

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/12, 15/62, C07K 14/705, A61K 38/16, C12N 5/10, G01N 33/50, 33/566 // A01K 67/027

A2

(11) International Publication Number:

WO 97/05252

(43) International Publication Date:

13 February 1997 (13.02.97)

(21) International Application Number:

PCT/US96/12336

(22) International Filing Date:

25 July 1996 (25.07.96)

(30) Priority Data:

60/001,526

26 July 1995 (26.07.95)

(71) Applicant: NPS PHARMACEUTICALS, INC. [US/US]; Suite 241, 420 Chipeta Way, Salt Lake City, UT 84108-1256 (US).

(72) Inventors: FULLER, Forrest, H.; 1401 Military Way, Salt Lake City, UT 84103 (US). KRAPCHO, Karen, J.; 3340 San Raphael Avenue, Salt Lake City, UT 84109 (US). HAMMERLAND, Lance, G.; 3201 South 400 East, Bountiful, UT 84010 (US).

(74) Agents: WARBURG, Richard, J. et al.; Lyon & Lyon, First Interstate World Center, Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: CHIMERIC RECEPTORS AND METHODS FOR IDENTIFYING COMPOUNDS ACTIVE AT METABOTROPIC GLUTA-MATE RECEPTORS AND THE USE OF SUCH COMPOUNDS IN THE TREATMENT OF NEUROLOGICAL DISORDERS AND DISEASES

(57) Abstract

The present invention provides chimeric receptors. The chimeric receptors comprise at least one region homologous to a region of a metabotropic glutamate receptor and at least one region homologous to a region of a calcium receptor. The invention also includes methods of preparing such chimeric receptors, and methods of using such receptors to identify and characterize compounds which modulate the activity of metabotropic glutamate receptors or calcium receptors. The invention also relates to compounds and methods for modulating metabotropic glutamate receptor activity and binding to metabotropic glutamate receptors. Modulation of metabotropic glutamate receptor activity can be used for different purposes such as treating neurological disorders and diseases, inducing an analgesic effect, cognition enhancement, and inducing a muscle-relaxant effect.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	•				
AM	Armenia	_GB,	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium .	HU	Hungary	NO	Norway
BF	Burkina Faso	ΙE	Ireland	NZ	New Zealand
. BG	Bulgaria	ΙT	Italy	PL	Poland
BJ ·	Benin	JP -	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	•	of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	KZ	Kazakhsian	SI	Slovenia
CI	Côte d'Ivoire	· u	Liechtensteln	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN .	Senegal
CN	China	LR	Liberia .	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco -	11	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI ·	Finland	ML	Mail .	110	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MIR	Mauritania	VN	Viet Nam
•		*****		414	4 104 14 WH

WO 97/05252

PCT/US96/12336

CHIMERIC RECEPTORS AND METHODS FOR IDENTIFYING COMPOUNDS ACTIVE AT METABOTROPIC GLUTAMATE RECEPTORS AND THE USE OF SUCH COMPOUNDS IN THE TREATMENT OF NEUROLOGICAL DISORDERS AND DISEASES

5

10

15

FIELD OF THE INVENTION

The present invention relates to chimeric receptors containing one or more regions homologous to a metabotropic glutamate receptor and one or more regions homologous to a calcium receptor.

20

BACKGROUND OF THE INVENTION

The following description provides a summary of information relevant to the present invention. It is not an admission that any of the information provided herein is prior art to the presently claimed invention, nor that

any of the publications specifically or implicitly referenced are prior art to that invention.

Clutamate is the major excitatory neurotransmitter in the mammalian brain. Glutamate produces its effects on central neurons by binding to and thereby activating cell surface receptors. These receptors have been subdivided into two major classes, the ionotropic and metabotropic glutamate receptors, based on the structural features of the receptor proteins, the means by which the receptors transduce signals into the cell, and pharmacological profiles.

ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that, upon binding glutamate, open to allow the selective influx of certain monovalent and divalent cations, thereby depolarizing the cell membrane. In addition, certain iGluRs with relatively high calcium permeability can activate a variety of calcium-dependent intracellular processes. receptors are multisubunit protein complexes that may be homomeric or heteromeric in nature. The various iGluR subunits all share common structural motifs, including a relatively large amino-terminal extracellular domain (ECD), followed by a multiple transmembrane domain (TMD) comprising two membrane-spanning regions (TMs), a second smaller intracellular loop, and a third TM, before terminating with an intracellular carboxy-terminal domain Historically the iGluRs were first subdivided pharmacologically into three classes based on preferential activation by the agonists alpha-amino-3-hydroxy-5-methyl-

isoxazole-4-propionic acid (AMPA), kainate (KA), and N-methyl-D-aspartate (NMDA). Later, molecular cloning studies coupled with additional pharmacological studies revealed a greater diversity of iGluRs, in that multiple subtypes of AMPA, KA and NMDA receptors are expressed in the mammalian CNS (Hollman and Heinemann, Ann. Rev. Neurosci. 7:31, 1994).

The metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors capable of activating a variety of intracellular second messenger systems following the binding of glutamate or other potent agonists including quisqualate and l-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) (Schoepp et al., Trends Pharmacol. Sci. 11:508, 1990; Schoepp and Conn, Trends Pharmacol. Sci. 14:13, 1993).

Activation of different metabotropic glutamate receptor subtypes in situ elicits one or more of the following responses: activation of phospholipase C, increases in phosphoinositide (PI) hydrolysis, intracellular calcium release, activation of phospholipase 20 D, activation or inhibition of adenylyl cyclase, increases and decreases in the formation of cyclic adenosine monophosphate (cAMP), activation of guanylyl cyclase, the formation of cyclic guanosine increases in 25 monophosphate (cGMP), activation of phospholipase A2, increases in arachidonic acid release, and increases or decreases in the activity of voltage- and ligand-gated ion channels (Schoepp and Conn, Trends Pharmacol. Sci. 14:13,

1993; Schoepp, Neurochem. Int. 24:439, 1994; Pin and Duvoisin, Neuropharmacology 34:1, 1995).

Thus far, eight distinct mGluR subtypes have been isolated via molecular cloning, and named mGluR1 to mGluR8 5 according to the order in which they were discovered (Nakanishi, Neuron 13:1031, 1994, Pin and Duvoisin, Neuropharmacology 34:1, 1995; Knopfel et al., J. Med. Chem. 38:1417, 1995). Further diversity occurs through the expression of alternatively spliced forms of certain mGluR subtypes (Pin et al., PNAS 89:10331, 1992; Minakami et al., BBRC 199:1136, 1994). All of the mGluRs are structurally similar, in that they are single subunit membrane proteins possessing a large amino-terminal extracellular domain (ECD) followed by seven putative transmembrane domain (7TMD) comprising seven putative membrane spanning helices connected by three intracellular and three extracellular loops, and an intracellular carboxy-terminal domain of variable length (cytoplasmic tail) (CT) (see, Schematic Figure 1a).

The eight mGluRs have been subdivided into three groups based on amino acid sequence identities, the second messenger systems they utilize, and pharmacological characteristics (Nakanishi, Neuron 13:1031, 1994; Pine and Duvoisin, Neuropharmacology 34:1, 1995; Knopfel et al., J. Med. Chem. 38:1417, 1995). The amino acid identity between mGluRs within a given group is approximately 70% but drops to about 40% between mGluRs in different groups. For mGluRs in the same group, this relatedness is roughly

5

paralleled by similarities in signal transduction mechanisms and pharmacological characteristics.

The Group I mGluRs comprise mGluR1, mGluR5 and their alternatively spliced variants. The binding of agonists 5 to these receptors results in the activation of phospholipase C and the subsequent mobilization of intracellular calcium. For example, Xenopus oocytes expressing recombinant mGluR1 receptors have been utilized to demonstrate this effect indirectly electrophysiological means (Masu et al., Nature 349:760, 1991; Pin et al., PNAS 89:10331, 1992). Similar results were achieved with oocytes expressing recombinant mGluR5 receptors (Abe et al., J. Biol. Chem. 267:13361, 1992; Minakami et al., BBRC 199:1136, 1994). Alternatively, agonist activation of recombinant mGluR1 receptors expressed in Chinese hamster ovary (CHO) cells stimulated PI hydrolysis, cAMP formation, and arachidonic acid release as measured by standard biochemical assays (Aramori and Nakanishi, Neuron 8:757, 1992). In comparison, activation of mGluR5 receptors expressed in CHO cells stimulated PI hydrolysis and subsequent intracellular calcium transients but no stimulation of cAMP formation or arachidonic acid release was observed (Abe et al., J. Biol. Chem. 267:13361, 1992). The agonist 25 potency profile for Group I mGluRs is quisqualate > glutamate ibotenate > (2S,1'S,2'S)-2-(L-CCG-I) > (1S,3R)-1carboxycyclopropyl)glycine aminocyclopentane-1,3-dicarboxylic acid (ACPD). Quisqualate is relatively selective for Group I receptors,

as compared to Group II and Group III mGluRs, but it also potently activates ionotropic AMPA receptors (Pin and Duvoisin, Neuropharmacology, 34:1, Knopfel et al., J. Med. Chem. 38:1417, 1995).

The Group II mGluRs include mGluR2 and mGluR3.

Activation of these receptors as expressed in CHO cells inhibits adenylyl cyclase activity via the inhibitory G protein, Gi, in a pertussis toxin-sensitive fashion (Tanabe et al., Neuron 8:169, 1992; Tanabe et al., Neurosci.

10 13:1372, 1993). The agonist potency profile for Group II receptors is L-CCG-I>glutamate>ACPD>ibotenate>quisqualate.

Preliminary studies suggest that L-CCG-I and (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) are both relatively selective agonists for the Group II receptors (Knopfel et al., J. Med. Chem. 38:1417, 1995).

The Group III mGluRs include mGluR4, mGluR6, mGluR7 and mGluR8. Like the Group II receptors these mGluRs are negatively coupled to adenylate cyclase to inhibit intracellular cAMP accumulation in a pertussis toxinsensitive fashion when expressed in CHO cells (Tanabe et al., J. Neurosci. 13:1372, 1993; Nakajima et al., J. Biol. Chem. 268:11868, 1993; Okamoto et al., J. Biol. Chem. 269:1231, 1994; Duvoisin et al., J. Neurosci. 15:3075, 1995). As a group, their agonist potency profile is (S)-2-amino-4-phosphonobutyric acid (L-AP4)>glutamate>ACPD>quisqualate, but mGluR8 may differ slightly with glutamate being more potent than L-AP4 (Knopfel et al., J. Med. Chem. 38:1417, 1995; Duvoisin et

7

al., J. Neurosci. 15:3075, 1995). Both L-AP4 and (S)-serine-O-phosphate (L-SOP) are relatively selective agonists for the Group III receptors.

Finally, the eight mGluR subtypes have unique patterns 5 of expression within the mammalian CNS that in many instances are overlapping (Masu et al., Nature 349:760, 1991; Martin et al., Neuron 9:259, 1992; Ohishi et al., Neurosci. 53:1009, 1993; Tanabe et al., J. Neurosci. 13:1372; Ohishi et al., Neuron 13:55, 1994, Abe et al., J. Biol. Chem. 267:13361, 1992; Nakajima et al., J. Biol. Chem. 268:11868, 1993; Okamoto et al., J. Biol. Chem. 269:1231, 1994; Duvoisin et al., J. Neurosci. 15:3075, 1995). As a result certain neurons may express only one particular mGluR subtype, while other neurons may express multiple subtypes that may be localized to similar and/or different locations on the cell (i.e., postsynaptic dendrites and/or cell bodies versus presynaptic axon Therefore, the functional consequences of terminals). mGluR activation on a given neuron will depend on the particular mGluRs being expressed; the receptors' affinities for glutamate and the concentrations of glutamate the cell is exposed to; the signal transduction pathways activated by the receptors; and the locations of the receptors on the cell. A further level of complexity may be introduced by multiple interactions between mGluR expressing neurons in a given brain region. As a result of these complexities, and the lack of subtype-specific mGluR agonists and antagonists, the roles of particular mGluRs in physiological and pathophysiological processes affecting neuronal function are not well defined. Still, work with the available agonists and antagonists have yielded some general insights about the Group I mGluRs as compared to the Group II and Group III mGluRs.

Attempts at elucidating the physiological roles of Group I mGluRs suggest that activation of these receptors elicits neuronal excitation. Various studies have demonstrated that ACPD can produce postsynaptic excitation upon application to neurons in the hippocampus, cerebral cortex, cerebellum, and thalamus as well as other brain 10 regions. Evidence indicates that this excitation is due to direct activation of postsynaptic mGluRs, but it has also been suggested to be mediated by activation of presynaptic mGluRs resulting in increased neurotransmitter release (Baskys, Trends Pharmacol. Sci. 15:92, 1992; Schoepp, Neurochem. Int. 24:439, 1994; Pin and Duvoisin, Neuropharmacology 34:1). Pharmacological experiments implicate Group I mGluRs as the mediators of this excitation. The effect of ACPD can be reproduced by low 20 concentrations of quisqualate in the presence of iGluR antagonists (Hu and Storm, Brain Res. 568:339, 1991; Greene et al. Eur. J. Pharmacol. 226:279, 1992), and two phenylglycine compounds known to activate mGluR1, (S)-3hydroxyphenylglycine ((S)-3HPG)(S) - 3, 5 and dihydroxyphenylglycine ((S)-DHPG), also produce the excitation (Watkins and Collingridge, Trends Pharmacol. Sci. 15:333, 1994). In addition, the excitation can be blocked by (S)-4-carboxyphenylglycine ((S)-4CPG), (S)-4carboxy-3-hydroxyphenylglycine ((S)-4C3HPG) and (+)-alphamethyl-4-carboxyphenylglycine ((+)-MCPG), compounds known to be mGluR1 antagonists (Eaton et al., Eur. J. Pharmacol. 244:195, 1993; Watkins and Collingridge, Trends Pharmacol. Sci. 15:333, 1994).

Other studies examining the physiological roles of mGluRs indicate that activation of presynaptic mGluRs can block both excitatory and inhibitory synaptic transmission by inhibiting neurotransmitter release (Pin and Duvoisin, Neuropharmacology 34:1). Presynaptic blockade of 10 excitatory synaptic transmission by ACPD has been observed on neurons in the visual cortex, cerebellum, hippocampus, striatum and amygdala (Pin et al., Curr. Neurodegenerative Disorders 1:111, 1993), while similar blockade of inhibitory synaptic transmission has been demonstrated in the striatum and olfactory bulb (Calabresi et al., Neurosci. Lett. 139:41; 1992; Hayashi et al., Nature 366:687, 1993). Multiple pieces of evidence suggest that Group II mGluRs mediate this presynaptic inhibition. Group II mGluRs are strongly coupled to inhibition of adenylyl cyclase, like alpha2-adrenergic and 20 $SHT_{1\lambda}$ -serotonergic receptors which are known to mediate presynaptic inhibition of neurotransmitter release in other neurons. The inhibitory effects of ACPD can also be mimicked by L-CCG-I and DCG-IV, which are selective agonists at Group II mGluRs (Hayashi et al., Nature 366:687, 1993; Jane et al., Br. J. Pharmacol. 112:809, 1994). Moreover, it has been demonstrated that activation of mGluR2 can strongly inhibit presynaptic, N-type calcium channel activity when the receptor is expressed in

sympathetic neurons (Ikeda et al., Neuron 14:1029, 1995), and inactivation of these channels is known to inhibit neurotransmitter release. Finally, it has been observed that L-CCG-I, at concentrations selective for Group II mGluRs, inhibits the depolarization-evoked release of ³H-aspartate from rat striatal slices (Lombardi et al., Br. J. Pharmacol. 110:1407, 1993). Evidence for physiological effects of Group II mGluR activation at the postsynaptic level is limited. However, one study suggests that postsynaptic actions of L-CCG-I can inhibit NMDA receptor activation in cultured mesencephalic neurons (Ambrosini et al., Mol. Pharmacol. 47:1057, 1995).

Physiological studies have demonstrated that L-AP4 can also inhibit excitatory synaptic transmission on a variety 15 of CNS neurons. Included are neurons in the cortex, hippocampus, amygdala, olfactory bulb and spinal cord (Koerner and Johnson, Excitatory Amino Acid Receptors: Design of Agonists and Antagonists p. 308, 1992; Pin et al., Curr. Drugs: Neurodegenerative Disorders 1:111, The accumulated evidence indicates that the 1993). inhibition is mediated by activation of presynaptic mGluRs. Since the effects of L-AP4 can be mimicked by L-SOP, and these two agonists are selective for Group III mGluRs, members of this mGluR group are implicated as the mediators of the presynaptic inhibition (Schoepp, Neurochem. Int. 24:439, 1994; Pin and Duvoisin, Neuropharmacology 34:1). In olfactory bulb neurons it has been demonstrated that L-AP4 activation of mGluRs inhibits presynaptic calcium currents (Trombley and Westbrook, J.

Neurosci. 12:2043, 1992). It is therefore likely that the mechanism of presynaptic inhibition produced by activation of Group III mGluRs is similar to that for Group II mGluRs, i.e., blockade of N-type calcium channels and inhibition of neurotransmitter release. L-AP4 is also known to act postsynaptically to hyperpolarize ON bipolar cells in the retina. It has been suggested that this action may be due to activation of a mGluR, which is coupled to the cGMP phosphodiesterase in these cells (Schoepp, Neurochem. Int. 24:439, 1994; Pin and Duvoisin, Neuropharmacology 34:1).

Metabotropic glutamate receptor activation studies using agonists, antagonists and recombinant vertebrate cell lines expressing mGluRs have been used to evaluate the cellular effects of the stimulation and the inhibition of different metabotropic glutamate receptors. example, agonist stimulation of mGluR1 expressed in oocytes demonstrated coupling of Xenopus receptor activation to mobilization of intracellular calcium as assessed indirectly using electrophysiology techniques (Masu et al., Nature 349:760-765, 1991). Agonist stimulation of mGluR1 expressed in CHO cells stimulated PI hydrolysis, cAMP formation and arachidonic acid release (Aramori and Nakanishi, Neuron 8:757-765, 1992). Agonist stimulation of mGluR5 expressed in CHO cells also stimulated PI hydrolysis which was shown to be associated with a transient increase in cytosolic calcium as assessed by loading cells with the fluorescent calcium chelator fura-2 (Abe et al., J. Biol. Chem. 267:13361-13368, 1992).

Agonist-induced activation of mGluR1 and mGluR5 induced PI hydrolysis in CHO cells was not antagonized by AP3 and AP4, which are both antagonists of glutamate-stimulated PI hydrolysis in situ (Nicoletti et al., Proc. Natl. Acad. Sci. USA 833:1931-1935, 1986; Schoepp and Johnson, J. Neurochem. 53:273-278, 1989). Agonist stimulation of CHO cells expressing mGluR2 (Tanabe et al., Neuron 8:169-179, 1992) or mGluR7 (Okamoto et al., J. Biol. Chem. 269:1231-1236, 1994) resulted in receptor-mediated inhibition of cAMP formation and also confirmed the ligand specificity previously observed in situ. Studies using agonists were also carried out in conjunction with site-directed mutagenesis to reveal specific amino acids playing important roles in glutamate binding (O'Hara et al., Neuron 11:41-52, 1993).

Metabotropic glutamate receptors (mGluRs) have been implicated in a variety of neurological pathologies including stroke, head trauma, spinal cord injury, epilepsy, ischemia, hypoglycemia, anoxia, and neurodegenerative diseases such as Alzheimer's disease (Schoepp and Conn, Trends Pharmacol. Sci. 14:13, 1993; Cunningham et al., Life Sci. 54: 135, 1994; Pin et al., Neuropharmacology 34:1, 1995; Knopfel et al., J. Med. Chem. 38:1417, 1995;). A role for metabotropic glutamate 25 receptors in nociception and analgesia has also been demonstrated (Meller et al., Neuroreport 4:879, 1993). Metabotropic glutamate receptors have also been shown to be required for the induction of hippocampal long-term potentiation and cerebellar long-term depression (Bashir et al., Nature 363:347, 1993; Bortolotto et al., Nature 368:740, 1994; Aiba et. al. Cell 79: 365 and Cell 79: 377, 1994).

Metabotropic glutamate receptor agonists have been reported to have effects on various physiological For example, trans-ACPD was reported to activities. possess both proconvulsant and anticonvulsant effects (Zheng and Gallagher, Neurosci. Lett. 125:147, 1991; Sacaan and Schoepp, Neurosci. Lett. 139:77, 1992; Taschenberger et al., Neuroreport 3:629, 1992; Sheardown, Neuroreport 3:916, 1992), and neuroprotective effects in vitro and in vivo (Pizzi et al., J. Neurochem. 61:683, 1993; Koh et al., Proc. Natl. Acad. Sci. USA 88:9431, 1991; Birrell et al., Neuropharmacol. 32:1351, 1993; 15 Siliprandi et al., Eur. J. Pharmacol. 219:173, 1992; Chiamulera et al., Eur. J. Pharmacol. 216:335, 1992). -The metabotropic glutamate receptor antagonist L-AP3 was shown to protect against hypoxic injury in vitro (Opitz and Reymann, Neuroreport 2:455, 1991). A subsequent study 20 reported that trans-ACPD produced neuroprotection which antagonized by L-AP3 (Opitz and Reymann, Neuropharmacol. 32:103, 1993). (5)-4C3HPG was shown to protect against audiogenic seizures in DBA/2 mice (Thomasen et al., J. Neurochem. 62:2492, 1994). Other 25 modulatory effects expected of metabotropic glutamate receptor modulators include synaptic transmission, neuronal death, neuronal development, synaptic plasticity, spatial learning, olfactory memory, central control of cardiac activity, waking, control of movements, and control of vestibulo ocular reflex (for reviews, see Nakanishi, Neuron 13:1031-37, 1994; Pin et al., Neuropharmacology 34:1, 1995; Knopfel et al., J. Med. Chem. 38:1417, 1995).

The structures of mGluR-active molecules currently 5 known in the art are limited to amino acids which appear to act by binding at the glutamate binding site (Pin, et al, Neuropharmacology 34:1, 1995; Knopfel et al., J. Med. Chem. 38:1418). This limits the range of pharmacological properties and potential therapeutic utilities of such Furthermore, the range of pharmacological compounds. specificities associated with these mGluR-active molecules does not allow for complete discrimination between different subtypes of metabotropic glutamate receptors 15 (Pin et al., Neuropharmacology 34:1, 1995 and Knopfel et al., J. Med. Chem. 38:1418). Rapid progress in the field of mGluR-active molecules cannot be made until more potent and more selective mGluR agonists, antagonists and modulators are discovered (Pin et al., Neuropharmacology 34:1, 1995; Knopfel et al., J. Med. Chem. 38:1418). Indeed, no mGluR-active molecules are presently under clinical development. High throughput functional screening of compounds and compound libraries using cell lines expressing individual mGluRs represents an important 25 approach to identifying such novel compounds (Knopfel et al., J. Med. Chem. 38:1418).

Several laboratories have constructed cell lines expressing metabotropic glutamate receptors which appear to function appropriately (Abe et al., J. Biol. Chem.

267:13361, 1992; Tanabe et al., Neuron 8:169, 1992; Aramori and Nakanishi, Neuron 8:757, 1992, Nakanishi, Science 258:597, 1992; Thomsen et al., Brain Res. 619:22, 1992; Thomsen et al., Eur. J. Pharmacol. 227:361, 1992; O'Hara et al., Neuron 11:41, 1993; Nakjima et al., J. Biol. Chem. 268:11868, 1993; Tanabe et al., J. Neurosci. 13:1372, 1993; Saugstad et al., Mol. Pharmacol. 45:367, 1994; Okamoto et al., J. Biol. Chem. 269:1231, 1994; Gabellini et al., Neurochem. Int. 24:533, 1994; Lin et al., Soc. Neurosci. Abstr. 20:468, 1994; Flor et al., Soc. Neurosci. Abstr. 20:468, 1994; Flor et Neuropharmacology 34:149, 1994). Other reports have noted that expression of functional mGluR expressing cell lines. is not predictable. For example, Tanabe et al., (Neuron 15 8:169, 1992) were unable to demonstrate functional expression of mGluR3 and mGluR4, and noted difficulty obtaining expression of native mGluR1 in CHO cells. Gabellini ét al., (Neurochem. Int. 24:533, 1994) also noted difficulties with mGluR1 expression in HEK 293 cells and it is possible that some of these difficulties may be 20 due to desensitization characteristics of these receptors. Furthermore, screening methodologies useful identification of compounds active at Class I mGluRs are not readily amenable to identification of compounds active at class II and III mGluRs and vice versa due to the 25 differences in second messenger coupling. Finally, mGluRs have been noted to rapidly desensitize upon agonist stimulation which may adversely affect the viability of

glutamate, asparagine and, to a lesser extent, methionine; the nonpolar aliphatic amino acids glycine, alanine, valine, isoleucine, and leucine (however, because of size, glycine and alanine are more closely related and valine, isoleucine and leucine are more closely related); and the aromatic amino acids phenylalanine, tryptophan, and tyrosine. In addition, although classified in different categories, alanine, glycine, and serine seem to be interchangeable to some extent, and cysteine additionally fits into this group, or may be classified with the polar neutral amino acids.

While proline is a nonpolar neutral amino acid, its replacement represents difficulties because of its effects on conformation. Thus, substitutions by or for proline are not preferred, except when the same or similar conformational results can be obtained. The conformation conferring properties of proline residues may be obtained if one or more of these is substituted by hydroxyproline (Hyp).

20 Examples of modified amino acids include following: altered neutral nonpolar amino acids such as ω amino acids of the formula $H_2N(CH_2)_nCOOH$ where n is 2-6, sarcosine (Sar), t-butylalanine (t-BuAla), t-butylglycine (t-BuGly), N-methyl isoleucine (N-MeIle), and norleucine (Nleu); altered neutral aromatic amino acids such as 25 phenylglycine; altered polar, but neutral amino acids such citrulline (Cit) and methionine sulfoxide altered neutral and nonpolar amino acids cyclohexyl alanine (Cha); altered acidic amino acids such

as cysteic acid (Cya); and altered basic amino acids such as ornithine (Orn).

Preferred derivatives have one or more amino acid alteration(s) which do not significantly affect the 5 receptor activity of the related receptor protein. In regions of the receptor protein not necessary for receptor activity amino acids may be deleted, added or substituted with less risk of affecting activity. In regions required for receptor activity, amino acid alterations are less preferred as there is a greater risk of affecting receptor Such alterations should be conservative activity. alterations. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent.

Conserved regions tend to be more important protein activity than non-conserved regions. procedures can be used to determine the conserved and nonconserved regions important of receptor activity using in 20 vitro mutagenesis techniques or deletion analyses and measuring receptor activity as described by the present disclosure.

Derivatives can be produced using standard chemical techniques and recombinant nucleic acid techniques. Modifications to a specific polypeptide may be deliberate, as through site-directed mutagenesis and amino acid substitution during solid-phase synthesis, or may be accidental such as through mutations in hosts which produce the polypeptide. Polypeptides including derivatives can be obtained using standard techniques such as those described in Section I.G.2. supra, and by Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press (1989). For example, Chapter 15 of Sambrook describes procedures for site-directed mutagenesis of cloned DNA.

By "hyperalgesia" is meant an increased response to a stimulus that is normally painful.

By "minimal" is meant that any side effect of the drug is tolerated by an average individual, and thus that the drug can be used for therapy of the target disease or disorders. Such side effects are well known in the art. Preferably, minimal side effects are those which would be regarded by the FDA as tolerable for drug approval for a target disease or disorder.

By "modulate" is meant to cause an increase or decrease in an activity of a cellular receptor.

By "modulator" is meant a compound which modulates a receptor, including agonists, antagonists, allosteric modulators, and the like. Preferably, the modulator binds to the receptor.

By "muscle relaxant" is meant a compound that reduces muscular tension.

By "neuralgia" is meant pain in the distribution of a 25 nerve or nerves.

By "neurodegenerative disease" is meant a neurological disease affecting cells of the central nervous system resulting in the progressive decrease in the ability of cells of the nervous system to function properly.

Examples of neurodegenerative diseases include Alzheimer's disease, Huntington's disease, and Parkinson's disease.

By "neurological disorder or disease" is meant a disorder or disease of the nervous system. Examples of neurological disorders and diseases include global and focal ischemic and hemorrhagic stroke, head trauma, spinal cord injury, hypoxia-induced nerve cell damage as in cardiac arrest or neonatal distress, and epilepsy.

By "neuroprotectant activity" is meant efficacy in treatment of the neurological disorders or diseases.

By "physically detectable means" is meant any means known to those of ordinary skill in the art to detect binding to or modulation of mGluR or CaR receptors, including the binding and screening methods described herein. Thus, for example, such means can include spectroscopic methods, chromatographic methods, competitive binding assays, and assays of a particular cellular function, as well as other techniques.

By "potent" is meant that the compound has an EC₅₀ value (concentration which produces a half-maximal activation), or IC₅₀ (concentration which produces half-maximal inhibition), or K_d (concentration which produces half-maximal binding) at a metabotropic glutamate receptor, with regard to one or more receptor activities, of less than 100 μ M, more preferably less than 10 μ M, and even more preferably less than 1 μ M.

By "selective" is meant that the compound activates, inhibits activation and/or binds to a metabotropic glutamate receptor at a lower concentration than that at

which the compound activates, inhibits activation and/or binds to an ionotropic glutamate receptor. Preferably, the concentration difference is a 10-fold, more preferably 50-fold, and even more preferably 100-fold.

By "therapeutically effective amount" is meant an 5 a compound which produces amount of the desired therapeutic effect in a patient. For example, reference to a disease or disorder, it is the amount which reduces to some extent one or more symptoms of the disease 10 or disorder, and returns to normal, either partially or completely, physiological or biochemical parameters associated or causative of the disease or disorder. When used to therapeutically treat a patient it is an amount expected to be between 0.1 mg/kg to 100 mg/kg, preferably 15 less than 50 mg/kg, more preferably less than 10 mg/kg, more preferably less than 1 mg/kg. Preferably, the amount provides an effective concentration at a metabotropic glutamate receptor of about 1 nM to 10 μM of the compound. The amount of compound depend on its EC_{50} (IC₅₀ in the case 20 of an antagonist) and on the age, size, and disease associated with the patient.

II. Techniques

A. Chimeric Receptors and General Approach to Uses

As indicated in the Summary above, this invention concerns chimeric receptors, which include portions of both metabotropic glutamate receptor and calcium receptor proteins. It also is concerned with fragments of metabotropic glutamate receptors and calcium receptors.

49

Related aspects include nucleic acids encoding such chimeric receptors and fragments, uses of such receptors, fragments and nucleic acids, and cell lines expressing such nucleic acids. The uses disclosed include methods of screening for compounds that bind to or modulate the activity of metabotropic glutamate receptors or calcium receptors using such chimeric receptors and fragments. The invention also includes compounds for modulating metabotropic glutamate receptors or calcium receptors identified by such methods of screening, and methods for treating certain disorders or for modulating metabotropic glutamate receptors or calcium receptors utilizing such compounds.

10

15

20

25

Experiments carried out on several distinct G-protein coupled receptors have suggested the general principle that G-protein coupling specificity and receptor desensitization are determined primarily by amino acid sequences which are intracellular (i.e., sequences within one or more of the three cytoplasmic loops and/or the intracellular cytoplasmic tail). Recent experiments in which chimeric receptors were formed by combining distinct protein segments from different metabotropic glutamate receptors (mGlurs), suggest that, in these receptors, ligand binding specificity is determined by the extracellular domain.

Thus, preferred embodiments of the present invention include chimeric receptors consisting of the extracellular domain (ECD) of an mGluR and the seven-transmembrane domain (7TMD) and the intracellular cytoplasmic tail (CT)

50

of a calcium receptor (CaR) that responds to mGluR-active molecules by signal transduction analogous to observed when CaR-active molecules act on a CaR.

Similarly, in other preferred embodiments, invention includes chimeric receptors in which the intracellular cytoplasmic C-terminal tail domain of a chosen mGluR is replaced by the C-terminal tail of a calcium receptor. The C-terminal tail encompasses the cytoplasmic region which follows the seventh transmembrane region.

10

25

Preferred embodiments of the invention also include chimeric receptors in which the peptide sequences encompassing all or some of the cytoplasmic loop domains (between the first and second, the third and fourth, and the fifth and sixth transmembrane regions) of an mGluR 15 have been replaced similarly with corresponding peptide sequences from one or more CaRs. In particular such embodiments include chimeric receptors having the ECD of an mGluR, the 7TMD of an mGluR, and the C-terminal tail of a calcium receptor, except that one or more sub-domains of the 7-TMD are substituted with sequences from a CaR. specifically includes receptors in which one or more of the cytoplasmic loops of the 7TMD are replaced with sequences from a CaR. Such substitution of cytoplasmic loops may be done singly or in any combination. general, using techniques known to those skilled in the art, such target "domains" and "sub-domains" "swapped" individually or in combination.

These chimeric receptors are unknown in the art and their function is unexpected because functional chimeric receptors had previously been successfully constructed only by combining portions of much more closely related receptors. Indeed, the sequence identity between metabotropic glutamate receptors and calcium receptors is only about 19-25%, and the two types of receptors share only about 25-30% sequence similarity (Brown E.M. et al., Nature 366:575, 1993).

Experiments have shown that ligands known in the art 10 which are agonists or antagonists on the native mGluRs also exhibit such activities on the chimeric receptors in which the extracellular domain is from an mGluR. ligands which bind to the ECD and modulate the activity of mGluRs, for example, agonists, antagonists, allosteric modulators and the like, are also predicted to act on such chimeric receptors. Experiments have also shown that ligands known in the art which modulate mGluRs act on the chimeric receptors in which the ECD and 7TMD are from an Other ligands which modulate mGluR activity are 20 mGluR. also predicted to act on this type of chimeric receptors regardless of whether they bind the ECD or 7TMD of mGluRs.

The chimeric receptors are linked to intracellular or second messenger functions in a similar fashion to the linkage known for non-modified calcium receptors. For example, as is the case for CaRs, the chimeric receptors are also coupled through a G-protein(s) to the activation of phospholipase C, to the generation of inositol phosphates and/or to the release of calcium ions from

25

52

intracellular stores. Although the mGluRs desensitize upon ligand binding/activation, the CaRs do not, allowing for more efficient high-throughput screening of compounds active at the CaR and stable receptor 5 expression in recombinant cell lines. Importantly, the chimeric mGluR/CaR receptors do not rapidly desensitize upon ligand binding/activation and can be therefore efficiently used for high throughput screening. addition, the chimeric receptors can be functionally expressed in stable cell lines.

10

Cells expressing such chimeric receptors can prepared and used in functional assays to identify compounds which modulate activities of selected mGluRs. For example, increases in intracellular calcium levels resulting from receptor activation can be monitored by use of fluorescent calcium chelating dyes. Functional assays have been described for identifying molecules active at calcium receptors (see for example, published PCT patent application "Calcium Receptor-Active Molecules," PCT No. 20 US93/01642 (WO94/18959), published September 1994 hereby incorporated by reference herein in its entirety).

increasingly common practice in modern drug discovery is the use of various target-site-specific assays to identify specific molecules with activities of interest. These assays select drug lead molecules from 25 large collections or libraries of molecules combinatorial libraries, proprietary compound libraries held by large drug companies, etc.). Drug lead molecules are "selected" when they bind to pharmacological targets

of interest and thus potentially modify the activities of these targets. The assays can be of many types including direct binding displacement assays or indirect functional assays. In order to successfully develop and use an assay to isolate lead therapeutic compounds, the target molecule (e.g., receptor) must first be identified and isolated. Many functional assays have been described in the literature for identifying molecules active at various receptors and these provide unique advantages over binding It is not necessary to know, a priori, which 10 assays. ligands modulate the activity of the receptor in vivo, nor is it necessary to know the exact physiological function of the receptor. Compounds identified in functional assays and in subsequent medicinal chemistry efforts can be used as experimental test compounds to obtain such knowledge.

While eight distinct mGluRs are currently known, their discrete functions remain largely undetailed. Nevertheless, molecules active at mGluRs are sought by 20 pharmaceutical companies because these receptors are found in the central nervous system and are known to be involved in the regulation of processes related to memory, motor functions, pain sensation, neurodegeneration and the like. Thus, compounds which modulate mGluRs may be useful in the treatment of disorders or diseases affecting memory, cognition, and motor function (e.g., in seizures) as well the treatment of pain and neurodegenerative disorders (e.g., stroke, Alzheimers disease and the like).

54

Screens to identify molecules active at mGluRs can be constructed using cloned mGluRs themselves. However, functional screens using native mGluRs are problematic. First, most mGluRs are coupled through G_i proteins and this limits their use in functional assays because G_i proteins are linked to inhibition of adenylate cyclase and changes in adenylate cyclase are not easily measured in high throughput functional screens designed to select drug lead molecules from large compound libraries.

Receptors which couple through other G-proteins to activation of phospholipase C (e.g., G_q -coupled receptors) do not suffer this drawback, so it was initially thought that mGluR1 and mGluR5 could find utility in functional assays because these two mGluRs are coupled through Gq-protein(s) to measurable intracellular functions (e.g., activation of phospholipase C, generation of inositol phosphates and the release of calcium ions from intracellular stores).

A second limitation is presented here, however,

because these particular mGluRs rapidly desensitize upon
agonist binding. That is, the functional response
disappears rapidly and cannot quickly be recovered (see
for example Figure 8a). Furthermore, it has not always
been possible to obtain fully functional stable cell lines
expressing mGluRs regardless of the G-protein to which
they couple (Tanabe et al., 1992, Neuron 8:169-179;
Gabellini et al., 1994, Neurochem Int. 24:533-539).
Thus, nontrivial technical difficulties must be overcome

55

in order to use native mGluRs in an optimal manner in high throughput functional screening assays.

invention described herein overcomes technical difficulties and provides a much improved screening method by utilizing the more robust aspects of the calcium receptors which do not rapidly desensitize upon ligand binding/activation and can be expressed stably in recombinant vertebrate cells (see for example, Figure 8b and see also published PCT patent application "Calcium Receptor-Active Molecules," PCT No. US93/01642 published (WO94/18959), September 1994, incorporated by reference herein). Thus, for example, by coupling the 7TMD and the CT of the CaR to the extracellular domain of mGluR, or the CT of the CaR to the ECD and 7TMD of the mGluR, the mGluR extracellular domain has the benefit of the Gq coupling property of a CaR, as well as the improved property of a lack of rapid desensitization (see, for example, Figure 8c). Thus, the present invention provides chimeric receptors with ligand binding and activation properties similar to those of the native mGluRs, but with improved second messenger coupling similar to CaRs.

Thus, since the chimeric receptors simplify and enable, efficient, practical and reproducible functional screens to identify mGluR-active molecules, compositions and methods of the present invention are useful for the identification of molecules which modulate mGluR activity or calcium receptor activity. These can, for example, include agonists, antagonists, allosteric modulators, and

20

the like. For example, chimeric receptors constructed to screen compounds active at metabotropic glutamate receptors may employ the signaling properties of certain domains of a calcium receptor. Such a chimeric receptor would take advantage of certain unique properties associated with the agonist-induced coupling of the calcium receptor to G-proteins which activate phospholipase C and mobilize intracellular calcium. properties include, for example, the lack of ligand 10 induced down-regulation/desensitization which associated with ligand activation of metabotropic glutamate receptors. Thus the superior signaling properties of the calcium receptor can be transferred to metabotropic glutamate receptors which normally do not couple to G-proteins that activate phospholipase C and mobilize intracellular calcium such as those which couple to G.

In certain embodiments, recombinant cells expressing such chimeric receptors are used in screening methods.

The cells will obtain properties, such as those indicated above, which facilitate their use in high-throughput functional assays, and thus provide a more efficient method of screening for compounds which bind to or modulate metabotropic glutamate receptor activity.

Generally, useful chimeric receptors include portions of mGluRs and CaRs, such that the portions confer a desired binding, signal coupling, or other functional characteristic to the chimeric receptor. The length of a sequence from a particular receptor can be of different

sizes in different applications. In addition, sequence of a portion from a particular receptor may be identical to the corresponding sequence in the mGluR or CaR, or it may be a homologous sequence, which retains the 5 relevant function of the mGluRCaR sequence. or Therefore, chimeric receptors of this invention have an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain. These chimeric receptors have a contiguous sequence of at least 6 amino acids which is homologous to a sequence from an mGluR, and a contiguous sequence of at least 6 amino acids which is homologous to a sequence from a CaR. However, in many cases, the sequences from the mGluR and/or the CaR may be longer than 6 amino acids. Thus, either or both of such 15 sequences may be at least 12, 18, 24, 30, 36, or more amino acids in length.

The portions from the mGluR and the CaR will usually not be the same length. Thus, for example, the sequence from one of those types of receptor may be of a length as indicated above (e.g., et at least 6, 12, 18, 24, 30, 36, or more amino acids), while the rest of the sequence of the chimeric receptor is the same as or homologous to a sequence from the other type of receptor.

20

In certain embodiments, the portion from at least one receptor type is a subdomain. In this context, "subdomain" refers to a sequence of amino acids which is less than the entire sequence of amino acids for a domain. Examples of subdomains include, but are not limited to, ligand binding domains. Other examples include one of the

58

cytoplasmic loops or regions of the seven transmembrane domain. Therefore, in certain cases, a chimeric receptor has an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain, which include subdomains. In one example of such chimeric receptors, at least one subdomain is homologous to a subdomain of a calcium receptor and the remaining subdomains and domains are homologous to subdomains and domains of a metabotropic glutamate receptor. In another example, at least one subdomain is homologous to a subdomain of a metabotropic glutamate receptor and the remaining subdomains and domains are homologous to subdomains and domains are homologous to subdomains and domains are homologous to

In a more specific example, the seven transmembrane domain of a chimeric receptor includes three cytoplasmic loops; at least one cytoplasmic loop is homologous to a cytoplasmic loop of a metabotropic glutamate receptor; or least one cytoplasmic loop is homologous to a cytoplasmic loop of a calcium receptor. In another specific example, the extracellular domain is homologous to the extracellular domain of a metabotropic glutamate receptor, the seven transmembrane domain is homologous to the seven transmembrane domain of a metabotropic glutamate receptor except that one or more of the cytoplasmic loops of the seven transmembrane domain is homologous to a cytoplasmic loop(s) of a calcium receptor, and the cytoplasmic tail is homologous to the cytoplasmic tail of a calcium receptor. Thus, any of cytoplasmic loops 1, 2, and 3 may be replaced, either singly or in any

combination, with a cytoplasmic loop(s) of a calcium receptor.

