 414, 415, 416, 417, 418, 419, 420).

In detergent compositions calcium chelaters contribute to removal of calcium from the subtilases with subsequent inactivation of the enzyme as the result. To decrease the inactivation due to calcium removal of e.g. calcium chelaters variants with improved calcium stability was constructed.

Preferred variants stabilised in ion-binding site 1 are S193Q,Y; H200D,N and H200D,N+D196N.

Preferred variants stabilised in ion-binding site 2 are N390D and N391D, and preferred variants stabilised in ion-binding site 3 are G394N,Q,F,Y,S and W392S,N,Q.

Alteration of thermostability

A variant with improved stability (typically increased thermostability) may be obtained by substitution with proline, introduction of a disulfide bond, altering a hydrogen bond contact, altering charge distribution, introduction of a salt bridge, filling in an internal structural cavity with one or more amino acids with bulkier side groups (in e.g. regions which are structurally mobile), substitution of histidine residues with other amino acids, removal of a deamidation sites, or by helix capping.

20 Regions with increased mobility:

The following regions of JP170 have an increased mobility in the crystal structure of the enzyme, and it is presently believed that these regions can be responsible for stability or activity of JP170. Especially thermostabilisation may possibly be obtained by altering the highly mobile regions. Improvements of the enzyme can be obtained by mutation in the below regions and positions. Introducing e.g. larger residues or residues having more atoms in the side chain could increase the stability, or, e.g., introduction of residues having fewer atoms in the side chain could be important for the mobility and thus the activity profile of the enzyme.

Two methods are used extract the highly mobile regions from a 3D structure. One is a molecular dynamics calculation of the isotropic fluctuations, and the other is an analysis of the B-factors. The B-factors are listed in the PDB file and give a value to the uncertainty of determination of the location of the various atoms of the structure. The uncertainty relates to the mobility of the atoms in the molecules in the crystal lattice. This mobility reflects the thermal motion of the atoms and thus indicates possible sites for thermostabilisation of the enzyme.

Thus, by analysing the B-factors taken from the coordinate file in Appendix 1, (see "in X-Ray Structure Determination, Stout, G.K. and Jensen, L.H., John Wiley & Sons, Inc. NY, 1989") the following mobile regions in the JP170 structure were revealed:

```
13-18
                    (i.e. positions 13, 14, 15, 16, 17, 18),
     37-43
                    (i.e. positions 37, 38, 39, 40, 41, 42, 43),
     47-50
                    (i.e. positions 47, 48, 49, 50),
     57-59
                   (i.e. positions 57, 58, 59),
     96-103
                    (i.e. positions 96, 97, 98, 99, 100, 101, 102, 103),
10
     131-134
                    (i.e. positions 131, 132, 133, 134),
      152-153
      162-166
                    (i.e. positions 162, 163, 164, 165, 166),
      188-195
                    (i.e. positions 188, 189, 190, 191, 192, 193, 194, 195),
     210
15
     234-246
                    (i.e. positions 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245,
                    246),
                    (i.e. positions 372, 373, 374, 375, 376, 377, 378),
     372-378
      387-392
                    (i.e. positions 387, 388, 389, 390, 391, 392),
     406-407
20
     419.
```

Molecular dynamics simulation at 300K and 400K of JP170 reveals the following highly mobile regions:

```
(i.e. positions 37, 38, 39, 40, 41, 42),
     37-42
25
     57-60
                    (i.e. positions 57, 58, 59, 60),
     66-67.
     98-103
                    (i.e. positions 98, 99, 100, 101, 102, 103).
      107-111
                    (i.e. positions 107, 108, 109, 110, 111),
      188-193
                    (i.e. positions 188, 189, 190, 191, 192, 193),
30
     236-240
                    (i.e. positions 236, 237, 238, 239, 240),
     326-332
                    (i.e. positions 326, 327, 328, 329, 330, 331, 332),
     337-342
                    (i.e. positions 337, 338, 339, 340, 341, 342),
     355-360
                    (i.e. positions 355, 356, 357, 358, 359, 360),
     372-377
35
                    (i.e. positions 372, 373, 374, 375, 376, 377),
```

384-388 (i.e. positions 384, 385, 386, 387, 388), 404-411 (i.e. positions 404, 405, 406, 407, 408, 409, 410, 411).

Thus, a preferred JP170 subtilase variant of the present invention has been modified in one or more of the above mentioned positions of SEQ ID NO:1. Further preferred variants comprises one or more alterations in the regions 57-60, 66-67, 107-111, 236-240, 326-332, 355-360, 372-377, 384-388, 404-411. Especially preferred is variant W240H,Y and variants modified in the region 355-360, such as variants comprising one or more of the modifications: G355A,S; S356T,N; T357N,Q,D,E,P; T358S; A359S,T,N,Q and S360T,N.

10

5

Variants modified in the region 355-360 may be produced in accordance with the method for random mutagenesis by use of the DOPE program as described herein. To obtain variants comprising 1-3 modifications in region 355-360 one may introduce the substitutions with the following frequencies:

15	wild-type	modified		
	95%	5% G355A,S		
	90%	10% S356T,N		
	80%	20% T357N,Q,D,E,P		
	90%	10% T358S		
20	80%	20% A359S,T,N,Q		
	80%	20% S360T,N.		

Disulfide bonds:

A JP170 variant of the present invention with improved stability, e.g. thermostability, as compared to the parent JP170 subtilase may be obtained by introducing new inter-domain or intra-domain bonds, such as by establishing inter- or intra-domain disulfide bridges.

Thus a further aspect of the present invention relates to a method for producing a variant of a parent JP170 comprising the methods described in the paragraph "Methods of preparing JP170 like or BPN' like subtilase variants" herein.

30

35

25

According to the guidelines mentioned above the below mentioned amino acid residues identified in the amino acid sequence of SEQ ID NO:1 are considered as being suitable for cysteine replacement. With one or more of these substitutions with cysteine, disulfide bridges may possibly form in a variant of JP170. The substitutions are: G21C/A86C, V26C/A265C, G57C/G105C, G74C/A229C, Q111C/Y143C, G160C/S170C, A286C/V349C,

A27C/A122C, A45C/G78C, V72C/P258C, G78C/A229C, D98C/G104C, Q111C/Y147C, G135C/G167C, R142C/P354C, V144C/A178C, G182C/P217C, A183C/G223C, A195C/Y225C, F271C/P279C, A287C/A430C, A293C/S310C, E322C/S428C, S324C/A332C, S327C/P424C, D352C/N397C, G255C/T362C, G291C/S314C.

Preferred variants comprise one or more of the substitutions: G21C/A86C, V26C/A265C, G57C/G105C, G74C/A229C, Q111C/Y143C, G160C/S170C, A286C/V349C, A4C/P222C and A27C/V117C.

Similar residues suitable for cysteine replacement in subtilases homologous with JP170 can be elucidated by finding the homologous positions in the alignment of Figure 1. Concerning another JP170 like sequence the homologous positions suitable for cysteine replacement can be selected by aligning said JP170 like sequence with all of the sequences of Figure 1 using the GAP analysis method as described above. The suitable residues can then be selected in accordance with the homologous positions in the most homologous of SEQ ID's NO:1, 2 and 3 which are the sequences of the subtilases aligned in Figure 1.

Surface charge distribution

A variant with improved stability (typically improved thermostability) as compared to the parent subtilase may be obtained by changing the surface charge distribution of the subtilase. For example, when the pH is lowered to about 5 or below histidine residues typically become positively charged and, consequently, unfavorable electrostatic interactions on the protein surface may occur. By engineering the surface charge of the subtilase one may avoid such unfavorable electrostatic interactions that in turn lead to a higher stability of the subtilase.

25

30

10

15

20

Therefore, a further aspect of the present invention relates to method for constructing a variant of a parent subtilase, the method comprising:

- identifying, on the surface of the parent subtilase, preferably a JP170 like or a BPN' like subtilase, at least one amino acid residue selected from the group consisting of Asp, Glu, Arg, Lys and His;
- b) substituting, on the surface of the parent subtilase, at least one amino acid residue selected from the group consisting of Asp, Glu, Arg, Lys and His with an uncharged amino acid residue;
- c) optionally repeating steps a) and b) recursively;

15

20.

25

30

- d) optionally, making alterations each of which is an insertion, a deletion or a substitution of an amino acid residue at one or more positions other than b);
- e) preparing the variant resulting from steps a) d);
- f) testing the stability of said variant; and
- 5 g) optionally repeating steps a) f) recursively; and
 - selecting a subtilase variant having increased stability as compared to the parent subtilase.

As will be understood by the skilled person it may also, in some cases, be advantageous to substitute an uncharged amino acid residue with an amino acid residue bearing a charge or, alternatively, it may in some cases be advantageous to substitute an amino acid residue bearing a charge with an amino acid residue bearing a charge of opposite sign. Thus, the above-mentioned method may easily be employed by the skilled person also for these purposes. In the case of substituting an uncharged amino acid residue with an amino acid residue bearing a charge the above-mentioned method may be employed the only difference being steps a) and b) which will then read:

- a) identifying, on the surface of the parent subtilase, at least one uncharged amino acid residue;
- b) substituting, on the surface of the parent subtilase, at least one uncharged amino acid residue with a charged amino acid residue selected from the group consisting of Asp, Glu, Arg, Lys and His.

Also in the case of changing the sign of an amino acid residue present on the surface of the subtilase the above method may be employed. Again, compared to the above method, the only difference being steps a) and b) which, in this case, read:

- a) identifying, on the surface of the parent subtilase, at least one charged amino acid residue selected from the group consisting of Asp, Glu, Arg, Lys and His;
- b) substituting, on the surface of the parent subtilase, at least one charged amino acid residue identified in step a) with an amino acid residue having an opposite charge.

Thus, Asp may be substituted with Arg, Lys or His; Glu may be substituted with Arg, Lys or His; Arg may be substituted with Asp or Glu; Lys may be substituted with Asp or Glu.

His may be substituted with Asp or Glu.

20

25

30

In order to determine the amino acid residues of a subtilase, which are present on the surface of the enzyme, the surface accessible area are measured using the DSSP program (Kabsch and Sander, *Biopolymers* (1983), 22, 2577-2637). All residues having a surface accessibilty higher than 0 is regarded a surface residue.

Amino acid residues found on the surface of JP170 using the above method are N76, N316, L381, K246, K9, K313 and K83. We consider the substitutions N79D, N316D and L381D of particular interest for stabilisation by introduction of salt bridges, whereas the substitutions K246R, K9R, K313R and K83R are of particular interest for the stabilisation at high pH.

Similar substitutions may be introduced in equivalent positions of other JP170 like subtilases.

Substitution with proline residues

Improved thermostability of a subtilase can be obtained by subjecting the subtilase in question to analysis for secondary structure, identifying residues in the subtilase having dihedral angles ϕ (phi) and ψ (psi) confined to the intervals [-90°< ϕ <-40° and -180°< ψ <180°], preferably the intervals [-90°< ϕ <-40° and 120°< ψ <180°] or [-90°< ϕ <-40° and -50°< ψ <10°] and excluding residues located in regions in which the subtilase is characterized by possessing α -helical or β -sheet structure.

After the dihedral angles ϕ (phi) and ψ (psi) for the amino acids have been calculated, based on the atomic structure in the crystalline subtilases, it is possible to select position(s) which has/have dihedral phi and psi angles favorable for substitution with a proline residue. The aliphatic side chain of proline residues is bonded covalently to the nitrogen atom of the peptide group. The resulting cyclic five-membered ring consequently imposes a rigid constraint on the rotation about the N-C_{α} bond of the peptide backbone and simultaneously prevents the formation of hydrogen bonding to the backbone N-atom. For these structural reasons, proline residues are generally not compatible with α -helical and β -sheet secondary conformations.

If a proline residue is not already at the identified position(s), the naturally occurring amino acid residue is substituted with a proline residue, preferably by site directed mutagenesis applied on a gene encoding the subtilase in question.

In the group of JP170 like subtilases proline residues can advantageously be introduced at positions 22, 44, 110, 139, 140, 166, 198, 201, 203, 231, 282, 356, 357 and 378. Accordingly, a preferred JP170 variant has one or more of the substitutions: Q22P, E44P, L110P,

T139P, D140P, S166P I198P, V201P, Q203P, S231P, S282P, S356P, T357P and K378P. Especially preferred are variants comprising one or more of: E44P, Q203P and S356P.

Improved activity of JP170 subtilases

As mentioned the JP170 subtilases differ greatly from the BPN' like subtilases in having a long apparently non-catalytic C-terminal. A possible truncation of JP170 is the removal of approx. 115 residues including two ion-binding sites, which can be obtained by deletion of or within the region 311-433, which is non-catalytic C-terminal. Preferred deletions are of the regions 317-433 or 315-433. Preferably the new C-terminal will be within the region of 311-325. Further, the deletion can be optimised with additional substitutions, such as one or more of L283N,Q; A290S,N and W306H,Y,K.

Preferred truncations comprise:

- a) deletion of region 317-433 and the substitutions L283N + A290S + W306H,
- b) deletion of region 315-433 and the substitutions L283N + A290S + W306H.

Substrate binding site

15

20 ·

The substrate binding site is identified by the residues in contact with a substrate model, such as the Cl2 inhibitor. The 3D structure coordinates of the JP170 subtilase with Cl2 bound in the active site can be found in Appendix 1. Without being limited to any theory, it is presently believed that binding between a substrate and an enzyme is supported by favorable interactions found within a sphere 10 Å from the substrate molecule. Examples of such favorable bonds are hydrogen bonds, strong electrostatic interaction and/or hydrophobic interactions.

The following residues of the JP170 subtilase (SEQ ID NO:1), are within a distance of 10Å from the Cl2 inhibitor which is bound to the substrate binding site. These residues are thus believed to be involved in interactions with said substrate:

```
29-32,
                   (i.e. residues 29, 30, 31, 32)
     64-72,
                   (i.e. residues 64, 65, 66, 67, 68, 69, 70, 71, 72)
     93,
     96-98,
30
                   (i.e. residues 96, 97, 98)
      100-110,
                   (i.e. residues 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110)
      113-114,
     127-136,
                   (i.e. residues 127, 128, 129, 130, 131, 132, 133, 134, 135, 136)
     138-141,
                    (i.e. residues 138, 139, 140, 141)
     144, 157, 174,
35
```

20

25

30

```
180-183, (i.e. residues 180, 181, 182, 183)
191, 193-194,
202-207, (i.e. residues 202, 203, 204, 205, 206, 207)
211,
5 223-226, (i.e. residues 223, 224, 225, 226)
234-241, (i.e. residues 234, 235, 236, 237, 238, 239, 240, 241)
249-258 (i.e. residues 249, 250, 251, 252, 253, 254, 255, 256, 257, 258).
```

In an embodyment of the present invention a variant comprises a modification in one or more of the above mentioned positions. A preferred variants is W129L.

JP170 with extra ion-binding site

The Strong ion-binding site from the BPN' subtilases can be transplanted into JP170 (or other subtilases in JP170 subgroup) by deletion of N79-N82 and subsequent insertion of LNNSIGV, followed by the substitution A45D,N and optionally the substitutions E44P,T and/or R47Q.

Removal of ion-binding site in JP170

By removing an ion-binding site it is possible to decrease the enzymes dependency of calcium in the media. The ion-binding sites in JP170 (or others from JP170 group) can be removed with guidance from the three-dimensional structure of BPN' and Savinase (or others in BPN' group), and of TY145 like subtilases.

Removal of ion-binding site 1 can be done by deletion of N186-N199 and subsequent insertion of at least three amino acid residues, preferably the sequence SSN. Preferably, but not mandatory one or both of the substitutions I7Q and V3Y is further added.

The ion-binding site 1 can be removed from a wild-type JP170 subtilase or a JP170 subtilase truncated as described above.

Subtilases free of ion-binding sites

With guidance from the three-dimensional structure of JP170 like subtilases and of TY145 like subtilases, the Strong and Weak ion-binding sites in BPN' like subtilases can be removed. Likewise, as described above, with guidance from the three-dimensional structure of BPN' and Savinase (or others in BPN' group), and of TY145 like subtilases, all three ion-binding sites can be removed from the wild-type JP170 subtilase or from JP170 like subti-

15

-20...

25

lases. The same approach can be used to remove the ion-binding sites from TY145 like subtilases.

Exemplified in Savinase, the removal can be done by altering the loops A194-L196 and L75-L82 either by a) insertion or deletion of a number of amino acid residues in the loops or b) by deletion of the entire loop or part of the loop and subsequent insertion of a number of residues from a corresponding loop of a JP170 or TY145 like subtilase.

Preferably the ion-binding sites of Savinase can be removed by either

- i) deletion of or in the region A194-L196 (BPN' numbers) and insertion of three or more residues chosen from JP170 positions P209-P217 and deletion of or in the region L75-L82 (BPN' numbers) and insertion of at least one residue chosen from TY145 positions H83-Y92 or
 - ii) deletion of or in the region A194-L196 (BPN' numbers) and insertion of three or more residues chosen from JP170 positions P209-P217 and deletion of or in the region L75-L82 (BPN' numbers) and insertion of at least one residues chosen from JP170 positions N79-K83.

Combined modifications

The present invention also encompasses any of the above mentioned subtilase variants in combination with any other modification to the amino acid sequence thereof. Especially combinations with other modifications known in the art to provide improved properties to the enzyme are envisaged.

Such combinations comprise the positions: 222 (improves oxidation stability), 218 (improves thermal stability), substitutions in the Ca²⁺-binding sites stabilizing the enzyme, *e.g.* position 76, and many other apparent from the prior art.

In further embodiments a subtilase variant described herein may advantageously be combined with one or more modification(s) in any of the positions:

27, 36, 56, 76, 87, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 120, 123, 159, 167, 170, 206, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 (BPN' numbering).

Specifically, the following BLSAVI, BLSUBL, BSKSMK, and BAALKP modifications are considered appropriate for combination:

K27R, *36D, S56P, N76D, S87N, G97N, S101G, S103A, V104A, V104I, V104N, V104Y, H120D, N123S, G159D, Y167, R170, Q206E, N218S, M222S, M222A, T224S, A232V, K235L, Q236H, Q245R, N248D, N252K and T274A.

variants Furthermore comprising the modifications S101G+V104N. 5 any of S87N+S101G+V104N, K27R+V104Y+N123S+T274A, N76D+S103A+V104I N76D+V104A, or other combinations of the modifications K27R, N76D, S101G, S103A, V104N, V104Y, V104I, V104A, N123S, G159D, A232V, Q236H, Q245R, N248D, N252K, T274A in combination with any one or more of the modification(s) mentioned above exhibit improved properties. 10

A particular interesting variant is a variant, which, in addition to modifications according to the invention, contains the following substitutions:

S101G+S103A+V104I+G159D+A232V+Q236H+Q245R+N248D+N252K.

Moreover, subtilase variants of the main aspect(s) of the invention are preferably combined with one or more modification(s) in any of the positions 129, 131 and 194, preferably as 129K, 131H and 194P modifications, and most preferably as P129K, P131H and A194P modifications. Any of those modification(s) are expected to provide a higher expression level of the subtilase variant in the production thereof.

Stabilization by modification of Asn-Gly pairs

It is known that at alkaline pH, the side chain of Asn may interact with the NH group of a sequential neighbouring amino acid to form an isoAsp residue where the backbone goes through the Asp side chain. This will leave the backbone more vulnerable to proteolysis. The deamidation is much more likely to occur if the residue that follows is a Gly. Changing the Asn in front of the Gly or the Gly will prevent this from happening and thus improve the stability, especially as concerns thermo- and storage stability.

The invention consequently further relates to a subtilase, in which either or both residues of any of the Asn-Gly sequence appearing in the amino acid sequence of the parent RP-II protease is/are deleted or substituted with a residue of a different amino acid.

The Asn and/or Gly residue may, for instance, be substituted with a residue of an amino acid selected from the group consisting of A, Q, S, P, T and Y.

.. 20...

25

30

10

15

20

25

30

Modification of Tyrosine residues

In relation to wash performance it has been found that the modification of certain tyrosine residues to phenylalanine provides an improved wash performance. Without being bound by any specific theory, it is believed that titration of these Tyr residues in the alkaline wash liquor has negative effects that are alleviated by replacing the Tyr residues with other residues, especially Phe or Trp, particularly Phe.

Methods of preparing JP170 like or BPN' like subtilase variants

The subtilase variants, i.e. the JP170 and BPN' variants of the present invention may be produced by any known method within the art and the present invention also relates to nucleic acid encoding a subtilase variant of the present invention, a DNA construct comprising said nucleic acid and a host cell comprising said nucleic acid sequence.

In general natural occurring proteins may be produced by culturing the organism expressing the protein and subsequently purifying the protein or it may be produced by cloning a nucleic acid, e.g. genomic DNA or cDNA, encoding the protein into an expression vector, introducing said expression vector into a host cell, culturing the host cell and purifying the expressed protein.

Typically protein variants may be produced by site-directed mutagenesis of a parent protein, introduction into expression vector, host cell etc. The parent protein may be cloned from a strain producing the polypeptide or from an expression library, i.e. it may be isolated from genomic DNA or prepared from cDNA, or a combination thereof.

In general standard procedures for cloning of genes and/or introducing mutations (random and/or site directed) into said genes may be used in order to obtain a parent subtilase, or subtilase or subtilase variant of the invention. For further description of suitable techniques reference is made to Molecular cloning: A laboratory manual (Sambrook et al. (1989), Cold Spring Harbor lab., Cold Spring Harbor, NY; Ausubel, F. M. et al. (eds.)); Current protocols in Molecular Biology (John Wiley and Sons, 1995; Harwood, C. R., and Cutting, S. M. (eds.)); Molecular Biological Methods for Bacillus (John Wiley and Sons, 1990); DNA Cloning: A Practical Approach, Volumes I and II (D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds (1985)); Transcription And Translation (B.D. Hames & S.J. Higgins, eds. (1984)); Animal Cell Culture (R.I. Freshney, ed. (1986)); Immobilized Cells And Enzymes (IRL Press, (1986)); A Practical Guide To Molecular Cloning (B. Perbal, (1984)) and WO 96/34946.

Further, variants could be constructed by:

10

15

20

25

30

Random Mutagenesis

Random mutagenesis is suitably performed either as localized or region-specific random mutagenesis in at least three parts of the gene translating to the amino acid sequence shown in question, or within the whole gene.

The random mutagenesis of a DNA sequence encoding a parent subtilase may be conveniently performed by use of any method known in the art.

In relation to the above, a further aspect of the present invention relates to a method for generating a variant of a parent subtilase, wherein the variant exhibits an altered property, such as increased thermostability, increased stability at low pH and at low calcium concentration, relative to the parent subtilase, the method comprising:

- (a) subjecting a DNA sequence encoding the parent subtilase to random mutagenesis,
- (b) expressing the mutated DNA sequence obtained in step (a) in a host cell, and
- (c) screening for host cells expressing a subtilase variant which has an altered property relative to the parent subtilase.

Step (a) of the above method of the invention is preferably performed using doped primers. For instance, the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents. The mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions.

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues. When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties.

When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions that are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide

10

15

20

25

30

can be incorporated into the DNA encoding the subtilase enzyme by any published technique, using, e.g., PCR, LCR or any DNA polymerase and ligase as deemed appropriate. Preferably, the doping is carried out using "constant random doping", in which the percentage of wild-type and modification in each position is predefined. Furthermore, the doping may be directed toward a preference for the introduction of certain nucleotides, and thereby a preference for the introduction of one or more specific amino acid residues. The doping may be made, e.g., so as to allow for the introduction of 90% wild type and 10% modifications in each position. An additional consideration in the choice of a doping scheme is based on genetic as well as protein-structural constraints. The doping scheme may be made by using the DOPE program which, *inter alia*, ensures that introduction of stop

When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent subtilase enzyme is subjected to PCR under conditions that increase the misincorporation of nucleotides (Deshler 1992; Leung et al., *Technique*, 1, 1989, pp. 11-15).

codons is avoided (L.J. Jensen et al. Nucleic Acid Research, 26, 697-702 (1998).

A mutator strain of *E. coli* (Fowler et al., *Molec. Gen. Genet.*, 133, 1974, 179-191), *S. cere-viseae* or any other microbial organism may be used for the random mutagenesis of the DNA encoding the subtilase by, e.g., transforming a plasmid containing the parent enzyme into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may be subsequently transformed into the expression organism.

The DNA sequence to be mutagenized may conveniently be present in a genomic or cDNA library prepared from an organism expressing the parent subtilase. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenising agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harbored in the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.

In some cases it may be convenient to amplify the mutated DNA sequence prior to performing the expression step b) or the screening step c). Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme.

10

25

Subsequent to the incubation with or exposure to the mutagenising agent, the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment. Examples of suitable host cells are the following: gram positive bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus, Bacillus megaterium, Bacillus thuringiensis, Streptomyces lividans or Streptomyces murinus; and gram negative bacteria such as E. coli.

The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence.

Localised random mutagenesis

The random mutagenesis may be advantageously localised to a part of the parent subtilase in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.

The localised or region-specific, random mutagenesis is conveniently performed by use of PCR generated mutagenesis techniques as described above or any other suitable technique known in the art. Alternatively, the DNA sequence encoding the part of the DNA sequence to be modified may be isolated, e.g., by insertion into a suitable vector, and said part may be subsequently subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

General method for random mutagenesis by use of the DOPE program

The random mutagenesis may be carried out by the following steps:

- 30 1. Select regions of interest for modification in the parent enzyme
 - 2. Decide on mutation sites and non-mutated sites in the selected region
 - 3. Decide on which kind of mutations should be carried out, e.g. with respect to the desired stability and/or performance of the variant to be constructed
 - 4. Select structurally reasonable mutations
- 35 5. Adjust the residues selected by step 3 with regard to step 4.

20

25

30

35

- 6. Analyse by use of a suitable dope algorithm the nucleotide distribution.
- 7. If necessary, adjust the wanted residues to genetic code realism, e.g. taking into account constraints resulting from the genetic code, e.g. in order to avoid introduction of stop codons; the skilled person will be aware that some codon combinations cannot be used in practice and will need to be adapted
- 8. Make primers
- 9. Perform random mutagenesis by use of the primers
- 10. Select resulting subtilase variants by screening for the desired improved properties.
- Suitable dope algorithms for use in step 6 are well known in the art. One such algorithm is described by Tomandi, D. et al., 1997, Journal of Computer-Aided Molecular Design 11:29-38. Another algorithm is DOPE (Jensen, LJ, Andersen, KV, Svendsen, A, and Kretzschmar, T (1998) Nucleic Acids Research 26:697-702).

15 <u>Expression vectors</u>

A recombinant expression vector comprising a nucleic acid sequence encoding a subtilase variant of the invention may be any vector that may conveniently be subjected to recombinant DNA procedures and which may bring about the expression of the nucleic acid sequence.

The choice of vector will often depend on the host cell into which it is to be introduced. Examples of a suitable vector include a linear or closed circular plasmid or a virus. The vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extra-chromosomal element, a mini chromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, pACYC184, pUB110, pE194, pTA1060, and pAMß1. Examples of origin of replications for use in a yeast host cell are the 2 micron origin of replication, the combination of CEN6 and ARS4, and the combination of CEN3 and ARS1. The origin of replication may be one having a mutation which makes it function as temperature-sensitive in the host cell (see, e.g., Ehrlich, 1978, Proceedings of the National Academy of Sciences USA 75:1433).

Alternatively, the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Vectors which are integrated into the genome of the host cell may contain any

10

25

30

35

nucleic acid sequence enabling integration into the genome, in particular it may contain nucleic acid sequences facilitating integration into the genome by homologous or non-homologous recombination. The vector system may be a single vector, e.g. plasmid or virus, or two or more vectors, e.g. plasmids or virus', which together contain the total DNA to be introduced into the genome of the host cell, or a transposon.

The vector may in particular be an expression vector in which the DNA sequence encoding the subtilase variant of the invention is operably linked to additional segments or control sequences required for transcription of the DNA. The term, "operably linked" indicates that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in a promoter and proceeds through the DNA sequence encoding the subtilase variant. Additional segments or control sequences include a promoter, a leader, a polyadenylation sequence, a propeptide sequence, a signal sequence and a transcription terminator. At a minimum the control sequences include a promoter and transcriptional and translational stop signals.

The promoter may be any DNA sequence that shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.

Examples of suitable promoters for use in bacterial host cells include the promoter of the *Bacillus subtilis* levansucrase gene (sacB), the *Bacillus stearothermophilus* maltogenic amylase gene (amyM), the *Bacillus licheniformis* alpha-amylase gene (amyL), the *Bacillus amyloliquefaciens* alpha-amylase gene (amyQ), the *Bacillus subtilis* alkaline protease gene, or the *Bacillus pumilus* xylosidase gene, the *Bacillus amyloliquefaciens* BAN amylase gene, the *Bacillus licheniformis* penicillinase gene (penP), the *Bacillus subtilis* xylA and xylB genes, and the prokaryotic beta-lactamase gene (Villa-Kamaroff et al., 1978, Proceedings of the National Academy of Sciences USA 75:3727-3731). Other examples include the phage Lambda P_R or P_L promoters or the E. coli lac, trp or tac promoters or the Streptomyces coelicolor agarase gene (dagA). Further promoters are described in "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; and in Sambrook et al., 1989, supra.

Examples of suitable promoters for use in a filamentous fungal host cell are promoters obtained from the genes encoding Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Rhizomucor miehei lipase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Aspergillus nidulans acetamidase, Fusarium oxysporum trypsin-like protease

10

15

20

25

30

(as described in U.S. Patent No. 4,288,627, which is incorporated herein by reference), and hybrids thereof. Particularly preferred promoters for use in filamentous fungal host cells are the TAKA amylase, NA2-tpi (a hybrid of the promoters from the genes encoding *Aspergillus niger* neutral (-amylase and *Aspergillus oryzae* triose phosphate isomerase), and glaA promoters. Further suitable promoters for use in filamentous fungus host cells are the ADH3 promoter (McKnight et al., The EMBO J. 4 (1985), 2093 - 2099) or the tpiA promoter. Examples of suitable promoters for use in yeast host cells include promoters from yeast glycolytic genes (Hitzeman et al., J. Biol. Chem. 255 (1980), 12073 - 12080; Alber and Kawasaki, J. Mol. Appl. Gen. 1 (1982), 419 - 434) or alcohol dehydrogenase genes (Young et al., in Genetic Engineering of Microorganisms for Chemicals (Hollaender et al., eds.), Plenum Press, New York, 1982), or the TPI1 (US 4,599,311) or ADH2-4c (Russell et al., Nature 304 (1983), 652 - 654) promoters.

Further useful promoters are obtained from the Saccharomyces cerevisiae enolase (ENO-1) gene, the Saccharomyces cerevisiae galactokinase gene (GAL1), the Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase genes (ADH2/GAP), and the Saccharomyces cerevisiae 3-phosphoglycerate kinase gene. Other useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8:423-488. In a mammalian host cell, useful promoters include viral promoters such as those from Simian Virus 40 (SV40), Rous sarcoma virus (RSV), adenovirus, and bovine papilloma virus (BPV).

Examples of suitable promoters for use in mammalian cells are the SV40 promoter (Subramani et al., Mol. Cell Biol. 1 (1981), 854 -864), the MT-1 (metallothionein gene) promoter (Palmiter et al., Science 222 (1983), 809 - 814) or the adenovirus 2 major late promoter.

An example of a suitable promoter for use in insect cells is the polyhedrin promoter (US 4,745,051; Vasuvedan et al., FEBS Lett. 311, (1992) 7 - 11), the P10 promoter (J.M. Vlak et al., J. Gen. Virology 69, 1988, pp. 765-776), the Autographa californica polyhedrosis virus basic protein promoter (EP 397 485), the baculovirus immediate early gene 1 promoter (US 5,155,037; US 5,162,222), or the baculovirus 39K delayed-early gene promoter (US 5,155,037; US 5,162,222).

The DNA sequence encoding a subtilase variant of the invention may also, if necessary, be operably connected to a suitable terminator.

The recombinant vector of the invention may further comprise a DNA sequence enabling the vector to replicate in the host cell in question.

15

20 ·

25

30

The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, or a gene encoding resistance to e.g. antibiotics like ampicillin, kanamycin, chloramphenicol, erythromycin, tetracycline, spectinomycine, neomycin, hygromycin, methotrexate, or resistance to heavy metals, virus or herbicides, or which provides for prototrophy or auxotrophs. Examples of bacterial selectable markers are the dal genes from Bacillus subtilis or Bacillus licheniformis, resistance. A frequently used mammalian marker is the dihydrofolate reductase gene (DHFR). Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3. A selectable marker for use in a filamentous fungal host cell may be selected from the group including, but not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hygB (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), trpC (anthranilate synthase), and glufosinate resistance markers, as well as equivalents from other species. Particularly, for use in an Aspergillus cell are the amdS and pyrG markers of Aspergillus nidulans or Aspergillus oryzae and the bar marker of Streptomyces hygroscopicus. Furthermore, selection may be accomplished by co-transformation, e.g., as described in WO 91/17243, where the selectable marker is on a separate vector.

To direct a subtilase variant of the present invention into the secretory pathway of the host cells, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) may be provided in the recombinant vector. The secretory signal sequence is joined to the DNA sequence encoding the enzyme in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the enzyme. The secretory signal sequence may be that normally associated with the enzyme or may be from a gene encoding another secreted protein.

The procedures used to ligate the DNA sequences coding for the present enzyme, the promoter and optionally the terminator and/or secretory signal sequence, respectively, or to assemble these sequences by suitable PCR amplification schemes, and to insert them into suitable vectors containing the information necessary for replication or integration, are well known to persons skilled in the art (cf., for instance, Sambrook et al.).

More than one copy of a nucleic acid sequence encoding an enzyme of the present invention may be inserted into the host cell to amplify expression of the nucleic acid sequence. Stable amplification of the nucleic acid sequence can be obtained by integrating at least one additional copy of the sequence into the host cell genome using methods well known in the art and selecting for transformants.

The nucleic acid constructs of the present invention may also comprise one or more nucleic acid sequences which encode one or more factors that are advantageous in the expression of the polypeptide, e.g., an activator (e.g., a trans-acting factor), a chaperone, and a processing protease. Any factor that is functional in the host cell of choice may be used in the present invention. The nucleic acids encoding one or more of these factors are not necessarily in tandem with the nucleic acid sequence encoding the polypeptide.

Host cells

5

10

15

20

25

30

35

The DNA sequence encoding a subtilase variant of the present invention may be either homologous or heterologous to the host cell into which it is introduced. If homologous to the host cell, i.e. produced by the host cell in nature, it will typically be operably connected to another promoter sequence or, if applicable, another secretory signal sequence and/or terminator sequence than in its natural environment. The term "homologous" is intended to include a DNA sequence encoding an enzyme native to the host organism in question. The term "heterologous" is intended to include a DNA sequence not expressed by the host cell in nature. Thus, the DNA sequence may be from another organism, or it may be a synthetic sequence.

The host cell into which the DNA construct or the recombinant vector of the invention is introduced may be any cell that is capable of producing the present subtilase variants, such as prokaryotes, e.g. bacteria or eukaryotes, such as fungal cells, e.g. yeasts or filamentous fungi, insect cells, plant cells or mammalian cells.

Examples of bacterial host cells which, on cultivation, are capable of producing the subtilase variants of the invention are gram-positive bacteria such as strains of Bacillus, e.g. strains of B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. megaterium or B. thuringiensis, or strains of Streptomyces, such as S. lividans or S. murinus, or gramnegative bacteria such as Escherichia coli or Pseudomonas sp.

The transformation of the bacteria may be effected by protoplast transformation, electroporation, conjugation, or by using competent cells in a manner known per se (cf. Sambrook et al., supra).

When expressing the subtilase variant in bacteria such as *E. coli*, the enzyme may be retained in the cytoplasm, typically as insoluble granules (known as inclusion bodies), or it may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed and the granules are recovered and denatured after which the enzyme is refolded by diluting the denaturing agent. In the latter case, the enzyme may be

10

15

·20 ·

25

30

35

recovered from the periplasmic space by disrupting the cells, e.g. by sonication or osmotic shock, to release the contents of the periplasmic space and recovering the enzyme.

When expressing the subtilase variant in gram-positive bacteria such as *Bacillus* or *Streptomyces* strains, the enzyme may be retained in the cytoplasm, or it may be directed to the extracellular medium by a bacterial secretion sequence. In the latter case, the enzyme may be recovered from the medium as described below.

Examples of host yeast cells include cells of a species of Candida, Kluyveromyces, Saccharomyces, Schizosaccharomyces, Pichia, Hansehula, or Yarrowia. In a particular embodiment, the yeast host cell is a Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis or Saccharomyces oviformis cell. Other useful yeast host cells are a Kluyveromyces lactis, Kluyveromyces fragilis, Hansehula polymorpha, Pichia pastoris, Yarrowia lipolytica, Schizosaccharomyces pombe, Ustilgo maylis, Candida maltose, Pichia guillermondii and Pichia methanolio cell (cf. Gleeson et al., J. Gen. Microbiol. 132, 1986, pp. 3459-3465; US 4,882,279 and US 4,879,231). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, F.A., Passmore, S.M., and Davenport, R.R., eds, Soc. App. Bacteriol. Symposium Series No. 9, 1980. The biology of yeast and manipulation of yeast genetics are well known in the art (see, e.g., Biochemistry and Genetics of Yeast, Bacil, M., Horecker, B.J., and Stopani, A.O.M., editors, 2nd edition, 1987; The Yeasts, Rose, A.H., and Harrison, J.S., editors, 2nd edition, 1987; and The Molecular Biology of the Yeast Saccharomyces, Strathern et al., editors, 1981). Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N. and Simon, M.I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al., 1983, Journal of Bacteriology 153:163; and Hinnen et al., 1978, Proceedings of the National Academy of Sciences USA 75:1920.

Examples of filamentous fungal cells include filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra), in particular it may of the a cell of a species of Acremonium, such as A. chrysogenum, Aspergillus, such as A. awamori, A. foetidus, A. japonicus, A. niger, A. nidulans or A. oryzae, Fusarium, such as F. bactridioides, F. cerealis, F. crookwellense, F. culmorum, F. graminearum, F. graminum, F. heterosporum, F. negundi, F. reticulatum, F. roseum, F. sambucinum, F. sarcochroum, F. sulphureum, F. trichothecioides or F. oxysporum, Humicola, such as H. insolens or H. lanuginose, Mucor, such as M. miehei, Myceliophthora, such as M. thermophilum, Neuro-

30

35

spora, such as N. crassa, Penicillium, such as P. purpurogenum, Thielavia, such as T. terrestris, Tolypocladium, or Trichoderma, such as T. harzianum, T. koningii, T. longibrachiatum, T. reesei or T. viride, or a teleomorph or synonym thereof. The use of Aspergillus spp. for the expression of proteins is described in, e.g., EP 272 277, EP 230 023.

- Examples of insect cells include a *Lepidoptera* cell line, such as *Spodoptera frugiperda* cells or *Trichoplusia ni* cells (cf. US 5,077,214). Culture conditions may suitably be as described in WO 89/01029 or WO 89/01028. Transformation of insect cells and production of heterologous polypeptides therein may be performed as described in US 4,745,051; US 4,775, 624; US 4,879,236; US 5,155,037; US 5,162,222; EP 397,485).
- Examples of mammalian cells include Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, COS cells, or any number of other immortalized cell lines available, e.g., from the American Type Culture Collection. Methods of transfecting mammalian cells and expressing DNA sequences introduced in the cells are described in e.g. Kaufman and Sharp, J. Mol. Biol. 159 (1982), 601 621; Southern and Berg, J. Mol. Appl.
 Genet. 1 (1982), 327 341; Loyter et al., Proc. Natl. Acad. Sci. USA 79 (1982), 422 426; Wigler et al., Cell 14 (1978), 725; Corsaro and Pearson, Somatic Cell Genetics 7 (1981), 603, Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Inc., N.Y., 1987, Hawley-Nelson et al., Focus 15 (1993), 73; Ciccarone et al., Focus 15 (1993), 80; Graham and van der Eb, Virology 52 (1973), 456; and Neumann et al., EMBO J. 1 (1982), 841 845. Mammalian cells may be transfected by direct uptake using the calcium phosphate precipitation method of Graham and Van der Eb (1978, Virology 52:546).

Methods for expression and isolation of proteins

To express an enzyme of the present invention the above mentioned host cells transformed or transfected with a vector comprising a nucleic acid sequence encoding an enzyme of the present invention are typically cultured in a suitable nutrient medium under conditions permitting the production of the desired molecules, after which these are recovered from the cells, or the culture broth.

The medium used to culture the host cells may be any conventional medium suitable for growing the host cells, such as minimal or complex media containing appropriate supplements. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. in catalogues of the American Type Culture Collection). The media may be prepared using procedures known in the art (see, e.g., references for bacteria and yeast; Bennett, J.W. and LaSure, L., editors, More Gene Manipulations in Fungi, Academic Press, CA, 1991).

10

15

20

25

35

If the enzymes of the present invention are secreted into the nutrient medium, they may be recovered directly from the medium. If they are not secreted, they may be recovered from cell lysates. The enzymes of the present invention may be recovered from the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, gelfiltration chromatography, affinity chromatography, or the like, dependent on the enzyme in question.

The enzymes of the invention may be detected using methods known in the art that are specific for these proteins. These detection methods include use of specific antibodies, formation of a product, or disappearance of a substrate. For example, an enzyme assay may be used to determine the activity of the molecule. Procedures for determining various kinds of activity are known in the art.

The enzymes of the present invention may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing (IEF), differential solubility (e.g., ammonium sulfate precipitation), or extraction (see, e.g., Protein Purification, J-C Janson and Lars Ryden, editors, VCH Publishers, New York, 1989).

When an expression vector comprising a DNA sequence encoding an enzyme of the present invention is transformed/transfected into a heterologous host cell it is possible to enable heterologous recombinant production of the enzyme. An advantage of using a heterologous host cell is that it is possible to make a highly purified enzyme composition, characterized in being free from homologous impurities, which are often present when a protein or peptide is expressed in a homologous host cell. In this context homologous impurities mean any impurity (e.g. other polypeptides than the enzyme of the invention) which originates from the homologous cell where the enzyme of the invention is originally obtained from.

30 DETERGENT APPLICATIONS

The enzyme of the invention may be added to and thus become a component of a detergent composition.

The detergent composition of the invention may for example be formulated as a hand or machine laundry detergent composition including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be

10

15

25

30

35

formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for hand or machine dishwashing operations.

In a specific aspect, the invention provides a detergent additive comprising the enzyme of the invention. The detergent additive as well as the detergent composition may comprise one or more other enzymes such as a protease, a lipase, a cutinase, an amylase, a carbohydrase, a cellulase, a pectinase, a mannanase, an arabinase, a galactanase, a xylanase, an oxidase, e.g., a laccase, and/or a peroxidase.

In general the properties of the chosen enzyme(s) should be compatible with the selected detergent, (i.e. pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts.

<u>Proteases</u>: Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases are subtilisins, especially those derived from *Bacillus*, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279). Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the *Fusarium* protease described in WO 89/06270 and WO 94/25583.

Examples of useful proteases are the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27, 36, 57, 76, 87, 97, 101, 104, 120, 123, 167, 170, 194, 206, 218, 222, 224, 235 and 274.

Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™, Esperase™, and Kannase™ (Novo Nordisk A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.).

<u>Lipases</u>: Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from *Humicola* (synonym *Thermomyces*), e.g. from *H. lanuginosa* (*T. lanuginosus*) as described in EP 258 068 and EP 305 216 or from *H. insolens* as described in WO 96/13580, a *Pseudomonas* lipase, e.g. from *P. alcaligenes* or *P. pseudoalcaligenes* (EP 218 272), *P. cepacia* (EP 331 376), *P. stutzeri* (GB 1,372,034), *P. fluorescens*, *Pseudomonas sp.* strain SD 705 (WO 95/06720 and WO 96/27002), *P. wisconsinensis* (WO 96/12012), a *Bacillus*

10

15

30

lipase, e.g. from *B. subtilis* (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360), *B. stearothermophilus* (JP 64/744992) or *B. pumilus* (WO 91/16422).

Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.

Preferred commercially available lipase enzymes include LipolaseTM and Lipolase UltraTM (Novo Nordisk A/S).

Amylases: Suitable amylases (α and/or β) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, α -amylases obtained from *Bacillus*, e.g. a special strain of *B. licheniformis*, described in more detail in GB 1,296,839.

Examples of useful amylases are the variants described in WO 94/02597, WO 94/18314, WO 96/23873, and WO 97/43424, especially the variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444.

Commercially available amylases are DuramylTM, TermamylTM, FungamylTM and BANTM (Novo Nordisk A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).

Cellulases: Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691,178, US 5,776,757 and WO 89/09259.

Especially suitable cellulases are the alkaline or neutral cellulases having colour care benefits. Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940. Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471, WO 98/12307 and PCT/DK98/00299.

Commercially available cellulases include Celluzyme[™], and Carezyme[™] (Novo Nordisk A/S), Clazinase[™], and Puradax HA[™] (Genencor International Inc.), and KAC-500(B)[™] (Kao Corporation).

15

30

35

Peroxidases/Oxidases: Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.

Commercially available peroxidases include Guardzyme™ (Novo Nordisk A/S). 5

The detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes. A detergent additive of the invention, i.e. a separate additive or a combined additive, can be formulated e.g. as a granulate, a liquid, a slurry, etc. Preferred detergent additive formulations are granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids, or slurries.

Non-dusting granulates may be produced, e.g., as disclosed in US 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Examples of film-forming coating materials 20 suitable for application by fluid bed techniques are given in GB 1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Protected enzymes may be prepared according to the method disclosed in EP 238,216.

25 The detergent composition of the invention may be in any convenient form, e.g., a bar, a tablet, a powder, a granule, a paste or a liquid. A liquid detergent may be aqueous, typically containing up to 70 % water and 0-30 % organic solvent, or non-aqueous.

The detergent composition comprises one or more surfactants, which may be non-ionic including semi-polar and/or anionic and/or cationic and/or zwitterionic. The surfactants are typically present at a level of from 0.1% to 60% by weight.

When included therein the detergent will usually contain from about 1% to about 40% of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap.

10

15

20

25

30

When included therein the detergent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine ("glucamides").

The detergent may contain 0-65 % of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g. SKS-6 from Hoechst).

The detergent may comprise one or more polymers. Examples are carboxymethylcellulose, poly(vinylpyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-Noxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.

The detergent may contain a bleaching system which may comprise a H_2O_2 source such as perborate or percarbonate which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine or nonanoyloxybenzenesulfonate. Alternatively, the bleaching system may comprise peroxyacids of e.g. the amide, imide, or sulfone type.

The enzyme(s) of the detergent composition of the invention may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.

The detergent may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, dyes, bactericides, optical brighteners, hydrotropes, tarnish inhibitors, or perfumes.

In the detergent compositions any enzyme, in particular the enzyme of the invention, may be added in an amount corresponding to 0.01-100 mg of enzyme protein per litre of wash liquor, preferably 0.05-5 mg of enzyme protein per litre of wash liquor, in particular 0.1-1 mg of enzyme protein per litre of wash liquor.

The enzyme of the invention may additionally be incorporated in the detergent formulations disclosed in WO 97/07202 which is hereby incorporated as reference.

5

10

15

20

MATERIALS AND METHODS

Textiles

Standard textile pieces are obtained from EMPA St. Gallen, Lerchfeldstrasse 5, CH-9014 St. Gallen, Switzerland. Especially type EMPA 116 (cotton textile stained with blood, milk and ink) and EMPA 117 (polyester/cotton textile stained with blood, milk and ink).

Method for producing a subtilase variant

The present invention provides a method of producing an isolated enzyme according to the invention, wherein a suitable host cell, which has been transformed with a DNA sequence encoding the enzyme, is cultured under conditions permitting the production of the enzyme, and the resulting enzyme is recovered from the culture.

When an expression vector comprising a DNA sequence encoding the enzyme is transformed into a heterologous host cell it is possible to enable heterologous recombinant production of the enzyme of the invention. Thereby it is possible to make a highly purified subtilase composition, characterized in being free from homologous impurities.

The medium used to culture the transformed host cells may be any conventional medium suitable for growing the host cells in question. The expressed subtilase may conveniently be secreted into the culture medium and may be recovered there-from by well-known procedures including separating the cells from the medium by centrifugation or filtration, precipitating proteinaceous components of the medium by means of a salt such as ammonium sulfate, followed by chromatographic procedures such as ion exchange chromatography,

30

35

25

EXAMPLE 1

Removal of ion-binding sites from BPN' like subtilases

affinity chromatography, or the like.

The below mentioned regions in JP170 and TY145 have been selected for transfer from JP170 and TY145 to Savinase. By use of the molecular methods of preparing subtilase variants as described herein, the Savinase regions (BPN' numbering) are deleted and the

JP170 and TY145 regions are inserted instead. Since the Savinase regions are in contact with ion-binding sites, the purpose of the modifications is to remove the ion-binding site from Savinase.

5 Savinase

region A194-L196

JP170

region P209-P217 and

Savinase

region L75-L82

TY145

region H83-Y92,

10 alternatively the modification can be

Savinase

region A194-L196

JP170

region P209-P217 and

Savinase

region L75-L82

15 JP170

20

25

30

region N79-K83.

EXAMPLE 2

Purification and assessment of enzyme concentration

After fermentation, purification of subtilisin variants is accomplished using Hydrophobic Charge Induction Chromatography (HCIC) and subsequent vacuum filtration.

To capture the enzyme, the HCIC uses a cellulose matrix to which 4-Mercapto-Ethyl-Pyridine (4-MEP) is bound.

Beads of the cellulose matrix sized 80-100 µm are mixed with a media containing yeast and the transformed *B. subtilis* capable of secreting the subtilisin variants and incubated at pH 9.5 in Unifilter® microplates.

As 4-MEP is hydrophobic at pH > 7 and the subtilisin variants are hydrophobic at pH 9.5 a hydrophobic association is made between the secreted enzyme and the 4-MEP on the beads. After incubation the media and cell debris is removed by vacuum filtration while the beads and enzyme are kept on the filter.

To elute the enzyme from the beads the pH is now lowered by washing the filter with an elution buffer (pH 5). Hereby the enzymes part from the beads and can be retrieved from the buffer.

10

15

20

25

The concentration of the purified subtilisin enzyme variants is assessed by active site titration (AST).

The purified enzyme is incubated with the high affinity inhibitor CI-2A at different concentrations to inhibit a varying amount of the active sites. The protease and inhibitor binds to each other at a 1:1 ratio and accordingly the enzyme concentration can be directly related to the concentration of inhibitor, at which all protease is inactive. To measure the residual protease activity, a substrate (0.6 mM Suc-Ala-Ala-Pro-Phe-pNA in Tris/HCI buffer) is added after the incubation with inhibitor and during the following 4 minutes the development of the degradation product pNA (paranitrophenol) is measured periodically at 405 nm on an Elisa Reader.

EXAMPLE 3

Wash performance of detergent compositions comprising modified enzymes

Wash performance of detergent compositions comprising enzyme hybrids or enzyme variants of the present is tested at low washing temperature.

AMSA

The enzyme variants of the present application are tested using the Automatic Mechanical Stress Assay (AMSA). With the AMSA test the wash performance of a large quantity of small volume enzyme-detergent solutions can be examined. The AMSA plate has a number of slots for test solutions and a lid firmly squeezing the textile swatch to be washed against all the slot openings. During the washing time, the plate, test solutions, textile and lid are vigorously shaken to bring the test solution in contact with the textile and apply mechanical stress. For further description see WO 02/42740 especially the paragraph "Special method embodiments" at page 23-24.

The assay is conducted under the experimental conditions specified below:

Detergent base	Standard European detergent							
Detergent dosage	1.5 g/I							
Test solution volume	160 micro I							
рН	10-10.5 adjusted with NaHCO₃							
Wash time	12 minutes							
Temperature	20°C							

Water hardness	9°dH
Enzyme concentration in test solution	5 nM, 10 nM and 30 nM
Test material	EMPA 117

After washing the textile pieces are flushed in tap water and air-dried.

The performance of the enzyme variant is measured as the brightness of the colour of the textile samples washed with that specific enzyme variant. Brightness can also be expressed as the intensity of the light reflected from the textile sample when luminated with white light. When the textile is stained the intensity of the reflected light is lower, than that of a clean textile. Therefore the intensity of the reflected light can be used to measure wash performance of an enzyme variant.

Colour measurements are made with a professional flatbed scanner (*PFU DL2400pro*), which is used to capture an image of the washed textile samples. The scans are made with a resolution of 200 dpi and with an output colour dept of 24 bits. In order to get accurate results, the scanner is frequently calibrated with a *Kodak reflective IT8 target*.

To extract a value for the light intensity from the scanned images, a special designed software application is used (*Novozymes Color Vector Analyzer*). The program retrieves the 24 bit pixel values from the image and converts them into values for red, green and blue (RGB). The intensity value (Int) is calculated by adding the RGB values together as vectors and then taking the length of the resulting vector:

$$Int = \sqrt{r^2 + g^2 + b^2}$$

The wash performance (P) of the variants is calculated in accordance with the below formula:

$$P = Int(v) - Int(r)$$

where

10

15

20

30

Int(v) is the light intensity value of textile surface washed with enzyme variant and Int(r) is the light intensity value of textile surface washed with the reference enzyme e.g. subtilisin 309 (BLSAVI).

Performance Scores (S) are summing up the performances (P) of the tested enzyme variants as:

S (2) which indicates that the variant performs better than the reference at all three

concentrations (5, 10 and 30 nM) and

S (1) which indicates that the variant performs better than the reference at one or two concentrations.

5 Mini wash assay

A millilitre scale wash performance assay is conducted under the following conditions:

Detergent base	Standard European detergent powder
Detergent dose	1.5 g/l
рН	"as is" in the current detergent solution and is not adjusted.
Wash time	14 min.
Temperature	20°C
Water hardness	9°dH, adjusted by adding CaCl ₂ *2H ₂ O; MgCl ₂ *6H ₂ O; Na-
	HCO_3 ($Ca^{2+}:Mg^{2+}:HCO^{3-}=2:1:6$) to milli-Q water.
Enzyme conc.	5 nM, 10 nM
Test system	125 ml glass beakers. Textile dipped in test solution. Con-
	tinuously up and down, 50 times per minute
Textile/volume	1 textile piece (13 x 3 cm) in 50 ml test solution
Test material	EMPA 117 textile swatches

After wash the measurement of remission from the test material is done at 460 nm using a Zeiss MCS 521 VIS spectrophotometer. The measurements are done according to the manufacturer's protocol.

15

2 1 MRS. 2003

CLAIMS

10

15

20

25

- 1. A JP170 like subtilase which is at least 58% homologous to the sequence of SEQ ID NO:1, comprising the overall subtilisin fold and the following structural characteristics:
- 5 a) a twisted beta-sheet with 7 strands,
 - b) six alpha helices,
 - c) three ion-binding sites, and not comprising the Strong and Weak ion-binding sites of the BPN' like subtilases, and with the exception of the subtilases JP170, KP1790, KP9860, KP43, Y, SD-521 and variants aam50090, aam50086, aam50085, aam50084, aam50083, aam50082, aam50081, aam50080 of EP 1209233.
 - 2. The subtilase of claim 1, wherein the positions of said three ion-binding sites in the three-dimensional structure of the subtilase is defined by the distance to the c-alpha atoms of the three active site amino acid residues of the subtilases, that is Ser, His and Asp, and the c-alpha atom of the amino acid residue next to the active site Ser residue (next to Ser), wherein said distances between:
 - a) ion-binding site 1 and i) Asp c-alpha atom is 26.70-28.70Å, ii) His c-alpha atom is 22.10-24.10Å, iii) Ser c-alpha atom is 16.95-18.95Å, iv) next to Ser c-alpha atom is 15.30-17.30Å,
 - b) ion-binding site 2 and i) Asp c-alpha atom is 33.50-35.50Å, ii) His c-alpha atom is 37-39Å, iii) Ser c-alpha atom is 29.40-31.40Å, iv) next to Ser c-alpha atom is 30.70-32.70Å,
 - c) ion-binding site 3 and i) Asp c-alpha atom is 41.50-43.50Å, ii) His c-alpha atom is 42.90-44.90Å, iii) Ser c-alpha atom is 34.50-36.50Å, iv) next to Ser c-alpha atom is 35-37Å.
 - 3. A subtilase according to claim 2 wherein the positions of the three ion-binding sites are defined by the distance to the c-alpha atoms of amino acid residues Asp30, His68, Ser254 and Met255 of SEQ ID NO:1 or by the distances to the c-alpha atoms of equivalent amino acid residues in another subtilase of the invention in accordance with claim 1, wherein the distance between
 - a) ion-binding site 1 and i) Asp c-alpha atom is 27.69Å, ii) His c-alpha atom is 23.12Å, iii) Ser c-alpha atom is 17.95Å, iv) next to Ser c-alpha atom is 16.34Å,
- b) ion-binding site 2 and i) Asp c-alpha atom is 34.49Å, ii) His c-alpha atom is 38.03Å, iii)

- Ser c-alpha atom is 30.41Å, iv) next to Ser c-alpha atom is 31.68Å,
- c) ion-binding site 3 and i) Asp c-alpha atom is 42.48Å, ii) His c-alpha atom is 43.87Å, iii) Ser c-alpha atom is 35.51Å, iv) next to Ser c-alpha atom is 36.02Å, and wherein the variation on the above mentioned distances are ±0.80Å, preferably ±0.70Å, more preferably ±0.60Å, more preferably ±0.50Å, more preferably ±0.40Å, or most preferably ±0.30Å.
- 4. A method of producing a variant of a parent JP170 like subtilase, the variant having at least one altered property as compared to the parent JP170 like subtilase, the method comprising:
 - a) modelling the parent JP170 like subtilase on the three-dimensional structure of a JP170 subtilase to produce a three-dimensional structure of the parent JP170 like subtilase;
- b) identifying on the basis of the comparison in step a) at least one structural part of the parent JP170 subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
 - c) modifying the nucleic acid sequence encoding the parent JP170 subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
 - d) expressing the modified nucleic acid sequence in a host cell to produce the variant JP170 subtilase;
 - e) isolating the produced subtilase;
 - f) purifying the isolated subtilase and
- 25 g) recovering the purified subtilase.
 - 5. A method according to claim 4, wherein the JP170 subtilase on which the parent JP170 subtilase is modelled in step a) is at least 58% homologous to SEQ ID NO:1, preferably at least 60% homologous, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:1.

- 6. A method according to claim 4 or 5, wherein the JP170 subtilase on which the parent JP170 subtilase is modelled in step a) is defined in accordance with claim 3.
- 7. A method of producing a variant of a parent Subtilisin family subtilase, the variant having at least one altered property as compared to the parent Subtilisin family subtilase, the method comprising:
 - modelling the parent Subtilisin family subtilase on the three-dimensional structure of a Subtilisin family subtilase to produce a three-dimensional structure of the parent Subtilisin family subtilase;
- 10 b) comparing the three-dimensional structure obtained in step a) to the three-dimensional structure of a JP170 like subtilase;
 - c) identifying on the basis of the comparison in step b) at least one structural part of the parent Subtilisin family subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
- d) modifying the nucleic acid sequence encoding the parent Subtilisin family subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
 - e) expressing the modified nucleic acid sequence in a host cell to produce the variant Subtilisin family subtilase,
 - f) isolating the produced subtilase,

- g) purifying the isolated subtilase and
- h) recovering the purified subtilase.
- 8. A method according to claim 7, wherein the Subtilisin family subtilase on which the parent Subtilisin family subtilase is modelled in step a) is at least 61% homologous to SEQ ID NO:4, preferably at least 63% homologous, preferably at least 65% homologous, more preferably at least 70%, more preferably at least 74%, more preferably at least 80%, more preferably at least 81%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:4.

20

- 9. A method according to any of claim 7 and 8, wherein the JP170 subtilase of step b) is defined in accordance with claim 3.
- 10. A method according to any of claims 7-9, wherein the JP170 subtilase in step b) is at least 58% homologous with the sequence of SEQ ID NO:1, preferably at least 60% homologous, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:1.
 - 11. A method of producing a variant of a parent JP170 like subtilase, the variant having at least one altered property as compared to the parent JP170 like subtilase, the method comprising:
 - a) modelling the parent JP170 like subtilase on the three-dimensional structure of a JP170 like subtilase to produce a three-dimensional structure of the parent JP170 like subtilase;
 - b) comparing the three-dimensional structure obtained in step a) to the three-dimensional structure of a Subtilisin family subtilase;
 - c) identifying on the basis of the comparison in step b) at least one structural part of the parent JP170 like subtilase, wherein an alteration in said structural part is predicted to result in an altered property;
 - d) modifying the nucleic acid sequence encoding the parent JP170 like subtilase to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
 - e) expressing the modified nucleic acid sequence in a host cell to produce the variant JP170 like subtilase;
- 30 f) isolating the produced subtilase;
 - g) purifying the isolated subtilase and
 - h) recovering the purified subtilase.
- 12. A method according to claim 11, wherein the Subtilisin family subtilase of step b) is at least 61% homologous to SEQ ID NO:4, preferably at least 63% homologous, preferably at

10

15

30

least 65% homologous, more preferably at least 70%, more preferably at least 74%, more preferably at least 80%, more preferably at least 83%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:4.

- 13. A method according to any of claim 11 and 12, wherein the parent JP170 like subtilase is defined in accordance with claim 3.
- 14. A method according to any of claims 11-13, wherein the parent JP170 like subtilase is at least 58% homologous with the sequence of SEQ ID NO:1, preferably at least 60% homologous, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98% or even more preferably at least 99% homologous to the sequence of SEQ ID NO:1.
- 15. A variant subtilase comprising an alteration in one or more positions located at a distance of not more than 10Å to one of the ion-binding sites of JP170, wherein the positions, as specified in SEQ ID NO:1, located at a distance of not more than 10Å to:
 - a) ion-binding site 1 are: 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 224 and 225,
- b) ion-binding site 2 are: 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390,
 391, 392 and 393,
 - c) ion-binding site 3 are: 348, 350, 352, 363, 364, 365, 366, 367, 368, 369, 370, 380, 381, 382, 383, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 414, 415, 416, 417, 418, 419, 420.
 - 16. A subtilase variant according to claim 15 comprising one or more of the substitutions: S193Q,Y; H200D,N; H200D,N+D196N; N390D; N391D; G394N,Q,F,Y,S and W392S,N,Q.
- 17. A JP170 like subtilase variant comprising the introduction of a ion-binding site corresponding to the Strong ion-binding site of the BPN' like family subtilases, wherein said variance.

25

ant has a deletion of or in the region N79-N82 of SEQ ID NO:1 and subsequent insertion of one or more amino acid residues, preferably insertion of the sequence LNNSIQV followed by the substitution A45D,N and optionally the substitutions E44P,T and/or R47Q.

18. A JP170 like subtilase variant in which one or more ion-binding sites have been removed, wherein said variant comprises deletion of or in the region N186-N199 of SEQ ID NO:1 and subsequent insertion of one or more amino acid residues, preferably insertion of the sequence SSN, and preferably further comprising one or both of the substitutions I7Q and V3Y.

19. A BPN' like subtilase variant in which the ion-binding sites has been removed, wherein said variant comprises:

- a) deletion of or in the region A194-L196 (Savinase in BPN' numbering) or a corresponding region in another BPN' like subtilase and insertion of three or more amino acid residues, preferably insertion of P209-P217 from JP170 or a corresponding region in another JP170 like subtilase and deletion of or in the region L75-L82 (Savinase in BPN' numbering) or a corresponding region in said other BPN' like subtilase and insertion of one or more amino acid residues, preferably insertion of H83-Y92 from TY145 or a corresponding region in another TY145 like subtilase or
 - b) deletion of or in the region A194-L196 (Savinase in BPN' numbering) or a corresponding region in another BPN' like subtilase and insertion of three or more amino acid residues, preferably insertion of P209-P217 from JP170 or a corresponding region in another JP170 like subtilase and deletion of or in the L75-L82 (Savinase in BPN' numbering) or a corresponding region in said other BPN' like subtilase and insertion of one or more amino acid residues, preferably insertion of N79-K83 from JP170 or a corresponding region in another JP170 like subtilase.
- 20. A JP170 like subtilase variant comprising an alteration in one or more of the following positions:

13, 14, 15, 16, 17, 18,

37, 38, 39, 40, 41, 42, 43,

47, 48, 49, 50,

35 57, 58, 59,

```
96, 97, 98, 99, 100, 101, 102, 103, 131, 132, 133, 134, 152, 153 162, 163, 164, 165, 166, 5 188, 189, 190, 191, 192, 193, 194, 195, 210 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 372, 373, 374, 375, 376, 377, 378, 387, 388, 389, 390, 391, 392, 10 406, 407 and 419.
```

21. A JP170 like subtilase variant comprising an alteration in one or more of the following positions:

```
37, 38, 39, 40, 41, 42,
15
     57, 58, 59, 60, ·
     66, 67,
     98, 99, 100, 101, 102, 103,
     107, 108, 109, 110, 111,
     188, 189, 190, 191, 192, 193,
20
     236, 237, 238, 239, 240,
     326, 327, 328, 329, 330, 331, 332,
     337, 338, 339, 340, 341, 342,
     355, 356, 357, 358, 359, 360,
     372, 373, 374, 375, 376, 377,
25
     384, 385, 386, 387, 388,
     404, 405, 406, 407, 408, 409, 410, 411.
```

- 22. A subtilase variant according to claim 21 comprising one or more of the modifications: W240H,Y; G355A,S; S356T,N; T357N,Q,D,E,P; T358S; A359S,T,N,Q and S360T,N.
- 23. A variant subtilase comprising an alteration in one or more positions which are within a distance of 10Å from a Cl2 inhibitor which is bound to the active site of JP170, wherein the positions, as specified in SEQ ID NO:1 are:

15

20

25

29, 30, 31, 32, 64, 65, 66, 67, 68, 69, 70, 71, 72, 93, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 113, 114, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 144, 157, 174, 180, 181, 182, 183, 191, 193, 194, 202, 203, 204, 205, 206, 207, 211, 223, 224, 225, 226, 234, 235, 236, 237, 238, 239, 240, 241, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, preferably comprising the substitution W129L.

- 24. A JP170 like subtilase variant comprising one or more disulfide bridges introduced by one or more of the following modifications: G21C/A86C, V26C/A265C, G57C/G105C, G74C/A229C, Q111C/Y143C, G160C/S170C, A286C/V349C, A27C/A122C, A45C/G78C, V72C/P258C, G78C/A229C, D98C/G104C, Q111C/Y147C, G135C/G167C, R142C/P354C, V144C/A178C, G182C/P217C, A183C/G223C, A195C/Y225C, F271C/P279C, A287C/A430C, A293C/S310C, E322C/S428C, S324C/A332C, S327C/P424C, D352C/N397C, G255C/T362C, G291C/S314C, A4C/P222C and A27C/V117C, wherein the positions correspond to the positions in SEQ ID NO:1
- 25. A JP170 like subtilase variant comprising an alteration in one or more of the positions N76, N316, L381, K246, K9, K313 and K83, preferably comprising one or more of the substitutions N79D, N316D, L381D, K246R, K9R, K313R and K83R of SEQ ID NO:1.

26. A JP170 like subtilase variant comprising an alteration in one or more of the positions 22, 44, 110, 139, 140, 166, 198, 201, 203, 231, 282, 356, 357 and 378, preferably comprising one or more of the substitutions: Q22P, E44P, L110P, T139P, D140P, S166P I198P, V201P, Q203P, S231P, S282P, S356P, T357P and K378P.

- 27. A JP170 like subtilase variant comprising a deletion of the region 311-433, preferably deletion of positions 317-433 or 315-433, further comprising one or more of the substitutions L283N,Q; A290S,N and W306H,Y,K.
- 30 28. A subtilase variant according to claim 27, comprising
 - a) deletion of positions 317-433 and the substitutions L283N, A290S and W306H, or
 - b) deletion of region 315-433 and the substitutions L283N, A290S and W306H.
- 29. An isolated nucleic acid sequence comprising a nucleic acid sequence, which encodes for the subtilase variant defined or produced in any of the preceding claims.

15

- 30. An isolated nucleic acid sequence according to claim 29, wherein the nucleic acid sequence is selected form the group consisting of:
- a) a nucleic acid sequence encoding an enzyme having at least 58% homology with the amino acid sequence shown in SEQ ID NO:1, and
- b) a nucleic acid sequence which hybridizes under low stringency conditions, preferably under medium stringency conditions, in particular under high stringency conditions, with a complementary strand of the nucleic acid sequence encoding an enzyme having at least 58% homology with the amino acid sequence shown in SEQ ID NO:1, or
- 10 c) a subsequence of any of a) or b) of at least 100 nucleotides.
 - 31. An isolated nucleic acid construct comprising a nucleic acid sequence as defined in any of claims 29-30, operably linked to one or more control sequences capable of directing the expression of the polypeptide in a suitable expression host.

32. A recombinant host cell comprising the nucleic acid construct of claim 31.

- 33. A method for producing the variant defined in any of the preceding claims, the method comprising:
- 20 a) cultivating the recombinant host cell of claim 32 under conditions conducive to the production of the subtilase variant; and
 - b) recovering the variant.
 - 34. A detergent composition comprising a JP170 like subtilase variant or a BPN' like subtilase variant.
 - 35. Use of a JP170 like subtilase variant or a BPN' like subtilase variant in cleaning or washing applications.

Modtaget PVS

2 1 MRS. 2003

ABSTRACT

The present invention relates to methods for producing variants of a parent JP170 subtilase and of a parent BPN' subtilase and to JP170 and BPN' variants having altered properties as compared to the parent JP170/BPN' subtilase.

5

10

15

20 · ·

25

30

2 1 MRS. 2003

Figure 1, Alignment of 3D sequences of protease JP170 (mature sequence from App. 1), SD-521 (aam50084 from EP 1209233) and protease Y (aay44619 from WO99/67370).

		•		•		
£		1				50
5	aam50084		DVAQNNYGLY			
	aay44619		DVAQNNYGLY	· -		
	JP170	NDVARGIVKA	DVAQNNFGLY	GQGQIVAVAD	TGLDTGRNDS	SMHEAFRGKI
		51				3.00
10	aam50084		NANDPNGHGT	ITIACCIT CNA	T NOW CHANGAN	100
	aay44619					
	JP170		NASDPNGHGT			
	DPI/O	IMPIADORIN	NANDPNGHGT	TANGS ATIGNA	TNKGMAPQAN	TALOSTADSG
		101				150
15	aam50084		NTLFSQAWNA	GARIHTNSWG	APVNGAYTAN	
	aay44619		NTLFSQAWNA			
	JP170		QTLFSQAYSA			_
			Z Z			DIAW DD I VICE
		151				200
20	aam50084	NDMTVLFAAG	NEGPNSGTIS	APGTAKNAIT	VGATENYRPS	FGSLADNPNH
	aay44619	NDMTVLFAAG	NEGPNSGTIS	APGTAKNAIT	VGATENYRPS	FGSIADNPNH
	JP170	NDMTILFAAG	NEGPGSGTIS	APGTAKNAIT	VGATENLRPS	FGSYADNINH
	,					
	·	201				250
25	aam50084	IAQFSSRGAT	RDGRIKPDVT	APGTFILSAR	SSLAPDSSFW	ANYNSKYAYM
	aay44619	IAQFSSRGAT	RDGRIKPDVT	APGTFILSAR	SSLAPDSSFW	ANYNSKYAYM
	JP170	VAQFSSRGPT	RDGRIKPDVM	APGTYILSAR	SSLAPDSSFW	ANHDSKYAYM
		0.53				
30		251	3017130175			300
30	aam50084		AGNVAQLREH			
	aay44619		AGNVAQLREH			
	JP170	GGISMAIPIV	AGNVAQLREH	FVKNRGVTPK	PSLLKAALIA	GAADVGLGFP
		301				350
35	aam50084		LDKSLNVAYV	NEATALATGO	KATYSFOAOA	
	aay44619		LDKSLNVAYV			
	JP170		LDKSLNVAFV			
		351				400
40	aam50084	TDAPGSTTAS	YTLVNDLDLV	ITAPNGQKYV	GNDFSYPYDN	NWDGRNNVEN
	aay44619	TDAPGSTTAS	YTLVNDLDLV	ITAPNGQKYV	GNDFSYPYDN	NWDGRNNVEN
	JP170	SDAPGSTTAS	LTLVNDLDLV	ITAPNGTKYV	GNDFTAPYDN	NWDGRNNVEN
AE		401			433	
45	aam50084		YTIEVQAYNV			
			YIIEVQAYNV			
	JP170	VFINAPQSGT	YTVEVQAYNV	PVSPQTFSLA	IVH	

Figure 2, Superposition of JP170 and Savinase 3D structures, with indication of calcium binding sites. JP170: light structure and three ion-binding sites. Savinase: dark structure and two ion-binding sites.

.

2 1 MRS. 2003

Figure 3, Matrix of homology between subtilases pertaining to the JP170, TY145 and BPN' subgroups. The sequences are identified by sequence database accession numbers:

00: aam50084; Subtilase derived from Bacillus sp. strain SD-521

- 5 0: aaw89547; Subtilase derived from Bacillus sp. JP170
 - 1: q45681; Subtilase derived from B. subtilis (BSTA41)
 - 2: p28842; Psychrophilic subtilisin derived from Antarctic Bacillus strain (BSTA39)
 - 3: abb77095; Subtilase derived from Bacillus sp. (TY145)
 - 4: p00783; Subtilase derived from Bacillus subtilis var. amylosacchariticus (BSAMY)
- 10 5: p29142; Subtilase derived from Bacillus stearothermophilus (BSSJ)
 - 6: p35835; Subtilase derived from Bacillus subtilis var. natto. (BSNAT)
 - 7: p07518; Subtilase derived from Bacillus pumilus (B. mesentericus) (BPMES)
 - 8: p00782; Subtilase derived from Bacillus amyloliquefaciens (BPN')
 - 9: p00780; Subtilase derived from Bacillus licheniformis (BLSCAR)
- 15 10: p41363; Subtilase derived from Bacillus halodurans (BHSAH)
 - 11: aaw62222; Subtilase derived from Bacillus lentus (BLS147)
 - 12: p29600; Subtilase derived from Bacillus lentus (BLSAVI, BLS309)
 - 13: p27693; Subtilase derived from Bacillus alcalophilus (BAALKP)
 - 14: q99405; Subtilase derived from Bacillus sp. strain KSM-K16 (BSKSMK)
- 20 15: p29599; Subtilase derived from Bacillus lentus (BLSUBL).

