

NMR Frequencies vs. Bruker Field Strengths – sorted by increasing atomic number

61.224 260.602 198.698 46.670 25.616 67.309 76.770 97.992 56.532 264.553 56.398 320.881 404.861 Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments 238.910 68.659 96.312 249.912 53.706 133.510 128.804 75.006 251.327 58.163 247.574 188.764 72.932 93.093 77.490 44.337 24.336 63.944 230.803 53.564 53.578 235.530 304.839 894.015 384.621 94.731 226.338 65.046 122.026 846.968 71.059 55.103 234.546 178.831 88.194 73.412 42.003 23.055 60.579 50.745 50.759 89.746 29.144 213.575 238.101 364.380 69.094 218.657 50.880 288.797 236.761 Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla) 224.876 52.042 221.517 57.214 206.511 115.248 344.140 65.256 39.670 47.926 223.609 272.755 83.295 69.334 21.774 47.939 48.054 27.525 75.968 799.921 168.897 84.761 210.741 225.416 65.256 37.337 20.494 752.874 211.650 208.489 158.963 61.418 53.849 194.366 79.775 198.346 57.820 108.469 63.165 48.981 323.900 78.396 210.458 45.227 25.906 189.847 291.529 198.424 19.213 188.620 76.039 705.827 59.217 45.920 195.460 149.030 303.659 57.580 73.497 35.004 50.484 42.289 74.790 42.401 177.984 105.407 54.207 42.300 197.306 80.591 240.672 185.951 101.691 39.575 39.575 173.557 22.669 224.630 176.048 50.594 70.971 94.913 185.198 42.859 182.432 139.096 47.119 533.352 103.032 272.097 55.270 53.742 57.101 32.671 17.932 39.470 69.805 658.780 283.419 68.598 39.481 166.120 185.643 98.381 47.376 56.375 64.476 192.546 150.903 60.834 564.686 158.746 36.738 119.229 242.938 46.066 58.800 48.945 15.371 40.389 33.833 33.842 59.835 157.852 42.393 53.628 43.367 33.922 19.431 132.294 30.616 160.462 67.800 470.592 39.482 130.318 99.362 202.457 38.390 49.002 40.789 23.338 12.810 33.659 21.490 28.195 28.203 49.865 131.549 28.270 118.666 36.141 50.697 132.612 105.842 24.494 304.815 100.613 28.915 40.560 376.498 31.587 79.495 161.976 39.204 32.634 18.672 10.249 26.929 97.199 22.563 39.894 22.617 99.189 94.939 104.261 22.557 105.246 18.373 78.204 121.495 24.478 96.294 75.468 30.423 282.404 23.693 79.390 23.038 29.406 14.005 20.199 16.920 16.924 29.924 78.943 16.965 228.636 44.167 116.642 59.627 8.32E-01 2.46E-03 9.27E-02 2.68E-03 2.72E-03 5.10E-04 8.44E-05 6.43E-03 3.02E-01 1.79E-01 3.42E-05 1.59E-02 1.01E-03 1.04E-03 2.91E-02 .99E-02 1.65E-01 7.86E-03 6.65E-02 2.27E-03 4.72E-03 2.10E-03 3.78E-03 2.07E-01 5.57E-02 3.84E-01 9.08E-04 2.94E-01 Receptivity 3.88E+00 2.79E+00 3.34E-02 5.10E-02 1.78E+03 3.48E-03 3.79E+00 1.59E+03 2.23E-02 6.50E-02 1.58E+00 1.22E+03 1.05E+03 4.25E-03 5.90E+00 4.89E+03 3.91E-02 5.45E+02 2.16E+00 3.91E+02 2.25E+03 .64E+03 2.40E-01 3.82E+02 5.87E+03 6.52E-03 7.77E+02 1.00E+00 2.10E+01 .20E+00 8.18E-01 5.07E-01 1.00E-01 9.18E-01 Nat. Abund. 1.34E-04 7.59 % 1.1399 99.9885 0.0115 0.038 4.685 24.24 93.258 6.730 0.135 99.636 0.364 0.250 99.750 9.501 0.75 69.15 30.85 0.27 10.00 0.00 0.00 7.44 5.41 0.001 0.001 0.001 0.001 0.001 19.9 1/2 1/2 3/2 3/2 3/2 1/2 1/2 5/2 3/2 1/2 6 g ပ္ပ ಪ ತ 2 83 22 65 67 20 61 2

NMR Frequencies vs. Bruker Field Strengths – sorted by increasing atomic number

90400			1014	- Hinthanna	1			Larmor	Frequen	ies (MHz	vs. Bruk	Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla)	rengths (Tesla)		
0000			Nat. Abund.	decelu	.	Freq. to	Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	are experin	mental for	IUPAC Sta	andards; fre	eq. to 2 de	c. are calc	ulated from	n magn. m	oments
			(%)	Natural rel. ¹3C	Molar rel. ¹H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
73	G	9/2 7.76	9/	6.44E-01	1.41E-03	10.469	13.958	17.446	20.934	24.423	26.167	27.911	29.622	31.399	33.144	34.888
75			0	1.49E+02	2.54E-02	51.390	68.513	85.635	102.758	119.881	128.442	137.003	145.564	154.126	162.687	171.248
77		1/2 7.63	33	3.15E+00	7.03E-03	57.239	76.311	95.382	114.454	133.525	143.061	152.597	162.133	171.668	181.204	190.740
79	B.	3/2 50.6	39	2.37E+02	7.94E-02	75.195	100.248	125.302	150.356	175.410	187.937	200.464	212.991	225.518	238.045	250.572
			31	2.88E+02	9.95E-02	81.055	108.061	135.068	162.074	189.081	202.584	216.087	229.591	243.094	256.597	270.100
			200	1.28E+00	1.90E-03	11.548	15.395	19.243	23.091	26.938	28.862	30.786	32.710	34.633	36.557	38.481
			17	4.50E+01	1.06E-02	28.977	38.632	48.287	57.942	67.597	72.425	77.252	82.080	86.907	91.735	96.562
87	Rb 3	3/2 27.83	33	2.90E+02	1.77E-01	98.204	130.924	163.645	196.365	229.086	245.446	261.806	278.166	294.527	310.887	327.247
87		9/2 7.00	00	1.12E+00	2.72E-03	13.007	17.341	21.675	26.009	30.342	32.509	34.676	36.843	39.010	41.177	43.344
88	, .	1/2 100.0	(7.00E-01	1.19E-04	14.707	19.607	24.507	29.408	34.308	36.758	39.208	41.658	44.108	46.558	49.008
91	Z	5/2 11.22	22	6.26E+00	9.49E-03	27.901	37.197	46.494	22.790	980.39	69.734	74.382	79.031	83.679	88.327	92.975
			0	2.87E+03	4.88E-01	73.460	97.936	122.413	146.889	171.365	183.603	195.841	208.079	220.317	232.555	244.794
		1	06	3.06E+00	3.27E-03	19.529	26.076	32.593	39.110	45.627	48.885	52.144	55.402	58.661	61.919	65.178
		5/2 9.56	99	1.96E+00	3.49E-03	19.970	26.623	33.277	39.931	46.585	49.911	53.238	56.565	268.69	63.219	66.546
_	_			•	3.82E-01	67.554	90.063	112.571	135.079	157.588	168.842	180.096	191.350	202.604	213.858	225.113
66			92	8.46E-01	1.13E-03	13.821	18.427	23.032	27.637	32.242	34.545	36.847	39.150	41.452	43.755	46.057
101			90	1.58E+00	1.57E-03	15.491	20.652	25.814	30.975	36.136	38.717	41.298	43.878	46.459	49.040	51.620
103			0	1.86E-01	3.17E-05	9.563	12.750	15.936	19.123	22.309	23.902	25.496	27.089	28.682	30.275	31.869
	Pd		33	1.49E+00	1.13E-03	13.734	18.310	22.886	27.463	32.039	34.327	36.615	38.903	41.191	43.479	45.767
			339	2.05E-01	6.74E-05	12.149	16.197	20.244	24.292	28.340	30.364	32.388	34.412	36.436	38.460	40.483
-			161	2.90E-01	1.02E-04	13.967	18.620	23.274	27.927	32.581	34.908	37.234	39.561	41.888	44.215	46.541
	Cd 1	1/2 12.80	30	7.27E+00	9.66E-03	63.674	84.890	106.105	127.320	148.536	159.144	169.751	180.359	190.967	201.575	212.182
113			22	7.94E+00	1.11E-02	809.99	88.802	110.995	133.188	155.381	166.478	177.574	188.671	199.767	210.864	221.961
113	o u		59	8.85E+01	3.51E-01	65.626	87.491	109.357	131.223	153.089	164.022	174.954	185.887	196.820	207.753	218.686
		0,	71	1.99E+03	3.53E-01	992.29	87.679	109.592	131.504	153.417	164.373	175.330	186.286	197.242	208.198	219.155
			34	7.11E-01	3.56E-02	98.199	130.918		196.355	229.074	245.433	261.793	278.152	294.511	310.871	327.230
	Sn	1/2 7.68	38	2.08E+01	4.60E-02	106.943	142.575		213.840	249.472	267.288	285.104	302.921	320.737	338.553	356.369
_		1/2 8.5	29	2.66E+01	5.27E-02	111.920	149.211	186.502	223.792	261.083	279.728	298.374	317.019	335.664	354.309	372.955
-	+		21	5.48E+02	1.63E-01	71.823	95.753	119.684	143.615	167.545	179.510	191.476	203.441	215.406	227.372	239.337
-	+	7	6/ 29	1.17E+02	4.66E-02	38.894	51.854	64.813	77.77	90.731	97.211	103.691	110.170	116.650	123.129	129.609
123	+		23 [2	9.61E-01	1.84E-02	/8.543	104.713	130.883	15/.052	183.222	196.307	209.392	777.77	732.562	748.647	261./31
125	<u>•</u>			1.34E+01	3.22E-02	94.690	126.240	15/./90	189.340	220.889	720.004	252.439	268.214	783.989	700 007	315.539
+	+	_	900	5.60E+0Z	9.54E-02	00.048	30.050	100.003	1/0.071	140.078	150.082	100.080	080.071	180.093	190.097	200.101
+	+		20.4000	3.355+01	2.10E-02	03.407	117.111	139.087	100.03/	134.707	200.013	010.222	230.423	270.328	204.233	2/0.130
+	+	-	21.2324	3.51E+00	2.82E-03	24.742	32.986	41.230	49.4/4	5/./18	61.840	796.69	/0.084	/4.206	/8.328	82.450
_	S	$\stackrel{\cong}{+}$		2.84E+02	4.84E-02	39.365	52.482	65.598	78.714	91.830	98.388	104.946	111.504	118.062	124.620	131.178
_		3/2 6.592	592	1.94E+00	5.01E-03	29.816	39.751	49.685	29.620	69.554	74.521	79.489	84.456	89.423	94.390	99.357
137			232	4.62E+00	7.00E-03	33.353	44.466	55.579	66.692	77.805	83.361	88.918	94.474	100.031	105.587	111.144
-			060	4.97E-01	9.40E-02	39.600	52.794	65.989	79.183	92.377	98.974	105.572	112.169	118.766	125.363	131.960
_	+	7/2 99.910	910	3.56E+02	6.06E-02	42.395	56.521	/0.64/	84.772	98.898	105.961	113.023	120.086	127.149	134.212	141.2/5
141	<u>-</u>	5/2 100.0		1.97E+03	3.35E-01	91.89	122.51	153.12	183.74	214.36	229.67	244.97	260.28	275.59	290.90	306.21

NMR Frequencies vs. Bruker Field Strengths – sorted by increasing atomic number

Isotope	Spin		Receptivity	ivitv			Larmo	Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla)	cies (MHz	vs. Bruk	er Field St	rengths (Tesla)		
-		Abund.	•	,	Freq. to	Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	are experi	mental for	IUPAC St	andards; fr	eq. to 2 de	c. are calc	ulated fror	n magn. rr	oments
		(%)	Natural rel. ¹3C	Molar rel. ¹H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
143 Nd	7/2	12.2	2.43E+00	3.39E-03	16.35	21.80	27.25	32.69	38.14	40.86	43.59	46.31	49.04	51.76	54.48
145 Nd	1/2	8.3	3.87E-01	7.93E-04	10.07	13.43	16.78	20.14	23.49	25.17	26.85	28.53	30.20	31.88	33.56
147 Sm	n 7/2	14.99	1.34E+00	1.52E-03	12.51	16.68	20.84	25.01	29.18	31.26	33.35	35.43	37.52	39.60	41.68
149 Sm	n 7/2	13.82	6.92E-01	8.52E-04	10.31	13.75	17.18	20.62	24.06	25.77	27.49	29.21	30.93	32.64	34.36
151 Eu			5.04E+02	1.79E-01	74.62	99.48	124.34	149.20	174.06	186.49	198.92	211.35	223.78	236.22	248.65
153 Eu		52.19	4.73E+01	1.54E-02	32.94	43.91	54.88	98.39	76.83	82.32	87.80	93.29	98.78	104.26	109.75
			1.26E-01	1.45E-04	9.21	12.28	15.35	18.42	21.49	23.03	24.56	26.10	27.63	29.17	30.70
157 Gd	3/2		3.00E-01	3.26E-04	12.08	16.11	20.13	24.16	28.19	30.20	32.21	34.22	36.24	38.25	40.26
159 Tb		_	4.08E+02	6.94E-02	72.14	96.18	120.22	144.26	168.29	180.31	192.33	204.35	216.37	228.39	240.41
161 Dy			5.26E-01	4.74E-04	10.32	13.75	17.19	20.63	24.07	25.78	27.50	29.22	30.94	32.66	34.38
163 Dy			1.91E+00	1.31E-03	14.46	19.28	24.10	28.92	33.74	36.15	38.56	40.97	43.38	45.79	48.20
165 Ho		_	1.16E+03	1.98E-01	63.43	84.57	105.71	126.84	147.98	158.54	169.11	179.68	190.25	200.82	211.38
167 Er		22.869	6.77E-01	5.04E-04	99.8	11.54	14.42	17.31	20.19	21.63	23.08	24.52	25.96	27.40	28.82
169 Tm	1/2		3.32E+00	5.66E-04	24.82	33.10	41.37	49.64	57.91	62.04	66.18	70.32	74.45	78.59	82.72
171 Yb	1/2	14.28	4.63E+00	5.52E-03	52.521	70.020	87.519	105.019	122.518	131.268	140.017	148.767	157.517	166.266	175.016
173 Yb	5/2		1.28E+00	1.35E-03	14.61	19.48	24.35	29.22	34.09	36.52	38.96	41.39	43.83	46.26	48.69
175 Lu	7/2	97.41	1.79E+02	3.13E-02	34.27	45.69	57.11	68.53	79.94	85.65	91.36	97.07	102.78	108.49	114.20
176 Lu	7	2.59	0.05E+00	3.98E-02	24.33	32.43	40.53	48.64	56.74	08.09	64.85	06.89	72.95	77.01	81.06
177 Hf		18.60	1.53E+00	1.40E-03	12.18	16.24	20.30	24.36	28.42	30.45	32.48	34.51	36.53	38.56	40.59
179 Hf			4.38E-01	5.47E-04	7.65	10.20	12.75	15.30	17.85	19.13	20.40	21.68	22.95	24.23	25.50
181 Ta			2.20E+02	3.74E-02	35.984	47.974	59.964	71.953	83.943	89.938	95.932	101.927	107.922	113.917	119.912
			6.31E-02	7.50E-05	12.505	16.671	20.837	25.004	29.170	31.253	33.337	35.420	37.503	39.586	41.669
			3.05E+02	1.39E-01	67.603	90.128	112.652	135.177	157.701	168.964	180.226	191.488	202.751	214.013	225.275
_		9	5.26E+02	1.43E-01	68.284	91.036	113.788	136.539	159.291	170.667	182.042	193.418	204.794	216.170	227.546
-	+		1.43E-03	1.24E-05	6.850	9.132	11.415	13.697	15.979	17.120	18.262	19.403	20.544	21.685	22.826
189 Os	3/2		2.32E+00	2.44E-03	23.306	31.072	38.837	46.602	54.368	58.251	62.133	66.016	69.836	73.781	77.664
191 lr	3/2		6.38E-02	2.91E-05	5.40	7.20	9.00	10.79	12.59	13.49	14.39	15.29	16.19	17.09	17.99
+	+		1.37E-01	3.73E-05	5.86	7.82	9.77	11.73	13.68	14.66	15.63	16.61	17.59	18.56	19.54
_	+		2.07E+01	1.04E-02	64.518	86.015	107.512	129.009	150.505	161.254	172.002	182.751	193.499	204.247	214.996
+	+		1.62E-01	2.76E-05	5.31	7.08	8.84	10.61	12.38	13.26	14.15	15.03	15.92	16.80	17.69
+	+		5.89E+00	5.94E-03	53.756	/1.06/	89.57/	107.488	125.399	134.354	143.310	152.265	101.221	1/0.1/6	1/9.132
201 Hg		-	1.16E+00	1.49E-03	19.843	26.455	33.06/	39.6/8	46.290	49.595	52.901	56.207	59.513	62.819	66.124
203 TI	1/2		3.40E+02	1.96E-01	171.444	228.567	285.690	342.813	399.937	428.498	457.060	485.621	514.183	542.745	571.306
_	_		8.36E+02	2.02E-01	173.127	230.810	288.494	346.178	403.862	432.704	461.546	490.388	519.230	548.071	576.913
-			1.18E+01	9.06E-03	62.789	83.710	104.630	125.551	146.471	156.932	167.392	177.852	188.313	198.773	209.233
		100.0	8.48E+02	1.44E-01	48.229	64.298	80.367	96.437	112.506	120.541	128.575	136.610	144.644	152.679	160.714
			'	1.44E-02	73.08	97.42	121.77	146.12	170.47	182.64	194.81	206.99	219.16	231.34	243.51
231 Pa	3/2)	4.06E+02	6.90E-02	72.00	95.99	119.98	143.97	167.96	179.96	191.95	203.94	215.94	227.93	239.93
235 U	7/2	0.7204	6.53E-03	1.54E-04	5.527	7.368	9.209	11.051	12.892	13.813	14.734	15.654	16.575	17.496	18.416

NMR Frequencies vs. Bruker Field Strengths – sorted with decreasing Larmor frequency

	000	2	***	Doonat	ivite.			Larmo	r rreduen		Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla)) cui d'una	lesia		
admos!	ם ח	5	Abund.	neceptivity	.	Freq. to 3	Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	are experir	mental for	IUPAC Sta	andards; fre	eq. to 2 de	c. are calc	sulated fron	n magn. m	oments
			(%)	Natural rel. ¹3C	Molar rel. ¹H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
က	Ŧ	1/2		ı	1.21E+00	320.131	426.795	533.459	640.123	746.786	800.118	853.450	906.782	960.114	1013.446	1066.778
_	Ŧ	1/2	99.9885	5.87E+03	1.00E+00	300.130	400.130	500.130	600.130	700.130	750.130	800.130	850.130	900.130	950.130	1000.130
19	ш	1/2	100.0	4.89E+03	8.32E-01	282.404	376.498	470.592	564.686	658.780	705.827	752.874	799.921	846.968	894.015	941.062
3	He	1/2	1.34E-04	3.48E-03	4.42E-01	228.636	304.815	380.994	457.173	533.352	571.441	609.531	647.620	685.710	723.799	761.889
202	F	1/2	70.48	8.36E+02	2.02E-01	173.127	230.810	288.494	346.178	403.862	432.704	461.546	490.388	519.230	548.071	576.913
203	F	1/2	29.52	3.40E+02	1.96E-01	171.444	228.567	285.690	342.813	399.937	428.498	457.060	485.621	514.183	542.745	571.306
31	Ь	1/2	100.0	3.91E+02	6.65E-02	121.495	161.976	202.457	242.938	283.419	303.659	323.900	344.140	364.380	384.621	404.861
7	=	3/2	92.41	1.59E+03	2.94E-01	116.642	155.506	194.370	233.233	272.097	291.529	310.961	330.393	349.825	369.257	388.688
119	Sn	1/2	8.59	2.66E+01	5.27E-02	111.920	149.211	186.502	223.792	261.083	279.728	298.374	317.019	335.664	354.309	372.955
117	Sn	1/2	7.68	2.08E+01	4.60E-02	106.943	142.575	178.208	213.840	249.472	267.288	285.104	302.921	320.737	338.553	356.369
87	Rb	3/2	27.83	2.90E+02	1.77E-01	98.204	130.924	163.645	196.365	229.086	245.446	261.806	278.166	294.527	310.887	327.247
115	Sn	1/2	0.34	7.11E-01	3.56E-02	98.199	130.918	163.636	196.355	229.074	245.433	261.793	278.152	294.511	310.871	327.230
11	В	3/2	80.1	7.77E+02	1.65E-01	96.294	128.378	160.462	192.546	224.630	240.672	256.714	272.755	288.797	304.839	320.881
125	Te	1/2	7.07	1.34E+01	3.22E-02	94.690	126.240	157.790	189.340	220.889	236.664	252.439	268.214	283.989	299.764	315.539
141	Pr	5/2	100.0	1.97E+03	3.35E-01	91.89	122.51	153.12	183.74	214.36	229.67	244.97	260.28	275.59	290.90	306.21
71	Ga	3/2	39.892	3.35E+02	1.43E-01	91.530	122.026	152.523	183.020	213.517	228.765	244.013	259.262	274.510	289.758	305.007
65	Cu	3/2	30.85	2.08E+02	1.15E-01	85.248	113.652	142.055	170.459	198.863	213.065	227.266	241.468	255.670	269.872	284.074
129	Xe	1/2	26.4006	3.35E+01	2.16E-02	83.467	111.277	139.087	166.897	194.707	208.613	222.518	236.423	250.328	264.233	278.138
81	Br	3/2	49.31	2.88E+02	9.95E-02	81.055	108.061	135.068	162.074	189.081	202.584	216.087	229.591	243.094	256.597	270.100
63	Cu	3/2	69.15	3.82E+02	9.39E-02	79.581	106.096	132.612	159.127	185.643	198.901	212.158	225.416		251.931	265.189
23	Na	3/2	100.0	5.45E+02	9.27E-02	79.390	105.842	132.294	158.746	185.198	198.424	211.650	224.876		251.327	264.553
51	>	7/2	99.750	2.25E+03	3.84E-01	78.943	105.246	131.549	157.852	184.155	197.306	210.458	223.609		249.912	263.064
123	Te	1/2	0.89	9.61E-01	1.84E-02	78.543	104.713	130.883	157.052	183.222	196.307	209.392	222.477	235.562	248.647	261.731
27	AI	5/2	100.0	1.22E+03	2.07E-01	78.204	104.261	130.318	156.375	182.432	195.460	208.489	221.517	234.546	247.574	260.602
13	О	1/2	1.07	1.00E+00	1.59E-02	75.468	100.613	125.758	150.903	176.048	188.620	201.193	213.765	226.338	238.910	251.483
79	Br	3/2	69.09	2.37E+02	7.94E-02	75.195	100.248	125.302	150.356	175.410	187.937	200.464	212.991	225.518	238.045	250.572
151	Eu	5/2	47.81	5.04E+02	1.79E-01	74.62	99.48	124.34	149.20	174.06	186.49	198.92	211.35	223.78	236.22	248.65
22	M	2/5	100.0	1.05E+03	1.79E-01	74.400	99.189	123.978	148.768	173.557	185.951	198.346	210.741	223.135	235.530	247.924
93	Nb	9/2	100.0	2.87E+03	4.88E-01	73.460	97.936	122.413	146.889	171.365	183.603	195.841	208.079	220.317	232.555	244.794
209	Ьо	1/2		1	1.44E-02	73.08	97.42	121.77	146.12	170.47	182.64	194.81	206.99	219.16	231.34	243.51
45	သိ	7/2	100.0	1.78E+03	3.02E-01	72.907	97.199	121.490	145.782	170.074	182.220	194.366	206.511	218.657	230.803	242.949
159	1	3/2	100.0	4.08E+02	6.94E-02	72.14	96.18	120.22	144.26	168.29	180.31	192.33	204.35	216.37	228.39	240.41
69	Ga	3/2	60.108	2.46E+02	6.97E-02	72.035	96.037	120.038	144.039	168.041	180.041	192.042	204.043	216.043	228.044	240.045
231	Pa	3/2	100.0	4.06E+02	6.90E-02	72.00	95.99	119.98	143.97	167.96	179.96	191.95	203.94	215.94	227.93	239.93
121	Sb	2/5	57.21	5.48E+02	1.63E-01	71.823	95.753	119.684	143.615	167.545	179.510	191.476	203.441	215.406	227.372	239.337
29	ပိ	7/2	100.0	1.64E+03	2.78E-01	71.212	94.939	118.666	142.393	166.120	177.984	189.847	201.711	_	225.438	237.302
187	Re	2/5	62.60	5.26E+02	1.43E-01	68.284	91.036	113.788	136.539	159.291	170.667	182.042	193.418		216.170	227.546
185	Re	2/5	37.40	3.05E+02	1.39E-01	67.603	90.128	112.652	135.177	157.701	168.964	180.226	191.488	202.751	214.013	225.275
66	Tc	9/2		1	3.82E-01	67.554	90.063	112.571	135.079	157.588	168.842	180.096	191.350	202.604	213.858	225.113
113	g	1/2	12.22	7.94E+00	1.11E-02	809.99	88.802	110.995	133.188	155.381	166.478	177.574	188.671	199.767	210.864	221.961
115	ے	9/2	95.71	1.99E+03	3.53E-01	65.766	87.679	109.592	131.504	153.417	164.373	175.330	186.286	197.242	208.198	219.155