In other cases, the chimeric receptor has a domain which has a sequence which is the same as or homologous to the sequence of a domain of an mGluR, or a CaR, or preferably, at least one domain from each of an mGluR and a CaR. More preferably, the chimeric receptor has two domains from one receptor type and one domain from the other receptor type. The compositions of certain preferred embodiments of such chimeric receptors are described below:

A composition comprising a chimeric receptor having:

- 1. one domain homologous to the extracellular domain of a calcium receptor, one domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor, and one domain homologous to the intracellular cytoplasmic tail domain of a metabotropic glutamate receptor; or
- 2. one domain homologous to an extracellular domain of a metabotropic glutamate receptor, one domain homologous to the seven transmembrane domain of a calcium receptor, and one domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor; or
 - 3. one domain homologous to an extracellular domain of a metabotropic glutamate receptor, one domain homologous to the seven transmembrane domain of a calcium receptor, and one domain homologous to the

intracellular cytoplasmic tail domain of a metabotropic glutamate receptor; or

- 4. one domain homologous to the extracellular domain of a calcium receptor, one domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor, and one domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor; or
- of a calcium receptor, one domain homologous to the seven transmembrane domain of a calcium receptor, and one domain homologous to the intracellular cytoplasmic tail domain of a metabotropic glutamate receptor; or 6. one domain homologous to the extracellular domain of a metabotropic glutamate receptor, one domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor, and one domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor; or
- 7. one domain homologous to the extracellular domain of a metabotropic glutamate receptor, one domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor except that one or more cytoplasmic loops are replaced with a cytoplasmic loop(s) homologous to a cytoplasmic loop(s) of a calcium receptor, and one domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.

B. Nucleic Acids Encoding Chimeric Receptors

Compositions which include isolated nucleic acid molecules which code for chimeric receptors as described above are also useful in this invention. Such nucleic acid molecules can be isolated, purified, or enriched. Preferably, the nucleic acid is provided as a substantially purified preparation representing at least 75%, more preferably 85%, most preferably 95% of the total nucleic acids present in the preparation.

Such nucleic acid molecules may also be present in a replicable expression vector. The replicable expression vector can be transformed into a suitable host cell to provide a recombinant host cell. Using such transformed host cells, the invention also provides a process for the production of a chimeric receptor, which includes growing, under suitable nutrient conditions, procaryotic or eucaryotic host cells transformed or transfected with a replicable expression vector comprising the nucleic acid molecule in a manner allowing expression of said chimeric receptor.

Uses of nucleic acids encoding chimeric receptors or receptor fragments include one or more of the following: producing receptor proteins which can be used, for example, for structure determination, to assay a molecule's activity on a receptor, to screen for molecules useful as therapeutics and to obtain antibodies binding to the receptor. The chimeras of the present invention are useful for identifying compounds active at either calcium receptors or metabotropic glutamate receptors, or both.

25

Also, the fragments of the present invention are useful for identifying compounds which bind to or modulate either calcium receptors or metabotropic glutamate receptors, or both.

Thus, the invention also provides, for example, an isolated nucleic acid encoding an extracellular domain of a metabotropic glutamate receptor that is substantially free of the seven transmembrane domain and intracellular cytoplasmic tail domain of that metabotropic glutamate receptor. Similarly, the isolated nucleic acid can encode a metabotropic glutamate receptor that is substantially free of at least one membrane spanning domain portion. In another example, an isolated nucleic acid can encode a metabotropic glutamate receptor that is substantially free of the extracellular domain of that metabotropic glutamate receptor.

C. <u>Metabotropic Glutamate Receptor Fragments and Calcium Receptor Fragments</u>

Receptor fragments are portions of metabotropic glutamate receptors or of calcium receptors. Receptor fragments preferably bind to one or more binding agents which bind to a full-length receptor. Binding agents include ligands, such as glutamate, quisqualate, agonists and antagonists, and antibodies which bind to the receptor. Fragments have different uses such as to select other molecules able to bind to a receptor.

Fragments can be generated using standard techniques such as expression of cloned partial sequences of receptor

10

25

DNA and proteolytic cleavage of a receptor protein. Proteins are specifically cleaved by proteolytic enzymes, such as trypsin, chymotrypsin or pepsin. Each of these enzymes is specific for the type of peptide bond it attacks. Trypsin catalyzes the hydrolysis of peptide bonds whose carbonyl group is from a basic amino acid, usually arginine or lysine. Pepsin and chymotrypsin catalyze the hydrolysis of peptide bonds from aromatic amino acids, particularly tryptophan, tyrosine and phenylalanine.

Alternate sets of cleaved protein fragments are generated by preventing cleavage at a site which is susceptible to a proteolytic enzyme. For example, reaction of the e-amino group of lysine with ethyltrifluorothioacetate in mildly basic solution yields a blocked amino acid residue whose adjacent peptide bond is no longer susceptible to hydrolysis by trypsin. Goldberger et al., Biochemistry 1:401, 1962). Treatment of such a polypeptide with trypsin thus cleaves only at the arginyl residues.

Polypeptides also can be modified to create peptide linkages that are susceptible to proteolytic enzymecatalyzed hydrolysis. For example, alkylation of cysteine residues with β -haloethylamines yields peptide linkages that are hydrolyzed by trypsin. (Lindley, *Nature* 178:647, 1956).

In addition, chemical reagents that cleave polypeptide chains at specific residues can be used. (Witcop, Adv. Protein Chem. 16:221, 1961). For example, cyanogen

10

bromide cleaves polypeptides at methionine residues. (Gross & Witkip, J. Am. Chem. Soc. 83: 1510, 1961).

Thus, by treating a metabotropic glutamate receptor, or fragments thereof, with various combinations of modifiers, proteolytic enzymes and/or chemical reagents, numerous discrete overlapping peptides of varying sizes are generated. These peptide fragments can be isolated and purified from such digests by chromatographic methods. Alternatively, fragments can be synthesized using an appropriate solid-state synthetic procedure.

Fragments may be selected to have desirable biological activities. For example, a fragment may include just a ligand binding site. Such fragments are readily identified by those of ordinary skill in the art using routine methods to detect specific binding to fragment. For example, in the case of a metabotropic glutamate receptor, nucleic acid encoding a receptor fragment can be expressed to produce the polypeptide fragment which is then contacted with a receptor ligand under appropriate association conditions to determine 20 whether the ligand binds to the fragment. Such fragments in screening assays for agonists useful are antagonists of glutamate, and for therapeutic effects where it is useful to remove glutamate from serum, or - 25 other bodily tissues.

Other useful fragments include those having only the external portion, membrane-spanning portion, or intracellular portion of the receptor. These portions are readily identified by comparison of the amino acid

tang kanalang di kacamatan kanalang di kacamatan di kacamatan kanalang kanalang di kacamatan di kacamatan di k

sequence of the receptor with those of known receptors, or by other standard methodology. These fragments are useful for forming chimeric receptors with fragments of other receptors to create a receptor with an intracellular portion which performs a desired function within that cell, and an extracellular portion which causes that cell to respond to the presence of glutamate, or those agonists or antagonists described herein. Chimeric receptor genes when appropriately formulated are useful in genetic therapies for a variety of diseases involving dysfunction of receptors or where modulation of receptor function provides a desirable effect in the patient.

Additionally, chimeric receptors can be constructed such that the intracellular domain is coupled to a desired enzymatic process which can be readily detected by calorimetric, radiometric, luminometric, spectrophotometric or fluorimetric assays and is activated by interaction of the extracellular portion with its native ligand (e.g., glutamate) or agonist and/or antagonists of the invention. Cells expressing such chimeric receptors can be used to facilitate screening of metabotropic glutamate receptor agonists and antagonists, and in some cases inorganic ion receptor agonists and antagonists.

Thus, this invention also provides fragments, or purified polypeptides of calcium receptors, metabotropic glutamate receptors, or chimeric receptors including calcium receptor sequences and metabotropic glutamate receptor sequences. The fragments may be used to screen

66

for compounds that are active at either metabotropic glutamate or calcium receptors. For example, a fragment including the extracellular domain of a calcium receptor or a metabotropic glutamate receptor may be used in a 5 soluble receptor binding assay to identify which molecules in a combinatorial library can bind the receptor within Such "binding" molecules may be the region assayed. predicted to affect the function of the receptor. Preferred receptor fragments include those functional receptor activity, a binding site, epitope for antibody recognition (typically at least six amino acids), and/or a site which binds a metabotropic glutamate receptor agonist, antagonist or modulator. preferred receptor fragments include those having only an 15 extracellular portion, a transmembrane portion, intracellular portion, and/or a multiple transmembrane portion (e.g., seven transmembrane portion). Such receptor fragments have various uses such as being used to obtain antibodies to a particular region and being used to form chimeric receptors and fragments of other receptors to create a new receptor having unique properties.

The purified polypeptides or fragments preferably have at least six contiguous amino acids of a metabotropic glutamate receptor or calcium receptor or chimeric receptor. By "purified" in reference to a polypeptide is meant that the polypeptide is in a form (i.e., its association with other molecules) distinct from naturally occurring polypeptide. Preferably, the polypeptide is provided as a substantially purified preparation

representing at least 75%, more preferably 85%, most preferably 95%, of the total protein in the preparation.

In many applications, it is preferable that the purified polypeptide or fragment have more than 6 contiguous amino acids from the metabotropic glutamate receptor or calcium receptor or chimeric receptor. For example, the purified polypeptide can have at least 12, 18, 14, 30, or 36 contiguous amino acids of the "parent" receptor.

Other fragments may be prepared which include only the seven transmembrane domain and the cytoplasmic tail domain of calcium receptors, metabotropic glutamate receptors, or chimeric receptors. Such fragments may be useful, for example, in functional assays to screen for compounds whose site of action is at the seven transmembrane domain.

As indicated above; the invention provides methods of screening for a compound that binds to a receptor, which utilizes receptor fragments. In one example, the method includes the steps of: preparing a nucleic acid sequence encoding a fragment of a receptor; inserting the sequence into a replicable expression vector capable of expressing said fragment in a host cell; transforming a host cell with the vector; recovering the fragment from the host cell; introducing fragment and a test compound into an acceptable medium; and monitoring the binding of the compound to the fragment by physically detectable means. In cases in which the receptor is a metabotropic glutamate receptor, fragment the preferably includes extracellular domain of the metabotropic glutamate

68

receptor, or a seven transmembrane domain of the metabotropic glutamate receptor, or a seven transmembrane domain and a cytoplasmic tail domain of a metabotropic glutamate receptor. In cases in which the receptor is a calcium receptor, the fragment preferably includes an extracellular domain of the calcium receptor, a seven transmembrane domain of the calcium receptor, or a seven transmembrane domain and a cytoplasmic tail domain of a calcium receptor.

Certain fragments of metabotropic glutamate receptors 10 and calcium receptors retain the functions of activating one or more of the cellular responses normally activated by the "parent" receptor when contacted with a compound which interacts. Thus, for example, a cellular expressed 15 fragment which includes the 7TMD and CT of an mGluR or a CaR, but do not include the ECD, may activate a cellular response(s) when contacted with a compound which interacts with the 7TMD. Thus, incorporation of such fragments in a cell-based method of screening for compounds which bind 20 to or modulate a metabotropic glutamate receptor or calcium receptor, such as that described herein for chimeric receptors, is useful to identify active compounds which interact with the fragment rather that the deleted sequence.

Isolated fragments of calcium receptors, metabotropic glutamate receptors, or chimeric receptors comprising calcium receptor sequences and metabotropic glutamate receptor sequences may be combined in an in vitro functional assay to screen for compounds active at either

69

receptor. Such an *in vitro* assay, for example, may include a fragment having the extracellular domain of one receptor and a fragment having the seven transmembrane domain and the cytoplasmic tail domain of the other receptor, where the extracellular domain will complement the seven transmembrane/cytoplasmic tail domain fragment *in vitro*. In this way functional chimeric receptors which are useful in a screening assay may be prepared without the need for recombination of the nucleic acids encoding them. Instead, these functional chimeric receptors may be achieved by combining, *in vitro*, portions of different receptors.

10

Such combinations of fragments provide methods of screening for compounds which bind to or modulate a receptor. An example of such a method includes the steps 15 of: preparing a nucleic acid sequence encoding a first fragment which is a fragment of a first receptor; inserting the sequence into a replicable expression vector capable of expressing that fragment in a host cell; transforming a host cell with the vector; recovering the 20 fragment from the host cell; preparing a nucleic acid sequence encoding a second fragment which is a fragment of second receptor; inserting the sequence into a replicable expression vector capable of expressing the second fragment in a host cell; transforming a host cell 25 with the vector; recovering the second fragment from the host cell, introducing both the first fragment and the second fragment into an acceptable medium, and monitoring the binding and modulation of the compound by physically detectable means.

In particular preferred examples, the first fragment includes the extracellular domain of a metabotropic glutamate receptor and the second fragment includes the seven transmembrane domain and the cytoplasmic tail domain of a calcium receptor; the first fragment includes the extracellular domain of a calcium receptor and the second fragment includes the seven transmembrane domain and the cytoplasmic tail domain of a metabotropic glutamate receptor; or the first fragment includes the extracellular domain of a calcium receptor and the second fragment includes the seven transmembrane domain of a metabotropic glutamate receptor and the cytoplasmic tail domain of a calcium receptor.

- D. <u>Screening Procedures to Identify Compounds which</u>

 <u>Modulate Metabotropic Glutamate Receptor</u>

 <u>Activities Using Chimeric Receptors</u>
- The mGluR agonist and antagonist compounds described in the scientific literature are related to the endogenous agonist, glutamate (for reviews see: Cockcroft et al., Neurochem. Int. 23:583-594, 1993; Schoepp and Conn, TIPS 14:13-20, 1993; Hollmann and Heinemann, Annu. Rev. Neurosci. 17:31-108, 1994). Such agonist and antagonist compounds have an acidic moiety, usually a carboxylic acid, but sometimes a phosphatidic acid. Presumably then, such compounds bind mGluRs at the same site as the amino

71

acid, glutamate. This has been confirmed for methylcarboxyphenylglycine, which was shown to be a competitive antagonist of glutamate (Eaton et al., Eur. J. Pharm. - Mol. Pharm. Sect. 244:195-197, 1993). It can be assumed that compounds active at mGluRs, lacking negative charges, and not resembling the amino acid glutamate, may not act at the glutamate binding site.

Compounds targeted to the metabotropic glutamate receptor have several uses including diagnostic uses and therapeutic use. The syntheses of many of the compounds is described by Nemeth et al., entitled "Calcium Receptor Active Molecule" International Publication Number WO 93/04373, hereby incorporated by reference herein. Those compounds binding to a metabotropic glutamate receptor and those compounds efficacious in modulating metabotropic receptor glutamate activity can be identified using the procedures described herein. Those compounds which can selectively bind to the metabotropic glutamate receptor can be used diagnostically to determine the presence of the metabotropic glutamate receptors.

The following is a description of procedures which can be used to obtain compounds modulating metabotropic glutamate receptor activity. Various screening procedures can be carried out to assess the ability of a compound to modulate activity of chimeric receptors of the invention by measuring its ability to have one or more activities of a metabotropic glutamate receptor modulating agent or a calcium receptor modulating agent. In cells expressing

chimeric receptors of the invention, such activities include the effects on intracellular calcium, inositol phosphates and cyclic AMP.

Measuring [Ca²⁺]; with fura-2 provides a very rapid 5 means of screening new organic molecules for activity. In a single afternoon, 10-15 compounds (or molecule types) can be examined and their ability to mobilize or inhibit mobilization of intracellular Ca²⁺ can be assessed by a single experiment. The sensitivity of observed increases 10 in [Ca²⁺]; to depression by PMA can also be assessed.

For example, recombinant cells expressing chimeric receptors of the invention loaded with fura-2 are initially suspended in buffer containing 0.5 mM CaCl₂. A test substance is added to the cuvette in a small volume (5-15 \mu l) and changes in the fluorescence signal are measured. Cumulative increases in the concentration of the test substance are made in the cuvette until some predetermined concentration is achieved or no further changes in fluorescence are noted. If no changes in fluorescence are noted, the molecule is considered inactive and no further testing is performed.

In the initial studies, molecules may be tested at concentrations as high as 5 or 10 mM. As more potent molecules became known, the ceiling concentration was lowered. For example, newer molecules are tested at concentrations no greater than 500 μ M. If no changes in fluorescence are noted at this concentration, the molecule can be considered inactive.

73

Molecules causing increases in [Ca²⁺], are subjected to additional testing. Two characteristics of a molecule which can be considered in screening for a positive modulating agent of a chimeric receptor of the invention are the mobilization of intracellular Ca²⁺ and sensitivity to PKC activators.

A single preparation of cells can provide data on [Ca²⁺], cyclic AMP levels, IP and other intracellular messengers. A typical procedure is to load cells with fura-2 and then divide the cell suspension in two; most of the cells are used for measurement of [Ca²⁺], and the remainder are incubated with molecules to assess their effects on cyclic AMP.

Measurements of inositol phosphates are a timeconsuming aspect of the screening. However, ion-exchange
columns eluted with chloride (rather than formate) provide
a very rapid means of screening for IP₃ formation, since
rotary evaporation (which takes around 30 hours) is not
required. This method allows processing of nearly 100
samples in a single afternoon by a single experimenter.
Those molecules that prove interesting, as assessed by
measurements of [Ca²⁺]_i, cyclic AMP, and IP₃ can be
subjected to a more rigorous analysis by examining
formation of various inositol phosphates and assessing
their isomeric form by HPLC.

The following is illustrative of methods useful in these screening procedures.

Measurement of cyclic AMP

This section describes measuring cyclic AMP levels. Cells were incubated as above and at the end of the incubation, a 0.15-ml sample was taken and transferred to 0.85 ml of hot (70°C) water and heated at this temperature for 5-10 minutes. The tubes were subsequently frozen and thawed several times and the cellular debris sedimented by centrifugation. Portions of the supernatant were acetylated and cyclic AMP concentrations determined by radioimmunoassay.

This section describes procedures measuring inositol phosphate formation. Membrane phospholipids were labeled by incubating parathyroid cells with 4 μCi/ml ³H-myo-inositol for 20-24 hours. Cells were then washed and resuspended in PCB containing 0.5 mM CaCl₂ and 0.1% BSA. Incubations were performed in microfuge tubes in the absence or presence of various concentrations of organic polycation for different times. Reactions were terminated by the addition of 1 ml chloroform-methanol-12 N HCl (200:100:1; v/v/v). Aqueous phytic acid hydrolysate (200 μl; 25 μg phosphate/tube). The tubes were centrifuged and 600 μl of the aqueous phase was diluted into 10 ml water.

Inositol phosphates were separated by ion-exchange chromatography using AG1-X8 in either the chloride- or formate-form. When only IP₃ levels were to be determined, the chloride-form was used, whereas the formate form was used to resolve the major inositol phosphates (IP₃, IP₂, and IP₁). For determination of just IP₃, the diluted sample was applied to the chloride-form column and the

column was washed with 10 ml 30 mM HCl followed by 6 ml 90 mM HCl and the IP₃ was eluted with 3 ml 500 mM HCl. The last eluate was diluted and counted. For determination of all major inositol phosphates, the diluted sample was applied to the formate-form column and IP₁, IP₂, and IP₃ eluted sequentially by increasing concentrations of formate buffer. The eluted samples from the formate columns were rotary evaporated, the residues brought up in cocktail, and counted.

- The isomeric forms of IP₃ were evaluated by HPLC. The reactions were terminated by the addition of 1 ml 0.45 M perchloric acid and stored on ice for 10 minutes. Following centrifugation, the supernatant was adjusted to pH 7-8 with NaHCO₃. The extract was then applied to a linear gradient of ammonium formate. The various fractions were then desalted with Dowex followed by rotary evaporation prior to liquid scintillation counting in a Packard Tri-carb 1500 LSC.
- For all inositol phosphate separation methods, appropriate controls using authentic standards were used to determine if organic polycations interfered with the separation. If so, the samples were treated with cation-exchange resin to remove the offending molecule prior to separation of inositol phosphates.

3. <u>Use of Lead Molecules</u>

By systematically measuring the ability of a lead molecule to mimic or antagonize the effect of a natural ligand, the importance of different functional groups for

76

agonists and antagonists can be identified. Of the molecules tested, some are suitable as drug candidates while others are not necessarily suitable as drug candidates. The suitability of a molecule as a drug candidate. The suitability of a molecule as a drug candidate depends on factors such as efficacy and toxicity. Such factors can be evaluated using standard techniques. Thus, lead molecules can be used to demonstrate that the hypothesis underlying receptor-based therapies is correct and to determine the structural features that enable the receptor-modulating agents to act on the receptor and, thereby, to obtain other molecules useful in this invention.

The examples described herein demonstrate the general design of molecules useful as modulators of the activity of mGluRs and CaRs. The examples also describe screening procedures to obtain additional molecules, such as the screening of natural product libraries. Using these procedures, those of ordinary skill in the art can identify other useful modulators of mGluRs and CaRs.

20 Cell lines expressing calcium receptors have been obtained and methods applicable to their use in high throughput screening to identify compounds which modulate the activity of calcium receptors disclosed (See U.S.S.N. 08/353,784, filed December 9, 1994, hereby incorporated by reference herein). Cell lines expressing metabotropic glutamate receptors have been obtained and methods applicable to their potential use to identify compounds which modulate activity of metabotropic glutamate receptors disclosed (European Patent Publication No. 0 568

384 Al; European Patent Publication No. 0 569 240 Al; PCT Publication No. WO 94/29449; and PCT Publication No. WO 92/10583). Thus, recombinant cell-based assays which use biochemical, spectrophotometric or other physical measurements to detect the modulation of activity of an expressed receptor, especially by measuring changes in affected intracellular messengers, are known to those in the art and can be constructed such that they are suitable for high throughput functional screening of compounds and compound libraries. It will be appreciated by those in the art that each functional assay has advantages and disadvantages for high throughput screening which will vary depending on the receptor of interest, the cell lines employed, the nature of the biochemical and physical measurements used to detect modulation of receptor function, the nature of the compound library being screened and various other parameters. An exceptionally useful and practical method is the use of fluorescent indicators of intracellular Ca2+ to detect modulation of the activity of receptors coupled to phospholipase-C.

15

20

The use of [3H]glutamate, or any other compound found to modulate the mGluR discovered by the methods described herein, as a lead compound is expected to result in the discovery of other compounds having similar or more potent activity which in turn can be used as lead compounds. Lead compounds such as [3H]glutamate can be used for molecular modeling using standard procedures and to screen compound libraries. Radioligand binding techniques [a radio labeled binding assay] can be used to identify

78

compounds binding at the glutamate binding site. such binding assays are useful for finding new compounds binding to the glutamate binding site on mGluR's, the current invention provides for the discovery of novel 5 compounds with unique and useful activities at mGluR's which can be radio labeled and used similarly in Radioligand assays to find additional compounds binding to the new lead defined site. This screening test allows vast numbers of potentially useful compounds to be screened for their ability to bind to the glutamate 10 binding site. Other rapid assays for detection of binding to the glutamate binding site on metabotropic glutamate receptors devised using standard detection can be techniques. Other compounds can be identified which act 15 at the glutamate binding using the procedures described in this section. A high-throughput assay is first used to screen product libraries (e.g., natural product libraries and compound files) to identify compounds with activity at the glutamate (or lead compound) binding site. These compounds are then utilized as chemical lead structures for a drug development program targeting the glutamate or lead compound binding site on metabotropic glutamate receptors. Routine experiments, including animal studies can be performed to identify those compounds having the desired activities.

The following assay can be utilized as a high-throughput assay. Rat brain membranes are prepared according to the method of Williams et al. (Molec. Pharmacol. 36:575, 1989), with the following alterations:

Male Sprague-Dawley rats (Harlan Laboratories) weighing 100-200 g are sacrificed by decapitation. The cortex or cerebellum from 20 rats are cleaned and dissected. The resulting brain tissue is homogenized at 4°C with a polytron homogenizer at the lowest setting in 300 ml 0.32 M sucrose containing 5 mM K-EDTA (pH 7.0). The homogenate is centrifuged for 10 min at 1,000 \times g and the supernatant removed and centrifuged at 30,000 \times g for 30 minutes. resulting pellet is resuspended in 250 ml 5 mM K-EDTA (pH 7.0) stirred on ice for 15 minutes, and then centrifuged at 30,000 \times g for 30 minutes. The pellet is resuspended in 300 ml 5 mM K-EDTA (pH 7.0) and incubated at 32°C for 30 minutes. The suspension is then centrifuged at 100,000 x g for 30 minutes. Membranes are washed by resuspension in 500 ml 5 mM K-EDTA (pH 7.0), incubated at 32°C for 30 15 minutes, and centrifuged at 100,000 \times g for 30 minutes. The wash procedure, including the 30-minute incubation, is repeated. The final pellet is resuspended in 60 ml 5 mM $\,$ K-EDTA (pH 7.0) and stored in aliquots at -80°C.

To perform a binding assay with [3H]glutamate (as an example of a lead compound), aliquots of SPMs (synaptic plasma membranes) are thawed, resuspended in 30 ml of 30 mM EPPS/1 mM K-EDTA, pH 7.0, and centrifuged at 100,000 x g for 30 minutes. SPMs are resuspended in buffer A (30 mM EPPS/1 mM K-EDTA, pH 7.0). The [3H]-glutamate is added to this reaction mixture. Binding assays are carried out in polypropylene test tubes. The final incubation volume is 500 μl. Nonspecific binding is determined in the presence of 100 μM nonradioactive glutamate. Duplicate samples are

incubated at 0°C for 1 hour. Assays are terminated by adding 3 ml of ice-cold buffer A, followed by filtration over glass-fiber filters (Schleicher & Schuell No. 30) that are presoaked in 0.33% polyethyleneimine (PEI). The filters are washed with another 3 x 3 ml of buffer A, and radioactivity is determined by scintillation counting at an efficiency of 35-40% for 3H.

In order to validate the above assay, the following experiments can also be performed:

(a) The amount of nonspecific binding of the [³H]glutamate to the filters is determined by passing 500 μl of buffer A containing various concentrations of [³H]glutamate through the presoaked glass-fiber filters. The filters are washed with another 4 x 3 ml of buffer A, and radioactivity bound to the filters is determined by scintillation counting at an efficiency of 35-40% for ³H.

A saturation curve is constructed by resuspending

- SPMs in buffer A. The assay buffer (500 μl) contains 60 μg of protein. Concentrations of [³H]glutamate are used, ranging from 1.0 nM to 400 μM in half-log units. A saturation curve is constructed from the data, and an apparent K_D value and B_{max} value determined by Scatchard analysis (Scatchard, Ann. N.Y. Acad. Sci. 51: 660, 1949). The cooperativity of binding of the [³H]glutamate is determined by the construction of a Hill plot (Hill, J. Physiol. 40:190, 1910).
- (c) The dependence of binding on protein (receptor) concentration is determined by resuspending SPMs in buffer A. The assay buffer (500 μ l) contains a concentration of

 $[^3H]$ glutamate equal to its K_D value and increasing concentrations of protein. The specific binding of $[^3H]$ glutamate should be linearly related to the amount of protein (receptor) present.

- 5 (d) The time-course of ligand-receptor binding is determined by resuspending SPMs in buffer A. The assay buffer (500 μ l) contains a concentration of [³H]glutamate equal to its K_D value and 100 μ g of protein. Duplicate samples are incubated at 0°C for varying lengths of time; 10 the time at which equilibrium is reached is determined, and this time point is routinely used in all subsequent assays.
- (e) The pharmacology of the binding site can be analyzed by competition experiments. In such experiments, the concentration of [3H]glutamate and the amount of protein are kept constant, while the concentration of test (competing) drug is varied. This assay allows for the determination of an IC₅₀ and an apparent K_D for the competing drug (Cheng and Prusoff, J. Biochem. Pharmacol. 22:3099, 1973). The cooperativity of binding of the competing drug is determined by Hill plot analysis.

Specific binding of the [3H]glutamate represents binding to the glutamate binding site on metabotropic glutamate receptors. As such, analogs of glutamate should compete with the binding of [3H]glutamate in a competitive fashion, and their potencies in this assay should correlate with their potencies in a functional assay of metabotropic glutamate receptor activity (e.g., electrophysiological assessment of the activity of cloned

82

metabotropic glutamate receptors expressed in *Xenopus* oocytes). Conversely, compounds which have activity at the sites other that the glutamate binding site should not displace [3H]glutamate binding in a competitive manner. Rather, complex allosteric modulation of [3H]glutamate binding, indicative of noncompetitive interactions, might occur.

performed by measuring the binding of [3H]glutamate after
it is allowed to come to equilibrium (see (d) above), and
a large excess of nonradioactive competing drug is added
to the reaction mixture. Binding of the [3H]glutamate is
then assayed at various time intervals. With this assay,
the association and dissociation rates of binding of the
[3H]glutamate are determined (Titeler, Multiple Dopamine
Receptors: Receptor Binding Studies in Dopamine
Pharmacology. Marcel Dekker, Inc., New York, 1983).
Additional experiments involve varying the reaction
temperature (0°C to 37°C) in order to understand the

The following is one example of a rapid screening assay to obtain compounds modulating metabotropic glutamate receptor activity. The screening assay first measures the ability of compounds to bind to recombinant receptors, or receptor fragments containing the glutamate binding site. Compounds binding to the metabotropic glutamate receptor are then tested for their ability to modulate one or more activities at a metabotropic glutamate receptor.

83

In one procedure, a cDNA or gene clone encoding the chimeric receptor or fragment of a metabotropic glutamate receptor from a suitable organism such as a human is obtained using standard procedures. Distinct fragments of the clone are expressed in an appropriate expression vector to produce the smallest receptor polypeptide(s) obtainable able to bind glutamate. In this way, the polypeptide(s) containing the glutamate binding site is identified. Such experiments can be facilitated by utilizing a stably transfected mammalian cell line (e.g., HEK 293 cells) expressing metabotropic glutamate receptors.

Alternatively, the metabotropic glutamate receptor can be chemically reacted with glutamate chemically modified so that amino acid residues of the metabotropic glutamate receptor which contact (or are adjacent to) the selected compound are modified and thereby identifiable. The fragment(s) of the metabotropic glutamate receptor containing those amino acids which are determined to interact with glutamate and are sufficient for binding to glutamate, can then be recombinantly expressed using standard techniques.

20

The recombinant polypeptide(s) having the desired binding properties can be bound to a solid-phase support using standard chemical procedures. This solid-phase, or affinity matrix, may then be contacted with glutamate to demonstrate that this compound can bind to the column, and to identify conditions by which the compound may be removed from the solid-phase. This procedure may then be

84

repeated using a large library of compounds to determine those compounds which are able to bind to the affinity Bound compounds can then can be released in a matrix. manner similar to glutamate. Alternative binding and release conditions may be utilized to obtain compounds capable of binding under conditions distinct from those used for glutamate binding (e.g., conditions which better mimic physiological conditions encountered especially in pathological states). Compounds binding to the glutamate binding site can thus be selected from a very large collection of compounds present in a liquid medium or extract.

In an alternate method, chimeric receptors are bound to a column or other solid phase support. Those compounds which are not competed off by reagents binding to the glutamate binding site on the receptor can then be Such compounds define alternative binding identified. sites on the receptor. Such compounds may be structurally distinct from known compounds and may define chemical 20 classes of agonists or antagonists which may be useful as therapeutics agents.

15

Modulating metabotropic glutamate receptor activity causes an increase or decrease in a cellular response which metabotropic glutamate receptor occurs upon activation. Cellular responses to metabotropic glutamate receptor activation vary depending upon the type of metabotropic glutamate receptor activated. metabotropic glutamate receptor activation causes one or more of the following activities: (1) increase in PI

hydrolysis; (2) activation of phospholipase C; increases and decreases in the formation of cyclic adenosine monophosphate (cAMP); (4) decrease in the formation of cAMP; (5) changes in ion channel function; (6) activation of phospholipase D; (7) activation or inhibition of adenylyl cyclase; (8) activation of guanylyl cyclase; (9) increases in the formation of cyclic guanosine monophosphate (cGMP); (10)activation phospholipase A_2 ; (11) increases in arachidonic acid release; (12) increases or decreases in the activity of voltage- and ligand- gated ion channels; (13) and increase in intracellular calcium. Inhibition of metabotropic glutamate receptor activation prevents one or more of these activities from occurring.

Activation of a particular metabotropic glutamate receptor refers to an event which subsequently causes the production of one or more activities associated with the type of receptor activated. Activation of mGluR1 can result in one or more of the following activities:

20 increase in PI hydrolysis, increase in cAMP formation, increase in intracellular calcium (Ca²⁺) and increase in arachidonic acid formation. Compounds can modulate one or more metabotropic glutamate receptor activities by acting as an agonist or antagonist of glutamate binding site activation.

The chimeric receptors of the present invention provide a method of screening for compounds active at mGluRs by the detection of signals produced by CaRs. The chimeric receptors may be used in the screening procedures

10

described in PCT/US93/01642 (WO94/18959), which are hereby incorporated by reference herein, including methods of screening using fura-2, and measurement of cytosolic Ca²⁺ using cell lines expressing calcium receptors and methods of screening using oocyte expression.

Active compounds identified by the screening methods described herein, may be useful as therapeutic molecules to modulate metabotropic glutamate receptor activity or as a diagnostic agents to diagnose those patients suffering from a disease characterized by an abnormal metabotropic glutamate receptor activity. Preferably the screening methods are used to identify metabotropic glutamate receptor modulators by screening potentially useful molecules for an ability to mimic or block an activity of extracellular glutamate or other metabotropic glutamate receptor agonists on a cell having a metabotropic glutamate receptor and determining whether the molecule has an EC₅₀ IC₅₀ of less than or equal to 100 μM . More preferably, the molecules tested for its ability to mimic or block an increase in [Ca2+]; elicited by extracellular glutamate or other mGluR agonists.

Identification of metabotropic glutamate receptor-modulating agents is facilitated by using a high-throughput screening system. High-throughput screening allows a large number of molecules to be tested. For example, a large number of molecules can be tested individually using rapid automated techniques or in combination using a combinatorial library. Individual compounds able to modulate metabotropic glutamate receptor

87

activity present in a combinatorial library can be obtained by purifying and retesting fractions of the combinatorial library. Thus, thousands to millions of molecules can be screened in a single day. 5 molecules can be used as models to design additional molecules having equivalent or increased activity. Preferably the identification method uses a recombinant chimeric metabotropic glutamate receptor. receptors can be introduced into different cells using a 10 vector encoding a receptor. Preferably, the activity of molecules in different cells is tested to identify a metabotropic glutamate receptor agonist or metabotropic glutamate receptor antagonist molecule which mimics or blocks one or more activities of glutamate at a first type of metabotropic glutamate receptor but not at a second type of metabotropic glutamate receptor.

As indicated above, the present invention provides a novel method of screening for compounds which modulate metabotropic glutamate receptor activity, by using a chimeric receptor having portions of a metabotropic glutamate receptor and portions of a calcium receptor. In particular receptors of this type, the signaling process of the calcium receptor portion is used to detect modulation of mGluR activity, as various compounds are tested for binding to the mGluR portion. The method of screening can be conducted in a variety of ways, such as utilizing chimeric receptors having different portions from the metabotropic glutamate receptor and calcium receptor. Certain preferred examples are described below.

88

In one example, the method of screening for a compound that binds to or modulates the activity of a metabotropic glutamate receptor involves preparing a chimeric receptor having an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain. A sequence of at least 6 contiguous amino acids is the same as or homologous to a sequence from a metabotropic glutamate receptor and a sequence of at least 6 contiguous amino acids is the same as or homologous to a sequence from a calcium receptor. The chimeric receptor and a test compound are introduced into a acceptable medium, and the binding of the test compound to the receptor or the modulation of the receptor by the test compound is monitored by physically detectable means in order to identify such binding or modulating compounds. Generally, acceptable media will include those in which a natural ligand of an mGluR and/or a CaR will interact with an mGluR or a CaR.

10

15

often it will be beneficial to use chimeric receptors
which have longer sequences from one or both of the mGluR
and the CaR. For example, the chimeric receptor can have
a sequence of at least 12, 18, 24, 30, 36, or more amino
acids the same as or homologous a sequence from one or
both of the mGluR or CaR. In one useful chimeric
receptor, one domain is homologous to a domain of a
metabotropic glutamate receptor and at least one domain is
homologous to a domain of a calcium receptor

In a second example, the method of screening for a compound which binds to or modulates the activity of a

metabotropic glutamate receptor utilizes a nucleic acid sequence which encodes a chimeric receptor. The nucleic acid is expressed in a cell, and binding or modulation by a test compound is observed by monitoring the effects of the test compound on the cell. Thus, generally the method includes preparing a nucleic acid sequence encoding a chimeric receptor. The encoded chimeric receptor has an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain. As in the example above, the chimeric receptor has sequences of at least 6 10 contiguous amino acids which are the same as or homologous to sequences from each of an mGluR and a CaR. indicated above, the sequences from one or both of the mGluR and the CaR may beneficially be longer in particular applications, e.g., at least 12, 18, 24, 30, 36, or more 15 amino acids in length. The nucleic acid sequence is inserted into a replicable expression vector capable of expressing the chimeric receptor in a host cell, and a host cell is transformed with the vector. The transformed host cell and a test compound are introduced into an acceptable medium and the effect of the compound on the host cell is monitored (such as be techniques or assays described above). Preferably, though not necessarily, the host cell is a eukaryotic cell.

The amino acid sequences of the chimeric receptor can 25 be selected in a variety of combinations in particular Thus, a chimeric receptor can include at least one domain which is homologous to a domain of a metabotropic glutamate receptor and at least one domain which is

WO 97/05252

90

PCT/US96/12336

homologous to a domain of a calcium receptor. A domain(s) of the chimeric receptor can, for example, be homologous the extracellular domain and/or the seven transmembrane domain of a metabotropic glutamate receptor.

chimeric receptor which has three Likewise, a cytoplasmic loops can have at least one loop homologous to a cytoplasmic loop of an mGluR, or at least one loop homologous to a cytoplasmic loop of a CaR, or at least one loop homologous to a cytoplasmic loop of each of the those 10 receptors.

Similarly, in other chimeric receptors, there is a portion of the receptor which is homologous to a sequence of one type of receptor (CaR or mGluR), while the remainder of the chimeric receptor is homologous to the 15 other type of receptor (CaR or mGluR). Thus, the chimeric receptor can have a sequence of at least 6, 12, 18, 24, 30, 36, or more contiguous amino acids which is homologous to a sequence of one of the receptor types with the remainder of the sequence of the chimeric receptor homologous to a sequence from the other receptor type. This further includes cases in which at least one cytoplasmic loop is from one of the receptor types, or at least one domain is from one of the receptor types.

Other combinations of sequences will also be useful in 25 particular applications.

20

The chimeric metabotropic glutamate/calcium receptors can also be used to screen for compounds active at both metabotropic glutamate receptors and calcium receptors.

This is particularly useful for screening for compounds which interact at different domains or subdomains in an mGluR than in a CaR. Thus, such chimeras are useful for screening for compounds which, for example, act within the extracellular domain of a metabotropic glutamate receptor and also act within the seven transmembrane domain or the cytoplasmic tail domain of a calcium receptor. chimera would include the extracellular domain of a metabotropic glutamate receptor linked to the seven transmembrane domain and cytoplasmic tail of a calcium receptor.

To for screen such compounds, active metabotropic glutamate receptors and calcium receptors, compounds would be screened according to the various methods of the present invention, against the chimeric receptor, the calcium receptor, and the metabotropic glutamate receptor. Compounds active at the seven transmembrane domain of the calcium receptor portion of the chimeric receptor should also be active when tested 20 against the calcium receptor itself. A preferred method of screening for such compounds is to first screen them according to the methods of the present invention against a chimeric molecule having the extracellular domain of the metabotropic glutamate receptor, and the seven transmembrane and cytoplasmic tail domains of the calcium receptor and to then screen the positive compounds against both chimeric molecule having the extracellular and seven transmembrane domains of the metabotropic glutamate receptor and the cytoplasmic tail domain of the calcium

receptor, and the calcium receptor itself. Compounds active at both molecules will be positive when tested against all three chimeric receptors.

Conversely, a chimera including the extracellular domain of a calcium receptor linked to the seven transmembrane domain and cytoplasmic tail οf metabotropic glutamate receptor would be useful screening for compounds that act within the extracellular domain of a calcium receptor and also act within the seven transmembrane domain or the cytoplasmic tail of a metabotropic glutamate receptor. Preferably, the chimeric receptor, which includes the extracellular domain of a calcium receptor and the seven transmembrane domain and the cytoplasmic tail of a metabotropic glutamate receptor, is further modified to include portions of the cytoplasmic tail of a calcium receptor. This more preferred embodiment would thereby obtain the superior signaling properties of the calcium receptor while still being useful for screening for compounds that act at both the calcium receptor and the metabotropic glutamate receptor.

10

15

20

25

Thus in one aspect the invention features a method of screening for compounds active at both a metabotropic glutamate receptor and a calcium receptor, by preparing a nucleic acid sequence encoding a chimeric receptor. The chimeric receptor has an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain, and at least one domain is homologous to a domain of the metabotropic glutamate receptor and at least one domain is homologous to a calcium

receptor. The nucleic acid sequence is inserted into a replicable expression vector capable of expressing said chimeric receptor in a host cell, and a host cell is transformed with the vector. The transformed host cell and a test compound are introduced into an acceptable medium, and the effect of the test compound on the cell are monitored.

In general, for each of the above screening methods using chimeric receptors, the portion of the chimeric receptor homologous to an mGluR and the portion homologous to a CaR are selected to provide the binding, modulation, and/or signal coupling characteristics appropriate for a particular application.

E. Site of Action

The chimeric receptor molecules are also useful in 15 methods for determining the site-of-action of compounds already identified as metabotropic glutamate receptor or calcium receptor active compounds. For example, chimeras including the extracellular domain of a metabotropic 20 glutamate receptor linked to the seven transmembrane domain and cytoplasmic tail of a calcium receptor, as well as chimeras including the extracellular domain of a calcium receptor linked to the seven transmembrane domain and cytoplasmic tail of a metabotropic glutamate receptor would be useful in determining the site-of-action of 25 either metabotropic glutamate receptor or calcium receptor active compounds. Those of ordinary skill in the art will recognize that these are two examples of large sequence exchanges and that much smaller sequence exchanges may also be employed to further refine the determination of the site-of-action.

Thus, the invention provides a method of determining the site-of-action of a metabotropic glutamate receptor active compound by: preparing a nucleic acid sequence encoding a chimeric receptor wherein the chimeric receptor comprises at least a 6 amino acid sequence which is homologous to a sequence of amino acids of a calcium receptor and the remainder of the amino acid sequence is homologous to a sequence of amino acids of a metabotropic glutamate receptor; inserting the sequence into a replicable expression vector capable of expressing the chimeric receptor in a host cell; transforming a host cell with the vector; introducing the transformed host cell and the compound into an acceptable medium; and monitoring the effect of the compound on the cell.