	·	00	Ò	1	2 .	3	4	5	6	7	8	9	10	11	12	13	14	15
	00 aam50084	100	94	5 3	5 3	51	53	53	52	52	53	55	52	52	51	51	51	50
	0 aaw89547		100	52	53	53	51	51	49	50	5 1	51	5 0	54	54	53	54	54
25	1 q45681			100	93	76	51	50	51	55	52	54	58	5 8	59	57	60	60
	2 p28842				100	75	52	52	52	56	53	55	58	58	61	58	62	61
	3 abb77095					100	60	60	60	58	60	62	58	57	59	59	62	59
	4 p00783						100	99	99	97	91	76	63	69	74	66	74	74
	5 p29142							100	99	97	90	76	69	74	66	74	74	56
30	6 p35835								100	98	91	77	63	69	74	66	74	74
	7 p07518									100	88	79	69	67	74	74	74	74
	8 p00782										100	77	66	71	74	67	74	74
	9 p00780											100	64	69	74	67	73	73
	10 p41363												100	99	76	72	76	76
35	11 aaw62222													100	76	76	76	76
	12 p29600														100	99	99	99
	13 p27693															100	99	99
	14 q99405																100	98
	15 p29599																ב	100
40																		

10321 SEQ list.ST25 SEQUENCE LISTING

<110> Novozymes A/S Novel subtilases <120> 10321.000-DK <130> <160> PatentIn version 3.2 <170> <210> <211> 433 <212> PRT <213> Bacillus sp. JP170 <220> <221> PEPTIDE <222> (1)..(433)<223> JP170 subtilase <400>

Asn Asp Val Ala Arg Gly Ile Val Lys Ala Asp Val Ala Gln Asn Asn 1 10 15

Phe Gly Leu Tyr Gly Gln Gly Gln Ile Val Ala Val Ala Asp Thr Gly
20 25 30

Leu Asp Thr Gly Arg Asn Asp Ser Ser Met His Glu Ala Phe Arg Gly 35 40 45

Lys Ile Thr Ala Leu Tyr Ala Leu Gly Arg Thr Asn Asn Ala Asn Asp 50 55 60

Pro Asn Gly His Gly Thr His Val Ala Gly Ser Val Leu Gly Asn Ala 65 70 80

Thr Asn Lys Gly Met Ala Pro Gln Ala Asn Leu Val Phe Gln Ser Ile 85 90 95

Met Asp Ser Gly Gly Leu Gly Gly Leu Pro Ala Asn Leu Gln Thr 100 105 110

Leu Phe Ser Gln Ala Tyr Ser Ala Gly Ala Arg Ile His Thr Asn Ser 115 120 125

Trp Gly Ala Pro Val Asn Gly Ala Tyr Thr Thr Asp Ser Arg Asn Val 130 135 140

Asp Asp Tyr Val Arg Lys Asn Asp Met Thr Ile Leu Phe Ala Ala Gly 145 150 150

Asn Glu Gly Pro Gly Ser Gly Thr Ile Ser Ala Pro Gly Thr Ala Lys
165 170 175

10321 SEQ list.ST25

Asn Ala Ile Thr Val Gly Ala Thr Glu Asn Leu Arg Pro Ser Phe Gly 180 Ser Tyr Ala Asp Asn Ile Asn His Val Ala Gln Phe Ser Ser Arg Gly Pro Thr Arg Asp Gly Arg Ile Lys Pro Asp Val Met Ala Pro Gly Thr 215 210 Tyr Ile Leu Ser Ala Arg Ser Ser Leu Ala Pro Asp Ser Ser Phe Trp 230 235 Ala Asn His Asp Ser Lys Tyr Ala Tyr Met Gly Gly Thr Ser Met Ala 250 245 Thr Pro Ile Val Ala Gly Asn Val Ala Gln Leu Arg Glu His Phe Val 260 265 Lys Asn Arg Gly Val Thr Pro Lys Pro Ser Leu Leu Lys Ala Ala Leu 280 285 Ile Ala Gly Ala Ala Asp Val Gly Leu Gly Phe Pro Asn Gly Asn Gln 295 300 290 Gly Trp Gly Arg Val Thr Leu Asp Lys Ser Leu Asn Val Ala Phe Val 320 315 305 310 Asn Glu Thr Ser Pro Leu Ser Thr Ser Gln Lys Ala Thr Tyr Ser Phe 335 325 330 Thr Ala Gln Ala Gly Lys Pro Leu Lys Ile Ser Leu Val Trp Ser Asp Ala Pro Gly Ser Thr Thr Ala Ser Leu Thr Leu Val Asn Asp Leu Asp 365 Leu Val Ile Thr Ala Pro Asn Gly Thr Lys Tyr Val Gly Asn Asp Phe 370 Thr Ala Pro Tyr Asp Asn Asn Trp Asp Gly Arg Asn Asn Val Glu Asn 385 val Phe Ile Asn Ala Pro Gln Ser Gly Thr Tyr Thr Val Glu Val Gln 415 Ala Tyr Asn Val Pro Val Ser Pro Gln Thr Phe Ser Leu Ala Ile Val

His

<210> <211> 433 <212> PRT Bacillus sp. Y <213> <220> <221> PEPTIDE <222> (1)..(433) <223> Subtilase Y <400> 2

Asn Asp Val Ala Arg Gly Ile Val Lys Ala Asp Val Ala Gln Asn Asn 1 10 15

Tyr Gly Leu Tyr Gly Gln Gly Gln Leu Val Ala Val Ala Asp Thr Gly 20 25 30

Leu Asp Thr Gly Arg Asn Asp Ser Ser Met His Glu Ala Phe Arg Gly 35 40 45

Lys Ile Thr Ala Leu Tyr Ala Leu Gly Arg Thr Asn Asn Ala Ser Asp 50 60

Pro Asn Gly His Gly Thr His Val Ala Gly Ser Val Leu Gly Asn Ala 65 70 75 80

Leu Asn Lys Gly Met Ala Pro Gln Ala Asn Leu Val Phe Gln Ser Ile 85 90 95

Met Asp Ser Ser Gly Gly Leu Gly Gly Leu Pro Ser Asn Leu Asn Thr 100 105 110

Leu Phe Ser Gln Ala Trp Asn Ala Gly Ala Arg Ile His Thr Asn Ser 115 120 125

Trp Gly Ala Pro Val Asn Gly Ala Tyr Thr Ala Asn Ser Arg Gln Val 130 135 140

Asp Glu Tyr Val Arg Asn Asn Asp Met Thr Val Leu Phe Ala Ala Gly 145 150 160

Asn Glu Gly Pro Asn Ser Gly Thr Ile Ser Ala Pro Gly Thr Ala Lys 165 170 175

Asn Ala Ile Thr Val Gly Ala Thr Glu Asn Tyr Arg Pro Ser Phe Gly 180 185 190

Ser Ile Ala Asp Asn Pro Asn His Ile Ala Gln Phe Ser Ser Arg Gly 195 200 205

Ala Thr Arg Asp Gly Arg Ile Lys Pro Asp Val Thr Ala Pro Gly Thr 210 215 220

Page 3

10321 SEQ list.ST25

Phe Ile Leu Ser Ala Arg Ser Ser Leu Ala Pro Asp Ser Ser Phe Trp 240 225 230 Ala Asn Tyr Asn Ser Lys Tyr Ala Tyr Met Gly Gly Thr Ser Met Ala 255 245 Thr Pro Ile Val Ala Gly Asn Val Ala Gln Leu Arg Glu His Phe Ile 270 260 Lys Asn Arg Gly Ile Thr Pro Lys Pro Ser Leu Ile Lys Ala Ala Leu Ile Ala Gly Ala Thr Asp Val Gly Leu Gly Tyr Pro Ser Gly Asp Gln 295 Gly Trp Gly Arg Val Thr Leu Asp Lys Ser Leu Asn Val Ala Tyr Val 320 Asn Glu Ala Thr Ala Leu Ala Thr Gly Gln Lys Ala Thr Tyr Ser Phe Gln Ala Gln Ala Gly Lys Pro Leu Lys Ile Ser Leu Val Trp Thr Asp 340 Ala Pro Gly Ser Thr Thr Ala Ser Tyr Thr Leu Val Asn Asp Leu Asp 355 360 Leu val Ile Thr Ala Pro Asn Gly Gln Lys Tyr Val Gly Asn Asp Phe 370 375 380 Ser Tyr Pro Tyr Asp Asn Asn Trp Asp Gly Arg Asn Asn Val Glu Asn 390 395 385 Val Phe Ile Asn Ala Pro Gln Ser Gly Thr Tyr Ile Ile Glu Val Gln 405 410 Ala Tyr Asn Val Pro Ser Gly Pro Gln Arg Phe Ser Leu Ala Ile Val 430 420 425

His

<210> 3 <211> 433 <212> PRT <213> Bacillus sp. SD-521

<220>
<221> PEPTIDE
<222> (1)..(433)
<223> Subtilase SD-521

<400> 3

Asn Asp Val Ala Arg Gly Ile Val Lys Ala Asp Val Ala Gln Asn Asn Tyr Gly Leu Tyr Gly Gln Gly Gln Val Val Ala Val Ala Asp Thr Gly Leu Asp Thr Gly Arg Asn Asp Ser Ser Met His Glu Ala Phe Arg Gly Lys Ile Thr Ala Leu Tyr Ala Leu Gly Arg Thr Asn Asn Ala Asn Asp Pro Asn Gly His Gly Thr His Val Ala Gly Ser Val Leu Gly Asn Ala Leu Asn Lys Gly Met Ala Pro Gln Ala Asn Leu Val Phe Gln Ser Ile Met Asp Ser Ser Gly Gly Leu Gly Gly Leu Pro Ser Asn Leu Asn Thr Leu Phe Ser Gln Ala Trp Asn Ala Gly Ala Arg Ile His Thr Asn Ser 115 125 Trp Gly Ala Pro Val Asn Gly Ala Tyr Thr Ala Asn Ser Arg Gln Val 130 Asp Glu Tyr Val Arg Asn Asn Asp Met Thr Val Leu Phe Ala Ala Gly 155 150 Asn Glu Gly Pro Asn Ser Gly Thr Ile Ser Ala Pro Gly Thr Ala Lys 165 170 Asn Ala Ile Thr Val Gly Ala Thr Glu Asn Tyr Arg Pro Ser Phe Gly 180 185 Ser Leu Ala Asp Asn Pro Asn His Ile Ala Gln Phe Ser Ser Arg Gly 200 Ala Thr Arg Asp Gly Arg Ile Lys Pro Asp Val Thr Ala Pro Gly Thr 210 Phe Ile Leu Ser Ala Arg Ser Ser Leu Ala Pro Asp Ser Ser Phe Trp 225 230 240 Ala Asn Tyr Asn Ser Lys Tyr Ala Tyr Met Gly Gly Thr Ser Met Ala 245 255 250 Thr Pro Ile Val Ala Gly Asn Val Ala Gln Leu Arg Glu His Phe Ile Page 5

Lys Asn Arg Gly Ile Thr Pro Lys Pro Ser Leu Ile Lys Ala Ala Leu 275 280 285

Ile Ala Gly Ala Thr Asp Val Gly Leu Gly Tyr Pro Ser Gly Asp Gln 290 295 300

Gly Trp Gly Arg Val Thr Leu Asp Lys Ser Leu Asn Val Ala Tyr Val 305 310 315 320

Asn Glu Ala Thr Ala Leu Ala Thr Gly Gln Lys Ala Thr Tyr Ser Phe 325

Gln Ala Gln Ala Gly Lys Pro Leu Lys Ile Ser Leu Val Trp Thr Asp 340 345 350

Ala Pro Gly Ser Thr Thr Ala Ser Tyr Thr Leu Val Asn Asp Leu Asp 355 360 365

Leu Val Ile Thr Ala Pro Asn Gly Gln Lys Tyr Val Gly Asn Asp Phe 370 375 380

Ser Tyr Pro Tyr Asp Asn Asn Trp Asp Gly Arg Asn Asn Val Glu Asn 385 390 395

Val Phe Ile Asn Ala Pro Gln Ser Gly Thr Tyr Thr Ile Glu Val Gln 405 410 415

Ala Tyr Asn Val Pro Ser Gly Pro Gln Arg Phe Ser Leu Ala Ile Val 420 425 430

His

<210> 4 <211> 275 <212> PRT

<213> Bacillus amyloliquefaciens

<220>

<221> PEPTIDE

<222> (1)..(275)

<220>

<221> PEPTIDE

<222> (1)..(275)

<223> Subtilase BPN'

<400> 4

Ala Gln Ser Val Pro Tyr Gly Val Ser Gln Ile Lys Ala Pro Ala Leu 1 15

10321 SEQ list.ST25 His Ser Gln Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp 25 Ser Gly Ile Asp Ser Ser His Pro Asp Leu Lys Val Ala Gly Gly Ala Ser Met Val Pro Ser Glu Thr Asn Pro Phe Gln Asp Asn Asn Ser His 50 Gly Thr His Val Ala Gly Thr Val Ala Ala Leu Asn Asn Ser Ile Gly Val Leu Gly Val Ala Pro Ser Ala Ser Leu Tyr Ala Val Lys Val Leu Gly Ala Asp Gly Ser Gly Gln Tyr Ser Trp Ile Ile Asn Gly Ile Glu 105 100 Trp Ala Ile Ala Asn Asn Met Asp Val Ile Asn Met Ser Leu Gly Gly 120 115 125 Pro Ser Gly Ser Ala Ala Leu Lys Ala Ala Val Asp Lys Ala Val Ala 130 **135** 140 Ser Gly Val Val Val Ala Ala Ala Gly Asn Glu Gly Thr Ser Gly 145 150 155 160 Ser Ser Ser Thr Val Gly Tyr Pro Gly Lys Tyr Pro Ser Val Ile Ala 170 175 165 Val Gly Ala Val Asp Ser Ser Asn Gln Arg Ala Ser Phe Ser Ser Val 185 190 180 Gly Pro Glu Leu Asp Val Met Ala Pro Gly Val Ser Ile Gln Ser Thr 195 205 Leu Pro Gly Asn Lys Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Ser 210 Pro His Val Ala Gly Ala Ala Ala Leu Ile Leu Ser Lys His Pro Asn 225 240 Trp Thr Asn Thr Gln Val Arg Ser Ser Leu Glu Asn Thr Thr Thr Lys 245 255 Leu Gly Asp Ser Phe Tyr Tyr Gly Lys Gly Leu Ile Asn Val Gln Ala Ala Ala Gin 275

2 1 MRS. 2003

APPENDIX 1

```
REMARK Complex of JP170 and CI2A inhibitor
REMARK Contents of asymmetric unit subtilisin 2x (433 a.a. x 2)
REMARK CI2A inhibitor 2x (a.a. 16 - 83 and 21 - 83)
REMARK small peptide (autodigestion product, a.a. KPSLL, 280 - 284)
REMARK Ca ions 6x, H2O 1115 x
REMARK
REMARK Crystallization conditions: (AMB) Hanging drop vapour diffusion
REMARK method where the drop consists of 2 µl of 15 - 20 mg.ml-1
REMARK protein concentration, 10 mM Na cacodylate - HCl buffer, pH 6.5
REMARK and 1 µl of the well solution, 20% w/v PEG 4000, 0.1 M Hepes
REMARK buffer, pH 7.5, 10% v/v isopropanol.
HEADER
                                                   XX-XXX-XX
                                                               XXXX
COMPND
REMARK
REMARK
          3 REFINEMENT.
REMARK
             PROGRAM
                          : REFMAC 5.1.24
REMARK
             AUTHORS
                          : MURSHUDOV, VAGIN, DODSON
REMARK
REMARK
              REFINEMENT TARGET : MAXIMUM LIKELIHOOD
REMARK
REMARK
            DATA USED IN REFINEMENT.
REMARK
             RESOLUTION RANGE HIGH (ANGSTROMS) :
                                                    1.90
REMARK
             RESOLUTION RANGE LOW
                                    (ANGSTROMS) :
                                                   19.96
REMARK
             DATA CUTOFF
                                     (SIGMA(F)) : NONE
REMARK
             COMPLETENESS FOR RANGE
                                            (%):
                                                   76.65
REMARK
             NUMBER OF REFLECTIONS
                                                    59444
REMARK
REMARK
            FIT TO DATA USED IN REFINEMENT.
REMARK
             CROSS-VALIDATION METHOD
                                               : NULL
             FREE R VALUE TEST SET SELECTION : NULL
REMARK
                          (WORKING + TEST SET) : 0.12256
REMARK
             R VALUE
REMARK
             R VALUE
                                 (WORKING SET) : 0.12256
REMARK
             FREE R VALUE
                                               : NULL
REMARK
             FREE R VALUE TEST SET SIZE
                                           (%) : NULL
                                          : NULL
REMARK
             FREE R VALUE TEST SET COUNT
REMARK
REMARK
            FIT IN THE HIGHEST RESOLUTION BIN.
                                           : 20
REMARK
             TOTAL NUMBER OF BINS USED
             BIN RESOLUTION RANGE HIGH : 1.901
BIN RESOLUTION RANGE LOW : 1.950
REMARK
                                                : 1.901
REMARK
                            BIN (WORKING SET): 940
(WORKING SET): 0.149
REMARK
             REFLECTION IN BIN
REMARK
             BIN R VALUE
             BIN FREE R VALUE SET COUNT
REMARK
REMARK
             BIN FREE R VALUE
                                                  : -999.000
REMARK
REMARK
            NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
REMARK
             ALL ATOMS
                                    : 8694
REMARK"
REMARK
            B VALUES.
             FROM WILSON PLOT (A**2) : NULL
REMARK
             MEAN B VALUE (OVERALL, A**2) : 16.479
REMARK
REMARK
             OVERALL ANISOTROPIC B VALUE.
REMARK
             B11 (A**2) : 0.05
             B22 (A**2) :
REMARK
                              0.06
             B33 (A**2) :
REMARK
                              -0.11
REMARK
              B12 (A**2) :
                               0.00
```

```
B13 (A**2) :
REMARK
                               0.00
REMARK
             B23 (A**2) :
                               0.00
REMARK
            ESTIMATED OVERALL COORDINATE ERROR.
REMARK
REMARK
             ESU BASED ON R VALUE
                                                              (A):
                                                                    0.151
            ESU BASED ON FREE R VALUE
REMARK
                                                              (A): NULL
REMARK
             ESU BASED ON MAXIMUM LIKELIHOOD
                                                              (A):
                                                                    0.052
             ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD (A**2):
REMARK
                                                                    1.828
REMARK
REMARK
         3 CORRELATION COEFFICIENTS.
REMARK
             CORRELATION COEFFICIENT FO-FC
                                                    0.969
REMARK
             CORRELATION COEFFICIENT FO-FC FREE: NULL
REMARK
REMARK
            RMS DEVIATIONS FROM IDEAL VALUES
                                                    COUNT
                                                             RMS
                                                                    WEIGHT
REMARK
             BOND LENGTHS REFINED ATOMS
                                               (A): 7733; 0.014; 0.021
REMARK
             BOND LENGTHS OTHERS
                                               (A): 6857; 0.001; 0.020
             BOND ANGLES REFINED ATOMS
REMARK
                                         (DEGREES): 10540 ; 1.478 ; 1.936
             BOND ANGLES OTHERS
REMARK
                                         (DEGREES): 15972; 0.815; 3.000
                                         (DEGREES): 997;15.784; 5.000
             TORSION ANGLES, PERIOD 1
REMARK
                                                    1197 ; 0.106 ; 0.200
             CHIRAL-CENTER RESTRAINTS
REMARK
                                            (A^{**}3):
REMARK
             GENERAL PLANES REFINED ATOMS
                                               (A):
                                                    8819 ; 0.007 ; 0.020
             GENERAL PLANES OTHERS
REMARK
                                               (A):
                                                    1500 ; 0.008 ; 0.020
             NON-BONDED CONTACTS REFINED ATOMS (A):
REMARK
                                                    1552 ; 0.221 ; 0.300
             NON-BONDED CONTACTS OTHERS
REMARK
                                               (A):
                                                    8282 ; 0.265 ; 0.300
             NON-BONDED TORSION OTHERS
REMARK
                                               (A):
                                                     4417 ; 0.089 ; 0.500
REMARK
             H-BOND (X...Y) REFINED ATOMS
                                               (A):
                                                    1391 ; 0.198 ; 0.500
             POTENTIAL METAL-ION REFINED ATOMS (A):
REMARK
                                                       25 ; 0.145 ; 0.500
REMARK
             SYMMETRY VDW REFINED ATOMS
                                               (A):
                                                       10 ; 0.129 ; 0.300
REMARK
             SYMMETRY VDW OTHERS
                                                       57; 0.268; 0.300
                                               (A):
REMARK
             SYMMETRY H-BOND REFINED ATOMS
                                               (A):
                                                       87 ; 0.272 ; 0.500
REMARK
            ISOTROPIC THERMAL FACTOR RESTRAINTS.
REMARK
                                                     COUNT
                                                             RMS
                                                                    WEIGHT
            MAIN-CHAIN BOND REFINED ATOMS (A**2): 4985; 0.697; 1.500
REMARK
REMARK
            MAIN-CHAIN ANGLE REFINED ATOMS (A++2): 8031; 1.205; 2.000
                                            (A**2): 2746 ; 1.963 ; 3.000
             SIDE-CHAIN BOND REFINED ATOMS
REMARK
             SIDE-CHAIN ANGLE REFINED ATOMS (A**2):
                                                     2509 ; 3.180 ; 4.500
REMARK
REMARK
REMARK
           NCS RESTRAINTS STATISTICS
REMARK
            NUMBER OF NCS GROUPS : NULL
REMARK
REMARK
REMARK
            TLS DETAILS
REMARK
            NUMBER OF TLS GROUPS : NULL
REMARK
REMARK
REMARK
            BULK SOLVENT MODELLING.
REMARK
             METHOD USED: BABINET MODEL WITH MASK
REMARK
             PARAMETERS FOR MASK CALCULATION
REMARK
             VDW PROBE RADIUS
                                    1.40
REMARK
             ION PROBE RADIUS
                                    0.80
REMARK
             SHRINKAGE RADIUS
                                    0.80
REMARK
REMARK
         3 OTHER REFINEMENT REMARKS:
REMARK
           HYDROGENS HAVE BEEN ADDED IN THE RIDING POSITIONS
REMARK
CISPEP
        1 GLY A 163
                         PRO A 164
                                                       0.00
CISPEP
         2 ALA A 171
                         PRO A 172
                                                       0.00
CISPEP
        3 PHE A 191
                         GLY A 192
                                                       0.00
```

OTOND										
CISPEP	4 ASN A	199	HIS A	200		(0.00			
CISPEP	5 GLY A	208	PRO A	209			0.00			
CISPEP	6 LYS A		PRO A	217			0.00			
CISPEP	7 ASP A		SER A	237			0.00			
CISPEP	8 ASP A		SER A	245			0.00			
CISPEP	9 PHE A	299	PRO A	300		1	0.00			
CISPEP	10 SER A	327	THR A	328		(0.00			
CISPEP	11 ALA A	386	PRO A	387			0.00	•		
CISPEP	12 GLU A		VAL A	415			0.00			-
CISPEP	13 GLY A		PRO A	424			0.00			
	13 GDI A			424						
LINK			316			LYS B 31			gap	
LINK		GLU B				ALA B 33:			gap	
LINK		LEU B	337			LYS B 34	0		gap	
LINK		GLU D	330			ALA D 33:	2		gap	
LINK		LEU D	337			LYS D 34	0		gap	
CISPEP	14 GLY C		PRO C	164			0.00		3-F	
CISPEP	15 ALA (PRO C	172			0.00			
CISPEP	16 PHE 0		GLY C	192			0.00			
CISPEP	17 ASN C		HIS C	200		1	0.00			
CISPEP	18 GLY (208	PRO C	209		•	0.00			
CISPEP	19 LYS (216	PRO C	217		(0.00			
CISPEP	20 ASP 0	236	SER C	237			0.00			
CISPEP	21 ASP (SER C	245			0.00			
CISPEP	22 PHE C		PRO C	300			0.00			
CISPEP	23 SER C		THR C	328			0.00			
CISPEP	24 ALA (PRO C	387			0.00			
CISPEP	25 GLU (VAL C	415		(0.00			
CISPEP	26 GLY (423	PRO C	424		(0.00			
CRYST1	58.387	151.43	11 64.0	54 90.0	0 117.11	90.00	P 1 21	1		
SCALE1	0.03	7127 (0.00000	0.00876	8	0.00000				
SCALE2			0.006605	0.00000	·	0.00000				
SCALE3			0.000000	0.01753		0.00000				
HETATM		ASN A		18.066	20.808		1.00	. 4 . 0.7	A ·	NT
	1 -N	W MOW	1	TO TOO			1 . 15-17		—	N
HETATM	2 66					-3.996				
	2 C9	ASN A	1	18.461	22.053	-3.689	1.00	14.47	A	C
HETATM	3 010	ASN A ASN A	1 1	18.461 19.168	22.053 22.251		1.00			0
	3 010	ASN A	1	18.461	22.053	-3.689	1.00	14.47 13.33	A	
HETATM	3 010	ASN A ASN A	1 1	18.461 19.168	22.053 22.251	-3.689 -2.661	1.00 : 1.00 :	14.47 13.33	A A	0
HETATM HETATM	3 010 4 011	ASN A ASN A ASN A	1 1 1	18.461 19.168 18.108	22.053 22.251 23.029	-3.689 -2.661 -4.423	1.00 : 1.00 :	14.47 13.33 14.69 14.35	A A A	0 0 C
HETATM HETATM HETATM HETATM	3 010 4 011 5 CA 6 CB	ASN A ASN A ASN A ASN A ASN A	1 1 1 1	18.461 19.168 18.108 18.499 18.164	22.053 22.251 23.029 19.635 18.329	-3.689 -2.661 -4.423 -3.189 -3.883	1.00 : 1.00 : 1.00 : 1.00 :	14.47 13.33 14.69 14.35 14.69	A A A A	0 0 0 0
HETATM HETATM HETATM HETATM HETATM	3 010 4 011 5 CA 6 CB 7 CG	ASN A ASN A ASN A ASN A ASN A	1 1 1 1 1	18.461 19.168 18.108 18.499 18.164 16.670	22.053 22.251 23.029 19.635 18.329 18.063	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031	1.00 : 1.	14.47 13.33 14.69 14.35 14.69	A A A A A	00000
HETATM HETATM HETATM HETATM HETATM HETATM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2	ASN A	1 1 1 1 1	18.461 19.168 18.108 18.499 18.164 16.670 16.271	22.053 22.251 23.029 19.635 18.329 18.063 17.100	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.08	A A A A A	00000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 0D3	ASN A	1 1 1 1 1 1	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.08 12.20	A A A A A A	0000020
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C	ASN A	1 1 1 1 1 1 1	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.08 12.20 14.76 14.84	A A A A A A	000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O	ASN A	1 1 1 1 1 1 1	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601	1.00 1.00 1.00 1.00 1.00 1.00 1.00	14.47 13.33 14.69 14.35 14.69 14.08 12.20 14.76 14.84 14.20	A A A A A A	000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C	ASN A	1 1 1 1 1 1 1	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.08 12.20 14.76 14.84	A A A A A A	000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O	ASN A	1 1 1 1 1 1 1	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601	1.00 1.00 1.00 1.00 1.00 1.00 1.00	14.47 13.33 14.69 14.35 14.69 14.08 12.20 14.76 14.84 14.20 15.84	A A A A A A	000000000
HETATM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD1 10 C 11 O 12 N	ASN A	1 1 1 1 1 1 1 1 2	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.08 12.20 14.76 14.84 14.20 15.84	A A A A A A A	000000000000000000000000000000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD1 10 C 11 O 12 N 13 CA 14 CB	ASN A	1 1 1 1 1 1 1 2 2	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.08 12.20 14.76 14.84 14.20 15.84 16.82 17.53	A A A A A A A A	0000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD1 10 C 11 O 12 N 13 CA 14 CB 15 CG	ASN A	1 1 1 1 1 1 1 2 2 2	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.783	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.08 12.20 14.76 14.84 14.20 15.84 16.82 17.53 18.18	A A A A A A A A A	0000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD1	ASN A	1 1 1 1 1 1 1 2 2 2 2	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.935 19.835 20.088 18.947 17.811	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.783 -5.493	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.08 12.20 14.76 14.84 14.20 15.84 16.82 17.53 18.18 20.58	A A A A A A A A A A A	000000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD1 17 OD2	ASN A ASP A ASP A ASP A	1 1 1 1 1 1 2 2 2 2 2	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947 17.811 19.106	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.783 -5.493 -6.931	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.20 14.76 14.84 14.20 15.84 16.82 17.53 18.18 20.58 22.02	A A A A A A A A A A A A A A	0000000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD3 17 OD2 18 C	ASN A ASP A	1 1 1 1 1 1 2 2 2 2 2 2	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544 22.712	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947 17.811 19.106 20.816	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.493 -6.931 -2.413	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.20 14.20 14.84 14.20 15.84 16.82 17.53 18.18 20.58 22.02	A A A A A A A A A A A A A A	0000000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD1 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD1 17 OD2 18 C	ASN A ASP A	1 1 1 1 1 1 2 2 2 2 2 2 2	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544 22.712 23.671	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947 17.811 19.106 20.816 20.562	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.493 -5.493 -6.931 -2.413 -1.703	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.20 14.76 14.84 14.20 15.84 16.82 17.53 18.17	A A A A A A A A A A A A A A	000000000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD3 17 OD2 18 C	ASN A ASP A	1 1 1 1 1 1 2 2 2 2 2 2	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544 22.712	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947 17.811 19.106 20.816	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.493 -6.931 -2.413	1.00 : 1.	14.47 13.33 14.69 14.35 14.69 14.20 14.20 14.84 14.20 15.84 16.82 17.53 18.18 20.58 22.02	A A A A A A A A A A A A A A	0000000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD1 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD1 17 OD2 18 C	ASN A ASP A	1 1 1 1 1 1 2 2 2 2 2 2 2	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544 22.712 23.671	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947 17.811 19.106 20.816 20.562	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.493 -5.493 -6.931 -2.413 -1.703	1.00 : 1.	14.47 13.33 14.69 14.69 14.69 14.20 14.84 14.20 15.84 16.82 17.53 18.15 18.15 18.17	A A A A A A A A A A A A A A A A A	000000000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD1 17 OD2 18 C 19 O 20 N 21 CA	ASN A ASP A	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544 22:712 23.671 22.018 22.374	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947 17.811 19.106 20.816 20.562 21.952 22.945	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.493 -5.493 -6.931 -2.413 -1.703 -2.304 -1.311	1.00 : 1.	14.47 13.33 14.69 14.69 14.08 12.76 14.84 14.84 14.84 15.84 16.83 18.15 18.53 18.18 19.03 19.03 19.07	AAAAAAAAAAAAAAA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD1 17 OD2 18 C 19 O 20 N 21 CA 22 CB	ASN A ASP A	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544 22:712 23.671 22.018 22.374 21.974	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947 17.811 19.106 20.816 20.562 21.952 22.945 24.356	-3.689 -2.661 -4.423 -3.189 -3.883 -4.031 -5.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.493 -5.493 -6.931 -2.413 -1.701	1.00 : 1.	14.47 13.33 14.39 14.39 14.69 14.20 14.20 14.20 14.20 14.20 15.82 17.18.19 18.53 18.53 18.53 18.53 18.53 18.53 18.63 18.	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	000000000000000000000000000000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD1 17 OD2 18 C 19 O 20 N 21 CA 22 CB 23 CG1	ASN A ASP A	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544 22.712 23.671 22.652 23.544 22.712 23.671 22.374 21.974 22.327	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947 17.811 19.106 20.862 21.952 22.945 24.356 25.323	-3.689 -2.661 -4.423 -3.189 -3.883 -4.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.493 -6.931 -2.413 -1.701 -0.560	1.00 : 1.	14.47 13.39 14.39 14.39 14.29 14.20 14.20 14.20 14.20 15.82 17.18.19 18.53 18.53 18.53 18.53 18.53 18.63 18.	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	000000000000000000000000000000000000000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD1 17 OD2 18 C 19 O 20 N 21 CA 22 CB 23 CG1 24 CG2	ASN A ASP A	1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544 22:712 23.671 22.018 22.374 21.974 22.327 22.676	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 20.088 18.947 17.811 19.106 20.816 20.562 21.952 21.952 24.356 25.323 24.770	-3.689 -2.661 -4.423 -3.189 -3.883 -4.019 -3.206 -2.890 -1.601 -3.820 -4.763 -5.493 -5.493 -6.931 -2.413 -1.701 -0.560 -3.003	1.00 : 1.	14.47 13.63 14.39 14.39 14.39 14.29 14.20 14.20 14.20 14.20 15.18 16.53 18.50 17.10 16.62 18.63	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	00000200020002000
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3 010 4 011 5 CA 6 CB 7 CG 8 ND2 9 OD3 10 C 11 O 12 N 13 CA 14 CB 15 CG 16 OD1 17 OD2 18 C 19 O 20 N 21 CA 22 CB 23 CG1	ASN A ASP A	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3	18.461 19.168 18.108 18.499 18.164 16.670 16.271 15.768 19.990 20.353 20.881 22.306 23.178 23.121 22.652 23.544 22.712 23.671 22.652 23.544 22.712 23.671 22.374 21.974 22.327	22.053 22.251 23.029 19.635 18.329 18.063 17.100 18.701 19.659 19.313 19.935 19.835 20.088 18.947 17.811 19.106 20.862 21.952 22.945 24.356 25.323	-3.689 -2.661 -4.423 -3.189 -3.883 -4.019 -3.206 -2.890 -1.601 -3.834 -3.520 -4.763 -5.493 -6.931 -2.413 -1.701 -0.560	1.00 : 1.	14.47 13.63 14.39 15.39 16.39	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	000000000000000000000000000000000000000

MOTA	27	N	ALA	A	4	20.497	22.119	-0.012	1.00 13.75	A	N
ATOM	28	CA	ALA	A	4	19.824	21.664	1.196	1.00 14.03	A	C
ATOM	29	CB	ALA	A	· 4	18.388	21.260	0.881	1.00 13.78	A	C
MOTA	30	C	ALA	A	4	20.544	20.512	1.876	1.00 14.28	A	C
ATOM	31	0	ALA	A	4	20.548	20.406	3.110	1.00 14.07	A	0
ATOM	32	N	ARG	A	5	21.093	19.617	1.064	1.00 13.74	A	N
ATOM	33	CA	ARG	A	5	21.807	18.445	1.553	1.00 14.95	A	C
ATOM	34	CB	ARG	A	5	22.395	17.709	0.349	1.00 15.61	A	C
ATOM	35	CG			5	23.452	16.639	0.631	1.00 17.28	A	·C
ATOM	36	CD	ARG		5	23.873	15.945	-0.672	1.00 20.73	A	Ċ
ATOM	37	NE	ARG		5	24.802	14.852	-0.459	1.00 21.95	A	N
ATOM	38	CZ	ARG		5	26.128	14.986	-0.513	1.00 24.69	A	C
ATOM	39	NHl	ARG		5	26.687	16.173	-0.793	1.00 25.62	A	N
ATOM	40	NH2			5	26.898	13.933	-0.290	1.00 23.02	A	N
ATOM	41	C	ARG		5						
		_				22.918	18.840	2.515	1.00 14.83	A	C
MOTA	42	0	ARG		5	23.135	18.195	3.546	1.00 14.86	A	0
MOTA	43	N	GLY		6	23.641	19.897	2.166	1.00 15.33	A	N
ATOM	44	CA	GLY		6	24.677	20.416	3.044	1.00 15.34	A	C
ATOM	45	C	GLY		6	24.094	21.124	4.257	1.00 15.01	A	C
ATOM	46	0	GLY		6	24.609	20.980	5.362	1.00 14.62	A	0
MOTA	47	N	ILE		7	23.018	21.879	4.062	1.00 14.44	A	N
ATOM	48	CA	ILE		7	22.411	22.613	5.168	1.00 13.98	A	С
MOTA	49	CB	ILE	A	7	21.266	23.505	4.698	1.00 13.68	A	C
ATOM	50	CG1	ILE	A	7	21.813	24.676	3.864	1.00 13.35	A	C
ATOM	51	CD1	ILE	A	7	20.794	25.294	2.972	1.00 14.08	A	C
ATOM	52	CG2	ILE	A	7	20.511	24.072	5.873	1.00 12.51	A	C
ATOM	53	C	ILE	A	7	21.970	21.664	6.305	1.00 15.04	A	С
ATOM	54	0	ILE	A	7	22.273	21.906	7.469	1.00 13.35	A	0
ATOM	55	N	VAL	A	8	21.320	20.558	5.952	1.00 15.03	A	N
MOTA	5 6	CA	VAL	Α	8	20.795	19.628	6.969	1.00 14.89	A	С
ATOM	57	CB	VAL		8	19.419	19.047	6.545	1.00 14.63	A	C
ATOM	58	CG1	VAL		8	18.472	20.135	6.246	1.00 14.63	A	Ċ
ATOM	59	CG2	VAL		8	19.526	18.151		1.00 15.54	· A	Ċ
ATOM	60	C	VAL		8	21.770	18.511	7.356	1.00 14.75	A	C
ATOM	61	Õ	VAL		8	21.438	17.645	8.168	1.00 15.23	A	0
ATOM	62	N	LYS		9	22.983	18.568	6.804	1.00 13.23	A	N
ATOM	63	CA	LYS		9	24.061	17.627	7.118	1.00 14.55	A	C
ATOM	64	CB	LYS		9	24.374	17.560	8.621	1.00 14.33	•	C
ATOM	65	CG	LYS		9					A	<u> </u>
						24.553	18.888	9.299	1.00 18.34	A	C
ATOM	66	CD	LYS		9	25.757	19,608	8.810	1.00 23.66	A	C
ATOM	67	CE	LYS		9	26.025	20.904	9.618	1.00 28.33	A	C
ATOM	68	NZ	LYS		9	27.283	21.559	9.079	1.00 31.91	A	N
ATOM	69	C	LYS		9	23.798	16.226	6.616	1.00 13.77	A	C
ATOM	70	0	LYS		9	24.391	15.256	7.132	1.00 13.96	A	0
ATOM	71	N	ALA		10	22.979	16.109	5.569	1.00 13.98	A	N
ATOM	72	CA	ALA		10	22.816	14.830	4.886	1.00 14.34	A	C
ATOM	73	CB	ALA		10	21.649	14.866	3.848	1.00 14.47	A	С
ATOM	74	C	ALA	A	10	24.141	14.437	4.205	1.00 14.55	A	C
ATOM	75	0	ALA	A	10	24.409	13.264	4.015	1.00 13.73	A	0
ATOM	76	N	ASP	A	11	24.967	15.423	3.860	1.00 16.04	A	N
ATOM	77	CA	ASP	A	11	26.278	15.153	3.265	1.00 17.11	A	C
ATOM	78	CB	ASP	A	11	26.899	16.419	2.667	1.00 17.53	A	C
MOTA	79	CG	ASP	A	11	27.059	17.547	3.680	1.00 19.89	A	C
ATOM	80	OD1	ASP	A	11	27.845	18.461	3.375	1.00 23.81	A	0
MOTA	81	OD2	ASP		11	26.434	17.635	4.773	1.00 20.19	A	Ö
ATOM	82	C	ASP		11	27.219	14.489	4.285	1.00 17.57	A	Ċ
ATOM	83	Ō	ASP		11	27.941	13.540	3.947	1.00 17.08	A	Ō
MOTA	84	N	VAL		12	27.153	14.945	5.528	1.00 17.31	A	- N
	- -							J. J. J. V			

MOTA	85	CA	VAL	A	12	27.926	14.338	6.607	1.00 17.86	A	C
MOTA	86	CB	VAL	A	12	27.850	15.193	7.893	1.00 18.12	A	С
MOTA	87	CG1	VAL	A	12	28.577	14.533	9.081	1.00 18.00	A	C
MOTA	88	CG2	VAL	A	12	28.385	16.633	7.631	1.00 19.36	A	C
MOTA	89	C	VAL	A	12	27.428	12.898	6.835	1.00 18.14	A	С
ATOM	90	0	VAL		12	28.233	11.956	5.925	1.00 18.38	A	0
ATOM	91	N	ALA		13	26.117	12.696	5.870	1.00 17.13	A	N
ATOM	92	CA	ALA		13	25.572	11.353	7.076	1.00 17.08	A	C
ATOM	93	CB	ALA		13	24.070	11.400	7.101	1.00 17.00	Ä	c
ATOM	94	C	ALA		13	26.044	10.394	5.981	1.00 17.00	Ä	C
ATOM	95	0	ALA		13	26.472	9.237	6.254	1.00 17.37		
ATOM	96	N	GLN							A	0
					14	25.934	10.862	4.740	1.00 17.24	A	N
ATOM	97	CA	GLN		14	26.420	10.107	3.582	1.00 17.55	A	C
MOTA	98	CB	GLN		14	25.972	10.825	2.309	1.00 17.74	A	C
ATOM	99	CG	GLN		14	24.485	10.673	2.031	1.00 17.61	A	C
MOTA	100	CD	GLN		14	23.995	11.535	0.887	1.00 20.02	A	C
MOTA	101	OEl	GLN		14	24.788	11.949	0.028	1.00 19.60	A	0
ATOM	102	NE2			14	22.679	11.789	0.850	1.00 19.07	A	N
ATOM	103	C	GLN	-	14	27.949	9.876	3.576	1.00 18.95	A	C
ATOM	104	0	GLN		14	28.413	8.729	3.489	1.00 18.61	A	0
MOTA	105	N	ASN		15	28.730	10.950	3.658	1.00 19.73	A	N
MOTA	106	CA	ASN		15	30.185	10.847	3.469	1.00 20.71	A	C
ATOM	107	CB	ASN	A	15	30.828	12.222	3.244	1.00 20.45	A	C
ATOM	108	CG	ASN	A	15	30.404	12.869	1.959	1.00 22.21	A	С
ATOM	109	OD1	ASN	A	15	30.098	12.201	0.976	1.00 25.39	A	0
MOTA	110	ND2	ASN	A	15	30.390	14.182	1.953	1.00 23.97	A	N
ATOM	111	C	ASN	A	15	30.865	10.185	4.653	1.00 20.49	A	C .
ATOM	112	0	ASN	A	15	31.705	9.362	4.469	1.00 21.06	A	0
ATOM	113	N	ASN	A	16	30.495	10.559	5.869	1.00 21.00	A	N
MOTA	114	CA	ASN	A	16	31.148	10.056	7.073	1.00 21.90	A	C
MOTA	115	CB	ASN	A	16	31.205	11.146	8.136	1.00 22.29	A	C
ATOM	116	CG	ASN	A	16	32,100	12.313	7.751	1.00 26.21	A	C
ATOM	117	OD1	ASN	A	16	32.261	13.260	8.533	1.00 32.71	\mathbf{A}^{\cdot}	0
MOTA	118	ND2	ASN	A	16	32.672	12.268	6.567	1.00 28.57	A	N
ATOM	119	C	ASN	A	16	30.491	8.811	7.692	1.00 21.95	A	C
MOTA	120	0	ASN		16	31.152	8.065	8.404	1.00 22.21	A	O
ATOM	121	N	PHE		17	29.203	8.578	7.438	1.00 20.66	A	N
ATOM	122	CA	PHE		17	28.550	7.392	8.003	1.00 20.24	A	· C
ATOM	123	CB	PHE		17	27.415	7.815	8.938	1.00 21.09	A	C
ATOM	124	CG	PHE	A	17	27.890	8.591	10.134	1.00 19.81	A	· C
ATOM	125	CD1	PHE		17	28.110	7.953	11.348	1.00 24.93	Ä	Ċ
ATOM	126	CE1	PHE		17	28.556	8.679	12.459	1.00 25.33	A	Ċ
ATOM	127	CZ			17	28.779	10.016	12.344	1.00 23.90	A	Ċ.
ATOM	128	CE2		A	17	28.564	10.651	11.155	1.00 22.65	A	C
ATOM	129	CD2	PHE		17	28.111	9.936	10.052	1.00 20.02	A	C
ATOM	130	C	PHE		17	28.061	6.385	6.977	1.00 19.13	A	C
ATOM	131	0	PHE		17	27.607	5.336	7.337	1.00 20.18	A	0
ATOM	132	N	GLY		18	28.205	6.685	5.692	1.00 20.18	Ä	N
ATOM	133	CA	GLY		18	27.740					_ '
ATOM	134	C	GLY				5.790	4.640	1.00 17.25	A · A	C
					18	26.220	5.654	4.496	1.00 16.27	A	C
ATOM ATOM	135	O N	GLY		18	25.755	4.667	3.948	1.00 14.47	A	0
ATOM	136	N	LEU		19	25.453	6.651	4.955	1.00 15.24	A	N
ATOM	137	CA	LEU		19	23.980	6.550	5.007	1.00 14.35	A	C
ATOM	138	CB	LEU		19	23.456	7.222	6.270	1.00 14.71	A	C
ATOM	139	CG	LEU		19	24.013	6.680	7.569	1.00 15.58	A	C
ATOM	140	CD1			19	23.691	7.633	8.721	1.00 16.09	A	C
ATOM	141		LEU		19	23.417	5.294	7.793	1.00 15.86	A	C
ATOM	142	C	LEU	A	19	23.305	7.203	3.820	1.00 13.82	A	C .
							•				

			_							_
ATOM	143	0	LEU I	A 19	23.183	8.427	3.775	1.00 13.96	A	0
ATOM	144	N	TYR I	A 20	22.874	6.400	2.854	1.00 13.81	A	N
ATOM	145	CA	TYR Z	A 20	22.156	6.917	1.714	1.00 14.22	A	C
ATOM	146	CB	TYR			6.499	0.386	1.00 14.36	A	Č
MOTA	147	CG	TYR A		24.254	7.034	0.241	1.00 14.09	A	C
ATOM	148	CD1	TYR A	A 20	25.351	6.353	0.792	1.00 16.48	A	C
ATOM	149	CEl	TYR I	A 20	26.661	6.858	0.663	1.00 16.91	A	C
ATOM	150	CZ	TYR A	A 20	26.859	8.041	-0.034	1.00 18.57	A	С
ATOM	151	ОН	TYR Z			8.567	-0.171	1.00 21.21	A	0
ATOM	152	CE2	TYR		25.788	8.735	-0.575	1.00 17.45		Ċ
									A	
ATOM	153	CD2	TYR			8.217	-0.461	1.00 16.03	A	C
ATOM	154	C	TYR A	4 20	20.715	6.433	1.702	1.00 14.55	A	C
ATOM	155	0	TYR A	A . 20	19.994	6.688	0.723	1.00 14.48	A	0
ATOM	156	N	GLY A	A 21	20.297	5.710	2.746	1.00 14.18	A	N
ATOM	157	CA	GLY A		18.947	5.172	2.802	1.00 14.23	A	C
ATOM	158	C	GLY A		18.749	3.775	2.207	1.00 14.56	A	Č
ATOM	159	0	GLY A		17.611	3.315	2.054	1.00 13.53	A	0
ATOM	160	N	GLN A			3.084	1.883	1.00 14.57	A	N
ATOM	161	CA	GLN A	A 22	19.722	1.726	1.334	1.00 14.82	A	C
ATOM	162	CB	GLN A	A 22	21.095	1.130	0.978	1.00 15.45	A	C
ATOM	163	CG	GLN A	4 22	21.054	-0.151	0.150	1.00 17.91	Α	C
ATOM	164	CD	GLN A	A 22	20.669	-1.376	0.976	1.00 21.79	Α	C
ATOM	165	OE1	GLN A			-1.414	2.185	1.00 22.42	A	Ō
ATOM	166	NE2			20.091	-2.379	0.317	1.00 23.11	A	N
ATOM	167	C			_ + + + +		,	7		_
			GLN A		19.011	0.831	2.331	1.00 14.04	A	C
MOTA	168	0	GLN A		19.341	0.824	3.516	1.00 14.39	A	0
ATOM	169	N	GLY I		18.019	0.110	1.836	1.00 14.26	A	N
ATOM	170	CA	GLY A		17.236	-0.859	2.628	1.00 14.81	A	C
ATOM	171	C	GLY A	A 23	15.957	-0.245	3.176	1.00 14.12	A	С
ATOM	172	0	GLY A	A 23	15.086	-0.948	3.718	1.00 14.17	A	0
ATOM	173	N	GLN A	4 24	15.836	1.077	3.057	1.00 13.54	A	N
ATOM	174	CA	GLN A	A 24	14.620	1.773	3.500	1.00 13.27	A	C
ATOM-	175	CB	GLN 3			3.090		1.00 12.64 -	A	C·
ATOM	176	CG	GLN Z			2.945	5.450	1.00 13.46	A	Ċ
ATOM	177	CD	GLN A			2.100				Ç
							6.505	1.00 15.72	A	
ATOM	178	OE1	GLN A		14.015	2.387	6.921	1.00 14.73	A	0
ATOM	179	NE2	GLN A			1.026	6.927	1.00 13.89	A	N
ATOM	180	C	GLN A	A 24	13.619	2.022	2.352	1.00 13.19	A	C
ATOM	181	Ο.	GLN A	A 24	14.005	2.126	1.184	1.00 13.48	A	0
ATOM	182	N	ILE ;	A 25	12.324	2.066	2.692	1.00 13.28	A	N
ATOM	183	CA	ILE A	A 25	11.280	2.319	1.720	1.00 13.25	A	C
ATOM	184	CB	ILE A	A 25		1.077	1.507	1.00 13.64	A	C
ATOM	185	CG1	ILE A		11.267	-0.108	1.030	1.00 15.44	A	Č
ATOM	186	CD1	ILE A			-1.518	0.962	1.00 13.44	_	C
									A	
ATOM	187	CG2	ILE A			1.387	0.503	1.00 13.37	A	C
ATOM	188	C	ILE A			3.491	2.209	1.00 13.24	A	Ċ
ATOM	189	0	ILE A	A 25	9.884	3.430	3.285	1.00 12.93	A	0
ATOM	190	N	VAL A	A 26	10.438	4.573	1.432	1.00 12.43	A	N
ATOM	191	CA	VAL	A 26	9.656	5.754	1.737	1.00 12.49	A	C
ATOM	192	CB	VAL A	A 26	10.480	7.034	1.585	1.00 12.90	A	C
ATOM	193		VAL A			8.231	2.059	1.00 11.57	A	C
ATOM	194		VAL A			6.928	2.395	1.00 15.53	A	C
ATOM	195	C								
			VAL I			5.823	0.804	1.00 12.34	A	C
ATOM	196	0	VAL			5.646	-0.418	1.00 11.99	A	0
ATOM	197	N	ALA A			6.044	1.387	1.00 12.40	A	N
ATOM	198	CA	ALA A	A 27	6.080	6.289	0.624	1.00 12.49	A	C
ATOM	199	CB	ALA Z	A 27	4.846	5.650	1.284	1.00 11.39	A	C
MOTA	200	C	ALA A	A 27	5.892	7.790	0.546	1.00 12.17	A	C
•										

ATOM	201	0	ALA	7	27	6.077	8.501	1.526	1.00 11.39	A	0
							8.243	-0.643	1.00 11.79		
ATOM	202	N	VAL		28	5.540					
ATOM	203	CA	VAL		28	5.168	9.612	-0.910	1.00 11.63		C
MOTA	204	CB	VAL		28	6.054	10.176	-2.003	1.00 11.56		C
MOTA	205	CG1	VAL	A	28	5.629	11.625	-2.440	1.00 12.77	A	C
ATOM	206	CG2	VAL	A	28	7.514	10.079	-1.594	1.00 11.95	A	C
ATOM	207	C	VAL	A	28	3.729	9.580	-1.458	1.00 11.23	A	C
ATOM'	208	0	VAL	A	28	3.470	8.936	-2.459	1.00 10.72	A	0
ATOM	209	N	ALA	A	29	2.817	10.294	-0.831	1.00 10.64		
ATOM	210	ÇA	ALA		29	1.468	10.435	-1.365	1.00 11.32		
ATOM	211	CB	ALA		29	0.441	10.151	-0.298	1.00 11.33		Č
ATOM	212	C	ALA		29		11.842	-1.909	1.00 11.35		_
						1.326					_
ATOM	213	0	ALA		29	1.404	12.826	-1.161	1.00 11.19		
ATOM	214	N	ASP		30	1.186	11.937	-3.229	1.00 11.71	T -	
ATOM	215	CA	ASP		30	1.266	13.221	-3.917	1.00 11.52		
ATOM	216	CB	ASP	A	30	2.718	13.715	-3.958	1.00 11.37	A	C
ATOM	217	CG	ASP	A	30	2.802	15.221	-3.852	1.00 12.40	A	C
ATOM	218	OD1	ASP	A	30	3.385	15.726	-2.871	1.00 12.15	A	0
ATOM	219	OD2	ASP	Α	30	2.226	15.973	-4.682	1.00 14.39	A	0
ATOM	220	С	ASP	A	30	0.665	13.113	-5.327	1:00 12.41	A	С
ATOM	221	0	ASP	A	30	0.068	12.086	-5.671	1.00 12.89	•	0
ATOM	222	N	THR		31	0.811	14.162	-6.151	1.00 12.52		
ATOM	223	CA	THR		31	-0.004	14.263	-7.353	1.00 11.62		
ATOM	224	CB	THR		31	0.302	15.554	-8.182	1.00 11.72		_
ATOM	225	OG1			31		15.702	-8.423			
			THR			1.709			1.00 11.44		
ATOM	226	CG2	THR		31	-0.099	16.789	-7.424	1.00 11.85		
ATOM	227	C	THR		31	0.126	13.041	-8.225	1.00 12.59		
ATOM	228	0	THR		31	-0.868	12.341	-8.494	1.00 12.63		
ATOM	229	N	GLY		32	1.360	12.810	-8.665	1.00 12.03		
ATOM	230	CA	GLY	A	32	1.694	11.788	-9.617	1.00 12.81	A	C
ATOM	231	C	GLY	A	32	3.202	11.763	-9.729	1.00 13.22	A	C
MOTA	232	0	GLY	A	32	3.885	12.607	-9.135	1.00 12.83	A	0
ATOM	233	N	- LEU	A	33	3.711	10.813	-10.501	1.00 13.41	A	N
ATOM	234	CA	LEU	A	33	5.139	10.622	-10.678	1.00 13.86	A	C
ATOM	235	CB	LEU	A	33	5.625	9.397	-9.899	1.00 13.74	A	С
ATOM	236	CG	LEU	Α	33	7.148	9.234	~9.900	1.00 14.12	A	С
ATOM	237	CD1	LEU		33	7.768	10.273	-8.964	1.00 13.99		
ATOM	23B	CD2	LEU		33	7.497	7.818	-9.437	1.00 15.42		_
ATOM	239	C	LEU		33	5.517		-12.151	1.00 13.89		
ATOM	240	0	LEU		33	5.374	9.444		1.00 13.03	<u>_</u>	
		Ŋ									
ATOM	241		ASP		34	6.009		-12.696	1.00 14.55		
ATOM	242	CA	ASP		34	6.455	11.701		1.00 14.62		
ATOM	243	CB	ASP		34	7.899	11.201		1.00 14.72		
ATOM	244	CG	ASP		34	8.516		-15.598	1.00 15.30		_
ATOM	245	OD1	ASP		34	9.260	10.694		1.00 14.31		
ATOM	246	OD2	ASP	A	34	8.268	12.602	-16.207	1.00 17.33	A	0
ATOM	247	C	ASP	A	34	5.470	11.016	-15.060	1.00 14.94	A	С
MOTA	248	0	ASP	Α	34	4.297	11.415	-15.124	1.00 15.39	A	0
ATOM	249	N	THR	A	35	5.927	10.013	-15.816	1.00 16.25	A	N
ATOM	250	CA	THR	A	35	5.083	9.340	-16.813	1.00 16.50	A	C
ATOM	251	CB	THR		35	5.912		-17.786	1.00 17.03		_
ATOM	252	OG1	THR		35	6.700		-17.051	1.00 17.34		
ATOM	253	CG2	THR		35	6.922		-18.593	1.00 17.53		_
MOTA	254	C	THR		35	4.005		-16.229	1.00 17.33		
ATOM	255	O	THR		35	3.111		-16.946	1.00 15.49		
ATOM	256	N	GLY		36	4.104		-14.948	1.00 16.59		
ATOM	257	CA	GLY		36	3.094		-14.360	1.00 16.76		
ATOM	258	C	GLY	A	36	3.308	5.802	-14.660	1.00 17.58	A	С

MOTA	259	0	GLY	A	36	2.432	4.984 -14.383	1.00 17.55	A	0
MOTA	260	N	ARG	A	37	4.473	5.465 -15.200	1.00 18.31	A	N
ATOM	261	CA	ARG	A	37	4.748	4.091 -15.575	1.00 19.42	A	C
ATOM	262	CB	ARG	A	37	4.763	3.940 -17.088	1.00 20.37	A	C
ATOM	263	CG	ARG		37	3.436	4.298 -17.742	1.00 23.71	A	C
ATOM	264	CD	ARG		37	3.283	3.740 -19.140	1.00 31.29	A	C
ATOM	265	NE	ARG		37			•		
						4.324	4.233 -20.024	1.00 34.29	A	N
ATOM	266	CZ	ARG		37	4.322	5.434 -20.575	1.00 38.63	A	C
ATOM	267	NHI	ARG		37	5.331	5.792 -21.361	1.00 39.90	A	N
MOTA	268	NH2	ARG	A	37	3.305	6.273 -20.362	1.00 40.23	A	N
MOTA	269	C	ARG	A	37	6.072	3.661 -14.998	1.00 19.41	A	C
MOTA	270	0	ARG	A	37	7.065	4.354 -15.150	1.00 18.12	A	0
MOTA	271	N	ASN	A	38	6.067	2.506 -14.334	1.00 19.47	A	N
ATOM	272	CA	ASN	Α	38	7.254	1.998 -13.703	1,00 20.37	A	C
ATOM	273	CB	ASN	A	38	6.917	1.215 -12.431	1.00 20.71	A	C
ATOM	274	CG	ASN	A	38	8.161	0.841 -11.658	1.00 21.12	A	C
ATOM	275	OD1	ASN		38	9.248	1.337 -11.968	1.00 18.41	A	Ō
ATOM	276	ND2	ASN		38	8.023	-0.072 -10.684	1.00 20.60	A	N
ATOM	277	C	ASN		38	7.984	1.134 -14.700			
								1.00 21.21	A	C
ATOM	278	0	ASN		38	7.918	-0.099 -14.63B	1.00 21.03	A	0
ATOM	279	N	ASP.		39	8.659	1.806 -15.625	1.00 21.69	A	N
ATOM	280	CA	ASP		39	9.363	1.158 -16.718	1.00 23.22	A	Ç
MOTA	281	CB	ASP		39	8.405	0.839 -17.882	1.00 23.19	· A	C
MOTA	282	CG	ASP	A	39	7.806	2.082 -18.526	1.00 24.66	A	· C
ATOM	283	OD1	ASP	A	39	6.796	1.945 -19.248	1.00 26.50	A	0
ATOM	284	OD2	ASP	A	39	8.246	3.239 -18.372	1.00 27.03	A	0
ATOM	285	C	ASP	A	39	10.480	2.075 -17.156	1.00 24.00	A	C
ATOM	286	0	ASP	A	39	10.843	3.004 -16.434	1.00 23.68	A	0
ATOM	287	N	SER		40	11.003	1.832 -18.355	1.00 24.67	A	N
ATOM	288	CA	SER		40	12.166	2.539 -18.847	1.00 24.80	A	C
ATOM	289	CB	SER		40	12.777	1.766 -20.041	1.00 25.30	A	C
ATOM	290	OG	SER		40	11.925	1.881 -21.163	1.00 25.60	A	Ö
ATOM		C	SER							
	291				40	11.815	3.984 19.228	1.00 23.51	· A ·	C
ATOM	292	0	SER	•	40	12.687	4.805 -19.375	1.00 24.41	A	0
ATOM	293	N	SER		41	10.532	4.308 -19.317	1.00 23.14	A	N
ATOM	294	CA	SER		41	10.097	5.670 -19.621	1.00 21.75	A	C
ATOM	295	CB	SER		41	8.620	5.679 -20.037	1.00 22.84	A	C
ATOM	296	OG	SER	A	41	7.725	5.739 -18.919	1.00 21.43	A	0
ATOM	297	C	SER	A	41	10.262	6.639 -18.427	1.00 21.13	A	C
ATOM	298	0	SER	A	41	10.299	7.863 ~18.603	1.00 19.88	A	0
ATOM	299	N	MET	A	42	10.359	6.079 -17.223	1.00 19.68	A	N
ATOM	300	CA	MET	A	42	10.381	6.882 -15.996	1.00 18.70	A	С
MOTA	301	CB	MET	A	42	10.295	5.949 -14.782	1.00 18.20	A	C
MOTA	302	CĢ	MET	A	42	10.451	6.626 -13.423	1.00 17.87	A	C
ATOM	303	SD	MET		42	9.190	7.804 -13.030	1.00 16.31	A	S
ATOM	304	CE	MET		42	7.658	6.844 -13.134	1.00 15.38	A	C
ATOM	305	C	MET		42	11.607	7.779 -15.897	1.00 13.30		C
ATOM		0							A	_
	306		MET		42	12.728	7.390 -16.223	1.00 17.28	A	0
MOTA	307	N	HIS		43	11.381	8.998 -15.421	1.00 17.69	A	N
ATOM	308	CA	HIS		43	12.479	9.903 -15.081	1.00 17.38	A	C
MOTA	309	CB	HIS		43	11.942	11.020 -14.196	1.00 17.29	A	C
ATOM	310	CG	HIS		43	12.896	12.155 -13.981	1.00 16.73	A	C
MOTA	311	NDl	HIS	A	43	12.576	13.456 -14.321	1.00 16.98	A	N
ATOM	312	CEl	HIS	A	43	13.566	14.257 -13.971	1.00 13.61	A	C
ATOM	313	NE2	HIS	A	43	14.521	13.523 -13.426	1.00 17.49	A	N
MOTA	314	CD2	HIS		43	14.113	12.207 -13.397	1.00 13.70	A	C
ATOM	315	C	HIS		43	13.647	9.209 -14.381	1.00 16.64	A	C
ATOM	316	0	HIS		43	13.453	8.389 -13.479	1.00 15.82	A	o
		_				10.700	0.000 10.47	2.00 13.02	А	~

				_									
MOTA	317	N	GLU		44	14.858		-14.818		16.35		4	N
ATOM	318	CA	GLU	A	44	16.112	8.985	-14.358	1.00	16.74	į.	4	C
MOTA	319	CB	GLU	A	44	17.293	9.763	-14.988	1.00	17.71		4	C
MOTA	320	CG	GLU	A	44	17.268	11.270	-14.753	1.00	18.20		4	С
ATOM	321	CD	GLU	A	44	18.445	12.004	-15.418	1.00	22.20		4	C
ATOM	322	OE1	GLU	A	44	18.997	11.455	-16.397	1.00	20.94		A	0
ATOM	323	OE2	GLU		44	18.843		-14.933	1.00	20.93		Ā	Ö
ATOM	324	C	GLU		44	16.280	8.982	-12.823	1.00	17.11		Ą	Č
		0	GLU						1.00	17.11			
ATOM	325				44	16.944	8.104					4	0
MOTA	326	N	ALA		45	15.665	9.954	-12.152	1.00	16.39		4	N
ATOM	327	CA	ALA		45	15.774	10.061		1.00	16.01		3	C
ATOM	328	CB	ALA		45	15.122	11.354	-10.198	1.00	15.44	j	4	C
MOTA	329	С	ALA	A	45	15.155	8.864	-9.971	1.00	16.39		4	C
ATOM	330	0	ALA	A	45	15.538	8.564	-8.857	1.00	14.42		4	0
MOTA	331	N	PHE	A	46	14.184	8.218	-10.595	1.00	16.01		Ą	N
ATOM	332	CA	PHE	Α	46	13.411	7.139	-9.971	1.00	16.28		Ą	C
ATOM	333	CB	PHE	A	46	11.958	7.562	-9.882	1.00	16.14		Ą	C
ATOM	334	CG	PHE		46	11.780	8.959	-9.396	1.00	14.90		Ą	C
ATOM	335	CD1		A	46	12.036	9.275	-8.078	1.00	14.17		Ā	Č
ATOM	336	CE1	PHE	A	46	11.897	10.586	-7.628	1.00	13.19		9	C
		CZ	PHE	A	46		11.592						C
MOTA	337					11.525		-8.504	1.00	14.92		4	
ATOM	338	CE2	PHE		4.6	11.291	11.299	-9.809	1.00	16.01		A	C
ATOM	339	CD2			46	11.416	9.971	-10.261	1.00	15.93		A	C
MOTA	340	C	PHE		46	13.466	5.791	-10.697		17.23		A	C
ATOM	341	0	PHE	A	46	13.017	4.764	-10.172	1.00	16.06		4	0
ATOM	342	N	ARG	A	47	13.986	5.781	-11.917	1.00	18.87		Ą	N
MOTA	343	CA	ARG	A	47	13.963	4.566	-12.723	1.00	20.32		A	C
MOTA	344	CB	ARG	A	47	14.659	4.833	-14.062	1.00	21.00		Α.	C
ATOM	345	CG	ARG	A	47	14.309	3.871	-15.173	1.00	24.13		A	С
ATOM	346	CD	ARG	A	47	14.468	4.517	-16.570	1.00	28.53		A	С
ATOM	347	NE	ARG		47	15.803	5.031		1.00	32.22		A	N
ATOM	348	CZ	ARG	A	47	16.105	6.229		1.00	34.45		Ą	C
ATOM	349	NH1			47	15.171		-17.703	1.00	33.97		A	N
ATOM	350	NH2	•		47				1.00	33.82			
				A		17.384	6.558	-17.527				A	N
ATOM	351	C	ARG		47	14.674	3.437	-12.000	1.00	20.49		A.	C
ATOM	352	0	ARG	A	47	15.784	3.619	-11.523	1.00	21.38		A.	0
MOTA	353	N	GLY		48	14.032	2.280	-11.898	1.00	21.45		A.	N
MOTA	354	CA	GLY		48	14.642	1.105	-11.274	1.00	21.59		A	C
MOTA	355	C	GLY	A	48	14.583	1.091	-9.741	1.00	21.98		A	C
ATOM	356	0	GLY	A	48	15.072	0.145	-9.102	1.00	21.74		A	0
MOTA	357	N	LYS	A	49	13.984	2.117	-9.136	1.00	21.05		A	. N
MOTA	358	CA	LYS	A	49	13.950	2.197	-7.662	1.00	20.90	•	A	C
MOTA	359	CB	LYS	A	49	14.915	3.305	-7.180	1.00	22.03		A	С
ATOM	360	CG	LYS	A	49	14.366	4.713	-7.161	1.00	24.83		A	С
ATOM	361	CD		A	49	15.447	5_815	-6.761	1.00	27.45		Ą	C
ATOM	362	CE	LYS	A	49	15.957	5.680	-5.358	1.00	27.82		A	Ċ
ATOM	363	NZ	LYS	A	49	17.024	4.667	-5.220	1.00	28.25		A	Ŋ
ATOM		C			49			•					
	364	_	LYS		- -	12.523	2.329	-7.077	1.00	19.90		A N	C
ATOM	365	0	LYS		49	12.339	2.667	-5.890		19.91		A	0
ATOM	366	N	ILE		50	11.523	1.999			18.63		A	N
ATOM	367	CA	ILE		50	10.121	2.078		1.00			A	C
ATOM	368	CB	ILE		50	9.284	2.650			17.67		A	C
ATOM	369	CG1	ILE	A	50	9.738	4.076	-9.050	1.00	17.24		A	C
MOTA	370	CD1	ILE	A	50	9.083	4.630	-10.302	1.00	17.34		A	C
ATOM	371	CG2	ILE	A	5 0	7.807	2.723	-8.319	1.00	17.29		A	C
ATOM	372	С	ILE	A	50	9.562	0.730		1.00	17.96		A	С
ATOM	373	Ō	ILE		50	9.339	-0.161			18.69		A	0
ATOM	374	N	THR		51	9.355	0.583			17.09		A	N
	→ 7 T		- 444		-	· · · · ·	0.505	J., 04	00	_,, _,			•1

- ATOM	375	CA	THR	A	51	8.731	-0.601	-5.218	1.00 17.60	A	C
ATOM	376	CB	THR	A	51	8.700	-0.423	-3.690	1.00 18.38	A	C
ATOM	377	OG1	THR	A	51	10.033	-0.380	-3.205	1.00 17.39	A	0
ATOM	378	CG2	THR	A	51	8.054	-1.617	-3.014	1.00 17.34	A	C
ATOM	379	С	THR	A	51	7.301	-0.746	-5.646	1.00 17.50	A	
ATOM	380	0	THR		51	6.827	-1.834	-5.903	1.00 18.10	A	
ATOM	381	N	ALA		52	6.578	0.369	-5.670	1.00 16.93	A	
ATOM	382	CA	ALA		52	5.179	0.338	-6.052	1.00 17.34	A	
MOTA	383	CB	ALA		52	4.314		-4.884		A	
	,						-0.132		1.00 17.41		
ATOM	3.84	C	ALA		52	4.753	1.725	-6.501	1.00 17.46	A	
ATOM	385	0	ALA		52	5.187	2.730	-5.928	1.00 16.50	Ą	
ATOM	386	N	LEU		53	3.921	1.760	-7.539	1.00 17.19	Ą	
MOTA	387	CA	LEU		53	3.369	2.987	-8.081	1.00 16.89	A	
ATOM	388	CB	LEU		53	4.004	3.309	-9.430	1.00 16.66	A	
ATOM	389	CG	LEU	A	53	3.490	4.525	-10.224	1.00 16.83	Ą	C
ATOM	390	CD1	LEU	A	53	3.523	5.796	-9.401	1.00 15.83	Ą	, C
ATOM	391	CD2	LEU	A	53	4.303	4.720	-11.476	1.00 17.71	A	C
MOTA	392	C	LEU	A	53	1.868	2.779	-8.212	1.00 17.28	A	C
MOTA	393	0	LEU	A	53	1.421	2.057	-9.097	1.00 17.43	A	. 0
ATOM	394	N	TYR	A	54	1.101	3.393	-7.303	1.00 17.28	A	N
ATOM	395	CA	TYR	A	54	-0.350	3.200	-7.230	1.00 16.87	A	
ATOM	396	CB	TYR		54	-0.774	2.944	-5.789	1.00 16.88	A	
ATOM	397	CG	TYR		54	-0.268	1.679	-5.144	1.00 15.63	Ā	
ATOM	398	CD1	TYR		54	-0.411	0.448	-5.770	1.00 15.86	Ą	
ATOM	399	CE1	TYR		54	0.037	-0.698	-5.192	1.00 15.12	Ą	_
ATOM	400	CZ	TYR		54	0.666	-0.647	-3.946	1.00 15.32	À	
ATOM		OH	TYR								
	401	-			54	1.093	-1.815	-3.374	1.00 14.97	A	
ATOM	402	CE2	TYR		54	0.856	0.558	-3.312	1.00 15.70	A	
ATOM	403	CD2	TYR		54	0.384	1.718	-3.908	1.00 15.59	À	
ATOM	404	C	TYR		54	-1.098	4.411	-7.712	1.00 17.11	À	
ATOM	405	0	TYR		54	-0.733	5.546	-7.387	1.00 16.78	A	
ATOM	406	N	ALA		55	-2.161	4.184	-8.483	1.00 17.01	Ą	•
ATOM -	407	CA	ALA	A	55 ·	-3.032	5.260	8.926	1.00 17.49	Ą	r. C-
MOTA	408	CB	ALA	A	55	-3.355	5.094	-10.437	1.00 17.43	A	C
ATOM	409	C	ALA	A	55	-4.323	5.272	-8.100	1.00 18.26	A	C
ATOM	410	0	ALA	A	55	-5.174	4.400	-8.269	1.00 19.60	A	. 0
MOTA	411	N	LEU	A	56	-4.481	6.267	-7.230	1.00 17.69	A	N
MOTA	412	CA	LEU	A	56	-5.641	6.353	-6.368	1,00 17.32	A	C
ATOM	413	CB	LEU	A	56	-5.224	6.779	-4.965	1.00 16.99	A	C
ATOM	414	CG	LEU	A	56	-4.452	5.752	-4.129	1.00 17.97	A	
ATOM	415	CD1	LEU		56	-3.120	5.532	-4.719	1.00 20.33	A	
ATOM	416	CD2	LEU		56	-4.329	6.225	-2.662	1.00.19.18	A	
ATOM	417	C	LEU		56	-6.662	7.360	-6.867	1.00 17.28	2	
ATOM	418	0	LEU		56	-7.839	7.192	-6.653	1.00 17.95	<u> </u>	
ATOM	419	N	GLY		57	-6.204	8.430	-7.485	1.00 17.26	<u> </u>	
ATOM	420	CA	GLY		5 <i>7</i>	-7.068	9.541	-7.802	1.00 17.28	A	
ATOM		C									
	421	_	GLY		57	-7.662	9.430	-9.199	1.00 17.74	A	
ATOM	422	0	GLY		57	-8.758	9.905	-9.446	1.00 17.69	Ą	
ATOM	423	N	ARG		58	-6.921			1.00 18.54	A	
ATOM	424	CA	ARG		58	-7.361		-11.502	1.00 19.44	A	
ATOM	425	CB	ARG		58	-6.572		-12.466	1.00 18.56	A	
ATOM	426	CG	ARG		58	6.873		-12.371	1.00 18.16	2	
ATOM	427	CD	ARG		58	-5.685	11.912	-12.787	1.00 17.99	Ą	, C
MOTA	428	NE	ARG	A	58	-4.505	11.593	-11.990	1.00 17.16	A	N
MOTA	429	CZ	ARG	A	58	-3.248	11.716	-12.392	1.00 18.78	. A	C
ATOM	430	NH1	ARG	A	58	-2.967	12.194	-13.591	1.00 18.96	Ą	N
ATOM	431	NH2	ARG	A	58	-2.253	11.339	-11.584	1.00 17.60	A	
ATOM	432	C	ARG		58	-7.123		-11.909	1.00 19.97	7	
											·

ATOM	433	0	ARG	A	58	-6.007	6.754	-11.878	1.00	20.06	A	0
ATOM	434	N	THR	A	59	-8.183	6.575	-12.324	1.00	22.06	A	N
ATOM	435	CA	THR	A	59	-8.091	5.180	-12.688	1.00	22.88	A	C
ATOM	436	CB	THR		59	-9.479	4.693	-13.142	1.00	24.04	A	С
ATOM	437	OG1	THR		59	-10.330		-11.984	1.00	25.24	A	o
ATOM	438	CG2	THR		59	-9.406	3.250	-13.657	1.00	25.24	A	C
ATOM	439	C	THR		59	-7.009	4.919	-13.733	1.00	22.06	A	C
ATOM	440	0	THR		59	-7.020	5.482	-14.835	1.00	22.93	A	0
ATOM	441	N	ASN		60	-6.074		-13.332	1.00	21.27		N
MOTA	442	CA	ASN		60	-4.939		-14.124		21.57	A	
ATOM	443	CB	ASN		60				1.00	_	A	C
	444	CG				-5.400	2.788	-15.326	1.00	22.51	A	C
ATOM			ASN		60	-5.861	1.401		1.00		A	C
ATOM ·	445	OD1	ASN		60	-5.546	0.908	-13.835	1.00	27.82	A	0
ATOM	446	ND2	ASN		60	-6.624		-15.801	1.00	25.97	A	N
MOTA	447	C	ASN		60	-4.038	4.744	~14.614	1.00	20.35	A	C
MOTA	448	0	ASN		60	-3.369		-15.629	1.00	20.71	A	0
ATOM	449	N	ASN		61	-4.023		-13.897	1.00	18.43	A	N
ATOM	450	CA	ASN		61	-3.217		-14.300	1.00	18.53	A	C
ATOM	451	CB	ASN		61	-4.095	8.062		1.00	17.54	A	C
MOTA	452	CG	ASN		61	-3.278	9.194	-15.580	1.00	19.62	A	C
MOTA	453	OD1	ASN		61	-3.832		-16.141	1.00	22.44	A	0
ATOM	454	ND2	ASN		61	-1.968	9.081		1.00	15.52	A	N
ATOM	. 455	C	ASN		61	-2.520		-13.088			A	C
MOTA	456	0	ASN		61	-3.159		-12.260		16.00	A	0
ATOM	457	N	ALA		62	-1.219		-12.988	1.00	16.29	A	N
MOTA	458	CA	ALA		62	-0.418		-11.902	1.00	16.34	A	C
MOTA	459	CB	ALA		62	0.310	6.804	-11.183	1.00	16.55	А	C
MOTA	460	C	ALA		62	0.584	8.948	-12.405	1.00	16.52	A	C
ATOM	461	0	ALA		62	1.583		-11.728	1.00	15.61	A	0
MOTA	462	N	ASN		63	0.344	9.515	-13.593	1.00	15.91	A	N
MOTA	463	CA	ASN		63	1.276		-14.157		15.75	Ą	C
MOTA	464	CB	ASN		63	1.251	10.471	-15.720	1.00	15.36	A	C
MOTA	465	CG	ASN		63.	. 0.043		16.307		16.00	A	C
ATOM	466	OD1	ASN		63	-0.617	11.982	-15.643	1.00	14.50	A	0
ATOM	467	ND2	ASN		63	-0.274	10.833	-17.584	1.00	15.36	A	N
ATOM	468	C	ASN		63	1.115	11.858	-13.518	1.00	15.21	A	C.
ATOM	469	0	ASN		63	0.168	12.108	-12.762	1.00		A	0
MOTA	470	N	ASP		64	2.047	12.753	-13.828			A	N
MOTA	471	CA	ASP		64	2.192	14.015	-13.102	1.00		A	С
MOTA	472	CB	ASP		64	3.450		-12.233		14.59	A	C
ATOM	473	CG	ASP		64	3.532	15.161	-11.300	1.00		A	C
ATOM	474	OD1	ASP		64	2.476	15.813	-11.058	1.00		A	0
MOTA	475	OD2	ASP		64	4.626		-10.776	1.00		A	0
MOTA	476	C	ASP		64	2.236		-14.061	1.00		A	C
MOTA	477	0	ASP		64	3.315	15.713	-14.423			A	0
ATOM	478	N	PRO		65	1.065	15.644	-14.476	1.00		A	N
MOTA	479	CA	PRO		65	0.950	16.813	-15.343		17.33	A	C
MOTA	480	CB	PRO		65	-0.509		-15.807		17.19	A	C
MOTA	481	CG	PRO		65	-1.225	15.953	-14.808		17.73	A	C
ATOM	482	CD	PRO		65	-0.249		-14.172		17.21	A	С
MOTA	483	C	PRO		65	1.228		-14.607		17.72	A	C
MOTA	484	0	PRO		65	1.515		-15.250		17.98	A	0
MOTA	485	N	ASN		66	1.150		-13.279		18.27	A	Ŋ
MOTA	486	CA	ASN		66	1.314	19.217			19.24	A	C
MOTA	487	CB	ASN		66	0.536		-11.111		20.48	A	Ċ
ATOM	488	CG	ASN		66	0.790	19.993	-10.068	1.00		A	С
ATOM	489	OD1	ASN		66	1.942	20.281	-9.721	1.00		A	0
ATOM	490	ND2	ASN	A	66	-0.287	20.591	-9.566	1.00	25.20	A	N

ATOM	491	C ASN A	66	2.806	19.457	-12.153	1.00 18.71	A	С	
ATOM	492	o asn a	66	3.314	20.549	-12.353	1.00 18.84	A	0	
MOTA	493	N GLY A	67	3.500	18.426	-11.698	1.00 17.55	A	N	
MOTA	494	CA GLY A	67	4.917	18.503	-11.406	1.00 16.38	A	C	
ATOM	495	C GLY A	67	5.234	18.455	-9.916	1.00 15.32	A	C	
ATOM	496	O GLY A	67	6.383	18.167	-9.542	1.00 15.11	A	0	
ATOM	497	N HIS A	68	4.230	18.722	-9.075	1.00 13.44	A	N	
ATOM	498	CA HIS A	68	4.406	18.776	-7.608	1.00 12.51	\mathbf{A}	C	
ATOM	499	CB BHIS A	68	3.109	19.121	-6.891	0.50 12.22	A	C	
ATOM	-500	CB AHIS A	68	3.048	19.078	-6.930	0.50 12.48	A	C	
MOTA	501	CG BHIS A	68	3.266	19.371	-5.417	0.50 10.61	A	C	
ATOM	502	CG AHIS A	68	3.140	19.398	-5.464	0.50 10.86	A	C	
ATOM	503	ND1BHIS A	68	2.741	18.522	-4.453	0.50 5.34	A	N	
ATOM	504	ND1AHIS A	68	3.742	18.559	-4.548	0.50 7.56	A	N	
ATOM		CE1BHIS A	68	3.009	19.016	-3.254	0.50 6.59	A	C	
ATOM	506	CEIAHIS A	68	3.674	19.102	-3.341	0.50 2.00	A	C	
ATOM	507	NE2BHIS A	6 8	3.678	20.158	-3.403	0.50 7.98	A	N	
ATOM	508 509	NE2AHIS A	68 68	3.061	20.277	-3.442	0.50 6.21	A a	N C	
ATOM ATOM	510	CD2AHIS A	68 68	3.845 2.697	20.405	-4.745 -4.756	0.50 5.10 0.50 8.79	A A	C	
ATOM	511	C HIS A	68	4.986	17.474	-7.064	1.00 12.70	A	C	
ATOM	512	O HIS A	68	6.025	17.471	-6.401	1.00 12.70	A A	0	
MOTA	513	N GLY A	69	4.315	16.374	-7.317	1.00 13.22	A	N	
ATOM	514	CA GLY A	69	4.709	15.094	-6.739	1.00 13.52	A	C	
ATOM	515	C GLY A	69	6.039	14.574	-7.181	1.00 13.01	A	C	
ATOM	516	O GLY A	69	6.751	13.894	-6.418	1.00 13.80	A	Õ	
ATOM	517	N THR A	70	6.391	14.865	-8.432	1.00 13.25	A	N	
ATOM	518	CA THR A	70	7.651	14.425	~8.970	1.00 12.89	A	C	
ATOM	519	CB THR A	70	7.688	14.638		1.00 13.93	A	Ċ	
ATOM	520	OG1 THR A	70	6.592	13.940	-11.116	1.00 14.34	A	Ō	
ATOM	521	CG2 THR A	70 ³	8.895	13.977	-11.110	1.00 13.50	A	C	
ATOM	522	C THR A	70	8.769	15.192	-8.309	1.00 12.86	A	C	
ATOM .	523	O THR A	70	9.816	14.622		1.00 13.63	. A	٠0	
ATOM	524	N HIS A	71	8.560	16.498	-8.093	1.00 12.19	A	N	
ATOM	525	CA HIS A	71	9.580	17.341	-7.486	1.00 11.80	A	C	
ATOM	526	CB HIS A	71	9.125	18.796	-7.555	1.00 11.41	A	C	
ATOM	527	CG BHIS A	71	10.185	19.784	-7.212	0.50 11.89	A	C	
ATOM	528	CG AHIS A	71	10.189	19.775	-7.181	0.50 9.73	A	С	
ATOM	52 9	ND1BHIS A	71	10.926	19.709	-6.050	0.50 12.60	A	N	
ATOM	530	ND1AHIS A	71	10.236	20.388	-5.942	0.50 5.89	A	N	
MOTA	531	CE1BHIS A	71	11.791	20.706	-6.025	0.50 13.16	A	C	
MOTA	532	CELAHIS A	71	11.281	21.192	-5.898	0.50 7.95	\mathbf{A}_{\cdot}	· C	
ATOM	533	NE2BHIS A	71	11.618	21.438	-7.114	0.50 14.18	A	N	
ATOM	534	NE2AHIS A	71	11.923	21.107	-7.054	0.50 10.14	A	N	
ATOM	535	CD2BHIS A	71	10.617	20.883	-7.869	0.50 10.25	A	C	
MOTA	536	CD2AHIS A	71	11.258	20.231	-7.874	0.50 6.22	A	C	
MOTA	537	C HIS A	71	9.806	16.875	-6.018	1.00 12.35	A	C	
ATOM	538	O HIS A	71		16.698	-5.538	1.00 12.45	A	0	
ATOM	539 540	N VAL A	72	8.697	16.657	-5.331	1.00 12.33	A	N	
ATOM	540 543	CA VAL A	72 72	8.704	16.204	-3.960	1.00 12.62	A	Ċ	
ATOM ATOM	541 542	CB VAL A	72 72	7.279	16.056	-3.469	1.00 12.75	A	C C	
ATOM	542 543	CG1 VAL A	72 72	7.248 6.647	15.256		1.00 12.50	A A		
ATOM	544	CG2 VAL A		6.647	17.430	-3.262 -3.700	1.00 12.97	A A	C C	
ATOM	545	O VAL A	72 72	9.431	14.864	-3.799 -2.947	1.00 13.01 1.00 12.02	A A	0	
ATOM	546	N ALA A	73	10.333 9.054	14.707 13.888	-2.947 -4.615	1.00 12.02	A	N	
ATOM	547	CA ALA A	73 73	9.664	12.572		1.00 12.23	A	C .	
ATOM	547 548	CB ALA A	73 73	8.986	11.617	-4.521 -5.440	1.00 12.29	A	C .	
-24 VI'I	<i></i>	Ca Fun A	, ,	0.900	TT.OT/	J. 77	1.00 14.32	A	_	