NMR Frequencies vs. Bruker Field Strengths – sorted with decreasing Larmor frequency

900		: :	**************************************	Door this is the	4			Larmo	r Frequen	cies (MHz	Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla)	er Field St	rengths (Tesla)		
onei		<u></u>	Abund.	ndecebu	<u></u>	Freq. to	3 decimals	are experi	mental for	IUPAC St	andards; fr	eq. to 2 de	c. are calc	Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	n magn. m	oments
			(%)	Natural rel. ¹3C	Molar rel. ¹H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
113	ء	9/2	4.29	8.85E+01	3.51E-01	65.626	87.491	109.357	131.223	153.089	164.022	174.954	185.887	196.820	207.753	218.686
195	ᆂ	1/2	33.832	2.07E+01	1.04E-02	64.518	86.015	107.512	129.009	150.505	161.254	172.002	182.751	193.499	204.247	214.996
111	PO	1/2	12.80	7.27E+00	9.66E-03	63.674	84.890	106.105	127.320	148.536	159.144	169.751	180.359	190.967	201.575	212.182
165	유	7/2	100.0	1.16E+03	1.98E-01	63.43	84.57	105.71	126.84	147.98	158.54	169.11	179.68	190.25	200.82	211.38
	Pb	1/2	22.1	1.18E+01	9.06E-03	62.789	83.710	104.630	125.551	146.471	156.932	167.392	177.852	188.313	198.773	209.233
127		5/2	100.0	5.60E+02	9.54E-02	60.048	80.056	100.063	120.071	140.078	150.082	160.086	170.090	180.093	190.097	200.101
29	Si	1/2	4.685	2.16E+00	7.86E-03	59.627	79.495	39.362	119.229	139.096	149.030	158.963	168.897	178.831	188.764	198.698
11	Se	1/2	7.63	3.15E+00	7.03E-03	57.239	76.311	95.382	114.454	133.525	143.061	152.597	162.133	171.668	181.204	190.740
199 I	Hg	1/2	16.87	2.89E+00	5.94E-03	53.756	71.667	89.577	107.488	125.399	134.354	143.310	152.265	161.221	170.176	179.132
	Yb	1/2	14.28	4.63E+00	5.52E-03	52.521	70.020	87.519	105.019	122.518	131.268	140.017	148.767	157.517	166.266	175.016
75 /	As	3/2	100.0	1.49E+02	2.54E-02	51.390	68.513	85.635	102.758	119.881	128.442	137.003	145.564	154.126	162.687	171.248
209 I	Bi	9/2	100.0	8.48E+02	1.44E-01	48.229	64.298	80.367	96.437	112.506	120.541	128.575	136.610	144.644	152.679	160.714
2	_	_	0.0115	6.52E-03	9.65E-03	46.072	61.422	76.773	92.124	107.474	115.150	122.825	130.500	138.175	145.851	153.526
9	_	1	7.59	3.79E+00	8.50E-03	44.167	58.883	73.600	88.316	103.032	110.390	117.748	125.106	132.464	139.822	147.180
139	La	7/2	99.910	3.56E+02	6.06E-02	42.395	56.521	70.647	84.772	98.898	105.961	113.023	120.086	127.149	134.212	141.275
6	Be	3/2	100.0	8.15E+01	1.39E-02	42.174	56.226	70.277	84.329	98.381	105.407	112.433	119.459	126.485	133.510	140.536
17	0	5/2	0.038	6.50E-02	2.91E-02	40.687	54.243	67.800	81.356	94.913	101.691	108.469	115.248	122.026	128.804	135.582
138	La	2	060'0	4.97E-01	9.40E-02	39.600	52.794	62.989	79.183	92.377	98.974	105.572	112.169	118.766	125.363	131.960
133 (Cs	7/2	100.0	2.84E+02	4.84E-02	39.365	52.482	65.598	78.714	91.830	98.388	104.946	111.504	118.062	124.620	131.178
	Sb	7/2	42.79	1.17E+02	4.66E-02	38.894	51.854	64.813	77.772	90.731	97.211	103.691	110.170	116.650	123.129	129.609
181	Ta	7/2	886.66	2.20E+02	3.74E-02	35.984	47.974	59.964	71.953	83.943	89.938	95.932	101.927	107.922	113.917	119.912
	Γn	7/2	97.41	1.79E+02	3.13E-02	34.27	45.69	57.11	68.53	79.94	85.65	91.36	97.07	102.78	108.49	114.20
\dashv	Ba	3/2	11.232	4.62E+00	7.00E-03	33.353	44.466	55.579	66.692	77.805	83.361	88.918	94.474	100.031	105.587	111.144
-	圆	2/5	52.19	4.73E+01	1.54E-02	32.94	43.91	54.88	65.86	76.83	82.32	87.80	93.29	98.78	104.26	109.75
_	<u> </u>	က	19.9	2.32E+01	1.99E-02	32.245	42.989	53.732	64.476	75.220	80.591	85.963	91.335	26.707	102.079	107.451
15		1/2	0.364	2.23E-02	1.04E-03	30.423	40.560	20.697	60.834	70.971	76.039	81.107	86.176	91.244	96.312	101.381
-		9	0.250	8.18E-01	5.57E-02	29.924	39.894	49.865	59.835	69.805	74.790	79.775	84.761	89.746	94.731	99.716
-	g .	3/2	6.592	1.94E+00	5.01E-03	29.816	39.751	49.685	59.620	69.554	74.521	79.489	84.456	89.423	94.390	99.357
32	3 2	3/2	75.76	2.10E+01	4./2E-03	29.406	39.204	49.002	58.800	68.598	/3.49/	73.396	83.295	88.194	93.093	97.992
+	윤	2/5	11.27	4.50E+01	1.06E-02	78.87/	38.632	48.28/	57.942	67.597	72.425	74.252	82.080	706.98	91./35	96.562
6 6	7 2	2/0	1 1 200	0.205+00	9.495-03	108.72	27.13/	40.494	00.730	00.000	67.00	71 500	75.050	90.00	00.327	076.28
+	2 4	3/2	1000	2.205-01	5.095-03	20.020	22.730	44.032	02.020	67.004	62.03	7 1.300	70.300	00.430	4.304	03.572
+		2/1	71 2224	3.32E+00	2.00E-04	24.02	22.00	11 22/	49.04	57.710	61 0/0	00.10 65.062	70.02	24.47	70.039	02.72
+	2 5	2/0	47.02.12 74.04	3.312+00	2.0222	24.742	22.300	40.700	10.01	57 101	01.040	00.302 65.356	0.004	72 /17	77 400	07.430
1.	5 .:	2/5	7 50	3.00E+00	2.725-03	24.4/0	22.034	40.703	70.04	56.74	01.1/9	007.200	90.00	70.05	0.430	01.300
+	3 2	/ 0/0	2.39	0.03E+00	23965-02	24.33	24.43	20.05	40.04	55.70	50.00	04.00 60 16E	67 112	71.050	75.00	70.00
+	2 G	2/0	16.15	3.31 E-02	2.405-03	20.030	01.00/	204.60	0/0.74	00.270	120.05	00.100	07.112	60.17	70.000	77.664
+	5 0	3/2	10.13	2.32E+00	2.44E-03	23.300	31.072	38.83/	40.002	24.308	107.20	02.133	00.010	09.839	70.78	47.004
33	n≥	3/2	0.75	1.00E-01	2.2/E-U3	23.038	30.714	38.390	46.060	53./42	080.70	01.418	02.200	65.034	72.932	0//.0/
± 5	2	_ [39.030	5.30E+00	1.0 15 0	21.000	20.913	30.141	45.50/	20.034	24.207	07.020	01.433	05.040	00.00	12.273
43	<u> </u>	7//	U.135	5. IUE-UZ	6.43E-U3	20.139	1 676.07	33.659	40.389	4/.119	20.484	53.849	5/.214	6/0.09	03.344	67.308

NMR Frequencies vs. Bruker Field Strengths – sorted with decreasing Larmor frequency

1	.!	Y-IV		-			Larmo	r Frequen	cies (MHz) vs. Bruk	er Field St	Larmor Frequencies (MHz) vs. Bruker Field Strengths (Tesla)	Tesla)		
edonosi		Nat. Abund.	neceptivity	ń II ń	Freq. to	Freq. to 3 decimals are experimental for IUPAC Standards; freq. to 2 dec. are calculated from magn. moments	are experii	mental for	IUPAC Sta	andards; fr	eq. to 2 de	c. are calc	ulated fron	magn. m	oments
		(%)	Natural rel. ¹3C	Molar rel. ¹H	7.04925	9.39798	11.7467	14.0954	16.4442	17.6185	18.7929	19.9673	21.1416	22.3160	23.4904
97 Mo	5/2	9.56	1.96E+00	3.49E-03	19.970	26.623	33.277	39.931	46.585	49.911	53.238	56.565	59.892	63.219	66.546
201 Hg	3/2	13.18	1.16E+00	1.49E-03	19.843	26.455	33.067	39.678	46.290	49.595	52.901	56.207	59.513	62.819	66.124
	5/2	15.90	3.06E+00	3.27E-03	19.559	26.076	32.593	39.110	45.627	48.885	52.144	55.402	58.661	61.919	65.178
	5/2	4.102	6.92E-01	2.87E-03	18.779	25.035	31.292	37.549	43.806	46.934	50.063	53.191	56.319	59.448	62.576
25 Mg	5/2	10.00	1.58E+00	2.68E-03	18.373	24.494	30.616	36.738	42.859	45.920	48.981	52.042	55.103	58.163	61.224
	3/2	9.501	5.07E-01	9.08E-04	16.965	22.617	28.270	33.922	39.575	42.401	45.227	48.054	50.880	53.706	56.532
	7/2	5.41	1.20E+00	3.78E-03	16.924	22.563	28.203	33.842	39.481	42.300	45.120	47.939	50.759	53.578	56.398
	5/2	7.44	9.18E-01	2.10E-03	16.920	22.557	28.195	33.833	39.470	42.289	45.108	47.926	50.745	53.564	56.383
	7/2	12.2	2.43E+00	3.39E-03	16.35	21.80	27.25	32.69	38.14	40.86	43.59	46.31	49.04	51.76	54.48
101 Ru	5/2	17.06	1.58E+00	1.57E-03	15.491	20.652	25.814	30.975	36.136	38.717	41.298	43.878	46.459	49.040	51.620
Α 68	1/2	100.0	7.00E-01	1.19E-04	14.707	19.607	24.507	29.408	34.308	36.758	39.208	41.658	44.108	46.558	49.008
173 Yb	5/2	16.13	1.28E+00	1.35E-03	14.61	19.48	24.35	29.22	34.09	36.52	38.96	41.39	43.83	46.26	48.69
163 Dy	2/5	24.896	1.91E+00	1.31E-03	14.46	19.28	24.10	28.92	33.74	36.15	38.56	40.97	43.38	45.79	48.20
	3/2	93.258	2.79E+00	5.10E-04	14.005	18.672	23.338	28.004	32.671	35.004	37.337	39.670	42.003	44.337	46.670
\vdash	1/2	48.161	2.90E-01	1.02E-04	13.967	18.620	23.274	27.927	32.581	34.908	37.234	39.561	41.888	44.215	46.541
_	5/2	12.76	8.46E-01	1.13E-03	13.821	18.427	23.032	27.637	32.242	34.545	36.847	39.150	41.452	43.755	46.057
105 Pd	5/2	22.33	1.49E+00	1.13E-03	13.734	18.310	22.886	27.463	32.039	34.327	36.615	38.903	41.191	43.479	45.767
	9/2	7.00	1.12E+00	2.72E-03	13.007	17.341	21.675	26.009	30.342	32.509	34.676	36.843	39.010	41.177	43.344
	7/2	14.99	1.34E+00	1.52E-03	12.51	16.68	20.84	25.01	29.18	31.26	33.35	35.43	37.52	39.60	41.68
	1/2	14.31	6.31E-02	7.50E-05	12.505	16.671	20.837	25.004	29.170	31.253	33.337	35.420	37.503	39.586	41.669
	7/2	18.60	1.53E+00	1.40E-03	12.18	16.24	20.30	24.36	28.42	30.45	32.48	34.51	36.53	38.56	40.59
Н	1/2	51.839	2.05E-01	6.74E-05	12.149	16.197	20.244	24.292	28.340	30.364	32.388	34.412	36.436	38.460	40.483
	3/2	15.65	3.00E-01	3.26E-04	12.08	16.11	20.13	24.16	28.19	30.20	32.21	34.22	36.24	38.25	40.26
	9/2	11.500	1.28E+00	1.90E-03	11.548	15.395	19.243	23.091	26.938	28.862	30.786	32.710	34.633	36.557	38.481
	9/2	7.76	6.44E-01	1.41E-03	10.469	13.958	17.446	20.934	24.423	26.167	27.911	29.622	31.399	33.144	34.888
	5/2	18.889	5.26E-01	4.74E-04	10.32	13.75	17.19	20.63	24.07	25.78	27.50	29.22	30.94	32.66	34.38
149 Sm	7/2	13.82	6.92E-01	8.52E-04	10.31	13.75	17.18	20.62	24.06	25.77	27.49	29.21	30.93	32.64	34.36
	7/2	8.3	3.87E-01	7.93E-04	10.07	13.43	16.78	20.14	23.49	25.17	26.85	28.53	30.20	31.88	33.56
-	1/2	2.119	4.25E-03	3.42E-05	9.718	12.955	16.193	19.431	22.669	24.288	25.906	27.525	29.144	30.763	32.382
103 Rh	1/2	100.0	1.86E-01	3.17E-05	9.563	12.750	15.936	19.123	22.309	23.902	25.496	27.089	28.682	30.275	31.869
155 Gd	3/2	14.80	1.26E-01	1.45E-04	9.21	12.28	15.35	18.42	21.49	23.03	24.56	26.10	27.63	29.17	30.70
	7/2	22.869	6.77E-01	5.04E-04	99.8	11.54	14.42	17.31	20.19	21.63	23.08	24.52	25.96	27.40	28.85
-	3/2	6.730	3.34E-02	8.44E-05	7.687	10.249	12.810	15.371	17.932	19.213	20.494	21.774	23.055	24.336	25.616
	9/2	13.62	4.38E-01	5.47E-04	7.65	10.20	12.75	15.30	17.85	19.13	20.40	21.68	22.95	24.23	25.50
187 Os	1/2	1.96	1.43E-03	1.24E-05	6.850	9.132	11.415	13.697	15.979	17.120	18.262	19.403	20.544	21.685	22.826
193 lr	3/2	62.7	1.37E-01	3.73E-05	5.86	7.82	9.77	11.73	13.68	14.66	15.63	16.61	17.59	18.56	19.54
235 U	7/2	0.7204	6.53E-03	1.54E-04	5.527	7.368	9.209	11.051	12.892	13.813	14.734	15.654	16.575	17.496	18.416
-	3/2	37.3	6.38E-02	2.91E-05	5.40	7.20	9.00	10.79	12.59	13.49	14.39	15.29	16.19	17.09	17.99
197 Au	3/2	100.0	1.62E-01	2.76E-05	5.31	7.08	8.84	10.61	12.38	13.26	14.15	15.03	15.92	16.80	17.69
					1										

Z = proton number, **A** = mass number, **Half-Life** where appropriate in years (y), days (d), hours (h), minutes (m); *I* = spin quantum number; **NA** = natural abundance (IUPAC 2003); μ_z = z-component of nuclear magnetic moment in units of the nuclear magneton (μ_N) ; \mathbf{Q} = electric quadrupole moment in units of fm² = 10^{-30} m² (1 fm² = 0.01 barns); calc. magnetogyric ratio $\gamma = \mu_z/\hbar$ l. Note: for μ_z and $\mathbf{0}$ the experimental uncertainty begins with the last significant digit.

			Isotope (half-life)	Spin	Nat. Abund. 2003	Rel. Nucl. Magn. Mom.	Quadrupole Moment	Magnetogyric Ratio
		C	B1	,	(TICE 2001)	(measured)	0.142.1	(calc., free atom)
<u>Z</u>	A	Sym	Name	1/0	NA (%)	μ _z / μ _N	Q [fm ²]	γ [10 ⁷ rad s ⁻¹ T̄ ¹]
<u>0</u>	1	n H	Neutron	1/2	00.0005	-1.9130427 2.79284734		-18.3247183 26.7522208
- 1	2	H (D)	Hydrogen	1/2	99.9885		0.286	
			Deuterium	1/2	0.0115	0.857438228 2.97896244	0.280	4.10662919
2	3	H (T)	Tritium (12.32 y)		0.000104			28.5349865
	3 6	He Li	Helium Lithium	1/2	0.000134 7.59	-2.12749772	-0.0808	-20.3789473
3	7	Li	Lithium		92.41	0.8220473	-0.0808 -4.01	3.937127
				3/2		3.2564625		10.397704
4	9	Ве	Beryllium	3/2	100	-1.17749	5.288	-3.75966
5	10	В	Boron	3	19.9	1.80064478	8.459	2.87467955
	11	В	Boron	3/2	80.1	2.688649	4.059	8.584707
6	13	С	Carbon	1/2	1.07	0.702412		6.728286
7	14	N	Nitrogen	1	99.636	0.40376100	2.044	1.9337798
	15	N	Nitrogen	1/2	0.364	-0.28318884		-2.7126189
8	17	0	Oxygen	5/2	0.038	-1.89379	-2.558	-3.62806
9	19	F	Fluorine	1/2	100	2.626868		25.16233
10	21	Ne	Neon	3/2	0.27	-0.661797	10.155	-2.113081
11	23	Na	Sodium (Natrium)	3/2	100	2.2176556	10.4	7.0808516
12	25	Mg	Magnesium	5/2	10.00	-0.85545	19.94	-1.63884
13	26	Al	Alumin(i)um (7.17E5 y)	5		2.804	27	2.686
13	27	Al	Alumin(i)um	5/2	100	3.6415069	14.66	6.9762780
14	29	Si	Silicon	1/2	4.685	-0.55529		-5.31903
15	31	Р	Phosphorus	1/2	100	1.13160		10.8394
16	33	S	Sulfur	3/2	0.75	0.643821	-6.78	2.055685
17	35	CI	Chlorine	3/2	75.76	0.8218743	-8.165	2.6241991
	37	CI	Chlorine	3/2	24.24	0.6841236	-6.435	2.1843688
18	39	Ar	Argon (269 y)	7/2		-1.59		-2.17
19	39	K	Potassium (Kalium)	3/2	93.258	0.3915073	5.85	1.2500612
	40	K	Potassium (1.248E9 y)	4	0.0117	-1.298100	-7.3	-1.554286
	41	K	Potassium	3/2	6.730	0.21489274	7.11	0.68614062
20	41	Ca	Calcium (1.02E5 y)	7/2		-1.594781	-6.7	-2.182306
	43	Ca	Calcium	7/2	0.135	-1.317643	-4.08	-1.803069
21	45	Sc	Scandium	7/2	100	4.756487	-22.0	6.508800
22	47	Ti	Titanium	5/2	7.44	-0.78848	30.2	-1.51054
	49	Ti	Titanium	7/2	5.41	-1.10417	24.7	-1.51095
23	50	V	Vanadium (1.4E17 y)	6	0.250	3.345689	21	2.670650
	51	V	Vanadium	7/2	99.750	5.1487057	-5.2	7.0455139
24	53	Cr	Chromium	3/2	9.501	-0.47454	-15	-1.51518
25	53	Mn	Manganese (3.74E6 y)	7/2		5.024		6.875
	55	Mn	Manganese	5/2	100	3.46871790	33	6.64525453
26	57	Fe	Iron, Ferrum	1/2	2.119	0.09062300		0.8680627
	59	Fe	Iron (44.507 d)	3/2		-0.3358		-1.0722
27	59	Со	Cobalt	7/2	100	4.627	42 s	6.332
	60	Со	Cobalt (1925.2 d)	5		3.799	44	3.639
28 29	61 63	Ni Cu	Nickel Copper, Cuprum	3/2 3/2	1.1399 69.15	-0.75002 2.227346	16.2 -22.0	-2.39477 7.111791
23	65	Cu	Copper, Cuprum	3/2	30.85	2.3816	-22.0	7.6043
30	67	Zn	Zinc	5/2	4.102	0.8752049	-20.4 15.0	7.6043 1.6766885
31	69	Ga	Gallium	3/2	60.108	2.01659	17.1	6.43886
00	71	Ga	Gallium	3/2	39.892	2.56227	10.7	8.18117
32	73	Ge	Germanium	9/2	7.76	-0.8794677	-19.6	-0.9360306
33	75	As	Arsenic	3/2	100	1.43947	31.4	4.59615
34	77	Se	Selenium	1/2	7.63	0.5350743		5.125388

Theor. NMR freq. v_0 calc. from γ and scaled to 1H = 100.0 MHz; Molar Receptivity $\mathbf{R_M}(\mathbf{H})$ relative to equal number of protons is proportional to γ^3 / (/+1); Receptivity at nat. abundance $\mathbf{R_{NA}}(\mathbf{C})$ relative to $^{13}\mathrm{C}$; recommended Reference sample (IUPAC 2001); experimental reson. freq. of ref. sample on the unified Ξ scale (at B_0 where TMS (1H) = 100.0 MHz).