As indicated above for methods of screening, in particular applications it is advantageous to use sequence exchanges of different sizes. Thus, in other applications, the sequence homologous to a sequence from a calcium receptor, may for example, be at least 12, 18, 24, 30, 36, or more amino acids in length.

Conversely, a method of determining the site-of-action of a calcium receptor active compound can be performed in the same manner as described above, but using a nucleic acid encoding a chimeric receptor which includes at least a 6 amino acid sequence which is homologous to a sequence of amino acids of a metabotropic glutamate receptor and

20

the remainder of the amino acid sequence is homologous to a sequence of amino acids of a calcium receptor. Also similar to the method above, the sequence homologous to a sequence from a metabotropic glutamate receptor can be of different lengths in various applications, for example, at least 12, 18, 24, 30, 36, or more amino acids in length.

F. <u>Modulation of Metabotropic Glutamate Receptor</u> Activity

Modulation of metabotropic glutamate receptor activity can be used to produce different effects such as anticonvulsant effects, neuroprotectant effects, analgesic effects, cognition-enhancement effects, and muscle-relaxation effects. Each of these effects has therapeutic applications. Compounds used therapeutically should have minimal side effects at therapeutically effective doses.

The ability of a compound to modulate metabotropic glutamate activity can be determined using electrophysiological and biochemical assays measuring one or more metabotropic glutamate activities. In general, such assays can be carried out using cells expressing the metabotropic glutamate receptor(s) of interest, but the assays can also be carried out using cells expressing a chimeric receptors of this invention which modulates the cellular activity which is to be monitored. Examples of such assays include the electrophysiological assessment of metabotropic glutamate receptor function in Xenopus oocytes expressing metabotropic cloned glutamate receptors, the electrophysiological assessment

10

15

metabotropic glutamate receptor function in transfected cell lines (e.g., CHO cells, HEK 293 cells, etc.) expressing cloned metabotropic glutamate receptors, the biochemical assessment of PI hydrolysis and accumulation in transfected cell lines expressing cloned metabotropic glutamate receptors, the biochemical assessment of PI hydrolysis and cAMP accumulation in rat (e.g., hippocampal, cortical, striatal, etc.) brain slices, fluorimetric measurements of cytosolic Ca2+ in cultured rat cerebellar granule cells, and fluorimetric measurements of cytosolic Ca2+ in transfected cell lines expressing cloned metabotropic glutamate receptors.

Prior to therapeutic use in a human, the compounds are preferably tested in vivo using animal models. Animal studies to evaluate a compound's effectiveness to treat different diseases or disorders, or exert an effect such as an analgesic effect, a cognition-enhancement effect, or a muscle-relaxation effect, can be carried out using standard techniques.

20 G. Novel Agents and Pharmaceutical Compositions

The chimeric receptors and screening methods described herein provide metabotropic glutamate receptor-binding agents (e.g., compounds and pharmaceutical compositions) discovered due to their ability to bind to a chimeric metabotropic glutamate receptor. Such binding agents are preferably modulators of a metabotropic glutamate receptor. Certain of these agent will be novel compounds

97

identified by the screening methods described herein. In addition, other such compounds are derived by standard methodology from such identified compounds when such identified compounds are used as lead compounds in screening assays based on analogs of identified active compounds, or in medicinal chemistry developments using identified compounds as lead compounds.

Further, by providing novel and efficient screening methods using chimeric receptors, this invention provides

10 a method for preparing a pharmaceutical agent active on a metabotropic glutamate receptor. Without such this efficient method, such agents would not be identified. The method involves identifying a active agent by screening using a chimeric receptor of the type described herein in a screening method as described above. The identified agent or an analog of that agent is synthesized in an amount sufficient to administer to a patient in a therapeutically effective amount.

H. <u>Treatment of Diseases and Disorders</u>

- A preferred use of the compounds and methods of the present invention is in the treatment of neurological diseases and disorders. Patients suffering from a neurological disease or disorder can be diagnosed by standard clinical methodology.
- Neurological diseases or disorders include neuronal degenerative diseases, glutamate excitotoxicity, global and focal ischemic and hemorrhagic stroke, head trauma,

spinal cord injury, hypoxia-induced nerve cell damage, and epilepsy. These different diseases or disorders can be further medically characterized. For example, neuronal degenerative diseases include Alzheimer's disease and Parkinson's disease.

Another preferred use of the present invention is in the production of other therapeutic effects, such as analgesic effects, cognition-enhancement effects, or muscle-relaxation effects. The present invention is preferably used to produce one or more of these effects in a patient in need of such treatment.

Patients in need of such treatment can be identified by standard medical techniques. For example, the production of analgesic activity can be used to treat patients suffering from clinical conditions of acute and chronic pain including the following: preemptive preoperative analgesia; peripheral neuropathies such as occur with diabetes mellitus and multiple sclerosis; phantom limb pain; causalgia; neuralgias such as occur with herpes zoster; central pain such as that seen with spinal cord lesions; hyperalgésia; and allodynia.

In a method of treating a patient, a therapeutically effective amount of a compound which in vitro modulates the activity of a chimeric receptor having at least the extracellular domain of a metabotropic glutamate receptor is administered to the patient. Typically, the compound modulates metabotropic glutamate receptor activity by acting as an agonist or antagonist of glutamate binding site activation. Preferably, the patient has a

99

neurological disease or a disorder, preferably the compound has an effect on a physiological activity. Such physiological activity can be convulsions, neuroprotection, neuronal death, neuronal development, central control of cardiac activity, waking, control of movements and control of vestibo ocular reflex.

Diseases or disorders which can be treated by modulating metabotropic glutamate receptor include one or more of the following types: (1) those characterized by abnormal glutamate homeostasis; (2) those characterized by an abnormal amount of an extracellular or intracellular messenger whose production can be affected by metabotropic glutamate receptor activity; (3) those characterized by an abnormal effect (e.g., a different effect in kind or magnitude) of an intracellular or extracellular messenger which can itself be ameliorated by metabotropic glutamate receptor activity; and (4) other diseases or disorders in which modulation of metabotropic glutamate receptor activity will exert a beneficial effect, for example, in diseases or disorders where the production of an intracellular or extracellular messenger stimulated by receptor activity compensates for an abnormal amount of a different messenger.

10

20

The compounds and methods can also be used to produce other effects such as an analgesic effect, cognition-enhancement effect, and a muscle-relaxant effect.

A "patient" refers to a mammal in which modulation of an metabotropic glutamate receptor will have a beneficial effect. Patients in need of treatment involving

15

modulation of metabotropic glutamate receptors can be identified using standard techniques known to those in the medical profession. Preferably, a patient is a human having a disease or disorder characterized by one more of the following: (1) abnormal glutamate receptor activity (2) an abnormal level of a messenger whose production or secretion is affected by metabotropic glutamate receptor activity; and (3) an abnormal level or activity of a messenger whose function is affected by metabotropic glutamate receptor activity.

By "therapeutically effective amount" is meant an amount of an agent which relieves to some extent one or more symptoms of the disease or disorder in the patient; or returns to normal either partially or completely one or more physiological or biochemical parameters associated with or causative of the disease.

More generally, this invention provides a method for modulating metabotropic glutamate receptor activity by providing to a cell having a metabotropic glutamate receptor an amount of a metabotropic glutamate receptor-modulating molecule sufficient to either mimic one or more effects of glutamate at the metabotropic glutamate receptor, or block one or more effects of glutamate at the metabotropic glutamate at the metabotropic glutamate receptor. The method can carried out in vitro or in vivo.

I. Formulation and Administration

Active compounds as identified by the methods of this invention can be utilized as pharmaceutical agents or

101

compositions to treat different diseases and disorders as described above. In this context, a pharmacological agent or composition refers to an agent or composition in a form suitable for administration to a mammal, preferably a human.

5

10

The optimal formulation and mode of administration of compounds of the present invention to a patient depend on factors known in the art such as the particular disease or disorder, the desired effect, and the type of patient. While the compounds will typically be used to treat human patients, they may also be used to treat similar or identical diseases in other vertebrates such as other primates, farm animals such as swine, cattle and poultry, and sports animals and pets such as horses, dogs and cats.

15 Preferably, the therapeutically effective amount is provided pharmaceutical composition. as a pharmacological agent or composition refers to an agent or composition in a form suitable for administration into a multicellular organism such as a human. Suitable forms, in part, depend upon the use or the route of entry, for 20 example oral, transdermal, or by injection. Such forms should allow the agent or composition to reach a target cell whether the target cell is present in a multicellular host or in culture. For example, pharmacological agents or compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms which prevent the agent or composition from exerting its effect.

102

The claimed compositions can also be formulated as pharmaceutically acceptable salts (e.g., acid addition salts) and/or complexes thereof. Pharmaceutically acceptable salts are non-toxic salts at the concentration at which they are administered. The preparation of such salts can facilitate the pharmacological use by altering the physical-chemical characteristics of the composition without preventing the composition from exerting its physiological effect. Examples of useful alterations in physical properties include lowering the melting point to facilitate transmucosal administration and increasing the solubility to facilitate the administration of higher concentrations of the drug.

Pharmaceutically acceptable salts include acid 15 addition salts such as those containing sulfate, hydrochloride, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexylsulfamate and quinate. (See e.q., supra. PCT/US92/03736.) Pharmaceutically acceptable salts can be obtained from 20 acids such as hydrochloric acid, sulfuric acid, phosphoric acid, sulfamic acid, acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, and quinic acid. 25

Pharmaceutically acceptable salts can be prepared by standard techniques. For example, the free base form of a compound is dissolved in a suitable solvent, such as an aqueous or aqueous-alcohol solution, containing the

appropriate acid and then isolated by evaporating the solution. In another example, a salt is prepared by reacting the free base and acid in an organic solvent.

Carriers or excipients can also be used to facilitate

5 administration of the compound. Examples of carriers and excipients include calcium carbonate, calcium phosphate, various sugars such as lactose, glucose, or sucrose, or types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols and physiologically compatible solvents. The compositions or pharmaceutical composition can be administered by different routes including intravenously, intraperitoneal, subcutaneous, and intramuscular, orally, topically, or transmucosally.

The compounds of the invention can be formulated for a variety of modes of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing Co., Easton, PA, 1990.

For systemic administration, oral administration is preferred. For oral administration, the compounds are formulated into conventional oral dosage forms such as capsules, tablets and tonics.

Alternatively, injection may be used, e.g., intramuscular, intravenous, intraperitoneal, subcutaneous, intrathecal, or intracerebroventricular. For injection, the compounds of the invention are formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution.

Alternatively, the compounds of the invention are formulated in one or more excipients (e.g., propylene glycol) that are generally accepted as safe as defined by USP standards. In addition, the compounds may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included.

Systemic administration can also be by transmucosal or transdermal means, or the molecules can be administered orally. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally in the art, and include, for example, transmucosal administration, bile salts and fusidic acid In addition, detergents may be used to derivatives. facilitate permeation. Transmucosal administration may be, example, through nasal sprays using suppositories. For oral administration, the molecules are formulated into conventional oral administration dosage forms such as capsules, tablets, and liquid preparations.

15

For topical administration, the compounds of the invention are formulated into ointments, salves, gels, or creams, as is generally known in the art.

The amounts of various compounds to be administered can be determined by standard procedures. Generally, a therapeutically effective amount is between about 1 nmole and 3 μ mole of the molecule, preferably 0.1 nmole and 1 μ mole depending on its EC₅₀ or IC₅₀ and on the age and size of the patient, and the disease or disorder associated

with the patient. Generally, it is an amount between about 0.1 and 50 mg/kg, preferably 0.01 and 20 mg/kg of the animal to be treated.

J. Transgenic Animals

invention also provides transgenic, nonhuman The containing a transgene encoding a chimeric mammals receptor, particularly a chimeric metabotropic glutamate receptor. Transgenic nonhuman mammals are particularly useful as an in vivo test system for studying the effects of introducing a chimeric receptor. Experimental model 10 systems may be used to study the effects in cell or tissue cultures, in whole animals, or in particular cells or tissues within whole animals or tissue culture systems. The effects can be studied over specified time intervals (including during embryogenesis). 15

The present invention provides for experimental model systems for studying the physiological effects of the receptors. Model systems can be created having varying degrees of receptor expression. For example, the nucleic 20 acid encoding a receptor may be inserted into cells which naturally express the parent receptors, such that the chimeric gene is expressed at much higher levels. Also, a recombinant gene may be used to inactivate the endogenous gene by homologous recombination, and thereby create a receptor deficient cell, tissue, or animal.

Inactivation of a gene can be caused, for example, by using a recombinant gene engineered insertional mutation (e.g., the neo gene). The

106

recombinant gene is inserted into the genome of a recipient cell, tissue or animal, and inactivates transcription of the receptor. Such a construct may be introduced into a cell, such as an embryonic stem cell, by techniques such as transfection, transduction, and injection. Stem cells lacking an intact receptor sequence may generate transgenic animals deficient in the receptor.

Preferred test models are transgenic animals. A transgenic animal has cells containing DNA which has been artificially inserted into a cell and inserted into the genome of the animal which develops from that cell. Preferred transgenic animals are primates, mice, rats, cows, pigs, horses, goats, sheep, dogs and cats.

A variety of methods are available for producing transgenic animals. For example, DNA can be injected into the pronucleus of a fertilized egg before fusion of the male and female pronuclei, or injected into the nucleus of an embryonic cell (e.g., the nucleus of a two-cell embryo) following the initiation of cell division (Brinster et al., Proc. Nat. Acad. Sci. USA 82: 4438-4442, 1985)). By way of another example, embryos can be infected with viruses, especially retroviruses, modified to carry chimeric receptor nucleotide sequences of the present invention.

Pluripotent stem cells derived from the inner cell mass of the embryo and stabilized in culture can be manipulated in culture to incorporate nucleotide sequences of the invention. A transgenic animal can be produced from such stem cells through implantation into a

107

blastocyst that is implanted into a foster mother and allowed to come to term. Animals suitable for transgenic experiments can be obtained from standard commercial sources such as Charles River (Wilmington, MA), Taconic (Germantown, NY), and Harlan Sprague Dawley (Indianapolis, IN).

Methods for the culturing of embryonic stem (ES) cells and the subsequent production of transgenic animals by the introduction of DNA into ES cells using methods such as electroporation, calcium phosphate/DNA precipitation and direct injection also are well known to those of ordinary skill in the art. See, for example, Teratocarcinomas and Embryonic Stem Cells, A Practical Approach, E.J. Robertson, ed., IRL Press (1987).

10

- Procedures for embryo manipulations are well known in the art. The procedures for manipulation of the rodent embryo and for microinjection of DNA into the pronucleus of the zygote are well known to those of ordinary skill in the art (Hogan et al., supra). Microinjection procedures for fish, amphibian eggs and birds are detailed in Houdebine and Chourrout (Experientia 47:897-905, 1991). Other procedures for introduction of DNA into tissues of animals are described in U.S. Patent No. 4,945,050 (Sandford et al., July 30, 1990).
- Transfection and isolation of desired clones can be carried out using standard techniques (e.g., E.J. Robertson, supra). For example, random gene integration can be carried out by co-transfecting the nucleic acid with a gene encoding antibiotic resistance.

Alternatively, for example, the gene encoding antibiotic resistance is physically linked to a nucleic acid sequence encoding a chimeric receptor of the present invention.

DNA molecules introduced into ES cells can also be integrated into the chromosome through the process of homologous recombination. (Capecchi, Science 244: 1288-1292, 1989). Methods for positive selection of the recombination event (e.g., neomycin resistance) and dual positive-negative selection (e.g., neomycin resistance and gancyclovir resistance) and the subsequent identification of the desired clones by PCR have been described by Capecchi, supra and Joyner et al., Nature 338:153-156, 1989), the teachings of which are incorporated herein.

The final phase of the procedure is to inject targeted ES cells into blastocysts and to transfer the blastocysts into pseudopregnant females. The resulting chimeric animals are bred and the offspring are analyzed by Southern blotting to identify individuals that carry the transgene.

An example describing the preparation of a transgenic mouse is as follows. Female mice are induced to superovulate and placed with males. The mated females are sacrificed by CO₂ asphyxiation or cervical dislocation and embryos are recovered from excised oviducts. Surrounding cumulus cells are removed. Pronuclear embryos are then washed and stored until the time of injection.

Randomly cycling adult female mice paired with vasectomized males serve as recipients for implanted embryos. Recipient females are mated at the same time as

donor females and embryos are transferred surgically to recipient females.

The procedure for generating transgenic rats is similar to that of mice. See Hammer et al., Cell 63:1099-1112, 1990). Procedures for the production of transgenic non-rodent mammals and other animals are known in art. See, for example, Houdebine and Chourrout, supra; Pursel et al., Science 244:1281-1288, 1989); and Simms et al., Bio/Technology 6:179-183, 1988).

10 K. <u>Transfected Cell Lines</u>

20

Nucleic acid expressing a functional chimeric receptor can be used to create transfected cell lines which functionally express a specific chimeric receptor. Such cell lines have a variety of uses such as being used for high-throughput screening for molecules able to modulate metabotropic glutamate receptor activity; and being used to assay binding to a metabotropic glutamate receptor.

A variety of cell lines are capable of coupling exogenously expressed receptors to endogenous functional responses. A number of these cell lines (e.g., NIH-3T3, HeLa, NG115, CHO, HEK 293 and COS7) can be tested to confirm that they lack an endogenous metabotropic glutamate. Those lines lacking a response to external glutamate can be used to establish stably transfected cell lines expressing the cloned chimeric receptors of the invention.

Production of these stable transfectants is accomplished by transfection of an appropriate cell line

with a eukaryotic expression vector, such as pMSG, in which the coding sequence for the chimeric metabotropic glutamate receptor cDNA has been cloned into the multiple cloning site. These expression vectors contain a promoter 5 region, such as the mouse mammary tumor virus promoter (MMTV), that drive high-level transcription of cDNAS in a variety of mammalian cells. In addition, these vectors contain genes for the selection of cells that stably express the cDNA of interest. The selectable marker in the PMSG vector encodes an enzyme, xanthine-guanine phosphoribosyl transferase (XGPRT), that confers resistance to a metabolic inhibitor that is added to the culture to kill the nontransfected cells. A variety of expression vectors and selection schemes are usually assessed to determine the optimal conditions for the 15 production of metabotropic glutamate receptor-expressing cell lines for use in high-throughput screening assays.

The most effective method for transfection of eukaryotic cell lines with plasmid DNA varies with the given cell type. The chimeric receptor expression construct will be introduced into cultured cells by the appropriate technique, either Ca²⁺ phosphate precipitation, DEAE-dextran transfection, lipofection or electroporation.

20

Cells that have stably incorporated or are episomally maintaining the transfected DNA will be identified by their resistance to selection media, as described above, and clonal cell lines will be produced by expansion of resistant colonies. The expression of the chimeric metabotropic glutamate receptor cDNA by these cell lines

111

will be assessed by solution hybridization and Northern blot analysis. Functional expression of the receptor protein will be determined by measuring the mobilization of intracellular Ca²⁺ in response to externally applied calcium receptor agonists.

The following examples illustrate the invention, but do not limit its scope.

III. <u>Examples</u>

Examples are provided below to illustrate different aspects and embodiments of the present invention. These examples are not intended in any way to limit the disclosed invention. Rather, they illustrate methodologies by which the novel chimeric receptors of the present invention may be constructed. They also illustrate methodologies by which compounds may be screened to determine which compounds bind to or modulate a desired mGluR.

Example 1: phPCaR4.0 and pmGluR1s

Plasmid phPCaR4.0 (Garrett et al., <u>J. Biol. Chem.</u>,
20 270:12919, 1995, hereby incorporated by reference herein)
was isolated from E. coli bacterial cells containing the
plasmid grown up in nutrient broth containing 100 ug/ml
ampicillin (Boerhringer Mannheim). This plasmid DNA was
used as the source for the DNA encoding the human calcium
25 receptor which was cloned into the EcoRI site of vector
pBluescript SK (Stratagene) in the T7 orientation. All

restriction enzymes modification and enzymes purchased from New England Biolabs unless otherwise noted.

Plasmid p7-3/6A was assembled in pBluescript SK from two overlapping subclones of rat mGluR1 obtained from an oligonucleotide screen of a commercially available rat olfactory bulb cDNA library (Stratagene). This plasmid DNA was used as the source of the metabotropic glutamate receptor, mGluR1. It was also used to screen a commercially available human cerebellar cDNA library for the human analogue. The human cerebellar library was screened with a radioactively labeled rat mGluR1 by a method described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Chapter 1, 1989. Positive plaques were rescued using the manufacturer's protocol and 15 restriction mapped to compare them against the published human mGluR1 sequence (Eur. Patent publications 0 569 240 A1 and 0 568 384 A1). Two subclones were assembled to create a complete human mGluR1.

Alternatively, the sequence of human mGluR1 may be obtained from European Publication Nos. 0 569 240 A1 and 20 0 568 384 Al. Probes prepared using this sequence may be used to probe human cDNA libraries to obtain the full length human clone. In addition, the relevant sequences may be synthesized using the sequence described therein.

25 Example 2: pmGluR1/CaR

Chimeric receptors were constructed using recombinant PCR and a multi-step cloning strategy. An overview of recombinant PCR is presented by R. Higuchi in PCR

Protocols: A Guide to Methods and Applications, Academic Press, Inc. In the first construct recombinant PCR was used to combine the sequences of mGluR1 and the CaR across the junction of the extracellular transmembrane domains. The first chimera, pR1/CaR. contained the extracellular domain of mGluR1 and the transmembrane and intracellular region of the calcium receptor. The chimeric junction was created using three separate PCR reactions. The first reaction used two primers specific for rat mGluR1, A4, a 22 mer encoding nucleotides 1146 to 1167, and an antisense primer, oligoB, 43 mer containing 22 bases of (nucleotides -1755 to -1776) and 21 bases from the CaR (nucleotides -1837 to -1857). These primers were used to amplify a 650 bp fragment of rat mGluR1. In a separate 15 PCR reaction, a 500 bp fragment of the CaR was amplified using hybrid primer C, a 43 mer which was the complement of oligo B, and D4, an antisense primer corresponding to nucleotides-2256 to -2279 of the CaR. These two PCR products were purified from an agarose gel and annealed together in equal molar ratio in the presence of the external primers A4 and D4 and the proof-reading DNA polymerase, Pfu (Stratagene). The 1,100 bp chimeric PCR product was digested with Nsi I and subcloned into phCar4.0 digested with EcoRV and Nsi I. The resultant subclone was subsequently digested with Xho I and Sfi I to remove the extracellular domain of the CaR which was then replaced with the Xho I- Sfi I fragment of rat mGluR1. The resultant chimera, pR1/Car was validated by

restriction mapping and double-stranded DNA sequencing with Sequenase Version 2.0 (US Biochemical). The DNA sequence for pR1/Car and the corresponding amino acid sequence is depicted in Figure 2.

5 Example 3: pCaR/R1

A second construct, pCaR/R1, was a reciprocal of the chimera described in example 2 in that it encoded the extracellular domain of CaR and the transmembrane and intracellular region of mGluR1. The chimeric junction 10 was created as described above using recombinant PCR. first reaction used two primers specific for CaR, CRSf1, a 22 mer corresponding to nucleotides 862 to 883 , and an CR1794, a 36 mer with 18 bases antisense primer, corresponding to CaR (nucleotides -1777 to -1794) and 18 15 bases from mGluR1(nucleotides -2110 to -2127). These primers were used to amplify a 935 bp fragment of CaR. In a separate PCR reaction, a 360 bp fragment of mGluR1 was amplified using hybrid primer R12110, a 36 mer containing 18 bases of CaR (nucleotides 1777 to 1794) covalently attached to 18 bases of mGluR1 (nucleotides 2110 to 2127) 20 and R1Bgl, antisense primer an corresponding -2451 to -2470 of mGluR1. nucleotides These two PCR products were purified from an agarose gel and annealed together in equal molar ratio in the presence of the external primers CRSfl and R1Bgl and the proof-reading DNA polymerase, Pfu (Stratagene). The 1,250 bp chimeric PCR product was digested with Sfi I and Bgl II and subcloned into p7/3A digested with the same enzymes. A subclone

115

was subsequently digested with Sal I and SfiI to remove the extracellular domain of mGluR1 which was then replaced with the Sal I-Sfi I fragment of CaR. The resultant chimera, pCaR/R1 was validated by restriction mapping and double-stranded DNA sequencing using Sequenase Version 2.0 (US Biochemical). The DNA sequence is for pCaR/R1 and the corresponding amino acid sequence is depicted in Figure 3.

Example 4: pratCH3 and phCH4

These chimeras are a result of swapping the CaR 10 cytoplasmic tail onto the extracellular and transmembrane domains of either rat or human mGluR1. Recombinant PCR was used to attach the C-terminal tail of the CaR onto (which encodes the rat mGluR1 signal human mGluR1 sequence) after nucleotide 2535. The first PCR reaction used two primers specific for human mGluR1, M-1rev a 24 mer corresponding to nucleotides 2242 to 2265 , and an antisense primer, CH3R1, a 36 mer composed of 18 bases of hmGluR1 (nucleotides -2518 to -2535) and 18 bases of CaR (nucleotides -2602 to -2619). These primers were used to amplify a 300 bp fragment of hmGluR1. In a separate PCR 20 reaction, a 750 bp fragment of the CaR was amplified using hybrid primer CH3CaR, a 36 mer which is the complement of oligo CH3R1, and a commercially available T3 primer (Stratagene) which primes in the Bluescript vector in a region downstream from the 3' end of the CaR. The two PCR products were purified from an agarose gel and annealed together in equal molar ratio in the presence of the external primers M-1 rev and T3 and the proof-reading DNA

20

polymerase, Pfu (Stratagene). The 1kb chimeric PCR product was digested with Nhe I and Not I and subcloned phmGluR1 digested with the same enzymes. resultant chimera, phCH4 was validated by restriction mapping and double-stranded DNA sequencing. To detect functional activity in the oocyte assay with this clone it was necessary to exchange the 5' untranslated region and the signal sequence from rat mGluR1 with the same region of this human clone. This was done utilizing a Bsu36I restriction site. Additionally, an Acc I fragment of rat mGluR1 was subcloned into phCH4 to create a rat version of this same chimera. This chimera is referred to as ratCH3. The DNA sequence for pratCh3 and the corresponding amino acid sequence are depicted in Figure 4. The DNA sequence 15 for phCH44 and the corresponding amino acid sequence are depicted in Figure 5.

Using the techniques described in the above-mentioned examples, we therefore envision the construction, evaluation and screening utility of other mGluR/CaR In this example we have taken a Group I chimeras. metabotropic glutamate receptor which, similar to the calcium receptor, is coupled to the activation phospholipase C and mobilization of intracellular calcium, and by swapping the C-terminal tail, maintained the integrity of the second messenger system. Additionally, when the CaR tail was added to mGluR1, the desensitization properties were lost. This demonstrates the feasibility of changing specific G-protein coupling of metabotropic glutamate receptors to those of the CaR by swapping

intracellular domains. By example, Group II mGluRs, such as mGluR2 or mGluR3 which are G coupled, could be changed to Gq coupled receptors. This can be done by exchanging onto these receptors the C-terminal cytosolic tail of the 5 CaR using the protocol described in examples 2, 3 and 4. Effective Gq coupling could be evaluated in the oocyte as described in examples 5 and 6. Activation of a Group II by L-CCG-I (their most potent agonist), should induce mobilization of intracellular Ca2+ which will cause the detectable inward rectifying C1- current measured in the voltage-clamped oocyte.

10

To increase the effectiveness of G-protein binding it may be useful to swap one or more additional intracellular (cytoplasmic) loops of the CaR onto the mGluR1. such substitution example, can involve any of: loop 1, intracellular loop intracellular 2 and intracellular loop 3 from a calcium receptor, substituted alone or in any combination of loops. Such subdomain swapping may be necessary for the most effective transference of G-protein binding specificity.

Example 5: In vitro transcription of RNA

RNA transcripts encoding the receptors described in 1 through 4 were produced by enzymatic examples transcription from plasmid templates using T7 polymerase supplied with the mMessage mMachine ™(Ambion). plasmid was treated with a restriction enzyme to make a single cut distal to the 3' end of the cDNA insert to linearize the template. This DNA was incubated with T7

RNA polymerase in the presence of GpppG cap nucleotide, rATP, rCTP, rUTP and rGTP. The synthetic RNA transcript is purified by DNase treatment of the reaction mix and subsequent alcohol precipitations. RNA was quantitated by absorbance spectroscopy (OD_{260}) and visualized on an ethidium stained 1.2% formaldehyde gel.

Example 6: Functional expression in oocytes

Occytes suitable for injection were obtained from adult female Xenopus laevis toads using procedures described in C. J. Marcus-Sekura and M. J. M. Hitchcock, Methods in Enzymology, Vol. 152 (1987). Pieces of ovarian lobe were incubated for 30 minutes in Ca²⁺-free Modified Barths Saline (MBS) containing 1.5 mg/ml collagenase type IA (Worthington). Subsequently, 5 ng of RNA transcript prepared as described in Example 5, were injected into each oocyte. Following injection, oocytes were incubated at 16°C in MBS containing 0.5 mM CaCl₂ for 2-7 days prior to electrophysiological examination.

The ability of each chimeric receptor to function was

20 determined by voltage-recording of current-passing
electrodes across the oocyte membrane in response to
glutamate and calcium receptor agonists. Oocytes were
voltage clamped at a holding potential of -60 mV with an
Axoclamp 2A amplifier (Axon Instruments, Foster City, CA)

25 using standard two electrode voltage-clamp techniques.
Currents were recorded on a chart recorder. The standard
control saline was MBS containing 0.3 mM CaCl₂ and 0.8

MgCl₂. Test substances were applied by superfusion at a

flow rate of about 5 ml/min. All experiments were done at room temperature. The holding current was stable in a given oocyte and varied between +10 to -200 nA for different oocytes. Activation of $I_{\rm cl}$ in response to activation of receptors and subsequent increases in intracellular Ca2+ ([Ca] in) was quantified by measuring the peak inward current stimulated by agonist or drug, relative to the holding current at -60 mV.

Figure 6 pR1/CaR vs. rat mGluR1 (glutamate and 10 quisqualate).

Figure 7 CaR/R1 vs. hPCar (calcium)

Figure 8 pratCH3 vs. rat mGluR1 and CaR (desensitization traces)

Example 7: Construction of pCEPCaR/R1 from pCaR/R1

The DNA from plasmid pCaR/R1 was digested and cloned into the commercially available episomal mammalian expression vector, pCEP4 (Invitrogen), using the restriction enzymes Kpn I and Not I. The ligation products were transfected into DH5a cells which had been made competent for DNA transformation. These cells were plated on Luria-Bertani Media (LB) plates (described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 1989)) containing 100 ug/ml ampicillin. A clone was selected from the colonies which grew. This clone, pCEPCaR/R1 was characterized by restriction enzyme digestion.

Example 8: Transfection and growth of HEK293/ pCEPCaR/R1

Human embryonic kidney cells (293, ATCC, CRL 1573) were grown in a routine manner. Cells were plated in 10 cm cell-culture plates in Dulbecco's modified Eagle's medium (D-MEM) containing 10 % fetal calf serum (FCS) and 1 X Penicillin-Streptomycin (PS, Life Technologies) so that they would be ~70% confluent after an overnight incubation. To prepare DNA for transfection, the plasmid pCEPCaR/R1 was precipitated with ethanol, rinsed and resuspended in sterile water at a concentration of 1 10 ug/ul. Fourteen micrograms of DNA was incubated with the liposome formulation LipofectAMINE™ (Life Technologies) 20 minutes in serum-free Opti-MEM® Technologies). After the room temperature incubation, 6.8 mls of Opti-MEM® was added to the transfection mix. solution was added to the cells which had been rinsed with 15 2X 5 ml washes of serum-free Opti-MEM®. The cells and transfection mix were incubated at 37°C for 5 hours at which time more media and fetal bovine serum were added to bring the serum concentration to 10 %. After an overnight incubation the media was changed back to D-MEM with 10% 20 After an additional 24 h incubation, FCS and 1 x PS. cells were detached with trypsin and replated in media containing 200 ug/ml hygromycin (Boerhringer Mannheim). Those cells which grew contained pCEPCaR/R1 which encodes the hygromycin resistance gene. Individual clones were recovered and propagated using standard tissue-culture Subcultures of both individual clones and techniques. pooled stables were prepared by dissociation into fresh

121

tissue culture media, and plated into fresh culture dishes at 1/10th the original volume.

Example 9: HEK293/pCEPCaR/R1 Fura assay

Measurements of intracellular calcium release in 5 response to increases in extracellular calcium quantitated using the Fura assay (Parks et al. 1989). Stably transfected cells containing pCEPCaR/R1 are loaded with 2 μM fura-2 acetoxymethylester by incubation for 20-30 minutes at 37°C in SPF-PCB (126 mM NaCl, 5mM KCl, $1mM MgCl_2$, 20 mM HEPES, pH 7.4), containing 1.25 $mM CaCl_2$, 1 mg/ml glucose, 0.5% BSA1. The cells are then washed 1 to 2 times in SPF-PCB containing 0.5 mM CaCl₂, 0.5% BSA and resuspended to a density of 4 to 5 million cells/ml and kept at 22°C in a plastic beaker. For recording fluorescent signals, the cells are diluted fivefold into a quartz cuvette with BSA-free 37°C SPF-PCB to achieve a final BSA concentration of 0.1% (1.2 ml of 37°C BSA-free SPF-PCB + 0.3 ml cell suspension). Measurements of fluorescence are performed at 37°C with constant stirring 20 using a custom-built spectrofluorimeter (Biomedical Instrumentation Group, University of Pennsylvania). Excitation and emission wavelengths are 340 and 510 nm, respectively. To calibrate fluorescence signals, digitonin (Sigma, St. Louis, MO; catalog # D 5628; 50 μ g/ml, final) is added to obtain F_{max} , and the apparent F_{min} 25 determined by adding EGTA (10 mM, final) and Tris base (pH ~ 10, final). Concentrations of released intracellular Ca2+

is calculated using a dissociation constant (Kd) of 224 nM and the equation:

$$[Ca^{2+}]_i = (F - F_{min}/F_{max} - F) \times Kd$$

The results are graphically represented in Figure 9.

5 Example 10: Recombinant Receptor Binding Assay

The following is one example of a rapid screening assay to obtain compounds modulating metabotropic glutamate receptor activity. The screening assay first measures the ability of compounds to bind to recombinant chimeric receptors, or receptor fragments or mGluR, CaR or chimeric receptors. Compounds binding to such receptors or fragments are then tested for their ability to modulate one or more activities at a metabotropic glutamate receptor.

In one procedure, a cDNA or gene clone encoding a metabotropic glutamate receptor is obtained. Distinct fragments of the clone are expressed in an appropriate expression vector to produce the smallest receptor polypeptide(s) obtainable able to bind glutamate. Such experiments can be facilitated by utilizing a stably transfected mammalian cell line (e.g., HEK 293 cells) expressing the metabotropic glutamate receptor.

The recombinant polypeptide(s) having the desired binding properties can be bound to a solid-phase support using standard chemical procedures. This solid-phase, or affinity matrix, may then be contacted with glutamate to

demonstrate that glutamate can bind to the column, and to identify conditions by which glutamate may be removed from the solid-phase. This procedure may then be repeated using a large library of compounds to determine those compounds which are able to bind to the affinity matrix. Bound compounds can then can be released in a manner similar to glutamate. Alternative binding and release conditions may be utilized to obtain compounds capable of binding under conditions distinct from those used for glutamate binding (e.g., conditions which better mimic 10 physiological conditions encountered especially pathological states). Compounds binding to the mGluR can thus be selected from a very large collection of compounds present in a liquid medium or extract.

15 . alternate method, chimeric metabotropic glutamate/calcium receptors are bound to a column or other solid phase support. Those compounds which are not competed off by reagents binding to the glutamate binding site on the receptor can then be identified. compounds define alternative binding 20 sites receptor. Such compounds may be structurally distinct from known compounds and may define chemical classes of antagonists which may agonists or be therapeutics agents.

Other embodiments are within the following claims.

<u>CLAIMS</u>

What we claim is:

- 1. A composition comprising a chimeric receptor,
- wherein said chimeric receptor comprises an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain,

wherein a sequence of at least 6 contiguous amino acids is homologous to a sequence of a metabotropic glutamate receptor, and a sequence of at least 6 contiguous amino acids is homologous to a sequence of a calcium receptor.

2. The composition of claim 1,

wherein at least one domain of said extracellular domain, said seven transmembrane domain, and said intracellular cytoplasmic tail domain is homologous to a domain of a metabotropic glutamate receptor and/or at least one domain is homologous to a domain of a calcium receptor.

20 3. The composition of claim 2,

wherein at least one domain of said extracellular domain, said seven transmembrane domain, and said intracellular cytoplasmic tail domain is homologous to a domain of a metabotropic glutamate receptor, and

at least one domain is homologous to a domain of a calcium receptor.

WO 97/05252

- 4. The composition of claim 3 wherein said chimeric receptor comprises
- a domain homologous to the extracellular domain of a calcium receptor,
- a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor, and
 - a domain homologous to the intracellular cytoplasmic tail domain of a metabotropic glutamate receptor.
- 5. The composition of claim 3, wherein said 10 chimeric receptor comprises
 - a domain homologous to the extracellular domain of a calcium receptor,
 - a domain homologous to the seven transmembrane domain of a calcium receptor, and
- a domain homologous to the intracellular cytoplasmic tail domain of a metabotropic glutamate receptor.
 - 6. The composition of claim 3 wherein said chimeric receptor comprises
- a domain homologous to the extracellular domain of a 20 metabotropic glutamate receptor,
 - a domain homologous to the seven transmembrane domain of a calcium receptor, and
 - a domain homologous to the intracellular cytoplasmic tail domain of a metabotropic glutamate receptor.
- 7. The composition of claim 3 wherein said chimeric receptor comprises

- a domain homologous to an extracellular domain of a metabotropic glutamate receptor,
- a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor, and
- a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
 - 8. The composition of claim 3 wherein said chimeric receptor comprises
- a domain homologous to the extracellular domain of a metabotropic glutamate receptor,
 - a domain homologous to the seven transmembrane domain of a calcium receptor, and
 - a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
- 9. The composition of claim 3 wherein said chimeric receptor comprises
 - a domain homologous to the extracellular domain of a calcium receptor,
- a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor, and
 - a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
 - 10. The composition of claim 3 wherein said chimeric receptor comprises
- a domain homologous to an extracellular domain of a metabotropic glutamate receptor,

a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor except that said seven transmembrane domain comprises at least one cytoplasmic loop of a calcium receptor, and

a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.

11. The composition of claim 1,

wherein at least one cytoplasmic loop of said seven transmembrane domain is homologous to a cytoplasmic loop of a metabotropic glutamate receptor.

12. The composition of claim 1,

wherein at least one cytoplasmic loop of said seven transmembrane domain is homologous to a cytoplasmic loop of a calcium receptor.

13. The composition of claim 1,

wherein at least a 6 contiguous amino acid sequence of said chimeric receptor is homologous to a sequence of amino acids of a calcium receptor and the remainder of the amino acid sequence of said chimeric receptor is homologous to a sequence of amino acids of a metabotropic glutamate receptor.

14. The composition of claim 1,

wherein at least a 6 contiguous amino acid sequence of said chimeric receptor is homologous to a sequence of amino acids of a metabotropic glutamate receptor and the

remainder of the amino acid sequence of said chimeric receptor is homologous to a sequence of amino acids of a calcium receptor.

15. A composition comprising an enriched, purified, or isolated nucleic acid molecule which codes for a chimeric receptor,

wherein said chimeric receptor comprises an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain,

- wherein a sequence of at least 6 contiguous amino acids is homologous to a sequence of a metabotropic glutamate receptor, and a sequence of at least 6 contiguous amino acids is homologous to a sequence of a calcium receptor.
- 16. The composition of claim 15, wherein said chimeric receptor comprises
 - at least one domain homologous to a domain of a calcium receptor, and
- at least one domain homologous to a domain of a 20 metabotropic glutamate receptor.
 - 17. The composition of claim 16 wherein said chimeric receptor comprises
 - a domain homologous to the extracellular domain of a metabotropic glutamate receptor,
- a domain homologous to the seven transmembrane domain of a calcium receptor, and

- a domain homologous to the intracellular cytoplasmic tail domain of a metabotropic glutamate receptor.
- 18. The composition of claim 16 wherein said chimeric receptor comprises
- a domain homologous to an extracellular domain of a metabotropic glutamate receptor,
 - a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor, and
- a domain homologous to the intracellular cytoplasmic 10 tail domain of a calcium receptor.
 - 19. The composition of claim 16 wherein said chimeric receptor comprises
 - a domain homologous to the extracellular domain of a metabotropic glutamate receptor,
- a domain homologous to the seven transmembrane domain of a calcium receptor, and
 - a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
- 20. The composition of claim 16 wherein said 20 chimeric receptor comprises
 - a domain homologous to an extracellular domain of a metabotropic glutamate receptor,
- a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor except that said seven transmembrane domain comprises at least one cytoplasmic loop of a calcium receptor, and

- a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
- 21. A composition comprising a nucleic acid coding for the chimeric receptor of claim 13.
- 5 22. A composition comprising a nucleic acid coding for the chimeric receptor of claim 14.
 - 23. A replicable expression vector comprising a nucleic acid molecule which codes for the chimeric receptor of claim 2.
- 10 24. A recombinant host cell transformed with the vector of claim 23.
 - 25. A process for the production of a chimeric receptor, said process comprising:
- growing, under suitable nutrient conditions,

 15 procaryotic or eucaryotic host cells transformed or

 transfected with the expression vector of claim 13, in a

 manner allowing expression of said chimeric receptor.
- 26. A method of screening for a compound that binds to or modulates the activity of a metabotropic glutamate receptor, comprising:
 - a. preparing a chimeric receptor comprising an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain wherein at least one

domain is homologous to a domain of a metabotropic glutamate receptor and at least one domain is homologous to a domain of a calcium receptor,

- b. introducing said chimeric receptor and said compound into an acceptable medium, and
 - c. monitoring the binding or modulation by physically detectable means thereby identifying those compounds which bind to or modulate the activity of said metabotropic glutamate receptor.
- 27. The method of claim 26, wherein said extracellular domain of said chimeric receptor is homologous to the extracellular domain of a metabotropic glutamate receptor.
- 28. The method of claim 27 wherein said chimeric receptor comprises
 - a domain homologous to the extracellular domain of a metabotropic glutamate receptor,
 - a domain homologous to the seven transmembrane domain of a calcium receptor, and
- a domain homologous to the intracellular cytoplasmic tail domain of a metabotropic glutamate receptor.
 - 29. The method of claim 27 wherein said chimeric receptor comprises
- a domain homologous to an extracellular domain of a 25 metabotropic glutamate receptor,

- a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor, and
- a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
- 5 30. The method of claim 27 wherein said chimeric receptor comprises
 - a domain homologous to the extracellular domain of a metabotropic glutamate receptor,
- a domain homologous to the seven transmembrane domain of a calcium receptor, and
 - a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
 - 31. The method of claim 27 wherein said chimeric receptor comprises
- a domain homologous to an extracellular domain of a metabotropic glutamate receptor,
 - a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor except that said seven transmembrane domain comprises at least one cytoplasmic loop of a calcium receptor, and
 - a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
- 32. A method of screening for a compound which binds to or modulates the activity of a metabotropic glutamate receptor, comprising the steps of:

- a. preparing a nucleic acid sequence encoding a chimeric receptor comprising an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain, wherein the chimeric receptor comprises a sequence of at least 6 contiguous amino acids which is homologous to a sequence of amino acids of a calcium receptor and a sequence of at least 6 contiguous amino acids which is homologous to a sequence of amino acids of a metabotropic glutamate receptor.
- b. inserting the sequence into a replicable expression vector capable of expressing said chimeric receptor in a host cell,
 - c. transforming a host cell with the vector of (b),
- d. introducing said transformed host cell and said
 15 compound into an acceptable medium, and
 - e. monitoring the effect of said compound on said host cell.
- 33. The method of claim 32, wherein said chimeric receptor comprises at least one domain homologous to a domain of a metabotropic glutamate receptor and/or at least one domain homologous to a domain of a calcium receptor.
- 34. The method of claim 33, wherein said chimeric receptor comprises an extracellular domain homologous to an extracellular domain of a metabotropic glutamate receptor.