ATOM	549	C	ALA	A	73	11.180	12.682	-4.850	1.00 11.	78 A	C
ATOM	550	0	ALA	A	73	11.985	11.992	-4.280	1.00 11.	60 <i>P</i>	. 0
ATOM	551	N	GLY	A	74	11.553	13.583	-5.742	1.00 12.	04 A	N
ATOM	552	CA	GLY		74	12.961	13.760	-6.069	1.00 11.		
MOTA	553	C	GLY		74	13.768	14.190	-4.845	1.00 12.		
ATOM	55 4	Ô	GLY		74	14.936	13.816	-4.693	1.00 11.		
ATOM	555	N	SER		75	13.157	15.015	-3.994	1.00 12.		
ATOM	556	CA	SER		7 5	13.844	15.546	-2.827	1.00 12.		
ATOM	557	CB	SER		75	13.095	16.748	-2.267	1.00 11.		C
ATOM	558	OG	SER	A	75	13.254	17.915	-3.077	1.00 13.	29 A	0
MOTA	559	C	SER	A	7 5	14.033	14.477	-1.739	1.00 12.	05 <i>P</i>	, C
ATOM	560	0	SER	A	75	14.984	14.540	-0.927	1.00 12.	73 · P	0
ATOM	561	N	VAL	A	76	13.112	13.524	-1.676	1.00 11.	61 <i>P</i>	N
ATOM	562	CA	VAL	A	· 7 6	13.272	12.407	-0.748	1.00 11.	87 A	C
ATOM	563	CB	VAL		76	12.023	11.519	-0.691	1.00 12.		
ATOM	564	CG1	VAL		76	12.224	10.396	0.324	1.00 12.		
ATOM	565	CG2	VAL		76	10.799	12.319	-0.316	1.00 11.		
ATOM	566	C	VAL		76		11.501		1.00 11.		
						14.415		-1.173			
ATOM	567	0	VAL		76	15.280	11.158	-0.372	1.00 10.		
ATOM	568	N	LEU		77	14.410	11.085	-2.437	1.00 12.		
ATOM	569	CA	LEU		77 .	15.234	9.934	-2.809	1.00 12.		
ATOM	570	CB	LEU		77	14.532	8.627	-2.425	1.00 13.	05 A	C -
ATOM	571	CG	LEU		77	13.050	8.419	-2.774	1.00 11.	85 A	C
ATOM	572	CD1	LEU	A	77	12.868	8.361	-4.281	1.00 12.	80 <i>P</i>	C
ATOM	573	CD2	LEU	A	77	12.512	7.140	-2.114	1.00 14.	07 <i>P</i>	C
ATOM	574	C	LEU	A	77	15.676	9.847	-4.267	1.00 13.	21 <i>P</i>	C
ATOM	575	0	LEU	A	77	16.181	8.810	-4.656	1.00 13.	59 <i>7</i>	. 0
ATOM	576	N	GLY		78	15.586	10.935	-5.022	1.00 13.		
ATOM	57 7	CA	GLY		78	16.045	10.945	-6.415	1.00 14.		
ATOM	578	C	GLY		78	17.486	10.505	-6.506	1.00 14.		
ATOM	579	Ö	GLY		78	18.322	10.998	-5.718	1.00 14.		
ATOM	580	Ŋ	ASN				9.587		1.00 14.		
					79 70	17.800		-7.420			
ATOM	581	CA	ASN		79	19.172	9.066		1.00 16.		
ATOM	582	CB	ASN		79	19.204	7.542	-7.263		08 7	
ATOM	583	CG	ASN		79	20.615	7.023	-6.904	1.00 16.		
ATOM	584	OD1	ASN		79	21.438	7.754	-6.372	1.00 15.		
ATOM	585	ND2	ASN		79	20.881	5.749	-7.181	1.00 15.		_
ATOM	5 86	C	ASN	A	79	19.877	9.353	-8.852	1.00 18.	12 <i>F</i>	C
ATOM	587	0	ASN	A	79	20.735	8.576	-9.267	1.00 18.	96 <i>P</i>	0
MOTA	588	N	ALA	A	80 .	19.559	10.458	-9.513	1.00 18.	68 <i>F</i>	N
ATOM	589	CA	ALA	A	80	20.316	10.838	-10.723	1.00 19.	08 <i>J</i>	A C
ATOM	590	CB	ALA	A	80	19.381	11.169	-11.876	1.00 19.	15 <i>7</i>	d C
ATOM	591	C	ALA	Α	80	21.261	11.995	-10.376	1.00 18.	85 <i>7</i>	A C
MOTA	592	0	ALA	A	80	22.245	11.795	-9.663	1.00 18.	76 <i>I</i>	A 0
ATOM	593	N	THR		81	20.973	13.194	-10.841	1.00 18.		
MOTA	594	CA	THR		81	21.647	14.370	-10.305	1.00 18.		
ATOM	595	CB	THR		81	22.229	15.222	-11.444	1.00 18.		
ATOM	596	OG1	THR		81	21.202		-12.379	1.00 17.		
				_	-				-		_
ATOM	597	CG2	THR		81	23.229		-12.289	1.00 21.		
MOTA	598	C	THR		81	20.650	15.185		1.00 17.		
MOTA	599	0	THR		81	19.466	14.858		1.00 17.		
ATOM	600	N	ASN		82	21.115	16.238	-8.803	1.00 16.		
ATOM	601	CA	ASN	A	82	20.271	16.947	-7.842	1.00 16.	82 <i>I</i>	A C
ATOM	602	CB	ASN	A	82	19.279	17.840	-8.574	1.00 16.	90 <i>I</i>	, C
ATOM	603	CG	ASN	A	82	19.962	18.782	-9.552	1.00 18.	05 <i>I</i>	A C
ATOM	604	QD1	ASN		82	19.861	18.632	-10.804	1.00 20.		
ATOM	605	ND2	ASN		82	20.650	19.760	-9.005	1.00 12.		
ATOM	606	C	ASN		82	19.541	15.941	-6.930	1.00 16.		
	4 4 4	-		~ =	- -						_

- MAI	600	_		_						_	
ATOM	607	0	ASN	A	82	18.325	15.985	-6.772	1.00 16.8	18 A	0
ATOM	608	N	LYS	Α	83	20.310	15.022	-6.366	1.00 15.4	1 A	N
ATOM	609	CA	LYS		83	19.767	13.853	-5.710	1.00 15.6		
ATOM	610	CB	LYS		83	20.907	12.919	-5.287	1.00 15.9	5 A	
ATOM	611	CG	LYS	A	83	21.665	12.168	-6.415	1.00 16.1	.9 A	С
ATOM	612	CD	LYS	Α	83	22.815	11.339	-5.811	1.00 19.2	4 A	С
ATOM	613	CE	LYS		83	23.806	10.791				
							_	-6.833	1.00 21.1		
ATOM	614	NZ	LYS	A	83	23.076	9.941	-7.791	1.00 20.8	18 A	N
ATOM	615	C	LYS	A	83	18.966	14.243	-4.453	1.00 14.7	'4 A	С
ATOM	616	0	LYS	Α	83	19.243	15.248	-3.801	1.00 13.7	ı A	0
ATOM	617	N	GLY		84	18.000	13.402	-4.117	1.00 14.6		_
ATOM	618	CA	GLY		84	17.337	13.439	-2.833	1.00 14.4	.0 A	C
ATOM	619	C	GLY	A	84	18.240	13.078	-1.664	1.00 14.3	8 A	С
ATOM	620	0	GLY	Α	84	19.372	12.683	-1.853	1.00 14.6	8 A	0
ATOM	621	N	MET		85	17.734	13.231	-0.439	1.00 13.4		
ATOM	622	CA	MET		85	18.586	13.079	0.753	1.00 13.3	9 A	С
MOTA	623	CB	MET	A	85	17.865	13.660	1.970	1.00 13.6	2 A	C
MOTA	624	CG	MET	A	85	17.446	15.132	1.799	1.00 14.1	.0 A	C
ATOM	625	SD	MET		85	18.823	16.235	1.480	1.00 15.7		
ATOM	626	CE	MET		85	18.801	16.373	-0.341	1.00 16.5		
ATOM	627	C	MET	A	85	18.946	11.600	1.022	1.00 13.5	5 A	C
ATOM	628	O	MET	A	85	19.975	11.302	1.623	1.00 13.9	1 A	0
ATOM	629	N	ALA	A	86	18.078	10.685	0.586	1.00 13.5		N
ATOM	630		ALA		86	18.290	9.250	0.774	1.00 13.6		
ATOM	631	CB	ALA		86	17.223	8.682	1.717	1.00 13.6	_	C
ATOM	632	C	ALA	A	86	18.200	8.571	-0.589	1.00 13.5	9 A	C
ATOM	633	0	ALA	A	86	17,258	7.821	-0.868	1.00 14.5	0 A	0
ATOM	634	N	PRO	A	87	19.175	8.818	-1.445	1.00 14.3		_
ATOM	635		PRO		87						
		CA				19.068	8.409	-2.859	1.00 14.1	_	
MOTA	636	CB	PRO	A	87	20.236	9.152	-3.515	1.00 14.9	13 A	С
ATOM	637	CG	PRO	A	87	21.263	9.267	~2.393	1.00 14.5	6 A	C
ATOM	638	CD	PRO	A	87	20.446	9.524	-1.148	1.00 13.9	7 A	C
ATOM	.639	С	PRO		87	19.146		3.123	1.00 14.6		
ATOM	640	Ī			87						
		0	PRO			18.943	6.474	-4.260	1.00 15.6		
ATOM	641	N	GLN	A	88	19.424	6.099	-2.109	1.00 15.3	.1 A	N
ATOM	642	ÇA	GLN	A	88	19.436	4.639	-2.266	1.00 16.3	5 A	C
MOTA	643	CB	GLN	A	88	20.748	4.050	-1.733	1.00 16.7	'3 A	С
MOTA	644	CG	GLN		88	21.900	4.262	-2.703	1.00 19.5		_
ATOM	645	CD	GLN		88	23.267	3.916	-2.161	1.00 21.3		·C
ATOM	646	OE1	GLN	A	88	23.427	2.933	-1.439	1.00 22.7	'9 A	0
MOTA	647	NE2	GLN	A	88	24.272	4.709	-2.547	1.00 22.4	.1 A	N
ATOM	648	С	GLN	A	88	18.228	3.976	-1.621	1.00 16.4	.9 A	С
ATOM	649	0	GLN		88	18.080	2.754	-1.644	1.00 16.5		_
ATOM	650	N	ALA		89	17.347	4.786	-1.044	1.00 16.7		N
ATOM	651	CA	ALA	A	89	16.056	4.279	-0.599	1.00 16.7	'8 A	C
ATOM	652	CB	ALA	A	89	15.380	5.277	0.375	1.00 17.2	8 A	C
ATOM	653	C	ALA	A	89	15.139	3.996	-1.792	1.00 16.3		
ATOM	654						_				
		0	ALA		89	15.212	4.648	-2.826	1.00 16.8		
ATOM	655	Ŋ	ASN	A	90	14.248	3.037	-1.634	1.00 15.4	5 A	N
ATOM	6 56	CA	ASN	A	90	13.264	2.756	-2.658	1.00 15.4	. O A	C
MOTA	657	CB	ASN	A	90	13.036	1.247	-2.756	1.00 16.0		С
ATOM	658	CG	ASN		90	14.076	0.549	-3.658	1.00 19.9		
ATOM	659	OD1	ASN		90	15.039	1.155	-4.106	1.00 25.0		
ATOM	660	ND2	ASN	A	90	13.892	-0.736	-3.873	1.00 28.2	8 A	N
ATOM	661	С	ASN	A	90	11.942	3.486	-2.367	1.00 14.0	a A	С
ATOM	662	0	ASN		90	11.668	3.834	-1.234	1.00 12.8		
ATOM	663	N	LEU		91	11.150	3.705	-3.410	1.00 13.0		
MOTA	664	CA	LEU	A	91	9.964	4.542	-3.381	1.00 13.7	'8 A	C

ATOM 665 CB LEU A 91 10.022 5.524 -4.540 1.00 13.95 A C ATOM 666 CS LEU A 91 8.661 6.472 -4.765 1.00 12.85 A C ATOM 666 CD LEU A 91 8.669 7.375 -3.571 1.00 15.80 A C ATOM 669 CC LEU A 91 8.669 7.375 -3.571 1.00 15.80 A C ATOM 669 CC LEU A 91 8.661 3.762 -3.524 1.00 13.13 A C ATOM 669 CC LEU A 91 8.661 3.762 -3.524 1.00 14.00 15.63 A C ATOM 670 O LEU A 91 8.651 3.762 -3.524 1.00 15.63 A C ATOM 671 N VAL A 92 7.716 4.055 -2.649 1.00 15.63 A C ATOM 671 N VAL A 92 7.716 4.055 -2.649 1.00 14.00 A C ATOM 673 CB VAL A 92 5.737 3.031 -1.662 1.00 14.00 A C ATOM 673 CB VAL A 92 5.737 3.031 -1.662 1.00 13.15 A C ATOM 673 CG VAL A 92 5.737 3.031 -1.662 1.00 13.15 A C ATOM 673 CG VAL A 92 5.6327 8.00 13.00 13.160 13.15 A C ATOM 673 CG VAL A 92 5.6327 8.00 13.00 13.15 A C ATOM 673 CB VAL A 92 5.615 5.001 -3.175 1.00 13.15 A C ATOM 677 CG VAL A 92 5.615 5.001 -3.175 1.00 13.15 A C ATOM 678 N VAL A 92 5.615 5.001 -3.175 1.00 13.15 A C ATOM 678 N VAL A 92 5.615 5.001 -3.175 1.00 13.15 A C ATOM 678 N VAL A 92 5.615 5.001 -3.175 1.00 13.15 A C ATOM 678 N VAL A 92 5.615 5.001 -3.175 1.00 13.15 A C ATOM 678 C VAL A 92 5.615 5.001 -3.175 1.00 13.15 A C ATOM 680 CB VHE A 93 4.899 6.954 -5.985 1.00 13.57 A C ATOM 680 CB VHE A 93 4.899 6.954 -5.985 1.00 13.57 A C ATOM 680 CB VHE A 93 4.899 6.954 -5.985 1.00 13.57 A C ATOM 681 CG VER A 93 3.690 11.00 0 -6.515 1.00 11.77 A C ATOM 684 CZ PHE A 93 3.690 11.00 0 -6.515 1.00 11.77 A C ATOM 686 CD PHE A 93 3.260 11.00 0 -6.515 1.00 11.77 A C ATOM 680 C PHE A 93 3.260 11.00 0 -6.515 1.00 11.77 A C ATOM 680 C PHE A 93 3.296 8.679 -6.710 1.00 13.55 A C ATOM 680 C PHE A 93 3.296 8.679 -6.710 1.00 13.55 A C ATOM 680 C PHE A 93 3.296 8.679 -6.710 1.00 13.55 A C ATOM 680 C PHE A 93 3.296 8.679 -6.710 1.00 13.55 A C ATOM 680 C PHE A 93 3.296 8.679 -6.710 1.00 13.55 A C ATOM 680 C PHE A 93 3.296 8.679 -6.710 1.00 13.55 A C ATOM 680 C PHE A 93 3.296 8.679 -6.710 1.00 13.55 A C ATOM 690 CB SER A 95 -0.066 8.00 1.00 13.00 13.55 A C ATOM 690 CB SER A 95 -0.066 8.00 1.00 13.15 A C ATOM 690 CB SER A 95 -0.0											
ATOM 667 CD1 LBU A 91 8.669 7.375 -3.571 1.00 15.80 A C ATOM 668 CD2 LBU A 91 9.077 7.287 -6.026 1.00 13.13 A C ATOM 669 C LBU A 91 8.661 3.762 -3.524 1.00 14.15 A C ATOM 670 O LBU A 91 8.661 3.762 -3.524 1.00 14.15 A C ATOM 670 O LBU A 91 8.661 3.762 -3.524 1.00 14.15 A C ATOM 670 O LBU A 91 8.661 3.2953 -4.437 1.00 15.63 A C ATOM 671 N VAL A 92 7.716 4.055 -2.649 1.00 13.69 A N ATOM 672 CA VAL A 92 6.327 3.692 -2.872 1.00 14.00 A C ATOM 673 CB VAL A 92 6.327 3.692 -2.872 1.00 14.00 A C ATOM 674 CG1 VAL A 92 6.327 3.692 -2.872 1.00 13.15 A C ATOM 675 CG2 VAL A 92 4.197 3.018 -1.767 1.00 15.32 A C ATOM 676 C VAL A 92 5.615 5.001 -1.3175 1.00 13.45 A C ATOM 676 C VAL A 92 5.615 5.001 -3.175 1.00 13.45 A C ATOM 676 C VAL A 92 5.615 5.001 -3.175 1.00 13.45 A C ATOM 677 O VAL A 92 5.687 5.942 -2.376 1.00 13.53 A C ATOM 678 N PHE A 93 4.984 5.107 -4.346 1.00 13.19 A N ATOM 669 CB PHE A 93 4.894 5.107 -4.346 1.00 13.19 A N ATOM 669 CB PHE A 93 4.894 5.107 -4.346 1.00 13.19 A N ATOM 681 CG PHE A 93 4.894 6.585 1.00 13.57 A C ATOM 681 CG PHE A 93 4.894 6.585 -6.587 1.00 13.57 A C ATOM 681 CG PHE A 93 4.894 6.586 -5.985 1.00 13.57 A C ATOM 683 CEL PHE A 93 4.894 9.6964 -5.985 1.00 13.57 A C ATOM 683 CEL PHE A 93 3.680 11.00 7.48 -5.801 1.00 13.05 A C ATOM 683 CEL PHE A 93 3.680 11.00 7.48 -5.801 1.00 12.22 A C ATOM 680 CEL PHE A 93 2.690 11.00 7.48 -5.801 1.00 12.71 A C ATOM 680 CEL PHE A 93 3.680 11.00 7.48 -5.801 1.00 12.71 A C ATOM 680 CEL PHE A 93 3.680 11.00 7.48 -5.801 1.00 12.71 A C ATOM 680 CEL PHE A 93 3.260 11.00 7.48 -5.801 1.00 12.71 A C ATOM 680 CEL PHE A 93 3.260 11.00 7.48 -5.801 1.00 12.71 A C ATOM 680 CEL PHE A 93 3.260 11.00 1.00 12.22 A C ATOM 680 CEL PHE A 93 3.260 11.00 1.00 12.22 A C ATOM 680 CEL PHE A 93 3.260 11.00 1.00 12.22 A C ATOM 680 CEL PHE A 93 3.260 11.00 1.00 12.22 A C ATOM 680 CEL PHE A 93 3.260 11.00 1.00 12.22 A C ATOM 680 CEL PHE A 93 3.260 11.00 13.55 A C ATOM 680 CEL PHE A 93 3.260 11.00 13.55 A C ATOM 680 CEL PHE A 93 3.260 11.00 13.55 A C ATOM 680 CEL PHE A 93 3.260 11.00 13.55 A	MOTA	665	CB	LEU A	91	10.022	5.524	-4.540	1.00 13.95	A	C
ATOM 668 CD2 LEU A 91	MOTA	666	CG	LEU A	91	8.861	6.472	-4.765	1.00 12.85	A	C
ATOM 669 C LEU A 91	ATOM	667	CD1	LEU A	91	8.669	7.375	-3.571	1.00 15.80	A	C
ATCM 670 0 LEU A 91	ATOM	668	CD2	LEU A	91	9.077	7.287	-6.026	1.00 13.13	A	C
ATCM 670 0 LEU A 91	ATOM		С	LEU A	91	8.661	3.762	-3.524	1.00 14.15		
ATOM 671 N VAL A 92											
ATOM 673 CB VAL A 92 5.737 3.692 -2.872 1.00 14.00 A C ATOM 673 CB VAL A 92 5.737 3.031 -1.662 1.00 13.15 A C ATOM 674 CG1 VAL A 92 5.737 3.038 -1.767 1.00 15.32 A C ATOM 675 CG2 VAL A 92 6.260 1.621 -1.546 1.00 13.02 A C ATOM 675 CG2 VAL A 92 6.260 1.621 -1.546 1.00 13.02 A C ATOM 676 C VAL A 92 5.615 5.001 -3.175 1.00 13.45 A C ATOM 677 O VAL A 92 5.687 5.942 -2.376 1.00 13.53 A C ATOM 678 N PHE A 93 4.984 5.107 -4.346 1.00 13.15 A C ATOM 679 CA PHE A 93 4.984 5.107 -4.346 1.00 13.15 A C ATOM 679 CA PHE A 93 4.984 5.107 -4.346 1.00 13.15 A C ATOM 680 CB PHE A 93 4.293 6.351 -4.714 1.00 13.157 A C ATOM 680 CB PHE A 93 4.293 6.351 -4.714 1.00 13.157 A C ATOM 680 CB PHE A 93 4.289 6.964 -5.985 1.00 13.157 A C ATOM 681 CC PHE A 93 4.984 6.308 6.206 1.00 13.157 A C ATOM 680 CB PHE A 93 3.368 1.00 13.57 A C ATOM 681 CC PHE A 93 3.3680 11.03 -6.515 1.00 11.77 A C ATOM 686 CD2 PHE A 93 3.680 11.00 -6.515 1.00 11.77 A C ATOM 685 CE2 PHE A 93 3.680 11.00 -6.515 1.00 11.77 A C ATOM 686 CD2 PHE A 93 3.2680 11.00 -6.515 1.00 11.77 A C ATOM 686 CD2 PHE A 93 3.250 5.285 -5.632 1.00 13.51 A C ATOM 687 C PHE A 93 2.350 5.285 -5.632 1.00 13.51 A C ATOM 687 C PHE A 93 2.350 5.285 -5.632 1.00 13.55 A C ATOM 689 O PHE A 93 2.350 5.285 -5.632 1.00 13.51 A C ATOM 689 O PHE A 93 2.350 5.285 -5.632 1.00 13.55 A C ATOM 689 C D GLN A 94 0.567 6.903 -4.150 1.00 12.24 A C ATOM 689 C D GLN A 94 0.567 6.903 -4.150 1.00 13.55 A C ATOM 697 CD GLN A 94 0.567 6.903 -4.150 1.00 13.55 A C ATOM 697 CD GLN A 94 0.569 6.510 1.00 13.55 A C ATOM 697 CD GLN A 94 0.567 6.903 -4.150 1.00 13.55 A C ATOM 697 CD GLN A 94 0.567 6.903 -4.150 1.00 13.55 A C ATOM 697 CD GLN A 94 0.569 6.310 0.153.55 A C ATOM 697 CD GLN A 94 0.567 6.903 -4.150 1.00 13.55 A C ATOM 697 CD GLN A 94 0.569 6.310 0.153.55 A C ATOM 699 CD GLN A 94 0.569 6.310 0.153.55 A C ATOM 697 CD GLN A 94 0.569 6.310 0.153.55 A C ATOM 697 CD GLN A 94 0.569 6.310 0.153.55 A C ATOM 697 CD GLN A 94 0.566 6.002 7.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.000000 1.000000 1.00000			_								
ATCM 673 CB VAL A 92 5.737 3.031 -1.662 1.00 13.15 A C ATCM 674 CG1 VAL A 92 6.260 1.621 -1.546 1.00 13.02 A C ATCM 675 CG2 VAL A 92 6.260 1.621 -1.546 1.00 13.03 A C ATCM 676 C VAL A 92 5.687 5.942 -2.376 1.00 13.45 A C ATCM 677 0 VAL A 92 5.687 5.942 -2.376 1.00 13.53 A C ATCM 678 N PHE A 93 4.984 5.107 -4.346 1.00 13.05 A C ATCM 678 N PHE A 93 4.984 5.107 -4.346 1.00 13.05 A C ATCM 680 CB PHE A 93 4.899 6.964 -5.985 1.00 13.55 A C ATCM 681 CB PHE A 93 4.899 6.964 -5.985 1.00 13.55 A C ATCM 682 CD1 PHE A 93 4.899 6.964 -5.985 1.00 13.50 A C ATCM 683 CE PHE A 93 4.899 6.964 -2.376 1.00 13.05 A C ATCM 683 CE PHE A 93 4.894 10.048 -5.885 1.00 13.50 A C ATCM 683 CE PHE A 93 4.899 6.964 -2.385 1.00 13.50 A C ATCM 683 CE PHE A 93 4.891 10.00 10.00 12.71 A C ATCM 685 CE2 PHE A 93 3.680 11.030 -6.515 1.00 13.70 A C ATCM 686 CD2 PHE A 93 3.680 11.030 -6.515 1.00 11.77 A C ATCM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 12.24 A A C ATCM 686 CD2 PHE A 93 2.350 5.285 -5.632 1.00 13.51 A C ATCM 689 N GLN A 94 0.567 6.903 -4.197 1.00 13.55 A N ATCM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.55 A N ATCM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATCM 693 CD GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATCM 693 CD GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATCM 699 C G GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATCM 699 C G GLN A 94 0.569 6.311 0.157 1.00 13.25 A C ATCM 699 C G GLN A 94 0.569 6.903 -4.197 1.00 13.55 A C ATCM 699 C C GLN A 94 0.598 6.311 0.157 1.00 13.35 A N ATCM 699 C C GLN A 94 0.598 6.311 0.157 1.00 13.83 A N A ATCM 699 C C GLN A 94 0.598 6.311 0.157 1.00 13.25 A C ATCM 699 C C GLN A 94 0.598 6.311 0.157 1.00 13.83 A N A ATCM 699 C C GLN A 94 0.598 6.311 0.157 1.00 13.83 A N A ATCM 699 C C GLN A 94 0.598 6.311 0.157 1.00 13.83 A N A A A C C GLN A 94 0.598 6.311 0.157 1.00 13.83 A N A A A C C GLN A 94 0.598 6.311 0.157 1.00 13.83 A N A A A C C GLN A 94 0.598 6.311 0.0158 1.00 13.83 A N A A A C C GLN A 94 0.598 6.311 0.0158 1.00 13.83 A N A A C C GLN A 94 0.598 6.311 0.0158 1.00 13.83 A N A A C C GLN A 94											
ATOM 674 CG1 VAL A 92 ATOM 675 CG2 VAL A 92 ATOM 676 C VAL A 92 ATOM 676 C VAL A 92 ATOM 677 O VAL A 92 ATOM 677 O VAL A 92 ATOM 678 N PHE A 93 AL984 S.107 -4.346 1.00 13.02 ATOM 678 N PHE A 93 AL984 S.107 -4.346 1.00 13.15 ATOM 678 CA PHE A 93 AL984 S.107 -4.346 1.00 13.15 ATOM 679 CA PHE A 93 AL984 S.107 -4.346 1.00 13.15 ATOM 680 CB PHE A 93 AL984 S.107 -4.346 1.00 13.15 ATOM 681 CB PHE A 93 AL984 S.107 -4.346 1.00 13.15 ATOM 681 CB PHE A 93 AL984 S.107 -4.346 1.00 13.15 ATOM 681 CB PHE A 93 AL984 S.107 -4.346 1.00 13.15 ATOM 681 CB PHE A 93 AL984 S.107 -4.346 1.00 13.15 ATOM 681 CB PHE A 93 AL984 S.107 -4.346 1.00 13.57 ATOM 681 CB PHE A 93 AL984 S.107 -4.346 1.00 13.57 ATOM 682 CD1 PHE A 93 AL984 S.107 -4.346 1.00 13.57 ATOM 683 CE1 PHE A 93 AL984 S.107 -4.346 1.00 13.50 ATOM 684 CZ PHE A 93 AL984 S.107 -4.714 1.00 13.00 ATOM 685 CE2 PHE A 93 AL984 S.107 -4.714 1.00 13.50 ATOM 685 CE2 PHE A 93 AL984 S.107 -4.710 1.00 12.27 ATOM 686 CD2 PHE A 93 AL984 S.107 -4.710 1.00 12.177 A CATOM 686 CD2 PHE A 93 AL984 S.107 -4.710 1.00 12.24 ATOM 686 CD2 PHE A 93 AL984 S.107 -4.710 1.00 12.24 ATOM 687 CB PHE A 93 AL984 S.107 -4.872 1.00 13.55 ATOM 688 O PHE A 93 AL984 S.107 -4.872 1.00 13.55 ATOM 689 O PHE A 93 AL984 S.107 -4.872 1.00 13.55 ATOM 689 O PHE A 93 AL984 S.107 -4.872 1.00 13.55 ATOM 689 O PHE A 93 AL984 S.107 -4.872 1.00 13.55 ATOM 689 O PHE A 93 AL984 S.107 -4.872 1.00 13.55 ATOM 690 CA GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 691 CB GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 692 CB GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 693 CD GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 694 OEI GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 695 CB GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 695 CB GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 696 CB GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 697 O GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 698 O GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 698 O GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 699 CB GLN A 94 AL984 S.107 -4.872 1.00 13.55 ATOM 699 CB GLN A 94 AL984 S.107											
ATCM 675 CG2 VAL A 92 6.260 1.621 -1.546 1.00 13.05 A C ATCM 676 C VAL A 92 5.687 5.942 -2.376 1.00 13.45 A C ATCM 677 O VAL A 92 5.687 5.942 -2.376 1.00 13.53 A O ATCM 678 N PHE A 93 4.984 5.107 -4.346 1.00 13.53 A C ATCM 679 CA PHE A 93 4.984 5.107 -4.346 1.00 13.55 A C ATCM 680 CB PHE A 93 4.899 6.964 -5.985 1.00 13.50 A C ATCM 681 CG PHE A 93 4.899 6.964 -5.985 1.00 13.57 A C ATCM 682 CD1 PHE A 93 4.899 6.964 -5.985 1.00 13.57 A C ATCM 682 CD1 PHE A 93 4.899 6.964 -5.985 1.00 13.57 A C ATCM 683 CEI PHE A 93 4.899 6.964 -2.936 6.100 13.50 A C ATCM 683 CEI PHE A 93 4.899 6.964 -2.985 1.00 13.50 A C ATCM 683 CEI PHE A 93 4.899 6.964 -2.985 1.00 13.50 A C ATCM 683 CEI PHE A 93 4.891 1.030 -6.515 1.00 12.71 A C ATCM 684 CZ PHE A 93 3.680 11.030 -6.515 1.00 12.71 A C ATCM 685 CEZ PHE A 93 3.680 11.030 -6.515 1.00 11.77 A C ATCM 685 CEZ PHE A 93 3.226 8.679 -6.710 1.00 12.22 A C ATCM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 12.24 A A C ATCM 686 CD2 PHE A 93 2.2350 5.285 -5.632 1.00 13.61 A C ATCM 689 N GLN A 94 0.065 7.285 -5.632 1.00 13.55 A C ATCM 689 N GLN A 94 0.065 7.693 -4.150 1.00 13.35 A N A ATCM 691 CB GLN A 94 0.065 7.693 -4.150 1.00 13.35 A C ATCM 691 CB GLN A 94 0.065 7.693 -4.150 1.00 13.25 A C ATCM 693 CD GLN A 94 0.085 7.598 6.110 1.00 12.25 A C ATCM 694 CEI GLN A 94 0.085 7.598 6.110 1.00 12.25 A C ATCM 695 NEZ GLN A 94 0.085 7.598 6.110 1.00 13.25 A C ATCM 696 C GLN A 94 0.085 7.598 6.110 1.00 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 6.110 1.00 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 699 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD GLN A 94 0.085 7.598 7.000 13.25 A C ATCM 697 CD											
ATOM 676 C VAL A 92 S.615 5.001 -3.175 1.00 13.45 A C ATOM 677 O VAL A 92 S.687 5.942 -2.376 1.00 13.45 A C ATOM 678 N PHE A 93 4.984 5.107 -4.346 1.00 13.19 A N ATOM 679 CA PHE A 93 4.899 6.364 -5.985 1.00 13.57 A C ATOM 680 CB PHE A 93 4.899 6.364 -5.985 1.00 13.57 A C ATOM 681 CG PHE A 93 4.899 6.364 -5.985 1.00 13.57 A C ATOM 682 CD1 PHE A 93 5.331 9.499 -5.861 1.00 13.50 A C ATOM 683 CE1 PHE A 93 4.899 6.364 -5.985 1.00 13.57 A C ATOM 683 CE1 PHE A 93 5.331 9.499 -5.861 1.00 13.50 A C ATOM 683 CE1 PHE A 93 3.480 11.00 -6.515 1.00 11.77 A C ATOM 685 CE2 PHE A 93 3.680 11.00 -6.515 1.00 11.77 A C ATOM 686 CD2 PHE A 93 3.2832 9.998 -6.881 1.00 12.22 A C ATOM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 12.244 A C ATOM 687 C PHE A 93 2.793 6.150 -4.872 1.00 13.51 A C ATOM 689 O PHE A 93 2.793 6.150 -4.872 1.00 13.51 A C ATOM 689 O PHE A 93 2.793 6.150 -4.872 1.00 13.51 A C ATOM 689 O PHE A 93 2.793 6.150 -4.872 1.00 13.51 A C ATOM 689 O PHE A 93 2.793 6.150 -4.872 1.00 13.51 A C ATOM 689 O PHE A 93 2.793 6.150 -4.872 1.00 13.51 A C ATOM 689 O PHE A 93 2.793 6.150 -4.872 1.00 13.55 A C ATOM 689 O CA GLN A 94 0.567 6.993 -4.150 1.00 13.35 A N ATOM 690 CA GLN A 94 0.567 6.993 -4.150 1.00 13.35 A C ATOM 691 CB GLN A 94 0.567 6.993 -4.150 1.00 13.35 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATOM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATOM 696 C GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATOM 696 C GLN A 94 0.188 8.195 -4.841 1.00 13.83 A N ATOM 696 C G GLN A 94 0.188 8.195 -4.841 1.00 13.83 A N ATOM 696 C G GLN A 94 0.197 9.289 -4.280 1.00 13.25 A C ATOM 697 O GLN A 94 0.197 9.289 -4.280 1.00 13.25 A C ATOM 697 O GLN A 94 0.198 8.850 -8.380 1.00 13.25 A C ATOM 697 O GLN A 94 0.197 9.289 -4.291 1.00 13.83 A N ATOM 696 C GLN A 94 0.197 9.289 -4.291 1.00 13.83 A N ATOM 696 C GLN A 94 0.197 9.289 -4.190 1.00 13.83 A N ATOM 696 C GLN A 94 0.197 9.289 -4.190 1.00 13.83 A N ATOM 696 C GLN A 94 0.197 9.289 -4.190 1.00 13.83 A N ATOM 697 O GLN A 94 0.197 9.289 -4.190 1.00 13.83 A N ATOM 696 C GLN A 9											
ATCM 678 N PHE A 93 4,984 5.107 -4.346 1.00 13.53 A C ATCM 678 N PHE A 93 4,984 5.107 -4.346 1.00 13.19 A N ATCM 680 CB PHE A 93 4.899 6.964 -5.985 1.00 13.57 A C ATCM 680 CB PHE A 93 4.899 6.964 -5.985 1.00 13.57 A C ATCM 681 CG PHE A 93 4.899 6.964 -5.985 1.00 13.57 A C ATCM 682 CD1 PHE A 93 4.899 6.964 -5.985 1.00 13.50 A C ATCM 682 CD1 PHE A 93 5.331 9.439 -5.861 1.00 13.50 A C ATCM 683 CEL PHE A 93 4.891 9.499 -5.861 1.00 13.50 A C ATCM 683 CEL PHE A 93 4.941 10.748 -6.023 1.00 12.71 A C ATCM 685 CEZ PHE A 93 3.680 11.030 -6.515 1.00 11.77 A C ATCM 685 CEZ PHE A 93 3.680 11.030 -6.515 1.00 11.77 A C ATCM 685 CEZ PHE A 93 3.262 8.679 -6.710 1.00 12.44 A C ATCM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 12.44 A C ATCM 686 CD2 PHE A 93 2.232 9.998 -6.881 1.00 10.222 A C ATCM 686 CD2 PHE A 93 2.250 5.285 -5.632 1.00 13.51 A C ATCM 689 N GLN A 94 2.021 6.949 -4.150 1.00 13.55 A N ATCM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.55 A N ATCM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATCM 691 CB GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATCM 693 CG GLN A 94 0.383 5.493 -2.078 1.00 13.25 A C ATCM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.83 A N ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.55 A C ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.95 A N A ATCM 695 CG GLN A 94 0.065 5.494 -0.589 1.00 13.95 A N A ATCM 697 CG GLN A 94 0.197 9.299 -4.236 1.00 13.95 A N A ATCM 696 C GLN A 94 0.197 9.299 -4.236 1.00 13.95 A C ATCM 700 CG SER A 95 -0.266 8.072 -6.110 1.00 13.95 A C ATCM 700 CG SER A 95 -0.266 8.072 -6.100 1.00 13.95 A C ATCM 700 CG SER A 95 -0.266 8.072 -6.100 1.00 13.95 A C ATCM 700 CG SER A 95 -0.266 8.072 -6.100 1.00 1											
ATOM 679 CA PHE A 93 4.984 5.107 -4.346 1.00 13.19 A N ATOM 680 CB PHE A 93 4.293 6.351 -4.714 1.00 13.05 A C ATOM 681 CG PHE A 93 4.889 6.964 -5.985 1.00 13.57 A C ATOM 681 CG PHE A 93 4.889 6.964 -5.985 1.00 13.57 A C ATOM 682 CD1 PHE A 93 5.331 9.499 5.661 1.00 13.50 A C ATOM 683 CEL PHE A 93 6.381 -0.0748 -6.023 1.00 12.71 A C ATOM 683 CEL PHE A 93 6.880 1.00 1.0748 -6.023 1.00 12.71 A C ATOM 685 CE2 PHE A 93 3.680 11.030 -6.515 1.00 12.71 A C ATOM 685 CE2 PHE A 93 3.680 11.030 -6.515 1.00 12.22 A C ATOM 685 CE2 PHE A 93 3.2832 9.998 -6.881 1.00 12.22 A C ATOM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 13.51 A C ATOM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 13.51 A C ATOM 688 O PHE A 93 2.350 5.285 -5.632 1.00 13.51 A C ATOM 688 O PHE A 93 2.350 5.285 -5.632 1.00 13.51 A C ATOM 689 N GIN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 691 CB GLN A 94 0.0567 6.903 -4.197 1.00 13.25 A C ATOM 692 CG GLN A 94 0.0567 6.903 -4.197 1.00 13.25 A C ATOM 693 CB GLN A 94 0.065 5.494 -0.589 1.00 12.95 A C ATOM 693 CB GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATOM 694 CB GLN A 94 0.0567 6.903 -4.197 1.00 13.83 A N ATOM 695 CB GLN A 94 0.0567 6.903 -4.197 1.00 13.83 A N ATOM 695 CB GLN A 94 0.0567 6.903 -4.197 1.00 13.83 A N ATOM 695 CB GLN A 94 0.056 5.494 -0.589 1.00 13.25 A C ATOM 699 CB GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATOM 699 CB GLN A 94 0.059 8.631 0.014 0.74 CB GLN A 94 0.197 9.289 -4.841 1.00 13.81 A C ATOM 699 CB GLN A 94 0.197 9.289 -4.841 1.00 13.81 A C ATOM 699 CB GLN A 94 0.197 9.289 -4.841 1.00 13.83 A N ATOM 696 CB GLN A 94 0.197 9.289 -4.841 1.00 13.83 A N ATOM 696 CB GLN A 94 0.197 9.289 -4.236 1.00 12.95 A C ATOM 700 CB SER A 95 -0.793 9.190 -6.893 1.00 14.07 A C ATOM 700 CB SER A 95 -0.793 9.190 -6.893 1.00 14.07 A C ATOM 700 CB SER A 95 -0.793 9.190 -6.893 1.00 14.07 A C ATOM 700 CB SER A 95 -0.793 9.190 -6.893 1.00 14.03 A N ATOM 696 CB LLE A 96 -3.690 11.049 -5.777 1.00 15.55 A C ATOM 701 CB SER A 95 -0.743 8.850 -8.890 1.00 15.93 A C ATOM											
ATOM 680 CB PHE A 93											
ATOM 680 CB PHE A 93											
ATOM 682 CD1 PHE A 93 5.331 9.439 -5.861 1.00 13.50 A C ATOM 682 CD1 PHE A 93 5.331 9.439 -5.861 1.00 12.71 A C ATOM 684 CZ PHE A 93 4.941 10.748 -6.023 1.00 12.71 A C ATOM 686 CZ PHE A 93 3.680 11.030 -6.515 1.00 11.77 A C ATOM 686 CZ PHE A 93 3.680 11.030 -6.515 1.00 12.22 A C ATOM 686 CD2 PHE A 93 3.2832 9.998 -6.881 1.00 12.22 A C ATOM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 12.22 A C ATOM 686 CD2 PHE A 93 2.2793 6.150 -4.872 1.00 13.51 A C ATOM 687 C PHE A 93 2.2793 6.150 -4.872 1.00 13.51 A C ATOM 689 N GLN A 94 2.021 6.949 -4.150 1.00 13.55 A N ATOM 689 N GLN A 94 2.021 6.949 -4.150 1.00 13.55 A C ATOM 691 CB GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 692 CG GLN A 94 0.066 5.494 -0.589 1.00 13.25 A C ATOM 693 CD GLN A 94 0.066 5.494 -0.589 1.00 13.25 A C ATOM 693 CD GLN A 94 0.066 5.494 -0.589 1.00 13.25 A C ATOM 694 CEI GLN A 94 0.066 5.494 -0.589 1.00 13.83 A N ATOM 695 NEZ GLN A 94 0.066 5.494 -0.589 1.00 14.07 A C ATOM 695 C GLN A 94 0.197 9.289 -4.286 1.00 12.21 A C ATOM 696 C GLN A 94 0.197 9.289 -4.286 1.00 12.11 A C ATOM 697 C GLN A 94 0.197 9.289 -4.286 1.00 12.11 A C ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 13.83 A N ATOM 699 CA SER A 95 -0.793 9.190 -6.883 1.00 14.03 A C ATOM 699 CA SER A 95 -0.793 9.190 -6.883 1.00 14.03 A N ATOM 699 CA SER A 95 -0.793 9.190 -6.883 1.00 14.03 A N ATOM 699 CA SER A 95 -0.793 9.190 -6.883 1.00 14.03 A N ATOM 701 CG SER A 95 -0.742 8.850 -8.380 1.00 13.95 A C ATOM 702 C SER A 95 -0.742 8.850 -8.380 1.00 13.95 A C ATOM 703 C SER A 95 -0.743 8.850 -8.380 1.00 13.95 A C ATOM 704 N ILE A 96 -2.466 12.548 -3.597 1.00 15.55 A C ATOM 705 CA ILE A 96 -2.466 12.548 -3.597 1.00 15.55 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 15.55 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 15.93 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -2.466 12.5											
ATOM 682 CD1 PHE A 93											
ATOM 683 CEL PHE A 93 3.680 11.030 -6.515 1.00 12.71 A C ATOM 684 CZ PHE A 93 3.680 11.030 -6.515 1.00 11.77 A C ATOM 685 CE2 PHE A 93 2.832 9.998 -6.881 1.00 12.22 A C ATOM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 12.44 A C ATOM 687 C PHE A 93 3.226 8.679 -6.710 1.00 13.55 A C ATOM 688 O PHE A 93 2.793 6.150 -4.872 1.00 13.61 A C ATOM 689 N CLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 689 N GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 699 CA GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATOM 694 CEI GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATOM 695 NEZ GLN A 94 0.568 6.311 0.157 1.00 13.83 A N ATOM 696 C GLN A 94 0.188 8.195 -4.841 1.00 13.83 A N ATOM 696 C GLN A 94 0.118 8.195 -4.841 1.00 13.83 A N ATOM 697 C GLN A 94 0.118 8.195 -4.841 1.00 13.83 A N ATOM 697 C GLN A 94 0.118 8.195 -4.841 1.00 13.83 A N ATOM 697 C GLN A 94 0.118 8.195 -4.841 1.00 13.83 A N ATOM 697 C GLN A 94 0.118 8.195 -4.841 1.00 13.83 A N ATOM 697 C GLN A 94 0.118 8.195 -4.831 1.00 14.33 A N ATOM 697 C GLN A 94 0.197 9.289 -4.236 1.00 14.07 A C ATOM 697 C GLN A 94 0.197 9.289 -4.236 1.00 14.33 A N ATOM 697 C GLN A 94 0.197 9.289 -4.236 1.00 13.83 A N ATOM 697 C GLN A 94 0.197 9.289 -4.236 1.00 13.83 A N ATOM 697 C GLN A 94 0.197 9.289 -4.236 1.00 13.83 A N ATOM 697 C GLN A 94 0.197 9.289 -4.236 1.00 13.83 A N ATOM 699 C SER A 95 -0.793 9.190 -6.893 1.00 14.33 A N ATOM 699 C SER A 95 -0.793 9.190 -6.893 1.00 14.33 A N ATOM 699 C SER A 95 -0.793 9.190 -6.893 1.00 14.33 A N ATOM 699 C SER A 95 -0.793 8.850 -8.380 1.00 13.95 A C ATOM 700 C SER A 95 -0.793 8.190 -6.893 1.00 14.33 A N ATOM 699 C C SER A 95 -0.793 8.190 -6.893 1.00 14.33 A N ATOM 699 C C SER A 95 -0.793 8.190 -6.893 1.00 14.33 A N ATOM 699 C C SER A 95 -0.793 8.190 -6.893 1.00 14.33 A N ATOM 699 C C SER A 95 -0.793 8.850 -8.380 1.00 13.95 A C ATOM 700 C C SER A 95 -0.793 8.850 -8.380 1.00 13.95 A C ATOM 701 C C LLE A 96 -3.699 11.049 -5.577 1.00 15.55 A C ATOM 707 CG1 LLE A 96 -3.699 11.049 -5.877 1.00 15.55 A C ATOM 7											
ATOM 684 CZ PHE A 93 3.680 11.030 -6.515 1.00 11.77 A C ATOM 685 CE2 PHE A 93 2.832 9.998 -6.881 1.00 12.22 A C ATOM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 12.24 A C ATOM 687 C PHE A 93 3.226 8.679 -6.710 1.00 12.44 A C ATOM 687 C PHE A 93 2.793 6.150 -4.872 1.00 13.51 A C ATOM 688 O PHE A 93 2.350 5.285 -5.632 1.00 13.51 A C ATOM 689 N CLN A 94 2.021 6.949 -4.150 1.00 13.35 A N ATOM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.35 A N ATOM 691 CB GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 691 CB GLN A 94 0.383 5.493 -2.786 1.00 12.95 A C ATOM 692 CG GLN A 94 0.383 5.493 -2.078 1.00 13.25 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 13.25 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.580 1.00 13.25 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.580 1.00 13.25 A C ATOM 695 NE2 GLN A 94 0.0863 6.311 0.157 1.00 16.83 A O ATOM 695 NE2 GLN A 94 0.118 8.195 -4.841 1.00 13.83 A N ATOM 696 C GLN A 94 0.118 8.195 -4.841 1.00 13.83 A N ATOM 696 C GLN A 94 0.118 8.195 -4.841 1.00 13.83 A N ATOM 697 O GLN A 94 0.197 9.289 -4.236 1.00 12.11 A O ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.08 A C ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 14.08 A C ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 14.08 A C ATOM 701 CG SER A 95 -0.743 8.850 -8.380 1.00 14.08 A C ATOM 703 O SER A 95 -2.221 9.519 -6.494 1.00 13.95 A C ATOM 705 CB ILE A 96 -3.699 11.049 -5.277 1.00 15.52 A C ATOM 706 CB ILE A 96 -3.699 11.049 -5.277 1.00 15.52 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.52 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.52 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.52 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.52 A C ATOM 707 CG1 ILE A 96 -3.560 11.482 -3.782 1.00 15.93 A C ATOM 710 C ILE A 96 -3.560 11.482 -3.782 1.00 15.93 A C ATOM 710 C ILE A 96 -3.699 11.049 -5.277 1.00 16.08 A C ATOM 710 C ILE A 96 -3.699 11.049 -5.277 1.00 16.08 A C ATOM 710 C ILE A 96 -3.690 11.049 -5.277 1.00 15.55 A C ATOM 710 C ILE A 96 -3.699 11.049 -5.277 1.00 15.52 A C ATOM 710 C ILE A 96 -3.699 11.049 -5.277											
ATOM 685 CB2 PHE A 93 3.226 8.6679 -6.881 1.00 12.22 A C ATOM 686 CD2 PHE A 93 3.226 8.6679 -6.8710 1.00 12.44 A C C ATOM 687 C PHE A 93 2.793 6.150 -4.872 1.00 13.51 A C ATOM 688 O PHE A 93 2.350 5.285 -5.632 1.00 13.61 A O ATOM 689 N CLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 689 N CLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 691 CB GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 692 CG GLN A 94 0.383 5.493 -2.078 1.00 13.55 A C ATOM 693 CD GLN A 94 0.383 5.493 -2.078 1.00 13.25 A C ATOM 693 CD GLN A 94 0.598 6.311 0.157 1.00 13.25 A C ATOM 695 NE2 GLN A 94 0.598 6.311 0.157 1.00 13.83 A N ATOM 696 C GLN A 94 0.598 6.311 0.157 1.00 13.83 A N ATOM 696 C GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 O GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 699 CA SER A 95 -0.266 8.072 -6.893 1.00 14.08 A C ATOM 699 CA SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 14.08 A C ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 14.08 A C ATOM 702 C SER A 95 -0.743 8.850 -8.380 1.00 14.08 A C ATOM 703 C SER A 95 -0.743 8.850 -8.380 1.00 14.73 A O ATOM 704 N ILE A 96 -2.2404 10.681 -5.852 1.00 11.92 A O ATOM 705 CA ILE A 96 -3.659 11.00 14.82 A C ATOM 707 CGI ILE A 96 -3.650 11.0681 -5.852 1.00 15.21 A N ATOM 707 CGI ILE A 96 -3.650 11.027 -5.479 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.279 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.291 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 11.027 -5.891 1.00 15.92 A C ATOM 707 CGI ILE A 96 -3.650 1											
ATOM 686 CD2 PHE A 93 3.226 8.679 -6.710 1.00 12.44 A C ATOM 687 C PHE A 93 2.350 5.285 -5.632 1.00 13.51 A C ATOM 688 O PHE A 93 2.350 5.285 -5.632 1.00 13.61 A O ATOM 689 N GLN A 94 2.021 6.949 -4.150 1.00 13.35 A N ATOM 690 CA GLN A 94 0.567 6.903 -4.150 1.00 13.35 A N ATOM 691 CB GLN A 94 0.567 6.903 -4.150 1.00 12.35 A C ATOM 691 CB GLN A 94 0.567 6.903 -4.150 1.00 12.95 A C ATOM 692 CG GLN A 94 0.383 5.493 -2.078 1.00 12.95 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 12.95 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATOM 695 NEZ GLN A 94 0.598 6.311 0.157 1.00 13.83 A N ATOM 695 NEZ GLN A 94 0.118 8.195 -4.841 1.00 12.81 A C ATOM 695 C GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 C GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.33 A N ATOM 699 CA SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 13.95 A C ATOM 703 C SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 C SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 705 CB SER A 95 -2.221 9.519 -6.494 1.00 14.73 A N ATOM 705 CB SER A 95 -2.221 9.519 -6.494 1.00 14.73 A N ATOM 705 CB LE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 706 CB ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 707 CGI ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 708 CDI ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 708 CDI ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 710 C ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 710 C ILE A 96 -2.367 13.122 -2.196 1.00 17.02 A C ATOM 710 C ILE A 96 -3.597 1.00 7.7 88 1.00 15.92 A C ATOM 710 C ILE A 96 -3.597 1.00 7.7 88 1.00 15.92 A C ATOM 710 C ILE A 96 -3.597 1.00 7.7 88 1.00 15.92 A C ATOM 710 C ILE A 96 -3.597 1.00 7.7 88 1.00 15.92 A C ATOM 710 C ILE A 96 -3.597 1.00 7.7 88 1.00 15.93 A C ATOM 710 C ILE A 96 -3.597 1.00 7.7 88 1.00 15.93 A C ATOM 711 C ILE A 96 -3.597 1.00 7.7 88 1.00 15.92 A C AT											
ATOM 688 O PHE A 93 2.793 6.150 -4.872 1.00 13.51 A C ATOM 688 O PHE A 93 2.350 5.285 -5.632 1.00 13.61 A O ATOM 689 N GLN A 94 2.021 6.949 -4.150 1.00 13.35 A N ATOM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.35 A C ATOM 691 CB GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 691 CB GLN A 94 0.383 5.493 -2.078 1.00 13.25 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATOM 694 OE1 GLN A 94 0.598 6.311 0.157 1.00 16.83 A O ATOM 695 NE2 GLN A 94 0.598 6.311 0.157 1.00 16.83 A N ATOM 696 C GLN A 94 0.188 8.195 -4.841 1.00 13.81 A C ATOM 697 O GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 698 N SER A 95 0.266 8.072 -6.110 1.00 14.33 A N ATOM 699 CA SER A 95 0.266 8.072 -6.110 1.00 14.33 A N ATOM 699 CA SER A 95 0.743 8.850 -8.380 1.00 14.08 A C ATOM 700 CB SER A 95 0.743 8.850 -8.380 1.00 14.08 A C ATOM 701 OG SER A 95 -0.743 8.850 -8.380 1.00 14.08 A C ATOM 702 C SER A 95 -2.221 9.519 -6.491 1.00 13.95 A C ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.82 A C ATOM 704 N ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 705 CA ILE A 96 -3.699 11.049 -5.852 1.00 15.51 A N ATOM 707 CG ILE A 96 -3.699 11.049 -5.852 1.00 15.51 A N ATOM 708 CD1 ILE A 96 -3.699 11.049 -5.852 1.00 15.52 A C ATOM 707 CG ILE A 96 -3.699 11.049 -5.852 1.00 15.55 A C ATOM 707 CG ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 707 CG ILE A 96 -3.699 11.049 -5.852 1.00 15.52 A C ATOM 708 CD1 ILE A 96 -3.498 12.158 -6.043 1.00 15.93 A C ATOM 708 CD1 ILE A 96 -3.498 12.158 -6.043 1.00 15.93 A C ATOM 710 C ILE A 96 -3.498 12.158 -6.043 1.00 15.93 A C ATOM 711 C ILE A 96 -3.498 12.158 -6.043 1.00 15.93 A C ATOM 712 C MET A 97 -4.440 13.700 -7.889 1.00 16.32 A N ATOM 713 CA MET A 97 -4.440 13.700 -7.889 1.00 16.32 A N ATOM 715 CG MET A 97 -4.440 13.700 -7.889 1.00 16.32 A N ATOM 715 CG MET A 97 -5.440 13.700 -7.899 1.00 16.32 A N ATOM 716 CD MET A 97 -4.440 13.700 -7.899 1.00 16.32 A N ATOM 715 CG MET A 97 -5.647 13.114 -8.641 1.00 18.20 A C ATOM 719 O MET A 97 -5.547 12.540 -9.249 1.00 16.32 A N ATOM 719 O MET A 97 -5.547 12.540 -9.											
ATOM 688 O PHE A 93 2.350 5.285 -5.632 1.00 13.61 A O ATOM 689 N CLN A 94 2.021 6.949 -4.150 1.00 13.35 A N ATOM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.35 A C ATOM 691 CB GLN A 94 0.383 5.493 -2.078 1.00 13.25 A C ATOM 692 CG GLN A 94 0.383 5.493 -2.078 1.00 13.25 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.559 1.00 13.25 A C ATOM 694 CE1 GLN A 94 0.598 6.311 0.157 1.00 16.83 A O ATOM 695 NE2 GLN A 94 0.598 6.311 0.157 1.00 13.81 A C ATOM 695 NE2 GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 696 C GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 O GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.08 A C ATOM 699 CA SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 13.95 A C ATOM 701 OG SER A 95 -1.337 9.864 -9.152 1.00 11.92 A O ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 14.62 A C ATOM 703 O SER A 95 -2.221 9.519 -6.494 1.00 14.62 A C ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.73 A O ATOM 704 N ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.92 A C ATOM 706 CB ILE A 96 -3.699 11.049 -5.277 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.93 A C ATOM 707 CG1 ILE A 96 -3.560 11.482 -3.782 1.00 17.02 A C ATOM 710 C ILE A 96 -3.267 13.122 -2.196 1.00 17.02 A C ATOM 710 C ILE A 96 -3.267 13.122 -2.196 1.00 17.02 A C ATOM 710 C ILE A 96 -3.267 13.122 -2.196 1.00 17.02 A C ATOM 710 C ILE A 96 -3.267 13.122 -2.196 1.00 15.93 A C ATOM 710 C ILE A 96 -3.267 13.122 -2.196 1.00 15.93 A C ATOM 710 C ILE A 96 -3.267 13.122 -2.196 1.00 15.93 A C ATOM 710 C ILE A 96 -3.267 13.122 -2.196 1.00 17.02 A C ATOM 711 C MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 714 CB MET A 97 -3.797 12.6											
ATOM 689 N GLN A 94 0.567 6.949 -4.150 1.00 13.35 A N ATOM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 691 CB GLN A 94 0.383 5.493 -2.078 1.00 13.25 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATOM 694 CEI GLN A 94 0.598 6.311 0.157 1.00 13.25 A C ATOM 695 NE2 GLN A 94 0.598 6.311 0.157 1.00 13.83 A N ATOM 695 NE2 GLN A 94 0.598 6.311 0.157 1.00 13.83 A N ATOM 695 NE2 GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 C GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 C GLN A 94 0.197 9.289 -4.236 1.00 12.11 A O ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.33 A N ATOM 699 CA SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 14.08 A C ATOM 701 OG SER A 95 -2.221 9.519 -6.494 1.00 13.95 A C ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.73 A O ATOM 705 CA ILE A 96 -3.560 11.049 -5.277 1.00 15.55 A C ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.59 A C ATOM 706 CB ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 708 CD ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 708 CD ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 708 CD ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 708 CD ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 708 CD ILE A 96 -3.257 10.273 -2.915 1.00 16.08 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.32 A N ATOM 712 N MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 712 C MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 715 CG MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 715 CG MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 715 CG MET A 97 -5.5475 12.590 -5.660 1.00 18.32 A N ATOM 715 CG MET A 97 -5.5475 12.590 -5.660 1.00 18.32 A N ATOM 715 CG MET A 97 -5.537 12.640 -7.119 1.00 16.32 A N ATOM 715 CG MET A 97 -5.5475 12.590 -5.660 1.00 18.32 A C ATOM 715 CG MET A 97 -5.5											
ATOM 690 CA GLN A 94 0.567 6.903 -4.197 1.00 13.55 A C ATOM 691 CB GLN A 94 0.383 5.493 -2.078 1.00 12.95 A C ATOM 692 CG GLN A 94 0.383 5.493 -2.078 1.00 13.25 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATOM 694 OL1 GLN A 94 0.598 6.311 0.157 1.00 16.83 A N ATOM 695 NE2 GLN A 94 0.598 6.311 0.157 1.00 16.83 A N ATOM 695 NE2 GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 O GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 O GLN A 94 0.118 8.195 -4.841 1.00 13.81 A N ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.33 A N ATOM 698 CA SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 701 OG SER A 95 -1.337 9.864 -9.152 1.00 11.92 A O ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.73 A O ATOM 704 N ILE A 96 -2.404 10.681 -5.852 1.00 15.21 A N ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.93 A C ATOM 707 CG1 ILE A 96 -3.560 11.482 -3.597 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -3.560 11.482 -3.597 1.00 15.93 A C ATOM 709 CC2 ILE A 96 -3.550 11.482 -3.597 1.00 15.93 A C ATOM 701 C ILE A 96 -3.550 11.02 -2.196 1.00 15.93 A C ATOM 703 C GI ILE A 96 -3.550 11.02 -2.196 1.00 15.93 A C ATOM 707 CG1 ILE A 96 -3.550 11.02 -2.196 1.00 15.93 A C ATOM 708 CD1 ILE A 96 -3.550 11.02 -2.196 1.00 15.93 A C ATOM 707 CG1 ILE A 96 -3.550 11.02 -2.196 1.00 15.93 A C ATOM 708 CD1 ILE A 96 -3.550 11.02 -2.196 1.00 15.93 A C ATOM 708 CD1 ILE A 96 -3.550 11.02 -2.196 1.00 15.93 A C ATOM 708 CD1 ILE A 96 -3.560 11.482 -3.597 1.00 16.08 A C ATOM 708 CD1 ILE A 96 -3.560 11.482 -3.597 1.00 16.08 A C ATOM 708 CD1 ILE A 96 -3.560 11.482 -3.599 1.00 15.93 A C ATOM 708 CD1 ILE A 96 -3.560 11.482 -3.599 1.00 16.08 A C ATOM 708 CD1 ILE A 96 -3.560 11.00 -3.588 1.00 15.93 A C ATOM 708 CD1 ILE A 96 -3.560 11.482 -3.599 1.00 16.08 A C ATOM 708 CD1 ILE A 96 -3.560 11.482 -3.599 1.00 16.08 A C ATOM 709 CC2 ILE A 96 -3.560 11.00 10.00 15.93 A C ATOM 709 CC2 ILE A 9			-								_
ATOM 691 CB GLN A 94											
ATOM 692 CG GLN A 94 0.383 5.493 -2.078 1.00 13.25 A C ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATOM 694 OE1 GLN A 94 0.598 6.311 0.157 1.00 16.83 A O ATOM 695 NE2 GLN A 94 0.181 4.578 -0.158 1.00 13.83 A N ATOM 696 C GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 O GLN A 94 0.197 9.289 -4.236 1.00 12.11 A O ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.33 A N ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.08 A C ATOM 699 CA SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 13.95 A C ATOM 701 OG SER A 95 -1.337 9.864 -9.152 1.00 11.92 A O ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 O SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 704 N ILE A 96 -2.404 10.681 -5.852 1.00 15.21 A N ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 706 CB ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 707 CG1 ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 708 CD1 ILE A 96 -2.367 13.122 -2.196 1.00 15.93 A C ATOM 708 CD1 ILE A 96 -3.257 10.273 -2.915 1.00 15.93 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 15.93 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.70 A C ATOM 711 O ILE A 96 -3.257 10.273 -2.915 1.00 16.32 A N ATOM 712 N MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 713 CA MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 713 CA MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 715 CG MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CG MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CB MET A 97 -3.900 16.196 -12.225 1.00 18.32 A N ATOM 716 CB MET A 97 -3.900 16.196 -12.225 1.00 18.32 A N ATOM 716 CB MET A 97 -3.910 16.196 -12.225 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.554 -9.249 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.554 -9.249 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.554 -9.249 1.00 18.35 A C ATOM 719 O MET A 97 -5.537 12.554 -9.249 1.00 18.35 A C ATOM 719 O MET A 97 -											
ATOM 693 CD GLN A 94 0.065 5.494 -0.589 1.00 14.07 A C ATOM 694 OE1 GLN A 94 0.598 6.311 0.157 1.00 16.83 A O ATOM 695 NE2 GLN A 94 -0.813 4.578 -0.158 1.00 13.83 A N ATOM 696 C GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 O GLN A 94 0.197 9.289 -4.236 1.00 12.11 A O ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.33 A N ATOM 699 CA SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 13.95 A C ATOM 701 OG SER A 95 -1.337 9.864 -9.152 1.00 11.92 A O ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 14.73 A O ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.73 A O ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 706 CB ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 708 CD1 ILE A 96 -2.367 13.122 -2.196 1.00 15.92 A C ATOM 708 CD1 ILE A 96 -2.367 13.122 -2.196 1.00 15.93 A C ATOM 709 CG2 ILE A 96 -3.257 10.273 -2.915 1.00 15.93 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.08 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 15.93 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.08 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.08 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.08 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.08 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.08 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.02 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.02 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.02 A C ATOM 710 C ILE A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CB MET A 97 -3.490 16.296 -12.251 1.00 31.75 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 719 O MET A 97 -5.5647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -					-						
ATOM 694 OE1 GLN A 94											
ATOM 695 NE2 GLN A 94											
ATOM 696 C GLN A 94 0.118 8.195 -4.841 1.00 13.81 A C ATOM 697 O GLN A 94 0.197 9.289 -4.236 1.00 12.11 A O ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.33 A N ATOM 699 CA SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 701 OG SER A 95 -0.742 8.850 -8.380 1.00 13.95 A C ATOM 701 OG SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 O SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.73 A O ATOM 704 N ILE A 96 -2.404 10.681 -5.852 1.00 15.21 A N ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 706 CB ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 708 CD1 ILE A 96 -2.367 13.122 -2.196 1.00 17.02 A C ATOM 708 CD1 ILE A 96 -3.257 10.273 -2.915 1.00 16.08 A C ATOM 709 CG2 ILE A 96 -3.257 10.273 -2.915 1.00 16.02 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.03 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.03 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.03 A C ATOM 711 O ILE A 96 -3.257 10.273 -2.915 1.00 16.03 A C ATOM 712 N MET A 97 -3.757 12.640 -7.199 1.00 16.32 A N ATOM 713 CA MET A 97 -3.757 12.640 -7.889 1.00 18.20 A C ATOM 714 CB MET A 97 -3.757 12.640 -7.189 1.00 18.20 A C ATOM 715 CG MET A 97 -4.440 13.700 -7.889 1.00 18.20 A C ATOM 715 CG MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CG MET A 97 -4.440 13.700 -7.889 1.00 18.20 A C ATOM 715 CG MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CG MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CD MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.537 12.054 -9.249 1.00 18.32 A N ATOM 717 CE MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.35 A N ATOM 721 CA ASP A											
ATOM 697 O GLN A 94 0.197 9.289 -4.236 1.00 12.11 A O ATOM 698 N SER A 95 -0.266 8.072 -6.110 1.00 14.33 A N ATOM 699 CA SER A 95 -0.793 9.190 -6.893 1.00 14.08 A C ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 13.95 A C ATOM 701 OG SER A 95 -1.337 9.864 -9.152 1.00 11.92 A O ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.73 A O ATOM 704 N ILE A 96 -2.404 10.681 -5.852 1.00 15.21 A N ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 707 CG1 ILE A 96 -3.699 11.049 -5.277 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 708 CD1 ILE A 96 -2.367 13.122 -2.196 1.00 17.02 A C ATOM 709 CG2 ILE A 96 -3.257 10.273 -2.915 1.00 15.93 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.08 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.70 A C ATOM 711 O ILE A 96 -4.398 12.158 -6.043 1.00 15.93 A C ATOM 712 N MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 713 CA MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 714 CB MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 715 CB MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 715 CB MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CB MET A 97 -5.537 12.647 -1.0814 1.00 25.41 A S ATOM 716 CB MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 718 C MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 718 C MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.369 -9.217 1.00 20.45 A C											
ATOM 698 N SER A 95			•								
ATOM 699 CA SER A 95											
ATOM 700 CB SER A 95 -0.743 8.850 -8.380 1.00 13.95 A C ATOM 701 OG SER A 95 -1.337 9.864 -9.152 1.00 11.92 A O ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.73 A O ATOM 704 N ILE A 96 -2.404 10.681 -5.852 1.00 15.21 A N ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 706 CB ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 16.08 A C ATOM 708 CD1 ILE A 96 -2.466 12.548 -3.597 1.00 16.08 A C ATOM 709 CG2 ILE A 96 -3.257 10.273 -2.915 1.00 16.70 A C ATOM 710 C ILE A 96 -3.257 10.273 -2.915 1.00 16.70 A C ATOM 710 C ILE A 96 -5.475 12.590 -5.660 1.00 14.84 A O ATOM 712 N MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 713 CA MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 713 CA MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CD MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CD MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 CD MET A 97 -3.471 14.346 -8.884 1.00 21.58 A C ATOM 716 CD MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.537 12.054 -9.688 1.00 21.58 A C ATOM 717 CE MET A 97 -5.647 13.114 -8.641 1.00 25.41 A S ATOM 718 C MET A 97 -5.5647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N											
ATOM 701 OG SER A 95 -1.337 9.864 -9.152 1.00 11.92 A O ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.73 A O ATOM 704 N ILE A 96 -2.404 10.681 -5.852 1.00 15.21 A N ATOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 706 CB ILE A 96 -3.560 11.482 -3.782 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 16.08 A C ATOM 708 CD1 ILE A 96 -2.367 13.122 -2.196 1.00 17.02 A C ATOM 709 CG2 ILE A 96 -3.257 10.273 -2.915 1.00 16.70 A C ATOM 710 C ILE A 96 -4.398 12.158 -6.043 1.00 15.93 A C ATOM 711 O ILE A 96 -4.398 12.158 -6.043 1.00 15.93 A C ATOM 712 N MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 713 CA MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 714 CB MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 715 CG MET A 97 -4.440 13.700 -7.889 1.00 18.20 A C ATOM 715 CG MET A 97 -4.440 13.700 -7.889 1.00 18.20 A C ATOM 715 CG MET A 97 -4.107 15.480 -9.688 1.00 21.58 A C ATOM 715 CG MET A 97 -4.107 15.480 -9.688 1.00 21.58 A C ATOM 715 CE MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.547 13.114 -8.641 1.00 25.41 A S ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.547 13.114 -8.641 1.00 19.35 A N ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A C											
ATOM 702 C SER A 95 -2.221 9.519 -6.494 1.00 14.82 A C ATOM 703 O SER A 95 -3.150 8.743 -6.780 1.00 14.73 A O ATOM 704 N ILE A 96 -2.404 10.681 -5.852 1.00 15.21 A N TOM 705 CA ILE A 96 -3.699 11.049 -5.277 1.00 15.55 A C ATOM 706 CB ILE A 96 -3.699 11.049 -5.277 1.00 15.92 A C ATOM 707 CG1 ILE A 96 -2.466 12.548 -3.597 1.00 15.92 A C ATOM 708 CD1 ILE A 96 -2.466 12.548 -3.597 1.00 16.08 A C ATOM 709 CG2 ILE A 96 -3.257 10.273 -2.915 1.00 16.70 A C ATOM 710 C ILE A 96 -4.398 12.158 -6.043 1.00 15.93 A C ATOM 711 O ILE A 96 -5.475 12.590 -5.660 1.00 14.84 A O ATOM 712 N MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 713 CA MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 714 CB MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 715 CG MET A 97 -4.440 13.700 -7.889 1.00 18.20 A C ATOM 715 CG MET A 97 -4.440 13.700 -7.889 1.00 18.20 A C ATOM 715 CG MET A 97 -4.4107 15.480 -9.688 1.00 21.58 A C ATOM 716 SD MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 716 SD MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 718 C MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.32 A C ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N											
ATOM 703 O SER A 95											
ATOM 704 N ILE A 96											
ATOM 705 CA ILE A 96											
ATOM 706 CB ILE A 96											
ATOM 707 CG1 ILE A 96											
ATOM 708 CD1 ILE A 96											
ATOM 709 CG2 ILE A 96											
ATOM 710 C ILE A 96 -4.398 12.158 -6.043 1.00 15.93 A C ATOM 711 O ILE A 96 -5.475 12.590 -5.660 1.00 14.84 A O ATOM 712 N MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 713 CA MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 714 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CG MET A 97 -4.107 15.480 -9.688 1.00 21.58 A C ATOM 716 SD MET A 97 -2.949 16.297 -10.814 1.00 25.41 A S ATOM 717 CE MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C									·		
ATOM 711 O ILE A 96											
ATOM 712 N MET A 97 -3.797 12.640 -7.119 1.00 16.32 A N ATOM 713 CA MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 714 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CG MET A 97 -4.107 15.480 -9.688 1.00 21.58 A C ATOM 716 SD MET A 97 -2.949 16.297 -10.814 1.00 25.41 A S ATOM 717 CE MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C											
ATOM 713 CA MET A 97 -4.440 13.700 -7.889 1.00 18.17 A C ATOM 714 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CG MET A 97 -4.107 15.480 -9.688 1.00 21.58 A C ATOM 716 SD MET A 97 -2.949 16.297 -10.814 1.00 25.41 A S ATOM 717 CE MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C										A	
ATOM 714 CB MET A 97 -3.471 14.346 -8.884 1.00 18.20 A C ATOM 715 CG MET A 97 -4.107 15.480 -9.688 1.00 21.58 A C ATOM 716 SD MET A 97 -2.949 16.297 -10.814 1.00 25.41 A S ATOM 717 CE MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C	- -		- ·		_					A	
ATOM 715 CG MET A 97 -4.107 15.480 -9.688 1.00 21.58 A C ATOM 716 SD MET A 97 -2.949 16.297 -10.814 1.00 25.41 A S ATOM 717 CE MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C											
ATOM 716 SD MET A 97 -2.949 16.297 -10.814 1.00 25.41 A S ATOM 717 CE MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C											
ATOM 717 CE MET A 97 -3.900 16.196 -12.225 1.00 31.75 A C ATOM 718 C MET A 97 -5.647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C							•				
ATOM 718 C MET A 97 -5.647 13.114 -8.641 1.00 18.32 A C ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C											
ATOM 719 O MET A 97 -5.537 12.054 -9.249 1.00 18.26 A O ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C											
ATOM 720 N ASP A 98 -6.780 13.807 -8.568 1.00 19.35 A N ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C											
ATOM 721 CA ASP A 98 -8.020 13.369 -9.217 1.00 20.45 A C											
ALON 122 CD ASP A 90 -9.268 13.714 -8.375 1.00 20.39 A C											
	AIUM	122	CB	ASP A	フひ	-y.268	13./14	-6.3/5	1.00 20.39	A	Ċ

ATOM	723	CG	ASP	א	98	-9.367	15.170	-8.021	J 0:0	21.41		A	С
ATOM	724	OD1	ASP		98	-9.234	16.024	-8.928		22.52		A	0
ATOM	725	OD2			98	-9.599	15.575	-6.847	1.00	20.32		A	0
ATOM	726	С	ASP		98	-8.093		-10.592	1.00	20.49		A	C
ATOM	727	0	ASP	A	98	-7.168	14.690	-10.996	1.00	19.61		A	0
MOTA	728	N	SER	A	99	-9.170	13.747	-11.321	1.00	21.70		A	N
MOTA	729	CA	SER	A	99	~9.252	14.202	-12.703	1.00	23.74		A	C
ATOM	730	CB	SER	A	99	-10.202	13.301	-13.510	1.00	24.07		A	C
ATOM	731	OG	SER	A	99	-11.497	13.436	-12.986	1.00			A	0
ATOM	732	C	SER		99	-9.727		-12.749	1.00	24.80		A	Ċ
ATOM	733	0	SER		99	-9.696		-13.812		27.46		A	0
ATOM	734	N .	GLY										_
						-10.152		-11.611	1.00			A	N
ATOM	735	CA	GLY			-10.425		-11.488	1.00			A	C
ATOM	736	C	GLY			-9.262		-10.968		25.36		A	C
MOTA	737	0	GLY			-9.475	19.606	-10.557	1.00	26.29		A	0
MOTA	738	N	GLY	A :	101	-8.047	17.933	-10.964	1.00	25.13		A	N
ATOM	739	CA	GLY	A :	101	-6.873	18.715	-10.573	1.00	24.90		A	C
MOTA	740	C	GLY	A :	101	-6.541	18.760	-9.076	1.00	24.55		A	C
ATOM	741	0	GLY	A :	101	-5.425	19.133	-8.713	1.00	26.15		A	0
ATOM	742	N	GLY	A :	102	-7.490	18.406	-8.221	1.00	22.32		A	N
ATOM	743	CA	GLY			-7.258	18.339	-6.783	1.00	21.84		A	C
ATOM	744	C	GLY			-6.703	17.008	-6.267	1.00		•	A	C
ATOM	745	Ö	GLY			-6.172	16.204	-7.021		19.11		A.	0
ATOM	746	N	LEU			-6.814	16.794	-4.959		19.97			Ŋ
		••										A	
MOTA	747	CA	LEU			-6.225	15.634	-4.294		19.19		A	C
MOTA	748	CB	LEU			-5.346	16.094	-3.131		18.87		A	C
MOTA	749	CG			103	-4.169	16.986	-3.552	1.00	18.31		A	Ċ
ATOM	750	CD1	LEU			-3.298	17.397	-2.354		17.54		A	C
MOTA	751	CD2	LEU			-3.341	16.297	-4.607	1.00	19.64		A	C
ATOM	752	C	LEU	A :	103	-7.307	14.676	-3.809	1.00	19.31		A	C
MOTA	753	0	LEU	A :	103	-7.179	14.018	-2.750	1.00	18.44		A	0
ATOM	754	N	GLY	A :	104	-8.371	14.586	-4.604	1.00	18.93		Α	N
MOTA	755	CA	GLY	A :	104	· -9.537	13.780 -	-4.260	1.00	18.78	-	A	·C
MOTA .	756	C	GLY	A :	104	-9.259	12.298	-4.234	1.00	18.26	•	A	C
ATOM	757	0	GLY	A :	104	-10.078	11.506	-3.780	1.00	19.17		A	0
ATOM	758	N	GLY	A :	105	-8.094	11.886	-4:703		17.54		A	N
ATOM	759	CA	GLY			-7.698	10.500	-4.520		17.23		A	Ċ
ATOM	760	C	GLY			-7,395	10.091	-3.075		16.85		A	Ċ
ATOM	761	Ö	GLY			-7.319	8.895	-2.731		15.88			0
ATOM	762	N .	LEU									A	
						-7.263	11.067	-2.194		16.62		A	N
MOTA	763	CA	LEU			-7.137	10.729	-0.777		16.79		A	C
MOTA	764	CB	LEU			-6.892	11.975	0.048		16.05		A	C
ATOM	765	CG	LEU		106	-5.519	12.560	-0.204	1.00	14.68		A	C
ATOM	766	CD1			106	-5.479	13.986	0.274	1.00	16.20		A	С
MOTA	767	CD2		A :	106	-4.425	11.707	0.507	1.00	13.15		A	C
ATOM	768	C	LEU	A :	106	-8.423	10.056	-0.304	1.00	17.90		A	C
MOTA	769	0	LEU	A :	106	-9.513	10.553	-0.587	1.00	18.63		A	Q
ATOM	770	N	PRO	A :	107	-8.318	8.932	0.387	1.00	18.42		A	N
ATOM	771	CA	PRO	A :	107	-9.506	8.280	0.977	1.00	19.35		A	C
MOTA	772	CB	PRO	A :	107	-8.963	6.932	1.430	1.00	19.15		A	C
ATOM	773	CG	PRO			-7.537	7.286	1.774		19.19		A	Ċ
ATOM	774	CD	PRO			-7.089	8.162	0.640		18.63		A	Ĉ
ATOM	775	C	PRO			-10.070	9.036	2.178		18.88		A	C
ATOM	776	0	PRO			-9.340	9.724	2.176		19.33			
ATOM	777	N						_				A	0
			ALA			-11.367	8.910	2.408		19.46		A	И
ATOM	778	CA	ALA			-12.022	9.562	3.530		19.50		A	C
ATOM	779	CB	ALA			-13.514	9.168	3.585		20.76		A	C
MOTA	780	C	ALA	A :	108	-11.359	9.229	4.875	1.00	18.72		A	C

	ATOM	781	0	ALA	Α	108	-11.229	10.093	5.727	1.00 19.17		A	0
	ATOM	782	N	ASN	A	109	-11.007	7.964	5.069	1.00 18.94		A	N
	ATOM	783	CA	ASN	Α	109	-10.193	7.535	6.209	1.00 19.10		A	C
	ATOM	784	CB	ASN			-10.691	6.206	6.773	1.00 19.41		A	C
	ATOM	785	CG	ASN			-9.990	5.834	8.073	1.00 22.66		A	C
	ATOM	786	OD1	ASN			-8.872	6.295	8.349	1.00 19.31		A	Ō
	ATOM	787	ND2	ASN			-10.665	5.018	8.908	1.00 25.73		A.	N
	ATOM	788	C	ASN			-8.731	7.392	5.804	1.00 17.97		A	C
	ATOM	789	Ö	ASN			-8.353	6.446	5.088	1.00 17.31		A	Õ
	ATOM	790	N	LEU			-7.895	8.325	6.245	1.00 16.66		A	N
	ATOM	791	CA			110	-6.489	8.277	5.862	1.00 15.50		A.	C
	ATOM	792	CB	LEU			-5.738	9.502	6.406	1.00 15.65		À	c
	ATOM	793	CG	LEU			-6.096	10.831	5.749	1.00 13.03			C
	ATOM ·	794	CD1	LEU			-5.294		6.373	1.00 15.74		A. A	
	ATOM	79 4 795	CD2			110	-5.873	11.932 10.768	4.256	1.00 13.53			C
	ATOM	796	CDZ	LEU			-5.784	7.006	6.285	1.00 15.96		A A	C
	ATOM	797	0	LEU			-4.750	6.660	5.719	1.00 16.04			0
	ATOM	798	N	GLN			-6.297	6.283	7.276	1.00 16.18		A A	N
	ATOM	799	CA	GLN			-5.635	5.034	7.655	1.00 16.61		A A	C
	ATOM	800	CB			111	-6.317	4.377	8.871	1.00 17.82		A A	C
	ATOM	801	CG	GLN			-6.337	5.320	10.077	1.00 17.82		A.	C
	ATOM	802	CD	GLN			-6.584	4.625	11.399	1.00 17.25		A.	C
	ATOM	803	OE1	GLN			-5.934	3.635	11.699	1.00 20.40		A.	Ö
	ATOM	804	NE2				-7.513	5.163	12.202	1.00 21.33		A	Ŋ
	ATOM	805	C	GLN	_		-5.560	4.086	6.461	1.00 17:45		A.	· C
	ATOM	806	Ö	GLN			-4.601	3.323	6.312	1.00 17.43		A	Ö
	ATOM	807	N	THR			-6.522	4.195	5.548	1.00 16.47		A	N
	ATOM	808	CA			112	-6.483	3.418	4.309	1.00 16.12		A	C
	ATOM	809	CB	THR			-7.756	3.733	3.510	1.00 16.12		A	C
	ATOM	810	OG1			112	-8.900	3.480	4.333	1.00 13.21		A.	0
	ATOM	811	CG2	THR			-7.909	2.838	2.305	1.00 17.07		A.	Č
	ATOM	812	C	THR			-5.252	3.711	3.442	1.00 15.86		A	C
_	ATOM	813	Ö	THR			-4.623	2.789		1.00 15.50		À	0.
	ATOM	814	N	LEU			-4.933	4.995	3.303	1.00 14.75		A	N
	ATOM	815	CA	LEU			-3.742	5.413	2.558	1.00 14.05		A	Ĉ
	ATOM	816	CB	LEU			-3.677	6.941	2.557	1.00 14.27	•	A	C
	ATOM	817	CG	LEU			-2.549	7.597	1.807	1.00 14.53		A	C
	ATOM	818	CD1	LEU			-2.840	7.473	0.297	1.00 16.65		A	C
	ATOM	819	CD2	LEU			-2.412	9.039	2.212	1.00 13.95		A	C
	ATOM	820	C	LEU			-2.478	4.836	3.212	1.00 13.77		A	C
	ATOM	821	Õ	LEU			-1.625	4.238	2.550	1.00 13.55		A	Ö
	ATOM	822	N	PHE			-2.361	5.016	4.523	1.00 12.95		A	N
	ATOM	823	CA	PHE			-1.182	4.528	5.223	1.00 13.04		A	C
	ATOM	824	CB	PHE			-1.154	5.049	6.645	1.00 12.56		A	Ċ
	ATOM	825	CG	PHE			-1.331	6.551	6.743	1.00 11.79		A	Ċ
	ATOM	826	CD1	PHE			-0.639	7.402	5.902	1.00 12.07		A	Č
	MOTA	827	CE1	PHE			-0.785	8.781	5.986	1.00 12.47		A	Ċ
	ATOM	828	CZ	PHE			-1.662	9.323	6.921	1.00 13.57		A	C
	ATOM	829		PHE			-2.365	8.470	7.754	1.00 11.94		A	Ċ
	ATOM	830	CD2				-2.186	7.100	7.663	1.00 9.85		A	Ċ
	ATOM	831	C	PHE			-1.060	3.003	5.171	1.00 13.86		A	Ċ
	ATOM	832	ŏ	PHE			0.063	2.461	5.004	1.00 12.73		A	Ö
	ATOM	833	N.	SER			-2.196		5.277	1.00 14.04		A	N
	ATOM	834	CA	SER			-2.148	0.848	5.292	1.00 14.17		A	C
	ATOM	835		BSER			-3.527	0.252	5.640	0.50 13.81		A	C
	ATOM	836		ASER			-3.457	0.215	5.769	0.50 14.55		A	Ċ
	ATOM	837		BSER			-3.970	0.566	6.958	0.50 10.51		A	Ö
	ATOM	838		ASER			-4.544	0.608	4.978	0.50 18.03		À	Ó
		·					1		~ · ·				~