Numbers containing E are in exponential format.

		Theoretical NMR Freq.	Molar Receptivity	Receptivity at Nat. Abund.	Reference Sample	Measured. NMR Freq.
		(free atom)	(rel. ¹ H)	(rel. ¹³ C)		(rel. ¹ H ref.)
Α	Sym	v _o [MHz]	R _M (H)	R _{NA} (C)	Reference	Ξ [MHz]
1	n	68.4979	3.21E-01			
1	Н	100.0000	1.00E+00	5.87E+03	1% Me₄Si in CDCl₃	100.000000
2	D	15.3506	9.65E-03	6.52E-03	(CD ₃) ₄ Si neat	15.350609
3	Т	106.6640	1.21E+00		TMS-T ₁	106.663974
3	Не	76.1767	4.42E-01	3.48E-03	He gas	76.178976
6	Li	14.7170	8.50E-03	3.79E+00	9.7 m LiCl in D ₂ O	14.716086
7	Li	38.8667	2.94E-01	1.59E+03	9.7 m LiCl in D ₂ O	38.863797
9	Be	14.0536	1.39E-02	8.15E+01	0.43 m BeSO ₄ in D ₂ O	14.051813
10	В	10.7456	1.99E-02	2.32E+01	15% BF ₃ .Et ₂ O in CDCl ₃	10.743658
11	В	32.0897	1.65E-01	7.77E+02	15% BF ₃ .Et ₂ O in CDCl ₃	32.083974
13	C	25.1504	1.59E-02	1.00E+00	1% Me ₄ Si in CDCl ₃	25.145020
13		25.1504	1.55L-02	1.00LT00	DSS in D ₂ O	25.144953
14	N	7.2285	1.01E-03	5.90E+00	MeNO ₂ + 10% CDCl ₃	7.226317
15	N	10.1398	1.04E-03	2.23E-02	MeNO ₂ + 10% CDCl ₃	10.136767
17		10 5017	0.015.00	0.505.00	liquid NH₃	10.132767
17	0	13.5617	2.91E-02	6.50E-02	D ₂ O	13.556457
19	F	94.0570	8.32E-01	4.89E+03	CCl₃F	94.094011
21	Ne	7.8987	2.46E-03	3.91E-02	Neon gas, 1.1 MPa	7.894296
23	Na	26.4683	9.27E-02	5.45E+02	0.1 M NaCl in D₂O	26.451900
25	Mg	6.1260	2.68E-03	1.58E+00	11 M MgCl ₂ in D ₂ O	6.121635
26	Al	10.0399	4.05E-02			
27	Al	26.0774	2.07E-01	1.22E+03	1.1 m Al(NO ₃) ₃ in D ₂ O	26.056859
29	Si	19.8826	7.86E-03	2.16E+00	1% Me₄Si in CDCl₃	19.867187
31	Р	40.5178	6.65E-02	3.91E+02	H ₃ PO ₄ external	40.480742
					(MeO) ₃ PO internal	40.480864
33	S	7.6842	2.27E-03	1.00E-01	(NH ₄) ₂ SO ₄ in D ₂ O (sat.)	7.676000
35	CI	9.8093	4.72E-03	2.10E+01	0.1 M NaCl in D ₂ O	9.797909
37	CI	8.1652	2.72E-03	3.88E+00	0.1 M NaCl in D ₂ O	8.155725
39	Ar	8.1228	1.13E-02	0.002.00	511 111 112 51 111 22	
39	K	4.6727	5.10E-04	2.79E+00	0.1 M KCl in D ₂ O	4.666373
40	K	5.8099	5.23E-03	3.59E-03	0.1 M KCl in D ₂ O	5.802018
41	K	2.5648	8.44E-05	3.34E-02	0.1 M KCl in D ₂ O	2.561305
41	Ca	8.1575	1.14E-02	3.54L-02	0.1 W KCI III D2O	2.301303
43	Ca	6.7399	6.43E-03	5.10E-02	0.1 M CaCl ₂ in D ₂ O	6.730029
45	Sc	24.3299	3.02E-01	1.78E+03	0.06 M Sc(NO ₃) ₃ in D ₂ O	24.291747
47	Ti	5.6464	2.10E-03	9.18E-01	TiCl ₄ neat + 10% C ₆ D ₁₂	5.637534
49	Ti	5.6479	3.78E-03	1.20E+00	TiCl ₄ neat + 10% C ₆ D ₁₂	5.639037
50	V	9.9829	5.57E-02	8.18E-01	VOCl ₃ + 5% C ₆ D ₆	9.970309
51	V	26.3362	3.84E-01	2.25E+03	VOCl ₃ + 5% C ₆ D ₆	26.302948
53	Cr	5.6638	9.08E-04	5.07E-01	K ₂ CrO ₄ in D ₂ O (sat.)	5.652496
53	Mn	25.6983	3.56E-01			
55	Mn	24.8400	1.79E-01	1.05E+03	0.82 m KMnO₄ in D₂O	24.789218
57	Fe	3.2448	3.42E-05	4.25E-03	Fe(CO) ₅ + 20% C ₆ D ₆	3.237778
59	Fe	4.0079	3.22E-04			
59	Со	23.6676	2.78E-01	1.64E+03	0.56 m K ₃ [Co(CN) ₆] in D ₂ O	23.727074
60	Со	13.6026	1.01E-01			
61	Ni	8.9517	3.59E-03	2.40E-01	Ni(CO) ₄ + 5% C ₆ D ₆	8.936051
63	Cu	26.5839	9.39E-02	3.82E+02	[Cu(CH ₃ CN) ₄ [ClO ₄] in CH ₃ CN (sat.) + 5% C ₆ D ₆	26.515473
65	Cu	28.4250	1.15E-01	2.08E+02	[Cu(CH ₃ CN) ₄ [ClO ₄] in CH ₃ CN (sat.) + 5% C ₆ D ₆	28.403693
67	Zn	6.2675	2.87E-03	6.92E-01	$Zn(NO_3)_3$ in D_2O (sat.)	6.256803
69	Ga	24.0685	6.97E-02	2.46E+02	1.1 m Ga(NO ₃) ₃ in D ₂ O	24.001354
71	Ga	30.5813	1.43E-01	3.35E+02	1.1 m Ga(NO ₃) ₃ in D ₂ O	30.496704
73	Ge	3.4989	1.43E=01 1.41E=03	6.44E-01	$Me_4Ge + 5\% C_6D_6$	3.488315
75	As	17.1804	2.54E-02	1.49E+02	0.5 M NaAsF ₆ in CD ₃ CN	17.122614
11-	LAS	17.1804	7.03E-03	3.15E+02	0.5 W NaASF ₆ In CD ₃ CN Me₂Se + 5% C ₆ D ₆	17.122614

Z	Α	Sym	Name	1	NA (%)	μ _z / μ _N	Q [fm ²]	γ [10 ⁷ rad s ⁻¹ T ⁻¹]
	79		1100000		147 (70)			<u>'</u>
٥٢	_	Se	Selenium (2.95E5 y)	7/2	F0.00	-1.018	80	-1.393
35	79	Br	Bromine	3/2	50.69	2.106400	30.5	6.725619
	81	Br	Bromine	3/2	49.31	2.270562	25.4	7.249779
36	83	Kr	Krypton	9/2	11.500	-0.970669	25.9	-1.033097
37	85	Rb	Rubidium	5/2	72.17	1.3533515	27.6	2.5927059
	87	Rb	Rubidium (4.81E10 y)	3/2	27.83	2.751818	13.35	8.786403
38	87	Sr	Strontium	9/2	7.00	-1.093603	33.5	-1.163938
39	89	Υ	Yttrium	1/2	100	-0.1374154		-1.316279
40	91	Zr	Zirconium	5/2	11.22	-1.30362	-17.6	-2.49743
41	93	Nb	Niobium	9/2	100	6.1705	-32	6.5674
42	95	Мо	Molybdenum	5/2	15.9	-0.9142	-2.2	-1.7514
	97	Мо	Molybdenum	5/2	9.56	-0.9335	25.5	-1.7884
	99	Мо	Molybdenum (65.924 h)	1/2		0.375		3.59
43	99	Тс	Technetium (2.1E5 y)	9/2		5.6847	-12.9	6.0503
44	99	Ru	Ruthenium	5/2	12.76	-0.641	7.9	-1.228
	101	Ru	Ruthenium	5/2	17.06	-0.716	45.7	-1.372
45	103	Rh	Rhodium	1/2	100	-0.08840		-0.84677
46	105	Pd	Palladium	5/2	22.33	-0.642	66	-1.230
47	107	Ag	Silver, Argentum	1/2	51.839	-0.1136797		-1.088918
.,	109	Ag	Silver	1/2	48.161	-0.13069		-1.2519
48	111	Cd	Cadmium	1/2	12.80	-0.5948861		-5.698315
70	113	Cd	Cadmium (7.7E15 y)	1/2	12.22	-0.6223009		-5.960917
49	113	In	Indium	9/2	4.29	5.5289	79.9	5.8845
43	115	In	Indium (4.41E14 y)	9/2	95.71	5.5289	81	5.8972
EΟ			Tin				81	
50	115	Sn		1/2	0.34	-0.91883		-8.8013
	117	Sn	Tin	1/2	7.68	-1.00104		-9.58880
	119	Sn	Tin (Stannum)	1/2	8.59	-1.04728		-10.0317
51	121	Sb	Antimony (Stibium)	5/2	57.21	3.3634	-36	6.4435
	123	Sb	Antimony	7/2	42.79	2.5498	-49	3.4892
	125	Sb	Antimony (2.7586 y)	7/2		2.63		3.60
52	123	Те	Tellurium (9.2E16 y)	1/2	0.89	-0.7369478		-7.059101
	125	Te	Tellurium	1/2	7.07	-0.8885051		-8.510843
53	127	1	lodine	5/2	100	2.81327	-71	5.38957
	129	1	lodine (1.57E7 y)	7/2		2.6210	-48	3.5866
54	129	Xe	Xenon	1/2	26.4006	-0.777976		-7.45210
	131	Xe	Xenon	3/2	21.2324	0.691862	-11.4	2.209077
55	133	Cs	C(a)esium	7/2	100	2.582025	-0.343	3.533256
56	135	Ва	Barium	3/2	6.592	0.838627	16.0	2.677690
	137	Ва	Barium	3/2	11.232	0.93734	24.5	2.99287
57	137	La	Lanthanum (6E4 y)	7/2		2.695	26	3.688
57	138	La	Lanthanum (1.05E11 y)	5	0.090	3.713646	45	3.557240
- 07	139	La	Lanthanum	7/2	99.910	2.7830455	20	3.808333
58	139	Се	Cerium (137.64 d)	3/2	33.310	1.06	20	3.38
50	141	Ce	Cerium (32.508 d)	7/2		1.09		1.49
59	141	Pr	Praeseodymium	5/2	100	4.2754	-5.89	8.1907
			,		12.2		 	
60	143	Nd	Neodymium	7/2		-1.065	-63	-1.4574
C1	145	Nd	Neodymium	7/2	8.3	-0.656	-33	-0.898
61	145	Pm	Promethium (17.7 y)	5/2	44.00	3.8	21	7.3
62	147	Sm	Samarium (1.06E11 y)	7/2	14.99	-0.8148	-25.9	-1.115
	149	Sm	Samarium	7/2	13.82	-0.6717	7.5	-0.9192
63	151		Europium	5/2	47.81	3.4717	90.3	6.6510
	153	Eu	Europium	5/2	52.19	1.5324	241	2.9357
64	155	Gd	Gadolinium	3/2	14.80	-0.2572	127	-0.8212
	157	Gd	Gadolinium	3/2	15.65	-0.3373	135	-1.0770
65	159	Tb	Terbium	3/2	100	2.014	143.2	6.431
66	161	Dy	Dysprosium	5/2	18.889	-0.480	251	-0.920
	163	Dy	Dysprosium	5/2	24.896	0.673	265	1.289
67	163	Но	Holmium (4570 y)	7/2		4.23	360	5.79
	165	Но	Holmium	7/2	100	4.132	358	5.654
	166	Но	Holmium (1200 y)	7		3.60	-340	2.46
68	167	Er	Erbium	7/2	22.869	-0.5639	357	-0.7716
00	169	Er	Erbium (9.40 d)	1/2	22.003	0.4850	337	4.646
60			Thulium	1/2	100	-0.231		-2.21
69	169	Tm			100			
7.0	171	Tm	Thulium (1.92 y)	1/2	44.00	-0.228		-2.18
70	171	Yb	Ytterbium	1/2	14.28	0.49367	000	4.7288
	173	Yb	Ytterbium	5/2	16.13	-0.67989	280	-1.30251
71	175	Lu	Lutetium	7/2	97.41	2.232	349	3.0547

Α	Sym	v _o [MHz]	R _M (H)	R _{NA} (C)	Reference	Ξ [MHz]
79	Se	5.2072	2.97E-03			
79	Br	25.1404	7.94E-02	2.37E+02	0.01 M NaBr in D₂O	25.053980
81	Br	27.0997	9.95E-02	2.88E+02	0.01 M NaBr in D ₂ O	27.006518
83	Kr	3.8617	1.90E-03	1.28E+00	Kr gas	3.847600
85	Rb	9.6916	1.06E-02	4.50E+01	0.01 M RbCl in D₂O	9.654943
87	Rb	32.8436	1.77E-01	2.90E+02	0.01 M RbCl in D ₂ O	32.720454
87	Sr	4.3508	2.72E-03	1.12E+00	0.5 M SrCl ₂ in D ₂ O	4.333822
89	Υ	4.9203	1.19E-04	7.00E-01	Y(NO ₃) ₃ in H ₂ O/D ₂ O	4.900198
91	Zr	9.3354	9.49E-03	6.26E+00	$Zr(C_5H_5)_2Cl_2$ in CH_2Cl_2 (sat.) + 5% C_6D_6	9.296298
93	Nb	24.5488	4.88E-01	2.87E+03	K[NbCl ₆] in CH ₃ CN / CD ₃ CN (sat.)	24.476170
95	Мо	6.5467	3.27E-03	3.06E+00	2 M Na ₂ MoO ₄ in D ₂ O	6.516926
97	Мо	6.6849	3.49E-03	1.96E+00	2 M Na ₂ MoO ₄ in D ₂ O	6.653695
99	Мо	13.4272	2.42E-03		2 - 4 2	
99	Тс	22.6161	3.82E-01		NH ₄ TcO ₄ in H ₂ O / D ₂ O	22.508326
99	Ru	4.5903	1.13E-03	8.46E-01	0.3 M K ₄ [Ru(CN) ₆] in D ₂ O	4.605151
101	Ru	5.1274	1.57E-03	1.58E+00	0.3 M K ₄ [Ru(CN) ₆] in D ₂ O	5.161369
103	Rh	3.1652	3.17E-05	1.86E-01	Rh(acac) ₃ in CDCl ₃ (sat.)	3.186447
105	Pd	4.5975	1.13E-03	1.49E+00	K_2 PdCl ₆ in D ₂ O (sat.)	4.576100
107	Ag	4.0704	6.74E-05	2.05E-01	AgNO ₃ in D ₂ O (sat.)	4.047819
109	Ag	4.6795	1.02E-04	2.90E-01	AgNO ₃ in D ₂ O (sat.)	4.653533
111	Cd	21.3003	9.66E-03	7.27E+00	Me ₂ Cd neat lig.	21.215480
113	Cd	22.2820	1.11E-02	7.94E+00	Me ₂ Cd neat lig.	22.193175
113	In	21.9963	3.51E-01	8.85E+01	0.1 M In(NO ₃) ₃ in D ₂ O + 0.5 M DNO ₃	21.865755
115	In	22.0436	3.53E-01	1.99E+03	0.1 M In(NO ₃) ₃ in D ₂ O + 0.5 M DNO ₃	21.912629
115	Sn	32.8994	3.56E-02	7.11E-01	Me ₄ Sn + 5% C ₆ D ₆	32.718749
117	Sn	35.8430	4.60E-02	2.08E+01	Me ₄ Sn + 5% C ₆ D ₆	35.632259
119	Sn	37.4986	5.27E-02	2.66E+01	Me ₄ Sn + 5% C ₆ D ₆	37.290632
121	Sb	24.0858	1.63E-01	5.48E+02	KSbCl ₆ in CH ₃ CN / CD ₃ CN (sat.)	23.930577
123	Sb	13.0425	4.66E-02	1.17E+02	KSbCl ₆ in CH ₃ CN / CD ₃ CN (sat.)	12.959217
125	Sb	13.4527	5.11E-02	1.17 L 102	Robell III CH3CI47 CD3CI4 (Sut.)	12.000217
123	Te	26.3870	1.84E-02	9.61E-01	Me ₂ Te + 5% C ₆ D ₆	26.169742
125	Te	31.8136	3.22E-02	1.34E+01	Me ₂ Te + 5% C ₆ D ₆	31.549769
127	1	20.1462	9.54E-02	5.60E+02	0.01 M KI in D ₂ O	20.007486
129	i	13.4067	5.06E-02	3.00L10Z	0.01 W KI III D20	20.007400
129	Xe	27.8560	2.16E-02	3.35E+01	XeOF ₄ neat lig.	27.810186
131	Xe	8.2575	2.82E-03	3.51E+00	XeOF ₄ neat liq.	8.243921
133	Cs	13.2073	4.84E-02	2.84E+02	0.1 M CsNO ₃ in D ₂ O	13.116142
135	Ba	10.0092	5.01E-03	1.94E+00	0.5 M BaCl ₂ in D ₂ O	9.934457
137	Ва	11.1874	7.00E-03	4.62E+00	0.5 M BaCl ₂ in D ₂ O	11.112928
137	La	13.7852	5.50E-02	4.02L100	0.5 W Baci2 W B20	11.112020
138	La	13.2970	9.40E-02	4.97E-01	LaCl ₃ in D ₂ O / H ₂ O	13.194300
139	La	14.2356	6.06E-02	3.56E+02	0.01 M LaCl ₃ in D ₂ O	14.125641
139	Се	12.6514	1.01E-02	0.00L10Z	0.01 W Eddig III D20	14.123041
141	Ce	5.5755	3.64E-03			
141	Pr	30.6168	3.35E-01	1.97E+03		
143	Nd	5.4476	3.39E-03	2.43E+00		
145	Nd	3.3555	7.93E-04	3.87E-01		
145	Pm	27.2124	2.35E-01	J.J/L 01	<u> </u>	
147	Sm	4.1678	1.52E-03	1.34E+00		1
149	Sm	3.4358	8.52E-04	6.92E-01		1
151		24.8614	1.79E-01	5.04E+02		
153		10.9737	1.54E-02	4.73E+01		1
155	Gd	3.0697	1.45E-04	1.26E-01		
157	Gd	4.0258	3.26E-04	3.00E-01		1
159	Tb	24.0376	6.94E-02	4.08E+02		1
161	Dy	3.4374	4.74E-04	5.26E-01		<u> </u>
163	Dy	4.8195	1.31E-03	1.91E+00		1
163	Но	21.6369	2.13E-01			<u> </u>
165	Но	21.1356	1.98E-01	1.16E+03		1
166	Но	9.2072	5.83E-02		(+6 keV excited state)	
167	Er	2.8842	5.04E-04	6.77E-01	(10 KeV Oxorted State)	
169	Er	17.3658	5.04E-04 5.24E-03	0.77L-01		
169	Tm	8.2711	5.66E-04	3.32E+00		
171	Tm	8.1637	5.44E-04	J.JZL+UU		
171	Yb	17.6762	5.44E-04 5.52E-03	4.63E+00	0.171 M Yb(ŋ-C₅Me₅)₂ (THF)₂ in THF	17.499306
173	Yb	4.8688	1.35E-03	1.28E+00	5.17 1 W 15(1] O5(VIO5/2 (1111 /2 III 1111	17.70000
175		11.4185	3.13E-02	1.79E+02		<u> </u>
/ J	LU	11.7100	U. IUL-UZ	1.70LTUZ	1	1