- 35. The method of claim 34 wherein said chimeric receptor comprises
- a domain homologous to the extracellular domain of a metabotropic glutamate receptor,
- a domain homologous to the seven transmembrane domain of a calcium receptor, and
 - a domain homologous to the intracellular cytoplasmic tail domain of a metabotropic glutamate receptor.
- 36. The method of claim 34 wherein said chimeric 10 receptor comprises
 - a domain homologous to an extracellular domain of a metabotropic glutamate receptor,
 - a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor, and
- a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
 - 37. The method of claim 34 wherein said chimeric receptor comprises
- a domain homologous to the extracellular domain of a 20 metabotropic glutamate receptor,
 - a domain homologous to the seven transmembrane domain of a calcium receptor, and
 - a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
- 38. The method of claim 34 wherein said chimeric receptor comprises

- a domain homologous to an extracellular domain of a metabotropic glutamate receptor,
- a domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor except that said seven transmembrane domain comprises at least one cytoplasmic loop of a calcium receptor, and
- a domain homologous to the intracellular cytoplasmic tail domain of a calcium receptor.
- 39. The method of claim 33, wherein said chimeric receptor comprises a seven transmembrane domain homologous to the seven transmembrane domain of a metabotropic glutamate receptor.
- 40. The method of claim 32, wherein at least one cytoplasmic loop of said seven transmembrane domain is homologous to a cytoplasmic loop of a calcium receptor.
 - 41. The method of claim 40, wherein the sequence of the remainder of said chimeric receptor is homologous to the sequence of a metabotropic glutamate receptor.
- 20 chimeric receptor comprises a sequence of at least 6 contiguous amino acids which is homologous to a sequence of amino acids of a calcium receptor, and the remainder of the amino acid sequence of said chimeric receptor is homologous to a sequence of amino acids of a metabotropic glutamate receptor.

WO 97/05252 PCT/US96/12336

136

- 43. The method of claim 32, wherein at least one cytoplasmic loop of said seven transmembrane domain is homologous to a cytoplasmic loop of a metabotropic glutamate receptor.
- 5 44. The method of claim 32, wherein said host cell is a eukaryotic cell.
 - 45. A method of screening for a compound that binds to a metabotropic glutamate receptor or a calcium receptor, comprising the steps of:
- 10 a. preparing a nucleic acid sequence encoding a fragment of a receptor,
 - b. inserting said sequence into a replicable expression vector capable of expressing said fragment in a host cell,
- c. transforming a host cell with the vector of (b),
 - d. recovering the fragment from said host cell,
 - e. introducing said fragment and said compound into an acceptable medium, and
- f. monitoring the binding of the compound to the 20 fragment by physically detectable means.
 - 46. The method of claim 45, wherein said receptor is a metabotropic glutamate receptor.
- 47. The method of claim 46, wherein said fragment comprises an extracellular domain of said metabotropic glutamate receptor.

- 48. The method of claim 46, wherein said fragment comprises a seven transmembrane domain of said metabotropic glutamate receptor.
- 49. The method of claim 46 wherein said fragment comprises a seven transmembrane domain and a cytoplasmic tail domain of a metabotropic glutamate receptor.
 - 50. The method of claim 45 wherein said receptor is a calcium receptor.
- 51. The method of claim 50 wherein said fragment 10 comprises an extracellular domain of said calcium receptor.
 - 52. The method of claim 50 wherein said fragment comprises a seven transmembrane domain of said calcium receptor.
- 53. The method of claim 50 wherein said fragment comprises a seven transmembrane domain and a cytoplasmic tail domain of said calcium receptor.
- 54. A method of screening for a compound that binds to or modulates a metabotropic glutamate receptor or a calcium receptor, comprising the steps of:
 - a. preparing a nucleic acid sequence encoding a fragment of a receptor,

WO 97/05252 PCT/US96/12336

138

- b. inserting said sequence into a replicable expression vector capable of expressing said fragment in a host cell,
 - c. transforming a host cell with the vector of (b),
- d. introducing said transformed host cell and said compound into an acceptable medium, and
 - e. monitoring the effect of said compound on said host cell.
- 55. The method of claim 54, wherein said 10 fragment comprises the seven transmembrane domain and cytoplasmic tail domain of a metabotropic glutamate receptor.
- 56. The method of claim 54, wherein said fragment comprises the seven transmembrane domain and cytoplasmic tail domain of a calcium receptor.
 - 57. A method of screening for a compound that binds to or modulates a receptor, comprising the steps of:
 - a. preparing a nucleic acid sequence encoding a first fragment comprising a fragment of a first receptor,
- b. inserting the sequence into a replicable expression vector capable of expressing said first fragment in a host cell,
 - c. transforming a host cell with the vector of (b),
 - d. recovering the first fragment from the host cell,

- e. preparing a nucleic acid sequence encoding a second fragment comprising a fragment of a second receptor,
- f. inserting the sequence of (e) into a replicable expression vector capable of expressing said second fragment in a host cell,
 - g. transforming a host cell with the vector of (f),
 - h. recovering the second fragment from the host cell of (g), and
- i. introducing said first fragment and said second fragment and said compound into an acceptable medium, and
 - j. monitoring the binding and/or modulation of the compound by physically detectable means.
 - 58. The method of claim 57, wherein
- said first fragment comprises the extracellular domain of a metabotropic glutamate receptor, and

said second fragment comprises the seven transmembrane domain and the cytoplasmic tail domain of a calcium receptor.

59. The method of claim 57, wherein

said first fragment comprises the extracellular domain and the seven transmembrane domain of a metabotropic glutamate receptor, and

said second fragment comprises the cytoplasmic tail domain of a calcium receptor.

60. The method of claim 57 wherein

said first fragment comprises the extracellular domain of a calcium receptor, and

said second fragment comprises the seven transmembrane domain and the cytoplasmic tail domain of a metabotropic glutamate receptor.

61. The method of claim 57 wherein

said first fragment comprises the extracellular domain of a calcium receptor, and

said second fragment comprises the seven transmembrane domain of a metabotropic glutamate receptor and the cytoplasmic tail domain of a calcium receptor.

- 62. A method of screening for compounds which modulate the activity of both a metabotropic glutamate receptor and a calcium receptor, comprising the steps of:
- a. preparing a nucleic acid sequence encoding a chimeric receptor wherein the chimeric receptor comprises an extracellular domain, a seven transmembrane domain, and an intracellular cytoplasmic tail domain, wherein at least one domain is homologous to a domain of the metabotropic glutamate receptor and at least one domain is homologous to a domain of a calcium receptor.
 - b) inserting the sequence into a replicable expression vector capable of expressing said chimeric receptor in a host cell,
- c) transforming a host cell with the vector of (b),
 - d) introducing said transformed host cell and said compound into an acceptable medium, and

WO 97/05252 PCT/US96/12336

141

- e) monitoring the effect of said compound on said cell.
- of a metabotropic glutamate receptor active compound, comprising the steps of:
- a. preparing a nucleic acid sequence encoding a chimeric receptor wherein the chimeric receptor comprises at least a 6 amino acid sequence which is homologous to a sequence of amino acids of a calcium receptor and the remainder of the amino acid sequence is homologous to a sequence of amino acids of a metabotropic glutamate receptor,
- b. inserting the sequence into a replicable expression vector capable of expressing said chimeric
 15 receptor in a host cell,
 - c. transforming a host cell with the vector of (b),
 - d. introducing said transformed host cell and said compound into an acceptable medium, and
- e. monitoring the effect of said compound on said 20 cell.
 - of a calcium receptor active compound, comprising the steps of:
- a. preparing a nucleic acid sequence encoding a chimeric receptor wherein the chimeric receptor comprises at least a 6 amino acid sequence which is homologous to a sequence of amino acids of a metabotropic glutamate

receptor and the remainder of the amino acid sequence is homologous to a sequence of amino acids of a calcium receptor,

- b. inserting the sequence into a replicable expression vector capable of expressing said chimeric receptor in a host cell,
 - c. transforming a host cell with the vector of (b),
 - d. introducing said transformed host cell and said compound into an acceptable medium, and
- e. monitoring the effect of said compound on said cell.

^{2/34} FIG. 2a.

Sequence Range: -7 to 3379

3	•	13	23	33	
CGCCACA ATG	STC CGG CTC	CTC TTG	ATT TTC	TTC CCA ATG	ATC TTT TTG
met v	CODING SE	QUENCE C	IIMERA:JUN	NCTION NUC.	Ile Phe Leu>
a a	a8 T	0 1775 OF	F MCRATMGI	L-1 30 a	a a 40 >
43 ± ±	53 * . *	63 *	73 *	3 * *	83
GAG ATG TCC A	ATT TTG CCC	AGG ATG	CCT GAC	AGA AAA GTA	TTG CTG GCA Leu Leu Ala>
p p cor	DING SEQUEN	CE CHIME	RA:JUNCTIO	ON NUC.1776	p p >
	·				a a >
93 * , *	103	113	**	123 * *	133
GGT GCC TCG TG Ala Ser	ICC CAG CGC Ser Gln Arg	TCC GTG Ser Val	GCG AGA A	ATG GAC GGA Met Asp Glv	GAT GTC ATC Asp Val Ile>
b b COI	DING SEQUEN 00 a -8 TO	CE CHIME	RA: JUNCTIO	ON. NUC.1776	b b >
143	153		53	173	
*	* *	*	* *	*	183 * GAG AAG GTA
Ile Gly Ala 1	Leu Phe Ser	Val His	His Gln I	Pro Pro Ala	Glu Lys Val>
b b COI	DING SEQUEN 150 -8 T	0 1775 OF	CALJUNCTION MCRATMGI	DN NUC.1776 L-1 a a	b b > a 180 a >
193	203		213	223	233
CCC GAA AGG	AAG TGT GGG	GAG ATC	AGG GAA	* * CAG TAT GGT	ATC CAG AGG
b b COI	DING SEQUEN	CE CHIME	RA: JUNCTIO	ON NUC.1776	<pre>Ile Gln Arg> b b ></pre>
, ·	a20 -8 T	0 1775 OI	E MCRATMG	L-120 a a	a a230a >
243 * *	* 2	53 * *	263	273. * *	*
GTG GAG GCC A	ATG TTC CAC Met Phe His	ACG TTG Thr Leu	GAT AAG	ATT AAC GCG Ile Asn Ala	GAC CCG GTG Asp Pro Val>
p p coi	DING SEQUEN a -8 T	CE CHIME	RA:JUNCTIO	ON NUC.1776	b b >
	93	303	31:		323
* * CTC CTG CCC	* * AAC ATC ACT		*	* *	TCC TGC TGG
Leu Leu Pro	Asn Ile Thr	Leu Gly	Ser Glu	Ile Arg Asp	Ser Cys Trp>
a a290a	a -8 T	0 1775 O	F MCRATMG	L-1 a320	a a a >
333	343	353		363	373
CAC TCT TCA	GTG GCT CTC	GAA CAG	AGC ATC	GAA TTC ATC	AGA GAC TCC
b b со:	DING SEQUEN	CE CHIME	ra:Juncti	ON NUC.1776	Arg Asp Ser> b b >
••	40 a -8 TO				370 a a >
383	393 * *	* .	03 * *	413	423 * *
CTG ATT TCC Leu Ile Ser	ATC CGA GAT Ile Arg Asp	GAG AAG Glu Lys	GAT GGG Asp Gly	CTG AAC CGA Leu Asn Arg	TGC CTG CCT Cys Leu Pro>

F/G. 2b.

	380	_			90 -										_	a a	>
		. 4	33		4	143			453			46	3			473	
•	* GAT	GGC	CAG	ACC	CTG	CCC	CCT	* GGC.	* AGG	ACT	* ·	AAG	* CCT	* ATT	GCT	* GG2	A .
	Asp	Gly	Gln	Thr	Leu G SE(Pro	Pro	Gly	Arg	Thr	Lys	Lys	Pro	Ile		Gly	
					a 44 -										470		>
			483			49	3		٠ 5	03			513				
	GTG	* TATC	* GGC	CCT	* GGC	TCC	* AGC	* TCT	GTG	* GCC	АТТ	*	* GTC	CAG	± AAT	CT	r
	Va1	Ile	Gly	Pro	Gly G SE	Ser	Ser	Ser	Va1	Ala	Ile	Gln	Val	Gln	Asn	Le	۷>
					a											520	
52	:3			533		•	543	•		55	53			563			
•	* CTC	* CAG	CTG	* TTC	GAC	* ATC	* CCA	CAG	* ATC	GCC	* ТАТ	* ТСТ	GCC	* ACA	AGC	* ≥ T	Δ.
	Leu	Gln	Leu	Phe	Asp	Ile	Pro	Gln	Ile	Ala	Tyr.	Ser	Ala	Thr	Ser	Ile	
					G SE(b a	> >
	573	•		5	83			593			603			61	13		
	*		*		*	*		*		*	*		*		*		
	Asp	Leu	Ser	Asp	AAA Lys	Thr	Leu	Tyr	Lys	Tyr	Phe	Leu	Arg	Val	Val	Pr	r o>
57		Ъ	p C	ODIN	G SE	QUEN	CE CI	HIMEF	JL:AS	NCT:	I NOI	NUC.	1776	· 1	> :	b	>
			•	300.					· ·	111102			a '	010 6			
	-	623 *_		. *	•		*		* -	- *	• • 7	653		*	663 *	٠.	
					CAG Gln												
		þ	p c	ODIN	G SE	QUEN	CE, C	HIMEF	7 C : AS	NCT:	ION I	NUC.	1776	1	o '	b	>
	620			a b	30		0 17	/5 OF			3 1- 1	ě	a (a 60	Þυ	a	>
	* '		573 *	. *		683 *		*	693		. *	7	03 *	*		713 *	
					GTC												
	ASI	b	p c	CODIN	Val IG SE	QUEN	CE C	HIME	RA:JT	JNCT	ION I	NUC.	1776)			
		670	a	a	a 68°	-8 T	0 17	75 OF	MC	RATM	GL-1	00	a i	a i	a710	a	>
		*	723	3	*	7	33		•	743		*	753 *				
					GCT							CAG	GAA	GGC			
	Ser				Ala IG SE										Leu b	_	
	•			a		-8 T											
7	63			773			783			7	93			803			
					GAC								GAG				
	Ile	e Ala b			Asp											Ph b	e> >
		a			a												
	813			8	323			833			843			8	53		
		* C CG	* G CT	C CTO	cG1	* AAA	CTC	* CGG	GAG	* CGG	* CTT		. * AAG	GCC	* AGG	: CT	ж *

FIG. 2c.

8:	Ası 0	þ	þ	C	ODI	NG	SE	QUEN	CE C	HIME	7C: AS	NCT	ION 1	NUC.1	1776	Ala h 850 a	o I)	> >
	Va.	L Va b	rc al b	Cys C	Ph OD I	C ie NG	Cys SE(Glu QUEN	* GGC Gly CE CE	ATG Met	Thr JU:AS	Val UNCT:	CGG Arg	Gly	Leu 1776	* CTG Leu l	Ser	Ala	> >
	*		91	3		*	. 9	923	٠	* .	933	٠	*	94	43 *	*	9	953 *	
	Met	b b	rg b	Arg C	Le OD1	u NG	Gly SE(Val VEN	GTG Val CE CI O 17	Glý HIME	Glu RA:JT	Phe JNCT:	Ser	Leu NUC.	Ile 1776	GGA Gly la	AGT Ser b 1	qeA o	> > >
,		*		963 *			*	9	73 *	*	9	983		• *	993 *		*		
	GG!	y T	rp b	Ala C	· As OD I	sp ING	Arg SE(Asp QUEN	GAA Glu CE CI O 17	Val HIME	Ile TA:JT	Glu UNCT:	Gly ION 1	Tyr	Glu 1776	GTG Val la a	Glu o 1	Ala	> >
0	03		*	1	013	3	•	* ;	1023		*	103	33	*	1	043		•	
	AA(C G n G b a	ly b	Gly	OD I	Le [NG	Thr SE	Ile NEUÇ	Lys	Leu HIME	CAG Gln RA:JT	Ser UNCT:	Pro ION 1	Glu NUC.:	Val 1776	AGG Arg	Ser	TTT Phe b	; ;> ;>
	105	3 *	,	*	1	L 0 6	3	 *	1	073	· .· .	*	1083	•		10	93		
0	As	рА b	sp b	Tyr C	P)	ie ING	Leu SE	Lys QUEN	Leu CE C	Arg HIME	Leu RA:J	Asp UNCT:	Thr ION 1	Asn NUC.:	Thr 1776	AGG Arg 1	Asn o l	Pro	> >
		110	3			1	113		*	112	23	*		133		*	1143		
	Tr	рР b	he Ł	Pro	G:	Lu ING	Phe SE	Trp QUEN	CAA Gln CE C	His HIME	CGC Arg RA:JI	TTC Phe UNCT	CAG Gln ION	TGT Cys	Arg 1776	CTA Leu la 11	CCT Pro	Gly b	/> >
•	Hi	C C s L b	eu , t	* TTG Leu	G G OD	lu INÇ	AAC Asn SE	Pro QUEN	AAC Asn CE C	* TTT Phe HIME:	Lys RA:J	AAA Lys UNCT	GTG Val ION	Cys	* ACA Thr 1776	* GGA Gly .1	AAT Asn	Glu b	i> >
-		* *		203			*	12	13	*		223			1233				
	AG Se	r L	eu L	Glu S	GOD	lu INC	AAC Asn SE	Tyr QUEN	GTC Val	CAG Gln HIME	GAC Asp RA:J	AGC Ser UNCT	Lys ION	Met NUC.	GGA Gly 1776	TTT Phe a	Val	Ile	;>- >
12	43		*	ì	125	3		*	1263			12	73	د	1	283			

FIG. 2d.

```
AAT GCC ATC TAT GCC ATG GCA CAT GGG CTG CAG AAC ATG CAC CAT GCT
  Asn Ala Ile Tyr Ala Met Ala His Gly Leu Gln Asn Met His His Ala>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776 b b
                    -8 TO 1775 OF MCRATMGL-1.
        1250a
               а
                                               1280a
 1293
              1303
                           1313
  CTG TGT CCC GGC CAT GTG GGC CTG TGT GAT GCT ATG AAA CCC ATT GAT
  Leu Cys Pro Gly His Val Gly Leu Cys Asp Ala Met Lys Pro Ile Asp>
    b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776 b b >
1290 a a 1300 a -8 TO 1775 OF MCRATMGL-1 a a 1330 a
    1343
                              1363
                                          1373
  GGC AGG AAG CTC CTG GAT TTC CTC ATC AAA TCC TCT TTT GTC GGA GTG
  Gly Arg Lys Leu Leu Asp Phe Leu Ile Lys Ser Ser Phe Val Gly Val>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776 b b
 1340a a a 1350 -8 TO 1775 OF MCRATMGL-1 a a a 1380 a >
                   1403
                                1413
  TCT GGA GAG GAG TGG TTC GAT GAG AAG GGG GAT GCT CCC GGA AGG
  Ser Gly Glu Glu Val Trp Phe Asp Glu Lys Gly Asp Ala Pro Gly Arg>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776
                                                      b b >
    1390 a a 140 -8 TO 1775 OF MCRATMGL-1 20 a a
                                                     1430a ->
         1443
                      1453
                                  1463
   TAT GAC ATT ATG AAT CTG CAG TAC ACA GAA GCT AAT CGC TAT GAC TAT
   Tyr Asp Ile Met Asn Leu Gln Tyr Thr Glu Ala Asn Arg Tyr Asp Tyr>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776 b b >
     a 1440 a a -8 TO 1775 OF MCRATMGL-1 1470 a a 1480 >
1483
                                     1513
                                                 1523
  GTC CAC GTG GGG ACC TGG CAT GAA GGA GTG CTG AAT ATT GAT GAT TAC
  Val His Val Gly Thr Trp His Glu Gly Val Leu Asn Ile Asp Asp Tyr>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776 b b >
         1490a
               a -8 TO 1775 OF MCRATMGL-1 1520a
               1543
                           1553
  AAA ATC CAG ATG AAC AAA AGC GGA ATG GTA CGA TCT GTG TGC AGT GAG
  Lys Ile Gln Met Asn Lys Ser Gly Met Val Arg Ser Val Cys Ser Glu>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776 b b
1530 a a 1540 a -8 TO 1775 OF MCRATMGL-1 a
                                             a 1570 a
                              1603
                                          1613
   CCT TGC TTA AAG GGT CAG ATT AAG GTC ATA CGG AAA GGA GAA GTG AGC
  Pro Cys Leu Lys Gly Gln Ile Lys Val Ile Arg Lys Gly Glu Val Ser>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776 b b
  1580a a a 1590 -8 TO 1775 OF MCRATMGL-1 a a a 1620 a
       1633
                    1643
                                1653
                                             1663
   TGC TGC TGG ATC TGC ACG GCC TGC AAA GAG AAT GAG TTT GTG CAG GAC
  Cys Cys Trp Ile Cys Thr Ala Cys Lys Glu Asn Glu Phe Val Gln Asp>
   b b CODING SEQUENCE CHIMERA: JUNCTION NUC. 1776
                                                      b b
                164 -8 TO 1775 OF MCRATMGL-1 60 a a
     1630 a ·a
                                                      1670a
         1683
                                   1703
                                               1713
```

FIG. 2e.

```
GAG TTC ACC TGC AGA GCC TGT GAC CTG GGG TGG TGG CCC AAC GCA GAG
  Glu Phe Thr Cys Arg Ala Cys Asp Leu Gly Trp Trp Pro Asn Ala Glu>
         b CODING SEQUENCE CHIMERA: JUNCTION NUC. 1776 b b
     a 1680 a a
                   -8 TO 1775 OF MCRATMGL-1 1710 a a 1720 >
1723
            1733
                         1743
                                                   1763
  CTC ACA GGC TGT GAG CCC ATT CCT GTC CGT TAT CTT GAG TGG AGT GAC
  Leu Thr Gly Cys Glu Pro Ile Pro Val Arg Tyr Leu Glu Trp Ser Asp>
       b CODING SEQUENCE CHIMERA: JUNCTION NUC. 1776 b b >
                    -8 TO 1775 OF MCRATMGL-1
                                               1760a
 1773
               1783
                            1793
                                        1803
  ATA GAA GGG ATC GCA CTC ACC CTC TTT GCC GTG CTG GGC ATT TTC CTG
  Ile Glu Gly Ile Ala Leu Thr Leu Phe Ala Val Leu Gly Ile Phe Leu>
        b CODING SEQUENCE CHIMERA: JUNCTION NUC. 1776
     ь
1770 a
           1840 c 1837 TO 3437 OF MCPHUPCAR4.0 FINAL
    1823
                 1833
                              1843
                                         1853
  ACA GCC TTT GTG CTG GGT GTG TTT ATC AAG TTC CGC AAC ACA CCC ATT
  Thr Ala Phe Val Leu Gly Val Phe Ile Lys Phe Arg Asn Thr Pro Ile>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC. 1776 b
       c 1 1837 TO 3437 OF MCPHUPCAR4.0 FINAL 1920c
       1873
                   1883
                                1893
                                             1903
  GTC AAG GCC ACC AAC CGA GAG CTC TCC TAC CTC CTC TTC TCC CTG
  Val Lys Ala Thr Asn Arg Glu Leu Ser Tyr Leu Leu Leu Phe Ser Leu>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776
                                                     b b >
   1930 c c 1837 TO 3437 OF MCPHUPCAR4.0 FINAL c 1970 c
         1923
                       1933
  CTC TGC TGC TTC TCC AGC TCC CTG TTC TTC ATC GGG GAG CCC CAG GAC
  Leu Cys Cys Phe Ser Ser Ser Leu Phe Phe Ile Gly Glu Pro Gln Asp>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776 b b >
           c 1837 TO 3437 OF MCPHUPCAR4.0 FINAL
                                                 С
                                                       c 2020 >
1963
                        1983
                                      1993
  TGG ACG TGC CGC CTG CGC CAG CCG GCC TTT GGC ATC AGC TTC GTG CTC
  Trp Thr Cys Arg Leu Arg Gln Pro Ala Phe Gly Ile Ser Phe Val Leu>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776 b
     c 2030 c 1837 TO 3437 OF MCPHUPCAR4.0 FINAL 0 c
                                                           2070>
  2013.
               2023
                            2033
  TGC ATC TCA TGC ATC CTG GTG AAA ACC AAC CGT GTC CTG GTG TTT
  Cys Ile Ser Cys Ile Leu Val Lys Thr Asn Arg Val Leu Leu Val Phe>
     b b CODING SEQUENCE CHIMERA: JUNCTION NUC.1776
                                                      р
         c 2080 1837 TO 3437 OF MCPHUPCAR4.0 FINAL 2110 c
    2063
                 2073
                              2083
  GAG GCC AAG ATC CCC ACC AGC TTC CAC CGC AAG TGG TGG GGG CTC AAC
  Glu Ala Lys Ile Pro Thr Ser Phe His Arg Lys Trp Trp Gly Leu Asn>
  b b CODING SEQUENCE CHIMERA: JUNCTION NUC. 1776 b b
 2120 c c 2 1837 TO 3437 OF MCPHUPCAR4.0 FINAL
                                                   2160c
```

FIG. 2f.

	*	21	.13		*	21	.23		<u>+</u>	133		•	214	3		21	.53
	CTG	CAG	. Thu	יר (ביתיב. ביתיב	СТС	CTTT.	ጥጥር	CTC	ጥርር	ACC	ТТ	ATC	CAG	יייייית א אייייית א	GTC	ATC
																	Ile>
													IUC.1			b	
	217	70											INAL				
			216	3			217			21	183		2	193	*		
	m.c.m	*		*		*		*	*		*		*	*		*	
													AGC				CAG Gln>
													vuc.i				GIU>
						_	_										50 >
					•						•		,				
220	3			22	13	,	2	2223			223	33		22	43		
	*	1	r		*		*	*		*		*	*		*		*
																	CTC
																	Leu>
		b c 2											VUC.I				> > 2310>
	•		. 2 / (, с	. 10	551.	10 3.	437	JP MC	.Pnui	PCAR.	4.0 1	TNAL	. 0 0	: 0	2	2310>
2	2253				226	63		22	273		4	2283			229	3	,
	*		7	k .		*	*		*		*	*		*		*	*
																	ATC
																	Ile>
		þ											NUC.1			-	>
	•	C	C	232	0 18	337	ro 3	437 (OF MO	CPHU	PCAR	4.0	FINA	235	00 0	•	>
	2	303		•	:	2313			232	73		2	333		•	2343	
	_	*.			*	*		*		*	*	٠.	*		*	*	
	TGC	TT	T.	rc	TTT	GCC	TTC	AAG	TCC	CGG	AAG	CTG	CCG	GAG	AAC	TTC	AAT
																	Asn>
		p.											NUC.			-	o . >
2:	360	С	C	2	183	37 T	0 34	37 O	F MCI	PHUP	CAR4	.O F	INAL	2	2.4000	.	>
		. 2	353			2	363			2373			238	3 3		2:	393
	*	-	*		*	_	*		*	*		*	20	*	*	. 2.	*
	GAA	GC	CA	AG	TTC	ATC	ACC	TTC	AGC	ATG	CTC	ATC	TTC	TTC	ATC	GTC	TGG
																	Trp>
		b											NUC.			o 1	•
	24	10	С	С	1	837	TO:3	437	OF M	CPHU	PCAR	4.0	FINA	ር ' ዕ	2	450 d	: · >
												•	•	. •	,		
			24	03			24	13	_	_ 2	423			2433			
	<u>አ</u> ጥር	~ • • • • • • • • • • • • • • • • • • •		r C	አጥጥ	~ ~~ ~	GCC	_	GCC	NGC			×	* *	en en en	~ x	TCT
																	Ser>
		b	b	cc	DIN	G SE	OUEN	CEC	HIME	RA:J	UNCT	TON	NUC.	1776	-11-6	vai o l) >
																	00 >
															•		
24	43			24	153			2463			24			2	483		
	×	· ~m	* > ~	20	~		*	*		. *.		*	*		*		*
																	GCG
,	VTO	va h	T G	+ u	Vai	C SE	ULLEN TAL	CE C	LEU	nta T.• a a	ነበነርጥ የአርጥ	TON	Pne NUC.	919	Leu		Ala>
٠																	b > 2550>
		-	•	- •	<i>-</i>		•							_ •	_	- '	
	2493	}			25	03		2	513			2523			25	33	
	<u>.</u> *	•		*		*	. *		*		*	. · · *		*		*	*
,	TGC	: AT	CT	TC	TTC	AAC	AAG	ATC	TAC	ATC	ATT	CTC	TTC	AAG	CCA	TCC	CGC
	Cys	_	e P	he	Phe	Asn	Lys	Ile	Tyr	Ile	Ile	Leu	Phe	Lys	Pro	Ser	Arg>
		þ	D	CC	אוטנ	G SE	QUEN	CE C	HIME	RA:J	UNCT	ION	NUC.	1776		b 1	b >

8/34 FIG. 2g.

c c	2560 1837	TO 3437	OF MCPHUI	CAR4.0 F	INAL 2590) c c >
2543	2553		2563			2583
Asn Thr : b b	lle Glu Glu CODING SE	GTG CGT Val Arg	Cys Ser HIMERA:J	ACC GCA (Thr Ala A JNCTION NO	Ala His <i>P</i> JC.1776	SCT TTC AAG Ala Phe Lys> b b > 540c c >
259. *	3 .2	2603	2613	•	2623	2633
GTG GCT (Val Ala Ala b	GCC CGG GCC Ala Arg Ala CODING SE	ACG CTG Thr Leu QUENCE C	CGC CGC Arg Arg HIMERA:JT	AGC AAC (Ser Asn \ JNCTION NO	STC TCC (Val Ser A JC 1776	CGC AAG CGG Arg Lys Arg> b b > 2690 c >
	643	2653 *	2(663 * *	2673	•
Ser Ser :	AGC CTT GGA Ser Leu Gly CODING SE	GGC TCC Gly Ser QUENCE C	ACG GGA Thr Gly HIMERA:JT	TCC ACC (Ser Thr I	CCC TCC T Pro Ser S JC.1776	CCC TCC ATC Ser Ser Ile> b b > c 2740 >
* 5*	2693 *	* . *	*	*	272	23 * *
AGC	AAG AGC AAC Lys Ser Asr CODING SE	AGC GAA Ser Glu QUENCE C	GAC CCA Asp Pro HIMERA:JT	TTC CCA (Phe Pro (NCTION NO	CAG CCC G Sln Pro G JC.1776	SAG AGG CAG Slu Arg Gln> b b > c 2790>
2733 . *	2743	· · · 2	753 *	2763	*	2773
AAG CAG (Lys Gln (b b	CAG CAG CCG	G CTG GCC Leu Ala QUENCE C	CTA ACC Leu Thr HIMERA:J	CAG CAA (Gln Gln (JNCTION N(GAG CAG C Glu Gln C JC.1776	AG CAG CAG Sln Gln Gln> b b >
2783	2793	} • • •	2803	281	13	2823
Pro Leu ' b b	Thr Leu Pro CODING SE	Gln Gln QUENCE C	Gln Arg HIMERA:J	Ser Gln (NCTION N	Gln Gln P JC.1776	CCC AGA TGC Pro Arg Cys> b b >
283		2843	2853		2863	2873
AAG CAG Lys Gln b b	AAG GTC ATO Lys Val Ile CODING SE	TTT GGC Phe Gly QUENCE C	AGC GGC Ser Gly HIMERA:JT	ACG GTC A Thr Val T JNCTION NO	Thr Phe S JC.1776	CCA CTG AGC Ser Leu Ser>
2	883	2893	2 9	_	2913	*
Phe Asp	Glu Pro Glr CODING SE	Lys Asn EQUENCE C	Ala Met HIMERA:J	Ala His (UNCTION NO	GGG AAT 1 Gly Asn S JC.1776	CCT ACG CAC Ser Thr His> b b >
923	2933	2943		2953	296	
CAG AAC	TCC CTG GAG	GCC CAG	AAA AGC	AGC GAT	* ACG CTG ? Thr Leu 1	* * ACC CGA CAC Thr Arg His>

FIG. 2h.

			A:JUNCTION NO PHUPCAR4.0 F:		
2973 *	2983	2993	3003	301	3
Gln Pro I b b	TA CTC CCG eu Leu Pro CODING SEG	CTG CAG TGC Leu Gln Cys QUENCE CHIMER	GGG GAA ACG (Gly Glu Thr AA:JUNCTION NO PHUPCAR4.0 F	Asp Leu Asp I UC.1776 b	Leu Thr>
3023	3033	, = -	3 30:	53. 3(063
Val Gln G b b	lu Thr Gly CODING SE(Leu Gln Gly OUENCE CHIMER	CCT GTG GGT (Pro Val Gly (A:JUNCTION NO PHUPCAR4.0 FI	Gly Asp Gln 1 UC.1776 b	Arg Pro>
3073	3 ()83 3	- 1093	3103	3113
Glu Val G	* SAG GAC CCT Slu Asp Pro CODING SE	* * GAA GAG TTG Glu Glu Leu QUENCE CHIMER	* * TCC CCA GCA (Ser Pro Ala : A:JUNCTION N CPHUPCAR4.0 F	*/ * CTT GTA GTG : Leu Val Val : UC.1776 b	* ICC AGT Ser Ser> b >
31 ★	.23	3133	3143	3153 * *	* *
Ser Gln S b b	Ser'Phe Val CODING SE	Ile Ser Gly QUENCE CHIMER	GGA GGC AGC . Gly Gly Ser (A:JUNCTION N CPHUPCAR4.0 F	Thr Val Thr (UC.1776 b	Glu Asn> b >
3163	3173	3183	3193	3203 3	213
Val Val I CODING	Asn Ser Xxx S SEQ b >	AAATGGA AGGAO	SAAGAC TGGGCT	AGGG AGAATGC	AGA
322	23 32:		3253		
GAGGTTTC	TT GGGGTCCC	AG GGATGAGGAL	* * * A TCGCCCCAGA ACPHUPCAR4.0	CTCCTTTCCT C	
328 *			3313		3333
			A TTTAGTCACA	CCATCTTAAA T	GACAGTGAA
334	43 33	53 336:	3 3373		
TTGACCCA	IG TICCCITT	AAAAÄAAA AA	A AAAAAAGCGG	CCGC	

FIG. 3a.

Sequence Range: -40 to 3960 10 CTAGCTGTCT CATCCCTTGC CCTGGAGAGA CGGCAGAACC ATG GCA TTT TAT AGC Met Ala Phe Tyr Ser> TRANSLATION TGC TGC TGG GTC CTC TTG GCA CTC ACC TGG CAC ACC TCT GCC TAC GGG Cys Cys Trp Val Leu Leu Ala Leu Thr Trp His Thr Ser Ala Tyr Gly> a a TRANSLATION OF CAR/R1 [A] 100 CCA GAC CAG CGA GCC CAA AAG AAG GGG GAC ATT ATC CTT GGG GGG CTC Pro Asp Gln Arg Ala Gln Lys Lys Gly Asp Ile Ile Leu Gly Gly Leu> a a TRANSLATION OF CAR/R1 [A] a a a a 120 TTT CCT ATT CAT TTT GGA GTA GCA GCT AAA GAT CAA GAT CTC AAA TCA Phe Pro Ile His Phe Gly Val Ala Ala Lys Asp Gln Asp Leu Lys Ser> a a a TRANSLATION OF CAR/R1 [A] a a a a > 160 170 180 AGG CCG GAG TCT GTG GAA TGT ATC AGG TAT AAT TTC CGT GGG TTT CGC Arg Pro Glu Ser Val Glu Cys Ile Arg Tyr Asn Phe Arg Gly Phe Arg> a TRANSLATION OF CAR/R1 [A] 220 240 TGG TTA CAG GCT ATG ATA TTT GCC ATA GAG GAG ATA AAC AGC AGC CCA Trp Leu Gln Ala Met Ile Phe Ala Ile Glu Glu Ile Asn Ser Ser Pro> a TRANSLATION OF CAR/R1 [A] а 260 270 280 300 GCC CTT CTT CCC AAC TTG ACG CTG GGA TAC AGG ATA TTT GAC ACT TGC Ala Leu Leu Pro Asn Leu Thr Leu Gly Tyr Arg Ile Phe Asp Thr Cys> a a a TRANSLATION OF CAR/RI [A] a 310 320 340 AAC ACC GTT TCT AAG GCC TTG GAA GCC ACC CTG AGT TTT GTT GCT CAA Asn Thr Val Ser Lys Ala Leu Glu Ala Thr Leu Ser Phe Val Ala Gln> a a a TRANSLATION OF CAR/R1 [A] а 360 370 390 380 AAC AAA ATT GAT TCT TTG AAC CTT GAT GAG TTC TGC AAC TGC TCA GAG Asn Lys Ile Asp Ser Leu Asn Leu Asp Glu Phe Cys Asn Cys Ser Glu> a a TRANSLATION OF CAR/R1 [A] CAC ATT CCC TCT ACG ATT GCT GTG GTG GGA GCA ACT GGC TCA GGC GTC His Ile Pro Ser Thr Ile Ala Val Val Gly Ala Thr Gly Ser Gly Val>

aaaa>

a a a TRANSLATION OF CAR/R1 [A]

11/34 FIG. 3b.

	•								:								
	450		•	46	0		4	70			480	1		49	0 .	•	
•	*		.*		*	*		*		*			` *		*	*	
				GTG													
				Val													
	Č	3 · 6	3	a a	TR	ANSL	ATIC	N OF	CAR	l/R1	[A]	а	ā	ı a	ı a	` >	>
		- ^ ^			E 1 A						-	- 7 A			5 4 0		
		500		_	510			52	:0		. 5	30			540		
	3.Cm			m CC	mcic.	200	202	CMC	x CDC	X		×		×	* **		•
				TCC Ser													
						ANSI										г Г	
	•	• •	•					,,, O.	Q.L	\/ 1\ +	(A)	u	•			•	
		5	50		5	60			570			58	0			90	
	*		*	*		*		* .	*	•	*		* .	*	•	*	-
	TCT	TTC	CTC	CGA	ACC	ATC	CCC	AAT	GAT	GAG	CAC	CAG	GCC	ACT	GCC	ATG	
	Ser	Phe	Leu	Arg	Thr	Ile	Pro	Asn	Asp	Glu	His	Gln	Ala	Thr	Ala	Met:	>
		a a	a a	a a	TR	LANSI	ATIC	N OF	CAF	R/R1	[A]	a		a a	ı a	a :	> -
								•				-					
			600			61	0		€	520			630				
		*	*		*		*	*		*		*	*		*		
				ATC												-	
		_		Ile		-		-	. •		-						
	•	a .	a a	a a	TF	CANSI	ATIC	ON OF	CAF	R/R1	[A]	а	1 6	a a	a . ' a	3 3	>
ے ۔	40			650			660			. 67		•		680			
0	*	*		*		*	*		*	. 0	/ U ·*	*	,	*	,	*	
	GCT	GAT	GAC	GAC	TAT	GGG	CGG	CCG	GGG	እ ጥጥ	GAG	AAA	TTC	CGA	GAG	GAA	
				Asp								•					
		-	-	a a	_	_	_		_			_		y			>
		_	_							.,							•
	690			70	0		•	710			720	٠		73	30		
	*		* '		*	*		*	, .	.*	; * ,		*		* -	*	•
	GCT	GAG	GAA	AGG	GAT	ATC	TGC	ATC	GAC	TTÇ	AGT	GAA	CTC	ATC	TCC	CAG	
	Ala	Glu		Arg												Gln	>
		a	a	a a	TE	RANSI	LATI	ON OI	F CAI	R/R1	[A]	ā)	a a	а :	a :	> .
		740			250			_	٠.		٠.						
		740		•	750		*	1	60		•	770 *		*	780 *		
	ጥልር	, ഫ⊜ഫ _	ርልጥ	GAG	GAA	GAG		CAG	- Сът	CTC	CT N		GTG				
				Glu													
	- 7 -		-	a a												a	
		_	_	_						.,	[]		,				-
		7	90			800			810			82	20			830	
	*		*	*		*		*	*		*		*	*		*	
	TCC	ACG	GCC	AAA	GTC.	ATC	GTG	GTT	TTC	TCC	AGT	GGC	CCA	GAT	CTT	GAG	
	Ser	Thr	Ala	Lys	Val	Ile	Val	Val	Phe	Ser	Ser	Gly	Pro	Asp	Leu	Glu	> `
		a	a	a a	a Ti	RANS:	LATI	ON O	F CA	R/R1	[A]	á	3	a i	a	a .	>
		*			٠,	_		-									
		_	840	1		8	50			860	te.		870	•			
		* ~ ~ ~ ~	* *****		*	3.00	*	*	000	*		*	*		*		
				AAG													
	PIC			Lys				_	_				_	_		-	
		u	4 .	ų (u 1.	· Grito	mur r	J.1 U	. CA	*/\ 12.T	נאן	•	24	a	u,	a .	_
8	80			890			900			Q	10			920			
_	*	7	k	*		*	*		*	, ,	*	*		*		*	
	CT	G GCC	AGC	GAG	GCC	TGG	GCC	AGC	TCC	TCC	CTG	ATC	GCC	ATG	ССТ	CAG	; .
				Glu													
				a												a	
								•									
	93	0		9	40			950			960)		9	70		
	,	*	*		*	*		*		*	*		*		*	*	
	•																

FIG. 3c.