T TOOM	020		O D D	-		3 677	0 206	2 042				*	
ATOM	839	C			115	-1.677	0.296	3.943	1.00 1			A	C
ATOM	840	0	SER	A	115	-0.932	-0.663	3.909	1.00 1	3.43		A	0
ATOM	841	N	GLN	A	116	-2.108	0.890	2.832	1.00 1	4.73		A	N
ATOM	842	CA	GLN	A	116	-1.656	0.442	1.513	1.00 1	4.53		A	C
ATOM	843	CB	GLN	A	116	-2.394	1.234	0.417	1.00 1	5.81		A	С
ATOM	844	CG			116	-1.947	0.951	-1.038		5.88		A	Č
MOTA	845	CD			116	-2.601	1.886	-2.007		6.75		A	C
ATOM	846	OE1			116	-2.629	3.086	-1.747		4.56		A	0
ATOM	847	NE2	GLN	A	116	-3.200	1.346	-3.106	1.00 1	4.07		A	N
ATOM	848	С	GLN	A	116	-0.131	0.571	1.375	1.00 1	4.16		A	C
ATOM	849	0	GLN	A	116	0.554	-0.336	0.861	1.00 1	4.37		A	0
ATOM	850	N	ALA	A	117	0.407	1.679	1.862	1.00 1	3.34		A	N
ATOM	851	CA			117	1.838	1.930	1.795		3.79		A	C
ATOM	852	CB			117	2.152	3.408	2.151		3.52		A	C
ATOM		C			117								
	853	-				2.608	0.972	2.714		3.17		A	C
ATOM	854	0			117	3.666	0.472	2.344	1.00 1			A	0
MOTA	855	N			118	2.071	0.740	3.908		3.32		A	N
ATOM	856	CA	TYR	A	118	2.679	-0.161	4.877	1.00 1	3.82		A	C
ATOM	857	CB	TYR	A	118	1.878	-0.177	6.190	1.00 1	4.02		A	C
ATOM	858	CG	TYR	A	118	2.636	-0.861	7.324	1.00 1	7.04		A	C
MOTA	859	CD1	TYR	Α	118	2.472	-2.216	7.589	1.00 2	0.14		A	С
ATOM	860	CE1	TYR		118	3.186	-2.839	8.640		4.14		A	Ċ
ATOM	861	CZ			118	4.041	-2.071	9.409		3.61		A	C
ATOM	862	OH			118								0
						4.762	-2.631	10.442	1.00 2			A	•
MOTA	863	CE2			118	4.194	-0.725	9.155		0.69		A	С
ATOM	864	CD2			118	3.501	-0.135	8.136		8.61		A	C
MOTA	865	C	TYR	A	118	2.782	-1.576	4.294	1.00 1	4.18		A	C
ATOM	866	0	TYR	A	118	3.838	-2.228	4.363	1.00 1	4.05		A	0
MOTA	867	N	SER	A	119	1.705	-2.024	3.669	1.00 1	4.24		A	N
ATOM	868	CA	SER	A	119	1.684	-3.358	3.064	1.00 1	5.13		A	С
ATOM	869	CB			119	0.288	-3.660	2.544	1.00 1			Α	C
ATOM	870	OG			119	-0.609	-3.744	3.638	1,00 1			A	Õ
ATOM	871	C			119.	2.752	-3.531 -		1.00 1				C
		_									• •	A	
MOTA	872	0	•		119	3.313	-4.602	1.818		5.80		A	0
ATOM	873	N			120	3.052	-2.461	1.254		6.24		A	N
MOTA	874	CA			120	4.085	-2.488	0.204	1.00 1	5.93		A	С
ATOM	875	CB	ALA	A	120	3.847	-1.352	-0.759	1.00 1	6.16		A	C
MOTA	876	C	ALA	A	120	5.504	-2.405	0.767	1.00 1	6.13		A	C
MOTA	877	0	ALA	A	120	6.474	-2.473	0.030	1.00 1	6.93		A	0
ATOM	878	N	GLY	A	121	5.626	-2.249	2.083	1.00 1	6.23		A	N
ATOM	879	CA			121	6.917	-2.249	2.747		5.35		A	C
ATOM	880	C			121	7.400	-0.883	3.247		5.15		A	Ċ
ATOM	881	Ō			121	8.466	-0.811	3.893		5.57		A	Ö
ATOM	882	N			122						•		
						6.665	0.195	2.977		4.40		A	N
ATOM	883	CA			122	7.110	1.522	3.443		4.85		A	C
MOTA	884	CB			122	6.273	2.632	2.831		4.84		A	C
ATOM	885	C	ALA	A	122	7.057	1.635	4.964	1.00 1	4.35		A	C
MOTA	886	0	ALA	A	122	6.078	1.230	5.574	1.00 1	5.21		A	0
ATOM	887	N	ARG	Ą	123	8.077	2.223	5.570	1.00 1	3.62		A	N
ATOM	888	CA	ARG	A	123	8.013	2.499	7.008	1.00 1	2.85		A	C
ATOM	889	СВ			123	9.065	1.689	7.761	1.00 1			A	C
ATOM	890	CG			123	8.870	0.162	7.597	1.00 1			A	C
ATOM	891	ÇD			123	7.584		8.290	1.00 1				C
							-0.334					A A	
ATOM	892	NE			123	7.396	-1.786	8.187	1.00 1			A	N
ATOM	893	CZ			123	6.676	-2.389	7.253	1.00 1			A	С
ATOM	894	NH1			123	6.039	-1.678	6.337	1.00 1	5.68		A	N
ATOM	895	NH2	ARG	A	123	6.579	-3.719	7.240	1.00 1	7.36		A	N
ATOM	896	С	ARG	A	123	8.132	3.987	7.298	1.00 1	2.72		A	C

ATOM	897	0	ARG	A	123	8.116	4.418	8.448	1.00	12.15	A	. 0
ATOM	898	N	ILE	A	124	8.225	4.773	6.234		12.67	A	
ATOM	899	CA			124	8.177	6.218	6.346		L2.97	A	
ATOM	900	CB			124	9.554	6.814	6.025		12.64	A	
ATOM	901	CG1			124	10.619	6.262	6.985		13.71	A.	
ATOM	902	CD1	ILE		124	12.068	6.395	6.480		14.82		
ATOM	903	CG2	ILE		124						A	
						9,478	8.348	6.061		13.97	A	
ATOM	904	C			124	7.160	6.695	5.324		12.91	A	
ATOM	905	0			124	7.132	6.195	4.210		13.07	A	
ATOM	906	N			125	6.365	7.696	5.671		12.94	A	
MOTA	907	CA			125	5.252	8.100	4.823		12.77	A	
MOTA	908	CB			125	3.894	7.549	5.353		13.00	A	C
MOTA	909	CG		A	125	2.806	7.650	4.334	1.00	15.91	A	C
ATOM	910	NDI	HIS	A	125	2.428	8.850	3.783	1.00	13.47	A	. N
ATOM	911	CE1	HIS	A	125	1.547	8.632	2.821	1.00	L6.40	A	C
MOTA	912	NE2	HIS	A	125	1.312	7.333	2.756	1.00	16.49	A	N
ATOM	913	CD2	HIS	A	125	2.072	6.699	3.705	1.00	18.35	A	C
ATOM	914	C	HIS	A	125	5.223	9.620	4.828	1.00	12.62	A	C
ATOM	915	0	HIS	A	125	5.053	10.202	₽ 5.893		12.04	A	
ATOM	916	N	THR	A	126	5.401	10.268	3.674		12.71	A	
MOTA	917	CA			126	5.527	11.738	3.641		12.63	A	
MOTA	918	CB	THR		126	6.984	12.142	3.302		12.63	.A	
MOTA	919	OG1	THR.			7.121	13.560	3.334		12.18	,	
ATOM	920	CG2			126	7.395	11.747	1.864		12.36	A	_
ATOM	921	C			126	4.498	12.426	2.735		12.60	A	
ATOM	922	_	THR			4.166	11.931	1.652		12.62	A	
ATOM	923	N	ASN		127	4.010	13.572	3.200		12.52		
ATOM	924	CA	ASN								A.	
ATOM					127	2.778	14.189	2.696		12.84	A	
	925	CB	ASN	A	127	1.599	13.811	3.605		13.04	A	
MOTA	926	CG			127	1.433	12.325	3.720		13.25	Ą	
ATOM	927	OD1	ASN		127	1.916	11.686	4.690		13.15	A	
ATOM	928	ND2	ASN		127	0.814	11.740	2.712	1.00	9.82	A .	
ATOM	929	C	ASN		127	2.894	15.706 -			12.70	· A	
ATOM	930	0	ASN		127	2.798	16.390	3.661		13.27	A	
ATOM	931	N	SER		128	3.103	16.211	1.435		12.76	A	. N
ATOM	932	CA	SER		128	3.277	17.640	1.162	1.00	13.02	Ą	C
ATOM	933	CB			128	4.308	17.831	0.043	1.00	12.57	Æ	C
ATOM	934	OG	SER	A	128	5.608	17.510	0.485	1.00	12.52	A	. 0
ATOM	935	C	SER	A	128	1.927	18.238	0.748	1.00	13.42	A	C
ATOM	936	0	SER	A	128	1.763	18.767	-0.372	1.00	13.82	A	. 0
ATOM	937	N	TRP	A	129	0.968	18.129	1.663	1.00	13.86	A	. N
ATOM	938	CA	TRP	A	129	-0.392	18.616	1.465	1.00	13.67	A	C
ATOM	939	CB	TRP	A	129	-1.215	17.648	0.602	1.00	13.88	A	C
MOTA	940	CG	TRP	A	129	-1.130	16.180	0.964	1.00	13.08	A	C
ATOM	941	CD1	TRP	A	129	-0.305	15.232	0.391	1.00	14.80	A	C
MOTA	942	NEl	TRP	A	129	-0.531	13.997	0.956	1.00	12.40	A	N
ATOM	943	CE2	TRP	A	129	-1.518	14.122	1.900	1.00	13.40	· A	
ATOM	944	CD2	TRP	A	129	-1.924	15.480	1.921		12.64	A	
ATOM	945		TRP			-2.948	15.857	2.806	1.00		Ä	
ATOM	946	CZ3			129	-3.504	14.910	3.614	1.00		A	
ATOM	947	CH2			129	-3.082	13.566	3.559	1.00		A	
ATOM	948	CZ2			129	-2.101	13.158	2.711	1.00		Ā	
ATOM	949	C			129	-1.089	18.859	2.782	1.00		A	
MOTA	950	0			129							
ATOM	950 951	N				-0.612	18.460	3.876	1.00		A	
					130	-2.224	19.538	2.694	1.00		A	
ATOM	952 053	CA			130	-3.004	19.834	3.866	1.00		A	
ATOM	953 054	C			130	-4.173	20.744	3.563	1.00		A	
ATOM	954	0	GLY	A	130	-4.203	21.394	2.518	1.00	16.04	A	. 0

A TON	055			_		5 130	00 554	4 4 7 0		•	
MOTA	955	N			131	-5.139	20.754	4.478	1.00 16.87	A	N
ATOM	956	CA	ALA	A	131	-6.222	21.733	4.484	1.00 18.19	A	C
MOTA	957	CB	ALA	A	131	-7.515	21.097	4.983	1.00 17.33	A	C
MOTA	958	C	AI.A	Α	131	-5.843	22.852	5.423	1.00 19.54	A	C
ATOM	959	ō			131	-5.562	22.590	6.592	1.00 20.18	A	Ō
ATOM	960	N			132	-5.869	24.090	4.942	1.00 20.97	A	N
MOTA	961	CA	PRO	A	132	-5.513	25.253	5.763	1.00 21.46	A	C
ATOM	962	CB	PRO	A	132	-5.260	26.346	4.724	1.00 21.95	A	C
ATOM	963	CG	PRO	A	132	-6.060	25.967	3.546	1.00 22.18	A	C
MOTA	964	CD			132	-6.220	24.462	3.564	1.00 21.43	A	C
ATOM	965	C			132	-6.595	25.676		1.00 22.74		C
		_						6.753		A	
MOTA	966	0			132	-7.272	26.703	6.555	1.00 24.13	A	0
ATOM	967	N	VAL	A	133	-6.708	24.912	7.833	1.00 22.71	· A	N
MOTA	968	CA	VAL	A	133	-7.723	25.086	8.850	1.00 23.39	A	C
ATOM	969	CB	VAL	A	133	-8.349	23.712	9.223	1.00 23.48	A	С
MOTA	970	CG1	VAL	A	133	-9.115	23.133	8.045	1.00 25.68	A	C
ATOM	971	CG2			133	-7.269	22.750	9.687	1.00 24.53	A	Č
ATOM	972	C			133	-7.223	25.742	10.150	1.00 23.23	A	C
MOTA	973	0	VAL	A	133	- 7. 855	25.599	11.185	1.00 22.57	A	0
MOTA	974	N	ASN	A	134	-6.094	26.437	10.098	1.00 23.10	A	N
MOTA	975	CA	ASN	A	134	-5.660	27.279	11.201	1.00 23.36	A	C
ATOM	976	CB	ASN	A	134	-6.583	28.512	11.310	1.00 24.40	A	C
ATOM	977	CG			134	-6.491	29.413	10.082	1.00 26.68	A	Č
ATOM	978	OD1			134	-7.489	30.000	9.650	1.00 34.40	A	0
		- •									
ATOM	979	ND2			134	-5.315	29.478	9.482	1.00 28.87	A	N
ATOM	980	С			134	-5.588	26.561	12.535	1.00 22.43	A	С
ATOM	981	0	ASN	A	134	-6.210	26.971	13.510	1.00 21.30	A	0
MOTA	982	N	GLY	A	135	-4.844	25.458	12.574	1.00 21.06	A	N
ATOM	983	CA	GLY	A	135	-4.548	24.840	13.846	1.00 20.36	A	C
MOTA	984	C	GLY	A	135	-5.541	23.818	14.308	1.00 19.66	A	C
ATOM	985	0	GLY	A	135	-5.320	23.200	15.327	1.00 18.95	A	0
ATOM	986	N			136	-6.613	23.595	13.557	1.00 19.08	A	N
ATOM	987	CA			136	-7:609	22.643		1.00 19.00	· A	C -
ATOM											
	988	CB			136	-8.925	22.778	13.199	1.00 19.34	A	C
MOTA	989	C			136	-7.098	21.206	13.893	1.00 19.31	A	C
ATOM	990	0			136	-6.354	20.851	12.952	1.00 18.44	A	0
ATOM	991	N	TYR	A	137	-7.568	20.407	14.841	1.00 18.56	A	N
MOTA	992	CA	TYR	A	137	-7.341	18.979	14.907	1.00 18.99	A	C
MOTA	993	CB	TYR	A	137	-7.112	18.588	16.367	1.00 18.67	A	C
ATOM	994	CG	TYR	A	137	-6.637	17.175	16.588	1.00 19.68	A	С
ATOM	995	CD1			137	-7.537	16.173	16.885	1.00 19.55	A	Ċ
ATOM	996	CEI			137	-7.112	14.855	17.099	1.00 21.07	A	C
ATOM	997	CZ									
					137	-5.765	14.548	17.045	1.00 20.92	A	C
ATOM	998	OH			137	-5.371	13.250	17.265	1.00 20.20	A	0
MOTA	999	CE2			137	-4.837	15.538	16.754	1.00 20.35	A	C
ATOM	1000	CD2	TYR	A	137	-5.278	16.848	16.522	1.00 19.75	A	C
ATOM	1001	C	TYR	A	137	-8.600	18.314	14.337	1.00 18.91	A	C
MOTA	1002	0	TYR	A	137	-9.648	18.229	14.994	1.00 18.41	A	Ò
ATOM	1003	N	THR	A	138	-8.481	17.872	13.091	1.00 18.62	A	N
ATOM	1004	CA			138	-9.608	17.401	12.329		A	C
ATOM	1005	CB			138	~9.480	17.836	10.897	1.00 18.02	A	C
ATOM	1006	OG1			138	-8.271	17.308	10.321	1.00 16.63	A	0
ATOM	1007	CG2			138	~9.308	19.330	10.788	1.00 17.63	A	C
ATOM	1008	С	THR	A	138	-9.593	15.888	12.407	1.00 18.43	A	C
ATOM	1009	0	THR	A	138	-8.662	15.296	12.954	1.00 17.82	A	0
ATOM	1010	N	THR	A	139	-10.624	15.278	11.843	1.00 18.06	A	N
MOTA	1011	CA			139			11.705		A	C
ATOM	1012	СВ			139	-12.020	13.472	10.947	1.00 18.57	A	Č
						_2.020		~ U . J % /		• •	_

ATOM	1013	OG1	THR	A	139	-13.162	13.907	11.705	1 00	20.05	A	0
ATOM	1014	CG2			139	-12.173	11.933	10.828		19.16	A	C
ATOM	1015	C			139	-9.496						
		_					13.285	10.989	_	16.78	A	С
ATOM	1016	0			139	-9.037	12.183	11.307		17.05	A	0
ATOM	1017	N	ASP		140	-8.976	14.002	10.002		15.81	A	N
ATOM	1018	CA	ASP	A	140	-7.758	13.544	9.351	1.00	15.65	A	C
MOTA	1019	CB	ASP	A	140	-7.391	14.429	8.177	1.00	15.45	A	C
MOTA	1020	CG	ASP	A	140	-8.279	14.209	6.984	1.00	16.65	A	C
MOTA	1021	ODI	ASP	A	140	-8.495	15.189	6.263	1.00	18.76	A	0
ATOM	1022	OD2	ASP	A	140	-8.781	13.102	6.702		16.74	A	0
ATOM	1023	С			140	-6.56 7	13.504	10.352		15.55	A	C
ATOM	1024	0			140	-5.823	12.532	10.395		15.72	A	Ö
ATOM	1025	N			141	-6.395	14.555	11.133		15.34		
											A	N
ATOM	1026	CA			141	-5.375	14.548	12.187		15.53	A	C
ATOM	1027	CB			141	-5.428	15.823	13.006		14.57	A	C
ATOM	1028	OG			141	-5.275	16.936	12.173		16.14	A	0
ATOM	1029	C			141	-5.514	13.375	13.157	1.00	15.46	A	C
MOTA	1030	0	SER	A	141	-4.511	12.754	13.558	1.00	15.37	A	0
MOTA	1031	N	ARG	A	142	-6.754	13.100	13.546	1.00	15.27	A	N
ATOM	1032	CA	ARG	A	142	-7.053	11.998	14.462	1.00	15.97	A	C
MOTA	1033	CB	ARG	A	142	-8.539	12.004	14.843	1.00	16.78	A	C
MOTA	1034	CG	ARG	Α	142	-8.882	11.091	16.022	1.00	18.90	A	C
ATOM	1035	CD	ARG	A	142	-10.365	11.103	16.436		22.40	A	C
ATOM	1036	NE			142	-10.533	10.384	17.704	_	25.70	A	N
ATOM	1037	CZ			142	-10.549	9.057	17.839		29.38	A	C
ATOM	1038	NH1			142	-10.423	8.249	16.786		30.26	A	N
ATOM	1039	NH2			142							
						-10.685	8.524	19.048		30.56	A	· N
ATOM	1040	C			142	-6.703	10.643	13.860		15.43	A	C
ATOM	1041	0			142	-6.107	9.77B	14.534		14.36	A	. 0
ATOM	1042	N			143	-7.068	10.437	12.593		14.96	A	N
ATOM	1043	CA			143	-6.699	9.187	11.926		14.70	A	С
ATOM	1044	CB			143	-7.451	9.062	10.593		15.54	A	C
MOTA	1045	CG	ASN	A	143	-8.952	8.709 -	10.803	1.00	16.85	 A	C
MOTA	1046	OD1	ASN	A	143	-9.842	9.204	10.096	1.00	20.66	A	0
ATOM	1047	ND2	ASN	A	143	-9.206	7.828	11.746	1.00	15.73	A	N
ATOM	1048	C	ASN	A	143	-5.183	8.986	11.754	1.00	15.26	A	C
ATOM	1049	0	ASN	A	143	-4.691	7.854	11.879	1.00	15.15	A	. 0
MOTA	1050	N	VAL	A	144	-4.438	10.060	11.450	1.00	14.90	A	N
ATOM	1051	CA	VAL	A	144	-2.976	9.987	11.467	1.00	13.93	A	С
ATOM	1052	CB			144	-2.319	11.347	11.177		14.08	A	C
ATOM	1053	CG1			144	-0.803	11.272	11.422		12.32	A	Ċ
ATOM	1054	CG2			144	-2.625	11.818	9.748		13.08	A	Ċ
ATOM	1055	C			144	-2.478	9.507	12.843		14.23	A	C
ATOM	1056	Õ			144	-1.608	8.653	12.938		13.96		0
ATOM	1057	N			145						A	
						-3.021	10.077	13.916	-	14.48	A	Ŋ
ATOM	1058	CA			145	-2.548	9.745			14.49	A	C
ATOM	1059	CB			145	-3.123	10.711	16.249		14.81	A	C
ATOM	1060	CG	ASP			-2.406	12.033	16.218		15.70	A	C
ATOM	1061		ASP			-1.332	12.107	15.545	1.00	14.69	A	0
ATOM	1062	OD2	ASP	A	145	-2.845	13.048	16.803	1.00	14.46	A	0
ATOM	1063	C			145	-2.849	8.331	15.654	1.00	15.08	A	C
MOTA	1064	0	ASP	A	145	-1.999	7.622	16.183	1.00	14.89	A	0
MOTA	1065	N	ASP	A	146	-4.065	7.906	15.361	1.00	15.66	A	N
MOTA	1066	CA	ASP	A	146	-4.470	6.545	15.608		15.98	A	С
MOTA	1067	CB			146	-5.931	6.400	15.184		16.37	A	Ċ
MOTA	106B	CG			146	-6.565	5.107	15.705		17.81	A	Ċ
ATOM	1069				146		4.735	16.879		18.17	A	Ö
MOTA	1070		ASP			-7.277	4.401	14.981		21.66	A	Ö
	7010		. TL E	+7	7-7-0		7.7VL	T4.30T	7.00	\$X.00	4	

ATOM	1071	C ASP	Α	146	-3.562	5.571	14.849	1.00 16.07	A	C
ATOM	1072	O ASP	A	146	-3.047	4.607	15.408	1.00 16.60	A	0
MOTA	1073	N TYR	A	147	-3.324	5.842	13.576	1.00 15.73	A	N
ATOM	1074			147	-2.463	4.988	12.772	1.00 15.49	A	С
ATOM	1075	CB TYR	A	147	-2.387	5.486	11.314	1.00 15.22	A	C
ATOM	1076	_		147	-1.759	4.421	10.459	1.00 16.31	A	C
ATOM	1077			147	-0.400	4.394	10.249	1.00 17.35	A	C
ATOM	1078			147	0.180	3.380	9.506	1.00 17.49	A	C
ATOM	1079			147	-0.599	2.364	9.004	1.00 16.46	A	Ċ
ATOM	1080			147	-0.022	1.354	8.281	1.00 20.80	A	Ō
ATOM	1081			147	-1.944	2.346	9.227	1.00 16.19	A	C
ATOM	1082			147	-2.523	3.364	9.947	1.00 16.98	A	C
ATOM	1083			147	-1.025	4.833	13.309	1.00 15.68	A	Ċ
ATOM	1084	-		147	-0.491	3.719	13.385	1.00 14.79	A	0
ATOM	1085			148	-0.399	5.953	13.652	1.00 16.33	A	N
ATOM	1086			148	0.975	5.950	14.144	1.00 16.18	A	C
ATOM	1087			148	1.534	7.390	14.262	1.00 16.37	A	Ċ
ATOM	1088			148	2.953	7.397	14.909	1.00 17.53	A	Ċ
ATOM	1089			148	1.600	8.044	12.899	1.00 16.39	A	Ċ
ATOM	1090			148	1.063	5.206	15.488	1.00 16.59	A	Ċ
ATOM	1091			148	2.022	4.481	15.765	1.00 16.63	A	Ö
ATOM	1092			149	0.061	5.356	16.331	1.00 16.70	A	N
MOTA	1093				0.109	4.628	17.589	1.00 18.28	A	C
ATOM	1094			149	-0.920	5.133	18.600	1.00 18.33	A	C
ATOM	1095			149	-0.585	4.657	20.002	1.00 19.51	A	Č
ATOM	1096	CD ARG		149	-1.566	5.035	21.071	1.00 20.84	Ä	Č
ATOM	1097	NE ARG		149	-0.987	4.731	22.383	1.00 22.92	A	N
ATOM	1098			149	-1.661	4.491	23.504	1.00 24.06	A	C
ATOM	1099			149	-2.985	4.521	23.538	1.00 25.69	A	N
ATOM	1100			149	-0.987	4.221	24.616	1.00 23.61	A	N
ATOM	1101	C ARG		149	-0.035	3.126	17.382	1.00 18.63	A	C
ATOM	1102			149	0.517	2.346	18.156	1.00 18.97	A	Ö
ATOM	1103	N LYS		150		2.720 -		1.00 18.98	A	N
ATOM	1104			150	-0.991	1.294	16.087	1.00 19.24	A	C
ATOM	1105			150	-2.373	1.092	15.438	1.00 19.89	A	Ċ
ATOM	1106			150	~3.576	1.358	16.389	1.00 21.34	A	Č
ATOM	1107			150	-4.902	0.972	15.736	1.00 24.20	A	Ċ
ATOM	1108			150	-6.136	1.437	16.531	1.00 27.20	A	Ċ
ATOM	1109			150	-7.373.	1.614	15.668	1.00 30.36	A	N
ATOM	1110			150	0.123	0.622	15.250	1.00 18.99	A	C
ATOM	1111			150	0.296	-0.577	15.305	1.00 17.16	A	Ö
ATOM	1112			151	0.916	1.407	14.526	1.00 19.09	A	N
ATOM	1113			151	1.834	0.850	13.538	1.00 19.75	A	C
ATOM	1114	-		151	1.225	0.950	12.130	1.00 20.10	A	C
ATOM	1115	CG ASN		151	-0.141	0.299	12.025	1.00 19.86	A	C
ATOM	1116	OD1 ASN		151	-0.239	-0.905	11.855	1.00 19.33	A	0
ATOM	1117	ND2 ASN	A	151	-1.198	1.090	12.167	1.00 19.31	A	N
ATOM	1118			151	3.150	1.599	13.557	1.00 20.21	A	C
ATOM	1119			151	3.193	2.807	13.793	1.00 22.14	A	0
ATOM	1120			152	4.239	0.911	13.299		A	N
ATOM	1121			152	5.508	1.595	13.319	1.00 20.51	A	Ċ
ATOM	1122	CB BASP			6.571	0.640	13.830	0.35 20.16	A	C
ATOM	1123	CB AASP			6.645	0.666	13.762	0.65 21.56	A	C
ATOM	1124	CG BASP			6.199	0.067	15.205	0.35 19.09	A	C
ATOM	1125	CG AASP			7.225	-0.117	12.631	0.65 23.76	A	C
ATOM	1126	OD1BASP			5.318	0.654	15.901	0.35 15.06	Ā	Ō
ATOM	1127	OD1AASP			6.404	-0.719	11.924	0.65 27.77	A	ŏ
ATOM	1128	OD2BASP			6.703	-0.977	15.653		A	Ö
					31,03			Jud murum		~

ATOM	1129	OD2	AASP	A	152	8.471	-0.170	12.353	0.65 27.40	Α	0
ATOM	1130	С	ASP	A	152	5.822	2.270	11.959	1.00 19.32	A	С
ATOM	1131	0	ASP	A	152	6.748	1.916	11.253	1.00 20.60	A	0
MOTA	1132	N	MET	A	153	4.988	3.250	11.628	1.00 16.58	Α	N
ATOM	1133	CA	MET	A	153	5.154	4.050	10.437	1.00 16.03	A	C
ATOM	1134	СВ	MET		153	3.876	4.007	9.619	1.00 16.23	A	Ċ
ATOM	1135	ÇG	MET			3.885	4.921	8.432	1.00 18.33	A	Č
ATOM	1136	SD	MET			4.694	4.182	7.030	1.00 21.72	A	S
ATOM	1137	CE	MET		153	3.290	3.549	6.297	1.00 21.74	Ä	C
ATOM	1138	C	MET			5.443	5.482	10.871	1.00 21.74	A	C
ATOM	1139	0	MET								
ATOM	1140	N			154	4.684	6.058	11.646	1.00 13.50	A	0
						6.525	6.059	10.368	1.00 13.34	A	Ŋ
ATOM	1141	CA			154	6.813	7.482	10.638	1.00 13.08	A	C
ATOM	1142	CB			154	8.324	7.699	10.652	1.00 13.02	A	C
ATOM	1143	OG1			154	8.886	6.949	11.724	1.00 11.51	A	0
ATOM	1144	CG2			154	8.693	9.145	10.963	1.00 14.36	A	C
ATOM	1145	C			154	6.153	8.310	9.573	1.00 12.50	A	C
ATOM	1146	0			154	6.396	8.108	8.371	1.00 12.64	A	0
ATOM	1147	N			155	5.290	9.227	9.987	1.00 12.34	A	N
ATOM	1148	CA	ILE	A	155	4.492	10.002	9.037	1.00 13.00	A	C
ATOM	1149	CB	ILE	A	155	2.983	9.799	9.346	1.00 13.05	A	C
ATOM ·	1150	CG1	ILE	A	155	2.637	8.307	9.279	1.00 13.73	A	C
ATOM	1151	CD1	ILE	A	155	1.121	8.017	9.274	1.00 12.93	A	C
ATOM	1152	CG2	ILE	A	155	2.121	10.578	8.371	1.00 13.58	A	C
ATOM	1153	C	ILE	A	155	4.861	11.480	9.137	1.00 13.01	A	C
ATOM	1154	0	ILE	A	155	4.894	12.038	10.233	1.00 12.79	A	0
ATOM	1155	N	LEU	A	156	5.125	12.117	8.001	1.00 12.16	A	N
ATOM	1156	CA	LEU	Α	156	5.509	13.528	7.982	1.00 12.88	A	С
ATOM	1157	CB	LEU	A	156	6.903	13.692	7.354	1.00 12.18	A	Ċ
ATOM	1158	CG	LEU	A	156	8.089	12.960	8.007	1.00 13.25	Ā	Ċ
ATOM	1159	CD1	LEU	Α	156	8.365	11.607	7.326	1.00 11.24	A	Ċ
ATOM	1160	CD2	LEU	A		9.339	13.796	7.910	1.00 13.01	Ā	Č
ATOM	1161	С	LEU		156.	4.485	14.328		1.00 13.49	A	Ċ
ATOM	1162	Ō	•		156	3.982		6.160	1.00 14.76	A	ō
ATOM	1163	N	PHE		157	4.197	15.540	7.659	1.00 12.79	A	N
ATOM	1164	CA	PHE		157	3.282	16.451	7.003	1.00 13.07	A	C
ATOM	1165	CB	PHE	A	157	1.938	16.564	7.772	1.00 13.62	A	C
ATOM	1166	CG	PHE	A	157	0.957	15.504	7.401	1.00 13.02	A	C
ATOM	1167	CD1	PHE	A	157	0.191	15.636	6.272	1.00 13.30	A	C
ATOM	1168	CE1	PHE	A	157	-0.678	14.632	5.896	1.00 11.22		C
ATOM	1169	CZ	PHE		157	-0.743	13.441	6.630		A	C
ATOM	1170	CE2	PHE		157	0.013			1.00 14.61	A	
ATOM	1171	CD2	PHE		157		13.296	7.743	1.00 15.64	A	C
MOTA	1172	C	PHE	A		0.891	14.312	8.122	1.00 14.56	A	C
ATOM					157	3.899	17.852	6.928	1.00 13.18	A	C
	1173	0	PHE		157	4.527	18.318	7.867	1.00 12.04	A	0
ATOM	1174	N	ALA			3.700	18.500	5.793	1.00 13.46	A	N
ATOM	1175	CA			158	3.958	19.921	5.623	1.00 13.31	A	C
ATOM	1176	CB	ALA			3.509	20.334	4.235	1.00 14.02	Α	C
ATOM	1177	C			158	3.181	20.703	6.672	1.00 13.75	A	C
ATOM	1178	0	ALA			2.031	20.380	6.965	1.00 13.75	A	0
ATOM	1179	N			159	3.787	21.752	7.215	1.00 13.45	A	N
MOTA	1180	CA			159	3.122	22.582	8.210	1.00 13.81	A	C
ATOM	1181	CB			159	4.151	23.495	8.944	1.00 13.64	A	С
ATOM	1182	C	ALA	A	159	2.043	23.473	7.628	1.00 14.14	A	C
MOTA	1183	0	ALA	A	159	1.175	23.924	8.364	1.00 14.00	A	0
ATOM	1184	N	GLY	A	160	2.131	23.753	6.330	1.00 15.19	A	N
ATOM	1185	CA	GLY	A	160	1.230	24.680	5.652	1.00 15.34	A	С
ATOM	1186	C	GLY	A	160	1.957	25.941	5.236	1.00 14.93	A	С

ATOM	1187	0	GLY	A	160	3.041	26.238	5.736	1.00 1		A	. 0
MOTA	1188	N	ASN	Ą	161	1.371	26.686	4.307	1.00 1	5.04	P	N
ATOM	1189	CA	ASN	A	161	1.983	27.902	3.789	1.00 1	5.84	A	C
MOTA	1190	CB	ASN	A	161	2.072	27.872	2.261	1.00 1	5.91	P	C
ATOM	1191	CG	ASN	A	161	. 3.048	26.851	1.712	1.00 1	7.40	P	C
ATOM	1192	OD1	ASN	Α	161	3.001	26.550	0.490	1.00 2	1.70	7	. 0
ATOM	1193	ND2	ASN			3.888	26.267	2.569		1.15	7	
ATOM	1194	С			161	1.131	29.114	4.123		6.84	P	
ATOM	1195	ŏ			161	0.956	29.965	3.286		7.07	7	
ATOM	1196	N			162	0.575	29.179	5.324		8.36	7	
ATOM	1197	CA			162	-0.392	30.213	5.668		8.85	7	
ATOM	1198	CB			162	-1.672	29.537	6.211		9.64	Į	
ATOM	1199	CG			162	-2.431	28.723	5.150		2.12	F	_
MOTA	1200	CD			162	-1.756	27.381	4.788		6.12	7	
MOTA	1201	OE1			162	-1.585	26.545	5.702		8.48	F	. 0
ATOM	1202	OE2	GLU	A	162	-1.405	27.149	3.590	1.00 2	6.75	F	0
ATOM	1203	C	GLU	A	162	0.147	31.262	6.657	1.00 1	9.39	P	C
ATOM	1204	0	GLU	A	162	-0.633	32.031	7.225	1.00 1	8.80	7	0
ATOM	1205	N	GLY	A	163	1.472	31.338	6.820	1.00 1	9.39	P	N
ATOM	1206	CA	GLY	A	163	2.082	32.322	7.705	1.00 2	0.03	7	C
ATOM	1207	С	GLY	A	163	2.224	33.699	7.048	1.00 2	1.41	7	C
ATOM	1208	0	GLY			1.822	33.866	5.877		0.72	7	
MOTA	1209	N			164	2.835	34.671	7.737		1.93	7	
ATOM	1210	CA			164	3.496	34.491	9.053	1.00 2		7	
ATOM	1211	CB			164	4.575	35.577	9.050		2.99	7	
ATOM	1212	CG			164	3.945	36.720	8.171		3.13	Į.	
ATOM	1212	CD			164			7.209		2.03		
						2.976	36.047	· -			F	
ATOM	1214	- C			164	2.681	34.621	10.329		2.18	7	
ATOM	1215	0			164	3.289	34.603	11.414		1.36	Į	
MOTA	1216	N			165	1.363	34.702	10.239		1.66	Į.	
ATOM	1217	CA			165	0.537	34.844	11.414		1.84	Į.	
ATOM	1218	C			165	0.522	33.581	12.243		2.27	7	
ATOM	1219	0			165	0.680		- 11.713		2.20	P	
MOTA	1220	N	SER	A	166	0.305	33.762	13.543	1.00 2	2.06	P	N
ATOM	1221	CA	SER	A	166	0.290	32.645	14.470	1.00 2	1.96	F	, C
ATOM	1222	CB	SER	A	166	0.344	33.167	15.917	1.00 2	3.25	I	C
ATOM	1223	OG	SER	A	166	-0.948	33.579	16.367	1.00 2	5.13	I	. 0
ATOM	1224	C	SER	A	166	-0.954	31.807	14.241	1.00 2	1.45	F	C
ATOM	1225	0	SER	A	166	-1.949	32.311	13.716	1.00 2	1.15	7	. 0
ATOM	1226	N	GLY	A	167	-0.879	30.515	14.574	1.00 2		I	A N
ATOM	1227	CA			167	-2.032	29.639	14.548		9.63	Į	
ATOM	1228	С			167	-2.478	29.248	13.140		9.18	Į	
ATOM	1229	Ö			167	-3.652	29.051	12.911		8.57	Į	
ATOM	1230	N			168	-1.541	29.140	12.200		8.31	7	
ATOM	1231	CA			168	-1.893	28.857	10.810	1.00 1		7	
ATOM	1232	CB			168	-1.295	29.958	9.908		7.32	7	
ATOM	1233	OG1			168							
						0.077	30.172	10.261	1.00 1		Į	
ATOM	1234	CG2			168	-1.988	31.299	10.156	1.00 1		Į	
ATOM	1235	C			168	-1.496	27.465	10.306	1.00 1		F	
ATOM	1236	0			168	-1.462	27.213	9.091	1.00 1		P	
ATOM	1237	N			169	-1.265	26.540		1.00 1			N N
ATOM.	1238	CA			169	-0.863	25.191	10.871	1.00 1		I	A C
ATOM	1239	CB	ILE	A	169	-0.454	24.378	12.127	1.00 1	5.09	I	, C
MOTA	1240	CG1	ILE	A	169	0.626	25.109	12.942	1.00 1	4.88	Į	C
ATOM	1241	CD1	ILE	A	169	2.021	25.201	12.267	1.00 1	6.38	I	C
ATOM	1242	CG2	ILE	A	169	0.021	22.988	11.720		3.45	7	
ATOM	1243	С			169	-2.004	24.477	10.137	1.00 1		7	
ATOM	1244	Ö			169	-3.146	24.470	10.590	1.00 1		7	
· -		-									•	•

ATOM	1245	N	SER	A	170	-1.681	23.857	9.018	1.00 14.94	A	N
ATOM	1246	CA	SER	A	170	-2.665	23.060	8.310	1.00 15.41	A	C
ATOM	1247	CB	SER	A	170	-2.299	23.004	6.821	1.00 16.02	A	C
ATOM	1248	OG			170	-1.040	22.404	6.585	1.00 16.03	A	Ō
ATOM	1249	C			170	-2.855	21.660	8.904	1.00 15.05	A	C
ATOM	1250	Ô			170	-1.986	21.137	9.616	1.00 13.80	A	Õ
ATOM	1251	N			171	-3.992	21.137				
								8.582	1.00 14.65	A	N
ATOM	1252	CA			171	-4.244	19.651	8.933	1.00 14.75	A	C
ATOM	1253	CB			171	-5.700	19.507	9.443	1.00 15.62	A	C
ATOM	1254	С			171	-4.043	18.750	7.740	1.00 15.02	A	C
MOTA	1255	0	ALA			-4.475	19.096	6.652	1.00 14.12	A	0
MOTA	1256	N	PRO	A	172	-3.482	17.548	7.899	1.00 15.48	A	N
ATOM	1257	CA	PRO	A	172	-3.078	16.913	9.167	1.00 15.17	A	C
ATOM	1258	CB	PRO	A	172	-3.080	15.411	8.796	1.00 15.90	A	C
ATOM	1259	CG ·	PRO	A	172	-3.707	15.336	7.456	1.00 15.73	A	С
MOTA	1260	CD	PRO	A	172	-3.401	16.614	6.768	1.00 15.43	A	C
ATOM	1261	C	PRO	A	172	-1.724	17.260	9.788	1.00 14.85	A	С
ATOM	1262	0			172	-1.284	16.499	10.651	1.00 16.20	A	Ō
ATOM	1263	N			173	-1.086	18.352	9.382	1.00 14.01	A	N
ATOM	1264	CA			173	0.078	18.895	10.064	1.00 13.48	A	C
ATOM	1265	C			173	-0.158	19.147	11.553	1.00 13.40	Ä	C
ATOM	1266	0			173	0.809	19.174				0
ATOM	1267	N						12.339	1.00 14.08	A	
					174	-1.419	19.291	11.956	1.00 13.50	A	N
ATOM	1268	CA			174	-1.758	19.475	13.375	1.00 13.19	A	C
ATOM	1269	CB			174	-3.137	20.125	13.530	1.00 13.66	A	C
ATOM	1270	OG1			174	-4.104	19.394	12.743	1.00 13.16	A	0
ATOM	1271	CG2			.174	-3.114	21.510	12.957	1.00 14.22	A	C
MOTA	1272	C			174	-1.774	18.188	14.172	1.00 12.85	A	C
ATOM	1273	0	THR	A	174	-1.909	18.227	15.390	1.00 12.08	\mathbf{A}	0
ATOM	1274	N	ALA	A	175	-1.696	17.040	13.505	1.00 12.94	A	N
MOTA	1275	CA	ALA	A	175	-1.614	15.772	14.213	1.00 12.90	A	C
ATOM	1276	CB	ALA	A	175	-1.422	14.641	13.211	1.00 13.54	A	C
ATOM ·	1277	C	ALA	A	175.	-0.484	15.740 -	-15.264	1.00 12.44	A	C
ATOM	1278	0	ALA	A	175	0.601	16.233	15.043	1.00 13.06	A	0
ATOM	1279	N	LYS	A	176	-0.739	15.131	16.398	1.00 13.08	A	N
ATOM	1280	CA.	LYS	A	176	0.269	15.057	17.466	1.00 13.00	A	Ç
ATOM	1281	СВ			176	-0.383	14.511	18.719	1.00 12.78	A	Ċ
ATOM	1282	CG	LYS		176	-1.406	15.392	19.366	1.00 13.87	A	C
ATOM	1283	CD			176	-2.044	14.693	20.553	1.00 15.77	A	C
ATOM	1284	CE			176	-3.179	13.722	20.173	1.00 16.63	A	C
ATOM	1285	NZ			176	-3.738	13.722	21.388	1.00 16.58	A	N
ATOM	1286	C			176	1.433	14.107	17.115			C
ATOM		0							1.00 13.10	A	
	1287	-			176	2.559	14.289	17.538	1.00 12.98	A	0
ATOM	1288	N			177	1.119	13.047	16.390	1.00 12.81	A	N
ATOM	1289	CA			177	2.047	11.933	16.187	1.00 12.78	A	Ċ
ATOM	1290	CB			177	1.278	10.628	16.301	1.00 12.48	A	С
ATOM	1291	CG			177	0.733	10.382	17.718	1.00 12.12	A	C
ATOM	1292		ASN			1.135	11.043	18.682	1.00 12.31	A	0
ATOM	1293	ND2	ASN			-0.179	9.416	17.844	1.00 10.81	A	N
MOTA	1294	C	ASN	A	177	2.822	11.966	14.876	1.00 12.68	Α	C
ATOM	1295	0	ASN	A	177	3.692	11.097	14.621	1.00 13.33	A	0
MOTA	1296	N	ALA	A	178	2.483	12.933	14.029	1.00 12.80	A	N
ATOM	1297	CA	ALA	A	178	3.234	13.208	12.801	1.00 12.70	A	C
ATOM	1298	CB			178	2.382	13.938	11.817	1.00 12.83	A	C
ATOM	1299	C			178	4.439	14.052	13.141	1.00 12.18	A	C
ATOM	1300	0			178	4.471	14.685	14.188	1.00 12.29	A	0
ATOM	1301	N			179	5.458	13.985	12.293	1.00 12.25	Ä	N
ATOM	1302	CA			179	6.531	14.966	12.283	1.00 11.71	A	C
	1 J U Z		نتا به په	7	110	0.331	14.700	12.203	1.00 11.72	•	L

MOTA	1303	CB	ILE A	179	7.838	14.364	11.812	1.00 11.54	A	C
MOTA	1304	CG1	ILE A	179	8.251	13.222	12.712	1.00 13.45	A	С
MOTA	1305	CD1		179	9.472	12.467	12.196	1.00 14.82	A	Ċ
MOTA	1306	CG2		179	8.927	15.437	11.783	1.00 12.00	A	С
ATOM	1307	C	ILE A	179	6.085	16.076	11.317	1.00 11.98	A	C
ATOM	1308	0	ILE A	179	5.943	15.852	10.109	1.00 11.31	A	0
ATOM	1309	N	THR A		5.813	17.248	11.871	1.00 11.27	A	N
MOTA	1310	CA	THR A		5.357	18.383	11.074	1.00 11.76	A	С
MOTA	1311	CB	THR A		4.260	19.120	11.818	1.00 11.79	. A	C
ATOM	1312	OG1	THR A	180	3.166	18.214	12.084	1.00 12.06	A	0
ATOM	1313	CG2	THR A	180	3.603	20.224	10.929	1.00 12.72	A	C
ATOM	1314	С	THR A		6.530	19.306	10.690	1.00 11.82	A	Ċ
ATOM	1315	Ō	THR A		7.286	19.762	11.533			
									A	0
ATOM	1316	N	VAL A		6.662	19.590	9.401	1.00 11.42	A	N
ATOM	1317	CA	VAL A	181	7.830	20.305	8.899	1.00 11.43	A	C
ATOM	1318	CB	VAL A	181	8.492	19.464	7.814	1.00 11.32	·A	C
ATOM	1319	CG1	VAL A	181	9.744	20.118	7.309	1.00 12.42	A	С
ATOM	1320	CG2			8.757	18.055	8.351	1.00 12.33	Ā	Ċ
MOTA	1321	C	VAL A		7.511	21.680	8.302	1.00 11.62	A	C
MOTA	1322	0	VAL A		6.667	21.800	7.399	1.00 12.16	A	0
ATOM	1323	N	GLY A	182	8.187	22.704	8.812	1.00 11.59	A	N
ATOM	1324	CA	GLY A	182	8.095	24.042	8.273	1.00 12.80	A	C
ATOM	1325	С	GLY A		9.296	24.352	7.391	1.00 13.72	A	Ċ
ATOM	1326	0	GLY A							
		_			10.243	23.574	7.344	1.00 14.13	A	0
MOTA	1327	N	ALA A		9.264	25.492	6.700	1.00 13.43	A	N
MOTA	1328	CA	ALA A	183	10.312	25.837	5.776	1.00 14.22	A	C
MOTA	1329	CB	ALA A	183	9.709	26.166	4.401	1.00 14.53	Α	C
MOTA	1330	С	ALA A	183	11.205	27.001	6.238	1.00 14.32	A	C
MOTA	1331	Ō	ALA A		10.717	28.110	6.498	1.00 14.13	A	ō
										=
MOTA	1332	N	THR A		12.512	26.737	6.293	1.00 14.17	A	N
MOTA	1333	CA	THR A		13.513	27.799	6.294	1.00 14.33	A	С
MOTA	1334	CB	THR A	184	14.743	27.451	7.159	1.00 14.19	A	C
ATOM	1335	OG1	THR A	184	15.180	26.103 -	6.925	1.00 13.83	A	Ο.
ATOM	1336	CG2			14.383	27.474	8.636	1.00 13.70	A	C
ATOM	1337	C	THR A		13.905	28.018	4.841	1.00 15.47		Č
						•			A	
ATOM	1338	0	THR A		13.380	27.354	3.934	1.00 15.87	A	0
MOTA	1339	N	GLU A	185	14.861	28.919	4.618.	1.00 15.13	A	N
MOTA	1340	CA	GLU A	185	15.328	29.246	3.290	1.00 14.03	Α	C
MOTA	1341	CB	GLU A	185	15.696	30.766	3.230	1.00 13.82	A	С
ATOM	1342	CG	GLU A		14.492	31.673	3.495	1.00 15.09	A	Ċ
ATOM	1343	CD	GLU A		14.785	33.172	3.329	1.00 14.09		C
									A	
ATOM	1344	OE1			15.911	33.541	2.985	1.00 15.60	A	0
MOTA	1345	OE2			13.871	33.984	3.528	1.00 14.21	A	0
MOTA	1346	C	GLU A	185	16.511	28.376	2.863	1.00 13.70	A	C
ATOM	1347	0	GLU A	185	17.387	28.011	3.675	1.00 14.17	A	0
ATOM	1348	N	ASN A		16.521	28.008	1.587	1.00 12.64	A	N
MOTA	1349	CA	ASN A		17.707	27.452	0.959			C
								1.00 13.44	A	<u> </u>
MOTA	1350	CB	ASN A		17.345	26.758	-0.353	1.00 13.84	A	Ç
MOTA	1351	CG	ASN A	186	18.293	25.630	-0.717	1.00 14.82	A	C
MOTA	1352	OD1	ASN A	186	19.084	25.169	0.099	1.00 14.62	A	0
ATOM	1353	ND2	ASN A	186	18.189	25.156	1.970	1.00 15.51	A	N
MOTA	1354	C	ASN A		18.652	28.603	0.681	1.00 13.83	A	C
MOTA	1355	0	ASN A		18.244	29.769		1.00 14.50	A	0
MOTA	1356	N	LEU A		19.920	28.298	0.470	1.00 14.83	A	Ŋ
MOTA	1357	CA	LEU A	187	20.892	29.352	0.213	1.00 14.62	A	C
MOTA	1358	CB	LEU A	187	22.144	29.144	1.018	1.00 15.48	A	С
MOTA	1359	CG	LEU A		23.144	30.319	0.975	1.00 17.25	A	C
ATOM	1360		LEU A			31.587		1.00 17.25	A	C
		عقد السك لبيه	ant u	20 /	22.303	J JO /	I. 707	1.00 10.00	A	

ATOM	1361	CD2	LEU	A	187	24.394	29.973	1.816	1.00 20.46	A	C
MOTA	1362	C	LEU	A	187	21.205	29.360	-1.279	1.00 14.80	A	C
ATOM	1363	0	LEU	A	187	22.106	28.692	-1.734	1.00 14.07	A	0
MOTA	1364	N	ARG	A	188	20.398	30.083	-2.023	1.00 15.63	Α	N
ATOM	1365	CA	ARG	A	188	20.631	30.308	-3.454	1.00 17.55	A	C
MOTA	1366	CB	ARG	A	188	19.658	29.484	-4.273	1.00 17.02	A	C
ATOM	1367	CG	ARG	A	188	19.842	27.989	-4.168	1.00 17.82	A	C
ATOM	1368	CD	ARG	A	188	19.063	27.213	-5.267	1.00 19.96	A	С
MOTA	1369	NE	ARG	A	188	19.315	25.782	-5.224	1.00 18.26	A	N
ATOM	1370	ÇZ	ARG	A	188	20.339	25.172	-5.814	1.00 19.52	A	C
MOTA	1371	NH1			188	21.235	25.846	-6.530	1.00 17.91	A	N
ATOM	1372	NH2			188	20.475	23.867	-5.693	1.00 19.41	A	N
ATOM	1373	С			188	20.387	31.804	-3.694	1.00 17.89	A	C
ATOM	1374	0			188	19.379	32.189	-4.251	1.00 18.33	A	Ö
MOTA	1375	N			189	21.273	32.646	-3.181	1.00 19.58	A	N
ATOM	1376	CA			189	20.990	34.082	-3.061	1.00 20.68	A	C
ATOM	1377	CB			189	22.179	34.613	-2.239	1.00 21.07	A	Ċ
ATOM	1378	CG			189	23.271	33.608	-2.417	1.00 21.15	Α	Č
ATOM	1379	CD			189	22.599	32.288	-2.657	1.00 20.12	A	C
ATOM	1380	C			189	20.833	34.863	-4.373	1.00 21.39	A	C
ATOM	1381	Õ			189	20.276	35.975	-4.347	1.00 20.51	A	Ö
ATOM	1382	N			190	21.285	34.307	-5.492	1.00 22.89	A	N
MOTA	1383	CA			190	21.033	34.940	-6.796	1.00 24.65	A	C
ATOM	1384	CB	SER		190	21.685	34.135	-7.932	1.00 24.76	A	C
ATOM	1385	OG			190	21.082	32.831	-8.046	1.00 25.85	A	0
MOTA	1386	C			190	19.525	35.098	-7.028	1.00 25.23	A	Ċ
ATOM	1387	Õ			190	19.080	35.918	-7.850	1.00 26.47	A	Ö
ATOM	1388	N			191	18.723	34.365	-6.258	1.00 25.36	A	N
ATOM	1389	CA			191	17.264	34.446	-6.389	1.00 25.30	A	C
ATOM	1390	CB			191	16.643	33.046	-6.156	1.00 25.20	A	C
ATOM	1391	CG			191	16.841	32.089	-7.310	1.00 23.00	. A	C
ATOM	1392	CD1			191	17.565	30.932	-7.159	1.00 23.34	A	C
ATOM	1393	CE1			191 ·	17.735	30.952		1.00 21.81	- A	C
ATOM	1394	CZ			191	17.180	30.341	-9.470	1.00 22.65		C
ATOM	1395	CE2	PHE			16.449	31.484	-9.631	1.00 21.48	A	C
ATOM	1396	CD2			191	16.288	32.361	-8.562	1.00 25.47	A	C
ATOM	1397	C			191	16.388	35.561		1.00 25.71	A	C
ATOM	1398	0			191		35.500	-5.720	1.00 25.71	A	
ATOM						15.184		-5.877		A	0
	1399	N			192	16.823	36.552	-4.944	1.00 26.98	A	N
ATOM ATOM	1400	CA C			192	17.639	36.484	-3.783	1.00 26.29	A	C
ATOM	1401	0			192 192	16.795	36.445	-2.478	1.00 25.37	A	C
ATOM	1402 1403	N			193	17.008	35.528	-1.733	1.00 25.24	A	0
ATOM	1403				193	15.858	37.355	-2.179	1.00 24.49	A	N
ATOM		CA			193	15.332	37.444	-0.778	1.00 24.39	A	C
	1405	CB				14.452	38.689	-0.554	1.00 24.51	A	C
ATOM	1406	OG			193	13.058	38.407	-0.623	1.00 25.19	A	0
ATOM	1407	C			193	14.664	36.176	-0.133	1.00 23.94	A	C
ATOM	1408	0			193	14.740	35.973	1.085	1.00 22.27	A	0
ATOM	1409	N			194	14.037	35.331	-0.949	1.00 23.39	A	N
ATOM	1410	CA			194	13.497	34.046	-0.477	1.00 23.08	A	C
ATOM	1411	CB			194	12.407	33.559	-1.439	1.00 23.87	A	C
ATOM	1412	CG			194	11.044	34.129	-1.144	1.00 27.80	A	C
ATOM	1413	CD1			194	10.563	35.240	-1.832	1.00 31.12	A	С
MOTA	1414	CE1			194	9.317	35.775	-1.554	1.00 32.91	A	С
MOTA	1415	CZ			194	8.525	35.182	-0.591	1.00 34.12	A	C
MOTA	1416	OH			194	7.282	35.696	-0.311	1.00 38.22	A	0
ATOM	1417	CE2	TYR			8.974	34.076	0.108	1.00 33.28	A	C
MOTA	1418	CD2	TYR	A	194	10.229	33.556	-0.169	1.00 31.26	A	C

	ATOM	1419	С	TYR	A	194	14.545	32.930	-0.289	1.00	21.59		A	С
	ATOM	1420	0	TYR	A	194	14.225	31.848	0.236	1.00	20.33		A	0
	ATOM	1421	N	ALA	A	195	15.785	33.185	-0.695	1.00	20.44		A	N
	ATOM	1422	CA	ALA	A	195	16.838	32.181	-0.610	1.00			A	C
	ATOM	1423	CB	ALA			16.915	31.365	-1.892		20.41		A	Ċ
	ATOM	1424	C	ALA			18.222	32.757	-0.270		19.93		A	C
	ATOM	1425	0	ALA			19.230	32.354	-0.877				A	0
	ATOM	1426				196	18.264	33.615	0.750					N
	ATOM	1427				196							A	
			CA				19.472	34.355	1.126		19.86	-	A	C
	ATOM	1428	CB			196	19.264	35.861	0.919		20.04		A	Ċ
	MOTA	1429	CG			196	18.198	36.453	1.814		22.11,	-	A	C
	ATOM	1430		ASP			18.040	37.693	1.696		23.87		A	0
	ATOM	1431	OD2			196	17.461	35.822	2.649				A	0
	ATOM	1432	C			,196	20.025	34.163	2.549		19.90		A	C
	ATOM	1433	0			196	21.092	34.705	2.869	1.00	19.61		A	0
	ATOM	1434	N	ASN	A	197	19.326	33.410	3.394	1.00	18.85		A	N
	ATOM	1435	CA	ASN	Α	197	19.790	33.177	4.757	1.00	18,29		A	C
	ATOM	1436	CB	ASN	A	197	19.410	34.369	5.644	1.00	18.68		A	C
	ATOM	1437	CG	ASN	A	197	20.123	34.360	7.001	1.00	19.48		À	¢
	ATOM	1438	OD1	ASN	A	197	20.221	33.319	7.630	1.00	16.60		A	0
	ATOM .	1439	ND2	ASN	A	197	20.603	35.541	7.455	1.00	14.55	-	A	N
	ATOM	1440	C	ASN	A	197	19.198	31.861	5.304				A	С
	ATOM	1441	0	ASN	A	197	17.986	31.734	5.463		16.96		A	Ō
	ATOM	1442	N	ILE			20.066	30.901	5.608		16.67		A	N
	ATOM	1443	CA	ILE	A		19.606	29.557	5.993		16.04		A	C
-	ATOM	1444	CB	ILE		198	20.771	28.571	6.020	1.00			A	C
	ATOM	1445	CG1				21.724	28.885	7.179				A	C
	ATOM	1446	CD1	ILE		198	22.734	27.781	7.490	1.00	18.08		A	C
	ATOM	1447	CG2	ILE			21.459	28.530	4.679					C
	ATOM	1448	C										A	
	ATOM				A		18.897	29.560	7.352	1.00	15.03		A	C
		1449	0			198	18.222	28.605	7.723				A	0
	ATOM ·	1450	N			199	19.054	30.642	8.102		14.78		A	N
	ATOM	1451	CA			199-		- 30.794				•	A	C
	ATOM	1452	CB	ASN			19.180	31.609	10.332		14.98		A	C
	ATOM	1453	CG	ASN			20.487	30.948	10.708				A	C.
	ATOM	1454	OD1	ASN			20.560	29.757	10.907	1.00	14.98		A	0
	MOTA	1455	ND2	ASN			21.526	31.768	10.903	1.00	20.04		A	N
	ATOM	1456	C	ASN			17.036	31.597	9.311	1.00	14.49		A	C
	MOTA	1457	0	ASN	A	199	16.239	31.490	10.227	1.00	14.69		A	0
	ATOM	1458	N	HIS	A	200	16.736	32.328	8.241	1.00	15.73		A	N
	MOTA	1459	CA	HIS	A	200	15.375	32.648	7.854	1.00	14.99		A	C
	ATOM	1460	CB	HIS	A	200	15.338	33.612	6.641	1.00	15.17		A	C
	ATOM	1461	CG	HIS	A	200	16.005	34.942	6.871	1.00	17.24		A	C
	MOTA	1462	NDl	HIS	A	200	16.242	35.840	5.842	1.00	16.94		A	N
	ATOM	1463	CE1	HIS	A	200	16.842	36.916	6.327	1.00	19.73		A	C
	ATOM	1464	NE2	HIS	A	200	17.009	36.751	7.628	1.00	17.79		A	N
	ATOM	1465	CD2	HIS	A	200	16.469	35.538	7.999	1.00	18.37		A	C
	ATOM	1466	С	HIS	Α	200	14.327	31.581	7.730		15.01	•	A	Ċ
	ATOM	1467	0	HIS	A	200	14.472	30.673	6.965		14.41		A	O
	ATOM	1468	N	VAL			13.251	31.772	8.496		15.72		A	N
	ATOM	1469	CA	VAL			12.004	31.059	8.294		16.37		A	C
	ATOM	1470	CB	VAL			11.103	31.185	9.523		16.41		A	C
	ATOM	1471	CG1	VAL			9.780	30.428	9.297		16.12		A	C
	ATOM	1472	CG2	VAL			11.841	30.428	10.783		18.01		A	C
	ATOM	1473	C	VAL										
	ATOM	1474	0				11.313	31.683	7.089		16.94		A n	C
				VAL			11.250	32.900	6.973		17.09		A	0
	ATOM	1475	N	ALA			10.872	30.865	6.143		17.70		A	N
	ATOM	1476	CA	ALA	A	202	10.233	31.396	4.949	1.00	17.52		A	C