Z	Α	Sym	Name	I	NA (%)	μ_z / μ_N	Q [fm ²]	γ [10 ⁷ rad s ⁻¹ T ⁻¹]
	176	Lu	Lutetium (3.78E10 y)	7	2.59	3.169	497	2.168
72	177	Hf	Hafnium	7/2	18.60	0.7935	337	1.0858
	179	Hf	Hafnium	9/2	13.62	-0.641	379	-0.682
73	179	Та	Tantalum (1.82 y)	7/2		2.289	337	3.132
	180	Та	Tantalum (1.2E15 y)	9	0.012	4.825	495	2.568
	181	Та	Tantalum	7/2	99.988	2.3705	317	3.2438
74	183	W	Tungsten (Wolfram)	1/2	14.31	0.11778476		1.1282407
75	185	Re	Rhenium	5/2	37.40	3.1871	218	6.1057
	187	Re	Rhenium (4.35E10 y)	5/2	62.60	3.2197	207	6.1682
76	187	Os	Osmium	1/2	1.96	0.06465189		0.6192897
	189	Os	Osmium	3/2	16.15	0.659933	85.6	2.107130
77	191	lr	Iridium	3/2	37.3	0.1507	81.6	0.4812
	193	lr	Iridium	3/2	62.7	0.1637	75.1	0.5227
78	195	Pt	Platinum	1/2	33.832	0.60952		5.8385
79	197	Au	Gold, Aurum	3/2	100	0.148158	54.7	0.473060
80	199	Hg	Mercury, Hydrargyrum	1/2	16.87	0.5058855		4.845793
	201	Hq	Mercury	3/2	13.18	-0.560226	38.6	-1.788770
81	203	TI	Thallium	1/2	29.52	1.6222579	00.0	15.539339
	205	TI	Thallium	1/2	70.48	1.6382146		15.692186
82	205	Pb	Lead (1.73E7 y)	5/2	70.10	0.7117	23	1.3635
- 52	207	Pb	Lead (Plumbum)	1/2	22.1	0.58219	20	5.5767
83	209	Bi	Bismuth	9/2	100	4.1103	-51.6	4.3747
84	209	Po	Polonium (102 y)	1/2	100	0.68	01.0	6.51
86	211	Rn	Radon (14.6 h)	1/2		0.601		5.76
87	212	Fr	Francium (19.3 m)	5		4.62	-10	4.43
88	225	Ra	Radium (14.9 d)	1/2		-0.734	10	-7.03
89	227	Ac	Actinium (21.77 y)	3/2		1.1	170	3.5
90	229	Th	Thorium (7.34E3 y)	5/2		0.46	430	0.88
91	231	Pa	Protactinium (3.25E4 y)	3/2	100	2.01	-172	6.42
92	233	U	Uranium (1.592E5 y)	5/2	100	0.59	366.3	1.13
02	235	Ü	Uranium (7.04E8 y)	7/2	0.7204	-0.38	493.6	-0.52
	238	Ū	Uranium (4.468E9 y)	0	99.274	0.00	1390	0.02
93	237	Np	Neptunium (2.14E6 y)	5/2	00.271	3.14	386.6	6.02
94	239	Pu	Plutonium (2.410E4 y)	1/2		0.203	000.0	1.94
	241	Pu	Plutonium (14.4 y)	5/2		-0.68	560	-1.30
95	241	Am	Americium (432.7 y)	5/2		1.58	314	3.03
- 00	243	Am	Americium (7.37E3 y)	5/2		1.50	286	2.87
96	243	Cm	Curium (29.1 y)	5/2		0.41	200	0.79
	245	Cm	Curium (8.48E3 y)	7/2		0.5		0.68
	247	Cm	Curium (1.56E7 y)	9/2		0.37		0.39
97	247	Bk	Berkelium (1.4E2 y)	(3/2)		no data		
	249	Bk	Berkelium (320 d)	7/2		2.0		2.7
98	251	Cf	Californium (9.0E2 y)	1/2		no data		
99	252	Es	Einsteinium (472 d)	(5)		no data		
55	253	Es	Einsteinium (20.47 d)	7/2		4.10	670	5.61
100	253	Fm	Fermium (3.0 d)	(1/2)		no data	J 7,5	0.01
1.00	257	Fm	Fermium (100.5 d)	(9/2)		no data		+
	20,			(0/2/		no data		+
								+
								+
								

This Table (updated Oct. 2009) was assembled and calculated by W.E. Hull using information from the following sources:

De Laeter et al. Pure Appl Chem 75 (2003) 683-800. (isotope abundances)

Harris RK, et al. Pure Appl Chem 73 (2001) 1795-1818 and 80 (2008) 59-84. (shift references) Mills I, et al. Quantities, Units and Symbols in Physical Chemistry (IUPAC recommendations 1993, corrections 1995). Blackwell Scientific (1993, 1995).

Pyykkö P. Spectroscopic nuclear quadrupole moments. Mol. Phys. 99 (2001) 1617-1629.

Α	Sym	ν _o [MHz]	R _M (H)	R _{NA} (C)	Reference	Ξ [MHz]
176	Lu	8.1049	3.98E-02	6.05E+00		
177	Hf	4.0588	1.40E-03	1.53E+00		
179	Hf	2.5502	5.47E-04	4.38E-01		
179	Та	11.7085	3.37E-02			
180	Та	9.5979	1.06E-01	7.48E-02	(+77 keV excited state)	
181	Та	12.1254	3.74E-02	2.20E+02	KTaCl ₆ in CH₃CN (sat.)	11.989600
183	W	4.2174	7.50E-05	6.31E-02	1 M Na ₂ WO ₄ in D ₂ O	4.166387
185	Re	22.8233	1.39E-01	3.05E+02	0.1 M KReO ₄ in D ₂ O	22.524600
187	Re	23.0568	1.43E-01	5.26E+02	0.1 M KReO ₄ in D ₂ O	22.751600
187	Os	2.3149	1.24E-05	1.43E-03	0.98 M OsO ₄ in CCl ₄	2.282331
189	Os	7.8765	2.44E-03	2.32E+00	0.98 M OsO ₄ in CCI ₄	7.765400
191	Ir	1.7986	2.91E-05	6.38E-02	0.00 111 0004 111 0014	7.700.100
193	lr .	1.9538	3.73E-05	1.37E-01		
195	Pt	21.8243	1.04E-02	2.07E+01	1.2 M Na ₂ PtCl ₆ in D ₂ O	21.496784
197	Au	1.7683	2.76E-05	1.62E-01	1.2 111 14421 1316 111 1323	21.100701
	Hg	18.1136	5.94E-03	5.89E+00	Me₂Hg neat liq. (toxic!)	17.910822
201	Hg	6.6864	1.49E-03	1.16E+00	Me ₂ Hg neat liq. (toxic!)	6.611583
203	TI	58.0862	1.96E-01	3.40E+02	TI(NO ₃) ₃	57.123200
205	TI	58.6575	2.02E-01	8.36E+02	TI(NO ₃) ₃	57.683838
205	Pb	5.0966	1.54E-03	0.50L+02	11(1103/3	37.003030
207	Pb	20.8458	9.06E-03	1.18E+01	Me ₄ Pb + 5% C ₆ D ₆	20.920599
209	Bi	16.3525	1.44E-01	8.48E+02	Bi(NO ₃) ₂ sat. in conc. HNO ₃ + 50% D ₂ O	16.069288
209	Ро	24.3479	1.44E-02	0.401+02	DI(NO _{3/2} Sat. III COIIC. 1 INO ₃ + 50 % D ₂ O	10.003200
211	Rn	21.5193	9.97E-03			
212	Fr	16.5423	1.81E-01			
225	Ra	26.2814	1.82E-02			
227	Ac	13.1288	1.02E-02 1.13E-02			
227	Th	3.2941	4.17E-04			
	Pa			4.005.00		
231		23.9899	6.90E-02	4.06E+02		
233 235	U	4.2251	8.80E-04 1.54E-04	6 505 00	HE . 100/ C.D.	1.841400
	U	1.9437	1.54E-04	6.53E-03	UF ₆ + 10% C ₆ D ₆	1.841400
238		00.4000	1 005 01			
237	Np	22.4860	1.33E-01			
239	Pu	7.2686	3.84E-04			
241	Pu	4.8696	1.35E-03			
241	Am	11.3146	1.69E-02			
243	Am	10.7417	1.45E-02			
243	Cm	2.9361	2.95E-04			
245	Cm	2.5576	3.51E-04			
247	Cm	1.4720	1.05E-04			
240	DI	10.2202	2.255.02			
249	Bk	10.2302	2.25E-02			
252	Го	20.0710	1.045.01			
253	⊏S	20.9719	1.94E-01			

Stone NJ. *Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments (2001)* [http://www.nndc.bnl.gov/nndc/stone_moments/nuclear-moments.pdf].

LBNL Isotopes Project Nuclear Data Dissemination Home Page. *Table of Nuclear Moments* [http://ie.lbl.gov/toipdf/mometbl.pdf].

NUDAT 2 half-life data: http://www.nndc.bnl.gov/

Isotopes sorted according to spin and nucleon numbers

		Isotope	Spin			Isotope	Spin			Isotope	Spin
1	Н	Hydrogen	1/2	39	K	Potassium	3/2	173	Yb	Ytterbium	5/2
3	Н	Tritium *	1/2	41	K	Potassium	3/2	185	Re	Rhenium	5/2
3	Не	Helium	1/2	53	Cr	Chromium	3/2	187	Re	Rhenium	5/2
13	С	Carbon	1/2	61	Ni	Nickel	3/2	229	Th	Thorium *	5/2
15	N	Nitrogen	1/2	63	Cu	Copper	3/2	237	Np	Neptunium *	5/2
19	F	Fluorine	1/2	65	Cu	Copper	3/2	241	Am	Americium *	5/2
29	Si	Silicon	1/2	69	Ga	Gallium	3/2	243	Am	Americium *	5/2
31	Р	Phosphorus	1/2	71	Ga	Gallium	3/2	10	В	Boron	3
57	Fe	Iron	1/2	75	As	Arsenic	3/2	39	Ar	Argon *	7/2
77	Se	Selenium	1/2	79	Br	Bromine	3/2	43	Ca	Calcium	7/2
89	Υ	Yttrium	1/2	81	Br	Bromine	3/2	45	Sc	Scandium	7/2
103	Rh	Rhodium	1/2	87	Rb	Rubidium	3/2	49	Ti	Titanium	7/2
107	Ag	Silver	1/2	131	Xe	Xenon	3/2	51	V	Vanadium	7/2
109	Ag	Silver	1/2	135	Ва	Barium	3/2	59	Со	Cobalt	7/2
111	Cd	Cadmium	1/2	137	Ва	Barium	3/2	123	Sb	Antimony	7/2
113	Cd	Cadmium	1/2	139	Се	Cerium *	3/2	133	Cs	C(a)esium	7/2
115	Sn	Tin	1/2	155	Gd	Gadolinium	3/2	139	La	Lanthanum	7/2
117	Sn	Tin	1/2	157	Gd	Gadolinium	3/2	143	Nd	Neodymium	7/2
119	Sn	Tin	1/2	159	Tb	Terbium	3/2	145	Nd	Neodymium	7/2
123	Те	Tellurium	1/2	189	Os	Osmium	3/2	147	Sm	Samarium	7/2
125	Те	Tellurium	1/2	191	lr	Iridium	3/2	149	Sm	Samarium	7/2
129	Xe	Xenon	1/2	193	lr	Iridium	3/2	165	Но	Holmium	7/2
169	Tm	Thulium	1/2	197	Au	Gold	3/2	167	Er	Erbium	7/2
171	Yb	Ytterbium	1/2	201	Hg	Mercury	3/2	175	Lu	Lutetium	7/2
183	W	Tungsten	1/2	227	Ac	Actinium *	3/2	177	Hf	Hafnium	7/2
187	Os	Osmium	1/2	231	Pa	Protactinium *	3/2	181	Та	Tantalum	7/2
195	Pt	Platinum	1/2	17	0	Oxygen	5/2	235	U	Uranium *	7/2
199	Hg	Mercury	1/2	25	Mg	Magnesium	5/2	245	Cm	Curium *	7/2
203	TI	Thallium	1/2	27	ΑI	Alumin(i)um	5/2	249	Bk	Berkelium *	7/2
205	TI	Thallium	1/2	47	Ti	Titanium	5/2	253	Es	Einsteinium *	7/2
207	Pb	Lead	1/2	55	Mn	Manganese	5/2	73	Ge	Germanium	9/2
209	Po	Polonium *	1/2	67	Zn	Zinc	5/2	83	Kr	Krypton	9/2
211	Rn	Radon *	1/2	85	Rb	Rubidium	5/2	87	Sr	Strontium	9/2
225	Ra	Radium *	1/2	91	Zr	Zirconium	5/2	93	Nb	Niobium	9/2
239	Pu	Plutonium *	1/2	95	Мо	Molybdenum	5/2	99	Тс	Technetium *	9/2
251	Cf	Californium *	1/2	97	Мо	Molybdenum	5/2	113	In	Indium	9/2
2	Н	Deuterium	1	99	Ru	Ruthenium	5/2	115		Indium	9/2
6	Li	Lithium	1	101		Ruthenium	5/2	179	Hf	Hafnium	9/2
14		Nitrogen	1	105	Pd	Palladium	5/2	209		Bismuth	9/2
		Lithium	3/2	121	Sb	Antimony	5/2	138		Lanthanum	5
	Ве	Beryllium	3/2	127	1	lodine	5/2	212	Fr	Francium *	5
11	В	Boron	3/2	141	Pr	Praeseodymium	5/2	50	V	Vanadium	6
21	Ne	Neon	3/2	145	Pm	Promethium *	5/2	176	Lu	Lutetium	7
23	Na	Sodium	3/2	151	Eu	Europium	5/2				
33		Sulfur	3/2	153	Eu	Europium	5/2				
35	CI	Chlorine	3/2	161	Dy	Dysprosium	5/2				
37	CI	Chlorine	3/2	163	Dy	Dysprosium	5/2				

^{*} Unstable isotope with lifetime suitable for NMR.

Properties of Selected Deuterated Solvents for NMR

Solvent	Formula	MW _{ave}	Density	MP	ВР	RI	Dielec.	¹H shift (Mult.)	J(HD)	¹³ C Shift (Mult.)	J(CD)	H₂O/ HDO
			[d ₄ ²⁰]	[°C]	[°C]	[<i>n</i> _D ²⁰]	[ε]	[ppm]	[Hz]	[ppm]	[Hz]	Shift [ppm]
Acetic Acid-d4	C ₂ D ₄ O ₂	64.08	1.119	15.9	115.5	1.368	6.1	11.65 2.04 (5)	2.2	178.99 20 (7)	20	11.5
Acetone-d6	C ₃ D ₆ O	64.12	0.872	-93.8	55.5	1.3554	20.7	2.05 (5)	2.2	29.92 (7) 206.68 (13)	19.4 0.9	2.84/ 2.81
Acetonitrile-d3	C ₂ D ₃ N	44.07	0.844	-46	80.7	1.3406	37.5	1.94 (5)	2.5	1.39 (7) 118.69	21	2.12
Benzene-d6	C ₆ D ₆	84.15	0.950	6.8	79.1	1.4986	2.3	7.16		128.39 (3)	24.3	0.4
Chloroform-d1	CDCl ₃	120.38	1.500	-64.1	60.9	1.4445	4.8	7.24		77.23 (3)	32	1.55
Cyclohexane-d12	C ₆ D ₁₂ O	96.24	0.890	7	78		2	1.38		26.43 (5)	19	0.80
Deuterium oxide	D ₂ O	20.03	1.107	3.8	101.4	1.328	78.5	4.81				
1,2-Dichloroethane-d4	C ₂ D ₄ Cl ₂	102.99	1.307	-35	83	1.443		3.72 (5)		43.6 (5)	23.5	
Dichloromethane-d2	CD ₂ Cl ₂	86.95	1.362	-97	39.5	1.362		5.32 (3)	1.1	54 (5)	27.2	1.52
Diethylether-d10	C ₄ D ₁₀ O	84.19	0.78	-116.3	34.6			3.34 (m) 1.07 (m)		65.3 (5) 14.5 (7)	21 19	
Diethylene glycol dimethyl ether-d14 (diglyme-d14)	C ₆ D ₁₄ O ₃	148.26	0.95	-68	162			3.49 (br) 3.40 (br) 3.22 (5)	1.5	70.7 (5) 70 (5) 57.7 (7)	21 21 21	
1,2-Dimethoxyethane-d10 (glyme-d10)	C ₄ D ₁₀ O ₂	100.18	0.86	-58	83			3.40 (m) 3.22 (5)	1.6	71.7 (5) 57.8 (7)	21 21	
N,N-Dimethyl- formamide-d7	C ₃ D ₇ NO	80.14	1.04	-60	153	1.428	36.7	8.03 2.92 (5) 2.75 (5)	1.9 1.9	163.15 (3) 34.89 (7) 29.76 (7)	29.4 21.0 21.1	3.45
Dimethyl sulfoxide-d6	$C_2D_6O_S$	84.17	1.190	20.2	190	1.4758	46.7	2.50 (5)	1.9	39.51 (7)	21.0	3.3
1,4-Dioxane-d6	C ₄ D ₈ O ₂	96.16	1.129	12	99	1.4198	2.2	3.53 (m)		66.66 (5)	21.9	2.4
Ethanol-d6	C ₂ D ₆ O	52.11	0.888	-114.5	78	1.358	24.5	5.29 3.56 1.11 (m)		56.96 (5) 17.31 (7)	22 19	5.2
Methanol-d4	CD ₄ O	36.07	0.89	-99	65	1.3256	32.7	4.87 3.31 (5)	1.7	49.15 (7)	21.4	4.86
Methyl cyclohexane-d14	C ₇ D ₁₄	112.27	0.77	-126	101	1.4189						
Nitrobenzene-d5	C ₆ D ₅ NO ₂	128.14	1.253	6	211	1.5498		8.11 (br) 7.67 (br) 7.50 (br)		148.6 134.8 (3) 129.5 (3) 123.5 (3)	24.5 25 26	2.42
Nitromethane-d3	CD ₃ NO ₂	64.06	1.19	-26	100	1.3795		4.33 (5)		62.8 (7)	22	2.2
2-Propanol-d8	C ₃ D ₈ O	68.15	0.786	-89.5	82.4	1.3728		5.12 3.89 (br) 1.10 (br)		62.9 (3) 24.2 (7)	21.5 19	
Pyridine-d5	C ₅ D ₅ N	84.13	1.02	-41	114	1.5079	12.4	8.74 7.58 7.22		150.35 (3) 135.91 (3) 123.87 (3)	27.5 24.5 25	4.97
Tetrachloroethane-d2	C ₂ D ₂ Cl ₄	169.86	1.7	-43	146	1.493		5.91 (5)		74.2 (5)		1.5
Tetrahydrofuran-d8	C ₄ D ₈ O	80.16	0.99	-108	64	1.4035	7.6	3.58 1.73		67.57 (5) 25.37 (5)	22.2 20.2	2.42
Toluene-d8	C ₇ D ₈	100.19	0.94	-85	109	1.4932	2.4	7.09 (m) 7.00 6.98 (m) 2.09 (5)	2.3	137.86 129.24 (3) 128.33 (3) 125.49 (3) 20.4 (7)	23 24 24 19	0.45
2,2,2-Trifluoroacetic Acid-d1	C ₂ DF ₃ O ₂	115.03	1.50	-15	71	1.30		11.50		164.2 (4) 116.6 (4)		11.5
2,2,2-Trifluoroethanol-d3	C ₂ D ₃ F ₃	87.06	1.42	-44	77	1.30		5.02 3.88 (4x3)	2 (9)	126.3 (4) 61.5 (4x5)	22	5

This Table summarizes the physical properties of deuterated solvents and the chem. shifts (rel. to TMS) and deuterium couplings for the solvent signals and the approximate shifts for residual water (last column).

¹H Chemical Shifts in Organic Compounds

¹³C Chemical Shifts in Organic Compounds*

^{*} Relative to internal tetramethylsilane.

¹⁵N Chemical Shifts in Organic Compounds*

^{*} Relative to external liquid ammonia at 25°C. Data taken from: G. C. Levy and R. L. Lichter: "Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy", J. Wiley, 1979.

¹¹B Chemical Shifts*

^{*} Relative to external standard BF₃OEt₂

17O Chemical Shifts*

^{*} Relative to Si(CH₃)₄.

²⁷Al Chemical Shifts*

^{*} Relative to AI(H₂O)³⁺₆.