,	Tyr	Phe	His	GTG Val ı a	Val	Gly	Gly	Thr	Ile	Gly	Phe	Ala	CTG Leu	Lys	GCT Ala	GGG Gly>
	9	80			990			100	0		10	10			1020	
(Gln	ATC Ile	Pro	Gly	Phe	Arg	Glu	Phe	Leu	Lys	Lys	Val	His	Pro	Arg	AAG Lys>
	-	103		_)40			.050			106				70
	* TCT	GTC	* CAC	* AAT	GGT	· * TTT	GCC	* AAG	# GAG	TTT	* TGG	GAA	* GAA	* ACA	ттт	* AAC
	Ser	Val	His	Asn 1 a	Gly	Phe	Ala	Lys	Glu	Phe	Trp	Glu	Glu	Thr	Phe	Asn>
		. 1	.080			109	90		11	100		. 1	1110			
	TGC	CAC	CTC	CAA	* GAA	GGT	# GCA	* 44	GG A	* ССТ	ጥጥል	* CCT	* CTC	CAC	* .	TTT
	Суз	His	Leu	Gln	Glu	Gly	Ala	Lys	Gly	Pro	Leu	Pro	Val	Asp	Thr	Phe>
۱2	0	. *	11	130		*	L140	,	*	115	50	•	11	L60 *		9
	CTG	AGA	GGT	CAC	GAA	GAA	AGT	GGC	GAC	AGG	TTT	AGC	AAC	AGC	TCG	ACA
	Leu	Arg	Gly	His a a	Glu	Glu	Ser	Gly	Asp	Arg	Phe	Ser	·Asn a a	Ser	Ser	Thr>
1	170		٠	118	30 *	*	11	L90 *			1200		*	12:	10	
	ברר 	ጥጥር	CCN	CCC			B C B		C N TT	-	-	3 m/C				~ ×
		4 4 0	COM		CIC	101	ACA	CCC	QW 1	GAG	MAC	MIC	AGC	AGT	GTC	GAG
-	Ala	Phe	Arg	Pro	Leu	Cys	Thr	Gly	Asp:	Glu	Asn	Ile	Ser	Ser	GTC Val	Glu>
-	Ala a	Phe	Arg	Pro a a	Leu T	Cys	Thr LATI(Gly ON OF	Asp:	Glu R/R1	Asn [A]	Ile	Ser	Ser a	Val	Glu>
-	Ala a 12	Phe a a 220	Arg 1 a	Pro a a	Leu TI L'230	Cys RANS	Thr LATI(Gly ON OF	Asp CAI	Glu R/R1	Asn [A]	11e 250	Ser a a	Ser	Val 1260	Glu>
-	Ala 12 ACC Thr	Phe 220 * CCT Pro	Arg TAC Tyr	Pro * ATA	Leu 1230 * GAT Asp	Cys RANSI TAC Tyr	Thr LATIO * ACG Thr	Gly ON OF 124 CAT His	Asp CAI 10 * TTA Leu	Glu R/R1 * CGG Arg	Asn [A] 12 ATA Ile	Ile 250 * TCC Ser	Ser TAC Tyr	Ser * AAT Asn	Val 1260 * GTG Val	Glu>
-	Ala 12 ACC Thr	Phe 220 * CCT Pro	TAC TYr	Pro * ATA Ile	Leu TH L'230 * GAT Asp	Cys RANSI TAC Tyr RANSI	Thr LATIO * ACG Thr LATIO	Gly ON OF 124 CAT His ON OF	ASP CAL 10 * TTA Leu CAL	Glu R/R1 * CGG Arg R/R1	Asn [A] 12 ATA Ile	Ile 250 * TCC Ser	Ser TAC Tyr a a	Ser * AAT Asn	Val 1260 * GTG Val	Glu> TAC Tyr> Tyr>
-	Ala 12 ACC Thr	Phe 220 * CCT Pro a 2	TAC TYr	Pro ATA Ile A *	Leu TH L230 * GAT Asp	TAC TYP RANS:	Thr LATIO * ACG Thr LATIO	Gly DN OF 124 CAT His DN OF	ASP CAL 10 * TTA Leu CAL	CGG ** CGG Arg	Asn [A] 12 ATA Ile [A]	Ile 250 * TCC Ser	Ser TAC Tyr a a	* AAT Asn	Val a a 1260 * GTG Val a 1	Glu> TAC Tyr> 310
-	Ala 12 ACC Thr * TTA Leu	Phe 220 * CCT Pro 3 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TAC Tyr TO * GTC Val	Pro ATA Ile TAC Tyr	Leu TI 1230 * GAT Asp TI 12 TCC Ser	TAC Tyr RANS: 280 ATT Ile	* ACG Thr LATIC	CAT His ON OF	ASP CAL 10 * TTA Leu CAL 1290 * GCC Ala	CGG Arg R/R1	Asn [A] 12 ATA Ile [A] * CAA Gln	Ile 250 * TCC Ser 130 GAT Asp	TAC Tyr a a	* AAT ASN TAT Tyr	Val a a 1260 * GTG Val a 1:	Glu> TAC Tyr> a > TGC Cys>
-	Ala 12 ACC Thr * TTA Leu	Phe 220 * CCT Pro a 2 2 3 GCA Ala a 3	TAC Tyr 3 6TC Val	Pro ATA Ile TAC Tyr a	Leu TI 1230 * GAT Asp TI 12 TCC Ser	TAC Tyr RANS: 280 ATT Ile	* ACG Thr LATIC	CAT His ON OF	ASP CAL 10 * TTA Leu F CAL 1290 * GCC Ala F CAL	CGG Arg R/R1 TTG Leu R/R1	Asn [A] 12 ATA Ile [A] * CAA Gln [A]	Ile 250 * TCC Ser 130 GAT Asp	TAC Tyr a a	* AAT ASN TAT Tyr	Val a a 1260 * GTG Val a 1:	Glu> TAC Tyr> a > TIOC
-	Ala 12 ACC Thr * TTA Leu	Phe 220 * CCT Pro a 2 2 3 GCA Ala a 3	TAC Tyr TO * GTC Val	Pro ATA Ile TAC Tyr a	Leu TI 1230 * GAT Asp TI 12 TCC Ser	TAC TYPE RANS: 280 * ATT Ile RANS:	Thr LATIO * ACG Thr LATIO GCC Ala LATIO	CAT His ON OF	ASP CAL 10 * TTA Leu CAL 1290 * GCC Ala F CAL	CGG Arg R/R1 TTG Leu R/R1	Asn [A] 12 ATA Ile [A] * CAA Gln [A]	TCC Ser 130 GAT Asp	TAC Tyr a a	* AAT ASN TAT Tyr	Val a a 1260 * GTG Val a 1:	Glu> TAC Tyr> a > TGC Cys>
-	Ala 12 ACC Thr * TTA Leu	Phe 220 * CCT Pro 3 2 3 4 CCT	TAC TYr 70 * GTC Val	ATA Ile a TAC Tyr a	Leu A TI L230 * GAT Asp A TI TCC Ser A TI	TAC TYT RANS: 280 * ATT Ile RANS:	Thr LATIO * ACG Thr LATIO ALATIO 30 * TTC	CAT His ON OF CAC His ON OF	ASP CAL 10 * TTA Leu F CAL 1290 * GCC Ala F CAL	CGG Arg R/R1 TTG Leu R/R1 340	Asn [A] 12 ATA Ile [A] * CAA Gln [A]	TCC Ser 130 GAT Asp	Ser a a a a a a a a a a a a a a a a a a a	* AAT ASN TAT Tyr	Vala a a a a a a a a a a a a a a a a a a	Glu> TAC Tyr> TGC Cys> AAG
-	Ala 12 ACC Thr * TTA Leu TTA Leu	Phe 220 * CCT Pro 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TAC Tyr 70 * GTC Val 1320 GGG Gly	ATA Ile a TAC Tyr a AGA Arg	Leu TI 1230 * GAT Asp TCC Ser TCC Ser GGG Gly	TAC Tyr RANS: 280 * ATT Ile RANS: 13	Thr LATIO * ACG Thr LATIO GCC Ala LATIO * TTC Phe	CAT His ON OF CAC His ON OF	ASP CAL 10 * TTA Leu F CAL 1290 * GCC Ala F CAL 1:	CGG Arg R/R1 TTG Leu R/R1 GGC Gly	Asn [A] 12 ATA Ile [A] * CAA Gln [A] TCC Ser	TCC Ser 130 GAT Asp	TAC Tyr ATA OO ATA Ile a 3 GCA Ala	* AAT Asn TAT Tyr a	Val a a a 1260 Val a 1: ACC Thr a *	Glu> TAC Tyr> TGC Cys>
-	Ala 12 ACC Thr * TTA Leu TTA Leu	Phe 220 * CCT Pro 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TAC TYr * GTC Val 1320 * GGG Gly	ATA Ile a TAC Tyr a AGA Arg	Leu TI 1230 * GAT Asp TCC Ser TCC Ser GGG Gly	TAC Tyr RANS: 280 * ATT Ile RANS: 13 CTC Leu RANS	Thr LATIO * ACG Thr LATIO GCC Ala LATIO * TTC Phe LATIO	CAT His ON OF	ASP CAL 10 * TTA Leu F CAL 1290 * GCC Ala F CAL 1: AAT ASD	CGG Arg R/R1 TTG Leu R/R1 GGC Gly	Asn [A] 12 ATA Ile [A] * CAA Gln [A] TCC Ser [A]	TCC Ser 130 GAT Asp	TAC Tyr ATA 11e a GCA Ala a	* AAT Asn TAT Tyr A GAC Asp	Val a a a 1260 Val a 1: ACC Thr a *	Glu> TAC Tyr> TGC Cys> AAG Lys>
	Ala 12 ACC Thr * TTA Leu 50 *	Phe 220 * CCT Pro 2 2 2 3 4 4 CCT Pro 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TAC Tyr 70 * GTC Val 1320 * GGG Gly	ATA Ile a TAC Tyr a AGA Arg a 370	Leu A TI L230 * GAT Asp A TI CC Ser A TI GGG Gly A T	TAC Tyr RANS: 280 ATT Ile RANS: 13 CTC Leu RANS	Thr LATIO * ACG Thr LATIO GCC Ala LATIO * TTC Phe LATIO 1380	CAT His ON OF	ASP CAL 10 * TTA Leu F CAL 1290 * GCC Ala F CAL 1: AAT ASD *	CGG Arg R/R1 TTG Leu R/R1 GGC Gly R/R1 13	Asn [A] 12 ATA Ile [A] * CAA Gln [A] TCC Ser [A] 90 *	TCC Ser 130 GAT Asp	TAC Tyr a a ATA Ile a a GCA Ala a	* AAT Asn TAT Tyr a GAC Asp	Val a a a 1260 Val a 1: ACC Thr a *	Glu> TAC Tyr> TGC Cys> AAG Lys>
	Ala 12 ACC Thr * TTA Leu 60 AAA Lys	Phe 220 * CCT Pro 2 CCA Ala Ala CCT Pro 2 CCT	TAC Tyr GTC Val GGG Gly GAG Glu	ATA Ile a TAC Tyr a AGA Arg a GCG Ala	Leu GAT Asp TCC Ser GGG Gly TGG Trp	TAC TYPERANS: 280 * ATT Ile RANS: 13 CTC Leu RANS	Thr LATIO * ACG Thr LATIO GCC Ala LATIO * TTC Phe LATIO 1380 * GTC Val	CAT His ON OF * CAC His ON OF * CAC Thr ON OF	ASP CAI 10 * TTA Leu F CAI 1290 * GCC Ala F CAI AAT ASD F CAI	CGG Arg R/R1 TTG Leu R/R1 GGC Gly R/R1 13 CAC His	ASN [A] 12 ATA Ile [A] * CAA Gln [A] TCC Ser [A] 90 * CTA Leu	TCC Ser 130 GAT Asp * TGT Cys CGG Arg	TAC Tyr ATA Ile GCA Ala CAT His	* AAT Asn TAT Tyr a GAC Asp A Leu	Val a a a 1260 Val a 1: ACC Thr a ATC Ile a AAC	Glu> TAC Tyr> TGC Cys> AAG Lys> TTT Phe>
	Ala 12 ACC Thr * TTA Leu 60 AAA Lys	Phe 220 * CCT Pro 2 CCA Ala Ala CCT Pro 2 CCT	TAC Tyr GTC Val GGG Gly GAG Glu	ATA Ile a TAC Tyr a AGA Arg a GCG Ala	Leu GAT Asp TCC Ser GGG Gly TGG Trp	TAC TYPERANS: 280 * ATT Ile RANS: 13 CTC Leu RANS	Thr LATIO * ACG Thr LATIO GCC Ala LATIO * TTC Phe LATIO 1380 * GTC Val	CAT His ON OF * CAC His ON OF * CAC Thr ON OF	ASP CAI 10 * TTA Leu F CAI 1290 * GCC Ala F CAI AAT ASD F CAI	CGG Arg R/R1 TTG Leu R/R1 GGC Gly R/R1 13 CAC His	ASN [A] 12 ATA Ile [A] * CAA Gln [A] TCC Ser [A] 90 * CTA Leu	TCC Ser 130 GAT Asp * TGT Cys CGG Arg	TAC Tyr ATA Ile GCA Ala CAT His	* AAT Asn TAT Tyr a GAC Asp A Leu	Val a a a 1260 Val a 1: ACC Thr a ATC Ile a AAC	Glu> TAC Tyr> TGC Cys> AAG Lys> TTT
3 €	Ala 12 ACC Thr * TTA Leu 60 AAA Lys	Phe 220 * CCT Pro 2 2 3 4 CCT Pro 2 4	TAC Tyr GTC Val GGG Gly GAG Glu	ATA Ile a TAC Tyr a AGA Arg a GCG Ala	Leu GAT Asp TCC Ser TCC TCC TCC TCC TCC TCC TCC T	TAC TYPERANS: 280 * ATT Ile RANS: 13 CTC Leu RANS	Thr LATIO * ACG Thr LATIO GCC Ala LATIO * TTC Phe LATIO 1380 * CTC Val LATIO	CAT His ON OF * CAC His ON OF * CAC Thr ON OF	ASP CAI 10 * TTA Leu F CAI 1290 * GCC Ala F CAI AAT ASD F CAI	CGG Arg R/R1 TTG Leu R/R1 GGC Gly R/R1 13 CAC His R/R1	ASN [A] 12 ATA Ile [A] * CAA Gln [A] TCC Ser [A] 90 * CTA Leu	TCC Ser 130 GAT Asp * TGT Cys CGG Arg	TAC Tyr ATA Ile GCA Ala CAT His	* AAT Asn TAT Tyr a GAC Asp A Leu	Val a a a 1260 Val a 1: ACC Thr a ATC Ile a AAC Asn a	Glu> TAC Tyr> TGC Cys> AAG Lys> TTT Phe>
3 €	Ala ACC Thr TTA Leu AAA Lys 410 ACA	Phe 220 * CCT Pro 2 2 2 3 4 CCT Pro 2 4 4 CCT Pro 2 4 4 CCT Pro 2 4 AAC	TAC Tyr GTC Val GGG Gly A AAT	ATA Ile a * TAC Tyr a AGA Arg a GCG Ala a 14	Leu GAT Asp TCC Ser TCC TCC TCC TCC TCC TCC TCC T	TAC TYT RANS 280 ATT Ile RANS 13 CTC Leu RANS CAG Gln RANS GAG	Thr LATIO * ACG Thr LATIO GCC Ala LATIO 1380 * TTC Phe LATIO Val LATIO 1 CAG	CAT His ON OF ACC Throw ON OF Leu ON OF GTG	ASP CAL 10 * TTA Leu F CAL 1290 * GCC Ala F CAL 1: AAT ASD LYS F CAL	CGG Arg R/R1 TTG Leu R/R1 340 * GGC Gly R/R1 13 CAC His R/R1 * TTT	Asn [A] 12 ATA Ile [A] * CAA Gln [A] TCC Ser [A] 90 * CTA Leu [A] 1440 * GAT	TCC Ser 130 GAT Asp * TGT Cys CGG Arg	TAC Tyr TAC Tyr TAC Tyr TAC TAC Tyr TAC TAC TYr TAC TAC TAC TAC TAC TAC TAC TA	* AAT Asn TAT Tyr a GAC Asp CTA Leu a 14	Vala 1260 GTG Val ACC Thr ATC Ile AAC Asn GAC GAC	Glu> TAC Tyr> TGC Cys> AAG Lys> TTT Phe>

13/34 FIG. 3d.

	ā	3	a a	a ;	a T	RANS:	LATI(ON OF	CAI	R/R1	[A]	ā	1	a .	a	a	>
	14	160 *		*	1470		•	148	30		1	190			1500)	
	GTG	GGG	AAC	TAT	TCC	ATC	ATC	AAC	TGG	CAC	CTC	TCC	CCA	GAG	GAT	י רוכים	C
	Val	Gly	Asn	Tyr	Ser	Ile	Ile	Asn	Trp	His	Leu	Ser	Pro	Glu	Ast	G1	v>
	ë	3	a, a	3. á	a. T)	RANS:	LATIO	ON OF	CAI	R/R1	[A]	. a	1	a .	a	a	>
		15	10		1	520			1530			154	10]	1550	
	TCC	ATC	* GTG	* TTT	AAG	* GAA	GTC	*	* ₩ ₩	•	*	GTC.	* ••••••••••••••••••••••••••••••••••••	*	336	*	_
	Ser	Ile	Val	Phe	Lys	Glu	Val	Gly	Tyr	Tyr	Asn	Val	Tvr	Ala	Lvs	LV	s>
	ā	1	a a	a a	a T I	RANS	LATIO	ON OF	CAI	R/R1	[A]	. a	1 7	a a	a	a ¯	>
			1560			15	70	ì	1	580		1	590				
	CCN	* C22	`* >~>	CTC	*	> ##C	*	*		*		*	*		*		
	Gly	Glu	AGA Arg	Leu	Phe	Ile	AAC	Glu	GAG	LVS	ATC	CTG	TGG	AGT	GGG	TT	C C
	ā	a .	a š	a a	a Ti	RANS	LATIC	ON OF	CAI	R/R1	[A]	a	1 7	a .	9 3	a - 111	>
160	0		10	510		•	1620			163	30			640			
	*	*	CNC	*	666	* *	*		*	•	*	*		*		*	
	Ser	Arg	GAG Glu	Val	Pro	Phe	Ser	AAC	TGC	AGC Ser	CGA	GAC	TGC	CTG	GCA	GG(G V>
	· a	a .	a a	a .	a Tl	RANSI	LATIC	ON OF	CAI	R/R1	[A]	а		a :	3	a	>
1	L 65 0.			16	60		16	570			1680		-	16	٩'n		-
	* *		*		*	*		*		*	*		*		*		*
	ACC	AGG	AAA Lys	GGG	ATC	ATT	GAG	GGG	GAG	CCC	ACC	TGC	TGC	TTT	GAG	TG	T
	a	1	a a	a a	a TI	RANS	LATIC	OTY ON OF	, CYL	2/21	INT	cys	Cys	Pne	GIU	L Cy	s>
										1111	[A].		,	2 ' (1	u	
	٠.						Ι.			() (\(\frac{1}{2}\)							
	17	700		*	1710		*	172	20 *	*	17	730	,	. :	.740 *)	
	17 GTG	700 * GAG	TGT	* CCT	1710 * GAT	GGG	* GAG	17 <i>2</i>	O * AGT	* GAT	17	730 *	, GAT	* GCC	1740 * AG1) : : GC(· C
	17 GTG Val	700 * GAG Glu	ŢGT Cys	* CCT Pro	1710 * GAT Asp	GGG Gly	* GAG Glu	172 TAT Tyr	0 * AGT Ser	* GAT Asp	17 GAG Glu	30 * ACA Thr	GAT Asp	* GCC	AGT Ser	GC:	C a>
	17 GTG Val	700 * GAG Glu	TGT Cys a a	* CCT Pro	GAT Asp	GGG Gly RANSI	* GAG Glu	TAT Tyr On Of	O * AGT Ser CAF	* GAT Asp R/R1	17 GAG Glu	30 * ACA Thr	GAT Asp	* GCC	AGT Ser	GC Ala	· •
	17 GTG Val	700 * GAG Glu	ŢGT Cys	* CCT Pro	GAT Asp TI	GGG Gly RANSI	* GAG Glu	TAT Tyr On Of	0 * AGT Ser	* GAT Asp R/R1	17 GAG Glu	30 * ACA Thr	GAT Asp	* GCC	AGT Ser	GC:	C a> >
	GTG Val	GAG Glu 17	TGT Cys a a 50 *	CCT Pro	GAT Asp TI	GGG Gly RANSI 760 * GAT	# GAG Glu LATIC	TAT TYT ON OF	AGT Ser CAF	* GAT Asp R/R1	GAG Glu [A]	730 * ACA Thr a	GAT Asp 60 *	* GCC Ala *	ACC	7 GCC Al: a	C a> >
	GTG Val * TGT Cys	GAG Glu 17 AAC Asn	TGT Cys a &	CCT Pro a *	GAT Asp TI CCA Pro	GGG Gly RANS 760 * GAT Asp	GAG Glu LATIC	TAT Tyr ON OF	AGT Ser CAF 770 *	* GAT Asp R/R1 TCC	GAG Glu [A] * AAT Asn	730 * ACA Thr a 178 GAG Glu	GAT Asp 10 * AAC Asn	GCC Ala CAC His	AGT Ser	.790 *	C a> C r>
	GTG Val * TGT Cys	GAG Glu 17 AAC Asn	TGT Cys a 3 50 * AAG Lys a 3	CCT Pro a * TGC Cys	GAT Asp TI CCA Pro	GGG Gly RANS 760 * GAT Asp RANS	GAG GAC GAC Asp	TAT Tyr ON OF	AGT Ser CAF TGG Trp CAF	* GAT Asp R/R1 TCC Ser R/R1	GAG Glu [A] * AAT Asn	730 * ACA Thr a 178 GAG Glu	GAT Asp 60 *	GCC Ala CAC His	AGT Ser	7 GCC Al: a	C a> C r>
	GTG Val * TGT Cys	GAG Glu 17 AAC Asn	TGT Cys a &	CCT Pro a * TGC Cys	GAT Asp TI CCA Pro	GGG Gly RANS 760 * GAT Asp RANS	GAG Glu LATIC	TAT Tyr ON OF	AGT Ser CAF TGG Trp CAF	GAT Asp R/R1 TCC Ser R/R1	GAG Glu [A] * AAT Asn	730 * ACA Thr a 178 GAG Glu	GAT Asp * AAC Asn	GCC Ala CAC His	AGT Ser Ser ACC	.790 *	C a> C r>
	TGC	GAG Glu 17 AAC Asn	TGT Cys a 3 50 * AAG Lys a 3	CCT Pro a * TGC Cys	GAT ASP CCA Pro TI CCA CCA CCA CCA CCA CCA CCA CCA CCA CC	GGG Gly RANS: 760 * GAT Asp RANS:	GAG GAC ASP LATIC	TAT Tyr ON OF TTC Phe ON OF	AGT Ser CAF TGG Trp CAF	* GAT Asp R/R1 TCC Ser R/R1 320 * GAG	GAG Glu [A] * AAT ASN [A]	730 * ACA Thr a 178 GAG Glu a AGT	GAT Asp * AAC Asn .830	CAC His	AGT Ser	GCC: Al.	C a> C r> T
	TGC Cys	GAG Glu 17 AAC Asn GAG Glu	TGT Cys a 3 50 * AAG Lys a 3 1800 * CCC	CCT Pro a * TGC Cys a	GAT Asp TI CCA Pro TI CCT Pro	GGG Gly RANSI 760 * GAT Asp RANSI 18:	GAG GAC ASP LATIC	TAT TYT ON OF * TTC Phe ON OF * TAT Tyr	AGT Ser CAF TGG Trp CAF	GAT Asp R/R1 TCC Ser R/R1 GAG Glu	GAG Glu [A] * AAT Asn [A] TGG Trp	730 ACA Thr a 178 GAG Glu a AGT Ser	GAT Asp AAC Asn 830 * GAC Asp	CAC His	AGT Ser ACC Thr	TC:	C a> C r> T
	TGC Cys	GAG Glu 17 AAC Asn GAG Glu	TGT Cys a 3 50 * AAG Lys a 3	CCT Pro a * TGC Cys a	GAT Asp TI CCA Pro TI CCT Pro	GGG Gly RANS: 760 * GAT Asp RANS:	GAG GAC ASP LATIC	TAT TYT ON OF * TTC Phe ON OF * TAT Tyr	AGT Ser CAF TGG Trp CAF	GAT Asp R/R1 TCC Ser R/R1 GAG Glu	GAG Glu [A] * AAT Asn [A] TGG Trp	730 ACA Thr a 178 GAG Glu a AGT Ser	GAT Asp AAC Asn 830 * GAC Asp	CAC His	AGT Ser ACC Thr	TC: Se: a	C a> C r> T
184	TGC Cys	GAG Glu AAC Asn GAG Glu *	TGT Cys a 3 50 * AAG Lys a 3 1800 * CCC Pro	CCT Pro a * TGC Cys a ATT Ile	GAT Asp CCA Pro CCT Pro	GGG Gly RANSI 760 * GAT ASP RANSI 18: GTC Val RANSI	GAG GAC ASP LATIC CGT Arg LATIC	TAT Tyr ON OF TTC Phe ON OF TAT Tyr ON OF	AGT Ser CAF TGG Trp CAF Leu CAF	GAT Asp R/R1 TCC Ser R/R1 320 * GAG Glu R/R1	GAG Glu [A] * AAT Asn [A] TGG Trp [A]	730 ACA Thr a 178 GAG Glu a AGT Ser a	GAT Asp * AAC Asn * GAC Asp	CAC His a factor of the second	AGT Ser ACC Thr	TC: a	C a > C r > T r >
	TGC Cys	GAG Glu 17 AAC Asn GAG Glu *	TGT Cys a 3 50 * AAG Lys a 3 1800 Pro a 3	CCT Pro a * TGC Cys a ATT Ile a * ATC	GAT ASP TI CCA Pro TI CCT Pro TI GCC	GGG Gly RANSI 760 * GAT ASP RANSI Ual RANSI	GAG GAU LATIC GAC ASP LATIC 10 * CGT Arg LATIC	TAT TYT ON OF * TTC Phe ON OF TAT TYT ON OF	AGT Ser CAF TGG Trp CAF Leu CTT Leu CTG	GAT Asp R/R1 TCC Ser R/R1 GAG Glu R/R1 18	GAG Glu [A] * AAT Asn [A] TGG Trp [A] * ATC	ACA Thr a 178 GAG Glu a AGT Ser a	GAT Asp * AAC Asn * GAC Asp	CAC His ATA Ile	AGT Ser ACC Thr	TC: a	C > C > T > T > T
	TGC Cys	GAG Glu 17 AAC Asn * GAG Glu ATA Ile	TGT Cys a 3 50 * AAG Lys a 3 1800 CCC Pro a 3	CCT Pro TGC Cys ATT Ile ATC Ile	GAT ASP CCA Pro TI CCT Pro TI GCC Ala	GGG Gly RANSI 760 * GAT ASP RANSI 18: GTC Val RANSI	GAC GAC ASP LATIO	TAT TYT ON OF TTC Phe ON OF TAT TYT ON OF	AGT Ser CAF TGG Trp CAF Leu CTG Leu	GAT Asp R/R1 TCC Ser R/R1 GAG Glu R/R1 18	GAG Glu [A] * AAT Asn [A] TGG Trp [A] ATC Ile	730 * ACA Thr a 178 GAG Glu a * AGT Ser a	GAT Asp 0 * AAC Asn GAC Asp	CAC His ATA Ile A ACG	AGT Ser ACC Thr	TC: a TC: a TC: a TT: a	C > C > T > T > C > T > T > T > T > T >
	TGC Cys at ATC Ile	GAG Glu AAC Asn GAG Glu ATA ATA	TGT Cys a 3 50 * AAG Lys a 3 1800 * CCC Pro a 19	CCT Pro TGC Cys ATT Ile ATC Ile	GAT ASP CCA Pro CCT Pro CCT Ala TI	GGG Gly RANSI 760 * GAT ASP RANSI 18: GTC Val RANSI * TTT Phe RANSI	GAG GAU LATIC GAC Asp LATIC 10 * CGT Arg LATIC 1860 * TCT Ser LATIC	TAT TYP ON OF * TTC Phe ON OF TAT TYP ON OF	AGT Ser CAF	GAT Asp R/R1 TCC Ser R/R1 GAG Glu R/R1 187 GGC Gly R/R1	GAG Glu [A] * AAT Asn [A] TGG Trp [A] * ATC Ile [A)	ACA Thr 178 GAG Glu AGT Ser CTC Leu	GAT Asp 0 * AAC Asn GAC Asp	CAC His ATA Ile A ACG	AGT Ser ACC Thr	TC: a TC: a TC: a TT: a	C > C > T > T > T
	TGC Cys	GAG Glu AAC Asn GAG Glu ATA ATA	TGT Cys a 3 50 * AAG Lys a 3 1800 * CCC Pro a 19	CCT Pro TGC Cys ATT Ile ATC Ile	GAT ASP CCA Pro CCT Pro CCT Ala TI	GGG Gly RANSI 760 * GAT ASP RANSI 18: GTC Val RANSI	GAG GAU LATIO GAC Asp LATIO 10 * CGT Arg LATIO 1860 * TCT Ser LATIO	TAT TYP ON OF * TTC Phe ON OF TAT TYP ON OF	AGT Ser CAF	GAT Asp R/R1 TCC Ser R/R1 GAG Glu R/R1 187 GGC Gly R/R1	GAG Glu [A] * AAT Asn [A] TGG Trp [A] ATC Ile [A]	ACA Thr 178 GAG Glu AGT Ser CTC Leu	GAT Asp AAC Asn GAC Asp	CAC His ATA Ile A ACG	AGT Ser ACC Three GAA Glu	TC: a TC: a TC: a TC: a	C > C > T > T > T > T > T > T > T > T >
	TGC Cys TGC Cys	GAG Glu 17 AAC Asn * GAG Glu ATA Ile	TGT Cys a 3 50 * AAG Lys a 3 1800 CCC Pro a 1 GCC Ala a 4	CCT Pro TGC Cys ATT Ile ATC Ile ATC ATC	GAT Asp TI CCA Pro TI Pro A TI	GGG Gly RANSI 760 * GAT Asp RANSI 18: GTC Val RANSI * TTT Phe RANSI	GAG GAU LATIC GAC ASP LATIC 10 * CGT Arg LATIC 1860 * TCT Ser LATIC	TAT Tyr ON OF TTC Phe ON OF TAT Tyr ON OF	AGT Ser CAF TGG Trp CAF CTT Leu CTG Leu CAF	GAT Asp R/R1 TCC Ser R/R1 GAG Glu R/R1 187 GGC Gly R/R1 * GAC	GAG Glu [A] * AAT Asn [A] TGG Trp [A] ATC Ile [A] 1920 * ACA	730 * ACA Thr a 178 GAG Glu a * AGT Ser a CTC Leu a	GAT Asp AAC Asn GAG Asp GTG *	CAC His ATA Ile ACG Thr	AGT Ser ACC Thrack ACC	TC: a TC: a TC: a TT: a	C > > C > > T > T > > T > > T > > T
	TGC Cys TGC Cys	GAG Glu 17 AAC Asn * GAG Glu * ATA Ile ACC Thr	TGT Cys a 3 50 * AAG Lys a 3 1800 * CCC Pro a 19	CCT Pro TGC Cys ATT Ile S50 ATC Ile ATC Ile	GAT Asp a Ti CCA Pro a Ti Pro a Ti CCT Pro a	GGG Gly RANSI 760 * GAT Asp RANSI 18: TTT Phe RANSI * TTT Phe RANSI	GAG GAU LATIC GAC Asp LATIC 10 * CGT Arg LATIC 1860 * TCT Ser LATIC	TAT TYT ON OF * TTC Phe ON OF TAT TYT ON OF	AGT Ser CAF	GAT Asp R/R1 TCC Ser R/R1 GAG Glu R/R1 18 GGC Gly R/R1 * GAC Asp	GAG Glu [A] * AAT Asn [A] TGG Trp [A] * ATC Ile [A) 1920 * ACA Thr	ACA Thr a 178 GAG Glu a AGT Ser a CTC Leu a	GAT Asp * AAC Asn * GAC Asp * GTG Val	CAC His a second and the second and	AGT Ser ACC Thrack ACC	TC: a TC: a TC: a TC: a TC: a	C > > C > > T > T > > T > > T > > T

FIG. 3e.

1940	1950	1960	1.9	70 .	1980
* mag 16m 166	* *	* *	*	* *	*
TCC AGT AGG	GAG CTC TGC	TAT ATC ATT	CTG GCT	GGT ATT T	TC CTC GGC
ser ser Arg	Glu Leu Cys	Tyr Ile Ile	Leu Ala	Gly Ile P	he Leu Gly>
a a	a a TRANS	LATION OF CAL	R/R1 [A]	a a	a a >
1990	. 2000	2010		2020	2020
* *	* *	2010	•	2020	2030
ጥልጥ ርጥር ጥርር	CCT TTC ACC	ביי אייר בייר	* ****	X CM ACC A	
Tur Val Cue	Pro Phe Thr	Tou The Ala	AAA CCI	The The T	CA TCC TGC
a a	a a TRANS	DEU TIE ALA	נעו נפ/כ	THE THE T	a a >.
	c a 1.02.10	uniion of Ch	· TAT TAY	. a a	a a /
2040	- 20	50 20	060	2070	, ,
, * ±	* *	* *	*	* *	*
TAC CTC CAG	CGC CTC CTA	GTT GGC CTC	TCT TCT	GCC ATG TO	GC TAC TCT
Tyr Leu Gln	Arg Leu Leu	Val Gly Leu	Ser Ser	Ala Met C	us Tur Ser>
aa	a a TRANS	LATION OF CA	R/R1 (A)	a a	a a >
-					a
2080 2	2090	2100	2110	212	0
* *	* *	* *	*	*	* *
GCT TTA GTG	ACC AAA ACC	AAT CGT ATT	GCA CGC	ATC CTG G	CT GGC AGC
Ala Leu Val	Thr Lys Thr	Asn Arg Ile	Ala Arg	Ile Leu A	la Glv Ser>
a a	a a TRANS	LATION OF CA	R/R1 [A]	a a	a a >
2130	2140	2150	2160		2170
* *	* *	*	* - *	*	*, *
	ATC TGC ACC				
Lys Lys Lys	Ile Cys Thr	Arg Lys Pro	Arg Phe	Met Ser A	la Trp Ala>
a a	a a TRANS	LATION OF CA	R/R1 [A]	a a	a a >
	•	•		•	
2180	2190	2200	22	210	2220
*		* *			* '
CAA GTG ATC	ATA GCC TCC	ATT CTG ATT	AGT GTA	CAG CTA A	CA CTA GTG
	e Ile Ala Ser				
, a a	a a TRANS	LATION OF CA	R/R1 [A]	a a	a a >
2220	2240	0050			
2230	2240	2250		2260	2270
ביים אכר ייים		•			* *
	ATC ATC ATG				
a a	Ile Ile Met				
, a a	a a IMMS	LATION OF CA	K/KI [K]	a a	a a >
2280	າ ວ່ວ	90 2	300	2310	
* * 1	* *	·* *	*	* *	* .
AGT ATC AAC	G GAA GTC TAC	CTT ATC TGC	AAT ACC	AGC AAC C	TG GGT GTA
Ser Ile Lvs	Glu Val Tyr	Leu Ile Cvs	Asn Thr	Ser Asn L	An Gly Vala
a a	a a TRANS	LATION OF CA	R/R1 [A]		a a >
2320 2	2330	2340	2350	236	
* *	* *	* * *		*	
GTG GCC CC	T GTG GGT TAC	AAT GGA CTC	CTC ATC	ATG AGC T	GT ACC TAC
Val Ala Pro	o Val Gly Tyr	Asn Gly Leu	Leu Ile	Met Ser C	vs Thr Tvr>
a a	a a TRANS	LATION OF CA	R/R1 [A]	a a	aa>
		,			
.2370	2380	2390	2400		2410
* *	* 1		* *	*	* *
TAT GCC TT	C AAG ACC CGC	AAC GTG CCG	GCC AAC	TTC AAT G	AG GCT AAA
	e Lys Thr Arc	Asn Val Pro	Ala Asn	Phe Asn G	lu Ala Lys>
a a	a a TRANS	SLATION OF CA	R/R1 [A]	a a	a a >
0.400	A:4 B A	**	,	4	•
2420	2430	2440		450	2460
•	* *	* *	*	*	* *

FIG. 3f.