ATOM 1478 C ALA A 202 9.000 32.169 5.383 1.00 ATOM 1480 N GLN A 203 8.770 33.332 4.783 1.00 ATOM 1481 CA GLN A 203 7.629 34.135 5.192 1.00 ATOM 1481 CB EGLN A 203 7.629 34.135 5.192 1.00 ATOM 1482 CE BGLN A 203 7.529 35.467 4.260 0.44 ATOM 1483 CB AGLN A 203 7.529 35.467 4.260 0.44 ATOM 1484 CG EGLN A 203 7.529 35.467 4.260 0.44 ATOM 1484 CG EGLN A 203 7.529 35.467 4.260 0.44 ATOM 1485 CG AGLN A 203 7.527 36.681 4.943 0.46 ATOM 1486 CD EGLN A 203 7.527 36.681 4.943 0.46 ATOM 1486 CD EGLN A 203 6.379 37.556 4.452 0.46 ATOM 1488 0E1EGLN A 203 6.379 37.556 4.452 0.46 ATOM 1488 0E1EGLN A 203 5.568 37.122 3.624 0.46 ATOM 1489 0E1AGLN A 203 5.568 37.122 3.624 0.46 ATOM 1491 NEZAGLN A 203 6.299 38.772 4.972 0.46 ATOM 1493 0 CLN A 203 6.299 38.772 4.972 0.46 ATOM 1493 C GLN A 203 5.458 33.580 6.028 1.00 ATOM 1493 O GLN A 203 5.458 33.580 6.028 1.00 ATOM 1493 O GLN A 203 5.458 33.580 6.028 1.00 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.00 ATOM 1495 CB PHE A 204 4.805 31.833 4.027 1.00 ATOM 1499 CEI PHE A 204 4.805 31.833 4.027 1.00 ATOM 1499 CEI PHE A 204 5.720 30.475 2.093 1.00 ATOM 1499 CEI PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CEI PHE A 204 5.857 29.158 2.526 1.00 ATOM 1501 CE2 PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 7.767 30.033 1.0816 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.767 30.231 0.816 1.00 ATOM 1501 CE2 PHE A 204 7.767 30.231 0.816 1.00 ATOM 1500 C PHE A 204 7.767 30.231 0.816 1.00 ATOM 1500 C PHE A 204 7.767 30.231 0.816 1.00 ATOM 1500 C PHE A 204 7.767 30.231 0.816 1.00 ATOM 1500 C PHE A 204 7.767 30.231 0.816 1.00 ATOM 1500 C PHE A 204 7.767 30.231 0.816 1.00 ATOM 1500 C PHE A 204 7.767 30.231 0.816 1.00 ATOM 1500 C PHE A 204 7.767 30.231 0.816 1.00 ATOM 1500 C PHE A 206 3.764 28.983 1.00 ATOM 1500 C PHE A 206 3.76			
ATOM 1479 O ALA A 202 8 2.63 31.734 6 .263 1.00 ATOM 1480 N GLN A 203 8 .770 33.332 4.783 1.00 ATOM 1481 CA GLN A 203 7 .629 34.135 5.192 1.00 ATOM 1482 CE BGLN A 203 7 .629 34.135 5.192 1.00 ATOM 1482 CE BGLN A 203 7 .522 35.467 4.260 0.44 ATOM 1484 CG BGLN A 203 7 .527 36.681 4.943 0.40 ATOM 1484 CG BGLN A 203 7 .527 36.681 4.943 0.40 ATOM 1485 CG AGLN A 203 6 .748 36.514 5.261 0.66 ATOM 1486 CD BGLN A 203 7 .553 37 .090 6 .439 0.64 ATOM 1487 CD AGLN A 203 7 .553 37 .090 6 .439 0.64 ATOM 1488 OE1BGLN A 203 7 .553 37 .090 6 .439 0.64 ATOM 1489 OE1BGLN A 203 8 .525 37.816 6 .236 0.60 ATOM 1499 NEZBGLN A 203 8 .525 37.816 6 .236 0.60 ATOM 1499 NEZBGLN A 203 6 .299 38 .772 4 .972 0.44 ATOM 1491 NEZAGLN A 203 6 .299 38 .772 4 .972 0.44 ATOM 1493 O GLN A 203 6 .299 38 .772 4 .972 0.44 ATOM 1493 O GLN A 203 6 .299 38 .772 4 .972 0.44 ATOM 1494 N PHE A 204 6 .090 32.533 4 .163 1.00 ATOM 1494 N PHE A 204 6 .090 32.533 4 .163 1.00 ATOM 1495 CB PHE A 204 4 .603 31.335 2 .589 1.00 ATOM 1497 CG PHE A 204 4 .603 31.335 2 .589 1.00 ATOM 1499 CD PHE A 204 5 .720 30.475 2 .993 1.00 ATOM 1499 CD PHE A 204 5 .720 30.475 2 .993 1.00 ATOM 1499 CD PHE A 204 5 .720 30.475 2 .993 1.00 ATOM 1500 CZ PHE A 204 6 .693 31.009 1 .2247 1.00 ATOM 1500 CZ PHE A 204 6 .693 31.009 1 .2247 1.00 ATOM 1500 CZ PHE A 204 6 .693 31.009 1 .2247 1.00 ATOM 1500 CZ PHE A 204 7 .747 30.231 0 .816 1.00 ATOM 1500 C PHE A 204 6 .693 31.009 1 .2247 1.00 ATOM 1500 C PHE A 204 6 .693 31.009 1 .2247 1.00 ATOM 1500 C PHE A 204 6 .693 31.009 1 .2247 1.00 ATOM 1500 C PHE A 204 6 .693 31.009 1 .2247 1.00 ATOM 1500 C PHE A 204 7 .747 30.231 0 .816 1.00 ATOM 1500 C PHE A 204 6 .693 31.009 1 .2247 1.00 ATOM 1500 C PHE A 204 6 .693 31.009 1 .2247 1.00 ATOM 1500 C PHE A 204 7 .747 30.231 0 .816 1.00 ATOM 1500 C PHE A 204 7 .747 30.231 0 .816 1.00 ATOM 1500 C PHE A 204 7 .747 30.231 0 .816 1.00 ATOM 1500 C PHE A 204 7 .747 30.231 0 .816 1.00 ATOM 1500 C PHE A 204 7 .747 30.231 0 .816 1.00 ATOM 1500 C PHE A 204 7 .747 30.231 0 .816 1.00 ATOM 1500 C PHE A 204 7 .747 30.231	18.76	A	C
ATOM 1481 CA GLN A 203 7.629 34.135 5.192 1.00 ATOM 1482 CB BGLN A 203 7.629 34.135 5.192 1.00 ATOM 1483 CB AGLN A 203 7.529 35.467 4.260 0.41 ATOM 1483 CB AGLN A 203 7.529 35.467 4.260 0.41 ATOM 1484 CB BGLN A 203 7.529 35.467 4.445 0.64 ATOM 1485 CG AGLN A 203 7.527 36.681 4.943 0.41 ATOM 1486 CD BGLN A 203 6.748 36.514 5.261 0.66 ATOM 1486 CD BGLN A 203 6.379 37.556 4.452 0.66 ATOM 1488 OEIBGLN A 203 7.553 37.090 6.439 0.66 ATOM 1488 OEIBGLN A 203 5.568 37.122 3.624 0.46 ATOM 1488 OEIBGLN A 203 5.568 37.122 3.624 0.46 ATOM 1489 OEIBGLN A 203 5.568 37.122 3.624 0.46 ATOM 1490 NE2BGLN A 203 6.299 38.772 4.972 0.41 ATOM 1491 NE2BGLN A 203 6.299 38.772 4.972 0.41 ATOM 1492 C GLN A 203 6.291 33.391 5.152 1.00 ATOM 1493 O GLN A 203 5.458 33.580 6.028 1.00 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.00 ATOM 1495 CA PHE A 204 4.605 31.833 4.027 1.00 ATOM 1496 CB PHE A 204 4.605 31.833 4.027 1.00 ATOM 1497 CG PHE A 204 5.720 30.475 2.093 1.00 ATOM 1498 CDI PHE A 204 5.857 29.158 2.526 1.00 ATOM 1498 CDI PHE A 204 5.857 29.158 2.526 1.00 ATOM 1498 CDI PHE A 204 5.857 29.158 2.526 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.854 28.909 1.234 1.00 ATOM 1505 C SER A 205 5.692 28.983 6.508 1.00 ATOM 1505 C SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1507 CB SER A 205 5.692 28.983 6.508 1.00 ATOM 1508 C SER A 205 5.692 28.983 6.508 1.00 ATOM 1509 C SER A 205 5.692 28.983 6.508 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1510 C SER A 206 3.764 28.141 7.753 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 3.466 27.514 30.916 1.227 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1510 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1510 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1510 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1512 CA SER A 206 3.421 28.221 10.186 1.00 ATOM 1512	17.84	A	C
ATOM 1481 CA GLN A 203 7.629 34.135 5.192 1.04 ATOM 1482 CB BGLN A 203 7.542 35.347 4.260 0.66 ATOM 1484 CB BGLN A 203 7.529 35.467 4.465 0.66 ATOM 1484 CG BGLN A 203 7.527 36.681 4.943 0.46 ATOM 1485 CG AGLN A 203 7.527 36.681 4.943 0.46 ATOM 1486 CD BGLN A 203 6.379 37.556 4.452 0.46 ATOM 1486 CD BGLN A 203 6.379 37.556 4.452 0.46 ATOM 1487 CD AGLN A 203 6.379 37.556 4.452 0.46 ATOM 1488 OEIBGLN A 203 5.568 37.122 3.624 0.46 ATOM 1489 OEIBGLN A 203 8.525 37.816 6.236 0.66 ATOM 1499 NE2BGLN A 203 6.299 38.772 4.972 0.46 ATOM 1491 NE2BGLN A 203 6.299 38.772 4.972 0.46 ATOM 1492 C GLN A 203 6.291 33.391 5.152 1.06 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.06 ATOM 1495 CA PHE A 204 4.603 31.833 4.027 1.06 ATOM 1496 CB PHE A 204 4.603 31.835 2.589 1.06 ATOM 1499 CC PHE A 204 4.603 31.835 2.589 1.06 ATOM 1499 CC PHE A 204 4.603 31.835 2.589 1.06 ATOM 1499 CC PHE A 204 5.857 29.158 2.526 1.06 ATOM 1499 CC PHE A 204 5.857 29.158 2.526 1.06 ATOM 1499 CC PHE A 204 6.693 31.835 2.589 1.06 ATOM 1499 CC PHE A 204 5.857 29.158 2.526 1.06 ATOM 1499 CC PHE A 204 6.693 31.030 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1501 C PHE A 204 6.693 31.009 1.267 1.06 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.06 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.06 ATOM 1501 C SER A 205 5.692 28.983 6.508 1.06 ATOM 1501 C SER A 206 1.714 27.117 8.735 1.06 ATOM 1511 N SER A 206 1.714 27.117 8.735 1.06 ATOM 1515 C SER A 205 7.068 28.579 7.063 1.06 ATOM 1516 C SER A 206 1.714 27.117 8.735 1.06 ATOM 1515 C SER A 206 1.714 27.117 8.735 1.06 ATOM 1516 C SER A 206 1.714 27.117 8.735 1.06 ATOM 1518 CA ARG A 207 4.189 31.375 11.542 1.00 ATOM 1516 C SER A 206 1.714 27.117 8.735 1.00 ATOM 1517 N ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 CG ARG A 207 6.821 32.643 9.981 1.00 ATOM 1522 NE ARG A 207 6.82	16.60	A	0
ATOM 1481 CA GLN A 203 7.629 34.135 5.192 1.04 ATOM 1482 CB BGLN A 203 7.542 35.347 4.260 0.66 ATOM 1484 CB BGLN A 203 7.529 35.467 4.465 0.66 ATOM 1484 CG BGLN A 203 7.527 36.681 4.943 0.46 ATOM 1485 CG AGLN A 203 7.527 36.681 4.943 0.46 ATOM 1486 CD BGLN A 203 6.379 37.556 4.452 0.46 ATOM 1486 CD BGLN A 203 6.379 37.556 4.452 0.46 ATOM 1487 CD AGLN A 203 6.379 37.556 4.452 0.46 ATOM 1488 OEIBGLN A 203 5.568 37.122 3.624 0.46 ATOM 1489 OEIBGLN A 203 8.525 37.816 6.236 0.66 ATOM 1499 NE2BGLN A 203 6.299 38.772 4.972 0.46 ATOM 1491 NE2BGLN A 203 6.299 38.772 4.972 0.46 ATOM 1492 C GLN A 203 6.291 33.391 5.152 1.06 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.06 ATOM 1495 CA PHE A 204 4.603 31.833 4.027 1.06 ATOM 1496 CB PHE A 204 4.603 31.835 2.589 1.06 ATOM 1499 CC PHE A 204 4.603 31.835 2.589 1.06 ATOM 1499 CC PHE A 204 4.603 31.835 2.589 1.06 ATOM 1499 CC PHE A 204 5.857 29.158 2.526 1.06 ATOM 1499 CC PHE A 204 5.857 29.158 2.526 1.06 ATOM 1499 CC PHE A 204 6.693 31.835 2.589 1.06 ATOM 1499 CC PHE A 204 5.857 29.158 2.526 1.06 ATOM 1499 CC PHE A 204 6.693 31.030 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.06 ATOM 1501 C PHE A 204 6.693 31.009 1.267 1.06 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.06 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.06 ATOM 1501 C SER A 205 5.692 28.983 6.508 1.06 ATOM 1501 C SER A 206 1.714 27.117 8.735 1.06 ATOM 1511 N SER A 206 1.714 27.117 8.735 1.06 ATOM 1515 C SER A 205 7.068 28.579 7.063 1.06 ATOM 1516 C SER A 206 1.714 27.117 8.735 1.06 ATOM 1515 C SER A 206 1.714 27.117 8.735 1.06 ATOM 1516 C SER A 206 1.714 27.117 8.735 1.06 ATOM 1518 CA ARG A 207 4.189 31.375 11.542 1.00 ATOM 1516 C SER A 206 1.714 27.117 8.735 1.00 ATOM 1517 N ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 CG ARG A 207 6.821 32.643 9.981 1.00 ATOM 1522 NE ARG A 207 6.82	18.20	A	N
ATOM 1482 CB BGLN A 203 7.542 35.347 4.260 0.46 ATOM 1483 CB AGLN A 203 7.527 35.467 4.445 0.66 ATOM 1486 CG BGLN A 203 7.527 36.681 4.943 0.46 ATOM 1486 CG BGLN A 203 6.748 36.514 5.261 0.66 ATOM 1486 CD BGLN A 203 6.379 37.556 4.452 0.46 ATOM 1486 CD BGLN A 203 7.553 37.090 6.439 0.66 ATOM 1486 OEIBGLN A 203 5.568 37.122 3.624 0.46 ATOM 1486 OEIBGLN A 203 5.568 37.122 3.624 0.46 ATOM 1489 OEIAGLN A 203 6.299 38.772 4.972 0.46 ATOM 1490 NE2BGLN A 203 6.299 38.772 4.972 0.46 ATOM 1491 NE2AGLN A 203 6.299 38.772 7.655 0.66 ATOM 1493 O GLN A 203 6.291 33.391 5.152 1.00 ATOM 1493 O GLN A 203 5.458 33.580 6.028 1.00 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.00 ATOM 1495 CA PHE A 204 4.805 31.833 4.027 1.00 ATOM 1496 CB PHE A 204 4.603 31.335 2.589 1.00 ATOM 1499 CCI PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CDI PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CDI PHE A 204 6.893 31.000 2.093 1.00 ATOM 1499 CDI PHE A 204 6.893 31.000 2.093 1.00 ATOM 1501 CE2 PHE A 204 6.893 31.000 1.267 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.000 1.267 1.00 ATOM 1503 C PHE A 204 6.693 31.000 1.267 1.00 ATOM 1505 CS PHE A 204 6.693 31.000 1.267 1.00 ATOM 1500 CS PHE A 204 6.693 31.000 1.267 1.00 ATOM 1500 C PHE A 204 6.693 31.000 1.267 1.00 ATOM 1500 C PHE A 204 6.693 31.000 1.267 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1500 C PHE A 204 6.693 31.000 1.267 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1505 C PHE A 204 7.747 30.231 1.00 ATOM 1505 C PHE A 204 7.747 30.231 1.00 ATOM 1505 C PHE A 204 7.747 30.231 1.00 ATOM 1505 C PHE A 204 7.747 30.231 1.00 ATOM 1505 C PHE A 206 3.764 28.998 1.101 ATOM 1505 C P		A	Ç
ATOM 1488 CB AGLN A 203 7.529 35.467 4.445 0.66 ATOM 1484 CG BGIN A 203 7.527 36.681 4.943 0.66 ATOM 1486 CG AGLN A 203 6.748 36.514 5.261 0.66 ATOM 1486 CD BGIN A 203 6.748 36.514 5.261 0.66 ATOM 1487 CD AGLN A 203 7.553 37.090 6.439 0.66 ATOM 1488 OELBGLN A 203 7.553 37.090 6.439 0.66 ATOM 1489 OELBGLN A 203 8.525 37.816 6.236 0.66 ATOM 1499 NE2BGLN A 203 8.525 37.816 6.236 0.66 ATOM 1499 NE2BGLN A 203 6.299 38.772 4.972 0.44 ATOM 1491 NE2BGLN A 203 6.299 38.772 4.972 0.44 ATOM 1492 C GLN A 203 6.291 33.391 5.152 1.00 ATOM 1493 O GLN A 203 6.291 33.391 5.152 1.00 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.00 ATOM 1495 CA PHE A 204 4.805 31.835 4.027 1.00 ATOM 1496 CD PHE A 204 4.603 31.335 2.589 1.00 ATOM 1497 CG PHE A 204 5.720 30.475 2.093 1.00 ATOM 1498 CD1 PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CEL PHE A 204 5.857 29.158 2.526 1.00 ATOM 1500 CZ PHE A 204 7.747 30.231 0.816 1.00 ATOM 1501 CE2 PHE A 204 7.747 30.231 0.816 1.00 ATOM 1501 CE2 PHE A 204 7.747 30.231 0.816 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1505 N SER A 205 5.692 28.983 6.508 1.00 ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1507 CB SER A 205 7.042 27.254 7.585 1.00 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.00 ATOM 1509 C SER A 205 7.042 27.254 7.585 1.00 ATOM 1501 CB SER A 205 7.042 27.254 7.585 1.00 ATOM 1505 N SER A 205 7.042 27.254 7.585 1.00 ATOM 1507 CB SER A 205 7.042 27.254 7.585 1.00 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.00 ATOM 1507 C SER A 206 3.764 28.141 7.753 1.00 ATOM 1515 C SER A 206 3.764 28.221 10.186 1.00 ATOM 1515 C SER A 206 3.764 28.221 10.186 1.00 ATOM 1515 C SER A 206 3.764 28.221 10.186 1.00 ATOM 1515 C SER A 206 3.764 28.221 10.186 1.00 ATOM 1515 C SER A 206 3.764 28.221 10.186 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 3.589 29.140 12.455 1.00 ATOM 1518 C SER A 206 3.764 28.221 10.186 1.00 ATOM 1519 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1510 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1510 C SER A 2		A	Č
ATOM 1484 CG BGLN A 203		A	C
ATOM 1485 CG AGLN A 203 6.748 36.514 5.261 0.66 ATOM 1486 CD BGLN A 203 7.553 37.590 6.439 0.66 ATOM 1488 OE1BGLN A 203 7.553 37.090 6.439 0.66 ATOM 1488 OE1BGLN A 203 7.553 37.090 6.439 0.66 ATOM 1489 OE1AGLN A 203 5.568 37.122 3.624 0.44 ATOM 1490 NE2BGLN A 203 6.299 38.772 4.972 0.44 ATOM 1491 NE2AGLN A 203 6.299 38.772 4.972 0.44 ATOM 1492 C GLN A 203 7.155 36.751 7.655 0.66 ATOM 1493 O GLN A 203 5.458 33.580 6.028 1.06 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.04 ATOM 1495 CA PHE A 204 4.805 31.833 4.027 1.06 ATOM 1496 CB PHE A 204 4.805 31.833 4.027 1.06 ATOM 1497 CG PHE A 204 4.805 31.833 2.589 1.06 ATOM 1499 CCI PHE A 204 5.720 30.475 2.093 1.06 ATOM 1499 CCI PHE A 204 5.857 29.158 2.526 1.06 ATOM 1500 CZ PHE A 204 6.893 28.378 2.083 1.06 ATOM 1501 CE2 PHE A 204 7.854 28.909 1.234 1.06 ATOM 1503 C PHE A 204 7.747 30.231 0.816 1.06 ATOM 1505 C PHE A 204 3.5857 29.158 2.526 1.06 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.06 ATOM 1501 CE2 PHE A 204 7.854 28.909 1.234 1.06 ATOM 1505 C PHE A 204 3.570 30.150 5.198 1.06 ATOM 1505 C PHE A 204 3.570 30.150 5.198 1.06 ATOM 1506 CA SER A 205 5.754 30.223 5.688 1.06 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.07 ATOM 1508 OG SER A 205 7.068 28.579 7.063 1.07 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.07 ATOM 1501 C SER A 205 7.042 27.254 7.585 1.07 ATOM 1510 C SER A 205 7.042 27.254 7.585 1.07 ATOM 1511 N SER A 206 1.714 27.117 8.735 1.07 ATOM 1512 CA SER A 205 7.042 27.254 7.585 1.07 ATOM 1514 CG SER A 206 1.714 27.117 8.735 1.07 ATOM 1515 C SER A 206 1.714 27.117 8.735 1.07 ATOM 1516 C SER A 206 3.764 28.928 11.113 1.07 ATOM 1517 N ARG A 207 3.589 9.140 12.455 1.07 ATOM 1518 CA RG A 207 3.589 9.941 1.102.455 1.07 ATOM 1519 CA RG A 207 3.589 9.941 1.024.55 1.07 ATOM 1519 CA RG A 207 3.589 9.941 1.024.55 1.07 ATOM 1520 CD ARG A 207 3.589 9.941 1.024.55 1.07 ATOM 1521 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1522 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.1080 1.00 ATOM 1525 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1525 CD ARG		A	Č
ATOM 1486 CD BGLN A 203 6.379 37.556 4.452 0.46 ATOM 1487 CD AGLN A 203 7.553 37.090 6.439 0.66 ATOM 1488 OE1BGLN A 203 5.568 37.122 3.624 0.44 ATOM 1489 OE1AGLN A 203 6.525 37.816 6.236 0.66 ATOM 1490 NE2BGLN A 203 6.299 38.772 4.972 0.46 ATOM 1491 NE2AGLN A 203 7.155 36.751 7.655 0.66 ATOM 1491 NE2AGLN A 203 7.155 36.751 7.655 0.66 ATOM 1492 C GLN A 203 6.291 33.391 5.152 1.06 ATOM 1493 O GLN A 203 5.458 33.580 6.028 1.06 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.00 ATOM 1495 CA PHE A 204 4.603 31.335 2.589 1.00 ATOM 1496 CB PHE A 204 4.603 31.335 2.589 1.00 ATOM 1497 CG PHE A 204 5.857 29.158 2.526 1.00 ATOM 1498 CD1 PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CE1 PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.854 28.909 1.234 1.00 ATOM 1502 CD2 PHE A 204 4.670 30.667 5.018 1.00 ATOM 1505 C PHE A 204 4.670 30.667 5.018 1.00 ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1508 OG SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 N SER A 205 5.692 28.983 6.508 1.00 ATOM 1511 N SER A 206 1.714 27.117 8.735 1.00 ATOM 1512 CA SER A 205 7.068 28.579 7.063 1.00 ATOM 1513 CB SER A 205 4.618 30.092 8.319 1.00 ATOM 1514 OG SER A 206 1.714 27.117 8.735 1.00 ATOM 1515 C SER A 206 1.714 27.117 8.735 1.00 ATOM 1510 O SER A 206 1.714 27.117 8.735 1.00 ATOM 1511 N SER A 206 1.714 27.117 8.735 1.00 ATOM 1512 CA SER A 206 1.714 27.117 8.735 1.00 ATOM 1515 C SER A 206 1.714 27.117 8.735 1.00 ATOM 1516 O SER A 206 1.714 27.117 8.735 1.00 ATOM 1517 N ARG A 207 3.589 29.140 12.455 1.00 ATOM 1518 CA ARG A 207 3.589 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.589 29.140 12.455 1.00 ATOM 1520 CD ARG A 207 3.589 29.140 12.455 1.00 ATOM 1520 CD ARG A 207 3.589 29.140 12.455 1.00 ATOM 1520 CD ARG A 207 3.589 29.140 12.455 1.00 ATOM 1520 CD ARG A 207 3.589 29.140 12.455 1.00 ATOM 1520 CD ARG A 207 3.580 33.224 11.080 1.00 ATOM 1520 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 CD ARG A		À	Ċ
ATOM 1487 CD AGLN A 203 7.553 37.090 6.439 0.66 ATOM 1488 OEIBGLN A 203 6.525 37.816 6.236 0.66 ATOM 1489 OEIAGLN A 203 6.525 37.816 6.236 0.66 ATOM 1490 NE2BGLN A 203 6.299 38.772 4.972 0.44 ATOM 1491 NE2AGLN A 203 6.291 33.391 5.152 1.00 ATOM 1493 O GLN A 203 6.291 33.391 5.152 1.00 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.00 ATOM 1495 CA PHE A 204 4.805 31.833 4.027 1.00 ATOM 1496 CB PHE A 204 4.805 31.833 4.027 1.00 ATOM 1497 CG PHE A 204 4.805 31.835 2.589 1.00 ATOM 1498 CDI PHE A 204 5.720 30.475 2.093 1.00 ATOM 1499 CEI PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CEI PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 6.693 31.009 1.267 1.00 ATOM 1500 CZ PHE A 204 7.747 30.231 0.816 1.00 ATOM 1500 CDZ PHE A 204 6.693 31.009 1.267 1.00 ATOM 1500 C PHE A 204 7.747 30.231 0.816 1.00 ATOM 1500 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1500 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1500 C SER A 205 5.692 28.983 6.508 1.00 ATOM 1500 C SER A 205 5.692 28.983 6.508 1.00 ATOM 1500 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1500 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 N SER A 205 5.692 28.983 6.508 1.00 ATOM 1511 N SER A 206 1.714 27.117 8.735 1.00 ATOM 1512 CA SER A 206 1.714 27.117 8.735 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 1.714 27.117 8.735 1.00 ATOM 1515 C SER A 206 3.764 28.141 7.753 1.00 ATOM 1516 O SER A 206 3.764 28.141 7.753 1.00 ATOM 1517 N ARG A 207 3.289 29.140 12.455 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1521 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1522 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 ON ARG A 207 7.056 33.224 11.080 1.00 ATOM 1525 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1525 CD ARG A 207 7.056 33.224 11.080 1.00 ATOM 1525 O ARG A 207 6.			
ATOM 1488 OELBGLN A 203		A	C
ATOM 1489 OELAGLN A 203	28.39	A	C
ATOM 1490 NE2BGLN A 203 6.299 38.772 4.972 0.46 ATOM 1491 NE2AGLN A 203 7.155 36.751 7.655 0.66 ATOM 1492 C GLN A 203 6.291 33.391 5.152 1.00 ATOM 1493 O GLN A 203 5.458 33.580 6.028 1.00 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.00 ATOM 1495 CA PHE A 204 4.603 31.833 4.163 1.00 ATOM 1495 CA PHE A 204 4.603 31.835 2.589 1.00 ATOM 1496 CB PHE A 204 4.603 31.335 2.589 1.00 ATOM 1497 CG PHE A 204 5.720 30.475 2.093 1.00 ATOM 1499 CD1 PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CEI PHE A 204 7.854 28.909 1.234 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1501 CE2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1505 N SER A 205 5.692 28.983 6.508 1.00 ATOM 1506 CA SER A 205 7.068 28.579 7.063 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 O SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 O SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 O SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 O SER A 205 7.068 28.579 7.065 1.00 ATOM 1510 O SER A 205 7.068 28.579 7.065 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1513 CB SER A 205 7.042 27.254 7.585 1.00 ATOM 1513 CB SER A 206 3.764 28.141 7.753 1.00 ATOM 1515 O SER A 206 3.764 28.241 7.7553 1.00 ATOM 1516 O SER A 206 3.764 28.241 7.7553 1.00 ATOM 1517 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1518 CA ARG A 207 3.581 30.636 12.715 1.00 ATOM 1519 CB ARG A 207 3.581 30.636 12.715 1.00 ATOM 1510 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1510 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1510 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1510 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1510 N ARG A 207 3.581 30.294 11.080 1.00 ATOM 1510 N ARG A 207 3.581 30.294 11.080 1.00 ATOM 1510 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1510 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1510 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1510 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1520 N ARG A 207 3.581 30.636 12.715 1.00 ATOM 1520 N ARG A 207 3.581 3		A	0
ATOM 1491 NE2AGLN A 203		A	0
ATOM 1492 C GLN A 203 6.291 33.391 5.152 1.00 ATOM 1493 O GLN A 203 5.458 33.580 6.028 1.00 ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.00 ATOM 1495 CA PHE A 204 4.805 31.833 4.027 1.00 ATOM 1496 CB PHE A 204 4.805 31.833 4.027 1.00 ATOM 1498 CD1 PHE A 204 5.720 30.475 2.589 1.00 ATOM 1498 CD1 PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CE1 PHE A 204 5.857 29.158 2.526 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 6.693 31.009 1.267 1.00 ATOM 1505 N SER A 204 4.670 30.647 5.018 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1508 OG SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 N SER A 205 7.068 28.579 7.063 1.00 ATOM 1500 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1501 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1501 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1500 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 N SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 N SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 O SER A 205 7.068 28.579 7.063 1.00 ATOM 1510 O SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 206 3.764 28.141 7.753 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 3.742 28.221 10.186 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 3.289 29.140 12.455 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1520 CG ARG A 207 3.289 29.140 12.455 1.00 ATOM 1520 CG ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 CG ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 CG ARG A 207 7.056 33.294 11.080 1.00 ATOM 1520 CR ARG A 207 7.056 33.294 11.080 1.00 ATOM 1520 CR ARG A 207 7.056 33.294 11.080 1.00 ATOM 1520 CR ARG A 207 7.256 33.124 8.838 1.00		A	N
ATOM 1493 O GLN A 203		A	N
ATOM 1494 N PHE A 204 6.090 32.533 4.163 1.00 ATOM 1495 CA PHE A 204 4.805 31.833 4.027 1.00 ATOM 1496 CB PHE A 204 4.603 31.335 2.589 1.00 ATOM 1497 CG PHE A 204 5.720 30.475 2.093 1.00 ATOM 1498 CD1 PHE A 204 5.720 30.475 2.093 1.00 ATOM 1498 CD1 PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CE1 PHE A 204 6.893 28.378 2.083 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.854 28.909 1.234 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1504 O PHE A 204 4.670 30.647 5.018 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.00 ATOM 1509 C SER A 205 4.657 29.103 7.615 1.00 ATOM 1510 O SER A 205 4.618 30.092 8.319 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 3.764 28.141 7.753 1.00 ATOM 1514 OG SER A 206 3.764 28.141 7.753 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.511 30.636 12.715 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1521 CD ARG A 207 3.511 30.636 12.715 1.00 ATOM 1522 NE ARG A 207 5.604 30.916 11.227 1.00 ATOM 1524 NH ARG A 207 7.056 33.294 11.080 1.00 ATOM 1524 NH ARG A 207 7.056 33.294 11.080 1.00 ATOM 1524 NH ARG A 207 7.056 33.294 11.080 1.00 ATOM 1524 NH ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH ARG A 207 7.056 33.294 11.080 1.00 ATOM 1524 NH ARG A 207 7.056 33.124 8.838 1.00 ATOM 1525 NH ARG A 207 7.056 33.124 8.838 1.00 ATOM 1527 O ARG A 207 7.056 33.124 8.838 1.00 ATOM 1527 O ARG A 207 7.056 33.124 8.838 1.00		A	C
ATOM 1495 CA PHE A 204 4.805 31.833 4.027 1.00 ATOM 1496 CB PHE A 204 4.603 31.335 2.589 1.00 ATOM 1497 CG PHE A 204 5.720 30.475 2.093 1.00 ATOM 1498 CD1 PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CE1 PHE A 204 6.893 28.378 2.083 1.00 ATOM 1500 CZ PHE A 204 7.747 30.231 0.816 1.00 ATOM 1501 CE2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 205 4.657 29.103 7.615 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 3.421 28.221 10.186 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.512 32.643 9.981 1.00 ATOM 1520 CG ARG A 207 3.512 32.643 9.981 1.00 ATOM 1521 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1523 CZ ARG A 207 6.821 32.6605 13.301 1.00	18.67	A	0
ATOM 1496 CB PHE A 204	17.22	A	N
ATOM 1497 CG PHE A 204 5.720 30.475 2.093 1.00 ATOM 1498 CD1 PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CE1 PHE A 204 6.893 28.378 2.083 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.747 30.231 0.816 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1504 O PHE A 204 3.570 30.150 5.198 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.754 30.223 5.688 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1508 OG SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 205 4.657 29.103 7.615 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 3.764 28.141 7.753 1.00 ATOM 1513 CB SER A 206 3.764 28.211 7.753 1.00 ATOM 1513 CB SER A 206 3.764 28.141 7.753 1.00 ATOM 1515 C SER A 206 3.764 28.221 10.186 1.00 ATOM 1515 C SER A 206 3.764 28.221 10.186 1.00 ATOM 1517 N ARG A 207 3.289 29.140 12.455 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1521 CD ARG A 207 3.511 30.636 12.715 1.00 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.00 ATOM 1522 NE ARG A 207 7.056 33.294 11.080 1.01 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.01 ATOM 1526 C ARG A 207 7.056 33.294 11.080 1.01 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.294 11.080 1.01 ATOM 1526 C ARG A 207 7.256 33.294 11.080 1.01 ATOM 1526 C ARG A 207 7.256 33.294 11.080 1.01 ATOM 1526 C ARG A 207 7.256 33.294 11.080 1.01 ATOM 1526 C ARG A 207 7.256 33.294 11.080 1.01 ATOM 1526 C ARG A 207 7.256 33.294 11.080 1.01 ATOM 1527 O ARG A 207 7.256 33.294 11.080 1.01	16.75	A	C
ATOM 1498 CD1 PHE A 204 5.857 29.158 2.526 1.00 ATOM 1499 CE1 PHE A 204 6.893 28.378 2.083 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.874 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.874 30.231 0.816 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1505 N SER A 205 5.692 28.983 6.508 1.00 ATOM 1506 CA SER A 205 7.068 28.579 7.063 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 205 4.657 29.103 7.615 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 3.764 28.141 7.753 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 3.764 28.141 7.753 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 3.289 29.140 12.455 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.289 29.140 12.455 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1522 NE ARG A 207 6.821 32.643 9.981 1.00 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1527 O ARG A 207 7.256 33.124 8.838 1.00	16.25	A	C
ATOM 1499 CE1 PHE A 204 6.893 28.378 2.083 1.00 ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.747 30.231 0.816 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1504 O PHE A 204 3.570 30.150 5.198 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.754 30.223 5.688 1.00 ATOM 1507 CB SER A 205 5.692 28.983 6.508 1.00 ATOM 1508 OG SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 205 4.657 29.103 7.615 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.00 ATOM 1520 CG ARG A 207 5.604 30.916 11.227 1.00 ATOM 1520 CG ARG A 207 5.604 30.916 11.227 1.00 ATOM 1520 CG ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 NE ARG A 207 6.821 32.643 9.981 1.00 ATOM 1520 NE ARG A 207 7.056 33.294 11.080 1.00 ATOM 1520 NH ARG A 207 7.056 33.294 11.080 1.00 ATOM 1520 NH ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1527 O ARG A 207 7.256 33.124 8.838 1.00	16.52	A	C
ATOM 1500 CZ PHE A 204 7.854 28.909 1.234 1.00 ATOM 1501 CE2 PHE A 204 7.747 30.231 0.816 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1504 O PHE A 204 3.570 30.150 5.198 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.754 30.223 5.688 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1508 OG SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 205 4.657 29.103 7.615 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 2.751 28.237 8.818 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 4.189 31.375 11.542 1.00 ATOM 1520 CG ARG A 207 6.821 32.643 9.981 1.00 ATOM 1521 CD ARG A 207 6.821 32.643 9.981 1.00 ATOM 1522 NE ARG A 207 7.056 33.124 8.838 1.00 ATOM 1524 NH ARG A 207 7.056 33.124 8.838 1.00 ATOM 1525 NH2 ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.00 ATOM 1527 O ARG A 207 7.056 33.124 8.838 1.00	16.66	A	C
ATOM 1501 CE2 PHE A 204 7.747 30.231 0.816 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1504 O PHE A 204 3.570 30.150 5.198 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.764 30.223 5.688 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 205 4.657 29.103 7.615 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 3.764 28.141 7.753 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 1.714 27.117 8.735 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1522 NE ARG A 207 6.821 32.643 9.981 1.00 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00	17.13	A	C
ATOM 1501 CE2 PHE A 204 7.747 30.231 0.816 1.00 ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1504 O PHE A 204 3.570 30.150 5.198 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.764 30.223 5.688 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.068 28.579 7.063 1.00 ATOM 1509 C SER A 205 7.042 27.254 7.585 1.00 ATOM 1510 O SER A 205 4.657 29.103 7.615 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 3.764 28.141 7.753 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 1.714 27.117 8.735 1.00 ATOM 1515 C SER A 206 0.811 27.350 7.655 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1522 NE ARG A 207 6.821 32.643 9.981 1.00 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH ARG A 207 7.056 33.294 11.080 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1527 O ARG A 207 9.2300 28.556 13.471 1.00		A	С
ATOM 1502 CD2 PHE A 204 6.693 31.009 1.267 1.00 ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.00 ATOM 1504 O PHE A 204 3.570 30.150 5.198 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.00 ATOM 1509 C SER A 205 4.657 29.103 7.615 1.00 ATOM 1510 O SER A 205 4.618 30.092 8.319 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 1.714 27.117 8.735 1.00 ATOM 1515 C SER A 206 0.811 27.350 7.655 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.00 ATOM 1522 NE ARG A 207 5.604 30.916 11.227 1.00 ATOM 1523 CZ ARG A 207 6.146 31.519 10.012 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.056 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1527 O ARG A 207 7.256 33.124 8.838 1.00	16.10	A	C
ATOM 1503 C PHE A 204 4.670 30.647 5.018 1.06 ATOM 1504 O PHE A 204 3.570 30.150 5.198 1.06 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.06 ATOM 1506 CA SER A 205 5.754 30.223 5.688 1.06 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.06 ATOM 1508 OG SER A 205 7.068 28.579 7.063 1.06 ATOM 1509 C SER A 205 4.657 29.103 7.615 1.06 ATOM 1510 O SER A 205 4.618 30.092 8.319 1.06 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.06 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.06 ATOM 1513 CB SER A 206 1.714 27.117 8.735 1.06 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.06 ATOM 1515 C SER A 206 0.811 27.350 7.655 1.06 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.06 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.06 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.06 ATOM 1519 CB ARG A 207 3.289 29.140 12.455 1.06 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.06 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.06 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.06 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.01 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1525 NH2 ARG A 207 7.056 33.124 8.838 1.06 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.06 ATOM 1526 C ARG A 207 7.056 33.124 8.838 1.06 ATOM 1527 O ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.06 ATOM 1527 O ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06		A	Ċ
ATOM 1504 O PHE A 204 3.570 30.150 5.198 1.00 ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.00 ATOM 1509 C SER A 205 4.657 29.103 7.615 1.00 ATOM 1510 O SER A 205 4.618 30.092 8.319 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.00 ATOM 1515 C SER A 206 0.811 27.350 7.655 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1523 CZ ARG A 207 6.146 31.519 10.012 1.00 ATOM 1524 NH1 ARG A 207 7.256 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00		A	Č
ATOM 1505 N SER A 205 5.754 30.223 5.688 1.00 ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.00 ATOM 1509 C SER A 205 4.657 29.103 7.615 1.00 ATOM 1510 O SER A 205 4.618 30.092 8.319 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 1.714 27.117 8.735 1.00 ATOM 1515 C SER A 206 0.811 27.350 7.655 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1522 NE ARG A 207 6.821 32.643 9.981 1.00 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00		A	Ö
ATOM 1506 CA SER A 205 5.692 28.983 6.508 1.00 ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.00 ATOM 1509 C SER A 205 4.657 29.103 7.615 1.00 ATOM 1510 O SER A 205 4.618 30.092 8.319 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 2.751 28.237 8.818 1.00 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.00 ATOM 1515 C SER A 206 0.811 27.350 7.655 1.00 ATOM 1516 O SER A 206 3.421 28.221 10.186 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1522 NE ARG A 207 6.821 32.643 9.981 1.00 ATOM 1523 CZ ARG A 207 7.056 33.294 11.080 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1527 O ARG A 207 7.256 33.124 8.838 1.00		A	N
ATOM 1507 CB SER A 205 7.068 28.579 7.063 1.00 ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.00 ATOM 1509 C SER A 205 4.657 29.103 7.615 1.00 ATOM 1510 O SER A 205 4.618 30.092 8.319 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 1.714 27.117 8.735 1.00 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 4.486 27.589 10.362 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.00 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00		A	C
ATOM 1508 OG SER A 205 7.042 27.254 7.585 1.06 ATOM 1509 C SER A 205 4.657 29.103 7.615 1.06 ATOM 1510 O SER A 205 4.618 30.092 8.319 1.06 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.06 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.06 ATOM 1513 CB SER A 206 1.714 27.117 8.735 1.06 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.06 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.06 ATOM 1516 O SER A 206 4.486 27.589 10.362 1.06 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.06 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.06 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.06 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.06 ATOM 1521 CD ARG A 207 4.189 31.375 11.542 1.06 ATOM 1522 NE ARG A 207 5.604 30.916 11.227 1.06 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.06 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06			C
ATOM 1509 C SER A 205 4.657 29.103 7.615 1.00 ATOM 1510 O SER A 205 4.618 30.092 8.319 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 1.714 27.117 8.735 1.00 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 4.486 27.589 10.362 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1521 CD ARG A 207 4.189 31.375 11.542 1.00 ATOM 1522 NE ARG A 207 5.604 30.916 11.227 1.00 ATOM 1523 CZ ARG A 207 6.146 31.519 10.012 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00		A	
ATOM 1510 O SER A 205 4.618 30.092 8.319 1.00 ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 1.714 27.117 8.735 1.00 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 4.486 27.589 10.362 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 3.511 30.636 12.715 1.00 ATOM 1521 CD ARG A 207 4.189 31.375 11.542 1.00 ATOM 1522 NE ARG A 207 5.604 30.916 11.227 1.00 ATOM 1523 CZ ARG A 207 6.146 31.519 10.012 1.00 ATOM 1524 NH1 ARG A 207 6.821 32.643 9.981 1.00 ATOM 1525 NH2 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1526 C ARG A 207 1.096 28.605 13.301 1.00		A	0
ATOM 1511 N SER A 206 3.764 28.141 7.753 1.00 ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.00 ATOM 1513 CB SER A 206 1.714 27.117 8.735 1.00 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.00 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 4.486 27.589 10.362 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.00 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00		A	C ·
ATOM 1512 CA SER A 206 2.751 28.237 8.818 1.06 ATOM 1513 CB SER A 206 1.714 27.117 8.735 1.06 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.06 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.06 ATOM 1516 O SER A 206 4.486 27.589 10.362 1.06 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.06 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.06 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.06 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.06 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.06 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.06 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.06 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06		A	.0
ATOM 1513 CB SER A 206 1.714 27.117 8.735 1.06 ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.06 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.06 ATOM 1516 O SER A 206 4.486 27.589 10.362 1.06 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.06 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.06 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.06 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.06 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.06 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.06 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.06 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06		A	N
ATOM 1514 OG SER A 206 0.811 27.350 7.655 1.06 ATOM 1515 C SER A 206 3.421 28.221 10.186 1.06 ATOM 1516 O SER A 206 4.486 27.589 10.362 1.06 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.06 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.06 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.06 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.06 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.06 ATOM 1522 NE ARG A 207 5.604 30.916 11.227 1.06 ATOM 1523 CZ ARG A 207 6.146 31.519 10.012 1.06 ATOM 1524 NH1 ARG A 207 6.821 32.643 9.981 1.06 ATOM 1525 NH2 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1526 C ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06	15.73	A	C
ATOM 1515 C SER A 206 3.421 28.221 10.186 1.00 ATOM 1516 O SER A 206 4.486 27.589 10.362 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.00 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00	16:10	A	C
ATOM 1516 O SER A 206 4.486 27.589 10.362 1.00 ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.00 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.00 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.00 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.00 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.00 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.00 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00		A	0
ATOM 1517 N ARG A 207 2.786 28.928 11.113 1.06 ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.06 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.06 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.06 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.06 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.06 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.06 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06		A	C
ATOM 1518 CA ARG A 207 3.289 29.140 12.455 1.06 ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.06 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.06 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.06 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.06 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.06 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06		A	0
ATOM 1519 CB ARG A 207 3.511 30.636 12.715 1.06 ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.06 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.06 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.06 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.06 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06		A	N
ATOM 1520 CG ARG A 207 4.189 31.375 11.542 1.06 ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.06 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.06 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.06 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06		A	C
ATOM 1521 CD ARG A 207 5.604 30.916 11.227 1.06 ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.06 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.06 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.06 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.06 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.06 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.06		A	C
ATOM 1522 NE ARG A 207 6.146 31.519 10.012 1.00 ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00	18.52	A	C
ATOM 1523 CZ ARG A 207 6.821 32.643 9.981 1.00 ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00	20.29	A	C
ATOM 1524 NH1 ARG A 207 7.056 33.294 11.080 1.00 ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00	22.13	A	N
ATOM 1525 NH2 ARG A 207 7.256 33.124 8.838 1.00 ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00	22.20	A	C
ATOM 1526 C ARG A 207 2.330 28.556 13.471 1.00 ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00	25.41	A	N
ATOM 1527 O ARG A 207 1.096 28.605 13.301 1.00	24.08	A	N
	15.97	A	C
	15.01	A	0
	15.16	A	N
ATOM 1529 CA GLY A 208 2.139 27.523 15.655 1.06	16.14	A	C
	16.50	A	C
	17.36	A	o
	17.42	Ā	N
	17.56	A	C
	17.58	A	0
1100 1334 CB FRO A 203 0,401 21.203 13.3/3 1.00	I	C.	L

2 TOM	1525	CC	DDA	70	200	_	20 644	10 701	1 00	10 05	78	C
ATOM	1535	CG			209	-0.088	28.644	19.701		18.85	A	C
ATOM	1536	CD	PRO	A	209	0.477	29.457	18.545	1.00	17.85	A	C
ATOM	1537	C	PRO	A	209	-0.483	26.483	17.368	1.00	17.50	A	C
MOTA	1538	0	PRO	A	20 9	-1.094	27.157	16.558	1.00	18.18	A	0
MOTA	1539	N	THR	A	210	-0.816	25.240	17.652	1.00	16.70	A	N
ATOM	1540	CA	THR			-2.050	24.690	17.186		17.34	A	Ĉ
ATOM	1541	CB	THR			-2.042	23.181	17.356		16.73	A	C
ATOM	1542	OG1	THR	A	210	-1.848	22.859	18.734		18.34	A	0
ATOM	1543	CG2	THR	A	210	-0.833	22.540	16.574	1.00	16.90	Α	С
ATOM	1544	C	THR	A	210	-3.206	25.327	17.987	1.00	17.55	Α	C
MOTA	1545	0	THR	A	210	-2.990	26.095	18.930	1.00	16.40	A	0
ATOM	1546	N	ARG		211	-4.421	24.979	17.623	1.00	18.89	A	N
ATOM	1547	CA			211	-5.595	25.577	18.264	1.00	20.56	A	C
ATOM	1548	CB			211		25.056	17.638				
						-6.884			1.00	21.16	A	C
ATOM	1549	CG			211	-8.149	25.719	18.255	1.00	25.92	A	C
ATOM	1550	CD	ARG	A	211	-9.325	25.804	17.301	1.00	31.08	A	C
MOTA	1551	NE	ARG	A	211	-8.956	26.457	16.042	1.00	35.63	A	N
ATOM	1552	CZ	ARG	Α	211	-9.626	26.296	14.905	1.00	38.91	A	C
ATOM	1553	NHl	ARG	A	211	-10.707	25.516	14.876	1.00	40.64	A	N
ATOM	1554	NH2	ARG			-9.225	26.911	13.795	1.00	37.74	A	N
ATOM	1555	C	ARG		211	-5.591	25.308	19.768	1.00	20.16	A	Ĉ
											_	
ATOM	1556	0	ARG			-5.983	26.180	20.539	1.00	19.93	A.	0
MOTA	1557	N	ASP		212	-5.120	24.121	20.185		19.40	A	N
ATOM	1558	CA	ASP	A	212	-5.031	23.791	21.616	1.00	18.64	A	C
ATOM	1559	СВ	ASP	A	212	-5.346	22.306	21.877	1.00	18.58	A	Ċ
ATOM	1560	CG	ASP	A	212	-4.318	21.356	21.254	1.00	16.59	A	C
ATOM	1561	OD1	ASP	A	212	-4.255	20.180	21.679	1.00	16.40	A	0
ATOM	1562		ASP			-3.545	21.688	20.339		17.56	A	0
ATOM	1563	C	ASP			-3.693	24.160	22.255	1.00	18.83	A	Č
ATOM	1564	_					23.707				_	
		0			212	-3.387	_	23.370		19.22	A	0
ATOM	1565	N			213	-2.902	24.966	21.556	1.00	18.29	A	N
ATOM	1566	CA			213	-1.698	25.572	22.111	1.00	18.10	A	C
MOTA	1567	C	GLY	A	213	-0.439	24.713 -	22.065	1.00	17.75	- A	C ·
MOTA	1568	0	GLY	A	213	0.517	24.998	22.785	1.00	18.06	A	, O
MOTA	1569	N	ARG	A	214	-0.431	23.665	21.242	1.00	16.43	A	N
MOTA	1570	CA	ARG	Α	214	0.757	22.826	21.110	1.00	16.72	A	С
ATOM	1571	CB			214	0.403	21.461	20.536		16.17	A	C
ATOM	1572	CG	ARG		214	-0.276	20.553	21.473	1.00	16.40	A	Ċ
ATOM	1573	CD	ARG		214	-0.753	19.301	20.814		16.61		C
											A	
ATOM	1574	NE			214	-1.771	19.613	19.826		16.67	A	N
ATOM	1575	CZ			214	-1.740	19.297	18.531	1.00	16.71	A	C
ATOM	1576	NH1	ARG	A	214	-0.720	18.628	17.981	1.00	16.55	. A	N
ATOM	1577	NH2	ARG	A	214	-2.762	19.664	17.776	1.00	14.42	A	N
MOTA	1578	C	ARG	A	214	1.772	23.493	20.203	1.00	16.16	A	C
ATOM	1579	0	ARG	Α	214	1.403	24.306	19.344	1.00	16.86	A.	0
ATOM	1580	N	ILE	Α	215	3.046	23.168	20.396		15.82	A	N
ATOM	1581	CA	ILE			4.107	23.640	19.516		15.40	A	C
ATOM	1582											
		CB			215	5.503	23.498	20.175		16.18	A	C
ATOM	1583	CG1			215	5.600	24.351	21.454		17.35	A	С
ATOM	1584	CD1	ILE	A	215	5.526	25.842	21.181	1.00	20.01	A	C
ATOM	1585	CG2	ILE	A	215	6.606	23.898	19.191	1.00	15.87	A	С
ATOM	1586	C	ILE	A	215	4.100	22.834	18.214	1.00	15.40	A	C
ATOM	1587	0			215	4.316	21.616	18.227		14.96	A	0
ATOM	1588	N			216	3.841	23.536	17.117		14.61	A	N
ATOM	1589	CA			216	4.072	23.062	15.745		14.64		C
											A	
MOTA	1590	CB			216	2.765	22.616	15.067		13.98	A	C
MOTA	1591	CG			216	2.190	21.271	15.526		13.46	A	C
ATOM	1592	CD	LYS	A	216	3.073	20.102	15.117	1.00	14.36	A	C

				_		5 455				_	
MOTA	1593	CE	LYS	A	216	2.427	18.754	15453	1.00 13.24	A	C
MOTA	1594	NZ	LYS	A	216	3.042	17.577	14.739	1.00 8.08	A	N
ATOM	1595	C	LYS	Α	216	4.632	24.269	14.984	1.00 14.70	A	С
ATOM	1596	Ō			216	4.336	25.428	15.358	1.00 13.92		ō
		_								A	
ATOM	1597	N			217	5.410	24.032	13.921	1.00 14.59	A	N
ATOM	1598	CA	PRO	A	217	5.788	22.691	13.468	1.00 13.65	A	С
ATOM	1599	CB	PRO	A	217	6.452	22.944	12.115	1.00 14.58	A	C
ATOM	1600	CG			217	6.934	24.356	12.178	1.00 15.23	A	Ċ
MOTA	1601	CD			217	6.012	25.077	13.086	1.00 14.44	A	C
ATOM	1602	. C	PRO	A	217	6.818	22.089	14.401	1.00 12.99	A	C
ATOM	1603	0	PRO	A	217	7.262	22.738	15.379	1.00 12.11	A	0
MOTA	1604	N	ASP	A	218	7.201	20.847	14.126	1.00 11.74	A	N
ATOM	1605	CA			218	8.188	20.214	14.974	1.00 11.35		C
										A	
ATOM	1606	СВ	ASP			8.033	18.694	14.962	1.00 11.47	A	С
ATOM	1607	CG	ASP	A	218	6.672	18.241	15.451	1.00 11.82	A	C
ATOM	1608	QD1	ASP	A	218	6.440	18.370	16.680	1.00 10.57	A	0
ATOM	1609	OD2	ASP	A	218	5.810	17.726	14.671	1.00 11.50	A	0
ATOM	1610	C			218	9.619	20.566	14.610	1.00 11.30		Č
		_								A	
MOTA	1611	0	ASP			10.441	20.772	15.501	1.00 10.85	A	0
ATOM	1612	N	VAL	A	219	9.928	20.516	13.314	1.00 11.61	A	N
ATOM	1613	CA	VAL	A	219	11.254	20.829	12.815	1.00 12.37	A	С
ATOM	1614	CB	VAI.	А	219	12.118	19.589	12.602	1.00 12.19	A	C
ATOM	1615	CG1	VAL								
						12.401	18.867	13.933		A	C
ATOM	1616		VAL			11.485	18.660	11.587	1.00 13.54	A	C
ATOM	1617	C	VAL	A	219	11.148	21.568	11.471	1.00 12.33	A	С
ATOM	1618	0	VAL	A	219	10.083	21.624	10.851	1.00 12.34	A	0
ATOM	1619	N	MET	A	220	12.266	22.139	11.057	1.00 11.78	A	N
ATOM	1620	CA			220						
						12.365	22.930	9.852	1.00 11.89	A	C
ATOM	1621	CB	MET			12.798	24.371	10.167	1.00 11.30	A	C
ATOM	1622	CG	MET	A	220	12.025	25.058	11.255	1.00 11.64	A	C
ATOM	1623	SD	MET	A	220	10.310	25.322	10.860	1.00 12.02	A	S
MOTA	1624	ÇE	MET	A	220	10.416	26.727	9.791	1.00 11.35	A	С
ATOM	1625	Ċ					22.343		1.00 12.21		
		_								· · A	
MOTA	1626	0			220	14.368	21.731	9.321	1.00 12.24	A	0
MOTA	1627	N	ALA	A	221	13.175	22.556	7.613	1.00 12.60	A	N
MOTA	1628	CA	ALA	A	221	14.198	22.324	6.605	1.00 12.90	A	C
ATOM	1629	CB	ALA	A	221	14.098	20.912	6.081	1.00 12.23	A	C
ATOM	1630	C			221	14.064	23.341	5.464	1.00 13.77	A	C
		_									
ATOM	1631	0			221	13.029	24.027	5.312	1.00 14.46	A	0
ATOM	1632	N	PRO	A	222	15.116	23.487	4.687	1.00 13.99	A	N
ATOM	1633	CA	PRO	A	222	15.059	24.393	3.543	1.00 14.73	A	C
ATOM	1634	CB	PRO	A	222	16.387	24.159	2.845	1.00 13.69	A	C
ATOM	1635	CG	PRO			17.290	23.676	3.892	1.00 15.06	Α	С
MOTA	1636	CD	PRO			16.433					Ç
							22.855	4.830	1.00 14.39	A	
ATOM	1637	C	PRO			13.896	24.044	2.622	1.00 14.82	A	С
ATOM	1638	0	PRO	A	222	13 <i>.</i> 719	22.847	2.284	1.00 15.21	A	0
ATOM	1639	N	GLY	A	223	13.178	25.069	2.193	1.00 14.57	A	N
ATOM	1640	CA			223	11.996	24.910	1.373	1.00 15.06	A	C
ATOM	1641	C			223	11.779	26.046	0.383	1.00 14.81	A	C
ATOM	1642	0			223	10.661	26.268	-0.039	1.00 15.67	A	0
ATOM	1643	N	THR	A	224	12.822	26.799	0.049	1.00 13.98	A	N
ATOM	1644	CA	THR	A	224	12.706	27.772	-1.007	1.00 14.01	A	C
ATOM	1645	CB			224	12.912	29.229	-0.517	1.00 13.98	A	c
ATOM	1646	OG1			224	14.220	29.350	0.047	1.00 13.39	A	0
MOTA	1647	CG2			224	11.952	29.585	0.597	1.00 14.59	A	C
ATOM	1648	C	THR	A	224	13.729	27.449	-2.072	1.00 14.02	A	C
ATOM	1649	0	THR	A	224	14.813	26.932	-1.791	1.00 14.13	A	0
MOTA	1650	N			225	13.389	27.786	-3.308	1.00 14.73	A	N
		•		- •		25.505	27.700	J. J. J. G	~ · · · · · · · · · · · · · · ·	**	47

ATOM	1651	CA	TYR A	225	14.270	27.528	-4.441	1.00 14.78	A	С
ATOM	1652	CB	TYR A		15.197	28.726	-4.686	1.00 15.26	A	C
ATOM	1653	CG	TYR A	_	14.502	29.848	-5.398	1.00 15.90	A	С
ATOM	1654	CD1	TYR A		14.027	30.940	-4.692	1.00 18.12	A	Č
ATOM	1655	CEI	TYR A		13.349	31.960	-5.301	1.00 18.57	A	Ċ
ATOM	1656	CZ	TYR A		13.100	31.918	-6.659	1.00 19.46	A	C
MOTA	1657	OH	TYR A		12.391	32.974	-7.207	1.00 20.70	A	0
ATOM	1658	CE2	TYR A		13.510	30.844	-7.404	1.00 18.30	A	C
ATOM	1659	CD2	TYR A		14.225	29.788	-6.771	1.00 19.15	A	C
ATOM	1660	C	TYR A		15.022	26.196	-4.331	1.00 14.79	A	C
ATOM	1661	0	TYR A		16.252	26.119	-4.395	1.00 15.52	A	0
ATOM	1662	N	ILE A		14.248	25.130	-4.186	1.00 15.07	A	N
MOTA	1663	CA	ILE A	A 226	14.773	23.759	-4.155	1.00 14.45	A	C
ATOM	1664	CB	ILE A	3 226	13.904	22.866	-3.254	1.00 14.35	A	C
MOTA	1665	CG1	ILE A	226	13.906	23.341	-1.789	1.00 15.47	A	C
MOTA	1666	CD1	ILE A	226	15.239	23.250	-1.085	1.00 16.51	A	C
ATOM	1667	CG2	ILE A	226	14.312	21.400	-3.377	1.00 14.04	A	C
MOTA	1668	С	ILE A	226	14.780	23.205	-5.580	1.00 14.24	A	C
ATOM	1669	0		226	13.778	23.188	-6.245	1.00 13.78	A	0
ATOM	1670	N		227	15.937	22.753	-6.022	1.00 14.94	A	N
ATOM	1671	CA		227	16.141	22.230	-7.359	1.00 14.97	A	C
ATOM	1672	CB		227	17.541	22.653	-7.827	1.00 15.61	A	C
ATOM	1673	CG	LEU A		17.950	22.137	-9.196	1.00 15.61		C
									A	
ATOM	1674	CD1			16.899		-10.231	1.00 16.90	A	C
ATOM	1675	CD2			19.340	22.669	-9.559	1.00 18.98	A	C
ATOM	1676	C		227	16.010	20.708	-7.284	1.00 14.76	A	C
ATOM	1677	0	LEU A		16.803	20.038	-6.602	1.00 15.34	A	0
MOTA	1678	N	SER A		14.970	20.179	-7.924	1.00 14.03	A	N
ATOM	1679	ĊA	SER A		14.665	18.752	-7.871	1.00 14.07	A	C
ATOM	1680	CB	SER A	4 228	13.701	18.448	-6.701	1.00 13.81	A	C
MOTA	1681	OG	SER A	1 228	13.631	17.038	-6.453	1.00 12.38	A	0
MOTA	1682	C	SER A	228	14.061	18.319	-9.208	1.00 14.98	A	C
MOTA	1683	0	SER A	228	13.971	19.115	10.133	1.00 15.43	A	0
ATOM	1684	N	ALA A	229	13.626	17.067	-9.278	1.00 14.57	A	N
ATOM	1685	CA	ALA A	A 229	13.155	16.454	-10.516	1.00 14.87	A	(C
ATOM	1686	CB	ALA A	A 229	12.824	14.945	-10.268	1.00 14.78	A	C
ATOM	1687	C	ALA A	A 229	11.939	17.135	-11.086	1.00 14.83	A	С
MOTA	1688	0	ALA A		10.939		-10.376	1.00 14.22	A	0
ATOM	1689	N	ARG A		12.027		-12.394	1.00 14.42	A	N
ATOM	1690	CA	ARG A		10.974		-13.155	1.00 14.49	A	C
ATOM	1691	CB	ARG A		11.553		-14.137	1.00 14.60	A	C
ATOM	1692	CG	ARG A		10.516		-15.065	1.00 16.55	A	Ç
ATOM	1693	CD	ARG A		11.044		-15.934	1.00 19.98	Ä	Ċ
ATOM	1694	NE	ARG A		9.940		-16.751	1.00 19.63	A	N
										C
ATOM	1695	CZ	ARG A		9.692		-16.995	1.00 21.34	A	
ATOM	1696	NHI	ARG A		10.502		-16.545	1.00 21.55	A	N
ATOM	1697	NH2	ARG A		8.617		-17.730	1.00 20.71	A	N
ATOM	1698	C	ARG A		10.232		-13.948	1.00 14.81	A	C
MOTA	1699	0	ARG A		10.838		-14.762	1.00 14.40	A	0
ATOM	1700	N	SER A	3 231	8.931	16.837	-13.703	1.00 14.68	A	N
ATOM	1701	CA		3 231	8.106		-14.463		A	C
MOTA	1702	CB	SER A	3 231	6.660	16.034	-14.030	1.00 15.75	A	С
MOTA	1703	OG	SER A	A 231	5.836	15.317	-14.947	1.00 16.08	A	0
MOTA	1704	C	SER A	A 231	8.176	16.325	-15.956	1.00 15.44	A	C
.ATOM	1705	0	SER A	4 231	8.087		-16.306	1.00 13.31	A	0
ATOM	1706	N		232	8.295	-	-16.802	1.00 15.69	A	N
ATOM	1707	CA		3 232	8.323		-18.255	1.00 16.52	A	C
ATOM	1708	CB		3 232	8.682		-18.906	1.00 16.29	A	Č
* * * *** *			x	میہ جی مے	5.002	_ 1.150	201300		• •	_

ATOM	1709	OG	SER A	232	7.610	13.191	-1B.730	1.00	16.72	Α	0
ATOM	1710	C	SER A	232	7.004	16 050	-18.820	1.00	18.10	A	С
		_			_						Ö
ATOM	1711	0		232	6.970	16.540	-19.945	1.00	18.08	A	
ATOM	1712	N	LEU A	233	5.924	16.005	-18.040	1.00	18.99	A	N
MOTA	1713	CA	LEU A	233	4.647	16.550	-18.466	1.00	19.87	A	C
ATOM	1714	CB	LEU A	233	3.503	15.655	-17.989	1.00	20.52	A	C
ATOM	1715	CG		233	3.579	14.202	-18.428	1.00	22.45	A	Ċ
ATOM	1716	CD1	LEU A		2.344	13.472	-17.943	1.00	25.84	A	С
ATOM	1717	CD2	LEU A	233	3.683	14.146	-19.948	1.00	26.24	A	C
ATOM	1718	C	LEU A	233	4.357	17.956	-17.940	1.00	20.22	A	С
ATOM	1719	0	LEU A	233	3.365	18.546	-18.345	1.00	20.30	A	0
ATOM	1720	N	ALA A		5.164	18.485	-17.016	1.00	18.84	A	N
		-									
ATOM	1721	CA	ALA A		4.768	19.731	-16.365	1.00	19.34	A	C
ATOM	1722	CB	ALA A	234	5.297	19.781	-14.958	1.00	18.58	A	C
ATOM	1723	C	ALA A	234	5.197	20.991	-17.153	1.00	19.93	A	C
ATOM	1724	0	ALA A	234	6.300	21.037	-17.701	1.00	20.41	А	0
ATOM	1725	N	PRO A	235	4.325	21.989	-17.197	1.00	20.75	A	N
ATOM	1726	CA		235							
					4.642	23.288	-17.802	1.00	21.88	A	C
ATOM	1727	CB	PRO A		3.271	23.921	-17.981	1.00	21.83	A	С
ATOM	1728	CG	PRO A	235	2.429	23.326	-16.902	1.00	21.93	A	C
ATOM	1729	CD	PRO A	235	2.947	21.944	-16.677	1.00	21.22	A	C
ATOM	1730	С	PRO A		5.495	24.199	-16.885	1.00	22.70	A	C
ATOM	1731	Ö		235	5.513	23.970	-15.671	1.00	21.06	A	Ö
ATOM	1732	N	ASP A		6.150	25.204	-17.489		24.00	A	N
ATOM	1733	CA	ASP A	236	6.960	26.228	-16.795	1.00	24.41	A	C
ATOM	1734	CB	ASP A	236	7.455	27.332	-17.750	1.00	24.21	A	C
ATOM	1735	CG	ASP A	236	8.603	26.838	-18.636	1.00	25.42	A	С
ATOM	1736	ODI			9.214		-19.365	1.00	25.18	A	Ö
ATOM	1737	OD2			8.990		-18.674	1.00	23.87	A	0
ATOM	1738	C	ASP A	236	6.263	26.644	-15.520	1.00	24.33	A	C
ATOM	1739	0	ASP A	236	6.919	27.035	-14.558	1.00	24.16	A	0
ATOM	1740	N	SER A	237	4.933	26.677	-15.491	1.00	25.32	A	N
ATOM	1741	CA	SER A		. 4.179		14.873	. 1.00	24.89	· A	- C
ATOM	1742	CB	SER A		2.801		-15.490	1.00	25.98	A	C
ATOM'	1743	OG	SER A		2.035	26.723	-15.436	1.00	27.95	A	0
ATOM	1744	C	SER A	237	4.027	26.960	-13.487	1.00	24.14	A	С
ATOM	1745	0	SER A	237	3.588	27.516	-12.495	1.00	23.01	A	0
ATOM	1746	N	SER A	238	4.363	25.660	-13.448	1.00	22.59	A	N
ATOM	1747	CA	SER A		4.313		-12.201	1.00	22.41	A	C
ATOM	1748	CB	SER A		4.238		-12.501	1.00	22.11	A	C
MOTA	1749	OG	SER A	238	3.046	22.968	-13.146	1.00	22.38	A	0
ATOM	1750	C	SER A	238	5.543	25.045	~11.295	1.00	21.86	A	C
ATOM	1751	0	SER A	238	5.550	24,542	-10.184	1.00	22.29	A	0
ATOM	1752	N		239	6.568	25.744		1.00	21.32	A	N
ATOM	1753	CA		239	7.847						C
							-11.108	1.00		A	
ATOM	1754	CB		239	8.966	25.299	-11.966	1.00	20.17	A	C
MOTA	1755	CG	PHE A	239	8.736	23.854	-12.294	1.00	20.18	A	C
ATOM	1756	CD1	PHE A	239	8.964	22.881	-11.344	1.00	18.34	A	C
ATOM	1757	CE1	PHE A	239	8.686	21.573	-11.600	1.00	15.67	A	C
ATOM	1758	CZ	PHE A		8.194		-12.814		16.81	A	Č
ATOM	1759	CE2			7.924		-13.775		16.81	A	C
MOTA	1760	CD2			8.194	23.466	-13.520	1.00	18.63	A	C
MOTA	1761	C	PHE A	239	8.124	27.370	-10.775	1.00	20.81	A	C
ATOM	1762	0	PHE A	239	7.589	28.283	-11.404		19.94	A	0
ATOM	1763	N	TRP A		8.927	27.575	-9.743		20.46	A	N
ATOM	1764	CA	TRP A		9.420	28.913			21.13	A	C
MOTA	1765	CB	TRP A	240	10.192	28.842	-8.055	1.00	21.05	A	C
ATOM	1766	CG	TRP A	240	9.324	28.850	-6.857	1.00	22.76	A	C
					•						

ATO	M 1767	CD1	TRP	A	240	8.027	28.446	-6.782	1.00	23.97	A	C
ATO	M 1768	NEl	TRP	A	240	7.548	28.624	-5.509	1.00	24.62	A	N
ATO	M 1769	CE2	TRP	A	240	8.547	29.148	-4.726	1.00	24.31	Ą	C
ATO	M 1770	CD2	TRP	Α	240	9.677	29.302	-5.537	1.00	23.24	. A	
ATO	M 1771	CE3	TRP	A	240	10.839	29.811	-4.966	1.00	24.95	A	
ATO		CZ3	TRP			10.833	30.146	-3.637	1.00	24.14	A	
ATO		CH2	TRP		•	9.682	29.991	-2.857	1.00	23.89	A	
ATO		CZ2	TRP			8.542	29.483	-3.378	1.00	25.05	A.	
ATO		C	TRP		240	10.355	29.466	-10.461	1.00	20.95		
		_									.A	
ATO		0			240	10.419	30.673	-10.703	1.00	20.42	A	
ATO		N			241	11.097	28.566	-11.080	1.00	21.11	A	
ATO		CA			241	12.022	28.907	-12.149	1.00	21.52	A	
ATO		CB			241	13.243	29.629	-11.606	1.00	21.93	A	
ATO		C			241	12.466	27.641		1.00	21.79	A	
ATO		0			241	12.440	26.569	-12.169	1.00	22.05	A	0
OTA	M 1782	N	ASN	A	242	12.929	27.769	-14.040	1.00	22.09	A	. 13
ATO	M 1783	CA	ASN	A	242	13.481	26.656	-14.800	1.00	22.74	A	C
ATO	M 1784	CB	ASN	A	242	13.397	26.962	-16.322	1.00	22.69	A	C
ATO	M 1785	CG	ASN	A	242	11.960	27.071	-16.828	1.00	22.96	A	C
ATO	M 1786	OD1	ASN	A	242	11.024	26.57B	-16.198	1.00	21.33	A	0
ATO	M 1787	ND2	ASN	A	242	11.782	27.727	-17.969	1.00	21.31	A	N
ATO	M 1788	С	ASN	A	242	14.927	26.359	-14.458	1.00	23.18	A	
ATO	M 1789	0	ASN	A		15.634		-13.902	1.00	23.35	· A	
ATO					243	15.375		-14.820		24.21	7	
ATO		CA			243	16.802		-14.862	1.00	25.06	7	
ATO		СВ			243	17.234		-13.653	1.00	25.31	<u>, </u>	
ATO		CG			243	18.703		-13.595	1.00	27.16	A	
ATO		ND1			243	19.599		-13.086	1.00	30.11	<u> </u>	
ATO					243			-13.152	1.00	30.29		
						20.820					A	
ATO		NE2	HIS			20.752		-13.713	1.00	29.63	P	
ATO					243	19.442		-14.008	1.00	28.73	P	
ATO					243	17.158		-16.162	1.00	26.02	. <u> </u>	
ATO		0			243	17.851		17.003	1.00	25.77	<u>.</u> .	
ATO					244	16.711	22.880		1.00	26.20	7	
ATO		CA	ASP		244	16.757	22.137		1.00	27.35	P	
ATO					244	17.972	21.252		1.00		P	. C
OTA		CG			244	18.211	20.272	-16.546	1.00	29.28	P	C C
OTA	M 1804	OD1	ASP	A	244	19.393	20.188	-16.099	1.00	34.73	P	0
ATO	M 1805	OD2	ASP	A	244	17.310	19.568	-16.056	1.00	28.43	P	7 O
ATO:	M 1806	C	ASP	A	244	15.427	21.429	-17.760	1.00	27.57	7	C
ATO	M 1807	0	ASP	A	244	14.751	21.208	-16.721	1.00	27.11	7	0
OTA	M 1808	N	SER	A	245	15.290	20.734	-18.836	1.00	27.83	A	N
OTA	M 1809	CA	SER	A	245	14.559	19.557	-19.209	1.00	26.73	· .	C
OTA	M 1810	CB	SER	A	245	15.083	18.972	-20.483	1.00	26.99	7	C
ATO	M 1811	OG	SER	A	245	15.792	17.785	-20.481	1.00	27.12	P	. 0
ATO	M 1812	C	SER	A	245	14.234	18.594		1.00	25.28	7	C
ATO		0			245	13.146	17.973		1.00		A	
ATO		N			246	15.122		-17.176		23.51	7	
ATO					246	14.918		-16.177			<u> </u>	
ATO					246	15.977	•	-16.332		23.64	2	
OTA					246	15.852		-17.600		26.42	Ā	
ATO					246							
						17.094		-17.859		29.39	7	
ATO					246	16.880		-19_018		32.94	A	
ATO					246	18.070		-19.908		37.30	P	
ATO					246	14.812		-14.740		21.77	P	
ATO					246	14.396		-13.828			7	
ATO					247	15.126		-14.452		20.43	7	
ATO	M 1824	CA	TYR	A	247	15.144	19.544	-13.079	1.00	19.83	P	C C

	ATOM	1825	CB	TYR A	247	16.541	19.398	-12.456	1.00	19.35	A	C
	ATOM	1826	CG	TYR A	247	17.007	17.966	-12.434	1.00	19.14	\mathbf{A}	C
	MOTA	1827	CD1	TYR A		17.784	17.442	-13.482	1.00	21.08	A	С
	MOTA	1828	CE1	TYR A		18.170		-13.489		17.97	A	C
	ATOM	1829	CZ	TYR A		17.780		-12.458		19.97	A	Ċ
	ATOM	1830	OH	TYR A		18.159		-12.465		18.06	A	0
	ATOM	1831	CE2	TYR A		16.999		-11.417		18.19	A	C
	ATOM	1832	CD2	TYR A		16.630		-11.408		19.09	A	C
	ATOM	1833	C	TYR A		14.697						
								-13.069		18.89	A	С
	ATOM	1834	0	TYR A		15.017		-13.994		18.71	A	0
	MOTA	1835	N	ALA A		13.936		-12.046		17.07	A	N
	ATOM	1836	CA	ALA A		13.512		-11.893		16.28	A	C
	ATOM	1837	CB	ALA A		12.294		-12.733		15.85	A	C
	ATOM	1838	C	ALA A		13.253		-10.425		15.75	A	C
	ATOM	1839	0	ALA A		13.358	22.236	-9.549		15.81	A	0
	MOTA	1840	N	TYR A		12.956		-10.174		15.33	A	Ŋ
	MOTA	1841	CA	TYR A		12.910	24.949	-8.832		15.08	A	C
	MOTA	1842	CB	TYR A	249	13.520	26.336	-8.802	1.00	15.54	A	C
	ATOM	1843	ÇĢ	TYR A	249	14.999	26.398	-9.087	1.00	15.33	A	C
	MOTA	1844	CD1	TYR A	249	15.470	26.675	-10.370	1.00	17.29	A	C
	MOTA	1845	CEl	TYR A	249	16.829	26.754	-10.640	1.00	16.19	A	C
	MOTA	1846	CZ .	TYR A	249	17:741	26.557	-9.608	1.00	18.72	A	C
	MOTA	1847	OH	TYR A	249	19.088	26.649	-9.839	1.00	21.92	A	0
	MOTA	1848	CE2	TYR A	249	17.306	26.287	-8.330	1.00	18.20	A	C
	MOTA	1849	CD2	TYR A	249	15.930	26.207	-8.070	1.00	17.03	A	C
	MOTA	1850	С	TYR A	249	11.497	25.078	-8.358	1.00	15.50	A	C
	MOTA	1851	0	TYR A	249	10.599	25.480	-9.122	1.00	16.06	A	0
	ATOM	1852	N	MET A	250	11.291	24.749	-7.082	1.00	15.10	A	N
	ATOM	1853	CA	MET A	250	10.015	24.967	-6.430	1.00	15.40	A	C
	ATOM	1854	CB	MET A	250	9.153	23.703	-6.542	1.00	15.90	A	C
	ATOM	1855	CG	MET A	250	7.677	23.947	-6.729	1.00	19.64	A	C
	ATOM	1856	SD	MET A	250	6.677	22.370	-6.869		23.44	Α	S
•	ATOM	1857	CE	MET A		7. 321	21.709			22.96	A	Ċ -
	ATOM	1858	C	MET A		10.274	25.318	-4.966		15.09	A	C
	ATOM	1859	0	MET A		11.366	25.081	-4.440		15.78	A	0
	ATOM	1860	N	GLY A		9.279	25.888	-4.314		14.69	A	N
	ATOM	1861	CA	GLY A		9.373	26.203	-2.902		13.76	A	<u></u>
	ATOM	1862	C	GLY A		8.026	26.058	-2.248		14.49	A	Ċ
	ATOM	1863	0	GLY A		6.984	26.057			13.60	A	Ö
	ATOM	1864	N	GLY A		8.056	25.926			12.84	A	N
	ATOM	1865	CA	GLY A		6.879	25.694	-0.101		13.22	A	C
	ATOM	1866	C	GLY A		7.242	24.765	1.058		12.42	Ä	C
	ATOM	1867	Ö	GLY A		8.354	24.185	1.073		11.46	A	Ö
	ATOM	1868	N	THR A		6.328	24.598	2.008		12.37	A	N
	ATOM	1869	CA	THR A		6.518	23.583	3.043		12.51	A	C
	ATOM	1870	CB	THR A		5.543	23.563	4.256		13.05	_	C
	ATOM			THR A							A	
		1871	OG1			4.138	23.788	3.858	1.00	11.78	A	0
	ATOM	1872		THR A		5.837	24.964	5.042		13.23	A	C
	ATOM	1873	C	THR A		6.463	22.211	2.396		12.60	A	C
	ATOM	1874	0	THR A		6.945	21.239			12.54	A	0
	ATOM	1875	N	SER A		5.902	22.158	1.187		12.69	A	N
	ATOM	1876	CA	SER A		5.905	20.957			12.54	A	C
	ATOM	1877	CB	SER A		5.228	21.233	-0.994		12.41	A	C
	ATOM	1878	OG	SER A		3.822	21.002			11.90	A	0
	ATOM	1879	C	SER A		7.298	20.445			12.52	A	C
	ATOM	1880	0	SER A		7.459	19.253			12.45	A	0
	MOTA	1881	N	MET A		8.255	21.361			12.52	A	N
	MOTA	1882	CA	MET A	A 255	9.640	21.062	-0.385	1.00	13.23	A	C .

ATOM	1883	CB	MET	Α	255	10.260	22.231	-1.164	1.00 13.16	A	, C
ATOM	1884	CG	MET	A	255	9.955	22.255	-2.667	1.00 13.61	A	C
ATOM	1885	SD	MET	A	255	8.220	22.693	-3.027	1.00 16.25	A	S
ATOM	1886	CE	MET	A	255	7.683	21.071	-3.591	1.00 13.35	Þ	C C
ATOM	1887	C	MET	A	255	10.478	20.759	0.873	1.00 13.32	7	C
ATOM	1888	0	MET	A	255	11,396	19.934	0.847	1.00 13.21	P	
ATOM	1889	N			256	10.162	21.415	1.981	1.00 12.98	7	
MOTA	1890	CA			256	10.904	21.161	3.213	1.00 12.47	7	
MOTA	1891	CB			256	10.516	22.175	4.265	1.00 11.99	7	
ATOM	1892	C			256	10.515	19.737		1.00 11.89		
								3.717		P	_
ATOM	1893	0			256	11.553	19.018	4.179	1.00 11.48	P	
ATOM	1894	N			257	9.390	19.341	3.629	1.00 11.55	7	
MOTA	1895	CA			257	8.944	18.065	4.146	1.00 11.50	P	
MOTA	1896	CB			257	7.423	17.938	3.908	1.00 12.07	7	
ATOM	1897	OG1	THR	A	257	6.754	19.013	4.569	1.00 13.08	P	. 0
MOTA	1898	CG2	THR	A	257	6.838	16.661	4.540	1.00 12.46	7	, C
ATOM	1899	C	THR	A	257	9.705	16.849	3.587	1.00 11.20	7	7 C
MOTA	1900	0	THR	A	257	10.172	16.018	4.382	1.00 11.03	P	0
MOTA	1901	N	PRO	A	258	9.781	16.686	2.259	1.00 11.22	Į	N
MOTA	1902	CA	PRO	A	258	10.466	15.521	1.687	1.00 10.92	2	, c
MOTA	1903	CB	PRO	Α	258	10.200	15.644	0.182	1.00 10.45	7	A C
ATOM	1904	CG	PRO	Α	258	9.884	17.057	-0.029	1.00 11.62	7	A C
ATOM	1905	CD			258	9.164	17.504	1.207	1.00 10.92	7	
ATOM	1906	C			258	11.969	15.503	1.976	1.00 10.83	7	
ATOM	1907	Ö			258	12.524	14.417	2.020	1.00 9.95	Į	_
ATOM	1908	N			259	12.605	16.665	2.160	1.00 11.19	7	_
ATOM	1909	CA			259	14.004	16.711	2.597	1.00 11.13	7	
ATOM					259						
	1910	CB				14.439	18.183	2.712	1.00 11.81	7	-
MOTA	1911	CG1		•	259	14.492	18.843	1.314	1.00 14.15	7	
MOTA	1912	CD1			259	15.690	18.403	0.504	1.00 17.31	7	
ATOM	1913	CG2			259	15.790	18.313	3.375	1.00 11.02	7	_
MOTA	1914	C			259	14.147	15.975	3.950	1.00 11.56	Į	
ATOM	1915	0			259	15.038	15.133 -		1.00 11.81	·	A O
MOTA	1916	N	LAV			13.259	16.295	4.886	1.00 11.02	Į	N
MOTA	1917	CA	VAL	A	260	13.244	15.668	6.199	1.00 12.26	7	Y C
MOTA	1918	CB	VAL	A	260	12.301	16.412	7.150	1.00 12.30	7	y C
MOTA	1919	CG1	VAL	A	260	12.286	15.743	8.557	1.00 12.78	I	y C
ATOM	1920	CG2	VAL	A	260	12.721	17.855	7.268	1.00 13.51	. 1	Y C
ATOM	1921	C	VAL	A	260	12.847	14.185	6.106	1.00 12.24	7	A C
MOTA	1922	0	VAL	A	260	13.412	13.339	6.786	1.00 12.79	7	A 0
ATOM	1923	N	ALA	A	261	11.922	13.864	5.217	1.00 12.41	7	N N
ATOM	1924	CA	ALA	Α	261	11.530	12.480	4.997	1.00 11.93	7	A C
ATOM	1925	CB	ALA			10.426	12.376	3.920	1.00 12.16		A C
ATOM	1926	C	ALA			12.750	11.661	4.585	1.00 11.91		A C
ATOM	1927	Ö			261	12.943	10.560	5.055	1.00 11.34		. 0
ATOM	1928	N			262	13.550	12.186	3.665	1.00 12.22		A N
ATOM	1929	CA			262	14.794	11.533	3.291	1.00 12.22		y C
ATOM	1930	C	GLY			15.786			1.00 12.29		_
ATOM		_					11.431	4.447	_	7	
	1931	0			262	16.414	10.386	4.660	1.00 11.90		3 0
ATOM	1932	N			263	15.901	12.490				N
ATOM	1933	CA			263	16.744	12.433		1.00 11.84		y C
ATOM	1934	CB			263	16.772	13.773		1.00 12.31		A C
ATOM	1935	CG			263	17.389	14.887	6.351	1.00 13.12		y C
ATOM	1936	OD1			263	18.326	14.681	5.525	1.00 15.95		0
ATOM	1937	ND2			263	16.924	16.073	6.600	1.00 9.15	1	N
MOTA	1938	C	ASN	A	263	16.289	11.348	7.396	1.00 11.83	7	Y C
MOTA	1939	0	ASN	A	263	17.112	10.672	8.020	1.00 11.88	7	O A
ATOM	1940	N	VAL	A	264	14.983	11.181	7.517	1.00 11.77	7	A N
	•										

ATOM	1941	CA	VAL	Ą	264	14.425	10.138	8.367	1.00	12.33	1	A (2		
ATOM	1942	CB	VAL	A	264	12.893	10.268	8.506		12.44			-		
ATOM	1943	CG1	VAL	A	264	12.280	9.045	9.178		12.44		A (
ATOM	1944	CG2	VAL			12.543	11.471	9.323		13.22		A C			
ATOM	1945	C	VAL			14.817	8.754	7.843		11.95	_		-		
ATOM	1946	0	VAL			15.164	7.896	8.625		12.24		A C			
ATOM	1947	N			265	14.813	8.553	6.527		12.03		A A			
ATOM	1948	CA	ALA			15.279	7.292	5.966							
ATOM	1949	CB			265					11.47					
ATOM	1950					15.018	7.237	4.460		11.96		A (
		C	ALA			16.746	7.046	6.293		11.77		A (
MOTA	1951	0	ALA			17.139	5.932	6.592		11.77		A (•	
ATOM	1952	N	GLN			17.571	8.091	6.262		12.48		A A			
MOTA	1953	CA	GLN			18.999	7.940	6.586		11.99	1		-		
ATOM	1954	CB	GLN			19.782	9.230	6.311	1.00	10.90	1	A (
ATOM	1955	CG	GLN			19.786	9.691	4.865	1.00	12.48	1	A C	-		
ATOM	1956	CD	GLN			20.548	11.011	4.671	1.00	12.24	1	A C	-		
MOTA	1957	OE1	GLN	A	266	21.762	11.028	4.352	1.00	16.02	1	A ()		
MOTA	1958	NE2	GLN	A	266	19.857	12.088	4.853	1.00	8.53	7	A N	J		
ATOM	1959	C	GLN	A	266	19.159	7.571	8.046	1.00	12.14	1	A (3		
ATOM	1960	0	GLN	Α	266	19.927	6.688	8.398	1.00	12.13	7	Α ()		
ATOM	1961	N	LEU	A	267	18.463	8.305	8.898	1.00	12.44	7	A N	J		
ATOM	1962	CA	LEU	A	267	18.473	8.049	10.317	1.00	12.06			2		
ATOM	1963	CB	LEU	A	267	17.624	9.107	11.014		12.45		A (
ATOM	1964	CG	LEU	A	267	17.550	9.097	12.540		12.15		A (
ATOM	1965		LEU		267 .	18.918	9.293	13.116		12.99		4 (-		
ATOM	1966		LEU			16.616	10.187	13.009		12.84		Š (
ATOM	1967	С	LEU			17.984	6.649	10.654		12.72		A C			
ATOM	1968	0	LEU			18.581	5.972	11.497		12.91)		
ATOM	1969	N	ARG			16.872	6.219	10.044		12.54		A			
ATOM	1970	CA	ARG			16.295	4.886	10.321	_	12.31					
ATOM	1971	CB	ARG			14.961	4.722	9.577		12.31					
ATOM	1972	CG	ARG			14.016									
ATOM	1973	-CD	ARG				3.635	10.155		12.56					
ATOM	1974	NE	ARG			12.652	3.605			14.20	N	A (
ATOM	1975					11.781	2.591	10.105		14.70		A 1			
ATOM		CZ	ARG			11.837	1.306	9.829		14.81		A (
	1976		ARG			12.697	0.829	8.942		14.11		A 1			
ATOM	1977		ARG			10.993	0.483	10.432		15.99		A N			
MOTA	1978	C	ARG			17.284	3.763	9.929		12.37			-		
ATOM	1979	0	ARG			17.533	2.837	10.689		11.86	7	A (
ATOM	1980	N	GLU			17.846	3.870	8.729		11.97	1	1 A			
ATOM	1981	CA	GLU			18.965	3.026	8.306		12.12	7	A (
ATOM	1982	CB	GLU			19.561	3.537	6.993		11.36			-		
MOTA	1983	CG	GLU			20.764	2.715	6.542		12.78	7	<i>A</i> (-		
	1984	CD	GLU			21.477	3.260	5.335	1.00	15.24	1	A (
MOTA	1985		GLU			21.277	4.447	5.007	1.00	16.05	1	A C)		
ATOM	1986	OE2	GLU	A	269	22.246	2.479	4.711	1.00	16.25	1	A ()		
MOTA	1987	C	GLU	A	269	20.082	2.954	9.354	1.00	12.56	7	A (2		
MOTA	1988	0	GLU	A	269	20.596	1.875	9.645	1.00	12.26	7	A ()		
ATOM	1989	N	HIS	A	270	20.482	4.104	9.894	1.00	12.79	7	A N	1		
MOTA	1990	CA	HIS	A	270	21.556	4.119	10.859	1.00	12.79	1	A . (2		
MOTA	1991	CB	HIS	A	270	21.918	5.531	11.289		12.76		Α (
MOTA	1992		BHIS			23.160	5.583	12.120		10.01		Α			
MOTA	1993		HIS			23.195	5.601	12.063		15.58		4 (
	1994		BHIS			23.186	6.137	13.385			<u>_</u>	A A			
	1995		HIS			23.243	5.459	13.432		20.08		y N			
ATOM	1996		HIS		_	24.404	6.019	13.885	0.50	6.26		<i>y</i> (
	1997		HIS			24.498	5.548	13.839		20.34		A C			
	1998		HIS			25.163		13.000		8.61		A E			
		بية فيه جيد ب	n tuf	~ ^				13.000	5.50	0.01	•	* T	•		•
							-								

•

		•									
ATOM	1999	NE2	AHIS A	270	25.265	5.744	12.783	0.50	20.61	A	N
ATOM	2000	CD2	BHIS A	270	24.405	5.102	11.888	0.50	6.18	A	C
ATOM	2001	CD2	AHIS A	270	24.475	5.782	11.659	0.50	18.53	A	C.
ATOM	2002	C	HIS A	270	21.210	3.294	12.099	1.00	12.75	А	
ATOM	2003	0	HIS A	270	22.031	2.541	12.562	1.00	12.88	A	
ATOM	2004	N	PHE A		20.009	3.468	12.666		12.25	A	
ATOM	2005	CA	PHE A		19.642	2.680	13.834		12.36	A	
ATOM	2006	CB		271	18.274	3.114	14.370		12.01	A	
ATOM	2007	CG	PHE A		18.328	4.292	15.293		11.54	A	
ATOM	2008	CD1	PHE A		18.557		16.643		12.44		
ATOM ·			PHE A			4.127				A	
	2009	CEI			18.601	5.229	17.500		13.55	A	
MOTA	2010	CZ	PHE A		18.400	6.479	17.016		11.92	A	
ATOM	2011	CE2			18.145	6.655	15.663		15.14	A	
ATOM	2012	CD2			18.096	5.567	14.820		13.90	A	
MOTA	2013	C	PHE A		19.620	1.178	13.492		13.05	A	
MOTA	2014	0	PHE A		20.147	0.341	14.240		15.06	A	
ATOM	2015	N	VAL A		19.007	0.850	12.371	1.00	12.88	A	
ATOM	2016	CA	VAL A	272	18.765	-0.526	11.961	1.00	13.79	A	. C
ATOM	2017	CB	VAL A	272	. 17.856	-0.539	10.706	1.00	13.45	A	C
ATOM	2018	CG1	VAL A	272	17.977	-1.840	9.953	1.00	15.25	A	C
MOTA	2019	CG2	VAL A	272	16.429	-0.264	11.112	1.00	13.55	A	C
ATOM	2020	C	VAL A	272	20.068	-1.276	11.689	1.00	14.17	A	C
ATOM	2021	0	VAL A	272	20.242	-2.415	12.162	1.00	14.67	A	. 0
ATOM	2022	N	LYS A	273	20.992	-0.619	10.990	1.00	14.25	A	N
ATOM	2023	CA	LYS A	273	22.255	-1.217	10.606		14.60	. А	. C
ATOM	2024	CB	LYS A	273	22.759	-0.664	9.267	1.00	14.93	A	
ATOM	2025	CG	LYS A		21.893	-1.085	8.052		15.97	A	
ATOM	2026	CD	LYS A		22,432	-0.488	6.729		14.97	A	
ATOM	2027	CE	LYS A		21,735	-1.010	5.482		16.43	A	
ATOM	2028	NZ	LYS A		22.131	-0.162	4.300		13.02	A	
ATOM	2029	C	LYS A		23.366	-1.133	11.645		14.97	A	
ATOM	2030	0	LYS A		24.172	-2.075	11.740		12.32	A A	
ATOM	2031	N	ASN A		23.402		12.403		14.72		
ATOM	2032	CA	ASN A				13.225				
MOTA	2032	CB	ASN A		24.556	0.298			15.62	A	
ATOM	2033		ASN A		25.197	1.649	12.786		16.07	A	
		CG OD1			25.555	1.662	11.290		17.59	A	
ATOM	2035	OD1			25.285	2.647	10.543		18.70	A	
ATOM	2036	ND2			26.124	0.561	10.839		13.05	A	
MOTA	2037	C	ASN A		24.253	0.365	14.694		15.60	A	
ATOM	2038	0	ASN A		25.165	0.449	15.465		15.70	A	
ATOM	2039	N	ARG A		22.979	0.348	15.092		14.80	A	_/
ATOM	2040	CA	ARG A		22.670	0.517	16.505		15.19	A	
ATOM	2041	CB	ARG A		22.046	1.883	16.723		14.89	A	
ATOM	2042	CG	ARG A		22.925	3.001	16.141	1.00	17.88	A	. C
ATOM	2043	CD	ARG A		22.682	4.354	16.748	1.00	17.97	A	. C
ATOM	2044	NE	ARG A	275	23.098	4.391	18.146	1.00	15.44	A	. N
ATOM	2045	CZ	ARG A	275	22.783	5.383	18.977	1.00	18.17	A	C
MOTA	2046	NHl	ARG A	275	22.080	6.422	18.540	1.00	17.27	A	N
MOTA	2047	NH2	ARG A	275	23.191	5.356	20.239	1.00	17.72	A	N
ATOM	2048	C	ARG A	275	21.796	-0.573	17.088	1.00	14.64	A	C
ATOM	2049	0	ARG A	275	21.382	-0.456	18.212	1.00	15.75	A	. 0
MOTA	2050	N	GLY A	276	21.459	-1.577	16.283		14.66	A	
ATOM	2051	CA	GLY A		20.880	-2.825	16.771		14.63	A	
ATOM	2052	C	GLY A		19.403	-2.811	17.060		14.40	A	
ATOM	2053	0	GLY A		18.863	-3.751	17.664		13.52	A	
ATOM	2054	N	VAL A		18.729	-1.745	16.638		14.10	A	
ATOM	2055	CA	VAL A		17.318	-1.618	16.894		14.10	A	
ATOM	2056	CB	VAL A		17.021	-0.657	18.097		14.71	Ā	
	2030	~	الم فيوء،	~ · /	17.021	0.057	10.031	1.00	TZ./1		

	ATOM	2057	CG1	VAL	A	277	17.768	-1.058	19.354	1.00 14.49	A	C
	MOTA	2058		VAL			17.268	0.771	17.733	1.00 15.67	A	C
	ATOM	2059	С	VAL			16.547	-1.097	15.689	1.00 13.79	A	C
	ATOM	2060	Ö	VAL			17.082	-0.372	14.853	1.00 14.29	A	0
	ATOM	2061	N	THR			15.273	-1.472	15.607	1.00 14.21	A	N
	ATOM	2062	CA	THR			14.325	-0.778	14.749	1.00 14.21	A	C
	MOTA	2063	CB	THR			13.187			1.00 15.23		
								-1.700	14.301		A	С
	MOTA	2064	OG1	THR			13.744	-2.825	13.607	1.00 19.10	A	0
	ATOM	2065	CG2	THR		•	12.304	-0.986	13.245	1.00 17.53	A	C
	ATOM	2066	C	THR			13.760	0.394	15.526	1.00 13.49	A	C
	ATOM	2067	0	THR			13.028	0.210	16.485	1.00 13.51	A	0
	MOTA	2068	N	PRO			14.104	1.612	15.134	1.00 12.55	A	N
	ATOM	2069	CA	PRO			13.679	2.803	15.896	1.00 11.32	A	C
	ATOM	2070	CB	PRO	A	279	14.520	3.920	15.277	1.00 11.71	A	C
	ATOM	2071	CG	PRO	A	279	14.682	3.493	13.842	1.00 11.40	A	C
	ATOM	2072	CD	PRO	A	279	14.817	1.975	13.895	1.00 12.28	A	C
•	MOTA	2073	C	PRO	A	279	12.211	3.055	15.672	1.00 11.90	A	C
	ATOM	2074	0	PRO	A	279	11.786	3.053	14.516	1.00 12.19	A	0
	ATOM	2075	N	LYS	A	280	11.438	3.212	16.743	1.00 11.50	A	N
	ATOM	2076	CA	LYS	Ą	280	10.020	3.518	16.639	1.00 12.77	A	Ċ
	ATOM	2077	CB	LYS	A	280	9.354	3,389	18.024	1.00 13.46	A	С
	MOTA	2078	CG	LYS	A	280	9.324	1.993	18.573	1.00 15.21	A	С
	ATOM	2079	CD	LYS	A	280	8.273	1.192	17.861	1.00 20.42	Α	C
	ATOM	2080	CE	LYS	A	280	8.012	-0.146	18.555	1.00 23.45	A	С
	ATOM	2081	NZ	LYS			6.935	-0.858	17.808	1.00 26.12	A	N
	ATOM	2082	С	LYS			9.811	4.951	16.120	1.00 11.96	A	C
	ATOM	2083	0	LYS			10.710	5.782	16.200	1.00 13.23	A	0
	ATOM	2084	N	PRO		281	8.666	5.233	15.512	1.00 12.23	A	N
	ATOM	2085	CA	PRO			B.370	6.608	15.073	1.00 11.69	À	C
	ATOM	2086	CB	PRO			6.897	6.540	14.763	1.00 12.25	A	C
	ATOM	2087	CG	PRO			6.755	5.162	14.210	1.00 12.25		C
	ATOM	2088	CD	PRO			7.592	4.300	15.126	1.00 12.88	A	
	ATOM	2089	C	PRO							A	C
	ATOM	2090				281	8.682		16.105	1.00 11.94	A	C ·
			O N	PRO			9.287	8.708	15.734	1.00 11.60	A	0
	ATOM	2091	N	SER		282	8.303	7.447	17.374	1.00 11.91	A	N
	ATOM	2092	CA	SER		282	8.579	8.404	18.442	1.00 11.78	A	C
	ATOM	2093	CB	SER		282	8.017	7.930	19.789	1.00 11.85	A	C
	ATOM	2094	OG	SER			8.503	6.639	20.117	1.00 12.30	A	0
	MOTA	2095	C	SER		282	10.049	8.704	18.654	1.00 11.36	A	C
	ATOM	2096	0	SER		282	10.402	9.835	19.014	1.00 11.10	A	0
	ATOM	2097	N	LEU		283	10.896	7.696	18.498	1.00 11.81	A	N
	MOTA	2098	CA	LEU		283	12.332	7.889	18.642	1.00 11.66	A	C
	MOTA	2099	CB	LEU		283	13.042	6.532	18.B56	1.00 11.73	A	C
	ATOM	2100	CG	LEU		283	14.575	6.628	18.893	1.00 11.60	A .	C
	ATOM	2101	CD1	LEU		283	15.029	7.501	20.001	1.00 10.08	A	C
	ATOM	2102	CD2	LEU	-	283	15.180	5.233	19.066	1.00 15.86	A	C
	ATOM	2103	Ċ	LEU	A	283	12.953	8.650	17.465	1.00 11.15	A	C
	ATOM	2104	0	LEU	A	283	13.812	9.515	17.644	1.00 11.72	A	0
	ATOM	2105	N	LEU	A	284	12.575	8.305	16.244	1.00 11.65	A	N
	ATOM	2106	, CA	LEU	A	284	13.056	9.058	15.088	1.00 10.89	Α.	C
	ATOM	2107	CB	LEU	A	284	12.493	8.470	13.802	1.00 10.71	A	С
	ATOM	2108	ÇG	LEU	A	284	13.010	7.059	13.442	1.00 10.82	A	C
	ATOM	2109	CD1	LEU	A	284	12.102	6.419	12.399	1.00 10.74	Α	С
	MOTA	2110	CD2	LEU	A	284	14.425	7.107	12.953	1.00 10.79	A	Ċ
	ATOM	2111	C	LEU			12.741	10.568	15.245	1.00 10.24	A	Ċ
	ATOM	2112	Ö	LEU			13.591	11.414	15.013	1.00 9.64	A	o
	ATOM	2113	N	LYS			11.527	10.868	15.682	1.00 10.77	A	N
	ATOM	2114	CA	LYS			11.054	12.217	15.890	1.00 10.81	A	C -
						_ _ _ _ _			,		63	

