CS154: Homework #2

Due: Wednesday, July 18, 2012 by 5PM

Problem 1. For any DFA, we extend the transition function δ by breaking the input string $\mathbf{w} = \mathbf{x}\mathbf{a}$ during the inductive step, where \mathbf{x} is any string followed by a single symbol \mathbf{a} . However, we informally think of δ as describing what happens along a path with a certain string of symbols, and if so, then it should not matter how we break the input string. Show that in fact,

$$\delta(q, \mathbf{x}\mathbf{y}) = \delta(\delta(q, \mathbf{x}), \mathbf{y})$$

for any state q and strings \mathbf{x} and \mathbf{y} .

Problem 2. Give DFA's accepting the following languages over the alphabet $\{0,1\}$.

- a) The set of all strings such that each block of four consecutive symbols contains at least two 0's.
- b) The set of strings such that the number of 0's is divisible by 3, and the number of 1's is divisible by 3.

Problem 3. Consider the following ε -NFA.

		ε	a	b	c
\rightarrow	p	$\{q,r\}$	Ø	$\{q\}$	{ r}
	q	Ø	{ <i>p</i> }	{ <i>r</i> }	$\{p,q\}$
	r^*	Ø	Ø	Ø	Ø

Recall that starred states denote accept/final states.

- a) Compute the ε -closure of each state.
- b) Give all the strings of length three or less accepted by the automaton.
- c) Convert the automaton to a DFA.

Problem 4. Write regular expressions for the following languages. In all parts the alphabet is $\{0,1\}$.

- a) $\{w \mid w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length}\}.$
- b) $\{w \mid w \text{ has at most one pair of consecutive 1's}\}.$
- c) $\{w \mid \text{the number of 0's in } w \text{ is divisible by 3}\}.$
- d) $\{w \mid \text{ every pair of adjacent 0's in } w \text{ appears before any pair of adjacent 1's}\}.$
- e) $\{w \mid \text{ every odd position of } w \text{ is a } 1\}.$

Problem 5. Prove that the language $\mathbf{L} = \{w \mid w \in \{0,1\}^* \text{ is not a palindrome}\}\$ is not regular.