	Tyr	Ile	GCC Ala a	Phe	Thr	Met	Tyr	Thr	Thr	Суз	Ile	Ile	Tro	Leu	Ala	TTC Phe>
	i.	24	70		2	480		. 2	2490			250	00		2	510
	GTT.	CCC	ATT	TAC	TTT	GGG	AGC	AAC	TAĆ	AAG	* ልጥር	ልጥሮ	* 2011	*	TICC	* TTC
	Val	Pro	Ile	Tyr	Phe	Gly	Ser	Asn	Tyr	Lys	Ile	Ile	Thr	Thr	Cvs	Phe>
	ā	1	a i	a a	a TI	RANSI	LATIO	ON OF	CAI	R/R1	[A]	ä	a a	a a	a .	a >
			2520			25:	30		2	540	·	٠,	2550			•
		*	*		*		*	*		*		*	*	•	*	
	Ala	Val	AGC Ser	Leu	AGT	GTG Val	ACG Thr	GTG Val	GCC	CTG	GGG	TGC	ATG	TTT	ACT	CCG Pro>
	ě	1	a ;	a a	a TI	RANSI	LATI	ON OF	CYI	R/R1	(A)	Cys	met B a	rne a	Int	Pro>
256			,	•							•					
236	*	*	4.	570 *		*	2580		*		90 .*	*	26	600 *		*
	AAG.	ATG	TAC	ATC	ATC	ATT	GCC	AAA	CCT	GAG	AGG	AAC	GTC	CGC	AGT	GCC
•		Met	Tyr a :	Ile	Ile	Ile	Ala	Lys	Pro	Glu	Arg	Asn	Val	Arg	Ser	Ala>
	-	•	• '	•		· Caro	DVI T	·	CAI	K/ KI	·[A]		1 6	1 6	3 2	a >
2	2610		•	262	20	*	26	530			2640			26		
	TTC	ACG	ACC	TCT	GAT		GTC	CGC			* GTC	GGT	GAT	· GGC		* CTG
٠	Phe	Thr	Thr	Ser	Asp	Val	Val	Arg	Met	His	Val	Gly	Asp	Gly	Lys	Leu>
	ā	1	a a	3 8	a Ti	RANSI	LATIO	ON OE	CAI	R/R1	[A]	ě	a 6	a a	a 6	a >
	26	60			2670			268	30		2	590 ·		2	2700	
•		*	000	* '	*		*		*	*		*		*	*	
	CCG	TGC	CGC	TCC	AAC	ACC	TTC	CTC	AAC	ATT	TTC	CGG	AGA	AAG	AAG	CCC
	PIO	CVS	Arg	Ser	Asn.	Thr	Phe	Leu	Asn	Ile	Phe	Ara	Ara	Tue	1.179	Pros
-			Arg a a	Ser a a	Asn. TI	Thr RANSI	Phe LATI(Leu ON OE	Asn CAI	Ile R/R1	Phe [A]	Arg	Arg	Lys a a		Pro>
-		1	a a	Ser a a	a TI	RANSI	Phe LATI(ON OF	CAI	Ile R/R1	Phe [A]	ā	a a		a a	a >
-	*	27	a ;	a a	2°	720 *	LATIO	ON OF	730 *	R/R1	[A] *	27 d	40 *	a. a	a a	750 *
-	* GGG	27 GCA	a i 10 * GGG	s a * TAA	2° GCC	RANSI 720 * AAT	TCT	ON OF	7 CAI 2730 * GGC	R/R1 AAG	(A) * TCT	27 4 GTG	10 * TCA	* TGG	2 2 7 2 TCT	750 *
	* GGG Gly	27 GCA Ala	a 10 * GGG Gly	* * TAA Asn	2° GCC Ala	RANSI 720 * AAT Asn	TCT Ser	AAC	CAI	AAG Lys	* TCT Ser	274 GTG Val	40 * TCA Ser	* TGG Trp	27 TCT Ser	750 * GAA Glu>
	* GGG Gly	27 GCA Ala	a 10 * GGG Gly a	* * TAA Asn	2° GCC Ala	RANSI 720 * AAT Asn RANSI	TCT Ser LATI(AAC	GGC Gly	AAG Lys R/R1	* TCT Ser	274 GTG Val	40 * TCA Ser	* TGG	27 TCT Ser	750 *
	* GGG Gly	27 GCA Ala	a 10 * GGG Gly	* * TAA Asn	2° GCC Ala	RANSI 720 * AAT Asn	TCT Ser LATI(AAC	GGC Gly	AAG Lys	* TCT Ser	274 GTG Val	40 * TCA Ser	* TGG Trp	27 TCT Ser	750 * GAA Glu>
	* GGG Gly CCA	27 GCA Ala * GGT	a 10 * GGG Gly a 2760 *	AAT ASn a	2° GCC Ala TI	RANSI 720 AAT ASD RANSI 27	TCT Ser LATIO	AAC Asn ON OF	GGC Gly CAI	AAG Lys R/R1 780 *	* TCT Ser [A]	274 GTG Val	TCA Ser 3 6	* TGG Trp	2° TCT Ser	750 * GAA Glu> a >
	* GGG Gly CCA Pro	27 GCA Ala * GGT Gly	a 10 * GGG Gly a 2760 * GGA Gly	AATASNA	GCC Ala TI	RANSI 720 * AAT Asn RANSI 27' GCG Ala	TCT Ser LATIO	AAC Asn ON OE AAG Lys	GGC Gly CAI	AAG Lys R/R1 780 * CAG	(A) * TCT Ser [A] CAC His	274 GTG Val	TCA Ser 32790 TGG	TGG Trp	TCT Ser * CGC	750 * GAA Glu> a >
	* GGG Gly CCA Pro	27 GCA Ala * GGT Gly	a 10 * GGG Gly a 2760 * GGA Gly	AAT ASn a	GCC Ala TI	RANSI 720 * AAT Asn RANSI 27' GCG Ala	TCT Ser LATIO	AAC Asn ON OE AAG Lys	GGC Gly CAI	AAG Lys R/R1 780 * CAG	(A) * TCT Ser [A] CAC His	274 GTG Val	TCA Ser 2790 TGG	TGG Trp	TCT Ser	750 * GAA Glu> a >
280	* GGG Gly CCA Pro	27 GCA Ala * GGT Gly	a 10 * GGG Gly a 2760 * GGA Gly a	AATASNA	GCC Ala TI	AAT ASD ASD COCC ACC ACC ACC ACC ACC ACC ACC ACC AC	TCT Ser LATIO	AAC Asn ON OE AAG Lys	GGC Gly CAI GGA GGA Gly	AAG Lys R/R1 780 * CAG	(A) * TCT Ser [A] CAC His [A]	274 GTG Val	TCA Ser 2790 * TGG Trp	TGG Trp	TCT Ser * CGC	750 * GAA Glu> a >
280	* GGG Gly CCA Pro	27 GCA Ala * GGT Gly	a 10 * GGG Gly a 2760 * GGA Gly a	AAT ASN A AGA Arg a 810	2° GCC Ala TI CAG Gln a TI	RANSI 720 * AAT ASD RANSI 27 GCG Ala RANSI	TCT Ser LATIO 70 * CCC Pro LATIO 2820	AAC Asn ON OF	GGC Gly GGA Gly GGA	AAG Lys R/R1 780 * CAG Gln R/R1	(A) * TCT Ser [A] CAC His [A]	274 GTG Val	TCA Ser 2790 TGG Trp	TGG Trp CAG Gln	TCT Ser * CGC Arg	750 * GAA Glu> a > CTC Leu> a >
280	* GGG Gly CCA Pro * TCT	27 GCA Ala * GGT Gly GTG	a 10 GGGG Gly a 2760 * GGA Gly a CAC His	AAT ASN AGA Arg a 810 GTG Val	GCC Ala CAG GIn AAG Lys	AAT ASD ASD GCG Ala RANSI ACC Thr	TCT Ser LATIO CCC Pro LATIO 2820 AAC Asn	AAC Asn ON OF AAG Lys ON OF	GGC Gly CAI GGC Gly CAI GGA Gly CAI ACG Thr	AAG Lys R/R1 780 * CAG G1n R/R1 28:	(A) * TCT Ser [A] CAC His [A] * TGT Cys	274 GTG Val * GTG Val * AAC Asn	TCA Ser 32790 TGG Trp	TGG Trp CAG Gln A 840 ACA	TCT Ser * CGC Arg	GAA Glu> a > CTC Leu> a >
280	* GGG Gly CCA Pro * TCT Ser	27 GCA Ala * GGT Gly GTG	a 10 GGGG Gly a 2760 * GGA Gly a CAC His	AAT ASN AGA Arg a	GCC Ala CAG GIn AAG Lys	AAT ASD ASD GCG Ala RANSI ACC Thr	TCT Ser LATIO CCC Pro LATIO 2820 AAC Asn	AAC Asn ON OF AAG Lys ON OF	GGC Gly CAI GGC Gly CAI GGA Gly CAI ACG Thr	AAG Lys R/R1 780 * CAG G1n R/R1 28:	(A) * TCT Ser [A] CAC His [A] * TGT Cys	274 GTG Val * GTG Val * AAC Asn	TCA Ser TGG TTGG Trp	TGG Trp CAG Gln ACA Thr	TCT Ser * CGC Arg	750 * GAA Glu> a > CTC Leu> a >
	* GGG Gly CCA Pro * TCT Ser	27 GCA Ala * GGT Gly GTG Val	a 10 GGGG Gly a 2760 * GGA Gly a CAC His	AAT ASN AGA Arg a 810 GTG Val	GCC Ala TI CAG Gln AAG Lys a Ti	AAT ASD ASD GCG Ala RANSI ACC Thr	TCT Ser LATIO 70 * CCC Pro LATIO 2820 * AAC Asn LATIO	AAC Asn ON OF AAG Lys ON OF	GGC Gly CAI GGC Gly CAI GGA Gly CAI ACG Thr	AAG Lys R/R1 780 * CAG Gln R/R1 28: GCC Ala R/R1	(A) * TCT Ser [A] CAC His [A] * TGT Cys	274 GTG Val * GTG Val * AAC Asn	TCA Ser TGG TTGG Trp	TGG Trp CAG Gln A ACA Thr	TCT Ser CGC Arg	750 * GAA Glu> a > CTC Leu> a >
	CCA Pro * TCT Ser	27 GCA Ala * GGT Gly GTG Val	a 10 * GGG Gly a 2760 * GGA Gly a 2. CAC His	AAT ASN A ARGA Arg a GTG Val a 28	GCC Ala TI CAG Gln AAG Lys a TI	AAT ASD AAT ASD AAT ASD ACC Thr RANS:	TCT Ser LATIO 70 * CCC Pro LATIO 2820 * AAC ASD LATIO	AAC Asn ON OE AAG Lys ON OE GAG Glu ON OE	GGC Gly CAI GGA Gly CAI ACG Thr	AAG Lys R/R1 780 * CAG Gln R/R1 28: GCC Ala R/R1	(A) * TCT Ser [A] CAC His [A] * TGT Cys [A] 2880 *	274 GTG Val * GTG Val * AAC Asn	TCA Ser TGG Trp CAA Gln	TGG Trp CAG Gln A ACA Thr	TCT Ser CGC Arg	750 * GAA Glu> a > CTC Leu> a > * GTA Val> a >
	GGG Gly CCA Pro TCT Ser 2850 ATC	27 GCA Ala * GGT Gly * GTG Val	a 10 * GGGG Gly a 2760 * GGA Gly a CAC His a	AAT ASN AGA Arg STG Val a 28	GCC Ala TI CAG Gln AAG Lys a TI 60 *	RANSI 720 AAT ASD RANSI 27' GCG Ala RANSI * ACC Thr RANSI	TCT Ser LATIO 70 * CCC Pro LATIO 2820 * AAC ASD LATIO	AAC Asn ON OF AAG Lys ON OF GAG Glu ON OF	GGC Gly CAI GGA Gly CAI GGA Gly CAI CAA	AAG Lys R/R1 780 * CAG Gln R/R1 28: GCC Ala R/R1	[A] * TCT Ser [A] CAC His [A] * TGT Cys [A] 2880 * TCT	GTG Val	TCA Ser TGG Trp CAA Gln A AAG	TGG Trp CAG Gln ACA Thr 289	TCT Ser CGC Arg	GAA Glu> a > CTC Leu> a > GTA Val> a >
	CCA Pro TCT Ser ATC Ile	27 GCA Ala * GGT Gly * GTG Val AAA Lys	a 10 * GGGG Gly a 2760 * GGA Gly a CCCC His a *	AAT ASN AGA Arg STG Val a 28	GCC Ala TI CAG Gln AAG Lys a TI 60 *	RANSI 720 * AAT ASN RANSI 27 GCG Ala RANSI * ACC Thr RANSI * AAA Lys	TCT Ser LATIO 70 * CCC Pro LATIO 2820 * AAC Asn LATIO	AAC ASD ON OF AAG LYS ON OF GAG Glu ON OF TAC TYT	GGC Gly GGA Gly ACG Thr CAA Gln	AAG Lys R/R1 780 * CAG Gln R/R1 28: GCC Ala R/R1 * GGC Gly	[A] * TCT Ser [A] CAC His [A] * TGT Cys [A] 2880 * TCT Ser	GTG Val	TCA Ser TGG Trp CAA Gln AAG Lys	TGG Trp CAG Gln ACA Thr ACA ACA ACA ACA Ser	TCT Ser CGC Arg CTG Leu	GAA Glu> a > CTC Leu> a > GTA Val> a > ACC Thr>
	CCA Pro TCT Ser ATC Ile	27 GCA Ala * GGT Gly * GTG Val AAA Lys	a 10 * GGGG Gly a 2760 * GGA Gly a CCCC His a *	AAT ASN AGA Arg STG Val CTC Leu a	GCC Ala TI CAG Gln AAG Lysa TI Thra	RANSI 720 * AAT ASN RANSI 27 GCG Ala RANSI * ACC Thr RANSI * AAA Lys	TCT Ser LATIO 70 * CCC Pro LATIO 2820 * AAC Asn LATIO	AAC ASD AAG LYS ON OF GAG GAU ON OF	GGC Gly CAN GCAN CAA GIn CAA GIn CAA	AAG Lys R/R1 780 * CAG Gln R/R1 28: GCC Ala R/R1 * GGC Gly	[A] * TCT Ser [A] CAC His [A] * TGT Cys [A] 2880 * TCT Ser [A]	GTG Val	TCA Ser TGG Trp CAA Gln AAG Lys	TGG Trp CAG Gln ACA Thr ACA Ser	TCT Ser CGC Arg	GAA Glu> a > CTC Leu> a > GTA Val> a > ACC Thr>
	* GGG Gly CCA Pro * TCT Ser * ATC Ile	27 GCA Ala * GGT Gly Val AAA Lys 900 *	a 10 * GGGG Gly a 2760 * GGA Gly a CAC His a * CCC Pro a	AAT ASN ASN ASS ASS ASS ASS ASS ASS ASS ASS	CAG Gln AAG Lys a Ti ACT Thra Ti 2910	RANSI 720 * AAT ASD RANSI 27 GCG Ala RANSI * ACC Thr RANSI * AAA Lys RANS:	TCT Ser LATIO 70 * CCC Pro LATIO 2820 * AAC ASD LATIO	AAC Asn ON OF AAG Lys ON OF TAC Tyr ON	GGC Gly GGA Gly CAA Gln CAA Gln CAA Gln CAA	AAG Lys R/R1 780 * CAG Gln R/R1 28: GCC Ala R/R1 * GGC Gly R/R1	[A] * TCT Ser [A] CAC His [A] TGT Cys [A] 2880 * TCT Ser [A]	GTG Val AAC Asn GGC Gly 930	TCA Ser TGG Trp 21 CAA Gln A AAG Lys A	TGG Trp CAG Gln 840 ACA Thr 289	TCT Ser CGC Arg CTG Leu	GAA Glu> a > CTC Leu> a > GTA Val> a > ACC Thr> a >
	CCA Pro TCT Ser ATC Ile	27 GCA Ala * GGT Gly * GTG Val AAA Lys * TCA	a 10 * GGGG Gly a 2760 * GGA Gly a 2 CAC His a * CCC Pro a	AAT ASN AGA Arg a STG Val a Leu a * GCC	GCC Ala CAG Gln AAG Lysa Ti	AAA Lys RANS:	TCT Ser LATIO 70 * CCC Pro LATIO 2820 * AAC Asn LATIO Ser LATIO	AAC ASD AAG LYS ON OF GAG GIU ON OF TAC TYP ON OF	GGC GLY GGA GLY CAI	AAG Lys R/R1 780 CAG Gln R/R1 28: GCC Ala R/R1 * GGC Gly R/R1	(A) * TCT Ser [A] CAC His [A] * TGT Cys [A] 2880 * TCT Ser [A] AAT	GTG Val AAC Asn GGC Gly GTG	TCA Ser TGG Trp 21 CAA Gln AAG Lys AAG	TGG Trp CAG Gln ACA Thr AGC Ser	TCT Ser CGC Arg CTG Leu CTG Leu CTG CAG	GAA Glu> a > CTC Leu> a > GTA Val> a > ACC Thr>

16/34 FIG. 3g.

				_	- •			011 01	· CA	K\'\X	[W]		d	a	a	a	>
		29	50		2	960		:	2970			29	80		2	990	
	* יימב	»cc	* 	# 	ccin	*		*	*		* *		*	*		*	
	Asn	Thr	CCT Pro	Ser	Ala	His	Phe	Ser	CCT	CCC	AGC	AGC	CCT	TCT	ATG	GTG	
		a	a .	а ,	a T	RANS:	LATI	ON OI	CA	R/R1	IAI	Ser	a a	ser a	met a	a Agt	> >
	•										• • • •		-	_	_	•	
		*	3000		٠	30			3	020			3030		*		
	GTG	CAC	CGA									* CC3	* ~~~		*	200	
	Val	His	Arg	Arg	GLY	Pro	Pro	Val	Ala	Thr	Thr	Pro	Pro	Len	Pro	Pro	>
		а	a a	a i	a T	RANS	LATI	ON OF	CAI	R/R1	[A].	,	a	a	a	a	>
30	40		30	050		•	3060	,		30	70		2	080			
	*	*		*		* :	*		*	30	*	*	3	*		*	
+	CAT	CTG	ACC	GCA	GAA	GAG	ACC	CCC	CTG	TTC	CTG	GCT	GAT	TCC	GTC	ATC	
	nıs	ren	Thr	Ala	Glu	Glu	Thr	Pro	Leu	Phe	Leu	Ala	Asp	Ser	Va 1	Tla	>
•		a .	a a	а ;	а т	RANS	LATI(ON OF	CA	R/R1	[A]	•	a	a .	a	a	>
;	3090			31	00		3:	110			3120			31	30		
	*	A A C	*	m m C	*	*	225	*		*	*		*		*	*	
	Pro	Lys	GGC Gly	Leu	Pro	Pro	Pro	Len	CCG	CAG	CAG	CAG	CCA	CAG	CAG	CCG	
	٠ .	a	a a	a a	a T	RANSI	LATI(ON OF	CAI	R/R1	[A]	GIII	a i	a ;	a Gin	PIO a	<i>></i> >
		140							•								-
		*		*	3150		* .	316	50 *	*	3:	170 *			3180		
	CCC	CCT	CAG	CAG	CCC	CCG	CAG	CAG	CCC	AAG	TCC	CTG	ATG	GAC	CAG	CTG	
	PIQ	PIQ	GTU	GIN	Pro	Pro	Gln	Gln	Pro	Lvs	Ser	Leu	Met	Asn	Gln	Len	`
	, č	3	a a	E	a T	RANSI	LATIC	ON OF	CAF	R/R1	[A]	- 1 - 6	3 - <i>E</i>	a . :	3	a	>
		31	90		3	2,00		3	210			32:	20		3 .	230	
	*		*	*		*		*	*		*		*	*		*	
•	CAA Gln	GGC	GTA	GTC	ACC	AAC	TTC	GGT	TCG	GGG	ATT	CCA	GAT	TTC	CAT	GCG	
	č	a a	Val a a	va i	a Ti	RANSI	Pne LATIO	ON OF	Ser CAF	GLY R1	Ile	Pro	Asp	Phe	His	Ala	>
								J., J.		·/ •/-	[m]	0	• •			а.	_
			3240		•	325	50 *		32				3270				
	GTG		GCA				•••	* CCA	GGA	* AAC	AGC	* CTG	* 'CGC	TCT	* CTC	ጥ አ 🔿	
٠.	Val	ren	ALA	Gly	Pro	Gly	Thr	Pro	Glv	Asn	Ser	Leu	Ara	Ser	T.e.11	Tarr'	`
	΄ ε	a ;	a a	3 8	a Ti	RANSI	LATIC	ON OF	, CŅI	R/R1	[A]	, a	a .	a a	a .	a :	>
328	80 -		32	290	•	•	3300			331	١.		3.	320			
	*	*		*		* .	*		* •		*	*		*		*	
	CCG	CCC	CCG	CCI	CCG	CCG	CAA	CAC	CTG	CAG	ATG	CTG	CCC	CTG	ČAC	CTG	
	PEO	PEO	Pro	Pro	Pro Ti	Pro Panci	Gln Emic	His	Leu	Gln	Met	Leu	Pro	Leu	His	Leu	>
	•	- ,	a a	-	•	Cutoi	1V1 T	JN , OE	CAF	(/KI	[A]	•	3 2	3 . 3	3 3	a :	>
	3330		. *	334			33	350	•		3360			331	70		
	AGC			CAG	* GAG	* GNG	TCC	` ★	maa	*	*		*		*	*	
				CILO	ONG	GAG	Ser	Ile	Ser	Pro	Pro	GGG	GAG	GAC	ATC	GAT	
	Ser	Thr	Phe	Gln	GLu	GTU	~~-					~ - 7					•
	Ser	Thr	Phe	GIn	GLu A Ti	RANSI	LATIC	ON OF	CAF	R/R1	[A]	- a	1 - E		ı i	Asp.	> >
	ser	Thr	Pne a a	Gin a a	a Ti	RANSI	LATIC	ON OE	CAF	R/R1	[A]	ě	à 6	a .	3	Asp.	> >
	ser	Thr	Pne a a	Gin a a	a Ti	RANSI	LATIC	ON OF	CAF	R/R1	[A] 34	110	a 6	a 6	a a 3420	ASP.	>
,	Ser 33	BBO *	Pne a a	GIN * GAG	3390 * AGA	TTC	* AAG	340 CTC	CAF	* CAG	[A] 34 GAG	110 * TTC	e re	a a * TAC	3420 *	rec	>
	33 GAT Asp	B80 * GAC	Pne a a	GIN * GAG Glu	3390 * AGA	TTC Phe	* AAG Lys	340 CTC Leu	CAF CTG Leu	* CAG Gln	[A] 34 GAG Glu	110 * TTC Phe	GTG Val	a a * TAC	3420 *	rec	>

FIG. 3h.

3430	3440	. 34	50	3460	3470
* *	* *	*	* *	*	* *
GAA GGG AAC	ACC GAA GA	A GAT GAA T	TG GAA GAG	GAG GAG GA	C CTG CCC
a a	n.Thr Glu Gl a a ȚRAN	L ASP GIU L	eu Giu Giu	GIU GIU As	
u u	a a şiouv	DENTION OF	CAR/KI [A]	a ·a	a a >
3480	3	490	3500	3510	
* ;	*	* *	*	* *	*
ACA GCC AGO	CAAG CTG AC	C CCT GAG	AT TCT CCT	GCC CTG AC	G CCT CCT
a a	r Lys Leu Th a a TRAN	I PIO GIU A SLATION OF	Sp Ser Pro	Ala Leu Th	r Pro Pro>
			Old (III)	a a	a , a ; >
3520	3530	3540	3550	3560	
* *	* *	*	* *	*. *	*
TCT CCT TT(C CGA GAT TC	C GTG GCC 1	CT GGC AGC	TCA GTG CC	C AGT TCC
a a	a Arg Asp Se a a TRAN	I VAI ALA S	er Gly Ser	Ser Val Pr	
<u>.</u>	4 4 11041	SHATTON OF	CAR/RI [A]	a a	a a >
3570	3580	3590	3600	3	610
* *	. * *	* *	* *	*	* *
Pro Val. Ser	I GAG TCG GT r Glu Ser Va	C CTC TGC A	CC CCT CCA	AAT GTA AC	C TAC GCC
a a	a a TRAN	SLATION OF	CAR/R1 [A]	a a	a a >
;			(33,		
3620	3630	3640	3	650	3660.
א ייריתי כידיר איזי	T CTG AGG GA	# # - መስር እስር ር	* *	* *	*
Ser Val Ile	e Leu Arg As	D Tur Livs (AA AGC TCT	Ser Thr Le	G TAG
a a				a a a	
3670	3680	3690	3700	3710	3720
* *	* *	* *	* *	* *	* *
TGTGTGTGTG	TGTGTGGGGG	CGGGGGGAGT	GCGCATGGAG	AAGCCAGAGA	TGCCAAGGAG
3730-			3760	3770	3780
* * *	* *	* *	* *	* *	* *
2					AGGACCACGG
3790	3800			3830	3840
TCTGCAGGGA	AGAAAAAAA			GAAGGAGAGG	GACGATGCCA
•	. •			,	
3850	3860	3870	3880	3890	3900
ACTGAACAGT	GGTCCTGGCC	AGGATTGTGA	CTCTTGAATT	ATTCAAAAAC	
3910	3000	3930	3940	2050	3960
* *	3920	7 4 4 11		7 7 7 11	
	392U. * *		* * *		
AAGAAAGGGA	* *	* , *	* *	*, *	

FIG. 4a.

Sequence Range: -24 to 3195

cccc		.15			•5			6			16	5		- 2	26	
	× ≎TCC≥	ארר פֿ	י רכידוני ייי	ביהיהיריר ב	יא בר כז	י מים	ነ አጥር <i>ር</i>	* 3ጥሮ ር	ree e	* `ጥር ር	א יתר ח	יייירי ז יייירי ז	* ATT 1	nme r	*	-
0000	11002		,001		ic çi								Ile F			
													гсн3		ε	
_	36			4	16			56		,	66			•	76	
× λπc	አጥር	արարար	ጥጥር	GAG	አጥር	TCC	አጥጥ	*. ***********************************	CCC	300	NTC	CCT	GAC	n ~ n	*	
													Asp			
													a 8		_	>
					•					•					•	-
		86			96			10	6		1	.16			126	5
*		*		*	*		*		*	*		*		*	1	t
Ual	TTG	CTG	GCA Ala	GGT	Ala	TCG	TCC	CAG	CGC	TCC	GTG	GCG	AGA Arg	ATG	GAC	3
		neu 1	nia Nia	oly a Ti	RANSI	SEL LATIC	ON OF	GIN	ALCH:	Ser lai	vai	Ата	Arg a a	met	_	> >
						D	<i>,</i> ,, ,,,	-	** ***	, (W)			2 6			
		13	36			146			156			i	66			
	* .	·	*	*		. *		*	*		*		* .	*		
													CAG			
													Gln a a			
			• '		·σμισ.	DATI)II ()I		·	י (הי	•	1 (a . c	1 (a	>
176	•		186			. 19	96		2	206			216			
*		*	*		*		*	★ .		*		*	*		*	
GCC	GAG	AAG	GTA	CCC	GAA	AGG	AAG	TGT	GGG	GAG	ATC	AGG	GAA	CAG	TAT	r
		Lys	Val	Pro	Glu	Arg	Lys	Cys	Gly	Glu	Ile	Arg	Glu	Gln	Ту	
č	a a	1 6	1	a Ti	KANS.	PATIC	DM. OF	PRI	ATCH.	(A) د	l	1 6	a a	1 (а	>
22	26			236			246			25	56		2	266		
	*	* *		*	•	*	*		*		*	*	,	*		•
GGT	ATC	CAG	AGG	GTG	GAG	GCC	ATG	TTC	CAC	ACG	TTG	GAT	AAG	ATT	AA	2
Gly	Tle	Gln	Arg	Val	Glu	Ala	Met	Phe	His	Thr	Leu	Asp	Lys	Ile	Ası	n>
_			_				IN O	- 00		4 I D.		3 .			_	>
ě	a a	a a	3.	a 11	CANO.	TWII(PR	ATCH.	J (M.	•	- '	a a	3	a	
	a a	a á	3			TVII/			ATCH.			-	a c			
· *	276 *	3 6	a , ,		86 *	DVII/		296 . *	ATCH.	J (A) ★	306 *		a 6		16 *	
* GCG	276 * GAC	a ,	* GTG	2 CTC	86 * CTG	ccc	AAC	296 * ATC	ACT	* CTG	306 * GGC	AGT	* GAG	3 ATC	16 * CG0	G
* GCG Ala	276 * GAC Asp	CCG Pro	* GTG Val	2 CTC Leu	86 * CTG Leu	* CCC Pro	AAC Asn	296 * ATC	ACT	* CTG Leu	306 * GGC Gly	AGT Ser	* GAG Glu	3 ATC Ile	16 * CG(g>
* GCG Ala	276 * GAC Asp	CCG Pro	* GTG Val	2 CTC Leu	86 * CTG Leu	* CCC Pro	AAC Asn	296 * ATC	ACT	* CTG Leu	306 * GGC Gly	AGT Ser	* GAG	3 ATC Ile	16 * CG(g>
* GCG Ala	276 * GAC Asp	CCG Pro	* GTG Val	2 CTC Leu	86 * CTG Leu RANS	CCC Pro LATI	AAC Asn	296 * ATC Ile F PR	ACT Thr ATCH	* CTG Leu	306 * GGC G1y	AGT Ser	* GAG Glu	3 ATC Ile	16 * CG(Ar(g> >
* GCG Ala	276 * GAC Asp	CCG Pro	* GTG Val	2 CTC Leu	86 * CTG Leu	CCC Pro LATI	AAC Asn	296 * ATC Ile F PR	ACT	* CTG Leu	306 * GGC G1y	AGT Ser	* GAG Glu	3 ATC Ile	16 * CG(g> >
* GCG Ala * GAC	276 * GAC Asp a	CCG Pro a 326 *	* GTG Val	CTC Leu a T	86 CTG Leu RANS 336 TCT	CCC Pro LATIO	AAC Asn ON O	296 * ATC Ile F PR	ACT Thr ATCH:	* CTG Leu 3 [A	306 * GGC Gly	AGT Ser 356 *	* GAG Glu a ATC	3 ATC Ile	16 * CGG Arg a	g>
* GCG Ala * GAC	276 * GAC Asp a TCC Ser	CCG Pro a 3 326 * TGC Cys	* GTG Val a TGG	CTC Leu a T	86 CTG Leu RANS 336 * TCT Ser	CCC Pro LATIO TCA	AAC Asn ON O	296 ATC Ile F PR GCT Ala	ACT Thr ATCH: 46 * CTC Leu	* CTG Leu 3 [A] * GAA Glu	306 * GGC Gly CAG	AGT Ser 356 *	* GAG Glu a	3 ATC Ile	16 * CGG Arg a	g>
* GCG Ala * GAC Asp	276 * GAC Asp a TCC Ser	CCG Pro a 3 326 * TGC Cys	* GTG Val a TGG	CTC Leu a T	86 CTG Leu RANS 336 * TCT Ser	CCC Pro LATIO TCA	AAC Asn ON O	296 ATC Ile F PR GCT Ala	ACT Thr ATCH: 46 * CTC Leu	* CTG Leu 3 [A] * GAA Glu	306 * GGC Gly CAG	AGT Ser 356 * AGC Ser	* GAG Glu a ATC	ATC Ile a * GAA Glu	CGC Arga 36	g>
* GCG Ala * GAC Asp	276 * GAC Asp a TCC Ser	CCG Pro a 3 326 * TGC Cys	* GTG Val TGG Trp	CTC Leu a T	86 CTG Leu RANS 336 * TCT Ser RANS	CCC Pro LATIO TCA Ser LATIO	AAC Asn ON O	296 ATC Ile F PR GCT Ala	ACT Thr ATCH: 46 * CTC Leu ATCH	* CTG Leu 3 [A] * GAA Glu 3 [A	306 * GGC Gly CAG	AGT Ser 356 * AGC Ser	* GAG Glu a ATC Ile a	ATC Ile a * GAA Glu	CGC Arga 36	g>
* GCG Ala * GAC Asp	276 * GAC Asp a TCC Ser	CCG Pro a 3 326 * TGC Cys	* GTG Val a TGG	CTC Leu a T	86 CTG Leu RANS 336 * TCT Ser RANS	CCC Pro LATIO TCA	AAC Asn ON O	296 ATC Ile F PR GCT Ala	ACT Thr ATCH: 46 * CTC Leu	* CTG Leu 3 [A] * GAA Glu 3 [A	306 * GGC Gly CAG	AGT Ser 356 * AGC Ser	* GAG Glu a ATC	ATC Ile a * GAA Glu	CGC Arga 36	g>
* GCG Ala * GAC Asp	276 * GAC Asp a TCC Ser a	CCG Pro a 3 326 * TGC Cys a 3	* GTG Val TGG Trp a	CTC Leu * CAC His a T	86 CTG Leu RANS 336 * TCT Ser RANS	CCC Pro LATION TCA Ser LATION TCA	AAC Asn ON O	296 * ATC Ile F PR GCT Ala F PR * CGA	ACT Thr ATCH 46 * CTC Leu ATCH 396 *	* CTG Leu 3 [A GAA Glu 3 [A	306 * GGC Gly CAG Gln AAG	AGT Ser 356 * AGC Ser a	ATC Ile a GGG	ATC Ile a * GAA Glu	CGC Arca 36 TTC Pho	g> 6 * ce>
* GCG Ala * GAC Asp	276 * GAC Asp a TCC Ser a AGA Arg	CCG Pro a 326 * TGC Cys a 3 GAC Asp	TGG Trp a TCC Ser	CTC Leu * CAC His a T	86 CTG Leu RANS 336 * TCT Ser RANS	CCC Pro LATIO TCA Ser LATIO 386 * TCC Ser	AAC Asn ON OF	296 ATC Ile F PR GCT Ala F PR CGA Arg	ACT Thr ATCH: 46 * CTC Leu ATCH: 396 * GAT Asp	* CTG Leu 3 [A GAA Glu 3 [A	306 * GGC Gly CAG Gln AAG	AGT Ser 356 * AGC Ser a 4 GAT Asp	ATC Ile a GGG Gly	ATC Ile * GAA Glu * CTG	16 * CG(Arga 36) TT(Arga AA(As;	g> 6 * ce>
* GCG Ala * GAC Asp	276 * GAC Asp a TCC Ser a AGA Arg	CCG Pro a 326 * TGC Cys a 3 GAC Asp	TGG Trp a TCC Ser	CTC Leu * CAC His a T	86 CTG Leu RANS 336 * TCT Ser RANS	CCC Pro LATIO TCA Ser LATIO 386 * TCC Ser	AAC Asn ON OF	296 ATC Ile F PR GCT Ala F PR CGA Arg	ACT Thr ATCH: 46 * CTC Leu ATCH: 396 * GAT Asp	* CTG Leu 3 [A GAA Glu 3 [A	306 * GGC Gly CAG Gln AAG	AGT Ser 356 * AGC Ser a 4 GAT Asp	ATC Ile a GGG	ATC Ile * GAA Glu * CTG	16 * CG(Arga 36) TT(Arga AA(As;	g> 6 * ce>
* GCG Ala * GAC Asp	276 * GAC Asp a TCC Ser a AGA Arg	CCG Pro a 326 * TGC Cys a 3 GAC Asp	* GTG Val TGG Trp a TCC Ser a	CTC Leu a T CAC His a T CTG Leu a T	86 CTG Leu RANS 336 * TCT Ser RANS	CCC Pro LATION TCA Ser LATION Ser LATION	AAC Asn ON O	296 ATC Ile F PR GCT Ala F PR CGA Arg	ACT Thr ATCH 46 * CTC Leu ATCH 396 * GAT Asp	* CTG Leu GAA Glu GAG GAG Glu GAG GAG	306 * GGC Gly CAG Gln AAG	AGT Ser 356 * AGC Ser a 4 GAT Asp	ATC Ile a GGG Gly a	ATC Ile * GAA Glu * CTG	16 * CG(Arga 36) TT(Arga AA(As;	g> 6 * C > C >
* GCG Ala * GAC Asp	276 * GAC Asp a TCC Ser a AGA Arg	CCG Pro a 326 * TGC Cys a 3 GAC Asp	TGG Trp a TCC Ser	CTC Leu a T CAC His a T CTG Leu a T	86 CTG Leu RANS 336 * TCT Ser RANS	CCC Pro LATION TCA Ser LATION Ser LATION	AAC Asn ON OF	296 ATC Ile F PR GCT Ala F PR CGA Arg	ACT Thr ATCH 46 * CTC Leu ATCH 396 * GAT Asp	* CTG Leu 3 [A GAA Glu 3 [A	306 * GGC Gly CAG Gln AAG	AGT Ser 356 * AGC Ser a 4 GAT Asp	ATC Ile a GGG Gly	ATC Ile * GAA Glu * CTG	CGC Arca 36 TTC Pho a	g> 6 * C e> C n> >
* GCG Ala * GAC Asp ATC Ile	276 * GAC Asp a TCC Ser a * AGA Arg	CCG Pro a 326 * TGC Cys a 3 GAC Asp	* GTG Val TGG Trp a TCC Ser a 426	CTC Leu a T CAC His a T CTG	* CTG Leu RANS 336 * TCT Ser RANS ATT Ile RANS	CCC Pro LATI TCA Ser LATI 386 * TCC Ser LATI	AAC Asn ON O	296 * ATC Ile F PR 3 GCT Ala F PR * CGA Arg F PR	ACT Thr ATCH 46 * CTC Leu ATCH 396 * GAT Asp	* CTG Leu [A] GAA Glu GAG Glu [A] 446 *	GGC Gly CAG Gln AAG Lys	AGT Ser 356 * AGC Ser a 4 GAT Asp	ATC Ile a GGG Gly a 456	ATC Ile	CGC Arca 36 TTC Pho a	g>
GCG Ala GAC Asp ATC Ile 416 CGA	276 * GAC Asp a TCC Ser a AGA Arg a	CCG Pro a 326 * TGC Cys a 3 GAC Asp a	TGG Trp TCC Ser 426	CTC Leu * CAC His a T * CTG Leu a T	CTG Leu RANS 336 * TCT Ser RANS ATT Ile RANS GGC	CCC ProLATICA SerLATICA SerLATICA CAG	AAC Asn ON O	296 * ATC Ile F PR GCT Ala F PR * CGA Arg F PR CTG Leu	ACT Thr ATCH: 46 * CTC Leu ATCH: 396 * GAT ASP ATCH CCC Pro	CTG Leu GAA GAA Glu GAG Glu A46 CCT Pro	GGC Gly CAG Gln AAG Lys	AGT Ser 356 * AGC Ser a 4 GAT Asp	ATC Ile a GGG Gly a	ATC Ile a GAA Glu CTG Leu AAG	CGC Arca 36 TTC Pho a	g> 6 * C > C n > G

FIG. 4b.

466 * *	476	486	496	506
				CT GTG GCC ATT CAA
a a			RATCH3 [A]	er Val Ala Ile Gln> a a a a >
516	526	536	5	46 5 56
* * * GTC CAG AAT	* * * CTT CTC CAG	* CTG TTC GA	•	* * * * AG ATC GCC TAT TCT
Val Gln Asn	Leu Leu Gln	Leu Phe As	p Ile Pro G	In Ile Ala Tyr Ser> a a a a >
566	576		586	596 606
* *	* *	*	* *	* * *
Ala Thr Ser	: Ile Asp Leu	Ser Asp Ly	s Thr Leu T	AC AAA TAC TTC CTG yr Lys Tyr Phe Leu>
a a	a a TRANS	LATION OF P	RATCH3 [A]	a a a a >
*	516 * *	626 * *	636	646 * * *
				CG ATG CTC GAC ATA la Met Leu Asp Ile>
	a a TRANS			a a a a a >
656	666	676	686	696
				TC CAC ACA GAA GGG
a a			RATCH3 [A]	al His Thr Glu Gly> a a a a >
706	716	726	736	746
AAT TAC GGO	* C GAG AGT GGA	* * ATG GAT GO	* * * * * TTC AAA G	* * AA CTG GCT GCC CAG
	Glu Ser Gly	Met Asp Al		lu Leu Ala Ala Gln>
756	766	776		86 796
* *	* *	* *	r *	* *
Glu Gly Let	ı Cys Ile Ala	His Ser As	sp Lys Ile T	AC AGC AAT GCT GGC yr Ser Asn Ala Gly>
	a a TRANS	· · · · · · · · · · · · · · · · · · ·	1	a a a a >
· 806		*	826 * *	836 846
				GG GAG CGG CTT CCC rg Glu Arg Leu Pro>
				aaaa>
	3 56 . * *	866	876 *	886 * * *
				TG ACA GTG CGG GGC et Thr Val Arg Gly>
	a a TRANS			
896	906	916	926	936
				* * * * * GC GAG TTC TCA CTC
	r Ala Met Arç a a TRANS			ly Glu Phe Ser Leu> a a a a >
946	956	966	976	
*	* *	* *	* *	

FIG. 4c.

	ATT GGA Ile Gly	AGT	GAT	GGA	TGG	GCA	GAC	AGA	GAT	GAA	GTC	ATC	GAA	GGC	TAT
	a a	361	a a	TF	RANSI	LATIC	N OF	PRA	ASP ATCH3	3 [A]	val	3 ! 116	GIU B	gra Gra	TYE>
	996			100)6		10	16		1	.026			103	16
	* *		*		*	*		*		*	*		*		*
	GAG GTG Glu Val	GAA	GCC	AAC	GGA	GGG	ATC	ACA	ATA	AAG	CTT	CAG	TCT	CCA	GAG
	a a	3 6	a a	TF	CLY CANSI	CIY CATIO	N OF	'PR	TTE ATCH3	ъуs Буз	Leu	GIN	ser a a	Pro a a	GIU>
										•					,
	* T(046 *		*	L056 *		*	106	56 ★	*	10	076 *	•	*	.086 *
	GTC AGG	TCA	TTT	GAT	GAC	TAC	TTC	CTG	AAG	CTG	AGG	CTG	GAC	ACC	AAC
	Val Arg	Ser	Phe	Asp	Asp	Tyr Arte	Phe	Leu	Lys	Leu	Arg	Leu	Asp	Thr	Asn>
		•	. .	1 11	VIII)	ovi 10	JN OF	PIC	iluni) [A]			a &	1 a	ı , >
	•	10	96	*	11		• .				, '	113			
	ACA AGG	AAT	CCT		ттс	*. CCT	GAG	* TTC	* TGG	C 2 2	* ~AT	CGC:	* ጥጥር	*	TCT.
	Thr Arg	Asn	Pro	Trp	Phe	Pro	Glu	Phe	Trp	Gln	His	Arg	Phe	Gln	Cvs>
	a a	a (a a	TF	RANSI	LATIC	ON OF	PR/	ATCH3	[A]	á	a ē	a a	a 2	>
. 1	136		1146			115	56		11	166	٠.		1176-		
	*	*	*		*		*	*		*		*	*		*
	CGC CTA Arg Leu	Pro	GGA	His	Leu	Leu	GAA	AAC	Pro	AAC	TTT	AAG	AAA	GTG Val	TGC
	a a	a ;	a a	TF	RANSI	LATIC	ON OF	PR	ATCH3	3 [A]		a e	2 y 3	a a	Cy3>
	1186		11	.96		•	L206			121	6	-		226	
	*	*		*		*	*		*		*	*		*	
	ACA GGA	TAA	GAA	AGC	TTG	GAA	GAA	AAC	TAT	GTC	CAG	GAC	AGC	AAA	ATG
	Thr Gly	ASII	a a	ser TF	RANSI	GIU LATI(ON OF	ASN 'PRJ	Tyr ATCH3	vaı 3 [A]	GIN	Asp a	Ser a a	Lys a a	Met>
					1						•				
	1236		*	124	46 *	*		256 *		*	.266		*	. 127	76 *
	GGA TTT	GTC	ATC	AAT	GCC	ATC	TAT	GCC	ATĠ	GCA	CAT	GGG	CTG	CAG	AAC
	Gly Phe	Val	Ile a :	Asn Tr	Ala	Ile	Tyr	Ala	Met	Ala	His	Gly	Leu	Gln	Asn>
			u , c					FR	AICH.) (A)	0		a	1 č	
	*	286 *	•	*	1296		*	130	06 *	*	13	316		` 1 ★	.326 *
	ATG CAC	CAT	GCT	CTG	TGT	ccc	GGC	CAT	GTG	GGC	CTG	TGT	GAT	GCT	ATG
	Met His	His	Ala	Leu	Cys	Pro	Gly	His	Val	Gly	Leu	Cys	Asp	Ala	Met>
	a	a	a a	a Ti	RANS.	LATI(ON OF	PR	ATCH:	3 [A]	l i	a i	a a	a a	a >
		13	36		1	346		. :	1356			13	66		
	*	እ ጥጥ	* ርስጥ	*	NCC	* *	CTC	*	*		*		*	*	_==
	AAA CCC Lys Pro	Ile	Asp	Gly	Arg	Lys	Leu	Leu	Asp	Phe	Leu	Ile	LVS	Ser	TCT Ser>
	a	a	a a	a T	rans:	LATI	ON OF	PR	ATCH:	3 [A]] ,	a :	a . a	a a	>
1:	376	·	1386			13	96		1	406			1416		
	*	*	*		*		*	*		*		*	*		*
			\sim \sim \sim	ጥርጥ	GGA	GAG	GAG	GTG	TGG	TTC	GAT	GAG	AAG	GGG	GAT
	TTT GTC	GGA	172 l	Sor	G1	C1	G1	77-1	Т	n L	R	~ 1 · ·	Y	~1	•
	Phe Val	Gly	Val	Ser	Gly	Glu	Glu	Val	Trp ATCH	Ph 3 [A	Asp]	Glu a	Lys a	Gly	Asp>
	Phe Val	Gly	Val a a	Ser a _, T	Gly RANS	Glu LATI	Glu ON OI	Val PR	Trp ATCH	3 [A])	Glu a	a a	Gly a a	Asp>
	Phe Val	Gly	Val a a	Ser	Gly RANS	Glu LATI	Glu	Val PR	Trp ATCH:	Ph 3 [A] 14!)	Glu a *	a a	Gly	Asp>
	Phe Val a 1426	Gly a * GGA	Val a 1	Ser a T 436 * TAT	Gly RANS GAC	Glu LATI * ATT	Glu ON OI 1446 * ATG	Val PR AAT	ATCH: * CTG	3 [A] 14: CAG	56 * TAC	a * ACA	a i 1 GAA	Gly 466 * GCT	Asp> a > AAT

FIG. 4d.