ATOM 2116 CG LYS A 285 9.544 12.188 16.152 1.00 10.59 A C ATOM 2117 CD LYS A 285 7.372 13.380 16.527 1.00 10.18 A C ATOM 2118 CE LYS A 285 7.372 13.380 16.527 1.00 10.18 A C ATOM 2119 RZ LYS A 285 7.372 13.380 16.528 1.00 11.16 A C ATOM 2119 RZ LYS A 285 7.372 13.380 16.528 1.00 11.16 A C ATOM 2129 C LYS A 285 11.816 12.886 17.037 1.00 10.86 A C ATOM 2122 C LYS A 285 11.816 12.886 17.037 1.00 10.86 A C ATOM 2122 C LYS A 285 11.816 12.886 17.037 1.00 10.86 A C ATOM 2122 N A ALA 286 11.861 12.886 1.00 11.16 A N A RATOM 2122 N A ALA 286 11.861 12.895 16.888 1.00 11.16 A N A RATOM 2122 N A ALA 286 11.861 12.895 18.269 1.00 11.17 A N A RATOM 2124 CA ALA 286 12.657 11.291 18.269 1.00 11.17 A N A RATOM 2125 C ALA 286 12.657 11.292 19.293 1.00 10.00 11.87 A C ATOM 2125 C ALA 286 14.206 12.852 18.897 1.00 10.07 A N A A 287 14.778 12.206 17.679 1.00 10.10 A N A A 287 14.778 12.206 17.679 1.00 10.10 A N A A 287 14.778 12.206 17.679 1.00 10.10 A N A A 287 14.778 12.206 17.679 1.00 11.17 A N A A 287 16.692 10.992 17.034 1.00 11.15 A C A A A 286 14.206 19.992 17.034 1.00 11.20 A A C A ATOM 2130 C ALA 287 16.175 12.206 17.679 1.00 12.13 A C A A A 287 16.175 12.206 17.679 1.00 12.13 A C A A A 287 16.175 12.206 17.679 1.00 12.13 A C A A A 287 16.175 12.206 17.679 1.00 12.42 A C A A A A 287 16.175 12.206 17.679 1.00 12.42 A C A A A A 287 16.349 13.411 16.742 1.00 12.62 A C A A A A 287 16.349 13.411 16.742 1.00 12.53 A N A A A A 287 16.349 13.411 14.155 12.206 17.679 1.00 12.53 A N A A A A 287 16.349 13.411 14.155 12.206 17.679 1.00 12.42 A C A A A A 287 16.349 13.411 14.155 12.206 17.679 1.00 12.42 A C A A A A 287 16.349 13.411 14.155 12.206 17.679 1.00 12.53 A N A A A A A A A A A A A A A A A A A												
ATOM 2118 CE LYS A 285 7.372 13.380 16.583 1.00 12.54 A C ATOM 2118 CE LYS A 285 6.660 14.630 17.085 1.00 11.16 A C ATOM 2120 C LYS A 285 15.159 14.525 16.941 1.00 19.27 A N ATOM 2120 C LYS A 285 11.816 12.886 17.037 1.00 10.86 A C ATOM 2121 O LYS A 285 11.816 12.886 17.037 1.00 10.86 A C ATOM 2121 O LYS A 285 11.816 12.886 17.037 1.00 10.86 A C ATOM 2122 N ALA A 286 11.964 12.194 18.156 1.00 10.94 A N ATOM 2123 CA ALA A 286 12.657 11.813 20.437 1.00 11.37 A C ATOM 2124 CB ALA A 286 12.657 11.813 20.437 1.00 11.37 A C ATOM 2125 C ALA A 286 14.794 13.947 19.275 1.00 10.07 A O ATOM 2125 C ALA A 286 14.794 13.947 19.275 1.00 10.07 A O ATOM 2127 N ALA A 287 14.778 12.048 18.155 1.00 11.51 A N ATOM 2128 CA ALA A 287 16.149 13.947 19.275 1.00 10.07 A O ATOM 2129 CB ALA A 287 16.195 12.206 17.679 1.00 12.13 A C ATOM 2129 CB ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2130 C ALA A 287 16.349 13.447 16.742 10.00 12.42 A C ATOM 2131 O ALA A 287 16.349 13.447 16.742 10.00 12.42 A C ATOM 2131 O ALA A 287 16.349 13.441 16.742 1.00 12.42 A C ATOM 2131 O ALA A 287 16.349 13.441 16.742 1.00 12.42 A C ATOM 2131 C ALA A 288 15.407 13.623 15.826 1.00 13.09 A C ATOM 2131 C ALEU A 288 15.407 13.623 15.826 1.00 13.09 A C ATOM 2131 C ALEU A 288 15.407 13.623 15.826 1.00 13.09 A C ATOM 2136 CD LEU A 288 15.473 14.808 14.956 1.00 13.09 A C ATOM 2136 CD LEU A 288 15.473 14.808 14.956 1.00 13.09 A C ATOM 2136 CD LEU A 288 15.542 14.13 11.974 1.00 15.67 A C ATOM 2137 CD LEU A 288 15.582 13.833 12.736 1.00 15.37 A N ATOM 2137 CD LEU A 288 15.582 13.833 12.736 1.00 15.17 A C ATOM 2137 CD LEU A 288 15.582 13.833 12.736 1.00 15.17 A C ATOM 2137 CD LEU A 288 14.355 13.834 12.736 1.00 15.17 A C ATOM 2137 CD LEU A 288 15.582 11.818 10.00 12.69 A C ATOM 2138 C LEU A 288 13.397 14.033 11.840 1.00 13.69 A C ATOM 2138 C LEU A 288 13.397 14.033 11.840 1.00 13.69 A C ATOM 2138 C LEU A 288 13.397 14.033 11.840 1.00 13.69 A C ATOM 2138 C LEU A 288 13.399 12.00 13.71 1.00 13.65 A C C ATOM 2138 C LEU A 288 13.399 12.00 13.71 1.00 13.69 A C ATOM 214	MOTA	2115	CB	LY\$	A	285	9.544	12.188	16.152	1.00 10.59	A	C
ATOM 2118 CE LYS A 285 7.372 13.380 16.583 1.00 12.54 A C ATOM 2118 CE LYS A 285 6.660 14.630 17.085 1.00 11.16 A C ATOM 2119 NZ LYS A 285 5.159 14.525 16.941 1.00 19.27 A N ATOM 2120 C LYS A 285 13.816 12.886 17.037 1.00 10.86 A C ATOM 2121 O LYS A 285 13.816 12.886 17.037 1.00 10.86 A C ATOM 2121 O LYS A 285 13.816 12.886 17.037 1.00 10.86 A C ATOM 2122 N ALA A 286 11.964 12.194 18.156 1.00 10.94 A N ATOM 2123 CA ALA A 286 12.657 11.813 20.437 1.00 11.37 A C ATOM 2124 CE ALA A 286 12.657 11.813 20.437 1.00 11.37 A C ATOM 2125 C ALA A 286 14.794 13.947 19.275 1.00 10.07 A O ATOM 2126 O ALA A 286 14.794 13.947 19.275 1.00 10.07 A O ATOM 2127 N ALA A 287 14.778 12.048 18.155 1.00 11.61 A N ATOM 2128 CA ALA A 287 16.195 12.206 17.679 1.00 12.33 A C ATOM 2129 CB ALA A 287 16.195 12.206 17.679 1.00 12.33 A C ATOM 2130 C ALA A 287 16.349 13.447 16.742 10.00 12.42 A C ATOM 2131 O ALA A 287 16.349 13.447 16.742 10.00 12.42 A C ATOM 2131 O ALA A 287 16.349 13.447 16.742 10.00 12.42 A C ATOM 2131 O ALA A 287 16.349 13.441 16.742 1.00 12.42 A C ATOM 2131 O ALA A 287 16.349 13.441 16.742 1.00 12.42 A C ATOM 2131 O ALA A 288 15.407 13.623 15.826 1.00 13.09 A C ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 13.09 A C ATOM 2136 CD LEU A 288 15.407 13.623 15.826 1.00 13.09 A C ATOM 2136 CD LEU A 288 15.473 14.808 14.956 1.00 13.09 A C ATOM 2136 CD LEU A 288 15.473 14.808 14.956 1.00 15.39 A C ATOM 2136 CD LEU A 288 15.582 13.833 12.736 1.00 15.39 A C ATOM 2136 CD LEU A 288 15.582 13.833 12.736 1.00 15.17 A N ATOM 2136 CD LEU A 288 15.582 13.833 12.736 1.00 15.17 A C ATOM 2137 CD LEU A 288 13.397 14.033 11.840 1.00 15.17 A C ATOM 2137 CD LEU A 288 15.582 13.833 12.736 1.00 15.17 A C ATOM 2137 CD LEU A 288 15.5829 15.859 16.00 18.397 1.00 13.65 A C ATOM 2137 CD LEU A 288 13.397 14.033 11.840 1.00 15.17 A C ATOM 2138 C LEU A 288 13.397 14.033 11.840 1.00 15.17 A C ATOM 2138 C LEU A 288 13.397 14.033 11.840 1.00 15.57 A C ATOM 2138 C LEU A 288 13.399 13.859 13.859 1.00 13.00 A C ATOM 2158 C ALA A 299 13.859 13.859 13.859 13.00 1	MOTA	2116	ĊG	LYS	A	285	8.909	13.531	16.527	1.00 10.18	A	С
ATOM 2118 CE LYS A 285 6.660 14.630 17.085 1.00 11.16 A C ATOM 2129 CE LYS A 285 51.59 14.525 16.941 1.00 9.27 A N ATOM 2121 C LYS A 285 51.59 14.525 16.941 1.00 9.27 A N ATOM 2121 C LYS A 285 12.287 13.995 16.888 1.00 11.16 A C ATOM 2122 N ALA A 286 11.964 12.194 16.156 1.00 10.94 A N ATOM 2123 CA ALA A 286 12.744 12.722 19.280 1.00 11.37 A C ATOM 2124 CB ALA A 286 12.744 12.722 19.280 10.00 11.37 A C ATOM 2125 C ALA A 286 14.206 12.952 18.897 1.00 10.98 A C ATOM 2126 C ALA A 286 14.206 12.952 18.897 1.00 10.98 A C C ATOM 2127 N ALA A 287 14.798 12.048 18.115 1.00 11.61 A N ATOM 2128 CA ALA A 287 14.798 12.048 18.115 1.00 11.61 A N ATOM 2128 CA ALA A 287 16.592 10.922 17.034 1.00 11.37 A C ATOM 2128 CA ALA A 287 16.592 10.922 17.034 1.00 11.38 A C ATOM 2129 CB ALA A 287 16.592 10.922 17.034 1.00 11.58 A C C ATOM 2130 C ALA A 287 16.592 10.922 17.034 1.00 11.58 A C C ATOM 2131 C ALA A 287 16.592 10.922 17.034 1.00 11.58 A C C ATOM 2131 C ALA A 287 16.592 10.922 17.034 1.00 11.58 A C C ATOM 2131 C ALA A 287 16.592 10.922 17.034 1.00 11.58 A C C ATOM 2131 C ALA A 287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2131 C ALA A 288 15.407 13.623 15.866 1.00 12.37 A N ATOM 2133 CA LEU A 288 15.407 13.623 15.866 1.00 13.67 A C ATOM 2134 CB LEU A 288 15.407 13.623 15.866 1.00 13.67 A C ATOM 2135 CG LEU A 288 15.407 13.623 15.866 1.00 13.67 A C ATOM 2135 CG LEU A 288 15.549 13.873 12.736 1.00 15.93 A C C ATOM 2136 CD LEU A 288 15.549 13.673 11.994 1.00 15.77 A C ATOM 2136 CD LEU A 288 15.549 11.595 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 15.549 11.595 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 15.549 11.595 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 15.549 11.595 13.917 1.00 12.33 A N A C ATOM 2140 N LE A 289 14.955 17.561 17.546 1.00 12.69 A C ATOM 2140 N LE A 289 14.955 17.561 17.546 1.00 12.69 A C ATOM 2140 CD LEU A 288 15.549 1.00 12.55 A C ATOM 2140 CD LEU A 288 15.549 1.00 12.55 A C ATOM 2140 CD LEU A 288 15.549 1.00 12.55 A C ATOM 2140 CD LEU A 288 15.549 1.00 12.55 A C ATOM 2140 CD LEU A 288 15.549 1.00 12.5												
ATOM 2119 NZ LYS A 285 5.159 14.525 16.941 1.00 9.27 A N ATOM 2120 C LYS A 285 11.816 12.886 17.037 1.00 10.86 A C C ATOM 2121 O LYS A 285 11.816 12.886 17.037 1.00 10.86 A C C ATOM 2122 N ALA A 286 11.964 12.194 18.156 1.00 10.94 A N N ATOM 2123 CA ALA A 286 11.964 12.194 18.156 1.00 10.94 A N N ATOM 2124 CB ALA A 286 12.657 11.813 20.437 1.00 11.37 A C C ATOM 2125 C ALA A 286 12.657 11.813 20.437 1.00 11.37 A C C ATOM 2125 C ALA A 286 14.794 13.947 19.275 1.00 10.98 A C ATOM 2126 O ALA A 286 14.798 12.046 12.952 18.897 1.00 10.98 A C ATOM 2127 N ALA A 287 14.778 12.048 18.155 1.00 10.98 A C ATOM 2128 CA ALA A 287 16.157 12.206 1.60 11.51 1.00 11.61 A N ATOM 2128 CA ALA A 287 16.157 12.206 17.679 1.00 12.13 A C C ATOM 2129 CB ALA A 287 16.159 12.006 17.679 1.00 12.13 A C C ATOM 2129 CB ALA A 287 16.592 10.922 17.034 1.00 11.58 A C C ATOM 2121 N LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2131 O ALA A 287 16.154 13.00 11.67 42 10.00 12.42 A C C ATOM 2131 O ALA A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2132 C LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2134 CB LEU A 288 14.552 13.833 12.736 1.00 13.09 A C ATOM 2136 CD LEU A 288 14.552 13.833 12.736 1.00 13.09 A C ATOM 2136 CD LEU A 288 14.552 13.833 12.736 1.00 12.59 A C ATOM 2138 C LEU A 288 13.379 14.033 11.840 1.00 13.44 A C C ATOM 2138 C LEU A 288 13.379 14.033 11.840 1.00 13.69 A C ATOM 2138 C LEU A 288 13.379 14.033 11.840 1.00 13.44 A C C ATOM 2138 C LEU A 288 13.379 14.033 11.840 1.00 13.40 A C C ATOM 2138 C LEU A 288 13.379 14.033 11.840 1.00 13.44 A C C ATOM 2138 C LEU A 288 13.379 14.033 11.840 1.00 12.69 A C ATOM 2138 C LEU A 288 13.379 14.033 11.840 1.00 13.45 A C C ATOM 2140 N LIE A 289 14.195 17.07 15.481 1.00 12.69 A C C ATOM 2140 N LIE A 289 14.195 17.251 17.756 1.00 12.55 A C C ATOM 2140 N LIE A 289 14.195 17.251 17.756 1.00 12.55 A C C ATOM 2140 C LIE A 289 14.195 17.759 18.404 1.00 12.69 A C C ATOM 2140 C LIE A 289 14.195 17.595 18.404 1.00 12.69 A C C ATOM 2140 C LIE A 289 11.840 11.840 11.95 10.00 12.55 A C C ATOM 2140 C												
ATOM 2120 C LYS A 285 12.287 13.995 16.888 1.00 11.66 A C ATOM 2121 N LYS A 285 12.287 13.995 16.888 1.00 11.6 A C ATOM 2122 N ALA A 286 11.964 12.194 18.156 1.00 11.16 A C C ATOM 2123 CA ALA A 286 12.744 12.722 19.280 1.00 11.37 A C ATOM 2124 CB ALA A 286 12.657 11.813 20.437 1.00 11.37 A C ATOM 2125 C ALA A 286 14.206 12.952 18.897 1.00 10.98 A C C ATOM 2126 O ALA A 286 14.206 12.952 18.897 1.00 10.07 A C ATOM 2127 N ALA A 287 14.778 12.048 18.155 1.00 11.61 A N ATOM 2127 N ALA A 287 14.778 12.048 18.155 1.00 11.61 A N ATOM 2128 CA ALA A 287 16.592 10.922 17.034 1.00 11.38 A C ATOM 2129 CB ALA A 287 16.592 10.922 17.034 1.00 11.38 A C ATOM 2130 C ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2131 O ALA A 287 16.592 10.922 17.034 1.00 11.58 A C C ATOM 2130 C ALA A 287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2131 O ALA A 287 17.310 14.165 16.873 1.00 11.82 A C ATOM 2131 O ALA A 287 17.310 14.165 16.873 1.00 11.82 A C ATOM 2132 CA LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2134 CB LEU A 288 15.407 13.623 15.826 1.00 13.67 A C C ATOM 2135 CG LEU A 288 14.357 14.775 13.917 1.00 13.67 A C C ATOM 2136 CD LEU A 288 14.357 14.775 13.917 1.00 13.67 A C C ATOM 2136 CD LEU A 288 13.379 14.033 12.736 1.00 15.93 A C ATOM 2136 CD LEU A 288 13.379 14.033 12.736 1.00 15.93 A C ATOM 2138 C LEU A 288 15.407 13.579 14.033 12.736 1.00 15.93 A C ATOM 2138 C LEU A 288 15.549 14.955 17.541 1.00 12.69 A C ATOM 2138 C LEU A 288 15.407 17.545 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 15.549 14.915 17.546 1.00 12.09 A C ATOM 2140 N ILE A 289 14.955 17.547 1.00 12.33 A N ATOM 2140 N ILE A 289 14.915 17.546 1.00 12.09 A C ATOM 2140 C LIE A 289 15.846 14.113 1.974 1.00 15.74 A C ATOM 2140 C LIE A 289 14.915 17.546 1.00 12.09 A C ATOM 2140 C LIE A 289 14.915 17.546 1.00 12.09 A C ATOM 2140 C LIE A 289 11.686 17.179 17.546 1.00 12.09 A C ATOM 2140 C LIE A 289 11.686 17.179 17.546 1.00 12.09 A C ATOM 2145 C C LIE A 289 11.686 17.797 11.00 13.00 A C ATOM 2145 C C LIE A 289 11.686 17.797 11.00 12.55 A C ATOM 2140 C LIE A 289 11												
ATOM 2121 O LYS A 285 12.287 13.995 16.888 1.00 11.16 A O NATOM 2122 N ALA A 286 11.964 12.194 18.156 1.00 10.94 A N NATOM 2123 CA ALA A 286 12.657 11.813 20.37 1.00 11.16 A C ATOM 2124 CB ALA A 286 12.657 11.813 20.37 1.00 11.16 A C ATOM 2124 CB ALA A 286 12.657 11.813 20.37 1.00 11.17 A C C ATOM 2125 C ALA A 286 14.206 12.952 18.897 1.00 10.98 A C ATOM 2126 O ALA A 286 14.794 13.947 19.225 1.00 10.07 A O ATOM 2127 N ALA A 287 14.778 12.048 18.15 1.00 11.61 A N ATOM 2128 CA ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2128 CA ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2129 CB ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2110 C ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2110 C ALA A 287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2111 O ALA A 287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2111 O ALA A 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2112 N EU A 288 15.473 13.637 15.895 1.00 10.309 A C ATOM 2133 CA LEU A 288 15.473 13.637 14.795 13.917 1.00 13.67 A C ATOM 2135 CG LEU A 288 14.552 13.833 12.736 1.00 12.37 A N A C ATOM 2115 CG LEU A 288 13.379 14.033 11.840 1.00 15.19 A C ATOM 2116 CDL EU A 288 13.379 14.033 11.840 1.00 15.19 A C ATOM 2118 C LEU A 288 15.842 14.113 11.974 1.00 15.17 A C ATOM 2118 C LEU A 288 15.842 14.113 11.974 1.00 15.17 A C ATOM 2118 C LEU A 288 15.842 14.113 11.974 1.00 15.17 A C ATOM 2128 C LEU A 288 15.842 14.113 11.974 1.00 12.69 A C ATOM 2128 C LEU A 288 15.842 14.113 11.974 1.00 12.69 A C ATOM 2128 C LEU A 288 15.842 14.113 11.974 1.00 12.69 A C ATOM 2128 C LEU A 289 14.412 16.096 15.704 1.00 12.26 A A O A ATOM 2139 C LEU A 289 14.412 16.096 15.704 1.00 12.26 A A O A ATOM 2140 N LLE A 289 11.584 17.107 15.40 1.00 12.69 A C A ATOM 2140 CDL LEU A 289 11.584 17.107 15.40 1.00 12.69 A C A ATOM 2140 CDL LEU A 289 11.40 12.108 13.90 11.00 11.73 A C C A ATOM 2140 CDL LEU A 289 11.40 12.108 13.90 13.00 12.69 A C C A ATOM 2140 C LLE A 289 11.40 12.108 13.90 13.00 12.69 A C C A ATOM 2140 C LLE A 289 11.40 12.108 13.90 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.												
ATOM 2123 N ALA A 286 11.964 12.194 18.156 1.00 10.94 A N C ATOM 2123 CA ALA A 286 12.657 11.813 20.437 1.00 10.98 A C C ATOM 2125 C ALA A 286 14.266 17.813 20.437 1.00 10.98 A C C ATOM 2125 C ALA A 286 14.266 12.657 11.813 20.437 1.00 10.98 A C C ATOM 2126 O ALA A 286 14.794 13.947 19.275 1.00 10.07 A O ALA A 286 14.794 13.947 19.275 1.00 10.07 A O ALA A 286 14.798 12.048 18.115 1.00 11.61 A N ATOM 2127 N ALA A 287 16.175 12.206 17.679 1.00 12.13 A C ALA A 287 16.692 10.922 17.034 1.00 11.58 A C ALA A 287 16.692 10.922 17.034 1.00 11.58 A C ALA A 287 16.692 10.922 17.034 1.00 11.58 A C ALA A 287 16.692 10.922 17.034 1.00 11.58 A C ALA A 287 16.692 10.922 17.034 1.00 11.58 A C ALA A 287 16.349 13.411 16.742 1.00 12.13 A C ALA A 287 16.349 13.411 16.742 1.00 12.12 A A C ALA A 287 16.349 13.411 16.742 1.00 12.12 A A C ALA A 287 16.349 13.411 16.742 1.00 12.12 A A C ALA A 288 15.407 13.623 15.826 1.00 12.37 A N A ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 12.37 A N A ATOM 2131 CB LEU A 288 14.552 13.833 12.826 1.00 12.37 A N A ATOM 2135 CG LEU A 288 14.552 13.833 12.736 1.00 13.09 A C A ATOM 2136 CD, LEU A 288 13.379 14.033 11.840 1.00 19.44 A C A ATOM 2138 C LEU A 288 15.8471 18.791 19.791 10.0 13.67 A C A ATOM 2138 C LEU A 288 15.842 14.133 11.8974 1.00 12.69 A C ATOM 2138 C LEU A 288 15.842 14.133 11.8974 1.00 12.69 A C ATOM 2138 C LEU A 288 15.29 16.004 15.547 1.00 12.69 A C ATOM 2130 CD, LEU A 288 15.29 16.009 15.574 1.00 12.69 A C ATOM 2140 N ILE A 289 14.195 17.261 17.546 1.00 12.33 A N A ATOM 2140 CB LEU A 289 14.195 17.261 17.546 1.00 12.69 A C ATOM 2140 N ILE A 289 14.195 17.261 17.546 1.00 12.69 A C ATOM 2140 N ILE A 289 14.195 17.261 17.546 1.00 12.33 A N A ATOM 2140 CB ILE A 289 14.195 17.261 17.546 1.00 12.33 A N A ATOM 2140 CB ILE A 289 14.495 19.898 19.506 1.00 12.44 A C C ATOM 2140 CB ILE A 289 14.495 19.898 19.506 1.00 12.44 A C C ATOM 2140 CB ILE A 289 14.495 19.998 19.506 1.00 11.46 A C C ATOM 2140 CB ILE A 289 14.495 19.998 19.506 1.00 11.46 A C C ATOM 2140 CB ILE A 289 19.498 19.898 19.5			C				11.816	12.886	17.037	1.00 10.86	A	C
ATOM 2124 CB ALA A 286 12.674 12.722 19.280 1.00 11.16 A C ATOM 2124 CB ALA A 286 12.657 11.813 20.437 1.00 11.37 A C C ATOM 2125 C ALA A 286 14.206 12.952 18.897 1.00 10.98 A C ATOM 2127 N ALA A 287 14.778 12.048 18.115 1.00 10.07 A O ATOM 2127 N ALA A 287 14.778 12.048 18.115 1.00 11.61 A N ATOM 2128 CA ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2139 CB ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2130 C ALA A 287 16.392 10.922 17.034 1.00 11.58 A C ATOM 2130 C ALA A 287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2131 O ALA A 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2131 C ALA A 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2131 CALA A 288 15.407 13.623 1.8026 1.00 13.09 A C ATOM 2131 CALA A 288 15.407 13.623 1.00 11.82 A O ATOM 2131 CALA A 288 15.407 13.623 1.00 13.09 A C ATOM 2134 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 14.357 14.075 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 14.357 14.075 13.917 1.00 13.67 A C ATOM 2137 CD2 LEU A 288 15.407 13.00 11.800 1.00 19.44 A C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 15.17 A C ATOM 2139 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 C LEU A 288 16.04 17.07 15.481 1.00 12.69 A C ATOM 2139 C LEU A 288 16.04 17.07 15.481 1.00 12.69 A C ATOM 2140 N TLE A 289 14.412 16.096 16.704 1.00 12.33 A N C ATOM 2140 N TLE A 289 14.491 17.00 15.17 A C C ATOM 2140 CB LEU A 289 14.491 17.504 18.397 1.00 12.69 A C ATOM 2140 CB LEU A 289 11.688 17.178 17.896 18.00 17.00 12.69 A C ATOM 2140 CB LEU A 289 14.491 17.596 18.400 1.00 12.33 A N C C ATOM 2140 CB LEU A 289 15.844 18.178 17.896 18.00 17.1 A C C ATOM 2140 CB LEU A 289 11.688 17.178 17.896 18.00 11.46 A C C ATOM 2140 CB LEU A 289 11.686 17.178 17.486 1.00 12.69 A C C ATOM 2140 CB LEU A 289 11.686 17.178 17.486 1.00 12.69 A C C ATOM 2140 CB LEU A 289 11.686 17.178 17.486 1.00 12.69 A C C ATOM 2150 CB ALA A 290 17.597 18.600 18.976 1.00 13.36 A N C C ATOM 2150 CB ALA A 290 17.597 18.600 18.976 1.00 13.45 A C C ATOM 2150 CB ALA A 290 17.597 18.600 18.500 19.976 1.00	MOTA	2121	0	LYS	A	285	12.287	13.995	16.888	1.00 11.16	A	0
ATOM 2124 CB ALA A 286 12.674 12.722 19.200 1.00 11.16 A C ATOM 2124 CB ALA A 286 12.657 11.813 20.437 1.00 11.37 A C C ATOM 2125 C ALA A 286 14.206 12.952 18.897 1.00 10.98 A C ATOM 2126 O ALA A 286 14.708 12.952 18.897 1.00 10.07 A O O ATOM 2127 N ALA A 287 14.778 12.048 18.115 1.00 11.61 A N ATOM 2129 CB ALA A 287 16.175 12.206 17.679 1.00 12.13 A C ATOM 2129 CB ALA A 287 16.175 12.206 17.679 1.00 11.51 A N ATOM 2129 CB ALA A 287 16.175 12.206 17.679 1.00 12.13 A C ATOM 2130 C ALA A 287 16.349 13.411 16.742 1.00 12.13 A C ATOM 2131 O ALA A 287 17.310 14.165 16.873 1.00 11.58 A C ATOM 2131 O ALA A 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 13.09 A C ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 13.09 A C ATOM 2134 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2136 CD1 LEU A 288 14.357 14.033 11.840 1.00 15.39 A C ATOM 2137 CD2 LEU A 288 15.3379 14.033 11.840 1.00 15.39 A C ATOM 2136 CD1 LEU A 288 15.329 16.105 15.574 1.00 12.69 A C ATOM 2139 O LEU A 288 15.329 16.105 15.747 1.00 15.17 A C ATOM 2139 O LEU A 288 16.329 16.105 15.747 1.00 12.69 A C ATOM 2139 O LEU A 288 16.04 17.107 15.481 11.00 12.69 A C ATOM 2140 N TLE A 289 14.412 16.096 16.704 1.00 12.33 A N C ATOM 2140 N TLE A 289 14.412 16.096 16.704 1.00 12.33 A N C ATOM 2140 N TLE A 289 14.491 17.591 17.566 1.00 12.33 A N C ATOM 2140 CB LEU A 289 14.491 17.592 17.596 18.00 17.01 1.00 12.69 A C ATOM 2140 CB LEU A 289 14.491 17.596 18.397 1.00 12.69 A C ATOM 2140 CB LEU A 289 14.491 17.596 18.397 1.00 12.69 A C ATOM 2140 CB LEU A 289 15.844 18.195 17.261 17.546 1.00 12.269 A C ATOM 2140 CB LEU A 289 15.848 18.949 19.956 1.00 13.36 A N C C ATOM 2140 CB LEU A 289 16.606 16.704 1.00 12.33 A N C C C C C C C C C C C C C C C C C C	MOTA	2122	N	ALA	A	286	11.964	12.194	18.156	1.00 10.94	A	N
ATOM 2125 CB ALA A 286 14.2657 11.813 20.437 1.00 11.37 A C C ATOM 2125 C ALA A 286 14.206 12.952 18.897 1.00 10.98 A C C ATOM 2126 O ALA A 286 14.794 13.947 19.275 1.00 10.07 A O ATOM 2127 N ALA A 287 14.778 12.048 18.115 1.00 11.61 A N ATOM 2128 CA ALA A 287 16.592 10.922 17.034 1.00 11.61 A N ATOM 2128 CA ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2129 CB ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2130 C ALA A 287 16.592 10.922 17.034 1.00 11.58 A C ATOM 2130 C ALA A 287 17.310 14.165 18.742 1.00 12.42 A C ATOM 2131 O ALA A 287 17.310 14.165 18.742 1.00 12.42 A C ATOM 2131 O ALA A 287 17.310 14.165 18.026 1.00 12.37 A N ATOM 2132 C LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2134 CB LEU A 288 14.552 13.833 15.826 1.00 13.09 A C ATOM 2134 CB LEU A 288 14.552 13.833 11.804 1.00 13.67 A C ATOM 2135 CG LEU A 288 14.552 13.833 11.804 1.00 13.67 A C ATOM 2137 CD LEU A 288 13.379 14.033 11.804 1.00 19.44 A C ATOM 2137 CD LEU A 288 15.529 16.105 15.747 1.00 12.69 A C ATOM 2138 C LEU A 288 15.829 16.014 17.107 15.481 1.00 12.69 A C ATOM 2139 O LEU A 288 15.829 16.004 17.107 12.33 A N ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2140 N TLE A 289 14.195 17.261 17.546 1.00 12.33 A N ATOM 2140 N TLE A 289 14.195 17.261 17.546 1.00 12.33 A N ATOM 2140 CB TLE A 289 14.195 17.261 17.546 1.00 12.33 A N ATOM 2140 CB TLE A 289 12.920 17.084 18.397 1.00 13.55 A C ATOM 2143 CG TLE A 289 15.849 11.688 17.178 17.488 1.00 11.46 A C ATOM 2143 CG TLE A 289 15.849 11.688 17.178 17.488 1.00 11.46 A C ATOM 2143 CG TLE A 289 15.849 11.688 17.178 17.488 1.00 11.46 A C ATOM 2145 CG TLE A 289 15.849 11.688 17.178 17.488 1.00 11.46 A C ATOM 2145 CG TLE A 289 15.849 19.956 16.704 1.00 12.33 A N A C C ATOM 2145 CG TLE A 289 15.849 19.956 16.704 1.00 12.33 A N A C C C C C C C C C C C C C C C C C	ATOM	2123	CA									
ATOM 2126 C ALA A 286 14.206 12.552 18.897 1.00 10.98 A C ATOM 2126 O ALA A 286 14.794 13.947 15.275 1.00 10.07 A O ATOM 2127 N ALA A 287 14.794 13.947 15.275 1.00 10.07 A O ATOM 2128 CA ALA A 287 16.175 12.206 17.679 1.00 12.13 A C ALA A 287 16.175 12.206 17.679 1.00 12.13 A C ATOM 2120 CB ALA A 287 16.692 10.922 17.034 1.00 11.58 A C ATOM 2130 C ALA A 287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2131 O ALA A 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2131 O ALA A 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2133 CB LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2134 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2136 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 13.379 14.033 11.840 1.00 19.44 A C ATOM 2137 CD2 LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2140 N LEU A 288 16.14 17.107 15.481 1.00 12.69 A C ATOM 2140 N LEU A 289 14.412 16.096 16.704 11.00 12.33 A N ATOM 2141 CB LEU A 289 14.412 16.096 16.704 11.00 12.69 A C ATOM 2143 CG LILE A 289 14.495 17.781 17.786 1.00 12.69 A C ATOM 2143 CG LILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2144 CB LLE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2145 CG LILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2145 CG LILE A 289 15.412 17.596 18.424 1.00 10.00 A C ATOM 2145 CG LILE A 289 15.412 17.596 18.424 1.00 10.00 A C ATOM 2145 CG LILE A 289 15.412 17.596 18.424 1.00 10.00 A C ATOM 2145 CG LILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2155 CB ALA A 290 17.132 16.887 17.781 17.781 10.01 12.60 A C ATOM 2155 CB ALA A 290 17.132 16.887 17.975 1.00 11.56 A C ATOM 2155 CB ALA A 290 17.132 16.854 19.976 1.00 11.71 A N A ATOM 2155 CB ALA A 290 17.132 16.854 19.976 1.00 11.33 A C ATOM 2155 CB ALA A 290 17.132 16.854 19.976 1.00 11.34 A C ATOM 2156 CB ALA A 290 17.132 16.854 19.976 1												
ATOM 2126 O ALA 286 14.794 13.947 19.275 1.00 10.07 A O ATOM 2127 N ALA 287 14.778 12.048 18.115 1.00 11.51 A N ATOM 2128 CA ALA A 287 16.692 10.922 17.034 10.0 11.51 A C ATOM 2130 C ALA 287 16.692 10.922 17.034 10.0 11.58 A C ATOM 2131 O ALA A 287 16.349 13.411 16.742 1.00 11.58 A C ATOM 2131 O ALA A 287 16.349 13.411 16.742 1.00 11.58 A C ATOM 2131 O ALA A 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2132 N LEU A 288 15.407 13.623 15.825 1.00 11.82 A O ATOM 2133 CA LEU A 288 15.407 13.623 15.825 1.00 11.82 A O ATOM 2133 CA LEU A 288 14.557 14.75 13.917 1.00 13.67 A C ATOM 2136 CDI LEU A 288 14.557 14.75 13.917 1.00 13.67 A C ATOM 2136 CDI LEU A 288 14.557 14.75 13.917 1.00 19.44 A C ATOM 2136 CDI LEU A 288 13.379 14.033 11.840 1.00 19.44 A C ATOM 2136 CDI LEU A 288 15.842 14.113 11.974 1.00 15.17 A C ATOM 2138 C LEU A 288 15.842 14.113 11.974 1.00 15.17 A C ATOM 2139 O LEU A 288 16.014 17.107 15.481 1.00 12.69 A C ATOM 2139 O LEU A 288 16.014 17.107 15.481 1.00 12.69 A C ATOM 2140 N ILE A 289 14.12 16.09 16.704 1.00 12.69 A O ATOM 2140 N ILE A 289 14.12 16.09 16.704 1.00 12.69 A O ATOM 2140 N ILE A 289 14.195 17.281 17.546 1.00 12.69 A O ATOM 2143 CGI LEU A 288 11.688 17.178 17.488 1.00 12.69 A C ATOM 2143 CGI LE A 289 11.688 17.178 17.488 1.00 12.69 A C ATOM 2144 CDI LE A 289 11.688 17.178 17.488 1.00 12.69 A C ATOM 2144 CDI LE A 289 11.688 17.178 17.488 1.00 12.69 A C ATOM 2145 CGI LE A 289 15.412 17.596 18.422 1.00 13.36 A C ATOM 2145 CGI LE A 289 15.412 17.596 18.422 1.00 13.36 A C ATOM 2145 CGI LE A 289 15.412 17.596 18.422 1.00 13.36 A C ATOM 2145 CGI LE A 289 15.412 17.596 18.422 1.00 13.36 A C ATOM 2145 CGI LE A 289 15.412 17.596 18.422 1.00 13.36 A C ATOM 2150 CB ALA A 290 17.529 15.6612 19.132 1.00 11.77 A C ATOM 2146 C C LE A 289 15.412 17.596 18.422 1.00 13.36 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2155 C BALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2155 C BALA A 290 18.504 18.505 18.505 1.00 13.36 A C ATOM 2155 C BALA A 290 18.505 18.505 18.505 1.00 13.36 A C A												
ATOM 2128 CA ALA A 287 16.175 12.046 18.115 1.00 11.51 A N ATOM 2128 CA ALA A 287 16.175 12.206 17.679 1.00 12.13 A C ATOM 2130 C ALA A 287 16.692 10.922 17.034 1.00 12.13 A C ATOM 2130 C ALA A 287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2131 C ALA A 287 17.310 14.165 16.873 1.00 11.82 A C ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2133 CA LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2133 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2134 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2135 CB LEU A 288 14.552 13.833 12.736 1.00 12.37 A N ATOM 2136 CD LEU A 288 14.552 13.833 12.736 1.00 15.39 A C ATOM 2136 CD LEU A 288 13.379 14.033 11.840 1.00 19.44 A C ATOM 2137 CD2 LEU A 288 15.829 16.105 15.74 1.00 12.69 A C ATOM 2137 CD2 LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2140 N ILE A 289 14.412 16.096 15.704 1.00 12.69 A C ATOM 2140 N ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.195 17.261 17.546 1.00 12.55 A C ATOM 2142 CB ILE A 289 12.869 17.786 1.00 12.55 A C ATOM 2144 CD1 ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CD1 ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CD1 ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CD1 ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CD1 ILE A 289 15.844 18.746 18.442 1.00 13.34 A C ATOM 2144 CD1 ILE A 289 15.844 18.746 18.442 1.00 13.34 A C ATOM 2146 C ILE A 289 15.844 18.746 18.442 1.00 13.34 A C ATOM 2146 C ILE A 289 15.846 18.742 19.976 1.00 13.74 A C ATOM 2146 C ILE A 289 15.844 18.746 18.442 1.00 13.34 A C ATOM 2146 C ILE A 289 15.844 18.746 18.442 1.00 13.34 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.659 1.00 13.54 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.659 1.00 13.54 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.659 1.00 13.54 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.659 1.00 13.34 A C ATOM 2150 CB ALA A 290 18.655 21.499 10.00 10.55 A O ATOM 2150 CB ALA A 292 18.555 21.499 10.00 13.45 A C ATOM			_									
ATOM 2128 CA ALA 227 16.175 12.206 17.679 1.00 12.13 A C ATOM 2129 CB ALA 227 16.692 10.922 17.034 1.00 11.58 A C ATOM 2130 C ALA 2287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2131 O ALA 288 15.407 13.623 15.826 1.00 11.82 A O ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2133 CA LEU A 288 15.473 14.808 14.956 1.00 13.09 A C ATOM 2133 CA LEU A 288 15.473 14.808 14.956 1.00 13.67 A C ATOM 2135 CG LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 14.552 13.833 12.736 1.00 15.47 A C ATOM 2137 CD LEU A 288 13.379 14.033 11.840 1.00 15.44 A C C ATOM 2137 CD LEU A 288 15.824 14.133 11.974 1.00 15.17 A C ATOM 2137 CD LEU A 288 15.824 14.133 11.974 1.00 15.17 A C ATOM 2139 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 O LEU A 288 16.014 17.107 15.481 1.00 12.33 A N ATOM 2140 N ILE A 289 14.192 17.261 17.546 1.00 12.33 A N ATOM 2140 N ILE A 289 14.192 17.261 17.546 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.192 17.261 17.546 1.00 12.69 A C ATOM 2142 CB ILE A 289 11.688 17.178 17.488 1.00 12.69 A C ATOM 2143 CGI ILE A 289 11.688 17.178 17.488 1.00 12.69 A C ATOM 2144 CD ILE A 289 11.688 17.178 17.488 1.00 12.69 A C ATOM 2144 CD ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CD ILE A 289 15.812 17.596 18.426 1.00 12.69 A C ATOM 2144 CD ILE A 289 15.812 17.596 18.426 1.00 12.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 15.812 17.596 18.426 1.00 17.74 A C ATOM 2145 CG2 ILE A 289 18.848 18.948 19.669 1.00 11.586 A O ATOM 2145 CG2 ILE A 289 18.848 18.249 1			U				14.794	13.947	19.275	1.00 10.07	A	0
ATOM 2130 C ALA A 287 16.692 10.922 17.034 1.00 11.50 A C ATOM 2130 C ALA A 287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2131 O ALA A 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2132 N LEU A 288 15.477 13.623 15.826 1.00 12.37 A N ATOM 2133 CA LEU A 288 15.477 13.623 15.826 1.00 13.39 A C ATOM 2134 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2135 CG LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 14.552 13.833 12.736 1.00 15.39 A C ATOM 2137 CD LEU A 288 13.379 14.033 11.840 1.00 15.17 A C ATOM 2137 CD LEU A 288 13.379 14.033 11.840 1.00 15.17 A C ATOM 2137 CD LEU A 288 15.829 16.105 15.747 1.00 12.69 A C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 O LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 O LEU A 288 16.014 17.107 15.481 1.00 12.69 A C ATOM 2140 N ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.55 A C ATOM 2142 CB ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CD I ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CD I ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CD I ILE A 289 12.869 18.098 19.506 1.00 12.55 A C C ATOM 2144 CD I ILE A 289 12.869 18.098 19.506 1.00 12.74 A C C ATOM 2144 CD I ILE A 289 15.844 18.746 18.426 1.00 12.74 A C C ATOM 2146 C ILE A 289 15.844 18.746 18.426 1.00 12.74 A C C ATOM 2146 C ILE A 289 15.844 18.746 18.426 1.00 12.74 A C C ATOM 2146 C ILE A 289 15.844 18.746 18.426 1.00 11.71 A N ATOM 2147 C ALA A 290 17.529 15.853 20.698 1.00 12.55 A C C ATOM 2148 N ALA A 290 17.529 15.853 20.698 1.00 12.08 A C C ATOM 2150 CB ALA A 290 17.529 15.853 20.698 1.00 12.09 A C C ATOM 2151 C ALA A 290 17.529 15.853 19.911 1.00 11.95 A C C ATOM 2150 CB ALA A 290 17.529 15.853 19.911 1.00 11.95 A C C ATOM 2151 C ALA A 290 19.14 18.198 19.689 1.00 10.65 A O A ATOM 2150 CB ALA A 290 19.14 18.898 19.689 1.00 10.65 A O A ATOM 2150 CB ALA A 291 18.665 17.370 19.191 1.00 11.95 A C C ATOM 2150 C ALA A 292	MOTA	2127	N	ALA	A	287	14.778	12.048	18.115	1.00 11.61	A	N
ATOM 2130 C ALA A 287 16.692 10.922 17.034 1.00 11.58 A C ATOM 2131 0 ALA A 287 16.349 13.411 16.742 1.00 12.42 A C ATOM 2131 0 ALA A 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2133 CA LEU A 288 15.473 14.808 14.956 1.00 13.09 A C ATOM 2133 CA LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2135 CG LEU A 288 14.552 13.833 12.736 1.00 15.39 A C ATOM 2136 CD LEU A 288 13.379 14.033 11.840 1.00 15.39 A C ATOM 2137 CD LEU A 288 15.407 11.974 1.00 15.17 A C ATOM 2137 CD LEU A 288 15.842 14.13 11.974 1.00 15.17 A C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2140 CA ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.69 A C ATOM 2142 CB ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2143 CGI ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CDI ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CDI ILE A 289 12.869 18.098 19.506 1.00 12.55 A C ATOM 2144 CDI ILE A 289 12.869 18.098 19.506 1.00 12.74 A C C ATOM 2146 C ILE A 289 15.844 18.746 18.426 1.00 12.74 A C C ATOM 2147 C ILE A 289 15.844 18.746 18.426 1.00 12.74 A C C ATOM 2147 C ILE A 289 15.844 18.746 18.426 1.00 12.74 A C C ATOM 2149 CA ALA A 290 17.132 16.854 19.976 1.00 11.71 A N ATOM 2145 CG ILE A 289 15.844 18.746 18.426 1.00 12.74 A C C ATOM 2147 C ILE A 289 15.844 18.746 18.426 1.00 12.74 A C C ATOM 2148 N ALA A 290 17.132 16.854 19.976 1.00 11.73 A C C ATOM 2150 CB ALA A 290 17.132 16.854 19.976 1.00 11.73 A C C ATOM 2151 C ALA A 290 19.144 18.198 19.689 1.00 10.65 A C ATOM 2151 C ALA A 290 19.144 18.198 19.689 1.00 10.65 A C ATOM 2151 C ALA A 290 19.144 18.198 19.689 1.00 10.65 A C ATOM 2150 C ALA A 290 19.146 18.596 17.370 19.191 1.00 11.95 A C ATOM 2150 C ALA A 290 19.146 18.666 17.379 19.101 1.00 11.95 A C ATOM 2150 C ALA A 292 18.655 21	MOTA	2128	CA	ALA	A	287	16.175	12.206	17.679	1.00 12.13	A	С
ATOM 2131 O ALA 227 17.310 14.165 16.742 1.00 12.42 A C ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2132 CA LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2133 CA LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2134 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2135 CG LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 14.552 13.833 12.736 1.00 15.39 A C ATOM 2136 CD LEU A 288 14.552 13.833 12.736 1.00 15.39 A C ATOM 2136 CD LEU A 288 13.379 14.033 11.840 1.00 19.44 A C C ATOM 2137 CD2 LEU A 288 15.842 14.133 11.974 1.00 15.17 A C ATOM 2138 C LEU A 288 15.842 14.133 11.974 1.00 15.17 A C ATOM 2138 C LEU A 288 16.014 17.107 15.481 1.00 12.69 A C ATOM 2139 O LEU A 288 16.014 17.107 15.481 1.00 12.69 A C ATOM 2140 N ILE A 289 14.412 16.096 16.704 1.00 12.69 A C ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.69 A C ATOM 2141 CA ILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2143 CGI ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2143 CGI ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CGZ ILE A 289 15.412 17.596 18.404 1.00 10.00 A C ATOM 2145 CGZ ILE A 289 15.412 17.596 18.402 1.00 13.54 A C ATOM 2145 CGZ ILE A 289 15.412 17.596 18.402 1.00 13.36 A C ATOM 2145 CGZ ILE A 289 15.412 17.596 18.402 1.00 13.36 A C ATOM 2145 CGZ ILE A 289 15.412 17.596 18.402 1.00 13.36 A C ATOM 2145 CGZ ILE A 289 15.412 17.596 18.402 1.00 13.36 A C ATOM 2145 CGZ ILE A 289 15.412 17.596 18.402 1.00 13.36 A C ATOM 2145 CGZ ILE A 289 15.412 17.596 18.402 1.00 12.74 A C C ATOM 2145 CGZ ILE A 289 15.412 17.596 18.402 1.00 12.74 A C C ATOM 2145 CGZ ILE A 289 15.844 18.776 18.402 1.00 11.71 A N A ATOM 2150 CB ALA A 290 15.975 16.612 19.132 1.00 11.71 A N A ATOM 2150 CB ALA A 290 17.132 16.686 17.979 1.00 11.71 A N A ATOM 2150 CB ALA A 290 17.132 16.686 17.979 1.00 11.84 A N A C ATOM 2155 C GLY A 291 18.402 18.506 16.400 1.00 12.44 A C C ATOM 2155 C GLY A 291 18.402 18.506 16.400 1.00 12.44 A C C ATOM 2155 C GLY A 291 18.606 18.506 16.400 1.00 12.44 A C C ATOM 2150 C GLY	MOTA	2129	CB	ALA	A	287	16.692	10.922	17.034	1.00 11.58	A	C
ATOM 2131 O ALA 287 17.310 14.165 16.873 1.00 11.82 A O ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2133 CA LEU A 288 15.473 14.808 14.956 1.00 13.09 A C ATOM 2134 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2135 CG LEU A 288 14.357 14.775 13.917 1.00 15.39 A C ATOM 2136 CD1 LEU A 288 13.379 14.033 11.840 1.00 15.39 A C ATOM 2136 CD1 LEU A 288 13.379 14.033 11.840 1.00 15.39 A C ATOM 2137 CD2 LEU A 288 15.842 14.113 11.974 1.00 15.17 A C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2140 N ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.419 17.261 17.546 1.00 12.69 A C ATOM 2141 CA ILE A 289 12.920 17.084 18.397 1.00 12.65 A C ATOM 2141 CA ILE A 289 12.920 17.084 18.397 1.00 12.65 A C ATOM 2143 CG1 ILE A 289 11.688 17.178 17.488 1.00 10.00 0.00 A C ATOM 2144 CD1 ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2146 C ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2149 CA ALA 290 17.132 16.854 19.976 1.00 11.71 A N ATOM 2149 CA ALA 290 17.132 16.854 19.975 1.00 11.73 A C ATOM 2145 C G ALA 290 17.132 16.854 19.976 1.00 11.71 A N ATOM 2149 CA ALA 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA 290 17.132 16.856 17.370 19.191 1.00 11.95 A C ATOM 2150 CB ALA 290 17.132 16.856 17.370 19.191 1.00 11.95 A C ATOM 2150 CB ALA 290 17.132 16.856 17.370 19.191 1.00 11.95 A C ATOM 2150 C ALA 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2150 C ALA 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2150 C ALA 292 18.655 21.499 16.075 1.00 1												
ATOM 2132 N LEU A 288 15.407 13.623 15.826 1.00 12.37 A N ATOM 2133 CA LEU A 288 15.473 14.808 14.956 1.00 13.09 A C ATOM 2134 CB LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2135 CG LEU A 288 14.357 14.775 13.917 1.00 13.67 A C ATOM 2136 CD LEU A 288 14.357 14.075 13.917 1.00 13.67 A C ATOM 2137 CD2 LEU A 288 15.842 14.113 11.840 1.00 19.44 A C C ATOM 2137 CD2 LEU A 288 15.842 14.113 11.974 1.00 15.17 A C ATOM 2138 C LEU A 288 15.842 14.113 11.974 1.00 12.69 A C ATOM 2139 O LEU A 288 16.014 17.107 15.481 1.00 12.69 A C ATOM 2139 O LEU A 288 16.014 17.107 15.481 1.00 12.69 A C ATOM 2140 N TLE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA LE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA LE A 289 12.920 17.084 18.397 1.00 12.69 A C ATOM 2142 CB LE A 289 12.920 17.084 18.397 1.00 12.69 A C ATOM 2143 CG1 LE A 289 10.404 16.725 18.104 1.00 12.69 A C ATOM 2143 CG1 LE A 289 10.404 16.725 18.104 1.00 12.69 A C ATOM 2144 CD1 LE A 289 10.404 16.725 18.104 1.00 12.69 A C ATOM 2146 C LE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2146 C LE A 289 15.412 17.596 18.098 19.506 1.00 13.54 A C ATOM 2146 C LE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2146 C LE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2148 N ALA 290 15.975 16.612 19.132 1.00 11.71 A N ATOM 2149 CA ALA 290 17.132 16.684 19.976 1.00 11.71 A N ATOM 2149 CA ALA 290 17.132 16.684 19.976 1.00 11.71 A N ATOM 2151 C ALA 290 17.132 16.684 19.976 1.00 11.71 A N ATOM 2152 C ALA 290 17.132 16.686 17.979 1.00 11.84 A C ATOM 2152 C ALA 290 17.132 16.686 17.979 1.00 11.84 A N A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.08 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.06 A N ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.06 A N ATOM 2156 C GLY A 291 19.668 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.668 17.979 1.00 11.84 A N A ATOM 2156 C GLY A 291 19.668 17.979 1.00 13.35 A C ATOM 2156 C GLY A 291 19.668 17.979 1.00 13.35 A C ATOM 2156 C ALA A 292 18.655 21.499 16.075 1.00 13.35 A C ATOM 2169 C ALA A 292 18.			_									
ATOM 2133 CA LEU A 288 15.473 14.808 14.956 1.00 13.09 A C ATOM 2135 CG LEU A 288 14.357 14.775 13.917 1.00 15.39 A C ATOM 2135 CG LEU A 288 14.552 13.833 12.736 1.00 15.39 A C ATOM 2136 CD1 LEU A 288 13.379 14.033 11.840 1.00 15.17 A C C ATOM 2137 CD2 LEU A 288 15.329 16.105 15.747 1.00 15.17 A C C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 O LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 O LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2140 N ILE A 289 14.113 17.546 1.00 12.69 A C ATOM 2140 N ILE A 289 14.195 17.261 17.546 1.00 12.69 A C ATOM 2141 CA ILE A 289 14.195 17.261 17.546 1.00 12.69 A C ATOM 2142 CB ILE A 289 14.195 17.261 17.546 1.00 12.69 A C ATOM 2142 CB ILE A 289 11.688 17.178 17.848 1.00 11.46 A C ATOM 2144 CDI ILE A 289 11.688 17.178 17.486 1.00 12.55 A C ATOM 2144 CDI ILE A 289 11.688 17.178 17.486 1.00 10.00 A C ATOM 2144 CDI ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2144 CDI ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 13.54 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 13.36 A C ATOM 2148 CDI ILE A 289 15.844 18.746 18.442 1.00 13.36 A C ATOM 2149 CA ALA A 290 17.529 15.553 20.698 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.529 15.553 20.698 1.00 11.73 A C ATOM 2150 CB ALA 290 19.114 18.198 19.689 1.00 10.65 A C ATOM 2150 CB ALA 290 19.114 18.198 19.689 1.00 10.65 A C ATOM 2151 C ALA 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2151 C ALA 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2151 C ALA 292 18.595 20.437 19.191 1.00 11.95 A C ATOM 2152 C ALA 292 18.595 21.595 20.698 1.00 10.65 A O ATOM 2152 C ALA 292 18.655 21.499 16.507 1.00 13.36 A C ATOM 2152 C ALA 292 18.655 21.499 16.075 1.00 13.35 A C ATOM 2155 C GLY A 291 18.495 21.60 18.506 16.400 1.00 12.99 A C ATOM 2155 C GLY A 291 18.655 21.499 16.075 1.00 13.95 A C ATOM 2156 C ALA 292 18.656 16.506 16.400 1.00 13.35 A C ATOM 2158 CA ALA 292 18.655 21.499 16.075 1.00 13.35 A C ATOM 2158 CA ALA 292 18.656 16.507 1.00 13.35 A C ATOM 2160 C ALA												
ATOM 2134 CB LEU A 288												
ATOM 2135 CG LEU A 288 14.552 13.833 12.736 1.00 15.39 A C ATOM 2137 CD2 LEU A 288 15.842 14.113 11.974 1.00 15.17 A C ATOM 2137 CD2 LEU A 288 15.842 14.113 11.974 1.00 12.69 A C ATOM 2138 C LEU A 288 15.842 14.113 11.974 1.00 12.69 A C ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2139 O LEU A 288 16.014 17.107 15.481 1.00 12.69 A C ATOM 2140 N ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.95 17.261 17.546 1.00 12.69 A C ATOM 2142 CB ILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2143 CG1 ILE A 289 11.668 17.178 17.468 1.00 11.46 A C ATOM 2143 CG1 ILE A 289 11.668 17.178 17.468 1.00 10.00 A C ATOM 2144 CD1 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2148 N ALA A 290 15.975 16.612 19.132 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.132 16.854 19.976 1.00 12.08 A C ATOM 2149 CA ALA A 290 17.529 15.553 20.698 1.00 12.08 A C ATOM 2150 CB ALA 290 17.529 15.553 20.698 1.00 12.08 A C ATOM 2151 C ALA 290 18.326 17.370 19.191 1.00 11.73 A C ATOM 2152 C ALA 290 19.14 18.198 19.669 1.00 10.65 A C ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.665 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.665 17.370 19.191 1.00 11.56 A C ATOM 2156 C GLY A 291 19.665 17.370 19.191 1.00 11.56 A C ATOM 2156 C GLY A 291 19.665 17.370 19.191 1.00 11.56 A C ATOM 2156 C GLY A 291 19.665 17.370 19.191 1.00 11.56 A C ATOM 2156 C GLY A 291 19.665 17.370 17.171 1.00 12.60 A C ATOM 2156 C GLY A 291 19.665 17.370 19.191 1.00 11.56 A C ATOM 2156 C GLY A 291 19.665 17.370 19.191 1.00 11.56 A C ATOM 2156 C GLY A 291 19.665 18.506 16.400 1.00 12.44 A C ATOM 2156 C ALA A 292 18.655 21.499 15.5052 1.00 13.45 A C ATOM 2166 C ALA A 292 18.655 21.499 15.5052 1.00 13.45 A C ATOM										1.00 13.09	A	
ATOM 2136 CD1 LEU A 288 13.379 14.033 11.840 1.00 19.44 A C ATOM 2137 CD2 LEU A 288 15.842 14.113 11.974 1.00 15.17 A C ATOM 2138 C LEU A 288 15.842 14.113 11.974 1.00 12.69 A C ATOM 2139 O LEU A 288 16.004 17.107 15.481 1.00 12.69 A O ATOM 2139 O LEU A 288 16.016 15.747 1.00 12.69 A O ATOM 2140 N ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2143 CG1 ILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2144 CD1 ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 12.74 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2148 N ALA A 290 15.975 16.612 19.132 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.132 16.864 19.976 1.00 11.73 A C ATOM 2150 CB ALA 290 17.529 15.593 20.698 1.00 12.73 A C ATOM 2151 C ALA 290 17.529 15.593 20.698 1.00 12.73 A C ATOM 2152 C ALA 290 19.114 18.198 19.669 1.00 12.73 A C ATOM 2151 C ALA 290 19.114 18.198 19.669 1.00 12.08 A C ATOM 2151 C ALA 290 19.114 18.198 19.669 1.00 12.08 A C ATOM 2151 C ALA 291 19.633 17.207 17.171 1.00 1.65 A C ATOM 2152 C ALA 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2152 C ALA 292 18.549 19.056 16.378 1.00 12.99 A C ATOM 2156 C ALA 292 18.549 19.056 16.378 1.00 12.60 A C ATOM 2156 C ALA 292 18.549 19.056 16.378 1.00 13.18 A N ATOM 2156 C ALA 292 18.549 19.056 16.378 1.00 13.18 A N ATOM 2156 C ALA 292 18.549 19.056 16.378 1.00 13.19 A C ATOM 2156 C ALA 292 18.549 19.056 16.378 1.00 13.19 A C ATOM 2156 C ALA 292 18.549 19.056 16.378 1.00 13.19 A C ATOM 2160 C ALA 292 18.540 19.560 15.562 1.00 13.19 A C ATOM 2160 C ALA 293 18.848 22.456 15.173 1.00 13.19 A C ATOM 2160 C ALA 293 18.848 22.456 15.173	ATOM	2134	CB	LEU	A	288	14.357	14.775	13.917	1.00 13.67	A	C
ATOM 2137 CD2 LEU A 288	ATOM	2135	CG	LEU	A	288	14.552	13.833	12.736	1.00 15.39	A	C
ATOM 2137 CD2 LEU A 288	ATOM	2136	CD1	LEU	A	288	13.379	14.033	11.840	1.00 19.44	\mathbf{A}^{-}	С
ATOM 2138 C LEU A 288 15.329 16.105 15.747 1.00 12.69 A C ATOM 2140 N ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.412 16.096 16.704 1.00 12.69 A C ATOM 2142 CB ILE A 289 14.4195 17.261 17.566 1.00 12.69 A C ATOM 2143 CGI ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CDI ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CG2 ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CG2 ILE A 289 15.412 17.596 18.426 1.00 13.54 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.412 17.596 18.426 1.00 13.36 A O ATOM 2149 N ALA A 290 15.975 16.612 19.132 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.529 15.593 20.698 1.00 12.74 A C ATOM 2149 CA ALA A 290 17.529 15.593 20.698 1.00 12.73 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.73 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.73 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2152 C ALA A 290 19.114 18.198 19.689 1.00 12.08 A C ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 10.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 10.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 10.00 12.44 A C ATOM 2156 C ALA A 292 18.849 19.056 15.378 1.00 13.31 A C ATOM 2160 C ALA A 292 18.849 19.056 15.573 1.00 13.11 A C ATOM 2156 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2160 C ALA A 292 18.848 22.456 15.573 1.00 13.35 A C ATOM 2160 C ALA A 293 18.648 22.456 15.637 1.00 13.45 A C ATOM 2160 C ALA A 293 18.848 22.456 15.573 1.00 13.43 A C ATOM 2160 C ALA A 293 18.848 22.456 15.637 1.00 13.43 A	ATOM	2137	CD2	LEU	A	288						
ATOM 2139 O LEU A 288 16.014 17.107 15.481 1.00 12.69 A O ATOM 2140 N ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.195 17.261 17.546 1.00 12.69 A C ATOM 2142 CB ILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2142 CB ILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2143 CGI ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CDI ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2145 CG2 ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.844 18.746 18.442 1.00 13.36 A O ATOM 2149 CA ALA A 290 17.132 16.854 19.132 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.132 16.854 19.132 1.00 11.71 A N ATOM 2150 CB ALA A 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.73 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 12.08 A C ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2155 C GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.260 A C ATOM 2155 C ALA A 290 17.132 16.866 17.979 1.00 11.84 A N ATOM 2155 C ALA A 290 18.326 17.970 19.018 15.847 1.00 11.56 A O ATOM 2155 C ALA A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2155 C ALA A 292 18.429 19.056 16.378 1.00 12.96 A N ATOM 2156 C ALA A 292 18.549 19.056 16.378 1.00 12.96 A N ATOM 2157 N ALA A 292 18.549 19.056 16.378 1.00 12.99 A C ATOM 2156 C ALA A 292 18.555 21.499 16.075 1.00 13.45 A C ATOM 2160 N ALA A 292 18.555 21.499 16.075 1.00 13.45 A C ATOM 2160 C ALA A 292 18.555 21.499 16.075 1.00 13.45 A C ATOM 2160 C ALA A 292 18.555 21.499 16.075 1.00 13.45 A C ATOM 2160 C ALA A 293 18.615 24.666 15.437 1.00 13.54 A C ATOM 2166 C ALA A 293 19.567 23.664 15.450 1.00 13.43 A C ATOM 2160 C ALA A 293 19.567 23.664 15.450 1.00 13.360 A N ATOM 2166 C ALA A 293 19.567 23.669 15.450 1.00 13.43 A C ATOM 2166 C ALA A 293 19.567 23.669 16.699 1.00 13.												
ATOM 2140 N ILE A 289 14.412 16.096 16.704 1.00 12.33 A N ATOM 2141 CA ILE A 289 14.195 17.261 17.546 1.00 12.69 A C ATOM 2142 CB ILE A 289 11.688 17.178 17.488 1.00 11.66 A C ATOM 2143 CGI ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CDI ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2146 C ILE A 289 15.844 18.746 18.442 1.00 13.36 A C ATOM 2147 O ILE A 289 15.844 18.746 18.442 1.00 13.36 A C ATOM 2147 O ILE A 289 15.844 18.746 18.442 1.00 13.36 A C ATOM 2149 CA ALA A 290 17.597 16.612 19.132 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2151 C ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2153 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.646 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.645 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.645 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.645 18.506 16.400 1.00 12.44 A C ATOM 2156 C ALA A 292 18.549 19.056 16.378 1.00 12.96 A N ATOM 2150 C ALA A 292 18.549 19.056 16.378 1.00 12.96 A N ATOM 2156 C ALA A 292 18.545 21.499 16.075 1.00 13.45 A C ATOM 2156 C ALA A 292 18.555 21.499 16.075 1.00 13.45 A C ATOM 2166 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.54 A C ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM			· 									-
ATOM 2141 CA ILE A 289 14.195 17.261 17.546 1.00 12.69 A C ATOM 2142 CB ILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2143 CGI ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CDI ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2145 CG2 ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2148 N ALA A 290 15.975 16.612 19.132 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.132 16.654 19.976 1.00 11.73 A C ATOM 2149 CA ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2150 CB ALA 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2152 O ALA A 290 18.326 17.370 19.191 1.00 10.65 A O ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 10.65 A O ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.663 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.663 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.663 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.666 18.506 16.378 1.00 12.96 A N ATOM 2155 C GLY A 291 19.666 18.506 16.378 1.00 12.96 A N ATOM 2155 C GLY A 291 19.666 18.506 16.378 1.00 12.96 A N ATOM 2155 C GLY A 291 19.466 18.506 16.378 1.00 12.99 A C ATOM 2155 C GLY A 291 19.466 18.506 16.378 1.00 12.99 A C ATOM 2155 C GLY A 291 19.466 18.506 16.378 1.00 12.99 A C ATOM 2156 C ALA A 292 18.949 19.056 16.378 1.00 13.45 A C ATOM 2155 C GLY A 291 19.466 18.506 16.378 1.00 13.45 A C ATOM 2156 C ALA A 292 18.954 16.454 20.468 15.434 1.00 12.99 A C ATOM 2156 C ALA A 292 18.954 16.454 20.468 15.434 1.00 13.45 A C ATOM 2156 C ALA A 292 18.954 16.612 17.252 1.00 13.18 A N ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.45 A C ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.54 A C ATOM 2166 C ALA A 293 18.848 22.456 15.637 1.00 13.54 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2167 C ALA A 293 18.611 24.866 15.637 1.00 1			-									
ATOM 2142 CB ILE A 289 12.920 17.084 18.397 1.00 12.55 A C ATOM 2144 CDI ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CDI ILE A 289 10.404 16.725 18.104 1.00 13.54 A C ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.844 18.746 18.422 1.00 13.36 A O ATOM 2148 N ALA A 290 15.975 16.612 19.132 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.132 16.854 19.976 1.00 12.08 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 12.08 A C ATOM 2152 O ALA A 290 19.114 18.198 19.689 1.00 10.65 A O ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2154 CA GLY A 291 19.653 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.653 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.505 16.400 1.00 12.44 A C ATOM 2157 N ALA 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2157 N ALA 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2157 C GLY A 291 20.437 19.018 15.847 1.00 11.56 A C ATOM 2157 N ALA 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2157 C GLY A 291 20.437 19.018 15.847 1.00 12.99 A C ATOM 2157 N ALA 292 18.249 19.056 16.378 1.00 12.99 A C ATOM 2157 N ALA 292 18.249 19.056 16.378 1.00 12.99 A C ATOM 2157 C B ALA 292 18.545 20.468 15.562 1.00 13.11 A C ATOM 2158 CA ALA 292 18.555 21.499 16.075 1.00 13.45 A C ATOM 2160 N ALA 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2160 N ALA 293 18.648 22.456 15.173 1.00 13.35 A C ATOM 2160 N ALA 293 18.648 22.456 15.173 1.00 13.35 A C ATOM 2160 C ALA 293 18.657 23.694 15.450 1.00 13.35 A C ATOM 2167 N ALA 293 18.661 24.866 15.637 1.00 13.54 A C ATOM 2166 C ALA A 293 18.661 24.866 15.637 1.00 13.35 A C ATOM 2160 C ALA 293 18.661 24.866 15.637 1.00 13.35 A C ATOM 2160 C ALA 293 18.661 24.866 15.637 1.00 13.35 A C ATOM 2160 C ALA A 293 18.661 24.866 15.637 1.00 13.39 A C ATOM 2160 C ALA A 293 18.661 24.866 15.637 1.00 13.39 A C ATOM 2160 C ALA A 293 18.661 24.866 15.637 1.00 13.39 A C ATOM 2160 C ALA A 293 18.610 24												
ATOM 2143 CG1 ILE A 289 11.688 17.178 17.488 1.00 11.46 A C ATOM 2144 CD1 ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.844 18.746 18.426 1.00 13.36 A O ATOM 2148 N ALA A 290 15.975 16.612 19.32 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2152 O ALA A 290 19.114 18.198 19.689 1.00 10.65 A O ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.96 A N ATOM 2155 C ALA A 292 18.549 19.056 16.378 1.00 11.56 A C ATOM 2155 C ALA A 292 18.549 19.056 16.378 1.00 11.56 A C ATOM 2155 C B ALA A 292 18.549 19.056 16.378 1.00 13.11 A C ATOM 2156 CA ALA A 292 18.555 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.555 21.499 16.075 1.00 13.45 A C ATOM 2162 N ALA A 292 18.555 21.499 16.075 1.00 13.45 A C ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.48 A N A ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.45 A C ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.45 A C ATOM 2166 C ALA A 293 18.848 22.456 15.637 1.00 13.43 A C ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.40 A C ATOM 2166 C ALA A 293 18.848 22.456 15.173 1.00 13.40 A C ATOM 2166 C ALA A 293 18.567 25.695 16.899 1.00 14.04 A C ATOM 2167 C ALA A 293 18.560 27.428 18.270 1.00 13.39 A O ATO										•		
ATOM 2144 CD1 ILE A 289 10.404 16.725 18.104 1.00 10.00 A C ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.844 18.746 18.426 1.00 13.36 A O ATOM 2148 N ALA A 290 15.975 16.612 19.132 1.00 13.36 A O ATOM 2149 CA ALA A 290 17.132 16.854 19.976 1.00 11.71 A N ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2152 O ALA A 290 19.114 18.198 19.689 1.00 10.65 A O ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 20.437 19.018 15.847 1.00 11.96 A C ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2159 CB ALA A 292 18.545 21.499 16.075 1.00 13.45 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2162 N ALA A 292 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.45 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.45 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.45 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.45 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.45 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.45 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.45 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.45 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.40 A C ATOM 2166 C ALA A 293 19.567 23.694 16.000 10.000 13.60 A N ATOM 2166 C ALA A 293 19.567 23.694 16.000 10.000 13.60 A N ATOM 2166 C ALA A 293 19.567 23.694 18.570 1.00 13.30 A C A								17.084	18.397	1.00 12.55	A	
ATOM 2145 CG2 ILE A 289 12.869 18.098 19.506 1.00 13.54 A C ATOM 2146 C ILE A 289 15.412 17.596 18.426 1.00 12.74 A C ATOM 2147 O ILE A 289 15.844 18.746 18.442 1.00 13.36 A O ATOM 2148 N ALA A 290 15.975 16.612 19.132 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2152 O ALA A 290 19.114 18.198 19.689 1.00 10.65 A O ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2156 O GLY A 291 19.466 18.506 16.378 1.00 12.96 A N ATOM 2155 C GLY A 291 19.466 18.506 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.96 A N ATOM 2159 CB ALA A 292 18.655 21.499 16.075 1.00 13.11 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.15 A C ATOM 2160 N ALA A 292 18.655 21.499 16.075 1.00 13.95 A C ATOM 2161 O ALA A 292 18.655 21.499 16.075 1.00 13.95 A C ATOM 2162 N ALA A 292 18.954 21.612 17.252 1.00 13.95 A C ATOM 2162 N ALA A 293 19.567 23.694 15.450 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.22 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.22 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.22 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.54 A C ATOM 2166 C ALA A 293 18.861 24.866 15.637 1.00 13.54 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.39 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.22 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.39 A C ATOM 2166 C ALA A 293 19.567 23.694 15.450 1.00 13.50 A N ATOM 2166 C ALA A 293 18.8167 26.895 16.899 1.00 14.04 A C ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.360 A N ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.360 A N ATOM	ATOM	2143	CG1	ILE	A	289	11.688	17.178	17.488	1.00 11.46	A	C
ATOM 2146 C ILE A 289	MOTA	2144	CD1	ILE	A	289	10.404	16.725	18.104	1.00 10.00	A	C
ATOM 2146 C ILE A 289	ATOM	2145	CG2	ILE	A	289	12.869	18.098	19.506	1.00 13.54	Α	C
ATOM 2147 O ILE A 289	ATOM	2146	С	ILE	A	289	15.412	17.596	18.426	1.00 12.74	A	
ATOM 2148 N ALA A 290 15.975 16.612 19.132 1.00 11.71 A N ATOM 2149 CA ALA A 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2152 O ALA A 290 19.114 18.198 19.689 1.00 10.65 A O ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2154 CA GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2156 O GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2159 CB ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2165 C ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2165 C ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2165 C ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2166 O ALA A 293 18.661 24.866 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.611 24.866 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.611 24.866 15.173 1.00 13.54 A C ATOM 2166 C ALA A 293 18.611 24.866 15.173 1.00 13.54 A C ATOM 2166 C ALA A 293 18.611 24.866 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.611 24.866 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.611 24.866 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.611 24.866 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.611 24.866 15.173 1.00 13.43 A C ATOM 2166 C ALA A 293 18.612 27.428 18.634 1.00 14.04 A C ATOM 2166 C ALA A 294 18.182 29.160 19.799 1.00 14.04 A C ATOM 2	MOTA	2147	0	ILE	A	289				•		
ATOM 2149 CA ALA A 290 17.132 16.854 19.976 1.00 11.73 A C ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2152 O ALA A 290 19.114 18.198 19.689 1.00 10.65 A O ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2154 CA GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2155 C GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2156 O GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2156 C GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2158 CA ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 17.960 20.236 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.43 A C ATOM 2165 C ALA A 293 19.567 23.694 15.450 1.00 13.22 A C ATOM 2165 C ALA A 293 19.567 23.694 15.450 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.23 A C ATOM 2165 C ALA A 293 18.818 25.626 16.691 1.00 13.30 A C ATOM 2165 C ALA A 293 18.510 27.428 18.590 14.04 A C ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.03 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.03 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170												
ATOM 2150 CB ALA A 290 17.529 15.593 20.698 1.00 12.08 A C ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2155 C GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 11.56 A N ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2159 CB ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.22 A C ATOM 2166 O ALA A 293 18.848 22.456 15.637 1.00 13.18 A N ATOM 2163 CA ALA A 293 18.848 22.456 15.637 1.00 13.18 A N ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.612 24.866 15.637 1.00 13.39 A C ATOM 2166 O ALA A 293 18.612 24.866 15.637 1.00 13.39 A C ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.30 A C ATOM 2167 CG ASP A 294 18.838 25.626 16.691 1.00 14.04 A C ATOM 2167 CG ASP A 294 18.839 27.428 18.270 1.00 14.83 A C ATOM 2167 CG ASP A 294 18.839 27.428 18.270 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.829 27.428 18.270 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.829 27.428 18.270 1.00 14.83 A C ATOM												
ATOM 2151 C ALA A 290 18.326 17.370 19.191 1.00 11.95 A C ATOM 2152 O ALA A 290 19.114 18.198 19.689 1.00 10.65 A O ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2154 CA GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2156 O GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2165 C ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2165 C ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2169 CB ASP A 294 18.838 25.626 16.691 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.838 25.626 16.691 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.33 A C ATOM 2170 CD ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM												
ATOM 2152 O ALA A 290 19.114 18.198 19.689 1.00 10.65 A O ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2154 CA GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2156 O GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2165 C ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2165 C ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.838 25.626 16.691 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.670 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.142 29.160 19.799 1.00 11.77											•	
ATOM 2153 N GLY A 291 18.472 16.866 17.979 1.00 11.84 A N ATOM 2154 CA GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2156 O GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 C ALA A 293 18.8611 24.866 15.637 1.00 13.39 A C ATOM 2166 C ALA A 293 18.8161 24.866 15.637 1.00 13.39 A C ATOM 2166 C ALA A 293 18.611 24.866 15.637 1.00 13.39 A C ATOM 2166 C ALA A 293 18.8167 26.895 16.899 1.00 13.60 A N ATOM 2167 C ASP A 294 18.838 25.626 16.691 1.00 13.30 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.03 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.03 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.142 29.160 19.799 1.00 11.77 A											-	
ATOM 2154 CA GLY A 291 19.633 17.207 17.171 1.00 12.60 A C ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2156 O GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 19.567 23.694 15.450 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.838 25.626 16.691 1.00 14.03 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A			-									
ATOM 2155 C GLY A 291 19.466 18.506 16.400 1.00 12.44 A C ATOM 2156 O GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 19.567 23.694 15.450 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.39 A O ATOM 2168 CA ASP A 294 18.838 25.626 16.691 1.00 13.30 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.142 29.160 19.799 1.00 11.77 A O	MOTA	2153	N	GLY	A	291	18.472	16.866	17.979	1.00 11.84	A	N
ATOM 2156 O GLY A 291 20.437 19.018 15.847 1.00 11.56 A O ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2166 CA ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.142 29.160 19.799 1.00 11.77 A O	ATOM	2154	·CA	GLY	A	291	19.633	17.207	17.171	1.00 12.60	A	C
ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 18.611 24.866 15.637 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.39 A O ATOM 2168 CA ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2169 CB ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.142 29.160 19.799 1.00 11.77 A O	ATOM	2155	C	GLY	A	291	19.466	18.506	16.400	1.00 12.44	A	C
ATOM 2157 N ALA A 292 18.249 19.056 16.378 1.00 12.96 A N ATOM 2158 CA ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2169 CB ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.142 29.160 19.799 1.00 11.77 A O	ATOM	2156	0	GLY	A	291	20.437	19.018	15.847	1.00 11.56	A	0
ATOM 2158 CA ALA A 292 17.960 20.238 15.562 1.00 13.11 A C ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.142 29.160 19.799 1.00 11.77 A O	ATOM	2157	N	ALA	A	292	18.249	19.056	16.378	1.00 12.96		
ATOM 2159 CB ALA A 292 16.454 20.468 15.434 1.00 12.99 A C ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.270 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O			CA									
ATOM 2160 C ALA A 292 18.655 21.499 16.075 1.00 13.45 A C ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.270 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.590 27.428 18.634 1.00 14.83 A C ATOM 2170 CG ASP A 294 18.167 26.895 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O												
ATOM 2161 O ALA A 292 18.954 21.612 17.252 1.00 13.95 A O ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O												
ATOM 2162 N ALA A 293 18.848 22.456 15.173 1.00 13.18 A N ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O												
ATOM 2163 CA ALA A 293 19.567 23.694 15.450 1.00 13.43 A C ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O												
ATOM 2164 CB ALA A 293 20.508 24.012 14.284 1.00 13.22 A C ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O								22.456	15.173	1.00 13.18	A	N
ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O	ATOM	2163	CA	ALA	A	293	19.567	23.694	15.450	1.00 13.43	A	C
ATOM 2165 C ALA A 293 18.611 24.866 15.637 1.00 13.54 A C ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O	ATOM	2164	CB	ALA	A	293 .	20.508	24.012	14.284	1.00 13.22	A	C
ATOM 2166 O ALA A 293 17.739 25.107 14.812 1.00 13.39 A O ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O	ATOM	2165	C	ALA	A	293	18.611	24.866	15.637	1.00 13.54	A	C
ATOM 2167 N ASP A 294 18.838 25.626 16.691 1.00 13.60 A N ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O	ATOM	2166	0	ALA	A	293	17.739	25.107	14.812	1.00 13.39		
ATOM 2168 CA ASP A 294 18.167 26.895 16.899 1.00 14.04 A C ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O			N									
ATOM 2169 CB ASP A 294 18.590 27.428 18.270 1.00 14.33 A C ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O												
ATOM 2170 CG ASP A 294 17.918 28.728 18.634 1.00 14.83 A C ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O												
ATOM 2171 OD1 ASP A 294 18.142 29.160 19.799 1.00 11.77 A O.												
ATOM 2172 OD2 ASP A 294 17.144 29.360 17.861 1.00 10.92 A O												
	ATOM	2172	OD2	ASP	A	294	17.144	29.360	17.861	1.00 10.92	A	0