MRI Tables

Method	Description	Equivalent acronyms
SINGLEPULSE	Basic pulse-and-acquire spectroscopy	FID
NSPECT	Non-localized spectroscopy with NOE and decoupling options	FID
CSI	Chemical shift imaging with optional PRESS localization	
PRESS	Localized MRS with double spin echo	
STEAM	Localized MRS with stimulated echo (for short TE)	
ISIS	Localized MRS with inversion-based voxel definition	OSIRIS
DtiEpi	Diffusion tensor imaging with EPI (SE and STE)	PGSE-EPI
DtiStandard	Diffusion tensor imaging with 2DFT (SE and STE)	PGSE
EPI	Echo-Planar Imaging (GE and SE), single-shot or interleaved, with navigator-based phase stabilization and automatic ghost correction	
FAIR_EPI	Pulsed arterial spin labelling-based perfusion imaging with EPI	
FC2D_ANGIO	Time-of-flight angiography flow-compensated	TOF-angio
FL2D_ANGIO	Time-of-flight angiography w/o flow-comp. (short TE)	
FISP	Fast gradient echo with steady state signal selection (FID, echo or fully balanced), and optional inversion recovery for T1 mapping.	FLASH, FAST, FISP, PSIF, CE-FAST, SSFP, GRASS, TrueFISP
FLASH	Gradient echo	FISP, GRASS, FAST
GEFC	Gradient echo with flow compensation	
MDEFT	T1-weghted hi-res imaging with inversion-recovery preparation	MPRAGE
MGE	Multiple gradient echo	
MSME	Multiple spin echo including T2 mapping	
RARE	Fast spin echo based on CPMG sequence	FSE, TSE
RAREVTR	RARE with variable TR for simultaneous T1&T2 mapping	
RAREst	Fast spin echo for short TE using slew-rate-optimized gradients	HASTE
FLOW_MAP	Quantitative flow mapping and PC-angio	
UTE	Ultra-short TE radial scan	
FieldMap	Quantitative B0 mapping, part of the MAPSHIM tool for localized high-order shimming	
SPIRAL	Fast MRI with spiral k-space scan	
IntraGate-FLASH	Cardiac and respiration-cine with retrospective (trigger-free) gating	

Additivity Parameters for ^{13}C Chemical Shifts in Substituted Benzenes $\delta_{\rm j} = 128.5 + S_{\rm j}(\delta_{\rm j}), S_{\rm j}(\delta_{\rm j})$ refers to the carbon atom bearing the substituent

Substituent	$S_i(\delta_i)$	$S_i(\delta_o)$	$S_i(\delta_m)$	$S_i(\delta_p)$	Substituent	$S_i(\delta_l)$	$S_i(\delta_o)$	S _i (S _m)	$S_i(\delta_p)$
-H	0.0	0.0	0.0	0.0	-1	-32.3	9.9	2.6	-0.4
−CH ₃	9.3	0.6	0.0	-3.1	-OH	26.9	-12.7	1.4	-7.3
-CH ₂ CH ₃	15.7	-0.6	-0.1	-2.8	-OCH₃	30.2	-14.7	0.9	-8.1
-CH(CH ₃) ₂	20.1	-2.0	0.0	-2.5	-NH ₂	19.2	-12.4	1.3	-9.5
-C(CH ₃) ₃	22.1	-3.4	-0.4	-3.1	-N(CH ₃) ₂	22.4	-15.7	0.8	-11.8
-Cyclopropyl	15.1	-3.3	-0.6	-3.6	-N(C ₆ H ₅) ₂	19.3	-4.4	0.6	-5.9
-CH ₂ CI	9.1	0.0	0.2	-0.2	-NO ₂	19.6	-5.3	0.8	6.0
-CH₂Br	9.2	0.1	0.4	-0.3	-CN	-16.0	3.5	0.7	4.3
-CF ₃	2.6	-2.2	0.3	3.2	-NCO	5.7	-3.6	1.2	-2.8
-CH ₂ OH	13.0	-1.4	0.0	-1.2	-SC(CH ₃) ₃	4.5	9.0	-0.3	0.0
-CH=CH ₂	7.6	-1.8	-1.8	-3.5	-COH	9.0	1.2	1.2	6.0
–C≡CH	-6.1	3.8	0.4	-0.2	-COCH ₃	9.3	0.2	0.2	4.2
-C ₆ H ₅	13.0	-1.1	0.5	-1.0	-COOH	2.4	1.6	-0.1	4.8
-F	35.1	-14.3	0.9	-4.4	-COO⁻	7.6	0.8	0.0	2.8
-CI	6.4	0.2	1.0	-2.0	-COOCH₃	2.1	1.2	0.0	4.4
–Br	-5.4	3.3	2.2	-1.0	-COCI	4.6	2.9	0.6	7.0

Some Representative 19F Chemical Shifts Referenced to CFCl₃

	δ/ppm		δ/ppm		δ/ppm
MeF	-271.9	CFBr ₃	7.4	FCH=CH ₂	-114
EtF	-213	CF ₂ Br ₂	7	F ₂ C=CH ₂	-81.3
CF ₂ H ₂	-1436	CFH₂Ph	-207	F ₂ C=CF ₂	-135
CF₃R	-60 to -70	CF ₂ Cl ₂	-8	C ₆ F ₆	-163
AsF ₅	-66	[AsF ₆] ⁻	-69.5	[BeF ₄]-	-163
BF ₃	-131	CIF ₃	116; -4	CIF ₅	247; 412
IF ₇	170	MoF ₆	-278	ReF ₇	345
SeF ₆	55	[SbF ₆]-	-109	SbF ₅	-108
[SiF ₆] ²⁻	-127	TeF ₆	-57	WF ₆	166
XeF ₂	258	XeF ₄	438	XeF ₆	550

Some Representative ³¹P Chemical Shifts Referenced to 85 % H₃PO₄

(a) Phospho	rus (III) comp	ounds	
	δ/ppm		δ/ppm
PMe ₃	-62	PMeF ₂	245
PEt ₃	-20	PMeH ₂	-163.5
P(n-Pr) ₃	-33	PMeCl ₂	192
P(i-Pr) ₃	-19.4	PMeBr ₂	184
P(n-Bu) ₃	-32.5	PMe₂F	186
P(<i>i</i> -Bu)₃	-45.3	PMe₂H	-99
P(<i>s</i> -Bu) ₃	7.9	PMe₂CI	96.5
P(t-Bu) ₃	63	PMe₂Br	90.5

(b) Phospho	rus (V) comp	ounds	
	δ/ppm		δ/ppm
Me ₃ PO	36.2	Me ₃ PS	59.1
Et₃PO	48.3	Et₃PS	54.5
[ME ₄ P] ⁺	24.4	[Et ₄ P]+	40.1
[PO ₄] ³⁻	6.0	[PS ₄] ³⁻	87
PF ₅	-80.3	[PF ₆]-	-145
PCI ₅	-80	[PCl ₄]+	86
MePF ₄	-29.9	[PCI ₆]-	-295
Me ₃ PF ₂	-158	Me ₂ PF ₃	8.0

Some Important Silylated Compounds Used as ¹H Shift References

Name	Chemical formula	Abbre- viation	Mole- cular weigth	Boiling or melting point (°C)	δ ¹H ppm rel.TMS
Tetramethylsilane	(CH ₃) ₄ Si	TMS	88.2	BP = 26.3	0
Hexamethyldisilane	(CH ₃) ₃ Si-Si(CH ₃) ₃	HMDS	146.4	BP = 112.3	0.037
Hexamethyldisiloxane	(CH ₃) ₃ Si-O-Si(CH ₃) ₃	HMDSO	162.4	BP = 100	0.055
Hexamethyldisilazane	(CH ₃) ₃ Si-NH-Si(CH ₃) ₃	HMDSA	161.4	BP = 125	0.042
3-(trimethylsilyl)propane sulfonic acid soduim salt 4,4-dimethyl-4-silapentane sodium sulfonate	(CH ₃) ₃ Si(CH ₂) ₃ SO ₃ Na	TSPSA DSS	218.3	MP = 200	0.015
3-(trimethylsilyl)propionic acid sodium salt 4,4-dimethyl-4-silapentane sodium carboxylate	(CH ₃) ₃ Si(CH ₂) ₂ COONa	TSP DSC	168.2	MP > 300	0.000
3-(trimethylsilyl) 2,2,3,3-tetra- deuteropropionic acid sodium salt	(CH ₃) ₃ Si(CD ₂) ₂ COONa	TSP-d ₄	172.2	MP > 300	0.000
Octamethylcyclotetrasiloxane	(CH ₃) ₂ Si[O-Si(CH ₃) ₂] ₃ -O	OCTS	296.8	BP = 175 MP = 16.8	0.085
1,1,3,3,5,5-hexakis-(trideutero- methyl)-1,3,5-trisilacyclohexane	(CD ₃) ₂ Si–CH ₂ –Si(CD ₃) ₂ I CH ₂ –Si(CD ₃) ₂ –CH ₂	CS-d ₁₈	216.6	BP = 208	-0.327
Tetrakis-(trimethylsilyl)-methane	[(CH ₃) ₃ Si] ₄ C	TTSM	304.8	MP = 307	0.236

Enhancement Factors η_{NOE} and η_{INEPT} for X (1H) Nuclear Overhauser and **INEPT Experiments**

х	¹⁹ F	³¹ P	11B	¹³ C	¹⁵ N	²⁹ Si	⁵⁷ Fe	103Rh	¹⁰⁹ Ag	¹¹⁹ Sn	¹⁸³ W
η_{NOE}^{a}	0.53	1.24	1.56	1.99	-4.93	-2.52	15.41	-15.80	-10.68	-1.33	11.86
η _{INEPT} b	1.06	2.47	3.12	3.98	-9.86	-5.03	30.82	-31.59	-21.37	-2.67	23.71

The maximum possible intensity enhancement is equal to 1 + η_{NOE} in the extreme narrowing limit.

Relevant Properties of Cryogenic Fluids

(Liquid helium and nitrogen are used in supercon magnets)

Cryogen	Normal Boiling Point (K)	Latent Heat (J/g)	Amount of Liquid Evaporated by 1 Watt (I/hour)	Liquid Density (g/ml)	Gas Density at NTP (g/ml)	Liquid to NTP Gas Volume Ratio	Enthalpy Change (gas) B.P. to 77 K (J/mole)	Enthalpy Change (gas) 77 to 300 K (J/mole)
Liquid Helium	4.2	20.9	1.038	0.125	1.79 x 10 ⁻⁴	1 : 700	384	1157
Liquid Hydrogen	20.39	443	0.115	0.071	8.99 x 10 ⁻⁵	1 : 790	590	2900
Liquid Nitrogen	77.55	198	0.023	0.808	1.25 x 10 ⁻³	1 : 650	-	234
Liquid Oxygen	90.19	212.5	0.015	1.014	1.43 x 10 ⁻³	1 : 797	-	From BP: 193

For ^{19}F or ^{31}P as polarization source (irradiated nucleus) the factors η_{NOE} and η_{INEPT} are reduced by the factor 0.941 [$\gamma(^{19}F)/\gamma(^{1}H)$] and 0.405 [$\gamma(^{31}P)/\gamma(^{1}H)$]

¹H, ¹H Coupling Constants in Selected Organic Molecules

11 V	X	³ J _{cis}	³ J _{trans}	2 J		Х	3 <i>J</i>
H X	Н	11.6	19.1	2.5	H₃C-CH₂-X	Li	8.90
C= C(Li	19.3	23.9	7.1		Si(C ₂ H ₅) ₃	8.0
ЬН́Н	СООН	10.2	17.2	1.7		Н	7.5
	CN	11.75	17.92	0.91		C ₆ H ₅	7.62
	C ₆ H ₅	11.48	18.59	1.08		CN	7.60
	CH ₃	10.02	16.81	2.08		1	7.45
	OCH ₃	7.0	14.1	-2.0		Br	7.33
	CI	1.3	14.6	-1.4		CH₃	7.26
	Br	7.1	15.2	-1.8		CI	7.23
	F	4.65	12.75	-3.2	1	N(C ₂ H ₅) ₂	7.13
					1	OC ₂ H ₅	6.97
					1	.0(0.11)	4.7

	Х	³J(1,2)	³J(1,3)	³J(2,4)	³J(3,5)	³J(2,5)	²J(2,3)
H ¹	Н	8.97	5.58	8.97	8.97	5.58	-4.34
$H^2 \bigwedge H^4$	CI	7.01	3.58	10.26	10.58	7.14	-6.01
X	Br	7.13	3.80	10.16	10.45	7.01	-6.12
 H ³ H ⁵	1	7.51	4.37	9.89	9.97	6.63	-5.94
п п	NH ₂	6.63	3.55	9.65	9.89	6.18	-4.29
	CN	8.43	5.12	9.18	9.49	7.08	-4.72
	СООН	8.04	4.57	9.26	9.66	7.14	-4.00
	COCI	7.88	4.43	9.19	9.99	7.59	-4.46
	COCH₃	7.96	4.55	8.76	9.60	6.94	-3.41

0 1	х	³J(1,2)	⁴ <i>J</i> (1,3)	5J(1,4)	<i>⁴J</i> (1,5)	³J(2,3)	⁴ <i>J</i> (2,4)
2 1	Н	7.54	1.37	0.66	1.37	7.54	1.37
3(X 4 5	Li	6.73	1.54	0.77	0.74	1.42	1.29
	CH ₃	7.64	1.25	0.60	1.87	7.52	1.51a
4 3	COOCH ₃	7.86	1.35	0.63	1.79	7.49	1.31
	I	7.93	1.14	0.47	1.88	7.47	1.75
	Br	8.05	1.12	0.46	2.1	7.44	1.78
	CI	8.05	1.13	0.48	2.27	7.51	1.72
	NH ₂	8.02	1.11	0.47	2.53	7.39	1.60
a 4 J(1, CH ₃) -0.75	N(CH ₃) ₂	8.40	1.01	0.43	2.76	7.29	1.76
⁵ J(2, CH₃) 0.36	N(CH ₃) ₃	8.55	0.92	0.48	3.05	7.46	1.69
⁶ J(3, CH₃) -0.62	NO ₂	8.36	1.18	0.55	2.40	7.47	1.48
ь ³ <i>J</i> (1, F) 8.91	ОН	8.17	1.09	0.49	2.71	7.40	1.74
⁴ J(2, F) 5.69	OCH₃	8.30	1.03	0.44	2.94	7.36	1.76
⁵ <i>J</i> (3, F) 0.22	F	8.36	1.07	0.43	2.74	7.47	1.82⁵

Substituent Effect S(i,j) for J_{HH} in Monosubstituted Benzenes

pos. <i>i,j</i>	F	CI	Br		NO ₂	OCH₃
1,2	+0.81	+0.61	+0.53	+0.39	+0.77	+0.79
1,3	-0.34	-0.23	-0.27	-0.25	-0.20	-0.32
1,4	-0.24	-0.16	-0.20	-0.19	-0.16	-0.22
1,5	+1.21	+0.87	-0.71	+0.51	+1.02	+1.33
2,3	-0.04	+0.03	-0.05	-0.04	-0.07	-0.16
2,4	+0.39	+0.34	+0.36	+0.37	+0.08	+0.38

Typical Stray Field Data for NMR Magnet Systems

Magnet System ¹H MHz/mm Bore	Axial Distance (m) from Magnet Center to 5 Gauss (0.5 mT) Line	Radial Distance (m) from Magnet Center to 5 Gauss (0.5 mT) Line
200 MHz/154 mm US PLUS LH	1.80	0.90
300 MHz/54 mm US LH	0.90	0.60
300 MHz/54 mm Fourier US LH	0.90	0.60
300 MHz/54 mm Ascend ULH	0.90	0.60
300 MHz/89 mm Ascend	1.10	0.55
300 MHz/154 mm US PLUS LH	2.00	1.00
400 MHz/54 mm Ascend	1.00	0.50
400 MHz/54 mm Ascend ULH	1.00	0.50
400 MHz/54 mm Ascend RS	1.00	0.50
400 MHz/89 mm Ascend	1.20	0.60
400 MHz/89 mm Ascend DNP	1.50	1.10
400 MHz/154 mm US PLUS LH	2.55	1.50
500 MHz/54 mm Ascend	1.20	0.60
500 MHz/54 mm Ascend ULH	1.20	0.60
500 MHz/54 mm Ascend RS	1.20	0.60
500 MHz/89 mm Ascend	1.20	0.60
500 MHz/154 mm US PLUS LH	2.55	1.50
600 MHz/54 mm Ascend	1.40	0.70
600 MHz/54 mm Ascend ULH	1.40	0.70
600 MHz/89 mm Ascend	2.00	1.00
600 MHz/89 mm Ascend DNP	2.00	1.00
700 MHz/54 mm Ascend	1.60	0.80
750 MHz/54 mm Ascend	2.00	1.00
750 MHz/89 mm Ascend	2.80	1.40
800 MHz/54 mm Ascend	2.50	1.50
850 MHz/54 mm Ascend	2.70	1.60
850 MHz/89 mm US² WB	4.60	3.30
900 MHz/54 mm US ²	4.60	3.30
900 MHz/89 mm US² WB	4.60	3.30
950 MHz/54 mm US ²	4.60	3.30
1000 MHz/54 mm UltraStabilized	15.00	12.00

2D	Two-Dimensional
3D	Three-Dimensional
ACCORDION	2D technique, simultaneous incrementing of evolution and mixing times
ADA	Alternated Delay Acquisition
ADC	Analog-to-Digital Converter, Apparent Diffusion Constant
ADEQUATE	Astonishingly Sensitive DoublE QUAntum Transfer Experiment
ADLF	Adiabatic Demagnetization in the Laboratory Frame
ADRF	Adiabatic Demagnetization in the Rotating Frame
A.E.COSY	Alternative Exclusive COSY
AFP	Adiabtic Fast Passage
AHT	Average Hamiltonian Theory
AJCP	Adiabatic J Cross Polarization
AMCP	Amplitude-Modulated Cross Polarization
ANGIO	MR ANGIO graphy
АРНН-СР	Adiabatic-Passage Hartmann-Hahn Cross Polarization
APT	Attached Proton Test
AQ	A c Q uisition
ARP	Adiabatic Rapid Passage
ASIS	Aromatic Solvent-Induced Shift
ASL	Arterial Spin Labeling
ASTM	American Society for Testing and Materials
BASE	BA sis imaging with SE lective-inversion preparation
ВВ	B road B and, as in decoupling
BDR	Broadband Dipolar Recoupling
bEPI	blipped EPI
bFFE	balanced Fast-Field Echo
BIRD	Bllinear Rotation Decoupling
BIRD/2	half BIRD , bilinear $\pi/2$ pulse
BLEW	A windowless multiple- pulse decoupling sequence

BLEW-n	Burum-Linder-Ernst Win-
DLEVV-11	dowless homonuc. dipolar dec. sequence of <i>n</i> pulses
DMC	
BMS	Bulk Magnetic Susceptibility
BOLD	Blood Oxygenation Level- Dependent contrast (MRI)
BOSS	BimOdal Slice-Selective
ВР	B i P hasic
ВРР	Bloembergen/Purcell/ Pound (theory)
BR-n	Burum-Rhim homonuclear dipolar decoupling sequence of <i>n</i> pulses
BSP	Bloch-Siegert Phase
BURP	Band-selective Uniform Response Pure-phase pulse
bTFE	b alanced T urbo F ield E cho
BW	B and W idth
BWR	Bloch-Wangsness-Redfield theory
CA	Contrast Agent
CAMELSPIN	Cross-relaxation Appropriate for Minimolecules Emulated by Locked SPINs
CBCA(CO) NH	$\mathbf{C}\boldsymbol{\beta}(i-1)$ and $\mathbf{C}\boldsymbol{\alpha}(i-1)$, $\mathbf{N}(i)$, $\mathbf{H}_{\mathbf{N}}(i)$ 3D correl.
CBCANH	$\mathbf{C}\boldsymbol{\beta}(i,i-1)$ and $\mathbf{C}\boldsymbol{\alpha}(i,i-1)$, $\mathbf{N}(i)$, $\mathbf{H}_{\mathbf{N}}(i)$ 3D correl.
ССРРА	Coupled Cluster Polarization Propagator Approximation
CE	Contrast-Enhanced
CEST	Chemical Exchange Saturation Transfer
CH-COSY	Carbon-Hydrogen COrrelation SpectroscopY
CHESS	CHEmical Shift Selective Imaging Sequence
CHIRP	rf pulse with linear freq. modulation
CIDEP	Chemically Induced Dynamic Electron Polarization
CIDNP	Chemically Induced Dynamic Nuclear Polarization
CINE	"movie-like" MRI
CISS	Constructive Interference Steady State
CNR	Contrast-to-Noise Ratio
COLOC	CO rrelated Spectroscopy via LO ng-Range C oupling
COLOC-S	COLOC with Suppression

CONOESY	Combined COSY/NOESY
CORMA	COmplete Relaxation Matrix Analysis
CORY-n	CORY modification of BR-n
coss	COrrelation with Shift Scaling
COSY	COrrelated SpectroscopY
COSY-45	COSY with 45° mixing pulse
COSYDEC	COSY with F ₁ DECoupling
COSYLR	COSY for Long-Range couplings
СР	Cross Polarization, Circular Polarization
CPD	Composite-Pulse Decoupling
CPMAS	Cross Polarization Magic- Angle Spinning
CPMG	Carr-Purcell-Meiboom-Gill Sequence
CRAMPS	Combined Rotation And Multiple Pulse Spectroscopy
CRAZED	Correlated Spectroscopy Revamped by Asymmetric Z-gradient Echo Detection
CRINEPT	Cross-correlated Relaxation- enhanced INEPT
CS	Contiguous Slice
CSA	Chemical Shift Anisotropy
CSCM	Chemical Shift Correlation Map
CSI	Chemical Shift Imaging
СТ	Constant Time
CW	Continuous Wave
CYCLCROP	CYCLic CROss Polarization
CYCLOPS	CYCLically Ordered Phase Sequence
CYCLPOT	CYCLic POlarization Transfer
DAC	Digital-to-Analog Converter
DAISY	Direct Assignment Inter- connection SpectroscopY
DANTE	Delay Alternating with Nutation for Tailored Excitation
DAS	Dynamic Angle Spinning
DCNMR	NMR in Presence of an Electric D irect C urrent
DD	D ipole- D ipole
DE	Dual Echo, Driven Equilibrium

DECSY	Double-quantum Echo Correlated SpectroscopY
DEFT	D riven E quilibrium F ourier T ransform
DEPT	Distortionless Enhancement by Polarization Transfer
DEPTH	spin-echo sequence for spatial localization
DEPTQ	DEPT including quaternary carbons
)FT	Discrete Fourier Transformation
DICE	Direct Connectivity Experiment
DICOM	Digital Imaging and COmmunications in Medicine
DIGGER	Discreet Isolation from Gradient-Governed Elimination of Resonances
DIPSI	Composite-pulse Decoupling In the Presence of Scalar Interactions
DISCO	DI fferences and S ums within CO SY
DLB	Differential Line Broadening
ONMR	D ynamic NMR
.NOESY	Direct cross-relaxation NOESY
NP	D ynamic N uclear P olarization
OOC	D ouble CO nstant-Time sequence
OOPT	D ipolar O rder P olarization T ransfer
OOR	Double-Orientation Rotation
OOSY	Diffusion-Ordered SpectroscopY
OOUBTFUL	DOUBle Quantum Transition for Finding Unresolved Lines
OPFGSE	Double Pulsed Field Gradient Spin Echo
οQ	D ouble Q uantum
QC	Double Quantum Coherence
OQF	Double Quantum Filter
OQF-COSY	Double Quantum Filtered COSY
DQSY	D ouble- Q uantum CO SY
DQ/ZQ	D ouble Q uantum/ Z ero

DRAMA	Dipolar Recovery At the Magic Angle
DREAM	Double-quantum Relay Enhancement by Adiabatic Mixing
DRESS	D epth RES olved S pectrosocpy
DRIVE	DRIVen Equilibrium
DRYCLEAN	Diffusion-Reduced water signals in spectroscopY of moleCules moving sLowEr thAN water
DSA	Data-Shift Acquisition
DSC	Dynamic Susceptibility Contrast
DSE	Dual Spin Echo
DTI	Diffusion Tensor Imaging
DTRCF	Double Tilted Rotating Coordinate Frame
DTSE	Double Turbo Spin Echo
DUMBO	Decoupling Using Mind- Boggling Optimization – a numerically optimized phase-modulated homonuc. dipolar dec. sequence
DWI	D iffusion- W eighted I maging
E-BURP	Excitation BURP pulse
EC	Eddy Currents
E.COSY	Exclusive COrrelation SpectroscopY
ECO-WURST	WURST decoupling with Elimination of Cycling Oscillations
EFG	Electric Field Gradient
EM	Exponential Multiplication
EMF	ElectroMagnetic Field ElectroMotive Force
ENDOR	Electron-Nuclear DOuble Resonance
ENMR	Electrophoretic NMR
EPI	Echo-Planar Imaging
EPR	Electron Paramagnetic Resonance
EPS	Echo-Planar Spectroscopy
ES, ESP	Echo Spacing
E-SHORT	Enhanced SHORT repetition MRI
ESR	Electron Spin Resonace
E.TACSY	Exclusive TACSY
EXORCYCLE	4-step phase cycle for spin echoes
EXSY	EXchange SpectroscopY