		č	•	a a		CATA 21	JATIC	ON OF	PRA	ATCH3	(A)	a	1 6	a a	3 a	. >	
	1	476			148	3 6		14	96		1	.506			151	. 6	
c	3C	# ጥልጥ	GAC	TAT	GTC	TAC	* GTG	GGG	*	ייפפ	* Сът	*	GGA	± GTC	CTC:	* .	
Aı	cg	Tyr	Asp	Tyr	Val	His	Val	Gly	Thr	Trp	His	Glu	Gly	Val	Leu	Asn>	
		ě	a. e	a, a	TE	RANSI	LATIC	ON OF	PR	ATCH3	[A]	a	a ē	a a	a a	>	
		15	526		1	1536	1		154	16		7 -	556		1	.566	
	*		* .		*	*		*		*	*		*		*	*	
A7	T	GAT	GAT	TAC	AAA	ATC	CAG	ATG	AAC	AAA	AGC	GGA	ATG	GTA	CGA	TCT	
1.1	Le .	Asp	ASP	Tyr	Lys Ti	ILE	GIN CATTO	Met	ASD DD1	Lys Arcus	Ser	Gly	Met	Val	Arg	Ser>	
	-			-	•••	44.01	J				(6)	c	• .			. /	
			15	76		15	586	·	נ	1596			160	06 (•	
G	rG	TGC	AGT	T GAG	# (C)T	ጥርር	* ጥጥ እ	A A C	* CCT	*	እጥጥ	*	CTC.	*	*	AAA	
Va	1	Cys	Ser	Glu	Pro	Cys	Leu	Lvs	Glv	Gln	Ile	Lvs	Val	Ile	Ara	AAA Lys>	
	a		a a	a a	T	RANSI	LATIO	ON OF	PR	ATCH3	[A]	- 2 - 2	1 6	a a	3 e	>	
616	.		•	1626			163			16	46			1656			•
1	*		*	*.		*	10,	*	*	10	*		*	*		*	
G	GA	GAA	GTG	AGC	TGC	TGC	TGG	ATC	TGC	ACG	GCC	TGC	AAA	GAG	AAT	GAG	
G.	ŗа	Glu	vai	Ser a a	Cys • т	Cys.	Trp Larte	Ile	Cys	Thr	Ala [[]	Cys	Lys	Glu	Asn	Glu>	
	_	•	•		•		J.11 1 (J., OL		110110	, [A]		. (2 0	. /	
. 1	166	6		16	576		*	1686			169	96		1'	706		
T	гт	GTG	CAG	GAC	GAG	TTC		TGC	AGA	ecc	ጥርጥ	GAC	ж Стс	GGG	* TGG	TGG	
Pl	ne	Val	Gln	Asp	Glu	Phe	Thr	Cys	Arg	Ala	Cys	Asp	Leu	Gly	Trp	Trp>	
	a	ı á	a	a a	T	RANSI	LATIO	ой ОЕ	PR	ATCH3	[A].	. 6	a (a a	a a	>	
•	1	716		,	172	2 6		17	136			1746			175	66	
*		•		*		*	*		*		*	*		*		* '	
C		, -															
D.	2C	ÄAC	GCA	GAG	CTC	ACA	GGC	TGT	GAG	CCC	ATT	CCT	GTC	CGT	TAT	CTT	
P	CC ro a	Asn	Ala	Glu	Leu	Thr	Gly	Cys	Glu	Pro	Ile	Pro	Val	Arg	Tyr	Leu>	
P	ro	Asn	Ala a .	Glu	Leu Tl	Thr RANS	Gly LATIO	Cys ON OE	Glu PR	Pro ATCH3	Ile	Pro a	Val	Arg	Tyr a a	Leu>	•
P	ro a	Asn	Ala a . 766	Glu	Leu Tl	Thr RANS:	Gly LATIO	Cys On Of	Glu PR	Pro ATCH3	Ile [A]	Pro a	Val 796	Arg	Tyr a a	Leu> - >	•
P	ro a	Asn 1	Ala a . 766 *	Glu a ā	Leu TI	Thr RANS: 1776	Gly LATIO	Cys On Of	Glu PRI	Pro ATCH3 86	Ile [A]	Pro a	Val 796	Arg a ;	Tyr a a	Leu> 1 >	
P:	ro a * AG lu	Asn 1 TGG Trp	Ala 766 * AGT Ser	Glu a a GAC Asp	Leu * ATA Ile	Thr RANS 1776 * GAA Glu	Gly LATIO TCT Ser	Cys ON OF * ATC Ile	Glu F PRI 178 ATA Ile	Pro ATCH3 86 * GCC Ala	Ile [A] * ATC Ile	Pro 17 GCC Ala	Val 796 * TTT Phe	Arg a TCT Ser	Tyr TGC Cys	Leu> 1 806 2 CTG Leu>	•
P:	ro a * AG lu	Asn 1 TGG Trp	Ala 766 * AGT Ser	Glu a a GAC Asp	Leu * ATA Ile	Thr RANS 1776 * GAA Glu	Gly LATIO TCT Ser	Cys ON OF * ATC Ile	Glu F PRI 178 ATA Ile	Pro ATCH3 86 * GCC Ala	Ile [A] * ATC Ile	Pro 17 GCC Ala	Val 796 * TTT Phe	Arg a TCT Ser	Tyr TGC Cys	Leu> 1 > 1806 * CTG	•
P:	ro a * AG lu	Asn 1 TGG Trp	Ala a 766 * AGT Ser	Glu a a GAC Asp	Leu * ATA Ile	Thr RANS 1776 * GAA Glu RANS	Gly LATIO TCT Ser	Cys ON OF ATC Ile ON OF	Glu PRZ 178 ATA Ile PRZ	Pro ATCH3 6 * GCC Ala ATCH3	<pre>ATC Ile Ile Ile Ile</pre>	Pro 17 GCC Ala	Val 796 * TTT Phe	Arg a TCT Ser a	Tyr TGC Cys	Leu> 1 806 2 CTG Leu>	•
Gi Gi	ro * AG lu a	Asn 1 TGG Trp	Ala a 766 * AGT Ser a	Glu a a GAC Asp a a	Leu * ATA Ile *	Thr RANS: 1776 * GAA Glu RANS:	Gly LATIO TCT Ser LATIO 826	Cys ON OF * ATC Ile ON OF	Glu PRI 178 ATA Ile PRI	Pro ATCH3 36 * GCC Ala ATCH3	X ATC Ile	Pro 13 GCC Ala	Val 796 * TTT Phe	Arg TCT Ser a	Tyr * TGC Cys a	Leu> 1806 CTG Leu>	
Gi Gi	ro a AG lu a	TGG Trp	Ala a 766 * AGT Ser a 18	Glu a a GAC Asp a a 16 * GTG	Leu * ATA Ile * ACG	Thr RANS: 1776 * GAA Glu RANS:	Gly LATIO TCT Ser LATIO 826 *	Cys ON OF * ATC Ile ON OF	Glu PRI 178 ATA Ile PRI *	Pro ATCH3 36 * GCC Ala ATCH3 1836 *	Ile [A] * ATC Ile [A] ATC	Pro 17 GCC Ala * TTC	Val 796 * TTT Phe 18 GTT	Arg a TCT Ser a 46 * CTG	Tyr * TGC Cys a * TAC	Leu> 1806 * CTG Leu>	•
Gi Gi	* AG lu a	TGG Trp ATC	Ala a 766 * AGT Ser a 18 CTC Leu	Glu a a GAC Asp a a 16 * GTG Val	ATA Ile ACG	Thr RANS: 1776 * GAA Glu RANS: LTG Leu	Gly LATIC TCT Ser LATIC 826 * TTT Phe	Cys ON OF ATC Ile ON OF	Glu PRA 170 ATA Ile PRA ACC Thr	Pro ATCH3 6 * GCC Ala ATCH3 1836 * CTC	X ATC Ile ATC Ile	Pro 17 GCC Ala * TTC Phe	Val 796 * TTT Phe 18 GTT Val	TCT Ser a 46 t CTG	Tyr TGC Cys TAC Tyr	Leu> 1806 * CTG Leu> 1 CGG Arg>	
G; G; G;	* AG lu a GC ly a	TGG Trp ATC	Ala 766 * AGT Ser a 18 CTC Leu a	Glu a a GAC Asp a a 16 * GTG Val a	ATA Ile ACG Thr	Thr RANS: 1776 * GAA Glu RANS: LTG Leu	Gly LATIO TCT Ser LATIO 826 * TTT Phe LATIO	X ATC Ile ON OF GTC Val	ATA Ile ACC Thr	Pro ATCH3 36 * GCC Ala ATCH3 1836 * CTC Leu	ATC Ile ATC Ile	Pro 17 GCC Ala * TTC Phe	Val 796 * TTT Phe 18 GTT Val	TCT Ser a 46 tCTG Leu a	Tyr TGC Cys TAC Tyr	Leu> 1806 * CTG Leu>	
9: G. G. G.	* AG lu a GC ly a	TGG Trp ATC	Ala 766 * AGT Ser a 18 CTC Leu a	Glu a a GAC Asp a a 16 * GTG Val	ATA Ile ACG Thr	Thr RANS: 1776 * GAA Glu RANS: LTG Leu	Gly LATIO TCT Ser LATIO 826 * TTT Phe LATIO	Cys ON OF ATC Ile ON OF	ATA Ile ACC Thr	Pro ATCH3 36 * GCC Ala ATCH3 1836 * CTC Leu	X ATC Ile ATC Ile	Pro 17 GCC Ala * TTC Phe	Val 796 * TTT Phe 18 GTT Val	TCT Ser a 46 t CTG	Tyr TGC Cys TAC Tyr	Leu> 1806 * CTG Leu> CGG Arg>	
G. G	* AG lu a GC ly a 6 *	TGG Trp	Ala 766 * AGT Ser a 18 CTC Leu a	GAC Asp a a GTG Val a a	* ATA Ile ACG Thr	Thr RANS: 1776 * GAA Glu RANS: LEU RANS:	TCT Ser LATIO 826 * TTT Phe LATIO	Cys ON OF ATC Ile ON OF GTC Val ON OF	Glu PRI 178 ATA Ile PRI * ACC Thr	Pro ATCH3 36 * GCC Ala ATCH3 1836 * CTC Leu ATCH3	ATC Ile ATC Ile	Pro 17 GCC Ala * TTC Phe	Val 796 * TTT Phe 18 GTT Val	TCT Ser a 46 to Leu a 1896	Tyr TGC Cys a * TAC Tyr	Leu> 1806 * CTG Leu> 1 CGG Arg>	
9: G; G: G: 185	* AG lu a GC ly a 6 * AC sp	TGG Trp * ATC Ile	Ala 766 * AGT Ser a 18 CTC Leu a * CCC	GAC Asp a a 16 * GTG Val a a GTG Val	* ATA Ile ACG Thr GTC Val	Thr RANS: 1776 * GAA Glu RANS: Leu RANS: * AAA Lys	Gly LATIO TCT Ser LATIO 826 * TTT Phe LATIO 18	Cys ON OF * ATC Ile ON OF Val ON OF TCC Ser	Glu PRI 178 ATA Ile PRI * ACC Thr PRI AGT Ser	Pro ATCH3 36 * GCC Ala ATCH3 1836 * CTC Leu ATCH3	ATC Ile ATC Ile GAG Glu	Pro 1: GCC Ala * TTC Phe CTC Leu	Val 796 * TTT Phe 18 GTT Val a * TGC Cys	TCT Ser a 46 to Leu a 1896 to TAT Tyr	Tyr * TGC Cys a * TAC Tyr a ATC Ile	Leu> 1806 CTG Leu> CGG Arg> ATT Ile>	
9: G; G: G: 185	* AG lu a GC ly a 6 * AC sp	TGG Trp * ATC Ile	Ala 766 * AGT Ser a 18 CTC Leu a * CCC	GAC Asp a a 16 * GTG Val a a GTG Val	* ATA Ile ACG Thr GTC Val	Thr RANS: 1776 * GAA Glu RANS: Leu RANS: * AAA Lys	Gly LATIO TCT Ser LATIO 826 * TTT Phe LATIO 18	Cys ON OF * ATC Ile ON OF Val ON OF TCC Ser	Glu PRI 178 ATA Ile PRI * ACC Thr PRI AGT Ser	Pro ATCH3 36 * GCC Ala ATCH3 1836 * CTC Leu ATCH3	ATC Ile ATC Ile GAG Glu	Pro 1: GCC Ala * TTC Phe CTC Leu	Val 796 * TTT Phe 18 GTT Val a * TGC Cys	TCT Ser a 46	Tyr * TGC Cys a * TAC Tyr a ATC Ile	Leu> 1806 * CTG Leu> CGG Arg> * ATT	
G; G; G; G; A;	* AG lu a GC ly a AC sp a	TGG Trp * ATC Ile	Ala 766 * AGT Ser a 18 CTC Leu a * CCC	GAC ASP a GTG Val a GTG Val a	* ATA Ile ACG Thr CTC Val	Thr RANS: 1776 * GAA Glu RANS: Leu RANS: * AAA Lys RANS	TCT Ser LATION 18 TCC Ser LATION 18	Cys ON OF * ATC Ile ON OF Val ON OF * TCC Ser ON OF	ATA Ile ACC Thr AGT Ser PR	Pro ATCH3 36 * GCC Ala ATCH3 1836 * CTC Leu ATCH3	ATC Ile ATC Ile GAG Glu [A]	Pro 17 GCC Ala * TTC Phe CTC Leu 36	Val 796 * TTT Phe 18 GTT Val * TGC Cys	TCT Ser a 46	Tyr * TGC Cys a * TAC Tyr a ATC Ile	Leu> 1806 CTG Leu> CGG Arg> ATT Ile>	
G. G. G. A.	* AG lu a GC ly a AC sp a 190	TGG Trp * ATC Ile ACA Thr	Ala 766 AGT Ser 18 CTC Leu CCC Pro a	GAC Asp a a 16 * GTG Val a a 1866 Val a	* ATA Ile ACG Thr CTC Val a T	Thr RANS: 1776 * GAA Glu RANS: Leu RANS: * AAA Lys RANS	Gly LATIO TCT Ser LATIO 826 * TTT Phe LATIO 18 TCC Ser LATIO	Cys ON OF ATC Ile ON OF GTC Val ON OF TCC Ser ON OF 1926	ATA Ile PRI ACC Thr PRI AGT Ser PR	Pro ATCH3 36 * GCC Ala ATCH3 1836 * CTC Leu ATCH3	ATC Ile ATC Ile GAG Glu 19:	Pro 1: GCC Ala * TTC Phe CTC Leu 36 *	Val 796 * TTT Phe 18 GTT Val a * TGC Cys	TCT Ser a 46	Tyr TGC Cys TAC Tyr ATC Ile 946	Leu> 1806 CTG Leu> 1 CGG Arg> ATT Ile>	
G. G. G. A. C. C.	* AG lu a GC ly a AC sp a 190	TGG Trp * ATC Ile ACA Thr	Ala 766 AGT Ser 18 CTC Leu CCC Pro a	GAC Asp a a 16 Val a a 1866 Val a 1	* ATA Ile * ACG Thr T C Val a T T T T T T T T T T T T T T T T T T	Thr RANS: 1776 * GAA Glu RANS: L CTG Leu RANS: * AAA Lys RANS	Gly LATIC Ser LATIC 18 TCC Ser LATIC Ser LATIC	Cys ON OF ATC Ile ON OF GTC Val ON OF TCC Ser ON OF 1926 * TAT	ATA Ile ACC Thr PRO AGT Ser PRO GTG	Pro ATCH3 36 * GCC Ala ATCH3 1836 * CTC Leu ATCH3 18 AGG Arg ATCH3	ATC Ile ATC Il	GCC Ala * TTC Phe CTC Leu 36 * TTC	Val 796 * TTT Phe 18 GTT Val a * TGC Cys a *	TCT Ser a 46 * CTG Leu a 1896 * TAT Tyr a 1 CTC	Tyr TGC Cys TAC Tyr ATC Ile ATC Ile ATC	Leu> 1806 CTG Leu> CGG Arg> ATT Ile>	

FIG. 4e.

1956	. 1	966	1976	. :	1986	1996
AAA CCT	ACT ACC AC	A TCC TGC	TAC CTC	CAG CGC	CTC CTA G	* * ° IT GGC CTC
rys Pro	Thr Thr Th	r Ser Cys	Tvr Leu	Gln Ara	Leu Leu Va	al Glas Tous
						*
± 20	06 * *	2016 *	2 0:	26 * *	2036	2046
TCT TCT	GCC ATG TG	C TAC TCT	GCT TTA	GTG ACC	AAA ACC A1	77 CCT 3.00
ser ser a a	a a	s Tyr Ser TRANSLATI	Ala Leu ON OF PR	Val Thr ATCH3 [A]	Lys Thr As	sn Arg Ile>
						a a >
*	2056	* *	*	*	2086 * *	*
GCA CGC	ATC CTG GC	T GGC AGC	AAG AAG	AAG ATC	TGC ACC CO	G AAG CCC
a a	a a	a Gly Ser Translati	ON OF PRI	Lys Ile ATCH3 [A]	Cys Thr Ai laa	g Lys Pro>
2096	2106		,			
*	* *	*	* *	*	· 213	* •
AGA TTC	ATG AGC GC	T TGG GCC	CAA GTG	ATC ATA	GCC TCC AT	T CTG ATT
a a	a a	TRANSLATI	ON OF PRI	TIE IIE ATCH3 [A]	Ala Ser II a a	e Leu Ile>
2146	2156	•	2166	217		2186
*	* *	*	*	* 1	* *	*
Ser val	Gin Leu Th	r Leu Val	Val Thr	Leu Ile	ATC ATG GA	II Pro Pro>
a a	a a	TRANSLATI	ON OF PRI	ATCH3 [A]	a a	a a >
2196	, 2.	206	2216	· . 2	226	2236
* * ATG CCC	* ኔጥጥ ጥጥር ጥር	* * *	. *	*	· •	
WECLETO	rie ren 26	r Tyr Pro	Ser Ile	Lvs Glu	GTC TAC CT Val Tyr Le	II TIA CIES
a a	a a	TRANSLATI	ON OF PRA	ATCH3 [A]	a a	a a >
22	46		226		2276	2286
AAT ACC	AGC AAC CT	G GGT GTG	* GTG GCC	* * CCT TTG	GGC TAC AA	* * T GGA CTC
ASH THE	ser Ash Le	u Gly Val	Val Ala	Pro Leu	Glv Tvr As	n Gly Leus
a a	a a	TRANSDATT	ON OF PRA	ATCH3 [A]	a a	a a >
	2296	2306	*	2316	2326	
CTC ATC	ATG AGC TG	T ACC TAC	TAT GCC	TTC AAG	ACC CGC AA	* C GTG CCC
red lie	met Ser Cy.	s Thr Tyr	Tvr Ala	Phe Lvs	Thr Arg As	n Val Pro>
•					•	
	2346 * *	*	56 ★ ★·		· 237	* +
GCC AAC	TTC AAC GA	G GCC AAA	TAT ATC	GCG TTC	ACC ATG TA	ר ארר ארר
a a	a a	u Ala Lys TRANSLATI	Tyr lle ON OF PRA	Ala Phe ATCH3 [A]	Thr Met Ty	r Thr Thr> a a >
2386	2396		2406			•
*	* *	*	*	* . 241	* *	2426 *
TGT ATC .	ATC TGG CT. Ile Tro Le	A GCT TTT	GTG CCC	ATT TAC	TTT GGG AG	C AAC TAC TAST AST Tyr>
a a	a a	TRANSLATI	ON OF PRI	TTE TYP	a a	r Asn Tyr> a a >
2436		446	2456		466	2476
* *	*	* *		**	* *	24/b *

23/34 F/G. 4f.

Lys Ile a	Ile Thr	Thr Cys	Phe Ala	Val Ser	Leu Ser	Val Thr	Val Ala>
2	486	2496		2506	25	16	2526
CTG GGG	TGC ATG		•	•			* * AAG CCT
Leu Gly	Cvs Met	Phe Thr	Pro Lvs	Met Tvr	Tle Tle	ATT GCC	Lys Pro>
a · a	a a	a TRANS	LATION O	F PRATCH	3 [A] a	a a	a a >
		•					
*	2536 *	. *		2556		2566 *	*
GAG AGG	AAT ACC	ATC GAG	GAG GTG	CGT TGC	AGC ACC	GCA GCT	CAC GCT
Glu Arg	Asn Thr	Ile Glu	Glu Val	Arg Cys	Ser Thr	Ala Ala	His Ala>
'a a	a a a	a TRANS	LATION O	F PRATCH:	3 [A] a	a a	a a >
2576	2586		2596 *	2 (606	2616	0
TTC AAG							TCC CGC
Phe Lys	Val Ala	Ala Aro	Ala Thr	Leu Arg	Arg Ser	Asp Val	Ser Arg>
· a a	a a a	a TRANS	LATION O	F PRATCH	3 [A] a	. a a	a a >
2626	*	636	2646	*	2656	* 26	566 *
AAG CGG	TCC AGC						TCC TCC
Lys Arg	Ser Ser	Ser Leu	Gly Gly	Ser Thr	Gly Ser	Thr Pro	Ser Ser>
. a a	a a	a TRANS	LATION O	F PRATCH	3 [A] a	a a	a >
2676		2686		696	2,706	٠.	2716
* *		*		* '	* . *	*	*
TCC ATC	AGC AGC	AAG AGC	AAC AGC	GAA GAC	CCA TTC	CCA CAG	CCC GAG
					'M - ML -		
a a	a a a	a TRANS	LATION O	: Glu Asp)F PRATCH:	Pro Phe	Pro Gln	Pro Glu>
a	a a	a TRANS	LATION O	Glu Asp F PRATCH:	Pro Phe 3 [A] a	Pro Gln a a	Pro Glu>
a a	aa a 726	a TRANS 2736	LATION O	2746	3 [A] a 27	a a	a > 2766
a a ∞2° *	a a a 726 *	2736	LATION O	2746 *	3 [A] a 27	a, a	2766
a 2° * AGG CAG Arg Gln	a a a 726 * AAG CAG Lys Gln	2736 * CAG CAG Gln Gln	* CCG CTG Pro Leu	2746 ** GCC CTA Ala Leu	3 [A] a 27 * ACC CAG Thr Gln	a a 56 * CAA GAG Gln Glu	2766 * * CAG CAG Gln Gln>
a 2° * AGG CAG Arg Gln	a a a 726 * AAG CAG Lys Gln	2736 * CAG CAG Gln Gln	* CCG CTG Pro Leu	2746 ** GCC CTA Ala Leu	3 [A] a 27 * ACC CAG Thr Gln	a a 56 * CAA GAG Gln Glu	2766 * * CAG CAG Gln Gln>
a 2° * AGG CAG Arg Gln	a a a 726 * AAG CAG Lys Gln a a	2736 * * CAG CAG Gln Glr a TRANS	* CCG CTG Pro Leu SLATION O	2746 * GCC CTA Ala Leu F PRATCH	ACC CAG Thr Gln [A] a	a a 56 * CAA GAG Gln Glu a a	2766 * *
a 2° * AGG CAG Arg Gln	a a a 726 * AAG CAG Lys Gln	2736 * * CAG CAG Gln Glr a TRANS	* CCG CTG Pro Leu	2746 ** GCC CTA Ala Leu	ACC CAG Thr Gln [A] a	a a 56 * CAA GAG Gln Glu a a	2766 * * CAG CAG Gln Gln>
a 2 * AGG CAG Arg Gln a ;	AAG CAG Lys Gln a a 6	2736 * CAG CAG Gln Gln a TRANS	CCG CTG Pro Leu LATION O	2746 * GCC CTA Ala Leu OF PRATCH: 2796 *	3 [A] a 27 * ACC CAG Thr Gln 3 [A] a	a a 56 * CAA GAG Gln Glu a a 2806 *	2766 * * CAG CAG Gln Gln> a >
AGG CAG Arg Gln a *	AAG CAG Lys Gln a 2776 * CCC CTG	2736 * CAG CAG Gln Gln a TRANS	* CCG CTG Pro Leu LATION C 786 * CCA CAG	2746 2746 3 GCC CTA 4 Ala Leu 9F PRATCH: 2796 * 5 CAG CAA	ACC CAG Thr Gln (A) (A) (A)	a a 56 * CAA GAG Gln Glu a a 2806 * CAG CAG	2766 * * CAG CAG Gln Gln> a >
AGG CAG Arg Gln a * CAG CAG Gln Gln	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu	2736 * CAG CAG Gln Gln a TRANS * ACC CTG	CCG CTG Pro Leu CT86 CCA CAG Pro Gln	2746 2746 3 GCC CTA 4 Ala Leu DF PRATCH: 2796 * 5 CAG CAA 4 Gln Gln	ACC CAG Thr Gln (A) CGA TCT Arg Ser	a a 56 * CAA GAG Gln Glu a a 2806 * CAG CAG Gln Gln	2766 * * CAG CAG Gln Gln> a >
AGG CAG Arg Gln a * CAG CAG Gln Gln a	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a	2736 *	CCG CTG Pro Leu CATION O CRAG Pro Gla CCA CAG Pro Gla CLATION O	2746 2746 3 GCC CTA 4 Ala Leu DF PRATCH: 2796 * 5 CAG CAA 4 Gln Gln DF PRATCH:	ACC CAG Thr Gln (A) (CGA TCT Arg Ser (A)	a a 56 CAA GAG Gln Glu a a 2806 * CAG CAG Gln Gln a a	2766 * * CAG CAG Gln Gln> a > CAG CCC Gln Pro>
AGG CAG Arg Gln a * CAG CAG Gln Gln	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu	2736 * CAG CAG Gln Gln a TRANS * ACC CTG Thr Leu a TRANS	CCG CTG Pro Leu CT86 CCA CAG Pro Gln CLATION C	2746 2746 3 GCC CTA 4 Ala Leu DF PRATCH: 2796 * 5 CAG CAA 4 Gln Gln DF PRATCH:	ACC CAG Thr Gln (A) CGA TCT Arg Ser (B) (A) (B) (B)	a a 56 CAA GAG Gln Glu a a 2806 CAG CAG Gln Gln a a 2856	2766 * * CAG CAG Gln Gln> a > CAG CCC Gln Pro>
AGG CAG Arg Gln a * CAG CAG Gln Gln a *	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a 2826 *	2736 * Z736 * CAG CAG Gln Gln a TRANS * ACC CTG Thr Leu a TRANS	CCG CTG Pro Leu CT86 CCA CAG Pro Gln CLATION C CT86 CCA CAG	2746 2746 3 GCC CTA 4 Ala Leu DF PRATCH: 2796 * 5 CAG CAA 4 Gln Gln DF PRATCH: 2796	ACC CAG Thr Gln (A) CGA TCT Arg Ser (A) (A) (A) (B) (A)	a a 56 * CAA GAG Gln Glu a a 2806 * CAG CAG Gln Gln a a 2856 *	2766 * * CAG CAG Gln Gln> a > CAG CCC Gln Pro> a a >
AGG CAG Arg Gln a * CAG CAG Gln Gln a 2816 * AGA TGC	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a 2826 * AAG CAG	2736 CAG CAG Gln Gln a TRANS ACC CTC Thr Leu a TRANS	CCG CTG LATION O TABLE CCA CAG Pro Gln CLATION O 2836 * CATC TTT	2746 2746 3 GCC CTA 4 Ala Leu DF PRATCH: 2796 * 5 CAG CAA 6 Gln Gln DF PRATCH: 26 GGC AGC	ACC CAG Thr Gln (A) CGA TCT Arg Ser (A) (A) (B) (B) (CGA TCT Arg Ser (A)	a a 56 * CAA GAG Gln Glu a a 2806 * CAG CAG Gln Gln a a 2856 * GTC ACC	2766 * * CAG CAG Gln Gln> a > CAG CCC Gln Pro> a a >
AGA TGC Arg Cys	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a 2826 * AAG CAG Lys Gln	2736 * CAG CAG Gln Gln a TRANS ACC CTG Thr Leu a TRANS AAG GTG Lys Val	CCG CTG Pro Leu SLATION O CRAG Pro Gln SLATION O 2836 ATC TTT LILE Phe	2746 2746 3 GCC CTA 4 Ala Leu F PRATCH: 2796 * CAG CAA 5 GIn GIn F PRATCH: 26 C GGC AGC 6 Gly Ser	ACC CAG Thr Gln (A) CGA TCT Arg Ser (A) (A) CGA TCT Arg Ser (A) CGC ACG (Gly Thr	a a 56 * CAA GAG Gln Glu a a 2806 * CAG CAG Gln Gln a a 2856 * GTC ACC Val Thr	2766 * * CAG CAG Gln Gln> a > CAG CCC Gln Pro> a a >
AGA TGC Arg Cys	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a 2826 * AAG CAG Lys Gln a a 2826	2736 * CAG CAG Gln Gln a TRANS ACC CTG Thr Leu a TRANS AAG GTG Lys Val	CCG CTG Pro Leu SLATION O 786 * CCA CAG Pro Gln SLATION O 2836 * CATC TTT Ile Phe SLATION O	2746 2746 3 GCC CTA 4 Ala Leu 6 PRATCH: 2796 4 * 6 CAG CAA 6 Gln Gln 6 PRATCH: 26 GGC AGC 6 Gly Ser 6 F PRATCH:	ACC CAG Thr Gln (A) CGA TCT Arg Ser (A) (A) CGA TCT Arg Ser (A) CGC ACG (Gly Thr	a a 56 * CAA GAG Gln Glu a a 2806 * CAG CAG Gln Gln a a 2856 * GTC ACC Val Thr a a	2766 * * CAG CAG Gln Gln> A
AGG CAG Arg Gln a * CAG CAG Gln Gln a * 2816 * AGA TGC Arg Cys a * 2866 *	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a 2826 * AAG CAG Lys Gln a a 2826 *	ACC CTC Thr Leu a TRANS AAG GTC Lys Val a TRANS	CCG CTG LATION O TRACE CCA CAG Pro Gln CATION O 2836 ATC TTT LILE Phe CLATION O 2886	2746 2746 3 GCC CTA 4 Ala Leu F PRATCH: 2796 * 5 CAG CAA 6 Gln Gln F PRATCH: 26 GGC AGC 6 Gly Ser F PRATCH:	ACC CAG Thr Gln (A) a CGA TCT Arg Ser (A) a 846 * GGC ACG Gly Thr (A) a 2896 *	a a 56 * CAA GAG Gln Glu a a 2806 * CAG CAG Gln Gln a a 2856 * GTC ACC Val Thr a a 29	2766 * * CAG CAG Gln Gln> a > CAG CCC Gln Pro> a a > TTC TCA Phe Ser> a >
AGG CAG Arg Gln a * CAG CAG Gln Gln a * 2816 * AGA TGC Arg Cys a * 2866 * CTG AGC	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a 2826 * AAG CAG Lys Gln a a 2776 * * * * * * * * * * * * *	ACC CTC Thr Leu a TRANS AAG GTC Lys Val a TRANS	CCG CTG Pro Leu CT86 CCA CAG Pro Gln CATION C 2836 CATC TTT Ile Phe CLATION C 2886	2746 2746 3 GCC CTA 4 Ala Leu DF PRATCH: 2796 4 * 5 CAG CAA 6 GIn GIn DF PRATCH: 20 4 CGC AGC 6 Gly Ser DF PRATCH: 6 AAC GCC	ACC CAG Thr Gln (A) CGA TCT Arg Ser (A) (B) (CGA TCT Arg Ser (A) (A) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (B	CAA GAG GIN Glu a 2806 CAG CAG GIN GIN a 2856 * GTC ACC Val Thr a 29 CAC GGG	2766 * * CAG CAG Gln Gln> a > CAG CCC Gln Pro> a a > TTC TCA Phe Ser> a > O66 * AAT TCT
AGG CAG Arg Gln a * CAG CAG Gln Gln a * 2816 * AGA TGC Arg Cys a * 2866 * CTG AGC Leu Ser	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a 2826 * * * * * * * * * * * * * * * * * * *	ACC CTC Thr Leu a TRANS AAG GTC Lys Val a TRANS AAG CCC Glu Pro	CCG CTG Pro Leu CT86 CCA CAG Pro Gln CATION C 2836 CATC TTT LILE Phe CLATION C 2886 * CAG AAG CGIn Lys	2746 2746 3 GCC CTA 4 Ala Leu 2796 4 * 5 CAG CAA 5 Gln Gln 27 PRATCH: 20 5 GGC AGC 6 Gly Ser 27 PRATCH: 3 * 5 AAC GCC 6 Asn Ala	ACC CAG Thr Gln (A) CGA TCT Arg Ser (A) (B) (CGA TCT Arg Ser (A) (A) (A) (B) (A) (B) (A) (B) (A) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	CAA GAG Gln Glu a 2806 CAG CAG Gln Gln a 2856 * GTC ACC Val Thr a 29 CAC GGG His Glv	2766 * * * CAG CAG Gln Gln> a > CAG CCC Gln Pro> a a > TTC TCA Phe Ser> a > O6 * AAT TCT Asn Ser>
AGG CAG Arg Gln a CAG CAG Gln Gln a 2816 AGA TGC Arg Cys a 2866 CTG AGC Leu Ser a	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a 2826 * AAG CAG Lys Gln a a 2776 * CTT GAT Phe Asp a a	ACC CTC Thr Leu a TRANS ACC CTC Thr Leu a TRANS AAG GTC Lys Val a TRANS GAG CCC Glu Pro a TRANS	CCG CTG Pro Leu SLATION O CT86 Pro Gln SLATION O CRACK Pro Gln SLATION O CRACK CATC TTT LIE Phe SLATION O CRACK CAG AAG CAG AA	2746 2746 3 GCC CTA Ala Leu F PRATCH: 2796 * CAG CAA GIN GIN F PRATCH: 2 C GGC AGC Gly Ser F PRATCH: 3 C AAC GCC ASN Ala F PRATCH:	ACC CAG Thr Gln (A) CGA TCT Arg Ser (A) (B) (CGA TCT Arg Ser (A) (A) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (B	CAA GAG Gln Glu a 2806 CAG CAG Gln Gln a 2856 * GTC ACC Val Thr a 29 CAC GGG His Glv	2766 * * * CAG CAG Gln Gln> a > CAG CCC Gln Pro> a a > TTC TCA Phe Ser> a > O6 * AAT TCT Asn Ser>
AGG CAG Arg Gln a * CAG CAG Gln Gln a * 2816 * AGA TGC Arg Cys a * 2866 * CTG AGC Leu Ser a * 2916	AAG CAG Lys Gln a a 2776 * CCC CTG Pro Leu a a 2826 * * * * * * * * * * * * * * * * * * *	ACC CTO Thr Leu a TRANS ACC CTO Thr Leu a TRANS AAG GTO Lys Val a TRANS 876 GAG CCT Glu Pro a TRANS	CCG CTG Pro Leu LATION O CRA6 Pro Gln CATION O CRA6 Pro Gln CATION O CRA6 CATC TTT LIE Phe CLATION O CRA6 CATC TTT CAG AAG CAG	2746 2746 3 GCC CTA Ala Leu OF PRATCH: 2796 * CAG CAA GIN GIN OF PRATCH: 2 GGC AGC GIY Ser OF PRATCH: 3 GAC GCC ASN Ala OF PRATCH: 2936	ACC CAG Thr Gln (A) a CGA TCT Arg Ser (A) a (B) a (CGA TCT Arg Ser (A) a (B) a (CGA TCT Arg Ser (A) a (CGA TCT Arg Ser (CAA GAG Gln Glu a 2806 CAG CAG Gln Gln a 2856 * GTC ACC Val Thr a 29 CAC GGG His Glv	2766 * * * CAG CAG Gln Gln> a > CAG CCC Gln Pro> a a > TTC TCA Phe Ser> a > O6 * AAT TCT Asn Ser>
AGG CAG Arg Gln a * CAG CAG Gln Gln a * 2816 * AGA TGC Arg Cys a * 2866 * CTG AGC Leu Ser a * 2916 *	AAG CAG Lys Gln a a 2826 AAG CAG Pro Leu a a 2826 AAG CAG Lys Gln a a 2	ACC CTC Thr Leu a TRANS AAG GTC Lys Val a TRANS AAG CCC Glu Pro a TRANS 2926	CCG CTG Pro Leu LATION O CRA6 Pro Gln LATION C CRA6 Pro Gln LATION C CRA6 CATC TTT LILE Phe CLATION C CRA6 CAG AAC CAG	2746 2746 3 GCC CTA 4 Ala Leu 2796 4 * 6 CAG CAA 6 Gln Gln 7 PRATCH: 20 GGC AGC 6 Gly Ser 7 PRATCH: 6 AAC GCC 6 Asn Ala 7 PRATCH: 2936 4	ACC CAG Thr Gln (A) CGA TCT Arg Ser (A) (B) (CGA TCT Arg Ser (A) (A) (B) (CGA TCT Arg Ser (A) (A) (A) (A) (A) (A) (A) (A)	a a a a a a a a a a a a a a a a a a a	2766 * * * CAG CAG Gln Gln> A
AGG CAG Arg Gln a * CAG CAG Gln Gln a * 2816 * AGA TGC Arg Cys a * 2866 * CTG AGC Leu Ser a * 2916 * ACG CAC	AAG CAG Lys Gln a a 2826 AAG CAG Pro Leu a a 2826 AAG CAG Lys Gln a a 2	ACC CTC Thr Leu a TRANS AAG GTC Lys Val a TRANS 876 GAG CCT Glu Pro a TRANS 2926 ** ** ** ** ** ** ** ** ** ** ** ** *	CCG CTG Pro Leu LATION O CRA6 Pro Gln CATION O CRA6 Pro Gln CLATION O CRA6 Pro Gln CLATION O CRA6 CATC TTT LIE Phe CLATION O CRA6 CAG AAG CAG	2746 2746 3 GCC CTA 4 Ala Leu 2796 4 * 5 CAG CAA 6 Gln Gln 27 PRATCH: 20 GGC AGC 21 GGV Ser 22 GGV Ser 23 ASN Ala 24 ASN Ala 25 ASN Ala 26 ASN Ala 27 PRATCH: 2936 4 * 20 CAG AAA	ACC CAG Thr Gln (A) a CGA TCT Arg Ser (A) a CGA TCT Arg Ser (A) a AGC ACG Gly Thr (A) a 2896 ATG GCC Met Ala (A) a 2946 AGC AGC	CAA GAG Gln Glu a 2806 CAG CAG Gln Gln a 2856 * GTC ACC Val Thr a 29 CAC GGG His Gly a GAT ACG	2766 * * * CAG CAG Gln Gln> A

FIG. 4g.

	a a	a	a a	a T	RANS	LATI	ON OF	PR	ATCH3	3 [A]		а .	a ·	a a	a	>
	2	966			2976		••	291	8 6		29	996		-	3006	
*	r	*		*	*		*		*	*		*		*	*	
ĊGA	CAC	CAG	CCA	TTA	CTC	CCG	CTG'	CAG	TGC	GGG	GAA	ACG	GAC	ጥጥል	Cam	
Aro	His	Gln	Pro	Leu	Leu	Pro	Leu	Gln	Cvs	Glv	Glu	Thr	Asn	Len	yen	
3	a a	9	a a	а Т	RANSI	LATIO	ON OF	PR:	OYU ATCH?	ומו ?	UIU.	- 1T	ച	a De a	a Pab	(
		_					01			, (11)	•	2	a (-	-	_
		30	16		30	026			3036	•		30	46			
	*	•	*	*	_	*			*		*			*	·	
CTG	ACC	GTC	CAG	GAA	ACA	GGT	CTG	CAA	GGA	ССТ	GTG	GGT	GGA	GAC	CAG	
Leu	Thr	Val	Gln	Glu	Thr	Glv	Leu	Gln	Glv	Pro	Val	Gly	Gly) and	CAG	
		a	a a	a Ti	RANS	LATIC	ON OF	PR	ATCH?	ומו	·u	a OTY	- GIY -	a Nob	GTII	(
	-	_		AL.			J UL	• • •		, [11]	•	2		.	.	_
3056			3066	•	•	30.	7.6		30	ነጸ 6			3096			
*		*	*	•	*	-	*	*	J.	*		•	3030 *			
CGG	CCA	GAG	GTG	GAG	GAC	CCT			THE C		CC 3			Cm l	~	
Aro	Dra	Glu	Un l	Glu	7.00	Dwa	Clu	Clu	Tan	100	CCA	GCA	CTT	GTA	GTG	
n-9	Pro a a	oru.	AGT	- T	gaze Gazea	PIO Design	GIU	GIU.	ren	ser	Pro	Ата	ren			
	a (a a	a 1,	KANS.	CA11(ON OF	PR	ATCH	(A)	ć	3	a a	a a	a ့	>
. 31	.06		٦.	116			3126			313			3		•	
,54	. *	*	J.	* *		*	*		*	313	.	*		146		
TCC	AGT	TCA	CAG	AGC	ттт	GTC	እጥር	a Cm		GGA	GCC.					
Ser	Ser	Ser	Gln	Ser	Phe	Val:	Tie	Sar	Gly	Gly	61	NGC SOF	The T	911	ACA	
	a a	3	a :	a Ti	RANSI	. የፀቷ. የተጠፈ	JN OE	מם י ימם י	OTY	ועז צ	GTA.	SET	~ T11T.	val	Inr	
	•	_	- '			J., 1 1 (), OL	F 1.0	C	, נאן	•	2	a	.	a	_
	3156			31	66		3176	:	· -	3186						
*	*		. *	• •	*	*		•	*	*		*				
GAA	AAC	GTA	GTG	AAT	TCA	ממד	ል አ ጥር ር	ימם:	GAGE) DCD	CTGC	ጋርሶም የ	»C			
G) 11	Asn	Val	Va 1	Asn	Se-,	> ******	77100	- 22	JORGE	MUM	C10(3001	nG.			
	יות ביי								0		0				-, -	

FIG. 5a.