	ATOM	2173	C	ASP	A	294	18.620	27.814	15.774	1.00	13.72		A	C
	ATOM	2174	0	ASP	A	294	19.801	28.075	15.636	1.00	14.66	į	Ą	0
	ATOM	2175	N	VAL	A	295	17.696	28.304	14.956	1.00	14.43		A	N
	ATOM	2176	CA	VAL	A	295	18.057	29.217	13.853	1.00	14.05		Ą	C
	ATOM	2177	CB	VAL	A	295	16.957	29.283	12.730	1.00	13.77		Ą	С
	ATOM	2178	CG1	VAL	A	295	16.670	27.907	12.184	1.00	13.93		Ą	С
	ATOM	2179	CG2	VAL			15.680	29.956	13.255		12.53		Ą	C
	ATOM	2180	C			295	18.352	30.622	14.346	1.00			A.	Ċ
	ATOM	2181	0	VAL			18.707	31.497	13.558		15.77		Ą	Ö
	MOTA	2182	N	GLY			18.190	30.857	15.646		14.99		A	N
	ATOM	2183	CA	GLY			18.450	32.159	16.208		15.10		A	C
	ATOM	2184	C	GLY			17.282	32.821	16.906		15.03		A	C
	ATOM	2185	Ö	GLY			17.458	33.886	17.489		15.00		A	Ö
	ATOM	2186	N	LEU			16.114	32,180	16.887		16.05		A	N
	MOTA	2187	CA	LEU			14.903	32,728	17.501		15.21		A	C
	ATOM	2188	CB	LEU		_	13.704	32.420	16.605		14.95		A.	C
	ATOM	2189	CG	LEU			13.881	32.962	15.179	1.00				C
	ATOM	2190	CD1	LEU			12.718	32.507	14.330		19.73		A n	
	ATOM	2191	CD2			297	13.939						A	C
	MOTA	2192	CDZ	LEU				34.500	15.204	1.00	18.75		A	C
		2193	0				14.645	32.187	18.903		15.26		A	C
	ATOM					297	13.782	32.682	19.636	1.00			Ą	0
	ATOM	2194	N	GLY			15.380	31.152	19.266		15.28		A	N
	ATOM	2195	CA C	GLY			15.251	30.546	20.570		15.27		A.	C
	ATOM	2196	_	GLY			14.024	29.691	20.721	1.00			Ą	C
	MOTA	2197	0	GLY			13.173	29.572	19.817		15.07		A.	0
	ATOM	2198	N	PHE			13.941	29.090	21.894		15.47		A.	N
	ATOM	2199	CA	PHE			12.820	28.269	22.266		16.76		Ą	C
	ATOM	2200	CB			299	13.279	26.818	22.539		16.33		A N	C
	ATOM	2201	CG	PHE			14.108	26.237	21.435	1.00			Ą	C
	ATOM	2202	CD1	PHE			13.572	26.047	20.167		15.70		Ą	C.
	ATOM ATOM	2203	CE1			299	14.349	25.544	19.132		15.95		A	C
		2204	CZ	PHE			15.660	25.233	19.357		15.27		Ą	C
	ATOM ATOM	2205	CE2			299	16.217	25.432		1.00	15.20		A	С
	ATOM	2206	CD2 C	PHE			15.436	25.929	21.642		17.28		A	C
	ATOM	2207 2208	0	PHE			12.200	28.872	23.504		17.91		Ą	C
				PHE			12.886	29.548	24.280		19.79		A	0
	MOTA	2209	N	PRO			10.904	28.683	23.680		19.34		A	N
	MOTA	2210	CA				10.054	27.945	22.747	1.00	20.29		A	C
	ATOM	2211	CB	PRO			8.819	27.671	23.583	1.00			A.	C
	ATOM	2212	CG	PRO		•	8.712	28.898	24.513	1.00	19.43		Ą	C
	ATOM ATOM	2213	CD C	PRO			10.120	29.311	24.758	1.00	20.25		A.	C
	MOTA	2214 2215	0	PRO			9.672	28.834	21.581	1.00	20.84		P.	C
	ATOM	2215	N	PRO			9.921	30.043	21.655	1.00			A	0
	ATOM	2217	CA			301	9.076	28.282	20.524	1.00	21.28		y Z	N
	ATOM			ASN			8.874	29.078	19.319	1.00			A	C
		2218	CB	ASN			10.198	29.173	18.567	1.00			A	C
	MOTA MOTA	2219	CG	ASN			10.320	30.458	17.764	1.00			Ą	C
		2220		ASN			9.875	30.553	16.607		17.42		A	0
	ATOM	2221		ASN			10.920	31.454	18.371		22.84		A	N
	ATOM	2222	C	ASN			7.823	28.534	18.355		22.14		A	C
	ATOM	2223	O N	ASN			7.868	27.379	17.978		23.49		A.	0
	MOTA	2224	N	GLY			6.970	29.416	17.854		22.24		À	N
	ATOM	2225	CA	GLY			5.912	29.031	16.932		21.65		A	C
	ATOM	2226	C	GLY			6.292		15.475		20.83		A.	C
	ATOM	2227	0	GLY			5.574	28.669	14.603		21.22		ď.	0
	ATOM	2228	N	ASN			7.446	29.787	15.225		19.62		Ą	N
	ATOM	2229	CA	ASN			7.981	30.005	13.886		17.66		A	C
•	MOTA	2230	CB	ASN	A	303	8.705	31.349	13.816	T.00	17.45	ì	A	С

MOTA	2231	CG	ASN	A	303	7.872	32.473	14.381	1.00 20.84	A	C
ATOM	2232	OD1	ASN	A	303	6.802	32.779	13.847	1.00 21.34	A	. 0
ATOM	2233	ND2	ASN	A	303	8.305	33.033	15.530	1.00 22.58	A	N
ATOM	2234	C			303	8.926	28.922	13.414	1.00 15.61	A	
ATOM	2235	0	ASN			8.831	28.481	12.239	1.00 13.70	A	
MOTA	2236	N	GLN	A	304	9.841	28.506	14.298	1.00 14.18	А	N
ATOM	2237	CA	GLN	A	304	10.855	27.513	13.946	1.00 13.13	А	Ç
ATOM	2238	CB	GLN	A	304	12,235	28.005	14.316	1.00 13.28	A	C
ATOM	2239	CG	GLN	A	304	12.556	27.976	15.811	1.00 12.80	A	
ATOM	2240	CD				14,020	28.087	16.123	1.00 11.63	A	
					·						
MOTA	2241	OE1			304	14.842	27.582	15.386	1.00 13.19	A	
MOTA	2242	NE2	GLN			14.352	28.794	17.223	1.00 9.76	A	N
ATOM	2243	C	GLN	A	304	10.601	26.128	14.582	1.00 13.52	A	. C
ATOM	2244	0	GLN	A	304	11.372	25.208	14.381	1.00 13.66	A	0
MOTA	2245	N	GLY	A	305	9.537	25.972	15.343	1.00 12.81	A	N
ATOM	2246	CA	GLY	A	305	9.351	24.745	16.101	1.00 12.54	A	
ATOM	2247	C			305	10.578	24.498	16.970	1.00 12.99	A	
MOTA	2248	0			305	11.062	25.409				
								17.633	1.00 11.36	A	
ATOM	2249	N	TRP			11.107	23.272	16.926	1.00 12.12	A	
ATOM	2250	CA	TRP		306	12.286	22.898	17.701	1.00 12.07	A	C
ATOM	2251	CB	TRP	A	306	12.130	21.473	18.254	1.00 12.05	А	C
ATOM	2252	CG	TRP	A	306	10.866	21.349	19.092	1.00 11.34	A	·C
ATOM	2253	CD1	TRP	A	306	9.755	20.611	18.805	1.00 12.28	А	C
ATOM	2254	NE1	TRP	Α	306	8.812	20.766	19.794	1.00 13.42	A	
ATOM	2255	CE2	TRP			9.316	21.592	20-761	1.00 12.23	A	
ATOM	2256	CD2	TRP		306	10.616	21.963	20.359	1.00 13.78		
					_					A	
ATOM	2257	CE3	TRP		306	11.344	22.822	21.183	1.00 13.41	A	
MOTA	2258	CZ3	TRP		306	10.780	23.247	22.365	1.00 12.96	A	C
MOTA	2 259	CH2	TRP	A	306	9.488	22.854	22.735	1.00 13.70	A	C
ATOM	2260	CZ2	TRP	A	306	8.744	22.035	21.945	1.00 14.65	A	C
ATOM	2261	C	TRP	A	306	13.562	23.046	16.890	1.00 12.73	А	C
MOTA	2262	0	TRP	A	306	14.632	22.620	17.318	1.00 14.46	A	0
ATOM	2263	N	GLY	Α	307 -	13.479	23.716	15.741	1.00 13.10		. N.
ATOM	2264	CA			307	14.679	24.111	15.015	1.00 12.18	A	
MOTA	2265	Ĉ.			307	14.871					
		-					23.392	13.685	1.00 11.91	A	
ATOM	2266	.0			307	14.008	22.628	13.238	1.00 11.20	A	
ATOM	2267	N			308	16.007	23.658	13.046	1.00 11.60	A	. 'N
ATOM	2268	CA	ARG	A	308	16.299	23.167	11.701	1.00 12.01	A	C
ATOM	2269	CB	ARG	A	308	17.153	24.223	10.961	1.00 12.63	A	C
ATOM	2270	CG	ARG	A	308	17.388	23.970	9,462	1.00 13.43	А	C
ATOM	2271	CD	ARG	A	308	18.284	25.025	8.807	1.00 13.61	A	C
ATOM	2272	NE				19.563	25.031	9.510	1.00 16.45	A	
ATOM	2273	CZ			308	20.127	26.086	10.086	1.00 16.43	A	
ATOM	2274	NHI									
						21.257	25.902	10.762	1.00 14.45	A	
ATOM	2275	NH2			308	19.660	27.319	9.902	1.00 13.23	A	
MOTA	2276	C	ARG	Α	308	17.055	21.837	11.770	1.00 12.38	A	. C
ATOM	2277	0	ARG	A	308	18.094	21.742	12.434	1.00 12.82	. A	. 0
ATOM	2278	N	VAL	A	309	16.549	20.817	11.080	1.00 11.99	A	N
MOTA	2279	CA	VAL	A	309	17.170	19.498	11.096	1.00 12.04	A	C
ATOM	2280	CB			309	16.553	18.573	10.051	1.00 11.35	A	
ATOM	2281	CG1			309	17.354	17.272	9.961	1.00 11.45	A	
MOTA	2282					15.047	18.335	10.377	1.00 11.38	A -	
ATOM	2283	C			309	18.667	19.545	10.868	1.00 12.28	A	
MOTA	2284	0			309	19.148	20.157	9.930	1.00 11.94	A	0
MOTA	2285	N	THR	A	310	19.393	18.904	11.760	1.00 13.11	. A	N
ATOM	2286	CA	THR	A	310	20.854	18.814	11.675	1.00 12.86	A	
ATOM	2287	CB			310	21.471	19.719	12.723	1.00 13.26	A	
ATOM	2288	OG1			310	21.044	21.090	12.516	1.00 12.98	A	
		~~_		- •		~~. ~	~ _	,	~.VU 12.JU	7	

										•	
MOTA	2289	CG2	THR	A	310	22.962	19.747	12.610	1.00 13.6	8 A	C
ATOM	2290	C	THR	A	310	21.197	17.347	11.911	1.00 13.9	4 A	C
MOTA	2291	0	THR	A	310	21.411	16.896	13.064	1,00 14.9	3 A	0
MOTA	2292	N	LEU	A	311	21.269	16.601	10.818	1.00 13.2	8 A	N
ATOM	2293	CA	LEU	A	311	21.110	15.149	10.879	1.00 14.1		С
ATOM	2294	CB			311	20.956	14.589	9.463	1.00 13.6		Č
ATOM	2295	CG			311	20.879	13.078	9.311	1.00 13.5		C
ATOM	2296	CD1	LEU		311	19.749	12.522	10.109	1.00 15.1		C
MOTA	2297	CD2			311	20.749	12.688	7.849	1.00 14.2		C
ATOM	2298	C	LEU	A	311	22.252	14.455	11.605	1.00 14.5	B A	C
MOTA	2299	0	LEU	A	311	22.012	13.521	12.345	1.00 14.7	4 A	0
MOTA	2300	N	ASP	A	312	23.483	14.959	11.462	1.00 15.5	B A	N
ATOM	2301	CA	ASP	A	312	24.624	14.307	12.111	1.00 16.6	B A	C
ATOM	2302	CB	ASP		312	25.984	14.797	11.582	1.00 16.9		C
MOTA	2303	CG			312	26.222	16.245	11.822	1.00 19.0		C
ATOM	2304	OD1			312	27.394	16.614	11.755	1.00 25.9		
											0
ATOM	2305	OD2			312	25.348	17.090	12.090	1.00 18.3		0
MOTA	2306	C			312	24.560	14.330	13.615	1.00 16.4		С
ATOM	2307	0	ASP	A	312	24.965	13.381	14.241	1.00 17.4) A	0
ATOM	2308	N	LYS	A	313	23.97 <i>6</i>	15.364	14.202	1.00 16.3	A	N
MOTA	2309	CA	LYS	A	313	23.755	15.366	15.641	1.00 16.3	5 A	C
MOTA	2310	CB	LYS	A	313	23.363	16.773	16.130	1.00 17.6	5 A	С
ATOM	2311	CG	LYS	A	313	24.430	17.848	15.938	1.00 20.6	5 A	C
ATOM	2312	CD			313	24.735	18.590	17.250	1.00 28.2		č
ATOM	2313	CE			313	25.619	17.746	18.162	1.00 31.1		Ç
ATOM	2314	NZ			313	26.458					
							18.529	19.131	1.00 32.3		N
ATOM	2315	C			313	22.666	14.379	16.100	1.00 15.3		
ATOM	2316	0			313	22.662	13.968	17.258	1.00 15.4		0
ATOM	2317	N			314	21.755	14.007	15.212	1.00 14.1		N
ATOM	2318	CA	SER	A	314	20.700	13.047	15.537	1.00 13.3	7 A	С
MOTA	2319	CB	SER	A	314	19.497	13.217	14.590	1.00 13.5	6 A	C
ATOM	2320	OG	SER	A	314	18.889	14.489	14.723	1.00 11.1	6 A	0
ATOM	2321	C ·	SER	A	314	21.148	11.581	15.505	1.00 14.5	3 A	C·
ATOM	2322	0	SER	A	314	20.507	10.717	16.112	1.00 14.3	A	0
ATOM	2323	N			315	22.209	11.285	14.771	1.00 14.5		N
ATOM	2324	CA			315	22.563	9.896	14.484	1.00 15.6		Ĉ
ATOM	2325	CB			315	23.750	9.824	13.505	1.00 15.1		C
MOTA	2325	CG			315						
						23.506	10.436	12.143	1.00 14.8		C
ATOM	2327	CD1			315	24.834	10.445	11.360	1.00 16.6		· C
MOTA	2328	CD2			315	22.401	9.683	11.411	1.00 16.2		C
MOTA	2329	C			315	22.905	9.095	15.733	1.00 16.1	6 A	C
MOTA	2330	0	LEU	A	315 _.	22.442	7.956	15.894	1.00 16.7	9 A	0
MOTA	2331	N	ASN	A	316	23.692	9.686	16.631	1.00 17.6	A O	N
ATOM	2332	CA	ASN	A	316	24.235	8.915	17.749	1.00 17.9	9 A	C
ATOM	2333	CB	ASN	A	316	25.757	8.837	17.694	1.00 19.5	9 A	С
ATOM	2334	CG			316	26.264	7.879	16.601	1.00 22.5		C
ATOM	2335	OD1			316	25.736	6.732	16.397	1.00 21.6		Ö
ATOM	2336		ASN			27.321	8.320	15.910	1.00 21.0		•
											N
MOTA	2337	С			316	23.732	9.396	19.116	1.00 17.6		C
MOTA	2338	0			316	24.390	9.212	20.152	1.00 15.9		0
ATOM	2339	N			317	22.505	9.912	19.123	1.00 15.7		N
MOTA	2340	CA			317	21.820	10.220	20.389	1.00 15.4	0 A	C
ATOM	2341	CB	VAL	A	317	20.360	10.675	20.150	1.00 15.2	ı A	C
ATOM	2342	CG1	VAL	A	317	20.335	11.940	19.350	1.00 16.2	8 A	C
ATOM	2343	CG2	VAL	Α	317	19.547	9.600	19.458	1.00 16.0		
ATOM	2344	C			317	21.803	8.995	21.323	1.00 14.6		Č
ATOM	2345	0			317	21.675	7.864	20.868	1.00 14.7		0
ATOM	2346	N			318				1.00 14.7		
WIOLI	2340	TA	WII!	~	つてひ	21.932	9.225	22.627	1.00 13.3	5 A	N

	4								_	
ATOM	2347	CA	ALA A 318	21.623	8.186	23.603	1.00 13.64		A	C
ATOM	2348	CB	ALA A 318	22.196	8.523	24.940	1.00 13.50		A	С
ATOM	2349	С	ALA A 318	20.087	8.130	23.652	1.00 13.19		A	С
ATOM	2350	0	ALA A 318		9.168	23.498	1.00 13.46		A	0
										-
MOTA	2351	N	PHE A 319		6.952	23.853	1.00 12.88		A	N
ATOM	2352	CA	PHE A 319		6.824	23.633	1.00 12.66		A	C
ATOM	2353	CB	PHE A 319	17.815	6.531	22.137	1.00 12.79		A	C
MOTA	2354	CG	PHE A 319	18.267	5.158	21.700	1.00 14.03		A	C
MOTA	2355	CD1	PHE A 319	19.504	4.980	21.107	1.00 12.44		Α	C
ATOM	2356	CEl	PHE A 319		3.725	20.718	1.00 15.58		A	Ċ
ATOM	2357	_	PHE A 319							
		CZ			2.619	20.921	1.00 15.26		A	C
ATOM	2358	CE2	PHE A 319		2.777	21.524	1.00 14.77		A	C
ATOM	2359	CD2	PHE A 319		4.047	21.905	1.00 15.05		A	C
ATOM	2360	C	PHE A 319	17.349	5.799	24.461	1.00 12.38		A	C
ATOM	2361	0	PHE A 319	17.947	4.918	25.055	1.00 12.11		A	0
ATOM	2362	N	VAL A 320	16.032	5.947	24.488	1.00 12.04		A	N
ATOM	2363	CA	VAL A 320	15.125	4.909	24.949	1.00 12.42		A	C
ATOM	2364	СВ	VAL A 320	_	5.323	26.252	1.00 13.15		A	ċ
ATOM	2365	CG1	VAL A 320	· · · · · · · · · · · · · · · · · · ·	4.331	26.589	1.00 13.46		A	Ċ
ATOM	2366	CG2	VAL A 320		5.395	27.416	1.00 13.91		A	C
ATOM	2367	С	VAL A 320	_	4.758	23.802	1.00 11.88		A	C
MOTA	2368	0	VAL A 320	13.668	5.749	23.271	1.00 10.13		A	0
ATOM	2369	N	ASN A 321	13.824	3.520	23.441	1.00 11.82		A	N
ATOM	2370	CA	ASN A 321	13.018	3.205	22.261	1.00 11.75		A	С
ATOM	2371	CB	ASN A 321	13.858	2.323	21.313	1.00 11.75		A	С
ATOM	2372	CG	ASN A 321	13.214	2.117	19.944	1.00 12.10		A	C
ATOM	2373	OD1	ASN A 321	12.506	3.005	19.437	1.00 12.86		A	Ö
ATOM	2374	ND2								
				13.451	0.919	19.328	1.00 10.43		A	N
ATOM	2375	C	ASN A 321	11.711	2.463	22.637	1.00 12.63		A	C
MOTA	2376	0	ASN A 321	11.509	1.311	22.260	1.00 12.41		A	0
MOTA	2377	N	GLU A 322	10.835	3.130	23.380	1.00 12.99		A	N
ATOM	2378	CA	GLU A 322	9.542	2.552	23.760	1.00 13.23		A	C
ATOM	-2379	CB	GLU A 322	8.601	2.415.	22.528	1.00 13.10	٠.	A	С
ATOM	2380	CG	GLU A 322	8.146	3.794	22.013	1.00 12.18		A	C
ATOM	2381	CD	GLU A 322		3.781	20.933	1.00 14.48		A	C
MOTA	2382	OEl	GLU A 322		4.884	20.429	1.00 15.20		A	ō
ATOM	2383	OE2	GLU A 322			20.588			A	0
		_			2.690					
ATOM	2384	C	GLU A 322		1.239	24.556	1.00 14.04		A	C
ATOM	2385	0	GLU A 322		0.385	24.468	1.00 12.70		A	0
ATOM	2386	N	THR A 323	10.688	1.122	25.387	1.00 13.33		A	N
ATOM	2387	CA	THR A 323	10.907	-0.101	26.145	1.00 14.72		A	С
ATOM	2388	CB	THR A 323	12.375	-0.466	26.173	1.00 14.45		A	C
ATOM	2389	OGl	THR A 323	13.168	0.721	26.401	1.00 16.74		A	0
ATOM	2390	CG2	THR A 323	12.813	-0.980	24.810	1.00 15.39		Α	С
MOTA	2391	С	THR A 323		-0.045	27.589	1.00 15.63		A	C
ATOM	2392	Ö	THR A 323		-1.011	28.319	1.00 14.71		A	Õ
ATOM		N								
	2393		SER A 324	9.796	1.073	28.002	1.00 15.41		A	N
ATOM	2394	CA	SER A 324	9.176	1.159	29.341	1.00 15.78		A	Ċ
ATOM	2395	CB	SER A 324	10.008	2.045	30.272	1.00 15.94		A	C
ATOM	2396	OG	SER A 324	11.281	1.460	30.594	1.00 17.86		A	0
ATOM	2397	C	SER A 324	7.739	1.723	29.257	1.00 15.74		A	C
ATOM	2398	0	SER A 324		2.937	29.315	1.00 15.93		A	0
ATOM	2399	N	PRO A 325		0.864	29.118	1.00 16.08		A	N
ATOM	2400	CA	PRO A 325		1.306	29.170	1.00 17.17		A	C
ATOM	2401	CB	PRO A 325		0.035	28.823	1.00 17.76		A	C
ATOM	2402	CG	PRO A 325		-1.106	29.084	1.00 17.45		A	C
ATOM	2403	CD	PRO A 325		-0.585		1.00 16.38		A	C
ATOM	2404	С	PRO A 325	4.926	1.815	30.548	1.00 17.68		A	С

MOTA	2405	0	PRO	A	325	5.277	1.211	31.553	1.00 18.68	A	0
MOTA	2406	N	LEU	A	326	4.204	2.916	30.596	1.00 18.30	A	N
MOTA	2407	CA	LEU	A	326	3.796	3.491	31.871	1.00 18.53	A	C
ATOM	2408	CB	LEU	A	326	4.410	4.890	32.059	1.00 18.37	A	C
ATOM	2409	CG	LEU	A	326	5.938	5.027	32.161	1.00 19.30	A	С
ATOM	2410	CD1	LEU			6.350	6.502	32.200	1.00 20.03		С
MOTA	2411	CD2	LEU			6.471	4.338	33.387	1.00 17.55		Ċ
ATOM	2412	C	LEU		326	2.287	3.605	31.982	1.00 19.08		č
ATOM	2413	0	LEU		326	1.589	3.926	30.989	1.00 13.00		
MOTA	2414										0
		N			327	1.810	3.326	33.201	1.00 19.13		N
ATOM	2415	CA			327	0.438	3.607	33.672	1.00 19.58		C
ATOM	2416	CB			327	-0.123	2.391	34.397	1.00 19.04		С
ATOM	2417	OG			327	-0.176	1.357	33.434	1.00 19.38	- ··	0
ATOM	2418	С			327	0.558	4.902	34.476	1.00 19.58	A	С
ATÓM	2419	0	SER	A	327	1.609	5.154	35-075	1.00 18.88	À	0
ATOM	2420	N	THR	A	328	~0.505	5.696	34.595	1.00 20.38	A	N
MOTA	2421	CA	THR	A	328	-0.861	6.454	35.789	1.00 19.96	A	C
ATOM	2422	CB	THR	A	328	-2.343	6.678	35.951	1.00 20.43	A	С
MOTA	2423	OGl	THR	A	328	-2.870	7.047	34.681	1.00 20.32	А	0
ATOM	2424	ÇG2	THR	A	328	-2.602	7.922	36.842	1.00 21.84		C
ATOM	2425	С	THR	A	328	-0.102	6.262	37.084	1.00 19.51		C
ATOM	2426	0	THR			-0.223	5.222	37.739	1.00 19.59		ō
ATOM	2427	N			329	0.732	7.268	37.356	1.00 18.40		N
ATOM	2428	CA			329	1.489	7.464	38.588	1.00 19.19		Č
ATOM	2429		BSER			0.679	7.017	39.818	0.50 19.34		c
ATOM	2430		ASER					-			
						0.629	7.141	39.833	0.50 19.52		C
ATOM	2431		BSER			0.653	5.599	39.887	0.50 18.73		0
ATOM	2432		ASER			-0.672	7.722	39.718	0.50 20.52		0
ATOM	2433	C			329	2.792	6.686	38.588	1.00 18.71		C
ATOM	2434	0			329	3.533	6.753	39.550	1.00 18.11		0
MOTA	2435	N			330	3.066	5.936	37.524	1.00 17.70	A	\mathbf{N} .
ATOM	2436	CA			330	4.339	5.250	37.420	1.00 17.71	Ą	C
ATOM	2437	CB	GLN	A	330	4.193	4.001 -	36.566	1.00 17.37	A	C
MOTA	2438	CG	GLN	A	330	3.233	2.970	37.168	1.00 17.60	A	¢
ATOM	2439	CD.	GLN	A	330	3.116	1.700	36.319	1.00 18.11	A	C
ATOM	2440	OE1	GLN	A	330	3.305	1.763	35.119	1.00 16.08	A	0
ATOM	2441	NE2	GLN	A	330	2.762	0.550	36.952	1.00 15.56	A	N
ATOM	2442	C	GLN	A	330	5.401	6.195	36.837	1.00 18.14	A	C
ATOM	2443	0	GLN	Α	330	5.103	7.308	36.423	1.00 18.07		0
ATOM	2444	N	LYS	A	331	6.643	5.750	36.842	1.00 18.66		N
ATOM	2445	CA			331	7.710	6.524	36.276	1.00 19.23		C
ATOM	2446	CB			331	8.229	7.550	37.289	1.00 20.19		c
ATOM	2447	CG			331	8.972	6.934	38.450	1.00 23.65		Č
ATOM	2448	CD			331	9.071	7.912	39.625	1.00 28.70		C
ATOM	2449	CE			331	9.954	7.332	40.754	1.00 20.70		c
ATOM	2450				331						
		NZ				10.409	8.388	41.729	1.00 34.93		N
ATOM	2451	С	LYS			8.804	5.589	35.820	1.00 18.87		C
MOTA	2452	0			331	8.887	4.410	36.261	1.00 18.18		, 0
ATOM	2453	N			332	9.587	6.091	34.873	1.00 17.37		N
ATOM	2454	CA			332	10.797	5.406	34.412	1.00 17.82	A	C
MOTA	2455	CB			332	10.689	5.068	32.941	1.00 17.06	A	C
MOTA	2456	C	ALA	A	332	11.991	6.324	34.650	1.00 17.33	A	C
MOTA	2457	0	ALA	A	332	11.999	7.480	34.213	1.00 16.52	A	0
ATOM	2458	N	THR	A	333	13.005	5.805	35.325	1.00 17.85		N
ATOM	2459	ÇA	THR	A	333	14.108	6.643	35.784	1.00 17.61		C
ATOM	2460	CB			333	14.194	6.544	37.304	1.00 18.03		C
ATOM	2461	OG1				12.956	6.966	37.902	1.00 19.93		0
ATOM	2462	CG2			333	15.234	7.490	37.851	1.00 13.33		C
	~ I U ~	CUZ	7 1 1 1 /	17	J	17.673	7.43V	J, CJI	7.00 10.10	A	C

ATOM	2463	С	THR	A	333	15.410	6.186	35.159	1.00	17.36	A	С
ATOM	2464	0	THR	A	333	15.727	4.987	35.162	1.00	17.40	A	0
ATOM	2465	N	TYR	A	334	16.176	7.135	34.628	1.00	17.05	A	N
ATOM	2466	CA	TYR			17.437	6.840	33.986		17.42	A	C
ATOM	2467	CB	TYR			17.308	6.975	32.464		16.94	A	Č
ATOM	2468	CG	TYR			16.144	6.230	31.860	-	16.41	A	Ċ
MOTA	2469	CDI				16.273	4.891	31.458		14.43	A	C
ATOM	2470	CE1	TYR			15.205	4.205	30.912		14.63	A	C
ATOM	2471	CZ	TYR			13.203	4.846	30.772		15.02		C
											A	
ATOM	2472	OH	TYR			12.929	4.188	30.216		16.23	A	0
ATOM	2473	CE2				13.819	6.147	31.153		15.62	A	C
ATOM	2474	CD2				14.907	6.835	31.718		16.76	A	C
ATOM	2475	C	TYR			18.542	7.767	34.455		17.66	A	C
MOTA	2476	0	TYR			18.279	8.840	34.991		16.79	A	0
ATOM	2477	N 	SER			19.783	7.375	34.169		17.44	A	N
ATOM	2478	CA	SER			20.939	8.218	34.442		18.62	A	C
ATOM	2479		BSER			21.879	7.537	35.433		18.54	A	C
ATOM	2480		ASER			21.916	7.518	35.393		18.59	A	C
ATOM	2481		BSER			22.697	6.585	34.783	0.50	18.97	A	0
ATOM	2482	OG 7	ASER	A	335	21.316	7.174	36.629	0.50	19.43	A	0
MOTA	2483	С	SER	A	335	21.680	8.538	33.128	1.00	18.52	A	C
ATOM	2484	0	SER	A	335	21.698	7.720	32.221	1.00	18.14	A	0
ATOM	2485	N	PHE	A	336	22.298	9.715	33.049	1,00	17.92	A	N
ATOM	2486	CA	PHE	A	336	23.115	10.092	31.911	1.00	18.36	A	C
ATOM	2487	CB	PHE	A	336	22.324	10.949	30.900	1.00	18.52	A	C
ATOM	2488	CG	PHE	A	336	23.150	11.401	29.753	1.00	17.47	A	C
ATOM	2489	CD1	PHE	A	336	23.733	12.667	29.739	1.00	18.88	A	C
ATOM	2490	CEl	PHE	A	336	24.529	13.067	28.654	1.00	18.14	A	Ç
ATOM	2491	CZ	PHE	A	336	24.749	12.198	27.591	1.00	18.35	A	C
ATOM	2492	CE2	PHE	A	336	24.174	10.936	27.601	1.00	18.49	A	С
ATOM	2493	CD2				23.386	10.543	28.681		19.03	A	C
ATOM	2494	C	PHE		•	24.314	10.898	32.403	1.00		A	C
ATOM	2495	Ó	PHE			.24.159	11.810			18.98	A	Ò
ATOM	2496	N	THR			25.504	10.547	31.938		19.28	A	N
ATOM	2497	CA	THR			26.733	11.219	32.364		19.77	A	C
ATOM	2498	CB	THR			27.879	10.201	32.343	1.00		A	Č
ATOM	2499	OG1	THR			27.609	9.175	33.321		19.75	A	Ö
ATOM	2500	CG2	THR			29.159	10.857	32.796	1.00		A	C
ATOM	2501	C	THR			27.096	12.369	31.440	1.00		A	C
ATOM	2502	Õ	THR			27.266	12.163	30.253		20.10	A	0
ATOM	2503	N	ALA			27.181	13.571	32.000		19.74	A	N
ATOM	2504	CA	ALA			27.487	14.793	31.259		20.23	A	C
ATOM	2505	CB	ALA			26.468	15.858	31.588		19.43	A	C
ATOM	2506	C	ALA			28.881	15.292	31.633		20.94	A	C
ATOM	2507	0	ALA			29.389	14.991	32.710	1.00		A	0
ATOM	2508	N	GLN			29.503	16.042	30.741	1.00	-		N
ATOM	2509	CA	GLN								A	
ATOM	2510	CB	GLN			30.750	16.711	31.070		23.12	A	C
						31.893	16.162	30.230		24.34	A	<u></u>
ATOM	2511	CG	GLN			32.591	14.904	30.726		29.11	A	C
ATOM	2512	CD	GLN			34.116	14.923	30.437		36.99	A	C
ATOM	2513					34.841	13.991	30.825		41.39	A	0
ATOM	2514		GLN			34.597	15.995	29.778		36.90	A	N
ATOM	2515	C	GLN			30.543	18.167	30.722		23.27	A	C
ATOM	2516	0	GLN			30.034	18.485	29.641		23.02	A	0
MOTA	2517		ALA			30.922	19,061	31.619		22.60	A	N
ATOM	2518	CA	ALA			30.793	20.492	31.347		22.71	A	C
ATOM	2519	CB	ALA			31.311	21.296	32.535		22.84	A	С
ATOM	2520	C	ALA	A	340	31.524	20.916	30.076	1.00	22.30	A	С

	ATOM	2521	0	ALA	A 3	40	32.474	20.270	29.650	1.00	22.44	A	0
	ATOM	2522	N	GLY	A 3	41	31.063	21.996	29.455	1.00	23.38	A	N
	ATOM	2523	CA	GLY	A 3	41	31.738	22.554	28.283	1.00	23.73	A	C
	MOTA	2524	Ç	GLY	A 3	41	30,989	22.425	26.956	1.00	24.15	A.	C
	ATOM	2525	0	GLY	A 3	41	31.457	22.902	25.917	1.00	24.10	A	0
	ATOM	2526	N	LYS	A 3	42	29.829	21.774	26.970	1.00	24.05	A	N
	ATOM	2527	CA	LYS	A 3	42	29.038	21.637	25.743	1.00	24.39	A	С
	ATOM	2528	CB	LYS	A 3	42	29.643	20.545	24.861	1.00	25.08	A	Ç
	ATOM	2529	CG	LYS	A 3	42	29.610	19.148	25.496	1.00	27.13	A	C
	ATOM	2530	CD	LYS	A 3	42	30.471	18.173	24.723	1.00	29.40	A	C
	ATOM	2531	CE	LYS	A 3	42	30.254	16.725	25.182	1.00	29.96	A	C
	ATOM	2532	NZ	LYS	A 3	42	30.738	16.515	26.576	1.00	32.09	A	N
	ATOM	2533	С	LYS			27.552	21.373	26.058	1.00	23.40	A	C
	ATOM	2534	0	LYS	A 3	42	27.220	20.861	27.144	1.00	23.54	A	Ō
	MOTA	2535	N	PRO			26.652	21.755	25.151	1.00		A	Ň
	ATOM	2536	CA		A 3		25.219	21.683	25.450	1.00	21.01	A	C
	ATOM	2537	СВ	PRO			24.557	22.206	24.163	1.00	21.58	Ą	C
	ATOM	2538	CG	PRO			25.613	23.026	23.492	1.00	22.06	A	C
	ATOM	2539	CD	PRO			26.902	22.348	23.820			A	C
	ATOM	2540	C		A 3		24.729	20.279	25.756	1.00	19.35	A	C
	ATOM	2541	Ö	PRO			25.311	19.298	25.317		17.82	A	o
	ATOM	2542	N	LEU			23.645	20.223	26.521	1.00	18.12	A	И
	ATOM	2543	CA	LEU			22.945	18.988	26.790	1.00	17.07	A	C
	ATOM	2544	CB	LEU			23.019	18.680	28.278		17.12	A.	<u> </u>
	ATOM	2545	CG			44	22.250	17.476	28.788	1.00	16.96	A ·	C
	MOTA	2546	CDI		A 3		22.743	16.188	28.128		16.29	A A	C
	ATOM	2547	CD2			44	22.399	17.414	30.336	1.00	17.28	A A	C
	ATOM	2548	C	LEU			21.484	19.168	26.360	1.00	16.41		
	ATOM	2549	0	LEU			20.814					A	C
	MOTA	2550	N	LYS				20.029	26.870		17.49	A	0
	MOTA	2550 2551	CA	LYS		~	21.013	18.336	25.440		15.23	A	N
	ATOM	2552	CB	LYS			19.638	18.405	24.943		14.51	A	C
	ATOM	2552 2553	CG	LYS			19.644	18.807	23.474	1.00	14.84	A N	C
•	MOTA	2553 2554					20.104	20.235	23.248	1.00	13.82	A	C.
	ATOM	2555	CD	LYS	A 3		19.987	20.664	21.795	1.00	16.32	A	C
			CE				18.599	21.126	21.423	1.00	13.96	A	C
	ATOM	2556	NZ	LYS			18.513	21.491	19.992		17.70	A	N
	ATOM	2557	C	LYS			18.929	17.066	25.135	1.00	14.25	A	C
	ATOM ATOM	2558	O	LYS			19.399	16.033	24.658		14.33	A	0
		2559	N Ca	ILE			17.821	17.084	25.870		13.41	A	N
	ATOM	2560	CA	ILE			17.031	15.888	26.116		13.30	A	C
	ATOM	2561	CB	ILE			16.983	15.589	27.619	1.00	13.25	A	C
	ATOM ATOM	2562	CG1	ILE			18.376	15.444	28.197	1.00	13.74	A	C
		2563	CD1				18.459	15.807	29.637	1.00	15.75	A	C
	ATOM	2564	CG2	ILE			16.180	14.329	27.874	1.00	13.54	A.	C
	ATOM	2565	C	ILE			15.598	16.084	25.601	1.00	13.26	A	C
	ATOM	2566	0	ILE			14.900	17.010	26.020	1.00	13.15	A	0
	ATOM	2567	N	SER			15.159	15.197	24.714		12.65	A	N
	ATOM	2568	CA	SER			13.795	15.262	24.172		12.47	A -	C
	ATOM	2569		BSER			13.838	15.473	22.654		12.36	A	C
	MOTA	2570		ASER			13.813	15.524	22.662		12.73.	A	C
	ATOM	2571		BSER			12.569	15.297	22.042		10.59	A	0
	ATOM	2572		ASER			14.655	16.634	22.329		13.18	A	0
	ATOM	2573	C	SER			13.032	13.983	24.491		11.72	A	C
	ATOM	2574	0	SER			13.511	12.881	24.219		11.81.	A	0
	MOTA	2575	Ŋ	LEU			11.830	14.165	25.026		11.03	A	N
	ATOM	2576	CA	LEU			10.864	13.121	25.289		10.93	A	C
	ATOM	2577	CB	LEU			10.302	13.274	26.706	1.00	10.96	A	C
	ATOM	2578	CG	LEU	A 3	48	9.054	12.502	27.097	1.00	10.80	A	C

MOTA	2579	CD1	LEU	A	348	9.396	11.029	27.180	1.00	13.05		A	С
ATOM	2580	CD2	LEU	A	348	8.542	12.969	28.443	1.00	12.50		A	C
MOTA	2581	C	LEU	A	348	9.735	13.231	24.287	1.00	11.09		A	С
ATOM	2582	O	LEU	A	348	9.152	14.302	24.140	1.00	12.01		A	0
ATOM	2583	N .	VAL	A	349	9.389	12.127	23.631	1.00	10.58		A	N
ATOM	2584	CA			349	8.327	12.142	22.638	1.00	11.32		A	C
ATOM	2585	CB			349	8.876	12.223	21.185				A	C
MOTA	2586	CG1			349	7.745	12.102	20.169	1.00	12.19		_	C
MOTA	2587	CG2			349							A	
						9.653	13.511	20.961		11.93		A	C
MOTA	2588	C			349	7.522	10.873	22.768	1.00	11.68		Α	C
ATOM	2589	0			349	8.099	9.802	22.870	1.00	12.43		A	0
MOTA	2590	N	TRP		350	6.200	10.993	22.768	1.00	11.69		A	N
MOTA	2591	CA	TRP		350	5.354	9.813	22.662	1.00	11.48		A	C
MOTA	2592	CB	TRP	A	350	4.719	9.442	24.002	1.00	11.79		A	C
MOTA	2593	CG	TRP	A	350	3.822	10.448	24.628	1.00	11.11		A	C
MOTA	2594	CD1	TRP	A	350	2.457	10.378	24.720	1.00	12.11		A	C
MOTA	2595	NEl	TRP	A	350	1.961	11.469	25.386	1.00	12.24		A	N
ATOM	2596	CE2	TRP	A	350	3.015	12.262	25.774	1.00	13.16		A	C
MOTA	2597	CD2	TRP	Α	350	4.208	11.640	25.311	1.00	13.33		A	C
ATOM	2598	CE3	TRP			5.440	12.249	25.593	1.00	12.51		A	Ċ
ATOM	2599	CZ3	TRP	A		5.444	13.449	26.311	1.00	13.31		A	C
ATOM	2600	CH2	TRP			4.248	14.022	26.767	1.00	13.75		A	C
ATOM	2601	CZ2	TRP			3.022	13.427	26.507	1.00			À	C
ATOM	2602	C	TRP		350	4.314	9.883	21.536		11.50			C
		_							_, _ •	22.2.		A	· ·
MOTA	2603	0			350	3.905	10.953	21.077		11.90		A	0
ATOM	2604	N			351	3.921	8.707	21.071				A	N
MOTA	2605	CA			351	2.889	8.607	20.070	1.00	12.20		Α	C
ATOM	2606	CB			351	3.182	7.496	19.070	1.00	12.11		A	С
MOTA	2607	OG			351	4.356	7.772	18.310	1.00	11.85		A	0
MOTA	2608	C	SER	A	351	1.636	8.378	20.884	1.00	12.65		A	C
ATOM	2609	0	SER	A	351	1.360	7.285	21.375	1.00	12.72		A	0
ATOM	2610	N	ASP	A	352	0.947	9.477	21.115	1.00	13.75		A	N
ATOM	2611	CA	ASP	A	352	-0.205	9.532 -	21.982	1.00	14.48	•	A	· C ·
ATOM.	2612	CB	ASP	A	352	-0.508	11.003	22.225	1.00	14.84		A	C
ATOM	2613	CG	ASP	A	352	-1.480	11.251	23.385	1.00	16.70		A	C
MOTA	2614	OD1	ASP	A	352	-1.655	10.366	24.260	1.00	15.50		A	0
ATOM	2615	OD2			352	-2.115	12.329	23.458		15.19		A	O
ATOM	2616	Ċ _			352	-1.427	8.842	21.389		15.19		A	Č
ATOM	2617	Ō			352	-1.569	8.678	20.155		15.52		A	Õ
ATOM	2618	N			353	-2.331	8.434	22.273		15.26		A	N
ATOM	2619	CA			353	-3.689	8.074	21.853				A	C
ATOM	2620	CB			353	-4.526	7.801	23.051		15.59			C
ATOM	2621	.cs	ALA									A	
						-4.325	9.197	21.018		15.42		A	C
ATOM	2622	0			353	-4.076	10.374	21.264		15.11		A	0
MOTA	2623	N			354	-5.157	8.840	20.041	1.00	16.50		A	N
MOTA	2624	CA			354	-5.858	9.841	19.235	1.00			A	·C
MOTA	2625	CB			354	-6.724	9.003	18.287		17.36		A	C
ATOM	2626	CG			354	-6.790	7.646	18.897	1.00	17.45		A	C
MOTA	2627	CD	PRO	A	354	-5.499	7.456	19.640	1.00	16.81		A	C
ATOM	2628	С	PRO	A	354	-6.723	10.771	20.073	1.00	18.05		A	C
ATOM	2629	0	PRO	A	354	-7.420	10.293	20.957	1.00	17.51		A	0
MOTA	2630	N	GLY	A	355	-6.629	12.074	19.819	1.00	18.60		A	N
ATOM	2631	CA	GLY	A	355	-7.392	13.071	20.527		20.06		A	С
ATOM	2632	C			355	-8.773	13.285	19.936		21.21	•	A	Ċ
ATOM	2633	Ō			355	-9.095	12.758	18.880		22.41		A	Õ
MOTA	2634	N			356	-9.598	14.050	20.628		22.87		A	N
ATOM	2635	CA			356	-10.939	14.377	20.145		23.97		A	C
ATOM	2636	CB			356	-11.924	14.555	21.319		24.97		A	C
111 014	2000		JLR	~	J J Q	·· 11,724	14,733	21-J17	1.00	63·7/		~	C

MOTA	2637	OG	SER	A	356	-12.771	15.696	21.117	1.00 26.8	35	A	0
ATOM	2638	C	SER	A	356	-10.901	15.654	19.320	1.00 24.0	04	A	C
MOTA	2639	0	SER	A	356	-10.151	16.583	19.635	1.00 23.5	54 .	A	0
ATOM	2640	N	THR	A	357	-11.714	15.684	18.261	1.00 24.6	51 .	A	N
ATOM	2641	CA	THR	A	357	-11.826	16.846	17.396	1.00 25.	58	A	C
ATOM	2642	CB	THR	A	357	-12.423	16.436	16.032	1.00 25.8	36 -	A	C
ATOM	2643	OG1			357	-13.673	15.748	16.218	1.00 25.9		A	0
ATOM	2644	CG2			357	-11.534	15.392	15.334	1.00 25.3		A	C
ATOM	2645	C			357	-12.687	17.982	18.000	1.00 26.9		A	C
MOTA	2646	0	THR			-12.812	19.035	17.398	1.00 26.2		A	0
ATOM.	2647	N			358	-13.276	17.771	19.175	1.00 27.		A	N
ATOM	2648	CA			358	-14.113	18.816	19.779	1.00 28.3		A	C
ATOM	2649	CB			358	-15.575	18.335	19.938	1.00 28.3		A	C
ATOM	2650	OG1			358	-15.606	17.065	20.606	1.00 28.6		A	0
MOTA MOTA	2651 2652	CG2 C			358	-16.192	18.066	18.587	1.00 27.5		A	C
ATOM	2653	0	THR		358	-13.605	19.321	21.118	1.00 28.		A	C
MOTA	2654	N			359	-13.954 -12.758	20.424 18.548	21.524 21.795	1.00 29.2		A n	O
ATOM	2655	CA			359	-12.738	18.925	23.133	1.00 28.9		A A	N C
ATOM	2656	CB			359	-11.668	17.739	23.133	1.00 27.1		A	C
ATOM	2657	C			359	-11.349	20.100	23.014	1.00 27.9		A	C
ATOM	2658	o			359	-10.738	20.393	22.060	1.00 27.6	_	A	0
ATOM	2659	N			360	-11.213	20.785	24.241	1.00 27.3		A	N
ATOM	2660	CA	SER			-10.301	21.916	24.344	1.00 27.0		A	Ċ
ATOM	2661	CB	SER	A	360	-10.351	22.564	25.737	1.00 27.5		A	Ċ
MOTA	2662	OG			360	-11.688	22.840	26.125	1.00 31.5		A	0
MOTA	2663	С	SER	A	360	-8.858	21.485	24.060	1.00 25.3		A	C
ATOM	2664	0	SER	Α	360	-8.115	22.230	23.446	1.00 24.2	27	A	Q
ATOM	2665	N	LEU	A	361	-8.478	20.307	24.553	1.00 23.	74	A	N
MOTA	2666	CA	LEU	A	361	-7.100	19.812	24.453	1.00 23.5	54	A '	C
MOTA	2667	CB	LEU	A	361	-6.480	19.583	25.840	1.00 23.8	37	A	C
ATOM	2668	CG	LEU			-6.119	20.802	26.702	1.00 27.3	30	A	C
ATOM	2669	CD1	LEU.			-5.434	20.335	27.980	1.00 28.6	51 ·	A -	C·
MOTA	2670	CD2	LEU			-5.217	21.827	25.975	1.00 28.		A	C
ATOM	2671	C	LEU			-7.097	18.493	23.701	1.00 21.		A	C
MOTA	2672	0			361	-7.942	17.611	23.961	1.00 21.		A	0
ATOM	2673	N			362	-6.141	18.325	22.790	1.00 19.0		A	N
ATOM	2674	CA			362	-6.053	17.058	22.066	1.00 18.		A	C
ATOM	2675	CB			362	-5.433	17.230	20.657	1.00 19.4		A	C
ATOM ATOM	2676 2677	OG1 CG2			362 362	-4.100	17.707	20.786	1.00 17.	'	A 3	0
ATOM	2678	C			362	-6.174 -5.261	18.305 16.023	19.862 22.819	1.00 20.5	_	A n	C
ATOM	2679	Ö			362	-5.411	14.858	22.530	1.00 17.2		A A	С 0
ATOM	2680	N			363	-4.398	16.448	23.761	1.00 16.0		A	N
ATOM	2681	ĊA			363	-3.560	15.505	24.484	1.00 16.3		A	C
ATOM	2682	CB			363	-2.547	16.213	25.411	1.00 16.3		A	C
ATOM	2683	CG			363	-1.460	15.318	25.990	1.00 16.0		A	Ċ
ATOM	2684	CD1	LEU			-0.380	14.960	24.939	1.00 16.3	_	A	Č
ATOM	2685	CD2	LEU			-0.838	15.936	27.236	1.00 15.8		A	C
ATOM	2686	C.			363	-4.424	14.536	25.280	1.00 17.3		A	,C
MOTA	2687	0			363	-5.404	14.936	25.911	1.00 17.		A	Ö
MOTA	2688	N	VAL	A	364	-4.068	13.253	25.249	1.00 16.		A	N
ATOM	2689	CA			364	-4.829	12.263	25.975	1.00 16.		A	C
ATOM	2690	CB	VAL	A	364	-5.285	11.121	25.030	1.00 15.		A	C
ATOM	2691	CG1	VAL	A	364	~5.871	9.933	25.826	1.00 17.3		A	С
MOTA	2692	CG2	VAL	A	364	-6.288	11.651	24.020	1.00 16.2		A	C
ATOM	2693	C	VAL	A	364	-3.983	11.744	27.139	1.00 15.0	_	A	C
ATOM	2694	0	VAL	A	364	-4.329	11.942	28.309	1.00 15.3	17	A	0

ATOM	2695	N	ASN A	365	-2.875	11.085	26.809	1.00 14.41	A	N
ATOM	2696	CA	ASN A	365	-1.931	10.614	27.804	1.00 14.31	A	C
ATOM	2697	CB	ASN A		-1.302	9.286	27.354	1.00 14.31	A	С
							27.214	1.00 16.21	A	C
ATOM	2698	CG	ASN A		-2.342	8.161				
MOTA	2699	OD1	ASN A		-3.298	8.081	28.004	1.00 13.31		0
MOTA	2700	ND2	ASN A	365	-2.158	7.283	26.206	1.00 14.49	A	N
ATOM	2701	С	ASN A	365	-0.858	11.690	28.088	1.00 14.80	A	С
ATOM	2702	0	ASN A	365	-0.174	12.190	27.172	1.00 14.01	A	0
ATOM	2703	N	ASP A		-0.696	12.015	29.360	1.00 14.06		N
ATOM	2704	CA	ASP A		0.158	13.115	29.783	1.00 15.00		C
MOTA	2705	CB	ASP A	366	-0.632	14.068	30.672	1.00 14.40	A	С
MOTA	2706	CG	ASP A	366	0.105	15.346	30.990	1.00 15.13	A	C
MOTA	2707	OD1	ASP A	366	1.344	15.467	30.710	1.00 13.15	A	0
ATOM	2708	OD2	ASP A	366	-0.491	16.284	31.609	1.00 17.79	A	0
ATOM	2709	C	ASP A		1.367	12.568	30.548	1.00 14.89		Ċ
ATOM	2710	0		366	1.257	12.132	31.708	1.00 15.57		0
ATOM	2711	N	LEU A		2.501	12.562	29.865	1.00 14.16		N
MOTA	2712	ĊA	LEU A	367	3.772	12.248	30.462	1.00 14.65	A	C
ATOM	2713	CB	LEU A	367	4.581	11.333	29.520	1.00 14.37	A	C
ATOM	2714	CG	LEU A	367	3.990	10.005	29.077	1.00 13.06	A	C
ATOM	2715	CD1	LEU A		5.063	9.220	28.244	1.00 12.20		C
ATOM	2716	CD2	LEU A		3.485	9.123	30.239	1.00 15.25		C
ATOM	2717	C	LEU A		4.523	13.555	30.710	1.00 14.15		C
ATOM	2718	0	LEU A		4.271	14.546	30.045	1.00 14.17		0
ATOM	2719	N	ASP A	368	5.441	13.556	31.677	1.00 14.04	A	N
ATOM	2720	CA	ASP F	368	6.271	14.705	31.980	1.00 14.28	A	С
ATOM	2721	CB	ASP A	368	5.959	15.284	33.354	1.00 15.52	A	С
ATOM	2722	CG	ASP A	368	4.529	15.726	33.515	1.00 17.54	A	C
ATOM	2723	OD1	ASP A	368	3.909	16.253	32.540	1.00 14.48	A	0
ATOM	2724	OD2			4.006	15.624	34.642	1.00 17.39		0
ATOM	2725	C	ASP A		7.724	14.275	32.057	1.00 14.49		Ċ
ATOM	2726	0	ASP A			13.203	32.587	1.00 13.94		0
					8.034					
ATOM	2727	N	LEU A		. 8:603	15.108		1.00 14.32		Ŋ
MOTA	2728	CA	LEU A		10.044	14.937	31.645	1.00 14.31		C
ATOM	2729	CB	LEU A	369	10.735	15.448	30.380	1.00 13.72	A	C
ATOM	2730	CG	LEU A	369	12.238	15.284	30.298	1.00 12.96	A	C
ATOM	2731	CD1	LEU A	369	12.572	13.850	30.345	1.00 12.52	A	C
ATOM	2732	CD2	LEU A	369	12.749	15.953	28.980	1.00 14.11	Α	С
ATOM	2733	С	LEU A	369	10.539	15.733	32.854	1.00 15.02	A	C
ATOM	2734	Ō	LEU A		10.218	16.922	33.012	1.00 15.50		0
ATOM	2735	N	VAL A		11.315	15.085	33.698	1.00 15.26		N
ATOM	2736	ÇA	VAL A		11.875	15.729	34.905	1.00 15.63		C
ATOM	2737	CB	VAL A		11.144	15.278	36,180	1.00 15.95		C
ATOM	2738	CG1	VAL A	370	11.679	16.020	37.425	1.00 17.73	A	С
MOTA	2739	CG2	VAL A	370	9.687	15.487	36.024	1.00 15.57	A	C
MOTA	2740	C	VAL A	370	13.359	15.388	34.975	1.00 15.46	A	C
ATOM	2741	0	VAL A	370	13.767	14.219	35.042	1.00 15.96	А	0
ATOM	2742	N	ILE A	371	14.174	16.422	34.908	1.00 15.15	A	N
ATOM	2743	CA		371	· · ·	16.261		1.00 14.98		C
MOTA	2744	CB		371		17.036				C
ATOM	2745	CG1	ILE A			16.589		1.00 14.63		C
ATOM	2746	CD1				15.075		1.00 14.66		С
MOTA	2747	CG2	ILE A	371	17.674	16.922	33.614	1.00 12.85	A	C
ATOM	2748	C	ILE A	371	16.145	16.835	36.155	1.00 15.95	A	C
ATOM	2749	0	ILE A	371	15.648	17.853	36.618	1.00 16.74	A	0
ATOM	2750	N	THR A		17.150	16.174	36.727	1.00 16.86		N
ATOM	2751	CA		372		16.671		1.00 17.19		C.
ATOM	2752	CB		372		15.748				C
2 1 1 VI-1	<i>کے د</i> رہے		7.1417 E	_	17.010		, , , , , , , , , , , , , , , , , , ,	1.00 17.50	4	~

MOTA	2753	OG1	THR	A	372	16.212	15.514	39.265	1.00	18.17		A	0
MOTA	2754	CG2	THR	A	372	18.044	16.409	40.372	1.00	17.84		A	C
MOTA	2755	C	THR	A	372	19.364	16.729	37.634	1.00	17.65		A	C
ATOM	2756	0	THR	Α	372	19.962	15.725	37.262	1.00	18.44		A	0
ATOM	2757	N	ALA	A	373	19.971	17.891	37.870	1.00	17.80		A	N
ATOM	2758	CA			373	21.376	18.118	37.606	1.00	18.13		A	C
MOTA	2759	CB			373	21.643	19.607	37,475	1.00	18.43		A	C
ATOM	2760	C			373	22.175	17.545	38.767	1.00	19.16		A	Ċ
ATOM	2761	Ō			373	21.601	17.188	39.780	1.00	18.57		A	ō
ATOM	2762	N			374	23.479	17.368	38.581	1.00	19.84		A.	N
MOTA	2763	CA			374	24.348	16.857	39.642	1.00	20.99		A	C
ATOM	2764	CB			374	25.727	16.884	39.001	1.00	20.60		À.	C
ATOM	2765	CG			374	25.434	16.700	37.530	1.00	20.96		À	C
ATOM	2766	CD			374	24.174	17.460	37.286	1.00	20.29		À	C
ATOM	2767	C			374	24.266	17.647	40.948	1.00	22.06		A	C
ATOM	2768	Ö			374	24.303	17.039	42.011	1.00	23.95		A	Ö
ATOM	2769	N			375	24.024	18.954	40.873	1.00	23.03		A	N
ATOM	2770	CA			37 5	23.910	19.770	42.058	1.00	23.32		A A	C
ATOM	2771	CB			375	24.515	21.165	41.790	1.00	24.03		A A	C
ATOM	2772	CG	ASN		375	23.581	22.096		1.00	26.93			
ATOM	2773	OD1			375			40.993				A N	C
ATOM	2774	ND2			375 375	22.515	21.689	40.492	1.00	28.51		A	0
ATOM	2775	C	ASN			23.987	23.362	40.878	1.00	27.28		A D	N
ATOM	2776	0			375	22.471 22.208	19.898	42.563	1.00	23.07		A A	C
ATOM	2777	N	GLY				20.711	43.430		22.92		A	0
ATOM	2778	CA			376 376	21.541	19.120	42.010	1.00	21.76		A	N
						20.166	19.165	42.469	1.00	21.43		A	C
ATOM	2779	C			376	19.197	20.077	41.724	1.00	20.91		A	C
ATOM	2780	0	GLY			17.990	20.006	41.937	1.00	19.94		A	0
ATOM	2781	N			377	19.696	20.909	40.828	1.00	21.29		A	N
MOTA	2782	CA			377	18.793	21.785	40.090	1.00	21.36		A	C
MOTA	2783	CB			377	19.571	22.738	39.220	1.00	21.19		A	C
ATOM	2784	OG1			377	20.423	23.532	40.054	1.00	22.26		A	0
· ATOM	2785	CG2	THR			18.635	23.724	38.538	1.00	20.97		A	C
ATOM	2786	C			377	17.818	20.971	39.239	1.00	20.56		A -	C
MOTA	2787	0			377	18.206	20.058	38.541	1.00	19.93		A -	0
ATOM	2788	N			378	16.558	21.345	39.315	1.00	20.68		A	N
ATOM	2789	CA			378	15.488	20.630	38.644	1.00	21.64		A	C
ATOM	2790	CB	LYS			14.321	20.503	39.594	1.00	22.42		A	C
ATOM	2791	CG	LYS			13.709	19.168	39.611	1.00	28.13		A	C
MOTA	2792	CD	LYS			14.144	18.449	40.913	1.00	33.32		A	C
ATOM	2793	CE			378	13.743	17.001	40.854	1.00	34.92		A	C
ATOM	2794	NZ			378	14.605	16:111	41.699	1.00	38.61		A	N
ATOM	2795	C			378	14.990	21.344	37.397	1.00	20.06		A	C
ATOM	2796	0			378	14.902	22.553	37.388	1.00	19.59		A	0
ATOM	2797	N			379	14.623	20.568	36.378	1.00	18.59		A	N
ATOM	2798	CA	TYR	A	379	14.009	21.088	35.155	1.00	17.87		A	C
ATOM	2799	CB	TYR	A	379	15.030	21.111	34.011	1.00	17.25		A	C
ATOM	2800	CG	TYR	A	379	16.382	21.654	34.386	1.00	17.53		A	C
ATOM	2801	CD1	TYR	A	379	17.297	20.864	35.052	1.00	18.58		A	C
ATOM	2802	CE1	TYR	A	379	18.537	21.352	35.417	1.00	19.05		A	C
MOTA	2803	CZ	TYR	Ą	379	18.895	22.655	35.097	1.00	21.25		A	C
MOTA	2804	OH	TYR	A	379	20.160	23.104	35.465	1.00	20.46		A	0
ATOM	2805	CE2	TYR	A	379	18.004	23.459	34.399	1.00	19.58		A	C
MOTA	2806	CD2	TYR	A	379	16.751	22.953	34.060		18.07		A	C
ATOM	2807	C	TYR	A	379	12.852	20.198	34.732		17.42		A	C
ATOM	2808	0			379	12.967	18.973	34.766	1.00			A	0
ATOM	2809	N			380	11.732	20.787	34.340		16.44		A	N
ATOM	2810	CA	VAL	A	380	10.653	19.989	33.750		16.11		A	C
						_		-	- -	_	·		

ATOM	2811	CB	VAL	A	380	9.320	20.114	34.514	1.00 16.66	A	C
ATOM	2812	CG1	VAL	A	380	9.521	19.742	36.000	1.00 17.64	A	C
ATOM	2813	CG2	VAL	A	380	8.716	21.505	34.369	1.00 16.52	A	C
ATOM	2814	C	VAL	Α	380	10.466	20.353	32.283	1.00 14.93	\mathbf{A}^{\cdot}	C
ATOM	2815	0	VAL	A	380	10.876	21.425	31.826	1.00 15.17	A	0
ATOM	2816	N	GLY	A	381	9.868	19.436	31.547	1.00 14.19	A	Ŋ
ATOM	2817	CA	GLY	A	381	9.761	19.541	30.101	1.00 13.85	A	C
ATOM	2818	C	GLY			9.132	20.847	29.647	1.00 13.74	A	C
ATOM	2819	0			381	8.096	21.259	30.153	1.00 13.57	A	0
ATOM	2820	N			382	9.813	21.509	28.729	1.00 13.87	A	. N
ATOM	2821	CA			382	9.332	22.719	28.064	1.00 14.08	A	Ĉ
ATOM	2822	CB			382	8.002	22.451	27.344	1.00 13.91	A	C
ATOM	2823	CG			382	B.148	21.436	26.209	1.00 14.03	A	C
ATOM	2824	OD1			382	9.250	21.181	25.757	1.00 13.23	A	0
ATOM	2825	ND2	ASN			7.041	20.850	25.770	1.00 10.67	Ä	N
ATOM	2826	C			382	9.232	23.942	28.966	1.00 10.07	À	C
ATOM	2827	0			382	8.682	24.981	28.556	1.00 14.15	A	0
MOTA	2828	N	ASP		383	9.796	23.869	30.178	1.00 14.15	A	й
ATOM	2829	CA	ASP	A	383						
ATOM	2830	CB			383	9.813	25.057	31.017	1.00 14.97	A	C
						9.593	24.709	32.499	1.00 15.34	A	C
ATOM:	2831	CG	ASP			9.580	25.952	33.388	1.00 15.81	A	C
ATOM	2832	OD1	ASP		383	9.786	27.082	32.845	1.00 16.83	· A	0
ATOM	2833	OD2	ASP			9.394	25.897	34.636	1.00 15.84	A	0
ATOM	2834	C			383	11.127	25.813	30.810	1.00 15.13	A	C
MOTA	2835	0	ASP	A	383	12.160	25.490	31.398	1.00 15.46	A	0
ATOM	2836	N	PHE	A		11.074	26.859	30.000	1.00 15.11	A	N
ATOM	2837	CA	PHE	A	384	12.284	27.559	29.589	1.00 15.10	A	C
ATOM	2838	CB	PHE			12.178	27.818	28.086	1.00 16.52	A	C
ATOM	2839	CG	PHE			12.247	26.560	27.240	1.00 14.23	A	C
ATOM	2840	CD1	PHE	A	384	13.440	25.910	27.059	1.00 19.41	A	C
MOTA	2841	CEl	PHE	A	384	13.516	24.782	26.273	1.00 19.08	A	C
ATOM	2842	CZ	PHE	A	384	12.395	24.303	25.685	1.00 18.05	A	C
ATOM	2843	CE2	PHE	A	384	11.208	24.943	25.845	1.00 14.73	A	C·
ATOM	2844	CD2	PHE	Α	384	11.140	26.070	26.602	1.00 16.74	′ A	C
ATOM	2845	C	PHE	A	384	12.546	28.857	30.389	1.00 15.96	A	C
ATOM	2846	0	PHE	A	384	13.547	29.558	30.152	1.00 15.13	A	0
MOTA	2847	N	THR	A	385	11.666	29.151	31.350	1.00 16.18	A	N
ATOM	2848	CA	THR	A	385	11.820	30.294	32.264	1.00 17.37	A	C
ATOM	2849	CB	THR	A	385	10.519	31.097	32.400	1.00 17.19	A	C
ATOM	2850	OG1	THR	A	385	9.520	30.295	33.030	1.00 17.98	A	0
ATOM	2851	CG2	THR	A	385	9.922	31.491	31.028	1.00 18.21	A	C
MOTA	2852	С	THR	A	385	12.238	29.868	33.689	1.00 17.95	A	C
ATOM	2853	0	THR	A	385	11.703	28.890	34.252	1.00 17.41	A	0
ATOM	2854	N	ALA	A	386	13.197	30.599	34.250	1.00 18.54	A	N
ATOM	2855	CA ·	ALA			13.743	30.266	35.565	1.00 19.43	A	С
ATOM	2856	CB	ALA		386	15.056	30.971	35.792	1.00 19.87	A	C
ATOM	2857	C			386	12.728	30.697	36.594	1.00 20.06	A	Č
ATOM	2858	Ō			386	12.078	31.735	36.409	1.00 21.03	A	0
ATOM	2859	N			387	12.525	29.897	37.635	1.00 19.71	A	N
ATOM	2860	CA -			387	13.134	28.582	37.766	1.00 20.17	A	C
ATOM	2861	CB			387	12.951	28.269	39.250	1.00 20.17	A	C
ATOM	2862	CG			387	11.609	28.910	39.230	1.00 20.30		C
ATOM	2863	CD			387					A	
ATOM		CD				11.670	30.223	38.796	1.00 21.11	A	C
ATOM	2864	_			387	12.413	27.549	36.890	1.00 19.33	A	C
	2865	O N			387	11.237	27.688	36.612	1.00 18.07	A	0
ATOM	2866	N			388	13.144	26.521	36.491	1.00 19.24	A	N
ATOM	2867	CA			388	12.781	25.672	35.365	1.00 19.24	· A	C
MOTA	2868	CB	TYR	A	388	14.059	25.211	34.661	1.00 18.91	A	C

	_										
ATOM	2869	CG	TYR	A	388	14.912	26.363	34.177	1.00 18.51	A	C
ATOM	2870	CD1	TYR	A	388	16.128	26.625	34.761	1.00 16.61	A	С
ATOM	2871	CE1	TYR	A	388	16.912	27.701	34.350	1.00 17.76	A	Ċ
ATOM	2872	CZ	TYR		388	16.462	28.511	33.312	1.00 15.12	A	Č
ATOM	2873	OH	TYR								
						17.242	29.565	32.918	1.00 17.69	A	0
ATOM	2874	CE2	TYR		388	15.241	28.276	32.723	1.00 14.50	A	C
ATOM	2875	CD2	TYR			14.462	27.229	33.154	1.00 14.33	A	C
ATOM	2876	C	TYR	A	388	11.934	24.467	35.745	1.00 19.73	A	C
ATOM	2877	0	TYR	A	388	11.688	23.598	34.913	1.00 19.79	A	0
ATOM	2878	N	ASP	A	389	11.422	24.442	36.972	1.00 20.38	A	N
ATOM	2879	CA	ASP		389	10.605	23.327	37.430	1.00 21.41	A	C
ATOM	2880	CB	ASP		389	11.346	22.547	38.507	1.00 22.04	A	C
ATOM	2881	CG	ASP		389				·		
						11.504	23.343	39.796	1.00 24.83	A	C
ATOM	2882	OD1	ASP		389	11.618	22.706	40.869	1.00 27.95	A	0
ATOM	2883	OD2			389	11.523	24.595	39.822	1.00 24.63	A	0
ATOM	2884	C	ASP	A	389	9.246	23.724	37.968	1.00 21.64	A	C
ATOM	2885	0	ASP	A	389	8.629	22.947	38.709	1.00 22.12	A	0
ATOM	2886	N	ASN	A	390	8.759	24.908	37.618	1.00 21.45	A	N
ATOM	2887	CA	ASN	A	390	7.455	25.326	38.130	1.00 22.14	A	C
ATOM	2888	CB	ASN		390	7.555	26.664	38.892	1.00 22.91	Ā	Ċ
ATOM	2889	CG	ASN		390	7.965	27.825	37.989	1.00 23.08		C
ATOM										A	
	2890	OD1	ASN			8.404	27.620	36.847	1.00 22.98	A	0
ATOM	2891	ND2			390	7.816	29.050	38.491	1.00 23.21	A	N
ATOM	2892	С			390	6.356	25.402	37.060	1.00 22.16	А	C
ATOM	2893	O	ASN	A	390	5.181	25.500	37.405	1.00 21.88	A	0
ATOM	2894	N	ASN	A	391	6.717	25.340	35.772	1.00 21.51	A	N
ATOM	2895	CA	ASN	A	391	5.705	25.411	34.713	1.00 20.98	A	C
ATOM	2896	CB	ASN	A	391	5.986	26.567	33.728	1.00 21.22	A	Ċ
ATOM	2897	CG			391	6.221	27.924	34.426	1.00 22.34	A	Ċ
ATOM	2898	OD1	ASN								
ATOM						7.345	28.481	34.388	1.00 22.21	A	0
	2899	ND2	ASN			5.151	28.490	35.029	1.00 23.08	A	Ŋ
MOTA	2900	C	ASN			5.611	24.072	33.978	1.00 20.79	A	C
ATOM	2901	0	ASN.			6.295	23.818	32.978	1.00 21.08	· A	0
ATOM	2902	N	TRP	A	392	4.741	23.211	34.467	1.00 20.10	A	N
ATOM	2903	CA	TRP	A	392	4.601	21.862	33.928	1.00 20.04	A	С
ATOM	2904	CB	TRP	A	392	3.893	20.979	34.926	1.00 20.74	A	C
ATOM	2905	CG	TRP	A	392	4.629	20.757	36.231	1.00 24.30	A	С
ATOM	2906	CD1	TRP	A	392	4.687	21.605	37.309	1.00 28.54	A	C
ATOM	2907	NE1			392	5.435	21.038	38.317	1.00 30.71	A	N
ATOM	2908	CE2			392	5.870	19.804	37.902	1.00 30.71		
ATOM	2909	CD2	TRP	A	392					A	C
						5.367	19.594	36.598	1.00 27.17	· A	C
ATOM	2910	CE3	TRP	A	392	5.695	18.400	35.937	1.00 29.38	A	C
ATOM	2911	CZ3	TRP	A	392	6.456	17.447	36.608	1.00 28.54	A	C
ATOM	2912	CH2	TRP		392	6.922	17.683	37.904	1.00 30.49	A	C
MOTA	2913	CZ2	TRP	A	392	6.643	18.857	38.566	1.00 30.31	А	C
ATOM	2914	C	TRP	A	392	3.767	21.890	32.661	1.00 19.03	A	C
ATOM	2915	0	TRP	A	392	2.828	22.678	32.552	1.00 19.40	A	0
ATOM	2916	N	ASP	A	393	4.107	21.020	31.709	1.00 17.66	A	N
ATOM	2917	CA	ASP			3.416	20.958	30.424	1.00 16.59	A	
ATOM	2918	CB	ASP								C
						4.431	20.669	29.332	1.00 16.47	A	C
ATOM	2919	CG	ASP			3.813	20.660	27.930	1.00 15.80	A	C
ATOM	2920	ODI	ASP			4.350	21.364	27.045	1.00 14.98	A	0
ATOM	2921	OD2	ASP			2.817	19.975	27.629	1.00 15.12	A	0
MOTA	2922	C	ASP	A	393	2.324	19.888	30.425	1.00 16.46	A	C
MOTA	2923	0	ASP	A	393	2.606	18.716	30.648	1.00 15.65	A	0
ATOM	2924	N	GLY	A	394	1.080	20.302	30.178	1.00 15.96	A	N
ATOM	2925	CA	GLY			-0.029	19.384	30.014	1.00 16.13	A	C
MOTA	2926	C	GLY			-0.747	19.498	28.675	1.00 16.13		C
	- <i>-</i>	~	JLI	1.7	<i></i>	0./3/	*7'430	20.073	1.00 10.27	A	C

		_		_							_	- 2
ATOM	2927	0	GLY	A	394	-1.936	19.255	28.601	1.00	16.15	7	4 0
MOTA	2928	N	ARG	A	395	-0.030	19.864	27.617	1.00	17.31	7	A N
MOTA	2929	CA	ARG	A	395	-0.607	19.978	26.264	1.00	17.68	7	A C
ATOM	2930	CB			395	-0.588	21.437	25.783		19.08	_	A C
ATOM -	2931	CG		-	395					-	7	
						-1.434	22.408	26.518		26.02		_
ATOM	2932	CD			395	-1.172	23.839	26.066		31.34	F	
ATOM	2933	NE	ARG	A	395	-1.802	24.813	26.969	1.00	37.30	F	N
MOTA	2934	CZ	ARG	A	395	-3.026	25.331	26.821	1.00	40.58	7	4 C
MOTA	2935	NHl	ARG	A	395	-3.478	26.216	27.717	1.00	44.12	2	A N
ATOM	2936	NH2			395	-3.805	24.983	25.805		40.20		N
ATOM	2937	C			395	0.176	19.240	25.165		15.80		A C
MOTA	2938	0			395		18.827			16.01		
		_				-0.418		24.176				
ATOM	2939	N			396	1.502	19.212	25.282		14.41		N
ATOM -	2940	CA			396	2.389	18.645	24.251		13.89		d C
ATOM	2941	CB	ASN	A	396	3.662	19.483	24.133	1.00	13.10	7	<i>y</i> C
ATOM	2942	CG	asn	A	396	3.408	20.889	23.585	1.00	14.63	7	<i>3</i> C
ATOM	2943	OD1	ASN	A	396	3.129	21.075	22.374	1.00	11.53	7	O F
ATOM	2944	ND2	ASN	A	396	3.550	21.897	24.463	1.00	11.89	,	A N
ATOM	2945	С			396	2.806	17.197	24.475		13.64		A C
ATOM	2946	Ö			396	2.995	16.743	25.634		14.92		O A
MOTA	2947	N			397	2.973				13.56		
							16.452	23.376				
ATOM	2948	CA			397	3.539	15.085	23.451		12.37	_	A C
MOTA	2949	CB			397	2.705	14.080	22.672		12.41	Į	y C
ATOM	2950	CG	ASN	A	397	2.539	14.450	21.192	1.00	13.07	7	4 . C
ATOM	2951	OD1	ASN	A	397	2,243	15.594	20.849	1.00	12.07	7	A O
ATOM	2952	ND2	ASN	A	397	2.683	13.466	20.324	1.00	13.08	7	A N
MOTA	2953	C	ASN	A	397	5.011	15.077	23.010	1.00	13.13	7	A C
ATOM	2954	0	ASN	A	3 97	5.607	14.010	22.663		11.34		O A
ATOM	2955	N			398	5.577	16.291	23.028		12.66		A N
ATOM	2956	CA			398	6.992	16.524	22.914		12.58		
ATOM	2957	CB			398	7.329	17.261	21.626		13.06		A C
ATOM	2958	CG1			398	8.835	17.523	21.533		11.41		A C
ATOM	2959	CG2			398	6.846	16.476	20.408	1.00	12.98		A C
MOTA	2960	C	VAL	A	398	7.381	17.412	24.105	1.00	12.92	7	J C
ATOM	2961	0	VAL	A	398	6.819	18.501	24.272	1.00	13.08	7	O <i>F</i>
ATOM	2962	N	GLU	A	399	8.288	16.913	24.945	1.00	12.47	1	A N
ATOM	2963	CA	GLU	A	399	8.797	17.666	26.107	1.00	12.81	7	A C
ATOM	2964	СВ			399	8.339	17.054	27.452		12.40		A C
MOTA	2965	CG			399	6.870	17.340	27.793		11.56		A C
ATOM	2966	CD			399					13.58		
						6.538	17.357	29.284				A C
ATOM	2967	OE1	GLU			5.312	17.324	29.635		14.48		A 0
ATOM	2968	OE2			399	7.471	17.421	30.112		14.20		A 0
ATOM	2969	С			399	10.307	17.680	26.052	1.00	12.44	,	A C
ATOM	2970	0	GLU	A	399	10.920	16.624	25.929	1.00	13.16	7	A 0
ATOM	2971	N	ASN	A	400	10.890	18.883	26.174	1.00	12.69	1	N A
ATOM	2972	CA	ASN	A	400	12.326	19.098	26.073	1.00	12.36	7	A C
ATOM	2973	CB	ASN	A	400	12.636	19.953	24.822	1.00	12.37	7	A C
MOTA	2974	CG .	ASN			12.185	19.302	23.559		14.26	7	A
ATOM	2975	-	ASN			12.621	18.213	23.247		16.94		A 0
ATOM	2976	ND2			400	11.302	19.964	22.817		14.56		N A
ATOM	2977	C			400	12.959	19.820	27.254		11.55		A C
ATOM	2978	0			400	12.363	20.716	27.867		11.03		A 0
ATOM	2979	N	VAL	A	401	14.200	19.448	27.543	1.00	11.83	j.	A N
ATOM	2980	CA	VAL	A	401	15.042	20.183	28.494	1.00	11.67	7	A C
ATOM	2981	CB	VAL	A	401	15.230	19.394	29.804	1.00	11.24	Į.	A C
ATOM	2982	CG1			401	16.317	20.017	30.668		13.18		A C
MOTA	2983	CG2			401	13.962	19.359	30.558		11.36		A C
ATOM	2984	C			401	16.351	20.372	27.792		12.10		A C
	2201	_	4 1-111	77	2 ~ .h.	10.01	20.572	L1.13L	1.00	~ ~ · · · · ·	•	