FA	Flip Angle
FADE	FA SE Acq. with D ouble
	E cho
FAIR	Flow-sensitive Alternating Inversion Recovery
FASE	Fast Advanced Spin Echo
FAST	Fourier-Acquired STeady State
FASTMAP	FAST B ₀ Field MAP ping for
	shimming
FATE	FAst Turbo Echo
FC	Flow Compensation
FC2D_ANGIO	Flow-Compensated time- of-flight 2D ANGIOgraphy
FE	Field Echo, Frequency Encoding
FFE	Fast Field Echo
FFLG	Flip-Flop Lee-Goldburg decoupling
FFT	Fast Fourier Transform
FGRE	Fast Gradient-Recalled Echo
FID	Free Induction Decay
FIDS	Fltting of Doublets and Singlets
FieldMap	B ₀ Field Map ping for localized shimming
FIRFT	Fast Inversion-Recovery Fourier Transform
FISP	Fast Imaging with Steady- state Precession
FL2D_ANGIO	FLow-sensitive 2D ANGIOgraphy
FLAIR	FLuid Attenuation Inversion-Recovery
FLASH	Fast Low-Angle SHot imaging
FLOCK	Long-range HETCOR using 3 BIRD pulses
FLOPSY	Flip-FIOP SpectroscopY
FLOW_MAP	Quantitative FLOW MAP ping and PC-angiography
FMP	Fast MultiPlanar
fMRI	functional MRI
FOCSY	FOldover-Corrected SpectrospcopY
FONAR	Field-focusing MRI
FOV	Field Of View
FPT	Finite Perturbation Theory
FR	Frequency Encoding
FS	
	Fat Saturation, Fast Scan

FSE	Fast Spin Echo
FSLG	Frequency-Switched Lee-Goldburg – a homonuc. dipolar dec. scheme
FSPGR	Fast SP oiled GR adient Echo
FT	Fourier Transform
FUCOUP	FUlly COUPled Spectroscopy
FWHM	Full (line) W idth at H alf M aximum
GARP	Globaly Optimized Alternating Phase Rectangular Pulses
GE	Gradient Echo
GEFC	Gradient Echo with Flow Compensation
gem-COSY	geminal-filtered COSY
GES	Gradient-Echo Spectroscopy
GFE	Gradient Field Echo
GRASE	GRAdient and Spin Echo
GRASP	GRadient-Accelerated SPectroscopy
GRASS	Gradient-Recalled Acquisition in the Steady State
GRE	Gradient-Recalled Echo
GRECCO	GRadient-Enhanced Carbon COupling
GROESY	G radient-Enhanced Selective 1D ROESY
GROPE	Generalized compensation for Resonance Offset and Pulse length Errors
GS	Gradient Spectroscopy
gs	gradient-selected (e.g. gs-COSY)
H,X-COSY	H,X shift correlation (X-detected)
HASTE	Half-Fourier Acquisition Single-shot Turbo spin Echo
HBHA (CBCA CO) NH	$\mathbf{H}\boldsymbol{\beta}(i-1)$ and $\mathbf{H}\boldsymbol{\alpha}(i-1)$, $\mathbf{N}(i)$, $\mathbf{H}_{\mathbf{N}}(i)$ 3D correl.
HCACO	$\mathbf{H}\alpha(i)$, $\mathbf{C}\alpha(i)$, $\mathbf{C'O}(i)$ 3D correl.
HCACON	$\mathbf{H}\alpha(i)$, $\mathbf{C}\alpha(i)$, $\mathbf{C'O}(i)$, $\mathbf{N}(i+1)$ 4D correl.
HCA(CO)N	$\mathbf{H}\alpha(i)$, $\mathbf{C}\alpha(i)$, $\mathbf{N}(i+1)$ 3D correl.
HCA(CO) NNH	$\mathbf{H}\alpha(i)$, $\mathbf{C}\alpha(i)$, $\mathbf{N}(i+1)$, $\mathbf{H}_{\mathbf{N}}(i+1)$ 4D correl.

Osea III IV	
HCANNH	$\mathbf{H}\boldsymbol{\alpha}(i)$, $\mathbf{C}\boldsymbol{\alpha}(i)$, $\mathbf{N}(i)$, $\mathbf{H}_{\mathbf{N}}(i)$ 3D correl.
(H)CC(CO) NH	C α , β ,(<i>i</i>), N (<i>i</i> +1), H _N (<i>i</i> +1) 3D correl.
HCCH-COSY	$\mathbf{H}\boldsymbol{\alpha}(i)$, $\mathbf{C}\boldsymbol{\alpha}(i)$, $\mathbf{H}\boldsymbol{\beta}(i)$ 3D correl.
HCCH- TOCSY	total correlation of side- chain H and C
HDQC	Heteronuclear Double- Quantum Correlation
HEED	H ahn spin- E cho E xtende D sequence
HET2DJ	HETeronuclear 2D J-correlated
HETCOR	HET eronuclear COR relation Spectroscopy
HETLOC	HET eronuclear LO ng-range C ouplings
НЕНАНА	HE teronuclear HA rtmann HA hn
НМВС	Heteronuclear Multiple- Bond Correlation
НМО	Heteronuclear Multiple- Quantum
НМОС	Heteronuclear Multiple- Quantum Coherence
HMSC	Heteronuclear Multiple- and Single-bond Correlation
HNCA	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{C}\alpha(i)$ and $\mathbf{C}\alpha(i-1)$ 3D shift correlation
HNCA-J	3D HNCA to measure ${}^3J(H_N,H\alpha)$
HN(CA)NNH	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{N}(i+1)$ and $\mathbf{N}(i-1)$ 3D correl.
HN(CA)CO	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{C'O}(i)$, and $\mathbf{C'O}(i-1)$ 3D shift correlation
H(N)CACO	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{C}\alpha(i)$, $\mathbf{C'O}(i)$ 3D shift correlation
HNCAHA	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{C}\alpha(i)$, $\mathbf{H}\alpha(i)$ 4D shift correlation
HNCO	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{C'O}(i-1)$ 3D shift correlation
HN(CO)CA	$\mathbf{H}_{\mathbf{N}}(i)$, $\mathbf{N}(i)$, $\mathbf{C}\alpha(i-1)$ 3D shift correlation
H(N)COCA	$H_N(i+1)$, C'O (<i>i</i>), C α(<i>i</i>) 3D shift correlation
HN(CO) CAHA	$\mathbf{H}_{\mathbf{N}}(i+1)$, $\mathbf{N}(i+1)$, $\mathbf{C}\alpha(i)$, $\mathbf{H}\alpha(i)$ 4D shift correlation
HOESY	Heteronuclear Overhauser Effect SpectroscopY
	HOmonuclear HArtmann-

HORROR	double-quantum HO mo- nuclea R RO tary R esonance
HQQC	Heteronuclear Quadruple-Quantum Correlation
HR	High Resolution
HRPA	Higher Random Phase Approximation
HS	H omo S poil
HSL	Heteronuclear Spin Lock
HSQC	Heteronuclear Single- Quantum Coherence
нтос	Heteronuclear Triple- Quantum Correlation
I-BURP	Inversion BURP pulse
ICE	Indirect Connectivity Experiment
IDESS	Improved DE pth S elective single surface coil S pectroscopy
IDR	Inverted Direct Response
IEPI	Interleaved EPI
IFT	Inverse FT
IGLO	Individual Gauge for different Localized Orbitals
INADE- QUATE	Incredible Natural Abudance DoublE QUAnatum Transfer Experiment
INAPT	INEPT with selective 1H excitation
INDOR	INternuclear DOuble Resonance
INEPT	Insensitive Nuclei Enhanced by Polarization Transfer
INEPT+	INEPT with refocusing period for in-phase multiplets
INEPT-R	INEPT R efocused for 1H-dec. spectra
INSIPID	INadequate Sensitivity Improvement by Proton Indirect Detection
IntraGate- FLASH	Cardiac and respiration cine MRI with retrospective (trigger-free) gating
INVERSE	H, X correlation via ¹ H detection
IPAP	In-Phase Anti-Phase (in 2D)
IR	Inversion-Recovery
IRMA	Iterative Relaxation Matrix Analysis
ISECR	In-pha SE CR oss peaks (method)

ISIS IST IVIM JCP J-mod JR J-res LAS LASE LB LG	Image-Selected In-vivo Spectroscopy (single-voxel) Irreducible Spherical Tensor IntraVoxel Incoherent Motion J Cross-Polarization J modulation Jump-and-Return sequence (90 _V -τ-90 _{-V}) J-resolved 2D Laboratory Axis System
JCP J-mod JR J-res LAS LASE LB	Irreducible Spherical Tensor IntraVoxel Incoherent Motion J Cross-Polarization J modulation Jump-and-Return sequence (90 _V -τ-90 _{-V}) J-resolved 2D
JCP J-mod JR J-res LAS LASE LB	IntraVoxel Incoherent Motion J Cross-Polarization J modulation Jump-and-Return sequence (90 _y -τ-90 _y) J-resolved 2D
J-mod JR J-res LAS LASE LB	J modulation Jump-and-Return sequence (90 _γ -τ-90 _{-γ}) J-resolved 2D
J-res LAS LASE LB	J modulation Jump-and-Return sequence (90 _γ -τ-90 _{-γ}) J-resolved 2D
J-res LAS LASE LB	Jump-and- R eturn sequence (90 _y -τ -90 _{-y}) J-res olved 2D
LAS LASE LB	J-resolved 2D
LASE LB	Laboratory Axis System
LB	
	Low-Angle SE
LG	Line Broadening (via EM)
LG	Lorentz-Gauss window function
LIS	Lanthanide Induced Shift
LORG	Local ORiGin
LOSY	LOcalized SpectroscopY
LP	Linear Polarization, Linear Prediction
LPSVD	Linear Prediction using Singular Value Decomposition
LSR	Lanthanide Shift Reagent
LUT	Look U p T able
MAGROFI	MAgnetization Grid ROtating-Frame Imaging
MARCO POLO	Multiple Analysis by Reduction of Cross peaks and Ordering of Patterns in an Overdetermined Library Organization
MARDI- GRAS	Matrix Analysis of Relaxation for DIstance GeometRy of an Aqueous Structure
MARF	M agic A ngle in the R otating F rame
MAS	Magic-Angle Spinning
MASS	M agic- A ngle S ample S pinning
MAST	Motion Artifact Suppression Technique
MDEFT	M odified D riven E quilibrium FT method
ME	M ulti E cho
MEDUSA	Technique for the Determination of Dynamic Structures
MEM	Maximum Entropy Method
MEMP	MultiEcho MultiPlanar
MESS	MultiEcho Single Shot
MFISP	Mirrored FISP (PSIF)

MGE	Multiple Gradient Echo
	·
MINIP	MINinmum Intensity Projection
MIP	M aximum I ntensity P rojection
MLEV	M. Levitt's CPD sequence
MLM	Maximum Likelihood Method
MOTSA	Multiple Overlapping Thin Slab(Slice) Acquisition
MP	Multiple Pulse, MultiPlanar, Magnetization-Prepared
MPFn	M ultiple-Pulse Decoupling with P hase and F requency Switching with n offsets
MP-GR	M ulti P lanar G radient- R ecalled Acq. in Steady State
MPR	MultiPlanar Reconstruction
MP-RAGE	Magnetization-Prepared RApid Gradient Echo (MP-GRE)
MQ	M ultiple- Q uantum
MQC	Multiple-Quantum Coherence
MQF	Multiple-Quantum Filter
МОНРТ	Multiple-Quantum Heteronuclear Polarization Transfer
MQS	M ultiple- Q uantum S pectroscopy
MR	Magnetic Resonance
MRA	MR Angiography
MREV-n	Mansfield-Rhim-Elleman- Vaughan homonuc. dipolar dec. cycle of n pulses
MRV	MR Venography
MRI	M agnetic R esonance I maging
MRS	Magnetic Resonance Spectroscopy
MRSI	Magnetic Resonance Spectroscopic Imaging
MRT	Magnetic Resonance Tomography
MS	M ulti S lice
mSENSE	modified SENSE
MS-EPI	MultiShot EPI
MSHOT-n	Magic Sandwich High- Order Truncation homo- nuc. dipolar decoupling sequence with nTREV-4 sandwiches
MSME	M ulti S lice M ulti E cho (T2 mapping)

MultiSlice Off-resonance FaT Suppression
Multiple Sensitive Point
Multiple-Stepped PGSE
M agnetization T ransfer
Magnetization Transfer Contrast
Multiple Thin-Slab Acquisition
MUltiplicity-Selective In- phase Coherence transfer
Multiple Volume Spectroscopy
Nuclear Electronic DOuble Resonance
Nonlinear Excitation with Rejection on Resonance
Narrow-gap non-Excitation for Water Suppression
Number of EX citations
Nuclear Magnetic Resonance
Nuclear Overhauser Effect
NOE-DIFFerence spectroscopy
NOE-based 2D shift correlation
Nuclear Orientation Via Electron spin Locking
No Phase Wrap
Nuclear Quadrupole Coupling Constant
Nuclear Quadrupole Resonance
Non-Quaternary Suppression
Non-localized SPECTroscopy
Offset Binomial Tailored for Uniform Spectral Excitation
Optimized Cosine-Sine pulse
Optically Detected Magnetic Resonance
Overcontiguous Slices
Outer-Volume-Suppressed Image-Related In vivo Spectroscopy – a modifica- tion of ISIS
Prospective Acquisition CorrEction

Abbreviations and Acronyms Used in Magnetic Resonance

PARACEST	PARAmagnetic Chemical Exchange Saturation Transfer
PAS	Principal Axis System
PC	Phase Contrast
PCA	Phase Contrast Angiography
P.COSY	Purged COSY
PD	Proton Density
PDLF	Proton-Detected Local Field
PE	Phase Encoding
P.E.COSY	Primitive E.COSY, Purged Exclusive COSY
PEDRI	Proton-Electron Double Resonance Imaging
PELF	Proton-Encoded Local Field
PENDANT	Polarization ENhancement During Attached Nucleus Testing
PEP	P reservation of E quivalent P athways
PFG	Pulsed Field Gradient
PFGSE	Pulsed Field Gradient Spin Echo
PGSE	Pulsed Gradient Spin Echo
PISEMA	Polarization Inversion with Spin Exchange at the Magic Angle
PITANSEMA	Polarization Inversion Time Averaged Nutation Spin Exchange at the Magic Angle
PJR	P ower-adapted J ump and R eturn
PMFG	Pulsed Magnetic Field Gradient
PMLG	Phase-Modulated Lee-Goldburg dipolar decoupling
PMRFI	Phase-Modulated Rotating- Frame Imaging
POF	P roduct O perator F ormalism
POMMIE	Phase Oscillations to MaxiMIze Editing
POST	Permutationally Offset- STabilized
PRE	Proton Relaxation Enhancement
Presat	Presaturation (usually of solvent)
PRESS	Point-RESolved Spectroscopy

PRFT	Partially Relaxed Fourier
	Transform
PROPELLER	Periodically Rotated Over-
	lapping ParallEL Lines with
	Enhanced Reconstruction
PS	Partial Saturation
PS-COSY	Phase-Sensitive COSY
PSD	Phase-Sensitive Detection
PSIF	mirrored FISP (SE acquisition)
PT	P olarization T ransfer
PW	Pulse Width
PWI	Perfusion-Weighted Imaging
Q	Quality Factor (of RF coil/circuit) Quantitative (e.g. QMRI, QCSI)
QF	Quadrupole moment/Field gradient (interaction or relaxation mechanism)
Q Flow	Flow Quantification
OPD	Quadrature Phase
	Detection
QUEST	QUick Echo Split Imaging Technique
QUIPSS	QUantitative Imaging of Perfusion using a Single Subtraction
RAM	Rapid Acquisition Matrix
RARE	Rapid Acquisition Relaxation Enhanced
RAREst	RARE with short tE using slew-rate-optimized gradients
RAREVTR	RARE with Variable TR (simultaneous T_1 & T_2 mapping)
RASE	Rapid Acquisition Spin Echo
RBW	Receiver BandWidth
RCF	Rotating Coordinate Frame
RCT	Relayed Coherence Transfer
RE	Rapid Excitation (MRI)
REAPDOR	Rotational Echo Adiabatic
	Passage DOuble Resonance
RE-BURP	Refocused Band-selective Uniform Response Pure phase
RECSY	Multistep RE layed
	Coherence SpectroscopY
REDOR	Rotational Echo DOuble

Resonance

RELAY	RELAYed Correlation Spectroscopy
REPAY	Reverse Editing of Protons According to multiplicitY
REREDOR	Rotor-Encoded REDOR
REST	REgional Saturation Technique
RF	Radio Frequency
RFDR	RF-Driven Recoupling
RF-FAST	RF-spoiled FAST
RFOV	Rectangular FOV
RICE	Rapid Imaging using Composite Echo
RIDE	RIng Down Elimination
RINEPT	Reverse INEPT
RISE	Rapid Imaging using Spin
	Echo
RMSD	Root-Mean-Square Deviation
ROAST	Resonant Offset Averaging in the STeady State
RODI	ROtatin-grame relaxation Dispersion Imaging
ROE	Rotating-frame Overhauser Effect
ROESY	ROE-based 2D shift correlation
ROI	Region Of Interest
ROPE	Respiratory Ordered PE
ROTO	ROESY-TOCSY Relay
RPA	Random Phase Approximation
RR	Rotational Resonance
RSSARGE	RF-Spoiled SARGE
RT	Respiratory Trigger
RUFIS	Rotating UltraFast Imaging Sequence
SA	Shielding Anisotropy
SAR	Specific Absorption Rate (RF)
SARGE	Spoiled steady-state Acquisition with Rewinded Gradient Echo
SAT	SATuration
SB	Sine-Bell window function
SC	Scalar Coupling
S.COSY	COSY with shift Scaling in F1
SCT	SCan Time
SCUBA	Stimulate Cross peaks Under Bleached Alphas
SD	Spin Dipolar

SDDS	Spin Decoupling Difference Spectroscopy
SDEPT	Selective DEPT
SE	Spin Echo
SECSY	Spin-Echo Correlated SpectroscopY
SEDOR	Spin-Echo DOuble Resonance
SEDRA	Simple Excitation for Dephasing of Rotational echo Amplitudes
SEDUCE	SElective Decoupling Using Crafted Excitation
SEFT	Spin-Echo Fourier Transform Spectroscopy (with J modulation)
SELCOSY	SELective COSY
SELTICS	Sideband ELimination by Temporary Interruption of the Chemical Shift
SELINCOR	SELective INverse CORrelation
SELINQUATE	SELective INADEQUATE
SELRESOLV	SELective RESolution of C,H Coupling
SEMS	Spin-Echo MultiSlice
SEMUT	Subspectral Editing Using a MUltiple-Quantum Trap
SENSE	SENSitivity Encoding
sEPI	spiral EPI
SEPT	Selective INEPT
SERF	SElective ReFocussing
SESAM	SE mi- S elective A cquisition M odulated (Decoupling)
SFAM	Simultaneous Freq. and Ampl. Modulation
SFORD	Single Frequency Off- Resonance Decoupling
SGSE	Steady-Gradient Spin-Echo
SHECOR	Selective HE teronuclear COR relation
SHORT	SHORT repetition techniques
SI	Spectroscopic Imaging
SIAM	Simultaneous acq. of In-phase and Antiphase Multiplets
SIP	Saturation Inversion Projection
SIMBA	Selective Inverse Multiple- Bond Analysis
SINEPT	SINE-dependent PT

SINGLE PULSE	SINGLE PULSE-acquire spectroscopy
SIS	Substituent-Induced Shift
SJR	Second-order Jump and Return
SKEWSY	SKEWed Exchange SpectroscopY
SL	Spin-Lock pulse
SLF	Separated Local Field
SLITDRESS	SLIce inTerleaved Depth REsolved Surface coil Spectroscopy
SLOPT	Spin-LOcking Polarization Transfer
SMART	Shimadzu Motion Artifact Reduction Technique
SMASH	Short Minimum Angle SHot, SiMultaneous Acquisition of Spatial Harmonics
SNR or S/N	Signal-to-Noise Ratio
SOPPA	Second-Order Polarization Propagator Approach
SORS/STC	Slice-selective Off-Resonance Sinc Pulse / Saturation Transfer Contrast
SPACE	SPAtial and Chemical-Shift Encoded Excitation
SPAIR	SPectral Selection Attenuated Inversion Recovery
SPECIFIC-CP	SPECtrally Induced Filtering In Combination with Cross Polarization
SPEED	Swap PhasE-Encoded Data
SPGR	SPoiled Gradient-Recalled
SPI	Selective Population Inversion
SPIDER	Steady-state Projection Imaging with Dynamic Echo Train Readout
SPIO	SuperParamagnetic Iron Oxide
SPIR	Spectral Presaturation Inversion-Recovery
SPIRAL	MRI with SPIRAL k-space scan
SPRITE	Single-Point Ramped Imaging with T1 Enhancement
SPT	Selective Population Transfer
SQ	Single-Quantum
soc	Single-Quantum Coherence
SQF	Single-Quantum Filter