Sequence Range: -24 to 3195

		-15			_			
	*	, -T2	-5 * *		6 +	•	. 16	26
	GCGGTGG	ACC GCG	▗▔ ┖СͲͲϹGC	CACA	እጥG Gጥሮ <i>(</i>	- 	፣ የጥር ጥጥር እጥባ	TTC TTC CCA
		,			det Val	Arg Leu	Leu Leu Ile	Phe Phe Pro
٠				_			ON OF PHCH4	
		•						(11)
	- 36		46	,	56		6 6	76
	* *	*	*	*	*	*	* ,*	* *
1	ATG ATC	TTT TTO	G GAG A	TG TCC	ATT TTG	CCC AGG	ATG CCT GA	C AGA AAA
	a a		u Giu M a TR	et Ser	TIE TEN	Pro Arg		p Arg Lys>
	u c	, <u>u</u>	a 110	WIOTUI I	LON OF P	[А] РПОП	a a	a a >
		86		96	10	0 6	116	126
	*	*	*	*	*	* *	*	* *
	GTA TTG	CTG GC	A GGT G	CC TCG	TCC CAG	CGC TCC	GTG GCG AG	A ATG GAC
	Val Leu	Leu Ala	a Gly A	la Ser	Ser Gln	Arg Ser	Val Ala Ar	g Met Asp>
	a a	a a	a TR	ANSLATI	ION OF P	HCH4 (A)	a a	
		126		3 A.C			- ·	
	*	136	*	146	·	156	166	
	GGA GAT	GTC ATO	C ATC G	GA GCC	רייר יייר	י דרם הדר	CAT CAC CA	יא ה רכים רכים
	Gly Asp	Val Ile	e Ile G	ly Ala	Leu Phe	Ser Val	His His G	n Pro Pro>
			a TR	ANSLATI	ION OF PI	HCH4 [A]	a a	
	,			,				
	176	18			96	206	21	. 6
	CCC CXC		* ~~~	*	* *	*	*	* *
	Ala Clu	AAG GTA	A CCC G	AA AGG	AAG TGT	GGG GAG	ATC AGG GA	A CAG TAT
. .	a a	шуз va.	T FIO G	LU. AEG	TON OF B	HCH4 [A]	Tie Arg Gi	u Gln Tyr>
				autobal.	ion of P	Cua (w)	a a	aa,>
	. 226		236		246	2	56	266
	*	*	* .	*	*	*		*
						•		• •
	GGT ATC	CAG AG	G GTG G	AG GCC	ATG TTC	CAC ACG	TTG GAT A	G ATT AAC
	Gly Ile	Gln Ar	g Val G	lu Ala	Met Phe	His Thr	Leu Asp Ly	G ATT AAC
	GGT ATC Gly Ile a a	Gln Ar	g Val G	lu Ala	Met Phe	His Thr	TTG GAT AF Leu Asp Ly a a	G ATT AAC
	Gly Ile a a	Gln Ard a a	g Val G a TR	lu Ala ANSLATI	Met Phe ION OF P	His Thr	Leu Asp Ly a a	AG ATT AAC 's Ile Asn> a a >
	Gly Ile	Gln Ard a a	g Val G	lu Ala ANSLATI	Met Phe	His Thr	Leu Asp Ly	G ATT AAC
	Gly Ile a a 276	Gln Ard	g Val G a TR 286	lu Ala ANSLAT	Met Phe ION OF P 296	His Thr HCH4 [A]	Leu Asp Ly a a 306	AG ATT AAC //S Ile Asn> a a > 316
	Gly Ile a a 276 * GCG GAC Ala Asp	Gln Arc a a * CCG GT Pro Va	g Val G a TR 286 * G CTC C	ANSLAT	Met Phe ION OF PI 296 * AAC ATC Asn Ile	His Thr HCH4 [A] * ACT CTG Thr Leu	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser Gl	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg>
	Gly Ile a a 276 * GCG GAC Ala Asp	Gln Arc a a * CCG GT Pro Va	g Val G a TR 286 * G CTC C	ANSLAT	Met Phe ION OF PI 296 * AAC ATC Asn Ile	His Thr HCH4 [A] * ACT CTG Thr Leu	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser Gl	AG ATT AAC vs Ile Asn> a a > 316
	Gly Ile a a 276 * * GCG GAC Ala Asp a	Gln Arc a a * CCG GT Pro Va	g Val G a TR 286 * G CTC C l Leu I a TR	ANSLATI TG CCC eu Pro	Met Phe ION OF P 296 * AAC ATC Asn Ile ION OF P	His Thr HCH4 [A] * ACT CTG Thr Leu HCH4 [A]	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a	AG ATT AAC 's Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a >
	Gly Ile a a 276 * * GCG GAC Ala Asp a	Gln Arc a a * CCG GT Pro Va	g Val G a TR 286 * G CTC C l Leu I a TR	ANSLAT	Met Phe ION OF PI 296 * AAC ATC Asn Ile ION OF P	His Thr HCH4 [A] * ACT CTG Thr Leu HCH4 [A]	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366
	Gly Ile a a 276 * GCG GAC Ala Asp a a	CCG GTO Va.	g Val G a TR 286 * G CTC C l Leu L a TR	TG CCC eu Pro	Met Phe ION OF PI 296 * AAC ATC Asn Ile ION OF P	His Thr HCH4 [A] * ACT CTG Thr Leu HCH4 [A] 46 *	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 *	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 *
	Gly Ile a a 276 * GCG GAC Ala Asp a a GAC TCC	CCG GTG Pro Va a a 326 * TGC TG	g Val G a TR 286 G CTC C l Leu I a TR 3 C CAC T	ANSLAT: TG CCC eu Pro ANSLAT: 36 * CT TCA	Met Phe ION OF PI 296 AAC ATC Asn Ile ION OF P 3 GTG GCT	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * *	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AG	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * ** ** ** ** ** ** ** ** ** ** ** *
-	Gly Ile a a 276 * * GCG GAC Ala Asp a a GAC TCC Asp Ser	CCG GTG Pro Vala a 326 * TGC TGC Cys Tr	g Val G a TR 286 G CTC C l Leu I a TR G CAC T p His S	ANSLAT: TG CCC eu Pro ANSLAT: 36 * CT TCA er Ser	Met Phe ION OF P 296 * AAC ATC Asn Ile ION OF P 3 * GTG GCT Val Ala	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * ** ** ** ** ** ** ** ** ** ** ** *
	Gly Ile a a 276 * * GCG GAC Ala Asp a a GAC TCC Asp Ser	CCG GTG Pro Va a a 326 * TGC TGC Cys Tr	g Val G a TR 286 G CTC C l Leu I a TR G CAC T p His S	ANSLAT: TG CCC eu Pro ANSLAT: 36 TCT TCA er Ser ANSLAT:	Met Phe ION OF P 296 * AAC ATC Asn Ile ION OF P 3 * GTG GCT Val Ala ION OF P	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A]	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AG	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * ** ** ** ** ** ** ** ** ** ** ** *
	Gly Ile a a 276 * * GCG GAC Ala Asp a a GAC TCC Asp Ser	CCG GTG Pro Va a a 326 * TGC TGC Cys Tr a a 376	g Val G a TR 286 G CTC C l Leu I a TR G CAC T p His S	TG CCC eu Pro ANSLAT: 36 cT TCA er Ser ANSLAT:	Met Phe ION OF P 296 AAC ATC Asn Ile ION OF P 3 GTG GCT Val Ala ION OF P	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A]	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * ** ** ** ** ** ** ** ** ** ** ** *
	Gly Ile a a 276 * GCG GAC Ala Asp a a GAC TCC Asp Ser a	CCG GTG Pro Va 326 * TGC TGC Cys Tr a a 376 *	g Val G a TR 286 G CTC C l Leu I a TR G CAC T p His S a TF	ANSLAT: TG CCC EU Pro ANSLAT: CT TCA EER SER ANSLAT: 386	Met Phe ION OF P 296 AAC ATC Asn Ile ION OF P 3 GTG GCT Val Ala ION OF P	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A]	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II a a 406 *	AG ATT AAC 's Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * ** ** ** ** **
	Gly Ile a a 276 * GCG GAC Ala Asp a a GAC TCC Asp Ser a a ATC AGA	CCG GTG Pro Value a a a a a a a a a a a a a a a a a a a	g Val G a TR 286 G CTC C l Leu L a TR C CAC T C CTG A	TG CCC LEU Pro LANSLAT: 36 ECT TCA EANSLAT: 386 EXAMSLAT:	Met Phe ION OF P 296 * AAC ATC ASN Ile ION OF P 3 GTG GCT Val Ala ION OF P	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A] 396 * GAT GAG	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II a a 406 * AAG GAT GAT	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * * * * * * * * * * * * * * * * *
	Gly Ile a a a 276 * GCG GAC Ala Asp a a * GAC TCC Asp Ser a a ATC AGA Ile Arg	CCG GTG Pro Va. 326 * TGC TGG Cys Tr a a 376 * GAC TC Asp Se	g Val G a TR 286 G CTC C l Leu I a TR C CAC T P His S a TF	ANSLAT: TG CCC LEU Pro LANSLAT: CT TCA EER SER LANSLAT: 386 ATT TCC LIE SER	Met Phe ION OF P 296 * AAC ATC Asn Ile ION OF P 3 GTG GCT Val Ala ION OF P ATC CGA Ile Arg	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A] 396 * GAT GAG Asp Glu	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II a a 406 * AAG GAT GA Lys Asp G	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * ** ** ** ** ** ** ** ** ** ** ** *
	Gly Ile a a a 276 * GCG GAC Ala Asp a a * GAC TCC Asp Ser a a ATC AGA Ile Arg	CCG GTG Pro Va. 326 * TGC TGG Cys Tr a a 376 * GAC TC Asp Se	g Val G a TR 286 G CTC C l Leu I a TR C CAC T P His S a TF	ANSLAT: TG CCC LEU Pro LANSLAT: CT TCA EER SER LANSLAT: 386 ATT TCC LIE SER	Met Phe ION OF P 296 * AAC ATC Asn Ile ION OF P 3 GTG GCT Val Ala ION OF P ATC CGA Ile Arg	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A] 396 * GAT GAG Asp Glu	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II a a 406 * AAG GAT GA Lys Asp G	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * * * * * * * * * * * * * * * * *
	Gly Ile a a a 276 * GCG GAC Ala Asp a a * GAC TCC Asp Ser a a ATC AGA Ile Arg	CCG GTG Pro Va. 326 * TGC TGG Cys Tr a a 376 * GAC TC Asp Se	g Val G a TR 286 G CTC C l Leu I a TR C CAC T p His S a TF	ANSLAT: TG CCC EU Pro ANSLAT: 36 CT TCA EER SER ANSLAT: 386 ATT TCC LIE SER ANSLAT	Met Phe ION OF P 296 * AAC ATC Asn Ile ION OF P 3 GTG GCT Val Ala ION OF P ATC CGA Ile Arg	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A] 396 * GAT GAG Asp Glu	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II a a 406 * AAG GAT GC Lys Asp GI a a	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * ** ** ** ** ** ** ** ** ** ** ** *
	Gly Ile a 276 * GCG GAC Ala Asp a * GAC TCC Asp Ser a ATC AGA Ile Arg a 416 *	CCG GTG Pro Value a a a 376	g Val G a TR 286 G CTC C l Leu I a TR C CAC T p His S a TF C CTG A r Leu I a TF	ANSLAT: TG CCC LEU Pro LANSLAT: 36 CT TCA LEC SER LANSLAT: 386 ATT TCC LLE SER LANSLAT 4	Met Phe ION OF P 296 * AAC ATC Asn Ile ION OF P 3 * GTG GCT Val Ala ION OF P ATC CGA Ile Arg ION OF P	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A] 396 GAT GAG Asp Glu HCH4 [A]	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II a a 406 * AAG GAT GC Lys Asp GC a a 45	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * * * * * * * * * * * * * * * * *
	Gly Ile a 276 * GCG GAC Ala Asp a GAC TCC Asp Ser a ATC AGA Ile Arg a 416 * CGA TGC	CCG GTG Pro Va 326 * TGC TG Cys Tr a a 376 * GAC TC Asp Se a a 42 * CTG CG	g Val G a TR 286 G CTC C l Leu I a TR C CAC T p His S a TF C CTG A r Leu I a TF	TG CCC EU Pro ANSLAT: 36 * CT TCA EER SER ATT TCC ILE SER RANSLAT 4 * GGC CAG	Met Phe ION OF P 296 AAC ATC Asn Ile ION OF P 3 GTG GCT Val Ala ION OF P ATC CGA Ile Arg ION OF P 36 * WCC CTG	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A] 396 GAT GAG Asp Glu HCH4 [A] 446 * CCC CCT	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II a a 406 * AAG GAT GG Lys Asp GC a a 45	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * ** ** ** ** ** ** ** ** ** ** ** *
	Gly Ile a a a 276 * GCG GAC Ala Asp a a * GAC TCC Asp Ser a a 416 * CGA TGC Arg Cys	CCG GTG Pro Value a a a a a a a a a a a a a a a a a a a	g Val G a TR 286 G CTC C l Leu I a TR C CAC T p His S a TF C CTG A r Leu I a TF	ANSLAT: TG CCC EU Pro ANSLAT: 36 CT TCA ER SET ANSLAT: 4 GGC CAG Gly Gln	Met Phe ION OF P 296 * AAC ATC Asn Ile ION OF P 3 GTG GCT Val Ala ION OF P ATC CGA Ile Arg ION OF P 36 * WCC CTG Xxx Leu	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A] 396 GAT GAG Asp Glu HCH4 [A] 446 * CCC CCT Pro Pro	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II a a 406 * AAG GAT GG Lys Asp GG a a 45 GGC AGG AG Gly Arq Ti	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * * * * * * * * * * * * * * * * *
	Gly Ile a a a 276 * GCG GAC Ala Asp a a * GAC TCC Asp Ser a a 416 * CGA TGC Arg Cys	CCG GTG Pro Value a a a a a a a a a a a a a a a a a a a	g Val G a TR 286 G CTC C l Leu I a TR C CAC T p His S a TF C CTG A r Leu I a TF	ANSLAT: TG CCC EU Pro ANSLAT: 36 CT TCA ER SET ANSLAT: 4 GGC CAG Gly Gln	Met Phe ION OF P 296 * AAC ATC Asn Ile ION OF P 3 GTG GCT Val Ala ION OF P ATC CGA Ile Arg ION OF P 36 * WCC CTG Xxx Leu	His Thr HCH4 [A] ACT CTG Thr Leu HCH4 [A] 46 * CTC GAA Leu Glu HCH4 [A] 396 GAT GAG Asp Glu HCH4 [A] 446 * CCC CCT Pro Pro	Leu Asp Ly a a 306 * GGC AGT GA Gly Ser GI a a 356 * CAG AGC AT Gln Ser II a a 406 * AAG GAT GG Lys Asp GG a a 45 GGC AGG AG Gly Arq Ti	AG ATT AAC 'S Ile Asn> a a > 316 AG ATC CGG AU Ile Arg> a a > 366 * ** ** ** ** ** ** ** ** ** ** ** *

FIG. 5b.

466	476	486	4:	506
CCT ATT GCT	GGA GTG ATC	GGC CCT GGC	TCC AGC	TCT GTG GCC ATT CAA
a a a	GIY VAL ILE a a TRAN	Gly Pro Gly SLATION OF P	Ser Ser HCH4 [A]	Ser Val Ala Ile Gln> a a a a >
516 * *	526 * *	536 * *		
GTC CAG AAT	CTT CTC CAG	CTG TTC GAC	ATC CCA	CAG ATC GCC TAT TCT
a a a	a a TRAN	SLATION OF P	HCH4 [A]	Gln Ile Ala Tyr Ser> a a a a >
566 * *	576 * *	•	86	596 606
GCC ACA AGC	ATA GAC CTG	AGT GAC AAA	ACT TTG	TAC AAA TAC TTC CTG
a á a	a a TRAN	SET ASP LYS SLATION OF P	Thr Leu HCH4 [A]	Tyr Lys Tyr Phe Leu> a a a a >
6 :	16 * *	626	636 _.	646
AGG GTT GTC	CCT TCT GAC	ACT TTG CAG	GCA AGG	GCC ATG CTT GAC ATA
a a.	a a TRAN	Thr Leu Gln SLATION OF P	Ala Arg HCH4 [A]	Ala Met Leu Asp île> a a a a >
656	666 * *	676	686 *	696
GTC AAA CGT	TAC AAT TGG	ACC TAT GTC	TCT GCA	GTC CAC ACG GAA GGG
a a a	TYP ASN TRAN	Thr Tyr Val SLATION OF P	Ser Ala HCH4 [A]	Val His Thr Glu Gly> a a a a >
, - ·7·06- · · · *	716	* ****	7 ∶	36 746
AAT TAT GGG	GAG AGC GGA	ATG GAC GCT	TTC AAA	GAG CTG GCT GCC CAG
a a	a a TRAN	SLATION OF P	PRE Lys	Glu Leu Ala Ala Gln> a a a a >
756	766 * *	776	 *	786 796
GAA GGC CTC	TGT ATC GCC	CAT TCT GAC	AAA ATC	TAC AGC AAC GCT GGG
a a	cys lie Ala a a TRAN	SLATION OF P	Lys Ile HCH4 [A]	Tyr Ser Asn Ala Gly> a a a a >
* * *	* * *	•	26 * *	836 846
GAG AAG AGC	TTT GAC CGA	CTC TTG CGC	AAA CTC	CGA GAG AGG CTT CCC
a a	a a TRAN	SLATION OF P	HCH4 [A]	Arg Glu Arg Leu Pro> a a a a >
*	56 * *	866 * *	876	886
AAG GCT AGA	GTG GTG GTC	TGC TTC TGT	GAA GGC	ATG ACA GTG CGA GGA
a a	a a TRAN	SLATION OF P	HCH4 [A]	Met Thr Val Arg Gly> a a a a >
896· * *	906	916	926	936
CTC CTG AGC	GCC ATG CGG	CGC CTT GGC	GTC GTG	GGC GAG TTC TCA CTC
a a	a a TRAN	SLATION OF P	HCH4 (A)	Gly Glu Phe Ser Leu>
946	956	966	9	76/ 986 * * *

FIG. 5c.

	Ile Gly	Ser Asp	p Gly T	rp Ala	Asp Arg	Asp Gl	u Val Ile	GAA GGT TAT Glu Gly Tyr> a a a >
	996		1006	-	1016	*	1026	1036
	GAG GTG	GAA GC	C AAC G	GG GGA	ATC ACG	ATA AA	G CTG CAG	* * TCT CCA GAG
	Glu Val	Glu Ala	a Asn G	ly Gly	Ile Thr	Ile Ly	s Leu Gln	Ser Pro Glu>
	a (a	a TR	WN2 TAT 1	ION OF P	HCH4 (A	a) a	a a a >
	10	046		56	10	66	1076	1086 -
					* TTC CTG		* , * 'G AGG CTG	GAC ACT AAC
	Val Arg	Ser Ph	e Asp A	sp Tyr	Phe Leu	Lys Le	u Arg Leu	Asp Thr Asn>
	a a	a a	a TR	ANSLATI	ON OF P	HCH4 [A	.] a	a a a >
		1096		1106		1116	11	26
	*	*	, *	*	*	*	*	* *
	ACG AGG	AAT CC	C TGG T	TC CCT	GAG TTC	TGG CA	A CAT CGG	TTC CAG TGC Phe Gln Cys>
	a a	a a	a TR	ANSLATI	ON OF P	HCH4 (A	n mis Arg	a a a >
1 1	136	114		•	56			
	*	*	* '	*	* *		• , *	1176 * *
	CGC CTT	CCA GG	A CAC C	TT CTG	GAA AAT	CCC AA	C TTT AAA	CGA ATC TGC
	a a	ero Gi	y mis L a TR	eu Leu ANSLATI	Glu Asn ON OF P	Pro As HCH4 [A	n Phe Lys	Arg Ile Cys>
			.					u u u z >
	1186	★	1196		.206	1	216	1226
	ACA GGC	AAT GA	A AGC T	TA GAA	GAA AAC	TAT GT	C CAG GAC	AGT AAG ATG
	Thr Gly	Asn Gl	u Ser L	eu Glu	Glu Asn	Tyr Va	l Gln Asp	Ser Lvs Met>
	a (a	a IR	ANSLATI	ION OF P	HCH4 [A	ija.	a a a >.
	1236	*	1246		1256		1266	1276
	GGG TTT		* C AAT G	**	* TAT GCC	* ATG GC	* 'A CAT GGG	* * CTG CAG AAC
	Gly Phe	Val Il	e Asn A	la Ile	Tyr Ala	Met Al	a His Gly	Leu Gln Asn>
	a	a a	a TR	'ANSLATI	ON OF P	HCH4 [A	() a	
	1	286	, 12	96	13	06	1316	1326
	ATG CAC	CAT GC	C CTC T	GC CCT	GGC CAC	* GTG GG	* * GC CTC TGC	GAT GCC ATG
	Met His	His Al	a Leu C	ys Pro	Gly His	Val Gl	y Leu Cys	Asp Ala Met>
	a, a	a a	a TR	uanslati	ON OF P	HCH4 [A	i] a	a a a >
-								
		1336		1346.		1356	13	66
	* AAG CCC	, ★	⊤	*,	*	*	± .	* . *
	AAG CCC	ATC GA	C GGC A	.GC AAG	* CTG CTG	* GAC TI	* C CTC ATC	* * * AAG TCC TCA
	AAG CCC Lys Pro	ATC GA	C GGC A	GC AAG er Lys	* CTG CTG Leu Leu	* GAC TT	* C CTC ATC	* * AAG TCC TCA Lys Ser Ser>
13	AAG CCC Lys Pro	ATC GA Ile As a a	C GGC Ap Gly S	* AGC AAG Ser Lys KANSLATI	* CTG CTG Leu Leu ION OF P	* GAC TT Asp Ph HCH4 [A	CC CTC ATC le Leu Ile	* * AAG TCC TCA Lys Ser Ser> a a >
13	AAG CCC Lys Pro a 376	ATC GA Ile As a a	C GGC A p Gly S a TF 6	X AGC AAG Ser Lys XANSLATI 139	CTG CTG Leu Leu ION OF P	GAC TI Asp Ph HCH4 [A	CCTC ATC le Leu Ile	AAG TCC TCA Lys Ser Ser> a a a >
13	AAG CCC Lys Pro a 376 * TTC ATT	ATC GA Ile As a a 138	C GGC A p Gly S a TF 6 * A TCT G	AGC AAG Ser Lys RANSLATI 139	CTG CTG Leu Leu ION OF P 6 * * GAG GTG	GAC TT Asp Ph HCH4 [A	t CTC ATC Leu Ile La	AAG TCC TCA Lys Ser Ser> a a a > 1416 AAA GGA GAC
13	AAG CCC Lys Pro a 376 * TTC ATT Phe Ile	ATC GA Ile As a a 138	C GGC A p Gly S a TF 6 * A TCT G 1 Ser G	AGC AAG Ser Lys RANSLATI 139 * GGA GAG	CTG CTG Leu Leu ION OF P 6 * GAG GTG Glu Val	GAC TI Asp Ph HCH4 [A 1406 TGG TI Trp Ph	C CTC ATC Leu Ile La	AAG TCC TCA Lys Ser Ser> a a a >
13	AAG CCC Lys Pro a 376 * TTC ATT Phe Ile	ATC GA Ile As a a 138 * GGA GT Gly Va a a	C GGC A p Gly S a TF 6 * A TCT G 1 Ser G	AGC AAG Ser Lys RANSLATI 139 * GGA GAG Gly Glu RANSLATI	CTG CTG Leu Leu ION OF P GGGGGGGGGGU Val ION OF P	GAC TI ASP Ph HCH4 [A 1406 TGG TI Trp Ph HCH4 [A	CC CTC ATC Le Leu Ile L a T GAT GAG Le Asp Glu	AAG TCC TCA Lys Ser Ser> a a a > 1416
13	AAG CCC Lys Pro a 376 * TTC ATT Phe Ile a 1426	ATC GA Ile As a a 138 * GGA GT Gly Va a a	C GGC AP GIY S A TCT G A TCT G A TCT G A TF	AGC AAG Ser Lys RANSLATI 139 * GGA GAG Gly Glu RANSLATI	CTG CTG Leu Leu ION OF P GGG GTG Glu Val ION OF P	GAC TI Asp Ph HCH4 [A 1406 TGG TI Trp Ph HCH4 [A	CCTC ATC Le Leu Ile L A CT GAT GAG LE Asp Glu A A A A A A A A A A A A A A A A A A A	* * AAG TCC TCA Lys Ser Ser> a a a > 1416

FIG. 5d.

	a	ě	a	a a	а	TRAN	SLAT	ION	OF P	HCH4	[A]	i	a	a _.	a	a	>
	1	476			14	86		1	496			1506			15	16	
*	<u>.</u>	*		*		*	*		*		*	. *		*		÷	
Ar	α	Tvr	Asp	TAT Tyr	GTG Val	CAC His	GTT Val	GGA	ACC	TGG	CAT	GAA	GGA	GTG	CTG	AA	C
	ā	- 1 -	a a	a a	3	TRAN	SLAT	ION	OF P	HCH4	IAl	GIU	а Сту	·val a	Leu a		n> >
			506	*											_	Ÿ	
•	*	1:	526 *.		*	1536		· *	15	46	*		556 *		* .	156	6
AT	T (GAT	GAT	TAC	AAA	ATC	CAG	ATG	AAC	AAG	AGT	GGA	GTG	GTG	CGG	TC'	≖ T
Il	e .	ASP	ASP	Tyr	Lys	ille	Gln	Met	Asn	Lvs	Ser	Glv	Val	Va1	1	50	- r>
	٠.	,	1	a i a	1	TRAN	SLAT.	TON	OF P	нсн4	[A]	i	а .	a ,	а	a .	>
				76		1	586			1596			16	06			
GT/	c ,	× TĠĊ		*	*	,	*		*	*		*		*	*		
Va.	1 (Cys	Ser	GAG Glu	Pro	Cvs	Leu	Lvs	GGC GTv	CAG	ATT	AAG	GTT	ATA	CGG	AAJ	A
	á	٠ .	3 .	a a	a .	TRAN	SLAT	ГОИ	OF P	HCH4	[A]	. ays		T T E	a a	ьу: a	s <i>></i>
1616				1626			, 16:		,	•							-
*			*	*		*		*	*	-	*		*	1656		*	
GG	A (GAA.	GTG	AGC	TGC	TGC	TGG	ATT	TGC	ACG	GCC	TGC	AAA	GAG	AAT	GAI	A
GI	y (a	o Lu ê	vai	Ser a a	Cys a	Cys	Trp	Ile	Cys	Thr	Ala	Cys	Lys	Glu	Asn		
	-	. 0		•	•					nen4	(A)		1 (4 6	3	a	>
1	66	6 •			576 *		. *				16			1	706.		
TA'	r (GTG	CAA	GAT		TTC		* TGC		 GСт	ጥርጥ	* GAC	יייים *	GGA	* TGG	ጥርረ	~
Ty	r '	val	Gin	Asp	Glu	Phe	Thr	Cys	Lys	Ala	Cvs	-Asp	Leu	Glv	Tro	ጥ ተተ	2>
•	а	ĉ	3	a a	1	TRAN	SLAT:	ION	OF P	HCH4	[A]	ä	a e	a a	3	a	>
x	1	716			17	26		1	736		•	1746		•	17	56	
· *	~ ,	★ ידינים	GCN	* C	ርጥ አ	*	*		*		*	*		*		*	
Pr	0 2	Asn	Ala	GAT Asp	Leu	Thr	Glv	Cvs	GAG	Pro	ATT	Pro	GTG Val	CGC	TAT	CTI	r
	а	ě	a .	a a	1	TRAN	SLAT	ION	OF P	HCH4	(A)	+ ā	3 6	y 3 - 3			>
*		17	766			1 7 76			. 17	0.6							_
	*		*		*	*		*		*	*		796 *		*	1806	t .
GA	G :	IGG	AGC	AAC	ATC	GAA	CCC	ATT	ATA	GCC	ATC	GCC	TTT	TCA	TGC	CTC	3
GI	u: a	t.tb	ser	Asn a a	ı TTG	GIU TRANS	Pro SLAT	Ile	Ile OF PI	Ala	Ile	Ala					
•	_								OL P	iicii4	נאן	c	1 (a á	1	a	>
		*	18	16	*		326		*	1836			18				
GG	A Z		CTT	GTT				GTC		CTA	ATC	* TTT	GTA	* CTG	* TAC	רפת	2
Gl	У.	тте	Leu	vai	Thr	Leu	Phe	Val	Thr	Leu	Ile	Phe	Val	Leu	Tvr	Arc	7 >
·.	а	č	1	a a	1	TRANS	SLAT	ION	OF PI	HCH4	[A]	ā	1 6	a 6	1 .	a .	>
1856	•		*	1866		٠	187	76		18	386			1896			
		א <i>ר</i> י א	*	. * 	CMC	*	maa	*			*		*	*		*	
Ası	, 4 p :	Thr	Pro	GTG Val	Val	Lys	Ser	Ser	AGT Ser	CGG	GAG	CTC	TGC	TAC	ATC	ATC	
•	a	ā	a .	a a	1	TRAN	SLAT	ION	OF P	HCH 4	[A].		i a	ayr S	116		>
. 1	90		-					1926	•								
	•	*	*		*		*	*		*	19:	*	*	_	46 *		
CT.	A (GCT	GGC	ATC	TTC	CTT	GGT	TAT	GTG	TGC	CCA	TTC	ACT	CTC	АТТ	GCC	:
Le	u į	Ala	Gly	Ile	Phe	Leu	Gly	Tyr	Val	Cys	Pro	Phe	Thr	Leu	Ile	Ala	1 >
	-		-	a a	-	~ • W 22 1 ,	JHAI.	TON	of P	пСПЧ	ĮΑJ	č	1 6	1	1	a	>

29/34 FIG. 5e.

1956	1966	19	76 .	1986	1	.996
* * * * AAA CCT ACT ACC	* ACC TCC	* TAC		*	* ITG GTT GO	* SC CTC
Lys Pro Thr Thr				Arg Leu l [A] a		y Leu>
2006	2016		2026	20:		2046
* *	* *	*	*	* .	* *	*
TCC TCT GCG ATG Ser Ser Ala Met	Cys Tyr	Ser Ala	Leu Val	Thr Lys '	Thr Asn Ar	g Ile>
a a a	a TRANS	LATION O	F PHCH4	[A] a	a a	a >
2056-	20 *	66 *	2076	*	2086	*
GCA CGC ATC CTG Ala Arg Ile Leu						
_	•	-		•	a a	
2096 2106		2116	21	26	2136	
AGG TTC ATG AGT	GCC TGG	GCT CAG	* GTG ATC	* ATT GCC	*	* IG ATT
Arg Phe Met Ser a a a	_				Ser Ile Le a a	
	156	2166		2176	. 218	•
* * * AGT GTG CAA CTA	*	* . *	*	*	*	*
Ser Val Gln Leu	Thr Leu	Val Val	Thr Leu	Ile Ile	Met Glu P:	ro Pro>
	a TRANS					a >
2196	- 2206 · · ·	* 22	**	2226	*	2236
ATG CCC ATT CTG Met Pro Ile Leu						
a a a						
2246	2256	*	2266	22		2286
AAT ACC AGC AAC	CTG GGT			TTG GGC	TAC AAT G	
Asn Thr Ser Asn a a a					a a	
2296		306			•	
CTC ATC ATG AGO						
Leu Ile Met Ser a a a						
2336 2346	· ·	2356	. 23	366	2376	
* * * * GCC AAC TTC AAC	* C GAG GCC		* ATC GCG	* TTC ACC	* * ATG TAC A	.CC ACC
Ala Asn Phe Asr a a a					Met Tyr T	
	2396	•			242	-
* * TGT ATC ATC TGC	* CTA GCT	* * TTT GTG		* TAC TTT		*. AC TAC
Cys Ile Ile Trp	Leu Ala	Phe Val	Pro Ile	Tyr Phe	Gly Ser A	sn Tyr>
			•			
2436	2446		456 . *	2466 * *		2476

FIG. 5f.

Lys Ile Ile Thr	Thr Cys Phe	Ala Val Ser	Leu Ser Val Thr	Val Ala>
ааа	a TRANSLATI	ON OF PHCH4	[A] a a	a a >
2486	2496	2506	2516	2526
CTG GGG TGC ATG			ATC ATT ATT GCC	* * . AAG CCT
Leu Gly Cys Met	Phe Thr Pro	Lys Met Tyr	Ile Ile Ile Ala	Lys Pro>
a a a	a TRANSLATI	ON OF PHCH4	(A) a a	a a >
2536	2546	2556	2566	
		===	AGC ACC GCA GCT	CAC GCT
Glu Arg Asn Thi	Ile Glu Glu	Val Arg Cys	Ser Thr Ala Ala	His Ala>
a a a	a TRANSLATI	ON OF PHCH4	[A] a a	a a >
576 2586	259)6 - 26	06 2616	
	* , *	* *	_* * *	*
Phe Lvs Val Ala	r GCC CGG GCC	ACG CTG CGC	CGC AGC AAC GTC Arg Ser Asn Val	TCC CGC
a a a	a TRANSLATI	ON OF PHCH4	[A] a a	a a >
2626	2636 2	2646	2656 2	666
AAG CGG TCC AGG	AGC CTT GGA	GGC TCC ACG	GGA TCC ACC CCC	TCC TCC
Lys Arg Ser Ser	Ser Leu Gly	Gly Ser Thr	Gly Ser Thr Pro	Ser Ser>
a a a	a TRANSLAT	ON OF PHCH4	[A] a a	a a >
2676			2706	2716
* * * * TCC ATC AGC AGC	•		* * * * CCA TTC CCA CAG	• • • • • • • • • • • • • • • • • • • •
Ser Ile Ser Ser	Lys Ser Asn	Ser Glu Asp	Pro Phe Pro Gln	Pro Glu>
a a a	a TRANSLATI	ON OF PHCH4	[A] a a	a a >
2726	2736		2756	2766
* * * *	. * *		* * ACC CAG CAA GAG	* *
Arg Gln Lys Gl	n Gln Gln Pro	Leu Ala Leu	Thr Gln Gln Glu	Gln Gln>
a a a	a TRANSLAT	ON OF PHCH4	[A] a a	a a >
2776 * *	2786 * *	2796	2806	*
CAG CAG CCC CTC	ACC CTC CCA	CAG CAG CAA	CGA TCT CAG CAG	CAG CCC
Gln Gln Pro Lei	Thr Leu Pro	Gln Gln Gln	Arg Ser Gln Gln	Gln Pro>
a a a	d IRANSLAT.	ION OF PHCH4	[A] a a	a a >
2816 2820	6 28; * *	36 28	346 2856 * * *	
AGA TGC AAG CAG	G AAG GTC ATC	TTT GGC AGC	GGC ACG GTC ACC	TTC TCA
Arg Cys Lys Gli	n Lys Val Ile	Phe Gly Ser	Gly Thr Val Thr	Phe Ser>
a a a	a TRANSLAT	ION OF PHCH4	[A] a a	a a >
2866 * *	4	2886		906
CTG AGC TTT GA	T GAG CCT CAG	AAG AAC GCC	ATG GCC CAC GGG	AAT TCT
Leu Ser Phe Asi	o Glu Pro Gln	Lys Asn Ala	Met Ala His Gly	Asn Ser>
,			[A] a a	
2916 * * *	2926 * *	*	2946 * * *	2956
ACG CAC CAG AAG	C TCC CTG GAG	GCC CAG AAA	AGC AGC GAT ACG	CTG ACC
THE HIS GIN AS	n Ser Leu Glu	Ala Gln Lys	Ser Ser Asp Thr	Leu Thr>

FIG. 5g.

	a	a ,	a ·	a	TRAN	SLAT:	иои	OF I	PHCH4	[A]	·	a	a	a	а	>
	, 2	966			2976			2	986		2	996			30Ó	6
*		*		* .	*		* '		* -	*		*		*		*
CGA	CAC	CAC	G CC	A TTA	CTC	CCG	CTG	CAC	G TGC	GGG	GAA	ACG	GAC	ተጥ ው	GA	T
Arg	His	Glr	n Pro	o Lev	Leu	Pro	Leu	Gli	Cvs	Glv	Glu	Thr	Agn	Lei) De	n>
	a .	a '	a	a	TRAN	SLAT	ION	OF I	PHCH4	[A]	<u> </u>	a	a	; DCU		-
				:								-	-	4	a .	
		30	016		3	026			3036			30	46			
	*		*	*	•	*		* .			*	-	*	*	•	
CTG	ACC	GTO	CAC	G GAA	ACA	GGT	CTG	CA	A GGA	CCT	GTG	GGT	GGA	GAC		G
Leu	Thr	Va]	Gli	n Glu	Thr	Glv	Leu	Gl	Glv	Pro	Val	Glv	Glu	. Der	CI	n >
	a	a	a	a	TRAN	SLAT:	ION	OF I	PHCH4	[A]	•••	9 9	a C + 3	a	, 61	
										[]	. `		<u>.</u>	a	α.	
)56			306	6		301	76		3	086			3006		•	
*		*			*											
CGG	CCA	GAC	GTO	G GAG	GAC	ССТ			•							_
Ara	Pró	Gli	ı Va	l Glu	ASD	Pro	Glu	Gli	1 T.e.	Sar	Dro	al a	Tou	GIA	170	5 1 ~
5	a	a	a	- О <u>-</u> -	TRAN	ST.AT'	TON	OF	PHCHA	IVI	P LO	VTG	ກອບ	· val		
	_	*	_	_		·	- 0.1	V. .		(A)	,	4	a	a	a	_
31	06		:	3116		0.	3126			311	36	• •	3	146		
	*	7	r i	*		*			*	J 2.	*	*	J	*		
TCC	AGT	TC	A CAG	G AGO	TTT	GTC	ATC	AG	GGT	GGA	GGC	AGC	ACT	СТТ	י אַר	A
Ser	Ser	Ser	Gli	n Ser	Phe	Val	Ile	Se	r Glv	Glv	Glv	Ser	Thr	Val	Th	``; ٣>
•	a .	a	a ·	a	TRAN	SLAT	ION	OF I	PHCH4	[A]		a	а 	а		>
	•									•,	8	_	_	_	_	
	3156	•		31	.66		31	76		318	6					
*	*		*	•	*	•	*	*		•		*				
GAA	AAC	GT	A GTO	G AAT	TCA	T A	TAAA	GG 2	AAGGA	GAAG	A CTO	GGGC	TAG			
Glu	Asn	Va]	L Vai	l Asr	Ser	Xxx	> .							1		le:
													•			
	CTG Leu)56 * CGG Arg 31 TCC Ser	CGA CAC Arg His a CTG ACC Leu Thr a CGG CCA Arg Pro a 3106 TCC AGT Ser Ser a 3156 * GAA AAC Glu Asn	2966 * * CGA CAC CAC Arg His Glr a a 30 CTG ACC GTC Leu Thr Val a a 3106 * TCC AGT TCA Ser Ser Ser a a 3156 * GAA AAC GTA Glu Asn Val	2966 * * * CGA CAC CAG CC: Arg His Gln Pro a a a 3016 * * CTG ACC GTC CAG Leu Thr Val Gli a a a 306 * CGG CCA GAG GTC Arg Pro Glu Val a a a 3106 * TCC AGT TCA CAG Ser Ser Gli a a a 3156 * GAA AAC GTA GTG Glu Asn Val Val	2966 * * * * * CGA CAC CAG CCA TTA Arg His Gln Pro Leu a a a a 3016 * CTG ACC GTC CAG GAA Leu Thr Val Gln Glu a a a a 356 CGG CCA GAG GTG GAG Arg Pro Glu Val Glu a a a a 3106 * * TCC AGT TCA CAG AGG Ser Ser Ser Gln Ser a a a 3156 3176	2966 2976 * * * * * * * CGA CAC CAG CCA TTA CTC Arg His Gln Pro Leu Leu a a a TRAN 3016 3 * * * * * CTG ACC GTC CAG GAA ACA Leu Thr Val Gln Glu Thr a a a TRAN 366 3066 * * * * CGG CCA GAG GTG GAG GAC Arg Pro Glu Val Glu Asp a a a TRAN 3106 3116 * * TCC AGT TCA CAG AGC TTT Ser Ser Ser Gln Ser Phe a a a a TRAN 3156 3166 * * GAA AAC GTA GTG AAT TCA Glu Asn Val Val Asn Ser	2966 2976 * * * * * * * * CGA CAC CAG CCA TTA CTC CCG Arg His Gln Pro Leu Leu Pro a a a TRANSLAT 3016 3026 * * * * * * CTG ACC GTC CAG GAA ACA GGT Leu Thr Val Gln Glu Thr Gly a a a TRANSLAT 056 3066 30 * * * * CGG CCA GAG GTG GAG GAC CCT Arg Pro Glu Val Glu Asp Pro a a a TRANSLAT 3106 3116 * * * TCC AGT TCA CAG AGC TTT GTC Ser Ser Ser Gln Ser Phe Val a a a TRANSLAT 3156 3166 * * * GAA AAC GTA GTG AAT TCA T A	2966 2976 * * * * * * * * * * CGA CAC CAG CCA TTA CTC CCG CTG Arg His Gln Pro Leu Leu Pro Leu a a a TRANSLATION 3016 3026 * * * * * * CTG ACC GTC CAG GAA ACA GGT CTG Leu Thr Val Gln Glu Thr Gly Leu a a a TRANSLATION 366 3066 3076 * * * * * CGG CCA GAG GTG GAG GAC CCT GAA Arg Pro Glu Val Glu Asp Pro Glu a a a a TRANSLATION 3106 3116 3126 * * * * * TCC AGT TCA CAG AGC TTT GTC ATC Ser Ser Ser Gln Ser Phe Val Ile a a a TRANSLATION 3156 3166 31 * * * GAA AAC GTA GTG AAT TCA T AAAAT Glu Asn Val Val Asn Ser Xxx>	2966 2976 2976 * * * * * * * * * * * * CGA CAC CAG CCA TTA CTC CCG CTG CAG Arg His Gln Pro Leu Leu Pro Leu Gli a a a TRANSLATION OF I 3016 3026 * * * * * * * * CTG ACC GTC CAG GAA ACA GGT CTG CAG Leu Thr Val Gln Glu Thr Gly Leu Gli a a a TRANSLATION OF I 056 3066 3076 * * * * * * CGG CCA GAG GTG GAG GAC CCT GAA GAG Arg Pro Glu Val Glu Asp Pro Glu Gli a a a TRANSLATION OF I 3106 3116 3126 * * * * * TCC AGT TCA CAG AGC TTT GTC ATC AGC Ser Ser Ser Gln Ser Phe Val Ile Ser a a a TRANSLATION OF I 3156 3166 3176 * * * * GAA AAC GTA GTG AAT TCA T AAAATGG GIu Asn Val Val Asn Ser Xxx>	2966 2976 2986 * * * * * * * * * * * * * * * * * * *	2966 2976 2986 * * * * * * * * * * * * * * * * * * *	2966 2976 2986 2 * * * * * * * * * * * * * * * * * *	2966 2976 2986 2996 * * * * * * * * * * * * * * * * * * *	2966 2976 2986 2996 * * * * * * * * * * * * * * * * * * *	2966 2976 2986 2996 CGA CAC CAG CCA TTA CTC CCG CTG CAG TGC GGG GAA ACG GAC TTA Arg His Gln Pro Leu Leu Pro Leu Gln Cys Gly Glu Thr Asp Leu a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] a a a a a TRANSLATION OF PHCH4 [A] A A TANSLATION OF PHCH4 [A] A A TANSLATION OF PHCH4 [A] A TANSLATION	2966 2976 2986 2996 3000 CGA CAC CAG CCA TTA CTC CCG CTG CAG TGC GGG GAA ACG GAC TTA GA Arg His Gln Pro Leu Leu Pro Leu Gln Cys Gly Glu Thr Asp Leu As a a a TRANSLATION OF PHCH4 [A] a a a a 3016 3026 3036 3046 * * * * * * * * * * * * * * * * * * *

FIG. 8a.

a) pmGluR1

FIG 8b.

b) hCaR

FIG. 8c.

c) pCH3

SUBSTITUTE SHEET (RULE 26)

FIG. 9.

$y = (m1-99.8)/(1+(m2/m0)^m3)$							
10	Value	Error					
m1	529.94	26.745					
m2	3.5223	0.30124					
m3	2.9298	0.63546					
Chisq	5476.2	NA					
R	0.98433	NA					