ATOM	2985	0	VAL	A	401	17.022	19.394	27.471	1.00 12.05		A	0
ATOM	2986	N			402	16.693	21.634	27.528	1.00 12.69		A	N
ATOM	2987	CA	PHE		402	17.841	22.019	26.744	1.00 14.06		A	C
ATOM	2988	CB	PHE		402	17.401	22.853	25.517	1.00 14.00			C
											A	
ATOM	2989	CG	PHE			16.602	22.079	24.464	1.00 12.42		A	C
ATOM	2990	. CD1	PHE			15.936	22.764	23.455	1.00 15.18		A	C
ATOM	2991	CE1				15.222	22.069	22.468	1.00 12.37		A	C
ATOM ·	2992	CZ	PHE			15.195	20.700	22.489	1.00 11.68		A	C
MOTA	2993	CE2	PHE			15.841	20.022	23.493	1.00 14.06		A	C
ATOM	2994	CD2	PHE			16.534	20.698	24.465	1.00 10.95		A	C
ATOM	2995	C	PHE	A	402	18.725	22.896	27.641	1.00 15.85		A	C
ATOM	2996	0	PHE	A	402	18.356	24.021	27.952	1.00 16.80		A	0
ATOM	2997	N.	ILE	A	403	19.886	22.379	28.028	1.00 16.60		A	N
MOTA	2998	CA	ILE	A	403	20.787	23.062	28.963	1.00 17.41		A	C
ATOM	2999	CB	ILE	A	403	21.088	22.167	30.160	1.00 16.74		A	С
ATOM	3000	CG1	ILE	A	403	19.802	21.886	30.944	1.00 17.16		A	-C
MOTA	3001	CD1	ILE	A	403	19.946	20.733	31.931	1.00 15.43		A	C
ATOM	3002	CG2	ILE	A	403	22.143	22.809	31.095	1.00 17.20		A	C
MOTA	3003	С			403	22.064	23.395	28.240	1.00 17.62		A	Ċ
ATOM	3004	Ō	ILE		403	22.812	22.520	27.854	1.00 17.97		A	Ö
ATOM	3005	N	ASN			22.299	24.678	28.026	1.00 18.39		A	N
ATOM	3006	CA			404	23.429	25.112	27.231	1.00 19.61	•	A	C
MOTA	3007	CB			404	23.255	26.599	26.874	1.00 20.94		A	C
ATOM	3008	CG			404	24.297	27.071	25.913	1.00 26.59		_	C
MOTA	3009	QD1				. – •	- ·				A	
						24.339	26.618	24.752	1.00 32.24		A	0
ATOM	3010	ND2	ASN			25.177	27.980	26.381	1.00 32.91		A	N
ATOM	3011	C	ASN			24.773	24 - 892	27.940	1.00 18.94		A	C
ATOM	3012	0.	ASN			25.769	24.575	27.296	1.00 18.69		A	0
ATOM	3013	N			405	24.779	25.020	29.262	1.00 18.60		A	N
MOTA	3014	CA			405	26.011	24.902	30.044	1.00 19.42		A	C
MOTA	3015	CB	ALA			26.450	26.317	30.582	1.00 19.40		A	C
ATOM	3016	С	ALA			25.787	23.934	31.217	1.00 19.12		A	С
MOTA	3017	0	ALA	A	405	25582	24.364	$\cdot 32.360$	1.00 18:74	• -	A	0
ATOM -	3018	N			406	25.782	22.632	30.936	1.00 19.16		A	N
MOTA	3019	CA	PRO	A	406	25.508	21.629	31.977	1.00 19.37		A	C
ATOM	3020	CB	PRO	A	406	25.266	20.351	31.156	1.00 19.25		A	C
ATOM	3021	CG	PRO	A	406	26.120	20.546	29.977	1.00 19.80		A	C
ATOM	3022	CD	PRO	Α	406	26.033	22.010	29.631	1.00 18.90		A	C
MOTA	3023	C	PRO	A	406	26.689	21.437	32.923	1.00 19.45		A	C
MOTA	3024	0	PRO	A	406	27.815	21.833	32.607	1.00 19.95		A	0
ATOM	3025	N	GLN	A	407	26.437	20.819	34.072	1.00 19.97		A	N
ATOM	3026	CA	GLN	A	407	27.490	20.446	35.016	1.00 20.20		A	C
ATOM	3027	CB	GLN	A	407	26.908	20.387	36.413	1.00 21.02		A	С
ATOM	3028	CG	GLN	A	407	26.155	21.620	36.805	1.00 22.32		A	С
ATOM	3029	CD	GLN			25.122	21.323	37.849	1.00 23.76		A	Ċ
ATOM	3030	OE1	GLN			25.320	20.443	38.713	1.00 21.20		A	ō
ATOM	3031	NE2	GLN			24.016	22.040	37.789	1.00 22.99		A	N
ATOM	3032	C	GLN			28.062	19.075	34.675	1.00 20.27		Δ	Č
ATOM	3033	Ö	GLN			27.392	18.232	34.057	1.00 19.75		A-7	0
ATOM	3034	N	SER			29.294					A	
ATOM	3035	CA			408		18.830	35.099	1.00 20.30		A N	N
ATOM	3035					29.869	17.491	35.033	1.00 20.08		A	C
		CB	SER			31.393	17.538	35.212	1.00 20.55		A	C
ATOM	3037	og C	SER			32.042	18.067	34.072	1.00 19.34		A	0
ATOM	3038	C	SER			29.269	16.615	36.120	1.00 19.97		A	C
ATOM ·	3039	0	SER			29.130	17.043	37.268	1.00 20.96		A	0
ATOM	3040	N	GLY			28,980	15.362	35.775	1.00 19.80		A	N
MOTA	3041	CA	GLY			28.447	14.392	36.715	1.00 18.94		A	C
MOTA	3042	C	GLY	A	409	27.216	13.697	36.160	1.00 19.28		A	C

•

ATOM	3043	0	GLY	A	409	27.026	13.646	34.940	1.00 18.32	A	0
ATOM	3044	N	THR	A	410	26.350	13.224	37.058	1.00 18.72	2 A	N
MOTA	3045	CA	THR	A	410	25.226	12.396	36.678	1.00 18.26	A	С
ATOM	3046	CB	THR	A	410	25.105	11.220	37.631	1.00 17.96		С
ATOM	3047	OG1			410	26.334	10.466	37.637	1.00 16.34		
ATOM	3048	CG2			410	24.038	10.227	37.136	1.00 18.9		C
ATOM	3049	C			410	23.923	13.183	36.687	1.00 18.19		C
ATOM	3050	0			410	23.510	13.735	37.718	1.00 18.8		0
ATOM											
	3051	N			411	23.274	13.241	35.524	1.00 17.34		N
ATOM	3052	CA			411	21.942	13.783	35.430	1.00 16.40		C
ATOM	3053	CB			411	21.731	14.459	34.067	1.00 16.84		C
MOTA	3054	CG			411	22.286	15.869	34.025	1.00 16.33		С
ATOM	3055	CD1			411	21.458	16.953	34.156	1.00 16.2		С
ATOM	3056	CE1	TYR	A	411	21.956	18.231	34.131	1.00 16.43	A	С
ATOM	3057	CZ	TYR	A	411	23.319	18.438	33.994	1.00 17.03	A	С
ATOM	3058	OH	TYR	A	411	23.789	19.744	34.031	1.00 17.03	A	0
ATOM	3059	CE2	TYR	A	411	24.172	17.380	33.880	1.00 16.15	5 A	C
ATOM	3060	CD2	TYR	A	411	23.660	16.099	33.889	1.00 17.30	A	C
MOTA	3061	C	TYR	A	411	20.956	12.627	35.606	1.00 16.14	A	C
MOTA	3062	0	TYR	A	411	21.157	11.557	35.041	1.00 15.9	a A	0
ATOM	3063	N	THR	A	412	19.920	12.841	36.399	1.00 15.50		- N
ATOM	3064	CA			412	18.760	11.959	36.418	1.00 16.39		C
MOTA	3065	CB			412	18.107	12.037	37.808	1.00 16.7		Č
ATOM	3066	OG1			412	19.041	11.544	38.783	1.00-16.43		0
ATOM	3067	CG2	THR		412	16.877	11.115	37.946	1.00 18.10		C
ATOM	3068	C			412	17.764	12.397	35.344	1.00 16.20		C
ATOM	3069	0	THR		412	17.404	13.568	35.286	1.00 15.84		0
ATOM	3070	N			413						
						17.313	11.444	34.516	1.00 16.6		N
ATOM	3071	CA			413	16.342	11.672	33.452	1.00 15.7		C
ATOM	3072	CB			413	16.924	11.246	32.066	1.00 16.4		C
ATOM	3073	CG1			413	15.914	11.476	30.914	1.00 15.5	_	C
ATOM	3074	CG2			413	18.240	11.946	31.773	1.00 15.42		С
ATOM	3075	C.			413	15.134	10.811		1.00.16.9		C ·
ATOM	3076	0			413	15.232	9.574	33.667	1.00 18.23	L A	0
ATOM	3077	N			414	14.040	11.439	34.256	1.00 16.23	L A	N
ATOM	3078	CA	GLU	A	414	12.803	10.774	34.736	1.00 17.03	L A	C
MOTA	3079	CB	GLU	A	414	12.467	11.202	36.134	1.00 16.00	A	С
ATOM	3080	CG	GLU	A	414	11.518	10.244	36.767	1.00 18.63	A	C
ATOM	3081	CD	GLU	A	414	11.626	10.318	38.265	1.00 17.99	A	C
ATOM	3082	OE1	GLU	A	414	11.212	11.334	38.830	1.00 20.3	A	0
ATOM	3083	OE2	GLU	A	414	12.198	9.404	38.810	1.00 18.59	5 A	0
MOTA	3084	C	GLU	A	414	11.715	11.142	33.729	1.00 16.0	A	C
MOTA	3085	0	GLU	A	414	11.428	12.301	33.528	1.00 15.2	7 A	0
ATOM	3086	N	VAL	A	415	11.037	10.172	33.145	1.00 16.93	a A	N
ATOM	3087	CA	VAL	A	415	9.622	10.184	32.847	1.00 16.73		C
ATOM	3088	CB			415	9.472	9.367	31.526	1.00 17.1		C
ATOM	3089	CG1			415	8.168	9.660	30.813	1.00 16.00		Ċ
ATOM	3090	CG2			415	10.652	9.660	30.622	1.00 16.7		č
ATOM	3091	C			415	8.540	9.769	33.787	1.00 16.7		C
ATOM	3092	0			415			34.185			
ATOM	3093	N			416	8.463	8.634		1.00 16.19		
						7.684	10.736	34.077	1.00 16.0		N
ATOM	3094	CA			416	6.553	10.579	34.989	1.00 16.43		C
ATOM	3095	CB			416	6.519	11.747	35.981	1.00 16.03		C
ATOM	3096	CG			416	7.786	11.832	36.802	1.00 16.2		C
ATOM	3097	CD			416	7.821	12.929	37.827	1.00 17.2		C
MOTA	3098	OE1			416	6.912	13.762	37.905	1.00 16.4		0
ATOM	3099	NE2			416	8.933	12.972	38.601	1.00 16.73		N
MOTA	3100	C	GLN	A	416	5.232	10.504	34.235	1.00 17.03	A.	С

ATOM	3101	0	GLN	A	416	4.899	11388	33.440	1.00	16.94	A	. 0
ATOM	3102	N	ALA			4.461	9.462	34.522	1.00		A	
ATOM	3103	CA	ALA			3.122	9.307	33.953		18.17	A	
ATOM	3104	CB	ALA									
						2.770	7.857	33.891	1.00		A	
ATOM	3105	C	ALA			2.092	10.083	34.790		19.19	A	
ATOM	3106	0	ALA			1.542	9.565	35.775		18.61	A	
ATOM	3107	N	TYR			1.859	11.338	34.437	1.00		A	
MOTA	3108	CA	TYR			0.944	12.153	35.234	1.00 2	20.10	A	C
ATOM	3109	CB	TYR	A	418	0.985	13.618	34.803	1.00 2	20.65	7 9.	C
ATOM	3110	CG	TYR	A	418	0.021	14.496	35.570	1.00 2	23.36	A	C
ATOM	3111	CD1	TYR	A	418	0.255	14.818	36.908	1.00	26.20	A	C
ATOM	3112	CE1	TYR	A	418	-0.645	15.610	37.625	1.00 2	29.96	A	C
MOTA	3113	CZ	TYR	A	418	-1.772	16.099	36.990	1.00	31.45	A	. C
MOTA	3114	ОН	TYR	A	418	-2.659	16.888	37.685	1.00	34.45	A	. 0
ATOM	3115	CE2	TYR	A		-2.018	15.804	35.652		29.32	,	
ATOM	3116	CD2	TYR			-1.123	15.002	34.957		26.35	Ā	
ATOM	3117	C	TYR			-0.477	11.623	35.158		19.95	A	_
MOTA	3118	0	TYR			-1.142	11.445	36.190	1.00		A	_
ATOM	3119	N	ASN			-0.928	11.332	33.945		19.39		
ATOM	3120	_	ASN								A	
		CA				-2.284	10.855	33.708		19.40	<i>)</i> A	
ATOM	3121	CB	ASN		419	-3.243	12.051	33.629		20.03	A	
ATOM	3122	CG	ASN			-4:705	11.625	33.611		21.53	A	
ATOM	3123	OD1	ASN		419	-5.094	10.758	34.354		23.42	A	
ATOM	3124	ND2	ASN			-5.493	12.212	32.727		22.67	A	
ATOM	3125	С	ASN			-2.374	10.079	32.402	1.00	19.75	A	. C
ATOM	3126	0	ASN	A	419	-2.186	10.646	31.317	1.00	19.24	A	. 0
MOTA	3127	N	VAL	A	420	-2.703	8.795	32.486	1.00	19.24	A	N
MOTA	3128	CA	VAL	A	420	-2.744	7.948	31.295	1.00	18.57	A	C
ATOM	3129	CB	VAL	A	420	-1.533	6.986	31.288	1.00	18.55	A	C
ATOM	3130	CG1	VAL	A	420	-1.504	6.086	30.040	1.00	17.15	A	C
ATOM	3131	CG2	VAL	A	420	-0.196	7.799	31.402	1.00	20.43	A	C
ATOM	3132	C	VAL	A	420	-4.067	7.165	31.234	1.00	18.55	A	
ATOM	3133	0			420		5.996	31.606		18.55	· - /	
ATOM	3134	N	PRO			-5.132	7.816	30.776		18.79	A	
ATOM	3135	CA	PRO			-6.444	7.169	30.635	1.00		Ä	_ (
ATOM	3136	CB	PRO		421	-7.397	8.324	30.288		19.65	A	_
ATOM	3137	CG	PRO			-6.540	9.394	29.746	1.00		P	
ATOM	3138	CD	PRO		421	-5.175	9.239	30.396		18.68	A	
ATOM	3139	C	PRO			-6.507	6.141	29.530				
ATOM	3140	_	PRO							19.68	A	
		0 N			421	-7.411	5.318	29.565		20.15	<i>7</i> .	
ATOM	3141	N	VAL			-5.592	6.178	28.566		19.04	A	
ATOM	3142	CA	VAL			-5.594	5.180	27.505		18.85	P	
MOTA	3143	СВ			422	-5.990	5.781	26.146		18.35	A	
MOTA	3144	CG1			422	-6.200	4.653	25.091		18.91	A	
ATOM	3145	CG2	VAL			-7.264	6.616	26.285		18.28	A	
ATOM	3146	C	VAL			-4.226	4.509	27.448	1.00	19.38	A	C
ATOM	3147	0	VAL	A	422	-3.435	4.713	26.505	1.00	18.38	A	. 0
ATOM	3148	N	GLY	A	423	-3.957	3.707	28.480	1.00	19.46	A	N
ATOM	3149	CA	GLY	A	423	-2.642	3.150	28.702	1.00	19.62	A	C
ATOM	3150	C	GLY	A	423	-2.510	1.665	28.496	1.00	19.72	P	C
ATOM	3151	0	GLY	A	423	-3.464	0.954	28.162	1.00 2	21.71	A	. 0
MOTA	3152	N			424	-1.307	1.174	28.695	1.00		7	
MOTA	3153	CA	PRO			-0.142	1.999	29.040	1.00		.	
ATOM	3154	CB	PRO			0.876	0.969	29.467	1.00		Ā	
ATOM	3155	CG	PRO			0.510	-0.258	28.696	1.00		Ä	
MOTA	3156	CD	PRO			-0.988	-0.255	28.649	1.00		A	
MOTA	3157	CD	PRO									
ATOM						0.396	2.842	27.899	1.00		A	
AIVI	3158	0	PRO	*	424	0.038	2.660	26.733	1.00	11.ZU	A	. 0

MOTA	3159	N	GLN	A	425	1.248	3.798	28.239	1.00 15.38	A	N
MOTA	3160	CA	GLN	A	425	1.848	4.678	27.240	1.00 14.36	A	C
ATOM	3161	CB	GLN	A	425	1.507	6.140	27.559	1.00 14.88	A	C
MOTA	3162	CG	GLN	A	425	2.070	7.202	26.576	1.00 14.70	A	C
ATOM	3163	CD	GLN	A	425	1.512	7.043	25.180	1.00 16.71	A	C
ATOM	3164	OE1	GLN			0.321	7.321	24.956	1.00 15.27	Α	0
ATOM	3165	NE2	GLN			2.349	6.580	24.235	1.00 11.93	A	N
ATOM	3166	C	GLN			3.341	4.470	27.252	1.00 13.10	A	C
ATOM	3167	0	GLN			3.987	4.662	28.283	1.00 12.18	A	0
	3168	N ·			426	3.887	4.036	26.112	1.00 12.10		
MOTA									•	A	N
ATOM	3169	CA			426	5.320	4.008	25.913	1.00 12.90	A	C
ATOM	3170	CB			426	5.737	2.949	24.890	1.00 12.37	A	C
ATOM	3171	OG1			426	5.134	3.254	23.626	1.00 12.70	A	0
ATOM	3172	CG2			426	5.232	1.573	25.283	1.00 13.56	A	С
MOTA	3173	C			426	5.796	5.370	25.413	1.00 13.16	A	С
ATOM	3174	0	THR	A	426	4.986	6.223	25.037	1.00 14.38	A	0
MOTA	3175	N	PHE	A	427	7.115	5.551	25.401	1.00 12.85	A	N
MOTA	3176	CA	PHE	A	427	7.741	6.823	25.036	1.00 12.44	A	C
MOTA	3177	CB	PHE	A	427	7.802	7.778	26.240	1.00 12.42	A	C
ATOM	3178	CG	PHE	A	427	8.612	7.235	27.366	1.00 12.82	A	C
ATOM	3179	CD1	PHE	A	427	9.988	7.361	27.365	1.00 15.21	Α	C
ATOM	3180	CEl	PHE	A	427	10.768	6.801	28.381	1.00 15.74	А	С
ATOM	3181	CZ			427	10.161	6.102	29.408	1.00 14.88	A	C
ATOM	3182	CE2			427	8.766	5.987	29.427	1.00 16.39	A	C
ATOM	3183	CD2	PHE			8.000	6.538	28.407	1.00 14.33	A	Č
ATOM	3184	C			427	9.149	6.532	24.549	1.00 12.14	\boldsymbol{A}	Č
ATOM	3185	Õ	PHE	A		9.694	5.444	24.807	1.00 11.55	A	Ö
ATOM	3186	N			428	9.721	7.523	23.867	1.00 11.59	A	Ŋ
ATOM	3187	_			428		·			A	C
		CA				11.116	7.528	23.480			
ATOM	3188	CB			428	11.292	7.463	21.965	1.00 12.17	A	C
ATOM	3189	OG			428	10.837	6.219	21.442	1.00 12.32	A	0
MOTA	3190	C			428	11.804	8.776	24.031	1.00 12.57	A	C
MOTA	3191	0			428				1.00 11.91	· A	0 .
MOTA	3192	N	LEU		429	13.103	8.620	24.278	1.00 12.35	A	N
MOTA	3193	CA			429	13.950	9.712	24.714	1.00 12.57	A	С
ATOM	3194	CB	LEU		429	14.508	9.476	26.135	1.00 12.84	A	С
MOTA	3195	CG	LEU	A	429	13.542	9.648	27.296	1.00 13.77	A	С
MOTA	3196	CD1	LEU	A	429	14.046	8.907	28.520	1.00 15.69	А	C
ATOM	3197	CD2	LEU	A	429	13.348	11.110	27.609	1.00 15.64	A	C
MOTA	3198	C	LEU	A	429	15.098	9.756	23.768	1.00 11.82	A	C
ATOM	3199	0	LEU	A	429	15.593	8.707	23.372	1.00 11.44	A	0
ATOM	3200	N	ALA	A	430	15.532	10.957	23.405	1.00 11.55	A	N
ATOM	3201	CA	ALA	A	430	16.805	11.139	22.699	1.00 11.87	Α	С
MOTA	3202	CB	ALA	A	430	16.581	11.528	21.235	1.00 12.63	A	С
ATOM	3203	С	ALA	A	430	17.613	12.215	23.404	1.00 12.76	A	С
MOTA	3204	0			430	17.072	13.256	23.776	1.00 12.14	A	0
ATOM	3205	N			431	18.907	11.943	23.584	1.00 12.52	A	N
ATOM	3206	CA			431	19.813	12.835	24.287	1.00 13.32	A	C
ATOM	3207	CB			431	20.325	12.179	25.593	1.00 13.00	A	Č
ATOM	3208				431		11.882			A	C
ATOM	3209	CD1			431				1.00 14.30		
						19.575	11.061	27.776		A	
ATOM	3210	CG2			431		13.123		1.00 14.86	A	
MOTA	3211	C			431	21.005	13.176		1.00 12.92	A	
ATOM	3212	0			431	21.728	12.288	22.937	1.00 11.26	A	0
ATOM	3213	N			432	21.192	14.464	23.134	1.00 13.80	. A	
MOTA	3214	CA		•	432	22.387	14.966	22.483	1.00 15.20	A	С
MOTA	3215	CB			432	22.028	15.996	21.387	1.00 15.89	A	С
MOTA	3216	CG1	VAL	A	432	23.293	16.591	20.809	1.00 15.25	A	C

				_								
ATOM	3217	CG2			432	21.167	15.361	20.293	1.00	15.39	A	C
MOTA	3218	С	VAL	A	432	23.346	15.634	23.498	1.00	16.38	A	C
ATOM	3219	0	VAL	A	432	22.923	16.472	24.298	1.00	16.49	A	0
ATOM	3220	N	HIS	A	433	24.633	15.257	23.458	1.00	17.45	A	N
ATOM	3221	CA	HIS	A	433	25.669	15.872	24.306	1.00	18.55	A	
ATOM	3222	CB			433	25.637	15.240	25.711		19.21	A	
ATOM	3223	CG			433	26.553	15.885	26.707		19.32		
							-				A	
ATOM	3224	ND1			433	26.497	17.233	27.015		18.22	A	
ATOM	3225	CE1			433	27.378	17.497	27.969		18.90	A	С
ATOM	3226	NE2	HIS	A	433	27.999	16.380	28.289	1.00	16.51	A	N
MOTA	3227	CD2	HIS	A	433	27.502	15.353	27.513	1.00	17.65	A	С
ATOM	3228	C	HIS	A	433	27.031	15.627	23.684	1.00	19.74	A	С
ATOM	3229	0	HIS	A	433	27.664	16.546	23.133	1.00	21.68	A	
ATOM.	3230	OXT			433	27.463	14.480	23.735		19.29	. A	Ö
TER	3230				433	27,103	11.100	23.733	1.00	47.27		J
HETATM		CA	CA		601	15 420	25 026	2 260	3 00	36 00		63
						15.429	35.876	3.369		16.92	A	
HETATM		CA	CA		602	3.346	16.597	30.346		13.45	A	
HETATM		CA	CA	A		9.615	28.353	34.891	1.00	17.30	A	CA
ATOM	3234	N	ASP		16	3.955	53.303	-10.201	1.00	49.01	В	N
ATOM	3235	CA	ASP	B	16	4.171	51.870	-9.771	1.00	49.32	В	C
ATOM	3236	CB	ASP	В	16	5.553	51.425	-10.270	1.00	49.78	В	С
ATOM	3237	CG	ASP	В	16	6.176	52.438	-11.248		52.12	В	C
ATOM	3238	ODl	ASP		16	5.667		-12.399			В	Ö
ATOM	3239		ASP		16	7.151		-10.957		52.51	В	
ATOM	3240	C	ASP		16							
						4.009	51.690	-8.232		48.45	B	C
ATOM	3241	0	ASP		16	4.793	50.996	-7.567		47.87	B	0
ATOM	3242	N	ARG		17	2.959	52.301	-7.687	1.00	47.87	В	N
ATOM	3243	CA	ARG	В	17	2.863	52.592	-6.247	1.00	47.30	В	Ċ
ATOM	3244	CB	ARG	B	17	2.430	54.064	-6.059	1.00	46.77	В	C
ATOM	3245	CG	ARG	B	17	3.107	55.055	-7.028	1.00	44.50	В	C
ATOM	3246	CD	ARG	B	17	2.860	56.528	-6.691	1.00	39.98	В	С
ATOM	3247	NE	ARG	В	17	3.266	56.891	-5.335	1.00	33.05	В	N
ATOM .	3248	CZ	ARG		17	4.483	57.334			2936	В	C
ATOM	3249	NH1	ARG		17	5.440	57.459	-5.915	1.00	28.07	В	N
ATOM	3250	NH2	ARG		17	4.752	57.650					
ATOM	3251	C						-3.740	1.00	24.57	В	N
			ARG		17	1.917	51.699	-5.415		48.01	B	C
ATOM	3252	0	ARG		17	1.463	52.120	-4.342		47.42	B	0
ATOM	3253	N	HIS		18	1.616	50.486	~5.885	1.00	48.51	В	N
MOTA	3254	CA	HIS	В	18	0.770	49.573	-5.108	1.00	48.98	В	C
MOTA	3255	CB	HIS	B	18	0.515	48.266	~5.875	1.00	49.29	В	C
MOTA	3256	CG	HIS	B	18	-0.510	48.388	-6.961	1.00	50.05	В	С
MOTA	3257	ND1	HIS	В	18	-0.195	48.803	-8.238	1.00	51.24	В	N
MOTA	3258	CE1	HIS	В	18	-1.291	48.814	-8.979	1.00	51.27	В	C
ATOM	3259	NE2	HIS	В	18	-2.305	48.419	-8.228	1.00	50.69	B	N
ATOM	3260	CD2	HIS		18	-1.844	48.147	-6.962	1.00	50.64	B	C
ATOM	3261	C	HIS		18	1.429	49.229	-3.770		49.16		
ATOM	3262	Ö	HIS								В	C
		_			18	2.598	48.822	-3.738		49.03	B	0
ATOM	3263	N	ASN		19	0.690	49.386	-2.667		49.15	В	N
ATOM	3264	CA	ASN		19	1.167	48.868	-1.384	1.00	49.11	В	C
ATOM	3265	CB	ASN		19	0.276	49.313	-0.205	1.00	49.60	В	С
ATOM	3266	CG	ASN	B	19	0.951	49.099	1.176	1.00	51.24	В	C
ATOM	3267	OD1	ASN	B	19	0.415	48.415	2.058	1.00	53.59	В	0
ATOM	3268	ND2	ASN	В	19	2.123	49.705	1.363		54.56	B	N
ATOM	3269	C	ASN		19	1.241	47.332	-1.459		48.22	В	C
ATOM	3270	Ö	ASN		19	0.443	46.685	-2.138		47.43		
ATOM	3271	N	LEU								В	0
					20	2.221	46.772	-0.762		47.20	В	N
ATOM	3272	CA	LEU		20	2.393	45.333	-0.689		46.38	В	C
ATOM	3273	CB	LEU	В	20	3.743	45.000	-0.055	1.00	46.97	В	С

ATOM	3274	CG LI	EU B	20	4.896	45.800	-0.684	1.00 48.40	В	C
MOTA	3275	CD1 L	B UE	20	6.201	45.666	0.117	1.00 49.54	B	C
ATOM	3276	CD2 L	EU B	20	5.076	45.391	-2.158	1.00 48.69	В	C
ATOM	3277	C LI	EU B	20	1.235	44.792	0.141	1.00 44.75	В	C
MOTA	3278		EU B	20	1.113	45.092	1.342	1.00 45.26	В	0
MOTA	3279	N L	YS B	21	0.338	44.073	-0.523	1.00 41.97	В	N
ATOM	3280		YS B	21		43.395	0.170	1.00 39.98	B	C
MOTA	3281	CB L	YS B	21	-2.088	44.025	-0.183	1.00 40.54	В	С
ATOM	3282		YS B	21	-3.225	43.550	0.700	1.00 41.63	В	C
ATOM	3283		YS B	21	-4.257	44.620	0.878	1.00 43.44	В	C
ATOM	3284		YS B	21	-5.391	44.131	1.718	1.00 44.82	В	С
ATOM	3285		YS B	21	-4.992	44.004	3.147	1.00 47.17	В	N
ATOM	3286		YS B	21	-0.710	41.917	-0.214	1.00 37.09	B	С
ATOM	3287		YS B	21	-0.679	41.588	-1.395	1.00 35.80	В	0
ATOM	3288		HR B	22		41.045	0.796	1.00 33.91	В	N
ATOM	3289		HR B	22	-0.642	39.592	0.593	1.00 31.44	В	C
ATOM	3290		HR B	22	0.734	39.046	1.030	1.00 31.70	В	C
ATOM	3291		HR B	22	1.002	39.436	2.387	1.00 31.47	В	0
ATOM	3292		HR B	22	1.857	39.681	0.211	1.00 31.30	В	C
ATOM	3293		HR B	22	-1.739	38.843	1.342	1.00 29.57	B	C
ATOM	3294		HR B	22	~1.830	37.617	1.246	1.00 28.17	В	0
ATOM	3295		LU B	23	-2.542	39.576	2.107	1.00 27.46	В	N
ATOM	3296		LU B	23	-3.672	39.011	2.828	1.00 27.22	В	C
ATOM	3297	CB BG		23	-3.280	38.728	4.282	0.50 27.51	В	C
ATOM	3298	CB AG		23	-3.287	38.646	4.277	0.50 27.17	B	C
ATOM	3299	CG BG		23	~2.826	37.304	4.512	0.50 29.10	В	C
MOTA	3300		LU B	23	-3.050	39.822	5.223	0.50 27.55	В	C
MOTA	3301	CD BG		23	-2.236	37.062	5.891	0.50 30.84	В	C
ATOM	3302		LU B	23	-3.020	39.396	6.689	0.50 28.07	В	C
ATOM	3303	OE1BG		23	-1.959	38.040	6.614	0.50 32.02	B	0
ATOM	3304	OE1AG		23	-2.853	38.186	6.954	0.50 28.41	B	0
ATOM	3305	OE2BG		23	-2.054	35.879	6.241	0.50 31.16	. B	0
ATOM ATOM	3306	OE2AGI C GI		23	-3.182	40.264		0.50 28.60	B	0 -
ATOM	3307 3308		LU B	23	-4.842	39.988	2.799	1.00 25.94	. B	C
ATOM	3309		LU B RP B	23	-4.631	41.199	2.805	1.00 25.17	. B	0
ATOM	3310		RP B	24 24	-6.065	39.462	2.765	1.00 24.57 1.00 23.89	B	N
ATOM	3310		RP B	24	-7.264 -7.910	40.300	2.708 1.304	1.00 23.89 1.00 23.59	B	C
ATOM	3312		RP B	24	-7.105	40.786	0.245	1.00 23.39	B	C
ATOM	3313		RP B	24	-7.232	42.050	-0.239	1.00 21.71	B	C
ATOM	3314		RP B	24	-6.293	42.276	-1.211	1.00 21.02	В	N
ATOM	3315		RP B	24	-5.544	41.148	-1.396	1.00 19.02	В	C
ATOM	3316		RP B	24	-6.006	40.190	-0.480	1.00 20.72	В	C
ATOM	3317		RP B	24	-5.387	38.941	-0.454	1.00 19.49	B	Ċ
ATOM	3318		RP B	24	-4.326	38.694	-1.313	1.00 20.25	В	Č
ATOM	3319		RP B	24	-3.883	39.662	-2.207	1.00 21.63	В	Ċ
ATOM	3320		RP B	24	-4.477	40.911	-2.257	1.00 22.09	B	Ċ
MOTA	3321		RP B	24	-8.294	39.948	3.789	1.00 23.91	B	Ċ
ATOM	3322		RP B	24	-9.369	39.456	3.467	1.00 22.74	В	Ö
ATOM	3323		RO B	25	-7.986	40.196	5.070	1.00 24.64	В	N
ATOM	3324		RO B	25	-8.918	39.850	6.161	1.00 25.12	В	C
MOTA	3325		RO B		-8.176	40.312	7.448	1.00 25.87	В	Ċ
ATOM	3326		RO B	25	-7.011	41.163	7.002	1.00 26.08	B	Ċ
ATOM	3327		RO B	25	-6.737	40.807	5.562	1.00 25.49	В	Ċ
ATOM	3328		RO B	25	-10.307	40.520	6.029	1.00 25.18	В	Č
ATOM	3329		RO B	25	-11.310	39.978	6.469	1.00 24.94	В	0
ATOM	3330		LU B	26	-10.350	41.668	5.364	1.00 25.43	В	N
ATOM	3331		LU B	26	-11.581	42.416	5.141	1.00 25.93	В	C
				_				- 1	_	_

ATOM	3332	CB GLU	B 2	26	-11.243	43.829	4.627	1.00 26.	70	B	C
ATOM	3333	CG GLU	B 2	6	-10.690	43.922	3.189	1.00 28.	62	В	C
ATOM	3334	CD GLU		6 .	-9.169	43.775	3.077	1.00 29.		В	Ċ
ATOM	3335	OE1 GLU		6	-8.535	43.174	3.985	_			
										В	0
ATOM	3336	OE2 GLU		16	-8.608	44.252	2.057	1.00 31.	71	B	0
ATOM	3337	C GLU	B 2	16	-12.571	41.705	4.193	1.00 25:	60	В	C
ATOM	3338	O GLU	B 2	16	-13.746	42.060	4.139	1.00 24.	75	В	0
MOTA	3339	N LEU	B 2	27	-12.119	40.672	3.483	1.00 24.		В	N
ATOM	3340	CA LEU		7							
					-12.957	40.024	2.483	1.00 23.		B	C
ATOM	3341	CB LEU		?7	-12.104	39.593	1.287	1.00 23.	84	B	C
ATOM	3342	CG LEU	B 2	!7	-11.506	40.722	0.430	1.00 23.	08	B	C
ATOM	3343	CD1 LEU	B 2	27	-10.702	40.165	-0.732	1.00 22.	31	В	C
ATOM	3344	CD2 LEU	B 2	!7	-12.603	41.624	-0.097	1.00 23.	37	В	С
ATOM	3345	C LEU		7	-13.716	38.829	3.042	1.00 23.		В	C
ATOM					•						
	3346	O LEU		17	-14.504	38.205	2.334	1.00 23.		В	0
MOTA	3347	N VAL		8	-13.490	38.504	4.312	1.00 23.	89	B	N
ATOM	3348	CA VAL	B 2	8	-14.143	37.357	4.918	1.00 24.	64	B	C
ATOM	3349	CB VAL	B 2	8	-13.571	37.050	6.359	1.00 24.	78	В	C
ATOM	3350	CG1 VAL	B 2	8	-14.359	35.963	7.027	1.00 25.		В	С
ATOM	3351	CG2 VAL		28	-12.099	36.634	6.272	1.00 25.		В	Č
					•						
ATOM	3352	C VAL		8	-15.612	37.694	4.992	1.00 24.		В	C
ATOM	3353	O VAL		8	-15.952	38.791	5.424	1.00 25.	68	B	0
ATOM	3354	N GLY	B 2	29	-16.468	36.797	4.516	1.00 24.	86	В	N
ATOM	3355	CA GLY	B 2	9	-17.916	37.000	4.539	1.00 24.	80	B	С
ATOM	3356	C GLY	B 2	.9	-18.493	37.638	3.274	1.00 25.		В	C
MOTA	3357	O GLY		9	-19.692	37.598	3.061	1.00 25.		В	Ö
ATOM	3358	N LYS		0	-17.630	38.203	2.429	1.00 25.		В	N
ATOM	3359	CA LYS		0	-18.025	38.782	1.146	1.00 24.	62	В	C
ATOM	3360	CB LYS	B 3	0	-16.952	39.780	0.679	1.00 25.	65	В	C
ATOM	3361	CG LYS	B 3	0	-16.716	40.964	1.606	1.00 28.	42	В	С
ATOM	3362	CD LYS		0	-16.577	42.245	0.785	1.00 34.		В	C
ATOM	3363	CE LYS		0	-16.462	43.527					
							1.631	1.00 35.		В	С
ATOM	3364	NZ LYS			-15.996	43.273		1.00 37.		В	N
ATOM	3365	C LYS	B 3	0	-19.188	37.728	0.065	1.00 23.	30	B	С
ATOM	3366	O LYS	B 3	0	-17.670	36.623	0.166	1.00 22.	29	B	0
ATOM	3367	N SER	B 3	1	-18.884	38.089	-1.001	1.00 21.	94	В	N
ATOM	3368	CA SER	B 3	1	-19.036	37.204	-2.145	1.00 20.		В	C
ATOM	3369	CB SER		1	-20.046	37.776	-3.143	1.00 21.		В	C
ATOM	3370										
		OG SER		1	-19.519	38.912	-3.815	1.00 20.		В	0
ATOM	3371	C SER		1	-17.726	37.017	-2.865	1.00 19.	88	В	C
ATOM	3372	O SER	\mathbf{B} 3	1	-16.828	37.843	-2.800	1.00 18.	67	В	0
ATOM	3373	N VAL	B 3	2	-17.649	35.920	-3.588	1.00 20.	34	B ·	N
ATOM	3374	CA VAL	B 3	2	~16.487	35.617	-4.393	1.00 20.	89	В	C
ATOM	3375	CB BVAL		2	-16.717	34.256	-5.141	0.50 20.		В	Č
MOTA	3376	CB AVAL		2	-16.555	34.234					
							-5.043	0.50 21.		B	C
ATOM	3377	CG1BVAL		2	-16.023	34.221	-6.524	0.50 20.		В .	C
ATOM	3378	CGLAVAL	B 3	2	-17.648 ·	34.180	-6.069	0.50 20.	79	В	C
ATOM	3379	CG2BVAL	\mathbf{B} 3	2	-16.276	33.087	-4.281	0.50 20.	73	В	C
ATOM	3380	CG2AVAL	В 3	2	-15.193	33.903	-5.657	0.50 21.	36	В	С
MOTA	3381	C VAL		2	-16.238	36.732	-5.431	1.00 20.		В	Ċ
ATOM	3382	O VAL		2	-15.100	37.105					
							-5.681	1.00 20.		В	0
ATOM	3383	N GLU		3	-17.316	37.263	-6.011	1.00 21.		В	N
MOTA	3384	CA GLU		3	-17.205	38.264	-7.072	1.00 21.	20	В	C
MOTA	3385	CB GLU	B 3	3	-18.553	38.478	-7.767	1.00 21.	59	В	C
ATOM	3386	CG GLU	·B 3	3	-19.045	37.271	-8.543	1.00 24.	67 .	В	C
ATOM	3387	CD GLU		3	-19.799	36.219	-7.708	1.00 29.		B	C
ATOM	3388	OE1 GLU		3	-20.001	35.123	-8.275	1.00 36.		В	
ATOM	3389	OE2 GLU					_				0
	7 0 7	ORS GHO	נ ט	3	-20.187	36.437	-6.517	1.00 27.	/ D	В	0

2 77014	2200	^	OT 13	ъ	3 3	36 600	20 543			20 (2	~	_
ATOM	3390	C .	GLU	В	33	-16.688	39.571	-6.497		20.62	В	
ATOM	3391	0	GLU	В	33	-15.885	40.255	-7.130	1.00	20.20	В	
MOTA	3392	N	GLU	B	34	-17.124	39.910	-5.283	1.00	20.61	В	N
MOTA	3393	CA	GLU	В	34	-16.627	41.131	-4.634	1.00	20.97	В	C
MOTA	3394	CB	GLU	В	34	-17.456	41.533	-3.407	1.00	21.10	В	C
ATOM	3395	CG	GLU	В	34	-18.778	42.224	-3.722	1.00	25.82	В	C
ATOM	3396	CD	GLU	В	34	-18.615	43.546	-4.481	1.00	31.16	В	C
MOTA	3397	OE1	GLU	В	34	-17.968	44.484	-3.932	1.00	32.84	В	
ATOM	3398	OE2	GLU	В	34	-19.135	43.645	-5.626	1.00	33.71	В	
ATOM	3399	C	GLU	В	34							
		_				-15.156	40.951	-4.257	1.00	19.67	В	
ATOM	3400	0	GLU	В	34	-14.340	41.858	-4.438	1.00	18.91	В	
MOTA	3401	N	ALA		35	-14.809	39.775	-3.765	1.00	19.75	B	
MOTA	3402	CA	ALA		35	-13.414	39.485	-3.401	1.00	19.10	В	C
ATOM	3403	CB	ALA	В	35	-13.311	38.127	-2.749	1.00	19.66	В	C
MOTA	3404	C	ALA	\boldsymbol{B}	35	-12.457	39.581	-4.582	1.00	18.90	B	C
ATOM	3405	0	ALA	B	35	-11.387	40.183	-4.470	1.00	18.82	В	. 0
ATOM	3406	N	LYS	В	36	-12.839	38.993	-5.716	1.00	18.68	В	N
ATOM	3407	CA	LYS	В	36	-11.991	38.978	-6.894	1.00	18.17	В	
ATOM	3408	CB	LYS		36	-12.659	38.220	-8.063	1.00	18.44	В	
ATOM	3409	CG	LYS		36	-12.714	36,693	-7.928		19.56	B	
ATOM	3410	CD	LYS	B	36	-13.304	36.026	-9.159	1.00	20.72	B	
ATOM	3411	CE	LYS	В	36							
						-13.194	34,496	-9.136	1.00	22.32	В	
ATOM	3412	NZ	LYS	B.	36	-13.963	33.865	-10.274	1.00	20.54	В	
ATOM	3413	С	LYS	В	36	-11.648	40.406	-7.316	1.00	17.67	В	_
ATOM	3414	0	LYS		36	-10.500	40.694	-7.681		17.81	В	_
ATOM	3415	N	LYS	В	37	-12.614	41.316	-7.254	1.00	17.52	В	N
MOTA	3416	CA	LYS	В	37	-12.345	42.667	-7.746	1.00	17.B9	В	C
ATOM	3417	CB	LYS	В	37	-13.621	43.519	-7.870	1.00	17.35	В	C
MOTA	3418	CG	LYS	B	37	-14.544	43.165	-9.036	1.00	17.43	В	C
ATOM	3419	CD	LYS	B	37	-15.847	44.074	-9.064	1.00	15.06	В	C
ATOM	3420	CE	LYS	В	37	-16,801	43.812	-7.921	1.00	16.48	В	
MOTA	3421	NZ		В	37	-18.031	44.685	-7.989	1.00	15.66	B	
ATOM	3422	C	LYS	B	37	-11.333	43.372	•	1.00	18.04	B	
ATOM	3423	0	LYS	B	37	-10.499	44.126	-7.354	1.00	18.33	В	
ATOM	3424	N	VAL	В	38			•				
ATOM						-11.436	43,174	-5.535	1.00	17.93	B	
	3425	CA	VAL		38	-10.525	43.824	-4.595	1.00	18.53	. B	
ATOM	3426	CB	VAL		38	-11.024	43.636	-3.136		19.32	B	
ATOM	3427	CG1	VAL		38	-9.975	44.055	-2.128	1.00	21.52	В	
ATOM	3428	CG2	VAL		38	-12.310	44.445	-2.919	1.00	20.73	В	С
ATOM	3429	С	VAL	B	38	-9.122	43.270	-4.742	1.00	18.91	B	C
ATOM	3430	0	VAL	B	38	-8.135	44.013	-4.797	1.00	17.79	В	0
ATOM	3431	N	ILE	B	39	-9.033	41.947	-4.830	1.00	19.11	В	N
ATOM	3432	CA	ILE	B	39	-7.747	41.304	-5.009	1.00	19.64	В	С
ATOM	3433 .	CB	ILE	В	39	-7.919	39.764	-4.973	1.00	19.43	B	С
ATOM	3434	CG1	ILE	B	39	-8.288	39.324	-3.573	1.00	20.37	В	
MOTA	3435	CD1	ILE	В	39	-8.994	37.995	-3.564	1.00	21.36	B	
ATOM	3436	CG2	ILE	В	39	-6.657	39.024	-5.470	1.00	19.76	В	
ATOM	3437	C	ILE		39	-7.077	41.759	-6.287		19.71	В	
ATOM	3438	0										_
			ILE		39	-5.877	42.087	-6.266		19.70	В	
ATOM	3439	N	LEU		40	-7.816	41.785	-7.404		19.22	В	
ATOM	3440	CA	LEU		40	-7.205	42.231	-8.664		19.62	B	
ATOM	3441	CB	LEU		40	-8.100	41.927			19.18	В	
ATOM	3442	CG	LEU	B	40	-8.145	40.416	-10.190	1.00	20.23	B	C
ATOM	3443	CDl	LEU	B	40	-9.235	40.047	-11.123	1.00	19.43	В	C
ATOM	3444	CD2	LEU	B	40	-6.799	39.947	-10.725	1.00	21.26	В	С
ATOM	3445	C	LEU	В	40	-6.840	43.716	-8.608		19.20	В	
ATOM	3446	0	LEU		40	-5.939	44.144	-9.300		19.48	В	
ATOM	3447	N	GLN		41	-7.553	44.494	-7.803		19.70	В	
	- ·			_						,,,		*1

								_			_	
MOTA	3448	CA	GLN	B	41	-7.216	45.914	-7.622	1.00	20.69	В	C
ATOM	3449	CB	GLN	B	41	-8.286	46.641	-6.813	1.00	20.30	В	C
ATOM	3450	CG	GLN	B	41	-8.068	48.173	-6.731	1.00	20.90	В	С
ATOM	3451	CD	GLN	В	41	-8.159	48.842	-8.083	1.00	21.54	В	C
ATOM	3452	OE1	GLN		41	-9.070	48.529	-8.858	1.00	23.88	В	0
ATOM	3453	NE2	GLN		41	-7.224	49.762	-8.384	1.00	20.95	В	N
ATOM	3454	C	GLN			-5.880	46.050				В	C
					41			-6.906	1.00	22.10		
ATOM	3455	0	GLN		41	-5.105	46.941	-7.213	1.00	22.64	В	0
MOTA	3456	N	ASP		42	-5.625	45.149	-5.955	1.00	22.70	В	N
MOTA	3457	CA	ASP		42	-4.396	45.178	-5.161	1.00	23.28	В	C
ATOM	3458	CB	ASP	В	42	-4.654	44.531	-3.800	1.00	22.77	В	C
MOTA	3459	CG	ASP	В	42	-5.531	45.369	-2.928	1.00	24.12	В	С
MOTA	3460	OD1	ASP	В	42	-5.619	46.599	-3.174	1.00	27.20	В	0
ATOM	3461	OD2	ASP	В	42	-6.206	44.899	-1.991	1.00	25.78	В	0
ATOM	3462	С	ASP		42	-3.273	44.438	-5.859	1.00	23.19	В	Ċ
ATOM	3463	Ö	ASP		42	-2.103	44.761	-5.700	1.00	24.27	В	Ō
ATOM	3464	N	LYS		43	-3.629	43.444	-6 ₋ 655	1.00	22.96	В	N
		CA							1.00			
ATOM	3465		LYS		43	-2.634	42.541	-7.203		23.10	В	C
ATOM	3466	CB	LYS		43	-2.508	41.291	-6.299	1.00	23.07	B	C
MOTA	3467	CG	LYS		43	-1.376	40.306	-6.701	1.00	23.16	В	C
ATOM	3468	CD	LYS		43	-1.348	39.100	-5.750	1.00	24.15	В	C
ATOM	3469	CE	LYS	В	43	-0.391	37.996	-6.217	1.00	25.40	В	C
ATOM	3470	NZ	LYS	В	43	1.031	38.403	-6.170	1.00	25.72	В	N
ATOM	3471	C	LYS	В	43	~3.067	42.157	-8.593	1.00	23.00	В	С
MOTA	3472	0	LYS	В	43	-3.672	41.107	-8.782	1.00	22.17	В	0
ATOM	3473	N	PRO	В	44	-2.772	43.010	-9.571	1.00	24.07	В	N
ATOM	3474	CA	PRO		44	-3.282	42.826	-10.948	1.00	24.35	В	C
ATOM	3475	CB	PRO		44	-2.632	43.985	-11.735	1.00	24.65	В	Ċ
ATOM	3476	CG	PRO		44	-2.197	44.997	-10.702	1.00	25.50	В	C
ATOM	3477	CD	PRO		44	-1.960	44.238	-9.415	1.00	24.73	В	C
												_
MOTA	3478	C	PRO		44	-2.929		-11.583	1.00	24.65	B	C
ATOM	3479	0	PRO		44	-3.680		-12.409	1.00	25.49	В	0
MOTA	3480	N	GLU		45	-1.778		11.206 ·		25.20	· B	N
MOTA	3481	CA	GLU		45	-1.310		-11.725	1.00	25.70	B	C
ATOM	3482	CB	GLU	В	45	0.226	39.599	-11.602	1.00	26.83	B	C
ATOM	34B3	CG	GLU	B	45	0.764	39.243	-10.206	1.00	28.74	В	C
MOTA	34B4	CD	GLU	В	45	0.925	40.423	-9.262	1.00	32.92	В	C
MOTA	3485	OE1	GLU	В	45	1.667	40.252	-8.253	1.00	34.10	В	0
MOTA	3486	OE2	GLU	В	45	0.316	41.511	-9.488	1.00	33.16	В	0
ATOM	3487	C	GLU	В	45	-1.945	38.404	-11.048	1.00	25.32	В	С
ATOM	3488	0	GLU		45	-1.679	37.270	-11.452	1.00	25.52	В	Ō
ATOM	3489	N	ALA		46	-2.788	38.593	-10.034	1.00	24.59	В	N
ATOM	3490	CA	ALA		46	-3.327	37.441	-9.309	1.00	23.90	В	C
ATOM	3491	CB	ALA		46	-4.271	37.895	-8.229	1.00	23.95	В	C
		C										
ATOM	3492	_	ALA		46	-4.015	36.426	-10.216	1.00	23.75	B	C
ATOM	3493	0	ALA		46	-4.777	36.788	-11.103	1.00	22.67	В	0
MOTA	3494	N	GLN		47	-3.717	35.150	-9.982	1.00	23.77	В	N
ATOM	3495	CA	GLN		47	-4.438		-10.568	1.00	24.59	В	, C
ATOM	3496	CB	GLN	В	47	-3.479	32.976	-11.105	1.00	25.29	В	C
MOTA	3497	CG	GLN	В	47	-2.425	33.498	-12.080	1.00	28.88	В	C
ATOM	3498	CD	GLN	В	47	-3.025	33.975	-13.393	1.00	35.56	В	C
MOTA	3499	OE1	GLN	В	47	-3.624	33.176	-14.144		40.01	B	0
ATOM	3500	NE2	GLN		47	-2.869	35.278			38.46	B	N
ATOM	3501	C	GLN		47	-5.298	33.425	-9.460	1.00	23.84	В	C
ATOM	3502	Ō	GLN		47	-4.786	32.790	-8.517	1.00	24.12	В	0
MOTA	3502	N	ILE		48	-6.597	33.644	-9.559	1.00	22.91	В	Ŋ
		•										
ATOM	3504	CA	ILE		48	-7.502	33.329	-8.463		23.01	В	C
MOTA	3505	CB	ILE	D	48	-8.486	34.462	-8.235	1.00	22.88	В	С

MOTA	3506	CG1	ILE	B	48	•	-7.708	35.747	-7.988	1.00	22.10	1	3	С
ATOM	3507	CD1	ILE	В	48		-8.568	36.992	-7.917	1.00	22.38	1	3	C
ATOM	3508	CG2	ILE	В	48		-9.391	34.161	-7.036	1.00	21.57]	3	C
ATOM	3509	C	ILE	В	48		-8.230	32.047	-8.746	1.00	23.69]	3	С
ATOM	3510	0	ILE	В	48		-8.685	31.820	-9.877	1.00			3	0
ATOM	3511	N	ILE		49		-8.277	31.206	-7.716	1.00	23.55		3	N
ATOM	3512	CA	ILE		49		-8.894	29.894	-7.746	1.00	24.95		3	C
ATOM	3513	CB	ILE		49		-7.803	28.812	-7.480	1.00	26.22		3	C
ATOM	3514	CG1	ILE		49		-6.723	28.868	-8.575	1.00	29.02		3	C
ATOM	3515	CD1	ILE		49		-7.264							
								28.733	-9.982	1.00	29.18		3	C
ATOM	3516	CG2	ILE		49		-8.409	27.422	-7.364	1.00	28.74		3	C
ATOM	3517	C	ILE		49		-9.903	29.851	-6.610	1.00			3	C
ATOM	3518	0	ILE		49		-9.620	30.348	-5.511	1.00	24.09		3	0
ATOM	3519	N	VAL		50		-11.045	29.224	-6.847	1.00			3	N
ATOM	3520	CA	VAL		50		-12.088	29.110	-5.838	1.00	22,00		3	Ç
ATOM	3521	CB	VAL		50		-13.441	29.682	-6.364	1.00	21.55		3	C
ATOM	3522	CG1	VAL.		50		-14.583	29.378	-5.388	1.00	22.01	3	3	C
ATOM	3523	CG2	VAL		50		-13.338	31.190	-6.581	1.00	21.04	1	3	C
ATOM	3524	Ċ	VAL	В	50		-12.273	27.639	-5.439	1.00	21.99]	3	C
ATOM	3525	0	VAL	В	50		-12.375	26.780	-6.291	1.00	21.98]	3	0
ATOM	3526	N	LEU	B	51		-12.318	27.363	-4.141	1.00	21.70]	3	N
ATOM	3527	CA	LEU	B	51		-12.460	26.003	-3.643	1.00	22.26]	3	C
MOTA	3528	CB	LEU	В	51		-11.110	25.407	-3.219	1.00	22.70]	3	C
ATOM	3529	CG	LEU	B	51		-10.067	25.113	-4.267	1.00	25.11]	3	С
ATOM	3530	CD1	LEU	В	51		-8.762	24.764	-3.495	1.00	25.85		3 ·	C
ATOM	3531	CD2	LEU	В	51		-10.513	23.968	-5.183	1.00	27.79		3	C
ATOM	3532	С	LEU	В	51		-13.312	25.997	-2.406	1.00			3	C
ATOM	3533	0	LEU		51	•	-13.289	26.962	-1.646	1.00	21.46		3	Ō
ATOM	3534	N	PRO		52		-14.006	24.886	-2.163		21.76		3	N
ATOM	3535	CA	PRO		52		-14.750	24.709	-0.921	1.00	22.13		3	C
ATOM	3536	CB	PRO		52		-15.340	23.290	-1.071		23,06		3	C
ATOM	3537	ĊĠ	PRO		52		-15.389	23.059	-2.525	1.00	22.20		3	C
ATOM	3538	CD	PRO		52		-14.145	23.724		1.00	22.25		3	C
ATOM	3539	C	PRO		52		-13.836	24.809	0.290	1.00			3	C
ATOM	3540	Ö	PRO		52		-12.682	24.367	0.252	1.00	22.05		3	0
ATOM	3541	N	VAL		53		-14.340	25.400	1.365	1.00			3	N
ATOM	3542	ÇA	VAL		53		-13.579	25.504	2.581	1.00	23.96		3	C
ATOM	3543	CB	VAL		53		-13.379							C
ATOM	3544	CG1	VAL			,		26.368	3.643	1.00			3	
ATOM		CG2			53		-15.583	25.692	4.134	1.00	25.13		3	C
	3545	Ċ	VAL		53		-13.360	26.671	4.805	1.00	25.93		3	C
ATOM	3546		VAL		53	·	-13.324	24.083	3.068	1.00	24.12		3	C
ATOM	3547	O N7	VAL		53		-14.153	23.193	2.859	1.00			3	0
ATOM	3548	N	GLY		54		-12.158	23.867	3.657	1.00			3	N
ATOM	3549	CA	GLY		54		-11.765	22.548	4.117	1.00			3	C
ATOM	3550	C	GLY		54		-11.067	21.662	3.092		21.22		3	C
ATOM	3551	0	GLY		54		-10.597	- -	3.453	1.00			3	0
ATOM	3552	N	THR		55		-10.977	22.091	1.837		20.24		3	N
ATOM	3553	CA	THR		55		-10.295	21.324	0.809	1.00	19.46		3	C
ATOM	3554	CB	THR		55		-10.469	22.006	-0.573	1.00	19.86		3	C
ATOM	3555	•	THR		55		-11.866	22.158	-0.875	1.00	22.41]	3	0
ATOM	3556	CG2	THR		55		-9.957	21.139	-1.701	1.00	19.94]	3	C
MOTA	3557	С	THR	B	55		-8.788	21.125	1.077	1.00	17.93	1	3	C
ATOM	3558	0	THR	B	55		-8.057	22.042	1.417	1.00	16.91]	3	0
ATOM	3559	N	ILE	В	56		-8.336	19.911	0.849	1.00	17.04]	3	N
ATOM	3560	CA	ILE	В	56		-6.929	19.571	0.943	1.00	16.44]	3	C
MOTA	3561	CB	ILE	B	56		-6.800	18.076	1.232	1.00	15.71]	3	C
ATOM	3562	CG1	ILE	В	56		-7.439	17.782	2.600	1.00	17.41]	3	C
MOTA	3563	CD1	ILE	В	56		-7.353	16.319	3.098	1.00	17.17]	3	C

•											
ATOM	3564	CG2	ILE	В	56	-5.347	17.684	1.247	1.00 16.77	В	С
MOTA	3565	C	ILE	В	56	-6.217	19.981	-0.336	1.00 16.51	В	C
MOTA	3566	0	ILE	В	56	-6.701	19.691	-1.434	1.00 17.03	B	0
ATOM	3567	N	VAL	В	57	-5.088	20.678	-0.203	1.00 15.94	В	N
ATOM	3568	CA	VAL		5 7	-4.342	21.200	-1.361	1.00 16.45	В	C
ATOM	3569	CB	VAL		57	-4.511	22.726	-1.488	1.00 16.21	В	Ċ
ATOM	3570	CG1			57	-6.012	23.092	-1.672	1.00 16.73	В	C
		•					_				
ATOM	3571	CG2	VAL		57	-3.991	23.435	-0.236	1.00 18.16	В	C
ATOM	3572	C	VAL		57	-2.853	20.910	-1.205	1.00 16.63	В	С
MOTA	3573	0	VAL		57	-2.393	20.624	-0.099	1.00 16.42	В	0
ATOM	3574	N	THR	В	58	-2.106	20.982	-2.299	1.00 17.06	₿.	N
ATOM	35 7 5	CA	THR	В	58	-0.658	20.801	-2.247	1.00 16.63	В	С
MOTA	3576	CB	THR	В	58	-0.06 9	20.712	-3.654	1.00 17.18	В	С
ATOM	3577	OG1	THR	В	58	-0.660	21.718	-4.494	1.00 15.16	В	0
ATOM	3578	CG2	THR		58	-0.423	19.426	-4.292	1.00 19.58	В	Č
ATOM	3579	C	THR		58	-0.093	22.017	-1.536	1.00 16.72	В	Č
ATOM	3580	Õ	THR		58	-0.756	23.071	-1.492	1.00 16.30	В	Ö
		N									
MOTA	3581		MET		59 50	1.103	21.885	-0.960	1.00 16.38	В	N
ATOM	3582	CA	MET		59	1.692	22.982	-0.180	1.00 16.07	В	C
ATOM	3583	CB	MET		5 9	1.960	22.552	1.254	1.00 15.92	В	C
MOTA	3584	CG	MET	В	5 9	0.668	22.365	2.012	1.00 16.14	В	C
ATOM	3585	SD	MET	В	59	-0.197	23.961	2.251	1.00 17.09	В	S
ATOM	3586	CE	MET	B	59	-1.612	23.424	3.218	1.00 17.23	В	C
ATOM	3587	C	MET	В	5 9	2.911	23.607	-0.816	1.00 15.83	В	C
MOTA	3588	0	MET	B	59	3.884	23.983	-0.134	1.00 15.99	В	0
ATOM	3589	N	GLU		60	2.837	23.794	-2.127	1.00 15.11	В	N
ATOM	3590	CA	GLU		60	3.838	24.609	-2.795	1.00 15.22	В	C
ATOM	3591	CB	GLU		60	4.155	24.079	-4.187	1.00 15.39	В	C
ATOM	3592	CG	GLU		60	3.299	24.609	-5.334	1.00 15.29	В	C
ATOM.			GLU						•		~
	3593	CD			60	1.845	24.166	-5.270	1.00 19.22	В	<u> </u>
ATOM	3594	OE1	GLU		60	1.435	23.486	-4.308	1.00 18.05	В	0
MOTA	3595	OE2	GLU		60	1.087	24.526	-6.195	1.00 18.12	B	0
ATOM ·	3596	C	GLU		60·	. 3.344	26.081 -		1.00 15.50	B	· C
ATOM	3597	Ο ,	GLU		60	2.133	26.356	-2.798	1.00 15.17	В	0
ATOM	3598	N	TYR	В	61	4.292	27.011	-2.721	1.00 16.00	В	N
ATOM	3599	CA	TYR	В	61	3.982	28.431	-2.654	1.00 17.37	В	C
ATOM	3600	CB	TYR	В	61	4.938	29.138	-1.699	1.00 17.67	В	C
ATOM	3601	CG	TYR	B	61	4.671	30.623	-1.493	1.00 18.81	В	C
ATOM	3602	CD1	TYR	В	61	5.474	31.572	-2.103	1.00 21.63	B	C
ATOM	3603	CE1	TYR		61	5.233	32.895	-1.943	1.00 21.96	В	Č
ATOM	3604	CZ	TYR		61	4.207	33.299	-1.134	1.00 22.89	В	Ċ
ATOM	3605	OH	TYR		61	4.007	34.644	-0.972	1.00 29.91	В	. 0
ATOM	3606	CE2	TYR		61	3.407	32.394	-0.507	1.00 20.81	В	. C
			TYR								
ATOM	3607	CD2			61	3,637	31.059	-0.697	1.00 19.36	В	<u> </u>
ATOM	3608	C	TYR		61	4.067	29.037	-4.048	1.00 18.22	В	C
ATOM	3609	0	TYR		61	5.126	29.041	~4.654	1.00 18.04	В	0
MOTA	3610	N	ARG		62	2.943	29.531	-4.564	1.00 19.75	B	N
ATOM	3611	CA	ARG	В	62	2.938	30.226	-5.861	1.00 21.16	В	C
ATOM	3612	CB	ARG	В	62	1.909	29.625	-6.814	1.00 21.92	В	C
MOTA	3613	CG	ARG	В	62	2.189	28.185	-7.196	1.00 25.65	· B	. C
ATOM	3614	CD	ARG		62	1.385	27.694	-8.421	1.00 29.39	В	Ċ
ATOM	3615	NE	ARG		62	1.516	26.235	-8.639	1.00 32.04	В	N
ATOM	3616	CZ	ARG		62	0.982	25.593	-9.675	1.00 33.94	В	C
ATOM	3617	NH1	ARG								
					62 63	1.129	24.287	-9.798	1.00 37.42	В	N
ATOM	3618	NH2	ARG		62	0.292		-10.586	1.00 34.66	В	N
ATOM	3619	C	ARG		62	2.619	31.687	-5.652	1.00 21.86	В	C
MOTA	3620	0	ARG		62	1.491	32.033	-5.296	1.00 21.34	В	0
ATOM	3621	N	ILE	В	63	3.609	32.547	-5.894	1.00 23.01	В	N

	ATOM	3622	CA	ILE :	B 63	3.503	33.950	-5.502	1.00 24.71	В	C
	ATOM	3623	CB	ILE	B 63	4.824	34.707	-5.709	1.00 25.05	В	C
	ATOM	3624	CG1	ILE	B 63	4.790	36.033	-4.919	1.00 28.83	В	C
	ATOM	3625	CD1	ILE	B 63	6.158	36.609	-4.546	1.00 31.61	В	C
	MOTA	3626	CG2	ILE	B 63	5.047	34.966	-7.207	1.00 26.58	B	C
	ATOM	3627	C	ILE			34.699	-6.216	1.00 24.34	В	С
	ATOM	3628	0	ILE			35.675	-5.672	1.00 25.45	B	ō
	ATOM	3629	N	ASP			34.240	-7.398	1.00 24.15	B	N
	ATOM	3630	CA	ASP			34.919	-8.153	1.00 24.63	B	C
	ATOM	3631		BASP			34.889	-9.664	0.40 24.94	В	Č
	ATOM	3632		AASP			34.873	-9.650	0.60 24.96	В	C
	ATOM	3633		BASP		_		-10.307	0.40 25.65	В	C
	ATOM	3634		AASP			35.712	-10.026	0.60 25.91	В	Ċ
	ATOM	3635		BASP				-11.536	0.40 27.17	В	0
	ATOM	3636		AASP				-10.950	0.60 27.52	B	0
	ATOM	3637		BASP			32.426	-9.686	0.40 28.49	В	0
	ATOM	3638		AASP						В	
				ASP			36.782	-9.439 7.896	0.60 26.67		0
	ATOM	3639	C			-	34.361	-7.896	1.00 24.47	В	C
	ATOM	3640	0	ASP			34.928	-8.392	1.00 24.83	B	0
	ATOM	3641	N Ca	ARG :			33.269	-7.136	1.00 21.92	В	N
	ATOM	3642	CA	ARG			32.615	-6.893	1.00 21.12	В	C
	ATOM	3643	CB	ARG			31.101	-6.737	1.00 19.95	В	C
	ATOM	3644	CG	ARG			30.305	-6.463	1,00 18.99	В	C
	ATOM	3645	CD	ARG			28.808	-6.572	1.00 19.09	B	C
	ATOM	3646	NE	ARG			28.369	-5.554	1.00 18.66	В	N
	ATOM	3647	CZ	ARG			27.214	-5.534	1.00 19.41	B	C
	ATOM	3648	NH1				26.300	-6.470	1.00 19.74	В	N
	ATOM	3649	NH2				26.963	-4.522	1.00 21.82	В	N
	ATOM	3650	C	ARG			33.168	-5.662	1.00 20.36	В	C
	ATOM	3651	0	ARG			33.515	-4.682	1.00 21.06	В	0
	ATOM	3652	N	VAL			33.284	-5.727	1.00 20.04	В	N
	ATOM	3653	CA	VAL			33.540	-4.560	1.00 19.79	B	C
-	ATOM ATOM	3654	CB	VAL VAL			34.962		1.00 19.88	В	C -
	ATOM	3655	CG1 CG2				35.160	-3.204	1.00 21.06	В	C
		3656					36.004	-4.607	1.00 20.96	В	C
	ATOM	3657	C	VAL			32.525	-4.551	1.00 20.19	В	C
	ATOM	3658	O N	VAL			32.512	-5.444	1.00 20.12	В	O,
	ATOM	3659	N Ca	ARG			31.654	-3.557	1.00 20.01	В	N
	ATOM	3660	CA	ARG			30.713	-3.394	1.00 20.45	В	C
	ATOM	3661	CB	ARG			29.437	-2.740	1.00 20.71	В	C
	ATOM ATOM	3662	CG	ARG ARG			28.538	-3.626	1.00 21.28	В	C
	ATOM	3663	CD			· · · · · · · · · · · · · · · · · · ·	27.144	-3.016	1.00 23.63	В	C
		3664	NE	ARG			26.204	-3.632	1.00 22.50	В	N
	ATOM	3665	CZ	ARG			25,921	-3.160	1.00 24.19	В	C
	ATOM	3666	NH1				24.992	-3.759	1.00 22.65	В	N
	ATOM	3667	NH2				26.571	-2.106	1.00 22.06	В	N
	ATOM	3668	C	ARG			31.368	-2.543	1.00 20.49	В	C
	ATOM	3669	0	ARG	_		31.990	-1.529	1.00 20.17	В	0
	MOTA	3670	N	LEU			31.253	-2.970	1.00 20.39	В	N
	ATOM	3671	CA	LEU			31.705	-2.148	1.00 21.05	B	C
	ATOM	3672	CB	LEU			32.604	-2.957	1.00 21.11	В	C
	ATOM	3673	CG	LEU			33.830	-3.627	1.00 21.59	В	C
	MOTA	3674		LEU			34.523	-4.508	1.00 22.82	В	C
	ATOM	3675		LEU			34.785	-2.595	1.00 22.44	В	C
	ATOM	3676	C	LEU			30.493	-1.648	1.00 21.12	B	C
	ATOM	3677	O N	LEU			29.709	-2.432	1.00 21.87	B	0
	ATOM	3678	N	PHE			30.345	-0.345	1.00 21.61	В	N
	. ATOM	3679	CA	PHE	B 69	-11.937	29.226	0.233	1.00 21.97	В	C

ولأراق

3 5504	. 2	00				20 643				
ATOM	3680	CB	PHE B	69	-11.151	28.647	1.422	1.00 22.	17	3 C
ATOM	3681	CG	PHE B	69	-9.896	27.905	1.028	1.00 19.	89	3 C
ATOM	3682	CD1	PHE B	69	-9.938	26.557	0.737	1.00 21.	41 1	3 C
ATOM	3683	CE1	PHE B	69	-8.788	25.862	0.370	1.00 20.		3 C
ATOM				69						
	3684	CZ	PHE B		-7.598	26.525	0.290	1.00 21.		3 C
ATOM	3685	CE2	PHE B	69	-7.542	27.879	0.575	1.00 21.	52 I	3 C
ATOM	3686	CD2	PHE B	69	-8.691	28.557	0.950	1.00 19.	33 I	3 C
MOTA	3687	С	PHE B	69	-13.321	29.725	0.664	1.00 23.	11 1	3 C
ATOM	3688	0	PHE B	69	-13.414	30.651	1.506	1.00 22.		3 0
	3689	N								
ATOM			VAL B	70	-14.371	29.105	0.111	1.00 24.		B N
MOTA	3690	CA	VAL B	70	-15.755	29.578	0.289	1.00 25.		3 C
ATOM	3691	CB	VAL B	70	-16.442	29.958	-1.054	1.00 25.	72	3 . C
ATOM	3692	CG1	VAL B	70	-15.686	31.063	-1.756	1.00 26.	70	3 C
ATOM	3693	CG2	VAL B	70	-16.599	28.756	-1.958	1.00 26.	63 1	3 C
ATOM	3694	C	VAL B	70	-16.691	28.602	0.996	1.00 26.		3 C
ATOM	3695	0	VAL B	70	-16.532	27.380	0.899	1.00 27.		3 0
ATOM	3696	N	ASP B	71	-17.664	29.155	1.714	1.00 27.	52 I	3 N
MOTA	3697	CA	ASP B	71	-18.686	28.352	2.399	1.00 29.	00 1	3 C
ATOM	3698	CB	ASP B	71	-19.247	29.132	3.591	1.00 28.	91 1	3 C
ATOM	3699	CG	ASP B	71	-20.019	30.392	3.171	1.00 28.		3 C
ATOM	3700	OD1	ASP B	71	-20.161	31.290	4.018	1.00 29.		3 0
ATOM	3701	OD2	ASP B	71	-20.509	30.572	2.032	1.00 27:		3 0
ATOM	3702	C	ASP B	71	-19.796	27.931	1.413	1.00 30.	37	3 C
ATOM	3703	0	ASP B	71	-19.646	28.098	0.217	1.00 29.	90 1	3 0
ATOM	3704	N ·	LYS B	72	-20.898	27.376	1.906	1.00 33.	42	B N
ATOM	3705	CA	LYS B	72	-21.949	26.822	1.022	1.00 34.		3 C
ATOM	3706	СВ	LYS B	72		26.004				
					-22.951		1.834	1.00 35.		B C
MOTA	3707	CG	LYS B	72	-22.190	24.925	2.916	0.00 40.		3 C
ATOM	3708	CD	LYS B	72	-22.489	23.435	2.595	0.00 40.	00	3 C
ATOM	3709	CE	LYS B	72	-21.240	22.528	2.667	0.00 40.	00 1	3 C
ATOM	3710	NZ	LYS B	72	-21.120	21.662	1.456	0.00 40.	0.0	8 N
ATOM	3711	C	LYS B	72	-22.709	27.904	0.261	1.00 36.		3 C
ATOM	3712	Ö	LYS B	72						
			•		23.332	27.627				3 .0
MOTA	3713	N	LEU B	73	-22.640	29.138	0.753	1.00 37.		3 N
ATOM	3714	CA	LEU B	73	-23.306	30.286	0.114	1.00 37.	22	3 C
ATOM	3715	CB	LEU B	73	-23.759	31.265	1.201	1.00 37.	50	B C
ATOM	3716	CG	LEU B	73	-24.711	30.678	2.254	1.00 40.	20	3 C
ATOM	3717	CD1	LEU B	73	-25.387	31.796	3.053	1.00 41.		3 C
ATOM	3718	CD2	LEU B	73	-25.782	29.775	1.612	1.00 41.		
ATOM	3719	C	LEU B	73	-22.406	31.008	-0.890	1.00 36.		B C
ATOM	3720	0	LEU B	73	-22.781	32.029	-1.482	1.00 36.	18 1	3 0
ATOM	3721	N	ASP B	74	-21.203	30.468	-1.076	1.00 36.	33 1	3 N
ATOM	3722	CA	ASP B	74	-20.192	31.084	-1.923	1:00 35.	65	3 C
ATOM	3723	CB	ASP B	74	-20.709	31.252	-3.342	1.00 36.	81 1	3 C
MOTA	3724	CG	ASP B	74	-20.063	30.283	-4.286	1.00 40.		3 C
ATOM	3725	OD1		74						
			_		-19.429	30.756	-5.259	1.00 45.		ВО
ATOM	3726	OD2		74	-20.108	29.032	-4.101	1.00 45.		в о
MOTA	3727	C	ASP B	74	-19.646	32.399	-1.381	1.00 33.	94	3 C
ATOM	3728	0	ASP B	74	-19.147	33.249	-2.136	1.00 34.	59 1	3 0
MOTA	3729	N	ASN B	75	-19.696	32.546	-0.066	1.00 31.	85 1	a n
ATOM	3730	CA	ASN B	75	-19.000	33.634	0.597	1.00 30.		3 C
ATOM	3731			75						
		CB	ASN B		-19.877	34.185	1.714	1.00 30.		3 C
ATOM .	3732	CG	ASN B	75	-21.170	34.793	1.176	1.00 30.		3 C
MOTA	3733	OD1	asn b	75	-21.169	35.401	0.102	1.00 30.	57	3 0
MOTA	3734	ND2	ASN B	75	-22.275	34.615	1.907	1.00 30.	32	B N
ATOM	3735	С	ASN B	75	-17.628	33.213	1.127	1.00 29.		3 C
ATOM	3736	0	ASN B	75	-17.433	32.073	1.553	1.00 29.		3 0
ATOM	3737	N	ILE B	76	-16.685	34.143	1.086	1.00 27.		B N
ALUM	1 6 1	74	ם מונג	, 0	-10.003	74.747	4.VD0	1.00 27.	ر د د	١٧ ب

ATOM	3738	CA ILE	В	76	-15.337	33.893	1.540	1.00 26.88	В	C
ATOM	3739	CB ILE	В	76	-14.511	35.182	1.455	1.00 26.51	В	C
ATOM	3740	CG1 ILE	В	76	-14.474	35.737	0.020	1.00 26.61	В	C
ATOM	3741	CD1 ILE	B	76	-14.130	34.728	-1.039	1.00 26.87	B	Ç
ATOM	3742	CG2 ILE	B	76	-13.137	34.927	1.993	1.00 25.62	В	C
ATOM	3743	C ILE	В	76	-15.401	33.382	2.993	1.00 26.59	B	C
ATOM	3744	O ILE	B	76	-15.994	34.017	3.838	1.00 26.12	В	0
ATOM	3745	N ALA	В	77	-14.795	32.237	3.263	1.00 26.58	В	N
ATOM	3746	CA ALA	В	77	-14.899	31.582	4.576	1.00 26.79	В	Ċ
ATOM	3747	CB ALA	B	77	-15.129	30.088	4.386	1.00 26.56	В	C
ATOM	3748	C ALA	В	77	-13.670	31.815	5.467	1.00 26.89	В	C
ATOM	3749	O ALA	В	77	-13.764	31.751	6.677	1.00 27.73	В	0
ATOM	3750	N GLU	B	78	-12.518	32.072	4.871	1.00 26.32	В	N
ATOM	3751	CA GLU	В	78	-11.355	32.446	5.647	1.00 26.33	В	Ç
ATOM	3752	CB GLU	В	78	-10.508	31.216	6.041	1.00 26.80	В	C
ATOM	3753	CG GLU	B	78	-10.106	30.290	4.921	1.00 27.82	В	C
ATOM	3754	CD GLU	В	78	-9.956	28.827	5.352	1.00 28.92	В	C
ATOM	3755	OE1 GLU	В	78	-9.785	28.493	6.559	1.00 36.40	В	0
MOTA	3756	OE2 GLU	В	78	-10.001	27.977	4.472	1.00 28.50	В	0
ATOM	3757	C GLU		78	-10.530	33.478	4.895	1.00 25.94	В	Č
ATOM	3758	O GLU		78	-10.807	33.805	3.712	1.00 25.71	В	Ō
ATOM	3759	N VAL		79	-9.527	33.996	5.594	1.00 24.85	В	N
ATOM	3760	CA VAL		79	-8.712	35.088	5.102	1.00 24.88	В	C
MOTA	3761	CB VAL	В	79	-7.692	35.578	6.167	1.00 25.77	В	C
ATOM	3762	CG1 VAL		79	-6.814	36.672	5.583	1.00 25.38	В	C
ATOM	3763	CG2 VAL		79	-8.396	36.073	7.456	1.00 26.10	B	Ċ
ATOM	3764	C VAL		79	-7.957	34.652	3.835	1.00 24.07	B	Ċ
MOTA	3765	O VAL		79	-7.137	33.742	3.883	1.00 23.32	В	o
ATOM	3766	N PRO		80	-8.275	35.271	2.699	1.00 23.27	В	N
ATOM	3767	CA PRO		80	-7.533	35.029	1.466	1.00 22.93	B	Ĉ
ATOM	3768	CB PRO		80	-8.296	35.856	0.426	1.00 23.15	В	C
ATOM	3769	CG PRO		80	-9.645	36.042	1.005	1.00 23.83	В	Č
MOTA	3770	CD PRO		80	-9.404	36.194		1.00 23.67		Ç -
ATOM	3771	C PRO		80	-6.101	35.512	1.601	1.00 22.05	B .	Č
ATOM	3772	O PRO		80	-5.891	36.588	2.136	1.00 20.76	В	Ō
ATOM	3773	N ARG		81	-5.147	34.691	1.190	1.00 21.54	В	N
ATOM	3774	CA ARG		81	-3.765	35.135	1.074	1.00 22.93	B	·C
MOTA	3775	CB BARG		81	-2.937	34.683	2.298	0.40 22.99	В	C.
ATOM	3776	CB AARG		81	-2.865	34.764	2.275	0.60 23.27	В	C
ATOM	3777	CG BARG		81	-3.684	34.672	3.645	0.40 24.27	В	C
ATOM	3778	CG AARG		81	-3.278	33.619	3.175	0.60 25.79	B	<u>ر</u>
ATOM	3779	CD BARG		81	-2.996	33.818	4.744	0.40 26.79	В	C
MOTA	3780	CD AARG		81	-2.615	33.723	4.575	0.60 27.67	В	C
ATOM	3781	NE BARG		81	-3.975	33.234	5.664	0.40 28.96	B	N
ATOM	3782	NE AARG		81	-3.283	32.907	5.581	0.60 29.38	B	N
ATOM	3783	CZ BARG		81	-4.567	32.053	5.508	0.40 29.28	В	C
MOTA	3784	CZ AARG		81	-3.934	33.381	6.642	0.60 30.17	В	C
ATOM	3785	NH1BARG		81	-4.284	31.274	4.471	0.40 31.06	В	N
ATOM	3786	NHIAARG		81	-4.020	34.680	6.867	0.60 31.08	В	N
ATOM	3787	NH2BARG		81	-5.448	31.645	6.408	0.40 30.62	В	N
ATOM	3788	NH2AARG		81	-4.510	32.545	7.486	0.60 31.16		
ATOM	3789	C ARG		81	-3.115	34.616	-0.178	1.00 21.97	В	N
ATOM	3799	O ARG		81	-3.115	33.632		1.00 21.57	B	C
ATOM	3791	N VAL		82			-0.761 -0.559		B	O N
ATOM	3792	CA VAL			-2.029 -1.224	35.286		1.00 20.91	. B	N
ATOM				82 83	-1.224	34.884	-1.679	1.00 21.03	В	C
	3793	CB VAL		82	-0.126	35.943	-1.952	1.00 21.89	В	C
ATOM ATOM	3794	CG1 VAL		82 82	0.869	35.435	-2.906	1.00 22.93	B	C
ATOM	3795	CG2 VAL	Ð	82	-0.734	37.243	-2.483	1.00 21.44	В	C

ATOM	3796	C	VAL	В	82	-0.583	33.532	-1.371	1.00 20.69	В	C
ATOM	3797	0	VAL	В	82	-0.235	33.255	-0.221	1.00 19.36	В	0
ATOM	3798	_	GLY	В	83	-0.469	32.694	-2.389	1.00 19.91	В	N
ATOM	3799		GLY	_					1.00 20.16	В	C
ATOM	3800		GLY			-			1.00 20.11	В	C
ATOM	3801	_	GLY	_					1.00 20.36	В	0
	3802	_				— · -			1.00 18.79	В	0