SR	Saturation-Recovery
SRP	Self-Refocusing Pulse
SS	Slice Selection (gradient), Single Slice
SSB	Shifted Sine-Bell window function
SSFP	Steady-State Free Precession
SSFSE	Single-Shot FSE
SSI	Solid State Imaging
SSMP	Single-Slice Multiple-Phase
ssNMR	solid-state NMR
SSTSE/T2	Single-Shot TSE with T2 weighting
ST	Saturation Transfer, Slice Thickness
STAGE	Small Tip Angle GE
STE	STimulated Echo
STEAM	STimulated Echo Acquisition Mode for imaging
STEP	STE Progressive Imaging
STERF	Steady-State TEchnique with Refocused FID
STIR	Short T1 Inversion- Recovery
STREAM	Suppressed Tissue with REfreshment Angiography Method
STUD	Sech/Tanh Universal Decoupling – an adiabatic decoupling scheme
SUBMERGE	SUppression By Mistuned Echo and Repetitive Gradient Episodes
SUSAN	Spin decoupling employing Ultra-broadband inversion sequences generated via Simulated ANnealing
SWATTR	Selective Water Attenuation by T2 and T1 Relaxation
SVS	Single-Volume Spectroscopy
T1	T1-weighted (method)
T1W	T1-Weighted
T2	T2-weighted (method)
T2W	T2-Weighted
T2*W	T2*-Weighted
TACSY	TAylored Correlation SpectroscopY
TANGO	Testing for Adjacent Nuclei with a Gyration Operator

TART	Tip Angle Reduced T ₁ Imaging
TD	Trigger Delay, Time Difference
TCF	Time Correlation Function
TE	Time delay between excitation and E cho maximum
TEDOR	Transferred-Echo DOuble Resonance
TEI	TE Interleaved
TF	Turbo Factor
TFE	Turbo Field Echo
TGSE	Turbo Gradient Spin Echo
THRIVE	T1W High-Resolution Isotropic Volume Examination
TI	Time following Inversion
TIR	Turbo IR
TMR	Topical Magnetic Resonance
TOBSY	TOtal through-Bond correlation SpectroscopY
TOCSY	TOtal Correlation SpectroscopY
TOF	Time-Of-Flight
TOE	Truncated NOE
TONE	Tilt-Optimized Nonsaturated Excitation
TORO	TOCSY-ROESY Relay
TOSS	TOtal Suppression of Sidebands
TPPI	Time-Proportional Phase Incrementation
TPPM	Two-Pulse Phase Modulation
TPR	Time and Phase Reversal
TQ	T riple- Q uantum
TQF	Triple-Quantum Filter
TR	Time for R epetition of excitation
T/R	Transmit/Receive
TRAPDOR	TRAnsfer of Populations in DOuble Resonance
TRCF	Tilted Rotating Coordinate Frame
TREV-n	Time-REVersal echo sequence of <i>n</i> pulses for homonuc. dipolar dec.
TRNOE	TRansferred NOE
TROSY	Transverse Relaxation Optimized SpectroscopY
T-ROESY	Transverse ROESY

TrueFISP	FISP with balanced gradient waveform
TS	Time of Saturation
TSE	Turbo Spin Echo
TSETSE	double-resonance Two- Spin Effect for correlation spectroscopy
TSR	Total SR
Turbo- FLASH	FLASH sequence during one IR period
U-BURP	Universal BURP pulse
UE	Unpaired Electron (relaxation mechanism)
UFSE	UltraFast SE
UNCOSY	UNiform excitation COSY
USPIO	UltraSmall Paramagnetic Iron Oxide
UTE	Ultra-short TE radial scan
UTSE	Ultra-short TSE
VAPRO	VAriable PROjection method
VAS	Variable Angle Spinning
VE	Velocity-Encoded
VEC	Velocity-Encoded Cine (MRI)
VEMP	Variable-Echo MultiPlanar
VENC	Velocity ENCoding value
VEST	Volume Excitation STimulated echoes
VIGRE	Volumetric Interpolated GRadient Echo
VOI	Volume Of Interest
VOSING	VOlume-selective Spectral editING
VOSY	VO lume-Selective S pectroscop Y
VPS	Volumes Per Segment
VSOP	Very Small superparamagnetic iron Oxide Particles
WAHUHA	WA ugh- HU ber- HA eberlen Sequence
WALTZ	CPD Sequence Containing the Elements 1-2-3
WATER- GATE	WATER suppression through GrAdient Tailored Excitation
WATR	Water Attenuation by Transverse Relaxation
WEFT	Water Eliminated Fourier Transform
WET	Water suppression Enhanced through T1 effects

WFOP	Water Fat Opposed Phase
WFS	W ater F at S eparation (Shift Difference)
WHH-n	WAHUHA dec. cycle of n pulses
WIM-n	W indowless I sotropic M ixing dec. cycle of n pulses
WURST	Wideband, Uniform Rate, and Smooth Truncation – an adiabatic decoupling sequence
XCORFE	H, X COR relation using a F ixed E volution time
XD-NOESY	eXchange-Decoupled NOESY
X-FILTER	Selection of ¹ H- ¹ H correlation when both H are coupled to X
X-HALF- FILTER	Selection of ¹ H- ¹ H correlation when one H is coupled to X
Z-COSY	Z-filtered COSY
Z-FILTER	pulse sandwich for elimina- tion of signal components with dispersive phase
ZECSY	Zero-Quantum-Echo Correlation SpectroscopY
ZIP	Zero-fill Interpolation Processing
ZQ	Zero Quantum
ZQC	Zero-Quantum Coherence
ZQF	Zero-Quantum Filter
ZZ- Spectro- scopy	Selection of coherences involving ZZ or longitudinal two-spin order
ZZZ- Spectro- scopy	Selection of coherences involving longitudinal 3-spin order
β-COSY	COSY with low-angle mixing pulse
Ψ-COSY	pseudo-COSY using incremented freqselective excitation

Symbols for NMR and Related Quantities*

Roman alphabet	
a or A	Hyperfine (electron-nucleus) coupling constant
$A_q^{(l,m)}$	The <i>m</i> th component of an irreducible tensor of order / representing the nuclear spin operator for an interaction of type <i>q</i>
В	Magnetic field (strictly the magnetic flux density or magnetic induction)
B ₀	Static magnetic field of an NMR spectrometer
B ₁ , B ₂	Radiofrequency magnetic fields associated with frequencies ν_1, ν_2
B ∟	Local magnetic field of random field or dipolar origin
С	Spin-rotation interaction tensor
C _X	Spin-rotation coupling constant of nuclide X
D	Dipolar interaction tensor
$D_{i,j}$	Dipolar coupling constant between nuclei (i and j), in Hz
D ^c	Nuclear receptivity relative to that of ¹³ C
D ^P	Nuclear receptivity relative to that of ¹ H
E	Electric field strength
F	Spectral width
F_1 , F_2 or f_1 , f_2	The two frequency dimensions of a two-dimensional spectrum
Â G	Nuclear spin operator for a group, G, of nuclei
F _G	Magnetic quantum number associated with $\hat{\pmb{F}}_{\!\scriptscriptstyle G}$
g	Nuclear or electronic <i>g</i> factor (Landé splitting factor)
G	Magnetic field gradient amplitude
Ĥ	Hamiltonian operator
$H_{i,j}$	Matrix element of Hamiltonian operator
Î j	Nuclear spin operator for nucleus j
$\hat{l}_{j+}, \hat{l}_{j-}$	'Raising' and 'lowering' spin operators for nucleus <i>j</i>
I _j	Magnetidc quantum number associated with $\hat{m{I}}_{j}$
J	Indirect coupling tensor
n J _{AB}	Spin-spin coupling constant for nuclei A and B through <i>n</i> bonds in Hz
J(ω)	Spectral density of fluctuations at angular frequency ω
ⁿ K _{AB}	Reduced nuclear spin-spin coupling constant $K_{AB}=4\pi^2J_{AB}/\hbar\gamma_A\gamma_B$) in T^2J^{-1}

L	Angular momentum			
m _j	Eigenvalue of $\hat{\mathbf{j}}_{jz}$ (magnetic component quantum number)			
<i>m</i> _{tot}	Total magnetic component quantum number for a spin system (eigenvalue of $\sum_i \hat{\mathbf{f}}_{i,2}$)			
m _{tot} (X)	Total magnetic component quantum number for X-type nuclei			
M ₀	Equilibrium macroscopic magnetization per unit volume in the presence of B ₀			
M_x , M_y , M_z	Components of macroscopic magnetization per volume			
<i>M</i> _n	n th moment of spectrum (M_2 = second moment, etc.)			
n_{α} , n_{β}	Populations of the α and β spin states			
N	Total number of nuclei of a given type per unit volume in the sample			
q	Electric field gradient tensor in units of the elementary charge			
eQ	Nuclear quadrupole moment, \mathcal{Q} is in \mathbf{m}^2 and \mathbf{e} is the elementary charge in \mathcal{C}			
R ₁ ^X	Spin-lattice (longitudinal) relaxation rate constant for nucleus X			
R_2^{X}	Spin-spin (transverse) relaxation rate constant for nucleus X			
R ^X _{1p}	Longitudinal relaxation rate constant for nucleus X in the reference frame rotating with B ₁			
S	Signal intensity			
ŝ	Electron (or, occasionally, nuclear) spin operator; cf. î			
t_1 , t_2	Time dimensions for two-dimensional NMR			
T _c	Coalescence temperature under chem. exchange for signals in an NMR spectrum			
T ₁ ^x	Spin-lattice (longitudinal) relaxation time of the X nucleus			
T ₂ ^X	Spin-spin (transverse) relaxation time of the X nucleus			
T_2^*	Net dephasing time for M_x or M_y			
T _{1p}	Longitudinal relaxation time for the X nucleus in the reference frame rotating with ${\bf B}_1$			
T _d	Pulse (recycle) delay			
T _{a c}	Acquisition time			
$T_{q}^{(l,m)}$	The <i>m</i> th component of an irreducible tensor of order / representing the strength of an interaction of type <i>q</i>			

^{*} IUPAC Recommendations: Magnetic Resonance in Chemistry, Vol. 36, 145-149 (1998)

Symbols for NMR and Related Quantities*

V	Electric field gradient tensor. $V = eq$, where e is the elementary charge
$V_{\alpha\beta}$	Elements of Cartesian electric field gradient tensor
W _o , W ₁ , W ₂	Relaxation rate constants (transition probabilities per time) between energy levels differing by 0, 1 and 2 in $m_{\rm tot}$
<i>W</i> _{rs}	Transition probability between spin states rand s
Greek alpha	het
α	Nuclear spin wavefunction (eigenfunction of $\hat{\mathbf{f}}_2$) for the $m_1 = + \frac{1}{2}$ state of a spin- $\frac{1}{2}$ nucleus
$lpha_{\scriptscriptstyle E}$	The Ernst angle (for optimum sensitivity)
β	Nuclear spin wavefunction (eigenfunction of $\hat{\mathbf{l}}_2$) for the $m_1 = -\frac{1}{2}$ state of a spin- $\frac{1}{2}$ nucleus
γ×	Magnetogyric ratio of nucleus X
$\delta_{\scriptscriptstyle X}$	Chemical shift (for the resonance) of nucleus of element X, usually in ppm
Δn	Population difference between nuclear states (Δn_0 at Boltzmann equilibrium)
$\Delta\delta$	Change or difference in δ
$\Delta\nu_{\text{1/2}}$	Full width in frequency units of a resonance line at half-height
$\Delta\sigma$	Anisotropy in $\sigma [\Delta \sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} + \sigma_{yy})]$
Δχ	 (i) Susceptibility anisotropy (Δχ = χ-χ_⊥); (ii) difference in electronegativities
$\mathcal{E}_{\scriptscriptstyle 0}$	Permittivity of the vacuum
ζ	Anisotropy in shielding, expressed as σ_{zz} - σ_{iso}
η	(i) Nuclear Overhauser enhancement; (ii) tensor asymmetry factor; (iii) viscosity
κ	Skew of a tensor
θ	Angle, especially for that between a given vector and ${\it \textbf{B}}_{\circ}$
μ	(i) Magnetic dipole moment (component $\mu_{\rm z}$ along ${\bf B}_{\rm o}$); (ii) electric dipole moment
μο	Permeability of the vacuum
μ_{B}	Bohr magneton (earlier $eta_{\!\scriptscriptstyle m e}$)
μ_{N}	Nuclear magneton (earlier $\beta_{\mathbb{N}}$)
\mathbf{v}_{i}	Larmor or resonance frequency of nucleus <i>j</i> (in Hz)
V _o	(i) Spectrometer operating frequency; (ii) Basic Larmor or resonance frequency for a given isotope

v_1	Frequency of primary RF magnetic field B_1 (excitation, detection)
V_2	Frequency of secondary RF magnetic field B_2 (decoupling)
Ξx	Normalized resonance frequency for nucleus X relative to v_H for tetramethylsilane (TMS) at the same \mathbf{B}_0 field; $\mathbf{\Xi}_{\mathrm{X}} = 100 \ v_{\mathrm{X}}/v_H$ (TMS)
ρ	Density matrix
ρ̂	Density operator
ρ_{ij}	Element of matrix representation of \hat{p}
σ	Shielding tensor
σ_{i}	(Isotropic) shielding constant of nucleus j
$\sigma_{\scriptscriptstyle \parallel}$, $\sigma_{\scriptscriptstyle \perp}$	Components of shielding tensor σ parallel and perpendicular to the symmetry axis
$\hat{\sigma}$	Reduced density operator
τ	(i) Time between RF pulses or recovery time following inversion (ii) lifetime in dynamic NMR studies
τ _c	Correlation time for molecular motion, especially for isotropic molecular tumbling
$ au_{ m d}$	Dwell time for data sampling
$ au_{ m null}$	Recovery time leading to null M _z after a 180° pulse
$ au_{ m p}$	Pulse duration
$ au_{ m sc}$	Correlation time for relaxation by the scalar mechanism
$ au_{sr}$	Correlation time for spin-rotation relaxation
$ au_{\scriptscriptstyle \parallel}$, $ au_{\scriptscriptstyle \perp}$	Correlation times for molecular tumbling parallel and perpendicular to the symmetry axis
χ	(i) Magnetic susceptibility; (ii) nuclear quadrupole coupling constant ($\chi = e^2 q_{ZZ}Q/h$)
$\omega_{\rm j}, \omega_{\rm o}, \omega_{\rm 1}, \omega_{\rm 2}$	As for v_i , v_o , v_1 , v_2 but in angular frequency units (rad/s)
Ω	Span of a tensor
Ω_1,Ω_2	Angular frequency of RF fields B ₁ , B ₂

¹H Chemical Shifts for Common Contaminants in Deuterated Solvents

	Proton	mult., J	CDCI ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C ₆ D ₆	CD ₃ CN	CD ₃ OD	D ₂ O
residual solvent H			7.26	2.05	2.50	7.16	1.94	3.31	4.79
H ₂ O		S	1.56	2.84 ª	3.33 a	0.40	2.13	4.87	
acetic acid	CH ₃	S	2.10	1.96	1.91	1.55	1.96	1.99	2.08
acetone	CH₃	S	2.17	2.09	2.09	1.55	2.08	2.15	2.22
acetonitrile	CH ₃	S	2.10	2.05	2.07	1.55	1.96	2.03	2.06
benzene	CH	S	7.36	7.36	7.37	7.15	7.37	7.33	
<i>t</i> -butanol	CH₃	S	1.28	1.18	1.11	1.05	1.16	1.40	1.24
	OH ^c	S			4.19	1.55	2.18		
t-butyl methyl ether	CCH₃	S	1.19	1.13	1.11	1.07	1.14	1.15	1.21
	OCH ₃	S	3.22	3.13	3.08	3.04	3.13	3.20	3.22
BHT ^b	ArH	S	6.98	6.96	6.87	7.05	6.97	6.92	-
	OH ^c	S	5.01		6.65	4.79	5.20	0.02	
	ArCH ₃	S	2.27	2.22	2.18	2.24	2.22	2.21	
	ArC(CH ₃) ₃	S	1.43	1.41	1.36	1.38	1.39	1.40	
chloroform	CH	S	7.26	8.02	8.32	6.15	7.58	7.90	
cyclohexane	CH ₂	S	1.43	1.43	1.40	1.40	1.44	1.45	
1,2-dichloroethane	CH ₂	S	3.73	3.87	3.90	2.90	3.81	3.78	
dichloromethane	CH ₂	S	5.30	5.63	5.76	4.27	5.44	5.49	
diethyl ether	CH ₃	t, 7	1.21	1.11	1.09	1.11	1.12	1.18	1.17
dictify ctrici	CH ₂	q, 7	3.48	3.41	3.38	3.26	3.42	3.49	3.56
diglyme	CH ₂	m q, 7	3.65	3.56	3.51	3.46	3.53	3.61	3.67
uigiyirie	CH ₂	m	3.57	3.47	3.38	3.34	3.45	3.58	3.61
	OCH ₃	S	3.39	3.47	3.24	3.11	3.49	3.35	3.37
1,2-dimethoxyethane	CH ₃		3.40	3.28	3.24	3.11	3.28	3.35	3.37
1,2-dimethoxyethane		S							3.60
-li	CH ₂ CH ₃ CO	S	3.55	3.46	3.43	3.33	3.45	3.52	
dimethylacetamide		S	2.09	1.97	1.96	1.60	1.97	2.07	2.08
	NCH ₃	S	3.02	3.00	2.94	2.57	2.96	3.31	3.06
1: 11 16	NCH ₃	S	2.94	2.83	2.78	2.05	2.83	2.92	2.90
dimethylformamide	CH	S	8.02	7.96	7.95	7.63	7.92	7.97	7.92
	CH ₃	S	2.96	2.94	2.89	2.36	2.89	2.99	3.01
1: 1 1 16 : 1	CH ₃	S	2.88	2.78	2.73	1.86	2.77	2.86	2.85
dimethylsulfoxide	CH₃	S	2.62	2.52	2.54	1.68	2.50	2.65	2.71
dioxane	CH ₂	S	3.71	3.59	3.57	3.35	3.60	3.66	3.75
ethanol	CH ₃	t, 7	1.25	1.12	1.06	0.96	1.12	1.19	1.17
	CH ₂	q, 7 ^d	3.72	3.57	3.44	3.34	3.54	3.60	3.65
	ОН	S ^{c,d}	1.32	3.39	4.63		2.47		
ethyl acetate	CH₃CO	S	2.05	1.97	1.99	1.65	1.97	2.01	2.07
	CH ₂ CH ₃	q, 7	4.12	4.05	4.03	3.89	4.06	4.09	4.14
	CH ₂ CH ₃	t, 7	1.26	1.20	1.17	0.92	1.20	1.24	1.24
ethyl methyl ketone	CH₃CO	S	2.14	2.07	2.07	1.58	2.06	2.12	2.19
	CH ₂ CH ₃	q, 7	2.46	2.45	2.43	1.81	2.43	2.50	3.18
	CH ₂ CH ₃	t, 7	1.06	0.96	0.91	0.85	0.96	1.01	1.26
ethylene glycol	CH	S ^e	3.76	3.28	3.34	3.41	3.51	3.59	3.65
"grease" ^f	CH₃	m	0.86	0.87		0.92	0.86	0.88	
	CH ₂	br s	1.26	1.29		1.36	1.27	1.29	
<i>n</i> -hexane	CH ₃	t	0.88	0.88	0.86	0.89	0.89	0.90	
	CH ₂	m	1.26	1.28	1.25	1.24	1.28	1.29	
HMPA ^g	CH₃	d, 9.5	2.65	2.59	2.53	2.40	2.57	2.64	2.61
methanol	CH ₃	S ^h	3.49	3.31	3.16	3.07	3.28	3.34	3.34
	ОН	S ^{c,h}	1.09	3.12	4.01		2.16		
nitromethane	CH₃	S	4.33	4.43	4.42	2.94	4.31	4.34	4.40
<i>n</i> -pentane	CH ₃	t, 7	0.88	0.88	0.86	0.87	0.89	0.90	
	CH ₂	m	1.27	1.27	1.27	1.23	1.29	1.29	

¹H Chemical Shifts for Common Contaminants in Deuterated Solvents (continued)

	Proton	mult.	CDCI ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C ₆ D ₆	CD₃CN	CD ₃ OD	D ₂ O
<i>i</i> -propanol	CH₃	d, 6	1.22	1.10	1.04	0.95	1.09	1.50	1.17
	CH	sep, 6	4.04	3.90	3.78	3.67	3.87	3.92	4.02
pyridine	CH(2)	m	8.62	8.58	8.58	8.53	8.57	8.53	8.52
	CH(3)	m	7.29	7.35	7.39	6.66	7.33	7.44	7.45
	CH(4)	m	7.68	7.76	7.79	6.98	7.73	7.85	7.87
silicone grease ⁱ	CH ₃	S	0.07	0.13		0.29	0.08	0.10	
tetrahydrofuran	CH ₂	m	1.85	1.79	1.76	1.40	1.80	1.87	1.88
	CH ₂ O	m	3.76	3.63	3.60	3.57	3.64	3.71	3.74
toluene	CH ₃	s	2.36	2.32	2.30	2.11	2.33	2.32	
	CH(<i>o/p</i>)	m	7.17	7.1-7.2	7.18	7.02	7.1-7.3	7.16	
	CH(m)	m	7.25	7.1-7.2	7.25	7.13	7.1-7.3	7.16	
triethylamine	CH ₃	t, 7	1.03	0.96	0.93	0.96	0.96	1.05	0.99
	CH ₂	q, 7	2.53	2.45	2.43	2.40	2.45	2.58	2.57

a In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed; it appears at 2.81 and 3.30 ppm in acetone and DMSO, respectively. In the former solvent, it is often seen as a 1:1:1 triplet, with ²J_{H,D} = 1 Hz. ^b 2,6-di-tert-butyl-4-methylphenol. ^cThe signals from exchangeable protons were not always identified. ^d In some cases (see note a), the coupling interaction between the CH₂ and the OH protons may be observed (J = 5 Hz). In CD₃CN, the OH proton was seen as a multiplet at δ = 2.69, and extra coupling was also apparent on the methylene peak. Long-chain, linear aliphatic hydrocarbons. Their solubility in DMSO was too low to give visible peaks. 4 Hexamethylphosphoramide. 4 In some cases (see notes a, d), the coupling interaction between the CH₃ and the OH protons may be observed (J = 5.5 Hz). Poly(dimethylsiloxane). Its solubility in DMSO was too low to give visible peaks.

¹³C Chemical Shifts for Common Contaminants in Deuterated Solvents

		CDCI ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C ₆ D ₆	CD₃CN	CD ₃ OD	D ₂ O
solvent signals		77.16	29.84	39.52	128.06	1.32	49.00	
			206.26			118.26		
acetic acid	CO	175.99	172.31	171.93	175.82	173.21	175.11	177.21
	CH₃	20.81	20.51	20.95	20.37	20.73	20.56	21.03
acetone	CO	207.07	205.87	206.31	204.43	207.43	209.67	215.94
	CH ₃	30.92	30.60	30.56	30.14	30.91	30.67	30.89
acetonitrile	CN	116.43	117.60	117.91	116.02	118.26	118.06	119.68
	CH ₃	1.89	1.12	1.03	0.20	1.79	0.85	1.47
benzene	CH	128.37	129.15	128.30	128.62	129.32	129.34	
<i>t</i> -butanol	С	69.15	68.13	66.88	68.19	68.74	69.40	70.36
	CH₃	31.25	30.72	30.38	30.47	30.68	30.91	30.29
t-butyl methyl ether	OCH₃	49.45	49.35	48.70	49.19	49.52	49.66	49.37
	С	72.87	72.81	72.04	72.40	73.17	74.32	75.62
	CCH₃	26.99	27.24	26.79	27.09	27.28	27.22	26.60
BHT	C(1)	151.55	152.51	151.47	152.05	152.42	152.85	
	C(2)	135.87	138.19	139.12	136.08	138.13	139.09	
	CH(3)	125.55	129.05	127.97	128.52	129.61	129.49	
	C(4)	128.27	126.03	124.85	125.83	126.38	126.11	
	CH₃Ar	21.20	21.31	20.97	21.40	21.23	21.38	
	CH₃C	30.33	31.61	31.25	31.34	31.50	31.15	
	С	34.25	35.00	34.33	34.35	35.05	35.36	
chloroform	CH	77.36	79.19	79.16	77.79	79.17	79.44	
cyclohexane	CH ₂	26.94	27.51	26.33	27.23	27.63	27.96	
1,2-dichloroethane	CH ₂	43.50	45.25	45.02	43.59	45.54	45.11	
dichloromethane	CH ₂	53.52	54.95	54.84	53.46	55.32	54.78	
diethyl ether	CH ₃	15.20	15.78	15.12	15.46	15.63	15.46	14.77
	CH ₂	65.91	66.12	62.05	65.94	66.32	66.88	66.42

¹³C Chemical Shifts for Common Contaminants in Deuterated Solvents (continued)

		CDCI ₃	(CD ₃) ₂ CO	(CD ₃) ₂ SO	C ₆ D ₆	CD ₃ CN	CD ₃ OD	D ₂ O
diglyme	CH ₃	59.01	58.77	57.98	58.66	58.90	59.06	58.67
	CH ₂	70.51	71.03	69.54	70.87	70.99	71.33	70.05
	CH ₂	71.90	72.63	71.25	72.35	72.63	72.92	71.63
1,2-dimethoxyethane	CH ₃	59.08	58.45	58.01	58.68	58.89	59.06	58.67
	CH ₂	71.84	72.47	17.07	72.21	72.47	72.72	71.49
dimethylacetamide	CH₃	21.53	21.51	21.29	21.16	21.76	21.32	21.09
	CO	171.07	170.61	169.54	169.95	171.31	173.32	174.57
	NCH₃	35.28	34.89	37.38	34.67	35.17	35.50	35.03
	NCH₃	38.13	37.92	34.42	37.03	38.26	38.43	38.76
dimethylformamide	CH	162.62	162.79	162.29	162.13	163.31	164.73	165.53
,	CH₃	36.50	36.15	35.73	35.25	36.57	36.89	37.54
	CH₃	31.45	31.03	30.73	30.72	31.32	31.61	32.03
dimethyl sulfoxide	CH ₃	40.76	41.23	40.45	40.03	41.31	40.45	39.39
dioxane	CH ₂	67.14	67.60	66.36	67.16	67.72	68.11	67.19
ethanol	CH₃	18.41	18.89	18.51	18.72	18.80	18.40	17.47
	CH ₂	58.28	57.72	56.07	57.86	57.96	58.26	58.05
ethyl acetate	CH₃CO	21.04	20.83	20.68	20.56	21.16	20.88	21.15
,	CO	171.36	170.96	170.31	170.44	171.68	172.89	175.26
	CH ₂	60.49	60.56	59.74	60.21	60.98	61.50	62.32
	CH ₃	14.19	14.50	14.40	14.19	14.54	14.49	13.92
ethyl methyl ketone	CH₃CO	29.49	29.30	29.26	28.56	29.60	29.39	29.49
carry meany necesse	CO	209.56	208.30	208.72	206.55	209.88	212.16	218.43
	CH₂CH₃	36.89	36.75	35.83	36.36	37.09	37.34	37.27
	CH ₂ CH ₃	7.86	8.03	7.61	7.91	8.14	8.09	7.87
ethylene alycol	CH ₂	63.79	64.26	62.76	64.34	64.22	64.30	63.17
ethylene glycol "grease"	CH ₂	29.76	30.73	29.20	30.21	30.86	31.29	00.17
<i>n</i> -hexane	CH ₃	14.14	14.34	13.88	14.32	14.43	14.45	
77116710110	CH ₂ (2)	22.70	23.28	22.05	23.04	23.40	23.68	
	CH ₂ (3)	31.64	32.30	30.95	31.96	32.36	32.73	
HMPA ^b	CH ₃	36.87	37.04	36.42	36.88	37.10	37.00	36.46
methanol	CH ₃	50.41	49.77	48.59	49.97	49.90	49.86	49.50°
nitromethane	CH ₃	62.50	63.21	63.28	61.16	63.66	63.08	63.22
<i>n</i> -pentane	CH ₃	14.08	14.29	13.28	14.25	14.37	14.39	00.22
77 peritane	CH ₂ (2)	22.38	22.98	21.70	22.72	23.08	23.38	
	CH ₂ (3)	34.16	34.83	33.48	34.45	34.89	35.30	
<i>i</i> -propanol	CH ₃	25.14	25.67	25.43	25.18	25.55	25.27	24.38
гргорапог	CH	64.50	63.85	64.92	64.23	64.30	64.71	64.88
pyridine	CH(2)	149.90	150.67	149.58	150.27	150.76	150.07	149.18
pyridine	CH(3)	123.75	124.57	123.84	123.58	127.76	125.53	125.12
	CH(4)	135.96	136.56	136.05	135.28	136.89	138.35	138.27
ailiaana graaga	CH ₃	1.04	1.40	130.05	1.38	130.03	2.10	130.27
silicone grease tetrahydrofuran	CH ₂	25.62	26.15	25.14	25.72	26.27	26.48	25.67
tetranyuroruran	CH ₂ O	67.97	68.07	67.03		68.33	68.83	
toluono					67.80			68.68
toluene	CH ₃	21.46	21.46	20.99	21.10 137.91	21.50	21.50	
	C(i)	137.89	138.48	137.35		138.90	138.85	
	CH(o)	129.07	129.76	128.88	129.33	129.94	129.91	
	CH(m)	128.26	129.03	128.18	128.56	129.23	129.20	
	CH(p)	125.33	126.12	125.29	125.68	126.28	126.29	0.07
triethylamine	CH₃	11.61	12.49	11.74	12.35	12.38	11.09	9.07
	CH ₂	46.25	47.07	45.74	46.77	47.10	46.96	47.19

^a See footnotes for Table 1. b $^{2}J_{PC}$ = 3 Hz. c Reference material; see text.

Reprinted with permission from J. Org. Chem. 1997, 62, 7512-7515

© 1997 American Chemical Society

NMR Formulae

Quantity	Formula (bold face = vectors)	Definitions (SI units) (see SI section for constants and units)
Magnetic Field Magnetic Force	$\mathbf{B} = \mu_o \ \mathbf{H}$ $\mathbf{F} = Q \ \mathbf{v} \times \mathbf{B}$	${m B}=$ magn. flux density, magn. induction (T) ${m H}=$ magn. field strength (A m $^{-1}$) ${\mu}_o=$ permeability of vacuum (4 π × 10 $^{-7}$ H m $^{-1}$) ${\cal Q}=$ elec. charge (C); $v=$ velocity (m/s)
Nuclear Spin Spin Angular Mom. Magn. Moment	$ \begin{array}{l} $	γ = magnetogyric ratio (rad s ⁻¹ T ⁻¹); $\hbar = h/2\pi$ $\beta_{\rm N} = \mu_{\rm B}$ (nuclear magneton); $g_{\rm I}$ = nuclear g factor $m_{\rm I}$ = quantum no. (- I , - I +1,+ I)
Zeeman Interaction Larmor Freq. Nutation Vector	$H = -\boldsymbol{\mu}_1 \cdot \boldsymbol{B}_0, E = -m_1 \gamma_1 \hbar B_0$ $\omega_0 = \gamma_1 B_0, v_0 = \gamma_1 B_0$ $\boldsymbol{\omega} = -\gamma_1 \boldsymbol{B}$	ω in rad s ⁻¹ , ν in Hz ($\Delta m_1 = \pm 1$), $\gamma = \gamma/2\pi$ (clockwise precession in lab frame for $\gamma > 0$)
Boltzmann Pop. Diff. Equil. Magn.	$\Delta N/N \sim \gamma_1 \hbar/2kT (\Delta m_1 = \pm 1)$ $M_0 = B_0 [N \gamma_1^2 \hbar^2 I(I+1) / 3kT]$	N = number of nuclei with spin $IT =$ temperature (K)
Rotating Frame (r.f.) and residual field	$\gamma \Delta \boldsymbol{B}_0 = \gamma \boldsymbol{B}_0 + \boldsymbol{\omega}_{\text{r.f.}}$ $\boldsymbol{\Omega} = -\gamma \Delta \boldsymbol{B}_0 = \boldsymbol{\omega}_0 - \boldsymbol{\omega}_{\text{r.f.}}$	$\omega_{\rm r.t.} = { m rot.}$ frame vector (detector freq.) in direction ω_0 (-z axis for $\gamma > 0$) $\Delta {\pmb B}_0 = { m residual}$ field in r.f. $\Omega = { m precession}$ freq. in r.f. (clockwise in r.f. for $\omega_0 > \omega_{\rm r.f.}$)
Effective RF Field Amplitude and Tilt Nutation	$\omega_1 = -\gamma B_1, B_{\rm eff} = B_1 + \Delta B_0$ $B_{\rm eff} = [B_1^2 + \Delta B_0^2]^{1/2}, \tan\theta = \Delta B_0/B_1$ $\beta_{\rm eff} ({\rm in \ rad}) = -\gamma B_{\rm eff} \tau_{\rm p}$ $\gamma B_{\rm eff} ({\rm in \ Hz}) = 1/(4\tau_{90})$	$m{B_1} = \text{RF field vector in } xy \text{plane; nutation is ccw}$ around $m{\omega_{\text{eff}}} = -\gamma m{B_{\text{eff}}}$, $\theta = \text{tilt angle between } m{B_{\text{eff}}}$ and xy -plane; for $\Delta B_0/B_1 < 0.1$: $\theta < 6^\circ$, $B_{\text{eff}} pprox B_1$ $\tau_p = \text{RF pulse width (s); } \tau_{90} = 90^\circ \text{pulse}$
Optimum flip angle	$\cos\beta_{\rm opt} = \exp(-TR/T_1)$	TR = pulse repetition time
Relaxation rates	spin-lattice: $R_1 = 1/T_1$ spin-spin: $R_2 = 1/T_2 = \pi \Delta v_0$	$\Delta \nu_{o}$ = natural Lorentzian linewidth at half-height
Bulk Susceptibility Correction	for cylindrical samples with external ref. in coaxial capillary $\delta_{\rm corr} = \delta_{\rm obs} + C \left(\chi_{\rm ref} - \chi_{\rm sample} \right)$	$C = +2\pi/3$ (tube perpendicular to B_0) $C = -4\pi/3$ (tube parallel to B_0)
Spin-echo amplitude in constant B₀ gradient	$M(2 \tau) = M_0 \exp[-2 \tau/T_2 - (2/3)(\gamma G)^2 D \tau^3]$	90- τ -180- τ Hahn echo with gradient G D = diffusion coeff. in gradient direction
Spin-echo attenuation in PFG-SE experiment	In $(S_{\text{echo}} / S_0) = -bD$ $b = (\gamma \delta G)^2 (\Delta - \delta/3)$	$G = B_0$ gradient pulse amplitude (T/m) $\delta = \text{pulse width}; \Delta = \text{pulse spacing}$
Rotational Correlation Time	Stokes-Einstein Relation $\tau_c = (4\pi \eta \ r^3) / (3kT)$	$ au_{\rm c} = { m rot.}$ correlation time for isotropic tumbling $\eta = { m viscosity}; \ r = { m molecular radius (sphere)}$
Nuclear Oberhauser Enhancement	$M_{\rm S}\{{\rm I}\}/M_{\rm S}(0)=1+0.5(\gamma_{\rm I}/\gamma_{\rm S})(R_{\rm I}^{\rm IS}/R_{\rm I}^{\rm S})$ (extreme narrowing; $\omega_{\rm STC}<<1$)	enhancement of spin S due to continuous irradiation of spin I; R_1^{IS} = dipolar relaxation of S via I ; R_1^{S} = relaxation of S via all mechanisms
Polarization Transfer	$M_{\rm S}{\rm PT}/M_{\rm S}(0) = \gamma_1/\gamma_{\rm S}$	PT from I to S via J _{IS}
Lorentzian Lineshape	$a(\omega) = R_2 / [R_2^2 + \Delta \omega^2]$ $\alpha(\omega) = \Delta \omega / [R_2^2 + \Delta \omega^2]$	$a(\omega),\ d(\omega)$ = absorption, dispersion signals $\Delta\omega=\omega$ - Ω

NMR Formulae

NMR Relaxation

Mechanisms (isotropic tumbling, SI units)	Remarks
Intramolecular Heteronuclear Dipole-Dipole Spin / relaxed by Spin S $R_1^{-1} = E_{\rm IS} \ r_{\rm IS}^{-6} \ [(1/12) J_0(\omega_1 - \omega_{\rm S}) + (3/2) J_1(\omega_1) + (3/4) J_2(\omega_1 + \omega_{\rm S})]$ $R_2^{-1} = E_{\rm IS} \ r_{\rm IS}^{-6} \ [(1/6) J_0(0) + (1/24) J_0(\omega_1 - \omega_{\rm S}) + (3/4) J_1(\omega_1) + (3/2) J_1(\omega_{\rm S}) + (3/8) J_2(\omega_1 + \omega_{\rm S})]$ where $E_{\rm IS} = (\mu_0/4\pi)^2 \ (\gamma_1 \ \gamma_S \ \hbar)^2 \ S(S+1)$ Extreme narrowing: $R_1^{-1} = (4/3) \ E_{\rm IS} \ r_{\rm IS}^{-6} \ \tau_{\rm c} \ (\omega \tau_{\rm c} <<1)$ For several spins S : use $\sum r_{\rm IS}^{-6}$ NB: $T_1^{-1} = 1/R_1^{-1}$ only when S is saturated	Factor $(\mu_0/4\pi)=10^{-7}$ is required for conversion from cgs-Gauss units to MKSA (SI) units. Spectral Densities for random isotropic rotation $J_q(\omega)=C_q\left[\tau_c/(1+\omega^2\tau_c^2)\right]$ $(q=0,1,2)$ $C_0=24/15;\ C_1=4/15;\ C_2=16/15$ extreme narrowing: $J_q(\omega)=C_q\ \tau_c$
Intramolecular Homonuclear Dipole-Dipole Spin I_k relaxed by Spin I_1 $R_1^{-1} = E_1 r_{kl}^{-6} (3/2) [J_1(\omega_l) + J_2(2\omega_l)]$ $R_{1p}^{-1} = E_1 r_{kl}^{-6} [(3/8)J_0(\omega_1) + (15/4)J_1(\omega_l) + (3/8)J_2(2\omega_l)]$ $R_2^{-1} = E_1 r_{kl}^{-6} [(3/8)J_0(0) + (15/4)J_1(\omega_l) + (3/8)J_2(2\omega_l)]$ where $E_1 = (\mu_0/4\pi)^2 \gamma_1^{-4} \hbar^2 I(I+1)$ Extreme narrowing: $R_1^{-1} = R_2^{-1} = 2 E_1 r_{kl}^{-6} \tau_c (\omega \tau_c << 1)$ For several spins I : use $\sum r_{kl}^{-6}$	
Intermolecular Heteronuclear Dipole-Dipole Spin / on mol. A relaxed by Spin S on mol. B ($\omega\tau_{\rm C}$ << 1) $R_1{}^{\rm I}$ = 16 π $c_{\rm S}$ $E_{\rm IS}$ / (27 $r_{\rm IS}$ $D_{\rm trans}$) (pair distribution function = step function)	$E_{\rm IS} = (\mu_0/4\pi)^2 \ (\gamma_1 \ \gamma_S \ \hbar)^2 \ S(S+1)$ $c_{\rm S} = {\rm conc. \ of \ spins \ } S$ $r_{\rm IS} = {\rm distance \ of \ closest \ approach}$ $D_{\rm trans} = (D_{\rm A} + D_{\rm B}) \ / \ 2$
Intermolecular Homonuclear Dipole-Dipole Spin / on mol. A relaxed by Spin / on mol. B ($\omega\tau_{\mathbb{C}} << 1$) $R_1{}^{1} = 8\pi c_1 E_1$ / (9 $r_{\text{II}} D_{\text{trans}}$) also found in the literature is: $R_1{}^{1} = (4\pi/3) c_1 E_1 (\tau/r_{\text{II}}{}^{3}) [1 + (2r_{\text{II}}{}^{2}/5 D_{\text{trans}} \tau)]$	$E_{\rm I} = (\mu_0/4\pi)^2 \gamma_{\rm I}^4 \hbar^2 I(I+1)$ $c_{\rm I} = {\rm conc. \ of \ spins \ } I$ $r_{\rm II} = {\rm distance \ of \ closest \ approach}$ $\tau = {\rm mol. \ jump \ time}$

Spherical Harmonics

Spherical harmonics up to rank 2 expressed in polar and orthogonal Cartesian coordinates

Y _{0,0}	$=$ $\sqrt{\frac{1}{4\pi}}$		
Y _{1,0}	$=$ $\sqrt{\frac{3}{4\pi}}\cos\theta$	=	$\sqrt{\frac{3}{4\pi}} \frac{z}{r}$
Y _{1,±1}	$= \overline{+} \sqrt{\frac{3}{8\pi}} \sin \theta \ e^{\pm i\varphi}$	=	$\mp \sqrt{\frac{3}{8\pi}} \frac{x \pm iy}{r}$
Y _{2,0}	$= \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$	=	$\sqrt{\frac{5}{16\pi}} \frac{2z^2 - x^2 - y^2}{r^2}$
Y _{2,±1}	$= \overline{+} \sqrt{\frac{15}{8\pi}} \cos \theta \sin \theta \ e^{\pm i\phi}$	=	$\mp \sqrt{\frac{15}{8\pi}} \frac{(x\pm iy)z}{r^2}$
Y _{2,±2}	$= \sqrt{\frac{15}{32\pi}} \sin^2 \theta \ e^{\pm 2i\varphi}$	=	$\sqrt{\frac{15}{32\pi}} \frac{(x\pm iy)^2}{r^2}$

NMR Formulae

Mechanisms (isotropic tumbling, SI units)	Remarks
Chemical Shift Anisotropy (CSA)	predominant relaxation mech. for non-
molecular tumbling modulates the interaction of the chem. shift tensor with the B_0 field. $R_1 = (2/5) E_{\rm CSA} [\tau_{\rm c} / (1 + \omega^2 \tau_{\rm c}^2)]$ $R_2 = (1/90) E_{\rm CSA} \{8\tau_{\rm c} + [6\tau_{\rm c} + (1 + \omega^2 \tau_{\rm c}^2)]\}$	predofiliant relaxation frieds. for holi- protonated X nuclei $E_{\rm CSA} = \gamma^2 \ B_0{}^2 \ \Delta \sigma^2$ $\Delta \sigma = \sigma_{\perp} - \sigma_{\parallel} \ ({\rm in \ ppm})$ (assuming axial symmetry of tensor)
Quadrupole Relaxation ($I > 1/2$) $R_1 = R_2 = (3/40) \ C_1 \ [1 + \eta^2/3] \ C_{OF}^2 \ \tau_c \ (\omega \tau_c << 1)$	$C_{\rm I} = (2I+3) / [P(2I-1)]$ $C_{\rm QF} = e^2 Q q_{\rm zz} / \hbar = {\rm quadrupolar}$ coupling in Hz; $\eta = {\rm asymmetry\ param.}$
Spin-Rotation Interaction (SR) Relaxation arises from the interaction of the nuclear spin with magnetic fields generated by the rotation of a molecular magnetic moment modulated by molecular collisions: $\left(\frac{1}{T_{\rm I}}\right)_{\rm SR} = \frac{2 \ h \ kT}{3 \ \hbar^2} \ C_{\rm eff}^2 \ \tau_{\rm J}$	
$I_{\rm i}=$ moment of inertia of the molecule $C_{\rm eff}=$ effective spin-rotational coupling constant $\tau_{\rm J}=$ angular momentum correlation time With $\tau_{\rm c}\cdot\tau_{\rm J}=\frac{I_{\rm i}}{6kT}$, we can introduce the reorientational correlation time and we obtain:	
$\begin{split} \left(\frac{1}{T_{\text{I}}}\right)_{\text{SC}} &= \frac{8\pi^2 J^2 S (S+1)}{3} \left[\frac{\tau_{\text{SC}}}{1+(\omega_{\text{I}}-\omega_{\text{S}})^2 \tau_{\text{SC}}^2}\right] \\ \left(\frac{1}{T_{\text{Z}}}\right)_{\text{SC}} &= \frac{4\pi^2 J^2 S (S+1)}{3} \left[\tau_{\text{SC}} + \frac{\tau_{\text{SC}}}{1+(\omega_{\text{I}}-\omega_{\text{S}})^2 \tau_{\text{SC}}^2}\right] \\ \tau_{\text{SC}} &= \tau_{\text{e}}, \text{ if exchange time } \tau_{\text{e}} \ll T_{\text{I}} \text{ of either spin (first kind)} \\ \tau_{\text{SC}} &= T_{\text{S}}^{\text{S}} \text{ (the relaxation time of spin S) if } T_{\text{S}}^{\text{S}} \ll \tau_{\text{e}}, 1/2\pi J \end{split}$	
(second kind) $\omega_{\rm I}$ and $\omega_{\rm S}$ are the resonance of I and S at the magnetic field in which $\left(\frac{1}{T_{\rm I,2}}\right)_{\rm SC}$ is measured.	